

Instrumentação e Projeto de Circuitos

Circuitos RC e RL

LETI – Licenciatura em Engenharia de Telecomunicações e Informática

Resposta Transitória

■ Resposta a um "degrau" de tensão

$$U_F = u_R + u_C = Ri + \frac{1}{C} \int_0^t i dt + v_C(0^+)$$

Solucionando a equação diferencial (para $u_c(0^+) = 0V$) e fazendo $\tau = RC$,

$$\rightarrow i(t) = \frac{U_F}{R} e^{-\frac{t}{\tau}}$$

$$\rightarrow u_R = R \cdot i = U_F e^{-\frac{t}{\tau}}$$

$$\rightarrow u_C = U_F - u_R = U_F (1 - e^{-\frac{t}{\tau}})$$

$$u_R = U_F e^{-\frac{t}{\tau}}$$

$$U_C = U_F (1 - e^{-\frac{t}{\tau}})$$

■ Caso geral para qualquer tensão inicial (U_i) e tensão final (U_F)

$$u(t) = U_F + (U_I - U_F) \cdot e^{-\frac{t}{\tau}}$$
 ou $u(t) = U_I + (U_F - U_I)(1 - e^{-\frac{t}{\tau}})$

t	u_{c}/U_{f}
τ	0.632
3τ	0.950
5τ	0.993

■ Resposta a um "degrau" de tensão

Para $t = \tau \rightarrow u_C \approx 0,632 U_F$

Circuito RL - Resposta ao Degrau

■ Resposta a um "degrau" de tensão

$$U_F = u_R + u_L = Ri + L \frac{di}{dt}$$

Solucionando a equação diferencial

(para
$$i_L(0^+) = 0A$$
) e fazendo $\tau = \frac{L}{R}$,

$$\rightarrow i(t) = \frac{U_F}{R} (1 - e^{-\frac{t}{\tau}})$$

$$\rightarrow u_R = R \cdot i = U_F (1 - e^{-\frac{t}{\tau}})$$

$$\rightarrow u_L = U_F - u_R = U_F e^{-\frac{t}{\tau}}$$

Circuito RL - Resposta ao Degrau

$$u_R = U_F (1 - e^{-\frac{t}{\tau}})$$

$$\left(\tau = \frac{L}{R}\right)$$

$$u_L = U_F e^{-\frac{t}{\tau}}$$

Resposta em Frequência

Resposta em Frequência

- Resposta a entradas sinusoidais em regime permanente (após transitório)
- Impedância
 - Medida da oposição à passagem de corrente elétrica em circuitos de corrente alternada (CA)
 - Análogo à resistência em circuitos de corrente contínua (CC)
 - A impedância tem parte real e/ou imaginária
- Impedância dos componentes (* $\omega = 2\pi f$)

Resistência
$$Z_R = R$$

Condensador
$$Z_C = \frac{1}{j\omega C} = -j\frac{1}{\omega C}$$

Indutor (bobina)
$$Z_L = j\omega L$$

- Circuitos RC e RL de 1ª ordem
 - Filtros passa-baixo e passa-alto

Filtro RC Passa-Baixo

$$\frac{U_{o}}{U_{i}}\Big|_{dB} = 20 \log_{10} \left(\frac{1}{\sqrt{(\omega R_{2}C_{2})^{2} + 1}} \right)$$

$$\alpha = -\operatorname{arctg}(\omega R_2 C_2)$$

Filtro RC Passa-Alto

$$\frac{|U_o|}{|U_i|}_{dB} = 20 \log_{10} \left(\frac{\omega R_1 C_1}{\sqrt{(\omega R_1 C_1)^2 + 1}} \right)$$

$$\alpha = 90^{\circ} - \operatorname{arctg}(\omega R_1 C_1)$$

Filtro RL Passa-Baixo

$$\frac{\left. \frac{U_o}{U_i} \right|_{dB} = 20 \log_{10} \left(\frac{1}{\sqrt{\left(\omega \cdot \frac{L_2}{R_2}\right)^2 + 1}} \right)$$

$$\alpha = -\operatorname{arctg}\left(\omega \cdot \frac{L_2}{R_2}\right)$$

Filtro RL Passa-Alto

$$\frac{\left. \frac{U_o}{U_i} \right|_{dB} = 20 \log_{10} \left(\frac{\omega \cdot \frac{L_1}{R_1}}{\sqrt{\left(\omega \cdot \frac{L_1}{R_1}\right)^2 + 1}} \right)$$

$$\alpha = 90^{\circ} - \arctan\left(\omega \cdot \frac{L_1}{R_1}\right)$$