Indian Institute of Technology Patna MA102: Mathematics II End Semester Exam (28-4-2018)

Time: 3hrs Max. Marks: 50

Note: There are total 9 questions. Answer all questions. Give precise and brief answer. Standard formulae may be used. DO NOT WRITE ANYTHING ON THE QUESTION PAPER. Write your Roll number at the end. CAL-CULATOR or any other electronic gadget is NOT allowed. Notations are standard and are same as used in class.

Que 1.

Answer all parts of this question at one place.	
(a.)	The condition $M_y = N_x$ for the differential equation $Mdx + Ndy = 0$ to be exact is: Necessary/ Sufficient/ Necessary & Sufficient (choose correct answer). [1]
(b.)	Solve $x \cos xy' + y(x \sin x + \cos x) = 1.$ [1]
(c.)	The wronskian of $y_1 = x^3$ and $y_2 = x^2 x $ vanishes identically on interval $[-1, 1]$. Are y_1 and y_2 LD? Justify your answer. [1]
(d.)	Solve $y' = \ln(x + y - 2)$. [1]
(e.)	Is $x = 1$ a regular singular point of equation $(1 - x)^2 y'' + xy' + y = 0$. Justify your answer. [1]
(f.)	Find the Laplace transform of $f(t) = \int_0^t e^{3x} dx$. [1]
(g.)	True/False (Justify your answer): If system $Ax = b$ has infinitely many solutions, then columns of A are linearly dependent. [1]
(h.)	True/False (Justify your answer): A linear transformation from \mathbb{R}^2 into \mathbb{R}^2 that transform $\begin{bmatrix} 1\\2 \end{bmatrix}$ to $\begin{bmatrix} 7\\3 \end{bmatrix}$ and $\begin{bmatrix} 3\\4 \end{bmatrix}$ to $\begin{bmatrix} -1\\1 \end{bmatrix}$ will also transform $\begin{bmatrix} 5\\8 \end{bmatrix}$ to
	$\begin{bmatrix} 13 \\ 7 \end{bmatrix}$ [1]

- 7 (i.) True/False (Justify your answer): Assume that A and B are matrices such that AB is defined and AB has a column that has all its entries equal to zero. Then one of the columns of B also has all its entries equal to zero. [1]
- (j.) Find a 3×3 permutation matrix P such that for any $3 \times n$ matrix A the matrix *PA* is *A* with its last two rows exchanged.
- Que 2. a) Solve the differential equation $2\sin(y^2)dx + xy\cos(y^2)dy = 0$ by converting it into an exact equation. b) Solve the equation: $x^3y' - x^2y = -y^4\cos x$. [2]

[1.5]Que 3. a) Solve the differential equation (for constant p, q):

$$y'' + 2py' + (p^2 + q^2)y = 0.$$

b) Given that $y_1 = e^{2x}$ is a solution of the differential equation

$$(x+2)y'' - (2x+5)y' + 2y = 0.$$

Find the other LI solution y_2 and hence find the general solution of the differ-

c) Solve the equation: $x^2y'' + 7xy' + 9y = 0$ and find general solution by finding two LI solutions.

Que 4. If $y_1(x)$ and $y_2(x)$ are any two solutions of the differential equation y'' + P(x)y' +Q(x)y = 0 on interval I (here P, Q are continuous functions on interval I) then show the wronskian $W(y_1, y_2) = y_1 y_2' - y_1' y_2$ is either identically zero or never |2|

Que 5. a) Solve the following differential equation:

differential equation: [2]
$$y'''' - 2y''' + 5y'' - 8y' + 4y = 0.$$

b) Using variation of parameters, find the general solution of the ODE: [4]

$$x^{2}y'' - 2x(x+1)y' + 2(x+1)y = x^{3}$$

Que 6. a) Use Euler method to solve the IVP: $y' = x^2 + y, y(0) = 0$ for $x \in [0,1]$ choosing h = 0.2.

a) Use Picards iteration to find successive approximations for $y' = x^2y$, y(0) = 0Find upto 4 terms.

Que 7. Solve the following system of first order linear equations:

$$\begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Find two LI solutions and hence find the general solution.

Que 8. Find the series solutions of Legendre Equation: $(1-x^2)y'' - 2xy' + p(p+1)y = 0$. Show that the solutions obtained are LI. Also, show that these LI solutions will [3+1+1]reduce to polynomials for non-negative integer values of p.

Que 9. a) Let $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$ and $\sin(A) = B \times C \times E$. Then find matrices B, C, C5

b) Prove: for $A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$, the Gauss-Seidel method diverges while the

Jacobi method converges

[4]