Chapter 3.9: Inverse Trigonometric Functions

Expected Skills:

- Be able to specify the domain and range of $\sin^{-1}(x)$, $\cos^{-1}(x)$, and $\tan^{-1}(x)$. Also be able to graph these functions.
- Be able to evaluate an inverse trigonometric function at a ratio which is related to the common angles of $0^{\circ} 30^{\circ} 45^{\circ} 60^{\circ} 90^{\circ}$.
- Be able to evaluate limits involving inverse trigonometric functions.
- Be able to differentiate $\sin^{-1}(x)$, $\cos^{-1}(x)$, and $\tan^{-1}(x)$. Also be able to use the derivative to solve application problems.

Practice Problems:

- 1. For each of the following functions, state the domain and the range.
 - (a) $f(x) = \sin^{-1} x$
 - (b) $f(x) = \cos^{-1} x$
 - (c) $f(x) = \tan^{-1} x$
- 2. Evaluate each of the following. (Do not use a calculator. And remember the ranges from problem 1.)
 - (a) $\arcsin \frac{\sqrt{3}}{2}$
 - (b) $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$
 - (c) $\arcsin \frac{\sqrt{3}}{2}$
 - (d) $\arccos\left(-\frac{\sqrt{3}}{2}\right)$
 - (e) $\arctan \frac{\sqrt{3}}{3}$
 - (f) $\arctan\left(-\frac{\sqrt{3}}{3}\right)$

3. Use an inverse trigonometric function to express θ as a function of x:

4. Find the exact value of each expression.

(a)
$$\sin\left(\tan^{-1}\left(\frac{3}{4}\right)\right)$$

(b)
$$\sec\left(\arctan\left(-\frac{3}{5}\right)\right)$$

(c)
$$\sin\left(\arccos\left(-\frac{2}{3}\right)\right)$$

(d)
$$\csc\left(\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$$

5. Find the exact value of each expression. Remember the ranges from problem (1)!

(a)
$$\sin^{-1}\left(\sin\left(\frac{\pi}{3}\right)\right)$$

(b)
$$\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$$

(c)
$$\cos^{-1}\left(\cos\left(\frac{\pi}{4}\right)\right)$$

(d)
$$\cos^{-1}\left(\cos\left(-\frac{\pi}{4}\right)\right)$$

(e)
$$\tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right)$$

(f)
$$\tan^{-1} \left(\tan \left(\frac{5\pi}{6} \right) \right)$$

- 6. For each of the following, find all solutions in the interval $[0, 2\pi]$. Give the exact values, not decimal approximations.
 - (a) $(\sin x 1)(4\sin x 3) = 0$
 - (b) $3 \tan x = 1$
 - (c) $5\cos^2 x + 11\cos x + 2 = 0$
 - (d) $3\tan x = -1$
- 7. Evaluate the following limits. If a limit does not exist, write $+\infty$, $-\infty$, or DNE.
 - (a) $\lim_{x \to \infty} \arccos\left(\frac{-x^2}{x^2 + 3x}\right)$
 - (b) $\lim_{x\to 0} \arctan\left(\frac{1}{x^2}\right)$
 - (c) $\lim_{h \to 0} \frac{\sin^{-1}\left(\frac{\sqrt{3}}{2} + h\right) \frac{\pi}{3}}{h}$

(**Hint:** Interpreting the limit as the derivative of a function a particular point.)

- 8. Calculate $\frac{dy}{dx}$
 - (a) $y = \left(\tan^{-1} x\right)^3$
 - (b) $y = 3x^2 \sin^{-1}(4x)$
- 9. Compute an equation of the line which is tangent to the graph of $f(x) = \cos^{-1} x$ at the point where $x = \frac{1}{2}$.
- 10. Find all value(s) of x at which the tangent lines to the graph of $f(x) = \tan^{-1}(4x)$ are perpendicular to the line which passes through (0,1) and (2,0).
- 11. Let $f(x) = \arctan x^2$.
 - (a) Find all intervals on which f(x) is increasing and those on which f(x) is decreasing.
 - (b) Locate all local extrema. Express each as an ordered pair (x, y).
 - (c) Find all intervals on which f(x) is concave up and those on which f(x) is concave down.
 - (d) Locate all points of inflection. Express each as an ordered pair (x, y).
 - (e) Sketch f(x).

12. The screen at the front of a movie theater is 16 feet high and positioned 9 feet above eye level. How far away from the front of the room should you sit in order to have the "best" view? (HINT: Find the largest possible angle θ in diagram shown below.)

13. Find the area of the shaded region by adding together the area of the sector and the area of the triangle.

