

CHIMIE NIVEAU MOYEN ÉPREUVE 1

Mercredi 12 mai 2010 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
٢		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
ts 4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
lémen 3		5 B 10,81	13 A1 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
e des é				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
odiqu				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
ın péri				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
ficatio				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
ı classi				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
u de la				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
Le tableau de la classification périodique des éléments 3	Numéro atomique	Element Masse atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
Le	Numéro	Elen Masse a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
				22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 * Ac (227)	-!	++
6		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

$$_$$
 Al(s) + $_$ Fe₃O₄(s) \rightarrow $_$ Al₂O₃(s) + $_$ Fe(s)

- A. 2
- B. 3
- C. 4
- D. 5

2. Quelle est la masse, en g, d'une molécule d'éthane, C₂H₆?

- A. $3,0 \times 10^{-23}$
- B. $5,0 \times 10^{-23}$
- C. 30
- D. $1,8 \times 10^{25}$

3. Quelle formule moléculaire est également une formule empirique ?

- A. PCl₃
- B. C_2H_4
- C. H_2O_2
- D. $C_6H_{12}O_6$

4. Quelle proposition représente une formulation valide de la loi d'Avogadro?

- A. $\frac{P}{T}$ = constante
- B. $\frac{V}{T}$ = constante
- C. Vn = constante
- D. $\frac{V}{n} = \text{constante}$

5.		échantillon de l'élément X contient 69 % de ⁶³ X et 31 % de ⁶⁵ X. Quelle est la masse atomique ive de X dans cet échantillon ?
	A.	63,0
	B.	63,6
	C.	65,0
	D.	69,0
6.	Com	abien d'électrons contient l'ion 31 p ³⁻ ?
	A.	12
	B.	15
	C.	16
	D.	18
7.	Quel	lle est la configuration électronique de l'ion Mg ²⁺ ?
	A.	2,2
	B.	2,8
	C.	2,8,2
	D.	2,8,8
8.	Quel	lle propriété diminu e de haut en bas dans le groupe 7 du tableau périodique ?
	A.	Le point de fusion
	B.	L'électronégativité
	C.	Le rayon atomique
	D.	Le rayon ionique

- I. P_4O_{10}
- II. MgO
- III. SO₃
- A. I et II uniquement
- B. I et III uniquement
- C. II et III uniquement
- D. I, II et III

10. Quelle est la formule du fluorure de magnésium ?

- A. Mg_2F_3
- B. Mg₂F
- C. Mg_3F_2
- D. MgF₂

11. Quelle est la forme de la molécule d'ammoniac, NH₃?

- A. Triangulaire plane
- B. Pyramidale à base triangulaire
- C. Linéaire
- D. En forme de V (coudée)

12. Quelle molécule est polaire ?

- A. CH_2Cl_2
- B. BCl₃
- C. Cl₂
- D. CCl₄

- 13. Quelle substance peut former des liaisons hydrogène intermoléculaires à l'état liquide ?
 - A. CH₃OCH₃
 - В. CH₃CH₂OH
 - C. CH₃CHO
 - D. CH₃CH₂CH₃
- Quel composé possède une structure covalente macromoléculaire (covalente géante)? 14.
 - A. MgO(s)
 - B. $Al_2O_3(s)$
 - C. $P_4O_{10}(s)$
 - D. $SiO_2(s)$
- 15. Les variations d'enthalpie standard accompagnant la combustion du carbone et du monoxyde de carbone sont indiquées ci-dessous.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_c^{\Theta} = -394 \text{ kJ mol}^{-1}$

$$\Delta H_c^{\Theta} = -394 \text{ kJ mol}^{-1}$$

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_c^{\Theta} = -283 \text{ kJ mol}^{-1}$

$$\Delta H_c^{\ominus} = -283 \text{ kJ mol}^{-1}$$

Quelle est la variation d'enthalpie standard, en kJ, pour la réaction suivante ?

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- A. -677
- В. -111
- C. +111
- D. +677

16. Quelle proposition est correcte concernant les variations d'énergie au cours de la rupture de liaison et de la formation de liaison ?

	Rupture de liaison	Formation de liaison		
A.	exothermique et ΔH positive	endothermique et ΔH négative		
B.	exothermique et ΔH négative	endothermique et ΔH positive		
C.	endothermique et ΔH positive	exothermique et ΔH négative		
D.	endothermique et ΔH négative	exothermique et ΔH positive		

17.	Quel processus	est exothermique	
------------	----------------	------------------	--

- I. Fonte de la glace
- II. Neutralisation
- III. Combustion
- A. I et II uniquement
- B. I et III uniquement
- C. II et III uniquement
- D. I, II et III

18. Quelle unité peut être utilisée pour exprimer la vitesse d'une réaction chimique?

- A. mol
- B. $mol dm^{-3}$
- C. $mol dm^{-3} s^{-1}$
- D. dm^3

- 19. Quel facteur permet d'augmenter la vitesse d'une réaction chimique ?
 - I. Augmenter la température
 - II. Ajouter un catalyseur
 - III. Augmenter la concentration des réactifs
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III
- **20.** Quelle est l'expression de la constante d'équilibre, K_c , pour la réaction suivante ?

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

A.
$$K_{c} = \frac{[NO_{2}]}{[N_{2}O_{4}]}$$

B.
$$K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]}$$

C.
$$K_c = \frac{[NO_2]}{[N_2O_4]^2}$$

D.
$$K_c = [NO_2][N_2O_4]^2$$

21. On considère la réaction endothermique suivante.

$$5CO(g) + I_2O_5(g) \rightleftharpoons 5CO_2(g) + I_2(g)$$

Selon le principe de Le Chatelier, quel changement pourrait provoquer l'augmentation de la quantité de CO₂ ?

- A. Une augmentation de la température
- B. Une diminution de la température
- C. Une augmentation de la pression
- D. Une diminution de la pression

22. Quelles espèces se comportent comme des acides de Brønsted-Lowry dans la réaction réversible suivante ?

$$H_2PO_4^-(aq) + CN^-(aq) \rightleftharpoons HCN(aq) + HPO_4^{-2-}(aq)$$

- A. HCN et CN-
- B. HCN et HPO₄²⁻
- C. $H_2PO_4^-$ et HPO_4^{2-}
- D. HCN et H₂PO₄
- 23. Parmi les suivants, lesquels sont des acides faibles en solution aqueuse ?
 - I. CH₃COOH
 - II. H_2CO_3
 - III. HCl
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III
- **24.** Dans quelle espèce le soufre possède-t-il un nombre d'oxydation de 0 ?
 - A. SO₃
 - B. S_8
 - C. Na₂SO₄
 - D. H₂S

25. Quel est l'agent réducteur dans la réaction suivante ?

$$2MnO_4^-(aq) + Br^-(aq) + H_2O(l) \rightarrow 2MnO_2(s) + BrO_3^-(aq) + 2OH^-(aq)$$

- A. Br
- B. BrO_3^-
- C. MnO₄
- D. MnO₂

26. Quelles transformations peuvent se produire à l'électrode positive (cathode) dans une pile voltaïque ?

- I. $Zn^{2+}(aq)$ en Zn(s)
- II. $Cl_2(g)$ en $Cl^-(aq)$
- III. Mg(s) en $Mg^{2+}(aq)$
- A. I et II uniquement
- B. I et III uniquement
- C. II et III uniquement
- D. I, II et III

27. Quelle est la formule structurale du 2,3-dibromo-3-méthylhexane?

- A. CH₃CHBrCHBrCH(CH₃)CH₂CH₃
- B. CH₃CHBrCBr(CH₃)CH₂CH₂CH₃
- C. CH₃CH₂CHBrCBr(CH₂CH₃)₂
- D. CH₃CHBrCHBrCH(CH₂CH₃)₂

- **28.** Qu'arrive-t-il quand on ajoute quelques gouttes d'eau de brome à un excès de hex-1-ène et qu'on agite le mélange ?
 - I. La couleur de l'eau de brome disparaît.
 - II. Le produit organique formé ne contient aucune double liaison carbone-carbone
 - III. Il se forme du 2-bromohexane.
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III
- **29.** Quel est le produit de la réaction suivante ?

$$\text{CH}_3\text{CH(OH)CH}_3 \xrightarrow{\text{Cr}_2\text{O}_7^{2-}/\text{H}^+} \rightarrow$$

- A. CH₃COOH
- B. CH₃COCH₃
- C. CH₃CH₂COOH
- D. CH₃CH₂CH₃
- **30.** Combien y a-t-il de chiffres significatifs dans 0,00370 ?
 - A. 2
 - B. 3
 - C. 5
 - D. 6