1 Base, et base orthonormé

Définition 1: Base du plan

Soit \vec{u} et \vec{v} deux vecteurs non colinéaires non nuls. Alors \vec{u} et \vec{v} forment une base vectorielle du plan.

Définition 2: Décomposition dans une base

Soit une base vectorielle (\vec{u}, \vec{v}) . On dit qu'un vecteur \vec{w} se **décompose** dans cette base s'il existe deux nombres a et b tels que :

$$\vec{w} = a\vec{u} + b\vec{v}$$

Figure 1 – Un exemple de base donné par (\vec{u}, \vec{v}) . On a décomposé le vecteur \vec{w} .

Proposition 1

Tout vecteur \vec{w} peut se décomposer de manière unique dans une base (\vec{u}, \vec{v}) donnée.

Définition 3: Coordonnées

On appelle coordonnée du vecteur \vec{w} dans la base (\vec{u}, \vec{v}) les nombres a et b tels que $\vec{w} = a\vec{u} + b\vec{v}$ et on écrira $\vec{w} = (a; b)$, ou bien $\vec{w} =$

Exemple 1

Dans la situation précédente, on a $\vec{w} = (0.7; 1.5)$ dans la base (\vec{u}, \vec{v})

Définition 4: Base orthonormé

Une base orthonormée (\vec{i}, \vec{j}) est une base telle

- La norme de \vec{i} et \vec{j} vaut 1. Les directions de \vec{i} et \vec{j} sont perpendicu-

Exemple 2

Comment se décompose \vec{u} dans la base (\vec{i}, \vec{j}) ?

2 Coordonnées d'un vecteur dans 3 Repère orthonormé une base

Définition 5: Coordonnées d'un vecteur dans un base

Si on a:

$$\vec{u} = x\vec{i} + y\vec{j} \quad x,y \in \mathbb{R}$$

Alors, on dira que les coordonnées du vecteurs \vec{u} dans la base (\vec{i}, \vec{j}) , sont $\vec{u} = \begin{pmatrix} x \\ x \end{pmatrix}$

Proposition 2

Deux vecteurs qui admettent les même coordonnées dans une base sont égaux.

Proposition 3

Les coordonnées du vecteur somme de deux vecteurs est donné par la somme des coordonnées.

Proposition 4

Le produit par un scalaire multiplie chacune des coordonnées par ce scalaire.

Proposition 5

Dans une base orthonormée, la norme d'un vecteur $\vec{u} = a\vec{i} + b\vec{j}$ est donnée par :

$$\vec{u} = \sqrt{a^2 + b^2}$$

Définition 6: Repère orthonormé

On appelle repère orthonormé la donnée d'un point O que l'on appelle l'origine et d'une base orthonormée (i; j).

Pour tout x, y des nombres réels, nous avons :

$$M = (x;y) \iff \overrightarrow{OM} = \left(\begin{array}{c} x \\ y \end{array} \right)$$

Proposition 6

Soit $A = (x_A; y_A)$ et $B = (x_B; y_B)$ deux points dans un repère orthonormé. Les coordonnées de \overrightarrow{AB} sont données par :

$$\overrightarrow{AB} = \left(\begin{array}{c} x_B - x_A \\ y_B - y_A \end{array}\right)$$

Proposition 7

Trois points A, B et C non confondus sont alignés si et seulement si deux vecteurs formés par deux points différents parmi A, B et C sont colinéaires.