Ensemble Methods+Random Forest

Machine learning 2021

Mansoor Rezghi

Ensemble Methods

- ✓ improving classification accuracy by aggregating the predictions of multiple classifiers
- ✓ Construct a set of base classifiers from the training data
- ✓ Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

Tor.

Ensemble Methods

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $ε = 0.35 \frac{1}{65}$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

 \bigvee

base classifiers should be independent of each other

base classifiers should do better than a classifier that performs random guessing.

How to generate an ensemble of classifiers?

- Bagging: bootstrap aggregating
- Boosting

Bagging

- Sampling with replacement
- Build classifier on each bootstrap sample

	_
	l
\ \ \ \	1
1,3	

	Original Data	1	2	3	4	5	6	7	8	9	10	
(Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9 -	إإ
(Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2	
`	Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7 -	├

Algorithm 5.6 Bagging algorithm.

- 1: Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- 3: Create a bootstrap sample of size N, D_i .
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: $C^*(x) = \underset{i}{\operatorname{argmax}} \sum_i \delta(C_i(x) = y).$

 $\{\delta(\cdot) = 1 \text{ if its argument is true and } 0 \text{ otherwise}\}.$

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights ✓
 - Unlike bagging, weights may change at the end of boosting round
- how the weights of the training examples are updated at the end of each boosting round
- 2. how the predictions made by each classifier are combined.

Boosting: AdaBoost

Let $\{(\mathbf{x}j, yj) \mid j = 1, 2, ..., N\}$ denote a set of N training examples. Unlike bagging, importance of a base classifier Ci depends on its error rate

$$\alpha', \longrightarrow \infty$$

oosting: AdaBoost

Let $\{(\mathbf{x}j, yj) \mid j = 1, 2, ..., N\}$ denote a set of \mathbb{N} training examples. Unlike bagging, importance of a base classifier Ci depends on its error rate

$$\epsilon_i = \frac{1}{N} \left[\sum_{j=1}^N w_j \left[I\left(C_i(\mathbf{x}_j) \neq y_j\right) \right], \quad \alpha_i = \frac{1}{2} \ln \left(\frac{1 - \epsilon_i}{\epsilon_i} \right) \right]$$

$$\left| \alpha_i \right| = \frac{1}{2} \ln \left(\frac{1}{\epsilon_i} \right)$$

$$\left(\frac{1}{\omega_{s}^{(1)}} \right) \left\{ \begin{array}{ccc} & C_{3}^{(X_{s})} \end{array} \right.$$

weight assigned to example (xi, yi) during the jth boosting round

$$w_{\mathbf{j}}^{(\mathbf{j}+1)} = \frac{w_{\mathbf{j}}^{(\mathbf{j})}}{Z_{\mathbf{j}}} \times \begin{cases} \exp^{-\alpha_{\mathbf{j}}} & \text{if } C_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}) = y_{\mathbf{j}} \\ \exp^{\alpha_{\mathbf{j}}} & \text{if } C_{\mathbf{j}}(\mathbf{x}_{\mathbf{j}}) \neq y_{\mathbf{j}} \end{cases}$$

Normalization factor

intermediate woulds produce an arror rate higher, than 50%, the weights wi = 1/N₀

Algorithm 5.7 AdaBoost algorithm.

- 1: $\mathbf{w} = \{w_j = 1/N \mid j = 1, 2, ..., N\}$. {Initialize the weights for all N examples.}
- 2: Let k be the number of boosting rounds.
- 3: for i = 1 to k do
- Create training set D_i by sampling (with replacement) from D according to \mathbf{w} .
- Train a base classifier C_i on D_i .
- Apply C_i to all examples in the original training set, D.
- 7: $\epsilon_{i} = \frac{1}{N} \left[\sum_{j} w_{j} \, \delta(C_{i}(x_{j}) \neq y_{j}) \right]$ {Calculate the weighted error.} 8: $\epsilon_{i} > 0.5$ then
- $\mathbf{w} = \{w_j = 1/N \mid j = 1, 2, \dots, N\}.$ {Reset the weights for all N examples.}
- Go back to Step 4.
- end if 11:
- $\alpha_i = \frac{1}{2} \ln \frac{1 \epsilon_i}{\epsilon_i}$. 12:
- Update the weight of each example according to Equation 5.69.
- 14: end for
- 15: $C^*(\mathbf{x}) = \operatorname*{argmax} \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y)$.

Example

\boldsymbol{x}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
\boldsymbol{y}	1	1	1	-1	-1	-1	-1	1	1	1

x	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	1
у	1)	-1	-1	-1	-1	-1	-1	-1	1	1

Boosting Round 2:

X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
у	[1 /	1	1	1	1	1	1	1	1	1

Boosting Round 3:

x	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
у	1	1	-1	-1	-1	-1	-1	-1	-1	-1

Round	x=0.1	I		_	l	l	I	l _		
1		ı	0.1		1/ 1		11 1	11 1	11 \	1 1 <i>1</i>
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

DC(DC (C) (DC)

Random Forest

- ✓ ensemble methods specifically designed for decision tree classifiers
- ✓ multiple decision trees where each tree is generated based on the values of an independent set of random vectors

Random Forest

 \mathcal{D}

- ✓ Bagging using decision trees is a special case of random forests
- ✓ randomly select F input features to split at each node of the decision tree
- ✓ majority voting scheme
- ✓ To increase randomness, bagging can also be used to generate bootstrap samples for Forest-RI

Metrics for class imbalance problem

Imbalance

- ✓ Data sets with imbalanced class distributions
- ✓ in credit card fraud detection, fraudulent transactions are outnumbered by legitimate transactions
- ✓ accuracy measure, used extensively for classifiers, may not be well suited for evaluating models derived from imbalanced data sets

example: 1% of the credit card transactions fraudulent, a model that predicts every transaction as legitimate accuracy 99%

it fails to detect any of the fraudulent activities.

binary classification, the rare class is often denoted as the positive class against negative class

		Predicte	ed Class
		+	_
Actual	+	f_{++} (TP)	f_{+-} (FN)
Class	_	f_{-+} (FP)	f (TN)

confusion matrix

Imbalance

Precision: fraction of records that actually turns out to be positive in the group the classifier has declared as a positive class

Precision,
$$p = \frac{TP}{TP + FP}$$

Recall measures the fraction of positive examples correctly predicted by the classifier

Recall,
$$r = \frac{TP}{TP + FN}$$

maximizes both precision and recall

Imbalance

Precision and recall can be summarized into another metric known as the F1 measure

$$F_1 = \frac{2}{\frac{1}{r} + \frac{1}{p}}.$$

tends to be closer to the smaller of the two numbers a high value of F1-measure ensures that both precision and recall are reasonably high

Weighted accuracy =
$$\frac{w_1TP + w_4TN}{w_1TP + w_2FP + w_3FN + w_4TN}.$$