GEOMETRIA ANALÍTICA

Lista 2: Retas, Planos e Distâncias

Professora Francielle Kuerten Boeing

- 1. Resolver as questões 1, 2, 3, 4, 5, 6 e 14 que se iniciam na página 132 do Steinbruch.
- 2. Determine os valores de m para que as retas r: $\begin{cases} x = 2 + 2t \\ y = mt \\ z = 4 + 5t \end{cases}$ e s: $\begin{cases} \frac{x+5}{-1} = y + m = \frac{z-6}{m} \end{cases}$ sejam: (a) ortogonais (b) paralelas (c) coplanares.
- 3. Calcule os valores de a e b para que a reta r: $\begin{cases} x=3+at \\ y=2-bt \\ z=7-2t \end{cases}$ seja paralela à reta que é simultaneamente ortogonal às retas

$$r: \begin{cases} y = 2x - 8 \\ z = -3x + 1 \end{cases}$$
 e $s: \begin{cases} \frac{x-4}{3} = \frac{y+2}{3} = \frac{z-6}{6} \end{cases}$.

- 4. Determine as equações reduzidas da reta r que passa pelo ponto P(3,5,2) e é simultaneamente ortogonal ao eixo x e à reta s: $\begin{cases} x=1 \\ \frac{y-3}{-2} = z+1 \end{cases}$
- 5. Calcule o(s) valor(s) de m para o(s) qual(is) a reta r: $\begin{cases} x = my + 3 \\ z = (m+1)y 7 \end{cases}$ seja ortogonal à reta determinada pelos pontos A(4,0,m) e B(-5,2m,3m).
- 6. Estabeleça as equações simétricas da reta que passa pelo ponto de interseção das retas r: $\begin{cases} 1-x=y=\frac{z-2}{2} & \text{e} \quad s: \\ y=3+4t & \text{e} \text{ \'e}, \text{ ao mesmo tempo, ortogonal a essas retas.} \\ z=6+6t \end{cases}$
- 7. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1,-1,1) e é ortogonal à reta r: $\frac{x-2}{-2} = y = z$
- 8. Calcular as equações da reta r que contém o ponto A(2,-1,1) e que interceptam a reta s: $\begin{cases} x=1+2t\\ y=-1 \end{cases}$ segundo um ângulo de $\frac{\pi}{4}rad$ z=t
- 9. Considere o paralelogramo de vértices A(1,-2,3), B(4,3,-1), C(5,7,-3) e D(2,2,1).

Determine:

- (a) as equações paramétricas da reta que contém o ponto de interseção das diagonais deste paralelogramo e é simultaneamente ortogonal a estas duas diagonais.
- (b) a equação geral do plano que contém este paralelogramo.
- 10. Determine a posição relativa entre:

(a) as retas
$$r: \left\{ \begin{array}{ll} x=-1 \\ y=3 \end{array} \right.$$
 e $s: \left\{ \begin{array}{ll} y=4x+7 \\ z=x \end{array} \right.$

(b) a reta
$$r: \begin{cases} x = 1 + 3t \\ y = -1 - 2t \end{cases}$$
 e o plano $x + 2y + z + 1 = 0$ $z = t$

- (c) os planos -2x + 3y + 4z = 9 e 3x 2y + 3z = 10.
- 11. Dados os planos $\pi_1 : -4x + 4y 4 = 0$ e $\pi_2 : -2x + y + z = 0$, determine:
 - (a) a interseção entre π_1 e π_2 .
 - (b) o ângulo entre π_1 e π_2 .
- 12. Obtenha a equação simétrica da reta que passa pelo ponto de interseção da reta $t: \begin{cases} y=2x+1 \\ z=x-3 \end{cases}$ com o plano $\pi: 2x+2y-3z+4=0$ e que é simultaneamente ortogonal às retas $\ r: \begin{cases} x=-z+4 \\ y=3z-6 \end{cases}$ e $\ s: \begin{cases} x=4 \\ z=2y+1 \end{cases}$.
- 13. Estabeleça a equação geral do plano que contém as retas $r: \left\{ \begin{array}{l} \frac{x-1}{3} = \frac{z-1}{5} \\ y = -1 \end{array} \right.$ e $s: \left\{ \begin{array}{l} x = 2y + 5 \\ z = -2y 1 \end{array} \right.$
- 14. Determine a equação geral do plano que contém o ponto P(1,3,4) e a reta $r: \left\{ \begin{array}{l} x=1-5t \\ y=2+3t \\ z=2-7t \end{array} \right.$
- 15. Determinar a equação do plano que passa pela reta interseção dos planos x-3y-z+3=0 e 3x+y-2z+2=0 e é perpendicular ao plano yz.
- 16. Determinar um vetor unitário ortogonal ao plano $\sqrt{2}x + y z + 5 = 0$.
- 17. O plano $\pi: x+y-z-2=0$ intercepta os eixos cartesianos nos pontos $A,B\in C$. Determine a área e a altura do triângulo ABC.
- 18. Determine as equações paramétricas do plano que contém a reta $\begin{cases} y=2x-3\\ z=-x+2 \end{cases}$ e é perpendicular ao plano 2x+y-z+5=0.
- 19. Determine a posição relativa entre:

(a) a reta
$$r: \begin{cases} x-1 = \frac{y+1}{-2} \\ z = 0 \end{cases}$$
 e o plano $2x + y - 3z - 1 = 0$.

(b) a reta
$$s : \begin{cases} y = 2x - 3 \\ z = -x + 4 \end{cases}$$
 e o plano $3x - 2y - z - 2 = 0$.

20. Calcule os valores de
$$m$$
 e n para que a reta r :
$$\begin{cases} x=t+3\\ y=2t-3\\ z=-t+4 \end{cases}$$
 esteja contida no plano π :
$$nx+my-z-5=0.$$

- 21. Determine um ponto P de coordenadas inteiras que pertença à reta interseção dos planos: π_1 : 3x-4y+z-3=0 e π_2 : x+3y-z=0 e cuja distância ao ponto Q(1,1,-1) é 9 unidades de medida.
- 22. Considere as retas:

$$r: \left\{ \begin{array}{l} x = 1 \\ z = 2y - 6 \end{array} \right\}, \quad s: \left\{ \begin{array}{l} x = -1 + t \\ y = -1 + 3t \\ z = 6 - t \end{array} \right\}, \quad e \quad t: \left\{ \begin{array}{l} \frac{x+2}{2} = \frac{y-1}{6} = \frac{z}{-2} \end{array} \right\}.$$

- (a) Determine a posição relativa das retas a seguir e, se houver, seu ponto de interseção:
 - (i) $r \in s$
- (ii) r e t;
- (iii) $t \in s$.
- (b) Determine, se houver, a equação do plano que contém as retas:
 - (i) $r \in s$;
- (ii) $r \in t$;
- (iii) $t \in s$.
- (c) Determine a equação de uma reta l que é ortogonal a r, forma um ângulo de 60° com o eixo das ordenadas e intercepta o eixo das abscissas em x = 2.
- 23. Classifique as afirmações abaixo em verdadeiras ou falsas e justifique sua resposta.
 - (a) A reta que passa pelos pontos $A(2,1,3)~{\rm e}~B(2,4,3)$ é paralela ao plano coordenado xz.
 - (b) O plano que passa pelos pontos C(1,0,0), D(0,0,4) e E(2,3,-4) é paralelo ao eixo y.
 - (c) O plano que contém a reta $\begin{cases} x = 2 \\ z = 4 \end{cases}$ e passa pelo ponto (1,3,4) é paralelo ao plano xy.
- 24. Considere a reta $u: \left\{ \begin{array}{l} \frac{x-1}{a} = -y + 2 = \frac{z}{2} \\ \end{array} \right.$ e o plano $\beta: 2x + y z + d = 0$. Determine, se existirem, os valores de a e d tais que:
 - (a) u esteja contida em β ;
 - (b) u seja paralela a β ;
 - (c) u seja ortogonal a β .
- 25. No paralelepípedo da figura abaixo tem-se: $E(0,0,3)\,$ e $\,B(2,4,0).$

- (a) Determine a equação do plano que passa pelos pontos $O, P \in D$.
- (b) Determine a equação da reta que passa pelo ponto médio do segmento \overline{OA} e é perpendicular ao plano z=3.
- (c) Determine a equação do plano que contém a face BCDP

Respostas:

1. Respostas no livro.

2. (a)
$$m = \frac{1}{3}$$
 (b) não existe m (c) $m = \frac{7 \pm \sqrt{829}}{10}$

3.
$$a = 14$$
 e $b = 10$

$$4. r: \begin{cases} x = 3 \\ z = 2y - 8 \end{cases}$$

5.
$$m = 0$$
 ou $m = \frac{5}{2}$

6.
$$\frac{x-2}{-2} = \frac{y+1}{-2} = \frac{z}{2}.$$

7. Uma das soluções possíveis:
$$\begin{cases} x = 1 \\ y = -1 - t \\ z = 1 + t \end{cases}$$

8.
$$r: \begin{cases} x = 2+3t \\ y = -1 \\ z = 1-t \end{cases}$$
 ou $r: \begin{cases} x = 2-t \\ y = -1 \\ z = 1-3t \end{cases}$

9. (a)
$$\begin{cases} x = 3 + 12t \\ y = \frac{5}{2} + 4t \\ z = 14t \end{cases}$$

(b)
$$6x + 2y + 7z - 23 = 0$$

10. (a) Concorrentes (b)
$$r$$
 está contida no plano (c) Perpendiculares

11. (a)
$$\begin{cases} y = z+2 \\ x = z+1 \end{cases}$$
 (b) $\theta = \frac{\pi}{6}$

12.
$$\left\{\begin{array}{c} \frac{x+5}{5} = \frac{y+9}{2} = \frac{z+8}{-1} \end{array}\right.$$

14.
$$13x + 10y - 5z - 23 = 0$$

15.
$$10y + z - 7 = 0$$

16.
$$\pm \frac{1}{2}(\sqrt{2},1,-1)$$

17.
$$A = 2\sqrt{3} \ u.a. \ e \ h = \sqrt{6} \ u.c.$$

18.
$$\begin{cases} x = t + 2h \\ y = -3 + 2t + h \\ z = 2 - t - h \end{cases}$$

19. (a) e (b)
$$r$$
 está contida no plano

20.
$$m = -\frac{4}{3}$$
 e $n = \frac{5}{3}$

21.
$$P(0, -3, -9)$$

- 22. (a) i. concorrentes com I(1,5,4)
 - ii. reversas
 - iii. paralelas distintas
 - (b) i. -7x + 2y z + 1 = 0
 - ii. Não existe plano que contém as retas r e t, pois elas são reversas.
 - iii. -16x + 7y + 5z 39 = 0
 - (c) $l: \left\{ \frac{x-2}{\sqrt{11}} = -\frac{y}{2} = z \right\}$
- 23. (a) Falsa, a reta é ortogonal ao plano xz.
 - (b) Verdadeira.
 - (c) Verdadeira.
- 24. (a) d = -4 e $a = \frac{3}{2}$
 - (b) $a = \frac{3}{2}$ e d pode assumir qualquer valor.
 - (c) Não existem valores a e d para que a reta u seja ortogonal ao plano β .
- 25. (a) -3y + 4z = 0
 - (b) $r: \begin{cases} x=1\\ y=0 \end{cases}$
 - (c) y = 4.