AMENDMENT

In the Specification:

Please replace **Table 2** on page 13 with the following rewritten **Table 2**:

Table 2. Exemplary epitope tag systems

Table 2. Exemplary epitope tag systems				
Epitope	Peptide	SEQ ID	Antibody	Reference
FLAG	AspTyrLysAspAspAspLys	<u>6</u>	4E11	Prickett ¹
НА	TyrProTyrAspValPRoAspTyrAla	7	12Ca5	Xie ²
HA1_	CysGlnAspLeuProGlyAsnAspAsnSerThr	<u>8</u>	mouse MAb	Nagelkerken ³
с-Мус	GluGlnLysLeuIleSerGluGluAspLeu	9	9E10	Xie ²
6-His	HisHisHisHisHis	<u>10</u>	BAbCO*	
AU1	AspThrTyrArgTyrIle	11	ВАЬСО	
EE	GluTyrMetProMetGlu	12	anti-EE	Tolbert⁴
Т7	AlaSerMetThrGlyGlyGlnGlnMetGlyArg	13	Invitrogen	Chen ⁵ Tseng ⁶
4A6	SerPheProGlnPheLysProGlnGluIle	14	4A6	Rudiger ⁷
ε	LysGlyPheSerTyrPheGlyGluAspLeuMetPro	<u>15</u>	anti-PKC $arepsilon$	Olah ⁸
В	GlnTyrProAlaLeuThr	<u>16</u>	D11, F10	Wang ⁹
gE	GlnArgGlnTyrGlyAspValPheLysGlyAsp	<u>17</u>	3B3	Grose ¹⁰
Tyl	GluValHisThrAsnGlnAspProLeuAsp	18	BB2, TYG5	Bastin ¹¹

Please replace Paragraph [0069] on page 18 with the following rewritten paragraph:

[0069] H₂O₂ formation can be assessed any suitable means. In one embodiment, the H₂O₂ formation is assessed by a peroxidase and Trinder reaction. Any suitable peroxidase can be used. More preferably, a horseradish peroxidase is used. For example, the horseradish peroxidases with the following GenBank accession Nos. can be used: E01651; D90116 (prxC3 gene); D90115 (prxC2 gene); J05552 (Synthetic isoenzyme C(HRP-C)); S14268 (neutral); OPRHC (C1 precursor); S00627 (C1C precursor); JH0150 (C3 precursor); S00626 (C1B precursor); JH0149 (C2 precursor); CAA00083 (Armoracia rusticana); and AAA72223 (synthetic horseradish peroxidase

isoenzyme C (HRP-C)). Any suitable Tinder reagent can be used herein. Hydrogen peroxide can quantitated by the quinone dye assay. See, e.g., Tamaoku, et al., Chem. Pharm. Bull. 30: 2492 (1982); Shimojo et al., Clin. Chem. 35(9):1992-94 (1989). The amount of quinine dye formed is inversely related to the amount of sodium ions in the sample.