INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Data Mining for Business Intelligence (IBM 312)

Sumit Kumar Yadav

Department of Management Studies

January 24, 2023

Random Sum of Random Numbers

- □ In a tea shop, the number of customers coming in a given day follows a Poisson distribution with parameter 500
- □ Each customer makes the purchase as per the following distribution - a.) No purchase with probability = 0.1, one cup of tea with probability = 0.8, two cups of tea with probability = 0.1
- □ Let X denote the number of tea cups sold in a day. What is E(X) and Var(X)

Joint Probability

$$P(x=2|Y=-1)=\frac{0.05}{0.2}$$

		2	3	5	- 0-03
	_1	0.05	0.05	0.1	8-2
	0	0.2	0.1	0.05	(احداد دایم
1	2	0.01	0.02	0.05	P(x=5)7=-1)
8.3 4	5	0.07	0.25	0.05	_ 0-1
P(E(X/Y)=3.25)	= 0	.2			0.2
What is the value of $E(X Y)$			E(XX	z-1) = <u>3.7</u> 5

X

3/9

Joint Probability		X			
		2	3	5	
Y 2	-1	0.05	0.05	0.1	
	0	0.2	0.1	0.05	
	2	0.01	0.02	0.05	
6.7 4	5	0.07	0.25	0.05	

What is the value of E(X|Y)? Is it a function of Y? Is it a random variable?

What is E(X) ? Is it same as $E_y(E_x(X|Y))$

Joint Probability		Χ			
		2	3	5	
Y 2 3	-1	0.05	0.05	0.1	
	0	0.2	0.1	0.05	
	2	0.01	0.02	0.05	
	5	0.07	0.25	0.05	

What is the value of E(X|Y)? Is it a function of Y? Is it a random variable? What is E(X)? Is it same as $E_Y(E_X(X|Y))$

Joint Probability		X			
		2	3	5	
	-1	0.05	0.05	0.1	
v 2 3	0	0.2	0.1	0.05	
1 /4 7	2	0.01	0.02	0.05	
4.7	5	0.07	0.25	0.05	

What is the value of E(X|Y) ?

Is it a function of Y?

Is it a random variable?

What is E(X)?

Is it same as $E_y(E_x(X|Y))$

Continuous Random Variables

If a random variable X can take on any of a continuum of values, say, any value between 0 and 1, then we cannot define it by listing values x_i and giving the probability p_i that $X = x_i$; Why??

the cumulative distribution function:

$$F(x) \equiv \operatorname{Prob}(X <= x),$$
density function (pdf):

or the *probability density function* (pdf):

$$\rho(x) dx \equiv \operatorname{Prob}(X \in [x, x + dx]) = F(x + dx) - F(x).$$

Letting $dx \rightarrow 0$, we find

$$\rho(x) = F'(x), \quad F(x) = \int_{-\infty}^{x} \rho(t) dt.$$

Continuous Random Variables

If a random variable X can take on any of a continuum of values, say, any value between 0 and 1, then we cannot define it by listing values x_i and giving the probability p_i that $X = x_i$; Why?? Two ways of defining -

 $F(x) \equiv \operatorname{Prob}(X <= x),$

or the probability density function (pdf)

$$\rho(x) dx \equiv \operatorname{Prob}(X \in [x, x + dx]) = F(x + dx) - F(x).$$

Letting $dx \rightarrow 0$, we find

$$\rho(x) = F'(x), \quad F(x) = \int_{-\infty}^{x} \rho(t) dt$$

Continuous Random Variables

If a random variable X can take on any of a continuum of values, say, any value between 0 and 1, then we cannot define it by listing values x_i and giving the probability p_i that $X = x_i$; Why??

Two ways of defining -

the cumulative distribution function:

$$F(x) \equiv \operatorname{Prob}(X <= x),$$

or the probability density function (pdf):

$$\rho(x) dx \equiv \operatorname{Prob}(X \in [x, x + dx]) = F(x + dx) - F(x).$$

Letting $dx \rightarrow 0$, we find

$$\rho(x) = F'(x), \quad F(x) = \int_{-\infty}^{x} \rho(t) dt.$$

Expected Value

The expected value of a continuous random variable X is then defined by

$$E(X) = \int_{-\infty}^{\infty} x \rho(x) \, dx.$$

Note that by definition, $\int_{-\infty}^{\infty} \rho(x) dx = 1$. The expected value of X^2 is

$$E(x^2) = \int_{-\infty}^{\infty} x^2 \rho(x) dx,$$

and the variance is again defined as $E(X^2) - (E(X))$

Expected Value

The expected value of a continuous random variable X is then defined by

$$E(X) = \int_{-\infty}^{\infty} x \rho(x) \, dx.$$

Note that by definition, $\int_{-\infty}^{\infty} \rho(x) dx = 1$. The expected value of X^2 is

$$E(X^2) = \int_{-\infty}^{\infty} x^2 \rho(x) \, dx,$$

and the variance is again defined as $E(X^2) - (E(X))^2$.

Uniform Distribution Density

Example: Uniform Distribution in [0, 1].

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 1 & \text{if } x > 1 \end{cases}, \quad \rho(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x > 1 \end{cases}$$

$$\mathcal{L}$$

IIT ROORKEE

= 0.18

Uniform Distribution

Example: Uniform Distribution in [0, 1].

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 1 & \text{if } x > 1 \end{cases}, \quad \rho(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x > 1 \end{cases}$$
$$E(X) = \int_{-\infty}^{\infty} x \rho(x) \, dx = \int_{0}^{1} x \, dx = \frac{1}{2},$$
$$\text{var}(X) = \int_{0}^{1} x^{2} \, dx - \left(\frac{1}{2}\right)^{2} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Normal Distribution

Example: Normal (Gaussian) Distribution, Mean μ , Variance σ^2 .

$$\rho(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),$$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) dt$$

Simulation of Random numbers in Python

Practice Problem

Random Variable X follows uniform distribution from [0,1], Random Variable Y follows same distribution and is independent of X. What is the distribution of X+Y?