Lewis & Clark Math 215

Problem Set 10

Due: Monday, March 5th

Instructions: Answer each of the following questions and provide a justification for your answer. In addition to the points assigned below, you will receive 0-2 writing points for the entire problem set.

Note: when we write \mathbb{N} we mean the set of non-negative integers, $0, 1, 2, 3, \ldots$ When we write \mathbb{Z} we mean the set of all integers ..., $-2, -1, 0, 1, 2, \ldots$ The notation \mathbb{Z}^+ refers to the set of positive integers $1, 2, 3, \ldots$ And finally, \mathbb{R} is the set of real numbers, things like $0, 1, \sqrt{2}, \pi, \ldots$ etc.

1. (a) Translate the following into a statement written in English (no math symbols!):

$$\forall a \in \mathbb{Z}^+, \forall b \in \mathbb{Z}^+, p|ab \to (p|a \lor p|b).$$

Do you recognize this definition?

(b) Translate the following into a statement written in English:

$$\forall a \in \mathbb{Z}^+, \forall b \in \mathbb{Z}^+, p = ab \to (a = 1 \lor b = 1).$$

Do you recognize this definition?

- 2. Are the following statements true or false? If the statement is true please prove it; if it is false first negate the statement and then prove the negation. I imagine all the proofs are short except possibly part (c). The goal of this problem is to help you get sense for logical quantifiers and how we use them.
 - (a) $\forall n \in \mathbb{N}, \frac{2n}{2n+1} < 1$
 - (b) $\forall x \in \mathbb{Z}, \frac{2x}{2x+1} < 1$
 - (c) $\forall n \in \mathbb{N}, (3|n \wedge 2|n) \to 6|n$
 - (d) $\exists x \in \mathbb{R}, x^2 + x 2 = 0$
 - (e) $\exists x \in \mathbb{R}, (x+1)^2 + 1 = 0$
 - (f) $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, n | m$
 - (g) $\exists n \in \mathbb{N}, \forall m \in \mathbb{N}, n | m$
 - (h) $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, m | n$
 - (i) $\exists n \in \mathbb{N}, \forall m \in \mathbb{N}, m | n$
 - (j) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x = e^y$
 - (k) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^2 + 1 = e^y$