SCHEME OF TEACHING AND EXAMINATION M.Tech in VLSI DESIGN AND EMBEDDED SYSTEMS

I SEMESTER

			Teaching	Hours /Week		Exar	nination		
Sl. No	Subject Code	Title	Theory	Practical/Fi eld Work/ Assignment	Dura tion	I.A. Marks	Theory/ Practical Marks	Total Marks	Credit
1	16ELD11	Advanced Engineering Mathematics	4	-	3	20	80	100	4
2	16EVE12	Digital VLSI Design	4	-	3	20	80	100	4
3	16EVE13	Advanced Embedded System	4	-	3	20	80	100	4
4	16EVE14	Low Power VLSI Design	4	-	3	20	80	100	4
5	16EXX15X	Elective-1	3	-	3	20	80	100	3
6	16EVEL16	VLSI and ES Lab -1		3	3	20	80	100	2
7	16EVE17	Seminar on advanced topics from refereed journals	-	3	-	100	-	100	1
TOTAL		19	6	18	220	480	700	22	

Elective -1	
16 EVE151	Digital System Design Using Verilog
16 EVE152	Nanoelectronics
16 EVE153	ASIC Design
16 ELD154	Advanced Computer Architecture

M.Tech in VLSI DESIGN AND EMBEDDED SYSTEMS

II SEMESTER

			Teaching	Hours /Week		Exai	mination		Credit
Sl. No	Subject Code	Title	Theory	Practical/Fi eld Work/ Assignment	Dura tion	I.A. Marks	Theory/ Practical Marks	Total Marks	
1	16EVE21	Design of Analog and Mixed mode VLSI Circuits	4	-	3	20	80	100	4
2	16EVE22	VLSI Testing	4	-	3	20	80	100	4
3	16EVE23	Advances in VLSI Design	4	-	3	20	80	100	4
4	16EVE24	Real Time Operating System	4	-	3	20	80	100	4
5	16EXX25X	Elective –2	3	-	3	20	80	100	3
6	16EVEL26	VLSI and ES Lab -2		3	3	20	80	100	2
7	16EVE27	Seminar on Advanced topics from refereed journals	-	3	-	100	-	100	1
	TOTAL		19	6	18	220	480	700	22

Elective -2	
16EVE251	System Verilog
16EVE252	VLSI Design for Signal processing
16ELD253	Micro Electro Mechanical Systems
16EVE254	SoC Design

M.Tech in VLSI DESIGN AND EMBEDDED SYSTEMS

III SEMESTER: Internship

			Teaching	Hours /Week	Examination			Credit	
Sl. No	Subject Code	Title	Theory	Practical/Fi eld Work/ Assignment	Dura tion	I.A. Marks	Theory/ Practical Marks	Total Marks	
1	16EVE31	Seminar / Presentation on Internship (After 8 weeks from the date of commencement)	-	-	-	25	-	25	
2	16EVE32	Report on Internship	-	-	-	25	-	25	20
3	16EVE33	Evaluation and Viva-Voce of Internship	-	-	-	-	50	50	
4 16EVE34 Evaluation of Project phase -1		-	-	-	50	-	50	1	
TOTAL		-	-	-	100	50	150	21	

M.Tech. in VLSI DESIGN AND EMBEDDED SYSTEMS

IV SEMESTER

			Teaching	Teaching Hours /Week		Exar	Credit		
Sl. No	Subject Code	Title	Theory	Practical/Fi eld Work/ Assignment	Dura tion	I.A. Marks	Theory/ Practical Marks	Total Marks	
1	16ELD41	Synthesis and Optimization of Digital Circuits	4	-	3	20	80	100	4
2	16EXX42X	Elective-3	3	-	3	20	80	100	3
3	16EVE43	Evaluation of Project phase -2	-	-	-	50	-	50	3
4	16EVE44	Evaluation of Project and Viva-Voce	-	-	-	-	100+100	200	10
	TOTAL		-	-	6	90	360	450	20

Elective -3	
16EVE421	CMOS RF Circuit Design
16ECS422	Advances in Image Processing
16EVE423	High Speed VLSI Design
16ELD424	Reconfigurable Computing

Note:

- 1. Project Phase-1: 6-week duration shall be carried out between 2nd and 3rd Semester vacation. Candidates in consultation with the guide shall carry out literature survey/ visit industries to finalize the topic of Project.
- 2. Project Phase-2: 16-week duration during 4th semester. Evaluation shall be done by the committee constituted comprising of HoD as Chairman, Guide and Senior faculty of the department.
- 3. Project Evaluation: Evaluation shall be taken up at the end of 4th semester. Project work evaluation and Viva-Voce examination shall be conducted.
 - a. Internal Examiner shall carry out the evaluation for 100 marks.
 - b. External Examiner shall carry out the evaluation for 100 marks.
 - c .The average of marks allotted by the internal and external examiner shall be the final marks of the project evaluation.
 - d. Viva-Voce examination of Project work shall be conducted jointly by Internal and External examiner for 100 marks.

M.Tech-VLSI & ES-2016-FIRST SEMESTER SYLLABUS

ADVANCED ENGINEERING MATHEMATICS						
[As per Choice Based Credit System (CBCS) scheme]						
	-	SEMESTER – I	· ·			
Subject Code	16ELD11	IA Marks	20			
Number of	04	Exam Marks	80			
Lecture						
Hours/Week						
Total Number of	50 (10 Hours per	Exam Hours	03			
Lecture Hours	Module)					
CREDITS – 04						

Course objectives: This course will enable students to:

- Acquaint with principles of linear algebra, calculus of variations, probability theory and random process.
- Apply the knowledge of linear algebra, calculus of variations, probability theory and random process in the applications of electronics and communication engineering sciences.

Modules	Revised Bloom's Taxonomy (RBT) Level
Module -1	1
Linear Algebra-I Introduction to vector spaces and sub-spaces, definitions, illustrative examples and simple problems. Linearly independent and dependent vectors-definition and problems. Basis vectors, dimension of a vector space. Linear transformations- definition, properties and problems. Rank-Nullity theorem(without proof). Matrix form of linear transformations-Illustrative examples.(Text 1 & Ref. 1)	L1,L2
Module -2	
Linear Algebra-II Computation of Eigen values and Eigen vectors of real symmetric matrices-Given's method. Orthogonal vectors and orthogonal bases. Gram-Schmidt orthogonalization process. QR decomposition, singular value decomposition, least square approximations. (Text 1 & Ref. 1)	L1,L2
Module -3	
Calculus of Variations Concept of functional-Eulers equation. functional dependent on first and higher order derivatives, functional on several dependent variables. Isoperimetric problems-variation problems with moving boundaries.(Text 2 & Ref. 2)	L1,L2
Module -4	

Probability	Theory
--------------------	--------

Review of basic probability theory. Definitions of random variables and probability distributions, probability mass and density functions, expectation, moments, central moments, characteristic functions, probability generating and moment generating functions-illustrations. Binomial, Poisson, Exponential, Gaussian and Rayleigh distributions-examples.(**Text 3 & Ref. 3**)

L1,L2

Module -5

Joint probability distributions

Definition and properties of CDF, PDF, PMF, conditional distributions. Expectation, covariance and correlation. Independent random variables. Statement of central limit theorem-Illustrative examples.

L1,L2

Random process- Classification, stationary and ergodic random process. Auto correlation function-properties, Gaussian random process. (Text 3 & Ref. 3)

Course Outcomes: After studying this course, students will be able to:

- Understand vector spaces, basis, linear transformations and the process of obtaining matrix of linear transformations arising in magnification and rotation of images.
- Apply the techniques of QR and singular value decomposition for data compression, least square approximation in solving inconsistent linear systems.
- Utilize the concepts of functionals and their variations in the applications of communication systems, decision theory, synthesis and optimization of digital circuits.
- Learn the idea of random variables (discrete/continuous) and probability distributions in analyzing the probability models arising in control systems and system communications.
- Apply the idea of joint probability distributions and the role of parameter-dependent random variables in random process.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- · Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. David C.Lay, Steven R.Lay and J.J.McDonald: Linear Algebra and its Applications, 5th Edition, Pearson Education Ltd., 2015.
- 2. E. Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2015.
- 3. Scott L.Miller, Donald G. Childers: "Probability and Random Process with application to Signal Processing", Elsevier Academic Press, 2nd Edition, 2013.

Reference books:

- 1. Richard Bronson: "Schaum's Outlines of Theory and Problems of Matrix Operations", McGraw-Hill, 1988.
- 2. Elsgolts, L.: "Differential Equations and Calculus of Variations", MIR Publications, 3rd Edition, 1977.
- 3. T.Veerarajan: "Probability, Statistics and Random Process", 3rd Edition, Tata McGraw Hill Co.,2008.

Web links:

- 1. http://nptel.ac.in/courses.php?disciplineId=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://ocw.mit.edu/courses/mathematics/
- 4. www.wolfram.com

	<u>DIGITAL VLSI DESIGN</u> [As per Choice Based Credit System (CBCS) scheme] SEMESTER –I						
Subject Code	16EVE12	IA Marks	20				
Number	04	Exam Marks	80				
Total Number of	50 (10 Hours per Module)	Exam Hours	03				
CREDITS – 04							

Course objectives: This course will enable students to:

- Explain VLSI Design Methodologies
- Learn Static and Dynamic operation principles, analysis and design of inverter circuit.
- Infer state of the art Semiconductors Memory circuits.
- Outline the comprehensive coverage of Methodologies and Design practice that are used to reduce the Power Dissipation of large scale digital circuits.
- Illustrate VLSI and ASIC design.

Modules	Revised Bloom's Taxono my (RBT) Level
Module -1	T
MOS Transistor: The Metal Oxide Semiconductor (MOS) Structure, The MOS System under External Bias, Structure and Operation of MOS Transistor, MOSFET Current-Voltage Characteristics, MOSFET Scaling and Small-Geometry Effects. MOS Inverters-Static Characteristics: Introduction, Resistive-Load Inverter, Inverters with n_Type MOSFET Load.	L1, L2
Module -2	
MOS Inverters: Switching Characteristics and Interconnect Effects: Introduction, Delay-Time Definition, Calculation of Delay Times, Inverter Design with Delay Constraints, Estimation of Interconnect Parasitics, Calculation of Interconnect Delay, Switching Power Dissipation of CMOS Inverters.	L2, L3
Module -3	

Semiconductor Memories: Introduction, Dynamic Random Access	L1, L2,
Memory (DRAM), Static Random Access Memory (SRAM), Nonvolatile	L3
Memory, Flash Memory, Ferroelectric Random Access Memory (FRAM).	
Module -4	
Dynamic Logic Circuits: Introduction, Basic Principles of Pass	L1,L2,
Transistor Circuits, Voltage Bootstrapping, Synchronous Dynamic	L3
Circuit Techniques, Dynamic CMOS Circuit Techniques, High	
Performance Dynamic CMOS Circuits.	
BiCMOS Logic Circuits: Introduction, Bipolar Junction Transistor	
(BJT): Structure and Operation, Dynamic Behavior of BJTs, Basic	

L2, L3

Module -5

Circuits, BiCMOS Applications.

Chip Input and Output (I/O) Circuits: Introduction, ESD Protection, Input Circuits, Output Circuits and L(di/dt) Noise, On-Chip Clock Generation and Distribution, Latch-Up and Its Prevention.

BiCMOS Circuits: Static Behavior, Switching Delay in BiCMOS Logic

Design for Manufacturability: Introduction, Process Variations, Basic Concepts and Definitions, Design of Experiments and Performance Modeling.

Course outcomes:

After studying this course, students will be able to:

- 1. Analyse issues of On-chip interconnect Modelling and Interconnect delay calculation.
- 2. Analyse the Switching Characteristics in Digital Integrated Circuits.
- 3. Use the Dynamic Logic circuits in state-of-the-art VLSI chips.
- 4. Study critical issues such as ESD protection, Clock distribution, Clock buffering, and Latch phenomenon
- 5. Use Bipolar and Bi-CMOS circuits in very high speed design.

Question Paper Pattern

- The question paper will have 10 full questions carrying equal marks.
- · Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Sung Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis and Design", Tata McGraw-Hill, Third Edition.

- 1. Neil Weste and K. Eshragian, "Principles of CMOS VLSI Design: A System Perspective", Second Edition, Pearson Education (Asia) Pvt. Ltd. 2000.
- 2. Wayne, Wolf, "Modern VLSI Design: System on Silicon" Prentice Hall PTR/Pearson Education, Second Edition, 1998.
- 3. Douglas A Pucknell & Kamran Eshragian, "Basic VLSI Design" PHI 3rd Edition (original Edition 1994).

	ADVANCE	D EMBEDDED SY	STEM
[As per Choice Based Credit System (CBCS) scheme]			
	S	SEMESTER – I	· ·
Subject Code	16EVE13	IA Marks	20
Number of	04	Exam Marks	80
Lecture			
Hours/Week			
Total Number of	50 (10 Hours per	Exam Hours	03
Lecture Hours	Module)		
CREDITS – 04			

Course objectives: This course will enable students to:

- •Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- •Describe the hardware software co-design and firmware design approaches
- Explain the architectural features of ARM CORTEX M3, a 32 bit microcontroller including memory map, interrupts and exceptions.
- ●Program ARM CORTEX M3 using the various instructions, for different applications.

Modules	Revised Bloom's Taxonomy (RBT) Level
Embedded System : Embedded vs General computing system, classification, application and purpose of ES. Core of an Embedded System, Memory, Sensors, Actuators, LED, Opto coupler, Communication Interface, Reset circuits, RTC, WDT, Characteristics and Quality Attributes of Embedded Systems (Text 1: Selected Topics from Ch -1, 2, 3).	L1, L2, L3
Module -2 Hardware Software Co-Design, embedded firmware design approaches, computational models, embedded firmware development languages, Integration and testing of Embedded Hardware and firmware, Components in embedded system development environment (IDE), Files generated during compilation, simulators, emulators and debugging (Text 1: Selected Topics From Ch-7, 9, 12, 13).	L1, L2, L3

Module -3	
ARM-32 bit Microcontroller : Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence (Text 2: Ch 1, 2, 3)	
Module -4	
Instruction Sets : Assembly basics, Instruction list and description, useful instructions, Memory Systems, Memory maps, Cortex M3 implementation overview, pipeline and bus interface (Text 2: Ch-4, 5, 6)	L1, L2, L3
Module -5	
Exceptions, Nested Vector interrupt controller design, Systick Timer, Cortex-M3 Programming using assembly and C language, CMSIS (Text 2: Ch-7, 8, 10)	L1, L2, L3

Course Outcomes: After studying this course, students will be able to:

- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Explain the hardware software co-design and firmware design approaches.
- Acquire the knowledge of the architectural features of ARM CORTEX M3, a 32 bit microcontroller including memory map, interrupts and exceptions.
- Apply the knowledge gained for Programming ARM CORTEX M3 for different applications.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- · Each full question consists of 16 marks with a maximum of four sub questions.
- · There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. K. V. Shibu, "Introduction to embedded systems", TMH education Pvt. Ltd. 2009.
- 2. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2ndedn, Newnes, (Elsevier), 2010.

Reference Book:

James K. Peckol, "Embedded systems- A contemporary design tool", John Wiley, 2008.

LOW POWER VLSI DESIGN			
[As per Choice Based Credit System (CBCS) scheme]			
SEMESTER -I			
Subject Code	16EVE14	IA Marks	20
Number	04	Exam Marks	80
0			
f Lecture			
Total Number of	50 (10 Hours per Module)	Exam Hours	03
Lecture Hours			
ODEDWG 04			

CREDITS – 04

Course objectives: This course will enable students to:

- Know the basics and advanced techniques in low power design which is a hot topic in today's market where the power plays a major role.
- Describe the various power reduction and the power estimation methods.
- Explain power dissipation at all layers of design hierarchy from technology, circuit, logic, architecture and system
- Apply State-of-the art approaches to power estimation and reduction.
- Practice the low power techniques using current generation design style and process technology

Modules	Revised Bloom's Taxonom
Module -1	·
Introduction: Need for low power VLSI chips, charging and discharging capacitance, short circuit current in CMOS leakage current, static current, basic principles of low power design, low power figure of merits.	L1, L2
Simulation power analysis : SPICE circuit simulation, discrete transistor modeling and analysis, gate level logic simulation, architecture level analysis, data correlation analysis in DSP systems, Monte Carlo simulation. (Text 1)	
Module -2	
Probabilistic power analysis : Random logic signals, probability & frequency, probabilistic power analysis techniques, signal entropy.	L1, L2, L3
Circuit : Transistor and gate sizing, equivalent pin ordering, network restructuring and reorganization, special latches and flip flops, low power digital cell library, adjustable device threshold voltage. (Text 1)	
Module -3	
Logic: Gate reorganization, signal gating, logic encoding, state machine encoding, precomputation logic (Text 1).	L1, L2, L3
Low power Clock Distribution: Power dissipation in clock distribution, single driver Vs distributed buffers, Zero skew Vs tolerable skew, chip & package co design of clock network (Text 2).	
Module -4	1

activity reduction, parallel architecture with voltage reduction, flow graph transformation	L1- L4
(Text 1).	
Low power arithmetic components: Introduction, circuit design style, adders,	
multipliers, division (Text 2).	
Module -5	
Low power memory design: Introduction, sources and reductions of power dissipation in	
memory subsystem, sources of power dissipation in DRAM and SRAM (Text 2).	
Algorithm & Architectural Level Methodologies: Introduction, design flow,	L1-L4
Algorithmic level analysis & optimization, Architectural level estimation & synthesis	
(Text 2).	
Advanced Techniques: Adiabatic computation, pass transistor, Asynchronous circuits	

Course outcomes: After studying this course, students will be able to:

- Identify the sources of power dissipation in CMOS circuits.
- Perform power analysis using simulation based approaches and probabilistic analysis.
- Use optimization and trade-off techniques that involve power dissipation of digital circuits.

Low power Architecture & Systems: Power & performance management, switching

- Make the power design a reality by making power dimension an integral part of the design process
- Use practical low power design techniques and their analysis at various levels of design abstraction and analyse how these are being captured in the latest design automation environments.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

(Text 1).

- 1. Gary K. Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic, 1998.
- 2. Jan M.Rabaey, Massoud Pedram, "Low Power Design Methodologies", Kluwer Academic, 2010.

- 1. Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley, 2000
- 2. A.P.Chandrasekaran and R.W.Broadersen, "Low power digital CMOS design", Kluwer Academic, 1995.
- 3. A Bellamour and M I Elmasri, "Low power VLSI CMOS circuit design", Kluwer Academic,1995.

	<u>ITAL SYSTEM DESIGN USIN</u>	G VERILOG		
[As per Choice]	Based Credit System (CBCS)	scheme]		
Subject Code	SEMESTER – I 16EVE151	IA Marks	20	
Number of	03	Exam Marks	80	
Lecture Hours/Week		Brain warrs		
Total Number of Lecture Hours	40 (08 Hours per Module)	Exam Hours	03	
	CREDITS – 03			
application specific of the specific of the specific to the specific of the specific o	d operation of semiconductor digital system. Soly IC's are embedded in packages of processors and I/O contraction. Modules	age and assem	bled in F	PCB's for
	ethodology : Digital Systemesentation and Circuit El			(RBT)
Circuits, Models, Desig	n Methodology.			
Module -2				
Number Basics : Unsign Numbers. Sequential Basics : Sto	ned and Signed Integers, Fixe orage elements, Counters, Se ynchronous Timing Methodol	equential Data		L1, L2
Number Basics: Unsign Numbers. Sequential Basics: Sto and Control, Clocked S Module -3	orage elements, Counters, Se ynchronous Timing Methodol	equential Data ogy.	paths	,
Number Basics: Unsign Numbers. Sequential Basics: Storand Control, Clocked S. Module -3 Memories: Concepts,	orage elements, Counters, Se ynchronous Timing Methodol Memory Types, Error Detection orics: ICs, PLDs, Packaging	equential Data ogy.	paths ion.	L1, L2
Number Basics: Unsign Numbers. Sequential Basics: Storand Control, Clocked Someonies: Concepts, Implementation Fabruary	orage elements, Counters, Se ynchronous Timing Methodol Memory Types, Error Detection orics: ICs, PLDs, Packaging	equential Data ogy.	paths ion.	L1, L2

Module -5

Accelerators: Concepts, case study, Verification of accelerators.

Design Methodology: Design flow, Design optimization, Design for test.

Course Outcomes: After studying this course, students will be able to:

- Design embedded systems, using small microcontrollers, larger CPUs/DSPs, or hard or soft processor cores.
- Design the combinational circuits using discrete gates and programmable logic devices.
- Describe Verilog model for sequential circuits and test pattern generation
- Explore the different types of semiconductor memories and their usage for specific chip design
- Synthesis different types of processor and I/O controllers that are used in embedded system design

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- · Each full question consists of 16 marks with a maximum of four sub questions.
- · There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Peter J. Ashenden, "Digital Design: An Embedded Systems Approach Using VERILOG", Elesvier, 2010.

Reference Book:

Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition by Samir Palnitkar.

NANOE	ELECTRONICS		
[As per Choice Based Credit System (CBCS)			
	scheme]		
Subject Code	16EVE152	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of Lecture	40 (08 Hours per	Exam Hours	03
Hours	Module)		
CREDITS – 03			

Course objectives: This course will enable students to:

- Enhance basic engineering science and technological knowledge of nanoelect ronics.
- Explain basics of top-down and bottom-up fabrication process, devices and systems.
- Describe technologies involved in modern day electronic devices.
- Appreciate the complexities in scaling down the electronic devices in the future.

Modules	Revised Bloom's Taxonomy (RBT) Level
Introduction: Overview of nanoscience and engineering. Development milestones in microfabrication and electronic industry. Moores' law and continued miniaturization, Classification of Nanostructures, Electronic properties of atoms and solids: Isolated atom, Bonding between atoms, Giant molecular solids, Free electron models and energy bands, crystalline solids, Periodicity of crystal lattices, Electronic conduction, effects of nanometer length scale, Fabrication methods: Top down processes, Bottom up processes methods for templating the growth of nanomaterials, ordering of nanosystems (Text 1).	L1, L2
Module -2 Characterization: Classification, Microscopic techniques, Field ion microscopy, scanning probe techniques, diffraction techniques: bulk and surface diffraction techniques (Text1). Module -3	L1,L2,L3

Characterization: spectroscopy techniques: photon, radiofrequency, electron, surface analysis and dept profiling: electron, mass, Ion beam, Reflectrometry, Techniques for property measurement: mechanical, electron, magnetic, thermal properties. Inorganic semiconductor nanostructures: overview of semiconductor physics. Quantum confinement in semiconductor nanostructures: quantum wells, quantum wires, quantum dots, super-lattices, band offsets, electronic density of states (Text1).	L1-L3
Module -4	
Fabrication techniques: requirements of ideal semiconductor, epitaxial growth of quantum wells, lithography and etching, cleaved-edge over growth, growth of vicinal substrates, strain induced dots and wires, electrostatically induced dots and wires, Quantum well width fluctuations, thermally annealed quantum wells, semiconductor nanocrystals, collidal quantum dots, self-assembly techniques. Physical processes: modulation doping, quantum hall effect, resonant tunneling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck, quantum confined stark effect, nonlinear effects, coherence and dephasing, characterization of semiconductor nanostructures: optical electrical and structural (Text1).	L1-L3
Module -5	
Methods of measuring properties: atomic, crystollography, microscopy, spectroscopy (Text 2).	L1-L3
Applications : Injection lasers, quantum cascade lasers, single-photon sources, biological tagging, optical memories, coulomb	

Course outcomes: After studying this course, students will be able to:

blockade devices, photonic structures, QWIP's, NEMS, MEMS (Text

- Know the principles behind Nanoscience engineering and Nanoelectronics.
- Apply the knowledge to prepare and characterize nanomaterials.
- Know the effect of particles size on mechanical, thermal, optical and electrical properties of nanomaterials.
- Design the process flow required to fabricate state of the art transistor technol ogy.
- Analyze the requirements for new materials and device structure in the future technologies.

Question paper pattern:

1).

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Ed Robert Kelsall, Ian Hamley, Mark Geoghegan, "Nanoscale Science and Technology", John Wiley, 2007.
- 2. Charles P Poole, Jr, Frank J Owens, "Introduction to Nanotechnology", John Wiley, Copyright 2006, Reprint 2011.

Reference Book:

Ed William A Goddard III, Donald W Brenner, Sergey E. Lyshevski, Gerald J Iafrate, "Hand Book of Nanoscience Engineering and Technology", CRC press, 2003.

	ASIC DESIGN		
[As per Choice	Based Credit Syste SEMESTER – I	` ,	
Subject Code	16EVE153	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS - 03	•	•
Course objectives: This course	will enable students	s to:	
Explain ASIC methodologi	es and programm	able logic cells to im	plement a
function on IC.	1 0	S	•
 Analyse back-end physical 	design flow, inclu	ding partitioning, floor	r-planning,
placement, and routing.	,	5 I 5,	1 0,
 Gain sufficient theoretical l 	nowledge for carryi	ing out FPGA and ASIC	designs.
 Design CAD algorithms a 		_	_
design.			
370 375			Revised
	Modules		Bloom's
			Taxonomy
			(RBT)Leve
			· ·
Module -1			
Introduction to ASICs, Full co	ıstom. Semi-custor	n and Programmable	L1,L2
ASICs, ASIC Design flow, ASIC of		0.101 - 1 08- 0.11110	
CMOS Logic: Datapath Logic C		ments. Adders: Carry	
skip, Carry bypass, Carry save,			
(Booth encoding), Data path Ope	,	,	
	, ,		
Module -2			
ASIC Library Design: Logical e	ffort: Predicting De	lay, Logical area and	L1-L3
logical efficiency, Logical paths	, Multi stage cells,	Optimum delay and	
number of stages.			
Programmable ASIC Logic Cell	s:		
MUX as Boolean function gener	ators, Actel ACT: A	CT 1, ACT 2 and ACT	
3 Logic Modules, Xilinx LCA: XC	3000 CLB, Altera F	LEX and MAX.	
Module -3			
Programmable ASIC I/O Cells:	Viling and Altera I/	O Blook	L1-L4
Low-level design entry: Scher			DI-D4
	nanc enny. Inerar	cilical design, Nethist	
screener. ASIC Construction: Physical De	esign CAD Tools		
Partitioning: Goals and object	O ,	Partitioning Iterative	
Partitioning Improvement, KL, F		<u> </u>	
Tartitoning improvement, KD, 1	W and book micad	argoritimis.	
Module -4			
Floor planning and placement			L1-L3
tools, Channel definition, I/O ar	1	1	
Placement: Goals and Objectives		nt algorithm, Iterative	
Placement Improvement, Physic	al Design Flow.		
			1

Module -5	
Routing: Global Routing: Goals and objectives, Global Routing Methods, Back-annotation. Detailed Routing: Goals and objectives, Measurement of Channel Density, Left-Edge and Area-Routing Algorithms. Special Routing, Circuit extraction and DRC.	L1-L3

Course outcomes:

After studying this course, students will be able to:

- Describe the concepts of ASIC design methodology, data path elements, logical effort and FPGA architectures.
- Analyze the design of FPGAs and ASICs suitable for specific tasks, perform design entry and explain the physical design flow.
- Design data path elements for ASIC cell libraries and compute optimum path delay.
- Create floor plan including partition and routing with the use of CAD algorithms.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Michael John Sebastian Smith, "Application - Specific Integrated Circuits" Addison-Wesley Professional; 2005.

- 1. Neil H.E. Weste, David Harris, and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", 3rd edition, Addison Wesley/ Pearson education, 2011.
- 2. Vikram Arkalgud Chandrasetty, "VLSI Design: A Practical Guide for FPGA and ASIC Implementations", Springer, 2011, ISBN: 978-1-4614-1119-2.
- 3. Rakesh Chadha, Bhasker J., "An ASIC Low Power Primer", Springer, ISBN: 978-1-4614-4270-7.

ГА		MPUTER ARCHITE		
[As	-	l Credit System (CB¢ EMESTER – I	CS) scheme	
Subject Code	16ELD154	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40	Exam Hours	03	
Lecture Hours				
		REDITS – 03		
Course objectives:				
	-	for parallel processi	_	
		nd flow mechanisms e performance evalua		
	_	rchitectures for sui		าต
• Bearn the adv	anceu processor a	ireffice tares for sur	table application	15
				Revised
				Bloom's
	Modul	les		Taxonomy
				(RBT) Level
Module -1				Γ
Parallel Computer				
Multiprocessors and				
Program and Network Properties, Conditions of parallelism, Data and resource Dependences, Hardware and software parallelism. (Text 1)			L2, L3, L4	
resource Dependenc	es, hardware and	software parallelish	n. (lext l)	
Module -2				
Program partitioning	O.		5 .	
flow mechanisms, C				L2, L3, L4
Demand driven m	•	-	•	
Principles of Scalabl Parallel Processing A			-	
Analysis and Approa		dup renormance La	aws, Scalability	
Allalysis allu Appioa	iches. (1ext 1)			
Module -3				
Advanced Processo	rs: Advanced pro	cessor technology,	Instruction-set	
Architectures, CISC	-	C		L1, L2, L3
Superscalar Process	ors, VLIW Archite	ectures, Pipelining,	Linear pipeline	
processor, nonlinea				
(Text 1)				
Module -4				
M1		. D		10 10 14
Mechanisms for inst	1 1	g, Dynamic instructi	<u>O</u> .	L2, L3, L4
		h prediction Arith	matic Dinalina	
Degion Committee	-	h prediction, Arith	_	
Multifunctional arith	arithmetic princi	iples, Static Arithr	_	, ,

Module -5

Multithread and Dataflow Architecture: Principles of Multithreading, Scalable and Multithreaded Architecture, Dataflow Architecture, Symmetric shared memory architecture, distributed shared memory architecture. (**Text 1 & 2**)

L1, L2, L3

Course outcomes: At the end of this course, the students will be able to:

- Understand the basic concepts for parallel processing
- Analyze program partitioning and flow mechanisms
- Apply pipelining concept for the performance evaluation
- Learn the advanced processor architectures for suitable applications

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- · Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Kai Hwang, "Advanced computer architecture", TMH. 2007.
- 2. Kai Hwang and Zu, "Scalable Parallel Computers Architecture", MGH, 2008.

- 1. M.J. Flynn, "Computer Architecture, Pipelined and Parallel Processor Design", Narosa Publishing, 2002.
- 2. D.A.Patterson, J.L.Hennessy, "Computer Architecture: A quantitative approach", Morgan Kauffmann feb,2002.

VLSI and ES LAB - 1

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER - I

Laboratory Code	16EVEL16	IA Marks	20
Number of Lecture	01Hr Tutorial (Instructions)	Exam	80
Hours/Week	+ 02 Hours Laboratory	Marks	
		Exam	03
		Hours	

CREDITS - 02

Course objectives: This course will enable students to:

- Learn Verilog Code Programming for the design of digital circuits
- Use FPGA/CPLD board and Logic Analyzer or Chipscope to verify the results
- Learn Assembly language programming for different applications using ARM-Cortex M3 Kit and Keil uVision- 4 tool.
- Learn C language programming for different applications using ARM- Cortex M3 Kit and Keil uVision-4 tool.

Wo Kit and Ken dvision-4 tool.	
Laboratory Experiments:	Revised Bloom's
	Taxonomy
1) Digital Design Experiments : Using Verilog code and any	L2,L3,L4
Compiler. Download code to FPGA/CPLD board and verify the	
output using Logic Analyzer or Chipscope	
a) Design and verify an 8 to 3 programmable priority encoder	
b) Design and verify 3-bit Arbitrary Counter and repeat the given sequence	
c) Design and Verify BCD adder and subtractor	
d) Design and verify a sequential block to generate a sequence	
(say 11101) using appropriate FSM.	
e) Design and verify 8 bit Ripple carry adder and Carry skip	
adder.	
f) Design and verify a Linear feedback shift register based on a given polynomial expression	
g) Design and verify the following 8 bit multipliers. Also report	
on area delay trade-off	
i) Serial Multiplier	
ii) Parallel Multiplier	
h) Design and verify a parameterized FIFO	
i) Design and verify register file which has 32-entry 3-ports	
having explicit address decoder. The ports are dedicated for	
read and write and will take one clock cycle for read or write	
operation	

2) **ARM Cortex M3 Programs**: (Programming to be done using Keil uVision 4 and download the program on to a M3 evaluation board such as NXP LPC1768 or ATMEL ATSAM3U)

L2,L3,L4

- a) Write an Assembly language program to calculate the sum and display the result for the addition of first ten numbers. SUM = 10+9+8+.....+1
- b) Write a Assembly language program to link multiple object files and link them together
- c) Write an Assembly language program to store data in RAM
- d) Write a C program to Output the "Hello World" message using UART
- e) Write a C program to Design a Stopwatch using interrupts

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Develop Verilog Code for the design of digital circuits
- Use FPGA/CPLD board and Logic Analyzer or Chipscope to verify the results
- Develop Assembly language programs for different applications using ARM-Cortex M3 Kit and Keil uVision-4 tool.
- Develop C language programs for different applications using ARM-Cortex M3 Kit and Keil uVision-4 tool

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- For examination, two questions using different tool to be set.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

M.Tech-VLSI & ES-2016-SECOND SEMESTER SYLLABUS

· · · · · · · · · · · · · · · · · · ·	ign of Analog and Mixed			
[As p	per Choice Based credit Sy - SEMESTER	,	cheme	
Subject Code	16EVE21	IA Marks	20	
Number of Lecture	04	Exam marks		
Hours/Week		Daam marks	00	
Total Number of	50	Exam Hours	03	
Lecture Hours	(10 Hours per Module)	Brain Hours		
2000010 110 011	CREDITS -	04		
Course Objectives	: This course will enable s			
	·			
 Describe basic 	physics and operation of M	MOS devices.		
	stage and differential amplifiers		S	
 Describe operation 		and contone minion	D	
	gn of phase-locked-loops			
_	of Data converters in an ev	er increasing d	igital warl	d
Modules	Data converters in an ev	ci-increasing u	igitai wori	и. RBT
Modules				Level
Module 1				DCVCI
	Physics: General conside	rations MOS I	/\/	L1, L2
	cond order effects, MOS de	· ·	/ V	L1, L2
Characteristics, see	cond order effects, MOS de	vice models.		
Single stere A	mulifian Pasia Canaar	ata Common	Source	
	mplifier: Basic Concep	ots. Common	SOTTICE	
otoga (Tavt II		, , , , , , , , , , , , , , , , , , , ,	Source	
stage.(Text 1)			Source	
Module 2	mlifiar Source follower			1110
Module 2 Single stage Am	aplifier: Source follower			L1,L2
Module 2 Single stage Am Cascode Stage, cho	ice of device models.	, common-gat	e stage,	L1,L2
Module 2 Single stage Am Cascode Stage, cho Differential Ampli	rice of device models. fiers: Single ended and di	r, common-gat	e stage,	L1,L2
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa	rice of device models. fiers: Single ended and dia air, Common mode respon	r, common-gat	e stage,	L1,L2
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa	rice of device models. fiers: Single ended and di	r, common-gat	e stage,	L1,L2
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi	rice of device models. fiers: Single ended and dia air, Common mode respon	r, common-gat	e stage,	L1,L2
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3	fice of device models. fiers: Single ended and disair, Common mode respondibert cell. (Text 1)	fferential opera	e stage, tion, pair	
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active	fiers: Single ended and disair, Common mode responsible to cell. (Text 1) Common Mirrors: Basic of the cell of the cell.	current mirrors	e stage, tion, pair	L1,L2
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active	fice of device models. fiers: Single ended and disair, Common mode respondibert cell. (Text 1)	current mirrors	e stage, tion, pair	
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m	fiers: Single ended and disair, Common mode respondibert cell. (Text 1) Current Mirrors: Basic of the Current mirrors, Active Current mirrors.	fferential operalse, Differential	e stage, tion, pair	
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m	fiers: Single ended and disair, Common mode respondibert cell. (Text 1) Current Mirrors: Basic current, Active Current mirrors, Active Current Common models.	fferential operates, Differential current mirrors rors.	e stage, tion, pair	
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage	fiers: Single ended and disair, Common mode respondibert cell. (Text 1) Current Mirrors: Basic of the Current mirrors, Active Current mirrors.	fferential operates, Differential current mirrors rors.	e stage, tion, pair	
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4	fiers: Single ended and disair, Common mode responsible to cell. (Text 1) Common mode responsible to the cell. (Text 1)	fferential operations, Common-gates, Differential current mirrors rors.	e stage, tion, pair	L1,L2,L3
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4 Operational Ampli	fiers: Single ended and diair, Common mode respondibert cell. (Text 1) Current Mirrors: Basic currors, Active Current mirrors, Active Current mirrors (part-1): General Code OP-Amp, Gain boosting. Cifiers (part-2): Common Martines (part-2): Common Mar	fferential operations, Common-gates, Differential current mirrors rors.	e stage, tion, pair	L1,L2,L3
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4 Operational Ampli rate, Power Supply	fiers: Single ended and disair, Common mode responsible to cell. (Text 1) Current Mirrors: Basic of the Current mirrors, Active Current mirrors, Active Current mirrors (part-1): General Code OP-Amp, Gain boosting. Cifiers (part-2): Common Marie (part	fferential operates, Differential current mirrors rors. nsiderations, C (Text 1)	e stage, tion, pair one Stage Slew	
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4 Operational Ampli rate, Power Supply Phase Locked Loo	fiers: Single ended and disair, Common mode responsible to cell. (Text 1) Common mode responsible to cell. (Text 1) Common mode responsible to cell. (Text 1) Common Mirrors: Basic of the cell of the cell. (Text 1) Common Mirrors: General Common Mirrors (part-2): Comm	fferential operations, Current mirrors rors. Insiderations, Carrent 1) Iode Feedback, 1mp PLLs, Non-	e stage, tion, pair one Stage Slew	L1,L2,L3
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4 Operational Ampli rate, Power Supply Phase Locked Loo	fiers: Single ended and disair, Common mode responsible to cell. (Text 1) Current Mirrors: Basic of the Current mirrors, Active Current mirrors, Active Current mirrors (part-1): General Code OP-Amp, Gain boosting. Cifiers (part-2): Common Marie (part	fferential operations, Current mirrors rors. Insiderations, Carrent 1) Iode Feedback, 1mp PLLs, Non-	e stage, tion, pair one Stage Slew	L1,L2,L3
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4 Operational Ampli rate, Power Supply Phase Locked Loo effects in PLLs, Del	fiers: Single ended and disair, Common mode responsible to cell. (Text 1) Common mode responsible to cell. (Text 1) Common mode responsible to cell. (Text 1) Common Mirrors: Basic of the cell of the cell. (Text 1) Common Mirrors: General Common Mirrors (part-2): Comm	fferential operations, Current mirrors rors. Insiderations, Carrent 1) Iode Feedback, 1mp PLLs, Non-	e stage, tion, pair one Stage Slew	L1,L2,L3
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4 Operational Ampli rate, Power Supply Phase Locked Loo effects in PLLs, Del	fiers: Single ended and disair, Common mode responsible to cell. (Text 1) Current Mirrors: Basic currors, Active Current mirrors, Active Current mirrors (part-1): General Coe OP-Amp, Gain boosting. Cifiers (part-2): Common Marginetic (part-2): Common Marginetic (part-2): Common Marginetic (part-2): Common Marginetic (part-2): Application.	fferential operations, Common-gates, Differential operations, Common-gates, Differential operations, Component mirrors of the component operations, Component operations, Component operations, Component operations, Component operations, Commonent operations, Common	e stage, tion, pair one Stage Slew ideal	L1,L2,L3
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4 Operational Ampli rate, Power Supply Phase Locked Loo effects in PLLs, Del Module 5 Data Converter Ar	fiers: Single ended and diair, Common mode respondibert cell. (Text 1) Current Mirrors: Basic currors, Active Current mirrors, Active Current mirrors (part-1): General Component (part-2): Common Marie (par	fferential operates, Differential current mirrors rors. nsiderations, C (Text 1) Iode Feedback, amp PLLs, Nonions. (Text 1) Specifications,	e stage, tion, pair one Stage Slew ideal Current	L1,L2,L3
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4 Operational Ampli rate, Power Supply Phase Locked Loo effects in PLLs, Del Module 5 Data Converter Ar Steering DAC, Chai	fiers: Single ended and direction of the common mode responsible to the cell. (Text 1) Common mode responsible to the cell. (Text 1) Common mode responsible to the cell. (Text 1) Common mirrors: Basic of the cell. (Text 1) Common Mirrors: Common Mirrors: Common Mirrors. (Common Mirrors) Common Mirrors. (Common Mirrors) Common Mirrors: Common Mirrors. (Common Mirrors) Common Mirrors. (Common Mirrors) Common Mirrors. (Common	fferential operations, Current mirrors rors. Insiderations, Carrent 1 Inde Feedback, Imp PLLs, Nonions. (Text 1) Specifications, AC, Pipeline DA	e stage, tion, pair One Stage Slew ideal Current C, Flash	L1,L2,L3
Module 2 Single stage Am Cascode Stage, cho Differential Ampli Basic differential pa with MOS loads, Gi Module 3 Passive and Active Cascode Current m Operational Ampli OP-Amp, Two Stage Module 4 Operational Ampli rate, Power Supply Phase Locked Loo effects in PLLs, Del Module 5 Data Converter Ar Steering DAC, Chai	fiers: Single ended and diair, Common mode respondibert cell. (Text 1) Current Mirrors: Basic currors, Active Current mirrors, Active Current mirrors (part-1): General Component (part-2): Common Marie (par	fferential operations, Current mirrors rors. Insiderations, Carrent 1 Inde Feedback, Imp PLLs, Nonions. (Text 1) Specifications, AC, Pipeline DA	e stage, tion, pair One Stage Slew ideal Current C, Flash	L1,L2,L

ADC. (Text 2)

Course Outcomes: After studying this course, students will be able to:

- Use efficient analytical tools for quantifying the behaviour of basic circuits by inspection.
- Design high-performance, stable operational amplifiers with the tradeoffs between speed, precision and power dissipation.
- Design and study the behaviour of phase-locked-loops for the applications.
- Identify the critical parameters that affect the analog and mixed-signal VLSI circuits' performance
- Perform calculations in the digital or discrete time domain, more sophisticated data converters to translate the digital data to and from inherently analog world.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", TMH, 2007.
- 2. R. Jacob Baker, "CMOS Circuit Design, Layout, and Simulation", Second Edition, Wiley.

Reference Book:

Phillip E. Allen, Douglas R. Holberg, "CMOS Analog Circuit Design", Second Edition, Oxford University Press.

VLSI Testing						
[As p	[As per Choice Based credit System (CBCS) Scheme					
	SEMESTER -	- II				
Subject Code 16EVE22 IA Marks 20						
Number of Lecture	04	Exam marks	80			
Hours/Week						
Total Number of	Exam Hours	03				
Lecture Hours (10 Hours per Module)						
	CDEDITS (74				

CREDITS – 04

Course Objectives: This course will enable students to:

- Learn various types of faults and fault modeling
- Comprehend the need for testing and testable design of digital circuits
- Illustrate methods and algorithms for testing digital combinatorial networks and test pattern generation
- Exemplify methods for testing sequential circuits and memory testing
- Inferring testing methods using Boundary scan, Built-in self test and other advanced topics in digital circuit design.

Modules	RBT
Module 1	Level
Faults in digital circuits: Failures and Faults, Modeling of faults,	L1,L2
Temporary Faults. (Text 1)	21,22
Logic Simulation: Applications, Problems in simulation based	
design verification, types of simulation, The unknown logic values,	
compiled simulation, event-driven simulation, Delay models,	
Element evaluation, Hazard detection, Gate-level event-driven	
Simulation. (Text 2)	
Module 2	
Test generation for Combinational Logic circuits: Fault Diagnosis	L1,L2,L3
of digital circuits, Test generation techniques for combinational	
circuits, Detection of multiple faults in Combinational logic circuits.	
(Text 1)	
Testable Combinational logic circuit design: The Read-Muller	
expansion technique, Three level OR-AND-OR design, Automatic	
synthesis of testable logic.(Text 1)	
Module 3	
Testable Combinational logic circuit design: Testable design of	L1,L2,L3
multilevel combinational circuits, Synthesis of random pattern	
testable combinational circuits, Path delay fault testable	
combinational logic design, Testable PLA design. (Text 1)	
Test generation for Sequential circuits: Testing of sequential	
circuits as Iterative combinational circuits, state table verification,	
Test generation based on Circuit Structure, Functional Fault	
models, test Generation based on Functional Fault models. (Text 1)	
Module 4	
Design of testable sequential circuits: Controllability and	L1,L2,L3
observability, Ad-Hoc design rules for improving testability, design of	

diagnosable sequential circuits, the scan-path technique for testable sequential circuit design, Level Sensitive Scan Design(LSSD), Random Access Scan Technique, Partial scan, testable sequential circuit design using Nonscan Techniques, Cross check, Boundary Scan. (Text 1)

Module 5

Built-In Self Test: Test pattern generation for BIST, Output response analysis, Circular BIST, BIST Architectures. (Text 1)

L1,L2,L3

Testable Memory Design: RAM Fault Models, Test algorithms for RAMs, Detection of pattern-sensitive faults, BIST techniques for RAM chips, Test generation and BIST for embedded RAMs. (Text1)

Course Outcomes: After studying this course, students will be able to:

- Analyze the need for fault modeling and testing of digital circuits
- Generate fault lists for digital circuits and compress the tests for efficiency
- Create tests for digital memories and analyze failures in them
- Apply boundary scan technique to validate the performance of digital circuits
- Design built-in self tests for complex digital circuits

Question paper pattern:

- The question paper will have 10 questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Lala Parag K., Digital Circuit Testing and Testability, New York, Academic Press, 1997.
- **2.** Abramovici M, Breuer M A and Friedman A D, "Digital Systems Testing and Testable Design", Wiley, 1994.

- 1. Vishwani D Agarwal, "Essential of Electronic Testing for Digital, Memory and Mixed Signal Circuits", Springer, 2002.
- 2. Wang, Wu and Wen, "VLSI Test Principles and Architectures", Morgan Kaufmann, 2006.

Advances in VLSI Design						
[As per Choice Based credit System (CBCS) Scheme						
	SEMESTER – II					
Subject Code 16EVE23 IA Marks 20						
Number of Lecture	04	Exam marks	80			
Hours/Week						
Total Number of	03					
Lecture Hours (10 Hours per Module)						
	CREDITS – 04					

Course Objectives: This course will enable the students to:

- Learn circuit-oriented approach towards digital design
- Illustrate the impact of interconnect wiring on the functionality and performance of a digital gate.
- Infer different approaches to digital timing and clocking circuits
- Understand the impact of clock skew on the behaviour of digital synchronous circuits
- Explain the role of peripheral circuitry such as the decoders, sense amplifiers, drivers and control circuitry in the design of reliable and fast memories

Modules	RBT Level
Module 1	
Implementation Strategies For Digital ICS: Introduction, From Custom to Semicustom and Structured Array Design Approaches, Custom Circuit Design, Cell-Based Design Methodology, Standard Cell, Compiled Cells, Macrocells, Megacells and Intellectual Property, Semi-Custom Design Flow, Array-Based Implementation Approaches, Pre-diffused (or Mask-Programmable) Arrays, Pre-wired Arrays, Perspective-The Implementation Platform of the Future.	L1,L2,L3
Module 2	T
Coping With Interconnect: Introduction, Capacitive Parasitics, Capacitance and Reliability-Cross Talk, Capacitance and Performance in CMOS, Resistive Parasitics, Resistance and Reliability-Ohmic Voltage Drop, Electromigration, Resistance and Performance-RC Delay, Inductive Parasitics, Inductance and Reliability-Voltage Drop, Inductance and Performance-Transmission Line Effects, Advanced Interconnect Techniques, Reduced-Swing Circuits, Current-Mode Transmission Techniques, Perspective: Networks-on-a-Chip.	L1,L2,L3
Module 3	T
Timing Issues In Digital Circuits: Introduction, Timing Classification of Digital Systems, Synchronous Interconnect, Mesochronous interconnect, Plesiochronous Interconnect, Asynchronous Interconnect, Synchronous Design — An In-depth Perspective, Synchronous Timing Basics, Sources of Skew and Jitter, Clock-Distribution Techniques, Latch-Based Clocking, Self-Timed Circuit Design, Self-Timed Logic - An Asynchronous	L1,L2,L3

Technique,	Completion	-Signal	Genera	ation,	Self-Time	d Sigr	ıaling,
Practical Exa	amples of Se	lf-Time	d Logic,	Synch	ronizers a	and Ar	biters,
Synchronize	rs-Concept	and	Implem	entatio	n, Arbi	ters,	Clock
Synthesis ar	nd Synchron	nization	Using	a Phas	e-Locked	Loop,	Basic
Concept, Bu	ilding Blocks	of a PI	LL.				

Module 4

Designing Memory and Array Structures: Introduction, Memory Classification, Memory Architectures and Building Blocks, The Memory Core, Read-Only Memories, Nonvolatile Read-Write Memories, Read-Write Memories (RAM), Contents-Addressable or Associative Memory (CAM), Memory Peripheral Circuitry, The Address Decoders, Sense Amplifiers, Voltage References, Drivers/Buffers, Timing and Control.

L1,L2,L3

Module 5

Designing Memory and Array Structures: Memory Reliability and Yield, Signal-to-Noise Ratio, Memory yield, Power Dissipation in Memories, Sources of Power Dissipation in Memories, Partitioning of the memory, Addressing the Active Power Dissipation, Dataretention dissipation, Case Studies in Memory Design: The Programmable Logic Array (PLA), A 4 Mbit SRAM, A 1 Gbit NAND Flash Memory, Perspective: Semiconductor Memory Trends and Evolutions.

L1,L2,L3

Course Outcomes: After studying this course, students will be able to:

- Apply design automation for complex circuits using the different implementation methodology like custom versus semi-custom, hardwired versus fixed, regular array versus ad-hoc.
- Use the approaches to minimize the impact of interconnect parasitics on performance, power dissipation and circuit reliability
- Impose the ordering of the switching events to meet the desired timing constraints using synchronous, clocked approach.
- Infer the reliability of the memory

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Jan M Rabey, Anantha Chandrakasan, Borivoje Nikolic, "Digital Integrated Circuits-A Design Perspective", PHI, 2nd Edition.

- 1. M. Smith, "Application Specific Integrated circuits", Addison Wesley, 1997
- 2. H. Veendrick, "MOS IC's: From Basics to ASICs, Wiley-VCH, 1992.
- **3.** Anantha P. Chandrakasan, Robert W. Brodersen, "Low Power Digital CMOS Design", Kluwer Academic Publisher, 1995.

Real Time Operating System					
[As	[As per Choice Based credit System (CBCS) Scheme				
	SEMESTER -	- II			
Subject Code 16EVE24 IA Marks 20					
Number of Lecture	04	Exam marks	80		
Hours/Week					
Total Number of	50	Exam Hours	03		
Lecture Hours (10 Hours per Module)					
CREDITS – 04					

Course Objectives: This course will enable the students to:

- Introduce the fundamental concepts of Real Time Operating Systems and the real time embedded system
- Apply concepts relating to operating systems such as Scheduling techniques, Thread Safe Reentrant Functions, Dynamic priority policies.
- Describe concepts related to Multi resource services like blocking, Deadlock, live lock & soft real-time services.
- Discuss Memory management concepts, Embedded system components, Debugging components and file system components.
- Study programs for multithreaded applications using suitable data structures.

Modules	RBT Level
Module 1	
Real-Time Systems and Resources: Brief history of Real Time Systems, A brief history of Embedded Systems. System Resources,	L1,L2,L3
Resource Analysis, Real-Time Service Utility, Scheduler concepts, Real-Time OS, State transition diagram and tables, Thread Safe Reentrant Functions. (Text 1: Selected sections from Chap. 1, 2)	
Module 2	
Processing with Real Time Scheduling: Scheduler Concepts, Preemptive Fixed Priority Scheduling Policies with timing diagrams and problems and issues, Feasibility, Rate Monotonic least upper bound, Necessary and Sufficient feasibility, Deadline –Monotonic Policy, Dynamic priority policies, Alternative to RM policy. (Text 1: Chap. 2,3,7)	L1,L2,L3
Module 3	
Memory and I/O : Worst case execution time, Intermediate I/O, Shared Memory, ECC Memory, Flash file systems. Multi-resource Services, Blocking, Deadlock and live lock, Critical sections to protect shared resources, Missed deadline, QoS, Reliability and Availability, Similarities and differences, Reliable software, Available software. (Text 1: Selected topics from Chap. 4,5,6,7,11)	L1,L2,L3
Module 4	
Firmware Components: The 3 firmware components, RTOS system software mechanisms, Software application components. Debugging	L1,L2,L3

Components, Exceptions, assert, Checking return codes, Single-	
step debugging, kernel scheduler traces, Test access ports, Trace	
Ports, External test equipment. (Text 1: Selected topics from Chap.	
8,9)	

Module 5

Process and Threads: Process and thread creations, Simple Programs, Programs related to semaphores, message queue, shared buffer applications involving inter task/thread communication using multiple threads. (Text 2: Chap. 11)

L1,L2,L3

Course Outcomes: After studying this course, students will be able to:

- Develop programs for real time services, firmware and RTOS, using the fundamentals of Real Time Embedded System, real time service utilities, debugging methodologies and optimization techniques.
- Select the appropriate system resources (CPU, I/O, Memory, Cache, ECC Memory, Microcontroller/FPGA/ASIC to improve the system performance.
- Apply priority based static and dynamic real time scheduling techniques for the given specifications.
- Analyze deadlock conditions, shared memory problem, critical section problem, missed deadlines, availability, reliability and QoS.
- Develop programs for multithreaded applications using suitable techniques and data structure

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Sam Siewert, "Real-Time Embedded Systems and Components", Cengage Learning India Edition, 2007.
- 2. Dr. K.V.K.K Prasad, Embedded/Real Time Systems, Concepts, Design and Programming, Black Book, Dream Tech Press, New edition, 2010.

- 1. James W S Liu, "Real Time System", Pearson education, 2008.
- 2. Dream Tech Software Team, "Programming for Embedded Systems", John Wiley, India Pvt. Ltd., 2008.

System Verilog [As per Choice Based credit System (CBCS) Scheme SEMESTER – II					
Subject Code	16EVE251	IA Marks	20		
Number of Lecture Hours/Week	03	Exam marks	80		
Total Number of	40	Exam	03		
Lecture Hours	(8 Hours per Module)	Hours			
CREDITS = 03					

Course Objectives: This course will enable students to:

- Understand digital system verification using object oriented methods
- Learn the System Verilog language for digital system verification.
- Create/build test benches for the basic design/methodology.
- Use constrained random tests for verification
- Understand concepts of functional coverage

Modules	RBT		
BF - d1 - 4	Level		
Module 1			
Verification Guidelines:	L1, L2		
The verification process, basic test bench functionality, directed			
testing, methodology basics, constrained random stimulus,			
randomization, functional coverage, test bench components.			
Data Types:			
Built in Data types, fixed and dynamic arrays, Queues, associative			
arrays, linked lists, array methods, choosing a storage type, creating			
new types with type def, creating user defined structures, type			
conversion, Enumerated types, constants and strings, Expression			
width.			
Module 2	1		
Procedural Statements and Routines:	L1,L2,L3		
Procedural statements, Tasks, Functions and void functions, Task			
and function overview, Routine arguments, returning from a routine,			
Local data storage, time values.			
Converting the test bench and design:			
Separating the test bench and design, The interface construct,			
Stimulus timing, Interface driving and sampling, System Verilog			
assertions.			
Module 3			
Randomization:	L1,L2,L3		
Introduction, Randomization in System Verilog, Constraint details,			
Solution probabilities, Valid constraints, In-line constraints,			
Random number functions, Common randomization problems,			
Iterative and array constraints, Random control.			
Module 4			
Threads and Interprocess Communication:	L1,L2,L3		
Working with threads, Disabling threads, Interprocess			

communication, Events, semaphores, Mailboxes, Building a test	
bench with threads and Interprocess Communication.	
Module 5	
Functional Coverage:	I

Coverage types, Coverage strategies, Simple coverage example, Anatomy of Cover group and Triggering a Cover group, Data sampling, Cross coverage, Generic Cover groups, Coverage options, Analyzing coverage data, measuring coverage statistics during simulation.

L1,L2,L3

Course Outcomes: After studying this course, students will be able to:

- Write test benches for moderately complex digital circuits
- Use System Verilog language
- Appreciate functional coverage
- Apply constrained random tests benches using System Verilog
- Analyze a verification case and apply System Verilog to verify the design

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Chris Spear, 'System Verilog for Verification – A guide to learning the Test bench language features', Springer Publications, 2nd Edition, 2010.

Reference Book:

Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog for Design-A guide to using system verilog for Hardware design and modeling", Springer Pulications, 2nd Edition, 2006.

VLSI Design for Signal Processing [As per Choice Based credit System (CBCS) Scheme SEMESTER - II Subject Code 16EVE252 IA Marks 20 Number of Lecture 03 Exam 80 Hours/Week marks 40 Total Number of 03 Exam Lecture Hours (8 Hours per Module) Hours CREDITS - 03

Course Objectives: This course will enable students to:

- Learn several high-level architectural transformations that can be used to design families of architectures for a given algorithm.
- Deal with high-level algorithm transformations such as strength reduction, look-ahead and relaxed look-ahead.

Modules	RBT Level
Module 1	
Introduction to DSP Systems: Typical DSP Algorithms, DSP	L1, L2
Application Demands and Scaled CMOS Technologies,	
Representations of DSP Algorithms.	
Iteration Bounds: Data flow graph Representations, loop bound and	
Iteration bound.	
Module 2	
Iteration Bounds: Algorithms for Computing Iteration Bound, Iteration Bound of multi rate data flow graphs.	L1,L2,L3
Pipelining and Parallel Processing: pipelining of FIR Digital Filters, parallel processing, Pipelining and parallel processing for low power.	
Module 3	
Retiming: Definition and Properties, Solving Systems of Inequalities,	L1,L2,L3
Retiming Techniques,	
Unfolding : An Algorithm for Unfolding, Properties of Unfolding, Critical path, Unfolding and Retiming, Application of Unfolding.	
Systolic Architecture Design: systolic array design Methodology,	
FIR systolic array.	
Module 4	l
Systolic Architecture Design: Selection of Scheduling Vector,	L1,L2,L3
Matrix-Matrix Multiplication and 2D systolic Array Design, Systolic	
Design for space representation containing Delays.	
Fast convolution: Cook-Toom Algorithm, Winograd Algorithm,	
Iterated convolution, cyclic convolution Design of fast convolution	
Algorithm by Inspection.	
Module 5	•
Pipelined and Parallel Recursive and Adaptive Filter: Pipeline	L1,L2,L3
Interleaving in Digital Filter, first order IIR digital Filter, Higher order	
IIR digital Filter, parallel processing for IIR filter, Combined	
pipelining and parallel processing for IIR Filter, Low power IIR Filter	
Design Using Pipelining and parallel processing, pipelined adaptive	

digital filter.

Course Outcomes: After studying this course, students will be able to:

- Illustrate the use of various DSP algorithms and addresses their representation using block diagrams, signal flow graphs and data-flow graphs
- Use pipelining and parallel processing in design of high-speed /low-power applications
- Apply unfolding in the design of parallel architecture
- Evaluate the use of look-ahead techniques in parallel and pipelined IIR Digital filters.
- Develop an algorithm or architecture or circuit design for DSP applications

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Keshab K.Parthi, "VLSI Digital Signal Processing systems, Design and implementation ", Wiley 1999.

- 1. Mohammed Isamail and Terri Fiez, "Analog VLSI Signal and Information Processing", Mc Graw-Hill, 1994.
- 2. S.Y. Kung, H.J. White House, T. Kailath, "VLSI and Modern Signal Processing", Prentice Hall, 1985.
- 3. Jose E. France, Yannis Tsividis, "Design of Analog Digital VLSI Circuits for Telecommunication and Signal Processing", Prentice Hall, 1994.
- **4.** Lars Wanhammar, "DSP Integrated Circuits", Academic Press Series in Engineering, 1st Edition.

Micro Electro Mechanical Systems				
[As p	[As per Choice Based credit System (CBCS) Scheme			
SEMESTER – II				
Subject Code	16ELD253	IA Marks	20	
Number of Lecture	04	Exam marks	80	
Hours/Week				
Total Number of	40	Exam Hours	03	
Lecture Hours	(08 Hours per Module)			
CREDITS – 03				

Course Objectives: This course will enable students to:

- Know an overview of microsystems, their fabrication and application areas.
- Teach working principles of several MEMS devices.
- Develop mathematical and analytical models of MEMS devices
- Know methods to fabricate MEMS devices
- Expose the students to various application areas where MEMS devices can be used.

Modules	RBT
	Level
Module 1	
Overview of MEMS and Microsystems:	L1, L2
MEMS and Microsystem, Typical MEMS and Microsystems Products,	
Evolution of Microfabrication, Microsystems and Microelectronics,	
Multidisciplinary Nature of Microsystems, Miniaturization.	
Applications and Markets.	
Module 2	
Working Principles of Microsystems:	L1, L2
Introduction, Microsensors, Microactuation, MEMS with	
Microactuators, Microaccelerometers, Microfluidics.	
Engineering Science for Microsystems Design and Fabrication:	
Introduction, Atomic Structure of Matters, Ions and Ionization,	
Molecular Theory of Matter and Inter-molecular Forces, Doping of	
Semiconductors, The Diffusion Process, Plasma Physics,	
Electrochemistry.	
Module 3	
Engineering Mechanics for Microsystems Design:	L1,L2,L3
Introduction, Static Bending of Thin Plates, Mechanical Vibration,	
Thermomechanics, Fracture Mechanics, Thin Film Mechanics,	
Overview on Finite Element Stress Analysis.	
Module 4	
Scaling Laws in Miniaturization:	L1,L2,L3
Introduction, Scaling in Geometry, Scaling in Rigid-Body Dynamics,	
Scaling in Electrostatic Forces, Scaling of Electromagnetic Forces,	
Scaling in Electricity, Scaling in Fluid Mechanics, Scaling in Heat	
Transfer.	

Module 5 Overview of Micro-manufacturing: Introduction, Bulk Micro-manufacturing, Surface Micromachining, The LIGA Process, Summary on Micro-manufacturing. Microsystem Design: Introduction, Design Considerations, Process Design, Mechanical Design, Using Finite Element Method.

Course Outcomes: After studying this course, students will be able to:

- Appreciate the technologies related to Micro Electro Mechanical Systems.
- Understand design and fabrication processes involved with MEMS devices.
- Analyse the MEMS devices and develop suitable mathematical models
- Know various application areas for MEMS devices

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Tai-Ran Hsu, MEMS and Micro systems: Design, Manufacture and Nanoscale Engineering, 2nd Ed, Wiley.

- 1. Hans H. Gatzen, Volker Saile, Jurg Leuthold, Micro and Nano Fabrication: Tools and Processes, Springer, 2015.
- **2.** Dilip Kumar Bhattacharya, Brajesh Kumar Kaushik, Micro electromechanical Systems (MEMS), Cenage Learning.

SoC Design			
[As p	[As per Choice Based credit System (CBCS) Scheme		
	SEMESTER – II		
Subject Code	16EVE254	IA Marks	20
Number of Lecture	03	Exam	80
Hours/Week		marks	
Total Number of	40	Exam	03
Lecture Hours	(8 Hours per Module)	Hours	
CREDITS – 03			

Course Objectives: This course will enable students to:

- Describe the ARM processor architecture and user-level assembly language programming
- Appreciate what a high-level language (in this case, C) really needs and how those needs are met by the ARM instruction set.
- raises the issues involved in debugging systems which use embedded processor cores and in the production testing of board-level systems.
- Learn the concept of memory hierarchy, discussing the principles of memory management and caches.

Modules	RBT
	Level
Module 1	
ARM Organization and Implementation:3-stage pipeline ARM	L1,L2
organization, 5-stage pipeline ARM organization, ARM instruction	
execution, ARM implementation, The ARM coprocessor interface.	
The ARM Instruction Set : Introduction, Exceptions, Conditional	
execution, Branch and Branch with Link (B, BL), Branch, Branch	
with Link and eXchange (BX, BLX),Software Interrupt (SWI),Data	
processing instructions, Multiply instructions, Count leading zeros	
(CLZ - architecture v5T only), Single word and unsigned byte data	
transfer instruction, Half-word and signed byte data transfer	
instructions ,Multiple register transfer instructions, Swap memory	
and register instructions (SWP), Status register to general register	
transfer instructions, General register to status register transfer	
instructions, Coprocessor instructions, Coprocessor data operations,	
Coprocessor data transfers, Coprocessor register transfers,	
Breakpoint instruction (BRK - architecture v5T only), Unused	
instruction space, Memory faults, ARM architecture variants.	
Module 2	
Architectural Support for High-Level Languages: Abstraction in	L1,L2
software design, Data types, Floating-point data types, The ARM	
floating-point architecture, Expressions, Conditional statements,	
Loops, Functions and procedures, Use of memory, Run-time	
environment.	
Architectural Support for System Development: The ARM	
memory interface, The Advanced Microcontroller Bus Architecture	
(AMBA), The ARM reference peripheral specification, Hardware	
system prototyping tools, The ARMulator, The JTAG boundary scan	
test architecture, The ARM debug architecture, Embedded Trace,	

Signal processing support.	
Module 3	
ARM Processor Cores: ARM7TDMI, ARM8,ARM9TDMI, ARM10TDMI	L1,L2
,Discussion ,Example and exercises.	
Memory Hierarchy: Memory size and speed, On-chip memory,	
Caches, Cache design - an example, Memory management,	
Examples and exercises.	
Module 4	
Architectural Support for Operating Systems: An introduction to	L1,L2
operating systems, The ARM system control coprocessor, CP15	
protection unit registers, ARM protection unit, CP15 MMU registers,	
ARM MMU architecture, Synchronization, Context switching, Input/	
Output, Example and exercises.	
ARM CPU Cores: The ARM710T, ARM720T and	
ARM740T, The ARM810,The Strong ARM SA-110,The ARM920T and	
ARM940T,The ARM946E-S and ARM966E-S,The	
ARM1020E, Discussion, Example and exercises.	
Module 5	
Embedded ARM Applications: The VLSI Ruby II Advanced	L1,L2,L3
Communication Processor, The VLSI ISDN Subscriber Processor,	
The One C™ VWS22100 GSM chip, The Ericsson-VLSI Bluetooth	
Baseband Controller, The ARM7500 and ARM7500FE, The	
ARM7100 364,The SA-1100 368,Examples and exercises.	
The AMULET Asynchronous ARM Processors: Self-timed design	
375,AMULET1	
387,The DRACO telecommunications controller 390, A self-timed	
future? 396,Example and exercises.	

Course Outcomes: After studying this course, students will be able to:

- Apply the 3- and 5-stage pipeline ARM processor cores and analyse the implementation issues.
- Use the concepts and methodologies employed in designing a System-on-chip (SoC) based around a microprocessor core and in designing the microprocessor core itself.
- Understand how SoCs and microprocessors are designed and used, and why a modern processor is designed the way that it is.
- Use integrated ARM CPU cores (including StrongARM) that incorporate full support for memory management.
- Analyze the requirements of a modern operating system and use the ARM architecture to address the same.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Steve Furber, "ARM System-On-Chip Architecture", Addison Wesley, 2nd edition.

- 1. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2nd edn, Newnes, (Elsevier), 2010.
- 2. Sudeep Pasricha and Nikil Dutt, "On-Chip Communication Architectures: System on Chip Interconnect", Morgan Kaufmann, Publishers © 2008.
- 3. Michael Keating, Pierre Bricaud, "Reuse Methodology Manual for System on Chip designs", Kluwer Accademic Publishers, 2nd edition, 2008.

VLSI and ES Lab-2 [As per Choice Based Credit System (CBCS) scheme] SEMESTER – II			
Laboratory Code	16EVEL26	IA Marks	20
Number of Lecture Hours/Week	03	Exam marks	80
Total Number of	01Hr Tutorial (Instructions) +	Exam	03
Lecture Hours	02 Hours Laboratory	Hours	
CREDITS – 02			

Course objectives: This laboratory course enables students to:

- Learn the CAD tool and the flow of the Full Custom IC design cycle.
- Learn running DRC, LVS and Parasitic Extraction of the various designs.
- Create various components like inverter, differential amplifier and use the same in the design of operational amplifier, R-2R based DAC and ADC.
- Understand the suitability of different techniques of IPC and task switching in a multithreaded application.
- Study and implement different types of data structures required to implement inter task communication.

• Implement Inter task communication using an appropriate data structure.

Post A. Possissonts to be done using an appropriate data	
Part – A: Experiments to be done using	RBT
CADENCE/SYNOPSIS/MENTOR GRAPHICS/TANNER Tool	Level
1. Design an Inverter with given specifications*, completing the	L3
design flow mentioned below:	
a. Draw the schematic and verify the following	
i) DC Analysis	
ii) Transient Analysis	
b. Draw the Layout and verify the DRC, ERC	
c. Check for XX	
d. Extract RC and back annotate the same and verify the	
Design	
e. Verify & Optimize for Time, Power and Area to the given	
constraint***	
(Following specification may be used to design an Inverter in gpdk	
180nm technology with minimum area:	
i. Maximum output rise time=100ps	
ii. Maximum output fall time=100ps	
iii. P _{avg} ≤15μw	
iv. Load capacitance= 50fF	
v. Input rise time=200ps	
vi. Input fall time=200ps	
Choose maximum frequency based on the power)	
Design the following circuits with given specifications*, completing	L3
the design flow mentioned below:	
a. Draw the schematic and verify the following	
i) DC Analysis	
ii) AC Analysis	
iii) Transient Analysis	

- b. Draw the Layout and verify the DRC, ERC, LVS
- c. Check for XX
- d. Extract RC and back annotate the same and verify the Design.
- 2. i) A Single Stage differential amplifier
 - ii) Common source amplifier
- 3. Design an op-amp with given specification* using given differential amplifier Common source amplifier in library**
- 4. Design a 4 bit R-2R based DAC for the given specification**
- 5. Design an Integrator and Differentiator using OPAMP (First Order)
- 6. Design and characterize a basic Sigma delta ADC from the available designs.
- 7. Design a simple NAND/NOR gate using any one of the tools given above.

(Any other experiments may be added in supportive of the course) * Appropriate specification should be given.

- ** Applicable Library should be added & information should be given to the Designer.
- *** An appropriate constraint should be given

Part - B: Experiments to be done using Linux

- 1. Develop and test programs to (a) create child process and display it's id and (b) Execute child process function using switch structure
- 2. Develop and test program for a multithreaded application, where communication is through a buffer for the conversion of lowercase text to uppercase text, using semaphore concept.
- 3. Develop and test program for a multithreaded application, where communication is through shared memory for the conversion of lowercase text to uppercase text.
- 4. Develop program for inter-thread communication using message queue. Data is to be input from the keyboard for the chosen application.
- 5. Create 'n' number of child threads. Each thread prints the message "I'm in thread number ..." and sleeps for 50 ms and then quits. The main thread waits for complete execution of all the child threads and then quits. Compile and execute in Linux.
- 6. Implement the multi-thread application satisfying the following :
- i. Two child threads are created with normal priority.
- ii. Thread 1 receives and prints its priority and sleeps for 50ms and then guits.
- iii. Thread 2 prints the priority of the thread 1 and rises its priority to above normal and retrieves the new priority of thread 1, prints it and then quits.
- iv. The main thread waits for the child thread to complete its job and

L3

quits.

7. Implement the usage of anonymous pipe with 512 bytes for data sharing between parent and child processes using handle inheritance mechanism

Course outcomes: This laboratory course enable the students to:

- Design Analog, digital and mixed mode circuits
- Learn the various issues in Mixed signal designs basically data converters.
- Acquire hands-on skills of using CAD tools in VLSI design.
- Appreciate the design process in VLSI through a mini-project on the design of a CMOS sub-system.
- Select a suitable task switching technique in a multithreaded application.
- Implement different techniques of message passing and Inter task communication.
- Implement different data structures such as pipes, queues and buffers in multithreaded programming.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- For examination, one experiment from Part-A and One experiment from Part-B is to be set.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the Procedure part to be made zero.

Reference Book: (for some of the Part-B programs)

Dreamtech Software Team, "Programming for Embedded Systems", John Wiley, India Pvt. Ltd., 2008.

M.Tech-VLSI & ES-2016-FOURTH SEMESTER SYLLABUS

Synthesis and Optimization of Digital Circuits			
[As per Choice Based credit System (CBCS) Scheme			
SEMESTER – IV			
Subject Code	16ELD41	IA Marks	20
Number of Lecture	04	Exam	80
Hours/Week		marks	
Total Number of	50	Exam	03
Lecture Hours	(10 Hours per Module)	Hours	
CREDITS _ 04			

CREDITS - 04

Course Objectives: This course will enable students:

- Understand the need for optimization and dimensions of optimization for digital circuits.
- Understand basic optimization techniques used in circuits design
- Understand advanced tools and techniques in digital systems design including Hardware Modeling and Compilation Techniques.
- Explain details of Logic-Level synthesis and optimization techniques for combinational and sequential circuits.

• Explain the concept of scheduling and resource binding for optimization.

Modules	RBT
	Level
Module 1	T
Introduction to Synthesis and optimization: Design of	
Microelectronics circuits, Computer aided Synthesis and	
Optimization.	L1, L2,
Hardware Modeling: HDLs for Synthesis, Abstract models,	L3
Compilation and Behavioral Optimization.	
(Text1: Topics from Chap. 1,3)	
Module 2	T
Graph theory for CAD for VLSI: Graphs, Combinatorial	L1, L2,
Optimization, Graph Optimization problems and Algorithms,	L3
Boolean Algebra and Applications.	
Architectural Synthesis and Optimization: Fundamental	
Architectural Synthesis problems, Area and Performance	
Estimation, Strategies for Architectural Optimization, Data path	
Synthesis, Control Path Synthesis.(Text1: Topics From Chap. 2,4)	
Module 3	
Two level Combinational Logic Optimization: Introduction, Logic	
Optimizations, Operations on Two level Logic Covers, Algorithms for	L1, L2,
Logic Minimization, Symbolic Minimization and Encoding Problems.	L3
Multiple Level Combinational Logic Optimization: Introduction,	
Models and Transformations for Combinational Networks, The	
Algebraic Model, The Boolean Model. (Text1: Chap. 7, 8)	
Module 4	
Sequential Logic Optimization:	
Introduction, Sequential Logic Optimization using State based	L1, L2,
Models, Sequential Logic Optimization using Network Models,	L3
Implicit FSM Traversal Methods, Testability concerns for	

Synchronous Circuits. (Text 1: Chap. 9)	
Module 5	
Scheduling Algorithms: Introduction, A Model for Scheduling	
problems, Scheduling with Resource Constraints, Scheduling	L1, L2,
without Resource Constraints, Scheduling Algorithms for Extended	L3
Sequencing Models, Scheduling Pipelined Circuits.	
Resource Sharing and Binding: Sharing and Binding for	
Resource dominated circuits, Sharing and Binding for General	
Circuits, Concurrent Binding and Scheduling, Resource sharing	
and Binding for Non – Scheduled Sequencing Graphs.	
(Text1: Chap. 5,6)	

Course Outcomes: After studying this course, students will be able to:

- Understand the process of synthesis and optimization in a top down approach for digital circuits models using HDLs.
- Understand the terminologies of graph theory and its algorithms to optimize a Boolean equation.
- Apply different two level and multilevel optimization algorithms for combinational circuits
- Apply the different sequential circuit optimization methods using state models and network models.
- Apply different scheduling algorithms with resource binding and without resource binding for pipelined sequential circuits and extended sequencing models.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", Tata McGraw-Hill, 2003.

Reference Book:

Edwars M.D., Automatic Logic synthesis Techniques for Digital Systems, Macmillan New Electronic Series, 1992.

CMOS RF Circuit Design [As per Choice Based credit System (CBCS) Scheme SEMESTER - IV Subject Code 16EVE421 IA Marks 20 Number of Lecture 03 Exam 80 Hours/Week marks Total Number of 40 Exam 03 Lecture Hours Hours (8 Hours per Module)

CREDITS - 03

Course Objectives: This course will enable students to:

- Learn basic concepts in RF and microwave design emphasising the effects of nonlinearity and noise.
- Appreciate communication system, multiple access and wireless standards necessary for RF circuit design.
- Deal with transceiver architecture, various receiver and transmitter designs, their merits and demerits
- Understand the design of RF building blocks such as Low Noise Amplifiers and Mixers

Modules	RBT
	Level
Module 1	
Introduction to RF Design and Wireless Technology:	L1,L2,L3
Basic concepts in RF design(I): General considerations, Effects of	
Nonlinearity, Noise, Sensitivity and dynamic range	
Module 2	.]
Basic concepts in RF design (II): Passive impedance	L1,L2,L3
transformation, scattering parameters, analysis of nonlinear	
dynamic systems	
Module 3	
Communication Concepts: General concepts, analog modulation,	L1,L2,L3
digital modulation, spectral re-growth, Mobile RF communications,	
Multiple access techniques, Wireless standards	
Module 4	
Transceiver Architecture (I): General considerations, Receiver	L1,L2,L3
architecture,	
Module 5	
Transceiver Architecture (II): Transmitter architectures	L1,L2,L3
Low Noise Amplifiers: LNA topologies: common-source stage with	
inductive load, common-source stage with resistive feedback.	
Mixers: General considerations, passive down conversion mixers.	

Course Outcomes: After studying this course, students will be able to:

- 1. Analyse the effect of nonlinearity and noise in RF and microwave design.
- 2. Exemplify the approaches taken in actual RF products.
- 3. Minimize the number of off-chip components required to design mixers and Low-Noise Amplifiers.
- 4. Explain various receivers and transmitter topologies with their merits and

drawbacks.

5. Demonstrate how the system requirements define the parameters of the circuits and how the performance of each circuit impacts that of the overall transceiver.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

B. Razavi, "**RF Microelectronics**", PHI, second edition.

- 1. R. Jacob Baker, H.W. Li, D.E. Boyce "CMOS Circuit Design, layout and Simulation", PHI 1998.
- 2. Thomas H. Lee "**Design of CMOS RF Integrated Circuits**" Cambridge University press 1998.
- 3. Y.P. Tsividis, "Mixed Analog and Digital Devices and Technology", TMH 1996

Advances in Image Processing [As per Choice Based credit System (CBCS) Scheme SEMESTER - IV Subject Code 16ECS422 IA Marks 20 Number of Lecture 80 03 Exam Hours/Week marks Total Number of 40 Exam 03 Lecture Hours (8 Hours per Module) Hours CREDITS - 03

Course Objectives: This course will enable students to:

- Acquire fundamental knowledge in understanding the representation of the digital image and its properties
- Equip with some pre-processing techniques required to enhance the image for further analysis purpose.
- Select the region of interest in the image using segmentation techniques.
- Represent the image based on its shape and edge information.
- Describe the objects present in the image based on its properties and structure.

Modules	RBT Level
Module 1	
The image, its representations and properties: Image representations a few concepts, Image digitization, Digital image properties, Color images.	L1
Module 2	
Image Pre-processing: Pixel brightness transformations, geometric transformations, local pre-processing.	L1, L2
Module 3	
Segmentation: Thresholding; Edge-based segmentation – Edge image thresholding, Edge relaxation, Border tracing, Hough transforms; Region – based segmentation – Region merging, Region splitting, Splitting and merging, Watershed segmentation, Region growing post-processing.	L1, L2, L3
Module 4	
Shape representation and description: Region identification; Contour-based shape representation and description – Chain codes, Simple geometric border representation, Fourier transforms of boundaries, Boundary description using segment sequences, B-spline representation; Region-based shape representation and description – Simple scalar region descriptors, Moments, Convex hull.	L1, L2, L3
Module 5	
Mathematical Morphology: Basic morphological concepts, Four morphological principles, Binary dilation and erosion, Skeletons and object marking, Morphological segmentations and watersheds.	L1, L2, L3

Course Outcomes: After studying this course, students will be able to:

- Understand the representation of the digital image and its properties
- Apply pre-processing techniques required to enhance the image for its further analysis.

- Use segmentation techniques to select the region of interest in the image for analysis
- Represent the image based on its shape and edge information.
- Describe the objects present in the image based on its properties and structure.
- Use morphological operations to simplify images, and quantify and preserve the main shape characteristics of the objects.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision", Cengage Learning, 2013, ISBN: 978-81-315-1883-0

- 1. Geoff Doughertry, Digital Image Processing for Medical Applications, Cambridge university Press, 2010
- 2. S.Jayaraman, S Esakkirajan, T.Veerakumar, Digital Image Processing, Tata McGraw Hill, 2011

<u>High Speed VLSI Design</u> [As per Choice Based credit System (CBCS) Scheme					
SEMESTER – IV					
Subject Code	16EVE423	IA Marks	20		
Number of Lecture Hours/Week	03	Exam marks	80		
Total Number of	40	Exam	03		
Lecture Hours	(8 Hours per Module)	Hours			
CREDITS – 03					

Course Objectives: This course will enable students to:

- Learn sources of process driven performance variation in quarter-micron CMOS and apply the rules of thumb.
- Comprehend non-clocked static circuit families, used to implement combinatorial logic.
- Interpret the design styles used for clocked and non-clocked systems.
- Explore the design parameters such as on-chip device length tolerance, supply rail inconsistency and temperature variations.

Modules	RBT	
	Level	
Module 1		
Process Variability: Introduction, Front-end -of-line variability considerations, charge loss mechanisms, back-end-of-line		
variability considerations.		
Module 2		
Non-Clocked logic styles: Introduction, static CMOS structures,	L1, L2,L3	
DC VS logic, Non-clocked pass-gate families.		
Clocked logic styles : Introduction, single-rail domino logic styles.		
Dual-rail domino structures, latched domino structures, clocked-		
pass gate logic.		
Module 3		
Circuit Design margin and design variability:		
Introduction, process induced variation, design induced variations, and application induced variations', Noise.		
Latching Strategies: Introduction, basic latch design, latching		
single ended logic, latching differential logic, race-free latched for pre-charge logic.		
Module 4	L1, L2,L3	
Interface Techniques:		
Introduction, signaling standard, chip-chip communication		
networks, ESD protection, Driver design techniques, receiver design		
techniques.		
Module 5		
Clocking styles: Introduction, clock jitter and skew, clock	L1, L2,L3	

generation and clock distribution.

Course Outcomes: After studying this course, students will be able to:

- 1. Accomplish their goal in achieving the trade offs in performance, power, area, reliability and cost by the selection of design styles.
- 2. Analyse strengths and weakness of non-clocked static circuit families in terms of characteristics.
- 3. Differentiate the styles used for clocked and non-clocked circuit families.
- 4. Interpret the performance considerations to enable high speed communication; by choosing the input and output convention compatible with signal levels required for the design.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Kerry Bernstein & et. Al., "High Speed CMOS Design Styles", Kluwer, 1999.

- 1. Howard Johnson & Martin Graham, "High Speed Digital Design" A Handbook of Black Magic, Prentice Hall PTR, 1993.
- 2. William S. Dally & John W. Poulton, "Digital Systems Engineering", Cambridge University Press, 1998.
- 3. Masakazu Shoji, **"High Speed Digital Circuits"**, Addison Wesley Publishing Company, 1996.

Reconfigurable Computing [As per Choice Based credit System (CBCS) Scheme SEMESTER - IV IA Marks Subject Code 16ELD424 20 Number of Lecture 03 Exam 80 Hours/Week marks 40 Total Number of 03 Exam (8 Hours per Module) Lecture Hours Hours

CREDITS - 03

Course Objectives: The aim of this course is to enable the students to

- Acquire fundamental knowledge and understanding of principles and practice in reconfigurable architecture.
- Understand the FPGA design principles, and logic synthesis.
- Integrate hardware and software technologies for reconfiguration computing focusing on partial reconfiguration design.
- Focus on different domains of applications on reconfigurable computing.

Modules	RBT
Module 1	Level
Introduction: History, Reconfigurable Vs Processor based system,	LI, L2
RC Architecture. Reconfigurable Logic Devices : Field	,
Programmable Gate Array, Coarse Grained Reconfigurable Arrays.	
Reconfigurable Computing System: Parallel Processing on	
Reconfigurable Computers, A survey of Reconfigurable Computing	
System. (Text 1)	
Module 2	
Languages and Compilation: Design Cycle, Languages, HDL, High	L1,L2
Level Compilation, Low level Design flow, Debugging Reconfigurable	
Computing Applications. (Text 1)	
Module 3	
Implementation: Integration, FPGA Design flow, Logic Synthesis.	L1, L2,
High Level Synthesis for Reconfigurable Devices: Modelling,	L3
Temporal Partitioning Algorithms. (Text 2)	
Module 4	
Partial Reconfiguration Design: Partial Reconfiguration Design,	L1,L2
Bitstream Manipulation with JBits, The modular Design flow, The	
Early Access Design Flow, Creating Partially Reconfigurable	
Designs, Partial Reconfiguration using Hansel-C Designs, Platform	
Design. (Text 2)	
Module 5	
Signal Processing Applications: Reconfigurable computing for	L1, L2,
DSP, DSP application building blocks, Examples: Beamforming,	L3
Software Radio, Image and video processing, Local Neighbourhood	
functions, Convolution. (Text 1)	
System on a Programmable Chip: Introduction to SoPC, Adaptive	
Multiprocessing on Chip. (Text 2)	
Course Outcomes: After studying this course, students will be able to	·•

Course Outcomes::After studying this course, students will be able to:

- Simulate and synthesize the reconfigurable computing architectures.
- Use the reconfigurable architectures for the design of a digital system.

• Design of digital systems for a variety of applications on signal processing and system on chip configurations.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. M. Gokhale and P. Graham, "Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays", Springer, 2005.
- 2. C. Bobda, "Introduction to Reconfigurable Computing: Architectures, Algorithms and Applications", Springer, 2007.

- 1. D. Pellerin and S. Thibault, "Practical FPGA Programming in C", Prentice-Hall, 2005.
- 2. W. Wolf, "FPGA Based System Design", Prentice-Hall, 2004.
- 3. R. Cofer and B. Harding, "Rapid System Prototyping with FPGAs: Accelerating the Design Process", Newnes, 2005.