Statistical Inference of Hidden Markov Models on High Frequency Quote Data AMS 518

Jason Bohne

Applied Mathematics and Statistics Department Stony Brook University

November 3, 2022

Overview

- 1. Hidden Markov Models
- 2. Statistical Inference
- 3. Data Preparation
- 4. Numerical Results
- 5. Conclusion

Model Formulation

- Discrete time stochastic models characterized by unknown states $(X_1 \dots X_n)$
- X is assumed to be a Markov process, with hidden states $S_1 \dots S_k$
- States specify the underlying distribution $(Y_1 \dots Y_n)$
- Observations $(y_1 \dots y_n)$ are samples from the underlying distributions
- Fully specified by transition matrix and distribution of hidden and initial states

$$A = P(X_t | X_{t-1} = S_j)$$

$$B_j = P(y_t | X_t = S_j)$$

$$\pi = P(X_0)$$

Likelihood Function

Model likelihood function of observations conditional on parameters

$$I(\theta) = P(O|\theta)$$

• Conditional probability of transitioning between state S_i and state S_j at time t

$$\varepsilon_t(i,j) = P(X_{t+1} = S_j, X_t = S_i | O, \theta)$$

• Probability of being in state S_j can be computed by accounting for all states S_i

$$\gamma_j(t) = \sum_{i=1}^k \varepsilon_t(i,j)$$

• Utilize above probabilities to determine update procedure when optimizing likelihood

Baum-Welch Algorithm

- Maximum likelihood procedure to determine optimal estimates of A, B_i , π
- Solution to optimization will be the local maximum of likelihood function
- Computationally designed as an Expectation-Maximization algorithm
- Updates estimate each iteration based on reestimation rules

$$\hat{A} = \sum_{t=1}^{n-1} \frac{\varepsilon_t(ij)}{\gamma_t(i)}$$

$$\hat{B}_j(k) = \frac{\sum_{t=1}^{n-1} \gamma_t(j) I_{O_t=k}}{\sum_{t=1}^{n-1} \gamma_t(j)}$$

$$\hat{\pi} = \gamma_1(i)$$

Viterbi Algorithm

- Utilizes dynamic programming to determine optimal kth subsequence of hidden states
- Partitions original model likelihood into sequence of recursive functions
- Problem traced backward in time to determine optimal initial state
- Initial solution iteratively applied to solve the problem forwards in time

$$I(\hat{\theta}) = I_1(\hat{\theta}) + I_1^2(\hat{\theta}) + \ldots + I_{n-1}^n(\hat{\theta})$$

Data Preparation

- Original dataset of 1.8 million AAPL top of the book quotes for January 2020
- Top of the book quotes composed of best bid and best offer price and size
- Standard preprocessing to remove invalid observations from dataset
- Generated features relevant to limit orderboook
- Log transformations applied on raw features to lessen effect of outliers
- Transformed features aggregated into one-second bars by taking sample mean

$$F = \{BS_i, OS_i, OB_i = \frac{OS_i}{BS_i}, S_i = OP_i - BP_i\}$$

Exploratory Data Analysis

(a) Empirical Distribution of Features

Time Dependent Features on Jan 2, 2020

(b) Time Dependence

Setup

- Fit Hidden Markov model for each feature across single day of high-frequency data
- Assume each day is i.i.d. and repeat procedure over full month of data
- Sample means and standard deviations of parameter estimates are included
- P-values computed for two sample t-test under hypothesis for equal population means

Setup

- Inference problem can be solved as an optimization problem of the model likelihood
- PSG uses Baum-Welch as initial guess and solves via constrained optimization
- Hmmlearn uses Viterbi algorithm to optimize parameters given observations
- Constraints on transition matrix A and initial state distribution π

$$\sum_{i=1}^{k} \sum_{j=1}^{k} A_{ij} = 1 \ \forall A_{ij} \ge 0$$
$$\sum_{i=1}^{k} \pi_{i} = 1 \ \forall \pi_{i} \ge 0$$

PSG Results

Features	a ₁₁	a ₁₂	a ₂₁	a ₂₂	mu_1	si_1	mu ₂	si ₂
BS	0.7756	0.2243	0.0573	0.9426	1.0700	0.2195	1.4669	0.3708
OS _i	0.7998	0.2001	0.1048	0.8951	1.1015	0.2153	1.4351	0.3566
OB _i	0.8594	0.1405	0.1046	0.8953	0.6567	0.2092	1.0311	0.3188
S_i	0.8062	0.1937	0.1335	0.8664	0.0606	0.0208	0.1818	0.1225

Table: Sample Mean of PSG Parameter Estimates

Features	a ₁₁	a ₁₂	a ₂₁	a ₂₂	mu_1	si ₁	mu_2	si ₂
BS	0.2156	0.2156	0.0412	0.0412	0.0982	0.0236	0.2063	0.1694
OS _i	0.2660	0.2660	0.2182	0.2182	0.1072	0.0609	0.2886	0.1951
OB _i	0.0842	0.0842	0.0663	0.0663	0.0668	0.0219	0.1297	0.1100
Si	0.1056	0.1056	0.0988	0.0988	0.0671	0.0340	0.1334	0.0639

Table: Sample Standard Deviation of PSG Parameter Estimates

Hmmlearn Results

Features	a ₁₁	a ₁₂	a ₂₁	a ₂₂	mu_1	si ₁	mu_2	si ₂
BS_i	0.9201	0.0798	0.1131	0.8868	1.0225	0.0478	1.3749	0.1196
OS _i	0.6505	0.3494	0.3655	0.6344	1.0756	0.0332	1.262011	0.0992
OB_i	0.8429	0.1570	0.1583	0.8416	0.6687	0.0473	1.0231	0.1143
S_i	0.8857	0.1142	0.2120	0.7879	0.0606	0.0015	0.1822	0.0189

Table: Sample Mean of Hmmlearn Parameter Estimates

Features	a ₁₁	a ₁₂	a ₂₁	a ₂₂	mu_1	si ₁	mu ₂	si ₂
BS _i	0.0893	0.0893	0.1307	0.1307	0.0916	0.0180	0.2086	0.1454
OS _i	0.3884	0.3884	0.3933	0.3933	0.0845	0.0278	0.0419	0.1108
OB _i	0.1705	0.1705	0.1811	0.1811	0.0738	0.0166	0.1376	0.1170
S_i	0.0764	0.0764	0.1097	0.1097	0.0671	0.0060	0.1333	0.0225

Table: Sample Standard Deviation of Hmmlearn Parameter Estimates

Algorithm Comparison

- Would not reject hypothesis that population means are equal at 10% significance
- Supports argument that both methods parameterize underlying distribution similarly

Features	p_1	p_2		
BS _i	0.4092	0.4100		
OS _i	0.3982	0.4034		
OB_i	0.5034	0.4864		
Si	0.5124	0.7450		

Table: Average p-values for two sample t-test across implementations

Conclusion

- Both methods estimate true distribution supported with two-sample t-test
- Advantage as allows for greater flexibility in choice of algorithm to solve optimization
- Disadvantage is ambiguity in the choice of hyperparameters in model specification
- Further investigation required to determine optimal number of states for each feature
- Extension to multivariate observations composed of features mentioned

Code Repository

To access the data and scripts to reproduce examples, refer to the Github, https://github.com/jasonbohne123/HMM_LOB_Inference

References

- Case Study: Maximization of Log-Likelihood in Hidden Markov Model Stan Uryasev 2022
- Statistical Inference for Probabilistic Functions of Finite State Markov Chains
 Leonard E. Baum and Ted Petrie. The Annals of Mathematical Statistics 1966
- Error bounds for convolutional codes and an asymptotically optimum decoding algorithm Viterbi, A. *IEEE Transactions on Information Theory* 1967, https://ieeexplore.ieee.org/document/1054010
- Unsupervised learning and inference of Hidden Markov Models Hmmlearn Developers 2022, https://github.com/hmmlearn/hmmlearn
- Portfolio Safeguard, American Optimal Decisions, Inc. 2022, http://www.aorda.com/