

Curso:	Ciência da Computação		
Disciplina:	Fundamentos Teóricos da Computação	Valor	0,0
Professor (a):	João Paulo C. Aramuni		0,0
Nome:		Nota	
Nº da Atividade/Nome:	Lista 01	ž	
Data:			
Valor:	0,0 pts		

Assuntos: LINGUAGENS FORMAIS; AFD.

- **1**. Descreva formalmente, usando notação de conjunto, as seguintes linguagens sobre o alfabeto {0,1}:
- a) Conjunto de todas as palavras com, no mínimo, um 0;

Definição informal: $\{0,1\}^*$ $\{0\}$ $\{0,1\}^*$ Definição formal: $L = \{w0w \mid w \in \{0,1\}^*\}$

b) Conjunto de <u>todas</u> as palavras de tamanho par;

Definição informal: $(\{0,1\}\{0,1\})^*$ Definição formal: $L = \{xy \mid x \in \{0,1\} \text{ e } y \in \{0,1\} \text{ e } (xy)^* \}$

c) Conjunto de <u>todas</u> as palavras com um prefixo de um ou mais 0s seguido imediatamente por um sufixo de zero ou mais 1s;

Definição informal: $\{0\}\{0\}^*\{1\}^*$ Definição formal: $L = \{0xy \mid x \in \{0\}^* \text{ e } y \in \{1\}^*\}$

- **d)** Conjunto de <u>todas</u> as palavras de tamanho par cuja primeira metade é idêntica à segunda; Definição formal: $L = \{ xx \mid x \in \{0,1\}^* \}$
- **e)** Conjunto de <u>todas</u> as palavras que não tem 00 como prefixo, mas tem 00 como sufixo. *Definição informal:* {01,1}{0,1}*{00}
- 2. Construa AFDs para as linguagens:
- a) $L = \{w \in \{a, b\}^* \mid w \text{ nunca tem mais que dois a's consecutivos}\};$

b) $L = \{w \in \{a, b\}^* \mid w \text{ tem, no máximo, uma ocorrência de "aa" e, no máximo, uma ocorrência de "bb"};$

 $L_{l} = \{w \in \{a, b\}^* \mid w \text{ tem, no máximo, uma ocorrência de "aa"}\};$

 $L_2 = \{w \in \{a, b\}^* \mid w \text{ tem, no máximo, uma ocorrência de "bb"}\};$

Técnica de Interseção das Linguagens ($L_1 \cap L_2$)

δ	a	b
(0a,0b)	(1a,0b)	(0a,1b)
(1a,0b)	(1aa,0b)	(0a,1b)
(0a,1b)	(1a,0b)	(0a,1bb)
(1aa,0b)	(e,0b)	(1aab,1b)
(0a,1bb)	(1a,1bba)	(0a , e)


```
(e,0b)
              (e,0b)
                            (e, 1b)
(1aab, 1b)
              (1aa,0b)
                            (1aab, 1bb)
(1a, 1bba)
              (1aa, 1bba)
                            (0a,1bb)
(0a,e)
               (1a, e)
                            (0a,e)
(e, 1b)
              (e,0b)
                            (e,1bb)
(1aab, 1bb)
              (1aa, 1bba)
                            (1aab, e)
(1aa, 1bba)
               (e, 1bba)
                            (1aab, 1bb)
(1a, e)
               (1aa,e)
                            (0a,e)
(e, 1bb)
               (e, 1bba)
                            (e, e)
(1aab, e)
                            (1aab, e)
              (1aa,e)
(e,1bba)
              (e,1bba)
                            (e,1bb)
(1aa,e)
               (e, e)
                            (1aab, e)
(e, e)
               (e, e)
                            (e, e)
```

Resultado:

```
i = (0a, 0b)

F = \{ (0a, 0b), (1a, 0b), (0a, 1b), (1aa, 0b), (0a, 1bb), (1aab, 1b), (1a, 1bba), (1aab, 1bb), (1aa, 1bba) \}
```

AFD para $L_1 \cap L_2$

c) $L = \{w \in \{0, 1\}^* \mid w \text{ tenha um número par de símbolos}\};$

d) $L = \{w \in \{0, 1\}^* \mid w \text{ tenha um número par de 0's e de 1's}\};$

e) $L = \{w \in \{a, b\}^* \mid |w| = 3\};$

f) $L = \{w \in \{a, b\}^* \mid |w| < 3\};$

g) $L = \{w \in \{a, b\}^* \mid |w| > 3\};$

h) $L = \{w \in \{0, 1\}^* \mid \text{cada } 0 \text{ de } w \text{ seja seguido imediatamente por no mínimo dois 1's}\};$

- 3. Construa AFDs para as linguagens:
- **a)** $L_1 = \{ w \in \{0, 1\}^* \mid |w| \text{ \'e divis\'ivel por 3} \};$

b) $L_2 = \{0w0 \mid w \in \{0, 1\}^*\};$

AFD MÍNIMO

c) $L_1 \cap L_2$ (use a técnica de Interseção das Linguagens)

Resultado esperado: Todas as palavras que são divisíveis por 3 (|w| é divisível por 3) e ao mesmo tempo começam e terminam com zero (w0w). Exemplos: 000, 010, 000000, 011110, 010010...

Técnica de Interseção das Linguagens ($L_1 \cap L_2$)

δ	0	1
(0,i)	(1,m)	(1,e)
(1,m)	(2,f)	(2,m)
(1, e)	(2 , e)	(2,e)
(2,f)	(0,f)	(0,m)
(2,m)	(0,f)	(0,m)
(2 , e)	(0,e)	(0,e)
(0,f)	(1,f)	(1,m)
(0,m)	(1,f)	(1,m)
(0,e)	(1, e)	(1, e)
(1,f)	(2,f)	(2,m)

Resultado:

$$i = (0,i)$$

 $F = \{(0,f)\}$

AFD para $L_1 \cap L_2$

