Topic: Spatial Database

Go Frendi Gunawan gofrendiasgard@gmail.com https://github.com/goFrendiAsgard

About the topic

- The benefit of using database
- The spatial database standard
- Import your shp into database

Shp format

- Used by ESRI
- Widely used
- Binary
- Not the only format available
- Not friendly to open source

Shp alternatives

- Geojson
 - http://geojson.org
- Database
 - http://www.opengeospatial/standards/sfs
 - Real world RDBMS:
 - Post-gis (Postgree)
 - Spatialite (SQLite)
 - MySQL-spatial-extension (MySQL)

The benefit of GeoJSON

- Greatly compatible with javascript
 - http://leaflet.cloudmade.com
- Can be produced easily by php (e.g: fetch from database and present it as json)
 - json encode
 - json_decode
- Human readable
- Fat-free (compare to xml)

The benefit of using database

- Platform independent
- Can be used in many application (desktop & web)
- The freedom to perform "acrobatic SQL-query"

How about "normal" database?

- It is not standardized
- Need your own logic to:
 - Calculate the area of polygon
 - Selecting every point in a polygon
 - Spatial things
- It is just not easy for spatial tasks

Who make spatial-database?

- OGC (Open Geo Spatial)
 - An open source organization
 - Making standard
 - http://www.opengeospatial.org.standards/sfs
 - Good guys
 - Have too much time:)

Special things with spatial database

- Geom Field
- Spatial relation
- Standardized

Geomfield

- Define it
 - Point, Polyline, Polygon, Geometry
- Fetch it
 - AsBinary
 - not readable
 - AsText
 - POINT(12.34 15.75)
- Insert it
 - GeomFromText('POLYGON ((0 0, 0 3, 3 3, 3 0, 0 0))')

Spatial Relation

- Contains(g1, g2)
- Crosses(g1, g2)
- Disjoint(g1, g2)
- Equals(g1, g2)
- Intersects(g1, g2)
- Overlaps(g1, g2)
- Touches(g1, g2)
- Within (g1, g2)
- More here:

http://dev.mysql.com/doc/refman/5.1/en/functions-for-testing-spatial-relations-between-geometric-objects.html

Convert shp to database

- Use ogr2ogr (don't worry there is a GUI for this)
 - ogr2ogr -f "MySQL"
 MySQL:"geo,user=root,host=localhost,password=to
 or" -lco engine=MYISAM airports.shp
- Use qgis plugin (works for spatialite and postgis)

Convert database to geoJSON

- SELECT ASTEXT(your_geom_field) FROM your_table
 - POINT(123.45 67.89)
- Perform a little logic to change that into this:
 - {Feature:point, coordinate:[123.45, 67.89])
- Or simply use geophp (only for php)

Best practice (MySQL)

- Importing and exporting binary data into plain-text SQL is risky
- Use mysqldump instead
 - Mysqldump -u root -p password database > filename.sql
 - Mysql -u root -p password database < filename.sql

Let's get your hand dirty

- Transform shp into mySQL with ogr2ogr
 - Alaska
 - Grassland
 - airports
- Do some "spatial SQL"
 - Airports within grassland
- Show it on cloudmade's leaflet platform (require a bit php)