Dense Passage Retrieval for Open-Domain Question Answering

University of Southern California

Team:

- Reuel
- Sayf
- Sura
- Hetv
- Kritika

Objective, Motivation and Related Works:

What is ODQA?

- QA: build computer systems that automatically answer questions posed by humans in a natural language
- Open Domain: not limited to a specific domain
- Has 2 parts:
 - Information Retrieval (IR)
 - Question Answering (QA)

Generally, IR tasks are implemented with TF-IDF or BM-25

BM25 (Best Match-25)

- represents words using high dimensional and weighted sparse vectors (generated using TF-IDF)
- fails to map synonyms to be close to each other (due to sparse nature of representation)

Failed to capture syntactic meanings!

ORQA (Open Retrieval Question Answering)

- Joint learning on retriever and reader from question-answer string pairs
- A pseudo-task is defined using the sentence as the question and the context as the evidence
- Inverse Cloze Task is used for pretraining
- computationally expensive and sentences may not be an appropriate substitute for questions

Can we train a better dense embedding model efficiently using only pairs of questions and passages and no pre-training?

Introducing: Dense Passage Retrieval (DPR)

- Uses a dense encoder (E_p) to map a text passage to a d dimensional real-valued vector and builds an index for all the M passages that we will use for retrieval.
- At run-time, DPR applies a different encoder (E_Q) that maps the input question to a d-dimensional vector, and retrieves k passages of which vectors are the closest to the question vector.

$$sim(q, p) = E_Q(q)^{\mathsf{T}} E_P(p).$$

Retriever Training mainly focuses on **fine tuning** these encoders to generate dense embeddings for the questions and passages

Dataset and Preparation

These datasets do not contain any contexts. They have just question-answer pairs.

These datasets come with wikipedia passages for context

First, the data is cleaned by removing semi-structured data, tables, lists etc

 Second, the data is split into passages with a maximum limit of 100 words

The goal here is to:

- Provide context for the datasets that do not have any contexts
- To do so, they take the top passage returned by BM-25 as the relevant context for the QA pair.

Methodology

 The goal is to create a vector space such that relevant pairs of questions and passages will have smaller distance (i.e., higher similarity than the irrelevant ones

$$\mathcal{D} = \{ \langle q_i, p_i^+, p_{i,1}^-, \cdots, p_{i,n}^- \rangle \}_{i=1}^m$$

Positive and Negative Passages

- Positive examples are available explicitly
- Negative Passage or Irrelevant Passage are those which needs to be selected from a pool

- Random

- Any random passage from the corpus

- BM25

 Top passages returned by BM25 which don't contain the answer but match most question tokens

- Gold

 Positive passages paired with other questions which appear in the training set

Best Model uses

Gold Passages + one BM25 negative passage

Loss Function

$$L(q_{i}, p_{i}^{+}, p_{i,1}^{-}, \cdots, p_{i,n}^{-})$$

$$= -\log \frac{e^{\sin(q_{i}, p_{i}^{+})}}{e^{\sin(q_{i}, p_{i}^{+})} + \sum_{j=1}^{n} e^{\sin(q_{i}, p_{i,j}^{-})}}.$$

In Batch Negatives

- B set of questions (denoted by Q) and passages (denoted by P) represented with d dimension
- Dot product between P and Q generates a similarity matrix S
- Diagonal values represent the positive passages

Experimental Setup

- Batch Size: 128

- Epochs: 40 (for larger dataset) or 100 (for smaller dataset)

- Learning Rate: 10⁻⁵

- Optimizer: Adam

- Dropout Rate: 0.1

- Linear Scheduler

Training

Training was done with:

- Single dataset (Encoder is trained specifically with one dataset)
- Multi-dataset (Encoder trained with combined dataset - except for SQuAD)

Results were tabulated for the DPR Model, as well as the traditional BM-25 model and a combination of the two.

Accuracy Metric used:

Top-K accuracy: effectiveness of model to identify correct passage out of the top k passages that have been retrieved

DPR Results

Training	Retriever	Top-20				Top-100					
		NQ	TriviaQA	WQ	TREC	SQuAD	NQ	TriviaQA	WQ	TREC	SQuAD
None	BM25	59.1	66.9	55.0	70.9	68.8	73.7	76.7	71.1	84.1	80.0
Single	DPR BM25 + DPR	78.4 76.6	79.4 79.8	73.2 71.0	79.8 85.2	63.2 71.5	85.4 83.8	85.0 84.5	81.4 80.5	89.1 92.7	77.2 81.3
Multi	DPR BM25 + DPR	79.4 78.0	78.8 79.9	75.0 74.7	89.1 88.5	51.6 66.2	86.0 83.9	84.7 84.4	82.9 82.3	93.9 94.1	67.6 78.6

Graphical comparison between DPR and BM-25:

Inferences

- DPR outperformed BM-25 in almost all datasets
- DPR+BM25 provides best results
- From observation, SQuAD performs rather poorly. This can be attributed to the fact that annotators wrote the question after seeing the passage giving BM-25 an advantage

Reader (QA System)

- Uses representation for the passages learnt from pre-trained BERT base uncased model (from CLS token)
- Makes use of cross attention that experimentally has shown to perform better for small set of top passages

 P_i : BERT representation of the ith passage \widehat{P} : vector of BERT representations for each passage W: learnable weight vectors

Reader Results

Training	Model	NQ	TriviaQA	WQ	TREC	SQuAD
Single	BM25+BERT (Lee et al., 2019)	26.5	47.1	17.7	21.3	33.2
Single	ORQA (Lee et al., 2019)	33.3	45.0	36.4	30.1	20.2
Single	HardEM (Min et al., 2019a)	28.1	50.9	_	-	-
Single	GraphRetriever (Min et al., 2019b)	34.5	56.0	36.4	-	_
Single	PathRetriever (Asai et al., 2020)	32.6	-	-	=	56.5
Single	REALMwiki (Guu et al., 2020)	39.2	1-	40.2	46.8	-
Single	REALM _{News} (Guu et al., 2020)	40.4	-	40.7	42.9	_
	BM25	32.6	52.4	29.9	24.9	38.1
Single	DPR	41.5	56.8	34.6	25.9	29.8
	BM25+DPR	39.0	57.0	35.2	28.0	36.7
Multi	DPR	41.5	56.8	42.4	49.4	24.1
Mulli	BM25+DPR	38.8	57.9	41.1	50.6	35.8

Dataset Size (in number of questions):

Dataset	Tr	ain	Dev	Test	
Natural Questions	79,168	58,880	8,757	3,610	
TriviaQA	78,785	60,413	8,837	11,313	
WebQuestions	3,417	2,474	361	2,032	
CuratedTREC	1,353	1,125	133	694	
SQuAD	78,713	70,096	8,886	10,570	

Accuracy Metric used:

Exact Match: strict metric used to measure the exactness of the retrieved answer with respect to the ground truth

Inferences

- Comparable results for large datasets (NQ and TriviaQA) between multi and single dataset training
- Clear advantage for multi-dataset training for small datasets
- DPR outperforms SOTA models in at least 4 out of 5 datasets

Conclusions:

- Answered the question posed at the start of the presentation provided an efficient dense representation for question passage pairs without pretraining
- Outperformed and potentially could replace the traditional sparse retrieval component in open-domain question answering
- As a result of improved retrieval performance, they obtained **new state-of-the-art results** on multiple open-domain question answering benchmarks.

Active

Inactive

- If any one triple is inactive in a path, whole path is inactive
- All paths must be inactive to say d-separated/independent