SECTION

(1)
$$2 \times 10^4 \text{ cm} = 2 \times 10^4 \div 10^2 \text{ m}$$

= 2×10^2
= 200 m

2
$$V = \frac{4\pi r^3}{3}$$
 : $360 = \frac{4\pi r^3}{3}$
 $\frac{360 \times 3}{4\pi} = r^3$
 $r = 4.413...$
 $r = 4.413...$

$$(4) \quad 0.023 \text{ m}^2 \qquad \qquad |m^2 = 1000^2 \text{ mm}^2 = 1000000 \text{ mm}^2$$

$$0.023 \times 1000000 = 23000$$

$$\therefore \quad 23000 \text{ mm}^2 \quad \text{in} \quad 0.023 \text{ m}^2$$

$$3c^{2} = 6^{2} + \left(\frac{5}{2}\right)^{2}$$

$$= 36 + \frac{25}{4}$$

$$3c^{2} = \frac{169}{4}$$

$$3c = \frac{13}{2}$$

$$= 6.5 \text{ cm}$$

(b) (i) Area of a triangular face =
$$\frac{1}{2} \times 5 \times 6.5$$

= $\frac{65}{4}$ cm²
Area of the base = 5^2
= 25 cm²
Total surface area = $4 \times \frac{65}{4} + 25$
= 90 cm²

(ii) The required prism is a square based prism: base area 25 cm² and height 6 cm
$$V = Ah$$
= 150 cm³

(7) (a) Area of the cross-section
$$A = \frac{1}{2} \pi \left(8^2 - 4^2 \right)$$

$$= \frac{1}{2} \pi \times 4 \times 12$$

$$= 24\pi \text{ cm}^2$$

= 72 cm2

SECTION II

$$9 \qquad 3c \sqrt{3c} = 3c \times 3c^{\frac{1}{2}} = 3c^{\frac{5}{2}}$$

$$\frac{8x}{2^{-1}} = \frac{2}{8x} = \frac{1}{4x}$$

$$\frac{3xy^{3}}{3x^{2}y^{2}} = \frac{27xy^{2}}{3x^{2}y^{2}} = \frac{9xy^{7}}{3x^{2}y^{2}}$$

$$\frac{12}{8\sqrt{6}} = \frac{1}{4} \cdot \sqrt{\frac{18}{6}} = \frac{5}{4} \cdot \sqrt{\frac{18}{6}} = \frac{5}{4} \cdot \sqrt{\frac{18}{6}} = \frac{5}{4} \cdot \sqrt{\frac{18}{6}} = \frac{1}{4} \cdot \sqrt{\frac$$

(b)
$$\sqrt{108} - \sqrt{48} = 3\sqrt{12} - 2\sqrt{12}$$

= $\sqrt{12}$
= $2\sqrt{3}$

(c)

$$2\sqrt{5} \times (-3\sqrt{2}) \times 5\sqrt{5} = -30\sqrt{5} \times \sqrt{5} \times \sqrt{2}$$

 $= -150\sqrt{2}$

(e)
$$\sqrt[3]{27a^3b^6} = 3ab^2$$

$$(4) 4 sc^{\frac{1}{2}} \times 3 sc^{\frac{1}{2}} \div \frac{1}{2} sc^{\circ} = 12 sc \div (\frac{1}{2} \times 1)$$

$$= 24 sc$$

$$\frac{3cy}{3cy} : \frac{3c^2y^3}{3c^3y^2} = \frac{y^2}{3c^2y^3} \times \frac{3c^3y^2}{3c^2y^3}$$

$$= \frac{y}{3c}$$

$$4xc+7 = 7xc-2$$

$$3xc = 9$$

$$xc = 3$$