武汉大学计算机学院 2020-2021 学年第二学期 2019 级弘毅班

《计算机系统基础 2》期末考试试卷

姓名______学号___

(注:①闭卷考试;②考试时间为120分钟;③所有解答必须写在答题纸上。)

Problem 1. (10pts):

1~5:b c e a a

Problem 2: CPU Performance (10pts)

(1)P1 instructions per second: $\frac{1}{1.5} \times 3 \times 10^9 = 2.0 \times 10^9$

P2 instructions per second: $\frac{1}{1.0} \times 2.5 \times 10^9 = 2.5 \times 10^9$

P2 is fast.

(2) P1 clock cycles: $10 \times 3.0 \times 10^9 = 3.0 \times 10^{10}$

P1 Instruction count: $10 \times 2.0 \times 10^9 = 2.0 \times 10^{10}$

 P_2 clock cycles: $10 \times 2.5 \times 10^9 = 2.5 \times 10^{10}$

 P_2 Instruction count: $10 \times 2.5 \times 10^9 = 2.5 \times 10^{10}$

(3)P₁ clock rate F: $\frac{10(1-20\%)}{1.5(1+20\%)} \times F \times 10^9 = 2.0 \times 10^{10}$

$$F = \frac{20 \times 1.5(1 + 20\%)}{10(1 - 20\%)} = \frac{36}{8} = 4.5(GHz)$$

P₂ clock rate F: $\frac{10(1-20\%)}{1.0(1+20\%)} \times F \times 10^9 = 2.5 \times 10^{10}$

$$F = \frac{25 \times 1.0(1 + 20\%)}{10(1 - 20\%)} = \frac{30}{8} = 3.75(GHz)$$

Problem 3: RISC_V Assembly (22pts)

1. (13pts)

a) RISC_V assembly code, Argument n in \$x10, Result in \$x1.

Loop: addi sp, sp,
$$\frac{-16}{\text{sd}}$$
 sd x1, $\frac{8}{\text{sd}}$ (sp) sd x10, 0 (sp)

```
bne
                     x0,
    addi x10, x0,
    addi
         sp,
              sp,
                     16
    jalr
         x0, 0(x1)
L1: addi x10, $x10,
    jal x1, Loop
    ld x10,
             0(sp)
    ld x1,
               8(sp)
    addi
        sp, sp,
        x10, x10,
                       x10
    jalr
        x0, 0(x1)
```

- b) (2pts) etc
- 2. (3pts) lui x19, 0x200014 addi x19,19,0x924
- a) (2pts) Yes, 0x100000-0xFFFFE
- b) (2pts) No, 0x1000-0xFFE

Problem 4: Arithmetic (8 pts)

a) input signals: a, b, CarryIn

output signals: Result, CarryOut

control signals: Ainvert, Binvert, S1, S0

b)

Ainvert	Binvert	S1	S0	Function
0	0	0	0	a and b
0	0	0	1	a or b
0	0	1	0	a + b
0	1	1	0	a - b
1	1	0	0	a xor b

Problem 5: Single-Cycle (10 pts)

a) (4pts)

There needs to be a path from the ALU output to data memory's write data port. There also need to be a path from read data 2 directly to Data memory's Address input.

- b) (6pts)
- Step 1 Fetch instruction PC = PC+4
- Step 2 Decode, read register file, Imm gen
- Step 3 Add Reg[rs2] + immediate
- Step 4 Write memory

Problem 6: Pipeline (15 pts)

- a) (4 pts)
- sub
- nop
- nop
- beq
- ld
- nop
- nop
- beq
- b) (4 pts)
- i) from EX/MEM register to ID stage;
- ii) from MEM/WB register to ID stage;
- c) (7 pts)

etc

Problem 7: Caches (15 pts)

- 1. (10pts)
- (a)

Address	Type	Hit or Miss	Compulsory	Capacity	Conflict
0x2A	Load	Miss	X		
0x23	Load	Miss	X		
0x14	Load	Miss	X		
0x29	Load	Hit			
0x18	Load	Miss	X		
0x21	Load	Miss			X
0x2B	Load	Miss			X
0x1C	Load	Miss	X		
0x2D	Load	Miss	X		
0x17	Load	Miss		X	
0x19	Load	Miss		X	
0x1D	Load	Miss			X

(b)

Number of bytes read and written from/to memory when the cache is write through: Bytes read: 44

#Bytes written: 0

Number bytes read and written from/to memory when the cache is a write back:

#Bytes read: 44

#Bytes written: 6

2. (5pts)

memory access takes 10 cycles.

$$CPI = 1 + (1 - 0.85) * 10 + (0.25 + 0.3) * (1 - 0.9) * 10$$

$$+(1-0.75)*0.2*3+0.3*0.35*1=3.305$$

Problem 8: VM (10 pts)

a) (4 pts)

TLB tag 6 bit;

TLB index 1bit;

TLB capacity = $16 \times (6+4+1) = 176$ bit

 $Or = 16 \times (6+4+1+1) = 192 \text{ bit}$

b) (6 pts)

Virtual Address	TLB Hit/Miss/NA	Physical Address
0x013C	M	0x0D3C
0x0E23	M	PF
0x0128	H	0x0D28
0x04FF	M	0x6FF
0x14DF	M	PF
0x1DDE	M	0x03DE

#bits used t