Recuperação de Informações - Parte 2

Júlio César Batista

FURB - Universidade de Blumenau

Fevereiro, 2019

Agenda

- Motores de Busca
 - Índices
 - Consultas booleanas
 - Correção Ortográfica
 - Resultados Ordenados
- Imagens
 - Representação
 - ► Template Matching
 - ► OCR

Índice invertido

- O problema de usar uma matriz termo-documento é que usaremos muita memória para armazenar muitos 0s
- O índice invertido é um dicionário de termos para listas ordenadas de documentos

Índice invertido

```
1 documentos = [
     "The Who is a rock band", # 1
2
     "Only in the darkness can you see the stars." # 2
3
4 ]
5
6 I = {
   'the': [1, 2],
7
8 'who': [1],
   'is': [1],
9
  # ...
10
  # ...
11
'can': [2],
'see': [2],
'stars': [2]
15 }
16
```

Operação AND - Intersecção de conjuntos

Operação OR - União de conjuntos

Operação NOT - Diferença de conjuntos

Operação AND - Algoritmo

```
INTERSECT(p_1, p_2)
      answer \leftarrow \langle \rangle
      while p_1 \neq \text{NIL} and p_2 \neq \text{NIL}
      do if docID(p_1) = docID(p_2)
             then ADD(answer, docID(p_1))
  5
                    p_1 \leftarrow next(p_1)
                    p_2 \leftarrow next(p_2)
  6
             else if docID(p_1) < docID(p_2)
                        then p_1 \leftarrow next(p_1)
  9
                        else p_2 \leftarrow next(p_2)
10
      return answer
```

Figure: Intersecção de listas. Fonte: Introduction to Information Retrieval

Correção ortográfica

- Dado um termo inexistente no vocabulário
- Encontre o termo mais próximo no vocabulário

Correção ortográfica

- ▶ De forma geral, não é toda a palavra que está incorreta
- Exemplo: *comesso*, troca de ç por ss

Correção ortográfica

- De forma geral, não é toda a palavra que está incorreta
- Exemplo: comesso, troca de ç por ss
- Que tal comparar substrings (k-grams) de comesso com começo?

Correção ortográfica - k-grams

- ▶ 2-grams de *comesso*
- ► \$c, co, om, me, es, ss, so, o\$

Correção ortográfica - k-grams

- ► 3-grams de *comesso*
- ▶ \$\$c, \$co, com, ome, mes, ess, sso, so\$, o\$\$

Correção ortográfica - Comparação de k-grams

- ► 3-grams de *comesso*
- ▶ \$\$c, \$co, com, ome, mes, ess, sso, so\$, o\$\$
- ► 3-grams de *começo*
- ▶ \$\$c, \$co, com, ome, meç, eço, ço\$, o\$\$

Correção ortográfica - Comparação de k-grams

- ► Similaridade: Razão da Quantidade de *k-grams* em comum pela Quantidade total de *k-grams*
- ► Comum (5): \$\$c, \$co, com, ome, o\$\$
- ► Total (12): \$\$c, \$co, com, ome, meç, eço, ço\$, o\$\$, mes, ess, sso, so\$
- Similaridade = $\frac{5}{12}$

Correção ortográfica - Comparação de k-grams

- Coeficiente de Jaccard (Intersecção sobre Unisão)
- ightharpoonup A = \$\$c, \$co, com, ome, mes, ess, sso, so\$, o\$\$
- ► B = \$\$c, \$co, com, ome, meç, eço, ço\$, o\$\$

Correção ortográfica - Otimização

- Comparar contra todos os termos no vocabulário custa muito
- ▶ Ideal é comparar apenas com os termos que compartilham ao menos um k-gram em comum

Correção ortográfica - Otimização

- Comparar contra todos os termos no vocabulário custa muito
- ▶ Ideal é comparar apenas com os termos que compartilham ao menos um k-gram em comum
- Solução: Construir um índice de k-grams que mapeia k-grams para termos

Correção ortográfica - Índice k-grams

- \$\$c: começo, capaz, comer, correr, ...
- com: comigo, comando, começo, ...
- ome: homem, começo, fome, ...
- o\$\$: moço, carro, pescoço, começo, ...

Correção ortográfica - Algoritmo

- Se o termo existe no vocabulário, retorna
- Senão, computa os k-grams do termo
- ► Encontra os *termos* que compartilham ao menos um *k-gram* utilizando o índice de *k-grams*
- Calcula o Coeficiente de Jaccard para todos os termos candidatos
- ▶ Retorna o *termo* com maior Coeficiente de Jaccard

- Distância entre strings
- Distância: Custo de adicionar, remover ou trocar caractéres

	ϵ	С	0	m	е	S	S	0
ϵ	0							
С								
0								
m								
е								
Ç								
0								

	ϵ	С	0	m	е	S	S	0
ϵ	0	1	2	3	4	5	6	7
С	1							
0	2							
m	3							
е	4							
ç	5							
0	6							

	ϵ	С	0	m	е	S	S	0
ϵ	0	1	2	3	4	5	6	7
С	1	$D_{i,j}$						
0	2							
m	3							
е	4							
Ç	5							
0	6							

$$D_{i,j} = \min \left\{ \begin{array}{l} \frac{D_{i-1,j} + 1}{D_{i,j-1} + 1} \\ D_{i-1,j-1} + 1_{a_i \neq b_j} \end{array} \right.$$

	ϵ	С	0	m	е	S	S	0
ϵ	0	1	2	3	4	5	6	7
С	1	$D_{i,j}$						
0	2							
m	3							
е	4							
Ç	5							
0	6							

$$D_{i,j} = \min \left\{ \begin{array}{l} \frac{D_{i-1,j} + 1}{D_{i,j-1} + 1} & = \min \left\{ \begin{array}{l} 1 + 1\\ 1 + 1\\ 0 + 1_{c \neq c} \end{array} \right. \end{array} \right.$$

	ϵ	С	0	m	е	S	S	0
ϵ	0	1	2	3	4	5	6	7
С	1	0						
0	2							
m	3							
е	4							
Ç	5							
0	6							

$$D_{i,j} = \min \left\{ \begin{array}{l} \frac{D_{i-1,j} + 1}{D_{i,j-1} + 1} \\ D_{i-1,j-1} + 1_{a_i \neq b_j} \end{array} \right. \\ = \min \left\{ \begin{array}{l} \frac{1}{1} + 1 \\ 1 + 1 \\ 0 + 1_{c \neq c} \end{array} \right. \\ = \min \left\{ \begin{array}{l} 2 \\ 2 \\ 0 \end{array} \right.$$

	ϵ	С	0	m	е	S	S	0
ϵ	0	1	2	3	4	5	6	7
С	1	0	$D_{i,j}$					
0	2							
m	3							
е	4							
Ç	5							
0	6							

$$D_{i,j} = \min \left\{ \begin{array}{l} \frac{D_{i-1,j} + 1}{D_{i,j-1} + 1} \\ D_{i-1,j-1} + 1_{a_i \neq b_j} \end{array} \right. \\ = \min \left\{ \begin{array}{l} \frac{2+1}{0+1} \\ 0+1 \\ 1+1_{c \neq o} \end{array} \right. \\ = \min \left\{ \begin{array}{l} 3 \\ 1 \\ 2 \end{array} \right.$$

	ϵ	С	0	m	е	S	S	0
ϵ	0	1	2	3	4	5	6	7
С	1	0	1					
0	2							
m	3							
е	4							
Ç	5							
0	6							

$$D_{i,j} = \min \left\{ \begin{array}{l} \frac{D_{i-1,j} + 1}{D_{i,j-1} + 1} \\ D_{i-1,j-1} + 1_{a_i \neq b_j} \end{array} \right. \\ = \min \left\{ \begin{array}{l} \frac{2+1}{0+1} \\ 0+1 \\ 1+1_{c \neq o} \end{array} \right. \\ = \min \left\{ \begin{array}{l} 3 \\ 1 \\ 2 \end{array} \right.$$

	ϵ	С	0	m	е	S	S	0
ϵ	0	1	2	3	4	5	6	7
С	1	0	1					
0	2	$D_{i,j}$						
m	3							
е	4							
Ç	5							
0	6							

$$D_{i,j} = \min \left\{ \begin{array}{l} \frac{D_{i-1,j}+1}{D_{i,j-1}+1} & = \min \left\{ \begin{array}{l} 0+1\\ 2+1\\ 1+1_{o \neq c} \end{array} \right. = \min \left\{ \begin{array}{l} 1\\ 3\\ 2 \end{array} \right. \right.$$

	ϵ	С	0	m	е	S	S	0
ϵ	0	1	2	3	4	5	6	7
С	1	0	1					
0	2	1						
m	3							
е	4							
Ç	5							
0	6							

$$D_{i,j} = \min \left\{ \begin{array}{l} D_{i-1,j} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j-1} + 1_{a_i \neq b_j} \end{array} \right. \\ = \min \left\{ \begin{array}{l} 0 + 1 \\ 2 + 1 \\ 1 + 1_{o \neq c} \end{array} \right. \\ = \min \left\{ \begin{array}{l} 1 \\ 3 \\ 2 \end{array} \right.$$

	ϵ	С	0	m	е	S	S	0
ϵ	0	1	2	3	4	5	6	7
С	1	0	1	2	3	4	5	6
0	2	1	0	1	2	3	4	5
m	3	2	1	0	1	2	3	4
е	4	3	2	1	0	1	2	3
ç	5	4	3	2	1	1	2	3
0	6	5	4	3	2	2	2	2

Correção ortográfica - Algoritmo

- Se o termo existe no vocabulário, retorna
- Senão, computa os k-grams do termo
- ► Encontra os *termos* que compartilham ao menos um *k-gram* utilizando o índice de *k-grams*
- Calcula a Distância de Levenshtein para todos os termos candidatos
- ▶ Retorna o *termo* com menor Distância de Levenshtein

Correção ortográfica - Extras

- Como resolver *ph* no lugar de *f*?
- Como resolver *kuin* no lugar de *queen*?

Resultados Ordenados

- Consultas booleanas retornam todos os documentos que contém os termos
- Não existe ordem de importância no resultado

Resultados Ordenados

- Consultas booleanas retornam todos os documentos que contém os termos
- Não existe ordem de importância no resultado
- Alguns documentos são mais relevantes do que outros
- Usuários não querem ver os milhões de documentos disponíveis
- ▶ Idealmente, são vistos apenas os documentos nas primeiras páginas de uma consulta

Resultados Ordenados - Modelos

- P(R = 1 | D = d, Q = q)
 - lacktriangle Probabilidade do documento d ser relevante para a consulta q
 - Ordena os resultados do maior para o menor
- \triangleright D(q,d)
 - Distância da consulta a para o documento d
 - Ordena os resultados do menor para o maior

- Não precisa de um método de aprendizado (não paramétrico)
- Distâncias "são fáceis" para interpretar
- Existem muitas funções de distância: Euclidiana, Manhattan,
 ...
- ▶ Pode usar uma função de similaridade [-1, 1]: Correlação, Similaridade de cosenos, ...

- ightharpoonup Consulta q e Documento d precisam ser vetores
- q pode ser um vetor binário (incidência)

$$q_i = \left\{ egin{array}{ll} 1 & ext{se i-\'esimo termo aparece em} q \ 0 & ext{caso contr\'ario} \end{array}
ight.$$

- Consulta **q** e Documento **d** precisam ser vetores
- d também pode ser um vetor binário (incidência)

$$\mathbf{d}_i = \left\{ egin{array}{ll} 1 & ext{se i-\'esimo termo aparece em} d \ 0 & ext{caso contr\'ario} \end{array}
ight.$$

- Consulta **q** e Documento **d** precisam ser vetores
- d também pode ser um vetor binário (incidência)

$$\mathbf{d}_i = \left\{ egin{array}{ll} 1 & ext{se i-\'esimo termo aparece em} d \\ 0 & ext{caso contr\'ario} \end{array}
ight.$$

- Assim é possível montar uma matriz de incidência termo-documento (D)
- Sendo as colunas de D os vetores de incidência de um determinado documento

Resultados Ordenados - Matriz de incidência

- ▶ Doc 1: The Who is a rock band
- ▶ Doc 2: Only in the darkness you can see the stars

	Doc 1	Doc 2
The	1	1
Who	1	0
see	0	1
stars	0	1

Resultados Ordenados - Matriz com frequência dos termos

- D perde um poudo da informação de relevância
- ► A quantidade de vezes que um termo aparece em um documento é um sinal de relevância
- $ightharpoonup tf_{i,j}$ indica a frequência do i-ésimo termo no j-ésimo documento

Doc 1	Doc 2
1	2
1	0
0	1
0	1
	1 1 0

Resultados Ordenados - Normalização

- Stop-words, normalmente, são as palavras mais frequentes em documentos
- Porém, são irrelevantes para as consultas
- É necessário normalizar a frequência, pela "importância"

Resultados Ordenados - Normalização

- Stop-words, normalmente, são as palavras mais frequentes em documentos
- Porém, são irrelevantes para as consultas
- É necessário normalizar a frequência, pela "importância"
- De certa forma, a importância de um termo é inversamente proporcional a quantidade de documentos em que ele aparece
 - Termos que aparecem em todos os documentos, devem ter pouco valor em definir o conteúdo (stop-words, por exemplo)
 - ► Termos que aparecem em poucos documentos, devem carregar uma certa informação sobre o conteúdo
 - ► Termos raros, aparecem em apenas um ou outro documento, são específicos do domínio ou não muito comuns no idioma

Resultados Ordenados - Normalização

 idf_i é o inverso da frequência de documentos para o i-ésimo termo

$$idf_i = log \frac{N}{df_i}$$

- N: Quantidade de documentos na coleção
- df_i: Quantidade de documentos que o i-ésimo termo aparece

- ightharpoonup Juntando $tf_{i,j}$ e idf_i temos a métrica tf- $idf_{i,j}$
- $\qquad \textbf{tf-idf}_{i,j} = \textbf{tf}_{i,j} \times \textbf{idf}_i$
- ightharpoonup $D_{i,j} = tf idf_{i,j}$

	Doc 1	Doc 2
The	tf-idf _{The,Doc 1}	tf-idf _{The,Doc 2}
Who	tf-idf _{Who,Doc 1}	tf-idf _{Who,Doc 2}
see	tf-idf _{see,Doc 1}	tf-idf _{see,Doc 2}
stars	tf-idf _{stars,Doc 1}	tf-idf _{stars,Doc 2}

 $\blacktriangleright tf - idf_{i,j} = tf_{i,j} \times idf_i$

	Doc 1	Doc 2
The	$1 \times \log \frac{2}{2} = 0$	$2 \times \log \frac{2}{2} = 0$
Who	$1 \times log \frac{2}{1} = 0.693$	$0 \times \log \frac{2}{1} = 0$
see	$0 \times \log \frac{2}{1} = 0$	$1 \times log \frac{2}{1} = 0.693$
stars	$0 \times log \frac{2}{1} = 0$ $0 \times log \frac{2}{1} = 0$	$1 \times \log^{\frac{1}{2}} = 0.693$

- Distância Euclidiana (L₂-norm)
- $D(\mathbf{q}, \mathbf{d}) = ||\mathbf{q} \mathbf{d}||_2 = \sqrt{\sum_i^n (\mathbf{q}_i \mathbf{d}_i)^2}$
- Valores positivos
- Quanto mais próximo de 0, mais similar (menor distância)

- Similaridade de cosenos
- ► Valores no intervalo [-1, 1]
- ► Sendo -1: Completamente opostos
- Sendo 1: Similares