

Программирование в среде R

Шевцов Василий Викторович, директор ДИТ РУДН, shevtsov_vv@rudn.university

Анализ номинативных данных

Определения

Нулевая гипотеза — принимаемое по умолчанию предположение о том, что не существует связи между двумя наблюдаемыми событиями, феноменами. Так, нулевая гипотеза считается верной до того момента, пока нельзя доказать обратное.

Часто в качестве нулевой гипотезы выступают предположения об отсутствии взаимосвязи или корреляции между исследуемыми переменными, об отсутствии различий (однородности) в распределениях (параметрах распределений) в двух и/или более выборках. Для обозначения нулевой гипотезы часто используют символ H_0 .

Причём крайним значением невозможного (маловероятного) считается от 0.01 до 0.05 или менее

Определения

Уровень значимости — процент появления ошибок первого рода (отклонение верной нулевой гипотезы).

- первый уровень 5% или 0.05, т. е. вероятность ошибиться 5 к 100 или 1 к 20.
- второй уровень 1% или 0.01, т. е. вероятность 1 к 100.
- третий уровень 0.1% или 0.001, вероятность 1 к 1000.

df <- read.csv("C:\\Users\\Администратор\\Downloads\\grants.csv")

npersons [‡]	years_in_uni	oldest_age	field [‡]	RFCD.Code.1	midpoint [‡]	status [‡]
2	< 5	66	bio	270799	24999.5	1
1	< 5	51	bio	270106	24999.5	0
1	< 5	36	bio	270708	24999.5	0
1	5-10	46	bio	270603	24999.5	0
4	> 10	46	physics	240402	24999.5	1
2	< 5	46	bio	270603	24999.5	0
1	< 5	36	chem	250103	24999.5	1
2	5-10	45	bio	270603	24999.5	1

table

table uses the cross-classifying factors to build a contingency table of the counts at each combination of factor levels.

```
Usage
table(...,
    exclude = if (useNA == "no") c(NA, NaN),
    useNA = c("no", "ifany", "always"),
    dnn = list.names(...), deparse.level = 1)
> df <- read.csv("C:\\Users\\Администратор\\Downloads\\grants.csv")
> df$status <- factor(df$status,labels=c("not funded","funded"))</pre>
> t1 <- table(df$status)
> t.1
                                                 > dim(t1)
not funded funded
                                                 > dim(t2)
                    673
        747
> t2 <- table(df$status,df$field)
> t2
                beh cog bio chem physics soc
  not funded
                    100 473
                                 60
                                           70
                                              44
                      65 432
                                 66
                                          78
                                               32
  funded
                                                     > t2 <- table(status=df$status, field=df$field)</pre>
```


prop.table

```
> prop.table(t2)
          field
             beh cog bio chem physics
status
                                                      SOC
 not funded 0.07042254 0.33309859 0.04225352 0.04929577 0.03098592
       0.04577465 0.30422535 0.04647887 0.05492958 0.02253521
> prop.table(t2,1)
          field
status
             beh cog bio chem physics soc
 not funded 0.13386881 0.63319946 0.08032129 0.09370817 0.05890228
 funded 0.09658247 0.64190193 0.09806835 0.11589896 0.04754829
> prop.table(t2,2)
          field
status
            beh cog bio chem physics
                                                  SOC
 not funded 0.6060606 0.5226519 0.4761905 0.4729730 0.5789474
 funded 0.3939394 0.4773481 0.5238095 0.5270270 0.4210526
```


table

```
> t3 <- table(years <- df$years in uni,field=df$field,status=df$status)
> t3
, , status = not funded
     field
     beh cog bio chem physics soc
          57 198
 < 5
                 31
                        20 22
       29 144 28
                       47 16
 > 10
 5-10 14 131 1 3 6
, , status = funded
     field
     beh cog bio chem physics soc
       27 180
                    22 14
 < 5
                 41
 > 10
         30 155 19
                       54 15
 5-10 8 97
```


barplot

barplot(t1)

barplot(t2)

barplot(t2,legend.text = TRUE)

barplot(t2,legend.text =
TRUE,beside = TRUE)

mosaicplot

mosaicplot(t2)

t2

status

binomial test

Биномиальное распределение в теории вероятностей — распределение количества «успехов» в последовательности из п независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна р.

```
> binom.test(x=5,n=20,p=0.5)

Exact binomial test

data: 5 and 20
number of successes = 5, number of trials = 20, p-value = 0.04139
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
    0.08657147 0.49104587
sample estimates:
probability of success
    0.25
```

<0.05 нулевая гипотеза отвергается, принимается альтернативная >0.05 нулевой гипотезой нельзя пренебречь

binomial test

```
> t.1
not funded funded
      747
                 673
> binom.test(t1)
       Exact binomial test
data: t1
number of successes = 747, number of trials = 1420, p-value = 0.05268
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
 0.4997023 0.5523023
sample estimates:
probability of success
            0.5260563
```


Chi-Square

```
> ch <- chisq.test(t1)</pre>
> str(ch)
List of 9
$ statistic: Named num 3.86
 ..- attr(*, "names") = chr "X-squared"
$ parameter: Named num 1
 ..- attr(*, "names") = chr "df"
$ p.value : num 0.0496
$ method : chr "Chi-squared test for given probabilities"
$ data.name: chr "t1"
$ observed : 'table' int [1:2(1d)] 747 673
  ..- attr(*, "dimnames")=List of 1
 ....$ : chr [1:2] "not funded" "funded"
$ expected : Named num [1:2] 710 710
  ..- attr(*, "names") = chr [1:2] "not funded" "funded"
$ residuals: 'table' num [1:2(1d)] 1.39 -1.39
 ..- attr(*, "dimnames")=List of 1
 ....$ : chr [1:2] "not funded" "funded"
$ stdres : 'table' num [1:2(1d)] 1.96 -1.96
  ..- attr(*, "dimnames")=List of 1
  .. ..$ : chr [1:2] "not funded" "funded"
- attr(*, "class") = chr "htest"
> ch$expected
not funded
               funded
       710
                  710
> ch$observed
not funded
               funded
       747
                  673
```


Определения

Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.

Fisher's Exact Test

Точный тест Фишера — тест статистической значимости, используемый в анализе таблиц сопряжённости для выборок маленьких размеров. Назван именем своего изобретателя Р. Фишера. Относится к точным тестам значимости, поскольку не использует приближения большой выборки (асимптотики при размере выборки стремящемся к бесконечности).

Сравнение двух групп

iris

чашелистик

лепесток

Sepal.Length [‡]	Sepal.Width [‡]	Petal.Length [‡]	Petal.Width	Species [‡]
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa

Выборка двух групп

```
> df <- subset(df,Species!="setosa")</pre>
> df <- iris
> str(df)
'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1 1 1 1 1 1 1 1 1 ...
> df <- subset(df,Species!="setosa")</pre>
> str(df)
'data.frame': 100 obs. of 5 variables:
 $ Sepal.Length: num 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 ...
 $ Sepal.Width: num 3.2 3.2 3.1 2.3 2.8 2.8 3.3 2.4 2.9 2.7 ...
 $ Petal.Length: num 4.7 4.5 4.9 4 4.6 4.5 4.7 3.3 4.6 3.9 ...
 $ Petal.Width: num 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1 1.3 1.4 ...
 $ Species : Factor w/ 3 levels "setosa", "versicolor", ...: 2 2 2 2 2 2 2 2 2 ...
> table(df$Species)
    setosa versicolor virginica
                   50
```


Распределение длины чашелистика

hist(df\$Sepal.Length)

Histogram of df\$Sepal.Length


```
> ggplot(df, aes(x=Sepal.Length))+
+ geom_histogram(fill="white",col="black")
`stat bin()` using `bins = 30`. Pick better value with `binwidth`.
```


- > ggplot(df, aes(x=Sepal.Length))+
- + geom_histogram(fill="white",col="black",binwidth = 0.5)

Гистограмма, распределение по группам

```
> ggplot(df, aes(x=Sepal.Length))+
+ geom_histogram(fill="white",col="black",binwidth = 0.5)+
+ facet_grid(Species~.)
```


Плотность распределения, по группам

> ggplot(df, aes(x=Sepal.Length,col=Species))+
+ geom density()

Ящик с усами

```
> ggplot(df,aes(Species,Sepal.Length))+
+ geom_boxplot()
```


Определение статистической значимости

Определения

В статистике величину (значение) переменной называют статистически значимой, если мала вероятность случайного возникновения этой или ещё более крайних величин. Здесь под крайностью понимается степень отклонения тестовой статистики от нуль-гипотезы.

Разница называется статистически значимой, если появление имеющихся данных (или ещё более крайних данных) было бы маловероятно, если предположить, что эта разница отсутствует; это выражение не означает, что данная разница должна быть велика, важна, или значима в общем смысле этого слова.

Этот критерий позволяют исследователю оценить вероятность того, что результаты могли появиться чисто случайно.

Определения. Нормальное распределение

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ = 0 и стандартным отклонением σ = 1.

Определения. Гомогенность дисперсий

Вторым важным условием применимости классического дисперсионного анализа является однородность (также "гомоскедастичность") групповых дисперсий (англ. homogeneity of variance, или homoscedasticity of variance).

Речь здесь идет о том, что помимо нормального распределения в каждой группе, значения зависимой переменной должны также иметь одинаковую степень разброса. Необходимость выполнения этого условия определяется способом вычисления внутри- и межгрупповых дисперсий, применяемым в классическом дисперсионном анализе: при значительно различающихся групповых дисперсиях используемые формулы просто не будут работать корректно.

Проверка на нормальное распределение

уровень значимости >0.05, нулевая гипотеза об отсутствии нормального распределения не подтверждается

```
> shapiro.test(x=df$Sepal.Length[df$Species=="versicolor"])

Shapiro-Wilk normality test

data: df$Sepal.Length[df$Species == "versicolor"]

W = 0.97784, p-value = 0.4647
```


Проверка на гомогенность дисперсий

> bartlett.test(Sepal.Length~Species,df)

Bartlett test of homogeneity of variances

data: Sepal.Length by Species
Bartlett's K-squared = 2.0949, df = 1, p-value = 0.1478

уровень значимости >0.05, нулевая гипотеза об отсутствии гомогенности дисперсий не подтверждается

Student's t-Test

t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

```
> t.test(Sepal.Length~Species,df)

Welch Two Sample t-test

data: Sepal.Length by Species
t = -5.6292, df = 94.025, p-value = 1.866e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.8819731 -0.4220269
sample estimates:

mean in group versicolor mean in group virginica
5.936

5.936

6.588
```

уровень значимости <0.05, нулевая гипотеза о равенстве средних в группах не подтверждается

Графическое представление

```
> ggplot(df,aes(Species,Sepal.Length))+
+ stat_summary(fun.data = mean_cl_normal,geom="errorbar",width=0.2)
```

вывод доверительных интервалов


```
> ggplot(df,aes(Species,Sepal.Length))+
+ stat_summary(fun.data = mean_cl_normal,geom="errorbar",width=0.2)+
+ stat_summary(fun.y = mean,geom="point",size=4)
```

вывод доверительных интервалов и среднего значения

Спасибо за внимание!

Шевцов Василий Викторович

shevtsov_vv@rudn.university +7(903)144-53-57

