Homework 7 BIOS 7731

Due 10/29 10:30am through Canvas. Students may work together on homework assignments, but the assignment handed in must represent your own work. Problems based on a later lecture are labeled with *.

- 1. (a) Suppose we toss a fair (p = 0.5) coin n times. Use the Chebychev inequality to find how many times a coin must be tossed in order that the probability will be at least 0.90 that the observed frequency of heads will lie between 0.4 and 0.6.
 - (b) Alternatively, use the normal approximation to determine the number of of tosses required in part a). How do the results in part a) and b) compare?
- 2. Let sample space S = [0,1] with the uniform density function and define Z(s) = s and $Z_1, Z_2 \dots$ as

$$Z_1(s) = s + I_{[0,1]}(s), \quad Z_2(s) = s + I_{[0,1/2]}(s), \quad Z_3(s) = s + I_{[1/2,1]}(s)$$

 $Z_4(s) = s + I_{[0,1/3]}(s), \quad Z_5(s) = s + I_{[1/3,2/3]}(s), \quad Z_6(s) = s + I_{[2/3,1]}(s)$

- (a) Does $Z_n \to^{\mathcal{P}} Z$?
- (b) Does $Z_n \to^{a.s.} Z$?
- 3. Let F be a cdf and let F^{-1} denote its left-continuous inverse.
 - (a) Show that $F \circ F^{-1}(t) \ge t$ for all 0 < t < 1 with equality iff t is in the range of F. Hence $P(F(X) \le t) \le t$.
 - (b) Show that $F^{-1} \circ F(x) \leq x$ for all $x \in (-\infty, \infty)$ with strick inequality iff $F(x \epsilon) = F(x)$ for some $\epsilon > 0$. Hence $P(F^{-1} \circ F(X) \neq X) = 0$ for $X \sim F$.
- 4. BD 5.3.13, pg 351*
- 5. BD 5.3.28, pg 354*