UFCG/CCT/Unidade Acadêmica de Matemática e Estatística	NOTA:
DISCIPLINA: Álgebra Linear I	PERÍODO: 2022.1
PROFESSOR:	TURNO: MANHÃ
ALUNO(A):	DATA: 18/10/2022
Curso de Graduação: $N^{\underline{o}}$ da matrícula:	

1º ESTÁGIO

Recomendações: 1)Prova com o grampo violado não será corrigida. 2)Use apenas o papel da prova. 3)Não apague as contas. 4)Desligue o(s) seu(s) celular(es). 5)Devolva a mesma quantidade de folhas que recebeu.

1. Determine:

- a) $(1,0 \ ponto)$ a matriz $C=[c_{ij}]_{3\times 3}$ tal que $c_{ij}=i^2+j^2$, e, se possível, classifique em um tipo especial de matriz.
- **b)** $(1,0 \ ponto)$ os valores de $x, \ y \ z \ e \ w$ na igualdade de matrizes abaixo:

$$\begin{pmatrix} x+2 & 2y-6 \\ z-3 & x+y \\ w+1 & 2w \end{pmatrix} = \begin{pmatrix} 2x+2y & -2 \\ -z+w & 2-y \\ x+2z & x \end{pmatrix}.$$

- c) $(1,0 \ ponto) \ x,y \in \mathbb{R}$, de modo que AB = BA onde $A = \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 4 & x \\ y & 3 \end{bmatrix}$. d) $(1,0 \ ponto) \ k \in \mathbb{R}$, de modo que o sistema de equações lineares $\begin{cases} kx + 2y = 6 \\ 3x y = -2 \\ x + y = 0 \end{cases}$ admita solução.
- **2.** $(1,5 \ pontos)$ Calcule $det \begin{bmatrix} 2 & 3 & 1 & -2 \\ 5 & 3 & 1 & 4 \\ 0 & 1 & 2 & 2 \\ 3 & -1 & -2 & 4 \end{bmatrix}$. Utilize o Desenvolvimento de Laplace.
- **3.** Dadas as matrizes $A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ e $B = \begin{bmatrix} -2 \\ 2 \\ 2 \end{bmatrix}$, utilizando <u>operações elementares</u>:

determine: a) $(1,5 \ pontos)A^{-1}$. b) $(1,0 \ ponto)$ a solução do sistema de equações lineares AX = B.

- 4. Considere $A \in B$ matrizes reais 2×2 arbitrárias. Responda V (verdadeiro) ou F(falso), justificando a sua resposta.
 - a)(0, 5 ponto) AB = BA.
- b)(0, 5 ponto) $\det(A + B) = \det A + \det B$.
- $c)(0,5 \ ponto) (AB)^{-1} = A^{-1}B^{-1}$. $d)(0,5 \ ponto) AA^{T}$ é uma matriz simétrica.

Boa Sorte! Boa Prova!