Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

Кафедра теоретических основ электротехники

	Лабораторная р	абота № 13	
"Переходные процессы	в линейных цепя	х с сосредоточенными	параметрами"

Проверил: доц. кафедры Петровский И. И. Выполнил: ст. группы 120602

1 Цели работы

- 1. Экспериментальное исследование переходных процессов в линейных цепях с сосредоточенными параметрами коммутации источника напряжения. Определение влияния отдельных параметров на характер переходного процесса.
- 2. Выбор параметров и экспериментальное исследование дифференцирующих и интегрирующих цепей.

2 Домашнее задание

№ варианта	Исходные данные			Определяемые величины				
л варианта	R_1 , Ом	C , мк Φ	R_L , Ом	L, Гн	A	В	С	С
1	100	0,25	100	0,14	$i_L(t)$	$U_c(t)$	au	$T_c = \frac{2\pi}{\omega c}$

Таблица 2.1: Данные для расчета

Рисунок 2.2. Схема сопротивлений

Произведем расчет переходных процессов в цепи, показанной на рис. 2.1 классическим методом с учетом данных табл. 2.1.

1. Независимые начальные условия

$$i_L(-0) = i_L(+0) = 0 \text{ A}$$

 $u_C(-0) = u_C(+0) = 10 \text{ B}$

2. Установившийся режим

$$i_{L_{y}}(t) = 0$$
 A
$$u_{C_{v}}(t) = E = 10$$
 B

3. Поиск корней характеристического уравнения (рис. 2.2)

$$R_1 + R_L + pL + \frac{1}{pC} = 0$$

$$0, 14p^2 + 200p + 4 \cdot 10^6 = 0$$

$$p_{1,2} = -1428, 6 \pm 7423, 08i$$

4. Искомые выражения имеют вид

$$\begin{cases} i_L(t) = Ae^{-1428,6t} \sin(7423,08t + \varphi) \\ u_C(t) = E + Be^{-1428,6t} \sin(7423,08t + \psi) \\ \frac{di_L}{dt} = -1428, 6Ae^{-1428,6t} \sin(7423,08t + \varphi) + 7423, 08Ae^{-1428,6t} \cos(7428,08t + \varphi) \\ \frac{du_C}{dt} = -1428, 6Be^{-1428,6t} \sin(7423,08t + \psi) + 7423, 08Be^{-1428,6t} \cos(7428,08t + \psi) \end{cases}$$

$$\begin{cases} i_L(0+) = A\sin(\varphi) = 0 \\ u_C(0+) = 10 + B\sin(\psi) = 0 \\ \frac{di_L(0+)}{dt} = -1428, 6A\sin(\varphi) + 7423, 08A\cos(\varphi) \\ \frac{du_C(0+)}{dt} = -1428, 6B\sin(\psi) + 7423, 08B\cos(\psi) \end{cases} \Rightarrow \begin{cases} A = 0, 01 \\ B = 10, 19 \\ \varphi = 0 \\ \psi = -79, 1 \end{cases}$$

$$\begin{cases} i_L(t) = 0.01e^{-1428.6t} \sin(7423, 08t) \\ u_C(t) = 10 + 10.19e^{-1428.6t} \sin(7423, 08t - 79, 1^\circ) \end{cases}$$

$$\tau = \left| \frac{1}{\delta} \right| = \frac{1}{1428, 6} = 7 \cdot 10^{-4} \text{ (c)}$$

$$T_c = \frac{2\pi}{\omega_c} = \frac{6, 28}{7423} = 8, 5 \cdot 10^{-4} \text{ (c)}$$

$$\Delta = e^{|\delta|T_c} = 3, 35$$

$$\theta = |\delta|T_c = 1, 214$$

Рисунок 2.3

Рисунок 2.4

3 Ход работы

- 1. Произведем сборку схемы, как показано на рис. 2.1
- 2. Схема зависимости $U_R(t), I_R(t)$
- 3. Схема зависимости $U_C(t)$

$$a_1 = 16$$
 mm, $a_2 = 7$ mm.

- 4. Установим влияние величин R, C на характер протекания переходного процесса При увеличении емкости конденсатора уменьшается амплитуда переходного процесса; изменение сопротивления приводит к изменению формы сигнала.
- 5. Исследуем дифференцирующую цепь

$$C=0,5$$
 мкФ
$$\omega=2\pi f=314~(\Gamma \text{II})$$

$$T=36~\text{мс}$$

$$R=\frac{1}{11\omega C}=579~(\text{Om})$$

$$au=rac{5}{3}$$
 мс $au=6$ мс

6. Исследуем интегрирующую цепь

$$C = \frac{10}{\omega R} = 5, 5 \cdot 10^{-6} \; \Phi$$
 $C = 0, 5 \cdot 10^{-6} \; \Phi$ $C = 5 \cdot 10^{-6} \; \Phi$ $R = 5800 \; \mathrm{Om}$ $R = 5800 \; \mathrm{Om}$

$$\tau=5~\mathrm{mc}$$

4 Вывод

В ходе лабораторной работы:

- Экспериментально исследованы переходные процессы в линейных цепях с сосредоточенными параметрами коммутации источника напряжения.
- Определено влияние отдельных параметров на характер переходного процесса.
- Был осуществлен выбор параметров и экспериментальное исследование дифференцирующих и интегрирующих цепей.