Universe in the Natural Model of Type Theory

Sina Hazratpour

July 18, 2024

1 Types

Assume an inaccessible cardinal λ . Write **Set** for the category of all sets. Say that a set A is λ -small if $|A| < \lambda$. Write **Set** $_{\lambda}$ for the full subcategory of **Set** spanned by λ -small sets.

Let $\mathbb C$ be a small category, i.e. a category whose class of objects is a set and whose hom-classes are sets.

We write $\mathbf{Psh}(\mathbb{C})$ for the category of presheaves over \mathbb{C} ,

$$\mathbf{Psh}(\mathbb{C}) =_{\mathrm{def}} [\mathbb{C}^{\mathrm{op}}, \mathbf{Set}]$$

The Natural Model associated to a presentable map $tp: Tm \to Ty$ consists of

- contexts as objects $\Gamma, \Delta, \ldots \in \mathbb{C}$,
- a type in context $y(\Gamma)$ as a map $A: y(\Gamma) \to \mathsf{Ty}$,
- a term of type A in context Γ as a map $a: y(\Gamma) \to Tm$ such that

commutes,

• an operation called "context extension" which given a context Γ and a type $A \colon \mathsf{y}(\Gamma) \to \mathsf{T}\mathsf{y}$ produces a context $\Gamma \cdot A$ which fits into a pullback diagram below.

$$\begin{array}{ccc} \mathsf{y}(\Gamma.A) & \longrightarrow \mathsf{Tm} \\ \downarrow & & \downarrow \\ \mathsf{y}(\Gamma) & \longrightarrow_A & \mathsf{Ty} \end{array}$$

Remark. Sometimes, we first construct a presheaf X over Γ and observe that it can be classified by a map into Ty. We write

$$\begin{array}{c} X \longrightarrow \mathsf{Tm} \\ \downarrow \\ \mathsf{y}(\Gamma) \xrightarrow{\Gamma X \to \mathsf{Ty}} \mathsf{Ty} \end{array}$$

to express this situation, i.e. $X \cong y(\Gamma \cdot \lceil X \rceil)$.

2 A type of small types

We now wish to formulate a condition that allows us to have a type of small types, written U, not just *judgement* expressing that something is a type. With this notation, the judgements that we would like to derive is

$$\mathsf{U}\colon \mathsf{Ty} \qquad \frac{a\colon \mathsf{U}}{\mathsf{El}(a)\colon \mathsf{Ty}}$$

(A sufficient and natural condition for this seems to be that we now have another inaccessible cardinal κ , with $\kappa < \lambda$.)

In the Natural Model, a universe U is postulated by a map

$$\pi \colon \mathsf{E} \to \mathsf{U}$$

In the Natural Model:

• There is a pullback diagram of the form

$$\begin{array}{c} \mathsf{U} \longrightarrow \mathsf{Tm} \\ \downarrow \\ \downarrow \\ 1 \xrightarrow{} \mathsf{Ty} \end{array}$$

• There is an inclusion of U into Ty

$$\mathsf{EI}\colon\mathsf{U}\rightarrowtail\mathsf{Ty}$$

• $\pi: E \to U$ is obtained as pullback of tp; There is a pullback diagram

$$\begin{array}{c} E {\longmapsto} \operatorname{Tm} \\ \downarrow \qquad \qquad \downarrow \\ \operatorname{U} {\longmapsto} \operatorname{Ty} \end{array}$$

With the notation above, we get

Both squares above are pullback squares.

- 3 The Universe in Embedded Type Theory (HoTT0) and the relationship to the Natural Model
- 4 Groupoid Model of HoTT

In this section we construct a natural model in **Psh**(**grpd**) the presheaf category indexed by the category **grpd** of (small) groupoids. We will build the classifier for display maps in the style of Hofmann and Streicher [HS98] and Awodey [Awo23]. To interpret the type constructors, we will make use of the weak factorization system on **grpd** - which comes from restricting the "classical Quillen model structure" on **cat** [Joy] to **grpd**.

Notation. We will have two universe sizes - one small and one large. We denote the category of small sets as **set** and the large sets as **Set** (in the previous sections this would have been \mathbf{Set}_{λ} and \mathbf{Set} respectively). We denote the category of small categories as **cat** and the large categories as **Cat**. We denote the category of small groupoids as **grpd**. The category of small pointed groupoids will be \mathbf{grpd}_{\bullet} .

We are primarily working in the category of large presheaves indexed by small groupoids, which we will denote by

$$\mathbf{Psh}(\mathbf{grpd}) = [\mathbf{grpd}^{\mathrm{op}}, \mathbf{Set}]$$

In this section, Tm and Ty and so on will refer to the natural model semantics in this specific model.

Definition 4.1 (The disply map classifier). We would like to define a natural transformation in **Psh**(**grpd**)

$$\mathsf{tp}\colon \mathsf{Tm}\to \mathsf{Ty}$$

with representable fibers.

Consider the functor that forgets the point

$$U : \mathbf{grpd}_{\bullet} \to \mathbf{grpd}$$
 in Cat.

If we apply the yoneda embedding $y: \mathbf{Cat} \to \mathbf{Psh}(\mathbf{Cat})$ to U we obtain

$$U \circ : [-, \mathbf{grpd}_{\bullet}] \to [-, \mathbf{grpd}]$$
 in $\mathbf{Psh}(\mathbf{Cat})$.

Since any small groupoid is also a large category $\mathbf{grpd} \hookrightarrow \mathbf{Cat}$, we can restrict \mathbf{Cat} indexed presheaves to be \mathbf{grpd} indexed presheaves. We define $\mathsf{tp} \colon \mathsf{Tm} \to \mathsf{Ty}$ as the image of $U \circ \mathsf{under}$ this restriction.

$$\begin{array}{ccc} \mathbf{Cat} & \xrightarrow{y} \mathbf{Psh}(\mathbf{Cat}) & \xrightarrow{\mathsf{res}} \mathbf{Psh}(\mathbf{grpd}) \\ \\ \mathbf{grpd} & \longmapsto [-,\mathbf{grpd}] & \longmapsto \mathsf{Ty} \end{array}$$

Note that Tm and Ty are not representable in Psh(grpd).

References

- [Awo23] Steve Awodey. On hofmann-streicher universes, 2023.
- [HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In *Twenty-five years of constructive type theory (Venice, 1995)*, volume 36 of *Oxford Logic Guides*, pages 83–111. Oxford Univ. Press, New York, 1998.
- [Joy] André Joyal. Model structures on cat. https://ncatlab.org/joyalscatlab/published/Model+structures+on+Cat.