哈爾濱工業大學(深圳)

HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

RoboMaster 2021 机甲大师超级对抗赛 工程机器人技术说明文档

哈尔滨工业大学(深圳)南工骁鹰机器人队 2021年8月

目录

1.需求分析	3
1.1 规则分析与战场定位	3
1.2 需求分析	3
2.技术方案	4
2.1 主要技术参数	4
2.2 技术方案	5
3.机构详细设计	9
3.1 复活卡伸出机构	9
3.2 升降传动系统	9
3.3 "八轮"底盘	11
4.嵌入式控制软件及算法	12
4.1 基础软硬件及开发工具、调试过程说明	12
4.2 工程机器人基本功能的实现	13
4.3 机器人操作相关人机交互性设计	14
5.视觉算法说明	15
5.1 大资源岛对位算法简述	15
5.2 视觉部分代码设计	16
5.3 单片机与 MiniPC 通信	16

1. 需求分析

1.1 规则分析与战场定位

与历年 RoboMaster 超级对抗赛规则相比,RoboMaster 2021 超级对抗赛中的 弹丸获取与发射机制有了很大的改动。 新增的经济机制使得英雄机器人的大弹 丸不再是在比赛中自行获取,步兵机器人的弹丸发射量受到限制,无人机的空中 支援也需要消费队伍多达 400 金币的经济,而队伍的经济来源除了每分钟 100 金币的自然增长外,完全依赖于工程机器人对资源岛上金矿、银矿的获取。一个金矿价值 300 金币,一个银矿价值 100 金币,采矿这一任务在这个进攻全靠经济支持的赛制下显得格外重要,工程机器人能否执行好这一任务,是队伍能否打赢比赛的关键。

其次,地面机器人的死亡与复活机制与往年基本没有区别,工程机器人仍要充当救援阵亡机器人的"奶妈"角色,以保障队伍进攻的可持续性。同时,RMUC2021增加了障碍块这一场地道具,以供队伍进行多样式战术的执行,如为己方地面单位提供掩体,作为障碍设置在敌方地面单位进攻路线,亦或是搭建斜坡使其他地面单位能够爬上台阶等等。

综上所述,工程机器人作为队伍坚强的后盾,需要保证队伍经济至少不落后甚至要超过敌方队伍。同时作为"奶妈",能够及时救援己方阵亡单位,为己方地面单位提供移动掩体,配合战术的执行。

1.2 需求分析

在 RMUC2021 的规则下,虽然弹丸发射仰仗经济,但从另一个角度上看,由于经济能够自然增长且英雄机器人可预装载大弹丸,即使工程机器人无法获取矿石,步兵机器人和英雄机器人也拥有发射弹丸的机会。于是,救援己方阵亡地面单位这一任务便成了重中之重,故工程机器人的首要设计任务是保证救援机构的稳定性,在救援的效率上寻求突破。

工程机器人夹取金矿/银矿后,需将矿石放到兑换站上扫码,并推入兑换仓内完成兑换。同时,矿石有可能会掉落至地上,为了保证能够夹取地面上的矿石,工程机器人的抓取机构(最远端夹取面)需至少能够到达四个高度,即离地 200mm (夹取地面矿石),450mm (夹取资源岛上金矿),650mm (完成兑换),780mm (夹取小资源岛上银矿)。由于资源岛金矿掉落后会有 yaw 轴上的偏转,甚至会发生一定的 row 轴翻转,为了提高夹爪对此情况的适应性,需在不影响银矿夹取的情况下,尽可能增大夹爪松开时的距离,且扩大夹爪的夹持面面积。

由于小资源岛附近设有起伏路段,而麦轮底盘特性决定了机器人无法在起伏路段完成平移动作,为了保证工程机器人能够在起伏路段准确对位,我们决定将夹取矿石机构设置在机器人的侧面,使工程机器人通过前后移动对位。

考虑到小资源岛有3个银矿石,中央资源岛第二波放矿时依次连续掉落3个金矿石,故机器人需设置存储矿石机构,满足至少能存储两个矿石的需求。

考虑到比赛中机器人对障碍块辅助上台阶的需求较低,且障碍块作为掩体易被机器人推动,故搬运和放置障碍块机构的设计优先级较低,为了保证工程机器人移动灵活性,我们决定舍弃障碍块搬运机构,以减轻机器重量,降低机器维修难度。

考虑到大弹丸发射经济消耗量大,在对金币获取时效比进行评估后,我们认 为一局比赛中英雄机器人能够发射大弹丸数大概在30-40颗,而这一数量的大弹 丸完全可由其在赛前预装载,于是我们不为工程机器人设置补弹机构。

综上,	工程机器	【的设计需求见表 1-	1
~/N		/ H J V/ V I III / I/ / L / V I .	

功能	是否需要	优先级	需求特点/舍弃理由	
救援	是	最高	保证稳定性,提高效率	
采矿/兑换	是	高	升降行程长,夹爪尺寸大,夹取机构在侧面	
储矿	是	较高	至少能存储两个矿石	
障碍块搬运	否	_	作用小,增加重量负担	
补弹	否	-	英雄自给自足,几乎无补弹需求	

表 1-1 工程机器人设计需求

2. 技术方案

2.1 主要技术参数

机器人的主要技术参数见表 2-1

技术参数	初始状态	最大伸展状态	备注
长*宽*高/㎜	596*557*598	980*950*970	
总重量	约 31	不含裁判系统	
重心高度	约 223mm	约 342mm	
电机数量	M3508*10,	M3508: 驱动麦轮*4, 驱动升降同步轮*4, 驱动夹爪翻转*1, 驱动夹爪推出*1 M2006: 驱动复活卡伸出	
气缸数量	1		控制夹爪夹紧与张开
气缸工作气压	0.8MPa		
夹爪自由度	4	1 个翻转自由度, 1 个夹紧自由度	

表 2-1 工程机器人技术参数

2. 2 技术方案

如图 2-1 所示, 机器人结构主要分为底盘、升降架和升降主体三部分

图 2-1 机器人结构分层

升降部分采用单级升降式设计,以直线导轨作为导向机构,四个 M3508 电 机驱动 50 齿同步轮带动上层机构的升降,不仅提供了足够的力矩和牵引力,而 且提高了升降速度。导向机构的直线导轨单根长达 560mm, 使得主体部分获得 500mm 的升降行程,以实现地面矿石的夹取。

图 2-2 升降极限位置 第 5 页 共 16 页

在夹爪的设计上,如图 2-3 所示,夹爪翻转范围为 45°-270°(笛卡尔坐 标系下),使得夹爪能够翻转至竖直向下位置,以完成对地面矿石的夹取。

图 2-3 夹爪翻转范围

500mm 的长升降行程与夹爪大范围翻转结合,满足了最远端夹取面离地 200mm 至 780mm 的升降需求。

图 2-4 夹爪上下极限位置

如图 2-5 所示,夹爪推出的导向机构采用重型工业三节轨,其刚度强度 大,能够保证夹爪伸出到最远端时伸出臂依然有较好的直线度,且能够承受很 大的冲击载荷。同时,三节轨的横向空间占用小,有利于上层结构空间排布。 加大伸出主体的左右刚度,单边驱动即可完成夹爪推出。推出的传动系统由齿 轮齿条组成,结构简单,效率较高,维修难度低,耐用性强。

图 2-5 推出机构

如图 2-6 所示,为了使其他步兵机器人和英雄机器人有更大的设计空间, 我们决定提高拖车机构的兼容性,于是将拖车机构设置在升降主体上,以满足 钩住不同高度保险杠的需求。

图 2-6 推出机构

第7页共16页

如图 2-7 所示,机器人的电气设备(主控、电源管理模块、miniPC)集中 布置在底盘大板上,当升降主体升至高处时,机器人侧面无挡板,有较大的镂 空面积,在弹丸横飞的战场上有电气设备被击打损坏的风险,如图 2-8 所示。

图 2-7 轴测图

于是,我们利用了生活中常见的百褶窗帘,将其一端固定在底盘上,另一 端固定在升降主体上,使得升降主体降至最低时,百褶窗帘折叠;升降主体上 升时,百褶窗帘随之张开,填充机器人侧面的大面积镂空区域。同时在百褶帘 内侧拉上弹力绳,使百褶窗帘受弹丸击打内陷后,可借助弹力绳弹力恢复原 态。

图 2-8 可折叠保护帘

图 2-9 保护帘弹性绳

3. 机构详细设计

3.1 复活卡伸出机构

如图 3-1 所示, 卷尺救援机构采用 16mm 钢卷尺作为伸出介质, 由一个 M2006 电机驱动两个 3D 打印的轮毂,将绕在轮毂上的卷尺同步推出。同时,卷尺前端 有 3D 打印件固定两个卷尺的相对位置(图中未画出)防止卷尺的左右相对偏移。

M2006 电机的最大转速可达 416rpm,由于轮毂的直径为 54mm,故推出的最 大速度可达 1.17m/s, 理论上可在 1s 内完成救援卡的伸出。

图 3-1 卷尺刷卡机构

采用卷尺结构还是气缸结构是一个在我们设计初期就讨论过的问题。气缸结 构的优势在于控制简单、动作迅速: 但是纵向空间占用较大。而且考虑到工程机 器人尺寸的减小,气瓶容量也无法做得很大,故气动机构也要尽量减少。而采用 卷尺结构的优势在于纵向空间占用小,可将整个卷尺结构放置于前轮的侧面投影 中,从而大大提高整个底盘的通过角,大幅增强下坡能力而不至于被卡在台阶上。 当然,除了动作不够迅速的劣势以外,卷尺机构由于靠中间的轮毂旋转将卷尺推 出,需要克服较大的摩擦力,尤其是在轮毂上卷有较多圈卷尺的时候,若外壳设 计得不好,还有损坏卷尺的风险。但在多次迭代下,卷尺机构的最大伸出长度已 经完全能够满足复活卡的需要。

3.2 升降传动系统

升降主体固定于 4条 MGN-12 直线导轨上,导轨长 560mm,可用行程 500mm, 实际行程 495mm。采用 4 同步带 4 电机驱动, 4 个 M3508 电机同时驱动 4个50齿的同步轮带动整个上层结构升降,理论速度可达1.96m/s,堪比气 动。4个电机的驱动力可达300N,可以稳定驱动约10kg上层结构。

由于 50 齿的 XL 同步轮外径达到了 80mm, 所以必须上下布置, 以缩小横向 占用空间。机器人采用了图 3-2 所示的同步带绕法,可以最大限度地降低整个同 步轮系所占用的横向空间。

图 3-2 升降传动系统 (同步带为图式红色部分)

如图 3-3 所示,我们采用自主设计的同步带压板,其优点在于保证压紧齿数 的同时,同步带的首尾两端距离非常近,可以最大化利用同步带的竖向行程。因 此,工程机器人仅依靠单级同步带传动就能使升降行程达到 495mm。在升降机构 降至底部时,可以直接夹取地上的矿石。

图 3-3 自主设计同步带压板

第 10 页 共 16 页

3.3 "八轮"底盘

机器人底盘由四个麦克纳姆轮驱动,每个麦轮由一个 M3508 电机独立直接 驱动,理论最大直线移动速度可达 3.73m/s,加速度可达 2.5m/s2。悬挂则采用 八轮设计加上拉簧减振,虽减振效果比不上传统悬挂,但在平地移动时可以显 著减少车身晃动, 且在起伏路段也能获得一定的减振效果。

在底盘轮组轴系的设计方面,如图 3-4 所示,我们创新性地采用了 Z11 胀 紧套, Z11 胀紧套是带有法兰的胀紧套, 可以在抱紧电机轴的同时, 直接通过 一个法兰盘连接在麦轮上。胀紧套的小端套在一个轴承内部,轴承通过一个铝 加工件固定在铝方管上,从而使轴承承受大部分的冲击载荷。此设计仅需两个 加工件,成本较低。由于此型胀紧套采用 M4 螺栓胀紧,胀紧力大、稳定性高。

图 3-4 轮组轴系设计

图 3-5 Z21 胀紧套 第 11 页 共 16 页

在悬挂设计上,我们创新性地采用八轮悬挂,两小轮间使用一个拉簧减 振。整个轮组固定在一根贯穿车体左右的钢制空心轴上,既能保证稳定性又能 提高整个车身的刚性。整个轮组可以绕这根轴摆动,且设计有限位,向上 5° 向下 17.6°。平地移动时, 八轮同时着地, 相当于刚性悬挂, 此时无论上层结 构动作或是底盘移动,车身都能保持稳定。同时,由于拉簧的作用,小全向轮 受到地面的支持力远小于麦轮,保证了机器平地移动时驱动轮受到足够大小的 摩擦力。过起伏路段时,由于大小轮相当于一个杠杆,所以无论是大轮被抬起 还是小轮被抬起,车轴都比该轮的抬起幅度小。若前轮抬起 5°,即 8.75mm, 小轮只会将车轴顶起 4.24mm, 大幅降低了整个车身的纵向位移。其次, 因为有 拉簧的作用,在碰到限位之前,4个驱动轮在任何时刻都能同时着地,在崎岖 路面也能提供足够的驱动力。

图 3-6 轮组设计

图 3-8 越障状态

4. 嵌入式控制软件及算法

4.1基础软硬件及开发工具、调试过程说明

工程机器人的主控板使用了 RoboMaster 提供的开发板 C 型,调试软件为 STM32CubeMX 与 kei15,整体程序框架基于 Freertos 进行开发。经过比较我们 选取了某款无线调试器来进行测试,能减少调试人员的移动,同时在调试过程 中与机器人保持安全距离。整体功能调试从底层开始,先实现一个一个的功 能,然后将其组合起来连续过程,最后整体进行优化以提高工作效率和稳定 性。

4.2 工程机器人基本功能的实现

整体控制逻辑以及具体各线程所实现的功能如图所示。

工程机器人嵌入式代码逻辑框图 1 图 4-1(1)

图 4-1(2) 工程机器人嵌入式代码逻辑框图 2

第 13 页 共 16 页

图 4-1(3) 工程机器人嵌入式代码逻辑框图 3

4.3 机器人操作相关人机交互性设计

该机器人图传位置设计在车体靠边缘的位置,为减小高速直线运动中冲撞到 场地和其他机器人的可能性,利用自定义 UI 的绘制直线功能绘制的车身边缘指 示线。同时自定义 UI 中也包含了机器人的工作状态,包括是否正常运行在自动 取矿模式等,对操作手起到提示作用,帮助操作手掌握机器人所处的状态。从 而更快地作出反应。

同时机器人基本实现了取矿、放矿过程的半自动化、一键化。取矿半自动化 实现的方式为在取矿模式时,程序控制机器人依次进行升降机构移动到指定高 度、推出机构推出、夹爪夹紧、夹爪翻转将矿抽离大资源岛,收回夹爪等一系

列动作,判断一个步骤执行到位后就进行下一步,直到整个过程完成或过程被操作手手动停止,机器人状态被切换回手动模式。

5. 视觉算法说明

5.1 大资源岛对位算法简述

图 5-1 大资源岛视觉对位逻辑导图

(一) 图像预处理

- 1、HSV 颜色分离: 矿石具有比较鲜艳的黄色,转换到 HSV 空间很容易通过明度特征筛选出大面积的矿石区域
- 2、高斯滤波:此时仍有细小噪点和高频噪声,选择使用高斯滤波消除高频噪声3、形态学操作:对图像进行开操作,填补背景和矿石部分的空洞
- 4、边缘检测:考虑运行效率和实际效果,采用Canny边缘检测算法,得到拥有父子逻辑的轮廓

(二) 筛选特征点

- 1、比例筛选: 当摄像头正对矿石时,矿石一个面上四个角特征点都可以看作正方形,为了维持鲁棒性,给予比例筛选一定的宽容度,即: 当框选矩形的长宽比在[0.9,1.1]范围内时认为得到了理想的特征点。
- 2、面积筛选:注意到矿石的特征点是一个 L型,则外围矩形的面积和轮廓围起的实际区域会有面积差,根据面积差可以确定选择的轮廓是否为 L型目标。
- 3、轮廓等级筛选:矿石中部的 R 型标志常被误识别,通过判断该轮廓是否为最里层轮廓,从而填补 R 内部空白,然后进入比例筛选环节将其排除掉的方式解决误识别。
- 4、图像边缘误识别: 当背景中的黄色与图像边缘接触时,会出现比例、面积都符合筛选条件的情况。考虑工程车在实际夹取矿石时工作情况相对稳定,与地面保持平行,则对于筛选出的所有特征点进行图像 Y 方向的排序,选择处于预设 ROI 区域,且 Y 坐标差异不大的特征点。

5.2 视觉部分代码设计

代码的设计遵循 C++语言的基本原则: 封装、继承、多态,设计框架时采用 两个类分别管理"矿石检测器"和"数据收发器" 类说明:

- 1、Mineral 类
- (1) 生存空间: 从程序开始执行直到程序结束
- (2) 类功能: 创建一个内存占用小的"矿石检测器",不断从摄像头读取图 像,进行上述算法的相关处理,得到当前工程车位置距离矿石中心点的误差。
- 2、DataManager 类
- (1) 生存时间: 从程序开始执行直到程序结束
- (2) 内存管理: 使用 PIMPL 方法,将数据封装在外部结构体中,类仅持有指向 结构体的智能指针,每次 Mineral 计算出误差后由"数据管理器"创建新的结 构体,并将其通过串口发送给单片机。由于结构体被智能指针管理,不会出现 内存泄漏问题。

5.3 单片机与 MiniPC 通信

单片机通过 USART 串口通信与 MiniPC 进行通信,并通过 CH340 芯片转换成 方便 MiniPC 使用的 USB 信号。

MiniPC 向单片机发送数据时,为保证数据块的正确传输,分别在每一个数 据帧开头和结尾设置数据校验位,接受端核验帧头帧尾后方可使用。单片机收 到 MiniPC 实时发送的如上格式的信息后,会自行验证验证格式是否正确,若正 确则将其中矿石中心与夹爪的距离(error x)作为控制量输入到底盘控制的模 块中以实现对已掉落矿石的对位。

单片机向 MiniPC 发送数据时,特地在数据格式中设置了一个状态位来表明 当前工程机器人功能状态, MiniPC 上的程序设计会使得视觉部分工作状态随单 片机传输过来的信息而改变,从而在大资源岛对位、小资源岛对位、自由行驶 模式间实现切换。

```
//发出去的结构体
typedef struct _SendData {
                                       //帧头是's'
  uint8 t start flag;
   uint16_t error_x;
                                       //矿石中间点和图像中心点(车正中心)的偏差
   uint8_t direction_x;
                                       //'l'表示在图像视野左侧,'r'表示图像在视野右侧
   uint8 t is error data;
                                       //标志本次是否为错误数据
   uint8_t is_standard;
                                        //图像x方向是否对齐(线是否水平)
   uint8_t end_flag;
                                        //帧尾是'e'
} SendData;
```

图 5-2 MiniPC 向单片机发送数据格式

单片机向 MiniPC 发送数据格式

```
typedef struct _MineralData{
    uint8_t start_flag;
    uint8_t type;
   uint8_t start;
   uint8_t end_flag;
}MineralData;
```

图 5-3 单片机向 MiniPC 发送数据格式