Дніпровський національний університет імені Олеся Гончара Факультет прикладної математики Кафедра обчислювальної математики та математичної кібернетики

Методи оптимізації

Завдання до лабораторної роботи

Чисельні методи розв'язання задач одновимірної оптимізації

Тема: Чисельні методи одновимірної оптимізації.

<u>Mema:</u> Познайомитись практично з ітераційними методами розв'язання задач одновимірної оптимізації.

Постановка завдання

1. Знайти мінімум строго квазіопуклої функції f(x) відрізку [a,b] з точністю $\varepsilon = 10^{-4}$ методами ділення навпіл, золотого перерізу, Фібоначчі. Цільова функція f(x) та відрізок [a,b] визначаються номером індивідуального завдання (таблиця 1).

Таблиця 1

N	f(x)	[<i>a</i> , <i>b</i>]	N	f(x)	[<i>a</i> , <i>b</i>]
1	$y = \frac{x}{x^2 + 1} \to min$	$\left[-\frac{3}{2},0\right]$	2	$y = \frac{\ln x - 1}{x} \to \min$	$[e, e^3]$
3	$y = x + \frac{2}{x} \rightarrow min$	$\left[\frac{1}{2},3\right]$	4	$y = x + exp(-x) \rightarrow min$	[-2,2]
5	$y = x + exp\left(\frac{-x}{2}\right) \to max$	[1, 3]	6	$y = x + \frac{4}{x^2} \rightarrow min$	[1, 4]
7	$y = x^4 - 2x^2 + 3 \rightarrow max$	[-1,1]	8	$y = ln(x^2 + 1) \rightarrow min$	[-1,1]
9	$y = \frac{x}{(x+1)^2} \to min$	[0, 2]	10	$y = \frac{x^2 + 1}{x} \to max$	$\left[-2,-\frac{1}{2}\right]$
11	$y = \frac{x^4}{(x+1)^3} \to min$	$\left[-\frac{1}{2},1\right]$	12	$y = \frac{4}{3}x^3 - 4x \to min$	[0, 2]
13	$y = x + (x - 1)^2 \rightarrow min$	[-1,1]	14	$y = (x-3)\sqrt{x} \rightarrow min$	[0, 2]

Продовження таблиці 1

		1		Продовження то	лолиці 1
N	f(x)	[<i>a</i> , <i>b</i>]	N	f(x)	[a,b]
15	$y = \frac{\ln x}{\sqrt{x}} \to max$	$[e, e^3]$	16	$y = \frac{exp \ x}{x+1} \to min$	$\left[-\frac{1}{2},1\right]$
17	$y = x + 2x^2 \to min$	$\left[-\frac{1}{2},2\right]$	18	$y = x^2 \exp(-x) \to max$	[1, 3]
19	$y = x^3 - \frac{3}{4}x \to min$	[0, 2]	20	$y = exp(2x - x^2) \rightarrow max$	[0, 2]
21	$y = \sqrt{x} + \sqrt{4 - x} \to max$	[0, 4]	22	$y = x + \sqrt{3 - x} \to max$	[0, 3]
23	$y = x^4 - 4x^3 + 6x^2 - $ $-4x \rightarrow min$	[-2,2]	24	$y = \frac{(x-1)^2}{x} \to min$	$\left[\frac{1}{2},2\right]$
25	$y = 3x - 2x^2 \to max$	[-1,1]	26	$y = \frac{x^2}{x+1} \to min$	$\left[-\frac{1}{2},1\right]$
27	$y = \frac{x^2 - 1}{x^2 - 4} \rightarrow max$	[-1,1]	28	$y = 2x^3 - 6x^2 - $ $-18x + 7 \rightarrow max$	[-2,0]
29	$y = \frac{(x-1)^2}{x} \to max$	$\left[-3,-\frac{1}{2}\right]$	30	$y = x \exp(x) \rightarrow min$	[-3,3]
31	$y = \frac{1}{4}x^4 - \frac{5}{2}x^2 + $ $+ x + 1 \rightarrow max$	$\left[-\frac{1}{2},1\right]$	32	$y = (x-1) exp(x) \rightarrow min$	[-1,1]
33	$y = x + \frac{1}{x} \rightarrow min$	$\left[\frac{1}{2},2\right]$	34	$y = x + (x - 2)^2 \rightarrow min$	[-1,2]
35	$y = 7 - x - x^2 \to max$	[-1,3]	36	$y = (x+2) exp\left(\frac{1}{x}\right) \rightarrow min$	[1,3]
37	$y = \frac{x^2 - 3x - 1}{x + 2} \rightarrow max$	[-6,-4]	38	$y = x^2 - 3x + 2 -$ $- 2x - 3 \rightarrow min$	[0,1]
39	$y = 2x^2 + x \rightarrow min$	[-1,1]	40	$y = 2x^3 - 3x^2 \to max$	$\left[-1,\frac{1}{2}\right]$

Закінчення таблиці 1

N	f(x)	[<i>a</i> , <i>b</i>]	N	f(x)	[<i>a</i> , <i>b</i>]
41	$y = x^2 + exp(x) \rightarrow min$	[-1,0]	42	$y = \frac{x^3 + 4}{x^2} \rightarrow min$	[1, 3]
43	$y = (x-5) exp(x) \rightarrow min$	[3, 5]	44	$y = x \exp(-x) \rightarrow max$	[0, 2]

2. Скласти звіт.

Література

- 1. Кісельова О. М., Шевельова А. €. Чисельні методи оптимізації. Навч. посібник Д.: Вид-во ДНУ, 2008. 212 с.
- 2. Жалдак М.І., Триус Ю.В. Основи теорії та методів оптимізації: навч. посібник. Черкаси: Брама-Україна, 2005. 608 с.
- 3. Васильев Ф.П. Численные методы решения экстремальных задач. M.,1980.–518 с.
- 4. Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации. М.,1986. 328с.