Compositional Reasoning for WMMs COV889 Course Presentation

Ramneet Singh Mrunmayi Bhalerao

IIT Delhi

May 2023

- Introduction
- 2 Abstract Language
- Basic Proof System
- Multicopy Atomic Memory Models

Section 1

Introduction

Rely/Guarantee Reasoning

- Verification of concurrent programs with shared resources is challenging due to combinatorial explosion
- Abstraction to the rescue!
- Everything the environment can do: \mathcal{R}
- Everything you can do: \mathcal{G}

$$\mathcal{R}, \mathcal{G} \vdash P\{ c \} Q$$

Compositional!

Extension to Weak Memory Models

 Judgements using earlier techniques are valid under sequentially consistent semantics

- Can be directly used for data-race free code executing on weak memory models
- But, lots of code has data races! seqlock, java.util.concurrent.ConcurrentLinkedQueue ...
- How do we extend them to weak memory models?
- What If: We could find a condition under which sequentially consistent rely-guarantee reasoning can be soundly preserved

$$(\vdash P\{c\}Q) \land ?? \implies \vdash P\{c_{WM}\}Q$$

- Benefits:
 - Reuse existing verification techniques
 - Deal with the complexity of weak memory separately as a side-condition

What are WMMs anyway?

- Relaxing the memory consistency guarantees provided by hardware enables optimisations
 - Store forwarding (will see later)
 - Write buffers
- (Part 1) **Multicopy Atomic**: One thread's stores become observable to all other threads at the same time.
 - x86-TSO, ARMv8, RISC-V
- (Part 2) Non-Multicopy Atomic: Each component has its own view of the global memory.
 - Older ARM versions, POWER, C11
- Challenge: Two types of interference now Inter-Thread + Intra-Thread (due to reordering)
- How will we deal with this? ...

Teaser

- We want a compositional approach through thread-local reasoning.
- Exploit the reordering semantics of Colvin and Smith: multicopy atomic memory models can be captured in terms of instruction reordering.
 - Combinatorial explosion? (*n* reorderable instructions in a thread \implies n! behaviours)

- Introduce reordering interference freedom between ($\frac{n(n-1)}{2}$) pairs of instructions (Stay tuned...)
- In non-multicopy atomic WMMs, there is no global shared state(!!)
 - Judgement for each thread is applicable to its view (depends on propagation of writes by hardware)
 - How do we know it holds in other threads' views?
 - Represent the semantics using reordering between different threads
 - No longer compositional? Hardest part of the talk global reordering interference freedom: use the rely abstraction to represent reorderings between threads

•000

Section 2

Abstract Language

Syntax

- ullet Individual (atomic) instructions lpha
- Commands (or programs)

$$c := \epsilon \mid \alpha \mid c_1; c_2 \mid c_1 \sqcap c_2 \mid c^* \mid c_1 \mid c_2$$

- Iteration, choice are non-deterministic
- Empty program ϵ represents termination

Semantics: Commands

- Each atomic instruction α has a relation beh(α) (over pre- and post-states) specifying its behaviour
- Program execution is defined by a small-step semantics over commands
- Iteration, non-deterministic choice are dealt with at a higher level (see next slide)

$$\begin{array}{ccc} & & c_1 \mapsto_{\alpha} c_1' \\ \hline \alpha \mapsto_{\alpha} \epsilon & & c_1; c_2 \mapsto_{\alpha} c_1'; c_2 \\ \hline c_1 \mapsto_{\alpha} c_1' & & c_2 \mapsto_{\alpha} c_2' \\ \hline c_1 \parallel c_2 \mapsto_{\alpha} c_1' \parallel c_2 & & c_1 \parallel c_2 \mapsto_{\alpha} c_1 \parallel c_2' \end{array}$$

Semantics: Configurations

- Configuration (c, σ) of a program
 - Command c to be executed
 - State σ (map from variables to values)
- Action Step: Performed by component, changes state

$$(c,\sigma) \xrightarrow{as} (c',\sigma') \iff \exists \alpha.c \mapsto_{\alpha} c' \land (\sigma,\sigma') \in beh(\alpha)$$

• Silent Step: Performed by component, doesn't change state

$$(c_1 \sqcap c_2, \sigma) \rightsquigarrow (c_1, \sigma) \quad (c_1 \sqcap c_2, \sigma) \rightsquigarrow (c_2, \sigma)$$

 $(c^*, \sigma) \rightsquigarrow (\epsilon, \sigma) \quad (c^*, \sigma) \rightsquigarrow (c; c^*, \sigma)$

- Program Step: Action Step or Silent Step
- Environment Step: Performed by environment, changes state. $(c,\sigma) \xrightarrow{es} (c,\sigma').$

Introduction

Basic Proof System

Definitions

- Associate a verification condition $vc(\alpha)$ with each instruction α : Provides finer-grained control (just set to \top if not needed)
- Hoare triple

$$P\{ \alpha \} Q \stackrel{\mathsf{def}}{=} P \subseteq \mathrm{vc}(\alpha) \cap \{ \sigma \mid \forall \sigma', \ (\sigma, \sigma') \in \mathrm{beh}(\alpha) \Longrightarrow \sigma' \in Q \}$$

- A rely-guarantee pair $(\mathcal{R}, \mathcal{G})$ is well-formed if
 - R is reflexive and transitive
 - G is reflexive
- Stability of predicate P under rely condition \mathcal{R}

$$\operatorname{stable}_{\mathcal{R}}(P) \stackrel{\mathsf{def}}{=} P \subseteq \{ \sigma \in P \mid \forall \sigma', \ (\sigma, \sigma') \in \mathcal{R} \Longrightarrow \sigma' \in P \}$$

• Instruction α satisfies guarantee condition \mathcal{G}

$$\operatorname{sat}(\alpha, \mathcal{G}) \stackrel{\mathsf{def}}{=} \{ \sigma \mid \forall \sigma', \ (\sigma, \sigma') \in \operatorname{beh}(\alpha) \Longrightarrow (\sigma, \sigma') \in \mathcal{G} \}$$

Now introduce rely/guarantee judgements at three levels

Instruction Level (\vdash_a)

$$\mathcal{R}, \mathcal{G} \vdash_{a} P \{ \ c \ \} Q \stackrel{\mathsf{def}}{=} \mathrm{stable}_{\mathcal{R}}(P) \wedge \mathrm{stable}_{\mathcal{R}}(Q) \wedge \mathrm{vc}(\alpha) \subseteq \mathrm{sat}(\alpha, \mathcal{G}) \wedge P \{ \ c \ \} Q$$

 Interplay between environmental interference and pre-,post-conditions handled through stability

Component Level (\vdash_c)

Consea

$$\operatorname{Atom} \frac{\mathcal{R}, \mathcal{G} \vdash_{a} P\{\alpha\}Q}{\mathcal{R}, \mathcal{G} \vdash_{c} P\{\alpha\}Q}$$

$$\operatorname{Seq} \frac{\mathcal{R}, \mathcal{G} \vdash_{c} P\{c_{1}\}M \quad \mathcal{R}, \mathcal{G} \vdash_{c} M\{c_{2}\}Q}{\mathcal{R}, \mathcal{G} \vdash_{c} P\{c_{1}; c_{2}\}Q}$$

$$\operatorname{Choice} \frac{\mathcal{R}, \mathcal{G} \vdash_{c} P\{c_{1}\}Q \quad \mathcal{R}, \mathcal{G} \vdash_{c} P\{c_{2}\}Q}{\mathcal{R}, \mathcal{G} \vdash_{c} P\{c_{1}\}Q \quad \mathcal{R}, \mathcal{G} \vdash_{c} P\{c_{2}\}Q}$$

$$\operatorname{Iteration} \frac{\mathcal{R}, \mathcal{G} \vdash_{c} P\{c\}P \quad \operatorname{stable}_{\mathcal{R}}(P)}{\mathcal{R}, \mathcal{G} \vdash_{c} P\{c\}Q}$$

$$\frac{\mathcal{R}, \mathcal{G} \vdash_{c} P\{c\}Q \quad P' \subseteq P \quad \mathcal{R}' \subseteq \mathcal{R} \quad Q \subseteq Q' \quad \mathcal{G} \subseteq \mathcal{G}'}{\mathcal{R}', \mathcal{G}' \vdash_{c} P'\{c\}Q'}$$

Global Level (⊢)

 Global satisfiability needs component satisfiability + interference check

$$\mathsf{Comp} \frac{\mathcal{R}, \mathcal{G} \vdash_{c} P\{\ c\ \} Q \quad \mathrm{rif}(\mathcal{R}, \mathcal{G}, c)}{\mathcal{R}, \mathcal{G} \vdash P\{\ c\ \} Q}$$

Usual parallel rule

$$\operatorname{\mathsf{Par}} \frac{\mathcal{R}, \mathcal{G} \vdash_{c} P\{\ c\ \} Q \quad \operatorname{rif}(\mathcal{R}, \mathcal{G}, c)}{\mathcal{R}, \mathcal{G} \vdash P\{\ c\ \} Q}$$

Section 4

Multicopy Atomic Memory Models

- Multicopy atomic memory models can be characterised using a reordering relation \leftarrow over pairs of instructions in a component
- ← is syntactically derivable based on the specific memory model. E.g., in ARMv8
 - Two instructions which don't access (read or write) a common variable can be reordered
 - Various types of memory barriers prevent reordering
- Forwarding is another complication
 - $\beta = x := 3; \alpha = y := x$. Can forward the value 3 to y, losing dependence between α, β .
 - x := 3 ; $y := x \Longrightarrow y := 3$; x := 3
 - Denote α with the value written in an earlier instruction forwarded to it as $\alpha_{<\beta>}$.
- Forwarding may continue arbitrarily and can span multiple instructions

Reordering Semantics: Formal

- $\alpha_{< c>}$: cumulative forwarding effects of the instructions in command c on α
- Ternary relation $\gamma < c < \alpha$: Reordering of instruction α prior to command c, with cumulative forwarding effects producing γ .
- Definition by induction

$$\alpha_{<\beta>} < \beta < \alpha \stackrel{\text{def}}{=} \beta \longleftrightarrow \alpha_{<\beta>}$$

$$\alpha_{} < c_1; c_2 < \alpha \stackrel{\text{def}}{=} \alpha_{} < c_1 < \alpha_{} \land \alpha_{} < c_2 < \alpha$$

• Example: $\alpha = (y := x), \beta = (x := 3), \gamma = (z := 5).$ $\alpha_{<\beta>} = (y := 3), \alpha_{<\gamma:\beta>} = (y := 3).$

$$y := 3 < x := 3 < y := x \quad y := 3 < z := 5 ; x := 3 < y := x$$

 \bullet Can execute an instruction which occurs later in the program if reordering and forwarding can bring it (in its new form $\gamma)$ to the beginning

Reorder
$$\frac{c_2 \mapsto_{\alpha} \quad \gamma < c < \alpha}{c_1; c_2 \mapsto_{\gamma} c_1; c'_2}$$