

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia de Teleinformática Sistemas de Comunicações Digitais - TI0069

Trabalho 01: Modulação Digital

Aluno:

Lucas de Souza Abdalah 385472

Professor: André Almeida

Data de Entrega do Relatório: 28/03/2021

Fortaleza 2021

Sumário

1	Problema 1 - M -QAM	2				
	1.1 Energia da Constelação	2				
	1.2 Distância Mínima entre Símbolos					
	1.3 Modulador (Codificação de Gray)	4				
	1.4 Demodulador					
2	Problema 2 - Probabilidade de Erro: M -QAM	8				
3	Problema 3 - Canal RAGB: M -QAM	9				
4	Problema 4 - Modulação M-PSK	12				
	4.1 Energia da Constelação	12				
	4.2 Distância Mínima entre Símbolos	12				
	4.3 Modulador (Codificação de Gray)	13				
	4.4 Demodulador					
5	Problema 5 - Comparativo M -QAM x M -PSK	16				
6	6 Conclusão e Resultados					
\mathbf{R}	eferências	19				

1 Problema 1 - M-QAM

Na modulação ,quadrature amplitude modulation (QAM) os símbolos de informação são mapeados nas amplitudes das portadoras em fase e quadratura. Um modelo simplificado do sinal transmitido é visto como a equação 1.

$$s_m(t) = \left(A_m^{\text{(real)}} + jA_m^{\text{(imag)}}\right)g(t) \tag{1}$$

No caso especial em que amplitudes $A_m^{(\mathrm{real})}$ e $A_m^{(\mathrm{imag})}$ assumem valores discretos no conjunto da equação 2, a constelação é chamada QAM retangular. O QAM retangular se aplica ao caso estudado a seguir, pois a quantidade de símbolos utilizados ($M = \{4, 16, 64\}$) se encaixam na condição e é utilizado para construção do alfabeto da modulação [1]. A função const_MQAM.m foi desenvolvida de modo a construir o alfabeto como uma matriz para ordenar os símbolos da esquerda para direita em linhas de símbolos ímpares e, da direita para esquerda em linhas pares.

$$A_m = \{(2m - \sqrt{M} - 1)d\}_{m=1}^{\sqrt{M}}$$
 (2)

1.1 Energia da Constelação

Para calcular a energia média, é suficiente de calcular a equação 3, desenvolvida em [1], [2].

$$\mathcal{E}_{media} = \frac{M-1}{3} \mathcal{E}_g \tag{3}$$

Sendo g(t) o pulso de energia unitária, $\mathcal{E}_g = 1$. O resultado para cada constelação QAM é registrado na Tabela 1.

A relação entre $\mathcal{E}_{media} = \mathcal{E}_b \log_2 M$ permite calcular diretamente a energia média de bit (\mathcal{E}_b) , resultando na equação 4

$$\mathcal{E}_b = \frac{M-1}{3\log_2 M} \mathcal{E}_{media} \tag{4}$$

1.2 Distância Mínima entre Símbolos

O parâmetro d é a distância entre os símbolos adjacentes, e pode ser obtido com o cálculo da distância euclidiana entre estes, como na Equação 5.

$$d = \sqrt{\frac{\mathcal{E}_g}{2} [(A_{mi} - A_{ni})^2 + (A_{mq} - A_{nq})^2]}$$

$$= \sqrt{\frac{3\mathcal{E}_{media}}{2(M-1)}}$$
(5)

Como calcular os coeficiente para constelação M-QAM retangular, onde \sqrt{M} assume valores inteiros. Os coeficientes em quadratura a_i e b_i são obtidos através da equação: $\{(2i-\sqrt{M}-1)d\}_{i=1}^{\sqrt{M}}$ A distância eucliadiana entre os sinais na modulação QAM é

$$\sqrt{\frac{3\mathcal{E}_{media}}{2(M-1)}}$$

M-QAM	\mathcal{E}_{media}	$\mathcal{E}_{media(bit)}$	d
M	$\frac{M-1}{3}\mathcal{E}_g$	$rac{M-1}{3\log_2 M}\mathcal{E}_g$	$\sqrt{\frac{3\mathcal{E}_{media}}{2(M-1)}}$
4	1	1.67×10^{-1}	$\frac{\sqrt{2}}{2}$
16	5	4.67×10^{-1}	$\frac{\sqrt{2}}{2}$
64	21	1.17×10^0	$\frac{\sqrt{2}}{2}$

Tabela 1: Informações gerais calculadas para a modulação $M\text{-}\mathrm{QAM}.$

1.3 Modulador (Codificação de Gray)

O mapeador da constelação M-QAM consiste em uma função que recebe uma sequência de bits

A codificação de binário para Gray [3] é baseada em um algoritmo recursivo 1, cujo recebe uma sequência de bits orientadas pelo bit mais importante (MSB). A recursão está na operação "ou exlusivo" (xor), denotada pelo símbolo (\otimes) .

Algorithm 1: Codificação de Gray

```
Entrada: Sequência de Bits (b) - MSB

Saída: Sequencia em Código Gray (g) - LSB

n=0;

K=\operatorname{length}(b);

while K>n do

if K==n then

g_{(K-n)}=b_{(K-n)};

else

g_{(K-n)}=b_{(K-n+1)}\otimes b_{(K-n)};

end

g=flip(g);
```

Decimal	Binário	Gray	Decimal
0	00	00	0
1	01	01	1
2	10	11	3
3	11	10	2

Tabela 2: Tabela de tradução de binário para Gray com 2 bits.

A função mybin2gray.m.

Figura 1: Exemplo de 4-QAM plot.

Figura 2: Exemplo de 16-QAM plot.

Figura 3: Exemplo de 64-QAM plot.

1.4 Demodulador

A função que decodifica um símbolo tem como entrada o próprio símbolo: $A_m^{(\text{real})}$ e $A_m^{(\text{imag})}$, M e d.

constelação $M\text{-}\mathrm{QAM}$ consiste em uma função que recebe uma sequência de bits

com 6

$$d_{mn} = \sqrt{||s_m - s_n||^2} \tag{6}$$

A função demapping_MQAM.m.

Uma vez definidos os símbolos da constelação, a área de decisão é definida também. De forma prática, ao símbolo selecionado é aquele que minimiza a distância euclidiana entre o símbolo do alfabeto. Essa região de decisão é definida pelo parâmetro, formado regiões com os símbolos do alfabeto no centro, altura e comprimento d.

Dado essa distância d, é possível calcular a energia média da constelação com a função

Que computa a equação

2 Problema 2 - Probabilidade de Erro: M- QAM

Para calcular a probabilidade de erro P(e) de cada constelação 7 desenvolvida em [1].

$$P(e) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right) - 4\left(1 - \frac{1}{\sqrt{M}}\right)^2Q^2\left(\sqrt{\frac{3}{M-1}\frac{E_s}{N_0}}\right)$$
(7)

Para valores mais elevados de SNR, a equação da probabilidade do M-QAM pode ser reduzida para 8, pois o segundo termo ao quadrado passa a ser irrelevante.

$$P(e) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}}\frac{E_s}{N_0}\right) \tag{8}$$

Nas simulações realizadas, as curvas utilizando ambas as equações são bem semelhantes, principalmente para constelação 4-QAM, além de reduzir o custo computacional. Entretanto, para manter a fidedignidade do gráfico mostrado na 4, a probabilidade P(e) é caculada a partir da equação completa 7.

Figura 4: Probabilidade de erro (P(e)) teórico M-QAM.

3 Problema 3 - Canal RAGB: M-QAM

Figura 5: Simulação de transmissão 4-QAM, com SNR de 25dB.

Figura 6: Simulação de transmissão 16-QAM, com $S\!N\!R$ de 25dB.

Figura 7: Simulação de transmissão 64-QAM, com SNR de 25dB.

Figura 8: Probabilidade teórica de erro v
s. simulação de transmissão $M\text{-}\,\mathrm{QAM}$ em canal RAGB.

4 Problema 4 - Modulação M-PSK

O conjunto de sinais phase-shift keying (PSK) têm a mesma amplitude e fases diferentes para cada mensagem, podendo ser escrito para M>2 de acordo com a equação 9

$$s_i(t) = \sqrt{\frac{2\mathcal{E}_s}{\mathcal{E}_g}}g(t)cos(2\pi f_c t + \frac{(2i-1)\pi}{M}), \ 0 \le t \le T, \ i = 1, 2, \dots, M,$$
 (9)

Assumindo a energia do pulso de transmissão unitária, g(t) = 1, o sinal também pode ser expresso através de uma combinação linear [1], de modo que $s_i(t)$ é reescrito coom na equação 10

$$s_{i} = \begin{bmatrix} \sqrt{\mathcal{E}_{s}} cos(\frac{(2i-1)\pi}{M}) \\ \sqrt{\mathcal{E}_{s}} sin(\frac{(2i-1)\pi}{M}) \end{bmatrix}, i = 1, \dots, M$$
 (10)

A função const_MPSK.m.

4.1 Energia da Constelação

4.2 Distância Mínima entre Símbolos

M-PSK	\mathcal{E}_{media}	$\mathcal{E}_{media(bit)}$	d
M	$rac{1}{2}\mathcal{E}_g$		$2\sqrt{\mathcal{E}_{media}\sin^2\left(\frac{\pi}{M}\right)}$
4	0.5	8.33×10^{-2}	1
8	0.5	5.56×10^{-2}	5.41×10^{-1}

Tabela 3: Informações gerais calculadas para a modulação M-QAM.

4.3 Modulador (Codificação de Gray)

4.4 Demodulador

Figura 9: Constelação 4-PSK com codificação de Gray.

Figura 10: Constelação 8-PSK com codificação de Gray.

Figura 11: Probabilidade de erro (P(e)) teórico M-PSK.

Figura 12: Probabilidade de erro (P(e)) teórico M-PSK.

Figura 13: Probabilidade teórica de erro v
s. simulação de transmissão $M\textsubscript{\mathsf{PSK}}$ em canal RAGB.

5 Problema 5 - Comparativo M-QAM x M-PSK

Figura 14: Probabilidade teórica de erro v
s. simulação de transmissão $M\textsubscript{\mathsf{PSK}}$ em canal RAGB.

Figura 15: Probabilidade teórica de erro v
s. simulação de transmissão $M\textsubscript{\textsc{PSK}}$ em canal RAGB.

6 Conclusão e Resultados

O para o caso do QAM é possível observar que aumentar o número de símbolos ganhamos em b transmitidos por símbolos, porém a energia média da constelação cresce porporcional mente saindo de 1, no caso de m = 4 e chegando a 21 no caso de m = 64. Além disso a exigência de um sistema de transmissão com mais robustez a ruído, pois é aumentando a quantidade de símbolos a influência do ruído aumenta de forma a a deteriorar totalmente a informação enviada

Podemos observar que ao aumentarmos a quantidade de símbolos na constelação, é necessário mais energia para tal constelação, em ambos os casos, QAM E PSK. Além disso, uma SNR baixa acarreta bastante perda de informação, chegando ao ponto de errar a taxa de 0.5 dos símbolos enviados no caso 64-QAM para 0dB. Esta taxa só é menor que 0.01 para $\frac{Eb}{N_o} \geq 20 \mathrm{dB}$.

Interessante notar também a diferença entre a taxa de erro de bit e a taxa de símbolo, pois a utilizar a codificação de Gray o símbolos decidido apresenta apenas um bit de diferença símbolos vizinhos, garantindo o quê mesmo ao selecionar um símbolo equivocado a mensagem será afetada de apenas um bit.

Referências

- [1] C. Pimentel, Comunicação Digital, 1ª ed. 2007.
- [2] J. G. Proakis e M. Salehi, *Digital Communications*, $5^{\underline{a}}$ ed. 1995.
- [3] A. Reddy, Conversion of Binary to Gray Code, https://www.tutorialspoint.com/conversion-of-binary-to-gray-code, Accessed: 2021-03-26.