## STA 235 - Wrapping up

Spring 2021

McCombs School of Business, UT Austin

# We have seen a lot of topics this semester



**Potential Outcomes framework** 

**Potential Outcomes framework** 

**Randomized Controlled Trials** 

**Potential Outcomes framework** 

**Randomized Controlled Trials** 

**Observational studies** 

**Model selection** 

**Potential Outcomes framework** 

**Randomized Controlled Trials** 

**Observational studies** 

**Model selection** 

**Potential Outcomes framework** 

Regularization

**Randomized Controlled Trials** 

Observational studies

**Model selection** 

**Potential Outcomes framework** 

**Randomized Controlled Trials** 

Regularization

**Observational studies** 

**Prediction** 

# How do we bring everything together?

## Case Study

#### The use of shared bikes

- Q1: How to predict demand?
- Q2: How to incentivize use?



## Q1: How to predict demand?

- What type of problem is it?
- How would you approach this problem?
- What is your outcome variable?
- What data would you ask for?
  - o Think about granularity (level), time scope, variables, other data sources.

#### Let's look at the data

```
bikedc <- read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Cla
head(bikedc)
```

```
datetime season holiday workingday weather temp atemp humidity
##
## 1 2011-01-01 00:00:00
                                                            1 9.84 14.395
                                                                                81
                                                            1 9.02 13.635
                                                                                80
## 2 2011-01-01 01:00:00
## 3 2011-01-01 02:00:00
                                                            1 9.02 13.635
                                                                                80
## 4 2011-01-01 03:00:00
                                                            1 9.84 14.395
                                                                                 75
                                                                                75
## 5 2011-01-01 04:00:00
                                                           1 9.84 14.395
  6 2011-01-01 05:00:00
                                                           2 9.84 12.880
                                                                                 75
     windspeed casual registered count
##
## 1
        0.0000
                     3
                               13
                                     16
## 2
        0.0000
                               32
                                     40
## 3
        0.0000
                               27
                                     32
                                     13
## 4
        0.0000
                               10
## 5
        0.0000
## 6
        6.0032
```

#### Let's look at the data

- Would you transform some of this data?
- What prediction method would you use?

#### head(bikedc)

```
datetime season holiday workingday weather temp atemp humidity
##
  1 2011-01-01 00:00:00
                                                           1 9.84 14.395
                                                                                81
     2011-01-01 01:00:00
                                                           1 9.02 13.635
                                                                                80
## 3 2011-01-01 02:00:00
                                                           1 9.02 13.635
                                                                                80
## 4 2011-01-01 03:00:00
                                                           1 9.84 14.395
                                                                                75
                                                           1 9.84 14.395
                                                                                75
## 5 2011-01-01 04:00:00
  6 2011-01-01 05:00:00
                                                           2 9.84 12.880
                                                                                75
     windspeed casual registered count
##
## 1
        0.0000
                               13
                                     16
## 2
        0.0000
                               32
                                     40
## 3
        0.0000
                               27
                                     32
## 4
        0.0000
                               10
                                     13
## 5
        0.0000
## 6
        6.0032
```

### Q2: How to incentivize use?

- What type of problem is it?
- How would you approach this problem?
- What is your outcome variable?
- What data would you ask for?
  - Think about granularity (level), time scope, variables, other data sources.

#### Q2: How to incentivize use?

- If you only had access to the previous data structure, what intervention could you design?
- Imagine now that bike share is present in **two cities:** DC and NYC. Would this change your approach?
- Now imagine that in 2012, **NYC modified their prices for casual and registered riders**. What approach could you use now?

#### **Review Material**



## Let's wrap things up

## **Objectives of this course**

#### Learn to think about causality:

- Is this correlation or causation?
- What assumptions need to hold?
- How can I answer a causal question?

#### Learn to think about prediction:

- What do we care when thinking about a good prediction model?
- What type of data do I need?
- How can I use prediction to answer some pressing questions?

## **Objectives of this course**

# Even if you don't do these studies, learn how to be CRITICAL CONSUMER of these products/analysis

Same with coding!

## Do you wish we would have done more or less R coding?



## How comfortable are you with R?

#### **Start of the semester**



#### **End of the semester**



#### Remember for the final exam...

- You will need a webcam.
- Try to have a **stable internet connection**.
- The final exam will cover everything we have seen in the class (with an emphasis on prediction).
- Attend office hours if you have questions!



#### We're very close to the finish line! Good luck!

