Examen du 10 Avril 2020

Une attention particulière sera portée à la clarté de la rédaction, ainsi qu'à la justification précise et complète de chaque résultat obtenu, en faisant appel aux résultats du cours (documents autorisés). Les questions marquées du signe * sont moins guidées, et on pourra donner des réponses non détaillées mais clairement argumentées.

Exercice 1 : Epaisseurs de Kolmogorov dans un Hilbert

On travaille ici dans $V = \ell^2(\mathbb{N})$ l'espace des suites de carré sommable muni de sa norme usuelle, avec $\mathbb{N} = \{1, 2, \ldots\}$. Pour s > 0 fixé, on note W le sous-espace des suites $z = (z_k)_{k \geq 1}$ telles que

$$\sum_{k>1} k^{2s} |z_k|^2 < \infty,$$

que l'on munit de la norme $||z||_W = \left(\sum_{k\geq 1} k^{2s} |z_k|^2\right)^{1/2}$. On note K la boule unité de W.

1. (1pt) Montrer que si $z \in W$ alors pour tout $n \geq 0$,

$$\sum_{k>n} |z_k|^2 \le ||z||_W^2 (n+1)^{-2s}.$$

 $\mathbf{2}$. (1pt) En déduire que les épaisseurs de Kolmogorov de K dans V vérifient la décroissance

$$d_n(K)_V \le (n+1)^{-s}.$$

3. (2pt) Soit $B = B(n, \varepsilon)$ l'ensemble des suites de la forme $z = (z_1, \ldots, z_{n+1}, 0, 0, \ldots)$, i.e. telles que $z_k = 0$ pour k > n+1, et telles que $|z_1|^2 + \cdots + |z_{n+1}|^2 \le \varepsilon^2$. Trouver la plus grande valeur possible de ε telle que $B \subset K$.

4. (1pt) En déduire qu'on a exactement $d_n(K)_V = (n+1)^{-s}$.

5*. (2pt) Que peut on dire sur les épaisseurs de Kolmogorov de la boule unité de l'espace de Sobolev périodique $H^s_{per}(T)$ dans $L^2(T)$ où T=[0,1] est le tore unité en dimension 1?

6*. (1pt) Même question quand $T = [0,1]^d$ est le tore unité en dimension d.

Exercice 2. Inégalité de Chernoff scalaire

Soit D un domaine borné de \mathbb{R}^d et $\mu = |D|^{-1}dx$ la mesure de probabilité uniforme sur D. Pour une fonction u définie sur D on note

$$||u||^2 = \int_D |u|^2 d\mu,$$

la norme $L^2(D,\mu)$. On tire x^1,\ldots,x^m indépendamment suivant la loi μ et on définit la semi-norme discrète

$$||u||_m^2 = \frac{1}{m} \sum_{i=1}^m |u(x_i)|^2.$$

On note $F = L^{\infty}(D)$. Pour tour K > 0 on définit F_K le sous-ensemble des fonctions vérifiant l'inégalité

$$||u||_{L^{\infty}}^2 \le K||u||^2.$$

1. (2pt) En rappelant les étapes de preuve de l'inégalité de Chernoff pour les variables scalaires, montrer que pour tout $0 < \delta < 1$ et pour tout $u \in F_K$ fixé on a

$$\Pr\{\|u\|_m^2 \le (1-\delta)\|u\|^2\} \le \exp(-c_1 m),$$

1

où c_1 dépend uniquement de δ et K et sera précisée.

2. (1pt) En déduire que pour tout $\varepsilon > 0$, il existe une valeur m_0 que l'on précisera en fonction de ε et K telle que si $m \ge m_0$, alors pour toute fonction $u \in F_K$ fixée on a

$$\Pr\{\|u\|^2 \ge 2\|u\|_m^2\} \le \varepsilon.$$

3*. (2pt) Montrer que pour tout m > 0, il existe une fonction $u \in F$ telle que

$$\Pr\{\|u\|^2 \ge 2\|u\|_m^2\} \ge \frac{1}{2}.$$

On pourra prendre une fonction de la forme $u = \chi_E$ où E est un ensemble de mesure suffisament petite. Qu'est-ce quel cela signifie par rapport au résultat de la question 2?

Exercice 3. Une estimation d'erreur en probabilité

Soit D un domaine de \mathbb{R}^d et μ une mesure de probabilité quelconque sur D. On définit les normes $\|\cdot\|$ et $\|\cdot\|_m$ comme dans l'exercice précèdent, avec x^1,\ldots,x^m tirés indépendamment suivant la loi μ . On observe les échantillons non-bruités

$$y^i = u(x^i),$$

d'une fonction inconnue u bornée sur D. Soit V_n un espace de fonction continues définies sur D et de dimension n, et (L_1, \ldots, L_n) une base $L^2(D, \mu)$ -orthonormale de cet espace. On définit $k_n = \sum_{j=1}^n |L_j|^2$ la fonction de Christoffel inverse associée et $K_n = ||k_n||_{L^{\infty}}$. On note $u_n \in V_n$ l'approximation des moindres carrés de u, solution du problème de minimisation

$$\min_{v \in V_n} \frac{1}{m} \sum_{i=1}^m |y^i - v(x^i)|^2.$$

On note E l'événement : $\frac{1}{2}||v||^2 \le ||v||_m^2 \le \frac{3}{2}||v||^2$ pour tout $v \in V_n$, et on se donne $\varepsilon > 0$.

- **1.** (1pt) On note $e_n(u) = \min_{v \in V_n} \|u v\|$ et $e_n(u)_{\infty} = \min_{v \in V_n} \|u v\|_{L^{\infty}}$ les erreurs de meilleure approximation dans $L^2(D, \mu)$ et $L^{\infty}(D)$. Montrer que $e_n(u) \leq e_n(u)_{\infty}$.
- 2. (1pt) Rappeler la condition sur le nombre d'échantillon m permettant d'assurer que la probabilité de l'évenement complémentaire E^c est inférieure à ε , et rappeler l'inégalité qu'on a alors entre $\mathbb{E}(\|u-u_n\|^2\chi_E)$ et $e_n(u)^2$. Dans la suite, on se place sous cette condition et on essaye d'établir une inégalité entre $\|u-u_n\|$ et une erreur de meilleur approximation valable avec grande probabilité.
- **3.** (1pt) Montrer qu'avec probabilité supérieure à $1-\varepsilon$, on a pour tout $v\in V_n$ l'inégalité

$$||u - u_n|| \le ||u - v|| + \sqrt{2}||u - v||_m.$$

4. (1pt) En déduire qu'avec probabilité supérieure à $1-\varepsilon$, on a la majoration

$$||u - u_n|| \le (1 + \sqrt{2})e_n(u)_{\infty}.$$

5. (1pt) On suppose que les mesures y^i sont corrompues par un bruit déterministe de la forme

$$y^i = u(x^i) + \eta(x^i),$$

où $\|\eta\|_{L^{\infty}} \leq \delta$. Montrer qu'avec probabilité supérieure à $1-\varepsilon$, l'approximation des moindres carrés vérifie alors

$$||u - u_n|| \le (1 + \sqrt{2})e_n(u)_{\infty} + C\delta_n(u)_{\infty}$$

pour une constante C que l'on précisera.

6*. (2pt) Proposer une adaptation de ces résultats lorsqu'on utilise la méthode des moindres carrés avec un poid w, en faisant intervenir une modification de la norme L^{∞} .