DOCUMENTING THE MEANING OF THE PARAMETERS

- 1. SIMPLE FIT: $f_4(x) = a \arctan(k(x-h)) + C$
 - 1. *h*:
- \bullet h governs the horizontal translation of the graph.
- Here, wishing the drop of arctan to be anti-symmetric at 80 GeV, $h \sim 80$ GeV.

2. C:

- When $x \sim 80$, $f_4(80) \sim C$. Accordingly, C determines the vertical translation of the graph and, in particular, the value which f_4 assumes at 80 GeV.
- Here, $C \sim 800$.

3. *a*:

- a governs the vertical stretch or compression of the graph as well as its reflection across the x-axis. Its value is dependent upon k and the number of entries of the histogram.
- Here, the basic shape is not arctan, but rather $-\arctan$, rendering a < 0.

4. *k*:

- \bullet k governs the horizontal stretch or compression of the graph. Its value is dependent upon a and the number of entries in the histogram.
- Here, as arctan is stretched, so that its great drop extends from 60 to 120 GeV, one should expect k < 1. In particular, as f_4 diminishes from ~ 1700 to ~ 50 in the interval [60, 120], then one good initial guess might be $(a, k) \simeq (-800, 0.1)$.
- We can further quantify the interdependency of a, k by observing that, for x close to h, $f_4(x) \sim a*k(x-80)+800$. This forms a straight line, whose slope is equal to a*k. In approximating the slope of this line as $\frac{1700-50}{120-60} \sim -30$, which the pair (-800, 0.1) satisfies to the order of magnitude.
- 2. More Complex Fit: $f_0(x) = (P_3 + P_4 x) \arctan((x P_1)/P_2) + C$
 - 1. P_1 :
 - P_1 governs the horizontal translation of the graph.

- Here, wishing the drop of arctan to be anti-symmetric at 80 GeV, $P_1 \sim 80$ GeV.
- 2. P_2 :
 - $P_2 \sim 1/k$ governs the horizontal stretch or compression of the graph.
 - Here, $P_2 \sim 1/0.1 = 10$.
- 3. P_4 :
 - For large |x|, $\arctan \to \pm \pi/2$, so $f_1(x) \leadsto \{(P_3 + C) + P_4 x\}$. Accordingly, P_4 governs the slope of the line which f_4 approaches for large x.
 - Here, wishing for the slopes to be flat upon either end, $P_4 \sim 0$.
- 4. P_3 :
 - If $P_4 \sim 0$, then the equation reduces to f_4 , where $P_3 \sim a$ governs the vertical stretch of the graph.
 - Here, $P_3 \sim -800$.
- 5. C:
 - When $x \sim 80$, $f_4(80) \sim C$, as discussed above.
 - Here, $C \sim 800$.
- 3. Even More Complex Fit: $f_0(x) = (P_3 + P_4 x) \arctan((x P_1)/P_2) + P_5 x + 1$
 - 1. P_5 :
 - For large $x, f_0 \rightsquigarrow (P_3 + 1) + (P_4 + P_5)x$.
 - Ideally, for flat tails, $P_5 \sim 0$. But, if that is so, then f_0 should not attain its desired value when x = 80. Instead, $P_5(80) + 1 \sim 800 \rightarrow P_5 \sim 10$.
 - Accordingly, this might imply that $P_4 \sim -10$, in order that the slopes might 'cancel out' for large x.
 - 2. All other relevant parameters may retain their values, given in 2.
- 4. Alternative Simpler Fit #1: $f_2(x) = (P_3 + P_4 x) \frac{x P_1}{\sqrt{P_2 + (x P_1)^2}} + C$.
 - 1. P_1 :
 - P_1 governs the horizontal translation of the graph.
 - Here, $P_1 \sim 80$.
 - 2. C:
 - Again, $C \sim 800$, as discussed above.
 - 3. P_4 :
 - For large x, $f_1(x) \leadsto \{(P_3 + C) + P_4x\}$.
 - Wishing for flat tails, $P_4 \sim 0$.
 - 4. P_3 :
 - P_3 governs the vertical stretch of the graph.
 - Here, $P_3 < 0$. Further, when |x| becomes 'far away' from 80, say, x = 80 (where the graph begins to level off), we know $f_1(80) \sim 50$. If $f_1(80) \sim \{(P_3 + C) + 0(80)\}$) and C = 800, then $P_3 \sim -800$.
 - 5. P_2 :

- For no discontinuity at $x = 80, P_2 > 0$.
- For $x \sim 80$, $P_3 \frac{x-P_1}{\sqrt{P_2+(x-P_1)^2}} \sim \frac{P_3}{\sqrt{P_2}}(x-P_1)$. This forms a straight line approximation to the graph, whose slope is $P_3/\sqrt{P_2}$. In approximating the slope of this line as ~ -45 , then $-800/\sqrt{P_2} \sim -45$, whence $P_2 \sim 300$.
- 5. Alternative Fit #1: $f_3(x) = (P_3 + P_4 x) \frac{x P_1}{\sqrt{P_2 + (x P_1)^2}} + P_5 x + 1$.
 - 1. P_5 :
 - For large $x, f_3 \rightsquigarrow (P_3 + 1) + (P_4 + P_5)x$.
 - Ideally, for flat tails, $P_5 \sim 0$. But, if that is so, then f_3 should not attain its desired value when x = 80. Instead, $P_5(80) + 1 \sim 800 \rightarrow P_5 \sim 10$.
 - Accordingly, this might imply that $P_4 \sim -10$, in order that the slopes might 'cancel out' for large x.
 - 2. All other relevant parameters may retain their values, given in 4.

DOCUMENTING THE MEANING OF THE PARAMETERS FOR NORMALISED VARIABLES

- 1. SIMPLE FIT: $f_4: f(x) = a \arctan(k(x-h)) + C$
 - 1. *h*:
- \bullet h governs the horizontal translation of the graph
- Here, wishing the drop of arctan to be anti-symmetric at 1, let $h \sim 1$.
- 2. C:
 - When $x \sim 1$, $f(1) \sim C$. Accordingly, C determines the vertical translation of the graph, according to the number of entries in every bin. In particular, it will determine the value which f assumes at 1.
 - Here, $C \sim 3500$.
- 3. *a*:
 - a governs the vertical stretch or compression of the graph as well as its reflection across the x-axis. Its value is dependent upon k and the number of entries in the histogram.
 - Here, the basic shape is $-\arctan$, rendering a < 0.
- 4. *k*:
- k governs the horizontal stretch or compression of the graph.
- Here, as arctan is compressed, so that its drop extends from ~ 0.75 to 1.75, one should expect k > 1. In particular, as f diminishes from $\sim 10,000$ to ~ 1000 in the interval [0.75, 1.75], then one good initial guess might be $(a, k) \simeq (-3000, 10)$.
- 2. More Complex Fit: $f_0: f(x) = (P_3 + P_4 x) \arctan((x P_1)/P_2) + C$
 - 1. P_1 :
 - P_1 governs the horizontal translation of the graph.
 - Here, wishing the drop of arctan to be anti-symmetric at 1, $P_1 \sim 1$.

- 2. P_2 :
 - $P_2 \sim 1/k$ governs the horizontal stretch or compression of the graph.
 - Here, $P_2 \sim 1/10 = 0.1$.
- 3. P_4 :
 - For large |x|, $\arctan \to \pm \pi/2$, so $f_0 \leadsto \{(P_3 + C) + P_4 x\}$. Accordingly, P_4 governs the slope of the line which f_0 approaches for large x.
 - Here, wishing for the slopes to be flat upon either end, $P_4 \sim 0$.
- 4. P_3 :
 - If $P_4 \sim 0$, then the equation reduces to f_4 , where $P_3 \sim a$ governs the vertical stretch of the graph.
 - Here, $P_3 \sim -3000$.
- 5. C:
 - Here, $C \sim 3500$.
- 3. EVEN MORE COMPLEX FIT (??): $f_1(x) = (P_3 + P_4 x) \arctan((x P_1)/P_2) + P_5 x + 1$
 - 1. P_5 :
 - For large x, $f_0 \rightsquigarrow (P_3 + 1) + (P_4 + P_5)x$.
 - Ideally, for flat tails, $P_5 \sim 0$. But, if that is so, then f_1 should not attain its desired value when x = 1. Instead, $P_5(1) + 1 \sim 3500 \rightarrow P_5 \sim 3500$.
 - (Also, this might imply that $P_4 \sim -3500$, in order that the slopes might 'cancel out' for large x)?
 - 2. All other relevant parameters may retain their values, given in 2.
- 4. Alternative Simpler Fit 1: $f_2(x) = (P_3 + P_4 x) \frac{x P_1}{\sqrt{P_2 + (x P_1)^2}} + C$.
 - 1. P_1 :
 - P_1 governs the horizontal translation of the graph.
 - Here, $P_1 \sim 1$.
 - 2. C:
 - Again, $C \sim 3500$, as discussed above.
 - 3. P_4 :
 - For large x, $f_1(x) \rightsquigarrow \{(P_3 + C) + P_4x\}$.
 - Wishing for flat tails, $P_4 \sim 0$.
 - 4. P_3 :
 - P_3 governs the vertical stretch of the graph.
 - Here, $P_3 < 0$. Further, when |x| becomes 'far away' from 1, say, x = 1.75 (where the graph begins to level off), we know $f_1(1.75) \sim 1000$. If $f_1(1.75) \sim \{(P_3 + C) + 0(1.75)\}$ and C = 3500, then $P_3 \sim -2500$.
 - 5. P_2 :
 - For no discontinuity at $x = 1, P_2 > 0$.

- For $x \sim 1$, $P_3 \frac{x P_1}{\sqrt{P_2 + (x P_1)^2}} \sim \frac{P_3}{\sqrt{P_2}} (x P_1)$. This forms a straight line approximation to the graph, whose slope is $P_3/\sqrt{P_2}$. In approximating the slope of this line as ~ -9000 , then $-2500/\sqrt{P_2} \sim -9000$, whence $P_2 \sim 0.02$.
- 5. Alternative Fit #1: $f_3(x) = (P_3 + P_4 x) \frac{x P_1}{\sqrt{P_2 + (x P_1)^2}} + P_5 x + 1$.
 - 1. P_5 :
 - For large $x, f_3 \leadsto (P_3 + 1) + (P_4 + P_5)x$.
 - Ideally, for flat tails, $P_5 \sim 0$. But, if that is so, then f_3 should not attain its desired value when x = 1. Instead, $P_5(1) + 1 \sim 3500 \rightarrow P_5 \sim 3500$.
 - Accordingly, this might imply that $P_4 \sim -3500$, in order that the slopes might 'cancel out' for large x.
 - 2. All other relevant parameters may retain their values, given in 4.