Signali i sustavi - Rješenja zadataka za vježbu (II. kolokvij)

1.

$$\begin{bmatrix} \frac{di_L}{dt} \\ \frac{du_C}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{R_1}{L} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_L \\ u_C \end{bmatrix} + \begin{bmatrix} \frac{1}{L} & \frac{R_1}{L} \\ 0 & \frac{1}{C} \end{bmatrix} \begin{bmatrix} U \\ I \end{bmatrix}$$
$$\begin{bmatrix} U_{R_1} \\ U_{R_2} \end{bmatrix} = \begin{bmatrix} R_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_L \\ u_C \end{bmatrix} + \begin{bmatrix} 0 & -R_1 \\ 0 & -R_2 \end{bmatrix} \begin{bmatrix} U \\ I \end{bmatrix}$$

2.

$$\begin{bmatrix} \frac{di_{L_1}}{dt} \\ \frac{di_{L_2}}{dt} \\ \frac{dU_{C_1}}{dt} \end{bmatrix} = \begin{bmatrix} \frac{-R_2}{L_1} & 0 & \frac{1}{L_1} \\ 0 & 0 & 0 \\ \frac{-1}{C_1} & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} i_{L_1} \\ i_{L_2} \\ U_{C_1} \end{bmatrix} + \begin{bmatrix} \frac{1}{L_1} & \frac{-R_2}{L_1} \\ \frac{1}{L_2} & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} U \\ I \end{bmatrix}$$
$$\begin{bmatrix} U_{R_1} \\ U_{R_2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ R_2 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} i_{L_1} \\ i_{L_2} \\ U_{C_1} \end{bmatrix} + \begin{bmatrix} 0 & R_1 \\ 0 & R_2 \end{bmatrix} \cdot \begin{bmatrix} U \\ I \end{bmatrix}$$

3. Frekvencijske karakteristike:

$$A(\omega) = \frac{1}{\sqrt{\omega^4 - 2\omega^2 + 9}}$$
$$\varphi(\omega) = -arctg \frac{2\omega}{3 - \omega^2}$$

Odziv na pobudu:

$$y_u(t) = \left(\frac{23}{12}\cos\sqrt{2}t + \frac{13\sqrt{2}}{12}\sin\sqrt{2}t\right)e^{-t} + \frac{\sqrt{2}}{12}\cos\left(3t + \frac{\pi}{4}\right)$$

4. L = 2; $i_L(0) = 1$

Odziv *nepobuđenog* sustava: $i_n(t) = e^{-\frac{t}{2}}$

Odziv *mirnog* (*mrtvog*) sustava: $i_m(t) = e^{-\frac{t}{2}} + \sin \frac{t}{2} - \cos \frac{t}{2}$

- **5.** Odziv *nepobuđenog* sustava: $y_n(t) = e^{3t} + e^{-2t}$
 - Odziv *mirnog* sustava: $y_m = \frac{1}{5}e^{3t} \frac{1}{5}e^{-2t} te^{-2t}$
 - *Ukupni* odziv sustava: $y_u(t) = \frac{6}{5}e^{3t} + \frac{4}{5}e^{-2t} te^{-2t}$
- **6.** *Ukupni* odziv sustava: $y_u(t) = \frac{1}{2}e^{3t} + \frac{5}{3}e^{2t} \frac{5}{2}te^{2t}$
 - Odziv *mirnog* sustava: $y_m(t) = \frac{5}{2}e^{3t} \frac{5}{2}e^{2t} \frac{5}{2}te^{2t}$
 - Početna stanja: $y(0) = \frac{13}{6}$, $y'(0) = \frac{7}{3}$

Kontinuirani sustav je nestabilan jer mu se polovi nalaze u desnoj poluravnini.

7. Sustav je opisan diferencijalnom jednadžbom: y'' - y' - 6y = u(t)Odziv *nepobuđenog* sustava:

$$y_{nepob.}(t) = \frac{9}{10}e^{3t} + \frac{11}{10}e^{-2t}$$

Odziv mirnog (mrtvog) sustava:

$$y_{mirni} = \frac{1}{50}e^{3t} - \frac{1}{50}e^{-2t} - \frac{1}{10}te^{-2t}$$

Ukupni odziv sustava:

$$y_{ukupni}(t) = \frac{23}{25}e^{3t} + \frac{27}{25}e^{-2t} - \frac{1}{10}te^{-2t}$$

8.

$$h[n] = 3\left(\frac{1}{2}\right)^n - 2\delta[n] = \begin{cases} 1 & n = 0\\ 3\left(\frac{1}{2}\right)^n & n \ge 1 \end{cases}$$

$$y[n] = \left(\frac{1}{2}\right)^n \cdot (1+3n)$$

9.

$$u[n] = -\delta[n] + 2^n s[n]$$

10. Partikularno rješenje jednadžbe diferencija:

$$y_p[n] = \frac{1}{2} \sin \frac{n\pi}{6} + \left(\frac{2 - \sqrt{3}}{2}\right) \cos \frac{n\pi}{6}$$

Ukupni odziv:

$$y[n] = \left(\frac{-2+\sqrt{3}}{2}\right) \cdot (-1)^n + \frac{1}{2}\sin\frac{n\pi}{6} + \left(\frac{2-\sqrt{3}}{2}\right)\cos\frac{n\pi}{6}$$
 $n \ge 0$

11.
$$y[n] = C_1 + C_2 n + n^2 + \frac{1}{6} n^3 + \frac{1}{9} 4^n$$

12.
$$y[n] = C_1 \cos \frac{n\pi}{3} + C_2 \sin \frac{n\pi}{3} + \frac{2}{\sqrt{3}} \sum_{i=0}^{n} \left(\frac{1}{(n-i-2)!} \sin \frac{(i+1)\pi}{3} \right)$$

13.
$$H(s) = \frac{2s^2 + 2s - 12}{s^3 + 4s^2 + 6s + 4} = \frac{2(s+3)(s-2)}{(s+2)(s+1+j)(s+1-j)}$$

