Applied Statistical Multivariate Analysis Classification Part II Non-Parametric Classifiers- K Nearest Neighbors

Instructor: Yaser Zerehsaz

موسسه آموزش عالی آزاد توسعه برگزار کننده دورههای تخصصی علم داده

Problem Definition

 In theory, we would like to estimate the conditional probability of y given x

$$P_{y|\mathbf{x}} = \frac{P_{\mathbf{x}|y}P_y}{P_{\mathbf{x}}}$$

- In Bayesian methods, we assumed that $P_{\mathbf{x}|y}$ is a multivariate normal distribution
- However, this is not always the case in practice
- How can we estimate $P_{y|x}$ without making any assumptions about $P_{x|y}$

Density estimation

- Given z as a random vector, we would like to estimate the density P(z).
- Given a region \mathcal{R} , the probability that z falls in this region is

$$P = \int_{\mathcal{R}} P(\mathbf{z}) d\mathbf{z}$$

- Now, suppose that we have N observations K of which falling in region $\mathcal R$
- K is a binomial random variable with a mass function given by

$$\binom{N}{K} P^K (1-P)^{N-K}$$

So, $E\left(\frac{K}{N}\right) = P$ is the mean fraction of observations falling in \mathcal{R}

and $var\left(\frac{K}{N}\right) = \frac{P(1-P)}{N}$ is the variability of this fraction

Density estimation

- What happens if $N \to \infty$?
- In this case, $var\left(\frac{K}{N}\right) = \frac{P(1-P)}{N} \to 0$ and $K \cong NP$
- Also, if we assume that \mathcal{R} is small enough that $P(\mathbf{z})$ is constant over the region, we have

$$P = \int_{\mathcal{R}} P(\mathbf{z}) d\mathbf{z} \cong P(\mathbf{z}) \int_{\mathcal{R}} d\mathbf{z} \cong P(\mathbf{z}) V$$

Where V is the volume of \mathcal{R}

Hence, we can write

$$K \cong NP \cong NP(\mathbf{z})V$$

$$P(\mathbf{z}) \cong \frac{K}{NV}$$

So, we can fix K, and determine the value of V from the data

K Nearest Neighbors Density Estimation

- In KNN, we consider a small sphere centered on z
- We increase the radius of the sphere until it covers K points
- We let V be the volume of this sphere
- If the density is high around point z, V will be small

Increasing V to cover K points means finding K nearest neighbors

Back to the Classification Problem

- We would like to estimate $P_{y|x}$, so we need to estimate $P_{x|y}$
- Suppose that we have N observations with M classes
- Each class m has N_m observations and $\sum_{m=1}^{M} N_m = N$
- Now, we have a new observation x and we would like to classify it
- We find the K nearest neighbors of x irrespective of their classes

Back to the Classification Problem

• The conditional distribution of x given class y = m is given as

$$P_{\mathbf{x}|y=m} = \frac{K_m}{N_m V}$$

The marginal density of x can be defined as

$$P_{\mathbf{x}} = \frac{K}{NV}$$

• The posterior probability of y = j given x is computed as

$$P_{y=m|\mathbf{x}} = \frac{P_{\mathbf{x}|m}P_m}{P_{\mathbf{x}}} = \frac{\frac{K_m}{N_m V} \times \frac{N_m}{N}}{\frac{K}{NV}} = \frac{K_m}{K}$$

Now, we can apply the Bayes rule again as

$$f^* = \underset{m=1,2,...,M}{\operatorname{argmax}} P_{y=m|x} = \underset{m=1,2,...,M}{\operatorname{argmax}} \frac{K_m}{K}$$

Types of Distances

- The distance between two points x and \tilde{x} can be measured in different ways
- Euclidean distance:

$$\|\mathbf{x} - \tilde{\mathbf{x}}\|_2 = \sqrt{\sum_{j=1}^p (x_j - \tilde{x}_j)^2}$$

• *L*₁ distance:

$$\|\mathbf{x} - \tilde{\mathbf{x}}\|_1 = \sum_{j=1}^p |x_j - \tilde{x}_j|$$

Selecting K

When K is small

- Our classifier is "more blind" to the overall distribution.
- Overly flexible fit, which will have low bias but high variance.
 Graphically, our decision boundary will be more jagged

When K is large

- More votes are averaged in each prediction and hence is more resilient to outliers.
- Larger values of K will have smoother decision boundaries which means lower variance but increased bias.

What happens if K = N?

Pros and Cons

Cons

- The KNN algorithm is computationally expensive in the testing phase
- KNN can suffer from skewed class distributions. For example, if a certain class is very frequent in the training set, it will tend to dominate the majority voting of the new example

Pros

 KNN algorithm is simple to understand and easy to implement with zero to little training time

Face Recognition

Bias-Variance Tradeoff

- Lets assume that we have a training dataset T and $Y = f(x) + \varepsilon$
- We can use inputs X and labels Y to estimate a function (classifier) f(x) with $\hat{f}(x)$
- For a squared error loss function, the expected test error for a new observation x_0

$$Err = E(Y - \hat{f}(x_0))^2 = E(Y - \hat{f}(x_0) + f(x) - f(x))^2 = \sigma_{\varepsilon}^2 + Bias^2 (\hat{f}(x_0)) + var(\hat{f}(x_0))$$

$$Bias = f(x) - E(\hat{f}(x_0))$$

$$var(\hat{f}(x_0)) = E([\hat{f}(x_0) - E(\hat{f}(x_0))]^2)$$

Bias-Variance Tradeoff

Generalization Problem in Classification

Bias-Variance Tradeoff

Cross Validation

- Divide your dataset \mathcal{D} into two groups of training and testing sets
- Divide your training dataset \mathcal{T} into K folds (groups) with K-1 folds for training and one fold (kth fold) for validation

Train	Validation	Train	Train	Train	Train
-------	------------	-------	-------	-------	-------

- Train your model using K-1 training folds and compute the training error for these folds
- Compute the validation error using the kth fold
- Repeat this for k = 1,2, ..., K

The cross validation error is the average of all *K* validation errors

The training error is the average of all *K* training errors

The testing error is computed based on the testing set

Select the tuning parameters minimizing cross validation error