NTIN071 A&G: Tutorial 9 – Pumping Lemma for Context-free Languages

Solve 1, 2a-j, 3 first (the rest is for practice).

Problem 1 (Pumping lemma). Recall the statement and proof of the Pumping lemma for context-free languages. Compare with the version for regular languages.

Problem 2 (Proving non-context-freeness). Decide if the following languages are context-free. Prove that your answer is correct.

(a)
$$L = \{0^i 1^i \mid i \ge 0\}$$

(h)
$$L = \{ww \mid w \in \{0, 1\}^*\}$$

(b)
$$L = \{0^i 1^j 0^i \mid i, j \ge 0\}$$

(i)
$$L = \{ww^R \mid w \in \{0, 1\}^*\}$$

(c)
$$L = \{0^i 1^j 0^i \mid 0 \le i \le j\}$$

(j)
$$L = \{ww^R \mid w \in \{0, 1\}^*, |w|_0 = |w|_1\}$$

(d)
$$L = \{0^i 1^j 0^i \mid 0 \le j \le i\}$$

(k)
$$L = \{1^{n^2} \mid n \ge 0\}$$

(e)
$$L = \{0^i 1^i 2^i \mid i \ge 0\}$$

(l)
$$L = \{1^{n^2+n+1} \mid n \ge 0\}$$

(f)
$$L = \{0^{2i}1^{3i}0^i \mid i > 0\}$$

(m)
$$L = \{1^p \mid p \text{ is a prime}\}$$

(g)
$$L = \{0^i 1^j 2^k \mid 0 \le i \le j \le k\}$$

(n)
$$L = \{0^i 1^j \mid 0 \le i \le j^2\}$$

Problem 3 (Pumping linear languages). Recall that a grammar is *linear*, if it only contains production rules of the form $A \to uBw$ and $A \to w$, where $A, B \in V$ and $u, w \in T^*$.

- (a) Formulate a Pumping lemma for linear languages.
- (b) Proof the statement using derivations from a (reduced) linear grammar.
- (c) How is the constant n from the lemma related to a linear grammar for the given language?
- (d) Show that the language $L = \{w \in \{0,1\}^* \mid |w|_0 = |w|_1\}$ is not linear.
- (e) Where does L lie within the Chomsky hierarchy?