Algorytmy macierzowe - zadanie nr 1 - Mnożenie macierzy

"2. Proszę napisać mnożenie qxq macierzy FEM i FEM używając algorytmu mnożenia blokowego i dobrać optymalną kolejność pętli oraz rozmiar bloków"

Marcin Hawryluk, Norbert Wolniak grupa: piątek 12:50B

Python 3

```
In [3]: import numpy as np
    from time import time
    import matplotlib.pyplot as plt
    import pandas as pd
```

Do implementacji wybraliśmy język Python 3 wraz z biblioteką do obliczeń numerycznych numpy, która pozwala operować na macierzach zaimplementowanych bezpośrednio w języku C.

Generowanie macierzy

Macierze, których będziemy używać, wygenerowaliśmy za pomocą dostarczonej procedury massmatrix, napisanej w środowisku Octave. Macierze zapisaliśmy w postaci pliku tekstowego, a następnie odczytaliśmy w Pythonie za pomocą poniższej funkcji.

W poniższej pracy przeanalizujemy mnożenie na macierzach typu FEM, czyli pochodzących z obliczeń w ramach Metody Elementów Skończonych, która służy do aproksymacji rozwiązań równań różniczkowych.

```
In [4]: def read matrix(file name):
            with open(file name, 'r') as file:
                for line in file:
                    if line.strip() == '':
                        continue
                    if line[0] == '#':
                        if line[2:6] == "rows":
                            _, _, size = line.split()
                            size = int(size)
                            matrix = np.zeros((size, size))
                    else:
                        row, col, val = line.split(' ')
                        matrix[int(row)-1, int(col)-1] = val
            return matrix
In [5]: |matrix_small = read_matrix("matrices/fem_1210_16x16.txt")
        matrix small
```

```
0.
              ],
                         , 0.
, 0.
, 0.
                                    , 0.02777778,
         [0.05555556, 0.111111111, 0.
         0.05555556, 0. , 0.
                                    , 0.
                                    , 0.
            , 0.
                             , 0.
         0.
                      , 0.
         0.
               ],
              , 0.
                      , 0.11111111, 0.05555556, 0.
         [0.
              , 0.05555556, 0.02777778, 0.
                  , 0.
         0.
         0.
             , 0. , 0.05555556, 0.11111111, 0.
              , 0.02777778, 0.05555556, 0. , 0.
               , 0. , 0. , 0.
                                   , 0.
               ],
```

Procedura mnożenia macierzy

Klasyczna funkcja w 6 wersjach

Poniżej znajduje się implementacja klasycznej procedury mnożenia macierzy w sześciu wersjach, różniących się jedynie kolejnością zagnieżdzonych pętli.

```
In [6]: def mm ijp(matrix a, matrix b):
            (m, n), k = matrix_a.shape, matrix_b.shape[1]
            matrix_c = np.zeros((m, k), dtype=np.float64)
            for i in range(m):
                for j in range(k):
                    for p in range(n):
                        matrix_c[i, j] += matrix_a[i, p] * matrix_b[p, j]
            return matrix_c
        def mm_ipj(matrix_a, matrix_b):
            (m, n), k = matrix_a.shape, matrix_b.shape[1]
            matrix_c = np.zeros((m, k), dtype=np.float64)
            for i in range(m):
                for p in range(n):
                    for j in range(k):
                        matrix_c[i, j] += matrix_a[i, p] * matrix_b[p, j]
            return matrix_c
        def mm_jip(matrix_a, matrix_b):
            (m, n), k = matrix_a.shape, matrix_b.shape[1]
            matrix_c = np.zeros((m, k), dtype=np.float64)
            for j in range(k):
                for i in range(m):
                    for p in range(n):
                        matrix_c[i, j] += matrix_a[i, p] * matrix_b[p, j]
            return matrix_c
        def mm_jpi(matrix_a, matrix_b):
            (m, n), k = matrix_a.shape, matrix_b.shape[1]
            matrix_c = np.zeros((m, k), dtype=np.float64)
            for j in range(k):
                for p in range(n):
                    for i in range(m):
                        matrix_c[i, j] += matrix_a[i, p] * matrix_b[p, j]
            return matrix c
        def mm_pij(matrix_a, matrix_b):
            (m, n), k = matrix_a.shape, matrix_b.shape[1]
            matrix_c = np.zeros((m, k), dtype=np.float64)
            for p in range(n):
                for i in range(m):
                    for j in range(k):
                        matrix_c[i, j] += matrix_a[i, p] * matrix_b[p, j]
            return matrix_c
        def mm_pji(matrix_a, matrix_b):
            (m, n), k = matrix_a.shape, matrix_b.shape[1]
            matrix_c = np.zeros((m, k), dtype=np.float64)
            for p in range(n):
                for j in range(k):
                    for i in range(m):
                        matrix_c[i, j] += matrix_a[i, p] * matrix_b[p, j]
            return matrix c
```

W celu weryfikacji poprawności powyższych funkcji, porównujemy wynik z macierzą otrzymaną przy użyciu operatora mnożenia macierzy dostępnego w bibliotece numpy:

```
In [7]: def mm_test(matrix_a, matrix_b):
    matrix_c = matrix_a @ matrix_b
    res = True
    for mm in [mm_ijp, mm_jip, mm_jpi, mm_pij, mm_pji]:
        if not np.allclose(matrix_c, mm(matrix_a, matrix_b)):
            print("{} not correct!".format(mm.__name__))
            res = False
    if res:
        print("OK")

mm_test(matrix_small, matrix_small)
```

OK

Procedura mnożenia blokowego macierzy

Następnie implementujemy algorytm mnożenia blokowego, w ramach którego dzielimy macierze wejściowe na mniejsze rozłączne podmacierze, na których następnie wykonujemy operacje. Funkcja jako trzeci argument przyjmuje rozmiar podmacierzy; przyjęliśmy, że będziemy dzielić na macierze kwadratowe (z wyjątkiem skrajnych fragmentów), jednak poniższą funkcję dałoby się uogólnić, aby można było zadać inny podział. W celu uzyskania iloczynu dwóch podmacierzy, wykorzystujemy klasyczną funkcję w wersji ijp.

```
In [8]: def mm_block(matrix_a, matrix_b, block_size):
    (m, n), k = matrix_a.shape, matrix_b.shape[1]
    matrix_c = np.zeros((m, k))

for i in range(0, m, block_size):
    ib = min(m - i, block_size)
    for j in range(0, k, block_size):
        jb = min(n - j, block_size):
        jb = min(x - p, block_size):
            pb = min(k - p, block_size)
            matrix_c[i:i+ib, j:j+jb] += mm_ijp(matrix_a[i:i+ib, p:p+pb],
            matrix_b[p:p+pb, j:j+jb])

return matrix_c
```

Weryfikujemy poprawność powyższej implementacji:

```
In [9]: def mm_block_test(matrix_a, matrix_b):
    matrix_c = matrix_a @ matrix_b
    res = True
    for block_size in range(1, 20):
        if not np.allclose(matrix_c, mm_block(matrix_a, matrix_b, block_size)):
            print("{} incorrect block size!".format(block_size))
            res = False
    if res:
        print("OK")

mm_block_test(matrix_small, matrix_small)
```

OK

"1. Proszę wybrać dwie możliwie największe macierze A i B ze swoich dwóch rodzin macierzy, takie żeby zgadzały się ich rozmiary, oraz przemnożyć je A*B swoim optymalnym algorytmem (tak duże macierze jakie da się w czasie kilku-kilkudziesięciu minut przemnożyć na Państwa laptopie)"

"2. Proszę narysować schemat niezerowych wartości swoich dwóch macierzy (używając komendy spy(A), spy(B) MATLABa) oraz macierzy wynikowej A*B"

Na poniższych schematach na niebiesko zaznaczone są niezerowe wartości. Możemy zauważyć, że A jest macierzą rzadką.

Macierz A (oraz B):

Macierz A*B:

Pomiar czasów

"3. Proszę zmierzyć czas mnożenia tych wybranych dwóch dużych macierzy dla różnej kolejności pętli w algorytmie mnożenia macierzy. Proszę narysować tabelkę: kolejność pętli (6 możliwości) versus czasy mnożenia"

```
In [13]: def compare_mult_times(matrix_a, matrix_b):
    times = {}
    for mm in [mm_ijp, mm_ipj, mm_jpi, mm_pij, mm_pij, mm_pji]:
        start = time()
        mm(matrix_a, matrix_b)
        times[mm._name_[3:]] = time() - start

df = pd.DataFrame(times.values(), times.keys(), ["times [s]"])
    df.plot(
        kind='bar',
        figsize=(10, 5),
        xlabel='loop order',
        ylabel='multiplication time [s]',
        colormap='Set3'
)

return df
```

In [14]: compare_mult_times(matrix, matrix)

Out[14]:

ijp 7.519995 ipj 7.248176 jip 7.234744 jpi 7.225607 pij 7.228835 pji 7.275199

Na powyższych wynikach nie można zaobserwować wyraźnej różnicy na korzyść którejkolwiek z wersji procedury.

[&]quot;4. Proszę wybrać jedną kolejność pętli i następnie dla swoich dwóch macierzy A i B zmierzyć czasy mnożenia w algorytmie mnożenia blokowego. Proszę narysować wykres: oś x rozmiar bloków, oś y czas mnożenia"

```
In [17]: def compare_block_times(matrix_a, matrix_b):
             times = {}
             for block_size in range(1, 100, 10):
                 start = time()
                 mm_block(matrix_a, matrix_b, block_size)
                 times[block_size] = time() - start
             df = pd.DataFrame(times.values(), times.keys(), ["times [s]"])
             df.plot(
                 figsize=(10, 10),
                 xlabel='block size',
                 ylabel='multiplication time [s]',
                 color="#4a4e69",
                 linewidth=3,
                 markersize=10,
                 marker='o'
             )
             return df
```

In [18]: |compare_block_times(matrix, matrix)

Out[18]:

1 77.802423 8.235655 11

times [s]

21 7.801710

7.801809

8.611642 41

8.939483

61

10.057984

9.014252

7.831739 81

7.676766 91

Zdecydowanie największy czas został zaobserwowany dla rozmiaru bloku wynoszącego 1. Wynika to najprawdopodobniej z bardzo dużej liczby wywołań funkcji, które są dość kosztowne czasowo. Dla pozostałych wielkości bloków nie zaobserwowaliśmy znacznych różnic.

Na brak różnic w czasach w powyższych testach najpewniej wpłynął wybór interpretowalnego języka programowania. Biblioteka numpy, mimo iż napisana w C, dokonuje wielu optymalizacji, które nie są oczywiste dla użytkownika, co mogło także zaburzyć spodziewany efekt. W związku z tym, przeprowadziliśmy ponowne testy, tym razem napisane w całości w języku C.

Generowanie macierzy

W celu przeprowadzenia testów na macierzach o dużych wymiarach, odczytaną macierz powiększamy do zadanych rozmiarów, powtarzając okresowo wartości (matrix[i][j] = matrix[i%n][j%n]). Wygenerowanie macierzy o dużych rozmiarach w środowisku Octave/Matlab zajęłoby dużo czasu.

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/times.h>
#include <string.h>
double** read_matrix(char* filename, int m){
    FILE* f;
    f = fopen(filename, "r");
    char * buffer = NULL;
    size_t len = 0;
    ssize_t read;
    int n;
    double ** matrix;
    while ((read = getline(&buffer, &len, f)) != -1) {
        char *token;
        token = strtok(buffer, " ");
        if(strcmp(token, "#") == 0){
            token = strtok(NULL, " ");
            if(strcmp(token, "rows:") == 0){
                token = strtok(NULL, " ");
                n = atoi(token);
                matrix = empty_arr(n * m, n * m);
            }
        }
        else{
            int i, j;
            double val;
            i = atoi(token);
            token = strtok(NULL, " ");
            j = atoi(token);
            token = strtok(NULL, " ");
            val = atof(token);
            matrix[i-1][j-1] = val;
        }
    }
    for (int i = n ; i < n * m ; i++)
        for (int j = n ; j < n * m ; j++)
            matrix[i][j] = matrix[i%n][j%n];
    }
    fclose(f);
    return matrix;
}
```

Procedura mnożenia macierzy

Klasyczna funkcja w 6 wersjach

Poniższy kod służy do mnożenia macierzy kwadratowych, gdyż na takich będziemy dokonywać porównań, jednak w prosty sposób można by uogólnić te funkcje dla dowolnych macierzy o zgodnych wymiarach, na wzór procedury napisanej poprzednio w języku Python.

```
}
       }
    }
}
void matmul_ipj(double** C, double** A, double** B, int n){
    for (int i = 0; i < n; i++){
        for (int p = 0; p < n; p++){
            for (int j = 0; j < n; j++){
               C[i][j] = C[i][j] + A[i][p] * B[p][j];
            }
       }
    }
}
void matmul_jip(double** C, double** A, double** B, int n){
    for (int j = 0; j < n; j++){
        for (int i = 0; i < n; i++){
            for (int p = 0; p < n; p++){
               C[i][j] = C[i][j] + A[i][p] * B[p][j];
            }
        }
    }
}
void matmul_jpi(double** C, double** A, double** B, int n){
    for (int j = 0; j < n; j++){
        for (int p = 0; p < n; p++){
            for (int i = 0; i < n; i++){
               C[i][j] = C[i][j] + A[i][p] * B[p][j];
            }
        }
    }
}
void matmul_pij(double** C, double** A, double** B, int n){
    for (int p = 0; p < n; p++){
        for (int i = 0; i < n; i++){
            for (int j = 0; j < n; j++){
               C[i][j] = C[i][j] + A[i][p] * B[p][j];
            }
       }
    }
}
void matmul_pji(double** C, double** A, double** B, int n){
    for (int p = 0; p < n; p++){
        for (int j = 0; j < n; j++){
            for (int i = 0; i < n; i++){
               C[i][j] = C[i][j] + A[i][p] * B[p][j];
            }
       }
    }
}
```

Procedura mnożenia blokowego macierzy

Pomiar czasów

Czasy obliczone w programie zapisaliśmy do pliku csv, aby następnie w Pythonie utworzyć na ich podstawię wizualizację.

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/times.h>
#include <string.h>
double** new_arr(int N, int M){
    double** arr = malloc(N * sizeof(double*));
    for (int i = 0; i < N; i++){
        arr[i] = calloc(M, sizeof(double));
        for(int j = 0; j < M; j++) arr[i][j] = rand();
    }
    return arr;
}
double** empty_arr(int N, int M){
    double** arr = malloc(N * sizeof(double*));
    for (int i = 0; i < N; i++){
        arr[i] = calloc(M, sizeof(double));
    return arr;
}
int main()
    srand ( time ( NULL));
    clock t start, end;
    double* ijp times = malloc(1 * sizeof(double));
    double* ipj_times = malloc(1 * sizeof(double));
    double* jip_times = malloc(1 * sizeof(double));
    double* jpi_times = malloc(1 * sizeof(double));
    double* pij_times = malloc(1 * sizeof(double));
    double* pji_times = malloc(1 * sizeof(double));
    double* blocking_times = malloc(200 * sizeof(double));
    int multipl = 10;
    double** A = read_matrix("fem_1550_196x196.txt", multipl);
    double** B = read_matrix("fem_1550_196x196.txt", multipl);
    double** C;
    int n = 196 * multipl;
    printf("size %d\n", n);
    C = empty arr(n, n);
    start = clock();
    matmul_ijp(C, A, B, n);
    end = clock();
    ijp_times[0] = ((double)(end - start)) / CLOCKS_PER_SEC;
    printf("%f\n", ijp_times[0]);
    remove_arr(n, C);
    C = empty_arr(n, n);
    start = clock();
    matmul_ipj(C, A, B, n);
    end = clock();
    ipj_times[0] = ((double)(end - start)) / CLOCKS_PER_SEC;
    remove_arr(n, C);
    C = empty_arr(n, n);
    start = clock();
    matmul_jip(C, A, B, n);
    end = clock();
    jip_times[0] = ((double)(end - start)) / CLOCKS_PER_SEC;
    remove_arr(n, C);
    C = empty_arr(n, n);
    start = clock();
    matmul_jpi(C, A, B, n);
    end = clock();
    jpi_times[0] = ((double)(end - start)) / CLOCKS_PER_SEC;
```

```
remove_arr(n, C);
C = empty_arr(n, n);
start = clock();
matmul_pij(C, A, B, n);
end = clock();
pij_times[0] = ((double)(end - start)) / CLOCKS_PER_SEC;
remove_arr(n, C);
C = empty_arr(n, n);
start = clock();
matmul_pji(C, A, B, n);
end = clock();
pji_times[0] = ((double)(end - start)) / CLOCKS_PER_SEC;
remove_arr(n, C);
int k = 0;
for (int block_size = 1; block_size <= n; block_size = block_size + 1){</pre>
    if (n % block_size != 0) continue;
    printf("block size %d\n", block_size);
   C = empty_arr(n, n);
    start = clock();
    matmul_blocking(C, A, B, n, block_size);
    end = clock();
    blocking_times[k] = ((double)(end - start)) / CLOCKS_PER_SEC;
    remove_arr(n, C);
    k++;
}
remove_arr(n,A);
remove_arr(n,B);
FILE *f_matmul;
f matmul = fopen("matmul times.csv", "w+");
fprintf(f matmul, "Size, IJP, IPJ, JIP, JPI, PIJ, PJI\n");
fprintf(f_matmul, "%d, %f, %f, %f, %f, %f, %f\n", n, ijp_times[0], ipj_times[0],
        jip_times[0], jpi_times[0], pij_times[0], pji_times[0]);
FILE *f_blocking;
f_blocking = fopen("blocking_times.csv", "w+");
fprintf(f_blocking, "BlockSize, Time[s]\n");
k = 0;
for (int block_size = 1; block_size <= n; block_size++){</pre>
    if (n % block_size != 0) continue;
    fprintf(f_blocking,"%d, %f\n", block_size, blocking_times[k]);
    k++;
}
fclose(f_matmul);
fclose(f_blocking);
free(ijp_times);
free(ipj_times);
free(jip_times);
free(jpi_times);
free(pij_times);
free(pji_times);
free(blocking_times);
return 0;
```

}

```
In [3]: def show_mult_times(file):
    data = pd.read_csv(file)
    print(f'matrix size: {data["Size"][0]}')
    data = data.transpose().drop('Size').rename(columns={0: "times[0]"})

    data.plot(
        kind='bar',
        xlabel='loop order',
        ylabel='multiplication time [s]',
        figsize=(10, 5),
        colormap='Set3',
        legend=None
    )

    return data

show_mult_times("matmul_times.csv")
```

matrix size: 1960

Out[3]:

times[0] IJP 97.456976 IPJ 27.831802 JIP 70.709818 JPI 158.076994 PIJ 30.164020 PJI 155.449633

Najlepsze czasy otrzymaliśmy dla wersji ipj oraz pij. Różnica w czasach dla różnej kolejności odwołań do poszczególnych pól wynika z lokalności odwołań i wykorzystania pamięci podręcznej cache. Macierze w języku C są umieszczone w pamięci wierszami. Odwołując się do danej komórki pamięci, komputer przeszukuje najpierw pamięć podręczną, która charakteryzuje się szybkim czasem dostępu, ale także ograniczonym rozmiarem. Jeśli komórka nie zostanie odnaleziona w cache'u, zostaje ona pobrana z pamięci głównej i przekopiowana do pamięci podręcznej wraz z pewną liczbą pól jej sąsiednich, gdyż oczekuje się, że może nastąpić do nich dostęp w najbliższym czasie.

Z powyższych testów możemy zauważyć, iż najlepsze czasy zostały uzyskane w sytuacji, w której najbardziej wewnętrzną pętlą jest ta z iteratorem j, który służy wyłącznie do wskazywania kolumny. Odwołując się do pól C[i][j] oraz B[p][j] jest bardzo duża szansa, że wiersze C[i] oraz B[p] znajdują się w pamięci podręcznej lub przynajmniej jakaś ich część (w przypadku dużych macierzy). W przeciwnym przypadku, w którym j jest iteratorem pętli zewnętrznej, przy każdej iteracji zmieniamy wiersz, co znacznie zwiększa liczbę sytuacji, w których musimy odnosić się do znacznie wolniejszej pamięci głównej, gdyż żądanej komórki nie ma w pamięci podręcznej.

Out[46]:

	BlockSize	Time[s]
0	1	59.754282
1	2	36.794170
2	4	31.243284
3	5	30.350315
4	7	28.979273
5	8	28.870096
6	10	30.836188
7	14	28.512718
8	20	30.432951
9	28	28.644196
10	35	29.458436
11	40	29.967220
12	49	28.389494
13	56	28.293239
14	70	28.489529
15	98	29.220005
16	140	30.220525
17	196	28.680796
18	245	28.788981
19	280	28.580805
20	392	29.364368
21	490	29.215521
22	980	30.115792
23	1960	28.864432

W użytym w doświadczeniu komputerze (maszynie wirtualnej) pamięć L1 ma wielkość 64KiB, co przekłada się na 64*1024B = 65536B. W mnożeniu blokowym chcemy mieć szybki dostęp do 3 bloków A, B i C więc 65536B/3 = 21845B, double to 8B więc 21845B/8B = 2730 i ostatecznie rozmiar przewidywanego optymalnego bloku to $\sqrt{2}730 \approx 52$, co zgadza się z otrzymanym rezultatem.

Liczba operacji zmiennoprzecinkowych

"5. Proszę obliczyć liczbę operacji zmienno-przecinkowych koniecznych do przemnożenia swoich dwóch macierzy"

Aby przemnożyć obie macierze A i B o wymiarach n x n każda potrzeba $2*n^3$ operacji zmiennoprzecinkowych, w ogólności dla macierzy n x m * m x k potrzeba 2*n*m*k operacji, ponieważ w celu obliczenia wartości w macierzy wynikowej musimy wykonać m mnożeń oraz m dodawań, a komórek jest n*k. Wykorzystując procedurę mnożenia blokowego, nie zmieniamy łącznej liczby operacji; trzy zewnętrzne pętle wykonują się n/blocksize razy, a wewnętrzne blocksize razy oraz mamy dwie operacje zmiennoprzecinkowe wewnątrz zagnieżdzonych petli: $(\frac{n}{blocksize})^3 \times 2 \times blocksize^3 = 2 \times n^3$

W powyższych testach uzyskaliśmy $2 \times (1960)^3 \div 27.8s \approx 0.54 GFLOPS$.

Wnioski

- Na czas mnożenia macierzy, oprócz liczby operacji zmiennoprzecinkowych, wpływa także czas potrzebny na dostęp do pamięci i przepisywania wartości do rejestrów.
- Znając sposób organizacji pamięci, jesteśmy w stanie zmniejszyć czas wykonania programu, np. dobierając optymalną kolejność pętli w procedurze mnożenia macierzy, czerpiąc korzyści z pamięci podręcznej.
- Ze względu na ograniczoną wielkość pamięci cache, dla dużych macierzy uzyskamy mniejszy czas mnożenia korzystając z procedury mnożenia blokowego, która dzieli dużą macierz na mniejsze fragmenty, których pola zmieszczą się w pamięci podręcznej.
- Optymalny rozmiar bloku zależy od parametrów komputera i wielkości typu reprezentowanych danych i można go określić na przykład w sposób doświadczalny.

M. Hawryluk, N. Wolniak. 2021