Espaços vetoriais

1.1 Subespaços vetoriais

1.1.1 Definição

F é um subespaço vetorial de \mathbb{R}^n se:

- $F \subseteq \mathbb{R}^n$;
- $0_n = (0, 0, ..., 0) \in F$;
- Se $u, v \in F$, então $u + v \in F$ (F é fechado para a adição)
- Se α é um número real e $v \in F$, então $\alpha v \in F$. (F é fechado para a multiplicação escalar)

1.1.2 Combinações lineares

Um conjunto de vetores diz-se linearmente dependente se pelo menos 1 deles for combinação linear dos outros, i.e. se for obtivel através de uma combinação de somas e multiplicações escalares dos outros. Para verificar a dependência linear colocam-se os vetores nas linhas de uma matriz e de seguida em forma de escada, se tiver pelo menos uma linha nula são dependentes, caso contrario são independentes.

1.1.3 Bases

Uma sequência de vetores é uma base de V se:

- Os vetores $v_1, ..., v_P$ são linearmente independentes
- $< v_1, ..., v_p >= V$

A base canónica de \mathbb{R}^n é:

$$((1,0,...,0),(0,1,...,0),...,(0,...,0,1))$$

A dimensão de uma base é o número de vetores l.i. que lhe pertencem, $dim(\mathbb{R}^n)=n$

1.1.4 Espaço das linhas e colunas

Seja A uma matriz $m \times n$. Chamamos espaço das linhas de A e representamos por L(A) ao subespaço de \mathbb{R}^m gerado pelas linhas de A.

Analogamente, chamamos espaço das colunas de A e representamos por C(A) ao subespaço de \mathbb{R}^n gerado pelas colunas de A

Sejam $A \in M_{m \times n}$ e $B \in M_{m \times 1}$. O sistema AX = B só é possível se $B \in C(A)$.

1.1.5 Núcleo

O núcleo de uma matriz $A \in M_{m \times n}$, denotado por N(A) é o conjunto das soluções de AX = 0.

$$dim(N(A)) = n - r(A)$$

Se A é uma matriz quadrada de ordem n então é equivalente dizer:

- $N(A) = 0_n$
- A é invertível
- r(A) = n
- $dim(A) \neq 0$
- $L(A) = \mathbb{R}^n$

1.1.6 Sistema de equações cartesianas

Dado um subespaço vetorial com dim = n, o procedimento para obter o seu sistema de equações cartesianas é o seguinte:

- Construir uma matriz com os n vetores nas suas colunas e as variáveis na sua parte ampliada;
- Colocar a matriz em forma de escada;
- Verificar, de acordo com as variáveis, quais os seus valores que tornam o sistema possível (para que r(A) = r(A|B));
- Retirar o sistema de equações

1.1.7 Sistemas de Cramer

Dizemos que um sistema de equaçõo es lineares S é um sistema de Cramer se:

- O número de equações de S= o número de incógnitas de S;
- O determinante da matriz simples de S é diferente de zero.

1.1.8 Regra de Cramer

Sejam $A\in Mn$ e $B\in M_{n\times 1}$ tais que AX=B é sistema de Cramer. Se $(\alpha_1,...,\alpha_n)$ é a sua solução, então, para todo o $i\in(1,...,n)$,

$$\alpha_i = \frac{1}{\det(A)} \det(A_i),$$

sendo A_i a matriz que se obtém de A substituindo a coluna i por B.

Aplicações

2.1 Injetividade e sobrejetividade

- f é injetiva se, para quaisquer $w, u \in E$, se $w \neq u$, então $f(w) \neq f(u)$.
- f é sobrejetiva se, para qualquer $v \in V$, existe $w \in E$ tal que f(w) = v.
- f é bijetiva de é injetiva e sobrejetiva.

2.2 Aplicações lineares

2.2.1 Definição

f é uma aplicação linear se:

- f(u+w) = f(u) + f(w)
- f(au) = af(u)

2.2.2 Propriedades

Se $f:\mathbb{R}^n \to \mathbb{R}^m$ é uma aplicação linear, então:

- $f(0_n) = 0_m;$
- f(-u) = -f(u)
- Para quaisquer $a_1,...,a_t \in \mathbb{R}$ e $u_1,...,u_t \in \mathbb{R}^n$,

$$f(a_1u_1 + \dots + a_tu_t) = a_1f(u_1) + \dots + a_tf(u_t)$$

2.2.3 Matriz canónica

Considere-se a aplicação:

$$f(x_1, x_2) = (2x_1 + x_2, 3x_1, x_2)$$

A matriz canónica de f é:

$$M(f) = \begin{bmatrix} 2 & 1 \\ 3 & 0 \\ 0 & 1 \end{bmatrix}$$

2.2.4 Composição de aplicações

Sejamgefaplicações lineares.

- $g \circ f$ é aplicação linear
- $M(g \circ f) = M(g)M(f)$

2.2.5 Núcleo

O núcleo de uma aplicação linear é o subconjunto:

$$Nucf = (y_1, ..., y_n) \in \mathbb{R}^n : f(y_1, ..., y_n) = 0_m$$

Se $f: \mathbb{R}^n \to \mathbb{R}^m$ e A = M(f) tem-se:

- Nuc(f) = N(A)
- Nuc(f) é subespaço de \mathbb{R}^n
- Im(f) = C(A)
- Im(f) é subespaço de \mathbb{R}^m
- f é injetiva só se $Nuc(f) = 0_n$

Logo, dim(Im(f)) = r(A) e dim(Nuc(f)) = n - r(A)

Valores e vetores próprios

3.1 Valores próprios

3.1.1 Definição

Diz-se que um número real λ é valor próprio de f se existe $v \in \mathbb{R}^n$ tal que $v \neq 0_n$ e $f(v) = \lambda v$.

3.1.2 Determinar valores próprios

Um número real λ é valor próprio de A se e só se $det(A - \lambda I_n) = 0$. Logo para determinar os valores próprios de A devemos resolver a equação característica de A, $det(A - xI_n) = 0$, sendo que $det(A - xI_n)$ é o polinómio característico de A.

3.2 Vetores próprios

3.2.1 Definição

Diz-se que um vetor v é vetor próprio de f se $v \neq 0_n$ e existe um número real λ tal que $f(v) = \lambda v$.

3.2.2 Determinar vetores próprios

Os vetores próprios de uma matriz A associados a λ são as soluções não nulas do sistema homogéneo $(A - \lambda I_n)X = 0$. Logo, os vetores próprios de A associados a λ são os vetores não nulos de $N(A - \lambda I_n)$.

3.2.3 Subespaço próprio

A $N(A - \lambda I_n)$ chamamos subespaço próprio de A associado a λ . Denotamos este subespaço por E_{λ} . À dimensão de E_{λ} chamamos multiplicidade geométrica de λ e denotamos $mg(\lambda)$.

3.2.4 Retirar subespaço

Para retirar um subespaço de uma matriz em forma de escada é necessário:

- Retirar as linhas nulas;
- Escrever uma das variáveis em função das outras. Ex: Retiramos a linha [1-31], temos então que x-3y+z=0 e retiramos que x=3y-z;
- Substituir a variável escolhida pela função;
- Separar o vetor em vários, cada um contendo apenas uma variável;
- Retirar as variáveis de dentro do vetor (para multiplicação);
- Remover as variáveis e escrever a base do subespaço.

3.3 Diagonalização

3.3.1 Definição

Uma dada matriz A diz-se diagonalizável se existe uma outra matriz P tal que $P^{-1}AP$ é uma matriz diagonal. Neste caso, P é uma matriz diagonalizante de A.

3.3.2 Propriedades

Sejam $A, P \in M_n$:

- A matriz P é uma matriz diagonalizante de A se e só se as colunas de P s~ao vetores próprios de A e s~ao linearmente independentes.
- A matriz A é diagonalizável só se tiver n vetores próprios linearmente independentes.
- Se A tem n valores próprios, então é diagonalizável.

3.3.3 Determinar matriz diagonalizante

Para determinar uma matriz P diagonalizante de A procedemos da seguinte forma:

- Para cada valor próprio λ da matriz A determinamos uma base do subespaço próprio $E_{\lambda}.$
- Consideramos o conjunto $(z_1, ..., z_n)$ formado por todos os vetores das bases encontradas.
- Constrói-se uma matriz P tendo $z_1, ..., z_n$ como colunas

Produto interno

4.1 Definições

Sejam u e v dois vetores de \mathbb{R}^n

$$\cos(u, v) = \frac{u \cdot v}{\|u\| \cdot \|v\|}$$

$$proj_a u = a \cdot \left(\frac{u \cdot a}{\|a\|^2}\right)$$

Em \mathbb{R}^3 :

$$u \times v = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$$

Nota: $||u \times v||$ é igual á a área do paralelogramo definido por u e v.

$$(u \times v) \cdot w = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Nota: $\|(u \times v) \cdot w\|$ é igual á ao volume do paralelepípedo definido por u, v e w.

4.2 Bases ortogonais e ortonormadas

Dois vetores u e v dizem-se ortogonais se $u \cdot v = 0$. Uma base diz-se ortogonal se for formada apenas por vetores ortogonais e ortonormada se todos os vetores têm norma 1.

4.2.1 Ortogonalização

Seja F um subespaço de \mathbb{R}^n e seja $(v_1,...,v_p)$ uma base de F. Se $(z_1,...,z_p)$ é uma base ortogonal de F, então:

$$z_1 = v_1 \tag{4.1}$$

$$z_2 = v_2 - proj_{z_1}v_2 (4.2)$$

$$z_3 = v_3 - proj_{z_1}v_3 - proj_{z_2}v_3 (4.3)$$

$$\vdots (4.4)$$

4.2.2 Ortonormalização

Para obter uma base ortonormada de F, deve-se dividir cada vetor da sua base ortogonal pela sua norma. Seguindo o exemplo acima, z_1 iria dividir-se por $\|z_1\|$, z_2 por $\|z_2\|$, etc.

4.3 Matrizes ortogonais

4.3.1 Definição

Uma matriz A é ortogonal se é invertível e $A^{-1}=A^T$