MAST30027: Modern Applied Statistics

Week 10 Lab Sheet

1. Metropolis-Hastings

Recall that $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}$, iff \mathbf{X} has joint density

$$f_{\boldsymbol{\mu}, \boldsymbol{\Sigma}}(\mathbf{x}) = \frac{1}{2\pi |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right),$$

where $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

- (a) Write an R function that evaluates the density of a bivariate normal distribution. The function should take as input the point \mathbf{x} , the mean $\boldsymbol{\mu}$ and the covariance matrix $\boldsymbol{\Sigma}$. You will find the functions solve and det useful.
- (b) Write a program in R that uses the Metropolis-Hastings algorithm to generate a sample of size n=1000 from the $N\left(\begin{pmatrix} 0\\0 \end{pmatrix},\begin{pmatrix} 4&1\\1&4 \end{pmatrix}\right)$ distribution. Use the symmetric random walk proposal distribution $N\left(\mathbf{x},\sigma^2I\right)$ with $\sigma=2.5$. Use $\mathbf{X}(0)=\begin{pmatrix} 6\\-6 \end{pmatrix}$ as your initial state. Report the proportion of accepted values.
- (c) Let $\mathbf{X}(n)$ be the *n*-th sample point. Plot $X_i(n)$ and the cumulative averages $\overline{X}_i(n) = n^{-1} \sum_{j=1}^n X_i(j)$, for i = 1, 2. The cumulative averages should give a rough idea of how quickly the $\mathbf{X}(n)$ converge in distribution.

2. Suppose that
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, with $\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}$.

- (a) Show that the conditional distribution of $X_1|X_2=x_2$ is normal with mean $\mu_1+(x_2-\mu_2)\sigma_{12}/\sigma_2^2$ and variance $\sigma_1^2-\sigma_{12}/\sigma_2^2$.
- (b) Write an R function that uses the Gibbs sampler to generate a sample of size n=1000 from the $N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}\right)$ distribution. Plot traces of X_1 and X_2 .
- (c) Use your simulator to estimate $\mathbb{P}(X_1 \geq 0, X_2 \geq 0)$. To get a feel for the convergence rate, calculate the estimate using samples $\{1, \ldots, k\}$, for $k = 1, \ldots, n$, and then plot the estimates against n.

1

(d) Now change Σ to $\begin{pmatrix} 4 & 2.8 \\ 2.8 & 4 \end{pmatrix}$ and generate another sample of size 1000. What do the traces/estimates look like now?