Лекция 8. Свойства бесконечно малых, арифметические свойства пределов

8.1. Арифметические операции над числовыми последовательностями

Числовые последовательности можно складывать, вычитать, перемножать и делить. Все арифметические операции определяются поэлементно.

- С у м м о й числовых последовательностей $\{a_n\}$ и $\{b_n\}$ называется числовая последовательность $\{c_n\}$ такая, что $c_n=a_n+b_n$.
- Разностью числовых последовательностей $\{a_n\}$ и $\{b_n\}$ называется числовая последовательность $\{c_n\}$ такая, что $c_n = a_n b_n$.
- Произведением числовых последовательностей $\{a_n\}$ и $\{b_n\}$ называется числовая последовательность $\{c_n\}$ такая, что $c_n = a_n \cdot b_n$.
- Частным числовой последовательности $\{a_n\}$ и числовой последовательности $\{b_n\}$, все элементы которой отличны от нуля, называется числовая последовательность $\{c_n\}$ такая, что $c_n=\frac{a_n}{b_n}$.

8.2. Свойства бесконечно малых

Напомним, что последовательность $\{\alpha_n\}$ — бесконечно малая, если она сходится к нулю, т. е. $\forall \varepsilon > 0 \quad \exists N(\varepsilon) \in \mathbb{N} : \quad \forall n > N \quad |\alpha_n| < \varepsilon$.

1. Связь сходящейся и бесконечно малой последовательности. Для того чтобы $\{a_n\}$ сходилась κ a, необходимо и достаточно, чтобы $\{a_n-a\}$ была бесконечно малой:

$$\lim_{n \to \infty} a_n = a \quad \Leftrightarrow \quad \lim_{n \to \infty} (a_n - a) = 0.$$

Доказательство. Необходимость. Так как $\{a_n\}$ сходится к a, то

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) \in \mathbb{N} : \quad \forall n > N \quad |a_n - a| < \varepsilon,$$

т.е. $\{a_n - a\}$ — бесконечно малая.

Достаточность очевидна в силу идентичности записи в кванторах утверждений: $\{a_n-a\}$ бесконечно малая и $\{a_n\}$ сходится к a.

Следствие. Для того чтобы $\{a_n\}$ сходилась κ a, необходимо и достаточно, чтобы для всех n выполнялось $a_n = a + \alpha_n$, где α_n — бесконечно малая последовательность.

2. Алгебраическая сумма¹ двух бесконечно малых есть бесконечно малая. $Ecnu \{\alpha_n\} \ u \{\beta_n\}$ — бесконечно малые последовательности, то бесконечно малыми являются и последовательности $\{\alpha_n + \beta_n\} \ u \{\alpha_n - \beta_n\}$.

¹Алгебраической суммой называется такая сумма, члены которой присоединяются друг к другу не только при помощи знака плюс, но и при помощи знака минус.

Доказательство. Так как $\{\alpha_n\}$ и $\{\beta_n\}$ — бесконечно малые последовательности, то по $\varepsilon > 0$ можем выбрать N так, чтобы при всех n > N выполнялись неравенства

$$|a_n| < \frac{\varepsilon}{2}, \quad |b_n| < \frac{\varepsilon}{2}.$$

Tогда для этих n

$$|a_n \pm b_n| \le |a_n| + |b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Таким образом,

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) \in \mathbb{N} : \quad \forall n > N \quad |a_n \pm b_n| < \varepsilon,$$

что и требовалось доказать.

Следствие. Алгебраическая сумма **конечного числа** бесконечно малых есть бесконечно малая.

Замечание 8.1. Алгебраическая сумма бесконечного числа бесконечно малых может не быть бесконечно малой. Например,

$$\lim_{n \to \infty} \left(\underbrace{\frac{1}{n} + \frac{1}{n} + \ldots + \frac{1}{n}}_{n \text{ CHAFARMMX}} \right) = \lim_{n \to \infty} n \cdot \frac{1}{n} = \lim_{n \to \infty} 1 = 1.$$

3. Произведение бесконечно малой на ограниченную есть бесконечно малая. Если последовательность $\{\alpha_n\}$ бесконечно малая, а последовательность $\{b_n\}$ ограниченная, то последовательность $\{\alpha_n \cdot b_n\}$ бесконечно малая.

Доказательство. По определению ограниченной последовательности найдется число C такое, что $|b_n| \leq C$ при всех n. Поэтому $|\alpha_n b_n| \leq C |\alpha_n|$.

Взяв $\varepsilon > 0$ и выбрав N так, чтобы при всех n > N выполнялось

$$|\alpha_n| < \frac{\varepsilon}{C},$$

получим требуемое неравенство

$$|\alpha_n b_n| \le C|\alpha_n| < C\frac{\varepsilon}{C} = \varepsilon,$$

что и требовалось доказать.

Поскольку бесконечно малая величина обязательно ограниченная (это вытекает из связи сходимости и ограниченности последовательности), то очевидным представляется следующее

Следствие. Произведение бесконечно малых есть бесконечно малая.

4. Обратная к бесконечно малой есть бесконечно большая. $Ecnu \{\alpha_n\}$ — beckonevno малая последовательность и $\alpha_n \neq 0$ при beck n, то $\{1/\alpha_n\}$ — beckonevno большая последовательность.

Доказательство. Для произвольного E>0 положим $\varepsilon=1/E$. Теперь по ε находим N такое, что $|\alpha_n|<\varepsilon$ при всех n>N. Тогда для этих n имеем

$$|1/\alpha_n| = 1/|\alpha_n| > 1/\varepsilon = E$$

и наше утверждение доказано.

Обратная к бесконечно большой есть бесконечно малая. $Ecnu \{a_n\}$ — becko- нечно большая последовательность, причём $a_n \neq 0$ при beck n, то $\{1/a_n\}$ — becko- малая последовательность.

Д/З Доказательство аналогично. Провести самостоятельно.

8.3. Арифметические свойства пределов

Теорема 8.3.1. Пусть последовательности $\{a_n\}$ и $\{b_n\}$ сходятся. Тогда

1.
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n;$$

2.
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n;$$

3.
$$\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n;$$

4.
$$ecnu\ b_n \neq 0$$
 $npu\ ecex\ n\ u\lim_{n\to\infty} b_n \neq 0$, $mo\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim\limits_{n\to\infty} a_n}{\lim\limits_{n\to\infty} b_n}$.

Здесь в каждом из случаев 1-4 содержатся два утверждения: во-первых, существование предела в левой части равенства, а во-вторых, равенство этого предела выражению из правой части.

Словами эту теорему обычно формулируют так: предел суммы равен сумме пределов; предел разности равен разности пределов; предел произведения равен произведению пределов; предел частного равен частному пределов. В последнем случае, разумеется, имеется в виду, что ни члены последовательности делителей, ни её предел не равны нулю.

Доказательство Пусть $a = \lim_{n \to \infty} a_n$ и $b = \lim_{n \to \infty} b_n$. Тогда, согласно связи сходящихся и бесконечно малых последовательностей (свойство 1 бесконечно малых последовательностей), последовательности $\{a_n - a\}$ и $\{b_n - b\}$ являются бесконечно малыми.

1-2. Тогда последовательность $\{(a_n \pm b_n) - (a \pm b)\}$:

$$(a_n \pm b_n) - (a \pm b) = (a_n - a) \pm (b_n - b)$$

есть бесконечно малая, поскольку является алгебраической суммой двух бесконечно малых. Отсюда, согласно свойству 1 бесконечно малых последовательностей, следуют утверждения 1 и 2.

3. Члены последовательности $\{a_nb_n-ab\}$ представимы в следующем виде:

$$a_n b_n - ab = a_n b_n - ab_n + ab_n - ab = (a_n - a)b_n + a(b_n - b).$$
(8.1)

Вспомним, что сходящаяся последовательность $\{b_n\}$ ограничена, поэтому в (8.1) первое слагаемое бесконечно малое, так как является произведением бесконечно малой $\{a_n-a\}$ на ограниченную $\{b_n\}$; второе слагаемое бесконечно малое, так как является произведением бесконечно малой $\{b_n-b\}$ на ограниченную (стационарную последовательность) $\{a\}$. Сумма двух бесконечно малых есть бесконечно малая. Отсюда, согласно свойству 1 бесконечно малых последовательностей, следует утверждение 3. Из этого утверждения естественным образом вытекает

Следствие. Постоянный множитель с можно выносить за знак предела:

$$\lim_{n \to \infty} c \cdot a_n = c \cdot \lim_{n \to \infty} a_n.$$

4. Последовательность $\left\{\frac{a_n}{b_n} - \frac{a}{b}\right\}$ представима в следующем виде:

$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{a_n b - b_n a}{b_n b} = \frac{a_n b - ab + ab - b_n a}{b_n b} = \frac{1}{b_n b} (b(a_n - a) - a(b_n - b)). \tag{8.2}$$

По условию $b\neq 0$, значит, существует число N_1 такое, что $|b_n|>|b|/2$ для всех $n>N_1$. Так как $b_n\neq 0$, то $\frac{1}{|b_nb|}<\frac{2}{b^2}$ для всех $n>N_1$. Последовательность $\left\{\frac{1}{b_nb}\right\}$ является ограниченной, так как

$$\exists C = \max\{\frac{2}{b^2}, \frac{1}{|b_1b|}, \dots, \frac{1}{|b_{N_1}b|}\}: \ \forall n \in \mathbb{N}, \ \left|\frac{1}{b_nb}\right| \le C.$$

Согласно доказанным утверждениям 2, 3

$$\lim_{n \to \infty} (b(a_n - a) - a(b_n - b)) = b \lim_{n \to \infty} (a_n - a) - a \lim_{n \to \infty} (b_n - b) = 0.$$

Произведение бесконечно малой $\{b(a_n-a)-a(b_n-b)\}$ на ограниченную $\{\frac{1}{b_nb}\}$ есть бесконечно малая. Отсюда, согласно свойству 1 бесконечно малых последовательностей, следует утверждение 4. Теорема доказана.

Замечание 8.1. Теорема 8.3.1 не справедлива для расходящихся последовательностей, в частности для бесконечно больших. Это подтверждается следующими примерами.

Пример 8.1. Предел суммы последовательностей $\{(-1)^n n\}$ и $\{(-1)^{n+1} n\}$ равен нулю, предел частного равен -1, в то время как слагаемые являются бесконечно большими.

Пример 8.2. Предел разности последовательностей $\{n\}$ и $\{n+(-1)^n\}$ не существует, в то время как слагаемые сходятся к $+\infty$.

Пример 8.3. Нетрудно убедиться, что последовательности

$$a_n = \frac{1 + (-1)^n}{2}, \quad b_n = \frac{1 - (-1)^n}{2}$$

расходящиеся, но предел суммы и произведения этих последовательностей существует, так как:

$$a_n + b_n = 1, \quad a_n b_n = 0.$$

Пример 8.4. Нетрудно убедиться, что последовательности

$$a_n = n^{(-1)^n}, \quad b_n = n \cdot n^{(-1)^{n+1}}$$

не являются бесконечно большими, а предел их произведения

$$a_n b_n = n \cdot n^{(-1)^n + (-1)^{n+1}} = n \cdot n^{(-1)^n - (-1)^n} = n \cdot n^0 = n$$

является бесконечно большим.