

Using R as a Research Tool.

NERC E4 DTP Training

Dr Susan Johnston, Institute of Ecology and Evolution

github.com/susjoh/E4StatsTutorials

Life of a research project - expectation.

Life of a research project - reality.

Science is not a solo endeavour!

Organised data and workflows.

We need to be good scientists and good collaborators...

Reproducible analyses.

Code availability.

Version control.

What is reproducible research?

"Reproducibility is the ability of an entire experiment or study to be reproduced, either by the researcher or by someone else working independently, [and] is one of the main principles of the scientific method."

-Wikipedia

In the lab...

Many of us are clicking, copying and pasting...

- Can you repeat all of this again...
- ...and would you get the same results every time?

Scenarios that benefit from reproducibility

• The first researcher who will need to reproduce results is likely to be **YOU**.

- New data becomes available.
- You return to a project after a period of time.
- You give the project to a new student/collaborator.
- A reviewer wants you to change something.
- Other researchers want to used your data/methods.
- You found an error, but not sure how it happened.

Coding is Key!

Automates analyses.

 Provides a record of all data manipulation analysis.

Can be adapted and rerun.

 You should always use code whenever possible. "This is R. There is no if. Only how."
-- Simon `Yoda' Blomberg, R-help (April 2005)

```
# Car speed analysis
    # SEJ, Sep 2023
    data(cars)
    # Calculate the mean speed and distance
    mean(cars speed)
    mean(cars$dist)
12
    # Linear regression:
    car_regression <- lm(speed ~ dist, data = cars)</pre>
    car_regression
                                   # very basic results
    summary(car_regression)
                                   # more detailed results
18
    # Plot the regression
    plot(speed ~ dist, data = cars)
    abline(car_regression)
```

Learning to code is about the \Rightarrow process \Rightarrow

When someone asks me how I got better:

When your Program's a mess but everything works out in the end

It will take time (but not much time!)

You will (should) screw up (a lot) and learn many lessons.

Code can be improved: it's fine to get the job done.

Anyone can code.

Mary Jackson at NASA, 1977

Rear Admiral Grace Hopper, 1960

Environment for statistical computing and graphics.

- Interactive programming language.
- 20,406 packages on CRAN.
- Free and open-source multiplatform software.

What is **R** Studio?

- Integrated development environment (IDE) for running R.
- Integrates other tools to aid reproducibility.
- R Projects allow portability.
- Free multi-platform software.


```
"This is R. There is no if. Only how."
-- Simon `Yoda' Blomberg, R-help (April 2005)
```

Statistics.

Data visualisation

e.g. http://www.r-graph-gallery.com/portfolio/ggplot2-package/

When did the golden age of The Simpsons end?

Ancestors and descendants of a single Soay sheep called Snowball.

UK distribution of Atlantic Puffins

Access data from the Global Biodiversity Information Facility And Flickr directly through R

Team Shrub in School of Geosciences: https://ourcodingclub.github.io/tutorials/seecc_1/index.html

Report writing

Using R as a Research Tool.

Dr Susan Johnston: Susan.Johnston@ed.ac.uk

Demonstrators: Gergana Dalaskova, John Godlee. Hat-Tips to Kyle Dexter, The Coding Club and R4all.

November 6, 2017

1 Introduction

1.1 What is \mathbb{R} ?

R began its life in New Zealand in 1993 as a language and environment for statistical computing and graphics. It is an interpreted programming language, meaning that rather than pointing and clicking, the user types in commands. It is **free** and works across all platforms.

1.2 Why use **R**?

LaTeX and R Sweave

knitr to HTML

Interactive applications (shiny)

Baby names trends in Scotland since 1974

Enter a **name**, select the **gender** and click on **'Apply'** to see how a name's popularity has changed over the years. App might be slow at busy times. Please be patient.

Analytics e.g.

Every non-hyperbolic tweet is from iPhone (his staff).

Every hyperbolic tweet is from Android (from him).

http://varianceexplained.org/r/trump-tweets/

- Transferable skill which makes you competitive for postdocs and academic positions.
- Similar to Python and easy path to other languages.
- Research companies, Facebook, Google, Twitter, AirBnB.
- Scotland R jobs at Scottish Government, Met Office, JP Morgan, RBS & other Banks, Rockstar North, University of Edinburgh, Energy Companies, start-ups, etc.

https://www.nature.com/news/many-junior-scientists-need-to-take-a-hard-look-at-their-job-prospects-1.22879

Best method is implemented in X.

Collaborator uses X.

Future employer uses X.

Your life could be improved by using X.

Life of a research project.

Using R Projects.

• Establishes a folder with an associated .Rproj

• One folder, one portable project.

• Saves history, profile, etc.

Allows version control within R Studio (e.g. git)

Structuring an R Project.

https://nicercode.github.io/blog/ /2013-05-17-organising-myproject/

https://nicercode.github.io/blog/2013-04-05-projects/

	Soft co	ral database backı	ıp	
	2 ₹			
	pbox			
Name		Size	Kind	
sc_database_cyclone_003.csv	03/05/2013 9:51 AM	33 KB	commvalues	
g function trial stacked histogram.R	30/04/2013 12:13 PM	4 KB	R Source File	
▶ plots	30/04/2013 12:13 PM		Folder	
sc_database_areas.csv	29/04/2013 2:08 PM	49 KB	commvalues	
growth_categories_log_91-92.csv	26/04/2013 2:02 PM	8 KB	commvalues	
cummulative plot function.R	26/04/2013 1:55 PM	4 KB	R Source File	
function for mort.freg.fusi.R	26/04/2013 11:59 AM	4 KB	R Source File	
function for plotting outlines.R	22/04/2013 9:08 PM	12 KB	R Source File	
outlines_area_calculations (#1) function.R	19/04/2013 5:43 PM	4 KB	R Source File	
figure-fun copy.R	19/04/2013 2:05 PM	4 KB	R Source File	
comparison histograms qplot 91-92.pdf	18/04/2013 11:32 AM	213 KB	Portab (PDF)	
comparison histograms qplot 89-91.pdf	18/04/2013 11:30 AM	233 KB	Portab (PDF)	
comparison histograms qplot.pdf	18/04/2013 11:22 AM	233 KB	Portab (PDF)	
merge_dataset_plots(#2).R	17/04/2013 1:56 PM	8 KB	R Source File	
growth_categories_89-91.csv	17/04/2013 1:18 PM	8 KB	commvalues	
growth_categories_91-92.csv	17/04/2013 1:09 PM	8 KB	commvalues	
growth_categories.csv	16/04/2013 4:36 PM	8 KB	commvalues	
mortality_fragmentation(#3).R	04/04/2013 4:33 PM	8 KB	R Source File	
voronoid_polygons.R	04/04/2013 4:32 PM	4 KB	R Source File	
🔊 summary plots and glms.docx	04/04/2013 9:41 AM	1.5 MB	Microument	
area_output.csv	03/04/2013 8:01 AM	16 KB	commvalues	
area_script_current2.R	02/04/2013 4:17 PM	12 KB	R Source File	
Appendix.docx	22/02/2013 3:17 PM	2.3 MB	Microument	
Chapter1 concept sheet_Marcela Diaz.pdf	22/02/2013 3:03 PM	3 MB	Portab (PDF)	
Appendix.pdf	22/02/2013 3:00 PM	2.6 MB	Portab (PDF)	
draft concept sheet_feb21.pdf	22/02/2013 2:56 PM	594 KB	Portab (PDF)	
draft concept sheet_feb21.doc	22/02/2013 2:52 PM	524 KB	Microument	
scale diagram_2.png	22/02/2013 2:49 PM	37 KB	Portabimage	
🧽 scale diagram.png	22/02/2013 2:43 PM	41 KB	Portabimage	
draft concept sheet_feb18.doc	21/02/2013 1:52 PM	90 KB	Microument	
Scripts from alisha's	21/02/2013 1:44 PM		Folder	

All data, scripts and output should be kept within the same project directory (where possible).

R and the Rstudio Environment

https://ourcodingclub.github.io/
tutorials/intro-to-r/

Finding help.

• In R...

- ? searches for a specific function.
- ?? searches for a specific string.
- Help tab in RStudio

• Online...

- ourcodingclub.github.io
- Stack Overflow
- R Cheatsheets

R packages for data science

The tidyverse is an opinionated **collection of R** packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures.

Install the complete tidyverse with:

install.packages("tidyverse")

Loading data into R

Data management in R with base R & dplyr

- Summarise data with summary()
- Sort data with arrange()
- Select columns with select()
- Adding columns with \$
- Select rows with filter()

filter()

Operator	Function
<	less than
>	greater than
=<	less than or equal to
=>	greater than or equal to
==	equals
! =	does not equal
%in%	matches

Data visualisation with

Data visualisation...

Visual representation of data.

• Plots, charts, maps, infographics.

 Accessible way to identify patterns, trends and problems in your data.

 Indicates data quality and how it should be analysed.

Examples from the BBC (plotted in R!) https://bbc.github.io/rcookbook/

The first step in any analysis is to PLOT YOUR DATA!

Do Littorina vary in size with shore height?

x = Height on the sea shore (m)
y = Shell size (mm)

1					
X	у				
10.0	8.04				
8.0	6.95				
13.0	7.58				
9.0	8.81				
11.0	8.33				
14.0	9.96				
6.0	7.24				
4.0	4.26				
12.0	10.84				
7.0	4.82				
5.0	5.68				

x = Height on the sea shore (m)
y = Shell size (mm)

	I	ı	I
Х	У	X	у
10.0	8.04	10.0	9.14
8.0	6.95	8.0	8.14
13.0	7.58	13.0	8.74
9.0	8.81	9.0	8.77
11.0	8.33	11.0	9.26
14.0	9.96	14.0	8.10
6.0	7.24	6.0	6.13
4.0	4.26	4.0	3.10
12.0	10.84	12.0	9.13
7.0	4.82	7.0	7.26
5.0	5.68	5.0	4.74

x = Height on the sea shore (m)
y = Shell size (mm)

	I		II		III
Х	У	Х	У	X	у
10.0	8.04	10.0	9.14	10.0	7.46
8.0	6.95	8.0	8.14	8.0	6.77
13.0	7.58	13.0	8.74	13.0	12.74
9.0	8.81	9.0	8.77	9.0	7.11
11.0	8.33	11.0	9.26	11.0	7.81
14.0	9.96	14.0	8.10	14.0	8.84
6.0	7.24	6.0	6.13	6.0	6.08
4.0	4.26	4.0	3.10	4.0	5.39
12.0	10.84	12.0	9.13	12.0	8.15
7.0	4.82	7.0	7.26	7.0	6.42
5.0	5.68	5.0	4.74	5.0	5.73

x = Height on the sea shore (m)
y = Shell size (mm)

	1		I	III			V
X	У	Х	У	Х	У	Х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

x = Height on the sea shore (m) y = Shell size (mm)

	I	ı	II III		III		V
х	у	Х	у	Х	у	Х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet:

Regression Analysis: y1 versus x1

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	1	27.51	27.510	17.99	0.002
x1	1	27.51	27.510	17.99	0.002
Error	9	13.76	1.529		
Total	10	41.27			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
1.23660	66.65%	62.95%	50.14%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	3.00	1.12	2.67	0.026	
x1	0.500	0.118	4.24	0.002	1.00

Regression Equation

$$y1 = 3.00 + 0.500 \times 1$$

R has its own base graphics.

```
library(palmerpenguins)
# histogram
hist(penguins$flipper_length_mm)
# scatterplot
plot(flipper_length_mm ~ bill_length_mm,
     data = penguins)
# boxplot
boxplot(flipper length mm ~ species,
        data = penguins)
```

Tutorial at: http://rpubs.com/SusanEJohnston/7953

Histogram of penguins\$flipper_length_mm

Data visualization with ggplot2

"You provide the data, tell ggplot2 how to map variables to **aesthetics*** what [graph type] to use, and it takes care of the details."

*visual properties of your dataset

https://ggplot2.tidyverse.org/index.html

Source: R Graph Gallery

ggplot2 builds a graph with the following:

- 1. ggplot()
 - Data with aesthetic (visual) properties (`aes()`).
- 2. geom_...()
 - The type of plot (line, point, box-plot, etc.)
- 3. stat_...()
 - Statistical transformations (regression lines, smoothers, etc)*
- 4. theme()
 - How do you want your graph to look?
- 5. Other customisations
 - e.g. facets, scales, zoom, etc.

