Hula Hooping Robot

Maheera Bawa, Michael Burgess, Sharmi Shah

2.74 FALL 2022
Bio-Inspired Robotics

Hula Hooping?

How do humans hula hoop?

Can we mimic hula hooping with a robot?

Humans use a spiral trajectory for hula hooping

System Modeling

2 DOF abstraction

final system

Research Questions

How do we minimize *rise time*?

What is the optimal *phase difference*?

Simulation Methods

- Abstract to 2D for simplicity
 - No gravity!
- Input trajectory for our rigid-body person to see how hoop responds
 - Models hip as point moving through space

Impose contact dynamics using spring-damper model...

$$F_{hoop} = (Kx_{error} + D\dot{x}_{error})\hat{n}_r$$

Trajectories

Circular Trajectory

Radius: 0.5

Spiral Trajectory

Start radius: 1 End radius: 0.1667

Circle

Radius: 0.5

Ang vel: 8π rad/s Rise time: 0.86 s

Phase diff: 0.01 rad

Spiral

Start radius:

End radius: 0.1667Ang vel: 8π rad/s Rise time: 0.32 s

Phase diff: 0.04 rad

Simulation Results

Simulation Results

- Ran sweep over circular trajectory parameters...

Phase Diff. [rad] 1.5 Spin speed [rad/s] 0.5 -0.5 10 0.6 0.2 0.4 0.8 Trajectory radius [/]

Phase difference calculated as average over steady state period.

Phase Difference

- Originally, we expected a phase difference of π .
- Started at new initial configuration to confirm results...
 - Hoop naturally moves back to phase difference of zero!

Experimental Methods: Hardware

Hoop Attachment

Bearing Purpose: constrain the hoop vertically while allowing it to spin

Bearing Position: operate at phase difference of 0 (ideal config)

Hardware Controls: Servo

Hardware Controls: Motor

current control with feedforward

$$duty_cycle = \frac{R*i_{des} + k_t*v + K_p*(i_{des} - i) + K_i*\sum (i_{des} - i)}{voltage}$$

simplified to no feedback + commanded speed

Rise Time Experiment Procedure

- 1. Pick a trajectory radius
- 2. Try 3 different duty cycles
- Note which trials can successfully lift the hoop to level in 3 seconds

Rise Time Experiment Procedure

Experimental Results

Low Speed

Radius: 0.4

Ang vel (rad/s): 11.1

Rise time (s): Inf

High Speed

Radius: 0.

Ang vel (rad/s): 22.20

Rise time (s): 0.41

Experimental Results

Circular Radius: 0.22

Ang vel: 22.20

Rise time: 0.65

Spiral

Starting Radius: 0.36 Ending Radius: 0.13

Ang vel: 22.20

Rise time: 0.4

Observations Between Different Starting Phase

Hoop is pulled by bearing because of less points of contact

Hoop is rotating about Linkage

Conclusion

Increase in radius with increase in speed results in shortest rise times

Boundary of successful rise time (< 3s) shows decay with an increase in trajectory radius

Phase difference of 0 is optimal

What's Next

- Gather more data on trajectory radius and rise time in hardware, this time measuring time values instead of pass fail
- Create 3D Simulation in MATLAB, factoring in gravity
- Improve the accuracy of the robot model
 - Mimic the human waist (rolling contact) in hardware
 - Decrease friction at contact point

References and Acknowledgements

[1] Cross, R. (2021). Physics of a hula hoop. In Physics Education (Vol. 56, Issue 2, p. 025015). IOP Publishing. https://doi.org/10.1088/1361-6552/abd875

Thank you to Prof. Kim, Andrew, Elijah, Adi, and Se Hwan for guiding us!

Additional Lessons

Observations: Concavity vs Convexity

Convex Contact
was less
successful than
Concave Contact
at lifting the hoop
Why?

Hypothesis:
Concave contact
allows for more
surface area in
contact, allowing
for upwards
normal force

Observations: Concavity vs Convexity in Humans

Waist juts in (concave)

Hip juts out (convex)

Where does Hoop naturally Spin? At Waist or Hip?

The WAIST!

