

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики Практическое задание № 1

по дисциплине «Уравнения математической физики»

РЕШЕНИЕ ЭЛЛИПТИЧЕСКИХ КРАЕВЫХ ЗАДАЧ

МЕТОДОМ КОНЕЧНЫХ РАЗНОСТЕЙ

Бригада 1 ИСАКИН ДАНИИЛ

Группа ПМ-13 ВОСТРЕЦОВА ЕКАТЕРИНА

Вариант 6

Преподавател

ЗАДОРОЖНЫЙ АЛЕКСАНДР ГЕННАДЬЕВИЧ

ЛЕОНОВИЧ ДАРЬЯНА

Новосибирск, 2024

1. Цель работы

Разработать программу решения эллиптической краевой задачи методом конечных разностей. Протестировать программу и численно оценить порядок аппроксимации.

2. Задание

Уравнение: $-\operatorname{div}(\lambda\operatorname{grad} u)+\gamma u=f$ для функции u=u(x,y), краевые условия: $u\Big|_{s_1}=u_g$ $\lambda \frac{\partial u}{\partial n}\Big|_{s_2}=\theta$ Область Ω имеет L-образную форму

3. Анализ

$$-\lambda \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + \gamma u = f$$

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

$$-\lambda \Delta u + \gamma u = f$$

Дискретный аналог оператора Лапласа на пятиточечном шаблоне:

$$\Delta_h u_{i,j} = \frac{2u_{i-1,j}}{h_{i-1}^x(h_i^x + h_{i-1}^x)} + \frac{2u_{i,j-1}}{h_{j-1}^y(h_j^y + h_{j-1}^y)} + \frac{2u_{i+1,j}}{h_i^x(h_i^x + h_{i-1}^x)} + \frac{2u_{i,j+1}}{h_j^y(h_j^y + h_{j-1}^x)} - \left(\frac{2}{h_{i-1}^x h_i^x} + \frac{2}{h_{j-1}^x h_j^y}\right) u_{i,j}$$

Построим сетку, узлы нумеруем снизу-вверх и слева направо. Для решения поставленной задачи из линий сетки получаем координаты узлов. Матрица формируется одним проходом по всем узлам, для регулярных узлов заполняется согласно пятиточечному шаблону, для прочих — в соответствии с краевыми условиями. Матрица хранится как пятидиагональная Форма области:

4. Исследования

Тест №1 (Полином первой степени)

u(x,y) = x+y $\lambda = 1, \ \gamma = 1$ f(x,y) = x+y

Краевые условия 1-ого рода на всех сторонах

Содержание файла CalcArea.txt (Формат описан ниже)

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 2.66454$ e-15

2121

I	Расчетная табли	ица. Символом *	отмечены внутре	енние узлы сетк	1	
ļ	N	Х	Υ	U	U*	U* - U
- [0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
- İ	1	2.500	0.000	2.500000e+00	2.500000e+00	0.000000e+00
- İ	2 3	5.000	0.000	5.000000e+00	5.000000e+00	0.000000e+00
- [3	7.500	0.000	7.500000e+00	7.500000e+00	0.000000e+00
- [4	10.000	0.000	1.000000e+01	1.000000e+01	0.000000e+00
	5	0.000	2.500	2.500000e+00	2.500000e+00	0.000000e+00
٠,	* 6			!	5.000000e+00	2.575717e-14
_ į:	∤ 7 i	5.000	2.500	7.500000e+00	7.500000e+00	4.440892e-15
į,	∤ 8	7.500	,	1.000000e+01	1.000000e+01	1.776357e-15
Ţ	9	10.000	2.500	1.250000e+01	1.250000e+01	0.000000e+00
-	10	0.000	5.000	5.000000e+00	5.000000e+00	 0.000000e+00
12	* 11				7.500000e+00	4.440892e-15
ı	12		5.000	1.000000e+01	1.000000e+01	0.000000e+00
ı	13				1.250000e+01	0.000000e+00
į	14		5.000	1.500000e+01	1.500000e+01	0.000000e+00
1	15	0.000	7.500	7.500000e+00	7.500000e+00	 0.000000e+00
٠,	* 16			1.000000e+01	1.000000e+01	1.776357e-15
i	17	5.000			1.250000e+01	0.000000e+00
1	20	0.000	10.000	 1.000000e+01	 1.000000e+01	 0.000000e+00
-	20	•	•		1.250000e+01	0.000000e+00
	22				1.500000e+01	0.000000e+00
1		3.000	10.000			

Тест №2 (Полином второй степени)

$$u(x,y) = x^2+y^2$$

 $\lambda=1, \gamma=1$
 $f(x,y) = -4+x^2+y^2$

Краевые условия 1-ого рода на всех границах Содержание файла CalcArea.txt такое же как в Тесте №1 Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 1.24345$ е-14

Расчетная т	аблица	а. Символом *	отмечены внутре	енние узлы сетк	И	
N	ļΧ		Υ	U	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
i	1	2.500	0.000	6.250000e+00	6.250000e+00	0.000000e+00
İ	2	5.000	0.000	2.500000e+01	2.500000e+01	0.000000e+00
j	3	7.500	0.000	5.625000e+01	5.625000e+01	0.000000e+00
İ	4	10.000	0.000	1.000000e+02	1.000000e+02	0.000000e+00
	5	0.000	2.500	6.250000e+00	6.250000e+00	0.000000e+00
*	6	2.500	2.500	1.250000e+01	1.250000e+01	1.847411e-13
*	7	5.000	2.500	3.125000e+01	3.125000e+01	2.842171e-14
*	8	7.500	2.500	6.250000e+01	6.250000e+01	7.105427e-15
!	9	10.000	2.500	1.062500e+02	1.062500e+02	0.000000e+00
	10	0.000	E 000	2 5000000101	2 50000000101	0.0000000.00
	10	0.000	5.000 5.000	2.500000e+01 3.125000e+01	2.500000e+01 3.125000e+01	0.000000e+00
ļ*	11 12	2.500 5.000	5.000	5.000000e+01	5.123000e+01	2.842171e-14 0.000000e+00
-	13	7.500	5.000	8.125000e+01	8.125000e+01	0.000000e+00 0.000000e+00
-	14	10.000	5.000	1.25000e+01	1.25000e+01	0.000000e+00 0.000000e+00
			5.000	1.23000000+02		
i	15	0.000	7.500	5.625000e+01	5.625000e+01	0.000000e+00
*	16	2.500	7.500	6.250000e+01	6.250000e+01	7.105427e-15
i	17	5.000	7.500	8.125000e+01	8.125000e+01	0.000000e+00
	j					
i	20	0.000	10.000	1.000000e+02	1.000000e+02	0.000000e+00
İ	21	2.500	10.000	1.062500e+02	1.062500e+02	0.000000e+00
	22	5.000	10.000	1.250000e+02	1.250000e+02	0.000000e+00

Тест №3 (Полином третьей степени) $u(x,y) = x^3 + y^3$

$$u(x,y) = x^3+y^3$$

 $\lambda=1, \gamma=1$
 $f(x,y) = -6x-6y+x^3+y^3$

Краевые условия 1-ого рода на всех границах Содержание файла CalcArea.txt такое же как в Тесте №1 Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 9.69702$ e-14

Расчетная	таблица.	Символом *	отмечены внутре	енние узлы сетк	И	
N	ļΧ		Υ	U	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
İ	1	2.500	0.000	1.562500e+01	1.562500e+01	0.000000e+00
İ	2	5.000	0.000	1.250000e+02	1.250000e+02	0.000000e+00
İ	3	7.500	0.000	4.218750e+02	4.218750e+02	0.000000e+00
į	4	10.000	0.000	1.000000e+03	1.000000e+03	0.000000e+00
	5	0.000	2.500	1.562500e+01	1.562500e+01	0.000000e+00
*	6	2.500	2.500	3.125000e+01	3.125000e+01	1.463718e-12
*	7 j	5.000	2.500	1.406250e+02	1.406250e+02	2.273737e-13
i *	8	7.500	2.500	4.375000e+02	4.375000e+02	5.684342e-14
į	9	10.000	2.500	1.015625e+03	1.015625e+03	0.000000e+00
			5.000			
	10	0.000	5.000	1.250000e+02	1.250000e+02	0.000000e+00
*	11	2.500	5.000	1.406250e+02	1.406250e+02	2.273737e-13
!	12	5.000	5.000	2.500000e+02	2.500000e+02	0.000000e+00
!	13	7.500		5.468750e+02	5.468750e+02	0.000000e+00
	14	10.000	5.000	1.125000e+03	1.125000e+03	0.000000e+00
	15	0.000	7.500	4.218750e+02	4.218750e+02	0.000000e+00
*	16	2.500	7.500	4.375000e+02	4.375000e+02	5.684342e-14
	17	5.000	7.500	5.468750e+02	5.468750e+02	0.000000e+00
	20	0.000	10.000	1.000000e+03	1.000000e+03	 0.000000e+00
	21	2.500		1.015625e+03	1.015625e+03	0.000000e+00
i	22	5.000			1.125000e+03	0.000000e+00

Тест №4 (Полином четвертой степени)

$$u(x,y) = x^4 + y^4$$

$$\lambda$$
=1, γ =1

$$f(x,y) = -12x^2 - 12y^2 + x^4 + y^4$$

Краевые условия 1-ого рода на всех границах

Содержание файла CalcArea.txt такое же как в Тесте №1

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 40.5432$

N		Х	ĮΥ	U	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
	1	2.500	0.000	3.906250e+01	3.906250e+01	0.000000e+00
	2	5.000	0.000	6.250000e+02	6.250000e+02	0.000000e+00
	3	7.500	0.000	3.164062e+03	3.164062e+03	0.000000e+00
	4	10.000	0.000	1.000000e+04	1.000000e+04	0.000000e+00
	5	0.000	2.500	3.906250e+01	3.906250e+01	0.000000e+00
k	6	2.500	2.500	9.702819e+01	7.812500e+01	1.890319e+01
k	7	5.000	2.500	6.828163e+02	6.640625e+02	1.875383e+01
	8	7.500	2.500	3.220199e+03	3.203125e+03	1.707354e+01
	9	10.000	2.500	1.003906e+04	1.003906e+04	0.000000e+00
			5.000	6 050000		
	10	0.000			6.250000e+02	0.000000e+00
F	11	2.500		6.828163e+02	6.640625e+02	1.875383e+01
	12	5.000		1.250000e+03	1.250000e+03	0.000000e+00
	13			•	3.789062e+03	0.000000e+00
	14	10.000	5.000	1.062500e+04 	1.062500e+04	0.000000e+00
	15	0.000	7.500	3.164062e+03	3.164062e+03	0.000000e+00
k	16	2.500	7.500	3.220199e+03	3.203125e+03	1.707354e+01
	17	5.000	7.500	3.789062e+03	3.789062e+03	0.000000e+00
	20	0.000	10.000	1.000000e+04	1.000000e+04	0.000000e+00
	21	2.500	10.000	1.003906e+04	1.003906e+04	0.000000e+00
	22		10.000	1.062500e+04	1.062500e+04	0.000000e+00

Произведем дробление сетки

Дробление в 2 раза

Параметры дробления

OX:
$$n = 4 q = 1$$
 $n = 4 q = 1$
OY: $n = 4 q = 1$ $n = 4 q = 1$

OY:
$$n = 4 q = 1 n = 4 q = 1$$

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{2})\| = 11.119$

Расчет	ная таблица	. Символом * с	тмечены внутре	енние узлы сетки		
N	X	را ا	′	U	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
	2	2.500	0.000	3.906250e+01	3.906250e+01	0.000000e+00
	4	5.000	0.000	6.250000e+02	6.250000e+02	0.000000e+00
	6	7.500	0.000	3.164062e+03	3.164062e+03	0.000000e+00
	8	10.000	0.000	1.000000e+04	1.000000e+04	0.000000e+00
	18	0.000	2.500	3.906250e+01	3.906250e+01	0.000000e+00
*	20	2.500	2.500	8.321735e+01	7.812500e+01	5.092346e+00
	22	5.000	2.500	6.692039e+02	6.640625e+02	5.141438e+0
	24	7.500	2.500	3.207859e+03	3.203125e+03	4.734493e+00
	26	10.000	2.500	1.003906e+04	1.003906e+04	0.000000e+0
	36	0.000	5.000	6.250000e+02	6.250000e+02	0.000000e+00
k	38	2.500	5.000	6.692039e+02	6.640625e+02	5.141438e+00
	40	5.000	5.000	1.250000e+03	1.250000e+03	0.000000e+0
	42	7.500	5.000	3.789062e+03	3.789062e+03	0.000000e+0
	44	10.000	5.000	1.062500e+04	1.062500e+04	0.000000e+0
	54	0.000	7.500	3.164062e+03	3.164062e+03	0.000000e+00
k	56	2.500	7.500	3.207859e+03	3.203125e+03	4.734493e+00
	58	5.000	7.500	3.789062e+03	3.789062e+03	0.000000e+00
	72	0.000	10.000	1.000000e+04	1.000000e+04	0.000000e+00
	74	2.500	10.000	1.003906e+04	1.003906e+04	0.000000e+00
	76	5.000	10.000	1.062500e+04	1.062500e+04	0.000000e+00

Деление в 4 раза

Параметры дробления OX: n=8 q=1 n=8 q=1 OY: n=8 q=1

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{4})\| = 2.86223$

				енние узлы сетки		
N		Х	ΙΥ	ĮU	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
	4	2.500	0.000	3.906250e+01	3.906250e+01	0.000000e+00
	8	5.000	0.000	6.250000e+02	6.250000e+02	0.000000e+00
	12	7.500	0.000	3.164062e+03	3.164062e+03	0.000000e+00
	16	10.000	0.000	1.000000e+04	1.000000e+04	0.000000e+00
	68	0.000	2.500	3.906250e+01	3.906250e+01	0.000000e+06
	72	2.500	2.500	7.942768e+01	7.812500e+01	1.302678e+00
	76	5.000	2.500	6.653865e+02	6.640625e+02	1.324023e+00
	80	7.500	2.500	3.204348e+03	3.203125e+03	1.222559e+00
	84	10.000	2.500	1.003906e+04	1.003906e+04	0.000000e+00
	136	0.000	5.000	6.250000e+02	6.250000e+02	0.000000e+00
	140	2.500	5.000	6.653865e+02	6.640625e+02	1.324023e+00
	144	5.000	5.000	1.250000e+03	1.250000e+03	0.000000e+00
	148	7.500	5.000	3.789062e+03	3.789062e+03	0.000000e+00
	152	10.000	5.000	1.062500e+04	1.062500e+04	0.000000e+00
	204	0.000	7.500	3.164062e+03	3.164062e+03	0.000000e+00
	208	2.500	7.500	3.204348e+03	3.203125e+03	1.222559e+00
	212	5.000	7.500	3.789062e+03	3.789062e+03	0.000000e+00
	272	0.000	10.000	1.000000e+04	1.000000e+04	0.000000e+00
	276	2.500	10.000	1.003906e+04	1.003906e+04	0.000000e+00
	280	5.000	i 10.000	i 1.062500e+04	1.062500e+04	i 0.000000e+00

Оценим порядок сходимости:

$$\log_{2}\left(\frac{\|\widetilde{U}-U(h)\|}{\|\widetilde{U}-U(\frac{h}{2})\|}\right) = \frac{40.5432}{11.119} = 1.86643$$

$$\begin{split} \log_{2}(\frac{\|\widetilde{U}-U(h)\|}{\|\widetilde{U}-U(\frac{h}{2})\|}) &= \frac{40.5432}{11.119} = 1.86643\\ \log_{2}(\frac{\|\widetilde{U}-U(\frac{h}{2})\|}{\|\widetilde{U}-U(\frac{h}{4})\|}) &= \frac{11.119}{2.86223} = 1.95782 \end{split}$$

```
Тест №5 (На 2 КУ, полином первой степени)
```

u(x,y) = x+y $\lambda=1, \gamma=1$ f(x,y) = x+y

Краевые условия 2-го рода на нижней границе S6 и S3 Краевые условия 1-ого рода на всех остальных сторонах Содержание файла CalcArea.txt (Формат описан ниже)

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 7.33756$ е-15

33

 $0\ 0\ 5\ 0\ 10\ 0$

0555105

0 10 5 10 10 10

2

11213

12312

6

 $1\,1\,1\,1\,1\,3$

211233

32223

412322

 $5\,1\,3\,3\,1\,2$

621311

2121

2121

N	X		Υ	U	U* 	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
	1	2.500	0.000	2.500000e+00	2.500000e+00	4.884981e-15
	2 j 3 j	5.000	0.000	5.000000e+00	5.000000e+00	3.552714e-15
	3 į	7.500	0.000	7.500000e+00	7.500000e+00	1.776357e-1
	4	10.000	0.000	1.000000e+01	1.000000e+01	0.000000e+00
	5	0.000	2.500	2.500000e+00	2.500000e+00	0.000000e+0
*	6 7	2.500	2.500	5.000000e+00	5.000000e+00	8.881784e-1
	7	5.000	2.500	7.500000e+00	7.500000e+00	1.776357e-1
	8	7.500	2.500	1.000000e+01	1.000000e+01	1.776357e-1
	9	10.000	2.500	1.250000e+01	1.250000e+01	0.000000e+0
	10	0.000	5.000	5.000000e+00	5.000000e+00	0.000000e+0
	11	2.500	5.000	7.500000e+00	7.500000e+00	8.881784e-1
	12	5.000	5.000	1.000000e+01	1.000000e+01	0.000000e+0
	13	7.500	5.000	1.250000e+01	1.250000e+01	0.000000e+0
	14	10.000	5.000	1.500000e+01	1.500000e+01	0.000000e+0
	15	0.000	7.500	7.500000e+00	7.500000e+00	0.000000e+0
	16	2.500	7.500	1.000000e+01	1.000000e+01	1.776357e-1
	17	5.000	7.500	1.250000e+01	1.250000e+01	1.776357e-1
	20	0.000	10.000	1.000000e+01	1.000000e+01	0.000000e+0
	21	2.500	10.000	1.250000e+01	1.250000e+01	0.000000e+0
	22	5.000	10.000	1.500000e+01	1.500000e+01	0.000000e+00

Тест №6 (2КУ, Полином второго порядка)

$$u(x,y) = x^2+y^2$$

 $\lambda=1, \gamma=1$
 $f(x,y) = -4+x^2+y^2$

Краевые условия 2-го рода на нижней границе S6 и S3 Краевые условия 1-ого рода на всех остальных сторонах Содержание файла CalcArea.txt аналогично Тесту №5 Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 14.1277$

N		Х	ļΥ	ļυ	U*	U* - U
	0	0.00	0.000	0.000000e+00	0.000000e+00	0.000000e+00
	1	2.50			6.250000e+00	7.032370e+06
	2	5.00			2.500000e+01	7.093156e+06
	3	7.50	0.000	6.326683e+01	5.625000e+01	7.016828e+00
	4	10.00	0.000	1.000000e+02	1.000000e+02	0.000000e+00
	5	0.00	0 2.500	6.250000e+00	6.250000e+00	0.000000e+00
	6	2.50	0 2.500	1.328237e+01	1.250000e+01	7.823699e-0
	7	5.00	0 2.500	3.209316e+01	3.125000e+01	8.431565e-01
	8	7.50	0 2.500	6.326683e+01	6.250000e+01	7.668277e-01
	9	10.00	0 2.500	1.062500e+02	1.062500e+02	0.000000e+00
	10	0.00	0 5.000	2.500000e+01	2.500000e+01	0.000000e+00
	11	2.50	0 5.000	3.139376e+01	3.125000e+01	1.437646e-0
	12	5.00	0 5.000	5.000000e+01	5.000000e+01	0.000000e+00
	13	7.50	0 5.000	8.125000e+01	8.125000e+01	0.000000e+00
	14	10.00	0 5.000	1.250000e+02	1.250000e+02	0.000000e+00
	15	0.00	0 7.500	5.625000e+01	5.625000e+01	0.000000e+00
	16	2.50	0 7.500	6.319122e+01	6.250000e+01	6.912178e-0
	17	5.00	0 7.500	8.819122e+01	8.125000e+01	6.941218e+06

Произведем дробление

Дробление в 2 раза

10.000

Параметры дробления

OX:
$$n = 4q = 1$$
 $n = 4q = 1$
OY: $n = 4q = 1$ $n = 4q = 1$

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{2})\| = 4.43239$

N	þ	(ĮΥ	- !	U	U*	U* - U
	0	0.000	0.	000	0.000000e+00	0.000000e+00	0.000000e+00
	2İ	2.500		000	8.458154e+00	6.250000e+00	2.208154e+00
	4	5.000	j 0.	000	2.724843e+01	2.500000e+01	2.248429e+00
	6	7.500	j 0.	000	5.845642e+01	5.625000e+01	2.206416e+00
	8	10.000	0.	000	1.000000e+02	1.000000e+02	0.000000e+00
	18	0.000	2.	500	6.250000e+00	6.250000e+00	0.000000e+00
	20	2.500	j 2.	500 j	1.268991e+01	1.250000e+01	1.899059e-01
*	22	5.000	j 2.	500 j	3.145857e+01	3.125000e+01	2.085704e-01
	24	7.500	j 2.	500 j	6.268464e+01	6.250000e+01	1.846374e-01
	26	10.000	2.	500	1.062500e+02	1.062500e+02	0.000000e+00
	36	0.000	5.	000	2.500000e+01	2.500000e+01	0.000000e+00
*	38	2.500	j 5.	000	3.131482e+01	3.125000e+01	6.481844e-02
	40	5.000	j 5.	000	5.000000e+01	5.000000e+01	0.000000e+00
	42	7.500	j 5.	000	8.125000e+01	8.125000e+01	0.000000e+00
	44	10.000	5.	000	1.250000e+02	1.250000e+02	0.000000e+00
	54	0.000	7.	500	5.625000e+01	5.625000e+01	0.000000e+00
*	56	2.500	j 7.	500	6.266488e+01	6.250000e+01	1.648836e-01
	58	5.000	7.	500	8.341826e+01	8.125000e+01	2.168260e+00
	72	0.000	10.	000	1.000000e+02	1.000000e+02	0.000000e+00
	74	2.500	10.	000	1.062500e+02	1.062500e+02	0.000000e+00
	76	5.000	i 10.	000	1.250000e+02	1.250000e+02	0.000000e+00

Деление в 4 раза

Параметры дробления OX: n=8 q=1 n=8 q=1 OY: n=8 q=1

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{4})\| = 1.66213$

N		X	ļΥ	ļυ	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	 0.000000e+0
	4	2.500			6.250000e+00	8.278611e-0
	8	5.000			2.500000e+01	8.475672e-0
	12	7.500			5.625000e+01	8.274179e-0
	16	10.000		,	1.000000e+02	0.000000e+0
	68	0.000	2.500	6.250000e+00	6.250000e+00	0.000000e+0
*	72				1.250000e+01	6.439474e-6
*	76	5.000	2.500	3.132261e+01	3.125000e+01	7.260792e-0
*	80	7.500	2.500	6.256193e+01	6.250000e+01	6.192974e-6
	84	10.000	2.500	1.062500e+02	1.062500e+02	0.000000e+6
	136	0.000	5.000	2.500000e+01	2.500000e+01	 0.000000e+0
*	140	2.500			3.125000e+01	2.942237e-0
	144				5.000000e+01	0.000000e+0
	148				8.125000e+01	0.000000e+0
	152				1.250000e+02	0.000000e+0
	204	0.000	7.500	5.625000e+01	5.625000e+01	 0.000000e+6
*	208	2.500			6.250000e+01	5.474650e-0
	212				8.125000e+01	8.106975e-0
	272	0.000	10.000	1.000000e+02	1.000000e+02	 0.000000e+6
	276				1.062500e+02	0.000000e+6
	280	5.000	10.000	1.250000e+02	1.250000e+02	0.000000e+0

Деление в 8 раз

Параметры дробления

OX: n = 16 q = 1 n = 16 q = 1OY: n = 16 q = 1 n = 16 q = 1

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{8})\| = 0.711643$

N		X	ĮΥ	U	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
	8	2.500		6.604314e+00	6.250000e+00	3.543139e-01
	16	5.000	0.000	2.536394e+01	2.500000e+01	3.639404e-01
	24	7.500	0.000	5.660415e+01	5.625000e+01	3.541521e-01
	32	10.000	0.000	1.000000e+02	1.000000e+02	0.000000e+00
	264	0.000	2.500	6.250000e+00	6.250000e+00	0.000000e+00
*	272	2.500		1.252678e+01	1.250000e+01	2.677874e-02
*	280	5.000	2.500	3.128074e+01	3.125000e+01	3.073986e-02
ķ	288	7.500	2.500	6.252560e+01	6.250000e+01	2.560137e-02
	296	10.000	2.500	1.062500e+02	1.062500e+02	0.000000e+00
	500		5.000	0.50000001	2 500000	
	528	0.000			2.500000e+01	0.000000e+00
F-	536	!			3.125000e+01	1.316255e-02
	544	5.000			5.000000e+01	0.000000e+00
	552 560	7.500 1 10.000			8.125000e+01 1.250000e+02	0.000000e+00 0.000000e+00
	792	0.000	7.500	5.625000e+01	5.625000e+01	0.000000e+00
	800	2.500			6.250000e+01	2.248329e-02
	808	5.000	7.500	8.159645e+01	8.125000e+01	3.464464e-0
	1056	0.000	10.000	1.000000e+02	1.000000e+02	0.000000e+00
	1064	2.500			1.062500e+02	0.000000e+00
	1072				1.250000e+02	0.000000e+00

Оценим порядок сходимости:

$$\log_{2}\left(\frac{\|\widetilde{U}-U\left(h\right)\|}{\|\widetilde{U}-U\left(\frac{h}{2}\right)\|}\right) = \frac{14.1277}{4.43239} = 1.6724$$

$$\log_{2}(\frac{\|\widetilde{U} - U(\frac{h}{2})\|}{\|\widetilde{U} - U(\frac{h}{4})\|}) = \frac{4.43239}{1.66213} = 1.41505$$

$$\log_2(\frac{\|\widetilde{U} - U(\frac{h}{4})\|}{\|\widetilde{U} - U(\frac{h}{8})\|}) = \frac{1.66213}{0.711643} = 1.22381$$

Тест №6 на порядок сходимости на равномерной сетке

$$u = \sin\frac{\pi x}{2} + \cos\frac{\pi y}{2}, f = \left(\frac{\pi^2}{4} + 1\right) * \left(\sin\frac{\pi x}{2} + \cos\frac{\pi y}{2}\right), \gamma = 1, \lambda = 1$$

Краевые условия 1-ого типа на всех границах Содержание файла CalcArea.txt такое же как в Тесте №1

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 2.61644$

I	X	!	Υ	U	U* 	U* - U
	0	0.000	0.000	1.000000e+00	1.000000e+00	1.986189e-13
	1	2.500	0.000	2.928932e-01	2.928932e-01	5.817569e-14
	1 2 3	5.000	0.000	2.000000e+00	2.000000e+00	3.972378e-13
	3 į	7.500	0.000	2.928932e-01	2.928932e-01	5.817569e-14
	4	10.000	0.000	1.000000e+00	1.000000e+00	1.986189e-13
	5	0.000	2.500	-7.071068e-01	-7.071068e-01	1.404432e-13
	6	2.500	2.500	-3.168275e+00	-1.414214e+00	1.754061e+00
	7 İ	5.000	2.500	3.033424e-01	2.928932e-01	1.044913e-02
	8	7.500	2.500	-3.069831e+00	-1.414214e+00	1.655617e+00
	9	10.000	2.500	-7.071068e-01	-7.071068e-01	1.404432e-13
	10	0.000	5.000	3.061617e-16	3.061617e-16	6.079159e-29
	11	2.500	5.000	-1.716157e+00	-7.071068e-01	1.009050e+00
	12	5.000	5.000	1.000000e+00	1.000000e+00	1.986189e-13
	13	7.500	5.000	-7.071068e-01	-7.071068e-01	1.404432e-13
	14	10.000	5.000	9.184851e-16	9.184851e-16	1.824241e-28
	15	0.000	7.500	7.071068e-01	7.071068e-01	1.404432e-13
	16	2.500	7.500	-9.844394e-02	-8.881784e-16	9.844394e-02
	17	5.000	7.500	1.707107e+00	1.707107e+00	3.390621e-13
	20	0.000	10.000	-1.000000e+00	-1.000000e+00	1.986189e-13
	21	2.500	10.000	-1.707107e+00	-1.707107e+00	3.390621e-13
	22	5.000	10.000	0.000000e+00	0.000000e+00	0.000000e+00

Дробление сетки на 2

Параметры дробления

OX: n = 4 q = 1 n = 4 q = 1

OY: n = 4 q = 1 n = 4 q = 1

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{2})\| = 0.553959$

N	1	Χ	IY	ΙU	U*	U* - U
			İ			j
	0	0.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00
	2	2.500	0.000	2.928932e-01	2.928932e-01	0.000000e+00
	4	5.000	0.000	2.000000e+00	2.000000e+00	0.000000e+00
	6	7.500	0.000	2.928932e-01	2.928932e-01	0.000000e+00
	8	10.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00
	18	0.000	2.500	-7.071068e-01	-7.071068e-01	0.000000e+00
	20	2.500			-1.414214e+00	3.698884e-01
	22	5.000			2.928932e-01	3.442273e-02
	24	7.500			-1.414214e+00	3.626197e-01
	26	10.000		,	-7.071068e-01	0.000000e+00
	36	0.000	F 000	2 061617- 16	2 061617- 16	0.0000000.00
*	36	0.000		,	3.061617e-16	0.000000e+00
*	38	2.500			-7.071068e-01	1.931897e-01
	40	5.000		,	1.000000e+00	0.000000e+00
	42 44	7.500 10.000			-7.071068e-01 9.184851e-16	0.000000e+00 0.000000e+00
	·		ļ			
	54	0.000			7.071068e-01	0.000000e+00
	56	2.500		,	-8.881784e-16	7.268693e-03
	58	5.000	7.500	1.707107e+00	1.707107e+00	0.000000e+00
	72	0.000	10.000	-1.000000e+00	-1.000000e+00	0.000000e+00
	74	2.500	10.000	-1.707107e+00	-1.707107e+00	0.000000e+00
	76	5.000	10.000	i 0.000000e+00	0.000000e+00	0.000000e+00

Дробление сетки в 4 раза

Параметры дробления OX: n = 8 q = 1 n = 8 q = 1 OY: n = 8 q = 1 n = 8 q = 1

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{4})\| = 0.129679$

N		X	ΙΥ	U	U*	U* - U
	0	0.006	0.000	1.000000e+00	1.000000e+00	0.000000e+00
	4	2.500	0.000	2.928932e-01	2.928932e-01	0.000000e+0
	8	5.000	0.000	2.000000e+00	2.000000e+00	0.000000e+0
	12	7.500	0.000	2.928932e-01	2.928932e-01	0.000000e+0
	16	10.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00
	68	0.006	2.500	-7.071068e-01	-7.071068e-01	0.000000e+0
*	72	2.500	2.500	-1.500722e+00	-1.414214e+00	8.650811e-0
*	76	5.000	2.500	3.031286e-01	2.928932e-01	1.023540e-0
*	80	7.500	2.500	-1.499712e+00	-1.414214e+00	8.549818e-02
	84	10.000	2.500	-7.071068e-01	-7.071068e-01	0.000000e+00
	136	0.006	5.000	3.061617e-16	3.061617e-16	0.000000e+0
*	140	2.506			-7.071068e-01	4.378564e-02
	144	5.000			1.000000e+00	0.000000e+00
	148	,			-7.071068e-01	0.000000e+00
	152			,	9.184851e-16	0.000000e+0
	204	0.006	7.500	 7.071068e-01	7.071068e-01	0.000000e+0
*	208	2.500		,	-8.881784e-16	1.009935e-0
	212	5.000			1.707107e+00	0.000000e+0
	272	0.006	10.000	 -1.000000e+00		 0.000000e+0
	276				-1.707107e+00	0.000000e+0
	280	,		,	0.000000e+00	0.000000e+00

Оценим порядок сходимости:

$$\log_{2}\left(\frac{\|\widetilde{U}-U(h)\|}{\|\widetilde{U}-U(\frac{h}{2})\|}\right) = \frac{2.61644}{0.553959} = 2.23975$$

$$\log_{2}\left(\frac{\|\widetilde{U}-U(\frac{h}{2})\|}{\|\widetilde{U}-U(\frac{h}{4})\|}\right) = \frac{0.553959}{0.129679} = 2.09483$$

Тест №7 (Полином 1-ой степени на неравномерной сетке)

u(x,y) = x + y

 $\lambda=1$, $\gamma=1$

f(x,y) = x + y

Краевые условия 1-ого рода на всех сторонах

Содержание файла CalcArea.txt (Формат описан ниже)

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 1.3293$ e-14

0 10 5 10 10 10

Расчетная	таблица	. Символом *	отмечены внутре	нние узлы сетки		
N	X		Υ	U	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
j	1	1.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00
İ	2 3	5.000	0.000	5.000000e+00	5.000000e+00	0.000000e+00
İ	3	5.333	0.000	5.333333e+00	5.333333e+00	0.000000e+00
İ	4	6.000	0.000	6.000000e+00	6.000000e+00	0.000000e+00
İ	5	7.333	0.000	7.333333e+00	7.333333e+00	0.000000e+00
	6	10.000	0.000	1.000000e+01	1.000000e+01	0.000000e+00
	7	0.000	1.000	1.000000e+00	1.000000e+00	0.000000e+00
i *	8 ј	1.000	1.000	2.000000e+00	2.000000e+00	1.776357e-15
*	9	5.000	1.000	6.000000e+00	6.000000e+00	6.217249e-15
i *	10	5.333	1.000	6.333333e+00	6.333333e+00	4.440892e-15
*	11	6.000	1.000	7.000000e+00	7.000000e+00	2.664535e-15
*	12	7.333	1.000	8.333333e+00	8.333333e+00	i 1.776357e-15 i
1	13	10.000	1.000	1.100000e+01	1.100000e+01	0.000000e+00
	14	0.000	5.000	5.000000e+00	5.000000e+00	0.000000e+00
*	15	1.000	5.000	6.000000e+00	6.000000e+00	i 7.105427e-15 i
i	16	5.000	5.000	1.000000e+01	1.000000e+01	0.000000e+00
i	17	5.333	5.000	1.033333e+01	1.033333e+01	0.000000e+00
i	18	6.000	5.000	1.100000e+01	1.100000e+01	0.000000e+00
i	19	7.333	5.000	1.233333e+01	1.233333e+01	0.000000e+00
1	20	10.000	5.000	1.500000e+01	1.500000e+01	0.000000e+00
	21	0.000	5.333	5.333333e+00	5.333333e+00	0.000000e+00
*	22	1.000	5.333	6.333333e+00	6.333333e+00	6.217249e-15
	23	5.000	5.333	1.033333e+01	1.033333e+01	0.000000e+00
	 28	0.000	6.000	6.000000e+00	6.000000e+00	 0.000000e+00
*	29	1.000	6.000	7.000000e+00	7.000000e+00	3.552714e-15
	30	5.000	6.000	1.100000e+01	1.100000e+01	0.000000e+00
	 35	0.000	7.333	7.333333e+00	7.333333e+00	 0.000000e+00
*	36	1.000	7.333	8.333333e+00	8.333333e+00	1.776357e-15
	37	5.000	7.333	1.233333e+01	1.233333e+01	0.000000e+00
	 42	0.000	10.000	1.000000e+01	1.000000e+01	 0.000000e+00
i	43	1.000	10.000	1.100000e+01	1.100000e+01	0.000000e+00
	44	5.000	10.000	1.500000e+01	1.500000e+01	0.000000e+00

Тест №9 (Полином 2-ой степени на неравномерной сетке)

$$u(x,y) = x^2+y^2$$

 $\lambda=1, \gamma=1$
 $f(x,y) = -4+x^2+y^2$

Краевые условия 1-ого рода на всех границах Содержание файла CalcArea.txt такое же как в Тесте №8

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 1.81243e-13$

0			Символом *				
1	N 	X X		Y 	U	U*	U* - U
2		0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
3			1.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00
4			5.000	0.000	2.500000e+01	2.500000e+01	0.000000e+0
5 7.333 0.000 5.377778e+01 5.377778e+01 0.000000 6 10.000 0.000 1.000000e+02 1.000000e+02 0.000000 7 0.000 1.000 1.000000e+00 1.000000e+00 0.00000e+00 * 8 1.000 1.000 2.000000e+00 2.000000e+00 2.39882 * 9 5.000 1.000 2.600000e+01 2.600000e+01 9.237056 * 10 5.333 1.000 2.944444e+01 2.944444e+01 7.460699 * 11 6.000 1.000 3.700000e+01 3.700000e+01 2.842171 * 12 7.333 1.000 5.477778e+01 5.477778e+01 7.105427 13 10.000 5.000 5.00000e+01 2.500000e+01 9.947598 * 15 1.000 5.000 2.500000e+01 2.500000e+01 9.947598 * 15 1.000 5.000 5.000000e+01 5.000000e+01 0.00000e+01 0.00000e+01		3	5.333	0.000	2.844444e+01	2.844444e+01	0.000000e+00
6			6.000	0.000	3.600000e+01	3.600000e+01	0.000000e+0
7 0.000 1.000 1.00000e+00 1.00000e+00 0.00000e * 8 1.000 1.000 2.000000e+00 2.00000e+00 2.398082 * 9 5.000 1.000 2.600000e+01 2.600000e+01 9.237056 * 10 5.333 1.000 2.944444e+01 2.944444e+01 7.460699 * 11 6.000 1.000 3.700000e+01 5.477778e+01 7.105427 13 10.000 1.000 1.010000e+02 1.010000e+02 0.000000e * 14 0.000 5.000 2.50000e+01 2.500000e+01 9.947598 16 5.000 5.000 2.600000e+01 2.600000e+01 9.947598 16 5.000 5.000 5.0000 5.00000e+01 5.00000e+01 0.000000 17 5.333 5.000 5.344444e+01 5.344444e+01 0.000000 18 6.000 5.000 5.344444e+01 5.344444e+01 0.000000 18 6.000 5.000 6.100000e+01 6.100000e+01 0.000000 19 7.333 5.000 7.877778e+01 7.877778e+01 0.000000 19 7.333 5.000 7.877778e+01 7.877778e+01 0.0000000 20 10.000 5.333 2.84444e+01 2.84444e+01 0.000000 * 22 1.000 5.333 2.84444e+01 2.54444e+01 7.815970 23 5.000 5.333 5.34444e+01 2.54444e+01 7.815970 23 5.000 6.000 6.100000e+01 5.34444e+01 0.0000000 * 22 1.000 5.333 5.34444e+01 5.34444e+01 0.0000000 * 23 5.000 6.000 6.100000e+01 5.34444e+01 0.0000000 * 24 0.000 6.000 3.700000e+01 5.34444e+01 0.0000000 * 25 0.000 6.000 6.100000e+01 5.34444e+01 0.0000000000000000000000000000000000		5	7.333	0.000	5.377778e+01	5.377778e+01	0.000000e+00
* 8 1.000 1.000 2.000000e+00 2.000000e+00 2.398082 * 9 5.000 1.000 2.600000e+01 2.600000e+01 9.237056 * 10 5.333 1.000 2.944444e+01 2.94444e+01 7.460699 * 11 6.000 1.000 3.700000e+01 3.700000e+01 2.842171 * 12 7.333 1.000 5.477778e+01 5.477778e+01 7.105427 13 10.000 1.000 1.010000e+02 1.010000e+02 0.000000 * 15 1.000 5.000 2.500000e+01 2.500000e+01 0.000000 * 15 1.000 5.000 2.600000e+01 2.600000e+01 0.900000 17 5.333 5.000 5.344444e+01 5.344444e+01 0.000000 18 6.000 5.000 6.100000e+01 6.100000e+01 0.000000 19 7.333 5.000 7.877778e+01 7.877778e+01 0.000000 20 10.000 5.333 2.84444e+01 2.84444e+01 0.000000 * 22 1.000 5.333 2.94444e+01 5.34444e+01 7.815970 23 5.000 5.333 2.94444e+01 5.34444e+01 0.000000 * 22 1.000 5.333 2.94444e+01 5.34444e+01 0.000000 * 22 1.000 5.333 2.94444e+01 5.34444e+01 0.000000 * 29 1.000 6.000 3.700000e+01 5.34444e+01 0.000000 * 29 1.000 6.000 3.700000e+01 5.34444e+01 0.000000 * 29 1.000 6.000 3.700000e+01 5.34444e+01 0.000000 * 29 1.000 6.000 3.700000e+01 5.377778e+01 0.0000000 * 29 1.000 7.333 5.377778e+01 5.377778e+01 0.0000000 * 35 0.000 7.333 5.377778e+01 5.377778e+01 7.105427 37 5.000 7.333 7.877778e+01 7.877778e+01 7.105427 37 5.000 7.333 7.877778e+01 7.877778e+01 7.105427 37 5.000 7.333 7.877778e+01 7.877778e+01 0.0000000 42 0.000 10.000 1.000000e+02 1.000000e+02 0.000000000000000000000000000000000		6	10.000	0.000	1.000000e+02	1.000000e+02	0.000000e+00
* 9 5.000 1.000 2.600000e+01 2.600000e+01 9.237056 * 10 5.333 1.000 2.944444e+01 2.944444e+01 7.466099 * 11 6.000 1.000 3.700000e+01 3.700000e+01 2.842171 * 12 7.333 1.000 5.477778e+01 5.477778e+01 7.105427 13 10.000 1.000 1.010000e+02 1.010000e+02 0.000000 * 14 0.000 5.000 2.500000e+01 2.600000e+01 0.000000 * 15 1.000 5.000 2.500000e+01 2.600000e+01 0.900000 16 5.000 5.000 5.00000e+01 5.00000e+01 0.000000 17 5.333 5.000 5.344444e+01 5.34444e+01 0.000000 18 6.000 5.000 6.100000e+01 6.100000e+01 0.000000 19 7.333 5.000 7.877778e+01 7.877778e+01 0.000000 20 10.000 5.000 1.250000e+02 1.250000e+02 0.000000 * 22 1.000 5.333 2.84444e+01 2.84444e+01 7.815970 23 5.000 5.333 5.34444e+01 5.34444e+01 0.000000 * 22 1.000 5.333 5.34444e+01 5.34444e+01 0.000000 * 22 1.000 5.333 5.34444e+01 5.34444e+01 0.000000 * 22 1.000 5.333 5.34444e+01 5.34444e+01 0.000000 * 23 5.000 6.000 3.60000e+01 3.700000e+01 0.000000 * 29 1.000 6.000 3.60000e+01 5.377778e+01 0.000000 * 29 1.000 6.000 3.60000e+01 5.377778e+01 0.0000000 * 29 1.000 6.000 3.700000e+01 5.377778e+01 0.0000000 * 29 1.000 6.000 3.700000e+01 5.377778e+01 0.000000000000000000000000000000000		7	0.000	1.000	1.000000e+00	1.000000e+00	0.000000e+00
* 10	*		1.000	1.000	2.000000e+00	2.000000e+00	2.398082e-1
* 11 6.000 1.000 5.477778e+01 5.477778e+01 7.105427 13 10.000 5.000 1.01000e+02 1.010000e+02 0.000000 14 0.000 5.000 2.500000e+01 2.500000e+01 9.947598 15 1.000 5.000 2.500000e+01 2.600000e+01 9.947598 16 5.000 5.000 5.0000 5.00000e+01 5.000000e+01 0.000000 17 5.333 5.000 5.344444e+01 5.34444e+01 0.000000 18 6.000 5.000 6.100000e+01 6.100000e+01 0.000000 19 7.333 5.000 7.877778e+01 7.877778e+01 0.000000 20 10.000 5.333 2.84444e+01 2.84444e+01 0.000000 * 22 1 0.000 5.333 2.84444e+01 2.84444e+01 7.815970 23 5.000 5.333 2.94444e+01 5.34444e+01 0.0000000 * 22 1.000 5.333 2.94444e+01 5.34444e+01 0.0000000 28 0.000 6.000 3.60000e+01 3.60000e+01 0.000000 29 1.000 5.333 5.34444e+01 5.34444e+01 0.0000000 20 1.000 5.333 5.34444e+01 5.34444e+01 0.0000000 21 0.000 5.333 5.34444e+01 5.34444e+01 0.0000000 22 1.000 5.333 5.34444e+01 5.34444e+01 0.0000000000000000000000000000000000					2.600000e+01	2.600000e+01	9.237056e-1
* 12	*		5.333	1.000	2.944444e+01	2.944444e+01	7.460699e-1
13	*		6.000	1.000	3.700000e+01		2.842171e-1
* 14		12	7.333	1.000	5.477778e+01	5.477778e+01	7.105427e-1
* 15		13	10.000	1.000	1.010000e+02	1.010000e+02	0.000000e+0
16 5.000 5.000 5.000000e+01 5.000000e+01 0.000000 17 5.333 5.000 5.344444e+01 5.344444e+01 0.000000 18 6.000 5.000 6.100000e+01 6.10000e+01 0.000000 19 7.333 5.000 7.877778e+01 7.877778e+01 0.000000 20 10.000 5.000 1.250000e+02 1.250000e+02 0.000000 21 0.000 5.333 2.84444e+01 2.84444e+01 7.815970 22 1.000 5.333 2.94444e+01 2.94444e+01 7.815970 23 5.000 5.333 5.34444e+01 5.34444e+01 0.000000 * 22 1.000 6.000 3.600000e+01 3.600000e+01 0.000000 * 29 1.000 6.000 3.700000e+01 3.700000e+01 3.552714 30 5.000 6.000 6.100000e+01 6.100000e+01 0.000000 * 29 1.000 6.000 3.700000e+01 5.377778e+01 0.000000 * 35 0.000 7.333 5.377778e+01 5.377778e+01 0.0000000 * 36 1.000 7.333 5.477778e+01 5.477778e+01 7.105427 37 5.000 7.333 5.477778e+01 5.477778e+01 0.0000000 43 1.000 10.000 1.000000e+02 1.000000e+02 0.0000000 43 1.000 10.000 1.0100000e+02 1.010000e+02 0.000000000000000000000000000000000		14	0.000	5.000	2.500000e+01	2.500000e+01	0.000000e+0
17 5.333 5.000 5.344444e+01 5.344444e+01 0.000000 18 6.000 5.000 6.100000e+01 6.10000e+01 0.000000 19 7.333 5.000 7.877778e+01 7.877778e+01 0.000000 20 10.000 5.000 1.250000e+02 1.250000e+02 0.000000 21 0.000 5.333 2.84444e+01 2.84444e+01 0.000000 22 1.000 5.333 2.94444e+01 2.94444e+01 7.815970 23 5.000 5.333 5.34444e+01 5.34444e+01 0.000000 3.5000 5.333 5.34444e+01 5.34444e+01 0.000000 3.5000 6.000 3.600000e+01 3.600000e+01 3.552714 30 5.000 6.000 3.700000e+01 3.700000e+01 3.552714 30 5.000 6.000 6.100000e+01 6.100000e+01 0.000000 3.5000 6.000 6.100000e+01 5.377778e+01 0.000000 3.5000 7.333 5.377778e+01 5.377778e+01 7.105427 37 5.000 7.333 5.477778e+01 5.477778e+01 7.105427 37 5.000 7.333 7.877778e+01 7.877778e+01 0.000000 43 1.000 10.000 1.000000e+02 1.000000e+02 0.000000	*		1.000	5.000	2.600000e+01	2.600000e+01	9.947598e-1
18 6.000 5.000 6.100000e+01 6.100000e+01 0.00000e 19 7.333 5.000 7.877778e+01 7.877778e+01 0.000000e 20 10.000 5.000 1.250000e+02 1.250000e+02 0.00000e * 22 1.000 5.333 2.844444e+01 2.944444e+01 7.815970e 23 5.000 5.333 5.344444e+01 5.344444e+01 0.00000e * 29 1.000 6.000 3.600000e+01 3.600000e+01 3.552714 30 5.000 6.000 3.700000e+01 6.100000e+01 0.00000e * 36 1.000 7.333 5.377778e+01 5.377778e+01 7.105427 37 5.000 7.333 5.477778e+01 5.477778e+01 7.105427 37 5.000 7.333 7.877778e+01 7.877778e+01 0.000000e 42 0.000 10.000 1.000000e+02 1.000000e+02 0.000000e 43 1.000 10.000 1.010000e+02 1.010000e+02 0.000000e		16	5.000	5.000	5.000000e+01	5.000000e+01	0.000000e+00
19		17	5.333	5.000	5.344444e+01	5.34444e+01	0.000000e+0
20			6.000	5.000	6.100000e+01	6.100000e+01	0.000000e+00
21			7.333	5.000	7.877778e+01	7.877778e+01	0.000000e+00
* 22		20	10.000	5.000	1.250000e+02	1.250000e+02	0.000000e+0
23 5.000 5.333 5.344444e+01 5.344444e+01 0.000000 28 0.000 6.000 3.600000e+01 3.60000e+01 0.000000 * 29 1.000 6.000 3.700000e+01 3.700000e+01 3.552714 30 5.000 6.000 6.100000e+01 6.100000e+01 0.000000 * 35 0.000 7.333 5.377778e+01 5.377778e+01 0.0000000 * 36 1.000 7.333 5.477778e+01 5.477778e+01 7.105427 37 5.000 7.333 7.877778e+01 7.877778e+01 0.0000000 42 0.000 10.000 1.000000e+02 1.000000e+02 0.0000000000000000000000000000000000			0.000	5.333		2.844444e+01	0.000000e+00
28	*		1.000	5.333		2.94444e+01	7.815970e-1
* 29 1.000 6.000 3.700000e+01 3.700000e+01 3.552714 30 5.000 6.000 6.100000e+01 6.100000e+01 0.000000 35 0.000 7.333 5.377778e+01 5.377778e+01 0.000000 * 36 1.000 7.333 5.477778e+01 5.477778e+01 7.105427 37 5.000 7.333 7.877778e+01 7.877778e+01 0.0000000 42 0.000 10.000 1.000000e+02 1.000000e+02 0.0000000 43 1.000 10.000 1.010000e+02 1.010000e+02 0.0000000		23	5.000	5.333	5.34444e+01	5.34444e+01	0.000000e+00
30 5.000 6.000 6.100000e+01 6.100000e+01 0.000000000000000000000000000000000			0.000	6.000	3.600000e+01	3.600000e+01	0.000000e+00
35 0.000 7.333 5.377778e+01 5.377778e+01 0.000000 * 36 1.000 7.333 5.477778e+01 5.477778e+01 7.105427 37 5.000 7.333 7.877778e+01 7.877778e+01 0.000000 42 0.000 10.000 1.000000e+02 1.000000e+02 43 1.000 10.000 1.010000e+02 1.010000e+02 0.000000	*	29	1.000	6.000	3.700000e+01	3.700000e+01	3.552714e-1
* 36 1.000 7.333 5.477778e+01 5.477778e+01 7.105427 37 5.000 7.333 7.877778e+01 7.877778e+01 0.000000 		30	5.000	6.000	6.100000e+01	6.100000e+01	0.000000e+0
37 5.000 7.333 7.877778e+01 7.877778e+01 0.000000 		35					0.000000e+0
42 0.000 10.000 1.000000e+02 1.000000e+02 0.000000 43 1.000 10.000 1.010000e+02 1.010000e+02 0.000000	*						7.105427e-1
43 1.000 10.000 1.010000e+02 1.010000e+02 0.000000		37	5.000	7.333	7.877778e+01	7.877778e+01	0.000000e+0
		42	0.000	10.000	1.000000e+02	1.000000e+02	0.000000e+00
44		43	1.000	10.000	1.010000e+02	1.010000e+02	0.000000e+0
44 5.000 10.000 1.250000e+02 1.250000e+02 0.000000		44	5.000	10.000	1.250000e+02	1.250000e+02	0.000000e+00

Тест №10 (Полином третьей степени на не равномерной сетке) $u(x,y) = x^3 + y^3$

$$u(x,y) = x^3+y^3$$

 $\lambda=1, \gamma=1$
 $f(x,y) = -6x-6y+x^3+y^3$

Краевые условия 1-ого рода на всех границах

Содержание файла CalcArea.txt такое же как в Тесте №8

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 11.159$

0 1 2 3 4 4 5 6 6 7 7 8 8 8 9 8 10 8 11 8 12 13 13 14 8 15 16 17 18 19 20 20 21 8 22 23 28 8 29 30	0.000 1.000 5.000 5.333 6.000 7.333 10.000 1.000 5.333 6.000 7.333 10.000 5.333 10.000 5.000 7.333	0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 5.000	0.000000e+00 1.000000e+00 1.250000e+02 1.517037e+02 2.160000e+02 3.943704e+02 1.000000e+03 	0.000000e+00 1.000000e+00 1.250000e+02 1.517037e+02 2.160000e+02 3.943704e+02 1.000000e+03 	0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(7.933213e-0(2.175215e+0(3.804387e+0(4.893727e+0(0.000000e+0(
1 2 3 4 5 6 6 7 7 8 8 9 8 10 8 11 8 15 16 17 18 19 20 20 21 8 22 23 28 8 29	1.000 5.000 5.333 6.000 7.333 10.000 0.000 1.000 5.333 6.000 7.333 10.000 0.000 1.000	0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 5.000	1.250000e+02 1.517037e+02 2.160000e+02 3.943704e+02 1.000000e+03 	1.250000e+02 1.517037e+02 2.160000e+02 3.943704e+02 1.000000e+03 	0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(6.079332e+0(7.933213e-0) 2.175215e+0(3.804387e+0(4.893727e+0(
2 3 4 5 6 6 7 7 8 8 9 8 10 11 12 13 14 15 16 16 17 18 19 20 20 21 8 22 23 28 8 29	5.333 6.000 7.333 10.000 0.000 1.000 5.333 6.000 7.333 10.000 0.000 1.000	0.000 0.000 0.000 0.000 	1.517037e+02 2.160000e+02 3.943704e+02 1.000000e+03 	1.517037e+02 2.160000e+02 3.943704e+02 1.000000e+03 	0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(0.000000e+0(6.079332e+0(7.933213e-0) 2.175215e+0(3.804387e+0(4.893727e+0(
4 5 6 7 7 8 8 9 8 10 11 12 13 14 15 16 16 17 18 19 20 20 21 8 22 23 28 8 29	6.000 7.333 10.000 0.000 1.000 5.000 5.333 6.000 7.333 10.000 0.000 1.000	0.000 0.000 0.000 	2.160000e+02 3.943704e+02 1.000000e+03 1.000000e+00 8.079332e+00 1.267933e+02 1.548789e+02 2.208044e+02 4.002641e+02 1.001000e+03	2.160000e+02 3.943704e+02 1.000000e+03 	0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 6.079332e+00 7.933213e-00 2.175215e+00 3.804387e+00 4.893727e+00
4 5 6 7 7 8 8 9 10 11 12 13 14 15 16 17 17 18 19 20 20 21 22 23 28	7.333 10.000 0.000 1.000 5.000 5.333 6.000 7.333 10.000	0.000 0.000 	3.943704e+02 1.000000e+03 1.000000e+00 8.079332e+00 1.267933e+02 1.548789e+02 2.208044e+02 4.002641e+02 1.001000e+03	3.943704e+02 1.000000e+03 1.000000e+00 2.000000e+00 1.260000e+02 1.527037e+02 2.170000e+02 3.953704e+02 1.001000e+03	0.000000e+00 0.000000e+00 0.000000e+00 6.079332e+00 7.933213e-00 2.175215e+00 3.804387e+00 4.893727e+00
6 7 7 8 8 9 9 9 9 9 9 9 9	10.000	0.000 	1.000000e+03 1.000000e+00 8.079332e+00 1.267933e+02 1.548789e+02 2.208044e+02 4.002641e+02 1.001000e+03	1.000000e+03 1.000000e+00 2.000000e+00 1.260000e+02 1.527037e+02 2.170000e+02 3.953704e+02 1.001000e+03	0.000000e+0(0.000000e+0(6.079332e+0(7.933213e-0) 2.175215e+0(3.804387e+0(4.893727e+0(
7	0.000 1.000 5.000 5.333 6.000 7.333 10.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 5.000	1.000000e+00 8.079332e+00 1.267933e+02 1.548789e+02 2.208044e+02 4.002641e+02 1.001000e+03	1.000000e+00 2.000000e+00 1.260000e+02 1.527037e+02 2.170000e+02 3.953704e+02 1.001000e+03	0.000000e+0(6.079332e+0(7.933213e-0) 2.175215e+0(3.804387e+0(4.893727e+0(
* 8 * 9 * 10 * 11 * 12 13 14 * 15 16 17 18 19 20 21 * 22 23 28 * 29	1.000 5.000 5.333 6.000 7.333 10.000 	1.000 1.000 1.000 1.000 1.000 1.000	8.079332e+00 1.267933e+02 1.548789e+02 2.208044e+02 4.002641e+02 1.001000e+03	2.000000e+00 1.260000e+02 1.527037e+02 2.170000e+02 3.953704e+02 1.001000e+03	6.079332e+00 7.933213e-00 2.175215e+00 3.804387e+00 4.893727e+00
9 10 11 12 12 13 13 14 15 16 17 18 19 20 21 22 23 28 29	5.000 5.333 6.000 7.333 10.000 0.000 1.000	1.000 1.000 1.000 1.000 1.000 	1.267933e+02 1.548789e+02 2.208044e+02 4.002641e+02 1.001000e+03	1.260000e+02 1.527037e+02 2.170000e+02 3.953704e+02 1.001000e+03	7.933213e-0 2.175215e+0 3.804387e+0 4.893727e+0
10 11 12 13 14 15 16 17 18 19 20 21 22 23 23	5.333 6.000 7.333 10.000 0.000 1.000	1.000 1.000 1.000 1.000 	1.548789e+02 2.208044e+02 4.002641e+02 1.001000e+03	1.527037e+02 2.170000e+02 3.953704e+02 1.001000e+03	2.175215e+00 3.804387e+00 4.893727e+00
11 12 13 14 15 16 17 18 19 20 21 22 23 22 23	6.000 7.333 10.000 0.000 1.000	1.000 1.000 1.000 	2.208044e+02 4.002641e+02 1.001000e+03	2.170000e+02 3.953704e+02 1.001000e+03	3.804387e+0 4.893727e+0
12 13 14 15 16 17 18 19 20 21 22 23 23	7.333 10.000 0.000 1.000	1.000 1.000 	4.002641e+02 1.001000e+03	3.953704e+02 1.001000e+03	4.893727e+0
13 14 15 16 17 18 19 20 21 22 23 23	10.000 0.000 1.000	1.000 	1.001000e+03	1.001000e+03	
14 15 16 17 18 19 20 21 22 23 23	0.000 1.000	5.000			0.000000e+0
15 16 17 18 19 20 21 22 23 23	1.000		1.250000e+02	1 250000	
16 17 18 19 20 21 22 23 23 28		5 0001		1.250000e+02	0.000000e+0
17 18 19 20 21 22 23 23 28	5 000		1.267933e+02	1.260000e+02	7.933213e-0
18 19 20 21 22 23 23 28 29		5.000	2.500000e+02	2.500000e+02	0.000000e+0
19 20 	5.333	5.000	2.767037e+02	2.767037e+02	0.000000e+0
20 21 22 23 28 28	6.000	5.000	3.410000e+02	3.410000e+02	0.000000e+0
21 22 23 23 28 29	7.333	5.000	5.193704e+02	5.193704e+02	0.000000e+0
22 23 	10.000	5.000	1.125000e+03	1.125000e+03 	0.000000e+0
23 28 29	0.000	5.333	1.517037e+02	1.517037e+02	0.000000e+0
28 29	1.000	5.333	1.548789e+02	1.527037e+02	2.175215e+0
29	5.000	5.333	2.767037e+02	2.767037e+02 	0.000000e+0
	0.000	6.000	2.160000e+02	2.160000e+02	0.000000e+0
301	1.000	6.000	2.208044e+02	2.170000 c +02	3.804387e+0
	5.000	6.000	3.410000e+02	3.410000e+02 	0.000000e+0
35	0.000	7.333	3.943704e+02	3.943704e+02	0.000000e+0
36	1.000	7.333	4.002641e+02	3.953704e+02	4.893727e+0
37	5.000	7.333	5.193704e+02	5.193704e+02 	0.000000e+0
42	0.000	10.000	1.000000e+03	1.000000e+03	0.000000e+0
43 44	0.000 1.000	10.000	1.001000e+03 1.125000e+03	1.001000e+03 1.125000e+03	0.000000e+0

Произведем дробление

Дробление сетки в 2 раза

Параметры дробления

OX: n = 4 q = 2 n = 8 q = 1.41421OY: n = 4 q = 2 n = 8 q = 1.41421

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{2})\| = 2.64744$

Расчет 	ная таолица.	Символом * отме	чены внутрен	ние узлы сетки				
N	X	ĮΥ	ļu		U*	U* - U		
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00		
	2	1.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00		
	4	5.000	0.000	1.250000e+02	1.250000e+02	0.000000e+00		
	6	5.333	0.000	1.517040e+02	1.517040e+02	0.000000e+00		
	8	6.000	0.000	2.160009e+02	2.160009e+02	0.000000e+00		
	10	7.333	0.000	3.943720e+02	3.943720e+02	0.000000e+00		
	12	10.000	0.000	1.000000e+03	1.000000e+03	0.000000e+00		
	26	0.000	1.000	1.000000e+00	1.000000e+00	0.000000e+00		
k	28	1.000	1.000	3.401116e+00	2.000000e+00	1.401116e+00		
ķ	30	5.000	1.000	1.253343e+02	1.260000e+02	6.656821e-0		
k	32	5.333	1.000	1.526998e+02	1.527040e+02	4.221545e-0		
ķ	34	6.000	1.000	2.177395e+02	2.170009e+02	7.386540e-0		
k	36	7.333	1.000	3.966106e+02	3.953720e+02	1.238606e+0		
	38	10.000	1.000	1.001000e+03	1.001000e+03	0.000000e+0		
	52	0.000	5.000	1.250000e+02	1.250000e+02	0.000000e+0		
	54	1.000	5.000	1.253343e+02	1.260000e+02	6.656821e-0		
	56	5.000	5.000	2.500000e+02	2.500000e+02	0.000000e+0		
	58	5.333	5.000	2.767040e+02	2.767040e+02	0.000000e+0		
	60	6.000	5.000	3.410009e+02	3.410009e+02	0.000000e+0		
	62	7.333	5.000	5.193720e+02	5.193720e+02	0.000000e+0		
	64	10.000	5.000	1.125000e+03	1.125000e+03	0.000000e+0		
	78	0.000	5.333	1.517040e+02	1.517040e+02	0.000000e+0		
¢	80	1.000	5.333	1.526998e+02	1.527040e+02	4.221545e-03		
	82	5.000	5.333	2.767040e+02	2.767040e+02	0.000000e+0		
	104	0.000	6.000	2.160009e+02	2.160009e+02	0.000000e+0		
k	106	1.000	6.000	2.177395e+02	2.170009e+02	7.386540e-0		
	108	5.000	6.000	3.410009e+02	3.410009e+02	0.000000e+0		
	130	0.000	7.333	3.943720e+02	3.943720e+02	0.000000e+0		
ķ	132	1.000	7.333	3.966106e+02	3.953720e+02	1.238606e+0		
	134	5.000	7.333	5.193720e+02	5.193720e+02	0.000000e+0		
	156	0.000	10.000	1.000000e+03	1.000000e+03	0.000000e+00		
	158	1.000	10.000	1.001000e+03	1.001000e+03	0.000000e+0		
	160	5.000	10.000	1.125000e+03	1.125000e+03	0.000000e+0		

Дробление сетки в 4 раза

Параметры дробления

ОХ: n = 8 q = 1.41421 n = 16 q = 1.18921 ОУ: n = 8 q = 1.41421 n = 16 q = 1.18921 Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{4})\| = 0.868288$

١	X	ļΥ		U	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+0
	4	1.000	0.000	1.000024e+00	1.000024e+00	0.000000e+0
	8	5.000	0.000	1.250000e+02	1.250000e+02	0.000000e+0
	12	5.333	0.000	1.517031e+02	1.517031e+02	0.000000e+0
	16	6.000	0.000	2.159983e+02	2.159983e+02	0.000000e+0
	20	7.333	0.000	3.943673e+02	3.943673e+02	0.000000e+0
	24	10.000	0.000	1.000000e+03	1.000000e+03	0.000000e+0
	100	0.000	1.000	1.000024e+00	1.000024e+00	0.000000e+0
	104	1.000	1.000	2.347466e+00	2.000048e+00	3.474176e-0
	108	5.000	1.000	1.255741e+02	1.260000e+02	4.259418e-0
	112	5.333	1.000	1.525364e+02	1.527031e+02	1.666810e-0
	116	6.000	1.000	2.171168e+02	2.169983e+02	1.184223e-0
	120	7.333	1.000	3.956729e+02	3.953673e+02	3.055809e-0
	124	10.000	1.000	1.001000e+03	1.001000e+03	0.000000e+0
	200	0.000	5.000	1.250000e+02	1.250000e+02	0.000000e+0
	204	1.000	5.000	1.255741e+02	1.260000e+02	4.259418e-0
	208	5.000	5.000	2.500000e+02	2.500000e+02	0.000000e+0
	212	5.333	5.000	2.767031e+02	2.767031e+02	0.000000e+0
	216	6.000	5.000	3.409983e+02	3.409983e+02	0.000000e+0
	220	7.333	5.000	5.193673e+02	5.193673e+02	0.000000e+0
	224	10.000	5.000	1.125000e+03	1.125000e+03	0.000000e+0
	300	0.000	5.333	1.517031e+02	1.517031e+02	0.000000e+0
	304	1.000	5.333	1.525364e+02	1.527031e+02	1.666810e-0
	308	5.000	5.333	2.767031e+02	2.767031e+02	0.000000e+0
	400	0.000	6.000	2.159983e+02	2.159983e+02	0.000000e+0
	404	1.000	6.000	2.171168e+02	2.169983e+02	1.184223e-0
	408	5.000	6.000	3.409983e+02	3.409983e+02	0.000000e+0
	500	0.000	7.333	3.943673e+02	3.943673e+02	0.000000e+0
	504	1.000	7.333	3.956729e+02	3.953673e+02	3.055809e-0
	508	5.000	7.333	5.193673e+02	5.193673e+02	0.000000e+0
	600	0.000	10.000	1.000000e+03	1.000000e+03	0.000000e+0
	604	1.000	10.000	1.001000e+03	1.001000e+03	0.000000e+0
	608	5.000	10.000	1.125000e+03	1.125000e+03	0.000000e+0

Дробление сетки в 8 раз

Параметры дробления

OX: n = 16 q = 1.18921 n = 32 q = 1.09051OY: n = 16 q = 1.18921 n = 32 q = 1.09051

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{8})\| = 0.276315$

N	X		Y L	J	U*	U* - U
		0.000		0.0000000.00	0.000000.00	
	0	0.000 1.000	0.000 0.000	0.000000e+00 9.999534e-01	0.000000e+00 9.999534e-01	0.000000e+00
	8 16	5.000	0.000	1.250000e+02	1.250000e+02	1.110223e-16 1.421085e-14
	24	5.333	0.000	1.517026e+02	1.517026e+02	2.842171e-14
	32	6.000	0.000	2.159971e+02	2.159971e+02	2.842171e-14
	40	7.333	0.000	3.943651e+02	3.943651e+02	5.684342e-14
	48	10.000	0.000	1.000000e+03	1.000000e+03	1.136868e-13
	392	0.000	1.000	9.999534e-01	9.999534e-01	1.110223e-16
	400	1.000	1.000	2.086894e+00	1.999907e+00	8.698734e-02
	408	5.000	1.000	1.258471e+02	1.260000e+02	1.528557e-01
	416	5.333	1.000	1.526311e+02	1.527026e+02	7.143920e-02
	424	6.000	1.000	2.170147e+02	2.169971e+02	1.760115e-02
	432	7.333	1.000	3.954400e+02	3.953651e+02	7.492200e-02
	440	10.000	1.000	1.001000e+03	1.001000e+03	1.136868e-13
	784	0.000	5.000	1.250000e+02	1.250000e+02	1.421085e-14
	792	1.000	5.000	1.258471e+02	1.260000e+02	1.528557e-01
	800	5.000	5.000	2.500000e+02	2.500000e+02	2.842171e-14
	808	5.333	5.000	2.767026e+02	2.767026e+02	5.684342e-14
	816	6.000	5.000	3.409971e+02	3.409971e+02	5.684342e-14
	824	7.333	5.000	5.193651e+02	5.193651e+02	1.136868e-13
	832 	10.000	5.000 -	1.125000e+03	1.125000e+03	2.273737e-13
	1176	0.000	5.333	1.517026e+02	1.517026e+02	2.842171e-14
	1184	1.000	5.333	1.526311e+02	1.527026e+02	7.143920e-02
	1192	5.000	5.333	2.767026e+02	2.767026e+02	5.684342e-14
	1568	0.000	6.000	2.159971e+02	2.159971e+02	2.842171e-14
	1576	1.000	6.000	2.170147e+02	2.169971e+02	1.760115e-02
	1584	5.000	6.000	3.409971e+02	3.409971e+02	5.684342e-14
	1960	0.000	7.333	3.943651e+02	3.943651e+02	5.684342e-14
	1968	1.000	7.333	3.954400e+02	3.953651e+02	7.492200e-02
	1976	5.000	7.333 	5.193651e+02	5.193651e+02	1.136868e-13
	2352	0.000	10.000	1.000000e+03	1.000000e+03	1.136868e-13
	2360	1.000	10.000	1.001000e+03	1.001000e+03	1.136868e-13
	2368	5.000	10.000	1.125000e+03	1.125000e+03	2.273737e-13

Дробление сетки в 16 раз

Параметры дробления

OX: n = 32 q = 1.09051 n = 64 q = 1.04427OY: n = 32 q = 1.09051 n = 64 q = 1.04427

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{16})\| = 0.07604$

k k k k	0 16 32 48 64 80 96	0.000 1.000 5.000 5.333 6.000 7.333 10.000 1.000 5.000 5.333	0.000 0.000 0.000 0.000 0.000 0.000 1.000	0.000000e+00 9.999202e-01 1.250000e+02 1.517074e+02 2.160100e+02 3.943887e+02 1.000000e+03	0.000000e+00 9.999202e-01 1.250000e+02 1.517074e+02 2.160100e+02 3.943887e+02 1.000000e+03	0.000000e+00 1.110223e-16 1.421085e-14 2.842171e-14 2.842171e-14 5.684342e-14 1.136868e-13
k k	32 48 64 80 96 	5.000 5.333 6.000 7.333 10.000 0.000 1.000 5.000	0.000 0.000 0.000 0.000 0.000 1.000	1.250000e+02 1.517074e+02 2.160100e+02 3.943887e+02 1.000000e+03	1.250000e+02 1.517074e+02 2.160100e+02 3.943887e+02 1.000000e+03	1.421085e-14 2.842171e-14 2.842171e-14 5.684342e-14
k k	48 64 80 96 	5.333 6.000 7.333 10.000 0.000 1.000 5.000	0.000 0.000 0.000 0.000 1.000	1.517074e+02 2.160100e+02 3.943887e+02 1.000000e+03	1.517074e+02 2.160100e+02 3.943887e+02 1.000000e+03	2.842171e-14 2.842171e-14 5.684342e-14
k k	48 64 80 96 	6.000 7.333 10.000 0.000 1.000 5.000	0.000 0.000 0.000 1.000	2.160100e+02 3.943887e+02 1.000000e+03	2.160100e+02 3.943887e+02 1.000000e+03	2.842171e-14 5.684342e-14
k k	80 96 1552 1568 1584 1600 1616	7.333 10.000 0.000 1.000 5.000	0.000 0.000 1.000	3.943887e+02 1.000000e+03	3.943887e+02 1.000000e+03	5.684342e-14
	96 1552 1568 1584 1600 1616	10.000 0.000 1.000 5.000	0.000 1.000	1.000000e+03	1.000000e+03	
	1552 1568 1584 1600 1616	0.000 1.000 5.000	1.000			1.136868e-13
k k	1568 1584 1600 1616	1.000 5.000		9.999202e-01		
	1584 1600 1616	5.000	1.000		9.999202e-01	1.110223e-16
	1600 1616			2.021605e+00	1.999840e+00	2.176473e-02
	1616	5 3331	1.000	1.259568e+02	1.259999e+02	4.308763e-02
			1.000	1.526863e+02	1.527074e+02	2.107024e-02
	1632	6.000	1.000	2.170130e+02	2.170099e+02	3.106417e-03
		7.333	1.000	3.954071e+02	3.953886e+02	1.854836e-02
	1648	10.000	1.000	1.001000e+03	1.001000e+03	1.136868e-13
	3104	0.000	5.000	1.250000e+02	1.250000e+02	1.421085e-14
	3120	1.000	5.000	1.259568e+02	1.259999e+02	4.308763e-02
	3136	5.000	5.000	2.500000e+02	2.500000e+02	2.842171e-14
	3152	5.333	5.000	2.767074e+02	2.767074e+02	5.684342e-14
	3168	6.000	5.000	3.410100e+02	3.410100e+02	5.684342e-14
	3184	7.333	5.000	5.193887e+02	5.193887e+02	1.136868e-13
	3200	10.000	5.000	1.125000e+03	1.125000e+03	2.273737e-13
	4656	0.000	5.333	1.517074e+02	1.517074e+02	2.842171e-14
	4672	1.000	5.333	1.526863e+02	1.527074e+02	2.107024e-02
	4688	5.000	5.333	2.767074e+02	2.767074e+02	5.684342e-14
	6208	0.000	6.000	2.160100e+02	2.160100e+02	2.842171e-14
	6224	1.000	6.000	2.170130e+02	2.170099e+02	3.106417e-03
	6240	5.000	6.000	3.410100e+02	3.410100e+02	5.684342e-14
	7760	0.000	7.333	3.943887e+02	3.943887e+02	5.684342e-14
	7776	1.000	7.333	3.954071e+02	3.953886e+02	1.854836e-02
	7792	5.000	7.333	5.193887e+02	5.193887e+02	1.136868e-13
	9312	0.000	10.000	1.000000e+03	1.000000e+03	1.136868e-13
	9328 9344	1.000 5.000	10.000 10.000	1.001000e+03 1.125000e+03	1.001000e+03 1.125000e+03	1.136868e-13 2.273737e-13

Оценим порядок сходимости:

$$\log_{2}\left(\frac{\|\widetilde{U}-U(h)\|}{\|\widetilde{U}-U(\frac{h}{2})\|}\right) = \frac{11.159}{2.64744} = 2.07554$$

$$\log_{2}\left(\frac{\|\widetilde{U}-U(\frac{h}{2})\|}{\|\widetilde{U}-U(\frac{h}{4})\|}\right) = \frac{2.64744}{0.868288} = 1.60835$$

$$\log_{2}\left(\frac{\|\widetilde{U}-U(\frac{h}{4})\|}{\|\widetilde{U}-U(\frac{h}{8})\|}\right) = \frac{0.868288}{0.276315} = 1.65186$$

$$\log_{2}\left(\frac{\|\widetilde{U}-U(\frac{h}{8})\|}{\|\widetilde{U}-U(\frac{h}{16})\|}\right) = \frac{0.276315}{0.07604} = 1.86148$$

Тест №11 (Порядок сходимости на не равномерной сетке)

$$u = \sin\frac{\pi x}{2} + \cos\frac{\pi y}{2}$$
, $f = \left(\frac{\pi^2}{4} + 1\right) * \left(\sin\frac{\pi x}{2} + \cos\frac{\pi y}{2}\right)$, $\gamma = 1$, $\lambda = 1$

Краевые условия 1-ого типа на всех границах

Содержание файла CalcArea.txt

 $0\,5\,5\,5\,10\,5$

0 10 5 10 10 10

 $1\,2\,3\,1\,2$

 $1\,1\,1\,1\,1\,3$

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 3.35262$

ĮΧ		Υ	U		U*	U* - U
0	0.000	0.000	 1	000000e+00	1.000000e+00	 6.816769e-1
ĭ	1.000	0.000		000000e+00	2.000000e+00	1.363354e-1
2	5.000	0.000		000000e+00	2.000000e+00	1.363354e-1
3	5.333	0.000		866025e+00	1.866025e+00	1.272316e-1
41	6.000	0.000		000000e+00	1.000000e+00	6.816769e-1
5	7.333	0.000		339746e-01	1.339746e-01	9.131584e-1
6	10.000	0.000		000000e+00	1.000000e+00	6.816769e-1
 7	0.000	1.000		123234e-17	6.123234e-17	4.178498e-3
8	1.000	1.000		357339e+00	1.000000e+00	1.357339e+0
9	5.000	1.000		438181e+00	1.000000e+00	1.438181e+0
10	5.333	1.000		932046e+00	8.660254e-01	1.066021e+0
11	6.000	1.000		071770e-01	4.286264e-16	6.071770e-0
12	7.333	1.000		361541e+00	-8.660254e-01	4.955158e-0
13	10.000	1.000	6. 	735557e-16	6.735557e-16	4.595115e-2
14	0.000	5.000	3.	061617e-16	3.061617e-16	2.085551e-2
15	1.000	5.000	2.	034591e+00	1.000000e+00	1.034591e+0
16	5.000	5.000		000000e+00	1.000000e+00	6.816769e-1
17	5.333	5.000		660254e-01	8.660254e-01	5.895284e-1
18	6.000	5.000	6.	735557e-16	6.735557e-16	4.595115e-2
19	7.333	5.000		660254e-01	-8.660254e-01	5.895284e-1
 20	10.000	5.000	9. 	184851e-16	9.184851e-16	6.251723e-2
21	0.000	5.333	-5.	000000e-01	-5.000000e-01	3.408385e-1
22	1.000	5.333	1.	635380e+00	5.000000e-01	1.135380e+0
 23	5.000	5.333	5.	000000e-01	5.000000e-01	3.408385e-1
28	0.000	6.000	-1.	000000e+00	-1.000000e+00	6.816769e-1
29	1.000	6.000	1.	126746e+00	0.000000e+00	1.126746e+0
 30	5.000	6.000	0.	000000e+00	0.000000e+00	0.000000e+6
35	0.000	7.333		000000e-01	5.000000e-01	3.408385e-1
36	1.000	7.333		896306e+00	1.500000e+00	1.396306e+0
37	5.000	7.333	1.	500000e+00	1.500000e+00	1.021405e-1
42	0.000	10.000		000000e+00	-1.000000e+00	6.816769e-1
43 44	1.000 5.000	10.000 10.000		000000e+00 000000e+00	0.000000e+00 0.000000e+00	0.000000e+0 0.00000e+0

Дробление сетки в 2 раза

Параметры дробления

OX: n = 4 q = 2 n = 8 q = 1.41421 OY: n = 4 q = 2 n = 8 q = 1.41421

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{2})\| = 1.00765$

N	X	<u></u>	Υ	U	U*	U* - U
	 0	0.000	0.0001	1.000000e+00	 1.000000e+00	0.000000e+00
	2	1.000	0.000	2.000000e+00	2.000000e+00	0.000000e+00
	4	5.000	0.000	2.000000e+00	2.000000e+00	0.000000e+00
	6	5.333	0.000	1.866022e+00	1.866022e+00	0.000000e+00
	8	6.000	0.000	9.999873e-01	9.999873e-01	0.000000e+00
	10	7.333	0.000	1.339823e-01	1.339823e-01	0.000000e+00
	12	10.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00
	26	0.000	1.000	6.123234e-17	6.123234e-17	0.000000e+00
	28	1.000	1.000	1.163844e+00	1.000000e+00	1.638436e-0
	30	5.000	1.000	1.683875e+00	1.000000e+00	6.838745e-0
	32	5.333	1.000	1.311959e+00	8.660224e-01	4.459366e-0
	34	6.000	1.000	1.813757e-01	-1.266182e-05	1.813884e-0
	36	7.333	1.000	-9.865247e-01	-8.660177e-01	1.205070e-0
	38	10.000	1.000	6.735557e-16	6.735557e-16	0.000000e+0
	52	0.000	5.000	3.061617e-16	3.061617e-16	0.000000e+0
	54	1.000	5.000	5.633274e-01	1.000000e+00	4.366726e-0
	56	5.000	5.000	1.000000e+00	1.000000e+00	0.000000e+00
	58	5.333	5.000	8.660224e-01	8.660224e-01	0.000000e+0
	60	6.000	5.000	-1.266182e-05	-1.266182e-05	0.000000e+00
	62	7.333	5.000	-8.660177e-01	-8.660177e-01	0.000000e+00
	64	10.000	5.000	9.184851e-16	9.184851e-16	0.000000e+0
	78	0.000	5.333	-5.000052e-01	-5.000052e-01	0.000000e+0
	80	1.000	5.333	2.603891e-01	4.999948e-01	2.396057e-01
	82 	5.000	5.333	4.999948e-01	4.999948e-01 	0.000000e+00
	104	0.000	6.000	-1.000000e+00	-1.000000e+00	0.000000e+00
	106	1.000	6.000	-5.896858e-02	8.016088e-11	5.896858e-02
	108	5.000	6.000	8.016088e-11	8.016088e-11	0.000000e+00
	130	0.000	7.333	5.000134e-01	5.000134e-01	0.000000e+0
	132	1.000	7.333	1.651612e+00	1.500013e+00	1.515983e-0
	134	5.000	7.333	1.500013e+00	1.500013e+00	0.000000e+00
	156	0.000	10.000	-1.000000e+00	-1.000000e+00	0.000000e+00
	158 160	1.000 5.000	10.000 10.000	0.000000e+00 0.000000e+00	0.000000e+00 0.000000e+00	0.000000e+00

Дробление сетки в 4 раза

Параметры дробления

ОХ: n = 8 q = 1.41421 n = 16 q = 1.18921 ОУ: n = 8 q = 1.41421 n = 16 q = 1.18921 Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{4})\| = 0.462115$

	11		U	U*	U* - U
0	0.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00
4	1.000	0.000	2.000000e+00	i 2.000000e+00 i	0.000000e+00
8	5.000	0.000	2.000000e+00	j 2.000000e+00 j	0.000000e+00
12	5.333	0.000	1.866031e+00	1.866031e+00	0.000000e+00
16	6.000	0.000	1.000024e+00	1.000024e+00	0.000000e+00
20	7.333	0.000	1.339597e-01	1.339597e-01	0.000000e+00
24	10.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00
100	0.000	1.000	-1.266182e-05	-1.266182e-05	0.000000e+00
104	1.000	1.000	1.052787e+00	9.999873e-01	5.279979e-02
108	5.000	1.000	1.196954e+00	9.999873e-01	1.969667e-01
112	5.333	1.000	9.986284e-01	8.660185e-01	1.326099e-01
116	6.000	1.000	6.166280e-02	1.172666e-05	6.165108e-02
120	7.333	1.000	-8.817725e-01	-8.660530e-01	1.571949e-02
 124	10.000	1.000	-1.266182e-05	-1.266182e-05	0.000000e+00
200	0.000	5.000	3.061617e-16	3.061617e-16	0.000000e+00
204	1.000	5.000	6.752326e-01	1.000000e+00	3.247674e-01
208	5.000	5.000	1.000000e+00	1.000000e+00	0.000000e+00
212	5.333	5.000	8.660312e-01	8.660312e-01	0.000000e+00
216	6.000	5.000	2.438848e-05	2.438848e-05	0.000000e+00
220	7.333	5.000	-8.660403e-01	-8.660403e-01	0.000000e+00
224	10.000	5.000	9.184851e-16	9.184851e-16	0.000000e+00
300	0.000	5.333	-4.999900e-01	-4.999900e-01	0.000000e+00
304	1.000	5.333	3.027862e-01	5.000100e-01	1.972238e-01
308	5.000	5.333	5.000100e-01	5.000100e-01	0.000000e+00
400	0.000	6.000	-1.000000e+00	-1.000000e+00	0.000000e+00
404	1.000	6.000	-6.906862e-02	2.172380e-10	6.906862e-02
408	5.000	6.000	2.973989e-10	2.973989e-10	0.000000e+00
 500	0.000	7.333	4.999742e-01	4.999742e-01	0.000000e+00
504	1.000	7.333	1.534493e+00	1.499974e+00	3.451927e-02
 508	5.000	7.333	1.499974e+00	1.499974e+00	0.000000e+00
600	0.000	10.000	-1.000000e+00	-1.000000e+00	0.000000e+00
604 608	1.000 5.000	10.000 10.000	-8.016088e-11 0.000000e+00	-8.016088e-11 0.000000e+00	0.000000e+00 0.000000e+00

Дробление сетки в 8 раз

Параметры дробления

OX: n = 16 q = 1.18921 n = 32 q = 1.09051OY: n = 16 q = 1.18921 n = 32 q = 1.09051

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{8})\| = 0.14425$

X	ĮΥ	ι	J	U*	U* - U
 0	 0.000	0.000	1.000000e+00	- 1.000000e+00	0.000000e+00
8	1.000	0.000	2.000000e+00	2.000000e+00	2.220446e-16
16	5.000	0.000	2.000000e+00	2.000000e+00	0.000000e+00
24	5.333	0.000	1.866035e+00	1.866035e+00	2.220446e-1
32	6.000	0.000	1.000042e+00	1.000042e+00	2.220446e-1
40	7.333	0.000	1.339491e-01	1.339491e-01	2.775558e-1
48	10.000	0.000	1.000000e+00	1.000000e+00	2.220446e-1
 392	0.000	1.000	2.438848e-05	2.438848e-05	3.388132e-2
400	1.000	1.000	1.013544e+00	1.000024e+00	1.351954e-0
408	5.000	1.000	1.037644e+00	1.000024e+00	3.761927e-0
416	5.333	1.000	8.916251e-01	8.660597e-01	2.556546e-0
424	6.000	1.000	1.219306e-02	6.619191e-05	1.212687e-0
432	7.333	1.000	-8.704860e-01	-8.660266e-01	4.459445e-0
 440	10.000	1.000	2.438848e-05	2.438848e-05	3.388132e-2
784	0.000	5.000	3.061617e-16	3.061617e-16	4.930381e-3
792	1.000	5.000	8.867016e-01	1.000000e+00	1.132984e-0
800	5.000	5.000	1.000000e+00	1.000000e+00	2.220446e-1
808	5.333	5.000	8.660353e-01	8.660353e-01	1.110223e-1
816	6.000	5.000	4.180343e-05	4.180343e-05	6.776264e-2
824	7.333	5.000	-8.660509e-01	-8.660509e-01	1.110223e-1
832	10.000	5.000	9.184851e-16	9.184851e-16 	1.972152e-3
1176	0.000	5.333	-4.999829e-01	-4.999829e-01	5.551115e-1
1184	1.000	5.333	4.303226e-01	5.000171e-01	6.969446e-0
1192	5.000	5.333	5.000171e-01	5.000171e-01	1.110223e-1
1568	0.000	6.000	-1.000000e+00	-1.000000e+00	1.110223e-1
1576	1.000	6.000	-2.518752e-02	5.763646e-10	2.518752e-0
 1584	5.000	6.000	8.737635e-10	8.737635e-10	1.033976e-2
1960	0.000	7.333	4.999558e-01	4.999558e-01	5.551115e-1
1968	1.000	7.333	1.507785e+00	1.499956e+00	7.829609e-0
 1976	5.000	7.333	1.499956e+00	1.499956e+00	2.220446e-1
2352	0.000	10.000	-1.000000e+00	-1.000000e+00	0.000000e+0
2360	1.000	10.000	-2.973989e-10	-2.973989e-10	5.169879e-2
2368	5.000	10.000	0.000000e+00	0.000000e+00	0.000000e+0

Дробление сетки в 16 раз

Параметры дробления

OX: n = 32 q = 1.09051 n = 64 q = 1.04427OY: n = 32 q = 1.09051 n = 64 q = 1.04427

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{16})\| = 0.0387903$

N	ļΧ	ĮΥ	ļι	J	U*	U* - U
	0	0.000	0.000	1.000000e+00	1.000000e+00	0.000000e+00
	16	1.000	0.000	2.000000e+00	2.000000e+00	2.220446e-16
	32	5.000	0.000	2.000000e+00	2.000000e+00	0.000000e+00
	48	5.333	0.000	1.865991e+00	i 1.865991e+00 i	2.220446e-16
	64	6.000	0.000	9.998543e-01	9.998543e-01 i	1.110223e-16
	80	7.333	0.000	1.340636e-01	1.340636e-01	2.775558e-17
	96	10.000	0.000	1.000000e+00	1.000000e+00	2.220446e-16
	1552	0.000	1.000	4.180343e-05	4.180343e-05	6.776264e-21
k	1568	1.000	1.000	1.003440e+00	1.000042e+00	3.398500e-03
	1584	5.000	1.000	1.007942e+00	1.000042e+00	7.899895e-03
	1600	5.333	1.000	8.714455e-01	8.660328e-01	5.412715e-03
	1616	6.000	1.000	2.508059e-03	-1.038538e-04	2.611913e-03
	1632	7.333	1.000	-8.670902e-01	-8.658946e-01	1.195602e-03
	1648	10.000	1.000	4.180343e-05	4.180343e-05	6.776264e-21
	3104	0.000	5.000	3.061617e-16	3.061617e-16	4.930381e-32
	3120	1.000	5.000	9.688653e-01	1.000000e+00	3.113469e-02
	3136	5.000	5.000	1.000000e+00	1.000000e+00	2.220446e-16
	3152	5.333	5.000	8.659910e-01	8.659910e-01	1.110223e-16
	3168	6.000	5.000	-1.456572e-04	-1.456572e-04	2.710505e-20
	3184	7.333	5.000	-8.659364e-01	-8.659364e-01	1.110223e-16
	3200	10.000	5.000	9.184851e-16	9.184851e-16	1.972152e-31
	4656	0.000	5.333	-5.000596e-01	-5.000596e-01	1.110223e-16
	4672	1.000	5.333	4.806750e-01	4.999404e-01	1.926547e-02
	4688	5.000	5.333	4.999404e-01	4.999404e-01	5.551115e-17
	6208	0.000	6.000	-1.000000e+00	-1.000000e+00	1.110223e-16
	6224	1.000	6.000	-7.009549e-03	9.734246e-09	7.009559e-03
	6240	5.000	6.000	1.060801e-08	1.060801e-08	1.654361e-24
	7760	0.000	7.333	5.001542e-01	5.001542e-01	1.110223e-16
	7776	1.000	7.333	1.502029e+00	1.500154e+00	1.874864e-03
	7792	5.000	7.333	1.500154e+00	1.500154e+00 	2.220446e-16
	9312	0.000	10.000	-1.000000e+00	-1.000000e+00	0.000000e+00
	9328 9344	1.000 5.000	10.000 10.000	-8.737635e-10 0.000000e+00	-8.737635e-10 0.000000e+00	1.033976e-25 0.000000e+00

Оценим порядок сходимости:

$$\log_{2}\left(\frac{\|\widetilde{U}-U(h)\|}{\|\widetilde{U}-U(\frac{h}{2})\|}\right) = \frac{3.35262}{1.00765} = 1.73429$$

$$\log_{2}\left(\frac{\|\widetilde{U}-U(\frac{h}{2})\|}{\|\widetilde{U}-U(\frac{h}{4})\|}\right) = \frac{1.00765}{0.462115} = 1.12467$$

$$\log_{2}\left(\frac{\|\widetilde{U}-U(\frac{h}{4})\|}{\|\widetilde{U}-U(\frac{h}{8})\|}\right) = \frac{0.462115}{0.14425} = 1.67968$$

$$\log_{2}\left(\frac{\|\widetilde{U}-U(\frac{h}{8})\|}{\|\widetilde{U}-U(\frac{h}{16})\|}\right) = \frac{0.14425}{0.0387903} = 1.8948$$

Тестирование программы для решения на произвольной области

Расчетная область (это не равномерная сетка по построению)

Тест №12 (Полином 1-ой степени)

$$u(x,y) = x + y$$

$$\lambda$$
=1, γ =1

$$f(x,y) = x + y$$

Краевые условия 1-ого рода на всех сторонах

Содержание файла CalcArea.txt (Формат описан ниже)

5 4

 $0\ 0\ 1\ 0\ 2\ 0\ 3\ 0\ 4\ 0$

1

Продолжение файла расчетной обл.

10 1 1 5 1 1

2 1 2 1 2 1

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 2.01183$ е-14

N	İx	ļΥ	ļι	J	U*	U* - U
	0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
	1	0.500	0.000	5.000000e-01	i 5.000000e-01 i	0.000000e+00
	2	1.000	0.000	1.000000e+00	1.000000e+00	0.000000e+06
	3	1.500	0.000	1.500000e+00	1.500000e+00	0.000000e+00
	4	2.000	0.000	2.000000e+00	2.000000e+00	0.000000e+00
	4 5 6	2.500	0.000	2.500000e+00	2.500000e+00	0.000000e+00
	6	3.000	0.000	3.000000e+00	3.000000e+00	0.000000e+00
	7	3.500	0.000	3.500000e+00	3.500000e+00	0.000000e+00
	8	4.000	0.000	4.000000e+00	4.000000e+00	0.000000e+00
	9	0.000	0.500	5.000000e-01	5.000000e-01	0.000000e+06
	10	0.500	0.500	1.000000e+00	1.000000e+00	2.775558e-15
	11	1.000	0.500	1.500000e+00	1.500000e+00	5.551115e-15
	12	1.500	0.500	2.000000e+00	2.000000e+00	9.769963e-15
	13	2.000	0.500	2.500000e+00	2.500000e+00	8.437695e-15
	14	2.500	0.500	3.000000e+00	3.000000e+00	4.440892e-15
	15	3.000	0.500	3.500000e+00	3.500000e+00	1.332268e-15
	16	3.500	0.500	4.000000e+00	4.000000e+00	0.000000e+00
	17	4.000	0.500	4.500000e+00	4.500000e+00	0.000000e+00
	18	0.000	1.000	1.000000e+00	1.000000e+00	0.000000e+00
	19	0.500	1.000	1.500000e+00	1.500000e+00	0.000000e+00
	20	1.000	1.000	2.000000e+00	2.000000e+00	0.000000e+00
	21	1.500	1.000	2.500000e+00	2.500000e+00	8.437695e-15
	22	2.000	1.000	3.000000e+00	3.000000e+00	7.549517e-15
	23	2.500	1.000	3.500000e+00	3.500000e+00	3.552714e-15
	24	3.000	1.000	4.000000e+00	4.000000e+00	0.000000e+00
	25	3.500	1.000	4.500000e+00	4.500000e+00	0.000000e+00
	26	4.000	1.000	5.000000e+00	5.000000e+00	0.000000e+00
	29	1.000	1.500	2.500000e+00	2.500000e+00	0.000000e+00
	30	1.500	1.500	3.000000e+00	3.000000e+00	4.440892e-15
	31	2.000	1.500	3.500000e+00	3.500000e+00	3.552714e-15
	32	2.500	1.500	4.000000e+00	4.000000e+00	1.776357e-15
	33	3.000	1.500	4.500000e+00	4.500000e+00	0.000000e+00
	38	1.000	2.000	3.000000e+00	3.000000e+00	0.000000e+00
	39	1.500	2.000	3.500000e+00	3.500000e+00	1.332268e-15
	40	2.000	2.000	4.000000e+00	4.000000e+00	0.000000e+00
	41	2.500	2.000	4.500000e+00	4.500000e+00	0.000000e+00
	42 	3.000	2.000	5.000000e+00	5.000000e+00	0.000000e+00
	47	1.000	3.000	4.000000e+00	4.000000e+00	0.000000e+00
	48	1.500	3.000	4.500000e+00	4.500000e+00	0.000000e+00
	49	2.000	3.000	5.000000e+00	5.000000e+00	0.000000e+00
	56	1.000	4.000	5.000000e+00	5.000000e+00	0.000000e+00
	57	1.500	4.000	5.500000e+00	5.500000e+00	0.000000e+00
	58	2.000	4.000	6.000000e+00	6.000000e+00	0.000000e+00

Тест №13 (Полином третьей степени) $u(x,y) = x^3 + y^3$

 $u(x,y) = x^3+y^3$ $\lambda=1, \gamma=1$ $f(x,y) = -6x-6y+x^3+y^3$

Краевые условия 1-ого рода на всех границах

Содержание файла CalcArea.txt такое же как в Тесте №12

Абсолютна погрешность: $\|\widetilde{U} - U(h)\| = 0.0863457$

Расчетная таблица. Символом * отмечены внутренние узлы сетки							
N	X	Y 	U 	U* 	U* - U		
į	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00		
j 1		0.000	1.250000e-01	1.250000e-01	0.000000e+00 i		
		0.000	1.000000e+00	1.000000e+00	0.000000e+00		
j 3	1.500	0.000	3.375000e+00	3.375000e+00	0.000000e+00 i		
j 2 3 4	2.000	0.000	8.000000e+00	8.000000e+00	0.000000e+00 i		
j 5	2.500	0.000	1.562500e+01	1.562500e+01	0.000000e+00		
j 6	3.000	0.000	2.700000e+01	2.700000e+01	0.000000e+00		
j 7	7 3.500	0.000	4.287500e+01	4.287500e+01	0.000000e+00		
8	4.000	0.000	6.400000e+01	6.400000e+01	0.000000e+00		
9		0.500	1.250000e-01	1.250000e-01	0.000000e+00		
* 16		0.500	2.501213e-01	2.500000e-01	1.213268e-04		
11		0.500	1.125516e+00	1.125000e+00	5.156389e-04		
* 12 * 13		0.500	3.502070e+00	3.500000e+00	2.070138e-03		
		0.500	8.126585e+00	8.125000e+00	1.585187e-03		
* 14 * 15		0.500 0.500	1.575078e+01 2.712520e+01	1.575000e+01 2.712500e+01	7.843882e-04 1.953787e-04		
* 16		0.500 0.500	4.300005e+01	4.300000e+01	1.9337676-04 4.597147e-05		
17		0.500	6.412500e+01	6.412500e+01	0.000000e+00		
	i						
18		1.000	1.000000e+00	1.000000e+00	0.000000e+00		
19		1.000	1.125000e+00	1.125000e+00	0.000000e+00		
20		1.000	2.000000e+00	2.000000e+00	0.000000e+00		
į* 21		1.000	4.381697e+00	4.375000e+00	6.697263e-03		
* 22		1.000	9.003883e+00	9.000000e+00	3.882516e-03		
* 23		1.000	1.662655e+01	1.662500e+01	1.553085e-03		
24		1.000	2.800000e+01	2.800000e+01	0.000000e+00		
25		1.000	4.387500e+01	4.387500e+01	0.000000e+00		
26	4.000	1.000	6.500000e+01	6.500000e+01	0.000000e+00 		
29	1.000	1.500	4.375000e+00	4.375000e+00	0.000000e+00		
į* 30		1.500	6.772511e+00	6.750000e+00	2.251071e-02		
j* 31		1.500	1.138167e+01	1.137500e+01	6.665161e-03		
j* 32		1.500	1.900193e+01	1.900000e+01	1.933705e-03		
33	3.000	1.500	3.037500e+01	3.037500e+01	0.000000e+00		
38		2.000	9.000000e+00	9.000000e+00	0.000000e+00		
* 39		2.000	1.145731e+01	1.137500e+01	8.230810e-02		
46		2.000	1.600000e+01	1.600000e+01	0.000000e+00		
41		2.000	2.362500e+01	2.362500e+01	0.000000e+00		
42	3.000	2.000	3.500000e+01	3.500000e+01	0.000000e+00		
47	1.000	3.000	2.800000e+01	2.800000e+01	0.000000e+00		
* 48		3.000	3.038248e+01	3.037500e+01	7.482555e-03		
49		3.000	3.500000e+01	3.500000e+01	0.000000e+00		
56		4.000	6.500000e+01	6.500000e+01	0.000000e+00		
57			6.737500e+01	6.737500e+01	0.000000e+00		
j 58	2.000	4.000	7.200000e+01	7.200000e+01	0.000000e+00		

Дробления сетки

Дробление сетки на 2

Параметры дробления

OX: n = 4 q = 1 n = 4 q = 1 n = 4 q = 1OY: n = 4 q = 1 n = 4 q = 1

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{2})\| = 0.0301859$

Расчетная	табли	ица.	Символом *	отмечены внутр	енние	узлы сетки		
N		ļΧ		ļΥ	U		U*	U* - U
	0		0.000	0.000		.000000e+00	0.000000e+00	 0.000000e+00
	2		0.500			.250000e-01	1.250000e-01	0.000000c+00
	4		1.000			.000000e+00	1.000000e+00	0.000000c+00
1	6	!	1.500			.375000e+00	3.375000e+00	0.000000e+00
1	8	l	2.000			.000000e+00	8.000000e+00	0.000000e+00
1	10	l	2.500			.562500e+01	1.562500e+01	0.000000e+00
i	12		3.000			.700000e+01	2.700000e+01	0.000000e+00
i	14		3.500			.287500e+01	4.287500e+01	0.000000e+00
i	16		4.000			.400000e+01	6.400000e+01	0.000000e+00
		i						
i	34	i	0.000	0.500	1 1	.250000e-01	1.250000e-01	0.000000e+00
*	36	i	0.500			.500555e-01	2.500000e-01	5.553740e-05
*	38	i	1.000	0.500	j 1.	. 125259e+00	1.125000e+00	2.585167e-04
j *	40	İ	1.500	0.500	j 3.	.500683e+00	3.500000e+00	6.829891e-04
i *	42		2.000			. 125685e+00	8.125000e+00	6.845416e-04
*	44		2.500			.575039e+01	1.575000e+01	3.865659e-04
*	46		3.000			.712512e+01	2.712500e+01	1.189356e-04
*	48		3.500			.300003e+01	4.300000e+01	2.503923e-05
	50		4.000	0.500	6	.412500e+01	6.412500e+01	0.000000e+00
	68		0.000	1.000	1	.000000e+00	1.000000e+00	0.000000e+00
İ	70	İ	0.500	1.000	1	.125000e+00	1.125000e+00	0.000000e+00
İ	72	İ	1.000	1.000	2.	.000000e+00	2.000000e+00	0.000000e+00
*	74		1.500	1.000		.377146e+00	4.375000e+00	2.146063e-03
*	76		2.000		9.	.001853e+00	9.000000e+00	1.852845e-03
*	78		2.500		•	.662582e+01	1.662500e+01	8.166602e-04
_	80		3.000			.800000e+01	2.800000e+01	0.000000e+00
ļ	82	ļ	3.500			.387500e+01	4.387500e+01	0.000000e+00
	84	 	4.000	1.000 	6. 	.500000e+01	6.500000e+01	0.000000e+00
i	106	i	1.000	1.500	4.	.375000e+00	4.375000e+00	0.000000e+00
*	108		1.500		6	.757324e+00	6.750000e+00	7.323846e-03
*	110		2.000			.137888e+01	1.137500e+01	3.882590e-03
*	112		2.500			.900106e+01	1.900000e+01	1.061537e-03
	114	 	3.000	1.500	3	.037500e+01	3.037500e+01	0.000000e+00
	140		1.000	2.000	•	.000000e+00	9.000000e+00	0.000000e+00
*	142		1.500			.140379e+01	1.137500e+01	2.879180e-02
1	144		2.000			.600000e+01	1.600000e+01	0.000000e+00
	146		2.500			.362500e+01	2.362500e+01	0.000000e+00
	148		3.000	2.000 	3. 	.500000e+01	3.500000e+01	0.000000e+00
	174	i	1.000	3.000	2	.800000e+01	2.800000e+01	0.000000e+00
*	176		1.500			.037658e+01	3.037500e+01	1.582545e-03
	178		2.000			.500000e+01	3.500000e+01	0.000000e+00
	208		1.000	4.000	6	.500000e+01	6.500000e+01	0.000000e+00
i	210	Ī_	1.500	4.000	6	.737500e+01	6.737500e+01	0.000000e+00
	212		2.000		7	.200000e+01	7.200000e+01	0.000000e+00

Дробление сетки в 4 раза

Параметры дробления OX: n = 8 q = 1 n = 8 q = 1 n = 8 q = 1 OY: n = 8 q = 1 n = 8 q

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{h}{4})\| = 0.00862528$

Pac	нетная таблица	а. Символом *	отмечены внутре	енние узлы сетки		
N	X		Υ	U	U* 	U* - U
l i	Θİ	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
i	4 į	0.500	0.000	1.250000e-01	1.250000e-01	j 0.000000e+00 j
i	8 ј	1.000	0.000	1.000000e+00	1.000000e+00	j 0.000000e+00 j
i	12	1.500	0.000	3.375000e+00	3.375000e+00	j 0.000000e+00 j
l i	16	2.000	0.000	8.000000e+00	8.000000e+00	0.000000e+00
l i	20	2.500	0.000	1.562500e+01	1.562500e+01	0.000000e+00
l i	24	3.000	0.000	2.700000e+01	2.700000e+01	0.000000e+00
l i	28	3.500	0.000	4.287500e+01	4.287500e+01	0.000000e+00
	32	4.000	0.000	6.400000e+01	6.400000e+01	0.000000e+00
*	132	0.000	0.500	1.250000e-01	1.250000e-01	0.000000e+00
*	136	0.500	0.500	2.500175e-01	2.500000e-01	1.746119e-05
*	140 144	1.000	0.500	1.125082e+00 3.500199e+00	1.125000e+00 3.500000e+00	8.244830e-05 1.985027e-04
*	144	1.500	0.500	8.125208e+00		1.9630276-04 2.078786e-04
*	152	2.000 2.500	0.500 0.500	1.575012e+01	8.125000e+00 1.575000e+01	1.231962e-04
*	156	3.000	0.500	2.712504e+01	2.712500e+01	4.089081e-05
*	160	3.500	0.500	4.300001e+01	4.300000e+01	8.401104e-06
	164	4.000	0.500	6.412500e+01	6.412500e+01	0.000000e+00
	· - ·					
1	264	0.000	1.000	1.000000e+00	1.000000e+00	0.000000e+00
	268	0.500	1.000	1.125000e+00	1.125000e+00	0.000000e+00
	272	1.000	1.000	2.000000e+00	2.000000e+00	0.000000e+00
*	276	1.500	1.000	4.375615e+00	4.375000e+00	6.152954e-04
*	280	2.000	1.000	9.000574e+00	9.000000e+00	5.742025e-04
*	284	2.500	1.000	1.662527e+01	1.662500e+01	2.667652e-04
	288	3.000	1.000	2.800000e+01	2.800000e+01	0.000000e+00
	292	3.500	1.000	4.387500e+01	4.387500e+01	0.000000e+00
	296	4.000	1.000	6.500000e+01	6.500000e+01	0.000000e+00
	404	1.000	1.500	4.375000e+00	4.375000e+00	0.000000e+00
*	408	1.500	1.500	6.752083e+00	6.750000e+00	2.082644e-03
*	412	2.000	1.500	1.137629e+01	1.137500e+01	1.294069e-03
*	416	2.500	1.500	1.900035e+01	1.900000e+01	3.541183e-04
	420	3.000	1.500	3.037500e+01	3.037500e+01	0.000000e+00
	536	1.000	2.000	9.000000e+00	9.000000e+00	0.000000e+00
*	540	1.500	2.000	1.138320e+01	1.137500e+01	8.200031e-03
	544	2.000	2.000	1.600000e+01	1.600000e+01	0.000000e+00
l i	548	2.500	2.000	2.362500e+01	2.362500e+01	0.000000e+00
İ	552	3.000	2.000	3.500000e+01	3.500000e+01	0.000000e+00
	668	1.000	3.000	2.800000e+01	2.800000e+01	0.000000e+00
*	672	1.500	3.000	3.037536e+01	3.037500e+01	3.624508e-04
	676	2.000	3.000	3.500000e+01	3.500000e+01	0.000000e+00
	800	1.000	4.000	6.500000e+01	6.500000e+01	0.000000e+00
i	804	1.500	4.000	6.737500e+01	6.737500e+01	0.000000e+00
i	808	2.000	4.000		7.200000e+01	0.000000e+00
i						

Дробление сетки в 8 раза

Параметры дробления

OX: n = 16 q = 1 n = 16 q = 1 n = 16 q = 1OY: n = 16 q = 1 n = 16 q = 1 n = 16 q = 1

Абсолютна погрешность: $\|\widetilde{U} - U(\frac{\hat{h}}{8})\| = 0.00223976$

Расчетная табл	ица. Символом *	отмечены внутре	нние узлы сетки		
N 	X	Y 	U	U* 	U* - U
i 0	0.000	0.000	0.000000e+00	0.000000e+00	0.000000e+00
8		0.000	1.250000e-01	1.250000e-01	0.000000e+00
16		0.000	1.000000e+00	1.000000e+00	0.000000e+00
24		0.000	3.375000e+00	3.375000e+00	0.000000e+00
32		0.000	8.000000e+00	8.000000e+00	0.000000e+00
40		0.000	1.562500e+01	1.562500e+01	0.000000e+00
48		0.000	2.700000e+01	2.700000e+01	0.000000e+00
56		0.000	4.287500e+01	4.287500e+01	0.000000e+00
64		0.000	6.400000e+01	6.400000e+01	0.000000e+00
520	0.000	0.500	1.250000e-01	1.250000e-01	0.000000e+00
* 528		0.500	2.500048e-01	2.500000e-01	4.755272e-06
* 536		0.500	1.125022e+00	1.125000e+00	2.240547e-05
* 544		0.500	3.500053e+00	3.50000e+00	5.274994e-05
* 552		0.500	8.125056e+00	8.125000e+00	5.583579e-05
* 560		0.500	1.575003e+01	1.575000e+01	3.359573e-05
* 568		0.500	2.712501e+01	2.712500e+01	1.140752e-05
* 576		0.500	4.300000e+01	4.300000e+01	2.340266e-06
584		0.500	6.412500e+01	6.412500e+01	0.000000e+00
1040	0.000	1.000	1.000000e+00	1.000000e+00	0.000000e+00
1048		1.000	1.125000e+00	1.125000e+00	0.000000e+00
1056		1.000	2.000000e+00	2.000000e+00	0.000000e+00
* 1064		1.000	4.375163e+00	4.375000e+00	1.625171e-04
* 1072		1.000	9.000155e+00	9.000000e+00	1.549167e-04
* 1080		1.000	1.662507e+01	1.662500e+01	7.334991e-05
1088		1.000	2.800000e+01	2.800000e+01	0.000000e+00
1096		1.000	4.387500e+01	4.387500e+01	0.000000e+00
1104		1.000	6.500000e+01	6.500000e+01	0.000000e+00
1576	1.000	1.500	4.375000e+00	4.375000e+00	0.000000e+00
i* 1584		j 1.500 j	6.750546e+00	6.750000e+00	5.463010e-04
i* 1592	2.000	j 1.500 j	1.137536e+01	1.137500e+01	3.558981e-04
j* 1600	2.500	j 1.500 j	1.900010e+01	1.900000e+01	9.844485e-05
1608	3.000	1.500	3.037500e+01	3.037500e+01	0.000000e+00
2096	1.000	2.000	9.000000e+00	9.000000e+00	0.000000e+00
* 2104		2.000	1.137712e+01	1.137500e+01	2.123783e-03
2112		2.000	1.600000e+01	1.600000e+01	0.000000e+00
2120		2.000	2.362500e+01	2.362500e+01	0.000000e+00
2128	3.000	2.000	3.500000e+01	3.500000e+01	0.000000e+00
2616	1.000	3.000	2.800000e+01	2.800000e+01	0.000000e+00
* 2624		3.000	3.037509e+01	3.037500e+01	8.832446e-05
2632		3.000	3.500000e+01	3.500000e+01	0.000000e+00
3136	1.000	4.000	6.500000e+01	6.500000e+01	0.000000e+00
3144		4.000	6.737500e+01	6.737500e+01	0.000000e+00
3152			7.200000e+01	7.200000e+01	0.000000e+00

Оценим порядок сходимости:

$$\log_{2}(\frac{\|\widetilde{U} - U(h)\|}{\|\widetilde{U} - U(\frac{h}{2})\|}) = \frac{0.0863457}{0.0301859} = 1.51625$$

$$\log_2(\frac{\|\widetilde{U} - U(\frac{h}{2})\|}{\|\widetilde{U} - U(\frac{h}{4})\|}) = \frac{0.0301859}{0.00862528} = 1.80723$$

$$\log_{2}(\frac{\|\widetilde{U}-U(\frac{h}{4})\|}{\|\widetilde{U}-U(\frac{h}{8})\|}) = \frac{0.00862528}{0.00223976} = 1.94523$$

5. Вывод

- 1.МКР имеет 3-ий порядок апроксимации на равномерных сетках. На не равномерных сетках порядок апроксимации падает до 2-ого
- 2. На равномерной сетке, как и на не равномерной с 1КУ условиями схема имеет 2-ий порядок сходимости. Сходимость на не равномерной сетке несколько хуже из-за того что погрешность считается по большему шагу, что не позволит в облости с резко меняющимся решением добавить узлов, а в местах малого изменения функции уменьшить количество расчетных узлов.
- 3. На равномерной сетке с 1-КУ и 2-КУ порядок апроксимации упал до 1-ого, как и порядок сходимости. Это связано с тем, что 2-КУ аппроксимируются с первым порядком, пожтому общий порядок схемы становится первый.
- 4. Построенная схема не обладает абсолютной устойчивостью, тоесть есть задачи (Например если лямбда большой а гамма маленький), то малое изменение входных параметров приведет к значительному изменению выходных данных.

```
6. Описание файла CalcArea.txt
```

```
* Nx Ny
x1,1 y1,1 x2,1 y1,2 ... xn,1 y1,n
x1,2 y2,1 y2,2 y2,2 ... x2,n y2,n
* L - целое число - количество подобластей и далее L наборов чисел по 5 штук
 1 число - номер формул определяющих параметры ДУ в подобласти
 2 число - первая вертикальная ломанная определеяет правую границу
 3 число - вторая вертикальная ломанная определяет левую границу
 их номера определяются в соответствии с правилом для k узла их номера в
массивах точек будут: k, (Nx + k), (2*Nx + k), ..., ((Ny-1)*Nx + k)
 4 число - опеределяет горизонтальную границу снизу
 5 число - определяет горизонтальную границу сверху
 Дальше 3 сторики задающие разбиение сетки
* Р - целое число - количество подоблостей граничных условий и далее Р
наборов чисел по 6 штук
 1 число - номер формул определяющих параметры граничных условий
 2 число - Тип краевого условия 0 - соответсвует не заданным краевым
 3 число - первая вертикальная ломанная определеяет правую границу
 4 число - вторая вертикальная ломанная определяет левую границу
 5 число - опеределяет горизонтальную границу снизу
 6 число - определяет горизонтальную границу сверху
*!!! Отличительная особенность одна из координатных линий должна быть
фиксированной
* N1 coef1 N2 coef 2 ...
 Первый набор задает разбиение каждого отрезка по х
 Второй набора задает разбиение по у
```

7. Текст программы

```
main.cpp
#include <iostream>
#include "FDM.h"
#include <cmath>
int main()
DEquation deg;
BoundCond bound1;
bound1.typeBound = 1;
bound1.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
BoundCond bound2;
bound2.typeBound = 1;
bound2.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
BoundCond bound3;
bound3.typeBound = 1;
bound3.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
BoundCond bound4;
bound4.typeBound = 1;
bound4.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
BoundCond bound5;
bound5.typeBound = 1;
bound5.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
BoundCond bound6;
bound6.typeBound = 1;
bound6.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
BoundCond bound7;
bound7.typeBound = 1;
bound7.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
BoundCond bound8;
bound8.typeBound = 1;
bound8.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
BoundCond bound9;
bound9.typeBound = 1;
bound9.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
BoundCond bound10;
bound 10.typeBound = 1;
bound10.func[0] = [](double x,double y) -> double {return x*x*x + y*y*y; };
```

```
deq.f = [](double x, double y) -> double { return -6*x - 6*y + x*x*x + y*y*y;};
deq.gamma = 1;
deq.lambda = 1;
deq.u true = [](double x, double y) -> double { return x*x*x + y*y*y; };
deg.Bound.resize(10);
deq.Bound[0] = bound1;
deq.Bound[1] = bound2;
deq.Bound[2] = bound3;
deq.Bound[3] = bound4;
deq.Bound[4] = bound5;
deq.Bound[5] = bound6;
deq.Bound[6] = bound7;
deq.Bound[7] = bound8;
deq.Bound[8] = bound9;
deq.Bound[9] = bound10;
FDM fdm("CalcArea1.txt", deq, true);
fdm.Solve();
double norma = fdm.Norma();
cout << "\n\n Норма разности || U* - U || = " << norma << "\n";
fdm.PrintTable();
return 0;
Grid2D Quad.h
#ifndef GRID2D QUAD H
#define GRID2D QUAD H
#include "Grid.h"
#include "PointInfo.h"
#include <vector>
#include <functional>
using namespace std;
// Сетка представляет из себя решулярное разбиение области при помощи 4-х
угольников произвольной формы
/* Чтение и сетки из файла. Разбиение сетки. */
/* Формат файла
* Nx Ny
* x1,1 y1,1 x2,1 y1,2 ... xn,1 y1,n
* x1,2 y2,1 y2,2 y2,2 ... x2,n y2,n
st L - целое число - количество подобластей и далее L наборов чисел по 5 штук
^{*} 1 число - номер формул определяющих параметры ДУ в подобласти
* 2 число - первая вертикальная ломанная определеяет правую границу
```

```
<sup>к</sup> 3 число - вторая вертикальная ломанная определяет левую границу
их номера определяются в соответствии с правилом для k узла их номера в массивах
точек будут: k, (Nx + k), (2*Nx + k), ... , ( (Ny-1)*Nx + k )
^st 4 число - опеределяет горизонтальную границу снизу
^st 5 число - определяет горизонтальную границу сверху

    * Дальше 3 сторики задающие разбиение сетки

* P - целое число - количество подоблостей граничных условий и далее P наборов
чисел по 6 штук
 1 число - номер формул определяющих параметры граничных условий
 2 число - Тип краевого условия 0 - соответсвует не заданным краевым
 3 число - первая вертикальная ломанная определеяет правую границу
* 4 число - вторая вертикальная ломанная определяет левую границу
* 5 число - опеределяет горизонтальную границу снизу
^st 6 число - определяет горизонтальную границу сверху
* !!! Отличительная особенность одна из координатных линий должна быть
фиксированной
* N1 coef1 N2 coef 2 ...
* ..
st Первый набор задает разбиение каждого отрезка по х
st Второй набора задает разбиение по у
struct BaseGrid2D
int CountOfDivision = \mathbf{1}; // Количество делений базовой настройки сетки; \mathbf{1} -
соответсвует тому что делений не было 2 тому что исходная область разделена в
двое и.т.д
const int SizeOfCalculationAreaElemet = 5;
const int SizeOfBoundsAreaElement = 6;
const int SizeOfDivideParam = 2;
/* Точка */
struct PointXY
double x = 0;
double y = 0;
struct DivideParamS
int num; // количество интервалов на которое нужно разделить отрезок
double coef; // Коэффициент растяжения или сжатия
};
int Nx = 0; // количество узлов вдоль горизонатального направления
int Ny = 0; // количество узлов вдоль вертикального направления
int L = 0; // Количество подоблостей
int P = 0; // Количество видов границ
vector<vector<PointXY>> BaseGridXY: // Базовая сетка в плосткости ХҮ
```

```
// | номер формул | граница по x(start) | граница по x(end) | | граница по y(start) |
граница по y(end) |
vector<vector<int>> CalculationArea; // Массив расчетных областей
//| номер формул | | тип КУ | граница по x(start) | граница по x(end) | граница по
y(start) | граница по y(end) |
vector<vector<int>> BoundsArea;
2 массива
DivideParam[0] - массив для разбиения по оси х размер Nx-1
DivideParam[1] - массив для разбиения по оси у размер Nv-1
vector<vector<DivideParamS>> DivideParam;
/* Флаг того что структура инициализированная и готова к использованию */
// false - Структура не инициализированная
// true - Структура проинициализированна и готова к использованию
bool isReadyToUse = false;
};
struct Point
// Информация о границе конкретный набор формул + информация об узле
фиктивный или нет + информация о том граничный ли узел или нет
// + информация о конечном элементе + тип КУ + точка в пространтве
Info info;
double x = 0.0;
double y = 0.0;
};
/* Структура для Конечного Элемента в форме произвольного четырехугольника*/
struct FElement Quad2D
};
/* Структура для шаблона типа Крест для конечно-разностной схемы*/
struct Cross TypeTemplate
static const int CrossTemplateSize = 5; // Количество точек в шаблоне
Point point[CrossTemplateSize]; // Точки шаблона
int AreaInfo = -1; // Номер формул задающий параметры ДУ в данной модификации он
принимает только 1 значение
uint8 t size = 0; // Фактический размер тоесть сколько всего точек в массиве point
[0,5]
/^st Информация про главный узел ^st/
isFictive isBound
```

```
0.0 = > Просто внутренний узел
0\ 1 => He фиктивный и граница ставим апроксимацию краевых в данное место
1\ 0 => \Phiиктивный => на диагональ ставим 1
1 1 => не возможно
*/
bool isFictive = false; // Не фиктивный узел
bool isBound = false; // Не граница
/*Eсли все же это граница то будем инициализировать на */
int ProjNormX = 0; // Проекция внешней нормали для X
int ProjNormY = 0; // Проекция внешней нормали для Y
/* Класс сетки */
// Модификация для разностной схемы, но легко модифицируется для МКЭ
class Grid2D Quad : public GridI<BaseGrid2D,Cross TypeTemplate>
{
private:
BaseGrid2D baseGrid;
vector<Point> Grid; // Массив точек получающийся при генерации конечных
элементов
/* Расчитать общее число узлов получающееся в сетке ^*/
void GetTotalNumberOfNodes() noexcept;
/* Генерация всей расчетной области без учетка фиктивных элементов и
принадлежности к какой либо границе и расчетной области */
void GenerateBaseGrid(GridStatus &status) noexcept;
/* Учет фиктивных узлов */
void DivisionIntoSubAreas(GridStatus &status) noexcept;
/* Функция учетка типа КУ и установка факта является ли элемент граничным */
void DivisionIntoSubBounds(GridStatus &status) noexcept;
/* Вернет число соответсвующее стартовой позиции по сути это скачок */
@param
int i - номер
int axis - соответсвующая ость 0 - x, 1 - z 2 - y
@return int: Величина скачка в сетке
int Getlevel(int i, int axis) const noexcept;
protected:
public:
int Dim = 0; // Размерность сетки и СЛАУ в то же время
int\ GlobalNx = 0; // Сумарное количество узлов по оси X
```

```
int GlobalNy = 0; // Сумарное количество узлов по оси У все величины получаются
после генерации сетки
Grid2D Quad() = default;
// Инициализация класса при помощи файла - формат описан выше
@param
const string &filename - Текстовый файл с разметкой
@return void
Создание объекта
explicit Grid2D Quad(const string &filename);
// Инициализация "в ручную" при помощи задания структуры
@param
const BaseGrid2D &baseGrid - Структура с базовой разметкой области
@return void
Создание объекта
explicit Grid2D Quad(const BaseGrid2D &baseGrid);
// Копирование класса отключено
Grid2D Quad(const Grid2D Quad &) = delete;
Grid2D Quad &operator=(const Grid2D Quad &) = delete;
/* Методы интерфейса обязательны к реализации */
/* Загрузка базовой сетки из файла и по ней строится уже все ^*/
@param
const string &filename - Текстовый файл с разметкой
@return GridStatus
GridStatus Load(const string &filename) noexcept;
/* Генерация сетки */
@param:
void
@return: GridStatus
GridStatus GenerateGrid() noexcept;
/* Дробление сетки в заданное количество раз ^*/
/*
@param:
const int coef - Коэффициент дробления
@return: GridStatus
```

```
GridStatus DivideGrid(const int coef) noexcept;
/* Перегенерация сетки при изменении ее параметров */
@param:
void
@return: GridStatus
GridStatus ReGenerateGrid() noexcept;
/* Гетеры и сеттеры */
@param:
void
@return: BaseGrid2D
BaseGrid2D GetBaseGrid() const noexcept;
/* Получить шаблонный элемент для разностной схемы ^*/
@param:
int idx - Индекс центральной точки в глобальной нумерации
@return: Cross TypeTemplate - Структура содержащая всю необходимую информацию
Cross TypeTemplate GetElement(int idx) const noexcept;
/* Получить шаблонный элемент для получения Конечного элемента */
@param:
int idx - Индекс центральной точки в глобальной нумерации
@return: FElement Quad2D - Структура содержащая всю необходимую информацию
*/
//FElement Quad2D GetElement(int idx) const noexcept;
/* Установка параметров базовой сетки */
@param:
const BaseGrid2D& baseGrid - Базовая сетка области
@return: GridStatus
GridStatus SetBaseGrid(const BaseGrid2D &baseGrid ) noexcept;
Point& operator[](int idx) noexcept;
/* Debug functions */
void PrintBaseGrid() const noexcept;
void PrintGrid() const noexcept;
\simGrid2D Quad() = default;
```

```
};
#endif
Grid2D_Quad.cpp
#include "Grid2D Quad.h"
#include "PointInfo.h"
#include <iostream>
#include <cmath>
#include <iomanip>
/* Private section */
int Grid2D Quad::Getlevel(int i, int axis) const noexcept
int res = 0;
for (int k = 0; k < i; k++)
res += baseGrid.DivideParam[axis][k].num;
return res;
};
void Grid2D Quad::GetTotalNumberOfNodes() noexcept
for (int i = 0; i < baseGrid.Nx - 1; i++)
GlobalNx += baseGrid.DivideParam[0][i].num;
for (int i = 0; i < baseGrid.Ny - 1; i++)
GlobalNy += baseGrid.DivideParam[1][i].num;
GlobalNx++;
GlobalNy++;
void Grid2D Quad::GenerateBaseGrid(GridStatus &status) noexcept
if (status.GetState() != State::OK)
struct SettingForDivide
double step; // Шаг на отрезке
double coef; // Коэффициент увеличения шага
int num; // Количество интервалов идем то num-1 и потом явно вставляем элемент
/* Расчитываем шаг для сетки */
@param
int i - Номер массива от 0 до 2
int j - Номер элемента в массиве
```

```
double left - левая грани отрезка
double right - правая граница отрезка
ret: SettingForDivide - структура с вычесленными параметрами деления сетки
auto CalcSettingForDivide = [&](int i, int j, double left, double right) -> SettingForDivide
SettingForDivide res;
int num = baseGrid.DivideParam[i][j].num;
double coef = baseGrid.DivideParam[i][j].coef;
if (coef > 1.0)
double coefStep = 1.0 + (coef * (std::pow(coef, num - 1) - 1.0)) / (coef - 1.0);
res.step = (right - left) / coefStep;
}
else
{
res.step = (right - left) / num;
// Убираем погрешность
if (std::abs(res.step) < eps)
res.step = 0.0;
res.num = num;
res.coef = coef;
return res;
/* Генерация разбиения по X или Y( гороизонтальная линия или вертикальная ) с
учетом разбиения */
@param
SettingForDivide &param - параметр разбиения
double left - левая граница отрезка
double right - правая граница отрезка
double *Line - генерируемый массив
int &idx - индекс в массиве на какую позицию ставить элемент
auto GenerateDivide = [](SettingForDivide &param, double left, double right, double *Line,
int &idx) -> void
int num = param.num;
double coef = param.coef;
double step = param.step;
Line[idx] = left;
idx++;
double ak = left;
for (int k = 0; k < num - 1; k++)
```

```
ak = ak + step * std::pow(coef, k);
Line[idx] = ak;
idx++;
Line[idx] = right;
try
Dim = GlobalNx * GlobalNy;
Grid.resize(Dim);
// Псевдоним для быстрого обращения
int Nx = baseGrid.Nx;
int Ny = baseGrid.Ny;
vector<vector<BaseGrid2D::PointXY>> &BaseGridXY = baseGrid.BaseGridXY;
double *LineX = new double[GlobalNx]; // Массив элементов в строке по X
double *LineY = new double[GlobalNy]; // Массив элементов в строке по Y
// Сгенерируем одну плоскость ху
/* Разбиение по x и v */
/* Расстановка элементов основных линий с учетом их расположения в сетке
(Опорная сетка)*/
/* Расстановка элементов по x ( Опорных ) */
/* Нужно значения х расставить в соответсвующие строки они соответсвуют
разбиению по z ^*/
for (int i = 0; i < Ny; i++)
int idx = 0;
for (int j = 0; j < Nx - 1; j++)
double left = BaseGridXY[i][j].x;
double right = BaseGridXY[i][j + 1].x;
SettingForDivide param = CalcSettingForDivide(0, j, left, right);
GenerateDivide(param, left, right, LineX, idx);
/* Заносим соответствующие значения x на свои позиции */
int startIdx = Getlevel(i, 1) * GlobalNx;
int endIdx = startIdx + GlobalNx;
for (int k = startIdx, kk = 0; k < endIdx; k++, kk++)
Grid[k].x = LineX[kk];
}
/^st Расстановка элементов по z ( Опорных ) ^st/
for (int i = 0; i < Nx; i++)
```

```
int idx = 0;
for (int j = 0; j < Ny - 1; j++)
{
double left = BaseGridXY[j][i].y;
double right = BaseGridXY[j + 1][i].y;
SettingForDivide param = CalcSettingForDivide(1, j, left, right);
GenerateDivide(param, left, right, LineY, idx);
/* Процедура расстановки узлов в глобальный массив st/
int startIdx = Getlevel(i, 0); // Стартовый индекс для прохода по массиву
for (int k = 0; k < GlobalNy; k++)
// Скачки будут ровно на величину GlobalNx
Grid[startIdx].y = LineY[k];
startIdx += GlobalNx;
}
/^st Генерация вспомогательных вертикальных линий ^st/
Кратко Алгоритм:
Работаем с осью Ү соответственно индексация будет происходить по этой оси
в цикле идем по всем столбцам массива сетки
Нужно получить левую и правую границу на каждом интервале
Сформировать массив отрезков по данной координате
Занести полученный массив в Глобальную сетку
/* Цикл по всем горизонтальным линиям */
for (int i = 0; i < GlobalNx; i++)
int idx = 0;
/* Цикл по интеравалам оси Z */
for (int j = 0; j < Ny - 1; j++)
int startIdx = i + GlobalNx * Getlevel(j, 1);
int endIdx = i + GlobalNx * Getlevel(i + 1, 1);
double left = Grid[startIdx].x; // Левая граница по х
double right = Grid[endIdx].x; // Правая граница по х
// Разбиение интервала подчиняется разбиению по оси у
SettingForDivide param = CalcSettingForDivide(1, j, left, right);
GenerateDivide(param, left, right, LineY, idx);
/* Занесение результата в Итоговый массив */
int startIdx = i; // Стартовая позиция
for (int k = 0; k < GlobalNy; k++)
```

```
Grid[startIdx].x = LineY[k];
startIdx += GlobalNx;
}
/* Генерация вспомогательных горизонтальных линий st/
/* Цикл по всем горизонтальным линиям */
for (int i = 0; i < GlobalNy; i++)
int idx = 0;
for (int j = 0; j < Nx - 1; j++)
int startIdx = Getlevel(j, 0) + i * GlobalNx;
int endldx = Getlevel(j + 1, 0) + i * GlobalNx;
double left = Grid[startIdx].y;
double right = Grid[endIdx].y;
// Разбиение интервала подчиняется разбиению по оси х
SettingForDivide param = CalcSettingForDivide(0, j, left, right);
GenerateDivide(param, left, right, LineX, idx);
}
/^st Занесение результатов в Глобальную сетку ^st/
int startIdx = i * GlobalNx;
for (int k = 0; k < GlobalNx; k++)
Grid[startIdx].y = LineX[k];
startIdx++;
/* Очистка памяти */
delete[] LineX;
delete[] LineY;
catch (std::bad alloc &e)
status.SetStatus(State::MEMORY ALLOC ERROR, "Ошибка при выделении памяти в
Grid2D_Quad::GenerateBaseGrid(GridStatus &status)\n");
return:
catch (const std::exception &e)
status.SetStatus(State::UNKNOWN_ERROR, e.what());
return;
}
}
void Grid2D Quad::DivisionIntoSubAreas(GridStatus &status) noexcept
                                        49
```

```
if (status.GetState() != State::OK)
return;
struct BoundArea
int AreaNum = -1; // номер подобласти (определяет набор формул отвечающих
параметрам ДУ)
int PlaneXZSize = 0; // Размер массива PlaneXZ
int *PlaneXY; // Массив точек многоугольника (номера)
int *BoundGrid = nullptr;
try
{
/* Размер массива берем с запасом его размер равен Nx*Ny
контур номеров точек многоугольника соттветствующих каким то координатам
BoundGrid = \underline{new int[GlobalNx * GlobalNy]};
/^st Получает подобласть в соответсвии с ее номером ^st/
@param
int i - Номер подобласти (Порядковый) в массиве определяется порядок
ret BoundArea - сформированный массив подобласти
auto GetBound = [&](int i) -> BoundArea
BoundArea Bound;
Bound.AreaNum = baseGrid.CalculationArea[i][0]; // Выставили номер подобласти
/* Вычислим все номера принадлежащие данной области */
/* Инедексы границ многоугольника в глобальной нумерации */
/* XY */
int leftStartX = Getlevel(baseGrid.CalculationArea[i][1], 0) + GlobalNx *
Getlevel(baseGrid.CalculationArea[i][3], 1);
int leftEndX = Getlevel(baseGrid.CalculationArea[i][1], 0) + GlobalNx *
Getlevel(baseGrid.CalculationArea[i][4], 1);
int rightStartX = Getlevel(baseGrid.CalculationArea[i][2], 0) + GlobalNx *
Getlevel(baseGrid.CalculationArea[i][3], 1);
int rightEndX = Getlevel(baseGrid.CalculationArea[i][2], 0) + GlobalNx *
Getlevel(baseGrid.CalculationArea[i][4], 1);
int nX = (rightEndX - rightStartX) / GlobalNx;
int nY = (rightStartX - leftStartX);
int idxBoundGrid = 0;
for (int i = 0; i <= nX; i++)
int Idx = leftStartX + i * GlobalNx;
```

```
for (int j = 0; j <= nY; j++)
BoundGrid[idxBoundGrid] = Idx;
idxBoundGrid++;
Idx++;
}
Bound.PlaneXZSize = idxBoundGrid;
Bound.PlaneXY = BoundGrid;
return Bound;
/* Бинарный поиск по массиву */
@param
const BoundArea& Bound - Массив границ
int numPointGlobal - Значение для поиска
ret bool: true - элемент в массиве есть false в противном случае
auto BinarySerch = [](const BoundArea &Bound, int numPointGlobal) -> bool
int *arr = Bound.PlaneXY;
int left = 0;
int right = Bound.PlaneXZSize - 1;
int midd = 0;
while (1)
midd = (left + right) / 2;
if (numPointGlobal < arr[midd]) // если искомое меньше значения в ячейке
right = midd - 1; // смещаем правую границу поиска
else if (numPointGlobal > arr[midd]) // если искомое больше значения в ячейке
left = midd + 1; // смещаем левую границу поиска
else // иначе (значения равны)
break; // функция возвращает индекс ячейки
// если границы сомкнулись
if (left > right)
midd = -1;
break;
}
if (midd == -1)
return false;
else
return true;
/* Проверяет принадлежит ли точка Заданной области */
```

```
@param
const BoundArea &Bound - Заданная граница
Point &point - Точка для проверки
int numPointGlobal - индекс точки в глобальной нумерации
ret bool: true - Точка принадлежит заданной области, false в противном случае
auto IsInArea = [&](const BoundArea &Bound, Point &point, int numPointGlobal) -> bool
auto le = [\&](double \times 1, double \times 2) -> bool
if (x1 < x2)
return true;
if (std::abs(x1 - x2) < eps)
return true;
return false;
};
auto ge = [\&](double x1, double x2) -> bool
return le(x2, x1);
bool arg1 = BinarySerch(Bound, numPointGlobal);
return arg1;
};
/* В цикле по всем областям */
for (int i = 0; i < baseGrid.L; i++)
BoundArea Bound = GetBound(i);
/* По той части области где распологаются элементы (включая фиктивный)*/
/* Для этого получим минимальный и максимальный значений индексов */
// int leftAreaBound = ;
// int RightAreaBound = ;
/* Этот цикл тупой он по всем элементам идет */
for (int j = 0; j < Dim; j++)
if (IsInArea(Bound, Grid[j], j))
^{\prime *} Мы в заданной области устанавливаем нужные параметры ^{*\prime}
InfoManeger::SetFictitious(Grid[j].info, 1);
InfoManeger::SetAreaInfo(Grid[j].info, Bound.AreaNum);
}
}
}
/^st Очистка локальной переменной ^st/
delete[] BoundGrid;
```

```
catch (std::bad alloc &e)
status.SetStatus(State::MEMORY ALLOC ERROR, "Ошибка при выделении памяти в
Grid2D Quad::GenerateBaseGrid(GridStatus &status)\n");
if (BoundGrid != nullptr)
delete[] BoundGrid;
return;
catch (const std::exception &e)
status.SetStatus(State::UNKNOWN_ERROR, e.what());
if (BoundGrid != nullptr)
delete[] BoundGrid;
return:
}
}
void Grid2D Quad::DivisionIntoSubBounds(GridStatus &status)                 noexcept
if (status.GetState() != State::OK)
return;
struct Bound
int Size = 0;
int *Line = nullptr; // Массив точек границы
int BoundType = 0;
int BoundFormula = -1;
};
/\!^* Бинарный поиск по массиву ^*/
/*
@param
const BoundArea& Bound - Массив границ
int numPointGlobal - Значение для поиска
ret bool: true - элемент в массиве есть false в противном случае
auto BinarySerch = [](const Bound &bound, int numPointGlobal) -> bool
int *arr = bound.Line;
int left = 0;
int right = bound.Size - 1;
int midd = 0;
while (1)
{
midd = (left + right) / 2;
if (numPointGlobal < arr[midd]) // если искомое меньше значения в ячейке
right = midd - 1; // смещаем правую границу поиска
```

```
else if (numPointGlobal > arr[midd]) // если искомое больше значения в ячейке
left = midd + 1; // смещаем левую границу поиска
else // иначе (значения равны)
break; // функция возвращает индекс ячейки
// если границы сомкнулись
if (left > right)
{
midd = -1;
break:
}
if (midd == -1)
return false;
else
return true;
};
auto IsInBound = [&](const Bound &bound, int numPointGlobal)
{ return BinarySerch(bound, numPointGlobal); };
int *MemoryPool = nullptr;
trv
{
MemoryPool = new int[max(GlobalNx, GlobalNy)];
/* Краевые условия задаются практически так же как и области с тем лишь
исключением, что одна из координат фиксируется */
auto GetBound = [&](int i) -> Bound
Bound bound;
bound.BoundType = baseGrid.BoundsArea[i][1];
bound.BoundFormula = baseGrid.BoundsArea[i][0];
/* x - фиксирован */
if (baseGrid.BoundsArea[i][2] == baseGrid.BoundsArea[i][3])
/* Определим базовые узлы на прямой OY а потом растиражируем узлы по границе
( Дробление фиксированное ) шаг по массиву GlobalNx^*/
int StartPositionY = Getlevel(baseGrid.BoundsArea[i][2], 0) + GlobalNx *
Getlevel(baseGrid.BoundsArea[i][4], 1); // Стартовая позиция для Y
int EndPositionY = Getlevel(baseGrid.BoundsArea[i][2], 0) + GlobalNx *
Getlevel(baseGrid.BoundsArea[i][5], 1); // Конечная точка для оси Y
int nY = (EndPositionY - StartPositionY) / GlobalNx + 1; // Количество узлов по оси Y
int Idx = StartPositionY;
for (int i = 0; i <= nY; i++)
MemoryPool[i] = Idx;
Idx += GlobalNx:
```

```
bound.Line = MemoryPool;
bound.Size = nY;
/* y - фиксирован */
else if (baseGrid.BoundsArea[i][4] == baseGrid.BoundsArea[i][5])
/* Определяем базовые узлы по оси ОХ, а потом аналогично растиражируем узлы по
границе (Дробление фиксированное) шаг по массиву + 1*/
int StartPositionX = Getlevel(baseGrid.BoundsArea[i][2], 0) + GlobalNx *
Getlevel(baseGrid.BoundsArea[i][4], 1); // Стартовая позиция по оси Х
int EndPositionX = Getlevel(baseGrid.BoundsArea[i][3], 0) + GlobalNx *
Getlevel(baseGrid.BoundsArea[i][4], 1); // Конечная позиция по оси Х
int nX = EndPositionX - StartPositionX + 1; // Количество узлов по оси X
int idxBoundGrid = 0;
int Idx = StartPositionX;
for (int j = 0; j <= nX; j++)
MemoryPool[j] = Idx;
ldx++;
}
bound.Line = MemoryPool;
bound.Size = nX;
return bound;
for (int i = 0; i < baseGrid.P; i++)
/* Получить список точек границы */
Bound bound = GetBound(i);
for (int j = 0; j < Dim; j++)
/* Расставляем нужные значения в соответствующие точки сетки */
if (IsInBound(bound, j))
/* Мы в заданной области устанавливаем нужные параметры */
InfoManeger::SetBoundInfo(Grid[j].info, bound.BoundFormula, bound.BoundType + 1);
}
}
catch (std::bad alloc &e)
status.SetStatus(State::MEMORY ALLOC ERROR, "Ошибка при выделении памяти в
Grid2D Quad::GenerateBaseGrid(GridStatus &status)\n");
if (MemoryPool != nullptr)
delete[] MemoryPool;
return;
```

```
catch (const std::exception &e)
status.SetStatus(State::UNKNOWN ERROR, e.what());
if (MemoryPool != nullptr)
delete[] MemoryPool;
return;
}
}
/* Public section */
Grid2D Quad::Grid2D Quad(const string &filename)
GridStatus status = Load(filename);
if (status.GetState() != State::OK)
throw status;
Grid2D_Quad::Grid2D_Quad(const_BaseGrid2D_&baseGrid_) : baseGrid(baseGrid_) {}
GridStatus Grid2D Quad::Load(const string &filename) noexcept
GridStatus status;
fin.open(filename);
if (!fin.is open())
status.SetStatus(State::FILE OPEN ERROR, "Ошибка открытия файла " + filename + " в
Grid2D Quad::Grid2D Quad(const string &filename)\n");
fout.close();
return status;
/* Файл корректно открылся и можно читать
Корректность входных данных не проверяется
/* Базовая сетка по XY */
fin >> baseGrid.Nx >> baseGrid.Ny;
baseGrid.BaseGridXY = vector(baseGrid.Ny, vector<BaseGrid2D::PointXY>(baseGrid.Nx));
for (int i = 0; i < baseGrid.Ny; i++)
{
for (int j = 0; j < baseGrid.Nx; j++)
fin >> baseGrid.BaseGridXY[i][j].x >> baseGrid.BaseGridXY[i][j].y;
}
/* Расчетные подобласти */
fin >> baseGrid.L;
baseGrid.CalculationArea = vector(baseGrid.L,
vector<int>(baseGrid.SizeOfCalculationAreaElemet));
```

```
for (int i = 0; i < baseGrid.L; i++)
for (int j = 0; j < baseGrid.SizeOfCalculationAreaElemet; j++)
fin >> baseGrid.CalculationArea[i][j];
baseGrid.CalculationArea[i][j]--; // Приведение нумерации с нуля
|*****************/
/* Описание Границ */
fin >> baseGrid.P;
baseGrid.BoundsArea = vector(baseGrid.P,
vector<int>(baseGrid.SizeOfBoundsAreaElement));
for (int i = 0; i < baseGrid.P; i++)
for (int j = 0; j < baseGrid.SizeOfBoundsAreaElement; j++)
fin >> baseGrid.BoundsArea[i][j];
baseGrid.BoundsArea[i][j]--; // Приведение к нумерации с нуля
}
|*****************/
/* Правила дробления базовой сетки */
baseGrid.DivideParam.resize(baseGrid.SizeOfDivideParam);
baseGrid.DivideParam[0].resize(baseGrid.Nx - 1);
baseGrid.DivideParam[1].resize(baseGrid.Ny - 1);
for (int i = 0; i < baseGrid.Nx - 1; i++)
fin >> baseGrid.DivideParam[0][i].num >> baseGrid.DivideParam[0][i].coef;
for (int i = 0; i < baseGrid.Ny - 1; i++)
fin >> baseGrid.DivideParam[1][i].num >> baseGrid.DivideParam[1][i].coef;
baseGrid.isReadyToUse = true;
return status;
GridStatus Grid2D Quad::GenerateGrid() noexcept
{
GridStatus status;
// Расчет общего количества узлов в сетке
```

```
// Для этого пройдемся по массиву разбиения каждого отрезка и вычислим общее
число узлов
GetTotalNumberOfNodes();
// Генерация базовой сетки
GenerateBaseGrid(status);
// Учет фиктивных узлов
DivisionIntoSubAreas(status);
// Учет КУ и расстановка границ
DivisionIntoSubBounds(status);
return status;
GridStatus Grid2D Quad::DivideGrid(const int coef) noexcept
GridStatus status;
baseGrid.CountOfDivision *= coef;
for (int i = 0; i < baseGrid.Nx - 1; i++)
baseGrid.DivideParam[0][i].num *= coef;
for (int i = 0; i < baseGrid.Ny - 1; i++)
baseGrid.DivideParam[1][i].num *= coef;
return status;
GridStatus Grid2D Quad::ReGenerateGrid() noexcept
GridStatus status;
Dim = 0;
GlobalNx = 0;
GlobalNy = 0;
GenerateGrid();
return status;
/* Гетеры сеттеры */
BaseGrid2D Grid2D Quad::GetBaseGrid() const noexcept { return baseGrid; }
Cross_TypeTemplate Grid2D_Quad::GetElement(int idx) const noexcept
Cross TypeTemplate Element;
return Element;
GridStatus Grid2D Quad::SetBaseGrid(const BaseGrid2D &baseGrid ) noexcept
GridStatus status;
return status;
```

```
Point& Grid2D Quad::operator[](int idx) noexcept { return Grid[idx]; }
/* Debug functions */
void Grid2D Quad::PrintBaseGrid() const noexcept
cout << "Base Grid Print\n";
cout << "Nx = " << baseGrid.Nx << " Ny = " << baseGrid.Ny << "\n";
for (int i = 0; i < baseGrid.Ny; i++)
cout << i + 1 << ": ";
for (int i = 0; i < baseGrid.Nx; i++)
cout << "(" << baseGrid.BaseGridXY[i][j].x << ";" << baseGrid.BaseGridXY[i][j].y << ") ";
cout << "\n";
cout << "\n L = " << baseGrid.L << "\n";
for (int i = 0; i < baseGrid.L; i++)
cout << i + 1 << ": ";
for (int j = 0; j < baseGrid.SizeOfCalculationAreaElemet; j++)
cout << baseGrid.CalculationArea[i][j] << " ";
cout << "\n";
cout << "\n P = " << baseGrid.P << "\n";
for (int i = 0; i < baseGrid.P; i++)
cout << i + 1 << ": ";
for (int j = 0; j < baseGrid.SizeOfBoundsAreaElement; j++)
cout << baseGrid.BoundsArea[i][j] << " ";
cout << "\n";
cout << "\nDivide Parametrs\n";
cout << "\nDivide X\n";
for (int i = 0; i < baseGrid.Nx - 1; i++)
cout << "(num = " << baseGrid.DivideParam[0][i].num << "; coef = " <<
baseGrid.DivideParam[0][i].coef << ")\n";
cout << "\nDivide Y\n";
for (int i = 0; i < baseGrid.Ny - 1; i++)
cout << "(num = " << baseGrid.DivideParam[1][i].num << "; coef = " <<
baseGrid.DivideParam[1][i].coef << ")\n";
                                            59
```

```
}
}
void Grid2D Quad::PrintGrid() const noexcept
int idx = 0;
std::cout << "Start idx: " << idx << " End idx: " << GlobalNx * GlobalNy - 1 << " Step
Row: " << GlobalNx << "\n";
for (int i = 0; i < GlobalNy; i++)
for (int j = 0; j < GlobalNx; j++)
std::cout << std::fixed << std::setprecision(2) << "(" << Grid[idx].x << ";" << Grid[idx].y
idx++;
std::cout << "\n";
}
SLAU.h
#ifndef SLAU H
#define SLAU H
#include <vector>
using namespace std;
struct Matrix
int N = 0; // Размерность матрицы
int m = 0; // Количество не нулевых
int Nd = 2;
vector<vector<double>> ggu;
vector<vector<double>> ggl;
vector<int> ig;
vector<double> di;
vector<int> jOffset;
void SaveMemory();
// умножение матрицы на вектор
std::vector<double> MulMatrVec(const std::vector<double>& x);
/* В<u>с</u>тавка элемента на нужно место */
```

```
true - успешно вставили элемент
false - промазали с индексами
bool insert(int i, int j, double val);
double GetElement(int i, int j);
/* Добавить значение в заданную ячейку */
bool add(int i, int j, double val);
/* Распечатка матрицы в плотном вормате */
void PrintDenseFormatMatrix();
// Алгоритм работает за константное время так, как нужные индексы однозначно
расчитываются
// и все операции не зависят от размера входных данных
double SumRow(Matrix& matr, std::vector<double>& xk, int i);
std::vector<double> subVec(std::vector<double>& x, const std::vector<double>& y);
// Норма вектора в евклидовом пространстве
double NormVec(const std::vector<double>& vec);
/* Структура для генерации СЛАУ */
struct SLAUData
int MAX ITER = 20e2; // Базовое количество максимального числа итераций
double eps = 1e-14; // Базовое значение невязки
std::vector<double> f;
};
// data - Содержит в себе вектор правой части, макисимальное количество итераций,
заданную точность
// xk1 - начальное приближение и результирующий вектор наше решение кароче
// matr - матрица СЛАУ
void Jakobi(Matrix& matr, std::vector<double>& xk1,SLAUData &data, const double w =
1.0):
// data - Содержит в себе вектор правой части, макисимальное количество итераций,
заданную точность
// xk1 - начальное приближение и результирующий вектор наше решение кароче
// matr - матрица СЛАУ
void Zeidel(Matrix& matr, std::vector<double> &xk1, SLAUData &data, const double w =
1.0);
```

```
#endif
SLAU.cpp
#include "SLAU.h"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
/* Matrix */
void Matrix::SaveMemory()
di.resize(N);
ig.resize(Nd);
ggu.resize(Nd);
ggl.resize(Nd);
jOffset.resize(2 * Nd);
// Нижний треугольник
for (int i = 0; i < Nd; i++)
ggl[i].resize(N - 1); // Сразу после главной диагонали
// Верхний треугольник
ggu[i].resize(N - 1); // Сразу после главной диагонали
// Составим массив ід
ig[0] = 1;
ig[1] = m + 2;
// Составляем массив оффетов
jOffset = {-2 - m, -1, 1, 2 + m};
std::vector<double> Matrix::MulMatrVec(const std::vector<double> &x)
std::vector<double> res(N);
for (size_t i = 0; i < (size_t)N; i++)
res[i] = x[i] * di[i];
for (size t i = 0; i < (size t)Nd; i++)
```

```
{
for (size_t j = 0; j < (size_t)N - ig[i]; j++)
size_t ir = j + ig[i];
res[ir] += ggl[i][j] * \times[j];
res[j] += ggu[i][j] * x[ir];
}
return res;
bool Matrix::add(int i, int j, double val)
bool res = true;
std::vector<int>::iterator idx; // Итератор для поиска в списке ig
int k; // Номер строки в массивах ggl, ggu
if(i > j)
int ij = i - j;
idx = std::find(ig.begin(), ig.end(), ij);
if (idx != ig.end())
k = idx - ig.begin();
ggl[k][j] += val;
}
else
{
res = false;
else if(i < j)
int ji = j - i;
idx = std::find(ig.begin(), ig.end(), ji);
if (idx != ig.end())
k = idx - ig.begin();
ggu[k][i] += val;
else
{
res = false;
else
di[i] += val;
```

```
return res;
bool Matrix::insert(int i, int j, double val)
bool res = true;
std::vector<int>::iterator idx; // Итератор для поиска в списке ig
int k; // Номер строки в массивах ggl, ggu
if(i > j)
int ij = i - j;
idx = std::find(ig.begin(), ig.end(), ij);
if (idx != ig.end())
k = idx - ig.begin();
ggl[k][j] = val;
}
else
{
res = false;
else if(i < j)
int ji = j - i;
idx = std::find(ig.begin(), ig.end(), ji);
if (idx != ig.end())
k = idx - ig.begin();
ggu[k][i] = val;
}
else
res = false;
else
di[i] = val;
return res;
double Matrix::GetElement(int i, int j)
double res = 0;
                                                64
```

```
std::vector<int>::iterator idx; // Итератор для поиска в списке ig
int k; // Номер строки в массивах ggl, ggu
std::vector<int> j = jOffset;
if(i == j)
{
res = di[i];
else if(i > j)
int ij = i - j;
idx = std::find(ig.begin(), ig.end(), ij);
if (idx != ig.end())
k = idx - ig.begin();
res = ggl[k][j];
else if(i < j)
int ji = j - i;
idx = std::find(ig.begin(), ig.end(), ji);
if (idx != ig.end())
k = idx - ig.begin();
res = ggu[k][i];
}
}
return res;
void Matrix::PrintDenseFormatMatrix()
for(int i = 0; i < N; i++)
for(int j = 0; j < N; j++)
std::cout << std::setw(3) << std::setprecision(3) << GetElement(i,j) << " ";
std::cout << "\n";
}
double SumRow(Matrix &matr, std::vector<double> &xk, int i)
double res = matr.di[i] * xk[i];
std::vector<int>::iterator idx; // Итератор для поиска в списке ig
```

```
// Определеяем псевдонимы (ссылки)
std::vector<int> &ig = matr.ig;
std::vector<std::vector<double>> &ggl = matr.ggl;
std::vector<std::vector<double>> &ggu = matr.ggu;
int k; // Номер строки в массивах ggl, ggu
std::vector<int> j_ = matr.jOffset;
for (int k = 0; k < matr.Nd * 2; k++)
i [k] += i;
for (int j : j_)
if (j >= 0)
if (i > j)
int ij = i - j;
idx = std::find(ig.begin(), ig.end(), ij);
if (idx != ig.end())
{
k = idx - ig.begin();
res += ggl[k][j] * xk[j];
else if (i < j)
{
int ji = j - i;
idx = std::find(ig.begin(), ig.end(), ji);
if (idx != ig.end())
k = idx - ig.begin();
res += ggu[k][i] * xk[j];
}
}
}
}
return res;
std::vector<double> subVec(std::vector<double>& x, const std::vector<double>& y)
std::vector<double> res(x.size());
for (size t i = 0; i < x.size(); i++)
res[i] = x[i] - y[i];
return res;
                                              66
```

```
double NormVec(const std::vector<double>& vec)
double res = 0.0;
for (size t i = 0; i < vec.size(); i++)
res += vec[i] * vec[i];
return std::sqrt(res);
}
void Jakobi(Matrix& matr, std::vector<double>& xk1,SLAUData &data, const double w)
std::vector<double> xk(matr.N, 0);
int MAX ITER = data.MAX ITER;
std::vector<double>& f = data.f;
double eps = data.eps; // Заданная точность
double F_norm = NormVec(data.f); // Норма вектора правой части
double NonRepan; // Относительная невязка
// Итерации идут пока не будет достигнута максимальное число
int n = matr.N;
std::vector<double>& di = matr.di;
for (int k = 0; k < MAX ITER; k++)
for (int i = 0; i < n; i++)
xk1[i] = xk[i] + w*(f[i] - SumRow(matr, xk, i)) / matr.di[i];
xk = xk1;
// Вычисляем относительную невязку для выхода из цикла по ней
NonRepan = NormVec(subVec(f, matr.MulMatrVec(xk1))) / F norm;
std::cout << "Iteration = " << k + 1 << " Non-repan = " << NonRepan << "\n";
if (NonRepan < eps) break;
}
}
void Zeidel(Matrix& matr, std::vector<double> &xk1, SLAUData &data, const double w)
int n = matr.N;
int MAX ITER = data.MAX ITER;
std::vector<double>& f = data.f;
double NonRepan;
double eps = data.eps; // Заданная точность
double F norm = NormVec(data.f); // Норма вектора правой части
std::vector<double>& di = matr.di;
for (int k = 0; k < MAX ITER; k++)
{
for (int i = 0; i < n; i++)
xk1[i] = xk1[i] + w*(f[i] - SumRow(matr, xk1, i)) / matr.di[i];
```

```
NonRepan = NormVec(subVec(f, matr.MulMatrVec(xk1))) / F norm;
std::cout << "Iteration = " << k+1 << " Non-repan = " << NonRepan << "\n";
if (NonRepan < eps) break; // Выход по неявязке
}
PointInfo.h
#ifndef POINT INFO H
#define POINT INFO H
#include <cstdint>
/* Определеим Структуры и функции для управления информацией о точке в
расчетной области */
/* В общем случае данный класс применим для объектов в 2D и 3D областях */
/* Развертка информации о типе КУ */
struct BoundInfo
{
uint8 t size = 0; // Сколько типов задано
uint8 t Cond[4]{0, 0, 0, 0}; // Набор формул определяющих КУ максимум 2
uint8 t TypeCond[4]{0, 0, 0, 0}; // Тип Краевого условия
/* Развертка информации об области */
struct AreaInfo
{
uint8 t size = 0;
uint8_t Cond[8]{0, 0, 0, 0, 0, 0, 0, 0};
};
struct Comand
typedef const uint32 t ComandType;
/* Clear comand */
static ComandType BaseInfoClear = 0x00;
static ComandType AreaInfoClear = 0x000000000;
static ComandType BoundInfoClear = 0 \times 0000;
static ComandType TypeBoundCondClear = 0x00;
/* Base Info comand */
static ComandType SetZeroFiFictitious = 0xFE;
static ComandType GetFiFictitious = 0x01;
/* Area Comand */
static ComandType SetZeroAreaCount = 0xE1;
static ComandType GetAreaCount = 0x1E;
static ComandType ShiftAreaCountBits = 1;
static ComandType RightBoundAreaCount = 8;
```

```
static ComandType RightBoundValAreaInfo = 15;
static ComandType BaseAreaShift = 4;
static ComandType GetAreaInfoBaseComand = 0 \times 00000000F;
/* Bound Comand */
static ComandType SetZeroBoundCount = 0x1F;
static ComandType ShiftBoundCountBits = 5;
static ComandType GetBoundCount = 0xE0;
static ComandType RightBoundBoundCount = 4;
static ComandType RightBoundValBoundInfo = 15;
static ComandType RightBoundValBoundType = 3;
static ComandType BaseBoundShift = 4;
static ComandType BaseTypeBoundShift = 2;
static ComandType GetBoundInfoBaseComand = 0 \times 000F;
static ComandType GetTypeBoundBaseComand = 0x03;
};
struct Info
uint64 t BaseInfo : 8; /* Базовая информация */
uint64 t AreaInfo : 32; /* Информация об области определяющей параметры ДУ */
{\sf uint64} t {\sf BoundInfo:16}; /*Краевые условия просто набор формул */
uint64 t TypeBoundCond: 8; /* Тип Краевого условия */
class InfoManeger
{
private:
/* Установка Количества различныйх типов областей которым принадлежит точка
@param
Info& info
uint8 t val - диапазон [0;8]
ret void
static void SetAreaCountBits(Info &info, uint32 t val);
/* Установка Количества различных типов границ к которым примыкает данная
точка
@param
Info& info
uint8_t val - диапазон [0;4]
ret void
*/
static void SetBoundCountBits(Info &info, uint32 t val);
/st Получить количество различных областей к которым примыкает точка
@param
const Info &info
ret uint32 t - информациоя о том к скольки областям примыкает диапазон [0;8]
0 - ни к одной
```

```
1 - к одной
*/
static uint32 t GetAreaCount(const Info &info);
/st Получить количество различных областей к которым примыкает граница
@param
const Info &info
ret uint32 t - информациоя о том к скольки Границам примыкает(различным)
диапазон [0;4]
0 - ни к какой
1 - к одной
2 -
3 -
4 -
static uint32 t GetBoundCount(const Info &info);
public:
/* Очистка структуры */
@param
Info& info
@return void
Очистка структуры
static void ClearInfo(Info &info);
/* Установка фиктивный/не фиктивный узел
@param
Info& info
uint8 t val true - не фиктивный false - фиктивный
ret void
static void SetFictitious(Info &info, uint8 t val);
@param
Info& info
uint32 t val - набор формул задающий значения на границе диапазон [0,15]
uint32_t boundType - тип Ку диапазон [0,3]
static void SetBoundInfo(Info &info, uint32 t val, uint32 t boundType);
/*
@param
Info& info
uint32 t val - набор формул задающий значения в области определяющей параметры
ДУ диапазон [0,15]
```

static void SetAreaInfo(Info &info, uint32 t val); @param const Info& info ret bool - false - фиктивный true - не фиктивный static bool IsFiFictitious(const Info &info); @param const Info& info ret bool - false - не граница true - граница static bool IsBound(const Info &info); @param const Info& info ret BoundInfo -структура содержащая информацию о типах Ку и формул которые их задают static BoundInfo GetBoundInfo(const Info &info); @param const Info& info ret AreaInfo -структура содержащая информацию о типах областей которым принадлежит точка и как следствие это определяет парметры ДУ static AreaInfo GetAreaInfo(const Info &info); *|******************** /* Debug functions */ static void PrintInfo(const Info &info); static void PrintBoundInfo(const BoundInfo &Bound); static void PrintAreaInfo(const AreaInfo &Area); ~InfoManeger() = default; **}**; #endif

```
PointInfo.cpp
#include "PointInfo.h"
#include <iostream>
/* Privat Section */
void InfoManeger::SetAreaCountBits(Info &info, uint32 t val)
if (val <= Comand::RightBoundAreaCount)
if (GetAreaCount(info) != 0)
info.BaseInfo &= Comand::SetZeroAreaCount;
info.BaseInfo |= val << Comand::ShiftAreaCountBits;
else
throw "Error Bit Operation\n";
void InfoManeger::SetBoundCountBits(Info &info, uint32 t val)
if (val <= Comand::RightBoundBoundCount)
if (GetBoundCount(info) != 0)
info.BaseInfo &= Comand::SetZeroBoundCount;
info.BaseInfo |= val << Comand::ShiftBoundCountBits;
}
else
throw "Error Bit Operation\n";
uint32 t InfoManeger::GetAreaCount(const Info &info)
return (info.BaseInfo & Comand::GetAreaCount) >> Comand::ShiftAreaCountBits;
uint32 t InfoManeger::GetBoundCount(const Info &info)
return (info.BaseInfo & Comand::GetBoundCount) >> Comand::ShiftBoundCountBits;
/* Public section */
void InfoManeger::ClearInfo(Info &info)
info.BaseInfo &= Comand::BaseInfoClear;
info.AreaInfo &= Comand::AreaInfoClear;
info.BoundInfo &= Comand::BoundInfoClear;
info.TypeBoundCond &= Comand::TypeBoundCondClear;
```

```
}
void InfoManeger::SetFictitious(Info &info, uint8 t val)
if (val \leq 1)
if (IsFiFictitious(info))
info.BaseInfo &= Comand::SetZeroFiFictitious;
info.BaseInfo |= val;
}
else
throw "Error Bit Operation\n";
void InfoManeger::SetBoundInfo(Info &info, uint32_t val, uint32_t boundType)
if (val <= Comand::RightBoundValBoundInfo && boundType <=
Comand::RightBoundValBoundType)
uint32 t Bnum = GetBoundCount(info);
/\!^* если не было значений ^*\!/
if (Bnum == 0)
info.BoundInfo |= val;
info.TypeBoundCond |= boundType;
SetBoundCountBits(info, 1);
else
BoundInfo Bound = GetBoundInfo(info);
for (uint32 t i = 0; i < Bnum; i++)
{
// Проверяем дубликаты
if ((Bound.Cond[i] ^ val) == 0) // Есть дубликат
return;
/* Новый элемент */
info.BoundInfo |= val << Comand::BaseBoundShift * Bnum;
info.TypeBoundCond |= boundType << Comand::BaseTypeBoundShift * Bnum;
SetBoundCountBits(info, Bnum + 1);
}
else
throw "Error Bit Operation\n";
void InfoManeger::SetAreaInfo(Info &info, uint32_t val)
if (val <= Comand::RightBoundValAreaInfo)
                                           73
```

```
{
uint32 t Anum = GetAreaCount(info);
if (Anum == 0)
info.AreaInfo |= val;
SetAreaCountBits(info, 1);
}
else
{
AreaInfo Area = GetAreaInfo(info);
for (uint32_t i = 0; i < Anum; i++)
// Проверяем дубликаты
if ((Area.Cond[i] ^ val) == 0) // Есть дубликат
return;
/* Новый элемент */
info.AreaInfo |= val << Comand::BaseAreaShift * Anum;
SetAreaCountBits(info, Anum + 1);
}
}
else
throw "Error Bit Operation\n";
bool InfoManeger::IsFiFictitious(const Info &info)
return info.BaseInfo & Comand::GetFiFictitious;
bool InfoManeger::IsBound(const Info &info)
return GetBoundCount(info) == 0 ? false : true;
BoundInfo InfoManeger::GetBoundInfo(const Info &info)
BoundInfo Bound;
int32 t Bnum = GetBoundCount(info);
Bound.size = Bnum;
for (int32 t i = 0; i \leq Bnum - 1; i++)
Bound.Cond[i] = (info.BoundInfo & (Comand::GetBoundInfoBaseComand << i *
Comand::BaseBoundShift)) >> i * Comand::BaseBoundShift;
Bound.TypeCond[i] = (info.TypeBoundCond & (Comand::GetTypeBoundBaseComand << i *
Comand::BaseTypeBoundShift)) >> i * Comand::BaseTypeBoundShift;
}
```

```
return Bound;
AreaInfo InfoManeger::GetAreaInfo(const Info &info)
{
AreaInfo Area;
int32 t Anum = GetAreaCount(info);
Area.size = (uint8 t)Anum;
for (int32 t i = 0; i <= Anum - 1; i++)
Area.Cond[i] = (info.AreaInfo & (Comand::GetAreaInfoBaseComand <<
Comand::BaseAreaShift * i)) >> Comand::BaseAreaShift * i;
return Area;
void InfoManeger::PrintInfo(const Info &info)
std::cout << "Info Struct\n";
std::cout << "IsFiFictitious: " << IsFiFictitious(info) << "\n"; std::cout << "AreaCount: " << GetAreaCount(info) << "\n";
std::cout << "BoundCount: " << GetBoundCount(info) << "\n";
PrintAreaInfo(GetAreaInfo(info));
PrintBoundInfo(GetBoundInfo(info));
}
void InfoManeger::PrintBoundInfo(const BoundInfo &Bound)
std::cout << "\nBound Info\n";
for (int i = 0; i < Bound.size; i++)
std::cout << "K = " << i + 1 << " Num formula: " << (uint32_t)Bound.Cond[i] << " Type
Bound: " << (uint32 t)Bound.TypeCond[i] << "\n";
}
void InfoManeger::PrintAreaInfo(const AreaInfo &Area)
std::cout << "\nArea Info\n";
for (int i = 0; i < Area.size; i++)
std::cout << "K = " << i + 1 << " Num formula: " << (uint32_t)Area.Cond[i] << "\n";
```

```
GridStatus.h
#ifndef GRID STATUS H
#define GRID STATUS H
#include <string>
using namespace std;
enum State
{
OK,
LOAD ERROR,
FILE OPEN ERROR,
MEMORY ALLOC ERROR,
GRID_GENERATE_ERROR,
UNKNOWN ERROR
struct Status
State state = State::OK;
string msg = "";
class GridStatus
private:
Status status;
public:
GridStatus() = default;
GridStatus(const Status &status ) : status(status ) {}
inline Status GetStatus() { return status; }
inline string GetMsg() { return status.msg; }
inline State GetState() {    return status.state;    }
inline void SetStatus(const State& state, const string &msg) {  status = {state, msg}; }
~GridStatus() = default;
#endif
```

```
Grid.h
#ifndef GRID H
#define GRID H
#include <string>
#include <fstream>
#include "GridStatus.h"
using namespace std;
template<class BaseGridXD, class ElementXD>
class Gridl
private:
protected:
double eps = 1e-7; // машинный ноль
ofstream fout; // Файловый поток на запись
ifstream fin; // Файловый поток на чтение
public:
GridI() = default;
/* Загрузка базовой сетки из файла и по ней строится уже все ^*/
virtual GridStatus Load(const string& filename) noexcept = 0;
/* Генерация сетки */
virtual GridStatus GenerateGrid() noexcept = 0;
/* Дробление сетки в заданное количество раз */
virtual GridStatus DivideGrid(const int coef) noexcept = 0;
/* Получить базовую сетку */
virtual BaseGridXD GetBaseGrid() const noexcept = 0;
/* Получить шаблонный элемент который необходим */
virtual ElementXD GetElement(int idx) const noexcept = 0;
/* Перегенерация сетки при изменении ее параметров */
virtual GridStatus ReGenerateGrid() noexcept = 0;
virtual \sim GridI() = default;
};
#endif
```

```
FDM.h
#ifndef FDM H
#define FDM H
#include "Grid2D Quad.h"
#include "SLAU.h"
#include <tuple>
#include <functional>
/* Шаблон расчетной области - 5-и точечный крест => получается, что краевые узлы
не входят в расчетную область */
struct BoundCond
int typeBound = 0; // Тип КУ
function<double(double, double)> func[2];
/* Эту структуру инициализируем руками для получения тестов. */
struct DEquation
double lambda = 0;
double gamma = 0;
/* Правая часть ДУ */
function<double(double, double)> f = [](double x, double y) -> double { return 0.0; }; // f
/* Истинное решение ДУ */
bool IsInitTrue = false; // Имеется ли Истинное решение
function<double(double, double)> u true;
/* Ky */
vector<BoundCond> Bound;
class FDM
{
private:
// false - не равномерная сетка
// true - равномерная сетка
bool IsravGrid = false;
Grid2D_Quad Grid;
Matrix matr;
SLAUData slau;
```

vector<double> uij; // Результирующий вектор решений int N = 0; // размерность СЛАУint m = 0; // Количество нулей до диагонали/* Параметры ДУ */ DEquation deq; /* Номера гранниц */ int BoundsNodesIdx = 0; vector<int> BoundsNodes; // Размер 4 * maxSize /* Генерация Матрицы в которой уже учитывается все необходимое тоесть все КУ */ bool GenerateMatrix(); const int coef = 8; public: FDM() = delete;FDM(const FDM&) = delete;FDM(const string &filename, DEquation deg , bool IsravGrid = false); // Решение ДУ void Solve(); // Расчет расстояния между истинным и расчитанным рещениями считаем как сумма Квадратов разности // под Корнем в общем евклидовское расстояние double Norma(); inline void DivideGrid(const int coef) { Grid.DivideGrid(coef); Grid.ReGenerateGrid(); } void PrintTable(); FDM& operator=(const FDM&) = delete; \sim FDM() = default; **}**; #endif

```
FDM.cpp
#include "FDM.h"
#include <cmath>
#include <iostream>
#include <stdio.h>
/* Private section */
bool FDM::GenerateMatrix()
return true;
/* Public section */
FDM::FDM(const string &filename, DEquation deq , bool IsravGrid ) : deq(deq ),
IsravGrid(IsravGrid )
{
Grid.Load(filename);
Grid.GenerateGrid():
// Расчет m
m = Grid.GlobalNx - 2;
// Сохранение памяти под матрицу
matr.m = m;
matr.N = Grid.Dim;
matr.SaveMemory(); // Есть матрица уже нужной структуры
// Размеры массивов под граничные массивы
BoundsNodes.resize(4 * max(Grid.GlobalNx, Grid.GlobalNy));
//Grid.PrintGrid();
void FDM::Solve()
uij.clear();
// Очистка того что было, если было
uij.resize(Grid.Dim);
slau.f.resize(Grid.Dim);
// Собираем матрицу для произвольной сетки
if (IsravGrid)
double hxRight, hxLeft, hyTop, hyBottom;
double lambda = deq.lambda;
double gamma = deq.gamma;
```

```
for (int i = 0; i < Grid.GlobalNy; <math>i++)
for (int j = 0; j < Grid.GlobalNx; <math>j++)
int m = i * Grid.GlobalNx + j;
Point centralNode = Grid[m];
if (InfoManeger::IsFiFictitious(centralNode.info))
{
// Узел не фиктивный
if (InfoManeger::IsBound(centralNode.info))
// Это граница
BoundInfo bif = InfoManeger::GetBoundInfo(centralNode.info);
int typeCond = (int32 t)bif.TypeCond[0];
// 1 KY
if (typeCond == 1 || (int)bif.TypeCond[1] == 1)
// В рамках задачи на границе может быть только 2 и 1 или 3 и 1 = > 	ext{т.k 1KY}
перекрывают все заносим индекс в массив
BoundsNodes[BoundsNodesIdx] = m;
BoundsNodesIdx++;
// cout << "\n-----\n";
// cout << "\nNode num = " << m << " Bound Info\n";
// InfoManeger::PrintBoundInfo(bif);
// cout << "-----\n";
else if (typeCond == 2)
// Граница S6
if (int(m / Grid.GlobalNx) == 0)
hyTop = Grid[m + Grid.GlobalNx].y - Grid[m].y;
// Учет 2 КУ везде это первый элемент на границе S6
matr.add(m, m, lambda / hyTop);
matr.add(m, m + Grid.GlobalNx, -lambda / hyTop);
slau.f[m] += deq.Bound[(int)bif.Cond[0]].func[0](Grid[m].x, Grid[m].y);
//cout << "\nNode num(S6) = " << m << " Bound Info\n";
// Граница S3
else
hxLeft = Grid[m].x - Grid[m-1].x;
matr.add(m, m, lambda/hxLeft);
matr.add(m, m-1, -lambda/hxLeft);
slau.f[m] += deq.Bound[(int)bif.Cond[0]].func[0](Grid[m].x, Grid[m].y);
//cout \ll "\nNode num(S3) = " \ll m \ll " Bound Info\n";
}
}
else
// ЗКУ Заносим в матрицу нужные значения
```

```
}
// InfoManeger::PrintInfo(centralNode.info);
// cout << "Node = " << m << " Formula nums = " << (int32 t)bif.Cond[0] << " ";
// cout << "Type Cond = " << << "\n";
}
else
{
// Внутренний узел
int kim1i = m - 1;
int kip1j = m + 1;
int kijm1 = m - Grid.GlobalNx;
int kijp1 = m + Grid.GlobalNx;
hxRight = Grid[kip1j].x - Grid[m].x;
hxLeft = Grid[m].x - Grid[kim1j].x;
hyTop = Grid[kijp1].y - Grid[m].y;
hyBottom = Grid[m].y - Grid[kijm1].y;
// Строка фиксирована это m ая строка
matr.add(m, kim1j, -(2 * lambda) / (hxLeft * (hxLeft + hxRight)));
matr.add(m, kip1j, -(2 * lambda) / (hxRight * (hxLeft + hxRight)));
matr.add(m, kijm1, -(2 * lambda) / (hyBottom * (hyBottom + hyTop)));
matr.add(m, kijp1, -(2 * lambda) / (hyTop * (hyBottom + hyTop)));
matr.add(m, m, lambda * ((2.0) / (hxRight * hxLeft) + (2.0) / (hyTop * hyBottom)) +
gamma);
// Вектор f
slau.f[m] += deq.f(Grid[m].x, Grid[m].y);
}
else
// Фиктивный узел
slau.f[m] = 0;
matr.insert(m, m, 1.0);
}
}
}
/^st A теперь учитываем 1 - ое краевое условие ^st/
for (int i = 0; i < BoundsNodesIdx; i++)
int m = BoundsNodes[i];
matr.insert(m, m, 1.0);
BoundInfo bif = InfoManeger::GetBoundInfo(Grid[m].info);
// Вносим значения в праую часть
// cout << "Node Num = " << m << " x = " << Grid[m].x << " y = " << Grid[m].y << "
val = " << deg.Bound[0].func[0](Grid[m].x, Grid[m].y) << "\n";
// Берем от нулевой потому что это всегда 1-КУ
```

```
if((int)bif.TypeCond[0] == 1)
slau.f[m] += deq.Bound[(int)bif.Cond[0]].func[0](Grid[m].x, Grid[m].y);
else
cout << "Node m = " << m << "\n";
slau.f[m] += deq.Bound[(int)bif.Cond[1]].func[0](Grid[m].x, Grid[m].y);
//matr.PrintDenseFormatMatrix();
//Grid.PrintGrid();
Zeidel(matr, uij, slau, 1.0);
// int k = 0;
// for(double u: uij)
// {
// if(k == Grid.GlobalNx)
// cout << "\n";
// k = 0;
// }
// k++;
// cout << u << " ";
}
else
{
}
}
double FDM::Norma()
double res = 0;
/* В цикле по узлам */
for (int i = 0; i < Grid.GlobalNy; i += coef)
for (int j = 0; j < Grid.GlobalNx; <math>j += coef)
int m = i * Grid.GlobalNx + j;
if (InfoManeger::IsFiFictitious(Grid[m].info))
res += pow(deq.u_true(Grid[m].x, Grid[m].y) - uij[m], 2);
}
}
}
return sqrt(res);
                                              83
```

```
void FDM::PrintTable()
{
/* В цикле по узлам */
printf("\n\n Pacчетная таблица. Символом * отмечены внутренние узлы сетки\n");
printf("-----
printf("|N |X |Y |U |U* | |U* - U| |\n");
printf("|-----|-----|-----|\n");
for (int i = 0; i < Grid.GlobalNy; i+=coef)
for (int i = 0; i < Grid.GlobalNx; i+=coef)
int m = i * Grid.GlobalNx + j;
if (InfoManeger::IsFiFictitious(Grid[m].info))
double u_true = deq.u_true(Grid[m].x, Grid[m].y);
if (InfoManeger::IsBound(Grid[m].info))
printf("|%14d|%14.3f|%14.3f| %14e | %14e | %14e |\n", m, Grid[m].x, Grid[m].y, uij[m],
u true, abs(u true - uij[m]));
}
else
printf("|*%13d|%14.3f|%14.3f| %14e | %14e | %14e |\n", m, Grid[m].x, Grid[m].y, uij[m],
u true, abs(u true - uij[m]));
}
}
}
if (i < Grid.GlobalNy - 1)
printf("------\n\n\n");
```