Name: Quiz 2 - MAT345

Problem 2.1 (20 points; 4 points each). Decide if each of the following are true or false and provide a small proof or counterexample in each case. All vector spaces are assumed to be finite-dimensional here.

- (a) False Given a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for a vector space V and U a subspace of V, then there is $\mathcal{C} \subseteq \mathcal{B}$ that is a basis for U.
 - $\mathcal{B} = \{e_1, e_2\}$ is a basis for \mathbb{R}^2 and $U = \text{span}\{(1, 1)\}$ is a subspace, namely, the line with slope 1 through the origin. You cannot throw away one of e_1 or e_2 to get a basis for U.
- (b) True Given a basis C for a subspace U of a vector space V, C can be extended to a basis B for V. This is one of the theorems that you have, any linearly independent set can be expanded to a basis.
- (c) False If $v \in \text{span}\{v_1, \ldots, v_n\}$, then it is guaranteed that there are unique scalars $\alpha_1, \ldots, \alpha_n$ so that $v = \sum \alpha_i v_i$.
 - It is not assumed that the vectors are linearly independent. If they are linearly dependent, then there would be infinitely many n-tuples of scalars $\alpha_1, \ldots, \alpha_n$ so that $\mathbf{v} = \sum \alpha_i \mathbf{v}_i$.
- (d) True If $\{v_1, \ldots, v_n\}$ span V and $\{u_1, \ldots, u_n\} \subseteq V$ is linearly independent, then $\{u_1, \ldots, u_n\}$ span V.
 - Since $V = \text{span}\{v_1, \dots, v_n\}$ we know $\dim(V) \leq n$, but given that $\{u_1, \dots, u_n\} \subset V$ is linearly independent, then $\dim(V) \geq n$. Thus $\dim(V) = n$ so $\{u_1, \dots, u_n\}$ must be a basis
- (e) False Suppose V is a vector space and $U \subseteq V$ is a subspace. For any $\mathbf{v} \in V$, there is a **unique** $\mathbf{u} \in U$ so that $\mathbf{v} = \mathbf{u} + (\mathbf{v} \mathbf{u})$, that is, there is a unique "projection" of V into U.
 - Again take $U = \text{span}\{(1,1)\} \subset \mathbb{R}^2 = V$ and let $\mathbf{v} = (2,3)$, then $\mathbf{v} = (1,1) + (1,2) = (2,2) + (0,1)$.

Note: If we fixed W so that $V = U \oplus W$, then there would be for every $v \in V$ a unique $u \in U, w \in W$ so that v = u + w. For example, take U as above and $W = \text{span}\{(0,1)\}$, then (2,3) = (2,2) + (0,1) is the unique decomposition of (2,3) into something from U and something from W.

Problem 2.2 (10 pts). A square matrix A is called **horizontally-symmetric** if flip(A) = A where flip(A) is the matrix you obtain from A by flipping it horizontally, for example,

$$\text{flip} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ 9 & 8 & 7 \end{bmatrix}$$

- a) Show that the flip-symmetric 3×3 matrices form a subspace of all 3×3 matrices.
- b) Give a basis, \mathcal{B} , for the 3×3 flip-symmetric matrices.
- c) Give representation $[\boldsymbol{v}]_{\mathcal{B}}$ for $\boldsymbol{v} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -2 & -3 & -2 \end{bmatrix}$ with respect to the basis that you gave.

To see that the flip-symmetric matrices for a subspace note that the set is non-empty and that

$$\alpha \begin{bmatrix} a & b & a \\ c & d & c \\ e & f & e \end{bmatrix} + \beta \begin{bmatrix} A & B & A \\ C & D & C \\ E & F & E \end{bmatrix} = \begin{bmatrix} \alpha a + \beta A & \alpha b + \beta B & \alpha a + \beta A \\ \alpha c + \beta C & \alpha d + \beta D & \alpha c + \beta C \\ \alpha e + \beta E & \alpha f + \beta F & \alpha e + \beta E \end{bmatrix}$$

A basis \mathcal{B} would be:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$[\boldsymbol{v}]_{\mathcal{B}} = \begin{bmatrix} 0\\1\\1\\0\\-2\\-3 \end{bmatrix}$$

Problem 2.3. Suppose U and W subspaces of a vector space V such that

$$U + W = V$$
, and $U \cap W = \{0\}$.

Then for every $v \in V$, there is a unique pair $u \in U, w \in W$ so that u + w = v.

Recall: $U + W = \{ \boldsymbol{u} + \boldsymbol{w} \mid \boldsymbol{u} \in U \text{ and } \boldsymbol{w} \in W \}.$

The only issue here is uniqueness since by assumption every $v \in V$ can be written as u + w for some pair (u, w). Suppose v = u + w = u' + w', then

$$0 = v - v = (u + w) - (u' + w') = (u - u') - (w' - w)$$

so

$$w' - w = u - u' \in U \cap W$$

hence w' - w = 0 = u - u' and so u = u' and w = w'.