Analysis

Gaotang Li

August 2, 2022

Contents

Ι	Foundations	2
1	Groups and Homomorphism 1.1 Basics 1.2 Subgroup 1.3 Cosets 1.4 Homomorphisms	3 3 4 4 5
2	Rings, Fields and Polynomials 2.1 Rings	7 7 8 8 9 9
3	3.1 Order Completeness	11 11 12
4		13
II	Convergence	14
5	5.1 Sequences	15 15 15 16
6	6.1 Norms	18 18 19 20 21
7	7.1 Convergence to $\pm \infty$	23 23 23
8	Completeness 8.1 Cauchy Sequences	

Part I Foundations

Groups and Homomorphism

1.1 Basics

Definition 1.1.1 (Group). A pair (G, \odot) consisting of a nonempty set G and an operation \odot is called a **group** if the following holds:

- G is closed under the operation \odot
- ⊙ is associative
- ullet \odot has an identity element e
- Each $g \in G$ has an **inverse** $h \in G$ such that $g \odot h = h \odot g = e$

Definition 1.1.2 (Abelian group). A group G, \odot is called **commutative** or **Abelian** if \odot is a commutative operation on G.

Remark. Let $G = (G, \odot)$

- (a) the identity element e is unique
- (b) Each $g \in G$ has a unique inverse which we denote by g^b . In particular $e^b = e$.
- (c) For each $g \in G$, we have $(g^b)^b = g$.
- (d) For arbitrary group elements g and h, $(g \odot h)^b = h^b \odot g^b$

Example. (a) Let $G := \{e\}$ be a one element set. Then $\{G, \odot\}$ is an Abelian group, the **trivial** group, with the (only possible) operation $e \odot e = e$.

- (b) Let X be a nonempty set, and S_X be the set of all bijections from X to itself. Then $S_X := (S_X, \circ)$ is a group with identity element id_X when \circ denotes the composition of functions. Further, the inverse function f^{-1} is the inverse of $f \in S_X$ in the group. When X is finite, the element of S_X are called permutations and S_X is called the **permutation group** of X.
- (c) Let X be a nonempty set and G, \odot a group. With the induced operation \odot , (G^X, \odot) is a group. The inverse of $f \in G^X$ is the function

$$f^b \colon X \to G, \ x \mapsto (f(x))^b$$

(d) Let G_1, \ldots, G_m be groups. Then $G_1 \times \cdots \times G_m$ with the operation defined analogously to (d) is a group called the **direct product** of G_1, \ldots, G_m .

1.2 Subgroup

Definition 1.2.1 (Subgroup). Let $G = (G, \odot)$ be a group and H a nonempty subset of G, if

- $H \odot H \subseteq H$
- $h^b \in H$ for all $h \in H$

then $H := (H, \odot)$ is itself a group and is called a **subgroup** of G.

Remark. Here we use the same symbol \odot for the restriction of the operation to H. Since H is nonempty, there is some $h \in H$ and so, from the two axioms above, $e = h^b \odot h$ is also in H.

Example. Let $G = (G, \odot)$ be a group.

- (a) The trivial subgroup $\{e\}$ and G itself are subgroups of G, the smallest and largest subgroups with respect to inclusion
- (b) If H_{α} , $\alpha \in A$ are subgroups of G, then $\bigcap_{\alpha} H_{\alpha}$ is also a subgroup of G.

1.3 Cosets

Definition 1.3.1 (Coset). Let N be a subgroup of G and $g \in G$. Then $g \odot N$ is the **left coset** and $N \odot g$ is the **right coset** of $g \in G$ with respect to N.

Remark. The definition of coset is related to the particular element.

Note. If we define

$$g \sim h \Leftrightarrow g \in h \odot N \tag{1.1}$$

Then \sim is an equivalence on G.

Proof. \sim is reflexive because $e \in N$ Let $g \in h \odot N$ and $h \in k \odot N$, then

$$q \in (k \odot N) \odot N = k \odot (N \odot N) = k \odot N$$

Let $g \in h \odot N$, then there is some $n \in N$ with $g = h \odot n$. Then it follows that $h = g \odot n^b \in N$.

Here 1.1 defines an equivalence relation on G. For the equivalence classes $[\cdot]$ with respect to \sim , we have

$$[g] = g \odot N, \ g \in G. \tag{1.2}$$

For this reason, we denote G/\sim by G/N, and call G/N the set of left cosets of G modulo N. Particularly, we have subgroups N such that

$$g \odot N = N \odot g, \quad g \in G.$$
 (1.3)

Such a subgroup 1.3 is called a **normal subgroup** of G. We call $g \odot N$ the **coset of** g **modulo** N since each left coset is a right coset and vice versa. We have a well-defined operation on G/N where N is the normal subgroup of G, induced from \odot , such that

$$(G/N) \times (G/N) \to G/N, \quad (g \odot N, h \odot N) \mapsto (g \odot h) \odot N$$
 (1.4)

Proposition 1.3.1. Let G be a group and N a normal subgroup of G. Then G/N with the induced

operation is a group, the quotient group of G modulo N.

Proof. It is easy to check that the operation is associative. Since $(e \odot N) \odot (g \odot N) = (e \odot g) \odot N = g \odot N$, the identity element of G/N is $N = e \odot N$. Also

$$(g^b \odot N) \odot (g \odot N) = (g^b \odot g) \odot N = N$$

Remark. (a) In notion of 1.1, [e] = N is the identity element of G/N and $[g]^b = [g^b]$ is the inverse of $[g] \in G/N$. We also have $[g] \odot h = [g \odot h], g, h \in G$.

(b) Any subgroup N of an Abelian group G is normal and so G/N is a group. Meanwhile, G/N is Abelian.

1.4 Homomorphisms

Definition 1.4.1 (Homomorphism). Let $G = (G, \odot)$ and $G' = (G', \circledast)$ be groups...A function $\varphi \colon G \to G'$ is called a **(group) homomorphism** if

$$\varphi(g \odot h) = \varphi(g) \circledast \varphi(h), \quad g, h \in G$$

Definition 1.4.2 (Endomorphism). A homomorphism from G to itself

Remark. (a) Let e and e' be the identity elements of G and G' respectively, and let $\varphi \colon G \to G'$ be a homomorphism. Then

$$\varphi(e) = e'$$
 and $(\varphi(g))^b = \varphi(g^b)$, $g \in G$

$$\begin{array}{l} \textbf{Proof.} \ e' \circledast \varphi \left(e \right) = \varphi \left(e \right) = \varphi \left(e \odot e \right) = \varphi \left(e \right) \circledast \varphi \left(e \right) \\ e' = \varphi \left(e \right) = \varphi \left(g^b \odot g \right) = \varphi \left(g^b \right) \circledast \varphi \left(g \right) \end{array}$$

(b) Let $\varphi \colon G \to G'$ be a homomorphism. The **kernel** of φ , $\ker(\varphi)$, defined by

$$\ker(\varphi) := \varphi^{-1}(e') = \{ g \in G : \varphi(g) = e' \}$$

is a normal subgroup of G.

Proof. First, try to prove $\ker(\varphi)$ is a subgroup of G. For all $g, h \in G$,

- $\varphi(g \odot h) = \varphi(g) \circledast \varphi(h) = e' \circledast e' = e'$
- $\varphi(g^b) = (\varphi(g))^b = (e')^b = e'$

Second, try to prove it is a normal subgroup. Let $h \in g \odot \ker(\varphi)$. Then we there is some $n \in G$ such that $\varphi(n) = e'$ and $h = g \odot n$. For $m := g \odot n \odot g^b$, we have

$$\varphi(m) = \varphi(g) \circledast \varphi(n) \circledast \varphi(g^b) = \varphi(g) \circledast \varphi(g^b) = e'$$

and hence $m \in \ker(\varphi)$. Since $m \odot g = g \odot m = h$, this implies that $h \in \ker(\varphi) \odot g$. So $\ker(\varphi) \odot g \subseteq g \odot \ker(\varphi)$. Similarly one can show $g \odot \ker(\varphi) \subset \ker(\varphi) \odot g$.

(c) Let $\varphi \colon G \to G'$ be a homomorphism and $N := \ker(\varphi)$. Then

$$g \odot N = \varphi^{-1}(\varphi(g)), \quad g \in G,$$

5

and so

$$g \sim h \Leftrightarrow \varphi(g) = \varphi(h), \quad g, h \in G,$$

where \sim denotes the equivalence relation 1.1.

- (d) A homomorphism is injective if and only if its kernel is trivial, that is, $\ker(\varphi) = \{e\}$
- (e) The image $\operatorname{im}(\varphi)$ of a homomorphism $\varphi \colon G \to G'$ is a subgroup of G'.

Example. (a) The constant function $G \to G'$, $g \mapsto e'$ is a homorphism, the **trivial** homomorphism.

- (b) The identity function $id_G: G \to G$ is an endomorphism.
- (c) Compositions of homomorphisms (endomorphisms) are homomorphisms (endomorphisms).
- (d) If $\varphi \colon G \to G'$ is a bijective homomorphism, then so is $\varphi^{-1} \colon G \to G'$

Definition 1.4.3 (Isomorphism). A homomorphism $\varphi \colon G \to G'$ is called a (**group**) **isomorphism** from G to G' if φ is bijective.

In this circumstance, we say that the groups G and G' are **isomorphic** and write $G \cong G'$.

Definition 1.4.4 (Automorphism). An isomorphism from G to itself.

Rings, Fields and Polynomials

2.1 Rings

Definition 2.1.1 (Ring). A triple $(R, +, \cdot)$ consisting of a nonempty set R and operations, addition + and multiplication \cdot , is called a ring if

- (R, +) is an Abelian group
- Multiplication is associative
- The distributive law holds:

$$(a+b)\cdot c = a\cdot c + b\cdot, \ c\cdot (a+b) = c\cdot a + c\cdot b, \ a,b,c\in R$$

Note. A ring is called **commutative** if multiplication is commutative.

If there is an identity element with respect to multiplication, then it is written as 1_R or simply 1, and is called the **unity** (or **multiplicative identity**) of R, and we say $(R, +, \cdot)$ is a **ring with unity**.

When the addition and multiplication operations are clear from context, we write simply R instead of $(R, +, \cdot)$.

Example. (a) The **trivial ring** has exactly one element 0 and is itself denoted by 0. A ring with more than one element is **nontrivial**. If R is a ring with unity, then it follows from $1_R \cdot a = a$ for each $a \in R$, that R is trivial if and only if $1_R == 0_R$.

- (b) Suppose R is a ring and S is a nonempty subset of R that satisfies the following:
 - S is a subgroup of (R, +).
 - $S \cdot S \subseteq S$

Then S itself is a ring, a **subring** of R, and R is called an **overring** of S. If R is commutative then so is S, but the converse is not true in general.

(c) Intersections of subrings are subrings.

Definition 2.1.2 (Ring Homomorphism). Let R and R' be rings. A (**ring**) homomorphism is a function $\varphi: R \to R'$ which is compatible with the ring operations, that is,

$$\varphi(a+b) = \varphi(a) + \varphi(b), \quad \varphi(ab) = \varphi(a)\varphi(b), \ a, b \in R$$
 (2.1)

Note. If, in addition, φ is bijective, then φ is called a (ring) isomorphism and R and R' are isomorphic.

A homomorphism φ from R to itself is a (ring) endomorphism. If φ is an isomorphism, then it is a (ring) automorphism.

Example. (a) A ring homomorphism $\varphi \colon R \to R'$ is, in particular, a group homomorphism from (R,+) to (R',+). The **kernel**, $\ker(\varphi)$, of φ is defined to be the kernel of this group homomorphism, that is,

$$\ker(\varphi) = \{ a \in R; \varphi(a) = 0 \} = \varphi^{-1}(0)$$

- (b) The **zero function** $R \to R'$, $a \mapsto 0_{R'}$ is a homomorphism with $\ker(\varphi) = R$.
- (c) Let R and R' be rings with unity and $\varphi: R \to R'$ a homomorphism. As (b) shows, it does not necessarily follow that $\varphi(1_R) = 1_{R'}$. This can be seen as a consequence of the fact that, with respect to multiplication, a ring is not a group.

2.2 Consequence of Ring Definitions

Definition 2.2.1 (The Binomial Theorem). Let a and b be two commuting elements (ab = ba) of a ring R with unity. Then, for all $n \in \mathbb{N}$,

$$(a+b)^b = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}$$

Lemma 2.2.1. For $m \in \mathbb{N}$ with $m \geq 2$, an element $\alpha = (\alpha_1 \dots \alpha_m) \in \mathbb{N}^m$ is called a **multi-index**. The **length** $|\alpha|$ of a multi-index $\alpha \in \mathbb{N}^m$ is defined by

$$|\alpha| \coloneqq \sum_{j=1}^{m} \alpha_j$$

Set also

$$\alpha! \coloneqq \prod_{j=1}^{m} (\alpha_j)!,$$

and define the **natural** (partial) order on \mathbb{N}^m by

$$\alpha \le \beta \rightleftarrows (\alpha_j \le \beta_j, \ 1 \le j \le m).$$

for $a = (a_1, \ldots, a_m) \in \mathbb{R}^m$ and $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}^m$

Definition 2.2.2 (The Multinomial Theorem). Let R be a commutative ring with unity. Then for all $m \geq 2$,

$$(\sum_{j=1}^{m} \alpha)^k = \sum_{|\alpha|=k} \frac{k!}{\alpha!} a^{\alpha}, \quad a = (a_1, \dots, a_m) \in \mathbb{R}^m, \quad k \in \mathbb{N}.$$

2.3 Field

Definition 2.3.1 (Field). K is a **field** when the following are satisfied:

- K is a commutative ring with unity.
- $0 \neq 1$
- $K^{\times} := K \setminus \{0\}$ is an Abelian group with respect to multiplication.

Note. The Abelian group $K^{\times} := (K^{\times}, \cdot)$ is called the **multiplicative group** of K.

Remark. Let K be a field.

- (a) For all $a \in K^{\times}$, $(a^{-1}) 1 = a$
- (b) A field has no zero divisors
- (c) Let $a \in K^{\times}$ and $a \in K^{\times}$ and $b \in K$. Then there is an unique $x \in K$ with ax = b, namely the **quotient** $\frac{b}{a} \coloneqq b/a \coloneqq ba^{-1}$
- (d) Let K' be a field and $\varphi \colon K \to K'$ a homomorphism with $\varphi \neq 0$. Then

$$\varphi(1_K) = 1_{K'}$$
 and $\varphi(a^{-1}) = \varphi(a)^{-1}$, $a \in K^{\times}$

2.4 Ordered Field

Definition 2.4.1 (Ordered Ring). A ring R with an ordered \leq is called an **ordered ring** if the following holds:

- (R, \leq) is totally ordered.
- $x < y \Rightarrow x + z < y + z, z \in R$
- $x, y > 0 \Rightarrow xy > 0$

Note. This leads to a series of basic arithmetic rules.

We may define absolute value function from $K \mapsto K$.

Proposition 2.4.1. Let K be an ordered field and $x, y, a, \epsilon \in K$ with $\epsilon > 0$.

- (i) $x = |x| \operatorname{sign}(x), |x| = x \operatorname{sign}(x)$
- (ii) $|x| = |-x|, x \le |x|$
- (iii) |xy| = |x||y|
- (iv) $|x| \ge 0$ and $(|x| = 0 \Leftrightarrow x = 0)$
- (v) $|x a| < \epsilon \leftrightarrow a \epsilon < x < a + \epsilon$
- (vi) $|x+y| \le |x| + |y|$ (triangular inequality)

Corollary 2.4.1 (reversed triangular inequality). In any ordered field K we have

$$|x - y| \ge ||x| - |y||, \quad x, y \in K.$$

2.5 Formal Power Series

Definition 2.5.1 (formal power series). Let R be a nontrivial ring with unity. On the set $R^{\mathbb{N}} = \operatorname{Funct}(\mathbb{N}, R)$ define addition by

$$(p+q)_n := p_n + q_n, \quad n \in \mathbb{N},$$

and multiplication by convolution,

$$(pq)_n := (p \cdot q)_n := \sum_{j=0}^n p_j q_{n-1} = p_0 q_n + p_1 q_{n-1} + \dots + p_n q_0$$

for $n \in \mathbb{N}$. Here p_n denotes the value of $p \in R^{\mathbb{N}}$ at $n \in \mathbb{N}$ and is called the n^{th} coefficient of p. In this situation an element $p \in R^{\mathbb{N}}$ is called a **formal power series over** R, and we set $R[X] := (R^{\mathbb{N}}, +, \cdot)$

Proposition 2.5.1. R[X] is a ring with unity, the **formal power series ring over** R. If R is commutative, then so is R[X]

2.6 Polynomials

Definition 2.6.1 (Polynomial). A **polynomial over** R is a formal power seres $p \in R[X]$ such that $\{n; p_n \neq 0\}$ is finite, in other words, $p_n = 0$ "almost everywhere".

The Real Numbers

Starting words: we seek an ordered **extension field** of \mathbb{Q} in which the equation $x^2 = a$ is solvable for each a > 0.

3.1 Order Completeness

We say a totally ordered set X is **order complete** (or X satisfies the **completeness axiom**) if every nonempty subset of X which is bounded above has a supremum.

Proposition 3.1.1. Let X be a totally ordered set. Then the followings are equivalent:

- (i) X is order complete.
- (ii) Every nonempty subset of X which is bounded below has an infimum.
- (iii) For all nonempty subsets A, B of X such that $a \leq b$ for all $(a, b) \in A \times B$, there is some $c \in X$ such that $a \leq c \leq b$ for all $(a, b) \in A \times B$ (**Dedekind cut property**)

Note. A relation \leq on X is a **partial order** on X if it is reflexive, transitive and **anti-symmetric**, that is,

$$(x \le y)(y \le x) \Rightarrow x = y$$

If \leq is a partial order on X, then the pair (X, \leq) is called a **partially ordered set**. If, in addition,

$$\forall x, y \in X \colon (x \le y) \lor (y \le x)$$

then \leq is called a **total order** on X and (X, \leq) is a **totally ordered set**.

Corollary 3.1.1. A totally ordered set is order complete if and only if every nonempty bounded subset has a supremum and an infimum.

Theorem 3.1.1 (Dedekind's Construction of the Real Numbers). There is, up to isomorphism, a unique order complete extension field \mathbb{R} of \mathbb{Q} . This extension is called **the field of real numbers**.

Proposition 3.1.2 (A Characterization of Supremum and Infimum). Followed from natural order defined by \mathbb{R} .

- (i) If $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$, then
 - (a) $x < \sup(A) \Leftrightarrow \exists a \in A \text{ such that } x < a$.
 - (b) $x < \inf(A) \Leftrightarrow \exists a \in A \text{ such that } x > a$.

(ii) Every subset A of \mathbb{R} has a supremum and an infimum in \mathbb{R}

3.2 The Consequence of Order Completeness

The Archimedean Property

Proposition 3.2.1 (Archimedes). \mathbb{N} is not bounded above in \mathbb{R} , that is, for each $x \in \mathbb{R}$ there is some $n \in \mathbb{N}$ such that n > x.

Corollary 3.2.1. Equivalent statements as the above proposition

- (a) Let $a \in \mathbb{R}$. If $0 \le a \le 1/n$ for all $n \in \mathbb{N}^{\times}$.
- (b) For each $a \in \mathbb{R}$ with a > 0 there is some $n \in \mathbb{N}^{\times}$ such that 1/n < a.

The Density of the Rational/Irrational Numbers in \mathbb{R}

Proposition 3.2.2. For all $a, b \in \mathbb{R}$ such that a < b, there is some $r \in \mathbb{Q}$ such that a < r < b.

Proposition 3.2.3 (n^{th} Roots). For all $a \in \mathbb{R}^+$ and $n \in \mathbb{N}^\times$, there is a unique $x \in \mathbb{R}^+$ such that $x^n = a$

Proposition 3.2.4. For all $a, b \in \mathbb{R}$ such that a < b, there is some $\xi \in \mathbb{R} \setminus \mathbb{Q}$ such that $a < \xi < b$.

Intervals

An **interval** is a subset J of \mathbb{R} such that

$$(x, y \in J, x < y) \Rightarrow (z \in J \text{for} x < z < y)$$

If J is a nonempty interval, then $\inf(J) \in \overline{\mathbb{R}}$ is the **left endpoint** and $\sup(J) \in \overline{\mathbb{R}}$ is the **right endpoint** of J. J is **closed on the left** if $a := \inf(J)$ is in J, and otherwise it is **open on the left**. The same applies to the other side.

An interval is **perfect** if it contains at least two points. It is **bounded** if both endpoints are in **R** and is **unbounded** otherwise. If J is a bounded interval, then the nonnegative number $|J| := \sup(J) - \inf(J)$ is called the **length** of J.

Vector Spaces, Affine Spaces and Algebras

4.1 Vector Spaces

Definition 4.1.1 (Vector Space). A vector space over the field K (or simply, a K-vector space) is a triple $(V, +, \cdot)$ consisting of a nonempty set V, an 'inner' operation + on V called addition, and an 'outer' operation

$$K \times V \to V$$
, $(\lambda, v) \mapsto \lambda \cdot v$,

called scalar multiplication which satisfy the following axioms:

- (V, +) is an Abelian group
- The distributive law holds:

$$\lambda \cdot (v+w) = \lambda \cdot v + \lambda \cdot w, (\lambda + u) \cdot v = \lambda \cdot v + \mu \cdot v, \quad \lambda, \mu \in K, \quad v, w \in V$$

• $\lambda \cdot (\mu v) = (\lambda \mu) \cdot v$, $1 \cdot v = v$ for $\lambda, \mu \in K, v \in V$

A vector space is called **real** if $K = \mathbb{R}$ and **complex** if $K = \mathbb{C}$.

Note (Linear Functions). Let V and W be vector spaces over K. Then a function $T: V \mapsto W$ is (K-)linear if

$$T(\lambda v + \mu w) = \lambda T(v) + \mu T(w), \quad \lambda, \mu \in K, \ v, w \in V$$

In this regard, a linear function is simply a function which is compatible with the vector space operations, in other words, it is a (**vector space**) **homomorphism**. The set of all linear functions from V to W is denoted by $\operatorname{Hom}(V,W)$ or $\operatorname{Hom}_K(V,W)$, and $\operatorname{End}(V) \coloneqq \operatorname{Hom}(V,V)$ is the set of all (vector space) **endomorphisms**. A bijective homomorphism $T \in \operatorname{Hom}(V,W)$ is a (vector space) **isomorphism**.

Remark. (a) A vector space homomorphism $T: V \mapsto W$ is, in particular, a group homomorphism $T: (V, +) \mapsto (W, +)$.

(b)

Part II Convergence

Convergence of Sequences

5.1 Sequences

Definition 5.1.1 (Sequence). Let X be a set. A **sequence** (in X) is simply a function from \mathbb{N} to X. If $\varphi \colon \mathbb{N} \mapsto X$ is a sequence, we write also

$$(x_n), (x_n)_{n \in \mathbb{N}} \text{ or } (x_0, x_1, x_2, \ldots)$$

for φ , where $x_n := \varphi(n)$ is the n^{th} term of the sequence $\varphi = (x_0, x_1, x_2, \ldots)$.

Remark. (a) A sequence (x_n) is different from its image $\{x_n; n \in \mathbb{N}\}$.

- (b) Let (x_n) be a sequence in X and E a property. Then we say E holds for **almost all** terms of (x_n) if there is some $m \in \mathbb{N}$ such that $E(x_n)$ is true for all $n \geq m$, that is, if E holds for all but finitely many of the x_n . If there is a subset $N \subseteq \mathbb{N}$ with $\text{Num}(N) = \infty$ and $E(x_n)$ is true for each $n \in N$ then E is true for **infinitely many** terms.
- (c) For $m \in \mathbb{N}^{\times}$, a function $\Phi \colon m + \mathbb{N} \mapsto X$ is also called a sequence in X.

5.2 Metric Space

Definition 5.2.1 (Metric Space). Let X be a set. A function $d: X \times X \mapsto \mathbb{R}^+$ is called a **metric** on X if the following hold:

- $d(x,y) = 0 \leftrightarrow x = y$.
- $d(x,y) = d(y,x), x, y \in X$ (symmetry).
- $d(x,y) \le d(x,z) + d(y,z), x,y,z \in X$ (triangle inequality).

Note. If d is a metric on X, then (X, d) is called a **metric space**. We call d(x, y) the **distance** between the **points** x and y in the metric space X.

In the metric space (X, d), for $a \in X$ and r > 0, the set

$$\mathbb{B}(a,r) := \mathbb{B}_X(a,r) := \{x \in X; d(a,x) < r\}$$

is called the **open ball** with center at a and radius r, while

$$\bar{\mathbb{B}}(a,r) := \bar{\mathbb{B}}_X(a,r) := \{x \in X; d(a,x) \le r\}$$

is called the **closed ball** with center at a and radius r.

Example. (a) \mathbb{K} is a metric space with the **natural metric**

$$\mathbb{K} \times \mathbb{K} \mapsto \mathbb{R}^+, \quad (x, y) \mapsto |x - y|$$

- (b) Let (X, d) be a metric space and Y a nonempty subset of X. Then the restriction of d to $Y \times Y$, $d_Y := d|Y \times Y$, is a metric on Y, the **induced metric**, and (Y, d_Y) is a metric space, a **metric subspace** of X.
- (c) Let X be a nonempty set. Then the function d(x,y) := 1 for $x \neq y$ and d(x,x) := 0 is a metric, called the **discrete metric** on X.
- (d) Let (X_j, d_j) , $1 \le j \le m$, be metric spaces and $X := X_1 \times \cdots \times X_m$. Then the function

$$d(x,y) \coloneqq \max_{1 \le j \le m} d_j(x_j, y_j)$$

for $x := (x_1, \ldots, x_m) \in X$ and $y := (y_1, \ldots, y_m) \in X$ is a metric on X called the **product metric**. The metric space X := (X, d) is called the **product of the metric spaces** (X_j, d_j)

Proposition 5.2.1. Let (X,d) be a metric space. Then for all $x,y,z\in X$ we have

$$d(x,y) \ge |d(x,z) - d(z,y)|$$

Note. A subset U of a metric space X is called a **neighborhood** of $a \in X$ if there is some r > 0 such that $\mathbb{B}(a,r) \subseteq U$. The **set of all neighborhoods of the point** a is denoted by $\mu(a)$, that is,

$$\mu(a) := \mu_X(a) := \{U \subseteq X; U \text{ is a neighborhood of } a\} \subseteq P(X)$$

Cluster Point

Definition 5.2.2 (Cluster Point). We call $a \in X$ a **cluster point** of (x_n) if every neighborhood of a contains infinitely many terms of the sequence.

Proposition 5.2.2. The following are equivalent:

- (i) a is a cluster point of (x_n) .
- (ii) For each $U \in \mu(a)$ and $m \in \mathbb{N}$, there is some $n \geq m$ such that $x_n \in U$.
- (iii) For each $\epsilon > 0$ and $m \in \mathbb{N}$, there is some $n \geq m$ such that $x_n \in \mathbb{B}(a, \epsilon)$

5.3 Convergence

Definition 5.3.1 (Convergence). A sequence (x_n) converges (or is convergent) with limit a if each neighborhood of a contains almost all terms of the sequence. In this case we write

$$\lim_{n \to \infty} x_n = a \text{ or } x_n \to a(n \to \infty)$$

and we say that (x_n) converges to a as n goes to ∞ . A sequence (x_n) that is not convergent is called **divergent** and we say (x_n) **diverges**.

Proposition 5.3.1. The following statements are equivalent:

(i) $\lim_{x_n} = a$.

- (ii) For each $U \in \mu(a)$, there is some N := N(U) such that $x_n \in U$ for all $n \ge N$.
- (iii) For each $\epsilon > 0$, there is some $N := N(\epsilon)$ such that $x_n \in \mathbb{B}(a, \epsilon)$ for all $n \ge N$.

Bounded Sets

Definition 5.3.2. A subset $Y \subseteq X$ is called d-**bounded** or **bounded in** X (with respect to the metric d) if there is some M > 0 such that $d(x,y) \leq M$ for all $x,y \in Y$. In this circumstance the **diameter** of Y, defined by

$$diam(Y) := \sup_{x,y \in Y} d(x,y)$$

is finite. A sequence (x_n) is **bounded** if its image $\{x_n; n \in \mathbb{N}\}$ is bounded.

Proposition 5.3.2. Any convergent sequence is bounded.

Proof. Suppose that $x_n \to a$. Then there is some N such that $x_n \in \mathbb{B}$ (a,1) for all $n \geq N$. It follows from the triangle inequality that

$$d(x_m, x_n) \le d(x_m, a) + d(a, x_n) \le 2, \quad m, n \in \mathbb{N}$$

Since there is also some $M \ge 0$ such that $d(x_j, x_k) \le M$ for all $j, k \le N$, we have $d(x_n, x_m) \le M + 2$ for all $m, n \in \mathbb{N}$.

Uniqueness of the Limit

Proposition 5.3.3. Let (x_n) be convergent with limit a. Then a is the unique cluster point of (x_n) .

Corollary 5.3.1. The limit of a convergent sequence is unique.

Subsequence

Let $\varphi = (x_n)$ be a sequence in X and $\Phi \colon \mathbb{N} \to \mathbb{N}$ a strictly increasing function, then $\varphi \circ \Phi \in X^{\mathbb{N}}$ is called a **subsequence** of φ . Extending the notation $(x_n)_{n \in \mathbb{N}}$ introduced above for the sequence φ , we write $(x_{n_k})_{k \in \mathbb{N}}$ for the subsequence $\varphi \circ \Phi$ where $n_k := \Phi(k)$.

Proposition 5.3.4. If (x_n) is a convergent sequence with limit a, then each subsequence $(x_{n_k})_{k\in\mathbb{N}}$ of (x_n) is convergent with $\lim_{k\to\infty} x_{n_k} = a$.

Proposition 5.3.5. A point a is a cluster point of a sequence (x_n) if and only if there is some subsequence $(x_{n_k})_{k\in\mathbb{N}}$ of (x_n) which converges to a.

Normed Vector Space

6.1 Norms

Definition 6.1.1 (Norm). Let E be a vector space over \mathbb{K} . A function $||\cdot||: E \to \mathbb{R}^+$ is called a **norm** if the following hold:

- $||x|| = 0 \Leftrightarrow x = 0.$
- $||\lambda x|| = |\lambda|||x||, x \in E, \lambda \in \mathbb{K}$ (positive homogeneity)
- $||x + y|| \le ||x|| + ||y||$, $x, y \in E$ (triangle inequality). A pair $(E, ||\cdot||)$ consisting of a vector space E and a norm $||\cdot||$ is called a **normed vector space**. If the norm is clear from context, we write E instead of $(E, ||\cdot||)$.

Remark. Let $E := (E, ||\cdot||)$ be a normed vector space.

(a) The function

$$d: E \times E \to \mathbb{R}^+, \quad (x,y) \mapsto ||x-y||$$

is a metric on E, the **metric induced from the norm**. Hence any normed vector space is also a metric space.

(b) The **reversed triangle inequality** holds for the norm:

$$||x - y|| \ge |||x|| - ||y|||, \quad x, y \in E$$

(c) All statements from previous chapter also hold in normed vector space.

Balls

For $a \in E$ and r > 0, we define the **open** and **closed balls** with center at a and radius r by

$$\mathbb{B}_E(a,r) := \mathbb{B}(a,r) := x \in E; ||x-a|| < r$$

and

$$\bar{\mathbb{B}}_E(a,r) := \bar{\mathbb{B}}_E := x \in E; ||x - a|| \le r.$$

These definitions agree with those for the metric space (E,d) when d is induced from norm. We also write

$$\mathbb{B} \coloneqq \mathbb{B}(0,1) = x \in E; ||x|| < 1 \quad \text{and} \quad \bar{\mathbb{B}} \coloneqq \bar{\mathbb{B}}(0,1) = x \in E; ||x|| \le 1$$

for the **open** and **closed unit balls** in E. We have

$$r\mathbb{B} = \mathbb{B}(0,r), \quad r\bar{\mathbb{B}} = \bar{\mathbb{B}}(0,r)$$

Bounded Sets

A subset X of E is called **bounded in** E (or **norm bounded**) if it is bounded in the induced metric space.

Remark. Let $E := (E, ||\cdot||)$ be a normed vector space

- (a) $X \subseteq E$ is bounded if and only if there is some r > 0 such that $X \subseteq r\mathbb{B}$, that is, ||x|| < r for all $x \in X$.
- (b) If X and Y are nonempty bounded subsets of E, then so are $X \cup Y$, X + Y and λX with $\lambda \in \mathbb{K}$.

Example. (a) The absolute value $|\cdot|$ is a norm on the vector space \mathbb{K} .

- (b) Let F be a subspace of a normed vector space $E := (E, \|\cdot\|)$. Then the restriction $\|\cdot\|_F := \|\cdot\||F$ of $\|\cdot\|$ to F is a norm on F. Thus $F := (F, \|\cdot\|_F)$ is a normed vector space with this **induced** norm.
- (c) Let $E_j, \|\cdot\|_j$, $1 \leq j \leq m$, be normed vector space over \mathbb{K} . Then

$$||x||_{\infty} := \max_{1 \le j \le m} ||x_j||_j, \quad x = (x_1, \dots, x_m) \in E := E_1 \times \dots \times E_m$$

defines a norm, called the **product norm**, on the product vector space E. The metric on E induced from this norm coincides with the product metric from 5.2 example (d), where d_j is the metric induced on E_j from $\|\cdot\|_j$.

(d) For $m \in \mathbb{N}^{\times}$, \mathbb{K}^m is a normed vector space with the **maximum norm**

$$|x|_{\infty} := \max_{1 \le j \le m} |x_j|, \quad x = (x_1, \dots, x_m) \in \mathbb{K}^m.$$

In this case m = 1.

6.2 The Space of Bounded Functions

Let X be a nonempty set and $(E, \|\cdot\|)$ a normed vector space. A function $u \in E^X$ is called **bounded** if the image of u in E is bounded. For $u \in E^X$, define

$$||u||_{\infty} := ||u||_{\infty,X} := \sup_{x \in X} ||u(x)|| \in \mathbb{R}^+ \cup \infty$$

Remark. (a) For $u \in E^X$, the followings are equivalent:

- (i) u is bounded.
- (ii) u(X) is bounded in E.
- (iii) There is some r > 0 such that $||u(x)|| \le r$ for all $x \in X$.
- (iv) $||u||_{\infty} < \infty$.
- (b) Clearly id $\in \mathbb{K}^{\mathbb{K}}$ is not bounded, that is, $\|id\|_{\infty} = \infty$.
- (b) shows that $\|\cdot\|_{\infty}$ may not be a norm on the vector space E^X when E is not trivial. We therefore set

$$B(X, E) := u \in E^X$$
; u is bounded

and call B(X, E) the space of bounded functions from X to E.

Proposition 6.2.1. B(X, E) is a subspace of E^X and $\|\cdot\|_{\infty}$ is a norm, called the **supremum norm**, on B(X, E).

Remark. (a) If $X := \mathbb{N}$, then B(X, E) is the normed vector space of bounded sequences in E. In the special case $E := \mathbb{K}$, $B(\mathbb{N}, \mathbb{K})$ is denoted by ℓ_{∞} , that is,

$$\ell_{\infty} := \ell_{\infty}(\mathbb{K}) := B(\mathbb{N}, \mathbb{K})$$

is the normed vector space of bounded sequences with the supremum norm

$$||(x_n)||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|, \quad (x_n) \in \ell_{\infty}$$

(b) If $X = \{1, ..., m\}$ for some $m \in \mathbb{N}^{\times}$, then

$$B(X, E) = (E^m, ||\cdot||_{\infty})$$

6.3 Inner Product Spaces

Definition 6.3.1 (Inner Product Space). Let E be a vector space over the filed \mathbb{K} . A function

$$(\cdot|\cdot)\colon E\times E\to \mathbb{K}, \quad (x,y)\mapsto (x|y)$$

is called a scalar product or inner product on E if the following hold:

- $(x|y) = \overline{(y|x)}, x, y \in E$
- $(\lambda x + \mu y|z) = \lambda(x|z) + \mu(y|z), x, y, z \in E, \lambda, \mu \in \mathbb{K}.$
- $(x|x) \ge 0, x \in E, \text{ and } (x|x) = 0 \Leftrightarrow 0.$

A vector space E with a scalar product $(\cdot|\cdot)$ is called an **inner product space** and is written in $(E, (\cdot|\cdot))$.

Remark. (a) In the real case $\mathbb{K} = \mathbb{R}$, the first point can be written as

$$(x|y) = (y|x), \quad x, y \in E$$

In other words, the function is **symmetric** when E is a real vector space. In the case $\mathbb{K} = \mathbb{C}$, the function is said to be **Hermitian** when the first point holds.

(b) From the first two points it follows that

$$(x|\lambda y + \mu z) = \bar{\lambda}(x|y) + \bar{\mu}(x|z), \quad x, y, z \in E, \quad \lambda, \mu \in \mathbb{K},$$

that is, for each fixed $x \in E$, the function $(x|\cdot): E \to \mathbb{K}$ is **conjugate linear**. If $\mathbb{K} = \mathbb{R}$, it is **bilinear**.

(c) (x|0) = 0 for all $x \in E$.

Let $m \in \mathbb{N}^{\times}$. For $x = (x_1, \dots, x_m)$ and $y = (y_1, \dots, y_m)$ in \mathbb{K}^m , define

$$(x|y) \coloneqq \sum_{j=1}^{m} x_j \bar{y}_j$$

to be the Euclidean Inner product on \mathbb{K}^m .

The Cauchy-Schwarz Inequality

Theorem 6.3.1 (Cauchy-Schwarz Inequality). Let $(E, (\cdot | \cdot))$ be an inner product space. Then

$$|(x|y)|^2 \le (x|x)(y|y) \quad x, y \in E$$

and the equality occurs if and only if x and y are linearly dependent.

Theorem 6.3.2. Let $(E, (\cdot | \cdot))$ be an inner product space and

$$||x|| \coloneqq \sqrt{(x|x)}, \quad x \in E$$

Then $\|\cdot\|$ is a norm on E, the **norm induced from the scalar product** $(\cdot|\cdot)$. A norm which is induced from a scalar product is also called a **Hilbert norm**.

Corollary 6.3.1. Let $(E, (\cdot|\cdot))$ be an inner product space. Then

$$|(x|y)| \le ||x|| ||y|| \quad x, y \in E$$

6.4 Euclidean Spaces

Convention: Unless otherwise stated, we consider \mathbb{K}^m to be endowed with the Euclidean inner product $(\cdot|\cdot)$ and the induced norm

$$|x| \coloneqq \sqrt{(x|x)} = \sqrt{\sum_{j=1}^{m} |x_j|^2} \quad x = (x_1, \dots, x_m) \in \mathbb{K}^m$$

the **Euclidean norm**. In the real case, we write also $x \cdot y$ for (x|y).

We further define the norm

$$|x|_1 \coloneqq \sum_{j=1}^m |x_j|, \quad x = (x_1, \dots, x_m) \in \mathbb{K}^m$$

Proposition 6.4.1. Let $m \in \mathbb{N}^{\times}$. Then

$$|x|_{\infty} \le |x| \le \sqrt{m}|x|_{\infty}, \qquad \frac{1}{\sqrt{m}}|x|_1 \le |x| \le |x|_1, \quad x \in \mathbb{K}^m$$

Equivalent Norm

Let E be a vector space. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on E are **equivalent** if there is some $K \geq 1$ such that

$$\frac{1}{K} \|x\|_1 \le \|x\|_2 \le K \|x\|_1, \quad x \in E$$

In this case we write $\|\cdot\|_1 \|\cdot\|_2$.

Remark. (a) is an equivalence relation on the set of all norms of a fixed vector space.

- (b) $\|\cdot\|_1 \|\cdot\| \|\cdot\|_{\infty}$ on \mathbb{K}^m .
- (c) We write \mathbb{B}^m for the **real open Euclidean unit ball**, that is, $\mathbb{B}^m := \mathbb{B}_{\mathbb{R}^m}$ and \mathbb{B}_1^m and \mathbb{B}_{∞}^m for the unit balls in $(\mathbb{R}^m, |\cdot|_1)$ and in $(\mathbb{R}^m, |\cdot|_{\infty})$ respectively. We have

$$\mathbb{B}^m \subseteq \mathbb{B}_{\infty}^m \subseteq \sqrt{m}\mathbb{B}^m \qquad \mathbb{B}_1^m \subseteq \mathbb{B}^m \subseteq \sqrt{m}\mathbb{B}_1^m$$

(d) Let $E = (E, \|\cdot\|)$ be a normed vector space and $\|\cdot\|_1$ a norm on E which is equivalent to $\|\cdot\|$. Set $E_1 := (E, \|\cdot\|_1)$. Then

$$\mathcal{U}_E(a) = \mathcal{U}_{E_1}(a), \quad a \in E$$

that is, the set of neighborhoods of a depends only on the equivalence class of the norm. Equivalent norms produce the same set of neighborhoods.

Convergence in Product Spaces

Proposition 6.4.2. Let $m \in \mathbb{N}^{\times}$ and $x_n = (x_n^1, \dots, x_n^m) \in \mathbb{K}^m$ for $n \in \mathbb{N}$. Then the followings are equivalent:

- 1. The sequence $(x_n)_{n\in\mathbb{N}}$ converges to $x=\left(x^1,\ldots,x^m\right)$ in \mathbb{K}^m .
- 2. For each $k \in \{1, \dots, m\}$, the sequence $(x_n^k)_{n \in \mathbb{N}}$ converges to x^k in \mathbb{K} .

Infinite Limits

7.1 Convergence to $\pm \infty$

Sequences in \mathbb{R} can usually be considered to converge to $+\infty$ or $-\infty$ in the extended number line \mathbb{R} . A subset $U \subseteq \mathbb{R}$ is called a **neighborhood of** ∞ (or of $-\infty$) if there is some K > 0 such that $(K, \infty) \subseteq U$ (or such that $(-\infty, -K) \subseteq U$). The set of neighborhoods of $\pm \infty$ is denoted by $\mathcal{U}(\pm \infty)$, that is,

$$\mathcal{U}(\pm \infty) \coloneqq U \subseteq \mathbb{R}; \ U$$
 is neighborhood of $\pm \infty$

Now let (x_n) be a sequence in \mathbb{R} . Then $\pm \infty$ is called a **cluster point** (or **limit**) of (x_n) , if each neighborhood U of $\pm \infty$ contains infinitely many (or almost all) terms of (x_n) . If $\pm \infty$ is the limit of (x_n) , we usually write

$$\lim_{n \to \infty} x_n = \pm \infty \quad \text{or} \quad x_n \to \pm \infty \ (n \to \infty)$$

The sequence (x_n) converges in $\bar{\mathbb{R}}$ if there is some $x \in \bar{\mathbb{R}}$ such that $\lim_{n \to \infty} x_n = x$. The sequence (x_n) diverges in $bar\mathbb{R}$, if it does not converge in $\bar{\mathbb{R}}$. With this definition, any sequence which converge in \mathbb{R} , also converges in $\bar{\mathbb{R}}$, and any sequence which diverges in $\bar{\mathbb{R}}$, also diverges in \mathbb{R} . On the other hand there are divergent sequences in \mathbb{R} which converge in $\bar{\mathbb{R}}$ (to $\pm \infty$). In this case the sequence is said to converge improperly.

Proposition 7.1.1. Every monotone sequence (x_n) in \mathbb{R} converges in $\overline{\mathbb{R}}$, and

$$\lim x_n = \begin{cases} \sup x_n; n \in \mathbb{N}, & \text{if } (x_n) \text{ is increasing,} \\ \inf x_n; n \in \mathbb{N}, & \text{if } (x_n) \text{ is decreasing.} \end{cases}$$

7.2 The Limit Superior and Limit Inferior

Definition 7.2.1. Let (x_n) be a sequence in \mathbb{R} . We can define two new sequences (y_n) and (z_n) by

$$y_n := \sup_{k > n} x_k := \sup_{k > n} x_k; k \ge n,$$

$$z_n := \inf_{k > n} x_k := \inf x_k; k \ge n.$$

Clearly (y_n) is increasing and (z_n) is decreasing. By the above proposition, these sequences converge in \mathbb{R} :

$$\limsup_{n\to\infty} x_n := \overline{\lim}_{n\to\infty} x_n := \lim_{n\to\infty} (\sup_{k\geq n} x_k).$$

the limit superior, and

$$\liminf_{n\to\infty} x_n := \underline{\lim}_{n\to\infty} x_n := \lim_{n\to\infty} (\inf_{k\geq n} x_k).$$

the **limit inferior** of the sequences (x_n) . We also have

$$\mathrm{lim} \mathrm{sup} x_n = \mathrm{inf}_{n \in \mathbb{N}} (\mathrm{sup}_{k \geq n} x_k) \quad \text{and} \quad \mathrm{liminf} x_n = \mathrm{sup}_{n \in \mathbb{N}} (\mathrm{inf}_{k \geq n} x_k).$$

Theorem 7.2.1. Any sequence (x_n) in \mathbb{R} has a smallest cluster point x_* and a greatest cluster point x^* in $\overline{\mathbb{R}}$ and these satisfy

$$\lim\inf x_n = x_*$$
 and $\lim\sup x_n = x^*$

Theorem 7.2.2. Let (x_n) be a sequence in \mathbb{R} . Then

$$(x_n)$$
 converges in $\mathbb{R} \Leftrightarrow \overline{\lim} x_n \leq \underline{\lim} x_n$

When the sequence converges, the limit x satisfies

$$x = \lim x_n = \underline{\lim} x_n = \overline{\lim} x_n.$$

Theorem 7.2.3 (Bolzano-Weierstrass). Every bounded sequence in \mathbb{K}^m has a convergent subsequence, that is, a cluster point.

Completeness

8.1 Cauchy Sequences

In the following X = (X, d) is a metric space.

A sequence (x_n) in X is called a **Cauchy sequence** if, for each $\epsilon > 0$, there is some $N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ for all $m, n \geq N$.

Similarly, if (x_n) is a sequence in a normed vector space $E = (E, ||\cdot||)$, then (x_n) is a Cauchy sequence if and only if for each $\epsilon > 0$ there is some N such that $||x_n - x_m|| < \epsilon$ for all $m, n \ge N$. In particular, Cauchy sequences in E are "translation invariant", that is, if (x_n) is a Cauchy sequence and e is an arbitrary vector in e, then the 'translated' sequence $(x_n + e)$ is also a Cauchy sequence. This implies that Cauchy sequences cannot be defined using neighborhoods.

Proposition 8.1.1. Every convergent sequence is a Cauchy sequence.

Proposition 8.1.2. Every Cauchy sequence is bounded.

Proposition 8.1.3. If a Cauchy sequence has a convergent subsequence, then it is itself convergent.

8.2 Banach Spaces

A metric space X is called **complete** if every Cauchy sequence in X converges. A complete normed vector space is called a **Banach space**.

Theorem 8.2.1. \mathbb{K}^m is a Banach space.

Theorem 8.2.2. Let X be a nonempty set and $E = (E, \|\cdot\|)$ a Banach space. Then B(X, E) is also a Banach space.

Remark. (a) A direct consequence of the previous two theorems is that For every nonempty set X, $B(X, \mathbb{R})$, $B(X, \mathbb{C})$, and $B(X, \mathbb{K}^m)$ are Banach spaces.

- (b) The completeness of a normed vector space E is invariant under changes to equivalent norms.
- (c) A complete inner product space is called a **Hilbert space**.