Matemática A

12.º Ano de Escolaridade | Turma: J

1. A aderência do conjunto $A = \{-2\} \cup]3; 6]$, é $\overline{A} = \{-2\} \cup [3; 6]$

Resposta:

Versão 1: (B)

Versão 2: (A)

2. .

2.1.
$$f(x) = x \Leftrightarrow \frac{x}{x+3} = x \Leftrightarrow \frac{x}{x+3} - x = 0 \Leftrightarrow \frac{x}{x+3} - \frac{x(x+3)}{x+3} = 0 \Leftrightarrow \frac{x-x^2-3x}{x+3} = 0 \Leftrightarrow \frac{-x^2-2x}{x+3} = 0 \Leftrightarrow -x^2-2x = 0 \land x+3 \neq 0 \Leftrightarrow$$

$$\Leftrightarrow x(-x-2) = 0 \land x \neq -3 \Leftrightarrow (x = 0 \lor -x - 2 = 0) \land x \neq -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow (x = 0 \lor x = -2) \land x \Rightarrow -3 \Leftrightarrow$$

$$\Leftrightarrow x = 0 \lor x = -2$$

$$C.S. = \{-2; 0\}$$

$$2.2. \ f(x) \ge 2 \Leftrightarrow \frac{x}{x+3} \ge 2 \Leftrightarrow \frac{x}{x+3} - 2 \ge 0 \Leftrightarrow \frac{x-2x-6}{x+3} \ge 0 \Leftrightarrow \frac{-x-6}{x+3} \ge 0$$

O domínio é
$$D = \{x \in \mathbb{R} : x + 3 \neq 0\} = \mathbb{R} \setminus \{-3\}$$

Estudemos o numerador e o denominador, quanto a zeros e sinal

\rightarrow Numerador

Zeros:
$$-x - 6 = 0 \Leftrightarrow -x = 6 \Leftrightarrow x = -6$$

Sinal:

$$-x-6 > 0 \Leftrightarrow -x > 6 \Leftrightarrow x < -6$$

$$-x-6 < 0 \Leftrightarrow -x < 6 \Leftrightarrow x > -6$$

\rightarrow Denominador

Zeros:
$$x + 3 = 0 \Leftrightarrow x = -3$$

Sinal:

$$x+3>0 \Leftrightarrow x>-3$$

$$x + 3 < 0 \Leftrightarrow x < -3$$

Tabela de sinais

x	$-\infty$	-6		-3	$+\infty$
-x-6	+	0	_	_	_
x+3	_	_	_	0	+
$\frac{-x-6}{x+3}$	_	0	+	s.s.	_

Concluindo:

$$\frac{-x-6}{x+3} \ge 0 \Leftrightarrow x \in [-6; -3[$$

$$C.S. = [-6; -3[$$

2.3. Seja (a_n) uma sucessão de valores do domínio tal que, $\lim(a_n) = -3^+$

Ora,

$$\lim f(a_n) = \lim \frac{a_n}{a_n + 3} = \frac{\lim(a_n)}{\lim(a_n) + 3} = \frac{-3}{0^+} = -\infty$$

$$Logo, \lim_{x \to -3^+} f(x) = -\infty$$

3. .

(I)

Sabe-se que $a \notin D_f$

Assim, existe
$$\lim_{x \to a} f(x)$$
, se $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$

Ora,

$$\lim_{x \to a^{-}} f(x) = 1 e \lim_{x \to a^{+}} f(x) = 0$$

Logo,
$$\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$$

Portanto, não existe $\lim_{x\to a} f(x)$

(II)

Sabe-se que $a \in D_f$

Assim, existe
$$\lim_{x\to a} f(x)$$
, se $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = f(a)$

Ora,

$$\lim_{x \to a^{-}} f(x) = 2, \ \lim_{x \to a^{+}} f(x) = 4 \text{ e } f(a) = 4$$

Logo,
$$\lim_{x\to a^-} f(x) \neq f(a)$$
 e $\lim_{x\to a^+} f(x) = f(a)$

Portanto, não existe $\lim_{x\to a} f(x)$

(III)

Sabe-se que $a \notin D_f$

Assim, existe $\lim_{x \to a} f(x)$, se $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$

Ora,

$$\lim_{x \to a^{-}} f(x) = -2 e \lim_{x \to a^{+}} f(x) = -2$$

Logo,
$$\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$$

Portanto, **existe** $\lim_{x \to a} f(x),$ e o seu valor é -2

Ou seja, $\lim_{x\to a} f(x) = -2$

(IV)

Sabe-se que $a \in D_f$

Assim, existe $\lim_{x\to a} f(x)$, se $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = f(a)$

Ora,

$$\lim_{x \to a^{-}} f(x) = 3, \ \lim_{x \to a^{+}} f(x) = 3 \ e \ f(a) = 3$$

Logo,
$$\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = f(a)$$

Portanto, **existe** $\lim_{x \to a} f(x)$, e o seu valor é 3

Ou seja,
$$\lim_{x \to a} f(x) = 3$$

Página 3 de 3