Automated Log Diagnosis in CI/CD Pipelines

Bachelor Thesis - Defence

Maid Alisić

23 July 2025

University of Applied Sciences Upper Austria

Agenda

Problem Context

Impact

Problem Context

• CI/CD emits \approx 10-20 GB build, test & deploy logs every day.

- CI/CD emits \approx 10-20 GB build, test & deploy logs every day.
- Manual grepping is slow → merge queue stalls, silent faults creep in.

- CI/CD emits \approx 10-20 GB build, test & deploy logs every day.
- Manual grepping is slow → merge queue stalls, silent faults creep in.
- Service-level objective: deliver a verdict inside ≤ 200 ms.

- CI/CD emits \approx 10-20 GB build, test & deploy logs every day.
- Manual grepping is slow → merge queue stalls, silent faults creep in.
- Service-level objective: deliver a verdict inside < 200 ms.
- Logs can contain customer identifiers → no SaaS export.

1. Context sensitivity - same token can be harmless or fatal.

- 1. Context sensitivity same token can be harmless or fatal.
- 2. **Concept drift** every merge may rename tests or flags.

- 1. Context sensitivity same token can be harmless or fatal.
- 2. Concept drift every merge may rename tests or flags.
- 3. **Latency pressure** analysis must end before runner teardown.

- 1. Context sensitivity same token can be harmless or fatal.
- 2. Concept drift every merge may rename tests or flags.
- 3. Latency pressure analysis must end before runner teardown.
- 4. **Alert fatigue** static regex rules explode over time.

Research Questions

RQ_{main} How can Al improve accuracy & explainability of CI/CD log analysis?

RQ_{main} How can AI improve accuracy & explainability of CI/CD log analysis?

RQ1 To what extent can an **LLM service** (ChatGPT API) automate log interpretation?

- RQ_{main} How can AI improve accuracy & explainability of CI/CD log analysis?
 - **RQ1** To what extent can an **LLM service** (ChatGPT API) automate log interpretation?
 - RQ2 How does a **local** stack (Isolation-Forest + Random-Forest) compare with the cloud LLM?

- RQ_{main} How can AI improve accuracy & explainability of CI/CD log analysis?
 - **RQ1** To what extent can an **LLM service** (ChatGPT API) automate log interpretation?
 - RQ2 How does a **local** stack (Isolation-Forest + Random-Forest) compare with the cloud LLM?
 - **RQ3** Which practical hurdles arise when embedding both approaches into existing pipelines?

Data & Experimental Design

• 117 k macOS system log lines

- 117 k macOS system log lines
- 655 k OpenSSH authentication lines

- 117 k macOS system log lines
- 655 k OpenSSH authentication lines
- 504 ground-truth anomalies

- 117 k macOS system log lines
- 655 k OpenSSH authentication lines
- 504 ground-truth anomalies
- Split 70 / 15 / 15 % (train / validation / test)

- 117 k macOS system log lines
- 655 k OpenSSH authentication lines
- 504 ground-truth anomalies
- Split 70 / 15 / 15 % (train / validation / test)
- Metrics: Macro-F₁, Area under PR curve, 99.9 % latency

Method - Feature

Engineering

1. Normalisation: remove timestamps, colours, IDs; lowercase.

Vectorisation step ① − TF-IDF

- 1. Normalisation: remove timestamps, colours, IDs; lowercase.
- 2. **Tokenise** + generate 1-2-grams.

Vectorisation step ① − TF-IDF

- 1. Normalisation: remove timestamps, colours, IDs; lowercase.
- 2. **Tokenise** + generate 1-2-grams.
- 3. Compute weights

$$w_{t,d} = \operatorname{tf}_{t,d} \cdot \log \frac{N}{\operatorname{df}_t}$$
 (Term-Frequency-Inverse-Document-Frequency)

Vectorisation step ① − TF-IDF

- 1. Normalisation: remove timestamps, colours, IDs; lowercase.
- 2. **Tokenise** + generate 1-2-grams.
- 3. Compute weights

$$w_{t,d} = \operatorname{tf}_{t,d} \cdot \log \frac{N}{\operatorname{df}_t}$$
 (Term-Frequency-Inverse-Document-Frequency)

4. Result: 50 k-dimensional sparse matrix; \approx 100 000 lines /s on a single core.

Method - Algorithm 2

How Isolation-Forest detects outliers

• Randomly split feature space into binary trees.

How Isolation-Forest detects outliers

- Randomly split feature space into binary trees.
- Rare / weird points are isolated early. Path length $h(x) \rightarrow$ anomaly score $s(x) = 2^{-h(x)/c(n)}$.

How Isolation-Forest detects outliers

- Randomly split feature space into binary trees.
- Rare / weird points are isolated early. Path length $h(x) \rightarrow$ anomaly score $s(x) = 2^{-h(x)/c(n)}$.
- CPU-friendly: 30μ s per line, no GPU.

Method - Algorithm ③

1. Isolation-Forest flags *that* something is odd. Operators still ask *why*.

- 1. Isolation-Forest flags *that* something is odd. Operators still ask *why*.
- 2. Random-Forest ensemble votes one of seven error categories.

- 1. Isolation-Forest flags *that* something is odd. Operators still ask *why*.
- 2. Random-Forest ensemble votes one of seven error categories.
- 3. Feature importance (n-grams) enables future token-level highlights.

- 1. Isolation-Forest flags *that* something is odd. Operators still ask *why*.
- 2. Random-Forest ensemble votes one of seven error categories.
- 3. Feature importance (n-grams) enables future token-level highlights.
- 4. Trains nightly in < 90 s (400 trees, depth 30).

Architecture

End-to-end pipeline (< 40 ms inline)

Results

Headline numbers

Detection (Isolation-Forest): F₁ =
 0.89 (AUC-PR 0.94)

Headline numbers

- Detection (Isolation-Forest): F₁ =
 0.89 (AUC-PR 0.94)
- Diagnosis (Random-Forest): Macro-F₁
 = 0.99, MCC 0.98

Headline numbers

- Detection (Isolation-Forest): F₁ =
 0.89 (AUC-PR 0.94)
- Diagnosis (Random-Forest): Macro-F₁
 = 0.99, MCC 0.98
- Latency: 37 ms (p99.9); throughput 45 k lines/s

 Minutes → Milliseconds: failures surface during the same pipeline run.

- Minutes → Milliseconds: failures surface during the same pipeline run.
- **Zero token fees**: 2300 Lines of Code + FastAPI; vendor neutral.

- Minutes → Milliseconds: failures surface during the same pipeline run.
- **Zero token fees**: 2300 Lines of Code + FastAPI; vendor neutral.
- Data never leaves the VPN compliant with GDPR & NDAs.

- Minutes → Milliseconds: failures surface during the same pipeline run.
- **Zero token fees**: 2300 Lines of Code + FastAPI; vendor neutral.
- Data never leaves the VPN compliant with GDPR & NDAs.
- Deterministic labels enable auditable root-cause trails.

Limitations & Roadmap

• Only seven error classes - grow ontology as label volume rises.

- Only seven error classes grow ontology as label volume rises.
- First Drain template pass is manual (cold-start issue).

- Only seven error classes grow ontology as label volume rises.
- First Drain template pass is manual (cold-start issue).
- Explainability: token-level SHAP / IG still to-do.

- Only seven error classes grow ontology as label volume rises.
- First Drain template pass is manual (cold-start issue).
- Explainability: token-level SHAP / IG still to-do.
- Roadmap: threshold-free Bayesian change-point, distilled LogBERT, federated retrain, SHAP highlights.

Wrap-up

Take-away

Light-weight, on-prem ML matches AlOps SaaS

without latency, cost or data-protection pain.

Questions welcome - thank you!