Weekly Meeting

Topic: Property lpha for ${
m SOA}$ of strength 3 with s=3

Presenter: Heng-Tse Chou @ NTHU STAT

Date: Mar 27, 2024

Goal

ullet Find similar grouping scheme and permutations to ${\color{red} {
m Wu, C.-F.J. (1989)}}$ for s=3.

Permutations

This illustrate the idea under s=2.

- ullet B_k : all effects for a full factorial of k independent factors plus I.
- ullet All the elements in B_k can be expressed as $w_i = w_{\pi(i)} \cdot w_{r(i)}.$
- Then, the exclusive sets $(w_{\pi(i)}\cdot (k+1))$, $(w_{r(i)}\cdot (k+2))$, $(w_i\cdot (k+1)(k+2))$, each of which is of the form $(\alpha,\beta,\alpha\cdot\beta)$ for k=4.

Permutations

Example.

We want to find the grouping scheme of $(\alpha, \beta, \alpha \cdot \beta, \alpha \cdot \beta^2)$ for $s^2 \times s^2$ stratification property, which requires the design A has resolution IV and (A, B, B', B'') has resolution III.

The major difference is that each effect in a 3 level design **contains 2 components**.

Therefore, instead the permutations of *all effects*, we want to find the permutations of *all components*.

α	β	$\alpha \cdot \beta$	$\alpha \cdot \beta^2$
1	2	12	12^2
1^2	2^2	1^22^2	1^2
2	1^2	1^22	12
2^2	1	12^2	$1^2 2^2$
12	12^2	1^2	2^2
$1^{2}2^{2}$	1^22	1	2
12^2	$1^{2}2^{2}$	2	1^2
1^22	12	2^2	1

α	eta	$lpha \cdot eta$	$lpha\cdoteta^2$
13	24	1234	12^234^2
1^23	2^24	1^22^234	$1^2 34^2$
23	1^24	1^2234	1234^2
2^23	14	$12^{2}34$	$1^2 2^2 34^2$
123	12^24	$1^{2}34$	2^234^2
$1^2 2^2 3$	1^224	134	234^2
12^23	$1^2 2^2 4$	234	1^234^2
$1^{2}23$	124	$2^{2}34$	134^2

... adding up another group $(1,2,12,12^2)$, this gives us the grouping scheme $(A,B,B^\prime,B^{\prime\prime})$ we desired.

Note that $(3,4,34,34^2)$ cannot be included, otherwise it will not properly form a design A of resolution IV.

Side note: res. IV = cannot form I with any 3 elements.

Next ...

- 1. Generate D=9A+3B+C.
- 2. Check if D is SOA of strength 3.
- 3. Check if D has α property.
- 4. Find the permutations for k=3.