

Teoría de Grafos

Juan David Rojas Gacha

2020 - II

Grafos dirigidos

Grafo dirigido

Un **grafo dirigido** o **digrafo** G es una terna que consiste en un conjunto de vértices V(G), un conjunto de aristas E(G) y una función que asigna a cada arista un par ordenado de vértices.

$$f: E(G) \longrightarrow V(G) \times V(G)$$

 $e \longmapsto f(e) = (u, v)$

Grafos dirigidos

Grafo dirigido

Un **grafo dirigido** o **digrafo** G es una terna que consiste en un conjunto de vértices V(G), un conjunto de aristas E(G) y una función que asigna a cada arista un par ordenado de vértices.

$$f: E(G) \longrightarrow V(G) \times V(G)$$

 $e \longmapsto f(e) = (u, v)$

- El primer vértice se llama vértice inicial o cola de la arista.
- El segundo vértice se llama vértice final o cabeza de la arista.
- Los dos vértices se denominan extremos.

Bucles

En un digrafo un bucle es una arista cuyos extremos son iguales.

Bucles

En un digrafo un bucle es una arista cuyos extremos son iguales.

Aristas múltiples

En un digrafo las **aristas múltiples** son aristas cuyos extremos son el mismo par ordenado.

Bucles

En un digrafo un bucle es una arista cuyos extremos son iguales.

Aristas múltiples

En un digrafo las **aristas múltiples** son aristas cuyos extremos son el mismo par ordenado.

Digrafo simple

Un digrafo es **simple** si cada par ordenado es cabeza y cola de a lo sumo una arista, un bucle puede estar presente en cada vértice.

Digrafo simple

Un digrafo es **simple** si cada par ordenado es cabeza y cola de a lo sumo una arista, un bucle puede estar presente en cada vértice.

 Si el digrafo es simple, se escribe uv para representar la arista con cola u y cabeza v.

Digrafo simple

Un digrafo es **simple** si cada par ordenado es cabeza y cola de a lo sumo una arista, un bucle puede estar presente en cada vértice.

- Si el digrafo es simple, se escribe uv para representar la arista con cola u y cabeza v.
- Si existe una arista de u a v, v es el sucesor de u y u es el predecesor de v. Se nota u → v

Camino - Ciclo

 Un digrafo es un camino si es un digrafo simple cuyos vértices pueden ordenarse linealmente de tal manera que existe una arista con cola u y cabeza v sii v sigue inmediatamente a u en el ordenamiento de los vértices.

Camino - Ciclo

- Un digrafo es un camino si es un digrafo simple cuyos vértices pueden ordenarse linealmente de tal manera que existe una arista con cola u y cabeza v sii v sigue inmediatamente a u en el ordenamiento de los vértices.
- Un ciclo se define de la misma manera usando el ordenamiento de los vértices en un circulo.

12

Grafo subyacente

El grafo **subyacente** de un digrafo D es el grafo G obtenido al considerar las aristas de D como pares no ordenados.

Grafo subyacente

El grafo **subyacente** de un digrafo D es el grafo G obtenido al considerar las aristas de D como pares no ordenados.

Nota

La definición de subgrafo, isomorfismo, descomposición y unión es la misma para grafos y digrafos.

Matriz de Adyacencia - Matriz de Incidencia

Sea G un digrafo sin bucles con $V(G) = \{v_1, v_2, \dots, v_n\}$ y $E(G) = \{e_1, e_2, \dots, e_m\}$.

• La matriz de adyacencia de G es la matriz $n \times n$, A(G), definida por $a_{ii} :=$ número de aristas de v_i a v_i

Matriz de Adyacencia - Matriz de Incidencia

Sea G un digrafo sin bucles con $V(G) = \{v_1, v_2, \dots, v_n\}$ y $E(G) = \{e_1, e_2, \dots, e_m\}$.

- La matriz de adyacencia de G es la matriz $n \times n$, A(G), definida por $a_{ii} := \text{n\'umero}$ de aristas de v_i a v_i
- La matriz de incidencia de G es la matriz $n \times m$, M(G), definida por

$$m_{ij} := egin{cases} 1 & ext{si } v_i ext{ es la cola de } e_j \ -1 & ext{si } v_i ext{ es la cabeza de } e_j \ 0 & ext{en otro caso} \end{cases}$$

Matriz de entrada - Matriz de salida

Sea G un digrafo con bucles con $V(G) = \{v_1, v_2, \dots, v_n\}$ y $E(G) = \{e_1, e_2, \dots, e_m\}$.

• La matriz de entrada de G es la matriz $n \times m$, $M^-(G)$, definida por

$$m_{ij} := egin{cases} -1 & ext{si } v_i ext{ es la cabeza de } e_j \ 0 & ext{en otro caso} \end{cases}$$

Matriz de entrada - Matriz de salida

Sea G un digrafo con bucles con $V(G) = \{v_1, v_2, \dots, v_n\}$ y $E(G) = \{e_1, e_2, \dots, e_m\}$.

• La matriz de entrada de G es la matriz $n \times m$, $M^-(G)$, definida por

$$m_{ij} := egin{cases} -1 & ext{si } v_i ext{ es la cabeza de } e_j \ 0 & ext{en otro caso} \end{cases}$$

• La matriz de salida de G es la matriz $n \times m$, $M^+(G)$, definida por

$$m_{ij} := \begin{cases} 1 & \text{si } v_i \text{ es la cola de } e_j \\ 0 & \text{en otro caso} \end{cases}$$

Conexión débil

Un digrafo es débilmente conexo si su subgrafo subyacente es conexo.

Conexión débil

Un digrafo es débilmente conexo si su subgrafo subyacente es conexo.

Conexión fuerte

Un digrafo es **fuertemente conexo** o **fuerte** si para cada par ordenado (u, v) existe un camino de u a v. Las componentes fuertes de un digrafo son sus subgrafos fuertes maximales.

Sea v un vértice en un digrafo.

• El grado de salida $d^+(v)$ es el número de aristas con cola en v.

Sea v un vértice en un digrafo.

- El grado de salida $d^+(v)$ es el número de aristas con cola en v.
- El grado de entrada $d^-(v)$ es el número de aristas con cabeza en v.

Sea v un vértice en un digrafo.

- El grado de salida $d^+(v)$ es el número de aristas con cola en v.
- El grado de entrada $d^-(v)$ es el número de aristas con cabeza en v.
- El grado de salida máximo es $\Delta^+(G)$ y el grado de salida mínimo es $\delta^+(G)$.

Sea v un vértice en un digrafo.

- El **grado de salida** $d^+(v)$ es el número de aristas con cola en v.
- El grado de entrada $d^-(v)$ es el número de aristas con cabeza en v.
- El grado de salida máximo es $\Delta^+(G)$ y el grado de salida mínimo es $\delta^+(G)$.
- El grado de entrada máximo es $\Delta^-(G)$ y el grado de entrada mínimo es $\delta^-(G)$.

Vecindades

Sea v un vértice en un digrafo.

• La vecindad de salida o conjunto sucesor $N^+(v)$ es el conjunto

$$N^+(v) = \{x \in V(G): v \longrightarrow x\}$$

Vecindades

Sea v un vértice en un digrafo.

• La vecindad de salida o conjunto sucesor $N^+(v)$ es el conjunto

$$N^+(v) = \{x \in V(G): v \longrightarrow x\}$$

• La vecindad de entrada o conjunto predecesor $N^-(v)$ es el conjunto

$$N^-(v) = \{x \in V(G): x \longrightarrow v\}$$

Proposición

En un digrafo G,

$$\sum_{v \in V(G)} d^{+}(v) = e(G) = \sum_{v \in V(G)} d^{-}(v)$$

Nota

 Las definiciones de caminata, sendero y circuito y la relación de conexión son las mismas en grafos y en digrafos cuando se enlistan las aristas como pares ordenados de vértices.

Nota

- Las definiciones de caminata, sendero y circuito y la relación de conexión son las mismas en grafos y en digrafos cuando se enlistan las aristas como pares ordenados de vértices.
- En un digrafo, las aristas sucesivas deben seguir la dirección de las flechas. En una caminata v₀ e₁ v₁ ···· e_k v_k la arista e_i tiene cola v_{i-1} y cabeza v_i.

Sendero Euleriano - Circuito Euleriano

 Un sendero Euleriano en un digrafo D es un sendero que contiene todas las aristas de D.

Sendero Euleriano - Circuito Euleriano

- Un sendero Euleriano en un digrafo D es un sendero que contiene todas las aristas de D.
- Un circuito Euleriano en un digrafo D es un circuito que contiene todas las aristas de D

Sendero Euleriano - Circuito Euleriano

- Un sendero Euleriano en un digrafo D es un sendero que contiene todas las aristas de D.
- Un circuito Euleriano en un digrafo D es un circuito que contiene todas las aristas de D.

Digrafo Euleriano

Un digrafo D es Euleriano si tiene un circuito Euleriano.

Lema

Si G es un digrafo con $\delta^+(G) \geq 1$, entonces G contiene un ciclo. La misma conclusión se cumple cuando $\delta^-(G) \geq 1$.

Lema

Si G es un digrafo con $\delta^+(G) \ge 1$, entonces G contiene un ciclo. La misma conclusión se cumple cuando $\delta^-(G) \ge 1$.

Teorema

Un digrafo G es Euleriano sii $d^+(v) = d^-(v)$ para cada vértice v y el grafo subyacente tiene a lo sumo una componente no trivial.

Lema

Si G es un digrafo con $\delta^+(G) \geq 1$, entonces G contiene un ciclo. La misma conclusión se cumple cuando $\delta^-(G) \geq 1$.

Teorema

Un digrafo G es Euleriano sii $d^+(v) = d^-(v)$ para cada vértice v y el grafo subyacente tiene a lo sumo una componente no trivial.

Grafos dirigidos

Teorema

Un digrafo G tiene un u, v-sendero Euleriano sii $d^+(w) = d^-(w)$ para cada vértice w excepto para u y v, $d^+(u) = d^-(u) + 1$, $d^-(v) = d^+(v) + 1$ y el grafo subyacente tiene a lo sumo una componente no trivial.

Teorema

Un digrafo G tiene un u, v-sendero Euleriano sii $d^+(w) = d^-(w)$ para cada vértice w excepto para u y v, $d^+(u) = d^-(u) + 1$, $d^-(v) = d^+(v) + 1$ y el grafo subyacente tiene a lo sumo una componente no trivial.

Orientaciones y torneos

• Si n(G) = n, hay n^2 parejas ordenadas de vértices.

Orientaciones y torneos

- Si n(G) = n, hay n^2 parejas ordenadas de vértices.
- Como un digrafo simple permite un bucle sobre cada vértice, se usa cada par de vértices a lo sumo una vez como arista. Luego hay n² pares ordenados que pueden ser o no aristas de un digrafo simple.

Orientaciones y torneos

- Si n(G) = n, hay n^2 parejas ordenadas de vértices.
- Como un digrafo simple permite un bucle sobre cada vértice, se usa cada par de vértices a lo sumo una vez como arista. Luego hay n² pares ordenados que pueden ser o no aristas de un digrafo simple.
- Hay 2^{n^2} digrafos simples con conjunto de vértices $V = \{v_1, v_2, \dots, v_n\}$.

Orientación

Una **orientación** de un grafo G es un digrafo D obtenido a partir de G al seleccionar una orientación $(x \to y \text{ o } y \to x)$ para cada arista $xy \in E(G)$.

Orientación

Una **orientación** de un grafo G es un digrafo D obtenido a partir de G al seleccionar una orientación $(x \to y \text{ o } y \to x)$ para cada arista $xy \in E(G)$.

Grafo orientado

Un grafo orientado es una orientación de un grafo simple.

Orientación

Una **orientación** de un grafo G es un digrafo D obtenido a partir de G al seleccionar una orientación $(x \to y \text{ o } y \to x)$ para cada arista $xy \in E(G)$.

Grafo orientado

Un grafo orientado es una orientación de un grafo simple.

Torneo

Un torneo es una orientación de un grafo completo.

• Hay $3^{\binom{n}{2}}$ grafos orientados con vértices $V=\{v_1,v_2,\ldots,v_n\}.$

- Hay $3^{\binom{n}{2}}$ grafos orientados con vértices $V = \{v_1, v_2, \dots, v_n\}$.
- Hay $2^{\binom{n}{2}}$ torneos con vértices $V = \{v_1, v_2, \dots, v_n\}$.

• Considere una liga con *n* equipos en la cual cada equipo juega exactamente una vez contra cada uno de los otros equipos.

- Considere una liga con *n* equipos en la cual cada equipo juega exactamente una vez contra cada uno de los otros equipos.
- Para cada par x, y se incluye la arista xy si x derrota a y o la arista yx si y derrota a x.

- Considere una liga con n equipos en la cual cada equipo juega exactamente una vez contra cada uno de los otros equipos.
- Para cada par x, y se incluye la arista xy si x derrota a y o la arista yx si y derrota a x.
- El puntaje de un equipo es su grado de salida, que equivale al número de victorias.

- Considere una liga con *n* equipos en la cual cada equipo juega exactamente una vez contra cada uno de los otros equipos.
- Para cada par x, y se incluye la arista xy si x derrota a y o la arista yx si y derrota a x.
- El puntaje de un equipo es su grado de salida, que equivale al número de victorias.

Rey

Un **rey** es un vértice de un digrafo G para el cual cada vértice es alcanzable por un camino de longitud menor o igual a 2.

51

Rey

Un **rey** es un vértice de un digrafo G para el cual cada vértice es alcanzable por un camino de longitud menor o igual a 2.

Teorema [Landau]

Todo torneo tiene un rey.

Rey

Un **rey** es un vértice de un digrafo G para el cual cada vértice es alcanzable por un camino de longitud menor o igual a 2.

Teorema [Landau]

Todo torneo tiene un rey.

Nota

Todo vértice con grado de salida máximo en un torneo es un rey.

Rey

Un **rey** es un vértice de un digrafo G para el cual cada vértice es alcanzable por un camino de longitud menor o igual a 2.

Teorema [Landau]

Todo torneo tiene un rey.

Nota

- Todo vértice con grado de salida máximo en un torneo es un rey.
- Existe al menos un equipo x tal que, para cada equipo z, x derrota a z o x derrota a algún otro equipo que derrota a z.

Bibliografía

Douglas B. West Introduction to graph theory. Pearson. (2005).

Kenneth Rosen

Discrete Mathematics and its Applications McGraw Hill. (2012).

Bibliografía