Π	ID Expression	Analytical sum
1	$\sum_{n=1}^{\infty} \varepsilon^{-1+n} P[n, 0]$	$\frac{1-w}{w\;arepsilon}$
2	$\sum_{n=1}^{\infty} n \varepsilon^{-1+n} P[n, 0]$	$\frac{C - \mathcal{E}}{W^3}$
3	$\sum_{n=1}^{\infty} n^2 \varepsilon^{-1+n} P[n, 0]$	$\frac{C + \left(-2 + C^2\right) \; \varepsilon + \varepsilon^2 \; \left(-C + \varepsilon\right)}{w^5}$
4	$\sum_{n=1}^{\infty} n^3 \varepsilon^{-1+n} P[n, 0]$	$\frac{c + \left(-4+5\;c^2\right)\;\varepsilon + c\;\left(-9+c^2\right)\;\varepsilon^2 + 2\;\left(5-c^2\right)\;\varepsilon^3 - \varepsilon^4\;\left(c + \varepsilon\right)}{w^7}$
2	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} P[n,0]}{n}$	$\frac{Log\left[\frac{2}{1+w-c\varepsilon}\right]}{\varepsilon}$
9	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} P[n,0]}{-1+n}$	$\frac{1-w}{\varepsilon}$ + c (-1 + Log[2]) - c Log[1 + w - c ε]
7	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} P[n,0]}{1+n}$	$-rac{1}{arepsilon}+rac{Log\left[rac{-c+arepsilon+\sqrt{1-2}\;c\;arepsilon+arepsilon^2}{1-c} ight]}{arepsilon^2}$
œ	$\sum_{n=1}^{\infty} n^2 \varepsilon^{-1+n} P[n, 1]$	$-\frac{5 \text{ s } \epsilon \ \left(-c+\varepsilon\right) \ \left(1+c \ \varepsilon-2 \ \varepsilon^2\right)}{\text{w}^7} - \frac{\text{s} \ \left(-2+\text{w}^2+5 \ \varepsilon^2\right)}{\text{w}^5}$
6	$\sum_{n=1}^{\infty} n \varepsilon^{-1+n} P[n, 1]$	-2 ε ²)
10	$\sum_{n=1}^{\infty} \varepsilon^{-1+n} P[n, 1]$	W ₃
11	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} P[n,1]}{n}$	$\frac{S (1+W)}{W (1+W-C \varepsilon)}$
12	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} P[n,1]}{1+n}$	$\frac{s}{w (1+w-c \varepsilon)}$
13	$\sum_{n=1}^{\infty} \frac{\varepsilon^{-1+n} P[n,1]}{n^2}$	$\frac{\left\lfloor \log \left[\frac{1+c}{c+w-\varepsilon} \right] + c \left\lfloor \log \left[\frac{1}{2} \left(1 + w - c \varepsilon \right) \right. \right]}{s \varepsilon}$
14	$\sum_{n=2}^{\infty} n \ \varepsilon^{-}$	$\frac{6 s^2 \varepsilon}{w^5} + \frac{15 s^2 (c - \varepsilon) \varepsilon^2}{w^7}$
15	$\sum_{n=2}^{\infty} \varepsilon^{-1+n} P[n, 2]$	3 S ² E W ⁵
16	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} P[n,2]}{n}$	$\frac{2 c (1+w)}{w (1+w-c \varepsilon)}$
17	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} P[n,2]}{-1+n}$	$\frac{S^2 \; (1+w) \; \varepsilon \; \left(\; (1+w) \; \left(1+2 \; w^2\right) - c \; \left(1-w+w^2\right) \; \varepsilon \right)}{w^3 \; \left(1+w-c \; \varepsilon\right)^2}$
18	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} P[n,2]}{1+n}$	$\frac{C (-1+w) w+ (s^2+w) \varepsilon}{w^3 (1+w-c \varepsilon)}$
19	$\sum_{n=2}^{\infty} \frac{\varepsilon^{-1+n} P[n,2]}{n^2}$	$\frac{1}{\varepsilon} - \frac{1}{w\varepsilon} + \frac{\log[2]}{\varepsilon} - \frac{2\log[2]}{s^2\varepsilon} + \frac{2c\log[1+c]}{s^2\varepsilon} - \frac{2c\log[1+c]}{s^2\varepsilon}$ $\frac{2c\log[c+w-\varepsilon]}{s^2\varepsilon} - \frac{\log[1+w-c\varepsilon]}{\varepsilon} + \frac{2\log[1+w-c\varepsilon]}{s^2\varepsilon}$