RMXplorer

LAB 1: Sensor Report

Name

- นาย อรรณพ แซ่โค้ว 66340500061
- นาย ธีรานนท์ ธรรมโชติวรศิริ 67340500023

Objectives

- สามารถออกแบบการทดลองโดยใช้ทักษะกระบวนการทางวิทยาศาสตร์ และประยุกต์ร่วมกับโปรแกรม
 MATLAB เพื่อเก็บข้อมูล วิเคราะห์ผลการทดลอง ตรวจสอบความเที่ยงตรง ความแม่นยำ และความถูกต้อง
 พร้อมให้เหตุผลอธิบายผลได้อย่างมีหลักฐานรองรับ
- สามารถอธิบายหลักการและกระบวนการทางฟิสิกส์ของเซนเซอร์ทุกชนิดที่ใช้ ตั้งแต่ขั้นตอนเริ่มต้นจนถึง
 กระบวนการประมวลผลข้อมูลได้อย่างถูกต้อง
- สามารถกำหนดตัวแปรและออกแบบการทดลองได้อย่างเหมาะสม และเป็นไปตามหลักวิทยาศาสตร์
- สามารถออกแบบการทดลองให้สอดคล้องกับผลการเรียนรู้ และอธิบายผลที่ได้อย่างถูกต้องตามหลักเหตุผล ทางวิทยาศาสตร์
- สามารถจัดทำรายงานการทดลองทางวิทยาศาสตร์ได้อย่างถูกต้อง ครบถ้วนทั้งในด้านเนื้อหา สัญลักษณ์ หน่วย
 การจัดรูปแบบ และระยะขอบกระดาษ ให้เป็นไปตามมาตรฐานทางวิชาการ

1. Lab 1.1 Potentionmeter

การทดลองที่ 1 Potentionmeter

จุดประสงค์

- 1. เพื่อศึกษาหลักการทำงานและคุณสมบัติของ Potentiometer รวมถึงชนิดและการตอบสนองของแรงดันไฟฟ้าที่ขา ออกเมื่อหมุนเพลาของตัวต้านทานปรับค่าได้
- 2. เพื่อสร้างวงจร Schmitt Trigger ใน Simulink และทดลองปรับค่า Upper Threshold และ Lower Threshold เพื่อสังเกตพฤติกรรมของสัญญาณขาออก
- 3. เพื่อทดลองแปลงสัญญาณ Analog จาก Potentiometer ให้เป็นสัญญาณ Digital โดยประยุกต์ใช้บอร์ด Nucleo STM32G474RE ร่วมกับ MATLAB/Simulink
- 4. เพื่อแสดงผลการเปลี่ยนแปลงของสัญญาณ Output แบบ Real-Time ตามการหมุนของเพลา Potentiometer และวิเคราะห์ความสัมพันธ์ระหว่างแรงดันอินพุตกับสัญญาณเอาต์พุต
- 5. เพื่อฝึกทักษะการวิเคราะห์ข้อมูล การเขียนรายงาน และการสรุปผลการทดลองทางวิทยาศาสตร์อย่างถูกต้องตาม หลักการ

สมมติฐาน

การเปลี่ยนแปลงตำแหน่งหรือตัวหมุนของ Potentiometer จะส่งผลต่อแรงดันไฟฟ้าที่ขาออก โดยแรงดันไฟฟ้าขา ออกจะ เพิ่มขึ้นหรือลดลงตามทิศทางและมุมการหมุน ของเพลา Potentiometer ทั้งนี้ค่าที่ได้จะเปลี่ยนแปลงแบบ เชิง เส้น (Linear) หรือ เชิงมุม (Angular) ขึ้นอยู่กับลักษณะของตัวต้านทานที่ใช้

ตัวแปร

1. ตัวแปรต้น:

องศาการหมุนของ Rotary Potentiometer (PDB181-K420K series) ตั้งแต่ 0 – 100 เปอร์เซ็นต์ของมุม การหมุน โดยเก็บค่าทุก ๆ 5 เปอร์เซ็นต์

ระยะการเลื่อนของ Linear Potentiometer (PTA6043 series) ตั้งแต่ 0 – 100 เปอร์เซ็นต์ โดยเก็บค่า ทุก ๆ 10 เปอร์เซ็นต์

2. ตัวแปรตาม:

ค่าความต่างศักย์หรือแรงดันไฟฟ้าขาออกจาก Potentiometer ที่เปลี่ยนแปลงตามสัดส่วนของการหมุน หรือการเลื่อนตำแหน่งของตัวแปรต้น (0–100%) 3. ตัวแปรควบคุม:

แหล่งจ่ายไฟฟ้าที่ใช้ในการทดลองร่วมกับ Potentiometer และ Nucleo STM32G474RE คงที่ตลอดการ ทดลอง

อุณหภูมิและสภาพแวดล้อมในระหว่างการทดลองคงที่ เพื่อไม่ให้มีผลต่อค่าการวัดแรงดันไฟฟ้า

เอกสารและงานวิจัยที่เกี่ยวข้อง

- 1. Bourns Inc. (2020). Datasheet PTA6043 and PDB18 Series Potentiometers เอกสารข้อมูลผลิตภัณฑ์จากบริษัท Bourns ที่ให้รายละเอียดของ Linear และ Rotary Potentiometer ทั้ง ในด้านค่าความต้านทาน, ความคลาดเคลื่อน, ความเป็นเชิงเส้น, และแรงดันใช้งานสูงสุด ซึ่งใช้เป็นแหล่งข้อมูล ในการออกแบบและเลือกใช้อุปกรณ์ในการทดลอง
- 2. Daher, N. & Haidar, A. (2019). A Novel Direct Reference Input Schmitt Trigger Design งานวิจัย การออกแบบวงจร Schmitt Trigger ที่สามารถปรับค่าขีดจำกัด (Threshold) ได้โดยตรง ช่วยลดสัญญาณ รบกวน (Noise) และเพิ่มความเสถียรของการแปลงสัญญาณ Analog เป็น Digital ซึ่งสอดคล้องกับการ ทดลองใน Simulink ที่ใช้แปลงแรงดันจาก Potentiometer เป็นสัญญาณ Digital
- 3. Song, Q., Li, X., & Zhang, L. (2020). Research and Teaching Practice on Experiment Course of STM32-Embedded Microcontroller งานวิจัยที่ศึกษาแนวทางการใช้บอร์ด STM32 ในห้องทดลอง เพื่อฝึก ให้นักเรียนเข้าใจการเก็บข้อมูลและการควบคุมสัญญาณแบบ Real-Time โดยตรง ซึ่งสอดคล้องกับการใช้ บอร์ด Nucleo STM32G474RE ในงานทดลอง
- 4. Filanovsky, I. M. & Bakes, J. (1994). CMOS Schmitt Trigger Design งานวิจัยอธิบายโครงสร้างและการ ทำงานของวงจร Schmitt Trigger รวมถึงการคำนวณค่า Upper และ Lower Threshold ซึ่งเป็นแนวคิด สำคัญในการปรับพฤติกรรมของวงจรใน Simulink
- 5. STMicroelectronics (2020). STM32G474RE Datasheet เอกสารข้อมูลทางเทคนิคของ ไมโครคอนโทรลเลอร์ STM32G474RE ที่ใช้ในงานทดลอง เพื่ออธิบายคุณสมบัติของ ADC และการรับ สัญญาณ Analog จาก Potentiometer
- 6. MathWorks (2024). MATLAB & Simulink Support Package for STMicroelectronics STM32 Boards เอกสารคู่มือการใช้งาน Simulink ร่วมกับ STM32 สำหรับการรับ-ส่งสัญญาณแบบ Real-Time ซึ่งเป็นส่วน สำคัญของขั้นตอนการทดลอง

ขั้นตอนการดำเนินงาน

1. เชื่อมต่อ Potentiometer กับบอร์ด STM32

เชื่อมต่อขา VCC, GND และขา Output ของ Rotary และ Linear Potentiometer เข้ากับขา ADC ของบอร์ด STM32G474RE จากนั้นเชื่อมต่อบอร์ดกับคอมพิวเตอร์ผ่านสาย USB เพื่อส่งสัญญาณเข้าสู่ MATLAB Simulink

2. ตั้งค่าการใช้งาน Potentiometer ร่วมกับ STM32 ใน MATLAB Simulink

เปิดโปรแกรม MATLAB Simulink และสร้างแบบจำลองการทดลอง ต่อไปนี้

แบบจำลองการทดลอง Potentonmeter

3. การทดลองและการเก็บข้อมูล

ทำการปรับตำแหน่งของ Rotary Potentiometer ในช่วงมุม 0 – 100 เปอร์เซ็นต์ โดยเก็บค่าทุก ๆ 5 เปอร์เซ็นต์ และปรับตำแหน่งของ Linear Potentiometer ในช่วงระยะ 0 – 100 เปอร์เซ็นต์ โดยเก็บค่าทุก ๆ 10 เปอร์เซ็นต์ โดยการทำซ้ำ 5 ครั้ง ของแต่ละชนิด แต่ละซีรี่ ช่วงมุม ช่วงระยะ ที่เปลี่ยนแปลงไป เพื่อให้ได้ข้อมูลเพียงพอสำหรับการ วิเคราะห์

4. การวิเคราะห์สัญญาณและการเปรียบเทียบผล

นำสัญญาณแรงดันไฟฟ้าที่ได้จาก Potentiometer แต่ละชนิดมาสร้างกราฟ แสดงความสัมพันธ์ระหว่างตำแหน่ง กับแรงดันไฟฟ้า จากนั้นเปรียบเทียบลักษณะเส้นกราฟระหว่าง Linear และ Rotary Potentiometer เพื่อวิเคราะห์ ความเป็นเชิงเส้นและความไวในการตอบสนองของสัญญาณ

5. การบันทึกและสรุปผลการทดลอง

บันทึกค่าที่ได้จาก Data Inspector ของ Simulink พร้อมสรุปผลการทดลองในรายงาน โดยอธิบายความสัมพันธ์ ระหว่างมุมหมุนหรือระยะเลื่อนกับแรงดันขาออก รวมถึงผลจากการใช้ Schmitt Trigger ในการแปลงสัญญาณ Analog เป็น Digital

ผลการทดลอง ตารางแสดงค่าที่เก็บได้ของ Rotary Potentionmeter Series A

					Series A						
	:	1	:	2	:	3	4	4	!	5	
Rotational (%)	Voltage per	position read	Average								
5	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0
20	1.17	48	0	0	1.03	42	1.12	46	1.12	46	0.89
25	2.37	97	1.10	45	2.25	92	2.44	100	2.22	91	2.08
30	3.30	135	2.08	85	3.59	147	4.64	190	3.25	133	3.37
35	4.69	192	3.66	150	4.40	180	5.86	240	4.42	181	4.61
40	5.71	234	4.66	191	5.76	236	6.84	280	5.79	237	5.75
45	6.91	283	5.91	242	6.76	277	8.33	341	6.72	275	6.93
50	8.18	335	6.96	285	8.21	336	16.00	655	8.21	336	9.51
55	16.09	659	8.18	335	16.12	660	28.23	1156	14.19	581	16.56
60	28.08	1150	16.43	673	27.35	1120	42.30	1732	28.82	1180	28.60
65	37.29	1527	27.40	1122	38.51	1577	49.06	2009	38.00	1556	38.05
70	48.89	2002	37.31	1528	49.01	2007	58.02	2376	47.84	1959	48.21
75	59.07	2419	48.11	1970	61.81	2531	69.60	2850	58.97	2415	59.51
80	70.43	2884	59.71	2445	70.40	2883	80.59	3300	69.18	2833	70.06
85	82.98	3398	69.43	2843	83.39	3415	95.53	3912	81.71	3346	82.61
90	92.55	3790	80.76	3307	95.36	3905	100	4095	96.95	3970	93.12
95	97.88	4008	95.70	3919	100	4095	100	4095	100	4095	98.72
100	100	4095	100	4095	100	4095	100	4095	100	4095	100

ตารางและกราฟแสดงค่าที่เก็บได้ของ Rotary Potentionmeter Series B

					Series B					-	
	1	ı	2	2	;	3	4	4	į	5	
Rotational (%)	Voltage per	position read	Average								
5	0	0	0	0	0	0	0	0	0	0	0
10	0.63	26	5.01	205	1.56	64	1.71	70	1.68	69	2.12
15	7.77	318	7.74	317	7.40	303	6.84	280	6.94	284	7.34
20	13.14	538	11.28	462	11.53	472	11.94	489	12.43	509	12.06
25	17.92	734	17.24	706	16.61	680	16.85	690	17.31	709	17.19
30	22.61	926	22.34	915	22.32	914	22.42	918	22.05	903	22.35
35	28.40	1163	27.42	1123	27.03	1107	28.42	1164	27.57	1129	27.77
40	33.89	1388	33.63	1377	32.38	1326	32.63	1336	32.82	1344	33.07
45	39.63	1623	38.46	1575	36.90	1511	37.90	1552	37.56	1538	38.09
50	45.81	1876	44.64	1828	44.40	1818	42.66	1747	43.42	1778	44.19
55	51.82	2122	50.09	2051	51.28	2100	50.82	2081	49.55	2029	50.71
60	57.73	2364	56.26	2304	57.73	2364	56.17	2300	57.24	2344	57.03
65	62.56	2562	62.88	2575	62.95	2578	62.95	2578	62.78	2571	62.83
70	68.16	2791	67.13	2749	68.77	2816	67.18	2751	68.82	2818	68.01
75	73.80	3022	73.41	3006	73.33	3003	74.04	3032	73.97	3029	73.71
80	82.10	3362	80.32	3289	79.54	3257	80.05	3278	80.07	3279	80.42
85	91.18	3734	89.62	3670	89.67	3672	90.43	3703	89.35	3659	90.05
90	98.95	4052	97.63	3998	98.10	4017	97.90	4009	96.51	3952	97.82
95	100	4095	100	4095	100	4095	100	4095	100	4095	100
100	100	4095	100	4095	100	4095	100	4095	100	4095	100

ตารางแสดงค่าที่เก็บได้ของ Rotary Potentionmeter Series C

					Series C						
	1	I	:	2	;	3	4	4	Į.	5	
Rotational (%)	Voltage per	position read	Average								
5	100	4095	100	4095	100	4095	100	4095	99.88	4090	99.98
10	91.14	3732	99.83	4088	92.80	3800	95.68	3918	86.52	3543	93.19
15	69.82	2859	85.98	3521	74.77	3062	76.68	3140	72.53	2970	75.96
20	58.51	2396	70.82	2900	62.25	2549	60.73	2487	59.44	2434	62.35
25	45.40	1859	57.44	2352	48.47	1985	48.03	1967	46.15	1890	49.10
30	33.63	1377	43.74	1791	33.63	1377	36.68	1502	33.46	1370	36.22
35	21.17	867	32.72	1340	19.46	797	20.17	826	20.05	821	22.72
40	13.33	546	18.85	772	13.16	539	13.04	534	12.84	526	14.25
45	11.60	475	12.94	530	11.77	482	11.43	468	11.75	481	11.90
50	9.55	391	11.50	471	10.40	426	9.91	406	10.04	411	10.28
55	8.06	330	9.77	400	8.64	354	8.35	342	8.55	350	8.67
60	6.84	280	8.38	343	7.06	289	6.89	282	7.01	287	7.23
65	5.18	212	6.81	279	5.81	238	5.76	236	5.37	220	5.79
70	3.96	162	5.47	224	4.27	175	4.30	176	4.05	166	4.41
75	2.59	106	4.03	165	3.22	132	2.91	119	2.59	106	3.07
80	1.56	64	2.59	106	1.61	66	1.66	68	1.83	75	1.85
85	0.32	13	1.44	59	0.27	11	0.12	5	0.22	9	0.47
90	0	0	0.24	10	0	0	0	0	0	0	0.05
95	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	0	0

กราฟแสดงค่าเฉลี่ยที่เก็บได้ของ Rotary Potentionmeter Series A Series B และ Series C

กราฟแสดงค่าเฉลี่ยที่เก็บได้ของ Rotary Potentionmeter Series A Series B และ Series C

ผลการทดลองแต่ละซีรีส์ของ Rotary Potentiometer

ในการทดลองครั้งนี้ ได้ทำการทดสอบ Rotary Potentiometer จำนวน 3 แบบ โดยใช้วิธีการหมุนเพลาในช่วง 0 - 100 % ของระยะการหมุนทั้งหมด และบันทึกแรงดันไฟฟ้าขาออกในแต่ละจุด จากนั้นนำค่าที่ได้จากการทดลองมา คำนวณค่าเฉลี่ยและพล็อตกราฟดังรูป โดยจะสามารถสรุปผลจากกราฟได้ดังนี้

Series A – มีแรงดันเพิ่มขึ้นแบบโค้ง

- ช่วงต้น (0 30 %) แรงดันเพิ่มขึ้นช้ามาก
- o ช่วงกลาง (40 70 %) เริ่มเพิ่มต่อเนื่อง
- ช่วงปลาย (80 100 %) แรงดันเพิ่มสูงชั้น

Series B - เพิ่มขึ้นเป็นเส้นตรง

- ค่าแรงดันไฟฟ้าขาออกเพิ่มขึ้น สม่ำเสมอ ตลอดการหมุน
- o กราฟมีความเป็นเส้นตรงจาก 0 V ถึง 100 %

Series C – ลดลงแบบโค้งกลับ

- แรงดันไฟฟ้าสูงในช่วงต้น (0 20 %)
- ลดลงอย่างต่อเนื่องเมื่อหมุนเพลาเพิ่มขึ้น
- o กราฟมีลักษณะโค้งกลับด้านของ Series A

ตารางและกราฟแสดงค่าที่เก็บได้ของ linear Potentionmeter Type A

				Lin	near Serie	s A					
	1	1	:	2	;	3	4	4	į	5	
Rotational (%)	Voltage per	position read	Average								
0	0	0	0	0	0	0	0	0	0	0	0
10	8.99	368	6.81	279	8.52	349	7.84	321	6.35	260	7.70
20	28.69	1175	27.89	1142	30.38	1244	29.40	1204	29.43	1205	29.16
30	48.47	1985	49.62	2032	47.37	1940	48.18	1973	47.47	1944	48.22
40	70.45	2885	68.57	2808	68.16	2791	68.42	2802	69.43	2843	69.01
50	81.12	3322	80.98	3316	81.22	3326	81.20	3325	81.07	3320	81.12
60	85.35	3495	85.47	3500	85.76	3512	85.42	3498	85.69	3509	85.54
70	89.28	3656	89.16	3651	89.38	3660	89.35	3659	89.79	3677	89.39
80	94.46	3868	94.46	3868	94.46	3868	94.55	3872	94.33	3863	94.45
90	97.97	4012	97.80	4005	97.85	4007	97.83	4006	97.88	4008	97.87
100	99.51	4075	99.56	4077	99.63	4080	99.66	4081	99.56	4077	99.58

ตารางและกราฟแสดงค่าที่เก็บได้ของ linear Potentionmeter Type B

				Lin	near Serie	s A					
	1	I	:	2	;	3	4	1	5		
Rotational (%)	Voltage per	position read	Average								
0	0	0	0	0	0	0	0	0	0	0	0
10	4.69	192	4.18	171	4.30	176	4.42	181	4.18	171	4.35
20	14.21	582	15.02	615	14.99	614	14.43	591	14.65	600	14.66
30	25.25	1034	24.71	1012	25.05	1026	26.08	1068	25.37	1039	25.29
40	35.46	1452	35.21	1442	35.07	1436	35.65	1460	35.78	1465	35.43
50	45.79	1875	46.30	1896	45.74	1873	46.18	1891	45.18	1850	45.84
60	56.26	2304	56.92	2331	56.34	2307	56.09	2297	56.41	2310	56.41
70	67.18	2751	67.72	2773	67.47	2763	66.74	2733	67.62	2769	67.35
80	80.59	3300	79.95	3274	79.58	3259	80.05	3278	80.29	3288	80.09
90	94.29	3861	94.36	3864	93.41	3825	94.38	3865	93.26	3819	93.94
100	97.19	3980	97.19	3980	97.19	3980	97.19	3980	97.19	3980	97.19

กราฟแสดงค่าเฉลี่ยที่เก็บได้ของ Linear Potentiometer Series A และ Series B

กราฟแสดงค่าเฉลี่ยที่เก็บได้ของ Linear Potentiometer Series A และ Series B

จากการทดลองครั้งนี้ ได้ทำการทดสอบ Linear Potentiometer จำนวน 2 แบบ คือ Series A และ Series B โดยเลื่อนตำแหน่งของสไลด์จาก 0 – 100% ของระยะการเคลื่อนที่ทั้งหมด และบันทึกแรงดันไฟฟ้าขาออกในแต่ละช่วง ค่าที่ได้จากการทดลองสามารถสรุปผลการเปลี่ยนแปลงแรงดันได้ดังนี้

Series A – การตอบสนองแบบกึ่งเชิงเส้น

- ช่วงต้น (0 20%) แรงดันเพิ่มขึ้นช้ากว่าช่วงอื่น
- ช่วงกลาง (30 70%) แรงดันเพิ่มขึ้นในอัตราคงที่
- ช่วงปลาย (80 100%) แรงดันเพิ่มสูงขึ้นอย่างรวดเร็ว
- กราฟมีลักษณะ โค้งเล็กน้อย ใกล้เคียงเส้นตรง แต่ยังมีส่วนเบี่ยงเบนจากความเป็นเชิงเส้นเล็กน้อย
 Series B การตอบสนองแบบเชิงเส้นสมบุรณ์
- ค่าแรงดันไฟฟ้าเพิ่มขึ้นอย่างสม่ำเสมอตลอดช่วงการเลื่อน (0 100%)
- เส้นกราฟมีลักษณะเป็นเส้นตรงชัดเจน แสดงถึงความสัมพันธ์เชิงเส้นระหว่างแรงดันและตำแหน่งของตัวเลื่อน
- o ผลการทดลองใกล้เคียงกับค่าทฤษฎีของ Linear Potentiometer มากที่สุด
- o เหมาะสำหรับใช้งานในระบบวัดตำแหน่ง (Position Sensing) หรือระบบที่ต้องการการแปลงสัญญาณแบบ สัดส่วนตรง

สรุปผลการทดลอง

ในการทดลองครั้งนี้ ได้ทำการศึกษาคุณสมบัติและการตอบสนองของ Potentiometer ทั้งแบบ Rotary และ Linear โดยทดสอบการเปลี่ยนแปลงแรงดันไฟฟ้าขาออกตามการหมุนหรือการเลื่อนของเพลาในช่วง 0 – 100% ของ ระยะการเคลื่อนที่ และนำผลที่ได้มาเปรียบเทียบกับข้อมูลในเอกสารทางเทคนิค (Datasheet) เพื่อวิเคราะห์ลักษณะ ของแต่ละชนิด โดยสามารถได้ข้อสรุปว่า

Rotary Potentiometer

Series A - ลักษณะการตอบสนองแบบ Logarithmic

Series B - ลักษณะการตอบสนองแบบ Linear

Series C – ลักษณะการตอบสนองแบบ Anti-Logarithmic

Linear Potentiometer

Series A – ลักษณะการตอบสนองกึ่งเชิงเส้น

Series B – ลักษณะการตอบสนองแบบเชิงเส้นสมบูรณ์

ซึ่งจากผลการทดลองทั้งหมด สอดคล้องกับข้อมูลใน Datasheet ของ Bourns Inc.

อภิปรายผล

การทดลองมีวัตถุประสงค์เพื่อศึกษาความสัมพันธ์ระหว่างแรงดันไฟฟ้าขาออกกับตำแหน่งของ Potentiometer ทั้งสองลักษณะ ได้แก่ Rotary Potentiometer และ Linear Potentiometer โดยเชื่อมต่ออุปกรณ์กับบอร์ด STM32G474RE ผ่านระบบ MATLAB Simulink เพื่อเก็บค่าข้อมูลแรงดันจริง แล้วนำมาวิเคราะห์ในรูปกราฟและ ตารางเปรียบเทียบ ผลการทดลองที่ได้แสดงให้เห็นถึงพฤติกรรมของการเปลี่ยนแปลงแรงดันไฟฟ้า ซึ่งสัมพันธ์กับ รูปแบบของการกระจายค่าความต้านทานของ Potentiometer แต่ละชนิด

ข้อเสนอแนะ

- o ใช้วงจรกรองสัญญาณ เช่น Low-pass filter เพื่อช่วยลดสัญญาณรบกวน ที่เกิดจากการสั่นของตัวเลื่อน
- o การต่อสายสัญญาณควรใช้สายชนิดมีฉนวนกันรบกวน เพื่อป้องกันสัญญาณรบกวนจากสิ่งแวดล้อม การสอบเทียบ (Calibration) ก่อนการทดลอง
- ควรทำการสอบเทียบศูนย์แรงดัน และแรงดันสูงสุด ของระบบทุกครั้งก่อนเริ่มการทดลอง

อ้างอิง

https://www.bourns.com/docs/Product-Datasheets/pdb18.pdf
https://www.bourns.com/docs/Product-Datasheets/pta.pdf
https://www.ti.com/lit/an/sloa035d/sloa035d.pdf

2. Lab 1.2 Incremental Encoder

การทดลองที่ 1.2 Incremental Encoder

จุดประสงค์

1.เพื่ออธิบายหลักการทำงานของ Incremental Encoder และส่วนประกอบภายใน

2.เพื่อทำความเข้าใจการตั้งค่าและการใช้งาน Configuration Parameters ในโปรแกรม STM32CubeMX

3.เพื่อศึกษาลักษณะและรูปแบบสัญญาณเอาต์พุตของ Incremental Encoder ขณะหมุนด้วยความเร็วต่าง ๆ

4.เพื่อคำนวณหาค่าความละเอียดของการหมุน (Pulse per Revolution และ Resolution) ของ Encoder

5.เพื่ออ่านและวิเคราะห์สัญญาณ Raw Signal ด้วย QEI เพื่อหาค่า Relative Position และคำนวณความเร็วเชิงมุม

6.เพื่อวิเคราะห์ข้อดี–ข้อเสียของวิธีการอ่านสัญญาณแบบ QEI Method และ Polling Method

7.เพื่อเขียนโปรแกรมสำหรับ Homing Function ของ Incremental Encoder

สมมติฐาน

ทิศทางและความเร็วของการหมุนเพลาของ Incremental Encoder จะส่งผลต่อสัญญาณพัลส์ที่ได้ โดยสามารถ ระบุทิศทางการหมุนและคำนวณความเร็วได้จากจำนวนพัลส์และการเปลี่ยนแปลงสถานะของสัญญาณช่อง A และ B ค่า Pulse Per Revolution (PPR) และความละเอียด (Resolution) ของ Encoder สามารถตรวจสอบได้จาก การคำนวณและการตั้งค่าการวัดที่เหมาะสมในระบบทดลอง เพื่อใช้เปรียบเทียบกับค่ามาตรฐานจาก Datasheet การใช้วิธีการอ่านสัญญาณแบบ QEI (Quadrature Encoder Interface) และ Polling Method จะให้ผลการวัด ที่แตกต่างกันในด้านความแม่นยำและความเร็วของการตอบสนอง

ตัวแปร

1. ตัวแปรต้น:

ทิศทางการหมุนของเพลา ความเร็วในการหมุนของเพลา ความละเอียด (Resolution) หรือค่าพัลส์ต่อรอบ (Pulses per Revolution)

2. ตัวแปรตาม:

ค่าสัญญาณพัลส์ที่ได้จาก Incremental Encoder ค่าตำแหน่งเชิงมุม และความเร็วเชิงมุม ที่คำนวณจากสัญญาณที่ได้

3. ตัวแปรควบคุม:

แหล่งจ่ายไฟฟ้าที่ใช้ในการทดลองกับ Encoder และบอร์ด Nucleo STM32G474RE อุณหภูมิและสภาพแวดล้อมระหว่างการทดลอง

เอกสารและงานวิจัยที่เกี่ยวข้อง

1. หลักการของ Incremental Encoder

Incremental Encoder เป็นอุปกรณ์ตรวจวัดตำแหน่งเชิงมุมที่ทำงานโดยอาศัยการสร้างสัญญาณพัลส์จากการ หมุนของเพลา โดยทั่วไปจะมีช่องสัญญาณหลัก 2 ช่องคือ Channel A และ Channel B ซึ่งมีเฟสต่างกัน 90 องศา เพื่อใช้ในการระบุทิศทางการหมุน และบางรุ่นจะมี Channel Z สำหรับกำหนดตำแหน่งอ้างอิง (Index Position) หนึ่ง ครั้งต่อการหมุนหนึ่งรอบ สัญญาณที่ได้จาก Encoder สามารถนำไปประมวลผลเพื่อคำนวณค่าตำแหน่ง (Position) และความเร็วเชิงมุม (Velocity) ได้ โดยอาศัยหลักการนับพัลส์ (Pulse Counting) และระยะเวลาระหว่างพัลส์ (Time Interval Measurement)

2. การประมวลผลสัญญาณแบบ QEI (Quadrature Encoder Interface)

เทคนิค QEI ถูกออกแบบมาเพื่อลดภาระของไมโครคอนโทรลเลอร์ โดยให้ฮาร์ดแวร์ของไมโครคอนโทรลเลอร์ (เช่น Timer Module) ทำหน้าที่นับพัลส์และตรวจจับทิศทางโดยอัตโนมัติจากสัญญาณ A และ B ในไมโครคอนโทรลเลอร์ตระกูล STM32 จะมีการตั้งค่า Timer ให้อยู่ในโหมด Encoder Mode ซึ่งมีให้เลือก 3 รูปแบบ ได้แก่

- o Mode 1: ใช้ขา TI1 เพียงขาเดียว
- o Mode 2: ใช้ขา TI2 เพียงขาเดียว
- o Mode 3: ใช้ขาทั้ง TI1 และ TI2 เพื่อเพิ่มความละเอียดการนับ (นับได้ทั้งขาขึ้น-ขาลงของ A และ B)

3. การอ่านสัญญาณแบบ Polling Method

วิธีการ Polling เป็นการอ่านสัญญาณ A/B จากขา GPIO ด้วยโปรแกรม (Software) ที่ทำงานเป็นช่วง ๆ เพื่อ เปรียบเทียบสถานะการเปลี่ยนแปลงของพัลส์ ซึ่งวิธีนี้เข้าใจง่ายแต่มีข้อจำกัดด้านความเร็วและความแม่นยำ เนื่องจาก ขึ้นอยู่กับความถี่ในการอ่านค่าของ CPU เมื่อเปรียบเทียบกับ QEI จะพบว่า Polling เหมาะสำหรับความเร็วต่ำ หรือใช้ ในงานที่ต้องการทดสอบพฤติกรรมสัญญาณเท่านั้น

4. การคำนวณค่าความละเอียด (Resolution) และ PPR

Encoder แต่ละรุ่นจะมีค่าความละเอียดแตกต่างกันตามโครงสร้างทางกล เช่น Pulses per Revolution (PPR) ซึ่งหมายถึงจำนวนพัลส์ที่เกิดขึ้นเมื่อเพลาหมุนครบหนึ่งรอบ ในการนับแบบ QEI Mode X4 จะทำให้จำนวนพัลส์ที่นับได้ต่อรอบเท่ากับ 4 × PPR ซึ่งช่วยเพิ่มความละเอียดของการ วัดได้ถึง 4 เท่า

5. การใช้งาน STM32CubeMX และ STM32G474 ในการประยุกต์ใช้ Encoder

ไมโครคอนโทรลเลอร์ STM32G474RE รองรับการทำงานของ Timer Encoder Mode ได้หลายช่อง (TIM1, TIM3, TIM8) ทำให้สามารถรับสัญญาณจาก Encoder ได้หลายตัวพร้อมกัน โดยผู้ใช้สามารถตั้งค่าผ่าน STM32CubeMX เพื่อกำหนดขาอินพุต (PA6, PA7, PC0, PC1 ๆลๆ) และปรับค่า Counter Period, Prescaler, Polarity เพื่อความถูกต้องของการนับ ซอฟต์แวร์ Simulink / MATLAB สามารถเชื่อมต่อกับ STM32 เพื่อแสดงค่าการ นับและคำนวณ Position, Velocity แบบเรียลไทม์ได้

ขั้นตอนการดำเนินงาน

- 1. การเตรียมอุปกรณ์และซอฟต์แวร์
 - ตรวจสอบและเตรียมอุปกรณ์ที่ใช้ในการทดลอง
 - O ตรวจสอบความถูกต้องของการต่อวงจรและแรงดันไฟก่อนเริ่มการทดลอง

2. การตั้งค่าใน STM32CubeMX

- O เปิดโปรแกรม STM32CubeMX และเลือกบอร์ด Nucleo STM32G474RE
- O ไปที่ Timers \rightarrow TIM1. TIM3. TIM8 แล้วเปิดโหมดการทำงานเป็น
 - Encoder Mode x1 / x2 / x4 (Mode 3)
- O กำหนดขาอินพุตให้ตรงกับ Encoder

- O ตั้งค่า Counter Period = 65535, Prescaler = 0, และ Polarity = Rising Edge
- O ปิดการใช้งาน Pull-up/Pull-down
- O กำหนด Clock Configuration ให้ความถี่ของ Timer อยู่ในช่วง 72–170 MHz
- O สร้างโค้ด (Generate Code) แล้วเปิดใน STM32CubeIDE

3. เขียนโค้ดประมวลผลสัญญาณ Encoder

โค้ดประมวลผลภายใน Block code for QEI และ Block code for Polling

- O ในโหมด QEI ใช้โค้ดตัวอย่างจาก ST หรือ Simulink Block
- O ในโหมด Polling ใช้โค้ดอ่านขา GPIO A/B เพื่อตรวจจับการเปลี่ยนสถานะ

Block code for QEI และ Block code for Polling

4. เชื่อมต่อวงจร

5. ทดสอบการทำงานและบันทึกข้อมูล

- O หมุน Encoder ทีละรอบซ้า ๆ เพื่อบันทึกจำนวนพัลส์ที่นับได้ต่อรอบ
- O หมุนในความเร็วต่าง ๆ (ต่ำ ปานกลาง สูง) เพื่อทดสอบการตอบสนองของ QEI และ Polling
- O บันทึกค่าตำแหน่ง (Position) และความเร็ว (Velocity) ที่ได้จากแต่ละโหมด
- O ตรวจสอบค่าที่อ่านได้กับค่าทางทฤษฎีจาก Datasheet ของ Encoder
- O ทำการทดสอบ Homing โดยให้ Encoder หมุนจนผ่านสัญญาณ Z หนึ่งครั้ง และตรวจสอบการรีเซ็ต ตำแหน่ง

ผลการทดลอง

- incremental Encoder AMT103 – V

Raw input Encoder x1 x2 x4

สัญญาณที่ได้จาก QEI

สัญญาณที่ได้จาก Polling Method

- Bourns PEC11R-4220F-N0024

Raw input Encoder x1 x2 x4

สัญญาณที่ได้จาก QEI

สัญญาณที่ได้จาก Polling Method

เปรียบเทียบสัญญาณ QEI และ Polling Method

จากกราฟแสดงผลการอ่านสัญญาณของ Incremental Encoder พบว่า เมื่อเปรียบเทียบการอ่านค่าระหว่าง QEI Method และ Polling Method จะเห็นได้ว่าสัญญาณจาก QEI มีความต่อเนื่องและเสถียรมากกว่า

สรุปผลการทดลอง

จากกราฟเปรียบเทียบสัญญาณที่ได้จากการอ่านด้วย QEI Method และ Polling Method พบว่าสัญญาณจาก การอ่านแบบ QEI มีความต่อเนื่องและมีความเสถียรมากกว่า Polling อย่างชัดเจนทั้งในสองรุ่นของ Encoder ในการ ทดลองทั้ง AMT103-V (ความละเอียด 1024 PPR) และ Bourns PEC11R-4220F-N0024 (ความละเอียด 24 PPR) เมื่อหมุนเพลาของ Encoder ไป–กลับหลายรอบ ค่าที่ได้จาก QEI สามารถ นับพัลส์ได้ครบทุกการหมุน และเมื่อเพลา กลับมาที่ตำแหน่งเริ่มต้น (ค่า 0) ค่าที่อ่านได้จาก QEI จะกลับมาที่ศูนย์พอดี ในขณะที่ Polling Method มีการสูญเสีย พัลส์บางส่วนระหว่างการหมุน ทำให้ค่าที่ได้ ไม่กลับมาที่ศูนย์เดิมอย่างแม่นยำ

นอกจากนี้ยังพบว่าในช่วงความเร็วการหมุนสูง Polling จะมีอัตราการอ่านค่าผิดพลาดสูงขึ้น ส่วน QEI สามารถ ตรวจจับพัลส์ได้อย่างต่อเนื่องด้วย Hardware Timer ของ STM32 ซึ่งมีความแม่นยำและความเสถียรสูงกว่าอย่างเห็น ได้ชัด

ดังนั้นสรุปได้ว่า

o QEI Method ให้สัญญาณที่มีความต่อเนื่อง เสถียร และแม่นยำในการนับพัลส์ รวมถึงสามารถตรวจจับทิศ ทางการหมุนได้ถูกต้อง

- o Polling Method เหมาะกับการทดลองพื้นฐานหรือการตรวจจับความเร็วต่ำเท่านั้น เนื่องจากเกิดการสูญหาย ของพัลส์และค่าที่วัดได้ไม่กลับศูนย์เมื่อหมุนกลับตำแหน่งเดิม
- o ผลการทดลองสอดคล้องกับสมมติฐานที่ว่า QEI Method มีประสิทธิภาพสูงกว่าในการอ่านสัญญาณ Incremental Encoder ทั้งในแง่ของความแม่นยำ การตอบสนอง และความเสถียรของข้อมูลที่ได้

อภิปรายผล

จากการทดลองใช้งาน Incremental Encoder เพื่อศึกษาลักษณะสัญญาณและการทำงานของระบบตรวจจับการ หมุนของเพลา โดยใช้การอ่านค่าด้วยสองวิธี

- O Quadrature Encoder Interface (QEI Method) อ่านค่าผ่าน Hardware Timer ของ STM32
- O Polling Method อ่านค่าผ่าน Software Loop ด้วยการตรวจจับสถานะของขา A และ B

พบว่า ผลการทำงานของ QEI Method มีความแม่นยำและเสถียรกว่า Polling Method อย่างชัดเจน

ข้อเสนอแนะ

- O ใช้ มอเตอร์สเต็ป/โต๊ะหมุน (rotary table) เป็นมาตรฐานมุม เพื่อสร้าง ground truth ของตำแหน่ง/ความเร็ว
- O สอบเทียบศูนย์ด้วย ช่อง Z หรือ mark ที่เพลา แล้วบันทึก error ต่อรอบ
- O ใช้ ออสซิลโลสโคป/ลอจิกแอนาไลเซอร์ ตรวจสอบเฟส A/B (90°) และวัด jitter/ความกว้างพัลส์จริง
- O ทดสอบ x1/x2/x4 และบันทึกอัตรา error เทียบความเร็ว เพื่อเลือกโหมดที่เหมาะกับงานจริง

อ้างอิง

https://www.mathworks.com/help/supportpkg/stmicroelectronicsstm32g4/

https://www.bourns.com/products/encoders/incremental/pec11r

https://www.sameskydevices.com/catalog/motion-and-control

https://www.ti.com/lit/an/spraa88a/spraa88a.pdf

https://www.st.com/resource/en/datasheet/stm32g474re.pdf

3. Lab 1.3 Magnetic Sensor

การทดลองที่ 1.3 Magnetic Sensor

จุดประสงค์

- 1. เพื่ออธิบายหลักการทำงานและลักษณะสัญญาณเอาต์พุตของ Magnetic Sensor เมื่อค่าความหนาแน่นของ สนามแม่เหล็ก (Magnetic Flux Density) เปลี่ยนแปลงไป
- 2. เพื่อศึกษาความสัมพันธ์ระหว่าง Magnetic Field Shielding และ Magnetic Flux Density เพื่อวิเคราะห์ผลของ การป้องกันสนามแม่เหล็กต่อค่าการวัดที่ได้จากเซนเซอร์

สมมติฐาน

เมื่อความหนาแน่นของฟลักซ์แม่เหล็ก (Magnetic Flux Density, B) เปลี่ยนแปลงสัญญาณแรงดันเอาต์พุตจาก Ratiometric Linear Hall Effect Magnetic Sensor จะเปลี่ยนแปลงไปในทิศทางเดียวกัน โดยเมื่อแม่เหล็กเข้าใกล้ เซนเซอร์มากขึ้นสัญญาณแรงดันจะเพิ่มขึ้นหรือลดลงตามขั้วของแม่เหล็กที่อยู่ตรงข้ามเซนเซอร์

การมีวัสดุป้องกันสนามแม่เหล็ก (Magnetic Field Shielding) จะช่วยลดความเข้มของสนามแม่เหล็กที่ส่งถึง เซนเซอร์ทำให้ค่าความหนาแน่นของฟลักซ์แม่เหล็กที่วัดได้มีค่าลดลง เมื่อเปรียบเทียบระหว่างกรณีที่มีและไม่มีวัสดุ ป้องกันสนามแม่เหล็กโดยสัญญาณเอาต์พุตจะแสดงความแตกต่างตามระดับของการป้องกันสนามแม่เหล็กที่ใช้

ตัวแปร

1. ตัวแปรต้น:

ตำแหน่งของแม่เหล็กจากเซนเซอร์ ทิศทางของขั้วแม่เหล็ก (Magnetic Pole Orientation) การมีหรือไม่มี Magnetic Field Shielding

2. ตัวแปรตาม:

ค่าสัญญาณแรงดันเอาต์พุตจาก Ratiometric Linear Hall Effect Magnetic Sensor

3. ตัวแปรควบคุม:

แหล่งจ่ายไฟฟ้าที่ใช้กับ Ratiometric Linear Hall Effect Magnetic Sensor และบอร์ด Nucleo STM32G474RE
อุณหภูมิและสภาพแวดล้อมระหว่างการทดลอง

เอกสารและงานวิจัยที่เกี่ยวข้อง

1. DRV5055 Ratiometric Linear Hall Effect Magnetic Sensor

เซนเซอร์รุ่นนี้ถูกออกแบบมาให้สามารถตรวจจับความเข้มของสนามแม่เหล็กและให้สัญญาณเอาต์พุตเป็น แรงดันไฟฟ้าแบบเชิงเส้น (Linear Output) โดยแรงดันที่ได้จะเปลี่ยนแปลงตามทิศทางและความเข้มของสนามแม่เหล็ก ที่มากระทำ คุณสมบัติดังกล่าวทำให้เซนเซอร์ชนิดนี้เหมาะสำหรับการตรวจจับตำแหน่ง การหมุน ความเร็ว หรือใช้วัด กระแสไฟฟ้าในงานอุตสาหกรรม

คุณสมบัติทางเทคนิคของ DRV5055

- แรงดันจ่าย (Supply Voltage): 2.7 38 V
- ค่าความไว (Sensitivity): 23.5 mV/mT (typical)
- การตอบสนองเชิงเส้น: ±1000 mT
- เอาต์พุต: Analog Ratiometric Voltage
- อุณหภูมิการทำงาน: −40 °C ถึง +125 °C
- เหมาะสำหรับงานตรวจจับตำแหน่งแม่เหล็ก ความเร็ว และการเคลื่อนที่เชิงเส้น
- 2. Magnetic Field Shielding Materials

Magnetic Field Shielding คือกระบวนการลดหรือป้องกันการแทรกซึมของสนามแม่เหล็กโดยใช้วัสดุที่มีค่า ความนำแม่เหล็กสูง เพื่อดูดซับเส้นแรงแม่เหล็กก่อนถึงจุดตรวจวัด

วัสดุป้องกันดังกล่าวจะช่วยลดความเข้มของสนามแม่เหล็กที่เซนเซอร์รับได้ ทำให้สามารถศึกษาความแตกต่างของ สัญญาณในกรณี มี และ ไม่มีการ Shielding ได้อย่างชัดเจน

วัสดุที่นิยมใช้ในงาน Shielding

- Mu-metal โลหะผสมระหว่างนิกเกิลและเหล็ก มี Permeability สูง
- Soft Iron ใช้งานง่าย เหมาะสำหรับการทดลองเชิงพื้นฐาน
- Ferrite ใช้ในกรณีสนามแม่เหล็กความถี่สูง

ขั้นตอนการดำเนินงาน

- 1. การต่อวงจรและการเชื่อมต่ออุปกรณ์
 - O ต่อ Magnetic Sensor (DRV5055) เข้ากับบอร์ด STM32 Nucleo-G474RE โดยเชื่อมต่อดังนี้
 - ขา Vcc ของเซนเซอร์ ต่อกับแรงดัน 5V จากบอร์ด
 - ขา GND ต่อกับกราวด์ของบอร์ด
 - ขา Vout ต่อกับช่อง ADC Input (Analog Pin) ของ STM32
 - O ตรวจสอบความถูกต้องของการต่อวงจรและแรงดันไฟก่อนเริ่มการทดลอง
- 2. การตั้งค่าพารามิเตอร์ใน STM32 และ MATLAB Simulink
 - O เปิดโปรแกรม STM32CubeIDE และตั้งค่าการอ่านสัญญาณจากขา ADC ที่เชื่อมต่อกับเซนเซอร์
 - O เปิด MATLAB Simulink เพื่อรับสัญญาณจากบอร์ด STM32 ผ่านพอร์ต Serial Communication โดยใช้ แบบจำลองการทดลองต่อไปนี้

- O ตั้งค่า Sampling Time และ Data Logging เพื่อบันทึกค่าแรงดันที่อ่านได้จากเซนเซอร์ในหน่วยโวลต์
- 3. การทดลองวัดสัญญาณในสภาวะต่าง ๆ
 - การวัดค่าแรงดันตามตำแหน่งของแม่เหล็ก
 นำแม่เหล็กวางห่างจากเซนเซอร์ที่ตำแหน่งต่าง ๆ ตั้งแต่ 12 42 มม. โดยเพิ่มครั้งละ 5 มม.
 บันทึกค่าแรงดันเอาต์พุต (Vout) ที่ได้ในแต่ละตำแหน่ง
 ทำซ้ำการทดลองอย่างน้อย 3 ครั้งต่อระยะ เพื่อหาค่าเฉลี่ยของแรงดัน

- การเปลี่ยนขั้วของแม่เหล็ก
 หมุนขั้วแม่เหล็กจากขั้วเหนือ (N) ไปขั้วใต้ (S)
 บันทึกการเปลี่ยนแปลงของแรงดันเอาต์พุต
 วิเคราะห์ทิศทางและความแตกต่างของแรงดันที่ได้
- O การทดสอบ Magnetic Field Shielding
- นำแผ่นโลหะ (เช่น เหล็กบาง หรือ Mu-metal) มาวางระหว่างแม่เหล็กกับเซนเซอร์ บันทึกค่าแรงดันเอาต์พุตในกรณี มี และ ไม่มี Shielding เปรียบเทียบความแตกต่างของสัญญาณเพื่อหาผลของการป้องกันสนามแม่เหล็ก

4. การบันทึกและวิเคราะห์ข้อมูล

- O บันทึกค่าที่ได้ทั้งหมดในตาราง (ระยะห่าง, ทิศทาง, ค่าแรงดัน, และกรณี Shielding)
- บ นำค่าที่ได้มาสร้างกราฟแสดงความสัมพันธ์ระหว่าง
 - ระยะทาง (Distance) กับแรงดันเอาต์พุต (Vout)
 - ความเข้มของสนามแม่เหล็ก (Magnetic Flux Density) กับแรงดัน (V)
- วิเคราะห์แนวโน้มและเปรียบเทียบการตอบสนองของเซนเซอร์ในแต่ละเงื่อนไข

ผลการทดลอง

ผลการทดลองการเปลี่ยนแปลงเอาต์พุตแม่เหล็กขั้วเหนือ Non-Shield

ครั้งที่ 1						
ระยะ(มม.)	แรงดันไฟฟ้า	Flux Density				
12	0.05156	-0.05331				
17	0.05801	-0.05307				
22	0.79440	-0.02844				
27	1.28900	-0.01182				
32	1.48600	-0.00567				
37	1.58000	-0.00229				
42	1.62700	-0.00099				

ครั้งที่ 2							
ระยะ(มม.)	แรงดันไฟฟ้า	Flux Density					
12	0.04995	-0.05315					
17	0.05881	-0.05296					
22	0.70420	-0.03126					
27	1.23000	-0.01294					
32	1.49000	-0.00516					
37	1.57700	-0.00266					
42	1.62300	-0.00102					

ครั้งที่ 3							
ระยะ(มม.)	แรงดันไฟฟ้า	Flux Density					
12	0.05156	-0.05331					
17	0.05801	-0.05307					
22	0.79600	-0.02828					
27	1.29300	-0.01217					
32	1.50400	-0.00502					
37	1.56900	-0.00231					
42	1.16190	-0.00104					

	เฉลี่ย							
ระยะ(มม.)	แรงดันไฟฟ้า	Flux Density						
12	0.05102	-0.05326						
17	0.05828	-0.05303						
22	0.76487	-0.02933						
27	1.27067	-0.01231						
32	1.49333	-0.00528						
37	1.57533	-0.00242						
42	1.47063	-0.00102						

With-Shield

ครั้งที่ 1							
ระยะ(มม.)	แรงดันไฟฟ้า	Flux Density					
12	0.05317	-0.05320					
17	0.06204	-0.05288					
22	0.91440	-0.02444					
27	1.36200	-0.00956					
32	1.51300	-0.00414					
37	1.58500	-0.00211					
42	1.62500	-0.00094					

	ครั้งที่ 2							
ระยะ(มม.)	แรงดันไฟฟ้า	Flux Density						
12	0.05237	-0.05325						
17	0.06123	-0.05280						
22	0.93460	-0.02371						
27	1.33300	-0.01034						
32	1.51100	-0.00459						
37	1.61100	-0.00145						
42	1.61900	-0.00075						

	ครั้งที่ 3							
ระยะ(มม.)	แรงดันไฟฟ้า	Flux Density						
12	0.05640	-0.05317						
17	0.06204	-0.05288						
22	1.00100	-0.02253						
27	1.34500	-0.01023						
32	1.51100	-0.00459						
37	1.59800	-0.00180						
42	1.62500	-0.00011						

เฉลี่ย			
ระยะ(มม.)	แรงดันไฟฟ้า	Flux Density	
12	0.05398	-0.05321	
17	0.06177	-0.05285	
22	0.95000	-0.02356	
27	1.34667	-0.01004	
32	1.51167	-0.00444	
37	1.59800	-0.00179	
42	1.62300	-0.00060	

Flux Density เปรียบเทียบระหว่าง Non-Shield และ With-Shield

จากกราฟแสดงความสัมพันธ์ระหว่าง ระยะห่างของแม่เหล็กกับแรงดันไฟฟ้าและค่า Flux Density พบว่าทั้งสอง กรณี (Non-Shield และ With-Shield) มีแนวโน้มการเปลี่ยนแปลงในทิศทางเดียวกัน คือ เมื่อระยะห่างระหว่าง แม่เหล็กและเซนเซอร์ เพิ่มขึ้น ค่าแรงดันไฟฟ้า เพิ่มขึ้น จากประมาณ 0.05 V - 1.6 V ในขณะที่ค่า Flux Density มีค่า เป็นลบและ เข้าใกล้ศูนย์มากขึ้น แสดงถึงความเข้มของสนามแม่เหล็กที่ลดลง

ผลที่ได้จากการมี Magnetic Shield

- กรณี With-Shield ให้ค่าแรงดันสูงกว่าเล็กน้อยในทุกช่วงระยะเนื่องจากวัสดุ Shield ช่วยลดความเข้มของ สนามแม่เหล็กที่เข้าสู่เซนเซอร์ทำให้แรงดันเอาต์พุตอยู่ใกล้กับค่าอ้างอิงมากกว่า
- ค่า Flux Density ของกรณี With-Shield มีค่าต่ำกว่าเล็กน้อย (เข้าใกล้ศูนย์) แสดงว่า Shield สามารถ ลดทอนความเข้มของสนามแม่เหล็กได้จริง

ผลการทดลองการเปลี่ยนแปลงเอาต์พุตแม่เหล็กขั้วใต้ Non-Shield

ครั้งที่ 1			
ระยะ(มม.) แรงดันไฟฟ้า Flux Density			
12	3.27700	0.05425	
17	3.27900	0.05433	
22	2.54500	0.03013	
27	2.06000	0.01364	
32	1.88200	0.00744	
37	1.80200	0.00502	
42	1.75200	0.00339	

ครั้งที่ 2				
ระยะ(มม.)	ระยะ(มม.) แรงดันไฟฟ้า			
12	3.27700	0.05425		
17	3.27800	0.05427		
22	2.58900	0.03118		
27	2.05600	0.01316		
32	1.87700	0.00747		
37	1.79700	0.00500		
42	1.74700	0.00328		

ครั้งที่ 3			
ระยะ(มม.) แรงดันไฟฟ้า Flux Density			
12	3.27800	0.05422	
17	3.27800	0.05427	
22	2.41000	0.02508	
27	2.07000	0.01402	
32	1.87500	0.00720	
37	1.79500	0.00513	
42	1.76400	0.00365	

เฉลี่ย			
ระยะ(มม.)	Flux Density		
12	3.27733	0.05424	
17	3.27833	0.05429	
22	2.51467	0.02880	
27	2.06200	0.01361	
32	1.87800	0.00737	
37	1.79800	0.00505	
42	1.75433	0.00344	

With-Shield

ครั้งที่ 1			
ระยะ(มม.) <mark>แรงดันไฟฟ้า</mark> Flux Density			
12	3.27800	0.05433	
17	3.27700	0.05427	
22	2.42800	0.02616	
27	2.01600	0.01235	
32	1.86100	0.00717	
37	1.78800	0.00470	
42	1.74600	0.00338	

ครั้งที่ 2			
ระยะ(มม.)	แรงดันไฟฟ้า	Flux Density	
12	3.27700	0.05430	
17	3.28000	0.05430	
22	2.43200	0.02608	
27	1.99100	0.01171	
32	1.86400	0.00698	
37	1.78800	0.00485	
42	1.75500	0.00309	

ครั้งที่ 3			
ระยะ(มม.) แรงดันไฟฟ้า Flux Density			
12	3.27800	0.05433	
17	3.27900	0.05430	
22	2.43300	0.02632	
27	2.01000	0.01198	
32	1.85900	0.00682	
37	1.78900	0.00478	
42	1.74400	0.00333	

เฉลี่ย				
ระยะ(มม.)	ระยะ(มม.) แรงดันไฟฟ้า			
12	3.27767	0.05432		
17	3.27867	0.05429		
22	2.43100	0.02619		
27	2.00567	0.01201		
32	1.86133	0.00699		
37	1.78833	0.00478		
42	1.74833	0.00327		

แรงดันเปรียบเทียบระหว่าง Non-Shield และ With-Shield

Flux Density เปรียบเทียบระหว่าง Non-Shield และ With-Shield

จากกราฟแสดงความสัมพันธ์ระหว่าง ระยะห่างของแม่เหล็กกับแรงดันไฟฟ้าและค่า Flux Density พบว่าทั้งสอง กรณี (Non-Shield และ With-Shield) มีแนวโน้มการเปลี่ยนแปลงไปในทิศทางเดียวกัน คือ เมื่อระยะห่างระหว่าง แม่เหล็กและเซนเซอร์ เพิ่มขึ้น ค่าแรงดันไฟฟ้า (Output Voltage) จะลดลง จากประมาณ 3.27 V ไป 1.75 V ในขณะที่ค่า Flux Density มีค่าเป็นบวกและ ลดลงอย่างต่อเนื่อง แสดงถึงความเข้มของสนามแม่เหล็กที่ลดลงตาม ระยะทาง

ผลที่ได้จากการมี Magnetic Shield

- กรณี With-Shield ให้ค่าแรงดันไฟฟ้าต่ำกว่าเล็กน้อยในทุกช่วงระยะ เมื่อเทียบกับ Non-Shield เนื่องจากแผ่น Shield ช่วยลดทอนความเข้มของสนามแม่เหล็กก่อนเข้าสู่เซนเซอร์ ทำให้แรงดันเอาต์พุตลดลง
- ค่า Flux Density ของกรณี With-Shield มีค่าต่ำกว่าเล็กน้อย (เข้าใกล้ศูนย์มากกว่า) แสดงว่า Shield สามารถลดการเหนี่ยวนำสนามแม่เหล็กได้จริง และช่วยให้การตอบสนองของเซนเซอร์มีความเสถียรมากขึ้น

สรุปผลการทดลอง

จากการทดลองใช้เซนเซอร์ DRV5055 Ratiometric Linear Hall Effect Magnetic Sensor เพื่อตรวจสอบการ เปลี่ยนแปลงแรงดันไฟฟ้าและค่าความหนาแน่นฟลักซ์แม่เหล็ก (Flux Density) เมื่อวางแม่เหล็กถาวรทั้ง ขั้วเหนือ (North Pole) และ ขั้วใต้ (South Pole) เข้าใกล้เซนเซอร์ โดยเปรียบเทียบระหว่างกรณี ไม่มีแผ่นป้องกัน สนามแม่เหล็ก (Non-Shield) และ มีแผ่นป้องกันสนามแม่เหล็ก (With-Shield) ได้ผลสรุปว่า

- O เซนเซอร์ DRV5055 สามารถตรวจจับการเปลี่ยนแปลงของสนามแม่เหล็กได้อย่างมีประสิทธิภาพทั้งสองขั้ว โดยแรงดันไฟฟ้าที่ได้มีผลคือ ขั้วเหนือให้ค่าแรงดันต่ำ ขั้วใต้ให้ค่าสูง ซึ่งทิศทางสอดคล้องกับขั้วของ สนามแม่เหล็ก
- O ค่า Flux Density มีความสัมพันธ์ผกผันกับระยะทางจากแม่เหล็ก และลดลงอย่างต่อเนื่องตามกฎระยะทาง กำลังสอง (Inverse Square Law)
- O การใช้ Magnetic Shield ส่งผลให้ค่าแรงดันและความเข้มของสนามแม่เหล็กลดลงเล็กน้อยในทุกระยะ แสดงให้เห็นถึงความสามารถของวัสดุ Shield ในการดูดซับหรือกระจายสนามแม่เหล็ก
- O สัญญาณเอาต์พุตในกรณี With-Shield มีความเสถียรกว่า Non-Shield เล็กน้อย และมีแนวโน้มลดสัญญาณ รบกวนภายนอกได้

อภิปรายผล

จากผลการทดลองการตอบสนองของ Ratiometric Linear Hall Effect Magnetic Sensor (รุ่น DRV5055) ต่อสนามแม่เหล็กถาวรทั้งขั้วเหนือและขั้วใต้ พบว่าแรงดันไฟฟ้าและค่าความหนาแน่นฟลักซ์แม่เหล็ก (Flux Density) ที่วัดได้มีแนวโน้มเปลี่ยนแปลงตามทิศทางและระยะทางจากแหล่งกำเนิดแม่เหล็กอย่างชัดเจน โดยสอดคล้องกับหลักการทำงานของ Hall Effect Sensor ที่ว่า แรงดันฮอลล์ (Hall Voltage) จะเกิดขึ้นเมื่อมี สนามแม่เหล็กตั้งฉากกับการไหลของกระแสไฟฟ้าในตัวเซนเซอร์

ข้อเสนอแนะ

เพิ่มจำนวนจุดเก็บข้อมูลระยะทางที่ละเอียดขึ้น

 ในการทดลองนี้มีการวัดค่าแรงดันและ Flux Density ที่ระยะห่างคงที่ เพื่อให้ได้กราฟที่แม่นยำและต่อเนื่อง มากขึ้น ควรเพิ่มจำนวนจุดเก็บข้อมูล เช่น ทุก 2 มม. จะช่วยให้สามารถวิเคราะห์เส้นโค้งการตอบสนองของ เซนเซอร์ได้ชัดเจนยิ่งขึ้น

ทดลองกับแม่เหล็กหลายขนาดและความแรง (Magnetic Strength)

o การเปลี่ยนชนิดของแม่เหล็ก จะให้สนามแม่เหล็กต่างกัน ซึ่งสามารถใช้ทดสอบช่วงการทำงานของเซนเซอร์ และปรับสมดุลให้เหมาะกับการใช้งานจริง

อ้างอิง

https://www.ti.com/product/DRV5055

https://www.laird.com/knowledge-center/emi-shielding

https://www.mecamagnetic.com/magnetic-shielding

https://www.st.com/resource/en/datasheet/stm32g474cb.pdf

https://www.st.com/resource/en/datasheet/stm32g474cb.pdf

4. Lab 1.4 Single Point Load Cell with INA125 Instrumentation Amplifier

การทดลองที่ 1.4 Single Point Load Cell with INA125 Instrumentation Amplifier

จุดประสงค์

- 1. เพื่ออธิบายหลักการทำงานของ Load Cell ซึ่งแปลงแรงที่มากระทำเป็นการเปลี่ยนแปลงของค่าความต้านทานไฟฟ้า และส่งผลให้เกิดสัญญาณแรงดันไฟฟ้าเอาต์พุตที่สัมพันธ์กับแรงที่กระทำ
- 2. เพื่อศึกษาลักษณะของสัญญาณ Output Voltage จาก Load Cell เมื่อมีแรงมากระทำในระดับต่าง ๆ และวิเคราะห์ ความสัมพันธ์ระหว่างแรง (Force) กับแรงดันเอาต์พุต
- 3. เพื่อศึกษาความสัมพันธ์ระหว่างค่า Gain ของวงจรขยายสัญญาณ (INA125 Instrumentation Amplifier) กับค่า ความต้านทานภายนอก (External Resistor) ที่ใช้ควบคุม Gain และผลต่อความไวของการวัดแรง
- 4. เพื่อทำความเข้าใจขั้นตอนของการปรับสภาพสัญญาณ (Signal Conditioning Process) จาก Load Cell ให้ เหมาะสมสำหรับการประมวลผลโดยไมโครคอนโทรลเลอร์หรือระบบวัดผลอื่น ๆ

สมมติฐาน

เมื่อมีแรงมากระทำบน Load Cell ค่าความต้านทานของสเตรนเกจ (Strain Gauge) ภายใน Bridge จะ เปลี่ยนแปลง ทำให้แรงดันเอาต์พุตเปลี่ยนแปลงไปในเชิงเส้น (linear relationship) กับค่าของแรงที่กระทำ

ค่าการขยายสัญญาณ (Gain) ของวงจร INA125 จะมีผลโดยตรงต่อค่าความไวของ Load Cell เมื่อเพิ่ม Gain แรงดันเอาต์พุตที่ได้จะสูงขึ้น ทำให้สามารถตรวจจับการเปลี่ยนแปลงของแรงได้ละเอียดมากยิ่งขึ้น

ภายใต้สภาวะการจ่ายไฟและอุณหภูมิคงที่ ค่าที่ได้จาก Load Cell จะมีความเสถียร (Stable Output) และมี ความผิดพลาดในการวัดอยู่ในช่วงที่ยอมรับได้ตามสเปกของอุปกรณ์

ตัวแปร

1 ตัวแปรต้น

แรงที่กระทำบน Load Cell ซึ่งเป็นตัวแปรหลักที่ทำให้เกิดการเปลี่ยนแปลงของสัญญาณเอาต์พุต ค่าความต้านทานของตัวต้านภายนอก ที่ต่อร่วมกับ INA125 เพื่อกำหนดค่า Gain ของวงจรขยายสัญญาณ

2. ตัวแปรตาม:

ค่าสัญญาณแรงดันเอาต์พุตจาก Load Cell ที่ได้หลังจากผ่านการขยายสัญญาณด้วยวงจร INA125 ความสัมพันธ์ระหว่างแรงที่กระทำและแรงดันเอาต์พุต (Output Voltage vs Applied Force) ที่เกิดขึ้น

3. ตัวแปรควบคุม:

แรงดันไฟฟ้าที่จ่ายให้กับ Load Cell, INA125 และบอร์ด Nucleo STM32G474RE คงที่ที่ 5 V ตลอดการ ทดลอง

อุณหภูมิและสภาพแวดล้อมในระหว่างการทดลองต้องคงที่ เพื่อป้องกันผลกระทบต่อค่าความต้านทานของส เตรนเกจภายใน Load Cell

การวางตำแหน่งของ Load Cell ต้องอยู่ในแนวระนาบเดียว ไม่เอียงหรือมีแรงกระทำด้านข้าง เพื่อให้ผลการ วัดมีความแม่นยำ

เอกสารและงานวิจัยที่เกี่ยวข้อง

1. INA125 Instrumentation Amplifier

ชิป INA125 ผลิตโดยบริษัท Texas Instruments เป็นวงจรขยายสัญญาณแบบ Instrumentation Amplifier ที่ ออกแบบมาสำหรับใช้งานร่วมกับเซนเซอร์แบบบริดจ์ (Bridge Sensors) เช่น Load Cell, Pressure Sensor, Strain Gauge โดย INA125 มีคุณสมบัติเด่นคือมี ภาคแหล่งจ่ายแรงดันอ้างอิง (Precision Voltage Reference) ในตัว ทำให้ สามารถจ่ายไฟให้กับ Load Cell ได้โดยตรง พร้อมทั้งปรับค่า Gain (1–10,000) ได้ด้วยตัวต้านทานภายนอก (External Resistor)

2. Single Point Load Cell

Load Cell เป็นอุปกรณ์ตรวจวัดแรงซึ่งอาศัยหลักการของ Strain Gauge Wheatstone Bridge เมื่อมีแรงกระทำ กับ Load Cell โครงสร้างภายในจะเกิดการเปลี่ยนแปลงทางกล ทำให้ค่าความต้านทานของสเตรนเกจเปลี่ยน ส่งผลให้ แรงดันไฟฟ้าเอาต์พุตของบริดจ์เปลี่ยนไปตามแรงที่กระทำ โดยมักให้สัญญาณระดับ มิลลิโวลต์ (mV) ซึ่งต้องผ่านการ ขยายก่อนนำไปประมวลผล

3. Wheatstone Bridge Theory

วงจร Wheatstone Bridge เป็นโครงสร้างพื้นฐานของ Load Cell โดยประกอบด้วยตัวต้านทาน 4 ตัวที่เชื่อมต่อ กันในรูปแบบบริดจ์ เมื่อแรงมากระทำต่อ Load Cell ค่าความต้านทานของแขนบริดจ์บางส่วนจะเปลี่ยน ทำให้เกิด แรงดันไม่สมดุล (Unbalanced Voltage) ซึ่งจะถูกส่งต่อไปยัง INA125 เพื่อขยายสัญญาณให้สามารถวัดได้อย่างแม่นยำ ขยายก่อนนำไปประมวลผล

4. Signal Conditioning

กระบวนการ Signal Conditioning คือการปรับปรุงสัญญาณที่ได้จากเซนเซอร์ให้อยู่ในรูปที่เหมาะสมต่อการ ประมวลผล เช่น การขยายสัญญาณ (Amplification) การกรองสัญญาณรบกวน (Filtering) และการปรับแรงดันให้อยู่ ในช่วงที่ไมโครคอนโทรลเลอร์สามารถอ่านค่าได้

5. Trimpot 100 K 25 Turns

Trimpot 100 K 25 Turns เป็นตัวต้านทานปรับค่าได้ (Potentiometer) ชนิดปรับละเอียด ซึ่งสามารถหมุนปรับ ได้ถึง 25 รอบ เพื่อเพิ่มความละเอียดในการปรับค่าความต้านทานให้ได้ตามต้องการ ทำให้สามารถตั้งค่าความต้านทาน ได้อย่างแม่นยำ เหมาะสำหรับงานที่ต้องการการปรับจูนค่า เช่น การตั้งค่า **Gain** ในวงจร INA125 เพื่อขยายสัญญาณ จาก Load Cell ให้มีระดับแรงดันที่เหมาะสมกับไมโครคอนโทรลเลอร์

ค่าความต้านทานสูงสุด 100 กิโลโอห์ม เหมาะกับงานที่ต้องการการปรับละเอียด ความเสถียร และการตั้งค่าที่ คงที่ในระยะยาว ตัวปรับนี้มักใช้ในงานวัดแรง งานอิเล็กทรอนิกส์เชิงแม่นยำ และงานสอบเทียบสัญญาณ

ขั้นตอนการดำเนินงาน

- 1. การต่อวงจรและการเชื่อมต่ออุปกรณ์
 - O ต่อ Load Cell เข้ากับบอร์ด STM32 Nucleo-G474RE
 - O ตรวจสอบความถูกต้องของการต่อวงจรและแรงดันไฟก่อนเริ่มการทดลอง
- 2. การตั้งค่าพารามิเตอร์ใน STM32 และ MATLAB Simulink
 - O เปิดโปรแกรม STM32CubeIDE และตั้งค่าการอ่านสัญญาณจากขา ADC ที่เชื่อมต่อกับเซนเซอร์
 - O เปิด MATLAB Simulink เพื่อรับสัญญาณจากบอร์ด STM32 ผ่านพอร์ต Serial Communication โดยใช้ แบบจำลองการทดลองต่อไปนี้

โปรแกรมจำลองการทดลอง Loadcell

ตั้งค่า filter ในการกรองสัญญาณ

3. การทดสอบและบันทึกผลการทดลอง

- O วาง Load Cell ไว้ในตำแหน่งที่มั่นคงและอยู่ในแนวระนาบเดียวกับแรงกระทำ
- O ปรับค่า Trimpot เพื่อให้แรงดันเอาต์พุตอยู่ในช่วงเหมาะสมต่อการอ่านค่า ADC
- ทดสอบโดยวางน้ำหนักเพิ่มขึ้นทีละระดับ
- O บันทึกค่าแรงดันไฟฟ้า ที่ได้จาก INA125 ในแต่ละน้ำหนัก พร้อมคำนวณค่า Flux หรือ Force Output ที่ สอดคล้องกัน
- ทำซ้ำอย่างน้อย 3 ครั้งเพื่อหาค่าเฉลี่ย และลดความคลาดเคลื่อนจากสัญญาณรบกวน

4. การบันทึกและวิเคราะห์ข้อมูล

- O นำค่าที่ได้มาพล็อตกราฟระหว่าง แรงที่กระทำ (Force) กับ แรงดันเอาต์พุต (Vout)
- O วิเคราะห์ความสัมพันธ์ของกราฟว่ามีความเป็นเส้นตรงหรือไม่ (Linear Relationship)
- O สรุปประสิทธิภาพของระบบขยายสัญญาณและการตอบสนองของ Load Cell

ผลการทดลอง

- ทดลองที่อุณหภูมิ 22 องศาเซลเซียส

น้ำหนักที่นำมาวัด	น้ำหนักที่วัดได้ xG	low pass filter	linearization
0.5	0.513	0.627	0.585
1	1.104	1.170	1.104
1.5	1.680	1.625	1.533
2	2.300	2.188	2.034
2.5	2.740	2.770	2.540
3	3.272	3.324	3.009
3.5	3.809	3.799	3.590
4	4.302	4.450	4.022
4.5	5.006	4.992	4.577
5	5.704	5.507	5.104
5.5	6.010	6.111	5.577
6	6.666	6.693	6.189
6.5	7.252	7.216	6.687
7	7.750	7.716	7.285
7.5	8.500	8.320	7.707
8	8.937	8.848	8.300
8.5	9.699	9.421	8.722
9	10.050	10.010	9.274
9.5	10.750	10.590	9.766
10	11.140	11.120	10.230

กราฟเรียบเทียบการทดลองที่อุณหภูมิ 22 องศาเซลเซียส

- ทดลองที่อุณหภูมิ 25 องศาเซลเซียส

น้ำหนักที่นำมาวัด	น้ำหนักที่วัดได้ xG	low pass filter	linearization
0.5	0.518	0.525	0.501
1	1.123	1.010	0.991
1.5	1.611	1.505	1.422
2	2.051	1.939	1.540
2.5	2.505	2.537	2.335
3	3.076	3.039	2.817
3.5	3.677	3.508	3.255
4	4.102	4.022	3.723
4.5	4.644	4.518	4.230
5	5.098	5.047	4.701
5.5	5.602	5.503	5.125
6	6.168	6.004	5.601
6.5	6.510	6.557	6.015
7	7.174	7.026	6.513
7.5	7.536	7.511	7.022
8	8.058	8.100	7.444
8.5	8.703	8.590	7.913
9	9.128	9.033	8.417
9.5	9.592	9.617	8.904
10	10.140	10.100	9.330

กราฟเรียบเทียบการทดลองที่อุณหภูมิ 25 องศาเซลเซียส

สรุปผลการทดลอง

จากการทดลองสอบเทียบ Load Cell โดยเพิ่มน้ำหนักจาก 0.5 kg ถึง 10 kg พบว่า:

- o ค่าที่ได้จาก สัญญาณ xG มีความสัมพันธ์เป็นเส้นตรงกับน้ำหนักจริง แต่มีความคลาดเคลื่อนเล็กน้อยในช่วง น้ำหนักต่ำ
- o หลังจากผ่าน Low-pass filter ค่าที่อ่านได้มีความนิ่งขึ้น แต่ค่าเฉลี่ยจะสูงกว่าค่าจริงเล็กน้อย เนื่องจาก ค่าเฉลี่ยช้าในช่วงเปลี่ยนโหลด
- o เมื่อทำการ Linearization ค่าที่ได้มีความใกล้เคียงกับน้ำหนักจริงมากที่สุด โดย error โดยรวมอยู่ในช่วง ±0.05 kg

อภิปรายผล

- O ผลของการขยายสัญญาณ (Amplifier Gain) การปรับค่า Gain ของ INA125 มีผลต่อความไวของระบบวัด เมื่อ Gain สูงเกินไปจะทำให้สัญญาณอื่มตัวเร็ว ส่วน Gain ต่ำจะทำให้ค่าที่อ่านได้ไม่ละเอียดพอ การเลือกค่า Gain ที่เหมาะสมทำให้สัญญาณตอบสนองต่อการเพิ่มน้ำหนักอย่างเป็นเชิงเส้น
- O การกรองสัญญาณ (Low-pass Filter) การใช้ Low-pass filter ช่วยลดสัญญาณรบกวนจากการสั่นของ Load Cell หรือแหล่งจ่ายไฟ แต่ในบางช่วงอาจทำให้การตอบสนองช้าลง โดยเฉพาะขณะเพิ่มน้ำหนักอย่างรวดเร็ว
- O การปรับเชิงเส้น (Linearization) หลังการคำนวณสมการปรับเชิงเส้น ค่าที่ได้จาก Load Cell สอดคล้องกับ น้ำหนักจริงมากขึ้น ทำให้สามารถนำไปใช้งานเชิงปฏิบัติได้ เช่น ระบบชั่งน้ำหนักอัตโนมัติ หรือวัดแรงดันในงาน เครื่องกล
- O ความแม่นยำของระบบ ความสัมพันธ์ระหว่างน้ำหนักจริงกับค่าที่วัดได้มีลักษณะเป็นเส้นตรง แสดงว่า Load Cell ที่ใช้งานร่วมกับ INA125 และการกรองสัญญาณเหมาะสมต่อการใช้งานในช่วง 0 10 kg

ข้อเสนอแนะ

- O ควรสอบเทียบ Load Cell ทุกครั้งก่อนใช้งานจริง โดยใช้ น้ำหนักมาตรฐาน (Calibration Weights)
- O ปรับค่า Gain ของ INA125 ให้เหมาะกับช่วงน้ำหนักที่ต้องการวัด
- O ในระบบจริงควรใช้ ฟิลเตอร์แบบ Butterworth 2nd order เพื่อให้กรองได้เรียบกว่า Low-pass ธรรมดา
- O หากต้องการความละเอียดสูงกว่า ±0.01 kg ควรใช้ 24-bit ADC เช่น HX711 หรือ ADS1232
- O สามารถเพิ่มการชดเชยอุณหภูมิ (Temperature Compensation) เพื่อลด drift เมื่ออุณหภูมิเปลี่ยน

อ้างอิง

https://www.rs-online.com/designspark/using-the-ina125p-instrumentation-amplifier-with-a-load-cell https://intertechnology.com/Tedea_Huntleigh/pdfs/1022.pdf

Datasheet - STM32G474xB STM32G474xC STM32G474xE - Arm® Cortex®-M4 32-bit MCU+FPU, 170

MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer