Ultra-high Energy Cosmic Rays and Cosmic Magnetic Fields

Stefan Hackstein

1st year PhD student @

stefan.hackstein@hs.uni-hamburg.de

Supervisors: Marcus Brüggen, Franco Vazza

Collaborators: Günter Sigl, Andrej Dundovic, Jenny G. Sorce, Stefan Gottlöber

Cosmic Rays

charged Nuclei

power law $10^9 - 10^{20} \text{ eV}^{-1}$

knee at 10^{16} eV E_{max} of galactic sources SN remnants (*Blasi 2013*)

ankle at 10¹⁸ sources extragalactic unknown

W. Hanlon

Hillas Criterion

Fermi acceleration

gyro radius
$$r_g = E/eZB$$

Hillas Criterion:

$$R > r_g \Rightarrow E_{max} \propto B \cdot R$$

Sources: GRB? AGN? RG? Cluster?

A. M. Hillas

Observation

ASPERA/Novapix/L.Bret

Extensive Air Shower in earth's atmosphere

Array of: Cherenkov telescopes & Fluorescence light detector

Observables:

Energy (particle density) Direction (delay) Mass (Xmax, ρ_{μ})

Observation

ssier-Selvon
Pierre Auger Collaboration (Fall 2017)

Propagation

Hackstein et al. 2016 & 2018

energy losses

- pair production, GZK

change in composition

- decay, disintegration

change in anisotropy

- deflection

UHECR astronomy not trivial

Propagation

Hackstein et al. 2016 & 2018

energy losses

- pair production, GZK

change in composition

- decay, disintegration

change in anisotropy

- deflection

UHECR astronomy not trivial

measure EGMFs?

Simulation

ENZO

(large cosmological MHD) vary field strength & magnetogenesis (primordial vs. astrophysical)

&

CRPROPA

(CR propagation in CMFs) vary sources & composition

Franco Vazza, Bologna

Results

Hackstein et al. 2016 & 2018

composition $\not\propto B$

anisotropy source dominated, UHECR astronomy at highest *E*

Results

heavy injection spectrum reproduces observed dipole with many source models, protons need extreme models

 \Rightarrow heavy injection favoured

Hackstein et al. 2018

Results

Liouville's Theorem

BUT

Theorem (Liouville's theorem on CRs)

isotropy of CR flux is preserved along line of force i. e. magnetic deflection cannot create anisotropies

Parker 1967

Liouville's Theorem

BUT

Theorem (Liouville's theorem on CRs)

isotropy of CR flux is preserved along line of force i. e. magnetic deflection cannot create anisotropies

Parker 1967

???

???

simulations too complex!

choose more basic models!

mono-energetic, constant composition

Uniform field

consider injection from sphere at distance d most basic magnetic field: B = const

number of starting positions on injection sphere depends on Θ , B & d

Hackstein et al. in proc.

Uniform field

consider injection from sphere at distance d most basic magnetic field: B = const

number of starting positions on injection sphere depends on Θ , $B\ \&\ d$

- ⇒ prefer nearby sources⇒ shorter <trajectory>
 - \Rightarrow heavier composition

Hackstein et al. in proc.

Uniform field

consider injection from sphere at distance d most basic magnetic field: B = const

number of starting positions on injection sphere depends on Θ , B & d

- \Rightarrow prefer nearby sources
 - \Rightarrow shorter <trajectory>
 - \Rightarrow heavier composition
- ⇒ quadrupole anisotropy Hackstein et al. *in proc.*

Poloidal field

0.0.0

0.2

more realistic field: poloidal

shields at equator, attracts at poles (cf. earth's magnetosphere)

Parker, van Allen, Alfven, et al. 1960's

 \Rightarrow quadrupole anisotropy

Hackstein et al. in proc.

Constrain Magnetosphere of Milky Way

(quadrupole) anisotropy is not observed → infer constraints on poloidal component of MW Magnetosphere

$$R \stackrel{!}{>} 10^{-4} \Rightarrow$$
 $B_{\rm Pol} < \sim 10 \ \mu \rm G$

Hackstein et al. in proc.

predictions for influence of Magntosphere of Milky Way

Conclusions

ballistic propagation $\gtrsim 80 {
m EeV}$

⇒ UHECR astronomy possible

Different seeding models indistinguishable

 \Rightarrow No info on magneto-genesis

heavy injection composition more likely to reproduce observed anisotropy

Extragalactic Magnetic fields can produce (quadrupole) anisotropy if particles are trapped

 \Rightarrow constrain on poloidal component in magnetosphere of MW of order $\sim 10 \mu G$, uniform component of order $\sim 1 nG$

15 / 16

Artefacts

effect of finite observer

