Complexité algorithmique

Complexité

- Exécution d'un programme →utilisation des ressources de l'ordinateur
 - temps de calcul pour exécuter les opérations
 - occupation mémoire (programme + données)
- Mesurer ces 2 grandeurs pour comparer entre eux différents algorithmes
- « Sur toute machine, quelque soit le langage de programmation,
 l'algorithme A1 est meilleur que A2 pour des données de grande taille »

Temps d'exécution d'un programme

- Mettre en évidence les opérations fondamentales: le temps est proportionnel au nombre de ces opérations
 - Recherche d'un élément E dans une liste L: nombre de comparaisons entre E et les éléments de L
 - Recherche d'un élément sur disque: nombre d'accès à la mémoire secondaire
 - Multiplication de matrices: nombre de multiplications et d'additions

Temps d'exécution d'un programme

- Soit n la taille des données soumise au programme
 - taille de la liste dans laquelle on cherche E
 - taille de la liste à trier
 - dimensions d'une matrice dont on calcule le carré
 - ...

- T(n): temps d 'exécution du programme
 - T(n) fonction de N dans R

Décompte du nombre d'opérations fondamentales

- P: nombre d'instructions dans un bloc de programme
- $P(\text{séquence}) = \sum P(E)$; E: élément de la séquence
- P(if C then I1 else I2) P(C) + max(P(I1), P(I2))
- P(boucle) = $\sum P(I_i)$; I_i = Ième itération de la boucle
- P(F(n)) s 'écrit en fonction de P(F(k)) pour une procédure ou fonction récursive → résolution d 'équations de récurrences

Temps d'exécution d'un programme

- Pour certains problèmes, le temps ne dépend pas seulement de la taille de la donnée mais aussi de la donnée elle-même
- Complexité au mieux
 T_{min}(n) = min(Temps(d)| d donnée de taille n)
- Complexité au pire $T_{max}(n) = max(Temps(d)| d donnée de taille n)$
- Complexité en moyenne $T_{moy}(n) = \sum_{d:donnée de taille n} p(d) *Temps(d)$

Temps d'exécution d'un programme

• $T_{min}(d) \le T_{moy}(d) \le T_{max}(d)$

•Un exemple de calcul: recherche séquentielle d'un élément X dans un tableau L

L:tableau [1..n] de Element

X: élément

Début

 $i \leftarrow 1$

Tantque $i \le n$ et $(L[i] \ne X)$ faire

$$i \leftarrow i+1$$

Fintantque

Si i>n alors i $\leftarrow 0$

Fin

Ordre de grandeur asymptotique: la notation *O*

- T(n) pour n grand
- Comparaison des ordres de grandeur asymptotique
- Définition:

Soit f et g deux fonctions de N dans R*+,

f = O(g) (f est en grand O de g) ssi

 $\exists c \in \mathbb{R}^{*+}, \exists n_0 \text{ tq } \forall n > n_0, f(n) \leq c g(n)$

• Ex: f(n)=10n et $g(n)=O(n^2)$

Equivalent: la notation Θ

• Définition:

f=
$$\Theta(g)$$
 ssi f= $O(g)$ et g= $O(f)$
c'est-à-dire
 $\exists c \in \mathbb{R}^{*+}, \exists d \in \mathbb{R}^{*+}, \exists n_0 \text{ tq}$
 $\forall n > n_0, d g(n) \leq f(n) \leq c g(n)$

Ex: $2n = \Theta(n)$ mais 2n n'est pas en $\Theta(n^2)$

Propriétés de le notation O

- Les constantes ne sont pas importantes
- Les termes d'ordre inférieur sont négligeables Si $T(n) = a_k n^k + ... + a_1 n + a_0$ avec $a_k > 0$ alors T(n) est en (n^k)

Si
$$\frac{h(n)}{g(n)} \xrightarrow{n \to \infty} 0$$
 alors $g(n) + h(n) = O(g)$

- Si T1(n) = O(f1) et T2(n) = O(f2)alors T1(n) + T2(n) = O(f1 + f2)et T1(n) * T2(n) = O(f1 * f2)
- Si f(n) = O(g) et g(n) = O(h)alors f(n) = O(h)

Appellation des ordres de grandeur courant

- O(1): constante
- $O(\log(n))$: logarithmique
- *O*(n): linéaire
- *O*(n log n): n log n
- $O(n^2)$: quadratique
- O(n3): cubique
- $O(2^n)$: exponentielle

Croissance comparée des fonctions fréquemment utilisées en complexité

Comparaisons des fonctions usuelles

- $\log(\mathbf{n}) = O(\mathbf{n})$
- $n^{1/2} = O(n)$
- $n^k = O(n^{k+1})$ pour tout $k \ge 0$
- $P(n) = O(n^k)$ pour tout polynôme P de degré $\leq k$
- $n^k = O(2^n)$ pour tout $k \ge 0$
- $2^{\mathbf{n}} = O(\mathbf{n}^{\mathbf{n}})$

(ouvrons une parenthèse

Rappels d'analyse pour classer les fonctions

Etudier de la limite de f/g pour comparer f et g

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & \text{f(n)} \in O(g(n)) \text{ mais } g(n) \notin O(f(n)) \\ c & \text{implique } f(n) \in O(g(n)) \text{ et } g(n) \in O(f(n)) \\ \infty & \text{f(n)} \notin O(g(n)) \text{ mais } g(n) \in O(f(n)) \end{cases}$$

Règle de L'Hôpital:

Si f et g sont dérivables et si
$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x)$$

Alors
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
 si cette limite existe

Et aussi la formule de Stirling

fin de la parenthèse)

• à propos de n!

$$n! \sim \sqrt{2\pi n} n^n e^{-n}$$

Rapport Temps / Taille des données

Complexités	1	log ₂ (n)	n	nlog ₂ (n	n ²	n ³	2 ⁿ
Evolution du temps t quand la taille des données est multipliée par 10	t	t+3,32	10 t	(10+ε)t	100 t	1000 t	t ¹⁰
Evolution de la taille quand le temps alloué est multiplié par 10	∞	n ¹⁰	10 n	(10-ε)t	3,16 n	2,15 n	n+3,32

- Toute lecture, écriture, affectation (sans appel de fonction) a un temps en O(1)
- Complexité d'une séquence=complexité de l'instruction de plus forte complexité
- Si C alors A1 sinon A2 O(c(n)) O(f1(n)) O(f2(n))

$$T(n) = O(c(n) + max(f1(n), f2(n)))$$

- Pour i de A à B faire
 Iter_i
 Finpour
- Si T(Iter_i) indépendant de i en \bowtie (f(n)), alors T(n) = O((B-A+1)) f(n))
- Si T(Iter_i) dépendant de i: T_{iter}(n,i) alors

$$T(n) = O(\sum_{i=A}^{B} T_{\text{iter}}(n,i))$$

Tant que C faire Iter Fintantque

- La difficulté est de déterminer une borne sup pour le nombre d'itérations:NB
- Si T(Iter)= O(f(n))T(n) = O(NB*(C(n) + f(n)))
- Si T(Iter) dépend de 1 'itération i $T(n) = O(NB*C(n) + \sum T_{iter}(n,i)$

- Procédures et fonctions récursives
- T(n) calculé grâce à des relations de récurrence

Exemple

- function fact(n:integer) :integer;
- begin
- if n<=1 then fact := 1
 else fact := n* fact(n-1)
 end;</pre>

- T(n) temps d'exécution en fonction de l'argument n
- base T(1) = a
- récurrence T(n) = b + T(n-1), pour n>1
- On démontre par récurrence que T(n) = a + (n-1) b pour $n \ge 1$
- Donc T(n) = O(n)

- On cherche dans un tableau TRIE dans l'ordre croissant L[1..n] l'indice d'un élement X
- Version récursive: recherche entre les indices g et d
 - Comparer X avec l'élément du milieu: L[m]
 - Si X = L[m], fin de le recherche
 - Si X > L[m], rechercher X entre les places m+1 et d
 - Si X < L[m], rechercher X entre g et m-1

```
Procedure dicho(X, L, g, d, resultat res: 0..n)

var m: 1..n

Début

Si g<= d alors

m := (g+d) div 2

Si X = L[m] alors res := m

sinon si X < L[m] alors dicho(X,L,g,m-1,res)

sinon dicho(X,L,m+1,d,res)

sinon res :=0

Fin
```

On étudie le cas le pire

$$T_{\max}(n) = O(\log_2 n)$$