Free choice and exhaustification: an account of subtrigging effects

Maria Aloni

University of Amsterdam {M.D.Aloni}@uva.nl

SuB 22/9/2006

Overview

- Examples:
 - (1) a. #Any woman fell.
 - b. Any woman may fall.
 - c. Any woman who tried to jump fell. (SUBTRIGGING)
- **②** Goal: explain distribution and meaning of any in (1).
- **3** Key components of the analysis:
 - ▶ Any is an indefinite (contra Dayal)
 - ▶ Indefinites induce sets of propositional alternatives (Aloni, K&S)
 - ► Any triggers hidden structure (Menéndez-Benito):
 - (2) $[\forall]$... **Exh** (... any ...)
 - ► Facts in (1) explained by interactions between [∀], **Exh** and the modal operator (in (1b)) and the post-nominal modifier (in (1c)).

Structure of the talk

- Background:
 - ▶ 'Hamblin' semantics for indeterminate pronouns (K&S 2002);
 - ▶ Menéndez-Benito (2005) on any in modal statements.
- Proposal: subtrigging and modal effects via exhaustification.
 - ► Exhaustification (Zeevat 1994);
 - ▶ Type-shift rules : SHIFT_e & SHIFT_{⟨s,t⟩};
 - ▶ A first application: free relatives and wh-interrogatives (Jacobson 1995);
 - ▶ Main application: subtrigging and modal effects of FC any.

'Hamblin' semantics for indeterminate pronouns

MOTIVATION

Explain variety of indefinite pronouns. E.g. any, a, some, ...

How

- ▶ Indefinites 'introduce' sets of propositional alternatives.
- ▶ These are bound by propositional operators: $[\exists]$, $[\forall]$, [Neg].
- ▶ Different indefinites associate with different operators.

EXAMPLES

- (3) a. $[\exists]$ (someone fell)
 - b. $[\forall]$ (anyone fell)

- d. d_1 fell d_2 fell d_3 fell \dots
- c. [Neg] (nessuno cadde)

A closer look

- In a Hamblin semantics, all expressions denote sets.
- Mostly singleton sets of traditional denotations. E.g.
 - $\llbracket fell \rrbracket \rrbracket_{w,q} = \{\lambda x \lambda w'. \text{FELL}(x)(w')\}$
- Indefinites map to multi-membered sets of alternatives. E.g.
 - $\llbracket someone/anyone/who \rrbracket_{w,a} = \{x \mid HUMAN(x)(w)\}$
- Via pointwise functional application, these alternatives expand into propositional sets:
 - $\llbracket fell \rrbracket_{w,q}(\llbracket someone/anyone/who \rrbracket_{w,q}) = \{ \text{that } d_1 \text{ fell, that } d_2 \}$ (6)fell, that d_3 fell,...}
- Until they reach one of the propositional operators. E.g.
 - $[\forall](\llbracket fell \rrbracket_{w,q}(\llbracket anyone \rrbracket_{w,q})) = \{\text{that everyone fell}\}$

Any: naif account

• $[\forall]$ quantifies over propositional alternatives.

- (8) a. $[\forall]$ (anyone fell) $\boxed{d_1 \text{ fell } | d_2 \text{ fell } | d_3 \text{ fell } | \dots}$ b. $[\forall]$ (anyone may fall) $\boxed{\Diamond d_1 \text{ fall } | \Diamond d_2 \text{ fall } | \Diamond d_3 \text{ fall } | \dots}$ c. $[\forall]$ (anyone who tried to jump fell) $\boxed{d_1 \text{ fell } | d_2 \text{ fell } |}$
 - Merits: captures universal meaning of (c);
 - Problems: doesn't explain (a) & dubious truth-conditions for (b):

E.g. suppose only two options: (i) nobody falls; (ii) everybody falls. Then (b) would be true against intuitions [Menéndez-Benito 2005].

Any: Menéndez-Benito account

• Excl transforms Hamblin alternatives into sets of mutually exclusive propositions.

(9) a. $[\forall](\mathbf{Excl}(\text{anyone fell}))$

only d_1 fell only d_2 fell ...

b. $[\forall](\Diamond(\mathbf{Excl}(\text{anyone fall})))$

c. $[\forall](\mathbf{Excl}(\text{anyone who tried to jump fell}))$

```
only d_1 fell | only d_2 fell
```

- MERITS: captures (a) (out because inconsistent) and (b) (consistent and unrestricted liberty of choice);
- Problems: doesn't extend to (c) (out because inconsistent).

Synopsis

- Desiderata:
 - ► M-B's predictions for the unsubtrigged and modal cases (a) and (b) [via Excl];
 - ▶ Naif account's predictions for the subtrigged case (c) [no Excl].
- Question: why **Excl** does not seem to play a role when a post-nominal modifier is present?
- My answer will assume, rather than **Excl**, a much more general and independently motivated notion **Exh** of exhaustification.

Exhaustification

- At work in the semantics of a large variety of constructions, a.o. free relatives, wh-interrogatives, correlatives, degree relatives (Grosu & Landman)
- Not surprising if at work in FC constructions, which in many languages employ wh-morphology (Giannakidou & Cheng)
- Exhaustive values: minimal/maximal elements wrt some order (e.g. Zeevat 1994)
 - (10) a. What J can spend is less than what J can live on.
 - b. The max amount of money that J can spend is less than the min amount of money that J can live on.
 - (11) a. John helped who fell.
 - b. John helped the (max collection of) people that fell.

The **Exh** operator

- Exh takes a domain D and a property P and returns the property of exhaustively satisfying P wrt D:
 - (12) a. $\mathbf{Exh}[D, P]$ type: $\langle e, \langle s, t \rangle \rangle$ b. $\{\lambda x \lambda w[x \text{ exhaustively satisfies } P \text{ wrt } D \text{ in } w]\}$
- E.g. using Zeevat 1994:
 - (13) x exhaustively satisfies P wrt D iff x is in D, P(x) is true, and for all y in D if P(y) is true then P(x) entails P(y).
- \bullet x and y range over domains of plural individuals (e.g. Link 1983).

Two type-shift rules for properties

- SHIFT_e: $\langle e, \langle s, t \rangle \rangle \to e$ (from properties to **entities**)
 - (14) Partee iota rule:

a.
$$P \rightarrow \iota x[P(x)(w)]$$

b. $\{P\} \rightarrow \{d\}$

if d is the unique P in w, undefined otherwise

- ② SHIFT $\langle s,t \rangle$: $\langle e, \langle s,t \rangle \rangle \rightarrow \langle s,t \rangle$ (from properties to **propositions**)
 - (15) Hamblin question formation rule:

a.
$$P \rightarrow \hat{p} [\exists x [P(x) = p]]$$

b.
$$\{P\} \rightarrow \{d_1 \text{ is } P, d_2 \text{ is } P, d_3 \text{ is } P, ...\}$$

◆□▶ ◆圖▶ ◆豊▶ ◆豊 → りへで

Type shifting exhaustive values

When applied to exh[D,P]

- (i) SHIFT $_e$ (always defined) yields maximal plural entities:
 - (16) a. SHIFT_e($\exp[D, P]$) b. {the sum of entities from D satisfying P in w}
- (ii) SHIFT_{$\langle s,t\rangle$} yields sets of mutually exclusive propositions:
 - (17) a. SHIFT $_{\langle s,t\rangle}(\mathbf{exh}[D,P])$ b. {only d_1 is P, only d_2 is P, only d_1 & d_2 are P, ...}

First application: Free relatives and wh-interrogatives

• Free relatives and wh-interrogatives are born with the same meaning:

```
type: \langle e, \langle s, t \rangle \rangle
(18)
            a. who fell
            b. exh[who, fell]
```

c. $\{\lambda x \lambda w | x \text{ is the sum of people falling in } w\}$

- But typeshift differently (cf. Cooper, Jacobson):
 - (19)John helped [DP] who fell type: eSHIFT_e($\exp[who, fell]$) b.
 - $\{\text{the sum of people falling in } w\}$
 - (20)a. John knows [Q] who fell type: $\langle s, t \rangle$ $SHIFT_{\langle s,t\rangle}(\mathbf{exh}[who, fell])$ $\{\text{only } d_1 \text{ fell, only } d_2 \text{ fell, only } d_1 \& d_2 \text{ fell, } \dots \}$

A closer look at interrogatives

- Questions and propositions have the same type in a Hamblin semantics, namely $\langle s, t \rangle$. Questions typically denote multi-membered sets.
- Difference between question/proposition embedding verbs explained in terms of propositional quantifiers:
 - (21) a. John knows who fell/that Mary fell.
 - b. $Bel_j[true](A)$
 - (22) a. John believes that Mary fell/#who fell.
 - b. $Bel_j[\exists](A)$
 - (23) a. John wonders who fell/# that Mary fell.
 - b. $[\forall] \neg \operatorname{Bel}_{i}(A)$

A closer look at free relatives

- We assume a further operation ↓ which transforms singletons of plural sets into sets of atomic alternatives:
 - (24) a. $[\![\alpha]\!]_{w,g} = \{\{a,b\}\}\$ a singleton set of plural entities b. $[\![\downarrow\alpha]\!]_{w,g} = \{a,b\}$ a set of atomic alternatives
- \prescript needed to account for universal/distributive meanings of free relatives (and degree relatives) (cf. Grosu and Landman):
 - (25) We will veto three-quarters of whatever proposals you make.
 - a. Of the proposals: three-quarters won't make it. (definite)
 - b. For each proposal: three-quarters of it will be vetoed.

(universal)

(26) I took with me every book there was on the table.

4□ > 4□ > 4□ > 4□ > 4□ > 900

Subtrigging and modal effects: core idea

- FC items like wh-words trigger the application of **Exh**.
- Unsubtrigged cases:
 - (27) a. $[_{IP}$ Any woman fell] b. $[_{IP}$ Any woman may fall]
 - Exhaustification must apply at the IP level;
 - ▶ SHIFT $\langle s,t \rangle$ generates sets of mutually exclusive propositional alternatives.
- Subtrigged cases:
 - (28) $[_{DP}$ Any woman who tried to jump] fell.
 - ▶ Exhaustification can apply at the DP level;
 - ▶ SHIFT_e and \downarrow apply and generate sets of individuals.
- Post-nominal modifier crucial for (28) because it supplies the 2nd argument essential for the application of **Exh** inside the DP.

Any: final proposal

(29) a. $[\forall]$ (SHIFT_(s,t)(**Exh**[anyone, fell]))

only d_1 fell	only d_2 fell	
only a_1 ich	only a ₂ ich	• • • • •

b. $[\forall](\Diamond(SHIFT_{(s,t)}(\mathbf{Exh}[anyone, fall])))$

$$\Diamond$$
 only d_1 fall $| \Diamond$ only d_2 fall $| \dots |$

c. $[\forall](\downarrow \text{SHIFT}_e(\mathbf{Exh}[\text{anyone, who tried to jump}]) \text{ fell})$

```
d_1 fell d_2 fell
```

- MERITS: captures (a) (out because inconsistent), (b) (consistent and unrestricted freedom of choice) and (c) (consistent and universal meaning).
- Problems: ...

Problems, problems, problems

- Theoretical: Where do $[\forall]$ and \mathbf{Exh} come from?
- Empirical: Not every type of postnominal modifier yields (good) subtriggers. Infinitival relatives don't.
 - (30) a. A friend to talk to is a blessing.
 - b. #Any friend to talk to is a blessing.
 - c. Any friend who you can talk to is such a blessing.

• ...

THE END