DATA SHEET

Simple, version 0 Chip Specification

Chip: Simple, V0
Pennsylvania State University

Chip: Simple, V0 Pennsylvania State University

Pin Descriptions:

PIN	NAME	DESCRIPTION	PIN	NAME	DESCRIPTION
1	WR	Write Enable	21	widat2<4>	Write data, bit 15
2	PC<0>	LSB of the PC	22	widat2<3>	Write data, bit 14
3	PC<4>	5th bit of the program counter	23	widat2<2>	Write data, bit 13
4	idat1<0>	Program's memory data, bit 0	24	widat2<1>	Write data, bit 12
5	sdat<0>	First operand, bit 0	25	widat2<0>	Write data, bit 11
6	adat<7>	ALU's sign bit	26	widat1<7>	Write data, bit 10
7	iaw<0>	Write address, bit 0	27	widat1<6>	Write data, bit 9
8	iaw<1>	Write address, bit 1	28	widat1<5>	Write data, bit 8
9	iaw<2>	Write address, bit 2	29	widat1<4>	Write data, bit 7
10	iaw<3>	Write address, bit 3	30	widat1<3>	Write data, bit 6
11	iaw<4>	Write address, bit 4	31	widat1<2>	Write data, bit 5
12	output<0>	Output port, bit 0	32	widat1<1>	Write data, bit 4
13	output<1>	Output port, bit 1	33	widat1<0>	Write data, bit 3
14	output<2>	Output port, bit 2	34	widat0<2>	Write data, bit 2
15	output<3>	Output port, bit 3	35	widat0<1>	Write data, bit 1
16	output<4>	Output port, bit 4	36	widat0<0>	Write data, bit 0
17	output<5>	Output port, bit 5	37	clk	Clock in
18	output<6>	Output port, bit 6	38	clk	Clock out, clk
19	output<7>	Output port, bit 7	39	RST	Reset
20	GNT	Ground terminal	40	Vdd	Power terminal

I/O Ports:

I/O Operations are govern by the IN and OUT instructions. The OUT instruction sends the specified register's value to the output ports (output<7:0>, pins 12 to 19). The output port will remain until another OUT instruction overrides it with a new value. The IN instruction reads the input from the input ports (which are duplexed with widat1<7:0>, pins 26 to 33):

PIN	NAME	DESCRIPTION
26	idat1<7>	Input port, bit 7
27	idat1<6>	Input port, bit 6
28	idat1<5>	Input port, bit 5
29	idat1<4>	Input port, bit 4
30	idat1<3>	Input port, bit 3
31	idat1<2>	Input port, bit 2
32	idat1<1>	Input port, bit 1
33	idat1<0>	Input port, bit 0

Chip: Simple, V0 Pennsylvania State University

Instruction Set

The chip contains two dedicated memory banks: Program Memory (PM) and Data Memory (DM). The program memory is an array of 16-bit words. The data memory is an array of 8-bit words.

instruction Field:

All instructions are 16-bit words. The five most significant bits are the instruction op-code. The middle eight bits (1-byte) is the source address or immedate value. The three least significant bits are for the destination address.

op-field	source address	destination address
5-bits	8-bits	3-bits
I II	16-bit word	II

Addressing Modes:

INSTRUCTION	IMMEDIATE	RR
NOP	×	1
MV	✓	✓
ADD	×	✓
SUB	×	✓
ВС	×	✓
IN	×	✓
0UT	×	✓

Instruction Set

The assembler supports all opcode plus a number of pseudoinstructions.

```
immed, reg
1 MV
2 MV
        reg, reg
3 ADD
        reg, reg
   SUB
        reg, reg
5 INC reg, reg
6 DEC reg, reg
7 DECZ reg, reg
   BC
        label
   BLT reg, reg, label
10. BGT reg, reg, label
11. BNZ reg, reg, label
12. IN
        reg
13. OUT reg
14. NOP
       reg
15. CLR reg
```

Chip: Simple, V0 Pennsylvania State University

Moves data from source to destination

Operation: $R_{src} \Rightarrow R_{dest}$

Description: Moves the content of one register

to another register. The content of the source register is not

changed.

Ctrl Flags: -

Instruction	Adr. Mode	Obj. Code
MV immed, reg	Immediate	00100 imd dest
MV reg, reg	RegReg	00000 src dest

NOP

Null operation

Operation: No Operation

Description: This instruction increments the PC

and does nothing else. No other registers are affected. NOPs can be used to create CPU-based time

delay.

Ctrl Flags: -

Instruction	Adr. Mode	Obj. Code
NOP	-	00000 00000000 000

ADD

Adds two registers

Operation: $R_{src} + R_{dest} \Rightarrow R_{dest}$

Description: Adds the content of the source

register to the destination

register and saves the result back

in the destination register.

A carry occurs when the result cannot fit in the dest register.

Ctrl Flags: Δ

Instruction	Adr. Mode	Obj. Code
ADD reg, reg	RegReg	00010 src dest

SUB

Subtract from a register

Operation: $R_{dest} - R_{src} \Rightarrow R_{dest}$

Description: Subtracts the source register from

the destination register and saves the result back in the destination

register.

A carry occurs when the result cannot fit in the dest register.

Ctrl Flags:

C Δ

Instruction	Adr. Mode	Obj. Code
SUB reg, reg	RegReg	00011 src dest

IN

Read from input port

Operation: $idat1_{<7:0>} \Rightarrow R_{dest}$

Description: Copys the value from the input

port into the destination

register.

Ctrl Flags: -

Instruction	Adr. Mode	Obj. Code
IN reg	Reg	01000 00000000 dest

OUT

Write to output port

Operation: $R_{src} \Rightarrow output_{<7:0>}$

Description: Copys the value from the source

register to the output port.

Ctrl Flags: C

Instruction	Adr. Mode	Obj. Code
OUT reg	Reg	01001 src 000

BC

Branch on carry

Operation: If C = 1, then $(PC) + src \Rightarrow PC$

Description: Tests the C status bit and

branches if C = 1.

Ctrl Flags: C

Instruction	Adr. Mode	Obj. Code
BC rel	Relative	10000 src 000