Learning From Data Lecture 13 Validation and Model Selection

The Validation Set Model Selection Cross Validation

M. Magdon-Ismail CSCI 4100/6100

RECAP: Regularization

Regularization combats the effects of noise by putting a leash on the algorithm.

$$E_{\text{aug}}(h) = E_{\text{in}}(h) + \frac{\lambda}{N}\Omega(h)$$

 $\Omega(h) \to \text{smooth}$, simple h

— noise is rough, complex.

Different regularizers give different results

— can choose λ , the **amount** of regularization.

Optimal λ balances approximation and generalization, bias and variance.

Validation: A Sneak Peek at E_{out}

$$E_{\text{out}}(g) = E_{\text{in}}(g) + \text{overfit penalty}$$

VC bounds this using a complexity error bar for \mathcal{H}

regularization estimates this through a heuristic complexity penalty for g

Validation goes directly for the jugular:

$$E_{\text{out}}(g) = E_{\text{in}}(g) + \text{overfit penalty.}$$

validation estimates this directly

In-sample estimate of E_{out} is the Holy Grail of learning from data.

The Test Set

 E_{test} is an estimate for $E_{\text{out}}(g)$

$$\mathbb{E}_{\mathcal{D}_{\text{test}}}[\mathsf{e}_k] = E_{\text{out}}(g)$$

$$\mathbb{E}[E_{\text{test}}] = \frac{1}{K} \sum_{k=1}^K \mathbb{E}[\mathsf{e}_k]$$

$$= \frac{1}{K} \sum_{k=1}^K E_{\text{out}}(g) = E_{\text{out}}(g)$$

 e_1, \ldots, e_K are independent

$$Var[E_{test}] = \frac{1}{K^2} \sum_{k=1}^{K} Var[e_k]$$

$$= \frac{1}{K} Var[e]$$

$$\stackrel{\text{decreases like } \frac{1}{K}}{\text{bigger } K \implies \text{more reliable } E_{test}}.$$

The Validation Set

1. Remove K points from $\mathcal D$

$$\mathcal{D} = \mathcal{D}_{ ext{train}} \cup \mathcal{D}_{ ext{val}}.$$

The Validation Set

1. Remove K points from \mathcal{D}

$$\mathcal{D} = \mathcal{D}_{ ext{train}} \cup \mathcal{D}_{ ext{val}}.$$

- 2. Learn using $\mathcal{D}_{\text{train}} \longrightarrow g^{-}$.
- 3. Test $g^{\scriptscriptstyle -}$ on $\mathcal{D}_{\mathrm{val}} \longrightarrow E_{\mathrm{val}}$.
- 4. Use error E_{val} to estimate $E_{\text{out}}(g^{-})$.

 $E_{\mathrm{out}}(g^{-})$

The Validation Set

 E_{val} is an estimate for $E_{\text{out}}(g^{-})$

$$\mathbb{E}_{\mathcal{D}_{\text{val}}}[\mathsf{e}_k] = E_{\text{out}}(g^{-})$$

$$\mathbb{E}[E_{\text{test}}] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\mathsf{e}_k]$$

$$= \frac{1}{K} \sum_{k=1}^{K} E_{\text{out}}(g^{-}) = E_{\text{out}}(g^{-})$$

 e_1, \ldots, e_K are independent

$$\operatorname{Var}[E_{\operatorname{val}}] = \frac{1}{K^2} \sum_{k=1}^{K} \operatorname{Var}[e_k] \\
= \frac{1}{K} \operatorname{Var}[e(g^{-})] \\
\overset{\text{decreases like } \frac{1}{K}}{\overset{\text{depends on } g^{-}, \text{ not } \mathcal{H}}{\overset{\text{bigger } K}{\longrightarrow} \underset{\text{more reliable } E_{\operatorname{val}}?}{\operatorname{depends on } g^{-}, \text{ not } \mathcal{H}}}$$

Choosing K

Rule of thumb: $K^* = \frac{N}{5}$.

Restoring \mathcal{D}

Primary goal: output best hypothesis. g was trained on all the data.

Secondary goal: estimate $E_{\text{out}}(g)$. g is behind closed doors.

$$E_{ ext{out}}(g)$$
 $E_{ ext{out}}(g^{-})$
 \downarrow \downarrow $E_{ ext{in}}(g)$ $E_{ ext{val}}(g^{-})$ which should we use?

CUSTOMER

$E_{\rm val}$ Versus $E_{\rm in}$

$$E_{
m out}(g) \leq E_{
m in}(g) + O\left(\sqrt{rac{d_{
m VC}}{N}}\log N
ight)$$

$$E_{
m out}(g) \leq E_{
m out}(g^{ extsf{-}}) \leq E_{
m val}(g^{ extsf{-}}) + O\left(rac{1}{\sqrt{K}}
ight)$$
learning curve is decreasing
(a practical truth, not a theorem)

Unbiased error bar depends on $g^{ extsf{-}}$.

 $E_{\text{val}}(g)$ usually wins as an estimate for $E_{\text{out}}(g)$, especially when the learning curve is not steep.

Model Selection

The most important use of validation

Validation Estimate for (\mathcal{H}_1, g_1)

The most important use of validation

 \mathcal{H}_1

 \mathcal{H}_2

 \mathcal{H}_3

 \mathcal{H}_{M}

$$\mathcal{D}_{ ext{train}} \longrightarrow \downarrow q$$

$$\mathcal{D}_{\mathrm{val}} \longrightarrow$$

$$E_{\mathrm{val}}(g_{\overline{1}})$$

Validation Estimate for (\mathcal{H}_1, g_1)

The most important use of validation

 \mathcal{H}_1

 \mathcal{H}_2

 \mathcal{H}_3

 \mathcal{H}_{M}

 $\mathcal{D}_{ ext{train}} \longrightarrow \downarrow q$

 E_1

Compute Validation Estimates for All Models

The most important use of validation

Pick The Best Model According to Validation Error

The most important use of validation

$E_{\text{val}}(g_{m^*})$ is not Unbiased For $E_{\text{out}}(g_{m^*})$

 \dots because we *choose* one of the M finalists.

$$E_{\text{out}}(g_{\overline{m}^*}) \le E_{\text{val}}(g_{\overline{m}^*}) + O\left(\sqrt{\frac{\ln M}{K}}\right)$$

VC error bar for selecting a hypothesis from M using a data set of size K.

Restoring \mathcal{D}

Model with best g also has best g^- We can find model with best g^- using validation

 \leftarrow leap of faith

 \leftarrow true modulo E_{val} error bar

Comparing E_{in} and E_{val} for Model Selection

Application to Selecting λ

Which regularization parameter to use?

$$\lambda_1, \lambda_2, \ldots, \lambda_M$$
.

This is a special case of $model\ selection$ over M models,

Picking a model amounts to chosing the optimal λ

The Dilemma When Choosing K

Validation relies on the following chain of reasoning,

$$E_{\mathrm{out}}(g) \approx E_{\mathrm{out}}(g^{-}) \approx E_{\mathrm{val}}(g^{-})$$
(small K) (large K)

Can we get away with K = 1?

Yes, almost!

The Leave One Out Error (K = 1)

$$\mathbb{E}[\mathbf{e_1}] = E_{\mathrm{out}}(g_{\bar{1}})$$

...but it is a **wild** estimate

The Leave One Our Errors

$$E_{\rm cv} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{e}_n$$

Cross Validation is Unbiased

Theorem. E_{cv} is an unbiased estimate of $\bar{E}_{\text{out}}(N-1)$.

Expected E_{out} when learning with N-1 points.

Reliability of E_{cv}

 \mathbf{e}_n and \mathbf{e}_m are not independent.

 \mathbf{e}_n depends on g_n which was trained on (\mathbf{x}_m, y_m) .

 \mathbf{e}_m is evaluated on (\mathbf{x}_m, y_m) .

Effective number of fresh examples giving a comparable estimate of E_{out}

Cross Validation is Computationally Intensive

N epochs of learning each on a data set of size N-1.

• Analytic approaches, for example linear regression with weight decay

$$\mathbf{w}_{\text{reg}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \lambda \mathbf{I})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

$$E_{\text{cv}} = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\hat{y}_n - y_n}{1 - H_{nn}(\lambda)} \right)^2$$

$$H(\lambda) = Z(Z^{T}Z + \lambda I)^{-1}Z^{T}.$$

• 10-fold cross validation

Restoring \mathcal{D}

CUSTOMER

 $E_{\rm cv}$ can be used for model selection just as $E_{\rm val}$, for example to choose λ .

Digits Problem: '1' Versus 'Not 1'

Average Intensity

$$\mathbf{x} = (1, x_1, x_2)$$

$$\mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3, \dots, x_1^5, x_1^4 x_2, x_1^3 x_2^2, x_1^2 x_2^3, x_1 x_2^4, x_2^5)$$

5th order polynomial transform \longrightarrow 20 dimensional non linear feature space

Validation Wins In the Real World

Average Intensity

no validation (20 features)

$$E_{\rm in} = 0\%$$

$$E_{\rm out} = 2.5\%$$

Average Intensity

cross validation (6 features)

$$E_{\rm in} = 0.8\%$$

 $E_{\rm out} = 1.5\%$