

The ESS Sabre® ES9017 is a 32-bit 8 Channel digital-to-analog converter (DAC) that has the best cost/performance solution for receivers, personal audio devices, professional audio applications such as recording systems, mixer consoles and digital audio workstations (DAW) audio processors applications. It was designed to complement the new generation of the world's highest performing audio PRO DAC series.

The ES9017 has 8 integrated DACs which use ESS' new patented Hyperstream® IV DAC Architecture. The same technology that is used in the ESS Sabre PRO lineup. It delivers incredible audio sound quality and specifications, including +120dB DNR and -110dB THD+N per channel.

The ES9017 SABRE® DAC improves on previous designs to include:

- TDM & SPI support for more options in connectively
- Lower power consumption than previous generations, including the Hyperstream® IV DAC modulator
- New Hardware mode for simplified programming.

TDM, DSD, DoP, and I2S, LJ, RJ master/slave interfaces are supported.

The ES9017 has 7 built-in pre-programmed digital filters which allows the most discerning user to tune the SABRE® sound to their own personal sound signature.

FEATURE	DESCRIPTION
Patented 32-bit HyperStream® IV Architecture DAC Technology	32-bit audio DAC with high dynamic range & ultra-low distortion
+120db DNR per channel -110dB THD+N per channel	Excellent dynamic range and low distortion
High Sample Rates	Up to PCM 768kHz & native DSD512
Customizable filter characteristics	7 predefined digital filters, optimized for latency or sound color
Multiple Input formats are available	TDM, I2S, LJ, RJ, DSD, DoP
I2C, SPI, and Hardware interface control	Configured by microcontroller or other I2C/SPI source, or pins through Hardware Mode
Lower Power Consumption than Previous Gen	Simplifies power supply design
Standardized Packaging	7mm x 7mm, 48 pin QFP and 48 QFN for reduced PCB board space
Patented 32-bit HyperStream® IV Architecture DAC Technology	32-bit audio DAC with high dynamic range & ultra-low distortion

APPLICATIONS

- Digital audio workstations (DAW) Audio Playback
- A/V Receivers (AVR)
- Personal Audio Devices & Media Streamers
- Sound Bars
- Mixers
- High End Audio Equipment
- DAP (Digital Audio Players)
- DJ Equipment

Table of Contents

Table of Contents	2
List of Figures	
List of Tables	
Functional Block Diagram	
ES9017 Pinout	6
48 QFP/QFN Pin Descriptions	7
Feature List	
Configuration Modes	8
Software Mode	8
l ² C	8
SPI	8
Hardware Mode	
Design Information	9
Muting	
Hardware Mode Pin Configurations	10
Recommended Hardware Mode Setup Sequence	12
Digital Features	13
Digital Signal Path	13
GPIO Configuration	14
Audio Input Formats	15
Time-division multiplexing (TDM)	15
I2S (subset of TDM interface)	15
DSD	16
Pre-Programmed Digital Filters	17
PCM Filter Latency	17
PCM Filter Properties (48kHz Sampling)	18
PCM Filter Frequency Response	19
PCM Filter Impulse Response	23
Absolute Maximum Ratings	
IO Electrical Characteristics	27
Recommended Operating Conditions	28
Power Consumption	29
Performance	31
Register Overview	32
I ² C Slave Interface (Device Address 0x90, 0x92, 0x94, 0x96)	32
Read/Write Register Addresses	32
Read-only Register Addresses	32
Multi-Byte Registers	32

I ² C Slave/Synchronous Slave Interface Timing	33
SPI Slave Interface	
Register Map	35
Register Listings	36
System Registers	36
GPIO Registers	38
DAC Registers	44
Readback Registers	57
ES9017 Reference Schematic	58
Software Mode	59
48 QFP Package Dimensions	60
48 QFN Package Dimensions	61
48 QFP Top View Marking	
48 QFN Top View Marking	63
Reflow Process Considerations	
Temperature Controlled	64
Manual	64
RPC-1 Classification reflow profile	65
RPC-2 Pb-Free Process – Classification Temperatures (Tc)	
Ordering Information	
Revision History	66

List of Figures

Figure 1 - ES9017 Block Diagram	5
Figure 2 - Hardware mode pin configurations	9
Figure 3 - Hardware mode startup sequence	12
Figure 4 – Example of using 8 channels of TDM showing both a 50/50 word select mode and a pulse word select mode	15
Figure 5 – I2S & LJ Output Format	15
Figure 6 – DSD format	16
Figure 7 – I2C Slave Control Interface Timing	33
Figure 8 – I2C single byte R/W	33
Figure 9 – SPI single byte write	34
Figure 10 – SPI single byte Read	34
Figure 11 – SPI multi-byte read	34
Figure 12 – Hardware (HW) mode reference schematic for ES9017Q	58
Figure 13 – Software mode reference schematic for ES9017Q	59
Figure 14 – ES9017 48 QFP package dimensions	60
Figure 15 – ES9017 48 QFN package dimensions	61
Figure 16 – ES9017S Marking	62
Figure 17 – ES9017Q Marking	63
Figure 18 – IR/Convection Reflow Profile (IPC/JEDEC J-STD-020D.1)	64
List of Tables	
Table 1 - I2C address configurations	8
Table 2 – Standard GPIO Functions	14
Table 3 – Latency of Pre-Programmed Digital Filters	17
Table 4 - Frequency response of PCM filters	22
Table 5 - Impulse response of PCM filters	26
Table 6 – Absolute Maximum Ratings	27
Table 7 – IO electrical characteristics	27
Table 8 – Recommended operating conditions	28
Table 9 – Power consumption with test conditions 1	29
Table 10 – Power consumption with test conditions 2	30
Table 11 – Performance data	31
Table 12 – I2C slave/synchronous slave interface timing definitions	33
Table 13 – RPC-1 Classification reflow profile	65
Table 14 – RPC-2 Pb free classification temperatures	65

Functional Block Diagram

Figure 1 - ES9017 Block Diagram

ES9017 Pinout

48 QFN/QFP Pinout

ES9017Q & ES9017S Pinout* (Top View)

*Note: ES9017 has an exposed pad (pin 49) that should be connected to ground.

48 QFP/QFN Pin Descriptions

Pin	Name	Pin Type	Reset State	Pin Description
1	DAC1	AO	Ground	Differential Positive Output for Channel 1
2	DAC1B	AO	Ground	Differential Positive Output for Channel 1
3	DAC1B DAC3B	AO	Ground	Differential Negative Output for Channel 3
	DAC3B DAC3	AO	Ground	Differential Positive Output for Channel 3
5	AVCC L			
6		Power	Power	3.3V DAC analog output stage reference supply for the Left side
7	CHIP_EN	1	HiZ HiZ	Active-high Chip Enable
	RT1	Crawad		Reserved. Must be connected to DGND for normal operation.
8	AGND	Ground	Ground	DAC analog output stage ground
9	DAC5	AO	Ground	Differential Positive Output for Channel 5
10	DAC5B	AO	Ground	Differential Negative Output for Channel 5
11	DAC7B	AO	Ground	Differential Negative Output for Channel 7
12	DAC7	AO	Ground	Differential Positive Output for Channel 7
13	DVDD	Power	Power	Digital Core Supply, 1.2V
14	DGND	Ground	Ground	Digital Ground
15	MOSI/SDA/HW0		HiZ	Serial communication for SPI/I2C & HW0 interface pin, controlled by MODE
16	SCLK/SCL/HW1	1	HiZ	Serial Clock for SCLK (SPI), SCL (I2C), also HW1 controlled by MODE pin
17	MODE	1	HiZ	I2C/SPI Control selection or HW mode
18	MCLK		HiZ	Oscillator input
19	VCCA	Power	Power	Analog Supply, 3.3V
20	GPIO1	1/0	HiZ	General I/O w/extended functions
21	GPIO2	1/0	HiZ	General I/O w/extended functions
22	GPIO3	1/0	HiZ	General I/O w/extended functions
23	DGND	Ground	Ground	Digital Ground
24	DVDD	Power	Power	Digital Supply, 1.2V
25	DAC8	AO	Ground	Differential Positive Output for Channel 8
26	DAC8B	AO	Ground	Differential Negative Output for Channel 8
27	DAC6B	AO	Ground	Differential Negative Output for Channel 6
28	DAC6	AO	Ground	Differential Positive Output for Channel 6
29	AGND	Ground	Ground	DAC analog output stage ground
30	SS/ADDR1/HW2	1	HiZ	Serial communication for SPI/I2C & HW2 interface pin, controlled by MODE pin
31	MISO/ADDR0/	1	HiZ	Serial communication for SPI/I2C & MUTE_CTRL interface pin, controlled by
	MUTE_CTRL			MODE pin
32	AVCC_R	Power	Power	3.3V DAC analog output stage reference supply for the Right side
33	DAC4	AO	Ground	Differential Positive Output for Channel 4
34	DAC4B	AO	Ground	Differential Negative Output for Channel 4
35	DAC2B	AO	Ground	Differential Negative Output for Channel 2
36	DAC2	AO	Ground	Differential Positive Output for Channel 2
37	DVDD	Power	Power	Digital Supply, 1.2V
38	DGND	Ground	Ground	Digital Core Ground
39	DATA8/GPIO8	1/0	HiZ	Serial DATA8, General I/O 8
40	DATA7/GPIO7	1/0	HiZ	Serial DATA7, General I/O 7
41	DATA6/GPIO6	1/0	HiZ	Serial DATA6, General I/O 6
42	DATA5/GPIO5	1/0	HiZ	Serial DATA5, General I/O 5
43	DATA4/GPIO4	I/O	HiZ	Serial DATA4, General I/O 4
44	DATA3		HiZ	Serial DATA3 pin
45	DATA2		HiZ	Serial DATA2 pin
46	DATA1		HiZ	Serial DATA1 pin
47	DATA_CLK		HiZ	Serial Data Clock pin
48	AVDD	Power	Power	3.3V I/O Supply
49	External PAD	-	/O = Disital lance	Only for ES9017Q, external pad, connect to AGND

^{*} Note: AO = Analog Output, I = Digital Input, I/O = Digital Input/Output

Feature List

The ES9017 is a SABRE 8 channel high performance digital to analog converter (DAC) with features and performance including the new Hyperstream IV modulator that produces a device is well suited for a variety of applications.

These features include TDM & SPI support as well as a Hardware (HW) mode for simplifying configuration of the ES9017.

TDM / I2S / LJ / RJ / DSD / DoP interfaces are supported

Sample rates up to 768kHz with PCM data and 7 selectable digital filters, and DSD rates up to DSD512 (512 x 44.1kHz) are supported as well.

Configuration Modes

The ES9017 has 4 control programming modes. They are controlled by the state of the MODE (pin 17):

MODE PIN	Configuration		
0	I ² C interface		
Pull Low	HW control mode (see Hardware Mode Table)		
Pull High	HW control mode (see Hardware Mode Table)		
1	SPI interface		

Software Mode

To configure the ES9017 registers manually over I²C or SPI, connect the following pins:

I²C

- MODE (Pin 17) GND
- Connect per I²C standard
 - SDA (Pin 15)
 - SCL (Pin 16)
 - ADDR0 (Pin 31)
 - ADDR1 (Pin 30)

Available I2C Addresses for the ES9017:

I2C Address	ADDR1	ADDR0
0x90	GND	GND
0x92	GND	AVDD
0x94	AVDD	GND
0x96	AVDD	AVDD

Table 1 - I2C address configurations

SPI

- Mode (Pin 17) AVDD
- Connect per SPI standard
 - MOSI (Pin 15)
 - SCLK (Pin 16)
 - SS (Pin 30)
 - MISO (Pin 31)

Hardware Mode

The ES9017 has 32 pre-configured modes that can be set with external pin configuration. These modes configure the DAC for different input serial data rates and set the DAC muting.

These modes are set with pins:

- MODE (Pin 17)
- HW0 (Pin 15)
- HW1 (Pin 16)
- HW2 (Pin 30)
- MUTE_CTRL (Pin 31)

Each hardware mode pin has 4 states:

- 0 Pin directly connected to GND
- 1 Pin directly connected to AVDD
- Pull 0 Pin pulled to GND through 47kΩ resistor
- Pull 1 Pin pulled to AVDD through 47kΩ resistor

Design Information

Each hardware mode pin can be configured with either a pull-up or pull-down resistor. Therefore, it is important that the pin is configured to allow for the desired hardware modes. Some guidelines include the following:

• The HW0 and HW1 pins never require a pull up or pull-down resistor.

Figure 2 - Hardware mode pin configurations

Muting

MUTE_CTRL (Pin 31) is used to control the muting of the output and enabling of the Automute feature while in Hardware Mode:

- 0 Output Muted, No Automute
- 1 Output Unmuted, No Automute
- Pull 0 Output Muted, Automute Enabled
- Pull 1 Output Unmuted, Automute Enabled

Hardware Mode Pin Configurations

The following table shows the available hardware modes for the ES9017.

HW	FS (kHz)	BCK (MHz)	MCLK (MHz)	BCK/Channel	MODE	HW2	HW1	HW0
Mode			I2S Master	Mode				
0	MCLK / 128	MCLK / 2	5 < MCLK < 50	32	Pull 0	0	0	0
1	MCLK / 256	MCLK / 4	5 < MCLK < 50	32	Pull 0	0	0	1
2	MCLK / 512	MCLK / 8	5 < MCLK < 50	32	Pull 0	0	1	0
3	MCLK / 1024	MCLK / 16	5 < MCLK < 50	32	Pull 0	0	1	1
			LJ Master	Mode				
4	MCLK / 128	MCLK / 2	5 < MCLK < 50	32	Pull 0	Pull 0	0	0
5	MCLK / 256	MCLK / 4	5 < MCLK < 50	32	Pull 0	Pull 0	0	1
6	MCLK / 512	MCLK / 8	5 < MCLK < 50	32	Pull 0	Pull 0	1	0
7	MCLK / 1024	MCLK / 16	5 < MCLK < 50	32	Pull 0	Pull 0	1	1
			I2S Slave SYNC, Auto	Detect, MCLK/1				
8	Auto (8 < FS < 384)	64FS	128FS < MCLK < 50	32	Pull 0	Pull 1	0	0
			I2S Slave SYNC, Auto	Detect, MCLK/2				
9	Auto (8 < FS < 192)	64FS	128FS < MCLK < 50	32	Pull 0	Pull 1	0	1
			I2S Slave SYNC, Auto	Detect, MCLK/4				_
10	Auto (8 < FS < 96)	64FS	128FS < MCLK < 50	32	Pull 0	Pull 1	1	0
			2S Slave SYNC, Auto Clo	ck Gear, Auto Dete	ect			
11	Auto (8 < FS < 384)	64FS	128FS < MCLK < 50	32	Pull 0	Pull 1	1	1
			LJ Slave SYNC, Auto	Detect, MCLK/1				
12	Auto (8 < FS < 384)	64FS	128FS < MCLK < 50	32	Pull 0	1	0	0
			LJ Slave SYNC, Auto	Detect, MCLK/2				
13	Auto (8 < FS < 192)	64FS	128FS < MCLK < 50	32	Pull 0	1	0	1
			LJ Slave SYNC, Auto	Detect, MCLK/4				
14	Auto (8 < FS < 96)	64FS	128FS < MCLK < 50	32	Pull 0	1	1	0
		LJ S	Slave SYNC, Auto Clock G	ear (128FS), Auto	Detect	T		ī
15	Auto (8 < FS < 384)	64FS	128FS < MCLK < 50	32	Pull 0	1	1	1
		l	DoP or I2S Slave ASYNC,	Auto Detect, MCLI	K/1			
16	Auto (8 < FS < 384)	64FS	130FS < MCLK < 50	32	Pull 1	0	0	0
	DoP or I2S Slave ASYNC, Auto Detect, MCLK/2							
17	Auto (8 < FS < 192)	64FS	130FS < MCLK < 50	32	Pull 1	0	0	1
			DoP or I2S Slave ASYNC,	Auto Detect, MCLI	(/4			
18	Auto (8 < FS < 96)	64FS	130FS < MCLK < 50	32	Pull 1	0	1	0
		I2S SIa	eve ASYNC, Auto Clock G	ear (>=128FS), Aut	o Detect	ı		
19	Auto (8 < FS < 384)	64FS	130FS < MCLK < 50	32	Pull 1	0	1	1
	LJ Slave ASYNC, Auto Detect, MCLK/1							

20	Auto (8 < FS < 384)	64FS	130FS < MCLK < 50	32	Pull 1	Pull 0	0	0
	LJ Slave ASYNC, Auto Detect, MCLK/2							
21	Auto (8 < FS < 192)	64FS	130FS < MCLK < 50	32	Pull 1	Pull 0	0	1
			LJ Slave ASYNC, Auto	Detect, MCLK/4				
22	Auto (8 < FS < 96)	64FS	130FS < MCLK < 50	32	Pull 1	Pull 0	1	0
		LJ Sla	ave ASYNC, Auto Clock G	ear (>130FS), Auto	Detect			
23	Auto (8 < FS < 384)	64FS	130FS < MCLK < 50	32	Pull 1	Pull 0	1	1
			DSD Slave SYNC, MCL	.K/1, Auto Detect				
24	64FS	64FS	128FS < MCLK < 50	-	Pull 1	Pull 1	0	0
			SD Slave SYNC, Auto Clo	ck Gear, Auto Det	ect			
25	64FS	64FS	128FS < MCLK < 50	-	Pull 1	Pull 1	0	1
			DSD Slave ASYNC (w/A	Auto FS), MCLK/1				
26	64FS	64FS	130FS < MCLK < 50	1	Pull 1	Pull 1	1	0
		DSD S	slave ASYNC (w/Auto FS),	Auto Clock Gear (>130FS)			
27	64FS	64FS	130FS < MCLK < 50	-	Pull 1	Pull 1	1	1
			TDM MSB Justified Slave	SYNC, Auto Dete	ct			
28*	Auto (8 < FS < 192)	Auto (256FS, 512FS, 1024FS)	128FS <= MCLK < 50	32	Pull 1	1	0	0
29*	Auto (8 < FS < 96)	Auto (512FS, 1024FS)	128FS <= MCLK < 50	32	Pull 1	1	0	1
30*	Auto (8 < FS < 48)	Auto (1024FS)	128FS <= MCLK < 50	32	Pull 1	1	1	0
31*	Auto (8 < FS < 48)	Auto (1024FS)	128FS <= MCLK < 50	32	Pull 1	1	1	1

^{*}Note: Mode 28 = Channel Slots 1 to 8, Mode 29 = Channel Slots 9 to 16, Mode 30 = Channel slots 17 to 24, Mode 31 = Channel slots 25 to 32.

Recommended Hardware Mode Setup Sequence

The hardware mode setup sequence is shown below with all hardware pins being defined after CHIP_EN is asserted.

Note: It is recommended that MUTE_CTRL is set low until the HW mode is finalized and after CHIP_EN is asserted, then asserted last.

Figure 3 - Hardware mode startup sequence

Digital Features

The ES9017 is an synchronous operation device. FS/BCK (DATA1/DATA_CLK) need to be synchronous with MCLK (128FS minimum)

For example, if using a 49.152MHz MCLK is used, sample rate would be multiple of 48kHz (ie 196kHz). It is intended to use clocks:

When using the highest PCM sample rates (705.6kHz & 768kHz), Register 0[6] ENABLE_64FS_MODE is required to be enabled.

Sampling Rate	Multiplier	MCLK (MHz)
44.1kHz	1x	5.6448 (128FS)
	2x	11.2896 (256FS)
44.1KПZ	4x	22.5792 (512FS)
	8x	45.1584 (1024FS)
	1x	6.144MHz (128FS)
48kHz	2x	12.288 (256FS)
40K⊓Z	4x	24.576 (512FS)
	8x	49.152 (1024FS)

Digital Signal Path

GPIO Configuration

GPIO_CONFIG	Function	I/O Direction
0	Analog Shutdown*	N/A
1	1'b0	Output
2	1'b1	Output
3	DATA_CLK output	Output
4	Reserved	N/A
5	Mute all channel	Input
6	Input Selection	Input
7	Lock status	Output
8	CLK_VALID flag	Output
9	TDM_VALID	Output
10	DOP_VALID	Output
11	BCK_WS_FAIL	Output
12	Volume min	Output
13	Automute status	Output
14	Soft Ramp finished	Output
15	Reserved	N/A

Table 2 - Standard GPIO Functions

Note: DoP Valid is for channel 1 & 2, as a channel pair

For GPIO_CONFIG 0:

*Analog Shutdown is input disabled, output is tri-stated

GPIOx Default states:

GPIO1: Automute Status (GPIO_CONFIG = 13) GPIO2-8: Analog Shutdown (GPIO_CONFIG = 0)

Audio Input Formats

For configuring TDM, I2S, DSD, use Registers 57-71

Time-division multiplexing (TDM)

The ES9027PRO supports up to 32 channel TDM modes. Application Note regarding setup for TDM will be available soon.

Figure 4 – Example of using 8 channels of TDM showing both a 50/50 word select mode and a pulse word select mode

I2S (subset of TDM interface)

Data is latched on the positive edge of BCK

Figure 5 – I2S & LJ Output Format

DSD1

Data is latched on the positive edge of DCLK.

Figure 6 – DSD format

¹ The Automute Feature is not available when using DSD mode

Pre-Programmed Digital Filters

The ES9017 has 7 pre-programmed digital filters. The latency for each filter reduces (scales) with increasing sample rates. (See Register 88[2:0] for configuration). The filters are:

- Minimum Phase (default)
- Linear Phase Apodizing
- Linear Phase Fast Roll-off
- Linear Phase Slow Roll-off
- Minimum Phase Fast Roll-off
- Minimum Phase Slow Roll-off
- Minimum Phase Slow Roll-off Low Dispersion

PCM Filter Latency

The following table shows the simulated latency of each filter at 48kHz sampling rate. Latency delay will reduce (scale) with sampling rate.

Digital Filter	Delay(us) @ fs=48kHz
Minimum phase (default)	158us
Linear Phase Apodizing	760us
Linear Phase Fast Roll-Off	771us
Linear Phase Slow Roll-Off	208us
Minimum Phase fast roll-off	158us
Minimum Phase slow roll-off	137us
Minimum Phase Slow roll-off low dispersion	282us

Table 3 – Latency of Pre-Programmed Digital Filters

PCM Filter Properties (48kHz Sampling)

Minimum Phase					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3dB			0.49 x fs	Hz
Stop band	-97dB	0.55 x fs			Hz
Group Delay		3.29/fs		9.37/fs	S
Flatness (ripple)	0.0004				dB

Linear Phase Apodizing					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	−3dB			0.44 x fs	Hz
Stop band	-107dB	0.5 x fs			Hz
Group Delay			33.2/fs		s
Flatness (ripple)	0.0017				dB

Linear Phase Fast Roll-off					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3dB			0.49 x fs	Hz
Stop band	-118dB	0.55 x fs			Hz
Group Delay			33.8/fs		S
Flatness (ripple)	0.0023				dB

Linear Phase Slow Roll-off					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3dB			0.44 x fs	Hz
Stop band	-84dB	0.74 x fs			Hz
Group Delay			5.62/fs		S
Flatness (ripple)	0.002				dB

Minimum Phase Fast Roll-off					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3dB			0.48 x fs	Hz
Stop band	-99dB	0.55 x fs			Hz
Group Delay		3.29/fs		9.51/fs	S
Flatness (ripple)	0.0016				dB

Minimum Phase Slow Roll-off					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3dB			0.43 x fs	Hz
Stop band	-84dB	0.79 x fs			Hz
Group Delay		2.5/fs		3/fs	S
Flatness (ripple)	0.0035				dB

Minimum Phase Slow Roll-off Lo	w Dispersion				
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3dB			0.43 x fs	Hz
Stop band	-84dB	0.79 x fs			Hz
Group Delay		9.7/fs		9.9/fs	S
Flatness (ripple)	0.0053				dB

PCM Filter Frequency Response

The following frequency responses were obtained from software <u>simulations</u> of these filters. Simulation sample rate is 44.1kHz.

Table 4 - Frequency response of PCM filters

PCM Filter Impulse Response

The following impulse responses were obtained from software <u>simulations</u> of these filters. Simulation sample rate is 44.1kHz.

Table 5 - Impulse response of PCM filters

Absolute Maximum Ratings

PARAMETER	RATING
Positive Supply Voltage	
AVCC_L	+3.7V with respect to Ground
AVCC_R	+3.7V with respect to Ground
AVDD	+3.7V with respect to Ground
VCCA	+3.7V with respect to Ground
• DVDD	+1.4V with respect to Ground
Storage temperature	−65°C to +150°C
Operating Junction Temperature	+125°C
Voltage range for digital input pins	-0.3V to AVDD(nom)+0.3V
ESD Protection	
Human Body Model (HBM)	TBD
Charge Device Model (CDM)	TBD

Table 6 – Absolute Maximum Ratings

WARNING: Stresses beyond those listed under here may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied.

WARNING: Electrostatic Discharge (ESD) can damage this device. Proper procedures must be followed to avoid ESD when handling this device.

IO Electrical Characteristics

PARAMETER	SYMBOL	MINIMUM	MAXIMUM	UNIT	COMMENTS
High-level input voltage	VIH	(AVDD / 2) + 0.4		V	
Low-level input voltage	VIL		0.4	V	
High-level output voltage	VOH	AVDD – 0.2		V	
Low-level output voltage	VOL		0.2	V	

Table 7 – IO electrical characteristics

Recommended Operating Conditions

There are the recommended operating conditions for the ES9017

PARAMETER	SYMBOL	CONDITIONS
Operating temperature	TA	−20°C to +85°C
AVCC_L		3.3V
AVCC_R		3.3V
AVDD		3.3V
VCCA		3.3V
DVDD		1.2V

Table 8 – Recommended operating conditions

Power Consumption

Power numbers are given when the device is in slave mode.

Test Conditions 1 (unless otherwise noted)

T_A = 25°C, AVCC_R = AVCC_L = VCCA = AVDD = +3.3V, DVDD= +1.2V, fs = 48kHz, DAC enabled, 1kHz sine full scale

Parameter	Min	Тур	Max	Unit
Hardware Mode: 3 (MCLK = 49	9.152MHz)			
AVCC_R		10.9		mA
AVCC_L		10.9		mA
VCCA		0.89		mA
AVDD		2.3		mA
DVDD		15.6		mA
Power Consumption		101.2		mW
·				
Hardware Mode: 0 (MCLK = 6.	144MHz)			
AVCC_R		6.6		mA
AVCC_L		6.6		mA
VCCA		0.13		mA
AVDD		2.3		mA
DVDD		7.3		mA
Power Consumption		60.4		mW
·	•	•		•

Table 9 – Power consumption with test conditions 1

Test Conditions 2 (unless otherwise noted)

T_A = 25°C, AVCC_R = AVCC_L = VCCA = AVDD = +3.3V, DVDD= +1.2V, fs = 48kHz, DAC enabled, streaming zeros, automute enabled

Parameter	Min	Тур	Max Unit
Hardware Mode: 3 (MCLK =	49.152MHz)		
AVCC_R		4.5	mA
AVCC_L		4.5	mA
VCCA		0.86	mA
AVDD		2.4	mA
DVDD		8.6	mA
Power Consumption		50.8	mW
Hardware Mode: 0 (MCLK =	6.144MHz)		
AVCC_R		0.655	mA
AVCC_L		0.655	mA
VCCA		0.13	mA
AV/DD		2.4	mA
AVDD			
DVDD		2.6	mA

Table 10 – Power consumption with test conditions 2

Performance

Test Conditions 1 (unless otherwise noted)

T_A = 25°C, AVCC_R = AVCC_L = VCCA = AVDD = +3.3V, DVDD= +1.2V, fs = 48kHz, HW mode (I2S Master Mode)

Note: Performance numbers were measured using the ESS ES9017 evaluation board v1.0

Parameter		Min	Тур	Max	Unit
Resolution			32		Bit
Max MCLK frequency				50	MHz
THD+N Ratio / THD Ratio @ fs=48kHz (differential)	0dBFS, BW=20Hz-20kHz		-110		dB
THD+N Ratio / THD Ratio @ fs=96kHz (differential)	0dBFS, BW=20Hz-40kHz		-108		dB
THD+N Ratio / THD Ratio @ fs=192kHz (differential)	0dBFS, BW=20Hz-80kHz		-106		dB
THD+N Ratio / THD Ratio @ fs=384kHz (differential)	0dBFS, BW=20Hz-160kHz		-104		dB
DNR (A-weighted)			120		dB
(8 Channel mode – Single Channel diff) DNR (A-weighted) (Stereo mode – 4 channel sum diff)	-60dBFS		124		dB
DNR (A-weighted) (Mono mode – 8 channel sum diff)			126		dB
Output Amplitude (Differential)	0dBFS		2		Vrms
Output Impedance (R _{DAC}) (Per + or – pin of each differential DAC output pair)			1563 ± 15%		ohm

Table 11 - Performance data

Register Overview

I²C Slave Interface (Device Address 0x90, 0x92, 0x94, 0x96)

This interface contains Read/Write and Read-only registers. A system clock must be present.

Multi-byte registers must be written from LSB to MSB. Data is latched when MSB is written. Multi-byte registers must be read from LSB to MSB. Data is latched when LSB is read. MSB is always stored in the highest register address.

Read/Write Register Addresses
Registers 0-130 (0x00 – 0x82) are read/write registers

Read-only Register Addresses

Registers 224 – 249 (0xE0 – 0xF9) are read only registers.

Multi-Byte Registers

Multi-byte registers must be written from LSB to MSB. Data is latched when MSB is written. MSB is always stored in the highest register address.

I²C Slave/Synchronous Slave Interface Timing

Figure 7 – I2C Slave Control Interface Timing

Parameter	Symbol	CLK	Standar	d-Mode	Fast-Mode		Unit
		Constraint	MIN	MAX	MIN	MAX	
SCL Clock Frequency	f _{SCL}	< CLK/20	0	100	0	400	kHz
START condition hold time	t _{HD;STA}		4.0	-	0.6	-	μs
LOW period of SCL	t _{LOW}	>10/CLK	4.7	-	1.3	-	μs
HIGH period of SCL (>10/CLK)	tніgн	>10/CLK	4.0	-	0.6	-	μs
START condition setup time (repeat)	tsu;sta		4.7	-	0.6	-	μs
SDA hold time from SCL falling - All except NACK read - NACK read only	t _{HD;DAT}		0 2/CLK	-	0 2/CLK	-	μs s
SDA setup time from SCL rising	tsu;dat		250	-	100	-	ns
Rise time of SDA and SCL	t _r		-	1000		300	ns
Fall time of SDA and SCL	t _f		-	300		300	ns
STOP condition setup time	tsu;sto		4	-	0.6	-	μs
Bus free time between transmissions	t _{BUF}		4.7	-	1.3	-	μs
Capacitive load for each bus line	C _b		-	400	-	400	pF

Table 12 – I2C slave/synchronous slave interface timing definitions

Single Byte R/W

Figure 8 – I2C single byte R/W

SPI Slave Interface

The SPI slave interface is used when the MODE pin (pin 17) is pulled high.

- The SPI Slave interface can be accessed using the Pins 15,16,30,31
 - Pin 15 MOSI
 - Pin 16 SCLK
 - Pin 30 SS
 - Pin 31 MISO

The 4-wire SPI data format is: Command (1 byte) + Address (1 byte) + Data

Single byte Write

Figure 9 – SPI single byte write

Single byte Read

Figure 10 - SPI single byte Read

Multi-byte Read

Figure 11 – SPI multi-byte read

Register Map

Addr (Hex)	Addr (Dec)	Register	7	6	5	4	3	2	1	0	
0x00	0	SYSTEM CONFIG	SOFT_RESET	ENABLE_	RESERVED	ENABLE_	ENABLE_	ENABLE_	DAC_	RESERVED	
0x01	1	SYS MODE CONFIG		64FS_MODE RVED	ENABLE_	DOP_DECODE ENABLE_ NSMOD_CLK	DSD_DECODE RESERVED	TDM_DECODE	MODE_REG		
002	2	DAC CLOCK CONEIC	AUTO_	AUTO_ SELECT_ DAC_CLK			OF LEGT 1	DAC NUM			
0x02	2	DAC CLOCK CONFIG	FS_DETECT	IDAC_HALF		MACTER	SELECT_IDAC_NUM MASTER BCK DIV				
0x03	4	CLOCK CONFIG	DECE	RESERVED SEL_CLK			_BCK_DIV RESERVED	AUTO CLK GE	DECE	DVED	
0x04		CONFIG	KESE	RVED	SEL	_CLK	RESERVED	AR	RESE	RVED	
0x05 - 0x0F	5 - 15	RESERVED				RESE	RVED				
0x10	16	GPIO1/2 CONFIG			2_CFG				1_CFG		
0x11 0x12	17 18	GPIO3/4 CONFIG GPIO5/6 CONFIG		GPIO4 GPIO6					3_CFG 5_CFG		
0x13	19	GPIO7/8 CONFIG		GPIO8			GPIO5_CFG GPIO7_CFG				
0x14	20	GPIO OUTPUT ENABLE	GPIO8_OE	GPIO7_OE	GPIO6_OE	GPIO5_OE	GPIO4_OE	GPIO3_OE	GPIO2_OE	GPIO1_OE	
0x15	21	GPIO INPUT	GPIO8_SDB	GPIO7_SDB	GPIO6_SDB	GPIO5_SDB	GPIO4_SDB	GPIO3_SDB	GPIO2_SDB	GPIO1_SDB	
0x16	22	RESERVED			GPIO OR	GPIO OR	RVED GPIO_OR_	GPIO_AND_	GPIO AND	GPIO AND	
0x17	23	GPIO OUTPUT LOGIC		_SEL	SS_RAMP	VOL_MIN	AUTOMUTE	SS_RAMP	VOL_MIN	AUTOMUTE	
0x18	24	GPIO OUTPUT LOGIC	GPIO_ DAC MODE			RESE	RVED			GPIO_SEL	
0x19	25	INPUT SELECTION	AUTO_ CH_DETECT	ENABLE_ DSD_FAULT_ DETECTION	DSD_MASTER_ MODE	PCM_MASTER_ MODE	RESERVED	INPU'	T_SEL	AUTO_ INPUT_SEL	
0x1A	26	SERIAL MASTER ENCODER CONFIG	TDM_RESYNC	BCK_INV	RESERVED	MASTER FRA	AME LENGTH	MASTER_WS_	MASTER_	MASTER_	
0x1B	27	TDM CONFIG	.511201110	RESERVED		(01 E1 (_110	2_22.13111	TDM CH NUM	WS_INVERT	BCK_INVERT	
0x1C	28	TDM CONFIG1	TDM LJ MODE	TDM_			RESE				
0x1D	29	TDM CONFIG2	RESERVED	VALID_EDGE TDM_BIT	WIDTH	1		DM DATA LATCH A	D.I.		
			DISABLE	DISABLE	ENABLE	ENABLE	DISABLE	DIM_DATA_LATCH_A			
0x1E	30	BCK/WS MONITOR CONFIG	DSD_DC	DSD_MUTE	WS_MONITOR	BCK_MONITOR	PCM_DC		RESERVED		
0x1F	31	RESERVED				RESE	RVED				
0x20 0x21	32	TDM CH1 CONFIG TDM CH2 CONFIG	RESERVED RESERVED	TDM_CH1_ TDM_CH2				TDM_CH1_SLOT_SE TDM_CH2_SLOT_SE			
0x21	33 34	TDM CH2 CONFIG TDM CH3 CONFIG	RESERVED	TDM_CH2_				TDM_CH2_SLOT_SE			
0x23	35	TDM CH4 CONFIG	RESERVED	TDM_CH3_				TDM_CH3_SLOT_SE			
0x24	36	TDM CH5 CONFIG	RESERVED	TDM_CH5				TDM_CH5_SLOT_SE			
0x25	37	TDM CH6 CONFIG	RESERVED	TDM_CH6				TDM_CH6_SLOT_SE			
0x26	38	TDM CH7 CONFIG	RESERVED	TDM_CH7_				TDM_CH7_SLOT_SE			
0x27	39	TDM CH8 CONFIG	RESERVED	RESERVED TDM_CH8_LINE_SEL TDM_CH8_SLOT_SEL VOLUME1							
0x28 0x29	40	VOLUME1 VOLUME2					JME1 JME2				
0x29	42	VOLUME3					JME3				
0x2B	43	VOLUME4					JME4				
0x2C	44	VOLUME5				VOLU	JME5				
0x2D	45	VOLUME6					JME6				
0x2E	46	VOLUME7					JME7				
0x2F 0x30	47 48	VOLUME8 DAC VOL UP RATE		VOLUME8 DAC_VOL_RATE_UP							
0x30	49	DAC VOL OF RATE DAC VOL DOWN RATE		DAC_VOL_RATE_DP DAC_VOL_RATE_DOWN							
0x32	50	DAC VOL DOWN RATE FAST					RATE FAST				
0x33	51	DAC MUTE	DAC_MUTE_	DAC_MUTE_	DAC_MUTE_	DAC_MUTE_	DAC_MUTE_	DAC_MUTE_	DAC_MUTE_	DAC_MUTE_	
			CH8 DAC INVERT	CH7 DAC INVERT	CH6 DAC INVERT	CH5 DAC INVERT	CH4 DAC INVERT	CH3 DAC_INVERT_	CH2 DAC INVERT	CH1 DAC_INVERT_	
0x34	52	DAC INVERT	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	
0x35 0x36	53 54	FILTER SHAPE VOLUME HOLD	+	DEGE	RESERVED RVED		VOLUME HOLD		FILTER_SHAPE RESERVED		
0x36	55	DAC PATH CONFIG	<u> </u>	NE9E	RESERVED		VOLUME_FIULD	BYPASS_IIR	BYPASS_FIR4X	BYPASS FIR2X	
0x38	56	AUTOMUTE ENABLE	AUTOMUTE_	AUTOMUTE_	AUTOMUTE_	AUTOMUTE_	AUTOMUTE_	AUTOMUTE_	AUTOMUTE_	AUTOMUTE_	
0x39	57	AUTOMUTE TIME	EN_CH8	EN_CH7	EN_CH6	EN_CH5 AUTOMU	EN_CH4 ITE_TIME	EN_CH3	EN_CH2	EN_CH1	
0x3A	58	AUTOMUTE TIME	AUTOMUTE_ RESERVED RAMP_TO_ AUTOMUTE_TIME GROUND								
0x3B	59	AUTOMUTE LEVEL				AUTOMU'	TE_LEVEL	•			
0x3C	60	AUTOMUTE LEVEL	 			AUTOMUTE AUTOMUTE					
0x3D 0x3E	61 62	AUTOMUTE OFF LEVEL AUTOMUTE OFF LEVEL	AUTOMUTE_OFF_LEVEL AUTOMUTE_OFF_LEVEL								
0x3F	63	SOFT RAMP CONFIG	AUTOMUTE_OFF_LEVEL SOFT RAMP TIME								
0x40 -	64 -	RESERVED				DE6E	RVED				
0x41	65			DECE	DVED	INEGE		DEC	ADDD4	ADDDO	
0xE0 0xE1	224 225	SYS READ CHIP ID READ	 	RESE	KVEU	CUI	PID MO	DES	ADDR1	ADDR0	
0xE2 -	226 -		<u> </u>				_				
0xE4	228	RESERVED				RESE	RVED				
0xE5	229	RATIO VALID READ	RATIO_VALID	TDM_			RESERVED		ı		
0xE6	230	INPUT READBACK	RESERVED	DATA_VALID		DOP_	VALID		INPUT_SELEC	CT_OVERRIDE	
0xE7 - 0xE9	231 - 233	RESERVED				RESE	RVED				

Register Listings

Some reserved registers values might be asserted in default mode. This is normal and does not need to be changed.

System Registers

Register 0: SYSTEM CONFIG

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b0	1'b0	1'b0	2'b00	1'b0	1'b1	1'b0	1'b0

Bits	Mnemonic	Description
[7]	SOFT_RESET	Performs a soft reset to the digital core. • 1'b0: Normal operation
		1'b1: Reset digital core (all settings are set to default)
[6]	ENABLE_64FS_MODE	 Enables 64FS mode to run the DAC interpolation path at 64FS. 1'b0: 64FS mode disabled (default) 1'b1: 64FS mode enabled
		Note: This mode should be used for high sample rates (i.e., 705.6/768 kHz)
[5]	RESERVED	NA
[4]	ENABLE_DOP_DECODE	Enables DoP decoding. 1'b0: Disabled (default) 1'b1: Enabled
[3]	ENABLE_DSD_DECODE	Enables DSD decoding. 1'b0: Disabled (default) 1'b1: Enabled
[2]	ENABLE_TDM_DECODE	Enables TDM decoding. 1'b0: Disabled 1'b1: Enabled (default)
[1]	DAC_MODE_REG	Enables DAC data path 1'b0: DAC disabled 1'b1: DAC enabled
[0]	RESERVED	NA

Register 1: SYS MODE CONFIG

Bits	[7:6]	[5]	[4:0]	[3:0]
Default	2'b00	1'b1	1'b1	4'b1000

Bits	Mnemonic	Description
[7:6]	RESERVED	NA
[5]	ENABLE_DAC_CLK	Enables DAC interpolation path clock. 1'b0: Clock disabled 1'b1: Clock enabled (default)
[4]	ENABLE_NSMOD_CLK	Enables clock to the DAC
[3:0]	RESERVED	NA

Register 2: DAC CLOCK CONFIG

Bits	[7]	[6]	[5:0]
Default	1'b1	1'b0	6'd0

Bits	Mnemonic	Description
[7]	AUTO_FS_DETECT	 1'b0: Disabled 1'b1: Auto tune CLK_DAC/CLK_IDAC ratio according to detected FS (default)
		Note: Cannot be used in ASYNC mode
[6]	SELECT_IDAC_HALF	 1'b0: Divide by SELECT_IDAC_NUM + 1 (default) 1'b1: Divide by half of SELECT_IDAC_NUM + 1
		Note: Can only produce half of an odd number divide
[5:0]	SELECT_IDAC_NUM	CLK_IDAC divider. Whole number divide value + 1 for CLK_IDAC (SYS_CLK/divide_value). • 6'd0: Whole number divide value + 1 = 1 • 6'd1: Whole number divide value + 1 = 2 • 6'd63: Whole number divide value + 1 = 64

Register 3: CLOCK CONFIG

Bits	[7:0]
Default	8'd7

Bits	Mnemonic	Description
[7:0]	MASTER_BCK_DIV	Master mode clock divider. Whole number divide value + 1 for CLK_Master
		(SYS_CLK/divide_value).

Register 4: CONFIG

Bits	[7:6]	[5:4]	[3]	[2]	[1:0]
Default	2'b00	2'd0	1'b0	1'b0	2'b00

Bits	Mnemonic	Description
[7:6]	RESERVED	NA
[5:4]	SEL_CLK	Clock Gearing
		• 2'd0: SYS_CLK/1
		• 2'd1: SYS_CLK/2
		• 2'd2: SYS_CLK/4
		• 2'd3: SYS_CLK/8
[3]	RESERVED	NA
[2]	AUTO_CLK_GEAR	1'b0: Disable automatic clock gearing. SEL_CLK = sel_clk_reg
		1'b1: Enable automatic clock gearing. SEL_CLK will increase up to
		sel_clk_reg
[1:0]	RESERVED	NA

Register 15-6: RESERVED

GPIO Registers

Register 16: GPIO1/2 CONFIG

Bits	[7:4]	[3:0]
Default	4'd0	4'd13

Bits	Mnemonic	Description
[7:4]	GPIO2_CFG	Configures GPIO2
		4'd0: Analog shutdown — shutdown
		4'd1: Output 0 — output
		4'd2: Output 1 — output
		4'd3: CLK_IDAC — output
		4'd4: Reserved
		4'd5: Mute all channels — input
		4'd6: Input selection — input
		4'd7: Lock status — output
		4'd8: CLK_VALID — output
		4'd9: TDM_VALID — output
		4'd10: DOP_VALID — output
		4'd11: BCK_WS_FAIL — output
		4'd12: Volume min — output
		4'd13: Automute status — output
		4'd14: Soft ramp finished — output
		4'd15: Reserved
[3:0]	GPIO1_CFG	Configures GPIO1
		4'd0: Analog shutdown — shutdown
		4'd1: Output 0 — output
		4'd2: Output 1 — output
		4'd3: CLK_IDAC — output
		4'd4: Reserved
		4'd5: Mute all channels — input
		4'd6: Input selection — input
		4'd7: Lock status — output
		4'd8: CLK_VALID — output
		4'd9: TDM_VALID — output
		4'd10: DOP_VALID — output
		4'd11: BCK_WS_FAIL — output
		4'd12: Volume min — output
		4'd13: Automute status – output (default)
		4'd14: Soft ramp finished — output
		4'd15: Reserved

Register 17: GPIO3/4 CONFIG

Bits	[7:4]	[3:0]
Default	4'd0	4'd0

Bits	Mnemonic	Description
[7:4]	GPIO4_CFG	Configures GPIO4
		4'd0: Analog shutdown — shutdown
		4'd1: Output 0 — output
		4'd2: Output 1 — output
		4'd3: CLK_IDAC — output
		4'd4: Reserved
		4'd5: Mute all channels — input
		4'd6: Input selection — input
		4'd7: Lock status — output
		4'd8: CLK_VALID — output
		4'd9: TDM_VALID — output
		4'd10: DOP_VALID — output
		4'd11: BCK_WS_FAIL — output
		4'd12: Volume min — output
		4'd13: Automute status — output
		4'd14: Soft ramp finished — output
		4'd15: Reserved
[3:0]	GPIO3_CFG	Configures GPIO3
		4'd0: Analog shutdown — shutdown
		4'd1: Output 0 — output
		4'd2: Output 1 — output
		4'd3: CLK_IDAC — output
		4'd4: Reserved
		4'd5: Mute all channels — input
		4'd6: Input selection — input
		4'd7: Lock status — output
		4'd8: CLK_VALID — output
		4'd9: TDM_VALID — output
		4'd10: DOP_VALID — output Ald11: POK INS. FAILoutput
		4'd11: BCK_WS_FAIL — output 4'd12: Volume minoutput
		4'd12: Volume min — output 4'd12: Automate status — output
		4'd13: Automute status — output 4'd14: Seft romp finished — output
		4'd14: Soft ramp finished — output
		4'd15: Reserved

Register 18: GPIO5/6 CONFIG

Bits	[7:4]	[3:0]
Default	4'd0	4'd0

Bits	Mnemonic	Description
[7:4]	GPIO6_CFG	Configures GPIO6
		4'd0: Analog shutdown — shutdown
		4'd1: Output 0 — output
		4'd2: Output 1 — output
		4'd3: CLK_IDAC — output
		4'd4: Reserved
		4'd5: Mute all channels — input
		4'd6: Input selection — input
		4'd7: Lock status — output
		4'd8: CLK_VALID — output
		4'd9: TDM_VALID — output
		4'd10: DOP_VALID — output
		4'd11: BCK_WS_FAIL — output
		4'd12: Volume min — output
		4'd13: Automute status — output
		4'd14: Soft ramp finished — output
		4'd15: Reserved
[3:0]	GPIO5_CFG	Configures GPIO5
		4'd0: Analog shutdown — shutdown
		4'd1: Output 0 — output
		4'd2: Output 1 — output
		4'd3: CLK_IDAC — output
		4'd4: Reserved
		4'd5: Mute all channels — input
		4'd6: Input selection — input
		4'd7: Lock status — output
		4'd8: CLK_VALID — output
		4'd9: TDM_VALID — output
		4'd10: DOP_VALID — output
		4'd11: BCK_WS_FAIL — output 4'd10: Volume minoutput
		4'd12: Volume min — output 4'd12: Automate status — output
		4'd13: Automute status — output 4'd14: Soft rome finished — output
		4'd14: Soft ramp finished — output
		4'd15: Reserved

Register 19: GPIO7/8 CONFIG

Bits	[7:4]	[3:0]
Default	4'd0	4'd0

Bits	Mnemonic	Description
[7:4]	GPIO8_CFG	Configures GPIO8
		4'd0: Analog shutdown — shutdown
		4'd1: Output 0 — output
		4'd2: Output 1 — output
		4'd3: CLK_IDAC — output
		4'd4: Reserved
		4'd5: Mute all channels — input
		4'd6: Input selection — input
		4'd7: Lock status — output
		4'd8: CLK_VALID — output
		4'd9: TDM_VALID — output
		4'd10: DOP_VALID — output
		4'd11: BCK_WS_FAIL — output
		4'd12: Volume min — output
		4'd13: Automute status — output
		4'd14: Soft ramp finished — output
		4'd15: Reserved
[3:0]	GPIO7_CFG	Configures GPIO7
		4'd0: Analog shutdown — shutdown
		4'd1: Output 0 — output
		4'd2: Output 1 — output
		4'd3: CLK_IDAC — output
		4'd4: Reserved
		4'd5: Mute all channels — input
		4'd6: Input selection — input
		4'd7: Lock status — output
		4'd8: CLK_VALID — output
		4'd9: TDM_VALID — output
		4'd10: DOP_VALID — output
		4'd11: BCK_WS_FAIL — output 4'd10: Volume minoutput
		4'd12: Volume min — output 4'd12: Automate status — output
		4'd13: Automute status — output 4'd14: Soft rome finished — output
		4'd14: Soft ramp finished — output Add F. Reconned Add F. Reconned
		4'd15: Reserved

Register 20: GPIO OUTPUT ENABLE

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b0	1'b1						

Bits	Mnemonic	Description
[7]	GPIO8_OE	1'b0: Tristate GPIO8 (default)1'b1: GPIO8 Output Enable
[6]	GPIO7_OE	1'b0: Tristate GPIO7 (default)1'b1: GPIO7 Output Enable
[5]	GPIO6_OE	1'b0: Tristate GPIO6 (default)1'b1: GPIO6 Output Enable
[4]	GPIO5_OE	1'b0: Tristate GPIO5 (default)1'b1: GPIO5 Output Enable
[3]	GPIO4_OE	1'b0: Tristate GPIO4 (default)1'b1: GPIO4 Output Enable
[2]	GPIO3_OE	1'b0: Tristate GPIO3 (default) 1'b1: GPIO3 Output Enable
[1]	GPIO2_OE	1'b0: Tristate GPIO2 (default) 1'b1: GPIO2 Output Enable
[0]	GPIO1_OE	1'b0: Tristate GPIO11'b1: GPIO1 Output Enable (default)

Register 21: GPIO INPUT

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b0	1'b0	1'b0	1'b1	1'b1	1'b1	1'b0	1'b0

Bits	Mnemonic	Description
[7]	GPIO8_SDB	1'b0: Disables GPIO8 input (default)1'b1: Enables GPIO8 input
[6]	GPIO7_SDB	1'b0: Disables GPIO7 input (default)1'b1: Enables GPIO7 input
[5]	GPIO6_SDB	1'b0: Disables GPIO6 input (default)1'b1: Enables GPIO6 input
[4]	GPIO5_SDB	1'b0: Disables GPIO5 input1'b1: Enables GPIO5 input (default)
[3]	GPIO4_SDB	1'b0: Disables GPIO4 input1'b1: Enables GPIO4 input (default)
[2]	GPIO3_SDB	1'b0: Disables GPIO3 input1'b1: Enables GPIO3 input (default)
[1]	GPIO2_SDB	1'b0: Disables GPIO2 input (default)1'b1: Enables GPIO2 input
[0]	GPIO1_SDB	1'b0: Disables GPIO1 input (default)1'b1: Enables GPIO1 input

Register 22: RESERVED

Register 24-23: GPIO OUTPUT LOGIC

Bits	[15]	[14:9]	[8:6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b0	6'd0	3'd0	1'b0	1'b0	1'b0	1'b1	1'b1	1'b1

Bits	Mnemonic	Description
[15]	GPIO_DAC_MODE	When any GPIOx_CFG = 6 (input system mode control): 1'b0: Power down when GPIO input is 1 1'b1: HIFI when GPIO input is 1 (when GPIO input is 0, system mode is determined by register AMP_MODE (register 0, bit[1]))
[14:9]	RESERVED	NA
[8:6]	GPIO_SEL	When GPIOx_CFG = 12, 13 or 14, and the corresponding GPIO_AND and GPIO_OR are not set: • 3'd0: Outputs status/flag from ch1 • 3'd1: Outputs status/flag from ch2 • 3'd2: Outputs status/flag from ch3 • 3'd3: Outputs status/flag from ch4 • 3'd4: Outputs status/flag from ch5 • 3'd5: Outputs status/flag from ch6 • 3'd6: Outputs status/flag from ch7 • 3'd7: Outputs status/flag from ch8
[5]	GPIO_OR_SS_RAMP	When GPIOx_CFG = 14 (output soft ramp done flag): 1'b0: The soft ramp done flag is determined by GPIO_AND_SS_RAMP and GPIO_SEL (default) 1'b1: The soft ramp done flag is the "OR" of all 8ch soft ramp done flags
[4]	GPIO_OR_VOL_MIN	When GPIOx_CFG = 12 (output vol_min flag): 1'b0: The vol_min flag is determined by GPIO_AND_VOL_MIN and GPIO_SEL (default) 1'b1: The vol_min flag is the "OR" of all 8ch vol_min flags
[3]	GPIO_OR_AUTOMUTE	When GPIOx_CFG = 13 (output automute status): 1'b0: The automute status is determined by GPIO_AND_AUTOMUTE and GPIO_SEL (default) 1'b1: The automute status is the "OR" of all 8ch automute status
[2]	GPIO_AND_SS_RAMP	When GPIOx_CFG = 14 (output soft ramp done flag) and GPIO_OR_SS_RAMP is not set: 1'b0: The soft ramp done flag is from a single channel selected by GPIO_SEL 1'b1: The soft ramp done flag is the "AND" of all 8ch soft ramp done flags (default)
[1]	GPIO_AND_VOL_MIN	When GPIOx_CFG = 12 (output vol_min flag) and GPIO_OR_VOL_MIN is not set: 1'b0: The vol_min flag is from a single channel selected by GPIO_SEL 1'b1: The vol_min flag is the "AND" of all 8ch vol_min flags (default)
[0]	GPIO_AND_AUTOMUTE	When GPIOx_CFG = 13 (output automute status) and GPIO_OR_AUTOMUTE is not set: 1'b0: The automute status is from a single channel selected by GPIO_SEL 1'b1: The automute status is the "AND" of all 8ch automute status (default)

DAC Registers

Register 25: INPUT SELECTION

Bits	[7]	[6]	[5]	[4]	[3]	[2:1]	[0]
Default	1'b0	1'b1	1'b0	1'b0	1'b0	2'd0	1'b0

Bits	Mnemonic	Description
[7]	AUTO_CH_DETECT	Auto detect BCK/FRAME ratio to determine the number of TDM channels 1'b0: Disabled (default) 1'b1: Enabled
[6]	ENABLE_DSD_FAULT_DETECTION	1'b0: Disabled1'b1: Enabled (default)
[5]	DSD_MASTER_MODE	DSD master mode config. 1'b0: DSD slave mode (default) 1'b1: DSD master mode. DSD_CLK outputs from DATA_CLK
[4]	PCM_MASTER_MODE	PCM master mode config. 1'b0: PCM slave mode (default) 1'b1: PCM master mode enabled. Master BCK and WS output from DATA_CLK and DATA1
[3]	RESERVED	NA
[2:1]	INPUT_SEL	Selects input data when AUTO_INPUT_SELECT is disabled. • 2'd0: TDM (default) • 2'd1: DSD • 2'd2: DoP • 2'd3: Reserved
[0]	AUTO_INPUT_SEL	Automatic input data selection config. 1'b0: Disables auto input select. Input data format is set by INPUT_SEL (default) 1'b1: Automatically determine the input data format.

Register 26: SERIAL MASTER ENCODER CONFIG

Bits	[7]	[6]	[5]	[4:3]	[2]	[1]	[0]
Default	1'b0	1'b0	1'b0	2'd0	1'b0	1'b0	1'b1

Bits	Mnemonic	Description
[7]	TDM_RESYNC	Force TDM decoder to resync. 1'b0: Let decoder sync (default) 1'b1: Force decoder not sync
[6]	BCK_INV	Invert the slave BCK 1'b0: Normal operation 1'b1: Invert slave BCK
[5]	RESERVED	NA
[4:3]	MASTER_FRAME_LENGTH	Selects the bit length in each TDM channel in master mode. • 2'd0: 32-bit (default) • 2'd2: 16-bit • others: Reserved
[2]	MASTER_WS_PULSE_MODE	When enabled, master WS is a pulse signal instead of a 50% duty cycle signal. The pulse width is 1 BCK cycle. • 1'b0: 50% duty cycle WS signal (default) • 1'b1: Pulse WS signal
[1]	MASTER_WS_INVERT	Inverts master WS. 1'b0: Non-inverted (default) 1'b1: Inverted
[0]	MASTER_BCK_INVERT	Inverts master BCK or DSD_CLK. 1'b0: Non-inverted 1'b1: Inverted (default)

Register 27: TDM CONFIG

E	Bits	[7:5]	[4:0]
	efault	3'd0	5'd1

Bits	Mnemonic	Description
[7:5]	RESERVED	NA
[4:0] TDM_CH_NUM		Total number of TDM slots per frame = TDM_CH_NUM + 1.

Register 28: TDM CONFIG1

Bits	[7]	[6]	[5:0]
Default	1'b0	1'b0	6'd0

Bits	Mnemonic	Description	
[7]	TDM_LJ_MODE	TDM LJ mode.	
		1'b0: Standard I2S (default)	
		1'b1: LJ mode	
[6]	TDM_VALID_EDGE	TDM WS valid edge.	
		1'b0: negative edge (default)	
		1'b1: positive edge	
[5:0]	RESERVED	NA	

Register 29: TDM CONFIG2

Bits	[7]	[6:5]	[4:0]
Default	1'b1	2'b00	5'd0

Bits	Mnemonic	Description	
[7]	RESERVED	NA NA	
[6:5]	TDM_BIT_WIDTH	Bit width of each TDM slot.	
[4:0]	TDM_DATA_LATCH_ADJ	Sets the position of the start bit within each TDM slot. Can be moved by TDM_DATA_LATCH_ADJ clock cycles. • 5'd0: Normal position • 5'd1-31: Number of clock cycles to wait Note: This value does not work in LJ mode	

Register 30: BCK/WS MONITOR CONFIG

Bits	[7]	[6]	[5]	[4]	[3]	[2:0]
Default	1'b0	1'b0	1'b1	1'b1	1'b0	3'd0

Bits	Mnemonic	Description
[7]	DISABLE_DSD_DC	 1'b0: DSD DC can trigger an automute if automute is enabled (default) 1'b1: DSD DC is ignored.
[6]	DISABLE_DSD_MUTE	 1'b0: DSD mute pattern can trigger an automute is automute is enabled (default) 1'b1: DSD mute pattern is ignored.
[5]	ENABLE_WS_MONITOR	Enable WS monitor. 1'b0: Disable 1'b1: Enable (default)
[4]	ENABLE_BCK_MONITOR	Enable BCK monitor. • 1'b0: Disable (default) • 1'b1: Enable
[3]	DISABLE_PCM_DC	 1'b0: PCM DC signal can trigger an automute if automute is enabled. 1'b1: PCM DC is ignored.
[2:0]	RESERVED	NA

Register 31: RESERVED

Register 32: TDM CH1 CONFIG

Bits	[7]	[6:5]	[4:0]
Default	1'b0	2'd0	5'd0

Bits	Mnemonic	Description
[7]	RESERVED	NA
[6:5]	TDM_CH1_LINE_SEL	CH1 data line selection. CH1 receives data from Nth line.
		N = TDM_CH1_LINE_SEL + 1.
[4:0]	TDM_CH1_SLOT_SEL	CH1 data slot selection. CH1 receives data from Mth slot.
		M = TDM_CH1_SLOT_SEL + 1.

Register 33: TDM CH2 CONFIG

Bits	[7]	[6:5]	[4:0]
Default	1'b0	2'd0	5'd1

Bits	Mnemonic	Description
[7]	RESERVED	NA
[6:5]	TDM_CH2_LINE_SEL	CH2 data line selection. CH2 receives data from Nth line. N = TDM_CH2_LINE_SEL + 1.
[4:0]	TDM_CH2_SLOT_SEL	CH2 data slot selection. CH2 receives data from Mth slot. M = TDM_CH2_SLOT_SEL + 1.

Register 34: TDM CH3 CONFIG

Bits	[7]	[6:5]	[4:0]
Default	1'b0	2'd1	5'd0

Bits	Mnemonic	Description
[7]	RESERVED	NA
[6:5]	TDM_CH3_LINE_SEL	CH3 data line selection. CH3 receives data from Nth line. N = TDM_CH3_LINE_SEL + 1.
[4:0]	TDM_CH3_SLOT_SEL	CH3 data slot selection. CH3 receives data from Mth slot. M = TDM CH3 SLOT SEL + 1.

Register 35: TDM CH4 CONFIG

Bits	[7]	[6:5]	[4:0]
Default	1'b0	2'd1	5'd1

Bits	Mnemonic	Description
[7]	RESERVED	NA
[6:5]	TDM_CH4_LINE_SEL	CH4 data line selection. CH4 receives data from Nth line. N = TDM CH4 LINE SEL + 1.
[4:0]	TDM_CH4_SLOT_SEL	CH4 data slot selection. CH4 receives data from Mth slot. M = TDM_CH4_SLOT_SEL + 1.

Register 36: TDM CH5 CONFIG

Bits	[7]	[6:5]	[4:0]
Default	1'b0	2'd2	5'd0

Bits	Mnemonic	Description
[7]	RESERVED	NA
[6:5]	TDM_CH5_LINE_SEL	CH5 data line selection. CH5 receives data from Nth line.
		N = TDM_CH5_LINE_SEL + 1.
[4:0]	TDM_CH5_SLOT_SEL	CH5 data slot selection. CH5 receives data from Mth slot.
-		M = TDM_CH5_SLOT_SEL + 1.

Register 37: TDM CH6 CONFIG

Bits	[7]	[6:5]	[4:0]
Default	1'b0	2'd2	5'd1

Bits	Mnemonic	Description
[7]	RESERVED	NA NA
[6:5]	TDM_CH6_LINE_SEL	CH6 data line selection. CH6 receives data from Nth line. N = TDM_CH6_LINE_SEL + 1.
[4:0]	TDM_CH6_SLOT_SEL	CH6 data slot selection. CH6 receives data from Mth slot. M = TDM_CH6_SLOT_SEL + 1.

Register 38: TDM CH7 CONFIG

Bits	[7]	[6:5]	[4:0]
Default	1'b0	2'd3	5'd0

Bits	Mnemonic	Description
[7]	RESERVED	NA
[6:5]	TDM_CH7_LINE_SEL	CH7 data line selection. CH7 receives data from Nth line. N = TDM_CH7_LINE_SEL + 1.
[4:0]	TDM_CH7_SLOT_SEL	CH7 data slot selection. CH7 receives data from Mth slot. M = TDM_CH7_SLOT_SEL + 1.

Register 39: TDM CH8 CONFIG

Bits	[7]	[6:5]	[4:0]
Default	1'b0	2'd3	5'd1

Bits	Mnemonic	Description
[7]	RESERVED	NA
[6:5]	TDM_CH8_LINE_SEL	CH8 data line selection. CH8 receives data from Nth line.
		N = TDM_CH8_LINE_SEL + 1.
[4:0]	TDM_CH8_SLOT_SEL	CH8 data slot selection. CH8 receives data from Mth slot.
		M = TDM_CH8_SLOT_SEL + 1.

Register 40: VOLUME1

Bits	[7:0]
Default	8'd0

Bits	Mnemonic	Description
[7:0]	VOLUME1	DAC ch1 volume0dB to -127.5dB 0.5dB steps.
		• 8'd0: 0dB
		• 8'd255: -127.5dB

Register 41: VOLUME2

Bits	[7:0]	
Defaul	8'd0	

Bits	Mnemonic	Description
[7:0]	VOLUME2	DAC ch2 volume0dB to -127.5dB 0.5dB steps.
		• 8'd0: 0dB
		• 8'd255: -127.5dB

Register 42: VOLUME3

Bits	[7:0]
Default	8'd0

Bits	Mnemonic	Description
[7:0]	VOLUME3	DAC ch3 volume0dB to -127.5dB 0.5dB steps.
		• 8'd0: 0dB
		• 8'd255: -127.5dB

Register 43: VOLUME4

Bits	[7:0]
Default	8'd0

Bits	Mnemonic	Description
[7:0]	VOLUME4	DAC ch4 volume0dB to -127.5dB 0.5dB steps.
		• 8'd0: 0dB
		• 8'd255: -127.5dB

Register 44: VOLUME5

Bits	[7:0]
Default	8'd0

Bits	Mnemonic	Description
[7:0]	VOLUME5	DAC ch5 volume0dB to -127.5dB 0.5dB steps.
		• 8'd0: 0dB
		• 8'd255: -127.5dB

Register 45: VOLUME6

Bits	[7:0]
Default	8'd0

Bits	Mnemonic	Description
[7:0]	VOLUME6	DAC ch6 volume0dB to -127.5dB 0.5dB steps.
		• 8'd0: 0dB
		• 8'd255: -127.5dB

Register 46: VOLUME7

Bits	[7:0]
Default	8'd0

Bits	Mnemonic	Description
[7:0]	VOLUME7	DAC ch7 volume0dB to -127.5dB 0.5dB steps.
		8'd0: 0dB 8'd255: 127.5dB
		• 8'd255: -127.5dB

Register 47: VOLUME8

Bits	[7:0]
Default	8'd0

Bits	Mnemonic	Description	
[7:0]	VOLUME8	DAC ch8 volume0dB to -127.5dB 0.5dB steps.	
		• 8'd0: 0dB	
		• 8'd255: -127.5dB	

Register 48: DAC VOL UP RATE

Bits	[7:0]
Default	8'd4

Bits	Mnemonic	Description
[7:0]	DAC_VOL_RATE_UP	Value by which the old VOLUME value is incremented to reach the new
		VOLUME value
		Valid from 8'd0 (instant) to 8'd255 (fastest), where 8'd0 instantly changes the
		VOLUME value
		8'd0: Instant change
		8'd4: Default
		8'd255: Fastest change
		2^{14}
		$ramp_rate[s] = {DAC_VOL_RATE_UP * FS}$

Register 49: DAC VOL DOWN RATE

Bits	[7:0]
Default	8'd4

Bits	Mnemonic	Description
[7:0]	DAC_VOL_RATE_DOWN	Value by which the old VOLUME value is incremented to reach the new VOLUME value Valid from 8'd0 (instant) to 8'd255 (fastest), where 8'd0 instantly changes the VOLUME value 8'd0: Instant change 8'd4: Default 8'd255: Fastest change
		$ramp_rate [s] = \frac{2^{14}}{DAC_VOL_RATE_DOWN * FS}$

Register 50: DAC VOL DOWN RATE FAST

Bits	[7:0]
Default	8'd255

Bits	Mnemonic	Description
[7:0]	DAC_VOL_RATE_FAST	Value by which the old VOLUME value is incremented to reach the new
		VOLUME value
		Valid from 8'd0 (instant) to 8'd255 (fastest), where 8'd0 instantly changes the
		VOLUME value
		Only used during abnormal mute (DPLL unlock or BCK_WS ratio failed)
		8'd0: Instant change
		8'd255: Fastest change (default)
		2 ¹⁴
		$ramp_rate [s] = \frac{-}{DAC \ VOL \ RATE \ FAST \ * \ FS}$

Register 51: DAC MUTE

	Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
I	Default	1'b0							

Bits	Mnemonic	Description
[7]	DAC_MUTE_CH8	1'b0: Normal operation (default)1'b1: Mute ch8
[6]	DAC_MUTE_CH7	1'b0: Normal operation (default)1'b1: Mute ch7
[5]	DAC_MUTE_CH6	1'b0: Normal operation (default)1'b1: Mute ch6
[4]	DAC_MUTE_CH5	1'b0: Normal operation (default)1'b1: Mute ch5
[3]	DAC_MUTE_CH4	1'b0: Normal operation (default)1'b1: Mute ch4
[2]	DAC_MUTE_CH3	1'b0: Normal operation (default)1'b1: Mute ch3
[1]	DAC_MUTE_CH2	1'b0: Normal operation (default)1'b1: Mute ch2
[0]	DAC_MUTE_CH1	1'b0: Normal operation (default)1'b1: Mute ch1

Register 52: DAC INVERT

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b0							

Bits	Mnemonic	Description
[7]	DAC_INVERT_CH8	Invert the output on Ch8 at the input to the NSMOD
[6]	DAC_INVERT_CH7	Invert the output on Ch7 at the input to the NSMOD
[5]	DAC_INVERT_CH6	Invert the output on Ch6 at the input to the NSMOD
[4]	DAC_INVERT_CH5	Invert the output on Ch5 at the input to the NSMOD
[3]	DAC_INVERT_CH4	Invert the output on Ch4 at the input to the NSMOD
[2]	DAC_INVERT_CH3	Invert the output on Ch3 at the input to the NSMOD
[1]	DAC_INVERT_CH2	Invert the output on Ch2 at the input to the NSMOD
[0]	DAC_INVERT_CH1	Invert the output on Ch1 at the input to the NSMOD

Register 53: FILTER SHAPE

Bits	[7:3]	[2:0]
Default	5'd12	3'd0

Bits	Mnemonic	Description
[7:3]	RESERVED	NA
[2:0]	FILTER_SHAPE	Selects the 8x interpolation FIR filter shape.
		3'd0: Minimum phase (default)
		3'd1: Linear phase apodizing
		3'd2: Linear phase fast roll-off
		3'd4: Linear phase slow roll-off
		3'd5: Minimum phase fast roll-off
		3'd6: Minimum phase slow roll-off
		3'd7: Minimum phase slow roll-off low dispersion

Register 54: VOLUME HOLD

Bits	[7:4]	[3]	[2:0]
Default	4'd0	1'b0	3'd4

Bits	Mnemonic	Description
[7:4]	RESERVED	NA
[3]	VOLUME_HOLD	Hold volume coefficients to allow for all channels to update at same time
[2:0]	RESERVED	NA

Register 55: DAC PATH CONFIG

Bits	[7:3]	[2]	[1]	[0]
Default	5'b00000	1'b0	1'b0	1'b0

Bits	Mnemonic	Description
[7:3]	RESERVED	NA
[2]	BYPASS_IIR	1'b0: Non-bypass IIR1 (default)1'b1: Bypass IIR1
[1]	BYPASS_FIR4X	1'b0: Non-bypass IFir_4x (default)1'b1: Bypass IFir_4x
[0]	BYPASS_FIR2X	1'b0: Non-bypass IFir_2x (default)1'b1: Bypass IFir_2x

Register 56: AUTOMUTE ENABLE

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b1							

Bits	Mnemonic	Description
[7]	AUTOMUTE_EN_CH8	1'b0: Disables ch8 automute 1'b1: Enables ch8 automute (default) Note: Automute is available for PCM only
[6]	AUTOMUTE_EN_CH7	1'b0: Disables ch7 automute 1'b1: Enables ch7 automute (default) Note: Automute is available for PCM only
[5]	AUTOMUTE_EN_CH6	1'b0: Disables ch6 automute 1'b1: Enables ch6 automute (default) Note: Automute is available for PCM only
[4]	AUTOMUTE_EN_CH5	1'b0: Disables ch5 automute 1'b1: Enables ch5 automute (default) Note: Automute is available for PCM only
[3]	AUTOMUTE_EN_CH4	1'b0: Disables ch4 automute 1'b1: Enables ch4 automute (default) Note: Automute is available for PCM only
[2]	AUTOMUTE_EN_CH3	1'b0: Disables ch3 automute 1'b1: Enables ch3 automute (default) Note: Automute is available for PCM only
[1]	AUTOMUTE_EN_CH2	1'b0: Disables ch2 automute 1'b1: Enables ch2 automute (default) Note: Automute is available for PCM only
[0]	AUTOMUTE_EN_CH1	1'b0: Disables ch1 automute 1'b1: Enables ch1 automute (default) Note: Automute is available for PCM only

Register 58-57: AUTOMUTE TIME

Bits	[15:12]	[11]	[10:0]
Default	4'd0	1'b1	11'd15

Bits	Mnemonic	Description
[15:12]	RESERVED	NA
[11]	AUTOMUTE_RAMP_TO_GROUND	 1'b0: When ramped to min volume during normal mute, do not soft ramp to ground 1'b1: When ramped to min volume during normal mute, soft ramp to ground for power saving (default)
		normal mute includes: automute, mute by register, mute by GPIO
[10:0]	AUTOMUTE_TIME	Configures the amount of time in seconds the audio must remain below AUTOMUTE_LEVEL before an automute condition is flagged. Valid from 0 (disabled) to 11'h7FF (fastest), where 11'h001 is the slowest $Time\ (s) = \frac{2^{18}}{AUTOMUTE_TIME * FS}$

Register 60-59: AUTOMUTE LEVEL

Bits	[15:0]
Default	16'0008

Bits	Mnemonic	Description
[15:0]	AUTOMUTE_LEVEL	Configures the threshold which the audio must be below before an automute condition is flagged. Valid from: 16'hFFFF (-42dB) to 16'h0002 (-132dB) Shift right 1 bit corresponds to -6dB $ 20 \log_{10} \left(\frac{AUTOMUTE_LEVEL}{2^{16}-1} \right) - 42 $ Note: this register works in tandem with AUTOMUTE_TIME to create the automute condition

Register 62-61: AUTOMUTE OFF LEVEL

Bits	[15:0]
Default	16'000A

Bits	Mnemonic	Description
[15:0]	AUTOMUTE_OFF_LEVEL	Configures the threshold which the audio must be above before the automute condition is cleared (cleared immediately). Valid from: 16'hFFFF (-42dB) to 16'h0002 (-132dB) Shift right 1 bit corresponds to -6dB $20\log_{10}\left(\frac{AUTOMUTE_OFF_LEVEL}{2^{16}-1}\right)-42$

Register 63: SOFT RAMP CONFIG

Bits	[7:5]	[4:0]
Default	3'b110	5'd3

Bits	Mnemonic	Description
[7:5]	RESERVED	NA
[4:0]	SOFT_RAMP_TIME	Sets the amount of time that it takes to perform a soft start ramp. This time affects both ramp to ground and ramp to AVCC/2. Valid from 0 to 20 (inclusive).

Register 65-64: RESERVED

Readback Registers

Register 224: SYS READ

Bits	[7:4]	[3:2]	[1]	[0]
Default	-	-	-	-

Bits	Mnemonic	Description	
[7:4]	RESERVED	NA	
[3:2]	MODES	Chip mode readback. Based on MODE Pin 2'd0: I2C 2'd3: SPI	
		Note: All other values are invalid.	
[1]	ADDR1	I2C address select bit 1.	
[0]	ADDR0	I2C address select bit 0.	

Register 225: CHIP ID READ

Bits	5	[7:0]
Def	ault	8'h60

Bits	Mnemonic	Description
[7:0]	CHIP_ID	CHIP ID.

Register 228-227: RESERVED

Register 229: RATIO VALID READ

Bits	[7]	[6:0]
Default	1	

Bits	Mnemonic	Description
[7]	RATIO_VALID	Indicates validity of the CLK_DAC/CLK_IDAC ratio
[6:0]	RESERVED	NA NA

Register 230: INPUT READBACK

Bits	[7]	[6]	[5:2]	[1:0]
Default	ı	ı	-	-

Bits	Mnemonic	Description
[7]	RESERVED	NA
[6]	TDM_DATA_VALID	TDM valid data flag
[5:2]	DOP_VALID	DoP valid flag
[1:0]	INPUT_SELECT_OVERRIDE	AUTO_INPUT_SEL value

Register 233-231: RESERVED

ES9017 Reference Schematic

Hardware (HW) mode

Figure 12 - Hardware (HW) mode reference schematic for ES9017Q

Note: ES9017S does NOT have an exposed pad (pin 49).

Software Mode

Figure 13 - Software mode reference schematic for ES9017Q

Note: ES9017S does NOT have an exposed pad (pin 49).

48 QFP Package Dimensions

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)				
SYMBOLS	MIN.	NOM.	MAX.	
A	1		1.60	
A1	0.05		0.15	
A2	1.35	1.40	1.45	
ь	0.17	0.22	0.27	
C	0.09 0		0.20	
D	!	9.00 BSC		
D1	•	7.00 BSC		
E	9.00 BSC			
E1	7.00 BSC			
ψ	0.50 BSC			
Ĺ	0.45	0.60	0.75	

1.00 REF

3.5°

NOTES:

1.JEDEC OUTLINE : MS-026 BBC

L1

θ

- MS-026 BBC

 2.DATUM PLANE [I] IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

 3.DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE [I].

 4.DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.

Figure 14 – ES9017 48 QFP package dimensions

48 QFN Package Dimensions

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION 6 SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 3. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

Figure 15 – ES9017 48 QFN package dimensions

48 QFP Top View Marking

Figure 16 – ES9017S Marking

	Dimension in mm						
Package Type	Α	В	C	D	Е	F	G
48 LQFP 7mm x 7mm	5.0	2.0	0.3	0.56	0.2	0.08	0.33

Τ	Tracking number	
W	Work week	
Υ	Last digit of year	
L	Lot number	
R	Silicon Revision	

48 QFN Top View Marking

Figure 17 - ES9017Q Marking

			Dim	ension in	mm		
Package Type	Α	В	С	D	Е	F	G
48 QFN 7mm x 7mm	5.0	2.0	0.3	0.56	0.2	0.08	0.33

T	Tracking number
W	Work week
Υ	Last digit of year
L	Lot number
R	Silicon Revision

Reflow Process Considerations

Temperature Controlled

For lead-free soldering, the characterization and optimization of the reflow process is the most important factor to consider.

The lead-free alloy solder has a melting point of 217°C. This alloy requires a minimum reflow temperature of 235°C to ensure good wetting. The maximum reflow temperature is in the 245°C to 260°C range, depending on the package size (RPC-2 Pb-Free Process – Classification Temperatures (Tc)). This narrows the process window for lead-free soldering to 10°C to 20°C.

The increase in peak reflow temperature in combination with the narrow process window makes the development of an optimal reflow profile a critical factor for ensuring a successful lead-free assembly process. The major factors contributing to the development of an optimal thermal profile are the size and weight of the assembly, the density of the components, the mix of large and small components, and the paste chemistry being used. Reflow profiling needs to be performed by attaching calibrated thermocouples well adhered to the device as well as other critical locations on the board to ensure that all components are heated to temperatures above the minimum reflow temperatures and that smaller components do not exceed the maximum temperature limits (Table RPC-2).

To ensure that all packages can be successfully and reliably assembled, the reflow profiles studied and recommended by ESS are based on the JEDEC/IPC standard J-STD-020 revision D.1.

Figure 18 - IR/Convection Reflow Profile (IPC/JEDEC J-STD-020D.1)

Reflow is allowed 3 times. Caution must be taken to ensure time between re-flow runs does not exceed the allowed time by the moisture sensitivity label. If the time elapsed between the re-flows exceeds the moisture sensitivity time bake the board according to the moisture sensitivity label instructions.

Manual

Allowed up to 2 times with maximum temperature of 350°C no longer than 3 seconds.

RPC-1 Classification reflow profile

Profile Feature	Pb-Free Assembly	
Preheat/Soak		
Temperature Min (Tsmin)	150°C	
Temperature Max (Tsmax)	200°C	
Time (ts) from (Tsmin to Tsmax)	60-120 seconds	
Ramp-up rate (TL to Tp)	3°C / second maximum	
Liquidous temperature (TL)	217°C	
Time (tL) maintained above TL	60-150 seconds	
Peak package body temperature (Tp)	For users Tp must not exceed the classification temp in Table RPC-2. For suppliers Tp must equal or exceed the Classification temp in Table RPC-2.	
Time (tp)* within 5°C of the specified classification temperature (Tc)	30* seconds	
Ramp-down rate (Tp to TL)	6°C / second maximum	
Time 25°C to peak temperature	8 minutes maximum	
* Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.		

Table 13 – RPC-1 Classification reflow profile

All temperatures refer to the center of the package, measured on the package body surface that is facing up during assembly reflow (e.g., live-bug). If parts are reflowed in other than the normal live-bug assembly reflow orientation (i.e., dead-bug), Tp shall be within ±2°C of the live-bug Tp and still meet the Tc requirements, otherwise, the profile shall be adjusted to achieve the latter. To accurately measure actual peak package body temperatures, refer to JEP140 for recommended thermocouple use.

Reflow profiles in this document are for classification/preconditioning and are not meant to specify board assembly profiles. Actual board assembly profiles should be developed based on specific process needs and board designs and should not exceed the parameters in Table RPC-1.

For example, if Tc is 260°C and time tp is 30 seconds, this means the following for the supplier and the user. For a supplier: The peak temperature must be at least 260°C. The time above 255°C must be at least 30 seconds. For a user: The peak temperature must not exceed 260°C. The time above 255°C must not exceed 30 seconds.

All components in the test load shall meet the classification profile requirements.

RPC-2 Pb-Free Process – Classification Temperatures (Tc)

Package Thickness	Volume mm3, <350	Volume mm3, 350 to 2000	Volume mm3, >2000
<1.6 mm	260°C	260°C	260°C
1.6 mm – 2.5 mm	260°C	250°C	245°C
>2.5 mm	250°C	245°C	245°C

Table 14 – RPC-2 Pb free classification temperatures

At the discretion of the device manufacturer, but not the board assembler/user, the maximum peak package body temperature (Tp) can exceed the values specified in Table RPC-2. The use of a higher Tp does not change the classification temperature (Tc).

Package volume excludes external terminals (e.g., balls, bumps, lands, leads) and/or nonintegral heat sinks.

The maximum component temperature reached during reflow depends on package thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of SMD packages may still exist.

Ordering Information

Part Number	Description	Package	
ES9017S	High Defenses CARRE 20 hit 0 Channel DAG	7mm x 7mm 48 QFP	
ES9017Q • Inquire for availability	High Performance SABRE 32-bit 8 Channel DAC	7mm x 7mm 48 QFN	

Revision History

Current Version 0.1

_		· · · · · · ·	
	Rev.	Date	Notes
	0.1	June 24, 2022	Initial release

© 2022 ESS Technology, Inc.

ESS IC's are not intended, authorized, or warranted for use as components in military applications, medical devices or life support systems. ESS assumes no liability and disclaims any expressed, implied or statutory warranty for use of ESS IC's in such unsuitable applications.

No part of this publication may be reproduced, stored in a retrieval system, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of ESS Technology, Inc. ESS Technology, Inc. makes no representations or warranties regarding the content of this document. All specifications are subject to change without prior notice. ESS Technology, Inc. assumes no responsibility for any errors contained herein. U.S. patents pending.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ESS Technology: