Building an infrastructure for accessing and analysing figures in scholarly publications

Piotr Praczyk – CERN, 10.03.2011

Usage of graphics in scholarly communication

- Describe experiments
- Summarise large amounts of data
- Illustrate relations between results
- Present ideas in a schematic manner

C'est un homme on me famme qui foit des serpériences sur des objets noturels ou quisont dangeureux on toxiques c'est un scientifique en quelques sortes.

Siam Siidi

Different measurements of the same quantity

Measured cross section for $e^+e^- \rightarrow hadrons$ as a function of \sqrt{s}

Current understanding of the work

Extraction

Scholarly publications

Description of figures as separate entities

Indexing

Collective description
Of figures

Automatic extraction of figures

EUROPEAN ORGANIZATION FOR NUCLEAR RISEARCH

CENN EP/10-113

The analysis of th

Evaluation of the extraction quality
Merging of results
Acquisition of additional data

Meta-data

Vector + Raster images

(in the future)
Semantic description

Types of extracted meta-data

- Boundaries of figures
- Boundaries of captions
- Text of captions
- Graphics in PNG and SVG formats
- Places, where figure is referenced
- Name of the figure inside a document
- Text present inside the figure

Select Your Figure

Extracting data from PDF

PDF:

- Stream of instructions
- Embeded objects
 - Fonts
 - External objects
- Meta-description

FIG. 1. Effective quark mass induced by domain-walls for the free field configuration D_8 is the

In the presence of a realistic gauge potential, the effective quark mass result from the finite wall separation may depend on how it is defined. Different definitions shall yield results consistent up to a factor of order unity. One approach is to exploit the explicit quark mass dependence in chiral Ward identities such as the Gell-Mjann-Oakes-Renner (GMOR) relation as done in Ref. [7]. Here we explore the effective mass in an alternative way. In continuum field theory, the Atiyah-Singer theorem [8] states that the Dirac operator has a zero eigenvalue in the presence of an external background with topological charge ||Q|| = 1. The explicit form of the solution was found by 't Hooft in 1976 [9]. On the lattice, however, the notion of topological charge is ill defined: any gauge configuration can be continuously deformed into a null gauge field. Moreover, the discretization of an instanton field can introduce finite lattice-spacing effects lifting any exact zero eigenvalue. Therefore, a test of the Atiyah-Singer theorem on lattice is usually complicated with various lattice artifacts)

[There exists, however, a definition of lattice topology and fermion zero mode which largely avoids this complication. In the overlap formalism, the Dirac operator is constructed from the overlap of two many-fermion ground states [3]. According to their recipe, one starts from a four-dimensional Wilson-Dirac operator with a negative Wilson mass m_0 and calculates its eigenvalues. For m_0 small and positive, the number of positive eigenvalues is equal to that of negative ones. When m_0 increases, a level might cross from positive to negative or vice versa. When this happens, the gauge field is regarded to have a net topological charge $|\mathcal{Q}| = 1$. Then the overlap determinant is exactly zero by construction This definition of lattice topology and zero mode do depend on, for instance, the Wilson parameters n and m_0 . However, the zero eigenvalue is exact, independent of the lattice spacing n and volume n.

Schema of the PDF extraction process

Intermediate steps of the algorithm

FIG. 14: Projections of $\Delta \chi^2$ as a function of the mixing angles for the $m_4 \gg m_3$ model. The solid line is obtained for the pase of null ν_c appearance whereas the dashed line represents solutions with ν_c appearance at the CHOOZ limit. The ranges is values allowed at 68% and 90% confidence levels lie within contours below the horizontal dashed lines.

FIG. 15: Contours representing 90% confidence level for the $m_L \gg m_B$ model. The solid line and best-fit point (solid symbol) are obtained for the case of mill ν_e appearance, whereas the dashed line and corresponding best-fit point (open symbol) is obtained with ν_e appearance included with θ_{13} at the CHOOZ limit.

Hisappearance probability is a maximum. The determination of the limit follows the procedure described above but with the addition of selecting a value of θ_{24} for each test case as well. At 90% confidence level $f_g < 0.52$ (0.55 for $E_p = 1.4$ GeV in this model. Thus, in either model approximately 50% of the disappearing ν_g can convert to ν_g at 90% confidence level as long as the amount of ν_e appearance is less than the limit presented by the CHOOZ collaboration.

IX. OSCILLATIONS WITH DECAY

It was noted more than a decade ago that neutrinc locay, as an alternative or companion process to neuprino oscillations, effers some capability for reproducing neutrino disappearance trends [18]. The model investigated here [36] includes neutrino oscillations occurring in parallel with neutrino decay. Normal neutrino-mass orfering is assumed, and the mass eigenstates ν_1 , ν_2 are approximately degenerate, so that $m_3 \gg m_2 \approx m_1$. The heaviest neutrino-mass state ν_2 is allowed to decay into an invisible final state. With these assumptions, and neglecting the small contributions from ν_r mixing, only the two neutrino flavor states ν_p and ν_r , and the corresponding mass states ν_2 and ν_3 , are considered. The evolution of the neutrino flavor states is given by [36]

$$\begin{vmatrix} db \\ dx \end{vmatrix} = \begin{bmatrix} \Delta m_{32}^2 \\ -4z \end{bmatrix} \begin{pmatrix} -\cos 2\theta \\ \sin 2\theta \end{pmatrix} \begin{vmatrix} \sin 2\theta \\ \cos 2\theta \end{pmatrix}$$

$$\begin{vmatrix} -i\frac{m_3}{4\tau_3}b \\ \sin 2\theta \end{vmatrix} \begin{pmatrix} 2\sin^2\theta \\ \sin 2\theta \\ 2\cos^2\theta \end{pmatrix} \begin{vmatrix} \vec{\nu} \end{vmatrix}$$

$$\begin{vmatrix} 16 \\ 16 \end{vmatrix}$$

where τ_3 is the lifetime of the ν_3 mass state and θ is th mixing angle governing oscillations between ν_{μ} and ν_{γ} Solving Eq. (16) one obtains probabilities for ν_{μ} survive or decay:

$$\begin{array}{c|c} \mathbb{F}_{\mathrm{III}} & = \cos^4\theta + \sin^4\theta e^{-\frac{m+1}{22E}} \boxplus \\ & 2\cos^2\theta \sin^2\theta e^{-\frac{m+1}{22E}} \cos\left(\frac{\Delta m_{22}^2L}{2E}\right) \end{array} \text{ [I7]}$$

$$\mathbb{F}_{\mathrm{decay}} = \left[1 - e^{-\frac{m+1}{22E}}\right] \sin^2\theta$$

The limits $\tau_2 \rightarrow \infty$ and $\Delta m_{32}^2 \rightarrow 0$ correspond to a pure secillations or a pure decay scenario, respectively. In a conventional neutrino oscillations scenario, the ratio of the predicted charged-current spectrum in the faridetector with the null-oscillation expectation displays the characteristic "dip" at the assumed Δm_{32}^2 value that is

- Regions of graphics (blue)
 - Clustered graphic operations
- Regions of text (green)
 - Clustered text operations
- Elements of page layout (red)

Future work

- Finishing work on the PDF extractor and selction interface
 - Extracting + tagging semantics of images
- Similarity measure based on semantic and graphical properties of figures
- Extraction of data described by figures
- Improvements in extractor algorithms
 - usage of different algorithms
 - usage of different types of data that are produced)

Thank You

Questions?