CE062 - Tópicos em Biometria

Silva, J.P; Taconeli, C.A.

20 de agosto, 2019

Desenho Paralelo: Não Inferioridade/Superioridade

Não-inferioridade e Superioridade

O problema de testar não-inferioridade e superioridade pode ser unificado pelas seguintes hipóteses:

$$H_0: \epsilon \leq \delta \text{ versus } H_1: \epsilon > \delta,$$

em que δ é a margem de superioridade ou não-inferioridade.

- Quando $\delta > 0$, a rejeição da hipótese nula indica superioridade da droga teste em relação à droga controle.
- Quando $\delta <$ 0, a rejeição da hipótese nula indica a não-inferioridade da droga teste contra a droga controle.

Quando σ^2 é conhecido, H_0 é rejeitada ao nível de significância α se

$$\frac{\bar{x}_{1.}-\bar{x}_{2.}-\delta}{\sigma\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}>z_{\alpha}.$$

Sob a hipótese alternativa de que $\epsilon > \delta$, o poder do teste é:

$$\Phi\left(\frac{\epsilon-\delta}{\sigma\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}-z_{\alpha}\right).$$

O tamanho amostral necessário para alcançar um poder $1-\beta$ pode ser obtido resolvendo:

$$\frac{\epsilon - \delta}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} - z_{\alpha} = z_{\beta}.$$

Isso leva a

$$n_1 = \kappa n_2$$

$$n_2 = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2 (1 + 1/\kappa)}{(\epsilon - \delta)^2}.$$

Se σ^2 é desconhecido, a hipótese nula H_0 é rejeitada se

$$\frac{\bar{x}_{1.} - \bar{x}_{2.} - \delta}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > t_{\alpha, n_1 + n_2 - 2}.$$

Sob a hipótese alternativa de que $\epsilon > \delta$, o poder do teste é:

$$1 - T_{n_1 + n_2 - 2} \left(t_{\alpha, n_1 + n_2 - 2} \left| \frac{\epsilon - \delta}{s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right) \right).$$

O tamanho amostral necessário para alcançar um poder $1-\beta$ pode ser obtido resolvendo a seguinte equação:

$$T_{n_1+n_2-2}\left(t_{\alpha,n_1+n_2-2}\left|\frac{\epsilon-\delta}{s\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\right)=\beta.\right)$$

Quando n_1 e n_2 são grandes, a aproximação normal pode ser usada.

Exemplo: Teste para Não-Inferioridade

Suponha que a companhia farmacêutica está interessada em estabelecer não-inferioridade da droga teste em comparação com o controle ativo.

Admita que a margem de não-inferioridade seja 5% (i.e., $\delta=-0,05$).

Suponha ainda que a verdadeira diferença média entre os tratamentos seja 0% (i.e., $\epsilon = \mu_2(\textit{teste}) - \mu_1(\textit{controle}) = 0,00$).

Exemplo: Teste para Não-Inferioridade

O tamanho amostral obtido pela aproximação normal é dado por:

$$n_1 = n_2 = \frac{2(z_{\alpha} + z_{\beta}^2)\sigma^2}{(\epsilon - \delta)^2} = \frac{2 \times (1.645 + 0.84)^2 \times 0.1^2}{(-0.00 - (-0.05))^2} \approx 50.$$

```
alpha=0.05; beta=0.20; sigma=0.1;
delta=-0.05; epsilon=0.00; k=1
z_alpha <- abs(qnorm(alpha))
z_beta <- abs(qnorm(beta))
(z_alpha + z_beta)^2*sigma^2*(1+1/k)/(epsilon-delta)^2</pre>
```

[1] 49.46046

Exemplo: Teste para Não-Inferioridade

Two-sample t test power calculation

```
n = 50.1508
delta = 0.05
sd = 0.1
sig.level = 0.05
power = 0.8
alternative = one.sided
```

NOTE: n is number in *each* group

Desenho Paralelo: Equivalência

O objetivo é testar as seguintes hipóteses:

$$H_0: |\epsilon| \ge \delta$$
 versus $H_1: |\epsilon| < \delta$.

A rejeição da hipótese nula nos leva a concluir que a droga teste é equivalente à droga controle em média.

Quando σ^2 é conhecido, H_0 é rejeitada ao nível de significância α se

$$\frac{\bar{x}_{1.} - \bar{x}_{2.} - \delta}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < -z_{\alpha} \quad \text{e} \quad \frac{\bar{x}_{1.} - \bar{x}_{2.} - \delta}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > z_{\alpha}.$$

Sob a hipótese alternativa de que $|\epsilon| < \delta$, o poder do teste é:

$$egin{aligned} \Phi\left(rac{\delta-\epsilon}{\sigma\sqrt{rac{1}{n_1}+rac{1}{n_2}}}-z_lpha
ight) + \Phi\left(rac{\delta+\epsilon}{\sigma\sqrt{rac{1}{n_1}+rac{1}{n_2}}}-z_lpha
ight) - 1 \ &pprox 2\Phi\left(rac{\delta-|\epsilon|}{\sigma\sqrt{rac{1}{n_1}+rac{1}{n_2}}}-z_lpha
ight) - 1. \end{aligned}$$

Como resultado, o tamanho amostral necessário para alcançar um poder $1-\beta$ pode ser obtido resolvendo:

$$\frac{\delta-|\epsilon|}{\sigma\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}-z_{\alpha}=z_{\beta/2}.$$

Isso leva a

$$n_1 = \kappa n_2$$

$$n_2 = \frac{(z_{\alpha} + z_{\beta/2})^2 \sigma^2 (1 + 1/\kappa)}{(\delta - |\epsilon|)^2}.$$

Se σ^2 é desconhecido, a hipótese nula H_0 é rejeitada se

$$\frac{\bar{x}_{1.} - \bar{x}_{2.} - \delta}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < -t_{\alpha,n_1+n_2-2} \quad \text{e} \quad \frac{\bar{x}_{1.} - \bar{x}_{2.} - \delta}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > t_{\alpha,n_1+n_2-2}.$$

Sob a hipótese alternativa de que $|\epsilon| < \delta$, o poder do teste é:

$$\begin{split} &1 - T_{n_1 + n_2 - 2} \left(t_{\alpha, n_1 + n_2 - 2} \left| \frac{\delta - \epsilon}{s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right) \right. \\ &- T_{n_1 + n_2 - 2} \left(t_{\alpha, n_1 + n_2 - 2} \left| \frac{\delta + \epsilon}{s \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right) \right. \end{split}$$

Assim, com $n_1 = \kappa n_2$, o tamanho amostral n_2 necessário para alcançar um poder $1 - \beta$ pode ser obtido igualando o poder a $1 - \beta$.

Já que o poder é maior que

$$1 - 2T_{n_1+n_2-2} \left(t_{\alpha,n_1+n_2-2} \left| \frac{\delta - |\epsilon|}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right), \right.$$

podemos obter uma aproximação conservadora para n_2 .

Isto pode ser obtido resolvendo

$$T_{(1+\kappa)n_2-2}\left(t_{\alpha,(1+\kappa)n_2-2}\left|\frac{\sqrt{n_2}(\delta-|\epsilon|)}{\sigma\sqrt{1+\frac{1}{k}}}\right)=\frac{\beta}{2}.$$

Quando n_1 e n_2 são grandes, a aproximação normal pode ser usada.

Exemplo: Teste para Equivalência

Suponha que a verdadeira diferença seja 1% (i.e., $\epsilon=0,01$) e que o limite de equivalência seja 5% (i.e., $\delta=0,05$).

O tamanho amostral obtido pela aproximação normal é dado por:

$$n_1 = n_2 = \frac{2(z_{\alpha} + z_{\beta/2})^2 \sigma^2}{(\delta - |\epsilon|)^2} = \frac{2 \times (1.645 + 1.28)^2 \times 0.1^2}{(0.05 - 0.01)^2} \approx 108.$$

```
alpha=0.05; beta=0.20; sigma=0.1;
delta=0.05; epsilon=0.01; k=1
z_alpha <- abs(qnorm(alpha))
z_beta <- abs(qnorm(beta/2))
(z_alpha + z_beta)^2*sigma^2*(1+1/k)/(delta-abs(epsilon))^2</pre>
```

[1] 107.0481

Exemplo: Teste para Equivalência

Two-sample t test power calculation

```
n = 107.7313
delta = 0.04
    sd = 0.1
sig.level = 0.05
    power = 0.9
alternative = one.sided
```

NOTE: n is number in *each* group

Considerações

Teste Unilateral vs Teste Bilateral

Ao passarmos de um teste bilateral de equivalência para um teste unilateral de não-inferioridade em um desenho paralelo com alocação 1:1, o tamanho amostral pode ser reduzido ao nível α de significância.

Suponha que a verdadeira diferença entre os dois tratamentos seja $\epsilon=0$. A razão dos tamanhos amostrais necessários para não-inferioridade e equivalência é dada por:

$$rac{n_{ extit{n\~{a}o-inferioridade}}}{n_{ extit{equival\^{e}ncia}}} = rac{(z_{lpha} + z_{eta})^2}{(z_{lpha} + z_{eta/2})^2}.$$

Vejamos a redução percentual em alguns cenários a seguir:

Teste Unilateral vs Teste Bilateral

```
reduc=function(alpha, beta, digits)
{
  n_ni=(abs(qnorm(alpha))+abs(qnorm(beta)))^2
  n_eq=(abs(qnorm(alpha))+abs(qnorm(beta/2)))^2
  reduc=round(100*(1-n_ni/n_eq),digits)
  return(reduc)
dat=expand.grid(alpha=c(0.10,0.05,0.01),beta=c(0.05,0.1,0.2))
dat$reduc=NA
#
for(i in 1:nrow(dat))
{
  dat$reduc[i]=reduc(alpha=dat$alpha[i], beta=dat$beta[i],
                     digits=1)
```

Teste Unilateral vs Teste Bilateral

dat

```
alpha beta reduc
1 0.10 0.05 18.5
2 0.05 0.05 16.7
3 0.01 0.05 14.2
4 0.10 0.10 23.3
5 0.05 0.10 20.9
6 0.01 0.10 17.5
7 0.10 0.20 31.4
8 0.05 0.20 27.8
9 0.01 0.20 22.9
```

Por exemplo, o tamanho amostral seria reduzido em 27,8% ao passarmos de um teste de equivalência para um teste de não inferioridade ao nível $\alpha=0.05$ mantendo o mesmo poder de 80%.

Análise de Sensibilidade

O tamanho amostral é geralmente calculado usando valores iniciais da diferença média entre os grupos (i.e., ε), o desvio padrão (i.e., σ), e a diferença clinicamente significativa ou uma margem pré-especificada de superioridade/não-inferioridade ou limite de equivalência (i.e., δ).

Quaisquer desvios leves ou moderados destes valores iniciais podem acarretar mudanças substanciais nos tamanhos amostrais calculados.

É sugerido então, realizar uma análise de sensibilidade aos valores iniciais. Isto vai nos trazer informação útil no caso em que ocorram mudanças em qualquer um dos valores iniciais.

Análise de Sensibilidade

Por exemplo, para o caso de teste de igualdade de médias no desenho paralelo, se o desvio padrão muda de σ para $c\sigma$, a razão entre o tamanho amostral necessário antes e após a mudança é dada por

$$\frac{n_{c\sigma}}{n_{\sigma}}=c^2,$$

que é independente da escolha de α e β .

A seguir, veremos a redução percentual em alguns casos. Sem perda de generalidade, assumimos c < 1.

Análise de Sensibilidade

Por exemplo, quando σ diminui em 20% (i.e., c = 0.8), o tamanho amostral se reduz em 36% mantendo α = 0.05 e poder de 80%.

Voltemos ao exemplo da comparação de dois tratamentos para redução da pressão sanguínea...

100

5 0.2 96

6 0.0

Assumindo que a média do tratamento é 15 mmHg menor que a do grupo controle; i.e., $\epsilon=-15$, especificando poder de 80% e nível de significância de 5%.

Considerando ainda $\sigma=20$ chegamos nos tamanhos amostrais.

```
#teste unilateral
power.t.test(delta = 15, sd = 20, sig.level = 0.05,
power = 0.8, alternative="one.sided")$n
```

```
[1] 22.69032
```

```
#teste bilateral
power.t.test(delta = 15, sd = 20, sig.level = 0.05,
power = 0.8, alternative="two.sided")$n
```

[1] 28.89962

Na sequência vamos avaliar o tamanho amostral variando σ , ϵ e β para o mesmo cenário de teste de igualdade de médias considerando um teste bilateral.

Consideramos:

- $\sigma = \{10, 20, 30, 40\}$
- poder: $1 \beta = \{50\%, 60\%, 70\%, 80\%, 90\%\}$
- diferença (absoluta): $\epsilon \in [10, 30]$
- $\alpha = 5\%$

```
dat=expand.grid(poder=seq(.50,0.90,0.1), eps=seq(10,30,1),
                sigma=seq(10.40.10), n=NA)
for(i in 1:nrow(dat))
dat$n[i]=power.t.test(delta = dat$eps[i], sd = dat$sigma[i],
                      sig.level = 0.05, power = dat$poder[i],
                      alternative="two.sided") $n
dat$poder=as.factor(dat$poder)
#
library(ggplot2)
ggplot(dat, aes(x=eps,y=n,color=poder)) +
  geom line(aes(group=poder),size=1.1) + theme bw() +
  facet wrap(~sigma,scales="free y") +
  theme(legend.position="top") +
  geom_vline(xintercept=15,linetype="dashed", color="gray")
```


Figura 1: Tamanho amostral necessário variando ϵ , σ e β .