SOLUTION NOTES - Semantics of Programming Languages 2005 - Paper 5 Question (PMS)

Part (a) is bookwork, from Chapter 4 of the notes but with the minor difference that this is an implicitly-typed syntax.

Parts (b) and (c) are inductive proofs, as in Chapter 3 of the notes. The first is most easily proved by a structural induction; the second by a rule induction using a substitution lemma.

a) Typing:

$$\frac{\Gamma + e_1 : T_1 \rightarrow T_2 \quad \Gamma + e_2 : T_1}{\Gamma + e_1 e_2 : T_2}$$

By Operational Senarties:

$$\frac{e_{i} \rightarrow e_{i}'}{e_{i}e_{k} \rightarrow e_{i}'e_{k}} \qquad (fn \times \Rightarrow e_{i})e_{k} \rightarrow \{e_{i}/x\}e_{i}$$

b) Determinary: If e > e, and e > ez then e, = ez.

Proof: Let \$\overline{\Pi(e)} = \forall e, e_1. e = e, & e = e_2 => e, = e_2 Prose de de by structural induction.

Case x. There is no e, such that $>c \rightarrow e_i$, so $\overline{\Phi}(x)$ holds trainally.

case for x > e. There is no e' such that (for x > e) -> e'

(as no rule has a conclusion of that form) so \$\overline{A}(for x > e)\$

holds travially.

case e, e_2 . Suppose $e, e_2 \rightarrow \hat{e}$, (x) $\& e, e_2 \rightarrow \hat{e}_2 \quad (xr)$

consider the last rule used in the derivation of (4). There are two cases:

- (a) e, û of the form (for x=)e) and ê, = {e2/x}e.
- (b) for some e, we have e, re, and ê, : e, e, e.

 These are disjoint, as 13e". (for x re) re", so the last dear rule used in the derivation of (xx) must correspond.

If the cases were (a), (a) then $\hat{e}_i = \{e_{ijk}\}e = \hat{e}_i$ (b), (b) then we have e_i' and e_i'' such that $e_i \rightarrow e_i'$ $\hat{e}_i' = e_i' e_i$ $e_i \rightarrow e_i''$ $\hat{e}_2 = e_i'' e_i$

Hen by $\mathfrak{Q}(e_i)$ we know $e_i'=e_i''$, so $\hat{e_i}=\hat{e_i}$

C) Type Preservation If $\Gamma + e:T$ and $e \rightarrow e'$ then $\Gamma + e':T$. Let $\Phi(e,e'): \forall \Gamma,T$. $\Gamma + e:T \Rightarrow \Gamma + e':T$ Prove $\forall e,e'. e \rightarrow e' \Rightarrow \Phi(e,e')$ by rule induction.

Case e, e, -> e, e, and e, -> e, '.

Assure [be, e, : T. The derivation must be of the form

By the induction hypothesis $\widehat{\mathfrak{g}}(e_i,e_i')$ we have $\Gamma + e_i': \Gamma_z \rightarrow \Gamma$ Hence using the type only again $\Gamma + e_i'e_i = \Gamma$.

Case (frx=)e,)e, -> {e/x}e,

Assume $\Gamma \vdash (f_n x \Rightarrow e_i) e_i : T$. The densation must be of the form Γ $\frac{\Gamma_1 \times_1 T_2 \vdash e_i : T}{\Gamma \vdash (f_n \times_1 \Rightarrow e_i) : T_i \to T}$ $\Gamma \vdash (f_n \times_2 \Rightarrow e_i) : T_i \to T$ $\Gamma \vdash e_i : T$

[+ (fn >(=) e, |: Tz→T [+ e,: Tz [+ (fn x=) e,) ez: T

Use Lenna [substitution] It [tez:Tz & [,x:Tz+e,:T

then [+ {ez/si}e,:T

to conclude \(\rightarrow \{e_{z/x}\}e_1: \T.