we have seen that we can derive the estrimate $\hat{\beta}$ both as a maximization of the likelihood under the Gaussian linear model assumption (HL estimate) and as a minimization of the sum of squares (OLS estimate), without the need to specify a dultibution (and only using conducions on the first two moments).

We consider now the second framework -> remove the distributive assumption.

Assume that; 1) $Y = X \beta + \delta$ einearity

- 2) $\mathbb{E}[\underline{\varepsilon}] = 0$ and $\mathrm{vor}(\underline{\varepsilon}) = \sigma^2 \mathbf{I}_h$ (homoscedasticity and incorrelation)
- 3) X non-stochastic with full rank (rank(x)=p)

The OLS estimator is $\hat{\underline{\beta}} = (X^TX)^{-1} X^T \underline{Y}$ (einear transformation of \underline{Y}) Even without the specification of a distribution for \underline{Y} , we can still device the girst two moments of $\hat{\underline{\beta}}$.

We have already computed them: $E[\hat{\beta}] = \beta$, $Vor(\hat{\beta}) = (X^TX)^{-1} 6^2$.

unbiased

CLAUSS- HARKON THH.

Consider the framework defined by assumptions (1)(2)(3).

Then the OLS estimator $\hat{\beta}$ is B.L.U.E. (i.e. the Best Linear Unbiased Estimator)

"best" = "minimum voiconce"

So the theorem states that, in the class of linear and unbised estimators of β , has the minimum volume.

(notice however that it doesn't mean that $\hat{\underline{B}}$ is "the best estimates overall", it is the best only if we restrict to the class of linear and unbiased).

Assume that $\frac{\beta}{\beta}$ is another linear unbiased estimator.

(i.e. $\tilde{\beta} = A \cdot Y$ and $E[\tilde{\beta}] = \beta$)

The thm states that

 $\operatorname{von}(\frac{\tilde{B}}{\tilde{B}}) \geqslant \operatorname{von}(\frac{\tilde{B}}{\tilde{B}})$