Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Отчёт по лабораторной работе №8 по дисциплине "Математическая статистика"

Интервальные оценки математического ожидания и стандартного отклонения

Выполнил студент:

Мишутин Д. В.

Группа:

3630102/70301

Проверил:

К.ф.-м.н., доцент

Баженов Александр Николаевич

Санкт-Петербург

2020 г.

Оглавление

1 Постановка задачи	. 3
2 Теория	. 3
2.1 Интервальные оценки	. 3
2.3 Асимптотические оценки	. 4
3 Реализация	. 4
4 Результаты	. 4
5 Выводы	. 5
6 Литература	. 5
7 Приложения	. 5
Список иллюстраций и таблиц	
Таблица 1 Результаты для выборок мощности n=20	4
Таблица 2 Результаты для выборок мощности n=100	4

1 Постановка задачи

Для двух выборок из 20 и 100 элементов, сгенерированных согласно нормальному закону N(x,0,1), для параметров масштаба и положения построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma = 0.95$.

2 Теория

Стандартное нормальное распределение:

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$$

Функция распределения Стьюдента:

$$T = \sqrt{n-1} \frac{\overline{x} - \mu}{\delta}$$

Функция плотности χ^2 :

$$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, x > 0\\ 0, \text{иначе} \end{cases}$$

Доверительным интервалом или интервальной оценкой числовой характеристики или параметра распределения θ с доверительной вероятностью γ называется интервал со случайными границами (θ_1 , θ_2), содержащий θ с вероятностью γ .

2.1 Интервальные оценки

Интервальные оценки для математического ожидания нормального распределения:

$$P = \left(\overline{x} - \frac{\sigma t_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}} < \mu < \overline{x} + \frac{\sigma t_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}}\right) = \gamma,$$

где $t_{1-\frac{\alpha}{2}}$ – квантиль распределения Стьюдента порядка $1-\frac{\alpha}{2}$.

Интервальные оценки для стандартного отклонения нормального распределения:

$$P = \left(\frac{\sigma\sqrt{n}}{\sqrt{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}} < \sigma < \frac{\sigma\sqrt{n}}{\sqrt{\chi_{\frac{\alpha}{2}}^{2}(n-1)}}\right) = \gamma,$$

где $\chi_{1-\frac{\alpha}{2}}^2$ и $\chi_{\frac{\alpha}{2}}^2$ – квантили распределения Стьюдента порядков $1-\frac{\alpha}{2}$ и $\frac{\alpha}{2}$ соответственно.

2.3 Асимптотические оценки

Асимптотическая интервальная оценка для произвольного распределения при большой выборке математического ожидания:

$$P = \left(\overline{x} - \frac{\sigma u_{1 - \frac{\alpha}{2}}}{\sqrt{n}} < \mu < \overline{x} + \frac{\sigma u_{1 - \frac{\alpha}{2}}}{\sqrt{n}}\right) = \gamma$$

Асимптотическая интервальная оценка для произвольного распределения при большой выборке стандартного отклонения:

$$P = \left(s(1+U)^{-\frac{1}{2}} < \sigma < s(1-U)^{-\frac{1}{2}}\right) = \gamma,$$

где $u_{1-\frac{\alpha}{2}}$ – квантиль стандартного нормального распределения N(x,0,1)

порядка
$$1-\frac{\alpha}{2},\,U=u_{1-\frac{\alpha}{2}}\sqrt{\frac{e+2}{n}},\,e=\frac{m_4}{s^4}-3.$$

3 Реализация

Был использован язык *Python 3.8.2*: модуль *питру* для генерации выборок с различными распределениями и математических расчётов, модуль *scipy.stats* для обработки функций распределения, модуль *pandas* для оптимального хранения статистических данных и функция *display* из модуля *IPython.display* для их корректного отображения в таблицах.

4 Результаты

Таблица 3 Результаты для выборок мощности n=20

n=20	μ	σ
normal_dist	[0.1611, 0.9776]	[0.6634, 1.274]
random_dist	[0.1967, 0.9419]	[0.6909, 1.2196]

Таблица 4 Результаты для выборок мощности n=100

n=100	μ	σ
normal_dist	[-0.1658, 0.2564]	[0.9341, 1.2359]
random_dist	[-0.1622, 0.2527]	[0.9558, 1.2035]

5 Выводы

Точность оценок растёт с увеличением объёма выборки, оба метода показывают примерно одинаковое качество оценок, но у асимптотического подхода (**random_dist**) очевидное преимущество.

6 Литература

Основы работы с питру (отдельная глава курса)

Pandas обзор

<u>Документация по *scipy*</u>

7 Приложения

Код лабораторной