Методы тропической математики в задачах принятия решений

Агеев Владимир Анатольевич, гр. 16.М03-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Статистическое моделирование

Научный руководитель: д.ф.-м.н., профессор Кривулин Н. К. Рецензент: к.ф.-м.н., доцент Николаев Д. А.

Санкт-Петербург 2018

Многокритериальная задача принятия решений

Пусть имеется

- ullet n альтернатив принятия решения (варианты выбора товара),
- ullet m критериев (различные характеристики товаров).

Проводится процедура парных сравнений, результатом которой являются:

- ullet матрицы ${f A}_k=(a_{ij}^{(k)})$ с положительными элементами, $k=1,\ldots,m$,
- элемент $a_{ij}^{(k)}$ показывает во сколько раз альтернатива i предпочтительнее альтернативы j, где $i,j=1,\dots,n$,
- ullet матрица ${f C}=(c_{rs})$ с положительными элементами,
- ullet элемент c_{rs} показывает во сколько раз критерий r более важен для принятия решения, чем критерий s, где $r,s=1,\ldots,m$.

Задача: по матрицам $\mathbf{A}_1, \dots, \mathbf{A}_m, \mathbf{C}$ для каждой альтернативы определить абсолютную степень предпочтения (ранг, приоритет).

Матрицы парных сравнений

Матрица парных сравнений $\mathbf{A}=(a_{ij})$ может обладать свойствами:

- обратная симметричность: $a_{ij} = 1/a_{ji}$;
- ullet транзитивность: $a_{ik}=a_{ij}a_{jk}$.

Матрица, обладающая обоими свойствами, называется согласованной.

Если матрица $\mathbf{X}=(x_{ij})$ является согласованной, то существует вектор $\mathbf{x}=(x_1,\dots,x_n)^\mathrm{T}$, $x_i>0$, который однозначно определяет ее элементы $x_{ij}=x_i/x_j$. Элемент x_i показывает приоритет альтернативы i.

Проблема: в практических задачах согласованность обычно нарушена.

Возникает задача аппроксимации матрицы ${\bf A}$ согласованной матрицей ${\bf X}$. Учитывая, что согласованная матрица задается некоторым вектором ${\bf x}$, задачу можно записать в виде

$$\min_{\mathbf{x}} \varphi(\mathbf{A}, \mathbf{x}).$$

Задачи работы

Основная задача: построение процедуры решения поставленной многокритериальной задачи принятия решений.

Для этого потребуется:

- изучение и разработка методов тропической математики для анализа результатов парных сравнений, на основе аппроксимации матриц в log-чебышевской метрике;
- построение и изучение метода решения многокритериальных задач принятия решений, основанного на минимаксной аппроксимации взвешенных матриц;
- разработка методов анализа множества решений в случае, когда решение не единственно.

Элементы тропической математики

Идемпотентное полуполе $\mathbb{R}_{\max, \times}$:

- ullet алгебраическая система $(\mathbb{R}_+, \max, \times, 0, 1)$ \max -алгебра
- над множеством $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x > 0\};$
- \bullet операция \max играет роль операции сложения, которое обозначается знаком $\oplus;$
- сложение идемпотентно: $x \oplus x = x$ для любого $x \in \mathbb{R}_+$;
- операция умножения определена как обычно;
- умножение обратимо: для любого $x \neq 0$ существует обратный x^{-1} .

Элементы тропической математики

Матрицы и векторы над \mathbb{R}_+ :

- ullet векторы и матрицы над \mathbb{R}_+ образуют множества \mathbb{R}_+^n и $\mathbb{R}_+^{m imes n}$;
- операции с матрицами и векторами следуют обычным правилам с заменой сложения на ⊕;
- любому ненулевому вектору-столбцу $\mathbf{x}=(x_i)$ соответствует мультипликативно сопряженный вектор-строка $\mathbf{x}^-=(x_i^-)$, где $x_i^-=x_i^{-1}$, если $x_i\neq 0$, иначе $x_i^-=0$;
- любой ненулевой матрице ${\bf A}=(a_{ij})$ соответствует сопряженная матрица ${\bf A}^-=(a_{ij}^-)$, где $a_{ij}^-=a_{ji}^{-1}$, если $a_{ji}\neq 0$, иначе $a_{ij}^-=0$;
- след матрицы вычисляется по формуле

$$tr \mathbf{A} = a_{11} \oplus \cdots \oplus a_{nn};$$

• спектральным радиусом матрицы называется число

$$\lambda = \operatorname{tr}(\mathbf{A}) \oplus \cdots \oplus \operatorname{tr}^{1/n}(\mathbf{A}^n).$$

Аппроксимация в чебышевской метрике

Задача аппроксимации:

$$\min_{\mathbf{x}} \varphi(\mathbf{A}, \mathbf{x}),$$

где ${\bf A}=(a_{ij})$ – матрица парных сравнений, ${\bf x}=(x_i)$ – вектор, который задает согласованную матрицу ${\bf X}=(x_{ij})$ с элементами $x_{ij}=x_i/x_j$.

В качестве функции ошибки возьмем чебышевскую метрику в логарифмической шкале:

$$\max_{1 \le i, j \le n} |\log a_{ij} - \log x_{ij}|.$$

Воспользовавшись монотонностью логарифма, задачу минимизации $\varphi(\mathbf{A},\mathbf{x})$ можно переписать так:

$$\min_{\mathbf{x}} \max_{1 < i, j < n} \max \{ x_i^{-1} a_{ij} x_j, x_i a_{ij}^{-1} x_j^{-1} \}.$$

В терминах $\mathbb{R}_{\max, \times}$ задача принимает вид

$$\min_{\mathbf{x}} \mathbf{x}^{-} (\mathbf{A} \oplus \mathbf{A}^{-}) \mathbf{x}.$$

Решение задачи аппроксимации

Теорема (Кривулин Н.К., 2015)

- Пусть А матрица парных сравнений,
- ullet введем матрицу ${f D}={f A}\oplus {f A}^-$,
- ullet пусть $\mu = igoplus_{m=1}^n \mathrm{tr}^{1/m}(\mathbf{D}^m)$ спектральный радиус матрицы \mathbf{D} ,
- ullet обозначим ${f D}_{\mu} = \mu^{-1} {f D}$,
- ullet введем матрицу $\mathbf{D}_{\mu}^* = \mathbf{I} \oplus \mathbf{D}_{\mu} \oplus \cdots \oplus \mathbf{D}_{\mu}^{n-1}.$

Тогда

$$\min_{\mathbf{x}} \mathbf{x}^{-} \mathbf{D} \mathbf{x} = \mu,$$

причем минимум достигается тогда и только тогда, когда ${\bf x}$ – положительный вектор, который имеет вид

$$\mathbf{x} = \mathbf{D}_{\mu}^* \mathbf{u}, \quad \mathbf{u} > \mathbf{0}.$$

Аппроксимация взвешенных матриц

В результате сравнений n альтернатив относительно m критериев с весами w_k получены матрицы парных сравнений $\mathbf{A}_k=(a_{ij}^{(k)})$, $k=1,\dots,m$.

Для вычисления вектора рейтингов, необходимо решить задачу

$$\min_{\mathbf{x}} \max_{1 \leq k \leq m} w_k (\max_{1 \leq i, j \leq n} \max\{x_i^{-1} a_{ij}^{(k)} x_j, x_i (a_{ij}^{(k)})^{-1} x_j^{-1}\}).$$

Введем матрицу $\mathbf{D} = (d_{ij})$ с элементами

$$d_{ij} = \max_{1 \le k \le m} w_k \max\{a_{ij}^{(k)}, 1/a_{ji}^{(k)}\}.$$

Перейдем к задаче аппроксимации матрицы ${f D}$ матрицей ${f X}=(x_i/x_j)$:

$$\min_{\mathbf{x}} \max_{1 \le i, j \le n} x_i^{-1} d_{ij} x_j.$$

Задача минимаксной аппроксимации в терминах $\mathbb{R}_{\max, \times}$ записывается так:

$$\min_{\mathbf{x}} \mathbf{x}^{-} \mathbf{D} \mathbf{x}, \quad \mathbf{D} = w_1(\mathbf{A}_1 \oplus \mathbf{A}_1^{-}) \oplus \cdots \oplus w_m(\mathbf{A}_m \oplus \mathbf{A}_m^{-}).$$

Решение такой задачи нам уже известно.

Наихудший и наилучший дифференцирующие векторы

По матрице парных сравнений или взвешенной сумме таких матриц ${f D}$ находится множество решений ${\cal S}.$ Охарактеризуем его векторами:

- наилучший дифференцирующий вектор, который максимально различает альтернативы с высшим и низшим рейтингом,
- наихудший дифференцирующий вектор, который минимально различает такие альтернативы.

Определим эти решения путем максимизации и минимизации отношения

$$\max_{1 \le i \le n} x_i / \min_{1 \le i \le n} x_i = \max_{1 \le i \le n} x_i \times \max_{1 \le i \le n} x_i^{-1}.$$

Задачи нахождения наилучшего и наихудшего решения принимают вид

$$\max_{\mathbf{x} \in \mathcal{S}} \max_{1 \leq i \leq n} x_i \times \max_{1 \leq i \leq n} x_i^{-1}, \qquad \min_{\mathbf{x} \in \mathcal{S}} \max_{1 \leq i \leq n} x_i \times \max_{1 \leq i \leq n} x_i^{-1}.$$

Учитывая, что $\mathbf{x} = \mathbf{D}_{\mu}^*$, такие векторы дают решения задач

$$\max_{\mathbf{u}} \mathbf{1}^{\mathrm{T}} \mathbf{D}_{\mu}^{*} \mathbf{u} (\mathbf{D}_{\mu}^{*} \mathbf{u})^{-} \mathbf{1}, \quad \min_{\mathbf{u}} \mathbf{1}^{\mathrm{T}} \mathbf{D}_{\mu}^{*} \mathbf{u} (\mathbf{D}_{\mu}^{*} \mathbf{u})^{-} \mathbf{1},$$

где μ – спектральный радиус \mathbf{D} , и $\mathbf{D}_{\mu}^* = \mathbf{I} \oplus \mathbf{D}_{\mu} \oplus \cdots \oplus \mathbf{D}_{\mu}^{n-1}$.

Наилучший дифференцирующий вектор

Пусть ${f D}$ – матрица парных сравнений или взвешенная сумма матриц, со спектральным радиусом $\mu = \bigoplus_{m=1}^n {
m tr}^{1/m}({f D}^m)$. Введем матрицы ${f D}_\mu = \mu^{-1}{f D}$ и ${f D}_\mu^* = {f I} \oplus {f D}_\mu \oplus \cdots \oplus {f D}_\mu^{m-1}$.

Лемма (Кривулин Н.К., Агеев В.А., Гладких И.В., 2017)

Обозначим матрицу \mathbf{D}_{μ}^* через $\mathbf{B}=(\mathbf{b}_j).$ Матрица \mathbf{B}_{sk} получена из $\mathbf{B}=(b_{ij})$ обращением в ноль всех элементов, кроме $b_{sk}.$

Тогда

$$\max_{\mathbf{u}} \mathbf{1}^{\mathrm{T}} \mathbf{D}_{\mu}^{*} \mathbf{u} (\mathbf{D}_{\mu}^{*} \mathbf{u})^{-} \mathbf{1} = \mathbf{1}^{\mathrm{T}} \mathbf{B} \mathbf{B}^{-} \mathbf{1}.$$

Любой наилучший дифференцирующий вектор имеет вид

$$\mathbf{x}_{best} = \mathbf{B}(\mathbf{I} \oplus \mathbf{B}_{sk}^{-}\mathbf{B})\mathbf{v}, \quad \mathbf{v} > \mathbf{0},$$

где индексы k и s определяются из условий

$$k = \underset{1 \le i \le n}{\operatorname{argmax}} \mathbf{1}^{\mathrm{T}} \mathbf{b}_{i} \mathbf{b}_{i}^{-1}, \quad s = \underset{1 \le i \le n}{\operatorname{argmax}} b_{ik}^{-1}.$$

Наихудший дифференцирующий вектор

Лемма (Кривулин Н.К., Агеев В.А., Гладких И.В., 2017)

Обозначим матрицу ${f D}_\mu^*$ через ${f B}=({f b}_j)$ со столбцами ${f b}_j=(b_{ij})$ и положим $\Delta=({f B}({f 1}^{
m T}{f B})^-)^-{f 1}.$ Определим матрицу $\widehat{f B}=(\widehat{b}_{ij})$ с элементами

$$\widehat{b}_{ij} = egin{cases} b_{ij}, & ext{ecли } b_{ij} \geq \Delta^{-1} \mathbf{1}^{ ext{T}} \mathbf{b}_{j}, \ 0, & ext{иначе}. \end{cases}$$

Обозначим через ${\cal B}$ множество матриц, полученных фиксацией одного ненулевого элемента в каждой строке $\widehat{{f B}}$ с обращением остальных в 0.

Тогда

$$\min_{\mathbf{u}} \mathbf{1}^{\mathrm{T}} \mathbf{D}_{\mu}^* \mathbf{u} (\mathbf{D}_{\mu}^* \mathbf{u})^{-} \mathbf{1} = \Delta,$$

причем любой наихудший дифференцирующий вектор имеет вид

$$\mathbf{x}_{worst} = \widehat{\mathbf{B}}(\mathbf{I} \oplus \Delta^{-1}\mathbf{B}_1^{-}\mathbf{1}\mathbf{1}^{\mathrm{T}}\widehat{\mathbf{B}})\mathbf{v}, \quad \mathbf{v} > \mathbf{0}, \quad \mathbf{B}_1 \in \mathcal{B}.$$

Недостаток подхода: требуется вычисление в общем случае комбинаторного числа матриц.

Наихудший дифференцирующий вектор

Следующий результат позволяет вычислять решение более эффективно.

Утверждение

Пусть ${f D}$ – матрица парных сравнений или взвешенная сумма матриц, со спектральным радиусом $\mu=igoplus_{m=1}^n {
m tr}^{1/m}({f D}^m).$

Введем матрицы $\mathbf{D}_{\mu} = \mu^{-1}\mathbf{D} \overset{m=1}{\mathsf{u}} \mathbf{D}_{\mu}^{*} = \mathbf{I} \oplus \mathbf{D}_{\mu} \oplus \cdots \oplus \mathbf{D}_{\mu}^{m-1}$. Определим скаляр $\delta = \mathbf{1}^{\mathrm{T}}\mathbf{D}_{\mu}^{*}\mathbf{1}$.

Тогда

$$\min_{\mathbf{u}} \mathbf{1}^{\mathrm{T}} \mathbf{D}_{\mu}^{*} \mathbf{u} (\mathbf{D}_{\mu}^{*} \mathbf{u})^{-} \mathbf{1} = \delta.$$

Любой наихудший дифференцирующий вектор имеет вид

$$\mathbf{x}_{worst} = (\delta^{-1} \mathbf{1} \mathbf{1}^{\mathrm{T}} \oplus \mu^{-1} \mathbf{D})^* \mathbf{v}, \quad \mathbf{v} \ge \mathbf{0}.$$

Метод анализа иерархий

Многокритериальная задача принятия решений:

- ullet пусть ${f A}_1,\ldots,{f A}_m$ матрицы парных сравнений альтернатив относительно m критериев;
- матрица С матрица парных сравнений критериев;
- необходимо найти вектор рейтингов альтернатив.

Метод анализа иерархий (**МАИ**) использует обычную математику и решает эту задачу в два этапа:

 $oldsymbol{0}$ для каждой из матриц $oldsymbol{A}_k$ и матрицы $oldsymbol{C}$ решаются системы

$$\mathbf{A}_k \mathbf{a}_k = \lambda_{max}^{(k)} \mathbf{a}_k, \quad \mathbf{C} \mathbf{w} = \mu_{max} \mathbf{w}, \quad \mathbf{w} = (w_1, \dots, w_m)^{\mathrm{T}},$$

где $\lambda_{max}^{(k)}$ и μ_{max} – максимальные собственные числа матриц \mathbf{A}_k и \mathbf{C} ;

 $oldsymbol{e}$ после нормирования $oldsymbol{a}_1,\dots,oldsymbol{a}_m$ и $oldsymbol{w}$ вычисляется вектор рейтингов

$$\mathbf{x} = w_1 \mathbf{a}_1 + \ldots + w_m \mathbf{a}_m.$$

Процедура решения многокритериальной задачи

Новая процедура:

• по теореме об аппроксимации решается задача

$$\min_{\mathbf{w}} \mathbf{w}^{-} \mathbf{C} \mathbf{w},$$

- $oldsymbol{0}$ если вектор $oldsymbol{w}$ не единственный, вычисляются $oldsymbol{w}_{best}$ и $oldsymbol{w}_{worst}$ согласно утверждениям об анализе решений,
- $oldsymbol{0}$ для векторов весов \mathbf{w}_{best} и \mathbf{w}_{worst} решается задача

$$\min_{\mathbf{x}} \mathbf{x}^{-}(w_{1}(\mathbf{A}_{1} \oplus \mathbf{A}_{1}^{-}) \oplus \cdots \oplus w_{m}(\mathbf{A}_{m} \oplus \mathbf{A}_{m}^{-}))\mathbf{x},$$

ullet если решение не единственно, в случае ${f w}_{best}$ находится наилучший вектор рейтингов ${f x}_{best}$, в случае ${f w}_{worst}$ – наихудший ${f x}_{worst}$.

Решения получаются в явном виде, удобном для дальнейшего анализа и непосредственных вычислений.

Численный пример

Рассмотрим задачу Саати (1989) о выборе одной из средних школ $A,\,B$ и C согласно критериям

- качество обучения основным предметам,
- друзья (количество знакомых),
- школьная жизнь (мероприятия для школьников),
- качество профессионального обучения,
- качество подготовки к колледжу,
- качество обучения музыке.

Численный пример

Матрицы парных сравнений альтернатив

$$\mathbf{A}_{1} = \begin{pmatrix} 1 & 1/3 & 1/2 \\ 3 & 1 & 3 \\ 2 & 1/3 & 1 \end{pmatrix}, \quad \mathbf{A}_{2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad \mathbf{A}_{3} = \begin{pmatrix} 1 & 5 & 1 \\ 1/5 & 1 & 1/5 \\ 1 & 5 & 1 \end{pmatrix},$$

$$\mathbf{A}_{4} = \begin{pmatrix} 1 & 9 & 7 \\ 1/9 & 1 & 1/5 \\ 1/7 & 5 & 1 \end{pmatrix}, \quad \mathbf{A}_{5} = \begin{pmatrix} 1 & 1/2 & 1 \\ 2 & 1 & 2 \\ 1 & 1/2 & 1 \end{pmatrix}, \quad \mathbf{A}_{6} = \begin{pmatrix} 1 & 6 & 4 \\ 1/6 & 1 & 1/3 \\ 1/4 & 3 & 1 \end{pmatrix}.$$

Матрица парных сравнений критериев

$$\mathbf{C} = \begin{pmatrix} 1 & 5 & 7 & 5 & 3 & 1 \\ 1/5 & 1 & 3 & 1/5 & 1/6 & 1/6 \\ 1/7 & 1/3 & 1 & 1/4 & 1/5 & 1/5 \\ 1/5 & 5 & 4 & 1 & 1/5 & 1/6 \\ 1/3 & 6 & 5 & 5 & 1 & 1 \\ 1 & 6 & 5 & 6 & 1 & 1 \end{pmatrix}.$$

Численный пример

По матрице ${f C}$ найдены векторы весов критериев

$$\mathbf{w}_{worst} \approx \begin{pmatrix} 8,58 & 1,00 & 0,69 & 2,43 & 5,89 & 7,07 \end{pmatrix}^{\mathrm{T}} v, \quad v > 0, \\ \mathbf{w}_{best}^{(1)} \approx \begin{pmatrix} 1,00 & 0,10 & 0,07 & 0,25 & 0,60 & 0,71 \end{pmatrix}^{\mathrm{T}} u, \quad u > 0, \\ \mathbf{w}_{best}^{(2)} \approx \begin{pmatrix} 1,46 & 0,15 & 0,10 & 0,36 & 1,00 & 1,04 \end{pmatrix}^{\mathrm{T}} z, \quad z > 0.$$

По \mathbf{w}_{worst} найден наихудший вектор рейтингов альтернатив

$$\mathbf{x}_{worst} pprox egin{pmatrix} 1 & 1 \\ 0.78 & 0.78 \\ 0.78 & 1 \end{pmatrix} \mathbf{u}, \quad \mathbf{u} \geq \mathbf{0}.$$

По $\mathbf{w}_{best}^{(1)}$ и $\mathbf{w}_{best}^{(2)}$ найден наилучший вектор рейтингов альтернатив

$$\mathbf{x}_{best} \approx \begin{pmatrix} 1\\0.84\\0.56 \end{pmatrix} z, \quad z > 0.$$

Сравнение с МАИ

Полученные нормированные наилучшее и наихудшее решения

$$\mathbf{x}_{best} \approx \begin{pmatrix} 0{,}42 \\ 0{,}35 \\ 0{,}23 \end{pmatrix}, \quad \mathbf{x}_{worst}^{(1)} \approx \begin{pmatrix} 0{,}4 \\ 0{,}3 \\ 0{,}3 \end{pmatrix}, \quad \mathbf{x}_{worst}^{(2)} \approx \begin{pmatrix} 0{,}36 \\ 0{,}28 \\ 0{,}36 \end{pmatrix}.$$

В результате применения МАИ был получен вектор рейтингов

$$\mathbf{x} \approx \begin{pmatrix} 0,40 \\ 0,36 \\ 0,24 \end{pmatrix}.$$

В результате обоих подходов окончательное решение было принято в пользу школы A, а наилучшее решение дало рейтинги, близкие к тем, что получаются в обычном анализе иерархий.

Результаты работы:

- разработан подход к решению задачи оценки рейтингов альтернатив, основанный на аппроксимации матриц в log-чебышевской метрике,
- развита концепция наихудшего и наилучшего решения,
- предложен метод вычисления наилучшего решения,
- для вычисления наихудшего решения предложено два подхода: основанный на построении разреженной матрицы, однако требующий перебора комбинаторного числа матриц, а затем более эффективный,
- разработана процедура решения многокритериальной задачи принятия решений, которую можно рассматривать в качестве тропического аналога МАИ,
- проведено экспериментальное исследование полученного метода с помощью известного численного примера,
- предложенная процедура реализована на языке R,
- построены решения для общих случаев матриц малой размерности.

Представление результатов

Результаты были представлены на конференции СПИСОК-2017 (Санкт-Петербург, 2017):

Агеев В.А., Кривулин Н. К.

Применение методов тропической оптимизации для анализа результатов оценки альтернатив на основе парных сравнений Материалы 7-й всероссийской научной конференции по проблемам информатики СПИСОК-2017.— СПб.: BBM, 2017.— С. 536-542.

Основные результаты опубликованы в статье

Кривулин Н. К., Агеев В. А., Гладких И. В.

Применение методов тропической оптимизации для оценки альтернатив на основе парных сравнений Вестник Санкт- Петербургского университета. Прикладная

математика. Информатика. Процессы управления. – 2017. – № 1. – С. 27–41.