ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

▶ We recall the following important theorem:

- ▶ We recall the following important theorem:
- ► Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.

- We recall the following important theorem:
- ► Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers.

- We recall the following important theorem:
- ► Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n\in\mathbb{N}}$.

- ▶ We recall the following important theorem:
- ► Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n\in\mathbb{N}}$.
- Obviously, this monotonic subsequence is bounded as the original sequence is bounded.

- ▶ We recall the following important theorem:
- ► Theorem 18.10 (Bolzano-Weierstrass theorem): Every bounded sequence of real numbers has a convergent subsequence.
- ▶ Proof. Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers.
- ▶ By previous theorem there exists a monotonic subsequence of $\{a_n\}_{n\in\mathbb{N}}$.
- Obviously, this monotonic subsequence is bounded as the original sequence is bounded.
- As every bounded monotonic sequence is convergent, this subsequence is convergent. This completes the proof.

Limit points

▶ We also recall the notion of limit points:

Limit points

- ▶ We also recall the notion of limit points:
- ▶ Definition 18.5: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y \in \mathbb{R}$ is said to be limit point of $\{a_n\}_{n\in\mathbb{N}}$, if it has a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ converging to y.
- ▶ We would like to understand the structure of limit points better. The following theorem is easy to prove.

▶ Theorem 20.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y\in\mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n\in\mathbb{N}}$ if and only if the set

$$\{m: a_m \in (y-\epsilon, y+\epsilon)\}$$

is infinite for every $\epsilon > 0$.

▶ Theorem 20.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y\in\mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n\in\mathbb{N}}$ if and only if the set

$$\{m: a_m \in (y-\epsilon, y+\epsilon)\}$$

is infinite for every $\epsilon > 0$.

- ▶ In other words, there are infinitely many terms of the sequence in $(y \epsilon, y + \epsilon)$ for every $\epsilon > 0$.
- ▶ Proof: Suppose for $k \in \mathbb{N}$,

$$\{m: a_m \in (y-\frac{1}{k}, y+\frac{1}{k})\}$$

is infinite for every k. Then it is easy to choose a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ such that

$$y - \frac{1}{k} \le a_{n_k} \le y + \frac{1}{k}.$$

▶ Theorem 20.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y\in\mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n\in\mathbb{N}}$ if and only if the set

$$\{m: a_m \in (y-\epsilon, y+\epsilon)\}$$

is infinite for every $\epsilon > 0$.

- ▶ In other words, there are infinitely many terms of the sequence in $(y \epsilon, y + \epsilon)$ for every $\epsilon > 0$.
- ▶ Proof: Suppose for $k \in \mathbb{N}$,

$$\{m: a_m \in (y - \frac{1}{k}, y + \frac{1}{k})\}$$

is infinite for every k. Then it is easy to choose a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ such that

$$y - \frac{1}{k} \le a_{n_k} \le y + \frac{1}{k}.$$

▶ By the squeeze theorem, $\lim_{k\to\infty} a_{n_k} = y$.

▶ Theorem 20.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. Then $y\in\mathbb{R}$ is a limit point of the sequence $\{a_n\}_{n\in\mathbb{N}}$ if and only if the set

$$\{m: a_m \in (y-\epsilon, y+\epsilon)\}$$

is infinite for every $\epsilon > 0$.

- ▶ In other words, there are infinitely many terms of the sequence in $(y \epsilon, y + \epsilon)$ for every $\epsilon > 0$.
- ▶ Proof: Suppose for $k \in \mathbb{N}$,

$$\{m: a_m \in (y - \frac{1}{k}, y + \frac{1}{k})\}$$

is infinite for every k. Then it is easy to choose a subsequence $\{a_{n_k}\}_{k\in\mathbb{N}}$ such that

$$y - \frac{1}{k} \le a_{n_k} \le y + \frac{1}{k}.$$

- ▶ By the squeeze theorem, $\lim_{k\to\infty} a_{n_k} = y$.
- ► The converse is also easy to see.

Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \ge 3\} = \sup\{a_3, a_4, \ldots\};$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \ge 3\} = \sup\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \ge n\} = \sup\{a_n, a_{n+1}, \ldots\}.$$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \ge n\} = \sup\{a_n, a_{n+1}, \ldots\}.$$

Note that as $\{a_m : m \in \mathbb{N}\} \supseteq \{a_m : m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \geq 3\} = \sup\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \ge n\} = \sup\{a_n, a_{n+1}, \ldots\}.$$

- Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.
- ▶ In general, $b_n \ge b_{n+1}$ for every $n \in \mathbb{N}$. We also have $|b_n| \le M$ for every n, as $|a_m| \le M$ for every m.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $b_1 = \sup\{a_m : m \in \mathbb{N}\} = \sup\{a_1, a_2, \ldots\};$
- ▶ $b_2 = \sup\{a_m : m \in \mathbb{N}, m \ge 2\} = \sup\{a_2, a_3, \ldots\};$
- ▶ $b_3 = \sup\{a_m : m \in \mathbb{N}, m \ge 3\} = \sup\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$b_n = \sup\{a_m : m \in \mathbb{N}, m \ge n\} = \sup\{a_n, a_{n+1}, \ldots\}.$$

- Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $b_1 \geq b_2$.
- ▶ In general, $b_n \ge b_{n+1}$ for every $n \in \mathbb{N}$. We also have $|b_n| \le M$ for every n, as $|a_m| \le M$ for every m.
- ▶ In conclusion, $\{b_n\}$ is a bounded decreasing sequence. Hence $\lim_{n\to\infty} b_n$ exists.

▶ Definition 20.2: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty} b_n$ defined as above is known as the limit superior or limsup of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\limsup_{n\to\infty} a_n = \lim_{n\to\infty} b_n.$$

▶ Definition 20.2: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty} b_n$ defined as above is known as the limit superior or limsup of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\limsup_{n\to\infty} a_n = \lim_{n\to\infty} b_n.$$

▶ In other words, the 'limsup' is the limit of supremums of tails of the sequence.

Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n| \leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ► $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ▶ $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \ldots\}.$$

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ► $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \ldots\}.$$

Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ► $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \ldots\}.$$

- Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.
- ▶ In general, $c_n \le c_{n+1}$ for every $n \in \mathbb{N}$. We also have $|c_n| \le M$ for every n, as $|a_m| \le M$ for every m.

- Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $|a_n|\leq M$, for all n.
- ▶ Take $c_1 = \inf\{a_m : m \in \mathbb{N}\} = \inf\{a_1, a_2, \ldots\};$
- ► $c_2 = \inf\{a_m : m \in \mathbb{N}, m \ge 2\} = \inf\{a_2, a_3, \ldots\};$
- ► $c_3 = \inf\{a_m : m \in \mathbb{N}, m \ge 3\} = \inf\{a_3, a_4, \ldots\};$
- ▶ and for any $n \in \mathbb{N}$,

$$c_n = \inf\{a_m : m \in \mathbb{N}, m \geq n\} = \inf\{a_n, a_{n+1}, \ldots\}.$$

- Note that as $\{a_m: m \in \mathbb{N}\} \supseteq \{a_m: m \in \mathbb{N}, m \geq 2\}$, we have $c_1 \leq c_2$.
- ▶ In general, $c_n \le c_{n+1}$ for every $n \in \mathbb{N}$. We also have $|c_n| \le M$ for every n, as $|a_m| \le M$ for every m.
- ▶ In conclusion, $\{c_n\}$ is a bounded increasing sequence. Hence $\lim_{n\to\infty} c_n$ exists.

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty}c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty}c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty}c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- Observe that for every n,

$$-M \le c_n \le a_n \le b_n \le M$$
.

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty} c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- Observe that for every n,

$$-M \le c_n \le a_n \le b_n \le M$$
.

Consequently,

$$-M \leq \liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n \leq M.$$

▶ Definition 20.3: For any bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, the $\lim_{n\to\infty} c_n$ defined as above is known as the limit inferior or liminf of the bounded sequence $\{a_n\}_{n\in\mathbb{N}}$, and we write:

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

- ▶ In other words, the 'liminf' is the limit of infimums of tails of the sequence.
- Observe that for every n,

$$-M \le c_n \le a_n \le b_n \le M$$
.

Consequently,

$$-M \leq \liminf_{n \to \infty} a_n \leq \limsup_{n \to \infty} a_n \leq M.$$

A bounded sequence may not be convergent and so it may not have a limit. But it always has liminf and limsup.

Examples

Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k+1, k \in \mathbb{N} \bigcup \{0\} \\ 6 & \text{if } n = 3k+2, k \in \mathbb{N} \bigcup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

Examples

Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k + 1, k \in \mathbb{N} \bigcup \{0\} \\ 6 & \text{if } n = 3k + 2, k \in \mathbb{N} \bigcup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

▶ Then $b_n = 7$ for every n and $c_n = 5$ for every n.

$$a_n = \begin{cases} 5 & \text{if } n = 3k + 1, k \in \mathbb{N} \bigcup \{0\} \\ 6 & \text{if } n = 3k + 2, k \in \mathbb{N} \bigcup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

- ▶ Then $b_n = 7$ for every n and $c_n = 5$ for every n.
- ► Hence $\liminf_{n\to\infty} a_n = 5$ and $\limsup a_n = 7$.

$$a_n = \begin{cases} 5 & \text{if } n = 3k+1, k \in \mathbb{N} \bigcup \{0\} \\ 6 & \text{if } n = 3k+2, k \in \mathbb{N} \bigcup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

- ▶ Then $b_n = 7$ for every n and $c_n = 5$ for every n.
- ► Hence $\liminf_{n\to\infty} a_n = 5$ and $\limsup a_n = 7$.
- ▶ It is to be noted that in general b_n , c_n may not be terms of the sequence.

$$a_n = \begin{cases} 5 & \text{if } n = 3k+1, k \in \mathbb{N} \bigcup \{0\} \\ 6 & \text{if } n = 3k+2, k \in \mathbb{N} \bigcup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

- ▶ Then $b_n = 7$ for every n and $c_n = 5$ for every n.
- ▶ Hence $\liminf_{n\to\infty} a_n = 5$ and $\limsup a_n = 7$.
- ▶ It is to be noted that in general b_n , c_n may not be terms of the sequence.
- **Example 20.5**: Consider the sequence $\{a_n\}$, where

$$a_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is odd.} \\ 3 - \frac{1}{n} & \text{if } n \text{ is even.} \end{cases}$$

Example 20.4: Consider the sequence $\{a_n\}$ where,

$$a_n = \begin{cases} 5 & \text{if } n = 3k+1, k \in \mathbb{N} \bigcup \{0\} \\ 6 & \text{if } n = 3k+2, k \in \mathbb{N} \bigcup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

- ▶ Then $b_n = 7$ for every n and $c_n = 5$ for every n.
- ► Hence $\liminf_{n\to\infty} a_n = 5$ and $\limsup a_n = 7$.
- ▶ It is to be noted that in general b_n , c_n may not be terms of the sequence.
- **Example 20.5**: Consider the sequence $\{a_n\}$, where

$$a_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is odd.} \\ 3 - \frac{1}{n} & \text{if } n \text{ is even.} \end{cases}$$

▶ Then $b_n = 3$ for every n and $c_n = 0$ for every n.

$$a_n = \begin{cases} 5 & \text{if } n = 3k+1, k \in \mathbb{N} \bigcup \{0\} \\ 6 & \text{if } n = 3k+2, k \in \mathbb{N} \bigcup \{0\} \\ 7 & \text{if } n = 3k, k \in \mathbb{N}. \end{cases}$$

- ▶ Then $b_n = 7$ for every n and $c_n = 5$ for every n.
- ▶ Hence $\liminf_{n\to\infty} a_n = 5$ and $\limsup a_n = 7$.
- ▶ It is to be noted that in general b_n , c_n may not be terms of the sequence.
- **Example 20.5**: Consider the sequence $\{a_n\}$, where

$$a_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is odd.} \\ 3 - \frac{1}{n} & \text{if } n \text{ is even.} \end{cases}$$

- ▶ Then $b_n = 3$ for every n and $c_n = 0$ for every n.
- In particular, it is not immediate that limsup and liminf are limit points of the sequence.

▶ Theorem 20.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $z=\limsup_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$S_+(z,\epsilon) = \{n : a_n > z + \epsilon\}$$
 is finite. (*)

$$S_{-}(z,\epsilon) = \{n : a_n > z - \epsilon\}$$
 is infinite. (**)

▶ Theorem 20.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $z=\limsup_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$S_+(z,\epsilon) = \{n : a_n > z + \epsilon\}$$
 is finite. (*)

and the set

$$S_{-}(z,\epsilon) = \{n : a_n > z - \epsilon\}$$
 is infinite. (**)

▶ Conversely if $v \in \mathbb{R}$ satisfies (*), (**) for every $\epsilon > 0$, with z replaced by v, then v = z.

▶ Theorem 20.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $z=\limsup_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$S_+(z,\epsilon) = \{n : a_n > z + \epsilon\}$$
 is finite. (*)

$$S_{-}(z,\epsilon) = \{n : a_n > z - \epsilon\}$$
 is infinite. (**)

- ▶ Conversely if $v \in \mathbb{R}$ satisfies (*), (**) for every $\epsilon > 0$, with z replaced by v, then v = z.
- ▶ Proof: Suppose $z = \limsup_{n\to\infty} a_n$.

▶ Theorem 20.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $z=\limsup_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$S_+(z,\epsilon) = \{n : a_n > z + \epsilon\}$$
 is finite. (*)

$$S_{-}(z,\epsilon) = \{n : a_n > z - \epsilon\}$$
 is infinite. (**)

- Conversely if $v \in \mathbb{R}$ satisfies (*), (**) for every $\epsilon > 0$, with z replaced by v, then v = z.
- ▶ Proof: Suppose $z = \limsup_{n\to\infty} a_n$.
- ▶ Fix $\epsilon > 0$. Take $b_n = \sup\{a_m : m \ge n\}$. By the definition of limsup, $z = \lim_{n \to \infty} b_n$.

▶ Theorem 20.6: Let $\{a_n\}_{n\in\mathbb{N}}$ be a bounded sequence of real numbers and suppose $z=\limsup_{n\to\infty}a_n$. Then for every $\epsilon>0$, the set

$$S_+(z,\epsilon) = \{n : a_n > z + \epsilon\}$$
 is finite. (*)

$$S_{-}(z,\epsilon) = \{n : a_n > z - \epsilon\}$$
 is infinite. (**)

- ▶ Conversely if $v \in \mathbb{R}$ satisfies (*), (**) for every $\epsilon > 0$, with z replaced by v, then v = z.
- ▶ Proof: Suppose $z = \limsup_{n\to\infty} a_n$.
- ▶ Fix $\epsilon > 0$. Take $b_n = \sup\{a_m : m \ge n\}$. By the definition of limsup, $z = \lim_{n \to \infty} b_n$.
- ▶ Hence there exists $K \in \mathbb{N}$ such that

$$b_n \in (z - \epsilon, z + \epsilon), \forall n \geq K.$$

▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \ge K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \ge K$.

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \ge K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \ge K$.
- ▶ This implies that $S_+(z,\epsilon) \subseteq \{1,2,\ldots,(K-1)\}$ and hence it is a finite set.

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \ge K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \ge K$.
- ▶ This implies that $S_+(z,\epsilon) \subseteq \{1,2,\ldots,(K-1)\}$ and hence it is a finite set.
- ▶ Now for $r \in \mathbb{N}$, by considering $\frac{\epsilon}{r}$, there exists $K_r \in \mathbb{N}$ such that

$$b_n \in \big(z - \frac{\epsilon}{r}, z + \frac{\epsilon}{r}\big), \ \forall n \geq K_r.$$

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \ge K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \ge K$.
- ▶ This implies that $S_+(z,\epsilon) \subseteq \{1,2,\ldots,(K-1)\}$ and hence it is a finite set.
- ▶ Now for $r \in \mathbb{N}$, by considering $\frac{\epsilon}{r}$, there exists $K_r \in \mathbb{N}$ such that

$$b_n \in \big(z-\frac{\epsilon}{r},z+\frac{\epsilon}{r}\big), \ \forall n \geq K_r.$$

- ▶ In particular, $z \frac{\epsilon}{r} < b_{K_r} = \sup\{a_m : m \ge K_r\}$.
- ▶ This means that, there exists $m > K_r$, such that $z \frac{\epsilon}{r} < b_m$.

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \ge K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \ge K$.
- ▶ This implies that $S_+(z,\epsilon) \subseteq \{1,2,\ldots,(K-1)\}$ and hence it is a finite set.
- Now for $r \in \mathbb{N}$, by considering $\frac{\epsilon}{r}$, there exists $K_r \in \mathbb{N}$ such that

$$b_n \in (z - \frac{\epsilon}{r}, z + \frac{\epsilon}{r}), \ \forall n \geq K_r.$$

- ▶ In particular, $z \frac{\epsilon}{r} < b_{K_r} = \sup\{a_m : m \ge K_r\}$.
- ▶ This means that, there exists $m > K_r$, such that $z \frac{\epsilon}{r} < b_m$.
- Inductively we can choose $m_1 < m_2 < \cdots$ such that $z \frac{\epsilon}{r} < b_{m_r}$.

- ▶ In particular, $b_K < z + \epsilon$, or $\sup\{a_m : m \ge K\} < z + \epsilon$, and consequently $a_m < z + \epsilon$ for $m \ge K$.
- ▶ This implies that $S_+(z,\epsilon) \subseteq \{1,2,\ldots,(K-1)\}$ and hence it is a finite set.
- Now for $r \in \mathbb{N}$, by considering $\frac{\epsilon}{r}$, there exists $K_r \in \mathbb{N}$ such that

$$b_n \in \big(z-\frac{\epsilon}{r},z+\frac{\epsilon}{r}\big), \ \forall n \geq K_r.$$

- ▶ In particular, $z \frac{\epsilon}{r} < b_{K_r} = \sup\{a_m : m \ge K_r\}$.
- ▶ This means that, there exists $m > K_r$, such that $z \frac{\epsilon}{r} < b_m$.
- Inductively we can choose $m_1 < m_2 < \cdots$ such that $z \frac{\epsilon}{r} < b_{m_r}$.
- Now it is clear that $S_{-}(z,\epsilon)$ is infinite.

▶ Conversely, suppose $v \in \mathbb{R}$ is such that (*) and (**) are satisfied for every $\epsilon > 0$ with z replaced by v.

- Conversely, suppose $v \in \mathbb{R}$ is such that (*) and (**) are satisfied for every $\epsilon > 0$ with z replaced by v.
- Now $S_+(v,\epsilon)$ is finite, means that there exists, M_{ϵ} , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_{\epsilon}$.

- ▶ Conversely, suppose $v \in \mathbb{R}$ is such that (*) and (**) are satisfied for every $\epsilon > 0$ with z replaced by v.
- Now $S_+(v,\epsilon)$ is finite, means that there exists, M_{ϵ} , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_{\epsilon}$.
- Therefore $b_n \le v + \epsilon$ for $n \ge M_{\epsilon}$. Hence $z = \lim_{n \to \infty} b_n \le v + \epsilon$.

- Conversely, suppose $v \in \mathbb{R}$ is such that (*) and (**) are satisfied for every $\epsilon > 0$ with z replaced by v.
- Now $S_+(v,\epsilon)$ is finite, means that there exists, M_{ϵ} , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_{\epsilon}$.
- ► Therefore $b_n \le v + \epsilon$ for $n \ge M_{\epsilon}$. Hence $z = \lim_{n \to \infty} b_n \le v + \epsilon$.
- ▶ As this is true for every $\epsilon > 0$, we get $z \le v$.

- ▶ Conversely, suppose $v \in \mathbb{R}$ is such that (*) and (**) are satisfied for every $\epsilon > 0$ with z replaced by v.
- Now $S_+(v,\epsilon)$ is finite, means that there exists, M_{ϵ} , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_{\epsilon}$.
- ► Therefore $b_n \le v + \epsilon$ for $n \ge M_{\epsilon}$. Hence $z = \lim_{n \to \infty} b_n \le v + \epsilon$.
- As this is true for every $\epsilon > 0$, we get $z \le v$.
- ▶ Similarly, $S_{-}(v, \epsilon)$ is infinite, for every $\epsilon > 0$, means that $S_{-}(v, \frac{1}{r}) = \{m : v \frac{1}{r} < a_m\}$ is infinite for every r.

- ▶ Conversely, suppose $v \in \mathbb{R}$ is such that (*) and (**) are satisfied for every $\epsilon > 0$ with z replaced by v.
- Now $S_+(v,\epsilon)$ is finite, means that there exists, M_{ϵ} , such that for $|a_n| \leq v + \epsilon$ for $n \geq M_{\epsilon}$.
- ► Therefore $b_n \le v + \epsilon$ for $n \ge M_{\epsilon}$. Hence $z = \lim_{n \to \infty} b_n \le v + \epsilon$.
- As this is true for every $\epsilon > 0$, we get $z \le v$.
- ▶ Similarly, $S_{-}(v, \epsilon)$ is infinite, for every $\epsilon > 0$, means that $S_{-}(v, \frac{1}{r}) = \{m : v \frac{1}{r} < a_m\}$ is infinite for every r.
- ▶ This allows us to choose a subsequence $\{a_{n_r}\}_{r\in\mathbb{N}}$, where $v-\frac{1}{r} < a_{n_r}$. Then $v-\frac{1}{r} < b_{n_r}$, and hence on taking limit as $r\to\infty$, $v\le \lim_{r\to\infty}b_{n_r}=z$. That is, $v\le z$. Combining the two statements we have v=z.

▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ Proof: Take $z = \limsup_{n\to\infty} a_n$.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- Proof: Take $z = \limsup_{n \to \infty} a_n$.
- ▶ By the previous characterization, $\{m: z \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- Proof: Take $z = \limsup_{n \to \infty} a_n$.
- ▶ By the previous characterization, $\{m: z \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n\in\mathbb{N}}$.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ Proof: Take $z = \limsup_{n \to \infty} a_n$.
- ▶ By the previous characterization, $\{m: z \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n\in\mathbb{N}}$.
- ► The fact that *z* is the largest limit point is also clear from the characterization.

- ▶ Theorem 20.7: Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence of real numbers. Then $\limsup_{n\to\infty}a_n$ is a limit point of $\{a_n\}_{n\in\mathbb{N}}$ and if y is any limit point of $\{a_n\}_{n\in\mathbb{N}}$, then $y\leq\limsup_{n\to\infty}a_n$.
- ▶ In other words, limsup is the largest limit point of a bounded sequence.
- ▶ Proof: Take $z = \limsup_{n \to \infty} a_n$.
- ▶ By the previous characterization, $\{m: z \epsilon < a_m < z + \epsilon\} = S_-(z, \epsilon) \setminus (S_+(z, \epsilon) \cup \{z + \epsilon\})$ is infinite.
- ▶ Hence z is a limit point of $\{a_n\}_{n\in\mathbb{N}}$.
- ▶ The fact that *z* is the largest limit point is also clear from the characterization.
- ► END OF LETCURE 20

