Spectral Weighting and Spatial Biasing for Hyperspectral K-Means Clustering

Daniel Hanson, Sam Kreter Brendan Marsh, Christina Mosnick

Know Your Data

The Data

band 150 band 167

Why K-Means?

Tried DBSCAN and Soft K-Means

Known Number of Clusters

Normalized K-Means

- Normalize all spectral bands by .001
- Choose appropriate bands to weight more heavily
- Add weighted X and Y coords into dataset
- Run Scikit-learn K-means

PCA Projection Into Three Dimensions

Neighborhood Bias

- Spatially close points are spectrally similar
- Uses 'majority vote' approach
- Smooths out local inconsistencies

Neighborhood Bias

Results

Weighting of Spectral Layers

Selection of Spectral Images

Final Rand Index

0.886272:)