Fluoro-free, Ultrasound-based Navigation System for Cardiac Interventions

H. Nisar^{1,2*}, J. Moore¹, and E.C.S. Chen^{1,2,3}, and T.M. Peters^{1,2,3}

¹Robarts Research Institute, Canada ²School of Biomedical Engineering, Western University, Canada ³Medical Biophysics Graduate Program, Western University, London ON

INTRODUCTION

INTRACARDIAC INTERVENTIONS

- Image guidance is critical for minimally invasive cardiac procedures because of absence of direct line of sight.
- Two major stages of any percutaneous intervention:
 - Navigation of tools through vasculature.
 - Positioning of tools at the target site.

STANDARD OF CARE

Navigation

Fluoroscopy

Positioning

- Fluoroscopy
- Ultrasound Transesophageal (TEE) and intracardiac echocardiography (ICE)

IMAGE GUIDANCE SYSTEMS

 Combine imaging modalities with tracking technology in a user-friendly virtual environment, to assist surgical interventions in real-time.

MOTIVATION

- To reduce fluoroscopy during navigation phase of cardiac interventions because:
 - Exposure to harmful radiation.
 - Lack of visualization for the anatomy.
 - Risk of puncturing vessels.
 - Specialized equipment required.
- An ultrasound-based image guidance system can allow for a safe and radiation-free navigation through inferior vena-cava (IVC).

PROPOSED SURGICAL WORKFLOW

OBJECTIVE

To generate a navigation roadmap of a vascular phantom using tracked Conavi ForesightTM ICE probe to facilitate tool navigation during intracardiac interventions

METHODS

ULTRASOUND TRACKING & CALIBRATION

- Electromagnetic tracking device –
 NDI Aurora.
- Mini 6 degree of freedom tracking sensor (0.8 mm x 9 mm).
- Point to line calibration leads to correct spatial alignment of tracked tools and tracked ultrasound image in a virtual environment.

VASCULAR PHANTOM

- · Realistic under ultrasound, hollow, with vessel wall and surrounding tissue mimicking layer
- Similar geometry as IVC and renal veins.
- Material: Polyvinyl alcohol cryogel (PVAC) mixed with talc as scattering agent.

CAD model of vessel geometry

CAD model of mould and inserts

PVAC + 2.5% talc (1 freeze-thaw cycle)

Ready to add outer layer material

PVAC + 0.05% talc (2 freeze-thaw cycle)

DATA ACQUISITION AND POST-PROCESSING

Background subtraction

- Background modelling using a sector of artefacts, rotated along 360 degrees and combined.
 Vessel lumen segmentation
- Active contour algorithms to be used to segment the vessel lumen in each image.

3D vessel reconstruction

Possibly 'joint smoothing' and/or 'model fitting' algorithms to be used.

RESULTS

- Vascular phantom was successfully created with desired geometries.
- Average error in lumen diameter = 0.9 mm

Foresight™ ultrasound imaging (ICE) of the phantom (a) showing main vessels, (b) bifurcations, and (c) at a smaller depth. Comparison with (d) Swine IVC

Background model and subtracted image extracted from image (c) above

DISCUSSION

- This is an on-going preliminary phantom study which focuses on the design on an image guidance system for navigation through IVC.
- Background noise artefacts i.e. concentric circles are additive in nature and background removal often results in the loss of anatomical information.
- We are currently working on the postprocessing of our phantom images. Region growing or active contour algorithms are favorable for image segmentation.
- Future work involves doing animal studies and designing a robust algorithm to take care of varying appearances of veins in ultrasound.

ACKNOWLEDGEMENTS

Thanks to Henry Bruin, Bogdan Neagu and Ivailo Petrov for their invaluable cooperation

