

- Prelegerea 4 - Securitate perfectă

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Definiție

2. One Time Pad

Securitate perfectă

► Primul curs: Sisteme de criptare istorice (substitutie, transpoziție, etc.) care pot fi sparte cu efort computațional foarte mic

Securitate perfectă

- Primul curs: Sisteme de criptare istorice (substitutie, transpoziție, etc.) care pot fi sparte cu efort computațional foarte mic
- ► Cursul de azi: Scheme perfect sigure care rezistă în fața unui adversar cu putere computațională nelimitată

Securitate perfectă

- Primul curs: Sisteme de criptare istorice (substitutie, transpoziție, etc.) care pot fi sparte cu efort computațional foarte mic
- Cursul de azi: Scheme perfect sigure care rezistă în fața unui adversar cu putere computațională nelimitată
- Insă...limitările sunt inevitabile

Definiție

O schemă de criptare peste un spațiu al mesajelor \mathcal{M} este perfect sigură dacă pentru orice probabilitate de distribuție peste \mathcal{M} , pentru orice mesaj $m \in \mathcal{M}$ și orice text criptat c pentru care Pr[C=c]>0, următoarea egalitate este îndeplinită:

$$Pr[M = m | C = c] = Pr[M = m]$$

Definiție

O schemă de criptare peste un spațiu al mesajelor \mathcal{M} este perfect sigură dacă pentru orice probabilitate de distribuție peste \mathcal{M} , pentru orice mesaj $m \in \mathcal{M}$ și orice text criptat c pentru care Pr[C=c]>0, următoarea egalitate este îndeplinită:

$$Pr[M = m | C = c] = Pr[M = m]$$

▶ Pr[M = m] - probabilitatea *a priori* ca Alice să aleagă mesajul m;

Definiție

O schemă de criptare peste un spațiu al mesajelor \mathcal{M} este perfect sigură dacă pentru orice probabilitate de distribuție peste \mathcal{M} , pentru orice mesaj $m \in \mathcal{M}$ și orice text criptat c pentru care Pr[C=c]>0, următoarea egalitate este îndeplinită:

$$Pr[M = m | C = c] = Pr[M = m]$$

- Pr[M = m] probabilitatea a priori ca Alice să aleagă mesajul m;
- ▶ Pr[M = m | C = c] probabilitatea a posteriori ca Alice să aleagă mesajul m, chiar dacă textul criptat c a fost văzut;

Definiție

O schemă de criptare peste un spațiu al mesajelor $\mathcal M$ este perfect sigură dacă pentru orice probabilitate de distribuție peste $\mathcal M$, pentru orice mesaj $m \in \mathcal M$ și orice text criptat c pentru care Pr[C=c]>0, următoarea egalitate este îndeplinită:

$$Pr[M = m | C = c] = Pr[M = m]$$

- ▶ Pr[M = m] probabilitatea *a priori* ca Alice să aleagă mesajul m;
- ▶ Pr[M = m | C = c] probabilitatea *a posteriori* ca Alice să aleagă mesajul *m*, chiar dacă textul criptat *c* a fost văzut;
- securitate perfectă dacă Oscar afla textul criptat nu are nici un fel de informație în plus decât dacă nu l-ar fi aflat.

Definiție echivalentă

O schemă de criptare (Enc, Dec) este perfect sigură dacă pentru orice mesaje $m_0, m_1 \in \mathcal{M}$ cu $|m_0| = |m_1|$ și $\forall c \in \mathcal{C}$ următoarea egalitate este îndeplinită:

$$Pr[Enc_k(m_0) = c] = Pr[Enc_k(m_1) = c]$$

unde $k \in \mathcal{K}$ este o cheie aleasă uniform.

Definiție echivalentă

O schemă de criptare (Enc, Dec) este perfect sigură dacă pentru orice mesaje $m_0, m_1 \in \mathcal{M}$ cu $|m_0| = |m_1|$ și $\forall c \in \mathcal{C}$ următoarea egalitate este îndeplinită:

$$Pr[Enc_k(m_0) = c] = Pr[Enc_k(m_1) = c]$$

unde $k \in \mathcal{K}$ este o cheie aleasă uniform.

ightharpoonup fiind dat un text criptat, este imposibil de ghicit dacă textul clar este m_0 sau m_1

Definiție echivalentă

O schemă de criptare (Enc, Dec) este perfect sigură dacă pentru orice mesaje $m_0, m_1 \in \mathcal{M}$ cu $|m_0| = |m_1|$ și $\forall c \in \mathcal{C}$ următoarea egalitate este îndeplinită:

$$Pr[Enc_k(m_0) = c] = Pr[Enc_k(m_1) = c]$$

unde $k \in \mathcal{K}$ este o cheie aleasă uniform.

- fiind dat un text criptat, este imposibil de ghicit dacă textul clar este m_0 sau m_1
- cel mai puternic adversar nu poate deduce nimic despre textul clar dat fiind textul criptat

- Patentat in 1917 de Vernam (mai poartă denumirea de Cifrul Vernam)
- ► Algoritmul:
 - 1. Fie l > 0 iar $\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^{l}$
 - 2. Cheia k se alege cu distribuție uniformă din spațiul cheilor $\mathcal K$
 - 3. **Enc**: dată o cheie $k \in \{0,1\}^I$ și un mesaj $m \in \{0,1\}^I$, întoarce $c = k \oplus m$.
 - 4. **Dec**: dată o cheie $k \in \{0,1\}^I$ și un mesaj criptat $c \in \{0,1\}^I$, întoarce $m = k \oplus c$.

mesaj:	0	1	1	0	0	1	1	1	1	\oplus
cheie:	1	0	1	1	0	0	1	1	0	
text criptat:	: 1	1	0	1	0	1	0	0	1	

```
mesaj:
0
1
1
0
0
1
1
1
1
0

cheie:
1
0
1
1
0
0
1
1
0

text criptat:
1
1
0
1
0
1
0
0
1
```

avantaj - criptare și decriptare rapide

```
mesaj:
0
1
1
0
0
1
1
1
1
⊕

cheie:
1
0
1
1
0
0
1
1
0

text criptat:
1
1
0
1
0
1
0
0
1
```

- avantaj criptare și decriptare rapide
- dezavantaj cheia foarte lungă (la fel de lungă precum textul clar)

- avantaj criptare și decriptare rapide
- dezavantaj cheia foarte lungă (la fel de lungă precum textul clar)
- Este OTP sigur?

Schema de criptare OTP este perfect sigură.

securitatea perfectă nu este imposibilă dar...

Schema de criptare OTP este perfect sigură.

- securitatea perfectă nu este imposibilă dar...
- ▶ cheia trebuie să fie la fel de lungă precum mesajul

Schema de criptare OTP este perfect sigură.

- securitatea perfectă nu este imposibilă dar...
- ▶ cheia trebuie să fie la fel de lungă precum mesajul
- incoveniente practice (stocare, transmitere)

Schema de criptare OTP este perfect sigură.

- securitatea perfectă nu este imposibilă dar...
- cheia trebuie să fie la fel de lungă precum mesajul
- ▶ incoveniente practice (stocare, transmitere)
- cheia trebuie să fie folosită o singură dată one time pad de ce?

Schema de criptare OTP este perfect sigură.

- securitatea perfectă nu este imposibilă dar...
- cheia trebuie să fie la fel de lungă precum mesajul
- incoveniente practice (stocare, transmitere)
- cheia trebuie să fie folosită o singură dată one time pad de ce?

Exercițiu Ce se întâmplă dacă folosim o aceeași cheie de două ori cu sistemul OTP ?

Limitările securității perfecte

Teoremă

Fie (Enc, Dec) o schemă de criptare perfect sigură peste un spațiu al mesajelor \mathcal{M} și un spațiu al cheilor \mathcal{K} . Atunci $|\mathcal{K}| \geq |\mathcal{M}|$.

Sau altfel spus:

Limitările securității perfecte

Teoremă

Fie (Enc, Dec) o schemă de criptare perfect sigură peste un spațiu al mesajelor \mathcal{M} și un spațiu al cheilor \mathcal{K} . Atunci $|\mathcal{K}| \geq |\mathcal{M}|$.

Sau altfel spus:

Teoremă

Nu există nici o schemă de criptare (Enc, Dec) perfect sigură în care mesajele au lungimea n biți iar cheile au lungimea (cel mult) n-1 biți.

Important de reținut!

- Schema OTP are securitate perfectă, dar este nepractică pentru majoritatea aplicațiilor;
- ► Securitate perfectă ⇒ lungimea cheii ≥ lungimea mesajului.