

venzon	THE ADDITION LANGUAGE
230 + 50	
	Syntax exp ::= num F exp exp
-	Semantics num:= 0171
	Shitemas BNF grammar.
O×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	2 + 4 symploctic category.
را ه	what are we talking about?
	Cin the addition language)
	SEMANTIC DOMAINS
	natural nos.
	operations
	$+: Nat \times Nat \longrightarrow Nat$
	notion of composition already built into semantic domain,
	now : we want a representation for that
	+(2, 3)
	+(2,3) +(7,+(2,3))
	Mara in a
	exp bunchion nat

	INDUCTIVE DEFNS.
ntecedent	n Nat Nat is a Nat,
-	n Num then n is a Num
consequer	
	e Num Num if e is a Num,
	e Exp then e is an Exp
ntereden	p+
	G Exp ez Exp Plus if eisan Exp and ez is an Exp
	+ e, e2 Exp then fe, e2 is an Exp
	TAM
	rules give us a way to define a valid expression,
	a valid expr. is one which allows me to derive an expr.
	+ 3 - 4
	2.37
	1.3 is a Nat
	2. 3 is a Nom from I using NAT proof/
	3.4 is a Nat deduction/
	4. 4 is a Num from 3 using NAT deniation.
	5. 7 3 4 Using Plus.
	b. (31) 122. J
	7 / 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	F3 Exp ? X
	this is not even an expression & Exp.

	texp deduce in the system Exp.	_
	that + 3 4 is an Exp.	
	1	
	+ 3 4 Exp	
	Ехр	_
	Fxp + 3 Exp.	_
	used to prove if programs are syntactically convert.	
,	helps to have a semantic domain in mina	
	how to compose operations.	
	7,7	_
-		
	VALUATION TUDGEMENTS (VAL)	
	e ⇒ n ei Exp	
	n:Nat	
@	Non	
	$\tilde{n} \Rightarrow n$	
6	e => n1 e2 => n2 p1118	
6	$e_1 \Rightarrow n_1 \qquad e_2 \Rightarrow n_2 \qquad p_{LUS}$ $= e_1 e_2 \qquad \Rightarrow n_1 + n_2$ $= e_1 e_2 \qquad \Rightarrow n_1 + n_2$	
	or STAC in in 12	
		-

	(+7 (+2 3))
	1. 7 is a Nat
	2. 7 is a Nom brom O, NAT
11	3. 2 15 a Nat
	4. 2 is a Num from B, NAT
	53 is a Nat
1	6. 3 is a Num from O, NAT
	7. 2 is an Exp from & NOM
	8. 3 is an Exp from 6, NOM
	9. \$7 23 is an Exp from \$\text{0}, PLUS
	6. 7 is an Exp from @ NUM
	u. (+7 (+23)) @, @, PLUS.
	Fxp (+7 (+ 23)) Exp
	commutative, associative
11	: Exp -> Nat.
	(n[= 1
	+ e = 1 + e + e 2
	CONJECTURE
thm	
	te: Exp = Ine Hat : e =>n

Sainque

+ 3 4 => 7 to prove this claim.

1. 3 => 3 from NOM (tval NOM) 2. 4 => 4 | VAL NUM

3. +(3,4) >7 ARITHMETIC.

1. + 3 4 => 7 1,23 using PLUS (twn PLUS)

proof te: Exp In : e > n : = element of

1. te: Exp IneNat : e -> n 2. $e \Rightarrow n_1 \& e \Rightarrow n_2$

IMPLIES N = N2

base case:

proof of by induction on the structure of e. Chy induction on (Exp)

 $1.e = \overline{n}$ assumption

2. n ⇒ n NUM rule

DONE

The state of the s	
	inductive case:
-	$1. e = + e_1 e_2$ assumption.
-	
-	2. $e_1 \Rightarrow n_1$ by 1H on e_1
	8. $e_2 \Rightarrow n_2$ by 1H on e_2
	on ez
	$4. \mp e_1 e_2 \Rightarrow + Cn_1, n_2$
-	s. + (n, n2) is well defined
	+ is total
	MAT X MAT
	s. let n= + (n, n2)
	6. e > n 3 5, 1