Dependence

- 1 Comparison
- 2 Chi-squared test
- 3 *t*-test
- 4 Correlation

Statistical comparison

Substantive hypotheses

There is an association between X and Y, ... There is a difference of X between groups of Y, ...

Null hypothesis tests

 H_0 : the association of X by Y is likely to be random.

 H_0 : the difference in X between groups of Y is likely to be random.

Rejecting the null

 H_0 estimates the likelihood of an association or difference being attributable to sampling error under a certain level of confidence.

Chi-squared test

The Chi-squared test is a nonparametric test of association that measures the deviation in orthogonality between groups:

- Null hypothesis H_0 : $\chi^2 = 0$
- Test statistic: $\chi^2 = \sum_{i=1}^n \frac{(O_i E_i)^2}{E_i}$ (deviation between observed frequencies O_i and expected frequencies E_i for each table cell i)

tab v1 v2, exp chi2 V

- lacksquare add V to measure the association with Cramér's V (0 < V < 1)
- use tabchi to inspect residuals and tabodds for odds ratios

use datasets/nhis2009, clear

- Variables: d raceb marstat
- Inspect frequencies (row and column, expected and observed)
- Run a Chi-squared test and analyze the residuals

. tab marstat raceb if marstat < 8, chi2 V

	Race							
Legal marital status	White	Black	Hispanic	Asian	Total			
Married	7,151	1,059	2,231	780	11,221			
Widowed	1,215	352	223	84	1,874			
Divorced	2,367	641	595	93	3,696			
Separated	343	264	274	25	906			
Total	11,076	2,316	3,323	982	17,697			

Pearson chi2(9) = 733.4437 Pr = 0.000

t-test

Measuring association as the difference in means between two groups:

- Population notation: $\delta = \mu_1 \mu_2$
- Sample notation: $D = \bar{X}_1 \bar{X}_2$

The *t*-test computes a 95% CI around the difference of their means and returns its *p*-value against the *t*-distribution.

- Null hypothesis H_0 : $\mu_1 \mu_2 = 0$
- Test statistic: $t = \frac{D}{SE_D}$

Type I errors

Type II errors

Stata implementation

ttest v1, by(v2)

- v1 is continuous, v2 is a dummy; for two dummies, use prtest
- use tab, gen() to create dummies from categorical variables

use datasets/qog2011, clear

- Variables: d gol_enep gol_est2
- Create dummies and compare parties across electoral systems.

Stata implementation

use datasets/qog2011, clear

Explore the variables and interpret the output below.

```
. prtest no_mes, by(gol_polreg)
```

			1. Dic	tators: N	umber of obs :	= /9
Variable	Mean	Std. Err.	z	P> z	[95% Conf.	Interval]
0. Democracy	.293578	.0436195			.2080853	.3790706
1. Dictators	.2911392	.0511113			.1909628	.3913156
diff	.0024387	.067194			129259	.1341365

Two-sample test of proportions 0. Democracy: Number of obs =

under Ho: .0672205 0.04 0.971

diff = prop(0. Democracy) - prop(1. Dictators) z = 0.0363Ho: diff = 0

Ha: diff < 0 Pr(Z < z) = 0.5145 Pr(|Z| < |z|) = 0.9711 Pr(Z > z) = 0.4855

Ha: diff != 0

Ha: diff > 0

109

Correlation

Pearson correlation coefficient

Measuring association as the linear dependence of two variables:

Population notation
$$ho = \frac{\mathsf{Cov}(X,Y)}{\mathsf{Var}_X\mathsf{Var}_Y}, \quad -1 \le \rho \le 1$$
 Sample notation $r = \frac{1}{n-1} \sum_{i=1}^n (\frac{X_i - \bar{X}}{s_X}) (\frac{Y_i - \bar{Y}}{s_Y})$

Detects linear correlation

- Uncorrelated \neq unrelated
- Correlated ≠ unconfounded

Perfect positive/negative correlation

Significant (moderate-strong) correlation

Insignificant (weak, non-linear) correlation

Pearson correlation coefficient

Significance test:

Null hypothesis
$$H_0$$
 $r=0$ Test statistic $T=r\sqrt{rac{n-2}{1-r^2}}$

Sanity check

- Uncorrelated \neq independent
- lacktriangle Correlated eq causally related

Figure 1: Frequencies of the words "hamster" and "contraception" in Google Books, 1900-2000

Source: Harkness, "Seduced by Stats?", Significance, 2012.

Source: Messerli, "Chocolate Consumption, Cognitive Function, and Nobel Laureates", *New England Journal of Medicine*, 2012.

Stata implementation

pwcorr [varlist], [obs sig]

- obs shows the number of observations
- sig shows the coefficient's *p*-value

gr mat [varlist], [half etc.]

- half plots only half of all graphs (quicker)
- accepts scatterplot options (jitter, mlab, etc.)

use datasets/qog2011, clear

- Variables: d wdi_brd wdi_mege wdi_pb2 wdi_the
- Inspect and plot the correlation matrix.

In Stata

. pwcorr wdi_hiv wdi_hec wdi_prhe wdi_puhegdp, obs sig star(.05)

	wdi_hiv	wdi_hec	wdi_prhe	wdi_pu~p
wdi_hiv	1.0000			
	141			
wdi_hec	-0.1953*	1.0000		
	0.0207			
	140	187		
wdi_prhe	0.0979	-0.0555	1.0000	
	0.2497	0.4509		
	140	187	188	
wdi_puhegdp	-0.0607	0.5490*	-0.2099*	× 1.0000
	0.4759	0.0000	0.0038	
	140	187	188	188

In print

Table 4
Pearson pairwise correlations among the dependent and explanatory variables

	ETRC	ETRI	CAPINT	LEV	SIZE	POLCON1	POLCON2	MKBV	INVINT	ROA
ETRC	1									
ETRI	0.031*	1								
CAPINT	-0.033**	-0.044**	1							
LEV	-0.051°	-0.021	-0.041**	1						
SIZE	-0.124	-0.190	-0.163**	0.337**	1					
POLCON1	-0.023**	-0.047**	0.129	0.031**	0.146	1				
POLCON2	-0.011*	-0.044^{*}	-0.064	0.116	0.179**	0.138**	1			
MKBV	0.045	-0.036	-0.051	-0.035	-0.077**	-0.130	-0.026	1		
INVINT	0.020	-0.014	0.067**	-0.128**	-0.195**	0.193**	-0.005	-0.041	1	
ROA	0.073*	0.047	0.067**	-0.038	0.073	0.049	0.012	0.053	-0.019	1

Variable definitions: ETRC = (Tax expenses – Deferred tax expenses)/(Operating cash flows); ETR1 = (Tax expenses – Deferred tax expenses)/(Profit before interest and tax); POLCON1 = Percentage of government equity ownership; POLCON2 = 1 if the firm is connected with top politicians; 0 otherwise; SIZE = Natural log of total assets; LEV = (Total debt)/(Total assets); CAPINT = (Property, plant and equipment)/(Total assets); INVINT = (Inventory/Total assets); ROA = (Pre-tax profits)/(Total assets); MKBV = (Market price of share)/(Shareholders equity/Number of ordinary shares outstanding).

Source: Adhikari et al., "Public policy, political connections, and effective tax rates: Longitudinal evidence from Malaysia", Journal of Accounting and Public Policy, 2006.

^{*} Correlation is significant at the 0.05 level (2-tailed).

^{**} Correlation is significant at the 0.01 level (2-tailed).

Correlation matrixes

mkcorr [varlist], lab num sig log(corr.txt) replace

- ssc install the command if needed
- \blacksquare lab num sig add labels, numbers and p-values

Computer skills

- Import as a table in a spreadsheet editor.
- Convert from text to table in a rich text editor.

use datasets/qog2011, clear

- Variables: d wdi_brd wdi_mege wdi_pb2 wdi_the
- Export and import the correlation matrix.