Introduction to Embedded Computer System

Chapter 1

They are Embedded Systems

Is it an embedded system?

Is it an embedded system?

Is it an embedded system?

Smartbird

Big dog

Definition

- No clear definition !!!
 - Non-computer, **small**, regular, big, super
- Non-computer : no computation
 - The transmitter of car remote controller
- Small computer: embedded system
 - The receiver of car remote controller
- Regular computer : 1 CPU (a few cores)
- Big computer: a few CPUs
 - Servers
- Super computer: thousands of CPUs
 - IBM Roadrunner, 1.105 PFLOPS

- More limited in hardware and software functionality.
 - Sensor
 - Hardware: 4KByte ram, 1MIPS CPU
 - Voice recording
 - 8 bit per sample
 - 9.6K samples per second (only fair quality)
 - Without compression: 0.41 seconds of recording
 - With compression, each sample should be compressed within 104 instructions.
 - But, not always so resource constrained

- Designed to perform dedicated functions
 - Digital LCD
 - A remote controller, a signal receiver, a panel
 - Although the controller has many buttons, the TV only has a fixed menu with a fixed set of functions.
 - Change channel
 - Recording
 - Video on demand
 - Change color
 - So, it is feasible to have a manual with a TV, which describes all functions provided by the TV.

- Designed with specific quality requirements
 - Car's brake controller
 - ABS, ESC, ...
 - 60 mph = 87.5 feet per second
 - A response time of 0.1 second in the brake system means a distance of 8.75 feet.
 - High real-time requirement
 - Car's engine controller
 - Gas and ignition control in response to current speed
 - High reliability requirement : cannot fail over years
 - Airplane : higher
 - TV: lower

- Modern general purpose embedded systems
 - PDAs, cell phones, ...
 - They were NOT general purpose embedded systems, but are now.
 - Limited resources
 - ?
 - Dedicated functionality
 - ?
 - Specific quality requirements
 - ?

Market

- Automotive
 - Engine, ignition, brake, stability
- Consumer electronics
 - TV, DVD, PDA, refrigerator, oven, camera
- Industrial control
 - Robot
- Medical
 - Monitor, analyzer, pump
- Networking
 - Router, access point
- Office automation
 - Fax, printer, copier, scanner

Market

- Defined in the following order
- Dedicated functionality
 - Each device is designed for a particular market.
- Specific quality requirement
 - Each device satisfies a particular needs.
- Limited resources
 - Resources are trimmed to save cost.

System Design

- Same as software engineering principles
- Big-bang
 - Beginners
- Code-and-fix
 - Small applications
- Waterfall
 - Large applications
- Spiral
 - For a continuous business
- Examples in the book

System Design

- Marketability
 - Who need it?
- Functionality
 - Does it provide what people need?
- Cost limitation
 - Can people afford it?
 - Does it only provide what people need?
- System's quality
 - How does it provide what people need?
- Performance limitation: computation power, memory size, battery life
 - Finally, we, computer professionals, start to design a system to answer the four questions.

System Architecture

- A system is composed of interacting elements.
 - Elements/functionality
 - Relationship/interaction
- Every embedded system has an architecture.
 - Why?
 - Except all good reasons, it is hard to apply the design of one system on another.
- Defining and understanding the architecture is the essential component of good system design.

System Architecture

- System model
 - Figure 1-2
 - Application software layer (required)
 - Application programs, common libraries
 - System software layer (optional)
 - OS, system libraries, system calls
 - Hardware layer (required)
 - CPU, memory, peripherals,