ENSAYO N° 14 CAVITACIÓN

Nombre: Javier Antonio Sanhueza Sandoval.

Asignatura: ICM 557 - 3

Dirigido a Cristóbal Galleguillos Ketterer

Tomás Herrera Muñoz

Fecha: 11 de Diciembre 2020.

Contenido

1Objetivo	2
7. Trabaja da laboratorio	
2Trabajo de laboratorio	4
2 INICODME	

1.-Objetivo.

Determinar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga.

2.-Trabajo de laboratorio.

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación, esperar un tiempo prudente para que se estabilice la operación de la bomba, estrangular, parcialmente, la descarga para situarse en un punto de la curva característica de la bomba ligeramente separada de su extremo derecho. A continuación, tome las siguientes medidas:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, en [rpm].
- pax% presión de aspiración, en [%].
- pdx% presión de descarga, en [%].
- Ahx caudal de la bomba, presión diferencial en el venturímetro en [mmHg].
- Fx fuerza medidas en la balanza, en [kp].
- T temperatura de agua en el estanque, en [°C].
- Patm presión atmosférica, en [mmHg].

Finalizada esta, estrangular la válvula de aspiración haciendo disminuir la presión de aspiración y el caudal en un valor indicado por el profesor. A continuación, restablecer el caudal al valor original abriendo la válvula de descarga. Y se realizan las mediciones efectuadas anteriormente.

El procedimiento se repite tantas veces como sea necesario hasta alcanzar plena cavitación.

Terminado lo anterior, se procede de igual manera para otros puntos de curva convenientemente seleccionados.

Mida los valores siguientes:

- cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].
- cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

3.- INFORME.

Objetivo: Construir la curva de succión requerida.

Instalación:

Figura 1. Bomba centrifuga M18.

Figura 2. Válvula de admisión.

Figura 3. Válvula de escape.

Figura 4. Venturímetro para medir caudal.

Figura 5. Sensor de temperatura del agua.

Figura 6. Barómetro de cazoleta.

3.1-Tabla de valores medidos.

nx	pax	pdx	∆hx	Fx	Т
[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]
2899	91,8	5,6	140	1,19	18
2899	93,8	10,2	128	1,27	18
2898	96,3	14,6	115	1,34	18
2899	98,6	19,4	101	1,42	18
2898	100,8	24	87	1,48	18
2897	103,2	28,5	74	1,53	18
2899	104,8	32,2	63	1,53	18
2896	107,3	37,7	50	1,57	18
2897	109,7	42,2	36	1,53	18
2898	112,2	46,5	22	1,45	18
2899	115,2	50,3	9	1,21	19
2900	121,1	54,3	0	0,82	19

Tabla 1. Valores medidos a 2900 rpm, curva sin cavitación.

nx	pax	pdx	∆hx	Fx	T
[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]
2908	97,4	17,6	105	1,4	16
2912	79,5	12,8	105	1,4	16
2912	63	8,6	105	1,4	16
2913	53,5	5,2	105	1,38	16
2916	50,4	5	98	1,35	16
2917	39,4	4,9	89	1,4	16,5
2916	36,2	4,7	79	1,4	17

Tabla 2. Valores medidos en punto 1, curva cavitación.

nx	pax	pdx	∆hx	Fx	Т
[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]
2917	102,3	27,8	78	1,52	17
2917	74	20,5	78	1,52	17
2917	48,4	10,6	78	1,48	17
2917	37,7	4,7	78	1,41	17,5
2915	35,9	4,6	73	1,4	17,5
2917	35,8	4,7	69	1,38	18
2916	36,1	4,4	64	1,35	18

Tabla 3. Valores medidos en punto 2, curva cavitación.

nx	pax	pdx	∆hx	Fx	Т
[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]
2916	109,8	43,8	35	1,49	18
2917	86,1	36,8	35	1,55	18
2918	26,8	4	35	1,28	18
2918	27,8	3,7	34	1,25	18,5
2917	29,3	3,6	31	1,2	18,5

Tabla 4. Valores medidos en punto 3, curva cavitación.

3.3 Tabla de valores calculados.

VALORES CALCULADOS

Nº openio	Caudal	Caudal corregido	pax	pdx	Нх	H corregida
Nº ensayo	m^3/s	m^3 / s	mca	mca	mca	mca
1	0,030	0,030	-0,935	2,405	3,340	3,342
2	0,029	0,029	-0,735	4,245	4,980	4,983
3	0,028	0,028	-0,485	6,005	6,490	6,499
4	0,026	0,026	-0,255	7,925	8,180	8,186
5	0,025	0,025	-0,035	9,765	9,800	9,814
6	0,022	0,022	0,205	11,565	11,360	11,384
7	0,021	0,021	0,365	13,045	12,680	12,689
8	0,019	0,019	0,615	15,245	14,630	14,670
9	0,015	0,015	0,855	17,045	16,190	16,224
10	0,011	0,011	1,105	18,765	17,660	17,684
11	0,008	0,008	1,405	20,285	18,880	18,893
12	0,000	0,000	1,995	21,885	19,890	19,890

Tabla 5. Valores calculados a 2900 rpm, curva sin cavitación.

Pot eje	Pot eje corregida	Pot H	Rend GL	Vel	CNSPD
kW	kW	kW	%	m/s	mca
2,537	2,540	0,993	39,087	3,690	9,798
2,708	2,711	1,427	52,626	3,556	9,948
2,856	2,862	1,772	61,906	3,386	10,139
3,028	3,031	2,070	68,309	3,142	10,287
3,155	3,161	2,377	75,198	3,009	10,466
3,260	3,270	2,479	75,811	2,705	10,617
3,262	3,266	2,587	79,229	2,533	10,731
3,344	3,358	2,663	79,316	2,255	10,913
3,260	3,270	2,419	73,977	1,852	11,069
3,091	3,097	1,942	62,717	1,364	11,239
2,580	2,583	1,389	53,786	0,913	11,487
1,749	1,749	0,000	0,000	0,000	12,034

Tabla 5.1 Valores calculados a 2900 rpm, curva sin cavitación. Continuación.

Nº openio	Caudal	Caudal corregido	pax	pdx	Нх	H corregida
N° ensayo	m^3/s	m^3/s	mca	mca	mca	mca
1	0,0263	0,0262	-0,3750	7,2050	7,5800	7,5384
2	0,0263	0,0262	-2,1650	5,2850	7,4500	7,3887
3	0,0263	0,0262	-3,8150	3,6050	7,4200	7,3590
4	0,0263	0,0262	-4,7650	2,2450	7,0100	6,9476
5	0,0255	0,0254	-5,0750	2,1650	7,2400	7,1608
6	0,0248	0,0247	-6,1750	2,1250	8,3000	8,2035
7	0,0228	0,0227	-6,4950	2,0450	8,5400	8,4465

Tabla 6. Valores calculados en punto 1, curva cavitación.

Pot eje	Pot eje corregida	Pot H	Rend GL	Vel	CNSPD
kW	kW	kW	%	m/s	mca
2,9944	2,9697	1,9376	65,2448	3,1926	10,1836
2,9985	2,9616	1,8965	64,0377	3,1882	8,3922
2,9985	2,9616	1,8889	63,7799	3,1882	6,7422
2,9567	2,9173	1,7827	61,1079	3,1871	5,7918
2,8954	2,8480	1,7797	62,4886	3,0870	5,4498
3,0036	2,9514	1,9822	67,1597	3,0012	4,3232
3,0026	2,9535	1,8769	63,5507	2,7601	3,9324

Tabla 6.1 Valores calculados en punto 1, curva cavitación. Continuación.

Nº ensayo	Caudal	Caudal corregido	pax	pdx	Нх	H corregida
N Clisayo	m^3/s	m^3/s	mca	mca	mca	mca
1	0,0225	0,0224	0,12	11,29	11,17	11,04
2	0,0225	0,0224	-2,72	8,37	11,08	10,95
3	0,0225	0,0224	-5,28	4,41	9,68	9,57
4	0,0225	0,0224	-6,35	2,05	8,39	8,29
5	0,0221	0,0220	-6,53	2,01	8,53	8,44
6	0,0215	0,0214	-6,54	2,05	8,58	8,48
7	0,0208	0,0207	-6,51	1,93	8,43	8,34

Tabla 7. Valores calculados en punto 2, curva cavitación.

Pot eje	Pot eje corregida	Pot H	Rend GL	Vel	CNSPD
kW	kW	kW	%	m/s	mca
3,26	3,20	2,42	75,53	2,72	10,53
3,26	3,20	2,40	74,92	2,72	7,70
3,18	3,12	2,10	67,22	2,72	5,14
3,03	2,97	1,82	61,16	2,72	4,07
3,00	2,96	1,82	61,55	2,68	3,88
2,96	2,91	1,78	61,06	2,60	3,85
2,90	2,85	1,69	59,35	2,52	3,86

Tabla 7.1 Valores calculados en punto 2, curva cavitación. Continuación.

Nº ensayo	Caudal	Caudal corregido	pax	pdx	Нх	H corregida
N Elisayo	m^3/s	m^3/s	mca	mca	mca	mca
1	0,0152	0,0151	0,87	17,69	16,82	16,64
2	0,0152	0,0151	-1,51	14,89	16,39	16,20
3	0,0152	0,0151	-7,44	1,77	9,20	9,09
4	0,0145	0,0144	-7,34	1,65	8,98	8,87
5	0,014	0,0139	-7,19	1,61	8,79	8,69

Tabla 8. Valores calculados en punto 3, curva cavitación.

Pot eje	Pot eje corregida	Pot H	Rend GL	Vel	CNSPD
kW	kW	kW	%	m/s	mca
3,20	3,14	2,46	78,40	1,84	11,08
3,33	3,27	2,40	73,42	1,84	8,71
2,75	2,70	1,35	49,89	1,84	2,78
2,68	2,63	1,25	47,57	1,75	2,86
2,57	2,53	1,19	46,84	1,69	3,00

Tabla 8.1 Valores calculados en punto 3, curva cavitación. Continuación.

3.4 Gráficos.

Trace el siguiente gráfico en una hoja completa:

3.4.1 Con los valores del ensayo anterior, trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos.

Tabla 8.1 Curva característica con zona de cavitación.

3.4.1.1. ¿Qué significan las desviaciones que se producen?

La curva del caudal del primer, segundo y tercer punto representan el fenómeno de la cavitación en la bomba, los quiebres en las curvas son los puntos donde se hace presente este fenómeno implicando una reducción de las capacidades de la bomba.

3.4.2 Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenada H, Ne en [%] respecto al valor sin cavitación y ηgl, y en la abscisa la CNSPD.

Tabla 9. cavitación respecto al CSNPD en punto 1.

Tabla 10. cavitación respecto al CSNPD en punto 2.

Tabla 11. cavitación respecto al CSNPD en punto 3.

3.4.2.1 ¿Cómo determina la CNSPD crítica y qué representa?

Cuando la CNSPD es igual o menor a la CNSPR en la admisión de la bomba se produce cavitación.

3.4.3 Grafique la CNSPR en función del caudal.

3.4.3.1. ¿La curva obtenida tiene la forma característica?

Si.

3.4.3.2. ¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

El comportamiento de todas las curvas es el esperado para una bomba centrifuga sometida a cavitación por medio de estrangulación en la válvula de admisión, el informe en general es satisfactorio y los resultados obtenidos representan el comportamiento real de una bomba centrifuga.