Calculus III Lecture 14

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

Triple Integrals

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Question

Let $\mathcal R$ be a region in space. Suppose we know the density of $\mathcal R$ at every point. Can we find the mass of $\mathcal R$?

Question

Let $\mathcal R$ be a region in space. Suppose we know the density of $\mathcal R$ at every point. Can we find the mass of $\mathcal R$?

• Partition the region \mathcal{R} into regions with D_1, \ldots, D_k with small diameter.

Question

Let $\mathcal R$ be a region in space. Suppose we know the density of $\mathcal R$ at every point. Can we find the mass of $\mathcal R$?

- Partition the region \mathcal{R} into regions with D_1, \ldots, D_k with small diameter.
- Choose a sample point P_k inside each D_k . Then $mass(D_k) \approx \rho(P_k) vol(D_k)$.

Question

Let $\mathcal R$ be a region in space. Suppose we know the density of $\mathcal R$ at every point. Can we find the mass of $\mathcal R$?

- Partition the region \mathcal{R} into regions with D_1, \ldots, D_k with small diameter.
- Choose a sample point P_k inside each D_k . Then $mass(D_k) \approx \rho(P_k) vol(D_k)$.
- Sum the above approximations to get an approximation for mass \mathcal{R} : mass $(\mathcal{R}) \approx \sum_{k=1}^{N} \rho(P_k) \operatorname{vol}(D_k)$.

Question

Let $\mathcal R$ be a region in space. Suppose we know the density of $\mathcal R$ at every point. Can we find the mass of $\mathcal R$?

- Partition the region \mathcal{R} into regions with D_1, \ldots, D_k with small diameter.
- Choose a sample point P_k inside each D_k . Then $mass(D_k) \approx \rho(P_k) vol(D_k)$.
- Sum the above approximations to get an approximation for mass \mathcal{R} : mass $(\mathcal{R}) \approx \sum_{k=1}^{N} \rho(P_k) \text{vol}(D_k)$.
- Take the limit as the diameter of the partitions tends to zero:

$$\mathsf{mass}(\mathcal{R}) = \lim_{\mathsf{max}_k \mathsf{diam}(D_k) \to 0} \sum_{k=1}^N \rho(P_k) \mathsf{vol}(D_k) \ .$$

Let f be a scalar or vector-valued function on region \mathcal{R} .

Definition

If the limit

$$\lim_{\max_k \operatorname{diam}(D_k) \to 0} \sum_{k=1}^N f(P_k) \operatorname{vol}(D_k)$$

exists and is finite, its value is called the integral of f on $\mathcal R$ with respect to volume and is denoted by

$$\iiint_{\mathcal{R}} f(P) dV .$$

Let f be a scalar or vector-valued function on region \mathcal{R} .

Definition

If the limit

$$\lim_{\max_k \operatorname{diam}(D_k) \to 0} \sum_{k=1}^N f(P_k) \operatorname{vol}(D_k)$$

exists and is finite, its value is called the integral of f on $\mathcal R$ with respect to volume and is denoted by

$$\iiint_{\mathcal{R}} f(P) dV .$$

• If *f* is a scalar function, then the value of the integral is a scalar.

Let f be a scalar or vector-valued function on region \mathcal{R} .

Definition

If the limit

$$\lim_{\max_k \operatorname{diam}(D_k) \to 0} \sum_{k=1}^N f(P_k) \operatorname{vol}(D_k)$$

exists and is finite, its value is called the integral of f on $\mathcal R$ with respect to volume and is denoted by

$$\iiint_{\mathcal{R}} f(P) dV .$$

- If *f* is a scalar function, then the value of the integral is a scalar.
- If f is a vector-valued function, then the integral is a vector.

Let f be a scalar or vector-valued function on region \mathcal{R} .

Definition

If the limit

$$\lim_{\max_k \operatorname{diam}(D_k) \to 0} \sum_{k=1}^N f(P_k) \operatorname{vol}(D_k)$$

exists and is finite, its value is called the integral of f on $\mathcal R$ with respect to volume and is denoted by

$$\iiint_{\mathcal{R}} f(P) dV .$$

- If f is a scalar function, then the value of the integral is a scalar.
- If *f* is a vector-valued function, then the integral is a vector.
- If f is continuous, the limit is guaranteed to exist. If f is not continuous, the limit may fail to exist.

• The volume of a region is defined via a triple integral.

$$\mathsf{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \mathsf{d}V$$

• The volume of a region is defined via a triple integral.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$$

The mass of a body can be computed via a triple integral.

$$\mathsf{mass}(\mathcal{R}) = \iiint_{\mathcal{R}} \mathsf{density}(P) \cdot \mathsf{d}V.$$

The volume of a region is defined via a triple integral.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$$

The mass of a body can be computed via a triple integral.

$$\mathsf{mass}(\mathcal{R}) = \iiint_{\mathcal{R}} \mathsf{density}(P) \cdot \mathsf{d}V.$$

• Average value of function *f* (with respect to volume) is given by:

average value of
$$f = \frac{1}{\text{vol}(\mathcal{R})} \iiint_{\mathcal{R}} f(P) \cdot dV$$
.

• The volume of a region is defined via a triple integral.

$$\mathsf{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \mathsf{d}V$$

The mass of a body can be computed via a triple integral.

$$mass(\mathcal{R}) = \iiint_{\mathcal{R}} density(P) \cdot dV$$
.

• Average value of function *f* (with respect to volume) is given by:

average value of
$$f = \frac{1}{\text{vol}(\mathcal{R})} \iiint_{\mathcal{R}} f(P) \cdot dV$$
.

• The average value of a function f with respect to mass distribution:

av. value of
$$f=rac{1}{\mathsf{m}(\mathcal{R})}\iiint_{\mathcal{R}}f(P)\,\mathrm{d} m=rac{1}{\mathsf{m}(\mathcal{R})}\iiint_{\mathcal{R}}f(P)\rho(P)\,\mathrm{d} V$$
 .

• To compute a triple integral over ${\mathcal R}$ one reduces to iterated integrals.

- To compute a triple integral over $\mathcal R$ one reduces to iterated integrals.
- One reduces to
 - a single integral of a double integral

- \bullet To compute a triple integral over ${\cal R}$ one reduces to iterated integrals.
- One reduces to
 - a single integral of a double integral
 - or double integral of a single integral.

- \bullet To compute a triple integral over ${\cal R}$ one reduces to iterated integrals.
- One reduces to
 - a single integral of a double integral
 - or double integral of a single integral.
- Single integral of a double integral: decomposition into slices.

- To compute a triple integral over ${\mathcal R}$ one reduces to iterated integrals.
- One reduces to
 - a single integral of a double integral
 - or double integral of a single integral.
- Single integral of a double integral: decomposition into slices.
 - Project the body on an axis.
 - Look at 2D slices perpendicular to that axis (CT-scan).

$$\iiint_{\mathcal{R}} f(P) dV = \int_{\text{location of slice}} \left(\iint_{\text{slice}} f(P) dA \right) dh$$

- To compute a triple integral over ${\mathcal R}$ one reduces to iterated integrals.
- One reduces to
 - a single integral of a double integral
 - or double integral of a single integral.
- Single integral of a double integral: decomposition into slices.
 - Project the body on an axis.
 - Look at 2D slices perpendicular to that axis (CT-scan).

$$\iiint_{\mathcal{R}} f(P) dV = \int_{\text{location of slice}} \left(\iint_{\text{slice}} f(P) dA \right) dh$$

- To compute a triple integral over ${\mathcal R}$ one reduces to iterated integrals.
- One reduces to
 - a single integral of a double integral
 - or double integral of a single integral.
- Single integral of a double integral: decomposition into slices.
 - Project the body on an axis.
 - Look at 2D slices perpendicular to that axis (CT-scan).

$$\iiint_{\mathcal{R}} f(P) dV = \int_{\text{location of slice}} \left(\iint_{\text{slice}} f(P) dA \right) dh$$

- To compute a triple integral over ${\mathcal R}$ one reduces to iterated integrals.
- One reduces to
 - a single integral of a double integral
 - or double integral of a single integral.
- Single integral of a double integral: decomposition into slices.
 - Project the body on an axis.
 - Look at 2D slices perpendicular to that axis (CT-scan).

$$\iiint_{\mathcal{R}} f(P) dV = \int_{\text{location of slice}} \left(\iint_{\text{slice}} f(P) dA \right) dh$$

- Double integral of a single integral: decomposition into rods.
 - Project the body on a plane.
 - Look at 1D slices perpendicular to that plane (rods).

$$\iiint_{\mathcal{R}} f(P) dV = \iint_{\text{location of rod}} \left(\int_{\text{rod}} f(P) dh \right) dA$$

- To compute a triple integral over ${\mathcal R}$ one reduces to iterated integrals.
- One reduces to
 - a single integral of a double integral
 - or double integral of a single integral.
- Single integral of a double integral: decomposition into slices.
 - Project the body on an axis.
 - Look at 2D slices perpendicular to that axis (CT-scan).

$$\iiint_{\mathcal{R}} f(P) dV = \int_{\text{location of slice}} \left(\iint_{\text{slice}} f(P) dA \right) dh$$

- Double integral of a single integral: decomposition into rods.
 - Project the body on a plane.
 - Look at 1D slices perpendicular to that plane (rods).

$$\iiint_{\mathcal{R}} f(P) dV = \iint_{\text{location of rod}} \left(\int_{\text{rod}} f(P) dh \right) dA$$

- To compute a triple integral over $\mathcal R$ one reduces to iterated integrals.
- One reduces to
 - a single integral of a double integral
 - or double integral of a single integral.
- Single integral of a double integral: decomposition into slices.
 - Project the body on an axis.
 - Look at 2D slices perpendicular to that axis (CT-scan).

$$\iiint_{\mathcal{R}} f(P) dV = \int_{\text{location of slice}} \left(\iint_{\text{slice}} f(P) dA \right) dh$$

- Double integral of a single integral: decomposition into rods.
 - Project the body on a plane.
 - Look at 1D slices perpendicular to that plane (rods).

$$\iiint_{\mathcal{R}} f(P) dV = \iint_{\text{location of rod}} \left(\int_{\text{rod}} f(P) dh \right) dA$$

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .
- Coord. system: rotation axis = z-axis, x, y axes along box sides.

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .
- Coord. system: rotation axis = z-axis, x, y axes along box sides.

$$I = \iiint_{\mathcal{R}} \rho \operatorname{dist}^2(P, L) dV = \iiint_{\mathcal{R}} \rho(x^2 + y^2) dx dy dz$$
.

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .
- Coord. system: rotation axis = z-axis, x, y axes along box sides.

$$I = \iiint_{\mathcal{R}} \rho \operatorname{dist}^2(P, L) dV = \iiint_{\mathcal{R}} \rho(x^2 + y^2) dx dy dz$$
.

- Decompose into slices as follows.
 - Project \mathcal{R} onto the z-axis to get segment from z = -c to z = c.

$$\iiint_{\mathcal{R}} \rho(x^2+y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{z=-c}^{z=c} \left(\iint_{S_z} \rho(x^2+y^2) \, \mathrm{d}x \mathrm{d}y \right) \mathrm{d}z$$

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .
- Coord. system: rotation axis = z-axis, x, y axes along box sides.

$$I = \iiint_{\mathcal{R}} \rho \operatorname{dist}^2(P, L) dV = \iiint_{\mathcal{R}} \rho(x^2 + y^2) dx dy dz$$
.

- Decompose into slices as follows.
 - Project \mathcal{R} onto the z-axis to get segment from z = -c to z = c.

$$\iiint_{\mathcal{R}} \rho(x^2 + y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{z=-c}^{z=c} \left(\iint_{S_z} \rho(x^2 + y^2) \, \mathrm{d}x \mathrm{d}y \right) \mathrm{d}z$$

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .
- Coord. system: rotation axis = z-axis, x, y axes along box sides.

$$I = \iiint_{\mathcal{R}} \rho \operatorname{dist}^2(P, L) dV = \iiint_{\mathcal{R}} \rho(x^2 + y^2) dx dy dz$$
.

- Decompose into slices as follows.
 - Project \mathcal{R} onto the z-axis to get segment from z = -c to z = c.

$$\iiint_{\mathcal{R}} \rho(x^2+y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{z=-c}^{z=c} \left(\iint_{S_z} \rho(x^2+y^2) \, \mathrm{d}x \mathrm{d}y \right) \mathrm{d}z$$

• For a fixed z, the slice S_z is: $-a \le x \le a$, $-b \le y \le b$.

$$I_{L} = \int_{z=-c}^{z=c} \left(\int_{x=-a}^{x=a} \left(\int_{y=-b}^{y=b} \rho(x^{2} + y^{2}) dy \right) dx \right) dz$$

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ .
- Coord. system: rotation axis = z-axis, x, y axes along box sides.

$$I = \iiint_{\mathcal{R}} \rho \operatorname{dist}^2(P, L) dV = \iiint_{\mathcal{R}} \rho(x^2 + y^2) dx dy dz$$
.

- Decompose into slices as follows.
 - Project \mathcal{R} onto the z-axis to get segment from z = -c to z = c.

$$\iiint_{\mathcal{R}} \rho(x^2+y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{z=-c}^{z=c} \left(\iint_{S_z} \rho(x^2+y^2) \, \mathrm{d}x \mathrm{d}y \right) \mathrm{d}z$$

• For a fixed z, the slice S_z is: $-a \le x \le a$, $-b \le y \le b$.

$$I_{L} = \int_{z=-c}^{z=c} \left(\int_{x=-a}^{x=a} \left(\int_{y=-b}^{y=b} \rho(x^{2} + y^{2}) dy \right) dx \right) dz =$$
?

Example: Moment of Inertia

- Problem: compute the moment of inertia I
 - of a rectangular box with sides 2a, 2b, and 2c
 - rotating about axis *L* through center that is perpendicular to a face.
 - The box has constant density ρ . Therefore it's mass is $m = 8\rho abc$.
- Coord. system: rotation axis = z-axis, x, y axes along box sides.

$$I = \iiint_{\mathcal{R}} \rho \, \mathrm{dist}^2(P,L) \mathrm{d}V = \iiint_{\mathcal{R}} \rho(x^2 + y^2) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z \; .$$

- Decompose into slices as follows.
 - Project \mathcal{R} onto the z-axis to get segment from z = -c to z = c.

$$\iiint_{\mathcal{R}} \rho(x^2+y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{z=-c}^{z=c} \left(\iint_{S_z} \rho(x^2+y^2) \, \mathrm{d}x \mathrm{d}y \right) \mathrm{d}z$$

• For a fixed z, the slice S_z is: $-a \le x \le a$, $-b \le y \le b$.

$$I_{L} = \int_{z=-c}^{z=c} \left(\int_{x=-a}^{x=a} \left(\int_{y=-b}^{y=b} \rho(x^{2} + y^{2}) dy \right) dx \right) dz = \frac{m(a^{2} + b^{2})}{3}.$$

Compute the volume of the region \mathcal{R} bounded by x + 2y + z = 2, x = 2y, x = 0, z = 0.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x + 2y + z = 2$, $x = 2y$, $x = 0$, $z = 0$. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is ?

Compute the volume of the region \mathcal{R} bounded by x + 2y + z = 2, x = 2y, x = 0, z = 0. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

 \mathcal{R} is ?

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is ?

Compute the volume of the region \mathcal{R} bounded by x + 2y + z = 2, x = 2y, x = 0, z = 0. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

 \mathcal{R} is ?

Compute the volume of the region \mathcal{R} bounded by x + 2y + z = 2, x = 2y, x = 0, z = 0. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0, 0, 0), (0, 1, 0), (0, 0, 2), and $(1, \frac{1}{2}, 0)$.

Project \mathcal{R} onto the z-axis to get segment from z = 0 to z = 2.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

Project \mathcal{R} onto the z-axis to get segment from z=0 to z=2. Fix a value for z to get the slice S_z ?

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2, x=2y, x=0, z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

Project \mathcal{R} onto the z-axis to get segment from z=0 to z=2. Fix a value for z to get the slice S_z shown in the picture.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x + 2y + z = 2$, $x = 2y$, $x = 0$, $z = 0$. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

Project \mathcal{R} onto the z-axis to get segment from z=0 to z=2. Fix a value for z to get the slice S_z shown in the picture.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x + 2y + z = 2$, $x = 2y$, $x = 0$, $z = 0$. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

Project \mathcal{R} onto the z-axis to get segment from z=0 to z=2. Fix a value for z to get the slice S_z shown in the picture.

Compute the volume of the region \mathcal{R} bounded by x + 2y + z = 2, x = 2y, x = 0, z = 0. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

Project \mathcal{R} onto the z-axis to get segment from z=0 to z=2. Fix a value for z to get the slice S_z shown in the picture.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x + 2y + z = 2$, $x = 2y$, $x = 0$, $z = 0$. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0, 0, 0), (0, 1, 0), (0, 0, 2), and $(1, \frac{1}{2}, 0)$.

Project \mathcal{R} onto the z-axis to get segment from z=0 to z=2. Fix a value for z to get the slice S_z shown in the picture.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

Project \mathcal{R} onto the z-axis to get segment from z=0 to z=2. Fix a value for z to get the slice S_z shown in the picture.

$$vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \int_{z=0}^{z=2} \left(\iint_{S_z} 1 \cdot dx dy \right) dz$$

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

Project \mathcal{R} onto the z-axis to get segment from z=0 to z=2. Fix a value for z to get the slice S_z shown in the picture.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \int_{z=0}^{z=2} \left(\iint_{S_z} 1 \cdot dx dy \right) dz$$

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \int_{z=0}^{z=z} \left(\iint_{S_z} 1 \cdot dx dy \right) dz$$

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \int_{z=0}^{z=z} \left(\iint_{S_z} 1 \cdot dx dy \right) dz$$
Project S_z onto x -axis to get segment from $x = 0$ to $x = 1 - \frac{z}{2}$.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \int_{z=0}^{z=z} \left(\iint_{S_z} 1 \cdot dx dy \right) dz$$
Project S_z onto x -axis to get segment from $x = 0$ to $x = 1 - \frac{z}{2}$.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0, 0, 0), (0, 1, 0), (0, 0, 2), and $(1, \frac{1}{2}, 0)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \int_{z=0}^{z=2} \left(\iint_{\mathcal{S}_z} 1 \cdot dx dy \right) dz$$
Project S_z onto x -axis to get segment from $x = 0$ to $x = 1 - \frac{z}{2}$. Fix $x \in [0, 1 - \frac{z}{2}]$.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0, 0, 0), (0, 1, 0), (0, 0, 2), and $(1, \frac{1}{2}, 0)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \operatorname{d}V = \int_{z=0}^{z=z} \left(\iint_{S_z} 1 \cdot \operatorname{d}x \operatorname{d}y \right) \operatorname{d}z$$
Project S_z onto x -axis to get segment from $x = 0$ to $x = 1 - \frac{z}{2}$. Fix $x \in [0, 1 - \frac{z}{2}]$. Vertical slice: segment from $y = ?$ to $y = ?$

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0, 0, 0), (0, 1, 0), (0, 0, 2), and $(1, \frac{1}{2}, 0)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \operatorname{d}V = \int_{z=0}^{z=z} \left(\iint_{S_z} 1 \cdot \operatorname{d}x \operatorname{d}y \right) \operatorname{d}z$$

$$\operatorname{Project} S_z \text{ onto } x\text{-axis to get segment from } x = 0 \text{ to } x = 1 - \frac{z}{2}. \text{ Fix } x \in [0, 1 - \frac{z}{2}]. \text{ Vertical slice: segment from } y = \frac{x}{2} \text{ to } y = 1 - \frac{z}{2} - \frac{x}{2}.$$

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x + 2y + z = 2$, $x = 2y$, $x = 0$, $z = 0$. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \operatorname{d}V = \int_{z=0}^{z=z} \left(\iint_{S_z} 1 \cdot \operatorname{d}x \operatorname{d}y \right) \operatorname{d}z$$
 Project S_z onto x -axis to get segment from $x=0$ to $x=1-\frac{z}{2}$. Fix $x \in [0,1-\frac{z}{2}]$. Vertical slice: segment from $y=\frac{x}{2}$ to $y=1-\frac{z}{2}-\frac{x}{2}$.
$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \operatorname{d}V = \int_{z=0}^{z=2} \left(\int_{x=0}^{x=1-\frac{z}{2}} \left(\int_{y=\frac{x}{2}}^{y=1-\frac{z}{2}-\frac{x}{2}} 1 \cdot \operatorname{d}y \right) \operatorname{d}x \right) \operatorname{d}z.$$

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \operatorname{d}V = \int_{z=0}^{z=2} \left(\iint_{S_z} 1 \cdot \operatorname{d}x \operatorname{d}y \right) \operatorname{d}z$$
 Project S_z onto x -axis to get segment from $x=0$ to $x=1-\frac{z}{2}$. Fix $x \in [0,1-\frac{z}{2}]$. Vertical slice: segment from $y=\frac{x}{2}$ to $y=1-\frac{z}{2}-\frac{x}{2}$.
$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \operatorname{d}V = \int_{z=0}^{z=2} \left(\int_{x=0}^{x=1-\frac{z}{2}} \left(\int_{y=\frac{x}{2}}^{y=1-\frac{z}{2}-\frac{x}{2}} 1 \cdot \operatorname{d}y \right) \operatorname{d}x \right) \operatorname{d}z.$$

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x + 2y + z = 2$, $x = 2y$, $x = 0$, $z = 0$. $vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$\text{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \text{d} \, V = \int_{z=0}^{z=2} \left(\iint_{S_z} 1 \cdot \text{d} x \text{d} y \right) \text{d} z$$
 Project S_z onto x -axis to get segment from $x = 0$ to $x = 1 - \frac{z}{2}$. Fix $x \in [0, 1 - \frac{z}{2}]$. Vertical slice: segment from $y = \frac{x}{2}$ to $y = 1 - \frac{z}{2} - \frac{x}{2}$.
$$\text{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \text{d} \, V = \int_{z=0}^{z=2} \left(\int_{x=0}^{x=1-\frac{z}{2}} \left(\int_{y=\frac{x}{2}}^{y=1-\frac{z}{2}-\frac{x}{2}} 1 \cdot \text{d} y \right) \text{d} x \right) \text{d} z.$$

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$.

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$\text{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \text{d} \, V = \int_{z=0}^{z=2} \left(\iint_{S_z} 1 \cdot \text{d} x \text{d} y \right) \text{d} z$$
 Project S_z onto x -axis to get segment from $x = 0$ to $x = 1 - \frac{z}{2}$. Fix $x \in [0, 1 - \frac{z}{2}]$. Vertical slice: segment from $y = \frac{x}{2}$ to $y = 1 - \frac{z}{2} - \frac{x}{2}$.
$$\text{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \text{d} \, V = \int_{z=0}^{z=2} \left(\int_{x=0}^{x=1-\frac{z}{2}} \left(\int_{y=\frac{x}{2}}^{y=1-\frac{z}{2}-\frac{x}{2}} 1 \cdot \text{d} y \right) \text{d} x \right) \text{d} z.$$

Compute the volume of the region \mathcal{R} bounded by $x+2y+z=2, \ x=2y, \ x=0, \ z=0.$ $\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \mathrm{d}V$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$$

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2$, $x=2y$, $x=0$, $z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$\mathsf{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \mathsf{d}V$$

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2, \ x=2y, \ x=0, \ z=0.$
$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \mathrm{d}V$$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

Project the region onto the xy-plane to get triangle D with vertices and ?

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV$$

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2, \ x=2y, \ x=0, \ z=0.$
$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot \mathrm{d}V$$

 \mathcal{R} is a tetrahedron with vertices at (0, 0, 0), (0, 1, 0), (0, 0, 2), and $(1, \frac{1}{2}, 0)$.

Project the region onto the xy-plane to get triangle D with vertices (0,0,0), (0,1,0) and $(1,\frac{1}{2},0)$.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2, x=2y, x=0, z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0, 0, 0), (0, 1, 0), (0, 0, 2), and $(1, \frac{1}{2}, 0)$.

$$vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{?}^{?} 1 \cdot dz \right) dxdy$$

Project the region onto the xy-plane to get triangle D with vertices (0,0,0), (0,1,0) and $(1,\frac{1}{2},0)$. Fix $(x,y) \in D$; the vertical rod is segment with endpoints z = ? and z = ?

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2, x=2y, x=0, z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dxdy$$

Project the region onto the xy-plane to get triangle D with vertices (0,0,0), (0,1,0) and $(1,\frac{1}{2},0)$. Fix $(x,y) \in D$; the vertical rod is segment with endpoints z = 0 and z = 2 - x - 2y.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2, x=2y, x=0, z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0, 0, 0), (0, 1, 0), (0, 0, 2), and $(1, \frac{1}{2}, 0)$.

$$vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dxdy$$
$$= \iint_{D} (2-x-2y) dxdy$$

Project the region onto the xy-plane to get triangle D with vertices (0,0,0), (0,1,0) and $(1,\frac{1}{2},0)$. Fix $(x,y) \in D$; the vertical rod is segment with endpoints z=0 and z=2-x-2y.

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dxdy$$
$$= \iint_{D} (2-x-2y) dxdy$$

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $(1,\frac{1}{2},0)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dxdy$$
$$= \iint_{D} (2-x-2y) dxdy$$

Project *D* on the x-axis to get segment from x = 0 to x = 1.

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $\left(1,\frac{1}{2},0\right)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dx dy$$
$$= \iint_{D} (2-x-2y) dx dy = \int_{x=0}^{x=1} \left(\int_{z=0}^{z=2-x-2y} (2-x-2y) dy \right) dx$$

Project *D* on the x-axis to get segment from x = 0 to x = 1.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2, x=2y, x=0, z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $\left(1,\frac{1}{2},0\right)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dx dy$$
$$= \iint_{D} (2-x-2y) dx dy = \int_{x=0}^{x=1} \left(\int_{z=0}^{z=2-x-2y} (2-x-2y) dy \right) dx$$

Project D on the x-axis to get segment from x = 0 to x = 1. Fix x in that range; the slice is the segment from y = ? to y = ?

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2, x=2y, x=0, z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $\left(1,\frac{1}{2},0\right)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dx dy$$
$$= \iint_{D} (2-x-2y) dx dy = \int_{x=0}^{x=1} \left(\int_{y=\frac{x}{2}}^{y=1-\frac{x}{2}} (2-x-2y) dy \right) dx$$

Project *D* on the *x*-axis to get segment from x=0 to x=1. Fix *x* in that range; the slice is the segment from $y=\frac{x}{2}$ to $y=\frac{1}{2}$.

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $\left(1,\frac{1}{2},0\right)$.

$$\operatorname{vol}(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dx dy$$

$$= \iint_{D} (2-x-2y) dx dy = \int_{x=0}^{x=1} \left(\int_{y=\frac{x}{2}}^{y=1-\frac{x}{2}} (2-x-2y) dy \right) dx$$

$$= \int_{0}^{1} \left(\left[? \right]_{y=\frac{x}{2}}^{y=1-\frac{x}{2}} \right) dx$$

Project D on the x-axis to get segment from x=0 to x=1. Fix x in that range; the slice is the segment from $y=\frac{x}{2}$ to $y=1-\frac{x}{2}$.

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $\left(1,\frac{1}{2},0\right)$.

$$vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dxdy$$

$$= \iint_{D} (2-x-2y) dxdy = \int_{x=0}^{x=1} \left(\int_{y=\frac{x}{2}}^{y=1-\frac{x}{2}} (2-x-2y) dy \right) dx$$

$$= \int_{0}^{1} \left(\left[(2-x)y - y^{2} \right]_{y=\frac{x}{2}}^{y=1-\frac{x}{2}} \right) dx$$

Project *D* on the *x*-axis to get segment from x = 0 to x = 1. Fix *x* in that range; the slice is the segment from $y = \frac{x}{2}$ to $y = 1 - \frac{x}{2}$.

Compute the volume of the region \mathcal{R} bounded by x+2y+z=2, x=2y, x=0, z=0. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $\left(1,\frac{1}{2},0\right)$.

$$vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dxdy$$

$$= \iint_{D} (2-x-2y) dxdy = \int_{x=0}^{x=1} \left(\int_{y=\frac{x}{2}}^{y=1-\frac{x}{2}} (2-x-2y) dy \right) dx$$

$$= \int_{0}^{1} \left(\left[(2-x)y - y^{2} \right]_{y=\frac{x}{2}}^{y=1-\frac{x}{2}} \right) dx = ?$$

Project *D* on the *x*-axis to get segment from x = 0 to x = 1. Fix *x* in that range; the slice is the segment from $y = \frac{x}{2}$ to $y = 1 - \frac{x}{2}$.

Compute the volume of the region
$$\mathcal{R}$$
 bounded by $x+2y+z=2, x=2y, x=0, z=0$. $vol(\mathcal{R})=\iiint_{\mathcal{R}}1\cdot dV$

 \mathcal{R} is a tetrahedron with vertices at (0,0,0), (0,1,0), (0,0,2), and $\left(1,\frac{1}{2},0\right)$.

$$vol(\mathcal{R}) = \iiint_{\mathcal{R}} 1 \cdot dV = \iint_{D} \left(\int_{z=0}^{z=2-x-2y} 1 \cdot dz \right) dxdy$$

$$= \iint_{D} (2-x-2y) dxdy = \int_{x=0}^{x=1} \left(\int_{y=\frac{x}{2}}^{y=1-\frac{x}{2}} (2-x-2y) dy \right) dx$$

$$= \int_{0}^{1} \left(\left[(2-x)y - y^{2} \right]_{y=\frac{x}{2}}^{y=1-\frac{x}{2}} \right) dx = \int_{0}^{1} (x^{2}-2x+1) dx = \frac{1}{3}.$$

Project D on the x-axis to get segment from x = 0 to x = 1. Fix x in that range; the slice is the segment from $y = \frac{x}{2}$ to $y = 1 - \frac{x}{2}$.