东南大学 2008级研究生考试试卷(A)

课程名	称:	数1	直分析	课程组	扁号:	S000112	考试	历时:	150 分年	<u> </u>	核方式:	闭卷
院 (系)			学号			姓名	姓名		成绩			
	题	号	1	2	3	4	5	6	7	8	9	
	得:	分										

(注意: 本试卷共有 8 页 9 大题, 请考生检查自己的试卷.)

- 1. 填空 (每小题 3 分, 共 21 分)
 - 1) 为了提高数值计算精度,当近似值 x >> 1 时,应将 $\sqrt{x+1} \sqrt{x}$ 改写为 ______ 进行计算.

 - 3) 设 $A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$, 则 $\operatorname{Cond}(A)_2 =$ ______.
 - 4) 给定函数 $f(x) = x^5 + 1$, 则差商 f[0,1,1,1] =______.
 - 5) 求积分 $I(f) = \int_{-1}^{1} f(x)dx$ 近似值的梯形公式是 ______.
 - 6) 求解初值问题 $\left\{ \begin{array}{ll} y' + \sin(x+y) = 0, & 0 \leq x \leq \pi, \\ y(0) = 1 \end{array} \right.$ 的后退 Euler 公式是
 - 7) 设 A 是实对称矩阵,则求其主特征值及对应的特征向量的幂法 (归一化算法)是
- 2. $(9 \ fint 9)$ 给定方程 $e^x = 2 x$. 证明该方程存在唯一实根 x^* , 并用迭代法求 x^* 的近似值,精确到 3 位有效数字.

3. (10 分) 用列主元 Gauss 消去法求解线性方程组

$$\begin{bmatrix} 2 & 3 & -1 \\ -1 & 1 & 2 \\ -3 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 10 \end{bmatrix}$$

4. (10 分) 给定线性方程组 Ax=b, 这里 $A\in {\bf R}^{n\times n}$ 为非奇异矩阵, $b\in {\bf R}^n$, $x\in {\bf R}^n$. 设有下面的迭代格式

$$x^{(k+1)} = x^{(k)} + \omega \left(b - Ax^{(k)}\right), \quad k = 0, 1, 2, \dots,$$
 (1)

其中 $\omega \neq 0$ 为常数.

- 1) 证明: 如果迭代格式 (1) 收敛,则迭代序列 $\left\{x^{(k)}\right\}_{k=0}^{\infty}$ 收敛于方程 Ax=b 的解.
- 2) 设 n=2, $A=\begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$, 问 ω 取何值时迭代格式 (1) 收敛?

5. (10 分) 求一个函数 p(x), 使之满足下面的三个条件:

- 1) $p(x) \in C^1[0,2]$.
- 2) p(0) = f(0), p(1) = f(1), p(2) = f(2), p'(0) = f'(0).
- 3) p(x) 在 [0,1] 和 [1,2] 上均为 2 次多项式.

6. (10 分) 求函数 $f(x) = \ln x$ 在区间 [1,2] 上的 1 次最佳一致逼近多项式 $p_1(x) = c_0 + c_1 x$.

- 7. (10 分) 考虑积分 $I(f) = \int_0^3 \!\! f(x) \, dx$ 及对应的求积公式 $Q(f) = \frac{3}{4} f(0) + \frac{9}{4} f(2)$.
 - 1) 证明求积公式 Q(f) 是以 $x_0 = 0$, $x_1 = 1$, $x_2 = 2$ 为求积节点的插值型求积公式.
 - 2) 求求积公式 $I(f) \approx Q(f)$ 的代数精度.
 - 3) 设 $f(x) \in C^3[0,3]$, 求截断误差 I(f)-Q(f) 形如 $\alpha f^{(\beta)}(\xi)$ 的表达式,其中 $\xi \in (0,3)$, α,β 为常数.

8. (10分)给定常微分方程初值问题

$$\begin{cases} y' = f(x, y), & a \le x \le b, \\ y(a) = \eta. \end{cases}$$

取正整数 n, 记 $h = \frac{b-a}{n}$, $x_i = a + ih$, $i = 0, 1, 2, \dots, n$, $y_i \approx y(x_i)$, $1 \le i \le n$, $y_0 = \eta$.

1) 试应用数值积分公式导出求解上述初值问题的求解公式

$$\begin{cases} y_{i+1} = y_{i-1} + 2hf(x_i, y_i), & 0 \le i \le n - 1, \\ y_0 = \eta. \end{cases}$$
 (2)

2) 推导出公式(2)的局部截断误差表达式,并指出该公式是几步几阶公式.

9. (10分)给定边值问题

$$\begin{cases} -\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} + u = f(x, y), & (x, y) \in \Omega, \\ u(x, y) = \varphi(x, y), & (x, y) \in \partial\Omega, \end{cases}$$

其中 $\Omega = \{(x,y) \mid 0 < x < 1, \ 0 < y < 1\}, \ \partial\Omega$ 是 Ω 的边界. 取正整数 M, 记 h = 1/M, $x_i = ih(0 \le i \le M), \ y_j = jh(0 \le j \le M)$. 假设上述问题存在光滑解,试构造上述边值问题的一个差分格式,要求截断误差为 $O(h^2)$,并写出截断误差表达式.