

📖 음계의 과학적

the

물리 부유

작품 요약 설명

피아노의 12개 건반에 호기심이 생겨 소리의 높낮이를 결정하는 조건을 탐구하고 음들 의 진동수가 가지는 패턴을 찾아내었다. 이를 이용해 다른 새로운 음계들을 직접 만들어 보았다. 피아노 프로그램과 스마트폰 앱을 만들어 10음계 음악을 직접 연주 해 보았다. 12음계와 10음계에서 협화음과 불협화음을 찾아 보고, 협화음과 불협화음이 만들어지는 원리를 탐구하였다. 화음의 어울림 정도를 쉽게 비교하기 위해 〈어울림 정도 계산법〉을 고아하였다.

연구 내용

① 탐구(연구) 동기

교이소를 공부하다 피아노는 7개의 흰 건반과 5개의 검은 건반이 반복된 패턴으로 이루어져 있다는 것을 알게 되었는데, 왜 꼭 12개로 이루어져 있는지 궁금증이 생겼다. 그리고 12개가 아닌 다른 개 수의 건반을 가지는 피아노는 없는지 궁금했다. 이런 궁금증을 풀기 위해 탐구를 시작했다.

② 탐구 순서

Q1) 피아노 건반은 왜 12	Q2) 음계에는 어떤 원리가	Q3) 다른 새로운 음제를
개일까?	있을까?	만들 수 있을까?
실험 1	함구	실험 2
12음계 규칙 찾기	음계와 진동수 비율 탐구	다양한 음계 만들기
Q4) 세로운 음계로 음악을	Q5) 화음에는 어떤 원리가	Q6) 협화음과 불협화음에는
연주해 불수 있을까?	있을까?	어떤 원리가 있을까?
실험 3, 6, 7	실험 4,5	심화 탐구, 실험 8
10음계로 음악 연주	화음의 진동수 비율 찾기	어울림 정도 계산법 고안

③ 탐구 내용

1) 12음계 음들의 규칙 찾기 (실험 1)

12음계 음들의 진동수

12음계 음들의 진동수 비교

도(C) 음들의 진동수 비교

- → 이웃한 음들의 진동수 비율은 일정, 도(C) 음들은 2배씩 증가
- 2) 음계의 음들이 가지는 과학적 원리 탐구 (진동수 비율)

진동수 비율 × ... × 진동수 비율 = 2 (진동수 비율을 12번 곱함)

- → 12음계의 이웃한 음들의 진동수비는 R = 1.0595로 일정함
- 3) 다양한 음계 만들기 (실험 2)
- → N음계 음들의 진동수 비율 R의 계산 결과

ſ	N	8	9	10	11	12
	R	1.0905	1.0801	1.0718	1.0650	1.0595

→ N음계 음들의 진동수 계산 결과

진동수	1음(C4)	2음	3음	4음	5음	6음	7음	8음	9음	10음	11음	12음	13음
N=8	261.63	285.31	311.13	339.29	370.00	403.49	440.01	479.83	523.26				
N=9	261.63	282.58	305.20	329.63	356.02	384.53	415.31	448.56	484.47	523.26			
N=10	261.63	280.41	300.53	322.10	345.22	370.00	396.56	425.02	455.52	488.22	523.26		
N=11	261.63	278.65	278.65	316.07	336.63	358.52	381.84	406.68	433.13	461.30	491.30	523.26	
N=12	261.63	277.19	293.67	311.13	329.63	349.23	370.00	392.00	415.31	440.01	466.17	493.89	523.26

4) 10음계 음악 연주 실험

4-1) 10음계 음악 연주 피아노 프로그램 만들기 (스크래치)

스크래치 피아노 코드

4-2)10음계 음악을 피아노 프로그램으로 연주하기 (실험 3)

10음계 음악 연주름 위한 간단한 악보들

스크래치 피아노 프로그램으로 연주

음악 연주 동영상 QR Code (스크래치)

4-3) 앱인벤터 모바일 피아노 프로그램 만들기와 연주하기 (실험6) 아두이노 키패드 피아노 만들기와 연주하기 (실험 7)

앱인벤터 피아노 코드

피아노로 연주

유악 연주 동영상 QR Code (앱인벤터)

5) 화음의 과학적 원리 탐구 (심화 탐구)

5-1) 음계 내의 화음이 가지는 원리 탐구 (실험 4)

→ 12음계 음들의 도(C4)에 대한 진동수 비율과 화음

:7개의 협화음(도(C4), 미(E), 파(F), 파#(F#), 솔(G), 솔#(G#), 도(C5))

음	C4	C#	D	D#	E	F	F#	G	G#	A	A#	В	C5
진동수	261.63	277.18	293.66	311.13	329.63	349.23	369.99	392.00	415.30	440.00	466.16	493.88	523.25
비율	- 1	1.0595	1.1225	1.1892	1.2599	1.3348	1.4142	1.4983	1.5874	1.6818	1.7818	1.8877	. 2
정수비	1/1				5/4	4/3	7/5	3/2	8/5				2/1
소수값	1.0000				1.2500	1.3333	1.4000	1.5000	1.6000				2.0000
헙/불헙	. 21	봉업	불업	분업	업	. 51	55		. 65	' 불업	분업	불업	었

5-2) 10음계에서의 화음 찾기 (실험 5)

→ 10음계 음들의 도(C4)에 대한 진동수 비율과 화음 : 7개의 협화음(1, 4, 5, 6, 7,8, 11(높은도))

음	1음(C4)	2음	3음	4음	5음	6음	7음	8음	9음	10음	1
진동수	261.63	280.41	300.53	322.10	345.22	370.00	396.56	425.02	455.52	488.22	5
비율	1	1.0718	1.1487	1.2311	1.3195	1.4142	1.5157	1.6245	1.7411	1.8661	
정수비	1/1			5/4	4/3	7/5	3/2	8/5			
소수값	1.0000			1.2500	1.3333	1.4000	1.5000	1.6000			2
업/불업	헙	불업	불렵	헙	헙	헙	헙	헙	불헙	불럽	

6) 음계 내의 화음이 가지는 원리 탐구 (심화 탐구)

C4(가온도) 음을 피아노로 연주행을 때 나타나는 부분유들

기음과 배음들의 파장의 김이

9Hz음파와 10Hz음파가 만나서 만들어지는 맥놀이

→ 두 음의 진동수 차이로 간섭(백놀이)이 발생하여 화음의 어울림에 영향

7) 배음과 맥놀이를 이용한 화음의 '어울림 정도' 계산하기

〈백놀이 판별법〉: 두 음의 진동수비가 1.002에서 1.224 사이에 있으면 듣기 불쾌한 백놀이가 만들어진다.

8) <어울림 정도 계산법>을 이용한 화음 분석 (실험 8)

→ 〈어울림 정도 계산법〉을 이용하여 12음계 화음들의 '어울림 정도'

C4와의 화음	C4	C#	D	D#	E	F	F#	G	G#	A	A#	В	C5
어울림 정도	4	0	0	0	2	2	2	3	2	1	1	1	4
헙/불헙	93	불렵	불헙	불렵	현	엄	69	헏	램	불렵	불헙	불합	함

→ <어울림 정도 계산법>을 이용하여 10음계 화음들의 '어울림 정도'

, I E D	0	" - "	, E	, , ,	, -0	u , -	1 12 6	•	1 - 1	0	
1음과의 화음	l음	2음	3음	4음	5음	6음	7음	8음	9음	10음	미유
어울림 정도	4	0	0	2	2	2	2	2	1	1	4
현/분현	81	분현	분현	64	61	- 61	81	- 61	분현	분현	81

④ 결론

- 음계 내의 음들의 진동수의 규칙성을 발견할 수 있었음.
- 다른 음계 음들의 진동수를 계산하여 새로운 음계를 만들 수 있었음.
- 스크래치 피아노 프로그램과 앱인벤터 피아노 스마트폰 앱, 아두이노 피아노 건반 을 만들어 10음계의 음악 연주를 할수 있었음.
- 음들 사이의 진동수 비율을 관찰함으로써 12음계와 10음계 음들 사이의 협화음과 불협화음을 모두 찾아낼 수 있었음.
- 〈어울림 정도 계산법〉으로 음들의 어울림 정도를 쉽게 분석할 수 있었음.
- 〈어울림 정도 계산법〉으로 계산한 값이 2이상이면 협화음, 1이하이면 불협화음이
- 기존의 '진동수의 간단한 정수비' 대신 '어울림 정도' 값을 사용함으로써 화음 들 사이의 어울림 정도를 서로 명확하게 비교할 수 있었음.

⑤ 활용 방안

- 소리와 파동의 원리에 대한 과학 학습 자료로 활용 가능
- 음악과 과학을 주제로 한 코딩 학습 자료로 활용 가능
- 화음의 어울림 정도를 쉽게 계산할 수 있어, 작곡 및 음악 교육에 활용 가능