Loan Prediction Project

George Moisescu

Introduction

In this project I will try to use 6 machine learning algorithm for predicting which individuals included in the test set database will have or will not have access to credit. I will use the data from Kaggle platform: https://www.kaggle.com/altruistdelhite04/loan-prediction-problem-dataset

```
head(loan_data,4)
```

```
##
      Loan_ID Gender Married Dependents
                                               Education Self_Employed ApplicantIncome
## 1 LP001002
                 Male
                            No
                                                Graduate
                                                                      No
                                                                                     5849
## 2 LP001003
                 Male
                           Yes
                                         1
                                                Graduate
                                                                      No
                                                                                     4583
## 3 LP001005
                 Male
                           Yes
                                                Graduate
                                                                     Yes
                                                                                     3000
## 4 LP001006
                           Yes
                                         0 Not Graduate
                                                                                     2583
                 Male
                                                                      No
##
     CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Property_Area
## 1
                       0
                                 NA
                                                   360
                                                                      1
                                                                                 Urban
## 2
                   1508
                                128
                                                   360
                                                                      1
                                                                                 Rural
## 3
                       0
                                  66
                                                   360
                                                                      1
                                                                                 Urban
## 4
                   2358
                                120
                                                   360
                                                                      1
                                                                                 Urban
     Loan_Status
## 1
                Y
## 2
                N
## 3
                Y
## 4
                Y
```

str(loan_data)

```
'data.frame':
                    614 obs. of
                                13 variables:
                               "LP001002" "LP001003" "LP001005" "LP001006" ...
##
    $ Loan ID
##
    $ Gender
                               "Male" "Male" "Male" ...
                               "No" "Yes" "Yes" "Yes" ...
##
    $ Married
                        : chr
                               "0" "1" "0" "0" ...
    $ Dependents
                        : chr
##
    $ Education
                        : chr
                               "Graduate" "Graduate" "Graduate" "Not Graduate" ...
                               "No" "No" "Yes" "No" ...
##
    $ Self_Employed
                        : chr
##
    $ ApplicantIncome
                       : int
                              5849 4583 3000 2583 6000 5417 2333 3036 4006 12841 ...
    $ CoapplicantIncome: num
                              0 1508 0 2358 0 ...
##
    $ LoanAmount
                        : int
                              NA 128 66 120 141 267 95 158 168 349 ...
##
    $ Loan_Amount_Term : int
                              360 360 360 360 360 360 360 360 360 ...
##
    $ Credit_History
                        : int
                              1 1 1 1 1 1 1 0 1 1 ...
##
                               "Urban" "Rural" "Urban" "Urban" ...
    $ Property_Area
                        : chr
                               "Y" "N" "Y" "Y"
    $ Loan_Status
                        : chr
```

The dataset contain 614 observations in 13 variables. I will drop the Loan_ID variable because it is not useful for building the prediction algorithm .

Describing the variables

- 1. Gender: the gender of applicant (male or female)
- 2. Married: if the applicant is married or single
- 3. Dependents: the number of dependents the applicant have (0,1,2,3+)
- 4. Education: the studies of the applicant(Graduate or Not Graduate)
- 5. Self Employed: if the applicant is employed or self employed
- 6. ApplicantIncome: integer variable who tell us the applicant income
- 7. CoapplicantIncome: numeric variable who tell us the coapplicant income
- 8. LoanAmount: the amount of the loan
- 9. Loan Amount Term: the period in which the loan is given
- 10. Credit History: if the applicant has history credit
- 11. Property_Area: the place where the property of the applicant is situated 12: Loan_Status: status of the application.

Exploratory Data Analysis

As we can see the type of variables are character, integer and numeric. I will transform the data into factors and integer.

```
loan_data$Gender <- as.factor(loan_data$Gender)
loan_data$Married <- as.factor(loan_data$Married)
loan_data$Dependents <- as.factor(loan_data$Dependents)
loan_data$Education <- as.factor(loan_data$Education)
loan_data$Self_Employed <- as.factor(loan_data$Self_Employed)
loan_data$CoapplicantIncome <- as.integer(loan_data$CoapplicantIncome)
loan_data$Credit_History <- as.factor(loan_data$Credit_History)
loan_data$Property_Area <- as.factor(loan_data$Property_Area)
loan_data$Loan_Status <- as.factor(loan_data$Loan_Status)
loan_data$Loan_Amount_Term <- as.factor(loan_data$Loan_Amount_Term)</pre>
```

Summarising the dataset:

```
summary(loan_data)
```

```
Gender
##
      Loan_ID
                                      Married
                                                Dependents
                                                                   Education
##
    Length:614
                              : 13
                                         : 3
                                                  : 15
                                                            Graduate
                                                                         :480
    Class : character
                        Female:112
                                      No :213
                                                0:345
                                                            Not Graduate: 134
    Mode :character
##
                        Male :489
                                      Yes:398
                                                1:102
##
                                                2:101
##
                                                3+: 51
##
##
##
    Self_Employed ApplicantIncome CoapplicantIncome
                                                         LoanAmount
       : 32
##
                   Min.
                          : 150
                                    Min.
                                                0
                                                       Min.
                                                              : 9.0
    No:500
                   1st Qu.: 2878
                                                       1st Qu.:100.0
                                    1st Qu.:
##
    Yes: 82
                   Median: 3812
                                    Median: 1188
                                                       Median :128.0
                   Mean
                          : 5403
                                           : 1621
                                                              :146.4
##
                                    Mean
                                                       Mean
##
                   3rd Qu.: 5795
                                    3rd Qu.: 2297
                                                       3rd Qu.:168.0
                          :81000
                                           :41667
                                                              :700.0
##
                   Max.
                                    Max.
                                                       Max.
##
                                                       NA's
                                                              :22
```

```
Loan_Amount_Term Credit_History
                                       Property_Area Loan_Status
##
##
    360
           :512
                     0
                          : 89
                                     Rural
                                               :179
                                                      N:192
           : 44
##
   180
                          :475
                                     Semiurban:233
                                                      Y:422
   480
           : 15
                     NA's: 50
                                               :202
##
                                     Urban
##
    300
           : 13
##
  84
   (Other): 12
##
## NA's
           : 14
```

There are missing values in the Gender, Married, Dependents, Self_Employed, Credit_History variables.

Dealing with the missing values in the loan_data

Gender variable

```
gender_data <- loan_data %>% filter(Gender != "") %>% group_by(Gender) %>%
          summarize(n = n()) %>% mutate(percentage = round(n/sum(n),digits = 2))
gender_data
## # A tibble: 2 x 3
     Gender
##
                n percentage
##
     <fct> <int>
                       <dbl>
## 1 Female
              112
                        0.19
## 2 Male
              489
                        0.81
```

We have 19% female applicants and 81% male applicants

```
missing <- loan_data %>% filter(Gender == "")
nrow(missing)
```

```
## [1] 13
```

We have 13 applicants with no value for Gender. 19% of 13 is 2. I will fill 2 of 13 with female and 11 of 13 with male

```
gender_index <- which(loan_data$Gender == "")
gender_index</pre>
```

[1] 24 127 172 189 315 335 461 468 478 508 577 589 593

```
loan_data$Gender[c(172,461)] <- "Female"

gender_index_male <-setdiff(gender_index,c(172,461))
gender_index_male</pre>
```

[1] 24 127 189 315 335 468 478 508 577 589 593

```
for (i in gender_index_male) {
  loan_data$Gender[i] <- "Male"</pre>
}
loan_data$Gender <- droplevels(loan_data$Gender)</pre>
summary(loan_data$Gender)
## Female
            Male
      114
             500
levels(loan_data$Gender)
## [1] "Female" "Male"
Married variable
married_data <- loan_data %>% filter(Married != "") %>% group_by(Married) %>%
          summarize(n = n()) %>% mutate(percentage = round(n/sum(n), digits = 2))
married_data
## # A tibble: 2 x 3
    Married n percentage
##
                         <dbl>
     <fct> <int>
                          0.35
## 1 No
               213
## 2 Yes
               398
                          0.65
We have 65% married applicants and 35% single applicants
summary(loan_data$Married)
##
        No Yes
     3 213 398
We have 3 missing values.
married_index <- which(loan_data$Married == "")</pre>
married_index
## [1] 105 229 436
round(0.65 * length(married_index))
## [1] 2
```

I will fill 2 observations with "Yes" and one with "No"

```
loan_data$Married[c(105,229)] <- "Yes"
loan_data$Married[c(436)] <- "No"

loan_data$Married <- droplevels(loan_data$Married)
summary(loan_data$Married)</pre>
```

```
## No Yes
## 214 400
```

Dependents variable

<fct> <int>

345

102

101

51

We have 58% applicants with no dependent, 17% with 1 dependent, 17% with 2 dependents and 9% with 3 or more dependents. We have 15 applicants with no value for Dependents.

```
dependents_index <- which(loan_data$Dependents == "")
dependents_index</pre>
```

```
## [1] 103 105 121 227 229 294 302 333 336 347 356 436 518 572 598
```

<dbl>

0.58

0.17

0.17

0.09

```
round(0.58 * length(dependents_index))
```

```
## [1] 9
```

##

1 0

2 1

3 2

4 3+

I will fill 9 observation with 0, 3 observations with 1 and 3 with 2.

```
loan_data$Dependents[c(103,227,229,302,336,356,436,572,598)] <- 0
round(0.17 * length(dependents_index))</pre>
```

```
## [1] 3
```

```
loan_data$Dependents[c(105,121,294)] <- 1</pre>
loan_data Dependents[c(333,347,518)] \leftarrow 2
loan_data$Dependents <- droplevels(loan_data$Dependents)</pre>
summary(loan_data$Dependents)
##
         1
            2 3+
## 354 105 104
               51
Self_Employed variable
summary(loan_data$Self_Employed)
##
       No Yes
   32 500 82
selfemp_data <- loan_data %>% filter(Self_Employed != "") %>% group_by(Self_Employed) %>% summarize(n =
selfemp_data
## # A tibble: 2 x 4
    Self_Employed
                     n avg_income percentage
##
                              <dbl>
                                         <dbl>
     <fct>
                  <int>
## 1 No
                    500
                              5050.
                                          0.86
## 2 Yes
                     82
                              7381.
                                         0.14
We have 86% applicants who are not self_employed and 14% who are self_employed The average income
for self_employed applicant is 7381 and for those who employed is 5050 We have 32 applicants with no value
for Self Employed.
selfemp_index <- which(loan_data$Self_Employed == "")</pre>
selfemp_index
            ## [20] 375 381 386 412 433 448 464 469 536 543 580 601 602
loan_data$ApplicantIncome[selfemp_index]
  [1]
                                      6782
                                            7333
                                                   2929
                                                               2980
                                                                    1820
                                                                         5000
        2500
              2600
                    3717
                           3750 4166
                                                         5050
                          4416 63337
                                                   2764
                                                         3333
                                                              3667
                                                                    6256 12876
## [13]
         3716
              5746
                    3418
                                      5250
                                             2583
## [25]
        3539 5191
                     210 2550
                                3652
                                      3182
                                              416
                                                  2894
round(0.14 * length(selfemp_index))
```

[1] 4

We choose 4 applicant out of 32 with income close to average income of the category.

```
loan_data$Self_Employed[c(96,108,334,433)] <- "Yes"

The rest of 28 observation I fill with "No"

selfemp_index_no <-setdiff(selfemp_index,c(96,108,334,433))
selfemp_index_no

## [1] 12 20 25 30 31 112 115 159 171 219 232 237 269 296 337 345 375 381 386

## [20] 412 448 464 469 536 543 580 601 602

for (i in selfemp_index_no) {
    loan_data$Self_Employed[i] <- "No"
}

loan_data$Self_Employed <- droplevels(loan_data$Self_Employed)

## No Yes
## 528 86</pre>
```

LoanAmount variable

```
loan_data %>% filter(!is.na(LoanAmount)) %>% ggplot(aes(LoanAmount)) +
    geom_histogram(bins = 20) + ggtitle("LoanAmount distribution in dataset")
```


summary(loan_data\$LoanAmount)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 9.0 100.0 128.0 146.4 168.0 700.0 22
```

The distribution is right skewed and we have missing values. I will fill the NA values with median value.

```
median(loan_data$LoanAmount, na.rm = TRUE)
```

[1] 128

Loan_Amount_Term variable

```
## # A tibble: 10 x 3
##
      Loan_Amount_Term
                            n percentage
##
      <fct>
                       <int>
                                   <dbl>
##
    1 12
                                    0
##
   2 36
                            2
                                    0
                            2
## 3 60
                                    0
## 4 84
                                    0.01
                            4
## 5 120
                           3
## 6 180
                           44
                                    0.07
## 7 240
                           4
                                    0.01
                                    0.02
## 8 300
                           13
## 9 360
                         512
                                    0.85
                                    0.03
## 10 480
                           15
```

I am going to fill the NA's based on the proportion of each category.

```
loan_data %>% filter(is.na(Loan_Amount_Term)) %>%nrow()
```

[1] 14

```
loanamountterm_index <- which(is.na(loan_data$Loan_Amount_Term))
loanamountterm_index</pre>
```

[1] 20 37 45 46 74 113 166 198 224 233 336 368 422 424

```
round(0.85 * 14)
## [1] 12
loan_data$Loan_Amount_Term[c(20,37,45,46,74,113,166,198,224,233,336,368)] <- 360
round(0.07 * 14)
## [1] 1
loan_data$Loan_Amount_Term[422] <- 180</pre>
loan_data$Loan_Amount_Term[424] <- 480</pre>
I filled 12 of 14 observations with 360, 1 observation with 180 and 1 with 480
summary(loan_data$Loan_Amount_Term)
        36 60 84 120 180 240 300 360 480
    12
         2
             2
                               4 13 524 16
##
     1
                      3 45
Credit_History variable
summary(loan_data$Credit_History)
##
      0
           1 NA's
##
     89
         475
               50
credithistory_data <- loan_data %>% filter(!is.na(Credit_History)) %>%
                       group_by(Credit_History) %>% summarize(n = n()) %>%
                       mutate(percentage = round(n/sum(n),digits = 2))
credithistory_data
## # A tibble: 2 x 3
##
     Credit_History
                         n percentage
##
     <fct>
                     <int>
                                 <dbl>
## 1 0
                        89
                                  0.16
## 2 1
                       475
                                  0.84
We have 50 observations with missing values, 16% of applicants witch don't have credit history and 84% of
applicant witch have credit history. I will fill the NA values based on proportion of each category.
```

credithistory_index <- which(is.na(loan_data\$Credit_History))</pre> credithistory_index

```
[1]
            25 31 43 80 84 87
                                   96 118 126 130 131 157 182 188 199 220 237 238
## [20] 260 261 280 310 314 318 319 324 349 364 378 393 396 412 445 450 452 461 474
## [39] 491 492 498 504 507 531 534 545 557 566 584 601
```

```
round(0.16 * 50)

## [1] 8

credithistory_index_no <- c(17,43,96,130,220,260,318,393)
loan_data$Credit_History[credithistory_index_no] <- 0

credithistory_index_yes <- setdiff(credithistory_index,credithistory_index_no)
credithistory_index_yes

## [1] 25 31 80 84 87 118 126 131 157 182 188 199 237 238 261 280 310 314 319

## [20] 324 349 364 378 396 412 445 450 452 461 474 491 492 498 504 507 531 534 545

## [39] 557 566 584 601

for (i in credithistory_index_yes) {
   loan_data$Credit_History[i] <- 1
}

loan_data <- loan_data[,-1]</pre>
```

Dealing with outliers

I use Tukey's definition of an outlier

Removing outliers for ApplicantIncome

```
loan_data %>% ggplot(aes(ApplicantIncome)) + geom_histogram(bins = 20)
```


summary(loan_data\$ApplicantIncome)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 150 2878 3812 5403 5795 81000
```

I will keep the values witch are between lower and higher values.

```
cutt_off <- 1.5 * IQR(loan_data$ApplicantIncome)
cutt_off</pre>
```

[1] 4376.25

```
lower_value <- quantile(loan_data$ApplicantIncome,0.25) - cutt_off
higher_Value <- quantile(loan_data$ApplicantIncome,0.75) + cutt_off
lower_value</pre>
```

```
## 25%
## -1498.75
```

higher_Value

```
## 75%
## 10171.25
```

```
appinc_dropindex <- which(loan_data$ApplicantIncome > higher_Value)
appinc_dropindex
```

```
## [1] 10 35 55 68 103 107 116 120 127 129 131 139 145 147 156 172 184 186 192 ## [20] 200 255 259 272 279 285 309 325 334 370 371 410 425 433 439 444 468 476 479 ## [39] 484 488 494 507 510 526 534 535 562 573 595 605
```

```
loan_data <- loan_data[-appinc_dropindex,]
loan_data %>% ggplot(aes(ApplicantIncome)) + geom_histogram(bins = 20)
```


Removing outliers for CoapplicantIncome

```
loan_data %>% ggplot(aes(CoapplicantIncome)) + geom_histogram(bins = 20)
```


summary(loan_data\$CoapplicantIncome)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 0 1406 1692 2337 41667
```

I will keep the values witch are between lower and higher values.

```
cutt_off <- 1.5 * IQR(loan_data$CoapplicantIncome)
cutt_off</pre>
```

[1] 3505.5

```
lower_value <- quantile(loan_data$CoapplicantIncome,0.25) - cutt_off
higher_Value <- quantile(loan_data$CoapplicantIncome,0.75) + cutt_off
lower_value</pre>
```

```
## 25%
## -3505.5
```

higher_Value

75% ## 5842.5

```
coappinc_dropindex <- which(loan_data$CoapplicantIncome > higher_Value)
coappinc_dropindex
```

[1] 12 37 115 125 162 165 234 322 343 373 387 410 471 481 534 552

```
loan_data <- loan_data[-coappinc_dropindex,]
loan_data %>% ggplot(aes(CoapplicantIncome)) + geom_histogram(bins = 20)
```


Grouping the ApplicantIncome and CoapplicantIncome

I will group the ApplicantIncome and CoapplicantIncome in a single variable TotalIncome.

```
loan_data <- loan_data %>% mutate(TotalIncome = ApplicantIncome + CoapplicantIncome)
loan_data <- loan_data[,-c(6,7)]
loan_data <- loan_data[,c(1:9,11,10)]</pre>
```

Data Visualisation

Gender Distribution with Status of the Loan

Married Distribution with Status of the Loan

Dependents Distribution with Status of the Loan

Variation of LoanAmount with ApplicantIncome

Scaling the data

I will transform the TotalIncome variable so that it will fit into the scale of 0-1

summary(loan_data\$TotalIncome)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.2022 0.2933 0.3289 0.4134 1.0000
```

Features encoding

I will convert categorical data into numbers because it lead us to a better model and most of the algorithm cannot handle categorical data.

```
loan_data$Gender <- ifelse(loan_data$Gender == "Male",1,0)
loan_data$Married <- ifelse(loan_data$Married == "Yes",1,0)

loan_data$Dependents <- as.integer(loan_data$Dependents)</pre>
```

```
indexs <- which(loan_data$Dependents == 1)</pre>
loan_data$Dependents[indexs] <- 0</pre>
indexs <- which(loan_data$Dependents == 2)</pre>
loan data$Dependents[indexs] <- 1</pre>
indexs <- which(loan_data$Dependents == 3)</pre>
loan data$Dependents[indexs] <- 2</pre>
indexs <- which(loan_data$Dependents == 4)</pre>
loan data$Dependents[indexs] <- 3</pre>
loan data$Education <- ifelse(loan data$Education == "Graduate",1,0)</pre>
loan_data$Self_Employed <- ifelse(loan_data$Self_Employed == "Yes",1,0)</pre>
loan_data$LoanAmount <- (loan_data$LoanAmount - min(loan_data$LoanAmount)) /</pre>
                        (max(loan_data$LoanAmount) - min(loan_data$LoanAmount))
loan_data$Loan_Amount_Term<-as.numeric(as.character(loan_data$Loan_Amount_Term))</pre>
loan_data$Loan_Amount_Term <- (loan_data$Loan_Amount_Term -</pre>
          min(loan_data$Loan_Amount_Term)) / (max(loan_data$Loan_Amount_Term) -
          min(loan_data$Loan_Amount_Term))
loan_data$Credit_History <- as.numeric(as.character(loan_data$Credit_History))</pre>
levels(loan_data$Property_Area)
## [1] "Rural"
                    "Semiurban" "Urban"
loan_data$Property_Area <- as.character(loan_data$Property_Area)</pre>
indexs <- which(loan data$Property Area == "Rural")</pre>
loan data$Property Area[indexs] <- 0</pre>
indexs <- which(loan_data$Property_Area == "Semiurban")</pre>
loan_data$Property_Area[indexs] <- 1</pre>
indexs <- which(loan_data$Property_Area == "Urban")</pre>
loan_data$Property_Area[indexs] <- 2</pre>
loan_data$Property_Area <- as.numeric(loan_data$Property_Area)</pre>
head(loan_data,7)
##
     Gender Married Dependents Education Self_Employed LoanAmount Loan_Amount_Term
## 1
          1
                   0
                               0
                                          1
                                                         0 0.3242507
                                                                               0.7435897
## 2
          1
                                                         0 0.3242507
                                                                               0.7435897
                   1
                               1
                                          1
## 3
          1
                   1
                               0
                                                         1 0.1553134
                                                                               0.7435897
                                          1
## 4
                   1
                               0
                                          0
                                                         0 0.3024523
                                                                               0.7435897
## 5
                   0
                               0
                                                         0 0.3596730
                                                                               0.7435897
          1
                                          1
                               2
## 6
                   1
                                          1
                                                         1 0.7029973
                                                                               0.7435897
                               0
## 7
          1
                   1
                                          0
                                                         0 0.2343324
                                                                               0.7435897
     Credit_History Property_Area TotalIncome Loan_Status
## 1
                   1
                                  2
                                       0.3581762
## 2
                   1
                                  0
                                       0.3778446
                                                            N
                                                            Y
## 3
                   1
                                  2
                                       0.1266255
                                       0.2843791
## 4
                   1
                                  2
## 5
                   1
                                  2
                                       0.3704486
                                                            Y
                                  2
                                                            Y
## 6
                   1
                                       0.6640930
## 7
                   1
                                       0.1956274
```

Modeling approach

For this project I will use 6 machine learning algorithms:

- k-nearest neighbors
- Generalized Linear Model
- Quadratic Discriminant Analysis
- Linear discriminant analysis
- Decision Trees
- Random forest

Splitting the loan_data in train data and test data:

K-nearest neighbors

train_knn\$bestTune

```
## k
## 1 9
```

```
pred_LoanStatus_knn <- predict(train_knn,loan_data_test)</pre>
```

Accuracy of the model:

```
## Accuracy
## 0.7889908
```

Generalized Linear Model

```
train_glm <- train(Loan_Status ~ ., method = "glm", data = loan_data_train)
pred_LoanStatus_glm <- predict(train_glm,loan_data_test)</pre>
```

Accuracy of the model:

Quadratic Discriminant Analysis

Linear discriminant analysis

```
## Accuracy
## 0.8348624
```

Decision Trees

```
train_rpart <- train(Loan_Status ~ ., method = "rpart",data = loan_data_train)
pred_LoanStatus_rpart <- predict(train_rpart,loan_data_test)</pre>
```

Accuracy of the model:

```
## Accuracy
## 0.8348624
```

Random forest

Models performance

```
model \leftarrow rep(0,6)
accuracy <- rep(0,6)
accuracy_summary <- data.frame(model, accuracy)</pre>
accuracy_summary$model[1] <- "knn"</pre>
accuracy_summary$accuracy[1] <- round(knn_accuracy,4)</pre>
accuracy_summary$model[2] <- "glm"</pre>
accuracy_summary$accuracy[2] <- round(glm_accuracy,4)</pre>
accuracy_summary$model[3] <- "qda"</pre>
accuracy_summary$accuracy[3] <- round(qda_accuracy,4)</pre>
accuracy_summary$model[4] <- "lda"</pre>
accuracy_summary$accuracy[4] <- round(lda_accuracy,4)</pre>
accuracy_summary$model[5] <- "rpart"</pre>
accuracy_summary$accuracy[5] <- round(rpart_accuracy,4)</pre>
accuracy summary$model[6] <- "rf"</pre>
accuracy_summary$accuracy[6] <- round(rf_accuracy,4)</pre>
accuracy_summary %>% ggplot(aes(x = model,y = accuracy)) +
  geom_bar(stat = "identity") + scale_y_continuous(limits=c(0.7,0.9),oob =
               rescale_none) + geom_text(aes(label = accuracy), vjust = -1)
```


Conclusions

We can see that the most accurate models for our dataset is GLM, LDA and LPART with an accuracy of 0.8349.