

BUNDESREPUBLIK DEUTSCHLAND

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (6)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 10 2004 005 786.9

Anmeldetag: 06. Februar 2004

Anmelder/Inhaber: BAYER CropScience AG, 40789 Monheim/DE

Bezeichnung: Haloalkylcarboxamide

IPC: C 07 D, C 07 C, A 01 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 1. Dezember 2004
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Sieg

Haloalkylcarboxamide

Die vorliegende Erfindung betrifft neue Haloalkylcarboxamide, mehrere Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

5

Es ist bereits bekannt, dass zahlreiche Carboxamide fungizide Eigenschaften besitzen (vgl. z.B. WO 03/010149, WO 02/059086, EP-A 0 824 099, EP-A 0 737 682, EP-A 0 591 699, EP-A 0 589 301, EP-A 0 545 099, DE-A 24 09 011, DE-A 20 06 472, JP-A 2001-302605, JP-A 10-251240, JP-A 8-176112, JP-A 8-92223 und JP-A 53-72823). So sind bereits zahlreiche Alkylcarboxamide bekannt 10 geworden, die im Alkylteil nicht substituiert sind, wie beispielsweise N-Allyl-N-[2-(1,3-dimethylbutyl)phenyl]-1-methyl-3-(trifluormethyl)-1H-pyrazol-4-carboxamid aus WO 02/059086, N-[2-(1,3-Dimethylbutyl)phenyl]-2,4-dimethyl-1,3-thiazol-5-carboxamid aus EP-A 0 824 099 und 5-Fluor-1,3-dimethyl-N-[2-(1,3,3-trimethylbutyl)phenyl]-1H-pyrazol-4-carboxamid aus WO 03/010149. Die Wirksamkeit dieser Stoffe ist gut, lässt aber in manchen Fällen, z.B. bei niedrigen Aufwandmengen zu 15 wünschen übrig.

Es wurden nun neue Haloalkylcarboxamide der Formel (I)

in welcher

- 20 R für Wasserstoff oder Halogen steht,
- R¹ für Wasserstoff oder Methyl steht,
- R² für Methyl, Ethyl oder C₁-C₄-Halogenalkyl mit 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,
- R³ für Halogen oder C₁-C₄-Halogenalkyl mit 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,
- 25 R⁴ für Wasserstoff, C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkyl-sulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogen-cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 30 13 Fluor-, Chlor- und/oder Bromatomen;
- (C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogen-cycloalkyl)carbonyl mit jeweils

- 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder $-C(=O)C(=O)R^5$, $-CONR^6R^7$ oder $-CH_2NR^8R^9$ steht,
- 5 R^5 für Wasserstoff, $C_1\text{-}C_8\text{-Alkyl}$, $C_1\text{-}C_8\text{-Alkoxy}$, $C_1\text{-}C_4\text{-Alkoxy-C}_1\text{-}C_4\text{-alkyl}$, $C_3\text{-}C_8\text{-Cycloalkyl}$; $C_1\text{-}C_6\text{-Halogenalkyl}$, $C_1\text{-}C_6\text{-Halogenalkoxy}$, Halogen- $C_1\text{-}C_4\text{-alkoxy-C}_1\text{-}C_4\text{-alkyl}$, $C_3\text{-}C_8\text{-Halogen-$
gencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,
- 10 R^6 und R^7 unabhängig voneinander jeweils für Wasserstoff, $C_1\text{-}C_8\text{-Alkyl}$, $C_1\text{-}C_4\text{-Alkoxy-C}_1\text{-}C_4\text{-alkyl}$, $C_3\text{-}C_8\text{-Cycloalkyl}$; $C_1\text{-}C_8\text{-Halogenalkyl}$, Halogen- $C_1\text{-}C_4\text{-alkoxy-C}_1\text{-}C_4\text{-alkyl}$, $C_3\text{-}C_8\text{-Halogen-$
cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,
- 15 R^6 und R^7 außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfache oder mehrfach, gleich oder verschieden durch Halogen oder $C_1\text{-}C_4\text{-Alkyl}$ substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR^{10} enthalten kann,
- 20 R^8 und R^9 unabhängig voneinander für Wasserstoff, $C_1\text{-}C_8\text{-Alkyl}$, $C_3\text{-}C_8\text{-Cycloalkyl}$; $C_1\text{-}C_8\text{-Halogen-$
alkyl, $C_3\text{-}C_8\text{-Halogenalkyl}$ mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,
- 25 R^8 und R^9 außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfache oder mehrfach, gleich oder verschieden durch Halogen oder $C_1\text{-}C_4\text{-Alkyl}$ substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR^{10} enthalten kann,
- 30 R^{10} für Wasserstoff oder $C_1\text{-}C_6\text{-Alkyl}$ steht,
 M für einen jeweils einfach durch R^{11} substituierten Phenyl-, Pyridin- oder Pyrimidin-,
 Pyridazin oder Pyrazin-Ring oder für einen durch R^{11-A} substituierten Thiazol-Ring steht,
 25 R^{11} für Wasserstoff, Fluor, Chlor, Methyl, iso-Propyl, Methylthio oder Trifluormethyl steht,
 R^{11-A} für Wasserstoff, Methyl, Methylthio oder Trifluormethyl steht,
 A für den Rest der Formel (A1)
-
(A1) steht, in welcher
- 30 R^{12} für Wasserstoff, Cyano, Halogen, Nitro, $C_1\text{-}C_4\text{-Alkyl}$, $C_1\text{-}C_4\text{-Alkoxy}$, $C_1\text{-}C_4\text{-Alkyl-$
 thio, $C_3\text{-}C_6\text{-Cycloalkyl}$, $C_1\text{-}C_4\text{-Halogenalkyl}$, $C_1\text{-}C_4\text{-Halogenalkoxy}$ oder $C_1\text{-}C_4\text{-Halogen-$
 alkylthio mit jeweils 1 bis 5 Halogenatomen, Aminocarbonyl oder Aminocar-
 bonyl- $C_1\text{-}C_4\text{-alkyl}$ steht,
 R^{13} für Wasserstoff, Halogen, Cyano, $C_1\text{-}C_4\text{-Alkyl}$, $C_1\text{-}C_4\text{-Alkoxy}$ oder $C_1\text{-}C_4\text{-Alkylthio}$
 steht,

R¹⁴ für Wasserstoff, C₁-C₄-Alkyl, Hydroxy-C₁-C₄-alkyl, C₂-C₆-Alkenyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio-C₁-C₄-alkyl, C₁-C₄-Halogenalkoxy-C₁-C₄-alkyl mit jeweils 1 bis 5 Halogenatomen, oder Phenyl steht,

5 oder

A für den Rest der Formel (A2)

(A2) steht, in welcher

10

R¹⁷ für Halogen, Cyano oder C₁-C₄-Alkyl, oder C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A3)

(A3) steht, in welcher

15

R¹⁸ und R¹⁹ unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R²⁰ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

20

A für den Rest der Formel (A4)

(A4) steht, in welcher

R²¹ für Wasserstoff, Halogen, Hydroxy, Cyano, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder C₁-C₄-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen steht,

25 oder

A für den Rest der Formel (A5)

(A5) steht, in welcher

R²² für Halogen, Hydroxy, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5

Halogenatomen steht,

R²³ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen, C₁-C₄-Alkylsulphinyl oder C₁-C₄-Alkylsulphonyl steht,

5 oder

A für den Rest der Formel (A6)

(A6) steht, in welcher

R²⁴ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R²⁵ für C₁-C₄-Alkyl steht,

10 Q¹ für S (Schwefel), O (Sauerstoff) SO, SO₂ oder CH₂ steht,

p für 0, 1 oder 2, wobei R²⁵ für identische oder verschiedene Reste steht, wenn p für 2 steht,

oder

A für den Rest der Formel (A7)

(A7) steht, in welcher

15 R²⁶ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A8)

(A8) steht, in welcher

20 R²⁷ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A9)

(A9) steht, in welcher

25 R²⁸ und R²⁹ unabhängig voneinander für Wasserstoff, Halogen, Amino, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen stehen,

R³⁰ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A10)

(A10) steht, in welcher

R³¹ und R³² unabhängig voneinander für Wasserstoff, Halogen, Amino, Nitro, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl having 1 bis 5 Halogenatomen stehen,

R³³ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

5

oder

A für den Rest der Formel (A11)

(A11) steht, in welcher

10

R³⁴ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R³⁵ für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A12)

(A12) steht, in welcher

15

R³⁶ für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R³⁷ für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A13)

(A13) steht, in welcher

20

R³⁸ für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A14)

(A14) steht, in welcher

25

R³⁹ für Wasserstoff oder C₁-C₄-Alkyl steht,

R⁴⁰ für Halogen oder C₁-C₄-Alkyl steht,

oder

A für den Rest der Formel (A15)

(A15) steht, in welcher

R⁴¹ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

5 oder

A für den Rest der Formel (A16)

(A16) steht, in welcher

R⁴² für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

10 oder

A für den Rest der Formel (A17)

(A17) steht, in welcher

R⁴³ für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

15

oder

A für den Rest der Formel (A18)

(A18) steht, in welcher

R⁴⁴ für Wasserstoff, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl, Di(C₁-C₄-alkyl)aminosulfonyl, C₁-C₆-Alkylcarbonyl oder jeweils gegebenenfalls substituiertes Phenylsulfonyl oder Benzoyl steht,

20

R⁴⁵ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

25

R⁴⁶ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R⁴⁷ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A19)

(A19) steht, in welcher

R⁴⁸ für C₁-C₄-Alkyl steht,

5

gefunden.

Weiterhin wurde gefunden, dass man Haloalkylcarboxamide der Formel (I) erhält, indem man

Weiterhin wurde gefunden, dass man Hexylcarboxanilide der Formel (I) erhält, indem man

10 a) Carbonsäure-Derivate der Formel (II)

in welcher

A die oben angegebenen Bedeutungen hat und

X¹ für Halogen oder Hydroxy steht,

15 mit Anilin-Derivaten der Formel (III)

in welcher R, R¹, R², R³, R⁴ und M die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umgesetzt,

20

oder

b) Hexylcarboxanilide der Formel (I-a)

in welcher R, R¹, R², R³, M und A die oben angegebenen Bedeutungen haben
mit Halogeniden der Formel (IV)

R^{4-A}-X² (IV)

in welcher

X² für Chlor, Brom oder Iod steht,

R^{4-A} für C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen;

5 Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen; (C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁵, -CONR⁶R⁷ oder -CH₂NR⁸R⁹ steht,

10 wobei R⁵, R⁶, R⁷, R⁸ und R⁹ die oben angegebenen Bedeutungen haben,

in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt.

15

Schließlich wurde gefunden, dass die neuen Haloalkylcarboxamide der Formel (I) sehr gute mikrobielle Eigenschaften besitzen und zur Bekämpfung unerwünschter Mikroorganismen sowohl im Pflanzenschutz als auch im Materialschutz verwendbar sind.

20

Die erfindungsgemäßen Verbindungen können gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie z. B. E- und Z-, threo- und erythro-, sowie optischen Isomeren, gegebenenfalls aber auch von Tautomeren vorliegen. Es werden sowohl die E- als auch die Z-Isomeren, wie auch die threo- und erythro-, sowie die optischen Isomeren, beliebige Mischungen dieser Isomeren, sowie die möglichen tautomeren Formen beansprucht.

25

Die erfindungsgemäßen Haloalkylcarboxamide sind durch die Formel (I) allgemein definiert. Bevorzugte Restedefinitionen der vorstehenden und nachfolgend genannten Formeln sind im Folgenden angegeben. Diese Definitionen gelten für die Endprodukte der Formel (I) wie für alle Zwischenprodukte gleichermaßen.

30

R steht bevorzugt für Wasserstoff, Fluor, Chlor oder Brom.
 R steht besonders bevorzugt für Wasserstoff.
 R steht außerdem besonders bevorzugt für Fluor oder Chlor.

35

R¹ steht bevorzugt für Wasserstoff.

R¹ steht außerdem bevorzugt für Methyl.

- 15 R² steht bevorzugt für Methyl, Ethyl oder für jeweils einfach oder mehrfach, gleich oder verschieden durch Fluor, Chlor oder Brom substituiertes Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl.
- 5 R² steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Fluormethyl, Trichlormethyl, Dichlormethyl, Chlormethyl, Chlorfluormethyl, Fluordichlormethyl, Difluorchlormethyl, Pentafluorethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2difluorethyl, 2-Chlor-2,2-difluorethyl, 2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, 1-Chlorbutyl, Heptafluor-n-propyl oder Heptafluorisopropyl.
- 10 R² steht ganz besonders bevorzugt für Methyl, Ethyl oder Trifluormethyl.
- 10 R² steht insbesondere bevorzugt für Methyl.
- 10 R² steht außerdem insbesondere bevorzugt für Ethyl.
- 10 R² steht außerdem insbesondere bevorzugt für Trifluormethyl.
- 15 R³ steht bevorzugt für Fluor, Chlor, Brom, Iod oder für jeweils einfach oder mehrfach, gleich oder verschieden durch Fluor, Chlor oder Brom substituiertes Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl.
- 20 R³ steht besonders bevorzugt für Fluor, Chlor, Brom, Trifluormethyl, Difluormethyl, Fluormethyl, Trichlormethyl, Dichlormethyl, Chlormethyl, Chlorfluormethyl, Fluordichlormethyl, Difluorchlormethyl, Pentafluorethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2difluorethyl, 2-Chlor-2,2-difluorethyl, 2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, 1-Chlorbutyl, Heptafluor-n-propyl oder Heptafluorisopropyl.
- 25 R³ steht ganz besonders bevorzugt für Chlor oder Trifluormethyl.
- 25 R³ steht insbesondere bevorzugt für Chlor.
- 25 R³ steht außerdem insbesondere bevorzugt für Trifluormethyl.
- 30 R⁴ steht bevorzugt für Wasserstoff, C₁-C₆-Alkyl, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen; (C₁-C₆-Alkyl)carbonyl, (C₁-C₄-Alkoxy)carbonyl, (C₁-C₃-Alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Cycloalkyl)carbonyl; (C₁-C₄-Halogenalkyl)carbonyl, (C₁-C₄-Halogenalkoxy)carbonyl, (Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Halogencycloalkyl)carbonyl mit jeweils

- 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder $-C(=O)C(=O)R^5$, $-CONR^6R^7$ oder $-CH_2NR^8R^9$.
- 15 R⁴ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Pentyl oder Hexyl, Methylsulfinyl, Ethylsulfinyl, n- oder iso-Propylsulfinyl, n-, iso-, sec- oder tert-Butylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder iso-Propylsulfonyl, n-, iso-, sec- oder tert-Butylsulfonyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Trifluormethyl, Trichlormethyl, Trifluorethyl, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluormethylsulfonyl, Trifluormethoxymethyl; Formyl, $-CH_2-CHO$, $-(CH_2)_2-CHO$, $-CH_2-CO-CH_3$, $-(CH_2)_2-CO-CH_3$, $-(CH_2)_2-CO-CH_2CH_3$, $-(CH_2)_2-CO-CH(CH_3)_2$, $-CH_2-CO_2CH_3$, $-CH_2-CO_2CH_2CH_3$, $-CH_2-CO_2CH(CH_3)_2$, $-CH_2-CO-CF_3$, $-CH_2-CO-CCl_3$, $-CH_2-CO-CH_2CF_3$, $-CH_2-CO-CH_2CCl_3$, $-(CH_2)_2-CO-CH_2CF_3$, $-(CH_2)_2-CO-CH_2CCl_3$, $-(CH_2)_2-CO_2CH_2CCl_3$, $-(CH_2)_2-CO_2CCl_2CCl_3$, $-(CH_2)_2-CO_2CH_2CF_3$, $-(CH_2)_2-CO_2CF_2CF_3$, $-(CH_2)_2-CO_2CH_2CCl_3$, $-(CH_2)_2-CO_2CCl_2CCl_3$; Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, tert-Butylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, tert-Butoxycarbonyl, Cyclopropylcarbonyl; Trifluormethylcarbonyl, Trifluormethoxycarbonyl, oder $-C(=O)C(=O)R^5$, $-CONR^6R^7$ oder $-CH_2NR^8R^9$.
- 20 R⁴ steht ganz besonders bevorzugt für Wasserstoff, Methyl, Methoxymethyl, Formyl, $-CH_2-CHO$, $-(CH_2)_2-CHO$, $-CH_2-CO-CH_3$, $-CH_2-CO-CH_2CH_3$, $-CH_2-CO-CH(CH_3)_2$, $-C(=O)CHO$, $-C(=O)C(=O)CH_3$, $-C(=O)C(=O)CH_2OCH_3$, $-C(=O)CO_2CH_3$, $-C(=O)CO_2CH_2CH_3$.
- 25 R⁵ steht bevorzugt für Wasserstoff, C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.
- 30 R⁵ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, tert-Butyl, Methoxy, Ethoxy, n- oder iso-Propoxy, tert-Butoxy, Methoxymethyl, Cyclopropyl; Trifluormethyl, Trifluormethoxy.
- 35 R⁶ und R⁷ stehen unabhängig voneinander bevorzugt für Wasserstoff, C₁-C₆-Alkyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.
- 35 R⁶ und R⁷ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, bevorzugt einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Halogen oder C₁-

C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 oder 6 Ringatomen, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR¹⁰ enthalten kann.

R⁶ und R⁷ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl; Trifluormethyl, Trichlormethyl, Trifluoreethyl, Trifluormethoxymethyl.

R⁶ und R⁷ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, besonders bevorzugt einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Brom oder Methyl substituierten gesättigten Heterocyclus aus der Reihe Morpholin, Thiomorpholin oder Piperazin, wobei das Piperazin am zweiten Stickstoffatom durch R¹⁰ substituiert sein kann.

R⁸ und R⁹ stehen unabhängig voneinander bevorzugt für Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₃-C₆-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen.

R⁸ und R⁹ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, bevorzugt einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 oder 6 Ringatomen, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR¹⁰ enthalten kann.

R⁸ und R⁹ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl; Trifluormethyl, Trichlormethyl, Trifluoreethyl, Trifluormethoxymethyl.

R⁸ und R⁹ bilden außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, besonders bevorzugt einen gegebenenfalls einfach bis vierfach, gleich oder verschieden durch Fluor, Chlor, Brom oder Methyl substituierten gesättigten Heterocyclus aus der Reihe Morpholin, Thiomorpholin oder Piperazin, wobei das Piperazin am zweiten Stickstoffatom durch R¹⁰ substituiert sein kann.

R¹⁰ steht bevorzugt für Wasserstoff oder C₁-C₄-Alkyl.

R¹⁰ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl.

M steht bevorzugt für einen der folgenden Cyclen

wobei die mit „*“ markierte Bindung mit dem Amid, die mit „#“ markierte Bindung mit dem Haloalkylrest verknüpft ist.

- 5 M steht besonders bevorzugt für einen Cyclus ausgewählt aus M-1, M-2, M-3, M-6, M-7 und M-8.
 M steht ganz besonders bevorzugt für den Cyclus M-1.
 M steht außerdem ganz besonders bevorzugt für den Heterocyclus M-2.
 M steht außerdem ganz besonders bevorzugt für den Heterocyclus M-3.
 M steht außerdem ganz besonders bevorzugt für den Heterocyclus M-6.
- 10 M steht außerdem ganz besonders bevorzugt für den Heterocyclus M-7.
 M steht außerdem ganz besonders bevorzugt für den Heterocyclus M-8.
- 15 R¹¹ steht bevorzugt für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl.
 R¹¹ steht besonders bevorzugt für Wasserstoff oder Chlor.
 R¹¹ steht für den Fall, dass M für M-2, M-3, M-4 oder M-5 steht, außerdem bevorzugt für Fluor,
 wobei Fluor besonders bevorzugt in 6-Position (M-2, M-3) oder in 3-Position (M-4, M-5)
 steht.
- 20 R¹¹ steht für den Fall, dass M für M-2, M-3, M-4 oder M-5 steht, außerdem bevorzugt für Chlor,
 wobei Chlor besonders bevorzugt in 6-Position (M-2, M-3) oder in 3-Position (M-4, M-5)
 steht.
- R¹¹ steht für den Fall, dass M für M-2, M-3, M-4 oder M-5 steht, außerdem bevorzugt für
 Methyl, wobei Methyl besonders bevorzugt in 4-Position (M-2) oder in 3-Position (M-3,
 M-4, M-5) steht.
- 25 R¹¹ steht für den Fall, dass M für M-6 steht, außerdem bevorzugt für Methyl, wobei Methyl
besonders bevorzugt in 3-Position steht.
- R¹¹ steht für den Fall, dass M für M-6 steht, außerdem bevorzugt für Trifluormethyl, wobei Tri-
 fluormethyl besonders bevorzugt in 3-Position steht.
- R¹¹ steht für den Fall, dass M für M-9 steht, außerdem bevorzugt für Methyl, wobei Methyl
besonders bevorzugt in 4-Position steht.

- R¹¹ steht für den Fall, dass M für M-9 steht, außerdem bevorzugt für Trifluormethyl, wobei Trifluormethyl besonders bevorzugt in 4-Position steht.
- R¹¹ steht für den Fall, dass M für M-10 steht, außerdem bevorzugt für Methyl, wobei Methyl besonders bevorzugt in 3-Position steht.
- 5 R¹¹ steht für den Fall, dass M für M-10 steht, außerdem bevorzugt für Trifluormethyl, wobei Trifluormethyl besonders bevorzugt in 3-Position steht.
- R¹¹ steht für den Fall, dass M für M-11 steht, außerdem bevorzugt für Methyl, wobei Methyl besonders bevorzugt in 3-Position steht.
- R¹¹ steht für den Fall, dass M für M-11 steht, außerdem bevorzugt für Trifluormethyl, wobei Trifluormethyl besonders bevorzugt in 3-Position steht.
- 10
- R^{11-A} steht bevorzugt für Wasserstoff.
- R^{11-A} steht außerdem bevorzugt für Methyl.
- R^{11-A} steht außerdem bevorzugt für Trifluormethyl.
- 15
- A steht bevorzugt für einen der Reste A1, A2, A3, A4, A5, A6, A9, A10, A11, A12, A16, A17 oder A18.
- A steht besonders bevorzugt für einen der Reste
- 20 A1, A2, A3, A4, A5, A6, A9, A11, A16, A17, A18.
- A ganz besonders bevorzugt für den Rest A1.
- A außerdem ganz besonders bevorzugt für den Rest A2.
- A außerdem ganz besonders bevorzugt für den Rest A3.
- A außerdem ganz besonders bevorzugt für den Rest A4.
- 25 A außerdem ganz besonders bevorzugt für den Rest A5.
- A außerdem ganz besonders bevorzugt für den Rest A6.
- A außerdem ganz besonders bevorzugt für den Rest A9.
- A außerdem ganz besonders bevorzugt für den Rest A11.
- A außerdem ganz besonders bevorzugt für den Rest A16.
- 30 A außerdem ganz besonders bevorzugt für den Rest A17.
- A außerdem ganz besonders bevorzugt für den Rest A18.
- R¹² steht bevorzugt für Wasserstoff, Cyano, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, iso-Propyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Cyclopropyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, Trifluormethylthio, Difluormethylthio, Aminocarbonyl, Aminocarbonylmethyl oder Aminocarbonylethyl.
- 35

- R¹² steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, iso-Propyl, Monofluormethyl, Monofluorethyl, Difluormethyl, Trifluormethyl, Difluorchlor-methyl, Trichlormethyl, Dichlormethyl, Cyclopropyl, Methoxy, Ethoxy, Trifluormethoxy, Trichlormethoxy, Methylthio, Ethylthio, Trifluormethylthio oder Difluormethylthio.
- 5 R¹² steht ganz besonders bevorzugt Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, iso-Propyl, Monofluormethyl, Monofluorethyl, Difluormethyl, Trifluormethyl, Difluorchlor-methyl oder Trichlormethyl.
- R¹² steht insbesondere bevorzugt für Methyl, Difluormethyl, Trifluormethyl oder 1-Fluorethyl.
- 10 R¹³ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, Methoxy, Ethoxy, Methylthio oder Ethylthio.
- R¹³ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod oder Methyl.
- R¹³ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor oder Methyl.
- 15 R¹⁴ steht bevorzugt für Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen, Hydroxymethyl, Hydroxyethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Phenyl.
- R¹⁴ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, iso-Propyl, Trifluormethyl, Di-fluormethyl, Hydroxymethyl, Hydroxyethyl oder Phenyl.
- 20 R¹⁴ steht ganz besonders bevorzugt für Wasserstoff, Methyl, Trifluormethyl oder Phenyl.
- R¹⁴ steht insbesondere bevorzugt für Methyl.
- R¹⁵ und R¹⁶ stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 25 R¹⁵ und R¹⁶ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Difluorchlor-methyl oder Trichlormethyl.
- R¹⁵ und R¹⁶ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl oder Trichlormethyl.
- 30 R¹⁵ und R¹⁶ stehen insbesondere bevorzugt jeweils für Wasserstoff.
- R¹⁷ steht bevorzugt für Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R¹⁷ steht besonders bevorzugt für Fluor, Chlor, Brom, Cyano, Methyl, Trifluormethyl, Trifluormethoxy, Difluormethoxy, Difluorchlor-methoxy oder Trichlormethoxy.

- R¹⁷ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl oder Trifluormethoxy.
- R¹⁷ steht insbesondere bevorzugt für Methyl.
- 5 R¹⁸ und R¹⁹ stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R¹⁸ und R¹⁹ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl, Difluorchlormethyl oder Trichlor-methyl.
- 10 R¹⁸ und R¹⁹ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Difluormethyl, Trifluormethyl oder Trichlormethyl.
- R¹⁸ und R¹⁹ stehen insbesondere bevorzugt jeweils für Wasserstoff.
- R²⁰ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 15 R²⁰ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl oder Trifluormethyl.
- R²⁰ steht ganz besonders bevorzugt für Methyl.
- R²¹ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder C₁-C₂-Halogenalkylthio mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 20 R²¹ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Difluormethyl, Trifluor-methyl, Difluorchlormethyl, Trichlormethyl, Trifluormethoxy, Difluormethoxy, Difluorchlor-methoxy, Trichlormethoxy, Trifluormethylthio, Difluormethylthio, Difluorchlormethylthio oder Trichlormethylthio.
- 25 R²¹ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Difluor-methyl, Trifluormethyl oder Trichlormethyl.
- R²¹ steht insbesondere bevorzugt für Iod, Methyl, Difluormethyl oder Trifluormethyl.
- 30 R²² steht bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R²² steht besonders bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, Cyano, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Trichlormethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethyl-

- thio, Trifluormethylthio, Trifluormethoxy, Difluormethoxy, Difluorchlormethoxy oder Trichlormethoxy.
- 5 R²² steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- 10 R²³ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen, C₁-C₂-Alkylsulphinyl oder C₁-C₂-Alkylsulphonyl.
- 15 R²³ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Trichlormethyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Trifluormethoxy, Difluormethoxy, Difluorchlormethoxy, Trichlormethoxy, Methylsulphinyl oder Methylsulphonyl.
- 20 R²³ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl, Trichlormethyl, Methylsulphinyl oder Methylsulphonyl.
- 25 R²³ steht insbesondere bevorzugt für Wasserstoff.
- 20 R²⁴ steht bevorzugt für Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 25 R²⁴ steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 25 R²⁵ steht bevorzugt für Methyl oder Ethyl.
- 25 R²⁵ steht besonders bevorzugt für Methyl.
- 30 Q¹ steht bevorzugt für S (Schwefel), SO₂ oder CH₂.
- 30 Q¹ steht besonders bevorzugt für S (Schwefel) oder CH₂.
- 30 Q¹ steht ganz besonders bevorzugt für S (Schwefel).
- 30 p steht bevorzugt für 0 oder 1.
- 30 p steht besonders bevorzugt für 0.
- 35 R²⁶ steht bevorzugt für Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 35 R²⁶ steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

R²⁶ steht ganz besonders bevorzugt für Methyl, Trifluormethyl, Difluormethyl oder Trichlor-methyl.

5 R²⁷ steht bevorzugt für Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R²⁷ steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlor-methyl oder Trichlormethyl.

10 R²⁷ steht ganz besonders bevorzugt für Methyl, Trifluormethyl, Difluormethyl oder Trichlor-methyl.

R²⁸ und R²⁹ stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

15 R²⁸ und R²⁹ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

R²⁸ und R²⁹ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

R²⁸ und R²⁹ stehen insbesondere bevorzugt jeweils für Wasserstoff.

20 R³⁰ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R³⁰ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

25 R³⁰ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

R³⁰ steht insbesondere bevorzugt für Methyl.

30 R³¹ und R³² stehen unabhängig voneinander bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Nitro, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.

R³¹ und R³² stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.

35 R³¹ und R³² stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

R³¹ und R³² stehen insbesondere bevorzugt jeweils für Wasserstoff.

- R³³ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen,
- R³³ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 5 R³³ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- R³³ steht insbesondere bevorzugt für Methyl.
- 10 R³⁴ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, C₁-C₄-Alkylamino, Di(C₁-C₄-alkyl)amino, Cyano, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R³⁴ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Cyano, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 15 R³⁴ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- R³⁴ steht insbesondere bevorzugt für Amino, Methylamino, Dimethylamino, Methyl oder Trifluormethyl.
- 20 R³⁵ steht bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R³⁵ steht besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 25 R³⁵ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- R³⁵ steht insbesondere bevorzugt für Methyl, Trifluormethyl oder Difluormethyl.
- 30 R³⁶ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, C₁-C₄-Alkylamino, Di(C₁-C₄-alkyl)amino, Cyano, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R³⁶ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Cyano, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 35 R³⁶ steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Amino, Methylamino, Dimethylamino, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.

- R³⁶ steht insbesondere bevorzugt für Amino, Methylamino, Dimethylamino, Methyl oder Trifluormethyl.
- 5 R³⁷ steht bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R³⁷ steht besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- R³⁷ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- 10 R³⁷ steht insbesondere bevorzugt für Methyl, Trifluormethyl oder Difluormethyl.
- R³⁸ steht bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 15 R³⁸ steht besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- R³⁸ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- 20 R³⁹ steht bevorzugt für Wasserstoff, Methyl oder Ethyl.
- R³⁹ steht besonders bevorzugt für Methyl.
- R⁴⁰ steht bevorzugt für Fluor, Chlor, Brom, Methyl oder Ethyl,
- R⁴⁰ steht besonders bevorzugt für Fluor, Chlor oder Methyl.
- 25 R⁴¹ steht bevorzugt für Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- R⁴¹ steht besonders bevorzugt für Methyl, Ethyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- R⁴¹ steht ganz besonders bevorzugt für Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- 30 R⁴¹ steht insbesondere bevorzugt für Methyl oder Trifluormethyl.
- R⁴² steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 35 R⁴² steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl oder Trifluormethyl.

- 15 R⁴³ steht bevorzugt für Fluor, Chlor, Brom, Iod, Hydroxy, C₁-C₄-Alkyl, Methoxy, Ethoxy, Methylthio, Ethylthio, Difluormethylthio, Trifluormethylthio, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy mit jeweils 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 5 R⁴³ steht besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert-Butyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 10 R⁴³ steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Iod, Methyl, Trifluormethyl, Difluormethyl oder Trichlormethyl.
- 10 R⁴⁴ steht bevorzugt für Wasserstoff, Methyl, Ethyl, C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, C₁-C₂-Alkoxy-C₁-C₂-alkyl, Hydroxymethyl, Hydroxyethyl, Methylsulfonyl oder Dimethylaminosulfonyl.
- 15 R⁴⁴ steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Ethoxymethyl, Hydroxymethyl oder Hydroxyethyl.
- 15 R⁴⁴ steht ganz besonders bevorzugt für Methyl oder Methoxymethyl.
- 20 R⁴⁵ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen.
- 20 R⁴⁵ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl Trifluormethyl, Difluormethyl oder Trichlormethyl.
- 25 R⁴⁵ steht ganz besonders bevorzugt für Wasserstoff oder Methyl.
- 25 R⁴⁶ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, Methyl, Ethyl, iso-Propyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor-, Chlor- und/oder Bromatomen.
- 30 R⁴⁶ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, Methyl, Ethyl, iso-Propyl, Trifluormethyl, Difluormethyl, Difluorchlormethyl oder Trichlormethyl.
- 30 R⁴⁶ steht ganz besonders bevorzugt für Wasserstoff, Methyl, Difluormethyl oder Trifluormethyl.
- 35 R⁴⁷ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl oder C₁-C₂-Halogenalkyl mit 1 bis 5 Fluor, Chlor und/oder Bromatomen.
- 35 R⁴⁷ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl oder Trifluormethyl.
- 35 R⁴⁷ steht ganz besonders bevorzugt für Wasserstoff.
- 35 R⁴⁸ steht bevorzugt für Methyl, Ethyl, n-Propyl oder iso-Propyl.
- 35 R⁴⁸ steht besonders bevorzugt Methyl oder Ethyl.

Bevorzugt sind solche Verbindungen der Formel (I), in welcher alle Reste jeweils die oben genannten bevorzugten Bedeutungen haben.

Besonders bevorzugt sind solche Verbindungen der Formel (I), in welcher alle Reste jeweils die oben genannten besonders bevorzugten Bedeutungen haben.

5

Bevorzugt und jeweils als Teilmenge der oben genannten Verbindungen der Formel (I) zu verstehen sind folgende Gruppen von neuen Carboxamiden:

Gruppe 1: Haloalkylcarboxamide der Formel (I-a)

10

in welcher R, R¹, R², R³, M und A die oben angegebenen Bedeutungen haben.

Gruppe 2: Haloalkylcarboxamide der Formel (I-b)

15

in welcher R, R¹, R², R³, R^{4A}, M und A die oben angegebenen Bedeutungen haben.

R^{4A}

steht bevorzugt für C₁-C₆-Alkyl, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₃-Alkoxy-C₁-C₃-alkyl, C₃-C₆-Cycloalkyl; C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-Halogen-cycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;

(C₁-C₆-Alkyl)carbonyl, (C₁-C₄-Alkoxy)carbonyl, (C₁-C₃-Alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Cycloalkyl)carbonyl; (C₁-C₄-Halogenalkyl)carbonyl, (C₁-C₄-Halogenalkoxy)carbonyl,

25

(Halogen-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁵, -CONR⁶R⁷ oder -CH₂NR⁸R⁹.

R^{4A}

steht besonders bevorzugt für Methyl, Ethyl, n- oder iso-Propyl, n-, iso-, sec- oder tert-Butyl, Pentyl oder Hexyl, Methylsulfinyl, Ethylsulfinyl, n- oder iso-Propylsulfinyl, n-, iso-, sec- oder tert-Butylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder iso-Propylsulfonyl, n-, iso-, sec- oder tert-Butylsulfonyl, Methoxymethyl, Methoxyethyl, Ethoxymethyl, Ethoxyethyl, Cy-

- clopropyl, Cyclopentyl, Cyclohexyl, Trifluormethyl, Trichlormethyl, Trifluorethyl, Difluor-methylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluorme-thylsulfonyl, Trifluormethoxymethyl; Formyl, $-\text{CH}_2\text{-CHO}$, $-(\text{CH}_2)_2\text{-CHO}$, $-\text{CH}_2\text{-CO-CH}_3$,
 5 $-\text{CH}_2\text{-CO-CH}_2\text{CH}_3$, $-\text{CH}_2\text{-CO-CH(CH}_3)_2$, $-(\text{CH}_2)_2\text{-CO-CH}_3$, $-(\text{CH}_2)_2\text{-CO-CH}_2\text{CH}_3$,
 $-(\text{CH}_2)_2\text{-CO-CH(CH}_3)_2$, $-\text{CH}_2\text{-CO}_2\text{CH}_3$, $-\text{CH}_2\text{-CO}_2\text{CH}_2\text{CH}_3$, $-\text{CH}_2\text{-CO}_2\text{CH(CH}_3)_2$,
 $-(\text{CH}_2)_2\text{-CO}_2\text{CH}_3$, $-(\text{CH}_2)_2\text{-CO}_2\text{CH}_2\text{CH}_3$, $-(\text{CH}_2)_2\text{-CO}_2\text{CH(CH}_3)_2$, $-\text{CH}_2\text{-CO-CF}_3$, $-\text{CH}_2\text{-CO-CCl}_3$,
 $-\text{CH}_2\text{-CO-CH}_2\text{CF}_3$, $-\text{CH}_2\text{-CO-CH}_2\text{CCl}_3$, $-(\text{CH}_2)_2\text{-CO-CH}_2\text{CF}_3$, $-(\text{CH}_2)_2\text{-CO-CH}_2\text{CCl}_3$,
 $-\text{CH}_2\text{-CO}_2\text{CH}_2\text{CF}_3$, $-\text{CH}_2\text{-CO}_2\text{CF}_2\text{CF}_3$, $-\text{CH}_2\text{-CO}_2\text{CH}_2\text{CCl}_3$, $-\text{CH}_2\text{-CO}_2\text{CCl}_2\text{CCl}_3$,
 $-(\text{CH}_2)_2\text{-CO}_2\text{CH}_2\text{CF}_3$, $-(\text{CH}_2)_2\text{-CO}_2\text{CF}_2\text{CF}_3$, $-(\text{CH}_2)_2\text{-CO}_2\text{CH}_2\text{CCl}_3$, $-(\text{CH}_2)_2\text{-CO}_2\text{CCl}_2\text{CCl}_3$;
 10 Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, tert-Butylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, tert-Butoxycarbonyl, Cyclopropylcarbonyl; Trifluorme-thylcarbonyl, Trifluormethoxycarbonyl, oder $-\text{C}(=\text{O})\text{C}(=\text{O})\text{R}^5$, $-\text{CONR}^6\text{R}^7$ oder $-\text{CH}_2\text{NR}^8\text{R}^9$.
 R^{4A} steht ganz besonders bevorzugt für Methyl, Methoxymethyl, Formyl, $-\text{CH}_2\text{-CHO}$,
 $-(\text{CH}_2)_2\text{-CHO}$, $-\text{CH}_2\text{-CO-CH}_3$, $-\text{CH}_2\text{-CO-CH}_2\text{CH}_3$, $-\text{CH}_2\text{-CO-CH(CH}_3)_2$, $-\text{C}(=\text{O})\text{CHO}$,
 15 $-\text{C}(=\text{O})\text{C}(=\text{O})\text{CH}_3$, $-\text{C}(=\text{O})\text{C}(=\text{O})\text{CH}_2\text{OCH}_3$, $-\text{C}(=\text{O})\text{CO}_2\text{CH}_3$, $-\text{C}(=\text{O})\text{CO}_2\text{CH}_2\text{CH}_3$.

Gruppe 3: Haloalkylcarboxamide der Formel (I-c)

in welcher R, R¹, R², R³, R⁴, R¹¹ und A die oben angegebenen Bedeutungen haben.

- 20 Bevorzugt sind Haloalkylcarboxamide der Formel (I-c), in welcher R⁴ für Wasserstoff steht.
 Bevorzugt sind Haloalkylcarboxamide der Formel (I-c), in welcher R¹¹ für Wasserstoff steht.
 Bevorzugt sind Haloalkylcarboxamide der Formel (I-c), in welcher R⁴ und R¹¹ jeweils für Wasser-stoff stehen.

25 Gruppe 4: Haloalkylcarboxamide der Formel (I-d)

in welcher R, R¹, R², R³, R⁴, R¹¹ und A die oben angegebenen Bedeutungen haben.

Bevorzugt sind Haloalkylcarboxamide der Formel (I-d), in welcher R⁴ für Wasserstoff steht.

- 30 Bevorzugt sind Haloalkylcarboxamide der Formel (I-d), in welcher R¹¹ für Wasserstoff steht.

Bevorzugt sind Haloalkylcarboxamide der Formel (I-d), in welcher R⁴ und R¹¹ jeweils für Wasserstoff stehen.

Gruppe 5: Haloalkylcarboxamide der Formel (I-e)

in welcher R, R¹, R², R³, R⁴, R¹¹ und A die oben angegebenen Bedeutungen haben.

Bevorzugt sind Haloalkylcarboxamide der Formel (I-e), in welcher R⁴ für Wasserstoff steht.

Bevorzugt sind Haloalkylcarboxamide der Formel (I-e), in welcher R¹¹ für Wasserstoff steht.

Bevorzugt sind Haloalkylcarboxamide der Formel (I-e), in welcher R⁴ und R¹¹ jeweils für Wasserstoff stehen.

10 Gruppe 6: Haloalkylcarboxamide der Formel (I-f)

in welcher R, R¹, R², R³, R⁴, R¹¹ und A die oben angegebenen Bedeutungen haben.

15 Bevorzugt sind Haloalkylcarboxamide der Formel (I-f), in welcher R⁴ für Wasserstoff steht.

Bevorzugt sind Haloalkylcarboxamide der Formel (I-f), in welcher R¹¹ für Wasserstoff steht.

Bevorzugt sind Haloalkylcarboxamide der Formel (I-f), in welcher R⁴ und R¹¹ jeweils für Wasserstoff stehen.

20 Hervorgehoben sind Verbindungen der Formel (I) (und ebenso der Gruppen 1 bis 6), in welcher R⁴ für Wasserstoff steht.

Hervorgehoben sind Verbindungen der Formel (I) (und ebenso der Gruppen 1 bis 6), in welcher R⁴ für Formyl steht.

25 Hervorgehoben sind außerdem Verbindungen der Formel (I) (und ebenso der Gruppen 1 bis 6), in welcher R⁴ für -C(=O)C(=O)R⁵ steht, wobei R⁵ die oben angegebenen Bedeutungen hat.

Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.

Gegebenenfalls substituierte Reste können einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können. So schließt die Definition Dialkylamino auch eine unsymmetrisch durch Alkyl substituierte Aminogruppe wie z.B. Methyl-ethylamino ein.

5

Durch Halogen substituierte Reste, wie z.B. Halogenalkyl, sind einfach oder mehrfach halogeniert. Bei mehrfacher Halogenierung können die Halogenatome gleich oder verschieden sein. Halogen steht dabei für Fluor, Chlor, Brom und Iod, insbesondere für Fluor, Chlor und Brom.

- 10 Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend. Insbesondere können die in den Gruppen 1 bis 6 genannten Verbindungen sowohl mit den allgemeinen wie auch mit bevorzugten, besonders bevorzugten usw. Bedeutungen kombiniert werden, wobei 15 auch hier jeweils alle Kombinationen zwischen den Vorzugsbereichen möglich sind.

Beschreibung der erfindungsgemäßen Verfahren zum Herstellen der Hexylcarboxanilide der Formel (I) sowie der Zwischenprodukte

20 **Verfahren (a)**

Verwendet man 2-Trifluormethylbenzoësäurechlorid und 4-Chlor-2-(4,4,4-trifluor-3-methyl-butyl)-phenylamin als Ausgangsstoffe, so kann das erfindungsgemäße Verfahren (a) durch das folgende Formelschema veranschaulicht werden:

- 25 Die zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Carbonsäure-Derivate sind durch die Formel (II) allgemein definiert. In dieser Formel (II) hat A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für A angegeben wurden. X¹ steht bevorzugt für Chlor, Brom oder Hydroxy.
- 30

Die Carbonsäure-Derivate der Formel (II) sind größtenteils bekannt und/oder lassen sich nach bekannten Verfahren herstellen (vgl. WO 93/11117, EP-A 0 545 099, EP-A 0 589 301 und EP-A 0 589 313).

Die zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe weiterhin benötigten Anilin-Derivate sind durch die Formel (III) allgemein definiert. In dieser Formel (III) haben R, R¹, R², R³, R⁴ und M bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.

Die Anilin-Derivate der Formel (III) sind neu.

10

Anilin-Derivate der Formel (III-a)

in welcher R, R¹, R², R³, R^{4-A} und M die oben angegebenen Bedeutungen haben, werden erhalten, indem man

15 c) Anilin-Derivate der Formel (III-b)

in welcher R, R¹, R², R³ und M die oben angegebenen Bedeutungen haben, mit Halogeniden der Formel (IV)

20

in welcher R^{4-A} und X² die oben angegebenen Bedeutungen haben, in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umgesetzt.

Anilin-Derivate der Formel (III-c)

25 in welcher R, R¹, R² und R³ die oben angegebenen Bedeutungen haben, werden erhalten, indem man

d) Anilin-Derivate der Formel (III-d)

in welcher

R, R¹, R² und R³ die oben angegebenen Bedeutungen haben,

R^{11-B} für Fluor oder Chlor steht,

5 in Gegenwart eines Reduktionsmittels, eines Katalysators und eines Verdünnungsmittels umsetzt.

Anilin-Derivate der Formel (III-e)

10 in welcher

R, R² und R³ die oben angegebenen Bedeutungen haben,

R^{11-C} für Fluor, Chlor, Methyl, iso-Propyl, Methylthio oder Trifluormethyl steht, werden erhalten, indem man

e) Haloalkanonaniline der Formel (V)

15

in welcher R, R², R³ und R^{11-C} die oben angegebenen Bedeutungen haben,

mit Hydrazin oder Hydrazinhydrat in Gegenwart einer Base (z.B. Alkali- oder Erdalkalimetallhydroxide wie Natriumhydroxid oder Kaliumhydroxid) und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.

20

Haloalkanonaniline der Formel (V)

in welcher R, R², R³ und R^{11-C} die oben angegebenen Bedeutungen haben, werden erhalten, indem man

f) geschützte Haloalkanonaniline der Formel (VI)

in welcher

R, R², R³ und R^{¹¹-C} die oben angegebenen Bedeutungen haben,

- 5 SG für eine Schutzgruppe, bevorzugt Piv (tert-Butylcarbonyl), Boc (tert-Butoxycarbonyl-), Cbz (Benzylloxycarbonyl-), Trifluoracetyl-, Fmoc (9-Fluorenylmethoxycarbonyl-) oder Troc (2,2,2-Trichlorethoxycarbonyl-), steht,
in Gegenwart einer Säure (z.B. Salzsäure) und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt.

10

Geschützte Haloalkanonaniline der Formel (VI)

in welcher R, R², R³, R^{¹¹-C} und SG die oben angegebenen Bedeutungen haben,
werden erhalten, indem man

15 g) Geschützte Aniline der Formel (VII)

in welcher R^{¹¹-C} und SG die oben angegebenen Bedeutungen haben,
mit einem Ester der Formel (VIII)

20

in welcher

R, R² und R³ die oben angegebenen Bedeutungen haben,

R^{⁴⁹} für C₁-C₄-Alkyl, bevorzugt Methyl oder Ethyl, steht,

in Gegenwart eines Verdünnungsmittels und metallorganischer Basen umsetzt.

25 Geschützte Aniline der Formel (VII) und Ester der Formel (VIII) sind bekannt.

Anilin-Derivate der Formel (III-f)

in welcher

R, R², R³ und R^{11-C} die oben angegebenen Bedeutungen haben,

5 werden erhalten, indem man

h) Alkene der Formel (IX)

in welcher R, R², R³ und R^{11-C} die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart

10 eines Katalysators hydriert.

Alkene der Formel (IX)

in welcher R, R², R³ und R^{11-C} die oben angegebenen Bedeutungen haben,

15 werden erhalten, indem man

i) Hydroxyalkylaniline der Formel (X)

in welcher R, R², R³ und R^{11-C} die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart

20 einer Säure dehydratisiert.

Hydroxyalkylaniline der Formel (X)

in welcher R, R², R³ und R^{11-C} die oben angegebenen Bedeutungen haben,
werden erhalten, indem man

- k) Haloalkanonenaniline der Formel (V)

5

in welcher R, R², R³ und R^{11-C} die oben angegebenen Bedeutungen haben,
mit metallorganischen Verbindungen (z.B. Methylmagnesium Halogeniden) in Gegenwart
eines Verdünnungsmittels umsetzt.

- 10 Anilin-Derivate der Formel (III-g)

in welcher

R, R¹, R² und R³ die oben angegebenen Bedeutungen haben,

M^A für einen jeweils einfach durch R¹¹ substituierten Pyridin- oder Pyrimidin-Ring oder für einen
einfach durch R^{11-A} substituierten Thiazol-Ring steht,

können analog oder nach bekannten Verfahren (vgl. EP-A 0 737 682) erhalten werden.

Verfahren (b)

Verwendet man 3-(Difluormethyl)-1-methyl-N-[2-(4,4,4-trifluor-3-methylbutyl)phenyl]-1H-pyrazol-

20 4-carboxamid und Ethyl-chlor(oxo)acetat als Ausgangsstoffe, so kann der Verlauf des erfundungsge-
mäßen Verfahrens (b) durch das folgende Formelschema veranschaulicht werden:

Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten Hexylcarboxanilide sind durch die Formel (I-a) allgemein definiert. In dieser Formel (I-a) haben R, R¹, R², R³, M und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der
5 Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diese Reste angegeben wurden.

Die Hexylcarboxanilide der Formel (I-a) sind ebenfalls erfindungsgemäße Verbindungen und Gegenstand dieser Anmeldung. Sie können nach dem erfindungsgemäßen Verfahren (a) erhalten werden
10 (mit R¹ = Wasserstoff).

Die zur Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe weiterhin benötigten Halogenide sind durch die Formel (IV) allgemein definiert. In dieser Formel (IV) hat R^{4A} bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I-b) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diesen Rest angegeben wurden. X² steht bevorzugt für Chlor oder Brom.
15

Halogenide der Formel (IV) sind bekannt.

20

Reaktionsbedingungen

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (a) kommen alle internen organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie z.B. Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.
25
30

Das erfindungsgemäße Verfahren (a) wird gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie z.B. Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoni-
35

umhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin,

- 5 Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Das erfindungsgemäße Verfahren (a) wird gegebenenfalls in Gegenwart eines geeigneten Kondensationsmittels durchgeführt. Als solche kommen alle üblicherweise für derartige Amidierungsreaktionen verwendbaren Kondensationsmittel infrage. Beispielhaft genannt seien Säurehalogenidbildner

- 10 wie Phosgen, Phosphortribromid, Phosphortrichlorid, Phosphorpentachlorid, Phosphoroxychlorid oder Thionylchlorid; Anhydridbildner wie Chlorameisensäureethylester, Chlorameisensäuremethyl-ester, Chlorameisensäureisopropylester, Chlorameisensäureisobutylester oder Methansulfonylchlorid; Carbodiimide, wie N,N'-Dicyclohexylcarbo diimid (DCC) oder andere übliche Kondensationsmittel, wie Phosphor pentoxid, Polyphosphorsäure, N,N'-Carbonyldiimidazol, 2-Ethoxy-N-ethoxycarbonyl-
15 1,2-dihydrochinolin (EEDQ), Triphenylphosphin/Tetrachlorkohlenstoff oder Brom-tripyrrolidinophosphonium-hexafluorophosphat.

Das erfindungsgemäße Verfahren (a) wird gegebenenfalls in Gegenwart eines Katalysators durchgeführt. Beispieleise genannt seien 4-Dimethylaminopyridin, 1-Hydroxy-benzotriazol oder Dime-

- 20 thylformamid.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 0°C bis 80°C.

25

Zur Durchführung des erfindungsgemäßen Verfahrens (a) zur Herstellung der Verbindungen der Formel (I) setzt man pro mol des Carbonsäure-Derivates der Formel (II) im Allgemeinen 0,2 bis 5 mol, vorzugsweise 0,5 bis 2 mol an Anilin-Derivat der Formel (III) ein.

- 30 Als Verdünnungsmittel zur Durchführung der erfindungsgemäßen Verfahren (b) und (c) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie z.B. Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxyethan oder Anisol oder Amide, wie

N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.

- Die erfindungsgemäßen Verfahren (b) und (c) werden in Gegenwart einer Base durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie z.B. Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Caesiumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclonen (DBN) oder Diazabicycloundecen (DBU).
- 15 Die Reaktionstemperaturen können bei der Durchführung der erfindungsgemäßen Verfahren (b) und (c) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 20°C bis 110°C.

Zur Durchführung des erfindungsgemäßen Verfahrens (b) zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Hexylcarboxanilids der Formel (I-a) im Allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 2 Mol an Halogenid der Formel (IV) ein.

Zur Durchführung des erfindungsgemäßen Verfahrens (c) zur Herstellung der Verbindungen der Formel (III-a) setzt man pro Mol des Anilin-Derivates der Formel (III-b) im Allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 2 Mol an Halogenid der Formel (IV) ein.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (d) kommen alle internen organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylool oder Decalin; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan; Alkohole, wie Methanol, Ethanol, n- oder iso-Propanol, n-, iso-, sec- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmo-

nomethylether, Diethylenglykolmonoethylether, Triethylenglykol, deren Gemische mit Wasser oder reines Wasser.

Das erfindungsgemäße Verfahren (d) wird in Gegenwart eines Metalls durchgeführt. Als solche kommen vorzugsweise Übergangsmetalle, wie beispielsweise Palladium, Platin, Rhodium, Nickel, Eisen, Cobalt, Ruthenium, Iridium oder Osmium in Frage. Die Metalle können gegebenenfalls an Trägermaterialien, wie z. B. Kohle, Harze, Zeolithe, Alkali- oder Erdalkalisulfate gebunden sein.

Das erfindungsgemäße Verfahren (d) wird in Gegenwart eines Reduktionsmittels durchgeführt. Als solche kommen vorzugsweise elementarer Wasserstoff, Formiatsalze, vorzugsweise Alkaliformiatsalze, wie z. B. Natriumformiat, aber auch Ammoniumformiat oder auch Metallhydride (Hydrodehalogenierung) in Frage.

Das erfindungsgemäße Verfahren (d) kann in Gegenwart von Säuren durchgeführt werden. Als solche kommen vorzugsweise organische Säuren, wie z. B. Ameisensäure, Essigsäure, Ascorbinsäure, aber auch Mineralsäuren, wie z.B. Salzsäure oder Schwefelsäure in Frage.

Das erfindungsgemäße Verfahren (d) kann in Gegenwart von Basen durchgeführt werden. Als solche kommen vorzugsweise organische Basen, wie z. B. Pyridin, aber auch wässrige Lösungen von Alkalimetalhydroxiden, wie z.B. Natriumhydroxid oder Bariumhydroxid in Frage.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (d) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von -80°C bis 300°C, vorzugsweise bei Temperaturen von 0°C bis 200°C.

25

Bei der Verwendung von elementarem Wasserstoff wird das erfindungsgemäße Verfahren (d) unter einem Wasserstoffdruck zwischen 0.5 und 200 bar, bevorzugt zwischen 1 und 100 bar durchgeführt.

Zur Durchführung des erfindungsgemäßen Verfahrens (d) zur Herstellung der Verbindungen der Formel (III-c) setzt man pro Mol des Anilin-Derivates der Formel (III-d) im Allgemeinen 0,8 bis 1000 Mol, vorzugsweise 1 bis 500 Mol an Reduktionsmittel (Ammoniumformiat, Hydrid etc.) ein.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (e) kommen alle internen organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie

beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Ketone, wie Aceton, Butanon, Methyl-isobutylketon oder Cyclohexanon; Nitrile, wie Acetonitril, Propionitril,

- 5 n- oder i-Butyronitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan; Alkohole, wie Methanol, Ethanol, n- oder iso-Propanol, n-, iso-, sec- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethyleneglykolmonomethylether, Diethyleneglykolmonoethylether, Triethylenglykol, deren Gemische mit
10 Wasser oder reines Wasser.

Das erfindungsgemäße Verfahren (e) wird in Gegenwart einer Base durchgeführt. Als solche kommen vorzugsweise Erdalkalimetall- oder Alkalimetallhydroxide, wie beispielsweise Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid infrage.

15

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (e) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 100°C bis 300°C, vorzugsweise bei Temperaturen von 150°C bis 250°C.

- 20 Zur Durchführung des erfindungsgemäßen Verfahrens (e) zur Herstellung der Verbindungen der Formel (III-e) setzt man pro Mol des Haloalkanonaniline der Formel (V) im allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 3 Mol an Hydrazin oder Hydrazinhydrat ein.

- Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (f) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Ketone, wie Aceton, Butanon, Methyl-isobutylketon oder Cyclohexanon; Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan; Alkohole, wie Methanol, Ethanol, n- oder iso-Propanol, n-, iso-, sec- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethyleneglykolmonomethylether, Diethyleneglykolmonoethylether, Triethylenglykol, deren Gemische mit
30 Wasser oder reines Wasser.

glykolmonomethylether, Diethylenglykolmonoethylether, Triethylenglykol, deren Gemische mit Wasser oder reines Wasser.

Das erfindungsgemäße Verfahren (f) wird in Gegenwart einer Säure durchgeführt. Als solche kommen vorzugsweise Mineralsäuren, wie z. B. Salzsäure, Iod- oder Bromwasserstoffsäure, Schwefelsäure oder auch organische Säuren, z. B. Trifluoressigsäure, Trifluormethansulfonsäure infrage.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (f) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 10 300°C, vorzugsweise bei Temperaturen von 20°C bis 200°C.

Zur Durchführung des erfindungsgemäßen Verfahrens (f) zur Herstellung der Verbindungen der Formel (V) setzt man pro Mol des geschützten Haloalkanonanilins der Formel (VI) im Allgemeinen 0,1 bis 10000 Mol, vorzugsweise 1 bis 2000 Mol an Säure ein.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (g) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; Ether, wie Diethylether, Diisopropylether, 20 Methyl-t-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxyethan oder Anisol;.

Das erfindungsgemäße Verfahren (g) wird in Gegenwart einer metallorganischen Verbindung durchgeführt. Als solche kommen vorzugsweise Lithiumorganische Verbindungen, wie n-, sec-, oder tert-Butyllithium, Phenyllithium oder Methyllithium infrage.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (g) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von -120°C bis 100°C, vorzugsweise bei Temperaturen von -80°C bis 20°C.

30 Zur Durchführung des erfindungsgemäßen Verfahrens (g) zur Herstellung der Verbindungen der Formel (VI) setzt man pro Mol des geschützten Anilins der Formel (VII) im Allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 2 Mol an Ester der Formel (VIII) ein.

35 Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (h) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische oder alicycli-

sche Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan oder Decalin; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan oder 1,2-Diethoxyethan; Alkohole, wie Methanol, Ethanol, n- oder iso-Propanol, n-, iso-, sec- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonoether, deren Gemische mit Wasser oder reines Wasser.

Das erfindungsgemäße Verfahren (h) wird in Gegenwart eines Katalysators durchgeführt. Als solche kommen alle Katalysatoren infrage, die für Hydrierungen üblicherweise verwendet werden. 10 Beispielhaft seien genannt: Raney-Nickel, Palladium oder Platin, gegebenenfalls auf einem Trägermaterial, wie beispielsweise Aktivkohle.

Die Hydrierung im erfindungsgemäßen Verfahren (h) kann statt in Gegenwart von Wasserstoff in Kombination mit einem Katalysator auch in Anwesenheit von Triethylsilan durchgeführt werden.

15

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (h) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 20°C bis 100°C.

20

Das erfindungsgemäße Verfahren (h) wird unter einem Wasserstoffdruck zwischen 0.5 and 200 bar, bevorzugt zwischen 2 und 50 bar, besonders bevorzugt zwischen 3 und 10 bar durchgeführt.

25

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (i) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol;

30

Ketone, wie Aceton, Butanon, Methyl-isobutylketon oder Cyclohexanon; Nitrile, wie Acetonitril, Propionitril, n- oder iso-Butyronitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäure-triamid; Ester wie Essigsäuremethyleneester oder Essigsäureethylester; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan; Alkohole, wie Methanol, Ethanol, n- oder iso-Propanol, n-, iso-, sec- oder tert-35 Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonoether, deren Gemische mit Wasser oder reines Wasser.

Das erfindungsgemäße Verfahren (i) wird gegebenenfalls in Gegenwart einer Säure durchgeführt. Als solche kommen alle anorganischen und organischen Protonen- wie auch Lewissäuren, sowie auch alle polymeren Säuren infrage. Hierzu gehören beispielsweise Chlorwasserstoff, Schwefelsäure, Phosphorsäure, Ameisensäure, Essigsäure, Trifluoressigsäure, Methansulfonsäure, Trifluormethansulfosäure, Toluolsulfonsäure, Bortrifluorid (auch als Etherat), Bortribromid, Aluminiumtrichlorid, 5 Titanetrachlorid, Tetrabutylorthotitanat, Zinkchlorid, Eisen-III-chlorid, Antimonpentachlorid, saure Ionenaustauscher, saure Tonerden und saures Kieselgel.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (i) in 10 einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 0°C bis 80°C.

Die erfindungsgemäßen Verfahren (i) und (h) können auch in einer Tandemreaktion („Eintopf-Reaktion“) durchgeführt werden. Dazu wird eine Verbindung der Formel (X) gegebenenfalls in 15 Gegenwart eines Verdünnungsmittels (geeignete Lösungsmittel wie für Verfahren (i)), gegebenenfalls in Gegenwart einer Säure (geeignete Säuren wie für Verfahren (i)) und in Anwesenheit von Triethylsilan umgesetzt.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (k) kommen alle inneren organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylool oder Decalin; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-tert-Amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol.

25 Das erfindungsgemäße Verfahren (k) wird in Gegenwart einer metallorganischen Verbindung durchgeführt. Als solche kommen vorzugsweise Methylmagnesium-chlorid, -bromid, oder -iodid oder Methylolithium infrage.

30 Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (k) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen von -120°C bis 200°C, vorzugsweise bei Temperaturen von -80°C bis 100°C.

Zur Durchführung des erfindungsgemäßen Verfahrens (k) zur Herstellung der Verbindungen der 35 Formel (X) setzt man pro Mol des Haloalkanonanilins der Formel (V) im Allgemeinen 0,8 bis 10 Mol, vorzugsweise 1 bis 5 Mol an metallorganischer Verbindung ein.

Wenn nicht anders angegeben, werden alle erfindungsgemäßen Verfahren im Allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck – im Allgemeinen zwischen 0,1 bar und 10 bar – zu arbeiten.

- 5 Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.

- 15 Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas-Arten, wie beispielsweise *Xanthomonas campestris* pv. *oryzae*;
Pseudomonas-Arten, wie beispielsweise *Pseudomonas syringae* pv. *lachrymans*;
Erwinia-Arten, wie beispielsweise *Erwinia amylovora*;
- 20 Pythium-Arten, wie beispielsweise *Pythium ultimum*;
Phytophthora-Arten, wie beispielsweise *Phytophthora infestans*;
Pseudoperonospora-Arten, wie beispielsweise *Pseudoperonospora humuli* oder
Pseudoperonospora cubensis;
Plasmopara-Arten, wie beispielsweise *Plasmopara viticola*;
- 25 Bremia-Arten, wie beispielsweise *Bremia lactucae*;
Peronospora-Arten, wie beispielsweise *Peronospora pisi* oder *P. brassicae*;
Erysiphe-Arten, wie beispielsweise *Erysiphe graminis*;
Sphaerotheca-Arten, wie beispielsweise *Sphaerotheca fuliginea*;
Podosphaera-Arten, wie beispielsweise *Podosphaera leucotricha*;
- 30 Venturia-Arten, wie beispielsweise *Venturia inaequalis*;
Pyrenophora-Arten, wie beispielsweise *Pyrenophora teres* oder *P. graminea*
(Konidienform: Drechslera, Syn: Helminthosporium);
Cochliobolus-Arten, wie beispielsweise *Cochliobolus sativus*
(Konidienform: Drechslera, Syn: Helminthosporium);
- 35 Uromyces-Arten, wie beispielsweise *Uromyces appendiculatus*;
Puccinia-Arten, wie beispielsweise *Puccinia recondita*;

- Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;
Tilletia-Arten, wie beispielsweise Tilletia caries;
Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;
- 5 Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;
Fusarium-Arten, wie beispielsweise Fusarium culmorum;
Botrytis-Arten, wie beispielsweise Botrytis cinerea;
Septoria-Arten, wie beispielsweise Septoria nodorum;
Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;
- 10 Cercospora-Arten, wie beispielsweise Cercospora canescens;
Alternaria-Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die erfindungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.

Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.

Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

30 Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen Puccinia-Arten und von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen Botrytis-, Venturia- oder Alternaria-Arten, einsetzen.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und 5 Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden 10 hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle 15 oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise 20 Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen 25 und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können 30 technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlshmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien 35

auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders 5 bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, 10 holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

Alternaria, wie Alternaria tenuis,

15 Aspergillus, wie Aspergillus niger,

Chaetomium, wie Chaetomium globosum,

Coniophora, wie Coniophora puteana,

Lentinus, wie Lentinus tigrinus,

Penicillium, wie Penicillium glaucum,

20 Polyporus, wie Polyporus versicolor,

Aureobasidium, wie Aureobasidium pullulans,

Sclerophoma, wie Sclerophoma pityophila,

Trichoderma, wie Trichoderma viride,

Escherichia, wie Escherichia coli,

25 Pseudomonas, wie Pseudomonas aeruginosa,

Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/ oder chemischen

Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen,

30 Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/

35 oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Be-

nutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethyleketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen infrage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Bims, Marmor, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstägel. Als Emulgier und/oder schaumerzeugende Mittel kommen infrage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysat. Als Dispergiertmittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurenährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

30

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen

vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen infrage:

5 **Fungizide:**

2-Phenylphenol; 8-Hydroxychinolinsulfat; Acibenzolar-S-methyl; Aldimorph; Amidoflumet; Ampropylfos; Ampropylfos-potassium; Andoprim; Anilazine; Azaconazole; Azoxystrobin; Benalaxyl; Benodanil; Benomyl; Benthiavalicarb-isopropyl; Benzamacril; Benzamacril-isobutyl; Bilanafos; Binapacryl; Biphenyl; Bitertanol; Blasticidin-S; Bromuconazole; Bupirimate; Buthiobate; Butylamin; Calcium polysulfide; Capsimycin; Captafol; Captan; Carbendazim; Carboxin; Carpropamid; Carvone; Chinomethionat; Chlobenthiazole; Chlorfenazole; Chloroneb; Chlorothalonil; Chlozolinate; Clozylacon; Cyazofamid; Cyflufenamid; Cymoxanil; Cyproconazole; Cyprodinil; Cyprofuram; Dagger G; Debacarb; Dichlofuanid; Dichlone; Dichlorophen; Diclocymet; Diclomezine; Dicloran; Diethofencarb; Difenoconazole; Diflumetorim; Dimethirimol; Dimethomorph; Dimoxystrobin; Diniconazole; 15 Diniconazole-M; Dinocap; Diphenylamine; Dipyridithione; Ditalimfos; Dithianon; Dodine; Dra-zoxolon; Edifenphos; Epoxiconazole; Ethaboxam; Ethirimol; Etridiazole; Famoxadone; Fenamidone; Fenapanil; Fenarimol; Fenbuconazole; Fenfuram; Fenhexamid; Fenitropan; Fenoxanil; Fenpiclonil; Fenpropidin; Fenpropimorph; Ferbam; Fluazinam; Flubenzimine; Fludioxonil; Flumetover; Flu-morph; Fluoromide; Fluoxastrobin; Fluquinconazole; Flurprimidol; Flusilazole; Flusulfamide; Flutolnil; Flutriafol; Folpet; Fosetyl-Al; Fosetyl-sodium; Fuberidazole; Furalaxy; Furametpyr; Furcarbanil; Furmecyclox; Guazatine; Hexachlorobenzene; Hexaconazole; Hymexazol; Imazalil; Imiben-conazole; Iminoctadine triacetate; Iminoctadine tris(albesil; Iodocarb; Ipconazole; Iprobenfos; Iprodione; Iprovalicarb; Irumamycin; Isoprothiolane; Isovaliedione; Kasugamycin; Kresoxim-methyl; Mancozeb; Maneb; Meferimzone; Mepanipyrim; Mepronil; Metalaxy; Metalaxy-M; Metconazole; 25 Methasulfocarb; Methfuroxam; Metiram; Metominostrobin; Metsulfovax; Mildiomycin; Myclobutanil; Myclozolin; Natamycin; Nicobifen; Nitrothal-isopropyl; Noviflumuron; Nuarimol; Ofurace; Orysastrobin; Oxadixyl; Oxolinic acid; Oxoconazole; Oxycarboxin; Oxyfenthiin; Paclobutrazol; Pefura-zoate; Penconazole; Pencycuron; Phosdiphen; Phthalide; Picoxystrobin; Piperalin; Polyoxins; Poly-oxorim; Probenazole; Prochloraz; Procymidone; Propamocarb; Propanosine-sodium; Propiconazole; 30 Propineb; Proquinazid; Prothioconazole; Pyraclostrobin; Pyrazophos; Pyrifeno; Pyrimethanil; Pyro-quilon; Pyroxyfur; Pyrrolnitrine; Quinconazole; Quinoxifen; Quintozene; Simeconazole; Spiroxami-ne; Sulfur; Tebuconazole; Tecloftalam; Tecnazene; Tetcyclacis; Tetraconazole; Thiabendazole; Thicyofen; Thifluzamide; Thiophanate-methyl; Thiram; Tioxymid; Tolclofos-methyl; Tolyfluanid; Triadimefon; Triadimenol; Triazbutil; Triazoxide; Tricyclamide; Tricyclazole; Tridemorph; Trifloxystro-bin; Triflumizole; Triforine; Triticonazole; Uniconazole; Validamycin A; Vinclozolin; Zineb; Ziram; Zoxamide; (2S)-N-[2-[4-[[3-(4-Chlorophenyl)-2-propinyl]oxy]-3-methoxyphenyl]ethyl]-3-methyl-2-

[(methylsulfonyl)amino]-butanamid; 1-(1-Naphthalenyl)-1H-pyrrol-2,5-dion; 2,3,5,6-Tetrachlor-4-(methylsulfonyl)-pyridin; 2-Amino-4-methyl-N-phenyl-5-thiazolcarboxamid; 2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamide; 3,4,5-Trichlor-2,6-pyridindicarbonitril; Actinovate; cis-1-(4-Chlorophenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol; Methyl 1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat; Monokaliumcarbonat; N-(6-Methoxy-3-pyridinyl)-cyclopropancarboxamid; N-Butyl-8-(1,1-dimethylethyl)-1-oxaspiro[4.5]decan-3-amin; Natriumtetra thiocarbonat; sowie Kupfersalze und -zubereitungen, wie Bordeaux mixture; Kupferhydroxid; Kupfernaphthenat; Kupferoxychlorid; Kupfersulfat; Cufraneb; Kupferoxid; Mancopper; Oxine-copper.

10

Bakterizide:

Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

15

Insektizide / Akarizide / Nematizide:

Abamectin, ABG-9008, Acephate, Acequinocyl, Acetamiprid, Acetoprole, Acrinathrin, AKD-1022, AKD-3059, AKD-3088, Alanycarb, Aldicarb, Aldoxycarb, Allethrin, Allethrin 1R-isomers, Alpha-Cypermethrin (Alphamethrin), Amidoflumet, Aminocarb, Amitraz, Avermectin, AZ-60541, Azadirachtin, Azamethiphos, Azinphos-methyl, Azinphos-ethyl, Azocyclotin, Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Bacillus thuringiensis strain EG-2348, Bacillus thuringiensis strain GC-91, Bacillus thuringiensis strain NCTC-11821, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Beta-Cyfluthrin, Beta-Cypermethrin, Bifenazate, Bifenthrin, Binapacryl, Bioallethrin, Bioallethrin-S-cyclopentyl-isomer, Bioethanomethrin, Biopermethrin, Bioresmethrin, Bistrifluron, BPMC, Brofenprox, Bromophos-ethyl, Bromopropylate, Bromfenvinfos (-methyl), BTG-504, BTG-505, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butoxycarboxim, Butylpyridaben, Cadusafos, Camphechlor, Carbaryl, Carbafuran, Carbophenothion, Carbosulfan, Cartap, CGA-50439, Chinomethionat, Chlordane, Chlordimeform, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorobenzilate, Chloropicrin, Chlorproxyfen, Chlorpyrifos-methyl, Chlorpyrifos (-ethyl), Chlova- porthrin, Chromafenozide, Cis-Cypermethrin, Cis-Resmethrin, Cis-Permethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidin, Clothiazoben, Codlemone, Coumaphos, Cyanofenphos, Cyanophos, Cycloprene, Cycloprothrin, Cydia pomonella, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyphenothrin (1R-trans-isomer), Cyromazine, DDT, Deltamethrin, Demeton-S-methyl, Demeton-S-methylsulphon, Diafenthiuron, Dialifos, Diazinon, Dichlofenthion, Dichlorvos, Dicofol, Dicrotophos, Dicyclanil, Diflubenzuron, Dimethoate, Dimethylvinphos, Dinobuton, Dinocap, Dinotefuran, Dio-

fenolan, Disulfoton, Docusat-sodium, Dofenapyn, DOWCO-439, Eflusilanate, Emamectin, Emamectin-benzoate, Empenthrin (1R-isomer), Endosulfan, Entomophthora spp., EPN, Esfenvalerate, Ethiofencarb, Ethiprole, Ethion, Ethoprophos, Etufenprox, Etoxazole, Etrifos, Famphur, Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenfluthrin, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxacrim, Fenoxy carb, Fenpropothrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fensulfothion, Fenthion, Fentrifanil, Fenvalerate, Fipronil, Flonicamid, Fluacrypyrim, Fluazuron, Flubenzimine, Flubrocythrin, Flucycloxuron, Flucythrinate, Flufenerim, Flufenoxuron, Flufenprox, Flumethrin, Flu pyrazofos, Flutenzin (Flufenazine), Fluvalinate, Fonofos, Formetanate, Formothion, Fosmethilan, Fos thiazate, Fubfenprox (Fluproxyfen), Furathiocarb, Gamma-HCH, Gossyplure, Grandlure, Granuloseviren, Halfenprox, Halofenozide, HCH, HCN-801, Heptenophos, Hexaflumuron, Hexythiazox, Hydramethylnone, Hydroprene, IKA-2002, Imidacloprid, Imiprothrin, Indoxacarb, Iodofenphos, Iprobenfos, Isazofos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin, Japonilure, Kadethrin, Kernpoly ederviren, Kinoprene, Lambda-Cyhalothrin, Lindane, Lufenuron, Malathion, Mecarbam, Mesulfenfos, Metaldehyd, Metam-sodium, Methacrifos, Methamidophos, Metharhizium anisopliae, 15 Metharhizium flavoviride, Methidathion, Methiocarb, Methomyl, Methoprene, Methoxychlor, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, MKI-245, MON-45700, Monocrotophos, Moxidectin, MTI-800, Naled, NC-104, NC-170, NC-184, NC-194, NC-196, Niclosamide, Nicotine, Nitapyram, Nithiazine, NNI-0001, NNI-0101, NNI-0250, NNI-9768, Novaluron, Noviflumuron, OK-5101, OK-5201, OK-9601, OK-9602, OK-9701, OK-9802, 20 Omethoate, Oxamyl, Oxydemeton-methyl, Paecilomyces fumosoroseus, Parathion-methyl, Parathion (-ethyl), Permethrin (cis-, trans-), Petroleum, PH-6045, Phenothrin (1R-trans isomer), Phenthroate, Phorate, Phosalone, Phosmet, Phosphamidon, Phosphocarb, Phoxim, Piperonyl butoxide, Pirimicarb, Pirimiphos-methyl, Pirimiphos-ethyl, Prallethrin, Profenofos, Promecarb, Propaphos, Propargite, Pro petamphos, Propoxur, Prothiofos, Prothoate, Protrifenbute, Pymetrozine, Pyraclofos, Pyresmethrin, 25 Pyrethrum, Pyridaben, Pyridalyl, Pyridaphenthion, Pyridathion, Pyrimidifen, Pyriproxyfen, Quinalphos, Resmethrin, RH-5849, Ribavirin, RU-12457, RU-15525, S-421, S-1833, Salithion, Sebufos, SI-0009, Silafluofen, Spinosad, Spirodiclofen, Spiromesifen, Sulfluramid, Sulfotep, Sulprofos, SZI-121, Tau-Fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimfos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbam, Terbufos, Tetrachlorvinphos, Tetradifon, Tetramethrin, 30 Tetramethrin (1R-isomer), Tetrasul, Theta-Cypermethrin, Thiacloprid, Thiamethoxam, Thiapro nil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thiometon, Thiosultap-sodium, Thuringiensin, Tolfenpyrad, Tralocythrin, Tralomethrin, Transfluthrin, Triarathene, Triazamate, Tri azaphos, Triazuron, Trichlophenidine, Trichlorfon, Triflumuron, Trimethacarb, Vamidothion, Vaniliprole, Verbutin, Verticillium lecanii, WL-108477, WL-40027, YI-5201, YI-5301, YI-5302, 35 XMC, Xyllylcarb, ZA-3274, Zeta-Cypermethrin, Zolaprofos, ZXI-8901, die Verbindung 3-Methyl phenyl-propylcarbamat (Tsumacide Z), die Verbindung 3-(5-Chlor-3-pyridinyl)-8-(2,2,2-trifluor-

ethyl)-8-azabicyclo[3.2.1]octan-3-carbonitril (CAS-Reg.-Nr. 185982-80-3) und das entsprechende 3-endo-Isomere (CAS-Reg.-Nr. 185984-60-5) (vgl. WO-96/37494, WO-98/25923), sowie Präparate, welche insektizid wirksame Pflanzenextrakte, Nematoden, Pilze oder Viren enthalten.

- 5 Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren, Safener bzw. Semiochemicals ist möglich.

Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, 10 insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums 15 dar, sondern hat nur erläuternden Charakter.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher 20 Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

- 25 Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, 30 vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. 35 In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und

Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile“ bzw. „Teile von Pflanzen“ oder „Pflanzenteile“ wurde 5 oben erläutert.

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelstüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits“), die sowohl durch konventionelle Züchtung, durch Mutagenese oder 10 durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch 15 überadditive („synergistische“) Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, 20 höhere Ernterträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) 25 Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits“) verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernterträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere 30 Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte 35 herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit

den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften („Traits“) werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das
5 genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im Folgenden „Bt Pflanzen“). Als Eigenschaften („Traits“) werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch
10 Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften („Traits“) werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, z.B. Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften („Traits“) verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für „Bt Pflanzen“ seien
15 Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits“).

Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die
30 Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor.

HerstellungsbeispieleBeispiel 1

- 5 Zu einer Lösung bestehend aus 275.3 mg (1.3 mmol) 2-Trifluormethylbenzoësäurechlorid und 0.22 ml (1.6 mmol) Triethylamin in 10 ml Tetrahydrofuran werden 302.0 mg (1.2 mmol) 4-Chlor-2-(4,4,4-trifluoro-3-methyl-butyl)-phenylamin in 2 ml Tetrahydrofuran gegeben. Die Reaktionslösung wird für 90 min bei 60°C gerührt, über Kieselgel filtriert und im Vakuum aufkonzentriert.
- 10 Man erhält 505 mg (99 % der Theorie) an N-[4-Chloro-2-(4,4,4-trifluoro-3-methyl-butyl)-phenyl]-2-trifluormethyl-benzamid [$\log P$ (pH 2.3) = 4.08].

Beispiel 2

- 15 Zu einer Suspension von 264.2 mg (1.5 mmol) 3-Difluormethyl-1-methyl-1H-pyrazol-4-carbonsäure in 9 ml Dichlormethan werden 0.14 ml (1.7 mmol) Oxalsäuredichlorid und 4 Tropfen Dimethylformamid gegeben. Die Reaktionsmischung wird 2 h bei Raumtemperatur gerührt und anschließend mit einer Lösung bestehend aus 325.9 mg (1.5 mmol) 2-(4,4,4-Trifluor-3-methyl-butyl)-phenylamin und 0.29 ml (2.1 mmol) Triethylamin in 9 ml Dichlormethan versetzt. Die Reaktionsmischung wird 16 h bei Raumtemperatur gerührt. Zur Aufarbeitung werden 7 ml 2N Salzsäure zugegeben, 10 min bei Raumtemperatur gerührt, die organische Phase abgetrennt, über Magnesiumsulfat getrocknet, filtriert und im Vakuum aufkonzentriert.
- 20 Man erhält 525.0 mg (89 % der Theorie) an 3-Difluormethyl-1-methyl-1H-pyrazol-4-carbonsäure-[2-(4,4,4-trifluor-3-methyl-butyl)-phenyl]-amid [$\log P$ (pH 2.3) = 2.93].

Analog Beispiel 1 und 2, sowie entsprechend den Angaben in der allgemeinen Beschreibung der erfindungsgemäßen Herstellverfahren (a) bis (h) wurden auch die in der nachstehenden Tabelle 1 genannten Verbindungen der Formel (I) erhalten:

Tabelle 1

Nr.	R	R ¹	R ²	R ³	R ⁴	M	A	logP
3	H	CH ₃	C ₂ H ₅	Cl	H			3,18
4	H	CH ₃	C ₂ H ₅	Cl	H			3,09
5	H	H	CH ₃	CF ₃	H			4,08
6	H	H	CH ₃	CF ₃	H			3,32
7	H	H	CH ₃	CF ₃	H			3,36
8	H	H	CH ₃	CF ₃	H			3,99
9	H	H	CH ₃	CF ₃	H			3,66
10	H	H	CH ₃	CF ₃	H			2,84

^{a)} Die mit „**“ markierte Bindung ist mit dem Amid, die mit „#“ markierte Bindung mit dem Haloalkylrest verknüpft.

Herstellung der Ausgangsstoffe der Formel (III)Beispiel (III-1)

- 5 Eine Lösung von 7.0 g 1-(2-Amino-5-chlor-phenyl)-4,4,4-trifluor-3-methyl-butan-1-on (26 mmol), 4.0 g Kaliumhydroxid (60 mmol) und 3.0 g Hydrazinhydrat (60 mmol) wird in 67 ml Triethylenglykol für 6 h auf 210°C erhitzt. Nach Abkühlen auf Raumtemperatur werden Wasser und Ethylacetat zugegeben, die Phasen getrennt und die organische Phase nochmals mit Wasser gewaschen, über Magnesiumsulfat getrocknet und vom Lösungsmittel befreit.

10

Man erhält 4.9 g (73 % der Theorie) an 4-Chlor-2-(4,4,4-trifluor-3-methyl-butyl)-phenylamin.

¹H-NMR (DMSO): δ = 6.93 (m, 2 H), 6.62 (d, 1 H), 5.05 (s, 2 H), 2.56 (m, 1 H), 2.48-2.34 (m, 2 H), 1.85 (m, 1 H), 1.47 (m, 1 H), 1.11 (d, 3 H).

15

Beispiel (III-2)

- Eine Lösung von 2.3 g 4-Chlor-2-(4,4,4-trifluor-3-methyl-butyl)-phenylamin (III-1) (9 mmol), 1.15 g Ammoniumformiat (18 mmol) und 2.0 g Pd/C (5%ig, 0.9 mmol) in 21 ml Methanol wird 1 h bei Raumtemperatur gerührt. Anschließend wird die Reaktionslösung über Celite abgesaugt, mit Methanol nachgewaschen und das Filtrat einrotiert. Verrühren des Rückstandes nach Entfernen des Lösungsmittels mit Pentan liefert einen Feststoff, der abgesaugt und getrocknet wird.

Man erhält 1.7 g (86 % der Theorie) an 2-(4,4,4-Trifluor-3-methyl-butyl)-phenylamin.

- 25 ¹H-NMR (DMSO): δ = 6.89 (m, 2 H), 6.61 (m, 1 H), 6.49 (m, 1 H), 4.83 (s, 2 H), 2.57 (m, 1 H), 2.48-2.30 (m, 2 H), 1.85 (m, 1 H), 1.46 (m, 1 H), 1.13 (d, 3 H).

Herstellung von Ausgangsstoffen der Formel (V)Beispiel (V-1)

- 5 Eine Lösung von 10.0 g (29 mmol) N-[4-Chlor-2-(4,4,4-trifluor-3-methyl-butyryl)-phenyl]-2,2-dimethyl-propionamid in 366 ml 37%iger Salzsäure wird 2 Tage unter Rückfluss erhitzt. Nach Abkühlen auf Raumtemperatur wird mit 45%iger Natriumhydroxid-Lösung neutralisiert und die Wasserphase mit Dichlormethan extrahiert. Trocknen der organischen Phase über Natriumsulfat und Entfernen des Lösungsmittels liefert 7.1 g (93 % der Theorie) an 1-(2-Amino-5-chlor-phenyl)-4,4,4-trifluor-3-methyl-butan-1-on.
- 10

¹H-NMR (DMSO): δ = 7.80 (d, 1 H), 7.34 (s, 2 H), 7.29 (dd, 1 H), 6.82 (dd, 1 H), 3.28 (dd, 1 H), 3.14 (dd, 1 H) 3.00 (m, 1 H), 1.08 (d, 3 H).

15 Herstellung von Ausgangsstoffen der Formel (VI)Beispiel (VI-1)

- 20 Eine Lösung von 15.4 g N-(4-Chlorphenyl)-2,2-dimethyl-propionamid (73 mmol) in 100 ml trockenem Tetrahydrofuran wird bei 0°C tropfenweise mit einer Lösung von n-Butyllithium in Hexan (1.6 M, 100 ml, 160 mmol) versetzt und 2 h bei dieser Temperatur gerührt. Anschließend wird diese Lösung bei -70°C zu einer Lösung von 13.4 g Ethyl-(3-trifluormethyl)-butyrat (73 mmol) in 250 ml trockenem Tetrahydrofuran zugetropft und die Reaktionsmischung 1 h bei dieser Temperatur nachgezüchtet. Nach Erwärmen auf Raumtemperatur wird für 16 h nachgerührt. Hydrolyse mit 100 ml Wasser, Einengen, Aufnehmen des Rückstandes in Dichlormethan/Wasser sowie Extrahieren der Wasserphase mit Dichlormethan liefert nach Trocknen der organischen Phase über Natriumsulfat ein Edukt/Produkt-Gemisch, welches durch Säulenchromatographie an Kieselgel mit Cyclohexan/Essigsäure-ethylester (9:1) als Laufmittel aufgetrennt werden kann.
- 25

Man erhält 10.3 g (40 % der Theorie) an N-[4-Chlor-2-(4,4,4-trifluor-3-methyl-butyryl)-phenyl]-2,2-dimethyl-propionamid.

- ¹H-NMR (DMSO): δ = 11.15 (s, 1 H), 8.39 (d, 1 H), 8.11 (d, 1 H), 7.67 (dd, 1 H), 3.47 (dd, 1 H), 3.30 (dd, 1 H) 2.99 (m, 1 H), 1.25 (s, 9 H), 1.15 (d, 3 H).

Die Bestimmung der angegebenen logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18).
10 Temperatur: 43°C.

Eluenten für die Bestimmung im sauren Bereich (pH 2,3): 0,1 % wässrige Phosphorsäure, Acetonitril; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril.

- 15 Die Eichung erfolgte mit unverzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren LogP-Werte bekannt sind (Bestimmung der LogP-Werte anhand der Retentionszeiten durch lineare Interpolation zwischen zwei aufeinanderfolgenden Alkanonen).

- 20 Die lambda-max-Werte wurden an Hand der UV-Spektren von 200 nm bis 400 nm in den Maxima der chromatographischen Signale ermittelt.

AnwendungsbeispieleBeispiel A**Sphaerotheca-Test (Gurke) / protektiv**

5	Lösungsmittel:	24,5	Gewichtsteile Aceton
		24,5	Gewichtsteile Dimethylacetamid
	Emulgator:	1	Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Sphaerotheca fuliginea inkuliert. Die Pflanzen werden dann bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70 % im Gewächshaus aufgestellt.

7 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

20 Tabelle A**Sphaerotheca-Test (Gurke) / protektiv**

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
------------------------------	--------------------------------------	----------------------

100

95

100

100

Beispiel B**Venturia - Test (Apfel) / protektiv**

Lösungsmittel: 24,5 Gewichtsteile Aceton
 24,5 Gewichtsteile Dimethylacetamid
 5 Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

- 10 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inkokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine. Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 15 90 % aufgestellt.

10 Tage nach der Inkokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

20 Tabelle B**Venturia-Test (Apfel) / protektiv**

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
------------------------------	--------------------------------------	----------------------

100 93

100 100

100 100

Beispiel C**Botrytis - Test (Bohne) / protektiv**

Lösungsmittel: 24,5 Gewichtsteile Aceton
 24,5 Gewichtsteile Dimethylacetamid
 5 Emulgator: 1 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

- 10 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis cinerea bewachsene Agarstückchen aufgelegt. Die inokulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.
 15 2 Tage nach der Inokulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle C**Botrytis - Test (Bohne) / protektiv**

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
------------------------------	--------------------------------------	----------------------

500 82

500 100

Beispiel D**Puccinia-Test (Weizen) / protektiv**

Lösungsmittel: 50 Gewichtsteile N,N-Dimethylacetamid

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

5

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10 Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer Konidiensuspension von Puccinia recondita besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von 80 % aufgestellt, um die Entwicklung von Rostpusteln zu begünstigen.

15 10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle D**Puccinia-Test (Weizen) / protektiv**

Wirkstoff Erfindungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
	500	100

Beispiel E**Alternaria-Test (Tomate) / protektiv**

Lösungsmittel: 49 Gewichtsteile N, N-Dimethylformamid

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

5

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10 Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Tomatenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Alternaria solani inkuliert und stehen dann 24 h bei 100 % rel. Feuchte und 20°C. Anschließend stehen die Pflanzen bei 96 % rel. Luftfeuchtigkeit und einer Temperatur von 20°C.

15 7 Tage nach der Inkulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Tabelle E**Alternaria-Test (Tomate) / protektiv**

Wirkstoff Erfundungsgemäß	Aufwandmenge an Wirkstoff in g/ha	Wirkungsgrad in %
	750	90
	750	100
	750	95

Patentansprüche

1. Haloalkylcarboxamide der Formel (I)

- 5 in welcher
- R für Wasserstoff oder Halogen steht,
- R¹ für Wasserstoff oder Methyl steht,
- R² für Methyl, Ethyl oder C₁-C₄-Halogenalkyl mit 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,
- 10 R³ für Halogen oder C₁-C₄-Halogenalkyl mit 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,
- R⁴ für Wasserstoff, C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;
- 15 (C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogen-alkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁵, -CONR⁶R⁷ oder -CH₂NR⁸R⁹ steht,
- 20 R⁵ für Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen steht,
- 25 R⁶ und R⁷ unabhängig voneinander jeweils für Wasserstoff, C₁-C₈-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₈-Halogenalkyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,
- 30 R⁶ und R⁷ außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-

C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden, wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR¹⁰ enthalten kann,

R⁸ und R⁹ unabhängig voneinander für Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl; C₁-C₈-

5 Halogenalkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen stehen,

R⁸ und R⁹ außerdem gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C₁-C₄-Alkyl substituierten gesättigten Heterocyclus mit 5 bis 8 Ringatomen bilden,

10 wobei der Heterocyclus 1 oder 2 weitere, nicht benachbarte Heteroatome aus der Reihe Sauerstoff, Schwefel oder NR¹⁰ enthalten kann,

R¹⁰ für Wasserstoff oder C₁-C₆-Alkyl steht,

M für einen jeweils einfach durch R¹¹ substituierten Phenyl-, Pyridin- oder Pyrimidin-, Pyridazin oder Pyrazin-Ring oder für einen durch R^{11-A} substituierten Thiazol-Ring steht,

15 R¹¹ für Wasserstoff, Fluor, Chlor, Methyl, iso-Propyl, Methylthio oder Trifluormethyl steht,

R^{11-A} für Wasserstoff, Methyl, Methylthio oder Trifluormethyl steht,

A für den Rest der Formel (A1)

(A1) steht, in welcher

20 R¹² für Wasserstoff, Cyano, Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder C₁-C₄-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen, Aminocarbonyl oder Aminocarbonyl-C₁-C₄-alkyl steht,

25 R¹³ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio steht,

R¹⁴ für Wasserstoff, C₁-C₄-Alkyl, Hydroxy-C₁-C₄-alkyl, C₂-C₆-Alkenyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio-C₁-C₄-alkyl, C₁-C₄-Halogenalkoxy-

30 C₁-C₄-alkyl mit jeweils 1 bis 5 Halogenatomen, oder Phenyl steht,

oder

A für den Rest der Formel (A2)

(A2) steht, in welcher

R¹⁵ und R¹⁶ unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R¹⁷ für Halogen, Cyano oder C₁-C₄-Alkyl, oder C₁-C₄-Halogenalkyl oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

5

oder

A für den Rest der Formel (A3)

(A3) steht, in welcher

R¹⁸ und R¹⁹ unabhängig voneinander für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R²⁰ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

10

oder

A für den Rest der Formel (A4)

(A4) steht, in welcher

15

R²¹ für Wasserstoff, Halogen, Hydroxy, Cyano, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy oder C₁-C₄-Halogenalkylthio mit jeweils 1 bis 5 Halogenatomen steht,

oder

20

A für den Rest der Formel (A5)

(A5) steht, in welcher

R²² für Halogen, Hydroxy, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

25

R²³ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen, C₁-C₄-Alkylsulphinyl oder C₁-C₄-Alkylsulphonyl steht,

oder

A für den Rest der Formel (A6)

(A6) steht, in welcher

R²⁴ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,R²⁵ für C₁-C₄-Alkyl steht,Q¹ für S (Schwefel), O (Sauerstoff) SO, SO₂ oder CH₂ steht,5 p für 0, 1 oder 2, wobei R²⁵ für identische oder verschiedene Reste steht, wenn
p für 2 steht,

oder

A für den Rest der Formel (A7)

(A7) steht, in welcher

10 R²⁶ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A8)

(A8) steht, in welcher

R²⁷ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

15 oder

A für den Rest der Formel (A9)

(A9) steht, in welcher

R²⁸ und R²⁹ unabhängig voneinander für Wasserstoff, Halogen, Amino, C₁-C₄-Alkyl
oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen stehen,20 R³⁰ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5
Halogenatomen steht,

oder

A für den Rest der Formel (A10)

(A10) steht, in welcher

25 R³¹ und R³² unabhängig voneinander für Wasserstoff, Halogen, Amino, Nitro, C₁-C₄-
Alkyl oder C₁-C₄-Halogenalkyl having 1 bis 5 Halogenatomen stehen,

R^{33} für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A11)

(A11) steht, in welcher

5

R^{34} für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)-amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

10

R^{35} für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A12)

(A12) steht, in welcher

15

R^{36} für Wasserstoff, Halogen, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)-amino, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

20

R^{37} für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A13)

(A13) steht, in welcher

25

R^{38} für Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A14)

(A14) steht, in welcher

R^{39} für Wasserstoff oder C₁-C₄-Alkyl steht,

R^{40} für Halogen oder C₁-C₄-Alkyl steht,

oder

A für den Rest der Formel (A15)

(A15) steht, in welcher

R⁴¹ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

5

oder

A für den Rest der Formel (A16)

(A16) steht, in welcher

R⁴² für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

10

oder

A für den Rest der Formel (A17)

(A17) steht, in welcher

R⁴³ für Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio oder C₁-C₄-Halogenalkoxy mit jeweils 1 bis 5 Halogenatomen steht,

15

oder

A für den Rest der Formel (A18)

(A18) steht, in welcher

R⁴⁴ für Wasserstoff, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonyl, Di(C₁-C₄-alkyl)aminosulfonyl, C₁-C₆-Alkylcarbonyl oder jeweils gegebenenfalls substituiertes Phenylsulfonyl oder Benzoyl steht,

20

R⁴⁵ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

25

R⁴⁶ für Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

R⁴⁷ für Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl mit 1 bis 5 Halogenatomen steht,

oder

A für den Rest der Formel (A19)

(A19) steht, in welcher

R⁴⁸ für C₁-C₄-Alkyl steht.

5

2. Verfahren zum Herstellen der Haloalkylcarboxamide der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass man

a) Carbonsäure-Derivate der Formel (II)

10

in welcher

A die oben angegebenen Bedeutungen hat und

X¹ für Halogen oder Hydroxy steht,

mit Anilin-Derivaten der Formel (III)

15

in welcher R, R¹, R², R³, R⁴ und M die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

oder

20

b) Hexylcarboxanilide der Formel (I-a)

in welcher R, R¹, R², R³, M und A die oben angegebenen Bedeutungen haben mit Halogeniden der Formel (IV)

R^{4-A}-X² (IV)

25

in welcher

X² für Chlor, Brom oder Iod steht,

R^{4-A} für C₁-C₈-Alkyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₃-C₈-Cycloalkyl; C₁-C₆-Halogenalkyl, C₁-C₄-Halogenalkylthio,

- C₁-C₄-Halogenalkylsulfinyl, C₁-C₄-Halogenalkylsulfonyl, Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-Halogencycloalkyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; Formyl, Formyl-C₁-C₃-alkyl, (C₁-C₃-Alkyl)-carbonyl-C₁-C₃-alkyl, (C₁-C₃-Alkoxy)carbonyl-C₁-C₃-alkyl; Halogen-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, Halogen-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl mit jeweils 1 bis 13 Fluor-, Chlor- und/oder Bromatomen;
- (C₁-C₈-Alkyl)carbonyl, (C₁-C₈-Alkoxy)carbonyl, (C₁-C₄-Alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Cycloalkyl)carbonyl; (C₁-C₆-Halogenalkyl)carbonyl, (C₁-C₆-Halogenalkoxy)carbonyl, (Halogen-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-Halogencycloalkyl)carbonyl mit jeweils 1 bis 9 Fluor-, Chlor- und/oder Bromatomen; oder -C(=O)C(=O)R⁵, -CONR⁶R⁷ oder -CH₂NR⁸R⁹ steht,
- wobei R⁵, R⁶, R⁷, R⁸ und R⁹ die oben angegebenen Bedeutungen haben, in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt.
- 15 3. Mittel zur Bekämpfung unerwünschter Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Haloalkylcarboxamid der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
- 20 4. Verwendung von Haloalkylcarboxamiden der Formel (I) gemäß Anspruch 1 zur Bekämpfung unerwünschter Mikroorganismen.
- 25 5. Verfahren zur Bekämpfung unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man Haloalkylcarboxamide der Formel (I) gemäß Anspruch 1 auf die Mikroorganismen und/oder deren Lebensraum aus bringt.
- 30 6. Verfahren zur Herstellung von Mitteln zur Bekämpfung unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man Haloalkylcarboxamide der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
7. Anilin-Derivaten der Formel (III)

in welcher R, R¹, R², R³, R⁴ und M die in Anspruch 1 angegebenen Bedeutungen haben.

Haloalkylcarboxamide

Z u s a m m e n f a s s u n g

Neue Haloalkylcarboxamide der Formel (I)

in welcher

R, R¹, R², R³, R⁴, M und A die in der Beschreibung angegebenen Bedeutungen haben,

mehrere Verfahren zur Herstellung dieser Stoffe und deren Verwendung zur Bekämpfung unerwünschter Mikroorganismen, sowie neue Zwischenprodukte und deren Herstellung.