Q2.Import the "Students Performance in Exams" dataset from Kaggle, which analyzes students' performance based on various factors like gender, parental education, lunch type, and test preparation

```
In [ ]: install.packages(c("ggplot2", "dplyr", "tidyverse", "caret", "cluster", "future"
    library(ggplot2)
    library(dplyr)
    library(tidyverse)
    library(caret)
    library(cluster)
    library(future)
    library(foreach)
    library(e1071)
    library(doParallel)
```

loading dataset

```
In [46]: students <- read.csv("/content/StudentsPerformance.csv")</pre>
```

1. Display the first six rows of the dataset.

```
In [8]: head(students)
```

	gender	race.ethnicity	parental.level.of.education	lunch	test.preparation.course
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
1	female	group B	bachelor's degree	standard	none
2	female	group C	some college	standard	completed
3	female	group B	master's degree	standard	none
4	male	group A	associate's degree	free/reduced	none
5	male	group C	some college	standard	none
6	female	group B	associate's degree	standard	none
4					•

A data.frame: 6 × 8

2. Check structure

```
In [9]: str(students)
```

```
: chr "female" "female" "female" "male" ...
         $ gender
                                      : chr "group B" "group C" "group B" "group A" ...
         $ race.ethnicity
         $ parental.level.of.education: chr "bachelor's degree" "some college" "master's
        degree" "associate's degree" ...
                                       : chr "standard" "standard" "free/reduc
         $ lunch
        ed" ...
         $ test.preparation.course : chr "none" "completed" "none" "none" "...
                                      : int 72 69 90 47 76 71 88 40 64 38 ...
         $ math.score
         $ reading.score
                                      : int 72 90 95 57 78 83 95 43 64 60 ...
         $ writing.score
                                      : int 74 88 93 44 75 78 92 39 67 50 ...
           3. Identify missing values
In [10]: sum(is.na(students))
       0
           4. Compute mean, median, and standard deviation for scores
In [19]:
         score_stats <- students %>%
           summarize(
             math_mean = mean(math.score, na.rm = TRUE),
             math_median = median(math.score, na.rm = TRUE),
             math_sd = sd(math.score, na.rm = TRUE),
             reading mean = mean(reading.score, na.rm = TRUE),
             reading_median = median(reading.score, na.rm = TRUE),
             reading_sd = sd(reading.score, na.rm = TRUE),
             writing_mean = mean(writing.score, na.rm = TRUE),
             writing_median = median(writing.score, na.rm = TRUE),
             writing_sd = sd(writing.score, na.rm = TRUE)
         print(score_stats)
          math mean math median math sd reading mean reading median reading sd
                             66 15.16308
                                               69.169
                                                                        14.60019
             66.089
                                                                  70
          writing_mean writing_median writing_sd
                68.054
                                       15.19566
        1
                                   69
           5. Student with highest total score
In [21]:
         students$total_score <- students$math.score + students$reading.score + students$
         highest_score_student <- students[which.max(students$total_score), ]</pre>
         highest score student
                                                                 A data.frame: 1 \times 9
             gender race.ethnicity parental.level.of.education
                                                              lunch test.preparation.course
              <chr>
                            <chr>
                                                     <chr>
                                                              <chr>
                                                                                    <chr>
        459
            female
                          group E
                                           bachelor's degree standard
                                                                                     none
```

'data.frame': 1000 obs. of 8 variables:

6. Percentage of students scoring above 90 in math

5

7. Compare average scores by gender

A data.frame: 2 × 4

gender math.score reading.score writing.score

<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
female	63.63320	72.60811	72.46718
male	68.72822	65.47303	63.31120

8. Bar plot of math scores by gender

9. T-test for reading scores by gender

```
In [28]: t.test(reading.score ~ gender, data = students)
```

Welch Two Sample t-test

10. Average math score by parental education

```
In [29]: aggregate(math.score ~ parental.level.of.education, data = students, FUN = mean)
```

A data.frame: 6×2

parental.level.of.education math.score

<chr></chr>	<dbl></dbl>
associate's degree	67.88288
bachelor's degree	69.38983
high school	62.13776
master's degree	69.74576
some college	67.12832
some high school	63.49721

11. Boxplot of writing scores by parental education

12. ANOVA test for parental education and writing scores

```
In [31]: anova_result <- aov(writing.score ~ parental.level.of.education, data = students
summary(anova_result)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)
parental.level.of.education 5 15623 3124.6 14.44 1.12e-13 ***
Residuals 994 215054 216.4
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

13. Compare test preparation impact on scores

In [32]: aggregate(cbind(math.score, reading.score, writing.score) ~ test.preparation.cou

A data.frame: 2 × 4

test.preparation.course math.score reading.score writing.score

<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
completed	69.69553	73.89385	74.41899
none	64.07788	66.53427	64.50467

14. T-test for test preparation impact

In [33]: t.test(math.score ~ test.preparation.course, data = students)

Welch Two Sample t-test

15. Correlation between scores

```
In [34]: cor(students[c("math.score", "reading.score", "writing.score")])
```

A matrix: 3×3 of type dbl

	math.score	reading.score	writing.score
math.score	1.0000000	0.8175797	0.8026420
reading.score	0.8175797	1.0000000	0.9545981
writing.score	0.8026420	0 9545981	1 0000000

16. Scatter plot of math vs. reading scores


```
In [36]:
         lm_model <- lm(math.score ~ parental.level.of.education + test.preparation.cours</pre>
         summary(lm_model)
        Call:
        lm(formula = math.score ~ parental.level.of.education + test.preparation.course +
            lunch, data = students)
        Residuals:
                    10 Median
                                    3Q
           Min
                                           Max
        -53.573 -9.388 0.183 10.122 35.885
        Coefficients:
                                                    Estimate Std. Error t value
                                                     64.1150 1.2294 52.153
        (Intercept)
        parental.level.of.educationbachelor's degree 1.6840
                                                                1.5610 1.079
        parental.level.of.educationhigh school
                                                    -5.1486
                                                               1.3449 -3.828
        parental.level.of.educationmaster's degree
                                                     2.7151
                                                                2.0075 1.352
                                                                1.2948 -0.432
        parental.level.of.educationsome college
                                                     -0.5594
        parental.level.of.educationsome high school
                                                               1.3773 -3.487
                                                    -4.8032
        test.preparation.coursenone
                                                     -5.7389
                                                               0.9081 -6.319
        lunchstandard
                                                     11.3097
                                                               0.9060 12.483
                                                    Pr(>|t|)
        (Intercept)
                                                     < 2e-16 ***
        parental.level.of.educationbachelor's degree 0.280954
                                                    0.000137 ***
        parental.level.of.educationhigh school
        parental.level.of.educationmaster's degree
                                                    0.176536
        parental.level.of.educationsome college
                                                    0.665795
        parental.level.of.educationsome high school 0.000509 ***
                                                    3.96e-10 ***
        test.preparation.coursenone
        lunchstandard
                                                     < 2e-16 ***
        Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
        Residual standard error: 13.7 on 992 degrees of freedom
        Multiple R-squared: 0.1894, Adjusted R-squared: 0.1837
        F-statistic: 33.12 on 7 and 992 DF, p-value: < 2.2e-16
          18. Evaluate model performance
In [37]: summary(lm model)$r.squared
       0.189447865286474
         19-21. Study hours vs. math score regressio
In [51]: set.seed(123) # Set seed for reproducibility
         students$study_hours <- runif(nrow(students), min = 0, max = 20) # Random study
In [52]: study_hours_model <- lm(math.score ~ study_hours, data = students)</pre>
         summary(study hours model)
```

```
Call:
lm(formula = math.score ~ study_hours, data = students)
Residuals:
   Min
         1Q Median 3Q
                                 Max
-66.053 -9.167 -0.033 10.795 34.010
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 65.94525 0.95887 68.774 <2e-16 ***
study_hours 0.01445 0.08348 0.173
                                      0.863
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 15.17 on 998 degrees of freedom
Multiple R-squared: 3.004e-05, Adjusted R-squared: -0.0009719
F-statistic: 0.02998 on 1 and 998 DF, p-value: 0.8626
```

22. Visualize the relationship using a scatter plot with a regression line

Relationship Between Study Hours and Math Score

23. Compare scores by lunch type

```
In [56]: students %>%
    group_by(lunch) %>%
```

```
summarise(
  avg_math = mean(math.score, na.rm = TRUE),
  avg_reading = mean(reading.score, na.rm = TRUE),
  avg_writing = mean(writing.score, na.rm = TRUE)
)
```

A tibble: 2×4

lunch avg_math avg_reading avg_writing

<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
free/reduced	58.92113	64.65352	63.02254
standard	70.03411	71.65426	70.82326

24. Identify high performers

A data.frame: 6 × 10

	gender	race.ethnicity	parental.level.of.education	lunch	test.preparation.course
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
3	female	group B	master's degree	standard	none
7	female	group B	some college	standard	completed
17	male	group C	high school	standard	none
105	male	group C	some college	standard	completed
107	female	group D	master's degree	standard	none
115	female	group E	bachelor's degree	standard	completed
4					>