Table of Critical Values for Pearson's r

	Level of Significance for a One-Tailed Test					
_	.10	.05	.025	.01	.005	.0005
	Leve	el of Signif	icance for a	a Two-Tailed	Test	
df	.20	.10	.05	.02	.01	.001
1	0.951	0.988	0.997	0.9995	0.9999	0.99999
2	0.800	0.900	0.950	0.980	0.990	0.999
3	0.687	0.805	0.878	0.934	0.959	0.991
4	0.608	0.729	0.811	0.882	0.917	0.974
5	0.551	0.669	0.755	0.833	0.875	0.951
0	0.507	0.004	0.707	0.700	0.004	0.005
6	0.507	0.621	0.707	0.789	0.834	0.925
7	0.472	0.582	0.666	0.750	0.798	0.898
8	0.443	0.549	0.632	0.715	0.765	0.872
9	0.419	0.521 0.497	0.602	0.685 0.658	0.735	0.847
10	0.398	0.497	0.576	0.000	0.708	0.823
11	0.380	0.476	0.553	0.634	0.684	0.801
12	0.365	0.457	0.532	0.612	0.661	0.780
13	0.351	0.441	0.514	0.592	0.641	0.760
14	0.338	0.426	0.497	0.574	0.623	0.742
15	0.327	0.412	0.482	0.558	0.606	0.725
16	0.317	0.400	0.468	0.542	0.590	0.708
17	0.308	0.389	0.456	0.529	0.575	0.693
18	0.299	0.378	0.444	0.515	0.561	0.679
19	0.291	0.369	0.433	0.503	0.549	0.665
20	0.284	0.360	0.423	0.492	0.537	0.652
21	0.277	0.352	0.413	0.482	0.526	0.640
22	0.271	0.344	0.404	0.472	0.515	0.629
23	0.265	0.337	0.396	0.462	0.505	0.618
24	0.260	0.330	0.388	0.453	0.496	0.607
25	0.255	0.323	0.381	0.445	0.487	0.597
26	0.250	0.317	0.374	0.437	0.479	0.588
27	0.230	0.317	0.374	0.437	0.479	0.579
28	0.243	0.306	0.361	0.430	0.463	0.579
29	0.237	0.300	0.355	0.423	0.456	0.562
30	0.237	0.301	0.333	0.409	0.430	0.554
30	0.233	0.290	0.048	0.403	U. 44 3	0.004
40	0.202	0.257	0.304	0.358	0.393	0.490
60	0.165	0.211	0.250	0.295	0.325	0.408
12						
0	0.117	0.150	0.178	0.210	0.232	0.294
∞	0.057	0.073	0.087	0.103	0.114	0.146

 ∞ 0.057 0.073 0.087 0.103 0.114 0.146 Adapted from Appendix 2 (Critical Values of t) using the square root of $[t^2/(t^2 + df)]$ Note: Critical values for Infinite df actually calculated for df= 500.