Shahar Perets \sim DS Shit Cheat Sheet (3.1)

List(). Retrieve (L, i), Insert(L, b, i)Length(L) optional: Delete(L, i), Search(L, b), $Concat(L_1, L_2)$, $Plant(L_1, i, L_2)$, Split(L, i) special cases: Retrieve/Insert/Delete-First/Last.

Dictionary(), Insert(D, X), Delete(D, x), Dictionary. Search(D, k). Min(D), Max(D), Successor(D, x), Predecessor(D, x) (for rank trees): Select(D, k) [the kth smallest element], Rank(D, x) [the position in sorted order].

Stack. (LIFO) Push(L, b) [=ins.-last], Top(L) [=ret.-last], Pop(L) [=del.-last]. (all $\mathcal{O}(1)$ using arrays)

Queue. (FIFO) Enqueue (L, b) [=ins-last]. Head (L) [=ret.first], Dequeue(L) [=del-first]. (all $\mathcal{O}(1)$ using circular arrays)

Deque. Queue + Stack

Priority Queue. Insert(x, Q), Min(Q), Delete-Min(Q), (optional:) Decrease-Key (x, Q, Δ) , Delete(x, Q)

Vector. Vector(m), Get(V, i), Set(V, i, val). (All O(1) using legals and positions arrays that reference each other) d

end **Graph.** Edge(i, j), Add-Edge(i, j), Remove-Edge(i, j), InDeg(i),

Definition 1 (Topological sorting algo.). Input: directed graph / Output: numbering $(n_i)_{i=1}^N$ of the graph nodes where $\forall (i,j) \in E : n_i < n_j$.

Theorm 1. Topological Sorting exists iff the graph doesn't contain_cracles

while there are sources do find source v: $n_i \leftarrow k$; $k \leftarrow k + 1$; remove v from the graph if k = n numbering completed, otherwise isn't possible.

building "source queue" takes $\mathcal{O}(n)$, dequeuing source $\mathcal{O}(1)$, and enqueuing new sources to sources-queue $\mathcal{O}(d_{\mathrm{out}}(i))$. Total $\mathcal{O}(n+m)$ for topological ordering.

Definition 2. A *source* is a node that has no incoming edges. Remark 1. any DAG has at least one source

Definition 3. Suppose there's a data structure with ktypes of operations $(T_i)_{i=1}^k$, then for sequence of operations $(op)_{i=1}^n$, then:

$$time(op_1 \dots op_n) \leq \sum_{i=0}^n bound(type(op_i))$$

Where (W.C. bound) $worst(T_i)$ is the maximal time for a single operation typed T_i , and (amortized bound) amort (T_i) is a series of bounds for cost of every valid sequence $(op_i)_{i=1}^n$.

Amortization methods. aggregation (regular average), accounting (bank method), and potential function (defined to be the balance of the bank) that satisfies amort (op_i) = $time(op_i) + \Phi_i - \Phi_{i-1}$.

$$\sum_{i=0}^{n} \frac{1}{x^{i}} = \frac{1}{x-1} = \Theta(x^{i})(x \neq 1)$$

$$\sum_{i=1}^{n} \frac{1}{i} = H_{n} = \Theta(\log n) \quad \log n! = \Theta(n \log n)$$

$$Theorm 2. \quad \alpha + \beta = 1 \land T(n) \le cn + T(\alpha) + T(\beta n) \implies T(n) = \mathcal{O}(n).$$

Asymptotic Notations $f = O(g) \iff \exists n_0, c > 0 \,\forall n > n_0 \colon f(n) < cg(n)$

$$f = \Omega(g) \iff \exists n_0, c > 0 \ \forall n \ge n_0 \ ; f(n) \le cg(n)$$
$$f = \Omega(g) \iff \exists n_0, c > 0 \ \forall n \ge n_0 \ ; f(n) \ge cg(n)$$

$$f = \Theta(g) \iff f = \Omega(g) \land f = O(g)$$

$$f = o(g) \iff \forall c \,\exists n_0 \,\forall n \geq n_0 \colon f(n) \leq cg(n)$$

$$f = \omega(g) \iff \forall c \,\exists n_0 \,\forall n \geq n_0 : f(n) \geq cg(n)$$

 $f = \Omega(g) \iff g = O(f)$

$$f_1 = O(g_1) \land f_2 = O(g_2)$$

$$\implies f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

$$f = O(g) \iff \limsup_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f = \Omega(g) \iff \limsup_{n \to \infty} \frac{f(n)}{g(n)} > 0$$

$$f = o(g) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f = \omega(g) \iff \lim_{n \to \infty} rac{f(n)}{g(n)} = \infty$$
 Master Theorem

let $f: \mathbb{R} \to \mathbb{R}$ be an function, and let a < 1, b > 1 be constants, assuming $T: \mathbb{R}_{\geq 0} \to \mathbb{R}$, $T(n) = a \cdot T\left(\frac{n}{h}\right) + f(n)$,

1.
$$\exists \varepsilon > 0. f(n) = O(n^{\log_b a - \varepsilon})$$

 $\implies T(n) = \Theta(n^{\log_b a})$

2.
$$f(n) = \Theta(n^{\log_b a})$$

 $\implies T(n) = \Theta(n^{\log_b a} \cdot \log n)$

3.
$$\exists \varepsilon > 0. f(n) = \Omega(n^{\log b} a + \varepsilon) \land \exists c > 1, n_0 \ge 0. \forall n \ge n_0. a \cdot f(\frac{n}{b}) \le c \cdot f(n) \Rightarrow T(n) = \Theta(f(n))$$

Note that $\frac{n}{k}$ could be $\left|\frac{n}{k}\right|$ nor $\left[\frac{n}{k}\right]$

(4.0) Dictionaries

Definition 4. a in full tree all internal nodes have exactly i

Definition 5. a BST satisfies: $\forall x \forall y \text{ if } y \text{ is in the left subtree}$ of x, then y.key < x.key, and vise-versa.

Definition 6. height of a node = maximal length of downward path between that node and a leaf.

Definition 7. depth of a node is the length of the path up the tree to the root.

Theorm 3. minimal height of a tree is $|\log n|$

Definition 8. a BST is balanced if $h = \mathcal{O}(\log n)$

Theorm 4. for a given set of n distinct keys, there are $\frac{1}{n+1}\binom{2n}{n}$ (catalan number) BSTs.

Theorm 5. the expected search complexity in a random BST $is \leq (1 + 4 \log n).$

Lemma 1. the heights of a binary tree containing ℓ leaves $> \log \ell$.

Tree walks. pre: head → SLR, in: LSR, post: LRS

Postfix syntax algo. (...)

Definition 9. an AVL tree is a BST where $\forall v \in$ V: |BF(v)| < 1

Theorm 6. and AVL tree is balanced. Further more: $n < \infty$ $\log_{\Phi} n \approx 1.44 \log n$.

Definition 10. Fibonacci tree F_i is:

$$F_{i-1}$$
 F_{i-2}
Ly tree with minimum edges is a fibonacco

Theorm 7. an AVL tree with minimum edges is a fibonacci tree, sized $f_n = \frac{\Phi^n - \bar{\Phi}^n}{\sqrt{5}}$, $\Phi = \frac{1+\sqrt{5}}{2}$.

Definition 11. a rank tree, is a tree that maintains the size of each subtree, hence supports the rank & select operations in $\mathcal{O}(\log n)$.

Theorm 8. if the information that a given attribute f defined for each node, can be computed merely from its direct children (local attribute), then we can maintain f in an AVL tree.

Lemma 2. the sum of the keys lesser than v, and the sum of the keys in the subtrees, can be implemented both without harming time complexity.

Lemma 3. Between(s, t) = Tree-Rank(t) - Tree-Rank(s) + 1

Remark 2. The theorem above is sufficient condition but not necessary.

Definition 12. a Finger Tree is a tree that has a pointer to a specific node.

Theorm 9. in a finger tree Select (T, k) can be implemented in $\mathcal{O}(\log k)$.

Theorm 10. Given a sorted array, we can create an AVL tree in O(n) on which $h = |\log n|$

 $Join(T_1, T_2)$: where $T_1 < x < T_2$ is done $\mathcal{O}(h_{T_1} + h_{T_2} + 1)$ (see image). Split(T, x): splits T into $T_1 < x < \tilde{T}_2$ in $O(\log n)$ using joins.

(4.3)B-trees

Definition 13. a B-tree (d, 2d) satisfies:

- 1. each non-leaf expect for the root has d < r < 2dchildren (hence d-1 to 2d-1 keys);
- 2. all leaves are at the same depth:
- 3. the root has between 2 and 2d children (hence 1 to 2d-1 keys).

Definition 14. a B⁺-tree is a B-tree with keys only on leafs. **Definition 15.** a B*-tree is a B-tree with nodes $\frac{2}{3}$ full (instead of $\frac{d}{2d} = \frac{1}{2}$ full).

Theorm 11. at depth h there are at least $2d^{h-1}$ nodes.

Theorm 12. a B-tree (d, 2d) with n edges and h height fulfills $n > d^h$, $h < \log_d n$

Theorm 13. search in a b-tree requires $O(\log_d n)$ I/Os, and $O(\log_2 d \cdot \log_d n) = O(\log n)$ operations in total.

Lemma 4. In a B-tree #leaves = #internal nodes + 1

Theorm 14. Ins./Del. rebalancing cost is W.C. $O(\log n)$, and using button-up amort. (ins.+del.) O(1), using top-down $\Omega(\log_d n)$

Insertions

Button-Up. Find and insert in the appropriate leaf. If the current node is overflowing: split. If the parent is overflowing: split (etc., recursively). Requires a total of $\mathcal{O}(d \log_d n)$ operations.

Top-Down. if a node is full, we will split it on the way down while searching.

Button-Up non-leaf deletion. replace the item by its predecessor and delete the predecessor (must be a leaf).

Deletions

Button-Up leaf deletion. if the current node is underflowing, borrow and terminate and if not possible fuse and recursively check the if parent if underflowing.

Top-Down leaf deletion. while searching, checking if the items along the way contains d keys, otherwise borrow or fuse.

Top-Down non-leaf deletion. replace the node with its predecessor, while making sure that nodes along the way contains at least d keys.

(5.0).....Priority Queue

Binary Heap

Definition 16. a binary minimum binary heap is an almost perfect BST (only possibly misses nodes at the last level), and satisfies the heap order: the keys at the children of v are greater than they key in v.

Lemma 5. the height of binary heap is $|\log n|$

Theorm 15. in a d-ary heap representation as an array (in brackets for binary):

Left(i) = dk - (d-2) (2i) Right(i) = dk + 1 (2i + 1)

$$\text{Parent}(i) = \left\lfloor \frac{k + (d-2)}{d} \right\rfloor \quad \left(\left\lfloor \frac{i}{2} \right\rfloor \right)$$

 Heapify-Down(i): if Parent(i) is bigger, then replace i with

Parent(i), and recursively continue on Parent(i).

Heapify-Up(i): exchange with the smallest child until fixed Insert: insert on the last place in the array, then heapify up. Delete: delete the required place in the array (the root) the replace it with the last one, then heapify down until fixed (in d-ary $\mathcal{O}(d \log_d n)$).

Dec-Key: decrease the key (assumes $\Delta \geq 0$) then heapify up. Init: iterate over internal nodes bottom-up, and heapifydown each one

HeapSort: create a min-heap from input, the do delete-min and put the deleted element at the last position of the array. Repeat n times. At the we get a reversely-sorted array (using min-heaps).

Definition 17. B_k is a binomial tree of degree k if

$$B_0 \xrightarrow{B_1} \cdots \xrightarrow{B_{k-1}} (\equiv) \xrightarrow{B_{k-1}}$$

Theorm 16. (1) The root of B_k has k children (2) B_k contain 2^k nodes (3) its depth is k (4) $\binom{k}{i}$ of the nodes of B_k are

Definition 18. A binomial min-heap is a list of heap-ordered binomial trees, at most one of each degree, and a pointer to the root with the minimal key.

note: usually the trees are saved using a linked list.

Lemma 6. There are at most $|\log n| + 1$ trees.

Link: if two binomial trees x, y has the same degree, linking could be preformed in $\mathcal{O}(1)$ by attaching y as a child of x and replacing the roots if needed.

Insert: insertion could be done the same way as binary incrementing, where linking≡carrying.

Dec-Key: just heapify up as before.

Meld: link trees with the same degree, like binary addition. Del-Min: the children of the deleted root are a binomial heap, Meld them into the main tree.

Lazy Binomial Trees adds just B_0 -s (allows melding in $\mathcal{O}(1)$), and consolidates when runs delete-min.

Consolidating (on del-min) is the process of taking the nodes and adding them into respected bins (numbered $0 \dots \lfloor \log n \rfloor$, and when two trees are in the same bin – linking them together and moving them into the next bin.

Definition 19. T_0 is #trees before Del-Min, T_1 after Del-Min, and L is the total #Links through consolidating.

Lemma 7. $L < T_0 + \log n$ (we have at most $|\log n|$ trees exposed on Del-Min)

Theorm 17. The cost of consolidating is $T_0 - 1 + \log n + L =$ $\Theta(T_0 + \log n)$.

Theorm 18. Using $\Phi = \#trees$ we get $\Delta \Phi = T_1 - T_0$ hence amort. cost of consolidating is $\mathcal{O}(\log n)$. Lemma 8. incrementing a binary number has an amortized

bound of O(1).

Fibonazi Heaps

Comparison-based sorting

Theorm 19. insertion sort with I > n inversions $(I \leq \binom{2n}{n})$ takes $\mathcal{O}\left(n\log\frac{I}{n}\right)$.

Definition 20. stable sort is a sorting algo. the preserves order of items with the same key.

Definition 21. a comparison-based algo. uses only two-key comparisons to decide on key position.

assumption. two keys can be compared in $\mathcal{O}(1)$, and an item can be moved in $\mathcal{O}(1)$.

Theorm 20. the W.C. and average case of any comparisonbase sorting algo. runs in $\Omega(n \log n)$

Lemma 9. comparison trees are a full binary tree, and has

Theorm 21. the worst/best/average case in the comparisonbased model is the max/min/average depths of the leafs.

Other sorting algos.

HeapSort: see 5.1. **Count sort.** For dataset A, assumes $\exists R \forall a \in A \leq R$ constant. Counts each element $a \in A$, takes a cumulative sum (a_i) , then for all $a \in A$ puts a in a_i and decreases $a_i \leftarrow a_i - 1$. Takes $\mathcal{O}(n+R)$. Stable sort.

Count sort. similar to count sort, takes R bins and throws A into them, then collects them.

Radix sort. For a dataset A sized n, assumes $a \in A$ contains exactly d digit and each digit is bounded by b. Preforms count sort on the LSD \rightarrow MSD. [note: relies on count sort being stable]. Takes $\mathcal{O}(d(n+b))$.

Theorm 22. Radix sort is enough to make IBM.

QuickSort

Lomuto's Partition.

Hoare's Partition.

Theorm 23. W.C. of quicksort if $\binom{n}{2} = \mathcal{O}(n^2)$.

Theorm 24. Average case of quicksort is $2(n+1)H_n - 4n \approx$

Definition 22. an *Experiment* is a case where we the result is uncertain.

Definition 23. the Sample Space is the set of all the expected outcomes of a given experiment.

Definition 24. an Event is a subset of the sample space. A singleton subset called a simple event.

Definition 25. Disjoint Events are events A, B that fulfills $A \cap B = \emptyset$.

Definition 26. a Probability Function is a function $P: S \rightarrow$ [0,1] for S sample space, so that $\forall E, F$ disjoint: $P(E \cup F) =$ P(E) + P(F) and P(S) = 1.

Theorm 25. for disjoint events $(F_i)_{i=1}^n$, if $\bigcup F_i = E$ then $\forall E \colon P(E) = \sum_{i=0}^n P(E \mid F_i) \cdot P(F_i)$.

Definition 27. events E, F are independent if $P(E \cap F) =$ $P(E) \cdot P(F)$ (iff $P(E \mid F) = P(E)$).

Definition 28. a Random Variable if a function $X: S \to \mathbb{R}$. **Definition 29.** X = x is the event on which X(E) = x, and its probability noted as P(X = x).

Definition 30. the Expectation of a random variable X is $\mathbb{E}[x] = \sum_{x} x \cdot P(X = x).$

Theorm 26. the expectation is linear for all constants, and additive for all random variables.

Definition 31. a random variable I is called an Indicator of an event A if $I = \begin{cases} 1 & \text{if } A \text{ occurs} \end{cases}$ 0 if A^c occurs

Lemma 10. $\mathbb{E}[I] = P(A)$.

Definition 32. Uniform Distribution of a random variable X occurs when $\exists c : \forall x \in \mathbb{R} : P(X = x) = c$.

Definition 33. Geometric Distribution satisfies P(x = k) = $(1-p)^{k-1}p$, hence $\mathbb{E}[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = \frac{1}{n}$.

note: geometric dist. is equal to having the probability of succession p and for failure p-1, and P is a rand. var. that is equal to the number of required experiments to get to an solution.

Theorm 27 (The Tail Formula). $\sum_{i=0}^{m} i \cdot P[X=i] =$ $\sum_{i=1}^{m} P(x \ge i)$

Definition 34. given n numbers, Select(n) is defined to return the kth smallest key.

This equals for the item in position k, assuming the array was sorted.

Definition 35. Dynamic settings assumes one-time building cost (e.g. Tree-Select).

Definition 36. Static settings is not a dynamic setting

Theorm 28. Using min-heap + supporting heap the selection problem is solvable is $O(n + k \log k)$.

Theorm 29. The expected number of items removed during **Theorm 29.** The expected number of words some each quickselect run is $\mathbb{E}[\#\text{removed}] = \frac{k}{2} \cdot \frac{k}{n} + \frac{n-k}{2} \cdot \frac{n-k}{n} \geq_{\forall k}$

Theorm 30. The expected runtime of quickselect is O(n).

Theorm 31. MedofMed cost is W.C. O(n).

Hashing (9.0).....

Direct Addressing. Create a bit vector with the universe size. e.g. Insert(D, x) iff $D[x.key] \leftarrow x$ etc.

Chaining

Lemma 11. There are $|m|^{|U|}$ hashes in $h \in U \to [m]$, hence takes $|U| \log m$ to store.

Chaining. each cell points to a linked list of items.

Definition 37. $\alpha := \frac{n}{n}$ where n is the universe, and m is the table size, and called the load factor.

Lemma 12. the probability of a random two specific insertions colliding is geometric.

Theorm 32. the expected number of values in each cell is α . **Theorm 33.** when $n = \Theta(m)$, with probability $\geq 1 - \frac{1}{n}$, each cell contains at most $O\left(\frac{\log n}{\log n \log n}\right)$ elements.

Theorm 34. Assuming the keys are distributed ideally (uniformly and independently), and assuming n keys were previously inserted, the expected complexity during search is $\alpha + 1$ for unsuccessful and $\frac{\alpha}{2} + 1$ for a successful search.

(9.2)Open Addressing

Open Addressing. let $h: U \times [m] \to [m]$ be a hash function, we'll insert the key k in the first free position in the probing sequence.

Note: make sure to use special marking (not null) for deleted items

Theorm 35. Under ideal conditions $(\forall k)$ $[n]: P\left((h(k,i)_{i=0}^{m-1}) = \frac{1}{m}\right), \text{ the expected time for un-}$ successful search is $\frac{1}{1-\alpha}$ and fo successful search $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$

Theorm 36. under linear probing, unsuccessful search takes $\frac{1}{2}\left(1+\left(\frac{1}{1-\alpha}\right)^2\right)$ and successful search $\frac{1}{2}\left(1+\frac{1}{1-\alpha}\right)$

Note: under linear probing, we can delete by recursively checking if item j can me moved to deleted cell i for all $h'(T[j]) \in [j+1, i].$

Definition 38. Linear Probing is a hash func h(k,i) := **Theorm 41.** merging k sorted arrays with the total of n items $(h'(k) + i) \mod m$ (less cache misses + easy to calculate).

Definition 39. Quadratic Probing is a hash func h(k,i) := $(h'(k) + ic_1 + c_2 i^2) \mod m$.

Definition 40. Double Probing is a hash func h(k,i) := $(h'(k) + ih''(k)) \bmod m$.

(9.3)Hash Families

Definition 41. hash family is *Universal* if $\forall k_1 \neq k_2 \in$ $U: P_{h \in H}(h(k_1) = h(k_2)) \leq \frac{1}{m}$

Theorm 37. For all p prime, $h_{a,b} : [p] \rightarrow [m]$ defined as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$, and $H_{p,m} := \{h_{a,b}\}$ $a \in [1, p), b \in [0, p)$ is a universal hash family

Theorm 38. for each p prime, let $x_1 \neq x_2 \in [p]$. Then $\forall y_1 \neq y_2 \in [p] \ \exists !a,b \in [p], a \neq 0 \colon y_1 \equiv_p ax_1 + b \land y_2 \equiv_p ax_2 + b \land y_2 \equiv_p ax_1 + b \land y_2 \equiv_p ax_2 + b \land y_2 \equiv_p$

Theorm 39. for a table $m = 2^k$ so $h_a: U = [2^w] \rightarrow [2^k]$ where w is computer word size, h_a defined as $\left| \frac{ax \mod 2^w}{a^w - k} \right|$

Definition 42. if $\forall k_1 \neq k_2 \in U : P_{h \in H}(h(k_1) = h(k_2)) \leq$ 2 then U is called almost universal.

Theorm 40. using universal hash family, $\mathbb{E}[collisions] < \frac{\binom{n}{2}}{2}$

(9.4)Perfect Hashing Content...

. Other(10.0).....

Reduction. reduction (in our case) is the process of showing the a problem is at least as hard as another problem.

Information Bound. a bound derive by an argument that the algo, has to read a specified amount of the input, in order to get a decision. Notice that in comparison, reading isn't

$$\begin{split} \sum_{i=1}^k \binom{k}{i} &= 2^k \\ \binom{k}{i} &= \binom{k-1}{i} + \binom{k-1}{i-1} \end{split}$$

can be done in O(n | k |)

O(1)

 $\mathcal{O}(\log n)$

.Complexity Tables

(11.0)..... Lists $\ell et \ \operatorname{mid} := \min\{i, n-i\} + 1$

	Ins/Del-Last	Ins/Del-First	Ins(i)	Retrieve(i)	$Concat(n_1, n_2)$	Split(i)
Arrays	O(1)	O(n+i)	O(n-i+1)	O(1)	$O(n_2 + 1)$	O(n-i+1)
Circular Arr.	O(1)	$\mathcal{O}(1)$	O(mid)	O(1)	$\mathcal{O}(\min\{n_1, n_2\})$	O(mid)
D-Linked	O(1)	O(1)	O(mid)	$\mathcal{O}(\text{mid})$	0(1)	O(mid)
AVL List	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log i + 1)$	$\mathcal{O}(\log(n_1 + n_2))$	$\mathcal{O}(\log n)$

(in a lazy doubly-linked list, amortized del./ins. $\mathcal{O}(1)$ and ret. $\mathcal{O}(i+1)$)

Priority Queues Delete-Min | Dec.-Key Delete Meld Insert Minimum AVL tree $O(\log n)$ $O(\log n)$ $O(\log n)$ $O(\log n)$ $\mathcal{O}(n)$ $\mathcal{O}(n)$ $\frac{\mathcal{O}(n \log n)}{\mathcal{O}(n)}$ $\mathcal{O}(1)$ $\mathcal{O}(1)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(\log n)$ Binary Heap $\mathcal{O}(\log n)$ W.C Binomial Heap $\mathcal{O}(\log n)^{(*)}$ $\mathcal{O}(1)$ $\mathcal{O}(\log n)$ $O(\log n)$ $\mathcal{O}(\log n)$ $\mathcal{O}(n)$ Lazy Amort. $\mathcal{O}(1)_{W.C.}$ $O(\log n)$ $\mathcal{O}(n)$ Binomial Stack $\mathcal{O}(1)_{W.C.}$

 $\mathcal{O}(\log n)$

O(1)

 $\mathcal{O}(1)_{W,C}$

 $\mathcal{O}(1)_{W,C}$

Amort. Fib. Heap:

^{*}amortized $\mathcal{O}(1)$ for a sequence of operations from the same type.