Travail individuel de rédaction en temps libre À rendre le jeudi 8 décembre

Exercice 1 *L'anneau* $\mathbb{Z}/n\mathbb{Z}$

Soit n un entier naturel supérieur ou égal à 2. On rappelle que la relation d'égalité modulo n est une relation d'équivalence. Pour tout $x \in \mathbb{Z}$, on note \bar{x} la classe d'équivalence de x. On note alors

$$\mathbb{Z}/n\mathbb{Z} = \left\{ \overline{0}, \overline{1}, \dots, \overline{n-1} \right\}.$$

Partie A L'anneau $\mathbb{Z}/n\mathbb{Z}$

A1. On souhaite définir les lois + et \cdot par

$$\forall (x, y) \in \mathbb{Z}, \bar{x} + \bar{y} = \overline{x + y} \text{ et } \bar{x} \cdot \bar{y} = \overline{xy}.$$

Montrer que l'on définit bien ainsi deux lois de composition internes sur $\mathbb{Z}/n\mathbb{Z}$.

- **A2.** Montrer que $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un anneau commutatif.
- **A3.** Écrire les tables d'addition et de multiplication de $\mathbb{Z}/2\mathbb{Z}$ et $\mathbb{Z}/4\mathbb{Z}$.
- A4. Parmi les anneaux précédents, déterminer ceux qui sont intègres. Déterminer ceux qui sont des corps.
- **A5.** Montrer que le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ est isomorphe au groupe (\mathbb{U}_n, \cdot) où \mathbb{U}_n désigne l'ensemble des racines n-ème de l'unité.
- **A6.** On note S_3 l'ensemble des bijections de [1,3] dans [1,3]. Les groupes $(\mathbb{Z}/6\mathbb{Z})$ et (S_3, \circ) sont-ils isomorphes?

Partie B Éléments inversibles, diviseurs de $\bar{0}$

- **B1.** Soit $x \in \mathbb{Z}$. Montrer que \bar{x} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ si, et seulement si x et n sont premiers entre eux.
- **B2.** Déterminer, en le justifiant, l'inverse de $\overline{15}$ dans $\mathbb{Z}/98\mathbb{Z}$.
- **B3.** Soit p un nombre premier et $\alpha \in \mathbb{N}^*$. Déterminer le nombre d'éléments inversibles de $\mathbb{Z}/p^{\alpha}\mathbb{Z}$.
- **B4.** On dit que \bar{x} est un diviseur de $\bar{0}$ s'il existe $\bar{y} \neq \bar{0}$ tel que $\bar{x} \cdot \bar{y} = \bar{0}$.
 - (a) Soit $x \in \mathbb{Z}$ tel que $x \not\equiv 0 \pmod{n}$. Montrer que \bar{x} est un diviseur de $\bar{0}$ dans $\mathbb{Z}/n\mathbb{Z}$ si, et seulement si x et n ne sont pas premiers entre eux.
 - (b) Déterminer les diviseurs de $\bar{0}$ dans $\mathbb{Z}/30\mathbb{Z}$.
- **B5.** Montrer que les assertions suivantes sont équivalentes
 - (i) $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un corps.
 - (ii) $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un anneau intègre.
 - (iii) *n* est un nombre premier.

Partie C Théorème de Wilson

- C1. Dans cette question, on suppose que n est un nombre premier.
 - Résoudre dans $\mathbb{Z}/n\mathbb{Z}$ l'équation $\bar{x}^2 \bar{1} = \bar{0}$.
 - En déduire que les seuls éléments de $\mathbb{Z}/n\mathbb{Z}$ qui sont leur propre inverse sont $\overline{1}$ et $\overline{n-1}$.
- C2. On suppose que *n* est un nombre premier et $n \ge 3$. Montrer que $\prod_{k=1}^{n-1} \overline{k} = \overline{n-1}$.
- C3. Démontrer le théorème de Wilson

Soit $n \in \mathbb{N}$, $n \ge 2$. L'entier n est un nombre premier si, et seulement si n divise 1 + (n-1)!.