Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br github.com/andrehochuli/teaching

Plano de Aula

- Discussões Iniciais
- Árvores de Decisão
 - Entropia
 - Ganho de Informação
- Exercícios

Discussões Iniciais

KNN

Naive Bayes

Aprendizado de Máquina - Prof. André Hochuli

- Estrutura Hierárquica
- Cada nodo é responsável por um nível de decisão

- Como definir atributos relevantes?
- Como definir a hierarquia entre os atributos?

Day	Outlook	Temp	Humidity	Wind	Tennis
D1	Sunny	Hot	High	Weak	Ne
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes

- Como definir atributos relevantes e limiares?
- Como definir a hierarquia entre os atributos?
 - Entropia

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- Ganho de Informação
 - $Gain(S, A) = Entropy(S) \sum [p(Sv) * Entropy(Sv)]$

Entropia: Grau de Incerteza ou Desordem dos DADOS

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- S = Dataset
- C = Número de Classes
- P_i = proporção da classe 'i' no conjunto
- E = 1 (Entropia Máxima)

- Calcular a entropia do conjunto abaixo:
 - 50 bolas vermelhas
 - 50 bolas azuis
 - $E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$

- E = [-p(vermelha) * log2(p(vermelha))] + [- p(azul) * log2(p(azul))]
- E = [-0.5 * log2(0.5)] + [-0.5 * log2(0.5)]
- E = [-0.5 * (-1)] + [-0.5 * (-1)] = 1
- E para 98 vermelhas e 2 azuis
 - E = [-0.98 * log2(0.98)] + [-0.02 * log2(0.02)]
 - E = 0.141

- Entropia vs Probabilidade
 - Probabilidade: Chance ou Incerteza relacionada a um evento
 - Entropia: Incerteza ou Desordem associada a um conjunto de dados.
- Dado 50 bolas vermelhas e 50 bolas azuis, então:
 - Entropia = 1
 - Probabilidade Vermelha = 50%
 - Probabilidade Azul = 50%
- Dado 98 bolas vermelhas e 2 bolas azuis, então:
 - Entropia Conjunto = 0.141
 - Probabilidade Vermelha = 98%
 - Probabilidade Azul = 2%

- Ganho de Informação:
 - Gain(S, A) = Entropy(S) ∑[p(Sv) * Entropy(Sv)]
 - 'A' é o atributo que está sendo avaliado
 - 'Sv' é o subconjunto dos dados que corresponde ao valor v do atributo A
 - 'p(Sv)' é a proporção dos valores em 'Sv' em relação ao número de valores no conjunto de dados 'S'
 - 'Entropy(S)' e 'Entropy(Sv)' s\u00e3o as entropias do conjunto de dados original e dos subconjuntos resultantes

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Gain(S, A) = Entropy(S) - \sum [p(Sv) * Entropy(Sv)]

- Calculando a entropia da classe "play tennis":
 - Probabilidade de jogar tênis: 9/14 (Yes), 5/14 (No)
 - Entropia
 - $(9/14) * \log 2(9/14) (5/14) * \log 2(5/14) = 0.940$

(3)		<i>J</i> v <i>j</i>				
Day	Outlook	Temp	Humidity	Wind	Tennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Weak	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cold	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Strong	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	D14 Rain		High	Strong	No	

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Gain(S, A) = Entropy(S) - \sum [p(Sv) * Entropy(Sv)]

Calculando a entropia para cada valor do atributo "humidity":

- Humidity = High
 - Probabilidade de jogar tênis: 3/7 (Yes), 4/7 (No)
 - Entropia
 - $-(3/7) * \log 2(3/7) (4/7) * \log 2(4/7) = 0.985$
- Humidity = Normal
 - Probabilidade de jogar tênis: 6/7 (Yes), 1/7 (No)
 - Entropia
 - $-(6/7) * \log 2(6/7) (1/7) * \log 2(1/7) = 0.592$
- Ganho de informação:

$$0.940 - [(7/14)*0.985 + (7/14)*0.592] = 0.151$$

Day	Outlook	Temp	Humidity	Wind	Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	D14 Rain		High	Strong	No

Aprendizado de Máquina - Prof. André Hochuli

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Gain(S, A) = Entropy(S) - \sum [p(Sv) * Entropy(Sv)]

- Calculando a entropia para cada valor do atributo "outlook":
 - Outlook = Sunny
 - Probabilidade de jogar tênis: 2/5 (Yes), 3/5 (No)
 - Entropia
 - $-(2/5) * \log 2(2/5) (3/5) * \log 2(3/5) = 0.971$
 - Outlook = Overcast
 - Probabilidade de jogar tênis: 4/4 (Yes), 0/4 (No)
 - Entropia = 0 (já que todos jogaram tênis)
 - Outlook = Rainy
 - Probabilidade de jogar tênis: 3/5 (Yes), 2/5 (No)
 - Entropia
 - $-(3/5) * \log 2(3/5) (2/5) * \log 2(2/5) = 0.971$

Day	Outlook	Temp	Humidity	Wind	Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	D14 Rain		High	Strong	No

• Ganho de informação = 0.940 - [(5/14)*0.971 + (4/14)*0 + (5/14)*0.971] = 0.247

Aprendizado de Máquina - Prof. André Hochuli

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Gain(S, A) = Entropy(S) - \sum [p(Sv) * Entropy(Sv)]

- Resumindo
 - Gain (Tennis, Humidity) = 0.151

Gain (Tennis, Outlook) = 0.247

Logo, Outlook tem mais ganho de informação

Day	Outlook	Temp	Humidity	Wind	Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	D14 Rain		High	Strong	No

- Quando parar de construir a árvore?
- De maneira breve:
 - Quando todos os nós folha são puros
 - (nós folha têm dados que pertencem a uma única classe).
 - Quando um determinado critério é atingido (I.E Altura, tempo...)

- Vantagens:
 - Interpretabilidade
 - Velocidade
- Desvantagens:
 - Overfitting
 - Sensibilidade a dados
 - Dificuldade em capturar relações complexas

• Let's Code: <u>Tópico_02_Aprendizado_Supervisionado_Arvores_Decisão.ipynb</u>