Contrôle d'algèbre linéaire N°4

Durée : 1 heure 45 minutes Barème sur 15 points

NOM:	
	Groupe
PRENOM:	

1. Soit f l'endomorphisme de l'espace dont la matrice relativement à la base canonique E de \mathbb{R}^3 est :

$$M_f = \left(\begin{array}{ccc} -4 & 2 & -1 \\ -1 & -1 & -1 \\ 2 & -4 & -1 \end{array}\right).$$

- a) Montrer que f est diagonalisable. Donner la matrice de f relativement à une base propre E', ainsi que la matrice de passage P de E vers E'. En déduire avec précision, la nature géométrique de f.
- b) Déterminer les équations paramétriques de $f^{-1}(\{\vec{c}\})$ lorsque $\vec{c}=\begin{pmatrix} -1\\5\\11 \end{pmatrix}$.

5 pts

2. Soit \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^2 linéairement indépendants. On munit le plan de la base $B'(\vec{u}, \vec{v})$ et on considère l'endomorphisme g dont la matrice, relativement à B', est :

$$M_g' = \left(\begin{array}{cc} -2 & 0 \\ 0 & -4 \end{array} \right).$$

- a) Soit a une affinité d'axe la droite (O, \vec{v}) , de direction \vec{u} et de rapport 2. Déterminer
 - les valeurs propres et les sous-espaces propres de l'endomorphisme $f = g \circ a^{-1}$,
 - ullet la nature géométrique de f.

On note $B=(\vec{e}_1\,,\,\vec{e}_2)$ la base canonique de \mathbb{R}^2 et on pose : $\vec{u}=4\,\vec{e}_1-\,\vec{e}_2$ et $\vec{v}=-2\,\vec{e}_1+2\,\vec{e}_2$.

b) Calculer la matrice de f relativement à la base B.

- c) On considère
 - la symétrie oblique, notée s, d'axe la droite (O, \vec{u}) , de direction $\vec{w} = (k+1)\vec{u} + \vec{v}, \ k \in \mathbb{R}^*,$
 - l'homothétie h de centre O et rapport k.

Déterminer la matrice, dépendant du paramètre k, de l'endomorphisme $r = (s \circ g) - 2h$ relativement à la base $B'(\vec{u}, \vec{v})$.

Déterminer le paramètre k de sorte que la matrice de r, par rapport à la base B', soit diagonale; en donner alors la nature géométrique.

5 pts

3. Soit g un endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique est :

$$M_g = \begin{pmatrix} \alpha & 2(\alpha+1) & (\alpha+2)^2 \\ 0 & (\alpha+1) & 3(\alpha+1) \\ -\alpha & -2(\alpha+1) & -1 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

a) Discuter le rang de g en fonction du paramètre α .

b) Soit
$$\vec{a} = \begin{pmatrix} 2 \\ -2 \\ m^2 - 3 \end{pmatrix}$$
.

Déterminer les valeurs des paramètres α et m de sorte que $\vec{a} \in \operatorname{Im} g$.

5 pts