10. Integrales de superficie, flujo

Nomenclatura y consideraciones básicas:

• Una superficie S de ecuación $\overline{X} = \overline{F}(u,v)$ con $(u,v) \in D$ es *suave* según esta representación, si $\overline{F} \in C^1(D)$ y el producto vectorial $\overline{F}'_u \wedge \overline{F}'_v \neq \overline{0} \ \forall (u,v) \in D$.

En este caso queda definido el versor normal $\breve{n} \doteq \frac{\overline{F}_u' \wedge \overline{F}_v'}{\|\overline{F}_u' \wedge \overline{F}_v'\|}$ que varía con continuidad sobre S; a su vez, si la superficie es orientable queda orientada mediante este versor.

La superficie es *suave a trozos* cuando D puede ser dividido en cantidad finita de partes en cada una de las cuales (o en abierto que las contenga) $\overline{F} \in C^1$ y $\overline{F}'_u \wedge \overline{F}'_v \neq \overline{0}$.

- $\iint_S f \, d\sigma \qquad \text{simboliza la integral de superficie del campo escalar } f \text{ sobre } S \text{ , donde} \\ d\sigma = \| \, \overline{F}'_u \wedge \overline{F}'_v \| \, du dv \text{ es el } \textit{diferencial de área de superficie}.$
- $\iint_S \bar{f} \cdot d\bar{\sigma} \equiv \iint_S \bar{f} \cdot \bar{n} \, d\sigma \quad \text{simboliza el } \textit{flujo} \text{ o integral de superficie del campo vectorial } \bar{f} \text{ a través de } S \text{ , donde } d\bar{\sigma} \doteq \bar{n} \, d\sigma \, .$

Observación: Si S es suave y <u>simple</u> según dos representaciones \overline{F}_1 y \overline{F}_2 , la $\iint_S f \, d\sigma$ tiene el mismo resultado usando cualquiera de ellas; mientras que se observará un cambio de signo en el resultado de $\iint_S \overline{f} \cdot \overline{n} \, d\sigma$ cuando \overline{F}_1 y \overline{F}_2 orienten a S en sentidos opuestos.

- 01) Una *superficie cilíndrica* es aquella generada por rectas paralelas que pasan por puntos de una curva $C \subset \mathbb{R}^3$, la curva es la *directriz* y la rectas las *generatrices* de la superficie. Determine ecuaciones paramétricas y cartesianas para las siguientes superficies cilíndricas:
 - a) directriz $y = x^2$ con z = 0, generatrices paralelas al eje z.
 - b) directriz $y = x^2$ con z = 0, generatrices dirigidas por el vector (1,1,1).
 - c) directriz $x^2 + y^2 = 4$ con z = 0, generatrices paralelas al eje z.
 - d) directriz $\overline{X} = (u, 2u, u^2)$ con $u \in \Re$, generatrices dirigidas por (2,1,0).
- 02) Una *superficie cónica* es aquella generada por rectas determinadas por los puntos de una curva $C \subset \Re^3$ y un punto fijo $\overline{V} \notin C$, la curva es la *directriz* y el punto \overline{V} el *vértice* de la superficie. Determine ecuaciones paramétricas y cartesianas para las siguientes superficies cónicas:

	a)	b)	c)	d)
directriz:	$y = x^2, \ z = 0$	$y = x^2, \ z = 0$	$x^2 + y^2 = 4$, $z = 0$	$\overline{X} = (u, 2u, u^2) \land u \in \Re$
vértice:	(0,0,1)	(1,4,0)	(0,0,2)	(0,0,1)

03) Parametrice las siguientes superficies:

a)
$$x^2 + y^2 + z^2 = 4$$
.

c)
$$x^2 + 4y^2 + 9z^2 = 36$$
.

b)
$$x^2 + 4y^2 = 4$$
.

d)
$$z=x^2+y^2$$
.

04) Sea S una superficie uniforme respecto del plano xy, definida implícitamente mediante la ecuación G(x, y, z) = 0. Imponga hipótesis para G de manera que S sea suave; en ese caso, si la ecuación en forma explícita fuera $z = g(x, y) \operatorname{con}(x, y) \in D_{xy}(x, y)$, demuestre que:

Para campo escalar:
$$\iint_{S} f d\sigma = \iint_{D_{xy}} \left[f \frac{\|\nabla G\|}{|G_{z}'|} \right]_{z=g(x,y)} dx dy.$$

Para campo vectorial:
$$\iint_{S} \bar{f} \cdot d\bar{\sigma} = \iint_{D_{xy}} \left[\frac{\bar{f} \cdot \nabla G}{|G'_{z}|} \right]_{z=g(x,y)} dxdy.$$

Donde, en ambos casos, D_{xy} se obtiene proyectando S sobre el plano xy.

- 05) Calcule el área de las siguientes superficies:
 - a) Trozo de superficie cilíndrica $z = 2x^2$ con $y \le x$, $z \le 6$, 1° octante.
 - b) Trozo de superficie cónica $z = \sqrt{2x^2 + 2y^2}$ interior a la esfera de radio 12 con centro en el origen de coordenadas.
 - c) Trozo de superficie cilíndrica $x^2 + z^2 = 4$ con $-x \le y \le x$, $z \ge 0$.
 - d) Superficie esférica de radio R.
 - e) Trozo de superficie cilíndrica $x^2 + y^2 = 2x$ con $x^2 + y^2 + z^2 \le 4$ en el 1° octante.
 - f) Superficie frontera del cuerpo definido por $x^2 + y^2 \le 1$, $0 \le z \le \sqrt{x^2 + y^2}$.
 - g) Superficie de ecuación $z=x^2-y$ con |y| < x, x < 1.
 - h) Trozo de plano tangente a $z = x + \ln(xy)$ en $(1,1,z_0)$ con $x^2 + y^2 \le 9$.
- 06) Calcule el momento de inercia respecto del eje z de una chapa con forma de paraboloide $z=x^2+y^2$, con $x\geq 0 \land 1\leq z\leq 4$, si la densidad superficial en cada punto de la chapa es $\delta(x,y,z)=\frac{k}{x^2+y^2}$ con k constante.
- 07) Sea $\overline{F} = k \, \overline{n} \, \text{con } k > 0 \, \text{constante, demuestre que } \iint_{S} \overline{F} \cdot \overline{n} \, d\sigma = F \, \text{área}(S) \, \text{con } F = \| \overline{F} \| \, .^{(*)}$
- 08) Demuestre que el flujo de \overline{F} constante a través de S plana con normal \overline{n} es $\overline{F} \cdot \overline{n}$ área(S).
- 09) Sea $\bar{f} \in C^1$ un campo de gradientes y S un trozo de una de sus superficies equipotenciales (que se supone suave). Demuestre que cuando S está orientada en el sentido de los potenciales crecientes, el flujo de \bar{f} a través de S es positivo.
- 10) Calcule el flujo de \bar{f} a través de S, indicando gráficamente la orientación del versor normal que ha elegido, o bien que se le solicite en cada caso. (&)
 - a) $\bar{f}(x,y,z) = (x^2 + yz, xz, 2z^2 2xz)$ a través de la superficie frontera del cuerpo definido por $1 \le z \le 5 x^2 y^2$.
 - b) $\bar{f}(x, y, z) = (x, y, z)$ a través de la superficie esférica de ecuación $x^2 + y^2 + z^2 = 4$.

^(*) Flujo de campo con módulo constante, con igual orientación que la superficie en cada punto.

^{(&}amp;) Cuando la superficie es cerrada (frontera de un cuerpo H), se la orienta (por convención) con versor normal saliente de H. Entonces, el flujo positivo es "saliente" de H y el negativo es "entrante" a H.

- c) $\bar{f}(x, y, z) = (xy, zx, y xz^2)$ a través del trozo de superficie cilíndrica de ecuación $y = x^3$ con $0 \le z \le x + y$, $x + y \le 10$.
- d) $\bar{f}(x, y, z) = (y, x, y) \land (x, z, y)$ a través del trozo de plano tangente a la superficie de ecuación $z = x^2 yx^3$ en el punto (1, 2, -1) con $(x, y) \in [0, 2] \times [1, 3]$.
- e) $\bar{f}(x,y,z) = (x\,y,\,z,\,y)$ a través de la superficie frontera del cuerpo limitado por $x^2+y^2 \le 4$, $x+y+z \le 18$, en el 1° octante. Nota: en este caso, como en muchos otros, el cálculo de flujo puede realizarse en forma más sencilla aplicando el teorema de la divergencia (ver T.P. siguiente).
- 11) Sea \bar{f} continuo tal que $\bar{f}(x,y,z) = (x-y,x-z,g(x,y,z))$, calcule el flujo de \bar{f} a través de la superficie de ecuación $x=y^2$ con $0 \le z \le 4$, $0 \le y \le 2-x^2$.
- 12) Calcule el flujo del gradiente de f(x, y, z) = x + y + z g(x y) a través de x + y = 4 en el 1° octante, con $0 \le z \le 8$. Suponga $g \in C^1$.
- 13) Sea S un trozo de superficie de ecuación $z = y^2 x^2$ cuya proyección sobre el plano xy es la región D. Sea g(x, y, z) = z + h(xy) con $h \in C^1$, demuestre que el flujo de ∇g a través de S es proporcional al área de D.
- 14) Calcule el flujo de $\overline{X} = (x, y, z)$ a través de la frontera del cubo $[-1,1] \times [-1,1] \times [-1,1]$ orientada con normal saliente del cubo.
- 15) Dado $\bar{f}(x,y,z) = (x,2y,z)$, calcule el flujo de \bar{f} a través del triángulo con vértices en los puntos (2,0,0), (0,2,0) y (0,0,1). Indique en un gráfico cómo ha decidido orientar la superficie.
- 16) Dado $\bar{f}(x,y,z)=(x^2z,z^3,x^2z)$, calcule el flujo de \bar{f} a través del trozo de plano Σ de ecuación z=2 con $x^2+y^2+z^2\leq 5$. Indique gráficamente cómo decidió orientar a Σ .
- 17) Sea ∂D la superficie frontera del cuerpo D definido por: $1 \le z \le 5 x^2 y^2$. Sabiendo que $\oint_{\partial D} \bar{f} \cdot \breve{n} \, d\sigma = 0$ y que $\bar{f}(x,y,z) = (\operatorname{sen}(y\cos(z)) 2x, \operatorname{sen}(x\cos(z)) y, 3z)$, calcule el flujo de \bar{f} a través del trozo de frontera de ecuación $z = 5 x^2 y^2$ orientado hacia z^+ .