Exercic

Proposer un modèle de connaissance et de comportement

Proposer un modèle de connaissance et de comportement 2

1.1 Modéliser la cinématique d'un ensemble de solides ...2

1.2 Modéliser la cinématique d'un ensemble de solides . . . 7

1 Proposer un modèle de connaissance et de comportement

1.1 Modéliser la cinématique d'un ensemble de solides

Exercice 1 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 *Quel est le mouvement de* **1** *par rapport* à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir 1.2.

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 *Quel est le mouvement de* **1** *par rapport* à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir 1.2.

Exercice 3 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Quel est le mouvement de **2** par rapport à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Corrigé voir 1.2.

Exercice 4 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \,\text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point C.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Corrigé voir 1.2.

Exercice 5 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

B2- Proposer un modèle de connaissance et de comportement

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 1.2.

Exercice 6 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 1.2.

Exercice 7 - Mouvement RR 3D **

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 *Donner l'ensemble des positions accessibles par le point B.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir 1.2.

Exercice 8 - Mouvement RR 3D **

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir 1.2.

Exercice 9 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 1/0)$.

Corrigé voir 1.2.

Exercice 10 - Mouvement R *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Déterminer $V(B \in 1/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 1/0)$.

Corrigé voir 1.2.

Exercice 11 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 1.2.

Exercice 12 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 1.2.

Exercice 13 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 1.2.

Exercice 14 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 1.2.

Exercice 15 - Mouvement RR 3D **

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 1.2.

Exercice 16 - Mouvement RR 3D **

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 1.2.

Exercice 17 - Mouvement RT - RSG ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact entre $\mathbf{0}$ et $\mathbf{1}$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad et $\lambda(t) = 30\,\mathrm{mm}$. On notera I_2 le point de contact entre $\mathbf{0}$ et $\mathbf{1}$. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t)$ de 0 à $\frac{\pi}{2}$.

Corrigé voir 1.2.

Exe<u>rcice 18</u> – Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 *Retracer le schéma cinématique pour* $\theta(t) = 0$ *rad.*

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 4 En déduire la course de la pièce 2.

Corrigé voir 1.2.

Exercice 19 – Pompe à pistons radiaux ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 5 En déduire la course de la pièce 2.

Corrigé voir 1.2.

Exercice 20 – Système bielle manivelle **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, $R = 10 \, \text{mm}$ et $L = 20 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 4 En déduire la course de la pièce 3.

Corrigé voir 1.2.

Exercice 21 – Système de transformation de mouvement $\star\star$

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, $R = 30 \, \text{mm}$ et $H = 40 \, \text{mm}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 3.

Corrigé voir 1.2.

Exercice 22 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Corrigé voir 1.2.

Exercice 23 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$, $R = 40 \, \text{mm}$ $BI = 10 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Corrigé voir 1.2.

Exercice 24 - Poussoir **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L \overrightarrow{i_0} + H \overrightarrow{j_0}$. De plus, H = 120 mm, L = 40 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{4}$ rad.

Corrigé voir 1.2.

Exercice 25 - Système 4 barres ***

B2-12 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$ avec a = 355 mm et f = 13 mm;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et $e = 160 \,\mathrm{mm}$;

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta_1(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta_1(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course angulaire (θ_4) de la pièce **3**.

Corrigé voir 1.2.

Exercice 26 - Maxpid ***

B2-12 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},$ $d=80\,\mathrm{mm}.$ Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

B2- Proposer un modèle de connaissance et de comportement

Question 4 *En déduire la course de* λ .

Corrigé voir 1.2.

1.2 Modéliser la cinématique d'un ensemble de solides

Exercice 27 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Exercice 28 - Mouvement R *

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Quel est le mouvement de 1 par rapport à 0.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Exercice 29 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Quel est le mouvement de 2 par rapport à 0.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Exercice 30 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point C*.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Exercice 31 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point B*.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 32 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 33 - Mouvement RR 3D **

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Exercice 34 - Mouvement RR 3D **

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Exercice 35 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point B*.

Question 2 Déterminer $\Gamma(B \in 1/0)$.

Exercice 36 - Mouvement R *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(B \in 1/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}\$ au point B.

Question 3 Déterminer $\Gamma(B \in \overline{1/0})$.

Exercice 37 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Exercice 38 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Exercice 39 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.


```
Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
```

Question 2 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point C*.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Exercice 40 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Exercice 41 - Mouvement RR 3D **

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Exercice 42 - Mouvement RR 3D **

B2-13 Pas de corrigé pour cet exercice.

Question 1 Déterminer $\overrightarrow{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Exercice 43 - Mouvement RT - RSG **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact entre 0 et 1.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad et $\lambda(t) = 30$ mm. On notera I_2 le point de contact entre 0 et I. On précisera la position des points $I_{0,0}$ et $I_{0,1}$, points résultants de la rupture de contact lors du passage de $\theta(t)$ de 0 à $\frac{\pi}{2}$.

Exercice 44 - Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 *Retracer le schéma cinématique pour* $\theta(t) = 0$ *rad.*

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi$ rad.

Question 4 En déduire la course de la pièce **2**.

Exercice 45 - Pompe à pistons radiaux **

B2-12 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 2.

Exercice 46 - Système bielle manivelle **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course de la pièce 3.

Exercice 47 - Système de transformation de mouvement **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \vec{0}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 3.

Exercice 48 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Exercice 49 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad. **Question 3** Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Exercice 50 - Poussoir **

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{4}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{4}{4}\pi$ rad.

Exercice 51 - Système 4 barres ***

B2-12 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta_1(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta_1(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course angulaire (θ_4) de la pièce 3.

Exercice 52 - Maxpid ***

B2-12 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107.1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 *En déduire la course de* λ .