2021年7月9日 M1 莫 止競

進捗報告

]

1 今週やったこと

- 最適化アルゴリズムの考察と実験
- しゃんてん数予測モデルの拡張
- あたり牌予測モデルの実験

2 最適化アルゴリズムの考察と実験

いくつかの最適化リズムについて考察した.

 \bullet AdaGrad

AdaGrad というアルゴリズムは、各次元ごとに学習率を調整していこうという手法を使って、「勾配が緩やかな方向には収束に時間がかかることが起こり得る」という問題を解決した.

- Nadam ネステロフの加速法を Adam に取り入れたアルゴリズムである.
- SGD 学習に時間がかかるが、学習率が一定であり、収束結果が安定していると思われある

3 実験

聴牌予測モデルで実験を行った. 実験データはリーチ情報抜きのデータを使った.

3.1 AdaGrad

表 1 に結果を示す.

表 1: AdaGrad の実験結果

	precision	recall	f1-score	support
0	0.9423	0.9672	0.9546	83912
1	0.6068	0.4610	0.5240	9214
accuracy			0.9171	93126
macro avg	0.7746	0.7141	0.7393	93126
weighter avg	0.9091	0.9171	0.9120	93126

3.2 Nadam

収束が非常に速くて、epoch2 から過学習が行った. drop と正則化を入れることで過学習を抑えたが、学習はいつ終わったのは分からない.

図 1 に学習結果を示す. 学習は速いため、 loss と acc はほとんど変わらない.

表 2 にテスト結果を示す.精度は少し上がったようにに見えるが、ぶれがあるので、精度ほとんど変わらないと思われる.

図 1: Nadam の実験結果

図 2: Adagrad の実験結果

3.3 SGD

図3と表4に実験の結果を示す.

表 2: Nadam の実験結果

	precision	recall	f1-score	support
0	0.9419	0.9693	0.9554	83912
1	0.6194	0.4554	0.5249	9214
accuracy			0.9184	93126
macro avg	0.7807	0.7123	0.7401	93126
weighted avg	0.9100	0.9184	0.9128	93126

表 3: AdaGrad の実験結果

	precision	recall	f1-score	support
0	0.9423	0.9672	0.9546	83912
1	0.6068	0.4610	0.5240	9214
accuracy			0.9171	93126
macro avg	0.7746	0.7141	0.7393	93126
weighter avg	0.9091	0.9171	0.9120	93126

図 3: SGD の実験結果

表 4: bestmodel

	precision	recall	f1-score	support
0	0.9387	0.9784	0.9581	83912
1	0.6802	0.4183	0.5180	9214
accuracy			0.9230	93126
macro avg	0.8095	0.6983	0.7381	93126
weighted avg	0.9131	0.9230	0.9146	93126

表 5: AdaGrad の実験結果

	precision	recall	f1-score	support
0	0.9423	0.9672	0.9546	83912
1	0.6068	0.4610	0.5240	9214
accuracy			0.9171	93126
macro avg	0.7746	0.7141	0.7393	93126
weighter avg	0.9091	0.9171	0.9120	93126

表 6: latest model

	precision	recall	f1-score	support
0	0.9443	0.9644	0.9543	83912
1	0.5982	0.4821	0.5339	9214
accuracy			0.9167	93126
macro avg	0.7712	0.7233	0.7441	93126
weighted avg	0.9101	0.9167	0.9127	93126