Cours n°2: Gestion des processus

SYSTÈMES D'EXPLOITATION AVANCÉES

La naissance d'un processus...

...A son exécution

Espace d'adressage (virtuel ou physique)

Définissons...

- Un programme est composé d'une suite d'instructions qui agissent sur un ensemble de données : objet statique
- Processus : lorsque l'on déclenche l'exécution d'un programme, il devient un objet dynamique géré par l'OS.
- Un processus est composé d'un programme et de l'ensemble des ressources reliées à l'exécution du programme. Ces ressources incluent de la mémoire, des I/Os, des fichiers ouverts par le programme, du temps de CPU et autres.
- → Processus = unité d'exécution (unité de partage du temps processeur et de la mémoire) ≠ Programme

Système d'exploitation multitâches

- Un système d'exploitation est dit multitâches s'il permet d'exécuter, apparemment simultanément, plusieurs programmes.
- Ce fonctionnement est réalisé en alternant rapidement l'exécution de différents processus c'est-à-dire en effectuant un multiplexage temporel du processeur (chaque processus s'exécute pendant une fraction de seconde)
- L'exécution des processus est *entremêlée*
- Par conséquent, il ne s'agit pas réellement d'un traitement simultané sauf si la machine a plusieurs processeurs

Processus et Multiprogrammation

- Soient 3 processus A, B et C à exécuter
- A,B et C sont chargés simultanément en mémoire (avec le Dispatcher)
- Le comportement d'un processus donné = séquence d'instructions qu'il est en train d'exécuter (*Trace*)
- Le *Dispatcher* est un programme qui commute le processeur d'un processus à un autre

Trace du point de vue des processus

 Chaque processus s'exécute jusuqu'à la fin de sa tâche

5000 = Starting address of program of Process A

8000 = Starting address of program of Process B

12000 = Starting address of program of Process C

Trace du point de vue du processeur

Shaded areas indicate execution of dispatcher process; first and third columns count instruction cycles; second and fourth columns show address of instruction being executed

Feuille de route

- Comment les processus sont-ils représentés et contrôlés par l'OS?
- Quels sont les états caractérisant le comportement des processus?
- Quels sont les structures de données utilisées pour gérer les processus?
- Comment l'OS utilise-t-il ces structures de données pour contrôler l'exécution des processus?

Structure de l'espace mémoire d'un processus

- Espace mémoire dont la structure est définie par l'OS (Ensemble des adresses mémoire que le processus peut adresser)
- Plusieurs zones =
 - Segment de code (text section)
 - Copie du segment de code du fichier exécutable
 - Compteur de programme
 - Indique la prochaine instruction à exécuter
 - Contenu des registres du processeur
 - Pile d'exécution
 - Paramètres des fonctions, variables locales, adresses de retour, pointeur de pile, etc.
 - Segment de données (data section)
 - variables globales (.bss and .data).
 - Un Tas
 - Pour la mémoire allouée dynamiquement

Bloc de contrôle de processus (PCB)

- Identifiants numériques
 - Identifiant du processus
 - Identifiant du processus qui a créé ce processus (processus père)
 - Identifiant de l'utilisateur
- Informations sur l'état des processus
- Compteur de programme (@ de la prochaine instruction à exécuter)
- Contenu des registres du CPU
- Information d'ordonnancement
 - Priorité,...
- Information de gestion de la mémoire
 - Valeur du registre de base et limite,...
- Information comptable
 - Taux d'utilisation du processeur,...
- Etats des dispositifs d'E/S
 - E/S alloués, liste des fichiers ouverts,...

Bloc de contrôle de processus

Feuille de route

- Comment les processus sont-ils représentés et contrôlés par l'OS?
- Quels sont les états caractérisant le comportement des processus?
- Quels sont les structures de données utilisées pour gérer les processus?
- Comment l'OS utilise-t-il ces structures de données pour contrôler l'exécution des processus?

Multiprogrammation

Mode batch

Le processus actif rend la main :

- lorsqu'il se termine
- lorsqu'il se bloque en attente d'une E/S

Temps partagé

Temps partagé

Le processus actif rend la main :

- lorsqu'il se termine
- lorsqu'il se bloque en attente d'une E/S
- lorsqu'il a épuisé son quantum de temps

Etats d'un processus

Création de processus: Pourquoi?

- Initialisation du système
- Exécution d'un appel système de création de processus par un processus en cours d'exécution
- Requête utilisateur sollicitant la création d'un nouveau processus
- Lancement d'un travail en traitement par lot
- Un nouveau processus est créé du fait qu'un processus existant exécute un appel système de création de processus

Création de processus: Comment?

- Affecter un identifiant unique (pid)
- Allouer de l'espace mémoire pour l'image du processus (code, données, pile...)
- Initialiser le bloc de contrôle de processus (valeurs par défaut, état = New, pas de dispositifs d'E/S ou de fichiers ouverts...)
- Mettre en œuvre les liens appropriés (ajouter le nouveau PCB à la liste chainée utilisée pour les queues d'ordonnancement)

La fin d'un processus

Arrêt normal (volontaire)

Arrêt pour erreur (volontaire)

Arrêt pour erreur fatale (involontaire)

 Le processus est arrêté par un autre processus (involontaire)

Commutation du CPU : Comment?

- Sauvegarder le contexte du CPU (PC et autres registres)
- Mettre à jour le PCB du processus en cours d'exécution avec le nouvel état et autre infos
- Changer le PCB dans la file d'attente appropriée (prêts, bloqués, ...)
- Choisir un autre processus à exécuter
- Mettre à jour le PCB du processus sélectionné (état: en cours d'exécution)
- Restaurer l'état du CPU à partir du PCB du processus sélectionné

Commutation entre processus

Feuille de route

- Comment les processus sont-ils représentés et contrôlés par l'OS?
- Quels sont les états caractérisant le comportement des processus?
- Quels sont les structures de données utilisées pour gérer les processus?
- Comment l'OS utilise-t-il ces structures de données pour contrôler l'exécution des processus?

Les entités responsables de l'ordonnancement

