Efficient Event-Based Object Detection: A Hybrid Neural Network with Spatial

and Temporal Attention Soikat Hasan Ahmed*, Jan Finkbeiner†, Emre Neftci Forschungszentrum Jülich, RWTH Aachen University

Introduction

- Hybrid Event Object Detector: First hybrid SNN-ANN model for benchmark event-based object detection.
- \bullet $\beta_{\Delta S \Delta B}$ Bridge Module: Attention-based module converting spikes to dense features via ERS and SAT.
- · Multi-Timescale RNN: Combines fast SNN and slow DWConvLSTM for temporal feature learning.
- · Neuromorphic Deployment: SNN blocks validated on digital neuromorphic hardware for efficiency.

Overall Network

· Architecture of the hybrid model featuring an object detection head and an SNN-ANN hybrid backbone, which includes the SNN block, the β_{ASAB} bridge module, and the ANN block, The DWConvLSTM modules and dashed blue arrows are specific to the hybrid + RNN variant.

Spatial-aware Temporal Attention (SAT)

- Channel-wise Temporal Grouping to group together temporally relevant features for better temporal understanding
- · Time-wise Separable Deformable Convolution for spatial context, and
- · Temporal Attention to translate temporal cues into spatial features.

GREEN

Event-rate Spatial Attention (ESA)

- Computes event rates by summing spikes over the time dimension.
- Normalizes event rates using a sigmoid function to create spatial attention
- Uses these scores to weight the SAT module output via element-wise multiplication.

Datasets

- · We train our hybrid network end-to-end using Prophesee Gen1 and Gen4 automotive event camera datasets.
- Gen1 (39 hrs. 304×240) and Gen4 (15 hrs. 720×1280) provide annotated events for cars, pedestrians, and two-wheelers (Gen4 only).

Quantitative Results

Models	Type	Params	mAP	mAP
AEGNN [35]	GNN	20M	0.16	
SparseConv [30]	ANN	133M	0.15	-
Inception + SSD [18]	ANN	$> 60M^*$	0.3	0.34
RRC-Events [5]	ANN	$> 100M^*$	0.31	0.34
Events-RetinaNet [33]	ANN	33M	0.34	0.18
E2Vid-RetinaNet [33]	ANN	44M	0.27	.25
RVT-B W/O LSTM [14]	Transformer	$16.2M^{*}$	0.32	-
Proposed	Hybrid	6.6M	0.35	.27

Models	Type	Params	mAP
VGG-11+SDD [6]	SNN	13M	0.17
MobileNet-64+SSD [6]	SNN	24M	0.15
DenseNet121-24+SSD [6]	SNN	8M	0.19
FP-DAGNet[45]	SNN	22M	0.22
EMS-RES10 [39]	SNN	6.20M	0.27
EMS-RES18 [39]	SNN	9.34M	0.29
EMS-RES34 [39]	SNN	14.4M	0.31
SpikeFPN [46]	SNN	22M	0.22
Proposed	Hybrid	6.6M	0.35

The

SpikeFPN [46]	SNN	22M	0.22	Ι	RED [33]	CNN +		24M	0.40
Proposed	Hybrid	6.6M	0.35	Pro	posed+RNN	Hybrid +	RNN	7.7M	0.43
The proposed	hybrid r	nodel	achieves	higher	accuracy	than	SNNs	and	matches
ANN/RNN mod	lels with	lower	power ar	nd laten	cy.				

Models

S4D-ViT-B [48]

S5-ViT-B [48]

S5-ViT-S [48]

RVT-S [14]

Type

TF + SSM

TF + SSM

TF + SSM

TF + RNN TF + RNN

(T)CNN + RNN

16.5M 0.46

9.7M 0.47 19M

4M

Neuromorphic Hardware Implementation

- . The SNN-blocks of hybrid model was deployed on Intel's Loihi 2 neuromorphic chip, leveraging its event-based architecture for energy-efficient inference.
- Convolutional weights were quantized at different levels using a per-output-channel scheme, revealing negligible accuracy loss.
- · Spike dynamics and BatchNorm were fused into LIF neuron behavior for efficient deployment, with q_{scale} as the quantization scaling factor and τ as the PLIF neuron time constant.

Weight quant.	# chips	Power [W]	Time/Step
int8	6	1.73 ± 0.10	2.06
int6	6	1.71 ± 0.11	2.06
int4	6	1.95 ± 0.33	1.16

$ $ scale = $\frac{q_{\text{scale}} \text{ weight}_{BN}}{ }$		1
$\tau \sqrt{\text{Var}_{\text{BN}} + \varepsilon_{\text{BN}}}$		
$shift = (bias_{conv} - mean_{BN})$	weight _{BN}	+ bias _{BN}
	$\tau \sqrt{\text{Var}_{\text{BN}} + \varepsilon_{\text{BN}}}$	τ

Models	mAP(.5)	mAP(.5:.05:.95)
Variant 1 (float16)	0.613	0.348
Variant 2 (int8)	0.612	0.349
Variant 3 (int6)	0.612	0.348
Variant 4 (int4)	0.610	0.347
Variant 5 (int2)	0.432	0.224

	Models	mAP	MACs / ACs	[mJ]
95)	VGG-11+SDD	0.17/-	0.0 / 11.1e9	4.2
,,,	MobileNet-64+SSD	0.15 / -	0.0 / 4.3e9	1.6
	DenseNet121+SSD	0.197-	0.0/2.3e9	0.9
	Inception + SSD	0.3 / 0.34	11.4e9*/0.0	19.3
	Events-RetinaNet	0.34 / 0.18	3.2e9*/0.0	5.4
	E2Vid-RetinaNet	0.27 / .25	> 3.2e9*/0.0	> 5.4
	RVT-B W/O LSTM	0.32 / -	2.3e9/0.0	3.9
	Proposed	0.35 / .27	1.6e9 / 1.0e9	3.1

Ablation study

• An in-depth ablation study was conducted for each component of the proposed ASAB module, along with various configurations of the hybrid architecture

Models	mAP(.5)	mAP	Models
Variant 1(w/o - Φta) Variant 2 (w/o deform)	0.57	0.33	$Baseline_{ann}$
Variant 3 (w/o - ESA)	0.59	0.34	$Baseline_{w/o \beta_{asab}}$
Variant 4 (w/o - ASAB) Variant 5 (Proposed)	0.53 0.61	0.30 0.35	$Proposed_{w/\beta_{asab}}$ $Proposed_{snn+}$

Models	mAP(.5)	MACs	ACs
Baseline _{ann}	0.61	15.34e9	0.0
$Baseline_{w/o \beta_{asab}}$	0.53	1.18e9	0.97e9
$Proposed_{w/\beta_{numb}}$	0.61	1.63e9	0.97e9
$Proposed_{snn+}$	0.58	0.87e9	1.59e9

Visual Results

From left to right: Without ASAB, With ASAB, and Ground Truth. The first three columns correspond to the Prophesee GEN1 ds and the last three to the GFN4 dataset