SQL Trace B Oracle

Egor Starostin, DBA July 1, 2019

Не искать ключи под фонарём

1

Oracle Diagnostic Events (не те, что Wait Events)

\$ORACLE_HOME/rdbms/mesg/oraus.msg

```
/ Pseudo-error debugging events:
/ Error codes 10000 .. 10999 are reserved for debug event codes
/ that are not really errors.
[...]
10046, 00000, "enable SQL statement timing"
```

 EVENT: 10046 "enable SQL statement tracing (including binds/waits)" (Doc ID 21154.1)

В начале была книга

Optimizing Oracle Performance: A Practitioner's Guide to Optimizing Response Time by Cary Millsap and Jeff Holt

O'Reilly Media, 2003

Enable trace

• по-старинке

alter session set events '10046 trace name context forever, level 8'

• в своей сессии

exec dbms_session.session_trace_enable(waits, binds, plan_stat)

· в другой сессии

```
exec dbms_monitor.session_trace_enable(sid, serial#, waits, binds, plan_stat)
-- select * from dba_enabled_traces;
```

· по service_name/module/action

```
exec dbms_monitor.serv_mod_act_trace_enable( -
    service_name, module_name, action_name, waits, binds, instance_name, plan_stat)
```

• точечно

```
alter system set events 'sql_trace[sql: sql_id=9tz4qu4rj9rdp|grwydz59pu6mc] -
    wait=true, binds=false, plan_stat=adaptive'

alter system set events 'sql_trace{process: pname=smon|p0000} wait=true'

alter system set events 'sql_trace[sql: sql_id=9tz4qu4rj9rdp]{process:12345}'
```

Disable trace

```
alter session set events '10046 trace name context off'

exec dbms_monitor.session_trace_disable(sid, serial#)

alter system set events 'sql_trace[sql: sql_id=9tz4qu4rj9rdp|grwydz59pu6mc] off'
```

Как сделать трассировку еще проще

- dbms_application_info.set_action(action_name)
- dbms_application_info.set_module(module_name, action_name)
- dbms_session.set_identifier(client_id)

Dude, Where's My Trace?

```
select value from v$diag info where name = 'Default Trace File';
select tracefile from v$process where addr=(
    select paddr from v$session where sid=sys context('userenv','sid')
);
alter system set "_trace_files_public"=true scope=spfile; -- on dev machine
select translate(payload, 'x'||chr(10), 'x') payload
from v$diag_trace_file_contents
where adr home || '/trace/' || trace filename = (
    select tracefile
   from v$process
    where addr = (
        select paddr from v$session where sid = sys context('userenv','sid')
order by line number;
```

И какой уровень трассировки выставлять?

- Обычно 8-ой (waits=true)
- 12-й (binds=true) и +16-й (plan_stat='all_executions') уровни изредка могут и тормозить

И насколько всё тормозит от трассировки?

На -10% и менее процентов

SQL запрос с высоты птичьего полета

Стадия запроса	Trace Level
• PARSE	1
· BINDS	4
• EXEC	1
· WAIT	8
· FETCH	1
· STAT	1, 16, 32, 64
· CLOSE	1

Что в трейс-файле?

- · Разбивка запроса на стадии PARSE / EXEC / FETCH / BINDS / WAIT / STAT
- Информация о CPU Time, Elapsed Time, Timestamp
 PARSE #1:c=311,e=311,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=4,plh=0,tim=745332470
- Информация об иерархии запросов
 PARSE #1:c=311,e=311,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=4,plh=0,tim=745332470
- · Информация o dba_objects.object_id

 WAIT #1: nam='db file scattered read' ela= 9426 file#=3 block#=23883 blocks=5 obj#=21722 ...

Что делать с trace-файлом?

- tkprof
 tkprof sort=prsela,exeela,fchela file.trc file.out
- Method R Software
 https://method-r.com/software/
- tvd\$xtat
 https://antognini.ch
- orasrp
 http://oracledba.ru/orasrp

Что можно извлечь из трейса? Flat Profile

Session Flat Profile

Event Name	% Time	Seconds	Calls	Avg	Time Per Call Min	Max
db file sequential read	47.4% 21.9%	1.0842s 0.5005s	1,959	0.0006s	0.0003s	0.0105s
FETCH calls [CPU]	17.3%	0.3961s	2,347	0.0002s	0.0000s	0.3812s
PARSE calls [CPU]	10.8%	0.2464s	13	0.0190s	0.0000s	0.2360s
PGA memory operation	1.1%	0.0250s	326	0.0001s	0.0000s	0.0198s
EXEC calls [CPU]	0.9%	0.0211s	59	0.0004s	0.0000s	0.0098s
Disk file operations I/O	0.6%	0.0136s	3	0.0045s	0.0000s	0.0135s
SQL*Net message from client [idle]	0.1%	0.0014s	2	0.0007s	0.0004s	0.0010s
asynch descriptor resize	0.0%	0.0000s	1	0.0000s	0.0000s	0.0000s
SQL*Net message to client	0.0%	0.0000s	2	0.0000s	0.0000s	0.0000s
Total	100.0%	2.2883s				

Что можно извлечь из трейса? Call Graph

Session Call Graph

			Self	Cumulative			
SQL Hash Value	Branch %	Total %	Seconds	Seconds	Calls	Similar	Command Type
2466234169	94.6%	100.0%	2.1518s	2.2745s	3	Θ	SELECT
3433193208	1.8%	1.8%	0.0404s	0.0404s	4	0	SELECT
1411673910	1.1%	1.1%	0.0251s	0.0251s	2,283	Θ	SELECT
3461447171	0.2%	1.0%	0.0045s	0.0218s	3	0	SELECT
4126578894	0.8%	0.8%	0.0174s	0.0174s	40	Θ	SELECT
2195068792	0.9%	0.9%	0.0208s	0.0208s	3	Θ	SELECT
2045374727	0.1%	0.5%	0.0019s	0.0111s	7	Θ	SELECT
1641257687	0.4%	0.4%	0.0090s	0.0090s	2	Θ	SELECT
4126578894	0.0%	0.0%	0.0003s	0.0003s	2	Θ	SELECT
4126578894	0.1%	0.1%	0.0017s	0.0017s	27	Θ	SELECT
3849548163	0.0%	0.0%	0.0006s	0.0006s	22	Θ	SELECT
1641257687	0.0%	0.0%	0.0004s	0.0004s	5	Θ	SELECT
3901160166	0.0%	0.0%	0.0004s	0.0004s	7	Θ	SELECT
2880999359	0.0%	0.0%	0.0003s	0.0003s	9	Θ	SELECT
2217940283	100.0%	0.0%	0.0004s	0.0004s	2	Θ	ALTER SESSION

Что можно извлечь из трейса? Event Histograms

Минусы SQL Trace

• Бесполезен для сессий в прошлом

Плюсы SQL Trace

- Непосредственное понимание того, что происходит в сессии
- Не нужна никакая дополнительная лицензия
- Возможность "reverse engineering"

