Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Norma

Media y Covarian Curvas de equidensidad

Discriminantes Gaussianos

Mezclas de Gaussianas

Esperanza-Maximizació

Modelos Gaussianos

Alfredo Cuesta Infante

E. T. S. Ingeniería Informática Universidad Rey Juan Carlos

Master Univ. en Visión Artificial Reconocimiento de Patrones

Modelos Gaussianos

Alfredo Cuesta
Infante

Media y Covarianza Curvas de

Gaussianos

Esperanza-

La distribución Normal

PDF Media y Covarianza Curvas de equidensidad

Análisis de Discriminantes Gaussianos

Mezclas de Gaussianas Esperanza-Maximización

La distribución Normal

PDF Media y Covarianza Curvas de equidensidad

Análisis de Discriminantes Gaussianos

Mezclas de Gaussianas Esperanza-Maximización Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Normal

PDF Media y Covarianza Curvas de

Discriminantes Gaussianos

Distribución Normal

$$\mathcal{N}(x) = \frac{\exp\left(-\frac{(x-\mu)^2}{\sigma^2}\right)}{\sqrt{2\pi\sigma^2}}$$

- ► Tiene 2 parámetros: la media y la varianza
- x tiene 1 sola dimensión
- ightharpoonup La media μ es un escalar
- La varianza σ^2 es un escalar positivo
- $\sqrt{(x-\mu)^2}$ es la distancia Euclidea (en 1 dim.) desde x a la media μ

Distribución MVN

$$MVN(\mathbf{x}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}}$$

- Tiene 2 parámetros: la media y la covarianza
- x es un vector n-dimensional
- La media μ es un vector n-dimensional
- La matriz de covarianza Σ es una matriz definida positiva de tamaño n × n
- $\sqrt{((\mathbf{x} \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu}))}$ es la distancia Mahalanobis desde x a la media $\boldsymbol{\mu}$

Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Norma

Media y Covarianza Curvas de equidensidad

Gaussianos

La media

El estimador MLE para la MVN es el *clásico* promedio para cada componente.

$$\boldsymbol{\mu}=(\mu_1,\ldots,\mu_n)$$
, donde $\mu_j=\mathbb{E}[\mathbf{x}_j]=rac{1}{m}\sum_{i=1}^m x_j^{(i)}$, para $j=1,\ldots,n$.

La covarianza

Es una matriz (definida positiva) cuyos elementos expresan la varianza de un componente respecto de otro. Su estimador MLE es:

$$\Sigma_{ii} = \mathbb{E}\left[(\mathbf{x}_i - \mu_i)(\mathbf{x}_i - \mu_i) \right].$$

- $ightharpoonup \Sigma$ diagonal \Rightarrow componentes independientes
- ▶ En otro caso hay dependencia lineal (correlación) entre componentes

 Descomponer de la matriz de convarianza en autovalores y autovectores, y después tomar su inversa

$$\mathbf{\Sigma}^{-1} = \mathbf{U} \mathbf{\Lambda}^{-1} \mathbf{U}^T = \sum_{i=1}^n \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^T$$

Reescribir la distancia Mahalanobis con esta expresión de Σ⁻¹:

$$d_{M}(\mathbf{x}) = (\mathbf{x} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^{T} \left(\sum_{i=1}^{n} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{T} \right) (\mathbf{x} - \boldsymbol{\mu})$$
$$= \sum_{i=1}^{n} \frac{1}{\lambda_{i}} (\mathbf{x} - \boldsymbol{\mu})^{T} \mathbf{u}_{i} \mathbf{u}_{i}^{T} (\mathbf{x} - \boldsymbol{\mu})$$

▶ Sea $y_i = (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{u}_i$. La distancia Mahalanobis es finalmente:

$$d_M(\mathbf{x}) = \sum_{i=1}^n \frac{y_i^2}{\lambda_i}$$

▶ Si fijamos esta distancia a un valor concreto D, entonces $D = \sum_{i=1}^{n} y_i^2 / \lambda_i$ es la expresión una **elipse** centrada en μ , cuyo eje *i*-esimo tiene la dirección \mathbf{u}_i y tamaño $\sqrt{\lambda_i}$

Curvas de equidensidad

Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Norma

Media y Covarianza Curvas de equidensidad

Gaussianos

- IVIEZCIAS DE GAUSSIAIIAS

Esperanza-Maximizaci

La distribución Norma

Media y Covarianza

car vas ac equiacristada

Análisis de Discriminantes Gaussianos

Mezclas de Gaussianas Esperanza-Maximizació Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Norma

PDF Media y Covarianza Curvas de equidensidad

Discriminantes Gaussianos

Análisis de

Asumiendo que el subconjunto de ejemplos con etiqueta t está distribuido según una $\mathsf{MVN}(\mu_t, \Sigma_t)$, el modelo de verosimilitud es:

$$\rho(\mathbf{X}|t) = \text{MVN}(\mathbf{X}|t; \ \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$$

► La etiqueta estimada MAP es:

$$\hat{t} = \arg \max_{t} (\log p(t) + \log \text{MVN}(\mathbf{X}|t; \ \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)), \text{ para cada } \mathbf{x}.$$

Figura: Superficie de decisión y densidades de las MVN para un GDA con el conjunto de datos '0' vs. '1'. [Fuente: Original de A. Cuesta]

Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Normal PDF

Media y Covarianza Curvas de equidensidad

Análisis de

Discriminantes Gaussianos Mezclas de Gaussianas

Análisis de Discriminantes

Equivalente a minimizar la distancia Mahalanobis de un punto x al centro de cada una de las MVN que modelan las diferentes clases:

$$\hat{t} = \operatorname*{arg\,min}_t \left((\mathbf{x} - \boldsymbol{\mu}_t)^T \boldsymbol{\Sigma}_t^{-1} (\mathbf{x} - \boldsymbol{\mu}_t) \right), \text{ para cada } \mathbf{x}.$$

- Cuando la matriz de covarianza es diagonal, entonces recuperamos el NBC Gaussiano. En caso contrario:
 - Si cada subconjunto de datos con la misma etiqueta tiene covarianzas diferentes tenemos Discriminantes Cuadráticos (QD)
 - Si todas son iguales tenemos Discriminantes Lineales (LD)

Análisis de

Discriminantes Gaussianos

¿Podemos averiguar la ec. de la superficie de decisión?

Para dos clases $t = \{0, 1\}$, la distribución a posteriori de un nuevo ejemplo ${\bf z}$ es:

$$p(t = 0|\mathbf{z}) \propto p(t = 0) \cdot (2\pi|\mathbf{\Sigma}_0|)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu}_0)^T \mathbf{\Sigma}_0^{-1}(\mathbf{z} - \boldsymbol{\mu}_0)\right)$$
$$p(t = 1|\mathbf{z}) \propto p(t = 1) \cdot (2\pi|\mathbf{\Sigma}_1|)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{z} - \boldsymbol{\mu}_1)^T \mathbf{\Sigma}_1^{-1}(\mathbf{z} - \boldsymbol{\mu}_1)\right)$$

► El log. de su cociente es:

$$\delta = \log \frac{p(t = 0|\mathbf{z})}{p(t = 1|\mathbf{z})} = \log p(t = 0|\mathbf{z}) - \log p(t = 1|\mathbf{z}),$$

Manipulando se llega a

$$\delta = \log p(t = 0) - \frac{1}{2} \log |\mathbf{\Sigma}_0| - \frac{1}{2} (\mathbf{z} - \boldsymbol{\mu}_0)^T \mathbf{\Sigma}_0^{-1} (\mathbf{z} - \boldsymbol{\mu}_0)$$
$$- \log p(t = 1) + \frac{1}{2} \log |\mathbf{\Sigma}_1| + \frac{1}{2} (\mathbf{z} - \boldsymbol{\mu}_1)^T \mathbf{\Sigma}_1^{-1} (\mathbf{z} - \boldsymbol{\mu}_1).$$

2 La superficie de decisión será el conjunto de puntos **z** donde $\delta = 0$.

¿Podemos averiguar la ec. de la superficie de decisión?

Dejando a un lado de la igualdad todo lo que depende de z se obtiene la siguiente forma cuadrática:

$$(\mathbf{z} - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}_1^{-1} (\mathbf{z} - \boldsymbol{\mu}_1) - (\mathbf{z} - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}_0^{-1} (\mathbf{z} - \boldsymbol{\mu}_0) = \boldsymbol{C},$$

donde $C=2\log p(t=1)-2\log p(t=0)+\log |\mathbf{\Sigma}_1|-\log |\mathbf{\Sigma}_0|$ es un valor constante dadas las matrices de covarianza de cada clase y la distribución a priori.

obtenemos una manera directa de clasificar nuevos ejemplos según la distancia Mahalanobis de estos al centro de cada clase:

$$\hat{t} = \begin{cases} 0 & \text{si } d_{M1}^2(z) - d_{M0}^2(z) + C < 0 \\ 1 & \text{si } d_{M1}^2(z) - d_{M0}^2(z) + C > 0 \end{cases}$$

⇒ Discriminante Gaussiano Cuadrático (QD)

Alfredo Cuesta Infante

La distribución Normal

Media y Covarianza Curvas de

Análisis de

Discriminantes Gaussianos Mezclas de Gaussianas

Esperanza-Maximización

¿Podemos averiguar la ec. de la superficie de decisión?

ightharpoonup Si $\Sigma_0 = \Sigma_1 = \Sigma$, entonces

$$(\mathbf{z} - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}^{-1} (\mathbf{z} - \boldsymbol{\mu}_1) - (\mathbf{z} - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1} (\mathbf{z} - \boldsymbol{\mu}_0) = \boldsymbol{C}.$$

Ilegamos a una expresión lineal en z

$$-\mathbf{z}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{1}^{T}\boldsymbol{\Sigma}^{-1}\mathbf{z}+\mathbf{z}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{0}+\boldsymbol{\mu}_{0}^{T}\boldsymbol{\Sigma}^{-1}\mathbf{z}=\boldsymbol{C}.$$

- se puede construir, un discriminante similar al del QDA pero lineal
 - ⇒ Discriminante Gaussiano Lineal (LD)

Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Normal

Media v Covarianza equidensidad

Análisis de

Discriminantes Gaussianos Mezclas de Gaussianas

La distribución Normal
PDF
Media y Covarianza
Curvas de equidensida

Análisis de Discriminantes Gaussianos

Mezclas de Gaussianas Esperanza-Maximización Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Norma PDF

Media y Covarianza Curvas de equidensidad

Gaussianos Mezclas de Gaussianas

Discriminantes Gaussianos

Mezclas de Gaussianas

Esperanza-

¿Y si mis datos se *concentran* en **dos** puntos?

Podemos utilizar dos MVNs, una para cada concentración, ¡¡ pero la PDF tiene que ser válida!!

Ej.
$$PDF(x) = 30 \% \cdot MVN_1(x) + 70 \% \cdot MVN_2(x)$$

Mezclas de Gaussianas

GMM

$$p(\mathbf{x}) = \sum_{i=1}^K \pi_i \cdot \mathsf{MVN}(\mathbf{x}; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i), \ \text{ sujeto a } \sum_{i=1}^K \pi_i = 1.$$

Clasificación

▶ El GMM es la verosimilitud $p(\mathbf{x}|t)$

Agrupamiento

- ► Un GMM de K MVNs da lugar a K grupos
- El grupo *i*-esimo tendrá como centroide la media μ_i .
- ▶ Aplicación en compresión de imágenes o la cuantización de colores

Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Normal

Media y Covarianza Curvas de equidensidad

Discriminantes Gaussianos

Mezclas de Gaussianas

Esperanza-Maximizaci

Mezclas de Gaussianas

Algoritmo EM

- ► Parámetros del modelo:
 - ▶ la media y la covarianza de cada MVN que forma la mezcla,
 - el peso que cada MVN tiene en la mezcla,
 - para cada una de las etiquetas diferentes que hay.
- Datos: Conjunto de ejemplos etiquetados 0 ó 1

								X ₁	X ₂	t
X ₁	X ₂	t		X ₁	X ₂	t		1,73	1,53	0
2,36	0,31	0		2,36	0,31	0		0,22	1,39	0
4,49	-1,42	0		4,49	-1,42	0		1,09	2,62	0
1,12	2,13	0		1,12	2,13	0		-1,67	2,14	0
1,23	-0,42	1		1,98	1,36	0		1,52	1,02	0
-0,66	-1,64	1		0,62	0,76	0		0,53	4,39	0
1,98	1,36	0		4,17	-1,03	0		2,03	-0,53	0
2,01	2,97	1		1,24	1,35	0		3,13	1,32	0
0,62	0,76	0		1,86	3,41	0		3,06	-1,30	0
4,17	-1,03	0		0,61	-0,37	0	7	2,52	1,42	0
2,60	1,89	1		0,83	0,61	0		1,48	1,46	0
3,50	0,86	1		2,02	-0,96	0		2,16	1,90	0
1,24	1,35	0		1,13	1,10	0		1,11	0,40	0
2,57	0,88	1	_	1,72	1,53	0		2,64	-1,01	0
1,86	3,41	0	$\overline{}$	0,90	0,00	0		2,92	-2,73	0
2,77	3,11	1		2,06	1,52	0		3,50	0,16	0
-0,15	-1,29	1		0,28	2,70	0				
0,67	-0,64	1		1,23	-0,42	1		X ₁	X ₂	t
0,61	-0,37	0		-0,66	-1,64	1		1,14	-0,49	1
0,83	0,61	0		2,01	2,97	1		0,82	-1,39	1
2,02	-0,96	0		2,60	1,89	1	_	2,96	-0,99	1
1,13	1,10	0		3,50	0,86	1		3,39	0,41	1
1,72	1,53	0		2,57	0,88	1		2,42	0,46	1
3,11	3,05	1		2,77	3,11	1		2,02	1,53	1
3,10	2,67	1		-0,15	-1,29	1		2,22	2,19	1
3,28	1,63	1		0,67	-0,64	1		1,85	0,27	1
3,10	1,06	1		3,11	3,05	1		0,49	0,83	1
0,90	0,00	0		3,10	2,67	1		3,17	1,98	1
2,06	1,52	0		3,28	1,63	1		3,48	1,58	1
1,54	-0,14	1		3,10	1,06	1		4,41	2,69	1
0,28	2,70	0		1,54	-0,14	1		4,07	1,69	1
	- /							2,23	0,87	1

Modelos Gaussianos

Alfredo Cuesta Infante

La distribución Normal

Media y Covarianza Curvas de equidensidad

Gaussianos

Mezclas de Gaussianas Esperanza-Maximización Sea el **factor de pertenencia** de un ejemplo **x** a la *k*-esima MVN:

$$w_k = \frac{\pi_k \cdot \text{MVN}_k(\mathbf{x})}{\sum\limits_{i=1}^K \pi_k \cdot \text{MVN}_k(\mathbf{x})},$$

Paso E

- ► Calcular el factor de pertenencia de cada uno de los ejemplos
- Obtenemos una tabla de valores $W = \{w_{i,k}\}$ para i = 1...M, k = 1...K; donde M es el número de ejemplos y cada fila suma 1.

Paso M

- ▶ Comenzamos calculando $M_k = \sum_{i=1}^{M} w_{i,k}$, es decir la suma de la k-esima columna de la tabla W, para $k = 1 \dots K$.
- A continuación actualizamos los K pesos con la regla:

$$\pi_k^{\mathrm{next}} = M_k/M$$

Actualizamos la media y covarianza de cada MVN_k.

$$oldsymbol{\mu}_k^{ ext{next}} = rac{1}{M_k} \sum_{i=1}^M \left(w_{i,k} \mathbf{x}^{(i)}
ight)$$

$$\mathbf{\Sigma}_k^{\text{next}} = \frac{1}{M_k} \sum_{i=1}^{M} \left(w_{i,k} (\mathbf{x}^{(i)} - \boldsymbol{\mu}_k^{\text{next}}) (\mathbf{x}^{(i)} - \boldsymbol{\mu}_k^{\text{next}})^T \right)$$

Alfredo Cuesta Infante

La distribución Normal

Media v Covarianza

equidensidad

Mezclas de Gaussianas

Esperanza-Maximización

Arranque

Dar unos valores iniciales a

$$\{\pi_1,\ldots,\pi_K,\ \boldsymbol{\mu}_1,\ldots\boldsymbol{\mu}_K,\ \boldsymbol{\Sigma}_1\ldots\boldsymbol{\Sigma}_K\}$$

Por ej.

$$\pi_1 = ... = \pi_K = 1/K$$

Por cada MNV, calcular μ y Σ de un subconjunto de puntos aleatorio.

Figura: Cuatro GMMs con diferente número de MVN componentes para el conjunto de datos '0' vs. '1'. [Fuente: Original de A. Cuesta]