<u>Celebal Assignment – Week 4</u>

Missing Values Data:

Visual charts that highlight which dataset columns contain missing entries. These help in easily spotting where data cleaning or filling is required.

```
# Calculate the number of missing (null) values in each column
missing_values = dataset.isnull().sum()

# Print the count of missing values for each column
print(missing_values)
```

survived	0
pclass	Ø
sex	0
age	177
sibsp	0
parch	0
fare	0
embarked	2
class	0
who	0
adult_male	0
deck	688
embark_town	2
alive	0
alone	0
dtype: int64	

Heatmap of the missing values:

A visual representation using a heatmap to show where data is missing in the dataset. It provides a quick overview of the pattern and concentration of null values across rows and columns.

Outliers detection and plotting:

A method to find values that are far from the usual range, like extremely high fares. Visual tools like boxplots help identify and handle such anomalies.

```
# Set the overall figure size for all boxplots
plt.figure(figsize=(15, 10))

# Loop through each numerical column to create a boxplot
for i, col in enumerate(numerical_cols):
    # Create a subplot for each column (2 rows x 3 columns layout)
    plt.subplot(2, 3, i + 1)

# Draw the boxplot for the current column
    sns.boxplot(data=dataset, x=col)

# Set the title for the subplot
    plt.title(f'Boxplot of {col}')

# Adjust spacing between subplots to prevent overlap
plt.tight_layout()

# Display the plots
plt.show()
```

```
Column: survived
Outlier Count: 0
Lower Bound: -1.50
Upper Bound: 2.50
Outlier Values: []
Column: pclass
Outlier Count: 0
Lower Bound: 0.50
Upper Bound: 4.50
Outlier Values: []
Column: age
Outlier Count: 11
Lower Bound: -6.69
Upper Bound: 64.81
Outlier Values: [66. 65. 71. 70.5 65. 65. 71. 80. 70. 70.]
Column: sibsp
Outlier Count: 46
Lower Bound: -1.50
Upper Bound: 2.50
Outlier Values: [3 4 3 3 4 5 3 4 5 3]
Lower Bound: -26.72
Upper Bound: 65.63
Outlier Values: [ 71.2833 263.
                                 146.5208 82.1708 76.7292 80.
                                                                    83.475 73.5
263. 77.2875]
```


Correlation heatmap with numerical values:

A color-based chart that shows how strongly numerical columns are related to each other. Useful for understanding variable relationships and avoiding redundancy.

Relationship between variables:

Analyzes how different columns, especially with the target variable (Survived), are connected. Visual tools uncover trends and dependencies between variables.

```
# Countplot showing distribution of 'sex' grouped by whether the person was alone
sns.countplot(x='sex', hue='alone', data=dataset)
plt.title("Sex by Alone Status") # Set the plot title
plt.show()

# Countplot showing distribution of 'embarked' grouped by whether the person was alone
sns.countplot(x='embarked', hue='alone', data=dataset)
plt.title("Embarked by Alone Status") # Set the plot title
plt.show()
```


Calculating the percentage of the missing values in each columns:

Finds and displays how much data is missing in each column as a percentage. Helps determine which features need cleaning or can be dropped.

```
# Calculate the percentage of missing (null) values for each column
null_percentage = dataset.isnull().mean() * 100

# Filter out only columns with missing values (> 0%) and convert to DataFrame for heatmap
sns.heatmap(
    null_percentage[null_percentage > 0].to_frame(), # Only columns with missing values
    annot=True, # Display the percentage as numbers on the heatmap
    cmap="Y1OrRd" # Use the 'Yellow-Orange-Red' color map for better visualization
)

# Display the heatmap
plt.title("Percentage of Missing Values per Column")
plt.show()
```


Plotting of the column frequencies:

Bar graphs or count plots that show how often each category appears in columns like Sex, Embarked, etc., helping visualize data distribution.

```
# Loop through each numerical column (int64 or float64)
for col in dataset.select_dtypes(include=['int64', 'float64']).columns:
    # Plot a histogram with a KDE (Kernel Density Estimate) overlay for each numerical feature
    sns.histplot(dataset[col], kde=True)

# Display the plot
    plt.show()
```


