

Chapter 5.1 Relations

Instructor: Abhishek Santra Email: abhishek.santra@uta.edu

1

Binary Relations

- > $S = \{1, 2, 4\}$
- What is the Cartesian product of set S with itself?
 S × S = {(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (4,1), (4,2), (4,4)}
- Certain ordered pairs of objects have relationships
- The notation $x \rho y$ implies that the ordered pair (x, y) satisfies the relationship ρ .
- Find the subset of $S \times S$ satisfying the relation $x \rho y \leftrightarrow x = y/2$ $\{(1, 2), (2, 4)\}$

Fall 2022

CSE2315: Abhishek Santra

Binary Relations

- DEFINITION: BINARY RELATION on a set S Given a set S, a binary relation ρ on a set S is a subset of S × S (a set of ordered pairs of elements of S).
- A binary relation is always a subset with the property that:

$$x \rho y \leftrightarrow (x, y) \in \rho$$

- What is the set where binary relation ρ on S is defined by $x \rho y \leftrightarrow x + y$ is odd where $S = \{1, 2\}$?
 - The set for ρ is $\{(1,2), (2,1)\}$.

Fall 2022

CSE2315: Abhishek Santra

3

3

Relations on Multiple Sets

- Given two sets S and T, a binary relation from S to T is a subset of S × T
- \triangleright S = {1, 2, 3} and T = {2, 4, 7}
 - What is the set that satisfies the relation $x \rho y \leftrightarrow x = y/2$
 - **(1,2), (2,4)**
- \triangleright S = {2, 4, 6, 8} and T = {2, 3, 4, 6, 7}.
 - What is the set that satisfies the relation $x \rho y \leftrightarrow x = (y + 2)/2$
 - **(2,2), (4,6)**
- How many elements of set S are paired with how many elements of Set T?
- ► How many times the 1st and 2nd component appear?

Fall 2022

CSE2315: Abhishek Santra

Types of Relationships

- One-to-one: If each first component and each second component only appear once in the relation.
- One-to-many: If some first component is paired with more than one second component
- Many-to-one: If some second component is paired with more than one first component.
- Many-to-many: If at least one first component is paired with more than one second component and at least one second component is paired with more than one first component.

Fall 2022

CSE2315: Abhishek Santra

5

5

Relationships: Examples

- \triangleright If *S* = {2, 5, 7, 9}, then identify the types of the following relationships:
 - {(2,5), (5,7), (7,2)} **one-to-one** (1st and 2nd components appear only once)
 - {(5,2), (7,5), (9,2)}
 many-to-one (2nd component appears multiple times)
 - {(7,9), (2,5), (9,9), (2,7)}
 many-to-many (1st and 2nd components appear multiple times)

Fall 2022

CSE2315: Abhishek Santra

Properties of Relationships

- \triangleright Let ρ be a binary relation on a set S
 - ρ is reflexive means $(\forall x)$ $(x \in S \rightarrow (x,x) \in \rho)$
 - ρ is symmetric means: $(\forall x)(\forall y)$ $(x \in S \land y \in S \land (x,y) \in \rho \rightarrow (y,x) \in \rho)$
 - ρ is transitive means:

 $(\forall x)(\forall y)(\forall z) (x \in S \land y \in S \land z \in S \land (x,y) \in \rho \land (y,z) \in \rho \rightarrow (x,z) \in \rho)$

• ρ is antisymmetric means: $(\forall x)(\forall y) \ (x \in S \ \Lambda \ y \in S \ \Lambda \ (x,y) \in \rho \ \Lambda \ (y,x) \in \rho \rightarrow x = y)$

- \triangleright Example: Consider the relation ρ of equality(=) on S.
 - For any $x \in S$, x = x, or $(x,x) \in \rho$ (reflexive)
 - For any $x,y \in S$, if x = y then y = x, or $(x,y) \in \rho \rightarrow (y,x) \in \rho$ (symmetric)
 - For any $x,y,z \in S$, if x=y and y=z, then x=z, or $[(x,y) \in \rho \text{ and } (y,z) \in \rho \rightarrow (x,z) \in \rho]$ (transitive)

Fall 2022

CSE2315: Abhishek Santra

7

7

Example

- Consider the relation ≤ on the set of nonnegative integers N.
 - Is it reflexive?

Yes, since for every nonnegative integer x, $x \le x$.

Is it symmetric?

No, since $x \le y$ doesn't imply $y \le x$

- Counter Example: (2,4) satisfies property, (4,2) does not
- If this was the case, then x = y. This property is called antisymmetric.
- Is it transitive?

Yes, since if $x \le y$ and $y \le z$, then $x \le z$.

Fall 2022

CSE2315: Abhishek Santra

Instant Exercises

- Test each binary relation on the given set S for reflexivity, symmetry, antisymmetry, and transitivity
 - $S = \{1,2,3\}; \rho = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}$
 - Reflexive? Yes, symmetric? Yes, transitive? Yes, antisymmetric? No
 - $S = \{0,1\}$; $x \rho y \leftrightarrow x = y^2$
 - $-\rho = \{(0,0), (1,1)\}$
 - Reflexive? Yes, symmetric? Yes, transitive? Yes, antisymmetric? Yes
 - S = set of all lines in the plane; x ρ y ↔ x is parallel to y or x coincides with y
 - Reflexive? Yes, symmetric? Yes, transitive? Yes, antisymmetric? No
 - S = N; $x \rho y \leftrightarrow x = y^2$
 - Reflexive? No, symmetric? No, transitive? No, antisymmetric? Yes

Fall 2022

CSE2315: Abhishek Santra

10

10

Closures of Relations

- \triangleright A binary relation ρ^* on set S is the closure of a relation ρ on S with respect to property P if:
 - 1. ρ^* has the property P
 - 2. $\rho \subseteq \rho^*$
 - 3. ρ^* is a **smallest subset** of any other relation on S that includes ρ and has the property P
- **Example**: Let $S = \{1, 2, 3\}$ and $\rho = \{(1,1), (1,2), (1,3), (3,1), (2,3)\}.$
 - This is **not reflexive**, **not transitive and not symmetric**.
 - Closure of ρ with respect to reflexivity is
 {(1,1),(1,2),(1,3), (3,1), (2,3), (2,2), (3,3)} and it contains ρ
 - Closure of ρ with respect to symmetry is {(1,1), (1,2), (1,3), (3,1), (2,3), (2,1), (3,2)}
 - Closure of ρ with respect to transitivity is {(1,1), (1,2), (1,3), (3,1), (2,3), (3,2), (3,3), (2,1), (2,2)}

Fall 2022

CSE2315: Abhishek Santra

Exercise: Closures of Relations

- Find the **reflexive, symmetric and transitive closure** of the relation $\{(a,a), (b,b), (c,c), (a,c), (a,d), (b,d), (c,a), (d,a)\}$ on the set $S = \{a, b, c, d\}$
- Reflexive Closure {(a,a),(b,b),(c,c),(a,c),(a,d),(b,d),(c,a),(d,a), (d,d)}
- Symmetric Closure {(a,a),(b,b),(c,c),(a,c),(a,d),(b,d),(c,a),(d,a), (d,b)}
- Transitive Closure
 {(a,a),(b,b),(c,c), (a,c),(a,d),(b,d),(c,a),(d,a),(b,a),(c,d),(d,d),(d,c),(b,c)}

Fall 2022

CSE2315: Abhishek Santra

12

12

Partial Ordering

- A binary relation on a set S that is reflexive, antisymmetric, and transitive is called a partial ordering on S.
- If ρ is a partial ordering on S, then the ordered pair (S, ρ) is called a **partially ordered set** (also known as a **poset**).
- > Examples:
 - On **N**, $x \rho y \leftrightarrow x \le y$.
 - On $\{0,1\}$, $x \rho y \leftrightarrow x = y^2 \Rightarrow \rho = \{(0,0), (1,1)\}$.
- \triangleright Denote an arbitrary, partially ordered set by (S, \leq) with (x,y) pairs
 - If $x \le y$, then either x=y or $x\ne y$.
 - If $x \le y$, but $x \ne y$, we write < and say that
 - x is a predecessor of y or y is a successor of x
 - If x<y and there is no z with x<z<y, then x is an immediate predecessor of y</p>
 - That is, (x, z) and (z, y) are NOT part of the relation.

Fall 2022

CSE2315: Abhishek Santra

Example

- Consider the relation "x divides y" on {1,2,3,6,12,18}
 - Write the ordered pairs (x,y) of this relation

(1,2), (1,3), **(1,6)**, (1,12), (1,18), **(2,6)**, (2,12), (2,18), **(3,6)**, (3,12), (3,18), (6,12), (6,18), (1,1), (2,2), (3,3), (6,6), (12,12), (18,18)

- Write all the predecessors of 6
 1, 2, 3
- Write all the immediate predecessors of 6

2, 3 Why?

1 < 2 < 6, (1,2): 1 predecessor of 2 and, then (2,6): 2 predecessor of 6

So, 1 is not an immediate predecessor of 6

Fall 2022

CSE2315: Abhishek Santra

14

14

Hasse Diagram

- ➤ A diagram used to **visually depict a partially ordered set (S, ≤)** if S is finite.
 - Each of the elements of S is represented by a dot, called a node, or vertex, of the diagram.
 - If x is an immediate predecessor of y, then the node for y is placed above the node for x and the two nodes are connected by a straight-line segment.
 - Example:

Given the partial ordering on a set $S = \{a, b, c, d, e, f\}$ as, $\{(a,a), (b,b), (c,c), (d,d), (e,e), (f,f), (a,b), (a,c), (a,d), (a,e), (d,e)\},$

Immediate predecessors: b: a, c: a, d: a, e: d; the Hasse diagram is:

Fall 2022

CSE2315: Abhishek Santra

Equivalence Relation

- A binary relation on a set S that is reflexive, symmetric, and transitive is called an equivalence relation on S
- > Examples:
 - On **N**, $x \rho y \leftrightarrow x + y$ is even.
 - On {1, 2, 3}, $\rho = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}.$

Fall 2022

CSE2315: Abhishek Santra

17

17

Equivalence Class

For equivalence relation ρ on set S and $x \in S$, the equivalence class of x (denoted by [x]) is the set of all members of S to which x is related.

$$[x] = \{ y \mid y \in S \land x \rho y \}$$

Example, for $\rho = \{(a,a), (b,b), (c,c), (a,c), (c,a)\}$ on $S = \{a,b,c\}$

$$[a] = \{a, c\} = [c]$$

 $[b] = \{b\}$

Fall 2022

CSE2315: Abhishek Santra

Exercises

 \blacktriangleright Which of the following ordered pairs belong to the binary relation ρ on N?

 $x \rho y \leftrightarrow x + y < 7;$ (1,3), (2,5), (3,3), (4,4) $x \rho y \leftrightarrow 2x + 3y = 10;$ (5,0), (2,2), (3,1), (1,3)

➤ Identify each relation on **N** as one-to-one, one-to-many, many-to-one or many-to-many:

• $\rho = \{(12,5), (8,4), (6,3), (7,12)\}$ One-to-one

• $\rho = \{(2,7), (8,4), (2,5), (7,6), (10,1)\}$ One-to-many

• $\rho = \{(1,2), (1,4), (1,6), (2,3), (4,3)\}$ Many-to-many

Fall 2022

CSE2315: Abhishek Santra

2/

24

Exercises

- Test if reflexive? symmetric? Transitive? Antisymmetric?
 - S = N; $x \rho y \leftrightarrow x + y$ is even
 - Reflexive? Yes, symmetric? Yes, transitive? Yes, antisymmetric? No
 - S = $\{x \mid x \text{ is a person living in Dallas}\}; x \rho y \leftrightarrow x \text{ is older than y}$
 - Reflexive? No, symmetric? No, transitive? Yes, antisymmetric? Yes (hypothesis of it is false, which makes whole statement TRUE)
 - S = {x | x is a student in the class}; x ρ y ↔ x sits in the same row as y
 - Reflexive? Yes, symmetric? Yes, transitive? Yes, antisymmetric? No
 - $S = Z^+$ (positive integers); $x \rho y \leftrightarrow x$ divides y
 - Reflexive? Yes, symmetric? No, transitive? Yes, antisymmetric? Yes

Fall 2022

CSE2315: Abhishek Santra

Exercises

- S = {0, 1, 2, 4, 6}. Test the following binary relations on S for reflexivity, symmetry, antisymmetry, and transitivity. Find the closures for each category for all of them:
 - $\rho = \{(0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (4,6)\}$

Reflexive, Antisymmetric; Symmetric Closure: add (1,0),(2,1),(4,2),(6,4), Transitive Closure: add (1,4),(2,6),(1,6),(0,2),(0,4),(0,6)

 $\rho = \{(0,0), (1,1), (2,2), (4,4), (6,6), (4,6), (6,4)\}$

Reflexive, symmetric, transitive

• $\rho = \{(0,1), (1,0), (2,4), (4,2), (4,6), (6,4)\}$

Symmetric; Reflexive Closure: add (0,0),(1,1),(2,2),(4,4),(6,6); Transitive Closure: add (0,0),(1,1),(2,2),(2,6),(4,4),(6,2),(6,6)

- For the relation {(1,1), (2,2), (1,2), (2,1), (1,3), (3,1), (3,2), (2,3), (3,3), (4,4), (5,5), (4,5), (5,4)}
 - What is [3] and [4]?

 $[3] = \{1,2,3\}$

 $[4] = \{4,5\}$

Fall 2022

CSE2315: Abhishek Santra

26

26

Summary

- > Binary Relation
 - On S
 - From S to T
- > Types of Relationships
- > Properties of Relationships
- Closure of Relations
- Partial Ordering and Hasse Diagram
- Equivalence Relation and Equivalence Class

Fall 2022

CSE2315: Abhishek Santra

