7-SEGMENT HEX DISPLAY

Create a circuit that will take a 4-bit binary input and output the representation in hexadecimal, using a 7-segment display...

b = **bit** 2

c = bit 1

d = bit 0 (LSB)

0 = off

1 = on

а	b	С	d	top left
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

 $(\neg c \land \neg d) \lor (a \land \neg b) \lor (b \land \neg d) \lor (a \land c) \lor (\neg a \land b \land \neg c)$