

Autonomous Mobile Robots (AMR)

1. Overview and History of AMR

Prof. Dr. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Contents

- Overview
- About Autonomous Mobile Robots
- Lecture Overview
- Historical Overview

Overview

About the Lecture

- Lectur3
 - Monday 8:15 9:45, Room 48-453
 - Tuesday 15:30 17:00, Room 48-453
- Exercise
 - Friday 13:45 15:15 at 11-262
- Start: 20.04.2019
- Final examination: Oral exam, written exam (CVT)
- Consultation hours: Wednesday 10.00 12:00 (Please give notification in advance)
- Course material
 - agrosy.informatik.uni-kl.de
 - Login: vorlesung
 - Password: robotik

Exercises and Exam

- Exercise sheets: Available every Friday on the website
- Discussion: Each sheet will be discussed in the following week during exercise hours
- Oral Exam (for all others)
- Appointments available through secretary
- Written Exams (for CVT)
 - will soon be published !!

Other Courses due to Topics in Robotics

- Lectures
 - Fundamentals of Robotics (WS 2020)
 - Biologically Inspired Robots (WS 2020)
- Master seminar (WS 2020)
 - Embedded Systems and Robotics
- Master project (all the year)
 - Service Robots and Assistance Systems
 - Introduction and presentation of topics
 Wednesday 22.4.2020, 13:45 room 48/379
- Bachelor- and Master-Theses

Thesis Topics

- Control architectures (iB2C)
- Sensor systems
- Simulation
- Outdoor Robots
 - Navigation, localisation, perception
 - RAVON, Backhoe-loader, tractor, Gator, rescue-vehicle, Unimog, Tandem Roller (s), autonomous bus, ASV(boot)
 - UAV
- Humanoid Robots
 - Bipedal locomotion, social interaction
 - Testleg, RoboThespian

Humanoid Robots

Personality Assessment Using Humanoid Robot

Robotics Research Lab TU Kaiserslautern, Germany

CARL The CompliAnt Robotic Leg

demonstrating its first coordinated behavior-based walking motion

Steffen Schütz, Atabak Nejadfard, Krzysztof Mianowski, Patrick Vonwirth, Christian Kötting, Karsten Berns

Autonomous Mobile Robots at RRLab

MARVIN

- Mobile Autonomous Robotic
 Vehicle for Indoor Navigation
- Research Tasks
 - Mobile vehicle platform for various service robot applications
 - Exploration of an unknown environment

Indoor platform MARVIN

ARTOS

- Autonomous Robot for Transport or Service
- Research Tasks
 - Service robot for assisted living
 - Monitoring of humans
 - Localization and mapping in household environments
 - Interaction with ambient environment

Assistant robot ARTOS

Forklift and RC-Unimog

- Research Tasks
 - Realized by students during a lab class
 - Assembly of robot hardware
 - Implementation of control software
 - Competition at the end as final presentation

CROMSCI/Crea

- Climbing Robot with Multiple
 Sucking Chambers for
 Inspection tasks
- Research Tasks
 - Basic vehicle for the inspection of huge concrete walls like dams and bridges
 - Examination of an underpressure-based adhesion system

Off-road Vehicle Applications at RRLab

Test Vehicles

Construction Machines

RAVON

- Robust Autonomous Vehicle for Outdoor Navigation
- $-2.4m \times 1.4m \times 0.8m$
- Weight: 850 kg
- Four wheel drive with independent DC motors
- Front and rear steering
- Max. speed: 7 km/h
- Floor clearance: 30 cm
- Max. slope: 100%

Outdoor robot RAVON

Gator

Research Tasks

- Offroad Navigation
- Sensor Processing
- Control Architectures

Autonomous Bus

- Min-bus with 10 places
- Navigation in pedestrian zones
- Social avoidance behavior
- Interaction with pedestrians

Excavators

- Terraforming Heavy Outdoor Robot (THOR)
- 6.6m × 2.7m × 3.9m
- Weight: 18t
- Arm with six DOF
- Max. speed: 25 km/h
- Excavator for stone quarry
- Classification and segmentation
- Strategy for excavation stones

Backhoe-loader

Research Tasks

- Autonomous excavation
- Sensor and perception concept
- Arm control
- Safety
- Trench digging

Backhoe-loader of the company John Deere

Drum Roller

- Navigation of drum Rollers
- Coordination
- Environmental perception
- Localisation
- Simulation of operational environment, vehicle and sensor system

Unimog – Simulation and real System

- Sensor system
- Mapping of rough environment
- Collision avoidance
- Navigation

Inspection and 3D Reconstruction with Drones

- Gerneration of 3D maps of fields
- Basic measurement with the help of drones or agricultural vehicles
- Collection of 3D point clouds and textures
- Filtering and image stiching
- SLAM approach for preceise map building
- 3D path planning
- Mapping of terrain

PoBo - Autonomous Ponton Boot

- Sensor system
- Simulation flood areas
- Tele-operated control
- Navigation

About Autonomous Mobile Robots

Definitions

- Autonomous mobile robot (AMR)
 - Robot able to navigate through environment autonomously while performing goal-oriented tasks
- Autonomy
 - System able to make decisions about approach to fulfill task self-dependently (semi or fully autonomous)
- Autarchy
 - Energy supply carried along on the robot

Examples of AMR Systems

HRP-4c, AIST, Japan

Underwater-Robot DFKI Bremen

Google's self driving car

GRASP Lab, University of Pennsylvania

Climber Univ. Osnabrück

Goals in AMR Research

- Autonomous navigation
- Mapping and localization in unknown terrain
- Perception of the environment
- Computer- and software architecture able to deal with hard real-time requirements
- Safety aspects (system may not be destroyed, humans may not be hurt)
- Cost-efficient, robust systems
- Development of dedicated AMR for special applications

Areas of Research in AMRs

- Modeling of AMRs: How can an AMR be modeled?
- Obstacle recognition: Where can collisions occur?
- Localization: Where am I?
- Modeling of the operational environment: How do I see my surroundings?
- Navigation: How to smartly navigate in an environment?
- Object recognition: Where is the target object?
- Control Architectures: How can control software be structured?
- Software Frameworks: How can the software developer be supported?

Classification with respect to Applications

Classification AMR-systems with respect to field of application

Application of AMRs

- Cleaning robot (Floor, Windows, Tanks etc.)
- Sewer inspection robot (cleaning, inspection, maintenance)
- Climbing robot (inspection, cleaning)
- Underwater robots (inspection, maintenance)
- Flying robots (mapping, inspection, transportation)
- Autonomous wheelchair
- Transportation robot in an industrial environment
- Hotel robot
- Museum guide
- Rescue robots
- Robot for planetary exploration missions
- Robots for forestry and agriculture

Application Example: Fire Fighting

- Developed by Tokio Fire Brigade
- Teleoperated by cable or wireless
- Suited for large scale fires
- Width 2 m
- Length 4 m
- TV cameras

Rainbow 5

Application Example: Exploration

- Developed by NASA -JPL in 2011
- Exploration of Mars surface
- Mass 900 kg
- Cameras, X-ray spectrometer
- Laser Scanner, Accelerometers

Mars rover Curiosity, JPL

Application Example: Construction

- Developed by Fujita Corp., Japan
- Teleoperated (2 km away)
- GPS
- Load measuring system
- Up to 2.75m³ per day can be excavated

Unmanned construction machine

Application Example: Underwater

- 6.1 m × 2.4 m × 2.4 m $(L \times W \times H)$
- 2.4m
- Weight: 4785 kg
- Range of operation: 10 km
- Max. operating depth: 3000 m
- Payload: 2000 kg

Swimmer

Lecture Overview

Contents of the Lecture

- Introduction
 - Definition of AMRs
 - Applications
 - Historical overview
- AMR Systems
 - Computer Architecture and Electronics
 - Close Loop Control
 - User interface / Middleware

- Sensors Systems
 - Tactile Sensors
 - Pose Measurement
 - Inertial Sensors
 - Distance Measuring Sensors
 - Vision Sensors
- Modeling
 - Modeling of Robots and Space
 - Vehicle Kinematics
 - Rigid Vehicle Dynamics
 - Trajectory Control

- Feature Extraction and Object Recognition
 - Feature Extraction
 - Separation of Connected Objects
 - Identification of Objects
- Localization
 - Local Positioning (Odometry, INS, Optical Flow)
 - Landmarks
 - Global Positioning
 - Kalman Filter

- Mapping
 - Fundamentals of map generation
 - Metrical maps
 - Grid maps
 - Sector maps
 - Topological maps
 - Hybrid maps
- Simultaneous Localization and Mapping (SLAM)

- Navigation
 - Fundamentals
 - Global path planning
 - Local path planning
- Control Architectures
 - Task-oriented Control Architectures
 - Behavior-based Control Architectures
- Applications

Literature

- Autonomous Land Vehicles
- Berns, Karsten/ Puttkamer, Ewald von
- Steps towards Service Robots
- 2009. vi, 283 pp. With 246 Fig. and 4 Tab. and 16 algorithms
 Softc.
- ISBN: 978-3-8348-0421-1
- Discover the potential of mobile service robots through the methodology and practices of basic research

Literature

- Mechanics of Terrestrial Locomotion [Zimmermann09]
- Computational Principles of Mobile Robotics [Dudek10]
- Geometric fundamentals of robotics [Selig05]
- Autonomous Land Vehicles [Berns09a]
- Theory of Applied Robotics [Jazar07]
- Robot Evolution [Rosheim94]
- Service Roboter Visionen [Schraft04a]
- Introduction to Robotics [Craig05]

Historical Overview

(see also http://cyberneticzoo.com/mobile-robot-timeline/)

ELSIE (Electro-light-sensitive Internal External)

- Developed in England by W.G. Walter in the 1950s
- Designed to follow light sources
- Basic collision avoidance available

ELSIE [Meystel91]

Shakey – Stanford Research Institute (SRI)

- Lisp, Fortran
- World representation
- Grid model, properties
- STRIPS General Problem Solver
- Position tracking by Odometry (dead reckoning)
- Simple control set (move, turn)
- Hierarchical control architecture

Shakey [Meystel91]

JPL-AMR (1970–1975)

- Early 1970s by NASA and
- JPL (Jet Propulsion Laboratory)
- Designed for planetary exploration, production automation, transport
- Semi-autonomous
- Extensive simulation system
- Laser ranging, stereo cameras, approaching sensors, tactile sensors

JPL-AMR [Meystel91]

JPL-AMR (1970-1975)

- Navigation based on gyro-compass and encoders (dead reckoning)
- On-board micro-controller with 32K Memory, off-board PDP 10
- Remote System required for world model setup, planning and selection of next control action
- Trajectory calculation based on aim
- World is divided in sectors (no-go, unknown, go)
- List of polygons describes regions
- Simple analysis of world models possible

Stanford Cart (1973–1981)

- Hans Moravec AI lab, Stanford
- Semi-autonomous
- TV camera stereo (heavy) image precessing to calculate distances
- Really slow (1m per 10 min)
- Objects are described in polar coordinates
- Tree-search to determine opt. path (concerning distance and energy)

Stanford Cart [Meystel91]

MELDOG (MEL 1979-1983)

- Mechanical Engineering Lab (MIT)
- Seeing-eye dog
- Ultrasonic sensors for collision avoidance
- Control commands: left, right, straight, stop (via wired link)
- Speed adjustment via ultrasonic sensors (1m distance is maintained)

MELDOG [Meystel91]

CMU Mobile Robot (1981–1984)

- Enhanced version of Stanford Cart
- Cylindrical shape
 - Height 1 m
 - Diameter 30 cm
- Drive with 3 DOF
- 12 on-board processors
- Hierarchical control with 3 levels (planner, initiator, sensor processing, motor control)
- Communication based on blackboards

CMU Mobile Robot [Meystel91]

KAMRO (1985-1995)

- Karlsruher Autonomer Mobiler
 Roboter
- U. Rembold, IPR Karlsruhe
- Universal robot for production automation
- Two cameras in the gripper's TCP
- On-board computer
- Extensive simulation system and planning tool
- Provided basis for whole series of AMRs

KAMRO - IPR Karlruhe

Sojourner - JPL (1994-1997)

- First robot on mars
- Teleoperated from earth
- Obstacle detection and avoidance
- Gripper to collect samples

Stanford Cart [Meystel91]

HELPMATE (1995–2000)

- Designed for use in hospitals
- Autonomous navigation in the corridors
- Navigation based on lights at the ceiling

HELPMATE

Coming Next

AMR Systems