(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. Mai 2004 (21.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/042058 A 2

(51) Internationale Patentklassifikation⁷: C12N 15/10

(21) Internationales Aktenzeichen: PCT/DE2003/003728

(22) Internationales Anmeldedatum:

10. November 2003 (10.11.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 52 545.5 8. November 2002 (08.11.2002) DE 102 53 351.2 14. November 2002 (14.11.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): INVITEK GESELLSCHAFT FÜR BIOTECHNIK & BIODESIGN MBH [DE/DE]; Robert-Rössle-Strasse 10, 13125 Berlin (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HILLEBRAND, Timo [DE/DE]; Bogenstrasse 29, 15366 Hönow (DE). BENDZKO, Peter [DE/DE]; Ifflandstrasse 32, 12623 Berlin (DE).

- (74) Anwalt: BAUMBACH, Fritz; Robert-Rössle-Strasse 10, 13125 Berlin (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

[Fortsetzung auf der nächsten Seite]

- (54) Title: NOVEL BUFFER FORMULATIONS FOR ISOLATING, PURIFYING AND RECOVERING LONG-CHAIN AND SHORT-CHAIN NUCLEIC ACIDS
- (54) Bezeichnung: NEUARTIGE PUFFERFORMULIERUNGEN ZUR ISOLIERUNG, REINIGUNG UND RÜCKGEWINNUNG LANG- UND KURZKETTIGER NUKLEINSÄUREN
- (57) Abstract: The invention relates to novel formulations of buffers used for isolating, purifying and recovering long-chain and short-chain nucleic acids. The areas of application of the inventive method include all laboratories engaged in isolating nucleic acids, such as laboratories used in forensic medicine, food diagnosis, medical diagnosis, molecular biology, biochemistry, genetic engineering and all other related fields. The inventive method is characterized in that the solution containing the nucleic acid is prepared with additives whereby containing monovalent and multivalent cations as well as an alcohol and, optionally, additional additives. The solution is subsequently brought into contact with the solid phase, whereupon the support is optionally washed, and the nucleic acid is removed from the solid phase or the solution optionally contains multivalent and/or monovalent cations, optionally one alcohol, and optionally contains additional additives, and a specific pH value is set between 7 and 10. Ammonium chloride, sodium chloride and/or potassium chloride are used as monovalent salt components. Magnesium chloride, calcium chloride, zinc chloride and/or manganese chloride are used as multivalent salt components. A particularly preferred variant involves the use of identical molar amounts of sodium chloride and manganese chloride.
- (57) Zusammenfassung: Die Erfindung betrifft neuartige Formulierungen von Puffern zur Isolierung, Reinigung und Rückgewinnung von lang- und kurzkettigen Nukleinsäuren. Die Anwendungsgebiete des Verfahrens sind alle mit Nukleinsäure-Isolierungen sich beschäftigenden Laboratorien, wie forensische Medizin, Lebensmitteldiagnostik, medizinische Diagnostik, Molekularbiologie, Biochemie, Gentechnik und alle anderen angrenzenden Gebiete. Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass man die Nukleinsäure enthaltende Lösung mit Zusätzen so einstellt, dass sie monovalente und multivalente Kationen sowie einen Alkohol und ggf. weitere Zusätze enthält, sie danach mit der festen Phase in Kontakt bringt, den Träger anschliessend ggf. wäscht und die Nukleinsäure von der festen Phase löst oder dass sie multivalente und/oder monovalente Kationen, ggf einen Alkohol und ggf. weitere Zusätze enthält und ein bestimmter pH-Wert zwischen 7 und 10 eingestellt wird. Als monovalente Salzkomponente wird Ammoniumchlorid, Natriumchlorid und/oder Kaliumchlorid verwendet. Als multivalente Salzkomponente wird Magnesiumchlorid, Calciumchlorid, Zinkchlorid und/oder Manganchlorid, verwendet. Eine besonders bevorzugte Variante ist der Einsatz gleicher molarer Mengen von Natriumchlorid und Magnesiumchlorid.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Neuartige Pufferformulierungen zur Isolierung, Reinigung und Rückgewinnung langund kurzkettiger Nukleinsäuren

Beschreibung

Die Erfindung betrifft neuartige Formulierungen von Puffern zur Isolierung, Reinigung und Rückgewinnung von lang- und kurzkettigen Nukleinsäuren.

Die Anwendungsgebiete des Verfahrens sind alle mit Nukleinsäure-Isolierungen sich beschäftigenden Laboratorien, wie forensische Medizin, Lebensmitteldiagnostik, medizinische Diagnostik, Molekularbiologie, Biochemie, Gentechnik und alle anderen angrenzenden Gebiete.

Unter klassischen Bedingungen erfolgt die Isolierung von DNA aus Zellen und Geweben dadurch, dass die Ausgangsmaterialien unter stark denaturierenden und reduzierenden Bedingungen, teilweise auch unter Verwendung von proteinabbauenden Enzymen aufgeschlossen, die austretenden Nukleinsäurefraktionen über Phenol-/Chloroform-Extraktionsschritte gereinigt und die Nukleinsäuren mittels Dialyse oder Ethanolpräzipitation aus der wäßrigen Phase gewonnen werden (Sambrook, J., Fritsch, E.F. und Maniatis, T., 1989, CSH, "Molecular Cloning").

Diese "klassischen Verfahren" zur Isolierung von Nukleinsäuren aus Zellen und besonders aus Geweben sind sehr zeitaufwendig (teilweise länger als 48 h), erfordern einen erheblichen apparativen Aufwand und sind darüber hinaus auch nicht unter Feldbedingungen realisierbar. Außerdem sind solche Methoden auf Grund der verwendeten Chemikalien wie Phenol und Chloroform in einem nicht geringen Maße gesundheitsgefährdend.

Verschiedene alternative Verfahren zur Isolierung von Nukleinsäuren aus unterschiedlichen biologischen Ausgangsmaterialien ermöglichen, die aufwendige und gesundheitsschädigende Phenol-/Chloroform-Extraktion von Nukleinsäuren zu umgehen sowie eine Reduzierung der zeitlichen Aufwendungen zu erreichen.

Alle diese Verfahren basieren auf einer von Vogelstein und Gillespie (Proc. Natl. Acad. Sci. USA, 1979, 76, 615-619) entwickelten und erstmals beschriebenen Methode zur präparativen und analytischen Reinigung von DNA-Fragmenten aus Agarosegelen. Die Methode kombiniert die Auflösung der die zu isolierende DNA- Bande enthaltende Agarose in einer gesättigten

Lösung eines chaotropen Salzes (NaJ) mit einer Bindung der DNA an Glaspartikel. Die an die Glaspartikel fixierte DNA wird anschließend mit einer Waschlösung (20 mM Tris HCl [pH 7,2]; 200mM NaCl; 2 mM EDTA; 50% v/v Ethanol) gewaschen und abschließend von den Trägerpartikeln abgelöst.

Diese Methode erfuhr bis heute eine Reihe von Modifikationen und wird zum gegenwärtigen Zeitpunkt für unterschiedliche Verfahren der Extraktion und Reinigung von Nukleinsäuren aus unterschiedlichen Herkünften angewendet (Marko, M.A., Chipperfield, R. und Birnboim, H.G., 1982, Anal. Biochem., 121, 382-387).

Darüber hinaus existieren heute weltweit auch eine Vielzahl von Reagenziensystemen vor allem zur Reinigung von DNA-Fragmenten aus Agarosegelen und für die Isolierung von Plasmid DNA aus bakteriellen Lysaten, aber auch für die Isolierung von längerkettigen Nukleinsäuren (genomische DNA, zelluläre Gesamt-RNS) aus Blut, Geweben oder auch Zellkulturen.

Alle diese kommerziell verfügbaren Kits basieren auf dem hinlänglich bekannten Prinzip der Bindung von Nukleinsäuren an mineralische Träger unter Anwesenheit von Lösungen unterschiedlicher chaotroper Salze und verwenden als Trägermaterialien Suspensionen feingemahlener Glaspulver (z.B. Glasmilk, BIO 101, La Jolla, CA), Diatomenerden (Fa.Sigma) oder auch Silicagele. (Diagen, DE 41 39 664 A1).

Ein für eine Vielzahl unterschiedlicher Anwendungen praktikables Verfahren zur Isolierung von Nukleinsäuren ist in US 5,234,809 (Boom) dargestellt. Dort ist ein Verfahren zur Isolierung von Nukleinsäuren aus nukleinsäurehaltigen Ausgangsmaterialien durch die Inkubation des Ausgangsmaterials mit einem chaotropen Puffer und einer DNA-bindenden festen Phase beschrieben. Die chaotropen Puffer realisieren sowohl die Lyse des Ausgangsmaterials wie auch die Bindung der Nukleinsäuren an die feste Phase. Das Verfahren ist gut geeignet , um Nukleinsäuren aus kleinen Probenmengen zu isolieren und findet speziell im Bereich der Isolierung viraler Nukleinsäuren seine praktische Anwendung.

Entscheidende Nachteile des Verfahrens bestehen aber u.a. darin, dass der durch die chaotropen Puffer realisierte Aufschluss nicht für alle Materialien einsetzbar ist bzw. auch für größere Mengen an Ausgangsmaterialien nur extrem ineffizient und unter einem großen Zeitaufwand realisiert werden kann. Darüber hinaus sind mechanische Homogenisierungsverfahren

notwendig, wenn z.B. DNA aus Gewebeproben isoliert werden soll. Weiterhin müssen für verschiedene Fragestellungen auch immer verschieden hohe Konzentrationen unterschiedlicher chaotroper Puffer eingesetzt werden. Das Verfahren ist damit in keiner Weise universell einsetzbar.

Das physiko-chemische Prinzip der nach dem bekannten Stand der Technik heute eingesetzten und kommerziell verfügbaren Systeme zur Isolierung von Nukleinsäuren auf der Basis der Bindung von Nukleinsäuren an die Oberflächen mineralischer Träger soll dabei in der Störung übergeordneter Strukturen des wässerigen Millieus bestehen, durch welche die Nukleinsäuren an der Oberfläche von mineralischen Materialien, insbesondere von Glas-bzw. Silicapartikeln adsorbieren. Die Störung der übergeordneten Strukturen des wässerigen Millieus erfolgt dabei immer unter Anwesenheit chaotroper Ionen und ist bei hohen Konzentrationen dieser fast quantitativ. Auf dieser beschriebenenen physiko-chemischen Basis enthalten alle kommerziell verfügbaren Systeme zur Isolierung von Nukleinsäuren Pufferkompositionen mit hohen Ionenstärken chaotroper Salze, für die Bindung von Nukleinsäuren an eine Nukleinsäurenbindende feste Phase.

Spezifische Modifikationen dieser Verfahren betreffen den Einsatz von spezifischen Trägermaterialien, welche für bestimmte Fragestellungen applikative Vorteile zeigen (Invitek GmbH WO 95/34569), die jedoch die gleichen Nachteile aufweisen.

All den beschriebenen Verfahren zur Isolierung von Nukleinsäuren über die Bindung der Nukleinsäuren an mineralische feste Phase unter Verwendung chaotroper Salzlösungen ist gemeinsam, dass für die Bindung der Nukleinsäuren an die verwendeten Trägermaterialien hohe Konzentrationen eingesetzt werden müssen. Dabei sind gerade chaotrope Salze (z.B. Guanidinisothiocyanat, Guandinhydrochlorid, Natriumperchlorat oder Natriumiodid) hochtoxisch wirksame Substanzen. Die Verwendung findenden Puffersysteme mit sehr hohen Ionenstärken bewirken oftmals ein Verschleppen von Salzkontaminationen in die zu isolierenden Nukleinsäuren und sind oftmals die Ursache dafür, dass eine Reihe von downstream-Applikationen (PCR, Restriktionsverdau, Hybridisierungen, Ligationen) nicht oder nur teilweise realisierbar sind. Darüber hinaus besteht beim Umgang mit chaotropen Puffern ein erhebliches gesundheitliches Risko (insbesondere bei Langzeitanwendungen) sowie eine erhebliche Umweltbelastung durch in Abwasser eingebrachte Schadstofflasten.

In der Patentschrift DE 198 56 064 wird zum erstenmal ein neuartiges Verfahren zur Isolierung von Nukleinsäuren beschrieben. Dabei erfolgt erstmals die Bindung der zu isolierenden Nukleinsäuren an mineralische Träger ohne die Verwendung der bisher dazu benötigten chaotropen Salze hoher Ionenstärken. Das Verfahren basiert (wie auch die chaotropen Verfahren) auf der Lyse des Ausgangsmaterials, der Bindung der Nukleinsäure an ein mineralisches Trägermaterial, dem nachfolgenden Waschen der gebundenen Nukleinsäuren mit ethanolhaltigen Waschpuffern, der Ethanolentfernung und der finalen Elution der Nukleinsäuren mit einem Elutionspuffer geringer Ionenstärke bzw. Wasser.

Für spezielle Protokolle z.B. der Isolierung von PCR-Fragmenten aus Amplifikationsansätzen wird der Lyseschritt nicht benötigt. Der PCR-Reaktionsansatz wird mit einem notwendigen Bindungspuffer versetzt und mit dem mineralischen Trägermaterial inkubiert. Anschließend erfolgt wieder ein Waschen mit einem ethanolhaltigen Waschpuffer, nachfolgend die Ethanolentfernung und final die Elution der gebundenen Nukleinsäure vom Trägermaterial.

Daß Verfahren ohne die Verwendung chaotroper Puffer deutliche Vorteile besitzen, zeigt sich daran, dass nach der Erstbeschreibung weitere Patentschriften auch die potenziellen Vorteile dieser neuen Bindungschemie beschreiben (z.B. DE 100 33 991).

Interessanterweise zeigt sich, dass alle weltweit kommerziell verfügbaren System zur Isolierung von Nukleinsäuren basierend auf der Bindung der Nukleinsäuren an mineralische Trägermaterialien (Magnetpartikel, Membranen, Carrier-Suspensionen u.a.) prinzipiell nach dem beschriebenen Verfahren arbeiten. Seit der Erstbeschreibung durch Vogelstein und Gillespie werden die gebundenen Nukleinsäuren immer mit Alkohol oder acetonhaltigen Salzlösungen gewaschen. Die Waschschritte sind essentieller Bestandteil der Extraktionsprotokolle und dienen neben der Entfernung von gebundenen unerwünschten inhibitorischen Stoffen immer auch der notwendigen Entfernung der für die Bindung der Nukleinsäuren notwendigen Salze.

Die Verwendung von Alkohol oder acetonhaltigem Waschpuffer bedeutet aber immer einen ganz erheblichen und bisher nicht gelösten Nachteil. Es ist bekannt, das selbst Spuren von Alkohol in der finalen Nukleinsäure downstream-Applikationen ganz erheblich beeinträchtigen kann. Deshalb ist es immer notwendig, einen Ethanolentfernungsschritt im eigentlichen Verfahren zur Isolierung oder Aufreinigung von Nukleinsäuren zu integrieren.

Dieser ist immer problematisch bei der Verwendung magnetischer Partikel oder partikulärer Carrier-Suspensionen, beansprucht einen erheblichen zeitlichen Aufwand und kann zu einem

irreversiblen Verlust der Nukleinsäure führen, vor allem bei der Übertrocknung der Carrier-Materialien.

Besonders problematisch ist der Schritt der Entfernung von Restalkohl bei Applikationen zur Isolierung von Nukleinsäuren im Hochdurchsatzbereich.

Im Allgemeinen werden bis zu 30 min benötigt, um Membranen in Filterplatten oder magnetische Partikel im Rahmen von automatisierten Nukleinsäure-Reinigungsverfahren vom Restalkohol zu befreien.

Darüber hinaus sind auch die eigentlichen Waschschritte mit alkoholischen Waschpuffern gerade im Hochdurchsatzbereich zeitaufwendig und natürlich auch kostenintensiv.

Aus diesen Nachteilen des bisherigen Standes leitet sich die Aufgabe ab, den Einsatz alkoholischer Komponenten zu vermeiden und damit eine erhebliche Verkürzung der Isolierungs- und Reinigungsverfahren zu erreichen.

Die Erfindung wird gemäß den Ansprüchen realisiert

Basierend auf der Verwendung nichtchaotroper Pufferformulierungen, wie in der Patentschrift DE 198 56 064 schon aufgeführt, zeigt sich, dass für die Bindung zu isolierender Nukleinsäuren nur unerwartet geringe Konzentrationen notwendig sind.

Der Kernpunkt der Erfindung liegt im gleichzeitigen Einsatz von mono- und von multi-, bevorzugt divalenten Kationen für die Bindung der Nukleinsäuren an die feste Phase.

Als monovalente Kationen werden bevorzugt Na⁺, K⁺ und NH₄⁺ in Form der entsprechenden Salze eingesetzt. Als divalente Kationen werden bevorzugt Mg²⁺, Ca²⁺, Zn²⁺ und Mn²⁺ in Form der entsprechenden Salze eingesetzt. Eine besonders bevorzugte Ausführungsform ist der kombinierte Einsatz vom Na⁺ und Mg²⁺.

Die mono- und multi-, bevorzugt divalenten Kationen können gemäß der Erfindung in den unterschiedlichsten Mengenverhältnissen eingesetzt werden. Der Erfolg tritt im breiten Bereich von mono-:divalenten Kationen im molaren Verhältnis von 9:1 bis 1:9 ein. Bevorzugt sind Kombinationen von 7:3 bis 3:7 und 6:4 bis 4:6, besonders bevorzugt ist die Ausführungsform mit gleichen (1:1) bzw. nahezu gleichen molaren Mengen von mono- und divalenten Kationen.

Die Gesamt-Kationenkonzentration in der Lösung vor der Bindung an die feste Phase ist bevorzugt < 0,5 M.

Wenn die Nukleinsäuren in einer Lösung vorliegen, die bereits mono- oder divalente Kationen enthält, z. B. nach einer vorangegangenen Lyse unterschiedlichster Ausgangsmaterialien, dann wird die vorhandene Menge der Kationen bei der Einstellung der gemäß der Erfindung optimalen Kationenkonzentration berücksichtigt. Wenn also der Lysepuffer divalente Kationen enthält, die nach der Lyse in der Lösung enthalten sind, wird nur noch die benötigte Menge monovalenter Kationen zugesetzt (und umgekehrt).

Ein besonders wichtiges Merkmal der Erfindung ist auch, dass die gemäß der Erfindung verwendeten Waschpuffer keine alkoholische Komponente enthalten, wie bei allen anderen Verfahren des Standes der Technik.

Überraschend ist dabei, dass bei der Kombination von Salzen eines monovalenten mit einem multivalenten Kation die für eine Bindung notwendigen Konzentrationen in einem Bereich liegen, in den Pufferformulierungen bestehend nur aus jeweils einem Salz nicht mehr für die Bindung ausreichend sind. So ermöglicht die Kombination von Magnesiumchlorid und Natriumchlorid noch bei Mengen von weniger als jeweils 5 mM jeweils die Bindung von Nukleinsäuren eines weiteren Größenspektrums (Beispiel 1). Die Verwendung der Mischung von Salzen monovalenter mit multivalenten Kationen als Bestandteile von Bindungspuffern für die Bindung von Nukleinsäuren an mineralische Träger ist bisher noch nicht beschrieben. Das überraschende Ergebnis ermöglicht nunmehr eine völlig neue Strategie zur Isolierung und Aufreinigung von Nukleinsäuren aus komplexen Ausgangsproben. Da überraschenderweise nur noch extrem geringe Salzkonzentrationen in Bindungspuffern notwendig sind, wird es möglich, Nukleinsäuren aus komplexen Proben oder aus Lösungen, welche eine Vielzahl an zu entfernenden Stoffen enthalten, mit neuartigen Waschpuffern ohne das bisher notwendige Ethanol bzw. auch gänzlich ohne einen Waschschritt zu isolieren.

Dies hat enorme Vorteile für die Isolierung von Nukleinsäuren und löst die geschilderten Probleme der Verwendung von alkoholhaltigen Waschpuffern insbesondere bei automatisierten Hochdurchsatzanwendungen in idealster Weise. So ermöglicht die Verwendung der erfindungsgemäßen Pufferformulierungen z.B. die Aufreinigung von PCR-Produkten aus einem komplexen PCR-Reaktionsansatz für eine nachfolgende empfindliche Sequenzierungsreaktion und ohne einen einzigen Waschschritt in Form einer automatisierten Applikation (Bindung der PCR-Produkte an die Filtermembran einer 96-Well-Platte) in weniger als 10 min. Bisherige

Verfahren auf der Basis der Bindung der Nukleinsäure an eine feste Phase benötigen ca. 45 min – 1h. Darüber hinaus ist der Verfahrensablauf nunmehr extrem einfach und beinhaltet lediglich das Mischen des PCR-Ansatzes mit einem der erfindungsgemäßen Bindungspuffer, das Überführen des Ansatzes auf die Filterplatte, das Durchsaugen der Lösung und die nachfolgend Elution der PCR-Produkte mittels Wasser bzw. mittels einer 10 mM Tris gepufferten wässrigen Lösung. Damit können PCR-Produkte extrem zeitsparend, ungefährlich und preiswert aufgereinigt werden. Der Durchsatz kann dabei dramatisch erhöht werden (auch bei sinkendem apparativen Aufwand; z.B.wird kein Wasch-Tool mehr bei einem Roboter benötigt). Die Qualität der aufgereinigten PCR-Produkte ist sehr hoch, was sich an den sauberen Sequenzreaktionen zeigt (Beispiel 2).

Weiterhin zeigt sich überraschender Weise, dass man Nukleinsäuren auch aus komplexen biologischen Proben in exzellenter Qualitiät und Quantität auch ohne Waschschritte oder mittels eines Waschpuffers ohne Alkohol isolieren kann. Die in der Offenlegungschrift DE 100 33 991 in einem Beispiel beschriebene Isolierung einer Plasmid DNA ohne einen Waschschritt erfolgte nicht aus dem zuvor hergestellten, geklärten Lysat. Die zu isolierende Plasmid-DNA wurde mittels bekannter Standardverfahren erst in reiner Form hergestellt und diese Plasmid-DNA nochmals mit einem Puffer inkubiert, an eine feste Phase gebunden und nachfolgend nach der notwendigen Entfernung des Alkohols des Bindungspuffers wieder von der festen Phase abgelöst.

Mit der vorliegenden Erfindung ist es nunmehr möglich, Plasmid-DNA direkt aus dem geklärten Lysat aufzureinigen wobei wiederum kein Waschen mit einem alkohohaltigen Waschpuffer notwendig ist bzw. die Isolierung der Plasmid DNA auch ohne Waschschritt direkt nach der erfolgten Bindung an eine feste Phase erfolgen kann. Die Plasmid DNA ist dabei wiederum von exzellenter Qualität und Quantität (Ausführungsbeispiel 3).

Die Erfindung gestattet es weiterhin, auch extrem schnell, preiswert und einfach genomische Nukleinsäuren aus komplexen biologischen Proben zu isolieren. So wird lediglich ein Standardaufschluß des Ausgangsmaterials mittels z.B. eines klassischen Protease K-Verdaus in einem dafür kompatiblen Puffer durchgeführt, anschließend die lysierte Probe mit einem der erfindungsgemäßen nichtchaotropen Bindungspuffer versetzt und der Ansatz mit einer Nukleinsäure bindenden festen Phase inkubiert, ggf. mit einem nichtalkoholischen Waschpuffer gewaschen (oder ggf. ohne einen Waschschritt) und nachfolgend die genomische Nukleinsäure

mittels Wasser oder einer Tris-Lösung von der festen Phase isoliert. Die Qualität der isolierten DNA ist wiederum sehr hoch, sie ist sofort für weitere Applikationen einsetzbar.

Eine weitere Variante der vorliegenden Erfindung ergibt sich aus der Beobachtung, dass der pH-Wert der verwendeten Bindungspuffer von wesentlichen Einfluss auf sowohl die Ausbeute an den zu gewinnenden Nukleinsäuren ist als auch eine Selektivität gegenüber den Fragmentlängen von z.B. aufzureinigenden PCR-Produkten besitzt. Dabei ist es nicht notwendig mono- und multivalente Salze in einer Lösung mit einander zu kombinieren. Bevorzugt werden divalente und besonders bevorzugt Mg- oder Ca-salze verwendet.

Dies ermöglicht es, über die Wahl des pH-Wertes des Bindungspuffers z.B. kleine PCR-Produkte von der Isolierung auszuschließen. Darüber hinaus zeigt sich auch, das über die Kombination von Salz und Alkohol im Bindungspuffer im Zusammenhang mit der Wahl des pH-Wertes überraschende Effekte sichtbar werden. Die alkoholische Komponente im Bindungspuffer bewirkt eine Selektivität im Hinblick auf die Größenfraktionierung von DNA-Fragmenten. Tendenziell bewirkt eine Reduktion des pH-Wertes des Bindungspuffers eine Reduzierung der Ausbeute von kleineren DNA-Fragmenten bis hin zur kompletten Inhibition der Rückgewinnung. Dies ist besonders dann bedeutsam, wenn heterogene Probengemische vorliegen.

So kann bei pH-Werten >8 eine fast quantitative Rückgewinnung von DNA-Fragmenten eines breiten Größenspektrums (100 bp bis 10 000 bp) mit Bindungspuffern erreicht werden, wenn der Bindungspuffer eine alkoholische Komponente enthält.

Bei Bindungspuffern mit Alkohol wird der pH-Wert auf 5-9,5 und besonders bevorzugt auf 8-9,5, 6,5-8 bzw. 5-6,5 eingestellt. Damit ist die Erfassung bestimmter Fragmentgrößen möglich, d.h. bestimmte Fragmentgrößen werden nicht zurückgewonnen. Es sei hier darauf verwiesen, dass die Formulierung "keine Rückgewinnung" sich nicht als absolut versteht, d.h. Spuren an Nukleinsäurefragmente immer unspezifisch zurückgewonnen werden könnten.

Bei Bindungspuffern ohne Alkohol erfolgt eine Rückgewinnung von DNA-Fragmenten in quantitativen Mengen und über das Größenspektrum 100 bp bis 10 000 bp bevorzugt bei einem pH-Wert von >8,5. Letztlich ermöglicht die vorliegende Erfindung über die Kombination der Salzkomponenten und Alkoholkomponente sowie die Modifizierung des pH-Wertes, Bindungspuffer zu entwickeln, welche es erlauben, eine selektive Rückgewinnung von bestimmten Nukleinsäurefragmenten aus heterogenen Ausgangsproben zu ermöglichen.

Die vorliegende Erfindung ermöglicht somit in universeller Form eine deutliche Vereinfachung von Verfahren zur Isolierung von Nukleinsäuren aus Komplexen die nukleinsäureenthaltenden Proben.

Das Verfahren benötigt keine toxischen Chemikalien mehr, die eingesetzten Mengen an Salzen sind dramatisch reduziert, was zu einer deutlichen Umweltentlastung führt, die Verfahren benötigen weniger Verfahrensschritte und sind dadurch deutlich schneller als alle bisher verwendeten Techniken. Insbesondere im Hochdurchsatz stehen nunmehr preiswerte und extrem schnelle Verfahren zur Verfügung. Über die Zusammensetzung der Pufferformulierungen kann darüber hinaus eine selektive Größenfraktionierung von zurückzugewinnenden DNA-Fragmenten erreicht werden.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen erklärt. Die Ausführungsbeispiele sollen aber keine Limitierung der Erfindung darstellen.

Ausführungsbeispiele

Beispiel 1:

Aufreinigung eines Spektrums an DNA-Fragmenten aus einer wässrigen Lösung . Vergleich verschiedener Bindungspuffer hinsichtlich der Bindungseffizienz.

Puffer TH 1(5 mM NaCl; 5 mM MgCl₂/Tris HCl, Isopropanol)

Puffer TH 2 (10 mM MgCl₂/Tris HCl, Isopropanol)

Puffer TH 3 (10 mM NaCl/Tris HCl, Isopropanol)

Der Puffer TH1 ist eine Kombination aus einem monovalenten und einem divalenten Salz bei einer Gesamtionenstärke von 10 mM. Die Puffer TH2 und TH3 enthalten nur jeweils ein Salz (mit einem monovalenten Kation bzw. mit einem divalenten Kation) bei einer Gsamtionenstärke von 10 mM. 130 μ l der jeweiligen Puffer wurden mit einer eine kommerzielle DNA-Leiter (Fa. FERMENTAS) enthaltenen wässrigen Lösung von 50 μ l gemischt und der Ansatz auf eine Zentrifugationssäule mit einem Glasfaserfließ überführt. Anschließend wurde 1 min bei 10 000 rpm zentrifugiert und die Zentrifugationssäule in ein neues Reaktionsgefäß überführt. Die Elution der gebundenen Fragmente erfolgt durch die Zugabe von 30 μ l einer 10 mM Tris-HCl-Lösung und nachfolgender Zentrifugation

für 1 min. Die Gesamtzeit der Isolierung der DNA-Fragmente betrug damit nur ca. 2 min. Die erhaltenen Eluate wurden auf ein 1,2 % Agarosegel aufgetragen und elektrophoretisch aufgetrennt. Wie in der elektrophoretischen Darstellung deutlich zu sehen ist, erfolgt eine effiziente Rückgewinnung der DNA-Fragmente nur mit dem Kombinationspuffer. Die jeweils nur ein Salz enthaltenen Bindungspuffer dagegen zeigen nur noch eine sehr geringe Bindungsvermittlung. (Abbildung 1)

Beispiel 2:

Aufreinigung von PCR-Produkten aus einem komplexen PCR-Reaktionsansatz und nachfolgende Verwendung der aufgereinigten PCR-Produkte für eine DNA-Sequenzierung.

50 μl PCR-Reaktionsansätze wurden mit 130μl Bindungspuffer TH1 und TH4 (50 mM NaCl; 50 mM MgCl₂ /Tris HCl, Isopropanol) versetzt, nachfolgend auf eine Zentrifugationssäule mit Glasfaserfließ überführt, für 1 Minute zentrifugiert und abschließend die DNA wieder mittels 10 mM Tris HCl von der Säule eluiert. Die isolierten PCR-Produkte wurden dann für die

Sequenzierung eingesetzt. Die Sequenzierungsergebnisse belegen, dass ohne die Verwendung von bisher notwendigen Waschschritten alle störenden Komponenten effizient entfernt wurden und eine hochreine DNA vorliegt.

(Abbildungen 2-5)

Beispiel 3:

Isolierung von Plasmid DNA aus bakteriellen Lysaten. Vergleich der Reinheit der isolierten Plasmid DNA bei unterschiedlichen Waschbedingungen bzw. ohne einen Waschschritt.

2 ml einer bakteriellen Übernachtkultur (XL-1 mit Plasmid pGEM) wurden zentrifugiert und das Pellet mit 200 μl Solution I (Tris, EDTA, Rnase A) resuspendiert. Danach erfolgte die Zugabe von 200 μl Solution II (SDS/NaOH). Die Reaktionsgefäße wurden mehrmals kurz vorsichtig geschüttelt. Nachfolgend erfolgte die Zugabe 200 μl einer Solution III (250 mM MgCl₂/Tris HCl). Die Reaktionsgefäße wurden kurz und vorsichtig geschüttelt und für 5 min bei Maximalgeschwindigkeit zenrifugiert. Der geklärte Überstand wurde mit 100 μl Isopropanol gemischt und auf eine Zentrifugationssäule mit einem Glasfaserfließ gegeben und für 1 min zentrifugiert. Nachfolgend wurden jeweils 3 Proben sofort mit 10 mM Tris versetzt (kein waschen), 3 Proben wurden mit 800 μl eines Waschpuffers ohne Alkohol (10mM NaCl/10mM MgCl₂/Tris HCl) versetzt und für 1 min zentrifugiert und nachfolgend die Plasmid-DNA mit 10 mM Tris-HCl von der Säule eluiert und 3 Proben wurden mit 70%igem Ethanol gewaschen, nachfolgend der Ethanol entfernt und die Plasmid DNA wiederum durch Zugabe von 10 mM Tris HCl eluiert.

Die nachfolgende Tabelle illustriert die notwendige Präparationszeit, die Qualität und Quantität der isolierte Plasmid DNA.

Probe	Waschschritt	Ratio 260:280	Ausbeute	Präparationszeit
1	Kein Waschen	1,71	12 μg	8 min
2	Kein Waschen	1,74	15 μg	8 min
3	Kein Waschen	1,81	14 μg	8 min
4	Waschen ohne Alkohol	1,82	15 μg	10 min
5	Waschen ohne Alkohol	1,81	14 μg	10 min
6	Waschen ohne Alkohol	1,84	12 µg	10 min
7	Waschen mit Alkohol	1,86	14 μg	16 min

8	Waschen mit Alkohol	1,92	16 μg	16 min	
9	Waschen mit Alkohol	1,89	13 μg	16 min	

Beispiel 4:

Aufreinigung eines Spektrums an DNA-Fragmenten aus einer wässrigen Lösung . Vergleich verschiedener Bindungspuffer hinsichtlich der Bindungseffizienz in Abhängigkeit vom pH-Wert des Bindungspuffers.

50 μl einer wässrigen Lösung, enthaltend 2 μg DNA Ladder (Fermentas) wurden mit 130μl Bindungspuffer (R1-R8) ersetzt, nachfolgend auf eine Zentrifugationssäule mit Glasfaserfließ überführt, für 1 Minute zentrifugiert und abschließend die DNA wieder mittels 10 mM Tris HCl von der Säule eluiert. Die isolierten DNA-Fragmente wurden dann gelelktrophoretisch aufgetrennt. (Abbildung 6)

Bindungspuffer: enthaltend jeweils 50 mM $\rm MgCl_2$ und optional 20% Isopropanol sowie 100 mM Tris HCl mit variierenden pH-Werten.

R1+ (pH 6,5/ mit Isopropanol)

R1 (pH 6,5/ ohne Isopropanol)

R2+ (pH 7,0/ mit Isopropanol)

R2 (pH 7,0/ ohne Isopropanol

R3+ (pH 7,5/ mit Isopropanol)

R3 (pH 7,5/ ohne Isopropanol

R4+ (pH 8,0/ mit Isopropanol)

R4 (pH 8,0/ ohne Isopropanol

R5+ (pH 8,5/ mit Isopropanol)

R5 (pH 8,5/ ohne Isopropanol

R6+ (pH 9,0/ mit Isopropanol)

R6 (pH 9,0/ ohne Isopropanol

R7+ (pH 9,5/ mit Isopropanol)

R7 (pH 9,5/ ohne Isopropanol

R8+ (pH 10,0/ mit Isopropanol)

R8 (pH 10,0/ ohne Isopropanol

Patentansprüche

- 1. Verfahren zur Isolierung von Nukleinsäuren aus einer Lösung durch Bindung an eine feste Phase, dadurch gekennzeichnet, dass man die Nukleinsäure enthaltende Lösung mit Zusätzen so einstellt, dass sie monovalente und multivalente Kationen sowie einen Alkohol und ggf. weitere Zusätze enthält, sie danach mit der festen Phase in Kontakt bringt, den Träger anschließend ggf. wäscht und die Nukleinsäure von der festen Phase löst oder dass sie multivalente und/oder monovalente Kationen, ggf einen Alkohol und ggf. weitere Zusätze enthält und ein bestimmter pH-Wert zwischen 5 und 10 eingestellt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als monovalente Salzkomponente Ammoniumchlorid, Natriumchlorid und/oder Kaliumchlorid verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als multivalente Salzkomponente Magnesiumchlorid, Calciumchlorid, Zinkchlorid und/oder Manganchlorid, verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als monovalente Salzkomponente Natriumchlorid und als multivalente Salzkomponente Magnesiumchlorid verwendet wird.
- 5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die monovalente und die multivalente Salzkomponente im molaren Mengenverhältnis 9:1 bis 1:9 verwendet werden.
- 6. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die monovalente und die multivalente Salzkomponente im molaren Mengenverhältnis 7:3 bis 3:7 verwendet werden.
- 7. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die monovalente und die multivalente Salzkomponente im molaren Mengenverhältnis 6:4 bis 4:6 verwendet werden.
- 8. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die monovalente und die multivalente Salzkomponente im molaren Mengenverhältnis 1:1 bis nahezu 1:1 verwendet werden.

- 9. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Salzkomponenten Natriumchlorid und Magnesiumchlorid im molaren Verhältnis 1:1 verwendet werden.
- Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass die Endkonzentration der Salzkomponenten in der Lösung > 5mMol beträgt.
- 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Alkohol Ethanol oder Isopropanol verwendet wird.
- 12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als weitere Zusätze Tris-HCl oder Polyvinylpyrrolidon verwendet werden.
- 13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als feste Phase alle Trägermaterialien eingesetzt werden, die bei der Isolierung mit chaotropen Reagenzien Anwendung finden.
- 14 Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass als Trägermaterialien Glasfaservliese, Silicamembranen, oder Membranen, die funktionelle Gruppen tragen, die Glasfaservliesen oder Silicamembranen entsprechen, eingesetzt werden.
- 15. Verfahren nach Anspruch 13 und 14, dadurch gekennzeichnet, dass als feste Phasen Suspensionen aus SiO₂, Aerosilen oder magnetisierten Silikapartikeln eingesetzt werden.
- 16. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Waschpuffer Lösungen von monovalenten und multivalenten Salzkomponenten mit geringerer Ionenstärke, als für die vorhergehende Bindung notwendig war, ohne alkoholische Komponente eingesetzt werden.
- 17. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Elutionspuffer Wasser oder Wasser mit Tris-HCl-Zusatz verwendet wird.
- 18. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als multivalente Kationen divalente Kationen verwendet werden.
- 19. Verfahren nach Anspruch 1 und 18, dadurch gekennzeichnet, dass als multivalente Kationen Mg²⁺-, Ca²⁺-, Zn²⁺- oder Mn²⁺-salze verwendet werden.

- 20. Verfahren nach Anspruch 1 und 18, dadurch gekennzeichnet, dass als monovalente Kationen NH₄⁺-, Na⁺- oder K⁺-salze verwendet werden.
- 21. Verfahren nach Anspruch 18 bis 20, dadurch gekennzeichnet, dass die Endkonzentration der Salzkomponenten in der Lösung > 5mMol beträgt.
- 22. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Alkohol Ethanol, Isopropanol und/oder Polyethylenglykole unterschiedlicher Molekulargewichte verwendet werden.
- 23. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der pH-Wert des Bindungspuffers mit Tris-HCl eingestellt wird.
- 24. Verfahren nach Anspruch 1 und 23, dadurch gekennzeichnet, dass der pH-Wert des Bindungspuffers ohne Alkoholzusatz auf 8,5 9,5 eingestellt wird.
- 25. Verfahren nach Anspruch 1 und 23, dadurch gekennzeichnet, dass der pH-Wert des Bindungspuffers mit Alkoholzusatz auf 5 9,5 eingestellt wird.
- 26. Verfahren nach Anspruch 1, 23 und 24, dadurch gekennzeichnet, dass der pH-Wert des Bindungspuffers mit Alkoholzusatz auf 8 9,5 eingestellt wird.
- 27. Verfahren nach Anspruch 1, 23 und 24, dadurch gekennzeichnet, dass der pH-Wert des Bindungspuffers mit Alkoholzusatz auf 6,5 8 eingestellt wird.
- 28. Verfahren nach Anspruch 1, 23 und 24, dadurch gekennzeichnet, dass der pH-Wert des Bindungspuffers mit Alkoholzusatz auf 5 6,5 eingestellt wird.
- 29. Testkit zur Isolierung von DNA aus beliebigen Ausgangsmaterialien enthaltend
 - eine wässerige Lösung, die monovalente und/oder multivalente Kationen enthält,
 - ggf einen Alkohol,
 - ggf. weitere Zusätze zur Einstellung des pH-Wertes
 - eine feste Phase, bevorzugt als fester Bestandteil von Zentrifugenröhrchen, 96 Well- oder 384 Well Filtrationsplatten,
 - Wasch- und Elutionspuffer

- 30. Testkit zur Isolierung von DNA aus beliebigen Ausgangsmaterialien enthaltend
 - eine wässerige Lösung, die monovalente und multivalente, bevorzugt divalente, Kationen enthält,
 - eine feste Phase, bevorzugt als fester Bestandteil von Zentrifugenröhrchen, 96
 Well- oder 384 Well Filtrationsplatten,
 - Wasch- und Elutionspuffer ohne Alkoholzusatz.
- 31. Testkit nach Anspruch 29 und 30, dadurch gekennzeichnet, dass die feste Phase Glasfaservliese, Glasmembranen, Siliciumträger oder Aerosile sind.
- 32. Testkit nach Anspruch 29, 30 und 31, dadurch gekennzeichnet, dass als feste Phase lose Schüttungen, bevorzugt SiO₂, gefällte Kieselsäure, pyrogene Kieselsäure oder magnetische Silicapartikel eingesetzt werden.
- 33. Testkit nach Anspruch 29 bis 32, dadurch gekennzeichnet, dass als feste Phase Membranen mit funktionellen Gruppen verwendet werden.

Abbildung 1:

Aufreinigung eines Spektrums an DNA-Fragmenten aus einer wässrigen Lösung . Vergleich verschiedener Bindungspuffer hinsichtlich der Bindungseffizienz.

Spuren 1 und 2 : Isolierte DNA Leiter unter Verwendung des Puffers TH3 (monovalentes Kation im verwendeten Salz)

Spuren 3 und 4 : Isolierte DNA Leiter unter Verwendung des Puffers TH2 (divalentes Kation im verwendeten Salz)

Spuren 5 und 6 : Isolierte DNA Leiter unter Verwendung des Puffers TH1

(Kombination der beiden Salze: monovalentes und divalentes Kation)

1 2 3 4 5 6

.8	
ف	
2	
1	•

/042058			2/6	
Page 1 of 1 Fre, 8. Nov 2002 7:08 Don, 7. Nov 2002 14:23 Spacing: 14.24(14.24)	3AG AAT TFCTT CTGGC 1A G AACA 130 140	The Phone County of the County		
Signal G:347 A:304 T:272 C:211 DT {BD Set Any-Primer} MATRIX E Points 2038 to 5100 Pk 1 Loc: 2038	GNOGIGACATNATABARAKATOGOGOTAN BIGAKCINGTRAKI CTGIRAKA CGOKA KINGGOGAKA KANGOTAN GANGOTAN KANGOTAN GANGOTAN GANG	MINIMAN AND THE WALLE WAS A STATE OF THE STA		
Jr 741	66) 10 00 00 00 00 00 00 00 00 00 00 00 00	MANUAL CALL SALVER TO THE SALV		***************************************
5-2,2-fvl,f 5-2,2-fvl,f Lane 73	CIOGGCIAL A GGACIACTICTAAI C'O'		7-1 * 0* 40 (, 00 k, , , *00)	MINMANAN
Model 377 Version 3.4 LR-377 Version 3.3.1b2	encataarchiN.Torahaaka.cacc 16	MANAGARANA MANAKA MATAKA M	TOTTAGGTCTCCTGGCTAAAIAA: GGGGCAGCGAAGA.	MANAMA MANAMANA

4bb. 3

Abb. 4

Page 1 of 1 Fre, 8. Nov 2002 6:45 Don, 7. Nov 2002 14:23 Spacing: 14.42[14.42] Signal G:336 A:269 T:250 C:215 DT (BD Set Any-Primer) MATRIX E Points 2031 to 5100 Pk 1 Loc: 2031 STCCAC GT CAC T GTA GTATG G TCT TGT TA AG CAC T GGG CA A 5-2,3-fvl,r Lane 26 5-2,3-fvl,r Model 377 Version 3.4 LR-377 Version 3.3.1b2

Abbildung: 6

Aufreinigung eines Spektrums an DNA-Fragmenten aus einer wässrigen Lösung . Vergleich verschiedener Bindungspuffer hinsichtlich der Bindungseffizienz in Abhängigkeit vom pH-Wert des Bindungspuffers.

- 1 DNA Ladder (ohne Aufreinigung)
- 2 leer
- 3 R1+ (pH 6,5/ mit Isopropanol)
- 4 R1 (pH 6,5/ ohne Isopropanol)
- 5 R2+ (pH 7,0/ mit Isopropanol)
- 6 R2 (pH 7,0/ ohne Isopropanol)
- 7 R3+ (pH 7,5/mit Isopropanol)
- 8 R3 (pH 7,5/ ohne Isopropanol)
- 9 R4+ (pH 8,0/mit Isopropanol)
- 10 R4 (pH 8,0/ohne Isopropanol)

- 11 R5+ (pH 8,5/mit Isopropanol)
- 12 R5 (pH 8,5/ohne Isopropanol)
- 13 R6+ (pH 9,0/mit Isopropanol)
- 14 R6 (pH 9,0/ohne Isopropanol)
- 15 R7+ (pH 9,5/mit Isopropanol)
- 16 R7 (pH 9,5/ohne Isopropanol)
- 17 R8+ (pH 10,0/mit Isopropanol)
- 18 R8 (pH 10,0/ohne Isopropanol)
- 19 leer
- 20 DNA Ladder (ohne Aufreinigung)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.