Conic sections: Circle

Department of Mathematics.

Name: _____

1 Examples

Example 1: Factored equation of the circle.

Identify the radius and center of the following circle,

$$(x+3)^2 + (y+1)^2 = 9.$$

Recalling the definition of the circle, $(x-h)^2 + (y-k)^2 = r^2$, and comparing both expressions, we can make the following relations,

$$x+3 \longleftrightarrow x-h$$
, $y+1 \longleftrightarrow y-k$, $9 \longleftrightarrow r^2$.

Therefore,

$$3 = -h$$
, $1 = -k$, $9 = r^2$
 $h = -3$, $k = -1$, $r = 9^{1/2} = 3$.

This tell's us that the circle origin is at (-3, -1) with a radius of r = 3.

Example 2: Expanded equation of the circle.

Identify the radius and center of the following circle,

$$x^2 + y^2 - 8x + 4y + 4 = 0.$$

Recalling the note, we can make the following comparsion as before,

$$x^{2} + y^{2} - 8x + 4y + 4 = 0 \iff x^{2} + y^{2} - 2hx - 2ky + h^{2} + k^{2} - r^{2} = 0.$$

giving us the following relations,

$$-8x = -2hx$$
, $+4y = -2ky$,
 $h = \frac{-8}{-2}$, $k = \frac{4}{-2}$,
 $h = 4$, $k = -2$.

Hence, the origin of the circle is at (4,-2). To find the radius, we start by substituting the values of h and k into the equation and comparing the final terms,

$$x^{2} + y^{2} - 8x + 4y + 4 = 0 \longleftrightarrow x^{2} + y^{2} - 2(4)x - 2(-2)y + (4)^{2} + (-2)^{2} - r^{2} = 0.$$

$$x^{2} + y^{2} - 8x + 4y + 4 = 0 \longleftrightarrow x^{2} + y^{2} - 8x + 4y + 16 + 4 - r^{2} = 0,$$

therefore

$$4 = 16 + 4 - r^{2}$$

$$4 - 20 = -r^{2}$$

$$r = 16^{1/2}$$

$$r = 4$$

Finally, the radius of the circle is 4.

2 Exercises

2.1 Circle

- 1. With help of the pythagorean theorem find the function of a circle with origin at O = (3/2, 2) and the point (2, 3/2).
- 2. Write the equation of the circle with center at (6, -9) and radius 1/4.
- 3. Find the origing, radius of the following circle equation $x^2 8x + y^2 10y + 5 = 0$, then write the factored equation.

2.2 Review

- 1. Taking into account the following functions f(x) = x + c and g(x) = x + h, compute $(f \circ g)(x) f(x)$.
- 2. Determine the vertical and horizontal asymptotes of the following function f(x) = (7x 15)/(x 5).
- 3. Use the properties of logarithms to condes the following expression $\log \left[\ln(x^6)/6\ln(x)\right] \log[8\ln(x)]$.
- 4. Determine the critical point, asymptote, domain and range of the following function $f(x) = \ln(x+6) 4$.