

Topic 3 Content

This lecture covers:

- Linearity and Superposition
- Source Transformation
- Thevenin's and Norton's theorems
- Maximum Power Transfer

Corresponds to Chapter 4 of your textbook

Linear property

- A system is called linear if it follows two main properties:
 - Homogeneity:

If the input (x) is multiplied by a constant (k), the output/response (y) is multiplied by the **same** constant.

Additivity:

The response to the sum of the inputs is the sum of the individual responses to each input.

Together, the response to the linear combination of inputs is equal to the linear combination of individual responses to each input.

 k_1 and k_2 are constant

Linear property

 Resistor is a linear electrical element since the voltage-current relationship satisfies both the homogeneity and additivity properties.

$$v = k(k_1 l_1 + k_2 l_2)$$

$$v = k_1 \underbrace{Ri_1}_{v_1} + k_2 \underbrace{Ri_2}_{v_2}$$

$$v = k_1 v_1 + k_2 v_2$$

Linear property

A linear circuit is one whose output is linearly related (or directly proportional) to its input.

Example: Find the voltage v_o when $i_s = 30$ A and $i_s = 60$ A.

$$i_2 = \frac{4 \parallel 20}{20} i_{\scriptscriptstyle S} = \frac{20/6}{20} i_{\scriptscriptstyle S} = \frac{1}{6} i_{\scriptscriptstyle S}$$
 (current division)

$$v_o = 8i_2 = 8 \times \frac{1}{6}i_S = \frac{4}{3}i_S$$
 (Ohm's law)

If
$$i_s = 30 \text{ A}$$
 \Longrightarrow $v_o = \frac{4}{3}i_s = 40 \text{ V}$

If
$$i_s = 60 \text{ A}$$
 $v_o = \frac{4}{3}i_s = 80 \text{ V}$

If
$$i_s = k_1 30 + k_1 60 \text{ A}$$
 $v_o = \frac{4}{3}i_s = \frac{4}{3}(k_1 30 + k_1 60) = k_1 40 + k_1 80 \text{ V}$

Superposition

If there are **two** or **more independent** sources in a circuit, there are different ways to solve for the circuit parameters:

- Nodal or mesh analyses.
- Superposition.
 - It is based on the linear property of circuits.
 - Only one independent source is considered at a time.
 - The rest of the independent sources are set to zero (turned off).
 - Dependent sources are left intact since they are controlled by circuit variables.

The **superposition** principle states that the voltage across (or current through) an element in a **linear circuit** is the **algebraic sum** of the voltages across (or currents through) that element due to each **independent source** acting **alone**.

Superposition

Steps to apply superposition principle:

- Turn off all independent sources except one by setting them to zero.
- 2. Find the output (voltage or current in question) using methods covered in Topics 2 and 3.
- 3. Repeat step 1 for each of the other independent sources.
- 4. Find the total contribution by **adding** algebraically all the contributions due to the **independent** sources.

Turning off a current source means replacing it with an open circuit

Turning off a voltage source means replacing it with a short circuit

Using the superposition theorem, find v_o in the circuit below.

Using the superposition theorem, find v in the circuit below.

Using the superposition theorem, find v_x in the circuit below.

Superposition

Superposition is only applicable to linear responses.

E.g. power in resistors is a nonlinear response.

$$p = vi = i^2 R = \frac{v^2}{R}$$

- It is possible to transform a source from one form to another. This can be useful for simplifying circuits.
- The principle behind this transformation is the concept of equivalence, where
 two circuits are called equivalent if their v-i characteristics are identical at
 the terminal.
- The direction of current and polarity of voltage should follow the passive sign convention.

A **source transformation** is the process of **replacing** a voltage source v_s in **series** with a resistor R by a current source i_s in **parallel** with a resistor R or vice versa

Terminal equivalency

If we turn off the sources, the equivalent resistance (R_{eq}) at terminal a-b must be the same.

• Short-circuit current (i_{sc}) flowing from a to b must be the same.

 Source transformation can also be applied to dependent sources, provided that the dependent variable is handled carefully.

Some limitations:

- Source transformation is **not** possible when R = 0 for an **ideal voltage source** (for a practical voltage source $R \neq 0$)
- Source transformation is **not** possible when $R = \infty$ for an **ideal current source** (for a practical current source $R \neq \infty$)

Use source transformation to find v_0 in the circuit below.

Use source transformation to find v_x in the circuit below.

- In many circuits, one element can be variable (e.g. house hold appliances consuming different powers – hairdryer, fridge, etc.). This variable element is called the load.
- Every time the load changes, the circuit would have to be analyzed again.
- Thevenin's theorem provides a technique to simplify the analysis by replacing the fixed part of the circuit with an equivalent one known as Thevenin equivalent circuit.

Thevenin's theorem states that a linear two-terminal circuit (Fig. (a)) can be replaced by an equivalent circuit consisting of a voltage source $V_{\rm Th}$ in series with a resistor $R_{\rm Th}$ (Fig. (b))

• The voltage source's value, known as **Thevenin voltage** V_{Th} , is equal to the **open-circuit voltage** at the terminals.

R_{Th} can be obtained using different methods:

1. Input **resistance** measured at the terminal pair when **all independent sources** are **turned off** (not valid if there is any dependent source).

$$R_{\mathrm{Th}} = R_{\mathrm{eq}} = R_{\mathrm{in}}$$

2. Ratio of the open-circuit voltage to the short-circuit current at the terminal pair (not valid if there are <u>only</u> dependent sources).

$$R_{\rm Th} = \frac{V_{Th}}{i_{sc}} = \frac{V_{Th}}{i_N}$$

3. Turn off independent sources and (a) attach a voltage source v_o to the terminals a-b and find the resulting current i_o , or (b) attach a current source i_o and find the resulting voltage v_o . For simplicity: $v_o = 1$ V or $i_o = 1$ A (valid always).

$$R_{\rm Th} = \frac{v_o}{i_o}$$

Calculate the Thevenin equivalent of the circuit, as seen from terminals a-b.

Replace the circuit in the box with its Thevenin equivalent circuit.

Calculate the Thevenin equivalent of the circuit, as seen from terminals a-b.

When we have a circuit with **dependent sources but not independent ones**, we have a "dead network", i.e. all voltages and currents are equal to zero.

Thevenin voltage V_{Th}:

$$V_{\rm Th} = v_{oc} = 0$$

- Thevenin resistance R_{Th}:
 - All currents and voltages in the circuit are equal to zero, including i_{sc} .
 - The only possible method to calculate R_{Th} in this case is method 3, i.e. attach a **voltage source** v_o to the terminals a-b and find the resulting **current** i_o (Fig. (a)), or attach a **current source** i_o and find the resulting **voltage** v_o (Fig. (b)).
 - Note: In this case it is possible for R_{Th} to be negative $(R_{Th} < 0)$. This implies that the circuit is supplying power.

Find the Thevenin equivalent of the circuit below at the terminals a-b.

- Thevenin's theorem is a powerful technique in circuit analysis with variable loads.
- It allows to simplify a large linear circuit.
- The equivalent circuit behaves externally exactly the same as the original circuit.
- The current through the load R_L (load current I_L) and the voltage across the load (load voltage V_L) is obtained using simple voltage division or KVL/KCL.

$$I_{L} = \frac{V_{Th}}{R_{Th} + R_{L}}$$

$$V_{L} = \frac{R_{L}}{R_{Th} + R_{L}} V_{Th}$$

Norton's theorem

- Norton's theorem is the dual form of Thevenin's theorem.
- It provides a similar technique to simplify the analysis by replacing a linear circuit with an equivalent one known as Norton's equivalent circuit.

Norton's theorem states that a **linear** two-terminal circuit (Fig. (a)) can be replaced by an **equivalent circuit** consisting of a **current source** I_N in **parallel** with a **resistor** R_N (Fig. (b)).

Norton's theorem

• The current source's value, known as Norton current I_N , is equal to the short-circuit current at the terminals.

• The Norton resistance R_N is same as the Thevenin resistance $R_{\rm Th}$, which is the input resistance measured at the terminals when all independent sources are turned off.

Calculate the Norton equivalent of the following circuit:

Thevenin-Norton transformation

- Thevenin's and Norton's theorems are related to each other through source transformation.
- Thevenin and Norton resistances are exactly the same and equal to input resistance measured from the terminals of the circuit.

Thevenin-Norton transformation

- Dependent sources in Norton equivalent circuit are handled in the same way as Thevenin equivalent circuit.
- Since $V_{\rm Th}$, I_N and $R_{\rm Th}=R_N$ are related based on source transformation, finding the Thevenin or Norton equivalent circuit requires **two** of the following:
 - 1. The **open-circuit voltage** v_{oc} across terminals a and b.
 - 2. The **short-circuit current** i_{sc} at terminals a and b.
 - 3. The equivalent or input resistance $R_{eq} = R_{in}$ at terminals a and b when all independent sources are turned off.

$$V_{\mathrm{Th}} = v_{oc}$$
 $I_{N} = i_{sc}$
 $R_{\mathrm{Th}} = \frac{v_{oc}}{i_{sc}} = R_{N}$

Maximum power transfer

- In many practical applications, a circuit is designed to provide maximum power to a load.
- Unlike ideal sources, **internal resistance** of real sources **restricts** the amount of power that can be transferred to a load.
- The power consumption of that internal resistance is known as power loss.
- Using the **Thevenin equivalent circuit** we can find the **maximum power** that can be transferred to a load based on **fixed** V_{Th} and R_{Th} and **variable** R_L .

$$p(R_L) = R_L i^2 = R_L \left(\frac{V_{Th}}{R_{Th} + R_L}\right)^2$$

Maximum power transfer

• To find for which value of R_L the power would be maximum, differentiate p with respect to R_L and set the result to zero.

$$\frac{dp}{dR_L} = V_{Th}^2 \left[\frac{(R_{Th} + R_L)^2 - 2R_L(R_{Th} + R_L)}{(R_{Th} + R_L)^4} \right]$$

$$= V_{Th}^2 \left[\frac{(R_{Th} + R_L - 2R_L)}{(R_{Th} + R_L)^3} \right] = 0 \quad \Rightarrow \quad (R_{Th} + R_L - 2R_L) = 0$$

• Maximum power is transferred to the load when the load resistance R_L is equal to the Thevenin resistance $R_{\rm Th}$ as seen from the load terminals

Find the value of load resistance R_L for maximum power transfer in the circuit below, and then find the maximum power p.

Source Modeling – Voltage source

Thevenin and Norton equivalent circuits can be useful in modeling **realistic** voltage and current sources that deliver maximum power to a load.

- With a load connected to the voltage source, the terminal voltage drops in magnitude, which is known as loading effect.
- The internal resistance R_s of the voltage source v_s in series with the load R_L acts as **voltage** divider.

$$v_L = \frac{R_L}{R_S + R_L} v_S$$

- The load voltage will be constant if R_s is **zero** or **very small** compared to the load $R_s \ll R_L$.
- Without load, $R_L \rightarrow \infty$, $v_{oc} = v_s$ which is known as **unloaded voltage source**.

Note that $v_{oc} = v_s = V_{\rm Th}$, Thevenin voltage, they are all equivalent.

Source Modeling – Current source

- Similarly, with a load connected to the current source, the terminal current drops in magnitude, which is known as **loading effect**.
- The internal resistor R_p in parallel with the load R_L acts as **current divider**.

$$i_L = \frac{R_p}{R_p + R_L} i_s$$

- The load current will be constant if R_p is infinitive or very large compared to the load $R_p \gg R_L$.
- Without load, $R_L = 0$, $i_{SC} = i_S$ which is known as **unloaded current source**.

Note that $i_{sc} = i_s = I_N$, Norton current, they are all equivalent.

Source Modeling

- The following steps can be followed to determine the unloaded source voltage v_s and internal resistance R_s of **voltage source** model in **practice**:
 - 1. Measure the open-circuit voltage (Fig. (a)).

$$v_s = v_{oc}$$

- 2. Connect a variable load R_L (Fig. (b)) and adjust its resistance until $v_L = \frac{v_S}{2}$.
- 3. Disconnect R_L and measure its resistance as it should be **equal** to internal resistance R_s based on maximum power transfer principle.

$$v_L = \frac{v_S}{2} \implies R_S = R_L = R_{\text{Th}}$$

• Use source transformation to identify i_s and R_p for current source model.

Note: In the laboratory, you will be doing a similar experiment but with constant load R_L to identify v_s and R_s and not necessarily following maximum power transfer principle.

The open-circuit voltage across a certain amplifier is 16 V. The voltage drops to 8 V when an 8 -W speaker is connected to the amplifier. Determine the internal resistance of the amplifier and calculate the load voltage when a $24 \text{-}\Omega$ speaker is used instead.

Questions?

