Macroeconometrics: Test 2 sample questions

Exercise 1. Consider the following autoregression for a detrended random variable y_t with the scalar parameters $\alpha \in (-1,1)$ and σ^2 , autocorrelated error term ϵ_t , and normally distributed error term u_t :

$$y_t = \beta_0 + \beta_1 t + \epsilon_t \tag{1}$$

$$\epsilon_t = \alpha \epsilon_{t-2} + u_t \tag{2}$$

$$u_t|Y_{t-1} \sim iid\mathcal{N}\left(0, \sigma^2\right)$$
 (3)

where Y_{t-1} collects all the observations on variable y up to time t-1.

- Compute the unconditional expected value of y_t , denoted by $E[y_t]$.
- Derive autocorrelations at lags 0, 1, and 2 implied by this model. Show your workings. State the assumptions you are applying to get your result.
- Comment in a sentence about the memory patterns this model implies about the data.

Exercise 2. Consider the following stationary VAR(1) model for an N-vector \mathbf{y}_t with $N \times N$ parameter matrices \mathbf{A} and $\mathbf{\Sigma}$ denoting the autoregressive and covariance matrices respectively and normally distributed error term \mathbf{u}_t :

$$\mathbf{y}_t = \mathbf{A}\mathbf{y}_{t-1} + \mathbf{u}_t \tag{4}$$

$$\mathbf{u}_t \sim \mathcal{N}_N(\mathbf{0}_N, \mathbf{\Sigma}) \tag{5}$$

- Derive autocovariance matrices at lags 0, 1, and 2 implied by this model. Show your workings. State the assumptions you are applying to get your result.
- Comment in a sentence about the memory patterns this model implies about the data.

Exercise 3. Consider the following autoregression with p lags for a scalar random variable y_t with the constant term μ_0 , autoregressive parameters α_i for i = 1, ..., p, and variance σ^2 :

$$y_t = \mu_0 + \alpha_1 y_{t-1} + \dots + \alpha_p y_{t-p} + u_t \tag{6}$$

$$u_t \mid Y_{t-1} \sim \mathcal{N}\left(0, \sigma^2\right)$$
 (7)

- Write out the model in a matrix notation.
- State the distribution of the error term vector explicitly.
- State the predictive density implied by the model for the dependent variable vector given the explanatory variables.
- Write out the likelihood function for the model.

a pdf of the multivariate normal distribution for an N-random vector **X** with mean μ and covariance Σ

$$\mathbf{X} \sim \mathcal{N}_{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{N}{2}} \det(\boldsymbol{\Sigma})^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} \left(\mathbf{X} - \boldsymbol{\mu}\right)' \boldsymbol{\Sigma}^{-1} \left(\mathbf{X} - \boldsymbol{\mu}\right)\right\}$$
(8)

Exercise 4. Consider the autoregression from **Exercise 3** represented in the matrix notation. Assume the following prior distribution for the $p+1\times 1$ vector parameter $\boldsymbol{\alpha}=(\mu_0,\alpha_1,\ldots,\alpha_p)'$:

$$\boldsymbol{\alpha} \mid \underline{\boldsymbol{\alpha}}, \underline{\sigma}_{\alpha}^{2} \sim \mathcal{N}_{p+1} \left(\underline{\boldsymbol{\alpha}}, \underline{\sigma}_{\alpha}^{2} \mathbf{I}_{p+1}\right)$$
 (9)

where $\mathbf{I}_{\mathcal{K}}$ is the identity matrix of order \mathcal{K} , and $\underline{\alpha}$ is the $(p+1)\times 1$ vector of the prior mean and the scalar hyper-parameter $\underline{\sigma}_{\alpha}^2$ is the prior variance.

- Derive the full-conditional posterior distribution of the parameter vector $\boldsymbol{\alpha}$ given data, as well as parameter σ^2 and hyper-parameters $\underline{\boldsymbol{\alpha}}$ and $\underline{\sigma}_{\alpha}^2$, denoted by $p(\boldsymbol{\alpha} \mid data, \sigma^2, \underline{\boldsymbol{\alpha}}, \underline{\sigma}_{\alpha}^2)$. Show your workings.
- **Exercise 5.** Consider the autoregression from **Exercise 3** represented in the matrix notation. Assume the following prior distribution for the scalar parameter σ^2 :

$$\sigma^2 \mid \underline{s}, \underline{\nu} \sim \mathcal{IG}2(\underline{s}, \underline{\nu}) \tag{10}$$

where s and ν are positive scalar hyper-parameters of the scale and shape respectively.

- Derive the full-conditional posterior distribution of the parameter σ^2 given data, as well as parameter α and hyper-parameters \underline{s} and $\underline{\nu}$, denoted by $p(\sigma^2 \mid data, \alpha, \underline{s}, \underline{\nu})$. Show your workings.
- a pdf of the inverted gamma 2 distribution for a positive real-values scalar parameter σ^2 with scale s and shape ν

$$\sigma^{2} \sim \mathcal{IG}2(s, \nu) = \Gamma\left(\frac{\nu}{2}\right)^{-1} \left(\frac{s}{2}\right)^{\frac{\nu}{2}} \left(\sigma^{2}\right)^{-\frac{\nu+2}{2}} \exp\left\{-\frac{1}{2}\frac{s}{\sigma^{2}}\right\}$$
(11)

Exercise 6. Consider the autoregression from **Exercise 3** represented in the matrix notation and the prior for the parameter vector $\boldsymbol{\alpha}$ from **Exercise 4**. Suppose that you want to estimate the shrinkage hyper-parameter $\underline{\sigma}_{\alpha}^2$ of the prior distribution for parameter $\boldsymbol{\alpha}$. For that purpose, assume the following inverted gamma 2 prior distribution for this hyper-parameter:

$$\underline{\sigma}_{\alpha}^{2} \mid \underline{s}_{\sigma}, \underline{\nu}_{\sigma} \sim \mathcal{IG}2(\underline{s}_{\sigma}, \underline{\nu}_{\sigma}) \tag{12}$$

where \underline{s}_{σ} and $\underline{\nu}_{\sigma}$ are positive scalar hyper-parameters of the scale and shape respectively.

• Derive the full-conditional posterior distribution of the parameter $\underline{\sigma}_{\alpha}^2$ given parameter σ^2 and hyper-parameters \underline{s} , $\underline{\nu}$, \underline{s}_{σ} , and $\underline{\nu}_{\sigma}$ denoted by $p\left(\underline{\sigma}_{\alpha}^2 \mid \sigma^2, \underline{s}, \underline{\nu}, \underline{s}_{\sigma}, \underline{\nu}_{\sigma}\right)$. Show your workings.

Exercise 7. Consider the following linear regression model for a scalar random variable y_t , K explanatory variables denoted by $x_{k,t}$ and with the corresponding regression parameters β_k for k = 1, ..., K, and the error term variance σ^2 :

$$y_t = \beta_1 x_{1.t} + \dots + \beta_K x_{K.t} + \epsilon_t \tag{13}$$

$$\epsilon_t \mid x_{1.t}, \dots, x_{K.t} \sim iid\mathcal{N}\left(0, \sigma^2\right)$$
 (14)

- Write out the model in a matrix notation.
- State the distribution of the error term vector explicitly.
- State the predictive density implied by the model for the dependent variable vector given the explanatory variables.
- Write out the likelihood function for the model.

Exercise 8. Consider the linear Gaussian model from **Exercise 7** presented in the matrix notation. Assume a joint zero-mean normal inverted gamma 2 prior distribution for the parameters of the model, a K-vector vector $\boldsymbol{\beta} = (\beta_1, \dots, \beta_K)'$ and a scalar σ^2 stated as:

$$\boldsymbol{\beta}, \sigma^2 \mid \underline{\sigma}_{\beta}^2, \underline{s}, \underline{\nu} \sim \mathcal{N} \mathcal{I} \mathcal{G} 2 \left(\mathbf{0}_K, \underline{\sigma}_{\beta}^2 \mathbf{I}_K, \underline{s}, \underline{\nu} \right)$$
 (15)

where \mathbf{I}_K in the identity matrix of order K, and $\underline{\sigma}_{\mathcal{B}}^2$, \underline{s} , and $\underline{\nu}$ denote positive scalar hyper-parameters.

- Derive the full-conditional posterior distribution of the parameter vector $\boldsymbol{\beta}$ given data, as well as parameter σ^2 and hyper-parameters $\underline{\sigma}_{\beta}^2$, \underline{s} , and $\underline{\nu}$, denoted by $p\left(\boldsymbol{\beta}\mid data, \sigma^2, \underline{\sigma}_{\beta}^2, \underline{s}, \underline{\nu}\right)$. Show your workings.
- a pdf of the normal inverted gamma 2 distribution for an N-vector \mathbf{X} and positive real-values scalar parameter σ^2 with mean parameter $\bar{\boldsymbol{\mu}}$, variance parameter $\boldsymbol{\Sigma}$ scale s and shape v

$$\Gamma\left(\frac{\nu}{2}\right)^{-1} \left(\frac{s}{2}\right)^{\frac{\nu}{2}} (2\pi)^{-\frac{N}{2}} \det(\mathbf{\Sigma})^{-\frac{1}{2}} \left(\sigma^2\right)^{-\frac{\nu+N+2}{2}} \exp\left\{-\frac{1}{2} \frac{1}{\sigma^2} \left[s + (\mathbf{X} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})\right]\right\}$$
(16)

Exercise 9. Consider a linear regression model from **Exercise 7** with the normal inverted gamma 2 joint prior distribution for parameters $\boldsymbol{\beta}$ and σ^2 as in **Exercise 8**. Suppose that you are interested in estimating the prior shrinkage hyper-parameter $\underline{\sigma}_{\boldsymbol{\beta}}^2$. For that purpose, assume the following inverted gamma 2 prior distribution for this hyper-parameter:

$$\underline{\sigma}_{\beta}^{2} \mid \underline{s}_{\sigma}, \underline{\nu}_{\sigma} \sim \mathcal{IG}2(\underline{s}_{\sigma}, \underline{\nu}_{\sigma}) \tag{17}$$

where \underline{s}_{σ} and $\underline{\nu}_{\sigma}$ are positive scalar hyper-parameters of the scale and shape

• Given this setup scrutinise the Gibbs sampler for the parameters β , σ^2 , and $\underline{\sigma}_{\beta}^2$. Describe all of the steps of the sampler and make certain that you describe each of its iterations sufficiently to facilitate writing a computer algorithm using your description. Do not derive the full-conditional posterior distributions, but clearly state them making certain that the notation is clear for which parameter a particular distribution is defined and that all of the objects on which you condition the distributions are listed.