MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Indistinguishability of sums and products). Let \mathcal{X}_0 and \mathcal{X}_1 be (t_1, ε_1) -indistinguishable and let \mathcal{Y}_0 and \mathcal{Y}_1 be (t_2, ε_2) -indistinguishable. Estimate the computational distance between the following games

$$\begin{array}{ll} \mathcal{G}_0 & \mathcal{G}_0 \\ x \leftarrow \mathcal{X}_0 \\ y \leftarrow \mathcal{Y}_0 \\ u = x + y \\ v = x \cdot y \\ \textbf{return } \mathsf{Adv}(u,v) \end{array} \qquad \begin{array}{l} \mathcal{G}_0 \\ x \leftarrow \mathcal{X}_1 \\ y \leftarrow \mathcal{Y}_1 \\ u = x + y \\ v = x \cdot y \\ \textbf{return } \mathsf{Adv}(u,v) \end{array}$$

Highlight all hidden assumptions. Do you get different results when you known that Adv ignores the second argument. Formalise this and explain why the resulting bound is different.

Solution.