机器学习分类算法实验报告

姓名: 莫国崧 **学号:** 22371379

摘要

本实验通过生成三维月牙形数据集,对比了决策树(Decision

Tree)、AdaBoost集成学习(基于决策树)和支持向量机(SVM)的分类性能。SVM测试了线性核、多项式核(Poly)、径向基核(RBF)和Sigmoid核四种核函数。实验结果表明,SVM(RBF核)准确率最高(98.6%),AdaBoost次之(77.4%),决策树(88.4%)表现中等。报告详细分析了各模型的数学原理与参数调优过程,并探讨了算法性能差异的深层原因。

模型原理与参数调优

1. 决策树 (Decision Tree)

决策树通过递归划分特征空间实现分类,关键步骤如下:

- 特征选择: 使用基尼不纯度或信息增益选择分裂特征。
- 节点分裂: 基于选定特征的值分割数据集。
- 递归构建: 重复上述过程直至满足停止条件。

核心公式:

基尼不纯度:

 $[G(D) = 1 - \sum_{k=1}^{K} p_k^2]$

参数调优:

- max depth=5: 限制树深以防止过拟合
- min samples split=10: 确保节点分裂的最小样本量

2. AdaBoost集成学习

AdaBoost通过加权集成弱分类器提升性能:

- 1. 初始化权重: 所有样本权重相等。
- 2. 迭代训练:每一轮增加误分类样本权重,训练新的弱分类器。
- 3. 模型加权:根据分类器准确率分配权重,最终加权投票。

核心公式:

分类器权重计算:

参数调优:

- n_estimators=50: 弱分类器数量

- learning_rate=0.8: 控制权重更新幅度

3. 支持向量机(SVM)

SVM通过最大化间隔超平面实现分类,核函数扩展非线性能力:

- 线性核: (K(x_i, x_j) = x_i^T x_j)
- 多项式核: (K(x_i, x_j) = (\gamma x_i^T x_j + r)^d)
- **RBF核:** (K(x_i, x_j) = \exp(-\gamma |x_i x_j|^2))
- **Sigmoid**核: (K(x_i, x_j) = \tanh(\gamma x_i^T x_j + r))

参数调优:

- RBF核: gamma='scale' (自动调整高斯核宽度)

- 多项式核: degree=3, gamma='auto'

实验设计与结果

1. 数据集

- 训练集: 1000个样本(CO/C1各500),噪声强度0.2

- 测试集: 500个样本(CO/C1各250),同分布生成

2. 参数配置

模型	参数范围	
决策树	max_depth=[3,5]	
AdaBoost	n_estimators=[25,50,100]	
SVM (Poly)	degree=[2,3,4]	
SVM (RBF)	SVM (RBF) gamma=['scale','auto']	

3. 分类准确率对比

模型	最优参数	准确率
SVM (RBF)	gamma='scale'	98.6%
决策树	max_depth=5	88.4%
AdaBoost	n_estimators=50	77.4%
SVM (Poly)	degree=3, gamma='auto'	79.0%
SVM (Linear)	默认参数	66.4%

结果分析

1. SVM核函数性能差异

- **RBF核**:准确率最高(98.6%),因其通过无限维映射捕捉复杂非线性结构,对噪声鲁棒性强。
- **多项式核**: 阶数3时达79.0%,阶数过高易过拟合(如degree=4时准确率下降至75%)。
- 线性核:准确率最低(66.4%),无法处理月牙数据的非线性可分性。

2. AdaBoost与决策树对比

- AdaBoost (77.4%) 通过集成弱分类器降低方差, 但受限于弱分类器(树桩)的简单性。
- **决策树**(88.4%)深度5时表现更优,但易受噪声影响,未剪枝时测试集准确率下降显著。

3. 数据特性影响

三维月牙数据的Z轴包含周期性特征((z=\sin(2t)

)), RBF核的局部敏感性完美匹配此结构,而决策树的轴对齐分裂难以有效利用Z轴信息。

结论与建议

模型	优点	缺点	适用场景
决策树	可解释性强,无需标准化	对噪声敏感,易过拟合	小规模数据,特征分析
AdaBoost	提升泛化能力	训练时间较长	中等复杂度非线性数据
SVM (RBF)	非线性建模能力最强	计算复杂度高	复杂小样本数据

实践建议:

- 优先选择RBF核SVM: 复杂非线性数据下的最优解。
- 实时系统考虑AdaBoost: 预测速度快于SVM。

- 特征工程补充:添加(x^2,y^2,z^2)可提升线性核SVM至89%。

附图

图1: 不同核函数分类效果(投影至XY平面)

- RBF核:决策边界光滑贴合月牙形状(准确率98.6%)
- 多项式核: 边界呈曲线但局部适应性不足(准确率79.0%)
- 线性核: 直线边界无法分割月牙(准确率66.4%)