Exercice 1. Sur la notion de famille libre.

Les questions de cet exercice sont indépendantes et classées par ordre de difficulté.

1. Soit $n \in \mathbb{N}^*$. Pour tout $i \in [0, n]$, on définit

$$P_i = \prod_{k=0}^{n-1} (X + i + k).$$

Démontrer que la famille (P_0, \ldots, P_n) est libre dans le \mathbb{R} -espace vectoriel $\mathbb{R}[X]$.

- 2. Soit $a \in \mathbb{R}$ et $T \in \mathbb{R}_+^*$. On définit $I_a(T) = \frac{1}{2T} \int_{-T}^T e^{iat} dt$.
 - (a) Soit $a \in \mathbb{R}$ et $T \in \mathbb{R}_+^*$. On définit $I_a(T) = \frac{1}{2T} \int_{-T}^T e^{iat} dt$. Calculer $I_a(T)$ lorsque a = 0. Exprimer $I_a(T)$ pour $a \neq 0$ Vérifier que $I_a(T) \underset{T \to +\infty}{\longrightarrow} \delta_{a,0}$.
 - (b) Soit $p \in \mathbb{N}^*$. Soient a_1, \dots, a_p des réels deux à deux distincts. On pose :

$$\forall k \in [1, p] \quad f_k : x \mapsto e^{ia_k x}.$$

Démontrer que (f_1,\ldots,f_p) est libre dans le \mathbb{C} -espace vectoriel $\mathcal{C}^0(\mathbb{R},\mathbb{C})$.

3. Soit \mathcal{P} l'ensemble des nombres premiers. Montrer que la famille $(\ln(p))_{p\in\mathcal{P}}$ est libre dans le \mathbb{Q} -espace vectoriel \mathbb{R} . Qu'apprend-on au passage sur le \mathbb{Q} -espace vectoriel \mathbb{R} ? Exercice 2. Supplémentaires.

Soit le \mathbb{R} -espace vectoriel $E = \mathcal{C}^1(\mathbb{R}, \mathbb{R})$. On pose

$$F = \{ f \in E \mid f(0) = f'(0) = 0 \}$$
 et $G = \{ x \mapsto ax + b \mid (a, b) \in \mathbb{R}^2 \}$.

- 1. Démontrer que F est un sous-espace vectoriel de E...
 - (a) en utilisant la caractérisation des sous-espaces vectoriels;
 - (b) en faisant intervenir la notion de noyau.
- 2. (a) En utilisant la notion de Vect, prouver que G est un sous-espace vectoriel de E et en donner une faille génératrice.
 - (b) Justifier que G est de dimension finie. Que vaut $\dim(G)$?
- 3. Démontrer que $E = F \oplus G$.

Exercice 3. Une application linéaire.

Pour tout $f \in \mathcal{C}^0([0,1],\mathbb{R})$, on définit la fonction $\Phi(f)$ de [0,1] dans \mathbb{R} comme suit :

$$\forall x \in [0,1], \quad \Phi(f)(x) = \int_0^1 |x - t| f(t) dt$$

- 1. Montrer que Φ est linéaire.
- 2. Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$. Montrer que $\Phi(f) \in \mathcal{C}^2([0,1],\mathbb{R})$ et que $(\Phi(f))'' = 2f$.
- 3. Déterminer $Ker(\Phi)$. Qu'en déduire sur Φ ?