depmixS4

A flexible package to estimate mixture and hidden Markov models

Maarten Speekenbrink (m.speekenbrink@ucl.ac.uk) and Ingmar Visser LondonR, 10 September 2013

DepmixS4

- · An R package to estimate **dep**endent **mix**ture models
- Written by Ingmar Visser (University of Amsterdam) and Maarten Speekenbrink (University College London)
- First version (0.1.0) was released on CRAN on 26-Mar-2008. The current development version is 1.3.0 (available on RForge and soon on CRAN).

The objective of the package is to provide a flexible implementation of mixture and hidden Markov models. Mixture components are (mostly) implemented as generalized linear models. Using S4, users can easily define their own observation models.

Mixture models

In a *mixture model*, each observation is assumed to be drawn from one of a number of distinct subpopulations (component distributions). Which subpopulation an observation is drawn from is not directly observable and represented by a latent state.

A mixture distribution over observations Y_t , t = 1, ..., T, is defined as

$$p(Y_t = y) = \sum_{i=1}^{N} p(Y_t = y | S_t = i) P(S_t = i)$$

where

- $S_t \in \{1, ..., N\}$ denotes the latent state (a.k.a. "class", "component") of observation t
- $P(S_t = i)$ denotes the probability that the latent state at t equals i
- $p(Y_t = y | S_t = i)$ denotes the density of observation Y_t (evaluated at y), conditional upon the latent state being $S_t = i$; i.e., it is the value of the i-th component density (evaluated at y).

$$p(Y_t) = \sum_{i=1}^{N} p(Y_t | S_t = i) P(S_t = i)$$

$$p(Y_t) = \sum_{i=1}^{N} p(Y_t | S_t = i) P(S_t = i)$$

$$p(Y_t|S_t = 1) = N(5.48, 0.13)$$

$$p(Y_t) = \sum_{i=1}^{N} p(Y_t | S_t = i) P(S_t = i)$$

$$p(Y_t|S_t = 1) = N(5.48, 0.13)$$

$$P(S_t = 1) = 0.33$$

$$p(Y_t) = \sum_{i=1}^{N} p(Y_t | S_t = i) P(S_t = i)$$

$$p(Y_t|S_t = 1) = N(5.48, 0.13)$$

$$P(S_t = 1) = 0.33$$

$$p(Y_t|S_t = 2) = N(6.31, 0.32)$$

$$p(Y_t) = \sum_{i=1}^{N} p(Y_t | S_t = i) P(S_t = i)$$

$$p(Y_t|S_t = 1) = N(5.48, 0.13)$$

$$P(S_t = 1) = 0.33$$

$$p(Y_t|S_t = 2) = N(6.31, 0.32)$$

$$P(S_t = 2) = 0.67$$

$$p(Y_t) = \sum_{i=1}^{N} p(Y_t | S_t = i) P(S_t = i)$$

Model components:

$$p(Y_t|S_t = 1) = N(5.48, 0.13)$$

$$P(S_t = 1) = 0.33$$

$$p(Y_t|S_t = 2) = N(6.31, 0.32)$$

$$P(S_t = 2) = 0.67$$

 $p(Y_t)$

Dependent mixture models

In a *dependent mixture model*, states are assumed to be statistically dependent. The process underlying state transitions is a homogenous first-order Markov process. This process is completely defined by the initial state probabilities

$$P(S_1 = 1), \dots, P(S_1 = N)$$

and the state transition matrix

$$\begin{cases} P(S_t = 1 | S_{t-1} = 1) & P(S_t = 2 | S_{t-1} = 1) & \cdots & P(S_t = N | S_{t-1} = 1) \\ P(S_t = 1 | S_{t-1} = 2) & P(S_t = 2 | S_{t-1} = 2) & \cdots & P(S_t = N | S_{t-1} = 2) \\ & \vdots & & \vdots & \ddots & \vdots \\ P(S_t = 1 | S_{t-1} = N) & P(S_t = 2 | S_{t-1} = N) & \cdots & P(S_t = N | S_{t-1} = N) \end{cases}$$

Implementation in depmixS4

Models are estimated using Expectation-Maximization (EM) or numerical optimization (when parameters are constrained). The structure of a dependent mixture model allows it to be divided into three submodels:

- · The prior model: $P(S_1|x, \theta_{\text{prior}})$
- The transition model: $P(S_t|x, S_{t-1}, \theta_{\text{trans}})$
- · The response model: $P(Y_t|S_t, x, \theta_{\text{resp}})$

The prior and transition models are implemented as multinomial regression models, and the response models as generalized linear models. Within the EM algorithm, the maximization-step can be performed by weighted maximum likelihood (as in e.g., glm.fit()).

Using depmixS4

Mixture models can be constructed using the mix() function, and hidden Markov models with the depmix() function. The depmix() function takes the following arguments:

- 1. response: a formula specifying the response models (univariate) or a list with formulae (multivariate)
- 2. nstates: the number of states/components
- 3. data: the data frame containing the variables in the response models
- 4. family: the family of the response models (as in the glm function) or a list with families (multivariate)
- 5. ntimes: a vector with the length of each time-series in the data.

More general models can be constructed with the makeDepmix() function. Models are estimated by calling the fit() function on a constructed model.

Example 1: Climate change

Climate change

Data from the Water Corporation of Western Australia containing the yearly inflow in water catchment dams around Perth, South-west Australia from 1911 through to 2012.

Climate change

- 1. Is there a trend in these data?
- 2. Are there sudden shifts in the catchment amounts?

Typical analyses: linear models

```
lm1 <- lm(water ~ 1, data = perth)
lmyr <- lm(water ~ yr, data = perth)
lmyr2 <- lm(water ~ yr + I(yr^2), data = perth)
anova(lm1, lmyr, lmyr2)

Analysis of Variance Table

Model 1: water ~ 1
Model 2: water ~ yr
Model 3: water ~ yr + I(yr^2)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1    101 3811695
2    100 3257024 1    554671 18.7 3.7e-05 ***
3    99 2939677 1    317347 10.7    0.0015 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(both linear and quadratic trends are significant)

Typical analyses: linear models

Typical analyses: AR models

Typical analyses: AR models

Change point models

- 1. Assume one or more discrete change points in the data
- 2. Mean, trend, and/or other parameters (eg ar parameters) of the process may change

Can be estimated with hidden Markov models by restricting the transition matrix

Transition matrix for 1 change point

$$\begin{pmatrix} p_1 & 1 - p_1 \\ 0 & 1 \end{pmatrix}$$

Transition matrix for 2 changepoints

$$\begin{pmatrix} p_1 & 1 - p_1 & 0 \\ 0 & p_2 & 1 - p_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Transition matrix for 3 changepoints

$$\begin{pmatrix} p_1 & 1 - p_1 & 0 & 0 \\ 0 & p_2 & 1 - p_2 & 0 \\ 0 & 0 & p_3 & 1 - p_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Et cetera

In HMM literature these models are also called left-right models or Bakis models

Model with 1 changepoint

In the EM algorithm, probabilities initialized as 0 or 1 remain there, so provide starting values according to change point models and all will be fine...

```
mod2 < -depmix(water \sim 1, data = perth, ns = 2, trst = c(0.9, 0.1, 0, 1), inst = c(1, 1)
    0))
set.seed(1)
fm2 <- fit(mod2, verbose = FALSE)</pre>
converged at iteration 3 with logLik: -654.5
depmixS4::summary(fm2)
Initial state probabilties model
pr1 pr2
1 0
Transition matrix
         toS1 toS2
fromS1 0.9845 0.0155
fromS2 0.0000 1.0000
Response parameters
Resp 1 : gaussian
    Rel.(Intercept) Rel.sd
St1
              337.0 204.08
St2
              141.4 76.16
```

Predicting states

Use the **posterior()** function to obtain the maximum a posteriori state sequence (column 1) and the posterior state probabilities (remaining columns).

Model with 2 changepoints

Model with 2 changepoints

```
depmixS4::summary(fm3)
Initial state probabilties model
pr1 pr2 pr3
1 0 0
Transition matrix
          toS1 toS2
                           toS3
fromS1 0.9845 0.0155 0.00000
fromS2 0.0000 0.9598 0.04018
fromS3 0.0000 0.0000 1.00000
Response parameters
Resp 1: gaussian
Rel.(Intercept) Rel.sd
St1 336.99 204.2
St2
              171.00
                      71.3
               83.49
St3
                         46.3
```

Changepoint models

The relative drought that started after 1976 is possibly related to the then occurring El Nina/El Nino event.

AR-like models with changepoints

```
mod2 < -depmix(water \sim wtmin1, data = perth[-1, ], ns = 2, trst = c(0.9, 0.1,
    0, 1), inst = c(1, 0)
set.seed(123)
fm2ar <- fit(mod2, verbose = FALSE)</pre>
for (i in 1:100) {
    tfm2ar <- fit(mod2, verbose = FALSE)
    if (logLik(tfm2ar) > logLik(fm2ar))
        fm2ar <- tfm2ar</pre>
mod3 < -depmix(water \sim wtmin1, data = perth[-1, ], ns = 3, trst = c(0.9, 0.1,
    0, 0, 0.9, 0.1, 0, 0, 1), inst = c(1, 0, 0))
set.seed(123)
fm3ar <- fit(mod3, verbose = FALSE)</pre>
for (i in 1:100) {
    try(tfm3ar <- fit(mod3, verbose = FALSE))</pre>
    if (logLik(tfm3ar) > logLik(fm3ar))
        fm3ar <- tfm3ar
```

AR-like models with changepoints

Change point in the same year as the 'ordinary' changepoint model

Model selection

		AIC	BIC
linear	lm1	1367.3819	1372.6318
	lmyr	1353.3413	1361.2163
	lmyr2	1344.8849	1355.3848
arima	ar1	1355.3371	1363.2121
	aryr	1348.9058	1359.4057
	aryr2	1343.6796	1356.8044
hmm linear	fm2	1332.82	1345.9449
	fm3	1327.9301	1348.9299
hmm ar	fm2ar	1318.7176	1337.0924
	fm3ar	1316.0646	1344.9393

Example 2: Bull and bear markets

S&P 500 returns

```
library(TTR)
# load SP500 returns
Sys.setenv(tz = "UTC")
sp500 <- getYahooData("^GSPC", start = 19500101, end = 20120909, freq = "daily")
ep <- endpoints(sp500, on = "months", k = 1)
sp500 <- sp500[ep[2:(length(ep) - 1)]]
sp500$logret <- log(sp500$Close) - lag(log(sp500$Close))
sp500 <- na.exclude(sp500)</pre>
```

S&P 500 returns

plot(sp500\$logret, main = "S&P 500 log returns")

S&P 500 log returns

Bull and bear markets?

```
mod <- depmix(logret ~ 1, nstates = 2, data = sp500)
set.seed(1)
fm2 <- fit(mod, verbose = FALSE)</pre>
converged at iteration 88 with logLik: 1348
depmixS4::summary(fm2)
Initial state probabilties model
pr1 pr2
0 1
Transition matrix
          toS1 toS2
fromS1 0.82151 0.1785
fromS2 0.03914 0.9609
Response parameters
Resp 1 : gaussian
   Rel.(Intercept) Rel.sd
           -0.01505 0.06484
St1
St2
          0.01045 0.03378
```

Classification (1)

```
tsp500 <- as.ts(sp500)
pbear <- as.ts(posterior(fm2)[, 2])
tsp(pbear) <- tsp(tsp500)
plot(cbind(tsp500[, 6], pbear), main = "Posterior probability of state 1 (volatile, negative market</pre>
```

Posterior probability of state 1 (volatile, negative markets).

Classification (2)

```
mapbear <- as.ts(posterior(fm2)[, 1] == 1)
tsp(mapbear) <- tsp(tsp500)
plot(cbind(tsp500[, 6], mapbear), main = "Maximum a posteriori state sequence")</pre>
```

Maximum a posteriori state sequence

Example 3: Speed-accuracy trade-off

Speed accuracy trade-off task

- 1. lexical decision: word or non-word
- 2. reward for speed versus accuracy changes on a trial-by-trial basis
- 3. is the trade-off discrete of gradual?

man

Speed accuracy trade-off data

Speed accuracy trade-off data

- 1. What is the relationship between Pacc, RT and accuracy?
- 2. Is the trade-off continuous or discontinuous?

Speed accuracy trade-off

Preliminaries: data bi- or multi-modal?

Speed accuracy trade-off

Preliminaries: dependence in the data?

Series speed\$rt

A simple hidden Markov model

Parameter estimates

Accounting for the effect of Pacc

Using Pacc as a covariate on the transition probabilities

Model parameters

Model parameters

```
depmixS4::summary(fmod2, which = "transition")
Transition model for state (component) 1
Model of type multinomial (mlogit), formula: ~Pacc
<environment: 0x1af6c00>
Coefficients:
           St1
                   St2
(Intercept) 0 -4.223
              0 9.134
Pacc
Probalities at zero values of the covariates.
0.9856 0.01445
Transition model for state (component) 2
Model of type multinomial (mlogit), formula: ~Pacc
<environment: 0x1af6c00>
Coefficients:
            St1
                   St2
(Intercept) 0 -3.373
Pacc
             0 15.804
Probalities at zero values of the covariates.
0.9669 0.03314
```

Transition probability function

Transition probability functions

Model checking

Autocorrelation function of the residuals of the RTs

Parameters constraints and inference

```
pars <- c(unlist(getpars(fmod2)))

# constrain the initial state probs to be 0 and 1 also constrain the
# guessing probs to be 0.5 and 0.5 (ie the probabilities of corr in state 1)
pars[1] = 0
pars[2] = 1 # this means the process will always start in state 2
pars[13] = 0.5
pars[14] = 0.5 # the corr parameters in state 1 are now both 0, corresponding the 0.5 prob mod3 <- setpars(mod2, pars)</pre>
```

Parameters constraints and inference

Parameters constraints and inference

Likelihood ratio test on the fitted models (note: as some of the parameters in mod3 are on the bound of the parameter space, the likelihood-ratio test is not exactly valid...)

```
# likelihood ratio not significant, hence fmod3 may be preferred to fmod2
llratio(fmod2, fmod3)
```

log Likelihood ratio (chi^2): 0.481 (df=2), p=0.786.