

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 475 083 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
10.11.2004 Patentblatt 2004/46

(51) Int Cl.⁷: A61K 9/107, A61K 31/122

(21) Anmeldenummer: 04010510.8

(22) Anmeldetag: 11.02.2002

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Benannte Erstreckungsstaaten:
SI

(30) Priorität: 11.02.2001 DE 10109708
22.02.2001 DE 10108614

(62) Dokumentnummer(n) der früheren Anmeldung(en)
nach Art. 76 EPÜ:
02719799.5 / 1 377 273

(71) Anmelder: AQUANOVA German Solubilisate
Technologies (AGT) GmbH
64295 Darmstadt (DE)

(72) Erfinder: Behnam, Darlush
64380 Rossdorf (DE)

(74) Vertreter: Blumbach, Kramer & Partner GbR
Patentanwälte,
Saalbaustrasse 11
64283 Darmstadt (DE)

Bemerkungen:

Diese Anmeldung ist am 04 - 05 - 2004 als
Teilanmeldung zu der unter INID-Kode 62
erwähnten Anmeldung eingereicht worden.

(54) Verfahren zur Herstellung eines Wirkstoffkonzentrats sowie Wirkstoffkonzentrat

(57) Beschrieben wird ein Verfahren zur Herstellung einer wasserlöslichen Phase eines in Wasser nicht oder nur schwer löslichen physiologisch wirksamen Wirkstoffes, bei dem der Wirkstoff in der Wärme mit einem körperfverträglichen Lösungsvermittler mit einem

HLB-Wert zwischen 9 und 16 im Überschuss zur Bildung eines transparenten Zwischenproduktes verrührt wird und das Zwischenprodukt auf Raumtemperatur abgekühlt wird. Ferner wird ein wasserlösliches Konzentrat eines physiologischen Wirkstoffes erläutert.

Fig. 1

EP 1 475 083 A1

Beschreibung

[0001] Die Erfindung betrifft ein wasserlösliches Konzentrat, welches einen physiologischen Wirkstoff, der in Wasser unlöslich oder nur schwer löslich ist, sowie einen Lösungsvermittler aufweist, sowie Verfahren zur Herstellung der Konzentrate.

[0002] Fettlösliche Verbindungen wie z.B. Vitamin E, Vitamin A und andere Carotinoide oder auch Coenzym Q₁₀ werden in Abhängigkeit vom Vorhandensein von Gallensalzen und Enzymen der Bauchspeicheldrüse absorbiert. Dem Absorptionsprozess geht ein Vorgang der sogenannten Micellenbildung im Darm voraus, der erforderlich ist, damit die fettlöslichen Verbindungen "verpackt" werden und auf diese Weise verschiedene Barrieren der Darmmucosa überwinden können.

[0003] Ist die Sekretion von Galleflüssigkeit oder Enzymen der Bauchspeicheldrüse gestört, so resultiert daraus eine sogenannte Malabsorption oder Malabsorption fettlöslicher Verbindungen. Das beste Beispiel hierfür ist der Krankheitszustand der Zystischen Fibrose, bei der aufgrund mangelnder Bereitstellung von Bauchspeicheldrüsenenzymen die Resorption fettlöslicher Verbindungen nur noch in sehr geringem Umfang möglich ist.

[0004] Die Besonderheiten der Absorption fettlöslicher Mikronährstoffe zeigt sich auch daran, dass die Aufnahme immer dann steigt, wenn gleichzeitig Fett angeboten wird. Fett begünstigt einerseits die Abgabe von Gallensäure und Enzymen der Bauchspeicheldrüse und andererseits die Bildung von Micellen, die dann die besagten fettlöslichen Mikronährstoffe enthalten.

[0005] Nachdem die fettlöslichen Verbindungen von den Darmzellen aufgenommen worden sind, liegen sie dort in freier Form vor, d.h. sie sind nicht mehr an micellare Bestandteile gebunden. In dieser freien Form werden sie dann erneut "wasserlöslich" gemacht, indem sie in Innerhalb der Darmzellen gebildete Transporter eingebaut (Lipoproteine— Chylomikronen) und dann über die großen Lymphwege ins Blut abgegeben werden.

[0006] Um lipophile Verbindungen aufnehmen zu können, muss sie der Organismus also in zwei Schritten wasserlöslich machen. Der erste Schritt erfolgt im Darm durch die Bildung der Micellen, aus denen dann die Substanz in der Darmzelle wieder freigesetzt wird, und der zweite Schritt ist die Bildung von Lipoproteinen zum Transport im Blut. Daher werden lipophile Substanzen, die wasserlöslich gemacht worden sind (klare Lösungen), nicht aber solche, die im wässrigen Medium lediglich dispergiert sind (trübe Lösungen), vom Organismus rascher und effizienter absorbiert als die ursprünglich lipophile Substanz.

[0007] Über die Bioverfügbarkeit wasserlöslich gemachter lipophiler Mikronährstoffe (klare Lösungen) liegen nur wenig Daten vor. Ein Verfahren zur Prüfung der Bioverfügbarkeit solcher Verbindungen sind sogenannte in-vitro-Dissolutionsverfahren. Hierbei wird festgestellt, inwieweit sich eine Verbindung im wässrigen

Kompartiment löst bzw. inwieweit sie aus einer bestimmten galenischen Zubereitungsform freigesetzt wird. Aus US-6,048,566 ist bekannt, dass wasserlöslich gemachtes Q₁₀ im Gegensatz zu Q₁₀ aus öligen Lösungen oder Dispersionen (trübe Lösungen) zu 100 Prozent freigesetzt wird. Dies bedeutet aber, dass das so applizierte Q₁₀ bereits in höherer Konzentration in freier Form im Darmlumen vorliegt und auf diese Weise nicht erst durch Micellenbildung oder durch Abbau der das Q₁₀ umgebenden Lipide freigesetzt werden muss.

[0008] Der Erfindung liegt deshalb die Aufgabe zugrunde, die Bioverfügbarkeit von ursprünglich in Wasser nicht oder nur schwer löslichen, physiologisch bedeutsamen Substanzen wie ω -3-Fettsäuren, α -Liponsäure (Thioctäure), Ubichinonen (z.B. Coenzym Q₁₀), Phytosterinen und anderen zu verbessern und die industrielle Verarbeitung dieser Substanzen technologisch zu erleichtern.

[0009] Der Erfindung liegt auch die Aufgabe zugrunde, bei der Herstellung der Konzentrate die kleinstmögliche Menge an Lösungsvermittlern also insbesondere Polysorbaten — unter Berücksichtigung eines Toleranzbereichs zur Sicherung der vollständigen, stabilen Wasserlöslichkeit - einzusetzen, so dass die ADI-Werte (ADI=Acceptable Daily Intake) für die Polysorbate gemäß JECFA (=Joint FAO/WHO Expert Committee on Food Additives) und SCG-Substanzen (SCG = Scientific Committee on Food (EU)) wie Tocopherolen (z.B. α -Tocopherolen), ω -3-Fettsäuren, α -Liponsäure (Thioctäure) und Ubichinonen (z.B. Coenzym Q₁₀) deutlich unterschritten werden.

[0010] Zur Erfüllung dieser Aufgaben ist erfindungsgemäß vorgesehen, dass der in Wasser nicht oder nur schwer lösliche Wirkstoff in einen Überschuss an erwärmtem körperverträglichen Lösungsvermittler mit einem HLB-Wert zwischen 6 und 19, insbesondere Polysorbat 20 oder Polysorbat 80, eingetragen, die Mischung solange in der Wärme gerührt wird, bis sich ein klares zähflüssiges Zwischenprodukt ergibt, und das Zwischenprodukt anschließend auf Zimmertemperatur abgekühlt wird. Soll der Wirkstoff in wässriger Phase bereitgestellt werden, wird dem warmen Zwischenprodukt warmes destilliertes Wasser in solcher Menge beigegeben, wie der erwünschten Wirkstoffkonzentration entspricht, bis zur Homogenität gerührt und die so entstandene Phase rasch auf Zimmertemperatur abgekühlt.

[0011] Soll die Phase wasserfrei sein, wird dem warmen Zwischenprodukt ein warmes Triglycerid, beispielsweise ein leichtes Pflanzenöl mit hohem Linolsäuregehalt sowie warmes Polysorbat in solcher Menge zugegeben, daß sich die gewünschte Wirkstoffkonzentration ergibt, und erneut in der Wärme bis zur Klarheit des Konzentrats gerührt. Nach Abkühlen liegt der Wirkstoff in wasserfreier, jedoch in Wasser beliebig löslicher Phase vor. Diese eignet sich besonders zur Darreichung des Wirkstoffes in Kapselform, welche nur einen sehr geringen Wassergehalt auf Dauer toleriert.

[0012] Sowohl die wasserfreie wie die wässrige Pha-

se sind in Wasser bzw. Fett und/oder Öl löslich.

[0013] Wie Messungen mittels einphasiger Chromatographie zeigen, liegt der Wirkstoff sowohl in der wässrigen wie in der wasserfreien Phase in von Polysorbat eingehüllten Molekülaggregaten vor, wobei die Polysorbathülle jeweils einen Durchmesserbereich von etwa 30 nm aufweist, die Polysorbathülle mit eingeschlossenem Molekülaggregat also als eine Micelle anzusehen ist.

[0014] Im physiologischen Bereich hat die erfundungsgemäße Micellenbildung eine wesentlich verbesserte Bioverfügbarkeit des Wirkstoffes zur Folge. Der in Wasser nicht oder nur schwer lösliche Wirkstoff braucht nicht erst durch Einwirkung von Gallensekreten für das Darmlumen aufnahmefähig gemacht zu werden.

[0015] Ausführungsbeispiele der Erfindung sind in den Unteransprüchen angegeben und nachstehend ohne Beschränkung der Allgemeinheit der beanspruchten Erfindung erläutert. In der beigefügten Zeichnung zeigen

Figur 1 eine Darstellung gemessener Radiusverteilungen von Micellen;

Figur 2 eine schematische Erläuterung von Wirkstoffmicellen am Beispiel des Coenzyms Q₁₀ und Figur 3 eine schematische Erläuterung der Anordnung von Micellen, die einen Wirkstoff (Coenzym Q₁₀) sowie einen Hilfsstoff (Linolsäure) enthalten; Figur 4: eine schematische Darstellung von Phytosterinmicellen;

Figur 5: eine schematische Darstellung der Verteilung zusätzlicher Linolsäuremicellen um eine Phytosterinmicelle, und

Figur 6: eine schematische Darstellung einer Micelle einer ω 3 Fettsäure.

Beispiel 1: Coenzym Q₁₀

[0016] In 77 Massenteile von auf 85°C erwärmtes Polysorbat 80 werden 23 Massenteile Coenzym Q₁₀ eingebracht und die Mischung wird etwa 5 min bei 85°C gerührt, bis sich eine klare zähflüssige Masse leicht gelblicher Farbe ergibt. Die Massenanteile im Zwischenprodukt von Coenzym Q₁₀ zu Polysorbat 80 betragen 1 : 3,35 und das Verhältnis der Molekülzahlen beträgt 1 : 2,56, da das Molekulargewicht von Coenzym Q₁₀ 863,36 und dasjenige von Polysorbat 80 1130,00 beträgt.

[0017] Zur Gewinnung einer wässrigen Phase von Q₁₀ aus dem Zwischenprodukt, welche eine Q₁₀ Konzentration von etwa 3% enthält, wird dem warmen Zwischenprodukt etwa 865 Gewichtsteile an warmem Wasser zugesetzt und in der Wärme erneut gerührt, bis sich eine klare Flüssigkeit ergibt. Anschließend wird die Flüssigkeit rasch (beispielsweise innerhalb etwa 1 bis 2 Minuten) auf Zimmertemperatur (etwa 20°C) zur fertigen wässrigen Phase des Coenzymes Q₁₀ heruntergekühlt. Der durchschnittliche in der Phase vorliegende Partikelradius wurde durch Feld-Fluß-Faktionierung

(FFF) mit an die Chromatographiesäule angekoppeltem DAWN EOS-Detektor der Firma Wyatt Technologie Deutschland GmbH erfaßt. Wie die Kurve 1 in Figur 1 zeigt, liegt der Radius in Abhängigkeit von der kumulativen Gewichtsfraktion zwischen etwa 14 nm und etwa 16 nm und damit im Größenbereich der Micellen. Aus dem hierbei bestimmten durchschnittlichen Micellengewicht von etwa $1,588 \times 10^6$ Einheiten läßt sich errechnen, daß jede Micelle im Kern zwei Molekülaggregate

von insgesamt etwa 400 Molekülen Coenzym Q₁₀ aufweist, welcher von fünf untereinander gleichartigen Molekülaggregaten Polysorbat 80 von insgesamt etwa 1000 Molekülen Polysorbat 80 umgeben ist, wie schematisch in Figur 2 dargestellt ist.

[0018] Zur Gewinnung der wasserfreien Phase von 5 Gew% Coenzym Q₁₀ werden dem warmen Zwischenprodukt soviel Triglycerid und Polysorbat 80 in der Wärme (85°C) zugesetzt, daß die Mischung etwa 5 Teile Coenzym Q₁₀, etwa 16 Teile Triglycerid und etwa 79 Teile Polysorbat 80 aufweist. Als Triglycerid wird hier Distelöl eingesetzt, welches nach den Leitsätzen für Speisefette und Speiseöle vom 29/30.11.1983 in der am 2J3.12.1988 geänderten Fassung (GMB1. Nr. 21, Seite 379 vom 1.8.1987) einen hohen Linolsäuregehalt, nämlich von etwa 67,8% bis etwa 83,2%, aufweist. Linolsäure empfiehlt sich wegen seiner dem Coenzym Q₁₀ ähnlichen Molekülgröße (Molekulargewicht der Linolsäure 725). Die Mischung wird bis zur Klarheit in der Wärme gerührt und alsdann langsam abgekühlt. Man erhält eine wasserfreie Phase von Coenzym Q₁₀, deren Partikelgröße aufgrund der genannten Messungen ebenfalls im Micellenbereich liegt. Im Unterschied zur wässrigen Phase wird mit der genannten Methode ein Micellen-durchmesser von durchschnittlich $7,657 \times 10^5$ gemessen aus welchem sich ergibt, daß jede Micelle im Kern etwa 200 Coenzym Q₁₀ Moleküle und fünf umlagernde Molekülaggregate von insgesamt etwa 480 Molekülen Polysorbat 80 aufweist, wobei diese Micelle von vier weiteren untereinander gleichartigen Micellen umgeben ist, von denen jede im Kern etwa 190 Moleküle Distelöl bzw. Linolsäure und eine Polysorbathülle aus fünf Molekülaggregaten von insgesamt etwa 480 Molekülen Polysorbat aufweist. Eine schematische Darstellung dieser Micellenausbildung zeigt Figur 3.

[0019] Die wasserfreie Phase ist ausgezeichnet lagfähig und läßt sich in Wasser bei Körpertemperatur beliebig lösen. Sie ist deshalb als Zusatz zu Nahrungsergänzungsmitteln geeignet, die üblicherweise in Gelatinekapseln angeboten werden. Eine Erklärung für die besondere Beständigkeit der wasserfreien Phase kann unter Umständen darin gesehen werden, daß die zentrale, das Coenzym Q₁₀ enthaltende Micelle durch die vier umgebenden, den Hilfsstoff Distelöl d.h. im wesentlichen also Linolsäure enthaltenden Micellen vor dem Eindringen insbesondere polarer Moleküle wie H₂O weitgehend geschützt ist.

[0020] Zur Gewinnung der wässrigen Phase von Coenzym Q₁₀ werden dem warmen Zwischenprodukt etwa 5 Teile Coenzym Q₁₀, etwa 16 Teile Triglycerid und etwa 79 Teile Polysorbat 80 aufweist. Als Triglycerid wird hier Distelöl eingesetzt, welches nach den Leitsätzen für Speisefette und Speiseöle vom 29/30.11.1983 in der am 2J3.12.1988 geänderten Fassung (GMB1. Nr. 21, Seite 379 vom 1.8.1987) einen hohen Linolsäuregehalt, nämlich von etwa 67,8% bis etwa 83,2%, aufweist. Linolsäure empfiehlt sich wegen seiner dem Coenzym Q₁₀ ähnlichen Molekülgröße (Molekulargewicht der Linolsäure 725). Die Mischung wird bis zur Klarheit in der Wärme gerührt und alsdann langsam abgekühlt. Man erhält eine wasserfreie Phase von Coenzym Q₁₀, deren Partikelgröße aufgrund der genannten Messungen ebenfalls im Micellenbereich liegt. Im Unterschied zur wässrigen Phase wird mit der genannten Methode ein Micellen-durchmesser von durchschnittlich $7,657 \times 10^5$ gemessen aus welchem sich ergibt, daß jede Micelle im Kern etwa 200 Coenzym Q₁₀ Moleküle und fünf umlagernde Molekülaggregate von insgesamt etwa 480 Molekülen Polysorbat 80 aufweist, wobei diese Micelle von vier weiteren untereinander gleichartigen Micellen umgeben ist, von denen jede im Kern etwa 190 Moleküle Distelöl bzw. Linolsäure und eine Polysorbathülle aus fünf Molekülaggregaten von insgesamt etwa 480 Molekülen Polysorbat aufweist. Eine schematische Darstellung dieser Micellenausbildung zeigt Figur 3.

[0021] Zur Gewinnung der wässrigen Phase von Coenzym Q₁₀ werden dem warmen Zwischenprodukt etwa 5 Teile Coenzym Q₁₀, etwa 16 Teile Triglycerid und etwa 79 Teile Polysorbat 80 aufweist. Als Triglycerid wird hier Distelöl eingesetzt, welches nach den Leitsätzen für Speisefette und Speiseöle vom 29/30.11.1983 in der am 2J3.12.1988 geänderten Fassung (GMB1. Nr. 21, Seite 379 vom 1.8.1987) einen hohen Linolsäuregehalt, nämlich von etwa 67,8% bis etwa 83,2%, aufweist. Linolsäure empfiehlt sich wegen seiner dem Coenzym Q₁₀ ähnlichen Molekülgröße (Molekulargewicht der Linolsäure 725). Die Mischung wird bis zur Klarheit in der Wärme gerührt und alsdann langsam abgekühlt. Man erhält eine wasserfreie Phase von Coenzym Q₁₀, deren Partikelgröße aufgrund der genannten Messungen ebenfalls im Micellenbereich liegt. Im Unterschied zur wässrigen Phase wird mit der genannten Methode ein Micellen-durchmesser von durchschnittlich $7,657 \times 10^5$ gemessen aus welchem sich ergibt, daß jede Micelle im Kern etwa 200 Coenzym Q₁₀ Moleküle und fünf umlagernde Molekülaggregate von insgesamt etwa 480 Molekülen Polysorbat 80 aufweist, wobei diese Micelle von vier weiteren untereinander gleichartigen Micellen umgeben ist, von denen jede im Kern etwa 190 Moleküle Distelöl bzw. Linolsäure und eine Polysorbathülle aus fünf Molekülaggregaten von insgesamt etwa 480 Molekülen Polysorbat aufweist. Eine schematische Darstellung dieser Micellenausbildung zeigt Figur 3.

[0022] Zur Gewinnung der wässrigen Phase von Coenzym Q₁₀ werden dem warmen Zwischenprodukt etwa 5 Teile Coenzym Q₁₀, etwa 16 Teile Triglycerid und etwa 79 Teile Polysorbat 80 aufweist. Als Triglycerid wird hier Distelöl eingesetzt, welches nach den Leitsätzen für Speisefette und Speiseöle vom 29/30.11.1983 in der am 2J3.12.1988 geänderten Fassung (GMB1. Nr. 21, Seite 379 vom 1.8.1987) einen hohen Linolsäuregehalt, nämlich von etwa 67,8% bis etwa 83,2%, aufweist. Linolsäure empfiehlt sich wegen seiner dem Coenzym Q₁₀ ähnlichen Molekülgröße (Molekulargewicht der Linolsäure 725). Die Mischung wird bis zur Klarheit in der Wärme gerührt und alsdann langsam abgekühlt. Man erhält eine wasserfreie Phase von Coenzym Q₁₀, deren Partikelgröße aufgrund der genannten Messungen ebenfalls im Micellenbereich liegt. Im Unterschied zur wässrigen Phase wird mit der genannten Methode ein Micellen-durchmesser von durchschnittlich $7,657 \times 10^5$ gemessen aus welchem sich ergibt, daß jede Micelle im Kern etwa 200 Coenzym Q₁₀ Moleküle und fünf umlagernde Molekülaggregate von insgesamt etwa 480 Molekülen Polysorbat 80 aufweist, wobei diese Micelle von vier weiteren untereinander gleichartigen Micellen umgeben ist, von denen jede im Kern etwa 190 Moleküle Distelöl bzw. Linolsäure und eine Polysorbathülle aus fünf Molekülaggregaten von insgesamt etwa 480 Molekülen Polysorbat aufweist. Eine schematische Darstellung dieser Micellenausbildung zeigt Figur 3.

[0023] Zur Gewinnung der wässrigen Phase von Coenzym Q₁₀ werden dem warmen Zwischenprodukt etwa 5 Teile Coenzym Q₁₀, etwa 16 Teile Triglycerid und etwa 79 Teile Polysorbat 80 aufweist. Als Triglycerid wird hier Distelöl eingesetzt, welches nach den Leitsätzen für Speisefette und Speiseöle vom 29/30.11.1983 in der am 2J3.12.1988 geänderten Fassung (GMB1. Nr. 21, Seite 379 vom 1.8.1987) einen hohen Linolsäuregehalt, nämlich von etwa 67,8% bis etwa 83,2%, aufweist. Linolsäure empfiehlt sich wegen seiner dem Coenzym Q₁₀ ähnlichen Molekülgröße (Molekulargewicht der Linolsäure 725). Die Mischung wird bis zur Klarheit in der Wärme gerührt und alsdann langsam abgekühlt. Man erhält eine wasserfreie Phase von Coenzym Q₁₀, deren Partikelgröße aufgrund der genannten Messungen ebenfalls im Micellenbereich liegt. Im Unterschied zur wässrigen Phase wird mit der genannten Methode ein Micellen-durchmesser von durchschnittlich $7,657 \times 10^5$ gemessen aus welchem sich ergibt, daß jede Micelle im Kern etwa 200 Coenzym Q₁₀ Moleküle und fünf umlagernde Molekülaggregate von insgesamt etwa 480 Molekülen Polysorbat 80 aufweist, wobei diese Micelle von vier weiteren untereinander gleichartigen Micellen umgeben ist, von denen jede im Kern etwa 190 Moleküle Distelöl bzw. Linolsäure und eine Polysorbathülle aus fünf Molekülaggregaten von insgesamt etwa 480 Molekülen Polysorbat aufweist. Eine schematische Darstellung dieser Micellenausbildung zeigt Figur 3.

[0024] Zur Gewinnung der wässrigen Phase von Coenzym Q₁₀ werden dem warmen Zwischenprodukt etwa 5 Teile Coenzym Q₁₀, etwa 16 Teile Triglycerid und etwa 79 Teile Polysorbat 80 aufweist. Als Triglycerid wird hier Distelöl eingesetzt, welches nach den Leitsätzen für Speisefette und Speiseöle vom 29/30.11.1983 in der am 2J3.12.1988 geänderten Fassung (GMB1. Nr. 21, Seite 379 vom 1.8.1987) einen hohen Linolsäuregehalt, nämlich von etwa 67,8% bis etwa 83,2%, aufweist. Linolsäure empfiehlt sich wegen seiner dem Coenzym Q₁₀ ähnlichen Molekülgröße (Molekulargewicht der Linolsäure 725). Die Mischung wird bis zur Klarheit in der Wärme gerührt und alsdann langsam abgekühlt. Man erhält eine wasserfreie Phase von Coenzym Q₁₀, deren Partikelgröße aufgrund der genannten Messungen ebenfalls im Micellenbereich liegt. Im Unterschied zur wässrigen Phase wird mit der genannten Methode ein Micellen-durchmesser von durchschnittlich $7,657 \times 10^5$ gemessen aus welchem sich ergibt, daß jede Micelle im Kern etwa 200 Coenzym Q₁₀ Moleküle und fünf umlagernde Molekülaggregate von insgesamt etwa 480 Molekülen Polysorbat 80 aufweist, wobei diese Micelle von vier weiteren untereinander gleichartigen Micellen umgeben ist, von denen jede im Kern etwa 190 Moleküle Distelöl bzw. Linolsäure und eine Polysorbathülle aus fünf Molekülaggregaten von insgesamt etwa 480 Molekülen Polysorbat aufweist. Eine schematische Darstellung dieser Micellenausbildung zeigt Figur 3.

[0025] Zur Gewinnung der wässrigen Phase von Coenzym Q₁₀ werden dem warmen Zwischenprodukt etwa 5 Teile Coenzym Q₁₀, etwa 16 Teile Triglycerid und etwa 79 Teile Polysorbat 80 aufweist. Als Triglycerid wird hier Distelöl eingesetzt, welches nach den Leitsätzen für Speisefette und Speiseöle vom 29/30.11.1983 in der am 2J3.12.1988 geänderten Fassung (GMB1. Nr. 21, Seite 379 vom 1.8.1987) einen hohen Linolsäuregehalt, nämlich von etwa 67,8% bis etwa 83,2%, aufweist. Linolsäure empfiehlt sich wegen seiner dem Coenzym Q₁₀ ähnlichen Molekülgröße (Molekulargewicht der Linolsäure 725). Die Mischung wird bis zur Klarheit in der Wärme gerührt und alsdann langsam abgekühlt. Man erhält eine wasserfreie Phase von Coenzym Q₁₀, deren Partikelgröße aufgrund der genannten Messungen ebenfalls im Micellenbereich liegt. Im Unterschied zur wässrigen Phase wird mit der genannten Methode ein Micellen-durchmesser von durchschnittlich $7,657 \times 10^5$ gemessen aus welchem sich ergibt, daß jede Micelle im Kern etwa 200 Coenzym Q₁₀ Moleküle und fünf umlagernde Molekülaggregate von insgesamt etwa 480 Molekülen Polysorbat 80 aufweist, wobei diese Micelle von vier weiteren untereinander gleichartigen Micellen umgeben ist, von denen jede im Kern etwa 190 Moleküle Distelöl bzw. Linolsäure und eine Polysorbathülle aus fünf Molekülaggregaten von insgesamt etwa 480 Molekülen Polysorbat aufweist. Eine schematische Darstellung dieser Micellenausbildung zeigt Figur 3.

[0026] Zur Gewinnung der wässrigen Phase von Coenzym Q₁₀ werden dem warmen Zwischenprodukt etwa 5 Teile Coenzym Q₁₀, etwa 16 Teile Triglycerid und etwa 79 Teile Polysorbat 80 aufweist. Als Triglycerid wird hier Distelöl eingesetzt, welches nach den Leitsätzen für Speisefette und Speiseöle vom 29/30.11.1983 in der am 2J3.12.1988 geänderten Fassung (GMB1. Nr. 21, Seite 379 vom 1.8.1987) einen hohen Linolsäuregehalt, nämlich von etwa 67,8% bis etwa 83,2%, aufweist. Linolsäure empfiehlt sich wegen seiner dem Coenzym Q₁₀ ähnlichen Molekülgröße (Molekulargewicht der Linolsäure 725). Die Mischung wird bis zur Klarheit in der Wärme gerührt und alsdann langsam abgekühlt. Man erhält eine wasserfreie Phase von Coenzym Q₁₀, deren Partikelgröße aufgrund der genannten Messungen ebenfalls im Micellenbereich liegt. Im Unterschied zur wässrigen Phase wird mit der genannten Methode ein Micellen-durchmesser von durchschnittlich $7,657 \times 10^5$ gemessen aus welchem sich ergibt, daß jede Micelle im Kern etwa 200 Coenzym Q₁₀ Moleküle und fünf umlagernde Molekülaggregate von insgesamt etwa 480 Molekülen Polysorbat 80 aufweist, wobei diese Micelle von vier weiteren untereinander gleichartigen Micellen umgeben ist, von denen jede im Kern etwa 190 Moleküle Distelöl bzw. Linolsäure und eine Polysorbathülle aus fünf Molekülaggregaten von insgesamt etwa 480 Molekülen Polysorbat aufweist. Eine schematische Darstellung dieser Micellenausbildung zeigt Figur 3.

Beispiel 2: Phytosterin

[0020] Ausgegangen wird von dem ADM Phytosterol, das unter dem Produktcode 040095 von der ADM Nutraceutical, Decatur, Illinois 62526, U.S.A. bezogen werden kann. Dieses Produkt enthält wenigstens 90% Phytosterine, und zwar 40% - 58% Beta-Sitosterin, 20% - 30% Campesterin und 14% - 22% Stigmasterin sowie je bis zu etwa 5% Sitostanin und Brassicasterin. Nachfolgend wird dieses Produkt kurz als Phytosterin bezeichnet. Selbstverständlich lassen sich Phytosterine auch anderer Hersteller, die andere Zusammensetzungen in anderer Konzentration enthalten, wie nachstehend beschrieben mit den entsprechenden Ergebnissen behandeln. Die Erfindung ist daher auf das ADM Phytosterol nicht beschränkt.

[0021] Zur Herstellung einer wässrigen Phase werden etwa 320 g Polysorbat, vorzugsweise Polysorbat 80, auf etwa 100°C erhitzt. Dem warmen Polysorbat werden etwa 10 g Phytosterin hinzugegeben und die Mischung wird unter Beibehaltung der Temperatur von etwa 100°C solange, das heißt etwa 10 Minuten, gerührt, bis sich eine homogene und transparente etwa 3%ige Phytosterinkonzentration ergibt. Die entstehende wasserfreie Phase ist, gegebenenfalls nach Erwärmen auf etwa 40°C, beliebig in Wasser von 20°C löslich.

[0022] Die genannte Untersuchung zeigt, daß Micellen mit einer Moleküllaggregatanordnung gemäß Figur 4 vorliegen, wobei im Micellenkern etwa 107 Phytosterin-"Moleküle" und in der Polysorbat 80 - Hülle etwa 207 Polysorbatmoleküle vorhanden sind. Die Radientverteilung der Micellen ist aus Kurve 3 der Figur 1 ersichtlich und liegt zwischen etwa 15 nm und etwa 22 nm.

[0023] Zur Herstellung einer wasserfreien Phase werden zunächst etwa 100 g leichtes Pflanzenöl, beispielsweise Distelöl, auf etwa 100°C erhitzt. Zu dem heißen Distelöl werden etwa 10 g Phytosterin gegeben und die Mischung unter Beibehaltung der Temperatur von etwa 100°C solange, beispielsweise 10 Minuten, gerührt, bis sich das Phytosterin vollständig gelöst hat. Dieser Lösung werden etwa 220 g Polysorbat, vorzugsweise Polysorbat 80, zugegeben. Das Rühren wird bei etwa 100°C solange fortgesetzt, bis die Mischung transparent von leicht gelblicher Farbe geworden ist. Nach Abkühlen auf Zimmertemperatur liegt die wasserfreie Phase einer etwa 3%igen Phytosterinkonzentration vor. Sie ist in Wasser und Ölen löslich und bleibt gegenüber Salz- oder Magensäure ($\text{pH} < 1$) und auch gegenüber Wärmeeinwirkung stabil. Messungen zeigen, daß etwa 90% der Partikel der wasserfreien Phase einen Radius um die 16 nm zeigen. Die Moleküllaggregatanordnung zeigt schematisch Figur 5, gemäß welcher die Phytosterinmicelle von vier Linolsäuremicellen umgeben ist.

[0024] Die cholesterinsenkende Wirkung der Phytosterine ist seit Jahrzehnten bekannt und durch neuere Studien klinisch belegt.

Beispiel 3: ω 3 Fettsäure

[0025] Als Beispiel für eine ω -3-Fettsäure wird das Produkt Softgel verwendet, das von Merck KGaA, 5 Darmstadt, bezogen werden kann und dort unter der Produktnummer 1.00743.0200 HI-DHA 25 S geführt wird. Dieses Produkt enthält 25% - 28% Decosahexaensäure (DHA), 5% - 8% Eicosapentaensäure (EPA) und insgesamt etwa 34% - 40% ω 3 Fettsäure. Nachfolgend wird dieses Produkt kurz als Omega-3-Fettsäure bezeichnet. Selbstverständlich können auch ω 3 Fettsäuren anderer Hersteller wie nachfolgend beschrieben behandelt werden, wobei sich analoge Ergebnisse einstellen.

[0026] Als Beispiel für die Herstellung eines ω -3-Fettsäure-Konzentras werden etwa 800 Gramm Polysorbat 80 auf etwa 160 Grad Celsius erhitzt. Anschließend werden unter Beibehaltung der Temperatur etwa 200 Gramm Omega-3-Fettsäure hinzugegeben und unter

20 Beibehaltung der Temperatur etwa 5 Minuten lang gerührt, bis sich eine homogene Mischung als Zwischenprodukt ergeben hat. Das so hergestellte Zwischenprodukt ist transparent und behält seine Transparenz auch nach langsamer Abkühlung auf Zimmertemperatur bei.

[0027] Es ist in etwa 20°C warmem Wasser nach kurzem Rühren beliebig löslich, ohne daß Trübungen oder eine Sedimentierung eintreten. Das Zwischenprodukt, das etwa 6% ω 3 Fettsäuren enthält, weist Micellen auf, deren durchschnittliche Radiusverteilung in Kurve 4 der Figur

30 1 angegeben ist, wie Messungen des wässrigen Zwischenproduktes nach der vorstehend angegebenen Methode ergeben haben. Der durchschnittliche Micellendurchmesser liegt also bei etwa 33 nm. Die Moleküllaggregatanordnung zeigt Figur 6, auf die dort eingetragenen Zahlenwerte wird Bezug genommen.

[0028] Klarheit und Wasserlöslichkeit des wässrigen Zwischenproduktes bleiben auch dann erhalten, wenn diesem Magensäure (Salzsäure) zugegeben wird.

[0029] Ein Kilogramm des Zwischenproduktes enthält etwa 67 Gramm ω -3-Fettsäuren, so daß etwa 3 bis 4 Gramm dieses Zwischenproduktes deckt den menschlichen Tagesbedarf an ω -3-Fettsäuren decken.

Beispiel 4: Isoflavone

[0029] Ausgegangen wird von einem Sojabohnenextrakt pulver, das von der Archer-Daniels-Midland Company, U.S.A. unter der Marke NOVASOY bezogen werden kann. Dieses Produkt enthält mindestens 40 Gew%

50 Genistin, Daidzin und Glycitin und ihrer Aglycone im Mengenverhältnis 1,3:1,0:0,3. Daher enthalten 100g des genannten Extraktes 20,0g Genistin, 15,4g Daidzin und 4,6g Glycitin, also insgesamt 40g Isoflavone. Nachfolgend wird dieses Produkt kurz als Genistin-Isoflavon bezeichnet. Selbstverständlich kann auch ein entsprechendes Produkt eines anderen Herstellers eingesetzt werden, sofern es Isoflavone gegebenenfalls in anderer Zusammensetzung enthält. So ist beispielsweise von

der K.-W. Pfannenschmidt GmbH, Hamburg ein Sojabohnenextrakt erhältlich, das etwa 7,58% Genistin, 25,43% Genistein, 5,48% Daidzin und 1,67% Daidzein, also etwa 40% Isoflavone enthält. Nach der nachstehend beschriebenen Behandlung lassen sich etwa die gleichen Ergebnisse erzielen.

[0030] Etwa 166g des Genistin-Isoflavons werden in etwa 834g auf etwa 75°C erwärmtes Polysorbat 80 eingerieben und die Mischung bei dieser Temperatur etwa eine halbe Stunde lang gleichmäßig gerührt. Es ergibt sich ein klares, tiefbraunes Zwischenprodukt ohne Sediment. Gibt man etwa 1-2 ml dieses Zwischenproduktes zu der zehnfachen Menge an destilliertem Wasser von Zimmertemperatur, erhält man eine klare wässrige Phase. Wie die Messungen zeigen, liegen in ihr Micellen vor, von denen etwa 96,1% einen Radius von etwa 18nm bis etwa 20nm besitzen, wie Kurve 5 in Figur 1 zeigt.

[0031] Nach einer alternativen Verfahrensführung werden etwa 100g des Genistin-Isoflavons gleichmäßig in etwa 400g Wasser eingerührt, das zuvor auf etwa 60°C erwärmt wurde. Die Mischung wird unter Beibehaltung der Temperatur etwa 10 Minuten gerührt und anschließend unter Fortsetzung des Rührvorgangs etwa 500g Polysorbat 80 hinzugegeben und während der Zugabe die Temperatur auf etwa 100°C erhöht. Bei dieser Temperatur wird der Rührvorgang solange fortgesetzt, bis sich ein klares Zwischenprodukt ergeben hat.

Beispiel 5: Quercetin

[0032] Für ein Quercetin enthaltendes Mittel kann man von einem Quercetin-Dihydrat ausgehen, das von der Sigma-Aldrich-Chemie GmbH, Schnelldorf unter der Artikelnummer 83370-100G bezogen werden kann.

[0033] 67g Quercetin-Dihydrat werden gleichmäßig in etwa 280g Wasser eingerührt, das zuvor auf etwa 60°C erwärmt wurde. Die Mischung wird unter Beibehaltung der Temperatur etwa 5 Minuten konstant (etwa durch einen Magnetrührer) gerührt und anschließend während des Röhrens etwa 653g Polysorbat 80 hinzugegeben, wobei die Temperatur auf ungefähr 100°C erhöht wird. Das Röhren wird solange fortgesetzt, bis sich ein klares, transparentes Zwischenprodukt mit einem Gehalt von etwa 8,7% Quercetin ergibt. Eine wässrige Lösung desselben zeigt Micellen, von denen etwa 90% eine Radiusverteilung zwischen 17nm und 19nm aufweisen (Kurve 6 in Figur 1).

Beispiel 6: Lycopin

[0034] Ausgegangen wird von einem Produkt, das von BASE S.A., Schweiz, unter dem Namen Tomato Oleoresin bezogen werden kann. Es enthält etwa 40% Lycopin und wird nachfolgend kurz Base-Lycopin genannt. Ein Lycopin enthaltendes Produkt kann auch von der LycoRed Natural Products Industries Ltd, Beer-Sheva, Israel bezogen werden.

[0035] Etwa 100g Wasser werden auf knapp 100°C erhitzt und etwa 50g Base-Lycopin dem heißen Wasser zugegeben. Unter Beibehaltung der Temperatur wird etwa 5 Minuten kräftig gerührt, bis die Mischung homogen und transparent geworden ist. Anschließend werden etwa 850g Polysorbat 80 auf etwa 100°C erhitzt und der Mischung zugegeben. Das entstandene Gesamtgemisch wird solange bei etwa 100°C gerührt, bis sich ein homogenes und transparentes Zwischenprodukt ergibt.

[0036] Nach Abkühlung auf Raum- oder Körpertemperatur bleiben Klarheit und Wasserlöslichkeit der erhaltenen wässrigen Phase mit einem 2%igen Lycopingehalt erhalten. Gemäß Kurve 7 von Figur 1 haben etwa 86% der entstandenen Micellen einen Radius von etwa 15nm bis etwa 16nm.

[0037] Das polymere Galactosaminsulfat Chondroitin unterstützt die Regeneration von überbelastetem Knorpelgewebe und reduziert Symptome von Osteoarthritis.

[0038] Zu etwa 500g auf etwa 85°C erwärmtes Wasser werden etwa 300g Polysorbat 80 von etwa 85°C zugegeben und die Mischung wird bei etwa 85°C so lange (etwa 5 Minuten) gerührt, bis die Mischung homogen und transparent geworden ist. Anschließend werden dieser Mischung etwa 200g reines Chondroitinsulfat hinzugegeben. Diese Mischung wird bei der genannten Temperatur wiederum so lange kräftig gerührt, bis sich ein homogenes und transparentes Zwischenprodukt ergeben hat. Nach Abkühlung auf Raum- oder Körpertemperatur bleiben Klarheit und Wasserlöslichkeit der so erhaltenen Phase mit einem Gehalt von etwa 20% Chondroitinsulfat erhalten.

Beispiel 8: α -Liponsäure

[0039] Etwa 870 Gramm Polysorbat, vorzugsweise Polysorbat 80 werden auf etwa 120°C erhitzt und anschließend etwa 130 Gramm α -Liponsäure - zum Beispiel das Produkt alpha Liponsäure, Art.Nr. 1999/010, der Firma K.-W. Pfannenschmidt GmbH, Hamburg - hinzugegeben und unter Beibehaltung der Temperatur etwa 10 Minuten gerührt, bis sich ein homogenes transparentes Gemisch ergeben hat.

[0040] Das auf diese Weise hergestellte Zwischenprodukt läßt sich nach Abkühlung in etwa 25°C warmem Wasser unter Röhren beliebig lösen. Klarheit und Wasserlöslichkeit der wasserfreien Phase bleiben auch dann erhalten, wenn ihrer wässrigen Lösung Magensäure (Satzsäure) zugegeben wird.

[0041] Aus Vorstehendem erkennt man, daß in Wasser nicht oder nur schwer lösliche physiologisch wirksame Wirkstoffe durch Behandlung mit einem körerverträglichen Lösungsvermittler mit einem HLB-Wert zwischen 9 und 16, vorzugsweise einem Polysorbat, ins-

besondere Polysorbat 80, in der Wärme und anschließende teilweise rasche Abkühlung auf Raumtemperatur eine in Wasser und Ölen lösliche Phase von niedriger Wirkstoffkonzentration erhalten werden kann, welche Micellen mit Radien zwischen etwa 10nm und etwa 20nm aufweist. Diese Phase ist gut beständig vor allem gegenüber Säuren wie etwa der Magensäure. Sie ist vor allem industriell einfacher zu handhaben als die Wirkstoffe selbst. Die Beständigkeit der Phase kann noch dadurch erhöht werden, daß man einen Hilfsstoff wie etwa Linolsäure ergänzend einsetzt. Wie gezeigt wurde, umgeben sich die den Wirkstoff enthaltenden Micellen mit mehreren den Hilfsstoff enthaltenden Micellen, welche einen Schutz der Wirkstoff-Micellen bilden.

[0042] Die erfindungsgemäß gebildeten Micellen sind chemisch, mikrobiologisch, mechanisch und thermisch sehr stabil. Sie enthalten anteilig eine viel größere Menge an meist lipophilen Wirkstoffen als vergleichbare Liposomen. Die erfindungsgemäßen Wirkstoffkonzentrate bzw. die gebildeten Wirkstoffphasen lassen sich mit Vorteil Lebensmitteln, Nahrungsergänzungsmitteln, Haut-, Haar und Zahnpflegemitteln sowie kosmetischen oder pharmazeutischen Mitteln zusetzen. Die Wirkstoffkonzentrate sind absolut magensäurestabil. Durch die Micellenbildung sind die Wirkstoffe für den Organismus wesentlich schneller verfügbar als in Emulsionen verarbeitete Wirkstoffe. Die Resorption im intestinalen Bereich macht eine Beteiligung der Gallensäure überflüssig.

5

10

15

20

25

30

Patentansprüche

1. Wasserlösliches Konzentrat des Ubichinons Q₁₀, welches aus einer Lösung von Q₁₀ in erwärmtem Polysorbat besteht, gekennzeichnet durch einen Gehalt eines Hilfsstoffes in Form eines Triglycerids. 35
2. Konzentrat nach Anspruch 1, bestehend aus etwa 5 Gewichtsteilen Q₁₀, etwa 16 Gewichtsteilen Triglycerid und etwa 79 Gewichtsteilen Polysorbat 80. 40
3. Konzentrat nach Anspruch 1 oder 2, bei dem das Triglycerid Distelöl ist. 45
4. Verfahren zur Herstellung eines Konzentrats nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Mischung aus Q₁₀ und Polysorbat 80 in der Wärme ein Hilfsstoff in Form eines Triglycerids zugesetzt und bis zur Klarheit gerührt wird. 50
5. Verfahren nach Anspruch 4 mit Distelöl als Triglycerid. 55
6. Verfahren nach Anspruch 4 oder 5, bei dem das Polysorbat auf etwa 80 °C bis etwa 100 °C erwärmt wird.

Fig. 1

A = Coenzyme Q₁₀: n_{total} = 400

B = Emulsifier: n_{total} = 1.000

Fig. 2

A = Coenzyme Q₁₀: n_{total} = 200

A1 = Triglyceride: n_{total} = 760

B = Emulsifier: n_{total} = 2.400

Fig. 3

Fig. 5

Mw total = 2.924×10^5 (- 10 %)
30 nm

A1 = Triglyceride: $n_{\text{total}} = 106$

B = Emulsifier: $n_{\text{total}} = 180$

A = Ω -3-fatty acid $n_{total} = 370$

B = Emulsifier: $n_{total} = 435$

Fig. 6

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung
EP 04 01 0518

EINSCHLÄGIGE DOKUMENTE									
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.7)						
X	WO 99/57995 A (SUPERSAXO ANDREAS ; VESIFACT AG (CH); WEDER HANS G (CH); WEDER MARC AN) 18. November 1999 (1999-11-18) * Seite 16; Beispiel 10 * * Seite 17; Tabelle 1 * -----	1-6	A61K9/107 A61K31/122						
P,X	WO 01/28520 A (VESIFACT AG ; WEDER HANS G (CH); SUPERSAXO ANDREAS WERNER (CH); WEDER) 26. April 2001 (2001-04-26) * Seite 14, Zeile 8 - Zeile 18 * * Seite 32; Beispiel 5 * -----	1-6							
RECHERCHIERTE SACHGEBIETE (Int.Cl.7)									
A61K									
<p>Der vorliegende Recherchenbericht wurde für alle Patentanprüche erstellt</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;">Recherchenort</td> <td style="width: 33%;">Abschlußdatum der Recherche</td> <td style="width: 33%;">Prüfer</td> </tr> <tr> <td>Den Haag</td> <td>13. September 2004</td> <td>Muller, S</td> </tr> </table>				Recherchenort	Abschlußdatum der Recherche	Prüfer	Den Haag	13. September 2004	Muller, S
Recherchenort	Abschlußdatum der Recherche	Prüfer							
Den Haag	13. September 2004	Muller, S							
KATEGORIE DER GENANNTEN DOKUMENTE									
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtzahnärztliche Offenbarung P : Zwischenliteratur		T : der Erfindung zugrunde liegende Theorien oder Grundätze E : älteres Patentsdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument Z : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument							
EPO FORM 1602/03 R2 (P00202)									

**ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT
ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.**

EP 04 01 0510

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am
Diese Angaben dienen nur zur Orientierung und erfolgen ohne Gewähr.

13-09-2004

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9957995	A	18-11-1999	EP	0956779 A1		17-11-1999
			AU	4039299 A		29-11-1999
			BR	9911775 A		02-10-2001
			CA	2331661 A1		18-11-1999
			WO	9957995 A1		18-11-1999
			EP	1085821 A1		28-03-2001
			JP	2002514394 T		21-05-2002
			NO	20005659 A		04-01-2001
<hr/>						
WO 0128520	A	26-04-2001	AU	7638200 A		30-04-2001
			AU	7638300 A		30-04-2001
			AU	7767600 A		30-04-2001
			WO	0128518 A1		26-04-2001
			WO	0128519 A1		26-04-2001
			WO	0128520 A1		26-04-2001
			EP	1408930 A1		21-04-2004
			EP	1289502 A1		12-03-2003
			JP	2003512312 T		02-04-2003
<hr/>						

EPO FORM P051

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82