

w7x* Training data YN NW (WTXN, 02) Likelihard of the dataset: (D)= [] p (yi) $ll(0) = \sum_{i=1}^{N} log p(y_i)$ $= \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2\sigma^2} \left(y_i - w^T x_i^* \right)^2 \right] \right)$ -Nlog(251) - Nlogo - 1 202 (Y:-wTxi)2 MLE estimate \equiv the values of $w \approx \sigma^2$ at which ll(D) is max. argmax ello) w,o2

ll(D) = const - Nlogo - [] Z(j; -w7x;)

Equivalent to maximizing: 12 (y:-wTxi) 2 which is equiv. to minimize I Z(y, -w x;)2 Squared loss for geometic linear regressia. WMLE = (XTX) - (XTY) when X -> data makix Nxd y -> vector of target values $\frac{1}{N} \geq (y_i - w^T \times i)^2$ $=\frac{1}{N}(y-xw)^{T}(y-xw)$ Imposing a prier an w W -> a d-dimensial vector or are multivariate Gaussian $p(w) \sim \mathcal{N}(w | \mu_0, \Sigma_0)$

Prior

Simple case:
$$Mo = \frac{1}{2} \frac{$$

Relationship with ridge regressia Wridge = (XTX+ DI) - XTY

regularization

paramet $\overline{W} = \left(x^{T} x + \left(\frac{r^{2}}{r^{2}} \right)^{-1} \right)$ What is the MAP estinate for w WMAP = W Inference or prediction test. X Y = Y MLE X Tull Bayerian Freatment. CSE610 - Fall 2020

Non-parametric Bayesia

Methods

Generalöred lénear Models. (GLM)

Replace N() > Laplace ()

Robust Regression

 $p(y) = \int \exp \left[-\frac{1}{2} (y_i - w^T x_i)^2\right]$ Impacted by onthies $p(y) = \int \exp \left[-\frac{1}{2} (y_i - w^T x_i)^2\right]$ $\int \sum_{i=1}^{N} (y_i - w^T x_i)^2 deastsquens$ $\int \int \exp \left[-\frac{1}{2} (y_i - w^T x_i)^2\right]$ $\int \exp \left[-\frac{1}{2} (y_i - w^T x_i)^2\right]$ $\int \int \exp \left[-\frac{1}{2} (y_i - w^T x_i)^2\right]$

2 A

1 2 (yi-w ~i)

logistic Regressier és a member of GLM family.