A.2.

24. (NEW) The heat exchanger of claim 12, wherein the mutual spacing is between 20 and 30 mm.

REMARKS

The above amendments are made to place the application into better condition for examination. Favorable consideration of the application is respectfully requested.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L. L. P.

Patrick C. Keane

Registration No. 32,858

P.O. Box 1404 Alexandria, Virginia 22313-1404 (703) 836-6620

Date: February 19, 2002

- 1. (Amended) A method for producing a heat exchanger [(23, 33, 59)] having a flow-through chamber [(29)] for a heat transfer medium, in which two walls [(13, 15), in particular of sheet copper,] are disposed facing one another and are joined to make a hollow body [(23, 33, 59)] through which a medium can flow, and the walls are fastened to one another at a plurality of connecting points [(11)] inside [the] a surface between [the] edges of the hollow body [(23, 33, 59), characterized in that], the two walls [(13, 15) are] being made to mesh with one another inside the surface between the edges of the hollow body [(23, 33, 59)] by material deformation [of the material].
- 2. (Amended) The method of claim 1, [characterized in that] wherein the material deformation is performed in punctate fashion, [preferably] with a diameter of from 3 to 6 mm.
- 3. (Amended) The method of claim 1 [or 2, characterized in that], wherein at least one [and preferably both walls are] wall is provided with circular indentations, and [the] connections are made in [the] a region of the indentations with spacing on all sides from [the] an edge thereof.

- 4. (Amended) The method of [one of claims 1-3, characterized in that] <u>claim 1</u>, <u>wherein</u> the <u>two</u> walls are preshaped prior to being joined.
- 5. (Amended) The method of [one of claims 1-5, characterized in that claim 1, wherein the hollow body [(23, 33, 59)] is exposed to an internal pressure that is elevated compared to [the] an external pressure.
- 6. (Amended) The method of [one of claims 1-5, characterized in that the] <u>claim 1</u>, <u>wherein</u> denticulation of the <u>two</u> walls is stabilized by pressing on a ring around the <u>material</u> deformation and inserting a disk in the <u>material</u> deformation.
- 7. (Amended) A heat exchanger [(23, 33, 59)] with two joined[-]together walls [(13, 15)] and between them a flow-through chamber [(29)] for a heat transfer medium, in which the walls [(13, 15)] are joined together at a plurality of connecting points [(11)] inside [the] a surface between [the] edges of the heat exchanger [(23, 33, 59), characterized in that] wherein the walls [(13, 15)] are made to mesh with one another at the connecting points [(11)] inside the surface between the edges of the heat exchanger and are fastened to one another by means of [these] denticulations [(11)].

- 8. (Amended) The heat exchanger of claim 7, [characterized in that the mutual] wherein denticulations [(11)] of the walls [(13, 15)] are embodied annularly.
- 9. (Amended) The heat exchanger of claim 8, [characterized in that] comprising a ring [(82)] encompassing [the] <u>a</u> toothed place [(11) is provided].
- 10. (Amended) The heat exchanger of [one of claims 7-9, characterized in that] <u>claim</u>

 7, wherein the denticulations [(11)] are produced by an upsetting-pressing process and without penetration of [the] sheet metal <u>used to form the walls</u>.
- 11. (Amended) The heat exchanger of [one of claims 7-10, characterized in that] claim 7, wherein at least one wall comprises sheet copper[, in particular] with a thickness of from 0.3 to 0.8 mm[, preferably 0.5 to 0.65 mm].
- 12. (Amended) The heat exchanger of [one of claims 7-11, characterized in that] claim 7, wherein the denticulations [(11)] are disposed with a mutual spacing of from 10 to 50 mm[, and preferably of between 20 and 30 mm].

- 13. (Amended) The heat exchanger of [one of claims 7-12, characterized in that] claim 7, wherein the denticulations [(11)] are disposed in at least one of rows [or] and in a grid pattern.
- 14. (Amended) The heat exchanger of [one of claims 7-13, characterized in that] claim 7, wherein the denticulations [(11)] are disposed inside an approximately circular indentation [(59)] of the [wall] walls.
- 15. (Amended) [The use of a] A compression-molding sheet-metal joining method for mutual punctate fastening [(11)] of two parallel walls [(13, 15)] that enclose a flow-through chamber [(29)] of a heat exchanger.
- 16. (Amended) A construction kit for a heat exchanger system, [having] comprising:

 a plurality of heat exchangers [as defined by one of claims 6-12]; and [having]

 connecting elements for the connections of the heat exchangers, each heat exchanger

 having a flow-through chamber for a heat transfer medium, in which two walls are

 disposed facing one another and are joined to make a hollow body through which a

 medium can flow, and the walls are fastened to one another at a plurality of connecting

 points inside a surface between edges of the hollow body, the two walls being made to

Marked-up Claims

mesh with one another inside the surface between the edges of the hollow body by material deformation.

- 17. (Amended) The construction kit of claim 16, [characterized in that] wherein the connecting elements are plug connectors.
 - 18. (Amended) The construction kit of claim 16 [or 17], having a pump.
- 19. (Amended) The construction kit of [one of claims 16-18] <u>claim 16</u>, having a hotwater tank.
- 20. (Amended) A method for producing a heat exchanger [(23, 33, 59)] having a flow-through chamber [(29)] for a heat transfer medium, in which two sheet metal walls [(13, 15)], are disposed facing one another and are joined together to make a hollow body [(23, 33, 59)] capable of experiencing a flow through it, and the walls are fastened to one another at a plurality of connecting points [(11)] inside [the] a surface between the edges of the hollow body [(23, 33, 59), characterized in that] wherein in at least one [and preferably both] of the walls [(13, 15)] at the connecting points [(11)] inside the surface between [the] edges of the hollow body [(23, 33, 59)], circular indentations [(59)] that provide reinforcement by deformation of [the] material are shaped out, and the [sheet-metal] two

Application No. <u>Unassigned</u>
Attorney's Docket No. <u>032553-021</u>
Page 6

Attachment to Preliminary Amendment

Marked-up Claims

walls are [subsequently] joined together inside these indentations [(59)] by means of at least one of a material engagement [or] and a positive engagement.