Introduction to Reinforcement Learning

2025. 1st semester

What is Machine Learning?

• "Learning is any process by which a system improves performance from experience." -- Herbert Simon

- Definition by Tom Mitchell (1998):
 - Machine Learning is the study of algorithms that
 - *▶* improve their performance P
 - > at some task T
 - *>* with experience *E*.
 - A well-defined learning task is given by $\langle P, T, E \rangle$.

Traditional Programming

Machine Learning

When Do We Use Machine Learning?

- ML is used when:
- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

- Learning isn't always useful:
- There is no need to "learn" to calculate payroll

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

Some more examples of tasks that are best solved by using a learning algorithm

Recognizing patterns:

- Facial identities or facial expressions
- Handwritten or spoken words
- Medical images

Generating patterns:

- Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual paderns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging software
- [Your favorite area]

Samuel's Checkers-Player

- "Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed."
 - Arthur Samuel (1959)

Improve on task T, with respect to performance metric P, based on experience E

- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver
- T: Categorize email messages as spam or legitimate
- P: Percentage of email messages correctly classified
- E: Database of emails, some with human-given labels

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning: Regression

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x

— y is real-valued == regression

Supervised Learning: Classification

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x
 - y is categorical == classification

Supervised Learning: Classification

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x
 - y is categorical == classification

1 1 1 1 1

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

Tumor Size

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

. .

Unsupervised Learning

- Given x1, x2, ..., xn (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Unsupervised Learning

Genomics application: group individuals by genetic similarity

Organize computing clusters

Market segmentation 단국대학교 DANKOOK UNIVERSITY

Unsupervised Learning

Social network analysis

Astronomical data analysis

Unsupervised Learning

- Independent component analysis
 - separate a combined signal into its original sources

1 1 1 1

Reinforcement Learning

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states → actions that tells you what to do in a given state

Examples:

- Credit assignment problem
- Game playing
- Robot in a maze
- Balance a pole on your hand

1 1 1 1

What is RL?

• The process of developing through trial and error

 A learning process that corrects behavior through trial and error to maximize cumulative rewards in sequential decisionmaking problems

1 1 1 1

Sequential Decision-Making Process

- Shower Problem
 - Taking off clothes
 - Taking a shower
 - Drying up
 - Wearing clothes
- No matter how simple a process is, several decisions must be made "sequentially" in order to successfully complete it.

Examples of Sequence decision-making

- Portfolio Management in Stock Investments
 - What stocks do I buy/sell every moment?
- Drive
 - Which road will you use? highway? national highway?
 - Which lane will you use?
 - ➤ What if the car in front is a beginner driver? Or a truck?
 - Should I step on the accelerator or brake now?
- Game (LOL)
 - Which champion will you play?
 - which line are you going to go on?
 - which item to buy?

Agent and environment interact at discrete time steps: t = 0, 1, 2, K

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \Re$

and resulting next state: S_{t+1}

- Agent: The protagonist (hero), subject, of reinforcement learning
 - Cyclists, drivers, game characters, etc.
 - 1. Decide which action a_t should be taken in the current state s_t
 - 2. The environment changes through the determined action a_t
 - 3. Receive information about the reward r_t and the next state s_{t+1} from the changed environment

- Environment: everything except the agent
 - wind, bike, floor, etc...
 - 1. Cause state change through action a_t received from agent
 - 2. State: $S_t \rightarrow S_{t+1}$
 - 3. Calculate the reward r_{t+1} for the agent
 - 4. Deliver state, reward S_{t+1} , T_{t+1} to agent

- State: A record of all information about the current state in numerical form
 - A position of a bike = {Left, Center, Right}
 - **An angle of a handle** = {Left, Center left, Center, Center right, Right}

Reward

• Signs of how well you are (or subject is) making decisions

- cumulative reward
 - The sum of rewards received in the process of reinforcement learning
- E.g., Cycling
 - +1 per 1m moving forward

Property of Reward

- Not how but how much
- Quantitative rewards have no "How" information
- So how can you know about "How"?
- Numerous trials and errors
 - Stepped on the pedal slowly and fell quickly!
 - Aha, if you pedal slowly, you fall quickly!
 - I tried pedaling quickly and I could go 3m more!
 - Shall we step on the pedal a little faster then?
- Depending on how you set up the reward, the direction of trial-and-error changes

Property of Reward

- Reward is a scalar, not a vector
 - Only one goal should be set
 - "Is this really an appropriate assumption?"
- Multiple goals can be set as one reward
 - through weighting+x per 1m-y whenever crossing a restricted area
 - *Reward* = x y
- Reinforcement learning may not be appropriate for problems that are difficult to represent reward in scalar form

Property of Reward

- Benefits from Asset Portfolio Allocation
 - rate of return
 - Maximum drawdown

Distance traveled on a bicycle without falling

winning on the game

Property of Reward

- Rare and delayed rewards
- Baduk ($\exists \vdash \exists$): +10000 if you win, but the impact of the current pick happens after a long time
- For supervised learning, "instant" rewards occur

An advantage of RL

Parallelization

What if 100 agents went through trial and error at the same time?

AlphaGO

1202 CPUs, 176 GPUs, 1 Human Brain, 100+ Scientists.

Lee Se-dol

1 Coffee.

Reinforcement learning + Massive computing power

b Neural network training

MARKOV PROCESS

1 1 1 1

Stochastic Process

- Stochastic Process (Random Process)
 - widely used as mathematical models of systems and phenomena that appear to vary in a random manner
 - a sequence of possible events in which happens with probabilities

- Markov Process (Markov Chain)
 - A stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event
- Markov Property
 - The conditional probability distribution of future states of the process depends only upon the present state
 - Also called as memoryless property

.

Markov chain

Markov chain model

- Markov chains were introduced in 1906 by Andrey Markov (Russian mathematician, 1856-1922) and were named in his honor
- One of the most powerful tools for analyzing complex stochastic system
- Markov Chain has been applied to short term market forecasting and business decision, analysis of algorithms, network protocols, diverse social issues and phenomenon

 Markov Process ≡ {State, Transition Probability}

• State

- Discrete set of states $i \in S$
- All states of the Markov chain communicate with each other
- Let state of a system at time t be $X_{_{\it f}}$
- Transition Probability
 - The probability of moving from one state to another is defined regardless of which state you have been through

$$p_{ij}(t) = \Pr\{X_{t+1} = j \mid X_t = i\} \quad i, j \in S$$

1 1 1 1

Markov Process

Memoryless Property

$$\Pr(X_{n+1} = x \mid X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_1 = x_1) = \Pr(X_{n+1} = x \mid X_n = x_n),$$

Example

- Weather Model

Definition. The *transition matrix* at time n is the matrix $P(n) = (p_{ij}(n))$, i.e. the (i, j)th element of P(n) is $p_{ij}(n)$. The transition matrix satisfies:

- (i) $p_{ij}(n) \ge 0 \quad \forall i, j$ (the entries are non-negative)
- (ii) $\sum_{i} p_{ij}(n) = 1 \quad \forall i$ (the rows sum to 1)

Example

Weather model

- When today is clear, what is the probability that tomorrow will be clear?
 - ➤ One-step transition probability
- When today is clear, what is the probability that the day after tomorrow will be clear?
 - > Two-step transition probability
- When observed for a long time, what is the ratio of sunny days to cloudy days?
 - > Stationary distribution

Stationary Assumption

- Transition probabilities are independent of time (t)

$$p_{ij}(t) = p_{ij}$$

Time-homogeneity

Given a Markov chain with transition probabilities P and initial condition $X_0 = i$, we know how to calculate the probability distribution of X_1 ; indeed, this is given directly from the transition probabilities. The natural question to ask next is: what is the distribution at later times? That is, we would like to know the n-step transition probabilities $P^{(n)}$, defined by

$$P_{ij}^{(n)} = P(X_n = j | X_0 = i). (3)$$

For example, for n = 2, we have that

$$P(X_2 = j | X_0 = i) = \sum_k P(X_2 = j | X_1 = k, X_0 = i) P(X_1 = k | X_0 = i)$$
 Law of Total Probability
$$= \sum_k P(X_2 = j | X_1 = k) P(X_1 = k | X_0 = i)$$
 Markov Property
$$= \sum_k P_{kj} P_{ik}$$
 time-homogeneity
$$= (P^2)_{ij}$$

.

Markov Process

Coke vs. Pepsi Example

- Given that a person's last cola purchase was Coke, there is a 90% chance that his next cola purchase will also be Coke.
- If a person's last cola purchase was Pepsi, there is an 80% chance that his next cola purchase will also be Pepsi.

transition matrix:

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$$

1 1 1 1

Markov Process

Coke vs. Pepsi Example (cont)

Given that a person is currently a Pepsi purchaser, what is the probability that he will purchase Coke two purchases from now?

Pr[Pepsi
$$\rightarrow$$
? \rightarrow Coke] =

Pr[Pepsi \rightarrow Coke \rightarrow Coke] + Pr[Pepsi \rightarrow Pepsi \rightarrow Coke] =

0.2 * 0.9 + 0.8 * 0.2 = 0.34

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.9 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.1 \\ 0.8 \end{bmatrix} = \begin{bmatrix} 0.83 & 0.17 \\ 0.34 & 0.66 \end{bmatrix}$$

Coke vs. Pepsi Example (cont)

Given that a person is currently a Coke purchaser, what is the probability that he will purchase Pepsithree purchases from now?

$$P^{3} = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.83 & 0.17 \\ 0.34 & 0.66 \end{bmatrix} = \begin{bmatrix} 0.781 & 0.219 \\ 0.438 & 0.562 \end{bmatrix}$$

Markov Process Coke vs. Pepsi Example (cont)

- Assume each person makes one cola purchase per week
- Suppose 60% of all people now drink Coke, and 40% drink Pepsi
- ·What fraction of people will be drinking Coke three weeks from now?

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix} \qquad P^3 = \begin{bmatrix} 0.781 & 0.219 \\ 0.438 & 0.562 \end{bmatrix}$$

$$Pr[X_3 = Coke] = 0.6 * 0.781 + 0.4 * 0.438 = 0.6438$$

 Q_i - the distribution in week i

 $Q_0 = (0.6, 0.4)$ - initial distribution

$$Q_3 = Q_0 * P^3 = (0.6438, 0.3562)$$

단국대학교

Markov Process Coke vs. Pepsi Example (cont)

Simulation:

Stationary distribution

- Long-term behavior and Probability distribution over states
- Linear algebra connection
 - *▶* Is it an eigenvector of transition matrix P?

Let's solve weather model

Let state space S={Sun, Rain} withTransition matrix

$$P = \begin{array}{c} \text{sun} & \text{rain} \\ \text{rain} & \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix} \end{array}$$

n	P(sun)	P(rain)
0	0	1
1	0.4000	0.6000
2	0.5600	0.4400
3	0.6240	0.3760
4	0.6496	0.3504
5	0.6598	0.3402
6	0.6639	0.3361
7	0.6656	0.3344
8	0.6662	0.3338
9	0.6665	0.3335
10	0.6666	0.3334
11	0.6666	0.3334
12	0.6667	0.3333
13	0.6667	0.3333
14	0.6667	0.3333

.

Markov Process

• Ex2

 Consider a Markov chain on state space {0, 1} with transition matrix, and suppose the random walker starts at state 0.

$$P = \begin{cases} 0 & 1 \\ 1 & 0 \end{cases}$$

But, if we start with initial
 distribution (0.5, 0.5), then we obtain

n	P(0)	P(1)	
0	1	0	
1	0	1	
2	1	0	
3	0	1	Diverge!
4	1	0	
5	0	1	
6	1	0	
:	:	:	
•	•	•	

n	P(0)	P(1)
0	0.5	0.5
1	0.5	0.5
2	0.5	0.5

Converge!

Limiting and Stationary distributions

In applications we are often interested in the long-term probability of visiting each state.

Definition. Consider a time-homogeneous Markov chain with transition matrix P. A row vector λ is a *limiting distribution* if $\lambda_i \geq 0$, $\sum_j \lambda_j = 1$ (so that λ is a probability distribution), and if, for every i,

$$\lim_{n\to\infty} (P^n)_{ij} = \lambda_j \qquad \forall j \in S.$$

In other words,

$$P^n
ightharpoonup egin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \dots \ \lambda_1 & \lambda_2 & \lambda_3 & \dots \ \lambda_1 & \lambda_2 & \lambda_3 & \dots \ dots & dots & dots & dots \end{pmatrix} \qquad ext{as } n
ightharpoonup \infty.$$

$$\lambda P = \left(\lim_{n \to \infty} P_{i,\cdot}^n\right) P = \left(\lim_{n \to \infty} P_{i,\cdot}^{n+1}\right) = \lambda$$

- Stationary distributions
 - Given a Markov chain with transition matrix P, a stationary distribution is a probability distribution π which satisfies

$$\pi=\pi P$$
 \iff $\pi_{j}=\sum_{i}\pi_{i}P_{ij}$ $orall j.$ T

More complicated ones

• Operation of Wi-Fi (IEEE 802.11)

