| Название                            | Обознач.                  | Параметры                                                                      | Носитель         | Плотность                                                                                                   | Матем.<br>ожидание                                | Дисперсия                                              | Хар-кая<br>функция                                   |  |
|-------------------------------------|---------------------------|--------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--|
| Дискретные распределения            |                           |                                                                                |                  |                                                                                                             |                                                   |                                                        |                                                      |  |
| Дискретное<br>равномерное           | $U\{1,,N\}$               | $N \in \mathbb{N}$                                                             | $\{1,, N\}$      | $p(x) = 1/N, x \in \{1,, N\}$                                                                               | (N+1)/2                                           | $(N^2-1)/12$                                           | $\frac{e^{it} - e^{i(N+1)t}}{N(1 - e^{it})}$         |  |
| Бернулли                            | Bern(p)                   | $p \in (0,1)$                                                                  | {0,1}            | p(0) = 1 - p, p(1) = p                                                                                      | p                                                 | p(1-p)                                                 | $pe^{it} + 1 - p$                                    |  |
| Биномиальное                        | Bin(n,p)                  | $n \in \mathbb{N}, p \in (0,1)$                                                | $\{0,,n\}$       | $p(x) = C_n^x p^x (1-p)^{n-x}$                                                                              | np                                                | np(1-p)                                                | $\left(pe^{it} + 1 - p\right)^n$                     |  |
| Пуассоновское                       | $Pois(\lambda)$           | $\lambda > 0$                                                                  | $\mathbb{Z}_+$   | $p(x) = \frac{\lambda^x}{x!}e^{-\lambda}$                                                                   | λ                                                 | λ                                                      | $exp\left(\lambda(e^{it}-1)\right)$                  |  |
| Геометрическое                      | Geom(p)                   | $p \in (0,1]$                                                                  | N                | $p(x) = (1 - p)^{x - 1}p$                                                                                   | 1/p                                               | $(1-p)/p^2$                                            | $\frac{pe^{it}}{1 - (1 - p)e^{it}}$                  |  |
| Абсолютно непрерывные распределения |                           |                                                                                |                  |                                                                                                             |                                                   |                                                        |                                                      |  |
| Непрерывное<br>равномерное          | U[a,b]                    | $a, b \in \mathbb{R}, \\ a < b$                                                | [a,b]            | $p(x) = \frac{1}{b-a}I\{x \in [a, b]\}$                                                                     | (a+b)/2                                           | $(b-a)^2/12$                                           | $\frac{e^{itb} - e^{ita}}{it(b-a)}$                  |  |
| Нормальное                          | $\mathcal{N}(a,\sigma^2)$ | $a \in \mathbb{R},  \sigma^2 \in \mathbb{R}_+$                                 | $\mathbb{R}$     | $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}}$                                       | a                                                 | $\sigma^2$                                             | $exp(ita - \sigma^2 t^2/2)$                          |  |
| Гамма-распр.                        | $\Gamma(\alpha,\beta)$    | $\alpha > 0,  \beta > 0$                                                       | $\mathbb{R}_{+}$ | $p(x) = \frac{\alpha^{\beta} x^{\beta-1}}{\Gamma(\beta)} e^{-\alpha x}, x > 0$                              | $\beta/\alpha$                                    | $\beta/\alpha^2$                                       | $(1 - it/\alpha)^{-\beta}$                           |  |
| Экспоненц.                          | $Exp(\lambda)$            | $\lambda > 0$                                                                  | $\mathbb{R}_+$   | $p(x) = \lambda e^{-\lambda x} I\{x > 0\}$                                                                  | $1/\lambda$                                       | $1/\lambda^2$                                          | $\lambda/(\lambda-it)$                               |  |
| Коши                                | $Cauchy(\sigma)$          | $\sigma > 0$                                                                   | $\mathbb{R}$     | $p(x) = \frac{\sigma}{\pi(x^2 + \sigma^2)}$                                                                 | Нет                                               | Нет                                                    | $e^{-\sigma t }$                                     |  |
| Бета-распр.                         | $Beta(\alpha, \beta)$     | $\alpha > 0,  \beta > 0$                                                       | [0, 1]           | $p(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$                                         | $\alpha/(\alpha+\beta)$                           | $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ |                                                      |  |
| Парето                              | $Pareto(\alpha)$          | $x_0 > 0, \alpha > 0$                                                          | $[x_0, +\infty)$ | $p(x) = \frac{\alpha x_0^{\alpha}}{x^{\alpha+1}}$                                                           | $\frac{\alpha x_0}{\alpha - 1}$ если $\alpha > 1$ | $rac{lpha x_0^2}{(lpha-1)^2(lpha-2)}$ если $lpha>2$   |                                                      |  |
| Многомерные                         | Многомерные распределения |                                                                                |                  |                                                                                                             |                                                   |                                                        |                                                      |  |
| Нормальное                          | $\mathcal{N}(a,\Sigma)$   | $a \in \mathbb{R}^n,$ $\Sigma \in \mathbb{R}^{n \times n},$ симм., неотр. опр. | $\mathbb{R}^n$   | $p(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} \times \exp\left(-\frac{1}{2}(x-a)^T \Sigma^{-1}(x-a)\right)$ | a                                                 | Σ                                                      | $exp\left(ia^{T}t - \frac{1}{2}t^{T}\Sigma t\right)$ |  |

 $\xi_1 \sim \mathcal{N}(a_1, \sigma_1^2)$  незав. от  $\xi_2 \sim \mathcal{N}(a_2, \sigma_2^2) \implies \xi_1 + \xi_2 \sim \mathcal{N}(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$ ,  $c\xi_1 \sim \mathcal{N}(ca_1, c^2\sigma_1^2)$   $\xi_1 \sim Bin(n_1, p)$  незав. от  $\xi_2 \sim Bin(n_2, p) \implies \xi_1 + \xi_2 \sim Bin(n_1 + n_2, p)$   $\xi_1 \sim Pois(\lambda_1)$  незав. от  $\xi_2 \sim Pois(\lambda_2) \implies \xi_1 + \xi_2 \sim Pois(\lambda_1 + \lambda_2)$   $\xi_1 \sim \Gamma(\alpha, \beta_1)$  незав. от  $\xi_2 \sim \Gamma(\alpha, \beta_2) \implies \xi_1 + \xi_2 \sim \Gamma(\alpha, \beta_1 + \beta_2)$ ,  $c\xi_1 \sim \Gamma(\alpha/c, \beta_1)$   $\xi \sim Exp(\lambda) \implies \xi \sim \Gamma(\lambda, 1)$ 

| Название                            | Обознач.                  | Питон (scipy.stats)                                                                                     |  |  |  |  |
|-------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| Дискретные распределения            |                           |                                                                                                         |  |  |  |  |
| Дискретное                          | $U\{1,,N\}$               | randint(low=1, high=N+1)                                                                                |  |  |  |  |
| равномерное                         |                           |                                                                                                         |  |  |  |  |
| Бернулли                            | Bern(p)                   | bernoulli(p)                                                                                            |  |  |  |  |
| Биномиальное                        | Bin(n,p)                  | binom(n, p)                                                                                             |  |  |  |  |
| Пуассоновское                       | $Pois(\lambda)$           | poisson(mu= $\lambda$ )                                                                                 |  |  |  |  |
| Геометрическое                      | Geom(p)                   | geom(p) .                                                                                               |  |  |  |  |
| Абсолютно непрерывные распределения |                           |                                                                                                         |  |  |  |  |
| Непрерывное                         | U[a,b]                    | uniform(loc=a, scale=b-a)                                                                               |  |  |  |  |
| равномерное                         |                           |                                                                                                         |  |  |  |  |
| Нормальное                          | $\mathcal{N}(a,\sigma^2)$ | $\operatorname{norm}(\operatorname{loc}=a, \operatorname{scale}=\sigma) \ (\operatorname{He} \sigma^2)$ |  |  |  |  |
| Гамма-распр.                        | $\Gamma(\alpha,\beta)$    | gamma(a= $\beta$ , scale= $1/\alpha$ )                                                                  |  |  |  |  |
| Экспоненц.                          | $Exp(\lambda)$            | expon(scale=1/lpha)                                                                                     |  |  |  |  |
| Коши                                | $Cauchy(\sigma)$          | $cauchy(scale=\sigma)$                                                                                  |  |  |  |  |
| Бета-распр.                         | $Beta(\alpha, \beta)$     | beta(a= $\alpha$ , b= $\beta$ )                                                                         |  |  |  |  |
| Парето                              | $Pareto(\alpha)$          | $pareto(b=\alpha)$                                                                                      |  |  |  |  |
| Многомерные распределения           |                           |                                                                                                         |  |  |  |  |
| Нормальное                          | $\mathcal{N}(a,\Sigma)$   | multivariate_normal(                                                                                    |  |  |  |  |
|                                     |                           | mean= $a$ , cov= $\Sigma$ )                                                                             |  |  |  |  |

$$\xi \sim \mathcal{N}(0, \sigma^2) \implies \begin{cases} \text{если } n \text{ четно, то } \mathsf{E}\xi^n = (n-1)!!\sigma^n; \\ \text{если } n \text{ нечетно, то } \mathsf{E}|\xi|^n = (n-1)!!\sigma^n\sqrt{2/\pi}. \end{cases}$$
 $\xi \sim \Gamma(\alpha, \beta) \implies \mathsf{E}\xi_1^k = \beta(\beta+1)...(\beta+k-1)/\alpha^k$ 

$$\Gamma(x) = \int_{0}^{+\infty} t^{x-1}e^{-t}dt, \quad \Gamma(x+1) = x\Gamma(x), \quad \Gamma(n+1) = n!, \quad \Gamma(1/2) = \sqrt{\pi}$$

$$B(\alpha, \beta) = \int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1}dx, \quad B(\alpha, \beta) = B(\beta, \alpha)$$

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \quad B(l, k) = \frac{1}{(l+k-1)C_{k+l-2}^{l-1}}$$

