Package 'OptHoldoutSize'

February 18, 2022

Title	Estimation of	Optimal Size i	or a Holdout So	et for Updating a	a Predictive Score
Versi	on 0.1.0.0				

Maintainer James Liley <james.liley@durham.ac.uk>

Description Predictive scores must be updated with care, because actions taken on the basis of existing risk scores causes bias in risk estimates from the updated score. A holdout set is a straightforward way to manage this problem: a proportion of the population is 'held-out' from computation of the previous risk score. This package provides tools to estimate a size for this hold-out set and associated errors. Comprehensive vignettes are included. Please see: Haidar-Wehbe S, Emerson SR, Aslett LJM, Liley J (2022) <arXiv:2202.06374> for details of methods.

License GPL (>=3)				
Encoding UTF-8				
LazyData true				
Depends R (>= 3.5.0), matrixStats, mnormt, mvtnorm, ranger, mle.tools				
Roxygen list(markdown = TRUE)				
RoxygenNote 7.1.2				
Suggests knitr, rmarkdown				
VignetteBuilder knitr				
NeedsCompilation no				
Author Sami Haidar-Wehbe [aut],				
Sam Emerson [aut] (https://orcid.org/0000-0002-8379-2781),				
Louis Aslett [aut] (https://orcid.org/0000-0003-2211-233X),				
James Liley [cre, aut] (https://orcid.org/0000-0002-0049-8238)				

R topics documented:

add_aspre_interactions																		
$aspre\ .\ .\ .\ .\ .\ .\ .$																		3
aspre_emulation																		
$aspre_k2 \ . \ . \ . \ . \ . \ .$																		4
aspre_parametric																		5
ci_cover_a_yn																		5
ci_cover_cost_a_yn																		6
ci_cover_cost_e_yn																		6
ci_cover_e_yn																		6
ci mincost																		7

	ci_ons	п
	$cov_fn \ \dots $	13
	data_example_simulation	14
	data_nextpoint_em	14
	data_nextpoint_par	15
	error_ohs_emulation	15
	exp_imp_fn	17
	gen_base_coefs	19
	gen_preds	20
	gen_resp	20
	grad_mincost_powerlaw	21
	grad_nstar_powerlaw	
	logistic	
	logit	
	model_predict	
	model_train	
	mu_fn	
	next_n	
	ohs_array	
	ohs_resample	
	optimal_holdout_size	
	optimal_holdout_size_emulation	
	oracle_pred	
	params_aspre	
	plot.optholdoutsize	
	plot.optholdoutsize_emul	
	powerlaw	
	powersolve	
	powersolve_general	
	powersolve_se	
	psi_fn	
	sens10	
	sim_random_aspre	
	_	
	. –	
dex		4 4

 ${\tt add_aspre_interactions}$

Add interaction terms corresponding to ASPRE model

Description

Add various interaction terms to X. Interaction terms correspond to those in ASPRE.

Usage

2

```
add_aspre_interactions(X)
```

Arguments

X data frame

aspre 3

Value

New data frame containing interaction terms.

Examples

```
# Load ASPRE related data
data(params_aspre)

X=sim_random_aspre(1000,params_aspre)
Xnew=add_aspre_interactions(X)

print(colnames(X))
print(colnames(Xnew))
```

aspre

Computes ASPRE score

Description

Computes ASPRE model prediction on a matrix X of covariates

Full ASPRE model from https://www.nejm.org/doi/suppl/10.1056/NEJMoa1704559/suppl_file/nejmoa1704559_append Model is to predict gestational age at PE; that is, a higher score indicates a lower PE risk, so coefficients are negated for model to predict PE risk.

Usage

aspre(X)

Arguments

Χ

matrix, assumed to be output of sim_random_aspre with parameter params=params_aspre and transformed using add_aspre_interactions

Value

vector of scores.

```
# Load ASPRE related data
data(params_aspre)

X=sim_random_aspre(1000,params_aspre)
Xnew=add_aspre_interactions(X)
aspre_score=aspre(Xnew)
plot(density(aspre_score))
```

4 aspre_k2

aspre_emulation

Emulation-based OHS estimation for ASPRE

Description

This object contains data relating to emulation-based OHS estimation for the ASPRE model. For generation, see hidden code in vignette, or in pipeline at https://github.com/jamesliley/OptHoldoutSize_pipelines

Usage

```
aspre_emulation
```

Format

An object of class list of length 4.

aspre_k2

Cost estimating function in ASPRE simulation

Description

Estimate cost at a given holdout set size in ASPRE model

Usage

```
aspre_k2(
    n,
    X,
    PRE,
    seed = NULL,
    pi_PRE = 1426/58974,
    pi_intervention = 0.1,
    alpha = 0.37
)
```

Arguments

n Holdout set size at which to estimate k_2 (cost)

X Matrix of predictors

PRE Vector indicating PRE incidence

seed Random seed; set before starting or set to NULL

pi_PRE Population prevalence of PRE if not prophylactically treated. Defaults to empir-

ical value 1426/58974

pi_intervention

Proportion of the population on which an intervention will be made. Defaults to

0.1

alpha Reduction in PRE risk with intervention. Defaults to empirical value 0.37

aspre_parametric 5

Value

Estimated cost

Examples

```
# Simulate
set.seed(32142)

N=1000; p=15
X=matrix(rnorm(N*p),N,p); PRE=rbinom(N,1,prob=logit(X%*% rnorm(p)))
aspre_k2(1000,X,PRE)
```

aspre_parametric

Parametric-based OHS estimation for ASPRE

Description

This object contains data relating to parametric-based OHS estimation for the ASPRE model. For generation, see hidden code in vignette, or in pipeline at https://github.com/jamesliley/OptHoldoutSize_pipelines

Usage

```
aspre_parametric
```

Format

An object of class list of length 4.

ci_cover_a_yn

Data for example on asymptotic confidence interval for OHS.

Description

Data for example for asymptotic confidence interval for OHS. For generation, see example.

Usage

```
ci_cover_a_yn
```

Format

An object of class matrix (inherits from array) with 11 rows and 5000 columns.

6 ci_cover_e_yn

ci_cover_cost_a_yn

Data for example on asymptotic confidence interval for min cost.

Description

Data for example for asymptotic confidence interval for min cost. For generation, see example.

Usage

```
ci_cover_cost_a_yn
```

Format

An object of class matrix (inherits from array) with 11 rows and 5000 columns.

ci_cover_cost_e_yn

Data for example on empirical confidence interval for min cost.

Description

Data for example for empirical confidence interval for min cost. For generation, see example.

Usage

```
ci_cover_cost_e_yn
```

Format

An object of class matrix (inherits from array) with 11 rows and 5000 columns.

ci_cover_e_yn

Data for example on empirical confidence interval for OHS.

Description

Data for example for empirical confidence interval for OHS. For generation, see example.

Usage

```
ci_cover_e_yn
```

Format

An object of class matrix (inherits from array) with 11 rows and 5000 columns.

ci_mincost 7

ci_mincost	Confidence interval for minimum total cost, when estimated using parametric method

Description

Compute confidence interval for cost at optimal holdout size given either a standard error covariance matrix or a set of m estimates of parameters.

This can be done either asymptotically, using a method analogous to the Fisher information matrix, or empirically (using bootstrap resampling)

If sigma (covariance matrix) is specified and method='bootstrap', a confidence interval is generated assuming a Gaussian distribution of (N,k1,theta). To estimate a confidence interval assuming a non-Gaussian distribution, simulate values under the requisite distribution and use then as parameters N,k1, theta, with sigma set to NULL.

Usage

```
ci_mincost(
   N,
   k1,
   theta,
   alpha = 0.05,
   k2form = powerlaw,
   grad_mincost = NULL,
   sigma = NULL,
   n_boot = 1000,
   seed = NULL,
   mode = "empirical",
   ...
)
```

Arguments

N	Vector of estimates of total number of samples on which the predictive score will be used/fitted, or single estimate
k1	Vector of estimates of cost value in the absence of a predictive score, or single number
theta	Matrix of estimates of parameters for function $k2$ form(n) governing expected cost to an individual sample given a predictive score fitted to n samples. Can be a matrix of dimension n x n_par, where n_par is the number of parameters of $k2$.
alpha	Construct 1-alpha confidence interval. Defaults to 0.05
k2form	Function governing expected cost to an individual sample given a predictive score fitted to n samples. Must take two arguments: n (number of samples) and theta (parameters). Defaults to a power-law form $k2(n,c(a,b,c))=a n^{-b}+c$.
grad_mincost	Function giving partial derivatives of minimum cost, taking three arguments: N, k1, and theta. Only used for asymptotic confidence intervals. F NULL, estimated empirically

8 ci_mincost

sigma	Standard error covariance matrix for (N,k1,theta), in that order. If NULL, will derive as sample covariance matrix of parameters. Must be of the correct size and positive definite.
n_boot	Number of bootstrap resamples for empirical estimate.
seed	Random seed for bootstrap resamples. Defaults to NULL.
mode	One of 'asymptotic' or 'empirical'. Defaults to 'empirical'
	Passed to function optimize

Value

A vector of length two containing lower and upper limits of confidence interval.

```
## Set seed
set.seed(574635)
## We will assume that our observations of N, k1, and theta=(a,b,c) are
\#\# distributed with mean mu_par and variance sigma_par
mu_par=c(N=10000, k1=0.35, A=3, B=1.5, C=0.1)
sigma_par=cbind(
  c(100<sup>2</sup>,
                          0,
                                   0,
  c(
       1, 0.07^2,
                        0,
                                  0,
                                            0),
        0,
                 0, 0.5^2,
                                0.05, -0.001),
  c(
                               0.4^2, -0.002),
  c(
        0,
                 0, 0.05,
                 0, -0.001, -0.002, 0.02^2)
  c(
        0.
# Firstly, we make 500 observations
par_obs=rmnorm(500,mean=mu_par,varcov=sigma_par)
# Minimum cost and asymptotic and empirical confidence intervals
mincost=optimal_holdout_size(N=mean(par_obs[,1]),k1=mean(par_obs[,2]),
  theta=colMeans(par_obs[,3:5]))$cost
\label{eq:ci_a=ci_mincost} ci_a = ci_mincost(N=par\_obs[,1],k1=par\_obs[,2],theta=par\_obs[,3:5],alpha=0.05,
  seed=12345,mode="asymptotic")
ci_e=ci_mincost(N=par_obs[,1],k1=par_obs[,2],theta=par_obs[,3:5],alpha=0.05,
  seed=12345,mode="empirical")
# Assess cover at various m
m_values=c(20,30,50,100,150,200,300,500,750,1000,1500)
ntrial=5000
alpha_trial=0.1 # use 90% confidence intervals
mincost_true=optimal_holdout_size(N=mu_par[1],k1=mu_par[2],
  theta=mu_par[3:5])$cost
\#\# The matrices indicating cover take are included in this package but take
## around 30 minutes to generate. They are generated using the code below
## (including random seeds).
data(ci_cover_cost_a_yn)
data(ci_cover_cost_e_yn)
if (!exists("ci_cover_cost_a_yn")) {
  ci_cover_cost_a_yn=matrix(NA,length(m_values),ntrial) # Entry [i,j] is 1
```

ci_mincost 9

```
# if ith asymptotic CI for jth value of m covers true mincost
  ci_cover_cost_e_yn=matrix(NA,length(m_values),ntrial) # Entry [i,j] is 1
  # if ith empirical CI for jth value of m covers true mincost
  for (i in 1:length(m_values)) {
    m=m_values[i]
    for (j in 1:ntrial) {
      # Set seed
      set.seed(j*ntrial + i + 12345)
      # Make m observations
      par_obs=rmnorm(m,mean=mu_par,varcov=sigma_par)
      ci_a=ci_mincost(N=par_obs[,1],k1=par_obs[,2],theta=par_obs[,3:5],
        alpha=alpha_trial,mode="asymptotic")
      ci_e=ci_mincost(N=par_obs[,1],k1=par_obs[,2],theta=par_obs[,3:5],
        alpha=alpha_trial,mode="empirical",n_boot=500)
      if (mincost_true>ci_a[1] & mincost_true<ci_a[2])</pre>
        ci_cover_cost_a_yn[i,j]=1 else ci_cover_cost_a_yn[i,j]=0
      if (mincost_true>ci_e[1] & mincost_true<ci_e[2])</pre>
        ci_cover_cost_e_yn[i,j]=1 else ci_cover_cost_e_yn[i,j]=0
    print(paste0("Completed for m = ",m))
save(ci_cover_cost_a_yn, file="data/ci_cover_cost_a_yn.RData")
save(ci_cover_cost_e_yn, file="data/ci_cover_cost_e_yn.RData")
}
# Cover at each m value and standard error
cover_a=rowMeans(ci_cover_cost_a_yn)
cover_e=rowMeans(ci_cover_cost_e_yn)
zse_a=2*sqrt(cover_a*(1-cover_a)/ntrial)
zse_e=2*sqrt(cover_e*(1-cover_e)/ntrial)
# Draw plot. Convergence to 1-alpha cover is evident. Cover is not far from
   alpha even at small m.
plot(0,type="n",xlim=range(m_values),ylim=c(0.7,1),xlab=expression("m"),
  ylab="Cover")
# Asymptotic cover and 2*SE pointwise envelope
polygon(c(m_values, rev(m_values)), c(cover_a+zse_a, rev(cover_a-zse_a)),
  col=rgb(0,0,0,alpha=0.3),border=NA)
lines(m_values,cover_a,col="black")
# Empirical cover and 2*SE pointwiseenvelope
polygon(c(m_values, rev(m_values)), c(cover_e+zse_e, rev(cover_e-zse_e)),
  col=rgb(0,0,1,alpha=0.3),border=NA)
lines(m_values,cover_e,col="blue")
abline(h=1-alpha_trial,col="red")
legend("bottomright",c("Asym.","Emp.",expression(paste("1-",alpha))),lty=1,
  col=c("black","blue","red"))
```

10 ci_ohs

ci_ohs	Confidence interval for optimal holdout size, when estimated using parametric method

Description

Compute confidence interval for optimal holdout size given either a standard error covariance matrix or a set of m estimates of parameters.

This can be done either asymptotically, using a method analogous to the Fisher information matrix, or empirically (using bootstrap resampling)

If sigma (covariance matrix) is specified and method='bootstrap', a confidence interval is generated assuming a Gaussian distribution of (N,k1,theta). To estimate a confidence interval assuming a non-Gaussian distribution, simulate values under the requisite distribution and use then as parameters N,k1, theta, with sigma set to NULL.

Usage

```
ci_ohs(
   N,
   k1,
   theta,
   alpha = 0.05,
   k2form = powerlaw,
   grad_nstar = NULL,
   sigma = NULL,
   n_boot = 1000,
   seed = NULL,
   mode = "empirical",
   ...
)
```

Arguments

N	Vector of estimates of total number of samples on which the predictive score will be used/fitted, or single estimate
k1	Vector of estimates of cost value in the absence of a predictive score, or single number
theta	Matrix of estimates of parameters for function $k2$ form(n) governing expected cost to an individual sample given a predictive score fitted to n samples. Can be a matrix of dimension n x n_par, where n_par is the number of parameters of $k2$.
alpha	Construct 1-alpha confidence interval. Defaults to 0.05
k2form	Function governing expected cost to an individual sample given a predictive score fitted to n samples. Must take two arguments: n (number of samples) and theta (parameters). Defaults to a power-law form $k2(n,c(a,b,c))=a n^{-b}+c$.
grad_nstar	Function giving partial derivatives of optimal holdout set, taking three arguments: N, k1, and theta. Only used for asymptotic confidence intervals. F NULL, estimated empirically

<u>ci_</u>ohs 11

sigma	Standard error covariance matrix for (N,k1,theta), in that order. If NULL, will derive as sample covariance matrix of parameters. Must be of the correct size and positive definite.
n_boot	Number of bootstrap resamples for empirical estimate.
seed	Random seed for bootstrap resamples. Defaults to NULL.
mode	One of 'asymptotic' or 'empirical'. Defaults to 'empirical'
	Passed to function optimize

Value

A vector of length two containing lower and upper limits of confidence interval.

```
## Set seed
set.seed(493825)
## We will assume that our observations of N, k1, and theta=(a,b,c) are
\#\# distributed with mean mu_par and variance sigma_par
mu_par=c(N=10000, k1=0.35, A=3, B=1.5, C=0.1)
sigma_par=cbind(
  c(100<sup>2</sup>,
                         0,
  c(
       1, 0.07^2,
                        0,
                                  0,
                                            0),
        0,
                 0, 0.5^2,
                               0.05, -0.001),
  c(
                              0.4^2, -0.002),
  c(
        0,
                 0, 0.05,
                 0, -0.001, -0.002, 0.02^2)
  c(
        0.
# Firstly, we make 500 observations
par_obs=rmnorm(500,mean=mu_par,varcov=sigma_par)
# Optimal holdout size and asymptotic and empirical confidence intervals
ohs=optimal_holdout_size(N=mean(par_obs[,1]),k1=mean(par_obs[,2]),
  theta=colMeans(par_obs[,3:5]))$size
\label{eq:ci_a=ci_ohs(N=par_obs[,1],k1=par_obs[,2],theta=par_obs[,3:5],alpha=0.05,} \\
  seed=12345,mode="asymptotic")
ci_e=ci_ohs(N=par_obs[,1],k1=par_obs[,2],theta=par_obs[,3:5],alpha=0.05,
  seed=12345,mode="empirical")
# Assess cover at various m
m_values=c(20,30,50,100,150,200,300,500,750,1000,1500)
alpha_trial=0.1 # use 90% confidence intervals
nstar_true=optimal_holdout_size(N=mu_par[1],k1=mu_par[2],
  theta=mu_par[3:5])$size
## The matrices indicating cover take are included in this package but take
## around 30 minutes to generate. They are generated using the code below
## (including random seeds).
data(ci_cover_a_yn)
data(ci_cover_e_yn)
if (!exists("ci_cover_a_yn")) {
  ci_cover_a_yn=matrix(NA,length(m_values),ntrial) # Entry [i,j] is 1 if ith
```

12 ci_ohs

```
## asymptotic CI for jth value of m covers true nstar
  ci_cover_e_yn=matrix(NA,length(m_values),ntrial) # Entry [i,j] is 1 if ith
  ## empirical CI for jth value of m covers true nstar
  for (i in 1:length(m_values)) {
    m=m_values[i]
    for (j in 1:ntrial) {
      # Set seed
      set.seed(j*ntrial + i + 12345)
      # Make m observations
      par_obs=rmnorm(m,mean=mu_par,varcov=sigma_par)
      ci_a=ci_ohs(N=par_obs[,1],k1=par_obs[,2],theta=par_obs[,3:5],
        alpha=alpha_trial,mode="asymptotic")
      ci_e=ci_ohs(N=par_obs[,1],k1=par_obs[,2],theta=par_obs[,3:5],
        alpha=alpha_trial,mode="empirical",n_boot=500)
      if (nstar_true>ci_a[1] & nstar_true<ci_a[2]) ci_cover_a_yn[i,j]=1 else</pre>
         ci_cover_a_yn[i,j]=0
      if (nstar_true>ci_e[1] & nstar_true<ci_e[2]) ci_cover_e_yn[i,j]=1 else</pre>
         ci_cover_e_yn[i,j]=0
    print(paste0("Completed for m = ",m))
save(ci_cover_a_yn,file="data/ci_cover_a_yn.RData")
save(ci_cover_e_yn,file="data/ci_cover_e_yn.RData")
}
# Cover at each m value and standard error
cover_a=rowMeans(ci_cover_a_yn)
cover_e=rowMeans(ci_cover_e_yn)
zse_a=2*sqrt(cover_a*(1-cover_a)/ntrial)
zse_e=2*sqrt(cover_e*(1-cover_e)/ntrial)
# Draw plot. Convergence to 1-alpha cover is evident. Cover is not far from
   alpha even at small m.
plot(0,type="n",xlim=range(m_values),ylim=c(0.7,1),xlab=expression("m"),
  ylab="Cover")
# Asymptotic cover and 2*SE pointwise envelope
polygon(c(m_values, rev(m_values)), c(cover_a+zse_a, rev(cover_a-zse_a)),
  col=rgb(0,0,0,alpha=0.3),border=NA)
lines(m_values,cover_a,col="black")
# Empirical cover and 2*SE pointwiseenvelope
polygon(c(m_values, rev(m_values)), c(cover_e+zse_e, rev(cover_e-zse_e)),
  col=rgb(0,0,1,alpha=0.3),border=NA)
lines(m_values,cover_e,col="blue")
abline(h=1-alpha_trial,col="red")
legend("bottomright",c("Asym.","Emp.",expression(paste("1-",alpha))),lty=1,
  col=c("black","blue","red"))
```

cov_fn 13

cov_fn

Covariance function for Gaussian process

Description

Radial kernel covariance function for Gaussian process.

Used for a Gaussian process GP(m,k(.,.)), an instance X of which has covariance k(n,n') between X(n) and X(n').

Covariance function is parametrised by var_u (general variance) and k_width (kernel width)

Usage

```
cov_fn(n, ndash, var_u, k_width)
```

Arguments

n Argument 1: kernel is a function of ndash-n ndash Argument 2: kernel is a function of ndash-n

var_u Global variance k_width Kernel width

Value

Covariance value

```
# We will sample from Gaussian processes
# GP(0,k(.,.)=cov_fn(.,.;var_u,theta))
\# at these values of n
nvals=seq(1,300,length=100)
# We will consider two theta values
kw1=10; kw2=30
# We will consider two var_u values
var1=1; var2=10
# Covariance matrices
cov11=outer(nvals,nvals,function(n,ndash) cov_fn(n,ndash,var_u=var1,
  k_width=kw1))
cov12=outer(nvals,nvals,function(n,ndash) cov_fn(n,ndash,var_u=var1,
  k_width=kw2))
\verb|cov21=| outer(nvals,nvals,function(n,ndash)| | cov_fn(n,ndash,var\_u=var2,
  k_width=kw1))
cov22=outer(nvals,nvals,function(n,ndash) cov_fn(n,ndash,var_u=var2,
  k_width=kw2))
# Dampen slightly to ensure positive definiteness
damp=1e-5
cov11=(1-damp)*(1-diag(length(nvals)))*cov11 + diag(length(nvals))*cov11
cov12=(1-damp)*(1-diag(length(nvals)))*cov12 + diag(length(nvals))*cov12
```

14 data_nextpoint_em

```
cov21=(1-damp)*(1-diag(length(nvals)))*cov21 + diag(length(nvals))*cov21
cov22=(1-damp)*(1-diag(length(nvals)))*cov22 + diag(length(nvals))*cov22
# Sample
set.seed(35243)
y11=rmnorm(1, mean=0, varcov=cov11)
y12=rmnorm(1,mean=0,varcov=cov12)
y21=rmnorm(1,mean=0,varcov=cov21)
y22=rmnorm(1,mean=0,varcov=cov22)
# Plot
rr=max(abs(c(y11,y12,y21,y22)))
plot(0,xlim=range(nvals),ylim=c(-rr,rr+10),xlab="n",
        ylab=expression("GP(0,cov_fn(.,.;var_u,theta))"))
lines(nvals,y11,lty=1,col="black")
lines(nvals,y12,lty=2,col="black")
lines(nvals,y21,lty=1,col="red")
lines(nvals,y22,lty=2,col="red")
legend("topright", c("k\_width=10, var\_u=1", "k\_width=30, var\_u=1", "k_width=30, var_u=1", "k_width=30, var_u=1", "k_width=30, var_u=1", "k_width=30, var_u=1", "k_width=30, var_u=1", "k_width=30, var_u=1", "k_width=30, var_u=1",
        "k_width=10, var_u=10", "k_width=30, var_u=10"),
        lty=c(1,2,1,2),col=c("black","black","red","red"))
```

data_example_simulation

Data for vignette showing general example

Description

Data for general vignette. For generation, see hidden code in vignette, or in pipeline at https://github.com/jamesliley/OptF

Usage

```
data_example_simulation
```

Format

An object of class list of length 4.

data_nextpoint_em

Data for 'next point' demonstration vignette on algorithm comparison using emulation algorithm

Description

Data containing 'next point selected' information for emulation algorithm in vignette comparing emulation and parametric algorithms. For generation, see hidden code in vignette, or in pipeline at https://github.com/jamesliley/OptHoldoutSize_pipelines

Usage

```
data_nextpoint_em
```

data_nextpoint_par 15

Format

An object of class list of length 6.

data_nextpoint_par

Data for 'next point' demonstration vignette on algorithm comparison using parametric algorithm

Description

Data containing 'next point selected' information for parametric algorithm in vignette comparing emulation and parametric algorithms. For generation, see hidden code in vignette, or in pipeline at https://github.com/jamesliley/OptHoldoutSize_pipelines

Usage

```
data_nextpoint_par
```

Format

An object of class list of length 6.

error_ohs_emulation

Measure of error for emulation-based OHS emulation

Description

Measure of error for semiparametric (emulation) based estimation of optimal holdout set sizes.

Returns a set of values of n for which a 1-alpha credible interval for cost at includes a lower value than the cost at the estimated optimal holdout size.

This is not a confidence interval, credible interval or credible set for the OHS, and is prone to misinterpretation.

Usage

```
error_ohs_emulation(
   nset,
   k2,
   var_k2,
   N,
   k1,
   alpha = 0.1,
   var_u = 1e+07,
   k_width = 5000,
   k2form = powerlaw,
   theta = powersolve(nset, k2, y_var = var_k2)$par,
   npoll = 1000
)
```

16 error_ohs_emulation

Arguments

nset	Training set sizes for which k2() has been evaluated
k2	Estimated k2() at training set sizes nset
var_k2	Variance of error in k2() estimate at each training set size.
N	Total number of samples on which the model will be fitted/used
k1	Mean cost per sample with no predictive score in place
alpha	Use 1-alpha credible interval. Defaults to 0.1.
var_u	Marginal variance for Gaussian process kernel. Defaults to 1e7
k_width	Kernel width for Gaussian process kernel. Defaults to 5000
k2form	Functional form governing expected cost per sample given sample size. Should take two parameters: n (sample size) and theta (parameters). Defaults to function powerlaw.
theta	Current estimates of parameter values for k2form. Defaults to the MLE power-law solution corresponding to n,k2, and var_k2.
npol1	Check npoll equally spaced values between 1 and N for minimum. If NULL, check all values (this can be slow). Defaults to 1000

Value

Vector of values n for which 1-alpha credible interval for cost 1(n) at n contains mean posterior cost at estimated optimal holdout size.

```
# Set seed
set.seed(57365)
# Parameters
N=100000;
k1=0.3
A=8000; B=1.5; C=0.15; theta=c(A,B,C)
# True mean function
k2\_true=function(n) powerlaw(n,theta)
# True OHS
nx=1:N
ohs_true=nx[which.min(k1*nx + k2_true(nx)*(N-nx))]
# Values of n for which cost has been estimated
np=50 # this many points
nset=round(runif(np,1,N))
var_k2=runif(np,0.001,0.0015)
\label{lem:k2=rnorm(np,mean=k2_true(nset),sd=sqrt(var_k2))} k2 = rnorm(np,mean=k2\_true(nset),sd=sqrt(var_k2))
# Compute OHS
res1 = optimal\_holdout\_size\_emulation(nset,k2,var\_k2,N,k1)
# Error estimates
ex=error_ohs_emulation(nset,k2,var_k2,N,k1)
# Plot
```

exp_imp_fn 17

exp_imp_fn

Expected improvement

Description

Expected improvement

Essentially chooses the next point to add to n, called n^* , in order to minimise the expectation of $cost(n^*)$.

Usage

```
exp_imp_fn(
    n,
    nset,
    k2,
    var_k2,
    N,
    k1,
    var_u = 1e+07,
    k_width = 5000,
    k2form = powerlaw,
    theta = powersolve(nset, k2, y_var = var_k2)$par
)
```

Arguments

n	Set of training set sizes to evaluate
nset	Training set sizes for which a cost has been evaluated
k2	Estimates of k2() at training set sizes nset
var_k2	Variance of error in k2() estimates at each training set size.
N	Total number of samples on which the model will be fitted/used
k1	Mean vost per sample with no predictive score in place
var_u	Marginal variance for Gaussian process kernel. Defaults to 1e7
k_width	Kernel width for Gaussian process kernel. Defaults to 5000

18 exp_imp_fn

k2form Functional form governing expected cost per sample given sample size. Should

take two parameters: n (sample size) and theta (parameters). Defaults to func-

tion powerlaw.

theta Current estimates of parameter values for k2form. Defaults to the MLE power-

law solution corresponding to n,k2, and var_k2.

Value

Value of expected improvement at values n

```
# Set seed.
set.seed(24015)
# Kernel width and Gaussian process variance
kw0=5000
vu0=1e7
# Include legend on plots or not; inclusion can obscure plot elements on small figures
inc_legend=FALSE
# Suppose we have population size and cost-per-sample without a risk score as follows
N=100000
k1=0.4
# Suppose that true values of a,b,c are given by
theta_true=c(10000,1.2,0.2)
theta_lower=c(1,0.5,0.1) \# lower bounds for estimating theta
theta_upper=c(20000,2,0.5) \# upper bounds for estimating theta
# We start with five random holdout set sizes (nset0),
\# with corresponding cost-per-individual estimates k2_0 derived
# with various errors var_k2_0
nstart=4
vwmin=0.001; vwmax=0.005
nset0=round(runif(nstart,1000,N/2))
var_k2_0=runif(nstart,vwmin,vwmax)
k2_0=rnorm(nstart,mean=powerlaw(nset0,theta_true),sd=sqrt(var_k2_0))
# We estimate theta from these three points
theta0=powersolve(nset0,k2\_0,y\_var=var\_k2\_0,lower=theta\_lower,upper=theta\_upper,lower=theta\_lower,upper=theta\_upper,lower=theta\_upper,lower=theta\_upper,lower=theta\_upper,lower=theta\_upper,lower=theta\_upper=theta\_upper,lower=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_upper=theta\_up
     init=theta_true)$par
\mbox{\tt\#} We will estimate the posterior at these values of n
n=seq(1000,N,length=1000)
# Mean and variance
p_mu=mu_fn(n,nset=nset0,k2=k2\_0,var_k2=var_k2\_0,\ N=N,k1=k1,theta=theta0,k\_width=kw0,
     var u=vu0)
p_var=psi_fn(n,nset=nset0,N=N,var_k2 = var_k2_0,k_width=kw0,var_u=vu0)
# Plot
yrange=c(-30000,100000)
```

gen_base_coefs 19

```
plot(0,xlim=range(n),ylim=yrange,type="n",
  xlab="Training/holdout set size",
  ylab="Total cost (= num. cases)")
lines(n,p_mu,col="blue")
lines(n,p_mu - 3*sqrt(p_var),col="red")
lines(n,p_mu + 3*sqrt(p_var),col="red")
points(nset0,k1*nset0 + k2_0*(N-nset0),pch=16,col="purple")
lines(n,k1*n + powerlaw(n,theta0)*(N-n),lty=2)
lines(n,k1*n + powerlaw(n,theta_true)*(N-n),lty=3,lwd=3)
if (inc_legend) {
  legend("topright",
    c(expression(mu(n)),
      expression(mu(n) %+-% 3*sqrt(psi(n))),
      "prior(n)",
      "True",
      "d"),
    lty=c(1,1,2,3,NA),lwd=c(1,1,1,3,NA),pch=c(NA,NA,NA,NA,16),pt.cex=c(NA,NA,NA,NA,1),
    col=c("blue","red","black","purple"),bg="white")
}
## Add line corresponding to recommended new point
exp_imp_em \leftarrow exp_imp_fn(n,nset=nset0,k2=k2_0,var_k2 = var_k2_0, N=N,k1=k1,
  theta=theta0,k_width=kw0,var_u=vu0)
abline(v=n[which.max(exp_imp_em)])
```

gen_base_coefs

Coefficients for imperfect risk score

Description

Generate coefficients corresponding to an imperfect risk score, interpretable as 'baseline' behaviour in the absence of a risk score

Usage

```
gen_base_coefs(coefs, noise = TRUE, num_vars = 2, max_base_powers = 1)
```

Arguments

coefs Original coefficients

noise Set to TRUE to add Gaussian noise to coefficients

num_vars Number of variables at hand for baseline calculation

max_base_powers

If >1, return a matrix of coefficients, with successively more noise

Value

Vector of coefficients

```
# See examples for model_predict
```

20 gen_resp

gen_preds	Generate matrix of random observations
	·

Description

Generate matrix of random observations. Observations are unit Gaussian-distributed.

Usage

```
gen_preds(nobs, npreds, ninters = 0)
```

Arguments

nobs Number of observations (samples)

npreds Number of predictors

ninters Number of interaction terms, default 0. Up to npreds*(npreds-1)/2

Value

Data frame of observations

Examples

See examples for model_predict

gen_resp	Generate response
90 oop	o chierence response

Description

Generate random outcome (response) according to a ground-truth logistic model

Usage

```
gen_resp(X, coefs = NA, coefs_sd = 1, retprobs = FALSE)
```

Arguments

Χ	Matrix of observations	

coefs Vector of coefficients for logistic model. If NA, random coefficients are gener-

ated. Defaults to NA

coefs_sd If random coefficients are generated, use this SD (mean 0)

retprobs If TRUE, return class probability; otherwise, return classes. Defaults to FALSE

Value

Vector of length as first dimension of dim(X) with outcome classes (if retprobs==FALSE) or outcome probabilities (if retprobs==TRUE)

```
# See examples for model_predict
```

```
grad_mincost_powerlaw Gradient of minimum cost (power law)
```

Description

Compute gradient of minimum cost assuming a power-law form of k2

Assumes cost function is l(n;k1,N,theta) = k1 n + k2(n;theta) (N-n) with $k2(n;theta) = k2(n;a,b,c) = a n^{-(b)} + c$

Usage

```
grad_mincost_powerlaw(N, k1, theta)
```

Arguments

N Total number of samples on which the predictive score will be used/fitted. Can

be a vector.

k1 Cost value in the absence of a predictive score. Can be a vector.

theta Parameters for function k2(n) governing expected cost to an individual sample

given a predictive score fitted to n samples. Can be a matrix of dimension n x

n_par, where n_par is the number of parameters of k2.

Value

List/data frame of dimension (number of evaluations) x 5 containing partial derivatives of nstar (optimal holdout size) with respect to N, k1, a, b, c respectively.

Description

Compute gradient of optimal holdout size assuming a power-law form of k2

Assumes cost function is l(n;k1,N,theta) = k1 n + k2(n;theta) (N-n) with $k2(n;theta) = k2(n;a,b,c) = a n^{-1}(-b) + c$

Usage

```
grad_nstar_powerlaw(N, k1, theta)
```

Arguments

N Total number of samples on which the predictive score will be used/fitted. Can

be a vector.

k1 Cost value in the absence of a predictive score. Can be a vector.

theta Parameters for function k2(n) governing expected cost to an individual sample

given a predictive score fitted to n samples. Can be a matrix of dimension n x

n_par, where n_par is the number of parameters of k2.

Value

List/data frame of dimension (number of evaluations) x 5 containing partial derivatives of nstar (optimal holdout size) with respect to N, k1, a, b, c respectively.

logistic 23

logistic

Logistic

Description

```
Logistic function: -\log((1/x)-1)
```

Usage

```
logistic(x)
```

Arguments

Х

argument

Value

```
value of logit(x); na if x is outside (0,1)
```

Examples

```
# Plot
x=seq(0,1,length=100)
plot(x,logistic(x),type="1")

# Logit and logistic are inverses
x=seq(-5,5,length=1000)
plot(x,logistic(logit(x)),type="1")
```

logit

Logit

Description

```
Logit function: 1/(1+exp(-x))
```

Usage

```
logit(x)
```

Arguments

Х

argument

Value

```
value of logit(x)
```

```
# Plot
x=seq(-5,5,length=1000)
plot(x,logit(x),type="1")
```

24 model_predict

model_predict

Make predictions

Description

Make predictions according to a given model

Usage

```
model_predict(
  data_test,
  trained_model,
  return_type,
  threshold = NULL,
  model_family = NULL,
  ...
)
```

Arguments

Value

Vector of predictions

```
## Set seed for reproducibility
seed=1234
set.seed(seed)
# Initialisation of patient data
n_iter <- 500
                       # Number of point estimates to be calculated
nobs <- 5000
                       # Number of observations, i.e patients
npreds <- 7
                       # Number of predictors
# Model family
family="log_reg"
\# Baseline behaviour is an oracle Bayes-optimal predictor on only one variable
max_base_powers <- 1</pre>
base_vars=1
# Check the following holdout size fractions
frac_ho = 0.1
```

model_train 25

```
# Set ground truth coefficients, and the accuracy at baseline
coefs_general <- rnorm(npreds,sd=1/sqrt(npreds))</pre>
coefs_base <- gen_base_coefs(coefs_general, max_base_powers = max_base_powers)</pre>
# Generate dataset
X <- gen_preds(nobs, npreds)</pre>
# Generate labels
newdata <- gen_resp(X, coefs = coefs_general)</pre>
Y <- newdata$classes
# Combined dataset
pat_data <- cbind(X, Y)</pre>
pat_data$Y = factor(pat_data$Y)
# For each holdout size, split data into intervention and holdout set
mask <- split_data(pat_data, frac_ho)</pre>
data_interv <- pat_data[!mask,]</pre>
data_hold <- pat_data[mask,]</pre>
# Train model
trained_model <- model_train(data_hold, model_family = family)</pre>
thresh <- 0.5
# Make predictions
class_pred <- model_predict(data_interv, trained_model,</pre>
                             return_type = "class",
                             threshold = 0.5, model_family = family)
# Simulate baseline predictions
base_pred <- oracle_pred(data_hold,coefs_base[base_vars, ], num_vars = base_vars)</pre>
# Contingency table for model-based predictor (on intervention set)
print(table(class_pred,data_interv$Y))
# Contingency table for model-based predictor (on holdout set)
print(table(base_pred,data_hold$Y))
```

model_train

Train model (wrapper)

Description

Train model using either a GLM or a random forest

Usage

```
model_train(train_data, model_family = "log_reg", ...)
```

26 mu_fn

Arguments

```
train_data Data to use for training; assumed to have one binary column called Y
model_family Either 'log_reg' for logistic regression or 'rand_forest' for random forest
... Passed to function glm() or ranger()
```

Value

Fitted model of type GLM or Ranger

Examples

```
# See examples for model_predict
```

mu_fn

Updating function for mean.

Description

Posterior mean for emulator given points n.

Usage

```
mu_fn(
    n,
    nset,
    k2,
    var_k2,
    N,
    k1,
    var_u = 1e+07,
    k_width = 5000,
    k2form = powerlaw,
    theta = powersolve(nset, k2, y_var = var_k2)$par
)
```

Arguments

n	Set of training set sizes to evaluate
• •	
nset	Training set sizes for which k2() has been evaluated
k2	Estimated k2() values at training set sizes nset
var_k2	Variance of error in k2() estimate at each training set size.
N	Total number of samples on which the model will be fitted/used
k1	Mean cost per sample with no predictive score in place
var_u Marginal variance for Gaussian process kernel. Defaults to 1e7	
k_width Kernel width for Gaussian process kernel. Defaults to 5000	
k2form	Functional form governing expected cost per sample given sample size. Should take two parameters: n (sample size) and theta (parameters). Defaults to function powerlaw.
theta	Current estimates of parameter values for k2form. Defaults to the MLE power-law solution corresponding to n,k2, and var_k2.

mu_fn 27

Value

Vector Mu of same length of n where Mu_i=mean(posterior(cost(n_i)))

```
# Suppose we have population size and cost-per-sample without a risk score as follows
N=100000
k1=0.4
# Kernel width and variance for GP
k width=5000
var_u=8000000
# Suppose we begin with k2() estimates at n-values
nset=c(10000,20000,30000)
# with cost-per-individual estimates
# (note that since empirical k2(n) is non-monotonic, it cannot be perfectly
# approximated with a power-law function)
k2=c(0.35,0.26,0.28)
# and associated error on those estimates
var_k2=c(0.02^2,0.01^2,0.03^2)
# We estimate theta from these three points
theta=powersolve(nset,k2,y_var=var_k2)$par
\# We will estimate the posterior at these values of n
n=seq(1000,50000,length=1000)
# Mean and variance
p_mu=mu_fn(n,nset=nset,k2=k2,var_k2 = var_k2, N=N,k1=k1,theta=theta,
           k_width=k_width,var_u=var_u)
p_var=psi_fn(n,nset=nset,N=N,var_k2 = var_k2,k_width=k_width,var_u=var_u)
plot(0,xlim=range(n),ylim=c(20000,60000),type="n",
     xlab="Training/holdout set size",
     ylab="Total cost (= num. cases)")
lines(n,p_mu,col="blue")
lines(n,p_mu - 3*sqrt(p_var),col="red")
lines(n,p_mu + 3*sqrt(p_var),col="red")
points(nset,k1*nset + k2*(N-nset),pch=16,col="purple")
lines(n,k1*n + powerlaw(n,theta)*(N-n),lty=2)
segments(nset,k1*nset + (k2 - 3*sqrt(var_k2))*(N-nset),
         nset,k1*nset + (k2 + 3*sqrt(var_k2))*(N-nset))
legend("topright",
       c(expression(mu(n)),
         expression(mu(n) %+-% 3*sqrt(psi(n))),
         "prior(n)",
         "d",
         "3SD(d|n)"),
       lty=c(1,1,2,NA,NA),lwd=c(1,1,1,NA,NA),pch=c(NA,NA,NA,16,124),
       pt.cex=c(NA,NA,NA,1,1),
       col=c("blue","red","black","purple","black"),bg="white")
```

28 next_n

next_n

Finds best value of n to sample next

Description

Recommends a value of n at which to next evaluate individual cost in order to most accurately estimate optimal holdout size. Currently only for use with a power-law parametrisation of k2.

Approximately finds a set of n points which, given estimates of cost, minimise width of 95% confidence interval around OHS. Uses a greedy algorithm, so various parameters can be learned along the way.

Given existing training set size/k2 estimates nset and k2, with var_k2[i]=variance(k2[i]), finds, for each candidate point n[i], the median width of the 90% confidence interval for OHS if

```
nset <-c(nset,n[i]) var_k2 <-c(var_k2,mean(var_k2)) k2 <-c(k2,rnorm(powerlaw(n[i],theta),variance=nset.extrapped)</pre>
```

Usage

```
next_n(
    n,
    nset,
    k2,
    N,
    k1,
    nmed = 100,
    var_k2 = rep(1, length(nset)),
    mode = "asymptotic",
    ...
)
```

Arguments

n	Set of training set sizes to evaluate
nset	Training set sizes for which a loss has been evaluated
k2	Estimated k2() at training set sizes nset
N	Total number of samples on which the model will be fitted/used
k1	Mean loss per sample with no predictive score in place
nmed	number of times to re-evaluate d and confidence interval width.
var_k2	Variance of error in k2() estimate at each training set size.
mode	Mode for calculating OHS CI (passed to ci_ohs): 'asymptotic' or 'empirical'
	Passed to powersolve and powersolve_se

Value

Vector out of same length as n, where out[i] is the expected width of the 95% confidence interval for OHS should n be added to nset.

next_n 29

```
# Set seed.
set.seed(24015)
# Kernel width and Gaussian process variance
kw0=5000
vu0=1e7
# Include legend on plots or not; inclusion can obscure plot elements on small figures
inc_legend=FALSE
# Suppose we have population size and cost-per-sample without a risk score as follows
N=100000
k1=0.4
# Suppose that true values of a,b,c are given by
theta_true=c(10000,1.2,0.2)
theta_lower=c(1,0.5,0.1) \# lower bounds for estimating theta
theta_upper=c(20000,2,0.5) # upper bounds for estimating theta
# We start with five random holdout set sizes (nset0),
# with corresponding cost-per-individual estimates k2_0 derived
# with various errors var_k2_0
nstart=10
vwmin=0.001; vwmax=0.005
nset0=round(runif(nstart,1000,N/2))
var_k2_0=runif(nstart,vwmin,vwmax)
k2_0=rnorm(nstart,mean=powerlaw(nset0,theta_true),sd=sqrt(var_k2_0))
# We estimate theta from these three points
theta 0 = powersolve (nset 0, k2\_0, y\_var=var\_k2\_0, lower=theta\_lower, upper=theta\_upper, init=theta\_true) \\ \$par(k2\_0, k2\_0, k2\_0
\mbox{\tt\#} We will estimate the posterior at these values of n
n=seq(1000, N, length=1000)
# Mean and variance
p\_mu=mu\_fn(n,nset=nset0,k2=k2\_0,var\_k2=var\_k2\_0,\ N=N,k1=k1,theta=theta0,k\_width=kw0,var\_u=vu0)
p_var=psi_fn(n,nset=nset0,N=N,var_k2 = var_k2_0,k_width=kw0,var_u=vu0)
# Plot
yrange=c(-30000,100000)
plot(0,xlim=range(n),ylim=yrange,type="n",
    xlab="Training/holdout set size",
     ylab="Total cost (= num. cases)")
lines(n,p_mu,col="blue")
lines(n,p_mu - 3*sqrt(p_var),col="red")
lines(n,p_mu + 3*sqrt(p_var),col="red")
points(nset0,k1*nset0 + k2_0*(N-nset0),pch=16,col="purple")
lines(n,k1*n + powerlaw(n,theta0)*(N-n),lty=2)
lines(n,k1*n + powerlaw(n,theta_true)*(N-n),lty=3,lwd=3)
if (inc_legend) {
     legend("topright",
         c(expression(mu(n)),
              expression(mu(n) %+-% 3*sqrt(psi(n))),
```

ohs_resample

ohs_array

Data for vignette on algorithm comparison

Description

This object contains data relating to the vignette comparing emulation and parametric algorithms. For generation, see hidden code in vignette, or in pipeline at https://github.com/jamesliley/OptHoldoutSize_pipelines

Usage

ohs_array

Format

An object of class array of dimension 200 x 200 x 2 x 2 x 2.

ohs_resample

Data for vignette on algorithm comparison

Description

This object contains data relating to the first plot in the vignette comparing emulation and parametric algorithms. For generation, see hidden code in vignette, or in pipeline at https://github.com/jamesliley/OptHoldoutSize_p

Usage

```
ohs_resample
```

Format

An object of class matrix (inherits from array) with 1000 rows and 4 columns.

optimal_holdout_size 31

Description

Compute optimal holdout size for updating a predictive score given appropriate parameters of cost function

Evaluates empirical minimisation of cost function l(n;k1,N,theta) = k1 n + k2form(n;theta) (N-n).

The function will return Inf if no minimum exists. It does not check if the minimum is unique, but this can be guaranteed using the assumptions for theorem 1 in the manuscript.

This calls the function optimize from package stats.

Usage

```
optimal_holdout_size(
   N,
   k1,
   theta,
   k2form = powerlaw,
   round_result = FALSE,
   ...
)
```

Arguments

N	lotal number of samples on which the predictive score will be used/fitted. Can be a vector.
k1	Cost value in the absence of a predictive score. Can be a vector.

theta Parameters for function k2form(n) governing expected cost to an individual

sample given a predictive score fitted to n samples. Can be a matrix of dimension

n x n_par, where n_par is the number of parameters of k2.

k2form Function governing expected cost to an individual sample given a predictive

score fitted to n samples. Must take two arguments: n (number of samples) and theta (parameters). Defaults to a power-law form powerlaw(n,c(a,b,c))=a n^{-} (-

b) + c.

round_result Set to TRUE to solve over integral sizes

... Passed to function optimize

Value

List/data frame of dimension (number of evaluations) $x (4 + n_par)$ containing input data and results. Columns size and cost are optimal holdout size and cost at this size respectively. Parameters N, k1, theta.1, theta.2,...,theta.n_par are input data.

Examples

```
# Evaluate optimal holdout set size for a range of values of k1 and two values of
# N, some of which lead to infinite values
N1=10000; N2=12000
k1=seq(0.1,0.5,length=20)
A=3; B=1.5; C=0.15; theta=c(A,B,C)
res1=optimal_holdout_size(N1,k1,theta)
res2=optimal_holdout_size(N2,k1,theta)
oldpar=par(mfrow=c(1,2))
plot(0,type="n",ylim=c(0,500),xlim=range(res1$k1),xlab=expression("k"[1]),
  ylab="Optimal holdout set size")
  lines(res1$k1,res1$size,col="black")
  lines(res2$k1,res2$size,col="red")
  legend("topright",as.character(c(N1,N2)),title="N:",col=c("black","red"),lty=1)
plot(0,type="n",ylim=c(1500,1600),xlim=range(res1$k1),xlab=expression("k"[1]),
  ylab="Minimum cost")
  lines(res1$k1,res1$cost,col="black")
  lines(res2$k1,res2$cost,col="red")
  legend("topleft",as.character(c(N1,N2)),title="N:",col=c("black","red"),lty=1)
par(oldpar)
```

optimal_holdout_size_emulation

Estimate optimal holdout size under semi-parametric assumptions

Description

Compute optimal holdout size for updating a predictive score given a set of training set sizes and estimates of mean cost per sample at those training set sizes.

This is essentially a wrapper for function mu_fn().

Usage

```
optimal_holdout_size_emulation(
   nset,
   k2,
   var_k2,
   N,
   k1,
   var_u = 1e+07,
   k_width = 5000,
   k2form = powerlaw,
   theta = powersolve_general(nset, k2, y_var = var_k2)$par,
   npoll = 1000,
   ...
)
```

oracle_pred 33

Arguments

nset	Training set sizes for which a cost has been evaluated	
k2	Estimated values of k2() at training set sizes nset	
var_k2	Variance of error in k2 estimate at each training set size.	
N	Total number of samples on which the model will be fitted/used	
k1	Mean cost per sample with no predictive score in place	
var_u	Marginal variance for Gaussian process kernel. Defaults to 1e7	
k_width	Kernel width for Gaussian process kernel. Defaults to 5000	
k2form	Functional form governing expected cost per sample given sample size. Should take two parameters: n (sample size) and theta (parameters). Defaults to function powerlaw.	
theta	Current estimates of parameter values for k2form. Defaults to the MLE power-law solution corresponding to n,k2, and var_k2.	
npoll	Check npoll equally spaced values between 1 and N for minimum. If NULL, check all values (this can be slow). Defaults to 1000	
	Passed to function optimise()	

Value

Object of class 'optholdoutsize_emul' with elements "cost" (minimum cost), "size" (OHS), "nset", "k2", "var_k2", "N", "k1" (parameters)

Examples

```
# See examples for mu_fn()
```

oracle_pred	Generate responses	

Description

Probably for deprecation

Usage

```
oracle_pred(X, coefs, num_vars = 3, noise = TRUE)
```

Arguments

X Matrix of observations

coefs Vector of coefficients for logistic model.

num_vars If noise==FALSE, computes using only first num_vars predictors

noise If TRUE, uses all predictors

Value

Vector of predictions

```
# See examples for model_predict
```

34 plot.optholdoutsize

params_aspre

Parameters of reported ASPRE dataset

Description

Distribution of covariates for ASPRE dataset; see Rolnik, 2017, NEJM

Usage

```
params_aspre
```

Format

An object of class list of length 16.

plot.optholdoutsize

Plot estimated cost function

Description

Plot estimated cost function, when parametric method is used for estimation.

Draws cost function as a line and indicates minimum. Assumes a power-law form of k2 unless parameter k2 is set otherwise.

Usage

```
## S3 method for class 'optholdoutsize'
plot(x, ..., k2form = powerlaw)
```

Arguments

x Object of type optholdoutsize

... Other arguments passed to plot() and lines()

k2form Function governing expected cost to an individual sample given a predictive

score fitted to n samples. Must take two arguments: n (number of samples) and theta (parameters). Defaults to a power-law form powerlaw(n,c(a,b,c))=a n^(-

b) + c.

Value

No return value; draws a plot only.

Examples

```
# Simple example
N=100000;
k1=0.3
A=8000; B=1.5; C=0.15; theta=c(A,B,C)
res1=optimal_holdout_size(N,k1,theta)
plot(res1)
```

```
plot.optholdoutsize_emul
```

Plot estimated cost function using emulation (semiparametric)

Description

Plot estimated cost function, when semiparametric (emulation) method is used for estimation. Draws posterior mean of cost function as a line and indicates minimum. Also draws mean +/- 3 SE. Assumes a power-law form of k2 unless parameter k2 is set otherwise.

Usage

```
## S3 method for class 'optholdoutsize_emul'
plot(x, ..., k2form = powerlaw)
```

Arguments

x Object of type optholdoutsize_emul
... Other arguments passed to plot()

k2form

Function governing expected cost to an individual sample given a predictive score fitted to n samples. Must take two arguments: n (number of samples) and theta (parameters). Defaults to a power-law form powerlaw(n,c(a,b,c))=a n^{-b} + c.

Value

No return value; draws a plot only.

```
# Simple example

# Parameters
N=100000;
k1=0.3
A=8000; B=1.5; C=0.15; theta=c(A,B,C)

# True mean function
k2_true=function(n) powerlaw(n,theta)
```

36 powerlaw

```
# Values of n for which cost has been estimated
np=50 # this many points
nset=round(runif(np,1,N))
var_k2=runif(np,0.001,0.002)
k2=rnorm(np,mean=k2_true(nset),sd=sqrt(var_k2))
# Compute OHS
res1=optimal_holdout_size_emulation(nset,k2,var_k2,N,k1)
# Plot
plot(res1)
```

powerlaw

Power law function

Description

Power law function for modelling learning curve (taken to mean change in expected loss per sample with training set size)

Recommended in review of learning curve forms

If theta=c(a,b,c) then models as a $n^{-(b)} + c$. Note b is negated.

Note that powerlaw(n, c(a,b,c)) has limit c as n tends to infinity, if a,b > 0

Usage

```
powerlaw(n, theta)
```

Arguments

n Set of training set sizes to evaluate

theta Parameter of values

Value

Vector of values of same length as n

```
\label{eq:continuous} $$ ncheck=seq(1000,10000) $$ plot(ncheck, powerlaw(ncheck, c(5e3,1.2,0.3)), type="l",xlab="n",ylab="powerlaw(n)") $$ $$ powerlaw(n)") $$ plot(ncheck, powerlaw(ncheck, c(5e3,1.2,0.3)), type="l",xlab="n",ylab="powerlaw(n)") $$ $$ powerlaw(ncheck, powerlaw(
```

powersolve 37

powersolve

Fit power law curve

Description

Find least-squares solution: MLE of (a,b,c) under model $y_i = a x_i^b + c + e_i$; $e_i^n (0, y_var_i)$

Usage

```
powersolve(
    x,
    y,
    init = c(20000, 2, 0.1),
    y_var = rep(1, length(y)),
    estimate_s = FALSE,
    ...
)
```

Arguments

х	X values
У	Y values
init	Initial values of (a,b,c) to start. Default c(20000,2,0.1)
y_var	Optional parameter giving sampling variance of each y value. Defaults to 1.
estimate_s	Parameter specifying whether to also estimate s (as above). Defaults to FALSE (no) .
	further parameters passed to optim. We suggest specifying lower and upper bounds for (a,b,c) ; e.g. lower= $c(1,0,0)$,upper= $c(10000,3,1)$

Value

List (output from optim) containing MLE values of (a,b,c)

```
# Retrieval of original values
A_true=2000; B_true=1.5; C_true=0.3; sigma=0.002

X=1000*abs(rnorm(10000,mean=4))
Y=A_true*(X^(-B_true)) + C_true + rnorm(length(X),sd=sigma)

c(A_true,B_true,C_true)
powersolve(X[1:10],Y[1:10])$par
powersolve(X[1:100],Y[1:100])$par
powersolve(X[1:1000],Y[1:1000])$par
powersolve(X[1:10000],Y[1:10000])$par
```

38 powersolve_se

powersolve_general

General solver for power law curve

Description

```
Find least-squares solution: MLE of (a,b,c) under model y_i = a x_i^b + c + e_i; e_i^N(\emptyset, y_var_i)
```

Try a range of starting values and refine estimate.

Slower than a single call to powersolve()

Usage

```
powersolve_general(x, y, y_var = rep(1, length(x)), ...)
```

Arguments

X values
 Y values
 y_var
 Optional parameter giving sampling variance of each y value. Defaults to 1.
 ... further parameters passed to optim. We suggest specifying lower and upper

bounds for (a,b,c); e.g. lower=c(1,0,0),upper=c(10000,3,1)

Value

List (output from optim) containing MLE values of (a,b,c)

```
# Retrieval of original values
A_true=2000; B_true=1.5; C_true=0.3; sigma=0.002

X=1000*abs(rnorm(10000,mean=4))
Y=A_true*(X^(-B_true)) + C_true + rnorm(length(X),sd=sigma)

c(A_true,B_true,C_true)
powersolve_general(X[1:10],Y[1:10])$par
powersolve_general(X[1:100],Y[1:100])$par
powersolve_general(X[1:1000],Y[1:1000])$par
```

powersolve_se 39

Description

Find approximate standard error matrix for (a,b,c) under power law model for learning curve.

```
Assumes that
```

```
y_i = a x_i^-b + c + e, e \sim N(0, s^2 y_var_i^2)
```

Standard error can be computed either asymptotically using Fisher information (method='fisher') or boostrapped (method='bootstrap')

These estimate different quantities: the asymptotic method estimates

```
Var[MLE(a,b,c)|X,y_var] and the boostrap method estimates Var[MLE(a,b,c)].
```

Usage

```
powersolve_se(
    x,
    y,
    method = "fisher",
    init = c(20000, 2, 0.1),
    y_var = rep(1, length(y)),
    n_boot = 1000,
    seed = NULL,
    ...
)
```

Arguments

X	X values (typically training set sizes)	
У	Y values (typically observed cost per individual/sample)	
method	One of 'fisher' (for asymptotic variance via Fisher Information) or 'bootstrap' (for Bootstrap)	
init	Initial values of (a,b,c) to start when computing MLE. Default c(20000,2,0.1)	
y_var	Optional parameter giving sampling variance of each y value. Defaults to 1.	
n_boot	t Number of bootstrap resamples. Only used if method='bootstrap'. Defaults 1000	
seed	Random seed for bootstrap resamples. Defaults to NULL.	
	further parameters passed to optim. We suggest specifying lower and upper bounds; since optim is called on (a*1000^-b,b,c), bounds should be relative to this; for instance, lower= $c(0,0,0)$,upper= $c(100,3,1)$	

Value

Standard error matrix; approximate covariance matrix of MLE(a,b,c)

```
A_true=10; B_true=1.5; C_true=0.3; sigma=0.1 set.seed(31525)
```

 $psi_{-}fn$

```
X=1+3*rchisq(10000,df=5)
Y=A_true*(X^(-B_true)) + C_true + rnorm(length(X), sd=sigma)
# 'Observations' - 100 samples
obs=sample(length(X),100,rep=FALSE)
Xobs=X[obs]; Yobs=Y[obs]
# True covariance matrix of MLE of a,b,c on these x values
ntest=100
abc_mat_xfix=matrix(0,ntest,3)
abc_mat_xvar=matrix(0,ntest,3)
E1=A_true*(Xobs^(-B_true)) + C_true
for (i in 1:ntest) {
  Y1=E1 + rnorm(length(Xobs),sd=sigma)
  abc_mat_xfix[i,]=powersolve(Xobs,Y1)$par # Estimate (a,b,c) with same X
 X2=1+3*rchisq(length(Xobs),df=5)
  Y2=A_true*(X2^(-B_true)) + C_true + rnorm(length(Xobs),sd=sigma)
  abc_mat_xvar[i,]=powersolve(X2,Y2)par # Estimate (a,b,c) with variable X
}
Ve1=var(abc_mat_xfix) # empirical variance of MLE(a,b,c)|X
Vf=powersolve_se(Xobs,Yobs,method='fisher') # estimated SE matrix, asymptotic
Ve2=var(abc_mat_xvar) # empirical variance of MLE(a,b,c)
Vb=powersolve_se(Xobs,Yobs,method='bootstrap',n_boot=200) # estimated SE matrix, bootstrap
cat("Empirical variance of MLE(a,b,c)|X\n")
print(Ve1)
cat("\n")
cat("Asymptotic variance of MLE(a,b,c)|X\n")
print(Vf)
cat("\n\n")
cat("Empirical variance of MLE(a,b,c)\n")
print(Ve2)
cat("\n")
cat("Bootstrap-estimated variance of MLE(a,b,c)\n")
print(Vb)
cat("\n\n")
```

psi_fn

Updating function for variance.

Description

Posterior variance for emulator given points n.

Usage

```
psi_fn(n, nset, var_k2, N, var_u = 1e+07, k_width = 5000)
```

sens10 41

Arguments

n	Set of training set sizes to evaluate at
nset	Training set sizes for which k2() has been evaluated
var_k2 Variance of error in k2() estimate at each training set size.	
N	Total number of samples on which the model will be fitted/used. Only used to rescale var_k2
var_u	Marginal variance for Gaussian process kernel. Defaults to 1e7
k_width	Kernel width for Gaussian process kernel. Defaults to 5000

Value

 $Vector\ Psi\ of\ same\ length\ of\ n\ where\ Psi_i=var(posterior(cost(n_i)))$

Examples

```
# See examples for `mu_fn`
```

sens10	Sensitivity at theshold quantile 10%	
--------	--------------------------------------	--

Description

Computes sensitivity of a risk score at a threshold at which 10% of samples (or some proportion pi_int) are above the threshold.

Usage

```
sens10(Y, Ypred, pi_int = 0.1)
```

Arguments

Υ	True labels (1 or 0)
Ypred	Predictions (univariate; real numbers)
pi_int	Compute sensitivity when a proportion pi_int of samples exceed threshold, default 0.1

Value

Sensitivity at this threshold

42 sim_random_aspre

Examples

```
# Simulate
set.seed(32142)
N=1000
X=rnorm(N); Y=rbinom(N,1,prob=logit(X/2))
pi_int=0.1
q10=quantile(X,1-pi_int) # 10% of X values are above this threshold
print(length(which(Y==1 & X>q10))/length(which(X>q10)))
print(sens10(Y,X,pi_int))
```

sim_random_aspre

Simulate random dataset similar to ASPRE training data

Description

Generate random population of individuals (e.g., newly pregnant women) with given population parameters

Assumes independence of parameter variation. This is not a realistic assumption, but is satisfactory for our purposes.

Usage

```
sim_random_aspre(n, params = NULL)
```

Arguments

n size of population
params list of parameters

Value

Matrix of samples

```
# Load ASPRE related data
data(params_aspre)

X=sim_random_aspre(1000,params_aspre)

print(c(median(X$age),params_aspre$age$median))

print(rbind(table(X$parity)/1000,params_aspre$parity$freq))
```

split_data 43

Description

Split data into holdout and intervention sets

Usage

```
split_data(X, frac)
```

Arguments

X Matrix of observations

frac Fraction of observations to use for the training set

Value

Vector of TRUE/FALSE values (randomised) with proportion frac as TRUE $\,$

Examples

See examples for model_predict

Index

```
* aspre
                                                    grad_nstar_powerlaw, 22
    add_aspre_interactions, 2
                                                    optimal_holdout_size, 31
                                                    optimal_holdout_size_emulation, 32
    aspre, 3
    aspre_emulation, 4
                                                    plot.optholdoutsize, 34
                                                    plot.optholdoutsize_emul, 35
    aspre_k2, 4
                                                    powersolve, 37
    aspre_parametric, 5
                                                    powersolve_general, 38
    ci_cover_a_yn, 5
                                                    powersolve_se, 38
    ci_cover_cost_a_yn, 6
                                                * simulation
    ci_cover_cost_e_yn, 6
                                                    gen_base_coefs, 19
    ci_cover_e_yn, 6
                                                    gen_preds, 20
    data_example_simulation, 14
                                                    gen_resp, 20
    data_nextpoint_em, 14
                                                    model_predict, 24
    data_nextpoint_par, 15
                                                    model_train, 25
    ohs_array, 30
                                                    oracle_pred, 33
    ohs_resample, 30
                                                    split_data, 43
    params_aspre, 34
    powersolve, 37
                                                add_aspre_interactions, 2
    powersolve_general, 38
                                                aspre, 3
    powersolve_se, 38
                                                aspre_emulation, 4
    sens10, 41
                                                aspre_k2, 4
    sim_random_aspre, 42
                                                aspre_parametric, 5
* data
    aspre_emulation, 4
                                                ci_cover_a_yn, 5
    aspre_parametric, 5
                                                ci_cover_cost_a_yn, 6
    ci_cover_a_yn, 5
                                                ci_cover_cost_e_yn, 6
    ci_cover_cost_a_yn, 6
                                                ci_cover_e_yn, 6
    ci_cover_cost_e_yn, 6
                                                ci_mincost, 7
    ci_cover_e_yn, 6
                                                ci_ohs, 10
    data_example_simulation, 14
                                                cov_fn, 13
    data_nextpoint_em, 14
                                                data_example_simulation, 14
    data_nextpoint_par, 15
                                                data_nextpoint_em, 14
    ohs_array, 30
                                                data_nextpoint_par, 15
    ohs_resample, 30
    params_aspre, 34
                                                error_ohs_emulation, 15
* emulation
                                                exp_imp_fn, 17
    cov_fn, 13
    error_ohs_emulation, 15
                                                gen_base_coefs, 19
    optimal_holdout_size_emulation, 32
                                                gen_preds, 20
* estimation
                                                gen_resp, 20
    ci_mincost, 7
                                                grad_mincost_powerlaw, 21
    ci_ohs, 10
                                                grad_nstar_powerlaw, 22
    error_ohs_emulation, 15
                                                logistic, 23
    grad_mincost_powerlaw, 21
```

INDEX 45

```
logit, 23
model_predict, 24
model_train, 25
\texttt{mu\_fn}, \textcolor{red}{26}
next_n, 28
ohs_array, 30
\verb"ohs_resample", 30
{\tt optimal\_holdout\_size, 31}
\verb"optimal_holdout_size_emulation", 32"
oracle_pred, 33
{\tt params\_aspre}, {\tt 34}
plot.optholdoutsize, 34
plot.optholdoutsize_emul, 35
powerlaw, 36
powersolve, 37
powersolve_general, 38
powersolve_se, 38
psi_fn, 40
sens10, 41
sim_random_aspre, 42
split_data, 43
```