微分積分学 A 理解度確認試験

2025年7月24日第2時限施行 担当水野将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

問題 1.

次の問いに答えなさい. 答えのみでよい. 答えがどれかわかるように書くこと.

- (1) 開区間 $I \subset \mathbb{R}$, $a \in I$, $f : I \setminus \{a\} \to \mathbb{R}$ に対し, $f(x) \to A$ $(x \to a)$ の定義を述べなさい.
- (4) $f: \mathbb{R} \to \mathbb{R}$ に対し、 $f(x) \to A$ $(x \to \infty)$ の 定義を述べなさい.

- (2) 開区間 $I \subset \mathbb{R}$, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ に対し, $f(x) \to \infty$ $(x \to a)$ の定義を述べなさい.
- (5) $I \subset \mathbb{R}$ 上の関数 $f: I \to \mathbb{R}$ が $x = a \in I$ で連続 であることの定義を ε - δ 論法で述べなさい.

- (3) 開区間 $I \subset \mathbb{R}$, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ に対し, $f(x) \to A$ $(x \to a 0)$ の定義を述べなさい.
- (6) $f:[a,b] \to \mathbb{R}$ に対して、Weierstrass の最大値定理の主張を述べなさい.

- (7) $f:[a,b] \to \mathbb{R}$ に対して,中間値の定理の主 張を述べなさい.
- (10) $\arccos(\cos(-\pi))$ を求めなさい.

- (8) $f:[a,b] \to \mathbb{R}$ が [a,b] 上一様連続であることの定義を述べなさい.
- (11) $y = \arccos x$ $(-1 \le x \le 1)$ のグラフの概形 を書きなさい.

- (9) $f: \mathbb{R} \to \mathbb{R}$ を $f(x) := -x^4$ $(x \in \mathbb{R})$ で定める. 像 f([-1,2]) を求めなさい.
- (12) $\lim_{x \to \infty} x \left(\sqrt{x^2 + 4} \sqrt{x^2 + 1} \right)$ を求めなさい.

(13)
$$\lim_{x \to -2} \frac{2x^2 + 9x + 10}{x^2 - x - 6}$$
 を求めなさい.

この下は計算用紙として利用してよい.

(14)
$$\lim_{x\to 0} \frac{\sin(3x)}{2\sin(2x)}$$
 を求めなさい.

(15)
$$\lim_{x\to-\infty}e^x\cos(x^2)$$
 を求めなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.

 $x\sin\left(1+\frac{1}{x^3}\right) \to 0 \quad (x\to 0)$ となることを ε - δ 論法で示したい.

(1) $x \sin \left(1 + \frac{1}{x^3}\right) \to 0$ $(x \to 0)$ の ε - δ 論法を用いた定義を述べなさい. (2) $x \sin \left(1 + \frac{1}{x^3}\right) \to 0$ $(x \to 0)$ を ε - δ 論法を用いて示しなさい.

問題 3.

 $f: \mathbb{R} \to \mathbb{R}$ を $f(x) := x^2 - 3x$ $(x \in \mathbb{R})$ で定義する. f が x = 1 で連続となることを ε - δ 論法で示したい.

- (1) 示すべきこと (f が x=1 で連続となることの ε - δ 論法を用いた定義) を述べなさい.
- (2) f が x = 1 で連続となることを ε - δ 論法で示しなさい.

問題 4.

 $f: \mathbb{R} \to \mathbb{R}$ を、f(x) := -3x + 5 $(x \in \mathbb{R})$ で定義する。f が \mathbb{R} 上一様連続であることを示したい。

- (1) 示すべきこと (f が \mathbb{R} 上一様連続であることの定義) を述べなさい.
- (2) f が \mathbb{R} 上一様連続であることを示しなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.