Mirte-Master build

Legenda

• TODOs

Mirte master main pcb

• Under pico also small transistor

• R1: 680R

• C1, C4-7: 100nF

• C3(round one): 1000uF

• C2: 10uF

• All connectors JST-XH, except servo

Mirte-master control&sense board

- Distribute signals to motors and sonars
- Saves wiring from top to bottom
- R1-4: 4k7
- R5-8: 10k
- All connectors jst-xh, except motor connectors(jst ph)

USB switch pcb

- Switches power to astra camera bc boot issue
- 3 more io for fun, diodes for visualization
- Uses Orange pi GPIO4_A4
- R1: 10k
- R2-5: 220R
- U1: SIP32509DT-T1-GE3 (switch ic)
- C1: 10uF
- C2: 100nF
- J4 not needed (kicad rendering error)
 - L->R: 3V3, GPIO4_B4, GPIO4_B5, GPIO0_D1, **GPIO4_A4**, GND
- Header should point downwards (kicad err)
- J3: usb b-micro connector with hooks at bottom

BMS PCB

- Connects to jst xh connector of battery
- Solder cable from bms to J2

Requirements

- · Pcbs soldered
- Cables
 - Usb cables (2x b micro, 1x C)
 - JST XH 4 PIN (INA226)
 - JST XH 3 pin (relay)
 - Jst xh 4 pin (oled)
 - Jst ph 3 pin (servo), included
 - <mark>...</mark>
- Custom cables
 - Switch cable, 180mm
 - + jst xh 2 pin cable
 - Relay cable
 - PSU cable 95-120mm
 - INA226 cable 2x 160mm
 - Power cable
 - Hbridge cables
- Other parts:
 - Pico
 - · imu
 - 12->5v converter with wires(95-120mm length)
 - Ina226
 - Relay module
 - Orange pi with emmc and OS installed

- Fit the IMU and Rpi Pico on the PCB
- Pico usb pointing to the top

- Screw in the PCB into the frame
 - Nylon/metal standoffs
 - M3 bolts

Connect 5v regulator

• Connect all 4 wires

Connect INA226

- Power
- Signal, hooks away from INA226 pcb

Connect relay

- Power, connect to NO and COMM
- Signal, hooks away from relay pcb

Connect switch

• Power, use 2 tabs on one side of black divider switch

• Data: use other 2 tabs

GND, SIG

Connect power

Power

Connect oled

- Like on normal Mirte
 - Hooks pointing up

Connect servo cable

- Jst **ph** cable to outside
- Use 12V connector

GND, 12v, DATA

Connect hbridge power

2x {12V, GND}

- Connect 2x 2wires to the H-bridges power screw terminals
- Loop them down to the hbridge

Connect cable for bottom pcb & Sub power, jst xh 3 pin

- Encoder cable & sonar cable
 - Jst xh 8 pin, mark sonar cable
- Loop cables thru hole next to pcb

Connect power orange pi

• Connect usb c cable to orange pi and pcb

Connect Rpi pico

Connect usb b-micro cable to orange pi and pico

Add usb power switch

- Put the usb power switch pcb on top of the orange pi, the pins most away from the usb ports.
- Connect usb A -> B-micro cable from orange pi to switch pcb
 - Hooks down

Connect signals from main pcb

- Connect marked cable for sonars to sonar connector
- Connect other 8pin cable to encoder connector
- Connect 3 pin cable for power
- Connect pca9685 cable, hooks up

Sonar wiring

- Connect each sonar connector to a sonar
 - Hooks pointing away from sonar pcb

Hbridge wiring

- Connect power from top pcb to screw terminals
 - 12V and GND, leave 5V unconnected
- Connect outputs to pcb
- Connect inputs to PCA9685 pcb
 - Input 1 on first output yellow row
 - Left hbridge on 1:4, right one on 5:8
- Add jumpers EN1&2 & 5V

Motor wiring

- Connect each motor to the pcb
- Jst ph 6 pin

pcbs

Connect astra to usb switch pcb

Connect lidar

- USB A -> B-micro from orange pi to lidar board
- Lidar cable to lidar pcb
 - Loop thru bottom frame

BMS

• Connect bms cable(soldered to pcb) to BMS board

Setup servos

- Before connecting arm to pcb or to eachother
- #1: Give servos their correct ids and min-max range
 - Set to home position
- Build arm
- #2: Start check script, move arm to home position
 - Offsets will be written to servos automatically

Servos

- Daisychain rotation servo to shoulder, elbow, wrist and gripper servos.
- Rotation servo

Name	Туре	ID	Typ Min	Тур Мах	Home angle
Rotation	HX12	2	?	?	?
Shoulder	X	3			
Elbow	X	4			
Wrist	HX12	5			
Gripper	HX12	6			

Orange pi

- 1 sd card required per build setup
- Flash flasher system image
- Put emmc in orange pi(opi) you want to flash (combo)
- Put sd card in opi
- Power on opi
- Sd card will flash emmc and spi flash automatically
- When the orange pi shuts down automatically, it's done

Pico

- Flash pico with picotool or normal windows usb-disk method
- LINK

Test

- Disconnect opi power from pcb and pico from opi
- Upload test script
- Turn on