This week you will get practice applying the exponential and logistic models and describing their qualitative behaviour. Some of these questions take a bit of thought, they are good practice if you generally struggle with word problems. You will also get a lot of practice solving separable differential equations.

Homework: The homework will be due on Friday 18 November, at 2pm, the *start* of the lecture. It will consist of question 8.

*Numbers in parentheses indicate the question has been taken from the textbook:

S. J. Schreiber, Calculus for the Life Sciences, Wiley,

and refer to the section and question number in the textbook.

- 1. (6.3-25) In 1990 the gross domestic product (GDP) of the United States was \$5,464 billion. Suppose the growth rate from 1989 to 1990 was 5.08%. Predict the GDP in 2003.
 - (Hint: You should assume that the percentage growth rate is constant not very realistic!)
- 2. (6.3-28) According to the Department of Health and Human Services, the annual growth rate in the number of marriages per year in 1990 in the United States was 9.8% and there were 2,448,000 marriages that year. How many marriages will there be in 2004 if the annual growth rate in the number of marriages per year is constant?
- 3. (6.3-30) Calculate the infusion rate in milligrams per hour required to maintain a long-term drug concentration of 50 mg/L (i.e., the rate of change of drug in the body equals zero when the concentration is 50 mg/L). Assume that the half-life of the drug is 3.2 hours and that the patient has 5 L of blood.
- 4. (6.3-31) Calculate the infusion rate in milligrams per hour required to maintain a desired drug concentration of 2 mg/L. Assume the patient has 5.6 L of blood and the half-life of the drug is 2.7 hours.
- 5. (6.3-34) A drug is given at an infusion rate of 50 mg/h. The drug concentration value determined at 3 hours after the start of the infusion is 8 mg/L. Assuming the patient has 5 L of blood, estimate the half-life of this drug.
- 6. (6.3-37) After one hydrodynamic experiment, a tank contains 300 L of a dye solution with a dye concentration of 2 g/L. To prepare for the next experiment, the tank is to be rinsed with water flowing in at a rate of 2 L/min, with the well-stirred solution flowing out at the same rate. Write an equation that describes the amount of dye in the container. Be sure to identify variables and their units.
- 7. (6.3-38) At midnight the coroner was called to the scene of the brutal murder of Casper Cooly. The coroner arrived and noted that the air temperature was 70° F and Cooly's body temperature was 85° F. At 2a.m., she noted that the body had cooled to 76° F. The police arrested Cooly's business partner Tatum Twit and charged her with the murder. She has an eyewitness who said she left the theater at 11p.m. Does her alibi help?
- 8. A cylindrical water tank, 2 meters in diameter and 5 meters tall, has a small hole in its base of radius 0.05 meters. From the *Bernoulli principle* in fluid dynamics one can derive the fact that if the tank is filled to a level of h meters then the water is flowing out of the hole at a rate of

$$A\sqrt{2gh}~{\rm m}^3/{\rm s}$$

where A is the area (in meters squared) of the hole and g is acceleration due to gravity (you may assume $g = 10 \text{ m/s}^2$). Rainwater is caught by a guttering system and is pouring into the tank at a constant rate of $I \text{ m}^3/\text{s}$.

(a) Write a differential equation that describes the change in the volume of water (in m^3/s) held by the tank, over time.

Solution: The hole has a radius of 0.05 m so it's area is $A = 0.01\pi = \pi/100 \text{ m}^2$. Furthermore, if V(t) is the volume at time t and h(t) is the height of the water at time t then $V(t) = \pi h(t)$ (since the tank has radius 1 m). Thus by the formula given in the question, water is flowing out of the hole at a rate of

$$\frac{\pi}{100}\sqrt{20h(t)} = \frac{\pi}{100}\sqrt{\frac{20}{\pi}}V^{\frac{1}{2}} \text{ m}^3/\text{s}.$$

Thus the total rate of change is given by the rate flowing in, minus the rate flowing out, so

$$\frac{\mathrm{d}V}{\mathrm{d}t} = I - \frac{\pi}{100} \sqrt{\frac{20}{\pi}} V^{\frac{1}{2}} = I - \frac{\sqrt{\pi}}{10\sqrt{5}} V^{\frac{1}{2}}.$$

(b) Find the equilibrium solution for this equation (leave your answer in terms of I and π).

Solution: The equilibrium solution occurs when dV/dt = 0. I.e. when

$$0 = I - \frac{\sqrt{\pi}}{10\sqrt{5}} V^{\frac{1}{2}}$$

$$\frac{\sqrt{\pi}}{10\sqrt{5}} V^{\frac{1}{2}} = I$$

$$V^{\frac{1}{2}} = \frac{10\sqrt{5}}{\sqrt{\pi}} I$$

$$V = \frac{500I^{2}}{\pi}.$$

(c) If the tank is initially filled up to the 3 meter mark, describe how the volume of the tank behaves over the long term, for different values of I.

Solution: If the tank is initially full to the 3 meter mark, then it contains 3π m³ of water. Thus if

$$3\pi = V = \frac{500I^2}{\pi}$$

i.e. if

$$I = \sqrt{\frac{3\pi^2}{500}} \approx 0.25 \text{ m}^3/\text{s}$$

then the volume of the water neither increases or decreases over time.

If I > 0.25 then the rate of change in the volume is positive and thus the tank eventually overflows. If I < 0.25 then the tank eventually empties.

- (d) Solve the differential equation assuming that I = 0 (i.e. it is not raining).
- (e) Under the above assumptions, how long would it take for the tank to drain? Here we will declare that the tank is drained once it contains less than $0.001~\mathrm{m}^3$ of water.
- (f) Solve the differential equation assuming that I = 0.5 but leave the answer as an implicit function (do not try to solve for V(t)).

Solution: We begin by separating the variables and integrating,

$$\int \frac{1}{0.5 - \frac{\sqrt{\pi}}{10\sqrt{5}} V^{\frac{1}{2}}} \, \mathrm{d}V = \int \, \mathrm{d}t.$$

The integral on the left can be rearranged to

$$2\int \frac{1}{1 - \frac{\sqrt{\pi}}{5I\sqrt{5}}V^{\frac{1}{2}}} \, \mathrm{d}V.$$

Now we use the substitution $u = \frac{\sqrt{\pi}}{5\sqrt{5}}V^{\frac{1}{2}}$, with this choice we have that

$$\frac{\mathrm{d}u}{\mathrm{d}V} = \frac{\sqrt{\pi}}{10\sqrt{5}}V^{-\frac{1}{2}}.$$

Now we apply the substitution:

$$2\int \frac{1}{1 - \frac{\sqrt{\pi}}{5\sqrt{5}}V^{\frac{1}{2}}} \, dV = 2\int \frac{\frac{10\sqrt{5}}{\sqrt{\pi}}V^{\frac{1}{2}}}{1 - \frac{\sqrt{\pi}}{5\sqrt{5}}V^{\frac{1}{2}}} \left(\frac{\sqrt{\pi}}{10\sqrt{5}}V^{-\frac{1}{2}}\right) \, dV$$

$$= 2\int \frac{\frac{10\sqrt{5}}{\sqrt{\pi}}V^{\frac{1}{2}}}{1 - \frac{\sqrt{\pi}}{5\sqrt{5}}V^{\frac{1}{2}}} \left(\frac{\sqrt{\pi}}{10\sqrt{5}}V^{-\frac{1}{2}}\right) \, dV$$

$$= \frac{500}{\pi} \int \frac{\frac{\sqrt{\pi}}{5\sqrt{5}}V^{\frac{1}{2}}}{1 - \frac{\sqrt{\pi}}{5\sqrt{5}}V^{\frac{1}{2}}} \left(\frac{\sqrt{\pi}}{10\sqrt{5}}V^{-\frac{1}{2}}\right) \, dV$$

$$= \frac{500}{\pi} \int \frac{u}{1 - u} \, du.$$

Note that we can use polynomial long division to rewrite

$$\int \frac{u}{1-u} du = \int \frac{1}{1-u} - 1 du$$
$$= \ln(1-u) - u.$$

Thus

$$2\int \frac{1}{1 - \frac{\sqrt{\pi}}{5\sqrt{5}}V^{\frac{1}{2}}} dV = \frac{500}{\pi} \left(\ln(1 - u) - u\right) + C$$
$$= \frac{500}{\pi} \left(\ln\left(1 - \frac{\sqrt{\pi}}{5\sqrt{5}}V^{\frac{1}{2}}\right) - \frac{\sqrt{\pi}}{5\sqrt{5}}V^{\frac{1}{2}}\right) + C$$

We can now equate this will the right hand side of the equation above to obtain

$$\frac{500}{\pi} \left(\ln \left(1 - \frac{\sqrt{\pi}}{5\sqrt{5}} V^{\frac{1}{2}} \right) - \frac{\sqrt{\pi}}{5\sqrt{5}} V^{\frac{1}{2}} \right) = t + C$$

for an arbitrary constant C. For find the value of this constant we use the fact that $V(0) = 3\pi$.

$$\frac{500}{\pi} \left(\ln \left(1 - \frac{\pi\sqrt{3}}{5\sqrt{5}} \right) - \frac{\pi\sqrt{3}}{5\sqrt{5}} \right) = C \approx -183.6.$$

Noting also that $\frac{\sqrt{\pi}}{5\sqrt{5}} \approx 0.16$ and $500/pi \approx 159.6$ we have the final relationship is given by

$$159.6\ln(1 - 0.16\sqrt{V}) - 25.2\sqrt{V} = t - 183.6.$$

9. (6.4-37) A population subject to seasonal fluctuations can be described by the logistic equation with an oscillating carrying capacity. Consider, for example,

$$\frac{\mathrm{d}P}{\mathrm{d}t} = P\left(1 - \frac{P}{100 + 50\sin 2\pi t}\right)$$

Although it is difficult to solve this differential equation, it is easy to obtain a qualitative understanding.

- (a) Sketch a slope field over the region $0 \le t \le 5$ and $0 \le O \le 200$.
- (b) Sketch solutions that satisfy P(0) = 0, P(0) = 10, and P(0) = 200.
- (c) Use technology to obtain a better rendition of the slope field and solutions.
- 10. (6.4-38) The velocity v(t) of a skydiver is governed by the equation

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = mg - kv^2$$

where m is the mass of the skydiver, g is gravitational acceleration, and k is a dampening constant (i.e., accounts for air friction).

- (a) Sketch the slope field for this equation assuming that m = 70 kg, $g = 9.8 \text{ m/s}^2$, and k = 100 kg/s.
- (b) Using the slope field, determine the value of $\lim_{t\to\infty} v(t)$ for the solution v(t) satisfying v(0)=0. Note that this limiting value is known as the *terminal velocity*.
- 11. (6.4-40) A population, in the absence of harvesting, exhibits the following growth

$$\frac{\mathrm{d}N}{\mathrm{d}t} = N\left(\frac{N}{100} - 1\right)\left(1 - \frac{N}{1000}\right)$$

where N is abundance and t is time in years.

- (a) Write an equation that corresponds to harvesting the population at a rate of 0.5% per day.
- (b) Sketch the slope field for the differential equation you found in part a; by sketching solutions, describe how the fate of the population depends on its initial abundance.