24 - Proprietà Notevoli dell'Integrale di Bochner

Proposizione 24.1: Linearità dell'integrale di Bochner

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Siano $f, g: T \to X$ due funzioni integrabili secondo Bochner.

Siano $\alpha, \beta \in \mathbb{R}$.

Si hanno i seguenti fatti:

- $\alpha f + \beta g$ è integrabile secondo Bochner;
- $\int_T (lpha f + eta g)(t) \, d\mu = lpha \int_T f(t) \, d\mu + eta \int_T g(t) \, d\mu.$

Dimostrazione

In virtù dell'ipotesi di integrabilità di f e g secondo Bochner, siano $\{f_n: T \to X\}_{n \in \mathbb{N}}$ e $\{g_n: T \to X\}_{n \in \mathbb{N}}$ due successioni di funzioni semplici, convergenti quasi ovunque in T a f e g rispettivamente, e tali che

$$\lim_n \int_T \|f_n(t) - f(t)\|_X \, dt = \lim_n \int_T \|g_n(t) - g(t)\|_X \, dt = 0.$$

La successione $\{\alpha f_n + \beta g_n\}_{n \in \mathbb{N}}$ è costituita da funzioni semplici, e converge quasi ovunque in T a $\alpha f + \beta g$.

Per ogni $n \in \mathbb{N}$ si ha inoltre $\int_T \|(\alpha f_n + \beta g_n)(t) - (\alpha f + \beta g)(t)\| dt \le |\alpha| \int_T \|f_n(t) - f(t)\| dt + |\beta| \int_T \|g_n(t) - g(t)\| dt$ per monotonia e linearità dell'integrale di Lebesgue, essendo

$$\|(\alpha f_n + \beta g_n)(t) - (\alpha f + \beta g)(t)\| \le |\alpha| \|f_n(t) - f(t)\| + |\beta| \|g_n(t) - g(t)\|$$
 per ogni $t \in T$ per le proprietà delle norme.

Essendo $\lim_n \int_T \|f_n(t) - f(t)\|_X dt = \lim_n \int_T \|g_n(t) - g(t)\|_X dt = 0$ per costruzione di $\{f_n\}_{n \in \mathbb{N}}$ e $\{g_n\}_{n \in \mathbb{N}}$, segue per confronto che $\lim_n \int_T \|(\alpha f_n + \beta g_n)(t) - (\alpha f + \beta g)(t)\| dt = 0$.

Dunque, $\alpha f + \beta g$ è integrabile secondo Bochner per la [Proposizione 23.2].

Resta da mostrare che $\int_T (\alpha f + \beta g)(t) \, d\mu = \alpha \int_T f(t) \, d\mu + \beta \int_T g(t) \, d\mu$.

Dalla definizione di integrale di Bochner e per costruzione di $\{f_n\}_{n\in\mathbb{N}}$ e $\{g_n\}_{n\in\mathbb{N}}$ si ha $\int_T f(t)\,d\mu=\lim_n\int_T f_n(t)\,d\mu$ e $\int_T g(t)\,d\mu=\lim_n\int_T g_n(t)\,d\mu$.

Si ha allora che

$$\lim_n \int_T (lpha f_n + eta g_n)(t) \, d\mu$$

 $=\lim_n \alpha \int_T f_n(t) \, d\mu + \beta \int_T g_n(t) \, d\mu$ Per linearità dell'integrale di Bochner per funzioni semplici ([Proposizione 23.1])

$$= lpha \int_T f(t) \, d\mu + eta \int_T g(t) \, d\mu$$
 Per quanto osservato prima

Dalla definizione di integrale di Bochner segue allora che $\int_T (\alpha f + \beta g)(t) d\mu = \alpha \int_T f(t) d\mu + \beta \int_T g(t) d\mu$, come si voleva.

L

Proposizione 24.2: Integrale di Bochner della composizione di funzionali lineari continui con funzioni continue

Sia $T \in \mathscr{L}_p$.

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi di Banach.

Sia $f: T \to X$ una funzione integrabile secondo Bochner.

Sia $\varphi \in \mathcal{L}(X,Y)$.

Si hanno i seguenti fatti:

• $\varphi \circ f$ è integrabile secondo Bochner;

•
$$\int_T \varphi \big(f(t) \big) \, d\mu = \varphi \, \big(\int_T f(t) \, d\mu \big).$$

Q Osservazioni preliminari

Sia $\eta: T \to X$ una funzione semplice.

Allora:

- $\varphi \circ \eta$ è una funzione semplice;
- $\int_T \varphi ig(\eta(t) ig) \, d\mu = arphi ig(\int_T \eta(t) \, d\mu ig).$

Dimostrazione

In virtù dell'ipotesi di integrabilità di f secondo Bochner, sia $\{f_n: T \to X\}_{n \in \mathbb{N}}$ una successione di funzioni semplici convergente quasi ovunque in T a f, e tale che $\lim_n \int_T \|f_n(t) - f(t)\|_X dt = 0$.

Si provi che $\{\varphi \circ f_n : T \to Y\}_{n \in \mathbb{N}}$ è una successione di funzioni semplici, convergente quasi ovunque in T a $\varphi \circ f$, e tale che $\lim_n \int_T \|\varphi(f_n(t)) - \varphi(f(t))\|_Y dt = 0$;

La funzione $\varphi \circ f_n$ è semplice per l'osservazione preliminare.

La convergenza di $\{\varphi \circ f_n\}_{n \in \mathbb{N}}$ quasi ovunque in T a $\varphi \circ f$ segue dalla convergenza di $\{f_n\}_{n \in \mathbb{N}}$ quasi ovunque in T a f, e dalla continuità di φ , essendo $\varphi \in \mathcal{L}(X,Y)$ per ipotesi.

Infine, si osserva che, per ogni $n \in \mathbb{N}$,

$$\int_T \left\| \varphi \big(f_n(t) \big) - \varphi \big(f(t) \big) \right\|_Y dt$$

 $\leq \int_T \|\varphi\|_{\mathcal{L}(X,Y)} \cdot \|f_n(t) - f(t)\|_X dt$ Per monotonia dell'integrale di Lebesgue, essendo

 $\left\|arphiig(f_n(t)ig)-arphiig(f(t)ig)
ight\|_Y\leq \|arphi\|_{\mathcal{L}(X,Y)}\cdot \|f_n(t)-f(t)\|_X$ per ogni $t\in T$ per la

disuguaglianza fondamentale delle norme di operatori lineari continui

 $=\|\varphi\|_{\mathcal{L}(X,Y)}\int_T\|f_n(t)-f(t)\|_X\,dt$ Per linearità dell'integrale di Lebesgue

e dunque, essendo $\lim_n \int_T \|f_n(t) - f(t)\|_X \, dt = 0$ per ipotesi, segue

 $\lim_n \int_T \left\| arphi ig(f_n(t)ig) - arphi ig(f(t)ig)
ight\|_Y dt = 0$ per confronto.

Allora, $\varphi \circ f$ soddisfa le proprietà che si volevano mostrare, che ne implicano per definizione l'integrabilità secondo Bochner.

Resta da mostrare che $\int_{\mathcal{T}} \varphi(f(t)) d\mu = \varphi(\int_{\mathcal{T}} f(t) d\mu).$

Si ha

$$\int_T arphiig(f(t)ig)\,d\mu = \lim_n \int_T arphiig(f_n(t)ig)\,d\mu$$

Per definizione di integrale di Bochner

$$=\lim_n arphi \left(\int_T f_n(t) \, d\mu
ight)$$

 $\int_T \varphi(f_n(t)) = \varphi\left(\int_T f_n(t) d\mu\right)$ per ogni $n \in \mathbb{N}$ per l'osservazione preliminare, essendo f_n semplice

$$=arphi\left(\int_T f(t)\,d\mu
ight)$$

In quanto $\lim_n \int_T f_n(t) \, d\mu = \int_T f_n(t) \, d\mu$ per definizione di integrale di Bochner e

per costruzione di $\{f_n\}_{n\in\mathbb{N}}$, e φ è continua essendo $\varphi\in\mathcal{L}(X,Y)$ per ipotesi.

Sia $[a;b]\subseteq\mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:[a;b] o X una funzione continua.

Allora:

- f è integrabile secondo Bochner;
- $\int_{[a;b]} f(t) d\mu = \int_a^b f(t) dt$.

以 Richiamo: Coincidenza tra l'integrale di Riemann e di Lebesgue

Sia $\eta:[a;b] o\mathbb{R}$ una funzione continua.

Allora, essa è sommabile secondo Lebesgue, e si ha

Si ha
$$\int_{[a;b]} \eta(t) \, dt = \int_a^b \eta(t) \, dt$$
.

si giustifichi soltanto la sommabilità di η secondo Lebesgue.

Intanto, η è limitata in quanto continua su un insieme compatto;

posti allora $M,m\in\mathbb{R}$ tali che $m\leq \eta(t)\leq M$ per ogni $t\in[a;b]$, per monotonia dell'integrale di Lebesgue si ha $\int_{[a;b]}m\,dt\leq\int_{[a;b]}\eta(t)\,dt\leq\int_{[a;b]}M\,dt$, ossia

 $m(b-a) \leq \int_{[a;b]} \eta(t) \, dt \leq M(b-a)$, per linearità dell'integrale di Lebesgue ed essendo $\int_{[a;b]} \, dt = \muig([a;b]ig) = b-a$.

Essendo f continua, essa è misurabile;

inoltre, dalla continuità di f e dalla compattezza di [a;b] segue che f([a;b]) è compatto, dunque totalmente limitato, dunque separabile.

Inoltre, la mappa $[a;b] \to \mathbb{R}: t \mapsto \|f(t)\|$ è continua, dunque sommabile secondo Lebesgue per quanto richiamato.

Fissato $\varphi \in X^*$, per quanto richiamato si ha che $\varphi \circ f$ è sommabile secondo Lebesgue, e si ha $\int_{[a:b]} \varphi \big(f(t) \big) \, dt = \int_a^b \varphi \big(f(t) \big) \, dt.$

D'altra parte, essendo a valori reali, la sommabilità di $\varphi \circ f$ equivale all'integrabilità secondo Bochner, e si ha $\int_{[a;b]} \varphi(f(t)) d\mu = \int_{[a;b]} \varphi(f(t)) dt.$

Fatte queste osservazioni, si ha

$$arphi \left(\int_{[a;b]} f(t) \, d\mu \right) = \int_{[a;b]} arphi \left(f(t) \right) d\mu$$
 Per la [Proposizione 24.2]
$$= \int_a^b arphi \left(f(t) \right) dt$$
 Per le osservazioni fatte prima
$$= arphi \left(\int_a^b f(t) \, dt \right)$$
 Per la [Proposizione 21.4]

Dunque, si ha $\varphi\left(\int_{[a;b]}f(t)\,d\mu\right)=\varphi\left(\int_a^bf(t)\,dt\right)$ per ogni $\varphi\in X^*$; dal [Corollario 7.5] segue allora che $\int_{[a;b]}f(t)\,d\mu=\int_a^bf(t)\,dt$, come si voleva.

Proposizione 24.4: Maggiorazione della norma dell'integrale di Bochner

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione integrabile secondo Bochner.

Si ha $\left\| \int_T f(t) \, d\mu \right\| \leq \int_T \|f(t)\| \, dt$.

Dimostrazione

In virtù dell'ipotesi di integrabilità di f secondo Bochner, sia $\{f_n: T \to X\}_{n \in \mathbb{N}}$ una successione di funzioni semplici convergente quasi ovunque in T a f, e tale che $\lim_n \int_T \|f_n(t) - f(t)\|_X dt = 0$.

Si osserva che $\lim_{n}\int_{T}\left\Vert f_{n}(t)\right\Vert dt=\int_{T}\left\Vert f(t)\right\Vert dt.$

Infatti, per ogni $n \in \mathbb{N}$ si ha

$$\left|\int_{T}\left\|f_{n}(t)
ight\|dt-\int_{T}\left\|f(t)
ight\|dt
ight|$$

 $=\left|\int_{T}\|f_{n}(t)\|-\|f(t)\|\,dt\right|$ Per linearità dell'integrale di Lebesgue

 $\leq \int_{T} |\|f_n(t)\| - \|f(t)\|| dt$ Per maggiorazione del valore assoluto dell'integrale di Lebesgue

 $\leq \int_T \|f_n(t) - f(t)\| dt$ Per monotonia dell'integrale di Lebesgue, essendo $\left| \|f_n(t)\| - \|f(t)\| \right| \leq \|f_n(t) - f(t)\|$ per ogni $t \in T$ per la seconda disuguaglianza triangolare

Essendo $\lim_n \int_T \|f_n(t) - f(t)\|_X dt = 0$ per costruzione di $\{f_n\}_{n \in \mathbb{N}}$ per ipotesi, ne segue che $\lim_n \int_T \|f_n(t)\| dt = \int_T \|f(t)\| dt$ per confronto.

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq X$ una successione.

Si dice **serie** di $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ la successione delle somme parziali $\left\{\sum_{n=1}^N\mathbf{x}_n\right\}_{N\in\mathbb{N}};$

essa si denota con $\sum \mathbf{x}_n$.

Il limite della serie $\sum \mathbf{x}_n$, qualora esista, si denota con $\sum_{n=1}^{+\infty} \mathbf{x}_n$;

se tale limite è finito, esso prende il nome di **somma** della serie $\sum \mathbf{x}_n$.

₩ Definizione: Convergenza assoluta di una serie in uno spazio normato

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq X$ una successione.

Si dice che la serie $\sum \mathbf{x}_n$ converge assolutamente quando la serie

 $\sum \|\mathbf{x}_n\|$ converge.

Q Osservazione: Serie assolutamente convergenti sono convergenti in spazi di Banach

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq X$ una successione.

Si supponga che la serie $\sum \mathbf{x}_n$ converga assolutamente.

Allora, $\sum \mathbf{x}_n$ converge, e si ha

$$\left\|\sum_{n=1}^{+\infty} \mathbf{x}_n\right\| \leq \sum_{n=1}^{+\infty} \|\mathbf{x}_n\|.$$

Infatti, essendo $\sum \mathbf{x}_n$ assolutamente convergente, la successione $\left\{\sum_{n=1}^N \|\mathbf{x}_n\|\right\}_{N\in\mathbb{N}}$ converge, dunque è di Cauchy.

Poiché per ogni $M,N\in\mathbb{N}$ (si supponga M>N) si ha

$$\left\| \sum_{n=1}^{M} \mathbf{x}_{n} - \sum_{n=1}^{N} \mathbf{x}_{n} \right\| = \left\| \sum_{n=N+1}^{M} \mathbf{x}_{n} \right\| \leq \sum_{n=N+1}^{M} \|\mathbf{x}_{n}\| = \sum_{n=1}^{M} \|\mathbf{x}_{n}\| - \sum_{n=1}^{N} \|\mathbf{x}_{n}\|,$$

ne viene che anche la successione $\left\{\sum_{n=1}^{N}\mathbf{x}_{n}\right\}_{N\in\mathbb{N}}$ è di Cauchy;

essendo contenuta in X ed essendo X completo in quanto spazio di Banach, ne segue che essa converge.

Dunque, $\sum \mathbf{x}_n$ converge.

Il fatto che $\left\|\sum_{n=1}^{+\infty} \mathbf{x}_n\right\| \leq \sum_{n=1}^{+\infty} \|\mathbf{x}_n\|$ segue per confronto dei limiti, dalla sub-additività di $\|\cdot\|$ applicata alle somme parziali.

Proposizione 24.5: Numerabile additività dell'integrale di Bochner rispetto all'insieme di integrazione

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione integrabile secondo Bochner.

Sia $\{T_n\subseteq T\}_{n\in\mathbb{N}}\subseteq\mathscr{L}_p$ una successione di insiemi tale che $T_n\cap T_m=arnothing$ per ogni $m,n\in\mathbb{N}$ con m
eq n.

Si hanno i seguenti fatti:

• La serie
$$\sum_{n=1}^{+\infty} \int_{T_n} f(t) \, d\mu$$
 converge;

Q Osservazioni preliminari

Sia $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq X$ tale che $\sum\limits_{n\in\mathbb{N}}\mathbf{x}_n$ converga.

Sia $\varphi \in X^*$.

Si hanno i seguenti fatti:

• $\sum_{n\in\mathbb{N}} \varphi(\mathbf{x}_n)$ converge;

• Si ha
$$=\sum_{n\in\mathbb{N}} \varphi(\mathbf{x}_n) = \varphi\left(\sum_{n\in\mathbb{N}} \mathbf{x}_n\right)$$
.

Infatti, si ha

$$\sum\limits_{n\in\mathbb{N}} arphi(\mathbf{x}_n) = \lim\limits_{N} \sum\limits_{n=1}^{N} arphi(\mathbf{x}_n)$$
 Per definizione di serie

$$=\lim_N arphi\left(\sum\limits_{n=1}^N \mathbf{x}_n
ight)$$
 In quanto $\sum\limits_{n=1}^N arphi(\mathbf{x}_n) = arphi\left(\sum\limits_{n=1}^N \mathbf{x}_n
ight)$ per ogni $N\in\mathbb{N}$, per linearità di $arphi$

$$=arphi\left(\sum_{n\in\mathbb{N}}\mathbf{x}_n
ight)$$
 In quanto $\lim_N\sum_{n=1}^N\mathbf{x}_n=\sum_{n\in\mathbb{N}}\mathbf{x}_n$ per ipotesi, e $arphi$ è continua

Dimostrazione

Si mostri intanto la convergenza di $\sum_{n=1}^{+\infty} \int_{T_n} f(t) d\mu$.

Per la [Proposizione 24.4], si ha $\left\| \int_{T_n} f(t) d\mu \right\| \leq \int_{T_n} \|f(t)\| dt$ per ogni $n \in \mathbb{N}$; per numerabile additività dell'integrale di Lebesgue, la serie $\sum_{n \in \mathbb{N}} \int_{T_n} \|f(t)\| dt$ converge (a $\int_{n \in \mathbb{N}} \|f(t)\| dt$).

Allora, per confronto converge anche la serie $\sum_{n=1}^{+\infty} \left\| \int_{T_n} f(t) \, d\mu \right\|$, il che a sua volta implica la convergenza della serie

$$\sum_{n=1}^{+\infty}\int_{T_n}f(t)\,d\mu.$$

Si fissi ora $\varphi \in X^*$; si ha

$$egin{aligned} arphi\left(\int_{igcup_{n\in\mathbb{N}}T_n}f(t)\,d\mu
ight)=\int_{igcup_{n\in\mathbb{N}}T_n}arphiig(f(t)ig)\,d\mu \end{aligned}$$

Per la [Proposizione 24.2]

$$=\int_{igcup_{n\in\mathbb{N}}T_n}arphiig(f(t)ig)\,dt$$

Essendo $\varphi \circ f$ a valori reali, la sua integrabilità secondo Bochner equivale alla sua sommabilità secondo Lebesgue, e i due integrali coincidono

$$=\sum_{n\in\mathbb{N}}\int_{T_n}arphiig(f(t)ig)\,dt$$

Per numerabile additività dell'integrale di Lebesgue rispetto all'insieme di integrazione

$$=\sum_{n\in\mathbb{N}}\int_{T_n}arphiig(f(t)ig)\,d\mu$$

Essendo $\varphi \circ f$ a valori reali, la sua integrabilità secondo Bochner equivale alla sua sommabilità secondo Lebesgue, e i due integrali coincidono

$$=\sum_{n\in\mathbb{N}}arphi\left(\int_{T_n}f(t)\,d\mu
ight)$$

Per la [Proposizione 24.2]

$$=arphi\left(\sum_{n\in\mathbb{N}}\int_{T_n}f(t)\,d\mu
ight)$$

Per l'osservazione preliminare

Dunque, si ha $arphi\left(\int_{igcup_{n\in\mathbb{N}}T_n}f(t)\,d\mu
ight)=arphi\left(\sum_{n\in\mathbb{N}}\int_{T_n}f(t)\,d\mu
ight)$ per ogni $arphi\in X^*$;

dal [Corollario 7.5] segue allora che $\int_{\bigcup\limits_{n\in\mathbb{N}}T_n}f(t)\,d\mu=\sum\limits_{n\in\mathbb{N}}\int_{T_n}f(t)\,d\mu$, come si voleva.

Proposizione 24.6: Teorema della media per funzioni integrabili secondo Bochner

Sia $T \in \mathscr{L}_p \text{ con } 0 < \mu(T) < +\infty$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia f:T o X una funzione integrabile secondo Bochner.

Si ha $rac{1}{\mu(T)}\int_T f(t)\,d\mu\in\overline{\mathrm{conv}}\,f(T).$

Dimostrazione

Si proceda per assurdo, supponendo che $\frac{1}{\mu(T)}\int_T f(t)\,d\mu \not\in \overline{\mathrm{conv}}\,f(T).$

Applicando il Teorema di Separazione ([Teorema 7.10]) all'insieme $\overline{\operatorname{conv}} f(T)$, chiuso e convesso, e all'insieme $\left\{\frac{1}{\mu(T)}\int_T f(t)\,d\mu\right\}$ compatto, convesso e disgiunto dal primo insieme per ipotesi di assurdo, esiste allora $\varphi\in Y^*$ tale che

$$\sup_{\mathbf{x} \in \overline{\mathrm{conv}}\, f(T)} arphi(\mathbf{x}) < arphi\left(rac{1}{\mu(T)}\int_T f(t)\,d\mu
ight).$$

Ne segue allora che $\sup_{t \in T} arphiig(f(t)ig) < arphi\left(rac{1}{\mu(T)}\int_T f(t)\,d\mu
ight).$

D'altra parte, si ha

$$\varphi\left(\frac{1}{\mu(T)}\int_T f(t)\,d\mu\right) = \frac{1}{\mu(T)}\int_T \varphi(f(t))\,d\mu$$
 Per linearità di φ e per la [Proposizione 24.2]

$$=\frac{1}{\mu(T)}\int_T \varphi(f(t))\,dt$$
 Essendo $\varphi\circ f$ a valori reali, la sua integrabilità secondo Bochner equivale alla sua sommabilità secondo Lebesgue, e i due integrali coincidono

$$\leq rac{1}{\mu(T)} \int_T \sup_{t \in T} arphiig(f(t)ig) \,dt$$
 Per monotonia dell'integrale di Lebesgue, essendo $\sup_{t \in T} arphiig(f(t)ig) < +\infty$ in

quanto
$$\sup_{t \in T} arphiig(f(t)ig) < arphi\left(rac{1}{\mu(T)}\int_T f(t)\,d\mu
ight)$$
 per quanto dedotto prima,

ed essendo
$$arphiig(f(t)ig) \leq \sup_{t \in T} arphiig(f(t)ig)$$
 per ogni $t \in T$

$$= \sup_{t \in T} arphiig(f(t)ig)$$

Per linearità dell'integrale di Lebesgue, ed essendo $\int_T \, dt = \mu(T)$

in contrasto con quanto dedotto prima.

Proposizione 24.7: Teorema della convergenza dominata per funzioni integrabili secondo Bochner

Sia $T \in \mathscr{L}_p$ con $0 < \mu(T) < +\infty$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $\{f_n: T \to X\}_{n \in \mathbb{N}}$ una successione di funzioni fortemente μ -misurabili, convergente quasi ovunque in T;

sia $f: T \to X$ limite puntuale quasi ovunque di $\{f_n\}_{n \in \mathbb{N}}$.

Si supponga che esista $g:T o\mathbb{R}_0^+$ sommmabile secondo Lebesgue, tale che

 $||f_n(t)|| \leq g(t)$ per quasi ogni $t \in T$, per ogni $n \in \mathbb{N}$.

Allora, si hanno i seguenti fatti:

- f è integrabile secondo Bochner;
- $ullet \lim_n \int_T \|f_n f\| \, dt = 0;$
- Per ogni $S\subseteq T$ misurabile, si ha $\lim_n \int_S f_n(t)\,d\mu = \int_S f(t)\,d\mu.$

Dimostrazione

Per ipotesi, f_n è fortemente μ -misurabile per ogni $n \in \mathbb{N}$;

poiché $\{f_n\}_{n\in\mathbb{N}}$ converge per ipotesi a f quasi ovunque in T, dalla [Proposizione 22.4] segue allora che f è fortemente μ -misurabile.

Inoltre, la funzione $T \to \mathbb{R}: t \mapsto \|f(t)\|$ è sommabile secondo Lebesgue.

Infatti, per ipotesi si ha $||f_n(t)|| \le g(t)$ per quasi ogni $t \in T$, per ogni $n \in \mathbb{N}$; dall'ipotesi di convergenza di $\{f_n\}_{n \in \mathbb{N}}$ a f quasi ovunque in T e dalla continuità della norma, segue allora per confronto che $||f(t)|| \le g(t)$ per quasi ogni $t \in T$.

Ne viene quindi che la funzione $T \to \mathbb{R} : t \mapsto \|f(t)\|$ è sommabile secondo Lebesgue, essendo nonnegativa e maggiorata da g, sommabile secondo Lebesgue per ipotesi.

Pertanto, f è integrabile secondo Bochner.

Si provi ora il secondo punto.

Si consideri la successione di funzioni $\{\|f_n(\cdot) - f(\cdot)\|\}_{n \in \mathbb{N}}$, definite in T a valori in \mathbb{R} ; essa converge quasi ovunque a 0, per costruzione di $\{f_n\}_{n \in \mathbb{N}}$ e per continuità della norma.

Inoltre, per ogni $n \in \mathbb{N}$ e per quasi ogni $t \in T$ si ha

$$\|f_n(t)-f(t)\| \leq \|f_n(t)\| + \|f(t)\|$$
 Per sub-additività delle norme $\leq 2g(t)$ $\|f_n(t)\| \leq g(t)$ per quasi ogni $t \in T$ per ipotesi; $\|f(t)\| \leq g(t)$ per quasi ogni $t \in T$ per quanto osservato prima

e 2g è una funzione sommabile secondo Lebesgue, essendolo g per ipotesi.

È perciò possibile applicare a $\{\|f_n(\cdot) - f(\cdot)\|\}_{n \in \mathbb{N}}$ il teorema di convergenza dominata di Lebesgue, ricavando così che $\lim_n \int_T \|f_n(t) - f(t)\| dt = 0.$

Il secondo punto è dunque acquisito.

Resta da mostrare il terzo punto.

Si fissino ora $S\subseteq T$ misurabile, e $n\in\mathbb{N}$; si ha

$$\left\|\int_S f_n(t)\,d\mu - \int_S f(t)\,d\mu
ight\|$$

$$=\left\|\int_{S}f_{n}(t)-f(t)\,d\mu
ight\|$$
 Per linearità dell'integrale di Bochner ([Proposizione 24.1])

$$\leq \int_{S} \|f_n(t) - f(t)\| \, dt$$
 Per la maggiorazione della norma dell'integrale di Bochner ([Proposizione 24.4])

$$\leq \int_T \|f_n(t) - f(t)\| \, dt$$
 Per monotonia dell'integrale di Lebesgue rispetto all'insieme di integrazione, essendo $S \subseteq T$

Poiché $\lim_n \int_T \|f_n(t) - f(t)\| dt = 0$ per il secondo punto, segue per confronto che $\lim_n \int_S f_n(t) d\mu = \int_S f(t) d\mu$, come si voleva.