Avaliação 1 - Introdução à Inferência Bayesiana

5290 - PROBABILIDADE E ESTATÍSTICA

Curso de Bacharelado	Interdisciplinar em	Ciência e	Tecnologia d	lo Mar -	- BICT Mar
ourse as passial stage	mice alocipaniai em	0.00.0			2101111

AUTOR Fabio Cop

•	Nome:
•	RA:
•	Turno:
•	Data: 08/05/2025
•	Tempo máximo: 2 horas

Instruções

- 1. Preencha a folha de resposta com cuidado, revisando cada item para garantir que reflete seu próprio entendimento.
- 2. A prova é **individual**, mas você pode discutir conceitos com colegas desde que isso promova **sua compreensão crítica** do conteúdo
- 3. Utilize a **internet** ou **outras ferramentas computacionais** de forma estratégica para aprofundar sua interpretação dos problemas, não apenas buscar respostas prontas. Cada consulta deve fortalecer **sua autonomia na resolução de desafios analíticos**.

Lembre-se: Uma prova bem resolvida é uma ferramenta de **autoavaliação e aprendizado ativo**. Utilize este momento para exercitar sua capacidade de análise e interpretação de problemas – competências essenciais para o domínio da Inferência Bayesiana. **©**

1 Parte A – Questões conceituais (2,0 pontos)

1.1 (0,5 ponto) Em uma análise bayesiana, a verossimilhança de uma hipótese:

- A. Mede a plausibilidade da hipótese antes de observarmos os dados.
- B. Mede a proporção relativa de modos pelos quais a hipótese pode produzir os dados observados.
- C. É a distribuição de probabilidade resultante após combinarmos os dados e a priori.
- D. Corresponde à área sob a curva posterior para todos os valores possíveis do parâmetro.

Resposta:	
-----------	--

1.2 (0,5 ponto) Ao assumir uma distribuição <i>a priori</i> uniforme sobre cinco hipótes	ses discretas, o peso inicial atribuído a
cada hipótese é:	

A. 0,05 B. 0,20 C. 0,50 D. 1,00

1.3 (0,5 ponto) Indique a alternativa que não altera a distribuição *a posteriori*:

- A. Mudar a distribuição a priori.
- B. Acrescentar novas observações de dados.
- C. Alterar a função de verossimilhança.
- D. Multiplicar todas as probabilidades posteriores por uma constante comum.

Resposta:	
-----------	--

	ntica à verossimilhar ualização pelos dado	-			
Resposta:					
2 Parte B – Pro	blemas quantitati	vos (8,0 p	ontos)		
Uma caixa contér	m quatro bolinhas q	ue podem s	ser azuis (●) ou branca	s (○). As hipóteses sobre a composição da caixa	são:
	Hipótese			Composição	
	H_1			0000	
	H_2			○ ○ ○ ●	
	H_3			○ ○ ● ●	
	H_4			○ • • •	
	H_5			• • •	
Você faz três obs	ervações, com repos	ição, e obté	ém a sequência:		
• • •					
2.1 (1,0 ponto) P	Para cada hipótese c	onte o nún	nero de caminhos (n	consistentes com a sequência observada.	
DECIMAIS). 2.3 (1,0 ponto) U	Jtilizando o valor da	a verossimi		nindo um modelo binomial. (Arredonde para s babilidade <i>a posteriori</i> de cada hipótese, assu MAIS).	
Hipótese	Composição	n	\mathcal{L}	Probabilidade <i>a posteriori</i>	
H_1	0000				
H_2	000				
H_3	○ ○ ● ●				
H_4	$\circ \bullet \bullet \bullet$				
H_5	• • • •				
$egin{array}{ll} ext{A.} igsqcup H_1 \ ext{B.} igsqcup H_2 \ ext{C.} igsqcup H_3 \ ext{D.} igsqcup H_4 \ ext{E.} igsqcup H_5 \end{array}$				ultados da questão anterior (priori uniforme)	
2.5 (2,0 pontos)	Utilizando o valor d	la verossim	nilhança, recalcule a	probabilidade <i>a posteriori</i> de cada hipótese,	

1.4 (0,5 ponto) Quando a distribuição *a priori* é informativa e favorece valores altos de um parâmetro, o impacto

esperado sobre a distribuição a posteriori é:

B. Deslocá-la na direção dos valores altos, a depender dos dados.

assumindo uma distribuição a priori informativa conforme a tabela abaixo:

A. Torná-la uniforme.

	Composição	Probabilidade <i>a priori</i>	Probabilidade <i>a posteriori</i>
H_1	0000	0.05	
H_2	000•	0.10	
H_3	○ ○ ● ●	0.60	
H_4	0 • • •	0.15	
H_5	• • •	0.10	
2.6 (0,5 ponto)	Assinale a hipótese m	nais plausível com base nos resultados	s da questão anterior (priori informativa).
A. \square H_1			
B. \square H_2			
$C.\square H_3$			
D. \square H_4			
E. \square H_5			
3 Parte C - Pro	oblemas de interpre	etação e uso (2,0 pontos)	
Considere o exp	perimento do globo, no	qual se deseja inferir a proporção de á	gua na superfície da Terra, representada pelo
parâmetro p , a p	partir de observações e	qual se deseja inferir a proporção de á e de uma distribuição <i>a priori</i> . Para cada . Use a distribuição Beta adequada a ca	-
parâmetro p , a p	oartir de observações e estar entre 0,65 e 0,75	e de uma distribuição <i>a priori</i> . Para cada . Use a distribuição Beta adequada a cad	item abaixo, calcule a probabilidade <i>a</i>
parâmetro p , a p $posteriori$ de p Obs: $Você$ $pode$	oartir de observações e estar entre 0,65 e 0,75	e de uma distribuição <i>a priori</i> . Para cada . Use a distribuição Beta adequada a cad	item abaixo, calcule a probabilidade <i>a</i> da cenário.
parâmetro p , a p posteriori de p Obs: Você pode outra ferrament 3.1 (0,5 ponto)	partir de observações e estar entre 0,65 e 0,75 e usar o app Inferência ta de sua escolha. Suponha que, em $n = \frac{1}{2}$	e de uma distribuição <i>a priori</i> . Para cada . Use a distribuição Beta adequada a cad	item abaixo, calcule a probabilidade <i>a</i> da cenário. <i>mial-bayesiana.share.connect.posit.cloud/</i> ou = 3 pontos sobre a água. Use uma
parâmetro p , a p posteriori de p Obs: Você pode outra ferrament 3.1 (0,5 ponto)	partir de observações e estar entre 0,65 e 0,75 e usar o app Inferência ta de sua escolha. Suponha que, em $n = \frac{1}{2}$	e de uma distribuição <i>a priori</i> . Para cada . Use a distribuição Beta adequada a cac $m{Bayesiana\ Binomial\ https://fcopf-bino}}$ = $4\ lançamentos$, foram observados y	item abaixo, calcule a probabilidade <i>a</i> da cenário. <i>mial-bayesiana.share.connect.posit.cloud/</i> ou = 3 pontos sobre a água. Use uma
parâmetro p, a p posteriori de p Obs: Você pode outra ferrament 3.1 (0,5 ponto) distribuição a p Resposta: 3.2 (0,5 ponto)	partir de observações e estar entre ${f 0,65}$ e ${f 0,75}$ e usar o app Inferência ta de sua escolha. Suponha que, em $n={f priori} Beta(1,1)$ (unif	e de uma distribuição <i>a priori</i> . Para cada . Use a distribuição Beta adequada a cac $\pmb{Bayesiana\ Binomial\ https://fcopf-bino}}=4\ lançamentos, foram observados y forme). (Arredonde para 3 CASAS DECIDOS do item anterior (n=4,y=3), uti$	item abaixo, calcule a probabilidade <i>a</i> da cenário. mial-bayesiana.share.connect.posit.cloud/ ou = 3 pontos sobre a água. Use uma
parâmetro p, a p posteriori de p Obs: Você pode outra ferrament 3.1 (0,5 ponto) distribuição a p Resposta: 3.2 (0,5 ponto)	partir de observações e estar entre $0,65$ e $0,75$ e usar o app Inferência ta de sua escolha. Suponha que, em $n=$ priori $Beta(1,1)$ (unif	e de uma distribuição <i>a priori</i> . Para cada . Use a distribuição Beta adequada a cac $\pmb{Bayesiana\ Binomial\ https://fcopf-bino}}=4\ lançamentos, foram observados y forme). (Arredonde para 3 CASAS DECIDOS do item anterior (n=4,y=3), uti$	item abaixo, calcule a probabilidade <i>a</i> da cenário. <i>emial-bayesiana.share.connect.posit.cloud/</i> ou $a = 3$ pontos sobre a água. Use uma IMAIS).
parâmetro p, a p posteriori de p Obs: Você pode outra ferrament 3.1 (0,5 ponto) distribuição a p Resposta: 3.2 (0,5 ponto) (Arredonde par Resposta: 3.3 (0,5 ponto)	partir de observações e estar entre $0,65$ e $0,75$ e usar o app Inferência ta de sua escolha. Suponha que, em $n=$ priori $Beta(1,1)$ (unifora 3 CASAS DECIMAIS)	e de uma distribuição a $priori$. Para cada . Use a distribuição Beta adequada a cac $m{Bayesiana\ Binomial\ https://fcopf-bino}}=4$ lançamentos, foram observados y forme). (Arredonde para 3 CASAS DECIONS do item anterior ($n=4,y=3$), uti	item abaixo, calcule a probabilidade <i>a</i> da cenário. <i>emial-bayesiana.share.connect.posit.cloud/</i> ou $a = 3$ pontos sobre a água. Use uma IMAIS).
parâmetro p, a p posteriori de p Obs: Você pode outra ferrament 3.1 (0,5 ponto) distribuição a p Resposta: 3.2 (0,5 ponto) (Arredonde par Resposta: 3.3 (0,5 ponto)	partir de observações e estar entre $0,65$ e $0,75$ e usar o app Inferência ta de sua escolha. Suponha que, em $n=$ priori $Beta(1,1)$ (unifora 3 CASAS DECIMAIS)	e de uma distribuição a $priori$. Para cada . Use a distribuição Beta adequada a cada a	item abaixo, calcule a probabilidade a da cenário. $\frac{\text{omial-bayesiana.share.connect.posit.cloud/ou}}{\text{ou}} = 3 \text{ pontos sobre a água. Use uma IMAIS).}$ lize uma distribuição a $priori$ $Beta(9,4)$.
parâmetro p, a p posteriori de p Obs: Você pode outra ferrament 3.1 (0,5 ponto) distribuição a p Resposta: 3.2 (0,5 ponto) (Arredonde par Resposta: 3.3 (0,5 ponto) Utilize a a prior Resposta:	partir de observações e estar entre $0,65$ e $0,75$ e usar o app Inferência ta de sua escolha. Suponha que, em n e priori $Beta(1,1)$ (uniform 3 CASAS DECIMAIS) Suponha um número ri $Beta(1,1)$. (Arredo Com os mesmos dado	e de uma distribuição a $priori$. Para cada . Use a distribuição Beta adequada a cada a	item abaixo, calcule a probabilidade a da cenário. $\frac{\text{omial-bayesiana.share.connect.posit.cloud/ou}}{\text{ou}} = 3 \text{ pontos sobre a água. Use uma IMAIS).}$ lize uma distribuição a $priori$ $Beta(9,4)$.