第4章存储器

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

4.1 概 述

一、存储器分类

4.1

1. 按存储介质分类

(1) 半导体存储器

TTL, MOS

易失

(2) 磁表面存储器

磁头、载磁体

(3) 磁芯存储器

硬磁材料、环状元件

(4) 光盘存储器

激光、磁光材料

非易失

- 2. 按存取方式分类
- (1) 存取时间与物理地址无关(随机访问)
 - 随机存储器 在程序的执行过程中 可 读 可 写
 - 只读存储器 在程序的执行过程中 只读
- (2) 存取时间与物理地址有关(串行访问)
 - 顺序存取存储器 磁带
 - 直接存取存储器 磁盘

3. 按在计算机中的作用分类

4.1

Flash Memory

存

储

器

高速缓冲存储器(Cache)

辅助存储器 磁盘、磁带、光盘

二、存储器的层次结构

1. 存储器三个主要特性的关系

2. 缓存一主存层次和主存一辅存层次 4.1

主存储器 虚拟存储器

实地址 虚地址

物理地址 逻辑地址

4.2 主存储器

一、概述

1. 主存的基本组成

2. 主存和 CPU 的联系

3. 主存中存储单元地址的分配

高位字节 地址为字地址

字地址		字节地址			
0	0	1	2	3	
4	4	5	6	7	
8	8	9	10	11	

低位字节 地址为字地址

字地址	字节地址		
0	1	0	
2	3	2	
4	5	4	

设地址线 24 根 若字长为16位 若字长为32位

按字节寻址 2²⁴ = 16 M

按 字 寻址

按 字 寻址

8 M

4 M

4. 主存的技术指标

- (1) 存储容量 主存 存放二进制代码的总位数
- (2) 存储速度
 - 存取时间 存储器的 访问时间 读出时间 写入时间
 - 存取周期 连续两次独立的存储器操作 (读或写) 所需的 最小间隔时间 读周期 写周期
- (3) 存储器的带宽 位/秒

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

芯片容量	数据线(双向)	地址线(单向)
1K×4位	4	10
16K×1位	1	14
8K×8位	8	13

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

片选线 CS CE

读/写控制线 WE (低电平写 高电平读)

OE (允许读) WE (允许写)

存储芯片片选线的作用

 16K×1位的存储芯片组成64K×8位的存储器

 8片
 8片
 8片

 16K×1位
 16K×1位
 16K×1位

当地址为65535(16位)时,此8片的片选有效

2. 半导体存储芯片的译码驱动方式 4.2

(1) 线选法

(2) 重合法

三、随机存取存储器(RAM)

1. 静态 RAM (SRAM)

(1) 静态 RAM 基本单元电路

① 静态 RAM 基本电路的 读 操作

② 静态 RAM 基本电路的 写 操作

(2) 静态 RAM 芯片举例 ① Intel 2114 外特性

③ Intel 2114 RAM 矩阵 (64 × 64) 与 $\begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$ 0 行 48 地 址 译 **63** 码 列 0 0 0 0 地 址 译 I/O₁ I/O₂ I/O₄ 读写电路 读写电路 读写电路 码

③ Intel 2114 RAM 矩阵 (64 × 64) 与 第二组 0 0 0 0 0 行 地 址 译 63 码 列 0 0 0 0 地 址 **15** 译 I/O₂ I/O₄ I/O₁ 读写电路 读写电路 读写电路 读写电路 码

③ Intel 2114 RAM 矩阵 (64 × 64) 与 $\begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$ 0 行 48 地 址 译 63 码 列 0 0 0 0 地 址 译 I/O₁ I/O₂ I/O₄ 读写电路 读写电路 读写电路 码

2. 动态 RAM (DRAM)

读出与原存信息相反写入与输入信息相同

读出时数据线有电流为"1"写入时 $C_{\rm S}$ 充电为"1"放电为"0"

(2) 动态 RAM 芯片举例

4.2

① 三管动态 RAM 芯片 (Intel 1103) 读

③ 单管动态 RAM 4116 (16K × 1位) 外特性 4.2

(3) 动态 RAM 时序

行、列地址分开传送

读时序

行地址 RAS 有效

写允许 WE 有效(高)

列地址 CAS 有效

数据 \mathbf{D}_{OUT} 有效

写时序

行地址 RAS 有效

写允许 WE 有效(低)

数据 D_{IN} 有效

列地址 CAS 有效

(4) 动态 RAM 刷新 刷新与行地址有关

① 集中刷新 (存取周期为0.5 µs)以128×128矩阵为例

"死区"为 0.5 μs ×128 = 64 μs "死时间率"为 128/4 000 ×100% = 3.2%

② 分散刷新(存取周期为1µs) 以128×128矩阵为例

4.2

| W/R | REF | W/R

$$t_{\rm C} = t_{\rm M} + t_{\rm R}$$

$$\downarrow \qquad \downarrow$$
读写 刷新

无 "死区"

(存取周期为 0.5 μs + 0.5 μs)

③ 分散刷新与集中刷新相结合(异步刷新)4、2 对于 128×128 的存储芯片(存取周期为 0.5 µs) 若每隔 15.6 µs 刷新一行

每行每隔 2 ms 刷新一次 "死区"为 0.5 μs 将刷新安排在指令译码阶段,不会出现 "死区"

3. 动态 RAM 和静态 RAM 的比较

主想	DRAM	SRAM	
存储原理	电容	触发器	缓存
集成度	高	低	
芯片引脚	少	多	
功耗	小	大	
价格	低	高	
速度	慢	快	
刷新	有	无	

四、只读存储器(ROM)

- 1. 掩模 ROM (MROM)
 行列选择线交叉处有 MOS 管为"1"
 行列选择线交叉处无 MOS 管为"0"
- 2. PROM (一次性编程)

熔丝断 为"0"

熔丝未断 为"1"

3. EPROM (多次性编程)

(1) N型沟道浮动栅 MOS 电路

G栅极

S 源

D漏

紫外线全部擦洗

D端加正电压

D端不加正电压

形成浮动栅

不形成浮动栅

S与D不导通为"(

S与D导通为"1"

(2) 2716 EPROM 的逻辑图和引脚

PD/Progr 功率下降 / 编程输入端 读出时 为 低电平

4. EEPROM (多次性编程)

电可擦写

局部擦写

全部擦写

5. Flash Memory (闪速型存储器)

EPROM

价格便宜 集成度高

EEPROM

电可擦洗重写

比 EEPROM快 具备 RAM 功能

五、存储器与 CPU 的连接

4.2

- 1. 存储器容量的扩展
- (1) 位扩展(增加存储字长)

10根地址线

用2片1K×4位存储芯片组成1K×8位的存储器

8根数据线

(2) 字扩展(增加存储字的数量)

4.2

11根地址线

用 2 片 1 K×8位 存储芯片组成 2 K×8位 的存储器

(3) 字、位扩展

4.2

用 78片 1K×4位 存储芯片组成 4K×8位 的存储器

12根地址线

8根数据线

2. 存储器与 CPU 的连接

- (1) 地址线的连接
- (2) 数据线的连接
- (3) 读/写命令线的连接
- (4) 片选线的连接
- (5) 合理选择存储芯片
- (6) 其他 时序、负载

例4.1 解: (1) 写出对应的二进制地址码 1片 2K×8位 $A_{15}A_{14}A_{13}$ $A_{11}A_{10}$... A_{7} ... A_{4} A_{3} ... A_{0} 0 1 1 0 0 0 0 0 0 0 0 0 0 0 **ROM** 2K×8位 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1K×8位 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1

(2) 确定芯片的数量及类型

2片1K×4位

(3) 分配地址线

4.2

(4) 确定片选信号

A₀~A₀ 接 1K×4位 RAM 的地址线

例 4.1 CPU 与存储器的连接图

4.2

- 例4.2 假设同前,要求最小4K为系统程序区,相邻8K为用户程序区。
 - (1) 写出对应的二进制地址码
 - (2) 确定芯片的数量及类型

1片 4K×8位 ROM 2片 4K×8位 RAM

(3) 分配地址线

A₁₁~A₀ 接 ROM 和 RAM 的地址线

(4) 确定片选信号

例 4.3 设 CPU 有 20 根地址线, 8 根数据线。 4.2 并用 IO/M 作访存控制信号。RD 为读命令, WR 为写命令。现有 2764 EPROM (8K × 8位), 外特性如下:

用 138 译码器及其他门电路(门电路自定)画出 CPU和 2764 的连接图。要求地址为 F0000H~FFFFFH,并写出每片 2764 的地址范围。

六、存储器的校验

0. 检错纠错的概念

在原有数据位之外增加一到几位校验位,使新的代码带有某种特征,之后通过检查该代码是否保持这一特征来判断是否出现了错误,甚至于定位并纠正错误,这就是检错纠错的编码技术。

- > 奇偶校验码
- > 汉明码
- > 循环冗余码

4.2

1. 编码的最小距离

任意两组合法代码之间 二进制位数 的 最少差异编码的纠错、检错能力与编码的最小距离有关

$$L-1=D+C(D\geq C)$$

L — 编码的最小距离 L=3

D — 检测错误的位数 具有 一位 纠错能力

C—— 纠正错误的位数 汉明码是具有一位纠错能力的编码

2. 汉明码的组成

组成汉明码的三要素

汉明码的组成需增添? 位检测位

$$2^k \geqslant n+k+1$$

检测位的位置?

$$2^{i}$$
 ($i = 0, 1, 2, 3, \cdots$)

检测位的取值?

检测位的取值与该位所在的检测"小组"中承担的奇偶校验任务有关

各检测位 C_i 所承担的检测小组为

- C₁ 检测的 g₁ 小组包含第 1, 3, 5, 7, 9, 11, ···
- C, 检测的 g, 小组包含第 2, 3, 6, 7, 10, 11, …
- C₄ 检测的 g₃ 小组包含第 4, 5, 6, 7, 12, 13, ····
- C₈ 检测的 g₄ 小组包含第 8, 9, 10, 11, 12, 13, 14, 15, 24,…
 - g, 小组独占第 2i-1位
 - g_i 和 g_i 小组共同占第 $2^{i-1} + 2^{j-1}$ 位
 - g_i 、 g_j 和 g_l 小组共同占第 $2^{i-1}+2^{j-1}+2^{l-1}$ 位

例4.4 求 0101 按 "偶校验" 配置的汉明码 2

解:
$$n=4$$
 根据 $2^k \ge n+k+1$ 得 $k=3$

汉明码排序如下:

二进制序号	1	2	3	4	5	6 7
名称		C ₂ 1	0	C ₄ 0	1	0 1

·· 0101 的汉明码为 0100101

练习1 按配偶原则配置 0011 的汉明码 4.2

解:
$$n=4$$
 根据 $2^k \ge n+k+1$ 取 $k=3$

$$C_1 = 3 \oplus 5 \oplus 7 = 1$$

$$C_2 = 3 \oplus 6 \oplus 7 = 0$$

$$\mathbf{C_4} = \mathbf{5} \oplus \mathbf{6} \oplus \mathbf{7} = \mathbf{0}$$

·· 0011 的汉明码为 1000011

3. 汉明码的纠错过程

形成新的检测位 P_i ,其位数与增添的检测位有关,如增添 3 位(k=3),新的检测位为 P_4 P_2 P_1 。以 k=3 为例, P_i 的取值为

$$P_{1} = \stackrel{C_{1}}{1} \oplus 3 \oplus 5 \oplus 7$$

$$P_{2} = \stackrel{C_{2}}{2} \oplus 3 \oplus 6 \oplus 7$$

$$P_{4} = \stackrel{C_{4}}{4} \oplus 5 \oplus 6 \oplus 7$$

对于按"偶校验"配置的汉明码不出错时 $P_1=0$, $P_2=0$, $P_4=0$

4.2

例4.5 已知接收到的汉明码为0100111

(按配偶原则配置) 试问要求传送的信息是什么?

解: 纠错过程如下

$$P_1 = 1 \oplus 3 \oplus 5 \oplus 7 = 0$$
 无错

$$P_2=2\oplus 3\oplus 6\oplus 7=1$$
 有错

$$P_4P_2P_1 = 110$$

第6位出错,可纠正为0100101, 故要求传送的信息为0101。

4.2

练习2 写出按偶校验配置的汉明码 0101101 的纠错过程

$$P_4 = 4 \oplus 5 \oplus 6 \oplus 7 = 1$$

$$P_2 = 2 \oplus 3 \oplus 6 \oplus 7 = 0$$

$$P_1 = 1 \oplus 3 \oplus 5 \oplus 7 = 0$$

∴ P₄P₂P₁ = 100 第 4 位错,可不纠

练习3 按配奇原则配置 0011 的汉明码 配奇的汉明码为 0101011

七、提高访存速度的措施

- 采用高速器件
- ·采用层次结构 Cache -主存
- 调整主存结构

2. 多体并行系统

4.2

(1) 高位交叉 顺序编址

(1) 高位交叉 各个体并行工作

(2) 低位交叉 各个体轮流编址

4.2

(2) 低位交叉 各个体轮流编址

4.2

低位交叉的特点

在不改变存取周期的前提下,增加存储器的带宽

设四体低位交叉存储器,存取周期为T,总线传输周期4.2为 τ ,为实现流水线方式存取,应满足 $T=4\tau$ 。

连续读取 4 个字所需的时间为 $T+(4-1)\tau$

(3) 存储器控制部件(简称存控)

易发生代码 丢失的请求 源,优先级 最高

严重影响 CPU 工作的请求源, 给予 次高 优先级

4.2

(1) SDRAM (同步 DRAM)

在系统时钟的控制下进行读出和写入 CPU 无须等待

(2) RDRAM

由 Rambus 开发,主要解决 存储器带宽 问题

(3) 带 Cache 的 DRAM

在 DRAM 的芯片内 集成 了一个由 SRAM 组成的 Cache, 有利于 猝发式读取

4.3 高速缓冲存储器

- 一、概述
 - 1. 问题的提出

避免 CPU "空等" 现象

CPU 和主存(DRAM)的速度差异

程序访问的局部性原理

时间局部性: 刚被访问过的单元很可能不久又被访问

空间局部性: 刚被访问过的单元的邻近单元很可能被访问

```
程序段A:
int sumarrayrows(int A[M][N])
                       访问顺序与存储
  int i, j, sum=0;
                         顺序一致
    for (i=0; i<M, i++)
      for (j=0; j<N, j++) sum+=A[i][j];
    return sum;
程序段B:
int sumarraycols(int A[M][N])
                     访问顺序与存储
  int i, j, sum=0;
     for (j=0; j<N, j++) 顺序不一致
        for (i=0; i<M, i++) sum+=A[i][j];
     return sum;
```

M=N=2048时主存的布局: 0x0FC 0x100 指 for循环体 令 0x17C 133 0x180 134 0x184 135 0x400 101101A 0x404 A[0][1] 数 A[0][2047 0xc00 A[1][0] 据 0xc04 A[1][1] sum

假定数组在存储器中按行优先顺序存放

实际运行结果(2GHz Intel Pentium 4):

程序A: 59,393,288 时钟周期

程序B: 1,277,877,876 时钟周期

程序A比程序B快 21.5 倍!!

存储层次

- Block (aka line): unit of copying
 - May be multiple words
- If accessed data is present in upper level
 - Hit: access satisfied by upper level
 - Hit ratio: hits/accesses
- If accessed data is absent
 - Miss: block copied from lower level
 - Time taken: miss penalty
 - Miss ratio: misses/accesses
 - = 1 hit ratio
 - Then accessed data supplied from upper level

增加存储器带宽

Memory

- 4-word wide memory
 - Miss penalty = 1 + 15 + 1 = 17 bus cycles
 - Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle
- 4-bank interleaved memory
 - Miss penalty = $1 + 15 + 4 \times 1 = 20$ bus cycles
 - Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

a. One-word-wide memory organization

2. Cache 的工作原理

4.3

(1) 主存和缓存的编址

主存和缓存按块存储

块的大小相同

B 为块长

(2) 命中与未命中

缓存共有 C 块 主存共有 M 块 M >>> C

命中 主存块 调入 缓存

主存块与缓存块 建立 了对应关系

用标记记录与某缓存块建立了对应关系的主存块号

未命中 主存块 未调入 缓存

主存块与缓存块 未建立 对应关系

(3) Cache 的命中率

CPU 欲访问的信息在 Cache 中的 比率

命中率与 Cache 的 容量与 块长 有关

一般每块可取 4~8 个字

块长取一个存取周期内从主存调出的信息长度

CRAY_1 16体交叉 块长取 16 个存储字

IBM 370/168 4体交叉 块长取 4 个存储字

(3) 块大小的考虑

- Larger blocks should reduce miss rate
 - Due to spatial locality
- But in a fixed-sized cache
 - Larger blocks \Rightarrow fewer of them
 - More competition ⇒ increased miss rate
 - Larger blocks ⇒ pollution
- Larger miss penalty
 - Can override benefit of reduced miss rate
 - Early restart and critical-word-first can help

(4) Cache – 主存系统的效率

效率e与命中率有关

设 Cache 命中率 为 h ,访问 Cache 的时间为 t_c , 访问 主存 的时间为 t_m

则
$$e = \frac{t_c}{h \times t_c + (1-h) \times t_m} \times 100\%$$

4.3

读

4. Cache 的 读写 操作

写 Cache 和主存的一致性

- 写直达法(Write through) 写操作时数据既写入Cache又写入主存 写操作时间就是访问主存的时间,读操作时不 涉及对主存的写操作,更新策略比较容易实现
- 写回法 (Write back)

写操作时只把数据写入 Cache 而不写入主存当 Cache 数据被替换出去时才写回主存写操作时间就是访问 Cache 的时间,读操作 Cache 失效发生数据替换时,被替换的块需写回主存,增加了 Cache 的复杂性

写直达(Write-Through)

- On data-write hit, could just update the block in cache
 - But then cache and memory would be inconsistent
- Write through: also update memory
- But makes writes take longer
 - e.g., if base CPI = 1, 10% of instructions are stores,
 write to memory takes 100 cycles
 - Effective CPI = $1 + 0.1 \times 100 = 11$
- Solution: write buffer
 - Holds data waiting to be written to memory
 - CPU continues immediately
 - Only stalls on write if write buffer is already full

写回 (Write-Back)

- Alternative: On data-write hit, just update the block in cache
 - Keep track of whether each block is dirty
- When a dirty block is replaced
 - Write it back to memory
 - Can use a write buffer to allow replacing block to be read first

写分配 (Write Allocation)

- What should happen on a write miss?
- Alternatives for write-through
 - Allocate on miss: fetch the block
 - Write around: don't fetch the block
 - Since programs often write a whole block before reading it (e.g., initialization)
- For write-back
 - Usually fetch the block

5. Cache 的改进

4.3

- (1) 增加 Cache 的级数 片载(片内)Cache 片外 Cache
- (2) 统一缓存和分立缓存 指令 Cache 数据 Cache

与主存结构有关

与指令执行的控制方式有关 是否流水

Pentium 8K 指令 Cache 8K 数据 Cache

PowerPC620 32K 指令 Cache 32K 数据 Cache

Cache – 主存的地址映射 4.3 1. 直接映射 t位 Cache存储体 主存储体 字块0 标记 字块0 字块1 $i = j \mod C$ * 1 标记 字块1 字块2^c-1 字块 2^c 字块 2^c-1 比较器(t位) 字块2^c+1 字块2^{c+1}—1 主存字 字块 Cache 主存地址 否 字块2^{c+1} 字块地址 内地址 有效位=1? 块标记 b位 t位 **c** 位 字块2~一1

每个缓存块 i 可以和 若干 个 主存块 对应 每个主存块 j 只能和 一 个 缓存块 对应

加位

是

命中

不命中

2. 全相联映射

主存中的 任一块 可以映射到 缓存 中的 任一块

3. 组相联映射

4.3

主存储器

组 Cache 共Q组,每组内两块 (r=1)

 0
 标记
 字块 0
 标记
 字块 1

 1
 标记
 字块 2
 标记
 字块 3

 2^{c-r}-1
 标记
 字块 2^c-2
 标记
 字块 2^c-1

主存地址

主存字块标记	组地址	字块内地址
s = t + r 位 m 位	-	b 位

 $i = j \mod Q$

直接聯联映射

字块0 字块1 : 字块2^{c-r} -1 字块2^{c-r} 字块2^{c-r}+1

字块2^{c-r+1}

:

字块 2^m-1

某一主存块 j 按模 Q 映射到 缓存 的第 i 组中的 任一

三、替换算法

- 1. 先进先出(FIFO)算法
- 2. 近期最少使用(LRU)算法

小结 成本萬活

直接 某一主存块 只能固定 映射到 某一 缓存块

全相联 某一主存块能映射到任一缓存块

组相联 某一主存块 只能 映射到 某一 缓存 组 中的 任一块

4.4 辅助存储器

- 一、概述
 - 1. 特点 不直接与 CPU 交换信息 (主存-辅存)
 - 2. 磁表面存储器的技术指标
 - (1) 记录密度 道密度 $D_{\rm t}$ 位密度 $D_{
 m b}$
 - (2) 存储容量 $C = n \times k \times s$
 - (3) 平均寻址时间 寻道时间 + 等待时间

辅存的速度

寻址时间

磁头读写时间

- (4) 数据传输率 $D_r = D_b \times V$
- (5) 误码率 出错信息位数与读出信息的总位数之比

4.4

二、磁记录原理和记录方式

1. 磁记录原理(磁头和记录介质的相对运动)写

写入"0"

写入"1"

读

读出 "0"

读出"1"

2. 磁表面存储器的记录方式 (编码方式) 4.4

例 NRZ1 的读出代码波形

三、硬磁盘存储器

- 1. 硬磁盘存储器的类型
 - (1) 固定磁头和移动磁头
 - (2) 可换盘和固定盘
- 2. 硬磁盘存储器结构

(1) 磁盘驱动器

(2) 磁盘控制器

- 接收主机发来的命令,转换成磁盘驱动器的控制命令
- 实现主机和驱动器之间的数据格式转换
- 控制磁盘驱动器读写

磁盘控制器是

主机与磁盘驱动器之间的接口 {对主机 通过总线 对硬盘 (设备)

(3) 盘片

由硬质铝合金材料制成