

# REGULARIZATION AND FEATURE SELECTION

# MODEL COMPLEXITY VS ERROR



## PREVENTING UNDER—AND OVERFITTING



How to use a degree 9 polynomial and prevent overfitting?

# PREVENTING UNDER—AND OVERFITTING



Polynomial Degree = 3

Polynomial Degree = 9







$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( \left( \beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

# **REGULARIZATION**



# **RIDGE REGRESSION (L2)**

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( \left( \beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

- Penalty shrinks magnitude of all coefficients
- Larger coefficients strongly penalized because of the squaring

# **EFFECT OF RIDGE REGRESSION ON PARAMETERS**



# LASSO REGRESSION (L1)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( \left( \beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} |\beta_j|$$

- Penalty selectively shrinks some coefficients
- Can be used for feature selection
- Slower to converge than Ridge regression

# **EFFECT OF LASSO REGRESSION ON PARAMETERS**



# **ELASTIC NET REGULARIZATION**

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( \left( \beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2 + \lambda_1 \sum_{j=1}^{k} |\beta_j| + \lambda_2 \sum_{j=1}^{k} |\beta_j|$$

- Compromise of both Ridge and Lasso regression
- Requires tuning of additional parameter that distributes regularization penalty between L1 and L2

# **ELASTIC NET REGULARIZATION**



# HYPERPARAMETERS AND THEIR OPTIMIZATION

• Regularization coefficients ( $\lambda_1$  and  $\lambda_2$ ) are empirically determined

#### Use Test Data to Tune $\lambda$ ?

|    | Date       | Title                           | Budget                           | DomesticTotalGross    | Director                  |                    | Rating | Runtime |
|----|------------|---------------------------------|----------------------------------|-----------------------|---------------------------|--------------------|--------|---------|
| 0  | 2013-11-22 | The Hunger Games: Catching Fire | 130000000                        | 424668047             | Francis Lawrence          |                    | PG-13  | 146     |
| 1  | 2013-05-03 | Iron Man 3                      | 200000000                        | 409013994             | Shane Black               |                    | PG-13  | 129     |
| 2  | 2013-11-22 | Frozen                          | 150000000                        | 400738009             | Chris BuckJennifer Lee    |                    | PG     | 108     |
| 3  | 2013-07-03 | Despicable Me 2                 | 76000000                         | 368061265             | Pierre CoffinChris Renaud |                    | PG     | 98      |
| 4  | 2013-06-14 | Man of Steel                    | 225000000                        | 291045518             | Zack Snyder               |                    | PG-13  | 143     |
| 5  | 2013-10-04 |                                 |                                  |                       |                           | Cuaron             | PG-13  | 91      |
| 6  | 2013-06-21 | Monsters University             | анян                             | NG DAT <i>i</i>       |                           | anlon              | G      | 107     |
| 7  | 2013-12-13 | The Hobbit: The Deso            |                                  | NU DAL                |                           | ckson              | PG-13  | 161     |
| 8  | 2013-05-24 | Fast & Furious 6                |                                  |                       |                           | in                 | PG-13  | 130     |
| 9  | 2013-03-08 | Oz The Great and Powerful       | 215000000                        | 234911825             | Sam Raimi                 |                    | PG     | 127     |
| 10 | 2013-05-16 | Star Trek Into Darkness         | 190000000                        | 228778661 J.J. Abrams |                           | PG-13              | 123    |         |
| 11 | 2013-11-08 | Thor: The Dark World            | 170000000                        | 206362140             | Alan Taylor               |                    | PG-13  | 120     |
| 12 | 2013-06-21 | World War Z                     | 190000000 202359711 Marc Forster |                       | PG-13                     | 116                |        |         |
| 13 | 2013-03-22 | The Croods                      | 105000000                        | 107100405             | Wide Da                   | MiccoChris Sanders | PG     | 98      |
| 14 | 2013-06-28 | The Heat                        | FOT                              | DATA                  |                           | g                  | R      | 117     |
| 15 | 2013-08-07 | We're the Millers               | FSI                              | DATA                  |                           | Marshall Thurber   | R      | 110     |
| 16 | 2013-12-13 | American Hustle                 |                                  |                       |                           | . Russell          | R      | 138     |
| 17 | 2013-05-10 | The Great Gatsby                | 105000000                        | 144840419             | Baz Luh                   | rmann              | PG-13  | 143     |

## HYPERPARAMETERS AND THEIR OPTIMIZATION

- Regularization coefficients ( $\lambda$ \_1 and  $\lambda$ \_2) are empirically determined
- Want value that generalizes—do not use test data for tuning

#### Use Test Data to Tune $\lambda$ ?



## HYPERPARAMETERS AND THEIR OPTIMIZATION

- Regularization coefficients ( $\lambda$ \_1 and  $\lambda$ \_2) are empirically determined
- Want value that generalizes—do not use test data for tuning
- Create additional split of data to tune hyperparameters—validation set

#### Tune $\lambda$ with Cross Validation

|    | Date       | Title                               | Budget    | DomesticTotalGross    | Directo          |                    | Dating | Runtime |
|----|------------|-------------------------------------|-----------|-----------------------|------------------|--------------------|--------|---------|
|    | Date       | Title                               | Buaget    | Domestic i otal Gross | Director         |                    | Hating | Runtime |
| 0  | 2013-11-22 | The Hunger Games: Catching Fire     | 130000000 | 424668047             | Francis Lawrence |                    | PG-13  | 146     |
| 1  | 2013-05-03 | Iron Man 3                          | 200000000 | 409013994             | Shane Black      |                    | PG-13  | 129     |
| 2  | 2013-11-22 |                                     |           |                       |                  | uckJennifer Lee    | PG     | 108     |
| 3  | 2013-07-03 | Despicable Me 2                     | AINII     | NG DAT <i>i</i>       | A                | offinChris Renaud  | PG     | 98      |
| 4  | 2013-06-14 | Man of Steel                        |           |                       |                  | yder               | PG-13  | 143     |
| 5  | 2013-10-04 | Gravity                             |           |                       |                  | Cuaron             | PG-13  | 91      |
| 6  | 2013-06-21 | Monsters University                 | NaN       | 268492764             | Dan Sc           | Oan Scanlon        |        | 107     |
| 7  | 2013-12-13 | The Hobbit: The Desolation of Smaug | NaN       | 258366855             | Peter Jackson    |                    | PG-13  | 161     |
| 8  | 2013-05-24 | Fast & Furious 6                    | 400000000 | 000070050             |                  | in                 | PG-13  | 130     |
| 9  | 2013-03-08 | Oz The Great and Pov                | IDAT      | TOUDAT                |                  | imi                | PG     | 127     |
| 10 | 2013-05-16 | Star Trek Into Darknes              | ШАІ       | 'ION DAT <i>a</i>     |                  | ams                | PG-13  | 123     |
| 11 | 2013-11-08 | Thor: The Dark World                |           |                       | •                | /lor               | PG-13  | 120     |
| 12 | 2013-06-21 | World War Z                         | 190000000 | 202359711             | Marc Fo          | orster             | PG-13  | 116     |
| 13 | 2013-03-22 | The Croods                          | 105000000 | 107100405             | Kid. Da          | MiccoChris Sanders | PG     | 98      |
| 14 | 2013-06-28 | The Heat                            | FOT       | DATA                  |                  | g                  | R      | 117     |
| 15 | 2013-08-07 | We're the Millers                   | FSI       | DATA                  |                  | Marshall Thurber   | R      | 110     |
| 16 | 2013-12-13 | American Hustle                     | LUI       |                       |                  | . Russell          | R      | 138     |
| 17 | 2013-05-10 | The Great Gatsby                    | 105000000 | 144840419             | Baz Luh          | rmann              | PG-13  | 143     |

Import the class containing the regression method

from sklearn.linear\_model import Ridge

#### Import the class containing the regression method

from sklearn.linear\_model import Ridge

#### Create an instance of the class

RR = Ridge(alpha=1.0)

#### Import the class containing the regression method

from sklearn.linear model import Ridge

#### Create an instance of the class

RR = Ridge(alpha=1.0)



#### Import the class containing the regression method

from sklearn.linear\_model import Ridge

#### Create an instance of the class

RR = Ridge(alpha=1.0)

#### Fit the instance on the data and then predict the expected value

```
RR = RR.fit(X_train, y_train)
y_predict = RR.predict(X_test)
```

#### Import the class containing the regression method

```
from sklearn.linear_model import Ridge
```

#### Create an instance of the class

```
RR = Ridge(alpha=1.0)
```

#### Fit the instance on the data and then predict the expected value

```
RR = RR.fit(X_train, y_train)
y_predict = RR.predict(X_test)
```

The RidgeCV class will perform cross validation on a set of values for alpha.

## LASSO REGRESSION: THE SYNTAX

#### Import the class containing the regression method

```
from sklearn.linear_model import Lasso
```

#### Create an instance of the class

```
LR = Lasso(alpha=1.0)
```

#### Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```

The LassoCV class will perform cross validation on a set of values for alpha.

## LASSO REGRESSION: THE SYNTAX

#### Import the class containing the regression method

```
from sklearn.linear model import Lasso
```

#### Create an instance of the class

```
LR = Lasso(alpha=1.0)
```



regularization parameter

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y predict = LR.predict(X test)
```

The LassoCV class will perform cross validation on a set of values for alpha.

## **ELASTIC NET REGRESSION: THE SYNTAX**

#### Import the class containing the regression method

```
from sklearn.linear model import ElasticNet
```

#### Create an instance of the class

```
EN = ElasticNet(alpha=1.0,11 ratio=0.5)
```

Fit the instance on the data and then predict the expected value

```
EN = EN.fit(X_train, y_train)
y_predict = EN.predict(X_test)
```

The **ElasticNetCV** class will perform cross validation on a set of values for l1\_ratio and alpha.

## **ELASTIC NET REGRESSION: THE SYNTAX**

#### Import the class containing the regression method

```
from sklearn.linear model import ElasticNet
```

#### Create an instance of the class

```
EN = ElasticNet(alpha=1.0,11 ratio=0.5)
```



alpha is the regularization parameter

Fit the instance on the data and then predict the expected value

```
EN = EN.fit(X_train, y_train)
y_predict = EN.predict(X_test)
```

The ElasticNetCV class will perform cross validation on a set of values for l1\_ratio and alpha.

## **ELASTIC NET REGRESSION: THE SYNTAX**

#### Import the class containing the regression method

```
from sklearn.linear model import ElasticNet
```

#### Create an instance of the class

```
EN = ElasticNet(alpha=1.0,11 ratio=0.5)
```



l1\_ratio distributes alpha to L1/L2

Fit the instance on the data and then predict the expected value

```
EN = EN.fit(X_train, y_train)
y_predict = EN.predict(X_test)
```

The ElasticNetCV class will perform cross validation on a set of values for l1\_ratio and alpha.

# FEATURE SELECTION

Regularization performs feature selection by shrinking the contribution of features

## FEATURE SELECTION

- Regularization performs feature selection by shrinking the contribution of features
- For L1-regularization, this is accomplished by driving some coefficients to zero

## FEATURE SELECTION

- Regularization performs feature selection by shrinking the contribution of features
- For L1-regularization, this is accomplished by driving some coefficients to zero
- Feature selection can also be performed by removing features

# WHY IS FEATURE SELECTION IMPORTANT?

 Reducing the number of features is another way to prevent overfitting (similar to regularization)

## WHY IS FEATURE SELECTION IMPORTANT?

- Reducing the number of features is another way to prevent overfitting (similar to regularization)
- For some models, fewer features can improve fitting time and/or results

## WHY IS FEATURE SELECTION IMPORTANT?

- Reducing the number of features is another way to prevent overfitting (similar to regularization)
- For some models, fewer features can improve fitting time and/or results
- Identifying most critical features can improve model interpretability

## **RECURSIVE FEATURE ELIMINATION: THE SYNTAX**

#### Import the class containing the feature selection method

```
from sklearn.feature selection import RFE
```

#### Create an instance of the class

```
rfeMod = RFE(est, n_features_to_select=5)
```

#### Fit the instance on the data and then predict the expected value

```
rfeMod = rfeMod.fit(X_train, y_train)
y_predict = rfeMod.predict(X_test)
```

The RFECV class will perform feature elimination using cross validation.

# **RECURSIVE FEATURE ELIMINATION: THE SYNTAX**

#### Import the class containing the feature selection method

```
from sklearn.feature selection import RFE
```

#### Create an instance of the class

```
rfeMod = RFE(est, n features to select=5)
```



est is an instance of the model to use

Fit the instance on the data and then predict the expected value

```
rfeMod = rfeMod.fit(X_train, y_train)
y_predict = rfeMod.predict(X_test)
```

The RFECV class will perform feature elimination using cross validation.

# **RECURSIVE FEATURE ELIMINATION: THE SYNTAX**

#### Import the class containing the feature selection method

```
from sklearn.feature selection import RFE
```

#### Create an instance of the class

```
rfeMod = RFE(est, n_features_to_select=5)
```



Fit the instance on the data and then predict the expected value

```
rfeMod = rfeMod.fit(X_train, y_train)
y_predict = rfeMod.predict(X_test)
```

The RFECV class will perform feature elimination using cross validation.



# **GRADIENT DESCENT**

Start with a cost function  $J(\beta)$ :



# **GRADIENT DESCENT**

Start with a cost function  $J(\beta)$ :



Then gradually move towards the minimum.

• Now imagine there are two parameters  $(\beta_0, \beta_1)$ 

- Now imagine there are two parameters  $(\beta_0, \beta_1)$
- This is a more complicated surface on which the minimum must be found



- Now imagine there are two parameters  $(\beta_0, \beta_1)$
- This is a more complicated surface on which the minimum must be found
- How can we do this without knowing what  $J(\beta_0, \beta_1)$  looks like?



- Compute the gradient,  $\nabla J(\beta_0, \beta_1)$ , which points in the direction of the biggest increase!
- $-\nabla J(\beta_0, \beta_1)$  (negative gradient) points to the biggest decrease at that point!



 The gradient is the a vector whose coordinates consist of the partial derivatives of the parameters

$$\nabla J(\beta_0, \dots, \beta_n) = \langle \frac{\partial J}{\partial \beta_0}, \dots, \frac{\partial J}{\partial \beta_n} \rangle$$



■ Then use the gradient ( $\nabla$ ) and the cost function to calculate the next point ( $\omega_1$ ) from the current one ( $\omega_0$ ):

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left( \left( \beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$



■ Then use the gradient ( $\nabla$ ) and the cost function to calculate the next point ( $\omega_1$ ) from the current one ( $\omega_0$ ):

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left( \left( \beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

• The learning rate  $(\alpha)$  is a tunable parameter that determines step size



 Each point can be iteratively calculated from the previous one

$$\omega_{2} = \omega_{1} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left( \left( \beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$



 Each point can be iteratively calculated from the previous one

$$\omega_2 = \omega_1 - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left( \left( \beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

$$\omega_{3} = \omega_{2} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left( \left( \beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$



 Use a single data point to determine the gradient and cost function instead of all the data



 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left( \left( \beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$



 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left( \left( \beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$



$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \left( \left( \beta_0 + \beta_1 x_{obs}^{(0)} \right) - y_{obs}^{(0)} \right)^2$$



 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \left( \left( \beta_0 + \beta_1 x_{obs}^{(0)} \right) - y_{obs}^{(0)} \right)^2$$

. . .

$$\omega_4 = \omega_3 - \alpha \nabla \frac{1}{2} \left( \left( \beta_0 + \beta_1 x_{obs}^{(3)} \right) - y_{obs}^{(3)} \right)^2$$



 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \left( \left( \beta_0 + \beta_1 x_{obs}^{(0)} \right) - y_{obs}^{(0)} \right)^2$$

 $\omega_4 = \omega_3 - \alpha \nabla \frac{1}{2} \left( \left( \beta_0 + \beta_1 x_{obs}^{(3)} \right) - y_{obs}^{(3)} \right)^2$ 

 Path is less direct due to noise in single data point—"stochastic"



 Perform an update for every n training examples

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{n} \left( \left( \beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$



Perform an update for every n training examples

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{n} \left( \left( \beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$



 Perform an update for every n training examples

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{n} \left( \left( \beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

### **Best of both worlds:**

- Reduced memory relative to "vanilla" gradient descent
- Less noisy than stochastic gradient descent



Mini batch implementation typically used for neural nets

- Mini batch implementation typically used for neural nets
- Batch sizes range from 50–256 points

- Mini batch implementation typically used for neural nets
- Batch sizes range from 50–256 points
- Trade off between batch size and learning rate ( $\alpha$ )

- Mini batch implementation typically used for neural nets
- Batch sizes range from 50–256 points
- Trade off between batch size and learning rate  $(\alpha)$
- Tailor learning rate schedule: gradually reduce learning rate during a given epoch

Import the class containing the regression model

from sklearn.linear\_model import SGDRegressor

### Import the class containing the regression model

```
from sklearn.linear_model import SGDRegressor
```

### Create an instance of the class

### Import the class containing the regression model

```
from sklearn.linear_model import SGDRegressor
```

#### Create an instance of the class



### Import the class containing the regression model

```
from sklearn.linear_model import SGDRegressor
```

#### Create an instance of the class



regularization parameters

### Import the class containing the regression model

```
from sklearn.linear_model import SGDRegressor
```

### Create an instance of the class

### Fit the instance on the data and then transform the data

```
SGDreg = SGDreg.fit(X_train, y_train)
y_pred = SGDreg.predict(X_test)
```

### Import the class containing the regression model

```
from sklearn.linear_model import SGDRegressor
```

### Create an instance of the class

#### Fit the instance on the data and then transform the data

```
SGDreg = SGDreg.partial_fit(X_train, y_train)
y_pred = SGDreg.predict(X_test)
```



Mini-batch

version

### Import the class containing the regression model

```
from sklearn.linear_model import SGDRegressor
```

#### Create an instance of the class

### Fit the instance on the data and then transform the data

```
SGDreg = SGDreg.fit(X_train, y_train)
y_pred = SGDreg.predict(X_test)
```

Other loss methods exist: epsilon\_insensitive, huber, etc.

Import the class containing the classification model

from sklearn.linear\_model import SGDClassifier

### Import the class containing the classification model

```
from sklearn.linear_model import SGDClassifier
```

### Create an instance of the class

### Import the class containing the classification model

```
from sklearn.linear_model import SGDClassifier
```

### Create an instance of the class



### Import the class containing the classification model

```
from sklearn.linear_model import SGDClassifier
```

#### Create an instance of the class

### Fit the instance on the data and then transform the data

```
SGDclass = SGDclass.fit(X_train, y_train)
y_pred = SGDclass.predict(X_test)
```

### Import the class containing the classification model

```
from sklearn.linear_model import SGDClassifier
```

#### Create an instance of the class

### Fit the instance on the data and then transform the data

```
SGDclass = SGDclass.partial_fit(X_train, y_train)
y_pred = SGDclass.predict(X_test)

mini-batch
version
```



Import the class containing the classification model

```
from sklearn.linear_model import SGDClassifier
```

Create an instance of the class

Fit the instance on the data and then transform the data

```
SGDclass = SGDclass.fit(X_train, y_train)
y_pred = SGDclass.predict(X_test)
```

Other loss methods exist: hinge, squared\_hinge, etc.

Import the class containing the classification model

```
from sklearn.linear_model import SGDClassifier
```

Create an instance of the class

Fit the instance on the data and then transform the data

```
SGDclass = SGDclass.fit(X_train, y_train)
y_pred = SGDclass.predict(X_test)
```

Other loss methods exist: hinge, squared\_hinge, etc.



See SVM lecture (week 7)

