SOLUÇÃO DE LISTA DE EXERCÍCIOS

Lista 07

(Funções, Sequências, Cardinalidade)

Leitura necessária:

- Matemática Discreta e Suas Aplicações, 6ª Edição (Kenneth H. Rosen):
 - Capítulo 2.3: Funções
 - Capítulo 2.4: Sequências e Somatórios
- Material suplementar:
 - Conjunto de slides: Aula 2 Conjuntos, Funções, Sequências, e Cardinalidade (Parte sobre Cardinalidade).

Revisão.

- 1. Responda formalmente as seguintes perguntas:
 - (a) Defina o que é um conjunto enumerável e um conjunto não enumerável.
 - (b) Especifique o que afirma o Teorema de Schröder-Bernstein. Explique como o teorema pode ser empregado para demonstrar que dois conjuntos têm a mesma cardinalidade.
 - (c) Explique em alto nível como o conceito de enumerabilidade de conjuntos pode ser usado para demonstrar que existem funções não computáveis, i.e., funções matemáticas que não podem ser expressas por nenhum algoritmo.

Exercícios.

- 2. (Rosen 2.3.1) Por que f não é uma função de $\mathbb R$ para $\mathbb R$ se
 - (a) f(x) = 1/x?
 - (b) $f(x) = \sqrt{x}$?
 - (c) $f(x) = \pm \sqrt{(x^2 + 1)}$?
- 3. (Rosen 2.3.4) Encontre o domínio e a imagem das funções abaixo. Note que, em cada caso, para achar o domínio deve-se identificar o conjunto de elementos aos quais a função associa algum valor.
 - (a) a função que associa a cada inteiro não negativo seu último digito;
 - (b) a função que associa o inteiro seguinte a um inteiro positivo;
 - (c) a função que associa a uma string binária o número de bits 1 nesta string;
- 4. (Rosen 2.3.9) Encontre o valor de:
 - c) [-3/4]

g) [1/2 + [3/2]]

d) |-7/8|

h) $|1/2 \cdot |5/2|$

- 5. (Rosen 2.3.12) Determine quais das funções seguintes de Z para Z são injetivas, sobrejetivas, e bijetivas.
 - (a) f(n) = n 1
 - (b) $f(n) = n^2 + 1$
 - (c) $f(n) = n^3$
 - (d) $f(n) = \lceil n/2 \rceil$
- 6. (Rosen 2.3.38) Seja f uma função de \mathbb{R} para \mathbb{R} definida como $f(x)=x^2$. Ache
 - (a) $f^{-1}(\{1\})$
 - (b) $f^{-1}(\{x \mid 0 < x < 1\})$
 - (c) $f^{-1}(\{x \mid x > 4\})$
- 7. (Rosen 2.3.50) Demonstre que se x é um número real, então $\lfloor -x \rfloor = -\lceil x \rceil$ e $\lceil -x \rceil = -\lfloor x \rfloor$.
- 8. (Rosen 2.4.3) Quais são os termos a_0, a_1, a_2 e a_3 da sequência $\{a_n\}$ onde a_n é dado por
 - b) $(n+1)^{n+1}$

- d) $|n/2| + \lceil n/2 \rceil$
- 9. (Rosen 2.4.5) Liste os 10 primeiros termos destas sequências.
 - d) a sequência cujo n-ésimo termo é $n! 2^n$, para $n \ge 1$;
 - e) a sequência que começa com 3, e em que cada termo subsequente é o dobro do termo anterior;
 - f) a sequência cujo primeiro termo é 2, o segundo é 4, e cada termo seguinte é a soma dos dois termos anteriores;
 - h) a sequência cujo n-ésimo termo é o número de letras na palavra em português para o número n, para $n \geq 1$.
- 10. (Rosen 2.4.10) Para cada uma das listas de inteiros abaixo, dê uma fórmula simples ou regra que gere os termos de uma sequência de inteiros que comece com a lista dada. Assumindo que a sua fórmula esteja correta, dê os próximos três elementos da sequência.
 - a) 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, ...
 - b) 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, ...
 - c) 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011...
 - d) $1, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, \dots$
 - e) 0, 2, 8, 26, 80, 242, 728, 2186, 6560, 19682, ...
- 11. (Rosen 2.4.27) Qual o valor dos seguintes produtos:

 - a) $\prod_{i=0}^{13} i$ c) $\prod_{i=0}^{99} (-1)^i$ d) $\prod_{i=0}^{11} 2$
- 12. (Rosen 2.4.31) Determine se cada um dos conjuntos abaixo é finito, infinito enumerável, ou não enumerável. Para aqueles infinitos enumeráveis, exiba uma enumeração mostrando os 10 primeiros elementos.
 - (a) os inteiros negativos
 - (b) os inteiros pares
 - (c) os números reais entre 0 e 1/2
 - (d) os inteiros múltiplos de 7

- 13. (Rosen, 8th Edition, 2.5.7) Suponha que o Hotel de Hilbert esteja completamente ocupado. Um dia é aberta uma filial do hotel do outro lado da rua, em que, assim como na sede original, há um número infinito e contável de quartos. Mostre que os hóspedes que estavam originalmente na sede do hotel podem ser distribuídos de forma a ocupar todos os quartos tanto da sede quanto da filial.
- 14. (Rosen, 8th Edition, 2.5.11) Dê um exemplo de dois conjuntos não enumeráveis A e B tais que $A \cap B$ seja
 - (a) finito;
 - (b) infinito enumerável;
 - (c) não enumerável.
- 15. (Rosen, 8th Edition, 2.5.28) Mostre que o conjunto $\mathbb{Z}^+ \times \mathbb{Z}^+$ é enumerável.
- 16. (Desafio!) Mostre que para quaisquer números reais distintos a, b, com a < b, o intervalo (a, b) é não enumerável. (Dica: Lembre-se de que sabemos que o intervalo [0, 1) é não enumerável, e use o Teorema de Schröder-Bernstein, que diz que para quaisquer conjuntos A, B, temos que |A| = |B| se existe uma injeção de A para B e existe uma injeção de B para A.)