From last day

(1) Find a cauchy sequin $\mathbb Q$ which does not converge in $\mathbb Q$.

A: Let $\mathbb Z$ be an irrational number. $\mathbb Z_n = \frac{\lfloor n \, \mathbb Z \rfloor}{n}$ cgs to $\mathbb Z$.

I $\mathbb Z_n$ does not converge in $\mathbb Q$.

But $x_n \in Q$ $\forall n$ and (x_n) is Cauchy.

(2) Let $(xn) \in \mathbb{R}^{\mathbb{N}}$ s.t. xn cgs. Show xn is Cauchy. A: Say $\lim xn = x$. Let $\in 70$ be given. $\exists N \in \mathbb{N}$ s.t. $n \gg N \Rightarrow |x_n - x| < \frac{\varepsilon}{2}$.

 $| x_p - x_q | = | x_p - x_q | = | x_p - x + x - x_q |$ $= | x_p - x | + | x - x_q | < \varepsilon .$

Countability of sets

het & be the collection of all sets.

Define an equivalence relation \sim on C as follows: $A \sim B \iff \exists \text{ a bijection } f: A \rightarrow B.$

Recall: Say f: X -> Y vis a function.

(injective) f is said to be 1-1 if $a \neq b$ then $f(a) \neq f(b)$. (Swjective) f is said to onto if $\forall y \in Y, \exists x \in X \text{ s.t. } y = f(a)$. f is said to be bijective if f is 1-1 onto

Defn: (1) For $n \in \mathbb{N}$, define $[n] = \{1, 2, ..., n\}$.

Proposition: \sim is an equivalence relation on \mathcal{E} .

Pf: Reflexive: Let $A \in \mathcal{E}$. Consider $f: A \rightarrow A$ given by $f(a) = a \quad \forall \; a \in A$. This is a bijection.

... $A \sim A$.

Symmetric: Suppose A, B \in C s.t. A \sim B, i.e., \exists a bij $f: A \rightarrow B$. There is a bij $g: B \rightarrow A$ (wy) s.t. $f \circ g = id_B + g \circ f = id_A \cdot ... B \sim A$

Transitive: Suppose $A, B, D \in \mathcal{C}$ s.t. $A \sim B \ f \ B \sim D_{j}$ ie, $F = f = f + A \rightarrow B$, $g : B \rightarrow D$. Define $h : A \rightarrow D$ given by h(x) = g(f(x)) (i.e., $h = g \circ f$). Check: h is a bij.

The above together show that ~ is an equivalence orelation.

Prop: Let A be a set. If $\exists m, n \in \mathbb{N}$ 8.t. $A \sim \mathbb{N}$ and $A \sim \mathbb{N}$, then m = n.

Defn: $\bigcirc A \in \mathcal{C}$ is said to be finite if either of the following is true: $\bigcirc A = \emptyset$. In this case we say |A| = 0. $\bigcirc \exists n \in \mathbb{N}$ S.t. $A \sim [n]$. In this case, we say |A| = n.

- 2) A & G îs said to be infinite if A is not finite.
- 3 A $\in \mathscr{C}$ is said to be countably infinite if $A \sim N$.
- (4) A C a is said to be countable if A is either finite or countably infinite.
- 5) AEE is said to be uncountable if it is not countable.

B: Let $A = \{0,1\}^{(N)}$. Then A is uncountable. (Fact: There is a function $f: N \to IN$ which cannot be realized via a C++ program).

Fig. C++ programs that realize some func $N \rightarrow N$ }

Let: This is not bij

 $A_n = \{P_{\text{rograms}} \text{ with } n \text{ characters} \}$. An is finite. $S = \bigcup_{n=1}^{\infty} A_n$