Security - Message Space and Ciphertext Space

Problem Statement

To understand what $Message\ Spaces$ and $Cipher\ Space$, one needs to first know about $alphabet\ of\ definition$.

A denotes a finite set called the alphabet of definition. For example, $A=\{0,1\}$ is the binary alphabet, is a frequently used alphabet of definition.

M denotes a set called $message\ space.\ M$ consists of strings composed of symbols from an alphabet of defintion.

C denotes a set called the $ciphertext\ space$. C consists of strings composed of symbols from an alphabet of definition which might or might not differ from that of M.

For example, consider the following encryption - You get a message composed of lowercase latin characters only. For any letter in the message, you shift it one time and create a new message which you transmit i.e. if you get "abz" then you transform it to "bca". Here, A is $\{'a', 'b', 'c', \dots, 'z'\}$.

And both ${\cal C}$ and ${\cal M}$ are set of all strings composed of lowercase latin characters.

like.

 $\{abc, degg, fe, \ldots\} \in M$

and

 $\{bcd, efhh, gf, \dots\} \in C$ (corressponding to the strings of M)

As you can see, for every possible string in M, there is a string in C.

In this task, your alphabet of definition is $A = \{0, 1, 2, ..., 9\}$. M and C are both the set of all strings consisting of decimal digits. Given a message, you need to find what message you obtain if you shift each digit in the message string (1 to the right and cyclic).

CONSTRAINTS:

 $1 \le Length \ of \ the \ string \le 10$

Input Format

Input consists of a single line which contains the string.

Output Format

Output a single line, the shifted string.

Sample Input

982