Análise

Folha de exercícios 6 -2018'19 ----

1. Calcule as derivadas parciais de segunda ordem das funções definidas por

(a)
$$f(x,y) = e^{x^2 - y^2}$$
;

(b)
$$f(x,y) = \log(1 + x^2 + y^2);$$

(c)
$$f(x, y, z) = \cos(xyz)$$
;

(d)
$$f(x, y, z) = y^2 \log x + xe^{xz}$$
:

(e)
$$f(x, y) = \text{sen } (xy^2);$$

(f)
$$f(x, y, z) = xy^2 + zy$$
;

(g)
$$f(x,y) = \frac{y}{(x^2 + y^2)^2}$$
; (h) $f(x,y,z) = xy^{\frac{3}{2}} + xe^{xy}$

(h)
$$f(x, y, z) = xy^{\frac{3}{2}} + xe^{xy}$$

2. Usando o teorema de Schwarz, mostre que não pode existir uma função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ cujas derivadas parciais de primeira ordem sejam:

(a)
$$\frac{\partial f}{\partial x}(x,y)=2x^3$$
 , $\frac{\partial f}{\partial y}(x,y)=yx^2+x$;

(b)
$$\frac{\partial f}{\partial x}(x,y) = x \operatorname{sen} y$$
, $\frac{\partial f}{\partial y}(x,y) = y \operatorname{sen} x$.

- $\text{3. Seja } f\colon \mathbb{R}^2 \longrightarrow \mathbb{R} \text{ definida por } f(x,y) = \left\{ \begin{array}{ll} \frac{xy^3}{x^2+y^2} & \text{ se } (x,y) \neq (0,0), \\ \\ 0 & \text{ se } (x,y) = (0,0). \end{array} \right.$
 - (a) Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$.
 - (b) Calcule $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ e $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.
 - (c) Explique porque não há contradição com o teorema de Schwarz.
- 4. Considere a função definida por $f(x,y)=\left\{ egin{array}{l} \dfrac{xy^2}{x+y} & \text{ se } x
 eq -y, \\ 0 & \text{ se } x=-y. \end{array} \right.$
 - (a) Calcule $\frac{\partial f}{\partial u}(x,0)$ e $\frac{\partial f}{\partial x}(0,y)$.
 - (b) Verifique que $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$.
- 5. Considere a função $f:\mathbb{R}^2 \to \mathbb{R}^3$ definida por

$$f(x,y) = (xe^{y} + \cos y, x, x + e^{y}).$$

de cada uma das funções definidas a seguir, indicando o conjunto dos pontos onde está definida:

- (a) Justifique que f é derivável em todos os pontos $(x,y) \in \mathbb{R}^2$;
- (b) Calcule a matriz Jacobiana de f para cada $(x,y)\in\mathbb{R}^2$;
- (c) Calcule Jf(2,0) e f'(2,0).

- 6. Calcule a derivada de cada uma das funções definidas a seguir, indicando o conjunto dos pontos (x,y) onde está definida:
 - (a) $f(x,y) = (xe^y + \cos y, x, x + e^y);$
 - (b) $f(x,y) = (x\sqrt[3]{y}, e^{x+2y});$
 - (c) $f(x,y) = (\ln(x^2 + y^2), \cos(xy));$
 - (d) $f(x, y, z) = (zx^2, -ye^z)$.

Considere a função $f:\mathbb{R}^2 \to \mathbb{R}^3$ definida por

$$f(x,y) = (3x - 2y, -y, \pi x + y).$$

- (a) Calcule f'(x,y) para cada $(x,y) \in \mathbb{R}^2$;
- (b) Observe e comente o resultado obtido na alínea anterior;
- (c) O mesmo acontece em todas as aplicaçãoes lineares? Justifique.
- 7. Calcule a derivada de $f \circ g$ em (x, y, z), sendo $g : \mathbb{R}^3 \to \mathbb{R}^2$ e $f : \mathbb{R}^2 \to \mathbb{R}$ funções definidas por

$$g(x, y, z) = (xz, yz + x)$$
 e $f(x, y) = 2x + y^2$.

- 8. Use a "regra da cadeia" de várias variáveis para calcular $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial u}$, sendo
 - (a) f(u,v) = 2uv, com $u = u(x,y) = x^2 + y^2$ e $v = v(x,y) = \frac{x}{y}$;
 - (b) $f(s,t) = 2s^2 st^2$, com $s = s(x,y) = y^2$ e $t = t(x,y) = x\cos y$;
- 9. Seja $F: \mathbb{R}^2 \to \mathbb{R}$ uma função diferenciável tal que $\nabla F(2,3) = (-1,2)$. Determine:
 - (a) f'(2), sendo f(x) = F(x, x + 1);
 - (b) f'(1), sendo $f(x) = F(2x, -x^2 + 4)$.
- 10. Seja $G: \mathbb{R}^3 \to \mathbb{R}$ uma função diferenciável tal que $\nabla G(2,3,0) = (-1,2,3)$. Determine:
 - (a) $\frac{\partial g}{\partial x}(1,2)$ e $\frac{\partial g}{\partial y}(1,2)$, sendo $g(x,y)=G\left(yx,x+y,\sin\left(\frac{\pi}{2}y\right)\right)$;
 - (b) $\frac{\partial g}{\partial x}(0,-1)$ e $\frac{\partial g}{\partial y}(0,-1)$, sendo $g(x,y)=G\left(-2ye^x,-3y+y^3x^2,x\cos\left(\frac{\pi}{2}y\right)\right)$.
- 11. Considere a seguinte equação

$$xyz^3 + x^2yz^2 - x + 2y + z = 0.$$

- (a) Mostre que a equação apresentada define implicitamente z como função de (x,y) para pontos "próximos" de (1,1,-1).
- (b) Determine $\frac{\partial z}{\partial x}(1,1)$ e $\frac{\partial z}{\partial y}(1,1)$.
- 12. Considere a seguinte equação de três variáveis reais

$$xz^2 + xy^2z = yz^2 + 5.$$

- (a) Mostre que a equação apresentada define z como função de (x,y) para pontos "próximos" de (3,1,1);
- (b) Determine z'(3,1);
- (c) Para z(x,y), definida na alínea (a), determine H'(3,1), onde H(x,y)=G(x,y,z(x,y)) para (x,y) "próximo" de (3,1), com $G(x,y,z)=e^{xy}+xyz$.
- 13. Considere a seguinte equação de três variáveis reais

$$xe^{yz} + z\log y = 1$$

- (a) Mostre que a equação apresentada define z como função de (x,y) para pontos "próximos" de (1,1,0);
- (b) Determine z'(1,1).