2. Gausa metode. Determinanti.

Gunārs Ābeltiņš 2022.03.07

Lekcijas konspekts

Tika stāstīts par determinanta īpašībām. Parādija kā to aprēķināt. Kramera formulas.

1. Uzdevums

Aprēķiniet determinantu $Det[\{6,5,7\},\{4,3,1\},\{3,2,3\}]$, izmantojot lekcijā doto 3x3 determinanta definīciju (ne savādāk). Parādiet katru aprēķina soli. Rezultātu pārbaudiet ar WolframAlpha.

$$\det \begin{pmatrix} 6 & 5 & 7 \\ 4 & 3 & 1 \\ 3 & 2 & 3 \end{pmatrix} = \begin{vmatrix} 6 & 5 & 7 \\ 4 & 3 & 1 \\ 3 & 2 & 3 \end{vmatrix} = 6 \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} - 5 \begin{vmatrix} 4 & 1 \\ 3 & 3 \end{vmatrix} + 7 \begin{vmatrix} 4 & 3 \\ 3 & 2 \end{vmatrix} =$$

$$= 6 \det \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix} - 5 \det \begin{pmatrix} 4 & 1 \\ 3 & 3 \end{pmatrix} + 7 \det \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix} =$$

$$= 6((3 \cdot 3) - (1 \cdot 2)) - 5((4 \cdot 3) - (1 \cdot 3)) + 7((4 \cdot 2) - (3 \cdot 3)) =$$

$$= 6 \cdot 7 - 5 \cdot 9 + 7 \cdot (-1) = 42 - 45 - 7 = (-10)$$

2. Uzdevums

Izmantojiet Kramera formulas, lai atrisinātu vienādojumu sistēmu $\{2x-7y+2z=9, 3x+2y+2z=8, 4x+5y+2z=4\}$. Vajadzīgos determinantus uzrakstiet, bet aprēķiniet ar WolframAlpha. Risinājuma pareizību pārbaudiet ar WolframAlpha.

$$\begin{cases} 2x - 7y + 2z = 9\\ 3x + 2y + 2z = 8\\ 4x + 5y + 2z = 4 \end{cases}$$

$$x = \frac{\det\begin{pmatrix} 9 & -7 & 2\\ 8 & 2 & 2\\ 4 & 5 & 2 \end{pmatrix}}{\det\begin{pmatrix} 2 & -7 & 2\\ 3 & 2 & 2\\ 4 & 5 & 2 \end{pmatrix}} = \frac{66}{-12} = -\frac{11}{2}$$

$$y = \frac{\det\begin{pmatrix} 2 & 9 & 2\\ 3 & 8 & 2\\ 4 & 4 & 2 \end{pmatrix}}{\det\begin{pmatrix} 2 & -7 & 2\\ 3 & 2 & 2\\ 4 & 5 & 2 \end{pmatrix}} = \frac{-6}{-12} = 0.5$$

$$z = \frac{\det\begin{pmatrix} 2 & -7 & 9\\ 3 & 2 & 8\\ 4 & 5 & 4 \end{pmatrix}}{\det\begin{pmatrix} 2 & -7 & 2\\ 3 & 2 & 2\\ 4 & 5 & 2 \end{pmatrix}} = \frac{-141}{-12} = \frac{47}{4}$$

3. Uzdevums

Izgudrojiet un uzrakstiet 3x3 determinantu piemērus, kas parādītu, kā Jūs saprotat determinantu īpašības 6, 7, 8. Nepieciešamos determinantus aprēķiniet ar WolframAlpha.

6. Īpašība

Ja matricā kāda rinda ir iegūta no citas rindas, reizinot ar kādu skaitli (t.i. divas rindas ir proporcionālas), tad matricas determinanta vērtība ir 0.

$$\begin{vmatrix} 1 & (2 \cdot 1) & 11 \\ 2 & (2 \cdot 2) & 13 \\ 3 & (2 \cdot 3) & 17 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 11 \\ 2 & 4 & 13 \\ 3 & 6 & 17 \end{vmatrix} = 0$$

7. Īpašība

Ja matricas A i-jā rindā katrs elements ir divu skaitļu summa $a_{ij} = b_j + c_j$, tad det(A) = det(B) + det(C), kur matricas B un C ir iegūtas no A, aizstājot i-jā rindā katru a_{ij} attiecīgi ar b_j vai c_j .

$$\begin{vmatrix} 1 & 6 & 11 \\ 2 & 4 & 13 \\ 3 & 2 & 17 \end{vmatrix} = 16$$

$$\begin{vmatrix} 1 & 6 & (4+7) \\ 2 & 4 & (10+3) \\ 3 & 2 & (7+10) \end{vmatrix} = \begin{vmatrix} 1 & 6 & 4 \\ 2 & 4 & 10 \\ 3 & 2 & 7 \end{vmatrix} + \begin{vmatrix} 1 & 6 & 7 \\ 2 & 4 & 3 \\ 3 & 2 & 10 \end{vmatrix} = 72 + (-88) = 16$$

8. Īpašība

Ja determinantā kādai rindai pieskaita vai atņem citu rindu, pareizinātu ar kādu skaitli, tad determinanta vērtība nemainās

$$\begin{vmatrix} 1 & 6 & 4 \\ 2 & 4 & 10 \\ 3 & 2 & 7 \end{vmatrix} = 72$$

$$\begin{vmatrix} 1 & 6 & 4 \\ 2 & 4 & 10 \\ 3 & 2 & 7 \end{vmatrix} = \begin{vmatrix} 1 & (6+1) & 4 \\ 2 & (4+2) & 10 \\ 3 & (2+3) & 7 \end{vmatrix} = \begin{vmatrix} 1 & 7 & 4 \\ 2 & 6 & 10 \\ 3 & 5 & 7 \end{vmatrix} = 72$$