

Trabajo práctico Nº1

• Autores:

- Manuel León Parfait Leg. (Coordinador)
- Marcos Raúl Gatica Leg. 402006 (Operador)
- Valentino Rao Leg. (Documentador)
- **Curso:** 3R1
- Asignatura: Dispositivos Electrónicos.
- **Institución:** Universidad Tecnológica Nacional Facultad Regional de Córdoba.

<u>Índice</u>

1.	Actividad 1	1
	1.1. Calculo de corrientes	1
2.	Actividad 2 2.1. Simulación de circuito	1
3.	Actividad 3 3.1. Medición de corrientes	1
4.	Actividad 4 4.1. Simulación de ondas	1
5.	Actividad 4 5.1. Medición de ondas	1
6.	Actividad práctica II	2
7.	Actividad práctica III 7.1. Procedimiento del armado del circuito y mediciones	2 2
8.	Extra: mediciones con osciloscopio	2
9	Conclusión	2

1. Actividad 1

1.1. Calculo de corrientes

Para el circuito de la figura se tiene que calcular las corrientes I_1 , I_2 e I_3 en función de la corriente total I_T . Para esto se utilizara la ley de Ohm y la ley de Kirchhoff.

Los Valores son los siguientes:

- $V_S = 10V$
- $\blacksquare R_1 = 10k\Omega$
- $R_2 = 4.7k\Omega$
- $R_3 = 3.3k\Omega$

Los calculos se realizan de la siguiente manera:

$$I_T = \frac{V_S}{R_1 + R_2 + R_3}$$

$$I_1 = \frac{V_S}{R_1}$$

$$I_2 = \frac{V_S}{R_2}$$

$$I_3 = \frac{V_S}{R_3}$$

	V_S	R_1	R_2	R_3
Tensión				
Corriente				

2. Actividad 2

2.1. Simulación de circuito

Para la simulación se utilizara el software *Ltspice*, version 24.1.6, acontinuación se muestra el circuito simulado:

3. Actividad 3

3.1. Medición de corrientes

Para la medición de las corrientes se utilizara un multimetro digital (*Marca:*, *Modelo:*, *Nro de serie:*), el cual se conectara en serie con el circuito. Acontinuación se

muestran las mediciones realizadas, junto con imagenes del laboratorio y de como se realizaron las mediciones

	V_S	R_1	R_2	R_3
Tensión				
Corriente				

4. Actividad 4

4.1. Simulación de ondas

Para la simulación de ondas se utilizara el software *LTspice*, version 24.1.6, acontinuación se muestra el circuito simulado con una fuente de corriente alterna y una onda senoidal.

5. Actividad 4

5.1. Medición de ondas

Para la medición de las ondas se utilizara un osciloscopio (*Marca:*, *Modelo:*, *Nro de serie:*), el cual se conectara en paralelo con el circuito. Acontinuación se muestran las mediciones realizadas, junto con imagenes del laboratorio y de como se realizaron las mediciones

6. Actividad práctica II

Se utilizará el simulador LTspice para corroborar los cálculos realizados en la actividad práctica I.

Información del software y el equipo

■ Sistema base: GNU/Arch Linux x86 x64

■ **Versión de LTspice:** 24.1.6 x Wine

■ Persona a cargo: el operador.

L'Ispice es un software gratuito de simulación SPICE (Simulation Program with Integrated Circuits Emphasis) propiedad del fabricante de circuitos integrados fabricante.

Su elección fue debido a su facilidad de instalación y consumo de recursos, además de que es un software recomendado por la cátedra de la asignatura.

Circuito en el LTspice

Output del simulador

7. Actividad práctica III

Se conformó un circuito en protoboard, aprovechando que este ya fue analizado y simulado. El objetivo de esta sección es verificar las mediciones calculadas usando un multímetro.

Información del instrumento de medición

- Fabricante:
- Modelo:
- Serie:

7.1. Procedimiento del armado del circuito y mediciones

- I. Armar en protoboard el circuito de referencia:
- II. Ajustar la tensión de la fuente de alimentación a la tensión especificada:
- III. Medir las tensiones de todos los elementos del circuito:
- IV. Medición de los resistores del circuito:

Resistores	Valor Nominal $[\Omega]$	Valor Real [Ω]
R_1	$10K\Omega$	
R_2	$4,7K\Omega$	
R_3	$3,3K\Omega$	

V. Comparación con las magnitudes calculadas y las simuladas:

Magnitud	Concepto	V_S	R_1	R_2	R_3
	Análisis				
Tensión	Simulación				
	Medición				
	Análisis				
Corriente	Simulación				
	Medición				

8. Extra: mediciones con osciloscopio

9. Conclusión