

DUAL N-CHANNEL MATCHED MOSFET PAIR

GENERAL DESCRIPTION

The ALD1101 is a monolithic dual N-channel matched transistor pair intended for a broad range of analog applications. These enhancement-mode transistors are manufactured with Advanced Linear Devices' enhanced ACMOS silicon gate CMOS process.

The ALD1101 offers high input impedance and negative current temperature coefficient. The transistor pair is matched for minimum offset voltage and differential thermal response, and it is designed for switching and amplifying applications in +2V to +12V systems where low input bias current, low input capacitance and fast switching speed are desired. Since these are MOSFET devices, they feature very large (almost infinite) current gain in a low frequency, or near DC, operating environment. When used with an ALD1102, a dual CMOS analog switch can be constructed. In addition, the ALD1101 is intended as a building block for differential amplifier input stages, transmission gates, and multiplexer applications.

The ALD1101 is suitable for use in precision applications which require very high current gain, beta, such as current mirrors and current sources. The high input impedance and the high DC current gain of the Field Effect Transistors result in extremely low current loss through the control gate. The DC current gain is limited by the gate input leakage current, which is specified at 50pA at room temperature. For example, DC beta of the device at a drain current of 5mA at 25°C is = 5mA/50pA = 100,000,000.

FEATURES

- Low threshold voltage of 0.7V
- Low input capacitance
- Low Vos grades -- 2mV, 5mV, 10mV
- High input impedance -- 10¹²Ω typical
- Negative current (IDS) temperature coefficient
- Enhancement-mode (normally off)
- DC current gain 109
- RoHS compliant

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

	,	(//						
Opera	Operating Temperature Range							
0°C to +70°C	0°C to +70°C	-55°C to +125°C						
8-Pin Small Outline Package (SOIC)	8-Pin Plastic Dip Package	8-Pin CERDIP Package						
ALD1101ASAL ALD1101BSAL ALD1101SAL	ALD1101APAL ALD1101BPAL ALD1101PAL	ALD1101DA						

^{*} Contact factory for leaded (non-RoHS) or high temperature versions.

APPLICATIONS

- · Precision current mirrors
- · Precision current sources
- · Analog switches
- Choppers
- Differential amplifier input stage
- Voltage comparator
- Data converters
- Sample and Hold
- Analog inverter

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Drain-source voltage, V _{DS} _		10.6\
Gate-source voltage, VGS		10.6\
Power dissipation		500mW
Operating temperature range	SAL, PALpackages	0°C to +70°C
	DA package	55°C to +125°C
Storage temperature range	<u> </u>	65°C to +150°C
Lead temperature, 10 seconds	+260°C	
	ice. Use static control procedures in ESD controlled environment.	

OPERATING ELECTRICAL CHARACTERISTICS $T_A=25^{\circ}\text{C}$ unless otherwise specified

			LD 110			_D1101		ALD1101			Test	
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Gate Threshold Voltage	V _T	0.4	0.7	1.0	0.4	0.7	1.0	0.4	0.7	1.0	V	$I_{DS} = 10\mu A V_{GS} = V_{DS}$
Offset Voltage V _{GS1} - V _{GS2}	Vos			2			5			10	mV	$I_{DS} = 100 \mu A V_{GS} = V_{DS}$
Gate Threshold Temperature Drift	TC _{VT}		-1.2			-1.2			-1.2		mV/°C	
On Drain Current	I _{DS} (ON)	25	40		25	40		25	40		mA	V _{GS} = V _{DS} = 5V
Transconductance	G _{fs}	5	10		5	10		5	10		mmho	$V_{DS} = 5V I_{DS} = 10mA$
Mismatch	ΔG_fS		0.5			0.5			0.5		%	
Output Conductance	G _{OS}		200			200			200		μmho	$V_{DS} = 5V I_{DS} = 10mA$
Drain Source ON Resistance	R _{DS(ON)}		50	75		50	75		50	75	Ω	V _{DS} = 0.1V V _{GS} = 5V
Drain Source ON Resistance Mismatch	ΔR _{DS(ON)}		0.5			0.5			0.5		%	V _{DS} = 0.1V V _{GS} = 5V
Drain Source Breakdown Voltage	BV _{DSS}	12			12			12			V	I _{DS} = 10μΑ V _{GS} =0V
Off Drain Current	I _{DS(OFF)}		0.1	4 4		0.1	4 4		0.1	4 4	nA μA	V _{DS} =12V V _{GS} = 0V T _A = 125°C
Gate Leakage Current	I _{GSS}		1	50 10		1	50 10		1	50 10	pA nA	V _{DS} =0V V _{GS} =12V T _A = 125°C
Input Capacitance	C _{ISS}		6	10		6	10		6	10	pF	

TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT CHARACTERISTICS

LOW VOLTAGE OUTPUT CHARACTERISTICS

FORWARD TRANSCONDUCTANCE

TRANSFER CHARACTERISTIC

RDS (ON) vs. GATE - SOURCE VOLTAGE

OFF DRAIN - CURRENT vs.

TYPICAL APPLICATIONS

CURRENT SOURCE MIRROR

$V^{+} = +5V$ ALD1102, 1/2 ALD1107, or ALD1117 $V^{+} = +5V$ Q4 Q_3 ₹ R_{SET} ISET | I SOURCE Q₁ I SOURCE = ISET = <u>V+ -Vt</u> ALD1101. RSET 1/2 ALD1106, 4 or ALD1116 RSET Q₁, Q₂: N - Channel MOSFET Q₃, Q₄: P - Channel MOSFET

CURRENT SOURCE WITH GATE CONTROL

DIFFERENTIAL AMPLIFIER

VIN+ ALD1102, 1/2 ALD1107, or ALD1117 PMOS PAIR Q3 PMOS PAIR Q1 NMOS PAIR Current Source Current Source

Q₁, Q₂: N - Channel MOSFET Q₃, Q₄: P - Channel MOSFET

CURRENT SOURCE MULTIPLICATION

QSET, Q1..QN: ALD1101, ALD1106, or ALD1116 N - Channel MOSFET

TYPICAL APPLICATIONS (cont.)

BASIC CURRENT SOURCES

N- CHANNEL CURRENT SOURCE

Q₁, Q₂: N - Channel MOSFET

P- CHANNEL CURRENT SOURCE

Q₃, Q₄: P - Channel MOSFET

CASCODE CURRENT SOURCES

 $\begin{array}{c} \mathsf{Q}_1,\,\mathsf{Q}_2,\,\mathsf{Q}_3,\,\mathsf{Q}_4 \hbox{: N - Channel MOSFET} \\ & (\mathsf{ALD1101} \ \mathsf{or} \ \mathsf{ALD1103}) \end{array}$

ISOURCE = ISET =
$$\frac{V+ - 2Vt}{RSET} \cong \frac{3}{RSET}$$

Q1, Q2, Q3, Q4: P - Channel MOSFET (ALD1102 or ALD1103)

SOIC-8 PACKAGE DRAWING

8 Pin Plastic SOIC Package

PDIP-8 PACKAGE DRAWING

8 Pin Plastic DIP Package

	Millim	neters	Inches			
Dim	Min	Max	Min	Max		
Α	3.81	5.08	0.105	0.200		
A ₁	0.38	1.27	0.015	0.050		
A ₂	1.27	2.03	0.050	0.080		
b	0.89	1.65	0.035	0.065		
b ₁	0.38	0.51	0.015	0.020		
С	0.20	0.30	0.008	0.012		
D-8	9.40	11.68	0.370	0.460		
E	5.59	7.11	0.220	0.280		
E ₁	7.62	8.26	0.300	0.325		
е	2.29	2.79	0.090	0.110		
e ₁	7.37	7.87	0.290	0.310		
L	2.79	3.81	0.110	0.150		
S-8	1.02	2.03	0.040	0.080		
Ø	0°	15°	0°	15°		

CERDIP-8 PACKAGE DRAWING

8 Pin CERDIP Package

	Millim	neters	Inches			
Dim	Min	Max	Min	Max		
Α	3.55	5.08	0.140	0.200		
A ₁	1.27	2.16	0.050	0.085		
b	0.97	1.65	0.038	0.065		
b ₁	0.36	0.58	0.014	0.023		
С	0.20	0.38	0.008	0.015		
D-8		10.29		0.405		
E	5.59	7.87	0.220	0.310		
E ₁	7.73	8.26	0.290	0.325		
е	2.54 E	BSC	0.100 BSC			
e ₁	7.62 E	BSC	0.300 BSC			
L	3.81	5.08	0.150	0.200		
L ₁	3.18		0.125			
L ₂	0.38	1.78	0.015	0.070		
S		2.49		0.098		
Ø	0°	15°	0°	15°		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Advanced Linear Devices:

ALD1101BSAL ALD1101PA ALD1101PAL ALD1101ASAL ALD1101SAL ALD1101BPAL ALD1101APAL ALD1101APA