BEST AVAILABLE COPY

From: unknown

Page: 2/6

Date: 3/14/2006 7:38:17 AM

10/631,382

14442-1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

DOUGLAS SWINGLEY

Application No.: 10/631,382

Filed: July 30, 2003

CPVC DRAIN WASTE AND VENT

FITTING

Group Art Unit: 3752

Examiner: Hook, James

DECLARATION OF DOUGLAS SWINGLEY UNDER 37 C.F.R. § 1.132

COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

For:

- 1. I, Douglas Swingley, declare that I am the Plant Engineer for Spears Manufacturing Company. I have 15 years of experience in the research, development, and testing of plastic pipe fittings and valves.
- 2. Attached hereto as Exhibit 1 to this Declaration is a true and complete copy of a printout made on February 13, 2006 of Spears' computer records relating to Purchase Order No. 0136012, which was the first order placed by Spears with one of its vendors for CPVC pipe to be sold with DWV fittings as the LABWASTETM CPVC Corrosive Waste Drainage System. The first page of this printout indicates that the order was placed on August 30, 2002. I personally approved this order, and can verify the date indicated in the printout. The second page of the printout indicates the items ordered, namely CPVC pipe. Certain confidential information, including price and quantity information, has been crossed out in the attached copy.

- 3. When Spears launched the LABWASTETM CPVC Corrosive Waste Drainage System, Spears did not manufacture CPVC pipes. Therefore, the pipes ordered in Purchase Order No. 0136012 were the first which could have been sold by Spears with the LABWASTETM System. In addition, the first CPVC DWV fittings sold by Spears Manufacturing Co. were sold together with CPVC pipes as the LABWASTETM System. Therefore, no LABWASTETM System CPVC DWV fittings were sold by Spears prior to Spears' receipt of the CPVC pipes ordered in Purchase Order No. 0136012.
- 4. Further, attached hereto as Exhibit 2 is a copy of Spears' Purchase Order No. C0128154, dated May 3, 2002, which is the purchase order placed for the first brochure advertising the LABWASTE™ System and for the artwork for this brochure. No product advertising or offer for sale of the LABWASTE™ System occurred prior to this date.
- 5. Exhibits 3-5 attached hereto demonstrate the piping industry's understanding of the suitability of CPVC piping for transporting a variety of chemical agents. Exhibit 3 is a copy of a report concerning the suitability of several types of thermoplastic piping, including CPVC, with a variety of chemical agents. This report (available online at http://www.plasticpipe.org/pdf/pubs/reports/tr19-00.pdf) was prepared by the Plastics Pipe Institute Inc. (PPI), a trade association representing all segments of the plastics piping industry. The report, dated January 2000, indicates that CPVC is not resistant to many solvents and corrosive chemicals.
- 6. Attached hereto as Exhibit 4 is a copy of a current brochure from Corzan Industrial Systems, a manufacturer of CPVC pipes and fittings, listing chemical resistance data for its CPVC piping products. This brochure is available online at http://www.corzancpvc.com/Brochures/ChemResistDataBrochure.pdf. Table I of this brochure indicates that CPVC pipe is not recommended for use with many chemicals (indicated with an "N" in the table).

14442-1

- 7. Attached hereto as Exhibit 5 is a copy of a current brochure from Georgia Gulf Chemicals & Vinyls, LLC, also a manufacturer of CPVC pipe. Table 2 of this brochure likewise indicates that its ProTherm CPVC pipe is not recommended for use with many chemicals (indicated by "NR" in the table).
- 8. The PPI report and the Corzan and Georgia Gulf brochures reflect the industry's belief, both prior to the present invention and continuing to the present day, that CPVC piping is not compatible for use with many corrosive chemicals. As a result, prior to the present invention, CPVC fittings and pipes were not used to drain waste from laboratories and other settings where a variety of corrosive chemicals needed to be drained. CPVC piping was instead used only to conduct particular, identified chemical compounds in pressure piping applications.
- 9. Further evidence of the industry's belief, at the time the present invention was made, that CPVC piping is unsuitable for use in corrosive waste drainage applications can be found in documents issued by companies selling different corrosive waste drainage systems. These documents, attached hereto as Exhibits 6 and 7, have been distributed to customers of waste drainage systems by sales representatives of competitors of Spears Manufacturing Company.
- 10. Exhibit 6 is a memo dated 9/30/02 and issued by Orion Fittings, Inc. This memo restates the industry's belief that CPVC is not suitable for acid waste applications, in particular in research institutions (see, e.g., paragraph 1 of the memo). It also confirms that at the time the present invention was made CPVC was not listed for corrosive waste applications in any major plumbing code (paragraph 4). Contrary to the assertions made in this memo, our tests of CPVC piping have found that such piping is in fact resistant to the compounds listed in paragraph 1 of this memo when used in drainage applications. CPVC drainage piping has also now been: (1) certified for corrosive waste end use by NSF International in accordance with NSF standard 14; (2) certified for use in accordance with the Uniform Plumbing Code (UPC) by NSF International as specified in IAPMO Interim Guide Criteria IGC 210; and (3) approved for use in accordance with the

International Plumbing Code (IPC) by the International Codes Council Evaluation Services (ICC-ES), Evaluation Report ESR-1214. The suggestion in paragraph 2 of this memo that soap cannot be drained with CPVC piping is simply untrue.

- 11. Exhibit 7 is a letter issued by an employee of IPEX, Inc. on November 5, 2002. This letter makes assertions similar to those contained in Exhibit 6, and likewise states that the lower resistance of CPVC to certain chemicals makes it unsuitable for use in acid waste piping systems. The assertion in this letter that CPVC piping cannot withstand detergent drainage is incorrect.
- 12. Contrary to the understanding and expectations of the piping industry, we have found that CPVC fittings and pipes can in fact be successful y used to drain corrosive chemical compounds. The ability to drain such compounds without compromising the integrity of the CPVC piping is believed to be due at least in part to the fact that DWV fittings and associated pipes are designed to convey waste material through them, so that contact between the corrosive waste and the CPVC piping is limited. DWV fittings accomplish this through the use of sockets and/or bores which are pitched to "fall" or decline by at least about 1/4" per foot.
- 13. The wide variety of chemical compounds which can be drained with CPVC DWV fittings and pipe is set out in Spears Manufacturing Company's Technical Information & Installation Guide (Document No. LW-4-1205) for the LabWaste CPVC Corrosive Waste Drainage System. Pages 29-32 of this document, attached hereto as Exhibit 8, show chemical resistance tables for CPVC DWV fittings and pipe in drainage applications. The full document can be found online at http://www.plasticpipe.org/pdf/pubs/reports/tr19-00.pdf.
- 14. A partial list of corrosive chemicals which are not recommended for use with CPVC fittings and pipes by the PPI, Corzan Industrial Systems, and Georgia Gulf documents (Exhibits 3-5) but which have been found to be compatible when used with fittings and pipes made from CPVC in DWV applications is attached as Exhibit 9 hereto.

14442-1

10/631,382

broad range of chemicals with which CPVC is compatible in DWV applications makes CPVC DWV fittings and pipes suitable for use in draining corrosive chemical waste.

I declare under penalty of perjury that the foregoing is true and correct, and that if called to testify thereto, I could and would so testify. All of the data provided and any statements made in this declaration are believed to be true. I further declare that I understand that willful false statements and the like are punishable by fine or imprisonment or both (18 U.S.A. § 1001) and may jeopardize the validity of the application or any patent issuing thereon.

Executed this 13 day of March, 2006, at 541MAR, California.

Douglas Swingley

BLAKE PUR062S SPEARS MANUFACTURING COMPANY 2/13/06 OPADEVOORN DISPLAY P.O. HISTORY HEADER RECORD DISPLAY 14:42:53
ORDER NUMBER : 0136012 RELEASE DATE : 8/30/02 CREATION DATE : 8/30/02 BUYER DEPARTMENT CODE : PUR VENDOR TERM : 2% 30 NET 30 DAYS BILL TO : C SHIP TO : C SPEARS MANUFACTURING (CANEY) SPEARS MANUFACTURING (CANEY) (620) 879-2131 (620) 879-2131 RURAL ROUTE 1 RURAL ROUTE 1 CANEY CANEY KS 67333 0000 KS 67333 0000 PREVIOUS STATUS : SHIP TO OVERRIDE CODE : N CLOSE TYPE : N
CARRIER V1 VENDOR DELIVERY TAX CODE: Z N/A FRT CODE B PREPAID/CHARGED REQUESTER: APPROVAL: DOUG DOUG SWINGLEY APPROVED DATE 8/30/02 PURPOSE: Doug P.O. CURRENCY RATE : 1.0000 UP TO DATE CURR. RATE: 1.0000 LAST DATE MAINTAINED: 10/10/02 USER LAST MAINTENANCE: F3=Exit F15=Vendor Override F17=Item Detail

PUR OPADEVOORN VENDOR: PART NUMBER	063S			JRING COMPAN AIL BY ORDER	DISI	2/1 PLAY 14:4 R NO.: 013 DATE	3:24
Type options, 5=View P.O. De	press Enter. tail Record	8=Vie	w Receivin	ng Detail	N=Detail 9=View De		ents
,?, PART,	DUE,	P/O W	QTY ODDEDED	QTY,	QTY DECETVED	UNIT C	OST
NUMBER LW-015	DATE 9/13/02	кен д , 1 С	DIDE (10	OPEN	KECET ED		
- LW-015 - PART DESC: - LW-020 - PART DESC:	1-1/2 CPVC 9/13/02	LABWASTE , Z C	PIPE (10	'F.I. 'PFNG'I'H')			5
PART DESC :	2 CPVC LABW. 9/13/02	ASTE PIPI , 3 C	E, (10, F1, 1 -, , 724-1	,ΕNGTH,), , , , , , , , , , , , , , , , , , ,			
- LW-030 PART DESC: LW-040	3 CPVC LABW. 9/13/02	ASTE PIPI 4 C	E (10 FT I	ŗĒŅĢŢĦ,) , , , , , , , , , , , , , , , , , , ,			
PART DESC :	4 CPVC LABW	ASTE PIPI	E, (1 <u>0 FT</u> I	ÆŅĢŢĦ,)			
PART DESC :	6 CPVC LABW	ĄSŢĘ PĮPĮ	E (10 FT I	ENGTH)			

F3=Exit

SPEARS MANUFACTURING (CANEY) 15853 OLDEN STREET P. C. BOX 9203 10

SYLMAR, CA 91342

ATTN : ACCOUNTS PAYABLE **ENDOR NO**

VENDOR NAME

PURCHASE ORDER

1.1

ОЯРЕН ВАТЕ: 5/03/02

P.O. #C0128154

DATE REQUIRED:

SPEARS MANUFACTURING (CANEY) (620) 879-2131

CANEY, KS 47333 RURAL ROUTE 1 SHIP

0	CONFIRM TO	THE REPORT OF THE PARTY OF THE	PATHOLOGY OF BENERIOE		1,000	SHIP VIA	
		NET 15					
(A)	BUYER TO THE WAY	NAMES OF THE STATE	TOP FOR			FREIGHT TERMS	AS
NDY TAPIA	€.	FELIPE NIEVES			VENDOR DELIVERY	/ERY	
S ON OPDERED	RED THEM NUMBER	THE PARTY OF THE PERSONAL PROPERTY.		DIJE DATE	DUE DATE WINIT COST	LIM TAXABLE	EXTENSION
	FILM CHARGES	NEW ARTWORK FOR; LW-2		20/90/5		EA N	
<u>ū</u>	2-M-	LABWASTE BROCH 0603 COATED, BOOK 6 PAGES, 4/COLOR,	ocar,	5/03/02		EA N	
·	•						
	·						
······································							
<u></u>							_
.							
					TAX	:	Õ.
·		** END OF C	ORDER **	.,,	TOTAL.		ō.
URPOSE: new	w ıtem,) F 0 #	VENDOR NOTE This Company rest Do not substitute as	VENDOR NOTE This Company reserves the right to cancel this order if not defivered as specifit Do not substitute any item without the Company's approvat. If pricing will not as shown, notify the Company immediately before filling order, Invoices receive	l this order if no ompany's appro ily before filling	ol delivered as specifik wal. If pricing will not order, Involces recelv

TR-19/2000 Thermoplastics Piping for the Transport of Chemicals

THERMOPLASTIC PIPING FOR THE TRANSPORT OF CHEMICALS

Foreword

This report was developed and published with the technical help and financial support of the members of the PPI (Plastics Pipe Institute, Inc.). The members have shown their interest in quality products by assisting independent standards-making and user organizations in the development of standards, and also by developing reports on an industry-wide basis to help engineers, code officials, specifying groups, and users.

The purpose of this technical report is to provide information on the transport of various chemicals using thermoplastic piping materials.

This report has been prepared by PPI as a service of the industry. The information in this report is offered in good faith and believed to be accurate at the time of its preparation, but is offered without any warranty, expressed or implied, including WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Consult the manufacturer for more detailed information about the particular weathering package used for its piping products. Any reference to or testing of a particular proprietary product should not be construed as an endorsement by PPI, which do not endorse the proprietary products or processes of any manufacturer. The information in this report is offered for consideration by industry members in fulfilling their own compliance responsibilities. PPI assumes no responsibility for compliance with applicable laws and regulations.

PPI intends to revise this report from time to time, in response to comments and suggestions from users of the report. Please send suggestions of improvements to the address below. Information on other publications can be obtained by contacting PPI directly or visiting the web site.

The Plastics Pipe Institute Toll Free: (888) 314-6774 http://www.plasticpipe.org

January 2000

CHEMICAL RESISTANCE IN GENERAL

Thermoplastic materials generally are resistant to attack from many chemicals which makes them suitable for use in many process applications. The suitability for use in a particular process piping application is a function of:

I. <u>Material</u>

- A. The specific plastic material: ABS, CPVC, PP, PVC, PE, PB, PVDF, PEX¹, PA11, PK
- B. The specific plastic material and its physical properties as identified by its cell classification according to the appropriate ASTM material specification.

II. Product and Joint System

- A. Piping product dimensions, construction, and composition (layers, fillers, etc.).
- B. Joining system. Heat fusion and solvent cementing do not introduce different materials into the system. Mechanical joints can introduce gaskets such as elastomers, or other thermoplastic or non-thermoplastic materials used as mechanical fitting components.
- C. Other components and appurtenances in the piping system.
- III. <u>Use Conditions Internal and External</u>
- A. Chemical or mixtures of chemicals, and their concentrations.
- B. Operating temperature maximum, minimum, and cyclical variations.
- C. Operating pressure or applied stress maximum, minimum and cyclical variations.
- D. Life-cycle information such as material cost, installation cost, desired service life, maintenance, repair and replacement costs, etc.

While the effect of each individual chemical is specific, some chemicals can be grouped into categories based on similar reactions. For example, water solutions of neutral inorganic salts generally have the same effect on thermoplastic piping materials as water alone, thus, sodium chloride, potassium alum, calcium chloride, copper sulfate, potassium sulfate and zinc chloride solutions have the same effect as water. However, at elevated temperatures and/or high concentrations, some oxidizing salt solutions may attack some specific plastic materials.

Further, with organic chemicals in a specific series such as alcohols, ketones, or acids, etc., as the molecular weight of the organic chemical series increases, the chemical resistance of a particular plastic material to members of the specific organic chemical series frequently also increases. Thus, while one type of

¹ Once cross-linked, PEX is no longer considered a thermoplastic material; however, it is included in this report as convenience for the reader.

polyvinyl chloride at 73 °F is not suitable for use with ethyl acetate, it is suitable for the higher molecular weight butyl acetate.

Generally, the resistance of a particular plastic to a specific chemical decreases with an increase in concentration. For example, at 73 °F polyethylene pipe can be used to carry 70% sulfuric acid but is not satisfactory for 95% sulfuric acid. In some cases, combinations of chemicals may have a synergistic effect on a thermoplastic material where individual chemicals do not. Lastly, the resistance of a particular plastic to a specific chemical generally decreases with temperature increase, with stress increase, and decreases with cyclical variations of temperature or applied stress.

TYPES OF CHEMICAL ATTACK ON PLASTICS

In general, chemicals that affect plastics do so in one of two ways. One effect is chemical solubility or permeation. The other is direct chemical attack.

In the case of solubility or permeation, physical properties may be affected, but the polymer molecule structure itself is not chemically changed, degraded or destroyed. In solubility or permeation, gas, vapor, or liquid molecules pass through the polymer, typically without damaging the plastic material itself. If the solvating chemical can be removed completely, the plastic is generally restored to its original condition. However, it is not always possible to remove a solvating chemical from the plastic, and in such cases, effects relating to chemical solvation may be permanent.

Sometimes the polymer itself may not be soluble, but it may contain a compounding ingredient that may be soluble in the chemical, and may be extracted from the polymer compound. This is rare because such extractable ingredients are either not used in pipe compounds, or they are chemically bonded to the molecular polymer matrix, and in such small amounts that they cannot be leached out to any significant extent.

Permeation may do little if any harm to the material, but it may have application-related effects. The permeating chemical may transfer into a fluid on the other side of the pipe. In general, thermoplastic pipes should not be used where a permeating chemical could compromise the purity of a fluid such as potable water inside the pipe, and in gas or vapor transmission service, there may be a very slight loss of contents through the pipe wall. Lastly, a permeating chemical may be entrained in the material and be released when heat fusion or solvent cement joining is performed. Heat fusion or solvent cement joining may be unreliable if performed on permeated pipes.

Direct chemical attack occurs when exposure to a chemical causes a chemical alteration of the polymer molecules by chain scission, crosslinking, oxidation, or substitution reactions. Direct chemical attack may cause profound, irreversible changes that cannot be restored by removal of the chemical. Examples of this

type of attack are 50% chromic acid at 140 °F on PVC, aqua regia on PVC at 73 °F, 95% sulfuric acid at 73 °F on PE and wet chlorine gas on PVC and PE. Direct chemical attack frequently causes a severe reduction of mechanical physical properties such as tensile strength, ductility, and impact resistance, and susceptibility to cracking from applied stress (stress cracking).

However, direct chemical attack is not always detrimental. For example, PEX materials are deliberately crosslinked using chemical or irradiation methods. While crosslinking enhances certain mechanical properties of PEX materials, it may preclude the use of heat fusion to join PEX piping.

The chemical resistance of the various plastic types varies greatly from one plastic material to another (i.e., PVC, ABS, PE, etc.), and also among different cell classifications of the same plastic type (e.g. PVC 1120 to PVC 2110, PE 1404 to PE 3408, etc.). There may also be slight variations among commercial products having the same cell classification.

The chemical resistance of plastic piping is basically a function of the chemical resistance of the thermoplastic material, and processing of the plastic in such a way that its full chemical resistance is developed. In general, the less compounding ingredients used the better the chemical resistance. Most plastic pipe compounds covered by current ASTM specifications and product standards use a minimum of compounding ingredients, except for the Type II PVC's and CAB plastics. The Type II PVC's contain impact modifiers which are less susceptible to chemical attack than monomeric plasticizers such as those used in PVC cable insulation, film and sheeting compounds, and in CAB plastics. Thermoplastic pipes with significant filler percentages may be susceptible to chemical attack where an unfilled material may be affected to a lesser degree or not at all.

Some newer piping products utilize a multi-layered (composite) construction, that is, the pipe wall is constructed of layers of different materials. Both thermoplastic and non-thermoplastic materials are used for the layers. Examples are PE/AL/PE, and PEX/AL/PEX pipes where there is a mid-wall aluminum layer. An all thermoplastic composite pipe has PVC, ABS, and PVC layers. Layered composite material pipes may have chemical resistance that differs from the chemical resistance of the individual materials.

Chemicals that attack plastics do so at a certain rate, some slowly and some more quickly. But usually, any chemical attack is increased when temperature or stress are increased, or when temperature or stress are varied. The particular rate must be taken into consideration in the life-cycle evaluation for a particular application. It has been observed in some chemical plants that while a particular application may have a relatively short service life, the overall life-cycle cost may be economically feasible and justifiable. Each combination of material cost, installation cost and service life must be evaluated and judged on its own merits.

CHEMICAL RESISTANCE DATA FOR THERMOPLASTIC PIPING IN NON-PRESSURE (GRAVITY-FLOW) APPLICATIONS and DATA TABLE

When thermoplastic pipes come into contact with chemical agents, it is important to know how the pipe may be affected. For gravity flow or non-pressure applications, where the pipe Is not subject to continuous internal pressure or thermal stress, chemical immersion test data may provide suitable information. The pipe manufacturer may have additional information on similar testing, or information on previous installations under similar field conditions.

- I. A thermoplastic pipe that is subjected to several chemicals may or may not be affected by the chemical combination. Chemicals that individually do not have an effect may affect the pipe if combined with certain other chemicals. The listings that follow do not address chemical combinations.
- II. Layered composite piping may have chemical resistance that differs from that of the individual materials in the layers. The listings that follow are not applicable to layered composite piping products.
- III. The listings that follow are not applicable to composite piping products such as reinforced epoxy resin (fiberglass) pipes, or to thermoplastic pipes containing significant percentages of filler materials.
- IV. The following chemical resistance information has been obtained from numerous sources. It is based primarily on plastic material test specimens that have been immersed in the chemical, and to a lesser degree, on field-experience. In most cases, detailed information on the test conditions (such as exposure time), and on test results (such as change in weight, change in volume, and change in strength) were not available. Therefore, this information is best used only for comparison of different thermoplastic materials.
- V. Where no concentrations are given, the relatively pure material is indicated, except in the case of solids where saturated aqueous solutions are indicated.

NOTE: Even though indicated as acceptable with certain temperature limitations, the use of PVC piping with liquid hydrocarbons such as gasoline and jet fuels, should be limited to short-term exposure such as secondary containment systems. This piping is not recommended for long-term exposure to liquid hydrocarbons.

Resistance Codes

The following code is used in the data table:

Code	<u>Meaning</u>	Typical Result
140	Plastic type is generally resistant to temperature (°F) indicated by code.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
R to 73	Plastic type is generally resistant to temperature (°F) indicated by code and may have limited resistance at higher temperatures.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
C to 73	Plastic type has limited resistance to temperature (°F) indicated by code and may be suitable for some conditions.	Swelling 3-8% or weight loss 0.5-5% and/or elongation at break decreased by < 50%.
N	Plastic type is not resistant.	Swelling > 8% or weight loss > 5% and/or elongation at break decreased by > 50%.
	Data not available.	

Plastic Materials Identification

ABS	acrilonitrile-butadiene-styrene
CPVC	chlorinated polyvinyl chloride
PP	polypropylene
PVC	polyvinyl chloride
PE	polyethylene
PB	polybutylene
PVDF	poly vinylidene fluoride
PEX	crosslinked polyethylene
PA11	polyamide 11
PK	polyketone

CHEMICALS THAT DO NOT NORMALLY AFFECT THE PROPERTIES OF AN UNSTRESSED THERMOPLASTIC MAY CAUSE COMPLETELY DIFFERENT BEHAVIOR (SUCH AS STRESS CRACKING) WHEN UNDER THERMAL OR MECHANICAL STRESS (SUCH AS CONSTANT INTERNAL PRESSURE OR FREQUENT THERMAL OR MECHANICAL STRESS CYCLES). UNSTRESSED IMMERSION TEST CHEMICAL RESISTANCE INFORMATION IS APPLICABLE ONLY WHEN THE THERMOPLASTIC PIPE WILL NOT BE SUBJECT TO MECHANICAL OR THERMAL STRESS THAT IS CONSTANT OR CYCLES FREQUENTLY.

WHEN THE PIPE WILL BE SUBJECT TO A CONTINUOUS APPLIED MECHANICAL OR THERMAL STRESS OR TO COMBINATIONS OF CHEMICALS, TESTING THAT DUPLICATES THE EXPECTED FIELD CONDITIONS AS CLOSELY AS POSSIBLE SHOULD BE PERFORMED ON REPRESENTATIVE SAMPLES OF THE PIPE PRODUCT TO PROPERLY EVALUATE PLASTIC PIPE FOR USE IN THIS APPLICATION.

Pla	astics	at N	<u>Maximum</u>	Ope	rating	Tem	perature ((F	7)

		P	lastics at	Maximu	m Onera	ting Tem	perature	(F)			
			rastres at	<u> 1-1uxiiiiu</u>	пт Орста	ting Tom	<u>perature</u>	<u>(* /</u>			
Chemicals and					,				•		
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Acetaldehyde			N	140	N	C to	C to		C to	C to	R
CH₃ CHO				1.0	'' .	73	73		140	176	73
						, 0	7.5		140	170	, .
	Aq. Of 40%		N		C to	R to		N	R to		
					73	73			73		
					. 0	. •					
Acetamide	5%	120		140		140			140		
CH₃ CONH2											
			•		•		*				
Acetic Acid	vapor	120	180	180	140	140	140		140		
СН₃ СООН					•						
	5%										Ri
											17
	10%							R to	140	R to	
								248		176	
	25%	N	180	-180	140	140	. 140		140		
•											
	40%							R to	R to	***	
								140	176		
	50%							R to	R to	C to	
								140	176	68	
	60%	Ν	N	180	73	73	73	R to	73		
								104	•		
	80%							R to			
								104			
	85%	N.	N .	120	73	73	73		73		
										•	
				400				5 .	5 ·		
	glacial	N .	N	120	73	73	73	R to	R to		
								104	68		
Annia Ambrida			N:	70	. .	70	4.40	N1	70	0.4	
Acetic Anhydride CH ₃ CO) ₂ O		N	N	73	N	73	140	N	73	C to 68	

Plastics at Maximum	Operating Temperature	(F)

			rastics at	<u>iviaximi</u>	ım Opera	iting Len	nperature	<u>(F)</u>			
Chemicals and											
	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
CH₃ COCH₃			•			73		212	73	140	
	10%							· R to			
-								122			
	100%	·					 .				R to 73
Acetophenone		N		120		73		R to	70		C to 122
C ₆ H ₅ COCH ₃		IN		120		13		r to	73 68	,	
36113 000113									00		
Acetyl Chloride		N	N		N			N			
CH₃ COCI											
	-										
Acetylene	gas	73	N	73	N	73	C to		73	. 140	
HC=CH	100%						73				
Acetylnitrile			N		N						
Acceptation			,••		••						
Acrylic Acid	97%		N		N	140			140		
H₂ C:CHCOOH		•									
								•			•
Acrylonitrile H₂ C.CHCN			N		N	140			140		
112 0.011014									÷		
Adipic Acid	sat'd		180	140	140	140	73	. R to	140		
COOH(CH ₂) ₄ COO	Н					4		176			
				•							
Aliyi Alcohol	96%		C to	140	R to	140	140		N	***	
CH ₂ = CHCH ₂ OH	•		73		73			*	•		
			N		N	C to		140	C to		
;H₂ Cl					73				73		
	Liquid			/				R to			
								68			
Aluminum	sat'd		180	140	140	140			140		,
Ammonium											

Plastics at Maximu	m Operating	Temperature	(F)

Chemicals and . Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Sulfate (Alum)									•		
AINH ₄ (SO ₄) ₂ 12F	H ₂ O										
Aluminum Chlorid	e saťd	160	180	180	140	140	140	R to 212	140		
Aqueous AICI ₂								212			
Aluminum Fluorid	e sat'd	160	180	180	73	140	140	R to	140	 -	
Anhydrous AlF ₃								212			
Aluminum Hydrox	ide sat'd	160	180	180	140	140	140	R to	140		N
AIO ₃ O3H ₂ O								212			
Aluminum Nitrate	sat'd		180	180	140	140	140	R to	140		
AI(NO ₃) ₃ O9H ₂ O								212			
Aluminum Oxychlo	oride		180	180	140		140	• 			
Aluminum Potassi	um sat'd	160	180 ·	140	140	140		R to 212	140		
Sulfate (Alum) AIK(SO ₄) ₂ o12H ₂	0							212			
Aluminum Sulfate	sat'd	160	180	140	140	140	C to	R to	140	194	
(Alum)	000/						· 73	212			D to 72
Al ₂ (SO ₄) ₃	20%										R to 73
Amonia Gas	100%	N	N	140	140	140	140		140	140	
NH₃											
Amonia Liquid	100%	160	N	140	N	140	73		140	140	
NH ₃							٠				
Amonia Acetate	sat'd	120	180	73	140	140		R to	140		***
NH4(C ₂ H ₃ O ₂)	·							212			

Plastics at Maximum Operating Temperature	(F)	١

à

.

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX .	PA 11	PK
Amonium Bifluorid	e sat'd	. 	180	180	140		140		140		
NH ₄ HF ₂					. •						
Amonium Bisulfide (NH₄)HS			 .	[']	140		'		. 		
Amonium Carbona (NH₄)HCO₃o (NH₄)			180	212	140	140	140	R to 248	140	, 	
Amonium Chloride NH₄Cl	sat'd	120	180	212	140	140	140	R to 212	140		
Amonium Dichroma (NH ₄) ₂ Cr ₂ O ₇	ate		73		73	<u></u> -	· .				· ·
Amonium Fluoride NH ₄ F	10%	120	180	212	140	140		R to 212	140		
	25%	120	180	212	C to 140	140	73		140		
Amonium Hydroxid	e 10%	120	N	212	140	140	.140		140		N
	30%					R to 140		'-	R to		
	Conc.								194		
Amonium sphate	Sat'd	<u>.</u> .	 212	R to 140	R to 140	R to 140	R to 248	R to	R to 140		
Amonium Nitrate NH ₄ NO ₃	sat'd	120	180	212	140	.140	140	R to 212	140		
Amonium Persulpha (NH ₄) ₂ S ₂ O ₈	ate			180	140	140	140	140	R to 212	140	

Pl	astics	at Max	rimum C	Operating	Temperature ((F)

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Amonium Phosph (Monobasic)	nate all	120	180	212	140	140	140	R to 248	140	 .	
NH4 H2 PO4		•								٠.	
Amonium Sulfate	Sat'd.	120	180	212	140	140	140	R to 212	140		
	20%										R to 73
Amonium Sulfide	dilute	120	180	212	140	140	140		140		
(NH ₄) ₂ S	Sat'd.					140				·	
Amonium Thiocya NH₄ SCN	anate 50-60%	120	180	212	140	140	140	R to 212	73		
Amyl Acetate CH ₃ COOC ₅ H ₁₁		·	N	N	N	N	73	 122	R to	73 194	C to
Amyl Alcohol C ₅ H ₁₁ OH			N		N	140	140	R to	R to 140		
	100%					***	C to 140				
n-Amyl Chloride CH ₃ (CH ₂) ₃ CH ₂ C	 L .	N	N .	N	N	C to 73			C to		
Anisole											C to 73
Aniline	·	N	N	<u>.</u>	N	73	C to 140	R to 68	C to	 140	N .
Aniline Chlorohydi	rate	 ·	N		N	C to 73	N		C to 73		

Plastics	at Maximum	Operating	Temperature ((F)

Chemicals and Formula	Concentration	ABS	CPVC	PP	. PVC	PE	РВ	PVDF	PEX	PA 11	РK
Aniline Hydrochlorid	e sat'd		N		N	140	N		140		
C ₆ H ₅ NH ₂ oHCl											
Anthraquinone			180		140	C to	C to		C to		
C ₆ H ₅ (CO) ₂ C ₆ H ₅						73	73		73		
Anthraquinone			180	73	140	140	C to		C to		
Sulfonic Acid							73		73		
C ₁₄ H ₇ O ₂ oSO ₃ Ho ₃	H ₂O										
							•				
Antifreeze											R to 73
											C to 176
Antimony Trichloride	e sat'd		180	140	140	140	140	R to	140		
SbCl₃	e							140			
Aqua Regia		N	R to	N	C to	N	N	C to	N		
(Nitrohydrochloric Ad	sid)	IN	IV to	73	0.10	73	IN	0.10	194		
(Mitory drocinone 7 to	sia)			, 0		7.5			104		
Arsenic Acid	80%		180	140	140	140	140	R to	140		
H ₃ AsO ₄ o1/2H ₂ O				•				248			
	•										
Aryl Sulfonic Acid	· ·		180		140	73			73		
C ₆ H ₅ SO ₃ H											
		•									
Asphalt			N	73	N .	73	140		73		
Barium Carbonate	sat'd	120	180	140	140	140	140	R to	140		
BaCO ₃								248		-	
							•				
Barium Chloride	sat'd	120	180	140	140	140	140	R to	140	194	
BaCl ₂ o2H ₂ O	out u	120	100	1-10	140	1-10	140	212	110	, , ,	
Barium Hydroxide	sat'd	73 ·	180	140	140	140	140		R to		
Ba(OH)₂									212		
	10%										R to 73

Plastics at Maximum	Oper	ating T	emperature	(F)	1

		<u>P</u>	Plastics at	. Maximı	um Opera	ting Tem	perature	(<u>F)</u>					
Chemicals								بث					
and		- -			_								
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РK		
	30%					R to	·		R to				
						140			140	•		,	
•						* • •					,		
Barium Nitrate	sat'd	73	180	140	73	140			140				
Ba(NO ₃) ₂			100	1 10		1770			170				
Ja(1403 12				•			• .						
Barium Sulfate	sat'd	73	180	140	140	140	140	D to	440	-			
	δαι u		100	140	140	140	140	R to	140				
BaSO₄						•		212					
D. Store Outfide	414	70	400	4.40	440	140	140		-				
Barium Sulfide	sat'd	73	180	140	140	140	140		R to		,		
BaS .									248				
	•	100	:55	: 3.5									
Beer		120	180	180	140	R to	140	R to	R to	68	R to 73		
	•					140		248	140				
		•										,	
Beet Sugar Liquors	;		180	180	140	73	140		73				
		• ,											
Benzaldehyde	10%	N	R to	73	R to	73	C to		73	R to			
C ₆ H ₅ CHO			73		73		73			104			
	99%				~~~						C to 73		
Benzene		N	N	N	N	C to	N	C to	R to				
C ₆ H ₆		•				120		122	68				
•				•						•			
Benzene Sulfonic	10%		180	180	140	R to			R to				
Acid						73	•		73				,
C ₆ H ₅ SO ₃ H	10%+		N ·		N								
Benzoic Acid	all	160	180	73	140	140	140		R to				
C ₆ H₅ COOH					•				248				
Benzoyl Chloride	Sat. Sol.		,					C to					
			,					68			:		
Benzyl Alcohol			N	120	N	140		R to	140	R to			
C ₆ H ₅ CH ₂ OH								122		68	,		
						•				•		•	

Chemicals											
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Benzyl Chloride	·						,		R to		
Berizyi Cilionde					 -				140		
Bismuth Carbonate (BiO) ₂ CO	s Saťd.		180	180	140	140	140		140		
Black Liquor	sat'd		180	140	140	120	140		120 .		
Bleach	5% Active Cl ₂		180	120	140	C to 140			C to 140		R to 73
	12% Active Cl ₂	73	185	120	140	73	140		73		
Borax Na ₃ B ₄ O ₇ o10H ₂ O	sat'd	160	180	212	140	140	140		140		
Boric Acid H ₃ BO ₃	Sat'd	160	180	212	140	140	140	R to 212	140		
Brake Fluid				140		140			140		
Brine	sat'd		180	140	140	140	140		140		
Bromic Acid HbrO ₃	Sat'd		180	N	140	N	140	R to 212	N	·,	
	10%					140					
Bromine Br ₂	Liquid	73	N	N	N	N	N	R to 248	N	N .	
	vapor 25%		180	N	140	N			N		
Bromine Water	cold		180	N	140	N.	C to	R to	N		

	Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
	2											
	•	sat'd						73	176			
	Dramahannana					N	•					
	Bromobenzene					IN						
	C ₆ H ₅ Br											
	Bromotoluene				C ,	N						
	C ₆ H ₅ CH ₂ B ₂				•	.,						
	06 113 0112 02											
	Butadiene	50%	,	180	N	140	73			73		
	H₂ C: CHHC: CH₂	Gas							R to			
	•								212			
				•								
	Butane	50%		180	140	140	140	N		140		
	C ₄ H ₁₀	Gas	·						R to			
				•					68			
	n-Butanol	Liquid				,			R to	·		R to 73
									140			
,												
	Butyl Acetate	100%	N	N	C to	N	C to	C to	C to	C to	R to	
	CH₃ COOCH (CH₃)	(C ₂ H ₅)			73		73	73	104	73	194	•
	Butyl Alcohol			C to	180	140	140	140		140	C to	
	CH ₃ (CH ₂) ₂ CH ₂ OH			73							104	
	D 1 1 0 11 1 1			A. 1		70						
	Butyl Cellosolve	-		N		73						
	HOCH ₂ CH ₂ OC ₄ H ₉		•									
	n-Butyl Chloride		N	N								
	C ₄ H ₉ Cl	· ·	IX	14			<u></u> -					
	C4 1 19 C1							*				
	Butyl Glycol	Liquid							R to			
	·								212			
		• .	•									•
	Butylene ©	Liquid		 ,	N	140	120			120		,
	CH₃ CH:CHCH₃	•										

Plastics at Maximum	Operating T	emperature ((F)

Chemicals and									•	•			
	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK		
Butyl Phenol				N	C to	73	73		R to				
C ₄ H ₉ C ₆ H ₉ OH			•		73				176				
Butyl Phthalate			N	180		·		R to 140					
Butyl Stearate					73								
Butynediol					73								
HOCH₂ C:CCH ₂OF	ł												
Butyric Acid		, N	N	180	73	73	73		73				
CH ₃ CH ₂ CH ₂ COO	H 20%				•			R to			·		
								212					
	Liquid							R to	73				
		-						176					
Cadmium Cyanide Cd(CN) ₂	 , •		180		140	·							
Calcium Bisulfide Ca(HS) ₂ o6H ₂ O			73		N .	140			140				
Calcium Bisulfite			180	180	140	N	140		N				
Ca(HSO ₃) ₂	Sat'd							R to		•			
·			•					248					-
Calcium Carbonate	Sat'd		180	180	140	140	140	R to	140				
CaCO ₃		_						248					
Calcium Chlorate			180	180	140	140	140	R to	140				
Ca(ClO ₃) ₂ o2H ₂ O								248					
•		•	•										
Calcium Chloride CaCl ₂	5%						·				R to 176	•	
	Sat'd	120	180	180	140	140	140	R to	R to	R to			
								248	176	194			

Chemicals and											
Formula	Concentration	· ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
											-
Calcium Hydroxide	e	160	180	180	140	140	140		140		
Ca(OH)₂											
	2%		•	,							R to 73
	30%					R to			R to		
	,					140			140		
	-: 200/	400		4.40	440	440	440				
Calcium Hypochlo Ca(OCI) ₂	rite 30% Sat'd	160	180	140	140	140	140	C to	140		
Ca(OCI)2	Satu						-,	212			
							٠,	. 12			
Calcium Nitrate			180	180	140	140	140		140		
Ca(NO ₃) ₂	50%					140		R to	140		
								212			
	Sat'd				**-			R to			
								176			
		•									
Calciuim Oxide			180		140	140			140		
CaO											
Calcium Sulfate		100	180	180	140	140	140	R to	140		
CaSO ₄		, 55			. , ,			212	. ,0		
										,	
Calcium Hydrogen	>10%							. R to			
Sulphide								248			
Camphor	·	N		73	73	73			73		
C ₁₀ H ₁₆ O							•				
Cane Sugar Liquor	6		180	180	140	140	150		140		
Carle Sugar Liquor C ₁₂ H ₂₂ O ₁₁	5		100	100	140	140	150	·	140		
312 - 122 311											
Carbitol			N	***	73 [.]						
•								•			•
Carbon Dioxide	Dry	160	180	140	140	140		R to	140		

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
CO ₂	100%							212			
Carbon Dioxide	Wet	160	180	140	140	140	140	 	140	 .	
Carbon Disulfide CS ₂		N	N	N	N	C to			R to 68	R to 104	
Carbon Monoxide	Gas		180	180	140 -	140	140	R to 140	140		
Carbon Tetrachlor	ide	N	N	N	73	C to 73	N	C to 212	C to 68	N	R to 73
Carbonic Acid H ₂ CO ₃	Sat'd	185	180	140	140	140		·	140		
Castor Oil	 - ·		C to 180	140	140	73	140		73		·
Caustic Potash	50%	160	180	180	140	140	73	+. 	140		
Caustic Soda NaOH (Sodium Hydroxide	40% e)	160	180	180	140	140	73		140		
Cellosolve CICH ₂ COOH		. 	N	73	73	C to 120	140		C to 120		
Cellosolve Acetate			N	73	73						
Chloral Hydrate CCL ₃ CH (OH) ₂	All		180	C to 73	140	120	140		120		

1 lastros at maximani Operating Temperature (1	aximum Operating Temperature (F)
---	----------------------------------

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Chloramine	Dilute		N	73	73	73			73		
NH₂ CI											
	400/		400	70	440	70			70		
Chloric Acid	10%		180	73	140	73			73		
HCLO₃ o7H₂ O	20%		185	73	140	73			73		
Chlorine Gas	0-20	N	C to	N	C to	C to		R to	C to		
(Moisture Content		• • • • • • • • • • • • • • • • • • • •	73	• • •	73	73		212	73		
	20-50	N	N	N	N	C to			C to		
	PPM					73			73		
	50+	N	N	N	N	C to		N	C to		
	PPM					73			73		
										-	
Chlorine	Liquid	N	N	N	Ŋ	N			N		N
								•			
Chlorinated Water	10		180	180	140	140	140		140		
	PPM .										
Chlorinated Water	Sat'd		180	180	140	C to	140	R to	C to		
			•			120		212	120		
Chloroacetic Acid	50%	N	180	C to	140	120	·N		120		
CH₂ CICOOH					73						
	>10%							R to			
								140			
Chloroacetyl Chloro	ride				73						
CICH₂ COCI				•							
Olalasahaasaa	D	A. I	A.I	70	N.I	0.4-			C to		
Chlorobenzene	Dry	N	N	73	N	C to	N		75		
C ₆ H ₅ CI	Liquid					75		R to	R to	C to	
-	Liquid							140	68	176	
								140	00	170	
Chlorobenzyl Chlo	ride		N		N	C to			C to		
CIC ₆ H ₄ CH ₂ CI			• •		· •	120		٠	120		

Plastics	at Max	cimum	Ope	rating	Temperature	(F	١

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Tomaia			02.0			12	12	I VD1	I EX		T K
Chloroethanol	Liquid							N 122	R to		<u>-</u>
Chloroform CHCl ₃	Dry	N	N	N	N	C to 75	C to		C to 75		
,	Liquid							R to 212	N		C to 73
Chloromethane	Gas							R to 212			·
Chloropicrin CCL ₃ NO ₂	<u>.</u> .				N	73		· ·	73		
Chlorosulfonic Acid			73	N	73	C to	N		C to 120		
	50%			·				R to 68			
	100%					N			N		
Chromic Acid H ₂ CrO ₄	Sat'd					~~~		R to 212			
	10%	73	180	140	140	73	140	R to 212	73	Ń	
	20%							R to 212			
	25%							R to 212			~~~
	30%	N	180	73 .	140	73	140	R to 212	73		
	40%	N	180	73	140	73	73	R to 212	73		
	50%	N	C to 140	73	N	73	N	R to 212	73		

Plastics at Maximum Operating Temperature (\mathbf{F})
---	--------------	---

	Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK	
						•		•					
	Chromium	>10%							R to				
	Potassium Sulfate								212				
	CrK(SO ₄) ₂ o12H ₂ O)	-		73		73			73			
•		Sat'd				·		R to 212		- .			
	Citric Acid	Sat'd	160	180	140	140	140	140	R to	140	C to		
	C ₆ H ₈ O ₇								248	·	140		
	Coconut Oil	_		C to 180	73	140	73	140	R to 248	73			
	Cod Liver Oil	Work Sol.					 .	 ,	R to 248				
	•											·	•
	Coffee	 .		180	140	140	140			140			
	Coke Oven Gas				73	140	140			140			
	Copper Acetate Cu(C ₂ H ₃ O ₂) ₂ oH ₂	Sat'd O	 .	73	73	73							
	Copper Carbonate	Sat'd		180		140	140			140			
	Copper Chloride	Sat'd	73	180	140	140	140	140		140	·		
	Copper Cyanide Cu(CN) ₂	Sat'd		180	·	140	140	140	R to 212	140			
	Copper Fluoride CuF ₂ o2H ₂ O	2%		180	73	140	140	140		140			·
	Copper Nitrate	30%		180	140	140	140	140				***	
												,	
	•												

Chemicals	•			•							
and Formula	Concentration	ABS	CPVC	PP	PVC	PE .	РВ	PVDF	PEX	PA 11	PK
Cu(NO ₃) ₂ o3H ₂ O	50%							R to 212			
Copper Sulfate CuSO ₄ o5H ₂ O	Sat'd	120	180	120	140	140	140	R to 212	140	R to 194	
Corn Oil			C to 180	73	140	120			120		
Corn Syrup			185	140	140	140			140	 ,	
Cottonseed Oil		120	C to	140	140	R to 140	140		R to 140		
Creosote			N	73	N	140	,		140		
Cresol CH₃ C ₆ H₄ OH	90%	N	N	R to 73	N	73	N	R to	73		
Cresylic Acid	50%	·	180		140	C to 73	N	 .	C to 73		
Croton Aldehyde CH ₃ CH:CHCHO	·		N	C to 73	N		 ·		~		No for all
	Liquid							R to 104			
Crude Oil		• •	C to 180	140	140	C to 120	C to 73	R to 212	C to 120	R to	· .
Cupric Chloride	20%				-~-						R to 73
Cupric Fluoride			180		140	140			140		

Plastics at Maximum C	perating Temperature	(F)

Chemicals								٠			
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	РК .
Cupric Sulfate	Sat'd	100	180	73	140	140					
CuSO₄ o5H₂ O		•									•
Cuprous Chloride	Sat'd	70	180		140	140			140		
CuCl											
		•									
Cyclohexane		73	N	N	N .	N		R to	N	C to	
C ₆ H ₁₂								248		140	
Cyclohexanol		C to	N	140	N	73	C to	R to	73		
C ₆ H ₁₁ OH		120					73	104		•	
Cycloboyonono		N	N	73	N .	120	N	N	C to	C to	
Cyclohexanone C ₆ H ₁₀ O	Liquid	IN	IN	73	, N	. 120	IN	IN	176	140	
	Eldara								1,0	110	
Detergents			C to	180	140	R to			R to		R to 73
(Heavy Duty)			180			140			140		
							•				
Dextrin	Sat'd		180	140	140	140	140		140		
(Starch Gum)						•			•		
											٠
Dextrose	Sat'd		180	140	140	140	140		140		
Diacetone Alcohol	l		N	120	N			*		C to	
CH ₃ COCH ₂ C(CH	•				••					140	
						*					
Dibutoxyethyl Ptha				N		N					
C ₆ H ₄ (COOO ₂ H ₂	OC ₄ H ₉) ₂		-		,						
n-Dibutyl Ether						73			73		
C ₄ H ₉ OC ₄ H ₉											
										•	
Dibutyl Phthalate	·	N	N	73	N	73			73		
C ₆ H ₄ (COOC ₄ H ₉)2							٠.			

Plastics at Maximum Operating Temperature (

Chemicals and	O sector if	4 D.C	CDVC	nn.	PN C	DE.	DD.	DI IOF		D. 11	DI/
Formula	Concentration	ABS	CPVC	PP	PVC	. PE	PB	PVDF	PEX	PA 11	PK
Dibutyl Sebacate				73	73	73			73		
C ₄ H ₉ OCO (CH ₂)8	3OCOC4 H9										
								ъ.			
Dichloroacetic Aci	d 50%							R to		 .	
								176			
Dichlorobenzene		N	N	C to	N	C to			C to		R to 73
C ₆ H ₄ Cl ₂			.,	73	.,	120			120		
	Liquid							R to			
	·							140			
Dichloroethylene			N	C to	N	C to			C to		
C ₂ H ₂ Cl ₂				73		120			120		
•	Liquid							R to			
								248			
Diesel Fuels			C to	140	140	73	C to	R to	73		
			180			•	73	212			
Diethanolamine	Solid							N			
Dietranolamine	20%	*							R to		
	2070								194		
Diethylamine		N	N		N	C to	N .	N	C to		
C ₄ H ₁₀ NH						120			120		
Diethyl Ether		N	N.	73	73	C to			C to	140	
C ₄ H ₁₀ O	•					140			140		
Diglycolic Acid	Sat'd		180	140	140	140	140		140		
O(CH ₂ COOH) ₂	10%							R to			
								140			
Dimethylamine				73	140	73	N	N	73		
(CH ₃) ₂ NH				13	140	13	IN	IX	7.5		
(0113/21411									•		

Plastics at	Maximum	Operating	Temperature	(F)	ì
I lastics at	IVLUATIIIUIII	Operating	1 chipci ature	(I)	,

· .											
	<u>-</u>	P	lastics at	Maximu	m Operat	ing Tem	perature	<u>(F)</u>			
Chemicals and Formula C	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Dimethyl Formamide	e Liquid	N	N 	180	N 	120		·	120 N		C to 73
100n(0n3)2	Liquiu								IN		· · · · · · · · · · · · · · · · · · ·
Dimethylhydrazine CH ₃) ₂ NNH ₂		 ,	-		N						
Dimethyl Phthalate			N.		 73	C to			C to 73		
Dioctyl Phthalate C ₆ H ₄ (COOC ₈ H ₁₇) ₂		N	N	C to 73	. N	73	C to 73		73	140	
70 1 14 (0 0 :											
Dioxane D:(CH₂)₄:O			N	C to 140	N	140			140		
	Liquid			***				C to 68	`		
Diphenyl Oxide C ₆ H ₅) ₂ O	Sat'd	<u></u>				73			73		
0isodium Phosphate Ia₂ HPO₄	;		180	140	140	140	140		140		
Dishwashing Liquid Cascade)						• •			 , ·		R to 73
Dow Therm A					N						•==
thanol	40%	*		· ·		•••		R to 68			
	95%					***		R to 122	R to 140		
	Liquid							R to 122	R to 140		R to 176
ither		N	·N	C to	N	73	N		73		·

Plastics at Maximum	Operating	Temperature	(F)

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
ROR				73								
NON												
Ethyl Acetate		Ν	N	C to	N	73	C to		73	140	R to 73	
CH₃ COOC₂ H₅				140			73				C to 176	
	Liquid							C to 68				
								00				•
Ethyl Acetoacetate	·-	N	N		N							
CH ₃ COCH ₂ COO	C₂ H₅											
Ethyd Aendete	•		N		N							
Ethyl Acrylate CH ₂ :CHOOC ₂ H ₅			IN		111							
3,12,3,10,0,0						•	•					
Ethyl Alcohol			C to	140	140	140	140		140	C to	R to 176	
(Ethanol)			140						•	104		÷
C ₂ H ₅ OH							•					
Ethyl Benzene	 ,			C to	N ·	C to						
C ₆ H ₅ C ₂ H ₅	•			73		73		•				
Ethyd Oblasida	Dou		N	C to	N	C to			C to			
Ethyl Chloride C ₂ H ₅ Cl	Dry .		IN	73	IN	73			73			
0211301	Gas							R to				
								212				
Ethyl Chloroacetat					N							
CCH2 CICO2 C2 H5	i											
Ethyl Ether	Liquid		N	N	N	N .	N	R to	R to			
(C ₂ H ₅) ₂ O			•					122	68			
	_											
Ethylene Bromide	Dry		N ·		N		N	·				
BrCH₂ CH₂ Br												
Ethylene Chloride	Dry	N	N	C to	N	C to			C to			

•

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
CICH₂ CH₂ CL				73		140			140		
		.*									
Ethylene Chlorohy			N	73	N _.		N				
CICH₂ CH₂ OH	Liquid							C to			
								68 ⁻			
Ethylene Diamine		. N		73	N	140			140		
NH ₂ CH ₂ CH ₂ NH ₂			ř								
Ethylene Dichloride	e Dry	N	N	C to	N	C to	140		C to		
C ₂ H ₄ Cl ₂		•		140		73			73		
Ethylene Glycol	Liquid	73	C to	212	140	140	140	R to	R to		C to 176
CH ₂ OHCH ₂ OH			180					212	212		
Ethylene Oxide			N	C to	N	73			73	C to	
CH₂ CH₂ O				73						140	
2-Ethylhexanol						73			73		
CH ₃ (CH ₂) ₃ CHC ₂	H₅ CH₂ OH					70			70		
			٠								
Fatty Acids		160	73	120	140	120	150		120	194	
R-COOH											
Ferric Chloride	Sat'd	120	180	140	140	140	150	R to	140		
(Aqueous)								212			
FeCl₃											,
Ferric Hydroxide	Sat'd	160	180	140	140	140			140		
Fe(OH) ₃											
Ferric Nitrate	Sat'd	160	180	140	140	140	140	R to	140		
Fe(NO ₃) ₃ 9H ₂ O								212			
Ferric Sulfate		160	180	140	140	140	140		140		
Fe ₂ (SO ₄) ₃	Sat'd							R to			
- \ ' / \											

Plastics	at Maximum	Operating	Temperature ((F)

•								•				
<u></u>		P	lastics at	Maximu	m Opera	ting Tem	perature	<u>(F)</u>				
Chemicals								•				
and Formula	Concentration	ABS	CPVC	·PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
												*
								212			•	
								•				
Ferrous Chloride	Sat'd	160	180	140	140 140	140	140	R to	140		 -	
FeCl ₂					. , •			212				
Ferrous Hydroxide	Sat'd	160	180	140	140	140			140			
Fe(OH) ₂			•									
	•						•					
Ferrous Nitrate		160	180	140	140	140			140			
Fe(NO ₃) ₂												
Paramana tha dagada	Calla	. 100	400	4.40		440			4.40			
Ferrous Hydroxide Fe(OH) ₂	Sat'd	160	180	140	140	140			140			
re(On) ₂												
Ferrous Nitrate		160	180	140	140	140			140			
Fe(NO ₃) ₂										٠		
Ferrous Sulfate		160	180	140	140	140	140		140			
FeSO ₄								٠				
	20%										R to 73	
	Sat'd				200 also tag			R to				
Ferrous Chloride	Sat'd	160	180	140	140	140	140	212 R to				
FeCl ₂		100	100	140	140	140	140	212	140			
1 0012								212				
Fish Oil			180	180	140	140	140		140		***	
Fluoboric Acid		73	73	140	140	140			140			
HBF₄	Solid							R to				
								104				
			_									
Fluorinė Gas (Dry)	100%		73	N	73	C to	C to		C to	N		
F ₂						73	73		73			

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Fluorine Gas (We	et)	N	73	N	73	N	N		N	N	
F ₂											
Fluosilicic Acid H ₂ SiF ₆	25%				·			R to 212			
	30%		R to 140	140	140	140		R to 212			
	40%							R to			
	50%		73	73	140	140	140	R to 212			
	Sat'd							R to 212			
Formaldehyde HCHO	Dilute	160	73	140	140	140	140	R to		C to	
	35%	160	C to 73	140	140	140	140		140		
	37%	160	C to 73	140	140	140	140	R to 212	140		
	50%		C to 73		140	140	140		140		
Formic Acid HCOOH		N	C to 73	140	73	140	150		140	· · ·	
	10%		• .			~	,	R to 212	R to 140	N	N
	40%							R to 212	R to 140		
	50%							R to 176	R to 140		
	85%	,						R to 212			
	100%			<u></u> ,		140			140		
Freon 11 CCl ₃ F	100%	N -	73	N ·	140	73		ego des de	73		

•	. +	
*	*	•
•.	•	
		•
		Plastics at Maximum Operating Temperature (F)

ories (1.96) 1.96 — Nordanies (1.96) 1.96 — Nordanies (1.96)											
		P	lastics at	Maximu	ım Opera	ting Tem	perature	<u>(F)</u>		•	
Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Freon 12	100%	.· 	73	73	140	73			73	68	
CCI ₂ F ₂	Work. Sol.							R to	R to		
·								212	68		
Freon 21	100%			N	N	C to			C to		
CHCl₂F						120			120		
Freon 22	100%		73	73	N	C to			C to	68	
CHCIF ₂		•				120			120		
Freon 113	100%			N	140	73			73		
C ₂ Cl ₂ F ₃										*	
Freon 114	100%			N	140	73			73		
C ₂ Cl ₂ F ₄							•				
Fructose	Sat'd	73	180	180	140	140	140		140		
C ₆ H ₁₂ O ₆											•
Fruit Juice	Work. Sol.							R to 212		104	
•					-			212			
Furfural	100%	N	N	N	N	C to			C to	C to	
C₄ H₃ OCHO						140			140	140	
Gallic Acid			73		140	73			73		
C ₆ H ₂ (OH) ₃ CO ₂ H	oH₂ O										
Gasoline, Leaded*		N	N	N	140	73	N		73		
,											
Gasoline, Unleaded	d*	N	N	N	140	73	N		73		R to 176
Gasoline (Fuel)						***		R to 212		R to 160	
Gasohol*		N	N	N	140	73	N		73		

.

. •

Plastics at	Maximum	Operating	Temperature ((F)	١

(ap	,										•		
	!		מ	lactics at	Mavimi	ım Onara	ting Tem	naratura	(E)		•		
	•		<u>.</u>	iastics at	Maxiiii	пп Орега	ung rem	perature	(<u>t)</u>				
	Chemicals and		·										
	Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
	•												
	Gasoline, Sour*		N	N	N	140	C to	N		C to			
							73			73			•
	Gelatin			180	180	140	140	140		140			
	Glucoșe		120	180	212	140	140	140		140			
	C ₆ H ₁₂ O ₆ oH ₂ O	10%							R to				
									248				
	Glue				140	140	140			140			
	Olympa i		,	400	. 040		4.46	4.46					
	Glycerine	 A tanadat	140	180	212	140	140	140		140			
	C ₃ H ₅ (OH) ₃	Liquid							R to 248				
٠									240				
	Glycol			C to	212	140	140			140	C to		
	OHCH₂ CH₂ OH			180							140		
	Glycolic Acid	Sat'd		180	73	140	140			140			
	OHCH₂ COOH	10%							R to				
									212				
		30%							R to		***		
	•								140				
		65%							R to				•
		•					•		212				
	Glyoxal						140			140			
	СНССНО			i									
	Grape Sugar			180		140							
	· Grape Sugar			100		140						. ,	
	Grapefruit Juice	Work. Sol.							R to		,		
									122				
	Grease				,						194		
	Green Liquor		160	180		140		140					
	•												
			•		*			•					
		•											

Plastics at Max	kimum Oper	ating Temp	perature (F)

						•					
		F	Plastics at	Maximu	ım Opera	ting Tem	perature	<u>(F)</u>			
Chemicals											
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Heptane (Type 1)		73	180	N	140	. 73	N		73		
C ₇ H ₁₆	Liquid							R to	C to		
•				:				212	176		
	•										
n-Hexane		С	73	73	73		'				
C ₆ H ₁₄	Liquid							R to 176			R to 73
		•						170			
Hexanol, Tertiary			180		140	140	140		140		
Туре I											
CH ₃ (CH ₂) ₄ CH ₂ O	Н .				•						•
Hydraulic Oil (Petroleum)	,				73	73			73		
(Fetroleum)											
Hydrazine	•-		N	73	N						
H ₂ NNH ₂											
						•					
Hydrobromic Acid	20%	73	73	140	140	140	140	R to	140		
Hbr								212			
•	50%	N		120		140		R to	140		
	66%							140 R to			
•	0070							212			
		•									
Hydrochloric Acid	1%										R to 176
Hcl		•									
	10%	C to	180	140	140	140	140	R to	R to	C to	N
		120					÷	212	212	104	
	20%					***		R to	R to		 ,
	30%	C to	180	140	140	140	140	212 R to	212 R to		
		73		170	170	170	170	212	140	-2-	- _
	Conc.								R to		
									140		

Plastics at Maximus	m Operating Temperature (F)

an e													
•		Pla	astics at	Maximu	m Opera	ting Ten	perature	(F)					
Chemicals													
and	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK .		
Hydrocyanic Acid		160	180.	73	140	140	140	. ===	140				
HCN	Sat'd							R to					
								248					
	10%	·				·		R to 248		-			
Hydrofluoric Acid HF	Dilute	73	73	180	73	140	. 140	R to 212	140				
	30%	N	73	140	73	140	140		140				
•	40%							R to 212					
	50%	N	N	73	73	120	140	R to 212	120		,		
	60%					140		R to 140	140				
	70%	<u></u> .						R to 212					
	100%	N	N	C to 73	N	120			120		·		
	Gas	·						R to 104					
Hydrofluosilic Acid	50%	N	140		140	140			140				
Hydrogen	Gas		73	140	140	140	140	R to 248	140	194			
Hydrogen Cyanide HCN				73	140				. ,				
Hydrogen Fluoride Anhydrous			С	73	N								

Plastics at Maximum Operating Temperature	(\mathbf{F}))

		<u> </u>	lastics at	<u>Maximu</u>	m Opera	ting Tem	perature	<u>(F)</u>			
Chemicals and											
Formula	Concentration	ABS.	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
								٠			
Hydrogen Peroxide	3%							·			R to 73
	10%							R to 212			
· .	30%					 .		R to 212		C to	
	50%		180	73	140	140	N	R to	140		
	90%		180	C to 73	140	73	N		73		
Hydrogen Phosphid	de		73		140	140	140		140	, 	***
PH3											
Hydrogen Sulfide H ₂ S	Dry		180	150	140	140	140	R to 248	140		
	Wet		180	, 	140	140		***	140		
Hydrogen Sulfite H ₂ SO ₃	10%					140		R to _	140		
Hydroquinone C ₆ H ₄ (OH) ₂	Sat'd		180		140	140	140			140	
									٠	,	
Hydroxylamine Sulfate			180		140	140			140		
(NH₂ OH)oH₂ SO₄											
Hypochlorous Acid	10%	73	180	73	140	140	140		140		
HOCI	70%							R to 212			
İnks				140		140			140		·

Operating Temperature	

Chemicals and											
Formula	Concentration ·	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
lodine	10%	N	73	73	N	C to	N	R to	C to		
12						120		176	120		
	. •	0.4-	C to	70		440			4.40		
Isobutyl Alcohol	··	C to		73		140			140		
(CH ₃) ₂ CHCH ₂ (JH	73	73								
Isooctane				C to		.73			73		
(CH ₃) ₃ CCH ₂ CH	H(CH ₃)2			73			ı				
	Liquid							R to			
								212			
Isopropyl Acetat	e	N	N			73			73		·
CH₃ COOCH(CH	ł ₃) ₂										
Isopropyl Alcoho	·		C to	212	140	140	140	C to	140		R to 73
(CH ₃) ₂ CHOH			180					212	·		
	•					70			70		
Isopropyl Ether			N	C to	N 70	73	,		73		
(CH ₃) ₂ CHOCH(CH _{3.}) ₂				73						
JP-4 Fuel*			C to	C to	140	73			73		
			73	73							
			,	,							
JP-5 Fuel*	-~		C to	C to	140	73		 ·	73	·	
	<u>.</u>		73	73							
	•										
Kerosene*		73	73	C to	140	C to	C to		C to		
				140		140	73		140		
	•										
Ketchup					73			***			
•											
Ketones		N	N	C to	N	73			73		
	Mode Cal			73					D 4a	•	
	Work Sol							202	R to		
								302			
Kraft Liquors		73	180	•••	140	120	140		120		
uiquoio		. •	. • •								

Plastics at	Maximum	Operating	Temperature (F)

		P	lastics at	Maximu	m Opera	ting Tem	perature	<u>(F)</u>			
Chemicals and			٠								
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Lactic Acid	10% H							R to 140			
	20%										R to 73
	25%	73	180	212	140	140	140		140		
	80%.	N	C to 180	140	73	140			140		
	Liquid							R to 212		R to 194	
Lard Oil		,	C to 180		140	C to 120	73		C to 120		
Latex				140		140			140		
Lauric Acid CH ₃ (CH ₂) ₁₀ CO	ОН 		180	140	140	120			120		
Lauryl Chloride (Type I) C ₁₂ H ₂₅ CI			73		140	120	73	R to 248	120		
Lead Acetate Pb(C ₂ H ₃ O ₂) o3	Sat'd H₂ O		180	180	140	140	140	R to 212	140		
Lead Chloride PBCl₂			180	140	140	120			120		,
Lead Nitrate PB(NO ₃) ₂	Sat'd		180	140	140	120			120	***	•••• •••
Lead Sulfate PbSO ₄			180	140	140	120			120		

Plastics at Maximum Operating Temperat	ture (F)
--	--------	----

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Lead Tetraethyl								R to 212			
								212			
Lemon Oil			N	C to							
				73		0.4			0.1		
Lemon Juice						C to 140			C to		
						140	•		140		
Ligroin				140							
Lime Slurry	 .		•			140			140		
Lime Sulfur	<u></u>		73	73	73	120	140		120		
Linoleic Acid CH ₃ (CH ₂) ₄ HC:	· <u></u>	~	180	180	140		73				
CHCH ₂ CH: CH(CH ₂) ₇ COOH											
Linoleic Oil (Type I)	 ,				140		73				
Linseed Oil	·	73	C to 180	140	140	R to 73	73	R to 248	R to 73	194	
Liqueurs				140	140	120	140		120		
Lithium Bromide LiBr			·	140	140	140			140	. .	
Lithium Chloride LiCl	. 		·	140	140	120			120		
Lithium Hydroxide LiOH				140		120		N-W	120	 .	

Chei and Form		Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Lubr	icating Oil			180	C to	140	73	140	R to	73		
	ΓM #1)			100	140	140	70	140	248	70		
	icating Oil	 ·		180	C to	140	73	140		73	***	
(AST	ГМ #2)	•			140							
Lubri	icating Oil			180	C to	140	73 .	140		73		
(AST	ГМ #3)				140					•		
Magr	nesium Carbona	ate	120	180	212	140	140	140	R to	140		
MgC	O ₂		•						212			
Magr	nesium Chloride	e Sat'd	120	180	140	140	140	140	R to	140		
MgC	12		-						140			
		50%							R to 212		194	
									212		•	•
	nesium Citrate		·	180		140	140			140		
MgH	C ₆ H ₅ O ₇ 05H ₂ (0										
Magr	nesium	Sat'd	160	180	180	140	140	140	R to	140		
	oxide								212			
Mg(C)H) ₂						•					
	nesium Nitrate		160	180	212	140	140	140	R to	140		
Mg(N	1O ₃) ₂ o2H ₂ O		•						248			
Magr	nesium Oxide		160									
MgO	•		,									
Magr	nesium Sulfate		160	180	212	140	140	140	R to	140		
MgS	O₄	•							212			
Malei	ic Acid	Sat'd	160	180	140	.140	140	140	R to	140		
	ССН:СНСООН			.00				5	140			
		50%							R to			

Plastics	at Maximum	Operating	Temperature (F)

		P	lastics at	Maximu	m Opera	ting Tem	perature	<u>(F)</u>			
Chemicals		•									
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
								212			
	10%							R to			
								140			
								•			
Malic Acid	 		180	140	140	140	140 .		140		
COOHCH₂ CH(OH)	JOOH		•								
Manganese Sulfate			180	180	140	. 140			140		
MnSO ₄ o4H ₂ O											
										•	
Margarine	Work. Sol.							R to			
								248			
Mercuric Chloride			180	180	140	140	140		140		
HgCl ₂	Sat'd							R to			
								212			
						•					
Mercuric Cyanide	Sat'd		180	140	140	140	140	R to	140		
Hg(CN)₂								212			
Mercuric Sulfate	Sat'd		180	140	140	140			140		
HgSO₄											
Mercurous Nitrate	Sat'd		180	140	140	140	140		140		
HgNO₃ o2H₂ O								='.			
	10%		***					R to 212			
					•			212			٠
Mercury	Liquid		180	140	140	140	140	R to	140	194	
Hg					٠			248			
Methane		,N	73	73	140	140			140	140	
CH₄		•									
Methanol			N	180	140	R to	140		R to		
(Methyl Alcohol)						140			140		
							•			•	

Plastics at Maximum	Operating Temperature (F)

k ==3 el #

								•			
Chemicals and	·			•							
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
CH₃ OH	5%							R to 140			
	Liquid				 			C to	R to		R to 176
	·							176	140		
								٠.			
Methoxyethyl Olea					73					·	
CH₃ OCH₂ CH₂ O	OCC ₁₇ H ₃₃										
Methyl Acetate	 .	N	N	140	N	C to			C to		
CH₃ CO₂ CH₃							120			120	
Methyl Acrylate	Tech		·.			140			140		
CH ₂ :CHOOCH ₃	Pure					140			170		
Methyl Amine	 ,		N	Ν	N						
CH ₂ NH ₃				•							•
	,										
Methyl Bromide			N	N	N	C to			C to	R to	
CH₃ Br		,				73			73	68	
Methyl Butyl Ketor	ne Liquid		,		<u></u>			C to			
. ,	·		•					122	•		
Methyl Cellosolve			N	73	N	C to	·		C to		
HOCH₂ CH₂ OCH₃						120			120	٠	
Methyl Chloride	Dny	N	N .	N	N	C to	N		C to	R to	•
CH ₃ CI	Dry	IN	IN .	IN	IN	C to 120	IN		C to 120	68	
0113 01						120			120	00	
Methyl Chloroform		N	N	C to	N	C to			C to	***	
CH₃ Ccl				73		120			120		
Methyl Ethyl Keton	e 100%	N	N.	73	N	N	73	C to	R to	C to	R to 73
(MEK)	•							68	140	140	C to 176
CH₃ COC₂ H₅	•										

Plastics at Maximum Operating Temperature (

Chemicals and												
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK .	
Methyl Isobutyl Carbinol			N		N							
(CH ₃) ₂ CHCH ₂ CF	H(CH₃)OH											
Methyl Isobutyl Ketone		N	N	73	N	73			73		 ·	
(CH ₃) ₂ CHCH ₂ CC	OCH₃						•					
Methyl Isopropyl Ketone			N		N	73			73			
CH ₃ COCH(CH ₃) ₂								٠				
Methyl Methacryla CH ₂ :C(CH ₃)COO			N		73	140		R to 68	140			
									÷			
Methyl Sulfate (CH ₃) ₂ SO ₄	· · · · · · · · · · · · · · · · · · ·	•••	73	C to 73	73	140				68		į
Methylene Bromide	e		N	N ·	N	C to			C to		· 	
CH ₂ Br ₂									120		.•	
Methylene Chloride CH ₂ Cl ₂	e 100%		N	N	N	N	73	C to 104	N		C to 176	
Methylene Chloro- bromide	 .		N		N						· 	
CH₂ CIBr							•					
Methylene lodide CH ₂ l ₂			N	N	N	C to 120			C to 120		 '	
Methysulfuric Acid			180	140	140	,			· ·			

Plastics at Maximum Operating Temperature (F)	

				•							
; v											
		Pla	stics at M	<u> </u>	Operatii	ng Temp	erature (<u>F)</u>			
Chemicals										•	
and Formula Co	oncentration	ABS	CPVC	PP ,	PVC	PE	PB	PVDF	PEX	PA 11	PK
Milk	 .	160	180	212	140	140	140	R to 212	140	194	
Mineral Oil		73	180	C to	140	R to 73	C to 73	R to 212	C to		
Molasses			180	140	140	140	140		140		
Monochloroacetic Acid CH ₇ CICOOH	50%			140 .	140	140			140		
Monochlorobenzene C ₆ H ₅ CI	Tech Pure		N	73	N	C to 120			C to	, 	
Monoethanolamine HOCH ₂ CH ₂ NH ₂					N					· .	
Motor Oil			180	C to	140	R to 140			R to 140	·	
Morpholine C ₄ H ₈ ONH				.140		140			140		<u></u>
Mustard, Aqueous	Work. Sol.						- <u>i-</u>	R to 248			···
N-methyl Pyrrolidone	100%			 .				 .			C to 73
Naphtha			73	73	140	73	73	R to 122	C to 176	R to 140	
Naphthalene C ₁₀ H ₈			N	73	N	73	73	<u></u> ·	73	R to 194	
Natural Gas		73		73	140	140	73 .		140		

Plastics at	Maximum	Operating	Temperature ((F)

и .

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Nickel Acetate				73		140.	-:-		140		
Ni(OOCH ₃) ₂ o4H ₃	₂ O								•		
Nickel Chloride	Sat'd	160	180	180	140	140	140	R to	140		
NiCl ₂							·	212			
Nickel Nitrate	Sat'd	160	180	180	140	140	140	R to	140		
Ni(NO ₃) ₂ 06H ₂ O								248			
Nickel Sulfate	Sat'd	160	180	180	140	140	140	R to	140		
NiSO ₄							•	212			
Nicotine		,	180		140	140	140		140		
C ₁₀ H ₁₄ N ₂											•
Nicotinic Acid	·	***	180		140	140	140	R to	140		
Csh₄ NCOOH								212			
Nitric Acid	5%							R to	C to	N·	
HNO₃	10%	C to	180	180	140	73	C to	176 R to	140 C to		
	1070	73	100	100	140	73	73	212	140		
	20%							R to	C to		
								212	140	e e	•
	25%							R to	C to		
•	30%	N	R to	140	140	73	N	212 R to	140 C to		
	3076		130	140	140	73	.,	212	140		
	35%								C to		
	•							•	140		
	40%	Ν	R to	73	140	73	N	C to	140		
			120					248			
	50%	N	110	N·	100	C to	Ν		140		
						73	·				

Plastics at Maximum	O	perating	T	emperature	(F)	ì

Chemicals and												
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
	65%							C to 248				
	70%	N	100.	N	73	C to	N		C to			
•	85%					73		NI.	73			
	95%						 · N	N				
·	100%	N	N	N	 N	N	N		N			
	10078	IN	IN	14	IN	iN	IN		IN			
Nitrobenzene C ₆ H ₅ NO ₂	100%	N	N	C to	N	N		R to	N		 -	
			•	140				122				
Nitroglycerine CH ₂ NO ₃ CHNO ₃	CH2 NO2		 .		N	73			73	 .		
0.12 1103 01 11103	01121103					-						
Nitroglycol					N							
Nitrous Acid	10%		180	C to 73	140	73			73			
HNO2	٠.			73								
·						•						
Nitrous Oxide	**		73	73	73	73			73			
N ₂ O												
n-Octane			C to									
CH ₈ H ₁₈			73									
Oleic Acid		160	180	73	140	C to	150	R to	C to	R to		
CH ₃ (CH ₂) ₇ CH						140		248	140	140		
CH(CH ₂) ₇ COOH												
Oleum x H ₂ SO ₄ oySO ₃	. -	N	N	N	N	N	N	N	N			
X 112 004 0y003												
	٠	. •						*				
Olive Oil		160	C to	73	140	140		R to	R to			
			180					248	68			-

Plastics	at Maximum	Operating	Temperature	(F)

	Chemicals							•				
,	and	0		CDVC	DD	DVG	P.E.	DD.	DVIDE	DEM	DA 11	DIZ
	Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
		•										
	Oxalic Acid	50%	160	180	140	140	140	140		140		
	HOOCCOOHo2H ₂ C	10%							R to		R to	
						•	•		140		140	
		Sat'd							R to			
									122			
	Oxygen Gas		160	180	N ·	140	140		R to	140	R to	
	O ₂								212		140	
									•			
		•										
	Ozone			180	C to	140	C to			C to	C to	
	O ₃				73	•	120			120	68	
		Sat'd							R to			
									68			
	Palm Oil			 ·	73		140			140		
	Palmitic Acid	10%	73	73	180	140	120	150		120		
	CH ₃ (CH ₂) ₁₄ COOH											
		70%		73	180	73	120			120		
											•	
	Paraffin		73	180	140	140	C to		R to	C to		
	C ₃₆ H ₇₄	•					140		212	140		
	Peanut Oil			C to	140				R to			
				180					248			
	n-Pentane		N	C to	N	C to	C to	,		C to		
	CH ₃ (CH ₂) ₃ CH ₃			180		140	120			120		
	Peracetic Acid	40%	N .		73	73						
	CH₃ COOOH	•										
										•		

Plastics at Maximum	0	perating	T	emperature	(F)	

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Perchloric Acid	10%							R to		·	
(Type I)								212			
HclO₄	20%	·					 ,	R to			
								212			
Perchloric Acid	15%		180	140	73	140	C to		140		
(Type I)							73	-			
HclO₄											
										•	
Perchloric Acid	70%	73	180	C to	73	73	N	R to	73		
(Type I)				73				212			
HclO₄					•						
D			0.4-		0.4-	0.4.		0.4	0.4	0.1	
Perchloroethylene) 	N	C to	C to	C to	C to		C to	C to	C to	
Cl ₂ C:CCl ₂			180	73	140	120		212	120	68	
Perphosphate			73 -	140	73						
i erpriospriate			75	140	7.5						
Petroleum Ether	•							R to			
r otroiodin Etrici		•						212			
Phenol	••	N	73	73	73	140	73		140	N	
C ₆ H ₅ OH	5%					,			R to		
					•				248		
	50%			***			. •••	R to			
	·							176			
	Solid							C to			
								122			
	90%					R to			R to		
						140			140	•.	
								_	_		
Phenylhydrazine			N	N	N	C to		R to	C to	400	
C ₆ H ₅ NHNH₂							120		104	120	

,

Plastics at Maximum	Operating Temperature ((F)
---------------------	-------------------------	-----

Chemicals and			:								
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Phenylhydrazine	10%							R to			
Hlydrochloride								140			
Phosphine	Gas							R to			
								104			
Phosphoric Acid	10%		180	212	140	140	140		140		
Phosphoric Acid H ₃ PO ₄	10 /6		100	212	140		140		140		
713 1 04											
	50%	73	180	212	140	140	73	R to	140	C to	
								212		104	
	75%			,				R to		·	
								212			
•	85%		180	212	140	73		C to	73		
	98%							284 R to			
	3070							212			
Phosphoric Anhyo	Iride		73	73	73	<u></u>					'eve
P ₂ O ₅				•							
Phosphorous (Red	d)				73	140			140		
Di	I a A		·		70	440			440		
Phosphorous (Yell Phosphorous	Liquid				73 ,	140		R to	140		
Oxychloride	Liquid							68			
<i></i>					•		-				
Phosphorous Pen	toxide '		73	73	73	140			140		
P ₂ O ₅								,	•		
									٠		
Phosphorous			N	73	N	120	C to	C to	120		
Trichloride							73	122			
Pcl ₃											
Photographic Solu	utions		180	140	140	140	140		140		
- ,											
Phtalic Acid			,	140	C to	140			140		

Plastics at	Maximum	Operating	Temperature	(F)

Chemicals and Formula Concentration ABS CPVC PP PVC PE PB PVDF PEX PA II PK												
Chemicals and Formula Concentration ABS CPVC PP PVC PE PB PVDF PEX PA I PK Cs H4 (COOH)2 Susp.		•										
Chemicals and Formula Concentration ABS CPVC PP PVC PE PB PVDF PEX PA I PK Cs H4 (COOH)2 Susp.	. •		DI.	antian at l	Marrim		T		' E)			
And Formula Concentration ABS CPVC PP PVC PE PB PVDF PEX PAII PK C ₆ H ₄ (COOH) ₂ Susp.				astics at i	viaxiiiiu	ii Operat	ing tem	perature (<u>.r)</u>			
Formula Concentration ABS CPVC PP PVC PE PB PVDF PEX PA11 PK C ₆ H ₄ (COOH) ₂ Susp												
Picric Acid 10% N N 73 N 73 73 R to 73 C to		Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Picric Acid 10% N N N 73 N 73 73 R to 73 C to	C ₆ H ₄ (COOH) ₂		•			140	•					
Picric Acid C ₆ H ₂ (NO ₂) ₃ OH 50% Sat'd. N N 140 R to R t		Susp.							R to			
C ₆ H ₂ (NO ₂) ₃ OH 50% R to									212			
C ₆ H ₂ (NO ₂) ₃ OH 50% R to												
Sai'd. Sai'd. R to Sai'd. R to Sai'd. R to Sai'd.		10%	N	N	73	N	73	73		73		
Sat'd.	C ₆ H ₂ (NO ₂) ₃ OH										68	
Pine Oil N 140 R to 212 Pine Oil N 140 140 140 140 C to 140 R to Chrome) Plating Solutions (Cadmium) Plating Solutions (Copper) Plating Solutions (Codd) 180 140 140 140 C to 140 14		50%										
Plating Solutions 180 140 140 140 C to - 140 - 140 C to - 140 - 140 C to - 140		Soud	•									
Plating Solutions 180 140 140 140 C to 140		, Satu.										
Plating Solutions (Grass) 180 140 140 140 C to 140 140 140 C to 140 C t	·								212			
Plating Solutions (Grass) 180 140 140 140 C to 140 140 140 C to 140 C t	Pine Oil			N	140		R to			R to		
Plating Solutions				٠		•				73		
Plating Solutions												
Plating Solutions (Cadmium) 180 140 140 140 C to 140 (Cadmium) 180 140 140 140 C to 140 (Chrome) 180 140 140 140 C to 140 (Chrome) T3 180 140 140 140 C to 140 (Copper) T3 180 140 140 140 C to 140 (Copper) T3 180 140 140 140 C to 140 (Gold) T40	Plating Solutions			180	140	140	140	C to		140		
Plating Solutions	(Brass)							73				
Plating Solutions												
Plating Solutions 180 140 140 140 C to 140 (Chrome)				180	140	140	140			140		
(Chrome) 73 Plating Solutions 180 140 140 140 C to 140 (Copper) 73 Plating Solutions 180 140 140 140 C to 140 (Gold) 73	(Cadmium)	•					•	73				
(Chrome) 73 Plating Solutions 180 140 140 140 C to 140 (Copper) 73 Plating Solutions 180 140 140 140 C to 140 (Gold) 73	Plating Solutions			180	140	140	140	C to		140	***	
Plating Solutions 180 140 140 140 C to 140 (Copper) 73 Plating Solutions 180 140 140 140 C to 140 (Gold) 73				100		, ,,	, , ,					
Plating Solutions 180 140 140 140 C to 140 (Copper) 73 Plating Solutions 180 140 140 140 C to 140 (Gold) 73	(Ccime)											٠
Plating Solutions 180 140 140 140 C to 140 (Gold) 73	Plating Solutions			180	140	140	140			140		
(Gold) 73	(Copper)	•						73				
(Gold) 73												
				180	140	140	140			140		
	(Gold)							73				
Disting Calutions 400 440 440 440 045 140	Dietin - Oak Par			100	140	140	140	C +c		140		
Plating Solutions 180 140 140 C to 140 (Lead) 73	_			180	140	140	140			140		
(Lead) 73	(Leau)							, ,				
Plating Solutions 180 140 140 C to 140				180	140	140	140	C to		140		
(Nickel) 73		•						73				

Plastics	at Maximum	Operating	Temperature	(F)

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Plating Solutions (Rhodium)	 ·		180	140	140	140	C to 73		140	·	
Plating Solutions (Silver)			180	140	140	140	C to 73		140	<u></u>	
Plating Solutions (Tin)			180	140	140	140	C to _.		140		
Plating Solutions (Zinc)			180	140	140	140	C to 73	 ,	140		
Potash (Aq) KOH	Sat'd		180		140	140			140		
Potassium Alum ALK (SO ₄) ₂ o12H ₂			180		140	140			140		
Potassium Aluminu Sulphate	um		180	180	140		C to 73				-
Potassium Amyl Xanthate					. 73						
Potassium Bicarbonate KHCO ₃	Sat'd		180	140	140	140	140	R to 212	140		
Potassium Bi- chromate	Sat'd		180	140	140	***	C to 73	R to 212			
K ₂ Cr ₂ O ₇	40%				-		******	R to 212			
Potassium Bisulfat KHSO₄	e		180	212	140	140		R to 212	140		

Plastics a	t Maximum	Operating T	emperature (F)

		P	lastics at	Maximu	m Opera	ting Tem	perature	<u>(F)</u>			
Chemicals											
and											
Formula C	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Potassium Borate			180	140	140	140	140	R to	140		
K ₂ B ₄ O ₇ o5H ₂ O								212			
Potassium Bromate	· .		180	212	140	140	140	R to	140		
KbrO ₃					, , ,			212			
	10%				·				R to		
									212		
Potassium Bromide			180	212	140	140	140	R to	140		
Kbr			•					248			
Potassium Carbonat	e	73	180	180	140	140	140	N	140	<u></u> ,	
K₂ CO₃			·								
Potassium Chlorate		160	180	212	140	140	140	N	140		
KClO₃ (Aqueous)		,									
Potassium Chloride		160	180	212	140	140	140	R to	140		
Kcl								212			
Potassium Chromate	! 		180	212	140	140	140		140		
K ₂ .CrO ₄											
Potassium Cyanide			180	180	140	140	140	R to	140		
KCN								212			
Potassium	Sat'd		180	180	140	140	140		140		
Dichromate											
√ ₂ Cr ₂ O ₇								•			
Potassium Ethyl					73						
Kanthate											
KS₂ COC₂ H₅				٠							
Potassium ·			180	180	140	140	140	R to	140		
											. •

	Plastics at Maximum Operating Temperature (F)		

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Ferricyanide K ₃ Fe(CN) ₆								248			
									•		
Potassium Ferroycanide			180	180	140	140		R to 248	140		
K ₄ Fe(CN) ₆ o3H ₂ O											
Potassium Fluoride KF			180	180	140	140	140	R to 212	140		
Batanahan thalani	J- 40/					٠		0 40			
Potassium Hydroxid KOH	ae 4%							C to 104			
	10%							R to			·
	20%							R to			
	25%	160	180	212	140	R to	140	176 	R to		
						140			140		
	45%		,		~~~						R to 73
	50%							R to 176		C to	
	•										•
Potassium hydroge Sulphite	n 10%		****					R to 140			·
•	Sat'd					***		R to 212			
								, —			
Potassium		160	180		140	120			120		
Hyprochlorite KclO	3%	ò						212	R to		
Potassium lodide			180	73	73	140		R to 212	140		
,			٠.								
Potassium Nitrate		160	180	140	140	140	140		140	C to	
·											

Plastics at Maximum	0	perating	Te	mperature	(F)	,

Chemicals and Formula	Concentration	ABS	CDVC	PP	DVC	PE	PB .	PVDF	PEX	PA 11	PK
romuia	Concentration	, ADS	CPVC	rr	PVC	PE	rb .	PVDF	PEX	ra II.	rĸ
KNO₃	50%							R to		104	
								212			
Potassium	Sat'd							R to,			
Orthophosphate	e						•	212			
Potassium Perb	oorate		180	140	140	140	140		140		
,											
Potassium Perc	hlorate		180	140	140	140	140		140		
KClO₄											
Potassium	10%		180	73	140	140	140	R to	140		
Permanganate				•					176	•	
KmnO₄	20%							R to			
								212			
	25%		180	73	73	140			140		
	/	•	,								
	30%							R to			
				•				212			
	Sat'd							R to			
								212			
Data di un Dana			400	440	4.40	440	4.40	D.40	4.40		
Potassium Pers	urrate		180	140	140	140	140	R to 176	140		
K ₂ ,S ₂ O ₈				,				176			
Potassium Sulfa	ata	160	180	180	140	140	140	R to	140	194	
K ₂ SO ₄	ile	100	100	100	140 .	140	140	212	140	134	
N2 304								212			
Potassium Sulfi	de		180	140		140	140	68	140		
K ₂ S			100	140		140	140				
1/2 0											
Potassium Sulfi	te		180	140		140			140		
K ₂ SO ₃ o2H ₂ O			.00	1-10		, 10					,
. 12 003 021 12 0											
Propane			73	73	140	140	73	R to	140	140	
C ₃ H ₈			-	. =	•	-		248			
= 0 - 0											

Plastics at Maximum Operating Temperature	(I	7)

		p	lastics at	Maximu	m Onerat	ing Tem	neraturė	(F)				
		<u> </u>	iastics at	ıvıaxılliu	in Operat	ing i cili	perature	7.1.7				
Chemicals and												
	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
Propargyl Alochol	·		C to	140	140	140	140		140			
HC:CCH₂ OH				180				•				
Propionic Acid		N	N	140		140		R to	140			
CH₃ CH₂ CO₂ H								140				
Propyl Alcohol		73	C to	140	140	R to	140	R to	R to			
(Type I)			73			140		122	140		,	
CH₃CH₂CH₂OH												٠
•									•			
Propylene Carbonat	e 100%										R to 73	
Propylene Dichloride	e 100		N	N	N	N			N			
CH ₃ CHClCH₂ Cl												
				•								
Propylene Oxide			N	73	N	140			140			
CH ₃ CHCH ₂ O												
						•						
Pyridine			N	C to	N	73		R to	73	C to		
N(CH)₄ CH				140				68		68		
Pyrogallic Acid					73						***	
C ₆ H ₃ (OH) ₃			•									
Quinone	· ·			140		140		'	140			
C ₆ H ₄ O ₂												
Davida Caravilation			100		140	140	140		140			
Rayon Coagulating			180		140	140	140		140		***	
Bath												
Salicylaldehyde				73	N	120			120			
C ₆ H ₄ OHCHO	• •••			13	IN	120			120			
OB FIA OFTOTIO												
Salicylic Acid					140	140	140		R to	140		
						ידי	טדי	212		,,,,,		•
C ₆ H ₄ (OH)(COOH)								212				

Plastics at Maximi	um Operating Temperature	(F)

Chemicals and												
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
Selenic Acid Aq.			180		140	140	140		140			
H₂ SeO₄	•											
Silicic Acid			180	140	140	140	140	R to	140			
SiO ₂ onH ₂ O								212				
Silicone Oil			180	212	73	73			73			
Silver Acetate	Sat'd	·						R to 212				
								212				
Silver Chloride		160	180	140	140							
AgCl	•											
Silver Cyanide			180	180	140	140	140	R to	140			
AgCN	•							212				
Silver Nitrate		160	180	180	140	R to	C to		R to			
AgNO₃	50%					140	73 	R to	140			
	3078							212				
0.1 0.16.1			460	400	110	440	140	C to		110		
Silver Sulfate Ag ₂ SO ₄			160	180	140	140	140 73	Cio		140		***
Soaps		73	180	140	140	R to 140	140		R to 140			
Sodium Acetate NaC ₂ H ₃ O ₂	Sat'd		180	212	140	140	140	R to 212	140		·	
NaO2 F13 O2								212,				
Sodium Alum	 ·		180		140			·				
AlNa(SO₄)₂ o12H	₂ O											
Sodium Aluminate	e Sat'd				140							
Na ₂ Al ₂ O ₃												

Plastics at Maximum Operating Temperature (F)

a) ,

Chemicals				,					٠		
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	. PA 11	PK
Sodium Benzoate	e		180.	140	140	140	140		140		
C ₆ H ₅ COONa	35%							R to			
								68			
	50%							R to			
								212	•		
							,				
Sodium Bicarbon	ate	73	180	212	140	140	140	R to	140		
NaHCO ₃								212			
			400		4.40				•		
Sodium Bichroma			180		140			 D to			
Na ₂ Cr ₂ O ₇ o2H ₂ (O 50%							R to 212			
•								212			
Sodium Bisulfate		73	180	140	140	140	140		140		
NaHSO ₄	50%					'		R to			
								212			
			*			ē			•		
Sodium Bisulfite			180	140	140	140			140		
NaHSO₃											
Sodium Borate	Sat'd	160	180	180	140	140	140		140		
(Borax)											
Na ₂ B ₄ O ₇ o10H ₂	0										
O a di sua Diagonida	0-414	400	400	4.40	440	4.40	1.40		440		,
Sodium Bromide	Sat'd 50%	120	180	140	140	140	140	R to	140		/
NaBr	50%							248			
•	•							240			
Sodium Carbonat	e	73	180	212	140	140	140	N	140	R to	
Na₂ CO₃										140	
				*							
Sodium Chlorate	Sat'd		180	140	73	140	140	N	140		
NaClO₃											

	Plastics	at Maximum	Operating	Temperature	(F)
--	-----------------	------------	-----------	-------------	-----

· ·	•										
		P	lastics at	Maximu	m Operat	ting Tem	perature	<u>(F)</u>			
Chemicals					i						
and Formula C	oncentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PĶ
Sodium Chloride		120	180	212	140	140	140		140		<u></u> .
NaCl	Sat'd							R to		194	
								212			
	10%				,			R to			R to
								212			
Sodium Chlorite	25%		180	73	N .	140			140		
NaClO ₂											
Sodium Chromate		120	180	140		140		R to	140		
Na ₂ CrO ₄ o10H ₂ O								176			
							,	•			
Sodium Cyanide			180	180	140	140	140	R to	140		
NaCN								212			
								,			
Sodium Dichromate	20%		180	180	140	140	140		140		
Na ₂ Cr ₂ O ₇ o2H ₂ O											
Sodium Ferricyanide	Sat'd		180	140	140 ·	140	140		140		
Na ₃ Fe(CN) ₆ o2H ₂ O				,			٠				
Sodium Ferrocyanide	e Sat'd		180	140	140	140	140	·	140		
Na₃ Fe(CN) ₆ o10H₂ C)										
Sodium Fluoride		120	180	180	140	140	140	R to	140		
NaF								212			
Sodium Hydrogen	50%							R to			
Sulphite								212			
Sodium Hydroxide	1%								R to		
NaOH									140		
* e	5%							C to			
					į.			68			
	15%	120	180	212	140	140 .	140		R to		

Plastics at Maximum	Operating Temperature	(F)

		р	lastics at	Mavimu	m Onerai	ting Tem	nerature ((F)				
		<u>F</u>	iastics at	<u>IVIAXIIIIU</u>	in Opera	ung rem	perature j	<u></u>				
Chemicals and												
ormula :	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
	30%	120	180	212	140	R to	140	N	R to			
	100/					140			140			
	40%						;		R to 140			
•	50%	120	180	212	140	140	140		140	C to		
										104		
	60%								R to		<u></u> ·	
									140			
	70%	120	180	212	140	140	140		140			
odium Hypochlorit	e <u>-</u> -	120	180	73	73	140	140		140		N	
laOClo5H₂ O	2% CI	~~~						R to				
	10.5% 01							212				
	12.5% CI							R to 68				
odium lodide			. 180		140							
lal				,				.*				
endigus Matanbaan	, ata	•	100	120	140					:		
odium Metaphospl NaPO₃)n	hate		180	120	140							
10. 03 /									•			
odium Nitrate	Sat'd	160	180	180	140	140	140	R to	140.		*	
laNO₃								212				
		,		70	440	440	4.40	`D45	140			
odium Nitrite		160	180	73	140	140	140	R to 212	140			
101402												
odium Palmitrate	5%		180	140	140							
CH3 (CH2)14 COON	а											٠
			400	70	440	70			72			
odium Perborate IaBO ₂ o3H ₂ O		120	180	73	140	73			73			
				٠			,					

Plastics	s at Maximum	Operating	Temp	erature (F)

Chemicals and															
	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK				
Sodium Perchlorate	e		180	212	140	140			140						
NaClO₄								•							
Sodium Peroxide	10%		180		140	140			140						
Na ₂ O ₂	1076		100		140				140			ř			
1102 02															
Sodium Phosphate	Acid	120	180	212	140	140	140	R to	140						
NaH₂ PO₄						•		140		•					
	Alkaline		.120	180	212	140	140		140						
	Neutral		120	180	212	140	140		R to						
		•							212						
Sodium Silicate			180	140	140	140	140		140			• •	•		
2Na ₂ OoSiO ₂	10%							R to 140							
	50%							R to							
,	3070							212							
Sodium Sulfate	Sat'd	160	180	212	140	140	140	R to							
Na ₂ SO ₄	•							212							٠
	0.1%							R to							
								140					•		•
Sodium Sulfide	Sat'd	160	180	212	140	140	140		140	C to					
Na₂S	•									104					
Sodium Sulfite	Sat'd	160	180	212	140	140	140	R⁻to	140						
Na ₂ SO ₃						,		212							
		•													
Sodium Thiosulpha	te	·	180	18Ö	140	140	140		140						
Na ₂ S ₂ O ₃ o5H ₂ O	50%							R to							
								248							
	•														
Sour Crude Oil				140	140										
						٠.							•		
						.*	•					•		•	

Chemicals and					•						
Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Soybean Oil				73		140			140		·
Stannic Chloric	le Sat'd		180	140	140	140	140		140	***	
SnCl₄											
Stannous Chlo	ride 15%	120	180	140	140	140	140		140		
SNCl ₂	Sat'd					140			140		
Starch		***	180	140	140	140			140		
Starch Solution	Sat'd					140			140		
Stearic Acid			180	73	140	120	150		120·	C to	
CH ₃ (CH ₂) ₁₆ CO	ОН		•							194	
,	100%					R to		·	R to		
						120			120		
Stoddard's Solv	/ent		N		N	73	140		73		
Styrene				73		C to			C to	R to	
(C ₆ H ₅ CHCH₂)n						73			73	104	
Succinic Acid)aH	`	180	140	140	140			140		***
0021.1(01.12/200	· ·										
Sugar	Aq.		180		140	140			140		
C ₆ H ₁₂ O ₆											
Sulfamic Acid	20%		N	180	N				;		
HSO₃NH₂								-			
Sulfate Liquors	6%		180	140	140			 -			
(Oil)											
Sulfite Liquors	6%	73	180		140	140	·				
Sulfur			·180	212	140	140	140			104	

Plastics at Maximum Operating Temperature (F)

			•								
Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
	•										
S											
Sulfur Chloride				C to							
S₂CI				73							
	·										
Sulfur Dioxide	Gas	N	73	140	140	140			140		
SO ₂	Dry							•			
									•		
Sulfur Dioxide	Gas	N	N	140	73	120	73	Ν	120		
	Wet										
Sulfur Trioxide	Gas				140	N		. N	N	C to	
SO ₃	Dry									68	
	,										
Sulfur Trioxide	Gas		N.		73	N	,	N			
SO ₃			••			• • • • • • • • • • • • • • • • • • • •		.,			
303											
Culturia Aaid	5%										R to 73
Sulfuric Acid	576										11 10 73
H ₂ SO ₄	000/	400	400	400	4.40	4.40	4.40	D.4-	D.4.		
	30%	120	180	180	140	140	140	R to	R to		N
								248	140		
	50%	73	180	140	140	120	C to	R to	R to		
							73	212	140		
	60%	C to	180	73	140	120	C to	R to			
		73					73	248		•	
	70%	C to	180	73	140	R to	C to		••••		
		73				120	73				
	80%	C to	180	73	140	R to	N	C to	-		
·		73				120		248			
	90%	C to	150	73	73	120	N	R to			
		73	•					212			
	93%	N	140	C to	73	C to	N				·
			,	73		73					
	94% - 98%	N	130	C to	N	C to	N	C to	N		
	J470 - 3070	1.4	,00	73	14	73	• •	212	••		
	100%	NI	N I	C to	KI.		NJ.	•		C to	
	100%	N	N	C IO	N	C to	N			Ç 10	

•		•
	,	
_		Plastics at Maximum Operating Temperature (F)

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
				73		73				194	
							٠				
Sulfurous Acid			180	140	140	140	140	R to	140		
H ₂ SO ₃					•			212			
										•	
Tall Oil			C to	180	140	120			120		
			180							٠	
Tannic Acid	10%	N	180	73	140	140	140	R to .	140		
C ₇₆ H ₅₂ O46		•	,		•			212			
	Sat'd				,			R to			
								212			
•				•							
Tanning Liquors		160	180	73	140	120	140		120		
	•		-								
Tar			N		N						
•											
Tartaric Acid		160	180	140	140	140	140	R to	140		
HOOC(CHOH)₂COO)H	·							248		
	Sat'd							R to	R to	R to	
								248	176	194	
					•						
Terpineol					C to						
C ₁₀ H ₁₇ OH		٠			140						
Tetrachloroethane				C to	C to	C to			C to		
CHCl₂CHCl₂				73	140	120		•	120		
	•										
Tetrachloroethylene		N	N	C to							
Cl ₂ C:CCl ₂				73			٠				
Tetraethyl Lead			73	73	73					68	
Pb(C₂H₅)₄											٠
, – -, ·										•	
Tetrahydrofuran		N	N	C to	N	C to	C to	C to	N		
C₄H ₈ O				73		73	73	68			

Plastics a	at Maximum	Operating	Temperature	(F)

		. Р	lastics at	Maximı	ım Opera	ting Ten	nperature	<u>(F)</u>			
Chemicals				٠							
and Formula	Concentration	ABS	CPVC	PP	PVC .	PE	РВ	PVDF	PEX	PA 11	PK
Tetralin	, 		N	N	N	N			N		
C ₁₀ H ₁₂	•										
		•									
Tetra Sodium			180		140					·	
Pyrophosphate		•		•							
N94Pzo ₇ o10H ₂ O											
Thionyl Chloride			N	N.	N	N	140	N	N		
SOCl₂	,			•		• •			**		
·											
Thread Cutting Oils	s		73	73	73						
					•						
Tin (II) Chloride								R to			
			•					212			
Tin (IV) Chloride								R to			
								212			*
			•								
Titanium Tetrachio	ride			140	C to	120			120		
TiCl ₄					73						
Toluene (Toluol)		N	N	C to	N	C to	N		C to	R to	R to 73
Ch ₃ C ₆ H ₅		IN	IN	73	IN	120	IN		120	140	K 10 /3
0/13061 15				70		120			120	140	•
Tomato Juice		,	180	212	140	140			140		
•				*							
Transformer Oil			180	73	140	C`to			C to		
						120			120		
Transformer Oil			180		140	R to			R to		
DTE/30 Tributyl Citrate				C to	73	120 C to			120 C to		
THOUGH OILIALE				73	13	120			120		
Tributyl Phosphate			N	C to	N	73			73	R to	
(C ₄ H ₉)PO ₄				140						194	
						•					

Plastics at Maximum	Operating Temperatur	e (F)

		p	lastics at	Maximu	ım Onera	ting Tem	nerature	(F)				•
Chemicals		······	idollob de	1.1071	орога		portura					
and												
Formula C	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK ·	
Trichloroacetic Acid	50%			140	140	140		R to	140			
Ccl₃COOH								104				
	10%					140			140			
Frichlorobenzene								R to				•
7710711070001120110			,					140				
Frichloroethane											R to 122	
richloroethylene	 ·	N	N	N	N	C to	N	R to	C to	C to	R to176	
CHCI:CCI ₂						120		176	68	68		
riethanolamine		. C to	73	140	73	73	73	C to	73			
HOCH₂CH₂)₃N		73	75	140	, 0	75	73	104	73			
riethylamine				N .	140	73			73			
C ₂ H ₅) ₃ N												
Tui ann a tha chann ann ann				110	70	0.45			0.45			
rimethylpropane CH₂OH)₃C₃H₅				140	73	C to 120			. C to 120			
01 1201 1/3031 15					•	120			120			
risodium Phosphate	·	73	180	140	140	140	140		140			
laPO₄o12H₂O												
urpentine		N	N	N	140	C to	C to		C to	R to		
						120	73		120	. 140		
Irea			180	180	140	140	140		140			
O(NH ₂) ₂	10%							R to			,	
								212				
	Sat'd							R to	 .	C to		
·				•				176	•	140		
Irine		160	180	180	140	140	140		140			
-	٠	-		- 		· • •						
'aseline			N	140	N ·	120			120			
Petroleum Jelly)												
				,		•						

Plastics	at Maximum	Operating	Temperature	(F)

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ .	PVDF	PEX	PA 11	PK
Vegetable Oil			C to	140	140	R to 140	, 	R to 248	R to		
Vinegar		73	150	140	140	140	140	 .	140	194	
Vinyl Acetate CH₃COOCH:CH₂			N	73	N	140		C to 68	140		
Water, Acid Mine H₂O		160	180	140	140	140	180		140		194
Water, Deionized		160	180	140	140	140	180		140	194	176
Water, Distilled H₂O		160	180	212	140	140	180	R to 248	140	194	
Water, Potable H₂Ô		160	180	212	140	140	180	R to 248	140	194	
Water, Salt H₂O		160	180	212	140	. 140	180		140	194	
Water, Sea		160	180	212	140	140	180	R to 248	140	194	R to 176
Water, Soft H₂O		160	180	212	140	140	180		140	194	
Water, Waste H₂O		73	180	212	140	140	180		140	194	
Whiskey			180	140	140	140	140	R to 212	140	244	

191 (1) St. (1)

Plastics at Maximum Operating Temperature (F)	

Chemicals and								-					
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK		
White Liquor	 ,	73	180		140		·						
Wine		73	180	140	140	140	140	R to	140				
·				٠				248					
Wines and Spirits								R to					
								212					
Xylene (Xylol)	· ·	N	N	N	N	N	N	C to	N	C to			
C ₆ H ₄ (CH ₃) ₂								140		194			
Zinc Acetate			180										
Zn(C ₂ H ₃ O ₂) ₂ o2H ₂ O)	•		٠					•			,	
Zinc Carbonate			180	140		140		R to	140				
ZnCO ₃								212					
Zinc Chloride		120	180	180	140	140			140				
ZnCl ₂	500									C to 73			
	50%			_				_					
	Sat'd							R to 212					
								212					,
Zinc Nitrate	***	160	180	180	140	140	140		140				
Zn(NO ₃) ₂ o6H ₂ O	Sat'd						[']	R to 212					
													•
Zinc Oxide								R to			•••		
								212				•	
Zinc Stearate								R to					
								122					
Zinc Sulfate		160	180	212	140	140	140		140				
ZnSO₄o7H₂Ò	Sat	.'d							R to				

Plastics at Maximum Operating Temperature (F)

Chemicals and Formula

Concentration

ABS

CPVC

F

PVC

PE

PB

PVDF PEX

PA 11

PK ...

212

Chemical Resistance Data

NOVEON
The Specialty Chemicals immovertor

Corzan™ Industrial Systems

One of the key advantages of Corzan® CPVC is its excellent resistance to a broad range of corrosive environments. By replacing traditional materials with Corzan® CPVC, engineers can extend equipment service life and reduce maintenance, while minimizing process life-cycle costs. This technical report is intended to provide engineers and end-users with guidance as to the suitability of Corzan® industrial piping systems in corrosive applications. In general, Corzan® CPVC is inert to most mineral acids, bases, salts, and aliphatic hydrocarbons, and compares favorably to other non-metals in these chemical environments. Specific use conditions must also be considered since these will determine the chemical resistance of any thermoplastic piping system. Variables that can affect chemical resistance include chemical concentration, temperature, pressure, external stress, and final product quality. Since the number of possible use conditions is so large, the final decision regarding material suitability often must be based on in-service testing. The information contained in this report was developed to include conditions that are most often encountered in industry. CPVC samples were immersed in the particular reagent for at least 90 days at 73°F (23°C) and 180°F (82°C). Changes in weight and tensile strength for each sample were reviewed in conjunction with field experience and information gathered from various sources to develop recommendations shown. Note that these recommendations are based on specific use conditions and may not apply to all situations. For this reason, the final decision regarding material suitability must rest with the end-user. The notes following the chemical resistance chart list specific areas where caution must be used when considering Corzan® CPVC. Additional chemical resistance data will become available as testing of Corzan® CPVC continues. Consult with your product supplier or Noveon for the latest Corzan® CPVC chemical resistance information.

N.B. Information presented within this report is based on test data and field experience of CPVC manufactured by Noveon and is not intended to reflect the properties found with other suppliers of CPVC materials. To determine if your supplier is using Corzan CPVC, call the Corzan Marketing Department at 888-234-2436.

Chemical Compatibility Case Study

An excellent example of an industrial system's performance in a demanding process application is an installation at Kodak's state-of-the-art lithographic plate manufacturing facility in Colorado. At this facility Kodak manufactures more than 8,000 varieties of lithographic offset printing plates in dimensions up to ten feet long.

To manufacture the plates, large coils of aluminum are unrolled, and one side of the aluminum sheet is chemically treated to provide a grained surface, which is then coated with a light-sensitive photopolymer. After this coating step, the aluminum is cut to the appropriate dimensions and packaged.

Prior to the construction of the plate manufacturing facility in 1990, Jim Loomis, Senior Plate Manufacturing Engineer, was faced with many important design decisions. Not only would the piping material have to meet Kodak's high quality standards, but it would have to safely handle the aggressive chemicals used in the plate etching process at temperatures up to 180°F (82°C).

Some of the chemicals used in the process are:

- · Caustic Etching Solution
- 30% Nitric Acid
- 50% Sodium Hydroxide

In addition, Jim wanted to specify the system in a single material for design efficiency and quality assurance. The system also had to be available in iron pipe sizes from 1" (25mm) up to 12" (300mm), including a wide variety of piping, fittings and valves.

After a comprehensive materials study, one material, CPVC, was specified for the entire system. Resistance to a variety of harsh chemicals at high temperatures, as well as mechanical strength up to 180°F (82°C) were all key elements in specification decision. Jim was also extremely pleased with the economically-priced process piping and components available from a team of quality manufacturers.

If your next project includes corrosive chemicals, high temperatures, or a wide range of service conditions, think of Corzan Industrial Systems first.

	۰
	3
3	ď
Q.)
×	9
DΩ	
=	3
c	TO THE
н	
Θ.	
Ŀ	1
5	ú
1	3
В.	3
×	2
C)
Designation	֝֝֝֝֝֝֝֓֜֝֝֓֓֓֓֝֟֝֓֓֓֓֟֝֓֓֓֓֓֓֓֡֝֟֓֓֓֓֓֡֓֡֓֡֓֡֓֡֓
٠.	ALLES OF
	4
į.	r,
ю	1
	3
в.	а
С	2
к	I- Mesistanica
и	ö
ж	9
	4
	z
	Ш
	X
н	-
в	=
	=
z	2
е	=
С	
٠	4
	ľ
	ч
1 11 11	1
٠.	ĸ
ı.	н
	ò
٠.	
	ï
1	_
ŀ	

c temp.	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(2) (2) (3) (3) (4) (4) (4) (5) (5) (6) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	0. zgrz 212 8 z 88 2 2 8	00 00 00 00 00 00 00 00 00 00 00 00 00	8 00 00 18 18 18 18 18 18 18 18 18 18 18 18 18
Temper 73°E, Naz (23°G)					
Topid Salati Salati Salati Tari	codum Nitrate Socialm Nitrate Socialm Nitrate Socialm Perchlorate Socialm Perchlorate Socialm Perchlorate Socialm Silicite Socialm Silicite Socialm Silicite Socialm The Silicite Socialm Socialm Socialm Silicite Socialm So	uni Acid 85% uni Acid 80% Acid 80% Dic Acid 80% and Acid Senes	Spounding/right of the first of	People of Control of C	Olygonal Control of the Control of t
emperature 'f Max Temp. 'C) ('F) Reag	manus (1985) Mary Mary Mary Mary Mary Mary Mary Mary	00224 0024 0024 00224 00224 00224 00224 00224 00224 00224 00224 00224 00224 00	200 (1986) (1986	2000 2000 2000 2000 2000 2000 2000 200	1200 1200 1000 1000 1000 1000 1000 1000
Temp 73°F 1	CONTROL OF THE PROPERTY OF THE				
agent	Potassum Flüride Potassum Hüröride Potassum Hüröride Potassum Notate Potassum Notate Potassum Malte Potassum Sultee Potassum Sulte	white a white a make a white a white a white a microre old a white Gloride by the Cyanide by the Cyanide by the Sulface by the Sulface and the Sulface a white	Alban Acta to Colon Benderal Bulling Bul	ddim chiario ddim Chaine gainn Chaine chimickano chimickano ddim ferfol ad ddim ferfol ad	digm Hychboni digm Hychboni digm Holder olium Neispings LISE
mperature F. Max. Temp.	0 0 2 2 2 2 2 2 2 2 2 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 3 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 200 200 200 200 200 200 200 200 200	17.000 17.000 17.000 18
1 E E	than 0.06 and 0.06 an		On the second se	manae e constante	omates (1) of the state of the
Resourt	Methanol, up to 109 Methanol, up to 109 Methy Collogic Methy Methocyle Methy Collogic More	Oils; catalory Collection Collect	Peanin Old Ferning State of the College of the Coll	Porassum Bictin Potassum Bisul Potassum Bona Potassum Pora Potassum Chiq Potassum Chiq Potassum Chiq Potassum Chiq	Forsslum Odn Potessum Ddn Forssum Feno Fire Fills Fire Fills Fire Fills
Temperature 73°F Max Temp.	200 000 000 000 000 000 000 000 000 000	R R L 180 F S S S S S S S S S S S S S S S S S S	F F F F F F F F F F F F F F F F F F F	18 19 19 19 19 19 19 19 19 19 19 19 19 19	Honor Hand
	25% ir thin 25% ir	Auroni The Control of the Control o		morphic (or property)	
	Fent Sulfate Ferrors Choinede Ferrors Choinede Ferrors Sulfate Ferrors Sulfate Ferrors Sulfate Fluoritic Acid 30 Fluorit	Hydrogen, enough Hydrogen Service Hydrogen of Kerones Karl I (1900) Lattic Acid 2598 Leat Cacidle 859 Lead Acedde 850	Control of the contro	Magnessum Hydra Magnessum Sales Magnessum Sales Marganesse Sulfa Marganese Sul	Merundis Nikata Merundas Ada Salifon Ada S
Temperature 3°F Max Temp.	200 200 200 200 200 200 200 200 200 200	00000000000000000000000000000000000000	N	N S S S S S S S S S S S S S S S S S S S	N 200 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N
	atok (cork.)	in the state of th	County of the Co	A CONTRACTOR OF THE PROPERTY O	
20.00	Respent Obloobergane Obloopergane Obloopergane Oboomin Mirate Ciric Add Ciric Connete Ciric Co	Collegeace (All parts) (Collegeace (All parts) (Colleg	Lightness of the control of the cont	furding where the second second second second second	Ethylene Odd Femical Mana Femical Mana Femical Mana Femical Mana Femical Mana Mana Mana Mana Mana Mana Mana Mana Mana Mana Mana Mana Mana
Temperature 73°F Max Temp.	13-q, (19) 13-	100 100 100 100 100 100 100 100 100 100	2000 2000 2000 2000 2000 2000 2000 200	000 000 000 000 000 000 000 000 000 00	The state of the s
	Bergent Bergert Bergert Bergert Bergert Back Lindon Berger Carbonie Berger Chronice Berger Chronice Berger Chronice Berger Chronice Berger Chronice Berger Carbonie Berger Carbonie Berger Chronice Berger Carbonie Berger Car		clicium yeddyn channol y c	principlication of the control of th	oodige to the second se
<u></u>	THE PART OF THE PA			10,0,0,0 5,5,5,5,5	COUNTY CHIQUIES
Temperature 73°F Max. Temp.	E N N N N N N N N N N N N N N N N N N N	R R R R R R R R R R R R R R R R R R R	in Hydronics 200 ket (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1000 1000 1000 1000 1000 1000 1000 100	A CONTRACTOR
	p to 10% leads that I shall lead to the I shall lead to th	Ammonium Keretti Ammonium Britanies Ammonium Garbonies Ammonium Carloidie Ammonium Carloidie Ammonium Carloidie Ammonium (Carloidies) Ammonium (Carloidies) Ammonium (Carloidies) Ammonium (Carloidies)	dioxide dioxide diffice infide dioyana	Tirchlonde state of the state o	Suite E.
	Acetaldehyde Aceta Acid Gad Acete Acid Gad Acete Acid Gad Acete Anhydide Acetor, up to 5 Acetor, up to 6 Aceto	Ammonium Amm	Aminomial Commence of the Comm	Available of the control of the cont	Banum Beer Sugar

Noted Caution Areas for CPVC

CPVC is not recommended for use with most polar-organic materials including various solvents i.e., chlorinated or aromatic hydrocarbons, esters, or ketones.

Resistance of CPVC to certain other fluid mixtures such as fuel oils with moderate aromatic content cannot be determined on basis of immersion testing alone. Actual use data must be obtained:

There are a number of similarities in chemical resistance between PVC and CPVC materials. However, one must exercise caution when comparing the chemical resistance properties of CPVC to those of PVC, which are not always the same.

CPVC test samples exposed while under stress to surfactants, certain oils, or grease have shown signs of environmental stress cracking. Environmental stress cracking is a situation in which the manufactured pipe or fittings are weakened by contact with certain chemicals and cracks are propagated by external stresses. External stresses include not only the known pressure stress on a system but also stresses from sources such as expansion and installation. When CPVC is intended for use in handling such chemicals, special consideration should be taken during design and installation to avoid unusual stresses in the piping system, or advance testing of the chemical in simulated use conditions is strongly suggested.

Certain organic solvents which are soluble with water, such as alcohols, may safely be handled below a certain concentration. Many of these limiting concentrations are noted in Table 1. Solvents which are insoluble in water, such as aromatics, will be absorbed by the piping over-time, even when they are present at very low levels in the water. This will lead to a decreased service life expectancy for the system.

The full hydrostatic pressure rating of the pipe may not apply to the entire range of temperature and concentration designated as "recommended".

CPVC is not recommended for fuming acid service.

Contact your piping supplier or Noveon for consultation and/or the latest chemical resistance information.

Chemical Resistance of Corzan® CPVC to Sulfuric Acid

Chemical Resistance of Corzan® CPVC to Nitric Acid

Chemical Resistance of Corzan® CPVC to Hydrochloric Acid

Chemical Resistance of Corzan® CPVC to Phosphoric Acid

www.corzancpvc.com

Tursion for Charles Mark the natural thront (ATT Preceive of File) Classical distribution (247 USA (19) 641 1999) ARROMANICIAN Fig. (N. 44) (19)

Novech Europe (AVS) Au Chaussee de Walte, 1345 1460 Erussels

Belgium

32-2 678 13-71 Fix 32-2-678-79 30

Nove in Asia Pati fic 11mited Units 1107-1110 Stati On Centre 6.8 Harbour Road Wandhai, **Hong Kong** 850-2508-1001 Fax: 852-2512-0141

The information contained here his believed to be reflacile, that are present yield a guinantees or warrantees of any kind are made less to its lacromady, suitability for particular and instance of the results to be called the information of the list based on laboratory work with small scale equation in based dues not recessary indicate end product performance or reproducibility. Formulations presented may not have been tested for stability and should be used only

as a suggested sitting point Decausit of the variations in neithods, conditions and equipment used commercially in processing these materials, no warranties or guarantees are made as to the suitability of the products for the applications discosed. Fluiscale testing and end product performance are the responsibility of the user. No vects included he liable for and the discover assumes a first kand liability for any use or handing of any material beyond.

November of direct control. The SFL FR MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHAN-TABLITY AND FIT MESS FOR A PARTICUL AR PURPOSE. Nothing contained note in is to be considered as permission, recommendation, nor as an inducement to machine any patented invention without permission of the patent owner.

Georgia Gulf

CHEMICAL RESISTANCE

Industrial Plumbing Applications

FEATURES AND BENEFITS

- High strength and ductility
- Heat resistant
 - Functional use in high temperature environments
- Chemical resistant
- Unaffected by most corrosive environments
- Flame retardancy
- Inherently self-extinguishing
- Low smoke characteristics
- Outstanding electrical insulation characteristics
- Readily processable
- Good thermal stability and flow
- Resistant to gate blush and weld lines
- Finishing capabilities
- Available in standard and custom colors
- Code approved
- Listed by National Sanitation Foundation
- Underwriters Labortories 94-V-O and 94-5V ratings

Georgia Gulf

Technical Center

P.O. BOX 629 • 56505 EVERGREEN ROAD PLAQUEMINE, LOUISIANA 70765-0629

PHONE: (504) 685-1200

TABLE 2

ACTUAL CHEMICAL RESISTANCE TESTING, EXPERIENCE AND REFERENCE INFORMATION KEY: R - Resistant, NB - Not Recommended

<u> </u>		• •	•		•
REAGENT	TEMPERATI				
4	73° 18	0"	TEMPERATUR 73° 180		TEMPERATURE
		•			78" 1801
Δ		Barium Chlorido			
-		Barium Hydroxido	H H	THE PROPERTY OF THE PROPERTY O	on R R
Acetaldehyde	NR NF	Barium Nitrate	R R	Chrome Alum	on RR RR
Acetic Acid, Pure	NR NF		RR		RR
Acatio Λcid, 10%	ВВ		R R R	Chromic Acid, 50%	NR NR
Acetic Acid, 20%	- NR NI	Boor	D 0	Cittle Marie	R B
Acetic Acid, 80%	NR NR	Beet Sugar Liquors	12 13	Coconut Oil	NR NR
Acetic Acid, Glacial	NR NR	Benzaldehyde 10%	NE NE	Coppor Carbonate	13 13
Acetic Anhydride	NA NA	Bonzaldehyde, Abov	/0 10% NR NR	Copper Chloride	R R ·
Acetone Acetyl Nitrilo	NR NE	- Denzene	NR NR	Copper Cyanide Copper Fluoride	R R
Acrylic Acid Ethyl Ester	NR NR	Benzoic Acid	R NR	Copper Nitrate	H n
Adipic Acid	NR NR	Bismuth Carbonate	RR	Copper Sulfate	RR
Alcohol, Bulyl	NR NR	Black Liquor	R R	Corn Syrup	R R
Alcohol, Ethyl	NA NA	- Bloach (12% Cf) Borax	R R	Cottonseed Oil	R R
Alcohol, Methyl, Butyl	NR NR NR NR	Boric Acid	R R	Cresol	NR NR NR NR
Alcohol, Propyl, Ethyl	NR NR NR NR	Bromic Acid	H H	Cresylic Acid, 50%	NA NA R R
Allyl Alcohol, 96%	NR NR		RR	Crotonaladehyde	NR NR
Allyl Chloride	NR NR	Bromobenzene	NR NR	Crude Oil	R NR
Alum	RR	Bromine Water	NR NR NR NR	Cupric Fluoride	RR
Aluminum Alum	RR	_Butadione	NR NR	Cupric Sulfate	R R
Aluminum Chloride	RR	Butanol, Primary	NR NR	Cuprous Chloride	RR
Aluminum Fluoride	A R	 Butanol, Secondary 	NR NR	Cyclohexanol	NR NR
Aluminum Hydroxide	RR	Butyl Acotate	NR NR	Cyclohexanona	NR NR
Aluminum Oxychlorido Aluminum Nitrate	'R R	Butyl Alcohol	NR NR		
Aluminum, Sulfate	R R	Butyl Mercaptan	NR NR	D	
Ammonia (Liquid)	FI FI	Butyl Phonol Butyne Diol	RNR	Detergents	_
Ammonium Acetate	NR NR	Butyric Acid	NI NI	Dextrin	RR
Ammonium Alum	R R R R	Daty 110 ACICI	NFI NFI	Dextroso	RR
Ammonium Bifluoride	n n R"R∷	C		Dizao Salts	R R
Ammonium Bisulfate	RR			Dimethyl Hydrazine	H H NR NR
Ammonium Carbonate	- R R	Cadmium Cyanido		Dimethylamine	NR NR
Ammonium Chloride	RR	Calcium Bisulfide	R R	Dioctylphthalate	NR NR
Ammonium Dichromate	R R	Calcium Bisulfito	HH	Disodium Phosphate	R A
Ammonium Fluorido, 25%		Calcium Carbonate	B B	Distilled Water	RR
Ammonium Hydroxide Ammonium Metaphosphati	NR NR	Calcium Chlorate	· RR		
Ammonium Nitrate		Calcium Chloride	PAR RR	E	· · · · · · · · · · · · · · · · · · ·
Ammonium Persulfate	8 8	Calcium Hydroxide	RR	Esters	
Ammonium Phosphate	R R R R	Calcium Hypochlorito	R R	Ethors	NR NR
Ammonium Sulfate		Calcium Nitrate	RR	Ethyl Acotate	NR NR
Ammonium Sulfide	R R R R	Calcium Oxide	RR	Ethyl Acrylate	NI3 NI3
Ammonium Thiocyanate	RR	Calcium Sulfate Carbon Bisulfide	H H	Ethyl Alcohol	NR NR
Amyl Acetato	NR NR	Carbon Dioxide	NR NR	Ethyl Chloride	NR NR NR NR
Amyl Alcohol	NR NR	Carbon Monoxido	ម ម	Elliyl Ether	NR NR
Amyl Chloride Aniline	NR NR	Carbon Tetrachloride	RR	Ethyleno Bromide	NR NR
	NR NR	Carbonic Acid	NR NR	Ethylone Chloropydrin	NI3 NI3
Aniline Chlorohydrate Aniline Hydrocholorate	NR NR	Caustic Potash	R R R R	Ethylone Dichloride	NE NE
Anthraquinone	NR NR	Celosolve	NE NE	Ethylene Glycol (100%)	NR NR
Anthraquinonesulfonic Acid	און א	Caustic Soda	RR	Ethylene Glycol (50%)	RR
Antimony Trichloride	R R R R	Chloracotic Acid	RNR	Ethylone Oxido	NR NR
Aqua Regia	NR NH	Chloral Hydrate	RR	E	
Aromatic Hydrocarbons	NR NR	Chlorid Acid, 20%	RR		
Arsenic Acid, 80%	RR	Chloride (Water) Chlorine Gas (Dry)	R B	Fatty Acids	F
Arsenic Trioxide (f'owder)	BB	Chlorine Gas (Mot)	NR NR	Ferric Acetate	A A
Arylsufonic Acid	R NR	Chlorine (Water)	RN RN H H	Ferric Chloride	R NR R R
		Chlorobenzone	R R NR NR	Ferric Hydroxide	R R R R
В		Chloroform	NR NR	Ferric Nitrate	त्र प्र
Barium Carbonate		Chloropicein	NR NR	Forric Sulfate	FI FI
Oarbonate	H H	Chlorosulfonic Acid	B NR	Ferrous Chloride	RR
			•	Ferrous Nitrate	RR

REAGENT	TEMPERATURI 73° 180°	REAGENT	TEMPERATUR	E HEAGENT	
	73 180		TEMPERATUR 73" 180°	F HEAGENT	TEMPERATURE 75" 180"
Ferrous Sulfate	R R				
Fish Solubles	RR	Load Sulfate -	I₹ P;	Oxygen	
Fluorino Gas	NR NR	Linoleic Acid	R B	Ozone	B B
Fluosilicic Acid, (25%)	FINE	Linoleic Oil	FI NIZ		R R
Formaldehyde	NR NR	Linseed Oil	NF NR	P	
Formic Acid	. R NR	Lithium Bromide	. RR		
Fructoșe	RR	Lubricating Oil, ASTM	No.1 R R	Palmitic Acid, 10%	0 6
Fruit Juices And Pulp	ं भंभे	Lubricating Oil, ASTM Lubricating Oil, ASTM	No. 2 R R	Palmitic Acid, 70%	R R NR NR
<u>F</u> urfura)	NR NR	Lux Liquid	No. 3 R NR	Paraffin	RR
Froons	NR NR	Low Cichard	· R R	Peracetic Acid, 40%	NR NR
Carene 500	NR NR	M		 Perchloric Acid, 10% 	R R
		· • • • • • • • • • • • • • • • • • • •	•	Perchloric Acid, 15%	NIR NIR
Q		Machine Oil	D 5	Perchloric Acid, 70%	NR NR
Coulting A in a	•	Magnosium Carbonate	R R R A	Petroleum Liquifier	R R
Gallic Acid	RR	Magnesium Chloride	8 A B B	Phenylhydrazino	NR NR
Gasoline Glucose	NB NB	Magnesium Citrato	RR	Phonylhydrazine	
	FR FR	Magnesium Hydroxide	RR	Hydrochloride	NR NR
Gas (Coke Oven) Glycerine	NB NR	Magnesium Nitrato	· Ř Ř	Phosgeno, Liquid	NR NR
Glycolic Acid	RR	Magnesium Sullate	RR	Phosphoric Acid, 10%	13 13
Grapesugar	B B	Maleic Acid	हि हि	Phosphoric Acid, 25%	[} [4
Gulfpride No. 10 Oil	R R	Malic Acid	RR	Phosphoric Acid, 75%	FIR
Cramphide No. 10 Oil	H R	Manganese Chloride	RR	Phosphoric Acid, 85% Photographic Solutions:	RR
Ш		Mercuric Chloride	R R	Dk No. 3	Fs. 4-
البا		Mercuric Cyanido	R R	Deklal Developer	B B
Heptane		Mercuric Sulfate	RR	Kodak Fixer	R R R R
Hexane	IS NIS	Mercurous Nitrato	RR	Kodák Short Stop	• •
Hexanol, Tertiary	R NR NR NR	Mercury Methylamine	RR	Piorio Acid	R R NR NH
Hydrobromic Acid, 20%	Fit Fit	Methyl Alcohol	NR NA	Potash (Sat. Aq.)	R R
Hydrochloric Acid, 10%	B B	Methyl Chloride	NR NR	Polassium Alum	11 12
Hydrochloric Acid Conc	(36%)R NR	Methy Fthyl Ketone	NR NR NR NR	Potassium Amyl Xanthate	NR NR
Hydrolluoric Acid, 48%	NR NR	Methyl Iso-Bulyl Ketone	NR NR NR NR	Potassium Bicarbonate	RR
Hydrofluorsilic Acid	R NE	Milk	RR	Potassium Bichromate	13 13
Hydrogen Peroxide, 30%	6 R R	Mineral Oils	R R	Potassium, Bisulfate	R A
Hydrogen Phosphide	RR	Mixed Acids	R R	Potassium Borato	R A
Hydrogen Sulfide, Aquec	ous R R	Molasses	R R	Potassium Bromate	RR
Hydroquinone	13 13	Muriatic Acid	RNR	Potassium Bromido Potassium Carbonate	RR
Hydroxylamino Sulfate	R R		,,,,	Potassium Chromato	R R
Hypochlorous Acid	RR	N		Potassium Chlorate	13 [3
Hydrazine (Anhydrous), s	97%NR NR			Potassium Chlorido	R R
		Naptha	R NR	Potassium Cyanide	R R R R
		Napthaleno	NR NR	Potassium Dichromate	
lodine		Nickel Chloride	R R	Potassium Ethyl Xanthate	R R NR NR
Isopropanol	NR NR	Nickel Nitrate	R R	1'0tassium Ferricvanide	RR
(CONTODITION	NIR NIR	Nickel Sulphate	RR	Potassium Ferrocyanide	RR
772		Nicotine	RR	Polassium Fluoride	ŔŔ
K		Nicotine Acid	HH	Potassiujm Hydroxido	Ř Ř
Keroseno	NIES AVE.	Nitric Acid, 10% Nitric Acid, 25%	R B	Potassium Nitrate	RR
Ketones	NE NE	Nitric Acid, 25-70%	R R	Potassium Porborate	RR
Kraft Liquors	NR NR	Nitrobenzene	RNR	Potassium Perchlorate	R R
	NR NR	Nitroglycerine	NR NR	Polassium Permanganato	RR
		Nitrous Oxide	NR NR	Polassium Persulfato	R R
		Nitroglycol	R R NH NB	Potassium Sulfate	RR
Lactic Acid, 80%	D AID		NH NH	Propyl Alcohol Propylene Dichloride	NR NR
Lactic Acid, 25%	R NR R R	0		Plating Solutions:	NH NR
Lauric Acid	13 B			Brass	15 15
Lauryl Chloride	NR NR	Oils And Fats	NR NR	Cadmium	11 11 12 11
Lead Acetate	13 13	Oils, Sour Crude	NR NR	Copper	R R R H
Lead Chloride	RR	Oleic Acid	I B	Gold	
Lead Nitrate	ŘŘ	Oleum	NR NI	Indium	R. R R R
		Oxalic Acid	B NR	Lead	R R
			• •		11

REAGEN

CHEMICAL RESISTANCE

ProTherm CPVC compounds have excellent chemical resistance properties when exposed to a wide range of chemicals and environments. Generally, ProTherm CPVC compounds are resistant to aliphatic hydrocarbons, bases, mineral acids, salts and oxidants. However, end use conditions must be considered before determining the acceptability of using ProTherm CPVC compounds.

Table 1 contains actual chemical immersion test data at 73°F (23°C) and 180°F (82°C). Tensile strength and weight change were measured after 90 day immersion.

recommendations based on actual chemical resistance testing, experience and reference information. It is recommended that in-service testing be conducted prior to determining the acceptability of using ProTherm CPVC compounds.

TABLE 1

CHEMICAL RESISTANCE TESTING - 90 DAY IMMERSION

Christian			= ::	
CHEMICAL	CONCENTRATION (WEIGHT %)	IMMERSION TEMPERATURE	WEIGHT CHANGE (%)	TENSILE
Sodium Hydroxide	50%	73°F/23°C	0.0	
Sodium Hydroxide	50%	180°F/82°C	-0.1	-1.3
Potassium Hydroxide	45%	73°F/23°C		2.7
Potossium Hydroxide	45%	180"F/82°C	0.1	-2.8
Sulfuric Acid	80%	73"F/23"C	0.0	3.0
Sulfuric Acid	80%	180"F/82"C	0.0	-1.2
Sulfuric Acid	93.5%		-0.4	-4.3
Nitric Acid	25%	73°F/23°C	0.0	-2.6
Nitric Acid	25%	73°F/23°C	0.1	-1.7
Nitric Acid	50%	180"F/82"C	0.5	1.2
Nitric Acid		73°F/23°C	0.1	-1.6
Hydrochloric Acid	50%	180°F/82°C	0.6	2.2
Hydrochloric Acid	36%	73°F/23°C	0.3	-3.2
Deionized Water	36%	180°F/82°C	1.3	6.1.
Delonized Water	100%	73°F/23°C	0.2	0.1
	100%	180°F/82°C	0.6	3.3
Sodium Borate	Saturated	73°F/23°C	0.2	0.0
Sodium Carbonate	Saturated	73°F/23°C	0.1	-1.4
Sodium Carbonate	Saturated	180°F/82°C	0.4	2.2
Calcium Chloride	43%	73"F/23"C	0.1	
Calcium Chloride	43%	180°F/82°C	0.2	-1.7
Bleach, Household		73"F/23"C	0.2.	0.8
Polassium Persulfate	2%	73°F/23°C	0.2	-0.6
fydrogen Peroxide	30%	73"F/23"C		-1.3
loptano	100%	73"F/23"C		-0.6
N <u>eth</u> anol	100%	73°F/23°C		-1.3
		ro inco ()	0.6	-6.5

Georgia Gulf

CHEMICAL STRESS RESISTANCE

Residential Plumbing Applications

To determine the chemical stress resistance of ProTherm compounds to a variety of substances that may be encountered during residential plumbing applications, injection molded test bars were prepared with a knit line using ProTherm products. The test bars were bent to induce high stress and placed into an apparatus that held them in place.

The test materials were then placed on the bars in the knit line and monitored for 14 days. Any cracking of the test bars was considered a failure.

Dioctyl Phthalate (DOP) was used as a control as it is known to generate chemical stress cracking in rigid vinyl.

Several thread sealants, solvent cements, primers, and soldering pastes were tested.

MATERIAL	RESULT
Control	pass
Dioctyl Phthalate (DOP)	failed at 4 hours
Rector Seal-Thread Sealant	
LA-CO TOT - Pipe Joint Compound	pass
LA-CO - Soldering Paste	failed at 24 hours
Oatey-No. 5 Solder Paste	pass
Bridgit-Soldering Paste	pass
EZ Weld-One step CPVC Solvent Cement	pass
Loctite-Pipe Sealant	pass
LA-CO Slic-tite - Thread Sealant	pass
CPVC-PVC Purple Primer	failed at 4 days
Harvey's Soil Seal	failed at 24 hours
Tiarry o don dour	pass

Testing will be ongoing.

****TECHNICAL BULLETIN ******TECHNICAL BULLETIN******

TO:

SALES REPRESENTATIVES

FROM:

MICHAEL DENNEHY

SUBJECT: DISADVANTAGES OF SPEARS® LABWASTE™ CPVC CORROSIVE

DRAINAGE SYSTEM

DATE:

9/30/02

Recently, Spears Manufacturing Company has introduced a line of CPVC Schedule 40 pipe and drainage fittings trademarked as their LabWaste™ System, which is intended to compete against polypropylene, the standard of the industry. The product literature makes many claims and broad statements as to the benefits of the product. However, the reality of the product is vastly different than the overstated and misleading marketing claims. In many respects, the product falls far short of the requirements for an acid waste system designed to withstand the rigors of laboratory use and the test of time.

A close look at the literature from the manufacturer reveals many of the inherent deficiencies and contradictions. The following is a summary of some of the key points:

- (1) CPVC has substantially lower chemical resistance than polypropylene with respect to many of the most common acids and bases used in research institutions. This fact can be documented despite claims in the "front" of the Spears Literature to the contrary. Some specific examples include Nitric Acid, Hydrofluoric Acid, Acetic Acid (vinegar) and Ammonium Hydroxide, each of which will adversely affect CPVC at moderate to high concentrations whereas PP is highly resistant to each of these compounds. These are not extreme "fluff" examples being pointed out for affect. They are among the top ten research chemicals in use in typical research facilities.
- (2) In some chemicals for which the chemical resistance charts shows resistance, CPVC can fail while in service due to "chemical stress" cracking, if the material is under stress. An example pointed out right in the caution statements of their literature has to do with stress cracking caused by "surfactants". Well guess what another synonym for surfactants is.....soaps! Imagine a research lab facility where soaps "surfactants" are restricted from use, A common cause of stresses is thermal expansion and contraction due to exothermic reactions from the mixing of acids, bases, water and surfactants! Stresses are also induced from a number of other factors including installation stresses due to bending, joining, disposal of hot waste, direct burial loads, and many other causes.
- (3) CPVC can not be tested in most applications for at least 24 hours after joining due to cure time of the joints, and up to a week in cold weather applications. Imagine telling that to a contractor in Chicago who is installing a project in the middle of winter. Also, there is no mechanical joining method available for joining this product in tough to reach or tough to get

to areas, nor is it possible to "dry assemble" the system like in an Electrofusion application. Imagine contractors performing tie-ins with major branch lines that have to be moved axially to be inserted into one another. It is as cumbersome as socket fusion, and even trickier in hot, dry weather when the solvent cement is drying quicker than the work can be performed.

- (4) CPVC is not listed by any major plumbing code (e.g. UPC, IPC, etc.) for corrosive waste applications, nor is the specific product listed for such use.
- (5) The literature attempts to confuse manufacturers into thinking that the product is suitable for use in plenums. It has not been tested to ASTM E 84, nor U.L. listed and is not acceptable. CAN 102.2-M88 is not E-84 and will not be acceptable to most building codes for use in plenums as a result.

There are other inadequacies with CPVC (single-manufacturer, support issues, breakage in cold weather temperature shock during rapid temperature changes, etc.), as it pertains to acid waste applications. However, the fact that this product lacks the necessary approvals (Plumbing Code Listings, U.L. 723 Listing), should in and by itself make this product inadequate for use in a typical acid waste application in a return air plenum application

If you have any further questions concerning the use of thermoplastic piping in acid waste, or for acid waste in fire rated areas, contact the Technical Services Department of Orion Fittings, Inc. at (913)-342-1653, or fax us at (800) 777-1653.

November 5, 2002

Mr. Thom Lloyd PVF Marketing 113 Edgewater Branch Drive P.O. Box 57577 Jacksonville, FL 32441

Dear Thom:

Re: CPVC usage in acid waste drainage systems

I am writing this letter in response to your recent questions. First, let me say that all thermoplastic materials have a place in the industrial market; however, some are better suited to specific applications due to chemical concentrations, temperature, pressure, construction codes, etc. This letter is intended to highlight a number of issues an end-user or engineer should consider before using a CPVC acid waste system.

Recently, Spears® Manufacturing Company introduced a line of CPVC Schedule 40 pipe and drainage fittings trademarked as their LabWasteTM CPVC Corrosive Waste Drainage System. This system is intended to compete against our polypropylene ENFIELD® and LABLINETM acid waste systems.

Acid waste piping systems are subject to a variety of chemicals at varying concentrations and temperatures. It is this uncertainty that warrants additional attention during design and has been the dominant factor for the specification of a polypropylene system.

Chemical Resistance of CPVC vs Polypropylene

Laboratories and research facilities are, by nature, places of uncertainty. Constant testing and analysis results in the continuous creation of varied waste chemicals. For this reason the acid waste system should be specified in a manner that will ensure the system is capable of handling the chemicals that are emptied into the system.

In the case of acid waste, CPVC has a lower chemical resistance than polypropylene when exposed to: carboxylic acids including acetic acid and formic acid, ammonium hydroxide, formaldehyde and hydrofluoric acid.

Common immiscible vegetable oils including corn oil, cottonseed oil, and castor oil will cause stress cracking in CPVC acid waste systems.

The main chemical concern for the use of CPVC in acid waste systems involves the disposal of detergents. These include non-ionic detergents, especially ethoxylates and/or propoxylates. These chemicals can cause stress cracking. The risk of stress cracking is greatly increased when there is a possibility of the drains drying out. It is known that non-ionic detergents can react with caustic solutions to produce byproducts such as glycol-ethers. If such a reaction occurred within a drain, a polypropylene system would survive; a CPVC system could prematurely fail.

Mr. Thom Lloyd Page 2 November 5, 2002

Joining Process: CPVC vs Polypropylene

Spears® CPVC pipe and fittings are joined together by solvent cement. This joining process can only be completed one joint at a time. CPVC solvent cement joints in most applications must be allowed to cure for at least 24 hours (even longer in cold temperatures) before pressure-testing the system. If leaks are detected the joint must be hot gas welded or cut out and replaced. This is a lengthy process that may require additional equipment and expertise.

Polypropylene acid waste systems have a number of distinct advantages. Multiple electrofusion joints can be completed simultaneously. The acid waste system can be immediately tested after the fusion cycle. Electrofusion joints can be re-connected to the machine and re-fused if a leak is detected. After an electrofusion joint is tested and verified, it will never leak.

IPEX Inc. LABLINETM mechanical joints can be tightened and re-opened if necessary. Spears[®] LabWasteTM CPVC systems, comprised solely of solvent cement joints, seems limiting by nature.

Standards

Today there is no known standard that covers the design, manufacture, and testing of a CPVC acid waste system. Spears LabWaste CPVC system is not IAPMO listed or third-party certified by CSA or NSF.

IPEX Inc. acid waste system is third-party certified by NSF to ASTM F1412, ASTM D4101, ASTM D635 and CSA B181.3 "Polyolefin laboratory drainage systems". For the entire list of IPEX Inc. acid waste system standards, see IPEX Inc. Enfield® and LABLINETM letters of compliance.

Current industry standards for acid waste systems in the US dictate that all materials contained within return air plenums comply with ASTM E84 and have a flame spread rating less than 25 feet and a smoke development classification of less than 50 feet. Spears LabWaste pipe and fittings have not been tested to these industry-wide regulations.

If you have any further questions concerning the use of thermoplastic piping in acid waste, or for acid waste systems in fire-rated locations, please feel free to contact the Technical Sales department of IPEX Inc. at (800) 463-9572.

Yours truly,

Patrick Fedor Regional Engineer, Industrial, US

cc: Regional Managers

Chemical Resistance Tables

Resistance Rating Codes

R = Recommended

C = Use with Caution.

N = Not Recommended.

--- = No data available

IMPORTANT NOTE: Chemical Resistance data is provide for material compatibility information purposes only and in no way addresses the legal discharge of chemicals into any waste system, some of which may be prohibited by law. Nor does the data address the compatibility of chemical mixtures, issues of hazardous decomposition, or other potentially dangerous circumstances that might be involved. Data is applicable to laboratory drainage systems only and may not be suitable for continuous service or pressure applications.

HEMICAL	RATING	CHEMICAL	RATING	CHEMICAL	RATING
Α		Ammonium Nitrate	R	Bromphenol Blue	R
Α		Ammonium Persulfate	R	Bromthymol Blue	` R
		Ammonium Phosphate		Butadiene	. R
cacia, Gum Arabic	R	Monbasic/Dibasic	· R	Butane	R
cetaldehyde	R	Ammonium Sulfate	R	Butyl Acetate	ĉ
	Ř				č
celamide		Ammonium Sulfide	· R	Butyl Alcohol	
elic Acid Vapor 25%	R	Ammonium Sulfite	R	Butyl Cellosolve	R
cetic Acid 60%	R	Ammonium Thiocyanate	R	n-Butyl Chloride	· —
cetic Acid 85%	R	Amvl Acetate	С	Butylene (C)	
cectic Acid Glacial	R	Amyl Alcohol 1%	R	Butyl Phenol	С
cetic Anhydride	R	Amyl Alcohol >1%	Ĉ	Butyl Phthalate	
elone	R	n-Amyl Chloride	č	Butyl Stearate	
	Ĉ				_
etophenone		Aniline	C	Butynediol	
etyl Chloride	R	Aniline Chlorohydrate	С	Butyric Acid	R
etylene	N	Aniline Hydrochloride	С	С	•
etylnitrile	R	Anthraquinone	R		
etylsalicylic acid, aspirin	R	Anthraquinone	••		
Mic Acid	Ř			Cadium Cyanide	. R
		Sulfonic Acid	R	Calcium Acetate	R
rytonitrile	R	Antimony Trichloride	R		
enine, 6-aminopurine	R	Aqua Regia	R	Calcium Bisulfide	R
enosine Triphosphate	R	Argon		Calcium Bisulfate	. R
pic Acid	R	Arsenic Acid	R	Calcium Carbonate	R
arose	R			Calcium Chlorate	R
	n	Aryl Sulfonic Acid	R	Calcium Chloride	R
arin stain	_	Asorbic Acid	R .		
Mordant Red 11	R	L-Asparagine	R	Calcium Fluoride	R
arin Red S		Asphalt	N	Calcium Hydroxide	R
Mordant Red 3	R .	•	••	Calcium Hypochlorite	R
		. В		Calcium Nitrate	R
arin Yellow R	_			Calcium Oxide	R
Mordant Orange 1	R		_		
l Alcohol	R.	Barium Acetate	R	Calcium Sulfate	R
1 Chloride	N	Barium Carbonate	R	Camphor	-
minum Acetate	. R	Barium Chloride	R	Cane Sugar Liquors	R
minum Ammonium	Ř	Barium Hydroxide	R	Caprylic Acid	•••
		Barium Nitrate	Ř	Carbitol	
minum Chloride	R				R
minum Fluoride	R	Barium Sulfate	R	Carbolic Acid	
minum Hydroxide	R	Barium Sulfide	R	Carbon Dioxide Dry	R
minum Nitrate	R	Beer	R	Carbon Dioxide Wet	R
minum Oxychloride	R	Beer Sugar Liquors	R	Carbon Disulfide	С
	R	Benzaldehyde	R	Carbon Monoxide	R
minum Potassium			č	Carbon Tetrachloride	N N
minum Potassium Sulfate, Alum	R	Benzene			
minum Sulfate	R	Benzene Sulfonic Acid	· R	Carbonic Acid	R
monia Anhydrous	R	Benzoic Acid	R	Castor Oil	С
monia Gas	R	Benzyl Alcohol	R	Caustic Potash	Ŕ
		Bismuth Carbonate	. R	Caustic Soda	R
monia Liquid	R				Č
monia Acetate	R	Biuret	R	Cellosolve	
monium Bicarbonate	R	Black Liquor	R	Cellosolve Acetate	R
monium Biflouride	R	Bleach 5%	R	Chloral Hydrate	R
monium Bisulāde	R R	Bleach 12%	R	Chloramine	R
		Blood	Ř	. Chloric Acid	R R
monium Bromide	R		R R	Chloric Acid 20%	R
monium Carbonate	R	Borax			
monium Chloride	R '	Boric Acid	R	Chlorine, Aqueous	R
monium Citrate	R	Brake Fluid	_	Chlorinated Water 10 PPM	R
monium Dichromate	Ř	Brine	R	Chlorinated Water Sat'd	R
	13	Brilliant Blue G-250	R R	Chloroacetic Acid	R
monium Dihydrogen	_		R	Chloroacetyl Chloride	
Phosphate	R	Brilliant Blue R-250			
nonium Ferric Sulfate	R	Brilliant Cresyl Blue	R	Chlorobenzene	N .
monium Ferrous Sulfate	· R	Brilliant Green	R	Chlorobenzyl Chloride	N
monium Fluoride 10%	Ř.	Bromcresal Green	R	Chloroform	N.
		Bromcresal purple	R R	Chlorophenol Red	R
monium Fluoride 25%	R				
monium Hydroxide		Bromic Acid	R	Chloropicrin	
10% - 28%	R	Bromine Liquid	R	Chlorosulfonic Acid	R
monium Hydroxide		Bromine Vapor	R	Chromic Acid 10%	R
	R	Bromine Water	R	Chromic Acid 30%	Ŕ
100%	R R	Bromotoluene	15	Chromic Acid 40%	R
monimu lodide					

CHEMICAL	RATI	ING	CHEMICAL	RATING	CHEMICAL	RATING
			Ethyl Ether	R	Hydrogen Sulfide Dry	R
Chromic Acid 50%		<u>C</u> .		R	Hydrogen Sulfide Wet	R
Chromium		R	Ethyl Formate Ethylene Glycol	R	Hydrogen Sulfide, aqueous	R ·
Chromium Tetroxide		R	2- Ethylhexanol	R	Hydroquinone, aqueous	R
Citric Acid		R R	Ethyl Mercaptan	Ř	Hydroxylamine Hyrochloride	R
Clayton Yellow		C	Ethyl Oxalate	R	Hydroxylamine Sulfate	R
Coconut Oil Coffee		R .	F		Hypochlorous Acid	R
Congo Red solution		R				ı
Copper Acetate		R		_		
Copper Carbonate		R	Fast Green FCF	R	Indian Cossian	R
Copper Chloride		R	Fatty Acids	R	Indigo Carmine	R
Copper Cyanide		R	Fehlings solution A	R	Inks lodine	R
Copper Fluoride		R '	Fehlings solution B	. R	lodine solution, Lugol's	R
Copper Nitrate		R	Ferric Ammonium Sulfate	R	Iron Phosphate	. —
Copper Sulfate		• R	Ferric Chloride	R	Isobutane	
Corn Oil		C	Ferric Hydroxide	R R	Isobutyl Alcohol	. R
Corn Syrup		R	Ferric Nitrate	·R	Isooctane	Ř
Cottonseed Oil		С .	Ferric Sulfate	. R	Isopropyl Acetate	Ř
m-Cresal Purple		R	Ferrous Chloride	. к R	Isopropyl Alcohol	R
Cresal Red		R	Ferrous Hydroxide	R ·	Isopropyl Chloride	Ň
Creosote		N	Ferrous Nitrate		Isopropyl Ether	. R .
Cresol		N	Ferrous Sulfate	R		R
Cresylic Acid		R	Fish Oil	R	Isophorone	
Croton Aldehyde		Ř	Fluoboric Acid	R ·		J
Crude Oil		R	Fluorine Gas (Dry)	R		
Cumene		Ċ	Fluorine Gas (Wet)	R	Janus Green	R
Cupric Chloride		Ř	Fluosilicic Acid 30%	R	JP-3 Fuel	R
Cupric Fluoride		Ŕ	Fluosilicic Acid 50%	R	JP-4 Fuel	R
Cupric Nitrate		Ŕ	Flormaldehyde Dilute	R	JP-5 Fuel	· R
Cupric Sulfate		R	Flormaldehyde 35%	R	JP-6 Fuel	R
Cuprous Chloride		Ř	Flormaldehyde 37%	R		
Cyclohexane		R R	Flormaldehyde 50%	С		K
Cyclohexanol		R R	Formic Acid	R		
Cyclohexanone	•	Ŕ	Freon	R	Kerosene	· R
Cyclonexamone	. D	**	Freon 12	R	Ketchup	R
	υ		Freon 21		Kraft Liquors	R
			Freon 22	R		L
Decahydronapthalene		R	Freon 113	С		
Detergents		R	Freon 114		1 4 250	· .
Dexrin		R	Fructose	R	Lactic Acid 25%	· R
Dextrose	•	R	Furfural	R	Lactic Acid 80%	R
Diacetone Alcohol		R	G		Lactose	R
Diastase of malt		R			Lard Oil	· С
Dibutoxyethyl Phthalate		N	Gallic Acid	R	Latex	— R
Dibutyl Ether	*	R	Gasoline	R	Lauric Acid	
Dibutyl Phthalate		N	Gasohol	Ŕ	Lauryl Chloride	R R
Dibutyl Sebacate		N	Gelatin	R	Lead Acetate	R R
Dichlorobenzene		R	Glauber's Salt		Lead Chloride	_
Dichloroethylene		N	Glucose	R	Lead Nitrate Lead Sulfate	R \
2,6 - Dichloroindophenal		R	Glue, PVA	Ř	Lead Sullate Lemon Oil	. R
Diesel Fuels		R	Glutathione	Ř	Ligroin	. R
Diethylamine		R	Glycerine	R	Limonene	R
Diethyl Cellosolve		R	Glycine	R R	Lime Slurry	R
Diethyl Ether		R·	Glycogen	Ř	Lime Sulfur	· R
Diglycolic Acid		<u>R</u> .	Glycal	Ċ	Lime Sulur Linoleic Add	C
Dimethylamine		R	Glycol Amine	-	Linoleic Oil	-
Dimethyl Formamide		R	Glycolic Acid	R	Lindeic Oil Linseed Oil	c
Dimethylhydrazine		R	Glyoxal	Ř	Linseea Oii Liqueurs	R
Dimethyl Phthalate		N	Grape Sugar	Ř.	Liqueurs Lithium Bromide	R R
Dimethyl Sulfoxide		R	Grease		Lithium Carbonate	R R
Dioctyl Phthalate		N	Green Liquor	R	1917 011 11	R
Dodecyl Alcohol	•	R	. Н	'`	Lithium Hyrdroxide 50%	R R
Dodecyl Sulfate		R	п		Lithium Nitrate	R R
Dioxane		R			Lithium Sulfate	R R
Diphenyl Oxide			Heptane (Type 1)	R	Lithium Sulfate Lubricating Oil #1	R .
Disodium Phosphate		'R	n-Hexane	R		R R
Drierite		R	Hexamethylenediamine	R	Lubricating Oil #2 Lubricating Oil #3	к R
	Ε		Hexanol, Tertiary	R		
			Hydraulic Oil		Ludox	
F1- W			Hydrazine	R	Luminol 3-amino	
Eosin Y			11 4 4 4 4 1 1 4 4 6 6 6 7		Phlhalhydrazide	R
Eriochrome Black T		R	Hydrobromic Acid 20%	R	Of health at body a skill of the	•
		R	Hydrobromic Acid 20% Hydrobromic Acid 50%	R R	DL-lysine Hydrochloride	R
Ether		R R	Hydrobromic Acid 50% Hydrobromic Acid 50% Hydrochloric Acid 10%		OL-lysine Hydrochloride Lysozyme	R .
Ether Ethyl Acetate		R R R	Hydrobromic Acid 50%	R		
Ether Ethyl Acetate Ethyl Acetoacetate		R R R	Hydrobromic Acid 50% Hydrochloric Acid 10%	R R		R .
Ether Ethyl Acetate Ethyl Acetoacetate Ethyl Acrylate		R R R R R	Hydrobromic Acid 50% Hydrochloric Acid 10% Hydrochloric Acid 30% Hydrocyanic Acid	R R R R	Lysozyme	R .
Ether Ethyl Acetate Ethyl Acetaacetate Ethyl Acrylate Ethyl Alcohol		R R R R	Hydrobromic Acid 50% Hydrochloric Acid 10% Hydrochloric Acid 30% Hydrocyanic Acid Hydrofluoric Acid Dilute	R R R R	Lysozyme Magnesium Acetate	R
Ether Ethyl Acetate Ethyl Acetoacetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene		R R R R C	Hydrobromic Acid 50% Hydrochloric Acid 10% Hydrochloric Acid 30% Hydrocyanic Acid Hydrofluoric Acid Dilute Hydrofluoric Acid 30%	R R R R R	Lysozyme Magnesium Acatate Magnesium Bromide	R M R R
Ether Ethyl Acetate Ethyl Acetasetate Ethyl Acetoacetate Ethyl Acohol Ethyl Benzene Ethyl Chloride		R R R R C N	Hydrobromic Acid 50% Hydrochloric Acid 10% Hydrochloric Acid 30% Hydrochloric Acid Ollute Hydrofluoric Acid Ollute Hydrofluoric Acid 30% Hydrofluoric Acid 50%	R R R R R R R	Lysozyme Magnesium Acetate Magnesium Bromide Magensium Carbonate	R R R R R
Ether Ethyl Acetate Ethyl Acetoacetate Ethyl Acrylate Ethyl Alcohol Ethyl Benzene Ethyl Chloride Ethyl Chloroacetate		R R R R R C C N N	Hydrobromic Acid 50% HydrocNoric Acid 10% HydrocNoric Acid 30% Hydrocyanic Acid Hydrofluoric Acid Gliute Hydrofluoric Acid 30% Hydrofluoric Acid 50% Hydrofluoric Acid 100%	R R R R R R R	Lysozyme Magnesium Acetate Magnesium Bromide Magnesium Carbonate Magnesium Chloride	R R R R R R
Elher Ethyl Acetate Ethyl Acetoacetate Ethyl Accylate Ethyl Alcohol Ethyl Benzene Ethyl Chloride Ethyl Chroacetate Ethylene Bromide		R R R R C N	Hydrobromic Acid 50% Hydrochloric Acid 10% Hydrochloric Acid 30% Hydrocyanic Acid Hydrofluoric Acid Dilute Hydrofluoric Acid 30% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrofluoric Acid 50%	R R R R R R R R	Lysozyme Magnesium Acetate Magnesium Bromide Magensium Carbonate Magnesium Chloride Magnesium Citrate	R R R R R R R R R R R
Ether Ethyl Acetate Ethyl Acetate Ethyl Acrylate Ethyl Acrylate Ethyl Acrylate Ethyl Chohol Ethyl Chloride Ethyl Chloride Ethyl Chloride Ethylene Bromide Ethylene Chloride		R R R R R R R C N N N N N N	Hydrobromic Acid 50% Hydrochloric Acid 10% Hydrochloric Acid 30% Hydrochloric Acid 30% Hydrofluoric Acid Oilute Hydrofluoric Acid 30% Hydrofluoric Acid 30% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrofluosilic Acid 50% Hydrofluosilic Acid 50%	R R R R R R R R R R R R R	Lysozyme Magnesium Acetate Magnesium Bromide Magnesium Chloride Magnesium Clirate Magnesium Fluoride	R R R R R R
Ether Ethyl Acetale Ethyl Acetale Ethyl Accylate Ethyl Accylate Ethyl Accylate Ethyl Benzene Ethyl Chloride Ethyl Chloroacetate Ethylene Bromide Ethylene Chloride Ethylene Chloride		R R R R R R C N N N N N N N N N N N N N	Hydrobromic Acid 50% Hydrochloric Acid 10% Hydrochloric Acid 30% Hydrochloric Acid 30% Hydrofluoric Acid 50th Hydrofluoric Acid 30% Hydrofluoric Acid 50% Hydrofluoric Acid 100% Hydrofluoric Acid 50% Hydrogen Hydrogen Cyanide	R R R R R R R R R R R R R R R R R R R	Lysozyme Magnesium Acetate Magnesium Bromide Magensium Carbonate Magnesium Chloride Magnesium Chloride Magnesium Fluoride Magnesium Huoride Magnesium Huoride	R R R R R R R
Ether Ethyl Acetate Ethyl Acetate Ethyl Acetate Ethyl Accytate Ethyl Alcohol Ethyl Benzene Ethyl Chloride Ethyl Chloroacetate Ethylene Bromide Ethylene Chloride Ethylene Chloride Ethylene Chloride Ethylene Chloride Ethylene Chloride		R R R R R R R C N N N N N N	Hydrobromic Acid 50% Hydrochloric Acid 10% Hydrochloric Acid 30% Hydrocyanic Acid Hydrofluoric Acid 30% Hydrofluoric Acid 30% Hydrofluoric Acid 30% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrogen Hydrogen Cyanide Hydrogen Cyanide Hydrogen Fluoride	R R R R R R R R R R R R R C	Lysozyme Magnesium Acetate Magnesium Bromide Magnesium Carbonate Magnesium Chloride Magnesium Fluoride Magnesium Fluoride Magnesium Hydroxide Magnesium hydroxide	R R R R R R R R R R R R R R R R R R R
Ether Ethyl Acetale Ethyl Acetale Ethyl Accylate Ethyl Acrylate Ethyl Benzene Ethyl Benzene Ethyl Chloride Ethyl Chloroacetale Ethylene Bromide Ethylene Chloride Ethylene Chloride		R R R R R R C Z N N N N R R	Hydrobromic Acid 50% Hydrochloric Acid 30% Hydrochloric Acid 30% Hydrochloric Acid 30% Hydrofluoric Acid Ollute Hydrofluoric Acid 30% Hydrofluoric Acid 30% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrogen Cyanide Hydrogen Cyanide Hydrogen Fluoride Hydrogen Peroxide 50%	R R R R R R R R R R R C R	Lysozyme Magnesium Acetate Magnesium Bromide Magnesium Carbonate Magnesium Citrate Magnesium Fluoride Magnesium Fluoride Magnesium Hydroxide Magnesium Oxide	R R R R R R R R
Ether Ethyl Acetate Ethyl Acetate Ethyl Acetate Ethyl Accytate Ethyl Alcohol Ethyl Benzene Ethyl Chloride Ethyl Chloroacetate Ethylene Bromide Ethylene Chloride Ethylene Chloride Ethylene Chloride Ethylene Chloride Ethylene Chloride		R R R R R R R C N N N N N N N N N R	Hydrobromic Acid 50% Hydrochloric Acid 10% Hydrochloric Acid 30% Hydrocyanic Acid Hydrofluoric Acid 30% Hydrofluoric Acid 30% Hydrofluoric Acid 30% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrofluoric Acid 50% Hydrogen Hydrogen Cyanide Hydrogen Cyanide Hydrogen Fluoride	R R R R R R R R R R R R R C	Lysozyme Magnesium Acetate Magnesium Bromide Magnesium Carbonate Magnesium Chloride Magnesium Fluoride Magnesium Fluoride Magnesium Hydroxide Magnesium hydroxide	R R R R R R R R R R R R R R R R R R R

CHEMICAL	RATING	CHEMICAL	RATING	CHEMICAL	RATING
	R	Orange IV - acid orange 5	Ŕ	Potassium Nitrite	R
Maleic Acid		Ordings 17 - add draings 3	R	Potassium Perborate	Ř
Malic Acid	R	Osmium Tetroxide	R	Potassium Perchlorate	R
laltose	R				Ŕ
langanese Chloride	R	Oxalic Acid	R	Potassium Permanganate 10%	
langanese Nitrate	, R	Oxygen Gas	Ŗ	Potassium Permanganate 25%	R .
anganese Sulfate	R	Ozone	, R	Potassium Persulfate	R
enthol	R	Ozonized Water	R	Potassium Phosphate	R
ercuric Chloride	R		P	Potassium Sodium Tartrate	. R
	R R			Potassium Sulfate	R
ercuric Cyanide	R			Polassium Sulfide	· Ř
ercuric Sulfate .		Palm Oil	R	Potassium Sulfile	. R
ercurous Nitrate	R	Palmitic Acid 10%	R		. R
ercury	R ·	Palmitic Acid 70%	. R	Potassium Thiocyanate	R
ethane	R	Pancreatin	R	Propane	
ethanol	R		. R	Propargyl Alcohol	R
-methionine	R	Papain	Ŕ	Propionic Acid	R
ethoxyethyl Oleate	•••	Paraffin		Propyl Acetate	
ethyl Acetate	R	Peanut Oil	Ċ	Propyl Alcohol	R
	R R	Pectin	R	N-Propyl Bromide	
ethyl Acelone	<u></u>	n-Pentane	С	Propylene Dichloride	N
ethyl Acrylale		Pepsin	R		R
ethyl Amine	R	Peracetic Acid	R	Propylene Glycol	
ethyl Bromide	N	Perchloric Acid 15%	R	Propylene Oxide	R
ethyl Cellosolve	. R			Pyridine	R
ethyl cellulose	Ř .	Perchloric Acid 70%	R	Pyrogallic Acid	· R
	N N	Perchloroethylene	<u>c</u>	Pyrrole	R
ethyl Chloride		Periodic Acid	R	•	
ethyl Chloroform	N	Perphosphate	R	Q	
ethyl Ethyl Kelone	R	Phenol	R		·
ethyl Formate .	RI	Phenolphthalein .	Ř	Quinine Sulfate	R
ethyl Green	R				
ethyl Isobulyl Carbinol	Ŕ	Phenyl Salicylate	R	Quinine Chloride Dihydrate	R
	R	Phenythydrazine	С	Quinone	
ethyl Isobutyl Ketone		Phosphate Esters	-	R	•
ethyl Isopropyl Ketone	R	Phosphoric Acid 10%	R	- K	
ethyl Methacrylate	R	Phosphoric Acid 50%	R		
ethyl Red	R		Ř	Rayon Coagulating Bath	R
ethyl Sulfate	R	Phosphoric Acid 85%		Rennin	R
ethyl Violet-2B	R	Phosphoric Anhydride	R	Resazurin	Ř
	· R	Phosphorous (Red)	C		
thyl Violet-6B		Phosphorous (Yellow)	С	Ringers Solution	Ŗ
ethylene Blue	R	Phosphorous Pentoxide	R	Rose Bengal Acid Red 94	R
ethylene Bromide	N	Phosphorous Trichloride	R		
ethylene Chloride	N		Ŕ	S	
ethylene Chlorobromide	N	Photographic Solutions		3	
ethylene todine	N N	Phthalic Acid	R		
	R	Picric Acid	R	Safranin O	. R
ethysulfuric Acid		Pine Oil	С	Salicylaldehyde	N
ik .	R .	Plating Solutions Brass	. R		R
ineral Oil	R	Plating Solutions Cadium	, R	Salicylic Acid	
olasses	R		 R	Selenic Acid, Aq.	R
onochloroacetic Acid	R	Plating Solutions Chrome		Silicic Acid	R
onochlorobenzene	N	Plating Solutions Copper	R	Silicone Oil	R
onoethanolamine	R	Plating Solutions Gold	R	Silver Acetate	R
	R	Plating Solutions Lead	· R	Silver Chloride	R
onosodium Glutamate		Plating Solutions Nickel	R	Silver Cyanide	Ŕ
otor Oil	R	Plating Solutions Rhodium	R		R
orpholine	R	Plating Solutions Silver	R .	Silver Nitrate	
N		Plating Solutions Tin	R	Silver Sulfate	R
				Soaps	R
		Plating Solutions Zinc	R	Sodium Acetate	, R
aphtha	R	Polyvinyl Acetate		Sodium Alum	R
aphthalene	С	Potyvinyl Alcohol ·	R	Sodium Aluminale	R
	Ř	Potash	R		Ř
atural Gas		Potassium Acetate	R	Sodium Arsenate	
eutral Red	R	Potassium Alum	R	Sodium Benzoate	R
ickel Acetate	R			Sodium Bicarbonate	R
ickel Ammonium Sulfate		Potassium Aluminum	R	Sodium Bichromate	R
ickel Chloride	R	Potassium Bicacbonate	R .	Sodium Bisulfate	R
ickel Nitrate	R	Potassium Bichromate	R	Sodium Bisulfite	R
ickel Sulfale	R	Potassium Bisulfate	R	Sodium Borate	Ř
	R ·	Potassium Bitartrate	R		
icotine		Potassium Borate	Ř	Sodium Bromide	R
icotinic Acid	R		R	Sodium Carbonate	R
itric Acid 10%	R	Potassium Bromate		Sodium Chlorate	R
itric Acid 30%	R	Potassium Bromide	R	Sodium Chloride	R
itric Acid 40%	· R	Potassium Carbonate	R	Sodium Chlorite	R
tric Acid 50%	Ř	Potassium Chlorate	R	Sodium Chromate	R R
	Ř	Potassium Chloride	R		R
tric Acid 70%		Potassium Chromate	R	Sodium Citrate	
tric Acid 100%	R	Potassium Citrate	Ř	Sodium Cyanide	R
trobenzene	Ņ			Sodium Dichromate	R
troethane	С	Potassium Cyanide	R	Sodium Diphenylamine	
trogen Gas		Potassium Dichromate	R	Sulfonate	R
troglycerine	С	Potassium Ethyl Xanthate		Sodium Dithionite	R
	_	Potassium Ferricyanide	R		R
troglycol	_	Potassium Ferroycanide	Ř	Sodium Ferricyanide	
tromethane	. C			Sodium Ferrocyanide	R
itrous Acid	R	Potassium Fluoride	R	Sodium Fluoride	, R
itrous Oxide	R	Potassium Hydrogen		Sodium Hexamelaphosphate	R
	**	Phosphate	. R	Sodium Hydroxide 15%	Ŕ
. 0		Potassium Hydrogen			
		Phthaiate	R	Sodium Hydroxide 30%	R ·
Outons	С			Sodium Hydroxide 50%	R
	. R	Potassium Hydroxide	. R	Sodium Hydroxide 70%	R
-Octane	W	Potassium Hyprochlorite	R.	Sodium Hypochlorite	R
Octanol					
Octanol Pleic Acid	, R	Potassium Iodate	R		
ctanol leic Acld	, R R		R R	Sodium Iodate	R
Octanol	, R	Potassium lodate			

С

CHEMICAL	RATING '	CHEMICAL		R/
Sodium Metaphosphate	R		U	
Sodium Nitrate	R			
Sodium Nitrite	R R	Urea		
Sodium Palmitrate Sodium Perborate	Ŕ	Urease		
Sodium Perchlorate	R	Urine	•	
Sodium Periodate	Ř		٧	
Sodium Peroxide	R	-		
Sodium Phosphate Acid	R	Varnish		
Sodium Phosphate Alkaline	R	Vaseline		
Sodium Phosphale Neutral	. R	Vegetable Oil		
Sodium Propionate	R	Vinegar	•	
Sodium Silicate	R R	Vinyl Acetate		
Sodium Sulfate Sodium Sulfide	R R		W	
Sodium Sulfite	R			
Sodium Thiousulphate	R	Water, Acid Mine		
Sour Crude Oil	R	Water, Delonized		
Soybean Oil	С	Water, Distilled		
Stannic Chloride	R	Water, Potable .		
Stannous Chloride	R	Water, Salt		
Stannous Sulfate	R	Water, Sea		
Starch	R	Water, Soft Water, Waste		
Stearic Acid	. В			
Streptomycin Sulfate	R R	Whiskey White Liquor		
Strontium Bromide	R ·	Wine .		
Strontium Chloride Styrene	. K		· X	
Succinic Acid	R			
Sugar	· R	V.1.		
Sulfamic Acid	R	Xylene	_	
Sulfate Liquors	R		Z	
Sulfite Liquors	R			
Sulfur	R	Zinc Acetate		
Sulfur Chloride	R	Zinc Carbonate		
Sulfur Dioxide Gas Dry	· R	Zinc Chloride		
Sulfur Dioxide Gas Wet	R 	Zinc Nitrate		
Sulfur Trioxide Gas Dry Sulfur Trioxide Gas Wet	N	Zinc Stearate		
Sulfuric Acid Up to 30%	Ř	Zinc Sulfate		
Sulfuric Acid 50%	R			
Sulfuric Acid 60%	R	•		
Sulfuric Acid 70%	R			
Sulfuric Acid 80%	R			
Sulfuric Acid 90%	R			
Sulfuric Acid 93%	R			
Sulfuric Acid 94% Sulfuric Acid 95%	R R			
Sulfuric Acid 96%	Ŕ			
Sulfuric Acid 98%	Ř			
Sulfuric Acid 100%		•		
	R			
	R R			
		•		
Sulfurous Acid T	R R	•		
Sulfurous Acid T	R R R	•		
Sulfurous Acid T Fall Oil Fannic Acid Fanning Liquors	R R R R	, · ·		
Sulfurous Acid T Tall Oil Tannic Acid Tanning Liquors Tar	R R R R C	•		,
T Tall Oil annic Acid anning Liquors ar ar ar ar ar ar ar ar	R R R R	•		
all Oil Tiall Oil annic Acid anning Liquors ar artaric Acid enpineol	R R R R C R	-		
Sulfurous Acid T Tall Oil Tannic Acid Tanning Liquors Tartaric Acid Terpineol Telduchloroethane	R R R C R - N	• •		
Tull Oil fannic Acid fanning Liquors far farficar farficar ferpineol fetrachloroethane fetrachloroethylene	R R R R C R	•		
all Oil annic Acid annic Acid anning Liquors ar artaric Acid erpineol etrachloroethane etracycline hydrochloride	R R R C R - N	•		
Sulfurous Acid T Tall Oil Tannic Acid Tanning Liquors Tar Tartaric Acid Terpineol Tetrachloroethane Tetrachloroethylene Tetractylene hydrochloride Tetractyl Lead	R R R R R C R C R N N	<u>-</u>		
Suffurous Acid T Itali Oil fannic Acid fanning Liquors far far far fartaric Acid ferpineol fetrachloroethane fetrachloroethylene fetracycline hydrochloride fetrabydrofuran	R R R C R N N R	• •		
aufurous Acid T Tall Oil annic Acid anning Liquors ar artaric Acid erpineol etrachloroethane etrachloroethylene etracycline hydrochloride etraehydrofuran etralin	R RRRCR NN RRNR	•		
Sulfurous Acid T Tall Oil Tannic Acid Tannic Acid Tanning Liquors Tar Tartaric Acid Terpineol Tetrachioroethane Tetrachioroethylene Tetrachorotura Tetrachyl Lead Tetrathyl Lead Tetrathyl Leid	R RRRCR NN RRNRR	•		
Tall Oil fannic Acid fannic Acid fanning Liquors far fartaric Acid ferpineol fetrachloroethane fetrachloroethylene fetracycline hydrochloride fetrathydrofuran fetralin fihamine Hydrochloride fihionin fihonyl Chloride	R RRRCR NN RRNRRR	<u>-</u>		
Fall Oil Fannic Acid Fannic Acid Fannic Acid Fanning Liquors Far Far Fartaric Acid Ferpineol Fetrachloroethane Fetrachloroethylene Fetrachloroethylene Fetrachlorothylene Fetrachlorothylene Fetrachlorothylene Fetrachlorothylene Fetrachlorothylene Fetrachlorothylene Fetrachlorothylene Fetrachlorothylene Fetrachloride Fetralin Finamine Hydrochloride Finonyl Chloride Flymol	R RRRCR NN RRNRRRR	• •		
T Tall Oil Tannic Acid Tanning Liquors Tanning Liquors Tararara Acid Terpineol Tetrachloroethane Tetr	R RRRCR NN RRNRRRRR	•		,
Tall Oil fannic Acid fannic Acid fanning Liquors far fartaric Acid ferpineol fetrachtoroethane fetrachtoroethylene fetracycline hydrochloride fetrathydrofuran fetralin fihamine Hydrochloride fihonyl Chloride fihymol litanium Dioxide fitanium Tetrachloride	R RRRCR NN RRNRRRRRR	•		
Fulfurous Acid T Tall Oil Tannic Acid Tannic Acid Tanning Liquors Tar Tartaric Acid Terpineol Tetrachloroethane Tetrachloroethylene Tetrachloroethylene Tetrachydrofuran Tetrahydrofuran Tetrahydrofuran Tetrahydrofuran Thiamine Hydrochloride Thionin Thionyl Chloride Thymol Tilanium Dioxide Tilanium Tetrachloride Toluene	R RRRCR NN RRNRRRRRR			
Tall Oil fannic Acid fannic Acid fannic Acid fannic Acid fannic Acid fannic Acid ferpineol fetrachloroethane fetrachloroethane fetrachloroethane fetrachloride fetraphydrochloride fetraphydrochloride fetrathydrochloride fetrathydrochloride fetrathydrochloride fetrathydrochloride fetrathydrochloride fetrathydrochloride fetrathydrochloride fetrathydrochloride filamium Dioxide filamium Dioxide filamium Tetrachloride foluene fomalo Juice	R RRRCR NN RRNRRRRRRCR	•		,
all Oil annic Acid annic Acid anning Liquors ar artaric Acid erpineol altrachioreethane etrachloroethylene etracycline hydrochloride etraethyl Lead etrathyl Lead etrathyl Lead etrathyl Chloride hipmin Hydrochloride hipmin Hydrochloride hipmin Hydrochloride hipmin Hydrochloride hipmin Hydrochloride hipmin Hydrochloride litanium Dixide litanium Tetrachloride oluene omato Julice transformer Oil	R RRRCR NN RRNRRRRRRCRR	•		
Tall Oil fannic Acid fannic Acid fannic Acid fanning Liquors far far fartanic Acid ferpineol fetrachloroethane fetrachloroethoride fetrachloride fotrachloride fitrachloride fitramin Flydrochloride fitronyl Chloride fitymol filanium Dioxide filanium Dioxide filanium Tetrachloride fotuene fornato Juice fransformer Oil fransformer Oil TE/30	R RRRCR NN RRNRRRRRRCR	•		
Tall Oil annic Acid annic Acid annic Acid annic Acid annic Acid arid arid arid arid arid arid arid ar	R RRRCR NN RRNRRRRRRRCRRR	•		
all Oil annic Acid annic Acid anning Liquors ar artaric Acid erpineol etrachloroethane etrachloroethylene etracycline hydrochloride etrahydrofuran etralin hiamine Hydrochloride hionin hionyl Chloride hymol ilianium Dioxide ilianium Tetrachloride oluene ormato Juice ransformer Oil DTE/30 ributyl Citrate ributyl Phosphate	R RRRCR NN RRNRRRRRRRCRRR R	•		
all Oil annic Acid annic Liquors ar artaric Acid erpineol etrachloroethane etrachloroethane etrachloroethane etrachloroethane etrachloroethane etrachloroethane etrachloroethane etrachloroethane etrachloroethane etrachloride etrachyt Laad etrahydrofuran etralin hidmine Hydrochloride hionin hidonyt Chloride hionin hidnyt Chloride hipmin litanium Dioxide litanium Tetrachloride oluene omato Juice ransformer Oil ransformer Oil pressor ransformer Oil pressor ributyf Citrate ributyf Phosphate richloroacetic Acid	R RRRCR NN RRNRRRRRRRCRRR	•		
alfurous Acid T all Oil annic Acid anning Liquors ar artaric Acid erpineol etrachloroethane etrachloroethylene etrachloroethylene etrachloroethylene etrachloroethylene etrachydrochloride etrathydrofuran etralin hiamine Hydrochloride hibonin hionyl Chloride hibonin etralin hiamine Hydrochloride litanium Dioxide litanium Dioxide litanium Tetrachloride oluene omato Julice ransformer Oil DTE/30 ributyl Citrate ributyl Phosphate richloroacetic Acid richloroacetic Acid	R RRRCR NN RRNRRRRRRCRRR RR	•		
uffurous Acid T all Oil annic Acid anning Liquors ar artaric Acid arpined atrachloroethane strachloroethane strachloroethylene etracycline hydrochloride strachly Lead strachlyrouran stralin hismine Hydrochloride hisonin hionyl Chloride hymol tanium Dioxide tanium Tetrachloride sluene mato Juice ransformer Oil DTE/30 ibutyl Citrate ibutyl Phosphate ichloroacetic Acid ichloroacetic Acid ichloroethylene iethanolamine	R RRRCR NN RRNRRRRRRRCRRR RRN	•		
uffurous Acid T all Oil annic Acid anning Liquors ar artaric Acid appineol atrachloroethane etrachloroethylene etrachloroethylene etrachloroethylene etrachloroethylene etrachloroethylene etrachloroethylene etrachloroethylene etrachloride atrathydrofuran etralin biamine Hydrochloride hionin bionyl Chloride hipyrochloride hionin bionyl Chloride hipyrol tanium Dioxide tanium Tetrachloride biutene omato Juice ansformer Oil ansformer Oil ansformer Oil ansformer Oil biutyl Phosphate ichloroacetic Acid ichloroethylene felthanolamine iethylamine	R RRRCR NN RRNRRRRRRRCRRR RRNR			
alfurous Acid T all Oil annic Acid anning Liquors ar artaric Acid erpineol etrachloroethylene etrachloroethylene etrachloroethylene etrachloroethylene etrachydrochloride etrathyl Lead etrathydrofuran etralli hiamine Hydrochloride hibonin hionyl Chloride hibonin hionyl Chloride itanium Dioxide itanium Dioxide itanium Tetrachloride oliuene omato Julice ransformer Oil DTE/30 ributyl Citrate ributyl Phosphate richloroacetic Acid richloroethylene riethanolamine riethylamine riethylamine	R RRECR NN RRNRRRRRRRCRRR RRNRRRR	•		
all Oil fannic Acid ferpineol fetrachloroethane fetrachloroethane fetrachloroethane fetrachloroethane fetrachloroethane fetrachloroethane fetrachloride fetrachly Lad fetrathyl Lad fetrathyl Lad fetrathyl Choride fribinin filonyl Chloride fribinin filonyl Chloride fribinin filonyl Chloride filonin filonyl Chloride firestorer Oil TTE/30 filotyl Citrate firichloroacetic Acid filothoroacetic A	R RRECE ZN RRNERERRECERE REZERERE	•		
Sulfurous Acid T	R RRECR NN RRNRRRRRRRCRRR RRNRRRR			

Chemicals Not Recommended for Use with CPVC Piping by the Piping Industry, But Found to be Compatible in DWV Applications

CHEMICAL

-A-

Acetaldehyde
Acetic Acid glacial
Acetic Anhydride
Acetone 100%
Acetyl Chloride
Acetylnitrile
Acrylic Acid
Acrylonitrile
Ammonia Gas
Ammonia Liquid
Ammonium Hydroxide
Amyl Acetate
Amyl Chloride
Aniline

Aniline Chlorohydrate

Aniline Hydrochloride

-B-

Benzaldehyde Benzene Benzyl Alcohol Bromine Liquid Butadiene Butyl Acetate Butyl Cellosolve Butyric Acid 100%

-C-

Carbon Disulfide
Cellosolve
Cellosolve Acetate
Chloramine
Croton Aldehyde
Cumene
Cyclohexane
Cyclohexanol
Cyclohexanone

-D-

Diacetone Alcohol
Dichlorobenzene
Diethylamine
Dimethylamine
Diethyl Ether
Dimethyl Formamide
Dioxane

-E-

Ether
Ethyl Acetate
Ethyl Acetoacetate
Ethyl Acrylate
Ethyl benzene
Ethyl Ether
Ethylenediamine
Ethylene Oxide

CHEMICAL

-F,G-

Furfural Gasoline Gasohol

-H,I-

Hydrofluoric Acid 100% Hydrazine Isopropyl Acetate Isopropyl Ether

-L-Lemon Oil Lemonene

-M-

Methanol 100%
Methyl Acetate
Methyl Amine
Methyl Cellosolve
Methyl Ethyl Ketone
Methyl Isobutyl Carbinol
Methyl Isobutyl Ketone
Methyl Isopropyl Ketone
Methyl Methacrylate
Monoethanolamine

-N,O-Naphthalene Nitroglycerine Oleum

.**P.** Pair

Palm Oil
Peracetic Acid
Phenylhydrazine
Phosphorous Trichloride
Picric Acid
Pine Oil
Propionic Acid
Propylene Oxide
Pyridine

-S,T-Soybean Oil Tar Tetrahydrofuran Thionyl Chloride Toluene Tributyl Phosphate Turpentine

-V-Vaseline Vinyl Acetate

-X-Xylene

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потупр

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.