Optimization in Finance

Maximum Entropy Distribution of an Asset Inferrred from Option Prices

Bertrand Le Nezet / 30-Mar-2015

Numerical implementation steps

- 1. Option prices snap from Google Finance API
- 2. Data cleaning:
 - · Calculate mid from bid / ask
 - Keep only relevant option prices (put-call parity/liquidity)
- 3. Apply the Cross Entropy Minimization algorithm
- 4. Compute option prices from asset distribution
- 5. Convert option prices into Black-Scholes Implied Volatility

GOOG.OQ Option quotes

Google Inc (NASDAQ:GOOG) chg | %

GOOG 548.34 -6.83

View options by expiration Sep 18, 2015 ▼

Calls							Puts					
Price	Change	Bid	Ask	Volume	Open Int	Strike	Price	Change	Bid	Ask	Volume	Open Int
68.70	-0.30	67.40	69.70	1	9	495.00	12.40	+3.95	12.40	13.30	1	26
65.10	-5.40	63.50	66.00	3	40	500.00	13.90	+2.90	13.70	14.60	29	200
60.29	0.00	59.90	62.50	-	26	505.00	16.50	0.00	15.00	16.00	-	31
73.50	0.00	56.30	58.80	-	58	510.00	16.00	+3.20	16.40	17.40	3	28
60.78	0.00	53.10	54.60	-	10	515.00	13.00	0.00	17.90	19.00	-	32
58.22	0.00	49.80	51.20	-	23	520.00	19.80	+1.80	19.50	20.70	30	276
53.40	0.00	46.60	48.00	-	36	525.00	16.90	0.00	21.30	22.50	-	68
49.00	0.00	43.60	44.90	-	35	530.00	23.60	+5.10	23.20	24.40	1	58
55.70	0.00	40.70	41.80	-	14	535.00	23.10	0.00	25.20	26.50	-	33
40.30	-2.70	37.80	38.90	1	50	540.00	28.00	+2.00	27.30	28.60	4	111
36.80	-3.90	35.10	36.20	6	37	545.00	24.50	0.00	29.50	31.00	-	61
33.20	-6.50	32.60	33.40	5	110	550.00	31.00	+1.50	32.00	33.40	8	186
31.54	-2.16	30.10	31.00	1	65	555.00	34.40	+1.31	34.60	35.90	2	47
29.50	-2.41	27.90	28.60	16	127	560.00	37.00	+2.50	37.20	38.60	4	108
27.00	-3.19	25.60	26.40	1	331	565.00	39.70	+9.66	40.00	41.50	4	34
24.50	-2.90	23.50	24.30	19	149	570.00	42.59	0.00	42.90	44.30	-	43
22.42	-3.18	21.60	22.40	3	217	575.00	35.70	0.00	45.90	47.30	-	86
20.30	-2.40	19.70	20.60	1	76	580.00	47.90	0.00	49.10	50.50	-	44
18.82	-2.88	18.00	18.80	3	50	585.00	50.09	0.00	52.30	53.80	-	16

Put-Call parity

$$d_1 = rac{1}{\sigma \sqrt{T-t}} \left[ln \Big(rac{S}{K}\Big) + (r - rac{\sigma^2}{2})(T-t)
ight]$$

$$d_2 = rac{1}{\sigma \sqrt{T-t}} \left[ln \Big(rac{S}{K}\Big) + (r - rac{\sigma^2}{2})(T-t)
ight]$$

Call option: $C(S,t) = N(d_1)S - N(d_2)Ke^{-r(T-t)}$

Put Option: $P(S,t) = -N(-d_1)S + N(-d_2)Ke^{-r(T-t)}$

Put-Call parity: $C(t) + Ke^{-r(T-t)} = P(t) + S(t)$

Volatility smile

Cross Entropy Minimization algorithm

Minimize
$$S(p,q) = \int_{-\infty}^{\infty} p(x) \log \Bigl[rac{p(x)}{q(x)}\Bigr] dx$$

Subject to:

$$\int_0^\infty p(x)dx = 1$$

$$egin{array}{l} \cdot \ orall i=1,2, \ldots m \ \mathbb{E}[c_i(X)]=\int_0^\infty p(x) \ c_i(x) dx=ci \end{array}$$

- 1. A uniform distribution is used as a prior (non-informed prior)
- 2. Integrability constraint
- 3. Option prices used as constraints should be linearly independant
- 4. Forward is also used as a constraint (mean)
- 5. Choice of asset step for the discretisation / boundaries
- 6. Lagrangian function is minimized using an optimization routine (Limited-memory Broyden-Fletcher-Goldfarb-Shanno)

GOOG.OQ Asset distribution

Pdf1: Asset distribution inferred from 9 option prices

Pdf2: Asset distribution inferred from 1 option price

Asset distribution with constant volatility (25%)

Asset distribution inferred from 6 option prices (constant volatility)

GOOG.OQ Volatility smile

$$c(K) = D(T) \int_0^\infty p(x) \; (x-K)^+ dx$$

$$p(K) = D(T) \int_0^\infty p(x) \; (K-x)^+ dx$$

Conclusion

- 1. We have observed that assets distribution inferred from options prices are not log-normal (i.e. Volatility is not constant)
- 2. Principle of Minimum Cross-Entropy can be used to estimate the distribution of an asset without assuming a particular distribution shape or family of distribution (non-parametric approach)
- 3. The algorithm is stable and fast
- 4. This method can be used to perform implied volatility interpolation/extrapolation from only few quotes

Thank You

References

• [BuchenKelly96] The Maximum Entropy Distribution of an Asset Inferred from Option Prices (Peter W. Buchen, Michael Kelly)

Appendix

Kullback-Leibler Relative entropy

- 1. In Information Theory, Shannon defines the entropy as a measure of unpredictability of information content
- 2. the KL relative entropy (or KL divergence) is a non-suymetric mesure of the difference between two probability distribution P and Q.

3.
$$D_{KL}(P\|Q)=\int_{-\infty}^{\infty}p(x)\lnrac{p(x)}{q(x)}\,dx$$

- 4. Properties:
- 5. KL is equal to zero if P and Q are identical
- 6. KL relative entropy is always positive

Calculation of Relative Entropy

Formulating the Optimization problem

We have one prior probability density function q(x)

We have m price constraints: $orall i=1,2,\ldots m\ d_i=D(T)\mathbb{E}_{\mathbb{Q}}[c_i(X_T)]$ where

- $\cdot \ D(T) = e^{-(r-q)T}$ represents the discount factor
- \cdot $c_i(X_t)$ denotes the ith option pay-off function at expiry dependent only on the asset value at expiry
- $\cdot \,\, d_i$ is the corresponding option price
- $\cdot r$ risk-free rate for T
- $\cdot \; q$ dividend yield

Formulating the Optimization problem (2)

Minimize
$$S(p,q) = \int_{-\infty}^{\infty} p(x) \log \left[rac{p(x)}{q(x)}
ight] dx$$

Subject to 2 constraints:

1.
$$\int_{0}^{\infty} p(x) dx = 1$$

2.
$$orall i=1,2,\ldots m \; \mathbb{E}[c_i(X)]=\int_0^\infty p(x) \; c_i(x) dx=ci$$

This is a standard constrained optimization problem which solved by using the method of Lagrange which transforms a problem in n variable and m constraints into an unconstrainted optimization with n+m variables.

Objective function

$$H(p) = -\int_0^\infty p(x) \log \Bigl[rac{p(x)}{q(x)}\Bigr] dx + (1+\lambda_0) \int_0^\infty p(x) dx + \sum_{i=1}^m \lambda_i \int_0^\infty p(x) \; c_i(x) dx$$

From standard calculus, we know that the minimum $\lambda^* = (\lambda_0^*, \dots, \lambda_M^*)$ is reached when:

- · the gradient (vector of derivatives) δH is equal to zero: $\delta H(\lambda^*)=\int_0^\infty \left[-\log\left[rac{p(x)}{q(x)}
 ight]+\lambda_0+\sum_{i=1}^m\lambda_i c_i(x)
 ight]\delta p(x)dx=0$ (necessary condition)
- · the hessian (matrix of second derivatives) is positive definite (sufficient condition)

Objective function solution

This leads immediately to the following explicit representation of the MED:

$$p(x)=rac{q(x)}{\mu}\expig(\sum_{i=1}^m\lambda_ic_i(x)ig)$$
, $\mu=\int_0^\infty q(x)\expig(\sum_{i=1}^m\lambda_ic_i(x)ig)dx$

Impact of constraints on MXED

