Week 6 Studio Activity

Start	Duration	Activity
0:00	30 mins	Activity briefing
0:30	60 mins	Activity task 1
1:30	60 mins	Activity task 2
2:30	-	End of session

Activity is to be done as individual students. Enter your workings in your Logbook.

Objectives:

- To appreciate how RC and RL filters work.
- To design RC/RL filters given specifications.

Materials:

- Oscilloscope
- Signal generator
- Breadboard, wires
- $1 \times 1 \ k\Omega$ resistor
- 1 \times 330 Ω resistor
- 1 \times 10 k Ω resistor
- 1 \times 100 k Ω resistor
- 1 × 100 pF capacitor
- 1 × 680 pF capacitor
- 1 \times 1 mH inductor

Task #1

- Given the materials you have, design a filter circuit that will allow frequencies above 10 kHz to pass through, but frequencies below 1 kHz to be attenuated (at least by 6 dB).
- 2. Build the circuit on a breadboard.
- 3. Test the circuit by giving it an input from the signal generator, and measuring the input and output on the oscilloscope.
- 4. Tabulate the frequency response (in dB) at 100 Hz, 500 Hz, 1 kHz, 2 kHz, 5 kHz, 10 kHz, 20 kHz, 50 kHz, and 100 kHz. Plot/sketch the frequency response.

1 7 1

Task #2

- Given the materials you have, design a filter circuit that will allow frequencies below 10 kHz to pass through, but frequencies above 100 kHz to be attenuated (at least by 6 dB).
- 2. Build the circuit on a breadboard.
- 3. Test the circuit by giving it an input from the signal generator, and measuring the input and output on the oscilloscope.
- 4. Tabulate the frequency response (in dB) at 1 kHz, 5 kHz, 10 kHz, 20 kHz, 50 kHz, 100 kHz, 200 kHz and 500 kHz. Plot/sketch the frequency response.

Your log book should contain: (1) the circuit diagram for the filter, labeling the values of all components, (2) calculations/explanation of how the values of the components were chosen, (3) the tabulated frequency response and a sketch/plot of the response.

Your log book should contain: (1) the circuit diagram for the filter, labeling the values of all components, (2) calculations/explanation of how the values of the components were chosen, (3) the tabulated frequency response and a sketch/plot of the response.

Solution

(not provided to students)

Task 1: RC highpass filter with R = 100 k Ω and C = 680 pF. Task 2: RL lowpass filter with R = 330 Ω and L = 1 mH.

Any other solution that achieves the specifications is acceptable.