Outcome	SLAV4	Student can consistently:	Find the volume of cubes, cuboids and other prisms including cylinders.
How the topic is examined	 Examined through test paper questions. Questions are equally likely to appear on calculator and non-calculator papers. If a question appears on a non-calculator paper students may be expected to leave their answer in terms of π if it has circular parts. Increasingly examination questions are asking students to use the volume of a prism to solve a real life problem (e.g. problems involve density) Questions could have integer, fractional, decimal and surd valued sides. 		
Prior knowledge	 Students should be confident with: Multiplying and dividing without a calculator. Finding the area of basic shapes (SLAV1) Finding the circumference and area of a circle (SLAV2) Compound shapes (SLAV3) In addition questions involving this topic can have links to: Density. Volume of cones, spheres and pyramids (SLAV8) 		
Suggested tuition approaches	 A prism is a shape that has the same cross section throughout (e.g. a cube has a square cross-section, cuboid rectangular cross-section, triangular prism has a triangular cross-section etc) A cylinder has a circular cross section. To find the volume of any prism you would find the area of the cross section and multiply by the height/depth/length the shape depending on the orientation. A prism may have a compound cross-section. Some students prefer to remember specific formulae for different prisms. Here are some examples. In each example the cross-section has been shaded. 		

©2017 The Access Project Company number: 07473072 | Charity number: 1143011 Registered address: Bastion House, 140 London Wall, London EC2Y 5DN

Shape	Notes
Cube or cuboid 3cm 5cm 7cm	Volume = $length \times width \times height = lwh$ $Volume = 5 \times 3 \times 7 = 105 \ cm^3$ You can use the formula Volume = Area of cross-section multiplied by length. You would get the same volume. Area of cross section = $3 \times 5 = 15$ Volume = $15 \times 7 = 105 \ cm^3$
Triangular prism 6cm 10cm 10cm	$Volume = length \times base \times height \ \div 2 = \frac{lbh}{2}$ $Volume = \frac{5 \times 6 \times 10}{2} = 150 \ cm^3$ You can use the formula Volume = Area of cross-section multiplied by length. You would get the same volume. Area of cross section = $\frac{1}{2} \times 5 \times 6 = 15$ $Volume = 15 \times 10 = 150 \text{cm}^3$
Cyclinder 3cm 10cm	$Volume = \pi \times radius^2 \times height = \pi r^2 h$ $Volume = \pi \times 3^2 \times 10 = 90\pi \ cm^3 = 283 \ cm^3$

2

©2017 The Access Project Company number: 07473072 | Charity number: 1143011 Registered address: Bastion House, 140 London Wall, London EC2Y 5DN

	 A prism may have a cross section that is a compound shape. For a shape like this you will need to use the notes on finding an area of compound shapes. Sometimes questions ask students to use the volume to solve further problems (e.g. find the density) 		
Common errors and misconceptions	 Students forget to put units – particularly when answers are given in terms of π If units are not the same, students need to convert one to the other. Errors are made when working out the volume without a calculator. One mark is given for 'stating the units' of an answer – many students lose the mark because they forget to or state the wrong units. When splitting a shape up students struggle to work out the lengths of missing sides that they might need to use. When finding the volume of a triangular prism, students forget to divide by 2. 		
Suggested resources	 Questions http://www.cimt.org.uk/projects/mepres/allgcse/pr7-sa.pdf https://corbettmaths.files.wordpress.com/2013/02/volume-of-a-cuboid-pdf.pdf https://corbettmaths.files.wordpress.com/2013/02/volume-of-a-prism-pdf.pdf https://corbettmaths.files.wordpress.com/2013/02/volume-of-a-cylinder-pdf.pdf http://corbettmaths.com/2013/03/24/volume-of-an-l-shape-prism/ past GCSE Questions 		

- https://keshgcsemaths.files.wordpress.com/2013/11/72_volume-of-prism.pdf
- o https://keshgcsemaths.files.wordpress.com/2013/11/73_volume-and-surface-area-of-cylinder.pdf
- Video tutorial
 - o http://corbettmaths.com/2012/08/09/volume-of-cuboids-and-cubes/ (cube/cuboid)
 - o http://corbettmaths.com/2013/04/20/volume-of-a-prism/ (prism)
 - o http://corbettmaths.com/2013/02/15/volume-of-a-cylinder/ (cylinder)
 - o http://corbettmaths.com/2013/03/24/volume-of-an-l-shape-prism/ (compound shape)