1.204 Lecture 19

Continuous constrained nonlinear optimization: Convex combinations 2: Network equilibrium

Network equilibrium problem formulation

$$\min z(x) = \sum_{arcs \, a} \int_{0}^{x_{a}} t_{a}(\omega) \, d\omega$$

$$subject \, to$$

$$\sum_{paths \, k} f_{k}^{rs} = q_{rs} \quad \forall OD \, pairs \, r, s$$

$$f_{k}^{rs} \ge 0 \quad \forall k, r, s$$

$$x_{a} = \sum_{i} \sum_{j} \sum_{k} f_{k}^{rs} \quad \forall r, s, k$$

if a on path from r to s

Figure by MIT OpenCourseWare.

Figures, examples from Sheffi

Convex combinations algorithm 1

Applying the convex combinations algorithm requires solution of a linear program at each step

min
$$z^{n}(y) = \sum_{arcs\,a} \frac{\partial z(x^{n})}{\partial x_{a}} \cdot y_{a}$$
 for all feasible y

• Gradient of z(x) is just the arc travel times:

$$\frac{\partial z(x^n)}{\partial x_a} = t_a^n$$

• The linear program becomes:

$$\min z^{n}(y) = \sum_{a} t_{a}^{n} \cdot y_{a}$$

$$s.t. \sum_{k} g_{k}^{rs} = q_{rs} \quad \forall r, s$$

$$g_{k}^{rs} \ge 0 \quad \forall k, r, s$$

$$y_{a} = \sum_{rs} \sum_{k} g_{k}^{rs} \quad \forall a \text{ in path}$$

$$t_{a}^{n} = t_{a}(x_{a}^{n})$$

Convex combinations algorithm 2

- The linear program minimizes travel times over a network with fixed, not flow-dependent times.
 - Total time is minimized by assigning each traveler to shortest O-D path
 - Thus, a shortest path algorithm, plus loading flow on the links used by each O-D pair, solves the linear program
- Line search step uses bisection method which, for a minimization problem, requires a derivative
 - It happens to be easy to compute. After a lot of algebra:

$$\frac{\partial}{\partial \alpha} z[x^n + \alpha(y^n - x^n)] = \sum_a (y_a^n - x_a^n) t_a(x_a^n + \alpha(y_a^n - x_a^n))$$

Convex combinations steps

- Step 0: Initialization.
 - Find shortest paths based on t_a=t_a(0).
 - Assign flows to obtain {x_a¹}
- Step 1: Update times.
 - Set t_an=t_a(x_an) for all a
- Step 2: Direction finding.
 - Find shortest paths based on {t_aⁿ}
 - Assign flows to obtain auxiliary flows $\{y_a{}^n\}$
- Step 3: Line search. Find α_n that solves

$$- \min_{0 \le \alpha \le 1} \sum_{a} \int_{0}^{x_a^n + \alpha(y_a^n - x_a^n)} t_a(\omega) d\omega$$

• Step 4: Move. Set

$$x^{n+1} = x^n + \alpha_n (y^n - x^n)$$

• Step 5: Convergence test. If not converged, go to step 1

Figure by MIT OpenCourseWare.

Iter Step		Link: 1	2	3	Objective fn	Al pha
0 Update	t:	10.0	20. 0	25. 0	0.00	т р
Move	x:	10. 00	0.00	0.00		
1 Update	t:	947. 5	20. 0	25. 0	1975. 00	
Di recti on	y:	0.00	10.00	0.00		0. 597
Move	x:	4. 03	5. 97	0.00		
2 Update	t:	34. 8	34. 8	25. 0	197. 40	
Di recti on	y:	0.00	0.00	10.00		0. 161
Move	X:	3. 38	5. 00	1. 61		
3 Update	t:	22. 3	27. 3	25. 3	189. 99	
Di recti on	y:	10.00	0.00	0.00		0.036
Move	x:	3. 62	4. 83	1. 55		
4 Update	t:	26. 1	26. 4	25. 3	189. 45	
Di recti on	y:	0.00	0.00	10.00		0.020
Move	X:	3. 55	4. 73	1. 73		

3.59 4.69 1.71

NetworkEquilibrium data members

```
public class NetworkEquilibrium implements MathFunction {
    public static final int EMPTY= Short.MIN_VALUE;
    private int nodes;
    private int arcs;
                                      // Graph data structure
    private int[] head;
                                      // Graph data structure
    private int[] to;
    private double[] timeBase;
                                      // Zero flow time
    pri vate double[] timeExponent;
                                      // 4 in our example
    private double[] timeConst;
                                      // .015/lanes in example
    pri vate double[] D;
                            // Distance from root
                            // Predecessor node back to root
    private int[] P;
                            // Predecessor arc back to root
    private int[] Parc;
    pri vate double[] xFl ow; // Arc fl ows
    private double[] yFlow; // Auxiliary arc flows
                                      // t<sub>a</sub>
    pri vate double[] arcTime;
                                      // q_{rs}
    pri vate double[][] ODtrips;
    // This Java code is tested only on our simple example
    // It should be basically correct for larger problems, but...
```

NetworkEquilibrium constructor

```
NetworkEquilibrium(int n, int a, int[] h, int[] t,
  double[] tBase, double[] tExponent, double[] tConst,
  double[][] od) {
    nodes= n;
    arcs= a;
    head= h;
    to= t;
    timeBase= tBase;
    timeExponent= tExponent;
    timeConst= tConst;
    ODtrips= od;
    arcTime= new double[arcs];
}
```

Changes in shortest path

- Time is method, not data from array.
 - Replace dist in original version with time()
- Times are double, not int variables
 - Ints are faster, but doubles are easier
- Must keep track of predecessor arc as well as predecessor node in shortest path tree result
 - There may be multiple arcs
- Method is private

Shortest path

```
private void shortHKNetwork(int root) { // root is argument
  final int MAX_COST= Integer.MAX_VALUE/2;
  final int NEVER_ON_CL= -1;
  final int ON_CL_BEFORE= -2;
  final int END_OF_CL= Integer. MAX_VALUE;
 D= new double[nodes];
                            // double, not int
 P= new int[nodes];
 Parc= new int[nodes];
                               // May be >1 arc between nodes
 int[] CL= new int[nodes];
  for (int i=0; i < nodes; i++) {
   D[i]= MAX_COST;
   P[i] = EMPTY;
   Parc[i]= EMPTY;
   CL[i]= NEVER_ON_CL;
  // Initialize root node
 D[root] = 0;
 CL[root] = END_OF_CL;
 int lastOnList= root;
 int firstNode= root;
```

```
Shortest path 2
do {
  double Dfirst= D[firstNode];
  for (int link= head[firstNode]; link < head[firstNode+1]; link++) {</pre>
    int outNode= to[link];
    double DoutNode= Dfirst+ time(link); // Compute time()
    if (DoutNode < D[outNode]) {</pre>
      P[outNode] = firstNode;
      Parc[outNode] = link;
                                            // Record new predecessor arc
      D[outNode] = DoutNode;
      int CLoutNode= CL[outNode];
      if (CLoutNode == NEVER_ON_CL || CLoutNode == ON_CL_BEFORE) {
        int CLfirstNode= CL[firstNode];
        if (CLfirstNode != END_OF_CL && (CLoutNode == ON_CL_BEFORE ||
             DoutNode < D[CLfirstNode])){</pre>
          CL[outNode] = CLfi rstNode;
          CL[firstNode] = outNode; }
      el se {
        CL[last0nList] = outNode;
        lastOnList= outNode;
        CL[outNode] = END_OF_CL; }
    }
  }
int nextCL= CL[firstNode];
CL[firstNode] = ON_CL_BEFORE;
firstNode= nextCL;
} while (firstNode < END_OF_CL); }</pre>
```

equilibrium()

```
public void equilibrium() {
  final double CRITERION= 0.001;
                                      // Convergence criterion
  final int MAX_ITERATIONS= 10;
                                      // Set higher in real code
  // Step 0: Initialization
                                      // Initialize xFlow = 0
  xFlow= new double[arcs];
  update();
  xFlow= directionFind();
  double convergence;
  int iterations= 0;
  do {
    // Step 1: Set times based on initial flows
    update();
    // Step 2: Direction finding
    yFlow= directionFind();
    // Step 3: Line search
    double alpha= lineSearch(this, 0.0, 1.0); // 0 <= alpha <= 1
    // Step 4: Move
    convergence= move(al pha);
    // Step 5: Check convergence
    i terati ons++;
  } while (convergence > CRITERION && iterations < MAX_ITERATIONS);</pre>
```

update(), time()

```
pri vate voi d update() {
  for (int i = 0; i < arcs; i++) {
    arcTime[i]= time(i);
  }
}
private double time(int link) {
  final double TOLERANCE= 1E-8; // Sqrt of machine precision
  double time;
  if (xFlow[link] < TOLERANCE)</pre>
    time= timeBase[link];
  el se {
    double delay= 1.0 + timeConst[link]*
         Math. pow(xFlow[link], timeExponent[link]);
    time= timeBase[link]*delay;
 }
    return time;
}
```

directionFind()

```
private double[] directionFind() {
  double[] flow= new double[arcs];
  // Assign trips on shortest path (set of arcs)
  for (int i = 0; i < nodes; i++) { // Loop thru origin nodes
    shortHKNetwork(i); // Shortest path from i to all nodes
    for (int j = 0; j < nodes; j ++) {
      if (i != j) {
        int pred= P[j];
        while (pred != EMPTY) {
                                     // While not back at root
          // Add this flow to arcs in shortest path from 0 to D
          flow[Parc[j]] += ODtrips[i][j];
          // Find previous arc on path, until we reach the root
          pred= P[pred];
    }
  return flow;
  // We have flows on all arcs, based on current travel times
```

lineSearch()

```
// Uses d. derivative-see next slide
private double lineSearch(MathFunction d, double a, double b) {
  final double TOLERANCE= 1E-8; // Square root of machine precision
  final double MAX_ITERATIONS= 1000;
  double m;
                                      // Mi dpoi nt
  int counter= 0;
  for (m=(a+b)/2.0; Math. abs(a-b) > TOLERANCE; m= (a+b)/2.0) {
    counter++;
    if (d. derivative(m) < 0.0)
                                      // If derivative negative,
                                      // Use right subinterval
      a= m;
    el se
                                      // Use left subinterval
      b = m;
    if (counter > MAX_ITERATIONS)
  return m;
// There are better line searches such as Brent's method (see
// Numerical Recipes 10.2-10.4) but bisection is simple and stable
```

derivative()

```
public double derivative(double alpha) {
  final double TOLERANCE= 1E-8;
  double deriv= 0.0;
  for (int i = 0; i < arcs; i++) {
    double time;
    double newFlow= xFlow[i]+ alpha*(yFlow[i]- xFlow[i]);
    if (newFlow < TOLERANCE)</pre>
      time= timeBase[i];
      double delay= 1.0 + timeConst[i]*
               Math.pow( newFlow, timeExponent[i]);
      time= timeBase[i]*delay;
    deriv += (yFlow[i] - xFlow[i])*time;
  }
  return deri v;
}
public interface MathFunction {
   double derivative(double alpha);
```

move(), main()

```
pri vate double move(double al pha) {
   double sumFlows= 0.0:
   double sumRootMeanDiffFlows= 0.0;
   for (int i = 0; i < arcs; i++) {
           double flowChange= alpha*(yFlow[i] - xFlow[i]);
           xFlow[i]+= flowChange;
           sumFlows+= xFlow[i];
           sumRootMeanDiffFlows+= flowChange*flowChange;
   // Compute convergence criterion here, since we have
   // current and previous xFlow
   return Math. sqrt(sumRootMeanDiffFlows)/sumFlows;
}
public static void main(String[] args) {
    NetworkEquilibrium g= new NetworkEquilibrium();
    g. equilibrium();
}
```

Summary

- Convex combinations method (also known as Frank-Wolfe decomposition) solves network equilibrium problem
 - Flow taken from more congested paths, assigned to less congested paths, until flow changes are small
 - Process equalizes travel times on all paths for O-D pair
 - Uses shortest path code to solve linear program subproblem
 - · Shortest path is very efficient even for large networks
 - Convex combinations method converges slowly
 - Faster methods exist but require more data storage and don't use shortest path subproblem as naturally
- Note the building blocks:
 - Shortest path algorithm, which uses graph, queue (candidate list) and tree data structures
 - Line search is a bisection (divide and conquer) algorithm
 - NetworkEquilibrium is the master problem, solved by reusing the building blocks listed above
 - Having a library of data structures and core algorithms is key to problem solving and design

Figure by MIT OpenCourseWare.

Numerical Recipes

Performance of convex combinations

- Convergence is slow, even in our 3 link example
 - Objective function value changes little, but flows and times are accurate to only 2 places after 9 iterations
- Complexity is measured in two dimensions
 - Typical performance ~O(n), where n is number of arcs:
 - Running time increases linearly in usual experience
 - Linear convergence is claimed:
 - $\varepsilon_{n+1} = k \varepsilon_n^m$, m = 1
 - It depends on definition of ε
 - Objective function converges linearly
 - Arc flows and times appear to converge sublinearly
 - Linear convergence means each iteration gains one more significant figure
 - Sublinear means less than one more significant figure
 - Superlinear means more than one more significant figure

Congestion

- Highway networks have diseconomies of scale in urban areas
 - Congestion is major element in urban form, environmental quality, urban economics (agglomeration), and travel behavior
 - More trips mean lower service quality
- Transit networks on separate rights of way are often regarded as having economies of scale
 - More trips mean higher service frequency, which gives higher service quality
 - Eventually congestion occurs in transit also, as capacity is approached
- Extensions of network equilibrium formulations handle highway-transit demand equilibrium, variable demand, ...
 - Sheffi covers many of them
 - Regional trade, etc. can also be modeled this way

1.204 Computer Algorithms in Systems Engineering Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.