REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION

EXAMEN DU BACCALAUREAT

SESSION DE JUIN 2007

SESSION PRINCIPALE

SECTION: MATHEMATIQUES EPREUVE: MATHEMATIQUES

EXERCICE 1: (4 points)

- 1) Soit θ un réel de l'intervalle] 0, π [. Résoudre l'équation : $z^2 2i z 1 e^{2i\theta} = 0$
- 2) Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, M et N d'affixes respectives -1 + i, $i + e^{i\theta}$ et $i e^{i\theta}$ où θ est un réel de $]0, \pi[$.

- a Montrer que les vecteurs \overrightarrow{AM} et \overrightarrow{AN} sont orthogonaux.
- b Montrer que lorsque θ varie dans] 0, π [les points M et N varient sur un cercle $\mathscr C$ que l'on déterminera.
- 3) a Déterminer en fonction de θ l'aire $\mathscr{A}(\theta)$ du triangle AMN.
 - b Déterminer la valeur de θ pour laquelle l'aire $\mathscr{A}(\theta)$ est maximale et placer dans ce cas les points M et N sur le cercle \mathscr{C} .

EXERCICE 2: (6 points)

Soit ABC un triangle rectangle en C tel que $(\widehat{\overline{BC}},\widehat{\overline{BA}}) \equiv \frac{\pi}{3}[2\pi]$.

La bissectrice intérieure de l'angle $(\overrightarrow{BC}, \overrightarrow{BA})$ coupe [AC] en O.

On désigne par H le projeté orthogonal de O sur (AB) et par H' le milieu de [OA] .

- 1) a faire une figure.
 - b Montrer que le triangle OAB est isocèle et que H est le milieu de [AB] .
- 2) Soit f la similitude directe telle que : f(B) = O et f(H) = H'.
 - a Montrer que le rapport de f est $\frac{1}{\sqrt{3}}$ et que $\frac{\pi}{6}$ est une mesure de son angle.
 - b Montrer que H' est le milieu du segment [Of(A)].En déduire que A est le centre de f.
- 3) Les cercles (Γ) et (Γ ') de diamètres respectifs [AB] et [AO] se recoupent en D.
 - a Montrer que les points B, O et D sont alignés.
 - b Montrer que les triangles BCH et ODH' sont équilatéraux et que f(C) = D.
 - c Montrer que le quadrilatère ADCH est un losange.
- 4) Soit $g = S_{(DH)}$ of, ou $S_{(DH)}$ est la symétrie axiale d'axe (DH).
 - a déterminer q(A) et q(C).
 - b Montrer que g est une similitude indirecte dont on précisera le rapport.
 - c Soit Ω le centre de g.

Montrer que
$$\overrightarrow{\Omega}\overrightarrow{D} = \frac{1}{3}\overrightarrow{\Omega}\overrightarrow{A}$$
.

Construire alors le centre Ω et l'axe Δ de g.

PROBLEME: (10 points)

Dans tout le problème n désigne un entier naturel non nul.

A –1) Soit g_n la fonction définie sur IR par $g_n(x) = n(x+1) + e^x$

- a Dresser le tableau de variation de gn
- b Montrer que l'équation $g_n(x) = 0$ admet dans IR une unique solution α_n .
- c Prouver que $-2 < \alpha_n < -1$.
- d En déduire le signe de g_n(x) suivant les valeurs de x.
- 2) Soit f_n la fonction définie sur IR par $f_n(x) = \frac{x e^x}{n + e^x}$.

On désigne par \mathscr{C}_n la courbe représentative de f_n dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$.

 $a-\text{Calculer } \lim_{x\to -\infty} f_n(x) \quad , \ \lim_{x\to +\infty} f_n(x) \quad \text{ et } \quad \lim_{x\to +\infty} \bigl[f_n(x)-x \bigr] \ .$

En déduire que la courbe \mathscr{C}_n admet deux asymptotes que l'on précisera.

- b Montrer que pour tout x de IR, $f'_n(x) = \frac{e^x g_n(x)}{(n+e^x)^2}$.
- c Montrer que $f_n(\alpha_n) = 1 + \alpha_n$.
- d Donner le tableau de variation de f_n .
- 3) a Etudier la position relative de la courbe \mathscr{C}_n et de la droite D d'équation y = x.
 - b Etudier la position relative des courbes \mathscr{C}_n et \mathscr{C}_{n+1} .
 - c Tracer les courbes \mathscr{C}_1 et \mathscr{C}_2 .

(On prendra 2 cm pour unité de longueur ; on donne $\alpha_1 \simeq -1.4$, $\alpha_2 \simeq -1.2$).

$$\mathbf{B} - \text{Soient} \quad \mathbf{I} = \int_{-1}^{0} \mathbf{x} \ \mathbf{e}^{\mathbf{x}} \ d\mathbf{x} \qquad \text{et} \qquad \mathbf{U}_{n} = \int_{-1}^{0} f_{n}(\mathbf{x}) \ d\mathbf{x} \ .$$

- 1) Calculer I.
- 2) Montrer que pour tout x de l'intervalle [-1, 0], $\frac{xe^x}{n} \le \frac{xe^x}{n+e^x} \le \frac{xe^x}{n+1}$.
- 3) Montrer que la suite (Un) est convergente et calculer sa limite .
- 4) On pose $V_n = \sum_{k=1}^n U_k$.
 - a Montrer que pour tout entier naturel non nul k, $\int_{k+1}^{k+2} \frac{1}{t} dt \le \frac{1}{k+1}$.

2

- $b-En \ d\'eduire \ que \ \sum_{k=1}^n \ \frac{1}{k+1} \ \geqslant \ Log \ (n+2)-Log \ 2 \ .$
- c Montrer alors que $\lim_{n \to +\infty} V_n = -\infty$.