Algèbre

Dans cette partie, on présente quelques résultats d'algèbre linéaire utile dans le cadre de ce cours. Pour plus d'information, vous pouvez vous référer au cours MAT-1200, (Deisenroth, Faisal, et Ong 2020) (en anglais) et (Grifone 2024) (en français).

Quelques propriétés matricielles

Notons $M_{n,m}(\mathbb{R})$, l'ensemble des matrices à n lignes et m colonnes dont les entrées appartiennent à \mathbb{R} . Notons $M_n(\mathbb{R})$, l'ensemble des matrices carrées de taille n, i.e. à n lignes et n colonnes dont les entrées appartiennent à \mathbb{R} . Soient M, N et P des matrices appartenant à $M_{n,m}(\mathbb{R})$. Soient A et B des matrices appartenant à $M_n(\mathbb{R})$. Notons I_n la matrice identité de taille n, i.e. qui contient des 1 sur le diagonale et des 0 sur les éléments hors de la diagonale. Soient u et v appartenant à \mathbb{R}^n , i.e. des vecteurs colonnes de taille n.

Propriétés de l'inverse

Supposons que les matrices A et B sont inversibles. Alors le produit matriciel AB est inversible et est donné par :

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Preuve

Posons C = AB et $D = B^{-1}A^{-1}$. Alors

$$\begin{split} CD &= ABB^{-1}A^{-1} \\ &= AA^{-1} \\ &= I_n \end{split}$$

De même façon, on trouve que $DC = I_n$. Ainsi, AB est inversible et son inverse est donné par $B^{-1}A^{-1}$.

Propriétés du déterminant

Concernant le déterminant, on a :

- 1. $\det(A^{\top}) = \det(A)$,
- 2. det(AB) = det(A)det(B),
- 3. $\det(A^{-1}) = 1/\det(A)$.

Preuve

Les preuves des propriétés 1 et 2 sont techniques et sont donc omises, mais peuvent être trouvé, par exemple, ici. Pour ce qui est de la troisième propriété, par définition, on a $AA^{-1}=I_n$. Le déterminant de I_n est égale à 1 (produit des éléments sur la diagonale). Donc $\det(AA^{-1})=1$. Or, d'après la deuxième propriété, $\det(AA^{-1})=\det(A)\det(A^{-1})$. On a donc bien $\det(A^{-1})=1/\det(A)$.

Propriétés de la trace

$$tr(A + B) = tr(A) + tr(B)$$
$$tr(MN) = tr(NM)$$

Propriété de matrices :

- Soit A une matrice symmétrique de dimension $n \times n$. A est définie positive si elle est positive et inversible, c'est-à-dire si $u^{\top}Au > 0$ pour tout $x \in \mathbb{R}^n$ tel que $x \neq 0$.
- Soit A une matrice carrée à valeur dans \mathbb{R} . A est orthogonal si $A^{\top}A = AA^{\top} = I_n$.

Valeurs et vecteurs propres :

— Soit A une matrice carrée de dimension $n \times n$. On dit que λ est une valeur propre de A si il existe un vecteur $u \neq 0 \in \mathbb{R}^n$ tel que

$$Au = \lambda u$$
.

Le vecteur u est appelé vecteur propre correspondant à la valeur propre λ et l'ensemble des nombres réels λ satisfaisant l'équation est appelé spectre de la matrice A et noté $\operatorname{sp}(A)$.

- Si u est un vecteur propre de A correspondant à une valeur propre λ , alors cu, $c \neq 0 \in \mathbb{R}$ sera également un vecteur propre de A correspondant à λ .
- Si A est symmétrique et u_1 et u_2 sont des vecteurs propres correspondant à des valeurs propres différentes de A, alors u_1 et u_2 sont orthogonaux, *i.e.* $u_1^{\top}u_2 = 0$.

— Si A a comme valeurs propres (réelles, mais pas forcément distinctes) $\lambda_1,\ldots,\lambda_n$, alors

$$\mathbf{A} = \prod_{i=1}^n \lambda_i \quad \text{et} \quad \operatorname{tr}(A) = \sum_{i=1}^n \lambda_i.$$

- Si A est symmétrique, toutes ses valeurs propres sont réelles.
- Si A est définie positive, alors toutes ses valeurs propres sont positives.

Diagonalisation de matrices:

— Soit A une matrice carrée de dimension $n \times n$. On dit que A est diagonalisable s'il existe une matrice carrée $n \times n$ non-singulière P et une matrice $n \times n$ diagonale D telles que

$$P^{-1}AP = D \leftrightarrow A = PDP^{-1}$$
.

Toute matrice carrée symmétrique est diagonalisable part une matrice orthogonal P.

Théorème de décomposition spectrale :

Soit A une matrice carrée symmétrique de dimension $n \times n$ et ses n valeurs propres $\lambda_1, \dots, \lambda_n$. Alors il existe une matrice orthogonal P telle que

$$A = P\Lambda P^\top, \quad \text{où} \quad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Si A admet n valeurs propres positives distinctes, alors on peut prendre P comme la matrice dont la ke coloone est le vacteur propre normé correspondant à la ke valeur propre λ_k .

Soit deux matrices symétriques, A et M, comment déterminer le vecteur u tel que $u^{T}Au$ soit maximal, sachant que $u^{T}Mu = 1$? Il faut prendre u comment le vecteur propre de $M^{-1}A$ associé à λ la valeur propre maximale de $M^{-1}A$. On obtient ainsi

$$u^{\top}Au = u^{\top}\lambda Mu = \lambda U^{\top}Mu = \lambda.$$

Deisenroth, Marc Peter, A. Aldo Faisal, et Cheng Soon Ong. 2020. *Mathematics for Machine Learning*. 1 éd. Cambridge University Press. https://doi.org/10.1017/9781108679930. Grifone, Joseph. 2024. *Algèbre Linéaire*. 7e edition. Toulouse: CEPADUES.