Nuvoton 4 Times Linear Fan Driver NCT3941S/S-A

Publication Date: Aug, 2010

Revision A4

Table of Content-

1.	GENERAL DESCRIPTION	1
2.	FEATURES	1
3.	APPLICATION	1
4.	BLOCK DIAGRAM	2
5.	PIN CONFIGURATION AND TYPICAL APPLICATION CIRCUIT	2
6.	PIN DESCRIPTION	4
7.	FUNCTIONAL DESCRIPTION	2
8.	ELECTRICAL CHARACTERISTIC	
9.	OPERATING CHARACTERISTICS	9
10.	PACKAGE DIMENSION	15
11.	ORDERING INFORMATION	16
12.	TOP MARKING SPECIFICATION	16
13.	REVISION HISTORY	17

1. GENERAL DESCRIPTION

The NCT3941S/S-A is a simply linear fan driver. It is designed for noise-sensitive or power-sensitive applications that require system cooling. The NCT3941S/S-A is a low quiescent current, low dropout linear regulator which is designed with a P-channel MOSFET to power a DC fan and delivers output current up to 500mA. The output voltage follows the 4 times on the voltage of VSET pin to dynamic adjust the DC fan speed. NCT3941S supports enable pin to control the output voltage. NCT3941S-A supports fully turn-on function. NCT3941S/S-A is available in SOP8-EP package.

2. FEATURES

- VOUT Follows 4 Times of VSET
- 0.5V Dropout @ 0.5A Output Current
- Continues current up to 500mA, current limit trip threshold 1.6A
- Enable Function (NCT3941S)
- Full Turn On Function (NCT3941S-A)
- Short Circuit and Over Temperature Protections
- Low External Component Count
- Low Cost and Easy to Use
- SOP8 150mil with Exposed Pad Package
- Green Package (Lead Free and Halogen Free)

3. APPLICATION

- Projectors
- Peripheral Add-in Cards
- Motherboards
- Battery Powered Systems

Publication Date: Aug, 2010

Revision A4

4. BLOCK DIAGRAM

5. PIN CONFIGURATION AND TYPICAL APPLICATION CIRCUIT

6. PIN DESCRIPTION

PIN NAME	NO		PIN TYPE	DESCRIPTION			
T IIV IVAIVIL	NCT3941S	NCT3941S-A	1 IIV 1111 L	BEGGIAII HON			
VOUT	1	1	АО	Voltage output pin. Connect a low ESR ceramic capacitor (10uF, typically) to ground to assure stability.			
VIN	2	2	POWER	DC power supply input. Connect a bypass capacitor (2.2uF, typically) is recommended.			
ENABLE	3		I	Enable pin. Output voltage follows 4 times of VSET pin voltage when ENABLE pin at high level. Internal pull high is implemented.			
FON#		3	I	Full On mode selection pin. Output voltage follows 4 times of VSET pin voltage when FON# pin at high level. The internal power MOSFET full turns on when FON# pin at low level. Internal pull high is implemented.			
VSET	4	4	AIN	Output voltage setting pin. The inputs could be DC voltage. The input voltage must be larger that 1V.			
GND	6	6	GROUND	Power supply ground.			
NC	5, 7, 8	5, 7, 8		No internal connection.			

PIN TYPE	PIN Attribute	
АО	Output pin (Analog)	
AIN	Input pin (Analog)	
l I	Input pin (Digital)	
POWER	Positive power supply input	
GROUND	Power supply ground	

7. FUNCTIONAL DESCRIPTION

7.1 VSET Setting

The output voltage is 4 times of VSET pin voltage. When the VSET voltage exceeds 1V, the output voltage will follow 4 times of VSET voltage.

7.2 Enable Function

This function is for NCT3941S only. The input voltage level of ENABLE pin can control the internal regulator turn on or turn off. When pulling this pin below 0.3V, the regulator will be turned off. When

pulling this pin above 1V, the regulator will be turned on.

7.3 Full On Function

This function is for NCT3941S-A only. The input voltage level of FON# can control the internal regulator fully turn on or following 4 times of VSET voltage. When pulling this pin below 0.3V, the

regulator will be fully turned on. When pulling this pin above 1.6V, the output voltage will follow 4

times of VSET voltage.

7.4 Short Circuit Current Limit

The NCT3941S/S-A provides a current limit circuitry for short circuit protection, which monitors the

output current and controls PMOS gate voltage to limit the output current at 200mA.

7.5 Thermal Consideration

The NCT3941S/S-A has a thermal shutdown circuitry to limit the junction temperature. When the

junction temperature exceeds 150°C, the thermal shutdown circuit disables the output, allowing the

device to cool down. The output circuitry is enabled again after the junction temperature cools down

by 30°C , resulting in a pulsed output during continuous thermal overload conditions. The thermal

protection is designed to protect the IC in the event of over temperature conditions. For reliabile

operation, the junction temperature cannot exceed 125°C.

The definition of power dissipation in chip is as following equation:

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{Q}$$

P_D represents the power dissipation.

The power dissipation depends on the thermal resistance of chip package, PCB layout, the airflow

and temperature difference between junction and ambient. Refers to JEDEC51-1, The power

dissipation can be calculated by following equation:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

Where T_{J(MAX)} is the maximum operation junction temperature 125℃, TA is the ambient temperature

and the θ _{JA} is the junction to ambient thermal resistance. θ _{JA} for ESOP-8 package is 75°C/W on

JEDEC51-7 (4 layers, 2S2P) thermal test board with minimum copper area. The maximum power

-5-

dissipation at $T_A = 25^{\circ}C$ can be calculated as:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / 75^{\circ}C/W = 1.33W$

Publication Date: Aug, 2010

 θ _{JA} highly depends on IC package, PCB layout, the aireflow. Thermal resistance θ _{JA} can be improved by adding copper under the exposed pad of ESOP-8 while the IC package is fixed. The copper under the exposed pad of ESOP-8 is an effective heatsink and is useful for improving thermal conductivity. Figure show the relationship between thermal resistance θ _{JA} vs. copper area on a standard JEDEC 51-7 (4 layers, 2S2P) thermal test board at TA = 25°C, PCB copper thickness = 2oz. The 70mm² copper plane reduce θ _{JA} from 75°C/W to 45°C/W and increases maximum power disspation from 1.33W to 2.22W.

Figure01. Thermal Resistance θ_{JA} vs. Copper Area of ESOP Packages

Figure 02. Power dissipation vs. ambient temperature

7.6 VIN Decoupling

To achieve the best results when using the NCT3941S/S-A, decouple the power supply with a 2.2uF capacitor. Use a high quality ceramic surface mount capacitor if possible. Surface mount components minimize lead inductance, which improves performance, and ceramic capacitors tend to have adequate high frequency response for decoupling applications.

7.7 VOUT Stability

To maintain circuit stability and improve transient response over temperature and current, the NCT3941S/S-A needs a suitable output capacitor. In order to insure the circuit stability, the suitable output capacitor should be larger than 10uF.

7.8 Layout Consideration

Consider the following points before starting the NCT3941S/S-A layout design.

- The input bypass capacitor for VIN should be placed as close as possible to the pin with short and wide connections.
- The output capacitor for VOUT should be placed close to the pin with short and wide connection in order to avoid ESR and/or ESL trace inductance.
- In order to effectively remove heat from the package, properly prepare the thermal land. Apply solder directly to the package's thermal pad. The wide traces of component and the side copper connected to the thermal land pad help to dissipate heat. The thermal land connected to the ground plane could also be used to help dissipation.

8. ELECTRICAL CHARACTERISTIC

8.1 Absolute Maximum Ratings

P	ARAMETER	RATING	UNIT
Power	Supply Voltage	-0.3 to 19V	V
Voltage on Other Pins		-0.3 to 7V	V
Storage Temperature		-50 to 150	°C
Solder	ing Temperature	Refer to IPC/JEDEC J-STD-020 Specification	
80	Human Body Mode	2	kV
ESD Protection	Machine Mode	200	V
	Latch-up	100	mA

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

8.2 Thermal Information

ITEM	RATING	UNIT
Power Dissipation, P _D @ T _A =25°C	Internal Limited	W
Package Thermal Resistance, SOP8-EP, θ_{JA}	75	°C/W

8.3 Recommended Operating Conditions

PARAMETER	RATING	UNIT
Operating Temperature	-20 to 85	°C
Junction Temperature	-20 to 125	°C
Supply Voltage, VCC	8 to 17.6	V

8.4 Electrical Characteristics

VIN=13V, VSET=2V, ENABLE=5V, C_{IN}= 2.2uF, C_{OUT}=10uF, Ta= -20~85°C (Typical value are at Ta=25°C)

PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
Supply Input Voltage							
Supply Input Voltage	V _{IN}	8		17.6	V		
ENABLE / FON# Pin							
ENABLE / FON# Voltage High		1			V		
ENABLE / FON# Voltage Low				0.3	V		
ENABLE / FON# Pin Bias Current			3		uA	ENABLE / FON# = 0V	
Supply Input Current	Supply Input Current						
Quiescent Current	ΙQ		3		mA	ENABLE = 5V, VOUT 12V, No Load	
Shutdown Current	I _{SD}		100		uA	ENABLE = 0V	
Output Voltage							
VOLIT Voltage / VSET Voltage		3.88	4	4.12	V/V	VIN = 12V	
VOUT Voltage / VSET Voltage		3.00	4	4.12 0/0	V/V	VSET = 1 ~ 3V	
Load Population(NOTE1)			0.5	2	%	VSET = 3V	
Load Regulation(NOTE1)			0.5	2	-/0	$10\text{mA} \leq I_{\text{OUT}} \leq 500\text{mA}$	
Line Regulation(NOTE1)			0.1	0.5	%	Vin = 9V to 14V	

Output Resistance		- 12	0.7		Ω	I _{OUT} = 500mA VSET = 4V
Output Leakage(NOTE2)			0	1	uA	ENABLE = 0V
VSET Pin		(1)	2 - 1		'	
VSET Voltage	V_{SET}		1	5.5	V	
VSET pin Current			100	W.	nA	
Short Circuit Current Limit Protection						
Output Current Limit	I _{LIM}		0.7	SON	Α	
Current Limit Trigger Point	I _{TR}		1.6	~(/)	A	3
Short circuit protection	I _{SH}		0.2	- 1	Α	40 z
Over Temperature Protection						
Thermal Shutdown Temperature			150		°C	200
Thermal Shutdown Hysteresis			30		°C	200

NOTE1 : Slew rate will effect transient response, use $T_{R<}10us$, $T_{F}<10us$ measurement load regulation and line regulation

NOTE2 : .NCT3941S-A is full-on when enable=0, measurement output leakage current using VSET<0.3V to disable output voltage

9. OPERATING CHARACTERISTICS

 $(C_{\text{IN}}\text{=}2.2\text{uf} \; , \; C_{\text{out}}\text{=}10\text{uf} \; , \; V_{\text{IN}}\text{=}13\text{V} \; , \; V_{\text{SET}}\text{=}2\text{V} \; , \; V_{\text{EN}}\text{=}5\text{V} \; , \; \text{Ta}\text{=}25^{\circ}\text{C})$

-9-

Publication Date: Aug, 2010

VSET V.S. QUIESCENT CURRENT

VIN V.S. QUIESCENT CURRENT

LOAD CURRENT V.S. QUIESCENT CURRENT

LOAD CURRENT V.S. DROP VOLTAGE

VIN V.S. VEN

VIN V.S. VEN PIN BIAS CURRENT

QUIESCENT CURRENT V.S TEMPERATURE

DROP VOLTAGE V.S TEMPERATURE

LOAD REGULATION V.S TEMPERATURE

LINE REGULATION V.S TEMPERATURE

VOUT V.S TEMPERATURE

OVER CURRENT LIMIT V.S. TEMPERATURE

SHORT CIRCUIT LIMIT V.S. TEMPERATURE

OVER CURRENT TRIGGER POINT V.S. TEMPERATURE

10. PACKAGE DIMENSION

SOP8-EP (150mil)

10.1 Taping Specification

11. ORDERING INFORMATION

Part Number	Package Type	Supplied as	Production Flow	
NCT3941S	CODO ED (Onser Deslesse)	T.Ch. a. a. 0. 500	Commercial, -20°C to + 85°C	
NCT3941S-A	SOP8-EP (Green Package)	T Shape: 2,500 units/T&R		

12. TOP MARKING SPECIFICATION

Pin 1 index

Pin 1 index

1st Line: Nuvoton logo

2nd Line: 3941S (NCT3941S), 3941S-A (NCT3941S-A)

3rd line: Tracking code

- 846: packages assembled in Year 2008, week 46
- <u>A</u>: assembly house ID.
- X: IC version. (A means A; B means B and C means C...etc.

13. REVISION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A1	04/01/2010	All	New Create
A2	05/05/2010	P.5	Adding thermal consideration
A3	05/06/2010	P.7	Revised Maximum supply voltage.
A4	25/08/2010	P.1, P.12	Modify description of feature and waveform

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Publication Date: Aug, 2010

Revision A4