SOLUÇÕES DOS PROBLEMAS PROPOSTOS

ESTRUTURA e LIGAÇÃO QUÍMICA

P1.

- D a. b. A, B
- Nenhuma c.
- d. В
- Nenhuma e.
- f. A, D
- Α g.
- С h.
- P2.
- **a.** 11 σ , 1π
 - **b.** 9σ , 2π
- P3.

- P4. Resposta b.
- **P5.** Resposta **d.**

ALCANOS e CICLOALCANOS

P1:

x = 11, y = 20, z = 13Menor calor por mole.

P2:

O isómero a)

P3:

P4:

P5:

O trans-1-isopropil-4-metilciclohexano tem menor calor de combustão.

P6:

Alínea a) I é mais estável.

P7:

- a. 2,5-Dimetilheptano
- **b.** 7-Etil-3-metildecano
- c. 5-metildeca-6-eno-3-ino
- **d.** 3,3-Dimetilpentano.

P8:

a.

3-etil-2-metilhexano

b. ______

c.

5-etil-2,3,4-trimetilnonano

d.

4-tert-butil-2,3-dimetilheptano

e.

4-etil-5-propilundecano

f.

2,2,4-trimetilpentano

g.

3-metil-4-propilheptano

h.

2-metilhexano

i.

2,2-dimetilpentano

P11:

Produtos mono-halogenados	Tipo H	Número H equivalentes	Reactividade	Percentagem
CH ₂ Br	1º	6	1 x 6 = 6	(6/1841) x 100 = 0.33%
Br	3º	1	1800 x 1 = 1800	(1800/1841) x 100 = 97.8%
Br	2º	2	16 x2 = 32	(32/1841) x 100 = 1.7%

	CH ₂ Br	1º	3	1 x 3 = 3	(3/1841) x 100 = 0.16%
--	--------------------	----	---	-----------	------------------------

Total = 1841

P12: Resolução análoga à do problema anterior.

P13:

Apenas um produto é obtido por monocloração do ciclo-hexano:

P14: O alcano é o propano.

ESTEREOISOMERIA

- P1. A resposta correcta é a d)
- **P2**. A resposta correcta é a c)
- P3. A resposta correcta é a d)
- P4. A resposta correcta é a d)
- P5. A resposta correcta é a b)

S_N2/S_N1 - SUBSTITUIÇÃO NUCLEOFÍLICA

P1.

a.

$$\begin{array}{cccc} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Br} & & \text{CH}_3\text{CH}_2\text{ONa} \\ & & \text{CH}_3\text{CH}_2\text{OH} \end{array}$$

b.

(X = OTs, Br, I)

C.

1-Cloro-3-metilbutano azida de sódio

d.

e.

Br
$$C(CH_3)_3$$
 + NaN_3 NaN_3

f.

P2. O iodeto de sódio é solúvel em acetona, enquanto que o sub-produto da reacção, brometo de sódio, não é. De acordo com o princípio de Le Chatelier, a reacção favorecerá a direcção que substitui o componente removido da solução, ou seja, o produto orgânico da reacção.

P3. Estruturas de A a D:

$$\begin{array}{ccc} CH_3CH_2OH & \xrightarrow{\mbox{HBr, calor}} & CH_3CH_2Br \\ C & D \end{array}$$

P4.

P5. Na reacção

o produto principal forma-se através:

d. reacção E2

E2 / E1 - ELIMINAÇÃO

P1.

a.

1,2-Dimetilciclo-hexeno

b.

$$(H_3C)_2CIC$$
 $KOC(CH_3)_3$
 $(CH_3)_3COH$

$$H_2C = C$$
 CH_3

C.

$$(H_3C)_3C$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3OH, refluxo$$

$$C(CH_3)_3$$

$$C(CH_3)_4$$

$$C(CH_3)_3$$

$$C(CH_3)_4$$

$$C(CH_3)_4$$

$$C(CH_3)_3$$

$$C(CH_3)_4$$

$$C(CH_3)_4$$

$$C(CH_3)_5$$

$$C$$

P2. Isómero C₆H₁₃Br que não reage em eliminação E2:

Química Orgânica Geral - 2019

$$\operatorname{CH_3}$$
 $\operatorname{CH_3CH_2C}$
 $\operatorname{CH_3CH_2Br}$
 $\operatorname{CH_3}$

P3.

P4.

Isómero trans:

$$(H_3C)_2HC$$
 CI

O isómero trans reagirá mais rapidamente, devido à conformação que possui com o grupo isopropilo equarorial e o CI axial, favorecendo E2.

P5. Afirmação verdadeira, no que respeita a reacções E2 de haletos de alquilo:

3. A ligação C-H e a ligação C-X são quebradas em simultâneo.

ÁLCOOIS e ÉTERES

P1.

$$(CH_3)_2CHCH_2OH \xrightarrow{K_2Cr_2O_7} (CH_3)_2CHCOH$$
2-metil-1-propanol
$$(CH_3)_2CHCOH$$

$$||$$

$$0$$
ácido 2-metilpropanóico

P2.

OH
$$\begin{array}{c}
1. C_6 H_5 MgBr, \text{ éter} \\
\hline
2. H_3 O^+
\end{array}$$
OH
$$\begin{array}{c}
C_6 H_5
\end{array}$$

P3.

a.

b.

c.

P4.

P5.

4-metil-1-fenilciclo-hexeno