oamk.fi

STUDY MATERIAL

Active Circuits

- Diodes
- BJT transistors, DC operation
- FET transistors, DC operation
- Operational amplifiers
- Power semiconductors

oamk.fi

STUDY MATERIAL

Diodes

- Normal (silicon) diode
- Zener diode
- Schottky diode
- Capacitance diode
- LED
- Photodiode

Basic Operation

- •When forward biased more electrons come from the supply to n region and more holes come from the supply
- •This means continuous current flow
- •Voltage across wellconducting silicon diode is about 0.7V

An Ideal Diode

- •A forward-biased diode conducts (switch on)
- A reverse-biased diode doesn't conduct (switch off)
- On-resistance tends to zero
- •Off-resistance tends to infinity

A Real Diode

•In a real diode there is a certain voltage across a diode when it is forward-biased. This voltage is typically about 0.7V for normal silicon diode. In germanium and in Schottky diode this voltage is lower and in LED it is higher.

$$I_{\scriptscriptstyle D}=I_{\scriptscriptstyle 0}(e^{\frac{U_{\scriptscriptstyle D}}{U_{\scriptscriptstyle T}}}-1)$$

I_D=diode current

U_D=diode voltage

I₀=saturation current

 $U_T=kT/q$ (25,2mV at room temperature)

A Forward-biased Diode

- •When forward-biased a diode conducts very well. That's why a current limiting resistance is needed.
- •Normally the value of the resistance is chosen according so that the current doesn't exceed the specified maximum ratings of a diode.

 Sometimes power dissipation requirements set the the value for the current limiting resistance.

A Reverse-biased Diode

When reverse-biased the current in a diode is very small. In a highvoltage environment you must check that you don't exceed the maximum reverse voltage across the diode. A break-down as unrecoverable.

Diode-based Logic Gate

- •If some of the inputs is low, it means that output is also low
- •If all the inputs are high the output is also high
- AND-gate

Diode as a Rectifier

- •Diode can be used to clip a part of the AC signal.
- •In a half-wave rectifier a diode conducts during the positive half-cycle of the signal
- •In a full-wave rectifier the negative half-cycle "is converted" to positive

oamk.fi

STUDY MATERIAL

The Operation of a Bridge Rectifier

DC Power Supply

- •A transformer is needed to change the amplitude of an AC signal
- •Diodes with tapped transformer form a full-wave rectifier
- •A capacitor is use for filtering to reduce the ripple
- •To improve this DC supply A fuse and a regulator could be added

Voltage Doubler

- •During the positive halfcycle D₁ conducts and C₁ is charged
- •During the negative halfcycle D₂ conducts and C₂ is charged
- •Totally across C₁ and C₂ is twice the input amplitude

Another Voltage Doubler

- •During the negative halfcycle D₁ conducts and C₁ is charged
- •During the positive half-cycle D₂ conducts and C₂ is charged with the voltage supplied from the generator plus charged in the C₁ (during the negative half-cycle)

Voltage Multiplier

Zener Diode

- •When forward biased a Zener operates like a normal diode
- •Zener (or avalance) breakdown when reverse biased and Zener voltage reached
- •Zener tolerates a breakdown unlike a normal diode

Schottky Diode

- •Schottky diode is a junction of metal and n type semiconductor material
- •Schottky diode is faster than a normal diode.
- •Also a forward voltage (U_F) across Schottky diode smaller than in a normal diode

Capacitance Diode (Varactor

- •The capacitance of the varactor can be changed by changing the reverse-biased voltage across the the varactor
- Used for example in voltage-controlled oscillators (VCXOs) for frequency adjusting

LED (Light Emitting Diode)

- •When forward-biased the LED emits light
- •The forward voltage is different for different colours, generally forward voltages of LEDs are higher than in normal diodes
- Light intensity is different for different colours

LED Biasing

- •The current of a LED is limited by a resistor.
- •Forward voltage as well as the recommend forward current shall be checked from the data sheet of LED.

oamk.fi

STUDY MATERIAL

				- -	•
Wavelength (nm)	Color Name	Fwd Voltage (Vf @ 20ma)	Intensity 5mm LEDs	Viewing Angle	LED Dye Material
940	Infrared	1.5	16mW @50mA	15°	GaAlAs/GaAs Gallium Aluminum Arsenide/Gallium Arsenide
880	Infrared	1.7	18mW @50mA	15°	GaAlAs/GaAs Gallium Aluminum Arsenide/Gallium Arsenide
850	Infrared	1.7	26mW @50mA	15°	GaAlAs/GaAs Gallium Aluminum Arsenide/Gallium Aluminum Arsenide
660	Ultra Red	1.8	2000mcd @50mA	15°	GaAlAs/GaAs Gallium Aluminum Arsenide/Gallium Aluminum Arsenide
635	High Eff. Red	2.0	200mcd @20mA	15°	GaAsP/GaP - Gallium Arsenic Phosphide / Gallium Phosphide
633	Super Red	2.2	3500mcd @20mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
620	Super Orange	2.2	4500mcd @20mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
612	Super Orange	2.2	6500mcd @20mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
605	Orange	2.1	160mcd @20mA	15°	GaAsP/GaP - Gallium Arsenic Phosphide / Gallium Phosphide
595	Super Yellow	2.2	5500mcd @20mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
592	Super Pure Yellow	2.1	7000mcd @20mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
585	Yellow	2.1	100mcd @20mA	15°	GaAsP/GaP - Gallium Arsenic Phosphide / Gallium Phosphide
574	Super Lime Yellow	2.4	1000mcd @20mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
570	Super Lime Green	2.0	1000mcd @20mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
565	High Efficiency Green	2.1	200mcd @20mA	15°	GaP/GaP - Gallium Phosphide/Gallium Phosphide
560	Super Pure Green	2.1	350mcd @20mA	15°	InGaAIP - Indium Gallium Aluminum Phosphide
555	Pure Green	2.1	80mcd @20mA	15°	GaP/GaP - Gallium Phosphide/ Gallium Phosphide
525	Aqua Green	3.5	10,000mcd @20mA	15°	Si C/GaN - Silicon Carbide / Gallium Nitride
505	Blue Green	3.5	2000mcd @20mA	45°	Si C/GaN - Silicon Carbide / Gallium Nitride
470	Super Blue	3.6	3000mcd @20mA	15°	Si C/GaN - Silicon Carbide / Gallium Nitride
430	Ultra Blue	3.8	100mcd @20mA	15°	Si C/GaN - Silicon Carbide / Gallium Nitride

Forward Current vs

Forward Voltage Red 5, Ultra Red 4, HE Red 6, Orange 7, Bright Red 3,

Relative Luminous Intensity vs **Forward Current**

Ultra Red 4, HE Red 6, Orange 7, Yellow 8, HE

Red 5, Bright Red 3, Pure Blue C

Photodiode

- Light is changed as current in a photodiode
- •It is used as reverse-biased
- •This <u>structure</u> is most commonly fabricated in a lightly to moderately doped, 200-500 mm thick, n-type silicon substrate. The front of the wafer is heavily doped with a ptype dopant, like Boron, by ion implantation, in such a way as to produce a shallow junction. The rear of the wafer is heavily doped with an n-type dopant, such as Phosphorous, by ion implantation for better ohmic contact. The contact oxide by thermal oxidation is the window allowing incident light in, while passivating the silicon surface.
- •When the energy of photon, hn, is larger than the forbidden gap of silicon, 1.12 eV (equivalent to about 1110 nm in wavelength), the absorbed photon may excite a electron from valence band to conduction band and leave a hole in valence band, in other words, generating a electron-hole pair.

Sensitivity of Example Photodiode

Relative spectral sensitivity

$$S_{\text{rel}} = f(\lambda)$$

Photocurrent $I_P = f(E_e)$, $V_R = 5 \text{ V}$ Open-circuit voltage $V_O = f(E_e)$

Dark Current of Example Photodiode

Dark current

$$I_{R} = f(V_{R}), E = 0$$

Dark current

$$I_{R} = f(T_{A}), V_{R} = 10 \text{ V}, E = 0$$

STUDY MATERIAL

BJT transistors

NPN transistor

PNP transistor

PINNING

PIN	DESCRIPTION		
1	emitter		
2	base		
3	collector, connected to case		

PINNING

PIN	DESCRIPTION		
1	emitter		
2	base		
3	collector, connected to case		

NPN Transistor

- •Because of biasing charge carriers start to recombine at EB junction
- •More <u>electrons</u> comes to the emitter from the supply
- •Because the base is narrow most of the <u>electrons</u> pass the base to the collector =>continuos current flow

PNP Transistor

 Because of biasing charge carriers start to recombine at EB junction

- •More <u>holes</u> comes to the emitter from the supply
- •Because the base is narrow most of the <u>holes</u> pass the base to the collector =>continuous current flow

BJT Load Line, $I_C = f(U_{CE})$

DC Analysis of the BJT Stage

$$I_{C} = \beta I_{B}$$

$$|_{\mathsf{E}} = |_{\mathsf{C}} + |_{\mathsf{B}} = (\beta + 1)|_{\mathsf{B}}$$

$$U_{CC}=R_1I_B+U_{BE}+R_3I_E$$

$$U_{CC}=R_2I_C+U_{CE}+R_3I_E$$

DC Analysis of the CE BJT Amplifier

$$\begin{split} V_B = & \left(\frac{R_2 /\!/ \beta_{DC} R_E}{R_1 + R_2 /\!/ \beta_{DC} R_E} \right) V_{CC} \\ & \text{If } \beta_{DC} R_E = R_{IN(base)} >> R_2, \text{ then} \\ & V_B \cong \left(\frac{R_2}{R_1 + R_2} \right) V_{CC} \\ & V_E = V_B - V_{BE}; \quad I_C \cong I_E = \frac{V_E}{R_E} \\ & V_C = V_{CC} - I_C R_C \end{split}$$

DC Analysis of the CC BJT Amplifier

DC analysis:

$$V_{B} = \left(\frac{R_{2} // \beta_{DC} R_{E}}{R_{1} + R_{2} // \beta_{DC} R_{E}}\right) V_{CC}$$

$$V_{E} = V_{B} - V_{BE}$$

$$I_{E} = V_{E} / R_{E}$$

$$V_C = V_{CC}$$

The CC amplifier is also $\stackrel{R_L}{=} R_L \text{ known as an emitter-}$ follower since V_{out} follows $V_{\text{in}} \text{ in phase and voltage.}$

BJT as a Switch

- •When output of the gate is high transistor conducts and the LED transmits light. Base resistance is chosen so that the transistor saturates all the current gain values.
- •When Uo is low, the transistor doesn't conduct and no light transmitted

$$-U_{O}=R_{B}I_{B}+U_{BE}$$

$$-U_{CC}=R_{C}I_{C}+U_{CE}(sat)+U_{F}$$

BJT Based Relay Control

- •When the output of the gate is high, the transistor conducts. The current through the relay coil closes the relay switch and the lamp turns on.
- The diode protects the transistor
- •The benefit of the relay in this case is that the high voltage part is totally isolated from the low voltage part.

$$-U_O = R_B I_B + U_{BE}$$
$$-U_{CC} = R_R I_C + U_{CE} (sat)$$

BJT Based Logic Gate

P1086

STUDY MATERIAL

Field-Effect Transistors

N-channel JFET

P-channel JFET

The Operation of JFET

- •By changing the voltage between gate and source terminals the conductivity of channel can be controlled
- •Channel off =>U_{GS}=U_P
- $\bullet U_{GS} = 0 => I_D = I_{DSS}$

oamk.fi

STUDY MATERIAL

DC Analysis of the JFET Stage

$$U_{G} = 0, I_{G} = 0$$

$$U_G = U_{GS} + R_S I_D$$

$$I_D = I_{DSS} (1 - U_{GS} / U_P)^2$$

$$U_{DD}=R_DI_D+U_{DS}+R_SI_D$$

Field-Effect Transistors

N-channel depletion type MOSFET

P-channel depletion type MOSFET

Source

Drain

Field-Effect Transistors

N-channel enhancement type MOSFET

P-channel enhancement type MOSFET

DC Analysis Of the Enhancement-type Mosfet

$$I_D = 0.5 \mu_n C_{OX}(W/L)(U_{GS} - U_T)2$$

 $I_D = K(U_{GS} - U_T)2$

$$U_{R2} = U_{GS} = R_2 U_{DD} / (R_1 + R_2)$$

$$U_{DD}=R_DI_D+U_{DS}$$

$f(U_{GS},I_{D})$ for Different FET Types

MOSFET as a Switch

- •If A is high M1 conducts and the output Y is low
- •If A is low M2 conducts and the output Y is high
 - =>Inverter

CMOS NAND VDD = 5VQ4 Q3 ¥ B Q2 Q1 A

Operational Amplifiers

Ideal operational amplifier

Inverting configuration

Non-inverting configuration

Buffer amplifier

Summer

Differential amplifier

LM741 Operational Amplifier

Metal Can Package

Dual-In-Line or S.O. Package

STUDY MATERIAL

An Ideal Op Amp

$$Z_i >>$$

$$u_o = A(u_+ - u_-)$$

If A>>u₊= u₋, virtual short-circuit

 Z_{o}

Inverting Configuration

$$u_{+} = 0$$

 $u_{-} = u_{o}R_{1}/(R_{1}+R_{2})+u_{i}R_{2}/(R_{1}+R_{2})$
If A>>, then $u_{+} = u_{-}$
 $u_{o} = -u_{i}R_{2}/R_{1}$

Non-inverting Configuration

$$u_{+} = u_{i}$$

 $u_{-} = u_{o}R_{1}/(R_{1}+R_{2})$
If A>>, then $u_{+} = u_{-}$
 $u_{o} = (R_{1}+R_{2})u_{i}/R_{1}$

Buffer Amplifier

$$u_{+} = u_{i}$$

$$u_{-} = u_{o}$$

If A>>, then
$$u_o = u_i$$

STUDY MATERIAL

Summer (inverting)

$$u_0 = -(Ru_1/R_1 + Ru_2/R_2 + Ru_3/R_3)$$

Differential Amplifier

u_o=

•If the resistors are equal, then

$$U_1-U_2$$

Power Semiconductors

4-layer diode

Thyristor

PIN CONFIGURATION

SYMBOL

PINNING - TO220AB

PIN	DESCRIPTION
1	cathode
2	anode
3	gate
tab	anode

BT151 series

STUDY MATERIAL

Power Semiconductors

Diac Triac

BR100/03

PIN CONFIGURATION

SYMBOL

PINNING - TO220AB

PIN DESCRIPTION

1 main terminal 1

2 main terminal 2

3 gate
tab main terminal 2

BT138 series

Dimmer Circuit

