LẬP TRÌNH MẠNG CĂN BẢN

Biên soạn: ThS. Đỗ Thị Hương Lan

TRƯỜNG ĐH CÔNG NGHỆ THÔNG TIN - ĐHỌG-HCM
KHOA MẠNG MÁY TÍNH & TRUYỀN THÔNG

FACULTY OF COMPUTER NETWORK AND COMMUNICATIONS

Tầng 8 - Tòa nhà E, trường ĐH Công nghệ Thông tin, ĐHQG-HCM

Chương 11 Bảo mật – Mã hóa

Nội dung chi tiết

- Giới thiệu
- Mã hóa cổ điển
- Mã hóa đối xứng
- Mã hóa bất đối xứng
- Mã hóa một chiều (băm)
- Chữ ký điện tử

Nội dung chi tiết

- Giới thiệu
- Mã hóa cổ điển
- Mã hóa đối xứng
- Mã hóa bất đối xứng
- Mã hóa một chiều (băm)
- Chữ ký điện tử

Giới thiệu

Bảo mật

 Vấn đề hết sức quan trọng trong giao dịch thương mại và nhiều kiểu trao đổi thông tin khác

- Tính mật của thông tin (Confidentiality)
- Tính toàn ven thông tin (Integrity)
- Tính săn sàng của hệ thống (Availability)
- Mã hóa
 - Plaintext → Cipher text

Giới thiệu

Minh họa về Mã hóa (Password)

Giới thiệu

- Có rất nhiều loại phương pháp mã hóa khác nhau với ưu và nhược điểm riêng.
- Phương pháp mã hóa:
 - Mã hóa cổ điển
 - Mã hóa một chiều
 - Mã hóa đối xứng
 - Mã hóa bất đối xứng

Các thuật ngữ

- Plain text (bản rõ): dữ liệu chưa mã hóa
- Cipher text (bản mã): dữ liệu đã được mã hóa
- Key: dữ liệu dùng để mã hóa hoặc giải mã
- Cryptographic algorithm hoặc Cipher: giải thuật mã hóa hoặc giải mã
- Strength: độ khó khi bẻ khóa

Phá mã

Phá mã

Giải mã văn bản đã được mã hóa không biết trước khóa bí mật

Phương pháp phá mã

- Vét can
 - Thử tất cả các khóa có thể
- Thám mã
 - Khai thác những nhược điểm của giải thuật
 - Dựa trên những đặc trưng chung của nguyên bản hoặc một số cặp nguyên bản - bản mã mẫu

Phá mã

Phá mã

Giải mã văn bản đã được mã hóa không biết trước khóa bí mật

Phương pháp phá mã

- Vét can
 - Thử tất cả các khóa có thể
- Thám mã
 - Khai thác những nhược điểm của giải thuật
 - Dựa trên những đặc trưng chung của nguyên bản hoặc một số cặp nguyên bản - bản mã mẫu

Phương pháp phá mã vét cạn

- Về lý thuyết có thể thử tất cả các giá trị khóa cho đến khi tìm thấy nguyên bản từ bản mã
- Dựa trên giả thiết có thể nhận biết được nguyên bản cần tìm
- Thực tế không khả khi nếu độ dài khóa lớn

Thời gian tìm kiếm trung bình

Kích thước khóa (bit)	Số lượng khóa	Thời gian cần thiết (1 giải mã/µs)	Thời gian cần thiết (10 ⁶ giải mã/µs)
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ phút}$	2,15 ms
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ µs = 1142 năm	10,01 giờ
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5,4 \times 10^{24} n \text{ m}$	5,4 x 10 ¹⁸ năm
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} n am$	5,9 x 10 ³⁰ năm
26 ký tự	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s =$	6,4 x 10 ⁶ năm
(hoán vị)		6,4 x 10 ¹² năm	

Khóa DES dài 56 bit Khóa AES dài 128+ bit Khóa 3DES dài 168 bit

Tuổi vũ trụ: ~ 10¹⁰ năm

Nội dung chi tiết

- Giới thiệu
- Mã hóa cổ điển
- Mã hóa đối xứng
- Mã hóa bất đối xứng
- Mã hóa một chiều (băm)
- Chữ ký điện tử

Mã hóa cổ điển

- Mã hóa cổ điển
 - Mã hóa hoán vị và mã hóa thay thế
 - Mã hóa Caesar
 - Mã hóa Vigenère
 - Mã hóa Playfair

Ví dụ

- Phá mã Caesar
 - Bản mã: GCUA VQ DTGCM
 - Bản mã: Mfyj Htani Anwzx
- Phá mã Vigenère
 - Bản mã: iyhiehbgaawac
 - Key: antn

Ví dụ

- Mã hóa Caesar
 - P: Hello World
 - Shift: 3
 - C: Khoor Zroug

Nội dung chi tiết

- Giới thiệu
- Mã hóa cổ điển
- Mã hóa đối xứng
- Mã hóa bất đối xứng
- Mã hóa một chiều (băm)
- Chữ ký điện tử

Mã hóa đối xứng

Mô hình Mã hóa đối xứng

- Gồm có 5 thành phần
 - Bản rõ
 - Giải thuật mã hóa
 - Khóa bí mật
 - Bản mã
 - Giải thuật giải mã
- Độ an toàn
 - Phụ thuộc vào bí mật của khóa, không phụ thuộc vào bí mật của giải thuật

DES (Data Encryption Standard)

- DES (Data Encryption Standard) được công nhận chuẩn năm 1977
- Tên giải thuật là DEA (Data Encryption Algorithm)
- Kích thước khối: 64 bit
- Kích thước khóa: 56 bit
- Số vòng: 16
- Từng gây nhiều tranh cãi về độ an toàn

Phá mã DES

- Khóa 56 bit có $2^{56} = 7.2 \times 10^{16}$ giá trị có thể
- Tốc độ tính toán cao có thể phá được khóa
 - 1997: 70000 máy tính phá mã DES trong 96 ngày
 - 1998: Electronic Frontier Foundation (EFF) phá mã DES bằng máy chuyên dụng (250000\$) trong < 3 ngày
 - 1999: 100000 máy tính phá mã trong 22 giờ
- Vấn đề còn phải nhận biết được nguyên bản
- Nếu cần an toàn hơn: 3DES hay chuẩn mới AES

Hệ mã hóa 3DES

- Sử dụng 3 khóa và chạy 3 lần giải thuật DES
 - Mã hóa: $C = E_{K_3}[D_{K_2}[E_{K_1}[p]]]$
 - Giải mã: $p = D_{K_1}[E_{K_2}[D_{K_3}[C]]]$
- Độ dài khóa thực tế là 168 bit
 - Không tồn tại $K_4 = 56$ sao cho $C = E_{K_4}(p)$
- Vì sao 3 lần? tránh tấn công "gặp nhau ở giữa"
 - $C = E_{K_2}(E_{K_1}(p)) \Rightarrow X = E_{K_1}(p) = D_{K_2}(C)$
 - Nếu biểt một cặp (p, C)
 - Mã hóa p với 2⁵⁶ khóa và giải mã C với 2⁵⁶ khóa
 - So sánh tìm ra K₁ và K₂ tương ứng
 - Kiểm tra lại với 1 cặp (p, C) mới; nếu OK thì K₁ và K₂ là khóa

AES - Chuẩn mã hóa tiên tiến

- AES (Advanced Encryption Standard) được công nhận chuẩn mới năm 2001
- Tên giải thuật là Rijndael (Rijmen + Daemen)
- An toàn hơn và nhanh hơn 3DES
- Kích thước khối: 128 bit
- Kích thước khóa: 128/192/256 bit
- Số vòng: 10/12/14

Ví dụ: DES và AES

Nội dung chi tiết

- Giới thiệu
- Mã hóa cổ điển
- Mã hóa đối xứng
- Mã hóa bất đối xứng
- Mã hóa một chiều (băm)
- Chữ ký điện tử

Mã hóa bất đối xứng

- Những hạn chế của mật mã đối xứng
 - Vấn đề phân phối khóa
 - Khó đảm bảo chia sẻ mà không làm lộ khóa bí mật
 - Trung tâm phân phối khóa có thể bị tấn công
 - Không thích hợp cho chữ ký số
 - Bên nhận có thể làm giả thông báo nói nhận được từ bên gửi
- Mật mã khóa công khai đề xuất bởi Whitfield Diffie và Martin Hellman vào năm 1976
 - Khắc phục những hạn chế của mật mã đối xứng
 - Có thể coi là bước đột phá quan trọng nhất trong lịch sử của ngành mật mã
 - Bổ sung chứ không thay thế mật mã đối xứng

Đặc điểm mã hóa khóa công khai

- Còn gọi là mật mã hai khóa hay bất đối xứng
- Các giải thuật khóa công khai sử dụng 2 khóa
 - Một khóa công khai
 - Ai cũng có thể biết
 - Dùng để mã hóa thông báo và thẩm tra chữ ký
 - Một khóa riêng
 - Chỉ nơi giữ được biết
 - Dùng để giải mã thông báo và ký (tạo ra) chữ ký
- Có tính bất đối xứng
 - Bên mã hóa không thể giải mã thông báo
 - Bên thẩm tra không thể tạo chữ ký

Mã hóa khóa công khai

Xác thực

Ứng dụng mã hóa khóa công khai

- Có thể phân ra 3 loại ứng dụng
 - Mã hóa/giải mã
 Đảm bảo sự bí mật của thông tin
 - Chữ ký số
 Hỗ trợ xác thực văn bản
 - Trao đổi khóa
 Cho phép chia sẻ khóa phiên trong mã hóa đối xứng
- Một số giải thuật khóa công khai thích hợp cho cả 3 loại ứng dụng;
 một số khác chỉ có thể dùng cho 1 hay 2 loại

Hệ mã hóa RSA

- Đề xuất bởi Ron Rivest, Adi Shamir và Len Adleman (MIT) vào năm 1977
- Hệ mã hóa khóa công khai thông dụng nhất
- Mã hóa khối với mỗi khối là một số nguyên < n Thường kích cỡ n là 1024 bit ≈ 309 chữ số thập phân
- An toàn vì chi phí phân tích thừa số của một số nguyên lớn là rất lớn

Sự hỗ trợ giữ 2 hệ thống mã hóa

Giao thức bảo mật sử dụng cả 2:

- Đối xứng: bảo vệ trao đổi dữ liệu qua mạng, tốc độ xử lý nhanh
- Bất đối xứng: thành lập kết nỗi gữa 2 thực thể mạng và thành lập khóa đối xứng.

An ninh của RSA

- Khóa 128 bit là một số giữa 1 và một số rất lớn 340.282.366.920.938.000.000.000.000.000.000.000
- Có bao nhiêu số nguyên tố giữa 1 và số này
 ≈ n / ln(n) = 2¹²⁸ / ln(2¹²⁸) ≈
 3.835.341.275.459.350.000.000.000.000.000.000
- Cần bao nhiều thời gian nếu mỗi giây có thể tính được 10¹² số Hơn 121.617.874.031.562.000 năm (khoảng 10 triệu lần tuổi của vũ trụ)

Phá mã RSA

- Phương pháp vét cạn Thử tất cả các khóa riêng có thể Phụ thuộc vào độ dài khóa
- Phương pháp phân tích toán học
 - Phân n thành tích 2 số nguyên tố p và q
 - Xác định trực tiếp Φ(n) không thông qua p và q
 - Xác định trực tiếp d không thông qua Φ(n)
- Phương pháp phân tích thời gian
 - Dựa trên việc đo thời gian giải mã
 - Có thể ngăn ngừa bằng cách làm nhiễu

Nội dung chi tiết

- Giới thiệu
- Mã hóa cổ điển
- Mã hóa đối xứng
- Mã hóa bất đối xứng
- Mã hóa một chiều (băm)
- Chữ ký điện tử

Hash functions

- Băm từng chuỗi bit một
- Không thể khôi phục dữ liệu ban đầu từ cipher text
- 1 bit khác nhau sẽ tạo ra ít nhất nữa số bit kết quả khác nhau

Hash functions

- MD (Message Digest) functions
 MD2, MD4, MD5: 16 bytes fingerprint
- SHA-1 (Secure Hash Algorithm-1): 20 bytes
- SHA-256: 256 bytes
- SHA-224: 224 bytes
- SHA-512: 512 bytes

Ví dụ: MD5

Nội dung chi tiết

- Giới thiệu
- Mã hóa cổ điển
- Mã hóa đối xứng
- Mã hóa bất đối xứng
- Mã hóa một chiều (băm)
- Chữ ký điện tử

Chữ ký điện tử

- MAC (Message Authentication Code), chữ ký điện tử có hai mục tiêu:
 - Kiểm tra tính nguyên thủy (nguồn gốc)
 - Kiểm tra toàn vẹn của dữ liệu
- Sử dụng hash functions, symmetric hoặc asymmetric keys

Chữ ký điện tử

Source A

Receiver B

Figure 3.1. Generation and verification of a MAC (symmetric cryptography)

Chữ ký điện tử

Figure 3.2. Generation and verification of an electronic signature (asymmetric cryptography)