

EE 5179
Instructor: Kaushik Mitra

History

- 1932 The Integrative Action of the Nervous System, **Sir Charles Scott Sherrington**
 - Nervous system interconnection of individual entities (neuron)
- 1943 A Logical Calculus of Ideas Immanent in Nervous Activity, Warren McCulloch and Walter Pitts
 - McCulloch and Pitt's model
- 1949 The Organization of Behavior, Donald Hebb
 - Hebbian learning
- 1953 The Perceptron, Rosenblatt
- 1969 Limitation of Perceptrons, Minsky and Papert
- 1980's Connectionism
 - Error Back Propagation, Proposed simultaneously by Many
- 20th century Deep learning
 - CNNs LeNet, AlexNet, VGGNet, ResNet
 - Deep LSTMs,
- The **deep saga......** what followed is discussed in the last class

The Mark 1 Perceptron

By Rosenblat

McCulloch - Pits model

Biological neuron

$$\sum_{i=1}^{n} w_i x_i > \mu$$

The input and output are binary and the weights are either excitatory (+1) or inhibitory (-1).

The Perceptron - Rosenblatt (1953)

*Pic courtesy, wikipedia

The Mark 1 Perceptron
By Rosenblat
for digit recognition

Weights can be any real number. He also proposed a learning algorithm for learning the weights from training data.

Perceptron - geometrical interpretation

$$\sum_{i=1}^n w_i x_i > \mu$$
 , What does this inequality imply in 2D case? Half plane

X	AND
(0, 0)	0
(0, 1)	0
(1, 0)	0
(1, 1)	1

Solve for W, μ:

$$x_1 + x_2 > 1.5$$

 $w_1 = 1$, $w_2 = 1$ and $\mu = 1.5$

Any function that is linearly separable can be computed by a perceptron

Perceptron - Limitations

Goal: learn the XoR function (f^*)

X	f*
(0, 0)	0
(0, 1)	1
(1, 0)	1
(1, 1)	0

Task is adjust parameters ϑ , such that f is as close as to f^*

$$y = f(x, \vartheta) \qquad L = \sum_{\{x \in \mathbb{X}\}} (f^*(x) - f(x, \vartheta))^2$$

Lets use our perceptron for f, $\vartheta = \{w,b\}$

$$f(x; w,b) = w^Tx + b$$

Solve for {w,b}

W = 0, b = 0.5; output is 0.5 everywhere

Why this linear function can't model XoR?

How to tackle this problem?

- Can we use more than one line?
- Yes, but how?

Perceptron - Limitations

How to tackle this problem?

Add a hidden layer with two units

If its linear again the composition still remains linear

$$f^{(2)}(h) = U^T h$$
; since $h = Wx$
 $y = U^T Wx = W'x$

Goal: learn the XoR function (f^*)

- $f^{(1)}$ should be nonlinear to extract useful features

$$h = f^{(1)}(x; W, b) = g(Wx+b)$$

- g is referred as activation function commonly
- We will use ReLU here
 - □ Rectified Linear Unit (widely used)

$$g(z) = \max\{0,z\}$$

*Slide courtesy, Ian Goodfellow et al., deep learning book

Perceptron - Limitations

How to tackle this problem?

- Add a hidden layer with two units
- Use ReLU activation in 1st layer

Let,

$$\mathsf{W} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right], \quad \mathsf{b} = \left[\begin{array}{c} 0 \\ -1 \end{array} \right], \quad \mathsf{U} = \left[\begin{array}{c} 1 \\ -2 \end{array} \right],$$

$$c = 0$$

Goal: learn the XoR function (f^*)

$$X = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad WX = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

$$WX + b = \begin{bmatrix} 0 & 1 & 1 & 2 \\ -1 & 0 & 0 & 1 \end{bmatrix} \qquad h = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} \text{Upon} \\ \text{ReLU} \end{array}$$

Multi-layer Perceptrons (MLP)

A typical feed forward neural network

$$h = f(Wx + b_1); y = g(Uh + b_2)$$

With more hidden units network is more expressible

Feedforward Neural Networks - Cost functions

For regression,

$$J(\theta) = \frac{1}{2} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text{data}}} ||\mathbf{y} - f(\mathbf{x}; \boldsymbol{\theta})||^2$$
$$\frac{1}{2} \sum_{\{x_i, y_i\}} ||y_i - f(x_i, \boldsymbol{\theta})||^2$$

For classification,

- Typically outputs a probability vector $q(c = k | x) \forall k$
- How do you compare two distributions?
 - \Box KL divergence, KL($p \parallel q$)

$$D_{KL}(p(x)||q(x)) = \sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$$

$$= \sum_{x \in X} p(x) \ln p(x) - p(x) \ln q(x)$$

$$= -H(p) + H(p,q)$$

$$= \text{entropy cross-entropy}$$

$$J(\theta) = \sum_{x \in X} H(p(x_i), q(x_i))$$

Activation functions

h = g(Wx+b); Affine transformation followed by activation function, g

Very important factor in learning features

$$g(z) = \max\{0, z\}$$

 $g(z) = max\{0,z\}, ReLU$

$$g(z) = \sigma(z)$$
, sigmoid

$$tanh(z) = 2\sigma(2z) - 1$$

Output units

- Linear units for real valued outputs
 - Activation function is left to be linear
 - Given features h,

$$y' = Wh+b$$

Most commonly used with regression tasks

- Say you want to do binary classification
 - ☐ What kind of distribution describes output?

 Bernouli
 - □ How to constrain the output valid probability? Can you use linear activation?

$$P(y = 1 \mid \boldsymbol{x}) = \max \{0, \min \{1, \boldsymbol{w}^{\top} \boldsymbol{h} + b\}\}.$$

- ☐ What is the problem? Not amenable for gradient based learning
- □ Instead, use sigmoid unit output \in [0,1]

$$\hat{y} = \sigma \left(\boldsymbol{w}^{\top} \boldsymbol{h} + b \right)$$

Output units

- Now, say we want to do multi-class classification (K classes)
 - Output should be K probabilities, $p_k = p(class = k \mid x) \forall k = 1 \text{ to } K$
 - ☐ Can we use K sigmoid units?

Won't be sufficient, since probabilities are not constrained to sum to 1

$$\sum_{k} p_{k} = 1$$

- ☐ We will look at softmax unit for this
 Idea is to convert a vector of real values to valid probabilities,
 ☐ Haw? Make all the elements positive
 - Normalize the values

- Let,
$$\mathbf{z} = [z_1, ..., z_K]^T$$
; $\mathbf{z} = W\mathbf{h} + \mathbf{b}$

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}.$$

