

Instituto de Ciências Exatas Departamento de Ciência da Computação

Computação Ubíqua

Danilo Ávila Monte Christo Ferreira Tales Mundim Andrade Porto

Monografia apresentada como requisito parcial para conclusão do Bacharelado em Ciência da Computação

Orientador Prof. Dr. Carla Denise Castanho

> Brasília 2011

Universidade de Brasília — UnB Instituto de Ciências Exatas Departamento de Ciência da Computação Bacharelado em Ciência da Computação

Coordenador: Prof. Lamar

Banca examinadora composta por:

Prof. Dr. Carla Denise Castanho (Orientador) — CIC/UnB

Prof. Dr. Professor I — CIC/UnB

Prof. Dr. Professor II — CIC/UnB

CIP — Catalogação Internacional na Publicação

Ferreira, Danilo Ávila Monte Christo.

Computação Ubíqua / Danilo Ávila Monte Christo Ferreira, Tales Mundim Andrade Porto. Brasília : UnB, 2011.

45 p.: il.; 29,5 cm.

Monografia (Graduação) — Universidade de Brasília, Brasília, 2011.

1. palvrachave1, 2. palvrachave2, 3. palvrachave3

CDU 004.4

Endereço: Universidade de Brasília

Campus Universitário Darcy Ribeiro — Asa Norte

CEP 70910-900

Brasília-DF — Brasil

Instituto de Ciências Exatas Departamento de Ciência da Computação

Computação Ubíqua

Danilo Ávila Monte Christo Ferreira Tales Mundim Andrade Porto

Monografia apresentada como requisito parcial para conclusão do Bacharelado em Ciência da Computação

Prof. Dr. Carla Denise Castanho (Orientador) ${\rm CIC/UnB}$

Prof. Lamar Coordenador do Bacharelado em Ciência da Computação

Brasília, 2 de maio de 2011

Dedicatória

Dedico a....

Agradecimentos

Agradeço a....

Resumo

A ciência...

Palavras-chave: palvrachave1, palvrachave2, palvrachave3

Abstract

The science...

Keywords: keyword1, keyword2, keyword3

Sumário

1	Introdução				
	1.1	Organ	ização do trabalho	2	
2	Rec	onhec	imento Facial	3	
	2.1	Biome	etria	3	
	2.2	Recon	hecimento Facial	6	
		2.2.1	Detecção de Faces em imagens	8	
			Reconhecimento das Faces encontradas		
\mathbf{R}_{i}	eferê	ncias		13	

Lista de Figuras

2.1	Exemplos de algumas características biométricas (7)	4
2.2	Exemplo de um processo de detecção de uma face em uma imagem	8
2.3	Distância Euclidiana entre dois pontos em duas dimensões	10
2.4	Mapa exemplo para redução de dimensionalidade	11

Lista de Tabelas

2.1	Requisitos teóricos para algoritmos de reconhecimento facial (2)	5
2.2	Requisitos práticos para algoritmos de reconhecimento facial (2)	5

Capítulo 1

Introdução

A computação ubíqua a tempos vem sendo tema de diversas pesquisas ao redor do mundo. Mark Weiser diz que o computador do futuro deve ser algo invisível (12, 13) proporcionando ao usuário um melhor foco na tarefa e não na ferramenta. A computação ubíqua tenta atribuir essa invisibilidade aos computadores buscando cada vez mais a diminuição do tamanho, a especificidade da tarefa e se acoplando aos objetos do dia-adia

Um ambiente onde a computação ubíqua acontece em sua totalidade é chamado de SmartSpace (1). Esse ambiente provê ao usuário uma melhor forma de interagir com os computadores usando diversas tecnologias que estimulam a interatividade natural. Tais tecnologias são capazes de fornecer inteligência, ao SmartSpace, necessária para concretizar a visão da ubicomp (4).

Para conseguir uma boa interação entre as diversas peças que compõem o SmartSpace é necessário que se tenha a disposição informações de contexto, como quem está no ambiente, onde está, o que está fazendo e outras que ajudam o sistema a definir o melhor ajuste dos equipamentos. Com uma base rica de informações de contexto, contendo os perfis dos usuários, garantimos uma maior acurácia na tomada de decisões. Informações de contexto como essas são complicadas de se obter devido a alta dinamicidade do ambiente, no qual usuários entram e saem a todo momento e interagem com diversos equipamentos.

A identificação de usuário em um SmartSpace é feita por meio de sistema de reconhecimento automático. Há alguns anos, um grande número de pesquisas vem sendo desenvolvidas para criação sistemas deste tipo (3). Um dos motivos clássicos é que os métodos baseados em cartões de identificação e senhas não são altamente confiáveis. Estes podem ser perdidos, extraviados e até fraudados (11).

Um ambiente ubíquo capaz de reconhecer seus usuários, pode prover uma personalização automática do ambiente de acordo com as prefrências de cada usuário e até mesmo prover um ambiente mais seguro com controle de acesso físico e prevenção de fraudes (3). Atualmente, os métodos de reconhecimento mais utilizados são baseados no uso de cartões magnéticos e senhas, que requerem sua utilização durante uma transação, mas que não verificam sua idoneidade (5).

Hoje em dia, várias técnicas de reconhecimento por meio de faces, íris, voz, entre outras, vêm sendo estudadas e utilizadas em sistemas de reconhecimento automático (11). O reconhecimento facial pode ser considerada como uma das principais funções do ser humano pois permite identificar uma grande quantidade de faces e aspectos psicológi-

cos demonstrados pela fisionomia. Pode ser considerada, também, como um problema clássico da visão artificial pela complexidade existente na detecção e reconhecimento de características e padrões (3).

O reconhecimento facial vem se desenvolvendo junto a "quarta geração" de computadores através de sua aplicação na nova geração de interfaces que consiste na detecção e reconhecimento de pessoas (3).

É proposta então uma solução para o problema de localização e identificação de perfis de usuários em um SmartSpace utilizando como base o middleware UbiquitOS (6) integrado com o Kinect.

1.1 Organização do trabalho

Explicar a estrutura da monografia.

Capítulo 2

Reconhecimento Facial

Algo explicando o que terá nesse capítulo.

2.1 Biometria

As abordagens de identificação pessoal que utilizam "alguma coisa que você sabe", como Número de Identificação Pessoal (PIN - "Personal Identification Number"), ou "alguma coisa que você tenha", como um cartão de identificação, não são confiáveis o suficiente para satisfazer os requisitos de segurança de um sistema de transações eletrônicas porque não têm a capacidade de diferenciar um usuário legítimo de um impostor que adiquiriu de forma ilegal o privilégio de acesso (8). Esta fragilidade pode ser evitada se utilzarmos o nosso corpo como chave do sistema. Alguns traços fisícos ou comportamentais são muito mais complicados de serem forjados que uma cadeia de caracteres (7).

Biometria é uma tecnologia utilizada para identificação de um indivíduo baseado em suas características físicas ou comportamentais, baseia-se em "alguma coisa que você é ou faz" para realizar a identificação e, por isso, tem a capacidade de diferenciar entre um indivíduo legítimo de um impostor (8). As características físicas estão relacionadas a composição do corpo humano e seu formato e as comportamentais estão relacionadas ao comportamento das pessoas (7). A figura 2.1 contém alguns exemplos desses dois tipos diferentes de características biométricas.

Teoricamente, qualquer característica física/comportamental pode ser utilizada para identificação caso siga alguns dos seguintes requisitos (2):

- 1. universidade: qualquer pessoa comum pode ser avaliada sobre essa característica;
- 2. **singularidade**: dada duas pessoas distinas, elas não podem ter a mesma característica dentro de uma proporção satisfatória;
- permanência: a característica não pode mudar significativamente de acordo com o tempo;
- 4. exigibilidade: pode ser mensurada quantitativamente;

Porém, na prática também são considerados outros requisitos (2):

1. **desempenho**: o processo de identificação deve apresentar um resultado aceitável;

Características Biométricas

Figura 2.1: Exemplos de algumas características biométricas (7).

- 2. aceitação: indica em que ponto as pessoas estão dispostas a aceitar o sistema biométrico;
- 3. evasão: refere a facilidade de ser adulterado;

São várias as vantagens que os sistemas biométricos têm em relação aos sistemas convencionais. Listamos as vantagens principais (7):

- características biométricas não podem ser perdidas ou esquecidas;
- características biométricas são difíceis de serem copiadas, compartilhadas e distribuídas;
- os sistemas biométricos necessitam que a pessoa esteja presente no local da autenticação;

Na prática um sistema biométrico deve ser capaz de (8):

- 1. atingir uma acurácia aceitável e com uma velocidade razoável;
- 2. não ser prejudiciável aos indivíduos e ser aceito pela população alvo;
- 3. ser suficientemente robusto para métodos fraudulentos;

Novas técnicas de reconhecimento por meio de face, íris, retina e voz, entre outras, têm sido abordadas para aplicações em sistemas de reconhecimento automático (3, 11). Das nove características utilizadas atualmente a face é uma das mais populares (2). Nas tabelas 2.1 e 2.2 são mostradadas as noves características e seus respectivos comportamentos baseados nos requisitos mencionados acima.

Tabela 2.1: Requisitos teóricos para algoritmos de reconhecimento facial (2).

Biometria	Universidade	Singularidade	Permanência	Exigibilidade
Face	Alta	Baixa	Média	Alta
Digital	Média	Alta	Alta	Média
Geometria da Mão	Média	Média	Média	Alta
"Hand Vein"	Média	Média	Média	Média
Iris	Alta	Alta	Alta	Média
"Retina Scan"	Alta	Alta	Média	Baixa
Assinatura	Baixa	Baixa	Baixa	Alta
Voz	Média	Baixa	Baixa	Média
Termograma	Alta	Alta	Baixa	Alta

Tabela 2.2: Requisitos práticos para algoritmos de reconhecimento facial (2).

Biometria	Desempenho	Aceitação	Evasão
Face	Baixa	Alta	Baixa
Digital	Alta	Média	Alta
Geometria da Mão	Média	Média	Média
"Hand Vein"	Média	Média	Alta
Iris	Média	Média	Alta
"Retina Scan"	Alta	Baixa	Alta
Assinatura	Baixa	Alta	Baixa
Voz	Baixa	Alta	Baixa
Termograma	Média	Alta	Alta

Os sistemas biométricos podem ser classificados em sistemas de verificação ou identificação. Sistemas de verificação são aqueles que autenticam a identidade dos usuários comparando-os com os próprios templates. Eles conduzem uma comparação "um para um" e determinam se o usuário é quem realmente diz ser. O maior desáfio para esse tipo de sistema é a acurácia. Geralmente, não é muito difícil satisfazer o requisito de tempo de resposta pois somente uma comparação "um para um" é feita (8).

Sistemas de identificação reconhecem um indivíduo pesquisando em todo o banco de dados procurando por uma correspondência. Eles conduzem uma comparação "um para muitos" para estabelecer a identidade do indivíduo. Ao contrário dos sistemas de verificação, nesse tipo de sistema tanto a acurácia quanto o tempo são os grandes desafios, por causa da necessidade de explorar todo o banco de dados. Geralmente, sistemas de identificação são mais complexos que sistemas de verificação (8).

Em um sistema biométrico exitem duas possíveis respostas, um usuário é ou não é quem afirma ser, sendo assim o sistema pode classificar o usuário como cliente ou impostor. Nessa tomada de decisão pode ocorrer dois tipos de erros: uma falsa aceitação, ao aceitar um impostor, (False Acceptance - FA) ou uma falsa rejeição (False Rejection - FR), ao rejeitar um cliente. Baseado nesses erros, duas taxas são utilizadas para avaliar sistemas biométricos: taxa de falsa aceitação (False Acceptance Rate - FAR) e taxa de falsa rejeição (False Rejection Rate - FRR) (7).

A FAR é a probabilidade de um sistema biométrico aceitar um impostor como cliente. Essa probabilidade é calculada pela equação (2.1) em que Nfa é o número de falsas aceitações e Ni é o número de impostores que tentaram acessar o sistema. A variação da taxa é representada pelo intervalo fechado [0,1], onde o valor 1 significa que todos os impostores foram falsamente aceitos e o valor 0 significa que todos impostores foram rejeitados. Logo quanto menor o FAR mais seguro o sistema é (7).

$$FAR = \frac{Nfa}{Ni}(7) \tag{2.1}$$

A FRR é a probabilidade de um sistema biométrico rejeitar um cliente e classificalo como impostor. Essa probabilidade é calculada pela equação (2.2) em que Nfr é o número de falsas rejeições e Nc é o número de clientes que tentaram acessar o sistema. A variação da taxa é representada pelo intervalo fechado [0,1], onde o valor 1 significa que todos os clientes foram falsamente rejeitados e o valor 0 significa que todo os cliente foram aceitos corretamente. Em sistemas cuja performance tem maior grau de prioridade que a segurança, deve-se reduzir a FRR para minimizar a ocorrência de falsas rejeições (7).

$$FRR = \frac{Nfr}{Nc}(7) \tag{2.2}$$

A partir dessas taxas de erro, pode-se obter outras medidas como a *Equal Error Rate* (ERR). Esta corresponde a taxa de erro na qual tanto a FAR quanto a FRR possuem o mesmo valor. Como muitos sistemas têm comportamentos diferentes, a ERR normalmente é utilizada para uma comparação mais rigorosa entre o sistemas. Quanto menor for a ERR, mas presciso é considerado o sistema (7).

2.2 Reconhecimento Facial

O reconhecimento facial é uma das atividades mais comuns realizadas diariamente por seres vivos dotados de certa inteligência. Essa simples atividade vem despertando o interesse de pesquisadores que trabalham com Visão Computacional e Inteligência Artificial. O objetivo desses pesquisadores é de construir sistemas artificiais capazes de realizar o reconhecimento de faces humanas e a partir desta capacidade construir os mais diferentes tipos de aplicações: sistemas de vigilância, controles de acesso, definções automáticas de perfis, entre outros (10).

No anos 70, os estudos do reconhecimento facial eram baseados sobre atributos faciais mensuráveis como olhos, nariz, sobrancelhas, bocas, entre outros. Porém, os recursos computacionais eram escassos e os algoritmos de extração de características eram inefi-

ciêntes. Nos anos 90, as pesquisas na área ressurgiram, inovando os métodos existentes (3, 8) e disseminando a técnica.

Um dos motivos que incentivou os diversos estudos sobre reconhecimento facial são as vantagens que o mesmo possui em relação a impressão digital e a íris. No reconhecimento por impressão digital, a desvantagem consiste no fato que nem todas as pessoas possuem uma impressão digital com "qualidade" suficiente para ser reconhecida por um sistema. Já o reconhecimento por íris apresenta uma alta confiabilidade e larga variação, sendo estável pela vida toda. Porém, a desvantagem está relacionada ao modo de captura da íris que necessita de um alinhamento entre a câmera e os olhos da pessoa (3).

Basicamente existem duas particularidades que fazem da face uma característica biométrica bastante atrativa (7):

- 1. A aquisição da face é feita de forma fácil e não-intrusiva;
- Possui uma baixa privacidade de informação: como a face é exposta constantemente, caso uma base de faces seja roubada, essas informações não representam algum risco e não possibilitam um uso impróprio;

Umas das maiores dificuldades dos sistemas de reconhecimento é tratar a complexidade dos padrões visuais. Mesmo sabendo que todas as faces possuem padrões reconhecidos, como boca, olhos e nariz, elas também possuem variações únicas que devem ser utilizadas para determinar as características relevantes. Outra dificuldade encontrada em relação a essas características é que elas possuem uma larga variação estatística para serem consideradas únicas para cada indivíduo. O ideal seria que a variância inter-classe seja grande e a intra-classe pequena, pois assim imagens de diferentes faces geram os códigos mais diferentes possíveis, enquanto imagens de uma mesma face geram os códigos mais similares possíveis. Portanto, estabelecer uma representação que capture as características ideias é um difícil problema (3).

Do ponto de vista geral, o recohecimento facial continua sendo um problema aberto por causa de várias dificuldades que aumentam a variância intra-classe (8). Entre estas, destacamos as mais comuns (3):

- iluminação;
- ângulos e poses;
- expressões;
- comésticos e acessórios;
- extração da face do contexto ou do fundo;

No contexto de identificação, o reconhecimento facial se resume no reconhecimento de um "retrato" frontal, estático e controlado. Estático pois os "retratos" utilizados nada mais são que imagens, podendo ser tanto de intensidade quanto de profunidade e controlado pois a iluminação, o fundo, a resolução dos dispositivos de aquisição e a distância entre eles e as faces são essencialmente fixas durante o processo de aquisição da imagem (8).

Basicamente, o processo de reconhecimento facial pode ser divido em duas tarefas principais (8):

- 1. Detecção de faces em imagens;
- 2. Reconhecimento das faces encontradas;

Falaremos dessas duas tarefas separadamente nas próximas subseções.

2.2.1 Detecção de Faces em imagens

A primeira etapa para o reconhecimento de faces é a detecção de um rosto, e a partir daí a comparação do mesmo com modelos conhecidos pelo sistema (8, 10). Em um sistema de reconhecimento facial, tanto o tempo de resposta quanto a confiabilidade desta etapa influência diretamente no desempenho e o emprego deste sistema (10).

A detecção de faces é definida como o processo que determina a existência ou não de faces em uma imagem e uma vez encotrada alguma face, sua localização deve ser apontada através de um enquadramento ou através de suas coordenadas dentro da imagem (10). A figura 2.2 representa um exemplo da detecção de uma face em uma imagem.

Figura 2.2: Exemplo de um processo de detecção de uma face em uma imagem.

O processo de detecção de faces geralmente é pelas seguintes razões mostradas a seguir:

- 1. **Pose**: as imagens de uma face podem variar de acordo com a posição relativa entre a camêra e a face (frontal, 45 graus, perfil, "de cabeça para baixo"), e com isso algumas características da face, como olhos e nariz, podem ficar parcialmente ou totalmente ocultadas (9).
- 2. **Presença de acessórios**: características faciais básicas importantes para o processo de detecção podem ficar ocultadas pela presença de acessórios, como óculos, bigode, barba, entre outros (9, 10).

- 3. Expressões faciais: embora a maioria das faces apresente estruturas semelhantes (olhos, bocas, nariz, entre outros) e são dispostas aproximadamente na mesma configuração de espaço, pode haver um grande número de componentes não rigídos e texturas diferentes entre as faces. Um exemplo são as flexibilizações causadas pelas expressões faciais (9, 10);
- 4. **Obstrução**: faces podem ser obstruídas por outros objetos. Em uma imagem com várias faces, uma face pode obstruir outra (9).
- 5. Condições da imagem: a não previsibilidade das condições da imagem em ambientes sem restrições de ilimuniação, cores e objetos de fundo (9, 10).

Atualmente, já existem diferentes métodos/técnicas de detecção de faces. Faleremos um pouco sobre os métodos baseados em imagens de itensidade e de cor e depois falaremos sobre os baseados em imagens 3D.

Um problema relacionado e muito importante é como avaliar a performance dos métodos de detecção de faces propostos. Com isso, muitas métricas foram adotadas como tempo de aprendizagem, número de amostras necessárias no treinamento e a proporção entre taxas de detecção e "falso alarme". Esta última é dificultada pelas diferentes definições para as taxas de detecção e falso alarme adotadas pelos pesquisadores (9).

2.2.2 Reconhecimento das Faces encontradas

Na etapa de reconhecimento, as faces detectadas e processadas, serão comparadas com um banco de dados de faces conhecidas. Essa comparação tem uma acurácia media de 30-90% entre as diversas técnicas []. Esse é um forte campo de pesquisa desde a década de 90 e as técnicas se invovam ano ápos ano.

Técnicas 2D:

- 1. Eigenfaces []
- 2. Redes Neurais []
- 3. Fisher Faces []

Com o surgimento da tecnologia 3D o reconhecimento facial se trasformou mais confiavel pois a imagem 3D evita problemas comum em reconhecimentos faciais 2D como a mudança na iluminação, diferentes expressões faciais, maquiagem e orientação da cabeça. Técnicas 3D:

- 1. "Face Recognition Homepage" [
- 2. "3D Face Recognition" []
- 3. "Active Appearance Models" []

O Eigenface é um algoritmo de reconhecimento facial 2D simples e fácil de implementar. Os passos utilizados pelo Eigenface também são utilizados em muitos métodos avançados. Os princípios básicos por trás dele como PCA("Principal Component Analisys") e "distance-based matching" aparecem mais e mais na computação visual e aplicações diversas de maquinas inteligentes. O Eigenface trabalha de forma simples, dada uma imagem de um rosto desconhecido e imagens do rosto das pessoas conhecidas.

- 1. Computa a distância entre a nova imagem e cada uma das imagens já conhecidas.
- 2. Seleciona a imagem mais proxima do novo rosto.
- 3. Se a distância da nova imagem para a imagem exemplo for maior que o limite predefinido, "reconhece" a imagem caso contrario classifica como "desconhecida".

A distância entre as imagens é medida ponto a ponto. Esta é também chamado de distância euclidiana. Em duas dimensões (2D), a distância euclidiana entre os pontos P_1 e P_2 2.3.

$$d_{12} = \sqrt{(d_{x2} + d_{y2})}, onded_x = x_2 - x_1 e d_y = y_2 - y_1.$$
 (2.3)

Figura 2.3: Distância Euclidiana entre dois pontos em duas dimensões.

Imagens possuem "ruídos" e vamos definir ruído como qualquer coisa que atrapalhe na identificação, intensidade de luz, por exemplo, é uma delas. Cada pixel possui uma intensidade de ruído diferente e com cada pixel dando a sua contribuição fica muito difícil encontrar a imagem correta. Uma solução é diminuir a dimensionalidade da imagem tornando assim o ruido menor e sendo possível extrair as informações importante da imagem.

Um dos métodos existentes para redução de imagem é o "PCA - Principal Components Analysis".

Para se ter uma idéia do que é o PCA, vejamos um caso especial chamado de "least squares line fit". O lado esquerdo da Figura 2.4 mostra um exemplo de uma linha média entre três pontos, que são, no mapa em 2D, Los Angeles, Chicago e Nova York.

Estes três pontos do mapa são quase, mas não completamente, uma única linha. Se você estava planejando uma viagem, essa relação já seria uma informação útil. Nesse sentido, uma única linha expressa algo essencial sobre seu relacionamento. A linha tem apenas uma dimensão, por isso, se podemos substituir localizações dos pontos de 2D com localizações ao longo de uma única linha, vamos ter reduzido a sua dimensionalidade.

Como eles já estão quase alinhados, uma linha pode ser traçada através deles com pouco erro. O erro no ajuste da linha é medido pela soma do quadrado da distância de cada ponto da linha. A linha de melhor ajuste é aquela que possui o menor erro.

Figura 2.4: Mapa exemplo para redução de dimensionalidade

Embora a linha encontrada acima é um objeto 1D, é localizado dentro de um espaço maior, 2D, e tem uma orientação, sua inclinação. A inclinação da linha expressa algo importante sobre os três pontos. Ele indica a direcão em que eles estão mais espalhados.

Se posicionarmos a origem do nosso plano cartesiano em algum lugar dessa linha, podemos escrever a equação da linha como uma simples y = mx, onde m é a inclinação da linha: dy/dx.

Quando ele é descrito desta maneira, a linha é um subespaço do espaço 2D definido pelo sistema de coordenadas. Esta descrição enfatiza o aspecto dos dados que estamos interessados, ou seja, a direção que mantém esses pontos mais separados um do outro.

Esta direção da separação maxima é chamada de primeira componente principal de um conjunto de dados. A próxima direção com maxima separação é a perpendicular a esta. Essa é a segunda componente principal. Em um conjunto de dados 2D, podemos ter no máximo dois componentes principais.

No entanto, o número de componentes principais que podemos encontrar também é limitada pelo número de pontos de dados. Para ver o porque disto podemos pensar em um conjunto de dados que consiste de apenas um ponto. Qual é o sentido da separação máxima para esse conjunto de dados? Não há um só, porque não há nada para separar. Agora, considere um conjunto de dados com apenas dois pontos. A linha que conecta esses dois pontos é o primeiro componente principal. Mas não há segundo componente principal, porque não há nada mais para separar: os dois pontos estão totalmente na linha.

Em Eigenface, cada imagem da face, de tamanho 50x50, é tratada como um ponto (com espaço dimensional de 2500). Portanto, o número de componentes principais, podemos encontrar nunca será mais do que o número de imagens de faces menos um.

Embora seja importante ter um entendimento conceitual do que os componentes principais são, você não precisa saber os detalhes de como encontrá-los para implementar o Eigenface. Essa parte já foi feito para você pelo "OpenCV".

Voltando ao mapa da Figura 2.4, agora que nós encontramos um subespaço 1D, temos uma maneira de converter os pontos em 2D para 1D. Esse processo se chama projeção. Quando você projeta um ponto em um subespaço, você atribui a ele a localização do subespaço mais próximo de sua localização no espaço de dimensão superior. Para projetar um ponto do mapa para a linha, você encontra o ponto da linha que está mais próximo do ponto 2D. Essa é sua projeção.

Há uma função no "OpenCV" para projetar os pontos sobre um subespaço, então, novamente, você só precisa de um entendimento conceitual. Você pode deixar os detalhes algorítmicos para a biblioteca.

As marcas azuis na Figura 2.4 mostram as localizações no subespaço das três cidades que definiram a linha. Outros pontos 2D também pode ser projetado para esta linha. O lado direito da Figura 2.4 mostra a localização prevista para Phoenix, Albuquerque, Boston.

Em Eigenface, a distância entre duas imagens é a distância euclidiana entre os pontos projetados em um subespaço, ao invés da distância no espaço original da imagem de 2500 dimenções. A distância entre as faces neste subespaço de menor dimensão é a técnica que utiliza Eigenface para melhorar a relação sinal / ruído.

Muitas técnicas avançadas de reconhecimento de face são extensões deste conceito básico. A principal diferença entre Eigenface e estas técnicas avançadas é o processo de definição do subespaço. Em vez de usar PCA, o subespaço pode ser baseada em Análise de Componentes Independentes (ICA) ou em Análise Discriminante Linear (LDA), e assim por diante.

Referências

- [1] G. Abowd, C. Atkeson, and I. Essa. Ubiquitous smart spaces. A white paper submitted to DARPA (in response to RFI), 1998. 1
- [2] M. Arantes, A. N. Ide, and J. H. Saito. A system for fingerprint minutiae classification and recognition. In *Proceedings of the 9th International Conference on Neural Information Processing (ICONIP'O2)*, volume 5, pages 2474 2478. vii, 3, 5
- [3] Â. R. Bianchini. Arquitetura de redes neurais para o reconhecimento facial baseado no neocognitron. Master's thesis, São Carlos, http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde_busca/arquivo.php?codArquivo=164, 2001. 1, 2, 5, 7
- [4] F. N. Buzeto. Um conjunto de soluções para a construção de aplicativos de computação ubíqua. Master's thesis, Universidade de Brasília, 2010. 1
- [5] J. Daugman. Face and gesture recognition: Overview. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(7), 1997. 1
- [6] A. R. Gomes. Ubiquitos uma proposta de arquitetura de middleware para a adaptabilidade de serviços em sistemas de computação ubíqua. Master's thesis, Universidade de Brasília; Departamento de Ciência da Computação, http://monografias.cic.unb.br/dspace/handle/123456789/110, 2007. 2
- [7] S. A. D. Junior. Reconhecimento facial 3d utilizando o simulated annealing com as medidas surface interpenetration measure e m-estimator sample consensus. Master's thesis, Universidade Federal do Paraná, 2007. vi, 3, 4, 6, 7
- [8] Hong L. and Jain A. Integrating faces and fingerprints for personal identification. *IEEE Transactions on Pattern and Machine Intelligence*, 20(12):1295–1307, dezembro 1998. 3, 4, 5, 7, 8
- [9] N. Ahuja M. Yang, D. J. Kriegman. Detecting faces in images: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(1):34–58, janeiro 2002. 8, 9
- [10] D. R. Oliveira. Reconhecimento de faces usando redes neurais e biometria. Master's thesis, INPE, 2006. 6, 8, 9
- [11] S. Pankanti, R. M. Bolle, and A. Jain. Biometrics: The future of identification, 2000. 1, 5

- [12] M. Weiser. The computer for the 21st century. Scientific American, 1991. 1
- [13] M. Weiser. The world is not a desktop. ACM Interactions, 1993. 1