Lossy Compression Artifacts and Approaches to "Decompress"

August 27, 2025

Yolanne Lee

University College London

Introduction

Motivation and Context

Introduction Context

Analysi

Theoretical Work

- ♦ Lossy compression in ATLAS
- What is lost?
- ♦ Can neural methods accommodate as a post-hoc measure to recover lost data?

Introduction

Context

Introduction Context Data Exploration

Analysis

Theoretical Work

Proposed Methods

Lossy Compression

Currently implemented lossy compression reduces the precision of a 32-bit IEEE 754 floating-point number by **truncating** its mantissa to a specified number of bits while applying **rounding** to the nearest representable value. A 32-bit IEEE 754 float consists of:

$$bits = \underbrace{s}_{1 \text{ bit } 8 \text{ bits } 23 \text{ bits}} \underbrace{m}_{23 \text{ bits}}$$

where:

- ⋄ s is the sign bit,
- \diamond e is the exponent in biased form ($e \in [0, 255]$),
- \diamond *m* is the mantissa (fraction) with an implicit leading 1 for normalized values.

Lossy Compression

- Introduction Context Data Exploration
- Analysis
 Theoretical Work
- Proposed Methods

- \diamond If x is NaN or ∞ , return x.
- ⋄ Decompose x into

$$x = (-1)^{s} \cdot (1.m) \cdot 2^{(e-127)},$$

where s is the sign, e is the biased exponent, and m is the 23-bit mantissa.

- \diamond Let k = 23 n denote the number of mantissa bits to remove.
- \diamond Round m to n bits by adding 2^{k-1} to m (nearest-neighbor rounding).
- ⋄ Zero out the lowest k bits of m (truncate).
- ⋄ Reconstruct

$$\tilde{x} = (-1)^s \cdot (1.\tilde{m}) \cdot 2^{(e-127)},$$

where m is the rounded n-bit mantissa.

⋄ Return x̃.

Introduction

Data Exploration

Compression Performance

Context
Data Exploration

Theoretical Work

Туре	Avg Original Size (MB)	Avg Compressed Size (MB)	Compression %
Real Pairs	225.27	167.10	25.82%
Sim Pairs	742.51	539.38	27.36%

Real Data (Averaged over 2 files)

Context
Data Exploration

Theoretical Work

Proposed

	% Br	anches		% Size		Count	Siz	ze (MB)
	Comp	Orig	Comp	Orig	Comp	Orig	Comp	Orig
Data Type								
float32 (>f4)	34.92	34.92	57.96	67.88	276.50	276.50	91.53	147.30
object_container	21.00	21.13	15.96	12.74	218.50	219.50	30.72	32.95
jagged_array	13.72	13.72	8.50	6.41	108.50	108.50	13.32	13.66
strided_object	12.93	12.93	6.22	4.69	133.00	133.00	13.37	13.44
uint32 (>u4)	10.66	10.54	7.68	5.52	84.50	83.50	12.27	11.90
int32 (>i4)	2.22	2.22	2.94	2.20	17.50	17.50	4.73	4.81
uint64 (>u8)	0.76	0.76	0.57	0.42	6.00	6.00	0.90	0.90
AsDtype	3.15	3.15	0.15	0.12	25.00	25.00	0.22	0.24
int64 (>i8)	0.12	0.12	0.02	0.02	1.00	1.00	0.04	0.06
group	0.12	0.12	0.00	0.00	1.00	1.00	0.00	0.00
unreadable_branch	0.38	0.38	0.00	0.00	3.00	3.00	0.00	0.00

Simulated Data (Averaged over 2 files)

Introduction
Context
Data Exploration
Analysis

Theoretical Work

	% Branches		% Size			Count	Size (MB)	
	Comp	Orig	Comp	Orig	Comp	Orig	Comp	Orig
Data Type								
float32 (>f4)	32.52	32.52	52.28	64.22	416.00	416.00	287.60	485.23
object_container	19.36	19.43	17.80	14.35	295.50	296.50	92.38	100.74
uint32 (>u4)	18.09	18.01	13.37	9.10	231.50	230.50	71.52	66.92
int32 (>i4)	7.47	7.47	5.93	4.38	95.50	95.50	32.80	33.27
jagged_array	8.97	8.97	5.02	3.78	114.50	114.50	27.48	28.50
strided_object	10.62	10.62	4.11	3.08	161.50	161.50	19.50	19.58
float64 (>f8)	0.94	0.94	0.78	0.58	12.00	12.00	4.26	4.31
uint64 (>u8)	1.02	1.02	0.68	0.50	13.00	13.00	3.69	3.74
AsDtype	0.47	0.47	0.02	0.02	6.00	6.00	0.10	0.12
int64 (>i8)	0.08	0.08	0.01	0.01	1.00	1.00	0.07	0.11
group	0.08	0.08	0.00	0.00	1.00	1.00	0.00	0.00
unreadable_branch	0.39	0.39	0.00	0.00	5.00	5.00	0.00	0.00

Analysis

Analysis

Quantisation Artifacts

duction

Analysis

Quantisation
Artifacts

Residual Analysis

Theoretical Work

- ♦ Compared original vs DL10-compressed PHYSLITE files.
- \diamond Focus on electron p_t , η , ϕ (jets and muons show similar patterns).
- \diamond Absolute differences $|x_{\text{orig}} x_{\text{comp}}|$:
- ♦ Log-binned histograms show peaks spaced evenly in log₁₀.
- ⋄ Peak spacing: $\Delta \log_{10} \approx 0.28 \implies \text{ratio} \approx 1.9$.

duction

Analysis

Quantisation Artifacts Residual Analysis

Theoretical Work

Figure 1. Distributions of values of interest.

duction

Analysis
Quantisation
Artifacts
Residual Analysi

Theoretical Work

Figure 2. Log-binned absolute residuals with clear quantisation steps.

duction

Analysis

Quantisation
Artifacts

Residual Analysis

Theoretical Work

Figure 3. Log-binned absolute residuals smoothed with peak-finding.

Introduction

Analysis
Quantisation
Artifacts
Residual Analysis

Theoretical Work

Figure 4. Log-binned signed residuals showing symmetry.

Analysis

Residual Analysis

Residual Analysis

Introduction

Quantisation Artifacts Residual Analysis

Analysis

Theoretical Work

Proposed Methods

- \diamond Residuals defined as $r = x_{\text{comp}} x_{\text{orig}}$.
- ♦ Histogrammed with symmetric log binning (symlog):

- Centered at 0.
- Show clear discrete step patterns.
- ⋄ 2D log residual mapping:

$$x_0 = \log_{10} \left(|x_{\mathsf{true}}| + 10^{-12} \right), \quad x_1 = \mathsf{sign} \left(r \right) \, \log_{10} \left(|r| + 10^{-12} \right)$$

 \diamond 2D histograms reveal symmetric bands \Rightarrow consistent with quantisation effects.

Residual Analysis

duction

Analysis
Quantisation
Artifacts
Residual Analysis

Theoretical Work

Figure 5. Residuals in log-space vs original values: stepped, banded structure.

Theoretical Bounds

THE GUILLE

Theoretical Work

Figure 6. Derived upper and lower bounds for

Proposed Methods

⋄ Single-precision float:

Value =
$$(-1)^S \times 1.F \times 2^{E-127}$$

- \diamond S: sign bit, E: 8-bit exponent, F: 23-bit mantissa
- \diamond Mantissa truncation keeps only the first m bits of F
- Discarded bits cause precision loss

Define residual:

$$r = x - \tilde{x}$$

If discarded bits are zero:

$$r = 0$$

If discarded bits are non-zero:

$$r > 0$$
 $(x > \tilde{x})$

Truncation always rounds toward zero

	Rounding with Mantissa Bits					
Introduction Analysis Theoretical Work Proposed Methods	♦ 1	mportant mantissa bits:				
	⋄ F	 L: last kept bit R: first discarded bit T: sticky bits (remaining discarded) Rounding rules:				
		$L=0,\ R=0 o { m round\ down}$ $L=1,\ R=0 o { m round\ down}$ $L=0,\ R=1 o { m round\ up}$ $L=1,\ R=1 o { m round\ up}$	25/41			

- ⋄ Impossible from compressed bits alone
- ♦ Multiple original values map to the same truncated pattern
- ⋄ Rounding direction depends on missing information
- ⋄ Can only infer probabilistically, not deterministically

Analysis

Theoretical Work

Proposed Methods

Floating-point:

Residual:

 \Diamond

0

Quantized version:

 $x = m_x \cdot 2^e$, $m_x \in [1, 2]$

$$\hat{x} = \tilde{m}_{x} \cdot 2^{e}, \quad \tilde{m}_{x} = \operatorname{Trunc}_{m}(m_{x})$$

 $|\tilde{m}_{x} - m_{x}| < 2^{-m}$

 $|\Delta| < 2^{e-m}$

 $\log_{10} |\Delta| < (e - m) \log_{10} (2)$

$$\Delta = \hat{x} - x = (\tilde{m}_x - m_x) \cdot 2^e$$

Proposed Methods

⋄ True value magnitude:

$$\log_{10}|x|\approx e\log_{10}(2)$$

Substitute:

$$\log_{10} |\Delta| < \log_{10} |x| - m \log_{10} (2)$$

Proposed Methods

If always round down:

$$\Delta < 0$$
, $\log_{10} \Delta = -\log_{10} |x| + m \log_{10} (2)$

Final symmetric bound:

$$\log_{10} |\Delta|_{\text{signed}} \in \left[-\log_{10} |x| + m\log_{10} (2), \log_{10} |x| - m\log_{10} (2) \right]$$

- \diamond Bounds form two reflected diagonal lines in $(\log_{10} |x|, \log_{10} |\Delta|)$ space
 - ♦ Slopes: ±1
 - \diamond Intercepts determined by $m \log_{10}(2)$
- ⋄ Explains visible band structure in residual distributions

troduction

Proposed System Diagram

Analysis

Theoretical Work

- Original and compressed datasets loaded from ROOT files, flattened and masked for finite, positive entries.
- \diamond Residuals: $x_{\text{residual}} = x_{\text{true}} x_{\text{compressed}}$.
- ⋄ Two dataset modes:

- Sample mode: individual events with residuals.
- **Histogram mode:** log-spaced histograms per variable, storing $(h_{recon}, h_{residual})$.
- ♦ Histograms optionally normalized to sum to 1 for KL-divergence-based learning.
- ⋄ Precomputed mean, std, min/max for normalization and log-binning.

Proposed Methods Triaging

- \diamond Compare residuals against theoretical bounds y_{upper} , y_{lower} in log space.
- ⋄ Correction rule:

$$r_{ ext{corrected}} = egin{cases} -r & ext{if } r > 0 ext{ and } |-r - y_{ ext{lower}}| < \epsilon, \ -r & ext{if } r < 0 ext{ and } |y_{ ext{upper}} - (-r)| < \epsilon, \ 0 & ext{otherwise}. \end{cases}$$

- \diamond Reconstructed values: $x_{\text{reconstructed}} = x_{\text{compressed}} + r_{\text{corrected}}$.
- \diamond Histograms of $x_{\text{reconstructed}}$ closely match the original distribution.

Proposed Methods Triaging

- 1D convolutional denoising autoencoder to predict residuals or reconstruct histograms.
- ⋄ Training strategies:

MSE Loss: normalized by mean/std.

KL Divergence Loss: on normalized histograms (sum=1).

- Noisy inputs: Gaussian noise added to compressed values or histograms.
- ♦ Evaluation: reconstructed vs original values, histogram overlays, sorted/normalized plots.

Learned Results (Preliminary)

Introduction

Analysis

Theoretical Work

Proposed Methods Triaging

Figure 7. Histogram of Learned Distribution.

Learned Results (Preliminary)

muodacti

, tildiyələ

Theoretical Work

Proposed Methods Triaging

Figure 8. Scatter of error correction.

Proposed Methods

Triaging

ntroduction	Distribution Shift Metrics							
nalysis								
heoretical Work		\$	Computed: mean, std, skewness, kurtosis.					
roposed lethods Triaging		\$	Divergence/distance measures:					
			KL/JS divergence, Wasserstein distance, MMD (RBF kernel), KS test, classifier AUC.	5				
		<	Observations:					
			All metrics show extremely small shifts. KL/JS divergence $\sim 10^{-4}-10^{-3}$. Normalized MSE $< 10^{-3}$. Classifier AUC ≈ 0.5 (distributions indistinguishable).					
			` 3	89/41				

Pro Me

Distribution metrics over mantissa length

Analysis

Theoretical Work

Proposed
Methods

Triaging

Figure 9. Stepping back to consider the learning goal.

Proposed Methods Triaging

 \diamond Currently implementing an 'inpainting' style model which considers that the first x bits of the fraction are known, and therefore the residual must be calculated from the last 23-x bits (for a given exponent, which is also known).

Thanks for your attention!