Importing the Dataset

```
pip install ucimlrepo

Collecting ucimlrepo
Downloading ucimlrepo-0.0.6-py3-none-any.whl (8.0 kB)
Installing collected packages: ucimlrepo
Successfully installed ucimlrepo-0.0.6

from ucimlrepo import fetch_ucirepo

# fetch dataset
automobile = fetch_ucirepo(id=10)

# data (as pandas dataframes)
X = automobile.data.features
y = automobile.data.targets
```

Χ

 \exists

7																
5		price	highway- mpg	city- mpg	peak- rpm	horsepower	compression- ratio	stroke	bore	fuel- system	engine- size	 length	wheel- base	engine- location	drive- wheels	
	0	13495.0	27	21	5000.0	111.0	9.0	2.68	3.47	mpfi	130	 168.8	88.6	front	rwd	con\
	1	16500.0	27	21	5000.0	111.0	9.0	2.68	3.47	mpfi	130	 168.8	88.6	front	rwd	con\
	2	16500.0	26	19	5000.0	154.0	9.0	3.47	2.68	mpfi	152	 171.2	94.5	front	rwd	hato
	3	13950.0	30	24	5500.0	102.0	10.0	3.40	3.19	mpfi	109	 176.6	99.8	front	fwd	
	4	17450.0	22	18	5500.0	115.0	8.0	3.40	3.19	mpfi	136	 176.6	99.4	front	4wd	
	200	16845.0	28	23	5400.0	114.0	9.5	3.15	3.78	mpfi	141	 188.8	109.1	front	rwd	
	201	19045.0	25	19	5300.0	160.0	8.7	3.15	3.78	mpfi	141	 188.8	109.1	front	rwd	
	202	21485.0	23	18	5500.0	134.0	8.8	2.87	3.58	mpfi	173	 188.8	109.1	front	rwd	
	203	22470.0	27	26	4800.0	106.0	23.0	3.40	3.01	idi	145	 188.8	109.1	front	rwd	
	204	22625.0	25	19	5400.0	114.0	9.5	3.15	3.78	mpfi	141	 188.8	109.1	front	rwd	

205 rows × 25 columns

У

	symboling	=
0	3	ıl.
1	3	
2	1	
3	2	
4	2	
200	-1	
201	-1	
202	-1	
203	-1	
204	-1	
205 20	wo v 1 columns	

205 rows × 1 columns

Concatenating the Dataset

```
!pip install hvplot
     Collecting hyplot
       Downloading hvplot-0.9.2-py2.py3-none-any.whl (1.8 MB)
                                                  1.8/1.8 MB 8.7 MB/s eta 0:00:00
     Requirement already satisfied: bokeh>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (3.3.4)
     Requirement already satisfied: colorcet>=2 in /usr/local/lib/python3.10/dist-packages (from hvplot) (3.1.0)
     Requirement already satisfied: holoviews>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (1.17.1)
     Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from hvplot) (2.0.3)
     Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.10/dist-packages (from hvplot) (1.25.2)
     Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from hvplot) (24.0)
     Requirement already satisfied: panel>=0.11.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (1.3.8)
     Requirement already satisfied: param<3.0,>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from hvplot) (2.1.0)
     Requirement already satisfied: Jinja2>=2.9 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (3.1.3)
     Requirement already satisfied: contourpy>=1 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (1.2.1)
     Requirement already satisfied: pillow>=7.1.0 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (9.4.0)
     Requirement already satisfied: PyYAML>=3.10 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (6.0.1)
     Requirement already satisfied: tornado>=5.1 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (6.3.3)
     Requirement already satisfied: xyzservices>=2021.09.1 in /usr/local/lib/python3.10/dist-packages (from bokeh>=1.0.0->hvplot) (2024.4.0)
     Requirement already satisfied: pyviz-comms>=0.7.4 in /usr/local/lib/python3.10/dist-packages (from holoviews>=1.11.0->hvplot) (3.0.2)
     Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->hvplot) (2.8.2)
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->hvplot) (2023.4)
     Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->hvplot) (2024.1)
     Requirement already satisfied: markdown in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (3.6)
     Requirement already satisfied: markdown-it-py in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (3.0.0)
     Requirement already satisfied: linkify-it-py in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (2.0.3)
     Requirement already satisfied: mdit-py-plugins in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (0.4.0)
     Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (2.31.0)
     Requirement already satisfied: tqdm>=4.48.0 in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (4.66.2)
     Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (6.1.0)
     Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from panel>=0.11.0->hvplot) (4.11.0)
     Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from Jinja2>=2.9->bokeh>=1.0.0->hvplot) (2.1.
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->hvplot) (1.16.0
     Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->panel>=0.11.0->hvplot) (0.5.1)
     Requirement already satisfied: uc-micro-py in /usr/local/lib/python3.10/dist-packages (from linkify-it-py->panel>=0.11.0->hvplot) (1.0.3
     Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py->panel>=0.11.0->hvplot) (0.1.2
     Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=0.11.0->hvplot
     Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=0.11.0->hvplot) (3.7)
     Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=0.11.0->hvplot) (2.0
     Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->panel>=0.11.0->hvplot) (202
     Installing collected packages: hvplot
     Successfully installed hvplot-0.9.2
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import hvplot.pandas
from sklearn.model selection import train test split
from sklearn import metrics
from sklearn.linear_model import LinearRegression
%matplotlib inline
data = pd.concat([X, y], axis = 1)
data
```

	price	highway- mpg	city- mpg	peak- rpm	horsepower	compression- ratio	stroke	bore	fuel- system	engine- size	•••	wheel- base	engine- location	drive- wheels	body- style	c
0	13495.0	27	21	5000.0	111.0	9.0	2.68	3.47	mpfi	130		88.6	front	rwd	convertible	
1	16500.0	27	21	5000.0	111.0	9.0	2.68	3.47	mpfi	130		88.6	front	rwd	convertible	
2	16500.0	26	19	5000.0	154.0	9.0	3.47	2.68	mpfi	152		94.5	front	rwd	hatchback	
3	13950.0	30	24	5500.0	102.0	10.0	3.40	3.19	mpfi	109		99.8	front	fwd	sedan	
4	17450.0	22	18	5500.0	115.0	8.0	3.40	3.19	mpfi	136		99.4	front	4wd	sedan	
200	16845.0	28	23	5400.0	114.0	9.5	3.15	3.78	mpfi	141		109.1	front	rwd	sedan	
201	19045.0	25	19	5300.0	160.0	8.7	3.15	3.78	mpfi	141		109.1	front	rwd	sedan	
202	21485.0	23	18	5500.0	134.0	8.8	2.87	3.58	mpfi	173		109.1	front	rwd	sedan	
203	22470.0	27	26	4800.0	106.0	23.0	3.40	3.01	idi	145		109.1	front	rwd	sedan	
204	22625.0	25	19	5400.0	114.0	9.5	3.15	3.78	mpfi	141		109.1	front	rwd	sedan	

205 rows × 26 columns

Checking for NaN Values

```
missing_values = data.isnull().sum()
print(missing_values)
```

```
price
highway-mpg
                     0
city-mpg
peak-rpm
                     2
horsepower
compression-ratio
                     0
stroke
                     4
bore
                     4
fuel-system
                     0
                     0
engine-size
num-of-cylinders
                     0
engine-type
                     0
                     0
curb-weight
                     0
height
width
                     0
length
wheel-base
                     0
engine-location
                     0
drive-wheels
body-style
                     0
num-of-doors
                     2
aspiration
                     0
fuel-type
                     0
make
                     0
normalized-losses
                    41
symboling
dtype: int64
```

Dropping categorical columns

```
data.drop(columns = ['fuel-system', 'engine-location', 'drive-wheels', 'body-style', 'aspiration', 'fuel-type', 'make', 'engine-type'], inpl
data
```

	price	highway- mpg	city- mpg	peak- rpm	horsepower	compression- ratio	stroke	bore	engine- size	num-of- cylinders	curb- weight	height	width	length	wheel- base	(
0	13495.0	27	21	5000.0	111.0	9.0	2.68	3.47	130	4	2548	48.8	64.1	168.8	88.6	
1	16500.0	27	21	5000.0	111.0	9.0	2.68	3.47	130	4	2548	48.8	64.1	168.8	88.6	
2	16500.0	26	19	5000.0	154.0	9.0	3.47	2.68	152	6	2823	52.4	65.5	171.2	94.5	
3	13950.0	30	24	5500.0	102.0	10.0	3.40	3.19	109	4	2337	54.3	66.2	176.6	99.8	
4	17450.0	22	18	5500.0	115.0	8.0	3.40	3.19	136	5	2824	54.3	66.4	176.6	99.4	
200	16845.0	28	23	5400.0	114.0	9.5	3.15	3.78	141	4	2952	55.5	68.9	188.8	109.1	
201	19045.0	25	19	5300.0	160.0	8.7	3.15	3.78	141	4	3049	55.5	68.8	188.8	109.1	
202	21485.0	23	18	5500.0	134.0	8.8	2.87	3.58	173	6	3012	55.5	68.9	188.8	109.1	
203	22470.0	27	26	4800.0	106.0	23.0	3.40	3.01	145	6	3217	55.5	68.9	188.8	109.1	
204	22625.0	25	19	5400.0	114.0	9.5	3.15	3.78	141	4	3062	55.5	68.9	188.8	109.1	
4																

Getting all the columns with null values

```
null_columns = []

for x in data.columns:
    if data[x].isnull().any():
        null_columns.append(x)

null_columns

['price',
    'peak-rpm',
    'horsepower',
    'stroke',
    'bore',
    'num-of-doors',
    'normalized-losses']
```

Mean imputation

```
for x in null_columns:
  data[x] = data[x].fillna(data[x].mean())

data
```

	price	highway- mpg	city- mpg	peak- rpm	horsepower	compression- ratio	stroke	bore	engine- size	C!
0	13495.0	27	21	5000.0	111.0	9.0	2.68	3.47	130	
1	16500.0	27	21	5000.0	111.0	9.0	2.68	3.47	130	
2	16500.0	26	19	5000.0	154.0	9.0	3.47	2.68	152	
3	13950.0	30	24	5500.0	102.0	10.0	3.40	3.19	109	
4	17450.0	22	18	5500.0	115.0	8.0	3.40	3.19	136	
200	16845.0	28	23	5400.0	114.0	9.5	3.15	3.78	141	
201	19045.0	25	19	5300.0	160.0	8.7	3.15	3.78	141	
202	21485.0	23	18	5500.0	134.0	8.8	2.87	3.58	173	
203	22470.0	27	26	4800.0	106.0	23.0	3.40	3.01	145	
204	22625.0	25	19	5400.0	114.0	9.5	3.15	3.78	141	
4										•

Checking again if there is null

```
missing_values = data.isnull().sum()
print(missing_values)
                         0
    price
    highway-mpg
                         0
                         0
    city-mpg
    peak-rpm
                         0
    horsepower
    compression-ratio
                        0
     stroke
    bore
    engine-size
                         0
    num-of-cylinders
                         0
    curb-weight
    height
                         0
    width
    length
    wheel-base
                         0
    num-of-doors
                         0
    normalized-losses
     symboling
    dtype: int64
```

Correlation of the Columns using heatmap

```
plt.figure(figsize = (20,10))
ax = sns.heatmap(data.corr(), annot = True, cmap = 'Reds')
```


Observing our heatmap, we can see good correlations or good relevance of 2 columns, we can use those columns for our predictions

Pairplotting the Dataframe

sns.pairplot(data)

Based on our correlation on heatmap, lets choose highway-mpg with city mpg and prize with engine size since they have a good correlation

```
sns.regplot(x = data['highway-mpg'], y = data['city-mpg'])
```

<Axes: xlabel='highway-mpg', ylabel='city-mpg'>

data['highway-mpg'].corr(data['city-mpg'])

0.9713370423425061

sns.regplot(x = data['price'], y = data['engine-size'])

<Axes: xlabel='price', ylabel='engine-size'>

data['price'].corr(data['engine-size'])

0.8617522436859719

The correlation coefficient between city-mpg and highwat-mpg is 0.97

The correlation coefficient between price and engine-size is 0.86

Scale of correlation coefficient	Value
$0 < r \le 0.19$	Very Low
	Correlation
$0.2 \le r \le 0.39$	Low Correlation
$0.4 \le r \le 0.59$	Moderate
	Correlation
$0.6 \le r \le 0.79$	High Correlation
^ ^ 4 ^	** *** 1

Both of them are above 0.8 which mean that if one of them goes up, the other will also go up in otherwords, they are directly proportional to each other.

We can also try with negative correlation

We can plot high-way mpg and curb-weight to see their correlation