CONJUNTOS NUMÉRICOS N, Z, Q E R

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ é o conjunto dos números naturais.

 $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ é o conjunto dos números inteiros.

 $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ e } b \neq 0 \right\} \text{ \'e o conjunto dos números racionais.}$

- Representação decimal de um número racional:
- (a) 0.5 é uma representação decimal de $\frac{1}{2}$
- (b) $0,4999... = 0,4\overline{9}$ é uma representação decimal de $\frac{1}{2}$
- (c) 2,03 é uma representação deciamal de $\frac{203}{100}$
- (d) 0.25 é uma representação decimal de $\frac{1}{4}$
- (e) $1,333...=1,\overline{3}$ é uma representação decimal de $\frac{4}{3}$
- (f) $2,31818... = 2,3\overline{18}$ é uma representação decimal de $\frac{2295}{990}$

Todo número racional admite uma representação decimal finita ou em forma de dízima periódica. A representação decimal é dita finita, se após a vírgula houver apenas um número finito de dígitos não nulos. Os ítens (a), (c) e (d) acima são exemplos de representação decimal finita. Uma dízima periódica é uma representação decimal infinita (após a vírgula há um número infinito de dígitos não nulos) em que o período é repetido continuamente. O período de uma dízima periódica é o menor bloco de dígitos que é repetido continuamente. São dízimas periódicas os ítens (b), (e) e (f)

- ullet O número 3,101001000100001... (mais 5 zeros e então um número 1, em seguida 6 zeros e o número 1, e assim por diante), não é um número racional, porque é um decimal infinito, mas não é dízima periódica.
 - $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, e, π são exemplos de números irracionais.
- $\pi \approx 3{,}14159~{\rm e}~\approx 2{,}71828.$ O número e é chamado de n'umero~deEuler (lê-se: Óiler) em homenagem ao matemático suiço Leonhard Paul Euler (1707 - 1783).

Um número é irracional se não puder ser escrito como o quociente(=divisão=razão) entre dois números inteiros (com denominador diferente de zero, é claro); ou de modo equivalente: se sua representação decimal é infinita, mas não é uma dízima periódica.

(Conjunto dos números reais) A união de Q com o conjunto de todos os números irracionais é o conjunto dos números reais, denotado por \mathbb{R} .

• 0, -1, 2, $\frac{1}{4}$, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, e, π são exemplos de números reais.

(Intervalos em \mathbb{R}) Dizemos que um subconjunto $I \neq \emptyset$ de \mathbb{R} é um intervalo se para quaisquer $a, b \in I$, $a \le x \le b \Rightarrow x \in I$.

Os possíveis intervalos de \mathbb{R} estão dados abaixo, sendo a e b números reais, com a < b:

- $[a, b] = \{x \in \mathbb{R} \mid a < x < b\}$
- $|a,b| = \{x \in \mathbb{R} \mid a < x < b\}$
- $]a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$
- $]-\infty, b] = \{x \in \mathbb{R} \mid x \le b\}$
- $[a, b] = \{x \in \mathbb{R} \mid a < x < b\}$
- $[-\infty, b] = \{x \in \mathbb{R} \mid x < b\}$

- $[a, +\infty[= \{x \in \mathbb{R} \mid x \ge a\}]$
- $[-\infty, +\infty[$
- $]a, +\infty[= \{x \in \mathbb{R} \mid a > a\}$
- Usa-se, também (a, b) no lugar de [a, b[; [a, b) no lugar de [a, b[; $(-\infty, b)$ no lugar de $]-\infty, b[$, etc.
- \bullet Os intervalos $]a,b[,\]-\infty,b[,\]a,+\infty[\ \mathrm{e}\]-\infty,+\infty[\ =\mathbb{R}$ são chamados de intervalos abertos, enquanto [a, b] é um intervalo fechado. O intervalo [2,5] é um exemplo de intervalo aberto à esquerda e fechado à direita, etc.
- Os extremos dos intervalos [a, b], [a, b], [a, b] e [a, b] são os pontos $a \in b$. Os intervalos $]-\infty, b] \in]-\infty, b[$ tem apenas o extremo da direita: o ponto b. E os intervalos $[a, +\infty[$ e $]a, +\infty[$ tem apenas o extremo da esquerda: o ponto a. O intervalo $]-\infty,+\infty[\,=\mathbb{R}$ não tem extremos. Os pontos interiores de um intervalo são todos os seus pontos que não são seus extremos.

Exemplo 1. Os extremos do intervalo]-1,2] são os pontos -1 e 2, e todo x com -1 < x < 2 é ponto interior do intervalo. A representação desse intervalo na reta é a seguinte:

Exemplo 2. O conjunto marcado abaixo representa $[0,3] \cup [5,+\infty[$, que é a união de dois intervalo, mas não é um intervalo.

Exercícios de revisão

- 1 Reescreva cada conjunto abaixo usando a notação de intervalos:
 - (a) $\{x \in \mathbb{R} \mid -2 < x \le 3 \text{ ou } x \ge 5\}$
 - (b) $\{x \in \mathbb{R} \,|\, x < 2\}$
 - (c) $\{x \in \mathbb{R} \mid -1 \le x \le 0 \text{ ou } 2 < x \le 5\}$
 - (d) $\{x \in \mathbb{R} \mid -\infty < x < 1 \text{ ou } 3 < x < 7 \text{ ou } x > 9\}$
- 2 Verdadeiro ou falso:
 - (a) $+\infty$ é número real
- (f) $0.18 \in \mathbb{Q}$
- (b) [2,5] é intervalo aberto
- (g) $2.76\overline{13} \notin \mathbb{Q}$
- (c) $3 \in [-2, 3[$
- (h) $\sqrt{\pi} \in \mathbb{Q}$
- (d) $2 \in]0, +\infty[$
- (i) $0.404004000... \in \mathbb{Q}$
- (e) $]1,3] \subset]1,3[$
- (j) $e^{-1} \in \mathbb{Q}$
- 3 Resolva as desigualdades e escreva o conjunto solução usando a notação de intervalos:
 - (a) -3x + 1 > 2 (b) 5x 7 > 0 (c) $\frac{x-1}{x+2} > 0$ (d) $\frac{x+1}{2x+5} \le 1$

Respostas

- 1 (a) $]-2,3] \cup [5,+\infty[$, (b) $]-\infty,2[$, (c) $[-1,0] \cup]2,5]$, (d) $]-\infty,1[\cup]3,7[\cup [9,+\infty[$
- 2 (a) F, (b) F, (c) F (d) V, (e) F, (f) V, (g) F, (h) F, (i) F, (j) F
- 3 (a)] $-\infty$, -1/3[, (b)]7/5, $+\infty$ [, (c)] $-\infty$, -2[\cup]1, $+\infty$ [, (d)] $-\infty$, -4] \cup]-5/2, $+\infty$ [

1