Tema 3: Aprendizaje Automático en Máquinas

Universidad Pontificia de Salamanca

Manuel Martín-Merino

Contenido

- Aprendizaje estadístico: Introducción
- Aprendizaje estadístico: Sesgo-Varianza
- Problemas dentro del aprendizaje automático
- Análisis discriminante: Modelos lineales
- Análisis discriminante probabilístico
- Redes Neuronales: Modelos no lineales
- Estimación de errores y comparación modelos
- Tópicos avanzados
- Resúmen: Discusión

Aprendizaje estadístico: Introducción (I)

- Sea $\{(x_i,y_i)\}_{i=1}^N$ una muestra finita de objetos donde $x_i \in \mathcal{X} \subset \mathbb{R}^d$ es la representación vectorial del objeto i y y_i es la salida óptima.
- El problema de **aprendizaje automático** trata de encontrar una función $f: \mathcal{X} \to \mathbb{R}$ que permita *predecir la salida para nuevas observaciones* con error mínimo.
- $y_i \in \mathbb{R}$ en problemas de predicción mientras que $y_i \in \{\pm 1\}$ en problemas de clasificación.

Aprendizaje estadístico: Introducción (II)

Matemáticamente, dada una muestra de datos (x_i, y_i) independientes e idénticamente distribuidos según p(x, y) desconocida, tratamos de encontrar f.

Esto requiere:

- Proponer una familia de funciones aproximadoras suficientemente flexible f(x; w).
- Proponer una función de error $L(y, f(x; \omega))$ que mida la calidad de la aproximación.
- Minimizar el error promedio $E(L(y, f(x; \omega)))$.

Aprendizaje estadístico: Introducción (III)

Objetivo: Aprender la función óptima $f(x; \omega)$ que minimiza:

$$E(w) = \int L(y, f(\boldsymbol{x}; \omega)) p(\boldsymbol{x}, y) d\boldsymbol{x} dy$$
 (1)

como p(x,y) es desconocida, el riesgo funcional se aproxima por el empírico más un término proporcional a la complejidad del modelo:

$$E(\omega) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\boldsymbol{x}_i; \omega)) + \lambda \Omega(\omega)$$
 (2)

Aprendizaje estadístico: Introducción (IV)

Objetivo: Encontrar una función $f(x_i; \omega)$ que obtenga un balance entre error de entrenamiento y complejidad del modelo.

- $f(x_i; \omega)$ muy compleja implica error entrenamiento 0 pero $\Omega(\omega)$ grande.
- $f(x_i; \omega)$ muy sencilla implica minimizar $\Omega(\omega)$ a costa de error de entrenamiento grande.

UPSA

Aprendizaje estadístico: Sesgo-Varianza (I)

La complejidad del modelo debe buscar un balance entre sesgo-varianza.

Consideramos que existen varios conjuntos de entrenamiento \mathcal{D} con n patrones y obtenidos de la misma distribución de probabilidad p(x,y).

Por ser la muestra finita $f_{\mathcal{D}}(\boldsymbol{x};\omega)$ dependerá de la muestra particular elegida. Por ello el error se calcula como un promedio para todas las muestras de entrenamiento

$$\mathcal{E}_{\mathcal{D}}\{f_{\mathcal{D}}(\boldsymbol{x};\omega) - g(\boldsymbol{x}))^2\} \tag{3}$$

Aprendizaje estadístico: Sesgo-Varianza (II)

Este error se puede descomponer como:

$$\mathcal{E}_{\mathcal{D}}[\{f_{\mathcal{D}}(\boldsymbol{x};\omega) - g(\boldsymbol{x})\}^2] = \underbrace{\{\mathcal{E}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{x};\omega)] - g(\boldsymbol{x})\}^2 + \mathcal{E}_{\mathcal{D}}[\{f_{\mathcal{D}}(\boldsymbol{x};\omega) - \mathcal{E}_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{x};\omega)]\}^2]}_{\text{varianza}} \tag{4}$$

- Sesgo: Mide la desviación de la función sobre el valor óptimo del promedio de las estimaciones para diferentes conjuntos de entrenamiento.
- Varianza: Mide la sensibilidad del estimador de la muestra a la muestra particular elegida.

Aprendizaje estadístico: Sesgo-Varianza (III)

Ejemplo: Consideramos el problema de regresión $y = (\sin 2\pi x)^2 + \epsilon$, donde ϵ es una variable aleatoria de media 0 y $\sigma_{\epsilon} = 0,2$. El tamaño del conjunto de entrenamiento es n = 30

Fig. 1: Grados de libertad 30. Varianza elevada.

Fig. 2: Grados de libertad 2,39. Sesgo elevado.

Problemas dentro del aprendizaje automático (I)

Clasificación

Problema de clasificación dos clases

Ejemplo clasificación

- Proponer una familia de funciones (por ej. polinomios)
- Proponer una función de error (por ej. cuadrático)
- Estimar los parámetros:
 Optimizar

Clasificación

Objetivo: Estimar la $p(C_j|x)$ para nuevos patrones no utilizados en la fase de entrenamiento.

Enfoques:

• Probabilístico. Estima $p(\boldsymbol{x}|C_j)$ y aplica la regla de decisión Bayesiana:

$$x \in C_k$$
 si $p(x|C_k)p(C_k) > p(x|C_j)p(C_j) \,\forall j \neq k$ (5)

- Redes Neuronales y regresión logística. Estima directamente $p(C_j|\boldsymbol{x})$
- Análisis discriminante. Estima directamente la ecuación de la frontera $f(x;\omega)$

Problemas dentro del aprendizaje automático (II)

Predicción: Identificación funciones

- Proponer una familia de funciones (por ej. polinomios)
 - Modelos lineales: Regresión lineal, logística.
 - Modelos no lineales: Redes Neuronales.
- Proponer una función de error (por ej. cuadrático)
- Estimar los parámetros:
 Optimizar

UPSA Manuel Martín-Merino

Problemas dentro del aprendizaje automático (III)

Análisis de Cluster

Ejemplo cluster

- Proponer un modelo
- Definir función de error que mida calidad cluster
- Estimar los parámetros:
 Optimizar

Análisis discriminante: Modelos lineales (I)

• Sea $\{x_i, t_i\}_{i=1}^N$ una muestra finita de patrones de entrenamiento y $\{C_j\}_{j=1}^M$ el conjunto de clases. $t_{ij}=1$ si x_i pertenece a la clase C_j .

- La función discriminante lineal se escribe como: $f(\boldsymbol{x}; \boldsymbol{w}) = \boldsymbol{w}^T \boldsymbol{x} + w_0$ $f(\boldsymbol{x}) \geq 0$ entonces $\boldsymbol{x} \in C_1$, en otro caso $\boldsymbol{x} \in C_2$.
- ¿ Función de error a optimizar ?

Análisis discriminante: Modelos lineales (II)

Enfoque Fisher: Proyecta los datos sobre un hiperplano lineal que maximiza la separabilidad entre clases.

Criterio de separabilidad (biclase):

- Maximiza separación entre centros de clases proyectadas $(\bar{m}_2 \bar{m}_1)^2$.
- Minimiza la dispersión de cada clase en torno a su media $(s_1^2+s_2^2)$ donde $s_k^2=\sum_{i\in C_k}(\bar{x}_i-\bar{m}_k)^2.$

Criterio de Fisher

La función de error a optimizar se puede escribir como:

$$J(\boldsymbol{w}) = \frac{(\bar{m}_2 - \bar{m}_1)^2}{s_1^2 + s_2^2} = \tag{6}$$

$$= \frac{\mathbf{w}^{T}(\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{T}\mathbf{w}}{\sum_{x_{i} \in C_{1}} \mathbf{w}^{T}(\mathbf{x}_{i} - \mathbf{m}_{1})(\mathbf{x}_{i} - \mathbf{m}_{1})^{T}\mathbf{w} + \sum_{x_{i} \in C_{2}} \mathbf{w}^{T}(\mathbf{x}_{i} - \mathbf{m}_{2})(\mathbf{x}_{i} - \mathbf{m}_{2})^{T}\mathbf{w}}$$
(7)

Definimos las matrices de covarianza interclase e intraclase como:

$$S_B = (\boldsymbol{m}_2 - \boldsymbol{m}_1)(\boldsymbol{m}_2 - \boldsymbol{m}_1)^T \tag{8}$$

$$S_w = \sum_{x_i \in C_1} \boldsymbol{w}^T (\boldsymbol{x}_i - \boldsymbol{m}_1) (\boldsymbol{x}_i - \boldsymbol{m}_1)^T \boldsymbol{w} + \sum_{x_i \in C_2} \boldsymbol{w}^T (\boldsymbol{x}_i - \boldsymbol{m}_2) (\boldsymbol{x}_i - \boldsymbol{m}_2)^T \boldsymbol{w}$$
(9)

Análisis discriminante: Modelos lineales (III)

Esto supone optimizar el siguiente criterio:

$$J_F = \frac{\mid \mathbf{w}^T S_b \mathbf{w} \mid}{\mid \mathbf{w}^T S_w \mathbf{w} \mid},\tag{10}$$

Esto equivale a resolver el siguiente problema de autovalores y autovectores:

$$S_b \mathbf{w} = S_w \mathbf{w} \Lambda \tag{11}$$

que se puede resolver eficientemente mediante operaciones de álgebra lineal.

Proyectados los datos, se asignan a la clase de centroide más cercano.

Análisis discriminante: Modelos lineales (IV)

Propiedades discriminante Fisher:

- Es atractivo para trabajar en alta dimensión y eficiente computacionalmente.
- La frontera inducida es lineal y no está preparado para trabajar con clases multimodales.
- La dimensión máxima del espacio proyección es M-1.
- Es bastante sensible a atípicos y no maximiza la capacidad de generalización.

UPSA

Análisis discriminante: Modelos lineales (V)

Discriminante lineal puede optimizar también el error cuadrático medio:

$$E = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{i} + w_{0} - t_{i})^{2}$$
(12)

Definimos la variable respuesta:

$$t_i = \begin{cases} N/N_1 & \text{si} & \boldsymbol{x_i} \in C_1 \\ -N/N_2 & \text{si} & \boldsymbol{x_i} \in C_2 \end{cases}$$
 (13)

Calculando las derivadas e igualando a 0 obtenemos:

$$\frac{\partial E}{\partial w_0} = \sum_{i=1}^{N} (\boldsymbol{w}^T \boldsymbol{x}_i + w_0 - t_i) = 0$$
 (14)

$$\frac{\partial E}{\partial \boldsymbol{w}} = \sum_{i=1}^{N} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} + w_{0} - t_{i}) \boldsymbol{x}_{i} = 0$$
 (15)

Operando se obtiene:

$$(\boldsymbol{S}_w + \frac{N_1 N_2}{N} \boldsymbol{S}_B) \boldsymbol{w} = N(\boldsymbol{m}_1 - \boldsymbol{m}_2)$$
 (17)

(16)

Teniendo en cuenta que $S_B w$ es paralelo a $m_2 - m_1$ el vector w de la función discriminante se puede expresar:

$$\boldsymbol{w} \propto \boldsymbol{S}_w^{-1}(\boldsymbol{m}_2 - \boldsymbol{m}_1) \tag{18}$$

que es equivalente a la expresión obtenida maximizando la separabilidad.

UPSA