Devoir à la maison n° 15

À rendre le 25 mars

Soit E un espace vectoriel réel, non réduit au vecteur nul. On utilisera les notations usuelles d'anneau pour $(\mathcal{L}(E), +, \circ)$. Notamment, la notation uv désigne $u \circ v$.

On note \mathcal{H} l'ensemble des homothéties de E, et \mathcal{P} celui des projecteurs de E.

Pour $\lambda \in \mathbb{R}$, on note alors A_{λ} l'ensemble des endomorphismes u de E vérifiant $u^2 = \lambda u$.

- 1) Quels sont les éléments de A_{λ} qui sont des automorphismes de E?
- 2) On suppose ici que $\lambda = 0$, et $u \in \mathcal{L}(E)$. Donner une condition nécessaire et suffisante sur Im(u) et Ker(u) pour que $u \in A_0$.

Dorénavant, nous supposerons que $\lambda \neq 0$.

- 3) Soit $u \in A_{\lambda}$.
 - a) Déterminer u(x) si $x \in \text{Im}(u)$.
 - b) Montrer que Im(u) et Ker(u) sont supplémentaires dans E.
 - c) Montrer que $\operatorname{Im}(u) = \operatorname{Ker}(u \lambda \operatorname{Id}_E)$.
 - d) Que peut-on dire de $u \lambda \operatorname{Id}_E$? Déduire de la question précédente que $\operatorname{Im}(u \lambda \operatorname{Id}_E) = \operatorname{Ker}(u)$.
- 4) Exemple : dans cette partie, on suppose que $E = \mathbb{R}^4$. On considère

$$u: \left\{ \begin{array}{cccc} \mathbb{R}^4 & \longrightarrow & \mathbb{R}^4 \\ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} & \longmapsto & \begin{pmatrix} -9x & -4y & -8z \\ 2x & -4y & -6y & -8t \\ 8x & +6y & +11z & +4t \\ -9x & -4y & -8z \end{array} \right\}.$$

- a) Montrer qu'il existe $\lambda \in \mathbb{R}$ unique tel que $u \in A_{\lambda}$. Quel est ce λ ?
- b) Déterminer une base de Ker(u) ainsi qu'une base de $Ker(u \lambda Id)$.
- c) Construire à partir de ces deux bases précédentes une base de \mathbb{R}^4 .
- 5) a) Pour $u \in A_{\lambda}$, existe-t-il $\alpha \in \mathbb{R}$ tel que αu est un projecteur?
 - b) En déduire une écriture explicite de A_{λ} , en fonction notamment de \mathscr{P} et de λ .

Dans la suite, nous considérerons $u, v \in A_{\lambda}$.

6) Montrer que si $uv + vu = 0_{\mathcal{L}(E)}$, alors $uv = vu = 0_{\mathcal{L}(E)}$.

- 7) a) Montrer que $u+v\in A_\lambda$ si et seulement si $uv=vu=0_{\mathscr{L}(E)}.$ On se place alors dans le cas où $u+v\in A_\lambda.$
 - **b)** Montrer que $\operatorname{Im}(u+v) = \operatorname{Im}(u) + \operatorname{Im}(v)$.
 - c) Montrer que $Ker(u+v) = Ker(u) \cap Ker(v)$.
- 8) Dans cette question, on suppose uniquement que uv = vu.
 - a) Montrer qu'il existe $\lambda' \in \mathbb{R}$ tel que $uv \in A_{\lambda'}$. Ce λ' est-il unique? Le déterminer le cas échéant.
 - **b)** Montrer aussi que

$$\operatorname{Im}(uv) = \operatorname{Im}(u) \cap \operatorname{Im}(v)$$
 et $\operatorname{Ker}(uv) = \operatorname{Ker}(u) + \operatorname{Ker}(v)$.

— FIN —