- Digit-Number definition with base b: $m = d_n d_{n-1} \dots d_1 d_0 \cdot d_{-1} \dots d_{-m}$
- (2) Converting from base b to base 10: $N_{10} = b^{-m} \cdot \sum_{k=0}^{n+m} d_{k-m} \cdot b^k$
- (3) Converting from base 10 to b: x = int(x) + dec(x) $int(x) \uparrow$, $dec(x) \downarrow$
- (4) Representation of binary number: $x = (-1)^s \cdot m \cdot b^e$, where: $e \in [L, U]$ $m = 0. c_1 c_2 \dots c_t, b = \text{baza}$ t = dolžine mantise, $c_i = i$ -ta števka P(b, t, L, U) = representation set osnovna zaok. napaka: $u = \frac{b^{1}}{2}$
- (5) IEEE Rounding for b = 2:

$c_{(t+1)}$	$c_{(t+2)}$	Round Up
0	0	Never
0	1	Never
1	0	if $c_t = 1$
1	1	Always

- (6) IEEE standards, $\circ \in \{+, -, \cdot, /\}$: $fl(\cdot)$ - floating point evaluation $fl(x \circ y) = (x \circ y)(1+\delta), \ |\delta| < |u|$ $fl(\sqrt{x}) = \sqrt{x}(1+\delta), \ |\delta| < |u|$
- (7) Absolute & Relative Error: $\Delta x = |x - \hat{x}|, \quad \delta = \frac{|x - \hat{x}|}{|x|}$
- (8) Errors types: $D_n = |y - \overline{y}|, D_m = |\overline{y} - \tilde{y}|, D_z = |\tilde{y} - \hat{y}|$
- (9) Stability problems:
 - Odštevanja števil enake velikost
 - \bullet Deljenje s števili blizu0
- (10) Relative-Stability definitions: Direktna: $|\delta| = |\frac{fl(x) - x}{x}| \le C \cdot u \subseteq \mathcal{O}(u)$ Obratna: $fl(f(x)) = f(\tilde{x}), \ |\tilde{x} - x| \le \mathcal{O}(u)|x|$ Pri obratni stabilnosti, preverimo ali lahko vsako napako interpretiramo kot perturbacijo vhoda.

(1) Fixed point iteration:

f(x) = 0, use $g(x_r) = x_{r+1}$ or g(x) = x + f(x) α_i je i-ta ničla funkcije fPrivlačne točke: |g'(x)| < 1Odbojne točke: |g'(x)| > 1Neznana situacija: |g'(x)| = 1Error es. : $|x_{r+1} - \alpha| \le \frac{m}{1-m} |g(x_r) - g(x_{r-1})|$ $m = \sup_{x \in I} g'(x) < 1$, g je skrčitev, $\alpha \in I$ Red konvergence je prvi odvod: $g^{(n)}(\alpha) \neq 0$ Konvergenca:

- $x_{r+1} x_r = f(x_r) > 0$, $\forall r : x_r < \alpha$
- $x_{r+1} x_r = f(x_r) < 0$, $\forall r : x_r > \alpha$

(2) Newton-Rapson Method:

 $g(x_r) = x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$ $g'(x_r) = \frac{f(x) \cdot f''(x_r)}{(f'(x_r))^2}$ Red Konvergence:

Ničla = α , kratnost ničle = m_{α}

- $m_{\alpha} = 1 \implies$ vsaj kvadratnična
- $m_{\alpha} > 1 \implies \lim_{x \to \alpha} g'(x) = 1 \frac{1}{m}$

Konvergenca:

- $x_{r+1} x_r = \frac{f(x_r)}{f'(x_r)} > 0$, $\forall r : x_r < \alpha$
- $x_{r+1} x_r = \frac{f(x_r)}{f'(x_r)} < 0$, $\forall r : x_r > \alpha$

(3) Modified Newton-Rapson Method:

 $G(x_r) = x_{r+1} = a \cdot x_r - b \frac{f(x_r)}{f'(x_r)}$ $G'(x_r) = a - b + bg'(x_r)$ vsaj kvadratnična konv. a = 1 in $b = m_{\alpha}$ $\lim_{x\to\alpha}G'=0$, $(a=1,b=m_{\alpha})$ **Izrek o konvergenci**: Naj bo f na intervalu $I=[a,\infty)$ dvakrat zvezno odvedljiva, naračajoča in konveksna funkcija, ki ima ničlo $\alpha \in I$. Potem je α edina ničla f na I in za vsak $x_o \in I$ tangetna metoda konvergira k α .

(1) LU-brez-pivotiranja:

 $A=LU,\ Ax=b,\ LUx=b,\ Ly=b,\ Ux=y$ Big-O: $\frac{2n^3}{3}+\mathcal{O}(n^2)$

 $\begin{array}{l} \textbf{(2) LU-delno-pivotiranje:} \\ PLUx = Pb, \, \det(A) = \det(U) \\ P = I \cdot \prod_{i=1}^{n-1} P_i, \ \prod_{i=1}^{n-1} L_i P_i \cdot A = U \end{array}$