Assignment 18

KUSUMA PRIYA EE20MTECH11007

Download codes from

https://github.com/KUSUMAPRIYAPULAVARTY/assignment18

1 QUESTION

Use theorem 20 to prove the following. If **W** is a subspace of a finite dimensional vector space **V** and if $\{g_1, g_2, \dots, g_r\}$ is any basis for **W**⁰ then

$$\mathbf{W} = \bigcap_{i=1}^{r} \mathbf{N}_{g_i} \tag{1.0.1}$$

2 Theorem 20

Let $g, f_1, f_2, ..., f_r$ be linear functionals on vector space V with respective null spaces $N, N_1, ..., N_r$. Then g is a linear combination of $f_1, ..., f_r$ if and only if N contains the intersection $N_1 \cap N_2 \cap ... \cap N_r$.

3 Solution

PARAMETERS	DESCRIPTION
V	Finite dimensional vector
	space with $dim(\mathbf{V}) = n$
W	Subspace of V
\mathbf{W}^0	Annihilator of W
$g \in \mathbf{W}^0$	$g(\mathbf{w}) = 0 \forall \mathbf{w} \in \mathbf{W}$
$\{g_1,g_2,\ldots,g_r\}$	basis for \mathbf{W}^0
\mathbf{N}_{g_i}	Null space of g_i

TABLE 0: Input Parameters

STATEMENT	DESCRIPTION	
$g \in \mathbf{W}^0$	$g = \sum_{i=1}^{r} c_i g_i$	(3.0.1)
	From the theorem,	
If N is nullspace of g	$\bigcap_{i=1}^r \mathbf{N}_{g_i} \subseteq \mathbf{N}$	(3.0.2)
$\forall \mathbf{w} \in \mathbf{W}$	$g(\mathbf{w}) = 0$	(3.0.3)
$(3.0.2), (3.0.3) \implies$	$\mathbf{W} \subseteq \bigcap_{i=1}^r \mathbf{N}_{g_i}$	(3.0.4)
Starting with method of contradiction	$\mathbf{W} \neq \bigcap_{i=1}^{r} \mathbf{N}_{g_i}$	(3.0.5)
From (3.0.4),(3.0.5) there exists		
a vector e such that	$\mathbf{e} \in \bigcap_{i=1}^r \mathbf{N}_{g_i}, \mathbf{e} \notin \mathbf{W}$	(3.0.6)
	So $\forall g \in \mathbf{W}^0, g(\mathbf{e}) = 0$	(3.0.7)
Since g is a linear functional on \mathbf{V}	$(3.0.7) \implies \mathbf{e} \in \mathbf{V}$	(3.0.8)
	A linear functional on V defined as	
$\int f$	$f(\alpha) \begin{cases} = 0 & \text{for } \alpha \in \mathbf{W} \\ \neq 0 & \text{for } \alpha \in \mathbf{V}, \alpha \notin \mathbf{W} \end{cases}$ $\therefore f \in \mathbf{W}^0 \text{ and } f(e) \neq 0$	(3.0.9)
	j C 11 una j (c) 7 0	(5.0.10)
(3.0.7),(3.0.10) contradict each other	$\mathbf{W} = \bigcap_{i=1}^{r} \mathbf{N}_{g_i}$	(3.0.11)

TABLE1: Proof