Meta-Learning Unsupervised Update Rules

Paper by Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein

Outline

Motivation

Problem Breakdown

Method Overview

Meta-Learning Setup

Inner Loop

Outer Loop

Experimental Results

Critiques

Motivation

Unsupervised learning enables representation learning on mountains on unlabeled data for downstream tasks

Motivation

Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

Motivation

Unsupervised learning enables representation learning on mountains of unlabeled data for downstream tasks.

Unsupervised Learning Rules

- VAE: Severe overfitting to training space.
- GANs: Great for images, weak on discrete data (ex. text).
- Both: Learning rule not unsupervised (ex. surrogate loss).

Motivation

Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

Motivation

Unsupervised learning enables representation learning on mountains of unlabeled data for downstream tasks

Unsupervised Learning Rules

- VAE: Severe overfitting to training space.
- GANs: Great for images, weak on discrete data (ex. text).
- Both: Learning rule not unsupervised (ex. surrogate loss).

Question: Can we meta-learn an unsupervised learning rule?

Motivation

Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

Semi-Supervised Few-Shot Classification

Labeled train Unlabeled train Apply unsupervised rule to Apply encoder to get tune encoder compact vector Fit Model

Motivation

Problem Breakdown

Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

Semi-Supervised Few-Shot Classification

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop

Results

Critiques

Learning the Learning Rule

Unsupervised Update: $\Delta W = f(\theta, h^{[l-1]})$

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

Method Overview

Outer loop

Optimize meta-objective:

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} \mathbf{E}_{\operatorname{task}}[\sum_t \operatorname{MetaObjective}(\phi_t)]$$

Inner loop

• Learn encoder using unsupervised update rule.

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

Meta-Learning Setup

Motivation Problem Breakdown Method Overview

Meta-Learning Setup

Inner Loop Outer Loop Results Critiques

Meta-Learning Setup

Motivation Problem Breakdown Method Overview

Meta-Learning Setup

Inner loop applies an unsupervised learning alg. <u>on unlabeled data</u>

Inner Loop Outer Loop Results Critiques

Meta-Learning Setup

Motivation Problem Breakdown Method Overview

Meta-Learning Setup

les an
Parning

Inner Loop
Outer Loop
Results
Critiques

outer loop / meta-training update UnsupervisedUpdate with gradient descent inner loop update base model with UnsupervisedUpdate compute MetaObjective unlabeled data base model labeled data

Outer loop evaluates unsupervised learning alg. <u>using labeled data</u>

Inner Loop

Question: Given a base model, $g(x; \phi)$, which encodes inputs into compact vectors, how do we learn its parameters ϕ to give useful features?

Motivation Problem Breakdown Method Overview Meta-Learning Setup

Inner Loop
Outer Loop
Results
Critiques

Inner Loop

Motivation Problem Breakdown Method Overview Meta-Learning Setup

Inner Loop
Outer Loop
Results
Critiques

Question: Given a base model, $g(x; \phi)$, which encodes inputs into compact vectors, how do we learn its parameters ϕ to give useful features?

Idea: What if we use another neural network to generate a neuron-specific error signal?

Then we can learn its parameters θ (the meta-parameters) to produce useful error signals

Inner Loop: Forward Pass

Motivation Problem Breakdown Method Overview Meta-Learning Setup

1) Take an input

Inner Loop Outer Loop Results Critiques

2) Generate intermediate activations

3) Produce a feature representation

Inner Loop: Generate Error Signal

Motivation Problem Breakdown Method Overview Meta-Learning Setup

> **Inner Loop** Outer Loop

Results Critiques

1) Input each layer's activation through an MLP

2) Output error vector

Inner Loop: Backward Pass

Motivation Problem Breakdown Method Overview Meta-Learning Setup

Inner Loop
Outer Loop

Results Critiques

1) Initialize top-level error with output of MLP

- 2) Backprop the error
- 3) Linearly combine output from MLP with backpropagated error

Inner Loop: Update ϕ

Motivation Problem Breakdown Method Overview Meta-Learning Setup

Results

Inner Loop ϕ consists of all base Outer Loop model parameters Critiques W^i , V^i , and b^i

Updates like ΔW^i , ΔV^i are linear* functions of local error quantities hⁱ⁻¹ and hⁱ

^{*}There are also nonlinear normalizations within this function

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

Motivation Problem Breakdown Method Overview Meta-Learning Setup

 Error generating network replicates the mechanics of backprop for unsupervised learning Inner Loop Outer Loop Results

Critiques

Motivation Problem Breakdown Method Overview Meta-Learning Setup

Inner Loop
Outer Loop
Results
Critiques

- Error generating network replicates the mechanics of backprop for unsupervised learning
- An iterative updates tune ϕ for some higher-level objective

Motivation Problem Breakdown Method Overview Meta-Learning Setup

Inner Loop
Outer Loop
Results
Critiques

- Error generating network replicates the mechanics of backprop for unsupervised learning
- An iterative updates tune ϕ for some higher-level objective
- Outer loop sets objective by modifying the error generating function

Outer Loop

Motivation Problem Breakdown Method Overview Meta-Learning Setup Inner Loop

Outer Loop Results Critiques

Motivation

Problem Breakdown

Motivation Problem Breakdown Method Overview Meta-Learning Setup

Critiques

Motivation

Problem Breakdown

Meta-Learning Setup Unlabeled support Labeled support Inner Loop Labeled query **Outer Loop** Results Critiques Apply Unsupervised Rule Apply encoder to tune Encoder Backprop all the way back to θ Truncated backprop Fit Linear **Evaluate** MS Error Model Model

Motivation

Problem Breakdown Method Overview

Results

Training Data: CIFAR10 & Imagenet.

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

Generalization over datasets.

Generalization over domains

Generalization over network architectures

Results: Generalization over datasets

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

What's going on?

- Evaluation of unsupervised learning rule on different datasets
- Comparison to other methods.

Results: Generalization over Domains

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

What's going on?

Evaluation of unsupervised learning rule on 2-way text classification. 30h vs 200h of meta-training.

Results: Generalization over Networks

Motivation Problem Breakdown Method Overview Meta-Learning Setup Inner Loop Outer Loop

Results Critiques

What's going on? Evaluation of unsupervised learning rule on different network architectures.

Critiques: Limitations

Computationally expensive. 8 days, 512 workers.

Many, many tricks.

Lack of ablative analysis.

Reproducibility. # labeled examples? # unlabeled?

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques

Critiques: Suggestions

Ablative analysis

Implicit MAML?

Investigate generalization to CNN and attention-based models.

Better way to encode learning rule? Is this architecture expressive?

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques