Astrostatistics: Thu 08 Feb 2017

https://github.com/CambridgeAstroStat/PartIII-Astrostatistics

- Example Sheet 1 uploaded
 - Fri Feb 16 (2:30 pm, Room MR5)
- Fitting Statistical Models to Astronomical Data
 - Bayesian Inference —> Computation, examples
 - References: Ivezic, Ch 5, F&B Ch 3, Gelman BDA
 - Hogg, D., 2012. "Data analysis recipes: Probability calculus for inference." https://arxiv.org/abs/1205.4446

Posterior Probability of the Dimensionality of Spacetime P(D|D)

FIG. 1. Posterior probability distribution for the number of spacetime dimensions, D, using the GW distance posterior to GW170817 and the measured Hubble velocity to its host galaxy, NGC 4993, assuming the H_0 measurements from [21] (blue curve) and [22] (green curve). The dotted lines show the symmetric 90% credible intervals. The equivalent constraints on the damping factor, γ , are shown on the top axis. GW170817 constrains D to be very close to the GR value of D=4 spacetime dimensions, denoted by the solid black line.

Pardo, Fishbach, Holz & Spergel. "Limits on the number of spacetime dimensions from GW170817". arXiv:1801.08160

Bayes' Theorem

Joint Probability of Data and Parameters:

$$P(D, \theta) = P(D|\theta)P(\theta) = P(\theta|D)P(D)$$

Probability of Parameters Given Data:

Simple Gaussian Example

Frequentist vs. Bayes

- Frequentists make statements about the data (or statistics or estimators= functions of the data), conditional on the parameter: $P(D \mid \theta)$ or $P(f(D) \mid \theta)$
- Often goal is to get a "point estimate" or confidence intervals with good properties/coverage under "long-run" repeated experiments in Asymptopia. Arguments are based on datasets that could've happened, but didn't. **Example: Null Hypothesis testing.**
- Bayesians make statements about the probability of parameters, conditional on the dataset D that you actually observed: P(θ | D). This requires an interpretation of probability as a quantifying a "degree of belief" in a hypothesis.
- Bayesian answer is the full posterior density $P(\theta \mid D)$, quantifying the "state of knowledge" after seeing the data. Any numerical estimates are attempts to (imperfectly) summarise the posterior.

Bayes advantages

- Ability to include prior information $P(\theta)$
 - External datasets: $P(\theta)$ is really the posterior from some other data $P(\theta \mid D_{ext})$
 - Regularisation: Penalises overfitting data with complex model, e.g. Gaussian process prior
 - "Noninformative" / weakly informative priors / default priors when you don't have / want to use much prior information
- Likelihood is not a probability density in the parameters. But multiply by a prior (even flat), and the posterior is a probability density that obeys clear rules: conditional, marginal probabilities
- Ability to deal with high-dimensional parameter space, e.g. many latent variables or nuisance parameters, and marginalise them "out"
- Estimators derived from Bayesian arguments can still be evaluated in a Frequentist Basis (e.g. James-Stein estimators)

Mo' Bayes, Mo' problems

- Bayesian answer is the full posterior density $P(\theta \mid D)$, quantifying the "state of knowledge" after seeing the data. Any numerical estimates are attempts to (imperfectly) summarise the posterior. e.g. posterior mean, modes, 95% Highest Posterior Density (HPD) region(s).
- Often these are posterior expectations: $\mathbb{E}[f(\pmb{\theta})|D)] = \int f(\pmb{\theta})P(\pmb{\theta}|D)d\pmb{\theta}$ which are often computationally difficult
- Bayesian computation: Algorithms to ``map out'' and/or sample the posterior density $P(\theta \mid D)$ and compute expections $\mathbf{E}[f(\theta) \mid D]$
- Markov Chain Monte Carlo [Metropolis, Gibbs, Ensemble/emcee, HMC/STAN],
 Nested Sampling, Particle Filtering/Population MC, Importance Sampling
- All models are wrong, some are useful!
- Testing model fit, predictive checks, model comparison