44 (6) BCA-HE-6016

2024

AUTOMATA THEORY AND LANGUAGES

Paper: BCA-HE-6016

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer Q. No. 1 and any five from Q. No. 2 to Q. No. 7.

1. Answer the following:

 $1 \times 5 = 5$

- An unrestricted language can be accepted by
 - (i) Finite automata
 - (ji) Turing Machine

- (iii) Push Down automata
- (iv) Cellular automata

(b) A language is regular if any only if

- (i) accepted by DFA
 - (ii) accepted by PDA
 - (iii) accepted by LBA
 - (iv) accepted by Turing Machine

Which is the data structure used to implement in Push Down Automata?

2

- (i) Link list
- (ii) Queue
- (tji) Stack
 - (iv) Array

14/11/2

The context free grammar defined by ab* is

- (i) $S \rightarrow Sb/a$
- (ii) $S \rightarrow XY$, $X \rightarrow ax$, $Y \rightarrow by$
- (iii) $C \rightarrow ss/baa/abb$, $s \rightarrow \varepsilon$
- (iv) $S \rightarrow as$, $S \rightarrow bs$
- (e) Consider the grammar G with production $S \rightarrow ass$

$$S \rightarrow b$$

The string 'aababbb' is the output of

- (i) Left Most Derivation
- (ii) Mixed Derivation
 - (iii) Right Most Derivation
 - (iv) All of the above

- 2. (a) Construct deterministic finite automata to recognize odd number of 1's and even number of 0's.
 - Explain the properties of context-free languages.
 - Show that the language: $L = \{a^i b^i c^i / i > 0\} \text{ is not context free}$
 - 3. following system.

(b) Construct a DFA with reduced states equivalent to the regular expression

4

- Define regular expression with example.
 Show that regular sets are closed under union operation.

 2+3=5
- 4. (a) Eliminate the unit production from the CFG with P given by

$$S \rightarrow Aa/B$$
, $B \rightarrow a/bb$, $A \rightarrow a/bc/B$ 5

(b) Construct a reduced grammar equivalent to the grammar

$$S \rightarrow aAa$$

$$A \rightarrow Sb/bcc/DaA$$

$$C \rightarrow abb/DD$$

$$D \rightarrow aDA, E \rightarrow aC$$

What do you mean by ambiguity of a grammar? What is left most derivation and right most derivation.

If G is the grammar

$$S \rightarrow S + S | S * S | a | b$$

Show that G is ambiguous.

5

- 5. (a) Prove that CFL are closed under union and concatenation operation. 5+5=10
 - (b) Reduce the following grammar G to CNF:

G is
$$S \rightarrow aAD$$
, $A \rightarrow aB/bAB$,

$$B \rightarrow b, D \rightarrow d.$$

5

6. (a) Construct a PDA to accept the language

$$L = \{a^n b^m / n > m \& n, m > = 0\}$$

- (i) Through empty stack
- (ii) Through final state

4+4=8

Define Push Down Automata. Give the instantaneous description of PDA.

3.5+3.5=7

7. Write short notes on: (any three) 5×3=15

La Turing machine

Pigeonhole principle

(c) Chomsky classification

Way GNF

(e) Pumping Lemma for regular languages

