PHYS440 - Exercises from Nielsen and Chuang (2016)

John Hurst

2023/2024

2.1. (Linear dependence: example) Show that (1,-1), (1,2) and (2,1) are linearly dependent.

$$(1,-1)+(1,2)=(2,1)$$

2.2. (Matrix representations: example) Suppose V is a vector space with basis vectors $|0\rangle$ and $|1\rangle$, and A is a linear operator from V to V such that $A|0\rangle = |1\rangle$ and $A|1\rangle = |0\rangle$. Find the matrix representation for A, with respect to the input basis $|0\rangle$, $|1\rangle$, and the output basis $|0\rangle$, $|1\rangle$. Find input and output bases which give rise to a different matrix representation of A.

With respect to the basis $|0\rangle$, $|1\rangle$, the vector representation of $|0\rangle$ is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and the vector representation of $|1\rangle$ is $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Let the matrix
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Then

$$A|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

$$A|1\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

Now consider the basis $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$.

Then
$$|0\rangle = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$$
 and $|1\rangle = \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle)$.

So with respect to the basis $|+\rangle$, $|-\rangle$, the vector representation of $|0\rangle$ is $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ and the vector representation of $|1\rangle$ is $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$.

Let's denote the matrix representation of the operator A with respect to the basis $|+\rangle$, $|-\rangle$ as A'.

Then

$$A'\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$A' = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

2.3. (Matrix representation for operator products) Suppose A is a linear operator from vector space V to vector space W, and B is a linear operator from vector space W to vector space X. Let $|v_i\rangle$, $|w_j\rangle$ and $|x_k\rangle$ be bases for the vector spaces V, W and X, respectively. Show that the matrix representation for the linear transformation BA is the matrix product of the matrix representations for B and A, with respect to the appropriate bases.

Let $l = \dim V$, $m = \dim W$ and $n = \dim X$.

If we take a vector $\vec{v} \in V$, we can write it as a linear combination of the basis vectors $|v_i\rangle$:

$$\vec{\mathbf{v}} = \sum_{i=1}^{l} \mathbf{v}_i \, | \mathbf{v}_i \rangle$$

where we interpret $|v_i\rangle$ as a basis vector, and v_i by itself as the coefficient of that basis vector.

Then the matrix representation of the linear operator A is

$$A\vec{v} = \sum_{j=1}^{m} \left[\sum_{i=1}^{l} A_{ji} v_i \right] |w_j\rangle.$$

Similarly, for the linear operator B,

$$B\vec{w} = \sum_{k=1}^{n} \left[\sum_{j=1}^{m} B_{kj} w_j \right] |x_k\rangle.$$

Therefore, the matrix representation of the linear operator BA is

$$B(A\vec{v}) = \sum_{k=1}^{n} \left[\sum_{j=1}^{m} B_{kj} \left(\sum_{i=1}^{l} A_{ji} v_{i} \right) \right] |x_{k}\rangle$$

$$= \sum_{k=1}^{n} \left[\sum_{j=1}^{m} \sum_{i=1}^{l} B_{kj} A_{ji} v_{i} \right] |x_{k}\rangle$$

$$= \sum_{k=1}^{n} \left[\sum_{i=1}^{l} \left(\sum_{j=1}^{m} B_{kj} A_{ji} \right) v_{i} \right] |x_{k}\rangle$$

$$= \sum_{k=1}^{n} \left[\sum_{i=1}^{l} (BA)_{ki} v_{i} \right] |x_{k}\rangle$$

That is, the matrix representation of the linear operator *BA* is the matrix product of the matrix representations for *B* and *A*.

2.11. (Eigendecomposition of the Pauli matrices) Find the eigenvectors, eigenvalues and diagonal representations of the Pauli matrices X, Y and Z.

X matrix:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$
$$y = \lambda x$$
$$x = \lambda y$$

This gives two solutions for X: eigenvalue $\lambda=1$ with eigenvector $\begin{pmatrix}1\\1\end{pmatrix}$, and eigenvalue $\lambda=-1$ with eigenvector $\begin{pmatrix}1\\-1\end{pmatrix}$.

The diagonal form of X is

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$

Y matrix:

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\lambda x = -iy$$
$$ix = \lambda y$$
$$y = \lambda^2 y$$

This gives two solutions for Y: eigenvalue $\lambda=1$ with eigenvector $\begin{pmatrix} 1 \\ i \end{pmatrix}$, and eigenvalue $\lambda=-1$ with eigenvector $\begin{pmatrix} 1 \\ -i \end{pmatrix}$.

A diagonal form of Y is

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{i}{2} & \frac{1}{2} \\ \frac{i}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}$$

Z matrix:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$
$$x = \lambda x$$
$$y = -\lambda y$$

This gives two solutions for Z: eigenvalue $\lambda=1$ with eigenvector $\begin{pmatrix}1\\0\end{pmatrix}$, and eigenvalue $\lambda=-1$ with eigenvector $\begin{pmatrix}0\\1\end{pmatrix}$.

The Z matrix is already in diagonal form.