Q1. (a)

9

9

3

9

9

9 9

is Jacobi method:

$$D x^{(k+1)} = -(L+U)x^{k} + b$$

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \end{bmatrix} \qquad T = \begin{bmatrix} 0 & -1 & -6 \\ -1 & 0 & 1 \\ -4 & -2 & 0 \end{bmatrix}$$

(ii) Gaus - Siedle:

(11) Successive over Relaxation;

$$(\cancel{D} + \omega \cancel{L}) \cancel{x} = ((1-\omega)\cancel{D} - \omega \cancel{U}) \cancel{x} + \omega \cancel{b} \qquad \omega = 1.2$$

	Date	
	Tago 510.	0
(b	No convergence for Jacobi method within 100	
	iteration.	2
	Garage Sindel made 1 .)	
	Gauss-Siedel method: 2 max = -9.3659	

o R	method	:	max	=	-	14.	2084

Date		/_	
Page	No		

0,4

9

				_
A =	4	-1	-1	-1
	⊣	4	1	-1
	1	-1	4	-1
	+	-1	7	4

Since matrix A is symmetric, we can use deflation method to obtain all eigen values

i.e. iterative use of power method.

-: A is symmetric, its eigen vectors are orthogonal.

i.e. xi xj = 0 and xi xi = 1

L, euclidean normalized.

if 1217/217/21- --7/2n

we first compute a, using power method.

Now, $A_2 = A_1 - \lambda_1 x_1 x_1^T$

eigen values of A2 = 0, A2, A3, --., In

Hen ce, using power method, we can colculate 2

and continue similarly.