Max. Marks:100

Fourth Semester B.E. Degree Examination, June/July 2015 Engineering Mathematics - IV

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

Time: 3 hrs.

1	a. Obtain y(0.2) using Picards method upto second iteration for the initial value pro	oblem
	$\frac{dy}{dx} = x^2 - 2y y(0) = 1.$	(96 Marks
	b. Solve by Eulers modified method to obtain $y(1.2)$ given $y' = \frac{y + x}{y - x}$ $y(1) = 2$.	607 Marks
	c. Using Adam Bush forth method obtain y at $x = 0.8$ given $\frac{dy}{ds} = x - y^2$, $y(0) = 0$, $y(0,2) = 0.02$, $y(0,4) \neq 0.0795$ and $y(0,6) = 0.176$	(07 Marks)
į	Care Care Care Care Care Care Care Care	
2	a. Solve by 4^m order Runge Kutta method simplifications given by $\frac{dx}{dt} = y - t , \frac{dy}{dt} = x + t \text{ with } x = t = y \text{ at } t = 0 \text{ , obtain } y(0.1) \text{ and } x(0.1).$	(06 Marks
	b. Solve $\frac{d^2y}{dx^2} \cdot x \left(\frac{dy}{dx}\right)^3 + y^2 = 0$, $y(0) = 1$, $y(0) = 0$. Evaluate $y(0,2)$ correct to	four decima
	places, using Runge Kutta method of fourth order. c. Solve for $x = 0.4$ using Mthes predictor corrector formula for the different $y' + xy' + y = 0$ with, $y(0) = 1$, $y(0.1) = 0.995$, $y(0.2) = 0.9802$ and $y(0.3) = z(0) = 0$, $z(0.1) = 0.0995$, $z(0.2) = 0.196$, $z(0.3) = -0.2863$.	
3	 Verify whether f(x) = sin2x is analytic, hence obtain the derivative. 	(06 Marks
	b. Determine the analytic function $f(z)$ whose imaginary part is $\frac{y}{x^2+y^2}$.	(07 Marks
	 Define a harmonic function. Prove that real and imaginary parts of an analytic harmonic. 	function are (07 Marks
4	a. Under the mapping $w=e^x$, find the image of i) $1 \le x \le 2$ ii) $\frac{\pi}{3} < y < \frac{\pi}{2}$.	(06 Marks)
1	b. Find the bilinear transformation which maps the points 1, i, -1 from x plane to 2 plane. Also find the fixed points.	, i, -2 into w (07 Marks)
	c. State and prove Cauchy's integral formula.	(07 Marks)
	PART - B	
		(06 Marks)
5	a. Prove $J_0(x) = \frac{x}{2n} [J_{n+1}(x) + J_{n+1}(x)]_{-}$	
5	 a. Prove J₁(x) = \$\frac{\pi}{2n}\$ J_{1n} (x) + J_{nn} (x) \]. b. Prove (n+1) P_n(x) = (2n+1) x P_n(x) - n P_n (x). c. Explain the following in terms of Legendres polynomials, x + x + x - x + x + x - x \]. 	(07 Marks)

10MAT41

- a. A class has 10 hoys and 6 girls. Three students are selected at random one after another. Find the probability that () first and third are boys, second a girl ii) first and second are of same sex and third is of opposite sex. 106 Marks If P(A) = 0.4 . P(B/A) = 0.9 . P(B/A) = 0.6. Find P(A/B) . P(A/B).
 - c. In a bolt factory machines A, B and C manufactore 20%, 35% and 45% of the total of their outputs 5%, 4% and 2% are defective. A bolt is drawn at random found to be-defective What is the probability that it is from machine B?
- a. A random variable x has the following distribution:
 - P(x): 0.1 0.1 k 0.1 Find k, mean and S D of the distribution. 006 Market b. The probability that a bomb dropped hits the target is 0.2. Find the probability that out of 6
 - bombs dropped i) exactly 2 will hit the target ii) atleast 3 will hit the target. 007 Marko c. Find the mean and variance of the exponential distribution. (07 Mucha)
 - A die is tossed 960 times and 5 appear 184 times. Is the die biased? (06 Marks)
 - 5. Nine items have values 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean of these differ significantly from assumed of mean of 47.5 (v = 8 , top = 2.31). (07 Marks) c. A set of 5 similar coins tossed 320 times gives following table.

 No. of beads 0 1 2 3 4

6 27 72

Test the hypothesis that data follows binomial distribution (Given $\gamma = 5$, $\chi^2_{con} = 11.07$) Price and applied to the state of the state