Autoencoders

Autoencoders

- When training CNNs, one of the problems is that we need a lot of labeled data.
- However, we might want to use raw (unlabeled) data for training CNN feature extractors, which is called self-supervised learning.
- Instead of labels, we use training images as both network input and output.
- The main idea of autoencoder is that we will have an encoder network that converts input image into some latent space (normally it is just a vector of some smaller size), and a decoder network, whose goal would be to reconstruct the original image.

Autoencoders

We train autoencoder to capture as much of the information from the original images as
possible for accurate reconstruction, the network tries to find best **embedding** of input
images to capture the meaning.

Example: Autoencoders with MNIST

```
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter(action='ignore', category=FutureWarning)

import tensorflow as tf
from tensorflow.keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
```

```
(x_train, y_trainclass), (x_test, y_testclass) = mnist.load_data()

def plotn(n, x):
    fig, ax = plt.subplots(1, n)
    for i, z in enumerate(x[0:n]):
        ax[i].imshow(z.reshape(28,28) if z.size==28*28 else z.reshape(14,14) if z.s
    plt.show()
```



```
In [40]: def plotidx(indices, x):
    fig, ax = plt.subplots(1, len(indices))
    for i, z in enumerate(x[indices]):
        ax[i].imshow(z.reshape(28,28) if z.size==28*28 else z.reshape(14,14) if z.s
    plt.show()

plotidx([5,6,7,8,9],x_train)
```


Example: Autoencoders with MNIST

plotn(5,x_train)

```
In [41]: from tensorflow.keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2
    from tensorflow.keras.models import Model
    from tensorflow.keras.losses import binary_crossentropy, mse
```

```
In [43]: input_img = Input(shape=(28,28,1))

x = Conv2D(16, (3,3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2,2), padding='same')(x)
x = Conv2D(8, (3,3), activation='relu', padding='same')(x)
x = MaxPooling2D((2,2), padding='same')(x)
x = Conv2D(8, (3,3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2,2), padding='same')(x)
encoder = Model(input_img, encoded)
input_rep = Input(shape=(4,4,8))
```

```
x = Conv2D(8, (3,3), activation='relu', padding='same')(input_rep)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3,3), activation='relu', padding='same')(x)
x = UpSampling2D((2,2))(x)
x = Conv2D(16, (3,3), activation='relu')(x)
x = UpSampling2D((2,2))(x)
decoded = Conv2D(1, (3,3), activation='sigmoid', padding='same')(x)

decoder = Model(input_rep, decoded)
autoencoder = Model(input_img, decoder(encoder(input_img)))
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
```

Example: Autoencoders with MNIST

```
Epoch 1/25
0.1335
Epoch 2/25
469/469 [============= ] - 7s 16ms/step - loss: 0.1290 - val_loss:
0.1229
Epoch 3/25
469/469 [============= ] - 7s 15ms/step - loss: 0.1205 - val_loss:
0.1163
Epoch 4/25
469/469 [============== ] - 7s 15ms/step - loss: 0.1148 - val_loss:
0.1113
Epoch 5/25
469/469 [============= ] - 7s 15ms/step - loss: 0.1107 - val_loss:
0.1083
Epoch 6/25
469/469 [============== ] - 7s 15ms/step - loss: 0.1080 - val_loss:
0.1057
Epoch 7/25
469/469 [============= ] - 7s 15ms/step - loss: 0.1061 - val_loss:
0.1042
Epoch 8/25
0.1029
Epoch 9/25
469/469 [============== ] - 7s 15ms/step - loss: 0.1035 - val_loss:
0.1019
Epoch 10/25
0.1011
Epoch 11/25
0.0999
Epoch 12/25
0.0993
Epoch 13/25
0.0986
Epoch 14/25
0.0980
Epoch 15/25
0.0976
Epoch 16/25
469/469 [============= ] - 7s 15ms/step - loss: 0.0983 - val_loss:
0.0971
Epoch 17/25
0.0966
Epoch 18/25
0.0963
Epoch 19/25
```

```
0.0962
Epoch 20/25
469/469 [============= ] - 8s 17ms/step - loss: 0.0968 - val_loss:
0.0957
Epoch 21/25
Epoch 22/25
0.0952
Epoch 23/25
469/469 [============= ] - 8s 17ms/step - loss: 0.0960 - val_loss:
0.0950
Epoch 24/25
0.0944
Epoch 25/25
```

Out[12]: <keras.src.callbacks.History at 0x1c8c195fa60>

Example: Autoencoders with MNIST

```
In [13]: y_test = autoencoder.predict(x_test[0:5])
       plotn(5,x_test)
       plotn(5,y_test)
      0
       10
       20
                20
                                 0
         0
                     0
                            20
                                       20
                                             0
                                                   20
                                                        0
                                                               20
        0
       10
       20
         0
                20
                     0
                            20
                                 0
                                       20
                                             0
                                                         0
                                                               20
                                                   20
In [14]: indices = [15, 28, 39, 123, 1012]
       y_test = autoencoder.predict(x_test[indices])
       plotidx(indices, x_test)
       plotn(len(indices), y_test)
      1/1 [======] - 0s 16ms/step
```


We consider some example inputs

We use the (trained) encoder to convert the input images into some latent space vectors.

```
In [24]: encoder = Model(input_img, encoded);
  encoded_imgs = encoder.predict(x_test[indices], verbose=False);
  plotn(len(indices),encoded_imgs.reshape(5,-1,8))
```


Let's decode the latent space vectors into images.

```
In [26]: plotn(len(indices),encoded_imgs.reshape(5,-1,8))
```


In [27]: res = decoder.predict(encoded_imgs, verbose=False)
 plotn(len(indices), res)

Example: Autoencoder with MNIST

If we add some small noise to the latent space representations.

In [29]: res = decoder.predict(encoded_imgs + 0.1*np.random.randn(len(indices),4,4,8), verbo
plotn(len(indices), res)

If we add a lot of noise to the latent space representations.

In [30]: res = decoder.predict(encoded_imgs + np.random.randn(len(indices),4,4,8), verbose=F
plotn(len(indices), res)

If we just pass noises to the decoder.

```
In [38]: res = decoder.predict(np.random.rand(5,4,4,8), verbose=False)
    plotn(5,res)
```


Denoising

Denoising

- Autoencoders can be used to remove noise from images.
- To train **denoiser**, we start with noise-free images, and add artificial noise to them.
- We feed autoencoder with **noisy images as input**, and **noise-free images as output**.

Example: Denoising for MNIST

We create a noisy dataset from the original noise-free MNIST dataset.

```
In [39]: def noisify(data):
    return np.clip(data+np.random.normal(loc=0.5,scale=0.5,size=data.shape),0.,1.)

x_train_noise = noisify(x_train)
    x_test_noise = noisify(x_test)

plotn(5,x_train_noise)
```


Example: Denoising for MNIST

We train an autoencoder for the denoising task with noisy images as input and noise-free images as output.

```
Epoch 1/25
469/469 [============== ] - 7s 15ms/step - loss: 0.2232 - val_loss:
0.1877
Epoch 2/25
469/469 [============= ] - 7s 16ms/step - loss: 0.1801 - val_loss:
0.1718
Epoch 3/25
0.1612
Epoch 4/25
469/469 [============= ] - 7s 15ms/step - loss: 0.1599 - val_loss:
0.1560
Epoch 5/25
0.1523
Epoch 6/25
0.1495
Epoch 7/25
469/469 [============== ] - 7s 15ms/step - loss: 0.1494 - val_loss:
0.1472
Epoch 8/25
469/469 [============== ] - 7s 16ms/step - loss: 0.1471 - val_loss:
0.1444
Epoch 9/25
0.1431
Epoch 10/25
469/469 [============== ] - 7s 15ms/step - loss: 0.1436 - val_loss:
0.1415
Epoch 11/25
0.1406
Epoch 12/25
0.1393
Epoch 13/25
0.1387
Epoch 14/25
0.1376
Epoch 15/25
0.1369
Epoch 16/25
469/469 [============== ] - 7s 16ms/step - loss: 0.1381 - val_loss:
0.1362
Epoch 17/25
469/469 [========================== ] - 8s 17ms/step - loss: 0.1374 - val_loss:
0.1356
Epoch 18/25
0.1356
Epoch 19/25
```

```
0.1346
Epoch 20/25
469/469 [============== ] - 8s 17ms/step - loss: 0.1359 - val_loss:
Epoch 21/25
469/469 [============== ] - 8s 17ms/step - loss: 0.1356 - val_loss:
Epoch 22/25
469/469 [============== ] - 8s 17ms/step - loss: 0.1350 - val_loss:
0.1340
Epoch 23/25
469/469 [============= ] - 8s 17ms/step - loss: 0.1346 - val_loss:
0.1333
Epoch 24/25
469/469 [============= ] - 8s 17ms/step - loss: 0.1342 - val_loss:
0.1328
Epoch 25/25
469/469 [============= ] - 8s 18ms/step - loss: 0.1338 - val_loss:
```

Out[40]: <keras.src.callbacks.History at 0x1c8e1749a80>

Example: Denoising for MNIST

We test the trained autoencoder to denoise some noisy images.

Exercises: The Fashion-MNIST dataset has the same image size. Let's try an autoencoder trained on MNIST to denoise Fashion-MNIST images, and vice versa.

Super-resolution

- Similarly to denoiser, we can train autoencoders to increase the resolution of images.
- To train super-resolution network, we start with high-resolution images, and automatically downscale them to produce network inputs.
- We feed the autoencoder with small images as inputs and high-res images as outputs.

In [42]: plotn(5, x_train)


```
In [43]: x_train_lr = tf.keras.layers.AveragePooling2D()(x_train).numpy()
    x_test_lr = tf.keras.layers.AveragePooling2D()(x_test).numpy()
    plotn(5, x_train_lr)
```


Example: Super-resolution on MNIST

```
In [2]: from tensorflow.keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2
    from tensorflow.keras.models import Model
    from tensorflow.keras.losses import binary_crossentropy, mse
```

WARNING:tensorflow:From C:\Users\HoangLN\AppData\Local\Programs\Python\Python310\lib\site-packages\keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_ent ropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy inst ead.

```
In [45]: input_img = Input(shape=(14, 14, 1))

x = Conv2D(16, (3,3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2,2), padding='same')(x)
x = Conv2D(8, (3,3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2,2), padding='same')(x)

encoder = Model(input_img, encoded)
input_rep = Input(shape=(4,4,8))
```

```
x = Conv2D(8, (3,3), activation='relu', padding='same')(input_rep)
x = UpSampling2D((2,2))(x)
x = Conv2D(8, (3,3), activation='relu', padding='same')(x)
x = UpSampling2D((2,2))(x)
x = Conv2D(16, (3,3), activation='relu')(x)
x = UpSampling2D((2,2))(x)
decoded = Conv2D(1, (3,3), activation='sigmoid', padding='same')(x)

decoder = Model(input_rep, decoded)
autoencoder = Model(input_img, decoder(encoder(input_img)))
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
```

We feed the autoencoder with small images as inputs and high-res images as outputs.

```
Epoch 1/25
0.1549
Epoch 2/25
469/469 [============== ] - 6s 12ms/step - loss: 0.1420 - val_loss:
0.1308
Epoch 3/25
0.1212
Epoch 4/25
469/469 [============== ] - 6s 12ms/step - loss: 0.1197 - val_loss:
0.1163
Epoch 5/25
0.1123
Epoch 6/25
0.1100
Epoch 7/25
469/469 [============= ] - 6s 12ms/step - loss: 0.1094 - val_loss:
0.1068
Epoch 8/25
0.1050
Epoch 9/25
0.1037
Epoch 10/25
469/469 [============= ] - 6s 12ms/step - loss: 0.1043 - val_loss:
0.1025
Epoch 11/25
0.1012
Epoch 12/25
0.1007
Epoch 13/25
0.0996
Epoch 14/25
0.0996
Epoch 15/25
0.0981
Epoch 16/25
469/469 [============= ] - 6s 12ms/step - loss: 0.0991 - val_loss:
0.0977
Epoch 17/25
0.0970
Epoch 18/25
0.0964
Epoch 19/25
```

```
0.0958
Epoch 20/25
469/469 [============== ] - 6s 12ms/step - loss: 0.0971 - val_loss:
0.0957
Epoch 21/25
469/469 [============= ] - 6s 12ms/step - loss: 0.0966 - val_loss:
Epoch 22/25
469/469 [============= ] - 6s 13ms/step - loss: 0.0963 - val_loss:
0.0948
Epoch 23/25
469/469 [============= ] - 6s 13ms/step - loss: 0.0959 - val_loss:
0.0944
Epoch 24/25
0.0942
Epoch 25/25
```

Out[46]: <keras.src.callbacks.History at 0x1c8e3fa8fd0>

Example: Super-resolution on MNIST

Exercise:

- Try to train similarly a super-resolution network on Fashion-MNIST.
- Try to train super-resolution networks on CIFAR-10 for 2x and 4x upscaling.

Variational Auto-Encoders (VAE)

Variational Auto-Encoders (VAE)

- Traditional autoencoders reduce the dimension of the input data somehow, figuring out the important features of input images. However, latent vectors often do not make much sense
- Taking MNIST dataset as an example, figuring out which digits correspond to different latent vectors is not an easy task, because *close latent vectors would not necessarily correspond to the same digits*.
- To train **generative models**, it is better to have some understanding of the latent space. This idea leads to **variational auto-encoder (VAE)**.

Variational Auto-Encoders (VAE)

- VAE is the autoencoder that learns to predict *statistical distribution of the latent* parameters, so-called **latent distribution**.
- For example, we assume that latent vectors would be distributed as $\mathcal{N}(z_{ ext{mean}}, e^{z_{ ext{log_sigma}}})$, where $z_{ ext{mean}}, z_{ ext{log_sigma}} \in \mathbb{R}^d$.
- Encoder in VAE learns to predict those parameters, and then decoder takes a random vector from this distribution to reconstruct the object.

Variational Auto-Encoders (VAE)

Variational Auto-Encoders (VAE)

- From input vector, we predict z_mean and z_log_sigma (instead of predicting the standard deviation itself, we predict its logarithm).
- $\bullet \ \ \text{We sample a vector} \ \ \text{sample} \ \ \text{from the distribution} \ \mathcal{N}(z_mean, z_log_sigma).$
- Decoder tries to decode the original image using sample as an input vector.

Example: VAE on MNIST

```
In [45]: intermediate_dim = 512
latent_dim = 2
batch_size = 128

tf.compat.v1.disable_eager_execution()

inputs = Input(shape=(784,))
h = Dense(intermediate_dim, activation='relu')(inputs)
```

```
z_mean = Dense(latent_dim)(h)
z_log_sigma = Dense(latent_dim)(h)

In [46]:
     @tf.function
     def sampling(args):
          z_mean, z_log_sigma = args
          bs = tf.shape(z_mean)[0]
          epsilon = tf.random.normal(shape=(bs, latent_dim))
          return z_mean + tf.exp(z_log_sigma) * epsilon

z = Lambda(sampling)([z_mean, z_log_sigma])
```

Example: VAE on MNIST

```
In [47]: encoder = Model(inputs, [z_mean, z_log_sigma, z])

latent_inputs = Input(shape=(latent_dim,))
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(784, activation='sigmoid')(x)

decoder = Model(latent_inputs, outputs)

outputs = decoder(encoder(inputs)[2])

vae = Model(inputs, outputs)
```

Example: VAE on MNIST

VAEs use a loss function consisting of two parts:

- **Reconstruction loss:** shows how close reconstructed image is to the target (can be MSE). It is the same loss function as in normal autoencoders.
- **KL loss**: based on Kullback-Leibler divergence a metric to estimate how similar two statistical distributions are. KL loss ensures that latent variable distributions tays close to normal distribution.

Reference: https://kvfrans.com/deriving-the-kl/

```
In [48]: @tf.function
def vae_loss(x1, x2):
    reconstruction_loss = mse(x1, x2)*784
    tmp = 1 + z_log_sigma - tf.square(z_mean) - tf.exp(z_log_sigma)
    kl_loss = -0.5*tf.reduce_sum(tmp, axis=-1)
    return tf.convert_to_tensor(tf.reduce_mean(reconstruction_loss + kl_loss))

vae.compile(optimizer='rmsprop', loss=vae_loss)
```

Example: VAE on MNIST

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/25
loss: 42.4046
Epoch 2/25
loss: 40.8550
Epoch 3/25
loss: 40.1389
Epoch 4/25
loss: 39.3001
Epoch 5/25
loss: 38.7456
Epoch 6/25
loss: 38.3061
Epoch 7/25
loss: 37.9434
Epoch 8/25
loss: 37.9262
Epoch 9/25
loss: 37.4126
Epoch 10/25
loss: 37.4081
Epoch 11/25
loss: 37.2256
Epoch 12/25
loss: 36.9466
Epoch 13/25
loss: 36.8332
Epoch 14/25
loss: 36.5917
Epoch 15/25
loss: 36.6288
Epoch 16/25
loss: 36.5753
Epoch 17/25
loss: 36.4585
Epoch 18/25
loss: 36.3772
Epoch 19/25
```

```
loss: 36.1943
Epoch 20/25
loss: 36.2304
Epoch 21/25
loss: 36.1639
Epoch 22/25
loss: 35.9932
Epoch 23/25
loss: 36.1477
Epoch 24/25
loss: 35.9552
Epoch 25/25
60000/60000 [=============] - 3s 51us/sample - loss: 35.4919 - val_
loss: 36.0094
```

Out[49]: <keras.src.callbacks.History at 0x1a4fb03d690>

Example: VAE on MNIST

```
In [50]: y_test = vae.predict(x_test_flat[0:5])
         plotn(5,x_test_flat)
         plotn(5,y_test)
          0
         10
        20
                    20
            0
                           0
                                   20
                                          0
                                                  20
                                                         0
                                                                 20
                                                                        0
                                                                                20
          0
         10
        20
            0
                    20
                           0
                                   20
                                          0
                                                         0
                                                                        0
                                                  20
                                                                 20
                                                                                20
```

```
In [51]: x_test_encoded = encoder.predict(x_test_flat)[0]
    plt.figure(figsize=(6,6))
    plt.scatter(x_test_encoded[:,0], x_test_encoded[:,1], c=y_testclass)
    plt.colorbar()
    plt.show()
```



```
In [52]: def plotsample(n):
    dx = np.linspace(-2,2,n)
    dy = np.linspace(-2,2,n)
    fig,ax = plt.subplots(n,n)
    for i,xi in enumerate(dx):
        for j,xj in enumerate(dy):
            res = decoder.predict(np.array([xi,xj]).reshape(-1,2))[0]
            ax[i,j].imshow(res.reshape(28,28))
            ax[i,j].axis('off')
    plt.show()
```



```
In [94]: fig = plt.figure(figsize=(20, 10))
         subfigs = fig.subfigures(1, 2)
         axsLeft = subfigs[0].subplots(1,1)
         x_test_encoded = encoder.predict(x_test_flat)[0]
         im = axsLeft.scatter(x_test_encoded[:,0], x_test_encoded[:,1], c=y_testclass);
         axsLeft.tick_params(labelsize=20)
         cbar = fig.colorbar(im, ax=axsLeft)
         cbar.ax.tick_params(labelsize=20)
         n = 10
         dx = np.linspace(-2,2,n)
         dy = np.linspace(-2,2,n)
         axRight = subfigs[1].subplots(n,n)
         for i,xi in enumerate(dx):
             for j,xj in enumerate(dy):
                 res = decoder.predict(np.array([xi,xj]).reshape(-1,2))[0]
                 axRight[i,j].imshow(res.reshape(28,28));
                 axRight[i,j].axis('off')
```

