

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent Unit of Manipal Academy of Higher Education)

MANIPAL

Drives, Controls and Modelling Laboratory Manual (MTE 3161)

Fifth Semester B. Tech. (Mechatronics Engineering)

Prepared By	Dr. Vijay Babu Koreboina
	(Lab-in-charge)
	Dr. Shweta Vincent
Approved By	Dr. Dattaguru V. Kamath
	(HoD- Department of Mechatronics Engineering)

DEPARTMENT OF MECHATRONICS ENGINEERING

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent Unit of Manipal Academy of Higher Education)

MANIPAL

Drives, Controls and Modelling Laboratory Manual (MTE 3161)

Fifth Semester B.Tech (Mechatronics Engineering)

NAME: Swaraj Dangare

REG NO: 210929156

ROLL NO: <u>37</u>

Experiment III: Open loop control of Controlled Rectifiers and Voltage Regulators

Date: 14 /09 /2023

Aim:

To simulate the open loop control of controlled AC-DC and AC-Converters.

Problem 1:

Understand the concept uncontrolled and controlled half wave rectification.

Given Data: 1ph 230V, 50Hz AC supply, Resistive load of 10Ω .

a) Estimate the average output voltage for uncontrolled and controlled half wave rectifier and validate the same through simulation.

Half-wave uncontrolled = Vm/pi Half-wave controlled rectifier, the average value of the voltage is $Vm(1+cos(\infty))\div 2\pi$

Do for alpha = 30, 60,90,280 and show the avg output voltage - tabulate

b) Calculate the firing angle required to meet the desired average output voltage of 100V and validate the same through simulation.

Problem 2:

Simulate the concept of full wave bridge controlled and uncontrolled rectifiers.

full wave bridge uncontrolled rectifiers = Vo =2 Vm/pi

full wave bridge controlled rectifiers = Vo =2 Vm cos (alpha)/pi

Uncontrolled bridge rectifier

Controlled bridge rectifier

Problem 2:

Simulate the concept of 3ph full wave bridge controlled and uncontrolled rectifiers

• Vary the firing angle between 0 and 180 deg and observe the output voltage.

Problem 3:

Simulate the concept of AC-AC Voltage regulator.

Open-Ended Lab Exercises - 3:

- 1. Simulate a full wave diode rectifier with 230V rms input AC supply connected to a resistive load of $R=32.5\Omega$.
- b) Plot the output voltage across Resistive Load.

c) Observe the output voltage if a 4700µF capacitor is connected across the resistive load.

[5]

