

Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning

Chang Liu

Microsoft Research Al for Science

Computational Methods for Molecular Science

molecular problems

biomolecule understanding

drug design

material/catalyst discovery

•••

Computational Methods for Molecular Science

molecular problems

Computational Methods for Molecular Science

molecular problems

molecular properties

 \overline{E}

 $\overline{\rho}$

f

Solve the electronic structure:

Schrödinger equation $\widehat{H}\psi = E\psi$

molecular structure

· To solve the *N*-electron Schrödinger equation $\widehat{H}\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=E\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)$:

· To solve the *N*-electron Schrödinger equation $\widehat{H}\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=E\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)$:

Variational Principle:

$$\min_{\psi} \langle \psi | \widehat{H} | \psi \rangle$$
.

One function on \mathbb{R}^{3N}

· To solve the *N*-electron Schrödinger equation $\widehat{H}\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=E\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)$:

Variational Principle:

```
\min_{\psi} \langle \psi | \widehat{H} | \psi \rangle.

One function on \mathbb{R}^{3N}
```

Complexity:

 $O(\exp(N))$

· To solve the *N*-electron Schrödinger equation $\widehat{H}\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=E\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)$:

Complexity: $O(\exp(N))$

· To solve the *N*-electron Schrödinger equation $\widehat{H}\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=E\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)$:

Density Functional Theory:

$$\min_{\rho} F[\rho] + \underbrace{E_{\text{ext}}[\rho]}_{\text{known}}.$$
one function on \mathbb{R}^3 .

Complexity:

 $O(\exp(N))$

· To solve the *N*-electron Schrödinger equation $\widehat{H}\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=E\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)$:

Density Functional Theory:

$$\min_{\rho} F[\rho] + \underbrace{E_{\rm ext}[\rho]}_{\text{known}}.$$
one function on \mathbb{R}^3 .

· To solve the *N*-electron Schrödinger equation $\widehat{H}\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=E\psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)$:

Approximating $T_S[\rho]$

- Density representation
 - Grid-based density representation: nonlocal calculation is expensive on $\sim 10^4 N$ grid points.
 - · Limited to 10~20 atoms.

· Density representation using **atomic basis**: Expansion coefficients ${\bf p}$ on atomic basis: ρ represented as $({\bf p},\mathcal{M})$.

• Density representation using **atomic basis**: Expansion coefficients ${\bf p}$ on atomic basis: ρ represented as $({\bf p},\mathcal{M})$.

• Density representation using **atomic basis**: Expansion coefficients ${\bf p}$ on atomic basis: ρ represented as $({\bf p},\mathcal{M})$.

- · Density representation using **atomic basis**: Expansion coefficients ${\bf p}$ on atomic basis: ρ represented as $({\bf p},\mathcal{M})$. Electrons distribute around atoms, cusp condition, shell structure, ...
 - → ~1000 times less dimensions than grid.

- Density representation using **atomic basis**: Expansion coefficients \mathbf{p} on atomic basis: ρ represented as $(\mathbf{p}, \mathcal{M})$. Electrons distribute around atoms, cusp condition, shell structure, ...
 - → ~1000 times less dimensions than grid.
- · Explicit **nonlocal** model: Graphormer (Transformer-like model).

M-OFDFT Workflow

· Density optimization by gradient descent.

$$E_{\theta}(\mathbf{p}, \mathbf{\mathcal{M}}) := T_{S,\theta}(\mathbf{p}, \mathbf{\mathcal{M}}) + E_{H}(\mathbf{p}, \mathbf{\mathcal{M}}) + E_{XC}(\mathbf{p}, \mathbf{\mathcal{M}}) + E_{ext}(\mathbf{p}, \mathbf{\mathcal{M}})$$

· Learning an objective: capture the whole landscape.

- · Learning an objective: capture the whole landscape.
 - · One datapoint is not enough.

from KSDFT converged solution

- · Learning an objective: capture the whole landscape.
 - · One datapoint is not enough.
 - · Generate multiple datapoints each with a gradient label.

from KSDFT converged solution

from each of KSDFT iterations

· Geometric invariance: T_S does not change with the rotation of molecule.

p rotates with molecule.

· Geometric invariance: T_S does not change with the rotation of molecule.

p rotates with molecule.

Local frame: **p** remains the same.

• Geometric invariance: T_S does not change with the rotation of molecule.

p rotates with molecule.

Local frame: **p** remains the same.

Additional benefit: similar local structures have similar **p**

• Energy and force:

• Energy and force:

angle

• Energy surface:

• Energy surface:

angle

· Electron density:

Better Scalability than KSDFT

· Lower empirical cost scaling:

Protein (PDB ID: 1PRB): 738 atoms, 2750 electrons
→ 27.4-fold speed up (0.45 h vs. 12.3 h).

Better Extrapolability than NN Potential

In the Future

- · Large-scale molecular dynamics simulation.
- · Quantum embedding for multi-scale calculation.
- Towards universality by:
 - · Large data and model.
 - · Mathematical properties.

Thank You!