PML01

GgYy

20160710

1.Install needed packages

```
#install.packages("data.table")
#install.packages("caret")
#install.packages("randomForest")
#install.packages("foreach")
#install.packages("rpart")
#install.packages("rpart.plot")
#install.packages("corrplot")
```

2.Load needed packages

```
library(data.table)

## Warning: package 'data.table' was built under R version 3.2.5

library(caret)

## Warning: package 'caret' was built under R version 3.2.5

## Loading required package: lattice

## Loading required package: ggplot2

## Warning: package 'ggplot2' was built under R version 3.2.5

library(randomForest)
```

```
## randomForest 4.6-12
```

```
## Type rfNews() to see new features/changes/bug fixes.
```

Warning: package 'randomForest' was built under R version 3.2.5

```
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
      margin
library(foreach)
## Warning: package 'foreach' was built under R version 3.2.5
library(rpart)
## Warning: package 'rpart' was built under R version 3.2.5
library(rpart)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 3.2.5
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.2.5
```

3.Read datas

```
training data <- read.csv("pml-training.csv", na.strings=c("#DIV/0!"," ", "",
"NA", "NAs", "NULL"))
testing data <- read.csv("pml-testing.csv", na.strings=c("#DIV/0!"," ", "", "N
A", "NAs", "NULL"))
```

4. Clean datas Drop NAs, Drop highly corelated variables, drop variables whose contents are the same.

```
#4.1 Drop columns with NAs
str(training data)
```

```
## 'data.frame': 19622 obs. of 160 variables:
## $ X
                   : int 1 2 3 4 5 6 7 8 9 10 ...
## $ user name
                    : Factor w/ 6 levels "adelmo", "carlitos", ...: 2 2
2 2 2 2 2 2 2 2 ...
## $ raw timestamp part 1 : int 1323084231 1323084231 1323084231 132308423
2 1323084232 1323084232 1323084232 1323084232 1323084232 ...
## $ raw timestamp part 2 : int 788290 808298 820366 120339 196328 304277
368296 440390 484323 484434 ...
## $ cvtd timestamp
                : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9
9 9 9 9 9 9 9 ...
               : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1
## $ new window
1 1 ...
             : int 11 11 11 12 12 12 12 12 12 12 ...
: num 1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.
## $ num window
## $ roll belt
43 1.45 ...
## $ pitch belt : num 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.
16 8.17 ...
               : num -94.4 -94.4 -94.4 -94.4 -94.4 -94.4
## $ yaw belt
-94.4 -94.4 -94.4 ...
## $ min yaw belt
                   : num NA NA NA NA NA NA NA NA NA ...
## $ amplitude pitch belt : int NA ...
## \$ var total accel belt \:: num NA ...
                  : num NA NA NA NA NA NA NA NA NA ...
## $ avg roll belt
## $ stddev roll belt : num NA ...
## $ var roll belt
                   : num NA NA NA NA NA NA NA NA NA ...
: num NA NA NA NA NA NA NA NA NA ...
## $ var pitch belt
## $ avg yaw belt
                   : num NA NA NA NA NA NA NA NA NA ...
## $ var yaw belt
                   : num NA NA NA NA NA NA NA NA NA ...
               ## $ gyros belt x
## $ gyros belt_y : num 0 0 0 0 0.02 0 0 0 0 ...
```

```
: num -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02
## $ gyros belt z
-0.02 -0.02 0 ...
## $ accel belt x : int -21 -22 -20 -22 -21 -21 -22 -22 -20 -2
## $ magnet belt y
                    : int 599 608 600 604 600 603 599 603 602 60
9 ...
## $ magnet belt z : int -313 -311 -305 -310 -302 -312 -311 -313 -3
12 -308 ...
              : num -128 -128 -128 -128 -128 -128 -128 -1
## $ roll arm
28 -128 ...
                    : num 22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.
## $ pitch arm
7 21.6 ...
             : num -161 -161 -161 -161 -161 -161 -161 -1
## $ yaw arm
61 -161 ...
## $ total_accel_arm : int 34 34 34 34 34 34 34 34 34 34 ...
## $ var pitch arm
                    : num NA NA NA NA NA NA NA NA NA ...
                    : num NA NA NA NA NA NA NA NA NA ...
## $ avg yaw arm
## $ stddev_yaw_arm : num NA ...
## $ var yaw arm
                    : num NA NA NA NA NA NA NA NA NA ...
                ## $ gyros arm x
## $ gyros_arm_y : num 0 -0.02 -0.03 -0.03 -0.03 -0.03 -0.0
2 -0.03 -0.03 ...
              : num -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.0
## $ gyros arm z
## $ accel arm x : int -288 -290 -289 -289 -289 -289 -289 -289 -2
88 -288 ...
## $ accel_arm_y : int 109 110 110 111 111 111 111 111 109 11
0 ...
## $ accel arm z : int -123 -125 -126 -123 -123 -122 -125 -124 -1
22 -124 ...
## $ magnet arm x : int -368 - 369 - 368 - 372 - 374 - 369 - 373 - 372 - 3
69 -376 ...
## $ magnet_arm_y : int 337 334 344 337 342 336 338 341 33
4 ...
## $ magnet arm z : int 516 513 512 506 513 509 510 518 51
## $ kurtosis_roll_arm : num NA ...
```

```
$ skewness roll arm
                           : num NA NA NA NA NA NA NA NA NA ...
## $ skewness pitch arm
                          : num NA NA NA NA NA NA NA NA NA ...
## $ skewness yaw arm
                           : num NA NA NA NA NA NA NA NA NA ...
                          : num NA NA NA NA NA NA NA NA NA ...
## $ max roll arm
                          : num NA NA NA NA NA NA NA NA NA ...
  $ max picth arm
## $ max yaw arm
                          : int NA NA NA NA NA NA NA NA NA ...
## $ min roll arm
                          : num NA NA NA NA NA NA NA NA NA ...
  $ min pitch arm
                          : num NA NA NA NA NA NA NA NA NA ...
  $ min yaw arm
                          : int NA NA NA NA NA NA NA NA NA ...
## $ amplitude roll arm
                          : num NA NA NA NA NA NA NA NA NA ...
## $ amplitude pitch arm
                          : num NA NA NA NA NA NA NA NA NA ...
## $ amplitude yaw arm
                          : int NA NA NA NA NA NA NA NA NA ...
## $ roll dumbbell
                           : num 13.1 13.1 12.9 13.4 13.4 ...
## $ pitch dumbbell
                          : num -70.5 -70.6 -70.3 -70.4 -70.4 ...
                          : num -84.9 -84.7 -85.1 -84.9 -84.9 ...
## $ yaw dumbbell
## $ kurtosis roll dumbbell : num NA ...
## $ kurtosis picth dumbbell : num NA ...
## $ kurtosis yaw dumbbell
                           : logi NA NA NA NA NA NA ...
## $ skewness roll dumbbell : num NA ...
## $ skewness pitch dumbbell : num NA ...
## $ skewness yaw dumbbell : logi NA NA NA NA NA NA ...
## $ max roll dumbbell
                           : num NA NA NA NA NA NA NA NA NA ...
## $ max picth dumbbell
                          : num NA NA NA NA NA NA NA NA NA ...
## $ max yaw dumbbell
                          : num NA NA NA NA NA NA NA NA NA ...
## $ min_roll dumbbell
                           : num NA NA NA NA NA NA NA NA NA ...
## $ min pitch dumbbell
                          : num NA NA NA NA NA NA NA NA NA ...
                           : num NA NA NA NA NA NA NA NA NA ...
## $ min yaw dumbbell
## $ amplitude roll dumbbell : num NA ...
##
  [list output truncated]
```

```
cleantraining <- training_data[, -which(names(training_data) %in% c("X", "user_
name", "raw_timestamp_part_1", "raw_timestamp_part_2", "cvtd_timestamp", "new_w
indow", "num_window"))]
cleantraining = cleantraining[, colSums(is.na(cleantraining)) == 0]
#4.2 Drop variables with same content
zerovariance =nearZeroVar(cleantraining[sapply(cleantraining, is.numeric)], sav
eMetrics=TRUE)
cleantraining = cleantraining[, zerovariance[, 'nzv'] == 0]
#4.3.1 Return the correlation matrix in matrix format
correlationmatrix <- cor(na.omit(cleantraining[sapply(cleantraining, is.numeri
c)]))
dim(correlationmatrix)</pre>
```

correlationmatrixdegreesoffreedom <- expand.grid(row = 1:52, col = 1:52)
correlationmatrixdegreesoffreedom\$correlation <- as.vector(correlationmatrix)
#4.3.2 Remove highly correlated variables(up to 0.7)
removehighcorrelation <- findCorrelation(correlationmatrix, cutoff = .7, verbos
e = TRUE)</pre>

```
## Compare row 10 and column 1 with corr 0.992
    Means: 0.27 vs 0.168 so flagging column 10
## Compare row 1 and column 9 with corr 0.925
    Means: 0.25 vs 0.164 so flagging column 1
## Compare row 9 and column 22 with corr 0.722
    Means:
            0.233 vs 0.161 so flagging column 9
## Compare row 22 and column 4 with corr 0.759
    Means: 0.224 vs 0.158 so flagging column 22
## Compare row 4 and column 3 with corr 0.762
    Means: 0.2 vs 0.155 so flagging column 4
## Compare row 3 and column 8 with corr 0.708
    Means:
            0.2 vs 0.153 so flagging column 3
## Compare row 36 and column 29 with corr 0.849
    Means: 0.257 vs 0.151 so flagging column 36
## Compare row 8 and column 2 with corr
    Means: 0.229 vs 0.146 so flagging column 8
## Compare row 2 and column 11 with corr 0.884
            0.212 vs 0.143 so flagging column 2
    Means:
## Compare row 37 and column 38 with corr 0.769
    Means: 0.198 vs 0.139 so flagging column 37
## Compare row 35 and column 30 with corr 0.773
    Means: 0.195 vs 0.137 so flagging column 35
## Compare row 38 and column 5 with corr 0.781
    Means: 0.177 vs 0.134 so flagging column 38
## Compare row 21 and column 24 with corr 0.814
    Means: 0.176 vs 0.133 so flagging column 21
## Compare row 34 and column 28 with corr 0.808
    Means: 0.176 vs 0.13 so flagging column 34
## Compare row 23 and column 26 with corr 0.779
    Means: 0.137 vs 0.129 so flagging column 23
## Compare row 25
                 and column 24 with corr 0.792
    Means: 0.145 vs 0.128 so flagging column 25
## Compare row 12 and column 13 with corr 0.779
    Means: 0.122 vs 0.127 so flagging column 13
## Compare row 48 and column 51 with corr 0.772
    Means: 0.145 vs 0.127 so flagging column 48
## Compare row 19
                 and column 18 with corr 0.918
    Means:
            0.095 vs 0.127 so flagging column 18
## Compare row 46 and column 45 with corr 0.846
    Means: 0.131 vs 0.129 so flagging column 46
## Compare row 45 and column 31 with corr 0.71
    Means: 0.098 vs 0.129 so flagging column 31
## Compare row 45 and column 33 with corr 0.716
            0.078 vs 0.132 so flagging column 33
    Means:
## All correlations <= 0.7
```

```
cleantraining <- cleantraining[, -removehighcorrelation]
#4.4 Generally drop blanks
for(i in c(8:ncol(cleantraining)-1)) {cleantraining[,i] = as.numeric(as.character(cleantraining[,i]))}

for(i in c(8:ncol(testing_data)-1)) {testing_data[,i] = as.numeric(as.character(testing_data[,i]))}
#4.5 Redefine to be used data
featureset <- colnames(cleantraining[colSums(is.na(cleantraining)) == 0])[-(1:7)]
modeldata <- cleantraining[featureset]
featureset</pre>
```

```
## [1] "yaw arm"
                              "total accel arm"
                                                    "gyros arm y"
## [4] "gyros arm z"
                              "magnet arm x"
                                                    "magnet arm z"
## [7] "roll dumbbell"
                             "pitch dumbbell"
                                                    "yaw dumbbell"
## [10] "total accel dumbbell" "gyros dumbbell y"
                                                    "magnet dumbbell z"
## [13] "roll forearm"
                             "pitch forearm"
                                                    "yaw forearm"
## [16] "total accel forearm" "gyros forearm x"
                                                    "gyros forearm y"
## [19] "accel forearm x"
                             "accel forearm z"
                                                    "magnet forearm x"
## [22] "magnet forearm y"
                             "magnet forearm z"
                                                    "classe"
```

5. Build model Split 60% for training and 40% for testing.

```
idx <- createDataPartition(modeldata$classe, p=0.6, list=FALSE )
training <- modeldata[idx,]
testing <- modeldata[-idx,]</pre>
```

5 fold cross validation is used.

```
control <- trainControl(method="cv", 5)
modelRF<- train(classe ~ ., data=training, method="rf", trControl=control)
modelLDA<-train(classe ~ ., data=training, method="lda", trControl=control)</pre>
```

```
## Loading required package: MASS
```

```
modelGBM<-train(classe ~ ., data=training, method="gbm", trControl=control)</pre>
```

```
## Loading required package: gbm
```

```
## Warning: package 'gbm' was built under R version 3.2.5
```

```
## Loading required package: survival
```

```
##
## Attaching package: 'survival'

## The following object is masked from 'package:caret':
##
## cluster

## Loading required package: splines

## Loading required package: parallel

## Loaded gbm 2.1.1

## Loading required package: plyr
```

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.0985
##	2	1.5534	nan	0.1000	0.0643
##	3	1.5157	nan	0.1000	0.0480
##	4	1.4875	nan	0.1000	0.0402
##	5	1.4646	nan	0.1000	0.0301
##	6	1.4466	nan	0.1000	0.0350
##	7	1.4266	nan	0.1000	0.0324
##	8	1.4074	nan	0.1000	0.0259
##	9	1.3916	nan	0.1000	0.0239
##	10	1.3775	nan	0.1000	0.0235
##	20	1.2687	nan	0.1000	0.0134
##	40	1.1432	nan	0.1000	0.0084
##	60	1.0623	nan	0.1000	0.0053
##	80	1.0040	nan	0.1000	0.0024
##	100	0.9601	nan	0.1000	0.0026
##	120	0.9230	nan	0.1000	0.0013
##	140	0.8915	nan	0.1000	0.0016
##	150	0.8773	nan	0.1000	0.0009
##	100	0.0773	nan	0.1000	0.0003
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1372
##	2	1.5313		0.1000	0.1372
##	3	1.4755	nan nan	0.1000	0.0963
##				0.1000	0.0623
	4	1.4304	nan		
##	5	1.3933	nan	0.1000	0.0586
##	6	1.3592	nan	0.1000	0.0478
##	7	1.3318	nan	0.1000	0.0437
##	8	1.3057	nan	0.1000	0.0333
##	9	1.2852	nan	0.1000	0.0355
##	10	1.2621	nan	0.1000	0.0414
##	20	1.1102	nan	0.1000	0.0132
##	40	0.9375	nan	0.1000	0.0091
##	60	0.8331	nan	0.1000	0.0054
##	80	0.7538	nan	0.1000	0.0035
##	100	0.6932	nan	0.1000	0.0035
##	120	0.6448	nan	0.1000	0.0023
##	140	0.6034	nan	0.1000	0.0024
##	150	0.5844	nan	0.1000	0.0028
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1660
##	2	1.5151	nan	0.1000	0.1115
##	3	1.4494	nan	0.1000	0.0981
##	4	1.3936	nan	0.1000	0.0920
##	5	1.3404	nan	0.1000	0.0660
##	6	1.2999	nan	0.1000	0.0611
	7	1.2635	nan	0.1000	0.0484

##	8	1.2335	nan	0.1000	0.0384	
##	9	1.2099	nan	0.1000	0.0443	
##	10	1.1827	nan	0.1000	0.0477	
##	20	0.9972	nan	0.1000	0.0171	
##	40	0.8075	nan	0.1000	0.0081	
##	60	0.6942	nan	0.1000	0.0078	
##	80	0.6128	nan	0.1000	0.0031	
##	100	0.5486	nan	0.1000	0.0032	
##	120	0.4965	nan	0.1000	0.0018	
##	140	0.4540	nan	0.1000	0.0014	
##	150	0.4357	nan	0.1000	0.0011	
##	100	0.100	11011	3.1333	0.0011	
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.0999	
##	2	1.5544	nan	0.1000	0.0675	
##	3	1.5171	nan	0.1000	0.0510	
##	4	1.4876		0.1000	0.0310	
##	5	1.4643	nan	0.1000	0.0404	
			nan			
##	6	1.4425	nan	0.1000	0.0287	
##	7	1.4255	nan	0.1000	0.0275	
##	8	1.4088	nan	0.1000	0.0266	
##	9	1.3923	nan	0.1000	0.0237	
##	10	1.3779	nan	0.1000	0.0220	
##	20	1.2677	nan	0.1000	0.0153	
##	40	1.1403	nan	0.1000	0.0058	
##	60	1.0616	nan	0.1000	0.0039	
##	80	1.0023	nan	0.1000	0.0026	
##	100	0.9579	nan	0.1000	0.0036	
##	120	0.9198	nan	0.1000	0.0012	
##	140	0.8871	nan	0.1000	0.0014	
##	150	0.8715	nan	0.1000	0.0009	
##						
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1374	
##	2	1.5317	nan	0.1000	0.0998	
##	3	1.4761	nan	0.1000	0.0753	
##	4	1.4318	nan	0.1000	0.0616	
##	5	1.3960	nan	0.1000	0.0510	
##	6	1.3648	nan	0.1000	0.0409	
##	7	1.3395	nan	0.1000	0.0410	
##	8	1.3148	nan	0.1000	0.0422	
##	9	1.2885	nan	0.1000	0.0478	
##	10	1.2615	nan	0.1000	0.0317	
##	20	1.1065	nan	0.1000	0.0186	
##	40	0.9293	nan	0.1000	0.0099	
##	60	0.8244	nan	0.1000	0.0052	
##	80	0.7486	nan	0.1000	0.0032	
##	100	0.6854	nan	0.1000	0.0020	
##	120	0.6349	nan	0.1000	0.0033	
##	120	0.0349	IIail	0.1000	0.0022	

##	140	0.5947	nan	0.1000	0.0013
##	150	0.5782	nan	0.1000	0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1678
##	2	1.5142	nan	0.1000	0.1182
##	3	1.4437	nan	0.1000	0.0890
##	4	1.3919	nan	0.1000	0.0764
##	5	1.3464	nan	0.1000	0.0611
##	6	1.3095	nan	0.1000	0.0667
##	7	1.2690	nan	0.1000	0.0494
##	8	1.2390	nan	0.1000	0.0543
##	9	1.2063	nan	0.1000	0.0556
##	10	1.1722	nan	0.1000	0.0452
##	20	0.9915	nan	0.1000	0.0250
##	40	0.8013	nan	0.1000	0.0102
##	60	0.6879	nan	0.1000	0.0054
##	80	0.6063	nan	0.1000	0.0044
##	100	0.5442	nan	0.1000	0.0029
##	120	0.4944	nan	0.1000	0.0018
##	140	0.4527	nan	0.1000	0.0013
##	150	0.4346	nan	0.1000	0.0019
##	100	0.1510	nan	3.1000	0.0019
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.0961
##	2	1.5532	nan	0.1000	0.0655
##	3	1.5149	nan	0.1000	0.0513
##	4	1.4865	nan	0.1000	0.0313
##	5	1.4645	nan	0.1000	0.0331
##	6	1.4442	nan	0.1000	0.0344
##	7	1.4233	nan	0.1000	0.0302
##	8	1.4253	nan	0.1000	0.0289
##	9	1.3895		0.1000	0.0230
##	10	1.3747	nan nan	0.1000	0.0231
##	20			0.1000	0.0239
	40	1.2623	nan		0.0130
##		1.1344	nan	0.1000	
##	60	1.0546	nan	0.1000	0.0045
##	80	0.9995	nan	0.1000	0.0027
##	100	0.9548	nan	0.1000	0.0025
##	120	0.9170	nan	0.1000	0.0018
##	140	0.8860	nan	0.1000	0.0008
##	150	0.8711	nan	0.1000	0.0014
##	- .		** 1 1 1 - 1	G	_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1288
##	2	1.5318	nan	0.1000	0.0995
##	3	1.4758	nan	0.1000	0.0768
##	4	1.4302	nan	0.1000	0.0687
##	5	1.3893	nan	0.1000	0.0574

##	6	1.3552	nan	0.1000	0.0424
##	7	1.3294	nan	0.1000	0.0400
##	8	1.3049	nan	0.1000	0.0432
##	9	1.2789	nan	0.1000	0.0357
##	10	1.2564	nan	0.1000	0.0364
##	20	1.0959	nan	0.1000	0.0145
##		0.9299	nan	0.1000	0.0078
##		0.8208	nan	0.1000	0.0042
##		0.7503	nan	0.1000	0.0032
##		0.6859	nan	0.1000	0.0028
##		0.6346	nan	0.1000	0.0017
##		0.5908	nan	0.1000	0.0018
##		0.5722	nan	0.1000	0.0011
##		0,0722		3.1333	0.0011
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##		1.6094	nan	0.1000	0.1686
##		1.5126	nan	0.1000	0.1130
##		1.4441	nan	0.1000	0.0947
##		1.3882	nan	0.1000	0.0814
##		1.3405	nan	0.1000	0.0704
##		1.2989	nan	0.1000	0.0584
##		1.2628	nan	0.1000	0.0479
##		1.2333		0.1000	0.0540
##		1.2018	nan nan	0.1000	0.0340
##		1.1756		0.1000	0.0410
##		0.9906	nan	0.1000	0.0337
			nan		
##		0.8009	nan	0.1000	0.0099
##		0.6827	nan	0.1000	0.0089
##		0.5998	nan	0.1000	0.0023
##		0.5410	nan	0.1000	0.0033
##		0.4935	nan	0.1000	0.0016
##		0.4504	nan	0.1000	0.0017
##		0.4302	nan	0.1000	0.0021
##				a·	_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##		1.6094	nan	0.1000	0.1014
##		1.5525	nan	0.1000	0.0644
##		1.5146	nan	0.1000	0.0513
##		1.4854	nan	0.1000	0.0392
##		1.4623	nan	0.1000	0.0337
##	6	1.4428	nan	0.1000	0.0351
##	7	1.4219	nan	0.1000	0.0263
##	8	1.4052	nan	0.1000	0.0230
##	9	1.3904	nan	0.1000	0.0263
##	10	1.3733	nan	0.1000	0.0243
##	20	1.2615	nan	0.1000	0.0132
##	40	1.1361	nan	0.1000	0.0063
##	60	1.0568	nan	0.1000	0.0042
##		1.0009	nan	0.1000	0.0038
(

## 100						
## 140 0.8823 nan 0.1000 0.0017 ## 150 0.8681 nan 0.1000 0.0009 ## ## Iter	##	100	0.9545	nan	0.1000	0.0026
## 140 0.8823 nan 0.1000 0.0017 ## 150 0.8681 nan 0.1000 0.0009 ## ## TrainDeviance	##	120	0.9163	nan	0.1000	0.0016
## 150	##	140	0.8823	nan	0.1000	0.0017
## Iter TrainDeviance		150	0.8681	nan	0.1000	0.0009
## Iter TrainDeviance						
## 1 1.6094		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## 2 1.5309						
## 4 1.4312						
## 4 1.4312						
## 5						
## 6						
## 7 1.3354						
## 8 1.3107						
## 9 1.2875						
## 10						
## 20 1.1060 nan 0.1000 0.0214 ## 40 0.9377 nan 0.1000 0.0107 ## 60 0.8278 nan 0.1000 0.0041 ## 80 0.7510 nan 0.1000 0.0034 ## 100 0.6938 nan 0.1000 0.0024 ## 120 0.6409 nan 0.1000 0.0024 ## 150 0.5801 nan 0.1000 0.0023 ## 150 0.5801 nan 0.1000 0.0023 ## 2 1.50801 nan 0.1000 0.0023 ## 2 1.5141 nan 0.1000 0.1685 ## 2 1.5141 nan 0.1000 0.1685 ## 3 1.4459 nan 0.1000 0.0985 ## 4 1.3875 nan 0.1000 0.0710 ## 5 1.3457 nan 0.1000 0.0787 ## 6 1.2997 nan 0.1000 0.0787 ## 7 1.2610 nan 0.1000 0.0676 ## 9 1.2038 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0486 ## 10 1.4752 nan 0.1000 0.0486 ## 10 0.6882 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0051 ## 100 0.5423 nan 0.1000 0.0051 ## 100 0.5423 nan 0.1000 0.0014 ## 100 0.5423 nan 0.1000 0.0014 ## 100 0.5423 nan 0.1000 0.0015 ## 110 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## 11 1.6094 nan 0.1000 0.0957						
## 40 0.9377						
## 60 0.8278 nan 0.1000 0.0041 ## 80 0.7510 nan 0.1000 0.0034 ## 100 0.6938 nan 0.1000 0.0020 ## 120 0.6409 nan 0.1000 0.0024 ## 140 0.5976 nan 0.1000 0.0018 ## 150 0.5801 nan 0.1000 0.0023 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1665 ## 2 1.5141 nan 0.1000 0.1665 ## 3 1.4459 nan 0.1000 0.0985 ## 4 1.3875 nan 0.1000 0.0710 ## 5 1.3457 nan 0.1000 0.0787 ## 6 1.2997 nan 0.1000 0.0787 ## 8 1.2330 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0492 ## 9 1.2038 nan 0.1000 0.0492 ## 9 1.2038 nan 0.1000 0.0496 ## 10 1.1752 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0209 ## 40 0.8023 nan 0.1000 0.0209 ## 40 0.8023 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0051 ## 120 0.4875 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0013 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## 11 1.6094 nan 0.1000 0.0025 ## 11 1.6094 nan 0.1000 0.0025						
## 80 0.7510 nan 0.1000 0.0034 ## 100 0.6938 nan 0.1000 0.0020 ## 120 0.6409 nan 0.1000 0.0024 ## 140 0.5976 nan 0.1000 0.0018 ## 150 0.5801 nan 0.1000 0.0023 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.66094 nan 0.1000 0.1685 ## 2 1.5141 nan 0.1000 0.0162 ## 3 1.4459 nan 0.1000 0.0985 ## 4 1.3875 nan 0.1000 0.0710 ## 5 1.3457 nan 0.1000 0.07710 ## 6 1.2997 nan 0.1000 0.0787 ## 6 1.2997 nan 0.1000 0.0676 ## 7 1.2610 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0451 ## 9 1.2038 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0396 ## 40 0.8023 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0051 ## 120 0.4875 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0012 ## 150 0.4312 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 1 1.6094 nan 0.1000 0.0957				nan		
## 100 0.6938 nan 0.1000 0.0020 ## 120 0.6409 nan 0.1000 0.0024 ## 140 0.5976 nan 0.1000 0.0018 ## 150 0.5801 nan 0.1000 0.0023 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1685 ## 2 1.5141 nan 0.1000 0.0162 ## 3 1.4459 nan 0.1000 0.0985 ## 4 1.3875 nan 0.1000 0.0710 ## 5 1.3457 nan 0.1000 0.0787 ## 6 1.2997 nan 0.1000 0.0676 ## 7 1.2610 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0452 ## 9 1.2038 nan 0.1000 0.0492 ## 9 1.2038 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0396 ## 40 0.8023 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0014 ## 60 0.6882 nan 0.1000 0.0014 ## 100 0.5423 nan 0.1000 0.0014 ## 120 0.4875 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 1 1.6094 nan 0.1000 0.0957			0.8278	nan		
## 120			0.7510	nan	0.1000	0.0034
## 140	##	100	0.6938	nan	0.1000	0.0020
## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.1685 ## 2 1.5141 nan 0.1000 0.1685 ## 3 1.4459 nan 0.1000 0.0985 ## 4 1.3875 nan 0.1000 0.0710 ## 5 1.3457 nan 0.1000 0.0787 ## 6 1.2997 nan 0.1000 0.0676 ## 7 1.2610 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0451 ## 9 1.2038 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0396 ## 40 0.8023 nan 0.1000 0.0209 ## 40 0.8023 nan 0.1000 0.0209 ## 40 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0046 ## 120 0.4875 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673	##	120	0.6409	nan	0.1000	0.0024
## ## Iter	##	140	0.5976	nan	0.1000	0.0018
## Iter	##	150	0.5801	nan	0.1000	0.0023
## 1 1.6094	##					
## 2 1.5141 nan 0.1000 0.1162 ## 3 1.4459 nan 0.1000 0.0985 ## 4 1.3875 nan 0.1000 0.0710 ## 5 1.3457 nan 0.1000 0.0787 ## 6 1.2997 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0451 ## 9 1.2038 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0396 ## 40 0.8023 nan 0.1000 0.0104 ## 60 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0046 ## 100 0.5423 nan 0.1000 0.0046 ## 120 0.4875 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0012 ## 150 0.4312 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	##	1	1.6094	nan	0.1000	0.1685
## 4 1.3875	##	2	1.5141	nan	0.1000	0.1162
## 5 1.3457 nan 0.1000 0.0787 ## 6 1.2997 nan 0.1000 0.0676 ## 7 1.2610 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0492 ## 9 1.2038 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0209 ## 40 0.8023 nan 0.1000 0.0104 ## 60 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0051 ## 100 0.5423 nan 0.1000 0.0046 ## 120 0.4875 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673	##	3	1.4459	nan	0.1000	0.0985
## 5 1.3457 nan 0.1000 0.0787 ## 6 1.2997 nan 0.1000 0.0676 ## 7 1.2610 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0492 ## 9 1.2038 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0209 ## 40 0.8023 nan 0.1000 0.0104 ## 60 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0051 ## 100 0.5423 nan 0.1000 0.0046 ## 120 0.4875 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673	##	4	1.3875	nan	0.1000	0.0710
## 6 1.2997		5	1.3457	nan	0.1000	0.0787
## 7 1.2610 nan 0.1000 0.0451 ## 8 1.2330 nan 0.1000 0.0492 ## 9 1.2038 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0209 ## 40 0.8023 nan 0.1000 0.0104 ## 60 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0046 ## 100 0.5423 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0012 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0957		6	1.2997	nan	0.1000	0.0676
## 8 1.2330		7		nan	0.1000	
## 9 1.2038 nan 0.1000 0.0486 ## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0209 ## 40 0.8023 nan 0.1000 0.0104 ## 60 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0046 ## 100 0.5423 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673		8				
## 10 1.1752 nan 0.1000 0.0396 ## 20 0.9845 nan 0.1000 0.0209 ## 40 0.8023 nan 0.1000 0.0104 ## 60 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0046 ## 100 0.5423 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## 20 0.9845 nan 0.1000 0.0209 ## 40 0.8023 nan 0.1000 0.0104 ## 60 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0046 ## 100 0.5423 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## 40 0.8023 nan 0.1000 0.0104 ## 60 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0046 ## 100 0.5423 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## 60 0.6882 nan 0.1000 0.0051 ## 80 0.6061 nan 0.1000 0.0046 ## 100 0.5423 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## 80 0.6061 nan 0.1000 0.0046 ## 100 0.5423 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## 100 0.5423 nan 0.1000 0.0047 ## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## 120 0.4875 nan 0.1000 0.0012 ## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## 140 0.4477 nan 0.1000 0.0013 ## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## 150 0.4312 nan 0.1000 0.0025 ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673						
## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673		150	0.4312	nan	0.1000	U.U025
## 1 1.6094 nan 0.1000 0.0957 ## 2 1.5537 nan 0.1000 0.0673					a:	_
## 2 1.5537 nan 0.1000 0.0673	##	T 1	TrainDominance	TalidDorriango	StanSiza	Improve
## 3 1.5162 nan 0.1000 0.0494	##	1	1.6094		0.1000	0.0957
	##	1 2	1.6094 1.5537	nan	0.1000 0.1000	0.0957 0.0673

##	4	1.4874	nan	0.1000	0.0390	
##	5	1.4641	nan	0.1000	0.0307	
##	6	1.4447	nan	0.1000	0.0333	
##	7	1.4257	nan	0.1000	0.0276	
##	8	1.4090	nan	0.1000	0.0269	
##	9	1.3928	nan	0.1000	0.0265	
##	10	1.3771	nan	0.1000	0.0235	
##	20	1.2690	nan	0.1000	0.0121	
##	40	1.1423	nan	0.1000	0.0081	
##	60	1.0627	nan	0.1000	0.0049	
##	80	1.0034	nan	0.1000	0.0030	
##	100	0.9575	nan	0.1000	0.0030	
##	120	0.9209	nan	0.1000	0.0013	
##	140	0.8880		0.1000	0.0022	
			nan			
##	150	0.8735	nan	0.1000	0.0004	
##	T+0~	TrainDorriana-	WalidDowiana	C+orCi	Tmpmarr	
	Iter 1	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1351	
##	2	1.5335	nan	0.1000	0.0976	
##	3	1.4772	nan	0.1000	0.0727	
##	4	1.4351	nan	0.1000	0.0590	
##	5	1.3998	nan	0.1000	0.0638	
##	6	1.3631	nan	0.1000	0.0461	
##	7	1.3347	nan	0.1000	0.0409	
##	8	1.3092	nan	0.1000	0.0457	
##	9	1.2829	nan	0.1000	0.0364	
##	10	1.2597	nan	0.1000	0.0357	
##	20	1.1027	nan	0.1000	0.0167	
##	40	0.9337	nan	0.1000	0.0114	
##	60	0.8302	nan	0.1000	0.0072	
##	80	0.7512	nan	0.1000	0.0040	
##	100	0.6890	nan	0.1000	0.0031	
##	120	0.6343	nan	0.1000	0.0034	
##	140	0.5913	nan	0.1000	0.0011	
##	150	0.5746	nan	0.1000	0.0011	
##						
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve	
##	1	1.6094	nan	0.1000	0.1620	
##	2	1.5156	nan	0.1000	0.1191	
##	3	1.4454	nan	0.1000	0.0880	
##	4	1.3930	nan	0.1000	0.0811	
##	5	1.3447	nan	0.1000	0.0688	
##	6	1.3032	nan	0.1000	0.0591	
##	7	1.2652	nan	0.1000	0.0648	
##	8	1.2280	nan	0.1000	0.0444	
##	9	1.1996	nan	0.1000	0.0388	
##	10	1.1761	nan	0.1000	0.0364	
##	20	0.9917	nan	0.1000	0.0143	
##	40	0.8013	nan	0.1000	0.0075	
(" "		2.0010	11011	000		

##	60	0.6856	nan	0.1000	0.0051
##	80	0.6053	nan	0.1000	0.0017
##	100	0.5473	nan	0.1000	0.0032
##	120	0.4951	nan	0.1000	0.0020
##	140	0.4532	nan	0.1000	0.0006
##	150	0.4344	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1648
##	2	1.5162	nan	0.1000	0.1156
##	3	1.4490	nan	0.1000	0.0996
##	4	1.3895	nan	0.1000	0.0776
##	5	1.3436	nan	0.1000	0.0654
##	6	1.3033	nan	0.1000	0.0610
##	7	1.2672	nan	0.1000	0.0577
##	8	1.2345	nan	0.1000	0.0465
##	9	1.2065	nan	0.1000	0.0458
##	10	1.1780	nan	0.1000	0.0398
##	20	0.9922	nan	0.1000	0.0171
##	40	0.8048	nan	0.1000	0.0092
##	60	0.6882	nan	0.1000	0.0053
##	80	0.6076	nan	0.1000	0.0041
##	100	0.5466	nan	0.1000	0.0030
##	120	0.4960	nan	0.1000	0.0022
##	140	0.4595	nan	0.1000	0.0019
##	150	0.4405	nan	0.1000	0.0016

 $\verb|modelRpart<-train(classe ~., data=training, method="rpart", trControl=control||$

Review the perforrance of the model

```
predictRF<-predict(modelRF, testing)
predictLDA<-predict(modelLDA, testing)
predictGBM<-predict(modelGBM, testing)
predictRpart<-predict(modelRpart, testing)

confusionMatrix(testing$classe, predictRF)</pre>
```

```
## Confusion Matrix and Statistics
##
##
         Reference
## Prediction A B C D E
         A 2224 1 2
         B 42 1464 9
##
                          1
         C 0 25 1330 8
##
##
         D 1 0 55 1216 14
##
         E 2 11 7 16 1406
##
## Overall Statistics
##
##
               Accuracy: 0.9737
##
                 95% CI: (0.97, 0.9772)
    No Information Rate: 0.2892
##
##
    P-Value [Acc > NIR] : < 2.2e-16
##
##
                 Kappa: 0.9668
## Mcnemar's Test P-Value : 1.072e-15
##
## Statistics by Class:
##
##
                   Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                    0.9802 0.9753 0.9480 0.9767 0.9846
## Specificity
                    0.9986 0.9915 0.9941 0.9894 0.9944
## Pos Pred Value
                    0.9964 0.9644 0.9722 0.9456 0.9750
## Neg Pred Value
                    0.9920 0.9942 0.9887 0.9956 0.9966
## Prevalence
                     0.2892 0.1913 0.1788 0.1587 0.1820
## Detection Rate
                0.2835 0.1866 0.1695 0.1550 0.1792
## Detection Prevalence 0.2845 0.1935 0.1744 0.1639 0.1838
## Balanced Accuracy
                    0.9894 0.9834 0.9710 0.9831 0.9895
```

confusionMatrix(testing\$classe,predictLDA)

```
## Confusion Matrix and Statistics
##
          Reference
##
## Prediction A B C D
                               Ε
         A 1468 273 241 167 83
          в 377 553 153 159 276
##
          C 261 120 765 91 131
##
##
         D 94 147 180 691 174
##
         E 149 343 285 246 419
##
## Overall Statistics
##
               Accuracy: 0.4966
##
##
                 95% CI: (0.4854, 0.5077)
     No Information Rate: 0.2994
##
##
     P-Value [Acc > NIR] : < 2.2e-16
##
##
                  Kappa: 0.3625
## Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                   Class: A Class: B Class: C Class: D Class: E
                     0.6249 0.38510 0.4711 0.51034 0.3869
## Sensitivity
                     0.8610 0.84945 0.9031 0.90835 0.8487
## Specificity
                     0.6577 0.36430 0.5592 0.53733 0.2906
## Pos Pred Value
## Neg Pred Value
                     0.8431 0.86046 0.8674 0.89893 0.8963
## Prevalence
                     0.2994 0.18302 0.2070 0.17257 0.1380
## Detection Rate
                0.1871 0.07048 0.0975 0.08807 0.0534
## Detection Prevalence 0.2845 0.19347 0.1744 0.16391 0.1838
## Balanced Accuracy
                    0.7430 0.61728 0.6871 0.70934 0.6178
```

confusionMatrix(testing\$classe,predictGBM)

```
## Confusion Matrix and Statistics
##
          Reference
##
## Prediction A B C D E
         A 2119 26 30 43 14
          в 138 1193 84 25
##
                             78
         C 20 74 1191 36
                             47
##
##
         D 22 30 105 1090 39
##
         E 13 102 67 139 1121
##
## Overall Statistics
##
               Accuracy: 0.8557
##
##
                 95% CI: (0.8478, 0.8634)
     No Information Rate: 0.2947
##
##
    P-Value [Acc > NIR] : < 2.2e-16
##
##
                  Kappa: 0.8174
## Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                   Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                     0.9165 0.8372 0.8064 0.8177 0.8630
## Specificity
                     0.9796 0.9494 0.9722 0.9699 0.9510
                     0.9494 0.7859 0.8706 0.8476 0.7774
## Pos Pred Value
## Neg Pred Value
                     0.9656 0.9633 0.9559 0.9630 0.9722
## Prevalence
                     0.2947 0.1816 0.1882 0.1699 0.1656
## Detection Rate
                 0.2701 0.1521 0.1518 0.1389 0.1429
## Detection Prevalence 0.2845 0.1935 0.1744 0.1639 0.1838
## Balanced Accuracy
                    0.9481 0.8933 0.8893 0.8938 0.9070
```

confusionMatrix(testing\$classe,predictRpart)

```
## Confusion Matrix and Statistics
##
##
          Reference
## Prediction A B C D
                               Ε
         A 1800 20 66 334
                              12
          B 689 198 94 300 237
##
          C 600 17 354 381 16
##
##
         D 316 68 23 857 22
##
         E 447 169 98 406 322
##
## Overall Statistics
##
##
                Accuracy: 0.45
##
                 95% CI: (0.439, 0.4611)
     No Information Rate: 0.491
##
##
     P-Value [Acc > NIR] : 1
##
##
                  Kappa : 0.2883
## Mcnemar's Test P-Value : <2e-16
##
## Statistics by Class:
##
##
                   Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                     0.4673 0.41949 0.55748 0.3762 0.52874
## Specificity
                      0.8918 0.82099 0.85938 0.9230 0.84524
                     0.8065 0.13043 0.25877 0.6664 0.22330
## Pos Pred Value
## Neg Pred Value
                     0.6345 0.95670 0.95662 0.7834 0.95518
## Prevalence
                      0.4910 0.06016 0.08093 0.2903 0.07762
                0.2294 0.02524 0.04512 0.1092 0.04104
## Detection Rate
## Detection Prevalence 0.2845 0.19347 0.17436 0.1639 0.18379
                     0.6796 0.62024 0.70843 0.6496 0.68699
## Balanced Accuracy
```

```
accuracyRF<-postResample(predictRF, testing$classe)
accuracyLDA<-postResample(predictLDA, testing$classe)
accuracyGBM<-postResample(predictGBM, testing$classe)
accuracyRpart<-postResample(predictRpart, testing$classe)
accuracyRF</pre>
```

```
## Accuracy Kappa
## 0.9737446 0.9667688
```

```
accuracyLDA
```

```
## Accuracy Kappa
## 0.4965588 0.3624725

accuracyGBM

## Accuracy Kappa
## 0.8557227 0.8173557

accuracyRpart

## Accuracy Kappa
## 0.4500382 0.2882895
```

It shows that the highest accuracy of random forest model is 97.50%.

6.Predict Predict by using testing data

```
model <- train(classe ~ ., data=training, method="rf", trControl=control, ntree
=250)
result <- predict(model, training[, -length(names(training))])
result</pre>
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
```

```
##
```

#Considering the length, this part will not be shown

7. Answer the asked question

```
pml_write_files = function(x) {
    n = length(x)
    for(i in 1:n) {
        filename = paste0("problem_id_",i,".txt")
        write.table(x[i],file=filename,quote=FALSE,row.names=FALSE,col.names=FALSE)
    }
}

testing_data <- testing_data[featureset[featureset!='classe']]
answers <- predict(model, newdata=testing_data)
answers</pre>
```

```
## [1] BABAAEDBAABCBAEEABBB
## Levels: ABCDE
```

```
pml_write_files(answers)
```