

PROJECT CONCEPT NOTE

CARBON OFFSET UNIT (CoU) PROJECT

Title: 14.2 MW Wind Project in Karnataka

Version <u>2</u>**1**.0 Date 02/08/2022

First CoU Issuance Period: 8 years, 95 months Date: 01/01/2014 to 31/09/2022

Project Concept Note (PCN) CARBON OFFSET UNIT (CoU) PROJECT

BASIC INFORMATION				
Title of the project activity	14.2 MW Wind Project in Karnataka			
Scale of the project activity	Small Scale			
Completion date of the PCN	02/08/2022			
Project participants	M/S V.S. Lad & Sons			
Host Party	INDIA			
Applied methodologies and standardized baselines	AMS-1. D – Grid Connected Renewable Electricity Generation V.18.0			
Sectoral scopes	01 Energy industries (Renewable/NonRenewable Sources)			
Estimated amount of total GHG emission reductions	25,746 CoUs (25,746 tCO _{2eq})			

SECTION A. Description of project activity

A.1. Purpose and general description of Carbon offset Unit (CoU) project activity >>

The proposed project activity involves construction and operation of 4 small-scale wind turbine generator project by V. S. Lad & Sons (VSL) in different districts of the state of Karnataka in India. These sites have been identified as ideally suited for wind power generation as per the micro siting studies and data analysis based on annual wind speed and frequency distribution.

The project activity has been essentially conceived to generate clean energy by utilizing the wind energy. It causes total minimum environmental impacts and in turn will lead to 25,746 tCO₂e/yr reduction of greenhouse gas (GHG) emissions per year.

Total cumulative installed capacity of the project would be 14.2 MW with an annual gross energy generation of 28,608 MWh. The Small-Scale wind power projects developed by V. S. Lad & Sons, will deliver electricity to the buyer, through National transmission network.

The details of the registered project are as follows:

Project	IPP	Capacity	Location	Annual Net	Emission	Commiss	PPA
				Generation	Reduction	ioned	
						Date	
1.2 MW Wind	V. S. Lad &	1.2 MW	Davangere	2,417	2,175	31/03/20	MESCOM
Power Project	Sons		district,	MWh	tCO ₂ e/yr	06	
in Davangere.			Karnataka				
6.25 MW	V. S. Lad &	6.25	Gadag	12,592	11,333	10/08/20	HESCOM
Wind Power	Sons	MW	district,	MWh	tCO ₂ e/yr	06	
Project in			Karnataka				
Gadag.							
3.0 MW Wind	V. S. Lad &	3.0 MW	Chitradurg	6,044	5,439	28/03/20	BESCOM
Power Project	Sons		district,	MWh	tCO ₂ e/yr	08	
in Chitradurg.			Karnataka				
3.75 MW	V. S. Lad &	3.75	Bellary	7,555	6,799	30/09/20	MESCOM
Wind Power	Sons	MW	district,	MWh	tCO ₂ e/yr	05	
Project in			Karnataka				
Bellary.							

Proposed wind power project has evolved as a result of the policies of Government of India and Government of Karnataka, which encourages energy development form renewable sources. These policies have given fresh impetus to wind power generation.

The electricity produced by the project is directly contributing to climate change mitigation by reducing the anthropogenic emissions of greenhouse gases into the atmosphere by displacing an equivalent amount of power at grid.

Since the project activity will generate electricity through wind energy, a clean renewable energy source, it will not cause any negative impact on the environment and thereby contributes to climate change mitigation efforts.

A.2 Do no harm or Impact test of the project activity>>

There are social, environmental, economic and technological benefits which contribute to sustainable development.

Rational: As per 'Central Pollution Control Board (Ministry of Environment & Forests, Govt. of India)', final document on revised classification of Industrial Sectors under Red, Orange, Green and White Categories (07/03/2016), it has been declared that wind project activity falls under the "White category". White Category projects/industries do not require any Environmental Clearance such as 'Consent to Operate' from PCB as such project does not lead to any negative environmental impacts. Additionally, as per Indian Regulation, Environmental and Social Impact Assessment is not required for Wind Projects. There are social, environmental, economic and technological benefits which contribute to sustainable development. The key details have been discussed in the previous section

Social benefits:

- Social well-being is assessed by contribution by the project activity towards improvement in living standards of the local community.
- The project activity has resulted in increased job opportunities for the local population on temporary and permanent basis.
- Manpower was required both during erection and operation of the wind farms. This has resulted in poverty alleviation of the local community and development of basic infrastructure leading to improvement in living standards of the local population

Environmental benefits:

- The project utilizes wind energy for generating electricity which otherwise would have been generated through alternate fuel (most likely fossil fuel) based power plants, contributing to reduction in specific emissions (emissions of pollutant/unit of energy generated) including GHG emissions.
- As wind power projects produce no end products in the form of solid waste (ash etc.), they address the problem of solid waste disposal encountered by most other sources of power.
- Being a renewable resource, using wind energy to generate electricity contributes to resource conservation. Thus, the project causes no negative impact on the surrounding environment.

Economic benefits:

- The project activity has created direct and indirect job opportunities to the local community during installation and operation of the WEGs.
- The investment for the project activity has increased the economic activity of the local area.
- The project activity also contributes in economic well-being of the nation's economy by reducing import of fossil fuel for electricity generation in hard currency

A.3. Location of project activity >>

The Projects are located in the state of Karnataka, India.

	1.2 MW	6.25 MW	3 MW	3.75 MW
Country	India	India	India	India
District	Davangere	Gadag	Chitradurg	Bellary
Village	Kumabaluru	Kalkeri	Kolalu	Nagtibassapur &
				shivallinganhalli
Tehsil	Honnali	Mundaragi	Holalkere	Huvaina Hadagali
State	Karnataka	Karnataka	Karnataka	Karnataka
Code	577530	586118	577533	583219

Project	Latitude	Longitude
1.2 MW Wind Dower Project in Dowencers	14° 15' 27.3"	75° 46' 23.7"
1.2 MW Wind Power Project in Davangere.	14° 15' 21.1"	75° 46' 23.4"
	15° 08' 48.3"	75° 48' 14.6"
	15° 08' 18.4"	75° 48' 34.0"
6.25 MW Wind Power Project in Gadag.	15° 08' 13.7"	75° 48' 38.3"
	15° 08' 10.3"	75° 48' 43.8"
	15° 08' 04.9"	75° 48' 48.4"
2.0 MW Wind Down Draigat in Chitradura	14° 03' 14.6"	76° 26' 18.9"
3.0 MW Wind Power Project in Chitradurg.	14° 03' 00.3"	76° 26' 19.3"
	14° 58' 12.0"	75° 54' 39.3"
3.75 MW Wind Power Project in Bellary.	14° 58' 06.6"	75° 54' 43.5"
	14° 58' 01.4"	75° 54' 47.7"

A.4. Technologies/measures >>

The project activity will employ state-of-art Horizontal axis wind turbines. The Wind Turbine Generators (WTGs) comprising the project activity will generate clean green power which will be exported to the grid through the receiving station of KPTCL. The project will house the metering, switchgear and other protection equipment within the wind farms.

PPAs are intended to be signed with the Distribution Company (DISCOM) for a term of 10 years, extendable by another term of 10 years if the KERC determined tariff from the eleventh year onwards is acceptable to the DISCOM. The technology provider will provide operational training for the plant personnel, along with operation and maintenance service at least for the first two years of the project activity. WTGs are manufactured as per stringent European quality standards in accordance with Indian climatic conditions. All the WTGs are three bladed active stalls regulated.

Salient features of WTG to be used in the project activity are:

- ISO 9001 Certificate for Design and Manufacture; ISO 9001:2000 for Installation & Commissioning and for Operation & Maintenance.
- Approved by Ministry for new and renewable energy (MNRE)
- Suitable for India's harsh climatic conditions prevailing at remote locations.
- Improved Power factor
- Improved power curve for operation under low wind conditions
- Carefully devised electrical system to withstand erratic grid connections.
- Integrated Power transmission mechanism.
- High Performance Rotor blades.
- Dual speed asynchronous generator.
- Microprocessor based fully automatic control system with user friendly operation and central monitoring system.
- Quality, Safety and Health plan for construction, installation, commissioning and Operation & Maintenance.
- Microprocessor controlled high efficiency soft start.
- Active Yaw gear drives incorporating hydraulic yaw brakes.

Specifications	1.2 MW	6.25 MW	3 MW	3.75 MW
Tower / Rotor Height	50 m	56 m	78.5	56m
Rotor Diameter	47 m	66 m	82 m	66m
Annual generation of individual WTGs as per the guaranteed generation	2,417 MW	12,592 MW	6,044 MW	7,555 MW
Cut-in wind speed	4 m/s	3 m/s	4 m/s	3 m/s
Rated wind speed	15 m/s	14 m/s	12.5 m/s	14 m/s
Cut-out wind speed	25 m/s	25 m/s	20 m/s	25 m/s
Rotor swept area	1735.16 m ²	3421.19 m ²	5281 m ²	3421.19 m ²

Rotor material Blades material	High Tensile Angles	GRP	GRP	GRP
Generator				
Rated output	600 kW	1250 kW	1500 kW	1250 kW
Rotational speed at rated power	1527 rpm	1515 rpm	1511RPM	1515 rpm
Operating voltage	690 V	690 V	690 V	690 V
Frequency	50 Hz	50 Hz	50 Hz	50 Hz
Gear ratio	1:58.2	1:75.917	1:95.09	1:75.917

A.5. Parties and project participants >>

Party (Host)	Participants
India	M/S-V. S. Lad & Sons

A.6. Baseline Emissions>>

As per ACM0002, "The project activity is grid-connected electricity generation from renewable energy sources. There are a number of different sizes and sub-types of this project activity (Run-of-river hydro power plants; hydro power projects with existing reservoirs where the volume of the reservoir is not increased, wind, geothermal, solar sources, tidal, wave)."

According to the description in the approved baseline methodology ACM0002, for the project activities that do not modify or retrofit an existing electricity generation facility, the baseline scenario is the following:

"Electricity delivered to the grid by the project would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources, as reflected in the combined margin (CM) calculated described latter."

"Electricity delivered to the grid by the project that would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources within the regional grid, as reflected in the combined margin (CM) calculated described latter."

As prescribed in the methodology ACM0002, for the proposed project, the emission reductions will be the amount of electricity supplied to the grid multiplied by the grid emission co-efficient. Energy (electricity) generated by the wind turbines will be metered by VSL and KPTCL at the high voltage side of the step-up transformers installed at the receiving station. The energy fed in to the grid will be used to calculate the emission reductions and is measured in terms of kWh.

Estimation of the emission reductions due the project activity is equal to the amount of electricity supplied to the grid multiplied by the grid emission co-efficient.

A.7. Debundling>>

This 14.2 MW Wind Power project in Karnataka, India is not a de-bundled component of a larger

project activity.

SECTION B. Application of methodologies and standardized baselines

B.1. References to methodologies and standardized baselines >>

SECTORAL SCOPE –01 Energy industries (Renewable/Non-renewable sources)

TYPE Renewable Energy Projects

CATEGORY- ACM0002 Consolidated methodology for grid-connected electricity generation from renewable sources Version 6

B.2. Applicability of methodologies and standardized baselines >>

Among the methodologies approved by UNFCCC for grid-connected electricity generation from renewable sources based UCR project activities, ACM0002 has been chosen as the most suitable for this project activity.

This baseline methodology shall be used in conjunction with the approved monitoring methodology ACM0002 ("Consolidated monitoring methodology for grid-connected electricity generation from renewable sources")

The project activity meets the applicability conditions of ACM0002, as demonstrated below -

Sl. No	The Methodology	Justification
1	This methodology is applicable to grid-	The proposed project activity is a Green
	connected renewable power generation	field, Indian grid connected renewable
	project activities that: (a) install Greenfield	power plant.
	power plant; (b) involve a capacity addition	Therefore, it confirms to the said criteria
	to (an) existing plant(s); (c) involve a retrofit	
	of (an) existing plant(s)/unit(s); (d) involve a	
	rehabilitation of (an) existing lant(s)/unit(s);	
	or (e) involve a replacement of (an) existing	
	plant(s)/unit(s)	
2	The methodology is applicable under the	The project activity is the installation of a
	following conditions: The project activity	new grid connected renewable wind power
	may include renewable energy power	project.
	plant/unit of one of the following types:	Thus, it meets the first applicability
	hydro power plant/unit with or without	condition
	reservoir, wind power plant/unit, geothermal	
	power plant/unit, solar power plant/unit,	
	wave power plant/unit or tidal power	
	plant/unit	
3	In the case of capacity additions, retrofits,	The proposed project activity is the
	rehabilitations or replacements (except for	installation of a new wind power
	wind, solar, wave or tidal power capacity	plants/units. Therefore, the said criteria is
	addition projects the existing plant/unit	not applicable
	started commercial operation prior to the	

	start of a minimum historical reference	
	period of five years, used for the calculation	
	of baseline emissions and defined in the	
	baseline emission section, and no capacity	
	expansion or retrofit or rehabilitation of the	
	plant/unit has been undertaken between the	
	start of this minimum historical reference	
	period and the implementation of the project	
	activity	
4	In case of hydro power plants, one of the	The proposed project activity is the
·	following conditions shall apply:	installation of wind power plants/units.
	(a) The project activity is implemented in an	Therefore, the said criteria is not
	existing single or multiple reservoirs, with	applicable
		applicable
	no change in the volume of any of	
	reservoirs; or	
	(b) The project activity is implemented in an	
	existing single or multiple reservoirs, where	
	the volume of the reservoir(s) is increased	
	and the power density calculated using	
	equation (3) is greater than 4 W/m2; or	
	(c) The project activity results in new single	
	or multiple reservoirs and the power density	
	calculate equation (3), is greater than 4	
	W/m2.	
	(d) The project activity is an integrated	
	hydro power project involving multiple	
	reservoirs, where the power density of any	
	of the reservoirs, calculated using equation	
	(3), is lower than or equal to 4 W/m2, all of	
	the following conditions shall apply.	
	(i) The power density calculated using the	
	total installed capacity of the integrated	
	project, as per equation (4) is greater than	
	4W/m2;	
	(ii) Water flow between reservoirs is not	
	used by any other hydropower unit which is	
	not a part of the project activity;	
	(iii) Installed capacity of the power plant(s)	
	with power density lower than or equal to 4	
	W/m2shall be:	
	(a) Lower than or equal to 15 MW; and	
	(b) Less than 10% of the total installed	
	capacity of integrated hydro power project	
5	In the case of integrated hydro power	The proposed project activity is the
	projects, project proponent shall:	installation of wind power plants/units.
	(a) Demonstrate that water flow from	Therefore, the said criteria is not
	upstream power plants/units spill directly to	applicable
	the downstream reservoir and that	application
	collectively constitute to the generation	
	•	
	capacity of the integrated hydro power	

	project; or (b) Provide an analysis of the	
	water balance covering the water fed to	
	power units, with all possible combinations	
	of reservoirs and without the construction of	
	reservoirs. The purpose of water balance is	
	to demonstrate the requirement of specific	
	combination of reservoirs constructed under	
	CDM project activity for the optimization of	
	power output. This demonstration has to be	
	carried out in the specific scenario of water	
	availability indifferent seasons to optimize	
	the water flow at the inlet of power units.	
	Therefore, this water balance will take into	
	account seasonal flows from river,	
	tributaries (if any), and rainfall for minimum	
	five years prior to implementation of CDM	
	project activity.	
6	The methodology is not applicable to:	The proposed project activity is the
	(a) Project activities that involve switching	installation of wind power plants/units.
	from fossil fuels to renewable energy	Therefore, the said criteria is not
	sources at the site of the project activity,	applicable
	since in this case the baseline may be the	
	continued use of fossil fuels at the site; (b)	
	Biomass fired power plants;	
7	In the case of retrofits, rehabilitations,	The proposed project activity is the
	replacements, or capacity additions, this	installation of wind power plants/units.
	methodology is only applicable if the most	Therefore, the said criteria is not
	plausible baseline scenario, as a result of the	applicable
	identification of baseline scenario, is "the	
	continuation of the current situation, that is	
	to use the power generation equipment that	
	was already in use prior to the	
	implementation of the project activity and	

B.3. Applicability of double counting emission reductions >>

There is no double accounting of emission reductions in the project activity due to the following reasons:

- Project is uniquely identifiable based on its location coordinates,
- Project has dedicated commissioning certificate and connection point,
- Project is associated with energy meters which are dedicated to the consumption point for project developer.

B.4. Project boundary, sources and greenhouse gases (GHGs)>>

As per applicable methodology ACM0002 version 20.0, the spatial extent of the project boundary includes the project power plant and all power plants connected physically to the electricity system that the UCR project power plants are connected. Thus, the project boundary includes the Wind Turbine Generators (WTGs) and the Indian grid system.

Scenario	Source	GHG	Included?	Justification/Explanation
Baseline	Electricity	CO2	Yes	Main emission source
	generation in fossil fuel fired power	CH4	No	Not identified in the baseline methodology
	that is dispatched due to the project activity		No	Not identified in the baseline methodology
Project Activity		CO2	No	Zero-emissions grid connected electricity generation from renewable energy
	Electricity generation in the project activity	СН4	No	Zero-emissions grid connected electricity generation from renewable energy
		N2O	No	Zero-emissions grid connected electricity generation from renewable energy

B.5. Establishment and description of baseline scenario (UCR Standard or Methodology) >> **Emission Reductions**

As per para 19 of the approved consolidated methodology AMS-I.D. Version 18, if the project activity is the installation of a new grid-connected renewable power plant/unit, the baseline scenario is the following:

"The baseline scenario is that the electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources into the grid".

The project activity involves setting up of a new wind power plant to harness the green power from wind energy and to use for sale to national grid i.e., India grid. In the absence of the project activity, the equivalent amount of power would have been generated by the operation of grid-connected fossil fuel-based power plants and by the addition of new fossil fuel-based generation sources into the grid. The power produced at grid from the other conventional sources which are predominantly fossil fuel based. Hence, the baseline for the project activity is the equivalent amount of power

produced at the Indian grid.

A "grid emission factor" refers to a CO₂ emission factor (tCO₂/MWh) which will be associated with each unit of electricity provided by an electricity system. The UCR recommends an emission factor of 0.9 tCO₂/MWh for the 2014-2020 years as a fairly conservative estimate for Indian projects not previously verified under any GHG program. Also, for the vintage 2021, the combined margin emission factor calculated from CEA database in India results into higher emission than the default value. Hence, the same emission factor has been considered to calculate the emission reduction under conservative approach.

Net GHG Emission Reductions and Removals

$$ERy = BEy - PEy - LEy$$

Where:

ERy = Emission reductions in year y (tCO₂/y)

BEy = Baseline Emissions in year y (t CO_2/y)

PEy = Project emissions in year y (tCO_2/y)

LEy = Leakage emissions in year y (tCO_2/y)

Baseline Emissions

Baseline emissions include only CO₂ emissions from electricity generation in power plants that are displaced due to the project activity. The methodology assumes that all project electricity generation above baseline levels would have been generated by existing grid-connected power plants and the addition of new grid-connected power plants.

The baseline emissions are to be calculated as follows:

$$BE_y = EG_{PJ,y} \times EF_{grid,y}$$

Where:

BEy = Baseline emissions in year y (t CO2)

 $EG_{PJ,y}$ = Quantity of net electricity generation that is produced and fed into the grid as a result of the implementation of this project activity in year y (MWh)

 $EF_{grid,y} = UCR$ recommended emission factor of 0.9 tCO₂/MWh has been considered, this is conservative as compared to the combined margin grid emission factor which can be derived from Database of Central Electricity Authority (CEA), India. (Reference: General Project Eligibility Criteria and Guidance, UCR Standard, page 4)

Project Emissions

As per paragraph 39 of AMS I.D. (version 18, dated 28/11/2014), for most renewable energy project activities emission is zero. Since, all the projects are run of river project and does not involve any reservoir, the project emission is zero

Section C.5 in MR is updated "As per paragraph 39 of AMS-I.D. version-18, only emission associated with the fossil fuel combustion, emission from operation of geo-thermal power plants due to release of non-condensable gases, emission from water reservoir of Hydro should be accounted for the project emission. Since the project activity is a wind power project, project emission for renewable energy plant is nil.

Hence, PEy = 0

Leakage

As per paragraph 22 of AMS-I.D. version-18, 'If the energy generating equipment is transferred from another activity, leakage is to be considered.' In the project activity, there is no transfer of energy generating equipment and therefore the leakage from the project activity is considered as zero.

Hence, LEy = 0

The actual emission reduction achieved during the first CoU period shall be submitted as a part of first monitoring and verification. However, for the purpose of an ex-ante estimation, following calculation has been submitted:

1.2 MW Wind Power Project in Davangere

Estimated annual baseline emission reductions (BEy)

- = $2,417 \text{ MWh/year} \times 0.9 \text{ tCO}_2/\text{MWh}$
- $= 2,175 \text{ tCO}_2/\text{year}$ (i.e., 2,175 CoUs/year)

6.25 MW Wind Power Project in Gadag

Estimated annual baseline emission reductions (Bey)

- $= 12,592 \text{ MWh/year x } 0.9 \text{ tCO}_2/\text{MWh}$
- = 11,333 tCO₂/year (i.e., 11,333 CoUs/year)

3.0 MW Wind Power Project in Chitradurg

Estimated annual baseline emission reductions (BEy)

- $= 6,044 \text{ MWh/year} \times 0.9 \text{ tCO2/MWh}$
- = 5,439 tCO2/year (i.e., 5,439 CoUs/year)

3.75 MW Wind Power Project in Bellary

Estimated annual baseline emission reductions (BEy)

- = 7,555 MWh/year \times 0.9 tCO2/MWh
- = 6,799 tCO2/year (i.e., 3,153 CoUs/year)

Project	Net Generation	Emission Factor	Emission Reduction
	(MWh /year)	(tCO2/MWh)	(tCO2 /year)
VAJRA II	2,417	0.9	2,175
VAJRA III	12,592	0.9	11,333
Hebbakvadi Mini Hydel	6,044	0.9	5,439
Scheme Unit 3			
Somvathi Mini Hydel	7,555	0.9	6,799
Scheme			
Total	28,608		25,748

B.6. Prior History>>

The project activity has not applied to any other GHG program for generation or issuance of carbon offsets or credits for the said crediting period.

B.7. Changes to start date of crediting period >>

There is no change in the start date of crediting period.

B.8. Permanent changes from PCN monitoring plan, applied methodology or applied standardized baseline >>

Not Applicable

B.9. Monitoring period number and duration>>

First Issuance Period: 8 years, 9 months – 01/01/2014 to 30/09/2022

B.8. Monitoring plan>>

As per the law applicable and implemented in practice, the delivered energy shall be metered by VSL and KPTCL at the high voltage side of the step-up transformers installed at the receiving station. The energy metering equipment shall be electronic trivector meters, which is required for the project. The energy metering equipment shall be maintained in accordance with electricity standards and have the capability of recording half hourly and monthly readings, which in turn are produced to KPTCL. The energy meters installed would be capable of recording and storing the parameters for a minimum period of 35 days with digital output. The energy meter readings at the project sites and the receiving station will be taken simultaneously and jointly by both the parties. The recorded metering data shall be downloaded through meter recording instrument.

Apart from the joint (KPTCL/DISCOM and VSL) main meter reading undertaken as per the law applicable and implemented in practice to the wind farm in the State of Karnataka, which is duly signed by the KPTCL/DISCOM representative together with a VSL representative, VSL will follow the provisions under the law applicable and implemented in practice to the wind farm in the State of Karnataka and PPA in case the primary measuring fails.

Data/Parameter	UCR recommended emission factor
Data unit	tCO ₂ /MWh
Description	A "grid emission factor" refers to a CO2 emission factor (tCO2/MWh) which will be associated with each unit of electricity provided by an electricity system. The UCR recommends an emission factor of 0.9 tCO2/MWh for the 2014 - 2020 years as a fairly conservative estimate for Indian projects not previously verified under any GHG program. Hence, the same emission factor has been considered to calculate the emission reduction under conservative approach.
Source of data	https://a23e347601d72166dcd6- 16da518ed3035d35cf0439f1cdf449c9.ssl.cf2.rackcdn.com/Docu ments/UCRStandardNov2021updatedVer2 301121081557551620 .pdf
Value(s) applied	0.9
Measurement methods and procedures	-

Monitoring frequency	Ex-ante fixed parameter
Purpose of data	For the calculation of Emission Factor of the grid

Data and Parameters to be monitored (ex-post monitoring values):

Data / Parameter:	EG BL, y
Data unit:	MWh/year
Description:	Quantity of net electricity supplied to the grid as a result of the
	implementation of the project activity in year y (MWh)
Source of data:	Monthly Joint Meter Readings (JMRs)
Value(s) applied:	28,608 MWh
Measurement	Data Type: Measured
procedures (if any):	Monitoring equipment: Energy Meters are used for monitoring
	Recording Frequency: Continuous monitoring and Monthly
	recording from Energy Meters, Summarized Annually
	Archiving Policy: Paper & Electronic
	Calibration frequency: 5 years (as per CEA provision)
Monitoring frequency:	Monthly
QA/QC procedures:	Calibration of the Main meters will be carried out once in five
	(5) years as per National Standards (as per the provision of
	CEA, India) and faulty meters will be duly replaced immediately
	as per the provision of power purchase agreement. Cross
	Checking: Quantity of net electricity supplied to the grid will be
	cross checked from the invoices raised by the project participant
	to the grid.
Any comment:	-