Econ/Math C103

Non-Cooperative Game Theory I:

Normal Form Games

Haluk Ergin

- 1. Overview
- 2. Knowledge
- 3. Normal form games
- 4. Dominant strategy equilibrium
- 5. Iterated elimination of strictly dominated strategies (IESDS)
- 6. Nash Equilibrium
- 7. Nash Equilibrium Applications
 - 1. Cournot quantity competition
 - 2. Commons problem

Non-cooperative Game Theory

How may a group of self-interested individuals behave if each of them is affected by the others' actions?

We need to specify

- Who are the players?
- What are the actions that each player can take?
- What is each player's payoff resulting from everybody's actions?

Prisoners' Dilemma

Player 2 Player 1	Cooperate	Defect
Cooperate	3,3	0,5
Defect	5,0	1,1

A Three Player Game

Player 1 chooses the row: T, B; Player 2 chooses the column: L, M, R; & Player 3 chooses the matrix: **M1, M2**. Payoffs:

		M 1				M2	
	L	M	R		L	M	R
T	3,0,2	2,1,1	1,0,3	Т	3,0,1	1,1,-1	0,2,3
В	0,0,3	1,1,1	0,3,0	В	0,1,3	1,1,2	3,0,0

Levels of interactive knowledge

E: an event or statement (Examples: E=Jim is wearing a white hat; E=it rains outside; E=John is rational;...)

Levels of interactive knowledge:

- 1. Each player knows E
- 2. Each player knows that each player knows E
- 3. Each player knows that each player knows that each player knows E

. . . .

E is **common knowledge** among players if these hold ad infinitum.

E=There is at least one black hat

Note: 1. Each person knows E, 2. Each person knows that each person knows E. However E is not common knowledge.

Common knowledge

E is common knowledge

Normal form games

A normal form game consists of:

- a set of players $N=\{1,2,...,n\}$
- a set of actions/strategies S_i for each i in N
- a vNM utility function:

 $u_i: S_1 \times S_2 \times ... \times S_n \rightarrow R$ for each i in N

S_i is also called the **pure strategies** of player i

Assumptions: -The game is common knowledge among the players.

-Players choose their actions simultaneously.

Frequently used notations

- A strategy of player i typically denoted by s_i in S_i
- Strategy profiles of all players:

$$S=S_1\times S_2\times ...\times S_n$$

with a typical member $s=(s_1,s_2,...,s_n)$ in S

• The strategy profile of all players except player i:

$$S_{-i} = S_1 \times ... \times S_{i-1} \times S_{i+1} \times ... \times S_n$$

with a typical member $s_{-i}=(s_1,...,s_{i-1},s_{i+1},...,s_n)$ in S_{-i}

How to play?

Player i is *rational* if she maximizes the expected value of u_i, given her knowledge and beliefs about how the others will play.

Prisoners' Dilemma

Player 2 Player 1	Cooperate	Defect
Cooperate	3,3	0,5
Defect	5,0	1,1

Dominant-strategy equilibrium

- A pure strategy s_i^* weakly dominates s_i if $u_i(s_i^*,s_{-i}) \ge u_i(s_i,s_{-i})$ for any s_{-i} in S_{-i} and the inequality is strict for some s_{-i} .
- A strategy s_i^* is a **dominant strategy** if s_i^* weakly dominates every other strategy s_i .
- A strategy profile s* is a **dominant-strategy equilibrium** if s_i* is a dominant strategy for each player i.

Second-price auction

- An object is auctioned to two bidders 1 and 2.
- The value of the object to bidder i is v_i . Utility of player i from not buying the object is 0, and from buying the object at price p is v_i -p.
- Each bidder i bids b_i without seeing the other's bid.
- The highest bidder gets the object and pays the other's bid (=second highest bid).
- If bids are the same, then one of the bidders is chosen with equal probability, he gets the object and pays $p=b_1=b_2$.

Proposition: It is a dominant strategy equilibrium for each player to bid her valuation.

Proof: Covered in class.

A 2x3 Game

Player 2 Player 1	Left	Middle	Right
Тор	2,0	0,1	1,2
Bottom	0,0	1,2	2,1

Randomization & mixed strategies

A **mixed strategy** σ_i of player i is a probability distribution over S_i .

Let $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$, when each player j in N plays the mixed strategy σ_j the expected utility of player i is:

$$U_{i}(\sigma) = \sum_{s=(s_{1}, s_{2},...,s_{n}) \text{ in } S} [\sigma_{1}(s_{1})\sigma_{2}(s_{2})...\sigma_{n}(s_{n})] u_{i}(s)$$

where $\sigma_j(s_j)$ is the probability that player j plays the pure strategy s_j . (when S_j is finite)

Example: Prisoners' Dilemma

If
$$\sigma_1(C)$$
=2/3, $\sigma_1(D)$ =1/3, $\sigma_2(C)$ = $\sigma_2(D)$ =1/2, then:

$$U_1(\sigma)$$
= $\sigma_1(C)\sigma_2(C)u_1(C,C) + \sigma_1(C)\sigma_2(D)u_1(C,D) + \sigma_1(D)\sigma_2(C)u_1(D,C) + \sigma_1(D)\sigma_2(D)u_1(D,D)$
=2

Pl 2 Pl 1	C	D
С	3,3	0,5
D	5,0	1,1

Strict domination

A mixed strategy σ_i^* strictly dominates a pure strategy s_i if

$$U_{i}(\sigma_{i}^{*}, s_{-i}) > U_{i}(s_{i}, s_{-i})$$
 for any s_{-i}

Player i is *rational* if she maximizes her expected utility, given her knowledge and beliefs about how the others will play.

RATIONALITY implies Never play a strictly dominated strategy.

Iterated Elimination of Strictly Dominated Strategies (IESDS)

Prediction relies on the common knowledge of rationality

A 3x3 game

Player 2			D
Player 1	L	m	R
T	3,0	1,1	0,3
M	1,0	0,10	1,0
В	0,3	1,1	3,0

Assume: Players are rational and 2 knows that 1 is rational.

1 is rational:

Player		N	D
Player 1	L	M	R
T	3,0	1,1	0,3
M	1,0	0,10	1,0
В	0,3	1,1	3,0

	L	M	R
T	3,0	1,1	0,3
В	0,3	1,1	3,0

2 knows 1 is rational and 2 is rational:

	L	R
T	3,0	0,3
В	0,3	3,0

Simplified price-competition

Firm 2 Firm 1	High	Medium	Low
High	6,6	0,10	0,8
Medium	10,0	5,5	0,8
Low	8,0	8,0	4,4

Summary

- If players are rational (and cautious), then they play the dominant-strategy equilibrium whenever it exists
 - But typically, it does not exist
- If it is common knowledge that players are rational, then they will play a strategy-profile that survives IESDS:
 - Typically, there are too many strategies that survive IESDS
- Next, a stronger assumption: The players are rational and they hold correct beliefs about the other players' strategies.

Nash Equilibrium in pure strategies

A pure strategy-profile $s^*=(s_1^*,...,s_n^*)$ is a Nash equilibrium (NE) if no player has an incentive to deviate when the others play according to s^* , i.e. if for any i and s_i in S_i :

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$$

Assumption: Players are rational and have correct conjectures about others' strategies.

Chicken

Two pure strategy NE:

Stag Hunt

Two pure strategy NE:

and

Matching Pennies

Player 2 Player 1 Heads		Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

No pure strategy NE.

Nash Equilibrium in mixed strategies

A mixed strategy-profile $\sigma^* = (\sigma_1^*, ..., \sigma_n^*)$ is a **Nash equilibrium** if no player has an incentive to deviate when the others randomize according to σ^* , i.e. if for any i and σ_i :

$$U_i(\sigma_i^*, \sigma_{-i}^*) \ge U_i(\sigma_i, \sigma_{-i}^*)$$

Assumption: Players are rational and have correct conjectures about others' strategies.

Best reply

A mixed strategy σ_i of player i is a **best reply** to σ_{-i} if it maximizes $U_i(\cdot, \sigma_{-i})$.

Notation: Let $B_i(\sigma_{-i})$ denote the set of best replies of player i to σ_{-i} .

Important Note: A mixed strategy profile $\sigma^* = (\sigma_1^*, ..., \sigma_n^*)$ is a Nash equilibrium if and only if for every player i, σ_i^* is a best reply to σ_{-i}^* .

Proposition: σ_i is a best reply to σ_{-i} iff for any pure strategy s_i played with positive probability (i.e. $\sigma_i(s_i)>0$), s_i gives i more expected payoff than any other pure strategy:

$$U_i(s_i, \sigma_{-i}) \ge U_i(s_i', \sigma_{-i})$$
 for any s_i' in S_i

Proof: $U_i(\sigma_i, \sigma_{-i}) = \sum_{s_i \text{ in } S_i} \sigma_i(s_i) U_i(s_i, \sigma_{-i})$, therefore σ_i is an optimal response to σ_{-i} if and only if each s_i with $\sigma_i(s_i) > 0$ is an optimal response.

In particular when σ_i is a best reply to σ_{-i} , i is *indifferent* between any two strategies that he plays with positive probability.

Nash equilibrium existence

Theorem: (John F. Nash, 1950) Every normal form game with finitely many pure strategies has a mixed strategy Nash equilibrium.

Example: (A game without a mixed strategy Nash equilibrium) Consider two players where each player i chooses an integer s_i . Player i receives 1 if $s_i > s_j$, and 0 otherwise $(j \neq i)$.

Stag Hunt

Mixed strategy equilibrium in the stag hunt game

Suppose that player 1 believes that player 2 plays Rabbit with probability β .

Player 1's payoff from playing Rabbit or Stag:

$$U_1(R,\beta)=2\beta +4(1-\beta)$$
; $U_1(S,\beta)=0\beta +6(1-\beta)$

$$U_1(R, \beta) > U_1(S, \beta), \beta > 1/2$$

α: the probability with which 1 plays Rabbit.

Best replies in the Stag-Hunt game

A 3x3 game

Player 2 Player 1	L L	m	R
T	3,0	1,1	0,3
M	1,0	0,10	1,0
В	0,3	1,1	3,0

Nash equilibria and IESDS, Fact I

Proposition 1: Let $\sigma^* = (\sigma_1^*, ..., \sigma_n^*)$ be a mixed strategy Nash equilibrium. Then any pure strategy profile s that comes about with positive probability under σ^* (i.e. $\sigma_i^*(s_i) > 0$ for any i) survives IESDS.

Proof: Covered in class.

Simplified price-competition

Firm 2 Firm 1	High	Medium	Low
High	6,6	0,10	0,8
Medium	10,0	5,5	0,8
Low	8,0	8,0	4,4

Nash equilibria and IESDS, Fact II

Proposition 2: If only one pure strategy profile s* survives IESDS, then s* is a Nash equilibrium of the game. Moreover, the game has no other (pure or mixed strategy) Nash equilibrium.

Proof: Covered in class.

Cournot duopoly

- $N = \{1,2\}$ two firms;
- Simultaneously, each firm i produces $q_i \ge 0$ units of a good at marginal cost c > 0,
- and sells the good at price $P(Q) = max\{0, a-Q\}$ a>c where $Q = q_1+q_2$.

Profits of firm i:

$$\pi_i(q_1,q_2) = q_i[P(q_1+q_2)-c] = \begin{cases} q_i[a-q_1-q_2-c] & \text{if } q_1+q_2 < a \\ -q_ic & \text{otherwise} \end{cases}$$

Cournot duopoly best replies

 $B_{i}(q_{j}) = \begin{cases} 0 & \text{if } q_{j} \ge a\text{-c} \\ (a\text{-}q_{j}\text{-c})/2 & \text{otherwise} \end{cases}$

Nash equilibrium:

$$q_1^* = (a - q_2^* - c)/2$$

$$q_2^* = (a - q_1^* - c)/2$$

imply:

$$q_1^* = q_2^* = (a-c)/3$$

IESDS in the Cournot duopoly

IESDS in the Cournot Oligopoly with n>2

Commons problem

- N = {1,2,...,n} players, each with unlimited money;
- Simultaneously, each player i contributes $x_i \ge 0$ to produce $y = x_1 + ... + x_n$ unit of some public good, yielding payoff

$$u_i(x_i,y) = y^{1/2} - x_i$$
.

Optional Additional Reading

- Chapters 1-4 of Osborne and Rubinstein.
- Chapter 7-8 of MWG