

HAMILTONIAN MINIMAL LAGRANGIAN SUBMANIFOLDS IN TORIC VARIETIES

ANDREY MIRONOV AND TARAS PANOV

Hamiltonian minimality (H -minimality for short) for Lagrangian submanifolds is a symplectic analogue of Riemannian minimality. A Lagrangian immersion is called H -minimal if the variations of its volume along all Hamiltonian vector fields are zero. This notion was introduced in the work of Y.-G. Oh [4] in connection with the celebrated *Arnold conjecture* on the number of fixed points of a Hamiltonian symplectomorphism.

In [2] and [3] the authors defined and studied a family of H -minimal Lagrangian submanifolds in \mathbb{C}^m arising from intersections of real quadrics. Here we extend this construction to define H -minimal submanifolds in toric varieties.

The initial data of the construction is an intersection of $m - n$ Hermitian quadrics in \mathbb{C}^m :

$$(1) \quad \mathcal{Z} = \left\{ \mathbf{z} = (z_1, \dots, z_m) \in \mathbb{C}^m : \sum_{k=1}^m \gamma_{jk} |z_k|^2 = \delta_j \quad \text{for } j = 1, \dots, m-n \right\}.$$

We assume that the intersection is nonempty, nondegenerate and rational; these conditions can be expressed in terms of the coefficient vectors $\gamma_i = (\gamma_{1i}, \dots, \gamma_{m-n,i})^t \in \mathbb{R}^{m-n}$, $i = 1, \dots, m$, as follows:

- (a) $\delta \in \mathbb{R}_{\geqslant} \langle \gamma_1, \dots, \gamma_m \rangle$ (δ is in the cone generated by $\gamma_1, \dots, \gamma_m$);
- (b) if $\delta \in \mathbb{R}_{>} \langle \gamma_1, \dots, \gamma_k \rangle$, then $k \geqslant m-n$;
- (c) the vectors $\gamma_1, \dots, \gamma_m$ span a lattice L of full rank in \mathbb{R}^{m-n} .

Under these conditions, \mathcal{Z} is a smooth $(m+n)$ -dimensional submanifold in \mathbb{C}^m , and

$$T_\Gamma = \left\{ (e^{2\pi i \langle \gamma_1, \varphi \rangle}, \dots, e^{2\pi i \langle \gamma_m, \varphi \rangle}) : \varphi \in \mathbb{R}^{m-n} \right\} = \mathbb{R}^{m-n}/L^*$$

is an $(m-n)$ -dimensional torus. We represent elements of T_Γ by $\varphi \in \mathbb{R}^{m-n}$. We also define

$$D_\Gamma = (\frac{1}{2}L^*)/L^* \cong (\mathbb{Z}_2)^{m-n}.$$

Note that D_Γ embeds canonically as a subgroup in T_Γ .

Let $\mathcal{R} \subset \mathcal{Z}$ be the subset of real points, which can be written by the same equations in real coordinates:

$$\mathcal{R} = \left\{ \mathbf{u} = (u_1, \dots, u_m) \in \mathbb{R}^m : \sum_{k=1}^m \gamma_{jk} u_k^2 = \delta_j \quad \text{for } j = 1, \dots, m-n \right\}.$$

We ‘spread’ \mathcal{R} by the action of T_Γ , that is, consider the set of T_Γ -orbits through \mathcal{R} . More precisely, we consider the map

$$\begin{aligned} j: \mathcal{R} \times T_\Gamma &\longrightarrow \mathbb{C}^m, \\ (\mathbf{u}, \varphi) &\mapsto \mathbf{u} \cdot \varphi = (u_1 e^{2\pi i \langle \gamma_1, \varphi \rangle}, \dots, u_m e^{2\pi i \langle \gamma_m, \varphi \rangle}) \end{aligned}$$

and observe that $j(\mathcal{R} \times T_\Gamma) \subset \mathcal{Z}$. We let D_Γ act on $\mathcal{R} \times T_\Gamma$ diagonally; this action is free since it is free on the second factor. The quotient

$$N = \mathcal{R} \times_{D_\Gamma} T_\Gamma$$

is an m -dimensional manifold.

Theorem 1 ([2]). *The map $j: \mathcal{R} \times T_\Gamma \rightarrow \mathbb{C}^m$ induces an H -minimal Lagrangian immersion $i: N \hookrightarrow \mathbb{C}^m$.*

Intersection of quadrics (1) is invariant with respect to the diagonal action of the standard torus $\mathbb{T}^m \subset \mathbb{C}^m$. The quotient \mathcal{Z}/\mathbb{T}^m is identified with the set of nonnegative solutions of the system of linear equations $\sum_{k=1}^m \gamma_{jk} y_k = \delta$. This set may be described as a convex n -dimensional polyhedron

$$(2) \quad P = \left\{ \mathbf{x} \in \mathbb{R}^n : \langle \mathbf{a}_i, \mathbf{x} \rangle + b_i \geqslant 0 \quad \text{for } i = 1, \dots, m \right\},$$

The first author was supported by grants МД-5134.2012.1 and НШ-544.2012.1 from the President of Russia. The second author was supported by grants МД-2253.2011.1 and НШ-4995-2012.1 from the President of Russia and RFBR grant 11-01-00694. Both authors were supported by RFBR grant 12-01-92104-ЯФ, grants from Dmitri Zimin’s ‘Dynasty’ foundation, and grant no. 2010-220-01-077 of the Government of Russia.

where (b_1, \dots, b_m) is any solution and the vectors $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$ form the transpose of a basis of solutions of the homogeneous system $\sum_{k=1}^m \gamma_k y_k = \mathbf{0}$. We refer to P as the *associated polyhedron* of the intersection of quadrics (1). The vector configurations $\gamma_1, \dots, \gamma_m$ and $\mathbf{a}_1, \dots, \mathbf{a}_m$ are *Gale dual*.

Let N denote the lattice of rank n spanned by $\mathbf{a}_1, \dots, \mathbf{a}_m$. Polyhedron (2) is called *Delzant* if, for any vertex $\mathbf{x} \in P$, the vectors $\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}$ normal to the facets meeting at \mathbf{x} form a basis of the lattice N . A Delzant n -polyhedron is *simple*, that is, there are exactly n facets meeting at each of its vertices.

Theorem 2 ([3]). *The immersion $i: N \hookrightarrow \mathbb{C}^m$ is an embedding of an H -minimal Lagrangian submanifold if and only if the associated polyhedron P is Delzant.*

Now we consider two sets of quadrics:

$$\begin{aligned}\mathcal{Z}_\Gamma &= \left\{ \mathbf{z} \in \mathbb{C}^m : \sum_{k=1}^m \gamma_k |z_k|^2 = \mathbf{c} \right\}, \quad \gamma_k, \mathbf{c} \in \mathbb{R}^{m-n}; \\ \mathcal{Z}_\Delta &= \left\{ \mathbf{z} \in \mathbb{C}^m : \sum_{k=1}^m \delta_k |z_k|^2 = \mathbf{d} \right\}, \quad \delta_k, \mathbf{d} \in \mathbb{R}^{m-\ell};\end{aligned}$$

such that \mathcal{Z}_Γ , \mathcal{Z}_Δ and $\mathcal{Z}_\Gamma \cap \mathcal{Z}_\Delta$ satisfy conditions (a)–(c) above. Assume also that the polytopes associated with \mathcal{Z}_Γ , \mathcal{Z}_Δ and $\mathcal{Z}_\Gamma \cap \mathcal{Z}_\Delta$ are Delzant.

The idea is to use the first set of quadrics to produce a toric manifold V via symplectic reduction, and then use the second set of quadrics to define an H -minimal Lagrangian submanifold in V .

We define the real intersections of quadrics \mathcal{R}_Γ , \mathcal{R}_Δ , the tori $T_\Gamma \cong \mathbb{T}^{m-n}$, $T_\Delta \cong \mathbb{T}^{m-\ell}$, and the groups $D_\Gamma \cong \mathbb{Z}_2^{m-n}$, $D_\Delta \cong \mathbb{Z}_2^{m-\ell}$ as above.

We consider the toric variety V obtained as the symplectic quotient of \mathbb{C}^m by the torus corresponding to the first set of quadrics: $V = \mathcal{Z}_\Gamma / T_\Gamma$. It is a Kähler manifold of real dimension $2n$. The quotient $\mathcal{R}_\Gamma / D_\Gamma$ is the set of real points of V (the fixed point set of the complex conjugation, or the real toric manifold); it has dimension n . Consider the subset of $\mathcal{R}_\Gamma / D_\Gamma$ defined by the second set of quadrics:

$$\mathcal{S} = (\mathcal{R}_\Gamma \cap \mathcal{R}_\Delta) / D_\Gamma,$$

we have $\dim \mathcal{S} = n + \ell - m$. Finally define the n -dimensional submanifold of V :

$$N = \mathcal{S} \times_{D_\Delta} T_\Delta.$$

Theorem 3. *N is an H -minimal Lagrangian submanifold in V .*

Proof. Let \widehat{V} be the symplectic quotient of V by the torus corresponding to the second set of quadrics, that is, $\widehat{V} = (V \cap \mathcal{Z}_\Delta) / T_\Delta = (\mathcal{Z}_\Gamma \cap \mathcal{Z}_\Delta) / (T_\Gamma \times T_\Delta)$. It is a toric manifold of real dimension $2(n + \ell - m)$. The submanifold of real points

$$\widehat{N} = N / T_\Delta = (\mathcal{R}_\Gamma \cap \mathcal{R}_\Delta) / (D_\Gamma \times D_\Delta) \hookrightarrow (\mathcal{Z}_\Gamma \cap \mathcal{Z}_\Delta) / (T_\Gamma \times T_\Delta) = \widehat{V}$$

is the fixed point set of the complex conjugation, hence it is a totally geodesic submanifold. In particular, \widehat{N} is a minimal submanifold in \widehat{V} . According to [1, Cor. 2.7], N is an H -minimal submanifold in V . \square

Example 4.

1. If $m - \ell = 0$, i.e. $\mathcal{Z}_\Delta = \emptyset$, then $V = \mathbb{C}^m$ and we get the original construction of H -minimal Lagrangian submanifolds N in \mathbb{C}^m .

2. If $m - n = 0$, i.e. $\mathcal{Z}_\Gamma = \emptyset$, then N is set of real points of V . It is minimal (totally geodesic).

3. If $m - \ell = 1$, i.e. $\mathcal{Z}_\Delta \cong S^{2m-1}$, then we get H -minimal Lagrangian submanifolds in $V = \mathbb{C}P^{m-1}$.

This subsumes many previously constructed families of projective examples.

REFERENCES

- [1] Yuxin Dong. *Hamiltonian-minimal Lagrangian submanifolds in Kähler manifolds with symmetries*. Nonlinear Analysis: Theory, Methods & Applications **67** (2007), 865–882.
- [2] Andrey Mironov. *New examples of Hamilton-minimal and minimal Lagrangian submanifolds in \mathbb{C}^n and $\mathbb{C}P^n$* . Mat. Sbornik **195** (2004), no. 1, 89–102 (Russian); Sbornik Math. **195** (2004), no. 1–2, 85–96 (English translation).
- [3] Andrey Mironov and Taras Panov. *Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings*. Funct. Anal. Appl. (2013), to appear; arXiv:1103.4970.
- [4] Yong-Geun Oh. *Volume minimization of Lagrangian submanifolds under Hamiltonian deformations*. Math. Z. **212** (1993), no. 2, 175–192.

SOBOLEV INSTITUTE OF MATHEMATICS, 4 ACAD. KOPTYUG AVENUE, 630090 NOVOSIBIRSK, RUSSIA, and
LABORATORY OF GEOMETRIC METHODS IN MATHEMATICAL PHYSICS, MOSCOW STATE UNIVERSITY
E-mail address: mironov@math.nsc.ru

DEPARTMENT OF MATHEMATICS AND MECHANICS, MOSCOW STATE UNIVERSITY
INSTITUTE FOR THEORETICAL AND EXPERIMENTAL PHYSICS, MOSCOW, RUSSIA, and
INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS, RUSSIAN ACADEMY OF SCIENCES
E-mail address: tpanov@mech.math.msu.su