

CSE220: Data Structures (Lab)
Fall 2024
Lab Quiz - 07

Name:	ID:	Section:
-------	-----	----------

Duration: 30 Minutes

Question 1 [15 Points]

Given a directed weighted graph, a starting vertex s and total available points p, traverse the graph, always choosing the outgoing edge with the **maximum weight at each step**. When traversing an edge with weight w, expend w points from total available points.

Determine the last vertex you can reach from *s* before running out of points. If you reach a **dead end (no outgoing edges)** before using all your points, that vertex is the last reachable vertex.

Note: You can solve using either adjacency matrix or adjacency list. Assume that the **Graph** is already created.

Given Graph & Sample Input	Sample Output	
graph = 3 4 3 3 4 3 5 4 4 1 1 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Last reachable vertex = 4	
	Explanation:	
	Choosing max weight edge from the	
	starting point $s = 0$,	
	i) vertex $0 \rightarrow \text{vertex } 2$	
	cost = 5, points available = $15-5 = 10$	
	ii) vertex 2 → vertex 1	
s = 0	cost = 6, points available = $10-6 = 4$	
p = 15	iii) vertex 1 → vertex 4	
findMinPath(graph, s, p)	cost = 3, points available = $4-3 = 1$	
	Cannot go any further with available	
Here, the "graph" parameter is a	points.	
square Matrix if you're using the	Therefore, last reachable vertex = 4	
Adjacency Matrix. Otherwise, it is an		
array of singly Nodes if you're using		
Adjacency List.		