Class13 RNA Seq Mini Project

Julia Ainsworth

Background

We will do all of the following:

- -Read countData and colData -Check and fix contData if required -DESeq Anaysis
- -Visualization -Gene annotations -Pathway analysis

About the data:

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

1. Read contData and colData

We need at least two things for this type of analysis:

```
-contData -colData (aka Metadata)
```

```
colData <- read.csv("GSE37704_metadata.csv", row.names=1)
colData</pre>
```

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
```

SRR493370 hoxa1_kd SRR493371 hoxa1_kd

#2. Check and fix count data

```
countData <-read.csv("GSE37704_featurecounts.csv", row.names =1)
head(countData)</pre>
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	5	258				

The first column is "length", which would mess us up. We want to get rid of it!

```
countData1 <-countData[, -1]
head(countData1)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

To check that the data lines up, we want to call on our old friend ==, and use all() to make sure we aren't missing anything

```
all(colnames(countData1) == rownames(colData))
```

[1] TRUE

Everything looks good so far except for zero count genes. We will want to remove them before we test anything. How to do that: Find anything that is equal to 0 across all the rows (rowSums), and then make that logical by doing an == to 0 (or the ones not equal to zero for what we want to keep), find the indices where this is true, and remove these indices

```
keep.inds <- (rowSums(countData1) != 0 )
counts <- countData1[keep.inds, ] #Data where the zero count genes have been removed
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

```
nrow(counts)
```

[1] 15975

QC wit hPCA

The prcomp() function in base R will let us do a PCA to look at our data; check that biggest differences in expression of genes is consistent with our experimental design

```
pca <- prcomp(t(counts), scale=T)
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 6.648e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00
```

Our PCA score plot (aka PC1 vs PC2) PCA is in our pca\$x component

3. DESeq

Next: DESeq! We have to load it, and then mack the objects it requires, run DE Seq, and plot our results.

```
library(DESeq2)
```

Next, the inputs required for DESeq

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)
```

```
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  res <- results(dds)</pre>
  head(res)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                             lfcSE
                                                                   pvalue
                                                         stat
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
                  29.9136
                               0.1792571 0.3248216
ENSG00000279457
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583
                47.2551
                               0.0405765 0.2718928 0.149237 8.81366e-01
                               0.5428105 0.5215598 1.040744 2.97994e-01
ENSG00000187642
                  11.9798
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
Plot a volcano
  # Making a color vector
```

mycols <- rep("gray", nrow(counts))</pre>

```
mycols[abs(res$log2FoldChange) > 2] <- "blue"

mycols[res$padj > 0.05] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col =mycols)
abline(v=c(-2,2))</pre>
```


4. Add gene annotation

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

Using the mapIDs() to add SYMBOL and ENTREZID annotations to our results

```
keytype = "ENSEMBL",
column = "SYMBOL")
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

5. Pathway analysis (Gene set enrichment)

Using gage() again with KEGG and GO

```
library(gage)
library(gageData)
library(pathview)
```

What input gage() wants is a vector of importance - in our case that would be the log2 fold change values. This vector should have names() that are entrez IDs.

To get a fold change vector and set up our input so that names are set to input IDs

```
foldchange <- res$log2FoldChange
names(foldchange) <- res$entrez

data(kegg.sets.hs)
data(sigmet.idx.hs)
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]</pre>
```

And now, run gage() with the KEGG human set

```
keggres = gage(foldchange, gsets =kegg.sets.hs)
head(keggres$less, 5)
```

```
p.geomean stat.mean
                                                                p.val
hsa04110 Cell cycle
                                 8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                  1.246882e-03 -3.059466 1.246882e-03
hsa03440 Homologous recombination 3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis 3.784520e-03 -2.698128 3.784520e-03
                                        q.val set.size
hsa04110 Cell cycle
                                 0.001448312 121 8.995727e-06
hsa03030 DNA replication
                                0.007586381
                                                   36 9.424076e-05
hsa03013 RNA transport
                                 0.066915974
                                                  144 1.246882e-03
hsa03440 Homologous recombination 0.121861535 28 3.066756e-03 hsa04114 Oocyte meiosis 0.121861535 102 3.784520e-03
```

Then, to make a pretty image:

```
pathview(gene.data = foldchange, pathway.id = "hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/a1stmac/Desktop/BGGN213/Class13

Info: Writing image file hsa04110.pathview.png

We can do the same thing with GO

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchange, gsets=gobpsets)
head(gobpres$less)
```

```
GD:0048285organelle fissionp.geomeanstat.meanp.valGD:0000280nuclear division1.536227e-15-8.0639101.536227e-15GD:0007067mitosis4.286961e-15-7.9392174.286961e-15GD:0000087M phase of mitotic cell cycle1.169934e-14-7.7974961.169934e-14GD:0007059chromosome segregation2.028624e-11-6.8783402.028624e-11
```

```
GO:0000236 mitotic prometaphase
                                      1.729553e-10 -6.695966 1.729553e-10
                                            q.val set.size
                                                                  exp1
GO:0048285 organelle fission
                                                      376 1.536227e-15
                                      5.841698e-12
GO:0000280 nuclear division
                                      5.841698e-12
                                                      352 4.286961e-15
GO:0007067 mitosis
                                                      352 4.286961e-15
                                      5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                      362 1.169934e-14
GO:0007059 chromosome segregation
                                    1.658603e-08
                                                      142 2.028624e-11
                               1.178402e-07
GO:0000236 mitotic prometaphase
                                                       84 1.729553e-10
```

Installing reactome in the console

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo</pre>
```

Brought it into reactome website and explored