Методические указания к выполнению лабораторных работ по дисциплине «Основы облачных и GRID-технологий»

А.Р. Умеров¹ Е.Н. Мащенко² 18 июня 2016 г.³

¹admin@amet13.name

²elmachenko@mail.ru

³Дата последней правки документа

Содержание

1	Лабораторная работа №1				
	1.1	Теоретические основы виртуализации	3		
	1.2	Порядок выполнения работы	7		
	1.3	Контрольные вопросы	7		
2	Лаб	ораторная работа №2	8		
	2.1	Теоретические основы облачных вычислений	8		
	2.2	Порядок выполнения работы	10		
	2.3	Контрольные вопросы	10		
3	Лабораторная работа №3				
	3.1	Теоретические основы	11		
	3.2	Порядок выполнения работы	11		
	3.3	Контрольные вопросы	11		
	Спи	сок литературы	12		
A	При	Пример создания виртуальной машины в Oracle VM VirtualBox 1			
В	Пример установки Debian GNU/Linux в VirtualBox 2				
C	Пример установки ownCloud Server в Debian GNU/Linux 3				
D	Настройка подключения ownCloud Client к серверу 3				
E	Деп	Деплой приложения на Heroku 39			

Лабораторная работа №1. Знакомство с виртуализацией. Система виртуализации Oracle VM VirtualBox

Цель работы: ознакомиться с основными понятиями виртуализации, системой виртуализации VirtualBox, научиться настраивать виртуальную машину (BM), совершать простейшие операции с ней, устанавливать операционную систему на BM.

1.1 Теоретические основы виртуализации

Виртуализация — абстракция вычислительных ресурсов и предоставление пользователю системы, которая инкапсулирует (скрывает в себе) собственную реализацию.

Виртуализацию можно использовать в [1]:

- консолидации серверов (позволяет мигрировать с физических серверов на виртуальные, тем самым увеличивается коэффициент использования аппаратуры, что позволяет существенно сэкономить на аппаратуре, электроэнергии и обслуживании);
- разработке и тестировании приложений (возможность одновременно запускать несколько различных ОС, это удобно при разработке кроссплатформенного ПО, тем самым значительно повышается качество, скорость разработки и тестирования приложений);
- бизнесе (использование виртуализации в бизнесе растет с каждым днем и постоянно находятся новые способы применения этой технологии, например, возможность безболезненно сделать снапшот и быстро восстановить систему в случае сбоя);
- ullet организации виртуальных рабочих станций (так называемых «тонких клиентов» 2).

Общая схема взаимодействия виртуализации с аппаратурой и программным обеспечением (ПО) представлена на рис. 1.

Взаимодействие приложений и операционной системы (ОС) с аппаратным обеспечением осуществляется через абстрагированный слой виртуализации.

Существует несколько подходов организации виртуализации:

- эмуляция оборудования (QEMU, Bochs, Dynamips);
- полная виртуализация (KVM, HyperV, VirtualBox);
- паравиртуализация (Xen, L4, Trango);
- виртуализация уровня ОС (LXC, OpenVZ, Jails, Solaris Zones).

¹Снапшот (англ. snapshot) — снимок состояния ВМ в определенный момент времени. Сюда входят настройки ВМ, содержимое памяти и дисков

 $^{^2}$ Тонкий клиент (англ. thin client) — бездисковый компьютер-клиент в сетях с клиент-серверной или терминальной архитектурой, который переносит все или большую часть задач по обработке информации на сервер

Рис. 1: Схема взаимодействия виртуализации с аппаратурой и ПО

Эмуляция аппаратных средств является одним из самых сложных методов виртуализации (рис. 2). В то же время главной проблемой при эмуляции аппаратных средств является низкая скорость работы, в связи с тем, что каждая команда моделируется на основных аппаратных средствах. В эмуляции оборудования используется механизм динамической трансляции, то есть каждая из инструкций эмулируемой платформы заменяется на заранее подготовленный фрагмент инструкций физического процессора.

Рис. 2: Эмуляция оборудования моделирует аппаратные средства

В случае полной виртуализации поверх уже установленной ОС, устанавливается программа-гипервизор 1 , которая осуществляет взаимосвязь между гостевыми ОС и хост-компьютером (рис. 3).

Преимуществом технологии полной виртуализации является установка различных ОС, а недостатком — меньшая производительность, за счет накладных расходов на гипервизор, а также понижение скорости работы с подсистемой ввода/вывода из-за необходимости изоляции.

 $^{^{1}}$ Гипервизор (англ. hypervisor)— программа или аппаратная схема, позволяющая одновременное, параллельное выполнение нескольких ОС на одном и том же компьютере, обеспечивает изоляцию операционных систем друг от друга

Рис. 3: Полная виртуализация использует гипервизор

Паравиртуализация имеет некоторые сходства с полной виртуализацией. В данном методе также используется гипервизор для разделения доступа к аппаратуре, но объединяется код, касающийся виртуализации, в ОС [2] (рис. 4).

Рис. 4: Паравиртуализация разделяет процесс с гостевой ОС

Недостатком паравиртуализации является необходимость изменения гостевой ОС для гипервизора, однако таким образом гораздо увеличивается производительность.

Виртуализация уровня операционной системы не нуждается в гипервизоре. Для ее работы необходимо модифицированное ядро на хост-системе с набором патчей и утилит для управления контейнерами 1 (рис. 5).

За счет того, что контейнер напрямую взаимодействует с ядром, а не через гипервизор, обеспечивается максимальное быстродействие. Но, так как для всех контейнеров используется общее ядро, то нет возможности использовать разные ОС в контейнерах.

¹Контейнер или VPS/VDS (англ. Virtual Private/Dedicated Server) — виртуальный выделенный сервер, эмулирует работу физического сервера

Рис. 5: Виртуализация уровня ОС изолирует серверы

Oracle VM VirtualBox — система виртуализации, разработанная компанией Innotek в 2007 году, позже приобретена компанией Sun Microsystems. Ключевыми возможностями системы является кроссплатформенность, наличие графического интерфейса, локализация, поддержка аппаратной виртуализации, экспериментальное 3D-ускорение, поддержка различных образов жестких дисков, возможность установки дополнений гостевой ОС, например для корректной работы проброшенных USB-устройств или возможности изменения разрешения рабочего стола гостевой ОС.

На рис. 6 изображен пример одновременной работы двух виртуальных машин (Windows 7 и CentOS 7).

Рис. 6: Пример одновременной работы Windows 7 и CentOS 7

1.2 Порядок выполнения работы

- 1. Скачать и установить Oracle VM VirtualBox;
- 2. Изучить интерфейс программы и создать 2 первую виртуальную машину на основе образа Debian GNU/Linux 3 ;
- 3. Подключить к виртуальной машине ранее скачанный образ Debian GNU/Linux;
- 4. Загрузиться с подключенного образа и установить дистрибутив на виртуальный жесткий диск;
- 5. Во время установки дистрибутива необходимо будет задать пароль суперпользователя, пароль: toor, пароль для локального пользователя можно задать произвольный, но лучше его запомнить;
- 6. С помощью команд free, df⁵, cat /proc/cpuinfo, ifconfig, посмотреть параметры виртуальной машины;
- 7. С помощью команды ping проверить доступность виртуальной машины в сети как с хост-ноды, так и с других компьютеров сети;
- 8. С помощью SSH-клиента (например Putty⁶) подключиться по SSH к виртуальной машине.

1.3 Контрольные вопросы

- 1. Какие типы виртуализации Вы знаете? В чем между ними различия?
- 2. К какому типу виртуализации относится система Oracle VM VirtualBox?
- 3. Как может использовать виртуализацию в работе веб-программист, системный администратор, сетевой инженер?
- 4. В чем состоит основное преимущество и недостаток полной виртуализации от контейнерной?
- 5. В чем различие между режимами сети NAT и сетевой мост (Network Bridge)?

https://www.virtualbox.org/wiki/Downloads

²Пример создания виртуальной машины описан в прил. А

³https://www.debian.org/distrib/

⁴Процесс установки Debian GNU/Linux описан в прил. В

 $^{^{5}}$ Команды free и df используют ключ –h для показа информации в удобном для человека виде

⁶http://www.chiark.greenend.org.uk/~sgtatham/putty/

2 Лабораторная работа №2. Модель обслуживания SaaS (Software-as-a-Service) на примере развертывания облачного хранилища ownCloud

Цель работы: ознакомиться с основными моделями представления облачных услуг (SaaS, PaaS, IaaS), развернуть собственное облачное хранилище, доступное пользователям в пределах локальной сети.

2.1 Теоретические основы облачных вычислений

Облачные вычисления («облака», Cloud computing) — модель предоставления вычислительных ресурсов, охватывающая все, начиная от приложений и до центров обработки данных (ЦОД), через Интернет при условии оплаты за фактическое использование. [3]

Одной из первых, кто стал внедрять услугу облачных вычислений стала компания Атагоп, в то время (2002 г.) она еще являлась книжным Интернет-магазином, который впоследствии перерос, благодаря этим внедрениям, в одну из мощнейших технологических компаний. Уже в 2006 г. был запущен проект под названием Computing Cloud (Amazon EC2), после этого в 2009 г. компания Google представила Google Apps. После этих событий были сформированы общие понятия об облачных вычислениях, в частности выделены наиболее важные модели обслуживания и модели развертывания.

Облачные вычисления являются следующим шагом в эволюции архитектуры построения информационных систем. Благодаря преимуществам данного подхода вполне очевидно, что многие информационные системы в ближайшее время переносятся или будут перенесены в облако. Процесс уже идет полным ходом и его игнорирование или недооценка может привести к поражению в конкурентной борьбе на рынке. В данном случае имеется в виду не только отставание ИТ или неоправданные затраты на него, но и отставание в развитии бизнеса компании, которая зависит от гибкости информационной инфраструктуры и скорости вывода новых сервисов и продуктов на рынок.

Различают три основные модели обслуживания:

- 1. программное обеспечение как услуга (Software-as-a-Service, SaaS);
- 2. платформа как услуга (Platform-as-a-Service, PaaS);
- 3. инфраструктура как услуга (Infrastructure-as-a-Service, IaaS).

SaaS — модель, при которой не требуется приобретать, устанавливать, обновлять и поддерживать ПО, эту задачу берет на себя поставщик услуги. Кроме того, осуществить регистрацию и использование облачных приложений можно немедленно, приложения и данные приложений доступны с любого устройства, подключенного к Интернету. При поломке устройства данные не теряются, они хранятся в облаке, пользователю, как правило, доступны локальные настройки конфигурации приложения. Примерами моделей SaaS могут служить: почтовая служба Gmail, Skype, CRM (система управления взаимоотношения с клиентами) и ERP (планирование ресурсов предприятия) системы и другие.

PaaS — модель, при которой пользователю предоставляется возможность использования облачной инфраструктуры для размещения базового ПО. В таком случае конфигурирование программного обеспечения целиком ложится на пользователя, предоставляется только платформа для развертывания ПО. Примером модели PaaS является предоставление услуги развертывания собственного ПО в рамках облачной инфраструктуры. Например Heroku, OpenShift.

IaaS — модель, при которой пользователю, доступно полное управление облаком в рамках операционной системы. Потребитель обладает контролем над операционными системами, сетевыми сервисами. Данная модель подходит задачам, для которых характерно быстрое изменение нагрузки. Пользователю предоставляется виртуализированное окружение, как правило с «чистой» операционной системой, пригодной для развертывания любого приложения. Примеры: Digital Ocean, Microsoft Azure, Google App Engine и т.д;

Модели развертывания облака можно разделить на четыре вида:

- 1. частное облако (private cloud);
- 2. публичное облако (public cloud);
- 3. общественное облако (community cloud);
- 4. гибридное облако (hybrid cloud).

Частное облако предназначено для использования одной организацией, публичное — для широкой публики, общественное, как правило для сообщества или организации, гибридное облако состоит из двух или более различных облачных инфраструктур.

Основными преимуществами использования облачных технологий являются:

- снижение расходов на закупку оборудования и построения центров обработки данных (ЦОД);
- удобство использования приложений с большого количества устройств, в том числе и мобильных;
- обеспечение надежности хранения данных, производительности приложений, за счет простоты использования ПО, мониторинга, балансировки нагрузки, миграции данных и т.д.

ownCloud — свободное веб-приложение, предназначенное для синхронизации данных между сервером и клиентами, как правило данными являются документы и медиаконтент. ownCloud является альтернативой таким облачным сервисам как Dropbox, Google Drive, Яндекс Диск, MEGA и др. Отличие состоит в том, что приложение можно развернуть на собственном сервере как для домашнего использования, так и для использования в организациях. Так как приложение распространяется бесплатно, имеет открытый исходный код и периодически обрастает новыми функциями (планировщик задач, календарь, фотогалерея, просмотрщик документов, гибкая аутентификация пользователей и другие) проект обрел популярность как у пользователей, так и у Open-source разработчиков.

Установка ownCloud происходит в несколько простых шагов. ownCloud Server доступен для платформ Windows и Linux, ownCloud Client также доступен для Windows, Linux, а также Mac.

https://github.com/owncloud/

2.2 Порядок выполнения работы

Выполнять работу рекомендуется группами студентов по 3-5 человек. В качестве сервера может использоваться виртуальная машина с установленным дистрибутивом Debian, ранее установленная в лабораторной работе №1. Виртуальная машина должна иметь доступ в сеть Интернет для скачивания нужных пакетов.

- 1. Установить ownCloud Server в виртуальную машину;
- 2. На хост-машине или на другом компьютере сети скачать 2 и установить ownCloud Client;
- 3. Подключить ownCloud Client к серверу во время первого запуска клиента, а также синхронизировать все данные с сервера³;
- 4. Проверить работу синхронизации данных между клиентом и сервером (создать, удалить, переместить файл или каталог);
- 5. Предоставить публичную ссылку на файл или каталог и проверить его доступность в пределах локальной сети;
- 6. Ознакомиться с дополнительными возможностями ownCloud.

2.3 Контрольные вопросы

- 1. Каковы основные преимущества использования облачных технологий?
- 2. В чем состоит отличие SaaS от PaaS и IaaS?
- 3. В чем состоят преимущества ownCloud по сравнению с Dropbox или другими облачными хранилищами? Недостатки?
- 4. Почему Skype можно отнести к модели SaaS?

¹Пример установки ownCloud Server представлен в прил. С

²https://owncloud.org/install/

³Скриншоты настройки ownCloud Client представлены в прил. D

3 Лабораторная работа №3. Модель обслуживания PaaS (Platform-as-a-Service) на примере деплоя приложения в Heroku

Цель работы: ...

3.1 Теоретические основы ...

Теория

3.2 Порядок выполнения работы

В качестве сервера может использоваться виртуальная машина с установленным дистрибутивом Debian, ранее установленная в лабораторной работе №1. Виртуальная машина должна иметь доступ в сеть Интернет для скачивания нужных пакетов.

- 1. ...
- 2. ...

3.3 Контрольные вопросы

- 1. ...
- 2. ...

Список литературы

- [1] А.Р. Умеров и Е.Н. Мащенко. «Анализ технологий контейнерной виртуализации». В: Мир компьютерных технологий. Материалы внутривузовской студенческой научно-технической конференции. Севастополь: СевНТУ, 2014, с. 32.
- [2] М. Тим Джонс. «Виртуальный Linux. Обзор методов виртуализации, архитектур и реализаций». В: (2007). URL: http://www.ibm.com/developerworks/ru/library/l-linuxvirt/.
- [3] «Облачные вычисления». В: (2015). URL: http://www.ibm.com/cloud-computing/ru/ru/learn.html.

A Пример создания виртуальной машины в Oracle VM VirtualBox

В Пример установки Debian GNU/Linux в VirtualBox

С Пример установки ownCloud Server в Debian GNU/Linux

После успешного входа в систему, в первую очередь необходимо получить права суперпользователя¹:

```
$ su -
Password: toor
# apt-get install sudo
# usermod -a -G sudo student
```

Добавление репозитория и ключа для ownCloud Server:

```
# wget -nv https://goo.gl/mmV2ga -O Release.key
# apt-key add - < Release.key
OK
# echo deb http://download.owncloud.org\
> /download/repositories/stable/Debian_8.0/ / > \
> /etc/apt/sources.list.d/owncloud.list
```

После добавления репозитория необходимо обновить список доступного в репозиториях ПО и запустить установку ownCloud Server (во время установки MySQL, установщик запросит пароль суперпользователя MySQL, он не обязательно должен совпадать с паролем пользователя root):

```
# apt-get update
# apt-get install owncloud owncloud-files
...
New password for the MySQL "root" user: toor-mysql
Repeat password for the MySQL "root" user: toor-mysql
```

После того, как установщик скачал и установил все необходимые пакеты, можно проверить корректность установки (рис. 7), зайдя по адресу http://192.168.0.102/owncloud/,

где 192.168.0.102 — ІР-адрес сервера (виртуальной машины).

Приложение предлагает использовать базу данных SQLite по умолчанию, мы же будем использовать MySQL:

```
# mysql -uroot -ptoor-mysql
mysql> CREATE DATABASE owncloud_DB;
mysql> CREATE USER "owncloud-web"@"localhost" \
    -> IDENTIFIED BY "owncloud-passwd";
mysql> GRANT ALL PRIVILEGES ON owncloud_DB.* \
    -> TO "owncloud-web"@"localhost";
mysql> FLUSH PRIVILEGES;
mysql> quit
```

После создания базы данных, необходимо обновить страницу приложения, настроить параметры базы данных и установить данные аккаунта администратора ownCloud (рис. 8).

После нажатия клавиши «Finish Setup» база данных и пользовательские настройки успешно подключаются к ownCloud (рис. 9).

 $^{^{1}\}Pi$ ароль пользователя не отображается на экране во время набора

Рис. 7: Первый запуск приложения

Рис. 8: Параметры БД и аккаунта администратора

Рис. 9: Первый вход в ownCloud и интерфейс приложения

D Настройка подключения ownCloud Client к серверу

Е Деплой приложения на Heroku

Для регистрации в Heroku¹ необходима только электронная почта (рис. 10).

Рис. 10: Регистрация в Негоки

После регистрации, на указанный почтовый ящик приходит письмо с подтверждением регистрации, необходимо перейти по ссылке из письма и подтвердить регистрацию.

После подтверждения регистрации можно войти в свою учетную запись и ознакомиться с интерфейсом платформы.

Создадим новое приложение в разделе «Personal Apps» (рис. 11).

Рис. 11: Список созданных приложений в Heroku

Пусть имя приложения будет «helloivt» (рис. 14).

https://signup.heroku.com/login

	Create New App		
App Name (optional) Leave blank and we'll choose one for you.	helloivt helloivt is available	②	
Runtime Selection Your app can run in your choice of region in the Common Runtime.	Europe	*	
	Create App		

Рис. 12: Создание нового приложения

Авторизуемся на сервере с Debian, устанавливаем heroku-cli и авторизуемся в Heroku:

```
$ wget -O- https://toolbelt.heroku.com/install-ubuntu.sh | sh
$ heroku login
heroku-cli: Installing CLI... 21.83MB/21.83MB
Enter your Heroku credentials.
Email: student123@sevsu.ru
Password (typing will be hidden):
Logged in as student123@sevsu.ru
```

Добавляем контактные данные разработчика:

```
$ git config --global --add user.email "student123@sevsu.ru"
$ git config --global --add user.name "Name Surname"
```

Клонируем репозиторий с тестовым приложением на Flask:

```
$ git clone https://github.com/craigkerstiens/flask-helloworld
$ cd flask-helloworld/
```

Реиницилизируем репозиторий:

```
$ git init
Reinitialized existing Git repository in /home/student/flask-
   helloworld/.git/
$ heroku git:remote -a helloivt
set git remote heroku to https://git.heroku.com/helloivt.git
```

Деплоим приложение в Heroku:

```
$ git push heroku master
```

Переходим на страницу приложения и проверяем, страница должна выводить надпись «Hello from Python!» (рис. 13).

¹https://helloivt.herokuapp.com/, где «helloivt» — это имя приложения, заданное в вебинтерфейсе Heroku

Рис. 13: Создание нового приложения

Внесем изменения в приложение, отредактировав приветствие:

```
$ nano app.py
    return "Hello from IVT student!"
$ git commit -am "First commit!"
[master 898f7d8] First commit!
1 file changed, 1 insertion(+), 1 deletion(-)
$ git push heroku master
```

Обновляем страницу с приложением (рис. 14).

Рис. 14: Изменения в приложении вступили в силу