TI - Readiness Assurance Test

- 1. Find the derivative of $f(x) = \ln(x^2 + 1)$.
 - (a) $f'(x) = \frac{1}{x^2+1}$.
 - (b) $f'(x) = \frac{1}{2x}$.
 - (c) $f'(x) = \frac{1}{2x} + 1$.
 - (d) $f'(x) = \frac{2x}{x^2+1}$.
 - (e) $f'(x) = \ln(2x)$.
- 2. Find the derivative of $f(t) = t^2 \cdot \cos(t)$.
 - (a) $f'(t) = 2t\sin(t)$.
 - (b) $f'(t) = -2t\sin(t)$.
 - (c) $f'(t) = 2t\cos(t) + t^2\sin(t)$.
 - (d) $f'(t) = 2t\cos(t) t^2\sin(t)$.
 - (e) $f'(t) = t^2 \cos(t) 2t \sin(t)$.
- 3. Evaluate the integral $\int_1^4 \frac{1}{x} + x dx$.
 - (a) $\ln(x) + \frac{x^2}{2} + C$.
 - (b) $8 + \ln(4)$.
 - (c) $7.5 + \ln(4)$.
 - (d) $7 + \ln(4)$.
 - (e) 7.
- 4. Compute the antiderivative of $2e^x + \sqrt{x}$.
 - (a) $2e^x + \frac{1}{2\sqrt{x}} + C$.
 - (b) $e^x + \frac{1}{2\sqrt{x}} + C$.
 - (c) $2e^x + \frac{2}{3}x^{3/2} + C$.
 - (d) $e^x + \frac{2}{3}x^{3/2} + C$.
 - (e) $2e^{2x} + \frac{2}{3}x^{3/2} + C$.
- 5. Evaluate the following derivative: $\frac{d}{d\theta}[\tan(\theta)]$
 - (a) $\sin^2(\theta)$.
 - (b) $\cos^2(\theta)$.
 - (c) $\sec^2(\theta)$.
 - (d) $\csc^2(\theta)$.
 - (e) $\cot(\theta)$.
- 6. Solve for values of $\theta \in [0, 2\pi)$ such that

$$\sin^2(\theta) + \cos(\theta) = 1$$

(note that $\cos(\theta)$ lacks an exponent).

- (a) All values of θ satisfy this equality.
- (b) $\theta = 0, \pi/2, \pi$.
- (c) $\theta = 0, \pi$.
- (d) $\theta = 0, \pi/2, \frac{3\pi}{2}$.
- (e) $\theta = \pi/4, \pi/2, \frac{3\pi}{4}$.

TI - Readiness Assurance Test

7. Which of the following expressions is equal to

$$\frac{2}{x} + \frac{1}{x+2}?$$

- (a) $\frac{3x+4}{x^2+2x}$.
- (b) $\frac{3}{x^2+2x}$.
- (c) $\frac{2}{x^2+2x}$.
- (d) $\frac{3x+4}{2x+2}$.
- (e) $\frac{3}{2x+2}$.
- 8. Compute the limit

$$\lim_{x \to \infty} \frac{5x^2 + 3}{3x^3 - 1}.$$

- (a) 0.
- (b) ∞ .
- (c) $\frac{5}{3}$.
- (d) $\frac{10}{9}$.
- (e) -3.
- 9. Compute the limit

$$\lim_{x \to 0} \frac{3x^2 + 2x + 4}{4x^2 - x + 1}.$$

- (a) ∞ .
- (b) $-\infty$.
- (c) 0.
- (d) $\frac{3}{4}$.
- (e) 4.
- 10. Compute the limit

$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x^2 - 4}.$$

- (a) 0.
- (b) 1.
- (c) $\frac{7}{4}$.
- (d) ∞ .
- (e) undefined.