

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 1

Ergodic Theory

Author: Adam J. Gray Student Number: 3329798

1

Let $(X_1, \mathcal{B}_1, \mu_1, T_1)$ and $(X_2, \mathcal{B}_2, \mu_1, T_2)$ be two measure theoretically isomorphic p.p.ts $(\pi: X_1 \longrightarrow X_2)$. Suppose $(X_1, \mathcal{B}_1, \mu_1, T_1)$ is mixing. Then for $E, F \in \mathcal{B}_2$ see that

$$\mu_2(E \cap T_2^{-n}F) = \mu_1(\pi^{-1}(E \cap T_2^{-n}F))$$
$$= \mu_1(\pi^{-1}(E) \cap T_1^{-n}\pi^{-1}(F))$$

and since μ_1 is mixing then

$$\lim_{n \to \infty} \mu_1(\pi^{-1}(E) \cap T_1^{-n}\pi^{-1}(F)) = \mu_1(\pi^{-1}(E))\mu_1(\pi^{-1}(F))$$
$$= \mu_2(E)\mu_2(F)$$

and so

$$\lim_{n \to \infty} \mu_2(E \cap T_2^{-n}F) = \mu_2(E)\mu_2(F)$$

2

Consider $g_t: S^1 \longrightarrow S^1$ where $g_t(x) \mapsto x + t \pmod{1}$. The measure space is $(S^1, \mu_{\mathcal{L}})$ where $\mu_{\mathcal{L}}$ is the Lebesgue measure. Clearly the flow is ergodic because the only sets which are invariant for all t are S and \emptyset . However if we consider g_{τ} with $\tau = \frac{1}{2}$ then there are lots of invariant sets which are not of full or zero measure. For example $[0, \frac{1}{4}] \cup [\frac{1}{2}, \frac{3}{4}]$ is invariant but $\mu_{\mathcal{L}}([0, \frac{1}{4}] \cup [\frac{1}{2}, \frac{3}{4}]) = \frac{1}{2}$ and so $g_{\frac{1}{3}}$ with the Lebesgue measure is not ergodic.

3

(We show the contrapositive)

Suppose (X, \mathcal{B}, μ, T) is a p.p.t which is not ergodic. Then there exists another T invaraint measure ν . Since (X, \mathcal{B}, μ, T) is not ergodic then there exists $E \in \mathcal{B}$ such that $T^{-1}E = E$ but $0 < \mu(E) < 1$. Fix E and say $\mu(E) = \alpha$. Then we can define a new measure

$$\nu(F) = (1 - \alpha)^{-1} \mu(F \setminus E).$$

 ν is clearly ${\mathcal B}$ additive so it's a measure. We just have to verify that ν is T invariant.

$$\begin{split} \nu(T^{-1}F) &= (1-\alpha)^{-1}\mu((T^{-1}F) \setminus E) \\ &= (1-\alpha)^{-1}\mu(\{x: T(x) \in F, x \in E^c\}) \\ &= (1-\alpha)^{-1}\mu(\{x: T(x) \in (F \cap E^c)\}) \quad \text{because } E^c \text{ is } T \text{ invariant} \\ &= (1-\alpha)^{-1}\mu(T^{-1}(F \setminus E)) \\ &= (1-\alpha)^{-1}\mu(F \setminus E) \\ &= \nu(F) \end{split}$$

and so the contrapositive is proved.

4

$$A = \left[\begin{array}{cccccc} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right]$$

A is aperiodic and because $A_{i,j}^n$ represents the number of paths of length n from i to j then if $A_{1,1}^n \neq 0$ then $A_{1,2}^n = 0$. In other words there will never be a n such that all the entries of the matrix A^n are non-zero.

Another way of saying this is that state 2 can only be reached from state 1 in an odd number of steps whereas state 1 can only get back to state 1 in an even number of steps.

5

5.1

(By induction)

In the case n = 1 the result holds trivially.

Suppose $A_{i,j}^n = \#\{\text{paths from } i \text{ to } j \text{ of length } n\}$ (For all $j,k \leq N$.) Then

$$A_{i,j}^{n+1} = (A^n A)_{i,j}$$

$$= \sum_{k=1}^N A_{i,k}^n A_{k,j}$$

$$= \sum_{k=1}^N \#\{\text{paths from } i \text{ to } k \text{ of length } n\} A_{k,j}$$

$$= \sum_{k \in \{1,\dots,N\}, A_{k,j} = 1} \#\{\text{paths from } i \text{ to } k \text{ of length } n\}$$

$$= \#\{\text{paths from } i \text{ to } j \text{ of length } n\}$$

5.2

(By induction)

The case n = 1 holds by definition of P.

Suppose $P_{i,j}^n = \mathcal{P}[\text{ going from } i \text{ to } j \text{ in exactly } n \text{ steps }].$

Then

$$\begin{split} P_{i,j}^{n+1} &= (P^n P)_{i,j} \\ &= \sum_{k=1}^N P_{i,k}^n P_{k,j} \\ &= \sum_{k=1}^N P_{k,j} \mathcal{P}[\text{ going from } i \text{ to } k \text{ in exactly } n \text{ steps }] \\ &= \sum_{k=1}^N \mathcal{P}[\text{ going from } k \text{ to } j \text{ in exactly } 1 \text{ step }] \mathcal{P}[\text{ going from } i \text{ to } k \text{ in exactly } n \text{ steps }] \\ &= \sum_{k=1}^N \mathcal{P}[\text{ going from } i \text{ to } k \text{ in exactly } n \text{ steps then directly to } j] \\ &= \mathcal{P}[\text{ going from } i \text{ to } j \text{ in exactly } n + 1 \text{ steps }]. \end{split}$$

5.3

5.3.1

$$q_j = \sum_{k=1}^{N} P_{k,j} q_j$$
$$= P_{j,j} q_j$$

which implies either $P_{j,j} = 1$ or $q_j = 0$. Suppose $P_{j,j} = 1$, then $P_{j,k} = 0$ for all $k \neq j$. This implies

$$P_{j,k}^2 = \sum_{i=1}^N P_{j,i} P_{i,k}$$
$$= P_{j,j} P_{j,k}$$
$$= \delta_{j,k}$$

and by induction implies $(P^n)_{j,k}=0$ for all $j\neq k$, which is not allowed, so $q_j=0$.

5.3.2

Group into communicating classes [i], [j] respectively. (There may be other communicating classes but we can neglect them) Then there is a stochastic matrix

$$R = \left[\begin{array}{cc} \alpha & \alpha - 1 \\ 0 & 1 \end{array} \right]$$

If **w** is the stationary vector for R (defined above) then it is easy to see $w_1 = 0$. The result for q_i follows as $i \in [i]$.