STATS 3U03

Sang Woo Park

January 4, 2017

Course Outline

• Textbook: Inroduction to stochastic processes
\bullet Requirement: 5 assignments, 2 tests, and 1 final
• Test 1: Friday, February 10th
• Test 2: Friday, March 17th

Contents

1	Introduction		
	1.1	Review	2
	1.2	Stochastic processes	2

1 Introduction

1.1 Review

Definition 1.1 (Independent random variables). X and Y are independent iff for any $a, b \in \mathbb{R}$, $P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$

1.2 Stochastic processes

Definition 1.2 (Stochastic process). Let T be a subset of $[0, +\infty]$. For each $t \in T$, let X_t be a random variable. Then, the collection of $\{X_t : t \in T\}$ is called a stochastic process. Simply put, a stochastic process is just a family of random variables.

Example 1.2.1. Let $T = \{0\}$. Then, $\{X_0\}$ is a stochastic process.

Example 1.2.2. Let $T = \{1, 2, 3, ..., m\}$ be a set of finite natural numbers. Then, $\{X_1, X_2, X_3, ..., m\}$ is a stochastic process.

Example 1.2.3. Let $T = \{0, 1, 2, ...\}$ be a set of all non-negative integers. Then, $\{X_1, X_2, X_3, ...\}$ is a stochastic process.

Example 1.2.4. Let $T = [0, +\infty)$ be a set of all non-negative real numbers. Then, $\{X_t : t \ge 0\}$ is a stochastic process.

Definition 1.3 (Time index). Let T be time index. If $T = \{0, 1, 2, ...\}$, then the time is discrete. If $T = [0, \infty)$, then time is continuous.

Definition 1.4 (State Space). State space, S, is the space space where the random variable takes the values.

Given a sample space, Ω , and time index T, we can define $X_t(w) \in S$, where $w \in \Omega$ and $t \in T$ to describe a stochastic process.

We can further categorize a stochastic process by considering the following two cases: countable and uncountable state space. Time index can also be categorized as follows: discrete and continuous time. Note that each stochastic process must belong to one of the four categories.

Remark. Every stochastic process can be described by the following three factors:

- 1. Time index
- 2. State space
- 3. Dependence relation

Example 1.2.5. Let $S = \{0, 1\}$ and $T = \{0, 1, 2, ...\}$. Given,

$$X_n = \begin{cases} 1 & \text{with probability of } 1/2\\ 0 & \text{with probability of } 1/2 \end{cases}$$

 $\{X_0, X_1, X_2, \dots\}$ is a stochastic process and is often noted as Bernoulli trials.