# Package 'SafeQuant'

June 7, 2017

| getAAProteinCoordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17             |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20             |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22             |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23             |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23<br>24       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25             |
| $\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25<br>25       |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25<br>26       |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>27       |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28             |
| eta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32             |
| $\mathcal{G}$ . The second of the se | 33             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36             |
| $\mathcal{G}$ . I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36             |
| 8 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37             |
| 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40             |
| hClustHeatMap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41             |
| isCon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>1</del> 2 |
| isDecoy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>42</b>      |
| isStrippedACs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43             |
| kinaseMotif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44             |
| maPlotSQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44             |
| missinValueBarplot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>17</b>      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51             |
| <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |

addIdQvalues 3

| addIo | Add identification leve q-values to ExpressionSet (calculated based on target-decoy score distribution) | ı  |
|-------|---------------------------------------------------------------------------------------------------------|----|
| Index |                                                                                                         | 75 |
|       |                                                                                                         |    |
|       | stripACs                                                                                                |    |
|       | standardise                                                                                             |    |
|       | sqNormalize                                                                                             |    |
|       | setNbSpectraPerProtein                                                                                  |    |
|       | - · · · · · · · · · · · · · · · · · · ·                                                                 |    |
|       | safeQuantAnalysis                                                                                       | 70 |
|       | rtNormalize                                                                                             |    |
|       | rollUp                                                                                                  | 68 |
|       | removeOutliers                                                                                          |    |
|       | purityCorrectTMT                                                                                        |    |
|       | plotXYDensity                                                                                           |    |
|       | plotVolcano                                                                                             |    |
|       |                                                                                                         |    |
|       |                                                                                                         |    |
|       |                                                                                                         |    |
|       |                                                                                                         |    |
|       |                                                                                                         | 61 |
|       | •                                                                                                       | 61 |
|       | •                                                                                                       | 60 |
|       | 1                                                                                                       | 59 |
|       |                                                                                                         | 58 |
|       |                                                                                                         | 58 |
|       | 1                                                                                                       | 57 |
|       |                                                                                                         | 56 |
|       |                                                                                                         | 55 |
|       | plotAllGGVolcanoes                                                                                      |    |
|       | plotAdjustedVsNonAdjustedRatio                                                                          |    |
|       | plotAbsEstCalibrationCurve                                                                              |    |
|       | parseScaffoldRawFile                                                                                    |    |
|       | parce Scaffold Raw File                                                                                 | 51 |

# Description

Add identification leve q-values to ExpressionSet (calculated based on target-decoy score distribution)

# Usage

```
addIdQvalues(eset = eset)
```

# Arguments

eset

ExpressionSet

#### **Details**

if ptm column is part if the ExpressionSet q-values are calculated seperately for modified and non-modified features

No details

### Value

ExpressionSet object

#### Note

No note

#### See Also

```
getIdLevelQvals
```

# **Examples**

```
print("No examples")
```

 ${\tt addScaffoldPTMFAnnotations}$ 

Add scaffold ptm annotaitons to tmt experiment

# Description

Add scaffold ptm annotaitons to tmt experiment

### Usage

```
addScaffoldPTMFAnnotations(eset, file)
```

# Arguments

eset ExpressionSet file path to Scaffold file

### Value

ExpressionSet object

# Note

No note

### References

No references

```
print("No examples")
```

barplotMSSignal 5

| barplotMSSignal |
|-----------------|
|-----------------|

Barplot of ms-signal per column

# Description

Barplot of ms-signal per column

# Usage

```
barplotMSSignal(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, ]),
  method = c("sum", "sharedSignal"), cex.lab = 1.25, cex.axis = 1.25,
  cex.names = 0.9, labels = rownames(pData(eset)), ...)
```

# Arguments

| eset      | expressionSet                      |
|-----------|------------------------------------|
| col       | default condition colors           |
| method    | c("median", "sum", "sharedSignal") |
| cex.lab   | default 1.25                       |
| cex.axis  | default 1.25                       |
| cex.names | default 0.9                        |
| labels    | labels                             |
|           | see plot                           |

# **Details**

No details

### Note

No note

#### References

NA

```
print("No examples")
```

6 createExpDesign

**COLORS** 

color vector

# Description

color vector

# Usage

**COLORS** 

# **Format**

An object of class character of length 668.

createExpDesign

Create Experimental Design

# Description

Create Experimental Design

# Usage

```
createExpDesign(tag, nbPlex)
```

# **Arguments**

tag user input tag e.g. 1,2,3:4,5,6 indicating two condition with 3 reps each

nbPlex tmt 6 or 10 plex

### **Details**

The first listed condition is always the control condition

No details

### Value

expDesign data.frame

#### Note

No note

### References

NA

```
print("No examples")
```

create Expression Dataset

Create ExpressionSet object

# Description

Create ExpressionSet object

# Usage

```
createExpressionDataset(expressionMatrix = expressionMatrix,
  expDesign = expDesign, featureAnnotations = featureAnnotations)
```

# Arguments

expressionMatrix

matrix of expression signals per feature and sample

expDesign

experimental design data.frame

 $feature {\tt Annotations}$ 

data.frame including e.g: Protein Description, Id score etc.

### **Details**

No details

### Value

ExpressionSet object

### Note

No note

### References

NA

# See Also

ExpressionSet

```
print("No examples")
```

createPairedExpDesign Create Paired Expdesign

# Description

Create Paired Expdesign

# Usage

createPairedExpDesign(eset)

# Arguments

eset

ExpressionSet

# **Details**

Add subject colum to phenoData design data.frame

### Value

ExpressionSet object

### Note

No note

#### References

NA

# See Also

ExpressionSet

```
print("No examples")
```

cvBoxplot 9

| cvBoxplot | C.V. boxplot  |
|-----------|---------------|
| CVDOXPIOL | C. v. boxpioi |

# Description

C.V. boxplot

# Usage

```
cvBoxplot(eset,
  col = as.character(.getConditionColors(eset)[unique(pData(eset)$condition),
  ]), cex.names = 0.9, cex.axis = 1.25, cex.lab = 1.25,
  ylab = "C.V. (%)", ...)
```

# **Arguments**

| eset      | ExpressionSet |
|-----------|---------------|
| col       | col           |
| cex.names | default 0.9   |
| cex.axis  | default 1.25  |
| cex.lab   | default 1.25  |
| ylab      | C.V.          |
|           | see plot      |

# **Details**

No details

# Note

No note

# References

NA

```
print("No examples")
```

10 dotProduct

cysteinFreqBarplot

Plot Cystein Frequency

# Description

Plot Cystein Frequency

### Usage

```
cysteinFreqBarplot(peptides, ...)
```

# **Arguments**

peptides vector ... see plot

### **Details**

Selecting for peptides of length 7-19

# Note

No note

# References

NA

# **Examples**

```
print("No examples")
```

dotProduct

Return dotProduct of two vectors

# Description

Return dotProduct of two vectors

# Usage

```
dotProduct(u, v, norm = F)
```

# Arguments

u vector 1 v vector 2

norm dp TRUE/FALSE

#### Value

dp

### Note

No note

#### References

NA

# **Examples**

```
print("No examples")
```

expDesignTagToExpDesign

Create experimental design data.frame from user input string

# Description

Create experimental design data.frame from user input string

# Usage

```
expDesignTagToExpDesign(tag, expDesignDefault)
```

# Arguments

```
\begin{array}{c} \text{tag} & \text{tag} \\ \text{expDesignDefault} \\ & \text{data.frame} \end{array}
```

### **Details**

tag: 1,2:3:4,5,6 condition is Control 1 Condition 1 TRUE 2 Condition 1 TRUE 3 Condition 1 TRUE 4 Condition 2 FALSE 5 Condition 2 FALSE 6 Condition 2 FALSE

# Value

data.frame describing experimental design

#### Note

No note

### References

NA

```
print("No examples")
```

export

Export content of safeQuantAnalysis object

# Description

Export content of safeQuantAnalysis object

### Usage

```
export(sqa, nbRows = nrow(sqa$pValue), file = NA)
```

### **Arguments**

sqa safeQuantAnalysis object

nbRows Number of rows to export. Features are ordred by increasing minimal p.value

file file path

### **Details**

NA

#### Note

No note

### References

NA

#### See Also

```
{\it safeQuantAnalysis}
```

# **Examples**

```
print("No examples")
```

```
{\tt getAAProteinCoordinates}
```

Get amino acid coordinates on protein

# Description

Get amino acid coordinates on protein

### Usage

```
getAAProteinCoordinates(peptideSeq, proteinSeq, aaRegExpr = "[STY]")
```

getAccessionNumber 13

### **Arguments**

peptideSeq peptide sequence proteinSeq protein sequence aaRegExpr target AA reg exp

### **Details**

NA

#### Value

vector of protein coordinates (mmodification residue number)

### Note

No note

### References

NA

# **Examples**

```
print("No examples")
```

getAccessionNumber

Extract accession numbers from Uniprot proteinNames

# Description

Extract accession numbers from Uniprot proteinNames

# Usage

```
getAccessionNumber(proteinName)
```

# **Arguments**

proteinName vector of protein names

#### **Details**

```
sp|A0MZ66|SHOT1_HUMAN -> A0MZ66
```

### Value

vector of uniprot accession numbers

#### Note

No note

14 getAllCV

# **Examples**

```
print("No examples")
```

getAllCV

Calculate Coefficiant of Variance per feature (Relative standard Deviation) per Condition

# Description

Calculate Coefficiant of Variance per feature (Relative standard Deviation) per Condition

# Usage

```
getAllCV(eset)
```

# Arguments

eset

ExpressionSet

# **Details**

```
CV = sd / mean
```

# Value

data.frame of CVs per condition

### Note

No note

# References

NA

# See Also

getCV

```
print("No examples")
```

getAllDotProduct 15

getAllDotProduct

Return dotProducts to most transition intensities of most intense runs

### **Description**

Return dotProducts to most transition intensities of most intense runs

# Usage

```
getAllDotProduct(eset, nbRefRuns = 4)
```

### **Arguments**

eset ExpressionSet nbRefRuns (default top 4)

#### Value

dp

#### Note

No note

# References

NA

# **Examples**

```
print("No examples")
```

getAllEBayes

Perform statistical test (mderated t-test), comparing all case to control

### **Description**

Perform statistical test (mderated t-test), comparing all case to control

### Usage

```
getAllEBayes(eset = eset, adjust = F, log = T, method = "pairwise",
   adjustFilter = matrix(F, nrow = nrow(eset), ncol =
   length(levels(pData(eset)$condition)) - 1))
```

16 getBaselineIntensity

### **Arguments**

eset ExpressionSet

adjust TRUE/FALSE adjust for multiple testing using Benjamini & Hochberg (1995)

method

log T/F log-transform expression values

method c("all", "pairwise")

adjustFilter matrix T/F do not adjust for multiple testing

### **Details**

No details

#### Value

ExpressionSet object

#### Note

No note

#### References

Empirical Bayes method, Smyth (2004), http://www.ncbi.nlm.nih.gov/pubmed/16646809

### See Also

eBayes

### **Examples**

```
print("No examples")
```

getBaselineIntensity Get signal at zscore x (x standard deviations below mean)

### **Description**

Get signal at zscore x (x standard deviations below mean)

### Usage

```
getBaselineIntensity(intensities, promille = 5)
```

# Arguments

intensities refrence run signals

promille baseline value set as specified promille

# Value

baseline value

getCV 17

### Note

No note

# References

NA

# **Examples**

```
print("No examples")
```

getCV

Calculate Coefficiant of Variance per feature (Relative standard Deviation)

# Description

Calculate Coefficiant of Variance per feature (Relative standard Deviation)

# Usage

getCV(data)

# **Arguments**

data

data.frame of replicate signals

# **Details**

CV = sd / mean

# Value

vector of CVs

# Note

No note

### References

NA

```
print("No examples")
```

```
{\tt getExpDesignProgenesisCsv}
```

Parse Experimental Design from Progenesis Csv Export

# Description

Parse Experimental Design from Progenesis Csv Export

# Usage

```
getExpDesignProgenesisCsv(file,
  expressionColIndices = .getProgenesisCsvExpressionColIndices(file))
```

# Arguments

```
\begin{tabular}{ll} file & path to progenesis csv file \\ expressionColIndices \\ & default .getProgenesisCsvExpressionColIndices(file) \\ \end{tabular}
```

### **Details**

No details

# Value

data.frame describing experimental design

# Note

No note

### References

NA

```
print("No examples")
```

getGeneName 19

getGeneName

Extract Gene Name from uniprot fasta header description

# Description

Extract Gene Name from uniprot fasta header description

### Usage

```
getGeneName(proteinDescription)
```

# Arguments

```
\begin{tabular}{ll} \textbf{proteinDescription} \\ \textbf{vector of descriptions} \\ \end{tabular}
```

### **Details**

ATP synthase subunit beta OS=Salmonella typhimurium (strain SL1344) GN=atpD -> atpD

#### Value

vector of gene names

#### Note

No note

### **Examples**

```
print("No examples")
```

 ${\tt getGlobalNormFactors}$ 

Get normalization factors. calculated as summed/median signal per run (column) over summed/median of first run.

### **Description**

Get normalization factors. calculated as summed/median signal per run (column) over summed/median of first run.

#### Usage

```
getGlobalNormFactors(eset, method = "median")
```

### **Arguments**

 $\begin{array}{ll} \text{eset} & \text{ExpressionSet} \\ \text{method} & \text{c("sum","median)} \end{array}$ 

20 getGoTermDF

### **Details**

No details

#### Value

vector of normalization factors

### Note

No note

#### References

NA

# **Examples**

```
print("No examples")
```

getGoTermDF

Get Go term data for a list of uniprot accession numbers

# Description

Get Go term data for a list of uniprot accession numbers

# Usage

```
getGoTermDF(taxId = taxId, acs = acs)
```

# Arguments

taxId uniprot taxon identifier

acs vector uniprot accession numbers

### Value

```
data.frame "UNIPROTKB" "GO-ID" "ccIds" "mfIds" "bpIds" "ccTerms" "mfTerms" "bpTerms"
```

### Note

No note

### References

NA

```
print("No examples")
```

getIBAQEset 21

| getIBAQEset | Calculate intensity-based absolute-protein-quantification (iBAQ) metric per protein |
|-------------|-------------------------------------------------------------------------------------|
|             |                                                                                     |

### **Description**

Calculate intensity-based absolute-protein-quantification (iBAQ) metric per protein

### Usage

```
getIBAQEset(eset, proteinDB = NA, peptideLength = c(5, 36),
   nbMiscleavages = 0, proteaseRegExp = .getProteaseRegExp("trypsin"))
```

#### **Arguments**

eset protein level ExpressionSet

proteinDB list protein sequneces

peptideLength peptide length interval (to get number of peptides used for normalization)

nbMiscleavages number of mis-cleavages allowed when digesting protein sequences in silico (to

get number of peptides used for normalization)

proteaseRegExp protease Reg Exp cleavage rule

#### **Details**

No details

#### Value

ExpressionSet

### Note

No note

### References

Global quantification of mammalian gene expression control, Schwanhausser (2011), http://www.ncbi.nlm.nih.gov/pubmed/21593866, Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Ahrne (2013), http://www.ncbi.nlm.nih.gov/pubmed/23794183

```
print("No examples")
```

22 getImpuritiesMatrix

 ${\tt getIdLevelQvals}$ 

Calculates identification level q-values based on target-decoy score distributions

# Description

Calculates identification level q-values based on target-decoy score distributions

# Usage

```
getIdLevelQvals(scores, isDecoy)
```

# **Arguments**

scores peptide/protein identficationscore

isDecoy vector of TRUE/FALSE

# **Details**

```
q-value = (Nb. Decoy Entries at idScore Threshold S^*) / (Nb. Target Entries at idScore Threshold S). (* idScore >= S)
```

### Value

vector of q.values

#### Note

No note

### References

NA

### **Examples**

```
print("No examples")
```

getImpuritiesMatrix

Get Thermo TMT impurity matrix

# Description

Get Thermo TMT impurity matrix

### Usage

```
getImpuritiesMatrix(plexNb = 6)
```

getIntSumPerProtein 23

### **Arguments**

plexNb integer, 6 or 10 plex

### **Details**

No details

### Value

impurity matrix matrix

#### Note

No note

#### References

NA

### **Examples**

```
print("No examples")
```

getIntSumPerProtein

Sum up raw intensities per protein and channel. keep track of number of summed spectra and unique peptides

# Description

Sum up raw intensities per protein and channel. keep track of number of summed spectra and unique peptides

### Usage

```
getIntSumPerProtein(intData, proteinACs, peptides, minNbPeptPerProt = 1)
```

# Arguments

intData data.frame of intensities per channel proteinACs vector of protein accession numbers

peptides vector of peptide sequneces

 $\verb|minNbPeptPerProt|$ 

minimal number of peptides per protein

# **Details**

NA

No details

24 getKinaseFreq

### Value

list containing 3 objects 1) data.frame of channel intensities per protein ac, 2) vector listing number of summed spectra per protein, 3) vector listing number of summed peptides per protein

### Note

No note

#### References

NA

#### **Examples**

```
print("No examples")
```

getKinaseFreq

Get kinase matching frequnecy of each phospho peptide subsequnece

# Description

Get kinase matching frequnecy of each phospho peptide subsequnece

# Usage

```
getKinaseFreq(phosphoSeqs)
```

# **Arguments**

phosphoSeqs

vector of phospho peptide sub sequneces 'PARVVRpSRREEEE'

# Value

ExpressionSet object

# Note

No note

### References

NA

```
print("No examples")
```

getKinases 25

getKinases

Get all kinases matching phospho peptide sub sequnece

# Description

Get all kinases matching phospho peptide sub sequnece

# Usage

```
getKinases(phosphoSeq)
```

# Arguments

phosphoSeq

scalar peptide sub sequnece 'PARVVRpSRREEEE'

# Value

ExpressionSet object

# Note

No note

#### References

NA

# **Examples**

```
print("No examples")
```

getLOD

Return dilution curve limit of detection

# Description

Return dilution curve limit of detection

### Usage

```
getLOD(dCurve, method = "blank")
```

# **Arguments**

dCurve data.frame

 $\mbox{method} \qquad \qquad c(\mbox{"blank","low"})$ 

# Value

lod

26 getLoocvFoldError

#### Note

No note

### References

NA

# **Examples**

```
print("No examples")
```

getLoocvFoldError

Leave-One-Out Cross Validate Qunatification Model

# Description

Leave-One-Out Cross Validate Qunatification Model

# Usage

```
getLoocvFoldError(df)
```

# Arguments

df

data.frame of two columns 1) "signal" - ms metric 2) "cpc" absolute quantity

# Details

No details

# Value

data.frame of fold errors per (left-out) protein

### Note

No note

### References

NA

### See Also

NA

```
print("No examples")
```

getMaxIndex 27

getMaxIndex

get index of max in vecotr of numeric values

# Description

get index of max in vecotr of numeric values

# Usage

```
getMaxIndex(v)
```

# **Arguments**

٧

vector

getMeanCenteredRange

Get modification coordinates on protein

# Description

Get modification coordinates on protein

# Usage

```
getMeanCenteredRange(d, nbSd = 4)
```

# **Arguments**

d numeric vector

nbSd range spanning number of sd frmo mean

#### **Details**

NA

# Value

vector range boundries

# Note

No note

# References

NA

```
print("No examples")
```

getModifProteinCoordinates

Get modification coordinates on protein

# Description

Get modification coordinates on protein

### Usage

```
getModifProteinCoordinates(modifAnnot, peptideSeq, proteinSeq, format = 1)
```

# Arguments

modifannot modification as annotated by progenesis. E.g. '[15] Phospho (ST)|[30] Phospho

(ST)

peptideSeq peptide sequence
proteinSeq protein sequence

format c(1,2) 1. progenesis 2. scaffold

# Details

NA

# Value

vector of protein coordinates (mmodification residue number)

#### Note

No note

### References

NA

```
print("No examples")
```

getMotifFreq 29

getMotifFreq

Get motif matching frequnecy of each phospho peptide subsequnece

# Description

Get motif matching frequnecy of each phospho peptide subsequnece

### Usage

```
getMotifFreq(phosphoSeqs)
```

# **Arguments**

phosphoSeqs

vector of phospho peptide sub sequneces 'PARVVRpSRREEEE'

#### Value

ExpressionSet object

### Note

No note

#### References

NA

# **Examples**

```
print("No examples")
```

getMotifX

Create motif-x peptide annotation

# Description

Create motif-x peptide annotation

### Usage

```
getMotifX(modifPos, peptide, proteinSeq, motifLength = 4)
```

# Arguments

modifPos vector positions
peptide peptide sequence
proteinSeq protein sequence

motifLength motif flanking sequence

### **Details**

motif-x example PGDYS\*TTPG

### Value

vector of motifs

#### Note

No note

### References

NA

### **Examples**

```
print("No examples")
```

getNbDetectablePeptides

Get number peptides passing defined length criteria

# Description

Get number peptides passing defined length criteria

# Usage

```
getNbDetectablePeptides(peptides, peptideLength = c(5, 36))
```

# Arguments

peptides list of peptides

peptideLength vector of two integers defining peptide length range

### **Details**

No details

### Value

integer corresponding to number of detectable peptides

### Note

No note

```
print("No examples")
```

getNbMisCleavages 31

getNbMisCleavages

Get number of mis-cleavages perp peptide

# Description

Get number of mis-cleavages perp peptide

### Usage

```
getNbMisCleavages(peptide, protease = "trypsin")
```

### **Arguments**

peptide character vector protease regular expression

# **Details**

NA

# Value

vector ofintegers

### Note

No note

### References

NA

# **Examples**

```
print("No examples")
```

```
getNbPeptidesPerProtein
```

Get number of peptides per protein

# Description

Get number of peptides per protein

### Usage

```
getNbPeptidesPerProtein(eset)
```

# **Arguments**

eset

Expression Set

# Details

NA

# Value

table

# Note

No note

### References

NA

# **Examples**

```
print("No examples")
```

```
getNbSpectraPerProtein
```

Get number of spectra per protein

# Description

Get number of spectra per protein

# Usage

```
getNbSpectraPerProtein(eset)
```

# Arguments

eset

ExpressionSet

# **Details**

NA

#### Value

table

### Note

No note

# References

NA

```
print("No examples")
```

getPeptides 33

 ${\tt getPeptides}$ 

Digest protein

### **Description**

Digest protein

### Usage

```
getPeptides(proteinSeq, proteaseRegExp = .getProteaseRegExp("trypsin"),
    nbMiscleavages = 0)
```

# Arguments

```
\begin{array}{ll} {\rm proteinSeq} & {\rm protein\ sequence} \\ {\rm proteaseRegExp} & {\rm protease\ Regular\ Expression} \\ {\rm nbMiscleavages} & {\rm default\ 0} \\ \end{array}
```

#### **Details**

No details

### Value

vector of peptides

### Note

No note

# **Examples**

```
print("No examples")
```

getRatios

Calculate ratios, comparing all case to control

# Description

Calculate ratios, comparing all case to control

### Usage

```
getRatios(eset, method = "median", log2 = T)
```

# Arguments

eset ExpressionSet

method median, mean, paired

log2 transform

34 getRTNormFactors

### **Details**

No details

#### Value

ExpressionSet object

### Note

No note

### References

NA

# **Examples**

```
print("No examples")
```

 ${\tt getRTNormFactors}$ 

Get retentiontime base normalization factors

# Description

Get retentiontime base normalization factors

# Usage

```
getRTNormFactors(eset, minFeaturesPerBin = 100)
```

# Arguments

eset

ExpressionSet

 ${\tt minFeaturesPerBin}$ 

minumum number of features per bin. If nb. features are < minFeaturesPerBin -> include neighbouring bins.

### **Details**

No details

# Value

data.frame normalization factors per retention time bin (minute)

# Note

No note

getScoreCutOff 35

#### References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

# **Examples**

```
print("No examples")
```

getScoreCutOff

Get score cutoff for a given fdr cut-off

# Description

Get score cutoff for a given fdr cut-off

# Usage

```
getScoreCutOff(scores, isDecoy, fdrCutOff = 0.01)
```

# **Arguments**

scores peptide/protein identficationscore

isDecoy vector of TRUE/FALSE

 $\texttt{fdrCutOff} \qquad [0,1]$ 

### **Details**

NA

### Value

scoreCutoff

# Note

No note

### References

NA

```
print("No examples")
```

36 getTopX

getSignalPerCondition Summarize replicate signal per condition (min)

# Description

Summarize replicate signal per condition (min)

# Usage

```
getSignalPerCondition(eset, method = "median")
```

# Arguments

eset ExpressionSet

method median (default), mean, max, min, sd

### **Details**

No details

### Value

data.frame of per condition signals

# Note

No note

### References

NA

# **Examples**

```
print("No examples")
```

getTopX

Calculate Mean of X most intense features

# Description

Calculate Mean of X most intense features

# Usage

```
getTopX(entryData, topX = 3)
```

getUserOptions 37

## **Arguments**

entryData data.frame listing feature intensities of one entry. Typically rows corresponds to

Peptide entries of one protein

topX best X flyers

#### **Details**

No details

#### Value

vector of topX intensities per column (sample)

#### Note

No note

## References

Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition, Silva (2006), http://www.ncbi.nlm.nih.gov/pubmed/16219938, Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Ahrne (2013), http://www.ncbi.nlm.nih.gov/pubmed/23794183

## **Examples**

```
print("No examples")
```

 ${\tt getUserOptions}$ 

Read User Specified Command Line Options

## Description

Read User Specified Command Line Options

## Usage

```
getUserOptions(version = version)
```

# Arguments

version

Safequant version number

#### **Details**

No details

## Value

user options list

38 ggDilutionCurve

## Note

No note

## References

NA

# **Examples**

```
print("No examples")
```

ggDilutionCurve

Plot dilution curve

# Description

Plot dilution curve

# Usage

```
ggDilutionCurve(dCurve, lod, title = "")
```

# Arguments

dCurve data.frame columns concentration, intensity

lod limit of detection

title plot title

## Value

ggplot2

## Note

No note

## References

NA

```
print("No examples")
```

ggVolcanoPlot 39

| ggVolcanoPlot | Plots volcano, data points colored by max cv of the 2 compared conditions |
|---------------|---------------------------------------------------------------------------|
|---------------|---------------------------------------------------------------------------|

## **Description**

Plots volcano, data points colored by max cv of the 2 compared conditions

## Usage

```
ggVolcanoPlot(data = data, title = "", pValueThrs = 0.05,
  log2RatioThrs = 0.5849625, thrsLineCol = "lightgrey", thrsLineLty = 2,
  xlab = "log2 ratio", ylab = "-log10 pValue", textSize = 20,
  xlim = range(data$ratio, na.rm = T), ylim = range(-log10(data$pValue),
  na.rm = T), abline = c("both"), topNlabels = 10)
```

# Arguments

| data          | data.frame                        |
|---------------|-----------------------------------|
| title         | default no title                  |
| pValueThrs    | default 0.01                      |
| log2RatioThrs | default log2(0.5)                 |
| thrsLineCol   | default "lightgrey"               |
| xlab          | default "log2 ratio"              |
| ylab          | default "-log10 pValue"           |
| textSize      | default 20                        |
| xlim          | xlim                              |
| ylim          | ylim                              |
| abline        | c("none","both","ratio","pvalue") |
| defalut       | 2                                 |

## **Details**

```
data.frame input object should contain columns ("ratio", "pValue", "geneName", "ac", "cv", "description")
```

#### Value

```
ggplot2 object
```

#### Note

No note

## References

NA

```
print("No examples")
```

40 globalNormalize

| globalNormalize | Normalize, Norm factors calculated as median signal per run (col- |
|-----------------|-------------------------------------------------------------------|
|                 | umn) over median of first run.                                    |

# Description

Normalize, Norm factors calculated as median signal per run (column) over median of first run.

# Usage

```
globalNormalize(eset, globalNormFactors)
```

## Arguments

```
eset ExpressionSet
globalNormFactors
globalNormFactors
```

## **Details**

No details

## Value

eset ExpressionSet

## Note

No note

## References

NA

## See Also

getGlobalNormFactors

```
print("No examples")
```

hClustHeatMap 41

| Hierarchical clustering heat map, cluster by runs intensity, features by |
|--------------------------------------------------------------------------|
| ratio and display log2 ratios to control median                          |
|                                                                          |

## Description

Hierarchical clustering heat map, cluster by runs intensity, features by ratio and display log2 ratios to control median

## Usage

```
hClustHeatMap(eset, conditionColors = .getConditionColors(eset),
  breaks = seq(-2, 2, length = 20), dendogram = "column",
  legendPos = "left", ...)
```

## **Arguments**

## **Details**

No details

## Note

No note

## References

NA

```
print("No examples")
```

isDecoy

isCon

Check if protein is a contaminant entry

# Description

Check if protein is a contaminant entry

## Usage

isCon(ac)

## **Arguments**

ac

vector of protein accession numbers

## **Details**

contanminants proteins are typically annotated as: CON\_P0000

#### Value

vector TRUE/FALSE

## Note

No note

## References

NA

# **Examples**

```
print("No examples")
```

isDecoy

Check if protein is a decoy entry

# Description

Check if protein is a decoy entry

## Usage

```
isDecoy(ac)
```

## **Arguments**

ac

vector of protein accession numbers

isStrippedACs 43

#### **Details**

decoy proteins are typically annotated as: REV\_P0000

## Value

vector TRUE/FALSE

## Note

No note

## References

NA

## **Examples**

print("No examples")

 $is {\tt StrippedACs}$ 

Check if ACs are in "non-stripped" uniprot format e.g. "sp\Q8CHJ2\AQP12\_MOUSE"

## Description

Check if ACs are in "non-stripped" uniprot format e.g. "splQ8CHJ2|AQP12\_MOUSE"

# Usage

isStrippedACs(acs)

## **Arguments**

acs

accession numbers

## Details

TRUE if less than 10

#### Value

boolean TRUE/FALSE

## Note

No note

## References

NA

```
print("No examples")
```

maPlotSQ

| kinaseMotif | Kinase motifs |
|-------------|---------------|
|-------------|---------------|

# Description

Human Protein Reference Database Serine/Threonine motifs http://www.hprd.org/serine\_motifs The variables are as follows:

## Usage

kinaseMotif

## **Format**

A data frame with 175 rows and 2 variables:

```
motif kinase motif)
```

kinase kinase

```
maPlotSQ ma-plot
```

# Description

ma-plot

# Usage

```
maPlotSQ(eset, sample = colnames(exprs(eset))[1], cex.lab = 1.5,
  cex.axis = 1.5, lwd = 2, pch = 1, col = rgb(0, 100, 0, 50,
  maxColorValue = 255), ...)
```

# Arguments

| ExpressionSet      |
|--------------------|
| selected condition |
| default 1.5        |
| default 1.5        |
| default 2          |
| default 1          |
| green transparent  |
| see plot           |
|                    |

## Note

No note

missinValueBarplot 45

#### References

NA

## **Examples**

```
print("No examples")
```

missinValueBarplot

Plot Percentage of Features with with missing values

# Description

Plot Percentage of Features with with missing values

## Usage

```
missinValueBarplot(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, ]),
  cex.axis = 1.25, cex.lab = 1.25, ...)
```

# Arguments

| eset     | ExpressionSet |
|----------|---------------|
| col      | col           |
| cex.axis | cex.axis      |
| cex.lab  | cex.lab       |
|          | see plot      |

## **Details**

No details

## Note

No note

## References

NA

```
print("No examples")
```

46 pairsAnnot

option\_list

Command Line Option List

## **Description**

Command Line Option List

## Usage

```
option_list
```

#### **Format**

An object of class list of length 30.

pairsAnnot

Plot lower triangle Pearsons R<sup>2</sup>. Diagonal text, upper triangle all against all scatter plots with lm abline

## **Description**

Plot lower triangle Pearsons  $R^2$ . Diagonal text, upper triangle all against all scatter plots with lm abline

## Usage

```
pairsAnnot(data, textCol = rep(1, ncol(data)), diagText = colnames(data),
  col = rgb(0, 100, 0, 50, maxColorValue = 255), isHeatCol = F,
  cexTxt = 2, ...)
```

# Arguments

```
data data.frame
textCol text color
diagText diagnoal text
col dot col
isHeatCol heat colors
cexTxt cex txt
... see plot
```

#### **Details**

No details

## Note

No note

#### References

NA

## **Examples**

```
print("No examples")
```

 $\verb"parseMaxQuantProteinGroupTxt"$ 

Parse MaxQuant Protein Group Txt

## Description

Parse MaxQuant Protein Group Txt

## Usage

```
parseMaxQuantProteinGroupTxt(file = file, expDesign = expDesign,
  method = "auc")
```

# Arguments

file path to MaxQuant Protein txt file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

#### **Details**

No details

## Value

ExpressionSet object

## Note

No note

## References

NA

## See Also

ExpressionSet

```
print("No examples")
```

 ${\tt parseProgenesisFeatureCsv}$ 

Parse Progenesis Feature Csv Export

## Description

Parse Progenesis Feature Csv Export

# Usage

```
parseProgenesisFeatureCsv(file = file,
  expDesign = getExpDesignProgenesisCsv(file), method = "auc")
```

## Arguments

file path to Progenesis Feature csv file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

#### **Details**

No details

## Value

ExpressionSet object

#### Note

No note

# References

NA

## See Also

ExpressionSet

```
print("No examples")
```

```
parse Progenesis Peptide Measurement Csv\\
```

Parse Progenesis Peptide Measurement Csv Export

## Description

Parse Progenesis Peptide Measurement Csv Export

## Usage

```
parseProgenesisPeptideMeasurementCsv(file, expDesign = expDesign,
  method = "auc",
  expressionColIndices = .getProgenesisCsvExpressionColIndices(file, method =
  method), uniqueProteins = F)
```

## **Arguments**

file path to Progenesis Peptide Measurement csv file

expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

 ${\tt expressionColIndices}$ 

default .getProgenesisCsvExpressionColIndices()

uniqueProteins T/F keep unique peptides only

## Details

No details

## Value

ExpressionSet object

#### Note

No note

## References

NA

## See Also

ExpressionSet

```
print("No examples")
```

 ${\tt parseProgenesisProteinCsv}$ 

Parse Progenesis Protein Csv

## Description

Parse Progenesis Protein Csv

# Usage

```
parseProgenesisProteinCsv(file = file, expDesign = expDesign,
  method = "auc")
```

# Arguments

file path to Progenesis Protein csv file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

#### **Details**

No details

## Value

ExpressionSet object

## Note

No note

# References

NA

# See Also

ExpressionSet

```
print("No examples")
```

```
{\tt parseScaffoldPTMReport}
```

Parse scaffold PTM Spectrum Report

## Description

Parse scaffold PTM Spectrum Report

## Usage

```
parseScaffoldPTMReport(file)
```

## Arguments

file

path to Scaffold file

## **Details**

No details

## Value

data.frame

## Note

No note

#### References

NA

## **Examples**

```
print("No examples")
```

parseScaffoldRawFile Parse scaffold output .xls file (RAW export)

# Description

Parse scaffold output .xls file (RAW export)

# Usage

```
parseScaffoldRawFile(file, expDesign = expDesign, keepFirstAcOnly = FALSE,
  isPurityCorrect = T)
```

## **Arguments**

file path to Scaffold file

expDesign experimental design data.frame

keepFirstAcOnly

TRUE/FALSE If multiple ACs in Accession. Numbers filed. Then keep the first

one only

isPurityCorrect

do purity correction

## **Details**

No details

## Value

ExpressionSet object

## Note

No note

## References

NA

## See Also

ExpressionSet

## **Examples**

```
print("No examples")
```

perFeatureNormalization

Per Feature Normalization

# Description

Per Feature Normalization

# Usage

```
perFeatureNormalization(eset, normFactors)
```

## Arguments

eset ExpressionSet

normFactors matrix normalization factors (logged) (row names are proteins)

#### **Details**

Example Usage: Normalize phospho peptide signals for Protein Changes

#### Value

ExpressionSet object

#### Note

No note

#### References

No references

#### **Examples**

```
print("No examples")
```

```
plotAbsEstCalibrationCurve
```

Plot absolut Estimation calibration Curve

## Description

Plot absolut Estimation calibration Curve

#### Usage

```
plotAbsEstCalibrationCurve(fit, dispElements = c("formula", "lowess",
   "stats"), xlab = "Conc. (CPC) ", ylab = "Pred. Conc. (CPC) ",
   predictorName = paste("log10(", names(coef(fit))[2], ")", sep = ""),
   text = F, cex.lab = 1, cex.axis = 1, cex.text = 1, cex.dot = 1,
   main = "", ...)
```

# **Arguments** fit

```
c("formula", "lowess", "stats")
dispElements
xlab
                  xlab
ylab
                  ylab
predictorName
                  predictorName
text
                  add names beside each dot
                  expansion factor for axis labels
cex.lab
                  expansion factor for axis
cex.axis
                  expansion factor for legend
cex.text
cex.dot
                  expansion factor for plotted dots
main
                  main
                  see plot
. . .
```

simple log-linear model

## Note

No note

## References

NA

# **Examples**

```
print("No examples")
```

 $\verb|plotAdjustedVsNonAdjustedRatio||$ 

Plot adjusted tmt ratios vs original ratios

# Description

Plot adjusted tmt ratios vs original ratios

# Usage

```
plotAdjustedVsNonAdjustedRatio(ratio, unAdjustedRatio)
```

# Arguments

```
ratio data.frame unAdjustedRatio data.frame
```

#### **Details**

plot adjusted tmt ratios vs original ratios

## Note

No note

## References

NA

```
print("No examples")
```

plotAllGGVolcanoes 55

plotAllGGVolcanoes

Plots volcano of all condition comparisons

## Description

Plots volcano of all condition comparisons

## Usage

```
plotAllGGVolcanoes(sqa, isAdjusted = T, ...)
```

## **Arguments**

sqa SafeQuantAnalysis object isAdjusted (T/F) plot adjusted pvalues

see ggVolcanoPlot

#### **Details**

data.frame input object should contain columns ("ratio", "pValue", "geneName", "ac", "cv", "description")

#### Value

ggplot2 object

## Note

No note

## References

NA

# **Examples**

```
print("No examples")
```

 ${\tt plotExpDesign}$ 

Display experimental design, high-lighting the control condition

## Description

Display experimental design, high-lighting the control condition

## Usage

```
plotExpDesign(eset, condColors = .getConditionColors(eset), version = "X")
```

56 plotIdScoreVsFDR

## **Arguments**

eset ExpressionSet condColors condition colors version version number

## **Details**

No details

#### Note

No note

## References

NA

## **Examples**

```
print("No examples")
```

plotIdScoreVsFDR

Plot FDR vs. identification score

## Description

Plot FDR vs. identification score

## Usage

```
plotIdScoreVsFDR(idScore, qvals, qvalueThrs = 0.01,
  ylab = "False Discovery Rate", xlab = "Identification Score", ...)
```

## **Arguments**

idScore vector of identification scores

qvals vector of q-valres

qvalueThrs threshold indicated by horizontal line

ylab default False Discovery Rate xlab default Identification Score

... see plot

## **Details**

No details

#### Note

No note

plotLogo 57

#### References

NA

## **Examples**

```
print("No examples")
```

plotLogo

Plot sequence logo

# Description

Plot sequence logo

## Usage

```
plotLogo(motif, bgPeptides = "ACDEFGHIKLMNPQRSTVWY", main = "",
   targetResidues = c("S", "T", "Y"), ic.scale = F, ...)
```

## **Arguments**

motif list of target residue centered motfis

bgPeptides peptides used to calculate residue background frequency (default uniform)

main see plot

targetResidues default[STY]

ic.scale logical. If TRUE, the height of each column is proportional to its information

content. Otherwise, all columns have the same height.

## Note

No note

## References

NA

```
print("No examples")
```

```
plotMSSignalDistributions
```

Plot ms.signal distributions

## Description

Plot ms.signal distributions

# Usage

```
plotMSSignalDistributions(d, col = 1:100, ylab = "Frequnecy",
    xlab = "MS-Signal", ...)
```

## Arguments

| d    | matrix of ms-signals |
|------|----------------------|
| col  | color                |
| ylab | default "Frequnecy"  |
| xlab | default "MS-Signal"  |
|      | see plot             |

#### **Details**

No details

#### Note

No note

## References

NA

# **Examples**

```
print("No examples")
```

plotNbIdentificationsVsRT

Plot the number of identified Features per Reteintion Time minute.

# Description

Plot the number of identified Features per Reteintion Time minute.

## Usage

```
plotNbIdentificationsVsRT(eset, cex.axis = 1.25, cex.lab = 1.25,
  col = "blue", lwd = 2, ...)
```

#### **Arguments**

| eset     | ExpressionSet     |
|----------|-------------------|
| cex.axis | default 1.25      |
| cex.lab  | default 1.25      |
| col      | default "blue"    |
| lwd      | default 2         |
|          | see plot see plot |

## Note

No note

#### References

NA

## **Examples**

```
print("No examples")
```

plotNbValidDeFeaturesPerFDR

Plot Total Number of diffrentially Abundant Features (applying ratio cutoff) vs. qValue/pValue for all conditions

## Description

Plot Total Number of diffrentially Abundant Features (applying ratio cutoff) vs. qValue/pValue for all conditions

## Usage

```
plotNbValidDeFeaturesPerFDR(sqa, upRegulated = T, log2RatioCufOff = log2(1),
    pvalCutOff = 1, isLegend = T, isAdjusted = T, ylab = "Nb. Features",
    xlim = NA, ylim = NA, ...)
```

## Arguments

sqa SafeQuantAnalysis Object

 $up Regulated \qquad TRUE/FALSE \ select \ for \ up regulated \ features$ 

log2RatioCufOff

log2 ratio cut-off

pvalCutOff pValue/qValue cut-off

isLegend TRUE/FALSE display legend

isAdjusted TRUE/FALSE qValues/pValue on x-axis

ylab default Nb. Features

xlim see plot
ylim see plot
... see plot

## **Details**

No details

## Note

No note

## References

NA

## **Examples**

```
print("No examples")
```

```
{\tt plotPrecMassErrorDistrib}
```

Plot Precursor Mass Error Distribution

# Description

Plot Precursor Mass Error Distribution

## Usage

```
plotPrecMassErrorDistrib(eset, pMassTolWindow = c(-10, 10), ...)
```

# Arguments

```
eset ExpressionSet

pMassTolWindow Precursor Mass Error Tolerance Window

... see plot
```

## **Details**

No details

## Note

No note

## References

NA

```
print("No examples")
```

plotPrecMassErrorVsScore

Plot precursorMass error v.s score highlighting decoy and displaying user specified user specified precursor mass filter

## Description

Plot precursorMass error v.s score highlighting decoy and displaying user specified user specified precursor mass filter

#### Usage

```
plotPrecMassErrorVsScore(eset, pMassTolWindow = c(-10, 10), ...)
```

## **Arguments**

```
eset ExpressionSet

pMassTolWindow Precursor Mass Error Tolerance Window

see plot
```

## **Details**

No details

## Note

No note

#### References

NA

## **Examples**

```
print("No examples")
```

plotQValueVsPValue

Plot qValue vs pValue

## Description

Plot qValue vs pValue

## Usage

```
plotQValueVsPValue(sqa, lim = c(0, 1), ...)
```

62 plotROC

## Arguments

sqa SafeQuantAnalysis Object
lim x-axis and y-axis range
... see plot

## **Details**

No details

#### Note

No note

#### References

NA

# **Examples**

```
print("No examples")
```

plotROC

Plot Number of Identifications vs. FDR

# Description

Plot Number of Identifications vs. FDR

## Usage

```
plotROC(qvals, qvalueThrs = 0.01, xlab = "False Discovery Rate",
  ylab = "Nb. Valid Identifications", xlim = c(0, 0.1), breaks = 100,
  col = "blue", lwd = 1.5, ...)
```

## Arguments

| qvals      | vector of q-values                   |
|------------|--------------------------------------|
| qvalueThrs | threshold indicated by vertical line |
| xlab       | default "False Discovery Rate"       |
| ylab       | default "Nb. Valid Identifications"  |
| xlim       | default $c(0,0.1)$                   |
| breaks     | see breaks for hist function         |
| col        | default blue                         |
| lwd        | default 1.5                          |
|            | see plot                             |
|            |                                      |

## **Details**

No details

plotRTNorm 63

#### Note

No note

## References

NA

## **Examples**

```
print("No examples")
```

plotRTNorm

Plot all retention time profile overalying ratios

## **Description**

Plot all retention time profile overalying ratios

## Usage

```
plotRTNorm(rtNormFactors, eset, samples = 1:ncol(rtNormFactors), main = "",
...)
```

## **Arguments**

rtNormFactors data.frame of normalization factor per r.t bin and sample, obtained by getRT-

NormFactors

eset ExprsssionSet

samples specify samples (sample numbers) to be plotted

main main

... see plot see plot

## **Details**

No details

#### Note

No note

# References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

## See Also

```
getRTNormFactors
```

```
print("No examples")
```

plotRTNormSummary

Plot all retention time normalization profiles

## Description

Plot all retention time normalization profiles

## Usage

```
plotRTNormSummary(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, 1]),
  ...)
```

# Arguments

eset ExpressionSet
col condition colors
... see plot

## **Details**

No details

#### Note

No note

#### References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

## See Also

```
getRTNormFactors
```

```
print("No examples")
```

plotScoreDistrib 65

| plotScoreDistrib  | P |
|-------------------|---|
| DIOCOCOL EDISCLID | Γ |

Plot identifications target decoy distribution

## **Description**

Plot identifications target decoy distribution

## Usage

```
plotScoreDistrib(targetScores, decoyScores, xlab = "Identification Score",
  ylab = "Counts", ...)
```

## **Arguments**

```
targetScores target Scores decoyScores decoy Scores
```

xlab default "Identification Score"

ylab default "Counts"

... see plot

## **Details**

No details

## Note

No note

# References

NA

#### **Examples**

```
print("No examples")
```

plotVolcano

Plots volcano, data points colored by max cv of the 2 compared conditions

# Description

Plots volcano, data points colored by max cv of the 2 compared conditions

## Usage

```
plotVolcano(obj, ratioThrs = 1, pValueThreshold = 0.01, adjusted = T, ...)
```

66 plotXYDensity

## **Arguments**

obj safeQuantAnalysis object or data.frame ratioThrs default 1 pValueThreshold

default 0.01

adjusted TRUE/FALSE plot qValues or pValues on y-axis

... see plot

## **Details**

data.frame input object should contain 3 columns (ratio,qValue,cv)

## Note

No note

#### References

NA

## **Examples**

```
print("No examples")
```

plotXYDensity

Scatter plot with density coloring

# Description

Scatter plot with density coloring

## Usage

```
plotXYDensity(x, y, isFitLm = T, legendPos = "bottomright",
   disp = c("abline", "R", "Rc"), pch = 20, ...)
```

# Arguments

x number vector
y number vector
isFitLm fit linear model
legendPos see legend

disp c("abline","R","Rc") display options

pch see plot ... see plot

#### Note

No note

purityCorrectTMT 67

#### References

NA

## **Examples**

```
print("No examples")
```

purityCorrectTMT

Correct channel intensities based on Reporter ion Isotopic Distribu-

# Description

Correct channel intensities based on Reporter ion Isotopic Distributions

## Usage

```
purityCorrectTMT(tmtData, impurityMatrix = impurityMatrix)
```

## **Arguments**

```
tmtData data.frame containing tmt channel intensities impurityMatrix correction matrix
```

## **Details**

Same method as MSnbase, and described in Breitwieser et al. 2012 (Book Chapter)

## Value

data.frame of corrected tmt intensities

## Note

No note

## References

NA

```
print("No examples")
```

68 rollUp

removeOutliers

Set value to NA if it deviatves with more than 1.5 \* IQR from lower/upper quantile

## Description

Set value to NA if it deviatves with more than 1.5 \* IQR from lower/upper quantile

# Usage

```
removeOutliers(x, na.rm = TRUE, ...)
```

## **Arguments**

x vector numeric

na.rm logical indicating whether missing values should be removed.

... qunatile args

## **Details**

No details

#### Note

No note

## References

NA

## See Also

NA

# **Examples**

```
print("No examples")
```

rollUp

Roll up feature intensites per unique colum combination

## Description

Roll up feature intensites per unique colum combination

## Usage

```
rollUp(eset, method = "sum", featureDataColumnName = c("proteinName"))
```

rtNormalize 69

## **Arguments**

eset ExpressionSet

method "sum", "mean" or "top3"

 $feature {\tt Data} {\tt ColumnName}$ 

vector of column names e.g. peptide or proteinName

#### **Details**

 $feature Data Column Name = c("peptide", "charge", "ptm"), \ method = c("sum"), \ sums \ up \ intensities per peptie modification charge state$ 

## Value

ExpressionSet object

## Note

No note

#### References

No references

## **Examples**

```
print("No examples")
```

rtNormalize

Normalization data per retention time bin

## Description

Normalization data per retention time bin

## Usage

```
rtNormalize(eset, rtNormFactors)
```

## **Arguments**

eset ExpressionSet

 $\verb"rtNormFactors" obtained using getRTNormFactors"$ 

## **Details**

Normalize for variations in elelctrospray ionization current.

## Value

data.frame normalization factors per retention time bin (minute)

70 safeQuantAnalysis

#### Note

No note

#### References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

#### See Also

```
getRTNormFactors
```

## **Examples**

```
print("No examples")
```

 ${\tt safeQuantAnalysis}$ 

safeQunat s3 class

## Description

```
safeQunat s3 class
```

# Usage

```
safeQuantAnalysis(eset = eset, method = c("global", "naRep", "pairwise"),
  intensityAdjustmentObj = NA, fcThrs = 1)
```

# Arguments

```
eset ExpressionSet
```

```
method c("global","naRep","rt","quantile","pairwise","all)
```

 $\verb|intensityAdjustmentObj|$ 

list

fcThrs fold change threshold

```
{\tt setNbPeptidesPerProtein}
```

Set nbPeptides coulmn of featureData

# Description

Set nbPeptides coulmn of featureData

## Usage

```
setNbPeptidesPerProtein(eset)
```

# Arguments

eset

ExpressionSet

## **Details**

NA

## Value

eset

## Note

No note

## References

NA

## **Examples**

```
print("No examples")
```

setNbSpectraPerProtein

Set nbPeptides coulmn of featureData

# Description

Set nbPeptides coulmn of featureData

## Usage

```
setNbSpectraPerProtein(eset)
```

## **Arguments**

eset

Expression Set

72 sqNormalize

## **Details**

NA

# Value

eset

## Note

No note

## References

NA

# **Examples**

```
print("No examples")
```

sqNormalize

Normalize

# Description

Normalize

# Usage

```
sqNormalize(eset, method = "global")
```

# Arguments

eset

ExpressionSet

 ${\tt method}$ 

c("global","rt","quantile")

# **Details**

No details

## Value

eset ExpressionSet

# Note

No note

## References

NA

standardise 73

## See Also

getGlobalNormFactors, getRTNormFactors

# **Examples**

```
print("No examples")
```

standardise

Standardise data

# Description

Standardise data

# Usage

standardise(d)

# **Arguments**

d

vector or data.frame or matrix

## **Details**

No details

## Value

vector or data.frame or matrix

# Note

No note

```
print("No examples")
```

74 stripACs

stripACs

strip uniprot format e.g. "sp\Q8CHJ2\AQP12\_MOUSE" -> Q8CHJ2

# Description

```
strip uniprot format e.g. "splQ8CHJ2lAQP12_MOUSE" -> Q8CHJ2
```

## Usage

```
stripACs(acs)
```

## **Arguments**

acs

accession numbers

#### **Details**

TRUE if less than 10

## Value

vector character

## Note

No note

## References

NA

```
print("No examples")
```

# Index

| .T dotogota                        |                                       |
|------------------------------------|---------------------------------------|
| *Topic datasets                    | getKinaseFreq, 24                     |
| COLORS, 6                          | getKinases, 25                        |
| kinaseMotif, 44                    | getLOD, 25                            |
| option_list, 46                    | getLoocyFoldError, 26                 |
| *Topic normalization               | getMaxIndex, 27                       |
| getGlobalNormFactors, 19           | getMeanCenteredRange, 27              |
| getLoocvFoldError, 26              | getModifProteinCoordinates, 28        |
| globalNormalize, 40                | getMotifFreq, 29                      |
| removeOutliers, 68                 | getMotifX, 29                         |
| sqNormalize,72                     | getNbDetectablePeptides, 30           |
| addIdQvalues, 3                    | getNbMisCleavages, 31                 |
| addScaffoldPTMFAnnotations, 4      | getNbPeptidesPerProtein, 31           |
| addScallotur IIII Allilotations, 4 | getNbSpectraPerProtein, 32            |
| barplotMSSignal, 5                 | getPeptides, 33                       |
| bai protitiong indi, s             | getRatios, 33                         |
| COLORS, 6                          | getRTNormFactors, 34, 63, 64, 70      |
| createExpDesign, 6                 | getScoreCutOff, 35                    |
| createExpressionDataset, 7         | getSignalPerCondition, 36             |
| createPairedExpDesign, 8           | getTopX, 36                           |
| cvBoxplot, 9                       | getUserOptions, 37                    |
| cysteinFreqBarplot, 10             | ggDilutionCurve, 38                   |
| , ,                                | ggVolcanoPlot, 39                     |
| dotProduct, 10                     | globalNormalize, 40                   |
| aPayaa 16                          | hClustHeatMap, 41                     |
| eBayes, 16                         | 1.0240 01.040 1.4p, 1.1               |
| expDesignTagToExpDesign, 11        | isCon, 42                             |
| export, 12                         | isDecoy, 42                           |
| ExpressionSet, 7, 8, 47-50, 52     | isStrippedACs, 43                     |
| getAAProteinCoordinates, 12        |                                       |
| getAccessionNumber, 13             | kinaseMotif, 44                       |
| getAllCV, 14                       | maPlotSQ, 44                          |
| getAllDotProduct, 15               | missinValueBarplot, 45                |
| getAllEBayes, 15                   | missimvaluebarpiot, 43                |
| getBaselineIntensity, 16           | option_list, 46                       |
| getCV, <i>14</i> , 17              | Special_113 t, 10                     |
| getExpDesignProgenesisCsv, 18      | pairsAnnot, 46                        |
| getGeneName, 19                    | parseMaxQuantProteinGroupTxt, 47      |
| getGlobalNormFactors, 19           | parseProgenesisFeatureCsv, 48         |
| getGoTermDF, 20                    | parseProgenesisPeptideMeasurementCsv, |
| getIBAQEset, 21                    | 49                                    |
| getIdLevelQvals, 4, 22             | parseProgenesisProteinCsv, 50         |
| <pre>getImpuritiesMatrix, 22</pre> | parseScaffoldPTMReport, 51            |
| getIntSumPerProtein, 23            | parseScaffoldRawFile, 51              |
|                                    |                                       |

76 INDEX

```
perFeatureNormalization, 52
plotAbsEstCalibrationCurve, 53
plotAdjustedVsNonAdjustedRatio, 54
plotAllGGVolcanoes, 55
plotExpDesign, 55
plotIdScoreVsFDR, 56
plotLogo, 57
plotMSSignalDistributions, 58
\verb|plotNbIdentificationsVsRT|, 58|
plotNbValidDeFeaturesPerFDR, 59
plotPrecMassErrorDistrib, 60
plotPrecMassErrorVsScore, 61
plotQValueVsPValue, 61
plotROC, 62
plotRTNorm, 63
plotRTNormSummary, 64
plotScoreDistrib, 65
plotVolcano, 65
plotXYDensity, 66
purityCorrectTMT, 67
removeOutliers, 68
rollUp, 68
rtNormalize, 69
safeQuantAnalysis, 12,70
setNbPeptidesPerProtein, 71
setNbSpectraPerProtein, 71
sqNormalize, 72
standardise, 73
stripACs, 74
```