SHARP

SERVICE MANUAL/SERVICE-ANLEITUNG/MANUEL DE SERVICE

S97C5QT-CD20H

QT-CD20H(BK)

- In the interests of user-safety the set should be restored to its original condition and only parts identical to those specified be used.
- Im Interesse der Benutzer-Sicherheit sollte dieses Gerät wieder auf seinen ursprünglichen Zustand eingestellt und nur die vorgeschriebenen Teile verwendet werden.
- Dans l'intérêt de la sécurité de l'utilisateur, l'appareil devra être reconstitué dans sa condition première et seules des pièces identiques à celles spécifiées, doivent être utilisées.

INDEX TO (CONTENTS -
E Page SPECIFICATIONS 2,3 NAMES OF PARTS 4,5 DISASSEMBLY 6-8 BLOCK DIAGRAM 9,10 STRINGING OF DIAL CORD 11 SAFETY REGULATIONS 12,13 ADJUSTMENT 14-22	Page SCHEMATIC DIAGRAM/WIRING SIDE OF P.W.BOARD
INHALTSVE	RZEICHNIS
D Seite TECHNISCHE DATEN 2,3 BEZEICHNUNG DER TEILE 4,5 ZERLEGEN 6-8 BLOCKSCHALTPLAN 9,10 SPANNEN DER SKALENSCHNUR 11 SICHERHEITSVORSCHRIFTEN 12,13 EINSTELLUNG 14-22 SCHEMATISCHER SCHALTPLAN/VERDRAHTUNGS- SEITE DER LEITERPLATTE 23-32	Seite ERSATZSCHALTKREIS DES INTEGRIERTEN SCHALTKREISES
TABLE DES F Page CARACTÉRISTIQUES 2,3 NOMENCLATURE 4,5 DÉMONTAGE 6-8 DIAGRAMME SYNOPTIQUE 9,10 PASSAGE DU CORDON DU CADRAN 11 PRESCRIPTIONS RELATIVES À LA SÉCURITÉ 12,13 RÉGLAGE 14-22	Page DIAGRAMME SCHÉMATIQUE/CÔTÉ CÂBLAGE DE LA PLAQUETTE DE MONTÂGE IMPRIMÉ

SHARP CORPORATION

SHARP

SERVICE MANUAL/SERVICE-ANLEITUNG/MANUEL DE SERVICE

S97C5QT-CD20H

QT-CD20H(BK)

- In the interests of user-safety the set should be restored to its original condition and only parts identical to those specified be used.
- Im Interesse der Benutzer-Sicherheit sollte dieses Gerät wieder auf seinen ursprünglichen Zustand eingestellt und nur die vorgeschriebenen Teile verwendet werden.
- Dans l'intérêt de la sécurité de l'utilisateur, l'appareil devra être reconstitué dans sa condition première et seules des pièces identiques à celles spécifiées, doivent être utilisées.

INDEX TO	CONTENTS -
E Page SPECIFICATIONS 2,3 NAMES OF PARTS 4,5 DISASSEMBLY 6-8 BLOCK DIAGRAM 9,10 STRINGING OF DIAL CORD 11 SAFETY REGULATIONS 12,13 ADJUSTMENT 14-22	Page SCHEMATIC DIAGRAM/WIRING SIDE OF P.W.BOARD
INHALTSVE	ERZEICHNIS
D Seite TECHNISCHE DATEN 2,3 BEZEICHNUNG DER TEILE 4,5 ZERLEGEN 6-8 BLOCKSCHALTPLAN 9,10 SPANNEN DER SKALENSCHNUR 11 SICHERHEITSVORSCHRIFTEN 12,13 EINSTELLUNG 14-22 SCHEMATISCHER SCHALTPLAN/VERDRAHTUNGS- SEITE DER LEITERPLATTE 23-32	Seite ERSATZSCHALTKREIS DES INTEGRIERTEN SCHALTKREISES
TABLE DES	MATIÈRES
F Page CARACTÉRISTIQUES 2,3 NOMENCLATURE 4,5 DÉMONTAGE 6-8 DIAGRAMME SYNOPTIQUE 9,10 PASSAGE DU CORDON DU CADRAN 11 PRESCRIPTIONS RELATIVES À LA SÉCURITÉ 12,13 RÉGLAGE 14-22	Page DIAGRAMME SCHÉMATIQUE/CÔTÉ CÂBLAGE DE LA PLAQUETTE DE MONTÂGE IMPRIMÉ23-32 CIRCUITS ÉQUIVALENTS DE CI

(E)

FOR A COMPLETE DESCRIPTION OF THE OPERATION OF THIS UNIT, PLEASE REFER TO THE OPERATION MANUAL.

SPECIFICATIONS

General

Power source:

AC 110-120 V/220-240 V, 50/60 Hz

DC 12 V (UM/SUM-1 or R20 x 8)

Output power:

(DIN 45 324)

MPO: 12 W (6 W + 6 W)

(AC operation)

RMS; 10 W (5 W + 5 W)

(DC operation)

Speaker:

10 cm (4") free-edge woofer x 2

Tweeter x 2

Loaded impedance: Headphones; 32 ohms CD out; 1.4 V/10 kohms

Dimensions:

Width; 630 mm (24-3/4") Height; 165 mm (6-1/2")

Depth; 158 mm (6-1/4")

Weight:

4.9 kg (10.8 lbs.) without batteries

Tape recorder

Tape:

Compact cassette tape

Frequency response: 50 - 14 000 Hz

Signal/noise ratio: 50 dB

Wow and flutter:

0.2% (DIN 45 511)

Radio

Frequency range:

FM; 87.5 - 108 MHz

LW; 148.5 - 283.5 kHz MW; 526.5 - 1606.5 kHz SW; 5.95 - 18.0 MHz

CD player

Type:

Compact disc digital audio player

Signal readout: Non-contact, semiconductor laser

Rotational speed: 200-500 rpm CLV

Error correction:

CIRC (Cross Interleave Reed-Solomon

Code)

Audio channels:

Decoder:

16-bit linear quantization

Filter:

16-bit digital and Active filter

Frequency response: 20-20,000 Hz

Dynamic range:

90 dB

Specifications for this model are subject to change without

prior notice.

 (\mathbf{D})

EINE VOLLSTÄNDIGE BESCHREIBUNG DER BEDIENUNG DIESES GERÄTES IST IN DER BEDIENUNGSANLEITUNG ENTHALTEN.

TECHNISCHE DATEN

Allgemein

Spannungsversorgung:

Netz 110 - 120 V/ 220 - 240 V, 50/60 Hz

Gleichstrom 12 V (UM/SUM-1 oder R20 x

Ausgangsleistung:

(DIN 45 324) Musikleistung; 12 W (6 W + 6 W)

(Netzbetrieb)

Sinusleistung: 10 W (5 W + 5 W)

(Gleichspannungsbetriebe)

10 cm randloser Tieftöner x 2 Lautsprecher:

Hochtöner x 2 Kopfhörer: 32 ohm

Impedanz:

CD-Ausgang; 1,4 V/10 kohm

Breite; 630 mm Abmessungen:

Höhe: 165 mm Tiefe: 158 mm

Gewicht: 4,9 kg ohne Batteien

Tonbandgerät

Band: Kompaktcassettenband

50 - 14 000 Hz Frequenzgang:

Rauschabstand: 50 dB Gleichlaufschwankungen:

0,2% (DIN 45 511)

Radio

UKW; 87,5 - 108 MHz Frequenzbereiche:

> LW; 148,5 - 283,5 kHz MW; 526,5 - 1606,5 kHz KW; 5,95 - 18,0 MHz

CD-Spieler

Compact-Disc-Digital-Audio-Spieler Typ:

Signalablesung: Kontaktloser Halbleiter-Laser

Drehzahl: 200-500 Upm CLV

Fehlerkorrektur: CIRC (Kreuzverschachtelung-Reed-

Solomon-Code)

Tonkanäle:

Decoder: 16-Bit-Linearquantisierung

16-Bit-Digitalfilter und Aktivfilter Filter:

Frequenzgang: 20-20000 Hz

Dynamikbereich: 90 dB (F)

POUR LA DESCRIPTION COMPLÈTE DU FONCTIONNE-MENT DE CET APPAREIL, SE REPORTER AU MODE D'EMPLOI.

CARACTÉRISTIQUES

Général

Alimentation: CA 110-120 V/220-240 V. 50/60 Hz

CC 12 V (UM/SUM-1 ou R20 x 8)

Puissance de sortie:

(DIN 45 324) MPO; 12 W (6 W + 6 W)

(Fonctionnement sur secteur) RMS; 10 W (5 W + 5 W)

(Fonctionnement sur courant continu) Woofer à bords libres de 10 cm x 2

Enceinte: Tweeter x 2

Impédance normale: Casque; 32 ohms

Sortie CD; 1,4 V/10 k ohms

Largeur; 630 mm Dimensions:

> Hauteur; 165 mm Profondeur; 158 mm

Poids: 4,9 kg sans piles

Magnétophone à cassette

Bande: Cassette compacte

Réponse en fréquence:

50 - 14 000 Hz

Rapport signal/bruit: 50 dB

Pleurage et scintillement:

0,2% (DIN 45 511)

Radio

Gamme de fréquence:

FM; 87,5 - 108 MHz GO; 148,5 - 283,5 kHz PO; 526,5 - 1606,5 kHz OC; 5,95 - 18,0 MHz

Compact disc

Type: Lecteur de compact disc audionumérique

Procédé de lecture: Sans contact, par laser à semi-conducteur

Vitesse de rotation: 200-500 tr/mn CLV

Système de correction:

CIRC (système de codage Cross Inter-

leave Reed-Solomon)

Canaux audio:

Décodeur: Quantification linéaire 16 bits Filtre: Numérique 16 bits et actif

Réponse en fréquence:

20-20.000 Hz

Dynamique: 90 dB

Die technischen Daten für dieses Modell können ohne Les caractéristiques de ce modèle sont sujettes à modifivorherige Ankündigung Änderungen unterworfen sein. cation sans préavis.

(E)

- 1. Volume Control
- 2. Graphic Equalizer Controls
- 3. Headphones Socket
- 4. Beat Cancel Switch
- 5. CD Output Sockets
- 6. Function Switch
- 7. FM Mode/Tape Selector Switch
- 8. Radio Band Selector
- 9. Tuning Control
- 10. CD Compartment
- 11. Power Indicator
- 12. FM Stereo Indicator
- 13. Cassette Compartment
- 14. Pause Button: II
- 15. Stop/Eject Button: ■
- 16. Fast Forward Button: ◀◀
- 17. Rewind Button: ▶▶
- 18. Play Button: ◀
- 19. Record Button: ●
- 20. FM/SW Telescopic Rod Antenna
- 21. Battery Compartment
- 22. AC Power Input

NAME OF PARTS

- 1. Pause Button: II
- 2. Track Down (APSS)/Review Button: ◀◀
- 3. Track Up (APSS)/Cue Button: ▶▶
- 4. Clear Button
- 5. Call Button
- 6. Memory Button
- 7. Stop Button: ■
- 8. Play/Repeat Button: ▶ ⊊
- 9. CD Eject Button: ▲
- 10. Play Indicator: ▶
- 11. Track Number Display
- 12. Programme Indicator: P
- 13. Programme Memory Indicator: M
- 14. Pause Indicator: II
- 15. Minutes and Seconds Indicators

D BEZEICHNUNG DER TEILE

- 1. Lautstärkesteller
- 2. Frequenzgangentzerrersteller
- 3. Kopfhörerbuchse
- 4. Interferenzenschalter
- 5. CD-Ausgangsbuchsen
- 6. Funktionsschalter
- 7. UKW-Betriebsarten-/Bandsortenwahlschalter
- 8. Wellenbandwähler
- 9. Abstimmsteller
- 10. CD-Fach
- 11. Einschaltanzeige
- 12. UKW-Stereoanzeige
- 13. Cassettenfach
- 14. Pausentaste: II
- 15. Stopp/Auswurf-Taste: ■
- 16. Schnellvorlauftaste: ◀◀
- 17. Rückspultaste: ▶▶
- 18. Wiedergabetaste:
- 19. Aufnahmetaste: •
- 20. UKW/KW-Teleskopantenne
- 21. Batteriefach
- 22. Netzeingang

(F) NOMENCLATURE

- 1. Commande de volume
- 2. Commandes de l'égaliseur graphique
- 3. Prise de casque
- 4. Commutateur antibattement
- 5. Prises de sortie CD
- 6. Sélecteur de fonction
- 7. Sélecteur de mode FM/bande
- 8. Sélecteur de gammes radio
- 9. Commande d'accord
- 10. Trappe CD
- 11. Voyant d'alimentation
- 12. Voyant FM stéréo
- 13. Compartiment cassette
- 14. Touche de pause: II
- 15. Touche d'arrêt/éjection: ■
- 16. Touche d'avance rapide: ◀◀
- 17. Touche de rebobinage: ▶▶
- 18. Touche de lecture: ◀
- 19. Touche d'enregistrement: •
- 20. Antenne télescopique FM/OC
- 21. Logement de piles
- 22. Entrée secteur

- 1. Pausetaste: II
- 2. Titelabwärts-(APSS)/Rückwärtssuchlauf-Taste: ◀◀
- 3. Titelaufwärts-(APSS)/Vorwärtssuchlauf-Taste: ▶▶
- 4. Löschtaste
- 5. Abruftaste
- 6. Speichertaste
- 7. Stopptaste: ■
- 8. Wiedergabe-/Wiederholtaste: ▶ ⊆
- 9. CD-Auswerftaste: ▲
- 10. Wiedergabe-Anzeige: ▶
- 11. Titelnummeranzeige
- 12. Programmanzeige: P
- 13. Programmspeicheranzeige: M
- 14. Pauseanzeige: II
- 15. Minuten- und Sekunden-Anzeigen
- 16. Wiederholbetriebsartenanzeige: ⊆

- 1. Touche de pause: II
- 2. Touche de plage descentante (APSS)/repérage arrière:
 - 44
- 3. Touche de plage ascendante (APSS)/repérage avant: >>
- 4. Touche d'effacement
- 5. Touche d'appel
- 6. Touche de mémoire
- 7. Touche d'arrêt:
- 8. Touche de lecture/répétition: ▶ ⊊
- 9. Touche d'éjection du CD: ▲
- 10. Voyant de lecture: ▶
- 11. Fenêtre du numéro de plage
- 12. Voyant de programme : P
- 13. Voyant de mémoire de programmation: M
- 14. Voyant de pause: II
- 15. Fenêtre des minutes et secondes
- 16. Voyant de répétition: ⊊

(E)

DISASSEMBLY

Caution on Disassembly

Follow the below-mentioned notes when disassembling the unit and reassembling it, to keep its safety and excellent performance:

- 1. Take cassette tape and compact disc out of the unit.
- Be sure to remove the power supply plug from the wall outlet before starting to disassemble the unit and remove the batteries from the unit.
- Take off nylon bands or wire holders where they need be removed when disassembling the unit. After servicing the unit, be sure to rearrange the leads where they were before disassembling.
- 4. Take sufficient care on static electricity of integrated circuits and other circuits when servicing.

STEP	REMOVAL	PROCEDURE	FIGURE
1	Front Cabinet	1. Battery compartment lid(A) × 1 2. Open the cassette holder and disc holder 3. Screw(B) × 8 4. Socket(C) × 1	6-1
2	CD Block	1. Screw · · · · · · · (D) × 2 2. Socket · · · · · · (E) × 2	6-3
3	Tape Mechanism	1. Screw(F) × 3 2. Socket(G) × 2	7-1
4	Tuner PWB	1. Screw(H) × 3 2. Tip(I) × 1 3. Flat wire(J) × 1	7-2
5	Graphic Equalizer PWB	1. Screw(K) × 2	7-2
6	Power PWB	1. Screw · · · · · · · (L) × 4 2. Socket · · · · · · · (M) × 1	7-2
7	Main PWB	1. Screw · · · · · · · · (N) × 3 2. Spring · · · · · · · (O) × 1	7-2
8	CD PWB	1. Screw · · · · · · (P) × 3 2. Socket · · · · · · (Q) × 3 3. Hook · · · · · · (R) × 2	7-3
9	Switch PWB	1. Hook(S) × 2	7-3
10	Display PWB	1. Screw · · · · · · · (T) × 3	7-3
11	CD Mechanism	Spring · · · · · · · (U) × 1 Vibration insulation rubber · · · · · · · (V) × 4	7-4
12	Pickup	Be sure to remove screws in numerical order. Screw · · · · · · · · (W) × 1 Screw · · · · · · · · · (X) × 2 When mounting, lock the screw. Screw · · · · · · · · · · · · (Y) × 4	7-5

Figure 6-1

Figure 6-2

Figure 6-3

Figure 7-1

Figure 7-2

Figure 7-3

Figure 7-4

Figure 7-5

(**D**)

ZERLEGEN

Vorsichtsmassregeln Für Das Zerlegen

Beim Zerlegen und Zusammenbauen des Gerätes die folgenden Anweisungen befolgen, um dessen Betriebssicherheit und ausgezeichnete Leistung aufrechtzuerhalten.

- 1. Die Cassette und Compact-Disc aus dem Gerät entfernen.
- 2. Bevor mit dem Zerlegen des Gerätes begonnen wird, unbedingt den Netzkabelstecker aus der Netzsteckdose ziehen und die Batterien aus dem Gerät entfernen.
- Nylonbänder oder Leitungshalter entfernen, falls dies beim Zerlegen des Gerätes erforderlich ist. Nach Warten des Gerätes darauf achten, die Leitungen wieder so zu verlegen, wie sie vor den Zerlegen angeordnet waren.
- Beim Ausführen von Wartungsarbeiten auf statische Elektrizität der integrierten Schaltkreise und anderen Schaltungen achten.

(F)

DÉMONTAGE

Précautions pour le démontage

Lors du démontage de l'appareil et de son remontage, suivre les précautions ci-dessous, pour maintenir la sécurité et d'excellentes performances.

- 1. Sortir la cassette et la compact disc de l'appareil.
- 2. S'assurer de retirer la fiche d'alimentation secteur de la prise murale avant de démarrer le démontage de l'appareil et déposer les piles de l'appareil.
- 3. Déposer les bandes de nylon ou les serre-câbles si nécessaire lors du démontage de l'appareil. Après la réparation de l'appareil, s'assurer de redisposer les fils tel qu'ils étaient avant le démontage.
- Faire attention à l'électricité statique des circuits intégrés et des autres circuits lors de la réparation.

COLL			ABBIL-
SCH- RITT	ENTFERNEN	VERFAHREN	DUNG
1	Vordere Gehäu- sehälfte	Batteriefachdeckel(A) × 1 Die Cassetten- und Dischalter öffen. Schraube(B) × 8 Buchse(C) × 1	6-1
2	CD Block	1. Schraube(D) × 2 2. Buchse(E) × 2	6-3
3	Band- laufwerk	1. Schraube · · · · · · · (F) × 3 2. Buchse · · · · · (G) × 2	7-1
4	Tunerleiter- platte	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7-2
5	Frequenz- gangentzer- rer leiter- platte	1. Schraube(K) × 2	7-2
6	Leistungs- leiterplatte	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7-2
7	Hauptleiter- platte	1. Schraube(N) × 3 2. Feder(O) × 1	7-2
8	CD Leiter- platte	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7-3
9	Schalter- leiterplatte	1. Haken(S) × 2	7-3
10	Anzeige- leiterplatte	1. Schraube(T) × 3	7-3
11	CD Laufwerk	Feder(U) × 1 Schwingungsisolier- gumm(V) × 4	7-4
12	Abtaster	Schrauben unbedingt der Reihenfolge nach entfernen. 1. Schraube ··········(W) × 1 2. Schraube ···········(X) × 2 Bei Montage die Schraube festklemmen. 3. Schraube ·········(Y) × 4	7-5

ÉTAPE	DÉPOSE	PROCÉDÉ	FIGURE
1	Coffret avant	Compartiment de piles(A) × 1 Ouvrir le porte-cassette et le porte-disque. Vis(B) × 8 Douille(C) × 1	6-1
2	Bloc de CD	1. Vis(D) × 2 2. Douille(E) × 2	6-3
3	Mécanisme de bande	1. Vis(F) × 3 2. Douille(G) × 2	7-1
4	PMI du tuner	1. Vis (H) × 3 2. Bout (I) × 1 3. Fil plat (J) × 1	7-2
5	PMI d'égaliseur graphique	1. Vis · · · · · · · · · (K) × 2	7-2
6	PMI principale	$\begin{array}{llllllllllllllllllllllllllllllllllll$	7-2
7	PMI principale	1. Vis(N) × 3 2. Ressort(O) × 1	7-2
8	PMI CD	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7-3
9	PMI de commutateur	1. Crochet(S) × 2	7-3
10	PMI d'affichage	1. Vis · · · · · · · · (T) × 3	7-3
11	Mécanism CD	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-4
12	Porte-laser	Dévisser dans l'ordre numérique. 1. Vis · · · · · · · · · · · · · · · · · · ·	7-5

E STRINGING OF DIAL CORD

- 1. Turn the drum fully in the direction (a) shown in Fig. 11-1 and stretch its cord over the parts in the numerical order.
- 2. Then turn the tuning control shaft fully in the direction ® shown in Fig. 11-1 and fix its pointer as shown in Fig. 11-1.

© SPANNEN DER SKALENSCHNUR

- Die Trommel gemäß Abb. 11-1 bis zum Anschlag in Richtung
 drehen, dann die Schnur in der numerischen Reihenfolge über die einzelnen Teile spannen.

(F)

PASSAGE DU CORDON DU CADRAN

- 1. Tourner le tambour entièrement dans le sens (à montré sur la Fig. 11-1 et passer le cordon sur les organes indiqués et dans l'ordre numérique.
- 2. Tourner l'arbre de commande d'accord entièrement dans le sens ® montré sur la Fig. 11-1 et fixer son index comme le montre la Fig. 11-1.

Figure 11-1

E SAFETY REGULATION

Precautions on Replacement and Adjustment of Pickup

The AEL (Accessible Emission Level) of this model is specified to be lower than Class-1 requirement. However, when conducting service, observe the following cautions so as to avoid exposure of laser to your eyes.

If the disc holder open-close detecting switch SW 850 is turned on (the disc holder is closed) after the selector switch is set to CD and power supply is turned on, the laser diode lights for about 7 seconds. While the laser is emitted and the compact disc is not loaded, do not look into the pickup lens.

Since the laser pickup adjusting variable resistor has been adjusted before shipping, do not adjust it when servicing (otherwise the performance is not guaranteed).

(D)

SICHERHEITSVORSCHRIFTEN

VORSICHTSMASSNAHMEN BEIM AUSWECHSELN UND EINSTELLEN DES ABTASTERS

Der AEL (zulässiger Emissionspegel) für dieses Modell wird unter der Meßwertanforderung angegeben, welche niedrigere Werte als in der Klasse 1 aufweist. Die folgenden Vorsichtsmaßnahmen müssen jedoch befolgt werden, damit während der Wartung die Augen keiner Laserstrahlung ausgesetzt sind.

Wenn der "Öffnen/Schließen"-Detektorschalter SW850 des Disc-Fachs aktiviert wird (Disc-Fach ist geschlossen) und nachdem der Wahlschalter bei eingeschaltetem Gerät auf CD gestellt wurde, leuchtet die Laserdiode für ungefähr 7 Sekunden auf. Während der Laser ausgestrahlt wird und die Disc-Schublade leer ist, unbedingt jeglichen Augenkontakt mit der Abtasterlinse vermeiden.

Der Regelwiderstand des Laserabtasters wurde vor Auslieferung des Geräts werkseitig eingestellt. Es darf deshalb bei der Wartung keine Verstellung vorgenommen werden, da andernfalls keine ausreichende Abtastleistung garantiert werden kann,

PRESCRIPTIONS RELATIVES À LA SÉCURITÉ

PRECAUTIONS LORS DU REMPLACEMENT OU AJUSTE-MENT DU PICK-UP

L'AEL (Accessible Emission Level) du présent modèle est inférieur à la condition de classe 1. Pour la réparation, il faut pourtant suivre les conseils ci-dessous afin d'éviter l'irradiation des yeux par laser.

Si, en mode CD, le commutateur de détection d'ouverturefermeture du porte-disque (SW850) est actionné (le portedisque est fermé) après la mise sous tension, la diode laser s'allume environ 7 secondes. Lorsque le disque n'est pas en place pendant cette émission, ne pas regarder l'objectif du porte-laser (pick-up).

La résistance variable du porte-laser, réglée à l'usine, ne nécessite aucun ajustement lors de la réparation (en cas de non-respect, la performance n'est pas assurée).

For DEMKO

ADVARSEL

Usynlig laster stråling når apparatet er åbent og sikkerhedsafbrydere er ude af funktion.

UNDGÅ BESTRÅLING

For SEMKO

"apparaten innehåller en laserkomponent som avger en laserstrålning som överstiger gränsen för laser klass 1."

For El

"Varoitus. Laite sisältää laserdiodin, joka lähettää näkymätöntä silmille vaarallista lasersäteilyä."

THE UNIT CONTAINS A LASER COMPONENT, EMITTING A LASER BEAM WHICH IN SOME INSTANCES MAY EXCEED THE CLASS 1 LASER LEVEL UNDER FAULT CONDITION. DO NOT STARE INTO BEAM.

DAS GERÄT ENTHÄLT EIN LASERBAUTEIL, WELCHES EINEN LASERSTRAHL ABGIBT, DER IN EINIGEN FÄLLEN ÜBER DER KLASSE 1 FÜR LASERERZEUGNISSE UNTER STÖRUNGSZUSTAND LIEGT. NIEMALS AUF DEN STRAHL STARREN.

CET APPAREIL CONTIENT UN ÉLÉMENT ÉMETTANT DES FAISCEASUXLASER, QUI, DANS UNE CONDITION ÉRRONÉE, PEUVENT DÉPASSER LE NIVEAU LASER DE CLASSE 1. NE PAS REGARDER LES FAISCEAUX LASER.

E

ADJUSTMENT

As for adjusting method refer to the relevant explanation in Service Manual "ADJUSTMENT PROCEDURES OF AUDIO PRODUCTS".

MECHANISM SECTION

· Driving Force check

Torque Meter	Specified value	
Play: TW-2412	Over 150 g	

· Torque Check

Torque Meter	Specified value	
Torque Meter	Tape 1	
Play: TW-2111	30 to 65 g.cm	
Fast forward: TW-2231	65 to 135 g.cm	
Rewind: TW-2231	65 to 135 g.cm	

· Head Azimuth

Test Tape	Instrument Connection
MTT-113C	Headphones socket

· Tape Speed

Test Tape	Adjusting Point	Specified value	Instrument Connection
MTT-111	in motor	3,000 ± 90 Hz	Headphones socket

TAPE SECTION

Position of each switch or control		
Volume Max		
Beat cancel	Α	
Graphic equalizer Center		
Tape selector	Normal	
Function	Tape/Power Off	

· Bias Oscillation check

	Specified value
Beat cancel	A: 85 ± 4 kHz B: -5 ± 2 kHz for A C: -13 ± 2 kHz for A

· Erase Current check

	Specified value
Resistor for measurement: 1 ohm	65 ± 10 mV

· Playback Amplifier Sensitivity check

Test Tape	Specified value	Instrument Connection
MTT-118	$1.5~\mathrm{V}~\pm~3~\mathrm{dB}$	Speaker terminal (Load resistance: 3 ohms)

Figure 14-1 REMOVE THE CASSETTE HOLDER COVER

\bigcirc

EINSTELLUNG

Einzelheiten über das Einstellverfahren sind in den entspre1chenden Erklärungen der Service-Anleitung "EIN-STELLVERFAHREN FÜR AUDIOPRODUKTE" angegeben.

MECHANISMUS-TEIL

· Überprüfung der Antriebskraft

Drehmomentmesser	Vorgeschriebener Wert	
Wiedergabe: TW-2412	Über 150 g	

· Überprüfung des Drehmoments

Darkara	Vorgeschriebener Wert	
Drehmomentmesser	Band 1	
Wiedergabe: TW-2111	30 - 65 g.cm	
Schnellvorlauf: TW-2231	65 - 135 g.cm	
Rückspulung: TW-2231	65 - 135 g.cm	

· Kopfazimut

Testband	Instrumentenanschluß	
MTT-113C	Kopfhörerbuchse	

· Bandgeschwindigkeit

Testband	Einstellpunkt	Vorgeschrie- bener Wert	Instrumenten- anschluß
MTT-111	im Motor	$3~000~\pm~90~Hz$	Kopfhörer- buchse

DECK-TEIL

Stellung jedes Schalters oder Stellers	
Lautstärke Max	
Schwebungsunterdrückungsschalter	Α
Frequenzgangentzerrer	Mitte
Bandsortenwahlschalter	Normal
Funktion	Band/Einlaus Aus

Prüfung der Vormagnetisierungs-Frequenz und des Vormagnetisierungsstroms

	Vorgeschriebener Wert
Unterdrückung von Interferenzpfeifen	A: 85 \pm 4 kHz B: -5 \pm 2 kHz für A C: -13 \pm 2 kHz für A

· Überprüfung des Löschstroms

	Vorgeschriebener Wert	
Widerstand zum Messen: 1 Ohm	65 ± 10 mV	

Überprüfung der Empfindlichkeit des Wiedergabe-Verstärkers

Testband	Vorgeschriebener Wert	Instrumentenanschluß
MTT-118	1,5 V \pm 3 dB	Lautsprecherklemme (Belastungswiderstand: 3 Ohm)

(\mathbf{F})

RÉGLAGE

Pour la méthode de réglage, se reporter aux indications concernées dans le Manuel de service "PROCÉDÉS DE RÉGLAGE DES PRODUITS ACOUSTIQUES".

PARTIE MAGNETOPHONE

· Vérification de la force d'entraînement

Torsiomètre		Valeur spécifiée	
	Lecture: TW-2412	Plus de 150 g	

· Vérification du couple

Torsiomètre	Valeur spécifiée
	Bande 1
Lecture: TW-2111	30 à 65 g.cm
Avance rapide: TW-2231	65 à 135 g.cm
Rebobinage: TW-2231	65 à 135 g.cm

· Azimut de la tête

Bande d'essai	Instrument de connexion
MTT-113C	Prise de casque

· Vitesse de défilement

	Bande d'essai	Point de réglage	Valeur spécifiée	Instrument de connexion
	MTT-111	Dans le moteur	3.000 ± 90 Hz	Prise de
1	'*	Dane to motour	3.000 = 00 Hz	casque

PARTIE PLATINE

Position de chaque commutateur ou chaque commande	
Volume Max	
Commutateur antibattement	Α
Egaliseur graphique Centre	
Sélecteur de bande	Normal
Fonction	Bande/Alimentation arrêt

Vérification de la fréquence d'oscillation de polarisation

	Valeur spécifiée
Antibattement	A: 85 ± 4 kHz B: -5 ± 2 kHz pour A C: -13 ± 2 kHz pour A

· Vérification du courant d'effacement

	Valeur spécifiée
Résistance pour mesure: 1 ohm	$65\pm10\mathrm{mV}$

Vérification de la sensibilité de l'amplificateur de lecture

Bande d'essai	Valeur spécifiée	Instrument de connexion
MTT-118	1,5 V \pm 3 dB	Borne d'enceinte (Résistance de charge: 3 ohms)

TUNER SECTION

fL: Low-range frequency fH: High range frequency

· AM IF/RF

Test Stage	Specified value/ Adjusting Point	Instrument Connection
IF	Т3	Input: Antenna Output: Pin 9 of IC2
LW frequency cover	fL: L6 fH: TC7	
LW tracking	170 kHz: L4 270 kHz: TC5	
MW frequency cover	fL: L7 fH: TC8	Input: Antenna
MW tracking	600 kHz: L4 1,400 kHz: TC4	Output: Pin 1 of IC3
SW frequency cover	fL: L8 fH: TC6	
SW tracking	6.5 MHz: L5 16 MHz: TC3	1

· FM IF/RF

Test Stage	Specified value/ Adjusting Point	Instrument Connection
IF	T1	
Detection	T2	
Frequency cover	fL: L3 fH: TC2	Input: Antenna Output: Pin 9 of IC2
Tracking	88.0 MHz: L2 108.0 MHz: TC1	

· VCO Frequency

Adjusting Point	Specified value	Instrument Connection
VR1	38 kHz \pm 100 Hz	Pin 6 of IC3

Figure 16 TEST POINTS

TUNER-TEIL

fL: Niedriger Frequenzbereich fH: Hoher Frequenzbereich

· MW-Zwischen-/Hochfrequenz

Prüfstufe	Vorgeschriebener Wert/Einstellpunkt	Instrumentenanschluß
ZF	Т3	Eingang: Antenne Ausgang: Stift 9 von IC2
LW-Frequenz- bereich	fL: L6 fH: TC7	
LW-Abtastung	170 kHz: L4 270 kHz: TC5	
MW-Frequenz- bereich	fL: L7 fH: TC8	Eingang: Antenne
MW-Abtastung	600 kHz: L4 1 400 kHz: TC4	Ausgang: Stift 1 von IC3
KW-Frequenz- bereich	fL: L8 fH: TC6	
KW-Abtastung	6,5 MHz: L5 16 MHz: TC3	

· UKW-Zwischen-/Hochfrequenz

Prüfstufe	Vorgeschriebener Wert/Einstellpunkt	Instrumentenanschluß
ZF	T1 .	
Demodulation	T2	
Frequenz- bereich	fL: L3 fH: TC2	Eingang: Antenne Ausgang: Stift 9 von IC2
Abtastung	88,0 MHz: L2 108,0 MHz: TC1	

· Frequenz des spannungsgesteuerten Oszillators

Einstellpunkt	Vorgeschriebener Wert	Instrumentenanschluß
VR1	38 kHz ± 100 Hz	Stift 6 von IC3

- DIE ANWEISUNG DER FREQUENZEINSTELLUNG -

Um der Postverfügung Nr. 478/1981 zu entsprechen, wird der UKW-Frequenzbereich mit Hilfe der Oszillatorspule (L3-untere Eckfrequenz: 87,5 MHz) und des Oszillatortrimmers (TC2-obere Eckfrequenz: 108,0 MHz) eingestellt.

(F)

PARTIE TUNER

fL: basse fréquence fH: haute fréquence

· FI/RF AM (PO)

Etage d'essai	Valeur spécifiée/ Point de réglage	Instrument de connexion
FI	Т3	Entrée: Antenne Sortie: Broche 9 de IC2
Couverture de fréquence GO	fL: L6 fH: TC7	
Alignement GO	170 kHz: L4 270 kHz: TC5	
Couverture de fréquence PO	fL: L7 fH: TC8	Entrée: Antenne
Alignement PO	600 kHz: L4 1.400 kHz: TC4	Sortie: Broche 1 de IC3
Couverture de fréquence OC	fL: L8 fH: TC6	
Alignement OC	6,5 MHz: L5 16 MHz: TC3	_

· FI/RF FM

Etage d'essai	Valeur spécifiée/ Point de réglage	Instrument de connexion
FI	T1	
Détection	T2	
Couverture de fréquence	fL: L3 fH: TC2	Entrée: Antenne Sortie: Broche 9 de IC2
Alignement	88,0 MHz: L2 108,0 MHz: TC1]

· Fréquence VCO

Point de réglage	Valeur spécifiée	Instrument de connexion	
VR1	38 kHz \pm 100 Hz	Broche 6 de IC3	

CD SECTION

This mechanism has been newly designed to improve its performance, so that pickup posture adjustment, laser power adjustment and VCO adjustment are not required.

Setting the TEST Mode (Refer to Fig. 18-1)

Pressing CALL button and CLEAR button simultaneously, set the selector switch to CD. As a result the whole indication appears for 0.5 sec, and "TEST MODE 0" (1) is indicated.

Then once press the PLAY button. As a result "TEST MODE 1" (2) is indicated, and the laser lights.

If the PLAY button is pressed again, "TEST MODE 2" (3) is indicated, and Focus starts (Focus Servo On).

When the PLAY button is pressed (third time), "TEST MODE 3" (4) is indicated, and the spin motor starts (Spin Servo On). When the PLAY button is pressed (fourth time), "TEST MODE 4" (5) is indicated, and Tracking Servo is turned on.

When the PLAY button is pressed (fifth time), track No. and time are indicated (6).

The sixth key input and subsequent key inputs are not accepted.

When the STOP button is pressed, pertinent operation stops, resulting in stop state. In this case the pickup does not slide, and "TEST MODE 0" is indicated.

While the FAST FORWARD (REWIND) button is pressed, the pickup slides to outward (inward). While this operation is executed, the test mode indication does not change.

Caution: The above-mentioned TEST Mode cannot be set unless the CD cover open-close switch is set to ON. (Refer to Fig. 18-2)

Figure 18-1 TEST MODE

Figure 18-2

CD-TEIL

Zum Verbessern der Leistung wurde dieses Mechanismus von neuem entworfen, so daß Abtasterstellungs-, Laserleistungsund VCO-Einstellung nicht erforderlich sind.

Einstellen der Test-Betriebsart (Siehe Abb. 18-1)

Durch gleichzeitiges Drücken der CALL- und CLEAR-Taste wird der Wahlschalter auf CD umgestellt. Die gesamte Anzeige erscheint für 0,5 sec, und "TEST MODE 0" (1) wird angezeigt.

Danach die PLAY-Taste drücken. Es wird "TEST MODE 1" (2) angezeigt, worauf der Laser aufleuchtet.

Bei erneuter Betätigung der PLAY-Taste wird "TEST MODE 2" (3) angezeigt, und die Brennweite wird aktiviert (Fokus-Servo in Betrieb).

Wenn die PLAY-Taste (zum drittenmal) gedrückt wird, wird "TEST MODE 3" (4) angezeigt, worauf sich der Drehmechanismusantrieb in Betrieb setzt (Dreh-Servo aktiviert).

Wenn die PLAY-Taste (zum viertenmal) gedrückt wird, wird "TEST MODE 4" (5) angezeigt, worauf der Abtast-Servo aktiviert wird.

Wenn die PLAY-Taste (zum fünftenmal) gedrückt wird, wird die Titelnummer sowie die Zeit (6) angezeigt.

Eine sechste bzw. weitere Tasteneingaben zeigen keine Reaktion.

Durch Drücken der STOP-Taste wird der Betrieb unterbrochen (das Gerät tritt in die Stopp-Betriebsart ein). In diesem Fall gleitet der Abtaster nicht mehr, und es wird "TEST MODE 0" angezeigt.

Während die FAST FORWARD (REWIND)-Taste gedrückt wird, gleitet der Abtaster nach außen bzw. nach (innen). Während dieser Funktion verändert sich die "Test Mode"-Anzeige nicht.

Vorsicht: Die oben beschriebene TEST-Betriebsart kann nicht eingestellt werden, außer wenn der CD-Fachdeckel-Öffnen/Schließen-Schalter eingeschaltet ist (ON). (Siehe Abb. 18-2)

PARTIE CD

Ce mécanisme nouvellement conçu est très avancé auprès du précédent. Il n'est donc plus nécessaire d'ajuster la position du porte-laser, la puissance laser et le VCO.

Réglage du mode d'essai (Voir Fig. 18-1.)

Tout en pressant la touche CALL et la touche CLEAR, amener le sélecteur sur CD. Toutes les indications seront affichées pendant 0,5 seconde et puis "TEST MODE 0" (1) s'inscrira sur l'afficheur.

Appuyer alors sur la touche PLAY. "TEST MODE 1" apparaît sur l'afficheur et le laser s'allume.

Une autre pression sur la touche PLAY fait apparaître "TEST MODE 2" (3) et la focalisation se met en marche (l'asservissement du foyer en marche).

La troisième pression permet d'afficher "TEST MODE 3" (4) et le moteur spin part (l'asservissement spin en marche).

La quatrième permet de passer à "TEST MODE 4" (5) et l'asservissement de l'alignement se met en marche.

A la cinquième pression, le numéro de la plage et l'heure sont affichés (6).

En aucun cas, une sixième pression n'est acceptée.

La touche STOP pressée, l'appareil se met en état d'arrêt en interrompant des actions. Le porte-lasser (pick-up) ne se déplace pas alors et l'afficheur indique "TEST MODE 0".

Pendant que l'on presse sur la touche FAST FORWARD (ou REWIND), le porte-laser se déplace vers l'extérieur (ou l'intérieur). Au cours de cette opération, l'affichage du mode d'essai ne change pas.

Attention: Le mode d'essai ci-dessus n'est réalisable que lorsque le commutateur d'ouverture/fermeture de couvercle CD se trouve sur ON. (Voir Fig. 18-2)

Servo Unit

Since the adjusting procedure differs from that described in "ADJUSTMENT PROCEDURES OF AUDIO PRODUCTS", refer to the Service Manual.

All the semivariable resistors must be set in the mechanical center position.

Test Stage	Adjusting Parts	Value/Adjusting Method	Instrument Connection
Test Mode 0			
Focus offset	VR702	0 ± 30 mV	Pin 1 and Pin 2 of CNP701
Tracking offset	VR707	0 ± 30 mV	Pin 3 and Pin 4 of CNP701
Test Mode 1 (Confirmati	on of laser lighting)		
After loading the disc, se	et to Test Mode 2 (foo	us servo ON)	
Test Mode 3 (Spin Servo	ON)		
Tracking error balance	VR701	*1	Pin 8 and pin 3 (Ground) of TP1
Test Mode 4 (Tracking S	Servo ON)		
Focus balance	VR704	Adjust to obtain clear and max. amplitude of eye pattern (more than 0.58 Vp-p) and min. jitter.	Pin 1 of TP1 and pin 2 (ground) of TP1
Focus gain VR705		Adjust to obtain the same waveform on CH1 and CH2. *2	Pin 6 (CH1) and pin 7 (CH2) of TP1 and ground
Tracking gain	VR703	Adjust to obtain the same waveform on CH1 and CH2. *3	Pin 4 (CH1) and pin 5 (CH2) of TP1 and ground

^{*1} Adjust to obtain vertically symmetric waveform (Fig. 20-1) with respect to the reference DC level. The reference level is 1/2 Vcc - 10 mV.

Figure 20-2

^{*2} Input oscillation frequency: 1.5 kHz, 350 mV rms

^{*3} Input oscillation frequency: 1.5 kHz, 350 mV rms

Servoeinheit

Da die Einstellmethode von der im Abschnitt "EINSTELLVERFAHREN VON AUDIOERZEUGNISSEN" beschriebenen Verfahren abweicht, sich auf Service-Anleitung beziehen.

Alle halbveränderlichen Widerstände müssen in die mechanische Mittelposition gebracht werden.

Einstell-Teststufe	Wert/komponenten	Einstell-verfahren	Meßgeräteanschluß
Test Betriebsart 0			
Fokus-Relativanzeige	VR702	$0\pm30\;\text{mV}$	Stift 1 und Stift 2 des CNP701
Abtast-Relativanzeige	VR707	0 ± 30 mV	Stift 3 und Stift 4 des CNP701
Test-Betriebsart 1 (Bestä	tigung für Laseraktivieru	ung)	
Nach dem Einlegen der	Disc auf Test-Betriebsar	t 2 einstellen (Fokus-Servo eingeschalte	et).
Test-Betriebsart 3 (Drehi	mechanismus-Servo ein	geschaltet)	
Abtastfehlerbalance	VR701	*1	Stift 8 und Stift 3 (Masse) von TP1
Test-Betriebsart 4 (Abtas	st-Servo eingeschaltet)		
Fokusbalance	VR704	So einstellen, daß sich ein klare und max. Amplitude im visuellen Muster (Mehr als 0,58 Vs-s) und minimales Zittern ergibt.	Stift 1 von TP1 und Stift 2 (Masse) von TP1
Fokusverstärkung VR705		So einstellen, daß die gleiche Wellenform an CH1 und CH2 erhalten wird. *2	Stift 6 (CH1) und Stift 7 (CH2) von TP1 und Masse
Abtastverstärkung VR703		So einstellen, daß die gleiche Wellenform an CH1 und CH2 erhalten wird. *3	Stift 4 (CH1) und Stift 5 (CH2) von TP1 und Masse

^{*1} So einstellen, daß unter Berücksichtigung der Gleichstrom-Bezugsspannung eine vertikal symmetrische Wellenform entsteht (Abb. 20-1). Die Bezugsspannung beträgt 1/2 Vcc – 10 mV.

Unité d'asservissement

Le procédé de réglage diffère de celui décrit dans "PROCEDES DE REGLAGE DES PRODUITS ACOUSTIQUES", se reporter au manuel de service.

Toutes les résistances semi-variables doivent être sur la position centrale mécanique.

Etage d'essai	Point de réglage	Valeur/Réglage	Raccordement de l'appareil de mesur	
Mode d'essai 0				
Décentrage du foyer	VR702	0 ± 30 mV	Broches 1 et 2 de CNP701 Broches 3 et 4 de CNP701 en marche)	
Décentrage de l'alignement	VR707	0 ± 30 mV	Broches 3 et 4 de CNP701	
Mode d'essai 1 (Confirm	nation de l'éclairement	laser)		
Après la mise en place	du disque, passer au m	ode d'essai 2 (l'asservissement du foyer	en marche)	
Mode d'essai 3 (l'asserv	vissement spin en marc	he)		
L'équilibre d'erreur VR701		*1	Broches 8 et 3 (terre) de TP1	
Mode d'essai 4 (l'asserv	vissement de l'aligneme	ent en marche)	1	
Ajustement de VR704 Equilibre de foyer		Ajuster pour obtenir l'amplitude maxi et l'image claire de lu mire à oeil (plus de 0,58 Vc-c), et l'instabilité mini.	Broche 1 de TP1 et broche 2 (terre) de TP1	
Gain de foyer VR705		Ajuster pour obtenir la même forme d'onde sur CN1 et CN2. *2	Broches 6 (CN1) et 7 (CN2) de TP1 et la mise à la terre	
Gain de l'alignement VR703		Ajuster pour obtenir la même forme d'onde sur CN1 et CN2. *3	Broches 4 (CN1) et 5 (CN2) de TP1 et la mise à la terre	

^{*1.} Ajuster pour réaliser verticalement une forme d'onde symétrique (Fig. 20-1) par rapport au niveau CC de référence. Il est de 1/2 Vcc - 10 mV.

^{*2} Eingangs-Oszillatorfrequenz: 1,5 kHz, 350 mV rms

^{*3} Eingangs-Oszillatorfrequenz: 1,5 kHz, 350 mV rms

^{*2.} Fréquence d'oscillation d'entrée: 1,5 kHz, 350 mV efficace

^{*3.} Fréquence d'oscillation d'entrée: 1,5 kHz, 350 mV efficace

TUNER PWR-C **≐** C72 **−** 0 022 FM Signal AM Signal ROD ANTENNA (250) \neg TUNER PWB - C 654321 BAR ANTENNA I BLUE 1 YELLOW BAND SELECTOR

(E)

NOTES ON SCHEMATIC DIAGRAM

· Resistor:

To differentiate the units of resistors, such symbol as K is used: the symbol K means 1000 ohm and the resistor without any symbol is ohm-type resistor.

· Capacitor:

To indicate the unit of capacitor, a symbol P is used: this symbol P means micro-micro-farad and the unit of the capacitor without such a symbol is microfarad. As to electrolytic capacitor, the expression "capacitance/withstand voltage" is used.

(CH), (TH), (RH), (UJ): Temperature compensation

(ML): Mylar type

(P.P.): Polypropylene type

 The indicated voltage in each section is the one measured by Digital Multimeter between such a section and the chassis with no signal given. The voltage of tuner section has been measured in FM stereo mode.

The value enclosed in parenthesized () has been obtained in AM mode, and the IC3's value enclosed in parenthesized () has been obtained in Monaural mode.

The voltage of CD section has been measured in Stop state.

The parenthesized () value has been obtained in Play mode.

- Parts marked with "A" () are important for maintaining the safety of the set. Be sure to replace these parts with specified ones for maintaining the safety and performance of the set
- Schematic diagram and Wiring Side of P.W.Board for this model are subject to change for improvement without prior notice.

D ANMERKUNGEN ZUM SCHEMATISCHEN SCHALTPLAN

· Widerstände:

Um die Einheiten der Widerstände unter-scheiden zu können, werden Symbole wie K benutzt. Das Symbol K bedeutet 1000 Ohm Bei Widerständen ohne Symbol handelt es sich um ohmsche Widerstände.

· Kondensatoren:

Zum Bezeichnen der Kondensatoreinheit wird das Symbol P benutzt; dieses Symbol P bedeutet Nanofard. Die Einheit eines Kondensators ohne Symbol ist Mikrofarad. Für Elektrolytkondensatoren wird die Be-zeichnung "Kapazität/ Stehspannung" benutzt.

(CH), (TH), (RH), (UJ): Temperaturkompensation

(ML): Mylarkondensator (P.P): Polypropylentyp

 Die in den einzelnen Teilen angegebenen Spannungen werden mit einem Digitalvielfachmeßgerät zwischen dem betreffen den Teil und dem Chassis ohne Signalzuleitung gemessen. Die Spannung der Tuner-Abteilung wurde in der FM stereo-Betriebsart abgemessen.

Der vom eingeschaltete () umringte Wert wurde in der AM-Betriebsart erlangt und der vom eingeschaltete () umringte Wert des IC3 wurde in der Monoral-Betriebsart erlangt.

Die Spannung der CD-Abteilung wurde im Stopp-Zustand abgemessen. Der eingeschaltete Wert () wurde in der Wiedergabebetriebsart erlangt.

- Die mit (Insert auch der Sicherheit als auch die Beimung der Sicherheit. Beim Wechseln dieser Teile sollten die vorgeschriebenen Teile immer verwendet werden, um sowohl die Sicherheit als auch die Leistung des Gerätes aufrechtzuerhalten.
- · Änderungen des schematischen Schaltplans und der Verdrahtungsseite der Leiterplatte für dieses Modell im Sinne von Verbesserungen jederzeit vorbehalten.

F REMARQUES CONCERNANT LE DIAGRAMME SCHÉMATIQUE

· Résistance:

Pour différencier les unités de résistances, on utilise des symbole tels que K: le symbole K signifie 1000 ohms et la résistance donnée sans symbole est une résistance de type ohm.

· Condensateur:

Pour indiquer l'unité de condensateur, on utilise le symbole P; ce symbole P signifie micro-microfarad, et l'unité de condensateur donnée sans ce symbole est le microfarad. En ce qui concerne le condensateur électrolytique, on utilise l'expression "tension de régime/capacité"

(CH), (TH), (RH), (UJ): Compensation de température

(ML): Condensateur Mylar

(P.P): Type Polypropylène

 La tension indiquée dans chaque section est celle mesurée par un multimètre numérique entre la section en question et le châssis, en l'absence de tout signal. La tension de la partie tuner a été mesurée en mettant l'appareil en mode FM stéréo.

Les valeurs parenthèses () sont celles mesurés en mode AM, les valeurs parenthèses () de IC3 en mode mono.

Nous avons mesuré la partie CD en état de non-signal. Les valeurs entre parenthèses () sont celles mesurées en lecture.

- Les pièces portant la marque (mage) sont particulièrement importantes pour le maintien de la sécurité. S'assurer de les remplacer par des pièces du numéro de pièce spécifié pour maintenir la sécurité et la performance de l'appareil.
- Le diagramme schématque et le côté câblage de la PMI de ce modèle sont sujets à modifications sans préavis pour l'amélioration de ce produit.

TA8110AP MPX STOP OUT **▲**VCO MIX OUT OUT (9) VCO STOP AM-FM QUAD MUTING Q AM-IF FM-IF SWICH LEVEL DET AM DET LED DRIVER OSC STB AM-M[X ► AGC ► ΑM AMRF IN AM RF AM OSC AGC GND

LOWCUT

TA7343AP

E FUNCTION TABLE OF IC (RH-iX1475AFZZ)

Pin. No.	Terminal Name	Input/ Output	Function
1-10	S10-S1	Output	LCD segment output
11-13	COM1-3	OUTPUT	LCD common output
14-17	VL1-4	_	-
18	CNTR	Input	Data input from servo IC
19	_	_	_
20	EFFK	Input	Input of clock signal of Q code data in sub-code
21	_	_	_
22	SUBQ	Input	Input of Q code data in sub-code
23	DRD	Input	When speed of spin motor reduces, signal is inputted.
24	SCOR	Input	Input of frame simultaneous signal of Q code data in sub-code
25	SYCLK	Input	Input of frame synchronous start signal
26	CRCF	Input	Input of error correction check of Q code data in sub-code
27, 28	_	_	_
29	RESET	Input	Reset input
30, 31	X IN, OUT		Clock signal
32	VSS		Ground
33-36	P27-P24	Input	Key scan input, L level pulse input
38-40	P22-P20	Output	Key scan output, L level pulse output
41	_	_	_
42	MUTE	Output	Audio muting control 0: Mute ON
43	LD ON	Output	Laser diode control 1: ON
44	JP1	Output	Track jump control signal
45	MSD	Output	Serial data output
46	MCK	Output	Serial data output
47	MLA	Output	Serial data output latch signal
48	_	_	_
49	PÚ IN	Input	Pickup innermost peripheral position detecting signal 0: Innermost peripheral position
50	_	Output	Forced play
51	SC IN	Input	Synchronous input
52	_	 -	_
53	SC OUT	Output	Slide motor feed forced stop
54	_	-	-
55	SYNC OUT	Output	Cassette mechanism control output in CD synchro mode
56	SYNC IN	Input	CD synchro mode
57-59	_	<u> </u>	_ :
60-80	S30-S9	Output	LCD segment output

FUNKTIONTABELLE VOM INTEGRIERTEN SCHALTKREISES (RH-iX1475AFZZ)

Anschluß Nr.	Bezeich- nung	Eingabe/ Ausgabe	Funktion
1-10	S10-S1	Ausgabe	Segmentausgabesignal der Flüssigkristallanzeige
11-13	COM1-3	Ausgabe	Gemeinsamer Signalausgang der Flüssigkristallanzeige
14-17	VL1-4	_	-
18	CNTR	Eingabe	Dateneingabesignal vom Servo-IC
19	_	_	
20	EFFK	Eingabe	Eingabe des Q-Codedaten-Taktsignals im Sub-Code
21	_	_	_
22	SUBQ	Eingabe	Eingabe der Q-Codedatensignale im Sub-Code
23	DRD	Eingabe	Wenn sich die Drehzahl des CD-Antriebsmotors vermindert, wird ein Signal eingegeben.
24	SCOR	Eingabe	Eingabe des simultanen Q-Codedaten-Rahmensignals im Sub-Code
25	SYCLK	Eingabe	Eingabe des synchronen Rahmen-Startsignals im Sub-Code
26	CRCF	Eingabe	Eingabe des Q-Codedaten/Fehlerkorrektur-Prüfsignals im Sub-Code
27, 28		_	-
29	RESET	Eingabe	Nullstellungseingabesignal
30, 31	X IN, OUT	_	Taktsignal
32	VSS	_	Massesignal
33-36	P27-P24	Eingabe	Tastenabtast-Eingabesignal, L Pegel-Pulseingabesignal
38-40	P22-P20	Ausgabe	Tastenabtast-Ausgabesignal, L Pegel-Pulsausgabesignal
41	_	_	_
42	MUTE	Ausgabe	Stummabstimmungssteuerungssignal 0: Stummabstimmung EIN
43	LD ON	Ausgabe	Laserdiodensteuerungssignal 1: EIN
44	JP1	Ausgabe	Titelsprung-Steuerungssignal
45	MSD	Ausgabe	Seriendaten-Ausgangssignal
46	мск	Ausgabe	Seriendaten-Ausgangssignal
47	MLA	Ausgabe	Seriendaten-Ausgangs/Sperrsignal
48	_	T -	-
49	PU IN	Eingabe	Erfassungssignal für die innerste Abtastposition auf der Disc 0: Innerste Abtastposition
50	_	Ausgabe	Zwangswiedergabesignal
51	SC IN	Eingabe	Synchroeingangssignal
52	_	-	_
53	SC OUT	Ausgabe	Schiebmotorvorschub-Zwangsstopp
54	_	_	_
55	SYNC OUT	Ausgabe	Ausgangssignal für Cassetten Mechanismussteuerung in der CD-Synchronbetriebsart
56	SYNC IN	Eingabe	CD-Synchronbetriebsart
57-59	_	_	-
60-80	S30-S9	Ausgabe	Segmentausgabesignal der Flüssigkristallanzeige

F TABLE DE FONCTIONS DE CI (RH-iX1475AFZZ)

ldot			· · · · · · · · · · · · · · · · · · ·
N° de broche	Nom de borne	Entrée/ Sortie	Fonction
1-10	S10-S1	Sortie	Sortie de segments LCD
11-13	COM1-3	Sortie	Sortie commune de LCD
14-17	VL1-4	_	_
18	CNTR	Entrée	Entrée des données provenant IC d'asservissement
19	-	_	_
20	EFFK	Entrée	Entrée du signal d'horloge des données du code Q en sous-code
21		_	_
22	SUBQ	Entrée	Entrée de données du code Q en sous-code
23	DRD	Entrée	Le moteur spin au ralenti, le signal entre ici.
24	SCOR	Entrée	Entrée du signal simultané de cadre de données du code Q en sous-code
25	SYCLK	Entrée	Entrée du signal de départ synchrone de cadre
26	CRCF	Entrée	Entrée de la vérification d'erreurs de données du code Q en sous-code
27, 28	_	-	_
29	RESET	Entrée	Entrée de la remise à zéro
30, 31	X IN, OUT	-	Signal d'horloge
32	VSS	-	Mise à la terre
33-36	P27-P24	Entrée	Entrée de balayage de touche, entrée d'impulsion de niveau L (bas)
38-40	P22-P20	Sortie	Sortie de balayage de touche, sortie d'impulsion de niveau L
41	_	_	_
42	MUTE	Sortie	Commande de réglage silencieux audio. En marche à 0.
43	LD ON	Sortie	Commande de la diode laser. En marche à 1.
44	JP1	Sortie	Signal de commande de saut de plage
45	MSD	Sortie	Sortie de données en série
46	MCK	Sortie	Sortie de données en série
47	MLA	Sortie	Signal de bascule de sortie de données en série
48	_	_	
49	PU IN	Entrée	Signal de détection de la position la plus interne du porte-laser. Position la plus interne à 0.
50	-	Sortie	Lecture forcée
51	SC IN	Entrée	Entrée synchrone
52	_	_	-
53	SC OUT	Sortie	Arrêt forcé de l'entraînement du moteur de glissement
54	_		_
55	SYNC OUT	Sortie	Sortie de commande du mécanisme cassette en mode synchrone CD
56	SYNC IN	Entrée	Mode synchrone CD
57	_	-	_
58-80	S30-S9	Sortie	Sortie de segments LCD

FUNCTION TABLE OF IC (M50422P)

Pin No.	Terminal Name	Input/ Output	Function
1	DDSCK	0	Delayed DSCK, LACK latch clock
3	EMP	0	Emphasis code output Emphasis provided = 1
4	PWM1	0	Disk motor PWM driving output 1,
5	PWM2	0	Disk motor PWM driving output 2, +
6	TEST	ı	Test mode selection input Normal playback = 0
7	DASEL	1	D/A interface control input, 1 : LSB MSB 0: MSB LSB
8	DEPAS	İ	Digital filter control input Digital filter bus = 1
9	IINH	1	Interpolation inhibition mode selection input Interpolation inhibition = 1
10	MSD	1	Micro-computer interface, serial data input
11	MCK	I	Micro-computer interface, shift clock input
12	MLA	1	Micro-computer interface, data latch clock input
13	ACLR	i	Micro-computer interface, resistor clear input Clear = 0 Timer reset = 1
14	HFD	l i	Playback signal omission signal input
15	HF	1	Playback signal input
16	IREF	1	Detection/PLL circuit reference current input
17	TLC	0	Slice level control output
18	LPF	1/0	PLL loop filter connection terminal
19	SYCLK	0	Frame synchronous state output Synchronous state = 1
20	VDD2	I	Detection/PLL circuit Power supply for analog section 5 V
22	DRD	0	Disk rotating state output
23	EFFK	0	EFM frame clock output Duty = 50 %
24	SCOR	0	Sub-code synchronous signal output S0 + S1
25	CRCF	ō	CRC check result output of sub-code Q
26	SCCK	i	Shift clock input for sub-code serial output
27	SCOE2	i	Enable input of sub-code parallel output P-S ch 0: High impedance
28	SCOE1	ti	Enable input of sub-code parallel output T-W ch 0: High impedance
29	VSS2	- 	GND, Same potential as that of VSS1
30	SBCW	0	Sub-code W ch output
31	SBCV	0	Sub-code V ch output
32	SBCU	Ö	Sub-code U ch output
33	SBCT	0	Sub-code T ch output
34	SBCS	ō	Sub-code S ch output
35	SBCR	ō	Sub-code R ch output
36	SBCQ	ō	Sub-code Q ch output
37	SBCP	o	Sub-code P ch output
38	RAS	0	Row address strobe signal output
40	RDB2	1/0	External memory data input/output 2
42	RDB1	1/0	External memory data input/output 1
43	RDB4	1/0	External memory data input/output 4
44	CAS	0	Column address strobe signal output
45	RDB3	1/0	External memory data input/output 3
46	WE	0	Write enable signal output
48	RAD1	0	External memory address output 1
49	RAD2	0	External memory address output 2
50	RAD3	0	External memory address output 3
51	RAD7	ō	External memory address output 7
52	RAD4	0	External memory address output 4
53	RAD5	0	External memory address output 5
54	RAD6	Ö	External memory address output 6
55	RAD0	0	External memory address output 0
56	VDD1	Ī	Power supply 5 V
57	EST2	0	Error status 2 C2 uncorrectable decoder data detection = 1
58	EST1	0	Error status 1 C2 decorder error detection = 1
59	C846	0	Clock output 8.4672 MHz
60	C423	0	Clock output 4.2336 MHz
61	C16M1	Ť	Frequency 1/2-divider input 1/2 VDD for bias voltage generation
62	C8MO	0	Frequency 1/2-divider output Frequency 1/2-divider output
63	X1	 -	Quartz oscillator input External clock input possible
64	XO	0	Quartz oscillator input external clock input possible Quartz oscillator output
65	VSS1	1	
	DOFK	0	GND, Same electric potential as that of VSS2
88	DOFK		Frame clock output 7.35 kHz Duty = 50 %
66 67	DO		D/A compositor control data customs
67	D0	0	D/A converter serial data output
	DO WDCK LRCK	0 0	D/A converter serial data output D/A converter, word clock D/A converter, left, right clock

® FUNKTIONTABELLE VOM INTEGRIERTEN SCHALTKREISES (M50422P)

Stift-Nr.	Anschluß- bezeichnung	Eingang/ Ausgang	Funktion
1	DDSCK	Α	Verzögerter DSCK, LACK Signalspeichertakt
3	EMP	Α	Betonungs-Codeausgang Vorherrschende Betonung = 1
4	PWM1	A	Diskmotor-Impulsbreitenmodulation-Antriebsausgang 1, -
5	PWM2	Α	Diskmotor Impulsbreitenmodulation-Antriebsausgang 2, +
6	TEST	E	Testmodus-Wahleingang Normale Wiedergabe = 0
7	DASEL	E	Digital/Analog-Interface-Steuereingang, 1: Höchstweriges Bit Niedrigestwertiges Bit 0: Höchstweriges Bit Niedrigstwertiges Bit
8	DEPAS	E	Digitalfilter-Steuereingang Digitalfilter-Bus = 1
9	IINH	E	Interpolations-Sperrmodus-Wahleingang Interpolations-Sperrmodus = 1
10	MSD	E	Mikrocomputer-Interface, serieller Dateneingang
11	MCK	E	Mikrocomputer-Interface, Takteingang-Umschaltung
12	MLA	E	Mikrocomputer-Interface, Datensignalspeicher-Takteingang
13	ACLR	E	Mikrocomputer-Interface, Widerstandeingabe löschen Löschen = 0 Timernullstellung = 1
14	HFD	E	Wiedergabesignal Unterdrückungssignaleingang
15	HF	E	Wiedergabesignaleingang
16	IREF	E	Schaltkreis-Bezugsstromeingang für Detektor und Phasenregelkreis
17	TLC	Α	Begrenzungspegel-Steuerausgang
18	LPF	E/A	Phasenregelkreisfilter-Anschlußklemme
19	SYCLK	A	Rahmensynchronisationsstatus-Ausgang Synchronisationsstatus = 1
20	VDD2	E	Schaltkreis für Detektor/Phasenregelkreis Spannungsversorgung für Analogteil 5 V
22	DRD	A	Disk-Rotationsstatus-Ausgang
23	EFFK	Α	EFM Rahmentakt-Ausgangsleistung = 50 %
24 25	SCOR	A	Zusatzcode-Synchronsignalausgang S0 + S1
26	SCCK	Α	CRC-Prüfergebnisausgang für Zusatzcode Q
27	SCOE2	E	Umschalttakteingang für seriellen Zusatzcodeausgang
28	SCOE2 SCOE1	E	Ermöglichung von Eingang für Zusatzcode-Parallelausgang P-S Kanal 0: Hohe Impedanz
29	VSS2	E	Ermöglichung von Eingang für Zusatzcode-Parallelausgang T-W Kanal 0: Hohe Impedanz
30	SBCW	A	Masse, gleiches Potential wie bei VSS1
31	SBCV	A	Zusatzcode W Kanal-Ausgang
32	SBCU	A	Zusatzcode V Kanal-Ausgang Zusatzcode U Kanal-Ausgang
33	SBCT	A	Zusatzcode o Kanal-Ausgang Zusatzcode T Kanal-Ausgang
34	SBCS	A	Zusatzcode S Kanal-Ausgang
35	SBCR	A	Zusatzcode 8 Kanal-Ausgang Zusatzcode R Kanal-Ausgang
36	SBCQ	A	Zusatzcode Q Kanal-Ausgang
37	SBCP	A	Zusatzcode P Kanal-Ausgang
38	RAS	A	Reihenadresse-Abtastsignalausgang
40	RDB2	E/A	Eingabe/Ausgabe externer Speicherdaten 2
42	RDB1	E/A	Eingabe/Ausgabe externer Speicherdaten 1
43	RDB4	E/A	Eingabe/Ausgabe externer Speicherdaten 4
44	CAS	Α	Ausgabe des Spaltenadresse-Abtastsignals
45	RDB3	E/A	Eingabe/Ausgabe externer Speicherdaten 3
46	WE	Α	Ausgabe des Schreibsicherungssignals
48	RAD1	Α	Ausgabe externer Speicheradresse 1
49	RAD2	Α	Ausgabe externer Speicheradresse 2
50	RAD3	Α	Ausgabe externer Speicheradresse 3
51	RAD7	Α	Ausgabe externer Speicheradresse 7
52	RAD4	Α	Ausgabe externer Speicheradresse 4
53	RAD5	Α	Ausgabe externer Speicheradresse 5
54	RAD6	Α	Ausgabe externer Speicheradresse 6
55	RAD0	Α	Ausgabe externer Speicheradresse O
56	VDD1	E	Spannungsversorgung (5 V)
57	EST2	Α	Fehlerstatus 2 C2 unkorrigierbare Decodiererdatenerkennung = 1
58	EST1	Α	Fehlerstatus 1 C2 Decodiererfehlererkennung = 1
59	C846	A	Taktausgangssignal 8,4672 MHz
60	C423	Α	Taktausgangssignal 4,2336 MHz
61	C16M1	E	1/2-Frequenzteilereingabe 1/2-VDD für Vorspannungserzeugung
62	C8MO	Α	1/2-Frequenzteilerausgabe
63	X1	E	Quarzoszillatoreingabe Externes Takteingangssignal möglich
64	XO	Α	Quarzoszillatorausgabe
65	VSS1	E	Masse, gleiche elektrische Spannung wie bei VSS2
K Li	DOFK	Α	Bildtaktausgabe 7,35 kHz Nutzleistung = 50 %
66			
67	DO	Α	D/A-Umsetzer, Seriendatenausgabe
	DO WDCK LRCK	A A	D/A-Umsetzer, Seriendatenausgabe D/A-Umsetzer, Worttaktsignal D/A-Umsetzer, linkes, rechtes Taktsignal

(F)

TABLE DE FONCTIONS DE CI (M50422P)

N° de broche	Nom de borne	Entrée/ sortie	Fonction
1	DDSCK	S	DSCK de retard, horloge de bascule LACK.
3	EMP	S	Sortie de code d'amplification Amplification fournie = 1
4	PWM1	S	Sortie d'entraînement 1 du PWM de moteur de disque, -
5	PWM2	S	Sortie d'entraînement 2 du PWM de moteur de disque, +
6	TEST	E	Entrée de sélection du mode d'essai. Lecture normale = 0
7	DASEL	E	Entrée de commande d'interface N/A 1 : LSB MSB, 0 : MSB LSB
8	DEPAS	E	Entrée de commande du filtre numérique, bus du filtre numérique = 1
9	IINH	E	Entrée de sélection du mode d'interdiction d'interpolation, interdiction d'interpolation = 1
10	MSD	E	Interface du micro-ordinateur, entrée de données en série
11	MCK	E	Interface du micro-ordinateur, entrée d'horloge de décalage
12	MLA	E	Interface du micro-ordinateur, entrée d'horloge de bascule de données
13	ACLR	E	Interface du micro-ordinateur, entrée d'annulation de résistance Annulation = 0 Remise à zéro de la minuterie = 1
14	HFD	E	Entrée de signal d'omission du signal de lecture
15	HF	E	Entrée de signal de lecture
16	IREF	E	Entrée du courant de réference de détection/circuit PLL
17	TLC	S	Sortie de commande du niveau du filtre limiteur
18	LPF	E/S	Borne de connexion pour le filtre de bouclage PLL
19	SYCLK	S	Sortie d'état synchrone de cadre État synchrone = 1
20	VDD2	E	Alimentation (5 V) pour partie analogique, circuit de détection/PLL
22	DRD	S	Sortie d'état de rotation du disque
23	EFFK	S	Horloge de cadre EFM. Taux d'utilisation = 50 %
24	SCOR	S	Sortie de signal synchrone de sous-code S0 + S1
25	CRCF	E	Sortie de résultat de vérification CRC du sous-code Q
26	SCCK	E	Entrée d'horloge de décalage pour la sortie de sous-code en série
27	SCOE2	E	Entrée de validation de P-S ch de sortie de sous-code en parallèle 0: Impédance élevée
28	SCOE1	E	Entrée de validation de T-W ch de sortie de sous-code en parallèle 0: Impédance élevée
29	VSS2	E	Mise à la terre, même niveau potentiel que VSS1
30	SBCW	S	Sortie de W ch de sous-code
31	SBCV	S	Sortie de V ch de sous-code
32	SBCU	S	Sortie de U ch de sous-code
33	SBCT	S	Sortie de T ch de sous-code
34	SBCS	S	Sortie de S ch de sous-code
35	SBCR	S	Sortie de R ch de sous-code
36	SBCQ	S	Sortie de Q ch de sous-code
37	SBCP	S	Sortie de P ch de sous-code
38	RAS	S	Sortie de signal de repère pour adresse par rangée
40	RDB2	E/S	Entrée/sortie 2 de données de mémoire extérieure
42	RDB1	E/S	Entrée/sortie 1 de données de mémoire extérieure
43	RDB4	E/S	Entrée/sortie 4 de données de mémoire extérieure
44	CAS	S	Sortie de signal de repère de données par colonne
45	RDB3	E/S	Entrée/sortie 3 de données de mémoire extérieure
46	WE	S	Sortie de signal de validation pour écriture
48	RAD1	S	Sortie d'adresse 1 de mémoire extérieure
49	RAD2	S	Sortie d'adresse 2 de mémoire extérieure
50	RAD3	S	Sortie d'adresse 3 de mémoire extérieure
51	RAD7	S	Sortie d'adresse 7 de mémoire extérieure
52	RAD4	S	Sortie d'adresse 4 de mémoire extérieure
53	RAD5	S	Sortie d'adresse 5 de mémoire extérieure
54	RAD6	S	Sortie d'adresse 6 de mémoire extérieure
55	RAD0	S	Sortie d'adresse 0 de mémoire extérieure
56	VDD1	E	Alimentation 5 V
57	EST2	S	État d'erreur 2 Détection de données incorrigibles du décodeur C2 = 1
58	EST1	S	État d'erreur 1 Détection d'erreur du décodeur C1 = 1
59	C846	S	Sortie d'horloge 8,4672 MHz
60	C423	S	Sortie d'horloge 4,2336 MHz
61	C16M1	E	Entrée de diviseur de fréquence (1/2) 1/2 VDD pour la génération de tension de polarisation
62	C8MO	S	Sortie de diviseur de fréquence (1/2)
63	X1	E	Entrée d'oscillateur à quartz. Entrée d'horloge extérieure possible
64	xo	S	Sortie d'oscillateur à quartz
65	VSS1	E	Mise à la terre, même niveau potentiel que VSS2
66	DOFK	S	Sortie d'horloge de cadre, 7,35 kHz Taux d'utilisation = 50 %
67	DO	S	Convertisseur N/A, sortie de données en série
69	WDCK	S	Convertisseur N/A, horloge de mot
70	LRCK	S	Convertisseur N/A, horloges de gauche et de droite
72	DSCK	S	Convertisseur N/A, horloge de décalage

-45-

REPLACEMENT PARTS LIST

"HOW TO ORDER REPLACEMENT PARTS"

To have your order filled promptly and correctly, please furnish the following information.

- 1. MODEL NUMBER
- 2. REF. NO.
- 3. PART NO.
- 4. DESCRIPTION

Parts marked with "A" are important for maintaining the safety of the set. Be sure to replace these parts with specified ones for maintaining the safety and performance of the

© ERSATZTEILLISTE

"BESTELLEN VON ERSATZTEILEN"

Um Ihren Auftrag schnell und richtig ausführen zu können, bitten wir um die folgenden Angaben.

- 1. MODELLNUMMER 2. REF. NR.
- 3. TEIL NR.
- 4. BESCHREIBUNG

ANMERKUNGEN:

Die mit "A" bezeichneten Teile sind besonders wichtig für die Aufrechterhaltung der Sicherheit. Beim Wechseln dieser Teile sollten die vorgeschriebenen Teile immer verwendet werden, um sowohl die Sicherheit als auch die Leistung des Gerätes aufrechtzuerhalten.

LISTE DES PIÈCES **DE RECHANGE**

"COMMENT COMMANDER DES PIÈCES DE RECHANGE"

Pour voir votre commande exécutée de manière rapide et correcte, veuillez fournir les renseignements suivants.

- 1. NUMÉRO DU MODÈLE
- 2. N° DE RÉFÉRENCE
- 3. N° DE LA PIÈCE
- 4. DESCRIPTION

NOTE:

Les pièces portant la marque "A" sont particulièrement importantes pour le maintien de la sécurité. S'assurer de les remplacer par des pièces du numéro de pièce spécifié pour maintenir la sécurité et la performance de

REF.NO.	PART NO.	DESCRIPTION	CODE	REF.NO.	PART NO.	DESCRIPTION	CODE	
	INTEGRATED	CIRCUITS	DIODES					
IC1	VHiTA7378P/-1	FM Front End, TA7378P	ΑE	D1~3	VHD1SS133//-1	Silicon,1SS133	АА	
IC2	VHiTA8110AP-1	FM/AM IF,TA8110AP	A G	D101,102	VHD1SS133//-1	Silicon, 1SS133	AA	
IC3	VHiTA7343P/-1	FM Multiplex,TA7343P	ΑG	D104	VHD1SS133//-1	Silicon, 1SS133	AA	
IC101	VH i BA3310N/-1	Record Amp., BA3310N	ΑF	D401	VHEHZ7A2L//-1	Zener, 7.2V, HZ7A2L	AΒ	
IC501	VHiM51601L/-1	Power Amp.,M51601L	ΑN	D402	VHPGL3PR8//-1	LED,Red,GL-3PR8	AΒ	
IC700,701	VHiTA8102P/-1	BTL Driver, TA8102P	ΑK	D451	VHPGL3PR8//-1	LED, Red, GL-3PR8	ΑВ	
IC703	VHiTA8102P/-1	BTL Driver,TA8102P	ΑK	∆D651~654	VHD20E4FD//-1	Silicon, 20E4FD	A C	
IC720	VHiM51567P/-1	Pre Amp.,M51567P	ΑL	D701~705	VHD1SS119//-1	Silicon,1SS119	AA	
IC750	VHiM51564P/-1	Servo Control, M51564P	ΑŞ	D750	VHD1SS119//-1	Silicon,1SS119	AA	
IC751	VH i NJM4558S-1	OP Amp., NJM4558S	ΑF	D800	VHD1SS119//-1	Silicon,1SS119	AA	
IC780	VHiM50422P/-1	Signal Control, M50422P	AW	D822	VHEHZ2LLB//-1	Zener,2V,HZ2LLB	A D	
IC781	RH-iX1443AFZZ	D RAM,M5M4416P-15	ΑN	D850,851	VHEHZ6B-1L/-1	Zener,6V,HZ6B1L	AΒ	
IC800	VHiYM3015//-1	DA Converter, YM3015	ΑQ	D852	VHEHZ7C-2L/-1	Zener, 7.2V, HZ7C2L	AΒ	
IC801,802	VHiNJM4560S-1	OP Amp., NJM4560S	A D	D901~903	VHD1SS119//-1	Silicon, 1SS119	AA	
IC820	VH i N J M 3 4 0 4 S - 1	OP Amp., NJM3404S	ΑE					
IC901	RH-iX1475AFZZ	Microcomputer	ΑX		FILTE	RS		
	TRANSIS	TORS		CF1	RFiLF0080AFZZ	FM IF,10.7 MHz	A D	
				CF2	RFiLA0122AFZZ	AM IF,455 kHz	A E	
Q101~104	VS2SC1740SR-1	Silicon,NPN,2SC1740 SR	ΑB	012	MI ILAUIZZAI ZZ	AW IF,455 KHZ	AL	
Q105	VSDTC144ES/-1	Digital, DTC144 ES	AB		TRANSFO	DMEDC		
Q201	VS2SC3242-G-1	Silicon,NPN,2SC3242 G	AC		TRANSPO	KWIEKS		
Q401	VS2SC3242-G-1	Silicon,NPN,2SC3242 G	AC	Т1	RCiLi0396AFZZ	FM IF	A C	
Q521,522	VS2SC1740SR-1	Silicon,NPN,2SC1740 SR	ΑB	T2	RCiLi0383AFZZ	FM Detector	AC	
Q551,552	VS2SC1740SR-1	Silicon,NPN,2SC1740 SR	AB	T3	RCiLi0399AFZZ	AM IF	AC	
Q701	VS2SB561-C/-1	Silicon,PNP,2SB561 C	AC	.↑T651	RTRNP1487AFZZ	Power	ΑU	
Q702	VS2SC2603-F-1	Silicon,NPN,2SC2603 F	AB		1111111 140711 ZZ	1 OWEI	Α 0	
Q703	VSDTC114YS/-1	Digital, DTC114 YS	ΑB		COIL	•		
Q710,711	VS2SB561-C/-1	Silicon, PNP, 2SB561 C	AC		COIL	3		
Q712,713	VS2SD467-C/-1	Silicon, PNP, 2SD467 C	AC	L1	RCiLA0620AFZZ	Band Pass Filter	A D	
Q740	VS2SA1115-F-1	Silicon, PNP, 2SA1115 F	AC	L2	RCiLR0467AFZZ	FM RF	AA	
Q751	VSDTC114YS/-1	Digital, DTC114 YS	ΑB	L3	RCiLB0672AFZZ	FM Oscillator	AC	
Q801	VS2SC2603-F-1	Silicon,NPN,2SC2603 F	AB	L4	RCiLA1030AFZZ	MW/LW Bar Antenna	AL	
Q810,811	VS2SC2603-F-1	Silicon, NPN, 2SC2603 F	ΑB	L5	RCiLA0562AFZZ	SW Antenna	AC	
Q821~823	VS2SC2603-F-1	Silicon, NPN, 2SC2603 F	A B	L6	RCiLB0627AFZZ	LW Oscillator	AC	
Q824	VS2SA1115-F-1	Silicon, PNP, 2SA1115 F	ΑC	L7	RCiLB1034AFZZ	MW Oscillator	AC	
Q825,826	VSDTC363TS/-1	Digital, DTC363 TS	AC	L8	RCiLB0629AFZZ	SW Oscillator	AC	
Q850,851	VS2SD1761F/-1	Silicon,NPN,2SD1761 F	A D	L60	VP-DH4R7K0000	4.7 μH	A B	
Q852	VS2SD788-C/-1	Silicon, NPN, 2SD788C	AC	L201	VP-MK561K0000	4.7 μ11 Choke,560 μH	AB	
Q853	VSDTA114ES/-1	Digital, DTA114 ES	AB	L451	VP-DH6R8K0000	6.8 mH	AB	
0854	VSDTC114ES/-1	Digital, NPN, DTC114 ES	AB	L601	RCiLF0014AGZZ	Choke,47 μH	AC	
0855	VSDTC114YS/-1	Digital, DTC114 YS	AB	L701	RCilF0014AGZZ	Choke,47 μH Choke,47 μH	AC	
Q901	VSDTC114YS/-1	Digital, DTC114 YS	AB	L/01	NOTEFUUTAAGZZ	Olloke,47 µП	A C	
-	· · · ·	g, 0111 10						

QT-CD20H

## ## ## ## ## ## ## ## ## ## ## ## ##	REF.NO.	PART NO.	DESCRIPTION	CODE	REF.NO.	PART NO.	DESCRIPTION	CODE	REF.NO.	PART NO.	DESCRIPTION	CODE	REF.NO.	PART NO.	DESCRIPTION	COD
TOTAL PRIVATE STATE OF THE PRIVATE O		CONTRO	OLS								100 μ F,50V,Electrolytic			VCFASA1JA274J	0.27 μ F,63V,Thin Film	Α (
Total Tota		mm= !!! 0701577	- .				• • •				, ,					ΑE
VICT-06 VICT					_				•		, , , ,		1			ΑE
No. Principle					1				,						, , ,	AE
No.	VC1***4	KVC-KU133AF22	•	ui AN	T		• •				• •		-			
VP-002-98-FEZ VP-002-98-FEZ Selection VP-002-98-FE	VR1	RVR-M0390AFZZ		ΑВ	1 '		•		,				1			
MON- MON- CALLES MON-			• • •				• '		,				· '			AE
Wind	VR531	RVR-Q0286AFZZ	20 kohms (B), Volume	ΑE		VCTYMN1CX272K	0.0027 μF,16V	AA	,							AC
Month Mont		RVR-M0589AFZZ	33 kohms (B), Semi-VR		C107,108	RC-GZA476AF1A	47 μF,10V,Electrolytic	AB	C741	RC-CZ1103AFZZ	1.5 μF,25V,Electrolytic		C901	VCTYMN0JY223N		AA
Variable			• • •		1 '		• •		•			A A				A C
CAYSTAL CITY March Company			• • •				• •								· · · · · · · · · · · · · · · · · · ·	AA
CHI	VR/0/	RVR-MU59UAFZZ	4/ kohms (B),Semi-VR	AB	1 '		, .				, , ,		C907	RC-EZ1289AFZZ	1 μ F,50V,Electrolytic	A C
Page		CDVCT	A1											DECIC	TORS	
ROPH - 964-46775 4.647 Marc 1.00		ORISIA	1 L											RESIST	ONS	
CIPS (CAPACITORS) CAPACITORS (CAPACITAGE) Thus are belonged classified from each plane of the good from the complex of the good from th	X780	110/1111			1 '		•						(Unless other	wise specified, resistors	are ±5%,carbon type.) (Tub	oular typ
C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	X901	RCRM-0055AFZZ	4.194 MHz	A D					•		•		carbon film re	sistor ±5% is identified	the symbol MN of the part N	O. VRD
The season by Section		CADACIT	ODC		C125,126	VCTYMN1CX182K	0.0018 μF,16V	AA	C755	VCTYPA1CX473M		AA	MN0000000;	this MN does not mean le	ad wire.)	
Windows Part Fire Tempera Control Cont		CAPACIT	UKS						C756		0.01 μF,16V	ΑА				
Column C	There are two ty	pes of capacitors available	e and they can be identified	from each			' '		- '				D1		100 1/5:4:44 15:4	A A
A principle control of the post Number 2 and 100 per 100 per 100 pe	other by reading	g their Part Numbers.									, , ,					
CORD					1 1											
SymborDecision for capacitate A symborDecision		or "K" is given at the 3rd	digit of its Part Number like	"VCC (or	1		• •			-	• •					
A growth "Further as the degree of the plant Number 160 - 2007 Foreign and the plant Number 160 - 2007 Foreign	•				C203	VOQENAZAA33Z3		Α.Β.			• •					
The cases/lives weren't auth considers in classification of the part for agreement considers as follower; "CFS," "			of its Part Number like "VC	`T1''	C204	VCTYPA1CX223M		AA					R8		, , , , , , , , , , , , , , , , , , , ,	
13th dig of the Pref Number as indiverser* (12-29%), (225) C255 C254 C2					0005		•				• • •		R9	VRN-RT2CK220J	22 ohms,1/6W,Metal Filr	n AA
							100 μF,16V,Electrolytic	AB	C768		• /				22 kohms, 1/6W, Metal Fi	lm AA
VCTVMPLCY1809 C92, VCTVMPLCX1819 C92,	•				C401		, ,				$0.047 \mu F, 16V$	AA				
Tribub type common capaciting in postforted by the symbol type capa	•	•	-	of the part	1 '											
Comparison Com																
VOLTOPALICAZISM VOLTOPALIC	•	•		e part NO.			• •				•	i				
C1 VCCSBT1HL1001 10 pf_25Y A A GS3,534 VCTVMINCX15X A A C776 RC-GZA107AF1A 200_pf_10V_Electrolytic A B R24 VNN-RT2CK47D1 470 ohms,176V_Motal Film A A C781 VCCZPA1HF1032 C												- 1				
C1 VCCSRT1HB100 M	Offices offici wis	e specified, electrolytic ca	pacitors are =2070 type.				• •					1				
Column	C1	VCCSBT1HL100J	10 pF,25V	AA				AA				I	R25,26	VRN-RT2CK332J	3.3 kohms,1/6W,Metal F	ilm A A
CS		VCKYBT1HB102K	0.001 μF,50V	AA	C535,536		0.022 μF,16V	AA	C781			АА			47 ohms,1/6W,Metal Film	n AA
C5	C3		5 pF (CH),50V	A A		-			C782	RC-GZA227AF1A	220 μF,10V,Electrolytic	ΑB			* *.	АА
CF VCCCPA1HH12R2 Z		•										I			• •	AA
C3 VCCPRAIHH150J 15 pf (CHI,590 A A CS55,56 VCTYPALCX128M 0.1 pf,16V CAPA C	-		* . *		1				,							
CS VCCRPALHH22Q1 20 pf (RH),50V A A C596,570 RC-GZA105AF1H 1 LF,50V,Electrolytic A B C792 VCCRSA1LA33AJ 0.33 #,68V.Thin Film A C C R105 Pf (RH),50V A C C596,570 RC-GZA105AF1H 1 LF,50V,Electrolytic A B C793 RC-GZA105AF1H 1 LF,50V,Electrolytic A B C794 VCTYPALCX473M 0.047 #,16V A A R105,110 RF,10V A A R105,110 RF,10V A B R105,110 RF,10V A A R115,110 RF,10V A B R105,110 RF,10V A A R115,110 RF,10V A B R105,110 RF,10V A A R115,110 RF,10V A B R105,110 RF,10V A B R105,110 RF,10V A A R115,110 RF,10V A B R105,110 RF,10V A A R115,110 RF,10V A A R115,110 RF,10V A B R105,110 RF,10V A A R115,110 RF,10V A A R115,	~ -				1		, .				• •	I				
OST VCTYPAICX23M OST PEP OST VCTYPAICX23M OST PEP OST					1 '						• •				* *	
Cil												1			• •	AA
C11 VCTYPAICX223M 0022 μ F,16V A A C575 RC-GZA227AF1C 220 μ F,16V Electrolytic A B C576 VCTYPAICX223M 0022 μ F,25V A A C795, VCTYPAICX23M 0.022 μ F,25V A A C795, VCTYPAICX23M 0.027 μ F,16V A A RII,111 VRD-MY28D153 J 150 knnns,1/8W A A C795 VCTYPAICX223M 0.022 μ F,16V A A C795, VCTYPAICX223M 0.022 μ F,16V A A C795, VCTYPAICX223M 0.022 μ F,16V Electrolytic A B C801 VCTYPAICX223M 0.022 μ F,16V Electrolytic A B C802 VCTYPAICX223M 0.002 μ F,16V A A C805, VCTYPAICX223M 0.002 μ F,16V Electrolytic A B C803 VCTYPAICX223M 0.001 μ F,50V A A C805, VCTYPAICX223M 0.002 μ F,16V Electrolytic A B C805 VCTYPAICX223M 0.002 μ F,16V A A C805, VCTYPAICX223M 0.002 μ F,16V Electrolytic A B C804 VCTYPAICX223M 0.002 μ F,16V A A C805 VCTYPAICX223M 0.002 μ F,16V Electrolytic A B C705 VCTYPAICX23M 0.004 μ F,16V Electrolytic A B C715 VCTYPAICX23M 0.001 μ F,16V E													R109,110	VRD-MN2BD470J		АА
C13 RC-GZ4A76AF1A 4 T_{μ} F_10V, Electrolytic A B C579 RC-GZ0051AFZZ 4700 μ F_20V, Electrolytic A B C670 VCTYPA1CX473M 0047 μ F_10V = A A R15_116 VRD-MX2B103 J 6 kbn/ms,1/8W A A C21 RC-GZ4A76AF1A 47 μ F_10V, Electrolytic A B C581,582 RC-GZA105AF1A 100 μ F_10V, Electrolytic A B C801 RC-GZA27AF1A 220 μ F_10V, Electrolytic A B R119,120 VRD-MX2B103 J 10 kbn/m,1/8W A A C22 VCTYPA1CX23M 0022 μ F_16V A A C583,584 RC-GZA105AF1A 100 μ F_10V, Electrolytic A B C803 VCTYM11CX182K 0018 μ F_15V A A R121 VRN-RT2CX27J 2.7 kbn/ms,1/6W, Metal Film A C23 VCTYPA1CX23M 0022 μ F_16V A B C681-684 RC-GZA105AF1A 100 μ F_10V, Electrolytic A B C805 RC-GZA105AF1C 10 μ F_15V, Electrolytic A B C705 VCTYPA1CX33M 0033 μ F_16V A A C706 VCTYPA1CX473M 0047 μ F_16V A C705 VCTYPA1CX23M 0033 μ F_16V A A C706 VCTYPA1CX473M 0047 μ F_16V A C808 VCTYANICX182K 0018 μ F_16V A A R121 RVRD-MX2B0132 J A kbn/ms,1/8W A A C705 VCTYPA1CX473M 0047 μ F_16V A C808 VCTYANICX182K 0018 μ F_16V A A R121 RVRD-MX2B0143 J A R121 RVRD-MX2B	C11	VCTYPA1CX223M	0.022 μF,16V	AA	C575	RC-GZA227AF1C	220 μF,16V,Electrolytic		C795						22 kohms, 1/8W	АА
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									C798,799		0.01 μF,16V	АА			•	АА
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, .	1				AA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			• •												•	AA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						_						i			* *	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
C25,26 VCTYPA1CX223M $0.022 \ \mu = 1.6V$ A A $0.032 \ \mu = 1.6V$ A A $0.033 \ \mu = 1.6V$ A A											•					AA
C27 VCTYPA1CX333M 0.033μ F,16V A A C700 VCTYPA1CX473M 0.047μ F,16V A A C807 RC-GZA106AF1C 10μ F,16V,Electrolytic A B C701 RC-GZA106AF1C 10μ F,16V,Electrolytic A B C702 VCTYPA1CX473M 0.047μ F,16V A A C810 VCTYPA1CX334K 0.033μ F,16V A A R133 VRD-MT2CK221J 47 kohms,1/8W A A C810 VCTYPA1CX334K 0.033μ F,16V A A R134 VRD-MT2CK221J 47 kohms,1/8W A A C810 VCTYPA1CX334K 0.033μ F,16V A A R134 VRD-MT2CK221J 47 kohms,1/8W A A C810 VCTYPA1CX334K 0.033μ F,16V A A R134 VRD-MT2CK221J 47 kohms,1/6W,Metal Film A C42 RC-GZA335AF1H 1μ F,50V,Electrolytic A B C705 VCTYPA1CX473M 0.047μ F,16V A A C812 VCTYPA1CX22M 0.0002μ F,16V A A R134 VRD-MT2CM21J 47 kohms,1/8W A A C42 RC-GZA105AF1H 1μ F,50V,Electrolytic A B C705 VCTYPA1CX473M 0.047μ F,16V A B C705 VCTYPA1CX473M 0.047μ F,16V A B C705 VCTYPA1CX473M 0.047μ F,16V A B C705 VCTYPA1CX104K 0.1μ F,16V A B R135 VRD-MT2CM104J 0.005μ F,10V,Electrolytic A B C706 RC-GZA107AF1A 0.00μ F,10V,Electrolytic A B C707 VCTYM1CX104K 0.1μ F,16V A A R135 VRD-MT2CM104J 0.005μ F,16V A A R136 VRD-MT2CM104J 0.005μ F,16V A A R137 VRN-RT2CK102J 0.005μ F,16V A R141,14V VRD-MM2D102J 0.005μ F,16V A R141,14V VRD-MM2D102J 0.005μ			•									- 1			, ,	AA
C29 VCTYPA1CX223M 0.022μ F,16V A A C702 VCTYPA1CX473M 0.047μ F,16V A A C810 VCTYPA1CX333K 0.033μ F,16V A A R133 VRN-RT2CK221J 220 ohms,1/6W,Metal Film A A C811 RC-GZA105AF1H 1μ F,50V,Electrolytic A B C705 VCTYPA1CX473M 0.047μ F,16V A A C812 VCTYBT1CX222M 0.0022μ F,16V A A R134 VRD-MN2BD684J 680 kohms,1/8W A A C812 VCTYPA1CX104K 0.11μ F,16V A B R135 VRD-MN2BD104J 0.0000μ F,50V,Styrol A B C708 RC-GZA107AF1A 0.00μ F,10V,Electrolytic A B C813 VCTYPA1CX104K 0.11μ F,16V A A R136 VRD-MN2BD104J 0.000μ F,50V,Styrol A B C708 RC-GZS107AF1A 0.00μ F,16V,Electrolytic A B C814 VCTYMN1CY103K 0.01μ F,16V A A R136 VRD-MN2BD104J 0.00μ F,00V,Electrolytic A B C814 VCTYMN1CY103K 0.01μ F,16V A A R136 VRD-MN2BD104J 0.00μ F,00V,Electrolytic A B C814 VCTYMN1CY103K 0.01μ F,16V A A R137 VRN-RT2CK102J 0.0000μ F,00V,Electrolytic A B C814 VCTYMN1CY103K 0.01μ F,16V A A R137 VRN-RT2CK102J 0.0000μ F,00V,Electrolytic A B R139 VRD-MN2BD103J 0.0000μ F,16V,Electrolytic A B R140 VRD-MN2BD103J 0.0000μ F,16V,Electrolytic A B R140 VRD-MN2BD103J 0.0000μ F,16V,Electrolytic A B R140 VRD-MN2BD103J 0.0000μ F,16V,Electrolytic A B R141,142 VRD-MN2BD102J 0.0000μ F,16V,Electrolytic A B R141,142 VRD-MN2BD102J 0.0000μ F,16V,Electrolytic A B R141,142 VRD-MN2BD102J 0.0000μ F,16V,Electrolytic A B R151 VRN-RT2CK102J 0.0000μ F,16V,Electrolytic A B R		VCTYPA1CX333M	0.033 μF,16V	AA		VCTYPA1CX473M	0.047 μF,16V	AA				1			4.7 kohms,1/8W	АА
C41 RC-GZA105AF1H 1 μ F,50V,Electrolytic A B C705 VCTYPA1CX473M 0.047 μ F,16V A A C812 VCTYPA1CX222M 0.0022 μ F,16V A A R134 VRD-MN2BD1684J 680 kohms,1/8W A A C42 RC-GZA35AF1H 3.3 μ F,50V,Electrolytic A B C706 RC-GZA107AF1A 100 μ F,10V,Electrolytic A B C708 VCQSMA1H1102J 1000 pF,50V,Styrol A B C708 RC-GZS107AF1A 100 μ F,10V,Electrolytic A B C711 VCTYMN1CX152K 0.0015 μ F,16V A A C816 VCTYMN1CY103K 0.01 μ F,16V A A R135 VRD-MN2BD104J 100 kohm,1/8W A A C45,46 VCTYPA1EX563K 0.056 μ F,50V A A C712 VCTYMN1CX152K 0.0015 μ F,16V A A C821,822 VCTYPA1CX823K 0.082 μ F,16V A B R139 VRD-MN2BD103J 10 kohm,1/6W,Metal Film A C47,48 RC-GZA105AF1H 1 μ F,50V,Electrolytic A B C714 VCTYMN1CX152K 0.0015 μ F,16V A A C827,828 VCTYMN1CX33ZK 0.0033 μ F,16V A A R140 VRN-RT2CK103J 10 kohm,1/6W,Metal Film A A C49 RC-GZA227AF1A 220 μ F,10V,Electrolytic A B C715 RC-GZV108AF1C 1000 μ F,16V,Electrolytic A B C715 RC-GZV108AF1C 1000 μ F,16V,Electrolytic A B C719 VCTYPA1CX473M 0.047 μ F,16V A A C831,832 VCKYMN1HB102K 0.001 μ F,16V,Electrolytic A B R201 VRN-RT2CK102J 1 kohm,1/6W,Metal Film A A C63 VCKYBT1HB271K 270 pF,50V A A C720 RC-GZA107AF1A 100 μ F,16V A B C833,834 RC-GZA106AF1C 10 μ F,16V,Electrolytic A B R201 VRN-RT2CK102J 1 kohm,1/6W,Metal Film A R203 VRD-MN2BD273J 27 kohms,1/8W A R204 VCCSPA1H181J 180 pF (CH),50V A A C721 VCTYPA1CX104K 0.1 μ F,16V A B C839,840 VCTYMN1CX222K 0.0022 μ F,16V A A R203 VRD-ST2CD4R7J 4.7 ohms,1/6W A A C644 VCCCPA1HH181J 180 pF (CH),50V A A C721 VCTYPA1CX104K 0.1 μ F,16V A B C839,840 VCTYMN1CX222K 0.0022 μ F,16V A A R203 VRD-ST2CD4R7J 4.7 ohms,1/6W A A C644 VCCCPA1HH181J 180 pF (CH),50V A A C721 VCTYPA1CX104K 0.1 μ F,16V A B C839,840 VCTYMN1CX222K 0.0022 μ F,16V A A R203 VRD-ST2CD4R7J 4.7 ohms,1/6W A R203 VRD-ST2CD4R7J 4.7 ohms,1/6W	C28							ΑВ	C808	VCFASA1JA334J						АА
C42 RC-GZA335AF1H 3.3 μ F,50V,Electrolytic A B C706 RC-GZA107AF1A 100 μ F,10V,Electrolytic A B C813 VCTYPA1CX104K 0.1 μ F,16V A A R135 VRD-MN2BD104J 100 kohm,1/8W A μ R35 VRD-MN2BD104J 100 kohm,1/8W A μ R35 VRD-MN2BD104J 100 kohm,1/8W A μ R36 VRD-MN2BD104J 100 kohm,1/8W A μ R37 VRD-MN2BD104J 100 kohm,1/8W A μ R37 VRD-MN2BD104J 100 kohm,1/8W A μ R38 VRD-MN2BD104J 100 kohm,1/8W A μ R39 VRD-MN2BD104J 100 ko	C29		* '									AA				
C43 VCQSMA1HL102J 1000 pF,50V,Styrol A B C708 RC-GZS107AF1A 100 μ F,10V,Electrolytic A B C814 VCTYMN1CY103K 0.01μ F,16V A A R136 VRD-MN2BD104J 100 kohm,1/8W A μ C44 RC-GZA105AF1H 1 μ F,50V,Electrolytic A B C711 VCTYMN1CX152K 0.0015μ F,16V A A C816 VCTYMN1CY103K 0.01μ F,16V A A R137 VRN-RT2CK102J 1 kohm,1/6W,Metal Film A μ C45,46 VCTYPA1EX563K 0.056μ F,25V A A C712 VCTYBT1CX152M 0.0015μ F,16V A A C821,822 VCTYPA1CX823K 0.082μ F,16V A B R139 VRD-MN2BD103J 10 kohm,1/8W A μ C47,48 RC-GZA105AF1H 1 μ F,50V,Electrolytic A B C714 VCTYMN1CX152K 0.0015μ F,16V A A C827,828 VCTYMN1CX33ZK 0.0033μ F,16V A A R140 VRN-RT2CK103J 10 kohm,1/6W,Metal Film A μ C61 VCCSBT1HL2R2C 2.2 μ F,50V A A C716 RC-GZA105AF1C 0.0015μ F,16V,Electrolytic A B C716 A C718 RC-GZA226AF1C 0.0015μ F,16V A A C719 VCTYPA1CX473M 0.047μ F,16V A A C720 RC-GZA107AF1A 0.047μ F,16V A A C720 RC-GZA107AF1A 0.047μ F,16V A A C720 RC-GZA107AF1A 0.047μ F,16V A B C837,838 VCKYMN1HB102K 0.001μ F,50V A A R202 VRD-MN2BD683J 0.0015μ F,16W A R202 VRD-MN2BD683J 0.0015μ F,16W A R202 VRD-MN2BD683J 0.001μ F,16W A R203 VRD-ST2CD4R7J 0.0015μ F,16W A R203 VRD-ST2CD4											• •					AA
C44 RC-GZA105AF1H 1 μ F,50V,Electrolytic A B C711 VCTYMN1CX152K 0.0015 μ F,16V A A C816 VCTYMN1CY103K 0.01 μ F,16V A A R137 VRN-RT2CK102J 1 kohm,1/6W,Metal Film A A C45,46 VCTYPA1EX563K 0.056 μ F,25V A A C712 VCTYBT1CX152M 0.0015 μ F,16V A A C821,822 VCTYPA1CX823K 0.082 μ F,16V A B R139 VRD-MN2BD103J 10 kohm,1/8W A A C47,48 RC-GZA105AF1H 1 μ F,50V,Electrolytic A B C714 VCTYMN1CX152K 0.0015 μ F,16V A A C827,828 VCTYMN1CX332K 0.0033 μ F,16V A A R140 VRN-RT2CK103J 10 kohm,1/6W,Metal Film A A C49 RC-GZA227AF1A 220 μ F,10V,Electrolytic A B C715 RC-GZV108AF1C 1000 μ F,16V,Electrolytic A B C715 RC-GZV108AF1C 1000 μ F,16V,Electrolytic A B C716 μ F,16V,Electrolytic A B C716 μ F,16V A A C831,832 VCKYMN1HB102K 0.001 μ F,50V A A R151 VRN-RT2CK102J 1 kohm,1/6W,Metal Film A A C62 VCCSPA1HL680J 68 μ F,50V A A C719 VCTYPA1CX473M 0.047 μ F,16V A A C833,834 RC-GZA106AF1C 10 μ F,16V,Electrolytic A B R201 VRD-MN2BD273J 27 kohms,1/8W A A C63 VCKYBT1HB271K 270 μ F,50V A A C720 RC-GZA107AF1A 100 μ F,16V,Electrolytic A B C837,838 VCKYMN1HB102K 0.001 μ F,50V A A R202 VRD-MN2BD683J 68 kohms,1/8W A A C64 VCCCPA1HH181J 180 μ F (CH),50V A A C721 VCTYPA1CX104K 0.1 μ F,16V A B C839,840 VCTYMN1CX222K 0.0022 μ F,16V A A R203 VRD-ST2CD4R7J 4.7 ohms,1/6W A A R203 VRD-ST2CD4R7J 4.7 ohms,1/6W											•	1			•	AA
C45,46 VCTYPA1EX563K $0.056 \ \mu\text{F},25V$ A A C712 VCTYBT1CX152M $0.0015 \ \mu\text{F},16V$ A A C821,822 VCTYPA1CX823K $0.082 \ \mu\text{F},16V$ A B R139 VRD-MN2BD103J $10 \ \text{kohm},1/8W$ A A C47,48 RC-GZA105AF1H $1 \ \mu\text{F},50V$, Electrolytic A B C714 VCTYMN1CX152K $0.0015 \ \mu\text{F},16V$ A A C827,828 VCTYMN1CX332K $0.0033 \ \mu\text{F},16V$ A A R140 VRN-RT2CK103J $10 \ \text{kohm},1/6W$, Metal Film A A C82 RC-GZA227AF1A $220 \ \mu\text{F},10V$, Electrolytic A B C715 RC-GZV108AF1C $1000 \ \mu\text{F},16V$, Electrolytic A B C61 VCCSBT1HL2R2C $2.2 \ \text{pF},50V$ A A C716 \sim 718 RC-GZA226AF1C $22 \ \mu\text{F},16V$, Electrolytic A B C831,832 VCKYMN1HB102K $0.001 \ \mu\text{F},50V$ A A R151 VRN-RT2CK102J $1 \ \text{kohm},1/6W$, Metal Film A A C833,834 RC-GZA106AF1C $10 \ \mu\text{F},16V$, Electrolytic A B R201 VRD-MN2BD273J $27 \ \text{kohm},1/6W$, Metal Film A A C833,834 RC-GZA106AF1C $10 \ \mu\text{F},16V$, Electrolytic A B R201 VRD-MN2BD273J $27 \ \text{kohm},1/6W$, Metal Film A A C833,834 RC-GZA106AF1C $10 \ \mu\text{F},16V$, Electrolytic A B R201 VRD-MN2BD273J $27 \ \text{kohm},1/6W$, Metal Film A A C833,834 RC-GZA106AF1C $10 \ \mu\text{F},16V$, Electrolytic A B R202 VRD-MN2BD683J $68 \ \text{kohm},1/6W$, A A C720 RC-GZA107AF1A $100 \ \mu\text{F},10V$, Electrolytic A B C837,838 VCKYMN1HB102K $0.001 \ \mu\text{F},50V$ A A R203 VRD-ST2CD4R7J $4.7 \ \text{ohm},1/6W$ A R204 VCCYPA1CX104K $0.1 \ \mu\text{F},16V$ A B C839,840 VCTYMN1CX222K $0.0022 \ \mu\text{F},16V$ A A R203 VRD-ST2CD4R7J $4.7 \ \text{ohm},1/6W$ A R204 VCCYPA1CX104K $0.1 \ \mu\text{F},16V$ A B C839,840 VCTYMN1CX222K $0.0022 \ \mu\text{F},16V$ A A R203 VRD-ST2CD4R7J $4.7 \ \text{ohm},1/6W$ A R204 VCCYPA1CX104K $0.1 \ \mu\text{F},16V$ A B C839,840 VCTYMN1CX222K $0.0022 \ \mu\text{F},16V$ A A R203 VRD-ST2CD4R7J $4.7 \ \text{ohm},1/6W$		-													• •	
C47,48 RC-GZA105AF1H 1 μ F,50V,Electrolytic A B C714 VCTYMN1CX152K 0.0015 μ F,16V A A C827,828 VCTYMN1CX332K 0.0033 μ F,16V A A R140 VRN-RT2CK103J 10 kohm,1/6W,Metal Film A A C49 RC-GZA227AF1A 220 μ F,10V,Electrolytic A B C715 RC-GZV108AF1C 1000 μ F,16V,Electrolytic A D C829,830 RC-GZA106AF1C 10 μ F,16V,Electrolytic A B R141,142 VRD-MN2BD102J 1 kohm,1/6W,Metal Film A A C61 VCCSBT1HL2R2C 2.2 pF,50V A A C716~718 RC-GZA226AF1C 22 μ F,16V,Electrolytic A B C831,832 VCKYMN1HB102K 0.001 μ F,50V A A R151 VRN-RT2CK102J 1 kohm,1/6W,Metal Film A A C62 VCCSPA1HL680J 68 pF,50V A A C719 VCTYPA1CX473M 0.047 μ F,16V A A C833,834 RC-GZA106AF1C 10 μ F,16V,Electrolytic A B R201 VRD-MN2BD273J 27 kohms,1/8W A A C63 VCKYBT1HB271K 270 pF,50V A A C720 RC-GZA107AF1A 100 μ F,10V,Electrolytic A B C837,838 VCKYMN1HB102K 0.001 μ F,50V A A R202 VRD-MN2BD683J 68 kohms,1/8W A A C64 VCCCPA1HH181J 180 pF (CH),50V A A C721 VCTYPA1CX104K 0.1 μ F,16V A B C839,840 VCTYMN1CX222K 0.0022 μ F,16V A A R203 VRD-ST2CD4R7J 4.7 ohms,1/6W A A					į						•				· · · · · · · · · · · · · · · · · · ·	AA
C49 RC-GZA227AF1A 220 μ F,10V,Electrolytic A B C715 RC-GZV108AF1C 1000 μ F,16V,Electrolytic A D C829,830 RC-GZA106AF1C 10 μ F,16V,Electrolytic A B R141,142 VRD-MN2BD102J 1 kohm,1/8W A A C71 VCCSBT1HL2R2C 2.2 pF,50V A A C716 \sim 718 RC-GZA226AF1C 22 μ F,16V,Electrolytic A B C831,832 VCKYMN1HB102K 0.001 μ F,50V A A C719 VCTYPA1CX473M 0.047 μ F,16V A A C833,834 RC-GZA106AF1C 10 μ F,16V,Electrolytic A B R201 VRD-MN2BD273J 27 kohms,1/8W A A C63 VCKYBT1HB271K 270 pF,50V A A C720 RC-GZA107AF1A 100 μ F,10V,Electrolytic A B C837,838 VCKYMN1HB102K 0.001 μ F,50V A A R202 VRD-MN2BD683J 68 kohms,1/8W A A C64 VCCCPA1HH181J 180 pF (CH),50V A A C721 VCTYPA1CX104K 0.1 μ F,16V A B C839,840 VCTYMN1CX222K 0.0022 μ F,16V A A R203 VRD-ST2CD4R7J 4.7 ohms,1/6W A A	•								,						•	
C61 VCCSBT1HL2R2C 2.2 pF,50V A A C716 \sim 718 RC-GZA226AF1C 22 μ F,16V,Electrolytic A B C831,832 VCKYMN1HB102K 0.001 μ F,50V A A R151 VRN-RT2CK102J 1 kohm,1/6W,Metal Film A A C62 VCCSPA1HL680J 68 pF,50V A A C719 VCTYPA1CX473M 0.047 μ F,16V A A C833,834 RC-GZA106AF1C 10 μ F,16V,Electrolytic A B R201 VRD-MN2BD273J 27 kohms,1/8W A A C63 VCKYBT1HB271K 270 pF,50V A A C720 RC-GZA107AF1A 100 μ F,10V,Electrolytic A B C837,838 VCKYMN1HB102K 0.001 μ F,50V A A R202 VRD-MN2BD683J 68 kohms,1/8W A A C64 VCCCPA1HH181J 180 pF (CH),50V A A C721 VCTYPA1CX104K 0.1 μ F,16V A B C839,840 VCTYMN1CX222K 0.0022 μ F,16V A A R203 VRD-ST2CD4R7J 4.7 ohms,1/6W A A							• •		•		• •	1				AA
C63 VCKYBT1HB271K 270 pF,50V A A C720 RC-GZA107AF1A 100 μ F,10V,Electrolytic A B C837,838 VCKYMN1HB102K 0.001 μ F,50V A A R202 VRD-MN2BD683 J 68 kohms,1/8W A A C64 VCCCPA1HH181J 180 pF (CH),50V A A C721 VCTYPA1CX104K 0.1 μ F,16V A B C839,840 VCTYMN1CX222K 0.0022 μ F,16V A A R203 VRD-ST2CD4R7 J 4.7 ohms,1/6W A A	C61	VCCSBT1HL2R2C	2.2 pF,50V		C716~718	RC-GZA226AF1C	22 μF,16V,Electrolytic	AB		VCKYMN1HB102K	•			VRN-RT2CK102J	1 kohm,1/6W,Metal Film	АА
C64 VCCCPA1HH181J 180 pF (CH),50V A A C721 VCTYPA1CX104K 0.1 μF,16V A B C839,840 VCTYMN1CX222K 0.0022 μF,16V A A R203 VRD-ST2CD4R7 J 4.7 ohms,1/6W A A												ΑВ				АА
									,			ì			• -	AA
$C00$ VOCCENTINES OF CONJUNE AND CZZ VOLTENION OSK U.000 μ E,10V AN C845 VCTYPATCX104K 0.1 μ E,16V AB $KZU4\sim ZU0$ VKD-512EE680J 68 ohms,1/4W AB							•		,		• •					AA
	C03	VOCCENTUUSSUS	33 pr (CH),30V	A A	1 0/22	ACLICATOVOOR	0.000 μΓ,104	^ ^	U845	VUTYPATCXTU4K	U.1 μF,16V	AB	11204 -200	VKD-312EE08UJ	00 0nms,1/4¥¥	АА

QT-CD20H

REF.NO.	PART NO.	DESCRIPTION	CODE	REF.NO.	PART NO.	DESCRIPTION	CODE	REF.NO.	PART NO.	DESCRIPTION	CODE	REF.NO.	PART NO.	DESCRIPTION	CODE
R207	VRD-MN2BD121J	120 ohms,1/8W	AA	R758	VRD-MN2BD183J	18 kohms,1/8W	AA	R902	VRN-RT2CK472J	4.7 kohms,1/6W,Metal Fili	m A A	17	MLEVF2063AFZZ	Lever, Pause	
R208	VRD-ST2EE680J	68 ohms,1/4W	AA	R759	VRD-MN2BD332J	3.3 kohms,1/8W	AA	R909	VRD-MN2BD102J	1 kohm,1/8W	AA	18	MLEVF2051AFFW	Lever, Fause Lever, Lock	A D A B
R209 R371	VRD-MN2BD121J VRD-MN2BD103J	120 ohms,1/8W	AA	R760	VRD-MN2BD822J	8.2 kohms,1/8W	AA	R910	VRD-MN2BD105J	1 Mohm,1/8W	AA	19	MLEVF2052AFFW	Lever, Sensor	AA
A371 ⚠R401	VRG-ST2EG4R7J	10 kohm,1/8W 4.7 ohms,1/4W,Fusible	A A A B	R761 R762	VRD-MN2BD473J VRD-MN2BD123J	47 kohms,1/8W	AA	R912	VRD-MN2BD473J	47 kohms,1/8W	AA	20	MLEVF2053AFFW	Lever, Pause Action	AA
R402	VRD-MN2BD221J	220 ohms,1/8W	AA	R762	VRD-MIN2BD1233 VRN-RT2CK822J	12 kohms, 1/8W	AA	R913	VRD-MN2BD392J	3.9 kohms,1/8W	AA	21	MLEVF2054AFFW	Lever,Fast Forward/	AA
R403	VRD-MN2BD102J	1 kohm,1/8W	AA	R764	VRN-RT2CK822J	8.2 kohms,1/6W,Metal Film 2.7 kohms,1/6W,Metal Film		R914~916	VRD-MN2BD103J	10 kohm,1/8W	AΑ			Rewind Prevention	
R451	VRD-MN2BD561J	560 ohms,1/8W	AA	R765	VRD-MN2BD682J	6.8 kohms,1/8W	AA					22	MLEVF2055AFFW	Lever, Head Back	АА
R452,453	VRD-MN2BD123J	12 kohms,1/8W	AA	R767	VRD-MN2BD273J	27 kohms,1/8W	AA		OTHER CIRCUI	TRY PARTS		23	MLEVF2056AFFW	Lever, Eject Action	АА
R455,456	VRD-MN2BD222J	2.2 kohms,1/8W	AA	R768	VRD-MN2BD473J	47 kohms,1/8W	AA	BI801		Part of CNS452		24	JKNBP0873AFSA	Button,Stop	AΒ
R457,458	VRD-MN2BD221J	220 ohms,1/8W	АА	R770	VRD-ST2CD222J	2.2 kohms,1/6W	AA	BI803		Part of CNS551	_	25	MLEVP0756AFZZ	Roller Ass'y, Fast Forward	ΑF
R459,460	VRD-ST2CD222J	2.2 kohms,1/6W	АА	R771	VRD-MN2BD123J	12 kohms,1/8W	AA	CNP1	QCNCM656FAFZZ	Socket, Wire Trap, 6Pin	AB		IVAIDDO O T CATO.	Rewind	
R462	VRD-MN2BD121J	120 ohms,1/8W	АА	R773	VRD-MN2BD391J	390 ohms,1/8W	A A	CNP101	QCNCM586EAFZZ	Plug,5Pin	AB	26	JKNBP0876AFSA	Button, Play	AB
R463,464	VRD-MN2BD681J	680 ohms,1/8W	ΑА	R774	VRN-RT2CK224J	220 kohm,1/6W,Metal Film	AA	CNP452	QCNCM585DAFZZ	Plug,4Pin	AB	27 28	MLEVP0759AF00	Lever,Lock Release	AA
R465	VRD-MN2BD121J	120 ohms,1/8W	АА	R775	VRD-MN2BD223J	22 kohms,1/8W	ΑΑ	CNP551	QCNCM583BAFZZ	Plug,2Pin	AA	29	MLEVP0760AF00 MLEVP0776AF00	Lever, Erase Prevention	AA
R521,522	VRD-MN2BD122J	1.2 kohms,1/8W	АА	R776	VRN-RT2CK682J	6.8 kohms,1/6W,Metal Film	AA	CNP552	QCNCM136CAFZZ	Plug,3Pin	AΒ	30	MLEVP0776AF00	Lever, Holder Lock Latch Plate	AB
R523,524	VRD-MN2BD682J	6.8 kohms,1/8W	ΑА	R777	VRD-MN2BD473J	47 kohms,1/8W	A A	CNP601	QCNCM586EAFZZ	Plug,5Pin	AB	31	MLEVP0763AF00	Tip, Sensor	A A A A
R525,526	VRD-MN2BD123J	12 kohms,1/8W	АА	R778	VRN-RT2CK103J	10 kohm,1/6W,Metal Film	AA	CNP651	QCNCM583BAFZZ	Plug,2Pin	АА	32	JKNBP0875AFSA	Button, Rewind	AB
R527,528	VRD-MN2BD682J	6.8 kohms,1/8W	AA	R779	VRD-MN2BD103J	10 kohm,1/8W	AA	CNP700	QCNCM683HAFZZ	Plug,8Pin	ΑB	33	MSPRC0458AFFJ	Spring, Pause Lock Lever	AA
R529,530	VRD-MN2BD152J	1.5 kohms,1/8W	AA	R780	VRN-RT2CK103J	10 kohm,1/6W,Metal Film	АА	CNP701	QCNCM587FAFZZ	Plug,6Pin	AΒ	34	JKNBP0872AFSA	Button, Pause	AB
R533,534	VRD-MN2BD123J	12 kohms,1/8W	AA	R781	VRD-MN2BD472J	4.7 kohms,1/8W	AA	CNP702	QCNCM705FAFZZ	Plug,6Pin	AΒ	36	MSPRC0691AFFJ	Spring, Supply Reel	AA
R535,536	VRD-MN2BD682J	6.8 kohms,1/8W	AA	R788	VRN-RT2CK222J	2.2 kohms,1/6W,Metal Film		CNS101		Parts of CNS601	_	37	MSPRC0692AFFJ	Spring, Take-up Reel	AA
R537,538	VRD-MN2BD152J VRD-MN2BD333J	1.5 kohms,1/8W	AA	R792	VRN-RT2CK104J	100 kohm,1/6W,Metal Film		CNS452	QCNWN2272AFZZ	Connector Ass'y,4-4Pin	ΑF	38	MSPRC0693AFFJ	Spring, Azimuth	AA
R541,542 R543,544	VRD-MN2BD562J	33 kohms,1/8W 5.6 kohms,1/8W	A A A A	R793 R794	VRD-MN2BD333J	33 kohms,1/8W	AA	CNS551	QCNWN2094AFZZ	Connector Ass'y,2-2Pin	A C	39	MSPRD0875AFFJ	Spring, Fast Forward/	AA
R545,546	VRD-MN2BD682J	6.8 kohms,1/8W	A A	R795,796	VRD-MN2BD392J VRD-MN2BD1R0J	3.9 kohms,1/8W	AA	CNS552	QCNWN2223AFZZ	Connector Ass'y,3Pin	ΑF			Rewind Lever Return	
R547,548	VRD-MN2BD122J	1.2 kohms,1/8W	AA	R793,790	VRD-MN2BD1R0J	1 ohm,1/8W 33 kohms,1/8W	AA	CNS601	QCNWN2110AFZZ	Connector Ass'y,5Pin	ΑH	40	MSPRD0876AFFJ	Spring, Stop Pause Lever	ΑА
R549,550	VRD-MN2BD1223	680 kohms,1/8W	AA	R798	VRD-MN2BD222J	2.2 kohms,1/8W	AA	CNS700A,B	QCNWN2099AFZZ	Connector Ass'y,8-8Pin	ΑL			Return	
R551,552	VRD-MN2BD392J	3.9 kohms,1/8W	AA	R800	VRN-RT2CK332J	3.3 kohms,1/6W,Metal Film	AA	CNS701A,B	QCNWN2098AFZZ	Connector Ass'y,6-6Pin	AG	41	MSPRD0877AFFJ	Spring, Pinch Roller	ΑА
R553	VRD-MN2BD221J	220 ohms,1/8W	AA	R801	VRD-MN2BD102J	1 kohm,1/8W	AA	CNS702	QCNWN2100AFZZ	Connector Ass'y,6Pin	ΑE	42	MSPRD0878AFFJ	Spring, Ground	ΑА
R555,556	VRD-MN2BD102J	1 kohm,1/8W	AA	R804	VRD-MN2BD271J	270 ohms,1/8W	AA	Λ F651 Λ F801	QFS-C202GAFNi QFS-F631AAFNX	Fuse,T2A/250V	A D	43	MSPRP0533AFFW	Spring, Cassette Press	АА
R557,558	VRD-MN2BD152J	1.5 kohms,1/8W	AA	R805	VRN-RT2CK562J	5.6 kohms,1/6W,Metal Film		J451	QJAKE0145AFZZ	Fuse,630 mA	AG	44	MSPRP0493AFFW	Spring, Ground	АА
R571,572	VRD-MN2BD102J	1 kohm,1/8W	АА	R806	VRN-RT2CK473J	47 kohms, 1/6W, Metal Film		J452	QJAKE0145AFZZ QJAKE0146AFZZ	CD In,L-ch CD In,R-ch	A B A B	45	MSPRT1308AFFJ	Spring, Fast Forward/	АА
R573,574	VRD-MN2BD472J	4.7 kohms,1/8W	ΑА	R807	VRD-MN2BD473J	47 kohms,1/8W	AA	J551	QJAKL0140AFZZ	Jack, Headphones	AE	46		Rewind Roller Lever	
R575	VRD-MN2BD224J	220 kohms,1/8W	АА	R808	VRD-MN2BD223J	22 kohms,1/8W	AA	LCD901	RV-LX0059AFZZ	LCD	AP	46	MSPRT1309AFFJ	Spring, Holder Lock	AA
R576	VRD-MN2BD101J	100 kohm,1/8W	АА	R810,811	VRD-MN2BD182J	1.8 kohms,1/8W	ΑA	△ M601	RMoTV0342AF01	Tape Motor with Pulley	AR	54 47	MSPRT1364AFFJ	Spring, Play Gear Lever	AA
R577,578	VRD-MN2BD121J	120 kohms,1/8W	АА	R812	VRD-MN2BD102J	1 kohm,1/8 W	A A	∆SO 651	QS©CA0187AFZZ	Socket, AC Power Supply	AG	48	MSPRT1310AFFJ MSPRT1365AFFJ	Spring, Overstroke	AA
R579,580	VRD-MN2BD470J	47 ohms,1/8W	AΑ	R814	VRD-MN2BD272J	2.7 kohms,1/8W	A A	SP501,502	VSP0010PBG8SA	Speaker, Woofer	AR	46 49	MSPRT1305AFFJ	Spring,Play Lever Spring,Record Lever	AA
R700~702	VRN-RT2CK101J	100 ohm,1/6W,Metal Film	AA	R815	VRD-MN2BD103J	10 kohm,1/8 W	AA	SP503,504	RALMB0101AFZZ	Speaker, Tweeter	ΑВ	50	MSPRT1313AFFJ	Spring, Lock Release Lever	A A A A
R705	VRD-MN2BD473J	47 kohms,1/8W	AA	R816	VRD-MN2BD682J	6.8 kohm,1/8W	A A	SW1	QSW-B0187AFZZ	Switch, Slide Type, Band	A M	51	MSPRT1315AFFJ	Spring, Lock Plate	AA
R706	VRD-MN2BD332J	3.3 kohms,1/8W	AA	R821,822	VRD-MN2BD471J	470 ohms,1/8W	AA	SW101	QSW-P0621AFZZ	Switch, Push Type, FM	ΑE	52	NBLTK0392AFZZ	Belt, Drive	AB
R707	VRN-RT2CK563J	56 kohms,1/6W,Metal Film		R823,824	VRD-MN2BD151J	150 ohms,1/8W	A A			Mode		53	NBLTK0393AFZZ	Belt, Fast Forward/Rewind	
R709 R711,712	VRD-ST2CD273J VRD-MN2BD471J	_	AA	R825,826		1 Mohm,1/8W	A A	SW102	QSW-S0769AFZZ		ΑE	56	NDA i R0216AFZZ	Reel Ass'y	ΑD
R711,712 R713	VRD-MN2BD102J	470 ohms,1/8W 1 kohm,1/8W	A A A A	R827 R828	VRN-RT2CK103J VRD-MN2BD103J	10 kohm,1/6W,Metal Film	AA	SW201	QSW-S0523AFZZ		AD	57	NDA i R0217AF00	Reel, Supply	АА
R714	VRN-RT2CK102J	1 kohm,1/6W,Metal Film	AA	R829,830	VRD-MN2BD103J	10 kohm,1/8W 1.2 kohms,1/8W	A A A A	014501	000 007604577	Cancel		58	NFLYC0152AFZZ	Flywheel Ass'y	ΑE
R716,717	VRD-MN2BD102J	1 kohm,1/8W	AA	R833,834	VRD-MN2BD222J	2.2 kohms,1/8W	AA	SW501	QSW-S0768AFZZ		ΑE	60	NGERH0245AF00	Gear,Play	АА
R718	VRD-MN2BD124J	120 kohms,1/8W	AA	R835,836	VRD-MN2BD562J	5.6 kohms,1/8W	AA	CWEOI	OCW E01264577	Function/Power		61	NGERH0246AF00	Gear, Fast Forward	AA
R720	VRD-MN2BD333J	33 kohms,1/8W	ΑА	R837,838	VRD-MN2BD103J	10 kohm,1/8W	AA	SW601 SW850	QSW-F0136AFZZ QSW-F0310AFZZ	Switch,Leaf Type Switch,Leaf Type	AC	67	NRÖLY0090AFZZ	Pinch Roller Ass'y	A D
⚠ R721	VRG-ST2EG5R6J	5.6 ohms,1/4W,Fusible	AB	R839	VRN-RT2CK102J	1 kohm.1/6W.Metal Film	AA	SW902~909	QSW-K0061AFZZ	Switch, Push Type	A D A B	82	RHEDA0094AFZZ	Head, Erase	ΑF
R722	VRD-MN2BD102J	1 kohm,1/8W	AA	R840	VRD-MN2BD102J	1 kohm,1/8W	A A	TP1	QCNCM220JAFZZ	Test Point,9Pin	AC	83	RHEDH0177AFZZ	Head, Record/Playback	ΑL
R727,728	VRD-MN2BD223J	22 kohms,1/8W	AA	R841	VRD-MN2BD473J	47 kohms, 1/8W	A A	CNS651	QCNWN2103AFZZ	Connector Ass'y, 2pin	AC	84 85	PGiDM0144AFZZ	Lever Guide Ass'y	ΑE
R730	VRN-RT2CK103J	10 kohm,1/6W,Metal Film	AA	R842	VRN-RT2CK472J	4.7 kohms, 1/6W, Metal Film	A A			· ,		99	MLEVF2075AFFW LANGF1170AFFW	Plate, Prevention	AA
R731,732	VRD-MN2BD103J	10 kohm,1/8W	AA	R843	VRN-RT2CK473J	47 kohms, 1/6W, Metal Film	AA.		CASSETTE MECH	ANISM PARIS		501	XBBSD20P03000	Lever, Record Change Screw, ϕ 2×3mm	A B A A
R733	VRN-RT2CK103J	10 kohm,1/6W,Metal Film	AA	⚠ R848	VRG-ST2EG1R5J	1.5 ohms, 1/4W, Fusible	A B	. 1	LANGT1559AFFW	Bracket, Motor	AB	502	LX-BZ0451AFFD	Screw, $\phi 2 \times 3$ mm	AA
R740	VRD-MN2BD103J	10 kohm,1/8W	AA	R853,854	VRD-MN2BD102J	1 kohm,1/8W	A A	2	JKNBP0877AFSA	Button,Record	AB	503	LX-WZ1076AF00	Washer, $\phi 2.1 \times \phi 4.1 \times 0.25$ mm	
R741	VRD-MN2BD473J	47 kohms,1/8W	AA	R855	VRD-MN2BD122J	1.2 kohms,1/8W	AA	3	LBSHZ0086AFZZ	Cushion, Motor	AA	508	XWHJZ23-05044	Washer, $\phi 2.3 \times \phi 4.4 \times 0.5$ mm	
R742 R745	VRD-MN2BD104J	100 kohm,1/8W	AA	R856	VRD-MN2BD391J	390 ohms,1/8W	A A :	4	LCHSS0275AFFW	Sub Chassis	_	510	LX-WZ9066AFZZ	Washer, $\phi 1.2 \times \phi 3.2 \times 0.5$ mm	
R745 R746	VRD-MN2BD153J VRD-MN2BD103J	15 kohms,1/8W 10 kohm,1/8W	A A	R860 R861	VRD-MN2BD101J	100 ohm,1/8W	AA	5	LDA i H0070AF00	Head Base	AB	511	XHBSD20P09000	Screw, ϕ 2×9mm	АА
R747	VRN-RT2CK473J	47 kohms,1/6W,Metal Film		R862	VRD-MN2BD221J VRD-MN2BD101J	220 ohms,1/8W	A A	7	LHLDW1075AFZZ	Nylon Band,60mm	AA	512	XBBSD20W08000	Screw, ϕ 2×8mm	АА
R748	VRD-MN2BD474J	470 kohms,1/8W	AA	R864	VRD-MN2BD391J	100 ohm,1/8W 390 ohms,1/8W	A A	γ	LPLTM0198AFZZ LPLTM0199AFFW	Reel Plate	AE	515	LX-WZ1152AFZZ	Washer, Take-up Reel	АА
R749	VRN-RT2CK123J	12 kohms, 1/6W, Metal Film		R865,866	VRD-MN2BD823J	82 kohms, 1/8W	A A	9	LRTNP0058AFZZ	Back Plate Stopper	A B	516	LX-WZ9064AFZZ	Washer, $\phi 1.5 \times \phi 3.8 \times 0.5$ mm	
R750	VRD-ST2CD154J	150 kohms,1/6W	AA	R867,868	VRD-MN2BD153J	15 kohms, 1/8W	A A	10	JKNBP0874AFSA	Button,Fast Forward	AB	517	XHBSD20P04000	Screw, ϕ 2×4mm	АА
R751	VRD-MN2BD102J	1 kohm,1/8W	AA	R869	VRN-RT2CK391J	390 ohms, 1/6W, Metal Film	A A	11	MLEVF2044AFZZ	Lever, Play Gear	AB	518	XJBSD20P05000	Screw, ϕ 2 \times 5mm	АА
R752	VRD-MN2BD123J	12 kohms,1/8W	AA	R870	VRN-VT3DF3R9J	3.9 ohms, 2W, Metal Film	A B	12	MLEVF2058AFFW	Lever, Record	AD	519	XHBSD20P06000	Screw, ϕ 2×6mm	AA
R753,754	VRD-MN2BD102J	1 kohm,1/8W	AA	R871,872	VRN-VT3DF3R9J	3.9 ohms,2W,Metal Film	A B	13	MLEVF2059AFFW	Lever, Play	AD	520	LX-WZ1149AFZZ	Washer, $\phi 1.8 \times \phi 3.4 \times 0.5$ mm	
R755	VRD-MN2BD222J	2.2 kohms,1/8W	AA	 R891	VRG-ST2EG5R6J	5.6 ohms,1/4W,Fusible	AB	14	MLEVF2060AFFW	Lever, Rewind	A D	521	XWHSD18-04060	Washer, $\phi 1.8 \times \phi 0.4 \times 0.5$ mm	
R756	VRD-MN2BD104J	100 kohm,1/8W	AA	R894	VRN-RT2CK684J	680 kohms, 1/6W, Metal	A A	15	MLEVF2061AFFW	Lever,Fast Forward	A D	522	XJBSD17P05000	Screw, $\phi 1.7 \times 5$ mm	AA
R757	VRD-MN2BD103J	10 kohm,1/8W	AA			Film		16	MLEVF2062AFFW	Lever,Stop	A D				

REF.NO.	PART NO.	DESCRIPTION	CODE	REF.NO	O. PART NO.	DESCRIPTION	CODE
	CD MECHANISM PARTS			221	MLEVP0797AFSA	Lever, Slide	ΑВ
	CD MECHANIS	SWI PARIS		222	ML i FP0034AFZZ	Damper	A C
401	KRPLE0051AF00	Mechanism Ass'y	ΑZ	223	MLiFP0050AFZZ	Damper, Cassette Holder	ΑE
401-1	LHLDW1075AFZZ	Nylon Band,60mm	AA	224 225	MSPRC0622AFFJ	Spring, Battery, -	A C
401-2	NBLTH0117AFZZ	Drive Belt	AB	225	MSPRC0623AFFJ	Spring, Battery, +-	A C
401-3	XAPSD20P02500	Screw, ϕ 2×2.5mm	AA		MSPRC0734AFFJ	Spring, Battery, +	AA
401-4	70.0000	Mechanism		227 228	MSPRC0737AFFJ	Spring, Eject	AA
402	LANGG0170AFZZ	Bracket, Pick-up Retaining	ΑВ	228	MSPRD0938AFFJ	Spring, Cassette Holder	A B
403	RCTRH8109AFZZ	Pick-up	ВР	230	MSPRT1352AFFJ	Spring, Mechanism Hold	AB
404	NSFTM0164AFFW	Guide Rail	ΑD		MSPRT1354AFFJ	Spring, Slide Lever	AB
405	XHPSD20P04000	Screw, ϕ 2×4mm	AA	231 232	MSPRT1356AFFJ	Spring, Record Lever	AA
406	LX-HZ0173AFFD	Screw, ϕ 6.5×6mm	AA		NDRM-0218AFZZ	Drum, Dial Cord	AB
407	XBPSD26P06000	Screw, $\phi 2.6 \times 6$ mm	AA	233 236	NPLYD0060AFZZ	Pulley	A B
408	PCoVP3201AFSA	Cover, Mechanism	ΑH	1	PCUSG0404AFSB	Rubber, Black	A C
409	XHPSD26P04000	Screw, ϕ 2.6 × 4mm	AA	237	PCUSG0404AFSC	Rubber, White	A C
∆M701	RMOTV0334AF01	Slide Motor	AN	239	PFLT-0705AFZZ	Felt, Knob	AA
△ M702		Parts of REF No.401		240	PFLT-0734AF00	Felt, Battery Lid	A'A
SW701	QSW-P9209AFZZ	Switch, Push Type	A C	242	PRDAR0495AFFW	Heat Sink	A D
311701	Q011 1 320 3711 22	Switch, ash Type	~ 0	243	PRDAR0552AFFW	Heat Sink, Main PWB	A D
	CABINET	PARTS		246	PSPAG0205AF00	Rubber,LCD	AB
				247	PSPAS0253AFSA	Spacer,Rod	AA
201	CCAB-1657AF01	Front Cabinet Ass'y	ΑΥ	250	QANTR0201AFZZ	Rod Antenna	AL
201- 1		Front Cabinet		251	QFSHD2051AFZZ	Fuse Holder	AA
201- 2	HPNC-0303AFSA	Punching Metal	ΑG	252	QLUGP0109CEFW	Test Point	AA
201- 3	HPNC-0304AFSA	Punching Metal	ΑG	257 258	QCNWN2090AFZZ	Antenna Lead	A B
201- 4	HPNLD1302AFSA	Window, Dial Scale	A D	l .	QTANZ9101AFFW	Terminal, Antenna	AB
201-6	PCUSS0404AF00	Felt	ΑА	259 262	LHLDW3056AFZZ	Wire Holder	A A
202	CCAB-1658AF01	Rear Cabinet Ass'y	ВА	263	CSPRT1029AF26	Dial Cord	A C
202-1		Rear Cabinet			LHLDW1075AFZZ	Nylon Band,60mm	A A
202-2	HPNLC1970AFSA	Operation Panel	ΑN	264 265	HINDP1963AFSA	Label, Specifications	A C
202-3	JKNBZ0773AFSA	Button,CD Operation	ΑE		TLABZ1046AFSA	Label, Black	AA
202-4	PSLDC7151AFZZ	Shield Plate	A C	266 267	PSPAS0254AFSA	Spacer, Tape Mechanism	A B
202-5	PGUMM0222AF00	Leg	ΑВ	268	PSPAS0255AFSA	Spacer, Tape Mechanism	A B
202-6	XNESD20-16000	Nut, ϕ 2×1.6mm	ΑА	1	JKNBZ0455AFSA	Button, Mono/Stereo	AB
202-7	LX-BZ0322AFFF	Screw,	ΑА	269	LHLDW9003CEZZ	Wire Holder	AA
202-8	GCōVH1179AFSJ	Cover,AC Power Supply	ΑВ	601	LX-CZ0011AFFD	Screw, $\phi 3 \times 65$ mm	AA
		Socket		602 603	LX-CZ0039AFZZ	Screw, ϕ 3×8mm	AA
203	GFTA-0103AFSA	Cassette Holder Ass'y	ΑN		LX-CZ0052AFFD	Screw, $\phi 3 \times 10$ mm	AA
203~1		Cassette Holder		604	LX-CZ0053AFFD	Screw, ϕ 3×12mm	AA
¹ 203−2	HPNLH1257AFSA	Window, Cassette Holder	ΑE	605	LX-CZ0063AFFD	Screw, $\phi 4 \times 10$ mm	AB
204	GFTA-0104AFSA	Disc Holder Ass'y	ΑХ	607 608	LX-JZ0034AFFD	Screw, ϕ 3×8mm	AA
204- 1		Disc Holder			XBPSD26P06J00	Screw, $\phi 2.6 \times 6$ mm	AA
204~ 2	HINDP1960AFSA	Decoration Plate, Disc	ΑВ	610	XCBSD30P06000	Screw, ϕ 3×6mm	AA
		Holder		615 616	XWSSD30-07000	Washer, $\phi 3 \times 0.7$ mm	AA
204- 3	HPNLH1256AFSA	Window, Disc Holder	ΑK		LX-CZ0056AFFD	Screw, ϕ 4×11mm	AA
204- 4	LHLDZ1384AF00	Holder, Weight	A C	617	XCBSD30P08000	Screw, ϕ 3×8mm	АА
204- 5	MR⊙DM0131AFFW	Rod	A C		ACCESSORIES/PA	CKING DADTS	
204- 6	MSPRD0934AFFJ	Spring, Disc Holder, Left	ΑB		ACCESSORIES/ PA	CKING PARTS	
204- 7	MSPRD0935AFFJ	Spring, Disc Holder, Right	ΑВ		PSHEK0155AFZZ	Protector.Dial Pointer	ΑВ
204~ 8	PCOVZ1151AFSA	Weight	ΑK	\triangle	QACCK0053AFZZ	AC Power Supply Cord	AL
204- 9	PCoVZ1153AFSA	Cover, Weight	ΑF	_	SPAKA1909AFZZ	Packing Add, Left	ΑE
204-10	PCUSS0404AF00	Cushion	ΑА		SPAKA1910AFZZ	Packing Add, Right	ΑĒ
204-11	XJSSF26P08000	Screw, ϕ 2.6 \times 8mm	ΑА		SPAKC4633AFZZ	Packing Case	AK
205	GFTAB1177AFSA	Lid, Battery	ΑG		SPAKP0795AFZZ	Polyethylene Bag, Unit	AF
206	HSSND0454AFSA	Dial Pointer	ΑВ		SPAKX2180AFZZ	Pad	AC
207	JHNDP1104AFSA	Handle	AN		SPAKZ0304AFZZ	Protection Sheet, Pick-up	AD
208	JKNBK0337AFSB	Knob, Band Selector	A C		SSAKA0035AFZZ	Polyethylene Bag,	AA
209	JKNBM0679AFSA	Knob, Slide Switch	ΑВ		00/11/100037/1 ZZ	Operation Manual	7.7
210	JKNBM0681AFSA	Knob, Volume, Graphic	ΑВ		TCAUS0216AFZZ	Caution Label, Laser, H	A C
		Equalizer			TCAUZ0218AFSA	Caution Label, Lens	AC
211	JKNBZ0659AFSA	Knob, Tuning	A C		TGANG1054AFZZ	Warranty Card for SEEG	AA
212	JKNBZ0774AFSA	Eject Button, Disc Holder	A C		I GANGI UJ4AFZZ	DV	~ ^
214	LANGF1169AFFW	Bracket, Mechanism Hold	A C		TiNSM0151AFZZ	Operation Manual	ΑK
215	LHLDF1436AFSA	Tuner Flame	ΑH		TLABM0287AFZZ	Label, Feature	A D
216	LHLDF1433AFSA	CD Flame	ΑН		TLABS0143AFZZ	Label, Feature Label, Laser Class 1	AC
217	LHLDL1065AFSA	Holder, Handle	ΑB		1 LAD30 143AFZZ	Lauci, Laser Ciass I	7.0
218	LHLDZ1383AFZZ	Bracket, Tuning Knob	ΑB		P.W.B. ASSEMBLY (Not	Replacement Item)	
219	MARMP0061AF\$A	Bracket, Coupler	АА				
220	MLEVF2133AFFW	Lever, Record	A D	PWB-A	DUNTR0267AF09	Tuner	_

PART NO.	DESCRIPTION	CODE
DKEND0783AF01	Main	-
(Combined Assembly	y)	
DCY0-1021AF01	CD	_
(Combined Assembl	y)	
RUNTK0235AF01	Power(with Power	
	Transformer)	
	DKEND0783AF01 (Combined Assembl DCYō-1021AF01 (Combined Assembl	DKEND0783AF01 Main (Combined Assembly) DCYō-1021AF01 CD (Combined Assembly) RUNTK0235AF01 Power(with Power