<u>Painel</u> / Meus cursos / <u>SC26EL</u> / <u>8-Representação de Sistemas em Espaço de Estados</u>

/ Questionário sobre Representação de Sistemas em Espaço de Estados

Iniciado em	sábado, 24 jul 2021, 15:54
Estado	Finalizada
Concluída em	sábado, 24 jul 2021, 15:56
Tempo	1 minuto 34 segundos
empregado	
Notas	12,0/28,0
Avaliar	4.3 de um máximo de 10.0(43 %)

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1 mH, $C=100~\mu F$ e $R=1~\Omega$. Obtenha uma representação em espaço de estados para o sistema onde $x_1(t)=i_L(t)=y(t)$ e $x_2(t)=v_C(t)$. Considere 3 algarismos significativos nas respostas.

O sistema tem uma representação na forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são:

$$a_{11} = 0$$

$$\checkmark$$
 , $a_{12} = 0$

$$\mathbf{x}$$
, $a_{21} = 0$

×

Os elementos b_{ij} da matriz $B = \left[egin{array}{c} b_{11} \ b_{21} \end{array}
ight]$ são:

$$b_{11} = 0$$

×

Os elementos c_{ij} da matriz $C = \left[egin{array}{cc} c_{11} & c_{12} \end{array}
ight]$ são:

$$c_{11} = 1$$

~

Os polos do sistema, em ordem decrescente, são: $p_1 =$

×

Atingiu 8,0 de 18,0

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1 mH, C=100 μF e R=1 Ω . Considere 3 algarismos significativos nas respostas.

A função de transferência desses sistema é $\mathit{G(s)} = \frac{\mathit{Num(s)}}{\mathit{Den(s)}}$

O polinômio do numerador de G(s) é Num(s) =

•

 $\checkmark s^2 + 0$

×

O polinômio do denomidador de G(s) é Den(s) =

$$s^2+$$

×

 $\underline{\text{A partir da função}}$ de transferência, os polos do sistema, em ordem decrescente, são: $\emph{p}_1 =$

1

x e
$$p_2 =$$

×

A partir da função de transferência G(s), considerando $x_1(t) = y(t)$ pode-se obter uma representação para o sistema em espaço de estados, isto é,

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são:

$$a_{11} = 0$$

$$\checkmark$$
 , $a_{12} =$

x e
$$a_{22} =$$

Os elementos b_{ij} da matriz $B = \left[egin{array}{c} b_{11} \ b_{21} \end{array}
ight]$ são:

$$b_{11} = 0$$

$$\bullet$$
 e $b_{21} =$

×

Os elementos c_{ij} da matriz $C = [c_{11} \quad c_{12}]$ são:

$$c_{11} = 1$$

• e
$$c_{12} = 0$$

~ .

A partir da representação do sistema em espaço de estados, os polos do sistema, em ordem decrescente, são: $p_1 =$

1

1

×

■ Script Python

Seguir para...

Aula 9 - Formas Canônicas e Transformações de Similaridade -