2022-2023学年秋季学期

课程名称: 信息安全数学基础

英文名称: Mathematical Foundations

for Information Security

授课团队: 胡磊、许军、王丽萍

助 教:郭一

信息安全数学基础

Mathematical Foundations for Information Security

[第 4 次课] 同余式

授课教师: 胡磊

授课时间: 2022年9月21日

概要

- 基本概念及一次同余式
- 中国剩余定理
- 高次同余式的解数及解法
- 素数模的同余式

基本概念及一次同余式

定义 1 设 m 正整数, f(x) 多项式 $f(x) = a_n x^n + \cdots + a_1 x + a_0$,其中 a_i 是整数,则 $f(x) \equiv 0 \pmod{m}$ (1)

叫做模m 同余式。若 $a_n \not\equiv 0 \pmod{m}$,则 n 叫做 f(x) 的 次数,记为

 $\operatorname{deg} f$. 此时,(1) 式又叫做模m 的 n 次同余式.

如果整数 a 使得 $f(a) \equiv 0 \pmod{m}$ 成立,则 a 叫做该 (1) 的**解**.

(1) 的解 a 常写成 $x \equiv a \pmod{m}$.

在模m的完全剩余系中,使得(1)成立的剩余个数叫做同余式(1)的解数.

例 1 $x^5 + x + 1 \equiv 0 \pmod{7}$ 是首项系数为 1 的模 7 同余式.

 $x \equiv 2 \pmod{7}$ 是该同余式的解.

$$2^5 + 2 + 1 = 35 = 5 \cdot 7 \equiv 0 \pmod{7}$$
.

还有解 $x=4 \pmod{7}$,解数为2

定理 设a, m是正整数,(a, m)=1, 则有a', 1≤a'<m, 使得 aa' ≡1 (modm)

在模m意义下,a'是唯一的,a'称为a模m的逆元。记 $a'=a^{-1}$

定理 1 设 $a \not\mid m$. 则一次同余式 $ax \equiv b \pmod{m}$ (2) 不解的充要条件是 (a,m)|b. 且当 (2) 有解时,其解数为 d = (a,m).

证 必要性. 设 (2) 有解 $x \equiv x_0 \pmod{m}$ $ax_0 - my_0 = b$.

因为 (a, m)|a, (a, m)|m, 所以 $(a, m)|ax_0 - my_0 = b.$ 必要性成立.

充分性.

充分性:

考虑:
$$\frac{a}{(a,m)}x \equiv \frac{b}{(a,m)} \pmod{\frac{m}{(a,m)}}$$
 因为 $(\frac{a}{(a,m)},\frac{m}{(a,m)}) = 1$

故
$$x \equiv x_1 \equiv \left(\frac{a}{(a,m)}\right)^{-1} \frac{b}{(a,m)} \pmod{\frac{m}{(a,m)}}$$

$$x \equiv x_1 \equiv \left(\frac{a}{(a,m)}\right)^{-1} \frac{b}{(a,m)} \pmod{m}$$
是 $ax \equiv b \mod m$ 的一个特解。

 $ax \equiv b \mod m$ 的全部解:

$$x \equiv x_1 + t \frac{m}{(a,m)} \pmod{m}, \quad t = 0,1,\Lambda,(a,m)-1$$

 $ax \equiv b \mod m$ 的全部解:

$$x \equiv \frac{b}{(a,m)} \left(\frac{a}{(a,m)} \right)^{-1} \mod \frac{m}{(a,m)} + t \frac{m}{(a,m)} \pmod{m},$$

$$t = 0,1,\Lambda, (a,m)-1$$

事实上,如果同时有 $ax \equiv b \pmod{m}$ 和 $ax_1 \equiv b \pmod{m}$ $a(x-x_1) \equiv 0 \pmod{m}$ $x \equiv x_1 \pmod{\frac{m}{(a,m)}}$.

因此, $ax \equiv b \mod m$ 的全部解可写成上述形式。证毕。

例 2 求解一次同余式 $33x \equiv 22 \pmod{77}$.

计算(33,77) = 11,且有(33,77) = 11|22,故原同余式有解.

写出同余式 $3x \equiv 2 \pmod{7}$ 的一个特解 $x_0 \equiv 2 \cdot x_0' \equiv 2 \cdot 5 \equiv 3 \pmod{7}$.

原同余式的全部解

$$x \equiv 3 + t \frac{77}{(33,77)} \equiv 3 + 7t \pmod{77}, \qquad t = 0, 1, \dots, 10.$$

或者

 $x \equiv 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73 \pmod{77}$.

定理 3 设 (a, m)|b. 则一次同余式 $ax \equiv b \pmod{m}$ 的全部解为

$$x \equiv \frac{b}{(a,m)} \cdot \left(\left(\frac{a}{(a,m)} \right)^{-1} \pmod{\frac{m}{(a,m)}} \right) + t \frac{m}{(a,m)} \pmod{m},$$

$$t = 0, 1, \dots, (a,m) - 1.$$

中国剩余定理

关于中国剩余定理或孙子定理,其最早见于《孙子算经》的"物不知数"题: 今有物不知其数,三三数之有二,五五数之有三,七七数之有二,问物有多少? 答案:二十三.

将"物不知数"问题用同余式组表示就是:

$$\begin{cases} x \equiv 2 \pmod{3}, \\ x \equiv 3 \pmod{5}, \\ x \equiv 2 \pmod{7}. \end{cases}$$

定理 1 (中国剩余定理) 设 m_1, \ldots, m_k 是 k 个两两互素 的正整数.则对任意的整数 b_1, \ldots, b_k ,同余式组

$$\begin{cases} x \equiv b_1 \pmod{m_1}, \\ \dots \\ x \equiv b_k \pmod{m_k}. \end{cases}$$
 (1)

一定有解,且解是惟一的.事实上,

若令
$$m = m_1 \cdots m_k, \quad m = m_i M_i, \quad i = 1, \dots, k,$$

则同余式组(1)的解可表示为

$$x \equiv M_1' M_1 b_1 + \dots + M_k' M_k b_k \pmod{m},$$

其中 $M_i'M_i \equiv 1 \pmod{m_i}, i = 1, 2, \dots, k.$

证(1)存在性

(2) 唯一性

秦九韶:大衍总数术

例 1 求解同余式组
$$\begin{cases} x \equiv b_1 \pmod{5}, \\ x \equiv b_2 \pmod{6}, \\ x \equiv b_3 \pmod{7}, \\ x \equiv b_4 \pmod{11}. \end{cases}$$

\mathbf{m} \Rightarrow $m = 5 \cdot 6 \cdot 7 \cdot 11 = 2310$,

$$M_1 = 6 \cdot 7 \cdot 11 = 462,$$
 $M_2 = 5 \cdot 7 \cdot 11 = 385,$
 $M_3 = 5 \cdot 6 \cdot 11 = 330,$ $M_4 = 5 \cdot 6 \cdot 7 = 210.$

分别求解同余式 $M_i'M_i \equiv 1 \pmod{m_i}$, i = 1, 2, 3, 4. 得到 $M'_1 = 3$, $M'_2 = 1$, $M'_3 = 1$, $M'_4 = 1$.

故同余式组的解为

 $x \equiv 3 \cdot 462 \cdot b_1 + 385 \cdot b_2 + 330 \cdot b_3 + 210 \cdot b_4 \pmod{2310}$.

例 3 计算 2¹⁰⁰⁰⁰⁰⁰ (mod 77).

解一利用 Euler 定理及模重复平方计算法直接计算.

因为 $\varphi(77) = \varphi(7)\varphi(11) = 60$,所以 $2^{60} \equiv 1 \pmod{77}$. 又 $1000000 = 16666 \cdot 60 + 40$,所以 $2^{1000000} = (2^{60})^{16666} \cdot 2^{40} \equiv 2^{40} \pmod{77}$. 设 m = 77, b = 2. 令 a = 1. $40 = 2^3 + 2^5$.

- 1). $n_0 = 0$. $\text{H} \not \equiv a_0 = a \equiv 1$, $b_1 \equiv b^2 \equiv 4 \pmod{77}$.
- 2). $n_1 = 0$. $\Re a_1 = a_0 \equiv 1$, $b_2 \equiv b_1^2 \equiv 16 \pmod{77}$.
- 4). $n_3 = 1$. 计算 $a_3 = a_2 \cdot b_3 \equiv 25$, $b_4 \equiv b_3^2 \equiv 9 \pmod{77}$
- 5). $n_4 = 0$. 计算 $a_4 = a_3 \equiv 25$, $b_5 \equiv b_4^2 \equiv 4 \pmod{77}$.
- 6). $n_5 = 1$. 计算 $a_5 = a_4 \cdot b_5 \equiv 23 \pmod{77}$.

最后,计算出 $2^{1000000} \equiv 23 \pmod{77}$.

解二 令 $x = 2^{1000000}$. 因为 $77 = 7 \cdot 11$, 所以计算 $x \pmod{77}$ 等价于求解同余式组 $\begin{cases} x \equiv b_1 \pmod{7} \\ x \equiv b_2 \pmod{11} \end{cases}$.

因为 Euler 定理给出 $2^{\varphi(7)} \equiv 2^6 \equiv 1 \pmod{7}$, 以及 $1000000 = 166666 \cdot 6 + 4$, 所以 $b_1 \equiv 2^{1000000} \equiv (2^6)^{166666} \cdot 2^4 \equiv 2 \pmod{7}$.

类似地,因为 $2^{\varphi(11)} \equiv 2^{10} \equiv 1 \pmod{11}$, $1000000 = 100000 \cdot 10$, 所以 $b_2 \equiv 2^{10000000} \equiv (2^{10})^{1000000} \equiv 1 \pmod{11}$.

令 $m_1 = 7$, $m_2 = 11$, $m = m_1 \cdot m_2 = 77$, $M_1 = m_2 = 11$, $M_2 = m_1 = 7$, 分别求解同余式 $11M_1' \equiv 1 \pmod{7}$, $7M_2' \equiv 1 \pmod{11}$.

得到 $M_1' = 2$, $M_2' = 8$. 故 $x \equiv 2 \cdot 11 \cdot 2 + 8 \cdot 7 \cdot 1 \equiv 100 \equiv 23 \pmod{77}.$

因此, $2^{1000000} \equiv 23 \pmod{77}$.

定理 2 在定理 1 的条件下,若 b_1, \ldots, b_k 分别遍历模 m_1, \ldots, m_k 的完全剩余系,则 $x \equiv M'_1 M_1 b_1 + \cdots + M'_k M_k b_k \pmod{m}$ 遍历模 $m = m_1 \cdots m_k$ 的完全剩余系.

证令 $x_0 = M_1' M_1 b_1 + \cdots + M_k' M_k b_k \pmod{m}$, 则当 b_1, \ldots, b_k 分别遍历模 m_1, \ldots, m_k 的完全剩余系时, x_0 遍历 $m_1 \cdots m_k$ 个数. 如果能够证明它们模 m 两两不同余,则定理成立.事实上,若 $M_1' M_1 b_1 + \cdots + M_k' M_k b_k \equiv M_1' M_1 b_1' + \cdots + M_k' M_k b_k' \pmod{m}$,

则根据 §2.1 定理 11, $M_i'M_ib_i \equiv M_i'M_ib_i' \pmod{m_i}$, $i = 1, \ldots, k$. 因为 $M_i'M_i \equiv 1 \pmod{m_i}$, $i = 1, \ldots, k$, 所以, $b_i \equiv b_i' \pmod{m_i}$, $i = 1, \ldots, k$. 但 b_i , b_i' 是同一个完全剩余系中的两个数,故

$$b_i = b'_i, i = 1, \dots, k.$$

定理成立.

Pohig-Hellman: 计算离散对数的CRT方法

• n阶循环群上的离散对数。若n有素因子分解 $n=q_1q_2...q_r$ 每个 q_i 为素数方幂

- Know g and $x = g^a$, want to find exponent a
- 利用x^{n/qi} = (g^{n/qi})^a, 求出a mod q_i
 (进一步,这个问题先用X^{n/pi} = g^{a n/pi}求出a mod p_i,再用下面第三节方法解决)
- 利用 $a \mod q_1$, $a \mod q_2$, ..., $a \mod q_r$, 求出 $a \mod n$
- 不能用光滑阶群上的离散对数

RSA解密的CRT方法

- n=pq,解密指数d与n同等规模
- 要计算 $m = c^d \pmod{n}$ (*)
- 计算 $d_p = d \pmod{p-1}$, d_p 比 d的规模缩小一半
- 计算m_p = c^{dp} (mod p), 计算量为(*)的 1/8
- 计算 $m_q = c^{d_q} \pmod{q}$
- 由 m=m_p (mod p) 和m=m_q (mod q) 计算 m (mod n), 计算量为(*) 的1/4

RSA正确解密的条件

- 要计算m^{ed-1} = 1 (mod n)
- 需要 $m^{ed-1} = 1 \pmod{p}$ 和 $m^{ed-1} = 1 \pmod{q}$
- 需要 ed-1 = 0 (mod p-1) 和 ed-1 = 0 (mod q-1)
- 充分必要条件:

```
需要 ed = 1 ( mod lcm(p-1 q-1) )
```

• 充分条件: $ed = 1 \pmod{(p-1)(q-1)}$

第三节 高次同余式的解数及解法

定理1 设 $m_1, ..., m_k$ 是两两互素的正整数, $m=m_1...m_k$,则

$$f(x) \equiv 0 \pmod{m} \iff \begin{cases} f(x) \equiv 0 \pmod{m_1} & \text{解数为T}_1 \\ \Lambda \Lambda \Lambda \\ f(x) \equiv 0 \pmod{m_k} & \text{解数为T}_k \end{cases}$$

则 $T = T_1 \Lambda T_k$ 。

证

$$f(x_0) \equiv 0 \pmod{m} \implies f(x_0) \equiv 0 \pmod{m_i}, \quad i = 1, \Lambda, k$$
$$f(x_0) \equiv 0 \pmod{m} \iff f(x_0) \equiv 0 \pmod{m_i}, \quad i = 1, \Lambda, k$$

定理1 设 $m_1, ..., m_k$ 是两两互素的正整数, $m = m_1 ... m_k$,则

$$f(x) \equiv 0 \pmod{m_1} \qquad \text{解数为T}_1$$

$$f(x) \equiv 0 \pmod{m_1} \qquad \Leftrightarrow \begin{cases} f(x) \equiv 0 \pmod{m_1} & \text{解数为T}_1 \\ \\ f(x) \equiv 0 \pmod{m_k} & \text{解数为T}_k \end{cases}$$

设 $f(x) \equiv 0 \pmod{m_i}$ 的解是 b_i , i = 1, ..., k. 则同余式组

 $x \equiv b_1 \pmod{m_1},$

的解是 $x \equiv M'_1 M_1 b_1 + \dots + M'_k M_k b_k \pmod{m}$. $x \equiv b_k \pmod{m_k}$

因为 $f(x) \equiv f(b_i) \equiv 0 \pmod{m_i}$, i = 1, ..., k, 所以 x 也是 $f(x) \equiv 0 \pmod{m}$ 的解. 故 x 随 b_i 遍历 $f(x) \equiv 0 \pmod{m_i}$ 的所有解 (i = 1, ..., k) 而遍历 $f(x) \equiv 0 \pmod{m}$ 的所有解. 即 $T = T_1 \cdots T_k$.

例 1 解同余式 $f(x) \equiv x^4 + 2x^3 + 8x + 9 \equiv 0 \pmod{35}$. **解** 原同余式等价于同余式组 $\begin{cases} f(x) \equiv 0 \pmod{5}, \\ f(x) \equiv 0 \pmod{7}. \end{cases}$

直接验算, $f(x) \equiv 0 \pmod{5}$ 的解为 $x \equiv 1, 4 \pmod{5}$, $f(x) \equiv 0 \pmod{7}$ 的解为 $x \equiv 3, 5, 6 \pmod{7}$.

根据中国剩余定理,可求得同余式组 $\begin{cases} x \equiv b_1 \pmod{5} \\ x \equiv b_2 \pmod{7} \end{cases}$

的解为 $x \equiv 3 \cdot 7 \cdot b_1 + 3 \cdot 5 \cdot b_2 \pmod{35}$.

故原同余式的解为 $x \equiv 31, 26, 6, 24, 19, 34 \pmod{35}$

定理1 设 $m_1, ..., m_k$ 是两两互素的正整数, $m = m_1 ... m_k$,则

$$f(\mathbf{x}) = 0 \pmod{m}$$
解数为T
$$f(\mathbf{x}) \equiv 0 \pmod{m_1}$$
解数为T
$$f(\mathbf{x}) \equiv 0 \pmod{m_k}$$
解数为T_k

$$\mathbb{P}_{\mathbf{x}} = \mathbf{T}_{\mathbf{x}} = \mathbf{T}$$

因为 $m = \pi_p p^{\alpha}$, 所以要求解同余式 $f(x) \equiv 0 \pmod{m}$, 只须求解同余式 $f(x) \equiv 0 \pmod{p^{\alpha}}$.

我们讨论 p 为素数时, $f(x) \equiv 0 \pmod{p^{\alpha}}$ (3) 的解法. 设 $f(x) = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0$; $f'(x) = na_n x^{n-1} + \dots + 2a_2 x + a_1$.

称 f'(x) 为 f(x) 的 导式.

定理 2 设 $x \equiv x_1 \pmod{p}$ 是 $f(x) \equiv 0 \pmod{p}$ 的一个解, $(f'(x_1), p) = 1$ 则 $f(x) \equiv 0 \pmod{p^{\alpha}}$ 有解 $x \equiv x_{\alpha} \pmod{p^{\alpha}}$, 其中 x_{α} 由下面关系式递归得到:

$$\begin{cases} x_i \equiv x_{i-1} + p^{i-1}t_{i-1} & (\text{mod } p^i), \\ t_{i-1} \equiv -\frac{f(x_{i-1})}{p^{i-1}} (f'(x_1)^{-1} \pmod{p}) & (\text{mod } p), \end{cases}$$

$$i = 2, \dots, \alpha.$$

证 我们对 $\alpha \geq 2$ 作数学归纳法:

(i)
$$\alpha = 2$$
. $x = x_1 + pt_1$, $t_1 = 0, \pm 1, \pm 2, \dots$,
 $f(x_1 + pt_1) \equiv 0 \pmod{p^2}$
 $f(x_1) + ptf'(x_1) \equiv 0 \pmod{p^2}$

因为 $f(x_1) \equiv 0 \pmod{p}$, 所以 $t_1 f'(x_1) \equiv -\frac{f(x_1)}{p} \pmod{p}$.

因为
$$(f'(x_1), p) = 1$$
, $t_1 \equiv -\frac{f(x_1)}{p}(f'(x_1)^{-1} \pmod{p}) \pmod{p}$.

即 $x \equiv x_2 \equiv x_1 + pt_1 \pmod{p^2}$ 是同余式 $f(x) \equiv 0 \pmod{p^2}$ 的解.

(ii) 设 $3 \le i \le \alpha$. 假设定理对 i-1 成立, 即同余式 $f(x) \equiv 0 \pmod{p^{i-1}}$ 有解 $x = x_{i-1} + p^{i-1}t_{i-1}$, $t_{i-1} = 0, \pm 1, \pm 2, \ldots$

$$f(x_{i-1} + p^{i-1}t_{i-1}) \equiv 0 \pmod{p^i}$$

$$f(x_{i-1}) + p^{i-1}t_{i-1}f'(x_{i-1}) \equiv 0 \pmod{p^i}$$

因为 $f(x_{i-1}) \equiv 0 \pmod{p^{i-1}}$, 所以 $t_{i-1}f'(x_{i-1}) \equiv -\frac{f(x_{i-1})}{p^{i-1}} \pmod{p}$.

又因为
$$f'(x_{i-1}) \equiv f'(x_{i-2}) \equiv \cdots \equiv f'(x_1) \pmod{p}$$

$$(f'(x_{i-1}), p) = \cdots = (f'(x_1), p) = 1$$

$$t_{i-1} \equiv -\frac{f(x_{i-1})}{p^{i-1}} (f'(x_{i-1})^{-1} \pmod{p}) \equiv -\frac{f(x_{i-1})}{p^{i-1}} (f'(x_1)^{-1} \pmod{p}) \pmod{p}$$

即 $x \equiv x_i \equiv x_{i-1} + p^{i-1}t_{i-1} \pmod{p^i}$ 是 $f(x) \equiv 0 \pmod{p^i}$ 的解.

定理对所有 $2 \le i \le \alpha$ 成立. 特别, 定理对 $i = \alpha$ 成立. 证毕.

定理 2 设 $x \equiv x_1 \pmod{p}$ 是 $f(x) \equiv 0 \pmod{p}$ 的一个解, $(f'(x_1), p) = 1$ 则 $f(x) \equiv 0 \pmod{p^{\alpha}}$ 有解 $x \equiv x_{\alpha} \pmod{p^{\alpha}}$, 其中 x_{α} 由下面关系式递归得到:

$$\begin{cases} x_i \equiv x_{i-1} + p^{i-1}t_{i-1} & (\text{mod } p^i), \\ t_{i-1} \equiv -\frac{f(x_{i-1})}{p^{i-1}} (f'(x_1)^{-1} \pmod{p}) & (\text{mod } p), \end{cases}$$

$$i = 2, \dots, \alpha.$$

性质

设f(x)是n次多项式。

- $f(x + yp^i) \equiv f(x) \pmod{p^i}.$
- 设 $x_0(\mod p)$ 是 $f(x) \equiv 0(\mod p)$ 的一个根。则 $f'(x_0) \not\equiv 0(\mod p) \Leftrightarrow x_0(\mod p)$ 是 $f(x) \equiv 0(\mod p)$ 的一个单根。

p-adic 求解法: $x = x_0 + x_1 p + x_2 p^2 + \cdots$ 。 依次求 出 x_0, x_1, x_2, \cdots 。

 $i \exists x_i' = x_0 + x_1 p + x_2 p^2 + \dots + x_{i-1} p^{i-1}$.

方法

- 若 $x_0 \pmod{p}$ 是 $f(x) \equiv 0 \pmod{p}$ 的一个单根,则 $f(x) \equiv 0 \pmod{p^i}$ 有唯一的模p同余于 x_0 的一个模 p^i 根,这个根可迭代计算。
- 若 x_0 (mod p)是 $f(x) \equiv 0$ (mod p)的一个重根, $f(x_i') \equiv 0$ (mod p^i)且 $x_i' \equiv x_0$ (mod p),则 $f(x) \equiv 0$ (mod p^{i+1})存在模 p^i 同余于 x_i' 的一个模 p^{i+1} 根⇔ $f(x_i') \equiv 0$ (mod p^{i+1})。当这个条件成立时,这些解为 $x_{i+1}' = x_i' + x_i p^i$, x_i 为任意整数。

证明: $f(x_i' + x_i p^i) \equiv f(x_i') + f'(x_i')x_i p^i \pmod{p^{i+1}}$

p叉树

例:
$$f(x) = x^3 + 2x + 22 \equiv 0 \pmod{5^3}$$
.

$$f(x) \equiv x^3 + 2x + 2 \equiv (x - 1)^2(x + 2) \pmod{5}$$
.

Pohig-Hellman: 计算离散对数的CRT方法

• n阶循环群上的离散对数。若

$$n=p^{s}$$

- Know g and $x = g^a$, want to find exponent a
- Write the p-adic expression of a
- 利用 $x^{n/p} = (g^{n/p})^a$,求出 $a \mod p$

• 不能用光滑阶群上的离散对数

模p同余式的解数不超过p和其次数

考虑
$$f(x) = a_n x^n + \dots + a_1 x + a_0 \equiv 0 \pmod{p}$$
 其中 $p \nmid a_n$.

引理 (多项式欧几里得除法) 设 $f(x) = a_n x^n + \cdots + a_1 x + a_0$ 为 n 次整系数多项式, $g(x) = x^m + \cdots + b_1 x + b_0$ 为 $m \ge 1$ 次首一整系数多项式,则存在整系数多项式 q(x) 和 r(x) 使得

$$f(x) = g(x)q(x) + r(x), \quad \deg r(x) < \deg g(x).$$

定理 1 同余式 $f(x) = a_n x^n + \cdots + a_1 x + a_0 \equiv 0 \pmod{p}$

与一个次数不超过p-1模p同余式等价.

证 由欧几里得除法,存在 q(x), r(x) 使得 $f(x) = (x^p - x)q(x) + r(x)$, 其中 $\deg r(x) \le p - 1$. 又对任何整数 x, 都有 $x^p - x \equiv 0 \pmod p$. 故同余式 $f(x) \equiv 0 \pmod p$ 等价于同余式 $r(x) \equiv 0 \pmod p$.

- · r(x) 模p是零多项式,p个模p解
- r(x) 模p是非零多项式,下证不超过deg r(x)个模p解

例 1 求与同余式 $3x^{14} + 4x^{13} + 2x^{11} + x^9 + x^6 + x^3 + 12x^2 + x \equiv 0 \pmod{5}$ 等价的次数 < 5 的同余式.

解 作多项式的欧几里得除法,我们有

$$3x^{14} + 4x^{13} + 2x^{11} + x^9 + x^6 + x^3 + 12x^2 + x$$

$$= (x^5 - x)(3x^9 + 4x^8 + 2x^6 + 3x^5 + 5x^4 + 2x^2 + 4x + 5)$$

$$+3x^3 + 16x^2 + 6x.$$

所以原同余式等价于 $3x^3 + 16x^2 + 6x \equiv 0 \pmod{5}$.

定理 2 设 $1 \le k \le n$. 如果 $x \equiv a_i \pmod{p}$ 是 $f(x) = a_n x^n + \dots + a_1 x + a_0 \equiv 0 \pmod{p}$ 的 k 个不同解,则 对任何整数 x, 都有 $f(x) \equiv (x - a_1) \cdots (x - a_k) f_k(x) \pmod{p}$, (2)

其中 $f_k(x)$ 是 n-k 次多项式, 首项系数是 a_n .

证由多项式的欧几里得除法,存在多项式 $f_1(x)$ 和 r(x) 使得

$$f(x) = (x - a_1)f_1(x) + r(x), \qquad \deg r(x) < \deg(x - a_1).$$

易知, $\deg f_1(x) = n-1$, 首项系数是 $a_n, r(x) = r$ 为整数. 因为 $f(a_1) \equiv 0 \pmod{p}$, 所以 $r \equiv 0 \pmod{p}$. 即有 $f(x) \equiv (x - a_1)f_1(x) \pmod{p}$.

再由 $f(a_i) \equiv 0 \pmod{p}$ 及 $a_i \not\equiv a_1 \pmod{p}$, 得到 $f_1(a_i) \equiv 0 \pmod{p}$, i = 0

$$2, \dots, k.$$

类似地
$$\begin{cases} f_1(x) \equiv (x - a_2) f_2(x) \pmod{p}, \\ f_2(a_i) \equiv 0 & \pmod{p}, i = 3, \dots, k. \end{cases}$$

$$f_{k-1}(x) \equiv (x - a_k) f_k(x) \pmod{p}$$

故 $f(x) \equiv (x - a_1) \cdots (x - a_k) f_k(x) \pmod{p}$.

定理 4 同余式 $f(x) = a_n x^n + \dots + a_1 x + a_0 \equiv 0 \pmod{p}$ $p \nmid a_n$. 的解数不超过它的次数.

证 反证法. 设 (1) 式的解数超过 n 个,则 (1) 式至少有 n+1 个解. 设它们为 $x \equiv a_i \pmod{p}$, $i=1,\ldots,n,n+1$. 对于 n 个解 a_1,\ldots,a_n ,可得到 $f(x) \equiv (x-a_1)\cdots(x-a_n)f_n(x) \pmod{p}$. $f(a_{n+1}) \equiv 0 \pmod{p}$, $(a_{n+1}-a_1)\cdots(a_{n+1}-a_n)f_n(a_{n+1}) \equiv 0 \pmod{p}$. $f_n(a_{n+1}) \equiv 0 \pmod{p}$.

但 $f_n(x)$ 是首项系数为 a_n , 次数为 n-n=0 的多项式. 故 $p|a_n$. 矛盾.

推论 次数 < p 的整系数多项式对所有整数取值模 p 为零的充要条件是其系数被 p 整除.

