

Aggregating Alternative Extensions of AAFs:

Preservation Results for Quota Rules

Weiwei Chen
Sun Yat-sen University, China
[Joint work with Ulle Endriss]

Objectives and Outline

Motivated by the challenge of modelling collective argumentation, we consider the problem of *aggregating* extensions of AAFs and study the preservation results for quota rules.

We make use of results from two fields:

- argumentation integrity constraints for semantics
- binary aggregation with integrity constraints

I will present:

- the problem of preservation when aggregating extensions
- examples for preservation results, sketching some of our techniques

Aggregation of Extensions

Fix an $AF = \langle Arg, \rightarrow \rangle$. Suppose each agent supplies us with an extension reflecting her *individual views* of what constitutes an acceptable set of arguments in the context of AF. We would like to aggregate this information by making use of *quota rules*.

<u>Terminology</u>: The quota rule F_q with quota q is defined as $F_q(\Delta) = \{A \in Arg \mid \#\{i \in N \mid A \in \Delta_i\} \geqslant q\}$ where n is the number of agents and $\Delta = (\Delta_1, ..., \Delta_n)$ is a profile of extensions.

Related work: Rahwan and Tohmé, Caminada and Pigozzi

An Example

Suppose three agents evaluate the following AF:

They report the extensions $\{A,C\}$, $\{A,D\}$, and $\{A,E\}$, respectively, all of which are admissible. But applying the majority rule (i.e., the quota rule F_q with $q = \lceil \frac{n}{2} \rceil$) yields $\{A\}$, which is *not* admissible!

Research Question: Which properties are preserved by which quota rules?

Integrity Constraints for Semantics

Let $AF = \langle Arg, \rightarrow \rangle$ be an AF and let $\Delta \subseteq Arg$ be an extension. Then Δ is conflict-free (self-defending, reinstating) iff:

$$\Delta \models IC_{CF}$$
 where $IC_{CF} = \bigwedge_{A,B \in Arg \atop A \rightarrow B} (\neg A \lor \neg B)$

 Δ is self-defending iff:

$$\Delta \models IC_{SD}$$
 where $IC_{SD} = \bigwedge_{C \in Arg} [C \rightarrow \bigwedge_{B \in Arg} \bigvee_{A \in Arg} A]$

 Δ is admissible iff $\Delta \models IC_{CF} \land IC_{SD}$,

Terminology: Δ is *self-defending* if $\Delta \subseteq \{C \mid \Delta \text{ defends } C\}$.

P. Besnard and S. Doutre. Checking the acceptability of a set of arguments. In *Proc. of* N.M.R. 2004.

Extension Aggregation with Integrity Constraints

Given an intrgrity constraint $\varphi = p_1 \vee \dots \vee p_n$ with k_1 positive literals and k_2 negative literals, a quota rule F_q with quota $q \in \{1, \dots, n\}$ preserves the property $\text{Mod}(\varphi)$ if and only if:

$$q \cdot (k_2 - k_1) > n \cdot (k_2 - 1) - k_1$$

If F preserves both $\operatorname{Mod}(\varphi_1)$ and $\operatorname{Mod}(\varphi_2)$. Then F also preserves $\operatorname{Mod}(\varphi_1 \wedge \varphi_2)$ (Grandi and Endriss, 2013).

Example: the quota rule with $q > \frac{n}{2}$ preserves $\neg A \lor \neg B$, the quota rule with $q > \frac{2 \cdot n}{3}$ preserves $\neg C \lor \neg D \lor \neg E$, then the quota rule with $q > \frac{2 \cdot n}{3}$ preserves $(\neg A \lor \neg B) \land (\neg C \lor \neg D \lor \neg E)$

Preserving Conflict-Freeness

A quota rule F_q for n agents preserves *conflict-freeness* for AF if and only if $q > \frac{n}{2}$:

- For any quota $q > \frac{n}{2}$, F_q preserves the clauses of the form $\neg A \lor \neg B$
- Thus, F_q preserves the conjunction of clauses of the form ¬A ∨ ¬B, namely preserves IC_{CF}

The IC for CF for the above AF is $(\neg A \lor \neg B) \land (\neg B \lor \neg C)$.

Preserving Self-defense

A quota rule F_q for n agents preserves self-defense for an AF if $q \cdot (\text{MaxDef}(AF) - 1) < \text{MaxDef}(AF)$:

• The integrity constraint for SD is

$$\bigwedge_{\mathsf{C} \in \mathsf{Arg}} \left[\begin{array}{c} \mathsf{C} \\ \end{array} \rightarrow \bigwedge_{\substack{\mathsf{B} \in \mathsf{Arg} \\ \mathsf{B} \to \mathsf{C}}} \bigvee_{\substack{\mathsf{A} \in \mathsf{Arg} \\ \mathsf{A} \to \mathsf{B}}} \mathsf{A} \right]$$

• $C \rightarrow \bigwedge_{\substack{B \in Arg \\ B \rightarrow C}} \bigvee_{\substack{A \in Arg \\ A \rightarrow B}} A$ can be rewrite as $\bigwedge_{\substack{B \in Arg \\ B \rightarrow C}} (\neg C \lor \bigvee_{\substack{A \in Arg \\ A \rightarrow B}} A)$, and F preserves it iff $q \cdot (k_{C,B} - 1) < k_{C,B}$

The IC for SD for the

• the *largest* value of $k_{C,B}$ is MaxDef(AF)

we satisfy all inequalities in case
 q · (MaxDef(AF) - 1) < MaxDef(AF)

$$D \rightarrow (A \lor B)$$
, rewritten as $\neg D \lor A \lor B$.

<u>Terminology</u>: MaxDef(AF) denotes the *maximum number* of attackers of an argument that itself is the source of an attack.

Preserving Admissibility

- The nomination rule preserves the property of self-defense for all argumentation frameworks.
- Every quota rule F_q for n agents with a quota $q > \frac{n}{2}$ preserves admissibility for all argumentation frameworks AF with $MaxDef(AF) \le 1$.
- No quota rule preserves admissibility for all argumentation frameworks.

Preservation Results

Property	Constraint(s)	Uniform Quota Rule(s)
Conflict-freeness		$q>\frac{n}{2}$
Self-defending		$q \cdot (\text{MaxDef}(AF) - 1) < \text{MaxDef}(AF)$
Self-defending		Nomination rule
Admissibility	MaxDef(AF) ≤ 1	$q>\frac{n}{2}$
Admissibility		None
Being Reinstating		$q \cdot (\text{MaxAtt}(AF) - 1) > n \cdot (\text{MaxAtt}(AF) - 1) - 1$
Being Reinstating		Unanimity rule
Completeness	MaxDef(AF) ≤ 1	$q>\frac{n}{2}$
Completeness		None
I-Maximal property σ	$ \sigma \geqslant 2$ and n is even	None
I-Maximal property σ	$ \sigma \geqslant 2$ and n is odd	No quota rule different from the majority rule
Property σ	$ \sigma =2$	Majority rule

Summary and Furture Works

We have seen:

- encoding of argumentation semantics in propositional logic along with prior work in judgment aggregation establish positive results in extension aggregation.
- social choice theory can be fruitfully applied to the analysis of scenarios of collective argumentation.

Future work: further properties of extensions, other aggregation rules besides the quota rules, other types of argumentation formalisms, . . .