Time Domain Analysis

RL Circuits, RC Circuits, Sinusoidal Forcing Functions

Jay Khandkar

The famous astable 555 waveform

January 18, 2021

Contents

1	Current And Voltage Conventions
2	First Order Circuits: RL and RC
	2.1 The Natural Response
	2.1.1 The Source-Free RL Circuit
	2.1.2 Properties Of The Natural Response
	2.1.3 The Source-Free RC Circuit

1 Current And Voltage Conventions

The conventions we shall follow simply state that when current "flows into" the positive terminal of the capacitor/inductor, as indicated by the polarity of v in Fig.1.1, it is taken as positive. We may then write the current-voltage relations:

$$i = C \frac{dv}{dt}$$
$$v = L \frac{di}{dt}$$

Figure 1.1: The voltage conventions

2 First Order Circuits: RL and RC

A first order circuit is one that is governed by a first order differential equation. Often, it is incorrectly stated that a first order circuit is one that contains only one energy storage element (capacitor/inductor). This is wrong, as there are certain arrangements of R-L and R-C circuits which can be simplified to obtain a first order equation, as we shall see later. So, there being only one energy storage element in a circuit is a *sufficient* but not necessary condition for it to be first order.

2.1 The Natural Response

2.1.1 The Source-Free RL Circuit

A *natural response* is one that is free of any external voltage/current sources, which are also known as *forcing functions*. It depends on the "general nature" of the circuit (types of elements, sizes and interconnections). It is also known as the *transient response*, as without any external sources, it must eventually die out. Consider the simple series RL circuit shown in Fig.2.1:

Figure 2.1: Simple R-L circuit for which i(t) is to be determined

Let the time varying current be designated i(t), and the value of i at t = 0 be I_0 . It may seem counter-intuitive to have a non-zero current initially in a circuit with no sources. In order for a current to be flowing, a source had to be present at some point of time, but we are only bothered with the response of the circuit after t = 0, ie. after the source has been removed. Applying Kirchhoff's voltage law, we have

$$Ri + v_L = Ri + L\frac{di}{dt} = 0$$

or

$$\frac{di}{dt} + \frac{R}{L}i = 0 (2.1)$$

We can separate variables and integrate easily, giving

$$i(t) = I_0 e^{-\frac{R}{L}t}$$

$$(2.2)$$

where we have incorporated the intitial codition $i(0) = I_0$. The general form of the natural response will be

$$i(t) = Ke^{-\frac{R}{L}t}$$
 (2.3)

where K is a constant, and is nothing but the value of i at t = 0.

Accounting For The Energy

The power dissipated through the resistor at any time t

$$p_R = i^2 R = I_0^2 R e^{-\frac{2Rt}{L}}$$

and the total energy turned into heat by the resistor till the response has died out

$$w_R = \int_0^\infty p_R dt$$

$$= I_0^2 R \int_0^\infty e^{-\frac{2Rt}{L}} dt$$

$$= I_0^2 R \left(\frac{-L}{2R}\right) e^{-\frac{2Rt}{L}} \Big|_0^\infty$$

$$w_R = \frac{1}{2} L I_0^2$$

which is the total energy stored initially in the inductor, as expected.

2.1.2 Properties Of The Natural Response

Figure 2.2: Some possible plots for the natural response

From the natural response of the series RL circuit given by Eq.2.2, it is clear that that the current decays exponentially to zero from an initial value of I_0 . The graph of $\frac{i}{I_0}$ is plotted in figure 2.2 for three different values of $\frac{R}{L}$, as indicated in the legend.

Consider now the initial rate of decay, which is found by differentiating equation 2.2:

$$\left. \frac{d}{dt} \frac{i}{I_0} \right|_{t=0} = -\frac{R}{L} e^{-Rt/L} \bigg|_{t=0} = -\frac{R}{L}$$

Assuming that the decay continues at this rate, the time τ taken by $\frac{i}{I_0}$ to drop from 1 to 0 is given by

$$\left(\frac{R}{L}\right)\tau = 1$$

or

$$\boxed{\tau = \frac{L}{R}} \tag{2.4}$$

The constant τ has the units of seconds and is called the **time constant** of the circuit. It may be found graphically from the response curve by drawing the tangent to the curve at t = 0 and finding where it intersects the x axis, as shown below:

Figure 2.3: Finding the time constant graphically

Yet another way to define the time constant is to note that

$$\frac{i(\tau)}{I_0} = e^{-1} = 0.3679$$

ie, in one time constant, the response falls to 36.8% of it's initial value. The value of τ may also be determined from this fact:

Figure 2.4: A simple RL circuit with a switch thrown at t=0

Example: For the circuit given in figure 2.4, let us try to find the voltage at t = 200ms. Figures 2.5a and 2.5b show the state of the circuit prior to and post the throwing of the switch. In 2.5a, the inductor acts like a short to DC current after all transients have died down.

Figure 2.5: The simplified circuit before and after the switch is opened

Applying Kirchhoff's Law in 2.5b, we may write

$$-v + 10i_L + 5\frac{di_l}{dt} = 0$$

$$\Rightarrow \frac{5}{40}\frac{dv}{dt} + \left(\frac{10}{40} + 1\right)v = 0$$

$$\Rightarrow \frac{dv}{dt} + 10v = 0$$

where we have taken $i_l = -v/40$ by our conventions. The solution to this differential equation is

$$v(t) = v(0^+)e^{-10t}$$

Note that the initial value of voltage here is denoted by $v(0^+)$, as the voltage across the resistor may change discontinuously when the switch is thrown. We have to use the fact that i_L cannot change discontinuously, and remains the same just before and just after the switch is thrown. From 2.5a, $i_l(0) = 24/10 = 2.4$ A. Hence, $v(0^+) = (40) \cdot (-2.4) = -96$ V, and so

$$v(t) = -96e^{-10t}$$

which gives v(0.2) = -12.99V.

2.1.3 The Source-Free RC Circuit