

Fuel cell system design and optimisation

Zbigniew Urban, Jason Miller Ravi Mistry, Dimitrios Georgis, Jorge Aguerrevere, Leonor Rosa

PSE Customer base FC product users and (evaluations)

Ex/onMobil

Americas

Improved daily.

Air Products BP Chemicals Conoco Phillips Dow Chemicals

> DuPont ExxonMobil

INEOS

Praxair

Bend Research Energy Solutions Johns Manville LXEng Procter & Gamble SQM Toyota Motor US

nited Technologies

Good Food, Good Life

EMEA

Bayer TS

Infineum

Linde Engineering Repsol YPF

Sasol

Shell Global Solutions

Süd-Chemie

Sulzer

TOTAL

Atomic Weapons Establishment

Cadbury's

det Norske Veritas

FLS Automation

Friesland Foods

Nexia Solutions

Nestlé

PURAC

RWEnpower

(A large automotive company in Germany)

MITSUBISHI CHEMICAL CORPORATION

APAC **BASF**

TOTAL

Idemitsu Petrochemicals LG Chem Mitsubishi Chemical Samnam Petrochemical **SK Chemicals SK Energy SK Petrochemicals Taiyo Nippon Sanso**

Samsung Electronics KIER Toshiba Fuel Cell Power

Toyota Motor Corp. HONDA

SAMSUNG

(DENSO) (Hyundai Motor Company)

Life cycle of stack and system design

Data based validation of MEA model for stack design

Single cell data processing with 1-D distributed model of fuel cell

Detailed stack design
(3-D stack model or link with CFD)

1. Stack model default parameters

2. Parameters refined by processing experimental data from single cell or stack

Vendor information for auxiliary equipment or validation by data processing

Auxiliary Units

Stack performance in a simple system, water management, deactivation, design decisions (2-D stack model)

Design and optimisation of complete system for commercial applications (2-D stack model)

Making the most of experimental data

Single cell experiments

Setup for fuel cell stack experiments

From stand-alone stack information to fully integrated systems

Features of system model in fuel cell applications

Successful commercialization of fuel cell technologies depends largely on how the fuel cell stack is integrated within the entire power plant system.

- Fully pressure driven models
- Include computation intensive, complex models (e.g. PEM stack, humidifier)
- Robust in simulating extremely dynamic operations
- Accommodate hierarchical control structures
- Predictive to high degree to reproduce the pilot plant information

General Structure of a PEM FC System

Performance assessment based on industry standard driving cycles

MODELLING FORUM 2014

High level output from simulation of Artemis Highway 150

Basic Operations

Nonlinear characteristics of the FC system

MODELLING FORUM 2014

Cooling duty vs. Power demand

Model based diagnostics of stack in automotive applications

Detailed stack model allows monitoring the stack vitals in a driving cycle

gPROMS enters the realm of CFD resolution modelling

Navier-Stokes solution

Velocity Profile in Cooling Channel

Reactant composition profiles

Temperature profile – cooling every two cells

Lead-Acid Battery

NEW MODELLING PROJECT- Automotive Batteries

New Project: Model of a Lead-Acid Battery

MOTIVATION

Start&Stop System of Cars

- More intense performance
- Reduced Battery Life

Modelling:

- Understand the batteries' operation
- Advice on how to improve design

LEAD-ACID BATTERY

MODEL:

CATHODE

ANODE

(APVA)	ADVANCED PROCESS MODELLING FORUM 2014

Electrochemistry and ionic mass transfer in 1D-Model

RESULTS – Electrochemistry at Open Cell state

SPECIFICATIONS IN THE MODEL

- Same concentration through the cell
- Current = 0
- Electrodes' Charge: Q_{Positive} = 3.15 X 10⁷ C/m³;

i 1

0

RESULTS – terminal concentration in bulk electrolyte

Concentration - Cell

Ions composition and potential field in 2D-Model

