Лабораторная работа №4

Математические основы защиты информации и информационной безопасности

Леонтьева Ксения Андреевна | НПМмд-02-23

Содержание

1	Цель работы	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы	7
4	Выводы	13
Список литературы		14

Список иллюстраций

3.1	Алгоритм Евклида	7
3.2	Бинарный алгоритм Евклида	ç
3.3	Расширенный алгоритм Евклида	10
3.4	Расширенный бинарный алгоритм Евклида	12

1 Цель работы

Реализовать на языке программирования алгоритмы Евклида для вычисления наибольшего общего делителя.

2 Теоретическое введение

Целое число $d \neq 0$ называется **наибольшим общим делителем** целых чисел $a_1, a_2, ..., a_k$ (обозначается $d = \text{HOД}\ (a_1, a_2, ..., a_k)$), если выполняются следующие условия:

- каждое из чисел $a_1, a_2, ..., a_k$ делится на d,
- если $d_1 \neq 0$ другой общий делитель чисел $a_1, a_2, ..., a_k$, то d делится на $d_1.$

Ненулевые целые числа a и b называются **ассоциированными**, если a делится на b и b делится на a.

Для любых целых чисел $a_1, a_2, ..., a_k$ существует наибольший общий делитель d и его можно предствить в виде **линейной комбинации** этих чисел:

$$d=c_1a_1+c_2a_2+\ldots+c_ka_k, c_i\in Z.$$

Целые числа $a_1,a_2,...,a_k$ называются **взаимно простыми в совокупности,** если НОД $(a_1,a_2,...,a_k)=1$. Целые числа a и b называются **взаимно простыми,** если НОД(a,b)=1.

Целые числа $a_1,a_2,...,a_k$ называются **попарно взаимно простыми,** если $\text{HOД}(a_i,a_j)=1$ для всех $1\leq i\neq j\leq k.$

Для вычисления наибольшего общего делителя двух целых чисел применяется способ повторного деления с остатком, называемый алгоритмом Евклида.

Бинарный алгоритм Евклида основан на следующих свойствах наибольшего общего делителя (считаем, что $0 < b \le a$):

- 1. если оба числа a и b четные, то $\mathrm{HOД}(a,b) = 2*\mathrm{HOД}(\frac{a}{2},\frac{b}{2})$
- 2. если число a нечетное, число b -четное, то $\mathrm{HOД}(a,b) = \mathrm{HOД}(a,\frac{b}{2})$
- 3. если оба числа a и b нечетные, a>b, то $\mathrm{HOД}(a,b)=\mathrm{HOД}(a-b,b)$
- 4. если a=b, то $\operatorname{HOД}(a,b)=a$

Более подробно см. в [1].

3 Выполнение лабораторной работы

Алгоритм Евклида реализуем по следующей схеме:

На вход подаются целые числа a и b: $0 < b \le a$.

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, i \leftarrow 1$
- 2. Найти остаток r_{i+1} от деления r_{i-1} на r_i
- 3. Если $r_{i+1}=0$, то положить $d \leftarrow r_i$. В противном случае положить $i \leftarrow i+1$ и вернуться на шаг 2
- 4. Результат d

Код программы (рис. 3.1).

```
a = 54321
b = 12345
r = -1
if a >= b:
    r0 = a
    r1 = b
else:
    r0 = b
    r1 = a
while r != 0:
    r = r0 % r1
    r0 = r1
    r1 = r
print('HOД (',a,',',b, ') =', r0)
HOД ( 54321 , 12345 ) = 3
```

Рис. 3.1: Алгоритм Евклида

Бинарный алгоритм Евклида реализуем по следующей схеме:

На вход подаются целые числа a и b: $0 < b \le a$.

- 1. Положить $g \leftarrow 1$
- 2. Пока оба числа a и b четные, выполнять $a\leftarrow \frac{a}{2}, b\leftarrow \frac{b}{2}, g\leftarrow 2g$ до получения хотя бы одного нечетного значения a или b
- 3. Положить $u \leftarrow a, v \leftarrow b$
- 4. Пока $u \neq 0$ выполнять следующие действия:
 - 4.1. Пока u четное, полагать $u \leftarrow \frac{u}{2}$
 - 4.2. Пока v четное, полагать $v \leftarrow \frac{v}{2}$
 - 4.3. При $u \geq v$ положить $u \leftarrow u v$. В противном случае положить $v \leftarrow v u$
- 5. Положить $d \leftarrow gv$
- 6. Результат d

Код программы (рис. 3.2).

```
aa = 3400
bb = 1260
g = 1
if aa >= bb:
    a = aa
    b = bb
else:
    a = bb
   b = aa
while (a \% 2 == 0) and (b \% 2 == 0):
    a = a / 2
   b = b / 2
   g = 2 * g
u = a
v = b
while u != 0:
   while u % 2 ==0:
        u = u / 2
   while v % 2 == 0:
        V = V / 2
   if u >= v:
       u = u - v
    else:
        v = v - u
print('HOД (',aa,',',bb, ') =', g*v)
HOД ( 3400 , 1260 ) = 20.0
```

Рис. 3.2: Бинарный алгоритм Евклида

Расширенный алгоритм Евклида реализуем по следующей схеме: На вход подаются целые числа a и b: $0 < b \le a$.

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, x_0 \leftarrow 1, x_1 \leftarrow 0, y_0 \leftarrow 0, y_1 \leftarrow 1, i \leftarrow 1$
- 2. Разделить с остатком r_{i-1} на r_i : $r_{i-1} = q_i r_i + r_{i+1}$
- 3. Если $r_{i+1}=0$, то положить $d\leftarrow r_i, x\leftarrow x_i, y\leftarrow y_i$. В противном случае положить $x_{i+1}\leftarrow x_{i-1}-g_ix_i, y_{i+1}\leftarrow y_{i-1}-g_iy_i, i\leftarrow i+1$ и вернуться на шаг 2
- 4. Результат d, x, y

Код программы (рис. 3.3).

```
a = 3400
b = 1260
r = -1
if a >= b:
    r0 = a
    r1 = b
else:
    r0 = b
    r1 = a
x0 = 1
x1 = 0
y0 = 0
y1 = 1
while r != 0:
    r = r0 \% r1
    q = int((r0 - r) / r1)
    r0 = r1
    r1 = r
   x_{new} = x0 - q * x1
   x0 = x1
   x1 = x new
   y_{new} = y0 - q * y1
   y0 = y1
   y1 = y_new
print('HOД (',a,',',b, ') =', r0)
print('x =', x0)
print('y =', y0)
HOД ( 3400 , 1260 ) = 20
x = -10
y = 27
```

Рис. 3.3: Расширенный алгоритм Евклида

Расширенный бинарный алгоритм Евклида реализуем по следующей схеме: На вход подаются целые числа a и b: $0 < b \le a$.

1. Положить $g \leftarrow 1$

- 2. Пока числа a и b четные, выполнять $a\leftarrow\frac{a}{2},b\leftarrow\frac{b}{2},g\leftarrow2g$ до получения хотя бы одного нечетного значения a или b
- 3. Положить $u \leftarrow a, v \leftarrow b, A \leftarrow 1, B \leftarrow 0, C \leftarrow 0, D \leftarrow 1$
- 4. Пока $u \neq 0$ выполнять следующие действия:
 - 4.1. Пока u четное:
 - 4.1.1. Положить $u \leftarrow \frac{u}{2}$
 - 4.1.2. Если оба числа A и B четные, то положить $A\leftarrow\frac{A}{2}, B\leftarrow\frac{B}{2}$. В противном случае положить $A\leftarrow\frac{A+b}{2}, B\leftarrow\frac{B-a}{2}$
 - 4.2. Пока v четное:
 - 4.2.1. Положить $v \leftarrow \frac{v}{2}$
 - 4.2.2. Если оба числа C и D четные, то положить $C\leftarrow \frac{C}{2}, D\leftarrow \frac{D}{2}$. В противном случае положить $C\leftarrow \frac{C+b}{2}, D\leftarrow \frac{D-a}{2}$
 - 4.3. При $u \geq v$ положить $u \leftarrow u-v, A \leftarrow A-C, B \leftarrow B-D$. В противном случае положить $v \leftarrow v-u, C \leftarrow C-A, D \leftarrow D-B$
- 5. Положить $d \leftarrow gv, x \leftarrow C, y \leftarrow D$
- 6. Результат d, x, y

Код программы (рис. 3.4).

```
aa = 3400
bb = 1260
g = 1
if aa >= bb:
    a = aa
    b = bb
else:
    a = bb
    b = aa
while (a % 2 == 0) and (b % 2 == 0):
   a = a / 2
    b = b / 2
   g = 2 * g
u = a
v = b
A = 1
B = 0
C = 0
D = 1
while u != 0 :
    while u % 2 == 0:
        u = u / 2
        if (A % 2 == 0) and (B % 2 == 0):
            A = A / 2
            B = B / 2
        else:
            A = (A + b) / 2
            B = (B - a) / 2
    while v % 2 == 0:
        v = v / 2
if (C % 2 == 0) and (D % 2 == 0):
            C = C / 2
            D = D / 2
        else:
            C = (C + b) / 2
            D = (D - a) / 2
    if u >= v:
        u = u - v
        A = A - C
        B = B - D
    else:
        v = v - u
        C = C - A
        D = D - B
print('HOД (',aa,',',bb, ') =', g*v)
print('x =', C)
print('y =', D)
НОД ( 3400 , 1260 ) = 20.0
x = -10.0
y = 27.0
```

Рис. 3.4: Расширенный бинарный алгоритм Евклида

4 Выводы

В ходе выполнения данной лабораторной работы были реализованы алгоритмы Евклида для вычисления наибольшего общего делителя.

Список литературы

1. Наибольший общий делитель [Электронный ресурс]. URL: http://www.cleverstudents.ru/divisibility/nod.html.