1 Занятие 1

1.1 Основные распределения в Мат Стат

1.1.1 Гамма распределение

$$\xi \sim \Gamma(\lambda, a) \ \lambda > 0, a > 0$$
$$P(x) = \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x} \ \{(0, +\infty)\}$$

$$\begin{split} \Gamma(S+1) &= S\Gamma(S) \qquad \Gamma(S) = \int_0^\infty x^{s-1} e^{-x} dx \; x > 0 \\ M[\Gamma] &= \int_{-\infty}^\infty \rho(x) dx = \int_0^\infty \frac{\lambda^a}{\Gamma(a)} (\frac{t}{\lambda})^a e^{-t} \frac{dt}{\lambda} = = \frac{1}{\lambda \Gamma(a)} \int_0^\infty t^a e^{-t} dt = \frac{a}{\lambda} \\ D[\xi] &= M[\xi^2] - M^2[\xi] = \frac{a^2 + a}{\lambda^2} - (\frac{a}{\lambda})^2 = \frac{a}{\lambda^2} \end{split}$$

Теорема 1.1 (Свойство суммы). ξ_1,\dots,ξ_n независимы, $\xi_i\sim\Gamma(\lambda,a_i),$ $\eta=\xi_1+\dots+\xi_n\sim\Gamma(\lambda,a_1+\dots+a_n)$

Доказательство. $\xi_1 \sim \Gamma(\lambda,a_1)$. $\xi_2 \sim \Gamma(\lambda,a_2)$ - независимые, $\eta=\xi_1+\xi_2$

$$\begin{split} \Phi(y) &= P(\eta < y) = P(\xi_2 + \xi_2 < y) = \iint_{x_1 + x_2 < y} p(x_1, x_2) dx_1 dx_2 = \\ &= \int_0^y dx_2 \int_0^{y - x_1} \frac{\lambda^{a_1}}{\Gamma(a_1) x_1^{a_1 - 1} e^{-\lambda x_1}} \frac{\lambda^{a_2}}{\Gamma(a_2) x_2^{a_2 - 2} e^{-\lambda x_2}} dx_2 \\ &\qquad \qquad \varphi(y) = \Phi'(y) \end{split}$$

1.1.2 Распределение Парсона χ^2

 $\xi_i \sim N(0,1)$ - независимы, $\eta = \xi_1^2 + \dots + \xi_n^2 = \chi^2$

$$\begin{split} \Phi(y) &= P(\xi^2 < y) = \begin{cases} y \le 0 &: 0 \\ y > 0 &: P(-\sqrt{y} < \xi < \sqrt{y}) \end{cases} \\ \varphi(x) &= \begin{cases} \frac{1}{2\sqrt{y}} F'(\sqrt{y}) + \frac{1}{2\sqrt{y}} F'(-\sqrt{y}), \ y > 0 \\ 0, \ y < 0 \end{cases} \\ p(x) &= \frac{e^{x^2/2}}{\sqrt{2\pi}} \\ \varphi(y) &= \begin{cases} \frac{1}{\sqrt{y}} \frac{e^{-y/2}}{\sqrt{2\pi}}, \ y > 0 \\ 0, \ y \le 0 \end{cases} \\ p(x) &= \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x} \{(0; +\infty)\} \qquad \lambda = \frac{1}{2} \qquad a = \frac{1}{2} \\ \xi^2 \sim \Gamma(\frac{1}{2}, \frac{1}{2}) \qquad \xi_1^2 + \dots + \xi_n^2 \sim \Gamma(\frac{1}{2}, \frac{n}{2}) = \chi^2(n) \end{split}$$

n - число степеней свободы

$$M[\eta] = \frac{a}{\lambda} = \frac{n/2}{1/2} = n$$

$$D[\eta] = \frac{a}{\lambda^2} = \frac{n/2}{1/4} = 2n$$

Теорема 1.2 (Свойство суммы). ξ_1, \dots, ξ_m - независ, $\xi_i \sim \chi^2(n_i), \, \xi_1 + \dots + \xi_n \sim \chi^2(n_1 + \dots + n_m)$

1.2 Распределение Стьюдента (Госсет)

$$\xi \sim N(0,1), \, \eta \sim \chi^2(m)$$
 - независимы, $\frac{\xi}{\sqrt{\eta/m}} \sim t(m)$

$$p(x) = \frac{(m)^{m/2} \Gamma(\frac{m+1}{2})}{\sqrt{\pi} \Gamma(\frac{m}{2}) (x^2 + m)^{\frac{m+1}{2}}}$$

1.3 Распределение Фишера

$$\xi \sim \chi^2(n),\, \eta \sim \chi^2(m)$$
 - независимые, $\frac{\xi/n}{\eta/m} \sim F(n,m)$

1.4 Нормальное распределение

$$p(\vec{x}) = \frac{1}{(\sqrt{2\pi})^n} \frac{1}{\sqrt{\det K}} e^{-\frac{1}{2}(\vec{x} - \vec{a})^T K^{-1}(\vec{x} - \vec{a})}$$
$$\vec{\xi} \sim N(\vec{a}, R)$$

Свойства:

- $\xi \sim N(0,1), \, \eta = a\xi + b \sim N(b,a^2)$
- $\xi \sim N(\alpha, \sigma^2), \eta = a\xi + b \sim N(a\alpha + b, \sigma^2 a^2)$
- $\xi \sim N(\vec{0}, E), \vec{\eta} = A\vec{\xi} + \vec{b}, A: n \times n, det A \neq 0$

$$\Phi(t_1, \dots, t_n) = P(\eta_1 < t_1, \dots, \eta_n < t_n) = P(\vec{\eta} < \vec{t}) = P(A\vec{\xi} + \vec{b} < \vec{t}) =$$

$$= \int \dots \int_{A\vec{x} + \vec{b} < \vec{t}} p(x_1, \dots, x_n) dx_1 \dots dx_n =$$

$$\vec{y} = A\vec{x} + \vec{b} \qquad J = \left| \frac{\partial \vec{x}}{\partial \vec{y}} \right| \qquad \frac{1}{J} = \det A$$

$$= \int \dots \int_{\vec{y} < \vec{t}} p(A^{-1}(\vec{y} - \vec{b})) \frac{1}{|\det A|} dy_1 \dots dy_n$$

$$\varphi(\vec{t}) = p(A^{-1}(\vec{y} - \vec{b})) \frac{1}{|\det A|}$$

$$\varphi(\vec{t}) = \frac{1}{|\det A|} \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2}(A^{-1}(\vec{y} - \vec{b})^T)(A^{-1}(\vec{y} - \vec{b}))} =$$

$$= \frac{1}{|\det A|} \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2}(\vec{t} - \vec{b})^T(A^T)^{-1}A^{-1}(\vec{t} - \vec{b})}$$

$$K = AA^T \qquad \vec{\eta} = A\vec{\xi} + \vec{b} \sim N(\vec{b}, AA^T)$$

- $\bullet \ \xi \sim N(\vec{a},K), \ \vec{\eta} = A\vec{\xi} + \vec{b} \sim N(A\vec{a} + \vec{b}, AKA^T), \ A: n \times n, \ det A \neq 0$
- Для $A:m\times n$ два предыдущих свойства так же верны
- ξ, η независ $\Rightarrow cov(\xi, \eta) = 0$, в другую сторону не верно

$$\begin{cases} \xi \sim N(a_1, \sigma_1^2) \\ \eta \sim N(a_2, \sigma_2^2) \Leftrightarrow (\xi, \eta) \sim N\left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}\right) \\ \text{независимые} \end{cases}$$

$$\begin{cases} \xi \sim N(a_1, \sigma_1^2) \\ \eta \sim N(a_2, \sigma_2^2) \Leftarrow (\xi, \eta) \sim N\left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}\right) \\ cov(\xi, \eta) = 0 \end{cases}$$

Лемма 1.1 (Лемма Фишера). Пусть $\vec{\xi} \sim N(\vec{0}, E)$ и C ортогональная матрица, $\vec{\eta} = C\vec{\xi}$, тогда $\forall k = 1 \dots n-1$ сл. вел. $\varkappa = \sum_{i=1}^n \xi_i^2 - \eta_1^2 - \eta_2^2 - \dots - \eta_k^2 \sim \chi^2(n-k)$ и вел $\varkappa, \eta_1, \eta_2, \dots, \eta_k$ независ.

Доказательство.

$$\vec{\eta} \sim N(\vec{0}, \underbrace{CC^T}_E)$$

$$\eta_1^2 + \dots + \eta_n^2 = \vec{\eta}^T \vec{\eta} = \vec{\xi}^T C^T C \vec{\xi} = \xi_1^2 + \dots + \xi_n^2$$

$$\varkappa = \eta_{k-1}^2 + \dots + \eta_n^2$$

$$\varkappa = \chi^2 (n-k)$$

Теорема 1.3 (Фишера). Пусть ξ_1, \dots, ξ_n независ и $\xi_i \sim N(a, \sigma^2)$, тогда:

1.
$$\varphi = \sqrt{n} \frac{\bar{\xi} - a}{\sigma} \sim N(0, 1), \ \bar{\xi} = \frac{1}{n} \sum_{1}^{n} \xi_{i}$$

2.
$$\psi = \sum_{i=1}^{n} \frac{(\xi_i - \bar{\xi})^2}{\sigma^2} \sim \chi^2(n-1)$$

3. φ и ψ независ.

Доказательство.

$$\varphi = \frac{1}{\sqrt{n}} \frac{\sum_{i=1}^{n} \xi_{i} - na}{\sigma} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{\xi_{i} - a}{\sigma}\right)$$
$$\frac{\xi_{i} - a}{\sigma} = \frac{1}{\sigma} \xi_{i} - \frac{a}{\sigma} \sim N\left(\frac{a}{\sigma} - \frac{a}{\sigma}, \sigma^{2} \frac{1}{\sigma^{2}}\right) = N(0, 1)$$
$$\varphi = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \eta_{i} = \left(\frac{1}{\sqrt{n}} \dots \frac{1}{\sqrt{n}}\right) \vec{\eta} \sim N(\vec{0}, AA^{T}) = N(0, 1)$$

1) Доказан

$$\psi = \sum_{\eta_i \sim N(0,1)}^{n} \left(\underbrace{\frac{\xi_i - a}{\sigma}}_{\eta_i \sim N(0,1)} - \underbrace{\frac{\bar{\xi} - a}{\sigma}}_{\bar{\eta}} \right)^2 = \sum_{\eta_i \sim N(0,1)}^{n} (\eta_i - \bar{\eta})^2 = \sum_{\eta_i \sim N(0,1)}^{n} (\eta_i - 2\eta_i \bar{\eta} + (\bar{\eta})^2) = \sum_{\eta_i \sim N(0,1)}^{n} (\eta_i - 2\bar{\eta})^2 = \sum_{\eta_i \sim N(0,1)}^{n} (\eta_i -$$

$$A = \left(\frac{1}{\sqrt{n}}\dots \frac{1}{\sqrt{n}}\right) \Rightarrow C$$
 - ортог. матрица (Грамма-Шмидта)

(A получается строчкой матрицы C и тогда ζ - одна из координат в другом базисе и применима Лемма Фишера)

По лемме Фишера $\psi \sim \chi^2(n-1), \, \psi$ и $A\bar{\eta}$ независ

Теорема 1.4 (О проекции). Пусть $\vec{\xi} \sim N(\vec{0}, \sigma^2 E)$, $L_1: dim L_1 = m_1$ и $L_2: dim L_2 = m_2$ два ортогональных подпространства \mathbb{R}^n , $\vec{\eta}_1$ - проекция $\vec{\xi}$ на L_1 , норм. распр., независ. и $\frac{|\eta_1|^2}{\sigma^2} \sim \chi^2(dim L_1)$, $\frac{|\eta_2|^2}{\sigma^2} \sim \chi^2(dim L_2)$

Доказательство. $\vec{\eta}_1 = A_1 \vec{\xi} \sim N(\dots, \dots), \ \vec{\zeta} = C \vec{\xi}, \ C$ - ортогональная. $\vec{\zeta} \sim N(\vec{0}, C \sigma^2 E C^T) = N(\vec{0}, \sigma^2 E)$. Новый ортонормированный базис $e'_1 \dots e'_m$ в $L_1, e'_{m+1} \dots e'_n$ в $L_2, \ \vec{\eta_1} = \zeta_1 e'_1 + \dots + \zeta_m e'_m, \ \vec{\eta_2} = \zeta_{m+1} e'_{m+1} + \dots + \zeta_n e'_n$

$$\frac{\bar{\xi}}{\sigma} \sim N(\vec{0}, E) \qquad \frac{|\eta_1|^2}{\sigma^2} = \sum \frac{\xi_i^2}{\sigma^2} \sim \chi^2(m_1)$$