Name:	Ker	1

Chemistry 129.02 Fall 2010

General Chemistry

Examination #1:

Equations, constants and periodic table are provided.

You may use a calculator.

Show all your work!

page 1:	/17
page 2:	/16
page 3:	/14
page 4:	/27
page 5:	
page 6:	/12
Bonus:	/2

Total: ____/100

- 1. (17 pts.) Metal hydrides react with water to form hydrogen gas and the metal hydroxide. Consider the reaction of 5.63g SrH₂ with 4.80g H₂O.
 - a) Balance the chemical equation for this reaction. (2 pts.)

$$SrH_{2(s)} + 2 H_{2O_{(t)}} \rightarrow Sr(OH)_{2(s)} + 2 H_{2(g)}$$

b) How many grams of H₂ will be produced? Which is the limiting reactant? What is the theoretical yield? (12 pts.)

Limiting Reactant: Sr H₂

Theoretical Yield: 0.254 g H₂

c) If the actual yield is 0.129 g, what is the percent yield? (3 pts.)

% yield = actual yield x 100 =
$$\frac{0.129 \text{ gHz}}{\text{Heoretical yield}} \times 100 = \frac{0.129 \text{ gHz}}{0.254 \text{ gHz}} \times 100 = 50.8\%$$

2. (6 pts.) When an evacuated 63.8 mL glass bulb is filled with a gas at 22°C and 760 torr, the bulb gains 0.103g in mass. Is the gas N₂, Ne, or Ar?

$$MM = \frac{mRT}{PV}$$

$$V = 0.0638 L$$

 $T = 22°C + 273.15 = 295 K$

3. (10 pts) Cortisol, one of the major steroid hormones, has the following percent composition has a molar mass of 362.47 g/mol: C, 69.6%; H, 8.34%; O, 22.1%. Find its empirical and molecular formulas.

$$C_{5.80} \stackrel{\text{H}_{5.26}}{\text{H}_{5.38}} \stackrel{\text{C}_{1.38}}{\text{1.38}} \Rightarrow (C_{4.20} \stackrel{\text{H}_{5.99}}{\text{0}}) \times 5 \Rightarrow C_{21} \stackrel{\text{H}_{30}}{\text{0}} \stackrel{\text{D}_{5}}{\text{Empirical Formula}}$$

(C21H30O5) × 1 => C21H30O5 molocular formula

Empirical Formula: C21H30O5

Molecular Formula: C21 H30 05

9600nm (10-91n) = 9-6 x10 m

4. (4 pts.) In the Rutherford nuclear-atom model,

- (a) neutrons and electrons reside in the nucleus
- (b) the heavy subatomic particles, protons and neutrons, reside outside the nucleus
- (c) the nucleus is positively charged and most of the mass resides in it
- (d) protons, neutrons, and electrons have essentially the same mass
- (e) mass is spread uniformly throughout the atom

5. (4 pts.) Which of these electron transitions corresponds to absorption of energy and which to emission?

(a)
$$n = 2$$
 to $n = 4$ absorption

(c)
$$n = 5$$
 to $n = 2$ Unissian

(d)
$$n = 3$$
 to $n = 4$ absorption

6. (6 pts) The C-O bond in an organic compound absorbs radiation of wavelength 9600 nm. (a) What frequency(in s⁻¹) corresponds to that of wavelength? (b) What type of electromagnetic radiation is this?

(a)
$$v = \frac{c}{\lambda} = \frac{3.00 \times 10^8 \text{ m/s}}{9.6 \times 10^{-6} \text{ m}}$$

7. (11 pts.) Fill in the gaps in the following table. Each column may represent a neutral atom or an ion.

Symbol	$^{79}_{35}Br^{1-}$	90. 40 Zr	85 Rb*
Protons	35	40	37
Neutrons	44	50	48
Electrons	36	40	36
Mass Number	79	90	85
Charge	-	0	1+

- 8. (4 pts.) The elements in groups 1A and 7A are all quite reactive. What is a major difference between them?
 - (a) Group 1A elements gain electrons in chemical reactions while group 7A elements lose electrons.
 - (b) Group 7A elements are nonmetals and group 1A elements are metalloids.
 - (c) Group 1A elements lose electrons in chemical reactions while group 7A elements gain electrons.
 - (d) Group 7A elements form 1+ cations and group 1A elements form 1- anions.

9. (12 pts.) Fill in the gaps in the following table.

Name	Formula	Ionic or Covalent?
sulfur tetrachloride	SCl₄	covalent
ammonium bromide	NH4 Br	ionic
lead (IV) oxide	PbO ₂	lonic
NaHCO ₃	sodium bicarbonate	lonic
AgNU3	silver nitrate	ionic
nitrogen trioxide	N03	covalent

- 10. (6 pts) Using the periodic table as a reference, determine whether a bond between each of the following pairs of atoms is polar, nonpolar or ionic? Which is the most electronegative atom in each pair?
 - (a) F and F

non polar

same atom, same electronegativity

(b) K and Cl

ionic

CI is more electronegative

(c) P and O

polar

O is more electronegative

- 11. (8 pts) The thiocyanate ion (NCS) has three possible Lewis structures.
 - (a) Draw these three Lewis structures, and assign formal charges to the atoms in each structure.

[N= C= S:]

[:N-C=5:]

$$N: 5-4-2 = -1$$

(b) Which Lewis structure is the preferred one? Why?

[:N=c=5:]

We eliminate form C because it has larger formal charges than the others and a positive formal charge on the more electronegative atom. Forms A & B have the same magnitude of formal charges, but form B has a -1 charge on nitrogen, which is more electronegative than sulfur. Therefore, B is the preferred one.

(a) N_2O

linear Electron Domain Geometry: Molecular Geometry: __ Polar or Nonpolar?:

(b) XeF₄

Electron Domain Geometry: Square Planar Molecular Geometry: _ Polar or Nonpolar?: ____nonpolar

(c) SCI₄

Trigonal Bipyramidal Electron Domain Geometry: See Saw Molecular Geometry: Polar or Nonpolar?: