Poretools, Porekit, and Jupyter notebook

— Exploration tools for Nanopore sequencers —

2016/10/18 Rivas Lab. Meeting

Yosuke Tanigawa Biomedical Informatics (BMI) program

Oxford Nanopore Minlon

- Handy size DNA sequencer
- Long read sequencer (8kb)
- 3 protocols: 1D, 2D, Rapid
- High error rate
 - 92% (1D), 96% (2D)

Read Length Distribution

Mode of the distributions

- 1D: 8kb

- 2D: 28kb

- rapid: 3kb

2D reads – typical profile of lambda DNA mechanically sheared to average of 8 kb

Poretools

- Provides basic summary statistics from data
 - Developed by Nick Loman and Aaron Quinlan
 - http://doi.org/10.1093/bioinformatics/btu555
 - https://github.com/arq5x/poretools
- Does NOT fully support data from R9 run (the most recent file format)
- https://github.com/rivas-lab/nanopore/blob/master/notes/ 20161011_poretools.ipynb

Summary Statistics

- Summary stats from two data sets
 - cDNA:20161006_minion_human_cDNA
 - WGS: 20161008_wgs_cauc asian_48hr
- Reads are shorter than expected

	cDNA	WGS
total reads	26,854	29,964
total base	46,314,462	44,839,915
mean	1724.68	1496.46
median	1094	925
min	58	35
max	108262	94024
N25	5201	4547
N50	2529	2227
N75	1327	1140

Porekit

- Metadata extraction and make some nice plots
 - https://github.com/akloster/porekit-python
- https://github.com/rivas-lab/nanopore/blob/master/notes/ 20161017_porekit.ipynb
- This does not support the most recent file format of Nanopore data

Jupyter Notebook

- Run & Plot python code on your web browser
- You can use it on cluster machine (sherlock, etc..)
- 3 steps
 - start Jupyter notebook on cluster
 - connect to cluster
 - open on your browser

(Step 1) Start Jupiter

```
    yosuke — ytanigaw@sh-5-36:~ — ssh — 80×24

 For support:
   * email: research-computing-support@stanford.edu
   * office hours: Tuesdays 10-11am, Thursdays 3-4pm, room 261 @ Polya Hall
[ytanigaw@sherlock-ln03 login_node ~]$ sdev
[ytanigaw@sh-5-36 ~]$ ml load anaconda/anaconda3
[ytanigaw@sh-5-36 ~]$ jupyter-notebook --no-browser
[W 15:30:07.921 NotebookApp] Unrecognized JSON config file version, assuming ver
sion 1
[I 15:30:09.212 NotebookApp] [nb_conda_kernels] enabled, 2 kernels found
[I 15:30:09.831 NotebookApp] ✓ nbpresent HTML export ENABLED
[W 15:30:09.831 NotebookApp] x nbpresent PDF export DISABLED: No module named 'n
bbrowserpdf'
[I 15:30:09.839 NotebookApp] [nb_conda] enabled
[I 15:30:09.927 NotebookApp] [nb_anacondacloud] enabled
[I 15:30:09.933 NotebookApp] Serving notebooks from local directory: /home/ytani
gaw
[I 15:30:09.933 NotebookApp] 0 active kernels
[I 15:30:09.933 NotebookApp] The Jupyter Notebook is running at: http://localhos
t:8888/
[I 15:30:09.933 NotebookApp] Use Control-C to stop this server and shut down all
 kernels (twice to skip confirmation).
```

(Step 2) Connect

```
ytanigaw@sh-5-36:~ ssh - 80x24

ytanigaw@sh-5-36:~ ytanigaw@sh-5-36:~ +

DN52ec7g:~ yosuke$ PORT=$((30000+RANDOM%29999))

DN52ec7g:~ yosuke$ ssh -t -L 8888:localhost:$PORT sherlock ssh -L $PORT:localhost:8888 sh-5-36

Last login: Wed Oct 12 16:26:42 2016 from sherlock-ln01.local

Rocks Compute Node

Rocks 6.1 (Emerald Boa)

Profile built 17:35 28-Jul-2016

Kickstarted 17:41 28-Jul-2016

[ytanigaw@sh-5-36 ~]$
```

Port Forwarding (forward HTTP)

My Laptop <—> sherlock-ln03 <—> sh-5-36

http://sherlock.stanford.edu/mediawiki/index.php/lpython_Notebooks

We should use anaconda module instead of python/2.7.5

(Step3) Open in browser

Open http://localhost:8888/

Example usage

