CLAIMS

1. A compound represented by the following formula (1):

$$R_{42}$$
 R_{41}
 R_{31}
 R_{21}
 R_{32}
 R_{32}
 R_{23}
 R_{23}
 R_{23}
 R_{23}
 R_{23}
 R_{23}
 R_{23}
 R_{23}
 R_{24}
 R_{25}
 R_{25}
 R_{25}
 R_{26}
 R_{27}
 R_{28}
 R_{28}

5

.10

15

20

25

[wherein, R_{11} , R_{21} , R_{31} , and R_{41} independently denote hydrogen or methyl; R_{22} , R_{23} , R_{32} , R_{33} , R_{42} , and R_{43} independently denote a hydrogen, a linear alkyl with one to six carbon atoms, a linear alkyl with one to six carbon atoms to which a non-aromatic cyclic alkyl group or substituted or unsubstituted aromatic ring, a non-aromatic cyclic alkyl, or a non-aromatic cyclic alkyl to which a non-aromatic cyclic alkyl group substituted or unsubstituted aromatic ring is bound; the pairs of R_{21} and R_{22} , R_{22} and R_{23} , R_{31} and R_{32} , R_{32} and R_{33} , R_{41} and R_{42} , and R_{42} and R_{43} independently denote acyclic structures without binding or cyclic structures by binding through a linear alkylene group with a one- to five-carbon main chain, a linear alkylene group with a one- to five-carbon main chain comprising a branched chain with one to six carbons, or a linear alkylene group with a one- to five-carbon main chain comprising a ring structure of one to six carbons; X denotes hydrogen, a structure identical to that shown to the left of X, a substituted or unsubstituted alkyl or aryl group in any structure comprising a sulfur atom capable of binding with the sulfur atom in formula (1) through a disulfide bond, or a sulfur atom binding with the sulfur atom bonded to the terminus of R_{22} , R_{23} , R_{32} , R_{33} , R_{42} , or and located to the left of X, via an intramolecular disulfide bond].

- 2. A histone deacetylase inhibitor that comprises the compound of claim 1 as an active ingredient.
- 3. An apoptosis-inducing agent that comprises the compound of claim 1 as an active ingredient.
 - 4. A differentiation-inducing agent that comprises the compound of claim 1 as an active ingredient.
- 10 5. An angiogenesis inhibitor that comprises the compound of claim 1 as an active ingredient.
 - 6. An anti-metastatic agent comprising the compound of claim 1 as an active ingredient.
 - 7. A pharmaceutical agent for treating or preventing a disease caused by histone deacetylase 1 or 4, comprising the compound of claim 1 as an active ingredient.
- 20 8. The pharmaceutical agent of claim 7, wherein the disease caused by histone deacetylase 1 or 4 is cancer, autoimmune disease, skin disease, or infectious disease.
- 9. A method for producing the compound of claim 1, which 25 comprises the steps of: reacting a compound represented by formula (2)

15

30

(wherein, n is same as that defined in formula (1); Hal denotes a halogen atom selected from a chlorine atom, bromine atom, or iodine atom, or an allyl or alkylsulfoxy group useful for a free group; P_2 denotes a protection group for an amino group);

with a compound represented by formula (3)

(wherein R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , and R_{43} are same as defined in formula (1); P_2 denotes a protection group for a carboxyl group);

in the presence of a peptide-bonding agent to obtain a compound represented by formula (4)

(wherein n, R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , P_1 , P_2 , and Hal are the same as defined above); subjecting the compound represented by formula (4) to catalytic hydrogenation, acid treatment, or hydrolysis to remove P_1 and P_2 ; and then subjecting to cyclization in the presence of a peptidebonding agent to obtain a compound represented by formula (5)

5

(wherein n, R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , P_1 , P_2 , and Hal are the same as defined above);

20 or reacting a compound represented by formula (6)

(wherein R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , and P_1 are the same as defined above);

5 with a compound represented by formula (7)

(wherein n, R_{11} , P_2 , and Hal are the same as defined above);

in the presence of a peptide-bonding agent to obtain a compound represented by formula (8)

(wherein n, R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , R_{43} , P_1 , P_2 , and Hal are the same as defined above);

15 subjecting the compound represented by formula (8) to catalytic hydrogenation, acid treatment, fluoride anion treatment, or hydrolysis to remove P_1 and P_2 ;

and then subjecting to cyclization in the presence of a peptidebonding agent to obtain the compound represented by formula (5);

20 following, for both process, the steps of:

reacting the compound represented by formula (5) with a reagent comprising sulfur atoms to obtain a compound represented by formula (9)

$$R_{42}$$
 R_{42}
 R_{43}
 R_{42}
 R_{43}
 R_{41}
 R_{11}
 R_{31}
 R_{21}
 R_{32}
 R_{32}
 R_{23}
 R_{22}
 R_{23}
 R_{22}

5

(wherein n, R_{11} , R_{21} , R_{22} , R_{23} , R_{31} , R_{32} , R_{33} , R_{41} , R_{42} , and R_{43} are the same as defined above; P_3 denotes a protection group for sulfohydryl group);

and then treating the compound represented by formula (9) with an oxidizing agent as well as ammonia or another amine.