

VQA_POISSON:

Efficient and Scalable Quantum Library Solving Two-Dimensional Poisson Equations with Mixed Boundary Conditions

Dongyun Chung, Jiyong Choi, Jung-Il Choi*

2025 / 08 / 14

School of Mathematics and Computing (Computational Science and Engineering)

Contents

- Introduction
- Method Summary
- **■** Installation & Execution
 - Requirements
 - Run Instructions

Overview

Library Structure

■ Configuration

- input_1D
 - → config.yaml
 - → rhs.csv
 - → initial_params.csv
- input_2D

■ Validation

- 1D validation (lonQ Simulator)
- License & Contact

Introduction

VQA_POISSON provides:

■ Unified Framework

- A unified framework conducting optimization with Variational Quantum Algorithms using QuantumComputer, QuantumCalculator, QuantumOptimizer classes.
- Can be further scaled with the same structure for other optimization problems, assuming that the corresponding cost function and quantum circuits are designed.
- Supports execution on both IBM hardware & IonQ Simulator

■ Integrated Library

- Our library integrates algorithms from several references^{(1), (2), (3)} solving Poisson equations, as well as subroutines⁽⁴⁾ that optimize circuits for better compatibility with IBM hardware architecture
- Adapts the quantum circuits according to boundary conditions.
- Provides stability analysis for the configuration provided.

■ Test runs & Examples

A Jupyter Notebook & test run output for simple 1D cases on lonQ simulator

Method Summary

■ Poisson Equation

$$\nabla^2 \psi(x_1, \dots, x_n) = f(x_1, \dots, x_n)$$

• The Poisson equation is a multi-dimensional PDE where f is the known source function and p is the unknown scalar field.

■ Cost Function

 The cost function uses the energy functional from FEM methods and central difference scheme from FDM methods:

$$E_{\text{discrete}}(\boldsymbol{\theta}) = -\frac{1}{2} \frac{\left[\langle f, \psi(\boldsymbol{\theta}) | X \otimes I^{\otimes n} | f, \psi(\boldsymbol{\theta}) \rangle \right]^2}{\langle \psi(\boldsymbol{\theta}) | A | \psi(\boldsymbol{\theta}) \rangle}$$

• For mathematical detail, refer to Sato et al. (2021)⁽¹⁾

■ Boundary Conditions

- For general Robin boundary conditions, we adopt the method from Choi et al. (2025)⁽²⁾
- For periodic boundary conditions, we adopt the QFT method from Liu et al. (2025)⁽³⁾ with the LNN-optimized QFT from Park et al. (2023)⁽⁴⁾

⁽³⁾ Xiaoqi Liu, Yuedi Qu, Ming Li, Shen Ming and Shu-Qian Shen. A variational quantum algorithm for the Poisson equation based on the banded Toeplitz systems. *Commun. Theor. Phys.*, 77(4):045101, 2025. doi: 10.1088/1572-9494/ad8bae (4) Byeongyong Park and Doyeol Ahn. Reducing CNOT count in quantum Fourier transform for the linear nearest-neighbor architecture. *Sci Rep* 13, 8638 (2023). https://doi.org/10.1038/s41598-023-35625-3

Installation & Execution

■ Requirements

- Make sure your Python environment matches the following criteria:
 - → Python >= 3.8
 - → qiskit 1.4.3
 - \rightarrow qiskit-ionq 0.5.13
 - → qiskit-ibm-runtime 0.39.0
 - → NumPy, SciPy, Matplotlib

Important note:

- qiskit's source code, library functions, and internal structure can change significantly even between minor releases.
 Using a newer (or older) version than the ones listed above may lead to incompatibilities or runtime errors.
- For lonQ simulators, our main code automatically retrieves the backend using the user's IONQ_API_KEY from the operating system environment variables
- For IBM hardware execution, the backend is automatically chosen as the least busy available device via the QiskitRuntimeService().least_busy() method.
- For more details, refer to the official documentation of IBM and IonQ.

Installation & Execution

■ Run Instructions

- Clone our git (https://github.com/MPMC-Lab/VQA_POISSON.git) via git clone
- To execute the main script, move inside to VQA_POISSON via `cd VQA_POISSON` and run main_1D.py or main_2D.py.
- The user can modify problem settings (grid size, ansatz depth, backend, etc) via input_1D or input_2D.
 - → For details about configurations, refer to Page 9.

Overview

■ Library Structure

List of expectation values

Laplacian Processor / Numerator Processor

- Make circuit to compute cost function
- Process bitstrings to expectation value

List of bitstrings

List of circuits

Quantum Computer

- Transpile circuit from Processor
- Execute circuit on backend

Input

- Problem config
- Initial parameters
- RHS of Poisson equation

Quantum Optimizer

- Combine results from Laplacian Processor & Numerator Processor to construct cost function Conduct optimization with optimizer from Scipy
- Measure optimal amplitudes from backend

Cost function

Updated parameters

SciPy optimizer

- Receive cost function from Quantum Optimizer
- Conduct classical optimization

Output

- Optimal parameters
- Optimal amplitudes

t [

User

Library Structure

■ input_1D / config.yaml

- grid_num
 - → Number of grid points **excluding** the boundary nodes (Make sure this is a power of 2):

- ansatz_depth
 - → Depth of the default LNN ansatz. For userdefined ansatz, this parameter is ignored.
- boundary_condition
 - → "R" for Robin boundary conditions, "P" for periodic boundary conditions.
- method
 - → Type of the classical optimizer in SciPy.optimize.minimize.
- x0, x1
 - → Coordinates of the edges in 1D domain.

```
# Number of interior grid points (excluding boundary, must be a power of 2
grid num: 16
# Depth of the variational ansatz
ansatz depth: 4
# Type of boundary condition: 'P' or 'R'
boundary condition: R
# Type of optimizer
method: Powell
# Length of 1D Domain
x0: 0.0
x1: 1.0
# Boundary constants (Only used for 'R')
alpha: 0.0
beta: 0.0
gamma: 0.0
# Number of shots per circuit execution
num shots: 524288
# Backend type: either 'simulator' or 'hardware'
backend: hardware
```


■ input_1D / config.yaml

- alpha, beta, gamma
 - → Constants only used for Robin boundary conditions. Make sure that

$$\alpha u(x_0) + \beta \frac{\partial u(x_0)}{\partial x} = \gamma,$$

$$\alpha u(x_n) - \beta \frac{\partial u(x_N)}{\partial x} = \gamma$$

where x_0 , x_N are the boundary nodes.

- num_shots
 - → Number of shots applied for each quantum circuit
- backend
 - → IBM hardware or IonQ Simulator

```
# Number of interior grid points (excluding boundary, must be a power of 2
grid num: 16
# Depth of the variational ansatz
ansatz depth: 4
# Type of boundary condition: 'P' or 'R'
boundary condition: R
# Type of optimizer
method: Powell
# Length of 1D Domain
x0: 0.0
x1: 1.0
# Boundary constants (Only used for 'R')
alpha: 0.0
beta: 0.0
gamma: 0.0
# Number of shots per circuit execution
num shots: 524288
# Backend type: either 'simulator' or 'hardware'
backend: hardware
```


■ input_1D / initial_params.csv

- initial_params.csv specifies the initial parameters for VQA optimization.
- Make sure that the length of initial_params.csv matches the number of parameters in the ansatz.
- For the default design, param_num = $log_2(grid_num) \times ansatz_depth$

- input_1D / rhs.csv
 - The source function f(x) of the Poisson equation:

$$\nabla^2 \psi(\mathbf{x}) = f(\mathbf{x})$$

• The data specified in rhs.csv corresponds to f(x) for each node:

- Make sure the length of rhs.csv is equal to grid_num in config.yaml
- rhs.csv will be automatically normalized in the main code to be implemented as a StatePreparation block from qiskit

```
input_1D > III rhs.csv > 1 data
       -1.813535049740470084e+00
       -3.565312338457577113e+00
       -5.195677191609339829e+00
       -6.649109489528789219e+00
       -7.876114338510178392e+00
       -8.834907560051558306e+00
       -9.492838600939057514e+00
       -9.827502408676558332e+00
       -9.827502408676560108e+00
       -9.492838600939057514e+00
 11
       -8.834907560051558306e+00
       -7.876114338510179280e+00
 12
       -6.649109489528790107e+00
       -5.195677191609343382e+00
 14
       -3.565312338457581109e+00
       -1.813535049740470306e+00
```

■ VQA_result.txt

VQA_optimal_amplitudes.csv

VQA_optimal_parameters.csv

✓ output_1D

Output_1D

- VQA_optimal_parameters.csv
 - The optimal parameters after VQA convergence.

■ VQA_optimal_amplitudes.csv

 Reads out the amplitude of each computational basis state after applying the optimal parameters to the predefined ansatz:

- If the solution is positive throughout the domain, then the optimal amplitudes correspond to the VQA solution. Otherwise, sign corrections are required.
- Note that the amplitudes follow qiskit's convention, in which the last qubit is the most significant.
 - → Ex) $|q_0q_1q_2q_3\rangle = |0001\rangle = |8\rangle$, not $|1\rangle$.
- VQA result.txt contains the result message from SciPy.optimize.minimize

■ input_2D / config.yaml

- x_grid_num / y_grid_num
 - → Number of grid points along the x (or y) direction **excluding** the boundary nodes (Make sure this is a power of 2):


```
Number of grid points along the x & y direction (excluding boundary, must be a power of 2)
x grid num: 32
y grid num: 16
# Depth of the variational ansatz
ansatz_depth: 4
# Type of boundary condition: A two-letter combination of 'P' or 'R'
boundary condition: PR
method: Powell
# x-directional length of domain
x0: 0.0
x1: 1.0
v0: 0.0
y1: 1.0
# Boundary constants (Only used for 'R')
alpha x: 0.0
alpha y: 0.0
beta x: 0.0
beta y: 0.0
gamma x: 0.0
gamma_y: 0.0
# Number of shots per circuit execution
num shots: 524288
# Backend type: either 'simulator' or 'hardware'
backend: simulator
```


■ input_2D / config.yaml

- ansatz_depth
 - → Depth of the default LNN ansatz. For user-defined ansatz, this parameter is ignored.
- boundary_condition
 - → Ex) "PR" : Periodic along x, Robin along y "RP" : Robin along x, Periodic along y
- method
 - → Type of the classical optimizer in SciPy.optimize.minimize.
- alpha, beta, gamma
 - → Constants only used for Robin boundary conditions. Make sure that

$$\alpha_{x}u(x_{0}) + \beta_{x}\frac{\partial u(x_{0})}{\partial x} = \gamma_{x},$$

$$\alpha_{x}u(x_{n}) - \beta_{x}\frac{\partial u(x_{N})}{\partial x} = \gamma_{x},$$

$$\alpha_{y}u(y_{0}) + \beta_{y}\frac{\partial u(y_{0})}{\partial y} = \gamma_{y},$$

$$\alpha_{y}u(y_{N}) - \beta_{y}\frac{\partial u(y_{N})}{\partial y} = \gamma_{y}$$

```
Number of grid points along the x & y direction (excluding boundary, must be a power of 2
x grid num: 32
y grid num: 16
# Depth of the variational ansatz
ansatz_depth: 4
# Type of boundary condition: A two-letter combination of 'P' or 'R'
boundary condition: PR
method: Powell
# x-directional length of domain
x0: 0.0
x1: 1.0
y0: 0.0
y1: 1.0
# Boundary constants (Only used for 'R')
alpha x: 0.0
alpha y: 0.0
beta x: 0.0
beta y: 0.0
gamma x: 0.0
gamma_y: 0.0
# Number of shots per circuit execution
num shots: 524288
# Backend type: either 'simulator' or 'hardware'
backend: simulator
```


- input_2D / initial_params.csv
 - The first $\log_2(x_grid_num)$ qubits correspond to x-directional operations, where the last $\log_2(y_grid_num)$ qubits correspond to y-directional operations.
 - Make sure that the length of initial_params.csv matches the number of parameters in the ansatz.
 - For the default design, param_num = $log_2(x_grid_num \times y_grid_num) \times ansatz_depth$

- input_2D / rhs.csv
 - The source function f(x, y) of the Poisson equation:

$$\nabla^2 \psi(x,y) = f(x,y)$$

- The data specified in rhs.csv corresponds to f(x,y) for each interior node displayed in **Page 14**
- The data must be ordered so that:
 - \rightarrow Increasing the row index corresponds to increasing y (from top to bottom)
 - \rightarrow Increasing the column index corresponds to increasing x (from left to right)

_				
grid_num _	$f(x_1, y_1)$	$f(x_2, y_1)$	•••	$f(x_{N-1}, y_1)$
	$f(x_1, y_2)$	$f(x_2, y_2)$	•••	$f(x_{N-1}, y_2)$
	:	:	٠.	:
\geq	$f(x_1, y_{N-1})$	$f(x_2, y_{N-1})$	•••	$f(x_{N-1}, y_{N-1})$
	x_grid_num			

- Make sure the dimension of rhs.csv matches (x_grid_num , y_grid_num) in config.yaml
- rhs.csv will be automatically normalized in the main code to be implemented as a StatePreparation block from qiskit

Output_2D

- VQA_optimal_parameters.csv
 - The optimal parameters after VQA convergence.
- VQA_optimal_amplitudes.csv
 - Reads out the amplitude of each computational basis state after applying the optimal parameters to the predefined ansatz:

- If the solution is positive throughout the domain, then the optimal amplitudes correspond to the VQA solution.
 Otherwise, sign corrections are required.
 - → Note that in 2D, you may need to reshape the amplitude array to reconstruct the 2D domain.
- Note that the amplitudes follow qiskit's convention, in which the last qubit is the most significant.
 - → Ex) $|q_0q_1q_2q_3\rangle = |0001\rangle = |8\rangle$, not $|1\rangle$.
- VQA_result.txt contains the result message from SciPy.optimize.minimize

Validation

■ 1D Validation (IonQ Simulator)

- Solution to $\nabla^2 \psi(x) = f(x)$ where $f(x) = -\pi^2 \sin(\pi x)$ with homogeneous Dirichlet boundary conditions.
- For details, refer to example_1D.ipynb

License & Contact

License

This project is licensed under the MIT License (https://opensource.org/license/MIT). Copyright © 2025 Dongyun Chung

■ Contact

- Lead Developer : **Dongyun Chung** (<u>achung3312@yonsei.ac.kr</u>)
- Corresponding Author: Prof. Jung-II Choi (<u>jic@yonsei.ac.kr</u>)
- Department: Computational Science Engineering, Yonsei University, Seoul, 03722, South Korea

Q&A Thanks for listening

Appendix

■ User-defined Ansatz

- To use other ansatz designs, you may design a parametrized QuantumCircuit object from qiksit and replace the psi_param_circuit variable with that circuit.
- Then the processors will automatically take those ansatz, retrieve the parameters, and apply
 operations to compute the cost function.
- However, make sure that the number of qubits is correctly designed
 - \rightarrow For 1D, num_qubits = \log_2 (grid_num)
 - \rightarrow For 2D, num_qubits = \log_2 (x_grid_num \times y_grid_num)

```
parameters = ParameterVector(r'$\boldsymbol{\theta}$', length=param_num)
psi_param_circuit = make_LNN_ansatz(num_qubits, ansatz_depth, parameters) > F
```

→ Replace this line with your ansatz

→ Then the processors with refer to that ansatz