REFERENCES 53

[44] S. Bhatkar, D. C. DuVarney, and R. Sekar, "Address obfuscation: an efficient approach to combat a board range of memory error exploits," in *Proceedings* of the USENIX Security Symposium, 2003.

- [45] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen, et al., "Swivel: Hardening webassembly against spectre," in USENIX Security Symposium, 2021.
- [46] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner, T. McMullen, S. Savage, and D. Stefan, "Sfi safety for native-compiled wasm," NDSS. Internet Society, 2021.
- [47] J. Cabrera-Arteaga, N. Fitzgerald, M. Monperrus, and B. Baudry, "WASM-MUTATE: Fast and Effective Binary Diversification for WebAssembly," *arXiv e-prints*, p. arXiv:2309.07638, Sept. 2023.
- [48] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha, "Egg: Fast and extensible equality saturation," Proc. ACM Program. Lang., vol. 5, jan 2021.
- [49] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz, "Profile-guided automated software diversity," in *Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)*, pp. 1–11, IEEE, 2013.
- [50] D. Cao, R. Kunkel, C. Nandi, M. Willsey, Z. Tatlock, and N. Polikarpova, "Babble: Learning better abstractions with e-graphs and anti-unification," *Proc. ACM Program. Lang.*, vol. 7, jan 2023.
- [51] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, "Equality saturation: A new approach to optimization," in *Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*, POPL '09, (New York, NY, USA), p. 264–276, Association for Computing Machinery, 2009.
- [52] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen, and D. Stefan, "Swivel: Hardening WebAssembly against spectre," in 30th USENIX Security Symposium (USENIX Security 21), pp. 1433–1450, USENIX Association, Aug. 2021.
- [53] T. Schnitzler, K. Kohls, E. Bitsikas, and C. Pöpper, "Hope of delivery: Extracting user locations from mobile instant messengers," in 30th Annual Network and Distributed System Security Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023, The Internet Society, 2023.

54 REFERENCES

[54] S. Cao, N. He, Y. Guo, and H. Wang, "WASMixer: Binary Obfuscation for WebAssembly," arXiv e-prints, p. arXiv:2308.03123, Aug. 2023.

- [55] S. Bhansali, A. Aris, A. Acar, H. Oz, and A. S. Uluagac, "A first look at code obfuscation for webassembly," in *Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks*, WiSec '22, (New York, NY, USA), p. 140–145, Association for Computing Machinery, 2022.
- [56] J. Cabrera-Arteaga, M. Monperrus, T. Toady, and B. Baudry, "Webassembly diversification for malware evasion," *Computers & Security*, vol. 131, p. 103296, 2023.
- [57] A. Hilbig, D. Lehmann, and M. Pradel, "An empirical study of real-world webassembly binaries: Security, languages, use cases," *Proceedings of the Web Conference 2021*, 2021.
- [58] S. Cao, N. He, Y. Guo, and H. Wang, "A general static binary rewriting framework for webassembly," arXiv preprint arXiv:2305.01454, 2023.
- [59] A. Romano, D. Lehmann, M. Pradel, and W. Wang, "Wobfuscator: Obfuscating javascript malware via opportunistic translation to webassembly," in 2022 2022 IEEE Symposium on Security and Privacy (SP) (SP), (Los Alamitos, CA, USA), pp. 1101–1116, IEEE Computer Society, may 2022.
- [60] N. Loose, F. Mächtle, C. Pott, V. Bezsmertnyi, and T. Eisenbarth, "Madvex: Instrumentation-based Adversarial Attacks on Machine Learning Malware Detection," arXiv e-prints, p. arXiv:2305.02559, May 2023.

${f Part~II}$ Included papers