

Name: Gagana Uday Kumar

MyUTSA id: WOV796

Design the Market Segmentation

Target Variable

DONUTS / DOUGHNUTS -BRANDS MO KRISPY KREME Single Driver Variable

I FEEL GUILTY WHEN
I EAT SWEETS

PREFER FOOD PRESENTED AS AN ART FORM

BRKFST IS MORE IMPRTNT THN LUNCH OR DNNR

EATING FAST FOOD HELPS ME STAY IN BUDGET Abstract construct #1 -Travel

I LOVE THE IDEA OF TRAVELING ABROAD

WILLING MAKE TRVL PLAN WITH UNKNWN COMP

RATHER TAKE TWO/THREE SHRT OUICK VACATNS

VAC. SOMEWHERE DIFFERENT EVERY TIME

Abstract construct #2 – Social Interaction

I MAKE FRIENDS EASILY

PEOPLE SAY MY ENTHUSIASM IS CONTAGIOUS

I LIKE TO
INTRODUCE PEOPLE
TO EACH OTHER

GOOD AT
CONVINCING
OTHERS TRY NEW
THINGS

Descriptor variables

Major competitors - DUNKIN' DONUTS

Advertised Channel - YOUTUBE.COM

Personal Information-Gender MALE, FEMALE

Origin/ Race RESPNDNTSPANISH/HISPANIC/L
ATINO ORIGIN?
YES , NO

Reading in Raw Data and Creating New Variables

KRISPY KREME

92.70

7.30

Frequency

23583

25439

				LEEFL G	UILTY WHEN	VIFAT S	NEETS	
ew		-		feel_guilty_cal			Cumulative	Cumulative Percent
			disagree a lot		3990	16.70	3990	16.70
				disagree a little	6231	26.07	10221	42.77
			neither	agree nor disagree	6081	25.44	16302	68.21
IE				agree a little	3700	15.48	20002	83.69
Cumulative Cumula		lative	agree a lot	3897	16.31	23899	100.00	

Frequency Missing = 1540

k_krispy_kreme | Frequency | Percent

no

yes

23583

1856

PREFER FOOD PRESENTED AS AN ART FORM								
food_as_art_form_good	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
disagree a lot	1424	5.96	1424	5.96				
disagree a little	2924	12.24	4348	18.20				
neither agree nor disagree	9290	38.89	13638	57.10				
agree a little	3607	15.10	17245	72.20				
agree a lot	6640	27.80	23885	100.00				
Fre	quency Miss	ing = 155	4					

92.70

100.00

EATING FAST F	OOD HELPS	ME STAY	IN BUDGET	
fastfood_stay_budget_meal	Frequency	Percent	Cumulative Frequency	Cumulative Percent
disagree a lot	708	2.98	708	2.98
disagree a little	1564	6.58	2272	9.56
neither agree nor disagree	5347	22.50	7619	32.06
agree a little	4287	18.04	11906	50.11
agree a lot	11856	49.89	23762	100.00
Free	quency Miss	ing = 1677	7	

BRKFST IS MORE IMPRINT THN LUNCH OR DNNR

9173

5005

6759

1975

1293

Frequency Missing = 1234

37.90

20.68

27.92

8.16

5.34

brft_imp_Inch_dnr_an | Frequency | Percent | Frequency

disagree a lot

disagree a little

agree a little

agree a lot

neither agree nor disagree

Cumulative Cumulative

9173

14178

20937

22912

24205

Percent

37.90

58.57

86.50

94.66

100.00

Principle Component Analysis

- Extraction Technique Principle Component Analysis
- Rotation Method Varimax
- criteria for determining that a factor was extracted: Kaiser Criterion(eigen value=>1)
- Factor extracted 2
- Variance explained 51.16%

The FACTOR Procedure Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

	Eigenvalues of the Correlation Matrix: Total = 8 Average = 1											
	Eigenvalue	Difference	Proportion	Cumulative								
1	2.70778755	1.32272677	0.3385	0.3385								
2	1.38506077	0.38864722	0.1731	0.5116								
3	0.99641355	0.20360149	0.1246	0.6362								
4	0.79281207	0.19361699	0.0991	0.7353								
5	0.59919508	0.01741814	0.0749	0.8102								
6	0.58177694	0.09732824	0.0727	0.8829								
7	0.48444870	0.03194335	0.0606	0.9434								
8	0.45250535		0.0566	1.0000								

2 factors will be retained by the NFACTOR criterion.

Principle Component Analysis – Scree Plot

Scree Plot

- The gradient slope are the eigenvalues
- n-1 factor that is 3-1=2 factors are represented on the scree plot

Factor Pattern matrix

- The Variable rthr_twotree_shrt_vacatns_trvl has no suitable factors
- Eliminate Variable and repeat steps
- The two factors extracted are:
 - Travel: People who eat Krispy kreme travel a lot
 - Social Interaction: People who eat krispy kreme are extroverts.

Rotated Factor Pattern								
		Factor1	Factor2					
love_trvl_abord_trvl	I LOVE THE IDEA OF TRAVELING ABROAD	0.12418	0.76054					
mak_trvl_pln_unknwn_comp_trvl	WILLING MAKE TRVL PLAN WITH UNKNWN COMP	0.00500	0.70998					
rthr_twotree_shrt_vacatns_trvl	RATHER TAKE TWO/THREE SHRT QUICK VACATNS	0.18454	0.15617					
vac_diff_evry_time_trvl	VAC. SOMEWHERE DIFFERENT EVERY TIME	0.14651	0.68021					
mak_frnds_esly_soc	I MAKE FRIENDS EASILY	0.77080	-0.05036					
ppl_say_my_enthu_contagious_soc	PEOPLE SAY MY ENTHUSIASM IS CONTAGIOUS	0.79210	0.12642					
lik_intro_ppl_ech_othr_soc	I LIKE TO INTRODUCE PEOPLE TO EACH OTHER	0.80997	0.09888					
gd_convin_othrs_try_nw_soc	GOOD AT CONVINCING OTHERS TRY NEW THINGS	0.70193	0.23173					

PCA

Removing the variable rthr_twotree_shrt_vacatns_trvl

- Extraction Technique Principle Component Analysis
- Rotation Method Varimax
- criteria for determining that a factor was extracted: Kaiser Criterion(eigen value=>1)
- Factor extracted 2
- Variance explained 57.95%

The FACTOR Procedure Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eigenvalues of the Correlation Matrix: Total = 7 Average = 1 Eigenvalue Difference Proportion Cumulative 2.67203069 1.28761291 0.3817 0.3817 1.38441777 0.58364688 0.1978 0.5795 0.80077090 0.18972125 0.11440.69390.61104965 0.01704477 0.0873 0.7812 0.59400488 0.10908925 0.0849 0.8660 0.48491563 0.03210514 0.0693 0.9353 7 0.45281048 0.06471.0000

PCA

Removing the variable rthr_twotree_shrt_vacatns_trvl

Scree Plot

- The gradient slope are the eigenvalues
- n-1 factor that is 3-1=2 factors are represented on the scree plot

Factor Pattern matrix

- All the variables now have factors which can be chosen.
- The two factors extracted are:
 - Travel: People who eat Krispy kreme travel a lot
 - Social Interaction: People who eat krispy kreme are extroverts.

Rotated Factor Pattern								
		Factor1	Factor2					
love_trvl_abord_trvl	I LOVE THE IDEA OF TRAVELING ABROAD	0.12845	0.77149					
mak_trvl_pln_unknwn_comp_trvl	WILLING TRVL PLAN WITH UNKN COMP	0.00472	0.71228					
vac_diff_evry_time_trvl	VAC SOMEWHERE DIFFERENT EVERY TIME	0.14169	0.67301					
mak_fmds_esly_soc	I MAKE FRIENDS EASILY	0.77143	-0.04835					
ppl_say_my_enthu_contagious_soc	PEOPLE SAY MY ENTHUSIASM IS CONTAGIOUS	0.79346	0.13133					
lik_intro_ppl_ech_othr_soc	I LIKE TO INTRODUCE PEOPLE TO EACH OTHER	0.81108	0.10243					
gd_convin_othrs_try_nw_soc	GOOD AT CONVINCING OTHERS TRY NEW THINGS	0.70389	0.23787					

K Means Clustering

- K means cluster analysis using PROC CLUSTER
- Dropped single variable BRKFST IS MORE IMPRTNT THN LUNCH OR DNNR (as CCC values below -20 for every variable)
- Replaced it with 2 other single Variables
 - I THINK OF THE CALORIES IN WHAT I EAT
 - CONSIDER MY DIET TO BE VERY HEALTHY

For K=3:

The SAS System The FASTCLUS Procedure Replace=FULL Radius=0 Maxclusters=3 Maxiter=100 Converge=0.02 Initial Seeds Travel Social interaction feel guilty cal food as art form good fastfood stay budget meal Think Calories Eat Consider Diet Very Healthy Cluster 1.0000000000 5.0000000000 5.0000000000 5.000000000 -2.121316745 0.927430361 5.0000000000 1.0000000000 1.0000000000 1.000000000 Minimum Distance Between Initial Seeds = 8.89041 Relative Change in Cluster Seeds 0.5031 0.5256 0.4676 0.0797 0.0266 0.0406 1.0085 0.9900 0.0436 0.0204 0.0135 0.9805 0.0195 0.00978 Convergence criterion is satisfied. Criterion Based on Final Seeds = 0.9789

For K=5:

For K=6

The SAS System

The FASTCLUS Procedure Replace=FULL Radius=0 Maxclusters=6 Maxiter=100 Converge=0.02

	Initial Seeds											
Cluster	Travel	Social_interaction	feel_guilty_cal	food_as_art_form_good	fastfood_stay_budget_meal	Think_Calories_Eat	Consider_Diet_Very_Healthy					
1	2.753514256	0.014798714	1.000000000	1.000000000	5.000000000	2.000000000	5.000000000					
2	-1.631445405	0.091619149	5.000000000	5.000000000	5.000000000	5.000000000	5.000000000					
3	3.197091017	-2.646460716	5.000000000	5.000000000	5.000000000	1.000000000	1.000000000					
4	-2.223636149	2.319596902	1.000000000	5.000000000	4.000000000	1.000000000	1.000000000					
5	-1.640580264	-2.091717626	5.000000000	1.000000000	1.000000000	1.000000000	4.000000000					
6	-2.223636149	2.319596902	1.000000000	1.000000000	1.000000000	5.000000000	5.000000000					

Minimum Distance Between Initial Seeds = 7.266337

Iteration History												
			Relative Change in Cluster Seeds									
Iteration	Criterion	. 1	2	3	4	5	6					
1	1.5868	0.4883	0.4269	0.4959	0.4693	0.4923	0.4788					
2	0.9192	0.0550	0.0400	0.0875	0.0373	0.0717	0.0779					
3	0.8963	0.0240	0.0252	0.0438	0.0318	0.0286	0.0273					
4	0.8903	0.0151	0.0147	0.0240	0.0216	0.0192	0.00853					
5	0.8878	0.0144	0.0130	0.0124	0.0171	0.0154	0.00711					

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 0.8864

For K=8

The SAS System

The FASTCLUS Procedure Replace=FULL Radius=0 Maxclusters=8 Maxiter=100 Converge=0.02

	Initial Seeds											
Cluster	Travel	Social_interaction	feel_guilty_cal	food_as_art_form_good	fastfood_stay_budget_meal	Think_Calories_Eat	Consider_Diet_Very_Healthy					
1	2.614035132	1.764853813	5.000000000	5.000000000	5.000000000	5.000000000	5.000000000					
2	-2.223636149	2.319596902	5.000000000	5.000000000	2.000000000	1.000000000	5.000000000					
3	0.041169829	2.448057147	1.000000000	5.000000000	5.000000000	1.000000000	1.000000000					
4	3.197091017	-2.646460716	5.000000000	5.000000000	5.000000000	1.000000000	1.0000000000					
5	-1.640580264	-2.091717626	1.000000000	1.000000000	1.000000000	1.000000000	1.000000000					
6	2.026509039	1.753354650	1.000000000	1.000000000	1.000000000	5.000000000	2.000000000					
7	3.197091017	-2.646460716	5.000000000	1.000000000	1.000000000	5.000000000	5.000000000					
8	-1.640580264	-2.091717626	1.000000000	3.000000000	5.000000000	5.000000000	5.000000000					

Minimum Distance Between Initial Seeds = 6.725483

				Iteration I	History						
				Relative	Change	in Cluste	er Seeds				
Iteration	Criterion	1	2	3	4	5	6	7	8		
1	1.5405	0.5033	0.5240	0.4679	0.5321	0.5243	0.5917	0.5616	0.4461		
2	0.8933	0.0535	0.0514	0.0485	0.0586	0.0492	0.0583	0.1424	0.0624		
3	0.8716	0.0279	0.0328	0.0292	0.0346	0.0404	0.0338	0.0939	0.0308		
4	0.8624	0.0180	0.0316	0.0196	0.0303	0.0440	0.0247	0.0623	0.0136		
5	0.8564	0.0145	0.0327	0.0167	0.0347	0.0449	0.0168	0.0513	0.00794		
6	0.8511	0.0110	0.0283	0.0179	0.0285	0.0411	0.0161	0.0385	0.00728		
7	0.8474	0.00606	0.0188	0.0149	0.0186	0.0372	0.0130	0.0203	0.00779		
8	0.8450	0.0113	0.0127	0.00989	0.0117	0.0357	0.0113	0.0115	0.0100		
9	0.8431	0.00925	0.0114	0.00845	0.00903	0.0302	0.0116	0.00555	0.0105		
10	0.8417	0.00414	0.00972	0.00649	0.00574	0.0238	0.0113	0.00332	0.00957		
11	0.8408	0.00348	0.00908	0.00482	0.00453	0.0160	0.00938	0.00527	0.00708		

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 0.8403

For K=7

The SAS System

The FASTCLUS Procedure Replace=FULL Radius=0 Maxclusters=7 Maxiter=100 Converge=0.02

	Initial Seeds										
Cluster	Travel	Social_interaction	feel_guilty_cal	food_as_art_form_good	fastfood_stay_budget_meal	Think_Calories_Eat	Consider_Diet_Very_Healthy				
1	-2.146896596	1.275471996	1.000000000	5.000000000	5.000000000	1.000000000	5.000000000				
2	-1.640580264	-2.091717626	1.000000000	1.000000000	1.000000000	5.000000000	5.000000000				
3	-1.920937736	2.016143894	5.000000000	1.000000000	5.000000000	1.000000000	1.000000000				
4	2.979882515	-1.156580568	1.000000000	5.000000000	5.000000000	5.000000000	5.000000000				
5	3.197091017	-2.646460716	5.000000000	5.000000000	5.000000000	1.000000000	1.000000000				
6	-2.223636149	2.319596902	5.000000000	5.000000000	1.000000000	5.000000000	5.000000000				
7	2.614035132	1.764853813	1.000000000	1.000000000	1.000000000	1.000000000	1.000000000				

Minimum Distance Between Initial Seeds = 6.942532

Iteration History										
			Relative Change in Cluster Seeds							
Iteration	Criterion	1	2	3	4	5	6	7		
1	1.6502	0.4968	0.4855	0.5300	0.5394	0.5449	0.5420	0.5620		
2	0.9079	0.0512	0.0514	0.0648	0.0567	0.0766	0.0679	0.0972		
3	0.8815	0.0376	0.0236	0.0484	0.0283	0.0417	0.0453	0.0454		
4	0.8717	0.0299	0.0166	0.0300	0.0177	0.0232	0.0348	0.0279		
5	0.8672	0.0298	0.00956	0.0173	0.0140	0.0128	0.0279	0.0171		
6	0.8646	0.0250	0.00671	0.0127	0.0101	0.0108	0.0218	0.0150		
7	0.8628	0.0203	0.00617	0.0121	0.0109	0.00988	0.0171	0.0102		
8	0.8616	0.0169	0.00748	0.0119	0.0116	0.00838	0.0121	0.00755		

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 0.8607

For K=9

The SAS System

The FASTCLUS Procedure Replace=FULL Radius=0 Maxclusters=9 Maxiter=100 Converge=0.02

Initial Seeds							
Cluster	Travel	Social_interaction	feel_guilty_cal	food_as_art_form_good	fastfood_stay_budget_meal	Think_Calories_Eat	Consider_Diet_Very_Healthy
1	-0.409079369	-2.166091239	1.000000000	5.000000000	5.000000000	1.000000000	2.000000000
2	-2.223636149	2.319596902	5.000000000	5.000000000	2.000000000	1.000000000	5.000000000
3	1.971577282	2.020582704	1.000000000	5.000000000	1.000000000	3.000000000	3.0000000000
4	-1.401030821	0.222810738	3.000000000	1.000000000	1.000000000	1.000000000	1,0000000000
5	-1.972677865	-0.504123872	5.000000000	3.000000000	5.000000000	5.000000000	1.000000000
6	3.197091017	-2.646460716	4.000000000	5.000000000	5.000000000	5.000000000	5,0000000000
7	-1.640580264	-2.091717626	1.000000000	2.000000000	2.000000000	5.000000000	5.000000000
8	0.383723353	2.299576802	1.000000000	1.000000000	5.000000000	1.000000000	5.0000000000
9	2.614035132	1.764853813	5.000000000	5.000000000	5.000000000	1.000000000	1.0000000000

Minimum Distance Between Initial Seeds = 6.362244

				Itera	tion Histo	ory						
			Relative Change in Cluster Seeds									
Iteration	Criterion	1	2	3	4	5	6	7	8	9		
1	1.4413	0.4538	0.4976	0.5215	0.4762	0.5061	0.5275	0.4330	0.5005	0.4373		
2	0.8650	0.0612	0.0630	0.0373	0.0430	0.0550	0.0693	0.0407	0.0423	0.0404		
3	0.8512	0.0375	0.0398	0.0268	0.0204	0.0492	0.0663	0.0189	0.0226	0.0197		
4	0.8440	0.0242	0.0267	0.0188	0.0112	0.0337	0.0564	0.0143	0.0181	0.0150		
5	0.8396	0.0192	0.0210	0.0156	0.00757	0.0241	0.0424	0.0139	0.0212	0.0129		
6	0.8369	0.0167	0.0145	0.0142	0.0133	0.0146	0.0300	0.00904	0.0189	0.0110		
7	0.8351	0.0116	0.0132	0.0120	0.0150	0.0117	0.0241	0.00871	0.0173	0.00793		
8	0.8338	0.0102	0.0152	0.00814	0.0142	0.00848	0.0192	0.00617	0.0169	0.0103		

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 0.8328

K Means Clustering

- CCC: The first local maximum number of is k=7(cluster 7)
- The Pseudo F plot does not exhibit a clear first local maximum number of clusters as it shows a gradual slope.

K	Number of clusters	R square	CCC	Pseudo F
3	3	0.23506	34.146	4494.41
4	4	0.30671	29.029	4148.73
5	5	0.35866	10.482	3644.44
6	6	0.40204	-7.262	3293.81
7	7	0.43147	-1.428	3160.71
8	8	0.45767	-1.313	3014.21
9	9	0.47566	-11.991	2747.19

K Means

Means of the driver variables

- This looks like a good solution because the single driver variables have a decent to good spread (difference)
- After Analyzing the difference within the cluster variable's (0.1 as difference) I found the below:
 - n! / r!(n-r)! = 7! / 2!(7-2)! = 5040/240 = 21
 - 21*7 (single driver+ abstract constant) = 147
 - Found 10 Ties after differencing the means
 - 10/147 = 0.06803 *100 = 6.8%
- Good solution as the percentage does not cross 15% and it is 6.8% of ties

	Cluster Means							
Cluster	Travel	Social_interaction	feel_guilty_cal	food_as_art_form_good	fastfood_stay_budget_meal	Think_Calories_Eat	Consider_Diet_Very_Healthy	
1	0.076371214	0.423209236	1.944836601	4.189623387	4.607568140	2.089088034	2.715417107	
2	-0.836420066	-0.722603620	1.853688525	2.012018235	3.295282224	4.151270674	4.317637670	
3	-0.203067492	-0.216382295	3.903402537	2.527366021	4.552089296	2.164739884	3.455017301	
4	0.066273174	-0.087171095	1.781133017	3.365258924	4.769230769	3.936095856	3.821544614	
5	0.520924486	0.433959779	4.450756406	4.642857143	4.176742751	1.568147014	2.423147581	
6	-0.298542390	0.230535330	4.149540883	4.209741115	4.480439560	3.735082522	4.068018589	
7	0.251073308	-0.151230123	2.684653572	3.230421687	2.708351270	2.768821778	2.850660418	

Gap Analysis

- Removed one single variable as the clusters I got was 2 with the previous single variables which was not very optimum
- Number of clusters for the firstpeak to be 5 which is optimum
- Number of clusters for the globalpeak to be 5 which is optimum

The SAS System The HPCLUS Procedure ABC Parameters Minimum Maximum Cluster Cluster Cluster 2 6 Reference Distribution Count Method 20 PCA ABC Statistics

ABC Statistics							
Number of Clusters		rithm of luster SSE	Gap	Simulation Adjusted	One Standard Error		
	Input	Reference		Standard Deviation	Adjusted Gap		
2	11.7647	13.1591	1.3944	0.00472	1.3897		
3	11.6351	12.8835	1.2483	0.00440	1.2439		
4	11.5629	12.7576	1.1947	0.00219	1.1925		
5	11.4591	12.6708	1.2117	0.00452	1.2072		
6	11.4152	12.5829	1.1677	0.00361	1.1641		

Estimated Number	er of Clusters
Criterion	Number of Clusters
GLOBALPEAK	5

Cluster Summary									
	uster Frequency	Distance from Cluster Centroid to Observation						Distance to Nearest	
Cluster		Maximum	Minimum	Average	SSE	Standard Deviation	Nearest Cluster	Cluster Centroid	
1	3356	4.5083	0.5749	2.1457	16837.3	2.2399	4	2.3662	
2	4065	4.0775	0.4407	1.9172	16566.8	2.0188	3	2.4696	
3	5047	4.9411	0.5541	1.9806	21918.3	2.0839	5	2.4008	
4	4025	4.9627	0.5217	2.0426	18366.5	2.1361	1	2.3662	
5	4635	5.5580	0.7325	1.9612	21067.8	2.1320	3	2.4008	

Gap Analysis

Cluster means for the drivers

- Considered the means from the Firstpeak and it seems like there is decent discrimination.
 - n!/r!(n-r)! = 5!/2!(5-2)! = 120/12 = 10
 - 10*6 = 60
 - 9 Ties (Working show in the excel attached)
 - 9/60 = 0.15 *100 = 15%
- This looks like a decent discrimination among the clusters for the driver variables as the percentage does not cross 15% and it has exactly 15% of ties

K means Vs HPCLUS suggested number of clusters

- K means: The number of cluster I got through CCC is 7.
- HPCLUS, the number of clusters I got was 5
- I would select the K means cluster as it has 7 clusters, and it seems to be more optimum than the HPCLUS clusters

Within Cluster Statistics							
Variable	Cluster	Mean	Standard Deviation				
Travel	1	0.3634	3.1536				
	2	-0.3601	2.9383				
	3	0.2185	2.3466				
	4	-0.1342	1.8894				
	5	-0.0272	1.5025				
Social_interaction	1	0.3422	3.0785				
	2	-0.1642	2.9954				
	3	0.1242	2.2625				
	4	0.0208	2.0038				
	5	-0.2423	1.5563				
Think_Calories_Eat	1	1.5906	7.0137				
	2	4.1894	10.3889				
	3	2.2489	5.9683				
	4	2.7230	4.8108				
	5	3.1983	4.3684				
Consider_Diet_Very_Healthy	1	2.1424	8.7550				
	2	4.1220	10.6637				
	3	2.7505	6.6092				
	4	3.9749	6.5165				
	5	3.2967	5.0320				
feel_guilty_cal	1	4.3367	11.2950				
	2	1.8706	7.1552				
	3	2.0440	5.1035				
	4	4.2368	6.5323				
	5	2.5303	4.8384				
fastfood_stay_budget_meal	1	3.8734	11.9457				
	2	4.6696	11.7267				
	3	4.6043	9.3926				
	4	4.6465	7.9899				
	5	2.5713	4.9633				

Cluster Analysis Across Descriptor Variables

- Used K=7 cluster solution as it worked best in the Previous exercise
- Considered 0.1 as the difference
 - n!/r!(n-r)! = 7!/2!(7-2)! = 5040/240 = 21
 - 21*5 (descriptor variables) = 105
 - By considering 1% difference, we have:
 - 13 Ties -> 13/105 = 0.1238*100 = 12.38%
- We have 13 ties which is 12.38% of the overall ties
- Above output says the variable means are far apart from each other
- This has good number of ties as this does not exceed 15%. Therefore, the clustering solution discriminates on the descriptor variable well.
- Hence, cluster(k)=7 is an appropriate cluster choice for the market segmentation analysis.

Cluster Analysis Across Descriptor Variables

	Highest	Lowest
K_Krispy_Kreme	Cluster 5 has the highest mean value of 9.64%, indicating a high preference for Krispy Kreme	Clusters 2 has lowest mean value with 5.09%, suggesting a lower preference for Krispy Kreme
D_Dunkin_Donuts	Cluster 2 has the highest mean value of 22.72%, indicating a strong preference for Dunkin Donuts over Krispy Kreme.	Clusters 1 has the lowest mean value of 18.17% indicating a strong preference for Krispy Kreme over Dunkin Donuts
Y_Youtube	Cluster 3 has the highest mean value of 43.09%, indicating they have higher chance of watching ads over Youtube	Clusters 6 has lowest mean values of 32.21% indicating they have lower chance of watching ads over Youtube
Gender_resp	Cluster 5 has the highest mean value of 57.23%, suggesting a higher representation of a male gender	Clusters 4 has lowest mean values of 33.57% suggesting a lower representation of a male gender
RESPNDNT_ORIGIN	Cluster 2 has the highest mean value of 45.41%, indicating a higher proportion from a SPANISH/HISPANIC/LATINO origin	Clusters 5 has lowest mean values of 23.79% indicating a lower proportion from a SPANISH/HISPANIC/LATINO origin