

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA

30/08/2019

Allievi fisici

Tempo a disposizione: 2 ore 30 minuti	
NOME E COGNOME	•••••
NOME E COCNOME	
Allegare alle soluzioni il presente testo indicando (in STAMPATELLO):	

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su tutti i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas $\Re = 8314 \text{ J/(kmol\cdot K)}$

□ ESERCIZIO 1 (punti 6)

Si consideri un ciclo Joule-Brayton aperto che aspira 21.3 kg/s di aria nelle condizioni ambiente (pressione di 1 bar e temperatura di 10°C).

L'input termico del ciclo viene fornito dalla combustione di 0.33 kg/s di gas naturale. La temperatura massima del ciclo è pari a 1000°C.

Il rapporto di compressione è 12.2. Il rendimento isoentropico di turbina e compressore è 0.88, mentre il rendimento meccanico-elettrico è 0.97.

Tutta la potenza elettrica netta prodotta dal ciclo Joule-Brayton viene utilizzata per comprimere una portata di He (gas perfetto monoatomico – 4 kg/kmol) dalle condizioni in aspirazione di (25°C, 2 bar) fino alla pressione di 20 bar.

Sapendo che il lavoro specifico della compressione di He è pari a 1.3 volte quello relativo ad una compressione isoterma reversibile, si chiede di:

- Rappresentare il layout del ciclo Joule-Brayton
- Determinare la potenza elettrica richiesta dall'impianto di compressione di He
- Determinare la portata di elio che viene compressa

Aria e gas combusti trattati come gas perfetto il cui calore specifico a pressione costante è 1.1 kJ/kg/K e γ =1.4

□ ESERCIZIO 2 (punti 5)

Una sfera di metallo (D=5 mm, ρ =7850 kg/m³, c=450 J/kg/K, k=73 W/m/K) alla temperatura iniziale di 10°C, che si trova all'interno di un guscio sferico di materiale isolante tale da annullare lo scambio termico con l'esterno, viene scaldata per induzione per un tempo pari a 180 s. La generazione interna di calore (assunta per semplicità uniforme nel volume) è pari a 5 MW/m³.

Concluso il riscaldamento, la sfera viene estratta dal guscio sferico isolante e viene posta in contatto con una corrente di aria alla temperatura di 15°C e alla velocità di 3 m/s per 60 s. Si chiede di calcolare:

- la temperatura alla fine del riscaldamento.
- il coefficiente di scambio termico convettivo aria-sfera
- la temperatura alla fine della fase di raffreddamento (nel caso non si sia calcolata la temperatura di fine riscaldamento, si consideri un valore pari a 200°C)
- l'andamento qualitativo della temperatura della sfera nel tempo di durata dell'intero processo (0-240 s)
- l'energia ceduta all'aria durante il processo di raffreddamento

Correlazioni per geometria Sferica (Dimensione caratteristica → Diametro della sfera)

Intervallo Numero Re	Convezione Forzata	Proprietà aria		
100-50000	Nu = 2+ 0.47Re ^{0.5} Pr ^{0.36}		Valore	
		c _p [J/kg/K]	1006	
		μ [10 ⁻⁶ Pa*s]	17.95	
		k [10 ⁻³ W/m/K]	25.04	
		ρ [kg/m ³]	1.21	

□ ESERCIZIO 3 (punti 4)

Una portata di 12 kg/s di acqua in condizioni di liquido saturo a 460 K viene laminata adiabaticamente fino alla pressione di 1 bar. Successivamente la portata viene inviata ad un separatore. La frazione di vapore saturo viene espansa in una turbina (rendimento isoentropico pari a 0.8) fino alla pressione corrispondente ad una temperatura di saturazione di 320 K. Si chiede di:

- Rappresentare la sequenza di trasformazioni sul piano T-s allegato
- Calcolare la potenza meccanica del sistema
- Calcolare il titolo e la portata volumetrica allo scarico della turbina

□ ESERCIZIO 4 (punti 5)

Una macchina idraulica (adiabatica) elabora un fluido incomprimibile (densità ρ =1000 kg/m3). La pressione in ingresso è pari a 15 bar mentre allo scarico la pressione è di 2 bar. La velocità di ingresso V₁ è pari a 3 m/s. Le sezioni di ingresso (1) e di uscita (2) sono di sezione circolare e il rapporto tra i due diametri (D₁/D₂) è pari a 2. Sapendo che l'incremento di temperatura del fluido attraverso la macchina è pari a 0.15 K, che il calore specifico del fluido è 2000 J/kg/K e supponendo che la differenza di quota tra ingresso e uscita sia trascurabile, si determini:

- la velocità allo scarico della macchina;
- il lavoro ideale in caso di assenza di irreversibilità della macchina (la macchina è operatrice o motrice?);
- il lavoro reale scambiato con l'esterno;
- il rendimento idraulico della macchina;

□ QUESITO 5 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Applicare il principio di conservazione dell'energia ad una laminazione adiabatica ed introdurre il coefficiente di Joule-Thompson ed il significato della curva di inversione.
- 2- Descrivere l'effetto di una riduzione della pressione di condensazione sulle prestazioni di un ciclo Rankine ideale. Discutere eventuali limitazioni all'abbassamento della pressione di condensazione.

□ QUESITO 6 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 20 domande a risposta guidata. Segnare le <u>risposte corrette</u> <u>ad ogni domanda</u> (0.375 punto per risposta corretta, -0.125 punti se sbagliata).

D (1 : 1 /				
Per un fluido reale (es.	Iso-h è sempre funzione decrescente con l'entropia			falso
ammoniaca), nel	Punto critico si trova sul massimo della curva di	□ vero		falso
diagramma T-s:	Andrews			
	Le iso-titolo si possono ricavare analiticamente una	□ vero		falso
	volta nota la curva di Andrews			
	Le isobare per un liquido tendono a collassare	□ <mark>vero</mark>		falso
Per un ciclo Rankine	ηciclo cresce con la pressione dello spillamento	□ vero		falso
saturo rigenerativo (1	A pari portata di vapore, il lavoro del ciclo [kJ/kgvap] è	□ vero		falso
rigeneratore a miscela):	> a quello di un ciclo non rigenerativo			
	· · ·	□vero		falso
	Portata massica in uscita dal rig. è > portata	□ <mark>vero</mark>		falso
	spillamento			
Per un fluido generico:	se Z=1, il Q necessario a causare un certo ∆T a 1 kg	□vero		falso
Z→fattore comprimibilità	è sempre > per gas monoatom. rispetto a poliatom.			
v→ Volume specifico	Il coeff. Joule-Thomson è definibile anche per liquido	□ vero		falso
P→ Pressione	L'equazione di stato è una funzione del tipo T=f(P,v)			falso
T→ Temperatura	Tds=dh-vdP vale sempre			falso
Data un'aletta a sezione	Se apice adiab., a pari materiale e L, se h↑ → T _{apice} ↓			falso
quadrata, temperatura	Se L→∞ allora l'efficienza →0			falso
alla base imposta:	Se L₁=3L₂ → Q₁=3Q₂ poiché l'area di scambio triplica			falso
L→Lunghezza aletta	Se T _{base} ↑allora la pot.scambiata ↑sempre			falso
h→coeff.scambio				
term.conv T _{base} >T∞				
T∞→ Temp. ambiente				
2 kg/s di liquido ideale	La pressione all'uscita dei due tubi è sempre uguale	□ vero		falso
alla pressione di 2 bar si	Se L _A =L _B allora la portata si ripartisce ugualmente			falso
distribuiscono in 2 tubi in	A pari caratteristiche fisiche dei tubi e f, se la portata			falso
parallelo (A-B):	totale cambia, ma/m _B rimane sempre lo stesso		-	. 3.00
f→ Coeff. attrito	ΔP [Pa] si calcola come f*L/D*v^2/2	□ vero		falso
1 7 00011. attitto		<u>_ voio</u>	ㅗ	Idioo

