Fibrations of toposes from extensions of theories Toposes in Como

Sina Hazratpour sinhp.github.io j.w.w. Steve Vickers

29 June 2018

ldea

Chevalley fibrations

For many special constructions of topological spaces, a structure preserving
morphism between the presenting structures gives a map between the
corresponding spaces. e.g.: a homomorphism f: K → L between two distributive
lattices gives a map in the opposite direction between their spectra. The
covariance or contravariance of this correspondence is a fundamental property of
the construction.

- For many special constructions of topological spaces, a structure preserving
 morphism between the presenting structures gives a map between the
 corresponding spaces. e.g.: a homomorphism f: K → L between two distributive
 lattices gives a map in the opposite direction between their spectra. The
 covariance or contravariance of this correspondence is a fundamental property of
 the construction.
- In topos theory we can relativize this process: a presenting structure in an elementary topos $\mathcal E$ will give rise to a bounded geometric morphism $p\colon \mathcal F\to \mathcal E$, where $\mathcal F$ is the topos of sheaves over $\mathcal E$ for the space presented by the structure. Then we commonly find that the covariant or contravariant correspondence mentioned above makes every such p an opfibration or fibration in the 2-category of toposes and geometric morphisms.

- For many special constructions of topological spaces, a structure preserving
 morphism between the presenting structures gives a map between the
 corresponding spaces. e.g.: a homomorphism f: K → L between two distributive
 lattices gives a map in the opposite direction between their spectra. The
 covariance or contravariance of this correspondence is a fundamental property of
 the construction.
- In topos theory we can relativize this process: a presenting structure in an elementary topos $\mathcal E$ will give rise to a bounded geometric morphism $p\colon \mathcal F\to \mathcal E$, where $\mathcal F$ is the topos of sheaves over $\mathcal E$ for the space presented by the structure. Then we commonly find that the covariant or contravariant correspondence mentioned above makes every such p an opfibration or fibration in the 2-category of toposes and geometric morphisms.
- This is one of the leading theme in Bas Spitters, Steven J. Vickers, and Sander Wolters (2012). "Gelfand spectra in Grothendieck toposes using geometric mathematics." In: *Proceedings of QPL 2012*.

- For many special constructions of topological spaces, a structure preserving
 morphism between the presenting structures gives a map between the
 corresponding spaces. e.g.: a homomorphism f: K → L between two distributive
 lattices gives a map in the opposite direction between their spectra. The
 covariance or contravariance of this correspondence is a fundamental property of
 the construction.
- elementary topos $\mathcal E$ will give rise to a bounded geometric morphism $p\colon \mathcal F\to \mathcal E$, where $\mathcal F$ is the topos of sheaves over $\mathcal E$ for the space presented by the structure. Then we commonly find that the covariant or contravariant correspondence mentioned above makes every such p an opfibration or fibration in the 2-category of toposes and geometric morphisms.

• In topos theory we can relativize this process: a presenting structure in an

- This is one of the leading theme in Bas Spitters, Steven J. Vickers, and Sander Wolters (2012). "Gelfand spectra in Grothendieck toposes using geometric mathematics." In: *Proceedings of QPL 2012*.
- Using the classifying toposes of geometric theories, we formalize this idea by the notion of fibration of toposes.

Johnstone fibrations in 2-categories

Comprehension 2-category

Suppose $\mathbb K$ is a 2-category and $\mathcal D$ is a class of bicarrable 1-cells in $\mathbb K$ which we shall call "display 1-cells". We form a 2-category $\mathbb K_{\mathcal D}$ whose

• 0-cells are of the form

where x is a member of class \mathcal{D} .

Chevallev fibrations

Comprehension 2-category

Suppose \mathbb{K} is a 2-category and \mathcal{D} is a class of bicarrable 1-cells in \mathbb{K} which we shall call "display 1-cells". We form a 2-category $\mathbb{K}_{\mathcal{D}}$ whose

0-cells are of the form

$$X$$
 X
 X
 X
 X
 X

where x is a member of class \mathcal{D} .

• 1-cells from y to x are of the form $f = \langle \overline{f}, f, f \rangle$

$$\begin{array}{ccc}
\overline{y} & \xrightarrow{\overline{f}} & \overline{x} \\
y \downarrow & f \downarrow & \downarrow x \\
\underline{y} & \xrightarrow{f} & \underline{x}
\end{array}$$

where $f : x \circ \overline{f} \Rightarrow \underline{f} \circ y$ is an iso 2-cell in \mathbb{K} .

• 2-cells between 1-cells f and g are of the form $\alpha = \langle \overline{\alpha}, \underline{\alpha} \rangle$ where $\overline{\alpha} : \overline{f} \Rightarrow \overline{g}$ and $\underline{\alpha} : \underline{f} \Rightarrow \underline{g}$ are 2-cells in \mathbb{K}

in such a way that the obvious diagram of 2-cells commutes.

• Composition: by pasting

 $\mathbb{K}_{\mathcal{D}}$ is a sub 2-category of \mathbb{K}^{\downarrow} and the following diagram of 2-functors commutes.

Johnstone's fibrations in 2-categories

DEFINITION (P. Johnstone, 93)

Suppose $\mathbb K$ is a 2-category. A 1-cell $p\colon E\to B$ is an (internal) **fibration** in $\mathbb K$ if it is bicarrable and for any 2-cell $\alpha\colon f\Rightarrow g\colon A\rightrightarrows B$ in $\mathbb K$, there exists a 1-cell $r(\alpha)\colon \underline g^*E\to \underline f^*E$, a 2-cell $\widetilde\alpha\colon p^*f\circ r(\alpha)\Rightarrow p^*g$, and a 2-cell $\tau(\alpha)\colon f^*p\circ r(\alpha)\Rightarrow g^*p$ satisfying *five axioms*.

DEFINITION (P. Johnstone, 93)

Suppose $\mathbb K$ is a 2-category. A 1-cell $p\colon E\to B$ is an (internal) **fibration** in $\mathbb K$ if it is bicarrable and for any 2-cell $\alpha\colon f\Rightarrow g\colon A\rightrightarrows B$ in $\mathbb K$, there exists a 1-cell $r(\alpha)\colon \underline g^*E\to \underline f^*E$, a 2-cell $\widetilde\alpha\colon p^*f\circ r(\alpha)\Rightarrow p^*g$, and a 2-cell $\tau(\alpha)\colon f^*p\circ r(\alpha)\Rightarrow g^*p$ satisfying *five axioms*.

Johnstone's fibrations in 2-categories

DEFINITION (P. Johnstone, 93)

Suppose $\mathbb K$ is a 2-category. A 1-cell $p\colon E\to B$ is an (internal) **fibration** in $\mathbb K$ if it is bicarrable and for any 2-cell $\alpha\colon f\Rightarrow g\colon A\rightrightarrows B$ in $\mathbb K$, there exists a 1-cell $r(\alpha)\colon \underline g^*E\to \underline f^*E$, a 2-cell $\widetilde\alpha\colon p^*f\circ r(\alpha)\Rightarrow p^*g$, and a 2-cell $\tau(\alpha)\colon f^*p\circ r(\alpha)\Rightarrow g^*p$ satisfying *five axioms*.

Peter Johnstone (1993). "Fibrations and partial products in a 2-category". In: *Applied Categorical Structures* vol.1.2, pp. 141–179. DOI: 10.1007/BF00880041

- This definition generalizes the definition of Grothendieck fibration of categories.
- The definition above is equivalent to the representable definition of fibration internal to a 2-category.
- Dually, opfibrations are defined by requiring a 1-cell I(α): f*E → g*E in the opposite direction of r(α).
- Johnstone's definition does not require strictness of the 2-category nor the existence of the structure of strict pullbacks and comma objects. Indeed, this definition is most suitable for weak 2-categories such as 2-category of toposes where we do not expect diagrams of 1-cells to commute strictly. This definition is also very flexible in terms of existence of bipullbacks.

Changing the notation ...

Simplifying Johnstone's definition

Simplifying Johnstone's definition

Axioms of Johnstone fibration

- α lies over $\underline{\alpha}$,
- ② lift of composition of composable 2-cells $\underline{\alpha}$ and $\underline{\beta}$ is isomorphic to composition of lifts α and β ,
- Iift of identity of 2-cell is isomorphic to the lift of identity,
- lift of (left) whiskering of $\underline{\alpha}$ with any 1-cell (with codomain \underline{y}) is the same as whiskering of of the lifts,
- **5** for any pair of vertical morphisms v_0 and v_1 , any 2-cell $\gamma: f \circ v_0 \Rightarrow g \circ v_1$ uniquely factors through α

(Weak) cartesian 1-cells

DEFINITION

Suppose $\mathbb{P}\colon \mathbb{X} \to \mathbb{C}$ is a 2-functor. A 1-cell $f\colon X \to Y$ in \mathbb{X} is **cartesian** with respect to \mathbb{P} whenever for each 0-cell W in \mathbb{X} the following commuting square is a bipullback diagram in 2-category \mathfrak{Cat} of categories.

$$\begin{array}{c|c} \mathbb{X}(W,X) & \xrightarrow{f_*} & \mathbb{X}(W,Y) \\ & \mathbb{P}_{W,X} \downarrow & & \downarrow \mathbb{P}_{W,Y} \\ \mathbb{C}(\mathbb{P}W,\mathbb{P}X) & \xrightarrow{\mathbb{F}(f)_*} & \mathbb{C}(\mathbb{P}W,\mathbb{P}Y) \end{array}$$

Input data:

 $\begin{array}{c}
1 \\
g \colon W \to Y \\
2 \\
h \colon \mathbb{P}W \to \mathbb{P}X
\end{array}$

(3) iso 2-cell $\alpha \colon \mathbb{P}(f) \circ h \Rightarrow \mathbb{P}(g)$

Output data:

(not necc. unique)

1) $\hat{h}: W \to X$

 $\widehat{2}$) iso 2-cell $\widehat{\alpha}$: $f\widehat{h} \Rightarrow g$

 $\widehat{\beta}$ iso 2-cell $\widehat{\beta}$: $\mathbb{P}(\widehat{h}) \Rightarrow h$

(4) an equality of 2-cells $\alpha \circ (\mathbb{P}(f) \cdot \hat{\beta}) = \mathbb{P}(\hat{\alpha})$

Input data:

- 1) $\sigma: g \Rightarrow g': W \Rightarrow Y$ 2) $\delta: h \Rightarrow h': \mathbb{P}W \Rightarrow \mathbb{P}X$
- (3) iso 2-cells

$$\alpha \colon \mathbb{P}(f) \circ h \Rightarrow \mathbb{P}(g)$$

$$\alpha' \colon \mathbb{P}(f) \circ h' \Rightarrow \mathbb{P}(g)$$

(4) an equality of 2-cells

$$\alpha' \circ (\mathbb{P}f \cdot \delta) = \mathbb{P}(\sigma) \circ \alpha$$

Output data:

- unique $\hat{\delta}$: $\hat{h} \Rightarrow \hat{h}'$
- an equality $\hat{\alpha'} \circ (f \cdot \hat{\delta}) = \sigma \circ \hat{\alpha}$ 3 an equality $\delta \cdot (\hat{\beta}) = \hat{\beta'} \circ \mathbb{P}\hat{\delta}$

Cartesian 2-cells

DEFINITION

A 2-cell $\alpha \colon f \Rightarrow g \colon x \to y$ in $\mathbb X$ is **cartesian** if it is cartesian as a 1-cell for the functor $\mathbb{P}_{xy} \colon \mathbb{X}(x,y) \to \mathbb{C}(\mathbb{P}x,\mathbb{P}y).$

Cartesian 2-cells

DEFINITION

A 2-cell $\alpha \colon f \Rightarrow g \colon x \to y$ in $\mathbb X$ is **cartesian** if it is cartesian as a 1-cell for the functor $\mathbb P_{xy} \colon \mathbb X(x,y) \to \mathbb C(\mathbb P x,\mathbb P y)$.

In elementary terms it means a 2-cell $\alpha \colon f \Rightarrow g \colon X \rightrightarrows Y$ is cartesian if for any given 1-cell $e \colon X \to Y$ and 2-cell $\beta \colon e \Rightarrow g$ with $\mathbb{P}\alpha = \mathbb{P}\beta \circ \gamma$ for some 2-cell γ , then there is a unique 2-cell $\tilde{\gamma}$ over γ such that $\alpha = \beta \circ \tilde{\gamma}$.

Proposition

Idea

A 1-cell $x \colon \overline{x} \to \underline{x}$ in \mathbb{K} is a Johnstone fibration iff

- every $\underline{f} : \underline{y} \to \underline{x} = \mathbb{C}\mathbf{od}(x)$ has a cartesian lift,
- **2** for every 0-cell y in $\mathbb{K}_{\mathcal{D}}$, the functor

$$\mathbb{C}od_{y,x} \colon \mathbb{K}_{\mathcal{D}}(y,x) \to \mathbb{K}(\mathbb{C}od(y), \mathbb{C}od(x))$$

is a Grothendieck fibration of categories, and

 $oldsymbol{3}$ whiskering on the left preserves cartesian 2-cells in $\mathbb{K}_{\mathcal{D}}$ between 1-cells with codomain x.

Relating internal fibrations in 2-categories to fibration of bicategories

DEFINITION

Let $\mathbb{P} \colon \mathbb{X} \to \mathbb{C}$ be a 2-functor. \mathbb{X} is **fibred over** \mathbb{C} whenever

- ① for any $X \in \mathbb{X}$ and $f : B \to \mathbb{P}X$ in \mathbb{C} , there is a weakly cartesian 1-cell $\widetilde{f} : \widetilde{B} \to X$ with $\mathbb{P}\widetilde{f} = f$;
- ② \mathbb{P} is locally fibred, i.e. $\mathbb{P}_{XY} \colon \mathbb{X}(X,Y) \to \mathbb{C}(\mathbb{P}X,\mathbb{P}Y)$ is a Grothendieck fibration of categories for all X, Y in \mathbb{X}
- 3 The horizontal composite of any two cartesian 2-cells is again cartesian.

Chevallev fibrations

Relating internal fibrations in 2-categories to fibration of bicategories

Definition

Let $\mathbb{P} \colon \mathbb{X} \to \mathbb{C}$ be a 2-functor. \mathbb{X} is **fibred over** \mathbb{C} whenever

- ① for any $X \in \mathbb{X}$ and $f : B \to \mathbb{P}X$ in \mathbb{C} , there is a weakly cartesian 1-cell $\widetilde{f} : \widetilde{B} \to X$ with $\mathbb{P}\widetilde{f} = f$;
- all X, Y in X
- The horizontal composite of any two cartesian 2-cells is again cartesian.

This definition is due to (Buckley, 2014) and he developes a theory of fibred bicategories in Mitchell Buckley (2014). "Fibred 2-categories and bicategories". In: vol. 218, pp. 1034-1074

The theory of fibred bicategories was also independently developed by (Bakovic, 2012) intrinsically to tricategories in Igor Bakovic (2012). "Fibrations in tricategories". In: 93rd Peripatetic Seminar on Sheaves and Logic, University of Cambridge

Relating internal fibrations in 2-categories to fibration of bicategories

DEFINITION

Idea

Let $\mathbb{P} \colon \mathbb{X} \to \mathbb{C}$ be a 2-functor. \mathbb{X} is **fibred over** \mathbb{C} whenever

- ① for any $X \in \mathbb{X}$ and $f : B \to \mathbb{P}X$ in \mathbb{C} , there is a weakly cartesian 1-cell $\widetilde{f} : \widetilde{B} \to X$ with $\mathbb{P}\widetilde{f} = f$;
- ② \mathbb{P} is locally fibred, i.e. $\mathbb{P}_{XY} \colon \mathbb{X}(X,Y) \to \mathbb{C}(\mathbb{P}X,\mathbb{P}Y)$ is a Grothendieck fibration of categories for all X, Y in \mathbb{X}
- **③** The horizontal composite of any two cartesian 2-cells is again cartesian.

This definition is due to (Buckley, 2014) and he developes a theory of fibred bicategories in Mitchell Buckley (2014). "Fibred 2-categories and bicategories". In: vol. 218, pp. 1034–1074

The theory of fibred bicategories was also independently developed by (Bakovic, 2012) intrinsically to tricategories in Igor Bakovic (2012). "Fibrations in tricategories". In: 93rd Peripatetic Seminar on Sheaves and Logic, University of Cambridge

Remark

 $\mathbb{K}_{\mathcal{D}}$ is fibred over \mathbb{K} if every 1-cell in $\mathbb{K}_{\mathcal{D}}$ is a fibration in the sense of Johnstone.

- The 2-category \mathcal{ETop} is the 2-category of elementary toposes, geometric morphisms, and natural transformations.
- The 2-category $\mathcal{GT}\mathfrak{op}$ is constructed from 2-category $\mathcal{ET}\mathfrak{op}$ by choosing the class of display morphisms to be bounded geometric morphisms of elementary toposes. So, $\mathcal{GT}\mathfrak{op} = \mathcal{ET}\mathfrak{op}_{\mathcal{D}}$ where \mathcal{D} is the class of bounded geometric morphisms of elementary toposes.

• A bounded geometric morphism $p \colon \mathscr{E} \to \mathscr{S}$ is a fibration of toposes if it is a fibration 0-cell in $\mathcal{GT}\mathfrak{op}$.

• Consider the pseudofunctor

 $\mathbb{T}\operatorname{\mathsf{-Mod-}} : (\mathcal{BTop}/\mathcal{S})^\mathrm{op} o \mathfrak{Cat}$

Classifying toposes as representing objects

Consider the pseudofunctor

$$\mathbb{T}\operatorname{\mathsf{-Mod-}} : (\mathcal{B}\mathfrak{Top}/\mathcal{S})^\mathrm{op} o \mathfrak{Cat}$$

• To an \mathscr{S} -topos \mathscr{E} it assigns the category \mathbb{T} -**Mod**- \mathscr{E} of models \mathbb{T} in \mathscr{E} .

Classifying toposes as representing objects

Consider the pseudofunctor

$$\mathbb{T}\operatorname{\mathsf{-Mod-}} : (\mathcal{BTop}/S)^\mathrm{op} o \mathfrak{Cat}$$

- To an \mathscr{S} -topos \mathscr{E} it assigns the category \mathbb{T} -**Mod**- \mathscr{E} of models \mathbb{T} in \mathscr{E} .
- To a geometric morphism $\langle f^*, f_* \rangle \colon \mathscr{F} \to \mathscr{E}$ of \mathscr{S} -toposes it assigns the functor $f^* \colon \mathbb{T}\operatorname{-Mod-}\mathscr{E} \to \mathbb{T}\operatorname{-Mod-}\mathscr{F}$.

Classifying toposes as representing objects

Consider the pseudofunctor

$$\mathbb{T}\operatorname{\mathsf{-Mod-}} : (\mathcal{B}\mathfrak{Top}/S)^\mathrm{op} o \mathfrak{Cat}$$

- To an \$\mathscr{S}\$-topos \$\mathscr{E}\$ it assigns the category \$\mathbb{T}\$-Mod-\$\mathscr{E}\$ of models \$\mathbb{T}\$ in \$\mathscr{E}\$.
- To a geometric morphism $\langle f^*, f_* \rangle \colon \mathscr{F} \to \mathscr{E}$ of \mathscr{S} -toposes it assigns the functor $f^* \colon \mathbb{T}\operatorname{-Mod-}\mathscr{E} \to \mathbb{T}\operatorname{-Mod-}\mathscr{F}$.
- Note that \mathbb{T} -Mod- $(f \circ g) \cong (\mathbb{T}$ -Mod- $f) \circ (\mathbb{T}$ -Mod-g)

Classifying toposes as representing objects

Consider the pseudofunctor

$$\mathbb{T}\operatorname{\mathsf{-Mod-}} : (\mathcal{B}\mathfrak{Top}/S)^\mathrm{op} o \mathfrak{Cat}$$

- To an \mathscr{S} -topos \mathscr{E} it assigns the category \mathbb{T} -**Mod**- \mathscr{E} of models \mathbb{T} in \mathscr{E} .
- To a geometric morphism $\langle f^*, f_* \rangle \colon \mathscr{F} \to \mathscr{E}$ of \mathscr{S} -toposes it assigns the functor $f^* \colon \mathbb{T}\operatorname{-Mod-}\mathscr{E} \to \mathbb{T}\operatorname{-Mod-}\mathscr{F}$.
- Note that \mathbb{T} -Mod- $(f \circ g) \cong (\mathbb{T}$ -Mod- $f) \circ (\mathbb{T}$ -Mod-g)
- The classifying topos $\mathscr{S}[\mathbb{T}]$ of a geometric theory/context \mathbb{T} can be seen as a representing object for this pseudofunctor, i.e.

$$\mathcal{BTop}/\mathscr{S}(\mathscr{E},\mathscr{S}[\mathbb{T}])\simeq \mathbb{T} ext{-Mod-}\mathscr{E}$$

naturally in \mathscr{E} .

• Fix an elementary topos S. Every geometric theory/ context $\mathbb T$ gives rise to an indexed category over \mathbb{T} : $\mathcal{BTop}/\mathcal{S}$, where

$$\underline{\mathbb{T}}(\mathscr{E}) \colon = \mathbb{T}\text{-Mod-}(\mathscr{E}) = \text{category of models of }\mathbb{T} \text{ in }\mathscr{E}$$

• Fix an elementary topos \mathcal{S} . Every geometric theory/ context \mathbb{T} gives rise to an indexed category over $\underline{\mathbb{T}}:\mathcal{BTop}/\mathcal{S}$, where

$$\underline{\mathbb{T}}(\mathscr{E})$$
: $= \mathbb{T}$ -**Mod**- (\mathscr{E}) = category of models of \mathbb{T} in \mathscr{E}

• Note that $\underline{\mathbb{T}}$ encapsulates data of all the models in all Grothendieck toposes (with base \mathcal{S}). Vickers calls them "elephant theories" after Johnstone, the sheer size of data encoded by them.

Peter Johnstone (2002). "Sketches of an elephant: A topos theory compendium". In: Oxford Logic Guides vol.1.no.44, Oxford University Press

Steven Vickers (2017). "Arithmetic universes and classifying toposes". In:

Cahiers de topologie et géométrie différentielle catégorique vol.58.4, pp. 213-248.

URL: http://cahierstgdc.com/wp-content/uploads/2018/01/Vickers-58-34.pdf

• Fix an elementary topos $\mathcal S$. Every geometric theory/ context $\mathbb T$ gives rise to an indexed category over $\underline{\mathbb T}:\mathcal{BTop}/\mathcal S$, where

$$\underline{\mathbb{T}}(\mathscr{E})$$
: $= \mathbb{T}$ -Mod- (\mathscr{E}) = category of models of \mathbb{T} in \mathscr{E}

- Note that $\underline{\mathbb{T}}$ encapsulates data of all the models in all Grothendieck toposes (with base \mathcal{S}). Vickers calls them "elephant theories" after Johnstone, the sheer size of data encoded by them.
- Of course not all elephant theories arise from contexts. For instance, given a bounded geometric morphism $p\colon \mathscr{E} \to \mathscr{S}$ and a context extension $U\colon \mathbb{T}_1 \to \mathbb{T}_0$ is a context extension and M is a strict model of context \mathbb{T} in base topos \mathcal{S} , then \mathbb{T}_1/M is an elephant theory but not a context, where

 $\mathbb{T}_1/M(\mathscr{E})$: = strict models of \mathbb{T}_1 in \mathscr{E} which reduce to p^*M via U

Chevallev fibrations

Idea

$$\underline{\mathbb{T}}(\mathscr{E})$$
: = \mathbb{T} -Mod- (\mathscr{E}) = category of models of \mathbb{T} in \mathscr{E}

- Note that T encapsulates data of all the models in all Grothendieck toposes (with base \mathcal{S}). Vickers calls them "elephant theories" after Johnstone, the sheer size of data encoded by them.
- Of course not all elephant theories arise from contexts. For instance, given a bounded geometric morphism $p \colon \mathscr{E} \to \mathscr{S}$ and a context extension $U \colon \mathbb{T}_1 \to \mathbb{T}_0$ is a context extension and M is a strict model of context \mathbb{T} in base topos S, then \mathbb{T}_1/M is an elephant theory but not a context, where

$$\underline{\mathbb{T}}_1/\underline{M}(\mathscr{E})$$
: = strict models of \mathbb{T}_1 in \mathscr{E} which reduce to p^*M via U

• Certain elephant theories are geometric and have classifying toposes. \mathbb{T} and \mathbb{T}_1/M are such examples.

Suppose $U: \mathbb{T}_1 \to \mathbb{T}_0$ is a context extension. For any model M of \mathbb{T}_0 in a (base) topos \mathcal{S} , $\mathcal{S}[\mathbb{T}_1/M]$ is an \mathcal{S} -topos, and moreover, for any geometric (not necessarily bounded) morphism $\underline{f}: \mathcal{A} \to \mathcal{S}$, the classifying topos $\mathcal{A}[\mathbb{T}_1/\underline{f}^*M]$ is got by bi-pullback of $\mathcal{S}[\mathbb{T}_1/M]$ along \underline{f} :

$$\begin{array}{ccc}
\mathcal{A}[\mathbb{T}_1/\underline{f}^*M] & \xrightarrow{\overline{f}} & \mathcal{S}[\mathbb{T}_1/M] \\
\downarrow^{p_f} & & \downarrow^{p} \\
\mathcal{A} & \xrightarrow{\underline{f}} & \mathcal{S}
\end{array}$$

THEOREM (Vickers, 2017)

Suppose $U: \mathbb{T}_1 \to \mathbb{T}_0$ is a context extension. For any model M of \mathbb{T}_0 in a (base) topos \mathcal{S} , $\mathcal{S}[\mathbb{T}_1/M]$ is an \mathcal{S} -topos, and moreover, for any geometric (not necessarily bounded) morphism $\underline{f}: \mathcal{A} \to \mathcal{S}$, the classifying topos $\mathcal{A}[\mathbb{T}_1/\underline{f}^*M]$ is got by bi-pullback of $\mathcal{S}[\mathbb{T}_1/M]$ along \underline{f} :

$$\begin{array}{ccc}
\mathcal{A}[\mathbb{T}_1/\underline{f}^*M] & \xrightarrow{\overline{f}} & \mathcal{S}[\mathbb{T}_1/M] \\
& \downarrow^{p_f} & & \downarrow^{p} \\
\mathcal{A} & \xrightarrow{\underline{f}} & & \mathcal{S}
\end{array}$$

Steven Vickers (2017). "Arithmetic universes and classifying toposes". In: Cahiers de topologie et géométrie différentielle catégorique vol.58.4, pp. 213-248. URL: http://cahierstgdc.com/wp-content/uploads/2018/01/Vickers-58-34.pdf

- Suppose K is a 2-category with finite (strict) PIE-limits, in other words those reducible to Products, Inserters and Equifiers.
- This is enough to guarantee existence of all strict comma objects.

References

Chevalley fibrations

- reducible to Products, Inserters and Equifiers.
- Suppose B is an object of \mathbb{K} , and p is a 0-cell in the strict slice 2-category \mathbb{K}/B . p is a **Chevalley fibration** if the 1-cell Γ_1 has a right adjoint Λ_1 with counit an identity in the 2-category \mathbb{K}/B .

Chevalley fibrations

Idea

• Dually one defines Chevalley **opfibrations** as 1-cells $p: E \to B$ for which the morphism $\Gamma_0: E^{\downarrow} \to p/B$ has a left adjoint Λ_0 with identity unit.

References

Chevalley fibrations

- Dually one defines Chevalley **opfibrations** as 1-cells $p: E \to B$ for which the morphism $\Gamma_0 \colon E^{\downarrow} \to p/B$ has a left adjoint Λ_0 with identity unit.
- A bifibration is equipped with the structures of both a fibration and an opfibration.

Chevalley fibrations

morphism $\Gamma_0\colon E^\downarrow o p/B$ has a left adjoint Λ_0 with identity unit.

• Dually one defines Chevalley **opfibrations** as 1-cells $p: E \to B$ for which the

- A bifibration is equipped with the structures of both a fibration and an opfibration.
- (Gray, 1966) showed that Chevalley fibrations in the 2-category cat of (small) categories correspond to well-known (cloven) Grothendieck fibrations.

Chevalley fibrations

morphism $\Gamma_0\colon E^\downarrow o p/B$ has a left adjoint Λ_0 with identity unit.

• Dually one defines Chevalley **opfibrations** as 1-cells $p: E \to B$ for which the

- A bifibration is equipped with the structures of both a fibration and an opfibration.
- (Gray, 1966) showed that Chevalley fibrations in the 2-category \mathfrak{Cat} of (small) categories correspond to well-known (cloven) Grothendieck fibrations.
- (Street, 1974) characterizes Chevalley fibrations as pseudo-algebras of a slicing KZ 2-monads on 2-categories in Ross Street (1974). "Fibrations and Yoneda's lemma in a 2-category". In: Lecture Notes in Math., Springer, Berlin vol.420, pp. 104–133.

• In the case where p is carrable, the comma objects p/B and B/p can be expressed as pullbacks along the two projections from $B^{\downarrow} = B/B$ to B.

Fibrational extension of contexts

- In the case where p is carrable, the comma objects p/B and B/p can be expressed as pullbacks along the two projections from $B^{\downarrow} = B/B$ to B.
- Any extension map of contexts $U \colon \mathbb{T}_1 \to \mathbb{T}_0$ in the 2-category \mathfrak{Con} is (strictly) carrable.

Fibrational extension of contexts

- In the case where p is carrable, the comma objects p/B and B/p can be expressed as pullbacks along the two projections from $B^{\downarrow} = B/B$ to B.
- Any extension map of contexts $U \colon \mathbb{T}_1 \to \mathbb{T}_0$ in the 2-category \mathfrak{Con} is (strictly) carrable.
- Using this fact, and since comma objects exists in Con, we reformulate the notion of Chevalley fibration in Con.

Fibrational extension of contexts

• An extension map is called **fibrational** if Γ_1 has a right adjoint with identity counit.

Main theorem

Idea

THEOREM

If $U: \mathbb{T}_1 \to \mathbb{T}_0$ is a (op)fibrational extension of contexts, and M is any model of \mathbb{T}_0 in an elementary topos \mathcal{S} , then $p: \mathcal{S}[\mathbb{T}_1/M] \to \mathcal{S}$ is an (op)fibration of toposes.

References

Main theorem

THEOREM

If $U: \mathbb{T}_1 \to \mathbb{T}_0$ is a (op)fibrational extension of contexts, and M is any model of \mathbb{T}_0 in an elementary topos \mathcal{S} , then $p: \mathcal{S}[\mathbb{T}_1/M] \to \mathcal{S}$ is an (op)fibration of toposes.

Hazratpour Sina and Steve Vickers (2018). "Fibrations of contexts beget fibrations of toposes". In: URL: sinhp.github.io/publication/fibrations-context-topos

• For $\mathcal S$ a bounded $\mathcal S_0$ topos, and $\mathbb T_0=\mathbb O$ and $\mathbb T_1$ the extended context of $\mathbb T_0$ with a fresh edge from terminal to the unique node of $\mathbb T_0$.

Fibrations of toposes from extensionof theories

Local homeomorphism of toposes as opfibration

Idea

- For S a bounded S_0 topos, and $\mathbb{T}_0 = \mathbb{O}$ and \mathbb{T}_1 the extended context of \mathbb{T}_0 with a fresh edge from terminal to the unique node of \mathbb{T}_0 .
- We get a context extension map $\mathbb{T}_1 \to \mathbb{T}_0$. which is an opfibration.

References

Local homeomorphism of toposes as opfibration

• For S a bounded S_0 topos, and $\mathbb{T}_0 = \mathbb{O}$ and \mathbb{T}_1 the extended context of \mathbb{T}_0 with a fresh edge from terminal to the unique node of \mathbb{T}_0 .

Fibrations of toposes from extension of theories

- We get a context extension map $\mathbb{T}_1 \to \mathbb{T}_0$. which is an opfibration.
- And a bipullback of toposes

$$\begin{array}{ccc} \mathcal{S}/M \simeq \mathcal{S}[\mathbb{T}_1/M] & \longrightarrow & \mathcal{S}_0[X,x] = \mathcal{S}_0[X][\mathbb{T}_1/X] \\ & & \downarrow^p \\ \mathcal{S} & \longrightarrow & \mathcal{S}_0[X] \end{array}$$

Local homeomorphism of toposes as opfibration

• For S a bounded S_0 topos, and $\mathbb{T}_0 = \mathbb{O}$ and \mathbb{T}_1 the extended context of \mathbb{T}_0 with a fresh edge from terminal to the unique node of \mathbb{T}_0 .

Fibrations of toposes from extension of theories

- We get a context extension map $\mathbb{T}_1 \to \mathbb{T}_0$. which is an opfibration.
- And a bipullback of toposes

$$\begin{array}{ccc} \mathcal{S}/M \simeq \mathcal{S}[\mathbb{T}_1/M] & \longrightarrow & \mathcal{S}_0[X,x] = \mathcal{S}_0[X][\mathbb{T}_1/X] \\ & \downarrow^p & & \downarrow^p \\ \mathcal{S} & \longrightarrow & \mathcal{S}_0[X] \end{array}$$

• M^*p is a fibration of toposes.

Spectrum of Boolean algebras

• For S a bounded S_0 topos, and $\mathbb{T}_0 = \text{context}$ of Boolean algebras and \mathbb{T}_1 the extended context of Boolean algebra with a prime filter

Fibrations of toposes from extension of theories

- We get a context extension map $\mathbb{T}_1 \to \mathbb{T}_0$ which is a fibration.
- And a bipullback of toposes

$$Spec(B) \longrightarrow \mathcal{S}[\mathbb{T}_1/B]$$

$$\downarrow^{p}$$

$$1 \longrightarrow \mathcal{S}$$

• The points of $S[\mathbb{T}_1/B]$ are pairs (B,F) where F is an internal prime filter of B in topos S. "every fibrewise Stone bundle is a fibration."

Other examples

- Internal Algebraic dcpos as opfibrations
- Spectral spaces as fibrations
- SFP domains as bifibrations
- Internal groups equipped with an action as fibrations
- Intenral categories equipped with a torsor as opfibrations
- Internal modules as bifibrations
- Bag domains as opfibrations
- . . .

References

- Bakovic, Igor (2012). "Fibrations in tricategories". In: 93rd Peripatetic Seminar on Sheaves and Logic, University of Cambridge.
- Buckley, Mitchell (2014). "Fibred 2-categories and bicategories". In: vol. 218, pp. 1034-1074.
- Gray, John W. (1966). "Fibred and cofibred categories". In: In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pp. 21-83.
- Johnstone, Peter (1993). "Fibrations and partial products in a 2-category". In: Applied Categorical Structures vol.1.2, pp. 141–179. DOI: 10.1007/BF00880041.
- (2002). "Sketches of an elephant: A topos theory compendium". In: Oxford Logic Guides vol.1.no.44, Oxford University Press.
 - Sina, Hazratpour and Steve Vickers (2018). "Fibrations of contexts beget fibrations of toposes". In: URL: sinhp.github.io/publication/fibrations-context-topos.
- Spitters, Bas, Steven J. Vickers, and Sander Wolters (2012). "Gelfand spectra in Grothendieck toposes using geometric mathematics." In: Proceedings of QPL 2012.
- Street, Ross (1974). "Fibrations and Yoneda's lemma in a 2-category". In: Lecture Notes in Math., Springer, Berlin vol.420, pp. 104–133.

(2012) 48 VIII (2012)

THANK YOU FOR YOUR ATTENTION!