Review:

- 1) Features of DC-AC converters are
 - (a) Constant V & F
 - (b) V.V.V.F till rated voltage & constant V
 - variable F above rated
- 2) V.S.I \rightarrow Input is a voltage source
 - ⇒ I can reverse
 - ⇒ Anti-parallel diodes are essential
 - ⇒ Switching signals for devices of the same leg are complimentary
 - ⇒ Dead time required
 - ⇒ Fast devices are used

- 3) C.S.I \rightarrow Input is a current source
 - → Input 'V' to the inverter can change

- ⇒ Due to the presence of a large 'L', there is no possibility of a shoot through fault. Easier to protect the device against any shoot through fault
- ⇒ Circuit is rugged & reliable
- ⇒ Device having anti parallel diode cannot be used

$\frac{1}{2}$ Bridge Inverter

- \Rightarrow Input is V_{DC} without any Z
- \Rightarrow O/P is a square wave with $\frac{1}{2}V_{DC}$
- ⇒ Has all odd harmonics
- \Rightarrow T.H.D. \rightarrow 48%
- \Rightarrow Time for which S_1/S_2 is ON will determine o/p 'F'
- \Rightarrow Switch may not carry I for π radians

Case 2 : Load = L

 γ for D = γ for S = $\frac{\pi}{2}$ radians average power = 0 input power = 0 (neglect loss)

- ⇒ replace battery by 'C'
- ⇒ VSI can supply reactive power
- ⇒ active input = inverter losses

- load: R-L-C
- \Rightarrow Series R-L-C with $\omega < \omega_r$
 - $X_c > X_L$
- ⇒ P.F. is leading
- \Rightarrow i_L is; sinusoidal
- ⇒ 'i' through the device has become zero much before it is turned
- ⇒ Device is turned off of its own
- ⇒ Reason: Load I is leading
- ⇒ Load Commutation

If all switches are SCR's & load is R-L

Input to DC: SCR cannot be turned OFF

through Gate

i_{DEVICE} < i_{HOLDING}

Reverse voltage should be applied to turn it OFF

- ⇒ Separate L & C
- ⇒ Forcibly turned OFF
- ⇒ Forced Commutation

- ⇒ Bulky & Noisy
- ⇒ Inverter grade SCR's are required If P.F. is leading
- 'i' through the device = 0 & flows through the diode of its complimentary switch before the voltage is reversed
- ⇒ SCR has turned OFF
- ⇒ No external L-C circuit is required
- ⇒ Inverter using SCR's feeding a leading P.F. load is quite attractive.

- ⇒ Inverter feeding over-excited synchronous motor
- ⇒ Large power
- ⇒ Load commutated inverter fed synchronous motor

Limitations of
$$\frac{1}{2}$$
 Bridge:

Input =
$$V_{DC}$$

Ouput =
$$\frac{V_{DC}}{2}$$

⇒ One device is conducting at a time.

- ⇒ 2 devices are conducting at a time
- ⇒ Center point of DC link is not required

