- 1) Errors and numbers
- 1.1 Preliminary considerations

There are three main sources of error in the numerical analysis of physical systems:

- i) rounding errors, since instead of numbers & IN a finite set of numbers is calculated.
- ii) "discretization" or "truncation error" Examples:
  - $\int_{-\infty}^{\infty} A(x) dx$  is replaced by a finite sum  $(dx \rightarrow 0x)$
  - Power series  $P(x) = \frac{8}{7} P_n x^n$  is approximated by a finite sum
- iii) physical approximation errors:

usually physical approximations are made before the numerical evaluation. Examples from solid state physics: Hartree-Fock approximation, density functional theory, ...

Estimation of the order of magnitude of the errors:

- iii) usually difficult
- ii) order of magnitude can often be estimated. If you know, for example, that a property F(NX) is linear in NX for NX, other one may calculate  $F_i = F(NX)$  for some values NX:
  - >> linear fit FF(DX) 2 F(0) + m DX
    - >> (10) the property one is looking for plus statistical error
- i) We consider these errors in this chapter
- 1.2 Rounding errors
- 1.2.1 Representation of numbers
  - A) Integer numbers

Computers construct whole ("integer") numbers in the form  $X^{2} + (J_{m} 2^{m} + J_{m-1} 2^{m-1} + \cdots + J_{o} 2^{o}) = \frac{1}{2} \left( \frac{1}{2} \right)^{i} 2^{i}$ with  $J_{i} = 0$  or  $J_{i} = 1$  (value of bit i) i = 0With 16 bits: Bit 1 determines 3 Bit 2-16 determines 1x1  $\Rightarrow$  7 215 such numbers between p and 275-1 = 32 7 67 SO XE {-32767, --, -1, 0, 1, --, 32767} Modern programming languages translate this coding into the decimal system X = 1 2 2:.10; For the sake of simplicity, we will only consider the decimal system in the following. However, all considerations apply completely analogously to the binary system. B) "floating point"="fp" representation Question: How do you represent real numbers (approximately)? Idea: by using rational numbers of the form X = 1a · 10 5 integer number with t digits with 0 < a < 1 -> 1 = 10. 19, 192 - ... 19 & and b = = b, b, ... b, integer number with I digits One calls a the "mantissa" and t the mantissa length Example: 30.40 = 0.3040 - 101 = 0.0304-103 The representation is therefore not unique. An fp representation is called "normalized" if  $A_1 = 0$  (we only consider these in the following)

So: fp numbers represent a finite set / (since + 1 co) of rational numbers problem: A + In -> chapter 1.2.2 1.2.2 Rounding errors Main problem: If  $x, y \in A$  it is not guaranteed that Example: (t=3, l=n)0.300·10° + 0.300·104 = 0.3003 & A Therefore, one defines for  $X \notin A$  the value  $vA(X) \in A$ the number that is "closest" to x, i.e. (X - NA (X) / ≤ 1X - 7/ 6/ 7 ∈ A satisfies. There are 2 cases: i) 7 = 1 0 10 & A since the mantissa has more than t digits. Then rd (x) is the well-known rounding procedure, so 1 = 0. 19 ... 19 + 19 +1 .... İS vd(x) = = = 106 and ii)  $X = \frac{1}{2} R \cdot 10^6$  \$\ A since b has more than I digits, so e.g. for =2 is  $(0.7 \cdot 70) \cdot (0.7 \cdot 10) = 0.7 \cdot 70$   $\in A \qquad \in A \qquad \triangleq A$ This is called "exponent overflow" and is almost always the result of a programming error (not relevant here) More important: Since most operations result in numbers & & /





Example: Find numerical solution of the ordinary differential eq  $\dot{\tau} = -\tau$ ;  $\tau(0) = 1$  (1) [  $2\pi a c^{\dagger} : \tau(t) = e^{-t}$ 

Anticipation of Chapter 7:

A) "Euler method" with discretization of t:

$$\frac{7m^{2}}{7m^{2}} = \frac{7(4m)^{2}}{7m^{2}} = \frac{7(m \cdot 0 + 1)}{7m^{2}} = \frac{7(4m) \cdot 0 + 1}{7m} $

so: ODE (1) is replaced by recursion equation (2)

Case 1: no rounding errors

```
\Rightarrow Solution of (2), with initial condition 70 = 1 is
             7m = (7 - D+)
    >> 7(+) = (n - + ) m m = 0 1 - +
     i.e. one gets an arbitrarily good approximation by
    increasing n
 Case 2: small rounding error at the beginning 70 = 1 + 0 + 0
as above 7(+) = (1+0+)(1-\frac{\pi}{m})
      algorithm is stable
 Remark: We have only shown stability for the simplest of all
         disturbances 7. \Rightarrow 7. + 0.7. In reality there will be a
         19 7 in every step.
B) We now seemingly "improve" the Euler method by
   symmetrization
          7mm - 7mm = 2 + (+m). D+ + G(D+3)
                                         more precise than in A)
          (n)

2) 7mm = -2 0 + 7m + 7mm (3)
   Solution Ansatz for (3): 7 = (1-7) (T: won ten)
   Insert: (1-T)^{2} + 2 \cdot 2 \cdot (1-7) - 1 = 0
         > (1-T) 2- D+ ± VD+2+1 2-D+ ± 1
  -> General solution of (3) for Ntcon:
      9 = 2 (n-D+) + 12 (-n-D+) m 14
      with arbitrary 2, p
  >> We require two initial conditions here 70=1
                                               77 = (7-0+) (Anon A)
    Insert (4) into initial condition: 22n, p20
```



2) Solution of linear systems of equations, SVD

In CP, many algorithms require the solution of systems of linear equations (SLE) of the form

with the MXN matrix 
$$\tilde{A} = \frac{1}{2}$$

and the vectors 
$$\vec{x} = (x_1, \dots, x_n)^T (wanted)$$

W.L.O.G.: Mili, Xi, b: E M. Complex LSE can be rewritten as real by splitting them into real and imaginary parts:

$$(\widetilde{A}_n + : \widetilde{A}_{\mathcal{I}})$$
  $(\widetilde{x}_n + : \widetilde{x}_{\mathcal{I}}) = \widetilde{b}_n + : \widetilde{b}_{\mathcal{I}}$ 

$$\Rightarrow A_n \times_n - A_r \times_r = 5_n$$

$$A_n \times_r + A_r \times_n = 5_r$$

As is well known, there are (mathematically) three cases

- I) } exactly one solution (only possible if m?n
- II) 3 infinitely many solutions ("underdetermined SLE")
- III) 3 no solution ("overdetermined SLE")

> In CP usually the result of a programming error Note: In numerical calculations the three cases can become blurred, e.g. M=N, then the following applies:

 $\overrightarrow{A} \approx 25$  has a unique solution if and only if  $|\overrightarrow{A}| \neq 0$ 

However: In numerical calculations there are no exact zeros

 $\Rightarrow$  It is not always clear for which values of  $|\hat{A}| \neq 0$ the numerical solution of the SLE is reasonable One is on the safe side if 121 2 typical order of magnitude of the matrix elements (A;; 1 ± 0 2.1 Case 1: LSE with unique solution 2.1.1 M=N A) Note: The solution of an SLE requires in general  $2 N^3$ operations. The various methods differ only in terms How better not to solve the problem? i) Calculation of  $A^{-1}$  and  $A = A^{-1}$  and Exception: you need  $\tilde{A}^{-1}$  anyway (which is rarely the case) ii) Gaussian method from HöMa 1 B) The "LU decomposition" is usually very efficient and stable: Assume:  $\tilde{A}$  is regular (i.e.  $|\tilde{A}| \neq 0$  and the LSE has a unique solution). Then you can write  $\widetilde{A}$  as  $\tilde{A} = \tilde{p} \cdot \tilde{L} \cdot \tilde{\alpha}$ where [ (n ) is a lower (upper) triangular matrix, i.e. and the orthogonal "pivoting matrix" (  $\mathcal{F}^{T_{\pm}}$   $\mathcal{F}^{-1}$ ) in each row/column contains exactly one 1.

```
Proof: lengthy and boring (->Ref. 5)
   Practical procedure -> maybe excercises
    After the LU decomposition you can solve \vec{A} \vec{\times} = \vec{b} in 3 steps:
                         p (I (u · = 1) = 6
     \Rightarrow \tilde{p} \neq \tilde{z} = \tilde{3} \Rightarrow \tilde{z} = \tilde{p}^{7} \cdot \tilde{5} \quad (1)
     \Rightarrow \overline{1} \cdot \overline{7} = \overline{2} \quad (2) \qquad \Rightarrow \qquad \overline{u} \cdot \overline{x} = \overline{7} \quad (3)
    Advantage: Equations (2)/(3) are easy to solve, e.g. (2):
     t; = [ li; 7;
Equation (4) always makes sense, because lii + 0 + c
    Reason: Note ii) below
    There are several very efficient algorithms for determining the
    Lu decomposition, implemented e.g. in "LAPACK" or "Eigen".
    Remarks on the LU decomposition:
    i) Advantage of the LU decomposition:
        It only has to be carried out once (N3 effort) and can
       then be applied to any \frac{7}{5} . (equation (4) only contains
       O(N^2) operations).
    |\widetilde{A}| = |\widetilde{\rho}| \cdot |\widetilde{C}| \cdot |\widetilde{u}| |\widetilde{S}|
= |\widetilde{\rho}| \cdot |\widetilde{C}| \cdot |\widetilde{u}| |\widetilde{S}|
= |\widetilde{\rho}| \cdot |\widetilde{C}| \cdot |\widetilde{u}| |\widetilde{S}|
= |\widetilde{S}| \cdot |\widetilde{S}| \cdot |\widetilde{S}| \cdot |\widetilde{S}|
= |\widetilde{S}| \cdot |\widetilde{S}| \cdot |\widetilde{S}| \cdot |\widetilde{S}| \cdot |\widetilde{S}| \cdot |\widetilde{S}|
```

> would be li: =0 or 4:1:0 > 1/11:0 > 1 mot nighter & iii) Routines are common in which li=1 #1 (can always be set up) iv) Inverse matrix A-1 = u-1 Z-1 POT ũ-1, [1] are again easy to be determined, e.g.: [7]  $S_{\lambda}: (\Sigma^{-\eta})_{i,i} \equiv \overline{\ell}_{i,j}$   $\Sigma : (\Sigma^{-\eta})_{i,i} \equiv \overline{\ell}_{i,j}$ > Tiliil; n = Siin • i=1 : ln lnk = S1,1, >, Lnk = S1,1 · i = 2 : len lak + lac lak = lak = 2 ( Sak - lan lak) · i 5,1 : lè n = 2 (Sin - Thi; l; k) (o(x2)) Remark:  $l_{in} \neq 0$  only for  $M \leq (proof: by induction)$ L'is also a lower triangular matrix u'' can be calculated analogously Remarks: For special matrices there may also be faster algorithms, examples: i) symmetric, Hermitian, orthogonal, unitary matrices ii) "band-diagonal matrices" 19:; = 0 4 alls / i- i 2 m A = (.A.; jo



is invertible, then the matrix  $\widetilde{A}_{\rho}^{-1} = \widetilde{\rho}^{-1} \cdot \widetilde{A}^{T}$ is called the "Moore-Penrose-inverse" or "pseudo-inverse" of  $\tilde{A}$ , because  $\widetilde{A}_{p}^{-2} \cdot \widetilde{A} = (\widetilde{A}^{T} \cdot \widetilde{A})^{-2} \cdot \widetilde{A}^{T} \cdot \widetilde{A} = \widehat{\gamma}$ Remarks: i) If M=N, then obviously is  $\hat{A}_{p}^{-1} = \hat{A}^{-1}$ ii) A.A. is not defined for MAN Back to the problem: A. X = 6 (1) | AT Avon the 1, 4 t on both 5; MAS  $\Rightarrow \tilde{r} \cdot \tilde{x} = \tilde{A}^{T} \cdot \tilde{S} \equiv \tilde{b}' \quad (2)$ If (1) has a unique solution, then this is obviously also a solution of (2). Remaining question: Is this solution also unique with respect to (2)? Answer: yes Because: 🕫 is regular, as can be seen as follows. We define:  $F(\hat{x}) = \overline{z}(\hat{A} + \overline{x} - \hat{b})$ This function has a global minimum at the solution 🕇 of (1), where F(X.) = 0 Evaluation of (3):  $(\widehat{A} \times 5)$ ; =  $(\widehat{z} A_i, x_i - 5_i)$ = [2, x; A; A; x; 1 - 2 b; [ #; x; + b;

Summation over i:

$$F(\stackrel{>}{\times}) = \stackrel{>}{\times} \stackrel{\wedge}{\wedge} $

If  $\tilde{p}$  was not regular, there would be a homogeneous solution  $\tilde{\chi}_{L}$  of (2) for which

$$\Rightarrow F(\vec{x}_0 + \vec{x}_A) = 2 \times \vec{x}_A (\vec{p} \cdot \vec{x}_0 - \vec{y}_1) + \vec{x}_A \vec{p} \cdot \vec{x}_A$$

$$= 0 + \vec{y}_1 + \vec{y}_2 + \vec{y}_3 + \vec{y}_4 + \vec{y}_5 + \vec$$

This contradicts the assumption that  $\vec{x}$  is the global minimum of  $\vec{\epsilon}$ 

Thus:

- i) If (1) has a unique solution  $\frac{1}{3}$ , then is  $\frac{1}{3}$ , the unique solution of (2).
- ii) If we know (from whatever source, e.g. for physical reasons) that (1) has a unique solution, we can alternatively solve the smaller and quadratic problem (2) using the method from 2.1.1
- iii) If (1) has no solution, then the solution (2) is the least bad in the sense of the function (3) ("least square minimum"), because with  $\vec{\chi}$ , being a solution of (2)

$$\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) = 2 \left( \frac{2}{2} \frac{1}{2} \left( \frac{2}{2} \right) \right) = 0$$

Alternative: Chapter 2.2

2.2 Cases I)-III): The singular value decomposition (SVD)

| With the SVD we have a method with which we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| i) can analyze which of the cases I)-III) applies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| ii) can determine solutions/solution-spaces/least-square-mini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Μź |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 2.2.1 On mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Theorem: Every (!) MxN matrix A can be written as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| $\widetilde{A} = \widetilde{u} \cdot \widetilde{w} \cdot \widetilde{v}^{T}$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Here,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| i) ū is an orthogonal MxM matrix, i.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| $\hat{u} = (\hat{u}_1, \dots, \hat{u}_M) = (\hat{u}_1, \dots, \hat{u}_M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| $\hat{u} = (u_1, \dots, u_m) = (u_n)$ $u_i \cdot u_i = S_{i,i}$ $u_n \cdot u_n \cdot$ |    |
| ii) $\hat{V}:(\vec{v}_1,\vec{v}_r)$ and hence $\vec{v}^{\intercal}$ is an orthogonal NxN-Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| iii) $\widetilde{\omega}$ is an MxN matrix, for which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| w; = w; S;;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| where the "singular values" w; >0 are the square-roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of |
| the eigenvalues of $\tilde{A}^{T}$ , $\tilde{A}$ ( $M \geq N$ ) or of $\tilde{A}$ , $\tilde{A}^{T}$ ( $M \leq N$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| M>N:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| (w)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| W 2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| McN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| $\int w_n \qquad 0 \cdots 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| was o · · · o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| i) The right-hand side of (1) is unique, except for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

of 
$$\{\vec{u}_i, \vec{u}_i\}$$
 or  $\{\vec{v}_i, \vec{v}_i\}$   $w_i = w_i$  - simultaneous permutation of  $\vec{u}_i, w_i, \vec{v}_i$ 

$$v_1 \Leftrightarrow v_2 \text{ in } \tilde{v}$$
 $v_1 \Leftrightarrow v_2 \text{ in } \tilde{v}$ 

Examples:

$$\widetilde{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \widetilde{u} = \frac{7}{\sqrt{n}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & \sqrt{n} & 0 \end{pmatrix}, \widetilde{u} = \begin{pmatrix} \sqrt{n} & 0 \\ 0 & 1 \end{pmatrix}, \widetilde{v} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

ii) M<N

$$\widehat{A} = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 2 & 0 \end{pmatrix} \Rightarrow \widetilde{u} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \widetilde{w} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}, \widetilde{U} = \begin{pmatrix} 0 & \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{2} & \sqrt{2} \end{pmatrix}$$

iii) M=N

$$\widehat{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \widehat{G} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \widehat{W} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \widehat{V} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

So: Even for M=N, the SVD has nothing to do with the diagonalization of  $\tilde{A}$ 

Proof of the theorem (for simplicity, for M=N)

i) 
$$\widetilde{H} : \widetilde{A}^T \widetilde{A}$$
 (or  $\widetilde{A} \widetilde{A}^T$ ) is symmetric =) eigenvalues  $A \in \mathbb{N}$ . Let  $\widetilde{V}_i$  be an eigenvector of  $\widetilde{H}$  with the eigenvalue  $A_i$ . Then  $\widetilde{V}_i : \widetilde{A}^T \cdot \widetilde{A} \cdot \widetilde{V}_i := A_i : \widetilde{V}_i : \widetilde{V}_i := A_i := A$ 





Since  $V \leq M \Rightarrow N - K \leq M \Rightarrow K \geq N - M$ For M<N, k is always>0 B) Application to LSE:: An LSE  $\vec{A} \cdot \vec{7} = \vec{5}$  has i) no solution if 5 & 13" ii) at least one solution if  $\vec{b} \in \mathbf{p}^r$  . This is unique if and only if k=0. iii) If  $\vec{x}$  is a solution, then also  $\vec{x}$   $+ \vec{x}$  with an arbitrary  $\vec{\chi}_{\kappa} \in P^{\kappa} (\vec{\chi}_{n} : homogeneous solution)$ 2.2.3 Determination of Brand pr with the SVD A) The columns v. of v, with with of orm an orthonormal basis (ONB) of B, because: We use the shorthand notation Br= A. In = Fram (AIn, ..., AIn) = Space Sycumen by Ain. - Ain Then B'= QW VT.IN = IR ~ (AA ûT orthogonal) So the question remains: What is the image of  $\vec{u} \cdot \hat{\omega}$ ? i) M2N  $u \cdot w : (u_n, \dots, u_n) (w_n, \dots, w_n)$ (w, a, ..., w, a, 3, ... 8) = c(aim ii) M (N

Note: In (1) we are dealing with olvibperations. It therefore makes no sense to solve the SLE with another method after the SVD analysis. ii) Whether 3 w; = o and 6 & Br > 3 00 many solutions Whether 5 & B' can be easily checked: With 4: (1:1. ... r) being a basis of B one checks, if 3 - 2 (5·u.) u. = 0 (1) is also a solution here if  $\hat{\omega}^{-1}$  ist set to  $\frac{2}{3}=0$ namely the solution with minimum ( ). Proof: That it is a solution can be shown as in B) 10 by shown: 1x0 + 8x [2 1x0] EPA (d.1. SX = Zd; V: , when J:=0, when w; \$0)  $(\overrightarrow{U} \circ r) + o_{S} \circ o_{M}(\overrightarrow{I}) = (\overrightarrow{U} \circ \overrightarrow{U} \circ \overrightarrow{U} \circ \overrightarrow{U}) = (\overrightarrow{U} \circ \overrightarrow{U} \circ \overrightarrow{U})$   $\overrightarrow{R} = (\overrightarrow{U} \circ \overrightarrow{U} \circ \overrightarrow{U}) = (\overrightarrow{U} \circ \overrightarrow{U})$   $\overrightarrow{R} = (\overrightarrow{U} \circ \overrightarrow{U}) = (\overrightarrow{U} \circ \overrightarrow{U})$ SO: iii) Case 3: 7 w; to und 5 & Br => 7 no salution In this case, (1) is the minimum of  $(\vec{A} \cdot \vec{x} - \vec{b})$ > again a least-square-minimum (Ism) as in 2.1.2. Proof: maybe exercises

| B) M + N                    |                                         |                                                   |                     |
|-----------------------------|-----------------------------------------|---------------------------------------------------|---------------------|
| Analysis of the             | solution space                          | e and solution                                    | (or Ism) with (1)   |
| as in A)                    |                                         |                                                   |                     |
|                             |                                         |                                                   | seemingly over-     |
|                             |                                         |                                                   | 1 2.1.2, i.e. here  |
|                             | ₩i => p"                                | = 0 =>, no hom.                                   | Solution of the CSE |
|                             | Br                                      |                                                   |                     |
| Then equation               |                                         |                                                   |                     |
|                             | 11/m                                    | 0 . 0                                             |                     |
| W 2                         | 1/WN                                    |                                                   |                     |
|                             | 740                                     |                                                   |                     |
| Proof: Simply               | incort into Cl                          | _                                                 |                     |
| $\hat{A} = \hat{u} \cdot 1$ | w.oT/ (co                               | 1 27 2)                                           |                     |
|                             | ψω 1 4 7 . 5                            | /                                                 |                     |
| It is                       |                                         | in A) a m                                         | rate; x Trxv        |
|                             | N-1 = (TWAN)                            |                                                   |                     |
|                             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0 /                                               |                     |
| If $5ey^r$ so is            | 5 = [ ]; 4; 6                           | nd ut has no                                      | n-                  |
|                             | [2]                                     |                                                   |                     |
|                             |                                         | n the first $N$ rof an $M \times M$ $\tilde{7}$ m |                     |
|                             |                                         |                                                   |                     |
| 2) A 70 =                   | ũ ũ <sup>7</sup> ·5 2 5                 |                                                   |                     |
| 2.2.5 Further applic        |                                         |                                                   |                     |
| A) Construction of          |                                         |                                                   |                     |
| Given N vectors             |                                         |                                                   |                     |
| These form an               | N'-dimension                            | al subspace A                                     | of In               |

Wanted: An ONB of A

Textbook method: Gram-Schmidt method

-> Numerically very susceptible to rounding errors

much better: SVD of the matrix  $\hat{A} = (\hat{r}_1, \dots, \hat{r}_N) = \hat{u} \cdot \hat{w} \cdot \hat{v}^T$ 

Then the vectors  $\vec{u}_i$  with  $\vec{v}_i$  is the seeked ONB

Reason: The image of A is exactly the space  $A^{\nu}$  spanned by the 9: 3.2.3 134

B) Matrix approximation -> data compression Idea for M=N (Mx N is analogous):

 $A: = \sum_{n=1}^{\infty} w_n u_{i,n} v_{i,n} \qquad (w_{i,n} \leq w_i, w_{i,n}, s_{i,n})$   $A = \sum_{n=1}^{\infty} w_n u_{i,n} v_{i,n} \qquad (w_{i,n} \leq w_i, w_{i,n}, s_{i,n})$ 

Obviously the largest contributions come from the large Approximation for  $\widetilde{A}$ : Termination of the sum at r<N  $\Rightarrow$  only the  $\vec{u}_A$ ,  $\vec{v}_B$  with kar must be stored N=M=512 pixels with Mi,; grayscale



C) Face recognition (maybe excercise)





$$(t = fon e)$$
  $(f = \frac{2}{2} \left( \frac{2}{4} - t \right)$  quadratic leg

To be clarified: Which sign?

Smallest intrusion, if 
$$|\Theta| \leq \frac{\pi}{4}$$
 ( $\Rightarrow$ ,  $|+$ ) is smaller than with  $|+$ 

This results in the following algorithm:

- 1) Choose i, j such that [Aii] takes a maximum
- 2) Calculate c and s using the above formulas
- 3) Transformation  $\hat{A} = \hat{2}(i,j)^T \cdot \hat{A} + \hat{4}(i,j)$

4) Check whether

is below a certain limit, otherwise  $\widehat{A} \xrightarrow{i} \widehat{A}$  and back to 1).

Remarks:

Since 
$$044(\hat{A}') = 024(\hat{A}) - 2|A_{ij}|^{2}$$
 (n)

this value becomes smaller and smaller. Mathematically, this does of course not necessarily lead to convergence  $\rightarrow$  0.

According to all experience, however, this is always the case (more on strict convergence proofs in Ref. 3)

Proof of (1):

a) It is  $\hat{A} = \hat{A}  



Approach for 2 (1):  $\tilde{z}(i) = \begin{pmatrix} \tilde{\gamma}_{i,\pi} & \vdots & 0 \\ 0 & \tilde{\gamma}_{i,\pi} & \vdots & 0 \end{pmatrix}$ (1) with the  $(N-i)\times(N-i)=n\times n$  matrix 5 (;) = ~ = 2 4 (;). 4 (;) T (1) ធី(i): n-dimensional vector with [ធី(i)] = 1 (3) Check orthogonality of  $\tilde{S}(i)$ : (is ist  $\tilde{S}(i)$ ) =  $\tilde{S}(i)$ )  $\Rightarrow$ ,  $\hat{S}(i)^T\hat{S}(i) = (\hat{\gamma} - 2\hat{\eta}\hat{\eta}^T)(\hat{\gamma} - \hat{\eta}\hat{\eta}\hat{\eta}^T)$ = 7 - 4 4 4 7 + 4 4 4 4 7 4 4 7 = 7 Step i=1:  $\widehat{\mathcal{Z}}(\eta) = \begin{pmatrix} \eta & \overline{0} & \overline{0} \\ \overline{0} & \overline{0} & \overline{0} \end{pmatrix}$  $\frac{1}{2} \left( n \right) = \left( \frac{1}{2} \left( n \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( n \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \right) \cdot \frac{1}{2} \left(  with v = (A27) = Â'(1) Remaining question: How to choose in (,) so that (\$ 1,7.6) = (h, 0. -, 0) We write i(1) = P(n) (1) with arbitrary (1) approach:  $\vec{p}(1) = \vec{v} + |\vec{v}| + |\vec{v}| + |\vec{p}(1)|^2 = 2(|\vec{v}|^2 + |\vec{v}| + |\vec{v}|)$  $\Rightarrow \hat{S}(n) \cdot \vec{v} = \vec{v} - 2 \vec{u}(n) (\vec{u}(n) \cdot \vec{v}) = 2 \vec{p}(n) \vec{v} (u)$ 

on a finite chain with L sites (i,;). Then you can choose a basis 14,70f the Hilbert space and and diagonalise Hear = (911 Filly,1). ii) Fi is approximately diagonalised in a properly chosen sub-space with a finite Basis 14:7, e.g. a H-Molekül with  $H_{0}$ :  $\frac{1}{2}$   igenstates (;, n(N;) with eigenvalues En (n=1,-1, ∞ of Ho, are known (-> Physics IV or Theoretical Physics II) >> Form from the N low-energy states (1,m (v), (2,m (v)) (m=1,--, v) two-electron states either in 1st quantization (Slater determinants) or in 2nd quantization (Fock states) > Diagonalize H in this subspace - Approximation for the low-energy spectrum of H 3.4.2 Symmetries of decisive importance is the skillful choice of the base (4:) Example: Heisenberg model (with spin 5=3), L lattice sites basis of the Hilbert space: 16) 216, 62, ... 6c > with 6: = TON L Fi commutes with  $\hat{S}^{4} = \hat{Z} \hat{S}^{4}$  ( +otal  $\hat{S}^{1/4}$ )

The states 12) are eigenstates of ç = \$ 2 ( 6 ) = ( 7 C; ) 16 ) = Sa (6) (6)  $= (S_{4}(\vec{\delta}) - S_{4}(\vec{\delta}')) = 0$   $= (S_{4}(\vec{\delta}) - S_{4}(\vec{\delta}')) < \vec{\sigma}(\vec{\mu}) \vec{\delta}'$ thus: (6 (+116') is block-diagonal >> Diagonalization is only required in the subspace with fixed Sz - dimension of the entire Hilbert space: 10 = 2+ - dimension of the subspace with fixed  $S_2$ Be No the number of places with spin 6  $\Rightarrow (2 N_{q_1} + N_{2})$   $\Rightarrow N_{q_2} = 2 (4 + 2 S_{2})$   $\Rightarrow N_{q_1} = 2 (4 + 2 S_{2})$   $\Rightarrow N_{q_1} = 2 (4 + 2 S_{2})$ =number of possibilities to distribute the 47 spins e.g.: L=10 >, 0H = 1024 Dun 10) = 252 Question: In general, how can an optimal base (i.e. with maximum block diagonality of H., be found? -> Group theory (summer semester 2026) 3.5 The power method and the Lanczos algorithm Hamiltonian matrices are often sparse (given a suitable choice of basis). Example: Spin 1/2 Heisenberg model with nearest neighbor

coupling, we use ascent and descent operators Base as above: States (6)

Each state (I has matrix elements + oonly with 16), and with 1817 whose spins are flipped at exactly 2 neighboring sites

so: # of matrix elements  $\pm 0$  per row in  $\hat{\mu}$ :  $\pm C$ 

# of matrix elements: (24)



To analyze the spectra of very large sparse matrices we consider two methods:

3.5.1 Power method

Algorithm for determining the largest eigenvalue (plus the associated eigenvector) of  $\widetilde{A}$ 

i) Choose a starting vector  $\vec{v}_o$ ii) Iterate  $\vec{w}_m = \vec{A} \vec{v}_{m-1}$  and  $\vec{v}_m = \vec{v}_m = \vec{v}_m$ 

converges to the searched eigenvector X if

 $\vec{v}_{o} \cdot \vec{x}_{\mu} \neq 0$  and  $\lambda_{\mu}$  is not degenerate

Proof:

Let  $\vec{\chi}_i(\lambda)$  be the eigenvectors (eigenvalues) of  $\hat{A}$ ( in = in - · · = in)

## <u>Remarks:</u>

- i)  $\widehat{A} \Rightarrow -\widehat{A} \Rightarrow$  smallest eigenvalue of  $\widehat{A}$  with the same method
- ii) The numerical effort is low ( "(" " )) for sparse matrices still much smaller, but:

Convergence is often very slow, especially when

iii) With , in found, one can define

$$\vec{A} = \vec{A} - \nabla_{N} \nabla_{N} \cdot \nabla_{N} T$$

$$\Rightarrow \vec{A} \cdot \nabla_{N} = 0 \cdot \nabla_{N} T$$

With the same method one can determine in and in principle all h: , 4:

3.5.2 Krylov spaces

Wanted: Ground state  $\vec{V}_o$  of  $\vec{A}$  (NxN-matrix,  $\vec{A}^T = \vec{A}$ ,  $\vec{V}_o \in \vec{R}$ 

Principle way: Search for the minimum of

$$\Lambda(\vec{v}) = \frac{\vec{v} T \Lambda \vec{v}}{\vec{v} \cdot \vec{v}}, \quad \vec{v} = m \cdot m \left( r(\vec{v}) \right) = \Lambda(\vec{v}, \vec{v})$$

However, if performed exactly, this minimization would be numerically even more complex than the initial problem. The aim will be the minimization in subspaces

of the 
$$m^{\nu}$$
  $\vec{v}_{1}(\vec{r}_{1}) = \vec{r}_{1}(\vec{r}_{2}, ..., \vec{r}_{N})$  of the  $m^{\nu}$   $\vec{v}_{1}(\vec{r}_{2}) = \vec{r}_{2}(\vec{r}_{2})$   $\vec{r}_{2}(\vec{r}_{2}) = \vec{r}_{2}(\vec{r}_{2})$  Obviously is

Thus: By increasing k, one approaches the exact minimum of  $n(\vec{r}_{2})$  Central question: How to choose  $\vec{r}_{1}, ..., \vec{r}_{N}$  so that  $w_{k}$  is already a good approximation for  $\vec{r}_{2}$  even when  $\vec{r}_{2}$   $\vec{r}_{2}$   $\vec{r}_{2}$  Inset:

anticipation of chapter 5: Minimization of functions  $\vec{r}_{2}(\vec{r}_{2})$  Simplest solution:

1) Choose a starting point  $\vec{r}_{2}$ .

2) Calculate  $\vec{r}_{2}(\vec{r}_{2}) = \vec{r}_{2}(\vec{r}_{2})$  (i.e. in the direction  $-\vec{r}_{2}(\vec{r}_{2})$  with respect to s

4) Back to  $\vec{r}_{2}$   $\vec{r}_$ 



so: after the construction of a new part is besser to orthonormalise ( Pn+ > 9k+) and abort, if Dim (4k+1)=k < k+1 Problem: SVD does not make sense here, because i) A would have been in the base of the A: few vanishing matrix elements (unlike the Lanczos method) ii) A full SVD would have to be calculated for each new vector Phis i.e. without taking advantage of the fact that already 4: - 7; = 5:,; + i.; = 1 The following algorithm is better: use bra-ket notation, i.e.  $\eta, \rightarrow (a, ), \overrightarrow{A} \rightarrow \overrightarrow{A}$ 4.7 A 9: -> (A) 3. starting values and vectors: (9.) = 0 (m) = (g) (assitnery with < m (g) = 1) Iterations:  $|q_{in}\rangle = \gamma_{in} [(A - S_i \hat{1}) | q_i \rangle - \gamma_i | q_{in}\rangle$ (1) = 7-7 [Vi) with  $\delta : \Xi < \widehat{A} > \pi$ :  $\gamma_{i,\eta} = \sqrt{\langle v_{i} | v_{i} \rangle}$ (1) (3) Abort the iteration if  $\gamma_{i+1} = 0$  (i.e. when the dimension of the Krylov space no longer increases) or if the accuracy appears sufficient. Proof of orthonormality: i) Normalization: clear because of (3) ii) Orthogonality by induction A) Start of induction (90)92) = 0 it 190> = 0 i=2:

$$\begin{array}{c} \gamma_{1}\left(q_{1}\right)=\left(\hat{A}-S_{1}^{2}\right)\left(q_{1}^{2}-V_{1}\right) \quad (4)\\ \Rightarrow \left(q_{1}\left(q_{1}\right)\right)\sim\left(\left(A\right)q_{1}-S_{1}\right) \quad (3)\\ \Rightarrow \omega_{1}\left(\gamma_{1}^{2}-S_{1}^{2}\right)\left(q_{1}^{2}-S_{1}^{2}\right)\left(q_{1}^{2}\right)\\ \Rightarrow \left(q_{1}\left(q_{2}\right)\right)\simeq\left(\left(A\right)q_{1}-S_{1}^{2}\right)\left(q_{1}^{2}\right)\\ \Rightarrow \left(q_{1}\left(q_{2}\right)\right)\sim\left(\left(A\right)q_{1}-S_{1}^{2}\right)\left(q_{1}^{2}\right)\\ =\left(q_{1}^{2}\right)\left(q_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(q_{1}^{2}\right)\\ =\left(q_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(q_{1}^{2}\right)\\ =\left(q_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(q_{1}^{2}\right)\\ =\left(q_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\\ =\left(q_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\\ =\left(q_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\\ =\left(q_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\\ =\left(q_{1}^{2}\right)\left(A-S_{1}^{2}\right)\left(A-S_{1}^{2}\right)\\ =\left(q_{1}^{2}\right)\left(A-S_{1}^{2}\right)\\ =\left(q_{1}^{2}\right$$

Therefore, the matrix to be diagonalized is

Summarized: (Lanczos method)

- 1) Determine the Lanczos basis 7, for isk
- 2) Diagonalize  $\hat{\tau}$ , as described in 3.2.
- 3) Convergence check, e.g.: is  $w_{1} \approx w_{n-1}$ ?

## Remarks:

i) Convergence is often very fast

Example: Heisenberg model, 5= 3/2, czo

> Hilbert space dimension Dr. = 470 = 107



ii) The orthogonalization formulas are identical to the Gram-Schmidt method, evaluated for our special vectors.

Problem with (1)—(3): rounding errors can compromise orthogonality for large k.

iii) If k=N and Sym(7, ..., 5) = (n"

the Lanczos method is an alternative way to tridiagonalize a matrix.

But: The Housholder-Holder algorithm is more stable and

to be preferred. iv) In the derivation of the Krylov spaces, we could also have replaced "min" by "max", with the same result. At the same time, the Lanczos method also provides an approximation for the largest eigenvalue and its eigenvector. v) The effort of the matrix-vector products  $\vec{A} \cdot \vec{P}$ , is  $\vec{G}(n')$ where N' is the number of non-vanishing matrix elements. That means, that the dimension of the sparse matrix  $\hat{A}$ is irrelevant and can therefore be very large.