

You are walking 3 dogs which are pulling you along. Their positions can be described with the following measurements: $d_A = d_{Ax} \, m$, $h_A = h_{Am}$, $d_{Bx} = d_{Bx} \, m$, $d_{By} = d_{By} \, m$, $h_B = h_B \, m$, $d_{Cx} = d_{Cx} \, m$, $d_{Cy} = d_{Cy} \, m$, $h_C = h_C \, m$, $d_{Dy} = d_{Dy} \, m$, and $h_D = h_D \, m$.

If the dogs are pulling with $F_A = F_A \, N$, $F_B = F_B \, N$, and $F_C = F_C \, N$ (espectively, what are θ_{AC} and θ_{BC} ?

What are the magnitudes of the projections of Fx and FB along leash PC?

To find Oack Ooc Dog A TA = - dAx 1 + dpy 5 + (ha-hp) R Dog B $\vec{r}_c = \frac{\partial c_x \hat{r}}{\partial c_x} + \left(\frac{\partial c_y - (-\partial p_y)}{c_x}\right) \hat{r}_c + \left(\frac{\partial c_y - (-\partial p_y)}{c_x}\right) \hat{r}_c$ FA. FC = FAFC COS DAC To. To = TBTC cos OBC AxCx+AyCy+AzCz= TATCCOSOAC BxCx + ByCy + BzCz = rBrc cos O2 OBE COS-1 BxCx + ByCy + BzCz $\theta_{AC} = \cos^{-1}\left(\frac{A_{x}C_{x} + A_{y}C_{y} + A_{z}C}{\Gamma_{A}\Gamma_{C}}\right)$ Magnitudes of Projections (FAPC) proj = FA COS DAC (FBPC) prij = FB cos OBC