Union - Discipline - Travail

DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DES ŒUVRES UNIVERSITAIRES (DGES)

DIRECTION DE l'ORIENTATION ET DES EXAMENS (DOREX)

Concours ITA session 2014 Composition: Chimie 2 Durée: 2 Heures

ATOMISTIQUE: 8 points

Les deux parties 1) et 2) sont indépendantes

- 1) Le numéro atomique de l'antimoine (S_b) est Z = 51.
- 1.1) Préciser sa période et sa colonne. À quelle famille appartient-il ?
- 1.2) Quels sont les différents états de valence possible de cet atome ?
- 1.3) Combien d'électrons sont caractérisés par le nombre quantique secondaire ℓ=1
- 1.4) Même question pour le nombre quantique magnétique $m_{\ell} = -1$?
- 1.5) Un élément X est de la même période que l'antimoine et de la famille des métaux alcalins. En déduire sa structure électronique et son numéro atomique Z.
 - 2) Donner pour chacun des corps ci-dessous, la structure de Lewis, le type dans la théorie V.S.E.P.R, la géométrie et l'hybridation de l'atome central : $PC\ell_5$; H_2O ; SF_6

Présenter les résultats sous forme tableau.

On donne: ${}_{1}H$; ${}_{8}O$; ${}_{9}F$; ${}_{15}P$; ${}_{16}S$; ${}_{17}C\ell$

THERMODYNAMIQUE CHIMIQUE: 6 points

On étudie l'équilibre suivant :

$$P_bCO_{3(s)} \overset{\rightarrow}{\leftarrow} \quad P_bO_{(s)} + CO_{2(g)}$$

- 1) Calculer l'enthalpie standard, l'entropie standard et l'enthalpie libre standard de réaction à 25°C.
 - Calculer la constante d'équilibre à cette température. Commenter.
- 2) À partir de quelle température, la décomposition de P_bCO_{3(s)} devient –elle spontanée ?

3) En supposant $\Delta_r C_p^0 = 0$, calculer la constante d'équilibre de cette réaction à 1000K.

En déduire la pression de CO₂ gazeux à cette température.

On donne : $R = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$

et à 25°C:

	$P_bCO_{3(s)}$	$P_bO_{(s)}$	$\mathrm{CO}_{2(\mathrm{g})}$
$\Delta_r H^0 \text{ (kJ.mol}^{-1})$	-700	-217,9	-395,7
S° (J.K ⁻¹ .mol ⁻¹)	131,0	67,4	256,6

CINETIQUE CHIMIQUE: 6 points

La décomposition de AB en phase liquide : $2AB \rightarrow 2A + B_2$ est une réaction d'ordre 2... On observe qu'après 250 min, la fraction dissociée à 500 K est de 20%.

À t=0, le réacteur ne contient que le réactif AB avec $[AB]_0 = a$.

- 1) Calculer le temps:
 - 1.1) de demi-réaction.
 - 1.2) Des ¾ de réaction
- 2) Calculer le taux d'avancement de cette réaction après 10 heures.
- 3) L'énergie d'activation supposée constante dans l'intervalle de température est de 50 kJ.mol⁻¹
 - 3.1) Quelle est la fraction dissociée de AB à 600K, après 200 min.
 - 3.2) Quel est le temps nécessaire pour que 90% de AB soit décomposé à 600K ?