$Br\ddot{u}ckenkurs - Tag 9 - 2016-10-14$

13 Auswahlaxiom, Zornsches Lemma und Ultrafilter

13.1 Auswahlaxiom

Definition Ist M eine Menge nicht-leerer Mengen, so existiert dazu eine Auswahlmenge, das heißt: eine Menge X, so dass $\forall U \in M \exists ! \ a \in U$. mit $a \in X^1$.

Sei Z eine Menge, $\mathscr{X} \subseteq P(Z)$, also ist \mathscr{X} eine Menge von Teilmengen von Z.

Definition Eine **Kette in** $\mathscr X$ ist eine Teilmenge $\mathscr Y\subseteq\mathscr X$ mit $\forall Y_1,Y_2\in\mathscr Y:Y_1\subseteq Y_2\wedge Y_2\subseteq Y_1$

13.2 Zornsches Lemma

Sei Z, \mathcal{X} wie eben. Zusätzlich gelte:

- 1. Ist $X' \subseteq X \in \mathcal{X}$, so auch $X' \in \mathcal{X}$
- 2. Ist $\mathscr{Y} \subseteq \mathscr{X}$ eine Kette, so ist $\cup \mathscr{Y} = \cup Y \in \mathscr{X}$.

Dann besitzt \mathscr{X} ein maximales Element $X_0 \in \mathscr{X}$ bzgl. " \subseteq ", d.h. $\forall X \in \mathscr{X} : X \supseteq X_0 \implies X = X_0$

Beweisidee

- Wegen 2. (Wähle $\mathscr{Y} = \emptyset \subseteq \mathscr{X}$ (Kette)) ist $\emptyset = \bigcup \emptyset \in \mathscr{X}$.
- Falls \emptyset maximal in \mathcal{X} , sind wir fertig.
- Ansonsten gibt es $X_1 \in \mathscr{X}$ mit $X_0 \subsetneq X_1$.
- Entweder ist X_1 maximal oder wir machen weiter ... $X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq X_3 \subsetneq \ldots \subsetneq X_{\omega}$

Breche der Prozess nicht ab (ansonsten wären wir nach $n \in \mathbb{N}_0$ Schritten fertig.) Wegen 2. ist $X_{\omega} = \bigcup_{i=0}^{\infty} X_i \in \mathscr{X}$.

Ist X_{ω} immer noch nicht maximal, so finden wir $X_{\omega} \subsetneq X_{\omega+1} \subsetneq \ldots \subsetneq X_{\omega+n} \subsetneq \ldots$ Bricht dies immer noch nicht ab, so ist $X_{\omega \cdot 2} = \bigcup_{n=0}^{\infty} X_{\omega+n}$ der nächste Kandidat.

$$X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \dots X_{\omega}$$

$$X_{\omega} \subsetneq X_{\omega+1} \subsetneq X_{\omega+2} \subsetneq X_{\omega+3} \subsetneq \dots \subsetneq X_{\omega\cdot 2}$$

$$X_{\omega\cdot 2} \subsetneq X_{\omega\cdot 2+1} \subsetneq X_{\omega\cdot 2+2} \subsetneq X_{\omega\cdot 2+3} \subsetneq \dots \subsetneq X_{\omega\cdot 3}$$

Korollar Sei (Z, \leq) eine teilweise geordnete Menge, das heißt es gilt:

- 1. $\forall z \in Z : z \leq z$.
- $2. \ \forall x, y \in Z : x \leq y \land y \leq x \implies x = y$
- $3. \ \forall x,y,z \in Z: x \leq y \land y \leq z \implies x \leq z$

Besitzt dann jede **Kette** Y in Z (d.h. jede vollständig geordnete Teilmenge von $Y \subseteq Z$) eine **obere Schranke** in Z, das heißt $\exists z \in Z \forall y \in Y : y \leq z$, dann besitzt Z ein maximales Element $z_0 \in Z$, das heißt $\forall z \in Z : z \geq z_0 \implies z = z_0$.

Beweis Sei $\mathscr{X} \subseteq P(Z)$ die Menge der Ketten von (Z, \leq) . Dann sind 1. und 2. vom Zornschen Lemma erfüllt. Damit existiert eine maximale Kette $X_0 \in \mathscr{X}$.

Nach Voraussetzung des Korollars besitzt X_0 eine obere Schranke $z_0 \in \mathbb{Z}$.

Annahme z_0 ist nicht maximal, das heißt es existiert $z_1 \in Z$ mit $z_1 \geq z_0, z_1 \neq z_0$. Dann wäre aber $X_0 \cup \{z_1\}$ eine echt größere Kette als X_0 . Dies wäre aber ein **Widerspruch** zur Maximalität von X_0 .

 $^{^1∃!}$ bedeutet: "es existiert genau ein Element"

13.3 Ultrafilter

Definition Sei X eine Menge. Ein **Filter** F auf X ist eine Teilmenge $F \subseteq P(X)$ mit

- 1. $X \in F$
- $2. \emptyset \notin F$
- 3. $\forall A \in F : B \supseteq A \Rightarrow B \in F$
- $4. \ \forall A, B \in F \Rightarrow A \cap B \in F$

Beispiel Sei $x_0 \in X$ ein Element einer Menge. Dann ist $F := \{A \subseteq X | x_0 \in A\}$ ein Filter, der von x_0 erzeugte Filter.

Filter, die nicht von einem Element erzeugt werden, heißen frei.

Beispiel Sei S eine unendlich große Menge. Dann ist $F := \{A \subseteq X | X \setminus A \text{ endlich}\}$ ein Filter, der sogenannte **Fréchet-Filter** auf X.

Definition Ein **Ultrafilter** auf X ist ein Filter mit 5. $\forall A \subseteq X : A \in F \lor X \setminus A \in F$.

Beispiel Nicht freie Filter² sind Ultrafilter.

Frage Gibt es freie Ultrafilter?

Satz Ist F ein Filter auf X, so gibt es einen Ultrafilter \hat{X} auf X mit $F \subseteq \hat{F}$.

Folgerung Auf jeder unendlichen Menge gibt es einen freien Ultrafilter.

Beweis (Folgerung) Wähle einen Ultrafilter, der den Fréchet-Filter umfasst. □

Beweis (Satz) Sei Z die Menge der Filter \widetilde{F} mit $\widetilde{F} \supseteq F$. Es ist Z bezüglich " \subseteq " teilweise geordnet. Jede Kette \mathbb{F} in Z, also jede Kette von Filtern besitzt eine obere Schranke in Z, nämlich $\cup_{\widetilde{F} \subseteq F} \widetilde{F}$.

Zu überprüfen, dass dies ein Filter ist, also in Z liegt.

z.B. Filgereigenschaft 4. : $A,B\in \cup_{\widetilde{F}\in \mathbb{F}}\widetilde{F}\stackrel{?}{\Rightarrow}A\cap B\in \cup_{\tilde{F}\in \mathbb{F}}\mathbb{F}$

 \leadsto Da $\mathbb F$ Kette, $\tilde{F}_1 \subseteq \tilde{F}_2$ oder $\tilde{F}_2 \subseteq \tilde{F}_1$. Ohne Beschränkung der Allgemeinheit: $\tilde{F}_1 \subseteq \tilde{F}_2$.

Also $A, B \in \tilde{F}_2 \Rightarrow A \cap B \in \tilde{F}_2 \in \mathbb{F} \Rightarrow A \cap B \in \cup \mathbb{F}$.

Nach Zorn besitzt Z ein maximales Element \hat{F} .

Behauptung: \hat{F} ist Ultrafilter.

Begründung Unter der Annahme, dass \hat{F} ein Ultrafilter ist, gibt es ein $A \subseteq X$ mit $A \notin \hat{F}$ und $X \setminus A \notin \hat{F}$.

Definition: $\mathscr{Y} := \{G \subseteq X | \exists F \in \hat{F} : G \supseteq F \cap A\}$

Damit ist \mathscr{G} ein Filter; wegen $A \in \mathscr{G}$, aber $A \notin \hat{F}$ ist $\hat{F} \neq \mathscr{G}$. Aber $\hat{F} \subseteq \mathscr{G}$.

Damit \hat{F} nicht maximal. Widerspruch!

²Bspw. Fréchet-Filter