Power Iterations

MAHOUT-796

November 25, 2011

1 Formulae

1.1 Modified approach to power iterations formula

Original formula

$$\mathbf{Q} = \operatorname{qr}\left[\left(\mathbf{A}\mathbf{A}^{\top}\right)^{q}\mathbf{A}\boldsymbol{\Omega}\right].\mathbf{Q},$$

$$\mathbf{B} = \mathbf{Q}^{\top} \mathbf{A}.$$

Modified version

$$Y = A\Omega$$
,

$$\mathbf{B}_0 = \left[\operatorname{qr} \left(\mathbf{Y} \right) . \mathbf{Q} \right]^{\top} \mathbf{A},$$

$$\mathbf{B}_{i} = \left[\operatorname{qr}\left(\mathbf{A}\mathbf{B}_{i-1}^{\top}\right).\mathbf{Q}\right]^{\top}\mathbf{A}, i \in [1..q].$$

Notation $qr(\cdot) \cdot \mathbf{Q}$ means "compute $\mathbf{Q}\mathbf{R}$ decomposition of the argument and retain \mathbf{Q} as a result".

Current combination of QJob and BtJob is essentially producing $\mathbf{B}_0^{\top} = \mathbf{A}^{\top} \operatorname{qr} (\mathbf{A} \mathbf{\Omega}) \cdot \mathbf{Q}$. Intermediate QJob results are QR blocks, not a final Q, so QJob is not terribly meaningful without BtJob.

See also section $\S 2$ for quick recap of \mathbf{B}_0 pipeline details. B pipeline takes 2 tasks with only one global

sorter (map + map + combiner + shuffle-sort + reducer).

It seems that the task boils down to figuring out alternative pipeline modifications necessary to produce $\mathbf{B}_{i}^{\mathsf{T}}$. After that, algorithm proceeds as before with assumption of $\mathbf{B} \equiv \mathbf{B}_{q}$.

the existing processing will be equivalent to q = 0.

(Ted Dunning points out: Note that the $\mathbf{Q}\mathbf{R}$ decomposition is not strictly necessary with q=0 (see https://issues.apache.org/jira/browse/MAHOUT-792). Instead, the Cholesky decomposition can be applied to $\mathbf{Y}'\mathbf{Y}$ and the resulting triangular matrix can be used to expose chunks of \mathbf{Q} as required).

1.2 B_i pipeline (some new code)

 \mathbf{B}_i pipeline produces $\mathbf{B}_i^{\top} = \mathbf{A}^{\top} \operatorname{qr} (\mathbf{A} \mathbf{B}^{\top}) \cdot \mathbf{Q}$.

This is very similar to \mathbf{B}_0 pipeline with specfics being full multiplication of $\mathbf{A}\mathbf{B}^{\top}$ in the first job and first pass qr pushdown to the reducer of the first job:

- map1: AB^{\top} vertical blocks of outer products are produced
- combiner1: presumming vertical blocks of outer products of \mathbf{AB}^{\top} .
- reducer1: finalizes summing up outer products of \mathbf{AB}^{\top} and starts qrFirstPass $(\mathbf{AB}^{\top}) \rightarrow$ qr blocks.

• mapper2, combiner2, reducer2 proceed exactly as mapper2, combiner2, reducer2 in \mathbf{B}_0 pipeline]] and output final $\mathbf{B}_i^{\mathsf{T}}$ with blocks corresponding to initial splits of \mathbf{A} input.

Thus, this pipeline is 2 MR jobs with 2 sorts (map1 + combiner1 + shuffle and sort + reducer1 + map2 + combiner2 + shuffle and sort + reducer2).

1.3 Integration of Cholesky trick route for computing power iterations*

Also note that whatever route is chosen to calculate $\mathbf{B}_i = g(\mathbf{Y}_i)$, mathematically it should still be valid $\forall i \in [0..q]$ for as long as we assume

$$\mathbf{Y}_i = \begin{cases} \mathbf{A}\mathbf{\Omega}, & i = 0; \\ \mathbf{A}\mathbf{B}_{i-1}^\top, & i > 0. \end{cases}$$

So, if Cholesky trick allows to produce \mathbf{B}_0 efficiently, I see no reason why it could not be applied to producing the \mathbf{B}_i .

2.1 QR

QR takes more than one *map-only* steps, but current implementation requires only 2 map jobs and that is thought to scale to a few billion rows assuming k+p=500 and with upper limit on RAM in mappers at 1G.

First QR step may also be pushed down to reducers of previous job (something i have plans to have as an option in \mathbf{B}_0 pipeline as well). Last QR step may be optimized to be first part of further execution tree in a MR job thus last Q product output may not be required (and it is not in \mathbf{B}_0 pipeline).

2 QR steps do output intermediate blocks of Q and R, but this from I/O standpoint is basically as efficient as 1 MR multiplication job, if not even better, because full MR outputs map results too and sends them to reducers, but it also incurs sorts, which 2 map-only jobs do not incur.

The only I/O deficiency of 2 map-only jobs vs. 1 MR job is that intermediate output would be replicated thus increasing I/O but that can be addressed by forcefully reducing replication factor on the output of intermediate QR blocks.

2.2 Multiplications

- Q^TA. This is a generic multiplication that requires full MR jobs with significant pressure on combiners that combine intermediate outer products.
- There are exceptions that do not require combiners when accumulator of the result can be fit in memory and accumulated in mappers in line (These are $\mathbf{B}\mathbf{B}^{\top}$ and potentially $\mathbf{Y}^{\top}\mathbf{Y}$ which require only upper-triangular accumulator of $(k+p) \times (k+p)$ geometry).
- The product $\mathbf{A}\mathbf{\Omega}$ is of course much simpler since the entire matrix $\mathbf{\Omega}$ is always available without taking any memory, so this is can be done inline in either mapper or reducer.

2.3 Execution plan of the B_0 pipeline

This, execution plan of the \mathbf{B}_0 pipeline is:

Map1: qrFirstPass $(\mathbf{A}\Omega) \rightarrow$ intermediate qr blocks

Map2: $[qrLastPass(qr\ blocks).\mathbf{Q}]^{\top}\mathbf{A} \rightarrow vertical$ blocks of the outer products of \mathbf{B}_0^{\top}

Combiner2: summing up intermediate outer products of $\mathbf{B}_0^{\mathsf{T}}$.

Reducer2: final sums of all outer products $\to \mathbf{B}_0^{\top}$.

Thus, currently it takes 1 map-only job + 1 MR job to get to \mathbf{B}_0 . (In other words, 2 jobs + 1 sorter).

^{*}Will cover in MAHOUT-797

The caveat is that this process is not currently terribly performant while handling supersparse matrices as ${\bf Q}$ blocks are treated as dense.