Manufacturing Automation

Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design

MANUFACTURING AUTOMATION

Metal cutting is one of the most widely used methods of producing the final shape of manufactured products. The technology involved in metal cutting operations has advanced considerably in recent years along with developments in materials, computers, and sensors.

This book treats the scientific principles of metal cutting and their practical application to solving problems encountered in manufacturing. The subjects of mathematics, physics, computers, software, and instrumentation are discussed as integration tools in analyzing or designing machine tools and manufacturing processes.

The book begins with the fundamentals of metal cutting mechanics. Basic principles of vibration and experimental modal analysis are applied to solving problems on the shop floor. A special feature is the in-depth coverage of chatter vibrations, a problem experienced daily by practicing manufacturing engineers. The essential topics of programming, design, and automation of CNC (computer numerical control) machine tools; NC (numerical control) programming; and CAD/CAM technology are fully discussed. The text also covers the selection of drive actuators, feedback sensors, modeling and analysis of feed drives, the design of real time trajectory generation and interpolation algorithms, and CNC-oriented error analysis in detail. Each chapter includes examples drawn from industry, design projects, and homework problems.

Advanced undergraduate and graduate students, as well as practicing engineers, will find this book a clear and thorough way to learn the engineering principles of metal cutting mechanics, machine tool vibrations, CNC system design, sensor-assisted machining, and CAD/CAM technology.

Yusuf Altintas is Professor of Mechanical Engineering and Director of the Manufacturing Automation Laboratory at the University of British Columbia.

MANUFACTURING AUTOMATION

METAL CUTTING MECHANICS, MACHINE TOOL VIBRATIONS, AND CNC DESIGN

YUSUF ALTINTAS

University of British Columbia

CONTENTS

Pref	face		oage ix
1	INTROD	UCTION	1
2	MECHAI	NICS OF METAL CUTTING	4
	2.1 Int	roduction	4
		chanics of Orthogonal Cutting	4
		chanistic Modeling of Cutting Forces	13
		eoretical Prediction of Shear Angle	17
		schanics of Oblique Cutting	18
	2.5.1	Oblique Cutting Geometry	18
	2.5.2	Solution of Oblique Cutting Parameters	20
		Prediction of Cutting Forces	24
		schanics of Turning Processes	25
		echanics of Milling Processes	33
	2.7.1		39
		alytical Modeling of End Milling Forces	41
		Mechanistic Identification of Cutting Constants in Millin	ıg 45
		echanics of Drilling	47
		ool Wear and Tool Breakage	53
		Tool Wear	54
		Tool Breakage	60
	2.11 P		62
3	STATIC	AND DYNAMIC DEFORMATIONS IN MACHINING	65
	3.1 Inf	troduction	65
		achine Tool Structures	65
		mensional Form Errors in Machining	67
	3.3.1	Form Errors in Cylindrical Turning	67
	3.3.2		69
	3.3.3		70
	3.4 Structural Vibrations in Machining		72
	3.4.1	Fundamentals of Free and Forced Vibrations	73
	342	Oriented Transfer Function	78

- a light one of the second of the second

		Design and Measurement Coordinate Systems	79	
	3.4.4	Analytical Modal Analysis for Multidegree-of-Freedom		
		tems	82	
	3.4.5 3.5 Ex	Relative Transfer Function between Tool and Workpiece perimental Modal Analysis for Multidegree	87	
	of F	reedom Systems	89	
	3.6 Ch	atter Vibrations in Cutting	97	
		Stability of Regenerative Chatter Vibrations		
	in Orthogonal Cutting			
		alytical Prediction of Chatter Vibrations in Milling	104	
		Dynamic Milling Model	104	
	3.7.2	Chatter Stability Lobes	110	
	3.8 Pr		116	
4	TECHN	OLOGY OF MANUFACTURING AUTOMATION	122	
	4.1 Int	troduction	122	
		mputer Numerically Controlled Unit	122	
	4.2.1	Organization of a CNC Unit	122	
	4.2.2	CNC Executive	124	
	4.3 CN	VC Machine Tool Axis Conventions	124	
		C Part Program Structure	125	
		ain Preparatory Functions	128	
		mputer-Assisted NC Part Programming	132	
		sics of Analytical Geometry	133	
		Vectors and Lines	133	
		Translation and Rotation of Objects	134	
		Circles	135	
		Cubic Splines	135	
		T Part Programming Language	137	
		Geometric Statements	138	
		Tool Motion Statements	144	
		Cutter Location File and Postprocessing	147	
		C Part Programming with CAD Systems	154	
		roblems	155	
5	DESIGN	I AND ANALYSIS OF CNC SYSTEMS	159	
	5.1 Int	troduction	159	
		achine Tool Drives	159	
	5.2.1	Mechanical Components and Torque Requirements	160	
	5.2.2	Feedback Devices	164	
	5.2.3	Electrical Drives	166	
	5.2.4	Permanent Magnet Armature-Controlled dc Motors	166	
	5.2.5	Position Control Loop	172	
		angfor Function of the Position Loop	173	

