# Questions-Lois électriques-R-2023

#### ? Question 1

Question valeur numérique

Déterminer l'expression du couple {Eth ; Rth} du générateur équivalent de Thévenin entre A et B dans le circuit suivant sachant que :

 $R_1 = 100\Omega$ 

 $R_2=150\Omega$ 

 $E_1=10V$ 



# Réponse attendue

 $R_{th}$  [ 60 ; 60 ]

#### Commentaire de correction de la proposition

Rth =  $R1//R2 = R1.R2/(R1 + R2) = 60\Omega$ 

 $E_{th}$  [6;6]

#### Commentaire de correction de la proposition

I=E1/R1=10/100=0.1 A

Eth=Rth.I=60x0.1=6V

# Question 2 Question valeur numérique

Sur le circuit ci-dessous :



|                                                                                                   | Réponse attendue |
|---------------------------------------------------------------------------------------------------|------------------|
| Que vaut la tension entre les points A et B si l'interrupteur $SW_1$ est ouvert ? (résultat en V) | [9;9]            |

#### Commentaire de correction de la proposition

Que vaut la tension entre les points A et B si l'interrupteur $SW_1$  est fermé ? (résultat en V) [0;0]

## Commentaire de correction de la proposition

On considère le circuit suivant :



#### On donne :

- $egin{array}{l} \bullet \ E_1 = 10V \ \bullet \ I_1 = 100mA \ \bullet \ R_2 = 70\Omega \ \bullet \ R_3 = 180\Omega \end{array}$

|                                                                                                           | Réponse attendue |
|-----------------------------------------------------------------------------------------------------------|------------------|
| Que vaut $R_1$ ? (résultat en $\Omega$ )                                                                  | [ 100 ; 100 ]    |
| Commentaire de correction de la proposition                                                               |                  |
| R1xI1=E1 donc R1=10/0.1=100 $\Omega$                                                                      |                  |
| Que vaut $I_0$ ? Résultat en mA arrondi à l'unité.                                                        | [ 140 ; 140 ]    |
| Commentaire de correction de la proposition                                                               |                  |
| Req=(R2+R3) // R1 -> (180+70) // 100 -> Req=250*100/(350)=71.43 $\Omega$<br>E1=Req x I0 ->I0=E1/Req=140mA |                  |
| Que vaut $U_3$ entre les bornes de la résistance $R_3$ ? (résultat en V)                                  | [ 7.2 ; 7.2 ]    |

# **●** Commentaire de correction de la question

Sachant que les résistances ont des valeurs différentes et que les courants et les différences de potentielles sont non nulles, que vaut  $U_1$  ?



|   | Réponse<br>attendue |                         |
|---|---------------------|-------------------------|
| Α | ~                   | $U_1=U_3+U_4$           |
| В |                     | $U_1=-E$                |
| С |                     | $U_1=U_3-U_4$           |
| D |                     | $U_1=E+U_2$             |
| Е |                     | $U_1 = U_2 + U_3 + U_4$ |

# **●** Commentaire de correction de la question

En appliquant la loi des mailles sur la grande maille on trouve :

$$U_1 - U_3 - U_4 = 0 \Rightarrow U_1 = U_3 + U_4$$



Que vaut le courant  $I_0$  fourni par le générateur  $E_1$ ? (donner la valeur en  ${f mA}$ , sans unité)



#### Réponse attendue

[ 300 ; 300 ]

## Commentaire de correction de la proposition

On sait que  $I_4$ = 400mA=  $I_3$ + $I_2$ 

Donc  $I_2$ =200

Sachant que  $I_2 = I_1 = +I_5$  et  $I_5 =$ 100 mA alors on obtient  $I_1 =$ 100mA.

Au final  $I_0$ = 300 mA

**?** Question 6 Question valeur numérique

On considère le circuit suivant :



On donne:

- $ullet I_4=7mA$
- $egin{array}{l} \bullet \ R_1 = R_2 = 570\Omega \ \bullet \ U_3 = 6V \ \bullet \ E = 9V \end{array}$

|                                                                          | Réponse attendue |
|--------------------------------------------------------------------------|------------------|
| Que vaut la résistance $R_4$ ? (résultat arrondi à l'unité en $\Omega$ ) | [ 857 ; 858 ]    |

Déterminer l'expression de U4 sachant que :

$$R_1 = R_2 = R_4 = R$$

$$R_3 = 6R$$



|   | Réponse  |                     |
|---|----------|---------------------|
|   | attendue |                     |
| Α | <b>V</b> | $U_4=rac{2}{3}RI$  |
| В |          | $U_4=rac{3R}{2}.I$ |
| С |          | $U_4=R.I$           |
| D |          | $U_4=3R.I$          |
| Е |          | $U_4=rac{R}{2}.I$  |

#### Commentaire de correction de la question

En appliquant le pont diviseur de tension on retrouve l'expression de la tension  $U_4=rac{R_4}{R_4+R_2+R_1}U$ 

Par la suite on calcule la tension U en utilisant la loi d'Ohm. Pour cela on calcule la résistance équivalente du circuit :

$$R_{eq}=rac{R_3(R_4+R_2+R_1)}{R_1+R_2+R_3+R_4}$$
, en remplaçant par les valeurs on trouve  $R_{eq}=2R=>U=2RI$ 

On remplace U dans l'équation initiale et on trouve  $U_4=rac{2}{3}RI$ 

Soit le circuit ci-dessous



|                                                     | Réponse attendue |
|-----------------------------------------------------|------------------|
| Que vaut la résistance équivalente vue entre A et B | [0;0]            |
|                                                     |                  |

# Commentaire de correction de la proposition

## Commentaire de correction de la question

Nous avons un court-circuit entre les points A et B, donc la résistance équivalente est égale à 0.

**3** Question 9 Question valeur numérique

On considère le circuit suivant :



|                                                                                             | Réponse attendue  |
|---------------------------------------------------------------------------------------------|-------------------|
| Que vaut la résistance équivalente entre A et B si : $R_1=R_2=100\Omega \ R_3=R_4=50\Omega$ | [ 137.5 ; 137.5 ] |
| Vous donnerez le résultat en ohm au dixième près.                                           |                   |

# Commentaire de correction de la proposition

 $R2+R4=150 \Omega$ 

R3 // (R2+R4) --> Req= $(50x150)/(200)=37.5 \Omega$ 

Rtot=R1+Req=137.5  $\Omega$ 

Nous souhaitons simplifier le schéma ci-dessous (figure 1) afin d'obtenir le schéma de la figure 2. Pour cela, nous devons utiliser le théorème de Norton.

Donner l'expression du couple ( $I_N$  et  $R_N$ ) du générateur équivalent de Norton vue par entre les points A et B. Indications :

La résistance de Norton  $R_N$  s'obtient, exactement, de la même manière que la résistance de Thévenin.

Le courant  $I_N$  de Norton s'obtient en court-circuitant les point A et B. le courant  $I_N$  sera le courant qui traverse le nouveau circuit (pensez à reproduire le schéma, il y a une résistance qui sera court-circuitée et ne rentrera pas dans le calcul)



|   | Réponse<br>attendue |                                                                                                               |
|---|---------------------|---------------------------------------------------------------------------------------------------------------|
| Α | ✓                   | $\left\{ I_{N};R_{N} ight\} =\left\{ rac{E}{R_{1}+R_{3}};rac{R_{2}(R_{1}+R_{3})}{R_{1}+R_{2}+R_{3}} ight\}$ |
| В |                     | $\{I_N;R_N\} = \left\{rac{E}{R_1};rac{R_2(R_1+R_3)}{R_1+R_2+R_3} ight\}$                                    |
| С |                     | $\{I_N;R_N\} = \left\{rac{E}{R_1 + R_2}; rac{R_2(R_1 + R_3)}{R_1 + R_2 + R_3} ight\}$                       |
| D |                     | $\{I_N;R_N\} = \left\{rac{E}{R_1 + R_2}; rac{R_2 R_1}{R_1 + R_2 + R_3} ight\}$                              |
| E |                     | $\{I_N;R_N\} = \left\{rac{E}{R_1 + R_3}; rac{R_2 * R_1 * R_3)}{R_1 + R_2 + R_3} ight\}$                     |

En considérant le circuit suivant, quelle est la bonne expression de I ?



|   | Réponse<br>attendue |                 |
|---|---------------------|-----------------|
| Α | ~                   | $I=I_1+I_3+I_4$ |
| В |                     | $I=I_1-I_3-I_4$ |
| С |                     | $I=I_1$         |
| D |                     | $I=I_2+I_3+I_4$ |
| Е |                     | $I=I_1-I_2$     |

En appliquant les lois de Kirchhoff (loi des mailles et loi des noeuds), donner les valeurs des courants I ,  $I_1$  et  $I_2$  .



|                                                      | Réponse attendue |
|------------------------------------------------------|------------------|
| $oldsymbol{I}$ vaut (en mA)                          | [ 300 ; 300 ]    |
| <b>●</b> Commentaire de correction de la proposition |                  |
| $I_{ m 1}$ vaut (en mA)                              | [ 100 ; 100 ]    |
| <b>●</b> Commentaire de correction de la proposition |                  |
| $I_2$ vaut (en mA)                                   | [ 200 ; 200 ]    |
| <b>●</b> Commentaire de correction de la proposition |                  |
|                                                      |                  |

 3 Question 13
 Question à réponses multiples

On considère le circuit suivant.

On pose que toutes les résistances sont égales et valent R. Donnez l'expression de la résistance équivalente.



|   | Réponse<br>attendue |                        |
|---|---------------------|------------------------|
| А | ✓                   | $R_{eq}=rac{65}{24}R$ |
| В |                     | $R_{eq}=rac{17}{24}R$ |
| С |                     | $R_{eq}=rac{17}{4}R$  |
| D |                     | $R_{eq}=rac{3}{7}R$   |
| E |                     | $R_{eq}=rac{3}{4}R$   |

Question 1 Question valeur numérique

On considère le circuit suivant :



La tensions  $V_1$  ne peut prendre que les deux valeurs 0 ou 5V. Le gain en courant du transistor est  $\beta=100$ .

|                                                                                    | Réponse<br>attendue |
|------------------------------------------------------------------------------------|---------------------|
| Quelle est la valeur de $V_S$ dans le cas où $V_1 = V_2 = 0V$ ? (résultat en volt) | [5;5]               |

#### Commentaire de correction de la proposition

Lorsque V1=0V alors Ib= 0A: le transistor est bloqué, il est équivalent à un interrupteur ouvert donc Vs≈Vcc=5V

Quelle est la valeur de  $V_s$  dans le cas où une seule des deux tensions  $V_1$  ou  $V_2$  est égale à 5V, l'autre restant à0 ? (résultat en Volt)

[0;0]

## Commentaire de correction de la proposition

Lorsque V1=5V alors le transistor est saturé, il est équivalent à un interrupteur fermé donc Vs=0V (tension aux bornes d'un fil)

? Question 2
Question à réponses multiples

Soit le montage ci-dessous, on donne :

 $V_{besat}=0,8V$ 

 $V_{cesat}=0,2V$ 

 $\beta$ =100

 $V_e=0,6V$ 

 $R_b=10k$   $\Omega$ 

 $R_c=1k\Omega$ 

|   | Réponse<br>attendue |                                                                   |
|---|---------------------|-------------------------------------------------------------------|
| Α | ~                   | Le transistor est bloqué                                          |
| В |                     | Le transistor est saturé                                          |
| С |                     | Le transistor est en régime linéaire                              |
| D |                     | Il est difficile de déterminer le mode avec les données proposées |
| Е |                     | Le transistor est détruit                                         |

#### On donne :

| Couleur | Chiffre | Coefficient multiplicateur | Tolérance |
|---------|---------|----------------------------|-----------|
| Noir    | 0       | 1                          |           |
| Marron  | 1       | 10                         | ±1        |
| Rouge   | 2       | 100                        | ±2        |
| Orange  | 3       | 1000                       |           |
| Jaune   | 4       | 10000                      |           |
| Vert    | 5       | 100000                     | ±0,5      |
| Bleu    | 6       | 1000000                    | ±0,25     |
| Violet  | 7       | 10000000                   | ±0,1      |
| Gris    | 8       | 100000000                  | ±0,05     |
| Blanc   | 9       | 1000000000                 |           |
|         |         |                            |           |
| Or      | 0,1     | 0,1                        | ±5        |
| Argent  | 0,01    | 0,01                       | ±10       |



|                                                                                           | Réponse attendue |
|-------------------------------------------------------------------------------------------|------------------|
| Déterminer la valeur théorique de la résistance ci-dessus. Le résultat sera donné en Ohm. | [ 1000 ; 1000 ]  |

# Commentaire de correction de la proposition

# Question 4 Zone

On considère la courbe caractéristique complète d'une diode. Replacer les légendes correspondantes sur chaque zone rouge du graphique.

IMPORTANT : La pointe de la flèche doit se situer dans la zone visée.



On considère le circuit suivant :



On suppose la diode parfaite avec une tension de seuil égale à 0,7V.

On donne  $R1 = 120 \Omega$ .

|                                                                                                                                  | Réponse<br>attendue |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Déterminer la valeur de E1 nécessaire pour assurer un courant i=20 mA dans le circuit. (résultat en Volt<br>arrondi au dixième ) | [ 3.1 ; 3.1 ]       |

## Commentaire de correction de la proposition

## Commentaire de correction de la question

**?** Question 6 Question valeur numérique

Soit un transistor NPN en commutation dans le montage ci-dessous. Le transistor est passant. On donne :

- Ve = 5 V,
- $Rb = 10 k\Omega$
- $Rc = 1 k\Omega$
- Vcc = 12 V

Caractéristiques du transistor :

- amplification en courant = 100
- Vbe sat = 0,5 V
- Vce sat = 0,2 V



|                                                                            | Réponse attendue |
|----------------------------------------------------------------------------|------------------|
| Quel est le courant traversant la résistance Rc en mA arrondi au dixième ? | [ 11.8 ; 11.8 ]  |

# Commentaire de correction de la proposition

Soit le schéma du montage ci-dessous, donner l'expression de la droite de charge du transistor.



|   | Réponse<br>attendue |                                    |
|---|---------------------|------------------------------------|
| Α | ~                   | $(R_e + R_c)I_c + V_{ce} = V_{cc}$ |
| В |                     | $R_cI_c+V_{ce}=V_{cc}$             |
| С |                     | $(R_e + R_c)I_c + V_{ce} = 0$      |
| D |                     | $R_eI_c+V_{ce}=V_{cc}$             |
| Е |                     | $(R_e+R_c)I_c+V_{cc}=V_{ce}$       |

Soit le montage ci-dessous, on donne :

 $V_{cc}=10V \ R_e=180\Omega \ R_c=820\Omega \ V_{ce}=5V \ V_c=5,9V$ 



|                                                                   | Réponse attendue |
|-------------------------------------------------------------------|------------------|
| Calculer la valeur du courant $I_c$ en mA                         | [5;5]            |
| nmentaire de correction de la proposition                         |                  |
| Calculer la valeur de la tension $V_e$ en Volt arrondi au dixième | [ 0.9 ; 0.9 ]    |
| nmentaire de correction de la proposition                         |                  |

| <b>3</b> Q | 3 Question 9 Question à réponses multiples                  |                                                                   |  |  |
|------------|-------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| Lors       | orsqu'un transistor bipolaire NPN est bloqué : (2 réponses) |                                                                   |  |  |
|            | Réponse<br>attendue                                         |                                                                   |  |  |
| Α          |                                                             | Sa différence de potentiels collecteur-émetteur est proche de 0 V |  |  |
| В          |                                                             | Le courant $I_C$ est égal à $I_{Csat}$                            |  |  |
| С          |                                                             | sa tension base-émetteur est proche de VBE <sub>sat</sub>         |  |  |
| D          | ✓                                                           | le courant de collecteur est nul                                  |  |  |
| Е          | <b>V</b>                                                    | le courant de base est nul                                        |  |  |
|            |                                                             |                                                                   |  |  |

**?** Question 10 Question valeur numérique

On souhaite déterminer le courant  $I_d$  traversant diode, on suppose que la diode est parfaite et possède une tension de seuil de 0,7 V.

On donne :

$$E=12V$$

$$R_1=R_2=100$$
  $\Omega$ 



|                                                                          | Réponse attendue |
|--------------------------------------------------------------------------|------------------|
| Donner la valeur du courant $I_1$ traversant $R_1$ (en mA)               | [ 113 ; 113 ]    |
| Commentaire de correction de la proposition                              |                  |
| Donner la valeur du courant $I_2$ traversant la résistance $R_2$ (en mA) | [7;7]            |
| Commentaire de correction de la proposition                              |                  |
| En déduire la valeur du courant $I_d$ traversant la diode (en mA)        | [ 106 ; 106 ]    |
| Commentaire de correction de la proposition                              |                  |

**?** Question 11 Association

Pour chacune des propositions, indiquez si elle est vraie ou fausse.

| Élément à associer                                                                                      | Réponse attendue |
|---------------------------------------------------------------------------------------------------------|------------------|
| Dans une diode à jonction, la zone dopée N correspond à la cathode.                                     | Vrai             |
| Dans une diode polarisée en sens direct, la zone de déplétion est pratiquement inexistante.             | Vrai             |
| Lorsque la diode est bloquée, la zone de déplétion se comporte comme un isolant.                        | Vrai             |
| Dans une diode polarisée en sens direct, le courant circule positivement de la l'anode vers la cathode. | Vrai             |
| Polariser une diode en sens direct revient à annuler son champ électrique interne.                      | Vrai             |

 ? Question 12
 Question à réponses multiples

Soit le montage ci-dessous, on donne :

 $V_{besat}=0,7V$ 

 $V_{cesat}=0,2V$ 

 $\beta$ =100

 $V_e = 5V$ 

 $R_b=100k$ 

 $R_c=1k\Omega$ 

 $I_c=4,3mA$ 

Indication : il faut calculer la valeur de  $I_b$ 



|   | Réponse<br>attendue |                                                                   |
|---|---------------------|-------------------------------------------------------------------|
| Α |                     | Le transistor est bloqué                                          |
| В |                     | Le transistor est saturé                                          |
| С | <b>V</b>            | Le transistor est en régime linéaire                              |
| D |                     | Il est difficile de déterminer le mode avec les données proposées |
| Е |                     | Le transistor est détruit                                         |

Question 13
Question 2
Question à réponses multiples

Pour qu'un transistor NPN soit en saturation il faut que : (2 réponses)

|   | Réponse attendue |                                                        |
|---|------------------|--------------------------------------------------------|
| Α | <b>✓</b>         | Le courant $I_B$ ne soit pas nul                       |
| В | <b>∀</b>         | La tension $\emph{V}_{\emph{ce}}$ soit proche de $0$   |
| С |                  | La tension $V_{ce}$ soit proche de la tension $V_{cc}$ |
| D |                  | Le courant $I_B$ soit nul                              |
| Е |                  | La tension $V_e$ soit nul                              |