COURSE PROJECT

OBSERVATIONS FROM PLACES & THEIR NAMES

CHAPTER 3 – STATS & MACHINE LEARNING

GAPMINDER COUNTRIES REGRESSION

GROUP1

country-related datasets

- agriculture_GDP.csv
- agriculture_land.csv
- d children_per_women.csv
- energy_production.csv
- forest_coverage.csv
- gdp_growth.csv
- ₫ hiv_adults.csv
- imports.csv
- income_pp.csv
- male_blood_pressure.csv
- ₫ tax.csv

Firstly we combine other country-related data sets with previous geographic data sets and get a new data sets which have many information.

Then we select 'GDP' as the variable that we want to predict, and eight related variables as our input.

When we get the train sets and test sets, we consider using six models to make a regression:

- "LinearRegression"
- "DecesionTree"
- "Kneibor"
- "AdaBoostRegressor"
- "GBRTRegression(Gradient Boosting)"
- "Extra Tree"

For each model, we give the Contrast Curve and their Score and input their MSE and RMSE:

DecesionTree:

MSE: 0.08550686781742495

RMSE: 0.29241557382845557

LinearRegression:

MSE: 0.25283456529873943

RMSE: 0.5028265757681663

AdaBoostRegressor:

MSE: 0.0636497279190832

RMSE: 0.25228897700669206

GBRTRegression:

MSE: 0.013758100596726035

RMSE: 0.11729492997025079

Kneibor:

MSE: 0.01721613900881275

RMSE: 0.13121028545359067

ExtraTree:

MSE: 0.0876803445908834

RMSE: 0.29610867023929477

GEONAMES CLASSIFICATION

GROUP1

EastAsia CN HK JP KP KR LA MO TW VN #

S&SEAsia BD BT BN CC ID IN KH LK MM MV MY NP PH SG TH TL #

EnUsAuNz AU CA CX FK IM IO NZ US VG VI #

Latinos AG AI AR AW BB BL BO BR BZ CL CO CR CU CW ... VE #

Arabics AE AF BH DZ EG EH IL IQ IR JO KG KW KZ LB LY OM ... #

WEurope AD AL AT BE CH DE DK FI FO FR GL GR HR IE IS IT LI LU MC ... VA #

EEurope AM AZ BA BG BA BY CY CZ EE GE HU LT LV MD ME MK ...#

Oceania AS BM CK FJ FM KI NR PG PW TK TO TV WS #

SSAfrica AO BF BI BJ BW CD CF CG CI CM CV DJ ER ET GA ... #

Two significant drawbacks for a simple feedforward NN model:

- Each time the output of the network depends only on the current input, without considering the effects of the previous several inputs;
- The dimensions of the input and output are fixed, which is not efficient for variable length sequential data like text.

Recurrent Neural Network (RNN) solves the above problem. It is a variety of neural network that is used specifically for processing time series data samples. The model remembers previous recorded data and utilize the whole serial relations.

```
def lineToTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li, letter in enumerate(line):
        tensor[li][0][letterToIndex(letter)] = 1
    return tensor
```

Δ

100000...0

BAD

0 1 0 0 0 0 ... 0 1 0 0 0 0 0 ... 0 0 0 0 1 0 0 ... 0

For each iteration of training, the following process is executed:

- Create input and target tensors
- Create a zeroed initial hidden state
- Read each letter in and Keep hidden state for next letter
 - Compare final output to target
 - Back-propagate
 - Return the output and loss

```
D:\Develop\Python\GeonamesN\code
   λ py train.py
                                                                      D:\Develop\Python\GeonamesN\code
   Average loss: 2.187102
                                                                      λ python predict.py Fancheng
   Average loss: 2.122357
   Average loss: 2.080929
                                                                     > fancheng
   Average loss: 2.049070
                                                                      (-0.63) EastAsia
   500 1% (0m 1s) 2.1564 fatukanutu / WEurope X (S&SEAsia)
                                                                     (-1.82) WEurope
                                                                     (-2.26) S&SEAsia
   Average loss: 1.934250
   Average loss: 1.817812
                                                                     D:\Develop\Python\GeonamesN\code
   Average loss: 1.787719
                                                                     λ python predict.py Nah Truong
   Average loss: 1.860767
  1000 2% (0m 2s) 1.1032 mailly-le-chateau / WEurope /
                                                                    > nah truong
  Average loss: 1.839910
                                                                    (-1.26) S&SEAsia
  Average loss: 1.760699
                                                                    (-1.43) EnUsAuNz
  Average loss: 1.923570
                                                                    (-1.72) WEurope
  Average loss: 1.704505
                                                                    D:\Develop\Python\GeonamesN\code
  Average loss: 1.790910
                                                                    \lambda python predict.py Vladimirkoiszavk
 1500 3% (0m 4s) 0.7731 colonia la joya / Latinos √
  Average loss: 1.653982
                                                                    > vladimirkoiszavk
 Average loss: 1.756644
                                                                    (-0.04) EEurope
 Average loss: 1.746588
                                                                    (-4.60) WEurope
 Average loss: 1.753437
                                                                   (-4.63) Arabics
 Average loss: 1.815430
 2000 5% (0m 5s) 1.4857 manau / WEurope /
                                                                   D:\Develop\Python\GeonamesN\code
 Average loss: 1.696322
                                                                   λ python predict.py Rio Je Satino
 Average loss: 1.754698
 Average loss: 1.754979
                                                                   > rio je satino
 Average loss: 1.828953
                                                                   (-0.49) Latinos
 Average loss: 1.792830
                                                                   (-2.21) WEurope
2500 6% (0m 7s) 2.0786 xiayang / WEurope X (EastAsia)
                                                                   (-2.40) EnUsAuNz
Average loss: 1.762827
                                                                  D:\Develop\Python\GeonamesN\code
Average loss: 1.716784
Average loss: 1.844258
                                                                  λ python predict.py Parisburg
Average loss: 1.782177
Average loss: 1.777431
                                                                  > parisburg
3000 7% (0m 8s) 1.2567 archigny / WEurope ✓
                                                                  (-1.04) WEurope
                                                                  (-1.51) S&SEAsia
                                                                  (-2.05) EnUsAuNz
```


D:\Develop\placename-insights\back-end\classification\code (master -> origin) λ py plot.py Confusion Matrix: tensor([261., 64., 13., 28., 5., 16., 6., 0., 35.]) tensor([26., 250., 22., 67., 19., 23., 5., 0., 16.])

tensor([20., 152., 36., 60., 105., 39., 19., 0., 25.]) tensor([12., 32., 84., 123., 3., 165., 21., 0., 14.]) tensor([15., 52., 38., 75., 10., 48., 204., 0., 13.]) tensor([16., 115., 28., 157., 0., 30., 18., 0., 106.]) tensor([42., 72., 48., 112., 18., 44., 9., 0., 98.])

tensor([3., 21., 251., 93., 3., 60., 2., 0., 9.]) tensor([9., 42., 69., 261., 4., 24., 4., 0., 11.])

```
category = randomChoice(all_categories)
line = randomChoice(category_lines[category])
tuple = randomChoice(all_lines)
line = tuple[0]
category = tuple[1]
```


THANKS FOR YOUR TIME

GROUP1

