Министерство науки и высшего образования Российской Федерации

Кафедра: «Финансовый мониторинг»

Отчет по Лабораторной работе N = 2

Студент Монастырский М. О.

Группа С21-703

Проверила: Домашова Д. В.

Оглавление

Введение	3
Постановка задачи	4
МНК-оценки коэффициентов	5
Определение наличия гетероскедастичности	6
Тест ранговой корреляции Спирмена	9
Тест Голдфелда-Квандта	9
Тест Глейзера	11
Определение ОМНК-оценок	13
Вывод	17
Приложение А	19

Введение

Предположение классической линейной множественной модели гомоскедастичности регрессии, касающееся (постоянство дисперсий регрессионных остатков) в эконометрических моделях зачастую оказывается Гетероскедастичность нарушенным. (непостоянство дисперсий регрессионных остатков) часто возникает в случае «неоднородности» объектов наблюдения. Например, если исследуется зависимость прибыли предприятий от размера основных фондов, то естественно для больших предприятий следует ожидать более высокие колебания прибыли. Такая ситуация вполне естественна для пространственных выборок.

Линейные модели множественной регрессии с гетероскедастичными остатками классифицируются, как обобщенные линейные модели множественной регрессии (ОЛММР). МНК-оценки такой модели несмещены, состоятельны, но неэффективны.

ОМНК, решающий проблему неэффективных оценок, требует знания оценки ковариационной матрицы вектора регрессионных остатков. В лабораторной работе предложены к рассмотрению тесты на гетероскедастичность и связанные с ними оценки ковариационной матрицы.

Другой, более распространенный подход, рекомендует пользоваться МНК-оценками коэффициентов регрессии с уточненными стандартными отклонениями в форме Уайта и Невье-Веста.

Цель работы заключается в выработке навыков исследования регрессионных моделей с гетероскедастичными остатками.

Постановка задачи

По показателям субъектов РФ:

X_2	Смертность населения старше трудоспособного возраста, на 100 000
	человек населения соответствующего возраста
X_4	Средняя Стоимость минимального (условного) набора
	потребительских товаров и услуг
<i>X</i> ₆	Доходы консолидированных бюджетов субъектов Российской
	Федерации / на тыс населения
<i>X</i> ₇	Предварительно расследовано преступлений, совершенных в состоянии алкогольного опьянения/ на тыс населения
	инапотольного опъянения/ на тыс населения
<i>X</i> ₈	Среднедушевые доходы населения (в месяц), руб.

По данным Приложения А:

- 1) построить МНК-оценки коэффициентов линейной модели множественной регрессии;
- 2) исследовать регрессионные остатки на гетероскедастичность, используя тесты Спирмена, Голдфелда-Квандта, Глейзера;
- 3) если возможно построить ОМНК-оценки параметров регрессионной модели;
- 4) исследовать линейную модели множественной регрессии с помощью несмещенных оценок ковариационной матрицы вектора оценок коэффициентов в форме Уайта и Невье-Веста.

МНК-оценки коэффициентов

Для оценки параметров регрессионной модели воспользуемся методом пошаговой регрессии (методом исключения переменных). Процедура построения уравнения множественной регрессии более подробно рассмотрена в лабораторной работе №1.

Результаты представлены ниже:

	Regression Summary for Dependent Variable: Ожидаемая продолжительность жизни граждан (у) (Лист1 in Сгруппированные данные.stw) R= ,91869466 R?= ,84399988 Adjusted R?= ,83412646 F(5,79)=85,482 p									
N=8 5	b*	Std.Err. of b*	b	Std.Err. of b	t(79)	p-value				
Inte rce pt			94,72383	7,621322	12,4288	0,000000				
X2	-0,658366	0,056911	-0,01217	0,001052	-11,5683	0,000000				
X4	-0,092263	0,045297	-0,14151	0,069478	-2,0368	0,045017				
X6	-0,173732	0,081097	-0,00620	0,002894	-2,1423	0,035251				
X7	-0,291172	0,066531	-0,56217	0,128453	-4,3765	0,000037				
X8	0,181160	0,071882	0,00003	0,000010	2,5203	0,013742				

Так как для значения F=85,482 и p-value <0.05, то отклоняется гипотеза H0 о незначимости модели, следовательно, модель значима. Перейдем к исследованию регрессионных остатков. Проверим нормальность характера распределения регрессионных остатков:

Результаты формальной проверки гипотезы о нормальном характере распределения регрессионных остатков позволяют её принять, и есть смыл проводить дальнейший анализ построенного уравнения множественной регрессии. Оценка уравнения регрессии выглядит следующим образом:

$$y = 94,7238_{(7,6213)} - 0,0122_{(0,0011)}x_2 - 0,1415_{(0,0695)}x_4 - 0,0062_{(0,0029)}x_6 - 0,5622_{(0,1285)}x_7 + 0,00003_{(0,00001)}x_8$$

Определение наличия гетероскедастичности

Наличие гетероскедастичности можно предположить по графику зависимости остатков $|e_i|$ от упорядоченных по возрастанию значений той объясняющей переменной, вариацией которой возможно порождается гетероскедастичность.

Для объясняющей переменной X2:

Для объясняющей переменной X4:

Для объясняющей переменной Х6:

Для объясняющей переменной Х7:

Для объясняющей переменной X8:

Кроме визуального анализа, существуют различные критерии (тесты), с помощью которых выявляется гетероскедастичность.

Тест ранговой корреляции Спирмена

Осуществим расчёт коэффициента ранговой корреляции Спирмена между остатками и значениями объясняющих переменных:

Spearman Rank Order Correlations (Лист1 in Сгруппированные данные) MD pairwis deleted Marked correlations are significant at p <,05000							
Pair of Variables	Valid N	Spearman R	t(N-2)	p-value			
Residual & X4	85	0,035459	-0,32346	0,747322			

можно сделать вывод *об отсутствии гетероскедастичности* из-за принятия нулевой гипотезы т к для всех переменных p-value > 0.05

Тест Голдфелда-Квандта

Для реализации проверки на гетероскедастичность с помощью теста Голдфелда-Квандта сначала необходимо упорядочить данные по возрастанию независимой переменной. Величину, определяющую число исключенных средних наблюдений ($d=\frac{3n}{8}=\frac{3*85}{8}$), возьмем равной 32, то есть n'=n''=32.

Вычислим значение суммы квадратов остатков для первых 32 наблюдений:

	Analysis of Variance; DV: Ysorted (Лист1 in Сгруппированные данные.stw) Include condition: v0<=32												
Effect	Sums of Squares	df	Mean Squares	F	p-value								
Regress	12,8681	1	12,86813	2,695144	0,111098								
Residua I	143,2368	30	4,77456										
Total	156,1049												

Для 32 последних:

	Analysis of Variance; [v0>=54	OV: Ys	orted (Лист1 in Сгрупг	ированные данные.s	tw) Include condition:
Effect	Sums of Squares	df	Mean Squares	F	p-value
Regress	7,6589	1	7,658855	1,248191	0,272766
Residua I	184,0789	30	6,135964		
Total	191,7378				

Q'	Q"	Fнабл	Гкрит
143,2368	184,0789	1,285	1,8409

Так как Fнабл. < Fкрит, следовательно нулевая гипотеза об отсутствии гетероскедастичности принимается, следовательно, гетероскедастичности нет.

Тест Глейзера

В тех случаях, когда хотим установить более точный характер поведения σ_i , целесообразно использовать тест Глейзера. Оценив регрессионные остатки исходной модели, будем строить модель:

$$|e_i| = \alpha + \beta |x_{i2}|^{\gamma} + \delta_i$$

Перебирая γ в промежутке от $-\infty$ до ∞ (причем, если регрессионные остатки имеют тенденцию к росту, то γ целесообразно выбирать из промежутка $(0,+\infty)$) оценивают регрессионную модель вида (3). Отбираются только значимые модели, поскольку в случае отклонения нулевой гипотезы (H_0 : β =0 при альтернативной H_1 : β \neq 0), гипотеза об отсутствии гетероскедастичности не принимается.

В нашем случае, подбирая γ в промежутке от -3 до 3 были оценены уравнения с использованием модуля Множественная регрессия. Результаты представлены в обобщенном виде:

γ	b_0	S_{b_0}	b_1	S_{b_1}	\mathbb{R}^2	F
-3	-0,6	2	784063	3209471	0,0072	0,0597
-2,5	-0,68	2,9	84880,4	367840,4	0,0006	0,053
-2	-0,8	3,67	9532,702	43909,22	0,0006	0,047
-1,5	-0,993	4,887	1136,69	5590,130	0,0005	0,041
-1	-1,386	7,318	151,677	800,5365	0,0004	0,0359
-0,5	-2,564	14,612	26,821	152,833	0,0004	0,0308
0,5	2,144	14,562	-0,205	1,392	0,0003	0,022
1	0,966	7,268	-0,009	0,066	0,0002	0,018
1,5	0,573	4,836	-0,001	0,004	0,0002	0,014
2	0,377	3,620	0,00	0,003	0,0001	0,011
2,5	0,259	2,891	0,00	0,00	0,0001	0,008
3	0,180	2,404	0,00	0,00	0,0001	0,006

Наилучший результат соответствует значению $^{\gamma}$ =-3.

Таким образом, наилучшая аппроксимация $|\hat{e}_i| = -0.600 + \ 784063 * x_i^{-3}.$

В данном случае уравнения не значимы, поэтому подтверждается гипотеза об отсутствии гетероскедастичности.

Определение ОМНК-оценок

В ходе проведённого ранее анализа с помощью теста Голдфелда-Квандта не было выявлено наличие гетероскедастичности

определён вид матрицы $\widehat{\Sigma}_0$:

$$\widehat{\Sigma}_{0} = \begin{pmatrix} \left(\widehat{\alpha} + \widehat{\beta} | x_{1,2} \right)^{-3} \right)^{2} & 0 & 0 \dots & 0 \\ 0 & \left(\widehat{\alpha} + \widehat{\beta} | x_{2,2} \right)^{-3} \right)^{2} & 0 \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \left(\widehat{\alpha} + \widehat{\beta} | x_{88,2} \right)^{-3} \right)^{2} \end{pmatrix}$$

По полученным данным и формуле

$$\boldsymbol{b}_{\scriptscriptstyle \mathrm{OMHK}} = \left(\boldsymbol{X}^T\boldsymbol{\Sigma}_0^{-1}\boldsymbol{X}\right)^{-1}(\boldsymbol{X}^T\boldsymbol{\Sigma}_0^{-1}\boldsymbol{Y})$$

определим ОМНК-оценку вектора b. Для этого воспользуемся программой Excel:

J	A	В	C	D	E	F	G	Н	1	J	K	L
	Единицы	X2	X4	X6	X7	X8	Y		-3			
	1	610,1	112	10,42997	3,361268462	26010	69,96		7,12E-07	α=	-0,6	
	1	769,2	109,5	99,6431	3,41499492	39626	68,17		7,62E-07	β=	784063	
	1	629,2	108,4	75,6827	3,030571848	37810	70,93		7,85E-07			
	1	489,8	109	41,65919	1,775376141	26833	71,8		7,72E-07			
	1	487,3	108,6	50,70298	1,204854028	35612	73,03		7,81E-07			
	1	650,3	111,7	38,76926	2,09741319	31608	71,22		7,18E-07			
	1	667,4	111,2	38,55377	1,828511281	28489	70,8		7,27E-07			
	1	509,3	109,2	32,89665	1,881574833	27677	73,24		7,68E-07			
)	1	573,5	110,2	46,77943	2,579386258	31851	71,56		7,47E-07			
L	1	501,6	110	39,88742	1,349201748	35100	72,45		7,51E-07			
2	1	304,2	109,7	113,8079	0,434850857	88831	78,17		7,57E-07			
3	1	686,1	113,3	94,17381	3,231909722	30297	67,7		6,88E-07			
1	1	643	110,9	154,3894	4,889239458	29827	67,75		7,33E-07			
5	1	589,7	109,2	39,75767	2,305801484	28680	70,57		7,68E-07			
5	1	689,8	109,9	22,26059	3,027311224	30346	69,31		7,53E-07			
,	1	304,4	110,2	29,49119	0,521131841	25929	75,51		7,47E-07			
3	1	392,1	111,4	46,18736	1,421009421	32010	73,07		7,23E-07			
,	1	589,1	110,1	47,72423	1,502724212	35028	72,48		7,49E-07			
)	1	621,5	107,60	201,4216	3,072402736	60794	68,77		8,03E-07			
L	1	325,6	108,1	44,13956	1,034622523	20473	75,32		7,92E-07			
2	1	713,7	108,8	68,19224	3,072719345	28048	69,64		7,76E-07			
3	1	514,6	109,1	44,17913	3,222156545	26649	71,31		7,7E-07			
1	1	541,4	109	44,53464	2,447177832	28560	69,9		7,72E-07			
5	1	493,5	109,5	37,65616	0,919032294	43217	72,92		7,62E-07			
5	1	547,3	110,3	30,71154	2,548637552	36090	70,58		7,45E-07			
7	1	620,6	107,3	43,82464	3,845055603	23747	69,88		8,09E-07			
8	1	597,3	107,6	43,98892	1,891673931	32715	71,54		8,03E-07			
9	1	547,5	107,8	47,09265	1,311731535	36847	73,33		7,98E-07			
)	1	602,3	109,6	40,77011	1,498849145	35124	72,12		7,6E-07			
L	1	683,4	108,7	204,2114	2,938324785	80979	68,45		7,79E-07			
2	1	475,7	110,1		0,828411733	53793	73,78		7,49E-07			
3	1	621,5	110,9	84,865	1,923050777	51183	70,16		7,33E-07			
	1	593,1	108,8		4,347301051	86431	70,74		7,76E-07			
5	1	587,3	110,2		1,749388683	37524	71,49		7,47E-07			
5	1	706	107,6	48,25003	2,579688709	29229	70,45		8,03E-07			
,	1	561,3	110,1		1,468232352	35261	71,49		7,49E-07			
	1	532.7	108,2		1,758062765	29972	71,45		7.89E-07			
9	1	589.3		/	2,470005339	26518	71,24		7,41E-07			
)	1	592.6			1,504644402	29846	70,73		7,62E-07			

	Шрифт	6			Выравн	ивание		r _a	Число	6				Стили						Яч	ейки			Редактир			
Ĵх	{=ТРАНСП(А	2:F86)}																									
пиро	анные данные.	xls [Режим с	овмести	мости]																							
D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	AC	AD	A
Xe	X7	X8	Y		-3					X_TRANSP																	
2 10,42	997 3,361268462	26010	69,96		7,12E-07 a		-0,6			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
5 99,6	431 3,41499492	39626	68,17		7,62E-07 B		784063			610,1	769,2	629,2	489,8	487,3	650,3	667,4	509,3	573,5	501,6	304,2	686,1	643	589,7	689,8	304,4	392,1	
4 75,6	3,030571848	37810	70,93		7,85E-07					112	109,5	108,4	109	108,6	111,7	111,2	109,2	110,2	110	109,7	113,3	110,9	109,2	109,9	110,2	111,4	3
9 41,65	919 1,775376141	26833	71,8		7,72E-07					10,42996517	99,64310342	75,6827	41,65919	50,70298	38,76926	38,55377	32,89665	46,77943	39,88742	113,8079	94,17381	154,3894	39,75767	22,26059	29,49119	46,18736	47,7
6 50,70	298 1,204854028	35612	73,03		7,81E-07					3,361268462	3,41499492	3,030572	1,775376	1,204854	2,097413	1,828511	1,881575	2,579386	1,349202	0,434851	3,23191	4,889239	2,305801	3,027311	0,521132	1,421009	1,50
7 38.76	926 2.09741319	31608	71.22		7.18E-07					26010	39626	37810	26833	35612	31608	28489	27677	31851	35100	88831	30297	29827	28680	30346	25929	32010	

j	bj
0	49,34312919
2	-0,014817305
4	0,309954156
6	0,0154804
7	-1,213761612
8	-6,04075E-05

Проверим на значимость уравнение регрессии с помощью статистики Фишера – Снедекора:

$$F_{
m Ha6Л} = rac{Q_{
m фaK}/_k}{Q_{
m ocr}/_{n-k-1}},$$
 где $Q_{
m фaK} = (Xb-ar{Y})^T \hat{\Sigma}_0^{-1} (Xb-ar{Y}),$ $Q_{
m ocr} = (Y-Xb)^T \hat{\Sigma}_0^{-1} (Y-Xb)$

$$Q_{\rm фак} = 969403581$$
,4; $Q_{\rm ост} =$ 2724321 $\Rightarrow F_{\rm набл} = 5622$,163; $F_{\rm крит} =$ 2,33

 $F_{\rm набл} > F_{\rm крит}$, следовательно, регрессионная модель значима (адекватна экспериментальным данным).

Вывод

В ходе работы было исследовано уравнение регрессии на наличие гетероскедастичности регрессионных остатков различными методами (графический, тест ранговой корреляции Спирмена, тест Голдфелда-Квандта, тест Глейзера). Тесты опровергли наличие гетероскедастичности, на основании чего были рассчитаны ОМНК-оценки вектора b. Таким образом, уравнение регрессии принимает следующий вид:

$$\hat{y} = 49,34312919 - 0,014817305x_2 + 0,309954156x_4 + 0,0154804x_6 - 1,213761612x_7 - 6,04075E - 05x_8$$

X_2	Смертность населения старше трудоспособного возраста, на 100 000 человек населения соответствующего возраста
<i>X</i> ₄	Средняя Стоимость минимального (условного) набора потребительских товаров и услуг
	потреоительских товаров и услуг
<i>X</i> ₆	Доходы консолидированных бюджетов субъектов Российской
	Федерации / на тыс населения
X_7	Предварительно расследовано преступлений, совершенных в состоянии алкогольного опьянения/ на тыс населения
<i>X</i> ₈	Среднедушевые доходы населения (в месяц), руб.

При повышении Смертности населения старше трудоспособного возраста, на 100 000 человек населения соответствующего возраста на 1 у.е. падение ожидаемого срока жизни составит 0,015 лет

При повышении средней стоимости минимального набора потребительских товаров и услуг на один рубль продолжительность жизни увеличится на 0,31 год

При повышении доходов субъекта на 1 миллион на тысячу населения продолжительность жизни увеличится на 0,015 лет

При повышении количества преступлений совершенных в состоянии алкогольного опьянения на 1 преступление на тысячу населения продолжительность жизни упадет на 1,21 года

При росте среднедушевых доходов населения на 1 рубль продолжительность жизни уменьшится на 6,04075E-05 лет

Приложение А

Наименование	X1	X2	X3	X4	X5	X6	X7	X8	Х9	Ожидаема я продолжи тельность жизни граждан (у)
Алтайский край	10 7,2	61 0,1	0,549 898	11 2	2,33 651	10,4	3,361 268	260 10	243	69,96
Амурская область	15 0,2	76 9,2	1,013 971	10 9,5	2,49 117	99,6 43	3,414 995	396 26	194	68,17
Архангельская область без автономного округа	76, 1	62 9,2	1,325 179	10 8,4	1,94 749	75,6 83	3,030 572	378 10	180	70,93
Астраханская область	97, 9	48 9,8	0,543 408	10 9	1,41 171	41,6 59	1,775 376	268 33	294	71,8
Белгородская область	68, 8	48 7,3	0,521 666	10 8,6	2,85 088	50,7 03	1,204 854	356 12	311	73,03
Брянская область	49, 9	65 0,3	0,680 926	11 1,7	1,84 02	38,7 69	2,097 413	316 08	195	71,22

Владимирская область	13 2,7	66 7,4	0,979 554	11 1,2	2,04 217	38,5 54	1,828 511	284 89	182	70,8
Волгоградская область	89,	50 9,3	0,470 333	10 9,2	1,55 555	32,8 97	1,881 575	276 77	233	73,24
Вологодская область	11 6	57 3,5	1,275 402	11 0,2	1,42 995	46,7 79	2,579 386	318 51	164	71,56
Воронежская область	10 9,6	50 1,6	0,601 278	11 0	2,49 177	39,8 87	1,349 202	351 00	380	72,45
г. Москва	59	30 4,2	0,584 64	10 9,7	1,63 174	113, 81	0,434 851	888	622	78,17
Еврейская автономная область	13 0,6	68 6,1	1,093 463	11 3,3	2,32 967	94,1 74	3,231 91	302 97	132	67,7
Забайкальский край	93, 5	64	0,690 535	11 0,9	1,49 728	154, 39	4,889 239	298 27	192	67,75
Ивановская область	10 1,9	58 9,7	0,896 87	10 9,2	1,78 047	39,7 58	2,305 801	286 80	252	70,57
Иркутская область	10 0,1	68 9,8	0,759 589	10 9,9	1,44 016	22,2 61	3,027 311	303 46	273	69,31
Кабардино-Балкарская Республика	60, 1	30 4,4	0,107 103	11 0,2	1,69 949	29,4 91	0,521 132	259 29	175	75,51
Калининградская область	84,	39 2,1	0,810 15	11 1,4	1,61 099	46,1 87	1,421 009	320 10	206	73,07
Калужская область	10 2,9	58 9,1	0,863 577	11 0,1	0,66 788	47,7 24	1,502 724	350 28	182	72,48
Камчатский край	12 5,9	62 1,5	1,280 225	10 7,6	1,73 059	201, 42	3,072 403	607 94	144	68,77
Карачаево-Черкесская Республика	97, 7	32 5,6	0,191 565	10 8,1	1,29 914	44,1 4	1,034 623	204 73	225	75,32
Кемеровская область — Кузбасс	95, 8	71 3,7	0,682 603	10 8,8	2,08 207	68,1 92	3,072 719	280 48	173	69,64
Кировская область	13 1,9	51 4,6	1,064 055	10 9,1	1,61 064	44,1 79	3,222 157	266 49	222	71,31
Костромская область	12 2,6	54 1,4	1,042 703	10 9	2,03 149	44,5 35	2,447 178	285 60	171	69,9

Краснодарский край	99, 7	49 3,5	0,548 57	10 9,5	1,45 854	37,6 56	0,919 032	432 17	173	72,92
Красноярский край	95	54 7,3	0,715 87	11 0,3	1,64 227	30,7 12	2,548 638	360 90	230	70,58
Курганская область	10 6,3	62 0,6	0,565 61	10 7,3	2,78 503	43,8 25	3,845 056	237 47	185	69,88
Курская область	10 8,1	59 7,3	0,579 529	10 7,6	1,71 174	43,9 89	1,891 674	327 15	346	71,54
Ленинградская область	99,	54 7,5	1,111 87	10 7,8	1,45 665	47,0 93	1,311 732	368 47	32	73,33
Липецкая область	94, 9	60 2,3	0,607 4	10 9,6	2,56 933	40,7 7	1,498 849	351 24	162	72,12
Магаданская область	13 1	68 3,4	1,442 518	10 8,7	2,19 079	204, 21	2,938 325	809 79	186	68,45
Московская область	46, 5	47 5,7	1,052 399	11 0,1	0,69 99	52,9 95	0,828 412	537 93	86	73,78
Мурманская область	10 1,2	62 1,5	1,252 627	11 0,9	1,28 707	84,8 65	1,923 051	511 83	104	70,16
Ненецкий автономный округ	48,	59 3,1	1,316 266	10 8,8	3,30 878	393, 1	4,347 301	864 31	0	70,74
Нижегородская область	14 1,1	58 7,3	0,806 237	11 0,2	1,62 146	45,0 09	1,749 389	375 24	279	71,49
Новгородская область	12 3,2	70 6	0,963 971	10 7,6	2,22 202	48,2 5	2,579 689	292 29	154	70,45
Новосибирская область	78, 1	56 1,3	0,563 329	11 0,1	1,32 91	43,0	1,468 232	352 61	352	71,49
Омская область	11 2,8	53 2,7	0,490 716	10 8,2	2,14 03	61,7 44	1,758 063	299 72	396	71,45
Оренбургская область	71, 9	58 9,3	0,590 345	11 0,5	2,12 271	42,5 47	2,470 005	265 18	223	71,24
Орловская область	88, 6	59 2,6	0,613 912	10 9,5	1,72 446	43,8 66	1,504 644	298 46	367	70,73
Пензенская область	11 9,6	75 6,4	0,641 541	10 8,2	2,67 016	39,3 34	2,106 302	264 15	244	72,07

Пермский край	73, 9	67 0	0,823 88	11 0,7	1,58 895	47,5 89	2,459 52	327 47	214	70,9
Приморский край	12 9,7	60 9,1	0,992 071	10 9,3	1,58 983	52,7 89	2,145 254	408 43	235	69,71
Псковская область	10 8,6	74 1,3	0,886 65	10 9,8	1,69 497	46,8 71	2,191 302	293 32	187	68,95
Республика Адыгея (Адыгея)	85, 1	44 1,7	0,422 375	10 7,8	1,83 886	33,0 45	1,005 751	349 01	285	73,6
Республика Алтай	17 4,6	60 0,4	0,729 165	11 0,8	1,60 35	74,7 55	5,982 286	237 98	124	68,47
Республика Башкортостан	84, 9	68 7,5	0,760 954	10	2,44 356	37,7 09	2,287 122	326 21	243	72,98
Республика Бурятия	96, 6	56 3,9	0,738 408	10 8,7	1,76 28	80,8 16	3,955 792	283 14	203	69,35
Республика Дагестан	45, 2	19 8,7	0,146 795	10 8,7	1,03 178	26,8 78	0,211 047	302 60	166	78,22
Республика Ингушетия	42, 5	15 3,1	0,054 93	11 5,7	0,74 923	39,4 99	0,277 564	181 39	148	78,34
Республика Калмыкия	14 8	43 6,7	0,511 569	10 6,6	1,86 847	38,4 57	2,399 626	213 19	333	73,49
Республика Карелия	10	75 3,6	1,607 147	10 9,8	2,04 855	57,6 78	3,963 164	351 73	204	69,03
Республика Коми	11 1,3	64 1,4	1,518 211	11 0	1,81 408	85,1 46	4,812 438	388 80	179	69,94
Республика Крым	79, 1	58 3,1	0,670 392	11 1,7	1,22 509	0	1,224 046	263 57	174	71,97
Республика Марий Эл	98,	55 4,9	0,892 582	10 9,6	2,13 543	37,0 04	1,878 885	231 85	255	71,9
Республика Мордовия	88,	52 3,6	0,683 92	10 9,7	2,17 541	47,1 61	1,880 457	229 06	322	73,16
Республика Саха (Якутия)	73, 7	50 9,4	0,800 041	11 0,6	1,51 849	53,8 08	3,549 167	503 69	226	72,67
Республика Северная Осетия — Алания	11 1	40 2,8	0,111 701	10 8,9	1,77 58	35,6 49	0,790 547	258 85	294	74,7

Республика Татарстан (Татарстан)	83,	45 4,2	0,892 709	10 8,5	1,50 418	52,0 73	1,850 605	396 79	360	74,92
Республика Тыва	12 0,3	67 0	0,290 117	10 9,4	2,04 002	154, 42	5,935 961	206 52	178	67,11
Республика Хакасия	89, 4	58 7,3	0,529 711	10 8,8	1,72 306	39,4 54	3,434 842	260 68	143	70,57
Ростовская область	59, 6	47 8,7	0,427 576	10 9,5	2,01 391	37,1 93	0,966 63	350 41	313	72
Рязанская область	12 5,6	58 1,4	0,662 858	10 9,4	1,84 046	42,3 18	1,390 631	304 95	261	72,14
Самарская область	90,	56 3,1	0,593 366	10 9,6	1,38 353	48,9 35	1,396 846	326 63	318	72,14
Санкт-Петербург	74, 6	39 4,9	0,734 728	11 0,7	0,96 092	74,1 43	0,453 071	577 45	577	75,77
Саратовская область	11 2,3	53 7,1	0,433 379	11 0,1	1,39 166	32,9 33	1,726 236	262 28	287	72,85
Сахалинская область	91, 5	63 4,7	1,545 312	11 2,2	1,85 636	#3H AЧ!	3,706 246	638 54	104	70,37
Свердловская область	62, 4	57 2,4	0,798 462	10 9,2	1,69 684	48,5 18	2,245 599	402 75	282	71,31
Севастополь	10 1,8	40 3,5	0,746 659	10 8	0,64 573	0	1,336 678	330 13	253	74,57
Смоленская область	94, 7	67 3,2	0,924 235	10 9,6	2,65 463	41,9 07	2,085 296	307 31	256	70,35
Ставропольский край	82, 7	38 1,6	0,367 678	10 6,5	1,48 473	31,7 41	0,735 977	261 90	224	74,29
Тамбовская область	10 0,9	52 5,4	0,515 775	11 0,5	3,69 688	45,2 66	2,273 029	302 41	301	72,01
Тверская область	11 1,1	67 2,7	1,030 353	10 9,5	2,90 741	47,1 97	1,907 089	305 28	183	69,94
Томская область	44,	51 1,3	0,654 709	10 8,8	1,43 936	123, 17	2,447 476	309 76	587	72,33
Тульская область	10 8,9	64 3,4	0,669 608	10 7,6	1,37 602	42,5 93	1,100 008	321 31	223	71,86

Тюменская область без автономных округов	15 2,3	48 3,1	0,673 649	10 7,2	3,06 68	79,4 19	2,370 479	339 83	292	73,59
Удмуртская Республика	89	53 8,9	1,071 528	11 0,2	1,71 002	42,1 91	3,304 513	276 50	283	72,13
Ульяновская область	83, 6	58 2,1	0,589 042	10 9,4	1,48 862	34,9 85	1,955 606	268 49	295	71,34
Хабаровский край	10 7,7	62 1,8	1,153 344	10 8,3	1,74 554	82,8 22	2,097 131	441 08	300	69,96
Ханты-Мансийский автономный округ — Югра	75, 5	38 7	0,800 321	10 5,1	1,40 936	112, 57	1,724 1	570 12	114	75,41
Челябинская область	10 3,1	57 3,5	0,666 159	10 8,9	1,59 122	38,6 9	2,806 39	294 98	239	72,16
Чеченская Республика	12, 9	18 1,4	0,011 156	11 0,3	1,22 12	43,1 37	0,102 369	263 97	231	74,61
Чувашская Республика — Чувашия	83, 8	58 8,7	0,935 477	11 0	2,81 619	36,5 53	1,914 228	236 19	299	72,49
Чукотский автономный округ	35, 5	82 0	1,301 36	11 0,6	1,56 665	382, 83	5,075 93	999 05	20	66,2
Ямало-Ненецкий автономный округ	58	42 7,2	1,065 815	10 6,6	1,72 133	271, 58	2,618 134	968 14	3	74,82
Ярославская область	10 6,9	62 1,5	1,048 978	10 8	1,59 401	52,3 02	1,531 512	331 24	261	71,55