Partie cours

- 1. Donner la définition d'un majorant 1. Donner la définition du plus petit éléd'un ensemble A.
- ante: $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ |x+y| \le$ |x| + |y|.

Partie exercices

- tions suivantes:
 - A = B
 - (b) $\forall A, B, C \in \mathcal{P}(E) \ (A \cap B = A \cap B)$ $C \ et \ A \cup B = A \cup C) \Rightarrow B = C$
- 2. Montrer que: $(\mathbb{R}_+)^2$, $\sqrt{x+y} < \sqrt{x} + \sqrt{y}$
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$ telle que f(x) = $max\{x,0\}.$
 - (a) Montrer que $\forall x \in \mathbb{R}, x < f(x)$
 - (b) Montrer que f est croissante.
 - (c) Montrer que $\forall x \in \mathbb{R}, f(x) =$ f(f(x))
 - (d) On pose $F := \{x \in \mathbb{R} \mid x = f(x)\}$ et, pour tout réel x, $F_x := \{y \in$ $F \mid x \leq y$. Déterminer F et F_x et montrer que F_x a un ppe.
- 4. Étudier les limites ci-dessous (existence, valeur éventuelle):
 - (a) $\lim_{x \to -1} \left(\frac{1}{1-x} \frac{2}{1-x^2} \right)$
 - (b) $\lim_{x \to +\infty} \left(\sqrt{x^2 + 1} x \right)$

Partie cours

- ment d'un ensemble A.
- 2. Démontrer l'inégalité triangulaire suiv- 2. Donner une CNS sur une application $f: \mathbb{R} \to \mathbb{R}$ pour qu'elle soit croissante et décroissante.

Partie exercices

- 1. Montrer par contraposition les asser- 1. Montrer que $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ tel que $(n \ge N \Rightarrow 2 - \epsilon < \frac{2n+1}{n+2} < 2 + \epsilon)$
 - (a) $\forall A, B \in \mathcal{P}(E) \ (A \cap B = A \cup B) \Rightarrow 2$. Soient A et B des parties d'un ensemble E. Montrer que $A \cap B = A \cap C \Leftrightarrow$ $A \cap \complement B = A \cap \complement C$
 - 3. Représenter les ensembles suivants:
 - (a) $A := \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| < 1\}$
 - $\{(x,y)$ (b) B $\mathbb{R}^2 \mid max\{|x|;|y|\} < 1\}$
 - (c) $C := \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 < 1 \le x^2 + y^2 \le \le$
 - (d) $D := \{(x, y) \in \mathbb{R}^2 \mid |x y| < 1\}$
 - 4. Soit $f \rightarrow ln(\sqrt{1+x^2}-x)$. Déterminer le domaine de définition de f, puis étudiez sa parité et ses variations.

MR

Partie cours

- 1. Donner la définition du graphe d'une function $f: E \to F$.
- 2. Montrer que l'ensemble des majorants de]0;1[est $[1;+\infty[$

Partie exercices

- 1. Soient A et B des parties de E. On note $A\Delta B = (A \cap \mathbb{C}_E B) \cup (B \cap \mathbb{C}_E A)$ la différence symétrique. Montrer que:
 - (a) $(A\Delta B = A \cap B) \Leftrightarrow (A = B = \emptyset)$
 - (b) $A\Delta B = B\Delta A$
 - (c) $A\Delta B = \emptyset \Leftrightarrow A = B$
- 2. Soient u et v deux applications de \mathbb{R} dans \mathbb{R} . Soit D une partie de \mathbb{R} .
 - (a) Donner une condition suffisante pour que: $h:D\to\mathbb{R}$ telle que $h(x) = u(x)^{v(x)}$ soit bien définie.
 - (b) On se place dans ce cas. Sur quel domaine h est-elle dérivable? donner une expression de h'(x).
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$. On suppose f dérivable. Montrer que si f est paire alors f'est impaire. Que peut-on dire si f est impaire? Prouver votre affiramation.
- 4. Étudier les limites ci-dessous (existence, valeur éventuelle):
 - (a) $\lim_{x \to 1} \left(\frac{1}{1-x} \frac{2}{1-x^2} \right)$
 - (b) $\lim_{x\to 2} \left(\frac{x^2-4}{x^2-3x+2} \right)$
 - (c) $\lim_{x\to 0} \left(\sqrt{1+\frac{1}{x}} \sqrt{\frac{1}{x}}\right)$
 - (d) $\lim_{x \to +\infty} \left(\frac{x^2 + |x|}{x} \right)$

Partie cours

- 1. Donner la définition de l'ensemble image de $f: E \to F$.
- 2. Montrer que la composée de deux fonctions monotones est monotone.

Partie exercices

- 1. Soient $A, B \subset E$. Résoudre les équations d'inconnue $X \subset E$
 - (a) $A \cup X = B$
 - (b) $A \cap X = B$
- 2. Soit $f: E \to E$. Pour $n \in \mathbb{N}^*$, on note: $f^n = f \circ f \circ ... \circ f$, et $f^0 = id_E$. Soit $A \subset E$, $A_n = f^n < A > et$ $B = \bigcup_{n \in \mathbb{N}} A_n$. Montrer que:
 - (a) $f < B > \subset B$.
 - (b) B est la plus petite partie de E stable par f et contenant A
- 3. Soit $f: x \to \ln(x) 2\sqrt{x}$
 - (a) Étudiez f et en déduire que $\forall x \in$ $\mathbb{R}_+^*, \ \frac{\ln(x)}{\sqrt{x}} < 2$
 - (b) En déduire la limite de $\frac{\ln(x)}{x}$ guand x tend vers $+\infty$
 - (c) En déduire la limite de $x \ln(x)$ lorsque x tend vers 0
- 4. Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ qui vérifient l'équation fonctionnelle: $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, |f(x) - f(y)| = |x - y|$

MR