

Finding boundaries

Autonomous Vehicles
(lane line detection)

Autonomous Vehicles
(semunic scene segmentation)

Autonomous Vehicles
(semunic scene segmentation)

Autonomous Vehicles
(semunic scene segmentation)

Contours: Lines and Curves

- · Edge detectors find "edgels" (pixel level)
- · To perform image analysis:

10

- edgels must be grouped into entities such as contours (higher level).
- Canny does this to certain extent: the detector finds chains of edgels.

9

Line fitting

11 12

)

15

17 18

DOCC 15,41 Model fitting is difficult because. • Extraneous data: clutter or multiple models - We do not know what is part of the model? Can we pull out models with a few parts from much large amounts of background clutter? · Missing data: only some parts of model are present Noise - It is not feasible to check all combinations of features by fitting a model to each possible subset So what can we do?

Line parameterizations

21 22

Slope intercept form

Double intercept form

$$\frac{x}{a} + \frac{y}{b} = 1$$
 x-intercept y-intercept

What are x and y?

25

26

Double intercept form

Normal Form

 $x\cos\theta + y\sin\theta = \rho$

What are rho and theta?

27

28

Hough transform

29

Hough transform

- · Generic framework for detecting a parametric model
- · Edges don't have to be connected
- · Lines can be occluded
- · Key idea: edges vote for the possible models

31

Image and parameter space

What would a point in image space become in parameter space?

34

Image and parameter space variables

35 36

Problems with parameterization

How big does the accumulator need to be for the parameterization (m_*)

The space of m is huge! $-\infty \le m \le \infty$ The space of bis huge! $-\infty \le m \le \infty$

45

47 48

Image and parameter space $x\cos\theta + y\sin\theta = \rho$

51

Image and parameter space $y = mx + b \qquad x \cos \theta + y \sin \theta = \rho$ $y = mx + b \qquad x \cos \theta + y \sin \theta = \rho$ Image space Parameter space

55

Image and parameter space $y = mx + b \qquad x \cos \theta + y \sin \theta = \rho$ Wait ... why is rho negative?

Image space Parameter space

57

Hough Circles

Let's assume radius known

$$(x-a)^2+(y-b)^2=r^2$$
 $(x-a)^2+(y-b)^2=r^2$

What is the dimension of the parameter space?

79 80

81 82

What if radius is unknown?

$$(x-a)^2 + (y-b)^2 = r^2$$
 $(x-a)^2 + (y-b)^2 = r^2$

What if radius is unknown?

If radius is not known: 3D Hough Space!

Use Accumulator array A(a,b,r)

Surface shape in Hough space is complicated

Gradient information can save lot of computation:

85

86

88

Using Gradient Information

Edge Location (x_i, y_i) Edge Direction ϕ_i A radius is known:

 $a = (x) - (r\cos\phi)$ $b = (y) - (r\sin\phi)$

Need to increment only one point in accumulator!

87

 $(x-a)^2+(y-b)^2=r^2$ $(x-a)^2+(y-b)^2=r^2$

93

Application of Hough transforms

95 96

References Basic reading: • Szeliski textbook, Sections 4.2, 4.3.

 C_{T}

More Image Features

(Grouping edges)

C_T

Contours: Lines and Curves

- · Edge detectors find "edgels" (pixel level)
- · To perform image analysis:
 - edgels must be grouped into entities such as contours (higher level).
 - Canny does this to certain extent: the detector finds chains of edgels.

103

104

Cπ

Line detection

· Mathematical model of a line:

105

Image and Parameter Spaces y = mx + n y = mx + n $y = m \times n$ $y = m \times n$

106

Сп

Looking at it backwards ...

Image space

Fix (m,n), Vary (x,y) - Line y = mx + nFix (x_1,y_1) , Vary (m,n) - Lines thru a Point $y_1=m x_1+n$

107

Img-Param Spaces

- · Image Space
 - Lines
 - Points
 - Collinear points
- · Parameter Space
 - Points
 - Lines
 - Intersecting lines

Hough Transform Technique

- H.T. is a method for detecting straight lines (and curves) in images.
- · Main idea:
 - Map a difficult pattern problem into a simple peak detection problem

109

110

Hough Transform Technique

- Given an edge point, there is an infinite number of lines passing through it (Vary m and n).
 - These lines can be represented as a line in parameter space.

n intercept
Parameter Space

111

Cπ

Hough Transform Technique

- Given a set of collinear edge points, each of them have associated a line in parameter space.
 - These lines intersect at the point (m,n) corresponding to the parameters of the line in the image space.

112

Сп

Hough Transform Technique

- At each point of the (discrete) parameter space, count how many lines pass through it.
 - Use an array of counters
 - Can be thought as a "parameter image"
- The higher the count, the more edges are collinear in the image space.
 - Find a peak in the counter array
 - This is a "bright" point in the parameter image
 - It can be found by thresholding

113

Practical Issues

- The slope of the line is -∞<m<∞
 - The parameter space is INFINITE
- The representation y = mx + n does not express lines of the form x = k

Solution:

• Use the "Normal" equation of a line:

y y = mx + n $p = x \cos\theta + y \sin\theta$ P(x,y) $p = x \cos\theta + y \sin\theta$ Is the line orientation $p = x \cos\theta + y \sin\theta$ $p = x \cos\theta + y \cos\theta$ $p = x \cos\theta + y \cos\theta$ p = x

115

Сп

New Parameter Space

- Use the parameter space (ρ, θ)
- · The new space is FINITE
 - $0 < \rho < D$, where D is the image diagonal.
 - $-0<\theta<\pi$
- The new space can represent all lines
 - Y = k is represented with $\rho = k$, $\theta = 90$
 - X = k is represented with ρ = k, θ =0

C_T

116

Consequence:

- A Point in Image Space is now represented as a SINUSOID
 - ρ = x cos θ +y sin θ

117

118

Cm

Hough Transform Algorithm

Input is an edge image (E(i,j)=1 for edgels)

- 1. Discretize θ and ρ in increments of $d\theta$ and $d\rho$. Let A(R,T) be an array of integer accumulators, initialized to 0.
- 2. For each pixel E(i,j)=1 and h=1,2,...T do
 - 1. $\rho = i \cos(h * d\theta) + j \sin(h * d\theta)$
 - 2. Find closest integer $\,k$ corresponding to ρ
 - 3. Increment counter A(k,h) by one
- 3. Find local maxima in A(R,T)

123 124

Hough Transform Speed Up
 If we know the orientation of the edge - usually available from the edge detection step

- We fix theta in the parameter space and increment **only one** counter!

125 126

Hough Transform for Curves

- The H.T. can be generalized to detect any curve that can be expressed in parametric form:
 - Y = f(x, a1, a2, ...ap)
 - a1, a2, ... ap are the parameters
 - The parameter space is p-dimensional
 - The accumulating array is LARGE!

H.T. Summary

- · H.T. is a "voting" scheme
 - points vote for a set of parameters describing a line or curve.
- · The more votes for a particular set
 - the more evidence that the corresponding curve is present in the image.
- · Can detect MULTIPLE curves in one shot.
- Computational cost increases with the number of parameters describing the curve.

127 128

HT Algorithm for Circles

**Hough Transform for Circles

function HTCircle(inputimage,r)

**image size
[rows,columns]=size(inputimage);

**accumulator
acc=zeros(rows,columns);

**image
for x=1:columns
for y=1:rows
if(inputimage(y,x)==0)
for ang=0:360
t=(ang=pi)/180;
x0=round(x-roos(t));
y1=x0=round(x-roos(t));
y1=x0=round(x-roos(t));
y1=x0=round(x-roos(x));
acc(y0,x0)=acc(y0,x0)+1;
end
end
end
end
end
end