机密★启用前

2024年海南省普通高中学业水平选择性考试

化. 学

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再洗涂其他答案标号。回答非洗择题时,将答案写在答题卡 上。写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。 可能用到的相对原子质量: H1 Li7 O 16 Cl 35.5 K 39 Mn 55 Fe 56 Cu 64 Zn 65
- -、选择题:本题共8小题,每小题2分,共16分。在每小题给出的四个选项中,只有 一项是符合题目要求的。
- 1. 化学为实现社会可持续发展贡献巨大。下列说法错误的是
 - A. 以竹代塑, 可减少白色污染
 - B. 使用人工合成杀虫剂,对环境无影响
 - C. 无纸化办公, 可减少人工合成油墨的使用
 - D. 使用无磷洗涤剂,可减少水体污染
- 2. 下列包装标签上的安全标识与试剂对应正确的是

A. 丁烷

B. 葡萄糖

C. 浓硫酸

D. 氯化钡

- 3. 高分子物质与我们生活息息相关。下列说法错误的是
 - A. 糖原(成分类似于淀粉)可转化为葡萄糖
 - B. 聚合物 $\{CH_2-CH_2\}_n$ 是 $H_2C=CH_2$ 的加聚物
 - C. 畜禽毛羽(主要成分为角蛋白)完全水解可以得到氨基酸
 - D. 聚合物 HO-CO(CH₂)₄COOCH₂CH₂O-nH 的单体是 HOOC(CH₂)₄COOH 和 CH₃CH₂OH
- 4. 过氧化脲 $[CO(NH_2)_2 \cdot H_2O_2]$ 是一种常用的消毒剂,可由过氧化氢 (H_2O_2) 和脲 [CO(NH₂)₂]加合而成,代表性结构如图所示。下列关于过氧化 脲的说法正确的是
 - A. 所有原子处于同一平面 B. 氧的化合价均为-2价
 - C. 杀菌能力源于其氧化性 D. 所有共价键均为极性键

化学试题第1页(共6页)

5. 下列化学应用实例与方程式不匹配的是

选项	应用实例	方程式
A	海上油气1工平台海葵一号的钢 壳外壁铺装锌锭减缓腐蚀	$Zn^{2+}(aq) + 2e^- = Zn(s)$
В	用硫磺粉减少破损水银体温计洒 落的 Hg 的危害	$Hg(l) + S(s) \longrightarrow HgS(s)$
С	用浓 Na ₂ S ₂ O ₃ 溶液洗除实验服上的黑色银斑	$4Ag(s) + 8S_2O_3^{2-}(aq) + O_2(g) + 2H_2O(l) = $ $4[Ag(S_2O_3)_2]^{3-}(aq) + 4OH^{-}(aq)$
D	烘焙糕点时,以食品级 NH4HCO3 作膨松剂	$NH_4HCO_3(aq) \triangleq NH_3(g) + CO_2(g) + H_2O(l)$

- 6. NA代表阿伏加德罗常数的值。下列说法正确的是
 - A. 2.2 g 超重水 ($^{3}H_{2}O$) 所含的电子数目为 N_{A}
 - B. 1L 0.1mol·L⁻¹ NaClO 溶液中 ClO⁻ 的数目为 0.1N_A
 - C. 过量 C 与 1 $mol SiO_2$ 充分反应转移电子数目为 $3N_A$
 - D. 1 mol Cl₂ 与足量 CH₄ 发生取代反应生成 HCl 分子的数目为 2N_A
- 7. 已知 298K,101kPa 时, $CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$ $\Delta H = -49.5 \text{kJ·mol}^{-1}$ 。 该反应在密闭的刚性容器中分别于 T_1 、 T_2 温度下进行, CO_2 的初始浓度为 $0.4 \text{mol} \cdot \text{L}^{-1}$, $c(CO_2) t$ 关系如图所示。下列说法错误的是
 - A. $T_1 > T_2$
 - B. T_1 下反应达到平衡时 $c(CO_2) = 0.15 mol \cdot L^{-1}$
 - C. 使用催化剂 1 的反应活化能比催化剂 2 的大
 - D. 使用催化剂 2 和催化剂 3 的反应历程相同

- A. 氢气燃烧热 $\Delta H = -285.8 \text{ kJ·mol}^{-1}$
- B. 题述条件下 $2 \text{mol } H_2$ 和 $1 \text{mol } O_2$,在燃料电池中完全反应,电功+放热量=571.6kJ
- C. 氢能利用的关键技术在于安全储存与运输
- D. 不同电极材料电解水所需电压不同,产生 2g H₂(g)消耗的电功相同
- 二、选择题:本题共6小题,每小题4分,共24分。每小题有一个或两个选项符合题意。 若正确答案只包括一个选项,多选得0分;若正确答案包括两个选项,只选一个且正 确得2分,选两个且都正确得4分,但只要选错一个就得0分。
- 9. 海南暗罗是一种药用植物,具有抗菌、抗肿瘤活性。从中提取的一种生物活性物质结构简式如图所示。下列关于该分子说法正确的是
 - A. 能使酸性高锰酸钾溶液褪色
 - B. 分子式为 C₁₉H₂₈O₄
 - C. 含有 4 个手性碳原子
 - D. 预测在不同溶剂中的溶解度 $S: S_{\pi \sim l_n} > S_{Z_{\overline{p}}}$

化学试题第2页(共6页)

10. 根据下列实验及现象,所得结论错误的是

选项	实验及现象	结论
A	将 SO ₂ 通入溴水至过量,溶液的橙色褪去	SO ₂ 有漂白性
В	自热米饭附带的热源包(主要成分 CaO,少许 Na ₂ CO ₃ 、Al 粉)加水后,未产生气体	Al 粉已经变质
С	CuCl ₂ 浓溶液呈黄绿色,加水稀释后溶液呈蓝色	配体 H ₂ O、Cl ⁻ 与 Cu ²⁺ 间 存在配位平衡移动
D	淀粉—KI 试纸遇 FeCl ₃ —NH ₄ NF ₂ 的混合液不变 色	[FeF ₆] ³⁻ 配离子氧化能力 弱

11. 某温控质子驱动反应如图所示,下列说法错误的是

- A. I 转化为II后, N^1-C^2 键长变短
- B. 基态 N^+ 离子的核外电子排布式为 $1s^22s^22p^3$
- C. I 具备在热敏指示剂方面的应用前景 D. 加热时,I的 O^1 与 H^+ 结合, O^1-C^1 键断开
- 12. 下列实验装置或操作不能达到实验目的的是

选项	A	В	С	D
目的	提纯含砂的粗碘	观察气体扩散现象	制取少量乙酸乙酯	测定中和反应 的反应热
装置 或 操作	冷水粗碘	0.1%甲基橙 12mol·L·1 盐酸	乙醇、乙酸 浓硫酸 饱和碳酸 钠溶液	温度计一块璃搅拌棒

- 13. 电解 NH_4HSO_4 溶液得到 $S_2O_8^{2-}$,是早期制备 H_2O_2 的重要步骤。某实验装置如图所 示。电解过程流出液b中混有少量气泡。下列说法错误的是
 - A. 电解过程中阴极区 SO₄-的不断迁移到阳极区
 - B. 图中 a 代表 H₂
 - C. 回路中通过 1mol 电子产生 0.5mol (NH₄)₂S₂O₈
 - D. SO_4^{2-} 氧化成 $S_2O_8^{2-}$ 的电极反应为 $2SO_4^{2-}-2e^ = S_2O_8^{2-}$
- NH₄HSO₄
- 14. H₂S 在生态系统的硫循环中不可或缺。298K, 101kPa 时, 水溶液中-2 价 S 不同形 态的分布分数如图所示,下列说法正确的是
 - A. 线 a 表示 HS⁻的分布分数
 - B. 298K 时, Na₂S 的 pK_{h2} 约为 7.0
 - C. 1.0L 0.1mol·L⁻¹的 NaOH 溶液吸收 H₂S(g)的量大于 1mol
 - D. 可以向燃气中掺入微量 H₂S(g)以示警燃气泄漏

化学试题第3页(共6页)

三、非选择题: 共5题, 共60分。

15. (10 分)锰锌铁氧体($Mn_xZn_{1-y}Fe_2O_4$)元件是电子线路中的基础组成部分。某实验室利用废弃电子产品中的锰锌铁氧体制备 MnO_2 、ZnO 和 FeC_2O_4 · H_2O ,可用于电池,催化剂等行业,其工艺流程如下:

回答问题:

- (1) 氨浸的作用是将 元素(填元素符号)有效转移到水溶液中。
- (2) 煮沸含有配合物的溶液 B,产生混合气体,经冷凝后所得溶液可循环用于氨浸,该溶液是。
- (4) 沉铁时,选择 $K_2C_2O_4$ 是为了便于从滤液中回收有价值的钾盐_____(填化学式)。该钾盐在种植业中的一种用途是____。
- (5) 通过加入 CaSO₄ 固体,除去滤液中危害环境的 $C_2O_4^{2-}$,已知 $K_{sp}(CaSO_4)=7.1\times10^{-5}$, $K_{sp}(CaC_2O_4)=2.3\times10^{-9}$ 。 反应 CaSO₄(s)+ $C_2O_4^{2-}$ (aq) \rightleftharpoons CaC₂O₄(s)+SO₄²⁻(aq) 的平 衡 常 数 为
- 16. (10 分)氨是一种理想的储氢载体,具有储氢密度高、储运技术成熟等优点。已知 298K,100kPa 时,反应①: N₂(g) + 3H₂(g) ⇒2NH₃(g) ΔH_1 =−92kJ·mol⁻¹; $p(NH_3)$ =总压×NH₃ 物质的量分数。

回答问题:

- (1) 题述条件下,反应②: 2NH₃(g)⇌N₂(g) + 3H₂(g) ΔH₂= ____kJ·mol⁻¹。
- (2) 设反应为一步完成,且 ΔH 与温度无关。已知 $673 \mathrm{K}$ 下,反应①活化能为 $335 \mathrm{kJ \cdot mol^{-1}}$,则 $\mathrm{NH_3(g)}$ 分解反应的活化能为 $\mathrm{kJ \cdot mol^{-1}}$ 。
- (3) 既能影响反应②平衡转化率又能影响其反应速率的因素有 。。

17. (12 分) 羟基磷酸钙[$Ca_x(PO_4)_yOH$](1.41 $\leq x/y \leq$ 1.75) 是骨骼石灰和牙釉质的主要成分。某课题组按照下述步骤 进行其制备探索: 在 75℃ 下向由一定量 Ca(OH)2 粉末配 制的含有分散剂的浆液中, 边搅拌边滴加计算量的稀 H₃PO₄, 滴加完成后继续搅拌一段时间。冷至室温固液分 离,烘干固体得纳米级微粉产品。制备依据的代表反应式 为: 5Ca(OH)₂ + 3H₃PO₄ == Ca₅(PO₄)₃OH + 9H₂O, 装置如 图所示(固定器具已省略)。

回答问题:

(1)	装置图中.	安装不当的是	(填仪器标号)
\ 1 /	1X <u>H</u> H I I		

- (2) 使用冷凝管的目的是,冷凝水进水口为 (填序号),干燥管中熟石 灰用于吸收 (填化学式)。
 - (3) 实验中使用水浴加热,其优点为 、
 - (4) 投料时应使用新制 Ca(OH)2 粉末,以降低杂质____(填化学式)对实验的影响。
 - (5) 完成反应后,可以保持产品组成稳定的固液分离方式有 、 (填标号)。
- a. 倾倒 b. 常压过滤 c. 减压过滤
- d. 离心分离
- (6) 实验中以题述加料方式所得产品中 x/y = 1.67。某次实验将 $Ca(OH)_2$ 浆液滴入 稀 H_3PO_4 得到的产品中 x/y=1.50。造成这种结果差异的原因是
- 18. (14分)消炎镇痛药 F的一种合成路线如下:

回答问题:

- (1) A 的结构简式为 , 其化学名称为
- (2) **A→B**、**C→D** 反应的类型分别为 、
- (3) 某化合物 X 的分子式为 $C_{15}H_{14}O$,符合下列条件。X 的结构简式为 ①与 C 具有相同的官能团 ②含有 2 个苯环 ③核磁共振氢谱有 3 组峰
- (4) **D**中所含官能团名称为
- (5) **E**→**F** 反应方程式如下,**F** 和 **Y** 的结构简式分别为

$$\bigcirc CH_2CN \\ - C \\ C \\ O \\ + CO(OC_2H_5)_2 \xrightarrow{C_2H_5ONa} F + \boxed{Y}$$

化学试题第5页(共6页)

(6)以至多3个碳的有机物为原料(无机试剂任选),设计合成HOOC—⟨√√)—COOH
的路线:
已知: $\langle \frac{\text{COOR}}{\text{COOR}} \xrightarrow{\text{R'X}} \text{R'} \xrightarrow{\text{COOR}} \xrightarrow{\text{COOR}} \xrightarrow{\text{R'X}} \xrightarrow{\text{R'}} \xrightarrow{\text{COOR}} \xrightarrow{\text{COOR}}$
19. (14 分) 锂电池是新型储能系统中的核心部件。作为锂电池中用到的电解质材料之一,
Li-bfsi(阴离子 bfsi ⁻ 结构见下图 A)深受关注。
O N S O O N S O O N S O O N S O O N S O O S F CI O O CI C ₂ H ₅ O O C ₂ H ₅ F O O F
A B C D E
回答问题:
(1) Li-bfsi 的制备前体 H-bfsi (${f B}$),可由 ${f C}$ 的氟化反应得到, ${f C}$ 中第三周期元
素有(填元素符号)。
(2) C 分子中,两个 H-N-S 键角均为 117°, S-N-S 键角为 126°, N 的原子轨
道杂化类型为。
(3) B 溶于某溶剂发生自耦电离($2B$ \rightleftharpoons $A+F$),阳离子 F 的结构式为。
(4) \mathbf{B} 和 \mathbf{D} 水溶液均呈酸性,相同温度下, $K_{\mathbf{a}}$ 值大小关系: \mathbf{B} \mathbf{D} (填 ">"
或 "<");沸点大小关系: B (170℃)> E (60.8℃),其原因是。
(5) 研究表明,某有机溶剂中,相同浓度的 G 溶液和 H 溶液,前者电导率显著低
于后者,原因是 。

(6) $Li_2(OH)Cl$ 在固体离子电导方面具有潜在的应用前景。其两种晶型中,一种取长方体形晶胞(图 19-1,长方体棱长为 a、b、c),

另一种取立方体形晶胞(图 19-2,Cl 居于立方体中心,立方体棱长为d)。图中氢原子皆己隐去。

①立方体形晶胞所代表的晶体中部分锂离子(•Li)位置上存在缺位现象,锂离子的总缺位率为

_____;该晶型中氯离子周围紧邻的锂离子平均

数目为_____。

②两种晶型的密度近似相等,则 c =_____(以含 a、b 和 d 的代数式表达)

