Study of Fixed Point Corner Method: Convergence and AD

https://github.com/qiyang-ustc/ADFPCM.jl

Xing-Yu Zhang

2024.1.12

content

- Background
 - The failure of of power method
 - AF Ising in triangle lattice
 - Fermionic system using fPEPS
- FPCM
 - CTMRG v.s. VUMPS
 - Biorthogonal
 - Fixed Point Corner (Transfer) Method
- AD
 - An interesting ignore
- Outlook

Contraction of 2D infinite tensor network

Partition function or norm of wave function

Two ways to contract: RG or boundary

Why boundary?

Contraction: VUMPS

Failure of power method for infinite transfer matrix

- Hermitian→ variational principle
- Non-Hermitian→power method

AF Ising in triangle lattice

fPEPS

$$\langle \hat{o} \rangle = \frac{\langle \Psi | \hat{o} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \to 0$$

Contraction: CTMRG

• Corner Transfer environment

Fixed point of Symmetric CTMRG

Fixed point of Asymmetric CTMRG

Biorthogonal and Get P

 $C_D^{(1)}$

10⁻⁷

10-11-

50

150

100

A better method to get P

$$(3) \qquad -\overline{P_L} - = -\overline{F_{LU}} - \overline{Q_L} - \Sigma_L^+ - ,$$

$$-\overline{P_L} - = -\overline{F_{DL}} - \overline{W_L} - \Sigma_L^+ - .$$

$$10$$

Fixed Point Corner Method

Biorthogonal and Get P

Different move

• In practice, we do not find that the ordering makes a noticeable difference in the performance of the algorithm.

AFIsing results

CTMRG result for AFIsing

Spectrum of C

• FPCM $\chi = 32$

When get P using

ComplexF64

or

ComplexF32

Get stuck/collapse to small χ

- CTMRG $\chi = 128$
 - The effective Block will increase during iterating!
 - But it is not stable when iterating more

An interesting ignore for AD

Without svd the backward AD is stable

VUMPS steps

Same thing to get left environment!

AD optimize iPEPS for spin system

AD optimize fPEPS for fermionic system

- With Z2 symmetry the FPCM environment prefers to get Hermitian transfer matrix
 - Spectrum of C collapses to $\chi = 1$
- With dense tensor, the norm of wave function is quite $small \sim 10^{-6}$
 - The "sign problem" in fPEPS may be intrinsic

Outlook

• Better Biorthogonal method form Yu-Kun Huang

Biorthonormal matrix-product-state analysis for the non-Hermitian transfer-matrix renormalization group in the thermodynamic limit

- CTM fixed point?
- ComplexF128? Deal with generic svd/Krylov
- Biorthogonal method for VUMPS?

Thank you for listening!

Q&A?