Álgebra lineal I, Grado en Matemáticas

Febrero 2016, Segunda Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz escalonada
- (b) Menor adjunto.
- (c) Coordenadas.
- (d) Aplicación lineal

Ejercicio 1: (2 puntos)

Sea V un \mathbb{K} espacio vectorial de dimensión n. Demuestre que un conjunto de vectores $\{v_1, \ldots, v_n\}$ es una base de V si y sólo si todo vector de V se puede expresar de forma única como combinación lineal de dichos vectores.

Ejercicio 2: (3.5 puntos) En el espacio vectorial $\mathfrak{M}_2(\mathbb{K})$ de matrices cuadradas de orden 2 con elementos en \mathbb{K} se consideran los subconjuntos:

$$S = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : \ a-b=0 \right\} \ \ \mathbf{y} \ \ T = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : \ a-b+c=0, \ c-d=0 \right\}$$

- (a) Demuestre que S es un subespacio vectorial de $\mathfrak{M}_2(\mathbb{K})$.
- (b) Determine una base y unas ecuaciones implícitas de S+T y $S\cap T$; y justifique si se cumple que $\mathfrak{M}_n(\mathbb{K})=S\oplus T$.

Ejercicio 3: (2.5 puntos) Sea $\mathcal{B} = \{e_1, e_2, e_3\}$ una base de un \mathbb{K} espacio vectorial V.

- (a) Determine las matrices, respecto de \mathcal{B} , de las aplicaciones lineales $f:V\to V$ que cumplen las condiciones:
 - (i) $f(e_1 + e_2) = e_2 + 2e_3$
 - (ii) El núcleo contiene a la recta $R \equiv \{x + y = 0, z = 0\}$
 - (iii) Transforman la recta $R_1 \equiv \{x = 0, y = 0\}$ en la recta $R_2 \equiv \{x + y = 0, x + z = 0\}$.
- (b) En qué casos se tiene la igualdad Ker f = R?

Ejercicio 1: Teorema 3.25, página 106.

Ejercicio 2:

En el espacio vectorial $\mathfrak{M}_2(\mathbb{K})$ de matrices cuadradas de orden 2 con elementos en \mathbb{K} se consideran los subconjuntos:

$$S = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a - b = 0 \} \text{ y } T = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a - b + c = 0, c - d = 0 \}.$$

- (a) Demuestre que S es un subespacio vectorial de $\mathfrak{M}_2(\mathbb{K})$.
- (b) Determine una base y unas ecuaciones implícitas de S+T y $S\cap T$; y justifique si se cumple que $\mathfrak{M}_n(\mathbb{K})=S\oplus T$.

Solución: (a) sean S_1 y S_2 dos matrices pertenecientes a S

$$S_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}, \ S_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \ \text{con} \ a_1 - b_1 = 0, \ a_2 - b_2 = 0.$$

EL conjunto S es no vacío ya que contiene al menos a la matriz nula, luego para demostrar que es subespacio vectorial de $\mathfrak{M}_2(\mathbb{K})$ basta comprobar que cualquier combinación lineal $\alpha S_1 + \beta S_2 \in S$

$$\alpha S_1 + \beta S_2 = \begin{pmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{pmatrix} \in S \Leftrightarrow (\alpha a_1 + \beta a_2) - (\alpha b_1 + \beta b_2) = 0$$

$$\Leftrightarrow \alpha (a_1 - b_1) + \beta (a_2 - b_2) = \alpha \cdot 0 + \beta \cdot 0 = 0.$$

Otra forma de demostrarlo sería argumentando que, respecto de la base canónica de $\mathfrak{M}_2(\mathbb{K})$, S es el conjunto de matrices $(a,b,c,d)_{\mathcal{B}}$ tales que (a,b,c,d) es solución de la ecuación lineal homogénea a-b=0. También T es subespacio vectorial porque está formado por las matrices $(a,b,c,d)_{\mathcal{B}}$ tales que (a,b,c,d) son solución del sistema lineal homogéneo $\{a-b+c=0, c-d=0\}$.

(b) Dado que unas ecuaciones implícitas de S son a-b=0, entonces dim $S=\dim \mathfrak{M}_2(\mathbb{K})-1=3$, que es un hiperplano de $\mathfrak{M}_2(\mathbb{K})$, y una base de S es $\{S_1=(0,0,1,0)_{\mathcal{B}},\,S_2=(0,0,0,1)_{\mathcal{B}},\,S_3=(1,1,0,0)_{\mathcal{B}}\}$, o lo que es lo mismo

$$\{S_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, S_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, S_3 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}\}$$

Por otro lado, unas ecuaciones implícitas de T son a-b+c=0, c-d=0 por lo que dim $T=\dim \mathfrak{M}_2(\mathbb{K})-2=2$. Resolviendo el sistema homogéneo se obtienen las ecuaciones paramétricas y de ahí la base de T:

$$\begin{cases}
 a = \lambda - \mu \\
 b = \lambda \\
 c = \mu \\
 d = \mu
\end{cases}$$

Para $\lambda = 1, \mu = 0$ y $\lambda = \mu = 1$ obtenemos la base $\{T_1, T_2\}$ donde:

$$T_1 = S_3 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, T_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

Como $T_1 = S_3 \in S \cap T$, entonces $\dim(S \cap T) \geq 1$. Es fácil ver que se tiene la igualdad ya que si $\dim(S \cap T) \geq 2$, dado que $\dim T = 2$, entonces se cumpliría $T \subset (S \cap T)$, lo cual es imposible pues $T_2 \notin S$. En conclusión $\dim(S \cap T) = 1$ y

$$\dim(S+T) = \dim S + \dim T - \dim(S \cap T) = 4.$$

Así, $S + T = \mathfrak{M}_2(\mathbb{K})$, que por ser el espacio total no tiene ecuaciones implícitas. Una base de S + T está formada por $\{S_1, S_2, S_3, T_2\}$.

La suma $S + T = \mathfrak{M}_2(\mathbb{K})$ no es directa ya que $S \cap T \neq 0$.

Finalmente queda determinar unas ecuaciones implícitas de $S \cap T$ respecto de la base canónica. Para ello, tomamos una base, por ejemplo $\{T_1\}$ y se debe cumplir que las coordenadas (a, b, c, d) respecto de \mathcal{B} de un vector cualquiera de $S \cap T$ sean proporcionales a las de $T_1 = (1, 1, 0, 0)_{\mathcal{B}}$. Es decir:

$$\operatorname{rg}\begin{pmatrix} 1 & a \\ 1 & b \\ 0 & c \\ 0 & d \end{pmatrix} = 1 \iff b - a = 0, c = 0, d = 0$$

que son unas ecuaciones implícitas de $S \cap T$.

Otro modo de obtener otras ecuaciones equivalentes de $S \cap T$ sería simplemente considerar la ecuación de S y las dos de T a la vez:

$$S \cap T \equiv \{a - b = 0, a - b + c = 0, c - d = 0\}$$

Ejercicio 3:

Sea $\mathcal{B} = \{e_1, e_2, e_3\}$ una base de un \mathbb{K} espacio vectorial V.

- (a) Determine las matrices, respecto de \mathcal{B} , de las aplicaciones lineales $f: V \to V$ que cumplen las condiciones:
 - (i) $f(e_1 + e_2) = e_2 + 2e_3$
 - (ii) El núcleo contiene a la recta $R \equiv \{x + y = 0, z = 0\}$
 - (iii) Transforman la recta $R_1 \equiv \{x = 0, y = 0\}$ en la recta $R_2 \equiv \{x + y = 0, x + z = 0\}$.
- (b) En qué casos se tiene la igualdad Ker f = R?

Solución: (a) En términos de coordenadas respecto de \mathcal{B} se tiene:

- (i) $f(1,1,0)_{\mathcal{B}} = (0,1,2)_{\mathcal{B}}$
- (ii) La recta $R \equiv \{x+y=0, z=0\} = L((1,-1,0)_{\mathcal{B}})$ está contenida en el núcleo de f, por lo tanto $f(1,-1,0)_{\mathcal{B}}=0$.
- (iii) $R_1 \equiv \{x = 0, y = 0\} = L((0, 0, 1)_{\mathcal{B}}) \text{ y } f(R_1) = R_2, \text{ luego } f((0, 0, 1)_{\mathcal{B}}) \in R_2, \text{ es decir es de la forma } f((0, 0, 1)_{\mathcal{B}}) = (\lambda, -\lambda, -\lambda)_{\mathcal{B}} \text{ con } \lambda \neq 0, \text{ pues si } \lambda = 0 \text{ se tendría } f(R_1) = \{0\}.$

Así, la aplicación queda completamente determinada pues conocemos las imágenes de los vectores de una base:

$$f(1,1,0)_{\mathcal{B}} = (0,1,2)_{\mathcal{B}}, \ f(1,-1,0)_{\mathcal{B}} = (0,0,0)_{\mathcal{B}}, \ f(0,0,1)_{\mathcal{B}} = (\lambda,-\lambda,-\lambda)_{\mathcal{B}}$$

Para determinar la matriz en la base \mathcal{B} calculamos las imágenes de los vectores de \mathcal{B} :

$$\begin{split} f(e_1) &= f((1,0,0)_{\mathcal{B}}) = f(\frac{1}{2}((1,1,0)_{\mathcal{B}} + (1,-1,0)_{\mathcal{B}})) = \frac{1}{2}(f((1,1,0)_{\mathcal{B}}) + f((1,-1,0)_{\mathcal{B}})) = (0,\frac{1}{2},1)_{\mathcal{B}} \\ f(e_2) &= f((0,1,0)_{\mathcal{B}}) = f(\frac{1}{2}((1,1,0)_{\mathcal{B}} - (1,-1,0)_{\mathcal{B}})) = -\frac{1}{2}(f((1,1,0)_{\mathcal{B}}) - f((1,-1,0)_{\mathcal{B}})) = (0,\frac{1}{2},1)_{\mathcal{B}} \\ f(e_3) &= f((0,0,1)_{\mathcal{B}}) = (\lambda,-\lambda,-\lambda)_{\mathcal{B}}, \ \lambda \neq 0. \end{split}$$

Entonces, se tienen las aplicaciones f_{λ} con $\lambda \in \mathbb{K}$, con $\lambda \neq 0$ y matriz:

$$\mathfrak{M}_{\mathcal{B}}(f_{\lambda}) = \left(egin{array}{ccc} 0 & 0 & \lambda \ 1/2 & 1/2 & -\lambda \ 1 & 1 & -\lambda \end{array}
ight)$$

(b) En todos los casos calculados en (a).

Sabemos que Ker f_{λ} contiene a la recta R. Veamos que es exactamente igual a R.

$$\operatorname{Ker} f_{\lambda} = R \iff \dim \operatorname{Ker} f_{\lambda} = 1 \iff \dim \operatorname{Im} f_{\lambda} = 2 \iff \operatorname{rg}(f_{\lambda}) = 2 \iff \lambda \neq 0$$

Luego todas las aplicaciones lineales f_{λ} con $\lambda \neq 0$ cumplen Ker $f_{\lambda} = R$.