MATH 100A: Homework #4

Due on October 26, 2023 at 12:00pm

Professor McKernan

Section A02 5:00PM - 5:50PM Section Leader: Castellano

 $Source\ Consulted:\ Textbook,\ Lecture,\ Discussion$

Ray Tsai

A16848188

Find the order of all the elements of U_{18} . Is U_{18} cyclic?

Proof. We know that $18 = 2 \cdot 3^2$, and so $U_{18} = \{[1], [5], [7], [11], [13], [17]\}$. Notice that

$$[5]^1 = 5$$

$$[5]^2 = 7$$

$$[5]^3 = 17$$

$$[5]^4 = 13$$

$$[5]^5 = 11$$

$$[5]^6 = 1.$$

Thus, we know that U_{18} is a cyclic group. Let [5] = a. We can represent each element in U_{18} as a^i , for some $0 < i \le \varphi(18) = 6$. Hence, for all $a^i \in U_{18}$, the order of a^i is equal to the least common multiple of i and $\varphi(18) = 6$ divided by i, namely

$$o(a^i) = \frac{\operatorname{lcm}(i,6)}{i} = \frac{6i}{i \cdot \operatorname{gcd}(i,6)} = \frac{6}{\operatorname{gcd}(i,6)}.$$

Therefore,

$$o([1]) = \frac{6}{\gcd(6,6)} = 1$$

$$o([5]) = \frac{6}{\gcd(1,6)} = 6$$

$$o([7]) = \frac{6}{\gcd(2,6)} = 3$$

$$o([11]) = \frac{6}{\gcd(5,6)} = 6$$

$$o([13]) = \frac{6}{\gcd(4,6)} = 3$$

$$o([17]) = \frac{6}{\gcd(3,6)} = 2.$$

Find the order of all the elements of U_{20} . Is U_{20} cyclic?

Proof. We know that $20 = 2^2 \cdot 5$, and so $U_{20} = \{[1], [3], [7], [9], [11], [13], [17], [19]\}$. Notice that

$$[3]^{1} = [3] [7]^{1} = [7] [17]^{1} = [17] [13]^{1} = [13] [9]^{1} = [9] [11]^{1} = [11] [19]^{1} = [19]$$

$$[3]^{2} = [9] [7]^{2} = [9] [17]^{2} = [9] [13]^{2} = [9] [9]^{2} = [1] [11]^{2} = [1] [19]^{2} = [1]$$

$$[3]^{3} = [7] [7]^{3} = [3] [17]^{3} = [13] [13]^{3} = [17]$$

$$[3]^{4} = [1] [7]^{4} = [1] [17]^{4} = [1] [13]^{4} = [1]$$

$$\begin{bmatrix} 3 \end{bmatrix}^4 = \begin{bmatrix} 1 \end{bmatrix}$$
 $\begin{bmatrix} 1 \end{bmatrix}^4 = \begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 17 \end{bmatrix}^4 = \begin{bmatrix} 11 \end{bmatrix}$ $\begin{bmatrix} 17 \end{bmatrix}^4 = \begin{bmatrix} 11 \end{bmatrix}$ $\begin{bmatrix} 13 \end{bmatrix}^4 = \begin{bmatrix} 11 \end{bmatrix}$

Thus, we have

$$o([1]) = 1$$

$$o([3]) = 4$$

$$o([7]) = 4$$

$$o([9]) = 2$$

$$o([11]) = 2$$

$$o([13]) = 4$$

$$o([17]) = 4$$

$$o([19]) = 2$$

Since we cannot represent all the elements as powers of a single element in U_{20} , we know U_{20} is not a cyclic group.

If p is a prime number of the form 4n + 3, show that we cannot solve

$$x^2 \equiv -1 \mod p.$$

Proof. Suppose for the sake of contradiction that $x^2 \equiv -1 \mod p$ for some x. Then, $x^4 \equiv 1 \mod p$. Since $x^2 \equiv -1 \mod p$, we know $x \not\equiv \pm 1 \mod p$, and so $x^3 = x \cdot x^2 \not\equiv 1 \mod p$. Therefore, we know that [x] is of order 4 in U_p . By Lagrange's Theorem, we know that $4|\varphi(p) = p - 1 = 4n + 2$, contradiction. Therefore, we cannot solve the above equation.

Aliter. We can assume that p does not divide x, otherwise we get $x^2 \equiv 0 \mod p$. Then, we know $x^{p-1} \equiv 1 \mod p$, by Fermat's theorem. We thus get $x^{4n+2} = (x^2)^{2n+1} \equiv 1 \mod p$, but $(-1)^{2n+1} \equiv -1 \mod p$, and so the equation cannot be solved.

Problem 4

Find the products:

(a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$$
.

Proof.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 2 & 1 & 3 & 6 \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}$.

Proof.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}.$$

(c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}$.

Proof.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}.$$

Problem 5

Find the order of the product you obtained in the previous problem.

Proof. Since $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 2 & 1 & 3 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 5 & 3 & 2 \end{pmatrix}$, the order of it is the least common multiple of the size of the two cycles, namely 6.

Since $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}$ is a 3-cycle in S_5 , the order of it is 3.

Since
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}$$
 is a 2-cycle in S_5 , the order of it is 2.

Show that if σ, τ are two disjoint cycles, then $\sigma\tau = \tau\sigma$.

Proof. Let $\sigma, \tau \in S_n$, where $S = \{1, 2, ..., n\}$. Let $i \in S$. If i is not in σ nor τ , then $\sigma\tau(i) = \tau\sigma(i) = i$. Since σ, τ are disjoint cycles, i is not in cycle τ if it is already in σ , and thus $\sigma\tau(i) = \sigma(i) = \tau\sigma(i)$. By symmetry, we also know that if i is in τ , we get $\tau\sigma(i) = \tau(i) = \sigma\tau(i)$, and we exausted all cases.

Find the cycle decomposition and order.

$$\text{(a)} \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 1 & 4 & 2 & 7 & 6 & 9 & 8 & 5 \end{pmatrix} .$$

Proof. The above permutation can be decomposed into

$$(1 \ 3 \ 4 \ 2) (5 \ 7 \ 9),$$

and the order of it is the least common multiple of the size of the disjoint cycles, namely 12. \Box

(b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$
.

Proof. The above permutation can be decomposed into

$$\begin{pmatrix} 1 & 7 \end{pmatrix} \begin{pmatrix} 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 5 \end{pmatrix},$$

and the order of it is the least common multiple of the size of the disjoint cycles, namely 2. \Box

(c)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 \end{pmatrix}$$
.

Proof.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 7 & 4 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 6 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 3 & 7 \end{pmatrix},$$

and the order of it is the least common multiple of the size of the disjoint cycles, namely 2. \Box

Problem 8

Express as the product of disjoint cycles and find the order.

(c)
$$(1 \ 2 \ 3 \ 4 \ 5) (1 \ 2 \ 3 \ 4 \ 6) (1 \ 2 \ 3 \ 4 \ 7)$$
.

Proof.

$$(1 \quad 2 \quad 3 \quad 4 \quad 5) (1 \quad 2 \quad 3 \quad 4 \quad 6) (1 \quad 2 \quad 3 \quad 4 \quad 7) = (1 \quad 4 \quad 7 \quad 3 \quad 6 \quad 2 \quad 5).$$

Since it's a 7-cycle, the order of it is 7.

(d)
$$(1 \ 2 \ 3) (1 \ 3 \ 2)$$
.

Proof.

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}.$$

Since it's the identity element, the order is 1.

Express the permutations in the previous problem as the product of transpositions.

Proof. For (c),

For (d),

$$(1 \ 2 \ 3) (1 \ 3 \ 2) = (1 \ 3) (1 \ 2) (1 \ 2) (1 \ 3).$$

Problem 10

Find the conjugate of $\sigma = (1, 4, 7, 2)(3, 6, 5) \in S_7$ by $\tau = (1, 2, 3)(4, 7, 5)$. What is the order of σ and τ ?

Proof.

$$\tau \sigma \tau^{-1} = (\tau(1) \quad \tau(4) \quad \tau(7) \quad \tau(2)) (\tau(3) \quad \tau(6) \quad \tau(5))$$
$$= (2 \quad 7 \quad 5 \quad 3) (1 \quad 6 \quad 4).$$

The order of σ and τ are 12 and 3 respectively.

Problem 11

Find an element $\tau \in S_7$ that carries $\sigma = (1,2,5)(3,6,7,4)$ into $\sigma' = (3,1,4)(2,7,6,5)$, that is find $\tau \in S_7$ such that

$$\sigma' = \tau \sigma \tau^{-1}.$$

Proof. Consider

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 5 & 4 & 7 & 6 \end{pmatrix}.$$

$$\tau \sigma \tau^{-1} = (\tau(1) \quad \tau(2) \quad \tau(5)) (\tau(3) \quad \tau(6) \quad \tau(7) \quad \tau(4))$$

$$= (3 \quad 1 \quad 4) (2 \quad 7 \quad 6 \quad 5)$$

$$= \sigma',$$

and so τ is what we're looking for.