Übungsblatt 2

Aufgabe 4 (1+1.5+1.5+1). Berechnen Sie

Kurvenintegral $\int_{\gamma} g \, ds$ erster Art.

- (i) $\int_{\gamma} f ds$ für $f(x,y) = xy^2$ für eine Kurve γ die einmal den Kreis um den Ursprung vom Radius 2 umrundet.
- (ii) $\int_{\gamma} V \cdot ds$ für $V(x,y) = \binom{2y}{1-x}$ entlang $\gamma \colon t \in [-1,2] \mapsto (t,1-t^3)^T \in \mathbb{R}^2$
- (iii) $\int_{\gamma} V \cdot ds$ für $V(x,y,z) = (0,x^2,-yz)^T$ entlang einer Kurve γ , die geradlinig von $(4,-1,2)^T$ nach $(1,7,-1)^T$ verläuft.
- (iv) die Länge des Funktionsgraphen einer stetig differenzierbaren Funktion $f:[a,b]\to\mathbb{R}$.

Aufgabe 5. Sei $g: \mathbb{C} \to \mathbb{C}$ stetig und $\gamma: [a, b] \to \mathbb{C}$ eine parametrisierte Kurve. Wir können g als Vektorfeld $V: \mathbb{R}^2 \to \mathbb{R}^2$. $(x, y) \mapsto (\operatorname{Re} g(x + \mathrm{i} y), \operatorname{Im} g(x + \mathrm{i} y))^T$

auffassen. Vergleichen Sie das Kurvenintegral zweiter Art $\int_{\gamma} V \cdot ds$ mit dem komplexen Kurvenintegral $\int_{\gamma} g \, dz$. Im Spezialfall, dass g nur reelle Werte annimmt, vergleichen Sie diese Integrale zusätzlich mit dem

Aufgabe 6. Sei $f: \{(x,y)^T \in \mathbb{R}^2 \mid y \geq 0\} \subset \mathbb{C} \to \mathbb{C}$ stetig. Sei $\gamma_R: \theta \in [0,\pi] \mapsto Re^{\mathrm{i}\theta} \in \mathbb{C}$ für R > 0. Sei a > 0, $g(z) = e^{\mathrm{i}az} f(z)$ und $M_R := \max_{z \in \mathrm{Bild}(\gamma_R)} |f(z)|$. Zeigen Sie: Aus $\lim_{R \to \infty} M_R = 0$ folgt $\lim_{R \to \infty} \int_{\gamma_R} g(z) dz = 0$

Hinweis: Schätzen Sie das Integral zunächst für ein festes R ab. Benutzen Sie dazu die Eulersche Formel und $\sin \theta \ge \frac{2}{\pi} \theta$ für $\theta \in [0, \frac{\pi}{2}]$ (Warum gilt die letzte Ungleichung?).