

PCT

(51) International Pate	nt Classification 7:		(11) International Publication Number: WO 00/19979
A61K 9/12		A1	(43) International Publication Date: 13 April 2000 (13.04.00)
(21) International App	lication Number: PCT/GB	99/033	
(aa) F (): E Fint	7.0	AT 10 A	BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE
(22) International Filin	g Date: 7 October 1999 (07.10.9	ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD.
			MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD
30) Priority Data:			SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ
9821736.7	7 October 1998 (07.10.98)	G	VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW
9907065.8	27 March 1999 (27.03.99)	G	
			KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL
(71) Applicant (for all designated States except US): GILTECH LIMITED [GB/GB]; 9/12 North Harbour Estate, Ayr KA8			
8AA (GB).	GBJ; 9/12 Norm Harbour Estate, A	АУГ КА	6 OW, ME, MR, NE, SN, 1D, 10).
72) Inventors; and			Published .
[GB/GB]; The (GB). TRAINE	nts (for US only): GILCHRIS Lodge, 67 Midton Road, Ayr K. R, Eilidh [GB/GB]; 6 Greenfield A7 4NW (GB).	A7 2T	<i>,</i>
(74) Agent: MURGITR	OYD & COMPANY; 373 Scotlar	nd Stree	,

(54) Title: FOAMABLE FORMULATION AND FOAM

Glasgow G5 8QA (GB).

(57) Abstract

There is described a formulation comprising a foamable gelling agent (such as alginate, carageenan or carboxymethylcellulose gels) and a slow-release precipitant therefor. The precipitant is combined with the gelling agent during foaming and stabilises the foamed form of the gelling agent. Suitable precipitants include calcium salts such as calcium citrate and calcium chloride, or aluminium salts such as aluminium chloride. The increased stability of the foam facilitates sterilisation thereof. Further improvements can be obtained by exposing the cured foam to a precipitant applied externally, optionally washing, and then drying the foam. The foam of the present invention is suitable for medical or veterinary use and can include active ingredients for delivery to, for example, a wound site.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT

					2723		
AL	Albania	ES	Spain	LS	Lesotho	Şī	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria ·	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	- MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Тодо
BB	Barbados	GH	Ghana	MG	Madagascar	. TJ	Tajikistan
BE	Belgium	GN	Guinea .	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria .	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israel ·	MR	Mauritania	UG	Uganda
BY	Belanis	1S	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	·Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Солдо	KE	Kenya	NL	Netherlands	. YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzsian	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KΡ	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		•
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtensrein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

2	•
3	The present invention is concerned with a foamable
4	formulation and the foam formed therefrom.
5	
6	A wide variety of gels, creams, ointments, lotions and
7 ^	other formulations are available for application to a
. 8	body surface. The exact content of these compositions
9	will vary depending upon the purpose of application.
10	For example, a formulation may be applied to clean a
11	body surface, to promote healing of any wound or
12	injury, to prevent an exposed wound on the body from
13	drying out, to prevent infection, etc. In certain
14	circumstances the composition may include an active
15	ingredient.
16	
17	In our International Patent Application published 13
18	June 1996 under No WO-A-96/17595 we describe a foamable
19	formulation which comprises a foamable carrier or
20	gelling agent, for example an alginate gel, and an
21	active ingredient, such as a water soluble glass
22	powder.
23	
24	The product described in WO-A-96/17595 represented a
25	considerable advance over the use of gel or cream.

FOAMABLE FORMULATION AND FOAM

We have now found that by including a precipitant for the gelling agent, in a slow-release form within the 2 composition, further improvements with regard to the 3 setting time of the foam and its stability can be 5 In particular, the added stability enables a pre-foamed pad to be sterilised by irradiation, 6 ethylene oxide, or other conventional means. 7 8 Thus, the present invention provides a formulation 9 comprising a foamed gelling agent combined with a slow-10 release precipitant therefor. The gelling agent may be 11 12 any agent capable of forming a foam, although 13 preferably the gelling agent is physiologically 14 compatible and non-irritant when maintained in contact 15 with the body surface. The gelling agent may be a gel, 16 for example a sodium alginate gel, caraquenan gel, 17 sodium carboxymethylcellulose gel or mixtures thereof. 18 19 The precipitant is desirably intimately admixed 20 throughout the whole of the foamed gelling agent, 21 preferably during the foaming process. circumstances however the presence of the precipitant 22 23 on one surface of the foamed gelling agent may be 24 sufficient to cause stabilisation of the foam. 25 Examples of precipitants include stabilising 26 crosslinking agents which render the gelling agent 27 insoluble. Examples include salts of polyvalent metal 28 ions such as calcium, zinc, copper, silver or aluminium 29 as well as borates, glyoxal and amino-formaldehyde 30 precondensates. In one embodiment, the polyvalent metal ion may be released from a water-soluble glass 31 which is admixed into the foamable carrier in 32 33 comminuted form. A copper ion-releasing water soluble 34 glass, a zinc-ion releasing water soluble glass and 35 mixtures thereof are particularly of interest. 36

The role of the precipitant is to stabilise the foamed 2 gel so that a stable foam is produced. Generally, the stable foam should be produced within a reasonable time 3 period since if the precipitant is too slow-acting, the 4.. 15 foam structure will have collapsed prior to stabilisation. However, a very fast acting precipitant 6 7 may not allow sufficient time for the gel to be foamed. Desirably, the precipitant stabilises the foamed gel 8 over a time period of 1 minute to 120 minutes, 9 10 preferably within 30 minutes, and most preferably 11 within 15 minutes at ambient temperature. 12 considered to be "cured" when it can be lifted and carefully handled without collapse. 13 The solubility of 14 the precipitant and hence the setting (cure) time of 15 the foam may be varied by adjusting the pH of the composition, especially where the precipitant is based 16 17 upon a calcium salt. Generally, the solubility of a calcium salt will be increased by lowering the pH. 18 19 Typical pH adjusters include organic acids such as 20 acetic, adipic, citric, fumaric, lactic, alginic and 21 tartaric acids. Usually an amount of 0.5 g to 5 g of 22 organic acid per 100 gel is sufficient. 23 acid may be admixed with the precipitant prior to 24 foaming or, more preferably, may be admixed with the gelling agent prior to foaming. 25 26 27 Suitable precipitants include calcium citrate, calcium 28 carbonate, calcium phosphate, calcium hydrogen 29 phosphate (CaHPO4), aluminium chloride, barium carbonate, barium phosphate, barium sulphate, barium 30 31 chloride and zinc carbonate. 32 33 Where the gelling agent comprises an alginate gel, a 34 carageenan gel or a carboxymethylcellulose gel one 35 preferred precipitant is a calcium salt. Whilst 36 calcium citrate has been used in the examples, other

1 2	slowly dissolving calcium salts are also suitable.
3	Where the gelling agent comprises
4.	carboxymethylcellulose gel one preferred precipitant is
٠5	an aluminium salt.
6	
7	In one embodiment the gelling agent and precipitant are
8	packaged separately and only admixed during the foaming
9.	process or subsequent to foaming.
10	
11	Alternatively, the precipitant may be included in a
12	suspension (e.g. a suspension of calcium citrate and
13	glycerine) which forms a separate layer on top of the
14	gelling agent which remains substantially inert during
15	handling and/or storage. Only once the operator
16	desires to produce the foam, is the precipitant
17	intimately admixed with the gelling agent (for example
18	by shaking the container) and then promptly foamed.
19	Using the precipitant in suspension form has the
20	benefit that the suspension is easier to dispense from
21	a pressurised container than a powder and also provides
22	for more accurate dosing of unit precipitant per unit
23	gelling agent.
24	
25	Optionally, the formulation may comprise other
26	additives such as decompactants which promote the
27	desired foam structure or other foaming agents,
28	plasticisers, humectants, preservatives, additives,
29	sequestering agents or active ingredients such as
30	antimicrobial agents, growth factors, hormones, living
31	cells, etc.
32	
33	The foam may be applied directly to the body area and
34	allowed to produce a stable foam protective cover, for
35	example over a wound. With the addition of the
36	precipitants the cure of the foam is significantly

reduced, rendering the product more user friendly. 2 Alternatively, the foam can be produced onto a mould or 3 other surface area, allowed to cure (for example by air 4 ... 5 drying or oven drying) and then applied to the body surface as a dressing. A foam sheet of this type is a 6 preferred embodiment of the invention since it exhibits 7 sufficient stability for easy handling whilst retaining 8 a moist surface to promote wound healing. Optionally, 9 the foam may be applied about a substrate (for example 10 cloth, mesh, non-woven pad of alginate fibres, nylon, 11 rayon, polylactid acid, polyglycolic acid, 12 polycaprolactone or biocompatible glass fibres) which 13 14 are then integrated into the foam pad produced. 15 As an example, the foam may be used to treat 16 17 dermatological conditions (including psoriasis, atopic and allergic eczema). It may be convenient in this 18 embodiment for the foam to deliver an active ingredient 19 20 normally used to alleviate such conditions, for example 21 a steroid such as hydrocortisone. 22 23 In another embodiment the foam may be used to treat 24 burns or scalds, including sunburn. 25 In another embodiment the foam may be applied 26 27 cosmetically, and for example may include skin 28 moisturising agents, nutritional agents and growth 29 factors suitable to promote skin regeneration. intended for cosmetic use may include colorants or 30 pigments so that the foam may be applied to the skin as 31 32 a cosmetic or to disguise any blemishes in the skin. 33 34 The foam may be used prophylactically. In particular a 35 foam containing a UV blocking agent may be applied to 36 exposed areas of the skin to protect it from the

T	effects of the sun.
2	
3	The formulation of the invention is applied to the body
4.	site of interest in the form of a foam and it is
· 5	therefore essential that the composition undergoes a
6	foaming process before application to the body. In the
7	foaming process gas is forced into or is formed within
8 .	the formulation to entrap small bubbles of gas therein,
9	thereby forming the foam. Any suitably gas or gas
10	producing system can be used to produce the foam.
11 '	Mention may be made of butane and nitrous oxide, but
12	other gases like air, nitrogen, hydrofluorocarbons such
13	as HFC134a or 227, hydrocarbons like propane,
14	isopropane or a mixture thereof, are also suitable.
15	Conveniently the foam may be produced by conventional
16	means such as by using aerosol technology.
17	
18	The formulation according to the present invention may
19	be stored in any convenient container until required.
20	Generally, the container will be designed to preserve
21	the sterile nature of the formulation. Conveniently
22	the container will be provided with means to foam the
23	composition when required. Details are given in WO-A-
24	96/17595. A two can packaging and dispensing system,
25	as described in our co-pending UK Patent Application No
26	9823029.5 (a copy of which is filed herewith), may be
27	used to dispense the foam according to the present
28	invention.
29	·
30	Generally, the foam will be produced from sterile
31	ingredients.
32	·
33	Prior to the foaming process, the foamable carrier is
34	preferably in the form of a gel. The gel may be
35	sterilised and this is generally desirable where the
36	foam is intended for medical use. Usually,

1 .	sterilisation wi	ll take place by autoclaving the
2	formulation, sin	ce this is currently the most economic
3	means of achievi	ng sterilisation. Autoclaving at
4,	temperatures of	from 100°C to 125°C for under ½ hour is
. 5	normally suffici	ent. Generally, the autoclaving
6	process should b	e as mild as possible, whilst being
7	sufficient to st	erilise the formulation. For example,
8	autoclaving at t	emperatures of about 121°C for 15-20
9	minutes is accep	table. The autoclaved formulation may
10	then be foamed w	hen cool. It is also possible,
11	however, to ster	ilise the formulation by other means,
12	for example by γ	-irradiation or e-beam irradiation. It
13	has been found t	hat autoclaving the gel may cause the
14	MW of the foamab	le carrier to be slightly reduced.
15	Consequently it	may be desirable to select a foamable
16	carrier having a	higher MW than that ultimately
17	required.	
18		
19	The foam forms a	n air-tight cover around any wound or
20	injury to which	it is applied, and this prevents that
21	area from drying	out and may also combat infection.
22	The advantages o	f applying a topical product in the
23	form of a foam i	nclude:
24		· .
25	1. Easy r	apid application,
26	2. Confor	ms to surface irregularities,
27	3. Insula	tes the wound,
28	/•	the tissues,
29		antibacterial action to prevent
30	infect	ion,
31	6. Biocom	patibility with tissue,
32	7. Suitab	le for use as a vehicle for the
33	admini	stration of pharmaceutical agents,
34	and/or	
35	8. Mainta	ins a moist environment.
36		

1 .	Generally, the formulation of the present invention
2	will be applied directly to the body site of interest
3	in the form of a foam, the foam being produced from any
4.	suitable device (such as an aerosol) immediately before
. 2	application. It is, however, possible for a quantity
6	of the foamed formulation to be produced and then
7	applied onto the body site by any suitable means, for
8	example by hand or by spatula. This method may be
9	required for wounds having a narrow opening.
10	
11	As stated above, the foam may also be produced on a
12	suitable surface and then allowed to dry to produce a
13	stable foam sheet which can be handled as described
14	above without deterioration. Generally, the production
15	of the sheet will take place under sterile conditions
16	or may be sterilised after production. In the prior
17	described foam product of WO-A-96/17595, it was not
18	possible to provide a foamed pad product and then
19	sterilise the pad by conventional means such as γ -
20	irradiation, since it was found that the foam structure
21	deteriorated during sterilisation. With the inclusion
22	of the precipitant however, sterilisation of the
23	pad is possible both by γ -irradiation, ethylene oxide
24	sterilisation or other conventional means. This
25	represents a very considerable advantage over the prior
26	art product.
27	
28	The foam sheet is generally produced by foaming the
29	foamable carrier in the presence of the precipitant and
30	allowing the foam to cure, usually by simply exposing
31.	the foam to the atmosphere to air dry at ambient
32	temperature. Optionally the foam may be dried at
33	elevated temperatures, for example may be oven dried.
34	Desirably, the cure time of the foam is 40 minutes or
35	less at ambient temperature and preferably the foam
36	cures within 15 minutes, for example within 10 minutes.

1	Where the foam sheet is to be sterilised, it is
2	advantageous to pre-treat the sheet prior to
3	sterilisation in order to further stabilise the sheet.
4 .,	The difficulty with sterilising any foam of the type
5	described is that the foam structure tends to
6	deteriorate and collapse during the sterilisation
7	process. The pre-treatment of the sheet preferably
8	involves impregnating the sheet with further
9	precipitant. Conveniently, this may entail immersing
10	the sheet in a bath of the precipitant or of a solution
11	of the precipitant. For example, the sheet may be
12	immersed in a bath of calcium chloride or calcium
L3	citrate. To ensure that the precipitant penetrates
L 4	into the centre of the foam sheet, the sheet may be
۱5	gently squeezed whilst immersed in the bath.
16	Generally, immersion of the sheet for a short period of
17	time, such as 2 to 3 minutes, is sufficient. The sheet
18	may then be removed from the bath of precipitant,
L 9 .	washed in a mixture of de-ionised water and glycerine
20 -	to enhance moisture content and then dried. The
21	stabilised foam sheet may then be sterilised by gamma
22	radiation or through use of ethylene oxide.
23	
24	The ratio of de-ionised water : glycerine in the wash
25	stage is preferably 19:1 by volume.
26	
27	The treated foam sheet is desirably oven dried at
8 8	relatively low temperatures, for example 100°C or less,
29	preferably approximately 35°C.
30	
31	In a preferred embodiment the foamable carrier includes
32	a combination of copper and zinc ions, optionally in
33	the form of water soluble glass(es). We have found
34 ·	that a foam containing appropriate quantities of these
35	metal ions are particularly resistant to the
36 ·	deleterious effects of sterilisation. We hypothesise

3.0 that the copper and zinc ions act as scavenger of free radicals produced in the foam during sterilisation and 2 which are, we believe, responsible for the breakdown in 3 structure of the foam. Additionally, both copper and zinc ions have a radioprotective effect. Consequently, 5 we consider that any material known for its use as a 6 7 free radical scavenger and/or as a radioprotectant may likewise exhibit a protective effect on the foam 8 structure during sterilisation. 9 10 Optionally the manufacture of a prefoamed product may 11 envisage a continuous foaming process. The sheet may 12 be divided into a convenient size and may be packaged. 13 Optionally the foam sheet may be produced on contoured 14 surface so that it is moulded to a pre-determined 15 16 shape. 17 Examples of suitable foamable gelling agents for use in 18 the composition of the present invention include (but 19 20 are not limited to) alginate and derivatives thereof, 21 carboxymethylcellulose and derivatives thereof, 22 collagen, polysaccharides (including, for example, 23 dextran, dextran derivatives, pectin, starch, modified 24 starches such as starches having additional carboxyl and/or carboxamide groups and/or having hydrophillic

25

side-chains, cellulose and derivatives thereof), agar 26 27 and derivatives thereof (such as agar stabilised with

28 polyacrylamide), carageenan, polyethylene oxides,

29 glycol methacrylates, gelatin, gums such as xanthum,

30 guar, karaya, gellan, arabic, tragacanth and locust

31 bean gum. Also suitable are the salts of the

32 aforementioned carriers, for example, sodium alginate.

33 Mixtures of any of the aforementioned gelling agents

may also be used, as required. 34

36 Preferred foamable gelling agents include alginate,

1	carageenan, carboxymethylcellulose, the derivatives and
2	salts thereof and mixtures of any of these. Alginate
3	(the derivatives or salts thereof, such as sodium and
4.	calcium alginate) are especially preferred. Foamable
່ 5	gelling agents having a molecular weight of from 10,000
6	to 200,000 kDa are preferred, especially over 100,000
7 .	kDa, for example 150,000 to 200,000 kDa, may be used.
8	
9	The formulation may further comprise a foaming agent,
10	which promotes the formation of the foam. Any agent
11	having a surfactant character may be used. The
12	surfactants may be cationic, non-ionic or anionic.
13	Examples of suitable foaming agents include cetrimide,
14	lecithin, soaps, silicones and the like. Commercially
15	available surfactants such as Tween™ are also suitable.
16	Cetrimide (which additionally has an anti-bacterial
17	activity) is especially preferred.
18.	
19	The formulation of the present invention (and thus the
20:	foam) may be used to deliver pharmaceutically active
21	agents, in particular to deliver such agents in a
22	controlled release manner. Mention may be made of:
23	
24	Antiseptics, Antibacterials and Antifungal agents,
25	such as Chlorhexidine, acetic acid, polynoxylin,
26	povidone iodine, mercurochrome phenoxyethanol,
27	acridene, silver nitrate, dyes eg brilliant green,
28	undecanoic acid, silver sulphadiazine, silver
29	proteins and other silver compounds,
30	metronidazole, benzaclonium chloride;
31	
32	Nutritional agents, such as vitamins and proteins;
33	
34	Growth factors and healing agents, including
35	Ketanserin a serotonomic blocking agent;
36	

1	<u>Living Cells</u> ;
2	
3	Enzymes include streptokinase and streptodormase;
4.	
5	Elements - zinc, selenium, cerium, copper,
6	manganese, cobalt, boron, arsenic, chromium
7	silver, gold, gallium;
8	
9	<pre>Charcoal;</pre>
10	
11	Desloughing and Debriding agents such as
12	hypochlorite and hydrogen peroxide;
13	
14	Astringents including potassium permanganate;
15	·
16	Antibiotics exemplified by neomycin and framycetin
17	sulphate, sulfamylon, fusidic acid, mupirocin,
18 .	bacitracin, gramicidin.
19	
20	In addition the formulation of the present invention
21	may further comprise other conventional additives such
22	as plasticisers and humectants (such as glycerol,
23	propane-1,2-diol, polypropylene glycol and other
24	polyhydric alcohols), free radical scavengers to
25	stabilise against the effects of sterilisation by
26	irradiation, viscosity-adjusting agents, dyes and
27	colorants, and the like.
28	
29	Several experiments including comparatives tests have
30	been made in order to demonstrate some of the
31	advantages of the new compositions of the invention.
32	Of course the embodiments described hereinbelow are
33	submitted in order to better describe the invention and
34	not to limit its scope.
35 .	
36 .	

1	EXA	MP	LE_	1

2 PROCEDURE FOR MANUFACTURE OF UNIT BATCH (100 g) of

3 ALGINATE GEL

4..

- 5 Typically the alginate gels are made according to the following process:
- 7 1. De-ionised (DI) water is measured and poured 8 into mixing vessel 1.
- Desired amounts of suitable alginate (for example Keltone or Manucol) and glycerine are weighed using a calibrated balance, reading to 2 decimal places.
- 3. Alginate and glycerine are mixed together in abeaker until no lumps remain.
- The whole alginate/glycerine mix is added very slowly to the water.
- 5. Once all the alginate/glycerine has been added to the water, the mixture is stirred until a smooth gel has formed.

20 21

22

23

24

Several different alginate gels have been made according the above process. They differ and are referred to by the amount of alginate (for example Keltone) used. For example the alginate gel code 6% has the following composition:

25 26

27	GEL CODE	6½
28	DI Water	80 ml
29	Glycerine	25.22 g
30	Keltone	6.5 g
31	Unit Batch Wt	111.72 g

32

33 The above composition can be varied to include other

weights of alginate, which would be reflected in the gel code number. For example a composition having 8g alginate (plus 80ml DI water and 25.22g glycerine) would be designated gel code 8. Analogous gel codes are used when other gel formers (eg carageenan or CMC) are substituted for the alginate in the above composition.

In one embodiment, the gelling agent may be present in the form of a suspension, for example a suspension in glycerine. To avoid diluting the gelling agent, the gelling agent suspension may be made up with less glycerine such that the total quantity of glycerine present in the gelling agent mixture and in the precipitant suspension adds up to the required amount. For example, the glycerine in the gelling agent mixture and precipitant suspension may be varied as follows:

Glycerine per 80 ml DI water and 6 g alginate (g)	Glycerine in precipitant suspension (g)	
25.22	0	
23.0	2.22	
20.0	5.22	
18.22	7.0	
15.0	10.22	

The above is illustrated with respect to a gel code 6 composition, but the division of glycerine may be made for other gel code compositions, and is also not limited to the specific volumes illustrated above.

33 ·

PROCEDURE FOR FOAM PRODUCTION

2

- 3 The propellant used to produce the foam can be
- 4. compressed gases such as air, nitrogen, nitrous oxide
- or air, hydrofluorocarbons such HFC134a or 227 or
- 6 hydrocarbons including propane, isopropane, n-butane,
- 7 isobutane and 2-methylbutane.

8

- 9 Propellant vapour pressure can range from 0 to 110 PSIG
- 10 at 70°C although the preferred range is 20 to 70 PSIG.
- 11 Values within this range can be achieved for example by
- 12 blending the three hydrocarbons propane, isobutane and
- 13 butane. Calor Aerosol Propellants (CAP) sold by Calor
- 14 Gas Ltd Slough may be used as propellant gas, when a
- 15 blend of propane, isobutane and butane is used the
- proportions can be as follows:

17

18	<u>Grade</u>	Propane %	Isobutane %	n Butane%
19 ~	CAP 30	11	29	60 .
20	CAP 40	22	24	54
21	CAP 70	55 ·	15 ·	30

- 23 A foam according to the invention can advantageously be
- 24 produced following the following process:
- 1. 100 g of a gel according to the invention is poured to an aerosol canister.
- 27 2. 2.5 g of calcium citrate (food grade) is
- 28 added to the canister.
- 29 3. A valve is crimped onto the canister.
- 30 4. Air is purged from the canister.
- 31 5. 4.5 g of propellant gas is added into the
- 32 canister (65:35 CAP 40 : Isopentane
- propellant) and an actuator is positioned on
- 34 the valve.
- 35 6. The canister is shaken vigorously for 20-30
- 36 seconds.

The canister is inverted and the foam dispensed. 1 2 3 EXAMPLE 2 Using a range of water-based gel formulations detailed . 5 below tests were done to improve the "setting" time and stability of the gel and its foam. 6 8 Preferred alginate compositions have an amount of 9 alginate ranging from 5-9g in the composition set out in Example 1. Preferred alginates are Keltone HV and 10 Manucol DMF. 11 12 13 Experiment 1. Gel Code 6½ Alginate gel and foam mixed with calcium citrate compared to Gel Code 6% alginate 14 15 gel alone 16 17 Foamed gel with calcium citrate 2.5 g calcium citrate was added to 100 g of gel and the 18 19 foamed gel was spread out onto plastic sheeting. 20 resultant foam pad was liftable in 15 minutes. 21 22 Foamed gel without calcium citrate 23 The above experiment was reproduced by foaming the gel 24 on its own as described above. The "setting" time of 25 the foam was 10 hours. 26 27 The experiments were repeated using 100 g unfoamed gel 28 with and without calcium citrate. Similar setting 29 times to those observed for the foamed gels were 30 obtained (15 minutes and 10 hours respectively) before 31 the gel pads were liftable. 32 33 Conclusion: Calcium citrate speeds up and controls the setting time of the gel and the foam. 34

Experiment 2. Gel Code 8 Alginate gel mixed with water

BNSD0CID: <WO___0019979A1_I_>

soluble glass (WSG) containing phosphate and boron

2	compared to gel code 8 alginate gel alone.
3	
4 .	The WSG was comprised as follows:
* 5	28.5M% CaO
6	3M% Ag
7	5M% B ₂ O ₃
8 .	18.5M% MgO
9	45M% P ₂ O ₅
10	
11	Foamed gel with WSG
12	2.5 g of WSG was mixed with 100 g gel and the foamed
13	mixture was spread out onto plastic sheeting. The
14	resultant foam pad was liftable in 120 mins.
15	
16	Foamed gel without WSG
17	The above experiment was repeated by foaming the gel on
18	its own. The "setting" time of the foam was
19	approximately 10 hours.
20	
21	The experiments were repeated using 100 g unfoamed gel
22	with and without WSG. Similar setting times to those
23	observed for the foamed gels were obtained (120 minutes
24	and 10 hours respectively) before the gel pads were
25	liftable.
26	
27	Conclusion: WSG speeds up and controls the setting
28	time of the gel and the foam.
29	
30	Experiment 3. Gel Code 4 Carageenan gel mixed with
31	calcium citrate compared to gel code 4 gel alone
32	
33	Foamed gel with calcium citrate
34	3 g of calcium citrate was mixed with 100 g gel and the
35	foamed mix was spread out onto plastic sheeting. The
36	resultant foam pad was liftable in 120 mins.

1	Foamed gel without calcium citrate
2	The above experiment was repeated by foaming gel on its
3	own as described above. The "setting" time of the foam
4.	was 10 hours.
• 5	
6	The experiments were repeated using 100 g unfoamed gel
7	with and without calcium citrate. Similar setting
8	times to those observed for the foamed gels were
9	obtained (120 minutes and 10 hours respectively) before
10	the gel pads were liftable.
11	
12	Experiment 4. Gel Code 4½ Carageenan gel and gel code
13	61/2 alginate gel mixed with calcium citrate compared to
14	gel code 4½ carageenan gel and gel code 6½ alginate gel
15	alone
16	
17	Foamed gel with calcium citrate
18	2.5 g of calcium citrate was mixed with (50 g alginate
19	and 50 g carageenan) gel and the foamed mix was spread
20	out onto plastic sheeting. The resultant foam pad was
21	liftable in 15 mins.
22	
23	Foamed gel without calcium citrate
24	The above experiment was repeated by foaming the mixed
25	gel on its own. The "setting" time of the foam pad was
26	10 hours.
27	
28	The experiments were repeated using 100 g unfoamed gel
29	with and without calcium citrate. Similar setting
30	times to these observed for the foamed gels were
. 31	obtained (120 minutes and 10 hours respectively) before
32	the gel pads were liftable.
33	
34	Experiment 5. Gel Code 61/2 Alginate gel mixed with
35	calcium citrate and added bentone IPM gel

1 .	2.5 g calcium citrate was added to 100 g of gel with 1g
2	bentone IPM gel, admixed in an aerosol canister and
3	dispensed therefrom as a foam onto a plastic surface.
4 .	The resultant foam pad was liftable in 12 minutes.
. 5	Bentone IPM gel is an admixture of isopropyl myristate,
6	sterealkonium hectorite and propylene carbonate.
7	
8	Conclusion: Calcium citrate and bentone gel control
9	the setting time of the foam. Bentone gel also acts as
10	a reological agent and assists in the smoothness of
11	delivery from the can.
12	
13	Experiment 6. Gel Code 6% Alginate gel mixed with
14	calcium citrate and added cetrimide
15	
16	2.5 g calcium citrate was added to 100 g of alginate
17	gel with 1g cetrimide in an aerosol canister and foamed
18	onto a plastic surface. The resultant foam pad was
19	liftable in 15 minutes.
20	
21	Conclusion: Calcium citrate speeds up the setting time
22	of the foam. Cetrimide increases the cell structure of
23	the product.
24	·
25	Experiment 7. Gel Code 61/2 Alginate gel mixed with
26	calcium citrate and added Tween 20
27	
28	2.5 g Calcium citrate was added to 100 g of alginate
29	gel with 1g Tween 20 and foamed onto a plastic surface.
30	The resultant foam pad was liftable in 12 minutes.
31	
32	Conclusion: Calcium citrate speeds up the setting time
33	of the gel. The additive Tween 20 gave a much smoother
34	delivery and an airier foam. Tween 80, 60 and 40 were
35	also tried and all assisted in the delivery and product
36	cell structure.

RNSDOCIO: «WO 0019979&1 1 >

•

1	Experiment 8. Gel Code 4 Carboxmethyl cellulose and gel
2	code 6% alginate gel mixed with calcium citrate
3	compared to the gel alone
4	
' 5	2.5 g calcium citrate was added to (50 g CMC & 50 g
6	alginate gel) and then the mixture was foamed onto a
7	plastic surface. The resultant foam pad was liftable
8	in 25 minutes. The gel foamed on its own was liftable
9	overnight (approx. 10 hours).
10	
11	Experiment 9. Gel Code 4 Carboxmethyl cellulose gel
12	mixed with aluminium chloride compared with the gel
13	alone
14	
15	2 g aluminium chloride was mixed with 100 g CMC gel.
16	The gel was spread onto a plastic surface. The
17.	resultant gel was liftable instantly. The gel alone was
18	liftable overnight (approx. 10 hours).
19	
20	Experiment 10. Gel Code 6 Alginate gel mixed with
21	citric acid compared to gel code 6 alginate gel alone
22	
23	2.5 g of citric acid was mixed with 100 g alginate gel
24	and the mix was spread out onto plastic sheeting. The
25	resultant gel pad was liftable in 120 mins. 100 g of
26	the gel alone was spread onto plastic sheeting and the
27	resultant pad was only liftable overnight (approx. 10
28	hours).
29	
30	
31	
32	
33	
34	
35	
36	

Experiment 11. Gel Code 6% Alginate gel was mixed with the following powders on a 100 g gel: 2.5 g powder basis

Powder	Results as a gel	Results as a foam
Calcium Chloride	Gel pad was formed instantly	Fast setting foam
Calcium Sulphate	Gel pad formed reasonably quickly	Foam set reasonably quickly
Aluminium Chloride	Gel pad formed instantly	Fast setting foam
Calcium Metaborate	Gel pad formed instantly	Fast setting foam

Experiment 12. Setting performances of a foam of a gel code 6% alginate gel as a function of the amounts of calcium citrate.

19	Batch No	Amount of calcium citrate per 100 g gel	Result	
20	DM02 210798	4 g	Not dispensed - set in can	
21	DM03 210798	3 g	Very difficult to dispense. 9½ minutes to set.	
22	DM04 210798	2.5 g	Easier to dispense than above. 18½ minutes to set	
23	DM05 210798	2.25 g	Taking longer to set. 20 minutes.	
24	DM02 200798	2 g	Setting time - 40 minutes	

T	Experiment 13. Get code 672 arginate get with carcing
2	citrate and isopentane.
. 3	•
4,	1,00g gel code 6% alginate gel was admixed with varying
٠5	amounts of calcium citrate (2 to 4g), added to
6	isopentane and mixed thoroughly before being spread
7	onto a glass sheet. The isopentane vaporises at
8	ambient temperatures and boils off through the gel
9	leaving a foam pad of similar consistency to those
10	produced by dispersion from an aerosol can. After
11	half-an-hour the foam pads were liftable.
12	
13	EXAMPLE 3
14	•
15	A. Gel code 5 alginate gel mixed with calcium citrate
16	
17	The gel was prepared by mixing together alginate (5g
18	Keltone HV), 20g glycerine and 80ml de-ionised water.
19	5.22g glycerine was then added to 2.5g calcium citrate
20	and a suspension of precipitant was created. The
21	resultant gel and the suspension of precipitant were
22	added to an aerosol can and a valve fitted. The can
23	was purged of air, filled with 4.5g CAP 40 butane,
24	shaken and dispensed. The foam produced was well mixed
25	and set in 15 minutes.
26	
27	B. Gel code 5 alginate gel mixed with calcium citrate
28	
29	Experiment A was repeated using the same weight of
30	Manucol LKX (5g) instead of Keltone HV. The resultant
31	foam set within 12 minutes.
32	
33	C. Gel code 5 alginate gel mixed with calcium citrate
34	

The gel was prepared by mixing together alginate (5g Keltone HV), 20g glycerine and 80ml de-ionised water.

35

_	
1	5.22g glycerine was then added to 2.5g calcium citrate
2	and a suspension of precipitant was created. The
3	resultant gel was added to the bottom can of the two
4 .	can packaging system (see our co-pending UK Patent
5	Application No 9823029.5) and the suspension or
6	precipitant was added to the top can. The cans were
7	prepared in the usual way. The two can packaging
8	system was activated and the foam was dispensed. The
9	foam produced was well mixed and set in 15 minutes.
10	
11	D. Gel code 5 alginate gel mixed with calcium citrate
12	
13	Experiment C was repeated using the same weight of
14	Manucol LKX instead of Keltone HV. The resultant foam
15	set within 12 minutes.
16	
17	The set foam from A, B, C and D were then further
18	processed by first immersing the foam in a solution of
19	2.5% calcium chloride solution for 2 minutes, rinsing
20	in de-ionised water and then finally rinsing in a 1%
21	glycerine solution. The foam pads were then dried in
22	the oven at 35°C and packaged in sterilisable pouches.
23	
24	The resultant sterilised pads were compared with can
25	reference 2 below (see Example 4). The foams produced
26	in the two can system had a more even pore size
27	throughout compared to those made in a one can system.
28	Comparing the suspension with the powder/gel mix showed
29	no difference in the structure of the final product.
30	
31	EXAMPLE 4
32	
33	A l litre batch of gel code 5 alginate gel was
34	manufactured. Nine bottom cans of a two can packaging
35	system as described in our co-pending UK Patent
36	Application No 9823029.5 were filled with 100g gel in

{

1	each. Nine top cans were made up with varying powders
. 2	as detailed below. The cans were prepared in their
3	usual way. The two can packaging system was activated
4,	and the foam was dispensed.
· 5	
6	Once cured the foams were processed by varying a) the
7	concentration of the calcium chloride immersion
8	solution and b) the final wash concentration of the
9	glycerine solution. All samples were halved and then
10	oven dried at 40°C. The first half sample was removed
11	after 8 hours and the second half after 16 hours. Once
12	the foam pads had been processed they were packaged in
13	EtO sterilisable airtight packaging as soon as they
14	came out of the oven. The samples were sent for EtO
15	sterilisation and examined on their return.

Can Ref	Top Can Component	Ca Chloride Conc.	Glycerine Sol Conc.	Drying Time	Description of Alginate Pad After EtO Sterilisation
1, '	2.5 g Ca Citrate	1%	1%	8 hrs	Flexible, soft & sponge-like
				16 hrs	Flexible, soft & sponge-like
2	2.5 g Ca Citrate	2.5%	1%	8 hrs	Moist, flexible & sponge-like
				16 hrs	Flexible, soft & sponge-like
3	2.5 g Ca Citrate	5%	1%	8 hrs	Dry pad with limited flexibility
				16 hrs	Dry pad with limited flexibility
4	2.5 g Ca Citrate	2.5%	2%	8 hrs	Moist, flexible, soft & sponge-like
				16 hrs	Moist, flexible, soft & sponge-like
5	2.5 g Ca Citrate	2.5%	2.5%	8 hrs	Moist, flexible, sponge-like pad
				16 hrs	Moist, flexible, sponge-like pad
6	2.5 g Ca Citrate	2.5%	5%	8 hrs	Moist, flexible, soft & sponge-like
				16 hrs	Moist, flexible, soft & sponge-like
7	2 g Ca Citrate 2 g Activated Charcoal	2.5%	5%	8 hrs	Moist, flexible, soft & sponge-like
	Charcoar			16 hrs	Moist, flexible, soft & sponge-like
В	2 g Ca Citrate 2 g Cu/Zn WSG	2.5%	5%	8 hrs	Moist, flexible, soft & sponge-like
			·	16 hrs	Moist, flexible, soft & sponge-like
9	2.5 g Ca Citrate 2 g Povidone Iodine	2.5%	5%	8 hrs	Moist, flexible, soft & sponge-like
	Todine			16 hrs	Moist, flexible, soft & sponge-like

EXAMPLE 5

Experiment A

A 600 g batch of gel code 5 was made up using Manucol DMF as the gelling agent. This batch was split into six equal parts and inserted into the bottom can of a dual can aerosol system. The top cans were made up containing 1.5 g calcium citrate and varying amounts of alginic acid (% g increments from 0 to 2% g). Once preparation was complete the cans were foamed out simultaneously and the setting time for each foam was recorded.

Can Number	Gel Weight	Calcium Citrate Weight	Alginic Acid Weight	Setting Time
1	100 g	1.5 g	0 g	20 mins
2	100 g	1.5 g	0.5 g	16 mins
3	100 g	1.5 g	1.0 g	14 mins
4.	100. g	1.5 g	1.5 g	10 mins
5	100 g	1.5 g	2.0 g	9 mins
6	100 g	1.5 g	2.5 g	8 mins

Experiment B

Three 100 g batches of gel code 5 was made up using Manucol DMF as the gelling agent with alginic acid incorporated (0 g, 1 g and 2 g added). Each batch was filled into bottom cans and top cans were made up containing 1.5 g calcium citrate. Once preparation complete the cans were foamed out simultaneously and the setting times for each can recorded.

1 2	
3	
4	
5	
6	

Can Number	Gel Weight	Calcium Citrate Weight	Alginic Acid Weight	Setting Time
7 "	100 g	1.5 g	1 g	8 mins
8	100 g	1.5 g	2 g	6 mins
9	100 g	1.5 g	0 g	20 mins

PAIRDOCID - WO ON1607041 I

		20
1	CLAI	<u>ms</u>
2		
3	1.	A physiologically acceptable formulation for
4	μ	application to a body as a foam, said formulation
5.		comprising a foamable gelling agent and a slow-
6		release precipitant therefor, wherein said slow-
7		release precipitant is combined with said gelling
8		agent during the foaming thereof and stabilises
9		the foamed form of the gelling agent.
10		
11	2.	A formulation as claimed in Claim 1 wherein said
12		precipitant is packaged separately to said gelling
13		agent prior to foaming.
14		
15	3.	A formulation as claimed in either one of Claims 1
16		and 2 wherein said gelling agent is alginate,
17		carboxymethylcellulose, collagen, a
18		polysaccharide, agar, a polyethylene oxide, a
19		glycol methacrylate, gelatin, a gum, or salts or
20		derivatives of any of these, or mixtures thereof.
21		
22	4.	A formulation as claimed in Claim 3 wherein said
23		gelling agent is alginate, carboxymethyl-
24		cellulose, carageenan gel, the derivatives or
25		salts thereof, or mixtures thereof.
26		
27	5.	A formulation as claimed in any one of Claims 1 to
28		4, wherein said gelling agent has a molecular
29		weight of from 10,000 to 200,000 kDa.
30		
31	6.	A formulation as claimed in any one of Claims 1 to
32		5, wherein said precipitant is a salt of calcium,
33		zinc, copper, silver or aluminium; borates;
34		glyoxal; or amino-formaldehyde pre-condensates

-	
-	

		29
1	7.	A formulation as claimed in any one of Claims 1 to
2		6 further containing a foaming agent.
3		
4.,	8.,,	A formulation as claimed in Claim 7 wherein said
รั		foaming agent is cetrimide, lecithin, a soap,
6		silicone, a surfactant or the like.
7		
8	9.	A formulation as claimed in any one of Claims 1 to
9		8 wherein the gelling agent comprises an alginate
10		gel, a carageenan gel or a carboxymethylcellulose
11		gel and wherein the precipitant is a calcium salt.
12		
13	10.	A formulation as claimed in any one of Claims 1 to
14		8 wherein the gelling agent comprises
15		carboxymethylcellulose gel and wherein the
16		precipitant is an aluminium salt.
17		
18	11.	A formulation as claimed in any one of Claims 1 to
19		10 further comprising an organic acid in an amount
20		of 0.5 g to 5.0 g per 100 g gelling agent.
21		
22	12.	A physiologically acceptable foam comprising a
23		foamed gelling agent stabilised by a precipitant.
24		
25	13.	The foam as claimed in Claim 12 in the form of a
26		cured foam sheet.
27		
28	14.	A foam as claimed in Claim 12 wherein said
29		precipitant is packaged separately to said gelling
30		agent prior to foaming.
31		
32	15.	A foam as claimed in any one of Claims 12 to 14
33		wherein said gelling agent is alginate,
34		carboxymethylcellulose, collagen, a
35		polysaccharide, agar, a polyethylene oxide, a
36		glycol methacrylate, gelatin, a gum, or salts or

1		derivatives of any of these, or mixtures thereof.
2		· · · · · · · · · · · · · · · · · · ·
3	16.	A foam as claimed in Claim 15 wherein said gelling
4.		agent is alginate, carboxymethyl- cellulose,
`5		carageenan gel, the derivatives or salts thereof,
6		or mixtures thereof.
7		*
8	17.	A foam as claimed in any one of Claims 12 to 16,
9		wherein said gelling agent has a molecular weight
10		of from 10,000 to 200,000 kDa.
11		
12	18.	A foam as claimed in any one of Claims 12 to 17,
13		wherein said precipitant is a salt of calcium,
14		zinc, copper, silver or aluminium; borates;
15		glyoxal; or amino-formaldehyde pre-condensates
16		
17	19.	A foam as claimed in any one of Claims 12 to 18
18		further containing a foaming agent.
19		
20	20.	A foam as claimed in Claim 19 wherein said foaming
21		agent is cetrimide, lecithin, a soap, silicone, a
22		surfactant or the like.
23	•	
24	21.	A process of sterilising a foam for medical or
25		veterinary use, said process comprising:
26	•	
27	•	a) foaming a formulation of Claims 1 to 11 and
28		allowing said foamed formulation to cure;
29		
30		b) treating said foam with precipitant;
31		
32		c) optionally, washing said treated foam;
33		
34		d) drying said treated form; and
35		
36		

		31
1		e) sterilising said dried foam by exposure to γ -
2		irradiation or ethylene oxide.
3		
4	22.	The process of Claim 21 wherein said treated foam
` 5		is washed in a de-ionised water/glycerine mixture
6	·	prior to drying.
7		
8	23.	The process of either one of Claims 21 and 22
9		wherein the treated foam is oven dried at
10		temperatures below 100°C.
11		•
12	24.	The process of any one of Claims 21 to 23 wherein
13		the foam is immersed in a bath of calcium chloride
14		or calcium citrate solution as precipitant.
15		