

Universidad Simón Bolivar. Departamento de Matemáticas puras y aplicadas. Autoevaluación No. 1 MA2115 Enero 2009

- I. Evaluación Teórica.
- Diga la definición de una sucesión convergente, la definición de una sucesión divergente y la definición de una sucesión acotada. De ejemplos de cada una de ellas.
- 2. Diga para cuáles valores de p, la serie $\sum_{n\geq 1} \frac{1}{n^p}$ es convergente.
- 3. En el criterio de la razón, se define $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Análogamente, en el criterio de la raiz, se define $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ ¿Qué ocurre con los criterios cuando L=1?.
- 4. Diga la definición de una serie convergente, una serie condicionalmente convergente y la definición de una serie absolutamente convergente. ¿Una serie condicionalmente convergente, es absolutamente convergente?. ¿Una serie absolutamente convergente, es condicionalmente convergente?.
- 5. Decida si es verdadero o falso, justificando su respuesta.
 - a) ¿Si $\lim_{n\to\infty} a_n = 0$, la serie converge?
 - b) ¿Si la serie $\sum_{n\geq 0} a_n$ diverge, la serie $\sum_{n\geq 0} a_n^2$ diverge?
 - c) ¿Si $\{a_n\}$ y $\{b_n\}$ son dos sucesiones divergentes, entonces $\{a_n+b_n\}$ es divergente?

II. Evaluación Práctica.

- 1. Considere la sucesion definida por $a_n = \frac{2n^4 1}{1 + 3n^4} a_{n-1}$ si $n \ge 1$ y $a_0 = 1$.
 - a) Demuestre que la sucesión es convergente.
 - b) Calcule su límite.
- 2. Halle el valor de la serie $\sum_{n\geq 1} \frac{3}{2^n} + \frac{n-1}{2^{n+1}}$.

3. Decida si cada una de las siguientes series, converge condicionalmente, converge absolutamente o diverge.

a)
$$\sum_{n\geq 1} \frac{n^2+1}{n^2}$$
 b) $\sum_{n\geq 2} \frac{1}{n \ln^4(n)}$ c) $\sum_{n\geq 1} n^{(1-n)/n}$

$$d) \sum_{n>1} \ln \left(\frac{n+1}{n} \right) - e) \sum_{n>1} \frac{\sin^n(n)}{n^n (2n)!} - f) \sum_{n>1} \frac{(-1)^{n+1}}{\arctan(n)}$$

4. Determine el conjunto y radio de convergencia de la serie

$$\sum_{n>1} \frac{3^n}{n5^n} (x+1)^n$$

5. Hallar el desarrollo de Maclaurin de $\int_0^x \cos(t^2) dx$.

Respuestas.

I. Parte teórica.

1. Las definiciones son las siguientes:

Sucesión convergente: Diremos que una sucesión $\{a_n\}_{n\geq 0}$ es convergente, si existe un valor $L \in \mathbb{R}$, L finito, tal que $\lim_{n\to\infty} a_n = L$. Por ejemplo, la sucesión $a_n = 1 + 2^{-n}$, con $n \geq 0$, es convergente, porque $\lim_{n\to\infty} (1+2^{-n}) = 1$.

Sucesión divergente: Una sucesión $\{a_n\}_{n\geq 0}$ es divergente, cuando el límite de la sucesión $\{a_n\}_{n\geq 0}$ no existe, o $\lim_{n\to\infty}a_n=\pm\infty$. Por ejemplo, la sucesión definida por

$$a_n = \begin{cases} \frac{1}{n}, & \text{si } n \text{ es par} \\ \frac{n-3}{n}, & \text{si } n \text{ es impar}, \end{cases}$$

es divergente (o no convergente) porque el limite no existe. (No sabemos si L=0 o L=1). Por otra parte, si consideramos $a_n = n^2 + 1$, la sucesión diverge, porque $\lim_{n\to\infty} (n^2 + 1) = \infty$.

Sucesión acotada: Una sucesión $\{a_n\}_{n\geq 0}$ es acotada, si existe un valor M>0, tal que $|a_n|\leq M$, para todo $n\geq 0$. Por ejemplo, $a_n=\cos^2(n)$ es acotada, porque $|\cos^2(n)|\leq 1$, para todo $n\geq 0$. (Sin embargo, la sucesión no es convergente).

- 2. Utilizamos el criterio de la integral, que nos dice que la serie $\sum_{n\geq 1} \frac{1}{n^p}$ converge si y sòlo si la integral $\int_1^\infty \frac{1}{x^p} dx$ es convergente. Para ello consideramos los siguientes casos:
 - a) Si $p \le 0$: es obvio que la serie diverge, porque el tèrmino general no tiende a cero.
 - b) Si p > 0: evaluamos la integral impropia

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{a \to \infty} \int_{1}^{a} \frac{1}{x^{p}} dx = \begin{cases} \lim_{a \to \infty} \frac{a^{-p+1}}{-p+1} + \frac{1}{p-1}, & \text{si } p \neq 1\\ \lim_{a \to \infty} \ln(a), & \text{si } p = 1. \end{cases}$$

Observando que $\lim_{a\to\infty} \ln(a) = \infty$ y

$$\lim_{a \to \infty} \frac{a^{-p+1}}{-p+1} = \begin{cases} 0, & \text{si } p > 1\\ \infty, & \text{si } p < 1, \end{cases}$$

conluimos que la serie $\sum_{n\geq 1} \frac{1}{n^p}$ converge a $\frac{1}{p-1}$, cuando p>1.

3. El criterio del cociente, nos dice que si consideramos una serie de términos positivos, $\sum_{n\geq 0} a_n$, y definimos $L = \lim_{n\to\infty} \frac{a_{n+1}}{a_n}$, entonces la serie converge si L < 1, diverge si L > 1 y no dice nada, cuando L=1.

Similar, es el enunciado del criterio de la raiz, donde definimos L = $\lim_{n\to\infty} \sqrt[n]{a_n}$.

Cuando L=1, los criterios no son concluyentes. Los siguientes ejemplos, demuestran esta afirmación.

 $\sum_{n\geq 1} \frac{1}{n} \text{ diverge, pero } \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{n}{n+1} = 1.$ $\sum_{n\geq 1} \frac{1}{n^2} \text{ converge, pero } \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{n^2}{(n+1)^2} = 1.$

 $\sum_{n\geq 1} n$ diverge, porque el límite del término general no es cero, pero $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{n} = 1.$

 $\sum_{n>1} \frac{1}{n^3}$ converge, pero $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{n^3} = 1$.

4. Sea una serie $\sum_{n\geq 1} a_n$. Definimos:

Serie convergente: Una serie es convergente, si la sucesion de sus sumas parciales, $S_n = \sum_{k=1}^n a_k$, es una sucesion convergente. Es decir; existe un valor L (finito), tal que $\lim_{n\to\infty} S_n = L$.

Serie condicionalmente convergente: Una serie es condicionalmente convergente si $\sum_{n\geq 1} a_n$ converge, pero $\sum_{n\geq 1} |a_n|$ diverge.

Serie absolutamente convergente: Una serie es absolutamente convergente, si $\sum_{n>1} |a_n|$ converge.

Convergencia absoluta, implica convergencia condicional. Basta ver, aplicando la desigualdad triangular, que

$$\sum_{n\geq 1} a_n \le \left| \sum_{n\geq 1} a_n \right| \le \sum_{n\geq 1} |a_n|.$$

Convergencia condicional no implica convergencia absoluta. Basta considerar la serie $\sum_{n\geq 1} \frac{(-1)^n}{n}$. Esta serie converge condicionalmente aplicando el criterio de Leibniz. Considerando la sucesión $a_n=1/n$, observamos que:

 $a_n \geq 0$, para todo n,

 a_n es decreciente, ya que como $n \leq n+1$, entonces $a_{n+1} = \frac{1}{n+1} \leq \frac{1}{n} = a_n$ y además,

 $\lim_{n\to\infty} a_n = 0.$

Pero la serie $\sum_{n>1} |a_n| = \sum_{n>1} \frac{1}{n}$ diverge, gracias al criterio de la integral.

- 5. a) Falso. Para desmotrar esto, consideramos la serie armónica, $\sum_{n\geq 1} \frac{1}{n}$, donde $a_n = \frac{1}{n}$. La serie es divergente, pero el límite del término general tiende a cero.
 - b) Falso. Basta considerar las series $\sum_{n\geq 1}\frac{1}{n}$, y $\sum_{n\geq 1}\frac{1}{n^2}$. La primera diverge, pero la segunda converge.
 - c) Falso. Consideremos las sucesiones $a_n = \frac{n^2}{n+1}$ y $b_n = \frac{n^2}{1-n}$, para $n \ge 0$. Ambas sucesiones divergen, porque

$$\lim_{n \to \infty} \frac{n^2}{n+1} = \infty \quad \text{y} \quad \lim_{n \to \infty} \frac{n^2}{1-n} = -\infty,$$

pero

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} \frac{-2n^2}{n^2 - 1} = -2,$$

por lo tanto, $\{a_n + b_n\}_n$ converge.

Por otra parte, si consideramos $a_n = n^2$ y $b_n = n^3$, ambas definen sucesiones divergentes y además,

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} n^2 + n^3 = \infty.$$

Por lo tanto, la suma de dos sucesiones divergentes, puede converger o diverger.

II. Ejercicios prácticos.

1. a) Al evaluar, por ejemplo, los primeros tres términos de la sucesión,

$$a_0 = 1, \quad a_1 = 1/4, \quad a_2 = 31/196, \dots$$

intuimos que la sucesión es decreciente. Vamos a demostrar que la sucesión decrece utilizando inducción. Es obvio que se cumple $a_1 \leq a_0$. Suponemos que $a_k \leq a_{k-1}$ y tenemos que demostrar que $a_{k+1} \leq a_k$. Por definición, $a_{k+1} = \frac{2(k+1)^4 - 1}{1+3(k+1)^4} a_k$. Si denotamos por $f(k) = \frac{2k^4 - 1}{1+3k^4}$, podemos expresar

$$a_{k+1} = f(k+1)a_k$$
 y $a_k = f(k)a_{k-1}$.

Ahora, utilizando la hipótesis inductiva, tenemos que

$$a_{k+1} = \frac{2(k+1)^4 - 1}{1 + 3(k+1)^4} a_k \le \frac{2(k+1)^4 - 1}{1 + 3(k+1)^4} a_{k-1} = f(k+1)a_{k-1}.$$

Luego, basta demsotrar que $f(x) = \frac{2x^4-1}{1+3x^4}$ es decreciente, para concluir que la sucesión $\{a_k\}_k$ es también decreciente. Como

$$f'(x) = \frac{-4x^3}{(1+3x^4)^2}$$

y f'(x) < 0 si x > 0, concluimos que f decrece. Así,

$$a_{k+1} \le f(k+1)a_{k-1} \le f(k)a_{k-1} = a_k.$$

En conclusión, la sucesión es positiva, decreciente y acotada inferiormente por cero. Por el teorema, $\{a_k\}_k$ es convergente.

b) Si denotamos por $\lim_{n\to\infty} a_n = L$, como

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n^4 - 1}{1 + 3n^4} a_n,$$

tenemos que $L = \frac{2}{3}L$ y por lo tanto, $(1 - \frac{2}{3})L = 0$, concluyendo que L = 0.

2. Observamos que $\sum_{n\geq 1}\frac{3}{2^n}$ es una serie geómetrica convergente, porque $r=\frac{1}{2}<1$, cuyo valor de convergencia es dado por

$$\sum_{n\geq 1} \frac{3}{2^n} = 3\left(\sum_{n\geq 0} \frac{1}{2^n} - 1\right) = 3\left(\frac{1}{1 - \frac{1}{2}} - 1\right) = 3.$$

Por otra parte, $\sum_{n\geq 1} \frac{n-1}{2^{n+1}}$ es una serie telescópica. En efecto, análogo al método de fracciones simples, podemos expresar

$$\frac{n-1}{2^{n+1}} = \frac{n}{2^n} - \frac{n+1}{2^{n+1}}.$$

En consecuencia, las sumas parciales S_m son

$$S_m = \sum_{n=1}^m \frac{n-1}{2^{n+1}} = \sum_{n=1}^m \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}} \right) = \frac{1}{2} - \frac{m+1}{2^{m+1}}.$$

Por lo tanto,

$$\sum_{n>1} \frac{n-1}{2^{n+1}} = \lim_{m \to \infty} \left(\frac{1}{2} - \frac{m+1}{2^{m+1}} \right) = \frac{1}{2}.$$

En conclusión,

$$\sum_{n>1} \frac{3}{2^n} + \frac{n-1}{2^{n+1}} = 3 + \frac{1}{2} = \frac{7}{2}$$

- 3. a) $\sum_{n\geq 1} \frac{n^2+1}{n^2}$ diverge, porque $\lim_{n\to\infty} \frac{n^2+1}{n^2} = 1 \neq 0$.
 - b) $\sum_{n\geq 2} \frac{1}{n \ln^4(n)}$ converge, ya que mediante el criterio de la integral y el cambio de variable $u = \ln x$,

$$\int_{2}^{\infty} \frac{dx}{x \ln^{4}(x)} = \int_{\ln 2}^{\infty} \frac{du}{e^{4u}} = \frac{1}{2^{6}}.$$

c) $\sum_{n\geq 1} n^{(1-n)/n}$ diverge, porque si aplicamos el criterio de comparación por el límite, considerando la serie $\sum_{n\geq 1} \frac{1}{n}$ y denotamos $b_n = \frac{1}{n}$ y $a_n = n^{(1-n)/n}$, tenemos que

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} n n^{(1-n)/n} = \lim_{n \to \infty} n^{1/n} = 1$$

y como la serie $\sum_{n\geq 1}\frac{1}{n}$ diverge, concluimos que la serie del ejercicio diverge.

d) $\sum_{n\geq 1} \ln\left(\frac{n+1}{n}\right)$ es una serie de términos positivos y teléscopica, ya podemos expresar $\ln\left(\frac{n+1}{n}\right) = \ln(n+1) - \ln(n)$ y sus sumas parciales

$$S_m = \sum_{n=1}^m \ln(n+1) - \ln(n) = \ln(m+1) - \ln(2).$$

En consecuencia,

$$\sum_{n>1} \ln\left(\frac{n+1}{n}\right) = \lim_{m\to\infty} \ln(m+1) - \ln(2) = \infty$$

y por lo tanto, diverge.

e) $\sum_{n\geq 1} \frac{\operatorname{sen}^n(n)}{n^n(2n)!}$ converge, porque como $(2n)!\geq 1 \ \forall n$, entonces

$$\sum_{n\geq 1} \frac{\operatorname{sen}^{n}(n)}{n^{n}(2n)!} \leq \sum_{n\geq 1} \frac{|\operatorname{sen}^{n}(n)|}{n^{n}(2n)!} \leq \sum_{n\geq 1} \frac{1}{n^{n}(2n)!} \leq \sum_{n\geq 1} \frac{1}{n^{n}}$$

y mediante el criterio de la raíz, tenemos que $\sum_{n\geq 1} \frac{1}{n^n}$ converge, porque $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n^n}} = \lim_{n\to\infty} \frac{1}{n} = 0 < 1$.

e) $\sum_{n\geq 1} \frac{(-1)^{n+1}}{\arctan(n)}$ es una serie alternada que no puede converger, debido a que

$$\lim_{n \to \infty} \frac{1}{\arctan(n)} = \frac{2}{\pi} \neq 0.$$

4. Considerando.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x+1)^{n+1}}{a_n(x+1)^n} \right| = \lim_{n \to \infty} \left| \frac{3^{n+1}(x+1)^{n+1}n5^n}{5^{n+1}(x+1)^n(n+1)3^n} \right| = \frac{3}{5}|x+1| \lim_{n \to \infty} \frac{n}{n+1},$$

observamos que $\frac{3}{5}|x+1|<1$, si y sólo si $|x+1|<\frac{5}{3}$. En consecuencia, R=5/3 y $x\in(-\frac{8}{3},\frac{2}{3})$.

Ahora, estudiamos las series en los extremos del intervalo anterior.

Si sustituimos x=2/3 en la serie de potencias del ejercicio, obtenemos

la serie numérica $\sum_{n\geq 1}^{'}\frac{1}{n}$, la cual diverge. Si sustituimos x=-8/3 en la serie de potencias, obtenemos la serie numérica $\sum_{n\geq 1} \frac{(-1)^n}{n}$, la cual converge. En conclusión, el radio de convergencia es R=5/3 y el intervalo de

convergencia es $x \in \left[-\frac{8}{3}, \frac{2}{3}\right]$

5. Partiendo del desarrollo de la función $\cos(x)$,

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \quad \text{para todo } x \in \mathbb{R},$$

y realizando el cambio de variable $x=t^2$,

$$\cos(t^2) = \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{(2n)!} \quad \text{para todo } t \in \mathbb{R}.$$

Integrando la igualdad anterior, término a término los elementos de la serie, obtenemos

$$\int_0^x \cos(t^2)dt = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} \int_0^x t^{4n}dt = \sum_{n=0}^\infty \frac{(-1)^n x^{4n+1}}{(4n+1)(2n)!}.$$

Por lo tanto,

$$\int_0^x \cos(t^2) dt = \sum_{n=0}^\infty \frac{(-1)^n x^{4n+1}}{(4n+1)(2n)!} \quad \text{para todo } x \in \mathbb{R}.$$

Nota: observaciones y sugerencias escribir a iathamai@usb.ve