# Introduction to Probability

Joe Blitzsten

Fernando Náufel

(versão de 29/01/2022)

## Sumário

| Apresentação                              | 2  |
|-------------------------------------------|----|
| 01: Probabilidade e contagem              | 3  |
| Vídeo                                     | 3  |
| Pascal e Fermat                           | 3  |
| R                                         | 3  |
| Exercícios                                | 5  |
| 02: Histórias e axiomas                   | 8  |
| Vídeo                                     | 8  |
| Exercícios                                |    |
| 03: Problema do aniversário, propriedades | 11 |
| Vídeo                                     | 11 |
| Exercícios                                | 11 |
| Referências                               | 12 |

## Apresentação

- Página do livro: https://projects.iq.harvard.edu/stat110/home
- Strategic practice and homework: https://projects.iq.harvard.edu/stat110/strategic-practice-problems
- Handouts: https://projects.iq.harvard.edu/stat110/handouts includes solutions to exercises marked with (s) in the book.
- Playlist: https://www.youtube.com/playlist?list=PL2SOU6wwxB0uwwH80KTQ6ht66 KWxbzTIo

## 01: Probabilidade e contagem

## Vídeo

https://youtu.be/KbB0FjPg0mw

## Pascal e Fermat

- Ver artigo DEVLIN (2010).
- Ver originais em francês de toda a correspondência de Pascal.

## R

## Fatoriais e combinações

• Qual o maior valor de n para o qual o R calcula  ${\tt factorial(n)}$ ? No meu computador, n=170:

• Para valores maiores, podemos usar lfactorial(n) para calcular ln n!:

```
lfactorial(170:171)
## [1] 706,5731 711,7147
```

• Da mesma forma, lchoose(n, k) calcula  $\ln \binom{n}{k}$ .

#### **Tabulando dados:** tabulate × table

```
table(b)
## b
## 5 17 91 109 115 123 171 210 240 244 251 276 284 289 290 301 317
## 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
## 325 327 339 353 358
## 1 1 1 1 1 1
```

#### Funções para o problema do aniversário

```
pbirthday(23)
## [1] 0,5072972

qbirthday(.5)
## [1] 23

qbirthday(1)
## [1] 366
```

Para no mínimo 3 no mesmo dia:

```
qbirthday(.5, coincident = 3)
## [1] 88
```

## **Exercícios**

Enunciados (pdf).

#### **Practice**

#### 4. Norepeat words

A norepeatword is a sequence of at least one (and possibly all) of the usual 26 letters a, b, c, ...,z, with repetitions not allowed.

For example, "course" is a *norepeatword*, but "statistics" is not.

Order matters, e.g., "course" is not the same as "source".

A norepeatword is chosen randomly, with all norepeatwords equally likely. Show that the probability that it uses all 26 letters is very close to 1/e.

• O denominador vai ser o total de todas as *norepeatwords* (NRW), que é a soma de

- NRW de 1 letra: 26

- NRW de 2 letras:  $26 \cdot 25$ 

– NRW de 3 letras:  $26 \cdot 25 \cdot 24$ 

**-** ..

– NRW de 24 letras:  $26 \cdot 25 \cdot 24 \cdot \cdots \cdot 3$ 

- NRW de 25 letras:  $26 \cdot 25 \cdot 24 \cdot \cdots \cdot 2$ 

- NRW de 26 letras:  $26 \cdot 25 \cdot 24 \cdot \cdots \cdot 1$ 

• Ou seja,

$$\sum_{k=0}^{25} \frac{26!}{k!}$$

• Que é igual a

$$26! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{25!}\right)$$

- O total de NRW que usam as  $26\ \rm letras\ \acute{e}\ 26!.$ 

A probabilidade procurada é

$$P = \frac{26!}{26! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{25!}\right)}$$

$$= \frac{1}{1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{25!}}$$

$$= \frac{1}{e}$$

- A última igualdade se justifica porque a série de Taylor para  $e^x$  é

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Numericamente:

```
1 / exp(1)

## [1] 0,3678794

1 / sum(1 / factorial(0:25))

## [1] 0,3678794
```

#### Exercícios do livro (cap. 1)

13

A certain casino uses 10 standard decks of cards mixed together into one big deck, which we will call a superdeck. Thus, the superdeck has  $52 \cdot 10 = 520$  cards, with 10 copies of each card.

How many different 10-card hands can be dealt from the superdeck? The order of the cards does not matter, nor does it matter which of the original 10 decks the cards came from. Express your answer as a binomial coefficient.

• Usando a notação de OLIVEIRA MORGADO et al. (2004), onde  $\operatorname{CR}_k^n$  é o número de combinações completas de n elementos de k tipos diferentes, a resposta é

$$\mathsf{CR}_{52}^{10} = \binom{52 + 10 - 1}{10} = \binom{61}{10} = 90.177.170.226$$

• Só foi possível usar combinações completas porque a mão tem 10 cartas, o que faz com que haja, essencialmente, um número infinito de cópias de cada um dos 52

tipos de carta. Se a mão tivesse 11 ou mais cartas, seria impossível que todas as cartas fossem iguais, e este raciocínio não poderia ser usado.

## 02: Histórias e axiomas

## Vídeo

https://youtu.be/FJd\_1H3rZGg

## **Exercícios**

Enunciados (pdf).

#### Homework

#### 4. Teorema das colunas

(a) Mostre que

$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}$$

- O lado direito significa escolher k+1 pessoas dentre n+1 pessoas.
- O truque é <mark>ordenar as pessoas</mark> de algum modo.
- Um exemplo concreto, com  $n=4\ {\rm e}\ k=2$ , mostrando que

$$\binom{5}{3} = \binom{4}{2} + \binom{3}{2} + \binom{2}{2}$$

- 1. Vamos chamar as n+1 pessoas de 1,2,3,4,5.
- 2. Grupos de k+1 pessoas onde o menor número é 1:
  - **-** 1, 2, 3
  - **-** 1, 2, 4
  - **-** 1, 2, 5
  - **-** 1, 3, 4
  - **-** 1, 3, 5
  - **-** 1, 4, 5
- 3. Grupos de k+1 pessoas onde o menor número é 2:
  - **-** 2, 3, 4
  - **-** 2, 3, 5
  - **-** 2, 4, 5
- 4. Grupos de k+1 pessoas onde o menor número é 3:
  - **-** 3, 4, 5
- No caso geral, vamos ordenar as n+1 pessoas, rotulando-as como

$$a_0,a_1,a_2,\dots,a_n$$

- Como a ordem <mark>dentro de cada grupo</mark> não importa, vamos escolher primeiro um elemento para ser o de menor índice do grupo e escolher os restantes k elementos dentre os elementos de índice maior do que o primeiro.
- Se escolhermos  $a_0$  como o de menor índice, temos  $\binom{n}{k}$  modos de escolher os restantes.
- Se escolhermos  $a_1$  como o de menor índice, temos  $\binom{n-1}{k}$  modos de escolher os restantes.
- ...
- Se escolhermos  $a_{n-(k+1)}$  como o de menor índice, temos  $\binom{k+1}{k}$  modos de escolher os restantes.
- Se escolhermos  $a_{n-k}$  como o de menor índice, temos  $\binom{k}{k}$  modos de escolher os restantes.
- (b) Suppose that a large pack of Haribo gummi bears can have anywhere between 30 and 50 gummi bears. There are 5 delicious flavors. How many possibilities are there for the composition of such a pack of gummi bears?
- Usando a notação de OLIVEIRA MORGADO et al. (2004), onde  ${\rm CR}^n_k$  é o número de combinações completas de n elementos de k tipos diferentes, a resposta é

$$\begin{split} \operatorname{CR}_5^{30} + \operatorname{CR}_5^{31} + \cdots + \operatorname{CR}_5^{50} &= \binom{34}{4} + \binom{35}{4} + \cdots + \binom{54}{4} \\ &= \binom{55}{5} - \left[ \binom{33}{4} + \binom{32}{4} + \cdots + \binom{4}{4} \right] \\ &= \binom{55}{5} - \binom{34}{5} \end{split}$$

## Exercícios do livro (cap. 1)

| 03: Problema do aniversário, propriedades |                              |  |
|-------------------------------------------|------------------------------|--|
|                                           |                              |  |
|                                           |                              |  |
|                                           |                              |  |
|                                           |                              |  |
| Vídeo                                     |                              |  |
|                                           | https://youtu.be/LZ5Wergp_PA |  |
| Exercícios                                |                              |  |
| Enunciados (pdf).                         |                              |  |
| Homework                                  |                              |  |
| Exercícios do livro (cap. 1)              |                              |  |
| 26                                        |                              |  |
| 27                                        |                              |  |
| 57                                        |                              |  |
| 61                                        |                              |  |
| 62                                        |                              |  |

## Referências

DEVLIN, K. The Pascal-Fermat Correspondence: How Mathematics Is Really Done. The Mathematics Teacher, v. 103, n. 8, p. 579–582, abr. 2010.

OLIVEIRA MORGADO, A. C. DE et al. **Análise combinatória e probabilidade**. Rio de Janeiro: Impa / Vitae, 2004.