#### **WEBX CA REPORT**

| Name of Student   | Aditya Sampath Kumar |
|-------------------|----------------------|
| Class and Roll No | D15A / 01            |
| DOP               |                      |
| DOS               |                      |
| Sign and Grade    |                      |

**TITLE: Accident Detection System** 

#### PROJECT DESCRIPTION

**Tech Stack:** Next.js, Flask, Keras, TensorFlow, REST APIs, Python

#### **Description:**

The Accident Detection System is an Al-powered web application designed to detect vehicular accidents in real-time using deep learning and deliver instant alerts. The frontend, built with **Next.js**, provides a responsive and intuitive interface for users and administrators to monitor incidents. The backend leverages **Flask** to serve a trained **Keras model** that processes video frames or sensor data to classify potential accidents with high accuracy.

#### **Key Features:**

- Deep Learning-based Detection: Utilizes a CNN/LSTM model (trained on accident/non-accident datasets) to predict accidents from visual or time-series input.
- Real-time Processing: Video or image input streamed from client-side to Flask backend for instant inference.
- REST API Integration: Secure communication between Next.js frontend and Flask backend using custom APIs.
- Dashboard & Analytics: Visual display of detection results, alert history, and performance metrics.
- Future Scope: Integration with GPS and emergency services for automated responses.

**Use Cases:** Smart traffic systems, public transportation safety, autonomous vehicles, real-time highway surveillance.

### **TECHNOLOGIES USED**

• Frontend: Nextjs, TypeScript, Tailwind CSS

• Backend: Flask (Python)

• Development Tools: VS Code, Postman, Git

## **OUTPUT:**





# **CONCLUSION:**

The project showcases the integration of Nextjs, TypeScript, Flask, to build a feature-rich platform. It effectively implements core functionalities like accident detection.