

An exact scalable method of the k nearest neighbour algorithm to handle big data sets

Outline

Introduction & Preliminaries

kNN in the big data

kNN-IS: A MapReduce implementation for kNN under Apache Spark

□ Fuzzy kNN for big data

Data mining: Classification

- Instance-based Learning IBL
 - No "training phase"

- K Nearest Neighbours kNN
 - It highlights because of its simplicity and effectiveness.

X. Wu and V. Kumar, **The Top Ten Algorithms in Data Mining**, Chapman & Hall/CRC Data Mining and Knowledge Discovery, 2009.

kNN: Basic idea

If it walks like a duck, quacks like a duck, Then it's probably a duck

kNN: Basic idea

- Requires three things:
 - The set of training examples (TR)
 - Distance Metric to compute distance between records
 - □ The value of k, the number of nearest neighbours to consider
- □ To classify an unknown instance from a test set (TS):
 - Compute distance to other training examples
 - Identify the k nearest neighbours
 - Use class labels of nearest neighbours to determine the class label of unknown example (by taking majority vote)

Big data

Big data refers to any problem characteristic that represents a challenge to process it with traditional applications

MapReduce

Outline

Introduction & Preliminaries

kNN in the big data

kNN-IS: A MapReduce implementation for kNN under Apache Spark

Fuzzy kNN for big data

kNN in the big data

The main problems to deal with large-scale data are:

- Runtime: The complexity of the traditional kNN is O(n · D), where n is the number of instances and D number of features.
- Memory consumption: For a rapid computation of the distances, the training set is normally stored in memory, what could easily exceed the RAM memory in the big data context.

Objective

- The design of a scalable kNN approach that embraces the huge storage and processing capacity of cloud platforms, in order to simultaneously classify large amounts of unseen cases against a big (training) data set.
- □ To do so, we rely on the success of the MapReduce framework.

MapReduce

Outline

Introduction & Preliminaries

kNN in the big data

kNN-IS: A MapReduce implementation for kNN under Apache Spark

□ Fuzzy kNN for big data

kNN-IS

Map phase:

- Split training set into m parts
- Compute Class-Distance for each sample of test set against training samples
- Split test set into n parts

Reduce phase:

- It groups all candidates to be the k closets neighbours
- Calculate the real k nearest neighbours of each
- It performs the majority voting and returns the predicted classes.

J. Maillo, S. Ramírez-Gallego, I. Triguero, F. Herrera. kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data. Knowledge-Based Systems, 117 (2017) 3-15 <u>doi: 10.1016/j.knosys.2016.06.012</u>

kNN-IS: Flowchart

kNN-IS: Results

The required runtime for the sequential version is very high (Susy dataset: 5 million instances)

Number of Neighbours (k)	Runtime (in minutes)	Accuracy (test)
1	54,314.15	0.6936
3	54,326.99	0.7239
5	54,419.76	0.7338
7	55,422.30	0.7379

Around 908 hours or 37 days

kNN-IS: Scalability

Scalability with different number of neighbours

Number of Neighbours (k)	Runtime (in minutes)	Accuracy (test)
1	34.04	0.6936
3	38.30	0.7239
5	41.86	0.7338
7	41.96	0.7379

□ From 37 days to 40 minutes

kNN-IS: Scalability

Scalability with different number of maps

 \square Low runtime impact of the parameter of \mathbf{k}

kNN-IS: Conclusions

- The same accuracy and very good achievements on runtimes
- \Box The number of neighbours (k) does not drastically affect to the total runtime
- Deal with large training and test set when it exceeds the memory capacity by iterating
- □ The software can be found at SparkPackages

Outline

Introduction & Preliminaries

kNN in the big data

- kNN-IS: A MapReduce implementation for kNN under Apache Spark
- Fuzzy kNN for big data

Fuzzy kNN for big data

- □ The two main problems was increased:
 - Runtime: Two phases with the same complexity of the kNN-IS. Thus double the runtime.
 - Memory consumption: It is needed the training set twice plus the test set. More than kNN-IS

Fuzzy kNN: objective

The design of a scalable Fuzzy kNN approach that can manage large amounts of unseen cases against a big (training) data set

Fuzzy kNN: workflow

- "Fuzzification" stage:
 - Compute kNN-IS
 - □ Change class label → Class membership degree
 - Train vs Train
 - Output Fuzzy Training Set
- Classification stage:
 - Compute kNN-IS with the new Fuzzy Training Set
 - Select the class label with the higher membership degree

J. Maillo, J. Luengo, S. García, F. Herrera, I. Triguero. Exact Fuzzy k-Nearest Neighbor classification for big datasets. 2017 IEEE International Conference on Fuzzy System (FUZZ-iEEE) doi: 10.1109/FUZZ-IEEE.2017.8015686

Fuzzy kNN: "Fuzzification"

Fuzzy kNN: Classify

Fuzzy kNN: Results

Model	#Maps	Total Runtime (seconds)	Accuracy (test)
Exact Fuzzy kNN	256	285.34	0.7346
kNN-IS	256	38.30	0.7239

 \square Susy dataset with k = 3

kNN-IS: Conclusions

- Deal with large training and test set when it exceeds the memory capacity by iterating
- Depending on the situation, we will have time to get a better accuracy (Exact Fuzzy kNN) or faster runtimes (kNN-IS)
- Focus on the membership degree stage (bottleneck)
 with approximate kNN methods.

An exact scalable method of the k nearest neighbour algorithm to handle big data sets