Singular value decomposition

A: Generalizing the spectral decomposition

Generalizing the spectral decomposition

For **symmetric** matrices (e.g. covariance matrices), we have seen:

- Results about existence of eigenvalues and eigenvectors
- Eigenvectors form an alternative basis
- Resulting spectral decomposition, used in PCA

What about **arbitrary** matrices $M \in \mathbb{R}^{p \times q}$?

Singular value decomposition (SVD)

Any $p \times q$ matrix $(p \leq q)$ has a **singular value decomposition**:

$$M = \underbrace{\begin{pmatrix} \uparrow & & \uparrow \\ u_1 & \cdots & u_p \\ \downarrow & & \downarrow \end{pmatrix}}_{p \times p \text{ matrix } U} \underbrace{\begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_p \end{pmatrix}}_{p \times p \text{ matrix } \Lambda} \underbrace{\begin{pmatrix} \longleftarrow & v_1 & \longrightarrow \\ \vdots & & \downarrow \\ \longleftarrow & v_p & \longrightarrow \end{pmatrix}}_{p \times q \text{ matrix } V^T}$$

- u_1, \ldots, u_p are orthonormal vectors in \mathbb{R}^p
- ullet v_1,\ldots,v_p are orthonormal vectors in \mathbb{R}^q
- $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0$ are singular values

Concisely approximating a matrix

Singular value decomposition of $p \times q$ matrix M (with $p \leq q$):

$$M = \begin{pmatrix} \uparrow & & \uparrow \\ u_1 & \cdots & u_p \\ \downarrow & & \downarrow \end{pmatrix} \begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_p \end{pmatrix} \begin{pmatrix} \longleftarrow & v_1 & \longrightarrow \\ & \vdots & & \\ \longleftarrow & v_p & \longrightarrow \end{pmatrix}$$

A concise approximation to M, for any $k \leq p$

$$\widehat{M} = \underbrace{\begin{pmatrix} \uparrow & \uparrow \\ u_1 \cdots u_k \\ \downarrow & \downarrow \end{pmatrix}}_{p \times k} \underbrace{\begin{pmatrix} \sigma_1 \cdots 0 \\ \vdots & \ddots & \vdots \\ 0 \cdots \sigma_k \end{pmatrix}}_{k \times k} \underbrace{\begin{pmatrix} \longleftarrow & v_1 \longrightarrow \\ \vdots & & \\ \longleftarrow & v_k \longrightarrow \end{pmatrix}}_{k \times q}$$

Optimality property: Best low-rank approximation

Let M be any $p \times q$ matrix.

Want to approximate M by a $p \times q$ matrix \widehat{M} of the form UW:

- U is $p \times k$ and W is $k \times q$
- $k \le p, q$ is of our choosing

SVD yields the best such approximation \widehat{M} , minimizing the squared error

$$\sum_{i,j}(M_{ij}-\widehat{M}_{ij})^2.$$

B: Application to topic modeling

Topic modeling

Blei (2012):

Latent semantic indexing (LSI)

Given a large corpus of n documents:

- Fix a vocabulary, say of V words.
- Bag-of-words representation for documents: each document becomes a vector of length V, with one coordinate per word.
- The corpus is an $n \times V$ matrix, one row per document.

	žej	Sol	2000	80° 4609	89768	Ş
Doc 1	4	1	1	0	2	
Doc 1 Doc 2 Doc 3	0	0	3	1	0	
Doc 3	0	1	3	0	0	
		:				

Let's find a concise approximation to this matrix M.

Latent semantic indexing, cont'd

Use SVD to get an approximation to M: for small k,

Latent semantic indexing, cont'd

$$\begin{pmatrix}
\leftarrow & \operatorname{doc} 1 \longrightarrow \\
\leftarrow & \operatorname{doc} 2 \longrightarrow \\
\leftarrow & \operatorname{doc} 3 \longrightarrow \\
\vdots \\
\leftarrow & \operatorname{doc} n \longrightarrow
\end{pmatrix}
\approx
\begin{pmatrix}
\leftarrow & \theta_1 \longrightarrow \\
\leftarrow & \theta_2 \longrightarrow \\
\leftarrow & \theta_3 \longrightarrow \\
\vdots \\
\leftarrow & \theta_n \longrightarrow
\end{pmatrix}
\begin{pmatrix}
\leftarrow & \Psi_1 \longrightarrow \\
\vdots \\
\leftarrow & \Psi_k \longrightarrow
\end{pmatrix}$$

$$\xrightarrow{n \times V \text{ matrix } M}$$

$$\xrightarrow{n \times V \text{ matrix } M}$$

$$\xrightarrow{n \times V \text{ matrix } M}$$

Think of this as a *topic model* with k topics.

- Ψ_j is a vector of length V describing topic j: coefficient Ψ_{jw} is large if word w appears often in that topic.
- Each document is a combination of topics: $\theta_{ij} = \text{weight of topic } j$ in doc i.

Document *i* originally represented by *i*th row of M, a vector in \mathbb{R}^V . Can instead use $\theta_i \in \mathbb{R}^k$, a more concise "semantic" representation.

Non-negative matrix factorization?
C: Application to recommender systems

Collaborative filtering

Details and images from Koren, Bell, Volinksy (2009).

Recommender systems: matching customers with products.

• Given: data on prior purchases/interests of users

• Recommend: further products of interest

Prototypical example: Netflix.

A successful approach: collaborative filtering.

- Model dependencies between different products, and between different users.
- Can give reasonable recommendations to a relatively new user.

Two strategies for collaborative filtering:

- Neighborhood methods
- Latent factor methods

Neighborhood methods

Latent factor methods

The matrix factorization approach

User ratings are assembled in a large matrix M:

	Starli	No.	+ 2		500kg	other.
	\ \ \(\sigma_{\infty} \)	To	, Co	(g)	ري	
User 1	5	5	2	0	0	
User 2	0	0	3	4	5	
User 3	0	0	5	0	0	
		:				

- Not rated = 0, otherwise scores 1-5.
- For *n* users and *p* movies, this has size $n \times p$.
- Most of the entries are unavailable, and we'd like to predict these.

Idea: Get best low-rank approximation of M, and use to fill in the missing entries.

User and movie factors

Best rank-k approximation is of the form $M \approx UW^T$:

$$\begin{pmatrix}
\longleftarrow \text{ user } 1 \longrightarrow \\
\longleftarrow \text{ user } 2 \longrightarrow \\
\longleftarrow \text{ user } 3 \longrightarrow \\
\vdots \\
\longleftarrow \text{ user } n \longrightarrow
\end{pmatrix}
\approx
\begin{pmatrix}
\longleftarrow u_1 \longrightarrow \\
\longleftarrow u_2 \longrightarrow \\
\longleftarrow u_3 \longrightarrow \\
\vdots \\
\longleftarrow u_n \longrightarrow
\end{pmatrix}
\begin{pmatrix}
\uparrow & \uparrow & \uparrow \\
w_1 & w_2 & \cdots & w_p \\
\downarrow & \downarrow & \downarrow
\end{pmatrix}$$

$$\xrightarrow{n \times p \text{ matrix } M}$$

$$\xrightarrow{n \times k \text{ matrix } U}$$

Thus user i's rating of movie j is approximated as

$$M_{ij} \approx u_i \cdot w_i$$

User and movie factors

$$\left(\begin{array}{c} \longleftarrow \text{ user } 1 \longrightarrow \\ \longleftarrow \text{ user } 2 \longrightarrow \\ \longleftarrow \text{ user } 3 \longrightarrow \\ \vdots \\ \longleftarrow \text{ user } n \longrightarrow \end{array} \right) \approx \left(\begin{array}{c} \longleftarrow u_1 \longrightarrow \\ \longleftarrow u_2 \longrightarrow \\ \longleftarrow u_3 \longrightarrow \\ \vdots \\ \longleftarrow u_n \longrightarrow \end{array} \right) \underbrace{ \left(\begin{array}{c} \uparrow & \uparrow & \uparrow \\ w_1 & w_2 & \cdots & w_p \\ \downarrow & \downarrow & \downarrow \end{array} \right)}_{k \times p \text{ matrix } W^T}$$

Thus user i's rating of movie j is approximated as

$$M_{ij} \approx u_i \cdot w_i$$

"Latent" representation embeds users and movies in the same k-dimensional space:

- Represent *i*th user by $u_i \in \mathbb{R}^k$
- Represent jth movie by $w_i \in \mathbb{R}^k$

Top two Netflix factors

Weighted singular value decomposition?