IN THE CLAIMS:

- 1. (Previously Presented) A method for striping packets across pipelines of a 1 processing engine within a network switch, the processing engine having a plurality of 2 processors arrayed as pipeline rows and columns embedded between input and output 3 buffers, the method comprising the steps of: 4 including a context memory in each pipeline row; 5 organizing the context memory as a plurality of window buffers of a defined size; 6 apportioning each packet into contexts corresponding to the defined size associ-7 ated with each window buffer; and 8 correlating each context with a relative position within the packet to thereby fa-9 cilitate reassembly of the packet at the output buffer, while obviating out-of-order issues 10 involving the contexts of the packet. 11
- 2. (Original) The method of Claim 1 further comprising the step of organizing the processors and context memory of each pipeline row as a cluster.
- 3. (Original) The method of Claim 2 wherein the step of apportioning comprises
 the steps of:
- segmenting the packet into fixed sized contexts at the input buffer;
- sequentially passing the contexts to the clusters; and

5	storing the fixed sized contexts in appropriate window buffers of the context
6	memories.
1	4. (Original) The method of Claim 3 wherein the step of correlating comprises
2	the step of providing a program counter entry point function to indicate the relative posi-
3	tion of each context within the packet.
1	5. (Original) The method of Claim 3 wherein the relative position comprises one
2	of a beginning, middle and end context of the packet.
1	6. (Original) The method of Claim 3 further comprising the steps of:
2	processing the context at a source processor of the cluster;
3	communicating an intermediate result relating to processing of the context to a
4	destination processor of a neighboring cluster.
1	7. (Original) The method of Claim 6 wherein the step of communicating com-
2	prises the step of providing an intercolumn communication mechanism configured to
3	forward the intermediate result from the source processor to an address of the destination
4	processor.
1	8. (Original) The method of Claim 3 further comprising the step of changing the
2	size of a fixed sized context at the context memory of a cluster.

1	9. (Currently Amended) [[The method of Claim 8 wherein the step of changing
2	comprises the steps of:]]
3	
4	A method for striping packets across pipelines of a processing engine within a network
5	switch, the processing engine having a plurality of processors arrayed as pipeline rows
6	and columns embedded between input and output buffers, the method comprising the
7	steps of:
8	including a context memory in each pipeline row;
9	organizing the context memory as a plurality of window buffers of a defined size;
10	apportioning each packet into contexts corresponding to the defined size associ-
11	ated with each window buffer by,
12	segmenting the packet into fixed sized contexts at the input buffer;
13	sequentially passing the contexts to the clusters; and
14	storing the fixed sized contexts in appropriate window buffers of the con-
15	text memories;
16	correlating each context with a relative position within the packet to thereby fa-
17	cilitate reassembly of the packet at the output buffer, while obviating out-of-order issues
18	involving the contexts of the packet;
19	organizing the processors and context memory of each pipeline row as a cluster;
20	changing the size of a fixed sized context at the context memory of a cluster;
21	deleting a portion of the fixed sized context stored in the window buffer, and

substituting the deleted portion of the context with information stored at another location of the context memory.

- 10. (Original) The method of Claim 9 wherein the substituted information is one of larger than and smaller than the deleted portion of the fixed sized context.
- 11. (Original) A system for striping packets across pipelines of a processing engine within a network switch, the processing engine having a plurality of processors arrayed as pipeline rows and columns embedded between input and output buffers, the system comprising:
- a context memory within each pipeline row, the context memory organized as a plurality of window buffers of a defined size;
- a segmentation unit adapted to apportion each packet into contexts for processing
 by the processors, each context corresponding to the defined size associated with each
 window buffer; and
- a mapping mechanism configured to correlate each context with a relative position within the packet to thereby facilitate reassembly of the packet at the output buffer, while obviating out-of-order issues involving the contexts of the packet.
- 1 12. (Original) The system of Claim 11 wherein the processors and context mem-2 ory of each pipeline row are organized as a cluster.

- 13. (Original) The system of Claim 12 wherein the mapping mechanism comprises a program counter entry point function that indicates the relative position of each context within the packet.
- 14. (Original) The system of Claim 13 wherein the relative position comprises
 2 one of a first, last and intermediate portion of the packet.
- 15. (Original) The system of Claim 13 further comprising an intercolumn communication mechanism configured to forward an intermediate result relating to processing of a context by a source processor to a destination processor.
- 16. (Original) A computer readable medium containing executable program instructions for striping packets across pipelines of a processing engine within a network
 switch, the processing engine having a plurality of processors arrayed as pipeline rows
 and columns embedded between input and output buffers, each pipeline row including a
 context memory, the processors and context memory of each pipeline row organized as a
 cluster, the executable program instructions comprising program instructions for:
 organizing the context memory as a plurality of window buffers of a defined size;
- organizing the context memory as a plurality of window buffers of a defined size apportioning each packet into contexts corresponding to the defined size associ-
- 9 ated with each window buffer; and

correlating each context with a relative position within the packet to thereby facilitate reassembly of the packet at the output buffer, while obviating out-of-order issues involving the contexts of the packet.

- 17. (Original) The computer readable medium of Claim 16 further comprising program instructions for:
- segmenting the packet into fixed sized contexts at the input buffer;
- sequentially passing the contexts to the clusters; and
- storing the fixed sized contexts in appropriate window buffers of the context
- 18. (Original) The computer readable medium of Claim 17 wherein the program
 2 instruction for correlating comprises the program instruction for providing a program
- counter entry point function to indicate the relative position of each context within the
- 4 packet.

memories.

6

- 19. (Original) The computer readable medium of Claim 17 further comprising
- program instructions for changing the size of a fixed sized context at the context memory
- of a cluster.

2	20. (Currently Amended) [[The computer readable medium of Claim 19 wherein
3	the program instruction for changing comprises program instructions for:]]
4	A computer readable medium containing executable program instructions for striping
5	packets across pipelines of a processing engine within a network switch, the processing
6	engine having a plurality of processors arrayed as pipeline rows and columns embedded
7	between input and output buffers, each pipeline row including a context memory, the
8	processors and context memory of each pipeline row organized as a cluster, the executa-
9	ble program instructions comprising program instructions for:
10	organizing the context memory as a plurality of window buffers of a defined size,
11	apportioning each packet into contexts corresponding to the defined size associ-
12	ated with each window buffer;
13	correlating each context with a relative position within the packet to thereby fa-
14	cilitate reassembly of the packet at the output buffer, while obviating out-of-order issues
15	involving the contexts of the packet;
16	segmenting the packet into fixed sized contexts at the input buffer;
17	sequentially passing the contexts to the clusters;
18	storing the fixed sized contexts in appropriate window buffers of the context
19	memories;
20	changing the size of a fixed sized context at the context memory of a cluster;
21	
22	deleting a portion of the fixed sized context stored in the window buffer; and

substituting the deleted portion of the context with information stored at another location of the context memory.

1 21. (Previously Presented) Electromagnetic signals propagating on a computer
2 network carrying instructions for striping packets across pipelines of a processing engine
3 within a network switch, the processing engine having a plurality of processors arrayed as
4 pipeline rows and columns embedded between input and output buffers, each pipeline
5 row including a context memory, the processors and context memory of each pipeline
6 row organized as a cluster, the electromagnetic signals comprising program instructions
7 for:

organizing the context memory as a plurality of window buffers of a defined size;
apportioning each packet into contexts corresponding to the defined size associated with each window buffer; and

correlating each context with a relative position within the packet to thereby facilitate reassembly of the packet at the output buffer, while obviating out-of-order issues involving the contexts of the packet.

11

12

Please add new Claims 22 et al., as follows:

- 22. (New) A method for operating a network switch, comprising: 1 arraying a plurality of processors as a plurality of rows, a row forming a pipeline 2 row, the pipeline rows arrayed between an input buffer and an output buffer; 3 including a context memory in each pipeline row; 4 organizing the context memory as a plurality of window buffers of a defined size; 5 apportioning, by the input buffer, each packet into packet contexts, a packet con-6 text corresponding to the defined size associated with each window buffer; and 7 correlating each packet context with a relative position within the packet to 8 thereby facilitate reassembly of the packet at the output buffer, to facilitates striping packets across a plurality of the pipelines. 10
- 1 23. (New) The method of claim 22, further comprising:
- organizing the processing engine so that a pipeline row forms a cluster of proces-
- sors, and including the context memory as part of the cluster.
- 1 24. (New) The method of claim 22, further comprising:
- segmenting the packet into fixed sized contexts at the input buffer;
- sequentially passing the contexts to the clusters; and
- storing the fixed sized contexts in appropriate window buffers of the context
- 5 memories.

1	25. (New) The method of claim 22, further comprising:
2	providing a program counter entry point function to indicate the relative position
3	of each context within the packet.
1	26. (New) The method of claim 22, wherein the relative position further com-
2	prises:
3	one of a beginning, middle and end context of the packet.
1	27. (New) The method of claim 22, further comprising:
2	processing the context at a source processor of the cluster;
3	communicating an intermediate result relating to processing of the context to a
4	destination processor of a neighboring cluster.
ı	28. (New) The method of claim 27, further comprising:
2	providing an intercolumn communication mechanism configured to forward the
3	intermediate result from the source processor to an address of the destination processor.
1	29. (New) The method of claim 22, further comprising:
2	changing the size of a fixed sized context at the context memory of a cluster.
1	30. (New) The method of claim 22, further comprising:

deleting a portion of the fixed sized context stored in the window buffer; and
substituting the deleted portion of the context with information stored at another
location of the context memory.

31. (New) A processing engine within a network switch, comprising:

means for arraying a plurality of processors as a row of a plurality of pipelines,

- the rows arrayed between an input buffer and an output buffer;
- 4 means for including a context memory in each pipeline row;
- means for organizing the context memory as a plurality of window buffers of a
- 6 defined size;

- means for apportioning, by the input buffer, each packet into packet contexts, a
- packet context corresponding to the defined size associated with each window buffer; and
- means for correlating each packet context with a relative position within the
- packet, to facilitate reassembly of the packet at the output buffer, thereby facilitating
- striping packets across the plurality of pipelines.
- 1 32. (New) The processing engine of claim 31, further comprising:
- means for organizing the processing engine so that a pipeline row forms a cluster
- of processors, and including the context memory as part of the cluster.
- 1 33. (New) The processing engine of claim 31, further comprising:
- means for segmenting the packet into fixed sized contexts at the input buffer;

means for sequentially passing the contexts to the clusters; and 3 means for storing the fixed sized contexts in appropriate window buffers of the 4 context memories. 5 34. (New) The processing engine of claim 31, further comprising: 1 means for providing a program counter entry point function to indicate the rela-2 tive position of each context within the packet. 3 35. (New) The processing engine of claim 31, wherein the relative position fur-1 ther comprises: 2 means for one of a beginning, middle and end context of the packet. 3 36. (New) The processing engine of claim 31, further comprising: 1 means for processing the context at a source processor of the cluster; 2 means for communicating an intermediate result relating to processing of the con-3 text to a destination processor of a neighboring cluster. 4 37. (New) The processing engine of claim 36, further comprising: 1 means for providing an intercolumn communication mechanism configured to 2 forward the intermediate result from the source processor to an address of the destination 3

processor.

38. (New) The processing engine of claim 31, further comprising: 1 means for changing the size of a fixed sized context at the context memory of a 2 cluster. 3 39. (New) The processing engine of claim 31, further comprising: means for deleting a portion of the fixed sized context stored in the window 2 buffer; and 3 means for substituting the deleted portion of the context with information stored 4 at another location of the context memory. 5 40. (New) A processing engine within a network switch, comprising: 1 a plurality of processors arrayed as a plurality rows, a row forming a pipeline, the 2 plurality of processors forming a plurality of rows of pipelines, the rows arrayed between 3 an input buffer and an output buffer; 4 a context memory included in each pipeline row; 5 the context memory organized as a plurality of window buffers of a defined size; 6 the input buffer apportioning each packet into packet contexts, a packet context 7 corresponding to the defined size associated with each window buffer; and 8

14

a processor of the plurality of processors to correlate each packet context with a

relative position within the packet, to facilitate reassembly of the packet at the output

buffer, thereby facilitating striping packets across the plurality of pipelines.

9

10

41. (New) The processing engine of claim 40, further comprising: ı the processing engine organized so that a pipeline row forms a cluster of proces-2 sors, and including the context memory as part of the cluster. 3 42. (New) The processing engine of claim 40, further comprising: 1 the input buffer segmenting the packet into fixed sized contexts; 2 the input buffer sequentially passing the contexts to the clusters; and 3 window buffers to store the fixed sized contexts in appropriate context memories. 4 43. (New) The processing engine of claim 40, further comprising: 1 a program counter entry point function to indicate the relative position of each 2 context within the packet. 3 44. (New) The processing engine of claim 40, wherein the relative position fur-1 ther comprises: 2 a beginning, middle and end context of the packet. 3 45. (New) The processing engine of claim 40, further comprising: a source processor of the cluster to process the context; and 2

a destination processor of a neighboring cluster to receive an intermediate result

3

relating to processing of the context.

- 1 46. (New) The processing engine of claim 45, further comprising:
- an intercolumn communication mechanism configured to forward the intermedi-
- ate result from the source processor to an address of the destination processor.
- 1 47. (New) The processing engine of claim 40, further comprising:
- a processor of the plurality of processors to change the size of a fixed sized con-
- text at the context memory of a cluster.
- 1 48. (New) The processing engine of claim 40, further comprising:
- a processor of the plurality of processors to change the size of a fixed sized con-
- text at the context memory of a cluster.