The Hybrid- π Model

• Simplifications:

- $\triangleright R_S$ and R_D can be safely neglected
- For *low to moderate frequencies*, the *capacitive reactances* of all the capacitances will be *extremely large* \Rightarrow *can be neglected*
- ► If both B and S are connected to fixed DC potentials, current source $g_{mb}v_{bs}$ disappears
- Leads to the *Low-Frequency T-Model*, having only *two components*: $g_m v_{gs}$ and r_0
- \triangleright Simplest possible equivalent results if r_0 is also neglected (ideal current source!)

Low-Frequency T-Model
With Body Effect

Low-Frequency T-Model Without Body Effect

Without CLM

Frequency Specification of MOSFETs

• Only *Unity-Gain Frequency* (f_T)

- $i_0 \approx g_m v_{gs}$ (neglecting *reverse transmission* through C_{gd})
- $i_i = j\omega(C_{gs} + C_{gd})$

$$\Rightarrow \frac{i_0(j\omega)}{i_i(j\omega)} = \frac{g_m}{j\omega(C_{gs} + C_{gd})}$$

At
$$f = f_T$$
, $|i_0/i_i| = 1$

$$\Rightarrow f_{T} = \frac{g_{m}}{2\pi \left(C_{gs} + C_{gd}\right)}$$

• Remarkable similarity with that for BJT

- Maximum Operable Frequency (f_{max}):
 - \succ Maximum possible f_T
 - Noting that $C_{gs} >> C_{gd}$, neglecting C_{gst} , and substituting the expressions for C_{gsi} and g_m :

$$f_{\text{max}} = f_{\text{T}} \Big|_{\text{max}} = \frac{3\mu_{\text{n}} V_{\text{GT}}}{4\pi L^2}$$

- $ightharpoonup f_{\text{max}} \propto 1/L^2$
 - Thrust towards making L as small as possible
- $ightharpoonup f_{max} \propto V_{GT}$
 - Making V_{GT} large may be detrimental!