3.2 The Exponential Function

Thursday, September 28, 2023

Objectives:

1. Derivatives of the exponential and exponential function

Recall: Exponentials and logaritims

exponential
$$\rightarrow a^b = N$$
 $\log 2n + \ln n \rightarrow \log_a(N) = b$

They are inverses $\rightarrow a^{\log_a(x)} = x$
 $\rightarrow \log_a(a^x) = x$
 $N \Rightarrow \text{toral log} \rightarrow \ln(x) \rightarrow \text{tase c.}$
 $\rightarrow \ln(e) = 1 \text{ or } e^{\ln(1)} = 1$
 $e^{\ln(e)} = e$

Recall! Limit Definition of the derivative Given f(x), then

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Derivative of the Exponential Function

Suppose
$$f(x) = \partial^{\times}$$
,

then $df = \lim_{h \to 0} \frac{\partial^{x+h} - \partial^{\times}}{h}$
 $= \lim_{h \to 0} \frac{\partial^{x} \partial^{h} - \partial^{\times}}{h}$
 $= \lim_{h \to 0} \frac{\partial^{x} \partial^{h} - \partial^{\times}}{h}$
 $= \lim_{h \to 0} \frac{\partial^{x} (\partial^{h} - 1)}{h}$
 $= \partial^{x} \lim_{h \to 0} \frac{(\partial^{h} - 1)}{h}$
 $= \partial^{x} \lim_{h \to 0} \frac{\partial^{(n+h)} - \partial^{0}}{h}$

$$f'(x) = \partial^{x} f'(0)$$
what is this?

Definitions of e

z.
$$\lim_{h \to 0} \frac{e^{h} - 1}{h} = 1$$

Facts: (1) If
$$f(x) = e^x$$
, then $f'(0) = \lim_{h \to 0} \frac{e^h - 1}{h} = \ln(e) = 1$
So, if $a = e$, then

$$f(x) = e^{x}$$
, $f'(x) = a^{x}f'(0) = e^{x}\ln(e) = e^{x}$.

In general, $f(x) = \partial^{x}$, $f'(x) = \partial^{x} \ln(\partial)$.

Derivatives of Logarithmic functions

Facts: (2) If f(x) and g(x) are inverses of each other, then $g'(x) = \frac{1}{f'(g(x))}$

So, If
$$f(x) = e^{x}$$
 and $g(x) = \ln(x)$,
then
$$g'(x) = \frac{1}{f(g(x))} = \frac{1}{e^{g(x)}} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

60, if
$$g(x) = lu(x)$$
, then $g'(x) = 1$ when $x > 0$, or if $g(x) = lu(1x1)$, then $g'(x) = 1$ when $x \neq 0$.

or if
$$g(x) = lu(1x1)$$
, then $g'(x) = \bot$ when $x \neq 0$.

Note that this is for a=e only. How do we generalized it to a.

Facts: 1 change of base formula

$$\log_2 b = \frac{\log_2 b}{\log_2 a}$$
 (from itse z to base c)

$$\frac{d}{dx}\left(\log_2 x\right) = \frac{d}{dx}\left(\frac{\ln(x)}{\ln(z)}\right)$$

$$= \frac{1}{\ln(z)} \frac{d}{dx} (\ln x)$$

$$\frac{d}{dx} (\log_2 x) = \frac{1}{x \ln(z)}$$

Summary:

$$\frac{d}{dx}e^{x}=e^{x}$$

$$\frac{dx}{dx} = \frac{2x}{\ln(s)}$$

•
$$\frac{d}{dx} \ln(x) = \frac{1}{x}$$

•
$$\frac{d}{dx} \log_2(x) = \frac{1}{x \ln(2)}$$

Examples

$$f(x) = 3^{\times} \implies \partial = 3 \implies f'(x) = 3^{\times} \ln(3)$$

