FCC Test Report

Report No.: AGC01665141104FE02

FCC ID : 2ADN6S42

APPLICATION PURPOSE : Class II Permissive Change

PRODUCT DESIGNATION: 3G Smart Phone

BRAND NAME : TIGER

MODEL NAME : S45

CLIENT : Tiger International Electronic Company

DATE OF ISSUE : Nov.26, 2014

STANDARD(S) : FCC Part 22H & 24E Rules

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 26

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Nov.26, 2014	Valid	Class II Permissive Change	
DESCRIPTION					

In this report, only changed the appearance and the GSM/WCDMA antenna. The information of test results is almost identical to the report number - AGC01665141102FE02, which was named (S42); All the test cases can be referred to the original test report. Based on the report, only the ERP/EIRP and the worst cases of Radiated Spurious Emission were verified for the differences.

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	4
2. GENERAL INFORMATION	
2.1 PRODUCT DESCRIPTION	
2.2 RELATED SUBMITTAL(S) / GRANT (S)	
2.3 TEST METHODOLOGY	
2.4 TEST FACILITY	
2.5 MEASUREMENT INSTRUMENTS	6
2.6 SPECIAL ACCESSORIES	
2.7 EQUIPMENT MODIFICATIONS	
3. SYSTEM TEST CONFIGURATION	8
3.1 EUT CONFIGURATION	
3.2 EUT EXERCISE	
3.3 GENERAL TECHNICAL REQUIREMENTS	
3.4 CONFIGURATION OF EUT SYSTEM	
4. SUMMARY OF TEST RESULTS	10
5. DESCRIPTION OF TEST MODES	10
6. OUTPUT POWER	11
6.1RADIATED OUTPUT POWER	11
7. SPURIOUS EMISSION	15
7.1 RADIATED SPURIOUS EMISSION	
PHOTOGRAPHS OF TEST SETUP	19
PHOTOGRAPHS OF FUT	21

Page 4 of 26

1. VERIFICATION OF COMPLIANCE

Applicant	Tiger International Electronic Company
Address	Dera, Naïf Satellite Market, Nakhil Road, Dubai, UAE
Manufacturer	SHENZHEN ELECTRONICAL TECHNOLOGY CO., LTD.
Address	C028 Third Floor, Foreign Trade Wholesale Market, Huaqiangbei, Futian District, Shenzhen, China
Product Designation	3G Smart Phone
Brand Name	TIGER
Test Model	S45
Date of test	Nov.18, 2014 to Nov.25, 2014
Deviation	None
Condition of Test Sample	Normal

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2003 and TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part 22H and 24E.

The test results of this report relate only to the tested sample identified in this report.

Tested By:	Sea	rt Kie
	Bart Xie	Nov.26, 2014
Reviewed By :	kill	el try
	Kidd Yang	Nov.26, 2014
Approved By:	Solyen	, zhang
	Solger Zhang	Nov.26, 2014

Report No.: AGC01665141104FE02 Page 5 of 26

2. GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Part of Brain and accomption of 20 his described as following.			
Product Designation:	3G Smart Phone		
Hardware version:	S135_MB_V1.5		
Software version:	N/A		
	⊠GSM 850 ⊠PCS 1900 (U.S. Bands)		
Frequency Bands:	⊠GSM 900 ⊠DCS 1800 (Non-U.S. Bands)		
Trequency bands.	☑UMTS FDD Band II ☑UMTS FDD Band V (U.S. Bands)		
	☐UMTS FDD Band I ☐UMTS FDD Band VIII (Non-U.S. Bands)		
Antenna:	PIFA Antenna		
Antenna gain:	-1.0dBi(GSM/WCDMA 850), -0.8dBi (GSM/WCDMA 1900)		
Power Supply:	DC 3.7V by Battery		
Battery parameter:	DC3.7V/1750mAh		
Adapter Input:	AC100-240V 50/60Hz 0.2A		
Adapter Output:	DC5V, 1200mA		
Dual Card:	WCDMA / GSM Card Slot		
Duai Card:	GSM Card Slot		
GPRS Class	12		
Extreme Vol. Limits:	DC3.4 V to 4.2 V (Normal: DC3.7 V)		
Extreme Temp. Tolerance	-10℃ to +50℃		
*** Note: The High Voltage DC4.2V and Low Voltage DC3.4V were declared by manufacturer, The			
EUT couldn't be operating normally with higher or lower voltage.			
Other functions have been performed according to verification procedure except for Bluetooth and			
MS function. Card 1 can't transmit with Card 2 simultaneously.			

^{***} **Note:** The maximum power levels are GSM for MCS-4: GMSK link, and RMC 12.2kbps mode for WCDMA band II, WCDMA band V, only these modes were used for all tests.

We found out the test mode with the highest power level after we analyze all the data rates. So we chose worst case as a representative.

Page 6 of 26

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2ADN6S42**, filing to comply with the FCC Part 22H&24E requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI C 63.4: 2003; TIA/EIA 603 and FCC CFR 47 Rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057.

KDB 971168 D01 Power Meas License Digital Systems v02r01

2.4 TEST FACILITY

The test site used to collect the radiated data is located at:

Attestation of Global Compliance (Shenzhen) Co., Ltd.

2/F., Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China

FCC register No.: 259865

2.5 MEASUREMENT INSTRUMENTS

Name of Equipment	Manufacturer	Model	Calibration Date	Calibration Due.
SPECTRUM ANALYZER	AGILENT	E4440A	Feb.17,2014	Feb.16,2015
TEST RECEIVER	R&S	ESCI	July 25, 2014	July 24, 2015
COMMUNICATION TESTER	AGILENT	8960	July 25, 2014	July 24, 2015
COMMUNICATION TESTER	R&S	CMU200	July 25, 2014	July 24, 2015
SIGNAL GENERATOR	AGILENT	E4438C	Feb.23,2014	Feb. 22,2015
LISN	R&S	ESH3-Z5	July 25, 2014	July 24, 2015
CLIMATE CHAMBER	ALBATROSS		July 25, 2014	July 24, 2015
Loop Antenna	A.H.	SAS-562B	May 10, 2014	May 09, 2015
WIDEBAND REQUENCY ANTENNA	SCHWARZBECK	VULB9168	Aug.16, 2014	Aug.15, 2015
Substitution Antenna	EMCO	3142C	Aug.16, 2014	Aug.15, 2015
Substitution Antenna	EM	EM-AH-10180	Apr.19, 2014	Apr.18, 2015
Horn Antenna	EM	EM-AH-10180	Feb.17,2014	Feb.16,2015
Horn Antenna	A.H. Systems Inc.	SAS-574	June 6, 2014	June 5, 2015
Radiation Cable 1	Sat	RE1	June 4, 2014	June 3, 2015
Radiation Cable 2	Sat	RE2	June 4, 2014	June 3, 2015
Conduction Cable	Sat	CE1	June 4, 2014	June 3, 2015

Page 7 of 26

2.6 SPECIAL ACCESSORIES

The battery and the charger, earphone supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 8 of 26

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

3.3 GENERAL TECHNICAL REQUIREMENTS

Item Number	Item Description		FCC Rules
4	Output Dawar	Conducted output power	2.1046/22.913(a) (2) / 24.232
l	Output Power	Radiated output power	(c)
2	Peak-to-Average Ratio	Peak-to-Average Ratio	24.232(d)
3	Spurious Emission	Conducted spurious emission	2.1051 / 22.917 / 24.238
		Radiated spurious emission	
4	Mains Conducted Emi	ssion	15.107 / 15.207
5	Frequency Stability		2.1055/22.355 /24.235
6	Occupied Bandwidth		2.1049 (h)(i)
7	Emission Bandwidth		22.917(a)/24.238(a)
8	Band Edge		22.917(a)/24.238(a)

Page 9 of 26

3.4 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

Table 2-1 Equipment Used in EUT System

Item	Equipment	Model No.	ID or Specification	Note
1	3G Smart Phone	S45	FCCID:2ADN6S42	EUT
2	Adapter	GMT-050120A	DC5V / 1200mA	Accessory
3	Battery	S45	DC3.7V / 1750mAh	Accessory
4	Earphone	S45	N/A	Accessory
5	USB Cable	S45	N/A	Accessory

^{***}Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

Page 10 of 26

4. SUMMARY OF TEST RESULTS

Item Number	Item Description		FCC Rules	Result
		Conducted		
1	Output Dower	Output Power	2.1046/22.913(a) (2) /	Dana
l	Output Power	Radiated	24.232 (c)	Pass
		Output Power		
0	Peak-to-Average	Peak-to-Average	24 222(4)	Door
2	Ratio	Ratio	24.232(d)	Pass
	Spurious Emission	Conducted	2.1051 / 22.917 / 24.238	Pass
3		Spurious Emission		
3		Radiated		
		Spurious Emission		
4	Mains Conducted Em	ission	15.107 / 15.207	Pass
5	Fraguency Stability	Francisco Challette		Pass
5	Frequency Stability		/24.235	Pass
6	Occupied Bandwidth		2.1049 (h)(i)	Pass
7	Emission Bandwidth		22.917(a)/24.238(a)	Pass
8	Band Edge		22.917(a)/24.238(a)	Pass

5. DESCRIPTION OF TEST MODES

been tested during the test.

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200) to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GSM and PCS frequency band.

***Note: GSM/GPRS 850, GSM/GPRS 1900, WCDMA/HSPA band II, WCDMA/HSPA band V, mode have

The worst condition was recorded in the test report if no other modes test data.

Page 11 of 26

6. OUTPUT POWER

6.1RADIATED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The measurements procedures specified in TIA-603C-2004 were applied.

- In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 2 The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 Pr. The ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 3 The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 4 From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 5 The EUT is then put into continuously transmitting mode at its maximum power level.
- Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
- 7 This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 8 ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi..

Page 12 of 26

6.1.2 PROVISIONS APPLICABLE

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Mode	Nominal Peak Power
GSM 850	<=38.45 dBm (7W)
PCS 1900	<=33 dBm (2W)
UMTS BAND II	<=33 dBm (2W)
UMTS BANDV	<=38.45 dBm (7W)

Report No.: AGC01665141104FE02 Page 13 of 26

6.1.3 MEASUREMENT RESULT

Radiated Power (ERP) for GSM 850				
		Re		
Mode	Frequency	Max. Peak ERP	Polarization	Conclusion
		(dBm)	Of Max. ERP	
	824.2	30.61	Horizontal	Pass
	836.6	30.53	Horizontal	Pass
GSM850 -	848.8	30.54	Horizontal	Pass
GSIVIOOU	824.2	28.74	Vertical	Pass
	836.6	28.64	Vertical	Pass
	848.8	28.55	Vertical	Pass

Radiated Power (E.I.R.P) for PCS 1900				
		Result		
Mode	Frequency	Max. Peak	Polarization	Conclusion
		E.I.R.P.(dBm)	Of Max. E.I.R.P.	
GSM 1900	1850.2	27.78	Horizontal	Pass
	1880.0	27.66	Horizontal	Pass
	1909.8	27.55	Horizontal	Pass
	1850.2	26.59	Vertical	Pass
	1880.0	26.53	Vertical	Pass
	1909.8	26.42	Vertical	Pass

Radiated Power (E.I.R.P) for UMTS band II							
		Res					
Mode	Frequency	Max. Peak E.I.R.P	Polarization				
		(dBm)	Of Max. E.I.R.P				
	1852.6	21.59	Horizontal	Pass			
	1880	21.52	Horizontal	Pass			
RMC	1907.4	21.47	Horizontal	Pass			
12.2kbps	1852.6	21.53	Vertical	Pass			
	1880	21.48	Vertical	Pass			
	1907.4	21.43	Vertical	Pass			

Radiated Power (ERP) for UMTS band V						
		Re				
Mode	Frequency	Max. Peak ERP	Polarization	Conclusion		
		(dBm)	Of Max. E.I.R.P.			
	826.6	21.63	Horizontal	Pass		
	836.4	21.57	Horizontal	Pass		
RMC	846.4	21.54	Horizontal	Pass		
12.2kbps	826.6	21.46	Vertical	Pass		
	836.4	21.38	Vertical	Pass		
	846.4	21.36	Vertical	Pass		

Note: Above is worst mode data.

Report No.: AGC01665141104FE02 Page 15 of 26

7. SPURIOUS EMISSION

7.1 RADIATED SPURIOUS EMISSION

7.1.1 MEASUREMENT METHOD

The measurements procedures specified in TIA-603C-2004 were used for testing. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238. The measurements were performed on all modes(GPRS 850, GPRS 1900, HSPA band II, HSPA band V) at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

The procedure of radiated spurious emissions is as follows:

a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, RSE=Rx(dBuV)+CL(dB)+SA(dB)+Gain(dBi)-107(dBuV to dBm) The SA is calibrated using following setup.

b) EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.

Report No.: AGC01665141104FE02 Page 16 of 26

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS 1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz), GSM850 band (824.2MHz, 836.6MHz, 848.8MHz), UMTS band II(1852.6MHz, 1880MHz, 1907.4MHz), UMTS band V(826.6MHz, 836.4MHz, 846.4MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of any band into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: Power= $P_{Mea}+A_{Rpl}$

7.1.2 PROVISIONS APPLICABLE

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Note: only result the worst condition of each test mode:

Page 17 of 26

7.1.3 MEASUREMENT RESULT

GSM 850:

The Worst Test Results for Channel 251/848.8 MHz						
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit(dBm)	Polarity	
1685.23	-41.85	-5.01	-46.86	-13.00	Horizontal	
2456.12	-43.61	-2.18	-45.79	-13.00	Vertical	
3645.78	-44.78	3.46	-41.32	-13.00	Vertical	
4536.58	-43.94	2.79	-41.15	-13.00	Horizontal	

PCS 1900:

The Worst Test Results for Channel 810/1909.8MHz						
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity	
1429.36	-43.85	-3.22	-47.07	-13.00	Vertical	
2563.47	-42.73	-0.24	-42.97	-13.00	Vertical	
3645.26	-45.12	3.98	-41.14	-13.00	Horizontal	
4563.56	-45.32	11.56	-33.76	-13.00	Vertical	
5689.25	-44.74	17.89	-26.85	-13.00	Horizontal	

UMTS band II:

The Worst Test Results for Channel 9938/1907.4MHz						
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity	
2000.00	-38.67	-2.25	-40.92	-13.00	Vertical	
9548.50	-39.38	-3.03	-42.41	-13.00	Horizontal	
13367.40	-42.52	-1.87	-44.39	-13.00	Horizontal	
15277.80	-42.69	8.52	-34.17	-13.00	Vertical	
17931.60	-44.34	18.7	-25.64	-13.00	Horizontal	

Page 18 of 26

UMTS band V:

The Worst Test Results for Channel 4458/846.4MHz					
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity
1598.26	-41.73	-2.26	-43.99	-13.00	Vertical
2365.78	-40.62	-3.12	-43.74	-13.00	Horizontal
4967.65	-43.89	-1.74	-45.63	-13.00	Horizontal
6457.86	-42.84	8.74	-34.1	-13.00	Vertical
7896.56	-43.12	17.89	-25.23	-13.00	Horizontal

Note: ARpl= Factor=Antenna Factor+ Cable loss-Amplifier gain.

The "Factor" value can be calculated automatically by software of measurement system.

Below 30MHZ no Spurious found and The GSM modes is the worst condition.

Report No.: AGC01665141104FE02 Page 19 of 26

PHOTOGRAPHS OF TEST SETUP

CONDUCTED EMISSION

RADIATED SPURIOUS EMISSION

Report No.: AGC01665141104FE02 Page 20 of 26

Report No.: AGC01665141104FE02 Page 21 of 26

PHOTOGRAPHS OF EUT

TOTAL VIEW OF EUT

TOP VIEW OF EUT

Report No.: AGC01665141104FE02 Page 22 of 26

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

Report No.: AGC01665141104FE02 Page 23 of 26

BACK VIEW OF EUT

LEFT VIEW OF EUT

Report No.: AGC01665141104FE02 Page 24 of 26

RIGHT VIEW OF EUT

Report No.: AGC01665141104FE02 Page 25 of 26

OPEN VIEW OF EUT-2

OPEN VIEW OF EUT-3

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

----END OF REPORT----