

Diffusion Models in Discrete Space

daisy

Two technical routes

Center for Data-intensive Systems

Vanilla Diffusion Models

- Forward: from clean image x_0 , gradually add noise till we get a Gaussian noise x_T
- Reversed: from random Gaussian noise x_T , gradually denoise till we get a clean image x_0
- Trained with variational lower bound

$$\begin{array}{c}
\mathbf{x}_{T} \longrightarrow \cdots \longrightarrow \mathbf{x}_{t} \xrightarrow{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \mathbf{x}_{t-1} \longrightarrow \cdots \longrightarrow \mathbf{x}_{0} \\
\downarrow q(\mathbf{x}_{t}|\mathbf{x}_{t-1})
\end{array}$$

$$\mathcal{L}_{\text{vlb}}(\mathbf{x}_0) = \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_0, \mathbf{x}_t)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} - \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) \right].$$

Vanilla Diffusion Models

- Re-parameterize the denoiser to predict the noise or x_{t-1}
- Simplify the training process and loss function

$$\mathcal{L}_{\text{simple}}(\mathbf{x}_0) = \sum_{t=1}^{T} \mathbb{E}_{\substack{q(\mathbf{x}_t | \mathbf{x}_0) \\ \text{predicted mean of } p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)}} | \mu_{\theta}(\mathbf{x}_t, t) - \hat{\mu}(\mathbf{x}_t, \mathbf{x}_0) | |^2,$$

Vanilla Diffusion Models

- Operates on continuous space
- How to apply Diffusion Model on discrete space?

Transform discrete features into/out from continuous space

1. TRANSFORM

Embed Discrete Input

- Implement embedding layers to map discrete tokens w into continuous features x_0
- Adopt vanilla forward diffusion process to add noise

$$q_{\phi}(\mathbf{x}_0|\mathbf{w}) = \mathcal{N}(\mathsf{EMB}(\mathbf{w}), \sigma_0 I)$$

Classify Discrete Output

- Adopt vanilla reversed denoising diffusion process to generate $\widehat{x_0}$
- Implement classification network to obtain \widehat{w}

$$p_{\theta}(\mathbf{w} \mid \mathbf{x}_0) = \prod_{i=1}^n p_{\theta}(w_i \mid x_i)$$

Loss Function

$$\text{MSE Loss on} \\ \text{embedding layer} \\ \text{Classifier} \\ \mathcal{L}_{\text{simple}}^{\text{e2e}}(\mathbf{w}) = \underset{q_{\phi}(\mathbf{x}_{0:T}|\mathbf{w})}{\mathbb{E}} \left[\mathcal{L}_{\text{simple}}(\mathbf{x}_0) + ||\text{EMB}(\mathbf{w}) - \mu_{\theta}(\mathbf{x}_1, 1)||^2 - \log p_{\theta}(\mathbf{w}|\mathbf{x}_0) \right]$$

Co-train the embedding layer and classifier

Improve Generation Accuracy

• Train denoiser to explicitly model x_0 in every step

$$\mathcal{L}_{\mathbf{x}_0\text{-simple}}^{\text{e2e}}(\mathbf{x}_0) = \sum_{t=1}^T \mathbb{E}_{\mathbf{x}_t} ||f_{\theta}(\mathbf{x}_t, t) - \mathbf{x}_0||^2$$
$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}} f_{\theta}(\mathbf{x}_t, t) + \sqrt{1 - \bar{\alpha}} \epsilon$$

• Clamp predicted $\widehat{x_0}$ to the nearest word embeddings

$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}} \cdot \operatorname{Clamp}(f_{\theta}(\mathbf{x}_t, t)) + \sqrt{1 - \bar{\alpha}} \epsilon.$$

• Theoretically will guide the generated $\widehat{x_0}$ closer to the ground truth word embeddings

Diffusion models that operates on discrete space

2. DISCRETE DIFFUSION

Generalize to Discrete Space

Diffusion models on discrete space

Discrete Forward Diffusion

Using transition probability matrix to manipulate discrete features

Discrete Forward Diffusion

Various implementations of transition probability matrix

$$\boldsymbol{Q}_t = (1 - \beta_t)\boldsymbol{I} + \beta_t/K \ \mathbb{1}\mathbb{1}^T \text{ with } \beta_t \in [0, 1]$$

Absorbing

Transit to [MASK] with probability β_t

$$[\mathbf{Q}_t]_{ij} = \begin{cases} 1 & \text{if} \quad i = j = m \\ 1 - \beta_t & \text{if} \quad i = j \neq m \\ \beta_t & \text{if} \quad j = m, i \neq m \end{cases}$$

Gaussian

Discretized, truncated Gaussian distribution

$$[\mathbf{Q}_t]_{ij} = \begin{cases} \frac{\exp\left(-\frac{4|i-j|^2}{(K-1)^2\beta_t}\right)}{\sum_{n=-(K-1)}^{K-1} \exp\left(-\frac{4n^2}{(K-1)^2\beta_t}\right)} & \text{if } i \neq j \\ 1 - \sum_{l=0, l \neq i}^{K-1} [\mathbf{Q}_t]_{il} & \text{if } i = j \end{cases}$$

Discrete Reversed Diffusion

- Parameterized logits $p_{\theta}(x_{t-1}|x_t)$
- Re-parameterize to predict logits $p_{\theta}(x_0|x_t)$

$$p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) \propto \sum_{\widetilde{\boldsymbol{x}}_0} q(\boldsymbol{x}_{t-1}, \boldsymbol{x}_t|\widetilde{\boldsymbol{x}}_0) \widetilde{p}_{\theta}(\widetilde{\boldsymbol{x}}_0|\boldsymbol{x}_t).$$

Improve Generation Accuracy

Supervise the prediction of x₀ on every step

Standard VLB loss
$$L_{\lambda} = L_{\mathrm{vb}} + \lambda \; \mathbb{E}_{q(\boldsymbol{x}_{0})} \mathbb{E}_{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})} [-\log \widetilde{p}_{\theta}(\boldsymbol{x}_{0}|\boldsymbol{x}_{t})].$$
 Log-likelihood of x_{0} prediction

Reference

- X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto, "Diffusion-LM Improves Controllable Text Generation." NeuraIPS 2022.
- J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den Berg, "Structured Denoising Diffusion Models in Discrete State-Spaces." NeuraIPS 2021.
- Z. Lin et al., "GENIE: Large Scale Pre-training for Text Generation with Diffusion Model." http://arxiv.org/abs/2212.11685
- K. K. Haefeli, K. Martinkus, N. Perraudin, and R. Wattenhofer, "Diffusion Models for Graphs Benefit From Discrete State Spaces." http://arxiv.org/abs/2210.01549

Thanks!