```
/. First, set the left boundary, left, to be / set the right boundary, right, to be / start search.
 Start search

| if left = right = |
| Search (left, right): | if A[]=|
| return |, the index is found
| else | if A[left] = left | the index | search ends
| return left, the index is found
| else | if A[right] = right |
| return right, the index is found
| else | index | is found |
| else | index | is found |
| else | index | is found |
| else | index | index | is found |
| else | index | index | index | index | index |
| index | index | index | index | index |
| index | index | index | index |
| index | index | index | index |
| index | index | index | index |
| index | index | index | index |
| index | index | index | index |
| index | index | index | index |
| index | index | index | index |
| index | index | index | index |
| index | index | index | index |
| index | index |
| index | index | index |
| index |
| index | index |
| index |
| index | index |

                                                            no such index, search ends
                             else find the integer with index i = -left + right
                                                       if Acis> i
                                                                           set right = |z-| = \frac{|eft + right|}{2} - |
                                                                           start next search (left, left + right -1)
                                                   else if Acij < i
                                                                            set left = z+1 = -\frac{left + right}{2} + 1
                                                                            start next search ( left + right + 1, right)
                                                  else Acij = i
                                                                        return i = left + right, the index is found
```

In the worst case, we would keep searching in the array until we reach a search range of size 2, which shows right - left = 1, and give the answer, either get the value of index or the index does not exist.

Since we divide the search range by 2 at each iteration:  $T(1) \longrightarrow T(\frac{11}{2})$ 

It is a binary search and the total times of iteration is  $\sim \log_2 n$ , so its complexity would be  $O(\log n)$ , which is the running time in the worst case.

-= 5 Year Town - GATA 44 La

2. (a)  $T(11) = 8T(\frac{11}{2}) + c114$ 

| hade size -                       | # of nodes          | work/node | total work                                   |
|-----------------------------------|---------------------|-----------|----------------------------------------------|
| S = /1                            | -                   | c. s4     | C-174                                        |
| $S = \frac{11}{2}$                | 8                   | c·s4      | 8·c·(1/2)4                                   |
| $S = \frac{1}{4} = \frac{1}{2^2}$ | 64 = 8 <sup>2</sup> | c·54      | $8^2 \cdot \left(\frac{\hbar}{2^2}\right)^4$ |
| • • • •                           |                     |           |                                              |

total work (assume  $17 = 2^k$ )

$$= c11^{4} (1 + \frac{1}{2} + \frac{1}{2^{2}} + \cdots + \frac{1}{2^{k}})$$

$$= ch^{4} \frac{1-\frac{1}{2}(\frac{1}{2})^{k}}{1-\frac{1}{2}}$$

$$= 2c/1^{\frac{1}{2}} \left( \left| -\frac{1}{2} \left( \frac{1}{2} \right) \frac{\log^{11}}{2} \right)$$

$$= 2cn^{4}(1-\frac{1}{2n})$$

$$= 2ch^4 - ch^3$$

$$\in O(n^4)$$

(b)  $T(n) = 4T(\frac{1}{2}) + dn^4$ 

| hade size                           | # of nodes | work/node | total work   |
|-------------------------------------|------------|-----------|--------------|
| S=17                                |            | d.54      | d·n4         |
| $S = \frac{17}{2}$                  | 4          | d. s4     | 4.d.(1)4     |
| $S = \frac{11}{4} = \frac{11}{2^2}$ | 16 = 42    | d.54      | 42.d. (1/2)4 |
|                                     |            |           |              |

total work (assume 17 = 2k)

Ton) = 
$$dn^{+}(1 + 4 \cdot (\frac{1}{2})^{+} + 4^{2} \cdot (\frac{1}{2^{2}})^{+} + \cdots + 4^{k} \cdot (\frac{1}{2^{k}})^{+})$$
  
=  $dn^{+}(1 + \frac{1}{4} + \frac{1}{4^{2}} + \cdots + \frac{1}{4^{k}})$   
=  $dn^{+} = \frac{1 - \frac{1}{4}(\frac{1}{4^{2}})^{k}}{1 - \frac{1}{4^{2}}}$ 

$$=\frac{4}{3}dn^{4}(1-\frac{1}{4n^{2}})$$

 $\in O(n^4)$ 

(c) The second algorithm is not asymptotically better than the first one, since their big-0 asymptotic runtime are both O(174).

I think there are two reasons for this outcome:

I. both of the algorithms solve a problem of size 17 by dividing it into half size  $\frac{17}{2}$ Ton)  $\rightarrow T(\frac{17}{2})$ 

2. both of the algorithms combine the solutions of subproblems in time 0(114)

cn4 & dn4

3.(a) 1° sort the first two-thirds of the array



after sorting, bigger elements in the first two-thirds of the array are all located in region B in ascending order.

2° sort the last two-thirds of the array



after sorting, bigger elements in the whole array are all located in region C in ascending order, which meets our expectation.

3° sort the first two-thirds of the array again



after sorting, smaller elements in the whole array are all located in region A in ascending order, and medicate elements in the whole array are all located in region B in ascending order, which meets our expectation.

After all these 3 steps, elements in the array are sorted from small to big in ascending order.

Therefore, Stooge Sort successfully yields a sorted array.

(b) Stooge Sort solves a problem of size 17 by dividing it into 3 subproblems of size  $\frac{2}{3}$  17, recursively solving each subproblem, then combining the solutions in constant time Ocl).

recurrence relation: T(11) = 3T(=31)+c (c is constant)

| (c) | node size                                 | # of modes      | work/node | total work         |
|-----|-------------------------------------------|-----------------|-----------|--------------------|
|     | S=11                                      |                 | W) C +08  | eladio C           |
|     | $S = \frac{2}{3} \ln$                     | 3               | 100 C F 8 | 3.0                |
|     | $S = \frac{4}{9}11 = (\frac{2}{3})^{2}17$ | 9=32            | 100 c + 2 | 3 <sup>2</sup> · c |
|     |                                           | Trit-1-200 -201 | The at 5  | -2 617-2           |

total work (assume  $1 = (\frac{3}{2})^k$ )

$$T(1) = C \cdot (1+3+3^2+\cdots+3^k)$$

$$= C \cdot \frac{1-3\cdot 3^k}{1-3}$$

$$=\frac{2}{2}(3.3^{k}-1)$$

$$=\frac{5}{2}(3.3 \log^{\frac{1}{2}}-1)$$

$$= \frac{5}{2} (3 \cdot 17 \cdot 193 - 1)$$

$$= \frac{3}{2} \cdot 1 |_{9\frac{3}{2}}^{3} - \frac{6}{2}$$

$$\in O(\eta^{\log \frac{3}{2}}) \sim O(\eta^{2.7})$$

(d) The worst - case runtime: merge sort : Ochlogh) selection sort: O(12) insertion sort: O(1/2) bubble sort: O(1)2) 94ick sort: 0(12) Stage Sort: 0(172.7) Stage Sort is the slowest algorithm.