EXAM OF STATISTICS (DESCRIPTIVE STATISTICS AND REGRESSION)

Pharmacy/Biotechnology 1st year

Version A

October, 14 2019

Duration: 1 hour and 15 minutes.

(4.5 pts.) 1.It has been measured the systolic blood pressure (in mmHg) in two groups of 100 persons of two populations A and B. The table below summarize the results.

Systolic blood pressure	Num persons A	Num persons B
(80, 90]	4	6
(90, 100]	10	18
(100, 110]	28	30
(110, 120]	24	26
(120, 130]	16	10
(130, 140]	10	7
(140, 150]	6	2
(150, 160]	2	1

- (a) Which of the two systolic blood pressure distributions is less asymmetric? Which one has a higher kurtosis? According to skewness and kurtosis can we assume that populations A and B are normal?
- (b) In which group is more representative the mean of the systolic blood pressure?
- (c) Compute the value of the systolic blood pressure such that 30% of persons of the group of population A are above it?
- (d) Which systolic blood pressure is relatively higher, 132 mmHg in the group of population A, or 130 mmHg in the group of population B?
- (e) If we measure the systolic blood pressure of the group of population A with another tensiometer, and the new pressure obtained (Y) is related with the first one (X) according to the equation y = 0.98x 1.4, in which distribution, X or Y, is more representative the mean?

Use the following sums for the computations:

Group A: $\sum x_i n_i = 11520$ mmHg, $\sum x_i^2 n_i = 1351700$ mmHg², $\sum (x_i - \bar{x})^3 n_i = 155241.6$ mmHg³ y $\sum (x_i - \bar{x})^4 n_i = 16729903.52$ mmHg⁴.

Group B: $\sum x_i n_i = 11000 \text{ mmHg}$, $\sum x_i^2 n_i = 1230300 \text{ mmHg}^2$, $\sum (x_i - \bar{x})^3 n_i = 165000 \text{ mmHg}^3$ y $\sum (x_i - \bar{x})^4 n_i = 13632500 \text{ mmHg}^4$.

Solution

- (a) Group A: $\bar{x}=115.2$ mmHg, $s^2=245.96$ mmHg², s=15.6831 mmHg, $g_{1A}=0.4024$ and $g_{2A}=-0.2346$.
 - Group B: $\bar{x} = 110$ mmHg, $s^2 = 203$ mmHg², s = 14.2478 mmHg, $g_{1B} = 0.5705$ and $g_{2B} = 0.3081$.
 - Thus the distribution of the population A group is less asymmetric since g_{1A} is closer to 0 than g_{1B} and the population B group has a higher kurtosis since $g_{2B} > g_{2A}$. Both populations can be cosidered normal since g_1 and g_2 are between -2 and 2.
- (b) $cv_A = 0.1361$ and $cv_B = 0.1295$, thus, the mean of group B is a little bit more representative since its coef. of variation is smaller than the one of group A.
- (c) $P_{70} \approx 125 \text{ mmHg.}$

- (d) The standard scores are $z_A(132) = 1.0712$ and $z_B(130) = 1.4037$. Thus, 130 mmHg in group B is relatively higher than 132 mmHg in group A.
- (e) $\bar{y} = 111.496$, $s_y = 15.3694$ and $cv_y = 0.1378$. Thus the mean of X is more representative than the mean of Y since $cv_x < cv_y$.
- (1 pts.) 2. In a symmetric distribution the mean is 15, the first quartile 12 and the maximum value is 25.
 - (a) Draw the box and whiskers plot.
 - (b) Could an hypothetical value of 2 be considered an outlier in this distribution?

Solution

(a)
$$Q_1 = 12$$
, $Q_2 = 15$, $Q_3 = 18$, $IQR = 6$, $f_1 = 3$, $f_2 = 27$, $Min = 5$ and $Max = 25$.

- (b) Yes, because $2 < f_1$.
- $(4.5 \mathrm{\ pts.})$ 3. A pharmaceutical company is trying three different analgesics to determine if there is a relation among the time required for them to take effect. The three analgesics were administered to a sample of 20 patients and the time it took for them to take effect was recorded. The following sums summarize the results, where X, Y and Z are the times for the three analgesics.

$$\begin{array}{l} \sum x_i = 668 \text{ min, } \sum y_i = 855 \text{ min, } \sum z_i = 1466 \text{ min,} \\ \sum x_i^2 = 25056 \text{ min}^2, \sum y_i^2 = 42161 \text{ min}^2, \sum z_i^2 = 123904 \text{ min}^2, \\ \sum x_i y_j = 31522 \text{ min}^2, \sum y_j z_j = 54895 \text{ min}^2. \end{array}$$

- (a) Is there a linear relation between the times X and Y? And between Y and Z? How are these linear relationships?
- (b) According to the regression line, how much will the time X increase for every minute that time Y increases?
- (c) If we want to predict the time Y using a linear regression model, ξ which of the two times X or Z is the most suitable? Why?

- (d) Using the chosen linear regression model in the previous question, predict the value of Y for a value of X or Z of 40 minutes.
- (e) If the correlation coefficient between the times X and Z is r=-0.69, compute the regression line of X on Z.

Solution

(a) $\bar{x} = 33.4 \text{ min}, s_x^2 = 137.24 \text{ min}^2,$ $\bar{y} = 42.75 \text{ min}, s_y^2 = 280.4875 \text{ min}^2,$ $\bar{z} = 73.3 \text{ min}, s_z^2 = 822.31 \text{ min}^2,$ $s_{xy} = 148.25 \text{ min}^2 \text{ and } s_{yz} = -388.825 \text{ min}^2.$

Thus, there is a direct linear relation between X and Y and an inverse linear relation between Y and Z.

- (b) $b_{xy} = 0.5285$ min.
- (c) $r_{xy}^2=0.5709$ and $r_{yz}^2=0.6555$, thus the regression line of Y on Z explains better Y than the regression line of Y on X since $r_{yz}^2>r_{xy}^2$.
- (d) Regression line of Y on Z: y = 77.4095 + -0.4728z and y(40) = 58.4957.
- (e) $s_{xz} = -231.7967$ and the regression line of X on Z is x = 54.0622 + -0.2819z.