1 Set Theory

1.1 Basic Definitions

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$

$$\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$$

$$\mathbb{R} = real \ numbers$$

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

$$natural \ numbers$$

$$integers$$

$$complex \ numbers$$

1.2 Set Operations

- $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}$ n-dimensional space
- $\mathbb{R}^{\infty} = \{(x_1, x_2, \ldots) : x_i \in \mathbb{R}\}$ space of infinite sequences of reals

1.3 Set Relations

 $A \subset B : A \text{ is a subset of } B$ $A \cap B : intersection$

 $A \cup B : union$

[Venn diagrams for $A \cap B$ and $A \cup B$]

$$A \setminus B = \{x \in A : x \notin B\}$$
$$A \triangle B = (A \cup B) \setminus (A \cap B)$$
$$= symmetric \ difference$$

2 Intervals

Let $a, b \in \mathbb{R}$ with a < b. Then:

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

 $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$

3 Functions

$$f: X \to Y = \{(x, y) : x \in X, y \in Y\}$$

$$A_f = \{x \in X : (x, y) \in f \text{ for some } y \in Y\}$$

$$= domain$$

$$\bigcup_{x \in X} f(x) = \{y : y = f(x) \text{ for some } x \in X\}$$

$$= range$$

These are generally:

- $A_f = \text{domain} = \text{preimage of f}$
- f(A) = image of A under f

A map $f: A \rightarrow B$ is called:

- injective if $\forall x_1, x_2 \in A, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- surjective if $\forall y \in B, \exists x \in A \text{ such that } f(x) = y$
- \bullet bijective if f is both injective and surjective

Note: f injective $\Leftrightarrow f^{-1}$ exists f^{-1} is called the inverse of f. Δ is called the diagonal (by definition) of X.

4 Composition of Functions

If $f: A \to B$ and $g: B \to C$, then the composition of f and g (denoted by $g \circ f$) is:

$$g \circ f : A \to C$$

This is called the composition of f and g.

4.1 Examples

- 1. $f: \mathbb{R} \to \mathbb{R}, x \mapsto \sin x$
- 2. $f: \mathbb{R}[X] \to \mathbb{R}, p \mapsto p(0)$
- 3. $g: \mathbb{R} \to \mathbb{R}, x \mapsto e^x$
- 4. $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{1}{x}$
- 5. $f: V \to V^*, v \mapsto (v, -)$