

Tutorial 10: Segmentación Semántica

Segmentación Semántica

Input: (3xWxH) RGB image

Output:

(23xWxH) segmentation map with scores for every class in every pixel

Inteligencia Artificial 2024

Labels en la Segmentación Semántica

object class	R	G	В	Colour
void	0	0	0	
building	128	0	0	
grass	0	128	0	
tree	128	128	0	
cow	0	0	128	
horse	128	0	128	
sheep	0	128	128	
sky	128	128	128	
mountain	64	0	0	

Métricas: Loss Function

Cross-entropy loss promediado por pixel

```
for (inputs, targets) in train_data[0:4]:
    inputs, targets = inputs, targets
    outputs = dummy model(inputs.unsqueeze(0))
    loss = torch.nn.CrossEntropyLoss(ignore_index=-1, reduction='mean')
    losses = loss(outputs, targets.unsqueeze(0))
    print(losses)
```


Métricas: Accuracy

• Solo se consideran pixeles que no son "void"

```
def evaluate_model(model):
    test_scores = []
    model.eval()
    for inputs, targets in test_loader:
        inputs, targets = inputs.to(device), targets.to(device)

        outputs = model.forward(inputs)
        _, preds = torch.max(outputs, 1)

        targets_mask = targets >= 0
        test_scores.append(np.mean((preds == targets)[targets_mask].data.cpu().numpy()))

    return np.mean(test_scores)
print("Test_accuracy: {:.3f}".format(evaluate_model(dummy_model)))
```


Arquitecturas de Modelos

Task de Segmentación Semántica

- Shape del Input: (N, num_channels, H, W)
- Shape del Output: (N, num_classes, H, W)

- Queremos:
 - Mantener la dimensionalidad (H, W)
 - Obtener características en diferentes resoluciones espaciales

CATOLICA PROCES

Solución Naive

- Mantener la dimensionalidad constante a lo largo de la red
- Usar tamaños de filtro incrementalmente

- Problema:
 - Consumo de memoria
 - Por ejemplo, tenemos que guardar inputs y outputs para cada capa:
 128 filtros a (64xWxH) -> millones de parámetros

CATOLICA PROCES

Entonces: Receptive Field (RF)

- Región en el input space
- Se reduce dimensionalidad

Como veníamos viendo

- Usamos convoluciones y pooling para aumentar el receptive field
- Y hacemos un Upsampling al final para recuperar la resolución del input

La mejor solución

- Reducir el tamaño lentamente -> y luego aumentar el tamaño lentamente
 - Pooling -> Upsampling
 - Strided Convolution -> Transposed Convolution
- Combinar con convoluciones normales, bn, dropout, etc.

Transposed Convolutions

• Upsampling con parámetros entrenables

Cálculo del output en las Transposed Convolutions

$$out = (in - 1) * stride - 2 * pad + kernel$$

Cómo obtener resultados más rápido?

Transfer Learning

- Posibles soluciones
 - "The Oldschool"
 - Agarrar un Encoder preentrenado, setear el decoder, y solo entrenar el decoder
 - Candidatos de Encoders: AlexNet, MobileNets
 - "The Lazy"
 - Agarrar una red totalmente pre entrenada y ajustar solo los outoputs

Nos vemos el próximo lunes ©