

SEQUENCE LISTING

<110> Amirul, Islam
Hazra, Papia

<120> MET/FRET BASED METHOD OF TARGET NUCLEIC ACID DETECTION WHEREBY THE
DONOR/ACCEPTOR MOIETIES ARE ON COMPLEMENTARY STRANDS

<130> 3875.033

<140> US 10/516,361

<141> 2004-11-30

<150> PCT/IN03/00204

<151> 2003-05-30

<150> 487/MUM/2002 (IN)

<151> 2002-05-31

<160> 31

<170> PatentIn version 3.3

<210> 1

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Forward PCR primer for amplification of a target sequence chosen
arbitrarily and made from Sequence ID Nos. 3 and 4.

<400> 1

acttaaggta gagcgtttgc

20

<210> 2

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Forward PCR primer for amplification of a target sequence chosen
arbitrarily and made from Sequence ID Nos. 3 and 4.

<400> 2

tggtagtgtg tgatttagtc

20

<210> 3

<211> 40

<212> DNA

<213> Artificial

<220>
<223> Arbitrarily chosen sequences. Bases 27 to 40 are complementary to bases 31 to 44 of Sequence ID No. 4. DNA polymerase extension of annealed Sequence ID Nos. 3 and 4 results in the target sequence.

<400> 3
tacacttaag ttagagcggtt tgcccccact acgacggttg 40

<210> 4
<211> 44
<212> DNA
<213> Artificial

<220>
<223> Arbitrarily chosen sequences. Bases 27 to 40 are complementary to bases 31 to 44 of Sequence ID No. 4. DNA polymerase extension of annealed Sequence ID Nos. 3 and 4 results in the target sequence.

<400> 4
gttttgtgg tagtatgtga tttagtcatt caaccgtcgt agtg 44

<210> 5
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Forward PCR primer for amplification of a target sequence chosen arbitrarily and made from Sequence ID Nos. 3 and 4. Base t at base position 18 from 5' end has fluorophore FAM.

<400> 5
acttaagtta gagcggttgc 20

<210> 6
<211> 19
<212> DNA
<213> Leishmania donovani

<400> 6
acggagcgcc tgaagggtgc 19

<210> 7
<211> 27
<212> DNA
<213> Leishmania donovani

<400> 7
agtgcatcc acttgcctg cacctgc 27

<210> 8

<211> 21
<212> DNA
<213> Leishmania donovani

<400> 8
aggcagatgg cgcctgcctc g

21

<210> 9
<211> 25
<212> DNA
<213> Leishmania donovani

<400> 9
atgcggcgct gtatgtaccc gcata

25

<210> 10
<211> 20
<212> DNA
<213> Leishmania donovani

<400> 10
ggggtaactac agcgccctga

20

<210> 11
<211> 28
<212> DNA
<213> Leishmania donovani

<400> 11
atggccatgt cctgaaagat ggccatgg

28

<210> 12
<211> 29
<212> DNA
<213> Leishmania donovani

<400> 12
atggccatcg tcctgaaaga tggccatgg

29

<210> 13
<211> 20
<212> DNA
<213> Leishmania donovani

<400> 13
gtcctgaaag atggccatgg

20

<210> 14
<211> 20
<212> DNA

<213> Leishmania donovani

<400> 14

ctgcacacgg agcggctgaa

20

<210> 15

<211> 20

<212> DNA

<213> Leishmania donovani

<400> 15

ggacgagctc atggcgccctg

20

<210> 16

<211> 20

<212> DNA

<213> Leishmania donovani

<400> 16

gtcctgttca ctttcactg

20

<210> 17

<211> 19

<212> DNA

<213> Leishmania donovani

<400> 17

gctcatggcg cctgcctcg

19

<210> 18

<211> 19

<212> DNA

<213> Leishmania donovani

<400> 18

gcgtgttagta ccccgcatc

19

<210> 19

<211> 20

<212> DNA

<213> Leishmania donovani

<400> 19

gggttactac agcgccctga

20

<210> 20

<211> 20

<212> DNA

<213> Leishmania donovani

<400> 20
gtcctggaag atggccatgg 20

<210> 21
<211> 18
<212> DNA
<213> Leishmania donovani

<400> 21
ggggtaactac agcgccct 18

<210> 22
<211> 29
<212> DNA
<213> Leishmania donovani

<400> 22
atggccatcg tcctggaaga tggccatgg 29

<210> 23
<211> 29
<212> DNA
<213> Leishmania donovani

<400> 23
atggccatcg tcctggaaga tggccatgg 29

<210> 24
<211> 19
<212> DNA
<213> Leishmania donovani

<400> 24
gctcatggcg cctgcctcg 19

<210> 25
<211> 20
<212> DNA
<213> Leishmania donovani

<400> 25
gtcctggaag atggccatgg 20

<210> 26
<211> 20
<212> DNA
<213> Leishmania donovani

<400> 26
gtcctggaag atggccatgg 20

<210> 27
<211> 20
<212> DNA
<213> Escherichia coli

<400> 27
tgaattcaat ctcgcaaacg

20

<210> 28
<211> 26
<212> DNA
<213> Escherichia coli

<400> 28
atcggatccc aaatgcctga gcccag

26

<210> 29
<211> 20
<212> DNA
<213> Escherichia coli

<400> 29
ggcaatgaaa agccacttct

20

<210> 30
<211> 20
<212> DNA
<213> Escherichia coli

<400> 30
ttaaccggcg attgagtacc

20

<210> 31
<211> 20
<212> DNA
<213> Escherichia coli

<400> 31
agccttatga cgtgcagctt

20