$$N \& (N-1) = unset the closest set bit to LSB-$$

$$N = 101011000 \qquad N & (N-1)$$

$$t_{unset}$$

$$N = 101011000$$

$$N-1 = 101010111$$

$$101010000$$

$$\begin{array}{ccc}
\text{ont cnt} & = 0; \\
\text{while } (N>0) & o(wint = 1); \\
\text{set is is} & i \\
N=N+(N-1); \\
\text{ent} & +\tau; \\
\end{array}$$

. check if the given number N is power of 2 or not?

	1	36 - ?	2	(36)-not a pover of 2
2	32	A	2	18
2	16			(9)
2	8			
2	4			•
2	2		l	
	工			

- 2) In xor Array, find any location which is set
- 3) Divide the array into 2 on the basis of idxa

$$xor = 0;$$
 $for (i = 0; i < n; j++)$
 $xor = xor \land aulij;$
 $idx = -1;$
 $for (i = 0; i < 32; i++)$
 $idx = i;$
 $idx = i;$

n elements

$$for(i=0; i<32; i+t)$$

$$in+ x=0;$$

$$for(j=0;

$$for(j=0;

$$2 = 0;$$

$$x+t;$$

$$y$$

$$am = amt x*(n-x)*(1<1);$$$$$$

vetu ans *2'

& Suballays OR

sum of all OR of all subarrays

1,4,3,2,6

B-f:- consider all subarrays - O(N3)

contribution

subarray or

In how many subaway OR's

