Polaris GEM e2 & Simulator

The Center of Autonomy at University of Illinois at Urbana-Champaign

User Manual

Version 1.0

Create: 07/01/2020

Last Update: 08/19/2021

Contact: Hang Cui

Email: hangcui3@illinois.edu

Table of Contents

1.	Pola	ris Gem ez hardware	პ
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10	Polaris GEM e2 Vehicle Hardware Overview Master Power Switch Automated Research Development Platform AStuff Spectra 2 Station PACMod Vehicle Interface Joystick Controller Mako G-319C Camera Velodyne VLP-16 Delphi ESR 2.5 Radar (24V) ProPak 6 & SPAN-IGM-S1	4 5 6 7 8 10 13
2.	Pola	ris GEM e2 ROS Software	20
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Software Setup Frame Setup AStuff Spectra 2 Station (Rviz) PACMod Software Vehicle Interface Joystick Controller (Logitech F310) ROS Topics of Polaris GEM e2 Coming more	21 22 23 27 28
3.	Pola	ris GEM e2 ROS Simulator	34
	3.1 3.2 3.3	Introduction Launch the Simulator Coming more	35
4.	Pola	ris GEM e2 Vehicle	40
	4.1 4.2 4.3	Introduction Launch the Sensor Drivers Coming more	41

1. Polaris GEM e2 Hardware

1.1 Polaris GEM e2 Vehicle

Software interfaces to the controls: steering, braking, acceleration

Software access: left and right blinkers, reverse and drive gear selection, speed feedback

Convenience features: Dash mounted display screen, Power distribution terminals

Dimensions: mm

1.2 Hardware Overview

LEGE	ND			
Serial	Fiber-			
USB 3.0 USB 2.0	CAN			
Ethernet	GMSL-			
Coax	HDMI-			
Velodyne-	Wireless	•	•	_

1.3 **Master Power Switch**

Switch will allow operator to cut power to power distribution system

ON will supply power to power distribution system from vehicle battery

OFF will remove power to the power distribution system

Located under the driver's seat

OFF

ON

Automated Research Development Platform 1.4

All front and rear racks are made with 3 inch x 1.5 inch 15 series 80/20

1.5 AStuff Spectra 2

The AutonomouStuff Spectra 2 is the world's first dual GPU edge ai platform with industrial-grade design and in-vehicle features. Designed specifically to support two high-end 250W NVIDIA® graphics cards, it offers tremendous GPU power up to 28 TFLOPS in FP32 for emerging GPU-accelerated edge computing, such as autonomous driving, vision inspection and surveillance/security.

Datasheet link: https://autonomoustuff.com/-
/media/Images/Hexagon/Hexagon%20Core/autonomousstuff/pdf/as-spectra-2-datasheet.ashx?la=en&hash=3FBD8D8C48469BBC65773BA4752AACAD

1.6 PACMod Vehicle Interface

Application software

PACMod Override

Steering

Brake / Throttle

1.7 Joystick Controller

Launching the Demo

There are two methods to launch the demonstration on a typical vehicle. First, an ECU configured by AutonomouStuff for use on a PACMod enabled vehicle will have a desktop icon named "Joystick Demo" for launching the demo graphically. Second, the launch through the terminal.

(1) On the Ubuntu Desktop, locate the icon shaped like a joystick with the name "Joystick Demo"

Set LED OFF using Mode button

Set X mode on the back of the controller

(2) Double click the icon and the demonstration will start

```
NODES
/game_control/
joy (joy/joy_node)
pacmod_game_control (pacmod_game_control/pacmod_game_control_node)
/
kvaser_can_bridge (kvaser_interface/kvaser_can_bridge)
pacmod (pacmod/pacmod)

auto-starting new master
process[master]: started with pid [22772]
ROS_MASTER_URI=http://joe-Oryx-Pro:11311/

setting /run_id to 9c8d62c0-dad5-11e7-b304-80fa5b395f4a
process[rosout-1]: started with pid [22785]
started core service [/rosout]
process[kvaser_can_bridge-2]: started with pid [22788]
process[game_control/joy-4]: started with pid [22815]
process[game_control/joy-4]: started with pid [22815]
```

(3) At this point the demonstration has started and you can control the vehicle with the game controller

Axis 0	Left Joystick X		
Axis 1	Left Joystick Y (inv)		
Axis 2	Right Joystick X		
Axis 3	Right Joystick Y (inv)		
Button 0	X		
Button 1	A		
Button 2	В		
Button 3	Υ		
Button 4	Left Bumper		
Button 5	Right Bumper		
Button 6	Left Trigger		
Button 7	Right Trigger		
Button 8	Back		
Button 9	Start		
Button 10	Left Joystick (click)		
Button 11	Right Joystick (click)		
Hat Directional Pad (X,			

(4) Joystick Demo

basic_launch/launch/dbw_joystick.launch

\$ roslaunch basic_launch dbw_joystick.launch

1.8 Mako G-319C Camera

Mako G

G-319

- Sony IMX265 sensor
- Power over Ethernet
- Ultra-compact design
- Affordable

Mako G

G-319

Interface	IEEE 802.3 1000BASE-T, IEEE 802.3af (PoE)		
Resolution	2064 (H) × 1544 (V)		
Sensor	Sony IMX265		
Sensor type	CMOS		
Pixel size	3.45 μm x 3.45 μm		
Mako G	G-319		
Lens mount (default)	C-Mount		
Max. frame rate at full resolution	37.5 fps		
ADC	12 bit		
Image buffer (RAM)	64		
Ou	itput		
Bit depth	8/12 bit		
Monochrome pixel formats	Mono8, Mono12, Mono12Packed		
YUV color pixel formats	YUV411Packed, YUV422Packed, YUV444Packed		
RGB color pixel formats	RGB8Packed, BGR8Packed		
Raw pixel formats	BayerRG8, BayerRG12, BayerRG12Packed		
	puts/outputs (GPIOs)		
Opto-isolated I/Os	1 input, 3 outputs		
	itions/dimensions		
Operating temperature	+5 °C to +45 °C housing temperature		
Power requirements (DC)	12 to 24 VDC; PoE		
Power consumption	2.3 W @ 12 VDC; 2.6 W PoE		
Mass	80 g		
Body dimensions (L × W × H in mm)	60.5 × 29.2 × 29.2 (including connectors)		
Regulations	CE: 2014/30/EU (EMC), 2011/65/EU (RoHS); FCC		

Class B; CAN ICES-003

Image optimization features:

- Auto gain (manual gain control: 0 to 40 dB; 0.1 dB increments)
- Auto exposure (exposure time control varies by pixel format)
- Auto white balance (G-319C only)
- · Binning
- Color correction, hue, saturation (G-319C only)
- Decimation
- · Gamma correction
- One look-up table (LUT)
- Region of interest (ROI), separate ROI for auto features

Camera control features:

- · Event channel
- · Image chunk data
- · Global shutter mode
- Storable user sets
- StreamBytesPerSecond (bandwidth control)
- Stream hold
- · Sync out modes: Trigger ready, input, exposing, readout, imaging, strobe, GPO
- Temperature monitoring (main board only)

Drawing	Pin	Cable color	Signal	Direction	Level	Description
HR25A-7TP-8S	1	Yellow dot Red	CameraOut1	Out	Open emitter max. 20 mA	Camera Output 1 (SyncOut1) opto-isolated
(? d	2	Yellow dot Black	CameraOut2	Out	Open emitter max. 20 mA	Camera Output 2 (SyncOut2) opto-isolated
$\left(\begin{array}{c} 8 & 6 & 3 & 1 \\ 5 & 2 & \end{array}\right)$	3	Grey dot Red	CameraOut3	Out	Open emitter max. 20 mA	Camera Output 3 (SyncOut3) opto-isolated
	4	Grey dot Black	CameraIn	In	Uin(high) = 3 V24 V Uin(low) = 0 V1.0 V	Camera Input (SyncIn) opto-isolated
	5	Pink dot Black	CameraIn GND	In	Common GND for inputs	Camera Common Input Ground (In GND)
	6	Pink dot Red	CameraOut Power	In	Common VCC for outputs max. 30 V DC	Camera Output Power for digital outputs (OutVCC)
	7	Orange dot Black	ExtPower		12 V DC 24 V DC +/- 10 %	Power Supply
	8	Orange dot Red	GND		GND for ext. Power	External Ground for external power

Table 5: Mako-GI/O definition

1.9 Velodyne VLP-16 LiDAR

Roof Rack

All roof racks are made with 1.5 by 1.5 inches 15 series 80/20

Dimensions

Laser ID	Vertical Angle		CENTER AXIS (MEASUREMENT ZERO)
0	-15°		
1	1°		
2	-13°		-0.44[11.2] -0.38[9.7]
3	-3°	CHANNEL	-0.32[8.1] -0.26[6.6]
4	-11°	15	-0.20[5.1] -0.14[3.7]
5	5°	7 5 5	-0.09[22] -0.03[07]
6	-9°	14	0 (OPTICAL CENTER) -0.03[0,7]
7	7°	8	0.09[2.2]
8	-7°	20	0.20[5.1]
9	9°		0.32[8.1]
10	-5°		0.38[9.7] 0.44[11.2]
11	11°		
12	-3°		
13	13°		[41,910]
14	-1°		APPROXIMATE BEAM CENTERS DOES NOT REPRESENT BEAM WIDTHS
15	15°	BE	BEAMS ARE APPROXIMATELY 0.75 TALL AT FOCAL POINT AM DIVERGENCE IS APPROXIMATELY 3 MILLIRADIANS HORIZONTALLY AND 1.5 MILLIRADIANS VERTICALLY APPLY VERTICAL CORRECTION FOR GREATEST ACCURACY

Sensor

- 16 Channels
- Measurement Range: 100 m 120 m
- Range Accuracy: Up to ±3 cm (Typical)1
- Field of View (Vertical): +15.0° to -15.0° (30°)
- Angular Resolution (Vertical): 2.0°
- Field of View (Horizontal): 360°
- Angular Resolution (Horizontal/Azimuth): 0.1° 0.4°
- Rotation Rate: 5 Hz 20 Hz
- Integrated Web Server for Easy Monitoring and Configuration

Mechanical / Electrical / Operational

- Power Consumption: 8 W (Typical)2
- Operating Voltage: 9 V 18 V (with Interface Box and Regulated Power Supply)
- Weight: ~590 g (without Cabling and Interface Box)
- Dimensions: See diagram on previous page
- Environmental Protection: IP67
- Operating Temperature: -10°C to +60°C3
- Storage Temperature: -40°C to +105°C

Outputs

• 3D LiDAR Data Points Generated:

Single Return Mode: ~300,000 points per second Dual Return Mode: ~600,000 points per second

- 100 Mbps Ethernet Connection
- UDP Packets Contain:

Time of Flight Distance Measurement

Calibrated Reflectivity Measurement

Rotation Angles

Synchronized Time Stamps (µs resolution)

• GPS: \$GPRMC and \$GPGGA NMEA Sentences from GPS Receiver (GPS not included)

1.10 Delphi ESR 2.5 Radar (24V)

CAN / USB Connection Wiring

Pin #	Signal	Color	
1	Battery (+24V)	Red	
2	USB D+ (green wire)	Green (USB)	
3	USB D- (white wire)	White (USB)	
4	Ground	Black	
5	USB Ground (black wire)	Black (USB)	
6	PRVCANL	Green	
7	Ignition (+24V)	White	
8	USB +5V (red wire)	Red (USB)	
9	VEHCANL	Blue	
10	VEHCANH	Brown	
11	VEHCAN Shield		
12	PRVCANH	Orange	

USB-to-CAN (Kvaser Hybrid 2xCAN/LIN)

1.11 ProPak 6 & SPAN-IGM-S1

ProPak-6D1

Dual Antenna Support
Cellular
L1/L2 GPS+GLONASS
L-Band TerraStar-C PPP Corrections
-3 Grade IMUs
20 Hz Positions and Measurements

4GB Internal Memory

Connector Type	Connector Label	Description
GNSS Antenna	ANT 1 ANT 2 or ANT1	GNSS GPS1 and GPS2 antennas (TNC) (model dependant) or GNSS GPS1 antenna (TNC) and external oscillator (BNC) (model dependant)
External Oscillator	osc	
Power	₩ PWR	4-pin LEMO power connector
Expansion	EXP.	9-pin LEMO expansion port for CAN1 and CAN2
©© USB	DEVICE	USB Device (Type micro B) connector (high speed only) 480 Mbps
Ethernet		Ethernet RJ45 connector
1/0	I/O	4 Event Input/3 Event Output (DB9 female connector) I/O port is configurable
	COM1 COM2 COM3/IMU	COM1, COM2, COM3/IMU DB9 male communications port RS-232 (RS-422 selectable via software)
Serial Communication Ports		

SPAN-IGM-S1

200Hz/125 Hz Inertial Measurements
Direct Wheel Sensor Support
Commercially Exportable
Small and lightweight design

G5Ant-3AMT4

Matte black finish without branding Various mounting options and connectors Size: 89 mm dia. x 25 mm hgt Weight: 368 g

2. Polaris GEM e2 ROS Software

2.1 Software Setup

Setup .bashrc

source /opt/ros/noetic/setup.bash

Setup AutonomouStuff drivers

\$ sudo apt update && sudo apt install apt-transport-https

\$ sudo sh -c 'echo "deb [trusted=yes] https://s3.amazonaws.com/autonomoustuff-repo/ \$(lsb_release -sc) main" > /etc/apt/sources.list.d/autonomoustuff-public.list'

Install Kvaser linuxcan SDK:

https://autonomoustuff.atlassian.net/wiki/spaces/RW/pages/17475947/Driver+Pack+Installation+or+Upgrade+Instructions

https://www.kvaser.com/download/

\$ sudo apt install ros-\$ROS_DISTRO-kvaser-interface ros-\$ROS_DISTRO-delphi-esr ros-\$ROS_DISTRO-astuff-sensor-msgs ros-\$ROS_DISTRO-pacmod ros-\$ROS_DISTRO-pacmod-game-control

Extra Software

\$ sudo apt install solaar

\$ sudo apt install preload

\$ sudo apt install meld

\$ sudo apt-get install indicator-multiload

2.2 Frame Setup

```
platform_launch/launch/white_e2/platform.launch
platform_launch/launch/core/all_supported_drivers.launch
```

```
veh_frame (default=base_link)
front_radar_frame (default=front_radar)
lidar1_frame (default=lidar1)
novatel_frame (default=novatel)
novatel_imu_frame (default=imu)
mako_1_frame (default="")
```

Usage: static_transform_publisher x y z yaw pitch roll frame_id child_frame_id period (ms)

2.3 AStuff Spectra 2 Station (Rviz)

2.4 PACMod Software Vehicle Interface

ROS wiki: http://wiki.ros.org/pacmod

Source: https://github.com/astuff/pacmod.git (branch: release)

Supported Hardware

- Polaris GEM Series (e2/e4/e6/eLXD)
- Polaris Ranger X900
- International Prostar+ 122
- Lexus RX-450h

can_msgs/Frame.msg

Header header uint32 id bool is_rtr bool is_extended bool is_error uint8 dlc uint8[8] data

CAN Device List

```
dev@dev-gem:/usr/src/linuxcan/canlib/examples$ ./listChannels
CANlib version 5.28
Found 2 channel(s).
ch 0: Kvaser USBcan Light 2xHS 73-30130-00714-7, s/n 11783, v4.1.844 (leaf v8.28.846)
ch 1: Kvaser USBcan Light 2xHS 73-30130-00714-7, s/n 11783, v4.1.844 (leaf v8.28.846)
dev@dev-gem:/usr/src/linuxcan/canlib/examples$
```

Published Topics

Topic	Message Type	Description
can_rx	can_msgs/Frame	All data published on this topic is intended to be sent to the PACMod system via a CAN interface.
parsed_tx/global_rpt	pacmod_msgs/GlobalRpt	High-level data about the entire PACMod system.
parsed_tx/accel_rpt	pacmod_msgs/SystemRptFloat	Status and parsed values [pct] of the throttle subsystem.
parsed_tx/brake_rpt	pacmod_msgs/SystemRptFloat	Status and parsed values [pct] of the steering susbsystem.
parsed_tx/steer_rpt	pacmod_msgs/SystemRptFloat	Status and parsed values [rad] of the steering susbsystem.
parsed_tx/turn_rpt	pacmod_msgs/SystemRptInt	Status and parsed values [enum] of the turn signal subsystem.
parsed_tx/shift_rpt	pacmod_msgs/SystemRptInt	Status and parsed values [enum] of the gear/transmission subsystem.
parsed_tx/vehicle_speed_rpt	pacmod_msgs/VehicleSpeedRpt	The vehicle's current speed [mph], the validity of the speed message [bool], and the raw CAN message from the vehicle CAN.
parsed_tx/vin_rpt	pacmod_msgs/VinRpt	The configured vehicle's VIN, make, model, manufacturer, and model year.
as_tx/vehicle_speed	std_msgs/Float64	The vehicle's current speed [m/s].
as_tx/enable	std_msgs/Bool	The current status of the PACMod's control of the vehicle. If the PACMod is enabled, this value will be true. If it is disabled or overridden, this value will be false.

Subscribed Topics

Topic	Message Type	Description
can_tx	can_msgs/Frame	All data published to this topic will be parsed by the PACMod driver. This should be connected to a CAN interface.
as_rx/accel_cmd	pacmod_msgs/PacmodCmd	Commands the throttle subsystem to seek a specific pedal position [pct - 0.0 to 1.0].
as_rx/brake_cmd	pacmod_msgs/PacmodCmd	Commands the brake subsystem to seek a specific pedal position [pct - 0.0 to 1.0].
as_rx/shift_cmd	pacmod_msgs/PacmodCmd	Commands the gear/transmission subsystem to shift to a different gear [enum].
as_rx/turn_cmd	pacmod_msgs/PacmodCmd	Commands the turn signal subsystem to transition to a given state [enum].
as_rx/steer_cmd	pacmod_msgs/PositionWIthSpeed	Commands the steering subsystem to seek a specific steering wheel angle [rad] at a given rotation velocity [rad/s].
as_rx/enable	std_msgs/Bool	Enables [true] or disables [false] PACMod's control of the vehicle.

Parameters

~vehicle_type: a string value indicating the type of vehicle to which the PACMod is connected.

Valid values are:

- POLARIS_GEM
- POLARIS_RANGER
- INTERNATIONAL_PROSTAR_122
- LEXUS_RX_450H

PACMod Graph

/pacmod/as_rx/accel_cmd /pacmod/as_rx/brake_cmd /pacmod/as_rx/enable /pacmod/as_rx/shift_cmd /pacmod/as_rx/steer_cmd /pacmod/as_rx/turn_cmd

2.5 Joystick Controller

ROS wiki: http://wiki.ros.org/pacmod game control

Source: https://github.com/astuff/pacmod_game_control.git (branch: release)

ROS wiki: http://wiki.ros.org/joy

Source: https://github.com/ros-drivers/joystick drivers.git (branch: master)

Parameters

~steering_stick: sets whether the steering command should be controlled by the left or right joystick on a two-stick controller. Valid values are LEFT or RIGHT.

~pacmod_vehicle_type: sets the type of vehicle which is being controlled. This manages vehicle-specific values like the available features and maximum steering angle. Valid values are:

- POLARIS_GEM
- POLARIS_RANGER
- LEXUS_RX_450H
- INTERNATIONAL_PROSTAR_122
- VEHICLE_4
- VEHICLE_5
- VEHICLE_6

~controller_type: sets type of controller being used and associated button mappings. Valid values are:

- LOGITECH_F310
- HRI_SAFE_REMOTE
- LOGITECH G29
- NINTENDO SWITCH WIRED PLUS
- XBOX_ONE

~steering max speed: the maximum rotational speed for the steering wheel in rad/s.

- **~max_veh_speed**: the vehicle speed is used to scale the rotation rate of the steering wheel. This value is the speed, in m/s, at which the most restriction is placed on rotation rate. This helps controllability as speed increases.
- **~accel_scale_val**: a scaling value (0.0 1.0) for the accelerator. 1.0 = full throttle range. 0.0 = no throttle control.
- **~brake_scale_val**: a scaling value (0.0 1.0) for the brake. 1.0 = full braking range. 0.0 = no brake control.

2.6 ROS Topics of Polaris GEM e2

To get the message definition:

\$ rostopic type </rostopic_name>

Joystick:

/game_control/joy /game_control/joy/set_feedback

Front RADAR:

/front_radar/as_rx/vehicle_motion

/front_radar/as_tx/objects

/front_radar/as_tx/radar_error_status

/front_radar/as_tx/radar_markers

/front_radar/as_tx/radar_markers_array

/front_radar/as_tx/radar_status

/front_radar/as_tx/radar_tracks

/front_radar/can_rx

/front_radar/can_tx

/front_radar/parsed_rx/vehicle1_msgs

/front_radar/parsed_rx/vehicle2_msgs

/front_radar/parsed_rx/vehicle3_msgs

/front_radar/parsed_rx/vehicle4_msgs

/front_radar/parsed_rx/vehicle5_msgs

/front_radar/parsed_tx/radarstatus1

/front_radar/parsed_tx/radarstatus2

/front_radar/parsed_tx/radarstatus3

/front_radar/parsed_tx/radarstatus4

/front_radar/parsed_tx/radarstatus5

/front_radar/parsed_tx/radarstatus6

/front_radar/parsed_tx/radarstatus7

/front_radar/parsed_tx/radarstatus8

/front_radar/parsed_tx/radarstatus9

/front radar/parsed tx/radartrack

/front_radar/parsed_tx/radarvalid1

/front_radar/parsed_tx/radarvalid2

/front_radar/parsed_tx/trackmotionpower

LiDAR:

/lidar1/lidar1_nodelet_manager/bond
/lidar1/lidar1_nodelet_manager_cloud/parameter_descriptions
/lidar1/lidar1_nodelet_manager_cloud/parameter_updates
/lidar1/lidar1_nodelet_manager_driver/parameter_descriptions
/lidar1/lidar1_nodelet_manager_driver/parameter_updates
/lidar1/lidar1_nodelet_manager_laserscan/parameter_descriptions
/lidar1/lidar1_nodelet_manager_laserscan/parameter_updates
/lidar1/scan

/lidar1/velodyne_packets

/lidar1/velodyne_points

Front Camera:

/mako_1/mako_1/camera_info

/mako_1/mako_1/image_raw

/mako_1/mako_1/image_raw/compressed

/mako_1/mako_1/image_raw/compressed/parameter_descriptions

/mako_1/mako_1/image_raw/compressed/parameter_updates

/mako_1/mako_1/image_raw/compressedDepth

/mako_1/mako_1/image_raw/compressedDepth/parameter_descriptions

/mako_1/mako_1/image_raw/compressedDepth/parameter_updates

/mako_1/mako_1/image_raw/theora

/mako_1/mako_1/image_raw/theora/parameter_descriptions

/mako_1/mako_1/image_raw/theora/parameter_updates

/mako_1/mako_1/parameter_descriptions

/mako_1/mako_1/parameter_updates

GNSS & INS:

/novatel_gps/bestpos

/novatel_gps/corrimudata

/novatel_gps/fix

/novatel_gps/gpgga

/novatel_gps/gprmc

/novatel_gps/gps

/novatel_gps/gps_sync

/novatel_gps/imu

/novatel_gps/inscov

/novatel_gps/inspva

/novatel_gps/inspvax /novatel_gps/insstdev

PACMOD:

/pacmod/as_rx/accel_cmd /pacmod/as_rx/brake_cmd /pacmod/as_rx/enable /pacmod/as_rx/shift_cmd /pacmod/as_rx/steer_cmd

/pacmod/as_rx/headlight_cmd

/pacmod/as_rx/horn_cmd

/pacmod/as_rx/turn_cmd

/pacmod/as_rx/wiper_cmd

/pacmod/as_tx/enable

/pacmod/as_tx/vehicle_speed

/pacmod/can_rx

/pacmod/can_tx

/pacmod/parsed_tx/accel_rpt

/pacmod/parsed_tx/brake_rpt

/pacmod/parsed_tx/brake_rpt_detail_1

/pacmod/parsed_tx/brake_rpt_detail_2

/pacmod/parsed_tx/brake_rpt_detail_3

/pacmod/parsed_tx/global_rpt

/pacmod/parsed_tx/shift_rpt

/pacmod/parsed_tx/steer_rpt

/pacmod/parsed_tx/steer_rpt_detail_1

/pacmod/parsed_tx/steer_rpt_detail_2

/pacmod/parsed_tx/steer_rpt_detail_3

/pacmod/parsed_tx/turn_rpt

/pacmod/parsed_tx/vehicle_speed_rpt

/pacmod/parsed_tx/vin_rpt

ROS rqt_graph

2.7 Coming more

3. Polaris GEM e2 ROS Simulator (Ubuntu 20.04 + ROS Noetic)

3.1 Introduction

GitHub link: https://github.com/hangcui1201/POLARIS_GEM_e2

The Polaris GEM e2 simulator has been improved and merged into ROS Noetic and Gazebo 11

GEM vehicle with frontal 2D LiDAR

GEM vehicle with top 3D LiDAR and frontal 2D LiDAR

Launch the Simulator 3.2

Simple Track Environment

- \$ cd ~/demo_ws
 \$ source devel/setup.bash
 \$ roslaunch gem_gazebo gem_gazebo_rviz.launch velodyne_points:="true"

Geometric based Lateral Controller

- \$ source devel/setup.bash
- \$ roslaunch gem_gazebo gem_gazebo_rviz.launch
- \$ source devel/setup.bash
- \$ roslaunch gem_gazebo gem_sensor_info.launch
- \$ source devel/setup.bash
- \$ rosrun gem_pure_pursuit_sim pure_pursuit_sim.py

- \$ source devel/setup.bash
- \$ rosrun gem_stanley_sim stanley_sim.py

Highbay Environment

- \$ source devel/setup.bash
- \$ roslaunch gem_gazebo_rviz.launch world_name:="highbay_track.world" x:=-5.5 y:=-21 velodyne_points:="true"
- \$ source devel/setup.bash
- \$ roslaunch gem_gazebo gem_sensor_info.launch

3.3 Coming more

4. Polaris GEM e2 Vehicle (Ubuntu 20.04 + ROS Noetic)

4.1 Introduction

We are using Ubuntu 20.04 and ROS Noetic, the ROS driver for Delphi ESR 2.5 (radar) is not ready yet. At this time, we can not use the radar sensor. Software installed on the SSD drive are listed as below.

Ubuntu 20.04 with ROS Noetic (Python 3)

NVIDIA Driver Version: 460.80

Qt 5.12.11

CUDA 11.0.3

cuDNN 8.1.1

TensorRT 8.0.0.3

OpenCV 4.4.0

pytorch 1.7.1

tensorflow 2.5

4.2 Launch the Demo

Sensor initialization

\$ source devel/setup.bash

\$ roslaunch basic_launch gnss_sensor_init.launch

Satellite GNSS map visualization

\$ source devel/setup.bash

\$ roslaunch basic_launch gnss_visualization.launch

Gamepad control initialization

\$ source devel/setup.bash

\$ roslaunch basic_launch dbw_joystick.launch

GNSS based waypoints tracker using pure pursuit controller

\$ source devel/setup.bash

\$ rosrun gem_gnss gem_gnss_pp_tracker_pid.py

	42	