Neural Networks I

Neural Networks

- Why neural networks?
- Model representation
- Examples and intuitions
- Multi-class classification
- Back propagation algorithm
- Implementation & Applications

Neural Networks

• Why neural networks?

Non-linear classification

Predict
$$y = 1$$
 if

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \cdots) \ge 0$$

$$x_1$$
 = size

$$x_2$$
= #bedrooms

$$x_3$$
 = #floors

$$x_4$$
= age

Quadratic features?

Cubic features?

...

 x_{100}

What humans see

What computers see

243	239	240	225	206	185	188	218	211	206	216	225
242	239	218	110	67			152	213	206	208	221
243	242	123		94	82	132	77	108	208	208	215
235	217	115	212	243	236	247	139	91	209	208	211
233	208	131	222	219	226	196	114	74	208	213	214
232	217	131	116	77	150	69			201	228	223
232	232	182	186	184	179	159	123	93	232	235	235
232	236	201	154	216	133	129	81	175	252	241	240
235	238	230	128	172	138	65	63	234	249	241	245
237	236	247	143		78		94	255	248	247	251
234	237	245	193			115	144	213	255	253	251
248	245	161	128	149	109	138	65	47	156	239	255
190	107		102	94	73	114				51	137
			148	168	203	179					
17	26	12	160	255	255	109	22	26	19	35	24

Computer Vision: Car detection

Testing:

50x50 pixel images -> 2500 pixels

Cars

"Non"-Cars

Quadratic features $(x_i x_j)^{\sim}$ 3 million features

Neural Networks

Origins: Algorithms that try to mimic the brain.

 Was very widely used in 80s and early 90s; popularity diminished in late 90s.

 Recent resurgence: State-of-the-art technique for many applications

An Al Timeline

https://www.slideshare.net/dlavenda/ai-and-productivity

The "one learning algorithm" hypothesis

- Auditory cortex --> takes sound signals If you cut the wiring from the ear to the auditory cortex
- Re-route optic nerve to the auditory cortex
- Auditory cortex learns to see

Auditory cortex learns to sede redit: Andrew Ng

The "one learning algorithm" hypothesis

- Somatosensory context (touch processing)
- If you rewrite optic nerve to somatosensory cortex then it learns to see

Sensor representations in the brain

Seeing with your tongue

Haptic belt: Direction sense

Human echolocation (sonar)

Implanting a 3rd eye

Neural Networks

Why neural networks?

Model representation

Examples and intuitions

Multi-class classification

A single neuron in the brain

http://histoweb.co.za/082/082img002.html

An artificial neuron: Logistic unit

Sigmoid (logistic) activation function

Slide credit: Andrew Ng

$$a_i^{(j)}$$
 = "activation" of unit i in layer j
 $\Theta^{(j)}$ = matrix of weights controlling function mapping from layer j to layer $j+1$

If networks has:

 s_i unit in layer j

$$\begin{split} a_1^{(2)} &= g\left(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3\right) \quad S_{j+1} \text{ units in layer } j+1 \\ a_2^{(2)} &= g\left(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3\right) \\ a_3^{(2)} &= g\left(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3\right) \quad \text{Size of } \Theta^{(j)}; \\ a_3^{(2)} &= g\left(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3\right) \quad S_{j+1} \times \left(S_j + 1\right) \\ h_{\Theta}(x) &= g\left(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}\right) \end{split}$$

- Then Θ^{j} will be of dimensions $[s_{i+1} x s_{i} + 1]$
 - Because
 - s_{i+1} is equal to the number of units in layer (j + 1)
 - is equal to the number of units in layer j, plus an additional unit
- Looking at the Θ matrix
 Column length is the number of units in the following layer
- Row length is the number of units in the current layer + 1 (because we have to map the bias unit)
 - So, if we had two layers 110 and 15 units in each
 - Then Θ^{j} would be = [15 x 111]

What are the computations?

- We have to calculate the activation for each node
- That activation depends on
 - The input(s) to the node
 - The parameter associated with that node (from the Θ vector associated with that layer)

- •For example Θ_{13}^{1} = means
 - 1 we're mapping to node 1 in layer l+1
 - 3 we're mapping from node 3 in layer I
 - 1 we're mapping from layer 1

"Pre-activation"

$$a_{1}^{(2)} = g\left(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3}\right) = g(z_{1}^{(2)})$$

$$a_{2}^{(2)} = g\left(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3}\right) = g(z_{2}^{(2)})$$

$$a_{3}^{(2)} = g\left(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3}\right) = g(z_{3}^{(2)})$$

$$h_{\Theta}(x) = g\left(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(1)}a_{1}^{(2)} + \Theta_{12}^{(1)}a_{2}^{(2)} + \Theta_{13}^{(1)}a_{3}^{(2)}\right) = g(z_{3}^{(3)})$$

"Pre-activation"

$$z = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$a_1^{(2)} = g(z_1^{(2)})$$

$$a_2^{(2)} = g(z_2^{(2)})$$

$$a_3^{(2)} = g(z_3^{(2)})$$

$$h_{\Theta}(x) = g(z_3^{(3)})$$

$$z^{(2)} = \Theta^{(1)}x = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$Add a_0^{(2)} = 1$$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$$

Forward Propagation

- This process is also called forward propagation
 - Start off with activations of input unit
 - i.e. the x vector as input
 - Forward propagate and calculate the activation of each layer sequentially
 - This is a vectorised version of this implementation

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

Neural network learning its own features

Diagram below looks a lot like logistic regression

Neural network learning its own features

- Layer 3 is a logistic regression node
 - The hypothesis output = $g(\Theta_{10}^2 a_0^2 + \Theta_{11}^2 a_1^2 + \Theta_{12}^2 a_2^2 + \Theta_{13}^2 a_3^2)$
 - This is just logistic regression
 - The only difference is, instead of input a feature vector, the features are just values calculated by the hidden layer
- The features a_1^2 , a_2^2 , and a_3^2 are calculated/learned not original features
- So the mapping from layer 1 to layer 2 (i.e. the calculations which generate the a^2 features) is determined by another set of parameters Θ^1
 - So instead of being constrained by the original input features, a neural network can learn its own features to feed into logistic regression
 - Depending on the Θ^1 parameters you can learn some interesting things
 - Flexibility to learn whatever features it wants to feed into the final logistic regression calculation
 - So, if we compare this to previous logistic regression, you would have to calculate your own exciting features to define the best way to classify or describe something

Other network architectures

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Deep Feed Forward (DFF)

- Hidden Cell
- Probablistic Hidden Cell

Backfed Input Cell

- Spiking Hidden Cell
- **Output Cell**
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- Different Memory Cell
- Kernel
- Convolution or Pool

Perceptron (P)

Feed Forward (FF)

Radial Basis Network (RBF)

Recurrent Neural Network (RNN)

Long / Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Auto Encoder (AE)

Variational AE (VAE)

Denoising AE (DAE)

Sparse AE (SAE)

Markov Chain (MC)

Deep Belief Network (DBN)

Neural Networks

Why neural networks?

Model representation

Examples and intuitions

Multi-class classification

A complex Non-linear classification example using Neural Networks: XOR/XNOR

- x_1, x_2 are binary (0 or 1)
- $y = XOR(x_1, x_2)$

Simple example: AND

- $x_1, x_2 \in \{0, 1\}$
- $y = x_1 \text{ AND } x_2$

$$h_{\Theta}(x) = g(-30 + 20x_1 + 20x_2)$$

x_1	x_2	$h_{\Theta}(x)$
0	0	$g(-30) \approx 0$
0	1	$g(-10) \approx 0$
1	0	$g(-10) \approx 0$
1	1	$g(-30) \approx 0$ $g(-10) \approx 0$ $g(-10) \approx 0$ $g(10) \approx 1$

 $h_{\Theta}(x) \approx x_1 \operatorname{AND}_{\text{Slide credit: Andrew Ng}}$

Simple example: OR

- $x_1, x_2 \in \{0, 1\}$
- $y = x_1 \text{ AND } x_2$

$$h_{\Theta}(x) = g(-10 + 20x_1 + 20x_2)$$

x_1	x_2	$h_{\Theta}(x)$
0	0	$g(-10) \approx 0$
0	1	$g(10) \approx 1$
1	0	$g(10) \approx 1$
1	1	$g(30) \approx 1$

 $h_{\Theta}(x) \approx x_1 \text{ OR } x_2$ Slide credit: Andrew Ng

Simple example: NOT

- $x_1, x_2 \in \{0, 1\}$
- $y = x_1 \text{ AND } x_2$

x_1	$h_{\Theta}(x)$
0	$g(10) \approx 1$
1	$g(-10) \approx 0$

$$h_{\Theta}(x) = g(10 - 20x_1)$$

$$h_{\Theta}(x) \approx \text{NOT } x_1$$
Slide credit: Andrew Ng

Putting it together: x_1 XNOR x_2

Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Layer 3

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Neural Networks

Why neural networks?

Model representation

Examples and intuitions

Multi-class classification

Multiple output units: One-vs-all

Pedestrian

Car

Motorcycle

Truck

Multiple output units: One-vs-all

$$h_{\Theta}(x) \in R^4$$

Training set :
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots (x^{(m)}, y^{(m)}),$$

$$y^{(i)} \text{ one of } \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\$$

Things to remember

Why neural networks?

Model representation

Examples and intuitions

Multi-class classification

