(48b)

traktion vollig vernachlässigt wird. kann auch wieder dieser Zeitpunkt berechnet werden , für den Fall , daß die Revon S nach B_s und b) bzgl. des Lichtstrahls von B_D nach B_s . Zum Vergleich winkel 🗗 wird wieder aus zwei Teilen berechnet (s. M.l.) : a)bzgl. des Lichtsfrahls in B_D bekannt sein. Dabei ist nach (48): $G_{B,w} = G_B - \Theta$. Der Refraktionsdie geographische Breite ϕ_B , und die "wahre" Zenitdistanz der Sonne $\zeta_{B,W}$ in und (36) zu bestimmen, müssen die Sonnendeklination 8 zu diesem Zeitpunkt, Momentaulinahme von diesem Zeitpunkt, Um diesen Zeitpunkt nach (33a) und Die Skizze 53 ist eine Projektion in die Ebene dieses Lichtstrahls, und zeigt eine

Zeitpunkt UTI_D berechnen zu können. Θ , δ , Σ benötigt , um nach Σ 4. und (33a) den Stundenwinkel $t_{\rm D}$ und den gelegten Beispielwerten. Hierzu werden (vergl. 11.3) die Größen A_B , ϕ_B , ϕ_B , ϕ_B M.T. Berechnung des Zeitpunktes UTI_D des Endes der Dämmerung in B mit den fest-

wurden als Beispielwerte bereits festgelegt (s. M.2.): M.T.l. Die geographischen Koordinaten von B und der dazugehörige Erdradius

 $R_{\rm B} = 6364733.9 \text{ m}$ φB = 25° 28° 00° AB = 13° 18' 00" östl. Länge

1.3. Die Sonnendeklination und die Zeitgleichung behalten zunächzt die in 1.3.4.

2 = 11 . SZ. 11.. : estgelegten Werte:

S = -0y 00my 00sec

M.7.3. Die Berechnung des Refraktionswinkels 🖰 erfolgt wieder in zwei Teilen 🖲

noch die Integrationshöhe h.B. Die physikalischen Eingabewerte bleiben gleich pech (12a) wit dem $\to \mathsf{Rechen}\mathsf{programm}$ vornehmen zu können fehlt hier einer beobachteten Zenitdistanz $\zeta_0 = 0$. Um die Berechnung von $\Theta_{\rm b}$ sich in B_S und emptängt einen Lichtstrahl von einer Lichtquelle in B mit M.T.S.I. Zur Berechnung von $\sigma_{\rm b)}$ wird angenommen, der Beobachter beitinde (.o.2) (do bru

Näherungswerte für die Größen Θ , $\mathbf{q}^{\mathtt{J}}$, $\mathbf{q}^{\mathtt{J}}$, $\mathbf{q}^{\mathtt{J}}$, Θ neßer sin zu erhalten : an dieser Stelle einige vereinfachende Annahmen gemacht werden, um erste M.1.3.1.1. Da die Höhe h_B auf geometrischen Wege nicht zu finden ist , sollen

dem vorigen Beispiel verbesserte Wert). i) Sei in 1. Näherung $\Theta_{b} = 0$ ° und $\Theta_{a} = -0$ ° 33° 05" (der aus

ii) Die Erde war in 1. Näherung eine Kugel, deshalb war :

K_{Bs} ≈ R_B = 6364733.9 m

: briw (84) bruw (TA) suA (iii

Mit dem nach Vorraussetzung (s.o.) bekannten $\zeta_{\rm B}$ = 96 ° wird dann : $(A_{\Theta} - A_{\Theta} - A_{\Theta}) = A_{\Theta} - A_{\Theta} + A_{\Theta} = A_{\Theta}$

..90 .88 . 96 = M.85