A propos des Inégalités

Les exercices avec * sont à chercher à la maison.

Exercice 1* Inégalité de Cauchy

- 1. Montrer que pour tous x, y réels on a : $2xy < x^2 + y^2$.
- 2. En déduire que pour tous $a,b\geq 0$ on a : $\sqrt{ab}\leq \frac{a+b}{2}$. Déterminer le cas d'égalité.

Exercice 2 Inégalité de Bernoulli

Pour tout x > -1 et tout n dans \mathbb{N} , $(1+x)^n \ge 1 + nx$.

- 1. Montrer l'inégalité de Bernoulli par récurrence sur n.
- 2. Montrer l'inégalité de Bernoulli en utilisant la convexité de la fonction $x \mapsto (1+x)^n$ sur $[-1, +\infty[$.

Exercice 3* Montrer en utilisant la notion de convexité que pour tout x dans $[0, \frac{\pi}{2}]$ on a $\sin x \ge \frac{2}{\pi}x$.

Exercice 4 Montrer à l'aide du TAF que l'on a pour tout x dans $\mathbb{R} |\sin x| \leq |x|$.

Exercice 5

- 1. Montrer que pour tout x > -1 on a $\frac{x}{1+x} \le \ln(1+x) \le x$ On pourra utiliser le TAF pour la fonction $t \longmapsto \ln(1+t)$ entre 0 et x.
- 2. En déduire que pour tout $x \ge -n$ on a $\left(1 + \frac{x}{n}\right)^n \le e^x$.

Exercice 6* Montrer que pour tout x dans [0,1] et tout entier $n \geq 1$ on a

$$nx^{n-1} \le 1 + x + x^2 + \dots + x^{n-1} \le n$$

Donner un encadrement similaire lorsque $x \ge 1$.

Exercice 7 A l'aide de la formule de Taylor-Lagrange montrer les inégalités suivantes :

- Pour tout x dans $[0, \pi]$ on a $x \frac{x^3}{6} \le \sin x \le x \frac{x^3}{6} + \frac{x^5}{120}$.
- Pour tout x réel on a $|\cos x 1 + \frac{x^2}{2}| \le \frac{x^4}{24}$.
- Pour tout $x \ge 0$ et tout n dans \mathbb{N} on a $e^x \ge 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}$.

Exercice 8 Montrer que pour tout a > 0 on a $\frac{1}{2a} - \frac{1}{8a^3} < \sqrt{a^2 + 1} - a < \frac{1}{2a}$,

- par des transformations algébriques*.
- à l'aide de la formule de Taylor-Lagrange.

Théorème 1 (TAF) Si f est continue sur [a, b] et dérivable sur]a, b[alors il existe c dans]a, b[vérifiant

$$f(b) - f(a) = (b - a)f'(c)$$

Théorème 2 (Formule de Taylor-Lagrange) $Si\ f\ est\ n\ fois\ continument\ dérivable\ sur\ [a,b]\ et\ n+1\ fois\ dérivable\ sur\ [a,b]\ alors\ il\ existe\ c\ dans\ [a,b]\ vérifiant$

$$f(b) = f(a) + f'(a)(b-a) + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{(b-a)^{n+1}}{(n+1)!}f^{(n+1)}(c)$$

Définition 1 (convexité) Soit f une fonction continue sur [a,b]. On dit que f est convexe si et seulement $si \forall x, y \in [a,b]$, $\forall \theta \in [0,1] : f(\theta x + (1-\theta y)) \leq \theta f(x) + (1-\theta)f(y)$.

Théorème 3 (convexité) Considérons une fonction f continue sur [a,b], dérivable sur [a,b]. Alors

(i) f convexe \iff le graphe de f est au-dessus de toutes ses tangentes sur [a,b] (i.e. $\forall x,y \in [a,b]: f(y) \geq f(x) + f'(x)f(y-x)$),

(ii) si f est deux fois dérivable sur]a,b[, alors f convexe $\iff f''(x) \geq 0, \ \forall x \in]a,b[$.

Définition 2 Une fonction g est concave si la fonction opposée f = -g est convexe.

Augustin Louis Cauchy (1789-1857) mathématicien français

Bernoulli (Jacques (1654-1705), Jean (1667-1748), Daniel (1700-1782)(fils de Jean)) famille de physiciens et mathématiciens suisses

Brook Taylor (1685-1731) homme de sciences anglais

Joseph-Louis Lagrange (1736-1813) mathématicien, mécanicien et astronome italien.

Leonhard Euler (1707-1783) mathématicien et physicien suisse.