Choosing a Proof Method in Elementary Set Theory

The table below is a quick decision guide for common proof tasks in introductory set theory.

What the statement looks like	Typical goal	First-choice proof style	Sketch of the move
X = Y	Equality	Double containment (element chasing)	Show $X \subseteq Y$ and $Y \subseteq X$ by picking arbitrary x .
$X \subseteq Y$	Inclusion	Direct element-wise	Take $x \in X$; unpack definitions until $x \in Y$.
Pure \cup , \cap , $\overline{}$ identity	Simplify/equality	Algebra-of-sets manipula- tion	Use commutative, distributive, De Morgan, absorption, etc.
Lots of complements	Inclusion/equality	Element-wise with De Morgan or Boolean-algebra view	Translate $x \notin A$ type statements; or use \land, \lor, \neg identities.
"Or" in the conclusion	Inclusion	Cases or Contrapositive	Decide which branch; or turn \cup into \cap in the contrapositive.
Counting finite sets	Cardinality equality	Counting / inclusion-exclusion	Compute $ X $ and $ Y $ directly.
Indexed family $\bigcup_i A_i$	Inclusion	Element-wise with index witness	Exhibit the index i that works for the x .
Power sets / injections	Structure level	Function construction or Schröder–Bernstein	Build explicit map or injections in both directions.
Property over n	For all n	Induction	Base case $+$ assume k to prove $k+1$.
Suspicious claim	Likely false	Counter example	Provide one element that breaks the statement.