An optimization-inspired approach to parallel sorting

Team Metropolis: James Farzi, JJ Lay, Graham West

February 13, 2019

Outline

- The Algorithm
 - Distributing/Importing Files
 - Sorting
 - Binning
 - Exchanging data
- 2 Testing
 - Methodology
 - Results
- 3 Conclusions

Figure 1: 1000 data points

The Algorithm

The Algorithm

xxx • xxx • xxx • xxx

XXX

Distributing/Importing Files

Sorting

We implemented Merge and Bubble Sort

XXX • XXX • XXX

Binary search

- Since the data is sorted, we can use a binary search to find where the bin edges lie in index space
- We can then subtract successive edges' indices to find the number of elements in that bin

XXX

- XXX
- XXX

Adapting the bins

for interior bin edges (endpoint bins stay constant):

$$\Delta C = 2.0(c_i^n - c_{i-1}^n)/(c_i^n + c_{i-1}^n)$$

$$\Delta B = b_{i+1}^n - b_i^n$$

$$b_i^{n+1} = b_i^n + \alpha \Delta C \Delta B$$
(1)

where $0 < \alpha < 0.5$ and $b_i^n < b_{i+1}^n$ for all n

Uniformity metric

$$U^{n} = \max(\frac{c_{\text{max}} - c_{\text{avg}}}{c_{\text{avg}}}, \frac{c_{\text{avg}} - c_{\text{min}}}{c_{\text{avg}}})$$
(2)

Figure 2: 5 nodes, 1000 data points, $\alpha=0.475$

Figure 3: 10 nodes, 1000 data points, $\alpha=0.475$

Figure 4: 10 nodes, 1000 data points, $\alpha=0.25$

Exchanging data

XXX • XXX • XXX • XXX

XXX

Testing

Conclusions