

<u>Help</u>

konainniaz 🗸

Problem 1

1/1 point (graded)

Let F be a function from \mathbb{R}^d to \mathbb{R} . Which of the following is the most accurate description of the derivative ∇F ?

O It is a real number.	
\bigcirc It is a d -dimensional vector.	

 $igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate}{igodeligate{igodeligate}{igodeligate{igodeligate}{igodeligate}{igodeligate{igodeligate}{igodeligate}{igodeligate{igodeligate}{igodeligate}{igodeligate{igodeligate}{igodeligate}{igodeligate{igodeligate}{igodeligate}{igodeligate}{igodeligate{igodeligate}{igodeligate}{igodeligate}{igodeligate{igodeligate}{igodeliga$

~

Submit

Problem 2

6/6 points (graded)

Consider the following loss function on vectors $w \in \mathbb{R}^3$:

$$L\left(w
ight) =w_{1}^{2}-2w_{1}w_{2}+w_{2}^{2}+2w_{3}^{2}+3.$$

a) Compute $abla L\left(w
ight)$. Match each of its coordinates to the following list:

Option 1: $4w_3$

Option 2: $2w_1-2w_2$

Option 3: $-2w_1+2w_2$

What is dL/dw_1 ? (Just answer 1,2,or 3)

2 2

 $dL/dw_2 =$

3 3

 $dL/dw_3 =$

) Is there is a unique solution w at which this minimum is realized? (a) Suppose we use gradient descent to minimize this function, and that the current estimate is $w=(1,2,3)$. If the step size is $\eta=0.5$, what is the next estimate? (a) $w=(1,1,0)$ (b) $w=(-1,0,1)$ (c) $w=(0,-1,-1.5)$ (c) Submit	1	
Is there is a unique solution w at which this minimum is realized? Suppose we use gradient descent to minimize this function, and that the current estimate is $v=(1,2,3)$. If the step size is $\eta=0.5$, what is the next estimate? $w=(1,1,0)$ $w=(1,1,0)$ $w=(1,1,0)$ $w=(2,1,-3)$ $w=(0,-1,-1.5)$ Submit Problem 3 Fin point (graded) We are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2$. See calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. The sum of the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors, times a constant $c\neq 1$	b) What is the	minimum value of $L\left(w ight)$?
Is there is a unique solution w at which this minimum is realized? Suppose we use gradient descent to minimize this function, and that the current estimate is $v=(1,2,3)$. If the step size is $\eta=0.5$, what is the next estimate? $w=(1,1,0)$ $w=(-1,0,1)$ $w=(-1,0,1)$ $w=(0,-1,-1.5)$ Forbilem 3 Fin point (graded) We are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2$. See calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. The sum of the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors, times a constant $c\neq 1$	3	
Suppose we use gradient descent to minimize this function, and that the current estimate is $v=(1,2,3)$. If the step size is $\eta=0.5$, what is the next estimate? $w=(1,1,0)$ $w=(-1,0,1)$ $w=(2,1,-3)$ $w=(0,-1,-1.5)$ x Submit Problem 3 If point (graded) we are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2.$ Is see calculus to determine z , in terms of the $x^{(i)}$. (Hint: It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. The sum of the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors, times a constant $c\neq 1$		
Suppose we use gradient descent to minimize this function, and that the current estimate is $v=(1,2,3)$. If the step size is $\eta=0.5$, what is the next estimate? $w=(1,1,0)$ $w=(-1,0,1)$ $w=(0,-1,-3)$ $w=(0,-1,-1.5)$ Submit Problem 3 If point (graded) We are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2.$ We calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. The sum of the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors, times a constant $c\neq 1$		unique solution $m{w}$ at which this minimum is realized?
$v=(1,2,3)$. If the step size is $\eta=0.5$, what is the next estimate? $w=(1,1,0)$ $w=(-1,0,1)$ $w=(2,1,-3)$ $w=(0,-1,-1.5)$ v Submit Problem 3 If point (graded) We are given a set of data points $x^{(1)},\ldots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function $L(z)=\sum_{i=1}^n \left\ x^{(i)}-z\right\ ^2.$ Itse calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. The sum of the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors, times a constant $c\neq 1$	no	
$w = (-1,0,1)$ $w = (0,-1,-1.5)$ v Submit Problem 3 If point (graded) We are given a set of data points $x^{(1)},\ldots,x^{(n)} \in \mathbb{R}^d$, and we want to find a single point $z \in \mathbb{R}^d$ that minimizes the loss function $L(z) = \sum_{i=1}^n \ x^{(i)} - z\ ^2.$ Use calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. The sum of the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors, times a constant $c \neq 1$	• • •	
• $w=(2,1,-3)$ • $w=(0,-1,-1.5)$ • Submit Problem 3 If point (graded) we are given a set of data points $x^{(1)},\ldots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2.$ Is a calculus to determine z , in terms of the $x^{(i)}$. ($Hint$: It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. • The sum of the $x^{(i)}$ vectors • The average of the $x^{(i)}$ vectors, times a constant $c\neq 1$	$\bigcirc w = (1,$	1,0)
Submit v	$\bigcirc w = (-$	1, 0, 1)
Submit Submit Problem 3 In point (graded) We are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2.$ Use calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. The sum of the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors, times a constant $c\neq 1$		1,-3)
Problem 3 In point (graded) We are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2.$ Use calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. \square The sum of the $x^{(i)}$ vectors \square The average of the $x^{(i)}$ vectors, times a constant $c\neq 1$	$\bigcirc w = (0,$	-1, -1.5)
Problem 3 In point (graded) We are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2.$ Use calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. \square The sum of the $x^{(i)}$ vectors \square The average of the $x^{(i)}$ vectors, times a constant $c\neq 1$	~	
We are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ hat minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2.$ Is a calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. $ \bigcirc \text{ The sum of the } x^{(i)} \text{ vectors} $ $ \bigcirc \text{ The average of the } x^{(i)} \text{ vectors} $ $ \bigcirc \text{ The average of the } x^{(i)} \text{ vectors, times a constant } c \neq 1 $	Submit	
We are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ hat minimizes the loss function $L(z)=\sum_{i=1}^n\ x^{(i)}-z\ ^2.$ Is a calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. $ \bigcirc \text{ The sum of the } x^{(i)} \text{ vectors} $ $ \bigcirc \text{ The average of the } x^{(i)} \text{ vectors} $ $ \bigcirc \text{ The average of the } x^{(i)} \text{ vectors, times a constant } c \neq 1 $	Problem 3	
Ise calculus to determine z , in terms of the $x^{(i)}$. ($Hint:$ It might help to just start by looking at one articular coordinate.) Then select which of the following correctly describes the solution. One is the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors, times a constant $c \neq 1$	We are given a	set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$
articular coordinate.) Then select which of the following correctly describes the solution. One can be considered as $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors The average of the $x^{(i)}$ vectors, times a constant $c \neq 1$		$L\left(z ight) = \sum_{i=1}^{n} \left\ x^{(i)} - z ight\ ^2.$
$lacktriangle$ The average of the $x^{(i)}$ vectors O The average of the $x^{(i)}$ vectors, times a constant $c eq 1$		
\bigcirc The average of the $x^{(i)}$ vectors, times a constant $c eq 1$	O The sum	of the $x^{(i)}$ vectors
	• The aver	age of the $x^{(i)}$ vectors
$igcup Zero$, regardless of what the $x^{(i)}$ vectors are	O The aver	age of the $x^{(i)}$ vectors, times a constant $c eq 1$
✓	O Zero, reg	ardless of what the $x^{(i)}$ vectors are
	~	

2/2 points (graded)

Given a set of data points $x^{(1)},\ldots,x^{(n)}\in\mathbb{R}^d$, we want to find the vector $w\in\mathbb{R}^d$ that minimizes this loss function:

$$L\left(w
ight) = \sum_{i=1}^{n} \left(w \cdot x^{(i)}
ight) + rac{1}{2} c \left\|w
ight\|^{2}.$$

Here c>0 is some constant.

a) Let s denote the sum of the data points, that is, $s=\sum_{i=1}^n x^{(i)}$. Express $\nabla L\left(w\right)$ in terms of s, c, and w.

 $\bigcirc \
abla L\left(w
ight) =s+w$

igcirc $abla L\left(w
ight) =cw$

 $\bigcirc \
abla L\left(w
ight) =s/c+w$

Answer

Correct: The derivative is $abla L\left(w
ight) = \sum_{i} x^{(i)} + cw = s + cw$

b) What value of w minimizes $L\left(w\right)$? Give the answer in terms of s and c.

 \bullet $w = -\frac{s}{c}$

 $\bigcirc w = cs$

 $\bigcirc w = \frac{s}{4c}$

 $\bigcirc w = -\frac{s}{2c}$

A ...

Correct: This results from setting $abla L\left(w
ight)=0$.

Submit

Problems 5-7 correspond to "Convexity I"

Problem 5

7/7 points (graded)

For each of the following functions of one variable, say whether it is **convex**, **concave**, **both**, or **neither**.

a) $f\left(x
ight) =x^{2}$

convex

Answer

Correct: f''(x) = 2

b) $f(x) = -x^2$

concave

Answer

Correct: f''(x) = -2

c) $f(x)=x^2-2x+1$

convex

Answer

Correct: f''(x) = 2

d) f(x)=x

both

Answer

Correct: $f''\left(x
ight)=0$

e) $f(x)=x^3$

Answer

neither

Correct: $f''\left(x
ight)=6x$, which is sometimes positive, sometimes negative.

f) $f(x)=x^4$

convex

Answer

Correct: $f''(x) = 12x^2$

g) $f(x) = \ln x$

concave

Answer

Correct: $f''(x) = -1/x^2$

Submit

Problem 6

1/1 point (graded)

Consider the function $f:\mathbb{R}^3 o \mathbb{R}$ given by

$$f\left(x_{1},x_{2},x_{3}
ight)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-4x_{1}x_{2}+6x_{2}x_{3}.$$

Compute and select the matrix of second derivatives (the Hessian) $H\left(x\right)$.

 $egin{pmatrix} igcap \ -2 & 1 & 3 \ 0 & 3 & -1 \ \end{pmatrix}$

 \bigcirc / 2 -4 0

_	1 -	_	٠,
	-4	2	6
	0	6	$_{0}J$

$$egin{pmatrix} oldsymbol{\odot} & egin{pmatrix} 2 & -4 & 0 \ -4 & 2 & 6 \ 0 & 6 & -2 \end{pmatrix}$$

$$egin{pmatrix} 1 & -4 & 0 \ 0 & 2 & 6 \ 0 & 0 & -2 \end{pmatrix}$$

Submit

Problem 7

1/1 point (graded)

For some fixed vector $u \in \mathbb{R}^d$, define the function $F: \mathbb{R}^d o \mathbb{R}$ by

$$F\left(x
ight) =e^{u\cdot x}.$$

Which of the following is the Hessian H(x)?

 $lefteq e^{(u\cdot x)}uu^T$

 $\bigcirc \ e^{(u\cdot x)}I$ (here I is the d imes d identity matrix)

 $igcup_{e^{(u\cdot x)}}\|u\|^2$

 $\bigcirc \ e^{(u\cdot x)}(u\cdot x)^2$

Submit

Problems 8-11 correspond to "Positive semidefinite matrices"

Problem 8

1/1 point (graded)

Is the matrix $M=egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ positive semidefinite?

 \bigcirc Yes, because every entry in the matrix is ≥ 0

 \bigcirc No, because not every entry is >0

T - - . .

Yes, because $u^- M u \geq 0$ for all vectors u
$lacktriangledown$ No, because there is a vector u for which $u^T M u < 0$
✓
Out with
Submit
Problem 9
I/1 point (graded)
s the matrix $oldsymbol{M} = egin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix}$ positive semidefinite?
\bigcirc No, because not every entry is ≥ 0
$lacktriangledown$ Yes, because $u^T M u \geq 0$ for all vectors u
\bigcirc No, because there is a vector u for which $u^T M u < 0$
\bigcirc No, because there is a vector $oldsymbol{u}$ for which $oldsymbol{u}^T oldsymbol{M} oldsymbol{u} = oldsymbol{0}$
✓
Submit
Problem 10
I/1 point (graded)
For a fixed set of vectors $v^{(1)},\ldots,v^{(n)}\in\mathbb{R}^d$, let M be the $n imes n$ matrix of all pairwise dot
products: that is, $M_{ij}=v^{(i)}\cdot v^{(j)}$. Do you see why M is positive semidefinite? Think about it a lit pit, and then choose one of the following options (you'll get marked as correct whichever you
choose).
Yes, the entire argument is clear to me.
That sounds right, but I can't fully construct the argument.
O I don't get it.
✓
Submit
Problem 11
I/1 point (graded)
Suppose $m{M}$ and $m{N}$ are positive semidefinite matrices of the same size. Which of the following matrices are <i>necessarily</i> positive semidefinite? Select all that apply.
${oxedsymbol{oxed}{oxedsymbol{eta}}} \ M+N$

M = N

Let $p=(p_1,p_2,\ldots,p_m)$ be a probability distribution over m possible outcomes. The $\emph{entropy}$ of pis a measure of how much randomness there is in the outcome. It is defined as

$$F\left(p
ight) =-\sum_{i=1}^{m}p_{i}\ln p_{i},$$

where \ln denotes natural logarithm. We wish to ascertain whether $F\left(p
ight)$ is a convex function of p. As usual, we begin by computing the Hessian.

		$m=(1/m,1/m,\dots,1/m)$. What is the $(1,1)$ entry of the definition of m .	he Hessian
-m			
b) Continuin	g, what is the $(1,2)$	entry of the Hessian at this specific point?	
0			
0	ction $F(n)$ convex	x, concave, both, or neither?	
concave	✓ ✓	i, concave, boom, or neroner:	
Submit			
	✓ Previous	Next >	

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u> Contact Us Help Center Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>