EXPERIMENTS USING WEKA

M.ARBAZ SHERIEF 192124175

1.DATA PREPROCESSING AND PREPARATION FOR KNOWLEDGE ANALYSIS USING WEKA.

OUTPUT:

2.K-MEANS CLUSTER ANALYSIS USING WEKA

3.DATA ANALYSIS BY EXPECTATION MAXIMISATION ALGORITHM USING WEKA.

4.DATA ANALYSIS BY COBWEB-HIERARCHAL CLUSTERING ALGORITHM USING WEKA.

5. KNOWLEDGE MINING USING ASSOCIATION RULE USING WEKA.

Associator Choose Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c -1 - Associator output -Start Stop rator moder (rail oralising sec) ---Result list (right-click for ... 13:04:37 - Apriori Apriori Minimum support: 0.15 (694 instances) Minimum metric <confidence>: 0.9 Number of cycles performed: 17 Generated sets of large itemsets: Size of set of large itemsets L(1): 44 Size of set of large itemsets L(2): 380 Size of set of large itemsets L(3): 910 Size of set of large itemsets L(4): 633 Size of set of large itemsets L(5): 105 Size of set of large itemsets L(6): 1 Best rules found: 9. frozen foods=t fruit=t vegetables=t total=high 834 ==> bread and cake=t 757 <conf:(0.91)> lift:(1.26) lev:(0.03) [156] conv:(3)

6.FP GROWTH ALGORITHM USING WEKA.

7.PREDICTION OF CATEGORICAL DATA USING DECISION TREE ALGORITHM USING WEKA.

8.PREDICTION OF CATEGORICAL DATA USING SMO ALGORITHM USING WEKA.

9.EVALUATING THE ACCURACY OF THE CLASSIFIERS USING WEKA LOGISTIC:

NAÏVE BAYES ALGORITHM:

J48 ALGORITHM:

K-NEAREST:

10.PREDICTION OF CATEGORICAL DATA USING BAYESIAN ALGORITHM USING WEKA.

Classifier Choose NatvoBayes		
Choose NaiveBayes		
Test options	Classifier output	
○ Use training set	working-hours	
	WOLKERS-HOULS	39,4007 37,5491
Supplied test set Set	atd. dev.	1.8903 2.9366
 Cross-validation Folds 10 	weight pun	19 32
C Percentage split % 66	precision	1.0571 1.0571
	2/14/1/2/1/1/1	
More options	pension	
	none	18.0 1.0
(Nom) class	Y zot_alle	3.0 3.0
	engl contr	6.0 0.0
Start Stop	[total]	21.0 12.0
Result list (right-click for options)		
14:42:08 bayesNaweBayes	standby pay	
14/43:31 - bayes.NaiveBayes	acus	2.5 11.2
	std. dov.	0.866 2.0396
	weight aum	4 5
	procision	2 2
	shift differential	
	acus	2.4691 0.6818
	etd. det.	1.8738 8.0884
	weight sun	5 22
	procision	2.7778 2.7778
	education-allowance	
	yes	4.0 0.0
	TO.	1000 400
	[total]	14.0 12.0
	statutory-holidays	
	acus	10.2 11.4182
	etd. der.	0.008 1.2224
	weight sum	20 33
	precision	1.2 1.2

11.DATA ANALYSIS BY DENSITY BASED CLUSTERING ALGORITHM USING WEKA.

12.GIVING THE FOLLOWING DATABASE WITH 5 TRANSACTIONS AND A MINIMUM SUPPORT THRESHOLD OF 60% AND A MINIMUM CONFIDENCE THRESHOLD OF 80%, FIND ALL FREQUENT ITEMSETS USING (A) APRIORI AND (B) FP-GROWTH.

TID	Transaction
T1	$\{A, B, C, D, E, F\}$
T2	$\{B, C, D, E, F, G\}$
T3	$\{A, D, E, H\}$
T4	$\{A, D, F, I, J\}$
T5	$\{B, D, E, K\}$

OUTPUT:

```
Associator output
=== Run information ===
      weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c -1
Scheme:
Relation:
Instances:
Attributes: 2
      TID
      TRANSACTION
=== Associator model (full training set) ===
Apriori
Minimum support: 0.3 (1 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 14
Generated sets of large itemsets:
Size of set of large itemsets L(1): 10
Size of set of large itemsets L(2): 5
Best rules found:
5. TRANSACTION=A D E H 1 ==> TID=T3 1 <conf:(1)> lift:(5) lev:(0.16) [0] conv:(0.8)
10. TID=T5 1 ==> TRANSACTION=B D E K 1
                    <conf:(1)> lift:(5) lev:(0.16) [0] conv:(0.8)
```

13.THE 'DATABASE' BELOW HAS NINE TRANSACTIONS. WHAT ASSOCIATION RULES CAN BE FOUND IN THIS SET, IF THE MINIMUM SUPPORT (I.E COVERAGE) IS 60% AND THE MINIMUM CONFIDENCE (I.E. ACCURACY) IS 80%?

TRANS_ID ITEMLIST

TID	List of Items
T100	I1, I2, I5
T100	12, 14
T100	12, 13
T100	I1, I2, I4
T100	I1, I3
T100	12, 13
T100	I1, I3
T100	11, 12 ,13, 15
T100	I1, I2, I3

OUTPUT:

```
Associator output
=== Run information ===
           weka.associations.Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c -1
Relation: EX21
Instances:
Attributes: 2
            LIST OF ITEMS
=== Associator model (full training set) ===
Apriori
======
Minimum support: 0.11 (1 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 18
Generated sets of large itemsets:
Size of set of large itemsets L(1): 8
Size of set of large itemsets L(2): 7
Best rules found:
1. LIST OF ITEMS=I2 I3 2 ==> TID=T100 2 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
2. LIST OF ITEMS=I1 I3 2 ==> TID=T100 2 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
3. LIST OF ITEMS=I1 I2 I5 1 ==> TID=T100 1 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
4. LIST OF ITEMS=I2 I4 1 ==> TID=T100 1 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
5. LIST OF ITEMS=I1 I2 I4 1 ==> TID=T100 1 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
 7. LIST OF ITEMS=I1 I2 I3 1 ==> TID=T100 1 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
```