-		
I)ata	•	
Date	•	

A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET

MAINS TEST SERIES-2020

(JULY to DEC.-2020)

IAS/IFoS

MATHEMATICS

Under the guidance of K. Venkanna

PDE, NUMERICAL ANALYSIS & COMP. PROG. AND MECHANICS & FD

TEST CODE: TEST-4: IAS(M)/02-AUG.-2020

Time: 3 Hours Maximum Marks: 250

INSTRUCTIONS

- 1. This question paper-cum-answer booklet has <u>50</u> pages and has
 - $\frac{31\ PART/SUBPART}{\text{paper-cum-answer booklet you have received contains all the questions}}.$
- 2. Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- 3. A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated."
- 4. Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 7. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 8. All questions carry equal marks.
- All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- All rough work should be done in the space provided and scored out finally.
- 11. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

READ	INSTR	UCT	IONS	HT NO	E
LEFT	SIDE	ΟF	THIS	PAG	E
CARE	ULLY				

Name	
Roll No.	
Test Centre	
root contro	

Medium

Do not write your Roll Number or Name
anywhere else in this Question Paper
cum-Answer Booklet.

C	411	,	٦,	13	***	-1	_	0	JN		٠.										
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

I have read all the instructions and shall abide by them

Signature of the Candidate

I have verified the information filled by the candidate above

Signature of the invigilator

IMPORTANT NOTE:

Whenever a question is being attempted, all its parts/ sub-parts must be attempted contiguously. This means that before moving on to the next question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed. Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

DO NOT WRITE ON THIS SPACE

INDEX TABLE

QUESTION	No.	PAGE NO.	MAX. MARKS	MARKS OBTAINED
1	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
2	(a)			
	(b)			
	(c)			
	(d)			
3	(a)			
	(b)			
	(c)			
	(d)			
4	(a)			
	(b)			
	(c)			
	(d)			
5	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
6	(a)			
	(b)			
	(c)			
	(d)			
7	(a)			
	(b)			
	(c)			
	(d)			
8	(a)			
	(b)			
	(c)			
	(d)			
			Total Marks	

DO NOT WRITE ON THIS SPACE

SECTION - A

		52011011 11
۱,	(0)	Chary that the differential equation of all comes which have their ventor at the
1.	(a)	Show that the differential equation of all cones which have their vertex at the
		origin is $px + qy = z$. Verify that $yz + zx + xy = 0$ is a surface satisfying the above
		equation. [10]
		[-0]
l		
l		
l		
l		

[10]	
– cos xy.	
- y²) sin xy -	
(2x² + xy -	
$2D^2$ $z =$	
– DD' –	
Solve (D ²	
(b)	
1.	

1. (c) By using Newton's forward interpolation formula, find the number of men getting wages between Rs. 10 and 15 from the following date. [10]

Wages in Rs.	0-10	10-20	20-30	30 – 40
No. of Men	9	30	35	42

1.	(d)	Give a Boolean expression for the following statements:
		(i) Y is a 1 only if A is a 1 and B is a 1 or if A is a 0 and B is a 0.
		(ii) Y is a 1 only if A, B and C are all 1s or if only one of the variables is a 0.[10]

1.	(e)	Find the M.I. of a right solid cone of mass M, height h and radius of whose bas	se
		is a, about its axis. [10	
			_

2.	(a)	The ends A and B of a rod, 10 cm in length, are kept at temperatures 0°C and
•	(~)	100°C until the steady state condition prevails. Suddenly the temperature at
		the end A is increased to 20°C, and the end B is decreased to 60° C. Find the
		temperature distribution in the rod at time t. [20]
		[20]

2. (b) Find the solution of the following system of equations

$$x_1 - \frac{1}{4}x_2 - \frac{1}{4}x_3 = \frac{1}{2}$$

$$-\frac{1}{4}x_1 + x_2 - \frac{1}{4}x_4 = \frac{1}{2}$$

$$-\frac{1}{4}x_1 + x_3 - \frac{1}{4}x_4 = \frac{1}{4}$$

$$-\frac{1}{4}\mathbf{x}_2 - \frac{1}{4}\mathbf{x}_3 + \mathbf{x}_4 = \frac{1}{4}$$

using Gauss-Seidel method and perform the first five iterations.

[15]

2.	(c)	Two equal rods AB and BC, each of length <i>l</i> smoothly joined at B are suspende
		from A and oscillate in a vertical plane through A. Show that the periods of norm
		oscillations are $\frac{2\pi}{n}$, where $n^2 = \left(3 \pm \frac{6}{\sqrt{7}}\right) \frac{g}{l}$.

3.	(a)	Find the characteristic of the equation $z=(1/2)$ $(p^2+q^2)+(p-x)$ $(q-y)$ and determine the integral surface which passes through the x-axis. [18]

3.	(b)	Solve the following differential equation $\frac{dy}{dx} = x + y$ with the initial condition y(0)
		= 1, using fourth-order Runge-Kutta method from $x = 0$ to $x = 0.4$ taking $h = 0.1$. [16]

3.	(c)	Steam is rushing from a boiler through a conical pipe, the diameters of the ends of which are D and d; if V and v be the corresponding velocities of the stream, and if the motion be supposed to be that of divergence from the vertex of the cone, prove that $\frac{v}{V} = \frac{D^2}{d^2} e^{(v^2 - V^2)/2k}$ where k is the pressure divided by the density and
		supposed to be constant. [16]

4.	(a)	Find the integral surface of the partial differential equation $(x - y)p + (y - x - z)$	$\mathbf{z})\mathbf{q} = \mathbf{q}$
		z through the circle $z = 1$, $x^2 + y^2 = 1$.	10]
			_

4.	(b)	Convert the following to the base indicated against each:	
		(i) (266.375) ₁₀ to base 8	
		(ii) (341.24) ₅ to base 10	
		(iii) $(43.3125)_{10}$ to base 2	
		(iv) Draw the circuit diagram for	
		$\overline{F} = A\overline{B}C + \overline{C}B$	
		using NAND to NAND logic long.	[12]

4.	(d)	If the fluid fills the region of space on the positive side of x-axis, is a rigid boundary,
1	` '	and if there be a source + m at the point (0, a), and an equal sink at (0, b), and
		if the pressure on the negative side of the boundary be the same as the pressure
		of the fluid at infinity, show that the resultant pressure on the boundary is $\pi \rho m^2$
		$(a - b)^2$ /ab $(a + b)$, where ρ is the density of the fluid. [17]
1		
1		

SECTION - B

5. (a) Use Lagrange's method to solve the equation

$$\begin{vmatrix} x & y & z \\ \alpha & \beta & \gamma \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & -1 \end{vmatrix} = 0$$

where z = z (x, y).

[10]

5.	(b)	Find a complete integral of $(x^2 + y^2)$ $(p^2 + q^2) = 1$.	[10]

5.	(d)	Use Hamilton's pendulum.	equations	to	find	the	equation	of	motion	of the	he	simple [10]

5.	(e)	Show that the velocity potential $\phi=(a/2)\times(x^2+y^2-2z^2)$ satisfies the Laplace equation. Also determine the streamlines. [10]

6.	(a)	Obtain the partial differential equation governing the equations $\phi(u,v)=0,u=xyz,\\ v=x+y+z.$	[06]

6.	(c)	Reduce $r + 2xs + x^2 t = 0$ to canonical form	[13]
	` ,		

6.	(d)	A string of length l is initially at rest in its equilibrium position and motion is
	()	started by giving each of its points a velocity v given by $v = kx$ if $0 \le x \le l/2$ and
		$v = k(l - x)$ if $l/2 \le x \le l$. Find the displacement function $y(x, t)$. [18]
		(, , , ,

7 .	(a)	(i)	Draw a logic circuit to realize the function $Y=A.B.C+\overline{A}.\overline{B}.\overline{C}+B$.
		(ii)	Simplify the expression and draw a logic for the simplified expression. [10]

(b) A The velocity v of a particle at distance s from a point on its path is given by the table: s ft 0 10 20 30 40 50 60 v ft/sec : 47 58 64 65 61 52 38 Estimate the time taken to travel 60ft by using Simpson's 1/3 rule. Compare the result with Simpson's 3/8 rule.

7.	(c)	Using modified Euler's method, obtain the solution of the differential equation $\frac{dy}{dt} = t + \sqrt{y} = f(t,y)$ with the initial condition $y_0 = 1$ at $t_0 = 0$ for the range $0 \le t \le 1$
		0.6 in steps of 0.2. [12]

7.	(d)	Write an algorithm in the form of a flow chart for Newton-Raphson method.
- •	(4)	Describe the cases of failure of this method. [15]
		Describe the cases of failure of this method.

8.	(a)	A sphere of radius a and mass M rolls down a rough plane inclined at an angle α to the horizontal. If x be the distance of the point of contact of the sphere from a fixed point on the plane, find the acceleration by using Hamilton's equation.

8.	(b)	A uniform rod OA, of length 2a, free to turn about its end O, revolves with uniform
	ζ-)	angular velocity ω about the vertical OZ through O, and is inclined at a constant
		angle α to OZ, find the value of α . [16]

8.	(c)	If n rectilinear vortices of the same strength k are symmetrically arranged along generators of a circular cylinder of radius a in an infinite liquid, prove that the vortices will move round the cylinder uniformly in time $\frac{8\pi^2a^2}{(n-1)k}$, and find the velocity at any point of the liquid. [18]	

ROUGH SPACE

INDIA'S No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS IN IFoS (FROM 2008 TO 2018)

OUR RANKERS AMONG TOP 10 IN IFoS

PRATAP SINGE AIR-01

PARTH IAISWAL AIR-05

PRATEEK JAIN AIR-03

HIMANSHU GUPTA AIR-05 IFoS-2011

SIDHARTHA GUPTA AIR-03

ASHISH REDDY MV AIR-06

VARUN GUNTUPALLI AIR-04 IFoS-2014

ANUPAM SHUKLA AIR-07

TESWANG GYALTSON AIR-04 IFoS-2010

AANCHAL SRIVASTAVA **AIR-09**

DESHAL DAN AIR-05 IFoS-2017

HARSHVARDHAN AIR-10

CHINTAN DOBARIYA AIR-29 IFoS-2018 AIR-16

P.V.S. REDDY AIR-22 IFoS-2017

PRAKHAR GUPTA SUNNY K. SINGH AIR-24
IFOS-2017 IFOS-2017

SITANSHU PANDEY AIR-25 IFoS-2017

G. ROHITH AIR-35 IFoS-2017

AIR-36 IFoS-2017

AIR-45 IFoS-2017

PRINCE KUMAR DHARMYEER DAIRU
AIR-80 AIR-93
IFoS-2017 IFoS-2017

AIR-21 IFoS-2016

AIR22 IFoS-2016 AIR-23

METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 ©Ph.:011-45629987, 9999197625 🥟 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152

INDIA'S No. 1 INSTITUTE FOR IAS/IFoS EXAMINATION

OUR ACHIEVEMENTS IN IAS (FROM 2008 TO 2018)

AIR-140 AIR-507 (2009) G.I. REUPANAR ABHRHEK MODI BHARWATIP KAUA MANASH KUMARI NAUHET HARWAL AJIT P SINGH HAMBHU KUMA AIR-796 AIR-273 AIR-475 (2011) (2010) (2010) (2010) (2010) (2010) (2010) (2010) (2010) HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

©Ph.:011-45629987, 9999197625 🥙 www.ims4maths.com @ e-Mail: ims4maths@gmail.com Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152