TD 1 : Probabilités et variables aléatoires discrètes

Une étoile désigne un exercice important.

Rappel de notations:

 $C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$ est le nombre de choix **non ordonnés** de k éléments distincts pris parmi n. $A_n^k = \frac{n!}{(n-k)!}$ est le nombre de choix **ordonnés** de k éléments distincts pris parmi n.

Exercice 1. Une urne contient 10 boules numérotées de 1 à 10. On tire avec remise 4 boules de l'urne.

- 1. Décrire un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ pouvant modéliser cette expérience.
- 2. Déterminer les probabilités d'obtenir :
 - (a) quatre nombres dans un ordre strictement croissant.
 - (b) quatre nombres dans un ordre croissant (au sens large).
 - (c) au moins une fois le nombre 3.

Exercice 2. Soient A et B deux événements d'un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ tels que $\mathbb{P}(A) = \mathbb{P}(B) = 3/4$. Donner un encadrement optimal pour la valeur de $\mathbb{P}(A \cap B)$. Donner des exemples dans lesquels les bornes de l'encadrement sont atteintes.

- * Exercice 1.3. Une urne contient trois sacs. Le sac S_1 contient 2 pièces d'or, le sac S_2 contient 2 pièces ordinaires, le sac S_3 contient une pièce d'or et une pièce ordinaire. Le jeu consiste à tirer un sac au hasard (avec probabilité uniforme) puis à tirer une pièce au hasard dans ce sac.
 - 1. Quelle est la probabilité de tirer une pièce d'or?
 - 2. Supposons que l'on ait tiré une pièce d'or. Quelle est alors la probabilité pour que l'autre pièce du sac soit en or?
- * Exercice 1.4. Soit Ω un ensemble. Soit $(X_n)_{n\geq 1}$ une suite de fonctions à valeurs entières définies sur Ω .
 - 1. Décrire en français et sans utiliser les expressions "quelque soit" ni "il existe" les parties suivantes de Ω

$$A = \bigcup_{a \in \mathbb{N}} \bigcup_{b \in \mathbb{N}} \bigcap_{n \ge 1} \{ \omega \in \Omega, \ a \le X_n(\omega) \le b \};$$

$$B = \bigcup_{N \ge 1} \bigcap_{n \ge N} \bigcap_{m \ge n} \{ \omega \in \Omega, \ X_n(\omega) - X_m(\omega) \ge 0 \};$$

$$C = \bigcup_{k \in \mathbb{N}} \bigcap_{N \ge 1} \bigcup_{n \ge N} \bigcup_{m \ge N} \left\{ \omega \in \Omega, \ |X_n(\omega) - X_m(\omega)| > \frac{1}{k} \right\}.$$

2. Faire l'opération de traduction inverse pour les parties suivantes de Ω

l'ensemble des
$$\omega \in \Omega$$
 tels que la suite $(X_n(\omega))_{n \geq 1}...$
 D ... ne soit pas bornée supérieurement ,
 E ... tende vers $+\infty$.

Exercice 5. Un joueur lance simultanément un dé et 2 pièces de monnaie, et son gain G (en euros) est le montant inscrit sur le dé multiplié par le nombre de 'Pile' obtenus. Donner la loi de G.

Exercice 6. On effectue des lancers successifs et indépendants d'une pièce qui tombe sur pile avec probabilité p et sur face avec probabilité 1-p.

- 1. Décrire le modèle probabiliste utilisé pour modéliser cette situation.
- 2. On appelle T_1 le numéro du premier lancer où l'on obtient pile. Déterminer la loi de T_1 .
- 3. Pour tout $i \geq 1$, on appelle T_i le numéro du lancer où l'on obtient pile pour la $i^{\text{ème}}$ fois. Déterminer la loi de T_i pour tout $i \geq 1$.
- 4. Calculer la probabilité que pile ne sorte jamais.
- \star Exercice 1.7. Montrer que, si X est une variable aléatoire à valeurs dans \mathbb{N} , alors

$$\mathbb{E}[X] = \sum_{k>0} \mathbb{P}(X > k) .$$

Exercice 8. On possède une urne, avec i boules jaunes, et j boules noires. On prend sans remise une boule au hasard dans l'urne, jusqu'à ce que l'on tire une boule noire. On appelle T le temps que dure ce jeu (c'est-à-dire le nombre de boules tirées jusqu'à la première boule noire comprise).

1. Montrer que, pour tout $k \in \{0, 1, \dots, i\}$, on a

$$\mathbb{P}(T > k) = \binom{i+j-k}{j} / \binom{i+j}{j}.$$

- 2. Montrer que $\binom{i+j+1}{j+1} = \sum_{k=0}^{i} \binom{i+j-k}{j}$.
- 3. En utilisant que $\mathbb{E}[T] = \sum_{k=0}^{i} \mathbb{P}(T > k)$ (cf. Exercice 7), calculer $\mathbb{E}[T]$.
- * Exercice 1.9. (Absence de mémoire pour la loi géométrique)
 - 1. Soit T une variable aléatoire géométrique de paramètre θ ($\mathbb{P}(T=k)=\theta(1-\theta)^{k-1}$ pour $k \geq 1$). Calculer $\mathbb{P}(T>n)$ pour tout entier naturel, puis montrer que $\mathbb{P}(T>n+p\,|\,T>n)=\mathbb{P}(T>p)$.
 - 2. Soit T une variable aléatoire à valeurs dans \mathbb{N}^* . On suppose que pour tous entiers non nuls n et p, on a $\mathbb{P}(T>n)>0$ et $\mathbb{P}(T>n+p\,|\,T>n)=\mathbb{P}(T>p)$. Montrer que T suit une loi géométrique.

Exercice 10. Soient X, Y, Z trois variables aléatoires à valeurs dans \mathbb{N} . On suppose que X et Y ont même loi. Soit $f: \mathbb{N} \to \mathbb{N}$ une fonction. Est-il vrai que f(X) et f(Y) ont même loi? Est-il vrai que X + Z et Y + Z ont même loi?

Exercice 11. Un lac contient N poissons. (N est inconnu et N > 2000). On pêche 1000 poissons, on les marque et on les rejette à l'eau. On repêche alors 1000 poissons (uniformément parmi tous les poissons du lac et indépendamment de la première pêche). Soit X le nombre de poissons marqués parmi ceux que l'on a repêchés.

- 1. Calculer la loi de X.
- 2. Calculer $\mathbb{E}[X]$. Indication: écrire X sous la forme $X = \sum_{i=1}^{N} \mathbf{1}_{A_i}$, avec les bons événements A_i .
- 3. Parmi les 1000 poissons repêchés, 10 étaient marqués. On cherche à estimer le nombre de poissons dans le lac. Déterminer N pour que $\mathbb{P}(X=10) \geq \mathbb{P}(X=k)$ pour tout $k \in \mathbb{N}$ et que $\mathbb{P}(X=10)$ soit le plus grand possible.