

Obs.: Trabalho em grupo (máximo três alunos por grupo)

Entregar a solução dos problemas no balcão de atendimento do CRA, até 30/04.

_Assinar a lista de entrega, na entrega do trabalho.

1) (14/05/2016) Verifique se existe interseção entre a reta r e o plano π , caso exista determine este ponto.

$$r: \begin{cases} x = -3y + 6 \\ z = -y - 1 \end{cases}$$

Resposta: P(9, -1, 0)

2) (14/05/2016) Determinar as equações simétricas da reta r, perpendicular ao plano π , e que passa pelo ponto A (2,3,-1).

$$\pi : \begin{cases} x = 1 + h - 2t \\ y = 1 - t \\ z = 4 + 2h - 2t \end{cases}$$

Resposta: $s: \frac{x-2}{2} = \frac{y-3}{-2} = \frac{z+1}{-1}$ ou $s: \frac{x-2}{-2} = \frac{y-3}{2} = \frac{z+1}{4}$.

3) (22/10/2015) Determinar o ângulo formado entre o plano π e a reta r, definidos por:

$$\pi \begin{cases} x = 2 + \alpha - 3\beta \\ y = -1 + 2\beta \\ z = 3 - 4\alpha + \beta \end{cases}$$

$$r: \begin{cases} y = 2x + 3 \\ z = x - 2 \end{cases}$$

Resposta: $\alpha \approx 71.85^{\circ}$

- 4) (26/05/2018) Seja a reta r: $\begin{cases} y = -x + 3 \\ z = x 7 \end{cases}$ e o plano π : $\begin{cases} x = \alpha \beta + 1 \\ y = 2\alpha 2 \\ z = 2 2\alpha + \beta \end{cases}$. Determine:
- a) O ponto de intersecção entre a reta $\bf r$ e o plano $\bf \pi$
- b) O vetor normal ao plano π .

Resposta: a) P(5, -2, -2)

b) $\vec{n} = (2, 1, 2)$

- 5) (26/05/2018) Seja r: $\begin{cases} y = -4x + 19 \\ z = x 9 \end{cases}$ e s: $\frac{x+3}{2} = \frac{y+2}{3} = \frac{z-6}{-4}$ duas retas concorrentes. Determine:
- a) O ponto de intersecção entre r e s.
- b) O ângulo entre r e s.
- c) A equação geral (cartesiana) do plano que contém as retas r e s.

Resposta: a) P(3, 7, -6)

b)
$$\theta \approx 52.21^{\circ}$$

b)
$$\theta \approx 52,21^{\circ}$$
 c) π : $13x + 6y + 11z - 15 = 0$

- 6) (26/05/2018) Sejam os pontos A(2, 0, 2), B(4, 2, 0) e C(0,1,1). Se ABCD é um paralelogramo (conforme mostra a figura a seguir) e M é o ponto médio de AD, determine:
- a) as coordenadas do ponto D;
- b) as coordenadas do ponto M;
- c) a equação geral (cartesiana) do plano que contém este paralelogramo;
- d) as equações paramétricas da reta r que passa pelos pontos A e C.

Resposta: a) D(-2, -1, 3)

- b) M(0, -1/2, 5/2)
- c) π : y + z 2 = 0
- d) $\mathbf{r} \begin{cases} x = 2 2\alpha \\ y = \alpha \\ z = 2 \alpha \end{cases}$
- 7) (26/05/2018) Sejam o plano π : 3x 2y + z 5 = 0. Determine:
- a) A equação segmentária do plano π_1 , paralelo ao plano π e que contém o ponto A(1, -2, -1).
- b) A representação gráfica do plano π .
- c) As equações reduzidas, com variável independente z, da reta normal ao plano π e que contém o ponto B(2, -1, 3).

Resposta:

a) A equação geral do plano π_1 é 3x - 2y + z - 6 = 0, e a equação segmentária de π_1 é $\frac{x}{2} + \frac{y}{-3} + \frac{z}{6} = 1$. b) $\frac{x-2}{3} = \frac{y+1}{-2} = z - 3 \Rightarrow \begin{cases} x = 3z - 7 \\ y = -2z + 5 \end{cases}$

b)
$$\frac{x-2}{3} = \frac{y+1}{-2} = z - 3 \Rightarrow \begin{cases} x = 3z - 7 \\ y = -2z + 5 \end{cases}$$

- 8) (08/01/2016) Seja o plano π que contém o ponto A(3, 7, 1) e é paralelo aos vetores $\vec{u} = (1, 1, 1)$ e $\vec{v} = (1, 1, 0).$
- a) Encontre as equações cartesiana e paramétrica de π .
- b) Verifique se o ponto P (1, 2, 2) pertence ao plano π .
- c) Verifique se o vetor $\vec{w} = (2, 2, 5)$ é paralelo ao plano π .

Resposta:

a) Eq. vetorial:
$$\pi$$
: $(x, y, z) = (3,7,1) + h(1,1,1) + t(1,1,0)$. Eq. paramétricas: π :
$$\begin{cases} x = 3 + h + t \\ y = 7 + h + t \\ z = 1 + h \end{cases}$$

b) P ∉ π c) $\vec{w} // \pi$

- 9) (08/01/2016) Determine as equações simétricas das retas r e s. Ache o ângulo formado entre elas. Sabe-se
 - A reta r contém o ponto A(2, 3, -1) e é paralela ao eixo OZ.
 - A reta s contém o ponto B(-1, 0, 2) e seu vetor diretor tem módulo 6 e ângulos diretores $\alpha = 60^{\circ}$, $\beta = 120^{\circ} \text{ e } \gamma$.

Resposta:

r:
$$x = 2$$
; $y = 3$; $z + 1$

s:
$$\frac{x+1}{3} = \frac{y}{-3} = \frac{z-2}{3\sqrt{2}}$$