

Parcial-2.pdf

Anónimo

Geometría de Curvas y Superficies

2º Grado en Matemáticas

Facultad de Ciencias Universidad Autónoma de Madrid

academia universitaria 📻 montero espinosa

Si estudiando estos apuntes, te pierdes, nosotros podemos ayudarte.

Pregúntanos (S) 689 71 67 71

 Todos los apuntes que necesitas están 	aqı
---	-----

□ Al mejor precio del mercado, desde 2 cent.

 Recoge los apuntes en tu copistería más cercana o recíbelos en tu casa

Todas las anteriores son correctas

Universidad Autónoma de Madrid

Facultad de Ciencias. Departamento de Matemáticas.

Geometría de Curvas y Superficies. Segundo parcial. 11 de abril de 2019.

Ejercicio 1.

Sea S el catenoide de parametrización $\mathbb{X}(u,v) = (\cosh v \cos u, \cosh v \sin u, v)$, con $(u,v) \in (0,2\pi) \times \mathbb{R}$. Se pide:

- a) Calcular la primera forma fundamental.
- b) Calcular la segunda forma fundamental.
- c) Calcular las curvaturas principales.
- d) Determinar las lineas de curvatura.
- e) Calcular la curvatura gaussiana.
- f) Determinar las curvas asintóticas.

Ejercicio 2.

Decidir razonadamente (es decir, indicando una demostración o dando un contraejemplo) si los siguientes enunciados son verdaderos o falsos:

- a) La esfera tiene un paralelo de puntos parabólicos.
- b) Sea S una superficie regular. Supongamos que, en un punto $p \in S$, la curvatura gaussiana es igual a 7, mientras que la curvatura media es igual a 4. Entonces:
 - (i) Una de las curvaturas principales en p puede ser igual a 1.
 - (ii) Una de las curvaturas principales en p tiene que ser igual a 1.
- c) Cualquier curva en la esfera (birregular y parametrizada por longitud de arco) tiene curvatura normal constante.
- d) El cilindro $x^2 + y^2 = 1$ es localmente isométrico al plano z = 0.
- e) Sea $f: S_1 \to S_2$ una isometría local, $\alpha: I \to S_1$ una curva parametrizada por longitud de arco y $\beta = f \circ \alpha: I \to S_2$ la curva imagen. Entonces:
 - (i) La curva β está también parametrizada por longitud de arco.
 - (ii) Para todo $s \in I$ las curvaturas normales de α y β en s son iguales, es decir, $k_n^{\beta}(s) = k_n^{\alpha}(s)$.

