

MARKING GUIDELINE

NATIONAL CERTIFICATE FITTING AND MACHINING THEORY N2

30 July 2021

This marking guideline consists of 9 pages.

SECTION A

QUESTION	I: OCCUPATIONAL	SAFETY
----------	-----------------	--------

Tyre coupling
Raffard coupling
Fluid drive coupling

Axial misalignment Radial misalignment Angular misalignment

2.3

1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5	True False True True True				(5 × 1)	[5]
				OR		,	
			·	OIX .			
1.2	1.2.1	True					
	1.2.2	True					
	1.2.3	True					
	1.2.4	False					
	1.2.5	True				/F 4\	r <i>e</i> 1
						(5 × 1)	[5]
QUEST	ION 2: CC	DUPLINGS					
2.1	A coupl	ing is a pern	nanent connec	ction between	n a drive and	a driven shaft √	
	whereas	s a clutch is	a coupling whe	ere the drive	shaft and the	driven shaft can	
	be enga	aged and dise	engaged by the	e operator. 🗸			(2)
2.2	• Spi	der coupling					
2.2	-	by/resilient co	ounling				
		tal-disc coupl					
		•	oush coupling				
		ober belt cou					
		on sleeve co	_				
	,		. 0				

(Any 2 × 1)

(Any 2 × 1)

(2)

(2) **[6]**

QUESTION 3: LIMITS AND FIT

QUESTION 5: LUBRICATION AND VALVES

Solids

Liquids
Semi-solids (grease) (Any 3 × 1) (3)

A ball valve consists of a ball with a hole through it. ✓ When the opening in the ball coincides with that of the pipeline, the fluid will flow. ✓ If the handle is turned through 90° to the pipeline no flow will take place. ✓

Copyright reserved

5.1

Please turn over

(3) [**6**]

QUESTION 6: PACKING, STUFFING BOXES, JOINTS AND WATER-PIPE SYSTEMS

- 6.1 Prevent leaks in the different types of machinery.
 - Acts as seal or joining when connecting pipelines to allow continuous flow of fluid.
 - Prevent dust and foreign matter from entering machines and equipment.
 - Maintains pressure within the system. $(Any 1 \times 1)$ (1)
- 6.2 Clean all surfaces.
 - Check that the seal housing is free from damage.
 - Ensure the correct seal is used.
 - Ensure no damage while installing seal.
 - Lubricate the seal before installing.
 - Use a protective sheath over a threaded section to protect the seal.
 - Ensure that the seals are not subjected to any misalignment.
 - Always tighten up lightly in the beginning for squaring up the seal.

 $(Any 5 \times 1)$ (5)

- 6.3 6.3.1 Plug
 - 6.3.2 Union
 - 6.3.3 **Nipple**

 (3×1) (3)

[9]

[6]

QUESTION 7: PUMPS

- 7.1 Casing or housing
 - Impeller
 - Stuffing box assembly
 - Bearings
 - Shaft assembly $(Any 2 \times 1)$ (2)
- 7.2 When the piston moves out, liquid is drawn into the cylinder. ✓ When the piston moves inwards, the liquid is forced out of the cylinder. ✓ (2)
- In a positive displacement pump a fixed amount of fluid is displaced with every stroke of the pump, ✓ whereas in a non-positive displacement pump the amount of fluid displaced varies with every rotation of the pump.✓ (2)

Copyright reserved

7.3

Please turn over

QUESTION 8: COMPRESSORS

8.1	Vane compressorsLobe compressors		
	Rotary-screw compressors		
	Centrifugal compressors	(Any 3 × 1)	(3)
8.2	Pascal (Pa) / Kilopascal (KPa) / Megapascal (MPa)	(Any 1 × 1)	(1) [4]
QUESTI	ON 9: V-BELT, GEAR DRIVES, CHAIN DRIVES AND REDUC	TION GEARBOXE	S
9.1	Solid sprocketSolid sprocket with spokes		
	Split sprocket with spokes		(3)
9.2	Velocity ratio is the relationship between the spegar to the speed of the driven gear.	eeds of the drive	
	 The number of teeth of the driven gear to the number of teeth of the driven gear. 	umber of teeth of (Any 1 × 1)	(1)
	9.2.2 Mechanical advantage is the resultant effect betwee gears and can be obtained by varying the velocithem.	•	(1)
9.3	 Slip will take place in the event of overloading No lubrication is required Operation is more silent 		
	 They require very little attention In the case of multiple drives, when one belt breaks, the d to run, using the remaining belts. 	rive will continue (Any 4 × 1)	(4)
9.4	Single-reduction gearboxDouble-reduction gearbox		
	 Double-reduction gearbox Worm and worm-wheel gearbox 		(3) [12]
	тот	AL SECTION A:	60

SECTION B

Only TWO questions to be answered in SECTION B.

QUESTION 10: HYDRAULICS AND PNEUMATICS

10.1	 Pump Reservoir Actuator Valves or pressure relief valve or control valve Piping (Any 3 × 1) 	(3)
10.2	 Transmits energy Lubricates Prevents corrosion Removes dirt Acts as a coolant (Any 3 × 1) 	(3)
10.3	A – Reservoir B – Hydraulic motor C – Pressure relief valve D – Check valve / One-way valve E – Actuator / Cylinder	(5)
10.4	 Compressed air supply is readily available. They are more reliable and durable than hydraulic systems. They are more easily adaptable than hydraulic systems. They are safer than hydraulic systems. Reciprocating motion is easily and cheaply achieved. Variable speeds can be obtained in pneumatic systems. They are more economical as they have lower set-up and maintenance costs. (Any 5 × 1) 	(5)
10.5	Ensures that the normal working pressure is not exceeded by relieving excess fluid pressure in the tank.	(1)
10.6	 Check for leaks/cracks Check for kinks Check for perished rubber Check for blockages (Any 3 × 1) 	(3) [20]

QUESTION 11: CENTRE LATHES

- Supporting long, slender workpieces between centres
 - Maintaining concentricity of long workpieces while machining
 - Reducing vibration or chatter, ensuring a better finish of the workpiece
 - · Supporting workpieces against the pressure of heavy machining

 $(Any 3 \times 1)$ (3)

11.2 11.2.1
$$Set - over = \frac{D - d}{2} \times \frac{length \ of \ workpiece}{length \ of \ taper}$$
$$= \frac{45 - 30}{2} \times \frac{250}{150} \checkmark$$
$$= 12.5 \ mm \ \checkmark$$
 (2)

$$\tan \frac{\theta}{2} = \frac{x}{L}$$

$$= \frac{7.5}{150} \checkmark$$

$$= 0.05$$

$$\frac{\theta}{2} = 2.86^{\circ} \checkmark$$

$$\theta = 5.72^{\circ}$$

$$= 5^{\circ} 43' \checkmark$$
(3)

11.3
$$S = \pi DN$$

$$D = \frac{S}{\pi \times N} \checkmark$$

$$= \frac{56,55}{\pi \times 1800} \checkmark$$

$$= 10 \text{ mm} \checkmark$$
(3)

11.4
$$L = f \times N \times t$$

$$t = \frac{L}{f \times N} \checkmark$$

$$= \frac{250}{0.5 \times 199} \checkmark$$

$$= 2.513 \text{ min}$$

$$= 2 \text{ min } 30.8 \text{ seconds } \checkmark$$
(3)

11.5 11.5.1 Lead = Number of starts \times pitch of thread = 2×12 = 24 mm

Mean diameter (Dm) = Outside diameter $-\frac{\text{pitch}}{2}$ = $66 - \frac{12}{2}$ = 60 mm/

$$\tan \theta = \frac{\text{Lead}}{\pi \times \text{Dm}}$$

$$= \frac{24}{\pi \times 60}$$

$$= 0.127 \checkmark$$

$$\theta = 7,24^{\circ} \checkmark \tag{4}$$

11.5.2 Leading angle = 90° - (helix angle + clearance angle) = 90° - $(7,256^{\circ}+3^{\circ})$ = 79,744 mm (1)

11.5.3 Following angle =
$$90^{\circ}$$
+ (helix angle - clearance angle)
= 90° + (7,256-3°)
= $94,256$ mm (1)

- 12.1 12.1.1 A Up-cut milling
 - B Down-cut milling

QUESTION 12: MILLING MACHINES AND SURFACE GRINDERS

12.1.2 A – The workpiece is fed against the direction of rotation of the milling cutter.

B – The work piece is fed with the direction of rotation of the milling cutter.

- 12.1.3 There is a chance of the cutter lifting the work piece.
 - The finish on the work piece is not of a high standard.
- 12.1.4 Deeper cuts can be made.
 - A good finish is obtained.

 (4×2) (8)

12.2 Indexing = $\frac{40}{N}$

$$=\frac{40}{9}$$

$$=4\frac{4}{9}\checkmark$$

$$=4\left[\frac{4}{9}\times\frac{2}{2}\right]\checkmark$$

$$=4 \frac{8}{18}$$

Indexing = four full turns of the crank handle and 8 holes in an 18-hole plate. ✓ (5)

- 12.3 Costs less
 - Less vibration on the arbour
 - · Higher arbour speed may be used
 - Less power needed to drive the cutter
 - Less chance of shearing the key

(5)

12.4 12.4.1 Aluminium oxide/A

12.4.2 Silicon carbide/C

 $(2 \times 1) \qquad (2)$

[20]

40

TOTAL SECTION B:

GRAND TOTAL: 100