mpc_alufunc_e.

SOLUTION:

mpc_alufunc_e, is computed within module m14k_mpc_dec. Note that, for special logic instructions (for which mpc_ir_e[5]=1):

```
mpc alufunc e=mpc ir e[1:0].
```

According to Table A.3 in document "MIPS Architecture For Programmers Volume II-A: The MIPS32 Instruction Set (MD00086)":

- *mpc_ir_e*[1:0]=00 for an AND instruction.
- *mpc_ir_e*[1:0]=01 for an OR instruction.
- *mpc_ir_e[1:0]*=10 for an XOR instruction.
- *mpc_ir_e*[1:0]=11 for an NOR instruction.

which is perfectly coherent with multiplexer "_logic_out_e_31_0_" in Figure 14.

• mpc_sellogic_m.

SOLUTION:

o mpc_sellogic_m is computed within module m14k_mpc_ctl. This signal is registered from the E-Stage through the Pipeline Registers (ie_pipe_in[`M14K_IE_SELLOG] → ie_pipe_out[`M14K_IE_SELLOG]). It comes from signal sel_logic_e, computed within module m14k_mpc_dec. This signal is 1 for special logic instructions (mpc_ir_e[5:2] == 4'b100_1), and 0 for arithmetic instructions, which is perfectly coherent with multiplexer "_edp_alu_m_31_0_" in Figure 14.