Microprocessor I Interfacing Ultrasonic Sensor with PIC18F

Prepared By:
Ahmad Dabaja
Ahmad Said
Hassan Al Achek
Hassan Doulabi

Presented To: Dr. Mohammad Mroue

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

Fundamentals of Ultrasonic Sensor

Power Pins:

- 1- Vcc Pin: This pin is connected to a 5V voltage source.
- 2- GND Pin: This pin is connected to the common ground.

Data Pins:

- 1- Trig Pin: It is an input pin used to trig the sensor to transmit ultrasonic waves.
- 2- ECHO Pin: It is an output pin which generates a variable time pulse depending on the time the ultrasonic wave spends on its travel.

Fundamentals of Ultrasonic Sensor

$$Distance[cm] = \frac{v_{US} * t_{TRIG}}{2} = 0.01715 * t_{TRIG} [\mu s]$$

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

I/O Ports:

PIC18F458 has 5 Digital input ports each which has different number of pins as represented bellow

Port A:	RA0	RA1	RA2	RA3	RA4	RA5	RA6	
Port B:	RB0	RB1	RB2	RB3	RB4	RB5	RB6	RB7
Port C:	RB0	RB1	RB2	RB3	RB4	RB5	RB6	RB7
Port D:	RD0	RD1	RD2	RD3	RD4	RD5	RD6	RD7
Port E:	REO	RE1	RE2					

I/O Ports:

A pin **N** within a port **X** is declared as an input or an output pin using the SFR TRIS**X**.

BSF TRISX, N will set RXN as an input pin

BCF TRISX, N will set RXN as an output pin

To manipulate the state of an output pin we use the SFR PORTX

BSF *PORTX*, *N* will set R**XN** value into 1

BCF *PORTX*, **N** will set R**XN** value into 0

To check the state of an input pin we also use the SFR PORTX

BTFSS PORTX, N will skip the next instruction if RXN value is 1

BTFSC PORTX, N will skip the next instruction if RXN value is 0

Timer 0:

PIC18F458 has an integrated 16 bits counter called Timer 0

One basic role of Timer 0 is to count an external event happening outside the microcontroller.

The number of times Timer 0 ticks are stored in two byte concatenated SFRs called TMR0H:TMR0L as represented bellow

		T	MROH							7	MR0	L			
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Timer 0:

To configure Timer 0 we use the SFR TOCON represented bellow

TOCON SFR: TN	MR00N	TOBIT	TOCS	TOSE	PSA	TOPS2	TOPS1	TOPS0
DSE TOCON TNADOC	2	vill start	Timor	1				
BSF TOCON, TMROC								
BCF TOCON, TMROC	ON w	vill stop	Timer ()				
BSF TOCON, TOBIT	١٨	vill confi	igure Ti	mer () a	s & hit	counter		
,			•					
BCF TOCON, TOBIT	W	vill conti	igure Ti	mer 0 a	s 16 bi	t counte	r	
BSF TOCON, TOCS	W	vill cont	rol the	counter	by an	external	clock	
BCF TOCON, TOCS	14	vill cont	ral tha	countar	by the	e interna	Lock	
BCF TOCON, TOCS	V	VIII COITU	ioi tile i	counter	by the	HILEIHA	CIOCK	
BSF TOCON, TOSE	W	vill confi	igure Ti	mer 0 a	s Fallir	ng edge c	ounter	
BCF TOCON, TOSE	W	vill confi	igure Ti	mer 0 a	s Risin	g edge co	ounter	

Timer 0:

BSF *TOCON, PSA* BCF *TOCON, PSA*

will disable pre-scaler will enables pre-scaler

Pre- scaler scheme:

Scale	TOPS2	TOPS1	T0PS0
1:2	0	0	0
1:4	0	0	1
1:8	0	1	0
1:16	0	1	1
1:32	1	0	0
1:64	1	0	1
1:128	1	1	0
1:256	1	1	1

$$T_{step} = \frac{4}{f_{osc}} * 2^{N+1}$$

where $N = (T0PS2: T0PS1: P0PS0)_{10}$

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

Hardware Interfacing

I/O Pins used:

Port A:	RA0	RA1	RA2	RA3	RA4	RA5	RA6	
Port B:	RB0	RB1	RB2	RB3	RB4	RB5	RB6	RB7
Port C:	RC0	RC1	RC2	RC3	RC4	RC5	RC6	RC7
Port D:	RD0	RD1	RD2	RD3	RD4	RD5	RD6	RD7
Port E:	REO	RE1	RE2					

Pin *RBO* is connected to *TRIG* pin of the sensor. It is configured as an output pin. Pin *RBA* is connected to *ECHO* pin of the sensor. It is configured as an input pin. Pin *RCO* is connected to a *LED*. It is configured as an output pin.

Hardware Interfacing

The Connections:

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

The Main Program

Main Code:

Initially: Configure the I/O ports and Timer 0

Step 1: Generate 10 μs pulse on pin RB0 (TRIG pin)

Step 2: Count the duration for which pin RB4 (ECHO pin) is High

Step 3: Calculate the Distance

Step 4: wait for 10 ms

Step 5: Set pin RC0 (LED) if an object is detected

Repeat step 1 indefinitely

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

TRIG Pulse Generator

TRIG Pulse Generator Code:

TRIG_PULSE2	MOVLW 0x08
	MOVWF C3
	BSF PORTB, 0
AGAIN	DECF C3
	BNZ AGAIN
	BCF PORTB, 0
	RETURN

TRIG_PULSE	BCF PIR1, TMR2IF
	BSF PORTB, 0
	BSF T2CON, TMR2ON
LOOP	BTFSS PIR1, TMR2IF
	BRA LOOP
	BCF PORTB, 0
	RETURN

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

ECHO Pulse In Principle:

ECHO Pulse In Principle:

Initially: Configure Timer 0. TOCON = 00H

Step 1: initiate the counter into zero.

TMR0H:TMR0L = 0000H

Step 2: Continuously test RB4 pin. If echo pulse goes High, enable the counter. if (RB4 == 1) TMR0ON = 1

Step 3: Continuously test RB4 pin. If echo pulse goes Low, disable the counter. if (RB4 == 0) TMR0ON = 0

Step 4: Collect the number of steps in a temporary Register Pair.
A1:A0 = TMR0H:TMR0I

Timer0 Configuration:

We configured TOCON SFR of Timer 0 as shown bellow:

TOCON SFR:

TMROON	TOBIT	TOCS	TOSE	PSA	TOPS2	TOPS1	TOPS0
RB4	0	0	0	0	0	0	0

TMROON will be set and reset according the value the digital pin RB4 (ECHO)

TOBIT is set to 0 since we are configuring Timer 0 as 16 bit counter.

TOCS will bet set to 0 since we are using the internal clock of the PIC.

i.e: $f_{osc} = 10MHz$

TOSE will bet set to 0 since we are configuring Timer 0 as rising edge counter.

Timer0 Configuration:

PSA will bet set to 0 since we will use a pre-scaler

Choice of Pre-scaler:

Scale	TOPS2	TOPS1	TOPS0
1:2	0	0	0
1:4	0	0	1
1:8	0	1	0
1:16	0	1	1
1:32	1	0	0
1:64	1	0	1
1:128	1	1	0
1:256	1	1	1

$$N = (000)_{10} = 0$$
 so $T_{step} = \frac{4}{f_{osc}} * 2^{N+1} = \frac{4}{10 \text{ MHz}} * 2^{0+1} = 0.8 \text{ }\mu\text{s}$

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

Distance Calculation

Simplification of Distance Formula:

$$Distance[cm] = \frac{v_{US}[cm/\mu s] * t_{TRIG}[\mu s]}{2} = \frac{0.0343[cm/\mu s] * t_{TRIG}[\mu s]}{2}$$

 $Distance[cm] = 0.01715[cm/\mu s] * t_{TRIG} [\mu s]$

But we have: $T_{step} = 0.8 \,\mu s$

And: $t_{TRIG}[\mu s] = Steps * T_{step}[\mu s]$

so: $Distance[cm] = 0.01715[cm/\mu s] * 0.8[\mu s] * Steps$

Conclusion: Distance[cm] = 0.01372 * Steps

Distance Calculation

Implementation of Distance Formula:

True value:

(0.01372)dec = $(0,0000\ 0011\ 1000\ 001101...)$ bin

Approximated value (to 16 decimal point)

 $(0,0000\ 0011\ 1000\ 0011)$ bin = $(0.013717\ ...)$ dec

The approximation gave a 1.7 per 100 000 relative error

Multiplying the Approximated number by 2^16:

 $(0,0000\ 0011\ 1000\ 0011)$ bin x 2^16 = $(0000\ 0011\ 1000\ 0011)$ bin = (383)hex = (899)dec

Calculating the Maximum Distance The Sensor Can Measure:

0000 0011 1000 0011 => 0383

1010 1111 1100 0100 => AFC8

0000 0010 0110 1001 0100 1011 0101 1000 => 0269 4B58

 $(0000\ 0010\ 0110\ 1001,\ 0100\ 1011\ 0101\ 1000)$ bin = $(0269,\ 4B58)$ hex = (617,29)dec

Distance Calculation

Implementation of Distance Formula:

D3 = T1 + CARRY 2

```
A1 A0
                                A1 A0 =TMR0H TMR0L
      B1 B0
                                B1 B0 = 0383H
      K1 K0
                                K1 K0 = B0 \times A0
   L1 L0
                                L1 L0 = B0 x A1
   S1 S0
                                S1 S0 = B1 \times A0
T1 T0
                                T1 T0 = B1 \times A1
D3 D2 D1 D0
D0 = K0
D1 = K1 + L0 + S0
D2 = L1 + S1 + T0 + CARRY1
```

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

Cyclic Delay Generator

Cyclic Delay Code:

MOVLW 0x64
MOVWF C1
MOVLW 0x52
MOVWF C2
DECF C2, F
BNZ AGAIN2
DECF C1, F
BNZ AGAIN1
RETURN

DELAY 10MS	MOVLW 0x9E
	MOVWF TMR1H
	MOVLW 0x58
	MOVWF TMR1L
	BSF T1CON, TMR1ON
LOOP3	BTFSS PIR1, TMR1IF
	BRA LOOP3
	BCF T1CON, TMR1ON
	RETURN

Part 1: Fundamentals

- 1- Fundamentals of the Ultrasonic Sensor
- 2- Fundamentals of the PIC18F

- 1- Hardware Interfacing
- 2- The Main Program
- 3- TRIG Pulse Generator
- 4- ECHO Pulse In
- 5- Distance Calculation
- 6- Cyclic Delay Generator
- 7- Testing The Implementation

Testing The Implementation

Method:

According to the specifications, the sensor can measure a distance up to **617 cm**. In our implementation, we choose to set the sensor's range to **512 cm**.

As we can see: (512)Dec = (0200)hex

So its sufficient to compare the 4th byte **D3** of the Distance calculated with number **2H** to assert whether an object has entered the range of the sensor. Accordingly, pin **RC0** must be set or reset.

If D3 is strictly less than 2 then RC0 = 1Otherwise RC0 = 0

Eg 1: let us assume that D3:D2:D1:D0 = 0130H then pin RCO is set HIGH (LED is ON)

Eg 2: Assume this time that D3:D2:D1:D0 = 0210H then pin RCO is set LOW (LED is OFF)

Testing The Implementation

Display Code:

```
DISPLAY
             MOVLW 02
             CPFSLT S3
             BRA OFF
             BSF PORTC, 0
             BRA SKIP
             BCF PORTC , 0
OFF
SKIP
             RETURN
```