Taller de contraejemplos

En todos los siguientes casos, se pide encontrar contraejemplos a las afirmaciones. Los ejercicios se vuelven más dificiles más abajo en la lista.

- 1. Sea $n \in \mathbb{N}$, entonces $\sqrt{n} \in \mathbb{N}$;
- 2. Un entero positivo es compuesto si y solo si tiene dos factores primos distintos;
- 3. Sean $a, b y c \in \mathbb{Z}$. Si a > b entonces ac > bc.
- 4. Sean $n y m \in \mathbb{Z}$, entonces $n^2 = m^2$ si y solo si n = m;
- 5. Sean $p \vee q$ dos primos, entonces p + q es compuesto;
- 6. Sea p un primo, entonces $2^p 1$ también es primo;
- 7. Sean n, $a y b \in \mathbb{N}$, $n \mid ab$ entonces $n \mid a \circ n \mid b$;
- 8. Sea $n \in \mathbb{N}$ tal que $n = a^2 + b^2$, con $a y b \in \mathbb{N}$. Entonces n = 4c + 3, por algún $c \in \mathbb{N}$.
- 9. Sean $a, b \ y \ c \in \mathbb{Z}$. Si $a \mid c \ y \ b \mid c$ entonces $(a + b) \mid c$;
- 10. Sea $n \in \mathbb{N}$, entonces $\frac{n!}{n^3} < 1$.
- 11. Dos triangulos rectangulos tienen la misma área si y solo si sus hipotenusas tienen la misma longitud;
- 12. Sean $P\{(a,b,c): a,b,c \in \mathbb{Z} \text{ y } a^2+b^2=c^2\}$, y $T=\{(p,q,r): p=x^2-y^2, q=2xy, r=x^2+y^2, \text{ con } x,y \in \mathbb{Z}\}$. Entonces T=P;
- 13. Ningún cuadrado tiene el perimetro igual a su área;
- 14. Sea $n \in \mathbb{N}$ la suma de sus factores (excluyendo a n mismo) es menor de n. Por ejemplo, los factores de 16 son 1, 2, 4 y 8, se tiene 16 > 15 = 8 + 4 + 2 + 1;
- 15. Sean n_1, n_2, k_1 y $k_2 \in \mathbb{N}$. Llamamos

$$M = \max \left\{ \frac{n_1 k_2}{n_2 k_1}, \frac{n_2 k_1}{n_1 k_2} \right\}.$$

Si M = 1 entonces $n_1 = k_1$ y $n_2 = k_2$.