Prova scritta di Calcolo Scientifico

Udine, 22 febbraio 2022
$$18 \bullet .\star = 30$$

- 1. Sia $\mathcal{F}:=\mathcal{F}(2,t,e_{\max},e_{\min})$ l'insieme di numeri di macchina con l'arrotondamento, che contiene anche i numeri denormalizzati
 - Siano u la precisione di macchina e d il più piccolo numero denormalizzato positivo. Determina gli interi t, e_{\max}, e_{\min} in modo che $\frac{u}{d} = 16$, $e_{\max} = t + 1$, realmax = 14.
 - Siano dati $x=(10.\overline{011})_2$ e $y=(1.\overline{0111})_2$. Determina $\tilde{x}=fl(x)\in\mathcal{F},\,\tilde{y}=fl(y)\in\mathcal{F}$ e $\tilde{z}=\tilde{x}fl(+)\tilde{y}$.
 - * Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
 - Definisci i numeri denormalizzati per \mathcal{F} . Quanti sono i numeri denormalizzati relativi a \mathcal{F} ?. Giustifica la risposta.
- 2. Si vuole calcolare la funzione y = f(x).
 - Sia $f(x) = \sqrt{g(x)}$, con g funzione reale non negativa. Determina la relazione tra il numero di condizionamento di f e quello di g. Studia il condizionamento della funzione $f(x) = \sqrt{\cos^2(x) \sin^2(x)} = \sqrt{\cos(2x)}$ con $x \in [0, \frac{\pi}{4}]$.
 - Studia l'errore dei due algoritmi per il calcolo di f. Si può assumere che l'errore della moltiplicazione di x per 2 sia nullo? Quale algoritmo è più stabile? Giustifica tutte le risposte.
- 3. Sia $f(x) = (x^2 3)(x + 1)^2$.
 - 4. Disegna il grafico di f. Determina le radici α, β, γ con $\alpha < \beta < \gamma$.

Metodo di Newton

- 5. Studia la convergenza del metodo di Newton ad α . La successione ottenuta con $x_0 = -2$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica tutte le risposte.
- 6. Siano $z_1, z_2, z_1 < z_2$, i due punti di flesso della funzione f. Studia la convergenza del metodo di Newton a β quando $x_0 \in [z_1, z_2]$. La successione ottenuta con $x_0 = 0$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica tutte le risposte.
- 7. Studia la convergenza del metodo di Newton a γ . La successione ottenuta con $x_0=1.5$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica tutte le risposte.

Metodo a pendenza costante: $x_{k+1} = g(x_k), k = 0, 1, \dots, \operatorname{con} g(x) = x - \frac{f(x)}{m}$.

- 8. Studia la convergenza ad α del metodo iterativo al punto precedente con m=12. La successione ottenuta con $x_0=-2$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica tutte le risposte.
- 9. Studia la convergenza a β del metodo iterativo al punto precedente con m=-12. La successione ottenuta con $x_0=0$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica tutte le risposte.
- * Definisci il concetto di ordine di convergenza per una generica successione $x_k \to \alpha$ per $k \to +\infty$.

Sia data la matrice

$$A = \left(\begin{array}{ccc} \alpha & 1 & 0 \\ 1 & \alpha - 1 & 0 \\ 2 & 1 & \alpha + 1 \end{array}\right).$$

- ullet Calcola la fattorizzazione LU di A. Per quale scelta del parametri lpha esiste tale fattorizzazione?
- Disegna il grafico della funzione $\alpha \to ||A||_1$.
- Per quale scelta del parametro α il sistema Ax = b ha unica soluzione?
- ullet Calcola la fattorizzazione PA=LU con la tecnica del pivot parziale della matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 2\\ 4 & 4/5 & 28/5\\ 5 & 1 & 2 \end{array}\right).$$

* Scrivi la pseudocodifica dell'algoritmo di eliminazione di Gauss di base.

Sia
$$f(x) = \frac{1}{1+2x^2}$$
, $x \in [-1, 1]$. Dati i punti $P_0 = (-1, f(-1))$, $P_1 = (0, f(0))$, $P_2 = (1, f(1))$.

- Determina il polinomio p che interpola i tre punti nella forma di Newton.
- Determina il polinomio \tilde{p} che interpola i tre punti e tale che $\tilde{p}'(0) = f'(0)$ nella forma di Newton.
- Determina il polinomio q di primo grado di miglior approssimazione dei quattro punti P_0, P_1, P_2 e $P_3 = (1/2, f(1/2))$ nel senso dei minimi quadrati.