Physical Cosmology Homework - Early Universe

Dandan Xu, dandanxu@tsinghua.edu.cn

2024, Nov

1. The total energy density $\rho(T)$ of all relativistic species under thermal equilibrium in early universe is given via an effective number of degree of freedom $g_*(T)$ as: $\rho(T) = \pi^2/30 g_*(T) T^4$ (assuming $c = \hbar = k = 1$), where

$$g_*(T) = \sum_{i \in \text{bonson}} g_i(T) + 7/8 \sum_{i \in \text{fermion}} g_i(T). \tag{1}$$

Please calculate $g_*(T)$ at different era in early universe (for g for each particle species, refer to Table 1):

- (1.1) At $T > 175 \,\text{GeV}$, all standard model particles are relativistic, calculate $g_*(T)$ at that temperature.
- (1.2) Let us assume that electroweak phase transition once happened, and particles acquired mass due to the *Higgs mechanism*. Then at $T \sim 100 \,\text{GeV}$, top quarks and anti-quarks eventually annihilated, followed by Higgs boson H^0 , and electroweak gauge boson Z^0 and W^{\pm} . At $T \sim 10 \,\text{GeV}$, assuming all annihilation mentioned above was completed by then, what was $g_*(T)$?
- (1.3) At $T \leq 1 \,\mathrm{GeV}$, bottom and charm quarks annihilated with their anti-quarks, followed by tau leptons τ and their antiparticles. Assuming all annihilation above was done before the QCD phase transition at 150 MeV, which quark and lepton species remain in the relativistic sea? What was $g_*(T)$ by then?
- (1.4) After the QCD phase transition, all free quarks that used to be in the relativistic sea were then confined into *baryons* (composed of 3 quarks with three different colors) and *mesons* (composed of one quark with any color and an antiquark with the matching anticolor), as well as their antiparticles. Note that this actually happened before *strange*, *up* and *down* quarks

Table 1: The particles in the standard model of particle physics $Particle\ Data\ Group,\ 2018$

Quarks	$ \begin{array}{c} t \\ b \\ c \\ s \\ d \\ u \end{array} $	$173.0 \pm 0.4 \mathrm{GeV}$ $4.15 - 4.22 \mathrm{GeV}$ $1.27 \pm 0.03 \mathrm{GeV}$ $92 - 104 \mathrm{MeV}$ $4.4 - 5.2 \mathrm{MeV}$ $1.8 - 2.7 \mathrm{MeV}$	$ \begin{array}{c} \bar{t} \\ \bar{b} \\ \bar{c} \\ \bar{s} \\ \bar{d} \\ \bar{u} \end{array} $	$ spin = \frac{1}{2} $ 3 colors	$g = 2 \cdot 3 =$	72
Gluons	8 massless bosons		spin=1	g = 2	16	
Leptons	$ au^- \ \mu^- \ e^-$	$105.658\mathrm{MeV}$	$ au^+ \ \mu^+ \ e^+$	$spin = \frac{1}{2}$	g=2	
	$ u_{ au}$	$< 2 \mathrm{eV}$ $< 2 \mathrm{eV}$ $< 2 \mathrm{eV}$ $< 2 \mathrm{eV}$	$ar{ u}_{ au}$ $ar{ u}_{\mu}$ $ar{ u}_{e}$	$spin = \frac{1}{2}$	g = 1	12
						6
Electroweak	$W^{+}_{Z^{0}}$			spin=1	g = 3	
gauge bosons	Z^0 γ	. 10			g = 2	11
Higgs boson (SM)	H^0	$125.18 \pm 0.16\mathrm{GeV}$		spin=0	g = 1	1

and anti-quarks yet had time to annihilate. In particular, the up and down quarks were confined into protons and neutrons (so were anti-up quarks and anti-down quarks confined into anti-protons and anti-neutrons), which annihilated right after they were born ($think\ of\ why$). The Π^0 and Π^{\pm} mesons were also produced (with a total degree of freedom $g_{pion}=3$) (assuming they had not yet completed the annihilation), what was $g_*(T)$ by then?

- (1.5) At $T < 100 \,\text{MeV}$, Π^0 , Π^\pm , as well as Muon leptons μ all finished the annihilation processes. Which species remain in the relativistic sea? What was $g_*(T)$ by then?
- (1.6) Finally at $T < 1 \,\text{MeV}$, two important events happened: neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ and their antiparticles decoupled from the rest of the relativistic sea; and electrons and positrons annihilated. After neutrinos decoupled and before the cosmic temperature dropped to 1 eV, were they in thermal equilibrium with photons, and were they relativistic? Why? After e^\pm annihilation finished and before the cosmic temperature dropped to 3000 K, were the remaining free electrons in thermal equilibrium with photons, and were they relativistic? Why?

[Note that after e^{\pm} annihilation, the interaction rate $\Gamma_{\gamma} \sim n_e \langle \sigma_{\rm T} \rangle$ for Thomson scatter of a photon by remaining free electrons only dropped below the Hubble expansion rate H at a temperature of $T \sim 130\,K$. However, the cosmic recombination happened around $T \sim 3000\,K$, when free electrons were captured by protons to form neutral hydrogen (which were than re-ionized at the epoch of cosmic re-ionization around $z \sim 6-7$). While for free electrons it is a different story as $\Gamma_e \sim n_{\gamma} \langle \sigma_{\rm T} \rangle \gg \Gamma_{\gamma}$, due to an extremely large photon-to-electron ratio $n_{\gamma}/n_e \sim \eta^{-1} \sim 10^9$, free electrons could always have been surrounded and bombarded by a vast sea of photons.]

2. At below 1 MeV, neutrinos and anti-neutrinos decoupled from the rest of the relativistic sea, as the weak interaction rate $\Gamma(T) \propto T^5$ drops much below the cosmic expansion rate $H(T) \propto T^2$ at this energy level. They would have remained the same temperature as photons, if electron-positron annihilation had not happened. Before the e^{\pm} annihilation, both species share the same temperature T_0 ; but by the time the annihilation was finished, the energy level of the photon sea (but not of the neutrino sea) was raised up by the energy input from e^{\pm} annihilation, resulting in photon temperature $T_{\gamma,1}$ higher than neutrino temperature $T_{\nu,1}$, with the ratio fixed and lasting until today. We will now calculate the temperature ratio $T_{\nu,1}/T_{\gamma,1}$ and the energy density ratio $\rho_{\nu,1}/\rho_{\gamma,1}$ between the two relativistic species right after the annihilation.

- (2.1) Write down the effective degree of freedom $g_{*,0}$ and the entropy density $s(T_0)$ in terms of $g_{*,0}$ at temperature T_0 before electron-positron annihilation, assuming that photons, electrons, neutrinos and their antiparticles are all in thermal equilibrium at this stage.
- (2.2) After electron-positron annihilation, neutrinos and photons have different temperatures $T_{\nu,1}$ and $T_{\gamma,1}$, respectively. This is the case where multiple relativistic species co-exist, each with temperature T_i that may or may not be the same as the equilibrium temperature T of the majority species. In this case, we can define an effective degree of freedom $g_*(T)$ through energy density $\rho(T)$:

$$g_*(T) \equiv \frac{30 \,\rho(T)}{\pi^2 \,T^4} = \Sigma_{i \in \text{bonson}} \,g_i \left(\frac{T_i}{T}\right)^4 + 7/8 \,\Sigma_{i \in \text{fermion}} \,g_i \left(\frac{T_i}{T}\right)^4. \tag{2}$$

We can also define an effective degree of freedom $g_{*s}(T)$ through entropy density s(T) via:

$$g_{*s}(T) \equiv \frac{45 \, s(T)}{2\pi^2 \, T^3} = \sum_{i \in \text{bonson}} g_i \left(\frac{T_i}{T}\right)^3 + 7/8 \, \sum_{i \in \text{fermion}} g_i \left(\frac{T_i}{T}\right)^3. \tag{3}$$

Only if all species are in thermal equilibrium, i.e., $T_i = T$, then $g_* = g_{*s}$. Now let us follow the photon species, and choose $T_{\gamma,1}$ as the equilibrium temperature for *after* electron-positron annihilation. Write down the effective degree of freedom $g_{*s,1}$ and the entropy density $s(T_{\gamma,1})$ in terms of $g_{*s,1}$.

(2.3) The conservation of comoving-volume entropy requires $s(T_0)a_0^3 = s(T_{\gamma,1})a_1^3$, where the scale factor a_0 and a_1 for before and after the annihilation can be linked by the neutrino temperature, which simply scales as $T_{\nu} \propto a^{-1}$. With this, show that:

$$\frac{T_{\nu,1}}{T_{\gamma,1}} = \left(\frac{g_{*s,1}}{g_{*,0}}\right)^{1/3} = \left(\frac{4}{11}\right)^{1/3} \text{ (for 3 neutrino families)}.$$
 (4)

- (2.4) Using Eq. (2) and (4), calculate the numerical values of effective $g_*(T)$ before and after electron-positron annihilation.
- (2.5) Work out the numerical values of $\rho_{\nu,1}/\rho_{\gamma,1}$ between the two relativistic species *after* the annihilation. Note that this is why the CMB background

temperature $T_{\rm CMB} \sim 2.75 \, {\rm K}$, while the neutrino background temperature $T_{\rm CNB} \sim 1.96 \, {\rm K}$. The present-day energy density of all relativistic species $\rho_{\rm R,\,today} = [1 + 7/8 \times 3 \times (4/11)^{4/3}] \, \rho_{\gamma,\,\rm today} \sim 8 \times 10^{-34} \, {\rm g/cm^3}$, with the CMB radiation density today $\rho_{\gamma,\,\rm today} \sim 4.6 \times 10^{-34} \, {\rm g/cm^3}$.

- 3. Consider a flat universe dominated by relativistic species with an effective degree of freedom $g_*(T)$ (given by Eq. (2)). The Hubble parameter H(t) can be linked to temperature T and $g_*(T)$ through the Friedmann equation.
- (3.1) Evaluate in the radiation era the power-law slope α in $H(T_{\gamma}) \propto T_{\gamma}^{\alpha}$ for the relation between the Hubble parameter H and photon temperature T_{γ} , and the power-law slope β in $T_{\gamma}(t) \propto t^{\beta}$ for the relation between T_{γ} and cosmic time t. Specifically show that during the radiation era, we can express time t as a function of T:

$$t(T) = \sqrt{\frac{45}{16\pi^3 G}} \frac{T^{-2}}{\sqrt{g_*(T)}}.$$
 (5)

Note that this is a very useful relation between t and T in early universe. We can re-normalize this into:

$$t(T) = \frac{2.4}{\sqrt{q_*(T)}} \left(\frac{T}{\text{MeV}}\right)^{-2} \text{sec.}$$
 (6)

- (3.2) Now let us estimate the mass fraction X_4 of primordial helium ⁴He via the approximation of $X_4 \approx 2X_{\rm n}(t_{\rm d})$, where $t_{\rm d}$ is the time of efficient deuterium production ("deuterium bottleneck"). The mass fraction $X_{\rm n}(t_{\rm d})$ of free neutrons is essentially controlled by two crucial time stamps, i.e., the time of neutrino decouple $t_{\rm ND}$ (at energy scale of $T_{\rm ND} \sim 0.8\,{\rm MeV}$) and $t_{\rm d}$ (at energy scale of $T_{\rm d} \sim 0.07\,{\rm MeV}$), in between free neutrons decay with a half time of $\tau_{\rm n} = 887\,{\rm s}$. If we take the thermal equilibrium abundance $X_{\rm n}(t_{\rm ND}) = 0.1657$ at just before neutrino decouple, now use Eq. (6) and the result of (2.4), work out $t_{\rm ND}$, $t_{\rm d}$, $X_{\rm n}(t_{\rm d})$ and finally $X_{\rm 4}$.
- (3.3) In our Universe, as the baryon-to-photon ratio $\eta \equiv n_{\rm B}/n_{\gamma} \sim 10^{-9}$, the thermal status has always been governed by the relativistic species, while the dynamics in the *matter* era is governed by the non-relativistic matter component. Evaluate in the *matter* era the power-law slope α in $H(T_{\gamma}) \propto T_{\gamma}^{\alpha}$, and the power-law slope β in $T_{\gamma}(t) \propto t^{\beta}$. [Also think about how η can affect the primordial helium abundance.]