

N-Channel 250-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$Rr_{DS(on)}\left(\Omega\right)$	I _D (A)			
250	0.155 at V _{GS} = 10 V	3.0			
	0.162 at V _{GS} = 6.0 V	2.9			

FEATURES

PWM-Optimized TrenchFET® Power MOSFET

• Halogen-free According to IEC 61249-2-21

• 100 % R_q Tested

Definition

Avalanche Tested

SO-8 D S D

Top View Ordering Information: Si4434DY-T1-E3 (Lead (Pb)-free)

Si4434DY-T1-GE3 (Lead (Pb)-free and Halogen-free)

APPLICATIONS

- · Primary Side Switch In:
 - Telecom Power Supplies
 - Distributed Power Architectures
 - Miniature Power Modules

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	T _A = 25 °C, unle	ss otherwise i	noted			
Parameter		Symbol	10 s	Steady State	Unit	
Drain-Source Voltage		V _{DS}	250		V	
Gate-Source Voltage		V _{GS}	± 20		V	
Continuous Dunin Comment/T 150 9C\d	T _A = 25 °C	3.0 2.1		2.1		
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 70 °C	- I _D	2.4	1.7	1	
Pulsed Drain Current		I _{DM}	30		Α	
Continuous Source Current (Diode Conduction) ^a		I _S	2.6	1.3		
Avalanche Current	L = 0.1 mH	I _{AS}		13	1	
Single Pulse Avalanche Energy	L = 0.1 IIII	E _{AS}	8.4		mJ	
Mariana Barra Biraira kang	T _A = 25 °C	P _D	3.1	1.56	W	
Maximum Power Dissipation ^a	T _A = 70 °C	' D	2.0	1.0	l vv	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Mariana landia ta Andria 18	t ≤ 10 s	R _{thJA}	33	40	
Maximum Junction-to-Ambient ^a	Steady State	' ¹thJA	65	80	°C/W
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	17	21	

Notes:

a. Surface Mounted on 1" x 1" FR4 board.

Vishay Siliconix

SPECIFICATIONS T _J = 25 °C, unless otherwise noted							
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.0		4.0	V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
Zava Cata Valtaga Dvain Current	L	V _{DS} = 250 V, V _{GS} = 0 V			1	μΑ	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 250 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$			15		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 10 \text{ V}, V_{GS} = 10 \text{ V}$	20			Α	
	В	V _{GS} = 10 V, I _D = 3.0 A		0.129	0.155	Ω	
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 6.0 \text{ V}, I_D = 2.9 \text{ A}$		0.131	0.162		
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 3.0 A		14		S	
Diode Forward Voltage ^a	V_{SD}	I _S = 2.8 A, V _{GS} = 0 V		0.75	1.2	V	
Dynamic ^b							
Total Gate Charge	Q_g			34	50		
Gate-Source Charge	Q_{gs}	V _{DS} = 100 V, V _{GS} = 10 V, I _D = 3.0 A		6.8		nC	
Gate-Drain Charge	Q_{gd}			10.5			
Gate Resistance	R_g		0.6	1.2	1.8	Ω	
Turn-On Delay Time	t _{d(on)}			16	25		
Rise Time	t _r	$V_{DD} = 100 \text{ V}, R_{L} = 25 \Omega$		23	35	ns	
Turn-Off Delay Time	t _{d(off)}	$I_D\cong 4.0$ A, $V_{GEN}=10$ V, $R_g=6$ Ω		47	70		
Fall Time	t _f			19	30		
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 2.8 A, dI/dt = 100 A/μs		100	150		

Notes:

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

On-Resistance vs. Drain Current

 $T_{\rm J} = 150~{\rm ^{\circ}C}$ 10 $T_{\rm J} = 150~{\rm ^{\circ}C}$ 10.0 0.2 0.4 0.6 0.8 1.0 1.2 $V_{\rm DS}$ - Source-to-Drain Voltage (V)

Source-Drain Diode Forward Voltage

2500
2000
Ciss
1500
1000
Coss
Criss
Criss
0
0
500
Criss
0
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0
500
0

V_{DS} - Drain-to-Source Voltage (V) **Capacitance**

On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

I_S - Source Current (A)

Vishay Siliconix

VISHAY

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

* V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Case

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72562.

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012

	MILLIM	IETERS	INC	HES	
DIM	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
С	0.19	0.25	0.0075	0.010	
D	4.80	5.00	0.189	0.196	
Е	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050 BSC		
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	
ECN: C-06527-Rev. I. 11-Sep-06					

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.