תורת החישוביות – תרגול 4 רדוקציות חישוביות

מבוא

רדוקציה היא הכלי שבו אנו משתמשים כדי לתרגם בעיה חישובית אחת לבעיה חישובית אחרת.

יא: שהיא: $f:\Sigma^* o \Sigma^*$ פורמלית, היא לשפה לשפה לשפה לשפה להיא:

- .1 מלאה.
- 2. ניתנת לחישוב.
- $x \in L_1 \iff f(x) \in L_2$.3

שימו לב: f מוגדרת לכל x, ולא רק למילים ששייכות ל־ L_1 . כמו כן אין שום הכרח ש"f "תתפוס" את כל x, ולא רק למילים ששייכות ל- L_1 . כמו כן אין שום הכרח ש"ל מוגדרת לכל בוצה מצומצמת בהרבה מכל L_2 .

 $L_1 \leq L_2$ אומסמנים ומסמנים לרדוקציה לרדוקציה שי ניתנת על אומרים שי $L_1 \leq L_2$ אומרים אל קיימת אומרים שי

חשיבותן של רדוקציות נובעת ממשפט הרדוקציה:

 $L_1\in\mathrm{RE}$ אי גם $L_1\leq L_2$ ו רי $L_2\in\mathrm{RE}$ אם אם $L_1\in\mathrm{RE}$ אי גם $L_1\in\mathrm{RE}$ אי גם רי

הוכחת המשפט פשוטה: בהינתן מכונה M_2 עבור M_2 ניתן לבנות מכונה M_1 עבור M_2 שעל קלט x ראשית מחשבת את M_2 עבור M_2 עבור M_2 ש־ M_2 הוכחת המשפט פשוטה: ש־ M_2 על M_2 על להסתיים, וכמובן נדרש ש־ M_2 תהיה ניתנת לחישוב) ושנית מריצה את M_2 על M_2 על על M_2 ועונה כמוה M_2 על נדרש ש־ M_2 תהיה תקפה).

נציג ללא הוכחה מספר תכונות של רדוקציות (מומלץ כתרגיל למצוא את ההוכחה):

- .1 לכל שפה L מתקיים $L \leq L$ מתקיים (רדוקציה היא יחס רפלקסיבי).
- . (רדוקציה היא יחס טרנזיטיבי) $L_1 \leq L_3$ אז $L_2 \leq L_3$ וגם $L_1 \leq L_2$ אם .2
- $ext{HP} \in \mathbb{R}^*$ אך לא $\mathbb{P}^* \leq \Sigma^*$ אך לא ביינו ממשפט הרדוקציה היינו מקבלים ש $\Sigma^* \leq \mathbb{P}$).
 - $\overline{L_1} < \overline{L_2}$ אז $L_1 < L_2$ אם .4

השימוש העיקרי שלנו ברדוקציות הוא על מנת להראות ששפות מסוימות אינן ב־RE או RE. לשם כך אנו הופכים את משפט הרדוקציה על

 $L_2
otin {
m RE}$ אי $L_1 \le L_2$ ו רי $L_1
otin {
m RE}$ אי בדומה, אם $L_2
otin {
m RE}$ אי $L_1 \le L_2$ ו רי

תרגילים

תרגיל 1

Rיש להוכיח כי השפה $L_{\geq 3}=\{\langle M
angle\,|\,|L\left(M
ight)|\geq 3\}$ אינה ב־

 $L_{\geq 3}
otin R$ בתרון: נוכיח כי HP
otin R באינו כי HP
otin R, ובעזרת משפט הרדוקציה נסיק כי HP
otin R כנדרש.

w כל קלט שיג מכונה איא מכונה M_x כך כך $f\left(\left\langle M\right\rangle,x\right)=\left\langle M_x\right\rangle$ הרדוקציה תוגדר בתור

- על w (ומתעלמת מהקלט w שלה). 1. מריצה את M
 - . אם M עצרה, מקבלת M

:באופן זה גרמנו לכך שהתשובה לשאלה "מהי השפה ש־ M_x מקבלת?" תהיה תלויה בתשובה לשאלה "האם M עוצרת על m?" בפרט

$$L\left(M_{x}\right) = \begin{cases} \Sigma^{*} & \left(\left\langle M\right\rangle, x\right) \in \mathsf{HP} \\ \emptyset & \left(\left\langle M\right\rangle, x\right) \notin \mathsf{HP} \end{cases}$$

בבירור הרדוקציה שהגדרנו מלאה וניתנת לחישוב – ייצור M_x מתוך M_x מתוך M_x הוא פעולת פשוטה. הנקודה המרכזית כאן היא שייצור M_x מתוך M_x להריץ את M_x על M_x או כל שייצור M_x מתוך M_x להריץ את M_x על M_x או כל פעולה חישובית דומה שעשויה שלא להסתיים.

|0|<3ו־ ו־ בשוטה הרדוקציה פשוטה להוכחה. למעשה, כל שנחוץ לנו הוא ש־ בשוטה להוכחה. למעשה, כל הוא ש

$$(\langle M \rangle, x) \in \mathrm{HP}$$

$$\downarrow \downarrow$$

$$L(M_x) = \Sigma^*$$

$$\downarrow \downarrow$$

$$|L(M_x)| \ge 3$$

$$\downarrow \downarrow$$

$$\langle M_x \rangle \in L_{\ge 3}$$

$$\downarrow \downarrow$$

$$f(\langle M \rangle, x) \in L_{\ge 3}$$

ובכיוון השני:

$$(\langle M \rangle, x) \notin \mathrm{HP}$$

$$\downarrow \downarrow$$

$$L(M_x) = \emptyset$$

$$\downarrow \downarrow$$

$$|L(M_x)| < 3$$

$$\downarrow \downarrow$$

$$\langle M_x \rangle \notin L_{\geq 3}$$

$$\downarrow \downarrow$$

$$f(\langle M \rangle, x) \notin L_{\geq 3}$$

תרגיל 2

נעבור כעת לרדוקציה דומה באופיה אך מחוכמת יותר, שלרוב משתמשים בה כדי להראות שמשהו אינו שייך אפילו ל־RE:

$$.L_{\infty} = \{ \langle M \rangle \mid |L(M)| = \infty \}$$

 $-L_{\infty}\notin \mathrm{RE}$ ניתן להשתמש בדיוק באותה רדוקציה כמו בתרגיל 1 כדי להוכיח ש־ $L_{\infty}\notin \mathrm{R}$, אך אנו רוצים להוכיח תוצאה חזקה יותר – ש־ RE כדוגמת ולשם כך עלינו להראות רדוקציה משפה שאיננה ב־ RE , כדוגמת RE

נראה אם כן $\overline{ ext{HP}} \leq L_\infty$. כאן עלינו לבנות מכונה כך שאם M אינה עוצרת על x, אז שפת המכונה אינסופית. לצורך כך המכונה שלנו כן תתייחס לקלט w שלה באופן מחוכם.

w כל קלט שיג מכונה איא מכונה לך כך $f\left(\left\langle M\right\rangle ,x
ight)=\left\langle M_{x}\right\rangle$ הרדוקציה תוגדר בתור

- על wעל את wעל אל את את את 1.
- . אם M עצרה על x דוחה. אחרת מקבלת.

האבחנה הבסיסית כאן היא שאם M עוצרת על x, היא עוצרת אחרי מספר קבוע k של צעדים שאינו תלוי ב־w, ולכן m תדחה כל קלט האבחנה הבסיסית כאן היא שאם m עוצרת על w, היא עוצרת אחרי מספר קבוע w

מכאן שאם שמראה את תקפות הרדוקציה. $|L\left(M_{x}
ight)|<\infty$ ואחרת $|L\left(M_{x}
ight)|=|\Sigma^{*}|=\infty$ אז $(\left\langle M
ight
angle ,x)\in\overline{\mathrm{HP}}$ מכאן שאם

תרגיל 3

עד כה עסקנו בשפות מהצורה "כל המכונות M כך ש־ $L\left(M\right)$ מקיימת תכונה מסוימת". כעת אנו רוצים לעבור לשפה מהצורה "כל המכונות M כך שהמכונה M מקיימת תכונה מסוימת", שהן לרוב מאתגרות יותר (ולעתים שפה שמוגדרת באמצעות תכונה שנראית מסובכת היא למעשה ב־ Ω .

 $L = \!\! \{ \langle M \rangle \, | \,$ ממננה רצופים צעדים שלושה על בריצתה על בריצתה M המכונה M

 $L_{arepsilon} \leq L$ נראה כי באמצעות באמצעות ני גראה כי $L \in \mathrm{RE}$ לא קשה להראות כי

: באים: פרט לשינויים הבאים: M' זהה ל־M' פך ל $f\left(\langle M \rangle\right) = \langle M' \rangle$ פרט הרדוקציה תוגדר כך

- $.\sigma \in \Gamma$ לכל $\delta\left(q^R,\sigma\right) = (q,\sigma,R)$ ומעברים q^R מצב מוסיף נוסיף לכל .1
- . $\delta\left(q,\sigma\right)=\left(p^{R}, au,S\right)$ במעבר האותו נחליף אותו $\delta\left(q,\sigma\right)=\left(p, au,R\right)$.2
 - $.\delta\left(q_{acc},\sigma
 ight)=\left(q_{acc},\sigma,R
 ight)$ יוצא מקבוצת המצבים הסופיים, ונגדיר יוצא q_{acc} .3

פשר השינויים הללו: כל עוד M' מריצה את M היא אינה מסוגלת לבצע שלושה צעדים רצופים ימינה (שכן לפני כל צעד ימינה היא נעמדת לרגע במקום). אם ריצת M הסתיימה במצב מקבל, אז M' הולכת אינסוף צעדים ימינה, ובפרט שלושה.

M'אם לב שינסוף (שימו לב שינסוף ימינה, ואפילו אינסוף שימו בריצתה על arepsilon בריצתה על M' בריצתה על מקבלת, ולכן M' בריצתה על מקבלת, ולכן M' בריצתה על מקבלת, ואין בעיה עם זה).

עוצרת M אינה מבצעת שלושה את, ואחרי ש־M אכן במהלך ריצת או היא ודאי שאינה עושה את, ואחרי ש־M עוצרת או אינה M' אז אינה מבצעת שלושה צעדים רצופים ימינה, שכן במהלך ריצת אינה עושה אאת, ואחרי ש־M' עוצרת כך גם M' (כי q_{rej} נותר מצב סופי).