Analysis of Experimental Data

Michael Mulhearn

April 15, 2020

Chapter 1

Statistical Distributions

1.1 Notes on Section Ordering

To reach Section 1.11 as rapidly as possible, delay Sections 1.6 and 1.7 and delay or even skip 1.9.

1.2 Statistics of Experiments

A primary purpose of science is to predict the results of experiments. Consider a simple experiment with five possible outcomes which we repeat ten times. If our theoretical prediction is that each of these five outcomes is equally probable, than our prediction for a typical series of ten experiments would be for each outcome to occur two times. Now suppose we perform the experiment ten times and present the results like this:

Figure 1.1: Comparison of experimental results with a prediction.

Scientist almost never display experimental data this way (as a bar graph) because it is nearly impossible to answer the crucial question is this data consistent with this prediction? Even if every outcome has an equal probability, the measured results of individual experiments will result from random statistical fluctuations. So even if the theory is correct, we well seldom reproduce exactly the theory prediction.

To interpret scientific experiments, it isn't enough to have a single prediction for the outcome of an experiment, instead, you need a prediction for the statistical distribution of outcomes. The mathematical framework for providing this prediction is called a probability distribution, which

reports the probability of each possible outcome for a random variable. We'll start this discussion, therefore, by deriving three of the most frequently encountered probability distributions: the Binomial Distribution, the Poisson Distribution, and the Gaussian Distribution.

1.3 The Binomial Distribution

The Binomial Distribution is the most general of the distributions we'll consider, but it is a bit cumbersome to use in practice. The more familiar Poisson and Gaussian distributions are limiting cases of this distribution.

Figure 1.2: The binomial distribution for several different values of the parameters (a) n and (b) ϵ .

Suppose you repeat a particular process n times, and each time you have the same probability ϵ of a particular outcome, which, without losing generality, we'll call "success". The probability of having exactly m successes after n trials is simply given by:

$$P = \sum_{i} p_{i}$$

where i runs over all specific outcomes with m successes and p_i is the probability of each specific outcome. However, as these specific outcomes all contain exactly m successes, they share the same probability, namely:

$$p_i = \epsilon^m (1 - \epsilon)^{n - m}$$

and so we are left to consider simply the total number of specific outcomes containing m successes. The quantity we need is provided by the binomial theorem from mathematics, which states that:

$$(p+q)^n = \sum_{m=0}^n \binom{n}{m} p^m q^{n-m}$$
 (1.1)

where the binomial coefficients are defined by

$$\binom{n}{m} = \frac{n!}{m! (n-m)!} \tag{1.2}$$

and are also often referred to in other contexts as n-choose-m. The binomial coefficient simply tells us how many times we can choose m instances of p instead of q, from n factors, and so it is precisely the combinatoric factor that we need.

The probability of obtaining m successes after n trials with probability ϵ is therefore given by:

$$P(m; n, \epsilon) = \binom{n}{m} \epsilon^m (1 - \epsilon)^{n-m}$$
(1.3)

which is called the Binomial Distribution.

1.4 Mean and Variance of a Probability Distribution

Given a probability distribution describing the outcomes of an experiment, our most urgent questions are generally "what is a typical outcome?" and "how widely will outcomes typically vary from one another?".

There are a number of ways to quantitfy the answer to first question, but generally the most useful answer is the mean value, μ , also called the expected value, of the distribution, which is defined as the weighted average across all possible outcomes. For the Binomial distribution, which describes probabilities for outcomes which are natural numbers up to n, we calculate the sum:

$$\mu \equiv \langle m \rangle \equiv \sum_{m=0}^{n} m P(m) \tag{1.4}$$

For a continuous probability distribution, where outcomes can be any real value, we would integrate instead:

$$\mu \equiv \langle x \rangle \equiv \int_{-\infty}^{+\infty} x P(x) dx \tag{1.5}$$

across a range appropriate to the situation, typically $[-\infty, \infty]$.

A mode of a distribution is an outcome for which the probability is maximal. A median of a distribution is a value at which 50% of probability is at or below it and 50% of probability is at or above it. Both of these quantities provide information about typical values for a distribution, but they suffer the significant defect that they are not necessarily unique for a given distribution.

We usually answer the second question in terms of the variance, σ^2 , of the distribution:

$$\sigma^2 \equiv \langle (x - \mu)^2 \rangle$$

Other answers have problems, e.g. $\langle x - \mu \rangle$ can be zero or nearly so, even for wide distributions, as long as it is symmetric. You could fix this by calculating $\langle |x - \mu| \rangle$ but this is generally much harder to calculate, and less useful, than the variance. For instance, it is left as an exercise to show that:

$$\langle (x - \mu)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2 \tag{1.6}$$

using the fact that μ is simply a number, and so $\langle \mu \rangle = \mu$. We need only calculate $\langle x \rangle$ and $\langle x^2 \rangle$ in order to determine the variance of a distribution.

1.5 Mean and Variance of the Binomial Distribution

The mean value of Binomial Distribution is given by:

$$\langle m \rangle = \sum_{m=0}^{n} m P(m)$$

= $\sum_{m=0}^{n} m \binom{n}{m} \epsilon^{m} (1 - \epsilon)^{n-m}$

which looks rather daunting! The trick is to use the Binomial Theorem (1.1) and define a function of two independent variables p and q given by:

$$f(p,q) = (p+q)^n = \sum_{m=0}^n \binom{n}{m} p^m q^{n-m}$$

We then calculate:

$$\frac{\partial f}{\partial p} = n(p+q)^{n-1} = \sum_{m=0}^{n} m \binom{n}{m} p^{m-1} q^{n-m}$$

and multiplying by p we have:

$$np(p+q)^{n+1} = \sum_{m=0}^{n} m \binom{n}{m} p^m q^{n-m}$$

which is true for any p and q. We now substitute the particular values $p = \epsilon$ and $q = 1 - \epsilon$ and find that:

$$n\epsilon = \sum_{m=0}^{n} m \binom{n}{m} \epsilon^m (1-\epsilon)^{n-m} \equiv \sum_{m=0}^{n} m P(m) = \mu$$

So the mean value is given by:

$$\mu = n\epsilon \tag{1.7}$$

or the total number of trials times the probability of success for each trial, a wholly plausible answer. For the variance, we use a variation of the same trick, this time using the second partial derivative:

$$p^{2} \cdot \frac{\partial^{2} f}{\partial p^{2}} = n(n-1)p^{2}(p+q)^{n-2} = \sum_{m=0}^{n} m(m-1) \binom{n}{m} p^{m} q^{n-m}$$

and again putting $p = \epsilon$ and $q = 1 - \epsilon$ to find that:

$$n(n-1)\epsilon^{2} = \sum_{m=0}^{n} (m^{2} - m) \binom{n}{m} p^{m} q^{n-m}$$
$$= \sum_{m=0}^{n} (m^{2} - m) P(m)$$
$$= \langle m^{2} - m \rangle = \langle m^{2} \rangle - \langle m \rangle$$

and as $\langle m \rangle = n\epsilon$ we have:

$$\langle m^2 \rangle = n(n-1)\epsilon^2 + n\epsilon$$

And so:

$$\sigma^2 = \langle m^2 \rangle - \langle m \rangle^2 = n(n-1)\epsilon^2 + n\epsilon - n^2\epsilon^2$$

or simply:

$$\sigma^2 = n \,\epsilon \,(1 - \epsilon) \tag{1.8}$$

Note that if $\epsilon = 0$ or $\epsilon = 1$, there is only one outcome (all failures or all success) and so the variation is zero.

Figure 1.3: The Poisson distribution for several values of parameter λ .

1.6 The Poisson Distribution

Suppose we have some time interval over which we expect to observe a mean number of events λ . The events must be independent of one another: an event occurring at a particular time cannot affect the time at which the next event occurs. We divide the time interval over which the λ events are expected to occur into into n sub-intervals, each with an equal probability to contain an event. These intervals will be all the same size if the events are uniformly distributed in time, but if the events are not uniformly distributed, the sub-intervals are simply chosen to ensure the probability is the same in each interval. The probability of an event occurring in each subinterval is $\epsilon = \lambda/n$. If we make n large enough, the probability of observing two events in an interval is vanishing small: $\epsilon^2 = \lambda^2/n^2 \ll \epsilon$. Once cast this way, we can interpret the outcome of the counting experiment as drawn from a Binomial distribution of n trials each with $\epsilon = \lambda/n$:

$$P(m) = \binom{n}{m} \epsilon^m (1 - \epsilon)^{n-m}$$

$$= \frac{n!}{m! (n - m)!} \left(\frac{\lambda}{n}\right)^m \left(1 - \frac{\lambda}{n}\right)^{n-m}$$

$$= \left(\frac{\lambda^m}{m!}\right) \left(1 - \frac{\lambda}{n}\right)^n \left[\frac{n!}{(n - m)!} \cdot \frac{1}{n^m}\right]_1 \left[\left(1 - \frac{\lambda}{n}\right)^{-m}\right]_2$$

We obtain the Poisson distribution by considering the limit that $n \to \infty$. It is left as an exercise to show that both $[\ldots]_1 \to 1$ and $[\ldots]_2 \to 1$ as $n \to \infty$. Recalling that

$$\lim_{n\to\infty} \left(1 - \frac{\lambda}{n}\right)^n = e^{-\lambda}$$

we obtain the Poisson distribution, the probability for observing m events for a mean of λ :

$$P(m; \lambda) = \frac{\lambda^m}{m!} e^{-\lambda} \tag{1.9}$$

Notice that there is no longer a parameter n, since we took $n \to \infty$, and so m now ranges from 0 to ∞ . Note also that λ is a real number, not necessarily an integer, even though it is the mean of integer values. For example, the mean of the integers 1 and 2 is the real value 1.5.

1.7 Mean and Variance of The Poisson Distribution

The mean of the Poisson distribution is given by:

$$\mu = \sum_{m \ge 0} m P(m)$$
$$= \sum_{m \ge 0} m \frac{\lambda^m}{m!} e^{-\lambda}$$

Since the first term (m=0) is zero, we have:

$$\mu = e^{-\lambda} \sum_{m \ge 1} \frac{\lambda^m}{(m-1)!}$$

$$= \lambda e^{-\lambda} \sum_{m \ge 1} \frac{\lambda^{m-1}}{(m-1)!}$$

$$= \lambda e^{-\lambda} \sum_{n \ge 0} \frac{\lambda^n}{n!}$$

$$= \lambda e^{-\lambda} e^{\lambda}$$

$$\mu = \lambda$$
(1.10)

which should come as no surprise, as the assumption in the derivation was the that mean number of events was λ .

For the variance, we use a similar manipulation to calculate:

$$\langle m^2 \rangle = \sum_{m \ge 0} m^2 P(m)$$

$$= \sum_{m \ge 0} m^2 \frac{\lambda^m}{m!} e^{-\lambda}$$

$$= \lambda \sum_{m \ge 1} m \frac{\lambda^{m-1}}{(m-1)!} e^{-\lambda}$$

$$= \lambda \sum_{n \ge 0} (n+1) \frac{\lambda^n}{(n)!} e^{-\lambda}$$

$$= \lambda \langle m+1 \rangle = \lambda (\lambda+1)$$

And so:

$$\sigma^{2} = \langle m^{2} \rangle - \langle m \rangle^{2}$$

$$= \lambda (\lambda + 1) - \lambda^{2}$$

$$\sigma^{2} = \lambda.$$
(1.11)

That is, the variance of a Poisson distribution is simply the mean. This is probably the single most practical result from statistics. Whenever a measurement amounts to a counting experiment, simply from knowing the outcome of the experiment, the count N, we can estimate that mean value $\mu \sim N$ and also the variance $\sigma^2 = N$. Typical flutuations in a count N are characterized by $\sigma = \sqrt{N}$.

Figure 1.4: The Gaussian distribution for a mean of 10 and several values of parameter σ .

1.8 The Gaussian Distribution

The next distribution we will consider is the Gaussian distribution:

$$P(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \tag{1.12}$$

which is plotted in Fig. 1.4. The Gaussian distribution (often called the normal distribution) is the most important and useful distribution as a consequence of the central limit theorem (CLT). The CLT states that when independent random variables drawn from any distribution of finite variance are added together and appropriately normalized (such as by taking their average) the distribution of the resulting random variable approaches the Gaussian distribution as the number of entries in the sum increases to infinity. A proof of the CLT is in the Appendix.

The Binomial and Poisson distribution are discrete functions: they describes the probability of outcomes which are integer quantities. For example, the Binomial probability for having 2.31 successes is either undefined or taken to be zero. The value of the Binomial distribution function at a particular integer value is simply the probability of that particular outcome. To determine the probability that an outcome is within a range of integers, say m_1 to m_2 the probability distribution function is simply added:

$$P = \sum_{m=m_1}^{m_2} P(m).$$

The Gaussian distribution is a continuous function that describes the probability density at each position x. The probability of any particular outcome, say x = 1.24323, is vanishing small. But the probability that the value lies within a range of values is non-zero, and is determined by integrating:

$$P = \int_{x_{\min}}^{x_{\max}} P(x; \lambda, \sigma) \, dx$$

The Gaussian distribution is called a probability density function (PDF). A discrete probability distribution is sometimes referred to as probability mass function (PMF), to draw upon an analogy with physical mass and density: a PDF is probability per unit volume while a PMF is simply a probability.

The Gaussian distribution is normalized so that:

$$\int_{-\infty}^{+\infty} P(x) \, dx = 1$$

To determine the mean value of a function f(x) we likewise integrate:

$$\langle f(x) \rangle \equiv \int_{-\infty}^{+\infty} f(x)P(x) dx = 1$$

In particular the mean value of x can be calculated by:

$$\langle x \rangle \equiv \int_{-\infty}^{+\infty} x P(x) \, dx$$

and:

$$\langle x^2 \rangle \equiv \int_{-\infty}^{+\infty} x^2 P(x) \, dx$$

We have defined the Gaussian distribution with the suggestive parameters μ and σ . It is left as an exercise to show that indeed, the mean is μ and the variance is σ^2 .

1.9 The Gaussian Distribution as a Limiting Case

As expected from the Central Limit Theorem, the Poisson Distribution in the limit $\lambda \to \infty$ approaches the Gaussian distribution. In this case, we can apply the Stirling Approximation:

$$\lim_{n \to \infty} n! = \sqrt{2\pi n} \ e^{-n} \ n^n$$

to the Poisson distribution as follows:

$$P(m) = \frac{\lambda^m}{m!} e^{-\lambda}$$

$$\rightarrow \frac{\lambda^m e^{-\lambda}}{\sqrt{2\pi m} e^{-m} m^m}$$

$$= \frac{e^{m-\lambda}}{\sqrt{2\pi \lambda}} \left(\frac{\lambda}{m}\right)^{m+\frac{1}{2}}$$

Now we consider a new variable δ , defined by

$$\delta \equiv \frac{m - \lambda}{\lambda}$$

which measures the difference between the observed number of events m and the mean of the distribution, as a fraction of the mean. Intuitively, the function is getting very narrow, and so we expect this to be a small quantity, but let's check this. First we have:

$$\langle \delta \rangle = \frac{\langle m \rangle - \lambda}{\lambda} = \frac{\lambda - \lambda}{\lambda} = 0$$

but also:

$$\langle \delta^2 \rangle = \frac{\langle (m-\lambda)^2 \rangle}{\lambda^2} = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda}$$

where we have used the fact that the variance is given by $\langle (m-\lambda)^2 \rangle = \lambda$, and so as $\lambda \to \infty$ we have

$$\langle \delta^2 \rangle \to 0$$

So we can write:

$$m = \lambda(1+\delta) \tag{1.13}$$

where we expect the approximation $\delta \to 0$ to hold as long as we require $\lambda \to \infty$. So now we can write the distribution in terms of the small quantity δ and the large quantity λ as:

$$P(\delta) = \frac{e^{\lambda \delta}}{\sqrt{2\pi \lambda}} \left(\frac{\lambda}{\lambda(1+\delta)}\right)^{\lambda(1+\delta)+\frac{1}{2}}$$
$$= \frac{e^{\lambda \delta}}{\sqrt{2\pi \lambda}} \cdot \frac{1}{X}$$
(1.14)

where we define the quantity:

$$X = (1+\delta)^{\lambda(1+\delta) + \frac{1}{2}}$$

which can be approximated as follows:

$$\ln X = \left(\lambda(1+\delta) + \frac{1}{2}\right) \cdot \ln(1+\delta)$$

$$= \left(\lambda(1+\delta) + \frac{1}{2}\right) \cdot \left(\delta - \frac{\delta^2}{2} + \mathcal{O}(\delta^3)\right)$$

$$\frac{\ln X}{\lambda} = \left(1 + \delta + \frac{1}{2\lambda}\right) \cdot \left(\delta - \frac{\delta^2}{2} + \mathcal{O}(\delta^3)\right)$$

$$= \left(1 + \delta + \mathcal{O}\left(\delta^2\right)\right) \cdot \left(\delta - \frac{\delta^2}{2} + \mathcal{O}(\delta^3)\right)$$

$$= \delta + \frac{\delta^2}{2} + \mathcal{O}(\delta^3),$$

where in the second to last step we used $\mathcal{O}\left(\frac{1}{\lambda}\right) \sim \mathcal{O}\left(\delta^2\right)$. Neglecting the small quantities, we can approximate

$$X = \exp\left(\lambda\delta + \lambda\frac{\delta^2}{2}\right)$$

which, when plugged backed into Equation 1.14 yields:

$$P(\delta) = \frac{e^{\lambda \delta}}{\sqrt{2\pi \lambda}} \cdot \frac{1}{\exp\left(\lambda \delta + \lambda \frac{\delta^2}{2}\right)}$$
$$= \frac{1}{\sqrt{2\pi \lambda}} \cdot \exp\left(-\lambda \frac{\delta^2}{2}\right)$$
(1.15)

Recalling that:

$$\delta \equiv \frac{m - \lambda}{\lambda}$$

$$P(x) = \frac{1}{\sqrt{2\pi\lambda}} \cdot \exp\left(-\frac{(m - \lambda)^2}{2\lambda}\right)$$
(1.16)

Which we can identify as a special case of the Gaussian distribution of Equation 1.12 with $\sigma^2 = \mu = \lambda$ and x = m:

$$P(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

It may trouble you that x is continuous while m here was an integer. But note that in the limit $\lambda \to \infty$, the difference between m/λ and $(m+1)/\lambda$ is infinitesimal, and so this is effectively a continuous function, consistent with the Gaussian distribution.

1.10 Histograms in Scientific Python

Figure 1.5: The 1000 measurements of variable x in (a) are used to produce the histogram in (b). The red data point in (b) is the count of the number of entries in range indicated by the red dashed lines in (a).

Suppose a particular variable x is measured 1000 times. One way to visualize the collected data is shown in Fig. 1.5a, which simply plots each measurement value above the measurement number (from 0 to 1000). In this example, the number of measurements that occur within the range from x = 100 to x = 105 is 181. This count is plotted as the red data point in Fig. 1.5b, 181 entries located above x = 102.5, the center of the range. If we repeat this exercise across a number or ranges, the resulting plot in Fig. 1.5b is called a histogram. A histogram reports the number of entries that occur within each of a sequence of consecutive ranges of x-values. Each range considered is called a histogram bin, and the choice of which bins to use is at the discretion of the analyzer.

The content of each bin is a single number, a count. In Section 1.7, an appropriate estimate for typical fluctuation of a count N is shown to be \sqrt{N} . It is customary to indicate the size of these typical fluctuations with an "error bar", a line through the data point at N with length \sqrt{N} . The error bars provide a visual cue to how much we expect that a repeated identical measurement would vary with respect to the presented data.

An example producing a histogram in Scientific Python is shown in Fig. 1.6. The data to plot is simply a sequence of 1000 values randomly and uniformly chosen in the range [0, 20]:

```
x = np.random.uniform(high=20.0,size=1000)
```

To create a histogram from these 1000 values, we use the np.histogram function:

```
counts,edges = np.histogram(x,bins=10,range=(0,20))
```

where we have specified 10 bins, uniformly covering the range from 0 to 20. The function returns to arrays, which we save as counts and edges. The counts array contains the bin contents, the count of the number of values in each bin:

```
counts: [ 92 82 123 96 85 106 105 99 99 113]
```

The edges array contains the edges of the bins:

```
edges: [ 0. 2. 4. 6. 8. 10. 12. 14. 16. 18. 20.]
```

```
x = np.random.uniform(high=20.0,size=1000)
counts,edges = np.histogram(x,bins=10,range=(0,20))
print("counts: ", counts)
print("edges: ", edges)
cbins = (edges[:-1] + edges[1:])/2.0
err = counts**0.5
print("cbins: ", cbins)
plt.errorbar(cbins,counts,yerr=err,fmt="ko")
plt.xlabel("x")
plt.ylabel("Entries")
```

```
96 104 108 104
                                   99 102 110
                                                98
counts:
           [ 81
                                                     981
edges:
                      4.
                          6.
                               8. 10. 12. 14. 16. 18. 20.]
           [ 0.
cbins:
           [ 1.
                      5.
                          7.
                              9. 11. 13. 15. 17. 19.]
```

Text(0,0.5,'Entries')

Figure 1.6: Example producing a histogram in Scientific Python.

You'll notice that 10 consecutive bins have 11 edges. For plotting continuous data, one choice is to plot the contents at the center of each bin:

cbins =
$$(edges[:-1] + edges[1:])/2.0$$

the two slices edges[:-1] and edges[1:] are all but the last and all but the first. The average of the two is the center of each bin:

The error bar values are chosen as the square root of the bin values:

```
err = counts**0.5
```

The histogram is plotted using the plt.errorbar function:

```
plt.errorbar(cbins,counts,yerr=err,fmt="ko")
```

which plots the bin contents counts at the bin center values cbins using the square root error bars in the array err, using the format "ko" for black circles.

1.11 Comparing a Histogram to a Probability Distribution Function

Our theoretical models often predict a PDF for some observable variable x. As experimentalists, we are often therefore concerned with the question as to whether our collected data for an observable x is consistent with the theoretical PDF. A visual approach to answering this question is to plot the data in a histogram, and to draw the PDF as a curve normalized to the histogram.

To predict the number of events in a bin with edges x_{lower} and x_{upper} , in principle we need to integrate the PDF and normalize to the number of experiments:

$$N_{\text{pred}} = N_{\text{meas}} \int_{x_{\text{lower}}}^{x_{\text{upper}}} p(x) \, dx$$

In practice, we generally choose the bin sizes small enough that the PDF is approximately constant during the entire bin, and in this case, the prediction can be taken as:

$$N_{\rm pred} = N_{\rm meas} \; \Delta x \; p(x)$$

where Δx is the width of each bin. This scale factor $N_{\text{meas}} \Delta x$ allows us to compare a continuous function to data collected in discrete bins, as shown in Fig. 1.7.

Figure 1.7: The Gaussian PDF scaled to compare to data from a Gaussian distribution. In this case, there are 1000 total entries in the histogram and the bin size is 0.5, for a scale factor of 500.

1.12 Homework Exercises for Distributions

Problem 1: Show that the Binomial distribution, P(m), in Equation 1.3 is properly normalized:

$$\sum_{m=0}^{n} P(m) = 1$$

as a consequence of the Binomial Theorem (Equation 1.1).

Problem 2: Show that Equation 1.6 is correct.

Problem 3: Show that the Poisson distribution, P(m), in Equation 1.9 is properly normalized:

$$\sum_{m \ge 0} P(m) = 1.$$

Hint: recall the Taylor series expansion for e^{λ} .

Problem 4: Show that the Gaussian distribution, P(x), in Equation 1.12 is properly normalized:

$$\int_{-\infty}^{\infty} P(x)dx = 1.$$

Problem 5: Show that the mean of the Gaussian distribution has been correctly identified in Equation 1.12. That is, show explicitly that:

$$\int_{-\infty}^{\infty} x P(x) dx = \mu$$

Problem 6: Show that the variance of the Gaussian distribution has been correctly identified in Equation 1.12. That is, show explicitly that:

$$\int_{-\infty}^{\infty} x^2 P(x) dx = \sigma^2$$

when we take $\lambda = 0$ (which is equivalent to simply changing variables $y = x - \lambda$.)

Problem 7: Consider a special probability function with the following properties: (A) it is defined for outcomes 0,1,2,3, and 4, (B) it has two modes at outcomes 0 and 4, (C) it has three medians at outcomes 1,2, and 3. Sketch the probability distribution and determine its mean.

Problem 9: Suppose that two counting experiments a and b have outcomes that are well described by the Poisson distribution with mean values λ_a and λ_b respectively. Now consider the counting experiment a + b that results from simply adding the counts from both experiments a and b. Show that that the variance of this sum is given by:

$$\sigma^2(a+b) = \sigma_a^2 + \sigma_b^2$$

We'll show in the next chapter that, quite generally, uncertainties σ add in quadrature.