Exercice 1 : Somme de racines

Montrer que la série de terme général $u_n = \frac{1}{\sqrt{n-1}} - \frac{2}{\sqrt{n}} + \frac{1}{\sqrt{n+1}}$ est convergente et calculer cette série.

Exercice 2: Convergent, pas convergent?

$$-\sum_{n} \frac{\sin(\frac{1}{n})}{n}$$

$$-\sum_{n} \frac{\cos(\frac{1}{n})}{n}$$

$$-\sum_{n} n\left(1 - \cos\left(\frac{1}{n}\right)\right)$$

$$-\sum_{n} \sqrt{n}\left(1 - \cos\left(\frac{1}{n}\right)\right)$$

Exercice 3:

On définit la suite u_n pour tout $n \in \mathbb{N}^*$ par $u_n = \left(\frac{1}{n}\right)^{1+\frac{1}{n}}$.

Exercice 4:

Soit (u_n) une suite de réels positifs. On définit $v_n = u_{2n} + u_{2n+1}$. Montrer que $\sum_n u_n$ et $\sum_n v_n$ sont de même nature.

Exercice 5: Absolument convergente + Semi-convergente =?

Soit (u_n) une suite dont la série est absolument convergente et (v_n) une suite dont la série est semi-convergente. Montrer que $(u_n + v_n)$ est semi-convergente.

Exercice 6:

On définit u_n par $u_n = \sum_{k=1}^n k$. Calculer $\sum_n \frac{1}{u_n}$.

Exercice 7:

On considère la suite (u_n) définie pour $n \ge 1$ par $u_n = \sin\left(n\pi + \frac{1}{n}\right)$. Déterminer la nature de la série $\sum_n u_n$.

Exercice 8:

On considère la suite (u_n) définie pour $n \ge 2$ par $u_n = \ln\left(1 - \frac{1}{n^2}\right)$.

- 1. Déterminer la nature de la série $\sum_{n\geq 2} u_n$.
- 2. Calculer $\sum_{n\geq 2} u_n$.

Exercice 9:

On considère une suite (u_n) telle que $\sum_{n\in\mathbb{N}}u_n^2$ est une série convergente. Soient σ une bijection de \mathbb{N} dans lui-même, on définit v_n par : $v_n=u_{\sigma(n)}$.

- 1. Montrer que $\sum_{n\in\mathbb{N}}v_n^2$ est convergente et calculer sa valeur.
- 2. Déterminer la nature de la série $\sum_{n\in\mathbb{N}} |u_n v_n|$.
- 3. Calculer $\max_{\sigma} \left(\sum_{n \in \mathbb{N}} |u_n v_n| \right)$

Exercice 10:

Soient a et b deux complexes distincts tels que |a| < |b| < 1. Montrer que

$$\sum_{n \ge 0} \frac{a^{n+1} - b^{n+1}}{a - b} = \frac{1}{1 - a} \cdot \frac{1}{1 - b}$$

Exercice 11:

Pour $n \in \mathbb{N}$, on pose $u_n = \ln(n!)$.

- 1. Montrer que $u_n \sim n \ln(n)$. En déduire la nature de la série $\sum_{n>2} \frac{1}{u_n^2}$.
- 2. Déterminer la nature de $\sum_{n\geq 2} \frac{1}{u_n}$

Exercice 12:

On définit la suite $u_n = e - \left(1 + \frac{1}{n}\right)^n$. Etudier la nature de la suite $\sum_n u_n$

Exercice 13 : Restes des sommes de Riemann 🛎 🛎

Soit $\alpha \in \mathbb{R}$, on définit la suite R_n^{α} suivante

$$R_n^{\alpha} = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$$

- 1. Justifier (R_n^{α}) est bien définie si et seulement si $\alpha > 1$.
- 2. Déterminer les $\alpha \in \mathbb{R}$ tels que la série de terme général (R_n^{α}) soit convergente.

Exercice 14:

Soit $x \in]-1,1[$, on définit S(x) la série $\sum_{n\in\mathbb{N}}(n+1)x^n$. Montrer que S est bien définie et calculer S(x).

Exercice 15:

On définit la suite v_n par $v_0 \in]1, \frac{\pi}{2}[$ et pour tout $n \ge 0$ $v_{n+1} = \sin(v_n + \pi)$. Montrer que $\sum_n v_n$ est convergente.

Exercice 16 : Règle de Cauchy

Soit (u_n) une suite à termes positifs telle que $\sqrt[n]{u_n} \to \ell$.

- 1. Montrer que si $\ell > 1$, alors $\sum_{n=1}^{\infty} u_n$ est divergente.
- 2. Montrer que si $\ell < 1$, alors $\sum_{n} u_n$ est convergente.

3. Montrer que si $\ell=1,$ alors $\sum_n u_n$ peut être aussi bien divergente que convergente.

Exercice 17: Condensation

Soit (u_n) une suite décroissante positive. Montrer que $\sum_n u_n$ et $\sum_n 2^n u_{2^n}$ sont de même nature.

Exercice 18: Somme des inverses de racines

On pose
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$
.

- 1. Montrer qu'il existe $C \in \mathbb{R}$ tel que $S_n \underset{n \to +\infty}{=} 2\sqrt{n} + C + o(1)$.
- 2. Déterminer un équivalent de $S_n 2\sqrt{n} C$.

Exercice 19:

On définit la suite $(a_n)_n$ par la relation suivante : $a_1=1$ et pour tout $n\geq 2$, $a_n=2a_{\lfloor\frac{n}{2}\rfloor}$. Montrer que la série $\sum_{n\in\mathbb{N}^*}\frac{1}{a_n^2}$ converge et calculer sa somme.

Exercice 20:

Soit (u_n) une suite de réels positifs. Déterminer la nature de la série de terme général $v_n = \frac{u_n}{(1+u_1)\dots(1+u_n)}$ en fonction de la nature de la série $\sum_n u_n$.