N-body Problems

Victor Eijkhout

Fall 2022

Summing forces

Particle interactions

```
for each particle i for each particle j let \overline{r}_{ij} be the vector between i and j; then the force on i because of j is f_{ij} = -\overline{r}_{ij} \frac{m_i m_j}{|r_{ij}|} (where m_i, m_j are the masses or charges) and f_{ji} = -f_{ij}. Sum forces and move particle over \Delta t
```


Complexity reduction

• Naive all-pairs algorithm: $O(N^2)$

• Clever algorithms: $O(N \log N)$, sometimes even O(N)

• Octtree algorithm: Barnes-Hut

Octtree

Dynamic octree creation

```
Procedure Quad_Tree_Build
   Quad_Tree = {empty}
   for j = 1 to N // loop over all N particles
         Quad_Tree_Insert(j, root) // insert particle j in QuadTree
   endfor
   Traverse the Quad_Tree eliminating empty leaves
Procedure Quad_Tree_Insert(j, n) // Try to insert particle j at node n in
   if n an internal node
                                      // n has 4 children
        determine which child c of node n contains particle i
        Ouad Tree Insert(j, c)
  else if n contains 1 particle // n is a leaf
        add n's 4 children to the Ouad Tree
       move the particle already in n into the child containing it
        let c be the child of n containing j
        Quad_Tree_Insert(j, c)
   else
                                                // n empty
        store particle j in node n
   end
```


Octree algorithm

- Consider cells on the top level
- if distance/diameter ratio small enough, take center of mass
- otherwise consider children cells

Masses calculation

```
// Compute the CM = Center of Mass and TM = Total Mass of all the particl
( TM, CM ) = Compute_Mass( root )
function ( TM, CM ) = Compute_Mass( n )
  if n contains 1 particle
    store (TM, CM) at n
    return (TM, CM)
 else // post order traversal
            // process parent after all children
    for all children c(i) of n
           (TM(j), CM(j)) = Compute\_Mass(c(j))
    // total mass is the sum
    TM = sum over children j of n: TM(j)
    // center of mass is weighted sum
    CM = sum over children j of n: TM(j)*CM(j) / TM
    store (TM, CM) at n
    return ( TM, CM )
```


Force evaluation

```
// for each particle, compute the force on it by tree traversal
for k = 1 to N
   f(k) = TreeForce(k, root)
   // compute force on particle k due to all particles inside root
function f = TreeForce(k, n)
   // compute force on particle k due to all particles inside node n
   f = 0
   if n contains one particle // evaluate directly
        f = force computed using formula on last slide
   else
        r = distance from particle k to CM of particles in n
        D = size of n
        if D/r < theta // ok to approximate by CM and TM
            compute f
                         // need to look inside node
        else
             for all children c of n
                   f = f + TreeForce (k, c)
```


Complexity

- Each cell considers 'rings' of equi-distant cells
- but at doubling distance
- $c \log N$ cells to consider for each particle
- N log N overall

Computational aspects

- After position update, particles can move to next box: load redistribution
- Naive octree algorithm is formulated for shared memory
- Distributed memory by using inspector-executor paradigm

Step 1: force by a particle

for level ℓ from one above the finest to the coarsest: for each cell c on level ℓ let $g_c^{(\ell)}$ be the combination of the $g_i^{(\ell+1)}$ for all children i of c

Step 2: force on a particle

for level ℓ from one below the coarses to the finest:

for each cell c on level ℓ :

let $f_c^{(\ell)}$ be the sum of

- 1. the force $f_p^{(\ell-1)}$ on the parent p of c, and
- 2. the sums $g_i^{(\ell)}$ for all i on level ℓ that satisfy the cell opening criterium

- Center of mass calculation and force prolongation are local
- Force from neighbouring cells is a neighbour communication
- Neighbour communication can start before up/down tree calculation is finished: latency hiding

All-pairs methods

- Traditional algorithm: distribute particles, for each particle gather and update compute
- Problem: allgather has $O(N)\beta$ cost
- does not go down with P, so does not scale weakly

1.5D calculation

- Better algorithm: use $\sqrt{P} \times \sqrt{P}$ processor grid,
- Divide particles in bins of N/\sqrt{P}
- Processor (i, j) computes interaction of boxes i and j:

	^m 1 ^m 2	^m 1 ^m 3	^m 1 ^m 4	
		^m 2 ^m 3	m ₂ m ₄	
			1	 - ·
			'	

- Better algorithm: use $\sqrt{P} \times \sqrt{P}$ processor grid,
- Divide particles in boxes of $M = N/\sqrt{P}$
- Processor (*i*, *j*) computes interaction of boxes *i* and *j*:
- this requires broadcast (for duplication) and reduction (for summing) in processor rows and columns
- Bandwidth cost $\beta N/\sqrt{P}$ which is M: scalable.

