

Machine Learning project Global Data on Sustainable Energy dataset

Table of contents

01

Exploratory data analysis

02

Methods of modelisation

03

Results and comparison

04

Conclusion on the project

Exploratory Data Analysis

The dataset

- 3649x21
- Removing variables and missing values

Unidimensional descriptive (1)

Unidimensional descriptive (2)

Heterogeneity and year

Correlation

- Electricity from fossil fuels → high correlation
- High correlation between some variables

 (Access to clean fuels for cooking and to electricity
)
- Some variables seem to have low correlation with every variables

Principal Component Analysis

Methods Of Modelisation

~

Linear regression

MSE:

- ➤ Linear model without selection : 0.0998
- \rightarrow LASSO with λ min: 0.1006

-1

SVR - Choice of kernel

Kernel	# Support Vectors	Parameters to tune
Radial/Gaussian	429	cost, gamma
Linear	869	cost
Polynomial	944 (degree 3)	cost, gamma, coef0, degree
Sigmoidal	2287	cost, gamma, coef0

-1

~

SVR - Results (1)

SVR - Results (2)

Radial kernel:

• Cost: 13

• # Support vectors: 290

• Error on training set: 0.0230

• MSE on test test: 0.0511

Adjusted R^2: 0.9997

Linear kernel:

• Cost: 9

Support vectors: 873

• Error on training set: 0.1017

• MSE on test test: 0.1044

Adjusted R^2: 0.9995

Classification and Regression Trees (1)

MSE:

- Library rpart : 0.2693
- Library caret : 0.7807

Residuals by leaves

Variables of importance:

- Electricity from nuclear : high correlation with Value CO2 emissions
- Low carbon electricity: low correlation

~

Classification and Regression Trees (2)

Random Forest - tuning (1)

- Tune mtry
- Choose number of trees

	Out-	of-bag	Tes	t set	
Tree	MSE	%Var(y)	MSE	%Var(y)	
50	0.0236	0.42	0.01884	0.32	
100	0.0196	0.35	0.01796	0.31	
150	0.01864	0.33	0.01797	0.31	
200	0.01845	0.33	0.0178	0.31	
250	0.01799	0.32	0.01784	0.31	
300	0.01786	0.32	0.0181	0.31	
350	0.01788	0.32	0.01841	0.32	
400	0.01762	0.31	0.01801	0.31	
450	0.01764	0.31	0.01777	0.31	
500	0.01743	0.31	0.01775	0.31	

Random Forest - tuning (2)

- Tune mtry
- Choose number of trees

Random Forest - results (1)

Random Forest - results (2)

-20

Boosting

```
# Default parameter
params = {
    "n_estimators": 100,
    "max_depth": 3,
    "min_samples_split": 2,
    "learning_rate": 0.1,
    "loss": "squared_error",
}
```

The mean squared error (MSE) on test set: 0.0789

Boosting's feature importance

22

Boosting's tuning with GridSearchCV

```
grid['n_estimators'] = [10, 50, 100, 500]
grid['learning_rate'] = [0.001, 0.01, 0.1, 1.0]
grid['subsample'] = [0.5, 0.7, 1.0]
grid['max_depth'] = [3, 7, 9]
```

```
Best: 0.995694 using {'learning_rate': 0.01, 'max_depth': 9, 'n_estimators': 500, 'subsample': 0.5}
```

MSE: 0.019249866681743333

Neural networks

<u> 7∠</u>

Neural Network's tuning

```
param_grid={"hidden_layer_sizes":list([(5,),(6,),(7,),(8,)])}
```

```
Best: 0.867450 using {'hidden_layer_sizes': (7,)}
0.796815 (0.053024) with: {'hidden_layer_sizes': (5,)}
0.704994 (0.353057) with: {'hidden_layer_sizes': (6,)}
0.867450 (0.041294) with: {'hidden_layer_sizes': (7,)}
0.812792 (0.041786) with: {'hidden_layer_sizes': (8,)}
```

MSE: 0.02398911369809242

Results And Comparison

Errors on test sample

computation

Methods	Time (s)
Linear (naïve)	54.4
Linear (Ridge)	111.1
Linear (Lasso min)	112.6
Linear (variable selection)	54.8

SVR (radial)	1185.111
SVR (linear)	1618.473
CART	1633.389
Random Forest	1675.495
Boosting	1755.166
Neural network	8406.133

Comparison modelisation and data analysis expectation

We can see there are some differences in variables' importance. The Random Forest Regressor has valued the variance "S_LowCarbElec" significantly, while assessed the variance of GDP growth as almost uninfluenced.

Missing values - Method

- Transforming data
- Not removal of L(FossElec)
- MAR or MNAR

Methods of imputation:

- LOCF
- By mean
- By median
- KNN
- MissForest
- Amelia II

Missing values - Results

Linear regression		
Imputation methods	MSE on test sample	
LOCF	0.3242	
Mean	0.7427	
Median	0.7283	
KNN	0.4154	
MissForest	0.1142	
Amelia	0.0847	

Random Forest		
Imputation methods	MSE on test sample	
LOCF	4.034	
Mean	4.067	
Median	4.750	
KNN	4.489	
MissForest	5.648	
Amelia	6.014	

Conclusion On the Project

To conclude (1)

Key findings

- The use of GDP's growth is excess in models
- Longitude is less useful than Latitude in finding common patterns
- Energy Intensity is less valuable in predicting CO2 emission

ML models

- Linear models are fast, but less likely to give exact results than other models
- Tree models, especially Random Forest give optimistic results in terms of both accuracy and time consummation
- Neural Network could be further tuned, but time consumption will goes in hand

To conclude (2)

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

