CONJUNTO DE EJERCICIOS

1. Sea $f(x) = -x^3 - \cos x$ y $p_0 = -1$. Use el método de Newton y de la Secante para encontrar p_2 . ¿Se podría usar $p_0 = 0$?

 $p_2 = -0.8654740331016162$ con el método de Newton No podemos utilizar p= 0, porque $p'_0 = 0$

 $p_2 = -0.8654740331679321$ con el método de la secante No podemos utilizar p= 0, porque $p'_0 = 0$

2. Encuentre soluciones precisas dentro de 10^{-4} para los siguientes problemas.

a. $x^3 - 2x^2 - 5 = 0$, [1,4] b. $x^3 + 3x^2 - 1 = 0$, [-3, -2]

b.
$$x^3 + 3x^2 - 1 = 0$$
. $[-3, -2]$

c. $x - \cos x = 0$, $[0, \pi/2]$

d.
$$x - 0.8 - 0.2 \operatorname{sen} x = 0$$
, $[0, \pi/2]$

Método de Newton:

a = 2.6906474480286287b = -2.8793852448366706c = 0.739085133385284d = 0.9643338876952227

Método de la secante:

a = 2.6906474478837734b = -2.879385194736809c = 0.739085133034638d = 0.9643338835706312

3. Use los 2 métodos en esta sección para encontrar las soluciones dentro de 10-5 para los siguientes problemas.

a.
$$3x - e^x = 0$$
 para $1 \le x \le 2$
b. $2x + 3\cos x - e^x = 0$ para $1 \le x \le 2$

Método de newton

Elegimos un valor inicial x_0 . En este caso, probamos con $x_0 = 1$.

Usamos la fórmula: $X_n = x_{n-1} - f x_{n-1} / f'(x_{n-1})$

Iteramos usando la fórmula de Newton hasta $|x_{n+1} - x_n| < 10^{-5}$

Método de la secante

Elegimos un valor inicial x_0 y un x_1 . En este caso, probamos con $x_0 = 1$ y $x_1 = 2$.

Usamos la fórmula $X_{n+1}=x_n-f(x_n)*\frac{x_n-x_{n-1}}{f(x_n)-f(x_{n-1})}$ Iteramos usando la fórmula de la secante hasta $|x_{n+1}-x_n|<10^{-5}$

Problema a

Primero calculamos su derivada.

 $f'(x) = 3 - e^x$

Método de newton: x = 0.61906Método de la secante: x = 1.51213

Problema b

Primero calculamos su derivada. $f'(x) = 2 - 3\sin(x) - e^x$ Método de newton: x = 1.23971Método de la secante: x = 1.23971

4. El polinomio de cuarto grado

$$f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$$

tiene dos ceros reales, uno en [-1,0] y el otro en [0,1]. Intente aproximar estos ceros dentro de 10^{-6} con a. El método de la secante (use los extremos como las estimaciones iniciales)

b. El método de Newton (use el punto medio como estimación inicial)

Derivada de f(x)

$$f'(x) = 920x^3 + 54x^2 + 18x - 221$$

Resultados:

Raíz en [-1, 0] usando el método de la secante: -0.040659288315725135

Raíz en [-1, 0] usando el método de Newton: -0.04065928831575899

Raíz en [0, 1] usando el método de la secante: -0.04065928831557162

Raíz en [0, 1] usando el método de Newton: -0.040659288315758865

- 5. La función $f(x) = \tan \pi x 6$ tiene cero en $(1/\pi)$ arcotangente $6 \approx 0.447431543$. Sea $p_0 = 0$ y $p_1 = 0.48$ y use 10 iteraciones en cada uno de los siguientes métodos para aproximar esta raíz. ¿Cuál método es más eficaz y por qué?
 - a. método de bisección
 - b. método de Newton
 - c. método de la secante

Respuesta:

$$f'(x) = \pi \sec^2(\pi x)$$

b. Método de newton con $p_0 = 0$ en f'(x)

Resultados:

Método de bisección: 0.44765625

Método de Newton: 0.44743154329035373 Método de la secante: 0.4474315432500218

Método eficaz:

Por lo tanto, el método de la secante puede considerarse más eficaz en términos de facilidad de implementación y robustez, especialmente cuando no se tiene una derivada fácilmente disponible o cuando la derivada presenta problemas. Sin embargo, si la derivada está disponible y es fácil de calcular, el método de Newton puede ser preferido debido a su rapidez de convergencia.

- **6.** La función descrita por $f(x) = \ln(x^2 + 1) e^{0.4x} \cos \pi x$ tiene un número infinito de ceros.
 - a. Determine, dentro de 10-6, el único cero negativo.
 - b. Determine, dentro de 10-6, los cuatro ceros positivos más pequeños.
 - c. Determine una aproximación inicial razonable para encontrar el enésimo cero positivo más pequeño de f. [Sugerencia: Dibuje una gráfica aproximada de f.]
 - d. Use la parte c) para determinar, dentro de 10^{-6} , el vigesimoquinto cero positivo más pequeño de f.

Respuesta

$$F'(x) = \frac{2x}{x^2 + 1} - \pi e^{0.4x} \sin(\pi x) + 0.4e^{0.4x} \cos(\pi x)$$

Único cero negativo aproximado: -0.43414304728572883

Cuatro ceros positivos más pequeños:

Cuatro ceros positivos más pequeños aproximados: [np.float64(0.4506567478899403), np.float64(1.7447380533688863), np.float64(2.238319795016953), np.float64(3.709041201384946)]

Encontrar el enésimo cero positivo más pequeño, si vemos la grafica y los valores dado, tenemos como (0.4506567478899403) es el cero positivo más pequeño

7. La función $f(x) = x^{(1/3)}$ tiene raíz en x = 0. Usando el punto de inicio de x = 1 y $p_0 = 5$, $p_0 = 0.5$ para el método de secante, compare los resultados de los métodos de la secante y de Newton.

Primero sacamos f'(x) =
$$\frac{1}{3} \chi^{-\frac{2}{3}}$$

Usamos la función del método de newton y reemplazamos.
 $x_{n+1} = -2x_n$
Usamos la formula del método de la secante tal cual está.

$$x_{n+1} = -2x_n$$

método de la secante: 0.8203606203010696

El método de newton termina dando Nan usando código Python.