

MATHEMATICS STANDARD LEVEL PAPER 2

Friday 5 November 2010 (morning)

1 hour 30 minutes

		andi	aate	sessi	on n	umb	er	
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them to this examination paper and your cover sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6]

A standard die is rolled 36 times. The results are shown in the following table.

Score	1	2	3	4	5	6
Frequency	3	5	4	6	10	8

(a)	Write down the standard deviation.	[2 marks]
(b)	Write down the median score.	[1 mark]
(c)	Find the interquartile range.	[3 marks]

-3-

2. [Maximum mark: 7]

The velocity $v \text{ m s}^{-1}$ of an object after t seconds is given by $v(t) = 15\sqrt{t} - 3t$, for $0 \le t \le 25$.

(a) On the grid below, sketch the graph of v, clearly indicating the maximum point.

[3 marks]

Let *d* be the distance travelled in the first nine seconds.

Hence, write down the value of d.

(b) (i) Write down an expression for d.

(ii)

[4 marks]

•	•	•	•																																							 •	•	•	
																																										٠	•	•	
																																										•	•	•	•
		٠	٠	٠	•			٠	٠	•	 	٠	٠	•		٠	•	•	 		٠	٠	•	•	 •	•	•	 •	٠	•	 •	٠	•	 •	٠	٠	•	 •	٠	•	•	 •	•	•	•
	•	٠	•	•	•	•	 •	٠	•	•	 	•	•	•	 	٠	•	•	 	•	•	•	•		 •	٠	•	 •	•	•	 •	•	•		•	•	•	 •	٠	•	•	 ٠	•	•	
•		•	•	٠	•		 		٠	•	 	٠	٠	•	 			•	 		٠	٠	•	•		•	•	 	•		 	•			٠	٠	•		•			 ٠	•		•

.....

3.	[Maximum	mark:	67

The n^{th} term of an arithmetic sequence is given by $u_n = 5 + 2n$.

(a) Write down the common difference.

[1 mark]

(b) (i) Given that the n^{th} term of this sequence is 115, find the value of n.

(ii) For this value of n, find the sum of the sequence.

[5 marks]

Let $\mathbf{v} = \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} k \\ -2 \\ 4 \end{pmatrix}$, for k > 0. The angle between \mathbf{v} and \mathbf{w} is $\frac{\pi}{3}$.

Find the value of k.

[Maximum mark: 7] **5.**

Consider the function $f(x) = px^3 + qx^2 + rx$. Part of the graph of f is shown below.

The graph passes through the origin O and the points A(-2,-8), B(1,-2) and C(2,0).

(2)	Find three	linear ea	mations in	n	а	and	v

[4 marks]

(b))	Hence	find	the	value	of i	D.	of	а	and	of	r
----	----	-------	------	-----	-------	------	----	----	---	-----	----	---

rks]

(b)	Hence find	the value of p , of q	and of r .	[3 mar
• • •				
• • • •				
• • •				
• • •				

6. [*Maximum mark: 7*]

The following diagram shows the triangle ABC.

diagram not to scale

The angle at C is obtuse, AC = 5 cm, BC = 13.6 cm and the area is 20 cm².

(a)	Find AĈB.	[4 marks]
(b)	Find AB.	[3 marks]

7. [Maximum mark: 5]

Let $f'(x) = -24x^3 + 9x^2 + 3x + 1$.

(a) There are two points of inflexion on the graph of f. Write down the x-coordinates of these points.

[3 marks]

(b) Let g(x) = f''(x). Explain why the graph of g has no points of inflexion.

[2 marks]

.....

.....

.....

.....

Do **NOT** write solutions on this page. Any working on this page will **NOT** be marked.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 12]

Let $f(x) = x \ln(4-x^2)$, for -2 < x < 2. The graph of f is shown below.

The graph of f crosses the x-axis at x = a, x = 0 and x = b.

(a) Find the value of a and of b.

[3 marks]

The graph of f has a maximum value when x = c.

(b) Find the value of c.

[2 marks]

(c) The region under the graph of f from x = 0 to x = c is rotated 360° about the x-axis. Find the volume of the solid formed.

[3 marks]

(d) Let R be the region enclosed by the curve, the x-axis and the line x = c, between x = a and x = c.

Find the area of R.

[4 marks]

Do **NOT** write solutions on this page. Any working on this page will **NOT** be marked.

9. [Maximum mark: 17]

A test has five questions. To pass the test, at least three of the questions must be answered correctly.

The probability that Mark answers a question correctly is $\frac{1}{5}$. Let X be the number of questions that Mark answers correctly.

- (a) (i) Find E(X).
 - (ii) Find the probability that Mark passes the test.

[6 marks]

Bill also takes the test. Let Y be the number of questions that Bill answers correctly. The following table is the probability distribution for Y.

У	0	1	2	3	4	5
P(Y=y)	0.67	0.05	a+2b	a-b	2a+b	0.04

- (b) (i) Show that 4a + 2b = 0.24.
 - (ii) Given that E(Y) = 1, find a and b.

[8 marks]

(c) Find which student is more likely to pass the test.

[3 marks]

Do **NOT** write solutions on this page. Any working on this page will **NOT** be marked.

10. [Maximum mark: 16]

The following diagram represents a large Ferris wheel at an amusement park. The points P, Q and R represent different positions of a seat on the wheel.

The wheel has a radius of 50 metres and rotates clockwise at a rate of one revolution every 30 minutes.

A seat starts at the lowest point P, when its height is one metre above the ground.

(a) Find the height of a seat above the ground after 15 minutes.

[2 marks]

(b) After six minutes, the seat is at point Q. Find its height above the ground at Q.

[5 marks]

The height of the seat above ground after t minutes can be modelled by the function $h(t) = 50\sin(b(t-c)) + 51$.

(c) Find the value of b and of c.

[6 marks]

(d) Hence find the value of t the first time the seat is 96 m above the ground.

[3 marks]