1. The swestin's ambiguity in the interest rate of bankar) requires cace work. Compounded:

Monthly: Should know which instead of giving both . Continously:

 $P_{1} = P_{0}(1+i)^{n}$ $= P_{0}(1+0.03+7)^{2(17)}$ $= P_{0}(1+0.03+7)^{2(17)}$ $= P_{0}(1+0.032)^{2(17)}$ $= P_{0}(1+0.032)^{2}$

 $P_3 = P_0 e^{rt}$ = $P_0 e^{(0.0316)(2)}$

= Po (2.115-) = Po (1.06536) P2 = Po (1.065024) = Po (1.065240)

You should invest in the banks with the interest rate that results in the highest value for your

investment after 2 years. We compare this value by determining the companded interest by which your initial investment will increase. The bonk with the largest factor will be the best investment.

Bank a) has a factor of about 2.115, which is larger than the other too banks' factors. With banka), you would make 2.115Po - 1.065024Po 2 1.05Po more than an investment at bank

b) and 2.115 B- 1.065240 B 2 1.05 Po more than an investment at bank c.

If bank a)'s provided rate is yearly, you would make 1.06536Po, which is 1.06586Po - 1.065024Po 20,000336 Bo more than an investment at book b) and 1.06536 B- 1.065240 B 2 0.00012 Po more than an investment at bank c. You should invest in bank a).

$$\int_{h\to 0}^{1} \frac{f(x+h)-f(x)}{h}$$

$$= \lim_{h\to 0} \frac{e^{4x+4h}-e^{4x}}{h}$$

$$= \lim_{h\to 0} \frac{e^{4x}(e^{4h}-1)}{h}$$

$$= \lim_{h\to 0} \frac{e^{4x}(e^{4x}-1)}{h}$$

$$= \lim_{h\to 0} \frac{e^{4x}(e^{4x}-1)}{h$$

$$\frac{P}{P_0} = e^{nt}$$

$$k = \left(\frac{1}{4}\right) \left(\ln \frac{P}{P_0}\right)$$

- We define on expression as

i. The amount of bacteria after I minutes is given by P(H = 2000 e 0.0289).

t=3.5 hours

7=210 minutes.

Sub J=210 into expression from a)

P(210)=2000 e 0.0289(210)

2 8 6 6,468 bacteria (Using k= 38)

in There will be about 866, 468 bacteria after 3.5 hours.

c) SUL P(+) = 10800 bactonia

10800 = 2000 e 0.028 + (Using h = \frac{\lambda{0.028}}{38})

1000 = e 0,028 +

27 = e 0.0263

.. After about 58.33 minutes (or 58 min and 20 seconds), there will be 10,800 bactaria.

A)

P'(+)= K(P(+))

= 0.028 (2000e 0.028+) (Using $h = \frac{\ln 3}{34}$)

= 57.62e 0.028+ f = 4 hours = 240 minutes.

Sub f = 240 min:

P'(240) = 57.82e

= 59,633.22 bacteria/min

... The instantaneous growth rate at 724 hours is about 59,633.22 bacteria/minute.

4.

From the graph, we track the instantaneous slope at select points.
The function completes 2.5 cycles at re and this 5 cycles at 2re.
We estimate the period of the function as $\frac{2}{5}$.

,		
×	1'(r) From the points and the	
0	-10 amplitude of 2, we	
10	0 estimate 1(x)=-2sin(5x).	
<u>بو</u> الح	10 . The deviative of f(r)	
3 <u>r</u>	D is f'(+) = -10cos (6x).	
2 rc 5	-10	
<u> </u>	0	
3r	10	
7re 10		
4re 5	-10	`

From the graph, we track the instantances slope at saket points.

The function completes I cycle out or and this 2 cycles at 2re.

We astimate the period of the function as re.