PHY 621	Ar antipr Posit Rev	timo olon -> ron -> view of E	electron while charge						
The two type	es of electric	charges	are called Protor	<u>)</u> and					
Electrons are the atom. Protons are nucleus of the with the neutons.	Posi-t	not a	charged. They orbit universal definit charged. They are	the nucleus of					
Neutrons ha	ve <u>No r</u>	ne o	r neutral	_ charge.					
An atom is electrically neutral when the <u>number of positive</u> charges equals the <u>number of negative</u> charges. $\# P^7 = \# e^-$									
An atom that has an electrical charge is called an									
If an atom loses electrons, it will gain a charge									
and it becomes a <u>Cations</u> .									
If an atom ga	ains electror	ns, it will g	yain a <u>Negativ</u>	charge					
and it becomes a									
# of protons	# of electrons	electric charge?	gained or lost what?	Ion Type					
8 p +	7 e-	+	lose an e-	cation					
10 p +	12 e-	ا ا	gained a e-	anien					
15 p +	15 e-	0	nothing	aton					
36 p +	34 e-	2+	love de-	Cation					

Protons are held very tightly in the nucleus of the atom. (Remember that the number of protons in the nucleus determines what kind of element an atom is.If the number of protons were to change, as in radioactive decay the type of element would change.) This means only the electrons will be able to move on and off atoms.

Valence Electrons

Valance electrons are the electrons found

in outermost shell

Valence electrons are the electrons that....

- ⇒ interact during a chemical reaction.
- ⇒ form bonds between atoms.
- ⇒ are gained or lost to form ions (usually).

				Pe	rio	dic	Ta	abl	e c	f E	Ele	me	ent	S			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H Hydrogen 1,00794	Atomic # Symbol Name Atomic Wase	С	Solid				Meta	ls		Nonn	netals	-1				273	2 He Hellom 4,000002
2 Li Limbon 0.345	Be Seyflum N 12182	Hg H	Liquid Gas		Alkali metals	earth metals	Lantha	noids metals	metals Transition	Other	Noble gases	6 § B Boson 10,811	C Carton 12.0107	N Ninopan 14 0067	Chygan 15.3094	F Fuome 15 1994/032	10 Ne Neon 20.1797
11 Na Seduce 22 SESCORDS	Ng Mg	Rf	Unkno	wn			Actino	ds	9	(S)		13 Al Aumaium 20 NO 12300	14 Si Si Sissen 21 0005	P P Phosphores so arrives	16 S	17 CI Creative 21.401	AF Argen 29.941
19 4 K Potassium 29.0063	Ca Casta	21 Sc Scom on 44 109/2	ZZ Ti Titanium 47.867	23 V Vanadium 50.9415	24 Cr Chromium 51,9961	Mn Manganese 54 838045	26 Fe	CO Cobalt 56.933196	Ni Ni Nickel 55.0004	29 Cu Copper 53,545	Zn	31 Ga 0atum 83.723	Ge Gemanum 12.54	AS AS Americ 74 Notes	Se Session	Br Br Browns 73304	36 Kr Krypton 83.756
37 Rb Publisher 11 4073	Statement of the statem	38 V 2004/M 58 90565	Zr Zr Zrosnum H1 224	41 Nb Notum N2 Notus	MO Mo Moyedenum st. se	TC Testration	Ru Ru Rumenum	Rh Rhedum 102 10110	Pd Palasium 100.0	A7 Ag Silver 107 8082	48 Cd	In	Sn Ta	51 Sb Ansmory 121.780	Te	53 I logre 101 3047	54 Xe Xenan 131 290
55 Cs Caesture 132 105452	Ba	57-71	72 Hf Hafrium 175.49	73 Ta Ta Taessum	74 W 15 Tungarien 1	75 Re Rhanum 186 207	76 Os Osmum 190 23	77 Ir Indum	78 Pt Patrium	79 Au 004 190 500000	Hg Manury Manury	81 TI Dation 204 3833	Pb	83 Bi Servin 201,8040	Po	At At Augusta	Rn Rn Faster GTD
Fr Francism (221)	Ra Radum	89-103	104 Dif Ruterook (207)	106 Db Copus	106 Sg Sesboguni	107 Bh Bohrum	HS Hassium (270)	Mt Mt Metrorum	DS Ds	Rg Resterior	Uub Uub	Uut Unannum	114 Uuq uvqaten	Uup Uup uuputun	Uuh	Uus Uus	118 Uuo Uninoctum (294)
Sea	arch		For	elements	with no st	able iso	topes, th	e mass r	number o	the iso	tope with	the long	est half-	life is in p	parenthes	ses.	
# or N	Name				Periodic Ta	ble Design	and Interfac	e Copyright	© 1997 Mid	hael Dayah	. http://www	ptable com	Last updat	ed Septem	ber 29, 2008		
			57 La	Ge Ce	Pr Pr	Nd :	Pm	62 Sm	63 Eu	Gd :	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu

The periodic table is arranged in a special way

The rows are called ______, hence the name.

The columns are called _____ and the atoms there

share similar chemical properties. Typically (not a guaranty), atoms

in the same column have the same number of valence electrons.

Bonding

Atoms can form a bond, a way to join up, in different ways.

The 2 most common ways both involve electrostatic attraction.

1. Ionic Bonding

> One atom has a <u>Very strong</u> attraction to the valence electrons and takes them completely

Covalent

> In this case, each atom becomes
an ion and are attracted to each other

2. Covalent Bonding

- > Each atom pulls has enough attraction to both hold onto the valence electrons.
- > Sometimes one atom has the valence electrons more than the other

Basic Rule for Electric Charges

"Like" charges repel each other

> ++ and --

"Opposite" charges attract each other

> + - and - +

<u>Electrostatics</u> is the study of electric charges that can be collected and held in one place. Charges in place will feel a force from others around them.

<u>Current Electricity</u> is the <u>flow of electric charges</u> from one place to another. Charges will feel a force that pushes/pulls them in a particular direction.

The <u>Law of Conservation of Electric Charges</u> states that the total charge of the <u>system</u> remains constant. Individual charges are never created or destroyed. These charges may be transferred from one location to another within the system.

Connected objects have equal charge

Collection of charge can be separated if objects no longer remain connected

Reverse is also true, charged objects balance out if they become connected

Electric Conductivity

<u>Electrical conductors</u> are materials that allow electric charges to move from one spot to another spot easily.

metals - silver, copper, gold, aluminum, tungsten, zinc, etc.
solutions - ionic solutions (ex. salt solutions with NaCl)

For example, if electrons are added to one spot on a conductor, these extra electrons will ______ each other. They will be pushed to other locations trying to get as far away as possible from each other. The extra electrons are able to move physically throughout the material.

<u>Electrical insulators</u> are materials that do not allow electric charges to move through them easily.

dry air, wool, ceramics, glass, plastic, vinyl, rubber, etc.

For example, if electrons are removed from one location on an insulator, that area becomes ___Positive ly____ charged. These lost electrons will not be replaced from electrons in other areas because they cannot physically move there.

<u>Semi conductors</u> are materials that are found between conductors and insulators.

They are used in electronic devices because they can easily be controlled to allow electric charges to move only when desired to

Types of Semiconductor Devices