Revision Question 6 — 05/05/14

Let X be the subset of \mathbb{R}^2 given by $]0,1[\times[0,1]]$. Let \mathcal{O}_X be the subspace topology on X with respect to $(\mathbb{R}^2,\mathcal{O}_{\mathbb{R}^2})$.

- a) Find an open covering of X with respect to \mathcal{O}_X which does not admit a finite subcovering. [3 marks]
- b) Find a subset Y of \mathbb{R}^2 such that the following hold, where \mathcal{O}_Y is the subspace topology on Y with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$.
 - i) X is a subset of Y.
 - ii) (Y, \mathcal{O}_Y) is not locally compact.

Prove that (ii) holds. [8 marks]

- c) Define an equivalence relation \sim on I^2 such that $(I^2/\sim, \mathcal{O}_{I^2/\sim})$ is a one point compactification of (X, \mathcal{O}_X) . You do not need to give a proof. You may wish to draw a picture. [6 marks]
- d) Let

$$I^2 \xrightarrow{\pi} I^2/\sim$$

be the quotient map, where \sim is your equivalence relation of part c). Find an example of a subset U of I^2 which belongs to \mathcal{O}_{I^2} , but for which $\pi(U)$ does not belong to $\mathcal{O}_{I^2/\sim}$. [4 marks]

e) Let \sim be the equivalence relation on \mathbb{R} given by $x_0 \sim x_1$ if $x_1 - x_0$ belongs to \mathbb{Z} . Let

$$\mathbb{R} \xrightarrow{\pi} \mathbb{R}/\sim$$

be the quotient map. Prove that if U belongs to $\mathcal{O}_{\mathbb{R}}$, then $\pi(U)$ belongs to $\mathcal{O}_{\mathbb{R}/\sim}$. [6 marks]

f) Let \sim be the equivalence relation on \mathbb{R} given by $x_0 \sim x_1$ if $x_1 - x_0$ belongs to \mathbb{Q} . Prove that for any topological space $(X', \mathcal{O}_{X'})$, we have that every map

$$X' \longrightarrow \mathbb{R}/\sim$$

is continuous. You may assume without proof any facts about $\mathbb{R}.$ [8 marks]