(8)

: tim

b : desemtetmosphärischer Druck

 p_{W} : Wesserdempfpartialdruck

6: Dichte des gesamten Gemisches

 C_{o} , C_{1} ; Konstanten (jeweils füt eine Lichtwellenlänge) zur Abkürzung in (3) Anm. ; Mach der allg. Gasgleichung ist $\rho=\frac{p}{R\cdot T}$, wobei bei einem Gasgemisch auch die diesen Gemisch spezifische Gaskonstanten R verwendet werden muß. Hier wird an dieser Stelle jedoch nur mit der Gaskonstanten R_{L} für trockene Luft gerechnet. Der daraus entstehende Fehler ist aber auch bei größeren Wasserbuft gerechnet. Der daraus entstehende Fehler ist aber auch bei größeren Wasserdampfdrucken sehr klein , sodaß diese Näherung wohl zulässig ist.

III. Jorraussetzungen B.l. Vorraussetzungen

Es wird angenommen, daß die Atmosphäre aus infinitesimal dünnen, zum Erd-mittelpunkt konzentrischen Kugelschalen besteht (wobei die Erde selbst zunächst auch als eine Kugel angenommen sei), deren Dichte sich von Schicht zu Schicht verändern kann.

- (49)
- (4P)

: tlig suillend nov lenkt. Nach dem Brechungsgesetz jeweils zum Einfallslot hin abgezwischen Schicht 1 und Schicht 0 einmal an der Grenzfläche zur Schicht 1 und dann noch Lichtstrahl an der Grenzfläche S in die Atmosphäre eintretender no » n, Es wird dann ein in mudsindex, Sei po > p₁ → (3) unterschiedlichen Brechschiedlicher Dichte d.h. nach Kugelschalenschichten unterander liegenden konzentrischen zunächst aus nur zwei überein-III.2.1. Es bestehe die Atmosphäre II.2. zur Hilfsskizze

$$\frac{\sin \zeta^{1}}{\sin \zeta^{N}} = \frac{c^{0}}{c^{1}} = \frac{u^{0}}{u^{1}}$$

$$\frac{\sin \zeta^{N}}{c^{N}} = \frac{c^{0}}{c^{N}} = \frac{u^{0}}{u^{1}}$$

mit : c : Lichtgeschwindigkeiten , wobei c_{vec} die Vacuumlichtgeschwindigkeit ist nach (3) n_{vec} = 1 , da (per n_{vec} : Brechungsindex im Vacuum , es ist nach (3) n_{vec} = 1 , da (per