Network Centrality Part 1

Saptarshi Ghosh
Department of CSE, IIT Kharagpur
Social Computing course, CS60017

Includes material borrowed from various online sources, including slides by Lada Adamic

Node centrality

- Relative importance of a node in a network
- Importance varies according to application
 - How influential a person is within a social network
 - How important a webpage is in the Web
 - Which persons to vaccinate when a disease is spreading

 There is an analogous concept of edge centrality, but we will focus on node centrality

Node centrality measures

- Many proposed centrality measures
 - Network structure based
 - Activity based (e.g., number of times a user is mentioned on Twitter or Facebook)
 - Temporal (e.g., Test-of-Time awards to research papers)
 - Hybrid
 - ... and more
- We will focus on the first two types of measures

Degree centrality

- Simply, centrality measured by degree of a node
 - A node of higher degree is more important
- Undirected graphs
 - Number of friends of a user in Facebook
 - Important stations in railway networks
- Directed graphs: usually indegree of node
 - Number of pages linking to a given page in the Web
 - Number of followers of a user in Twitter

Normalized degree centrality

divide degree by the max. possible, i.e. (N-1)

When degree isn't everything

In what ways does degree fail to capture centrality in the following graphs?

- ability to broker between groups
- likelihood that information originating anywhere in the network reaches you...

Closeness centrality

- Intuition
 - Farness of node s: sum of its shortest distances to all other nodes
 - Closeness of node s: inverse of farness

Closeness centrality

Closeness is based on the length of the average shortest path between a vertex and all vertices in the graph

Closeness Centrality:

$$C_{c}(i) = \left[\sum_{j=1}^{N} c(i,j)\right]^{-1}$$

Normalized Closeness Centrality

$$C_C'(i) = (C_C(i))/(N-1)$$

Closeness centrality: toy example

$$C'_{c}(A) = \left[\frac{\sum_{j=1}^{N} d(A, j)}{N-1}\right]^{-1} = \left[\frac{1+2+3+4}{4}\right]^{-1} = \left[\frac{10}{4}\right]^{-1} = 0.4$$

Closeness centrality

 Higher the closeness centrality of s, the lower is its total distance to all other nodes

- Applications
 - Where to set up a hospital in a town?
 - How fast can information spread from s to all other nodes?

Betweenness centrality

Intuition

How many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?

Betweenness of node s:

- For each pair of vertices (u, v), find the shortest paths between them (u or v is not s itself)
- Compute the fraction of these shortest paths which pass through node s
- Sum this fraction for all pairs of nodes (u, v)

Betweenness centrality: definition

$$C_B(i) = \sum_{j < k} g_{jk}(i) / g_{jk}$$

Where g_{jk} = the number of geodesics connecting jk, and g_{ik} (i) = the number of these geodesics that actor i is on.

Can be normalized by:

$$C'_{B}(i) = C_{B}(i)/[(n-1)(n-2)/2]$$

number of pairs of vertices excluding the vertex itself

Betweenness on toy networks

non-normalized version:

Betweenness on toy networks

non-normalized version:

Example of betweenness centrality

Betweenness centrality coded by color

Red: 0 betweenness

Blue: maximum

betweenness

Centrality measures - visual comparison

In each of the following networks, X has higher centrality than Y according to a particular measure