

دورة: 2019

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

المدة: 04 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (04) صفحات (من الصفحة 1 من 7 إلى الصفحة 4 من 7)

التمرين الأول: (07 نقاط)

- DNPH فحم هيدروجيني أوكسجيني (A) كثافته البخارية بالنسبة للهواء d=1,52، من خصائصه أنه يتفاعل مع (A).
 - 2) اكتب الصيغة نصف المفصلة للمركب (A).

 $M_C = 12g.mol^{-1}$, $M_H = 1g.mol^{-1}$, $M_O = 16g.mol^{-1}$:

- II- من أجل تحضير مركب عضوي (N) يدخل في تركيب مادة صيدلانية تستعمل كمضاد للالتهابات، انطلاقا من المركب (A) نجرى سلسلة التفاعلات التالية:
 - 1) (A) + $CH_3MgCl \longrightarrow (B)$
 - 2) (B) + H_2O \longrightarrow (C) + MgClOH
 - 3) (C) + $SOCl_2$ \longrightarrow (D) + SO_2 + HCl

 - 5) (E) + CO_2 \longrightarrow (F)
 - 6) (F) + H_2O \longrightarrow (G) + MgClOH
 - 7) (G) + PCl_5 ————(H) + $POCl_3$ + HCl
 - 8) (H) + (I) + HCI
 - 9) (I) $\frac{\text{Zn} / \text{H}_3\text{O}^+}{}$ \rightarrow (J) + H₂O
 - $\mathbf{10}) \qquad (A) \quad \xrightarrow{\text{KMnO}_4} \quad (K)$
 - 11) (K) + PCl_5 \longrightarrow (L) + $POCl_3$ + HCl

13) (M) +
$$H_2 \xrightarrow{\text{Ni}} (N)$$
 المركب (M)

- - 2) اذكر الوسيط المستعمل في التفاعلين رقم 8 و 12.
 - 3) يتميز المركب (N) بتماكب ضوئى. مثّل مماكباته حسب إسقاط فيشر.
 - 4) نزع الماء من المركب (C) في وجود H_2SO_4 عند H_2SO_4 ينتج المركب (Q) و بلمرة المركب (Q) تعطي البوليمير (P).
 - أ- اكتب معادلات التفاعل المؤدية للمركب (Q) و البوليمير (P).
 - ب- أعط مقطع من البوليمير (P) يتكون من ثلاثة وحدات بنائية.

التمرين الثاني: (07 نقاط)

.(C) يتكون من الحمض الدهني المشبع (B) والحمض الدهني (B) والحمض الدهني (B) والحمض الدهني - $I_{\rm s}=209,3$

1) احسب الكتلة المولية لثنائي الغليسريد (A).

$$M_{\rm C} = 12 {\rm g.mol}^{-1} \;,\;\; M_{\rm H} = 1 {\rm g.mol}^{-1} \;,\;\; M_{\rm O} = 16 {\rm g.mol}^{-1},\;\; M_{\rm K} = 39,1 {\rm g.mol}^{-1}$$
يعطى:

2) تُعَدّل كتلة 1g من الحمض الدهني المشبع (B) بـ 10 mL من 1g من الحمض الدهني المشبع

أ- احسب الكتلة المولية للحمض الدهني (B).

ب- استنتج الصيغة نصف المفصلة للحمض الدهني (B).

 $Cn:2\Delta^{9,12}$ الحمض الدهني (C) يرمز له بـ (3

أ- أعط عدد ذرات الكربون في الحمض الدهني (C).

ب- استنتج الصيغة نصف المفصلة للحمض الدهني (C).

ج- اكتب تفاعل أكسدة للحمض الدهني (C) ببرمنغنات البوتاسيوم المركزة و في وسط حمضي.

4) اكتب الصيغ نصف المفصلة الممكنة لثنائي الغليسريد (A).

(A) احسب قربنة اليود I_i لثنائي الغليسريد (B).

 $M_1 = 127 \text{g.mol}^{-1}$

II- لديك الأحماض الأمينية التالية:

الحمض الأميني	Ala	Tyr	Asp
الصيغة	H ₂ N-CH-COOH CH ₃	H ₂ N-CH-COOH CH ₂ OH	H ₂ N-CH-COOH CH ₂ COOH

- 1) صنّف الأحماض الأمينية السابقة.
- 2) يتأين الحمض الأميني التيروزين Tyr عند تغير الـ pH وفق المخطط التالي:

أ- اكتب صيغ المركبات (A) ، (C) ، (B) ، (A)

. Tyr للحمض الأميني التيروزين pH_i للحمض

Ala-Asp-Tyr لديك ثلاثي الببتيد (3

أ- اكتب الصيغة نصف المفصلة لثلاثي الببتيد

pH=13 و عند pH=1 و عند pH=1

التمربن الثالث: (06 نقاط)

يحترق 1,32g من البروبان $C_3H_{8(g)}$ في مسعر حراري (نهمل السعة الحرارية للمسعر) يحتوي (1 على $22 \, \mathrm{K}$ من الماء، فترتفع درجة حرارة الماء بمقدار 723 g

 $\cdot c_{H,O} = 4{,}185 \text{ J.g}^{-1}.K^{-1}$ علماً أن السعة الحرارية الكتلية للماء

أ- احسب كمية الحرارة Q الناتجة عن احتراق كتلة البروبان.

 $\Delta H_{comb}^{\circ}\left(C_{3}H_{8(g)}\right)$ ب- ماهي قيمة أنطالبي احتراق البروبان الغازي

 $M_C = 12g.mol^{-1}$, $M_H = 1g.mol^{-1}$

اختبار في مادة: التكنولوجيا (هندسة الطرائق) // الشعبة: تقني رياضي // بكالوريا 2019

ج- اكتب معادلة الإحتراق التام للبروبان الغازي ركاله .C3H8(g)

 $\Delta H_{\mathrm{f}}^{\circ}\left(C_{3}H_{8(g)}\right)$ د- جد أنطالبي تشكل البروبان الغازي

 $\Delta H_{\rm f}^{\circ}\left({\rm H_2O_{(\ell)}}\right) = -286~{\rm kJ.mol^{-1}}~,~~\Delta H_{\rm f}^{\circ}\left({\rm CO_{2(g)}}\right) = -393~{\rm kJ.mol^{-1}}$ يعطى:

ين عالم البروبان الغازي $\Delta H_f^\circ\left(C_3H_{8(g)}\right)$ من خلال طاقات الروابط ثم قارن بين النتيحتين.

 $\Delta H_{sub}^{\circ}\left(C_{(S)}\right) = 717 \; kJ.mol^{-1} \; 25^{\circ}C$ يعطى: أنطالبي تصعيد الكربون عند

الرابطة	Н-Н	С-Н	C-C
$\Delta H_d^{\circ}(kJ.mol^{-1})$	436	413	348

3) لديك التفاعلين التاليين:

$$C_{3}H_{7}Cl_{(\ell)} + H_{2(g)} \longrightarrow C_{3}H_{8(g)} + HCl_{(g)} \Delta H_{1}^{\circ} = -52 \text{ kJ.mol}^{-1}$$
 $C_{3}H_{6(g)} + HCl_{(g)} \longrightarrow C_{3}H_{7}Cl_{(\ell)} \Delta H_{2}^{\circ} = -72 \text{ kJ.mol}^{-1}$

أ- استنتج أنطالبي هدرجة البروبن الغازي ΔH_3° .

$$C_3H_{6(g)} + H_{2(g)} \longrightarrow C_3H_{8(g)} \Delta H_3^\circ = ?$$

 $\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{C_{3}H_{7}Cl}_{(\ell)}\right)$ ب- احسب أنطالبي تشكل كلور البروبان السائل

$$\Delta H_f^{\circ}(HCl_{(g)}) = -92 \text{ kJ.mol}^{-1}$$
 يعطى:

$$-\left(\Delta H_{\mathrm{d(C-Cl)}}^{\circ}\right)$$
 C-Cl الرابطة المالبي تفكك الرابطة

$$\Delta H_{vap}^{\circ}\left(C_{3}H_{7}Cl_{(\ell)}\right)=27~kJ.mol^{-1}~,~\Delta H_{d(Cl-Cl)}^{\circ}=242~kJ.mol^{-1}$$
يعطى:

انتهى الموضوع الأول

الموضوع الثانى

يحتوي الموضوع على (03) صفحات (من الصفحة 5 من 7 إلى الصفحة 7 من 7)

التمرين الأول: (07 نقاط)

بوليمير (P) مقاوم ممتاز للحرارة والمواد الكيميائية يدخل في مكونات بذلة رجال الحماية المدنية. من أجل تحضير البوليمير (P) نمر بالمراحل التالية:

I- المرحلة الأولى:

1)
$$CH_{\overline{3}}$$
 $CH_{\overline{3}}$ C

2) (A)
$$+$$
 H_2O \longrightarrow (B) $+$ $MgClOH$

3)
$$+$$
 (B) $+$ H₂O $+$ H₂O

4) (C)
$$\frac{\text{KMnO}_4}{\text{H}_2\text{SO}_4}$$
 (D) + 2CO₂ + 3H₂O

$$(E) \quad \frac{\text{KMnO}_4}{\text{H}_2\text{SO}_4} \rightarrow \quad (F) \quad + \quad \text{H}_2\text{O}$$

- جد الصيغ نصف المفصلة للمركّبات (A) ، (B) ، (C) ، (C) ، (B) و (F).

II- المرحلة الثانية:

1) (G) + HNO₃
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 (H) + H₂O

2)
$$(H) + HNO_3 \xrightarrow{H_2SO_4} (I)$$
 (طوقع میتا) + H_2O

- جد الصيغ نصف المفصلة للمركّبات (G) ، (G) و (I) .

III- المرحلة الثالثة:

بلمرة المركب (F) مع المركب (K) تعطي البوليمير (P).

أ- ما نوع هذه البلمرة ؟

اختبار في مادة: التكنولوجيا (هندسة الطرائق) // الشعبة: تقنى رياضي // بكالوريا 2019

ب- مثل مقطعا لهذا البوليمير يتكون من وحدتين بنائيتين.

ج- إذا كانت درجة البلمرة تساوي 800 .

- احسب الكتلة المولية المتوسطة للبوليمير (P).

 $\rm M_H = 1g.mol^{-1}$, $\rm M_C = 12g.mol^{-1}$, $\rm M_O = 16g.mol^{-1}$, $\rm M_N = 14g.mol^{-1}$ علماً أن:

التمرين الثاني: (06 نقاط)

I- ثنائي غليسيريد (A) يدخل في تركيبه الأحماض الدهنية التالية:

 $C20:4\Delta^{5,8,11,14}$: حمض الأراشيدونيك

 CH_3 - $(CH_2)_{14}$ -COOH: حمض البالمِتيك

- 1) اكتب معادلة تفاعل أكسدة حمض الأراشيدونيك بواسطة KMnO₄ في وسط من حمض 14SO₄.
 - 2) جد الصيغ نصف المفصلة الممكنة لثنائي الغليسيريد (A).
 - (A) احسب قرينة اليود I_i لثنائي الغليسيريد (A).
 - (A) ما هي قيمة قرينة التصبن $I_{\rm s}$ لثنائي الغليسيريد (4)

 $\mathbf{M_{H}} = 1 \text{g.mol}^{\scriptscriptstyle -1}, \, \mathbf{M_{C}} = 12 \text{g.mol}^{\scriptscriptstyle -1}, \, \mathbf{M_{O}} = 16 \text{g.mol}^{\scriptscriptstyle -1}, \, \mathbf{M_{I}} = 127 \text{g.mol}^{\scriptscriptstyle -1}, \, \mathbf{M_{K}} = 39,1 \text{g.mol}^{\scriptscriptstyle -1} : \text{and it is a problem of the most of the$

II-التحليل المائي لثلاثي بيبتيد يعطي الأحماض الأمينية التالية: Asn , Ser , Glu

1) أ- صنّف الأحماض الأمينية السابقة.

ب- اكتب الصيغة نصف المفصلة لثلاثي البيبتيد التالي: Ser-Asn-Glu علماً أن:

O=C-CH ₂ -CH-COOH I I NH ₂ NH ₂	HOOC-(CH ₂) ₂ -CH-COOH NH ₂	HO-CH ₂ -CH-COOH NH ₂
Asn	Glu	Ser

2) يتأين الأسبارجين Asn عند تغير الـ pH وفق المخطط التالي:

$$pKa_1 = 2,02$$
 $pKa_2 = 8,8$ pH

(A) $+ OH^ + H^+$
(B) $+ OH^ + H^+$
(C)

أ- اكتب الصيغ الأيونية له (A) ، (B) ، (C).

ب- احسب قيمة pHi .

ج- جد الصيغ الأيونية المتواجدة عند pH=8.

التمرين الثالث: (07 نقاط)

1) يحترق الحمض الأميني الغليسين الصلب (Gly)(s) عند 25°C و ضغط 1atm وفق التفاعل التالي:

أ- وازن معادلة تفاعل إحتراق الغليسين (Gly)(s).

.25°C عند السابق عند ΔH_{comb}^{o}) للتفاعل السابق عند

علماً أن:

المركب	Gly _(s)	$CO_{2(g)}$	$H_2O_{(\ell)}$
$\Delta H_{\rm f}^{\rm o}\!\left({ m kJ.mol^{-1}} ight)$	-527,5	-393	-286

ج- أوجد كمية الحرارة الناتجة عن الاحتراق التام لـ 7,5g من الغليسين الصلب عند $25^{\circ}\mathrm{C}$

 ${
m M_H}{=}1{
m g.mol^{{\scriptscriptstyle -1}}}$, ${
m M_C}{=}12{
m g.mol^{{\scriptscriptstyle -1}}}$, ${
m M_O}{=}16{
m g.mol^{{\scriptscriptstyle -1}}}$, ${
m M_N}{=}14{
m g.mol^{{\scriptscriptstyle -1}}}$ علماً أن:

 $\Delta H^{
m o}_{
m comb}$ عند $\Delta H^{
m o}_{
m comb}$ للتفاعل السابق عند $\Delta H^{
m o}_{
m comb}$

المركب	Gly _(s)	O _{2(g)}	N _{2(g)}	CO _{2(g)}	$\mathrm{H_2O}_{(\ell)}$
$C_p(J.mol^{-1}.K^{-1})$	99,20	29,37	29,12	37,45	75,24

3) ليكن تحول الغليسين من الحالة الصلبة إلى الحالة الغازية وفق ما يلي:

$$NH_2 - CH_2 - COOH_{(s)} \longrightarrow NH_2 - CH_2 - COOH_{(g)} \Delta H_{sub}^{\circ}(Gly) = 147 \text{ kJ.mol}^{-1}$$

. $\Delta H_{\mathrm{f}}^{\circ}(\mathrm{Gly})_{\mathrm{g}}$ قيمة أنطالبي تشكل الغليسين الغازي

4) ليكن تفاعل تشكل الغليسين الغازي:

$$2C_{\left(S\right)}^{} + \ \frac{5}{2}H_{2\ \left(g\right)}^{} + \ \frac{1}{2}N_{2\ \left(g\right)}^{} + \ O_{2\ \left(g\right)}^{} - \underbrace{\begin{array}{c} \Delta H_{f}^{\circ}\left(Gly\right)g}{} \\ \end{array} \\ H_{2}N - CH_{2}^{} - C - O - H_{\left(g\right)}^{} \\ \end{array}$$

. $\Delta H^{\circ}_{d(C-N)}$ في الغليسين الغازي تفكك الرابطة (C-N) في الغليسين الغازي - احسب

$$\Delta H_{\text{sub}(C)}^{\circ} = 717 \text{kJ.mol}^{-1}$$
:يعطى

الرابطة	O=O	Н-Н	C-C	О-Н	С-Н	C-O	
$\Delta H_{d}^{\circ}(kJ.mol^{-1})$	498	436	348	463	413	351	

الرابطة	$N \equiv N$	C=O	N-H
$\Delta H_{d}^{\circ}(kJ.mol^{-1})$	940	810	391

انتهى الموضوع الثاني

رمة	العا	/ t \$t(a · · · t() . T Nt(. · · · · · · · · · · · · · · · · · ·
مجموع	مجزأة	عناصر الإجابة: (الموضوع الأول)
		التمرين الأول: (07 نقاط)
		-I
		1) إيجاد الصيغة المجملة للمركب A:
	0,25	A: $C_nH_{2n}O$
01,00	0,25	$M_A = d \times 29 = 1,52 \times 29 = 44,08 \text{ g.mol}^{-1}$
, , , ,	0,25	$12n+2n+16=44 \implies n=\frac{44-16}{14}=\boxed{2}$
	0,25	$A: C_2H_4O$
		2) الصيغة نصف المفصلة للمركب A.
00.70	0.50	O
00,50	0,50	$A: CH_3-C$ H
		-II
		N إيجاد الصيغ نصف المفصلة للمركبات: من B إلى المركب المركب B
		B CH ₃ -CH-CH ₃ C CH ₃ -CH-CH ₃ D CH ₃ -CH-CH ₃
		OMgCl OH Cl
		E CH ₃ -CH-CH ₃ F CH ₃ -CH-C G CH ₃ -CH-C O G CH ₃ -CH-C O CH ₃ OH
03,25	13 x 0,25	H CH_3 - CH - C CH_3 CH_3 CH_2 CH_2 CH_3 CH_2 CH_3 CH_3 CH_2 CH_3 $CH_$
		OH CI CH_3 $CH-CH_2$ CH_3 $CH-CH_2$ CH_3 $CH-CH_2$ OH CH_3 $CH-CH_2$ OH
00,25	0,25	2) الوسيط المستعمل في التفاعلين رقم 8 و 12: AlCl3 عمل المستعمل في التفاعلين رقم 8 و 21: AlCl3

		كما تقبل الإجابة:
		$B: C_n H_{2n} O_2$
		$M_{\rm B} = 12n + 2n + 32 = 200$
		$n = \frac{200 - 32}{14} = 12$ $CH_3 - (CH_2)_{10} - COOH$
		$\mathrm{Cn}:2\Delta^{9,12}$ يرمز له بـ C يرمز له بـ (3
		أ- عدد ذرات الكربون في الحمض الدهني C :
		$A + 2 H_2O \rightarrow Glycérol + B + C$
		$M_A = 536 \text{ g.mol}^{-1}$
		$M_{Glyc\acute{e}rol} = (3 \times 12) + (8 \times 1) + (3 \times 16) = 92 \text{ g.mol}^{-1}$
		$M_{\rm B} = 200 \text{ g.mol}^{-1}$
		$\mathbf{M}_{\mathrm{A}} + 2\mathbf{M}_{\mathrm{H}_{2}\mathrm{O}} = \mathbf{M}_{\mathrm{Glyc\acute{e}rol}} + \mathbf{M}_{\mathrm{B}} + \mathbf{M}_{\mathrm{C}}$
		$\mathbf{M}_{\mathrm{C}} = \mathbf{M}_{\mathrm{A}} + 2\mathbf{M}_{\mathrm{H},\mathrm{O}} - \mathbf{M}_{\mathrm{Glyc\acute{e}rol}} - \mathbf{M}_{\mathrm{B}}$
		$M_C = 536 + (2 \times 18) - 92 - 200 = 280 \text{ g.mol}^{-1}$
		$C: C_nH_{2n-4}O_2$
		12n + 2n - 4 + 32 = 280
01,25	0,25	$n = \frac{280 - 28}{14} = 18$ $\boxed{n = 18}$
		ب- استنتاج الصيغة نصف المفصلة للحمض الدهني C:
	0,25	$CH_3-(CH_2)_4-CH=CH-CH_2-CH=CH-(CH_2)_7-COOH$
		ج- كتابة تفاعل أكسدة الحمض الدهني C بـ KMnO ₄ المركزة و في وسط H ₂ SO ₄ :
		CH_3 - $(CH_2)_4$ - CH = CH - CH_2 - CH = CH - $(CH_2)_7$ - $COOH$
	3	CH ₃ -(CH ₂) ₄ -COOH
	X	+ KMnO ₄ HOOC−CH ₂ −COOH ✓ H SO
	0,25	H_2SO_4 $HOOC-(CH_2)_7-COOH$

		, 1
	0,25	Ala-Asp-Tyr أ- كتابة الصيغة نصف المفصلة لثلاثي الببتيد (3) أ- كتابة الصيغة نصف المفصلة لثلاثي الببتيد (4) المحالية المعارفة المع
00,75	0,25	он pH= 1 عند Ala-Asp-Tyr - o
	0,25	OH pH= 13 عند Ala-Asp-Tyr عند Ala-Asp-Tyr O H ₂ N—CH—C—NH—CH—COO CH ₃ CH ₂ COO
		التمرين الثالث: (06 نقاط) 1) أ- حساب كمية الحرارة Q الناتجة عن احتراق كتلة البروبان الغازى:
	0,25	$\sum_{e} Q = Q_{comb} + Q_{eau} = 0$ $\sum_{e} Q = Q_{comb} + mc_{e}\Delta T = 0 \implies Q_{comb} = -mc_{e}\Delta T$ $Q_{comb} = -723 \times 4,185 \times 22$
	0,25	Q_{comb} = -66566,6 J
	0,50	$\Delta H_{\text{comb}}^{\circ} = \frac{Q_{\text{comb}}}{n} = -\frac{66566.6}{0.03} = \boxed{-2218.88 \text{ kJ.mol}^{-1}}$

	<u> </u>	
		 ج- كتابة معادلة الإحتراق التام للبروبان الغازي:
02,50	0,50	$C_3H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_2O_{(\mathfrak{Q})}$
		د-حساب أنطالبي تشكل البروبان الغازي:
		$\Delta H_{comb}^{\circ} = \sum \Delta H_{produits}^{\circ} - \sum \Delta H_{reactifs}^{\circ}$
	0,25	$\Delta H_{comb}^{\circ} = 3\Delta H_{f}^{\circ} \left(CO_{2(g)} \right) + 4\Delta H_{f}^{\circ} \left(H_{2}O_{(\ell)} \right) - \Delta H_{f}^{\circ} \left(C_{3}H_{8(g)} \right) - 5\Delta H_{f}^{\circ} \left(O_{2(g)} \right)$
		$\Delta H_{f}^{\circ}\left(C_{3}H_{8(g)}\right) = 3\Delta H_{f}^{\circ}\left(CO_{2(g)}\right) + 4\Delta H_{f}^{\circ}\left(H_{2}O_{(\ell)}\right) - \Delta H_{comb}^{\circ} - 5\Delta H_{f}^{\circ}\left(O_{2(g)}\right)$
	0,25	$\Delta H_f^{\circ} (C_3 H_{8(g)}) = 3(-393) + 4(-286) - (-2218,8) - (5 \times 0)$
		$\Delta H_f^{\circ}(C_3 H_{8(g)}) = -1179 - 1144 + 2218,8$
	0,25	$\Delta H_f^{\circ} (C_3 H_{8(g)}) = -104,2 \text{ kJ.mol}^{-1}$
		2) حساب أنطالبي تشكل البروبان الغازي من خلال طاقات الروابط:
		$\mathbf{\Lambda H}^{\circ}$
		$3C_{(s)} + 4H_{2(g)} \xrightarrow{\Delta H_{f}(C_{3}H_{8(g)})} C_{3}H_{8(g)}$
	0,50	
01,25		$3\Delta H_{sub(C)}^{\circ}$ $4\Delta H_{d(H-H)}^{\circ}$ $-2\Delta H_{d(C-C)}^{\circ}$
		$-2\Delta H_{d(C-C)}$
		$3C_{(g)} + 8H_{(g)}$
	0,25	$AII^{\circ}(GII) - 2AII^{\circ} + 4AII^{\circ} + 2AII^{\circ} + 2AII^{\circ}$
	0,23	$\Delta H_{f}^{\circ}(C_{3}H_{8(g)}) = 3\Delta H_{sub(C)}^{\circ} + 4\Delta H_{d(H-H)}^{\circ} - 2\Delta H_{d(C-C)}^{\circ} - 8\Delta H_{d(C-H)}^{\circ}$ $\Delta H_{f}^{\circ}(C_{3}H_{8(g)}) = (3\times717) + (4\times436) - (2\times348) - (8\times413)$
		$\Delta H_f(C_3 H_{8(g)}) = (3 \times 717) + (4 \times 430) - (2 \times 340) - (6 \times 413)$ $\Delta H_f(C_3 H_{8(g)}) = 2151 + 1744 - 696 - 3304$
	0.25	$\Delta H_{f}(C_{3}H_{8(g)}) = 2131 + 1744 = 050 = 3504$ $\Delta H_{f}(C_{3}H_{8(g)}) = -105 \text{ kJ.mol}^{-1}$
	0,25	
	0,25	القيمتان $\Delta \mathrm{H}^{\scriptscriptstyle{0}}_\mathrm{f}\left(\mathrm{C_{\scriptscriptstyle{3}}H_{\scriptscriptstyle{8(g)}}}\right)$ - $104,2~\mathrm{kJ.mol^{\scriptscriptstyle{-1}}}$ و $105~\mathrm{kJ.mol^{\scriptscriptstyle{-1}}}$ متقاربتان

$$\begin{aligned} & : \Delta H_{0}^{3} \text{ with iteration is simple for the content of the content of$$

رمة	العا	(*1÷t(c · *- · t()
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
03,00	6 x 0,50	التمرين الأول (07 نقاط): : F، E، D، C، B، A الجاد الصيغ نصف المفصلة للمركّبات : F، E، D، C، B، A الجاد الصيغ نصف المفصلة للمركّبات : CH3-CH-CH3 (CH3-CH-CH3 (A) OMgCl (B) OH COOH COOH COOH COOH COOH
01,50	3 x 0,50	(G) (H) (H) (G) المفصلة للمركّبات (NO ₂ (NO ₂ (I) (H) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I
02,50	0,50 0,50 0,25 0,50 0,25	$\begin{array}{c} &$

		2) أ- كتابة الصيغ الأيونية لـ C, B, A:
	3 x	H ₃ N—HC-COOH H ₃ N—HC-COO H ₂ N—HC-COO
	0,25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		ب- حساب قيمة الـ pHi : بـ حساب قيمة الـ pKa . بـ ملام . بـ ملام . بـ ملام . بـ ملام .
01,75	2 x 0,25	$pH_{i} = \frac{pKa_{1} + pKa_{2}}{2}$
	0,25	$pH_i = \frac{2,02+8,8}{2} = \boxed{5,41}$
		ج- الصيغ الأيونية المتواجدة عند pH=8 هي:
	2	H_3N — CH — COO ; H_2N — CH — COO
	x 0,25	(B) $\stackrel{\dot{C}H_2}{\underset{C}{}{}{}{}{}{}{$
		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
		./t.12* 07 \ * ti*titi
		التمرين الثالث (07 نقاط):
	4	:(Gly) $_{\rm S}$ أ- موازنة معادلة تفاعل احتراق الغليسين الصلب ($_{\rm Cly}$):
	4 x 0,25	:(Gly)s أ- موازنة معادلة تفاعل احتراق الغليسين الصلب (1 $NH_2-CH_2-COOH_{(s)}+rac{9}{4}O_{2(g)}\longrightarrow 2CO_{2(g)}+rac{5}{2}H_2O_{(\ell)}+rac{1}{2}N_{2(g)}$ ΔH^o_{comb}
	X	:(Gly) $_{\rm S}$ الصلب (Gly) $_{\rm S}$ الحتراق الغليسين الصلب الحتراق الغليسين الصلب $_{\rm CH_2-COOH}^{\rm COOH}_{\rm S}$ المحتراق الغليسين الصلب $_{\rm CH_2-COOH}^{\rm COOH}_{\rm S}$ المحتراق عند $_{\rm COOH}^{\rm COOH}_{\rm S}$ المحتراق عند $_{\rm COOH}^{\rm COOH}_{\rm Comb}$
	x 0,25	:(Gly) $_{\rm S}$ الصلب (Gly) $_{\rm S}$: الصلب تفاعل احتراق الغليسين الصلب الصلب $_{\rm CH_2-COOH}^{\rm COOH}_{\rm S}$: $_{\rm COOH}^{\rm S}$ $_{\rm Comb}^{\rm S}$ $_{\rm Comb}^{\rm S}$ $_{\rm Comb}^{\rm S}$ $_{\rm Comb}^{\rm S}$ انطالبي تفاعل الاحتراق عند $_{\rm COOH}^{\rm S}$ $_{\rm Comb}^{\rm S}$
	0,25 0,25	$:(Gly)_{S}$ الصلب ($:(Gly)_{S}$ المحاللة تفاعل احتراق الغليسين الصلب ($:(Gly)_{S}$ المحاللة تفاعل احتراق الغليسين الصلب ($:(Shy)_{S} + \frac{9}{4}O_{2(g)} - \cdots + 2CO_{2(g)} + \frac{5}{2}H_{2}O_{(\ell)} + \frac{1}{2}N_{2(g)} \Delta H_{comb}^{o}$ $:(Shy)_{Shy} + \frac{9}{4}O_{2(g)} - \cdots + \frac{1}{2}N_{2(g)} \Delta H_{comb}^{o}$ $:(Shy)_{Shy} + \frac{1}{$
02,75	x 0,25	$: (Gly)_{S} in the lattice of $
02,75	0,25 0,25	$(Gly)_{S} : (Gly)_{S} : (Gly)_{S} : (Gly)_{S} : (Dly)_{S} : (Dl$
02,75	0,25 0,25	$: (Gly)_{S} in the lattice of $

		\sim الخليسين احتراق تام عند \sim 25°C من الخليسين احتراق تام عند \sim 25°C.
	0,25	$M_{Gly} = 16 + 14 + 32 + 13 = 75 \text{g.mol}^{-1}$
	0,25	$\int \mathbf{M}_{Gly} = 75 \longrightarrow \Delta \mathbf{H}_{comb} = -973,5 \text{ kJ}$
	0,23	$\begin{cases} M_{Gly} = 75 \longrightarrow \Delta H_{comb} = -973,5 \text{ kJ} \\ m = 7,5 \longrightarrow Q = ? \end{cases}$
	0,25	$Q = \frac{7.5 \times (-973.5)}{75} = \boxed{-97.35 \text{ kJ}}$
		ملاحظة: تقبل الإجابة التالية:
		$M_{Gly} = 16 + 14 + 32 + 13 = 75 \text{g.mol}^{-1}$
		$\Delta H_{\text{comb}}^{\text{o}} = \frac{Q}{n} \Rightarrow n = \frac{m_{\text{(Gly)}}}{M_{\text{(Gly)}}} = \frac{7.5}{75} = 0.1 \text{mol}$
		$Q = \Delta H_{comb}^{o} \times n = -973, 5 \times 0, 1 = -97, 35 \text{kJ}$
		2 حساب أنطالبي التفاعل السابق عند 0° بتطبيق قانون كيرشوف:
01,75	0,50	$\Delta H^{o}_{_{T}} = \Delta H^{o}_{_{T_{0}}} + \int\limits_{T_{0}}^{T} \Delta C_{p} dT \qquad , \qquad \Delta H^{o}_{_{333}} = \Delta H^{o}_{_{298}} + \int\limits_{298}^{333} \Delta C_{_{p}} dT$
	0,25	$\Delta H_{333}^{\circ} = \Delta H_{298}^{\circ} + \Delta C_{p} (333 - 298)$
	0,25	$\Delta C_p = 2C_p \Big(CO_{2(g)}\Big) + \frac{5}{2} C_p \Big(H_2O_{(\ell)}\Big) + \frac{1}{2} C_p \Big(N_{2(g)}\Big) - \frac{9}{4} C_p \Big(O_{2(g)}\Big) - C_p \Big(Gly_{(s)}\Big)$
	0,25	$\Delta C_{\mathbf{p}} = (2 \times 37,45) + \left(\frac{5}{2} \times 75,24\right) + \left(\frac{1}{2} \times 29,12\right) - \left(\frac{9}{4} \times 29,37\right) - (99,20)$
	0,25	$\Delta C_p = 112,27 \text{ J.mol}^{-1}.\text{K}^{-1}$
	0,25	$\Delta H_{333}^{o} = -973,5 + (112,27 \times 10^{-3})(333 - 298) = -969,58 \text{ kJ.mol}^{-1}$
		: $\Delta H_{\rm f}^{\circ}({ m Gly})$ يجاد أنطالبي تشكل الغليسين الغازي $\Delta H_{\rm f}^{\circ}({ m Gly})$
		$Gly(s) \longrightarrow Gly(g) \Delta H_{sub}^{\circ}(Gly) = 147 \text{ kJ.mol}^{-1}$
00,50		$\Delta H_{\text{sub}}^{\circ}(Gly) = \Delta H_{\text{f}}^{\circ}(Gly)_{(g)} - \Delta H_{\text{f}}^{\circ}(Gly)_{(s)}$
	0,25	$\Delta H_{\mathbf{f}}^{\circ}(Gly)_{(g)} = \Delta H_{\mathbf{f}}^{\circ}(Gly)_{(s)} + \Delta H_{sub}^{\circ}(Gly)$
	0,25	$\Delta H_{\mathbf{f}}^{\circ}(Gly)_{(g)} = -527,5 + 147 = \boxed{-380,5 \text{kJ.mol}^{-1}}$
	- ,	1 (0.5)/(g) 0.2.,0.1.1.1

$$\begin{array}{c} :\Delta H^{\circ}_{d(C-N)} \stackrel{\text{iddlucy}}{(C-N)} \stackrel{\text{iddlucy}}{=} (C-N) \stackrel{\text{iddlucy}}{=} (C-$$