

SU² code structure

INTRODUCTION TO THE SU2 CODE STRUCTURE

JULY 1ST, 2014

Francisco Palacios, Michael Colonno, Thomas D. Economon, Juan J. Alonso Department of Aeronautics & Astronautics Stanford University

Code structure SU² C++ Modules

SU2_CFD - Main CFD solver

SU2_PRT - Mesh Partitioning Code

SU2_SOL - Solution Export Code

SU2_MSH - Mesh Adaptation Code

SU2_DEF- Mesh Deformation Code

SU2_GEO - Geometry Definition Code

- + Python scripts
- + SU2_EDU (Educational version)
- + SU2_PHI (Xeon Phi version, on going Intel® collaboration)

Code structure Class hierarchy in SU2_CFD

Code structure Class hierarchy for solving a RANS problem

Code structure Class hierarchy in SU2_CFD

1a) Read Input

Class: CConfig

· Read the config file.

1b) Read Mesh

Class: CGeometry

- · Read the mesh file.
- Set up multigrid meshes.

2) Solve Equations

Class: CSolver

Euler Equations: CEulerSolver
 Plasma Equations: CPlasmaSolver
 Euler Adj. Eq.: CEulerAdjSolver

Heat Equations: CHeatSolver

• And others...

3) Write Output

Class: COutput

- Print on screen
- Write solution file
- Write restart file
- · Write history file

Store Flow Variables

Class: CVariable

- Stores variables at every mesh node.
- Declare & store all flow variables
 - CEulerVariable: Density, energy etc.
 - CNSVariable: CEulerVariable + Viscosity
 - CAdjVariable: Adjoint variables
 - And others...

Discretization

Class: CNumerics

Spatial Discretization

- · Convective Flux, Jacobian
 - CNumerics:: Roe/JST/etc.
- Viscous Flux, Jacobian
 - CNumerics:: Avg Grad/etc.
- Source Terms, Jacobian
 - CNumerics:: PieceWiseConst.

Temporal Discretization

- Implicit Time Integration
- Explicit Euler/ Runge-Kutta
- Dual Time

Solve Linear System

Class: CSparseMatrix

- Linear solvers
 - BiCSTAB
 - GMRES
- Preconditioners
 - Linelet
 - LU-SGS
 - Low Mach number
- Update solution vector

Code structure CGeometry Class

Files in Common/include:

- geometry_structure.hpp
- geometry_structure.inlIn Common/src
- geometry_structure.cpp

CGeometry

Code structure CSolver Class

Files in SU2_CFD/include:

- solver_structure.hpp
- solver_structure.inl

In SU2_CFD/src

- solver_direct_mean.cpp
- solver_adjoint_mean.cpp
- solver direct template.cpp
- etc.

Code structure CVariable Class

Files in SU2_CFD/include
variable_structure.hpp
variable_structure.inl
SU2_CFD/src
variable_direct.cpp
variable_adjoint.cpp
variable_template.cpp
etc.

Code structure CNumerics Class

Child Classes for:

- Convective Flux Discretization + Jacobian
- Viscous Flux Discretization + Jacobian
- Source Terms Discretization + Jacobian

Files in SU2_CFD/include

- numerics_structure.hpp
- numerics_structure.inl

In SU2_CFD/src:

- numerics structure.cpp
- numerics_convective.cpp
- numerics viscous.cpp
- numerics_source.cpp

Code structure CNumerics Class

Thanks a lot for your attention!

Questions & Answers

More details in http://su2.stanford.edu/