Theory of Computation Based on lectures by Dr. Arpit Sharma

Notes taken by Rwik Dutta

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.¹

Contents

1	\mathbf{Fini}	ite Automata	2
	1.1	Language of Finite Automata	2
	1.2	Set Operations on Regular Languages	2

¹This is how Dexter Chua describes his lecture notes from Cambridge. I could not have described mine in any better way.

1 Finite Automata

Definition 1 (Deterministic Finite Automaton). A collection $(Q, \Sigma, \delta, q_0, F)$ such that

- 1. Q is a finite set of states.
- 2. Σ is a finite alphabet.
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function.
- 4. $q_0 \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of accepting states.

We will use automata to solve set membership problems, i.e., given a finite alphabet Σ and a finite language $L \subset \Sigma^*$, we need to find whether a given string $x \in L$.

Note. Before a finite automaton has received any input, it is in its initial state, which is an accepting state precisely if the null string is accepted.

Note. At each step, a finite automaton is in one of a finite number of states (it is a finite automaton because its set of states is finite). Its response depends only on the current state and the current symbol.

1.1 Language of Finite Automata

Definition 2 (Language of Automaton). L(M) of an automaton M is the set of all strings x that are accepted by the automaton.

Definition 3 (Extended transition function). Let $M(Q, \Sigma, \delta, q_0, F)$ be a finite automaton. The extended transition function is given by

$$\delta^* : Q \to \Sigma^*$$
$$\delta^*(q, \epsilon) = q$$
$$\delta^*(q, xa) = \delta(\delta^*(q, x), a)$$

for all $q \in Q, x \in \Sigma^*, a \in \Sigma$. $\epsilon \in \Sigma^*$ represents the empty string.

Hence, $x \in L(M)$ if $\delta^*(q_0, x) \in F$.

Definition 4 (Regular language). A language L is a regular language if \exists some finite automaton M such that L(M) = L.

1.2 Set Operations on Regular Languages

Regular languages are closed under certain operations.

Theorem 1. If $M(Q, \Sigma, \delta, q_0, F)$ accepts L, L^C is accepted by the finite automaton $M'(Q, \Sigma, \delta, q_0, F')$ where

$$F' = Q \backslash F = F^C$$

Lemma 1.1. L is a regular language $\implies L^C$ is a regular language.

Theorem 2. Let $M_1(Q_1, \Sigma, \delta_1, q_1, F_1)$ accept L_1 and $M_2(Q_2, \Sigma, \delta_2, q_2, F_2)$ accept L_2 . Let $M(Q, \Sigma, \delta, q_0, F)$ be a finite automaton with

$$Q = Q_1 \times Q_2$$

$$q_0 = (q_1, q_2)$$

$$\delta((p, q), a) = (\delta_1(p, a), \delta_2(q, a))$$

We have L(M) =

- 1. $L_1 \cup L_2$ if $F = \{(p,q)| p \in F_1 \text{ or } q \in F_2\}$
- 2. $L_1 \cap L_2$ if $F = \{(p,q) | p \in F_1 \text{ and } q \in F_2\}$
- 3. $L_1 \setminus L_2$ if $F = \{(p,q) | p \in F_1 \text{ and } q \notin F_2\}$

Lemma 2.1. L_1, L_2 are regular languages with the same alphabet $\implies L_1 \cup L_2, L_1 \cap L_2$ and $L_1 \setminus L_2$ are regular languages.