

S-72.4210 Postgraduate Course in Radio Communications

Er Liu
liuer@cc.hut.fi
2006-01-10

Content Outline

- ♣ Bluetooth History
- Bluetooth Market and Applications
- **♣** Bluetooth Protocol Stacks
 - Radio
 - Baseband
 - Link Management Protocol (LMP)
 - L2CAP (Logic Link Control and Adaptation Protocol)
- **Bluetooth Profiles**
- Bluetooth Implementation and Development
- Qualification Program and Requirement
- **4** Summary
- Homework

Bluetooth History

- **↓** Invented in 1994 by L. M. Ericsson
- Named after Danish King Harald Blatand or Harold Bluetooth, who was uniting warring factions together
 - Technology is designed to allow collaboration between different industries such as the computing, mobile phone and automotive markets
- Bluetooth SIG (Special Industry Group)
 - Established in 1998 by Ericsson, IBM, Intel, Microsoft, Motorola, Nokia and Toshiba
 - Currently has over 3400 members
 - * 2004 Nov. Specification Core package version 2.0+EDR (enhanced data rate)
- 1999 IEEE 802.15 standards working group, communication standards for WPANs (wireless personal area networks). Bluetooth specification chosen as baseline of the 802.15.1 standard

2006-01-10 Bluetooth Demystified

3

Bluetooth Market and Applications

Estimation of potential volume for Bluetooth devices

Around \$5/chip

Applications:

- Synchronizing data
- **♦** Voice call
- Printing
- ♣ Mp3 player
- **4** Home Entertainment
- Payment system
- Scanner
- Mobile E-commerce
- Automotive
- **4** Internet
- Etc...

2006-01-10 Bluetooth Demystified

Bluetooth Protocol Stacks

Protocol stacks

- Radio Frequency
- Baseband
- Link Management
- L2CAP
- ♦ HCI
- Higher layer protocols

2006-01-10 Bluetooth Demystified

_

Radio

- Operated in 2.4G ISM band
 - Frequency Hopping Spread Spectrum (FHSS)
 - **Time Domain Duplex (TDD)**
 - 1600 hops/sec (625 msec) frequency hopper
 - 2400 2483.5 MHz allows world wide (almost) operation
 - 79 1-MHz channels (23 in France, Japan)
 - Data rates
 - 1 M symbol/s (Basic rate) GFSK modulation
 - 2 or 3Mbps (Enhanced data rate) GFSK, 4/ π -DQPSK and 8-DPSK modulations
 - ◆ Tx power 0 dBm (<10m) to 20 dBm (<100m)
 - Range 10 cm to 10 m at low power (0dBm)
 - Power classes
- Operation under unlicensed international rules
 - US: FCC Part 15
 - Europe: ESTI 300-328

Power Class And Spectrum Allocation

Geography	Regulatory	Blue Tooth		
	Allocation	Channels		
USA	2.400 - 2.4835 GHz	f = 2402 + k MHz		
		k = 078		
Europe	2.400 - 2.4835 GHz	f = 2402 + k MHz		
		k = 078		
Spain	2.445 - 2.475 GHz	f = 2449 + k MHz		
		k = 022		
France	2.4465 - 2.4835 GHz	f = 2454 + k MHz		

Power	Maximum Power	Nominal Power	Minimum Power	Power Control
Class			(at Max Pwr setting)	
1	100 mW (20 dBm)	N/A	0 dBm	4 dBm – 20 dBm -30 dBm - 0 dBm (optional)
2	2.5 mW (4 dBm)	0 dBm	0.25 mW (-6 dBm)	-30 dBm - 0 dBm (optional)
3	1 mW (0 dBm)	N/A	N/A	-30 dBm - 0 dBm (optional)

2006-01-10 Bluetooth Demystified

7

Competitive Systems

- **♣** The main parameters of
 - HomeRF
 - WLAN
 - DECT
 - Bluetooth

is compared

				/	
	HomeRF	IEEE 802.11	DECT	Bluetooth	
Frequency range	2,4 GHz	2,4 GHz	1,9 GHz	2,4 GHz	
Modulation	GFSK	GFSK	GFSK	GFSK	
Power	100 mW	100 mW	250 mW	100 mW	
Data rate	0,8 - 1,6 Mbps	2 Mbps	1,152 Mbps	1 Mbps	

Bluetooth Topology

+ Piconet

- * 2 or more Bluetooth devices form a piconet
 - Connected device can be master or slave
 - master can connect to max. 7 slaves per piconet simultaneously
- A specific hopping sequence using all 79 RF channels is used for the connection
- ◆ In forming a piconet, master gives slaves its clock and device ID
 - Unique hopping pattern for each piconet
 - all devices in a piconet hop together
- Each piconet has a maximum gross data rate of 1 Mbit/s

4 Scatternet

- 2 or more piconets form a scatternet
- Bluetooth devices can share different piconets

2006-01-10 Bluetooth Demystified

.

Baseband

- Physical layer of Bluetooth, it manages
 - physical channels and links apart from other services like error correction, hop selection, etc
- **♣** Bluetooth uses both circuit and packet switched links
 - **SCO** (synchronous connection-oriented) link
 - Real-time voice (mainly) & Multimedia traffic
 - 3 x 64 kbps
 - PCM (Pulse Code Modulation) or CVSD (continuous Variable Slope Delta)
 - FEC
 - ACL (asynchronous connection-less) link
 - Best effort based
 - Synchronous mode: 433.9 kbps for both directions
 - Asynchronous mode: 723.2 kbps/56.7 kbps

Baseband Packet Format

- Modulation
 - Basic rate
 - All using GFSK, 1 Mbps
 - Enhanced Data Rate
 - GFSK for Access code and Header, DPSK for the following data, 2 or 3 Mbps
- Packet types
 - Voice packets: HV1, HV2, HV3
 - Mixed voice/data: DV
 - Protected data packets: DM1, DM3, DM5
 - Unprotected data packets: AUX1, DH1, DH3, DH5
 - Baseband control packets: NULL, POLL, ID, FHS

2006-01-10 Bluetooth Demystified

11

Data Rate VS. Channel Combination

, ACL 188		Payload Header	User Payload			Symmetric Max. Rate	Asymme Rate	
<u> </u>	Type	(bytes)	(bytes)	FEC	CRC		Forward	Reverse
1 slot packets	DM1	1	0-17	2/3	yes	108.8	108.8	108.8
1 Slot packets	DH1	1	0-27	no	yes	172.8	172.8	172.8
3 slot packets	DM3	2	0-121	2/3	yes	258.1	387.2	54.4
3 Slot packets	DH3	2	0-183	no	yes	390.4	585.6	86.4
5 slot packets	DM5	2	0-224	2/3	yes	286.7	477.8	36.3
3 Slot packets	DH5	2	0-339	no	yes	433.9	723.2	57.6
	AUX1	1	0-29	no	no	185.6	185.6	185.6

i els						
	SCO Packet	Payload Header (bytes)	User Payload (bytes)	FEC	CRC	Symmetric Max. Rate (kb/s)
	HV1	na	10	1/3	no	64.0
	HV2	na	20	2/3	no	64.0
	HV3	na	30	no	no	64.0
	$DV^{^*}$	1 D	10+(0-9) D	2/3 D	yes D	64.0+57.6 D

Bluetooth Physical Links

2006-01-10 Bluetooth Demystified

13

Retransmission and Multislot Transmission

Link Management

- **★** It discover other remote LM entities and communicates with them through the Link Manager Protocol (LMP).
- **★** It carries out:
 - Link Configuration
 - Supported features
 - Power Control
 - QoS Control
 - Security Functions
 - Authentication
 - Encryption and Key Management
 - Piconet Management
 - ACL Link setup and detach
 - SCO Link setup and detach
 - Master/Slave Switch
 - Low Power Modes
 - > Sniff
 - > Hold
 - > Park

2006-01-10 Bluetooth Demystified

15

Link Management -- States

- **4** Standby
 - Device powered on
- **4** Inquiry
 - Discover devices in the area
 - Collect addresses
- Page
 - **Connect to a specific device**
- Inquiry scan
 - Discoverable state
- Page scan
 - Device waiting to join a piconet
- Connection
 - Actively on a piconet
 - Master or slave

Low Power Modes

- **4** Modes in connection state
 - Active
 - Maximum 7 slaves, normal case
 - Sniff
 - Device remains active, but low power active mode
 - Device wakes up at assigned Sniff Interval to exchange packets
 - LMP sets Sniff Mode parameters
 - Least efficient power-saving mode
 - Hold
 - Master assigns hold time, after hold time slave wakes up and synchronizes with traffic on the channel
 - ACL packets no longer supported, SCO packets can still be exchanged
 - Park
 - "Deeper Sleep" than Hold Mode
 - Device is no longer active
 - Master establishes a Beacon Channel when a device is parked, and communicate via this channel
 - The most efficient power-saving mode

2006-01-10 Bluetooth Demystified

17

Battery Life Time

★ Low power consumption

(Estimates calculated with 600 mAh battery, power will vary with implementation)

- ◆ Standby current < 0.3 mA
 - 3 months
- Voice mode current 10 mA
 - 60 hours
- Data mode average 6 mA
 - 100 hours
- ♣ Low Power Architecture
 - Hold and Park modes 60 µA
 - Devices connected but not participating
 - Device can participate within 2 ms
 - 1 year battery life time

L2CAP

- Logical Link Control and Adaptation Layer Protocol
- Layered over baseband protocol and LMP
- **Supports** services
 - Segmentation/reassembly
 - Baseband packets are size-limited
 - Segment and reassemble Baseband packets for data link layer
 - Protocol multiplexing
 - Baseband protocol treats all data packets equally
 - L2CAP needs to distinguish packets for different upper layer protocols: SDP, RFCOMM, Telephony Control
 - Quality-of-Service (QoS)
 - Negotiate and enforce QoS contracts

- Group abstractions
 - Group abstraction allows mapping of baseband protocol groups to piconets

2006-01-10 Bluetooth Demystified

19

L2CAP Channel Establishment

L2CAP Packet Format

i			
	Length	DCID	Payload
	(16 bits)	(16 bits)	(0-65535 bytes)

L2CAP Channel Establishment

Bluetooth Profiles

- Profile
 - usage model
 - define specific messages and procedures used to implement a feature
 - regardless of manufacturers
- **4** 4 general profiles
 - Generic Access Profile (GAP)
 - Basic one
 - If not applied with other profile, this must be applied
 - Serial Port Profile (SPP)
 - For cable replacement usage
 - Service Discover Application Profile (SDAP)
 - To discover the service registered in other BT devices and retrieve information about these service

- Generic Object Exchange Profile (GOEP)
 - How BT devices support the object exchange usage model, such as file transfer profile, object push profile, and synchronization profile

2006-01-10 Bluetooth Demystified

21

Bluetooth Implementation Choice

- Trade-offs
 - Flexibility
 - cost
 - Performance
 - Size
 - Power consumption
 - ♣ Etc ...

A single-chip solution is the ultimate goal

Qualification Program and Requirement

2006-01-10 Bluetooth Demystified

23

Summary

- Bluetooth provides robust, short-range communications
- Flexible configuration and profiles can support multiple applications
- **♣** Success of device depends on
 - The supplier's ability to deliver implementation at a low price point
 - Application development that is easily integrated with today's infrastructure
 - Ability of Bluetooth to meet market's expectations

Reference

- The official Bluetooth membership site https://www.bluetooth.org/
- * XILINX Bluetooth tutorial http://www.xilinx.com/esp/wireless/bluetooth/tutorials.htm
- NewLogic Bluetooth Tutorial http://www.newlogic.com/products/Bluetooth-Tutorial-2001.pdf
- Dennis Sweeney, Max Robert, Bluetooth Tutorial http://www.mprg.org/Tech_xfer/ppt/bt_tut.pdf
- Bluetooth Core Specification v2.0+EDR https://www.bluetooth.org/foundry/adopters/document/Bluetooth Core Specification v1.2
- Nathan J.Muller, "Bluetooth Demystified," McGraw-Hill Professional Publishing, Sep. 2000

2006-01-10 Bluetooth Demystified

25

Homework

- The presentation is focus on lower layer of Bluetooth protocols, please give the brief description of following upper layer protocols:
 - SDP
 - RFCOMM
- Headset Profile is used for Bluetooth enabled headset. Please describe briefly about:
 - Protocol stacks in headset profile
 - Basic operation procedures

Any Questions?

Thank you!

