title: "swiss" author: "Juan Manuel Cabrera" date: "2023-08-09" output: pdf_document: latex_engine: xelatex —

Objetivo del ejercicio

El objetivo del ejercicio es buscar un modelo que explique la variable fertiliy a partir de las otras variables.

Librerias

```
library(ggplot2)
library(MASS)
library(ppcor)
library(GGally)
## Registered S3 method overwritten by 'GGally':
    method from
##
##
     +.gg ggplot2
library(relaimpo)
## Loading required package: boot
## Loading required package: survey
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:boot':
##
##
       aml
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
##
       dotchart
## Loading required package: mitools
## This is the global version of package relaimpo.
## If you are a non-US user, a version with the interesting additional metric pmvd is available
## from Ulrike Groempings web site at prof.beuth-hochschule.de/groemping.
```

library(car)

```
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:boot':
##
## logit
```

1. Carga dataframe

```
data <- swiss
attach(data)
data</pre>
```

##		Fortility	A mm i au 7 + 11 ma	Eveninetien	Education	Cotholia
##	Courtelary	80.2	17.0	Examination 15	Education 12	9.96
##	Delemont	83.1	45.1	6	9	84.84
	Franches-Mnt	92.5	39.7	5	5	93.40
	Moutier	85.8	36.5	12	7	33.77
	Neuveville	76.9	43.5	17	15	5.16
	Porrentruy	76.1	35.3	9	7	90.57
	Broye	83.8	70.2	16	7	92.85
##	Glane	92.4	67.8	14	8	97.16
##	Gruyere	82.4	53.3	12	7	97.10
##	Sarine	82.9	45.2	16	13	91.38
##	Veveyse	87.1	64.5	14	6	98.61
##	Aigle	64.1	62.0	21	12	8.52
##	Aubonne	66.9	67.5	14	7	2.27
##	Avenches	68.9	60.7	19	12	4.43
	Cossonay	61.7	69.3	22	5	2.82
	Echallens	68.3	72.6	18	2	24.20
	Grandson	71.7	34.0	17	8	3.30
##	Lausanne	55.7	19.4	26	28	12.11
##	La Vallee	54.3	15.2	31	20	2.15
##	Lavaux	65.1	73.0	19	9	2.84
##	Morges	65.5	59.8	22	10	5.23
	Moudon	65.0	55.1	14	3	4.52
##	Nyone	56.6	50.9	22	12	15.14
##	Orbe	57.4	54.1	20	6	4.20
##	Oron	72.5	71.2	12	1	2.40
##	Payerne	74.2	58.1	14	8	5.23
	Paysd'enhaut	72.0	63.5	6	3	2.56
	Rolle	60.5	60.8	16	10	7.72
##	Vevey	58.3	26.8	25	19	18.46
##	Yverdon	65.4	49.5	15	8	6.10
##	Conthey	75.5	85.9	3	2	99.71
	Entremont	69.3	84.9	7	6	99.68
##	Herens	77.3	89.7	5	2	100.00
##	Martigwy	70.5	78.2	12	6	98.96

##	Monthey	79.4	64.9	7	3	98.22
##	St Maurice	65.0	75.9	9	9	99.06
##	Sierre	92.2	84.6	3	3	99.46
##	Sion	79.3	63.1	13	13	96.83
##	Boudry	70.4	38.4	26	12	5.62
##	La Chauxdfnd	65.7	7.7	29	11	13.79
##	Le Locle	72.7	16.7	22	13	11.22
##	Neuchatel	64.4	17.6	35	32	16.92
	Val de Ruz	77.6	37.6	15	7	4.97
	ValdeTravers	67.6	18.7	25	7	8.65
	V. De Geneve	35.0	1.2	37	53	42.34
	Rive Droite	44.7	46.6	16	29	50.43
	Rive Gauche	42.8	27.7	22	29	58.33
##	nive Gauche			22	29	50.55
	Q+ - 1	Infant.Mortality				
	Courtelary	22.2				
	Delemont	22.2				
	Franches-Mnt	20.2				
	Moutier	20.3				
##	Neuveville	20.6				
##	Porrentruy	26.6				
##	Broye	23.6				
##	Glane	24.9				
##	Gruyere	21.0				
##	Sarine	24.4				
##	Veveyse	24.5				
	Aigle	16.5				
	Aubonne	19.1				
##	Avenches	22.7				
	Cossonay	18.7				
	Echallens	21.2				
	Grandson	20.0				
	Lausanne	20.2				
	La Vallee	10.8				
	Lavaux	20.0				
	Morges	18.0				
	Moudon	22.4				
	Nyone	16.7				
	Orbe	15.3				
	Oron	21.0				
	Payerne	23.8				
	Paysd'enhaut	18.0				
	Rolle	16.3				
	Vevey	20.9				
##	Yverdon	22.5				
	Conthey	15.1				
##	Entremont	19.8				
##	Herens	18.3				
##	Martigwy	19.4				
##	Monthey	20.2				
	St Maurice	17.8				
	Sierre	16.3				
	Sion	18.1				
	Boudry	20.3				
	La Chauxdfnd	20.5				
	_a onanama	20.0				

```
## Le Locle 18.9
## Neuchatel 23.0
## Val de Ruz 20.0
## ValdeTravers 19.5
## V. De Geneve 18.0
## Rive Droite 18.2
## Rive Gauche 19.3
```

2. Análisis de los datos

str(data)

El dataset está formado por 47 observaciones y 6 variables.

No es necesario hacer alguna transformación en los tipos de variable.

2.1. Comprobamos si existen datos vacios

```
sum(is.na(data))
```

[1] O

No se observan datos vacios.

2.2. Visualizar los datos

plot(data)

1.3. Análisis Shapiro-Wilks

A continuación se comprueba si los datos están normalizados con el test Shapiro-Wilk.

shapiro.test(Agriculture)

```
##
## Shapiro-Wilk normality test
##
## data: Agriculture
## W = 0.96643, p-value = 0.193
```

Resultado: p-value > 0.05, rechazamos la hipótesis nula y aceptamos que existe normalidad con el 95% de confianza.

shapiro.test(Examination)

```
##
## Shapiro-Wilk normality test
##
## data: Examination
## W = 0.96962, p-value = 0.2563
```

Resultado: p-value > 0.05, existe normalidad.

shapiro.test(Education)

```
##
## Shapiro-Wilk normality test
##
## data: Education
## W = 0.7482, p-value = 1.312e-07
```

Resultado: p-value < 0.05, aceptamos la hipótesis nula, rechazamos normalidad.

```
shapiro.test(Catholic)
```

```
##
## Shapiro-Wilk normality test
##
## data: Catholic
## W = 0.7463, p-value = 1.205e-07
```

Resultado: p-value < 0.05, rechazamos normalidad.

```
shapiro.test(Infant.Mortality)
```

```
##
## Shapiro-Wilk normality test
##
## data: Infant.Mortality
## W = 0.97762, p-value = 0.4978
```

p-value = 0.05, aceptamos normalidad en los datos.

2.3. Correlación de Spearman

Analizamos la correlación entre las variables del dataframe.

```
cor(data, method='spearman')
```

```
##
                    Fertility Agriculture Examination
                                                       Education
                                                                    Catholic
## Fertility
                    1.0000000 0.2426643 -0.66090300 -0.44325769 0.41364556
## Agriculture
                    0.2426643 1.0000000 -0.59885994 -0.65046381
                                                                  0.28868781
                   -0.6609030 -0.5988599 1.00000000 0.67460383 -0.47505753
## Examination
## Education
                   -0.4432577 -0.6504638 0.67460383 1.00000000 -0.14441631
## Catholic
                    0.4136456
                               0.2886878 -0.47505753 -0.14441631 1.00000000
## Infant.Mortality 0.4371367 -0.1521287 -0.05915436 -0.01898137 0.06611714
##
                   Infant.Mortality
## Fertility
                         0.43713670
## Agriculture
                        -0.15212866
                        -0.05915436
## Examination
## Education
                        -0.01898137
## Catholic
                        0.06611714
## Infant.Mortality
                        1.00000000
```

Se observan que existen correlaciones entre varias variables, aquellas correlaciones más significativas son las que se muestran en la siguiente tabla:

Variable 1	Variable 2	Correlación
Examination	Agriculture	-0.5989
Examination	Eduaction	0.6746
Examination	Catholic	-0.4751
Education	Agriculture	-0.6504

No se ha incluido las correlaciones con la variable Fertility ya que será nuestra variable independiente.

A continuación se realizará la prueba de hipótesis para cada correlación de la tabla anterior.

```
cor.test(Examination, Agriculture, methos='spearman')
```

```
##
## Pearson's product-moment correlation
##
## data: Examination and Agriculture
## t = -6.3341, df = 45, p-value = 9.952e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8133545 -0.4974484
## sample estimates:
## cor
## -0.6865422
```

S(45) = -6.3341, p<0.001, rs=-0.68654

Con un nivel de significación del 95% se estima que existe una correlación entre la variable Examination y Agricultura, esta correlación es negativa y fuerte.

```
cor.test(Examination, Education , methos='spearman')
```

```
##
## Pearson's product-moment correlation
##
## data: Examination and Education
## t = 6.5463, df = 45, p-value = 4.811e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5144218 \ 0.8209342
## sample estimates:
## cor
## 0.6984153
S(45) = 6.546, p<0.01, rs=0.6984
```

Existe correlación positiva fuerte entre Examination y Education.

```
cor.test(Examination, Catholic, method='spearman')
## Warning in cor.test.default(Examination, Catholic, method = "spearman"): Cannot
## compute exact p-value with ties
##
##
    Spearman's rank correlation rho
## data: Examination and Catholic
## S = 25513, p-value = 0.0007403
\mbox{\tt \#\#} alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
          rho
## -0.4750575
S(45) = 25513, p<0.01, rs=-0.471
Existe correlación negativa y leve entre Examination y Catholic.
cor.test(Education, Agriculture, method = 'spearman')
## Warning in cor.test.default(Education, Agriculture, method = "spearman"):
## Cannot compute exact p-value with ties
##
    Spearman's rank correlation rho
##
##
## data: Education and Agriculture
## S = 28546, p-value = 7.457e-07
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
          rho
## -0.6504638
S(45) = 28546, p<0.01, rs=-0.6504
Existe correlación negativa fuerte entre Education y Agriculture.
ggpairs(data[,-1], progress=F)
```


A continuación y a partir del gráfico anterior se analiza aquellos conjuntos de variables con una correlación superior a 0.5:

- Agriculture vs Examination: se observa una correlación negativa fuerte (corr: -0.687).
- Education vs Examination: se observa una correlación positiva fuerte (corr. 0.698).
- Education vs Catholic: se observa una correlación negativa débil (corr: -0.573).

2. Modelo lineal

Se crea un modelo sin iteraccion.

```
model <- lm(Fertility ~ Agriculture + Examination + Education + Catholic)
summary(model)</pre>
```

```
##
## Call:
##
  lm(formula = Fertility ~ Agriculture + Examination + Education +
       Catholic)
##
##
##
  Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -15.7813 -6.3308
                       0.8113
                                 5.7205
                                         15.5569
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 91.05542
                            6.94881 13.104 < 2e-16 ***
```

```
## Agriculture -0.22065
                          0.07360 -2.998 0.00455 **
## Examination -0.26058
                          0.27411
                                   -0.951 0.34722
## Education
             -0.96161
                          0.19455
                                  -4.943 1.28e-05 ***
                          0.03727
                                    3.339 0.00177 **
## Catholic
               0.12442
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.736 on 42 degrees of freedom
## Multiple R-squared: 0.6498, Adjusted R-squared: 0.6164
## F-statistic: 19.48 on 4 and 42 DF, p-value: 3.95e-09
```

2.1. Función matemática

La función matemática que define el modelo es:

Fertility = $\beta_0 + \beta_1 \cdot Agriculture + \beta_2 \cdot Examination + \beta_3 \cdot Education + \beta_4 \cdot Catholic + \beta_5 \cdot Infant.Mortality$ Y sustituyendo los predictores tenemos:

 $Fertility = 66.915 - 0.172 \cdot Agriculture - 0.258 \cdot Examination - 0.871 \cdot Education + 0.104 \cdot Catholic + 1.077 \cdot Infant. Mortality$

2.2. Análisis Bondad de Ajuste

Prueba F global:

• F(5,41) = 19.76, p<0.001

Como p<0.05 se rechaza la hipótesis nula, por lo que al menos uno de los predictores está relacionado con la respuesta.

Error estándar residual:

RSE = 7.165, existe un error de 7.165 en la media estandarizada de fertilidad.

```
sigma(model)/mean(Fertility)*100
```

```
## [1] 11.02957
```

La tasa de error es del 10.22%.

Coeficiente de determinación:

R2 ajustado=67.1%

El 67.1% de los datos pueden ser explicados por el modelo.

2.3. Coeficientes

Las variables que contribuyen al modelo son aquellos donde se rechaza la hipótesis nula (p<0.05):

- Intercepto (p<0.001)
- Education (p<0.001)
- Agriculture (p<0.01)
- Catholic (p<0.01)

La variable Examination (p>0.05) por lo que se acepta la hipótesis nula, es decir, esta variable no contribuye de manera significativa al modelo.

2.4. Generalización del modelo

Multicolinealidad

```
vif(model)
## Agriculture Examination
                              Education
                                           Catholic
      2.147410
                  3.675372
                               2.689400
                                            1.856475
##
```

Ninguno de los 3 valores es mayor que 5, por lo que la multicolinealidad no es un problema.

Importancia de los predictores

```
crlm <- calc.relimp(model,</pre>
                   type=c("lmg"),
                   rela=T)
crlm
## Response variable: Fertility
## Total response variance: 156.0425
## Analysis based on 47 observations
##
## 4 Regressors:
## Agriculture Examination Education Catholic
## Proportion of variance explained by model: 64.98%
## Metrics are normalized to sum to 100% (rela=TRUE).
##
## Relative importance metrics:
##
##
## Agriculture 0.1014550
## Examination 0.2780238
## Education
              0.4319655
## Catholic
              0.1885556
##
## Average coefficients for different model sizes:
##
##
                      1X
                                2Xs
                                            3Xs
                                                       4Xs
## Agriculture 0.1942017 -0.01698147 -0.15945704 -0.2206455
## Examination -1.0113173 -0.87947769 -0.64052222 -0.2605824
## Education
             -0.8623503 -0.76351628 -0.83499925 -0.9616124
## Catholic
```

A continuación se muestra la importancia de cada variable:

Variable	Importancia(%)
Agriculture	10,14
Examintaion	27.8
Education	43.19
Catholic	18.85

Se observa que la variable más influyente es la educación, y la menos influyente agricultura.

Intervalos de confianza

confint(model)

```
## 2.5 % 97.5 %

## (Intercept) 77.03215094 105.07869687

## Agriculture -0.36917650 -0.07211452

## Examination -0.81375792 0.29259312

## Education -1.35422113 -0.56900364

## Catholic 0.04921149 0.19962537
```

Valores de confianza:

Predictores	Tramo
Intercepto	[77.032 : 105.079]
Agriculture	[-0.369:-0.0721]
Examination	[-0.814:0.293]
Education	[-1.354:-0.569]
Catholic	[0.049:0.2]

Supuestos del modelo

```
par(mfrow = c(2,2))
plot(model)
```


Residuals vs fitted: se observa que los residuos no presentan tendencia, por lo que podríamos decir que existe linealidad.

Q-Q Residuals: las observaciones se encuentran a lo largo de la línea diagonal, por lo que podemos asumir que **existe el supuesto de normalidad**.

Scale-Location: se observa que se cumple el supuesto de homocedasticidad.

Residuals vs Leverage: no hay valores influyentes.

3. Predicciones

3.1. Predicciones con valores existentes

Seleccionamos de forma aleatoria valores existente en el dataframe

```
new_data <- data[c(3,8,21,26,42),]
```

Realizamos predicciones

```
predict_data <- predict(model, new_data[,-1])
predict_data</pre>
```

```
## Franches-Mnt Glane Morges Payerne Neuchatel
## 87.80550 76.84310 63.16259 67.54558 49.38524
```

Ahora vamos a ver los residuos entre los valores reales y predichos

```
data[c(3,8,21,26,42), 1] - predict_data
```

```
## Franches-Mnt Glane Morges Payerne Neuchatel
## 4.694495 15.556900 2.337406 6.654425 15.014757
```

Se observa que los valores que más se alejan son Glane (15.56) y Neuchatel (15.01).

```
ggplot(data,aes(x=Education,y=Fertility))+
    geom_point()+
    geom_smooth(method="lm")+
    theme_minimal()+
    geom_point(data = new_data, mapping = aes(x=new_data$Education, y=new_data$Fertility), color='green')
    geom_point(data = new_data, mapping = aes(x=new_data$Education, y=predict_data), color='red')
```

```
## 'geom_smooth()' using formula = 'y ~ x'
```

