UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA EN INFORMÁTICA Y SISTEMAS

SILABO DE FÍSICA MODERNA

1. IDENTIFICACIÓN DE LA ASIGNATURA:

1.1 Facultad : Ingeniería.

1.2 Escuela Profesional : Ingeniería en Informática y Sistemas.

1.3 Departamento Académico : Física.1.4 Año Académico : 2016.

1.5 Año de estudios : Segundo Año.
1.6 Régimen : Semestre I.
1.7 Código de la asignatura : IIS.0332.

1.8 Créditos : 03.

1.9 Horas semanales de Clase : T: 02, P:02, TH: 04.

1.10 Profesor : Lic. Gladys Ofelia Cruz Villar

2. DESCRIPCIÓN DE LA ASIGNATURA:

La presente asignatura Física Moderna pertenece al área de formación básica, humanística y cultura general, se imparte a los alumnos del segundo año de la Escuela Profesional de Ingeniería Informática y de Sistemas, es de carácter teórico - práctico la cual tiene el propósito de brindar al estudiante, conocimientos sólidos en los campos de la física moderna, que son necesarios para la comprensión de las modernas tecnologías electrónicas, informática, computación y sistemas.Los temas a tratar en la asignatura son:

2.1 Física moderna:Introducción a la Física Cuántica. Mecánica Cuántica. Fotones y ondas electromagnéticas. La Ecuación de Schrödinger. Moléculas y Sólidos. Enlaces en Sólidos. Teoría de bandas de sólidos. Teoría de Electrones libres de metales. Conducción eléctrica en metales, aisladores y semiconductores. Dispositivos semiconductores.

3. COMPETENCIAS DE LA ASIGNATURA:

- **3.1.** Aplicar las leyes y principios de la física moderna a la solución de problemas relacionados con la informática y computación.
- **3.2.** Desarrollar en el estudiante la capacidad de observación y análisis, para ser aplicados al estudio de los fenómenos ópticos y cuánticos que ocurren en los computadores.
- **3.3.** Resolver problemas generales a partir de la modelación de ecuaciones matemáticas, validos de ser aplicados al estudio de los procesos opto cuánticos que suceden en los ordenadores.

4. ORGANIZACIÓN DE LOS CONTENIDOS:

4.1 PRIMERA UNIDAD: INTRODUCCIÓN A LA FÍSICA CUÁNTICA Y MECÁNICA CUÁNTICA.

Semana Nro	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL
1	cuerpo negro e hipótesis de Planck. - Efecto fotoeléctrico.	Comprende la hipótesis de la radiación del cuerpo negro. Comprende los efectos fotoeléctricos y de Compton y resuelve problemas.	y asertividad sus opiniones.Es tolerante con

			proceso aprendizaje.	responsabilidad en el examen.
7	Prime	r Examen.	Responde en función del	
_	- .			aporte de sus compañeros.
		armónico simple.	oscilador armónico simple.	de los temas y respeta el
	-		Comprende el modelo del	entusiasmo en la discusión
		efecto túnel.	túnel a diferentes ejercicios.	análisis. Participa con
6	-	Aplicaciones del	Aplica la teoría del efecto	Manifiesta capacidad de
		energía potencial.	barreras de potenciales.	
		de una barrera de	que atraviesan por efecto túnel	
	_		relacionados con partículas	cuanticos a la informatica.
	-	Partícula en un pozo de altura finita.	Resuelve problemas de mecánica cuántica	los distintos fenómenos cuánticos a la informática.
		Schrödinger.	Schrödinger. Resuelve problemas de	vista para la aplicación de los distintos fenómenos
5	-			Formula ideas y puntos de
			bajo condiciones de frontera.	
			relacionados con partículas	
			mecánica cuántica	
			Resuelve problemas de	
		frontera.	sólidos.	
		0 0 1	moléculas, núcleos y cuerpos	temas tratados.
	-	caja y partícula bajo		<u> </u>
		mecánica cuántica. Partícula en una	mecánica cuántica que explica los fenómenos donde	sus puntos de vista y discute con sus compañeros los
4	-	Interpretación de la		Formula preguntas, expone
4		incertidumbre.	incertidumbre.	encontradas.
	-	1	1 1	fortalezas y debilidades
		doble rejilla.	de electrones.	ideas valorando las
			doble rejilla y la interferencia	
3	-	Revisión del	Entiende el experimento de la	Recoge los aportes de la
	_	Partícula cuántica.	cuántica.	
		partículas.	características de una partícula	los integrantes dei grupo.
	_	Propiedades	electromagnética. Identifica correctamente las	mejorar las relaciones entre
		electromagnéticas.	fotones y onda	5
		1 / //	C . 1	11 12 11

4.1.1 ESTRATEGIAS DIDÁCTICAS

- > Conferencia para la teoría.
- Participación activa en clase en la solución de ejercicios.
- > Talleres grupales.

4.1.2 TIEMPO: 7 SEMANAS.

4.2 SEGUNDA UNIDAD: FÍSICA ATÓMICA.

	CONTENIDOS			
Semana Nro	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL	
8	de los gases Los primeros	Entiende los espectros de líneas de emisión para los distintos gases. Analiza los primeros modelos atómicos y sus diferencias.	por su aprendizaje y disposición por el trabajo	

13	Segundo Examen.	Responde en función del proceso aprendizaje.	Participa con responsabilidad en el
	- Aplicaciones a computación.	la sus aplicaciones a la tecnología.	informática.
	- Láseres.	diseño del láser y algunas de	
	estimuladas.	Comprende el diagrama de	1 1
	espontaneas	y entre los niveles de energía.	vista para la aplicación de
12	- Transiciones	Comprende las transiciones	Formula ideas y nuntos de
		atómicas permitidas en los espectros atómicos.	
		selección para las transiciones	
		Aprende las reglas de	
		periódico.	
	X.	comportamiento químico	
	el visible y el ra		ucsarronauos.
	- Espectros atómic	1 1	1 *
	exclusión de Pau la Tabla Periódic	· ·	compañeros. Sustenta en
11	- Principio	de Comprende el principio de	
4.4	5	valores permitidos.	
		los números cuánticos y sus	
	cuánticos.	Comprende el significado de	
	de los núme	<u> </u>	
		sica estado fundamental y las	
10	para el hidrógeno		
10	U	nda Entiende las funciones de	Trabajo interactivo en
	hidrógeno.	con el del modelo de Bohr.	
	- Modelo cuántico átomo	del hidrógeno y sus diferencias	simmudes entre enas.
	hidrógeno.	*	teorías y sus diferencias y similitudes entre ellas.
	átomo	de átomo de Bohr.	entender las distintas
		del Comprende el modelo del	_

4.2.1 ESTRATEGIAS DIDÁCTICAS

- Conferencia para la teoría.
 Participación activa en clase en la solución de ejercicios.
- > Talleres grupales.

4.1.2 TIEMPO: 6 SEMANAS.

4.3 TERCERA UNIDAD: MOLÉCULAS Y SÓLIDOS.

Semana Nro	CONTENIDOS			
	CONCEPTUAL	PROCEDIMENTAI	ACTITUDINAL	
14	 Enlaces moleculares. Estados de energía y espectros de moléculas. 	Comprende y e identifica los diferentes enlaces moleculares y sus estados de energía.		

17	- Dispositivos semiconductores Superconductividad . Tercer Examen.	superconductividad y las condiciones bajo las que ocurre.	semiconductoras de los materiales. Participa con
16	- Conducción eléctrica en metales, aislantes y semiconductores.	Comprende los conceptos de conductores, aislantes y semiconductores. Entiende el concepto de	Trabaja en grupo. Participa y reconoce la importancia de las propiedades
15	 Enlaces en sólidos. Teoría de electrones libres en metales. Teoría de bandas en sólidos. 		manifiesta capacidad de análisis. Participa con entusiasmo en la discusión de los temas y respeta el aporte de sus compañeros.

4.3.1 ESTRATEGIAS DIDACTICAS

- Conferencia para la teoría
- Participación activa en clase en la solución de ejercicios.
- > Talleres grupales

4.3.2 TIEMPO: 4 SEMANAS

5. ESTRATEGIAS METODOLÓGICAS:

5.1 Metodología:

- **5.1.1 Clases Magistrales:**El docente expone los temas en clase, en función del sílabo y los estudiantes deberán hacer una lectura previa de la literatura con fines de mayor participación y consultas en clase, al final de cada Clase se evidenciará la captación mediante el desarrollo de cuestionarios.
- **5.1.2 Ejercicios:**Permiten a los alumnos reforzar su aprendizaje adquirido. Los ejercicios serán dados en clase para su desarrollo y comprensión. Los alumnos desarrollarán ejercicios similares a los desarrollados por el docente, el cual efectúa un seguimiento de su comprensión para aclarar al máximo las dudas suscitadas.
- **5.1.3 Estudio de casos:** Se presentarán problemas específicosorientados a los principios que rigen los fenómenos cuánticos en los ordenadores para ser analizados y resueltos en forma individual o en grupo; los casos serán entregados con anticipación para su estudio.
- **5.2 Medios y materiales educativos:** Las exposiciones se harán en el aula de clase utilizando plumones, pizarra y en algunos casos ayuda audiovisual. Como recursos didácticos se usará la bibliografía recomendada, materiales de clases e información que se pueda obtener en las páginas de internet.

6. EVALUACIÓN:

6.1 Nomenclatura de los exámenes:

La evaluación de la presente asignatura se hará sobre la base del Sistema vigesimal, valorando el rendimiento de los estudiantes en los siguientes rubros:

- **6.1.1Exámenes Parciales:**Son pruebas escritas que se evaluarán en un número de tres, de las cuales se obtendrá una nota promedio (EP).
- **6.1.2Prácticas Dirigidas y de Laboratorio:**En las prácticas dirigidas el docente resolverá ejercicios tipo en función de los temas desarrollados en Teoría y los alumnos resolverán otros en los cuales podrán hacer consultas al docente y los entregarán al docente para su evaluación. Las Prácticas de Laboratorio son de tipo experimental, se desarrollarán en el laboratorio; por cada una se presenta un informe individual que representa una nota; al final se obtendrá una nota promedio de todas las prácticas (P).
- **6.1.3 Cuestionarios:**El docente explicará en cada clase teórica un tema del cual el estudiante tenga un conocimiento previo, mediante la literatura propuesta por el docente, luego de cada clase teórica el docente tomará un cuestionario basado en su exposición, y de la investigación previa de los estudiantes, obteniendo por cada unidadun promedio de las notas de los cuestionarios (C).

6.2 Requisitos para aprobar la asignatura:

6.2.1La nota promocional (NP) se obtiene mediante la siguiente fórmula:

$$NP = 0.50 * (EP) + 0.25 * (P) + 0.25 * (C)$$

- **6.2.3** El estudiante cuya nota promocional es de 10.5 o más, se considera aprobado en la asignatura.
- **6.2.4** Asistir al 80% de las clases teóricas, en caso contrario se considera el alumno desaprobado.
- **6.2.5** Los estudiantes desaprobados con nota igual o mayor a 07, tienen derecho a rendir un examen de aplazado de todo el curso, de acuerdo con las normas y reglamentos vigentes.

7. BIBLIOGRAFIA:

7.1 BASICA:

- Raymond A. Serway. John W. Jewett, Física para Ciencias e Ingeniería con Física Moderna. Volumen II, Séptima Edición, Editorial CengageLearning Editores S.A de C.V., México, 2008.
- Francis W. Sears. Mark w. Zemansky, Física Universitaria. Tomo I y II, Undécima Edición, Editorial Pearson Addison Wesley. México, 2005.
- Márquez. Introducción a la Mecánica Cuántica Origen de la Teoría Cuántica, 1era Ed., Edit. Univ. Inca Garcilaso de la Vega, 2006.

7.2 TEXTOS COMPLEMENTARIOS:

- Popper. Teoría cuántica y el cisma en física. Post scriptum a la lógica de la investigación, 4ta Ed., Edit. Tecnos. 2011.
- Binh, Optical fiber communications systems, 1era Ed. Edit. Crc press. 2010.
- Alonso, M.; Finn, E.; FISICA Vol. I, Ed. Fondo educativo interamericano S.A. 1992.

7.3 DIRECCIONES ELECTRÓNICAS:

- http://ergodic.ugr.es/jmarro/papers/RF.pdf
- <u>www.e-mta.eu/es/linea-de-**fisica-computacion-**y-**aplicaciones**-lfca/</u>
- www.tav.net/electronica-informatica/**computacion** cuantica.pdf
- www.azc.uam.mx/ingenieria/**fisica**.php