CS 471/571 (Fall 2023): Introduction to Artificial Intelligence

Lecture 18: Bayes Nets – Part 2

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminder:

- •Written assignment 3:
 - Deadline: Nov 08, 2023

- Programming project 3:
 - Deadline: Nov 20, 2023

Thanh H. Nguyen 11/6/23

Bayes' Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

• For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

N independent coin flips

•No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

• Why is an agent using model 2 better?

• Model 2: rain causes traffic

Example: Traffic II

Let's build a causal graphical model!

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

 $A \ Bayes \ net = Topology \ (graph) + Local \ Conditional \ Probabilities$

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$
- Assume conditional independences: $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$
 - \rightarrow Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

. .

$$P(X_1)$$

h	0.5
t	0.5

\boldsymbol{D}	1	37	•	١
\mathcal{P}	[X	2	}
_	`		_	,

h	0.5
t	0.5

$$egin{array}{c|c} P(X_n) & & 0.5 \ \hline t & 0.5 \ \hline \end{array}$$

$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

P(R)

+r	1/4
-r	3/4

$$P(+r, -t) =$$

P(T|R)

+r +t

-r	+t	1/2
	-t	1/2

3/4

1/4

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

ш	P(E)
+e	0.002
ψ	0.998

В	Е	A	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

В	P(B)
+b	0.001
b	0.999

	-	_
Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Е	P(E)	
+e	0.002	
-е	0.998	

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-е	-a	0.999

Example: Traffic

Causal direction

\boldsymbol{P}	T	٦		?)
1	/ τ	7	1	v

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

•Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
 2^N
- How big is an N-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$

- Both give you the power to calculate $P(X_1, X_2, \dots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

