Loading the datasets

In [3]: order products df.isna().sum()

0 0

0

Out[3]: order_id

product id

reordered dtype: int64

add_to_cart_order

```
In [ ]:
        import pandas as pd
        order_products_df = pd.read_csv("C:\\Users\\richa\\COMP 541 Data Mining\\Proje
        orders_df = pd.read_csv("C:\\Users\\richa\\COMP 541 Data Mining\\Project\\orde
        products_df = pd.read_csv("C:\\Users\\richa\\COMP 541 Data Mining\\Project\\pr
        departments_df = pd.read_csv("C:\\Users\\richa\\COMP 541 Data Mining\\Project\\
        aisles_df = pd.read_csv("C:\\Users\\richa\\COMP 541 Data Mining\\Project\\aisl
        order_products_df = pd.read_csv("C:\\Users\\Nexxa\\Desktop\\Fall 24\\Comp 541\
        orders df = pd.read csv("C:\\Users\\Nexxa\\Desktop\\Fall 24\\Comp 541\\instaca
        products_df = pd.read_csv("C:\\Users\\Nexxa\\Desktop\\Fall 24\\Comp 541\\insta
        departments_df = pd.read_csv("C:\\Users\\Nexxa\\Desktop\\Fall 24\\Comp 541\\in
        aisles df = pd.read csv("C:\\Users\\Nexxa\\Desktop\\Fall 24\\Comp 541\\instaca
                                                                                      In [2]: order products df.head()
Out[2]:
            order_id product_id add_to_cart_order reordered
         0
                 1
                       49302
                                                    1
         1
                 1
                       11109
                                           2
                                                    1
                                           3
                                                    0
                       10246
         3
                 1
                       49683
                                                    0
                       43633
                                           5
                 1
                                                    1
```

```
In [4]: products_df.head()
 Out[4]:
               product_id
                                                       product_name aisle_id department_id
            0
                        1
                                           Chocolate Sandwich Cookies
                                                                          61
                                                                                         19
                        2
            1
                                                      All-Seasons Salt
                                                                          104
                                                                                         13
            2
                        3
                                 Robust Golden Unsweetened Oolong Tea
                                                                                          7
                                                                          94
            3
                          Smart Ones Classic Favorites Mini Rigatoni Wit...
                                                                                          1
                                                                          38
                        5
            4
                                            Green Chile Anytime Sauce
                                                                           5
                                                                                         13
           products_df.isna().sum()
 In [5]:
 Out[5]: product_id
                                0
           product_name
                                0
           aisle_id
                                0
           department_id
                                0
           dtype: int64
           departments_df.head()
In [96]:
Out[96]:
               department_id department
            0
                           1
                                   frozen
            1
                           2
                                    other
            2
                           3
                                   bakery
            3
                           4
                                 produce
                           5
            4
                                  alcohol
           departments_df.isna().sum()
 In [7]:
 Out[7]: department_id
                                0
           department
                                0
           dtype: int64
 In [8]:
           aisles_df.head()
 Out[8]:
               aisle_id
                                           aisle
            0
                     1
                            prepared soups salads
            1
                     2
                                specialty cheeses
            2
                     3
                               energy granola bars
            3
                     4
                                     instant foods
            4
                     5 marinades meat preparation
```

```
In [9]: | aisles_df.isna().sum()
 Out[9]: aisle_id
                        0
          aisle
          dtype: int64
In [10]: orders_df.head()
Out[10]:
              order_id user_id eval_set order_number order_dow order_hour_of_day days_since_prior_or
           0 2539329
                            1
                                                  1
                                                            2
                                                                              8
                                  prior
                                                                              7
              2398795
                                                  2
                                                            3
                                  prior
              473747
                                                  3
                                                            3
                                                                             12
                                  prior
             2254736
                                                            4
                                                                              7
                            1
                                                  4
                                  prior
                                                  5
               431534
                                  prior
                                                            4
                                                                             15
In [11]: orders_df.isna().sum()
Out[11]: order_id
                                             0
          user_id
                                             0
          eval_set
                                             0
          order_number
                                             0
          order_dow
                                             0
          order_hour_of_day
                                             0
          days_since_prior_order
                                       206209
          dtype: int64
```

Calculate Reorder Rate By Each Department

```
In [12]: merged_df = pd.merge(order_products_df, products_df, on='product_id')
merged_df = pd.merge(merged_df, departments_df, on='department_id')
```

In [13]:	mer	ged_df.	head()						
Out[13]:		order_id	product_id	add_to_cart_order	reordered	product_name	aisle_id	department_id d	lε
	0	1	49302	1	1	Bulgarian Yogurt	120	16	,
	1	1	11109	2	1	Organic 4% Milk Fat Whole Milk Cottage Cheese	108	16	(
	2	1	10246	3	0	Organic Celery Hearts	83	4	
	3	1	49683	4	0	Cucumber Kirby	83	4	
	4	1	43633	5	1	Lightly Smoked Sardines in Olive Oil	95	15	
	4							•	
In [16]:	mer	ged_df.	shape]
Out[16]:	(13	384617,	8)						_
In [17]:	mer	ged_df.	head()						7
Out[17]:		order_id	product_id	add_to_cart_order	reordered	product_name	aisle_id	department_id d	lε
	0	1	49302	1	1	Bulgarian Yogurt	120	16	-
	1	1	11109	2	1	Organic 4% Milk Fat Whole Milk Cottage Cheese	108	16	•
	2	1	10246	3	0	Organic Celery Hearts	83	4	
	3	1	49683	4	0	Cucumber Kirby	83	4	
	4	1	43633	5	1	Lightly Smoked Sardines in Olive Oil	95	15	
	4							—	

```
In [18]: merged_df["department"].value_counts()
Out[18]: department
         produce
                            409087
         dairy eggs
                            217051
         snacks
                            118862
         beverages
                             114046
         frozen
                            100426
         pantry
                             81242
         bakery
                             48394
         canned goods
                             46799
         deli
                             44291
         dry goods pasta
                             38713
         household
                             35986
         meat seafood
                             30307
         breakfast
                             29500
         personal care
                             21570
         babies
                             14941
         international
                             11902
         missing
                              8251
         alcohol
                              5598
         pets
                              4497
         other
                               1795
         bulk
                               1359
         Name: count, dtype: int64
In [19]: department_reorder_rate = (
             merged_df.groupby('department')['reordered']
             .mean()
             .sort_values(ascending=False)
             .reset_index()
         )
```

In [95]: department_reorder_rate

Out[95]:

	department	reordered
0	dairy eggs	0.674966
1	produce	0.664617
2	beverages	0.658155
3	bakery	0.634211
4	pets	0.630198
5	deli	0.617891
6	alcohol	0.606824
7	meat seafood	0.590854
8	snacks	0.581363
9	bulk	0.578366
10	breakfast	0.571661
11	frozen	0.559297
12	babies	0.541062
13	dry goods pasta	0.487821
14	canned goods	0.486805
15	household	0.427166
16	other	0.388301
17	missing	0.381530
18	international	0.379936
19	pantry	0.363088
20	personal care	0.337089

```
In [21]: import matplotlib.pyplot as plt
    plt.figure(figsize=(15, 6))
    plt.bar(department_reorder_rate['department'], department_reorder_rate['reorde
    plt.xlabel('Department')
    plt.ylabel('Reorder Rate')
    plt.title('Reorder Rate by Department')
    plt.xticks(rotation=45)
    #plt.savefig(r"C:\Users\richa\COMP 541 Data Mining\Reorder Rate by Department.
    plt.show()
```


Calculate Item Sold By Each Department

In [99]: | items_sold_by_department

Out[99]:

	department	items_sold
19	produce	409087
7	dairy eggs	217051
20	snacks	118862
3	beverages	114046
10	frozen	100426
16	pantry	81242
2	bakery	48394
6	canned goods	46799
8	deli	44291
9	dry goods pasta	38713
11	household	35986
13	meat seafood	30307
4	breakfast	29500
17	personal care	21570
1	babies	14941
12	international	11902
14	missing	8251
0	alcohol	5598
18	pets	4497
15	other	1795
5	bulk	1359

```
In [24]: plt.figure(figsize=(15, 6))
    plt.bar(items_sold_by_department['department'], items_sold_by_department['item
    plt.xlabel('Department')
    plt.ylabel('Items Sold')
    plt.title('Items Sold by Department')
    plt.xticks(rotation=45)
    #plt.savefig(r"C:\Users\richa\COMP 541 Data Mining\Item Sold by Department.png
    plt.show()
```


Calculate Order Volume By Hour of Day

```
In [25]: hourly_trends = orders_df.groupby('order_hour_of_day')['order_id'].count().res
hourly_trends.columns = ['hour', 'order_count']

plt.plot(hourly_trends['hour'], hourly_trends['order_count'])
plt.title('Order Volume by Hour of Day')
plt.xlabel('Hour of Day')
plt.ylabel('Order Volume')
#plt.savefig(r"C:\Users\richa\COMP 541 Data Mining\Order Volume by Hour of Day
plt.show()
```


Calculate Top 10 Most Popular Products

```
In [26]: # Calculating frequency of each product and getting only the top 10
    top_products = order_products_df['product_id'].value_counts().head(10)

# Merging product frequency with product names
    top_products = top_products.reset_index().merge(products_df[['product_id', 'pr

# Changing column name from count to frequency
    top_products.rename(columns={'count': 'frequency'}, inplace=True)

# Displaying the top 10 products and frequency of each
    top_products
```

Out[26]:

	product_name	frequency
0	Banana	18726
1	Bag of Organic Bananas	15480
2	Organic Strawberries	10894
3	Organic Baby Spinach	9784
4	Large Lemon	8135
5	Organic Avocado	7409
6	Organic Hass Avocado	7293
7	Strawberries	6494
8	Limes	6033
9	Organic Raspberries	5546

```
In [27]: # Using Bar Chart to visualize top 10 data
    plt.figure(figsize=(10,5))
    plt.bar(top_products['product_name'], top_products['frequency'])
    plt.xlabel('Product Name')
    plt.ylabel('Number of Orders')
    plt.title('Top 10 Popular products')
    plt.xticks(rotation = 90)
    plt.show()
```


Calculate Distribution of the number of products per transaction

In [28]: # Calculating the number of products per order products_per_order = order_products_df.groupby('order_id').size().reset_index(print(products_per_order['product_count'].describe()) products_per_order

count	131209.000000
mean	10.552759
std	7.932847
min	1.000000
25%	5.000000
50%	9.000000
75%	14.000000
max	80.000000

Name: product_count, dtype: float64

Out[28]:		order_id	product_count
	0	1	8
	1	36	8
	2	38	9
	3	96	7
	4	98	49
	131204	3421049	6
	131205	3421056	5
	131206	3421058	8
	131207	3421063	4
	131208	3421070	3

131209 rows × 2 columns

```
In [29]: # Using Histogram to visualize the distribution of the number of products per
import numpy as np
number_of_bins = int(np.ceil(np.log2(len(products_per_order)) + 1))

plt.hist(products_per_order['product_count'], bins = number_of_bins)
plt.xlabel('Number of Products per Order')
plt.ylabel('Number of Orders')
plt.xticks(np.arange(0, max(products_per_order['product_count']), 5))
plt.title('Distribution of the Number of Products per Transaction')
plt.show()
```


Part 3 Mine Strong Associations Across Different Departments and Across Aisles in Departments

```
In [30]: # Merge products with aisles and departments to include aisle and department d
    products_full_df = pd.merge(products_df, aisles_df, on='aisle_id', how='left')
    products_full_df = pd.merge(products_full_df, departments_df, on='department_i

# Merge the products_full_df with order_products_df
    order_products_merged_df = pd.merge(order_products_df, products_full_df, on='p

    order_products_merged_df = order_products_merged_df[['order_id', 'product_name
    order_products_merged_df.head()
```

Out[30]:

	order_id	product_name	aisle	department	rtment department_id ais	
0	1	Bulgarian Yogurt	yogurt	dairy eggs	16	120
1	1	Organic 4% Milk Fat Whole Milk Cottage Cheese	other creams cheeses	dairy eggs	16	108
2	1	Organic Celery Hearts	fresh vegetables	produce	4	83
3	1	Cucumber Kirby	fresh vegetables	produce	4	83
4	1	Lightly Smoked Sardines in Olive Oil	canned meat seafood	canned goods	15	95

In [31]: from mlxtend.preprocessing import TransactionEncoder # Group products by order_id grouped_products = order_products_merged_df.groupby('order_id')['product_name' # Use TransactionEncoder to create a basket (sparse matrix) te = TransactionEncoder() te_ary = te.fit(grouped_products).transform(grouped_products) basket_products = pd.DataFrame(te_ary, columns=te.columns_) basket_products.head()

Out[31]:

	#2 Coffee Filters	#2 Cone White Coffee Filters	#2 Mechanical Pencils	#4 Natural Brown Coffee Filters	& Go! Hazelnut Spread + Pretzel Sticks	t Black Ac Cherry Raspber I Vegetable Wat		0 Calorie Fuji Apple Pear Water Beverage	0 Calorie Strawberry Dragonfruit Water Beverage	(
0	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	

5 rows × 39123 columns

In [32]: # Group aisles by order_id
grouped_aisles = order_products_merged_df.groupby('order_id')['aisle'].apply(1

te_ary = te.fit(grouped_aisles).transform(grouped_aisles)
basket_aisles = pd.DataFrame(te_ary, columns=te.columns_)
basket_aisles.head()

Out[32]:

	air fresheners candles	asian foods	baby accessories	baby bath body care	baby food formula	bakery desserts	baking ingredients	baking supplies decor	beauty	bee coole
0	False	False	False	False	False	False	False	False	False	Fal
1	False	False	False	False	False	False	False	False	False	Fal
2	False	False	False	False	False	False	False	False	False	Fal
3	False	False	False	False	False	False	False	False	False	Fal
4	False	False	False	False	False	False	True	False	False	Fal

5 rows × 134 columns

```
In [33]: # Group departments by order_id
grouped_departments = order_products_merged_df.groupby('order_id')['department

te_ary = te.fit(grouped_departments).transform(grouped_departments)
    basket_departments = pd.DataFrame(te_ary, columns=te.columns_)
    basket_departments.head()
```

Out[33]:

alcohol	babies	bakery	beverages	breakfast	bulk	canned goods	-	deli	goods pasta	 house
0 False	False	False	False	False	False	True	True	False	False	 F
1 False	False	False	True	False	False	False	True	True	False	 F
2 False	False	False	False	False	False	False	False	False	False	 F
3 False	False	False	False	False	False	False	False	True	False	 F
4 False	False	True	True	False	False	True	True	True	False	

drv

5 rows × 21 columns

uses the FP-Growth algorithm to find frequent itemsets in the product-level transactional data

In [34]: | from mlxtend.frequent_patterns import fpgrowth

Frequent itemsets for products

frequent_itemsets_products = fpgrowth(basket_products, min_support=0.005, use_

frequent_itemsets_products.head()

Out[34]:

itemsets	support	
(Bag of Organic Bananas)	0.117980	0
(Organic Hass Avocado)	0.055583	1
(Cucumber Kirby)	0.018391	2
(Organic Whole String Cheese)	0.015190	3
(Organic Celery Hearts)	0.008094	4

In [35]: # Frequent itemsets for aisles

frequent_itemsets_aisles = fpgrowth(basket_aisles, min_support=0.005, use_coln frequent_itemsets_aisles.head()

Out[35]:

itemsets	support	
(fresh fruits)	0.550099	0
(fresh vegetables)	0.450975	1
(yogurt)	0.253405	2
(packaged cheese)	0.237781	3
(other creams cheeses)	0.088096	4

In [36]: # Frequent itemsets for departments

frequent_itemsets_departments = fpgrowth(basket_departments, min_support=0.005
frequent_itemsets_departments.head()

Out[36]: support itemsets

	support	itemsets
0	0.738722	(produce)
1	0.666113	(dairy eggs)
2	0.224192	(canned goods)
3	0.468581	(beverages)
4	0.246027	(deli)

Out[37]:

	antecedents	consequents	support	confidence	lift
2	(Bag of Organic Bananas, Organic Strawberries)	(Organic Hass Avocado)	0.005411	0.230969	4.155391
3	(Bag of Organic Bananas, Organic Hass Avocado)	(Organic Strawberries)	0.005411	0.293388	3.533615
4	(Organic Strawberries, Organic Hass Avocado)	(Bag of Organic Bananas)	0.005411	0.461339	3.910321
38	(Blueberries)	(Banana)	0.005457	0.308222	2.159645
42	(Organic Whole Milk)	(Bag of Organic Bananas)	0.008521	0.227791	1.930767
43	(Organic Whole Milk)	(Banana)	0.007957	0.212714	1.490440

In [38]: # Association rules for aisles
rules_aisles = association_rules(frequent_itemsets_aisles, metric="confidence"

Inspect the most interesting rules
rules_aisles[['antecedents', 'consequents', 'support', 'confidence', 'lift']]

Out[38]:		antecedents	consequents	support	confidence	lift
•	0	(fresh vegetables)	(fresh fruits)	0.327333	0.725833	1.319458
	1	(fresh fruits)	(fresh vegetables)	0.327333	0.595043	1.319458
	2	(yogurt)	(fresh fruits)	0.185102	0.730458	1.327865
	3	(fresh fruits)	(yogurt)	0.185102	0.336488	1.327865
	4	(yogurt)	(fresh vegetables)	0.146682	0.578844	1.283540
	53914	(seafood counter)	(fresh fruits)	0.006288	0.770308	1.400307
	53915	(seafood counter)	(packaged vegetables fruits)	0.005053	0.619048	1.616185
	53916	(seafood counter, fresh vegetables)	(fresh fruits)	0.005358	0.829009	1.507017
	53917	(seafood counter, fresh fruits)	(fresh vegetables)	0.005358	0.852121	1.889508
	53918	(seafood counter)	(fresh vegetables, fresh fruits)	0.005358	0.656396	2.005286

53919 rows × 5 columns

In [39]: # Association rules for departments
rules_departments = association_rules(frequent_itemsets_departments, metric="c")
Inspect the most interesting rules
rules_departments[['antecedents', 'consequents', 'support', 'confidence', 'lif')

Out[39]:

	antecedents	consequents	support	confidence	lift
0	(dairy eggs)	(produce)	0.543835	0.816430	1.105192
1	(produce)	(dairy eggs)	0.543835	0.736183	1.105192
2	(canned goods)	(produce)	0.195863	0.873640	1.182637
3	(produce)	(canned goods)	0.195863	0.265138	1.182637
4	(dairy eggs)	(canned goods)	0.179157	0.268959	1.199681
180097	(pets, pantry, produce)	(dairy eggs)	0.005983	0.858862	1.289364
180098	(dairy eggs, pets)	(pantry, produce)	0.005983	0.411857	1.382966
180099	(pets, pantry)	(dairy eggs, produce)	0.005983	0.673820	1.239016
180100	(pets, produce)	(dairy eggs, pantry)	0.005983	0.442503	1.578757
180101	(pets)	(dairy eggs, pantry, produce)	0.005983	0.287651	1.186607

180102 rows × 5 columns

```
In [40]: # Filter product-level rules where antecedents and consequents belong to diffe
    aisle_map = products_full_df.set_index('product_name')['aisle']
    rules_products['antecedent_aisles'] = rules_products['antecedents'].apply(lamb
    rules_products['consequent_aisles'] = rules_products['consequents'].apply(lamb
    cross_aisle_rules_products = rules_products[
        rules_products['antecedent_aisles'] != rules_products['consequent_aisles']
    ]
    cross_aisle_rules_products[['antecedents', 'consequents', 'support', 'confiden
```

Out[40]:

	antecedents	consequents	support	confidence	lift
2	(Bag of Organic Bananas, Organic Strawberries)	(Organic Hass Avocado)	0.005411	0.230969	4.155391
3	(Bag of Organic Bananas, Organic Hass Avocado)	(Organic Strawberries)	0.005411	0.293388	3.533615
4	(Organic Strawberries, Organic Hass Avocado)	(Bag of Organic Bananas)	0.005411	0.461339	3.910321
5	(Cucumber Kirby)	(Banana)	0.005663	0.307915	2.157496
6	(Asparagus)	(Banana)	0.006044	0.205016	1.436499
7	(Organic Raspberries)	(Bag of Organic Bananas)	0.013566	0.320952	2.720400
8	(Organic Raspberries)	(Organic Strawberries)	0.012728	0.301118	3.626710
9	(Organic Blueberries)	(Organic Strawberries)	0.009672	0.255538	3.077735
10	(Organic Blueberries)	(Bag of Organic Bananas)	0.008666	0.228957	1.940646
11	(Organic Cucumber)	(Organic Strawberries)	0.007865	0.223716	2.694465
12	(Organic Cucumber)	(Bag of Organic Bananas)	0.009664	0.274875	2.329853
13	(Organic Cucumber)	(Organic Baby Spinach)	0.007111	0.202254	2.712348
14	(Organic Grape Tomatoes)	(Banana)	0.006623	0.227308	1.592700
16	(Organic Grape Tomatoes)	(Bag of Organic Bananas)	0.006250	0.214491	1.818035
17	(Organic Zucchini)	(Bag of Organic Bananas)	0.007934	0.226847	1.922761
18	(Organic Zucchini)	(Banana)	0.007157	0.204620	1.433726
19	(Organic Zucchini)	(Organic Baby Spinach)	0.007240	0.207017	2.776213
20	(Organic Yellow Onion)	(Bag of Organic Bananas)	0.007621	0.233100	1.975765
21	(Organic Garlic)	(Bag of Organic Bananas)	0.006951	0.219336	1.859101
28	(Organic Baby Carrots)	(Bag of Organic Bananas)	0.006288	0.229358	1.944044
29	(Organic Baby Carrots)	(Banana)	0.005632	0.205449	1.439536
30	(Organic Cilantro)	(Limes)	0.007675	0.285593	6.211228
31	(Organic Cilantro)	(Bag of Organic Bananas)	0.005442	0.202496	1.716361
32	(Broccoli Crown)	(Banana)	0.007050	0.315484	2.210530
33	(Organic Baby Spinach)	(Banana)	0.015243	0.204415	1.432294
34	(Organic Baby Spinach)	(Bag of Organic Bananas)	0.017042	0.228536	1.937082
38	(Blueberries)	(Banana)	0.005457	0.308222	2.159645

	antecedents	consequents	support	confidence	lift
42	(Organic Whole Milk)	(Bag of Organic Bananas)	0.008521	0.227791	1.930767
43	(Organic Whole Milk)	(Banana)	0.007957	0.212714	1.490440
44	(Red Peppers)	(Banana)	0.006387	0.288468	2.021234
46	(Seedless Red Grapes)	(Banana)	0.008856	0.286277	2.005883
47	(Organic Red Onion)	(Bag of Organic Bananas)	0.006135	0.210843	1.787116
49	(Raspberries)	(Strawberries)	0.005015	0.200671	4.054486
54	(Yellow Onions)	(Banana)	0.008163	0.284689	1.994754

In [41]: from mlxtend.frequent_patterns import fpgrowth

Generate frequent itemsets using FP-Growth

frequent_itemsets_fp = fpgrowth(basket_products, min_support=0.005, use_colnam

frequent_itemsets_fp.head()

Out[41]:

itemsets	support	
(Bag of Organic Bananas)	0.117980	0
(Organic Hass Avocado)	0.055583	1
(Cucumber Kirby)	0.018391	2
(Organic Whole String Cheese)	0.015190	3
(Organic Celery Hearts)	0.008094	4

In [42]: from mlxtend.frequent_patterns import association_rules
 # Generate association rules
 rules_fp = association_rules(frequent_itemsets_fp, metric="confidence", min_th
 rules_fp.head()

Out[42]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage
0	(Organic Hass Avocado)	(Bag of Organic Bananas)	0.055583	0.117980	0.018444	0.331825	2.812560	0.011886
1	(Organic Hass Avocado)	(Organic Strawberries)	0.055583	0.083028	0.011729	0.211024	2.541609	0.007114
2	(Bag of Organic Bananas, Organic Strawberries)	(Organic Hass Avocado)	0.023428	0.055583	0.005411	0.230969	4.155391	0.004109
3	(Bag of Organic Bananas, Organic Hass Avocado)	(Organic Strawberries)	0.018444	0.083028	0.005411	0.293388	3.533615	0.003880
4	(Organic Strawberries, Organic Hass Avocado)	(Bag of Organic Bananas)	0.011729	0.117980	0.005411	0.461339	3.910321	0.004027
4								

```
In [43]: # Filter for rules with lift > 1.5 and confidence > 0.3
high_lift_rules = rules_fp[(rules_fp['lift'] > 1.5) & (rules_fp['confidence']

# Display only relevant columns
high_lift_rules[['antecedents', 'consequents', 'support', 'confidence', 'lift'
```

Out[43]:		antecedents	consequents	support	confidence	lift
_	0	(Organic Hass Avocado)	(Bag of Organic Bananas)	0.018444	0.331825	2.812560
	4	(Organic Strawberries, Organic Hass Avocado)	(Bag of Organic Bananas)	0.005411	0.461339	3.910321
	5	(Cucumber Kirby)	(Banana)	0.005663	0.307915	2.157496
	7	(Organic Raspberries)	(Bag of Organic Bananas)	0.013566	0.320952	2.720400
	8	(Organic Raspberries)	(Organic Strawberries)	0.012728	0.301118	3.626710
	24	(Organic Lemon)	(Bag of Organic Bananas)	0.008132	0.304422	2.580293
	32	(Broccoli Crown)	(Banana)	0.007050	0.315484	2.210530
	37	(Honeycrisp Apple)	(Banana)	0.009382	0.346663	2.428991
	38	(Blueberries)	(Banana)	0.005457	0.308222	2.159645
	40	(Organic Large Extra Fancy Fuji Apple)	(Bag of Organic Bananas)	0.007416	0.336562	2.852709
	41	(Apple Honeycrisp Organic)	(Bag of Organic Bananas)	0.005236	0.305062	2.585717
	48	(Organic Fuji Apple)	(Banana)	0.009222	0.371508	2.603072
	52	(Organic Navel Orange)	(Bag of Organic Bananas)	0.005526	0.366162	3.103598

Cross-Department Insights

Highlights relationships between products in different departments, useful for marketing strategies and merchandising.

High-Lift Rules: Focuses on rules with strong associations (high lift) to prioritize actionable insights.

```
In [44]: # Map products to departments
    department_map = products_full_df.set_index('product_name')['department']

# Add department information to rules
    high_lift_rules.loc[:, 'antecedent_departments'] = high_lift_rules['antecedent high_lift_rules.loc[:, 'consequent_departments'] = high_lift_rules['consequent

# Filter for rules where antecedents and consequents come from different depar cross_department_rules = high_lift_rules[
          high_lift_rules['antecedent_departments'] != high_lift_rules['consequent_d]

cross_department_rules[['antecedents', 'consequents', 'support', 'confidence',
```

C:\Users\Nexxa\AppData\Local\Temp\ipykernel_33028\52806777.py:5: SettingWithC
opyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

high_lift_rules.loc[:, 'antecedent_departments'] = high_lift_rules['anteced
ents'].apply(lambda x: [department_map[item] for item in x])

C:\Users\Nexxa\AppData\Local\Temp\ipykernel_33028\52806777.py:6: SettingWithC
opyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

antecedente consequente support confidence

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

high_lift_rules.loc[:, 'consequent_departments'] = high_lift_rules['consequents'].apply(lambda x: [department_map[item] for item in x])

lift antecedent departments consequi

Out[44]:

	antecedents	consequents	Support	Commuence	1111	antecedent_departments	Consequ
4	(Organic Strawberries, Organic Hass Avocado)	(Bag of Organic Bananas)	0.005411	0.461339	3.910321	[produce, produce]	
38	(Blueberries)	(Banana)	0.005457	0.308222	2.159645	[frozen]	
4							

```
In [91]: import seaborn as sns

# Flatten the lists into strings
cross_department_rules['antecedent_departments_str'] = cross_department_rules[
cross_department_rules['consequent_departments_str'] = cross_department_rules[
# Create a pivot table for the heatmap
heatmap_data = cross_department_rules.pivot_table(index='antecedent_department

sns.heatmap(heatmap_data, annot=True, cmap="coolwarm")
plt.xlabel("")
plt.ylabel("")
plt.ylabel("")
plt.title("Heatmap of Cross-Department Associations")
plt.show()
```

Heatmap of Cross-Department Associations


```
In [46]: # Map products to aisles
         aisle map = products_full_df.set_index('product_name')['aisle']
         # Add aisle information to antecedents and consequents
         high_lift_rules = high_lift_rules.copy() # Avoid modifying the original DataF
         high_lift_rules['antecedent_aisles'] = high_lift_rules['antecedents'].apply(
             lambda x: {aisle_map[item] for item in x})
         high_lift_rules['consequent_aisles'] = high_lift_rules['consequents'].apply(
             lambda x: {aisle_map[item] for item in x})
         # Filter for cross-aisle rules
         cross_aisle_rules = high_lift_rules[
             high_lift_rules['antecedent_aisles'] != high_lift_rules['consequent_aisles
         ]
         # Sort by support and lift to find the most diverse and impactful rules
         diverse_rules = cross_aisle_rules.sort_values(by=['lift', 'support'], ascendin
         # Select top interesting and diverse rules
         output_columns = ['antecedents', 'consequents', 'support', 'confidence', 'lift
                           'antecedent_aisles', 'consequent_aisles']
         top_diverse_rules = diverse_rules[output_columns].head(10)
         top_diverse_rules
```

Out[46]:

	antecedents	consequents	support	confidence	lift	antecedent_aisles	consequent_ais
8	(Organic Raspberries)	(Organic Strawberries)	0.012728	0.301118	3.626710	{packaged vegetables fruits}	{fresh frı
7	(Organic Raspberries)	(Bag of Organic Bananas)	0.013566	0.320952	2.720400	{packaged vegetables fruits}	{fresh frı
32	(Broccoli Crown)	(Banana)	0.007050	0.315484	2.210530	{fresh vegetables}	{fresh frı
38	(Blueberries)	(Banana)	0.005457	0.308222	2.159645	{frozen produce}	{fresh frı
5	(Cucumber Kirby)	(Banana)	0.005663	0.307915	2.157496	{fresh vegetables}	{fresh fro

```
In [92]: import seaborn as sns

# Flatten the lists into strings
cross_aisle_rules['antecedent_aisles_str'] = cross_aisle_rules['antecedent_ais'
cross_aisle_rules['consequent_aisles_str'] = cross_aisle_rules['consequent_ais'

# Create a pivot table for the heatmap
heatmap_data = cross_aisle_rules.pivot_table(index='antecedent_aisles_str', co
sns.heatmap(heatmap_data, annot=True, cmap="coolwarm")
plt.xlabel("")
plt.ylabel("")
plt.ylabel("")
plt.title("Heatmap of Multilevel Associations (Aisles/Departments)")
plt.show()

C:\Users\Nexxa\AppData\Local\Temp\ipykernel_33028\1760451142.py:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

cross_aisle_rules['antecedent_aisles_str'] = cross_aisle_rules['antecedent_ aisles'].apply(lambda x: ', '.join(x))

C:\Users\Nexxa\AppData\Local\Temp\ipykernel_33028\1760451142.py:5: SettingWit hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

cross_aisle_rules['consequent_aisles_str'] = cross_aisle_rules['consequent_ aisles'].apply(lambda x: ', '.join(x))

Heatmap of Multilevel Associations (Aisles/Departments)


```
In [48]: import matplotlib.pyplot as plt

# Sort rules by lift and select the top 10
top_lift_rules = high_lift_rules.sort_values(by='lift', ascending=False).head(

plt.figure(figsize=(10, 6))
plt.barh(
    [', '.join([str(i) for i in rule]) for rule in top_lift_rules['antecedents top_lift_rules['lift'])
    plt.xlabel('Lift')
    plt.ylabel('Antecedents')
    plt.title('Top 10 Rules by Lift')
    plt.gca().invert_yaxis()
    #plt.savefig(r"C:\Users\richa\COMP 541 Data Mining\Project\top 10 rules by lift plt.show()
```


Extra Credits

Predict Order Size Using Multiple Regression

```
In [49]: order_count = order_products_df.groupby('order_id')['product_id'].count().rese
    order_count.rename(columns={'product_id': 'order_size'}, inplace=True)
```

```
In [50]: order_count
Out[50]:
                   order_id order_size
                0
                         1
                                     8
                 1
                         36
                                     8
                                     9
                         38
                                    7
                3
                         96
                                   49
                         98
            131204 3421049
                                    6
            131205 3421056
                                     5
            131206 3421058
                                     8
            131207 3421063
                                     4
            131208 3421070
           131209 rows × 2 columns
In [51]: orders_with_size_df = pd.merge(orders_df, order_count, on='order_id')
In [52]: | orders_with_size_df.head()
Out[52]:
              order_id user_id eval_set order_number order_dow order_hour_of_day days_since_prior_or
              1187899
                             1
                                   train
                                                   11
              1492625
                             2
                                   train
                                                   15
                                                               1
                                                                                 11
              2196797
                             5
                                                    5
                                                               0
                                   train
                                                                                 11
               525192
                             7
                                                   21
                                                               2
            3
                                   train
                                                                                 11
                             8
               880375
                                                               1
                                                                                 14
                                   train
```

Feature Engineering

In [54]: order_size_user_avg

Out[54]:

	user_id	user_avg_order_size
0	1	11.0
1	2	31.0
2	5	9.0
3	7	9.0
4	8	18.0
131204	206199	22.0
131205	206200	19.0
131206	206203	13.0
131207	206205	19.0
131208	206209	8.0

131209 rows × 2 columns

Out[55]:

	order_id	user_id	eval_set	order_number	order_dow	order_hour_of_day	days_since_prior_o
0	1187899	1	train	11	4	8	
1	1492625	2	train	15	1	11	;
2	2196797	5	train	5	0	11	
3	525192	7	train	21	2	11	
4	880375	8	train	4	1	14	

```
In [56]: import statsmodels.api as sm
   import statsmodels.formula.api as smf

   orders_with_size_dummy_df = pd.get_dummies(orders_with_size_df, columns=['orde
   orders_with_size_dummy_df.head()
```

Out[56]:

	order_id	user_id	eval_set	order_number	days_since_prior_order	order_size	user_avg_order
	0 1187899	1	train	11	14.0	11	
	1 1492625	2	train	15	30.0	31	
	2 2196797	5	train	5	6.0	9	
;	3 525192	7	train	21	6.0	9	
	4 880375	8	train	4	10.0	18	

5 rows × 36 columns

In [57]: print(orders_with_size_dummy_df.columns)

OLS Regression Results

=======================================						
= Dep. Variable:	order_size	R-squared:		1.00		
0 Model:	OLS	Adj. R-squa	Adj. R-squared:			
<pre>0 Method:</pre>	Least Squares	F-statistic	F-statistic:			
	Fri, 29 Nov 2024	Prob (F-sta	Prob (F-statistic):			
0 Time:	16:23:25	Log-Likelih	ood:	3.8302e+0		
6 No. Observations:	131209	AIC:	AIC:			
6 Df Residuals:	131176	BIC:		-7.660e+0		
6 Df Model: Covariance Type:	32 nonrobust					
=======================================	=======================================	========	=======	========		
[0.025 0.975]	coe	f std err	t	P> t		
Intercept 2.78e-14 3.49e-14	3.136e-1	4 1.81e-15	17.364	0.000		
order_dow_1[T.True] 3.97e-15 -2.1e-15	-3.034e-1	5 4.76e-16	-6.373	0.000 -		
order_dow_2[T.True] 4.93e-15 6.91e-15	5.922e-1	5 5.06e-16	11.702	0.000		
order_dow_3[T.True] 7.48e-15 9.48e-15	8.476e-1	5 5.1e-16	16.607	0.000		
order_dow_4[T.True] 1.6e-15 3.59e-15	2.595e-1	5 5.08e-16	5.110	0.000		
order_dow_5[T.True] 5.08e-15 -3.14e-15	-4.108e-1	5 4.94e-16	-8.319	0.000 -		
order_dow_6[T.True] 1.46e-15 3.34e-15	2.398e-1	5 4.81e-16	4.985	0.000		
order_hour_of_day_1[T 3.33e-15 1.45e-14	.True] 8.92e-1	5 2.85e-15	3.128	0.002		
order_hour_of_day_2[T 5.17e-16 1.28e-14	.True] 6.132e-1	5 3.39e-15	1.808	0.071 -		
order_hour_of_day_3[T 9.79e-15 2.48e-14	.True] 1.728e-1	4 3.82e-15	4.519	0.000		
order_hour_of_day_4[T 8.11e-15 7.01e-15	.True] -5.503e-1	6 3.86e-15	-0.143	0.887 -		
order_hour_of_day_5[T 2.09e-14 -8.86e-15	.True] -1.489e-1	4 3.08e-15	-4.839	0.000 -		
order_hour_of_day_6[T 1.4e-14 -4.9e-15	.True] -9.428e-1	5 2.31e-15	-4.079	0.000 -		
order_hour_of_day_7[T 3.57e-15 4.07e-15	.True] 2.537e-1	6 1.95e-15	0.130	0.896 -		
order_hour_of_day_8[T 2.51e-15 4.76e-15	.True] 1.126e-1	5 1.86e-15	0.607	0.544 -		
order_hour_of_day_9[T 7.77e-16 7.92e-15	.True] 4.348e-1	5 1.82e-15	2.386	0.017		

order_hour_of_day_10[T.True] 1.52e-15 8.62e-15] 5.068e-15	1.81e-15	2.799	0.005	
order_hour_of_day_11[T.True] 2.727e-16	1.81e-15	0.151	0.880	-
3.28e-15 3.82e-15 order hour of day 12[T.True	-1.052e-15	1.81e-15	-0.581	0.561	_
4.6e-15 2.5e-15	•				
order_hour_of_day_13[T.True] 1.17e-15 5.93e-15] 2.381e-15	1.81e-15	1.316	0.188	-
1.17e-15 5.93e-15 order_hour_of_day_14[T.True] 4.43e-15	1.81e-15	2.451	0.014	
8.88e-16 7.97e-15					
order_hour_of_day_15[T.True] 9.73e-16	4.515e-15	1.81e-15	2.498	0.012	
order_hour_of_day_16[T.True]	2.892e-15	1.81e-15	1.597	0.110	_
6.58e-16 6.44e-15	, 2.0526 25	1.010 13	2,33,	0,110	
order_hour_of_day_17[T.True] 1.18e-15 5.95e-15	2.388e-15	1.82e-15	1.313	0.189	-
order_hour_of_day_18[T.True]] 2.634e-15	1.84e-15	1.434	0.152	-
9.67e-16 6.24e-15					
order_hour_of_day_19[T.True] 1.66e-15] 1.996e-15	1.87e-15	1.069	0.285	-
order_hour_of_day_20[T.True]] 2.534e-15	1.92e-15	1.320	0.187	-
1.23e-15 6.3e-15	1 2 701 15	1 070 15	1 070	0.060	
order_hour_of_day_21[T.True] 1.61e-16 7.56e-15	3.701e-15	1.97e-15	1.878	0.000	-
order_hour_of_day_22[T.True]] 3.45e-15	2.02e-15	1.706	0.088	-
5.15e-16 7.42e-15					
order_hour_of_day_23[T.True] 4.08e-15] 1.823e-16	2.17e-15	0.084	0.933	-
order_number	9.994e-17	9.18e-18	10.886	0.000	
8.19e-17 1.18e-16					
<pre>days_since_prior_order 4.3e-17 9.91e-17</pre>	7.107e-17	1.43e-17	4.967	0.000	
user_avg_order_size	1.0000	1.78e-17	5.62e+16	0.000	
1.000 1.000					
=		========	=======	=======	====
- Omnibus:	20819.790	Durbin-Wats	on:	(0.07
8	2001317,50	Dai Dill Marco		·	
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	42051	L.92
1					
Skew:	-0.970	Prob(JB):			0.0
0 Kurtosis:	4.983	Cond. No.		1 7	5e+0
3	-1.203	201141 1101		1.70	
		========	=======	=======	====
=					

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.76e+03. This might indicate that there a re

strong multicollinearity or other numerical problems.

```
In [59]: import numpy as np
    import matplotlib.pyplot as plt
    import statsmodels.api as sm
    import statsmodels.formula.api as smf
    import pandas as pd
    from scipy.stats import probplot

# model = smf.ols(formula='order_size ~ order_number+order_dow+order_hour_of_d
    model = smf.ols(formula=formula, data=orders_with_size_dummy_df).fit()

fitted_values = model.fittedvalues # Fitted values
    residuals = model.resid # Residuals
    standardized_residuals = (residuals - np.mean(residuals)) / np.std(residuals)
```

```
In [60]: # Residuals vs Fitted Plot
    plt.figure(figsize=(6, 4))
    plt.scatter(fitted_values, residuals)
    #plt.axhline(0, color='red', linestyle='--')
    plt.title('Residuals vs Fitted')
    plt.xlabel('Fitted values')
    plt.ylabel('Residuals')
    #plt.savefig(r"C:\Users\richa\COMP 541 Data Mining\Residuals fitted plot.png")
    plt.show()
```



```
In [61]: plt.figure(figsize=(6, 4))
    probplot(residuals, dist="norm", plot=plt)
    plt.title('Q-Q Plot')
    #plt.savefig(r"C:\Users\richa\COMP 541 Data Mining\Project\QQ plot.png")
    plt.show()
```



```
In [62]:
    from sklearn.linear_model import LinearRegression
        X = orders_with_size_df.drop(columns=["order_size", "eval_set"])
        y = orders_with_size_df.loc[:, "order_size"]

In [63]: model = LinearRegression().fit(X, y)

In [64]: predictions = model.predict(X)

In [65]: from sklearn.metrics import r2_score
```

R²: 1.0

print("R2:", r2)

r2 = r2_score(y, predictions)

```
In [66]: from sklearn.metrics import mean_squared_error
import numpy as np

rmse = np.sqrt(mean_squared_error(y, predictions))
print("RMSE:", rmse)
```

RMSE: 2.8832904537953726e-14

6 448761

6

Note: Potential overfitting is concern, but we need more data to investigate on this. Overall, we think this is fairly a good result with this RMSE score.

Also, the data might not be linearly in nature, as the diagostic plots show some concern of violating linear regression assumption such as Heteroscedasticity

Forecast product demand over time for inventory optimization.

```
product_demand = orders_df.groupby('order_dow')['order_id'].count().reset_inde
In [67]:
In [68]: product_demand
Out[68]:
             order_dow order_id
          0
                    0
                        600905
                        587478
          1
                    1
          2
                    2 467260
                    3 436972
          3
                    4 426339
          5
                    5 453368
```

```
In [69]: from statsmodels.tsa.arima.model import ARIMA
         from sklearn.metrics import mean_absolute_error
         # Aggregate data
         product_demand = orders_df.groupby('order_dow')['order_id'].count().reset_inde
         test_size = 2 # Use the last 4 data points as test set
         train_data = product_demand[:-test_size]
         test_data = product_demand[-test_size:]
         # Fit ARIMA model
         model = ARIMA(product_demand['order_id'], order=(1, 1, 1))
         model_fit = model.fit()
         forecast = model_fit.get_forecast(steps=test_size)
         forecast_values = forecast.predicted_mean
         forecast_conf_int = forecast.conf_int()
         actual = test_data['order_id'].values # Actual values from the test set
         mae = mean absolute error(actual, forecast values)
         rmse = np.sqrt(mean_squared_error(actual, forecast_values))
         # Results
         print("Forecasted Values:")
         print(forecast_values)
         print("\nActual Values:")
         print(actual)
         print("\nConfidence Intervals:")
         print(forecast_conf_int)
         print(f"\nEvaluation Metrics: MAE = {mae}, RMSE = {rmse}")
         Forecasted Values:
             438412.83337
              431275.73847
         Name: predicted_mean, dtype: float64
         Actual Values:
         [453368 448761]
         Confidence Intervals:
            lower order_id upper order_id
         7
            401216.858481 475608.808258
             381937.349880 480614.127060
         Evaluation Metrics: MAE = 16220.21408004794, RMSE = 16269.471099370132
```

```
In [70]: import matplotlib.pyplot as plt
         plt.plot(product_demand['order_id'], label="Historical Demand")
         plt.plot(range(len(product_demand), len(product_demand) + len(forecast_values)
         plt.fill_between(
             range(len(product_demand), len(product_demand) + len(forecast_values)),
             forecast_conf_int.iloc[:, 0],
             forecast_conf_int.iloc[:, 1],
             color='pink',
             alpha=0.3,
             label="Confidence Interval"
         plt.legend()
         plt.xlabel("Time")
         plt.ylabel("Demand")
         plt.title("ARIMA Forecast")
         #plt.savefig(r"ARIMA Forecast")
         plt.show()
```



```
In [71]: import numpy as np

# Actual and Forecasted values
actual = np.array([453368, 448761]) #Because we use the last two rows to test
forecasted = np.array([438412.83, 431275.74])

# Calculate MAPE
mape = np.mean(np.abs((actual - forecasted) / actual)) * 100
print(f"MAPE: {mape:.2f}%")
```

MAPE: 3.60%

Note: We don't have enough data to improve our score, but as far as we can do, the graph is off about 3.60%. We also want to do the hyperparameter tuning and grid search to optimize the model, but we don't have enough data to train on.

In summary:

This is a fair step to get a preliminary result