		W
Page	1 Mark Scheme S	ylla. W. +.
	IGCSE EXAMINATIONS – JUNE 2003	0606
	Mark Scheme Notes	0606 Tremebabers
/larks are	of the following three types:	OH
1 Math	and mark, awarded for a valid method applied to the problem	Method

Mark Scheme Notes

- Marks are of the following three types:
 - М Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being guoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.
- The following abbreviations may be used in a mark scheme or used on the scripts:
 - AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 - CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
 - ISW Ignore Subsequent Working
 - MR Misread
 - PΑ Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)

Page 2	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0606

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation.

JUNE 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/01

ADDITIONAL MATHEMATICS
Paper 1

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0606	1

1.	x or y eliminated completely Uses the discriminant b^2 -4ac on a quadratic set to 0 Arrives at $k = 0$ from $32k = 0$ Correct answer $k \ge 0$.	M1 M1 A1 A1 [4]	Allow as soon as x or y eliminated. Condone poor algebra – quadratic must be set to $0 - b^2$ -4ac = 0 , <0 , >0 all ok. For k and 0. For $k \ge 0$.
2.	Length = $(1 + \sqrt{6}) \div (\sqrt{2} + \sqrt{3})$ Multiplying top and bottom by $\pm (\sqrt{3} - \sqrt{2})$ $\rightarrow \sqrt{3} + \sqrt{18} - \sqrt{2} - \sqrt{12}$ Reduces $\sqrt{18}$ to $3\sqrt{2}$ or $\sqrt{12}$ to $2\sqrt{3}$	M1	Multiply both top and bottom by $\pm(\sqrt{3} - \sqrt{2})$. Allow wherever this comes – not
	$\rightarrow 2\sqrt{2} - \sqrt{3}$ $\rightarrow \sqrt{8} - \sqrt{3}$	DM1 A1 [4]	DM. Dependent on first M – collects $\sqrt{2}$ and $\sqrt{3}$. Co.
3.	(i) $32 - 80x + 80x^2$ (ii) $(k + x) \times (i)$	B1 x 3	Allow 2 ⁵ for 32 (if whole series is given, mark the 3 terms).
	Coeff. of x is $-80k + 32$ Equated with $-8 \rightarrow k = \frac{1}{2}$ or 0.5	M1 A1√ [5]	Must be 2 terms considered. For solution of $k = (-8 - a) \div (b)$
4.	Liner travels 54km or relative speed of lifeboat is 60km/h.	B1	Anywhere.
	Correct vel./distance triangle	B1	Triangle must be correct with 54, 45°, 90 or 36, 45°, 60 or even 36, 45°, 90.
	Use of cosine rule in triangle $V^2 = 60^2 + 36^2 - 2.60.36\cos 45$ or	M1	Allow for other angles.
	$d^2 = 90^2 + 54^2 - 2.90.54\cos 45$.	A1	Unsimplified and allow for 135° as well as 45°.
	$V = 42.9 \text{ or } d = 64.4 \rightarrow V = 42.9$	A1 [5]	Co.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0606	1

5.	Elimination of x or y.	M1	x or y eliminated completely.
0.	$\rightarrow 4x^2 + 6x - 4 = 0$ or	A1	Correct equation – not necessarily =
	$y^2 - 12y + 11 = 0$		0
	Solution of quadratic = 0.	DM1	Usual method for solving quadratic =
	·		0
	(0.5.44)		All comments Occurred in comments
	\rightarrow (0.5, 11) and (-2, 1)	A1	All correct. Condone incorrect pairing if answers originally correct.
	Length = $\sqrt{(2.5^2 + 10^2)}$ = 10.3	M1A1	Must be correct formula correctly
	Edilgii - 1(2.0 · 10) - 10.0	[6]	applied.
	(2 -3)(2 -3)(4 -9)		
6.	$A^{2} = \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & -9 \\ 0 & 1 \end{pmatrix}$	M1A1	Do not allow M mark if all elements
			are squared. If correct, allow both marks. If incorrect, some working is
			needed to give M mark.
	. (1 3)		9
	$A^{-1} = \frac{1}{2} \times \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$	B1B1	B1 for ½, B1 for matrix.
	$\begin{pmatrix} 0 & 2 \end{pmatrix}$		
	(2 15)		
	$B = A^2 - 4A^{-1} = \begin{pmatrix} 2 & -15 \\ 0 & -3 \end{pmatrix}$	M1A1	M mark is independent of first M.
	$\begin{pmatrix} 0 & -3 \end{pmatrix}$	[6]	Allow M mark for 4A ⁻¹ - A ² .
_			
7.	$f(x) = 4 - \cos 2x$		
	(i) amplitude = ± 1 . Period = 180° or	B1B1	Independent of graph. Do not allow
	π		"4 to 5".
	(ii)	B2,1	Must be two complete cycles. 0/2 if
	6A ³		not. Needs 3 to 5 marked or implied.
	5+		Needs to start and finish at minimum. Needs curve not lines.
	3		minimum. Necus curve not imes.
	90 180 270 360		
	Max (90°, 5) and (270°, 5)	B1B1	Independent of graph (90, 270 gets
		[6]	B1). Allow radians or degrees.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0606	1

8.		
8 P 35 S S S S S S S S S S S S S S S S S S		
(i) O, P, S correct	B2,1	Give B1 if only one is correct.
(ii) 34, 35, 36, 37 correct	B2,1	These 2 B marks can only be awarded only if B2 has been given for part (i).
$O \cap S = \text{odd squares} \rightarrow 4$ $O \cup S = \text{odd and even squares}$	B1	Co.
$\rightarrow 49 + 5 = 54$	M1A1 [7]	Any correct method. Co.
9. (i) $\log_4 2 = \frac{1}{2} \log_8 64 = 2$ $\rightarrow 2x + 5 = 9^{1.5} \rightarrow x = 11$	B1B1 M1A1	Anywhere. Forming equation and correctly eliminating "log". Co.
(ii) Quadratic in 3 ^y	M1	Recognising that the equation is quadratic.
Solution of quadratic = 0	DM1	Correct method of solving the equation = 0.
→ 3 ^y = 5 or −10		oquation o.
Solution of 3 ^y = k	M1	Not dependent on first M1. Correct method.
y = 1.46 or 1.47	A1 [8]	Co. (not for $\log 5 \div \log 3$). Ignore ans from $3^y = -10$.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0606	1

[40		
10.		
x 2 3 4 5 6 y 9.2 8.8 9.4 10.4 11.6 xy 18.4 26.4 37.6 52.0 69.6 x² 4 9 16 25 36 (i) Plots xy against x² or x² against xy to get a line	M1 A2,1	Knows what to do. Points accurate – single line with ruler
c = 12 to 12.5 or -7.25 to -7.75 m = 1.55 to 1.65 or 0.62 to 0.63 xy = 1.6x ² + 12 or $x^2 = 0.625xy - 7.5$ $\rightarrow y = 1.6x + 12/x$	B1 B1 M1 A1	Allow if $y = mx + c$ used. Allow if $y = mx + c$ used. Must be $xy = mx^2 + c$ or
, ,		$x^2 = mxy + c.$
(ii) Reads off at xy = 45 → x = 4.5 to 4.6	M1A1 [9]	Algebra is also ok as long as xy = 45 is solved with an equation given M1 above.
11. y = xe ^{2x}		
(i) $d/dx(e^{2x}) = 2e^{2x}$	B1	Anywhere – even if dy/dx = $2x e^{2x}$ or $2 e^{2x}$.
$dy/dx = e^{2x} + x.2 e^{2x}$ sets to $0 \rightarrow x = -0.5$	M1 M1A1	Use of correct product rule. Not DM mark. Allow for stating his dy/dx = 0.
(ii) $d^2y/dx^2 = 2 e^{2x} + [2 e^{2x} + 4x e^{2x}]$ = $4 e^{2x}(1 + x) \rightarrow k = 4$	M1A1 A1	Use of product rule needed. Allow if he reaches $4e^{2x}(1 + x)$.
(iii) when $x = -0.5$, d^2y/dx^2 is +ve $(0.74) \rightarrow Minimum$	M1A1 [9]	No need for figures but needs correct x and correct d ² y/dx ² .
12. EITHER		
A B X	D 1	Anuarhoro
At A, y = 4 dy/dx = 2cosx - 4sinx dy/dx = 0 when tanx = $\frac{1}{2}$ At B, x = 0.464 or 26.6°	B1 M1A1 M1A1	Anywhere. Any attempt at differentiation. Sets to 0 and recognises need for tangent. Co. Accept radians or degrees here.

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0606	1

$\int (2\sin x + 4\cos x) dx = -2\cos x + 4\sin x$ Area under curve = $\begin{bmatrix}]_{0.464} - []_{0} \\ \rightarrow -(-2) = 2 \end{bmatrix}$ Read area = $2 - (4 \times 0.464) = 0.144$ (5 or 6). 12. OR $\frac{dy}{dx} = \frac{1}{2}(1 + 4x)^{-\frac{1}{2}} \times 4$ At P, m = $\frac{1}{2}(3)$ Eqn of tangent y - 3 = $\frac{2}{3}(x - 2)$ At B, x = $\frac{1^{2}}{3}$ $\int \sqrt{1 + 4x} dx = (1 + 4x)^{1.5} \times \frac{2}{3} \div 4$ Area under curve = $\begin{bmatrix}]^{2} - []^{0} = 4^{1}/_{3} \end{bmatrix}$ Shaded area = Area of trapezium - $4^{1}/_{3} = {}^{1}/_{3}$ area to left of curve = $\begin{bmatrix}]_{3} - []_{1} = 1^{2}/_{3} \end{bmatrix}$ Any attempt with trig. functions. x-limits used correctly. If "0" ignored or automatically set to 0, give DM0. M1A1 Any attempt with dy/dx - not for $\sqrt{1 + 4x} = 1 + 2\sqrt{x}$. A mark needs everything. Not for normal. Not for "y + y ₁ " or for monwrong side. Allow A for unsimplified. Any attempt at integration with $(1 + 4x)$ to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. A1 co. [M1A1 A1 co. [M1A2 A1 co. [M1A3 A1 co. [M1A4 A1 co. [M1A5] Plan mark independent of other Ms. [M1A6] A1 co. [M1A7 A1 co. Plan mark independent of other Ms. Plan mark independent of other Ms.				
$dy/dx = \frac{1}{2}(1 + 4x)^{\frac{1}{2}} \times 4$ $At P, m = \frac{2}{3}$ Eqn of tangent $y - 3 = \frac{2}{3}(x - 2)$ $At B, x = 1^{\frac{2}{3}}$ Eqn of tangent $y - 3 = \frac{2}{3}(x - 2)$ $At B, x = 1^{\frac{2}{3}}$ $\int \sqrt{(1 + 4x)}dx = (1 + 4x)^{1.5} \times \frac{2}{3} + 4$ $Area under curve = []^2 - []^0 = 4^{\frac{1}{3}}$ $Shaded area = Area of trapezium - 4^{\frac{1}{3}} = \frac{1}{3}$ $Or Area under y = \frac{2}{3}x + 1^{\frac{2}{3}} - 4^{\frac{1}{3}} = \frac{1}{3} Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = y^3/12 - y/4 Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = \frac{1}{3} - \frac{1}{3} Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = \frac{1}{3} - \frac{1}{3} Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} Ior \int xdy = \int (\frac{1}{3}y^2 - \frac{1}{3})dy = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} = \frac{1}{3} - \frac$	Area under cui →-(-2) = 2. Reqd area = 2	rve = [] _{0.464} - [] ₀	DM1	x-limits used correctly. If "0" ignored or automatically set to 0, give DM0. Plan mark – must be radians for both
At P, m = ${}^2/_3$ Eqn of tangent y - 3 = ${}^2/_3$ (x - 2) At B, x = $1^2/_3$ M1A1 $\int \sqrt{(1 + 4x)} dx = (1 + 4x)^{1.5} \times {}^2/_3 \div 4$ Area under curve = $[]^2 - []^0 = 4^1/_3$ Shaded area = Area of trapezium - $4^1/_3 = {}^1/_3$ Or Area under y = ${}^2/_3$ x + $1^2/_3$ - $4^1/_3$ = ${}^1/_3$ Or Area under y = ${}^2/_3$ x + $1^2/_3$ - $4^1/_3$ = ${}^1/_3$ Or Area under y = ${}^2/_3$ x + $1^2/_3$ - $4^1/_3$ = ${}^1/_3$ Any attempt at integration with (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. A1 co. [or $\int x dy = \int ({}^1/_4 y^2 - {}^1/_4) dy = y^3/12 - y/4$ Final part of tangent y - 3 = ${}^2/_3$ and the part of	9 1	y=√1+4×		
A1 (1 + 4x) to a power. Other fn of x included, M1 only. Shaded area = Area of trapezium - $4^1/_3 = 1/_3$ Or Area under $y = 2^1/_3 \times 1^2/_3 - 4^1/_3 = 1/_3$ A1 (1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must attempt a value at 0. Plan mark independent of M marks. A1 A1 co. [or $\int x dy = \int (1/_4 y^2 - 1/_4) dy = y^3/12 - y/4$ [M1A1 Attempt at differentiation. A1 for each term. area to left of curve = $[3]_3 - [3]_1 = 1^2/_3$ shaded area = $1^2/_3 - \text{triangle } (1/_2 \cdot 2 \cdot 1^1/_3) = 1^1/_3$ M1 A1 Must be limits 1 to 3 used correctly. Plan mark independent of other Ms. Plan mark independent of other Ms.	At P, m = 2 / ₃ Eqn of tangent			$\sqrt{(1 + 4x)} = 1 + 2\sqrt{x}$. A mark needs everything. Not for normal. Not for "y + y ₁ " or for m on wrong side. Allow A for
Area of trapezium - $4^1/_3 = 1/_3$ Or Area under $y = 2^1/_3 \times + 1^2/_3 - 4^1/_3 = 1/_3$ [or $\int x dy = \int (1/_4 y^2 - 1/_4) dy = y^3/12 - y/4$ [M1 Plan mark independent of M marks. A1 co. [M1A1 Attempt at differentiation. A1 for each term. area to left of curve = $[]_3 - []_1 = 1^2/_3$ shaded area = $ 1^2/_3 - \text{triangle} (1/_2.2.1^1/_3) = 1/_3 $ M1 Plan mark independent of M marks. A1 Plan mark independent of M marks. A1 Plan mark independent of M marks. A1 Plan mark independent of M marks.	Area under cu	rve = $[]^2 - []^0 = 4^1/_3$	A1	(1 + 4x) to a power. Other fn of x included, M1 only. Use of limits 0 to 2 only. Must
$y = \frac{2}{3}x + \frac{1^2}{3} - \frac{4^1}{3} = \frac{1}{3}$ A1 A1 co. [or $\int x dy = \int (\frac{1}{4}y^2 - \frac{1}{4}) dy$ $= \frac{y^3}{12} - \frac{y}{4}$ [M1A1 Attempt at differentiation. A1 for each term. area to left of curve = $\begin{bmatrix} 3 - \begin{bmatrix} 1 \end{bmatrix} = \frac{1^2}{3}$ shaded area = $\frac{1^2}{3} - \text{triangle } (\frac{1}{2}.2.1^{\frac{1}{3}})$ $= \frac{1}{3} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ M1 A1 Plan mark independent of other Ms.			M1	Plan mark independent of M marks.
$= y^3/12 - y/4$ area to left of curve = $[]_3 - []_1 = 1^2/_3$ shaded area = $1^2/_3 - \text{triangle } (1/_2.2.1^1/_3)$ $= 1/_3]$ $[M1A1]$ Attempt at differentiation. A1 for each term. $DM1A1$ $M1$ $A1$ Plan mark independent of other Ms. $A1$			A1	A1 co.
shaded area = $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		⁄ ₄ y ² - ¹ ⁄ ₄)dy	-	•
$1^2/_3$ – triangle (½.2.1 ¹ / ₃) M1 Plan mark independent of other Ms. = $^1/_3$] A1]			DM1A1	Must be limits 1 to 3 used correctly.
	12	$^{2}/_{3}$ – triangle ($^{1}/_{2}$.2.1 $^{1}/_{3}$)	A1]	Plan mark independent of other Ms.

DM1 for quadratic equation. Equation must be set to 0.

Formula - must be correctly used. Allow arithmetical errors such as errors over squaring a negative number.

Factors – must be an attempt at two brackets. Each bracket must then be equated to 0 and solved.

Completing the square – must result in $(x\pm k)^2 = p$. Allow if only one root considered.

JUNE 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/02

ADDITIONAL MATHEMATICS
Paper 2

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003		2

1	Put $x = -b/2$ (or synthetic or long division to remainder) $\Rightarrow 3b^3 + 7b^2 - 4 = 0 \text{ AG}$	M1	A1	
	Search $\Rightarrow b = -1$ [or $b = -2$] (1 st root or factor)	M1	A1	
	Attempt to divide $\Rightarrow 3b^2 + 4b - 4$ (or $3b^2 + b - 2$) or further search $\Rightarrow b = -2$ [or $b = -1$]	M1		
[7]	Factorise (or formula) [3 term quadratic] or method for 3^{rd} value $\Rightarrow b = -2$, -1 or $^2/_3$	DM1	A1	
2 (i)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \pm (9\mathbf{i} + 12\mathbf{j})$	M1		
	Unit vector = $\overrightarrow{AB} \div \sqrt{9^2 + 12^2} = \pm (0.6\mathbf{i} + 0.8\mathbf{j})$ [Accept any equivalent unsimplified version of column vectors, $\pm \begin{pmatrix} 9 \\ 12 \end{pmatrix}$, $\pm \begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix}$]	M1	A1	
(ii)	$\overrightarrow{AC} = {}^{2}/_{3}\overrightarrow{AB} = 6\mathbf{i} + 8\mathbf{j}$ (or $\overrightarrow{CB} = {}^{1}/_{3}\overrightarrow{AB} = 3\mathbf{i} + 4\mathbf{j}$)	M1		
[6]	$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ (or $\overrightarrow{OB} - \overrightarrow{CB}$) = 12 i + 5 j (or equivalent)	M1	A1	
3	$\int (3x^{0.5} + 2x^{-0.5}) dx = 3x^{1.5}/1.5 + 2x^{0.5}/0.5$ (one power correct sufficient for M mark)		M1 A1 A1	
	$\int_{1}^{8} = (2 \times 8\sqrt{8} + 4\sqrt{8}) - (2 + 4)$ Must be an attempt at integration	M1		
[6]	Putting $\sqrt{8} = 2\sqrt{2}$ (i.e. one term converted $\sqrt{2}$ to $\sqrt{2}$) \Rightarrow -6 + 40 $\sqrt{2}$	B1√	A1	
4	$16^{x+1} = 2^{4x+4}$ or 16×2^{4x} or 16×4^{2x} or 16×16^{x} 20 $(4^{2x}) = 20(2^{4x})$ or $5(2^{4x+2})$ or 20×16^{x}	B1	B1	
	$2^{x-3} 8^{x+2} = 2^{x-3} 2^{3x+6} = 2^{4x+3} \text{ or } 8 \times 2^{4x} \text{ or } 8 \times 4^{2x} \text{ or } 8 \times 16^{x}$	B1		
[4]	Cancel 2^{4x+2} or 2^{4x} and simplify $\Rightarrow 4.5$ or equivalent		B1	
	$f(0) = \frac{1}{2}$ $f^2(0) = f(\frac{1}{2}) = (\sqrt{e + 1})/4 \approx 0.662 \text{ (accept 0.66 or better)}$	B1 N	11 A1	
(ii)	$x = (e^y + 1)/4$ $\Rightarrow e^y = 4x - 1$ $\Rightarrow f^1 : x \mapsto \ln(4x - 1)$	M	I1 A1	
(iii)	Domain of f^{-1} is $x \ge \frac{1}{2}$ Range of f^{-1} is $f^{-1} \ge 0$	B1	B1	
[7]				

Page 2	Page 2 Mark Scheme		Paper
IGCSE EXAMINATIONS – JUNE 2003		0606	2

6 (i)	$x^2 - 8x + 12 = 0$ Factorise or formula \Rightarrow Critical values $x = 2, 6$	M1	A1
(.,	$x^2 - 8x + 12 > 0 \qquad \Rightarrow \{x : x < 2\} \cup \{x : x > 6\}$	'''	A1
	$\rightarrow (k \cdot k \cdot k) \circ (k \cdot k \cdot k \cdot k)$		
(ii)	$x^2 - 8x = 0$ \Rightarrow Must be an attempt to find 2 solutions	M1	
	$x^2 - 8x < 0 \qquad \Rightarrow \{x : 0 < x < 8\}$	A1	
(iii)	Solution set of $ x^2 - 8x + 6 < 6$ is combination of (i) and (ii)	B1	B1
	${x:0 < x < 2} {x:6 < x < 8}$	(one	for
r=1		each	
[7]		rang	e)
7 (i)	6! = 720	B1	
/::\	M ⇒ 5! = 120	1.11	۸ 1
(11)	W → 5! – 120	M1	A1
(iii)	4! 48	M1	A1
(iv)	6!/4! 2! = 15 Accept ₆ C ₄ or ₆ C ₂ = 15	B1	
(v)	5!/3! 2! = 10 (or, answer to (iv) less ways M can be omitted)	M1	A1
[8]	(Listing – ignoring repeats ≥ 8 [M1] ⇒ 10 [A1])		
	Collect $\sin x$ and $\cos x \Rightarrow \sin x = 5 \cos x$	M1	
(.,	Divide by $\cos x$ $\Rightarrow \tan x = 5$ (accept $\frac{1}{5}$ – for M only)	M1	
	$x = 78.7^{\circ}$ or (258.7°) i.e. 1^{st} solution + 180°	A1	A1√
		5.4	
(ii)	Replace $\cos^2 y$ by $1 - \sin^2 y$	B1	
	$3\sin^2 y + 4\sin y - 4 = 0$ Factorise (or formula) (3 term quadratic) $\Rightarrow \sin y = \frac{2}{3}$ (or -2)	M1	
	y = 0.730 (accept 0.73 or better) or (2.41) i.e. π (or $\frac{22}{7}$) less 1 st solution	A1	A1√
[8]			
9 (i)	$\int (12t - t^2) dt = 6t^2 - \frac{1}{3}t^3$	M1	A1
	•	1011	Λī
	From $t = 0$ to $t = 6$ distance = $\int_0^6 = 144$		A1
	Max. speed = $36 \Rightarrow$ from $t = 6$ to $t = 12$ distance = 36×6 (= 216)		
			B1
	During deceleration distance = $(0^2 - 36^2) \div 2(-4) = 162$		
	Area of Δ is fine for M mark but value of t must be from $constant$		
	acceleration <i>not</i> $12 - 2t = \pm 4$		
	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M1	
	Total distance = 144 + 216 + 162 = 522		A1
	V		Λ1
(ii)			
		B2, 1	1 0
[8]	•		., 5
		i	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – JUNE 2003	0606	2

10 (i)	$\frac{dy}{dx} = \frac{(x-2)2 - (2x+4)1}{(x-2)^2} = \frac{-8}{(x-2)^2} \Rightarrow k = -8$	M1 A1
	Must be correct formula for M mark (accept $\frac{-8}{(x-2)^2}$ as answer)	
(ii)	When $y = 0$, $x = -2$ (B mark is for <i>one</i> solution only) NB. $x = 0$, $y = -2$	B1
	$m_{tangent} = -8/16 = -1/2 \implies m_{normal} = +2$ (M is for use of m_1 m_2 = -1, whether numeric or algebraic)	M1
	Equation of normal is $y - 0 = 2(x + 2)$ (candidate's m_{normal} and $[x]_{y=0}$ for M mark)	M1 A1
(iii)	When $y = 6$, $x = 4$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = \frac{-8}{(x-2)^2} \times 0.05 = \frac{-8}{4} \times 0.05 = -0.1 \text{ (accept } \pm \text{)}$	B1 M1 A1√
	i.e. $\left[\frac{dy}{dx}\right]_{x=4}$ x 0.05 for M mark.	
[9]	$$ is for error in k only. (Condone S $\approx \frac{dy}{dx}$ x S)	
11	EITHER	
	y ♠ D (13½, 11)	
	O (3, 2) C (7, 4)	
	(i) $m_{AC} = (4 - 2)/(7 - 3) = \frac{1}{2}$	B1
	$m_{BD} = \frac{1}{2}$	B1√
	$m_{BC} = -2$	B1√
	Equation of <i>BD</i> is $y - 11 = \frac{1}{2}(x - 13.5)$ i.e. $4y = 2x + 17$	M1
	Equation of <i>BC</i> is $y - 4 = -2(x - 7)$ i.e. $y = -2x + 18$	M1
	Solving $y = 7$, $x = 5.5$	M1 A1

Page 4	Page 4 Mark Scheme		Paper
IGCSE EXAMINATIONS – JUNE 2003		0606	2

	(ii) $\frac{\Delta EBD}{1.724}$ = (ratio of corresponding sides or x- or y- steps) ² = 4/1	M1	A1
	ΔEAC	A1	
	Quadrilateral <i>ABDC</i> / ∆ <i>EBD</i> = 3/4		
	[Or, find <i>E</i> (1/2, -3) and then use array method to find <i>one</i> of:		
[10]	area quadrilateral <i>ABDC</i> = 22.5 area Δ <i>EBD</i> = 30	M1 A1	A1
[10]	Find other area and hence ratio = 3/4 or equivalent]		
11	OR		
	B		
	$\begin{bmatrix} 6 \\ 7 \end{bmatrix}$		
	P 5 Q		
	(i) $(r+6)^2 + 5^2 = (r+7)^2$	M1	
	Solve $\Rightarrow r = 6$	M1	A1
	$\tan AOB = 5/12$ $AOB = 0.395 \text{ or } 22.6^{\circ}$	M1	
	Length of arc <i>AB</i> = 6 x 0.395 = 2.37 or better	M1	A1
	(ii) Sector $AOB = \frac{1}{2} \times 6^2 \times 0.395 = 7.11$	M1	
	Shaded area = ½ x 5 x 12 - 7.11	M1	
	All figures in sector and triangle correct $\sqrt{}$	A 1√	
[10]	22.9 or better	A1	

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the June 2003 examination.

	maximum	minimum mark required for grade:		
	mark available	Α	С	Е
Component 1	80	54	29	20
Component 2	80	60	34	23

Grade A^{\star} does not exist at the level of an individual component.