PCA

Dimensionality Reduction : Solved Example

- 1. Calculate the *mean*
- 2. Calculate the *covariance matrix*
- 3. Calculate the *eigenvalues* of the covariance matrix
- 4. Calculate the *eigenvectors*
- 5. Calculate the first *principal components*

Given the data in Table, reduce the dimension from 2 to 1 using the
 Principal Component Analysis (PCA) algorithm.

Feature	Example 1	Example 2	Example 3	Example 4
X_1	4	8	13	7
X ₂	11	4	5	14

Step 1: Calculate Mean

$$\underline{\bar{X}_1} = \frac{1}{4}(4+8+13+7) = 8,$$

$$\underline{\bar{X}_2} = \frac{1}{4}(11+4+5+14) = 8.5.$$

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

Step 2: Calculation of the covariance matrix.

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$

$$Cov(X_1, X_1) = \frac{1}{N-1} \sum_{k=1}^{N} (X_{1k} - \bar{X}_1)(X_{1k} - \bar{X}_1)$$
$$= \frac{1}{3} ((4-8)^2 + (8-8)^2 + (13-8)^2 + (7-8)^2)$$
$$= 14$$

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$\overline{X_2} = 8.5$$

Step 2: Calculation of the covariance matrix.

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$

$$Cov(X_1, X_2) = \frac{1}{N-1} \sum_{k=1}^{N} (X_{1k} - \bar{X}_1)(X_{2k} - \bar{X}_2)$$

$$= \frac{1}{3} ((4-8)(11-8.5) + (8-8)(4-8.5)$$

$$+ (13-8)(5-8.5) + (7-8)(14-8.5)$$

$$= -11$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

Step 2: Calculation of the covariance matrix.

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$

$$Cov(X_2, X_1) = Cov(X_1, X_2)$$

= -11

= 23

$$Cov(X_2, X_2) = \frac{1}{N-1} \sum_{k=1}^{N} (X_{2k} - \bar{X}_2)(X_{2k} - \bar{X}_2)$$
$$= \frac{1}{3} ((11 - 8.5)^2 + (4 - 8.5)^2 + (5 - 8.5)^2 + (14 - 8.5)^2)$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{K_2} = 8.5$$

Step 2: Calculation of the covariance matrix.

$$S = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix}$$
$$= \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

F	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

Step 3: Eigenvalues of the covariance matrix

The characteristic equation of the covariance matrix is,

F	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14

$$0 = \det(S - \lambda I)$$

$$= \begin{vmatrix} 14 - \lambda & -11 \\ -11 & 23 - \lambda \end{vmatrix}$$

$$= \underbrace{(14 - \lambda)(23 - \lambda)}_{= \lambda^2 - 37\lambda + 201} - \underbrace{(-11) \times (-11)}_{= \lambda^2 - 37\lambda + 201}$$

$$\lambda = \frac{1}{2}(37 \pm \sqrt{565})$$

= 30.3849, 6.6151
= λ_1 , λ_2 (say)

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

 $\overline{X_1} = 8$

 $\overline{X_2} = 8.5$

Step 4: Computation of the eigenvectors

$$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (S - \lambda \ I) \ \underline{U}$$

$$= \begin{bmatrix} 14 - \lambda & -11 \\ -11 & 23 - \lambda \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$= \begin{bmatrix} (14 - \lambda) u_1 - 11 u_2 \\ -11 u_1 + (23 - \lambda) u_2 \end{bmatrix}$$

$$(14 - \lambda)u_1 - 11u_2 = 0$$

$$-11u_1 + (23 - \lambda)u_2 = 0$$

<u></u>	<u></u>	2] لا (ر	1 =	1 1
	$\frac{u_1}{11} =$	$\frac{u}{14}$	$\frac{2}{\lambda}$ =	t

F	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1=30.3849$$

$$\lambda_2 = 6.6151$$

Step 4: Computation of the eigenvectors

$$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\frac{u_1}{11} = \frac{u_2}{14 - \lambda} = t$$

$$u_1 = 11t$$
, $u_2 = (14 - \lambda)t$

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_{1}	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1=30.3849$$

$$\lambda_2 = 6.6151$$

Step 4: Computation of the eigenvectors

$$U_1 = \begin{bmatrix} 1\mathbf{i} \\ 14 - \lambda_1 \end{bmatrix}.$$

· To find a unit eigenvector, we compute the length of

U₁ which is given by,
$$e_1 = \begin{bmatrix} 11/\|U_1\| \\ (14 - \lambda_1)/\|U_1\| \end{bmatrix}$$

$$||U_1|| = \sqrt{11^2 + (14 - \lambda_1)^2} = \begin{bmatrix} 11/19.7348 \\ (14 - 30.3849)/19.7348 \end{bmatrix}$$

$$= \sqrt{11^2 + (14 - 30.3849)^2}$$

$$= 19.7348$$

$$= \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

$$\overline{X_1} = 8$$

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$
 $\lambda_2 = 6.6151$

Step 5: Computation of first principal

components

$$e_1^T \begin{bmatrix} X_{1k} - \bar{X}_1 \\ X_{2k} - \bar{X}_2 \end{bmatrix}$$

F	Ex.1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4/	8	13	7
X ₂	11	4	5	14

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix} \qquad \overline{X_1} = 8 \checkmark$$

$$\overline{X_2} = 8.5 \checkmark$$

$$e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix} \qquad C_{-} \begin{bmatrix} 14 & -11 \end{bmatrix}$$

$$e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix} \quad S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 5: Computation of first principal components

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

Feature	Ex 1	Ex 2	Ex 3	Ex 4
X_1	4	8	13	7
X ₂	11	4	5	14
First Principle Components	-4.3052	3.7361	5.6928	-5.1238

$$\overline{X_2} = 8.5$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$$

$$\lambda_1 = 30.3849$$

$$\lambda_2 = 6.6151$$

Step 6: Geometrical meaning of first principal

components

X_{2}	
14 (7,14)	
12 (4.11)	
10	
(\bar{X}_1, \bar{X}_2)	
6	
$4 \left[(8,4) \bullet \right] \circ (13,5)$	
2	
2	
0 2 4 6 8 10 12 14 X_1	

F	Ex 1	Ex 2	Ex 3	Ex 4
\mathbf{X}_1	4	8	13	7
X ₂	11	4	5	14

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$
 $\overline{X_1} = 8$ $\overline{X_2} = 8.5$ $e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix}$ $S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}$ $\lambda_1 = 30.3849$

 $\lambda_2 = 6.6151$

Plot: Given data points projected from 2D to 1D

Source

https://www.youtube.com/watch?v=ZtS6sQUAh0c