DAY 13 - Subnetting

Purinat33

Subnetting

Topics:

- 1. CIDR (Classless Inter-Domain Routing)
- 2. Subnetting

IPv4 Classes

Class	First Octet	First Octet Range	Prefix
A	0xxxxxxx	0 - 127	/8
В	10xxxxxx	128 - 191	/16
\mathbf{C}	110 xxxxx	192 - 223	/24
D	1110xxxx	224 - 239	-
${f E}$	1111xxxx	240 - 255	-

Remember: Only Class A, B, C IP addresses can be assigned as a device's address.

Who Assigned IP Classes?

The IANA (Internet Assigned Numbers Authority) assigns IPv4 addresses/networks to companies based on their size.

For example, a very large company might receive a Class A or Class B network, while a small company might receive a Class C network.

However, this led to many wasted IP addresses.

IP Wasting

- 203.0.113.0/24 Class C Network:
 - 203.0.113.0 = Network ID
 - 203.0.113.255 = Broadcast IP
 - -203.0.113.1 = R1
 - -203.0.113.2 = R2
 - 252 out of 256 IP wasted!

To fix IP wasting, **IETF** (**Internet Engineering Task Force**) introduced **CIDR** in 1993 to replace the "classful" addressing system.

CIDR

- With CIDR, the requirements of
 - Class A = /8
 - Class B = /16
 - Class C = /24
 - were removed.
- This allowed larger networks to be split into smaller networks.
- These smaller networks are called **Subnetworks** or **Subnets**.

CIDR Example:

From the previous example:

- Originally (/24):
 - Address: 11001011.00000000.01110001 . 00000000
 - Mask: 111111111.11111111 . 00000000
 - Gives 256 2 Hosts
 - * 252 IP Wasted
- Changing/Borrowing 1 bit (/25):
 - Address: 111111111.11111111 .0 0000000
 - Mask: 111111111.11111111 .1 0000000 (128)
 - Gives 128 2 Hosts = 126 Hosts
 - * 124 IP Wasted (Used 2 for R1 & R2 IP addresses)
- Changing/Borrowing 2 bits (/26):
 - Address: 111111111.11111111 .00 000000
 - Mask: 111111111.11111111 .11 000000 (192)
 - Gives 64 2 Hosts
 - * 60 IP Wasted
- Changing/Borrowing 3 bits (/27):
 - Address: 111111111.11111111 .000 00000
 - Mask: 111111111.11111111 .111 00000 (224)
 - Gives 32 2 Hosts
 - * 28 IP Wasted
- Changing/Borrowing 4 bits (/28):
 - Address: 111111111.11111111 .0000 0000
 - Mask: 111111111.11111111 .1111 0000 (240)
 - Gives 16 2 Hosts
 - * 12 IP Wasted
- Changing/Borrowing 5 bits (/29):
 - Address: 111111111.11111111 .00000 000
 - Mask: 111111111.11111111 .11111 000 (248)

- Gives 8 2 Hosts
 - * 4 IP Wasted
- Changing/Borrowing 6 bits (/30):
 - Address: 111111111.11111111 .000000 00
 - Mask: 111111111.11111111 .111111 00 (252)
 - Gives 4 2 Hosts = 2 Usable addresses.
 - * 0 IP Wasted (Both are used for R1 and R2)

CIDR: /31 Mask

- Address: 111111111.11111111 .0000000 0
- Mask: 111111111.11111111 .1111111 0 (254)
- Gives 2 2 Hosts = 0 Usable addresses but.
 - Why use this?
 - For *Point-to-Point* Connection
 - * Normally we'd need 2 for network address and broadcast address.
 - * But for **Point-to-Point** communication, there isn't a need for network address or broadcast address.
 - * e.g. 2 routers connection

CIDR /32 Mask

• Address: 111111111.11111111 .00000000

- Mask: 111111111.11111111 .1111111 (255)
- Gives 1 2 = -1 Usable Hosts???
 - Why use this?
 - For **Static Route** and some other uses.

CIDR Notation Conversion

Dotted Decimal	CIDR Notation	
255.255.255.128	/25	
255.255.255.192	/26	
255.255.255.224	/27	
255.255.255.240	/28	
255.255.255.248	/29	
255.255.255.252	/30	
255.255.255.254	/31	
255.255.255.255	/32	

5

Subnetting Problems:

Divide the 192.168.1.0/24 network into four subnets.

My Attempt:

- **Original** (/24):
 - Addresses: 11000000.10101000.00000001.00000000
 - Mask: 111111111.11111111.11111111.00000000
 - **Hosts**: 256 2 = 254
- **Borrow 2** (/26):
 - Addresses: 11000000.10101000.00000001 .00 000000
 - Mask: 111111111.11111111. 11 000000
 - **Hosts**: 64 2 = 62 Hosts
 - * Note the bold IP block
 - * **SW1**:
 - · 00 part:
 - 192.168.1.0/26
 - · Network Address: 192.168.1.0
 - · Broadcast Address: 192.168.1.63
 - · Last Host: 192.168.1.62
 - · First Host: 192.168.1.1
 - · Usable: **62 IP**
 - * **SW2**:
 - · 01 part:

- 192.168.1.64/26
- · Network Address: 192.168.1.64
- · Broadcast Address: 192.168.1.127
- · Last Host: 192.168.1.126
- · First Host: 192.168.1.65
- · Usable: **62 IP**

* **SW3**:

- · **10** part:
- 192.168.1.128/26
- · Network Address: 192.168.1.128
- · Broadcast Address: 192.168.1.191
- · Last Host: 192.168.1.190
- · First Host: 192.168.1.129
- · Usable: **62 IP**

* **SW4**:

- · **11** part:
- 192.168.1.192/26
- · Network Address: 192.168.1.192
- · Broadcast Address: 192.168.1.255
- · Last Host: 192.168.1.254
- · First Host: 192.168.1.193
- · Usable: **62 IP**

His Attempt:

