HCMC University of Technology

Dung Nguyen

Probability and Statistics

Chi-squared Test

Outline I

- 1 Testing for Goodness of Fit
- 2 Contingency Table Tests

1 Testing for Goodness of Fit

Roll a die 99 times

Outcome	1	2	3	4	5	6
Observed frequency	15	12	15	14	20	23

Is this die fair at $\alpha = 0.01$?

Let X be the outcome of rolling the die and $p_i = P(X = i)$

We want to test the following hypotheses

$$H_0: p_1 = 1/6, \quad p_2 = 1/6, \quad p_3 = 1/6,$$
 $p_4 = 1/6, \quad p_5 = 1/6, \quad p_6 = 1/6$ vs. $H_1: \exists i: p_i \neq 1/6.$

Assume that H_0 is true.

Outcome	1	2	3	4	5	6
Observed frequency	15	12	15	14	20	23
P(X=i)	1/6	1/6	1/6	1/6	1/6	1/6
Expected frequency	16.5	16.5	16.5	16.5	16.5	16.5

Then

$$X^{2} = \frac{(15 - 16.5)^{2}}{16.5} + \frac{(12 - 16.5)^{2}}{16.5} + \frac{(15 - 16.5)^{2}}{16.5} + \frac{(14 - 16.5)^{2}}{16.5} + \frac{(20 - 16.5)^{2}}{16.5} + \frac{(23 - 16.5)^{2}}{16.5} = 5.18.$$

$$X^{2} = \frac{(15 - 16.5)^{2}}{16.5} + \frac{(12 - 16.5)^{2}}{16.5} + \frac{(15 - 16.5)^{2}}{16.5} + \frac{(14 - 16.5)^{2}}{16.5} + \frac{(20 - 16.5)^{2}}{16.5} + \frac{(23 - 16.5)^{2}}{16.5} = 5.18$$

$$X^{2} = \frac{15^{2}}{16.5} + \frac{12^{2}}{16.5} + \frac{15^{2}}{16.5} + \frac{14^{2}}{16.5} + \frac{20^{2}}{16.5} + \frac{23^{2}}{16.5} - 99 = 5.18$$

The degree of freedom: df = 6 - 1 = 5. The threshold value: χ

Goodness of fit tests

Pearson's article (1900): establish the asymptotic chi-square distribution for a goodness of fit statistic for the multinomial distribution.

- The test is based on the chi-square distribution.
- A sample of size n from a population whose probability distribution is unknown.
- \bullet O_i = the observed frequency in the j-th class interval.
- \bullet E_i = the expected frequency in the j-th class interval.

The test statistic is

$$\chi^{2} = \sum_{j=1}^{m} \frac{(O_{j} - E_{j})^{2}}{E_{j}}$$

or

$$\chi^2 = \sum_{j=1}^m \frac{(\nu_j - np_j)^2}{np_j}$$

Also

$$\chi^2 = \sum_{j=1}^m \frac{O_j^2}{E_j} - n$$

or

$$\chi^2 = \sum_{j=1}^m \frac{\nu_j^2}{np_j} - n$$

Example 1 - Printed Circuit Boards

The number of defects in printed circuit boards is hypothesized to follow a Poisson distribution. A random sample of n=60 printed boards has been collected, and the following number of defects observed.

Number	of	Defects	Observed Frequency
	0		32
	1		15
	2		9
	3		4

Question 1: Does the data set follow Poisson distribution with $\lambda=0.5$?

Question 2: Does the data set follow a Poisson distribution? ($\!\lambda\!$ is unknown)

Question 1: Does the data set follow Poisson distribution with $\lambda = 0.5$?

Y: the number of defects on a circuit board. $H_0: Y \sim \mathsf{Poisson}(0.5)$.

First of all, we assume that H_0 is true. Then

$$P(Y = k) = e^{-0.5} \frac{0.5^{k}}{k!}$$

$$P(Y = 0) = e^{-0.5} \frac{0.5^{0}}{0!} = 0.6065$$

$$P(Y = 1) = e^{-0.5} \frac{0.5^{1}}{1!} = 0.3033$$

$$P(Y = 2) = e^{-0.5} \frac{0.5^{2}}{2!} = 0.0758$$

$$P(Y = 3) = e^{-0.5} \frac{0.5^{3}}{3!} = 0.0126$$

$$P(Y \ge 3) = 1 - (0.6065 + 0.3033 + 0.0758) = 0.0144.$$

Number of	Observed	Probability	Expected
Defects	Frequency		Frequency
0	32	0.6065	36.3918
1	15	0.3033	18.1959
2	9	0.0758	4.5490
≥ 3	4	0.0144	0.8633
Total	60	1	60

$$\chi^{2} = \frac{(32 - 36.3918)^{2}}{36.3918} + \frac{(15 - 18.1959)^{2}}{18.1959} + \frac{(9 - 4.5490)^{2}}{4.5490} + \frac{(4 - 0.8633)^{2}}{0.8633} = 16.8442$$

$$= \frac{32^{2}}{36.3918} + \frac{15^{2}}{18.1959} + \frac{9^{2}}{4.5490} + \frac{4^{2}}{0.8633} - 60 = 16.8442$$

$$\chi^{2}_{0.05.3} = 7.81$$

Question 2: Does the data set follow a Poisson distribution? (is unknown)

$$\lambda = \frac{32 \times 0 + 15 \times 1 + 9 \times 2 + 4 \times 3}{32 + 15 + 9 + 4} = 0.75$$

# of Defects	Observed freq.	Prob.	Expected freq.
0	32	0.4724	28.3420
1	15	0.3543	21.2565
2	9	0.1329	7.9711
≥ 3	4	0.0405	2.4303
Total	60	1	60

# of Defect:	observed freq.	Prob.	Expected freq.
(32	0.4724	28.3420
-	15	0.3543	21.2565
2	2 9	0.1329	7.9711
≥ :	3 4	0.0405	2.4303
Total	L 60	1	60

$$\chi^{2} = \frac{(32 - 28.32)^{2}}{28.32} + \frac{(15 - 21.24)^{2}}{21.24} + \frac{(9 - 7.98)^{2}}{7.98} + \frac{(4 - 2.46)^{2}}{2.46} = 3.4602$$
$$= \frac{32^{2}}{28.32} + \frac{15^{2}}{21.24} + \frac{9^{2}}{7.98} + \frac{4^{2}}{2.46} - 60 = 3.4602$$
$$\chi^{2}_{0.05, 2} = 5.99$$

Number of	Observed	Probability	Expected
Defects	Frequency		Frequency
0	32	0.472	28.32
1	15	0.354	21.24
≥ 2	13	0.174	10.44
Total	60	1	

$$\chi^{2} = \frac{(32 - 28.32)^{2}}{28.32} + \frac{(15 - 21.24)^{2}}{21.24} + \frac{(13 - 10.44)^{2}}{10.44}$$
$$= \frac{32^{2}}{28.32} + \frac{15^{2}}{21.24} + \frac{13^{2}}{10.44} - 60 = 2.94$$
$$\chi^{2}_{0.05.1} = 3.$$

Question: Does the data set follow a normal distribution?

2 Contingency Table Tests

- ullet The n elements of a sample from a population may be classified according to two different criteria.
- Question: Are the two methods of classification statistically independent?

		Meth		Total	
	N_{11}	N_{12}		N_{1J}	$n_{1.}$
Method 1	N_{21}	N ₂₂		N_{2J}	n ₂ .
Method 1					
	N_{I1}	N_{I2}		N_{IJ}	$n_{I.}$
Total	n.1	n.2		$n_{.J}$	n

A company has to choose among three health insurance plans. Management wishes to know whether the preference for plans is independent of job classification and wants to use $\alpha=0.05$.

The opinions of a random sample of 500 employees are shown

	Heal	th Insu	rance Plan	
Job Classification	1	2	3	Totals
Salaried workers	160	140	40	340
Hourly workers	40	60	60	160
Totals	200	200	100	500

- Goal: Test the hypothesis that the row-and-column methods of classification are independent.
- Reject this hypothesis = there is some interaction between the two criteria of classification.
- The exact test procedures are difficult to obtain, but an approximate test statistic is valid for large n.

A company has to choose among three health insurance plans. Management wishes to know whether the preference for plans is independent of job classification and wants to use $\alpha=0.05$.

The opinions of a random sample of 500 employees are shown

	Heal	th In	surance Plan	
Job Classification	1	2	3	Totals
Salaried workers	160	140	40	340
Hourly workers	40	60	60	160
Totals	200	200	100	500

 ${\it H}_0$: Job Classification and Choice of health Insurance Plan are independent.

First we assume that H_0 is true.

	Heal	th Ir	nsurance	Plan	
Job Classification	1	2		3	Totals
Salaried workers	x_1	<i>X</i> ₂		<i>X</i> ₃	340
Hourly workers	X_4	x_5		x_6	160
Totals	200	200		100	500

$$\begin{cases} x_1 + x_2 + x_3 = 340 \\ x_4 + x_5 + x_6 = 160 \\ x_1 + x_4 = 200 \\ x_2 + x_5 = 200 \\ x_3 + x_6 = 100 \end{cases} \implies A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

 $rank(A) = 4 \implies$ the degree of freedom = the # of independent variables = 6 - 4 = 2.

Wait a minute ...

Wait a minute ...

Do we have to compute the rank of a matrix to determine the df?

Wait a minute ...

Do we have to compute the rank of a matrix to determine the df?

$$df = (2-1)(3-1) = 2$$

Expected values

	Healt			
Job Class.	1	2	3	Tot.
Salaried	$\frac{200 \times 340}{500} = 136$	$\frac{200 \times 340}{500} = 136$	$\frac{100 \times 340}{500} = 68$	340
Hourly	$\frac{200 \times 160}{500} = 64$	$\frac{200 \times 160}{500} = 64$	$\frac{100 \times 160}{500} = 32$	160
Totals	200	200	100	500

	Health			
Job Classification	1	2	3	Totals
Salaried workers	160, 136	140, 136	40, 68	340
Hourly workers	40, 64	60, 64	60, 32	160
Totals	200	200	100	500

	Health			
Job Classification	1	2	3	Totals
Salaried workers	160, 136	140, 136	40, 68	340
Hourly workers	40, 64	60, 64	60, 32	160
Totals	200	200	100	500

$$\chi^{2} = \frac{(160 - 136)^{2}}{136} + \dots + \frac{(60 - 32)^{2}}{32} = 49.6$$

$$\chi^{2} = 500 \left[\frac{160^{2}}{200 \times 340} + \dots + \frac{60^{2}}{100 \times 160} - 1 \right] = 49.6$$

$$\chi^{2}_{0.05,2} = 5.99$$

Test procedure I

- Goal: Test the hypothesis that the row-and-column methods of classification are independent.
- Reject this hypothesis = there is some interaction between the two criteria of classification.
- The exact test procedures: difficult to obtain
- ullet An approximate test statistic: Chi-squared test for large n.

Test procedure II

- Let p_{ij} be the probability that a randomly selected element falls in the ij-th cell.
- ullet If the two classifications are independent then $p_{ij}=u_iv_j$, where
 - ullet u_i is the probability that a randomly selected element falls in row class i and
 - ullet v_j is the probability that a randomly selected element falls in column class j.
- ullet Assuming independence, the estimators of u_i and v_j are

$$u_i = \frac{n_{i.}}{n}$$
 and $v_i = \frac{n_{.j}}{n}$

• The expected frequency of each cell is

$$E_{ij} = \frac{n_{i.}n_{.j}}{n}$$

For large n, the statistic

$$\chi^{2} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

has an approximate chi-square distribution with (I-1)(J-1) degrees of freedom if the null hypothesis is true.

We should reject the null hypothesis if the value of the test statistic χ^2 is too large.

Computational formula:

$$\chi^{2} = n \left[\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{n_{ij}^{2}}{n_{i.}n_{.j}} - 1 \right]$$

Grades in a statistics course and an operation research course take simultaneously were as follows for a group of students

	Operation Research Grade			
Statistics Grade	А	В	С	Others
A	25	6	17	13
В	17	16	15	6
С	18	4	18	10
Others	10	8	11	20

Are the grades in two courses related? Use $\alpha=0.01$ in reaching your conclusion. What is the \mathbf{p}_{v} ?