

INTELIGENCIA ARTIFICIAL

Curso 2019/20

Relación de Problemas 3

BÚSQUEDA CON ADVERSARIO: JUEGOS

- 1. Aplicar el algoritmo minimax para el árbol de juego de la siguiente figura, donde el primero que juega es el jugador Max.
 - Indicar el valor del juego para Max y la mejor jugada a realizar.
 - ¿Qué nodos no necesitan ser explorados si los descendientes de un nodo se visitan de izquierda a derecha y se aplica la poda alfa-beta?

2. Considérese un juego de cartas en el que dos jugadores por turnos van quitando una carta de una fila de cartas, bien por el extremo izquierdo o bien por el derecho. Inicialmente la fila contiene cinco cartas etiquetadas con las letras A o B, de la siguiente manera:

El jugador que quita la última carta gana si ésta está etiquetada con A, y pierde en otro caso. Se trata de probar que el segundo jugador siempre puede ganar.

• Dibujar el árbol del juego e identificar una estrategia ganadora para el segundo jugador.

- Justificar qué técnica de resolución de juegos se está utilizando. No se considerará válida una solución que no esté correctamente formalizada.
- 3. Considérese el juego bipersonal en el que los dos jugadores van sumando cifras, con la ayuda de una calculadora, hasta alcanzar el número 31 ó superior. El juego consiste en ir pulsando en cada turno una de las teclas numéricas del 1 al 9 de la calculadora y el signo "+", teniendo en cuenta que la tecla numérica que se puede pulsar no puede ser la última que pulsó el oponente y que tiene que estar en la misma fila o en la misma columna que ésta. El jugador que en su turno sume 31 ó más pierde la partida.
 - Establecer y discutir la representación.
 - Estudiar cómo se podría resolver este juego.

- 4. Hare & Hounds (Presa & Cazador) ¹ es un juego de estrategia para 2 jugadores ². La presa decide los movimientos de la liebre, mientras que el cazador decide los movimientos de los perros. La presa gana el juego si consigue llegar de un extremo a otro del tablero. En cambio, el cazador gana si logra atrapar a la liebre, es decir, si se alcanza una situación del juego en la que la liebre no puede realizar ningún movimiento. En cada turno cada jugador puede mover sólo una ficha y siempre a una de las casillas adyacentes. Las fichas del cazador no pueden retroceder. El primer turno corresponde siempre al cazador. Se pide:
 - Indicar posibles representaciones de los estados.
 - Describir los operadores del juego.
 - ¿Qué funciones de evaluación se te ocurren para programar un jugador automático inteligente del juego?

¹https://en.wikipedia.org/wiki/Hare_games

²En http://www.appletonline.com/JavaApplets/HoundsAndHare/ puede encontrarse un applet para jugar al juego.

5. Dado el siguiente árbol de un juego, aplicar el algoritmo de poda alfa-beta para obtener la jugada minimax del mismo.

Representa apropiadamente en el algoritmo el "ganas" y "pierdes" y una vez aplicado el algoritmo:

- Especificar que nodos terminales NO es necesario evaluar por el algoritmo
- Dar el valor minimax del juego
- 6. Dado el siguiente árbol de un juego:

- Determinar el rango completo de valores del parámetro k que verifican que aplicando la poda alfa-beta se podan por lo mínimo cuatro nodos (terminales o no terminales).
- Especificar cuáles son los nodos que se han podado (la exploración del árbol se debe realizar de forma habitual utilizando la poda alfa-beta y explorarnos los nodos de izquierda a derecha).
- 7. Consideremos el siguiente juego. Hay dos monedas sesgadas M_1 y M_2 . La moneda M_1 tiene probabilidad 0,75 de salir cara y 0,25 de salir cruz. La moneda M_2 tiene probabilidad 0,10 de salir cara y 0,90 de salir cruz. Supongamos que el jugador J_1 puede elegir una moneda y lanzarla. Una vez visto el resultado, el jugador J_2 puede elegir cualquiera de las dos monedas y la lanza. Al final el jugador J_1 obtiene un beneficio que viene dado por la siguiente tabla:

			J_1	M_1			$J_1 M_2$											
	C	[!] a			C	Cr			C	[!] a		Cr						
J_2	$\overline{M_1}$	J_2	M_2	$J_2 M_1$		$J_2 M_2$		J_2	M_1	J_2	M_2	J_2	$\overline{M_1}$	$J_2 M_2$				
Ca	Cr	Ca	Cr	Ca	Cr	Ca	Cr	Ca	Cr	Ca	Cr	Ca	Cr	Ca	Cr			
8	9	7	3	4	2	0	3	7	5	9	7	1	6	8	0			

Donde la primera fila es la moneda elegida por J_1 , la segunda fila es el resultado de esa moneda, la tercera la moneda elegida por J_2 , la cuarta el resultado de esa moneda y la quinta es el resultado obtenido por J_1 .

• Resolver el problema, calcular el valor del juego y la estrategia óptima para el jugador J_1 .

8. Se pide resolver el siguiente árbol usando el algoritmo Minimax con poda alfa beta completando la lista "Nodo"/"Valor" resultante de su resolución dónde aparezca la asignación de la función heurística a cada uno de los nodos hojas no podados, así como el valor Minimax asociado a la resolución del árbol.

Nodo																								
Valor	-7	13	-3	18	5	9	-4	10	-5	8	21	2	-9	-1	0	15	-7	-4	11	19	9 3	3	20	3
Nodo																								7
Valor	-8	20	0	4	-6	-2	-1	1	14	12	9	23	33	-9	-2	33	1	5	7	-3	-5	0	40	