M Chi-Square Distributions

· A random variable Y is called chi-square distribution with degree of freedom H and is denoted by $X^2(H)$ if

One of the following equivalent conditions holds

- (i) $Y \stackrel{d}{=} Z_1^2 + \dots + Z_k^2$, where $Z_i \stackrel{iid}{\sim} N(0,1)$.
- (ii) Y ~ Gamma (\frac{\frac{1}{2}}{2}, 2)
- (iii) The probability density function of Y is $P_{Y}(Y) = \frac{1}{T(\frac{1}{2})2^{\frac{1}{2}}} \times Y^{\frac{1}{2}-1} e^{-\frac{1}{2}}, \quad Y > 0$
- (iv) The moment generating function of Y is $M_Y(u) = (1-2u)^{-\frac{L}{2}}, \quad u < \frac{1}{2}$
- · A random variable Y is called non-central chi-square distribution with degree of freedom to and non-centrality parameter 8 > 0

and is denoted by $\chi^2(K:S)$ if one of the following equivalent conditions holds (i) $Y \stackrel{d}{=} Z_1^2 + \cdots + Z_K^2$,

where $Z_i \sim N(M_i, I)$ and $\frac{\pi}{i=I} M_i^2 = 8$ (ii) $Y \stackrel{d}{=} V + Z^2$

where $V \sim X^2(K-1)$ and $Z \sim N(\mu, 1)$ are independent and $\mu^2 = 8$.

(iii) The moment generating function of Y is $M_Y(u) = (1-2u)^{-\frac{L}{2}} \exp\left(\frac{\delta u}{1-2u}\right), \ u < \frac{1}{2}.$

* E[Y] = K+8, Var(Y) = 2K+48

* Suppose Z~Nd(M, I) and

A is a symmetric matrix satisfying

 $A^2 = A$, tr(A) = H, and $mTA_M = S$.

Then, ZTAZ~X(K;8).

(Pf) Consider the spectral decomposition of
$$A$$
:
$$A = PDP^{T}$$

where P is an orthogonal matrix $(PP^T = I = PP^T)$ and D is a diagonal matrix, $D = diag(\lambda_i)$

Since $A^2 = A$, $\lambda_i = 0$ or 1 for $i = 1, \dots, d$.

Also, Since tr(A) = 17

$$|\langle \dot{\lambda} : \dot{\lambda} \rangle| = |\langle \dot$$

WLOG, let $\lambda_1 = \cdots = \lambda_k = 1$ and $\lambda_{k+1} = \cdots = \lambda_d = 0$

Note that

$$Z^{T}AZ = Z^{T}PDP^{T}Z$$

$$= \sum_{\lambda=1}^{d} \lambda_{\lambda} (P^{T}Z)_{\lambda}^{2} = \sum_{\lambda=1}^{m} (P^{T}Z)_{\lambda}^{2}$$

Because

$$P^{T}Z \sim N_{a}(P^{T}M, I)$$
 and
$$\sum_{k=1}^{m} (P^{T}M)_{k}^{2} = M^{T}PDP^{T}M = M^{T}AM = \delta$$

We can derive that

ZTAZ~X*(K:8)

W

I distributions

· A random variable Y is called t distribution With degree of freedom It and is denoted by t(IT) if

Where Z~N(0,1) and V~X2(K) are independent

· A random variable Y is called non-central t distribution with degree of freedom to and non-centrality parameter 8 > 0 and is denoted by $\pm(\pi; 8)$ if

where $Z \sim N(8,1)$ and $V \sim \chi^2(K)$ are independent

I F distributions

· A random variable Y is called F distribution. With degree of freedom K_1 and K_2 and is denoted by $F(K_1, K_2)$ if $Y = \frac{U_1/K_1}{V_2/K_2}$,

Where $V_1 \sim \chi^2(H_1)$ and $V_2 \sim \chi^2(H_2)$ are independent

· A random variable Y is called non-central F distribution with degree of freedom H, and H2 and non-centrality parameter 8 > 0 and is denoted by F(H, H258) if

where V, ~ X2(tr, i 8) and

V2~ X2(K2) are independent.

Hi: not Ho

$$SM = \sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}$$

$$ST = \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

$$SE = \sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}$$

under Ho,

$$\mathcal{L}(\beta,6^{2};Y,X) = -\frac{n}{2}\log 2\pi 6^{2} - \frac{\|y-\beta_{0}\cdot 1\|_{2}^{2}}{26^{2}}$$

is maximized when $\hat{g}_0 = \bar{y}$, $\hat{g}_2^2 = \frac{11\bar{y} - \bar{y} \cdot 11\bar{y}}{n}$

:
$$\max_{H_{\bullet}} \mathcal{L}(\beta, 6^{2}|Y,X) = -\frac{n}{2}(1 + \log 2\pi / \log ||Y - \overline{Y}1||_{2}^{2})$$

under HI.

$$\mathcal{L}(\rho, \delta^2; T, X) \text{ is maximized when } \hat{\rho} = \hat{\rho}^{OLS} = -|X^TX|^TX^TY}$$

$$\hat{\sigma}^2 = \frac{||y - X\hat{\rho}||^2}{M}$$
and
$$\max_{H_1} \mathcal{L}(\rho, \delta^2|M, X) = -\frac{\eta}{2}(1 + |y|^2)^{\frac{\eta}{2}} + ||y||^{\frac{\eta}{2}} + ||y||^{\frac{\eta}{2}}$$

: maximum likelihood ratio test

$$T_x = X(x^tx)^{-1}x^t$$
 ; rk $k+1$

$$: m.l.r \iff reject when $\frac{JSM/k}{SSE/m-k-1}$ is large$$

$$(I-T_X)y=(I-T_X)(xy+q)=(I-T_X)q$$

$$\therefore \frac{GF}{6^2} \sim \chi'(m-k-1)$$

$$(T_x-T_1)$$
 $y=(x-T_1x)p+(T_x-T_1)$

also (I-Tx)(Tx-Ti) = 0 : WE ISM

thus $\frac{\int M/k}{\int \sqrt{k} - k-1} \sim F(k, n-k-1; D)$

level & - MLR:

refeet when $\frac{SM/k}{SE/n-k-1}$ > Fa (k, n-k-1)