Problem Set One

D. Zack Garza

January 26, 2020

Contents

1	Humphreys 1.1 1.1 a	
2	Humphreys 1.3*	1
1	Humphreys 1.1	
1.	1 a	
If	$M \in \mathcal{O}$ and $[\lambda] = \lambda + \Lambda_r$ is any coset of $\mathfrak{h}^{\vee}/\Lambda_r$, let $M^{[\lambda]}$ be the sum of weight spaces M_{μ} :	for

which $\mu \in [\lambda]$. **Proposition:** $M^{[\lambda]}$ is a $U(\mathfrak{g})$ -submodule of M

Proof:

Proposition: M is the direct sum of finitely many submodules of the form $M^{[\lambda]}$.

Proof:

1.2 b

Proposition: The weights of an indecomposable module $M \in \mathcal{O}$ lie in a single coset of $\mathfrak{h}^{\vee}/\Lambda_r$.

2 Humphreys 1.3*

Proposition: For any $M \in \mathcal{O}$, $M(\lambda)$ satisfies the following property:

$$\operatorname{Hom}_{U(\mathfrak{g})}(M(\lambda),M) = \operatorname{Hom}_{U(\mathfrak{g})}\left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}}\mathbb{C}_{\lambda},M\right) \cong \operatorname{Hom}_{U(\mathfrak{b})}\left(\mathbb{C}_{\lambda},\operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}}M\right).$$

Proof:

Noting that

- $\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda} = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda},$ \mathfrak{g} -morphisms can always be lifted to $U(\mathfrak{g})$ -morphisms,
- $\operatorname{Res}_{\mathsf{h}}^{\mathfrak{g}} M$ is an identification of the \mathfrak{g} -module M has a \mathfrak{b} module by restricting the action of \mathfrak{g} , consider the following two maps:

$$F: \hom_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}, M) \to \hom_{U(\mathfrak{b})}(\mathbb{C}_{\lambda}, M)$$
$$\phi \mapsto (F\phi : v \mapsto \phi(1 \otimes v)),$$

and

$$G: \hom_{U(\mathfrak{b})}(\mathbb{C}_{\lambda}, M) \to \hom_{U(\mathfrak{g})}(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}, M)$$
$$\psi \mapsto (G\psi : g \otimes v \mapsto g \cdot \psi(v)).$$

It suffices to show that these maps are well-defined and mutually inverse.

To see that F is well-defined, let $\phi: U(\mathfrak{g}) \otimes C_{\lambda} \to M$ be fixed; we will show that the set map $F\phi: \mathbb{C}_{\lambda} \to M$ is $U(\mathfrak{b})$ -linear. Let $b \in U(\mathfrak{b})$.