Compiler Construction

ARNOLD MEIJSTER
A.MEIJSTER@RUG.NL

Compiler Structure

(E)BNF

- BNF (Backus-Naur Form) is a meta-language used to describe the grammar of a programming language.
- (E)BNF stands for either (Extended) Backus-Naur Form or (Extended) Backus Normal Form.
- There are many dialects of (E)BNF in use, but the differences are almost always minor.

BNF

- <> indicate a *nonterminal* that needs to be further expanded, e.g. <variable>
- The symbol ::= means is defined as
- Symbols not enclosed in <> are terminals; they represent themselves, e.g. if, while, (
- The symbol | means or; it separates alternatives, e.g.
 <addop> ::= + | -
- This is *all there is* to "plain" BNF

Extended BNF (Backus Naur form)

- The following constructs are pretty standard:
 - o [] enclose an optional part of the rule
 - o { } enclose a part that can be repeated zero or more times

Syntax analysis: Parser

- <u>Parsing</u> is the process of determining whether a string of tokens can be generated by a grammar.
- Most parsing methods fall into one of two classes, called the <u>top-down</u> and <u>bottom-up</u> methods.
- Efficient top-down parsers are easy to build by hand.
 - And can also be generated using automatic tools (e.g. LLnextgen)
- Bottom-up parsing, however, can handle a larger class of grammars.
 - And are almost always generated using automatic tools (e.g. Yacc/Bison)

Parsing: Top-Down, Bottom-Up

- Given the grammar: E -> 0 | E + E
- And a string to parse: "0 + 0"
- Top-down parsing: derivation from start symbol E:

Bottom-up parsing: group terminals into RHS of rules:

- Usually, parsing is done on-the-fly while tokens are read:
 - Top-down:
 - After seeing 0, we don't yet know which rule to use;
 - After seeing 0 +, we can expand E to E + E
 - Bottom-up:
 - o can be **reduced** to E right away, without seeing +

Three "Equivalent" Grammars

```
G1: <subexp> ::= a | b | c | <subexp> - <subexp>
G2: <subexp> ::= <var> - <subexp> | <var> <var> ::= a | b | c

G3: <subexp> ::= <subexp> - <var> | <var> <var> ::= a | b | c
```

These grammars all define the same language: the language of strings that contain one or more **a**s, **b**s or **c**s separated by minus signs. But...

They produce different parse trees for a-b-c

Why Parse Tree Structure Matters

- We want the structure of the parse tree to correspond to the semantics of the string it generates
- This makes grammar design much harder: we're interested in the structure of the parse tree, not just in the generated string
- Parse trees are where syntax meets semantics

Grammar for Expressions

$$::= + $| * $|)$
 $|[\) | a | b | c](a left)$$$$

This is a parse tree for a+b*c.

Problem: the addition is performed before the multiplication, which is not the usual convention for operator *precedence*.

Correct Precedence: a + b*c = a + (b*c)

We still have a problem: associativity

- ■The grammar for a language should generate a unique parse for every possible input.
- ■The grammar can generate either tree for **a+b+c**.
- The left one is not the usual convention for the *associativity* of +.

Associativity Examples

```
• In C/C++/Java:
```

```
a+b+c
a=b=0;
```

most operators are left-associative

— right-associative (assignment)

• In Haskell:

— most operators are left-associative

1::2::[]

— right-associative (list construction)

• In Python:

a/b*c

— most operators are left-associative

a**b**c

right-associative (exponentiation)

Associativity in the Grammar

 To fix the associativity problem, we modify the grammar to make parse trees of +s 'grow' to the left (and likewise for *s)

```
<exp> ::= <exp> + <mulexp> | <mulexp> 
<mulexp> ::= <mulexp> * <rootexp> | <rootexp> 
<rootexp> ::= (<exp>) | a | b | c
```

Correct parse tree for a + b + c

```
\langle exp \rangle ::= \langle exp \rangle + \langle mulexp \rangle | \langle mulexp \rangle

\langle mulexp \rangle ::= \langle mulexp \rangle * \langle rootexp \rangle | \langle rootexp \rangle

\langle rootexp \rangle ::= (\langle exp \rangle) | a | b | c
```


Grammars and Parsers

- LL(1) parsers
 - Top down
 - Left-to-right input
 - Leftmost derivation
 - o 1 symbol look-ahead
- LR(1) parsers
 - Bottom up
 - Left-to-right input
 - Rightmost derivation
 - o 1 symbol look-ahead

• Also: LL(k), LR(k), ...

LL(1) grammars

LR(1) grammars

Parsing: Top-Down

- Generally:
 - top-down is easier to understand/implement directly
 - top-down parsing may require changes to the grammar
- Top-down parsing can be done:
 - Iteratively
 - Recursive descent
 - Table lookup and transitions

• A recursive descent parser does not require backtracking to take alternative paths along the parse (derivation) path.

- Assume we have a lexical analyzer named lex, which puts the next token code in nextToken
- Consider a BNF grammar rule (production) of the form

- The coding process when there is only one RHS:
 - o If the RHS starts with a terminal symbol, compare it with the next input token; if they match, continue, else there is an error
 - For a nonterminal symbol in the RHS, call its associated parsing subprogram

The routine match ()

```
int match(int token) {
   if (nextToken != token) {
     return 0; /* no match */
   }
   nextToken = lex();
   return 1; /* match */
}
```

Recursive-Descent Parsing

A grammar for simple expressions:

```
<expr> → <term> { (+ | -) <term>}
<term> → <factor> { (* | /) <factor>}
<factor> → id | ( <expr> )
```

This routine does not detect errors!

Invariant: Each parsing routine leaves the next token in nextToken

```
/* Function parseTerm
   Parses strings in the language generated by the rule:
   <term> → <factor> {(* | /) <factor>}
   */

void parseTerm() {
   parseFactor();
   while (match(TIMES_TOKEN) || match(DIV_TOKEN)) {
      parseFactor();
   }
}
```

Again, this routine does not detect errors!

• A nonterminal that has more than one RHS requires a test to determine which RHS it is to parse:

```
< factor > \rightarrow id \mid (< expr > )
```

- The correct RHS is chosen on the basis of the next token of input (the lookahead)
- The next token is compared with the first token that can be generated by each RHS until a match is found
- o If no match is found, it is a syntax error

```
/* Function parseFactor
  Parses strings in the language generated by the rule:
  <factor> -> id | (<expr>) */
void parseFactor() {
   if (match(IDENT)) {
     /* skip, match() accepted the token */
    return;
                                           Note: the routine
  if (match(LEFT PAR)) {
    /* parse: (<expr>) */
                                           syntaxError aborts!
    parseExpr();
    if (match(RIGHT PAR)) {
      return;
     syntaxError("Expected ')'");
  syntaxError("Expected <identifier> or '('");
```

Left Recursion

• A grammar is *left recursive* if \exists a non-terminal **A** such that $\mathbf{A} \Rightarrow^* \mathbf{A} \alpha$ without accepting a terminal.

What does
$$\Rightarrow^*$$
 mean?
$$A \to B \underline{x}$$

$$B \to A \underline{y}$$

Let α be any string of grammar symbols (i.e. terminals and non-terminals).

The notation $\alpha \Rightarrow^* \beta$ denotes that we can derive β starting from α in zero or more rewrites without accepting terminals/tokens (input).

The Left Recursion Problem

- x If a grammar has left recursion, either direct or indirect, it cannot be the basis for a top-down parser
- ▼ The parser will loop forever.
 - Often, a grammar can be modified to remove left recursion

Removing Left Recursion

• Two cases of left recursion:

#	Production rule			
1	<expr> → <expr> + <term></term></expr></expr>			
2	/ <expr> - <term></term></expr>			
3	/ <term></term>			

#	Production rule		
4	<term> → <term> * <factor></factor></term></term>		
5	/ <term> / <factor></factor></term>		
6	/ <factor></factor>		

• Transform as follows:

#	Production rule		
1	<expr> → <term> <expr2></expr2></term></expr>		
2	< <i>expr2></i> → + < <i>term></i> < <i>expr2></i>		
3	/ - <term> <expr2></expr2></term>		
4	ε		

#	Production rule	
4	<term> → <factor> <term2></term2></factor></term>	
5	<term2> → * <factor> <term2></term2></factor></term2>	
6	/ / <factor> <term2></term2></factor>	
	ε	

LL Grammar Restriction 1

29

• Grammar Restriction 1 (for top-down parsing):

An LL grammar contains no left-recursive rules.

• The other characteristic of grammars that disallows LL(1) top-down parsing is the inability to determine the correct RHS on the basis of one lookahead token

 \circ A \rightarrow a | aB

- **First(E)**, is the set of terminal symbols that may appear at the beginning of a sentence derived from E
 - And also includes ε if E can generate an empty string
- Def: $First(\alpha) = \{a \mid a \text{ is a terminal and } \alpha \Rightarrow^* \alpha \beta\}$
 - \times Note: If $\alpha \Rightarrow^* \epsilon$ then $\epsilon \in First(\alpha)$
- Example: E -> 0 | E + E
 - First(0) = $\{0\}$, First(E + E) = $\{0\}$, First(E) = $\{0\}$ U First(E + E) = $\{0\}$

First Set

Rules for computing First Sets

- If *X* is a terminal, then $First(X) = \{X\}$.
- If $X \Rightarrow^* \epsilon$, then place ϵ in First(X).
- $First(X\alpha) = First(X) \text{ if } \epsilon \notin First(X).$
- $First(X\alpha) = (First(X) \setminus \{\epsilon\}) \cup First(\alpha) \text{ if } \epsilon \in First(X).$
- If X is a nonterminal, and $X \to Y_1 Y_2 \dots Y_k$ is a production, then place s in First(X) if $s \in First(Y_i)$, and $\epsilon \in First(y_j)$ for all $1 \le j < i$.
 - If $\epsilon \in First(y_i)$ for all $1 \le i \le k$, then place ϵ in First(X).

Example: Calculating FIRST Sets

#	Production rule		
1	goal → expr		
2	expr → term expr2		
3	expr2 → + term expr2		
4	- term expr2		
5	ε		
6	term → factor term2		
7	term2 → * factor term2		
8	/ factor term2		
9	ε		
10	factor → number		
11	identifier		

```
FIRST(rhs 3) = \{ + \}
FIRST(rhs 4) = \{ - \}
FIRST(rhs 5) = \{ \epsilon \}
FIRST(rhs 7) = \{ * \}
FIRST(rhs 8) = { / }
FIRST(rhs 9) = \{ \epsilon \}
FIRST(rhs 10) = { number}
FIRST(rhs 11) = {identifier }
FIRST(factor) =FIRST(rhs 10) ∪ FIRST(rhs 11)
                = { number, identifier }
FIRST(term2) =FIRST(rhs 7) ∪ FIRST(rhs 8) ∪FIRST(rhs 9)
                = \{*, /, \varepsilon \}
FIRST(term) = FIRST(factor) = { number, identifier }
FIRST(expr2) = FIRST(rhs 3) \cup FIRST(rhs 4) \cupFIRST(rhs 5)
              = \{+, -, \varepsilon \}
FIRST(expr) = FIRST(term) = { number, identifier }
```

FIRST(goal)=FIRST(expr)= { number, identifier }

LL Grammar Restriction 2

34

• Grammar Restriction 2 (for top-down parsing):

The First sets of all alternatives/choices for the same LHS must be different (so we know which path to take upon seeing the next terminal symbol/token).

Pairwise Disjointness Test:

• For each each pair of rules $A \rightarrow \alpha_i$ and $A \rightarrow \alpha_j$ in the grammar, it must be true that

$$FIRST(\alpha_i) \cap FIRST(\alpha_j) = \phi$$

• Examples:

Disjoint: $A \rightarrow a \mid bB \mid cAb$

Overlap: $A \rightarrow a \mid aB$

Overlap: $A \rightarrow a \mid B \qquad B \rightarrow \{b c\} a$

Example Expression Grammar

```
<expr> →
<term> →
<op> →
```

```
void parseExpr ( ) {
  parseTerm();
  while (token ∈ First(op)) {
     parseOp();
     parseTerm();
  }
}
```

```
<term> { <op> <term> }
'ident' | '(' <expr> ')'
'+' | '-'
```

```
void parseTerm ( ) {
  if (match(IDENT)) {
    return;
  if (match(LPAR)) {
   parseExpr();
    if (match(RPAR)) {
      return;
    syntaxError("Expected ')'");
    return;
  syntaxError("Expected Ident or ')'");
```

Left factoring can resolve First set conflicts.

replace
$$A \rightarrow aB \mid a$$

with

$$A \rightarrow a A'$$

$$A' \rightarrow B \mid \epsilon$$

- General procedure to left-factor a grammar:
 - For each non-terminal A, find the longest prefix α common to two or more of its alternatives.
 - \times So, α is a conflicting prefix
 - Replace all the A productions

```
A \rightarrow αβ1 | αβ2 |... | αβn | γ (where γ does not begin with α) by
```

$$A \rightarrow \alpha A' \mid \gamma$$

 $A' \rightarrow \beta 1 \mid \beta 2 \mid ... \mid \beta n$

Top-Down Parsing

- What about ε productions?
 - o Consider A → α and A → β and α may be empty
 - \circ In this case there is no symbol to identify rhs α

Example:

- FIRST(rhs 3) = $\{ \epsilon \}$
- What lookahead symbol tells us we are matching rhs of 3?

#	Production rules			
0	S	\rightarrow	A	В
1	A	\rightarrow	X	В
2		- 1	У	С
3		- 1	ε	
4	В	\rightarrow	Z	

- Solution
 - O Build a *FOLLOW* set for each production that can produce ε

Follow Sets

- Follow(N), where N is a non-terminal symbol, is the set of terminal symbols that can follow immediately after any sentence that can be derived from any rule of N
- In this grammar:

 \circ Follow(E) = {+, <EOF>}

Computation of Follow(T)

41

Examine all cases where the non-terminal T appears on the rhs of a rule in the grammar.

Follow(T) is the *smallest* set that satisfies the following rules.

- N $\rightarrow \alpha$ T or N $\rightarrow \alpha$ [T] or N $\rightarrow \alpha$ {T}
 - Follow(N) \subseteq Follow(T)
- N $\rightarrow \alpha$ T β or N $\rightarrow \alpha$ [T] β or N $\rightarrow \alpha$ {T} β
 - If $\epsilon \notin \text{First}(\beta)$ then $\text{First}(\beta) \subseteq \text{Follow}(T)$
 - If $\epsilon \in \text{First}(\beta)$ then $((\text{First}(\beta) \{\epsilon\}) \cup \text{Follow}(N)) \subseteq \text{Follow}(T)$
- The Follow set of the start symbol contains <EOF> (or \$).

Example: Calculating Follow Sets (1)

#	Production rule
1	goal → expr
2	expr → term expr2
3	expr2 → + term expr2
4	- term expr2
5	ε
6	term → factor term2
7	term2 → * factor term2
8	/ factor term2
9	ε
10	<i>factor</i> → number
11	identifier

```
FOLLOW(goal) = { $ }
FOLLOW(expr) = FOLLOW(goal) = { $ }
FOLLOW(expr2) = FOLLOW(expr) = {$}
FOLLOW(term) += (FIRST(expr2)\ \{\epsilon\})\cup FOLLOW(expr2)
              += \{ +, - \} \cup FOLLOW(expr2)
              += { +. -. $ }
FOLLOW(term2) += FOLLOW(term)
FOLLOW(factor) += (FIRST(term2)\ \{\epsilon\})\cup FOLLOW(term2)
                += { *, /} ∪ FOLLOW(term2)
                += { *. / . +. -. $ }
```

LL Grammar Restriction 3

43

Grammar Restriction 3:

If a nonterminal may occur zero times (i.e. is optional), its First and Follow sets must be different (so we know whether to parse it or skip it on seeing a terminal symbol/token).

Summary recursive descent parsing

- Massage grammar to satisfy LL conditions
 - Remove left recursion
 - Left factor, whenever possible
- Build First (and Follow) sets

- Define a procedure for each non-terminal
 - o Implement a case for each right-hand side
 - Recursively call procedures for non-terminals

Exercises

- Write (by hand) recursive descent parsers for the following three grammars
 - \circ S \rightarrow + S S | S S | a
 - $\circ S \rightarrow S(S)S \mid \epsilon$
 - \circ $S \rightarrow 0 S 1 \mid 0 1$
- Download and install LLnextgen
 - http://os.ghalkes.nl/LLnextgen/index.html
 - Read its documentation if necessary.
 - Llnextgen is available on the lab computers.
- Remake the above exercises using **LLnextgen**.