SYSTEMY AI – LAB 4.1 (2023)

Zadanie 1

Struktura **perceptronu**:

- *n* wejść: *x*₀=1 (bias), *x*₁, *x*₂,..., *x*_n
- 1 wyjście: y

$$y = f(\sum_{i=1}^{n} x_i w_i + \theta)$$

gdzie θ , w_1 ,..., w_n (w_0 jest oznaczane przez θ) są wagami i

$$f(s) = \begin{cases} 1, & s > 0 \\ -1, & s \le 0 \end{cases}$$

jest funkcją aktywacji.

 Perceptron może klasyfikować "obiekty" które należą do dwóch liniowo separowalnych zbiorów.

Dla n=2 zbiory te są separowalne przez linię prostą:

$$x_1 w_1 + x_2 w_2 + \theta = 0$$

Wówczas:

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{\theta}{w_2}$$

W celu nauczenia percepronu klasyfikacji musimy użyć pewnego ciągu uczącego tzn. zbioru $D=\{(\mathbf{x}_1,d_1),...,(\mathbf{x}_m,d_m)\}$ m przykładów gdzie:

- \mathbf{x}_{j} jest n-wymiarowym wektorem wejść.
- d_i jest wartością oczekiwaną na wyjściu dla wektora \mathbf{x}_i .

Algorytm uczenia:

- 1. Nadaj wartości początkowe wagom θ , w_1 ,..., w_n . Wagi mogą być początkowo równe 0 lub wybrane losowo.
- 2. Dla każdego elementu (\mathbf{x}_i, d_i) z ciągu uczącego :
 - a. Oblicz y.
 - b. Jeżeli klasyfikacja jest poprawna ($y=d_i$), nic nie rób.
 - c. Jeżeli klasyfikacja nie jest poprawna ($y\neq d_j$), wówczas zmodyfikuj wszystkie wagi: $w_i = w_i + d_i x_{ii}$
- 3. Powtarzaj tę procedurę aż wszystkie \mathbf{x}_i będą zaklasyfikowane poprawnie.

POLECENIE:

Napisz program będący implementacją perceptronu dla poniższego ciągu uczącego:

X 1	X ₂	d
2	1	1
2	2	1
0	6	1
-2	10	-1
-2	0	-1
0	0	-1
4	-20	-1

Po nauczeniu znajdź równanie prostej decyzyjnej.

Zadanie 2

Funkcja aktywacji **neuronu Hebba** – funkcja bipolarna:

$$f(x) = \frac{1 - \exp(-\beta x)}{1 + \exp(-\beta x)}$$

Uczenie polega na znalezieniu wag minimalizujących błąd:

$$E = \frac{1}{2}(d - f(\sum_{i=0}^{n} x_i w_i))^2$$

Modyfikacja wag:

$$w_i = w_i + \eta dx_i$$

gdzie $\eta \in [0,1]$ jest współczynnikiem uczenia.

Algorytm uczenia:

- 1. Nadaj wartości początkowe wagom θ , w_1 ,..., w_n . Wagi mogą być początkowo równe 0 lub wybrane losowo.
- 2. Dla każdego elementu (x_i,d_i) z ciągu uczącego :
 - a. Oblicz y.
 - b. Zmodyfikuj wszystkie wagi.
 - c. Policz błąd E.
- 3. Jeżeli błąd sumaryczny dla całej epoki nie jest mniejszy od założonego E_{MAX} wówczas wróć do pkt 2.

POLECENIE:

Napisz program dla neuronu Hebba rozpoznającego dwie cyfry:

Zadanie 3

Neuron sigmoidalny z unipolarną funkcją aktywacji:

Unipolarna funkcja aktywacji:

$$f\left(x\right) = \frac{1}{1 + e^{-\beta x}}$$

Wyjście neuronu:

$$y(t) = f\left(\sum_{i=0}^{n} w_i(t) x_i(t)\right).$$

Uczenie polega na znalezieniu wag minimalizujących błąd:

$$Q(\mathbf{w}) = \frac{1}{2} \left[d - f\left(\sum_{i=0}^{n} w_i x_i\right) \right]^2$$

Modyfikacja wag:

$$w_i(t+1) = w_i(t) - \eta \delta x_i = w_i(t) + \eta (d - f(s))f'(s)x_i.$$

gdzie $\eta \in [0,1]$ jest współczynnikiem uczenia. Pochodna:

$$f'(x) = \beta f(x)(1 - f(x))$$

Algorytm uczenia taki jak dla neuronu Hebba.

POLECENIE:

Napisz program dla neuronu **sigmoidalny z unipolarną funkcją aktywacji** rozpoznającego dwie cyfry:

Po nauczeniu sprawdź, jak są klasyfikowane następujące obrazki:

