UNIVERSITE MOHAMMED V de RABAT FACULTE DES SCIENCES

Cours d'Analyse I

Par Pr. A. ZOGLAT

SMIA, S1

Ces notes de cours sont destinées aux étudiants de S1 de la filière SMIA. Elles ont été rédigées, conformément au nouveau programme accrédité, dans le but d'aider les étudiants à consolider leurs acquis ma-			
thématiques et à maîtriser les nouvelles notions introduites dans ce cours.			
Je serai reconnaissant à tout lecteur qui aura l'amabilité de me signaler des erreurs que peut comporter			
ce manuscrit ou de me suggérer une idée pour le parfaire.			
A. Zoglat.			

Table des matières

1	Nombres Réels		
	1.1	Propriétés élémentaires du corps des réels	1
	1.2	Valeur Absolue	4
	1.3	Bornes supérieure et inférieure	5
	1.4	Propriété d'Aarchimède	7
	1.5	Approximations décimales d'un réel	8
	1.6	$\mathbb Q$ est dense dans $\mathbb R$	9
		1.6.1 Approximations rationnelles d'un réel	10

CHAPITRE 1

Nombres Réels

1.1 Propriétés élémentaires du corps des réels

Pour les besoins de comptage et de mesure nous disposons, depuis très longtemps, des trois ensembles suivants :

- 1- L'ensemble des *entiers naturels* $\mathbb{N} = \{0, 1, 2, \dots, n, \dots\}$.
- 2- L'ensemble des *entiers relatifs* $\mathbb{Z} = \{..., -n, ..., -2, -1, 0, 1, 2, ..., n, ...\}$.
- 3- L'ensemble des *rationnels* $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$.

Il est clair que $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$. Ces ensembles répondent à la plupart de nos besoins pour faire des calculs. Toutefois les mathématiciens savent depuis l'époque de Pythagore qu'il existe des entités qui restent en dehors de ces ensembles. La longueur x de la diagonale d'un carré de côté 1 en est un exemple. En effet, d'après le théorème de Pythagore on a $1^2 + 1^2 = x^2$ mais, d'après la proposition ci-après, $x \notin \mathbb{Q}$.

Proposition 1. Si x est solution de l'équation $x^2 = 2$ alors $x \notin \mathbb{Q}$.

Démonstration. Nous démontrons ce résultat en utilisant la méthode du "raisonnement par l'absurde". On suppose que $x=\frac{p}{q}$ où $p\in\mathbb{Z}$ et $q\in\mathbb{Z}^*$ sont premiers entre eux (cela veut dire que 1 est le seul diviseur commun à p et q). Si $x^2=2$ alors $p^2=2q^2$ et p^2 est pair donc p est aussi pair. Ainsi p=2k donc $p^2=4k^2=2q^2$.

Donc $2k^2 = q^2$. Donc q est pair. Ce qui est impossible car p et q sont premiers entre eux.

La proposition suivante est une caractérisation de l'ensemble des rationnels Q.

Proposition 2. $x \in \mathbb{Q} \iff x$ admet une écriture décimale finie ou périodique.

Nous admettons ce résultat, et nous montrons par un exemple comment l'écriture décimale (finie ou périodique) de x conduit à son écriture comme rapport de deux entiers relatifs.

Exemple 1.

- (a) $\frac{3}{5} = 0.6$ $\frac{1}{3} = 0.3333...$ sont des rationnels.
- (b) x = 12,34
 ightharpoonup 2021
 ightharpo

- 1. $100x = 1234, 2021, 2021, \dots$
- 2. $10\,000 \times 100x = 1234\,2021, 2021...$
- 3. $10\,000 \times 100x 100x = 1234\,2021 1234$
- 4. donc $999\,900x = 12\,340\,787$ et donc $x = \frac{12\,340\,787}{999\,900} \in \mathbb{Q}$

L'existence d'entités (telles que la longueur de la diagonale d'un carré de coté 1) qui ne correspondent à aucun nombre rationnel a mis en évidence la nécessité de construire un ensemble plus riche que Q. Les éléments de ce nouvel ensemble sont appelés les *nombres réels*. Une partie des nombres réels sont des rationnels les autres sont appelés les *nombres irrationnels*.

La construction de l'ensemble des nombres réels a été un sujet de recherche active pour plusieurs décennies. Elle repose uniquement sur quelques axiomes simples qui prolongent naturellement les propriétés de \mathbb{Q} . Cette construction, certainement très instructive, ne fait pas partie des objectifs de ce cours. Nous allons nous contenter d'admettre l'existence de l'ensemble des réels \mathbb{R} qui vérifie les axiomes suivants :

Stabilité : $\forall x, y \in \mathbb{R}, x + y \in \mathbb{R} \text{ et } x \times y \in \mathbb{R}$

Commutativité : $\forall x, y \in \mathbb{R}, \ x + y = y + x \text{ et } x \times y = y \times x.$

Associativité : $\forall x, y, z \in \mathbb{R}, (x+y) + z = x + (y+z) \text{ et } (x \times y) \times z = x \times (y \times z).$

Distributivité : $\forall x, y, z \in \mathbb{R}, \ x \times (y+z) = x \times y + x \times z.$

Éléments neutres : \exists 0, $1 \in \mathbb{R}$, $\forall x \in \mathbb{R}$, x + 0 = x et $x \times 1 = x$.

Opposés/Inverses : $\forall x \in \mathbb{R}, \ \exists (-x) \in \mathbb{R}, \ (-x) + x = 0 \text{ et } \forall x \in \mathbb{R} \setminus \{0\}, \ \exists x^{-1} \in \mathbb{R} \setminus \{0\}, \ x \times x^{-1} = 1.$

On dit que $(\mathbb{R}, +, \times)$ est un corps commutatif. Pour alléger les notations, on écrit pour tout $x, y \in \mathbb{R}, x - y$ au lieu x + (-y) et xy au lieu de $x \times y$.

À partir des axiomes ci-dessus, on montre les résultats suivants :

Proposition 3.

- 1- Pour tout $x, y \in \mathbb{R}$ on a : $x = y \iff x y = 0$. En particulier, on a : -(x + y) = -x y.
- 2- Pour tout $x \in \mathbb{R}$ on a $:0 \times x = 0$.
- 3- Pour tout $x, y \in \mathbb{R}$ on a : (-x) y = -(x y) = x (-y).
- 4- Pour tout $x, y \in \mathbb{R}$ on a : $xy = 0 \iff x = 0$ ou y = 0.
- 5- Pour tout $x, y \in \mathbb{R}^*$ on a : $(x y)^{-1} = x^{-1} y^{-1}$.

Démonstration.

- 1- Supposons que x = y. En rajoutant -y aux deux membres de l'égalité on obtient x + (-y) = y + (-y) = 0. Réciproquement, en rajoutant y aux deux membres de l'égalité x y = 0 on obtient x = y.
- 2- xx = xx + 0 = x(x + 0) = xx + x0, d'où x0 = 0.
- 3- (-x)y + xy = (-x + x)y = 0, d'où (-x)y = -xy.
- 4- Supposons que xy = 0 et que $x \neq 0$. En multipliant par x^{-1} les deux membres de l'égalité xy = 0 on obtient $x^{-1}(xy) = x^{-1}0$ ou encore 1y = y = 0.

Sur le corps commutatif des réels, \mathbb{R} , on définit la relation " \leq " (**inférieur ou égal à**) qui vérifie les propriétés suivantes:

- a- $\forall x, y \in \mathbb{R}$, on a soit $x \leq y$ soit $y \leq x$. En particulier $x \leq x$ (réflexivité).
- b- $\forall x, y \in \mathbb{R}$, si $x \leq y$ et $y \leq x$ alors x = y (antisymétrie).
- c- $\forall x, y \in \mathbb{R}$, si $x \leq y$ et $y \leq z$ alors $x \leq z$ (transitivité).

Cette relation est compatible avec l'addition :

$$\forall x, y, z \in \mathbb{R}$$
, si $x \le y$ alors $x + z \le y + z$.

Pour la multiplication, on a seulement une compatibilité partielle :

$$\forall x, y, z \in \mathbb{R}$$
, si $0 \le z$ et $x \le y$ alors $zx \le zy$.

Les notations suivantes sont très commodes :

Pour tout $x, y \in \mathbb{R}$, on notera x < y si $x \le y$ et $x \ne y$. Lorsque x < y, on dit que x est **strictement** inférieur à y. Ainsi, pour tout $x, y \in \mathbb{R}$, il n'y a que trois possibilités : x < y, x = y ou y < x.

L'expression $x \ge y$, qui se lit x supérieur ou égal à y, désigne $y \le x$. On utilise également la notation x > y lorsque y < x et on dit que x est **strictement** supérieur à y.

On peut combiner les deux expressions $x \le y$ et $y \le z$ en écrivant $x \le y \le z$.

Avant de donner les propriétés qui définissent les règles de calcul dans R, voici quelques notations utiles :

$$- \forall n \in \mathbb{N}^*, x \in \mathbb{R} : x^n = \underbrace{x \times x \times \dots \times x}_{}$$

—
$$\forall n \in \mathbb{N}^*, x \geq 0$$
: On note $x^{\frac{1}{n}}$ ou $\sqrt[n]{x}$ la racine $n^{\text{ème}}$ de x . Elle est telle que $\left(\sqrt[n]{x}\right)^n = x$.

$$- \forall x \neq 0 : x^0 = 1$$

Voici à présents quelques règles élémentaires de calcul :

(1)
$$x \ge 0 \iff -x \le 0$$

(2)
$$x \le y \iff -y \le -x$$

$$(3) \quad x \le y \Longleftrightarrow x - y \le 0$$

(4)
$$y \ge 0 \Longrightarrow x - y \le x \le x + y, \forall x \in \mathbb{R}.$$

$$(5) \quad \forall x \in \mathbb{R}, \, x^2 = xx \ge 0$$

(6)
$$\left(x < 0 \text{ et } y > 0\right) \Longrightarrow xy < 0$$

(7)
$$x \le y \text{ et } z > 0 \Longrightarrow xz \le y$$

(8)
$$x > 0 \Longrightarrow x^{-1} = \frac{1}{x} > 0$$

(9) Si
$$x, y > 0$$
 alors $x < y \iff x^2 < y^2$

(8)
$$x > 0 \Longrightarrow x^{-1} = \frac{1}{x} > 0$$

(9) Si $x, y \ge 0$ alors $x \le y \Longleftrightarrow x^2 \le y^2$
(10) $0 < x < y \Longrightarrow 0 < \frac{1}{y} < \frac{1}{x}$

(11)
$$(x \le y \text{ et } s \le t) \Longrightarrow x + s \le y + t$$

(11)
$$\left(x \le y \text{ et } s \le t\right) \Longrightarrow x + s \le y + t$$

(12) $\left(\left(x \ge y > s\right) \text{ ou } \left(x > y \ge s\right) \Longrightarrow x > s.$

Exemple 2. En utilisant les propriétés ci-dessus on peut montrer que $\forall n \in \mathbb{N}, n \geq 0$.

On sait que $1=1^2\geq 0$. On en déduit que $2=1+1\geq 1\geq 0$. Ainsi on peut montrer (par récurrence) que $\forall n \in N, n \geq 0.$

Les notations suivantes désignent des intervalles :

1.2 Valeur Absolue

On définit sur \mathbb{R} l'application "valeur absolue" par : $\forall x \in \mathbb{R}, \ |x| = \begin{cases} x & \text{si } x \geq 0 \\ -x & \text{sinon} \end{cases}$.

Remarque. D'après la définition de l'application valeur absolue on a, pour tout $x \in \mathbb{R}$,

$$|x| = |-x| = \max(x, -x).$$

Les résultats suivants sont très importants pour la manipulation de l'application valeur absolue d'un produit, une somme ou une différence de réels.

Proposition 4. L'application valeur absolue vérifie les propriétés suivantes :

1-
$$x \in \mathbb{R}$$
, $|x| = 0 \iff x = 0$
2- $\forall x, y \in \mathbb{R}$, $|xy| = |x||y|$.
3- $\forall x \in \mathbb{R}$, $|x|^2 = |x^2| = x^2$.
4- $\forall x \in \mathbb{R}$, $\forall y > 0$, $|x| \le y \iff -y \le x \le y$.
5- $\forall x, y \in \mathbb{R}$, $|x + y| \le |x| + |y|$
6- $\forall x, y \in \mathbb{R}$, $|x| - |y| \le |x - y|$
7- $|x| = 0 \iff (|x| \le \epsilon, \forall \epsilon > 0)$.
8- $x \le y \iff (x \le y + \epsilon, \forall \epsilon > 0)$.

Démonstration.

1- On a
$$|x| > 0 \iff (x > 0 \text{ ou } -x > 0) \iff x \neq 0$$
.

2- Soient $x, y \in \mathbb{R}$, il existe trois possibilités :

$$x \ge 0$$
 et $y \ge 0$ $\implies xy \ge 0 \Longrightarrow |xy| = xy = |x||y|$, ou bien
 $x \le 0$ et $y \ge 0$ $\implies xy \le 0 \Longrightarrow |xy| = -xy = (-x)y = |x||y|$, ou bien
 $x \le 0$ et $y \le 0$ $\implies xy \ge 0 \Longrightarrow |xy| = |-xy| = -(-xy) = (-x)(-y) = |x||y|$.

4- Si $x \ge 0$ alors $x = |x| \le y$. D'où $-y \le 0 \le x = |x| \le y$ et en particulier $-y \le x \le y$. Si $x \le 0$ alors $-x \ge 0$ et comme $|-x| = |x| \le y$, on déduit de ce qui précède que $-y \le -x \le y$. En multipliant par -1 on a $-y \le x \le y$.

- 5- On a $-|x| \le x \le |x|$ et $-|y| \le y \le |y|$ d'où en additionnant les termes de ces inégalités on obtient $-|x| |y| \le x + y \le |x| + |y|$. Le résultat découle de la propriété précédente.
- 6- D'après l'inégalité précédente, on a $|x| = |y + (x y)| \le |y| + |x y|$, d'où $|x| |y| \le |x y|$. En échangeant les rôles de x et y, on a aussi $|y| |x| \le |y x| = |x y|$. Comme $|x| |y| = \max(|y| |x|, |x| |y|)$, on déduit de ce qui précède que $|x| |y| \le |x y|$.
- 7- Il est évident que si |x|=0 alors pour tout $\epsilon>0$, $|x|\leq \epsilon$. Supposons que pour tout $\epsilon>0$, $|x|<\epsilon$ mais $|x|\neq 0$. En prenant $\epsilon'=\frac{|x|}{2}$ on obtient une contradiction.
- 8- Pour tout $\epsilon > 0$ et tout $y \in \mathbb{R}$ on a $y \le y + \epsilon$ et donc si $x \le y$ alors $x \le y + \epsilon$ par transitivité. Si x > y, prenons $\epsilon_0 = \frac{x y}{2}$ on a $y + \epsilon_0 = \frac{x + y}{2} < x$.

Exercice 1. Montrer que $\forall x, y \in \mathbb{R}$ on a :

$$\max(x,y) = \frac{|x-y| + (x+y)}{2}$$
 et $\min(x,y) = \frac{x+y-|x-y|}{2}$.

1.3 Bornes supérieure et inférieure

Définition 1. Soit E un sous-ensembe non-vide de \mathbb{R} et soient m et M deux réels.

On dit dit que E est une partie **minorée** par m (ou que m est un minorant de E) si $m \le x$, $\forall x \in E$. Le plus grand minorant de E, noté inf E, est appelé "borne inférieure" de E.

On dit que E est une partie **majorée** par M (ou que M est un majorant de E) si $x \leq M$, $\forall x \in E$. Le plus petit majorant de E, noté sup E, est appelé "borne supérieure" de E.

On dit que E est une partie bornée si elle est à la fois minorée et majorée.

Exemple 3.

 $E = \{-3, 0, 4, 10\}$ est minoré par -3 et majoré par $\sqrt{101}$.

 $E =]-1, \infty[$ est minoré par -4 mais n'est pas majoré. L'ensemble des minorants de E est l'intervalle $]-\infty,-1]$, donc -1 est la borne inférieure de E.

 $E = \{x \in \mathbb{Q} : x^2 < 2\}$ est majoré par $\sqrt{2}$. Nous avons déjà vu que $\sqrt{2} \notin E$, nous montrerons plus tard que $\sqrt{2} = \sup E$.

Proposition 5. Soit E une partie non-vide et minorée dans \mathbb{R} , alors

$$a = \inf E \iff \Big((\forall x \in E, a \le x) \text{ et } (\forall \epsilon > 0, \exists x_{\epsilon} \in E : a \le x_{\epsilon} < a + \epsilon) \Big).$$

Démonstration.

 \implies : Supposons que $a=\inf E$. Soit $\epsilon>0$, $a+\epsilon$ n'est pas un minorant pour E (d'après la définition de a). Donc il existe $x_{\epsilon}\in E$ qui vérifie $a\leq x_{\epsilon}< a+\epsilon$.

Soient E une partie non-vide et minorée dans $\mathbb R$ et a un réel tels que $(\forall x \in E, a \le x)$ et $(\forall \epsilon > 0, \exists x_{\epsilon} \in E : a \le x_{\epsilon} < a + \epsilon)$. Il est clair que a est un minorant de E. Supposons qu'il existe un minorant de E, noté a', qui soit strictement plus grand que a. Pour $\epsilon = \frac{a'-a}{2} > 0$, il existe $x_{\epsilon} \in E$ tel que $x_{\epsilon} < a + \epsilon = \frac{a'+a}{2} < a'$. Ceci est impossible car a' est un minorant de E.

Nous avons une caractérisation similaire pour la borne supérieure. La démonstration est laissée comme exercice.

Proposition 6. Soit E une partie non-vide et majorée dans \mathbb{R} , alors

$$b = \sup E \iff ((\forall x \in E, x \le b) \text{ et } (\forall \epsilon > 0, \exists x_{\epsilon} \in E : b - \epsilon < x_{\epsilon} \le b)).$$

Proposition 7. Lorsque la borne inférieure (ou supérieure) existe, elle est unique.

Démonstration. Supposons qu'il existe E, une partie de \mathbb{R} non-vide et majorée qui admet deux bornes inférieures b et $b' \in \mathbb{R}$ avec $b \leq b'$. Supposons que b < b' et soit $\epsilon = b' - b$. D'après la caractérisation de la borne inférieure, il existe $x \in E$ tel que $b' = b + \epsilon < x \leq b$. Ceci contredit le fait que b' est une borne inférieure de E.

Les deux propriétés suivantes caractérisent l'ensemble des réels R.

Propriété de la borne inférieure :

Toute partie E non-vide et minorée admet une borne inférieure dans \mathbb{R} .

Propriété de la borne supérieure :

Toute partie E non-vide et majorée admet une borne supérieure dans \mathbb{R} .

Remarque.

Les deux propriétés ci-dessus sont équivalentes. En effet, supposons que toute partie non-vide et minorée admet une borne inférieure dans $\mathbb R$ et soit E une partie de $\mathbb R$ non-vide et majorée. Notons M_E l'ensemble des majorants de E. C'est un ensemble non-vide et minoré dans $\mathbb R$ (pourquoi?), donc admet une borne inférieure. Montrons que inf $M_E = \sup E$.

Supposons qu'il existe $x_0 \in E$ tel que $\inf M_E < x_0$. Pour $\epsilon = \frac{x_0 - \inf M_E}{2}$ il existe $b_\epsilon \in M_E$ tel que $\inf M_E \le b_\epsilon < \inf M_E + \epsilon = \frac{x_0 + \inf M_E}{2} < x_0$. Ce qui contredit le fait que b_ϵ est un majorant de E. Donc $\inf M_E$ est un majorant de E.

Montrons que $\forall \epsilon > 0$, $\exists x_{\epsilon} \in E : \inf M_E - \epsilon < x_{\epsilon} \leq \inf M_E$.

Soit $\epsilon > 0$, il existe $x_{\epsilon} \in E$ tel que $\inf M_E - \epsilon < x_{\epsilon}$ (sinon $\inf M_E - \epsilon$ serait un majorant de E). Comme $\inf M_E$ est un majorant, on a aussi $x_{\epsilon} \leq \inf M_E$.

La preuve de la réciproque est laissée en exercice.

Si E est une partie de R non-vide et non majorée (respectivement non minorée) on pose $\sup E = \infty$ (respectivement inf $E = -\infty$).

П

Exercice 2. Montrer que si $E \subset \mathbb{R}$ est une partie non-vide et minorée, alors $F = \{-x : x \in E\}$ est une partie de \mathbb{R} non-vide et majorée. En déduire que F admet une borne inférieure donnée par inf $F = -\sup E$.

Exercice 3. Montrer que pour tout $\epsilon > 0$, il existe un entier $n \in \mathbb{N}$ tel que $\frac{1}{n} < \epsilon$.

1.4 Propriété d'Aarchimède

Archimède fût le premier à constater qu'un voyageur partant à pieds d'un point *A* peut atteindre un point *C*, après un nombre fini de pas. Ce constat, appelé **Propriété d'Archimède**, peut-être formulé comme suit :

Proposition 8. Si x et y sont deux réels tels que 0 < y < x, alors il existe $n \in \mathbb{N}$ tel que x < ny.

Démonstration. Nous allons faire une démonstration par l'absurde. S'il existait deux réels x et y tels que 0 < y < x et que pour tout $n \in \mathbb{N}$, $n \ y \le x$, l'ensemble $E = \{n \in \mathbb{N} : n \ y \le x\} = \mathbb{N}$ serait alors majoré par $\frac{x}{y}$ et admettrait donc une borne supérieure B. Pour tout $\epsilon = 1$, il existerait $n_{\epsilon} \in E$ tel que $B - 1 < n_{\epsilon} \le B$. On en déduit que $B < n_{\epsilon} + 1$, ce qui est impossible puisque $n_{\epsilon} + 1 \in \mathbb{N}$. □

On dit que " \mathbb{R} est archimédien" ou que " \mathbb{R} vérifie la propriété d'Archimède". La propriété d'Archimède dans \mathbb{R} une conséquence de la propriété de la borne supérieure. Remarquons toutefois que \mathbb{Q} est archimédien mais ne vérifie pas la propriété de la borne supérieure. Ainsi, c'est la propriété de la borne supérieure qui caractérise \mathbb{R} et non pas la propriété d'Archimède. Comme conséquence de cette propriété, nous avons le résultat suivant :

Proposition 9. Pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$, il existe un entier $n \in \mathbb{Z}$ unique vérifiant la propriété suivante :

$$n_x < x < n_x + 1 \tag{*}$$

Démonstration. Soit $x \in \mathbb{R} \setminus \mathbb{Z}$.

Si
$$0 < x < 1$$
, on a $n_x = 0$.

Si 1 < x, d'après la propriété d'Archimède, $\exists n \in \mathbb{N}$ tel que $x < n \times 1 = n$. Considérons l'ensemble $E_x = \{n \in \mathbb{N} : n < x\}$. C'est un sous-ensemble de \mathbb{N} fini et non vide. Soit n_x le plus grand élément de E_x . On a alors $n_x < x < n_x + 1$.

Si x < 0, on a -x > 0 et d'après l'étape précédente on a $n_{-x} < -x < n_{-x} + 1$. En multipliant par -1, on obtient $-n_{-x} - 1 < x \le -n_{-x}$. On prend $n_x = -n_{-x} - 1$.

Définition 2. Pour tout $x \in \mathbb{R}$, on appelle partie entière de x, et on note E(x) ou [x], l'entier relatif $n \in \mathbb{Z}$ qui vérifie la relation (*).

Remarque. Si $x \in \mathbb{Z}$ alors [x] = x. Si $x \notin \mathbb{Z}$, alors $[x] = n_x$, où n_x est le plus grand entier relatif strictement inférieur à x. Cet entier vérifie $n_x < x < n_x + 1$, et son existence est garantie par la proposition précédente.

Exemple 4. On a par exemple [2] = 2 = [2.3], [-2.3] = -3 et $[\sqrt{2}] = 1$.

1.5 Approximations décimales d'un réel

Définition 3. On dit que $d \in \mathbb{R}$ est un **nombre décimal** s'il admet une **écriture décimale finie**. L'ensemble des nombres décimaux est noté \mathbb{D} .

Rappelons que pour tout $n \in \mathbb{N}$, le produit $\underbrace{10 \times 10 \times \ldots \times 10}_{n \text{ termes}}$ est noté 10^n et se lit "dix à la puissance n"). Le quotient $\frac{1}{10^n}$ est noté 10^{-n} .

Remarque. Il est facile de voir que $\mathbb{D} \subset \mathbb{Q}$ et que

$$d \in \mathbb{D} \iff \exists n \in \mathbb{N} : 10^n \times d \in \mathbb{Z}.$$

Exemple 5.

- 1. x = 11.319 est un nombre décimal car $10^3 \times x = 11319 \in \mathbb{Z}$.
- 2. x = -0.0542 est un nombre décimal car $10^4 \times x = -542 \in \mathbb{Z}$.
- 3. $x = \frac{1}{3}$ n'est pas un nombre décimal. En effet, $\frac{1}{3}$ admet une écriture décimale périodique et **infinie**.

Proposition 10. Pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$ il existe $x_n \in \mathbb{D}$ tel que :

$$x_n \le x < x_n + 10^{-n} \tag{**}$$

Démonstration. Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$ deux nombres donnés. D'après la définition de la partie entière on a : $[x \times 10^n] \le x \times 10^n < [x \times 10^n] + 1$. Il suffit alors de prendre $x_n = [x \times 10^n] \times 10^{-n}$. □

Définition 4. Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$ deux nombres donnés et x_n le décimal qui vérifie la relation (**).

Le décimal x_n s'appelle l'approximation décimale de x par défaut à 10^{-n} près.

Le décimal $x_n + 10^{-n}$ s'appelle l'approximation décimale de x par excès à 10^{-n} près.

Proposition 11. Pour tout nombre réel positif x, et pour tout $n \in \mathbb{N}$ il existe une suite x_0, x_1, \ldots, x_n de nombres entiers naturels qui vérifient :

$$\forall k \le n, \ 0 \le x_k \le 9,$$
 et $\sum_{k=0}^{n} x_k 10^{-k} \le x < \sum_{k=0}^{n} x_k 10^{-k} + 10^{-n}.$

Démonstration. Soit x un réel strictement positif. Posons $x_0 = [x]$ et $x_1 = [10 \times (x - x_0)]$. On a ainsi $x_1 \le 10 \times (x - x_0) < x_1 + 1$ et donc $x_0 + x_1 \times 10^{-1} \le x < x_0 + x_1 \times 10^{-1} + 10^{-1}$. Supposons construits les entiers $x_0, x_1, \ldots, x_{n-1}$ tels que $\sum_{k=0}^{n-1} x_k 10^{-k} \le x < \sum_{k=0}^{n-1} x_k 10^{-k} + 10^{-(n-1)}$. L'entier $x_n = [10^n \times (x - \sum_{k=0}^{n-1} x_k 10^{-k})]$ vérifie la relation $x_n \le 10^n \times (x - \sum_{k=0}^{n-1} x_k 10^{-k}) < x_n + 1$, d'où on déduit

$$\sum_{k=0}^{n} x_k 10^{-k} \le x < \sum_{k=0}^{n} x_k 10^{-k} + 10^{-n}. \tag{***}$$

Remarque. Pour avoir un encadrement analogue pour un x < 0, il suffit de considérer -x > 0 et d'appliquer le résultat de la proposition.

Exemple 6. Le nombre 3.1415926535897932384626433832795 est la valeur approchée de π par défaut à 10^{-31} près. En effet il s'écrit 3.1415926535897932384626433832795 = $\sum_{k=0}^{n} x_k 10^{-k}$ avec $x_0 = 3$, $x_1 = 1$, $x_2 = 4$, $x_3 = 1$, $x_4 = 5$, ..., $x_{30} = 9$ et $x_{31} = 5$.

1.6 \mathbb{Q} est dense dans \mathbb{R}

Nous avons vu que tout nombre $x \in \mathbb{R}$ peut être encadré par deux nombres décimaux dont la différence est aussi petite que l'on veut. Le résultat suivant est en quelque sorte une réciproque de cette propriété.

Théorème 1. Pour tout couple de nombres réels (x,y) avec x < y, il existe un nombre $r \in \mathbb{Q}$ tel que x < r < y.

Démonstration. Soien $x,y \in \mathbb{R}$ tels que x < y. Posons $t = \frac{x+y}{2}$, si $t \in \mathbb{Q}$ alors on prend r = t. Sinon, on sait que pour tout $n \in \mathbb{N}$ il existe $t_n \in \mathbb{D}$ tel que $t_n < t < t_n + 10^{-n}$. Soit $n_0 \in \mathbb{N}$ tel que $10^{-n_0} < \frac{y-x}{2}$ (pourquoi un tel entier n_0 existe?) On a alors $x < t < t_{n_0} + 10^{-n_0} < t + \frac{y-x}{2} = y$, et on prend $t = t_{n_0} + 10^{-n_0}$.

Exercice 4. Démontrer le théorème en utilisant les propriétés de la partie entière.

Corollaire 1. Tout intervalle de \mathbb{R} qui contient au moins deux réels contient une infinité de rationnels et une infinité d'irrationnels.

1.6.1 Approximations rationnelles d'un réel

Nous terminons ce chapitre par une autre méthode d'approximation d'un irrationnel x par des rationnels. Pour simplifier, on donne l'approximation pour un irrationnel positif x. L'approximation d'un irrationnel négatif x est l'opposée de l'approximation de -x.

Soit x un irrationnel positif. Posons $x_1 = \frac{1}{x - [x]}$. On a alors $x = [x] + \frac{1}{x_1}$. Comme x_1 est un irrationnel >1, on a aussi $x_1 = [x_1] + \frac{1}{x_2}$ où $x_2 = \frac{1}{x_1 - [x_1]} > 1$. D'où

$$x = [x] + \frac{1}{[x_1] + \frac{1}{x_2}}.$$

Supposons que l'on est construit les irrationnels positifs x_1, \ldots, x_n tels que

$$\forall k \in \{1, 2, ..., n\}, \ x_k = \frac{1}{x_{k-1} - [x_{k-1}]} > 1, \ \text{et} \ x = [x] + \frac{1}{[x_1] + \frac{1}{[x_2] + \frac{1}{... + \frac{1}{[x_{n-1}] + \frac{1}{x_n}}}}.$$

Il est évident que $x_{n+1} = \frac{1}{x_n - [x_n]} > 1$ est un irrationnel positif qui vérifie la relation

$$x = [x] + \frac{1}{[x_1] + \frac{1}{[x_2] + \frac{1}{[x_{n-1}] + \frac{1}{[x_n] + \frac{1}{x_{n+1}}}}}}.$$

En remplaçant x_n par $[x_n]$, on obtient alors une suite de fractions pour approcher x:

$$u_0 = [x], u_1 = [x] + \frac{1}{[x_1]}, \dots, u_n = [x] + \frac{1}{[x_1] + \frac{1}{[x_2] + \frac{1}{[x_{n-1}] + \frac{1}{[x_n]}}}}.$$

Exemple 7.

• Approximation de $\sqrt{2}$: Puisque $1 \le 2 < 4$, on a $1 \le \sqrt{2} < 2$ et donc $\lfloor \sqrt{2} \rfloor = 1$. Ainsi on a $\sqrt{2} = 1 + x_1$ où $x_1 = \frac{1}{\sqrt{2} - 1}$. En multipliant et divisant par $\sqrt{2} + 1$, on a $x_1 = \sqrt{2} + 1$. Donc $\lfloor x_1 \rfloor = 2$ et $x_1 = 2 + x_2$ avec $x_2 = \frac{1}{x_1 - 2} = \frac{1}{\sqrt{2} - 1}$. Notons que $x_2 = x_1$ et qu'en fait, on a $x_1 = x_2 = \dots x_n$, et $\lfloor x_n \rfloor = 2$. Doù :

$$u_0 = 1, u_1 = 1 + \frac{1}{2}, u_2 = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}, u_3 = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}},$$

$$u_4 = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}}}, \dots, u_n = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}.$$

Remarquons que, pour tout entier naturel $n \ge 1$, $u_n = 1 + \frac{1}{1 + u_{n-1}}$ et donc

$$u_1 = 1 + \frac{1}{1+1} = 1.5$$
, $u_2 = 1 + \frac{1}{1+1.5} = \frac{7}{5}$, $u_3 = 1 + \frac{1}{1+7/5} = \frac{17}{12}$, $u_4 = 1 + \frac{1}{1+17/12} = \frac{41}{29}$.

• Approximation de $\sqrt{7}$: Puisque 4 < 7 < 9, on a $2 < \sqrt{7} < 3$ et donc $[\sqrt{7}] = 2$. Calculons les premiers termes u_0, u_1, \ldots, u_n . On a $u_0 = 2$ et $u_1 = 2 + [x_1]$ avec $x_1 = \frac{1}{\sqrt{7} - 2}$. En multipliant et divisant par $\sqrt{7} + 2$ on a $x_1 = \frac{\sqrt{7} + 2}{3}$. Et comme $2 \le \sqrt{7} < 3$ on obtient, en ajoutant 2 à tous les membres de cette inégalité, $4 \le \sqrt{7} + 2 < 5$. Donc, en divisant par $3, \frac{4}{3} \le x_1 < \frac{5}{3}$ et $[x_1] = 1$. D'où $u_1 = 3$. De la même manière on obtient

$$x_{2} = \frac{1}{x_{1} - 1} = \frac{\sqrt{7} + 1}{2}.D'où[x_{2}] = 1. \implies u_{2} = 2 + \frac{1}{1 + \frac{1}{[x_{2}]}} = \frac{5}{2}, \text{ et } u_{2}^{2} = 6.25 < 7$$

$$x_{3} = \frac{1}{x_{2} - 1} = \frac{\sqrt{7} + 1}{3}.D'où[x_{3}] = 1 \implies u_{3} = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{[x_{3}]}}} = 2 + \frac{2}{3} = \frac{8}{3}$$

$$x_{4} = \frac{1}{x_{3} - 1} = \sqrt{7} + 2.D'où[x_{4}] = 4 \implies u_{4} = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{[x_{4}]}}} = 2 + \frac{9}{14}$$

$$x_5 = \frac{1}{x_4 - 4} = \frac{1}{\sqrt{7} - 2} = x_1$$
. D'où $[x_5] = 1$ et $u_5 = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{|x_5|}}}} = \frac{45}{17}$. $u_5^2 = \frac{2025}{289} = \frac{1}{17}$

7.009 > 7.

On déduit donc que $x_6=x_2$, $x_7=x_3$, $x_8=x_4$, $x_9=x_1,\ldots$, etc. D'où

$$u_{6} = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{|r_{c}|}}}} = \frac{82}{31} \cdot u_{6}^{2} = \frac{6724}{961} = 6.9968 < 7.$$

$$u_7 = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{[x_7]}}}}} = \frac{127}{48} \quad \text{et } u_7^2 = \frac{16129}{2304} = 7.0004.$$

Par un calcul similaire on obtient $u_8 = \frac{590}{223}$ et $u_8^2 = \frac{348100}{49729} = 6.9999$.

Exercice 5. Trouver l'approximation u_5 pour l'irrationnel $\sqrt{17}$.