ЦМвГН - квиз №2

* ļņ	Indicates required question	
1.	Email *	
2.	Ваше имя и фамилия *	
K	Квиз	

3. Определите оптимальное количество кластеров в данном случае, ориентируясь на силуэты:

* 1 point

0

0.0

0.2

0.4

silhouette score

0.6

0.8

1.0

-0.2

Mark only one oval.

0.0

0.2

0.4

silhouette score

0.6

0.8

1.0

0

<u>_____4</u>

-0.2

 \bigcirc 7

4. К вам попала чья-то оцифрованная домашняя библиотека. Никакой * 1 point информации о книгах, кроме собственно текстов, не сохранилось. Вы хотите кластеризовать полученные тексты. Какие метрики качества кластеризации вы используете?

Check all that apply.

Коэффициент силуэта

Гомогенность и полнота

Adjusted Rand Index

___ V-мера

2/1/25, 5:02 РМ ЦМвГН - квиз №2

5. Посмотрите на предложенный фрагмент кода. Какую ошибку вы * 1 point заметили? from sklearn.datasets import make_circles 2 from sklearn.cluster import DBSCAN 3 from sklearn.metrics import adjusted rand score 4 5 6 X, y = make circles() 7 dbscan = DBSCAN() 8 dbscan.fit(X) 9 print(adjusted rand score(y, dbscan.predict(X))) Mark only one oval. Здесь нельзя применять ARI У DBSCAN нет метода .predict() Не задано количество кластеров Предсказания происходят на всей выборке Выберите все параметры, которые можно подобрать при помощи * 1 point GridSearch. При необходимости можно и нужно обращаться к документации. Check all that apply. Коэффициент регуляризации в регрессиях Lasso и Ridge Коэффициенты/параметры в уравнении регрессии Стратегия оптимизации (solver) Выберите алгоритм ансамблирования моделей, который позволит 7. * 1 point моделям учиться параллельно: Mark only one oval. Бэггинг Бутстрэп

Бустинг

8. Сопоставьте метод ансамблирования и его интерпретацию с точки * 3 points зрения смещения/дисперсии:

Mark only one oval per row.

	Бэггинг	Бустинг	Стекинг
Снижает смещение			
Снижает дисперсию			
Просто уменьшает ошибку			

9.

Выберите все утверждения, которые описывают градиентный и/или * 4 point адаптивный бустинг.							
Внимание: утве алгоритмов.	рждение може	г быть справед	уливым для обоих				
Check all that appl	ly.						
	Градиентный бустинг	Адаптивный бустинг					
Начинает со "слабой" модели и пытается итеративно ее улучшить			_				
Корректирует веса, присваивая больший вес объектам, на которых модель сработала неправильно							
Делает новые предсказания, опираясь на разницу между векторами предсказаний;			_				
Является линейной комбинацией входящих в него моделей			-				

2/1/25, 5:02 РМ ЦМвГН - квиз №2

10.	Выберите все верные утверждения о рандомном лесе: *	1 point
	 Check all that apply. Может состоять из любых моделей Выбирает подмножество не только из данных, но и из признаков Может решать задачи классификации и регрессии Использует неглубокие деревья 	
11.	Выберите все методы снижения размерности, при помощи которых можно извлечь значимые кластеры из данных.	* 1 point
	Check all that apply.	
	Latent Dirichlet Allocation K Means	
	t-SNE	

2/1/25, 5:02 РМ ЦМвГН - квиз №2

12. Данная визуализация была создана при помощи tSNE (автор - Николай Осколков: https://towardsdatascience.com/how-to-tune-hyperparameters-of-tsne-7c0596a18868).

* 1 point

Можем ли мы с уверенностью утверждать, что кластеры NK cells и B cells находятся далеко друг от друга в реальном (не сжатом) пространстве признаков?

Mark only one oval.

Да

(Нет

This content is neither created nor endorsed by Google.

Google Forms