Гистограмма ядерная оценка плотности поиск наилучшей проекции

Аббакумов Вадим Леонардович

План лекции

- Гистограмма
- Непараметрические оценки плотности улучшенная гистограмма
- Ящики с усами
- Непараметрические оценки плотности при поиске наилучшей проекции (Projection Pursuit, Independent Component Analysis).

1. Гистограмма

Алгоритм построения гистограммы

Данные

$$X_1, X_2, X_3, \ldots, X_n$$

$$X_{(1)} \le X_{(2)} \le X_{(3)} \le \dots \le X_{(n)}$$

$$a \le x_{(1)} \le x_{(2)} \le x_{(3)} \le \dots \le x_{(n)} \le b$$

Интервалы

Разбиваем интервал [a,b] на k
 непересекающихся интервалов.

Интервалы обозначаем

$$\Delta_i$$
 $i = 1, 2, ..., k$

- Обычно одинаковой длины.
- Лучше разной длины, но не умеем.

 Как выбирать интервалы и их число – открытый вопрос…

Столбцы

Обозначения: в интервал Δ_i попало n_i наблюдений

$$\sum_{i=1}^{k} n_i = n$$

Высота столбца

- «Наивная» формула

$$h_i = c \cdot n_i$$

«Научная» формула

$$h_i = \frac{n_i}{n \cdot |\Delta_i|}$$

График

Анализ гистограммы сравнение площадей

Форд мустанг

Выбор среди четырех школ

Вид гистограммы зависит от ширины интервала

 Вид гистограммы зависит от выбора начальной и конечной точек а и b

Рекламная пауза

 Плотность распределения позволяет сосчитать вероятность

$$P[X \in [a,b)] = \int_{a}^{b} f(t) dt$$

- Обычно плотность неизвестна
- Имеются «только» данные

 гистограмма является приближением к плотности распределения наблюдаемой величины

 Одновременно сама гистограмма является плотностью распределения, которым приближаем.

Гистограмма - оценка плотности

Гистограмма - оценка плотности.

- **Робозначий Бири**ваемую плотность распределения f(t)
- Обозначим гистограмму $f_n(t)$
- Пусть число интервалов k зависит от числа наблюдений n: k = k
- ullet Обозначим $|\Delta| = \max_{i=1,2\ldots,k_n} |\Delta_i|$

Гистограмма - оценка плотности.

Предположения

$$\lim_{n\to\infty} |\Delta| = 0$$

$$\lim_{n\to\infty}k_n=\infty$$

$$\lim_{n\to\infty}\frac{k_n}{n}=0$$

Сходимость по вероятности

$$f_n(t) - \frac{P}{n \to \infty} f(t)$$

Рекомендуется строить несколько гистограмм

- с разными значениями параметров
- Если время позволяет

Иногда интервалы надо брать разными

Достоинства гистограммы

- дает наглядное представление о распределении
- выбросы, мультимодальность
- □ позволяет сравнивать распределения
- □ просто вычисляется
- □ является оценкой плотности

Недостатки гистограммы

- выбор границ а и b произволен.
- выбор числа интервалов к произволен
- не непрерывна
- равна нулю вне интервала [a, b]
- неудобно на одном графике строить несколько гистограмм

Отступление. Формула Sturges'a

- Формула Sturges'a:
- Ширина интервала вычисляется по формуле
- h = R/k
 - □ где R размах выборки,
 - $k = 1 + log_2 n$.

- Формула предложена в работе
- Sturges, H. (1926)

The choice of a class-interval.

J. Amer. Statist. Assoc., 21, 65–66.

и вывод формулы содержит ошибки...

- Ошибки описаны в статье
- Rob J. Hyndman The problem with Sturges' rule for constructing histograms 1995

тем временем применение формулы
 Sturges'a стало повсеместным

Альтернатива 1: формула Scott'a

- $h = 3.5s / n^{1/3}$
- где s выборочное стандартное отклонение
- Scott, D.W. (1979)
 On optimal and data-based histograms.
 Biometrika, 66, 605–610.

Альтернатива 2: формула Freedman и Diaconis

- $h = 2IQ / n^{1/3}$
- где IQ межквартильный размах

Freedman, D. and Diaconis, P. (1981)
On the histogram as a density estimator: L2 theory.

Zeit. Wahr. ver. Geb., 57, 453-476.

Куда все смотрели 100 лет?

- Если размер выборки меньше 200 наблюдений, все формулы дают близкие результаты.
- Если больше 200 наблюдений, то формула Sturges'а занижает число интервалов.
- Формула Freedman и Diaconis'a устойчивее к выбросам.

2. Обобщения гистограммы

Непараметрические оценки плотности

Ядерные оценки плотности

Ядерные оценки плотности

- Над каждой точкой функция.
- Функции усредняем

Площадь подграфика среднего равна 1.

Новый взгляд на гистограмму

- Гистограмма функция
- Нормированная гистограмма плотность распределения
- Гистограмма –среднее арифметическое плотностей распределения
- Каждому наблюдению соответствует своя плотность равномерного распределения

Улучшаем вид ядер

Ядерная оценка плотности

 Чтобы получить ядерную оценку плотности, считаем среднее значение этих функций

Правильный вариант: усреднение

Наглядный вариант: сумма

Сравним гистограмму и

ядерную оценку плотности

- Обобщения гистограмм называют

«непараметрические оценки плотности»

Ядерные оценки плоттности

Реализация ядерных оценок плотности в Питоне

- Убогая формула для вычисления ширины окна (предполагается нормальность)
- Мало вариантов ядра (несущественно)
- Нет модификаций для случая интервалов

- Яркий пример:
- seaborn.kdeplot и scipy.stats.gaussian_kde

Первые попытки процедур построения KDE

 B R в 2011 году было 20+ пакетов (Deng, Wickham Density estimation in R)

KDEpy

 Все остальные предполагают нормальность оцениваемого распределения

В питоновском сообществе

Kernel Density Estimate называют Density Plots

Многие уверены, что KDE разгадывает истинную плотность распределения переменной

Поэтому два графика

Гистограмма и нормальная плотность

Оцен

Гистограмма и KDE Одно и то же, два раза

5-числовая сводка

- минимальное,Q1,медиана, Q3, максимальное
- Ящик с усами график 5-числовой сводки

Форма распределения и ящиковая диаграмма

Скос влево (отрицательный) среднее < медианы

Симметричное (ноль)

Скос вправо (положительный) среднее > медианы

Форма распределения -

- Для оценки формы Риспользуется гистограмма или ящики с усами
- Форма симметричная или скошенная
- взаимное расположение среднего и медианы
- Но есть еще мультимодальные распределения

Поиск наилучшей проекции (Projection Pursuit, Independent Component Analysis).

Многомерные данные

Проклятье размерности

Гистограммы неприменимы

Поиск наилучшей проекции

Многомерные данные

- Анализ главных компонент
- Факторный анализ

- Зачем нужно что-то еще?
- Не ориентированы на поиск кластеров в данных

Многомерные данные

Поиск наилучшей проекции

Пример 1 Проекция на произвольную прямую

Пример 1 Информативная проекция

Пример 2

- 506 наблюдений для каждого квартала города Бостон и его пригородов.
- Кварталы определялись так же, как и при переписи населения США.
- Фиксировалось 13 независимых наблюдений и одна зависимая.

- X1 = уровень преступности
- X2 = разреженность населения (обратно к плотности)
- X3 = доля предприятий не торгового характера среди всех предприятий квартала
- X4 = район у реки (1 = да, 0 = нет)
- X5 = загазованность
- X6 = среднее число комнат в квартире/доме среди домов этого квартала
- X7 = доля старых домов (построенных до 1940)

- X8 = расстояние до промышленных/деловых районов города (взвешенное)
- X9 = расстояние до радиальных автодорог
- X10 = величина налога на недвижимость в районе в \$10,000
- X11 = число учеников не одного учителя (в школах района)
- X12 = 1000(В 0.63)^2, где В доля афроамериканцев
- X13 = процент населения с низким соц. статусом
- X14 = медиана цен жилых домов в 1000 долларов

Преобразуем переменные

- X1 = In(уровень преступности)
- X2 = разреженность населения (обратно к плотности)
- X3 = доля предприятий не торгового характера среди всех предприятий квартала
- X4 = район у реки (1 = да, 0 = нет)
- X5 = (загазованность)^2
- X6 = (среднее число комнат в квартире/доме среди домов этого квартала)^2
- X7 = доля старых домов (построенных до 1940)

- X8 = In(расстояние до промышленных/деловых районов города (взвешенное))
- X9 = In(расстояние до радиальных автодорог)
- X10 = величина налога на недвижимость в районе в \$10,000
- X11 = число учеников не одного учителя (в школах района)
- X12 = ln(0.4-(В 0.63)^2), где В доля афроамериканцев
- X13 = In(процент населения с низким соц. статусом)
- X14 = In(медиана цен жилых домов в 1000 долларов)

 Подобные графики указывают, что надо делать! (порождают гипотезы)

Почему несколько решений?

- Так как ответ получен в результате минимизации некоторой функции,
- было найдено несколько локальных минимумов.

 Локальные минимумы тоже могут быть интересны! При чем тут гистограммы и непараметрические оценки плотности? - Какая проекция интересная?

Какая проекция неинтересная?

 Неинтересна проекция, у которой нормальное распределение

- Интересна проекция,
- распределение которой максимально отклоняется от нормального

Измерим отклонение от нормальности

Индекс качества проекции

$$I_1 = \int_{-\infty}^{\infty} (f_{np}(t) - \varphi(t))^2 dt$$

- При этом
- плотность нормального распределения

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right)$$

оценка плотности проекции

$$f_{np}(t)$$

 Откуда берется оценка плотности распределения $f_{np}(t)$

- Это гистограмма
- или ядерная оценка плотности

 Наилучшая проекция доставляет максимум индексу проекции.

 Процедура минимизации облегчается, когда оценка плотности гладкая.

 Отсюда преимущество ядерных оценок перед гистограммой.

Independent component analysis (ICA)

 Возможен другой индекс качества проекции, основанный на энтропии

$$H_{np} = -\int_{-\infty}^{\infty} g(s) \ln(g(s)) ds$$

Многомерное шкалирование

- Минимальное отличие суммы расстояний между точками в исходных данных и в проекции
- Минимальное отличие рангов расстояний между точками в исходных данных и в проекции

 В настоящее время информативные переменные (features) часто ищут с помощью глубокого обучения

 Для человека с кувалдой весь мир выглядит как гвоздь.