PTP4 Zusammenfassung Theoretische Quantenmechanik Professor Matthias Bartelmann

Sommersemester 2017 Heidelberg

Ende des 19. Jahrhunderts beschrieb Physik ueberzeugend die bekannten Wechselwirkungen:

- Graviation in klassischer Mechanik durch Newton, Lagrange, Hamilton
- Elektromagnetismus durch Maxwell'sche Gleichungen
- Thermodynamik

Ungeklaerte Fragen:

- Widerspruch Galilei-Invarianz in kl. Mechanik (Geschwindigkeiten addiert) und Maxwell Elektrodynamik (Lichtgeschwindigkeit Obergrenze) aufgeloest durch Lorentz Invarianz in Einsteins spezieller Relativitätstheorie
- Stabilitaet der Atome (im Rutherford Modell) nicht erklärbar
- diskrete Spektrallinien nicht erklärbar
- Schwarzkörperstrahlung nicht beschreibbar (UV-Katastrophe)

Hohlraumstrahlung: Stehende Wellen im Hohlraum: Moden Es sind $\frac{L}{\lambda}$ Wellen auf Strecke L möglich

Anzahl abschätzen:

Kugel $(V_{Kugel} = \frac{4}{3} * \pi * r^3)$

Zwei Polarisationsrichtungen: E und B Feld bringt Faktor zwei

Radius ist $\frac{L}{\lambda}$ $N(\lambda) = 2 * \frac{4}{3} * \pi * (\frac{L}{\lambda})^3$

- Relativistische Energie-Impuls-Beziehung: $E = \sqrt{p^2c^2 + m^2c^4}$
- Dispersions relation: $k = \frac{\omega}{c}$

- Kreisfrequenz: $\omega = 2 * \pi * \nu$
- Wellenlänge: $\lambda = \frac{2*\pi}{k}$

Freie Schrödingergleichung: $i\hbar \frac{\partial}{\partial t} \psi(t, \vec{x}) = -\frac{\hbar^2}{2m} \vec{\nabla}^2 \psi(t, \vec{x})$

Energieoperator: $\hat{E} = i\hbar \frac{\partial}{\partial t}$

Kommutator: $[\hat{A}, \hat{B}] := \hat{A}\hat{B} - \hat{B}\hat{A}$

Einsoperator: $\hat{I} = \sum_{n} |a_{n}\rangle \langle a_{n}| + \int |a\rangle \langle a| da$

Dichteoperator: $\hat{\rho} = \sum_{n} p_n |n\rangle \langle n|$

Zeitentwicklungsoperator: $\hat{U}(t, t_0) | \psi(t_0) \rangle = | \psi(t) \rangle$

Zeitentwicklungsoperator: $\hat{U}(t) = exp(-\frac{i}{\hbar}\hat{H}t)$

Heisenberg-Gleichung: $i\hbar \frac{d}{dt}\hat{A}_{H}=\left[\hat{A}_{H},\hat{H}_{H}\right]+i\hbar\left(\partial_{t}\hat{A}\right)_{H}$

Zeitabhängiger Operator: $\hat{A}_H(t) := \hat{U}^{-1}(t,t_0) \hat{A} \hat{U}(t,t_0)$

Translations operator: $\hat{T}_{\vec{a}} = \exp\left(-\frac{i}{\hbar}\vec{a}\cdot\hat{\vec{p}}\right)$

Dyson Reihe: $\hat{U}(t,t_0) = Texp\left(-\frac{i}{\hbar}\int_{t_0}^t \hat{H}(t')dt'\right)$

Wechselwirkungsbild: $i\hbar\frac{d}{dt}\,|\psi(t)\rangle_I=\hat{V}_I\,|\psi(t)\rangle_I$

Störoperator: $\hat{V}_I(t) := \hat{U}_0^{-1} \hat{V} \hat{U}_0$

6 Axiome

- Zustände werden durch repräsentiert durch Strahlen im Hilbertraum
- Observablen entsprechen linearen selbstadjungierten Operatoren
- Eigenwerte sind mögliche Messwerte
- Entwicklungskoeffizientenquadrate (Zustände auf Basisvektoren projiziert) sind Wahrscheinlichkeiten für Messung
- Zeitentwicklung durch Schrödingergleichung
- Durch den Messprozess wird der Zustandsvektor identisch mit einem der Eigenbasisvektoren des Operators welcher der Messung entspricht

Rabi-Oszillationen

Störmatrix

$$\begin{aligned} &Ortsoperator \ \hat{x} = \left\{ \begin{array}{ll} x & (Ortsdarstellung) \\ i\hbar\nabla_p & (Impulsdarstellung) \end{array} \right. \\ &Impulsoperator \ \hat{p} = \left\{ \begin{array}{ll} -i\hbar\nabla_x & (Ortsdarstellung) \\ p & (Impulsdarstellung) \end{array} \right. \end{aligned}$$

$$Impulsoperator \ \hat{p} = \begin{cases} -i\hbar \nabla_x & (Ortsdarstellung) \\ p & (Impulsdarstellung) \end{cases}$$

Kommutator Ort & Impuls: $[\hat{x}_i, \hat{p}_j] = -i\hbar [x_i, \partial_j] = i\hbar \delta_{ij}$

Zeitunabhängige Schrödinger-Gleichung: $\hat{H}\phi(x) = E\phi(x)$

Randbedingungen: stetiges Potential: zweimal diffbare WF

HOC Absteigeoperator: $\hat{a} := \frac{1}{\sqrt{2}}(u + \partial_u)$

HOC Aufsteigeoperator: $\hat{a}^{\dagger} := \frac{1}{\sqrt{2}}(u - \partial_u)$

HOC Besetzungszahloperator $\hat{N} := \hat{a}^{\dagger} \hat{a}$

HOC Hamilton: $\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\right)$

HOC Energie
eigenwerte: $E_n=\hbar\omega\left(n+\frac{1}{2}\right)$

HOC Energie
eigenzustände: $|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^\dagger)^n \, |0\rangle$

Exponential funktion hoch Wirkung

Pfadintegral

Paritätsoperator: $\hat{P}\psi(\vec{x}) = \psi(-\vec{x})$

Translationsoperator

Kugelflächenfunktionen

Zeitumkehroperator $\hat{T}\psi(\vec{x},t) = \psi^*(\vec{x},-t)$

Wasserstoffatom

Drehimpulse:

- $J^2 |j, j_3\rangle = \hbar^2 j(j+1) |j, j_3\rangle$
- $J_3 |j, j_3\rangle = \hbar j_3 |j, j_3\rangle$

•
$$J_{\pm} |j, j_3\rangle = \hbar \sqrt{j(j+1) - j_3(j_3 \pm 1)} |j, j_3 \pm 1\rangle$$

Leiteroperatoren

Radiale Eigenfunktion des Wasserstoffatoms

Hamilton im elektromagnetischen Feld

Ahanorov-Bohm-Effekt

Zeeman-Effekt
$$\Delta E = -\frac{m\hbar\omega_B}{2} = B\mu_B m$$

Spinzustände

Spinoren

Spinpräzession $|s(t)\rangle = exp(i\omega_L t\sigma_3) |s(0)\rangle$

Larmorfrequenz $\omega_L := \frac{g}{2\hbar} \mu_B B$

Paschen-Back-Effekt

Störung

Linearer Stark-Effekt

Legendre Transformation $\mathcal{L}(q,\dot{q},t) = p\dot{q} - H(q,p,t)$

Wirkung
$$S = \oint \mathcal{L}dt = \oint pdq - Et = S_0 - Et$$

Quantisierungsregel: $S_0 = n \cdot h$

Fermis Goldene Regel
$$\Gamma=\frac{2\pi}{\hbar}\left|\langle\psi_m^0|\,\hat{H}^{(1)}\,|\psi_n^{(0)}\rangle\right|^2\rho(E_n)$$

Virialsatz
$$2 \langle T \rangle = \left\langle \hat{x} \cdot \vec{\nabla} V(\hat{x}) \right\rangle$$

Virialsatz für homogenes Potential vom Grad k ist $2\left\langle T\right\rangle =k\left\langle V\right\rangle$

Gauss-Integral
$$\int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$$

Pauliverbot

Variationsverfahren

WKB Näherung

 ${\bf Formfaktor}$

Optisches Theorem