Principal Bundles, Classifying Spaces, and Obstruction Theory

Last time: Principal bundles

· Reduction of Structure group

· H < G admissible. PG > B admits ROSG to H

(=) PG/H - B has a Section.

How can we tell if Pa/H -> B has a section?

Obstruction Theory

Definition: P: E -> B cont., Space Y

P has the homotopy lifting property (HLP) with respect to Y if for any homotopy $H: Y \times (0,1) \longrightarrow B$ and a lift $\mathring{h}_0: Y \to E$ of $h_0: Y \to B$, $h_0(y) = H(y,0)$, i.e. $p \circ \mathring{h}_0 = h_0$, there is a homotopy $H: Y \times (0,1] \to E$ such that $p \circ H = H$ and $\mathring{h}_0 = H(\cdot,0)$.

io(y) = (y, o)

io | ho H P P P

H not necessarily Unique

Example: HLP for Y= 4404 corresponds to the path lifting property. So covering maps satisfy HLP for singletons.

Definition: A surj. cont. map p: E-B is called a (Serve) fibration if p has the HLP for all CW complexes Y.

Exercise: Show pr,: BxF -> B hes the HLP for any space, and hence is a fibration.

Proposition: Fiber bundles are fibrations.

Fibrations are the homotopy theoretic analogue of bundles.

In particular, fiber are all homotopy equivalent.

Theorem: p: E -> B fibration, bo &B, x. & F:=p-(6.). There is a l.e.s.

 $\cdots \rightarrow \pi_{n+1}(B,b_0) \xrightarrow{\partial} \pi_n(F,x_0) \xrightarrow{i_*} \pi_n(E,x_0) \xrightarrow{p_*} \pi_n(B,b_0) \xrightarrow{\partial} \pi_{n-1}(F,x_0) \xrightarrow{\cdots}$

i:FCDE.

If p: E-B a fibration, B CW complex. Over Bo, the O-sheleton of B, p has a section (choose a point in each tiber).

Obstruction theory studies the obstructions to extending a section built industriety on the cells of B

Suppose of is a section of p: E-9B defined over the u-sheleton By.

Choose an (n+1)-cell e^{h+1} in B with attaching map $g:=g^{n+1}: \partial e^{n+1}: S^n \longrightarrow B_n$,

i og: $5^n \rightarrow B$ extends to D^{n+1} (nanchy e^{n+1}), so there is a map $h: D^{n+1} \longrightarrow B$ with $h|_{S^n} = i \circ g$. This gives a homotopy from $i \circ g$ and a constant map: $H: S^n \times [0,1] \rightarrow B$, H(p,t) = h(|1+1)p). So H: G a homotopy from $h_0 = H(\cdot, o) = h|_{S^n} = i \circ p$ and h_1 which is the constant map with value c:=h(0).

 $\delta/\rho,t)=(1-t)\rho$

POF = i og = ho (o F is a lift of ho. By the HLP,

there is a homotopy $\widetilde{H}: S^m \times [0,1] \to E$ and that $\widetilde{h}_0 = \widetilde{F}$ and $P \circ \widetilde{H} = H$.

 $h_1 = H(\cdot, 1)$ (atistic) $p \circ h_1 = h_1 \equiv c$, so $h_1 : S^n \longrightarrow F := p^{-1}(c)$.

If h, were constant, then $H: S^n \times [0,1] \to E$ descends to a map $\nabla_X : D^{n+1} \longrightarrow E$ which satisfies $p \circ \nabla_X = h$.

That is, if h, is constant, To is a section of p over $e^{nr!}$ extending $T|_{\partial e^{nr!}}$. If $h_i: S^n \to F$ is hometopic to a constant, we can wodify h_i , H_i , H_i so that h_i is constant.

Not constant, but honotopic to a constant

The lift \widetilde{H} is not unique, so neither is \widetilde{h}_i . If \widetilde{H}' is another lifted homotopy, we get a map $\widetilde{h}_i': S^n \to F$. Note that \widetilde{h}_i and \widetilde{h}_i' are homotopic as they are both homotopic to $\widetilde{h}_0 = \overline{\tau} = \widetilde{h}_0'$.

So to each (hr) -cell we can associate [h,] \in $[s^n, F]$ which is trivial Z=) \forall extends over the (nr)-cell. In general $[s^n, F] \neq \pi_n(F)$ (base points). We say F is ansimple if $[s^n, F] = \pi_n(F)$. Examples include F simply connected, and G/H for H a closed Lie subgroup of G. One further complication: for different cells, we get elements a homotopy groups of different fibers. We can't compare elements of $\pi_n(F)$ and $\pi_n(F)$. This can be resolved using a local coefficient system (we will ignore this substity as it won't apply in our examples).

So for a-y (hr) -cell e^{n+1} we associate $[h_i] \in \pi_n(F)$. This is a (cellular) cochain with values in $\pi_n(F)$. Miraculously, it is a cocycle. So we get an element $\mathcal{V}_{nH} \in H^{n+1}(B; \pi_n(F))$.

Theorem: $p:E \rightarrow B$ fibration, B LW complex, T a section over Bn.

If F is h-simple, then $Y_{nr1} \in H^{nr1}(B; T_n(F))$ is defined.

If $Y_{nr1} = 0$, then T can be redefined over the n-sheleton relative to the (n-1)-sheleton, such that it extends to a section over the (n+1)-sheleton of B.