★ SVODENJE NA KONJUNKTIVNI OBLIK ★

- 1. Svođenjem na KNF ispitati da li su sledeće formule tautologije
 - a) $(p \Rightarrow q \land \neg q) \Rightarrow \neg p$
 - **b)** $p \wedge (q \vee \neg p) \wedge ((q \Rightarrow \neg p) \vee \neg q)$

b)
$$p \wedge (q \vee 7p) \wedge ((q = \gamma 7p) \vee 7q) = p \wedge (q \vee 7p) \wedge (7q \vee 7p) \vee 7q)$$

$$= p \wedge (q \wedge 7q) \vee 7p)$$

$$= p \wedge ((q \wedge 7q) \vee 7p)$$

$$= p \wedge (1 \vee 7p)$$

$$= p \wedge 7p$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$=$$

★ EKVIVALENCIJSKE TRANSFORMACIJE ★

2. Ekvivalencijskim transformacijama dokazati da su sledeće formule tautologije:

a)
$$(\neg p \Rightarrow q) \land (\neg p \Rightarrow \neg q) \Leftrightarrow p$$

b)
$$(p \lor q \Rightarrow r) \Leftrightarrow (p \Rightarrow r) \land (q \Rightarrow r)$$

$$\begin{array}{ll}
A & (Tp \Rightarrow 2) \wedge (Tp \Rightarrow 12) & \equiv (Tp \vee 2) \wedge (Tp \vee 12) \\
& \equiv (P \vee 2) \wedge (+ \vee 12) \\
& \equiv P \vee (2 \wedge 12) \\
& \equiv P \vee \bot \\
& \equiv P
\end{array}$$

b)
$$((p \vee g) =) \Gamma) = \Gamma(p \vee g) \vee \Gamma$$

 $= (\neg p \wedge \neg g) \vee \Gamma$
 $= (\neg p \vee r) \wedge (\neg g \vee r)$
 $= (p =) r) \wedge (g =) r)$

★ Kanoničke forme ★

3. Odrediti KKNF i KDNF za formulu

•
,

14	2	7	71	271.	p =) (2 v r)	75/9	F
0	Q	Ö	1	0	1	0	O
0	6	1 1	0	٨	٨	0	0
0	1	0	\ \ \	1	\	0	0
0	1	1	0	1	٨	6	0
9	0	0	٨	0	6	1	0
1	0	1	0	٨	\ \n	0	0
	1	Ö	(^	A	1	
1	1 1	1	ر (N	6	0	0

KONF: 0= PAQATE

KKNF: \$2=(pvgvr) \((pvgv7r) \((pv7gv7r) \((pv7gv7r) \) \\
\((1pvgvr) \(\((1pvgv7r) \((1pv7gv7r) \)

4. Odrediti formulu A tako da je formula

$$F: ((A \land q) \Rightarrow \neg p) \Rightarrow ((p \Rightarrow \neg q) \Rightarrow A)$$

tautologija.

$$A \wedge T = A$$
, $A \wedge L = L$
 $A \Rightarrow T = T$, $A \Rightarrow L = 1A$
 $T \Rightarrow A = A$, $L \Rightarrow A = T$

P) 2	17p	72	Ang	(Ang)=)7P	P=)72	(p=) 7g/=)A	F	A
0	0	1	٨	0	1	1	A	A	١٨
۵		1	0	A	1	9	A	A	٨
٨	0	0	٨	0	Λ .	٨	A	A	1
1	11	0	0	A	7 _A	σ	٨		0

Kada je III)=II(A), s operom de F troba da bude tautologija, forunda A hora liti tacha

* Vrednost formule F je 1 nezavisno od A, to formula A more ugeti prografina vrednost. Nexa je a toj valladja vrednost toruluke A jednaka O.

Možemo odreditý KKNF ili KDNF za A

KENF: 7PV72

KONF: (7PA2) V (7PAQ) V (PA72)

5. Ukoliko je moguće, odrediti formulu ${\cal A}$ tako da je formula

$$F: ((p \Rightarrow (\neg q \wedge r)) \Rightarrow A) \Rightarrow (A \wedge ((r \Rightarrow q) \wedge p))$$

tautologija.

p	12	lr	112	7211	p=)(1918)	(p=)(12^r))=1	r=72	(r=12)1p	A ~ (=)] A P	F	A
0	0	0	\ \	Ü	1	A	1	Ō	0	7A	0
0	0	1	^	1	٨	A	Ò	0	O	7A	0
0	٨	0	0	0	. 1	A	1	0	O	7A	0
9	1	1	0	0	, Λ	A	٨	0	0	ገ ለ	0
1	0 (0	1	0	O	A.	1	^	A	A	
1	0	٨	٨	4	1	A	0	0	0	7A	0
	1	2	0	0	0	1	^	٨	A	A	
	1 1	_1)	101	0 1	O	1 1	N	1 /	A	A /	M

EDNF: (PA7gA7r) V(PAQA7)

★ POTPUNI SKUPOVI VEZNIKA ★

6. Skup $\{\land, \lor, \Rightarrow, \Leftrightarrow\}$ nije potpun.

Pokatačemo dd svaka formula ·A(p1,···, Pn) u kpl se pga-vlynju somo veznici 1, v, =), (=) Euva ·tochost, tj. u svalo valuaciji v u kojej je u(p1)=···=rcp1,=1 važ; Is(t)=1.

- B.I.) Ako u formuli nema vernika onda je A=p
 pa vazi U(p)=1=> Iu(A)=v(p)=1
- T.H.) Prockp. da triterje vazi za sve fordule sa manje od k veznika (1, V, =), (=)
- T.K. Nota je A formula SA E veznika. Onda ond more loti oblika BNC, BVC, B=) C ili BE=1C.

 Podformule Bi C maju mank od le veznika, pa zd ujile vazi rnd. pretp, ti ako je sypn)=====v(pm)=1, anda je tu(B)=Tr(c)=1. Toda je i

 Tr(B) c)=1(B) c)=1r(B=) c)=Tr(B=) c)=1

Pretp. de je mogrite izraziti 7 preso veznika $\Lambda_1 \vee_1 = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_4 + \lambda_5 + \lambda_$

★ DPLL PROCEDURA ★

7. Primenom DPLL procedure ispitati zadovoljivost formule:

$$(\neg p \lor q \lor r) \land (\neg q \lor \neg r) \land p \land \neg q.$$

$$C_4 = 79$$

- 1. Duje prazan X
- 2. le aldu Fama se ne pojavljuju 71 i 7T X
- 3. Ni u jednoj Eranzi se ne pojavlynje I X
- 4. Nemam- praznu Kauzu X
- 5. Ni u jednoj zlanzi nema T niti eitærdt i vjegova negacija X
- 6. Czi Cy & jediniche blauze D[p+>T] = {7Tvgur,7gv7r, T,7g}
 - 1. D[PHT] mije prazan X
 - 2. { Dygvr, 1207r, T, 7g)
 - 3. fgvr, 7gv7r, 0,72}

 - 5. { gvr, 7gv7r, 7g)

- 6. D[p→T, g→L] = { LVr, 7LV7r, 7, L}

 - 1. × 2. ξΩνη τν7η, τζ
 - 3. { r, [], v7r, ()}

 - 5. frl
 - 1-5 x

G. D[P→T, q→L, r→T) = { □}

1-4 X

5. {}

1. Stup klanza je prazan -> DA

8. Primenom DPLL algoritma ispitati da li je formula tautologija

$$\uparrow$$
: $(p \lor \neg r) \Rightarrow (q \Rightarrow p)$

Posmatrano regación date formule i axo le oue Zadovoyur, polazna formula je proreciva odnosiyo A=>R = 7AVB nije tautologija 7F=7 ((pv7r)=)(g=)p) = 7 ((pv7r) => (7g vp)) =7 (フCpr)r)v(ない月) = 77 (pv7r) 17 (7gvp) = (pv7r) N (TIg N 7P) KNF = (pv7r) x g x 7p D= 5 pv7r, 2, 7p 5 1-5 X G. D[q →T] = { pv7r, t, 7p} 1-4 x 5. 9 pv7r 1 (10) 1-5 × 6. D[2HT, PH)] = { + v7r, 7+} 1. X 2. { L v 7 , T} 3. 27r, 674 4. x 5. {In} 1-5 x E. D[gH>T | PH> L | TH> L] = 2 7 LY

1. X

2. 5+3

3,4 ×

5, {}

1. prazan Skup blauta -> DA

sur D je zadovoljio

polazna formula mije fantologija

item[9.] Primenom DPLL algoritma ispitati zadovoljivost formule

Idredujeno KNF
$$\frac{\neg(\neg p \lor q) \land (\neg p \lor q)}{\mathsf{T}(\neg p \lor q) \land (\neg p \lor q)} \land (\neg p \lor q) = (\neg p \lor q) \land (\neg p \lor q)$$

$$\equiv \rho \land \neg q \land (\neg p \lor q)$$

2. $\{\top, \neg 2, \square \vee 2\}$ 3. $\{\bigcirc, \neg 2, 2\}$

5. 579 (9)

1-5 x

6. D[PH+, 2H++] = 27T, T]

DEPHT, gH-1]={71,+}

1. x 2. 3T1 14

1. X 2. X上门到(TV2)

3. {{},72,749} 4. NE!

=> farmula vije zadovoljiva!