Санкт-Петербургский Политехнический Университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Лабораторная работа N $^{\circ}5$

по дисциплине "Математическая статистика"

Обучающаяся: А.Д. Балакшина $(\mbox{группа} \ 5030102/20101)$

Преподаватель: А.Н. Баженов

Санкт-Петербург

Содержание

1	Фој	рмулировка задания	3
2	Ист	пользуемые формулы	3
3	Вы	полнение работы	4
4	Рез	ультаты	4
	4.1	Результаты для выборки: Нормальное распределение N=100	4
	4.2	Результаты для выборки: Нормальное распределение N=20	4
	4.3	Результаты для выборки: Равномерное распределение N=100	5
	4.4	Результаты для выборки: Равномерное распределение N=20	5
5	Ана	ализ результатов проверки гипотез о нормальности рас-	
	пре	деления	6
	5.1	Анализ нормально распределённых выборок	6
	5.2	Анализ равномерно распределённых выборок	6
6	Обі	цие выводы	7

1 Формулировка задания

- 1. Сгенерировать выборку объёмом 100 элементов для нормального распределения N(x,0,1).
- 2. По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия.
- 3. В качестве основной гипотезы H_0 считать, что сгенерированное распределение имеет вид $N(x, \hat{\mu}, \hat{\sigma})$.
- 4. Проверить основную гипотезу, используя критерий согласия χ^2 с уровнем значимости $\alpha=0.05$.
- 5. Исследовать точность (чувствительность) критерия χ^2 :
 - Сгенерировать выборки равномерного распределения объёмом 20, 100 элементов, нормального распределения объёмом 20 элементов.
 - Проверить их на нормальность.

2 Используемые формулы

1. Функция плотности нормального распределения:

$$N(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

2. Статистика критерия χ^2 :

$$\chi^2_{\text{набл}} = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

где:

- n_i наблюдаемые частоты,
- p_i теоретические вероятности,
- n объём выборки,
- k количество интервалов.

3. Квантиль распределения χ^2 :

$$\chi^2_{1-\alpha}(k-1)$$

где:

- α уровень значимости,
- k-1 степени свободы.

3 Выполнение работы

Лабораторная работа выполнена на языке программирования Python 3.12 с использованием библиотек numpy, scipy, pandas. Программа отработала корректно.

4 Результаты

4.1 Результаты для выборки: Нормальное распределение N=100

Оценки ММП параметров нормального распределения: $\hat{\mu}=0.061,\,\hat{\sigma}=0.885$

Интервал	Наблюдаемая частота	Ожидаемая частота	$(O-E)^2/E$
$(-\inf, -0.80]$	14	16.7	0.427
(-0.80, -0.32]	21	16.7	1.127
(-0.32, 0.06]	15	16.7	0.167
(0.06, 0.44]	18	16.7	0.107
(0.44, 0.92]	17	16.7	0.007
(0.92, inf]	15	16.7	0.167

Таблица 1: Таблица частот для проверки нормальности выборки (Нормальное распределение N=100)

Статистика χ^2 : 2.002 Критическое значение: 7.815 Вывод: Не отвергаем H_0

4.2 Результаты для выборки: Нормальное распределение $N{=}20$

Оценки ММП параметров нормального распределения: $\hat{\mu} = -0.088, \, \hat{\sigma} = 0.841$

Интервал	Наблюдаемая частота	Ожидаемая частота	$(O-E)^2/E$
$(-\inf, -0.90]$	5	3.3	0.833
(-0.90, 0.27]	6	10.0	1.600
(0.27, inf]	9	6.7	0.817

Таблица 2: Таблица частот для проверки нормальности выборки (Нормальное распределение N=20)

Статистика χ^2 : 3.250 Критическое значение: 11.070 Вывод: Не отвергаем H_0

4.3 Результаты для выборки: Равномерное распределение $N{=}100$

Оценки ММП параметров нормального распределения: $\hat{\mu}=0.537,\,\hat{\sigma}=0.296$

Интервал	Наблюдаемая частота	Ожидаемая частота	$(O-E)^2/E$
$(-\inf, 0.25]$	21	16.7	1.127
(0.25, 0.41]	14	16.7	0.427
(0.41, 0.54]	8	16.7	4.507
(0.54, 0.66]	21	16.7	1.127
(0.66, 0.82]	14	16.7	0.427
(0.82, inf]	22	16.7	1.707

Таблица 3: Таблица частот для проверки нормальности выборки (Равномерное распределение N=100)

Статистика χ^2 : 9.322

Критическое значение: 7.815

Вывод: Отвергаем H_0

4.4 Результаты для выборки: Равномерное распределение $N{=}20$

Оценки ММП параметров нормального распределения: $\hat{\mu}=0.550,\,\hat{\sigma}=0.233$

Интервал	Наблюдаемая частота	Ожидаемая частота	$(O-E)^2/E$
$(-\inf, 0.45]$	10	6.7	1.667
(0.45, 0.78]	5	10.0	2.500
$(0.78, \inf]$	5	3.3	0.833

Таблица 4: Таблица частот для проверки нормальности выборки (Равномерное распределение N=20)

Статистика χ^2 : 5.000

Критическое значение: 11.070

Вывод: Не отвергаем H_0

5 Анализ результатов проверки гипотез о нормальности распределения

5.1 Анализ нормально распределённых выборок

Для выборки из нормального распределения объемом N=100 получены следующие результаты:

- Оценки параметров: $\hat{\mu}=0.061,\,\hat{\sigma}=0.885$ близки к теоретическим значениям (0 и 1 соответственно)
- Значение статистики $\chi^2 = 2.000$ существенно меньше критического значения 7.815
- Наблюдаемые частоты хорошо согласуются с ожидаемыми (максимальное расхождение 1.127)

Вывод о нормальности распределения подтверждается, гипотеза H_0 не отвергается.

Для выборки N=20:

- Оценки параметров: $\hat{\mu} = -0.088, \ \hat{\sigma} = 0.841$ также близки к теоретическим
- Статистика $\chi^2 = 3.250$ меньше критического значения 11.070
- Несмотря на малое количество наблюдений, критерий показал адекватные результаты

Гипотеза о нормальности не отвергается, хотя для малых выборок мощность критерия снижается.

5.2 Анализ равномерно распределённых выборок

Для равномерного распределения (N = 100):

- Оценки $\hat{\mu}=0.537,\,\hat{\sigma}=0.296$ отличаются от параметров нормального распределения
- Статистика $\chi^2 = 9.320$ превышает критическое значение 7.815
- Заметные расхождения в интервалах (0.41, 0.54] и $(0.82, +\infty)$

Критерий корректно отвергает гипотезу H_0 о нормальности. Для малой выборки (N=20):

- Статистика $\chi^2 = 5.000$ меньше критического значения 11.070
- Несмотря на равномерное распределение, критерий не смог его обнаружить

• Это демонстрирует низкую мощность критерия χ^2 для малых выборок

Гипотеза H_0 не отвергается, что является ошибкой II рода.

6 Общие выводы

- Критерий χ^2 хорошо работает для больших выборок (N=100), правильно идентифицируя как нормальные, так и ненормальные распределения
- Для малых выборок (N=20) мощность критерия недостаточна, что приводит к ошибкам II рода. Критерий чувствителен к объему данных для надежных выводов рекомендуется использовать выборки большего объёма.
- Оценки ММП параметров для нормального распределения показывают хорошую точность