1959

SPECTRAL ANALYSIS OF ABSTRACT FUNCTIONS

YU. A. ROZANOV

(Translated by R. A. Silverman)

Introduction

In this paper we consider functions x(t) of a real variable t, $-\infty < t < +\infty$, with values in a Hilbert space H, which are in a certain sense a generalization of stationary functions, i.e., which are such that the scalar product

$$(1.0) (x_{t+\tau}, x_t) = B(\tau)$$

does not depend on t. As is well known, a function which satisfies the condition (1.0) can be represented in the form

(2.0)
$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda),$$

where $\Phi(\Delta)$ is an additive function of the interval Δ with values in H such that

$$(\mathfrak{D}(\Delta), \mathfrak{D}(\Delta')) = F(\Delta \cap \Delta'),$$

where $F(\Delta)$ is the so-called spectral measure.

In some cases the spectral theory which has been developed for stationary functions (see e.g. [1]) can also be generalized to non-stationary functions. In this paper such a generalization is made for two classes of functions: One such class consists of functions x(t) which can be represented in the form (2.0), where $\Phi(\Delta)$ need not necessarily satisfy the condition (3.0). The other such class consists of functions for which

(4.0)
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T (x_{t+\tau}, x_t) dt = B(\tau)$$

exists for all τ , $-\infty < \tau < +\infty$. Persuing this we study, at the beginning of the paper, additive functions $\Phi(\Delta)$ with values in H. The results which are thereby obtained are valid for functions $\Phi(\Delta)$ defined on a system \mathfrak{S} of subsets of an arbitrary space R; it is only required that the system \mathfrak{S} be a semi-ring (cf. [8]). We also remark that most of the results presented here can be automatically carried over to the case where the space H is an arbitrary Banach space.

1. Abstract Measures and Integration

1º. Let H be a Hilbert space and $\Phi(\Delta)$ an additive function (measure) of the sets of the line $R = \{-\infty < \lambda < \infty\}$ with values in H; $\Phi(\Delta) \in H$ is defined

on the class of sets which consists of the empty set \emptyset of the whole line R and all possible finite sums of half intervals $\Delta = [\lambda_1, \lambda_2)$. The additivity property of $\Phi(\Delta)$ consists in the fact that if

$$\Delta = \bigcup_{k=1}^{m} \Delta_k$$
, $\Delta, \Delta_k \in \mathfrak{S}$,

where the Δ_k do not overlap, then

(1.1)
$$\Phi(\Delta) = \sum_{k=1}^{m} \Phi(\Delta_k).$$

We set

(2.1)
$$F(\Delta, \Delta') = (\Phi(\Delta), \Phi(\Delta')).$$

By (1.1), $F(\Delta, \Delta')$ is an additive function of the sets $\Delta \times \Delta'$ of the plane, defined on the class \mathfrak{S}^2 . We note that the function $F(\Delta, \Delta')$ has the important property of being positive definite, i.e.

(3.1)
$$F(\Delta, \Delta') = \overline{F(\Delta', \Delta)}, \sum_{k=1}^{m} \sum_{j=1}^{m} \alpha_k \overline{\alpha}_j F(\Delta_k, \Delta_j) \ge 0$$

for any choice of the complex numbers α_1 , α_2 , \cdots , α_m and the sets Δ_1 , Δ_2 , \cdots , Δ_m of \mathfrak{S} .

We call the measure $\Phi(\Delta)$ continuous if, given any monotone decreasing sequence of sets

$$\Delta_n$$
, $\Delta_n \supseteq \Delta_{n+1}$, $\bigcap_{n=1}^{\infty} \Delta_n = \emptyset$,

we have

$$(4.1) ||\Phi(\Delta_n)|| \to 0$$

as $n \to \infty$. (The symbol ||h|| denotes the norm of the element h, as usual; $||h|| = (h, h)^{1/2}$.) The condition (4.1) is obviously equivalent to the continuity of the function $F(\Delta, \Delta')$, i.e.

$$(5.1) F(\Delta_m, \Delta_n) \to 0$$

as $m, n \to \infty$.

Theorem 1.1. For any continuous additive function $F(\Delta, \Delta')$ of the sets $\Delta \times \Delta'$, Δ , $\Delta' \in \mathfrak{S}$, which has the property (3.1), there exists a measure $\Phi(\Delta)$, $\Delta \in \mathfrak{S}$, in the space H such that

$$(\Phi(\Delta), \Phi(\Delta')) = F(\Delta, \Delta').$$

PROOF. Let \mathfrak{S}_r be the class of half intervals $\Delta = [\lambda_1, \lambda_2)$ with rational endpoints λ_1, λ_2 . It is well known (see e.g. [1]) that it follows from the positive definiteness property (3.1) that there exist elements $\Phi(\Delta) \in H$, $\Delta \in \mathfrak{S}_r$, such that

$$(\Phi(\Delta), \Phi(\Delta')) = F(\Delta, \Delta').$$

Moreover, let $\Delta_1, \Delta_2, \dots, \Delta_m$ be non-overlapping and let

$$\Delta = \bigcup_{k=1}^{m} \Delta_k, \quad \Delta, \Delta_k \in \mathfrak{S}_r, \quad \Phi'(\Delta) = \sum_{k=1}^{m} \Phi(\Delta_k).$$

We have

$$\begin{split} ||\varPhi(\varDelta) - \varPhi'(\varDelta)||^2 &= F(\varDelta, \varDelta) - \sum_{k=1}^m F(\varDelta_k, \varDelta) - \sum_{k=1}^m F(\varDelta, \varDelta_k) + \sum_{k=1}^m \sum_{j=1}^m F(\varDelta_k, \varDelta_j) \\ &= F(\varDelta, \varDelta) - F(\bigcup_{k=1}^m \varDelta_k, \varDelta) - F(\varDelta, \bigcup_{k=1}^m \varDelta_k) + F(\bigcup_{k=1}^m \varDelta_k, \bigcup_{j=1}^m \varDelta_j) = 0 \end{split}$$

and thus

$$\Phi(\Delta) = \sum_{k=1}^{m} \Phi(\Delta_k).$$

Because of the continuity of F, if

$$\Delta \in \mathfrak{S} \text{ and } \Delta = \bigcap_{n} \Delta_{n}, \qquad \Delta_{n} \supseteq \Delta_{n+1}, \qquad \Delta_{n} \in \mathfrak{S}_{r},$$

we have

$$\begin{split} ||\varPhi(\varDelta_m) - \varPhi(\varDelta_n)||^2 &= ||\varPhi(\varDelta_m - \varDelta_n)||^2 \\ &= F(\varDelta_m - \varDelta_n, \varDelta_m - \varDelta_n) \to 0 \end{split}$$

as $n > m \to \infty$. We set

$$\Phi(\Delta) = \lim_{n \to \infty} \Phi(\Delta_n),$$

and define $\Phi(\Delta)$ on the whole class \mathfrak{S} by the property of finite additivity. The function $\Phi(\Delta)$ so obtained obviously satisfies the conditions of the theorem.

We shall say that the function $\Phi(\Delta)$ is of bounded variation if for any element $h \in H$, the additive numerical function $F_h(\Delta)$,

(6.1)
$$F_h(\Delta) = (\Phi(\Delta), h),$$

is of bounded variation, i.e.

(7.1)
$$\sup_{\Delta_k} \sum_{k=1}^m |F_k(\Delta_k)| = \operatorname{Var} F_k < \infty,$$

where the sup is taken over all finite families $\Delta_1, \Delta_2, \dots, \Delta_m$ of non-overlapping sets of \mathfrak{S} (cf. [4], [5]). It is not hard to show (see e.g. [4]) that if $\Phi(\Delta)$ is of bounded variation, then there exists a constant M which does not depend on h such that

$$(8.1) Var F_h \leq M \cdot ||h||.$$

It follows from (8.1) that

(9.1)
$$\sup_{\Delta_k, \alpha_k} \left\| \sum_{k=1}^m \alpha_k \Phi(\Delta_k) \right\| \leq M,$$

where the sup is taken over all finite families Δ_1 , Δ_2 , \cdots , Δ_m of non-overlapping sets of \mathfrak{S} and over arbitrary complex numbers α_1 , α_2 , \cdots , α_m , $|\alpha_k| \leq 1$, since

$$\left| \left(\sum_{k=1}^{m} \alpha_k \Phi(\Delta_k), h \right) \right| = \left| \sum_{k=1}^{m} a_k(\Phi(\Delta_k), h) \right| \leq \sum_{k=1}^{n} |F_h(\Delta)| \leq \operatorname{Var} F_h \leq M ||h||$$

for any h, and in particular for $h = \sum_{k=1}^{m} \alpha_k \Phi(\Delta_k)$.

We define the variation of the measure Φ on the set $\Delta \in \mathfrak{S}$ by the formula

(10.1)
$$\operatorname{Var}_{\Delta} \Phi = \sup_{\Delta_{k}, \alpha_{k}} \left\| \sum_{k=1}^{m} \alpha_{k} \Phi(\Delta_{k}) \right\|,$$

where the sup is taken over all finite families $\Delta_1, \Delta_2, \dots, \Delta_m, \Delta_k \subseteq \Delta$, of non-overlapping sets of $\mathfrak S$ and over arbitrary complex numbers $\alpha_1, \alpha_2, \dots, \alpha_m$, $|\alpha_k| \leq 1$. We note that $\operatorname{Var}_{\Delta} \Phi$ as a set function is monotone and subadditive, i.e. if $\Delta_1 \cap \Delta_2 = \emptyset$, $\Delta = \Delta_1 \cup \Delta_2$, then

$$\operatorname{Var}_{\varDelta_{\mathbf{1}}} \Phi \leq \operatorname{Var}_{\varDelta} \Phi \leq \operatorname{Var}_{\varDelta_{\mathbf{1}}} \Phi + \operatorname{Var}_{\varDelta_{\mathbf{2}}} \Phi.$$

Obviously

(12.1)
$$\operatorname{Var}_{A} F_{h} \leq \operatorname{Var}_{A} \Phi ||h||$$

holds for any set $\Delta \in \mathfrak{S}$ and any element $h \in H$.

We call the abstract measure $\Phi(\Delta)$ weakly continuous if the numerical measure $F_h(\Delta) = (\Phi(\Delta), h)$ is continuous for every $h \in H$, i.e. if the sequence $\Delta_n \in \mathfrak{S}$ is such that if $\Delta_n \supseteq \Delta_{n+1}$ and $\bigcap_{n=1}^{\infty} \Delta_n = \emptyset$, then

$$(13.1) F_h(\Delta_n) \to 0$$

as $n \to \infty$. We denote by $H(\Phi)$ the linear closure of the elements $\Phi(\Delta)$, $\Delta \in \mathfrak{S}$.

Theorem 2.1. Every weakly continuous abstract measure $\Phi(\Delta)$ of bounded variation, $\Phi(\Delta) \in H$, defined on \mathfrak{S} , can be uniquely extended to a weakly continuous measure $\tilde{\Phi}(\Delta)$, $\Phi(\Delta) \in H(\Phi)$, which is now defined on the algebra $\tilde{\mathfrak{S}}$ of all Lebesgue measurable sets of the line R, where $\operatorname{Var}_R \tilde{\Phi} = \operatorname{Var}_R \Phi$.

PROOF. We take any element $h \in H(\Phi)$ and consider the numerical measure $F_h(\Delta)$. By (13.1) it is σ -additive on $\mathfrak S$ and therefore can be uniquely extended to the algebra $\mathfrak S$ of all Lebesgue measurable sets of the line R (see e.g. [8]). The value of this measure $F_h(\Delta)$ for any fixed $\Delta \in \mathfrak S$ defines a functional of $h \in H(\Phi)$ where because of the obvious relations

(14.1)
$$\begin{aligned} F_{h_1+h_2}(\Delta) &= F_{h_1}(\Delta) + F_{h_2}(\Delta), & F_{\alpha h}(\Delta) &= \bar{\alpha} F_h(\Delta), \\ F_h(\Delta) &\leq \operatorname{Var}_R F_h &\leq \operatorname{Var}_R \Phi \cdot ||h|| \end{aligned}$$

this functional is linear; therefore, by Riesz' theorem on the general form of a linear functional, there exists an element $\tilde{\Phi}(\Delta) \in H(\Phi)$ such that

(15.1)
$$F_h(\Delta) = (\Phi(\Delta), h)$$

for all $h \in H(\Phi)$. If $\Delta \in \mathfrak{S}$, then $\tilde{\Phi}(\Delta) = \Phi(\Delta)$. Obviously, the function $\tilde{\Phi}(\Delta)$, $\Delta \in \tilde{\mathfrak{S}}$, defined by the relation (15.1) is additive. Moreover

$$(16.1) \operatorname{Var}_{A} F_{h} \leq \operatorname{Var}_{A'} F_{h} \leq \operatorname{Var}_{A'} \Phi \cdot ||h||$$

for any $\Delta \in \widetilde{\mathfrak{S}}$ and $\Delta' \in \widetilde{\mathfrak{S}}$, $\Delta \subseteq \Delta'$, and $h \in H(\Phi)$, and therefore

(17.1)
$$\operatorname{Var}_{\varDelta} \tilde{\boldsymbol{\Phi}} \leq \sup_{||\boldsymbol{h}||=1} \operatorname{Var}_{\varDelta} F_{\boldsymbol{h}} \leq \operatorname{Var}_{\varDelta'} \boldsymbol{\Phi}.$$

Thus, the measure $\tilde{\Phi}(\Delta)$ defined by the relation (14.1) satisfies the conditions of the theorem.

2°. Because of the preceding theorem, we can assume without loss of generality that the weakly continuous abstract measure $\Phi(\Delta)$ of bounded variation is defined on all the Lebesgue measurable sets of the line R. Let the measurable function $\varphi(\lambda)$ take only a finite number of values:

(18.1)
$$\varphi(\lambda) = a_k \text{ for } \lambda \in \Delta_k, \qquad k = 1, 2, \dots, m.$$

We define the integral $I(\varphi) = \int_{-\infty}^{\infty} \varphi(\lambda) \Phi(d\lambda)$ by the formula

(19.1)
$$I(\varphi) = \sum_{k=1}^{m} a_k \Phi(\Delta_k).$$

The integral of a bounded measurable function $\varphi(\lambda)$ is defined as (cf. [4])

(20.1)
$$I(\varphi) = \int_{-\infty}^{\infty} \varphi(\lambda) \Phi(d\lambda) = \lim_{n \to \infty} \int_{-\infty}^{\infty} \varphi_n(\lambda) \Phi(d\lambda),$$

where $\varphi_n(\lambda)$ is a sequence of functions of the form (19.1) which converges uniformly to $\varphi(\lambda)$ as $n \to \infty$, and the limit is understood in the sense of convergence in the norm. The definition (20.1) is correct, since, if $\psi_m(\lambda)$ is a sequence of functions of the form (18.1) which also converges to $\varphi(\lambda)$ uniformly as $m \to \infty$, then

$$(21.1) ||I(\varphi_n) - I(\psi_m)|| \leq \sup_{\lambda} |\varphi_n(\lambda) - \psi_m(\lambda)| \operatorname{Var}_R \Phi \to 0$$

as $n, m \to \infty$. We define the integral $I_{\Delta}(\varphi)$ over the set Δ by the relation

(22.1)
$$I_{\Delta}(\varphi) = \int_{\Delta} \varphi(\lambda) \Phi(d\lambda) = \int_{-\infty}^{\infty} \varphi(\lambda) \chi_{\Delta}(\lambda) \Phi(d\lambda),$$

where $\chi_{\Delta}(\lambda)$ is the characteristic function of the set Δ .

Moreover, we say that the unbounded function $\varphi(\lambda)$ is integrable, if there exists a sequence $\varphi_n(\lambda)$ of functions of the form (18.1) which converges to $\varphi(\lambda)$ uniformly in λ on every set $A_N = \{\lambda \colon |\varphi(\lambda)| \le N\}$ for any fixed N, and if in addition

$$(23.1) \qquad \qquad ||I_{R/A_N}(\varphi_n)|| \rightarrow 0$$

uniformly in n as $N \to \infty$. We denote this convergence by $\varphi_n(\lambda) \Rightarrow \varphi(\lambda)$. In this case we set

(24.1)
$$I(\varphi) = \int_{-\infty}^{\infty} \varphi(\lambda) \, \varPhi(d\lambda) = \lim_{n \to \infty} I(\varphi_n).$$

(The limit in (24.1) exists and does not depend on the sequence $\varphi_n(\lambda)$, $\varphi_n(\lambda) \Rightarrow \varphi(\lambda)$.)

We note the following basic properties of the integral $I(\varphi)$:

- $(1) \quad I_{\Delta}(\alpha_{1}\varphi_{1}+\alpha_{2}\varphi_{2}) = \alpha_{1}I_{\Delta}(\varphi_{1}) + \alpha_{2}I_{\Delta}(\varphi_{2}).$
- (2) The inequality

$$(25.1) \qquad \qquad ||I_{\varDelta}(\varphi)|| \leq \sup_{\lambda \in \varDelta} |\varphi(\lambda)| \operatorname{Var}_{\varDelta} \varPhi$$

holds.

(3) If $\varphi_n(\lambda)$ are integrable and $\varphi_n(\lambda) \Rightarrow \varphi(\lambda)$ as $n \to \infty$, then $\varphi(\lambda)$ is also integrable and

$$I(\varphi) = \lim_{n \to \infty} I(\varphi_n).$$

(4) If $\Delta=\Delta_1\cup\Delta_2$, $\Delta_1\cap\Delta_2=\varnothing$, then $I_{\Delta}(\varphi)=I_{\Delta_1}(\varphi)+I_{\Delta_2}(\varphi)$; if moreover $\varphi(\lambda)$ is bounded, then the integral $I_{\Delta}(\varphi)$ is a weakly continuous measure of bounded variation and

$$\operatorname{Var}_{\varDelta} I(\varphi) = \sup_{|\alpha_k| \leq 1, \ \Delta_k \subseteq \varDelta} \left\| \sum_k \alpha_k I_{\varDelta_k}(\varphi) \right\| \leq \sup_{\lambda \in \varDelta} |\varphi(\lambda)| \operatorname{Var}_{\varDelta} \Phi.$$

3º. The continuous abstract measure $\Phi(\Delta)$ is related in a one-to-one way to the continuous additive function $F(\Delta, \Delta')$,

$$F(\Delta, \Delta') = (\Phi(\Delta), \Phi(\Delta'))$$

(cf. Theorem 1.1), and

(26.1)
$$F(\Delta, \Delta') = \overline{F(\Delta', \Delta)},$$

$$\sum_{k=1}^{m} \sum_{j=1}^{m} \alpha_k \overline{\alpha}_j F(\Delta_k, \Delta_j) \ge 0$$

for any complex numbers $\alpha_1, \alpha_2, \dots, \alpha_m$ and measurable sets $\Delta_1, \Delta_2, \dots, \Delta_m$. We define the variation of the function $F(\Delta, \Delta')$ on the set $\Delta \times \Delta'$ by the relation

(27.1)
$$\operatorname{Var}_{\Delta, \Delta'} F = \sup \left| \sum_{k=1}^{m} \sum_{j=1}^{m} \alpha_k \, \overline{\beta}_j \, F(\Delta_k, \Delta'_j) \right|,$$

where the sup is taken over all finite families of non-intersecting measurable sets Δ_1 , Δ_2 , \cdots , Δ_m , $\Delta_k \subseteq \Delta$ and Δ_1' , Δ_2' , \cdots , Δ_n' , $\Delta_j' \subseteq \Delta'$, and complex numbers α_1 , α_2 , \cdots , α_m , $|\alpha_n| \le 1$, and β_1 , β_2 , \cdots , β_n , $|\beta_j| \le 1$. It follows from (26.1) that

(28.1)
$$\begin{aligned} \operatorname{Var}_{A,A'} F & \leq (\operatorname{Var}_{A,A} F)^{1/2} \cdot (\operatorname{Var}_{A',A'} F)^{1/2}, \\ \operatorname{Var}_{A_1 \cup A_{2},A'} F & \leq \operatorname{Var}_{A_1,A'} F + \operatorname{Var}_{A_2,A'} F. \end{aligned}$$

If $F(\Delta, \Delta')$ is of bounded variation, i.e.

(29.1)
$$\operatorname{Var}_{R,R} F < \infty,$$

then in analogy to Section 2º we can define the integral

$$I(\varphi, \psi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(\lambda) \bar{\psi}(\mu) F(d\lambda, d\mu)$$

first for "step functions" $\varphi(\lambda)$, $\psi(\lambda)$ of the form (18.1) as

(30.1)
$$I(\varphi, \psi) = \sum_{k=1}^{m} \sum_{j=1}^{n} a_k \bar{b}_j F(\Delta_k, \Delta'_j),$$

and then for integrable functions $\varphi(\lambda)$ and $\psi(\lambda)$ by passing to the limit

(31.1)
$$I(\varphi, \psi) = \lim_{n, m \to \infty} I(\varphi_n, \psi_m),$$

where $\varphi_n(\lambda)$ and $\psi_m(\lambda)$ are sequences of step functions $\varphi_n(\lambda) \Rightarrow \varphi(\lambda)$, $\psi_m(\lambda) \Rightarrow \psi(\lambda)$. The convergence $\varphi_n(\lambda) \Rightarrow \varphi(\lambda)$ means that for any N the sequence $\varphi_n(\lambda) \to \varphi(\lambda)$ converges uniformly on the set $A_N = \{\lambda : |\varphi(\lambda)| \leq N\}$ and

$$\int_{R-A_N} \int_{R-A_N} \varphi_n(\lambda) \, \overline{\varphi_n(\mu)} F(d\lambda, \, d\mu) \to 0$$

uniformly in n as $N \to \infty$. The integral defined in this way has all the properties analogous to (25.1). We note that if $\Phi(\Delta)$ is the abstract measure corresponding to the function $F(\Delta, \Delta')$ (see Theorem 1.1) then

(32.1)
$$(I(\varphi), I(\psi)) = I(\varphi, \psi).$$

In the case where the ordinary variation V(F) of the function $F(\Delta, \Delta')$

$$V(F) = \sup_{ec{\Delta}_k, \, ec{\Delta}'_j} \sum_k \sum_j |F(ec{\Delta}_k, \, ec{\Delta}'_j)| < \infty$$
 ,

our integral $I(\varphi, \psi)$ agrees with the ordinary Lebesgue integral.

We call the additive function $F(\Delta, \Delta')$ strongly continuous if, given a decreasing sequence of sets Δ_n ,

$$arDelta_n \supseteq arDelta_{n+1}$$
 , $\bigcap_{n=1}^\infty arDelta_n = \varnothing$,

we have

$$\operatorname{Var}_{\Delta_{\mathbf{m}}, \Delta_{\mathbf{m}}} F \to 0$$

as $n \to \infty$.

4º. Consider a function x(t) of the real variable t, $-\infty < t < +\infty$, with values in $H, x(t) \in H$, which is such that the linear closure H(x) of the elements $x(t), -\infty < t < +\infty$, is separable. The function x(t) is called measurable if the numerical function ||x(t)|| is measurable (see e.g. [5]). The measurable function x(t) is called integrable on the set T, if (cf. [4], [5])

$$\int_{T} ||x(t)|| dt < \infty.$$

As shown in [5], if x(t) is integrable, then there exists a sequence of "step functions" $x_n(t)$, $x_n(t) \in H(x)$, $x_n(t) = x_k$ for $t \in T_{kn} \subseteq T$, which converges to x(t) almost uniformly (i.e. for any $\varepsilon > 0$ one can find a set T_0 of Lebesgue measure $l(T_0) \le \varepsilon$ such that $||x_n(t) - x(t)|| \to 0$ uniformly in t, $t \in T - T_0$, as $n \to \infty$) and such that

(34.1)
$$\int_{T} ||x_n(t) - x_m(t)|| dt \to 0$$

as $n, m \to \infty$. If we set

(35.1)
$$\sum_{k} x_{kn} l(T_{kn}) = \int_{T} x_{n}(t) dt$$

the series in (35.1) converges in norm; then the limit (in the norm)

(36.1)
$$\lim_{n \to \infty} \int_T x_n(t) dt = \int_T x(t) dt$$

is called the integral of the function x(t) (cf. [4], [5]).

Moreover, let the function $\varphi(\lambda, t)$ be measurable in the pair of variables (λ, t) and let it be integrable with respect to the abstract measure $\Phi(\Delta)$, $\Phi(\Delta) \in H$, for almost all t. Consider the function x(t), where

(37.1)
$$x(t) = \int_{-\infty}^{\infty} \varphi(\lambda, t) \Phi(d\lambda).$$

The function x(t) is measurable, since the numerical function (x(t), h),

(38.1)
$$(x(t), h) = \int_{-\infty}^{\infty} \varphi(\lambda, t) F_h(d\lambda),$$

is measurable for any $h \in H$, and it is integrable on the set T if the numerical

function ||x(t)||,

$$||x(t)||^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(\lambda, t) \, \overline{\varphi(\mu, t)} \, F(d\lambda, d\mu),$$

is integrable on T and

(39.1)
$$h_1 = \int_T x(t) dt = \int_T \int_{-\infty}^{\infty} \varphi(\lambda, t) \Phi(d\lambda) dt.$$

Now let $\varphi(\lambda, t)$ be such that the function $\psi(\lambda)$, $\psi(\lambda) = \int_T \varphi(\lambda, t) dt$, is integrable with respect to the measure $\Phi(\Delta)$:

(40.1)
$$h_2 = \int_{-\infty}^{\infty} \psi(\lambda) \Phi(d\lambda) = \int_{-\infty}^{\infty} \int_{T} \varphi(\lambda, t) dt \Phi(d\lambda).$$

For any $h \in H$ we have

$$(h_1, h) = \int_T (x(t), h) dt = \int_T \int_{-\infty}^\infty \varphi(\lambda, t) F_h(d\lambda) dt$$
$$= \int_{-\infty}^\infty \int_T \varphi(\lambda, t) dt F_h(d\lambda) = \int_{-\infty}^\infty \psi(\lambda) F_h(d\lambda) = (h_2, h),$$

and therefore $h_1 = h_2$, i.e.

(41.1)
$$\int_{T} \int_{-\infty}^{\infty} \varphi(\lambda, t) \Phi(d\lambda) dt = \int_{-\infty}^{\infty} \int_{T} \varphi(\lambda, t) dt \Phi(d\lambda).$$

2. Harmonisable Abstract Functions

1°. Consider an abstract function x(t) of a real variable with values in the Hilbert space H. We shall call the function x(t) harmonisable if it can be represented in the form

(1.2)
$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda),$$

where $\Phi(\Delta)$ is an abstract measure of bounded variation with values in H; $\Phi(\Delta)$ is defined on all measurable sets and is strongly continuous (strong continuity of $\Phi(\Delta)$ means that for any sequence of measurable sets Δ_n , $\Delta_n \supseteq \Delta_{n+1}$, $\bigcap_{n=1}^{\infty} \Delta_n = \emptyset$, we have $\operatorname{Var}_{\Delta_n} \Phi \to 0$ as $n \to \infty$). We now examine some examples of harmonisable functions.

Example 1.2. The function x(t) is stationary, i.e., the scalar product $(x(t+\tau), x(t)) = B(\tau)$ does not depend on t. In this case

(2.2)
$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda);$$

here the measure $\Phi(\Delta)$ is such that

$$(\mathfrak{G}(\Delta), \Phi(\Delta')) = F(\Delta \cap \Delta'),$$

where $F(\Delta)$ is a positive bounded measure on the line.

Example 2.2. Let x(t) be a stationary function

$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda),$$

and let

$$\phi(t) = \int_{-\infty}^{\infty} e^{i\lambda t} P(d\lambda),$$

where $P(\Delta)$ is a complex measure on the line. Then the abstract function y(t) = x(t)p(t) can be represented in the form

(5.2)
$$y(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \psi(d\lambda),$$

where the abstract measure $\psi(\Delta)$ has the form

(6.2)
$$\psi(\Delta) = \int_{-\infty}^{\infty} P(\Delta - \mu) \Phi(d\mu).$$

Example 3.2. Let x(t) be a stationary function as before, of the form (2.2), let H_x be the linear closure of the elements x(t), $-\infty < t < +\infty$, and let A be a linear operator from H_x to some subspace $H_y \subseteq H$. Consider the function y(t) = Ax(t). We have

(7.2)
$$y(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \psi(d\lambda),$$

where the measure $\psi(\Delta)$ is defined by the relation

(8.2)
$$\psi(\Delta) = A\Phi(\Delta),$$

$$\operatorname{Var}_{\Delta} \psi \leq ||A|| \operatorname{Var}_{\Delta} \Phi = ||A||F(\Delta),$$

and $F(\Delta)$ is a positive measure on the line, defined by the relation (3.2).

Theorem 1.2. In order that the abstract function x(t), $x(t) \in H$, be harmonisable, i.e., in order that it can be represented in the form (1.2), it is necessary and sufficient that the numerical function B(u, v) = (x(u), x(v)) can be represented in the form

(9.2)
$$B(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\lambda u - \mu v)} F(d\lambda, d\mu),$$

where $(\Phi(\Delta), \Phi(\Delta')) = F(\Delta, \Delta')$, $\Phi(\Delta) \in H(x)$ $(F(\Delta, \Delta'))$ is the strongly continuous additive function described in Section 1, 3^{0}).

PROOF. The necessity is obvious. To prove the sufficiency consider the space L of functions $\varphi(\lambda)$ for which

(10.2)
$$I(\varphi, \varphi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(\lambda) \overline{\varphi(\mu)} F(d\lambda, d\mu)$$

exists. We define the scalar product $(\varphi, \psi) = I(\varphi, \psi)$ on L and we identify all functions φ , ψ for which $||\varphi - \psi|| = 0$, $||\varphi||^2 = (\varphi, \varphi)$. We define the mapping T from the space L to H(x) by the relation $Te^{i\lambda t} = x(t)$. It is isometric, i.e.

$$(Te^{i\lambda u}, Te^{i\lambda v}) = B(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\lambda u - \mu v)} F(d\lambda, d\mu) = (e^{i\lambda u}, e^{i\lambda v}).$$

Because of the strong continuity of $F(\Delta, \Delta')$ (see Section 1, 3°), the characteristic function $\chi_{\Delta}(\lambda)$ of the half intervals $\Delta = [\lambda_1, \lambda_2)$ can be approximated by linear combinations $\sum_k a_k e^{i\lambda t_k}$. Therefore the mapping T can be extended, pre-

¹ See [10].

serving the isometry, to characteristic functions $\chi_{\Delta}(\lambda)$, $\Delta \in \mathfrak{S}$. Set $\Phi(\Delta) = T\chi_{\Delta}(\lambda)$. The measure $\Phi(\Delta)$ is a continuous measure of bounded variation, $(\Phi(\Delta), \Phi(\Delta')) = F(\Delta, \Delta')$, defined on \mathfrak{S} . By Theorem 1.1 it can be extended to all measurable sets with

$$(\Phi(\Delta), \Phi(\Delta')) = F(\Delta, \Delta')$$

for any measurable sets Δ and Δ' . It follows from the strong continuity of $F(\Delta, \Delta')$ and from relation (11.2) that the measure $\Phi(\Delta)$ itself is strongly continuous. This proves the theorem.

Theorem 2.2. Let x(t) be a harmonisable function

$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda).$$

Then

(12.2)
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T x(t) e^{-i\lambda_0 t} dt = \Phi(\lambda_0),$$

$$\lim_{T_1, T_2 \to \infty} \frac{1}{T_1 T_2} \int_0^{T_1} \int_0^{T_2} B(u, v) e^{-i(\lambda_0 u - \mu_0 v)} du dv = F(\lambda_0, \mu_0).$$

PROOF. It follows from Section 1, 4^{0} that the function $x(t)e^{-i\lambda_{0}t}$ is integrable on every finite interval and that

$$\frac{1}{T} \int_0^T x(t) e^{-i\lambda_0 t} dt = \int_{-\infty}^\infty \frac{1}{T} \int_0^T e^{i(\lambda - \lambda_0) t} dt \Phi(d\lambda).$$

Let $\chi_{\lambda_0}(\lambda) = 1$ if $\lambda = \lambda_0$ and $\chi_{\lambda_0}(\lambda) = 0$ if $\lambda \neq \lambda_0$. We have

$$\begin{split} & \left\| \frac{1}{T} \int_{0}^{T} x(t) e^{-i\lambda_{0}t} dt - \Phi(\lambda_{0}) \right\| \\ &= \left\| \int_{-\infty}^{\infty} \left[\frac{1}{T} \int_{0}^{T} e^{i(\lambda - \lambda_{0})t} dt - \chi_{\lambda_{0}}(\lambda) \right] \Phi(d\lambda) \right\| \leq \left\| \int_{|\lambda - \lambda_{0}| \geq \varepsilon} \left[\frac{1}{T} \int_{0}^{T} e^{i(\lambda - \lambda_{0})t} dt \right] \Phi(d\lambda) \right\| \\ &+ \left\| \int_{0 < |\lambda - \lambda_{0}| < \varepsilon} \left[\frac{1}{T} \int_{0}^{T} e^{i(\lambda - \lambda_{0})t} dt \right] \Phi(d\nu) \right\| \leq \frac{2}{T\varepsilon} \operatorname{Var} \Phi + \operatorname{Var}_{\Delta_{\varepsilon}} \Phi \end{split}$$

for any T and $\varepsilon > 0$, $\varDelta_{\varepsilon} = \{\lambda \colon 0 < |\lambda - \lambda_0| < \varepsilon\}$. Since $\bigcap_{\varepsilon} \varDelta_{\varepsilon} = \emptyset$, then $\operatorname{Var}_{\varDelta_{\varepsilon}} \varPhi \to 0$ as $\varepsilon \to 0$, and choosing $\varepsilon = T^{-1/2}$, we obtain

$$\left\| \frac{1}{T} \int_0^T x(t) e^{-i\lambda_0 t} dt - \Phi(\lambda_0) \right\| \leq \frac{2}{\sqrt{T}} \operatorname{Var} \Phi + \operatorname{Var}_{A_T - \frac{1}{2}} \Phi \to 0$$

as $T \to \infty$, and moreover

$$\begin{split} &\frac{1}{T_1T_2}\int_0^{T_1}\int_0^{T_2}B\left(u,v\right)e^{-i(\lambda_0u-\mu_0v)}\,dudv\\ &=\left(\frac{1}{T_1}\int_0^{T_1}x(u)e^{-i\lambda_0u}\,du,\,\frac{1}{T_2}\int_0^{T_2}x(v)e^{-i\mu_0v}\,dv\right) \to \left(\varPhi(\lambda_0),\,\varPhi(\mu_0)\right)=F(\lambda_0,\mu_0), \end{split}$$

as was to be proved.

In a completely analogous way we establish

Theorem 3.2. Let x(t) be a harmonisable function

$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda),$$

and let the interval $\Delta=(\lambda_1,\lambda_2)$ be such that $\Phi(\lambda_1)=\Phi(\lambda_2)=0$. Then

(13.2)
$$\lim_{T \to \infty} \int_{-T}^{T} \frac{e^{-i\lambda_2 t} - e^{-i\lambda_1 t}}{-it} x(t) dt = \Phi(\Delta).$$

If $\Delta' = (\lambda'_1, \lambda'_2)$, $\Phi(\lambda'_1) = \Phi(\lambda'_2) = 0$, then

$$\lim_{T_1, T_2 \to \infty} \int_{-T_1}^{T_1} \int_{-T_2}^{T_2} \frac{e^{-i\lambda_2 u} - e^{-i\lambda_1 u}}{-iu} \cdot \frac{e^{+i\lambda_2' v} - e^{+i\lambda_1' v}}{iv} B(u, v) du dv = F(\Delta, \Delta').$$

20. Let x(t) be a harmonisable function

$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda).$$

We denote by A_{φ} the linear operator which establishes a correspondence between the function x(t) and the function

(14.2)
$$y(t) = A_{\varphi} x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \varphi(\lambda) \Phi(d\lambda).$$

Example 4.2. The linear "sliding average" operation

$$y(t) = \sum_{k=1}^{m} c_k x(t+t_k) = \int_{-\infty}^{\infty} e^{i\lambda t} \left(\sum_{k=0}^{m} c_k e^{i\lambda t_k}\right) \Phi(d\lambda)$$

is an operator of this type.

Example 5.2. Let

$$\varphi(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda t} \tilde{\varphi}(t) dt,$$

where

$$\int_{-\infty}^{\infty} |\tilde{\varphi}(t)| dt < \infty.$$

Since

$$(15.2) ||x(t)||^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\lambda-\mu)t} F(d\lambda, d\mu) \le \operatorname{Var}_{R,R} F,$$

the function $x(t+t_0)\tilde{\varphi}(t)$ is integrable and

$$\int_{-\infty}^{\infty} e^{i\lambda t} \varphi(\lambda) \, \varPhi(d\lambda) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} e^{i\lambda(t+\tau)} \, \tilde{\varphi}(\tau) \, d\tau \right] \varPhi(d\lambda)$$
$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} e^{i\lambda(t+\tau)} \, \varPhi(d\lambda) \right] \tilde{\varphi}(\tau) \, d\tau = \int_{-\infty}^{\infty} \varphi(\tau) \, x(t+\tau) \, d\tau.$$

The operator A_{φ} has the form

(16.2)
$$y(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \varphi(\lambda) \, \Phi(d\lambda) = \int_{-\infty}^{\infty} \tilde{\varphi}(\tau - t) \, x(\tau) \, d\tau.$$

Example 6.2. Let the function $x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda)$ have the derivative x'(t), i.e.

(17.2)
$$\left\| x'(t) - \frac{x(t+\varepsilon) - x(t)}{\varepsilon} \right\| \to 0$$

as $\varepsilon \to 0$. Set

$$y_{\varepsilon}(t) = \frac{x(t+\varepsilon) - x(t)}{\varepsilon} \, , \qquad \varphi_{\varepsilon}(\lambda) = \frac{e^{i\lambda \varepsilon} - 1}{\varepsilon} \, .$$

It follows from (17.2) that

$$||y_{\varepsilon_1} - y_{\varepsilon_2}|| = \left\| \int_{-\infty}^{\infty} e^{i\lambda t} [\varphi_{\varepsilon_1}(\lambda) - \varphi_{\varepsilon_2}(\lambda)] \Phi(d\lambda) \right\| \to 0,$$

and since for any Λ

$$\left\| \int_{-\Lambda}^{\Lambda} e^{i\lambda t} \left[\varphi_{\varepsilon_{1}}(t) - \varphi_{\varepsilon_{2}}(\lambda) \right] \Phi(d\lambda) \right\| \leq \sup_{|\lambda| \leq \Lambda} |\varphi_{\varepsilon_{1}}(t) - \varphi_{\varepsilon_{2}}(\lambda)| \operatorname{Var} \Phi \to 0$$

as ε_1 , $\varepsilon_2 \to 0$, we have

$$\left\| \int_{|\lambda| > A} e^{i\lambda t} \left[\varphi_{\varepsilon_1}(\lambda) - \varphi_{\varepsilon_2}(\lambda) \right] \varPhi(d\lambda) \right\| \to 0$$

uniformly in ε as $\Lambda \to \infty$, and thus

$$e^{i\lambda\,t}\varphi_\varepsilon(\lambda) = \frac{e^{i\lambda(t+\varepsilon)} - e^{i\lambda\,t}}{\varepsilon} \Rightarrow i\lambda e^{i\lambda\,t},$$

whence it follows that the function $i\lambda e^{i\lambda t}$ is integrable and

(18.2)
$$x'(t) = \int_{-\infty}^{\infty} i\lambda e^{i\lambda t} \Phi(d\lambda).$$

Finally, the converse is also true: if

$$\frac{e^{i\lambda(t+\varepsilon)}-e^{i\lambda t}}{\varepsilon}\to i\lambda e^{i\lambda t},$$

then the function

$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda)$$

has the strong derivative

$$x'(t) = \int_{-\infty}^{\infty} i\lambda e^{i\lambda t} \Phi(d\lambda).$$

Thus the linear operation A_{φ} corresponding to the function $\varphi=i\lambda$ is the differentiation operator.

3. The Spectrum of an Abstract Function

1º. Let x(t) be an abstract function of the real variable t, $-\infty < t < +\infty$, with values in a Hilbert space H. We shall say that the function x(t) has a spectrum (cf. [7], [8]) if the numerical function $||x(t)||^2$ is integrable on every finite interval and if

(1.3)
$$\lim_{T\to\infty} \frac{1}{T} \int_0^T (x(t+\tau), x(t)) dt = B(\tau)$$

exists for all τ , where the function $B(\tau)$ is continuous. Let the function x(t) have a spectrum. The function $B(\tau)$ is positive definite, i.e.

(2.3)
$$\sum_{k,j=1}^{m} B(\tau_k - \tau_j) \alpha_k \overline{\alpha}_j \ge 0$$

for any $\tau_1, \tau_2, \dots, \tau_m$ and complex $\alpha_1, \alpha_2, \dots, \alpha_m$, since

$$\begin{split} \sum_{k,j=1}^{m} B(\tau_{k} - \tau_{j}) \, \alpha_{k} \overline{\alpha}_{j} &= \lim_{T \to \infty} \sum_{k,j=1}^{m} \alpha_{k} \overline{\alpha}_{j} \, \frac{1}{T} \int_{0}^{T} \left(x(t + \tau_{k} - \tau_{j}), \, x(t) \right) dt \\ &= \lim_{T \to \infty} \sum_{k,j=1}^{m} \alpha_{k} \overline{\alpha}_{j} \, \frac{1}{T} \int_{-\tau_{j}}^{T - \tau_{j}} \left(x(t + \tau_{k}), \, x(t + \tau_{j}) \right) dt \\ &= \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left\| \sum_{k=1}^{m} \alpha_{k} x(t + \tau_{k}) \right\|^{2} dt \geq 0. \end{split}$$

Because of its positive definiteness, the function $B(\tau)$ can be represented in the form

(3.3)
$$B(\tau) = \int_{-\infty}^{\infty} e^{i\lambda\tau} F(d\lambda),$$

where $F(\Delta)$ is a positive definite measure; we shall call $F(\Delta)$ the spectral measure (the spectrum) of the function x(t).

Example 1.3. Let x(t) be a stationary function

$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda).$$

In this case $B(\tau) = (x(t+\tau), x(t))$ and the spectral measure $F(\Delta)$ is (4.3) $F(\Delta) = ||\Phi(\Delta)||^2$.

Example 2.3. Let x(t) be a harmonisable function

$$x(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \Phi(d\lambda),$$

where ² the ordinary variation V(F) of the function $F(\Delta, \Delta')$:

(5.3)
$$V(F) = \sup_{\Delta_k, \Delta'_j} \sum_{k,j} |F(\Delta_k, \Delta'_j)| < \infty,$$
$$F(\Delta, \Delta') = (\Phi(\Delta), \Phi(\Delta')).$$

In this case $F(\Delta, \Delta')$ can be extended to a measure on the plane. We have (cf. [9])

$$\begin{split} \frac{1}{T} \int_0^T \big(x(t+\tau), \, x(t) \big) dt &= \frac{1}{T} \int_0^T \int_{-\infty}^\infty \int_{-\infty}^\infty e^{i\lambda\tau} e^{i(\lambda-\mu)t} F(d\lambda, \, d\mu) \, dt \\ &= \int_{-\infty}^\infty \int_{-\infty}^\infty e^{i\lambda\tau} \frac{1}{T} \int_0^T e^{i(\lambda-\mu)t} dt F(d\lambda, \, d\mu) \to \int_{-\infty}^\infty e^{i\lambda\tau} F(d\lambda, \, d\lambda), \end{split}$$

² If the condition (5.3) is not met, then the harmonisable function x(t) may not have a spectrum in the sense of the definition (1.3).

i.e., the function x(t) has a spectrum, where the spectral measure $F(\Delta)$ is

(6.3)
$$F(\Delta) = \int_{\Delta} F(d\lambda, d\lambda).$$

2°. Let the function x(t) have the spectrum $F(\Delta)$, i.e.,

(7.3)
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T (x(t+\tau), x(t)) dt = \int_{-\infty}^\infty e^{i\lambda \tau} F(d\lambda).$$

Consider the function y(t)

(8.3)
$$y(t) = \sum_{k=1}^{m} c_k x(t + \tau_k).$$

It is easy to see that the function y(t) also has a spectrum $G(\Delta)$,

(9.3)
$$\lim_{T\to\infty} \frac{1}{T} \int_0^T (y(t+\tau), y(t)) dt = \int_{-\infty}^\infty e^{i\lambda\tau} \left| \sum_{k=1}^m c_k e^{i\lambda\tau_k} \right|^2 F(d\lambda),$$

$$G(\Delta) = \int_{\Delta} \left| \sum_{k=1}^m c_k e^{i\lambda\tau_k} \right|^2 F(d\lambda).$$

Let ||x(t)|| be uniformly bounded. Consider the function

(10.3)
$$y(t) = \int_{-\infty}^{\infty} \tilde{\varphi}(\tau - t) x(\tau) d\tau,$$

where the numerical function $\tilde{\varphi}(t)$ is such that $\int_{-\infty}^{\infty} |\tilde{\varphi}(t)| dt < \infty$ and

$$\varphi(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda t} \tilde{\varphi}(t) dt$$

is square integrable with respect to $F(\Delta)$, i.e.

$$\int_{-\infty}^{\infty} |\varphi(\lambda)|^2 F(d\lambda) < \infty.$$

We have

$$\begin{split} \frac{1}{T} \int_0^T \left(y(t+\tau), y(t) \right) dt &= \frac{1}{T} \int_0^T \int_{-\infty}^\infty \tilde{\varphi}(u) \int_{-\infty}^\infty \overline{\tilde{\varphi}(v)} \left(x(t+\tau+u), x(t+v) \right) du dv dt \\ &= \int_{-\infty}^\infty \tilde{\varphi}(u) \int_{-\infty}^\infty \overline{\tilde{\varphi}(v)} \frac{1}{T} \int_0^T \left(x(t+\tau+u), x(t+v) \right) dt du dv, \end{split}$$

and, since as $T \to \infty$ the functions

$$\psi_T(u,v) = \frac{1}{T} \int_0^T (x(t+\tau+u), x(t+v)) dt \rightarrow \int_{-\infty}^\infty e^{i\lambda(\tau+u-v)} F(d\lambda)$$

for every (u, v) and moreover are uniformly bounded, then

$$\begin{split} \int_{-\infty}^{\infty} & \int_{-\infty}^{\infty} \tilde{\varphi}(u) \, \overline{\tilde{\varphi}(v)} \, \psi_T(u, v) \, du dv \to \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{\varphi}(u) \, \overline{\tilde{\varphi}(v)} \int_{-\infty}^{\infty} e^{i\lambda(\tau + u - v)} F(d\lambda) \\ & = \int_{-\infty}^{\infty} e^{i\lambda\tau} \, \left| \int_{-\infty}^{\infty} e^{i\lambda u} \, \tilde{\varphi}(u) \, du \, \right|^2 F(d\lambda), \end{split}$$

and thus

(11.3)
$$\lim_{T\to\infty}\int_0^T (y(t+\tau),y(t))\,dt = \int_{-\infty}^\infty e^{i\lambda\tau}\,|\varphi(\lambda)|^2F(d\lambda),$$

i.e., the function

$$y(t) = \int_{-\infty}^{\infty} \tilde{\varphi}(\tau - t) x(\tau) d\tau$$

has a spectrum $G(\Delta)$, where

(12.3)
$$G(\Delta) = \int_{\Lambda} |\varphi(\lambda)|^2 F(d\lambda).$$

 3° . In the spectral theory of stationary functions the question of linear extrapolation is very important (see e.g. [1]), i.e. the question of whether it is possible to linearly approximate the value of the function x(t) at the time $t > \tau$ in terms of the values of x(t) for $t \leq \tau$. More precisely this means the following. Let H_{τ}^{-} be the linear closure of the elements x(t), $-\infty < t \leq \tau$, and let $\hat{x}_{\tau}(t) = P_{\tau}x(t)$, where P_{τ} is the operator of projection on H_{τ}^{-} . The element $\hat{x}_{\tau}(t)$ gives the best linear approximation to the value of the function x(t) at the time $t > \tau$ in terms of the values of x(t) for $t \leq \tau$, and

$$(13.3) \qquad \qquad ||x(t) - \hat{x}_{\tau}(t)|| = \min_{h \in H_{\tau}} ||x(t) - h|| = \sigma_{t-\tau}^{2}.$$

The extrapolation problem consists of finding the elements $\hat{x}_{\tau}(t)$ (see e.g. [1], [2]).

If x(t) is a stationary function, then the function $\hat{x}_{t-\tau}(t)$ of t ($\tau = \text{const.}$) satisfies the condition

$$(14.3) \qquad \inf_{y(t)} \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} ||x(t) - y(t)||^{2} dt = \lim_{T \to \infty} \int_{0}^{T} ||x(t) - \hat{x}_{t-\tau}(t)||^{2} dt,$$

where the inf is taken over all functions y(t) of the form

$$y(t) = \sum_{\tau_k \ge \tau} c_k x(t - \tau_k).$$

Now let x(t) be an arbitrary function with a spectrum, i.e.

(16.3)
$$\lim_{T\to\infty}\frac{1}{T}\int_0^T (x(t+\tau), x(t)) dt = \int_{-\infty}^\infty e^{i\lambda\tau} F(d\lambda).$$

We shall call the function y(t) a stationary approximation for x(t) with lag τ if y(t) has the form

(17.3)
$$y(t) = \int_{-\infty}^{t-t} \tilde{\varphi}(u-t) x(u) du + \sum_{\tau_k \ge \tau} c_k x(t-\tau_k),$$

where the numerical function $\tilde{\varphi}(t)$, $\tilde{\varphi}(t) = 0$ for t > 0, satisfies the conditions stated after equation (10.3). Consider the mean deviation $\sigma_{\tau}^{2}(y)$:

$$(18.3) \qquad \sigma_{\tau}^{2}(y) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} ||x(t) - y(t)||^{2} dt = \int_{-\infty}^{\infty} |e^{i\lambda\tau} - \varphi(\lambda)|^{2} F(d\lambda),$$

where

$$\varphi(\lambda) = \int_{-\infty}^{-\tau} e^{i\lambda t} \bar{\varphi}(t) dt + \sum_{\tau_k \ge \tau} c_k e^{-i\lambda \tau_k}.$$

By equation (18.3), the mean deviation $\sigma_{\tau}^{2}(y)$ lies in the range

(19.3)
$$0 \le \sigma_{\tau}^{2}(y) \le \int_{-\infty}^{\infty} F(d\lambda).$$

We set

(20.3)
$$\sigma_{\tau}^{2} = \inf_{y(t)} \sigma_{\tau}^{2}(y) = \inf_{\varphi(\lambda)} \int_{-\infty}^{\infty} |e^{i\lambda\tau} - \varphi(\lambda)|^{2} F(d\lambda).$$

We note that if $\sigma_{\tau}^2 = 0$ for some $\tau = \tau_0 > 0$, then $\sigma_{\tau}^2 \equiv 0$ for all τ . In fact, because of the monotoneness, $\sigma_{\tau}^2=0$ for $\tau \leq \tau_0$; if $\varepsilon>0$ is arbitrarily small and

$$\varphi(\lambda) = \sum_{\tau_k \ge \tau_0} c_k e^{-i\lambda \tau_k}$$

is such that

$$\int_{-\infty}^{\infty} |e^{i\lambda\tau_0} - \varphi(\lambda)|^2 F(d\lambda) \le \varepsilon,$$

then for $\tau_1 \leq 2\tau_0$ we have

$$\int_{-\infty}^{\infty} \! \left| e^{i\lambda\tau_1} - e^{i\lambda(\tau_0 - \tau_1)} \! \sum_{\tau_k \ge \tau_0} \! c_k e^{-i\lambda\tau_k} \right|^2 \! F(d\lambda) \\ = \int_{-\infty}^{\infty} \! |e^{i\lambda\tau_0} - \varphi(\lambda)|^2 \! F(d\lambda) \\ \le \varepsilon$$

and consequently $\sigma_{\varepsilon_1}^2 \le \varepsilon$, $\sigma_{\varepsilon_1}^2 = 0$, etc. We shall call the function x(t) singular if $\sigma_{\tau}^2 = 0$ for $\tau > 0$ (cf. [1]) and regular if $\sigma_{\tau}^2 \to \int_{-\infty}^{\infty} F(d\lambda)$ as $\tau \to \infty$. It follows from [2] that the function x(t) is singular if and only if

(21.3)
$$\int_{-\infty}^{\infty} \frac{\log f(\lambda)}{1+\lambda^2} d\lambda = -\infty.$$

(Here $f(\lambda) = F(d\lambda)/d\lambda$ and the integral in (21.3) is by definition equal to $-\infty$ in the case where $f(\lambda) = 0$ on a set of positive measure.) Similarly for the regularity of the function x(t) it is necessary and sufficient that the spectral measure $F(\Delta)$ be absolutely continuous and that

(22.3)
$$\int_{-\infty}^{\infty} \frac{\log f(\lambda)}{1+\lambda^2} d\lambda > -\infty.$$

The least mean square deviation σ_{τ}^2 has the form

$$\sigma_{\tau}^2 = \int_{-\infty}^{\infty} |e^{i\lambda\tau} - \varphi_0(\lambda)|^2 F(d\lambda),$$

where the function $\varphi_0(\lambda)$ is the boundary value of the analytic function $\Gamma(z)$, $z = \lambda + i\nu$, defined by

(24.3)
$$\Gamma(z) = \exp\left\{\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\log f(\mu)}{1+\mu^2} \frac{1-\mu z}{z-\mu} d\mu\right\}$$

as $v \to 0$. In the case where (22.3) holds, but the spectral measure $F(\Delta)$ is not absolutely continuous, we have

(25.3)
$$\lim_{\tau \to \infty} \sigma_{\tau}^{2} = \int_{-\infty}^{\infty} f(\lambda) \, d\lambda.$$

We note that $\inf_{y} \sigma_{\tau}^{2}(y)$ may not be attained, but that it is easy to find a minimizing sequence for the function y(t) of the form (17.3) by using (23.3) and (24.3).

EXAMPLE 3.3. Let the function x(t) have the absolutely continuous spectrum $F(\Delta)$, $f(\lambda) = 1/(a^2 + \lambda^2)$. Then $\inf_y \sigma_{\tau}^2(y)$ is attained for functions of the form

(26.3)
$$y(t) = e^{-a\tau}x(t-\tau).$$

Submitted 3/5/59.

REFERENCES

- [1] A. N. Kolmogorov, Stationary sequences in Hilbert space, Bull. MGU, 2, 6, 1941, pp. 1-40.
- [2] M. G. Krein, On an extrapolation problem of A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 46, 1944, pp. 306-309.
- [3] J. L. Doob, Stochastic Processes, IL, Moscow, 1956. (Translated into Russian.)
- [4] I. M. Gel'fand, Abstrakte Funktionen und lineare Operatoren, Mat. Sb., 4 (46), 1938, pp. 235-238.
- [5] E. HILLE, Functional Analysis and Semigroups, IL, Moscow, 1951. (Translated into Russian.)
- [6] N. Wiener, The Fourier Integral, Cambridge University Press, 1933.
- [7] S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse, Math. Ann., 108, 1933, p. 378.
- [8] P. Halmos, Measure Theory, IL, Moscow, 1953. (Translated into Russian.)
- [9] A. Blanc-LaPierre, R. Fortet, Théorie des Fonctions Aléatoires, Masson et Cie., Paris, 1953.
- [10] H. Cramér, A contribution to the theory of stochastic processes, Proc. Berkeley Symposium on Math. Statistics and Probability, pp. 329-339, Univ. of Calif. Press, Berkeley, 1951.
- [11] K. KARHUNEN, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae, Ser. A. I. Math. Phys., 37, 1947, pp. 3-79.
- [12] S. BOCHNER, Fourier transforms of time series, Proc. Nat. Acad. Sci. USA, 39, 4, 1953, pp. 302-307.
- [13] S. Bochner, Harmonic Analysis and the Theory of Probability, Univ. of Calif. Press, Berkeley, 1955.

SPECTRAL ANALYSIS OF ABSTRACT FUNCTIONS

YU. A. ROZANOV

(Summary)

In this paper a spectral theory is developed for abstract functions similar to the well-known spectral theory for stationary random processes.