H20-> H++ 6H-DH° = 55.836 kJ/mol DS0 - 80.66 J/mol Temperature Kw pKw PH 20 6.79×10^{15} 14.17 7.08 30 1.45×10^{-14} 13.84 6.92 60 1.67×10^{-13} 12.97 6.49 10-14 = e e solve for T T = 298.028K T= 25,928 C if you use 0°C= 273 T= 24.878 C if you use 0°C= 273.15 2 New Scale 100°C(99.97°) boiling _ 1/100 0°C(0) fræging & Reference pourts (if we use (water at 1 stm)

Absolute -273.15 C (adjustment)
TEMP

(100) [X-XClower] + [Temp of lower]

K+ (newscale) [X-XClower] + [Scale in C]

$$P_{1}\left(V_{1}^{T}-V_{S}\right)=P_{2}\left(V_{2}^{T}-V_{S}\right)$$

$$V_{S}=\frac{P_{1}V_{1}^{T}-P_{2}V_{2}^{T}}{P_{1}-P_{2}}$$

$$\# e^{X} = \sum_{n=0}^{\infty} \frac{\chi^{n}}{n!} = 1 + \chi + \frac{\chi^{2}}{2!} + \frac{\chi^{3}}{3!} + \dots$$

γ	$\frac{x^n}{n!}$	Z runneng	
0	1	1 0	
1	5	5	e ⁵ = 148.413
2	<u>25</u>	18.5	
3	125/6	39.33	
4	625/24	65,37	
5	3125/120	91.42	
6	15625/720	113,721	
7	78125/5040	128.62	
8	390625/40320	138.31	
9	1953125/362880	143.69	
10	9765625/362880	0 146.38	

#5

From years = PV botton givenus

If
$$F_b \geq F_g$$
 Ballon will Heat,

 $PV = nRT = \begin{pmatrix} \frac{\#g}{MW} \\ MW \end{pmatrix} \cdot RT \rightarrow$
 $P = \frac{\#g}{RT} = \frac{P(MW)}{RT} = \frac{10^3}{71.7}$

Mg/= $PV = \frac{10^3}{RT}$

Wb = $\frac{10^3}{71.7}$

#6 Isotherm $P_1 = 1 \text{ bor} \rightarrow P_2 = 5 \text{ bor}$
 $W = -\int PdV = -nRT \int \frac{dV}{V} = -nRT \ln \left(\frac{V_2}{V_1}\right)$
 $W = + nRT \ln \left(\frac{5 \times 10^5}{1 \times 10^5}\right) = + nRT \ln \left(\frac{P_1}{P_2}\right)$
 $W = + (1)(8.314)(300 \text{ k}) \ln (5)$
 $= \frac{1}{4014.26} \text{ J}$

#7	$M_q \rightarrow M_g^{+2} + 2e$ $E_0 = 2.360$
	Mg \rightarrow Mg ⁺² +2e ε_0 = 2.360 Al+3+3e \rightarrow Als) ε_0 =-1.677
	Es must be positive this Mg is being oxidized
	DE=0.683volts.
	3Mg + 2Ag+3 - 5 3Mg+2 + ZAl°
	ΔS= 197.6J ΔH°=-336.6 kJ
	$\Delta G = -336.6 - (298)(.1976) = -395.48 \text{ kJ}$
	$\frac{E^{\circ} = -\Delta G^{\circ}/n7 = -395.48/(96,500.6)}{ E^{\circ} = 6.683 }$
	Variations due to différences in standard tobles and the lack of use of activities since concert. Set to 1 for ΔG° .
#	8 New to consider @ Density dependence of mercury as
gaga dina special na sana ana ana ana ana ana ana ana ana	6) Worksble nange of tenperature. (b) Worksble nange of tenperature. (c) Non-timeanty of height /temp scale (d) Need to seal both and but
	D Need to seal both ands but problems (vapenization/book pressure ofc)

#9
$$V_1 = Z000 \text{cm}$$
 $V_2 = 1600 \text{cm}$ $V_3 = 300 \text{ K}$ $V_6 = 105 \text{ Pa}$ $V_6 = 105 \text{ Pa}$

$$V_1' = ?$$
 $V_2 = ?$
 $V_2 = ?$

Piston is in equilibrium thus $P_2 = P_1$, the smount of gas in each comportment is unchanged

In comportment 1

In · Comportment 2

$$\begin{array}{ccc}
P_0V_1 &=& P_1V_1 \\
\hline
T_0 &=& \overline{T_1}
\end{array}$$

$$\begin{array}{c}
P_0V_2 - P_1V_2 \\
\hline
T_0 - T_2
\end{array}$$

Divide 0/0) and concel

$$\frac{V_1}{V_2} = \frac{V_1'}{T_1} \cdot \frac{T_2}{V_2'} = \left(\frac{T_2}{T_1}\right) \left(\frac{V_1'}{V_2'}\right) = Schiefor new Volumes$$

$$\left(\frac{V_1}{V_2'}\right) = \left(\frac{T_1}{T_2}\right)\left(\frac{V_1}{V_2}\right) = \left(\frac{273}{373}\right)\left(\frac{200}{100}\right) = 1.46$$

$$V_1' = 1.46V_2'$$
 but $V_1 + V_2' = 300$ cm $V_2 = 122$ cm

$$P_1 = P_0\left(\frac{T_2}{T_0}\right)\left(\frac{V_2}{V_2'}\right) = 10^5 \cdot \left(\frac{373}{300}\right)\left(\frac{100}{122}\right) = 1.02 \times 10^5 \, \text{fg}$$

#10
$$\frac{1}{4} ax^3 dx = 3ax^2$$

= $\lim_{h \to 0} \left\{ \frac{a(x+h)^3 - ax^3}{h} \right\}$
= $\lim_{h \to 0} \left\{ \frac{a(x+h)^3 - ax^3}{h} + \frac{3x^2h + 3x^2h + 3x^2h^2 + h^3}{h} \right\}$
= $\lim_{h \to 0} \left\{ \frac{3x^2h + 3xh^2 + h^3}{h} \right\}$
= $\lim_{h \to 0} \left\{ \frac{3x^2 - a + 3xh^2 + h^3}{h} \right\}$
= $\lim_{h \to 0} \left\{ \frac{3x^2 - a + 3xh^2 - a + ah^2}{h} \right\}$