

Introdução aos Sistemas de Base de Dados

Base de Dados - 2024/25 Carlos Costa

Base de Dados - Conceito

 Base de Dados (BD): uma coleção organizada de dados que estão relacionados e que podem ser partilhados por múltiplas aplicações.

Evolução

Processamento Isolado de Dados

- Dados isolados cada aplicação gere os seus próprios dados.
- Os mesmos dados podem estar replicados.
- Diferentes organizações e formatos de dados.
- Problemas de "sincronismo" -> incoerências.

Sistema de Gestão de Ficheiros

- Dados organizados e armazenados em ficheiros partilhados por várias aplicações.
- Cada aplicação acede diretamente aos ficheiros.
- Cada aplicação usa uma interface proprietária.
- Problemas:
 - Acesso concorrente aos dados
 - Integridade
 - Segurança

Sistema de Gestão de Base de Dados (SGBD)

Database Management System (DBMS): "is a generalpurpose software system that facilitates the processes of *defining*, *constructing*, *manipulating*, and *sharing* databases among various users and applications."

Sistema de Gestão de Base de Dados (SGBD)

- Definição (Defining)
 - Especificação do tipo de dados, estruturas de dados e restrições
 - database catalog or dictionary
- Construção (Constructing)
 - Processo de armazenamento de dados
- Manipulação (Manipulating)
 - Envolve operações como a pesquisa e obtenção de dados
- Partilha (Sharing)
 - Acesso simultâneo aos dados por parte de vários utilizadores e programas

SGBD - Características Gerais

- Entidade única que opera com a BD
 - O acesso à BD é sempre mediado pelo SGDB
- Existe uma interface de acesso que esconde os detalhes de armazenamento físico dos dados
- Elevada abstração ao nível aplicacional
- Os dados estão integrados (nível lógico) numa mesma unidade de armazenamento
- Suporta uma ou mais BD
- Keyword Data Independence

SGBD - Vantagens

- Independência entre programas e dados
- Integridade dos dados
 - Controlo de alteração de dados de acordo com as regras de integridade definidas
- Consistência dos dados
 - Nos processos de transações e mesmo em falhas de software/hardware
- Eficiência no acesso aos dados
 - Especialmente em cenários de manipulação de grandes quantidades de dados, por um ou mais utilizadores
- Isolamento utilizadores
 - Cada utilizador tem a "sensação" de ser o único

SGBD - Vantagens (cont.)

- Melhor gestão do acesso concorrencial
- Serviços de Segurança
 - Controlo de Acessos / Permissões
 - Codificação de Dados
- Mecanismos de backup e recuperação de dados
- Administração de dados
 - Disponibilidade de ferramentas desenvolvidas pelo fabricante e/ou terceiras entidades
- Linguagem de desenho e manipulação de dados

Nota: Muitas das vantagens anteriores são também requisitos funcionais de um SGBD.

SGBD - Potenciais Desvantagens

- Maiores custos e complexidade na instalação e manutenção
 - Especial em soluções empresariais
- Não respondem aos requisitos de alguns cenários aplicacionais
 - Por exemplo, pesquisa de texto
 - Motivou o aparecimento de novos modelos (NoSQL, IndexEngine, etc)
- Centralização dos dados mais suscetível a problemas de tolerância a falhas (software e hardware) e de escalabilidade

SGBD - Vista Simplificada

SGBD - Utilizadores

Utilizadores Finais

 aqueles que usam o sistema com determinada finalidade com recurso a ferramentas disponibilizadas pelo fabricante do sistema ou aplicações de terceiras entidades.

Programadores de Aplicações

 Desenvolvem aplicações que permitem que os utilizadores interajam com a base de dados. Podem utilizar várias linguagem de programação.

Administradores da Base de dados

 Tratam dos processos de gestão e manutenção da base de dados.

SGBD - Metadados

- Metadados (dados sobre dados)
- O SGBD armazena uma descrição da própria estrutura da base de dados, restrições de integridade e condições de acesso.
 - Descritores de objetos da base de dados (tabelas, utilizadores, regras, vistas, indexes, etc)
 - Informação sobre dados em uso e por quem (locks).
 - Schemas e mappings

Interfaces (Aplicações)

- Web-based
- Form-based (desktop)
- GUI (Graphical User Interface)
 - Manipulação visual de esquemas de BD com recurso a diagramas. Possibilidade de construção e execução de queries.
- Natural Query Language
- DBMS Command Line
 - Criar contas de utilizadores, parametrizar o sistema, definir permissões e privilégios, definir/alterar estruturas de dados, definir tipos de dados, etc.
 - Utilizando uma linguagem própria SQL

SGBD - Arquitetura ANSI/SPARC¹

Three-level architecture:

- External level database users
- Conceptual level database designers and administrators
- Internal level systems designers

ANSI/SPARC - Nível Interno

- Lida com a implementação física da BD
 - Estrutura dos registos em disco files, pages, blocks
 - Indexes e ordenação dos registos
- Domínio: Programadores de sistemas de BD
- Exemplo de Esquema

```
RECORD FUNCIONARIO

LENGTH=44

HEADER: BYTE(5)

OFFSET=0

NOME: BYTE(25)

OFFSET=5

SALARIO: FULLWORD

OFFSET=30

DEPARTAMENTO: BYTE(10)

OFFSET=34
```


ANSI/SPARC - Nível Conceptual

- Esquema Conceptual descreve a estrutura da base de dados para os utilizadores
 - Descreve entidades, tipo de dados, relações, operações, restrições, etc
 - Utiliza (tipicamente) um modelo de dados para descrição do esquema conceptual
- Oculta detalhes de implementação física(abstração)
- Domínio: Administrador BD e prog. de aplicações
- Exemplo de esquema

```
CREATE TABLE FUNCIONARIO
     (Nome VARCHAR(25),
Salario REAL, Dept_Nome VARCHAR(10))
```


ANSI/SPARC - Nível Externo

- Oferece vistas da base de dados adaptadas a casa utilizador
 - Apresentação dos dados pode ser trabalhada, parte dos dados pode ser ocultada, etc.
- Domínio: Utilizadores finais e prog. de aplicações
- Exemplo de Esquema

```
FolhaPagamentos:
    char *Nome
    double Salario

Funcionarios:
    char *Nome
    char *Departamento
```


ANSI/SPARC - Independência dos dados

 A alteração do esquema (schema) de um nível não tem impacto no esquema do nível acima.

=> Dois níveis de independência

- Nível Físico
 - Alterações do nível físico não devem ter impacto no esquema conceptual.
 - Por exemplo, podemos alterar a forma como armazenamos os dados no sistema de ficheiros por razões de desempenho.
- Nível Lógico
 - Alterações no esquema conceptual (modelo de dados) não devem repercutir-se nos esquemas externos ou aplicações já desenvolvidas.

SGBD - Arquitetura Típica

Modelo de Base de Dados

- Modelo de BD <u>coleção de conceitos</u> para <u>descrição lógica</u> de dados (Modelo Lógico)
- Esquema (Schema): a descrição de um conjunto particular de dados com recurso a um determinado modelo
- Um bom modelo de dados é fundamental para garantir a independência dos dados
- O Modelo Relacional é um dos mais utilizados nos dias de hoje.
 - Bancos, Hospitais, Finanças, Seguradoras, etc

Modelos de Base de Dados

- 1ª Geração (Pré-relacional)
 - Hierárquico
 - Rede
- 2ª Geração
 - Relacional

Disciplina de Base de Dados

- 3ª Geração (Pós-relacional)
 - Object-relational
 - Object-oriented
 - Key-value store
 - Document-oriented
 - Column-oriented
 - Graph database

22

Modelos NoSQL

Phases	Targets					
Conceptual Design	Conceptual Data Model	ERD(Entity Relationship Diagram) UML(Unified Modeling Language) ORM(Object Role Modeling) FCO-IM(Fully Communication Oriented Information Modeling)				
Logical Design	NoSQL Data Model	Key-Value, Document, Colum Family, Graph				
Physical Design	NoSQL Database	Key-Value	Riak, Redis, Memcached ,Berkeley DB ,Hamster DB, Amazon Dynamo DB ,Project Voldemort			
		Document	MongoDB, Couch DB, Terrastore, Orient DB, Raven DB			
		Column Family	Cassandra, HBase, Hypertable, Amazon Simple DB			
		Graph	Neo4J, Infinite Graph, Orient DB, Flock DB			

Modelo Hierárquico

 Dados estão armazenados numa estrutura hierárquica (árvore).

- Os nós da árvore designa-se como registos que estão ligados por ponteiros (links).
- Um registo é composto por um conjunto de atributos.
- Um link é uma associação entre dois registos do tipo pai-filho.
- Um registo pai encontra-se associado a N registos filhos (1:N).

Modelo Hierárquico - Caso Real (2023)

Modelo Hierárquico - Caso Real (2023)

Modelo Hierárquico - (Des)vantagens

- Adaptado a cenários de acesso sequencial aos dados.
 - Qualquer acesso aos dados passa sempre pelo segmento raiz.
 - A maior parte das necessidades atuais requer acesso aleatório!
- Redundância de informação
 - Desperdício de espaço e inconsistências de dados
- Restrições de integridade, exemplo:
 - A eliminação de um segmento pai, implica a remoção de todos os segmentos filhos associados.
- Não permite estabelecer associações N:M

Modelo Hierárquico - Relação N:M

Uma conta pode ter vários titulares (clientes).

Um cliente pode ter várias contas.

- Permite que um mesmo registo esteja envolvido em várias associações -> visão de rede.
- Melhorias na capacidade de navegação na estrutura de dados.
- Relações representadas através de grafos.
- Um conjunto (set) suporta associação entre registos do mesmo tipo
 - Tipicamente implementados com listas ligadas circulares
- Relacionamento 1:N entre dois tipos de registo.

Modelo Hierárquico -> Rede

Modelo Hierárquico versus Relacional

SGBD ALGUMAS CURIOSIDADES...

DB-Engines Ranking - Engine

424 systems in ranking, February 2025

				-			_
Feb 2025	Rank Jan 2025	Feb 2024	DBMS	Database Model	S Feb 2025	Jan 2025	Feb 2024
1.	1.	1.	Oracle	Relational, Multi-model 🚺	1254.82	-3.93	+13.38
2.	2.	2.	MySQL 🚻	Relational, Multi-model 🚺	999.99	+1.84	-106.67
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🚺	786.87	-11.69	-66.70
4.	4.	4.	PostgreSQL 🚦	Relational, Multi-model 🚺	659.62	-3.79	+30.21
5.	5.	5.	MongoDB 🖽	Document, Multi-model 🔟	396.63	-5.87	-23.73
6.	↑ 7.	6.	Redis 🗄	Key-value, Multi-model 🚺	157.91	+4.55	-2.80
7.	4 6.	1 9.	Snowflake 🞛	Relational	155.58	+1.68	+28.13
8.	8.	4 7.	Elasticsearch	Multi-model 🚺	134.63	-0.29	-1.11
9.	9.	4 8.	IBM Db2	Relational, Multi-model 🚺	125.44	+2.46	-6.79
10.	10.	10.	SQLite	Relational	113.82	+7.13	-3.47
11.	11.	1 2.	Apache Cassandra 👪	Wide column, Multi-model 🚺	102.58	+3.39	-6.69
12.	12.	4 11.	Microsoft Access	Relational	96.54	+3.84	-16.63

Ranks database management systems according to their popularity.

Source: DB-Engines Ranking (02/2025)

DB-Engines Ranking - Model

424 distinct DBMS

number systems per category

scores per category in percent

Source: DB-Engines Ranking (02/2024)

Resumo

• Introdução aos Sistemas de Base de Dados

Sistemas Gestores de Base de Dados

Modelos de Base de Dados