A

北京航空航天大学 2014-2015 **学年第一**学期期末

	7	考证	【统·	一月]答;	题册	F	7.	
考试课程									
班级			_学号			姓	全		
题目	~	=	= 1	四	五	☆	セ	^	定分
淂			//						
分									
阅	M	7-							
巻		/							

2015年01月21日

1

- 一. 填空题(每小题 4 分, 共 20 分)
- 1. $\lim_{n\to\infty} (1-\tan\frac{a}{n})^n = e^2$, $\mathbb{I} a = \underline{\qquad}$.
- 2. 函数 $f(x) = \sqrt{1+2x}$ 带拉格朗日余项的二阶麦克劳林公式为

_____,*ξ* 介于x与0之间.

- 4. $\int_{-1}^{1} (2x + |x|)e^{-|x|} dx = \underline{\qquad}$
- 5. 欲使不等式 $\int_{1}^{x} \frac{\sin t}{t} dt > \ln x$ 成立,则 x 的取值范围是____
- 二. 单项选择题(每小题 4 分, 共 20 分)
- 1.设f(x)在x=0的邻域内有定义且f(0)=0,则下列选项中与f
- (A) $\lim_{h\to 0} \frac{f(1-\cos h)}{h^2}$ 存在. (B) $\lim_{h\to 0} \frac{f(h-\sin h)}{h^3}$ 存在.
- (C) $\lim_{h\to 0} \frac{f(h) f(-h)}{h}$ 存在. (D) $\lim_{h\to 0} \frac{f(\ln(1+h^2))}{h^2}$ 存在
- 2.若存在 $\varepsilon > 0$,对任意的X > 0,都有 $x_0 > X$,使 $|f(x_0)| < \varepsilon$,则可断定的是(
 - $(A)\lim_{x\to +\infty} f(x) = 0.$
- (C) $\lim_{x \to +\infty} f(x) = \infty$.
- (B) $\lim_{x \to +\infty} f(x) \neq 0$. (D) $\lim_{x \to +\infty} f(x) \neq \infty$.
- 3. 设函数 f(x) 在[0,2]上连续可导,且 f(0) = f(2) = 1. 如果 $|f'(x)| \le 1, \forall x \in [0,2]$,

则 $\int_0^2 f(x) dx$ 能取值为()

(A)1.

(C) 3.

- (D)4.
- 4. 设函数 $f(x) = \begin{cases} \frac{1}{(x-1)^{\alpha-1}}, & 1 < x < e \\ \frac{1}{x \ln^{\alpha+1} x}, & e \le x < +\infty \end{cases}$, 若反常积分 $\int_{1}^{+\infty} f(x) dx$ 收敛,则(
- (B) $-2 < \alpha < 0$.
- (C) 0 < α < 2.
- (D) $\alpha > 2$.
- 5. 已知线状细棒 $y = x(-1 \le x \le 1)$ 上任意点处的线密度取值为该点到 y 轴的距离,

则它的质量为(

(A) 0.

(B)1.

(C) $\sqrt{2}$.

(D) 2.

三. 求极限(每小题5分,共10分)

1.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+\sin x}}{x\ln(1+x)-x^2}$$
.

2.
$$\lim_{x\to 0} (e^x + x)^{\frac{1}{x}}$$
.

四. 求导数 (每小题 6 分, 共 12 分)

2.
$$\forall \begin{cases} x = 1 + t^2 \\ y = \int_0^{t^2} \frac{\sin u}{u} du, \quad \forall \frac{dy}{dx} \Big|_{t=1}, \frac{d^2 y}{dx^2} \Big|_{t=1}. \end{cases}$$

五. 求积分(每小题 6 分, 共 12 分)

1.
$$\int \frac{\arctan\sqrt{x}}{\sqrt{x}(1+x)} dx.$$

$$2. \quad \int_{1}^{+\infty} \frac{\ln x \mathrm{d}x}{\left(1+x\right)^{2}}.$$

	单增区间	117	1	у
	单减区间			
	凹区间			
A	凸区间			
	极大值点			$o \xrightarrow{x}$
	极小值点			
	渐近线			
!		1		

本试卷包括八个大题, 共五页

七. (10 分) 设曲线 l_1 : $y=1-x^2$ ($0 \le x \le 1$), x 轴与 y 轴所围图形被曲线 l_2 : $y=ax^2$ (a>0) 分成面积相等的两个部分. 求 (1) a 的值.

(2) 曲线 l_1, l_2 与 y 轴所围图形绕 y 轴旋转一周所得旋转体的体积.

八. (6分) 设函数 f(x)在[1,+∞)上具有二阶导数 f(1)>0, f'(1)<0, 且当x>1时, f''(x)<0. 证明: 函数 f(x)在区间[1,+∞)上存在唯一的零点