AUA CS 108, Statistics, Fall 2019 Lecture 39

Michael Poghosyan
YSU, AUA
michael@ysu.am, mpoghosyan@aua.am

22 Nov 2019

Contents

- ► Tests for the Normal Model Variance
- ► Large Sample Hypothesis Testing

Last Lecture ReCap

▶ What are we testing when using a (one-sample) t-Test?

Last Lecture ReCap

- ▶ What are we testing when using a (one-sample) t-Test?
- ▶ Describe the *t*-Test.

Note

Note: In \mathbf{R} t.test command, the default values for parameters are:

- \triangleright mu = 0
- alternative = "two.sided"
- \triangleright conf.level = 0.95

Note

Note: In many textbooks, you will find the Critical Values and quantiles, calculated using areas of the Right-Tail. So you can meet in textbooks *t*-Test with the Rejection Region

$$|t|>t_{n-1,\alpha/2}.$$

In fact, here $t_{n-1,\alpha/2}$ is the point such that the area under the PDF of t(n-1) right to that point is $\alpha/2$. This coincides with our standard quantile $t_{n-1,1-\alpha/2}$, where we are calculating the area to the **left**.

R can calculate also these type of quantiles:

```
qt(1-0.05, df = 15)
```

[1] 1.75305

```
qt(0.05, df = 15, lower.tail = FALSE)
```

```
## [1] 1.75305
```

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2=\sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $\chi^2 =$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2=\sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: $\mathcal{H}_0: \ \sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$	

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

$$\begin{array}{c|c} \mathcal{H}_1 \text{ is} & \mathsf{RR} \text{ is} \\ \hline \sigma^2 \neq \sigma_0^2 & \chi^2 \not\in \left[\chi_{n,\frac{\alpha}{2}}^2,\chi_{n,1-\frac{\alpha}{2}}^2\right] \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: $\mathcal{H}_0: \ \sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

$$\begin{array}{c|c} \mathcal{H}_1 \text{ is} & \mathsf{RR} \text{ is} \\ \hline \sigma^2 \neq \sigma_0^2 & \chi^2 \not\in \left[\chi_{n,\frac{\alpha}{2}}^2,\chi_{n,1-\frac{\alpha}{2}}^2\right] \\ \sigma^2 > \sigma_0^2 & \chi^2 > \chi_{n,1-\alpha}^2 \\ \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: $\mathcal{H}_0: \ \sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

\mathcal{H}_1 is	RR is
$\sigma^{2} \neq \sigma_{0}^{2}$ $\sigma^{2} > \sigma_{0}^{2}$ $\sigma^{2} < \sigma_{0}^{2}$	$\chi^{2} \notin \left[\chi_{n,\frac{\alpha}{2}}^{2}, \chi_{n,1-\frac{\alpha}{2}}^{2}\right]$ $\chi^{2} > \chi_{n,1-\alpha}^{2}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is known, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \mu}{\sigma_0} \right)^2$$

$$\begin{array}{c|c} \mathcal{H}_1 \text{ is} & \mathsf{RR} \text{ is} \\ \hline \sigma^2 \neq \sigma_0^2 & \chi^2 \not\in \left[\chi_{n,\frac{\alpha}{2}}^2,\chi_{n,1-\frac{\alpha}{2}}^2\right] \\ \sigma^2 > \sigma_0^2 & \chi^2 > \chi_{n,1-\alpha}^2 \\ \sigma^2 < \sigma_0^2 & \chi^2 < \chi_{n,\alpha}^2 \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: $\mathcal{H}_0: \ \sigma^2 = \sigma_0^2$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics: $\chi^2 =$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$	

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$	$\chi^2 \not\in \left[\chi^2_{n-1,\frac{\alpha}{2}},\chi^2_{n-1,1-\frac{\alpha}{2}}\right]$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$	$\chi^2 \notin \left[\chi^2_{n-1,\frac{\alpha}{2}}, \chi^2_{n-1,1-\frac{\alpha}{2}}\right]$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$	$\chi^2 \notin \left[\chi_{n-1,\frac{\alpha}{2}}^2, \chi_{n-1,1-\frac{\alpha}{2}}^2\right]$ $\chi^2 > \chi_{n-1,1-\alpha}^2$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$ \frac{\sigma^2 \neq \sigma_0^2}{\sigma^2 > \sigma_0^2} $ $ \sigma^2 < \sigma_0^2 $	$\chi^{2} \notin \left[\chi_{n-1,\frac{\alpha}{2}}^{2}, \chi_{n-1,1-\frac{\alpha}{2}}^{2}\right]$ $\chi^{2} > \chi_{n-1,1-\alpha}^{2}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, μ is unknown, the Parameter (our unknown) is σ^2 ;

Null Hypothesis: \mathcal{H}_0 : $\sigma^2 = \sigma_0^2$

Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$\chi^2 = \sum_{k=1}^n \left(\frac{X_k - \overline{X}}{\sigma_0} \right)^2 = \frac{(n-1) \cdot S^2}{\sigma_0^2}$$

\mathcal{H}_1 is	RR is
$\sigma^2 \neq \sigma_0^2$	$\chi^2 \notin \left[\chi^2_{n-1,\frac{\alpha}{2}}, \chi^2_{n-1,1-\frac{\alpha}{2}}\right]$
$\sigma^2 > \sigma_0^2$	$\chi^2 > \chi^2_{n-1,1-\alpha}$
$\sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{n-1,\alpha}$

Large Sample Hypothesis Testing

aka

Asymptotic Testing

Asymptotic Test for the Mean of General Distribution

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type} \mid \mathsf{Error}) = \mathbb{P}(\mathsf{Reject} \ \mathcal{H}_0 \mid \mathcal{H}_0 \ \mathsf{is} \ \mathsf{True}) \to \alpha, \quad \mathit{as} \quad n \to +\infty$$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 =$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

Asymptotic Distrib of the TS Under \mathcal{H}_0 : $t \stackrel{D}{\longrightarrow}$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

Asymptotic Distrib of the TS Under \mathcal{H}_0 : $t \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

$$\mathcal{H}_1$$
 is RR is $\mu \neq \mu_0$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^n (X_k - \overline{X})^2}{n-1}$.

$$\mathcal{H}_1$$
 is RR is $\mu
eq \mu_0 \quad |t| > z_{1-rac{lpha}{2}}$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

$$egin{array}{|c|c|c|c|} \mathcal{H}_1 & \text{is} & \text{RR is} \\ \hline \mu
eq \mu_0 & |t| > z_{1-rac{lpha}{2}} \\ \mu > \mu_0 & \end{array}$$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

$$\mathcal{H}_1$$
 is RR is
$$\mu \neq \mu_0 \quad |t| > z_{1-\frac{\alpha}{2}}$$

$$\mu > \mu_0 \quad t > z_{1-\alpha}$$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

$$egin{array}{|c|c|c|c|} \mathcal{H}_1 & \text{is} & \text{RR is} \\ \hline \mu
eq \mu_0 & |t| > z_{1-rac{lpha}{2}} \\ \mu > \mu_0 & t > z_{1-lpha} \\ \mu < \mu_0 & \end{array}$$

Model: $X_1, X_2, ..., X_n$ are IID from some Distribution with Mean μ and Variance σ^2 . σ^2 is not known. The Parameter is μ ;

Null Hypothesis: \mathcal{H}_0 : $\mu = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$; This means that we want to have

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0\;|\;\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) \to \alpha,\quad \textit{as}\quad n \to +\infty$$

Test Statistics:
$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
, where $S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X})^2}{n-1}$.

$$egin{array}{|c|c|c|c|c|} \mathcal{H}_1 & \text{is} & \text{RR is} \\ \hline \mu
eq \mu_0 & |t| > z_{1-rac{lpha}{2}} \\ \mu > \mu_0 & t > z_{1-lpha} \\ \mu < \mu_0 & t < z_lpha \end{array}$$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\hat{\theta}^{MLE} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}(\theta_0)}}$$
 or $W = \frac{\hat{\theta}^{MLE} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}\left(\hat{\theta}^{MLE}\right)}}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\hat{\theta}^{MLE} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}(\theta_0)}}$$
 or $W = \frac{\hat{\theta}^{MLE} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}\left(\hat{\theta}^{MLE}\right)}}$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

$$\textbf{Test Statistics: } W = \frac{\hat{\theta}^{\textit{MLE}} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}(\theta_0)}} \quad \text{or} \quad W = \frac{\hat{\theta}^{\textit{MLE}} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}\left(\hat{\theta}^{\textit{MLE}}\right)}}$$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}$;

Null Hypothesis: \mathcal{H}_0 : $\theta = \theta_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

$$\textbf{Test Statistics: } W = \frac{\hat{\theta}^{\textit{MLE}} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}(\theta_0)}} \quad \text{or} \quad W = \frac{\hat{\theta}^{\textit{MLE}} - \theta_0}{1/\sqrt{n \cdot \mathcal{I}\left(\hat{\theta}^{\textit{MLE}}\right)}}$$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

\mathcal{H}_1 is	RR is
$\theta \neq \theta_0$	$ W >z_{1-\frac{\alpha}{2}}$
$\theta > \theta_0$	$W>z_{1-\alpha}$
$ heta < heta_0$	$W < z_{\alpha}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} =$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and

$$\mathcal{I}(p) =$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)}$;

$$\mathcal{I}(p) = \frac{1}{p(1-p)}$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)}$;

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)}$;

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)}$;

Null Hypothesis:
$$\mathcal{H}_0$$
: $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{X - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
 or $W = \frac{X - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}}$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} Bernoulli(p)$; In this case, $\hat{p}^{MLE} = \overline{X}$ and $\mathcal{I}(p) = \frac{1}{p(1-p)};$

$$\mathcal{I}(p) = \frac{1}{p(1-p)}$$

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\overline{X} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
 or $W = \frac{\overline{X} - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}}$

Asymptotic Distrib of the TS Under \mathcal{H}_0 : $W \stackrel{D}{\longrightarrow}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \textit{Bernoulli}(p)$; In this case, $\hat{p}^{\textit{MLE}} = \overline{X}$ and

$$\mathcal{I}(p) = \frac{1}{p(1-p)};$$

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\overline{X} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
 or $W = \frac{\overline{X} - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \textit{Bernoulli}(p)$; In this case, $\hat{p}^{\textit{MLE}} = \overline{X}$ and

$$\mathcal{I}(p) = \frac{1}{p(1-p)};$$

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\overline{X} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$
 or $W = \frac{\overline{X} - p_0}{\sqrt{\frac{\overline{X}(1-\overline{X})}{n}}}$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

\mathcal{H}_1 is	RR is
$p \neq p_0$	$ W >z_{1-\frac{\alpha}{2}}$
$p > p_0$	$W > z_{1-\alpha}$
$p < p_0$	$W < z_{\alpha}$

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \textit{Bernoulli}(p)$; In this case, $\hat{p}^{\textit{MLE}} = \overline{X}$ and

$$\mathcal{I}(p) = \frac{1}{p(1-p)};$$

Null Hypothesis: \mathcal{H}_0 : $p = p_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

Test Statistics:
$$W = \frac{\overline{X} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
 or $W = \frac{\overline{X} - p_0}{\sqrt{\frac{\overline{X}(1 - \overline{X})}{n}}}$

Asymptotic Distrib of the TS Under $\mathcal{H}_0: W \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$;

\mathcal{H}_1 is	RR is
$p \neq p_0$	$ W >z_{1-\frac{\alpha}{2}}$
$p > p_0$	$W > z_{1-\alpha}$
$p < p_0$	$W < z_{\alpha}$

Note: People use this Test only if $n \cdot p_0 > 5$ and $n \cdot (1 - p_0) > 5$.