Data Analysis on the Euros

By Kyle Shiroma

CIC Program May 24-July 11, 2024

Faculty Mentor: Dr.Doina Bein, CSUF

Purpose

To explore the effectiveness of using various machine learning models to predict the outcomes of the UEFA European Championship (tournament).

First Steps

- 1. Downloaded Jupyter Notebook
- 2. Went to Kaggle for a dataset
- 3. Kaggle provided dataset on Euros covering matches from 1960-2024
- 4. Downloaded data
- 5. Opened it in Jupyter notebook

Dataset Overview

Description: Data covers information from every year the Euros were played

Included:

- Home and Away Teams
- Home and Away Team Scores
- Match Attendance
- Stadium Capacity
- Weather Conditions
- Winner

id_match	home_team	away_team	home_team_code	away_team_code	home_score
5∠509	nussia	Germany	nuo	UEN	0.0
52503	France	Spain	FRA	ESP	1.0
52485	Scotland	England	sco	ENG	0.0
52508	Czechia	Italy	CZE	ITA	2.0
52514	Portugal	Türkiye	POR	TUR	1.0
52484	Switzerland	Netherlands	SUI	NED	0.0
52502	Bulgaria	Romania	BUL	ROU	1.0
52513	Türkiye	Croatia	TUR	CRO	0.0
52507	Italy	Russia	ITA	RUS	2.0
52501	Romania	France	ROU	FRA	0.0
52483	Netherlands	Scotland	NED	sco	0.0
52512	Denmark	Portugal	DEN	POR	1.0
52506	Germany	Czechia	GER	CZE	2.0
52500	Spain	Bulgaria	ESP	BUL	1.0
52482	England	Switzerland	ENG	SUI	1.0

Data Preprocessing

Measures taken:

- Loading and combining csv files using glob module and concat
- Handling missing values by replacing NaNs with the mean/dropping
- Changed categorical values to numerical values through one-hot encoding

*Utilized df.shape, df.head, and df.describe to get a better overview of the data

```
for one_filename in glob.glob('data_euros/data_euros*.csv'):
    print(f'Loading {one_filename}')
    new df = pd.read csv(one filename)
    all_dfs.append(new_df)
# Concatenate all DataFrames into one
df = pd.concat(all_dfs, ignore_index=True)
# Replace NaNs in numerical columns with the mean of the column
numerical cols = df.select dtypes(include=['float64', 'int64']).columns
for col in numerical cols:
    df[col].fillna(df[col].mean(), inplace=True)
# Drop rows with NaNs in categorical columns
categorical_cols = df.select_dtypes(include=['object']).columns
df.dropna(subset=categorical cols, inplace=True)
# Step 3: Encode categorical variables
df = pd.get dummies(df, columns=['home team', 'away team', 'condition weat)
```

Step 1: Load and concatenate DataFrames from multiple CSV files

all_dfs = []

Decision Trees Classifier

Description

- Nonlinear relationships
- Feature importance and quick
- Accuracy: 55%

```
recall f1-score support
                                                            precision
                                                    Belgium
                                                                 0.50
                                                                          1.00
                                                                                   0.67
                                                    Croatia
                                                                 0.50
                                                                          0.50
                                                                                   0.50
                                                                                               2
                                                    Czechia
                                                                 0.33
                                                                          1.00
                                                                                   0.50
                                                    Denmark
                                                                 1.00
                                                                          1.00
                                                                                   1.00
                                                    England
                                                                 1.00
                                                                          0.25
                                                                                   0.40
                                                                                               4
                                                     France
                                                                 0.50
                                                                          1.00
                                                                                   0.67
                                                    Germany
                                                                 0.67
                                                                          1.00
                                                                                   0.80
                                                    Iceland
                                                                 0.00
                                                                          0.00
                                                                                   0.00
                                                                                               0
                                                      Italy
                                                                 1.00
                                                                          1.00
                                                                                   1.00
                                                Netherlands
                                                                 0.40
                                                                          0.67
                                                                                   0.50
                                                     Poland
                                                                 0.00
                                                                          0.00
                                                                                   0.00
                                                                          0.00
                                                                                   0.00
                                                                                               3
                                                   Portugal
                                                                 0.00
                                                     Russia
                                                                 0.00
                                                                          0.00
                                                                                   0.00
                                                                                               1
                                                   Slovakia
                                                                 0.00
                                                                          0.00
                                                                                   0.00
                                                      Spain
                                                                 1.00
                                                                          1.00
                                                                                   1.00
                                                     Sweden
                                                                 0.50
                                                                          0.50
                                                                                   0.50
                                                Switzerland
                                                                 0.00
                                                                          0.00
                                                                                   0.00
                                                                                               0
                                                    Ukraine
                                                                 0.00
                                                                          0.00
                                                                                   0.00
                                                                 0.00
                                                                          0.00
                                                                                   0.00
                                                                                               0
                                                      Wales
                                                                         0.55
       accuracy
                                   0.39
                                                      0.47
                                                                         0.40
                                                                                                31
     macro avq
weighted avg
                                   0.54
                                                      0.55
                                                                         0.50
                                                                                                31
```

Accuracy: 0.55

```
import pandas as pd
import glob
import gl
```

```
df = df[features + [target]].dropna() # Ensure only rows with complete data for selected features are used
# Step 3: Encode categorical variables
df = pd.get_dummies(df, columns=['home_team', 'away_team', 'condition_weather', 'stadium_name'])
# Step 4: Split data into training and testing sets
X = df.drop(columns=[target])
y = df[target]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 5: Initialize and train Decision Tree Classifier
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
# Step 6: Predict on the test set and evaluate the model
y_pred = clf.predict(X_test)
# Step 7: Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
```

Random Forest Classifier

Description

- Accuracy 65%
- Relevant features
- Parameter tuning
- True Positives and Negatives
- False Positives and Negatives

Best parameters found:
{'max_depth': 20, 'min_samples_split': 2, 'n_
estimators': 100}

Accuracy with best estimator: 0.65

Code & Results

precision	гесаці	тт-ѕсоге	support
1 00	4 00	1 00	
			1
1.00		0.67	2
0.50	1.00	0.67	1
1.00	1.00	1.00	1
1.00	1.00	1.00	4
0.33	1.00	0.50	1
0.50	1.00	0.67	2
1.00	1.00	1.00	3
1.00	1.00	1.00	3
0.00	0.00	0.00	2
0.00	0.00	0.00	3
0.00	0.00	0.00	0
0.00	0.00	0.00	1
0.00	0.00	0.00	1
0.60	1.00	0.75	3
0.00	0.00	0.00	2
0.00	0.00	0.00	0
0.00	0.00	0.00	1
	1.00 1.00 0.50 1.00 0.33 0.50 1.00 0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.33 1.00 0.50 1.00 1.00 1.00 1.00 1.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.67 0.50 1.00 0.67 1.00 1.00 1.00 1.00 0.33 1.00 0.50 0.50 1.00 1.00 1.00 1.00 1.00

```
#Initialize and train RandomForestClassifier
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
#Predict on the test set and evaluate the model
y_pred = clf.predict(X_test)
#Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
print(classification_report(y_test, y_pred))
#Parameter tuning with GridSearchCV
param_grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5, 10]
grid_search = GridSearchCV(estimator=RandomForestClassifier(random_state=42),
     'min_samples_split': [2, 5, 10]
grid_search = GridSearchCV(estimator=RandomForestClassifier(random_state=42),
                           param_grid=param_grid,
                           cv=5,
                           scoring='accuracy')
grid_search.fit(X_train, y_train)
best_estimator = grid_search.best_estimator_
print("Best parameters found:")
print(grid_search.best_params_)
#Use the best estimator for predictions
y_pred_grid = best_estimator.predict(X_test)
accuracy grid = accuracy score(y test, y pred grid)
print(f'Accuracy with best estimator: {accuracy_grid:.2f}')
#Plot confusion matrix
conf mat = confusion matrix(y test, y pred grid)
```

Tensorflow Neural Network Experiment #Build the Tensorflow model model = Sequential([

Description

- Large amounts of data
- Flexibility
- Accuracy 13.7%

```
Input(shape=(X_train_scaled.shape[1],)), #Define input shape
   Dense(64, activation='relu'),
    Dense(32, activation='relu'),
    Dense(len(columns), activation='softmax') #Output layer matches the number of unique classes
model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
#Train model
model.fit(X train_scaled, y train, epochs=50, batch size=32, validation_data=(X test_scaled, y test))
#Evaluate model
loss, accuracy = model.evaluate(X_test_scaled, y_test)
print(f"Test Accuracy: {accuracy}")
predictions = model.predict(X_test_scaled)
   Epoch 45/50
   10/10
                             0s 1ms/step - accuracy: 0.1711 - loss: nan - val accuracy: 0.1333 - val loss: n
   Epoch 46/50
                             0s 1ms/step - accuracy: 0.1953 - loss: nan - val_accuracy: 0.1333 - val_loss: n
   10/10
   Epoch 47/50
   10/10
                             0s 1ms/step - accuracy: 0.1796 - loss: nan - val_accuracy: 0.1333 - val loss: n
   Epoch 48/50
   10/10
                             0s 2ms/step - accuracy: 0.1971 - loss: nan - val accuracy: 0.1333 - val loss: n
   Epoch 49/50
   10/10
                             0s 1ms/step - accuracy: 0.2060 - loss: nan - val_accuracy: 0.1333 - val_loss: n
   Epoch 50/50
                             0s 2ms/step - accuracy: 0.2174 - loss: nan - val_accuracy: 0.1333 - val_loss: n
   10/10
                           0s 896us/step - accuracy: 0.1331 - loss: nan
   Test Accuracy: 0.13333334028720856
   3/3
                           0s 6ms/step
```

Model Evaluations/Reflection

Decision Trees & Random Forest

The use of more countries data with their players, specifically player rank, as well as countries participation needs to be more accurate

Tensorflow Improvement

The use of fouls have been indicated as a correlation in winning games, and would want to leverage that if I have more time in feature engineering and tuning for the tensorflow model.

le: more fouls had a higher chance of losing Reason: fouls led to goal scoring opportunities like free kicks or penalties

Sources

Kaggle Dataset

https://www.kaggle.com/datasets/piterfm/football-soccer-uefa-euro-1960-2024

Dr.Doina Bein PPT Lecture and Slides

Kaggle Intermediate Machine Learning

https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74