Inwersja

Adam Naskręcki

25 września 2023

1 Teoria

- **Def. 1.** Inwersją względem okręgu ω o środku O i promieniu r > 0 nazywamy przekształcenie płaszczyzny bez punktu O w płaszczyznę bez punktu O, które punkt $P \neq O$ przekształca na punkt P^* leżący na półprostej \overrightarrow{OP} taki, że $OP \cdot OP^* = r^2$. Punkt O nazywamy środkiem inwersji, a r promieniem inwersji.
- **Def. 2.** Dla funkcji $f: X \to Y$ i podzbioru $A \subseteq X$, obrazem A w funkcji f nazywamy zbiór $f[A] = \{f(a) : a \in A\}$.
- Obserwacja 1. Inwersja jest bijekcją i inwolucją (złożona sama ze sobą daje identyczność). Oznacza to, że rozwiązanie problemu po przekształceniu go inwersją jest równoważne rozwiązaniu go w oryginalnym sformułowaniu, bo używając tej samej inwersji, wracamy do wyjściowej konfiguracji.
- **Obserwacja 2.** Jeżeli $f: X \to Y$ jest bijekcją i $A, B \subseteq X$, to $f[A \cap B] = f[A] \cap f[B]$. Oznacza to w szczególności, że inwersja zachowuje przecięcia zbiorów.
- **Obserwacja 3.** Jeżeli O jest środkiem inwersji f, $X,Y \neq O$ punktami na płaszczyźnie, a $X^* := f(X)$, $Y^* := f(Y)$, to $\triangle OXY \sim \triangle OY^*X^*$.
- **Obserwacja 4.** Aby skonstruować obraz punktu P, znajdującego się poza okręgiem ω , w inwersji względem tego okręgu, wystarczy narysować styczne do ω z P. Wtedy środek odcinka łączącego punkty styczności jest poszukiwanym obrazem.
- Twierdzenie 1. Niech ω będzie okręgiem o środku w O a f inwersją względem ω . Wówczas poniższe stwierdzenia są prawdziwe.
- (1) Obrazem prostej przechodzącej przez O, w f, jest ta sama prosta.
- (2) Obrazem prostej nieprzechodzącej przez O, w f, jest okrąg przechodzący przez O a styczna do tego okręgu w O jest równoległa do wyjściowej prostej.
- (3) Obrazem okręgu przechodzącego przez O, w f, jest nieprzechodząca przez O prosta.
- (4) Obrazem okręgu nieprzechodzącego przez O, w f, jest okrąg nieprzechodzący przez O 1.
- **Uwaga.** W powyższym twierdzeniu i dalszej części wykładu pisząc lub mówiąc o okręgach i prostych przechodzących przez O mamy na myśli zbiory, które uzupełnione o punkt O tworzą odpowiednio okręgi i proste.
- **Def. 3.** Kątem między prostą ℓ i okręgiem ω takimi, że $A \in \omega, \ell$, nazywamy kąt nierozwarty pomiędzy ℓ a styczną do ω w A.
- **Def.** 4. Kątem między okręgami ω_1, ω_2 takimi, że $A \in \omega_1, \omega_2$, nazywamy kąt nierozwarty pomiędzy stycznymi do ω_1, ω_2 w punkcie A.
- Twierdzenie 2. Inwersja zachowuje kąty pomiędzy prostymi i okręgami.

¹Środek okręgu NIE przechodzi na środek okręgu będącego obrazem, ale środki te są współliniowe ze środkiem inwersji.

Inwersja Adam Naskręcki

2 Zadania

1. Punkt D leży wewnątrz trójkąta ABC. Niech A_1 , B_1 , C_1 będą drugimi punktami przecięcia prostych AD, BD i CD z okręgami opisanymi na trójkątach BDC, CDA, ADB, odpowiednio. Udowodnić, że

$$\frac{AD}{AA_1} + \frac{BD}{BB_1} + \frac{CD}{CC_1} = 1.$$

2. Niech Γ_1 , Γ_2 , Γ_3 , Γ_4 będą różnymi okręgami tak, że Γ_1 , Γ_3 są styczne zewnętrznie w P i Γ_2 , Γ_4 są styczne zewnętrznie w tym samym punkcie P. Załóżmy, że Γ_1 i Γ_2 , Γ_2 i Γ_3 , Γ_3 i Γ_4 oraz Γ_4 i Γ_1 przecinają się po raz drugi odpowiednio w punktach A, B, C, D. Wykazać, że

$$\frac{AB \cdot BC}{AD \cdot DC} = \frac{PB^2}{PD^2}.$$

- 3. Okrąg Ω jest okręgiem opisanym na trójkącie ABC. Dwusieczna kąta BAC przecina BC w punkcie D, a Ω w punkcie $E \neq A$. Okrąg o średnicy DE przecina Ω po raz drugi w punkcie F. Udowodnić, że AF jest symedianą 2 w trójkącie ABC.
- 4. Niech Ω będzie okręgiem opisanym na trójkącie ABC. Okrąg ω jest styczny do boków AC i BC oraz wewnętrznie styczny do Ω w punkcie P. Prosta równoległa do AB przecina wnętrze trójkąta ABC i jest styczna do ω w Q. Udowodnić, że $\angle ACP = \angle QCB$.
- 5. Niech $KL \ i \ KN$ będą stycznymi z punktu K do okręgu k. Punkt M został wybrany dowolnie na póprostej KN za punkt N a punkt P jest drugim punktem przecięcia k z okręgiem opisanym na trójkącie KLM. Punkt Q jest rzutem prostokątnym N na ML. Wykazać, że $\angle MPQ = 2\angle KML$
- 6. Niech ABC będzie trójkątem i niech Q będzie takim punktem, że $AB \perp QB$ i $AC \perp QC$. Okrąg o środku w I jest wpisany w $\triangle ABC$ i jest styczny do AB, BC, CA w punktach D, E, F, odpowiednio. Wykazać, że jeśli póprosta \overrightarrow{QI} przecina EF w punkcie P, to $DP \perp EF$.
- 7. Niech P będzie punktem wewnatrz trójkata ABC takim, że

$$\angle APB - \angle ACB = \angle APC - \angle ABC$$
.

- Niech D, E będą środkami okręgów wpisanych w trójkąty APB, APC, odpowiednio. Pokazać, że proste AP, BD, CE przecinają się w jednym punkcie.
- 8. Niech $A_1A_2A_3$ będzie nierównoramiennym trójkątem, a I środkiem okręgu do niego wpisanego. Niech C_i , i=1,2,3 będzie mniejszym okręgiem przechodzącym przez I oraz stycznym do A_iA_{i+1} i A_iA_{i+2} . Niech B_i , i=1,2,3, będzie drugim punktem przecięcia C_{i+1} i C_{i+2} . Udowodnić, że środki okręgów opisanych na trójkątach A_1B_1I , A_2B_2I , A_3B_3I są współliniowe.
- 9. Niech ABC będzie trójkątem ostrokątnym spełniającym AB > AC. Niech Γ będzie okręgiem na nim opisanym, H jego ortocentrum i F spodkiem wysokości z A. Niech M będzie środkiem BC, Q punktem na Γ takim, że $\angle HQA = 90^\circ$ i niech K będzie punktem na Γ takim, że $\angle HKQ = 90^\circ$. Załóżmy, że A, B, C, K i Q są parami różne i leżą na Γ w tej kolejności. Udowodnić, że okręgi opisane na trójkątach KQH i FKM są styczne.

 $^{^2 \}mathrm{Symediana}$ to prosta symetryczna do środkowej względem dwusiecznej.