Concordia University

DEPARTMENT OF COMPUTER SCIENCE & SOFTWARE ENGINEERING COMP 232/4 INTRODUCTION TO DISCRETE MATHEMATICS Winter 2019

Solutions to Assignment 5

1. For each of the following relations on the set \mathbb{Z} of integers, determine if the relation is reflexive, symmetric, anti-symmetric, or transitive. On the basis of these properties, state whether or not it is an equivalence relation or a partial order.

(a)
$$R = \{(a,b)|a^2 = b^2\}$$

Answer: R is reflexive: $(a, a) \in R$ since $a^2 = a^2$ for all $a \in \mathbb{Z}$

R is symmetric: $(a,b) \in R \Longrightarrow (b,a) \in R$, since $a^2 = b^2 \Longrightarrow b^2 = a^2$ for all $a,b \in \mathbb{Z}$

R is not antisymmetric, because $(-1,1) \in R \land (1,-1) \in R$

R is transitive: $((a,b) \in R \land (b,c) \in R) \Longrightarrow (a,c) \in R$ because if $a^2 = b^2$ and $b^2 = c^2$, then $a^2 = c^2$ for all $a,b,c \in \mathbb{Z}$

Because R is reflexive, symmetric, and transitive, R is an equivalence relation. Because R is not antisymmetric, R is not a partial order.

(b) $S = \{(a,b) | |a-b| \le 1\}$

Note that $|a-b| \le 1 \iff (a+1=b) \lor (a=b+1) \lor a=b$

Answer: S is reflexive: $(a, a) \in S$ since $|a - a| \le 1$ for all $a \in \mathbb{Z}$

S is symmetric: $(a,b) \in S \Longrightarrow (b,a) \in S$ for all $a,b \in \mathbb{Z}$. If $(a,b) \in S$, then one of three cases holds, according to \star :

Case 1: $0 < a - b < 1 \iff a = b + 1 \iff b - a = b?(b + 1) = 1$ and $(b, a) \in S$

Case2: $-1 \le a - b < 0 \iff a = b - 1 \iff b - a = b = (b - 1) = -1$ and $(b, a) \in S$

Case3: $a - b = 0 \iff a = b \text{ and } (b, a) \in S$.

S is not antisymmetric, because S is symmetric and not the identity relation.

S is not transitive, because $(1,2) \in S$ and $(2,3) \in S$, but $(1,3) \notin S$.

Because S is not transitive, it is neither an equivalence relation, nor a partial order.

2. Prove that $\{(x,y)|\ x-y\in\mathbb{Q}\}$ is an equivalence relation on the set of real numbers, where \mathbb{Q} denotes the set of rational numbers.

Solution:

Let
$$S = \{(x, y) | x - y \in \mathbb{Q}\}$$

Reflexivity: $x - x = 0 \in \mathbb{Q}$, thus $(x, x) \in S$ for all $x \in \mathbb{R}$

Symmetry: Let $x - y \in \mathbb{Q}$. Then, y - x = -(x - y) is again a rational number.

Transitivity: If $x - y \in \mathbb{Q}$ and $y - z \in \mathbb{Q}$, then their sum, namely (x - y) + (y - z) = x - z, is also a rational number (as the rational numbers are closed under addition).

Because S is reflexive, symmetric, and transitive, S is an equivalence relation.

- 3. Prove or disprove the following statements:
 - (a) Let R be a relation on the set \mathbb{Z} of integers such that xRy if and only if $xy \geq 1$. Then, R is irreflexive.

Answer: R is not irreflexive, as the pair (1,1) is in the relation.

(b) Let R be a relation on the set \mathbb{Z} of integers such that xRy if and only if x = y + 1 or x = y - 1. Then, R is irreflexive.

Answer: R is irreflexive, as $n \neq n+1$ and $n \neq n-1$, for every integer n. Thus, for every integer n, the pair (n, n) is not in the relation.

(c) Let R and S be reflexive relations on a set A. Then, R-S is irreflexive.

Answer: R-S is indeed irreflexive. Given that R and S are reflexive, for any element $a\in A$, $(a,a)\in R$ and $(a,a)\in S$. This, in turn, implies that $(a,a)\not\in \overline{S}$ and so $(a,a)\not\in R\cap \overline{S}$. Now, $R\cap \overline{S}=R-S$. Therefore, R-S is irreflexive.

- 4. Let R be the relation on \mathbb{Z}^+ defined by xRy if and only if x < y. Then, in Set Builder Notation, $R = \{(x,y)|\ y-x>0\}.$
 - (a) Use Set Builder Notation to express the transitive closure of R.

Note that $R = \{(x, y) | y - x \ge 1\}$ and $R^2 = \{(x, y) | y - x \ge 2\}$ and $R^n = \{(x, y) | y - x \ge n\}$.

Answer: Thus $R^* = \bigcup_{i=1}^{\infty} R^i = R = \{(x,y) | y - x > 0\}.$

- (b) Use Set Builder Notation to express the composite relation R^n , where n is a positive integer. Answer: See note above, $R^n = \{(x,y) | y - x \ge n\}$.
- 5. Give the transitive closure of the relation $R = \{(a,c),(b,d),(c,a),(d,b),(e,d)\}$ on domain $A = \{a,b,c,d,e\}$.

Answer:

$$M_R = \left[\begin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right] \ M_{R^2} = \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{array} \right] \ M_{R^3} = \left[\begin{array}{ccccccc} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right] = M_R$$

$$M_{R^4} = M_{R^2}, M_{R^5} = M_R$$

Thus
$$M_{R^*} = M_R \cup M_{R^2} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
 and $R^* = \{(a, a), (a, c), (b, b), (b, d), (c, a), (c, c), (d, b), (d, d), (e, b), (e, d)\}.$

6. Give an example to show that when the symmetric closure of the reflexive closure of the transitive closure of a relation is formed, the result is not necessarily an equivalence relation.

Answer: Let Q be a relation on $\{a, b, c\}$ with $Q = \{(b, a), (b, c)\}.$

The transitive closure is $t(Q) = \{(b, a), (b, c)\}$

The reflexive closure of the transitive closure is $r(t(Q)) = \{(a, a), (b, a), (b, b), (b, c), (c, c)\}$

The symmetric closure of the reflexive closure of the transitive closure is

$$s(r(t(Q)) = \{(a,a), (a,b), (b,a), (b,b), (b,c), (c,b), (c,c)\}.$$

$$(c,b) \in s(r(t(Q)))$$
 and $(b,a) \in s(r(t(Q)))$, but $(c,a) \notin s(r(t(Q)))$.

7. Show that the symmetric closure of the union of two relations is the union of their symmetric closures.

Answer: The symmetric closure of a relation R is $s(R) = R \cup R^{-1} = \{(a,b) | (a,b) \in R \lor (b,a) \in R\}$

The union of the symmetric closures of two relations R, S is:

$$s(R) \cup s(S) = \{(a,b) | (a,b) \in R \lor (b,a) \in R \lor (a,b) \in S \lor (b,a) \in S\}$$

The symmetric clusure of the union of S and R is

$$s(R \cup S) = s(\{(a,b)|(a,b) \in R \lor (a,b) \in S\} = \{(a,b)|(a,b) \in R \lor (a,b) \in S \lor (b,a) \in R \lor (b,a) \in S\}$$

We see that $s(R \cup S) = s(R) \cup s(S)$.

- 8. Let $S = \{1, 2, 3, 4\}$. With respect to the lexicographic order based on the usual less than relation,
 - (a) find all pairs in $S \times S$ less than (2,3)

Answer:
$$\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2)\}$$

(b) find all pairs in $S \times S$ greater than (3,1)

Answer:
$$\{(3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)\}$$

(c) draw the Hasse diagram of the poset $(S \times S, \preceq)$.

Answer:

4