Workshop session 2 (September 2024)

DIRECTIONAL DERIVATIVES AND GRADIENTS

Exercice 22. Use the figure below to estimate the following directional derivatives.

(1) $f_i(4,1)$

(3) $f_{u}(4,1)$ with $u = (i-j)/\sqrt{2}$

(2) $f_i(4,1)$

(4) $f_{u}(4,1)$ with $u = (-i + j)/\sqrt{2}$

(5) $f_{\mathbf{u}}(4,1)$ with $\mathbf{u} = (-2\mathbf{i} + \mathbf{j})/\sqrt{2}$

Exercice 20. Calculate ∇f , then $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}$, then $D_{\mathbf{u}}f$ at P.

(1)
$$f(x,y) = x^2 - y^2$$
 avec $\mathbf{u} = (\sqrt{3}/2, 1/2)$ et $P(1,0)$

(2)
$$f(x,y) = 3x + 4y + 7$$
 avec $\mathbf{u} = (3/5, 4/5)$ et $P(0, \pi/2)$

(3)
$$f(x,y) = e^x \cos y$$
 avec $u = (0,1)$ et $P(0,\pi/2)$

(4)
$$f(x,y) = y^{10}$$
 avec $\mathbf{u} = (0,-1)$ et $P(1,-1)$

(5)
$$f(x,y) = \text{distance de } (x,y) \text{ à } (0,3), \text{ avec } \boldsymbol{u} = (1,0) \text{ et } P(1,1)$$

Exercice 24. We consider the following function of several variables

$$f(\boldsymbol{x}) = (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}) (\boldsymbol{b}^{\mathsf{T}} \boldsymbol{x})$$

where a, b and x are vectors in \mathbb{R}^n . Determine $\nabla f(x)$ and the Hessian H associated to f.

CHAIN RULES

Exercice 29. We consider the functions $f: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}^2$ such that

$$f(x) = \frac{x_1^2}{6} + \frac{x_2^2}{4}$$
 et $g(t) = [3t + 5, 2t - 6]^{\mathsf{T}}$

Let $F: \mathbb{R} \to \mathbb{R}$ given by F(t) = f(g(t)). Compute $\frac{dF}{dt}(t)$ using chain rules.

Exercice 30. We consider the functions

$$\mathbf{x}(t) = [e^t + t^3, t^2, t + 1]^{\mathsf{T}} \quad (t \in \mathbb{R})$$
 et $f(\mathbf{x}) = x_1^3 x_2 x_3^2 + x_1 x_2 + x_3$

with $\boldsymbol{x} = [x_1, x_2, x_3]^{\mathsf{T}} \in \mathbb{R}^3$. Find $\frac{d}{dt} f(\boldsymbol{x}(t))$ in function of t.

MAXIMA, MINIMA AND SADDLE POINTS

Exercice 40. We consider the functions $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(\boldsymbol{x}) = \boldsymbol{x}^\intercal \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} \boldsymbol{x} + \boldsymbol{x}^\intercal \begin{bmatrix} 3 \\ 5 \end{bmatrix} + 6$$

- (1) Find the gradient and the Hessian matrix of f at the point $[1,1]^{\mathsf{T}}$.
- (2) Find the directional derivative of f at $[1,1]^{\mathsf{T}}$ with respect to a unit vector in the direction of maximal rate of increase.
- (3) Find a point satisfying the condition for an extremum. Is it a maximum or a minimum?

Exercice 41. We consider the function

$$f(\mathbf{x}) = f(x_1, x_2) = x_1^2 x_2 + x_2^3 x_1$$

- (a) In what direction does the function f decrease most rapidly at the point $\boldsymbol{x}^{(0)} = [2,1]^\intercal$?
- (b) What is the rate of increase of f at the point $x^{(0)}$ in the direction of maximum decrease of f?
- (c) Find the rate of increase of f at the point $\mathbf{x}^{(0)}$ in the direction $\mathbf{d} = [3, 4]^{\mathsf{T}}$.

Exercice 42. On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(\boldsymbol{x}) = \boldsymbol{x}^\intercal \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix} \boldsymbol{x} + \boldsymbol{x}^\intercal \begin{bmatrix} 3 \\ 4 \end{bmatrix} + 7$$

- (a) Find the directional derivative of f at $[0,1]^{\mathsf{T}}$ in the direction $[1,0]^{\mathsf{T}}$.
- (b) Find all points that satisfy the condition for an extremum of f. Does f have a minimizer? If it does, then find all minimizer(s); otherwise, explain why it does not.