КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Кафедра інтелектуальних та інформаційних систем

Лабораторна робота № 8 з дисципліни "Нейромережні технології та їх застосування"

Виконав студент групи КН-31 Пашковський Павло Володимирович

Контрольні питання

1. Яку архітектуру має нейронна мережа радіального типу?

Радіально базисна мережа складається з одного прихованого шару, який називають шаром радіальних нейронів і вихідного шару нейронів з лінійною функцією активації.

2. Яка функції використовуються при навчанні радіальної базисної мережі?

Radbas.

3. Для вирішення яких саме практичних завдань використовується радіальна мережа?

Апроксимація функції, прогнозування часових рядів, задача класифікації та керування системою.

4. Яким чином виконується навчання радіальної базисної мережі з нульовою помилкою?

Newrbe створює мережу з двома шарами. Перший шар має нейрони radbas і обчислює його зважені вхідні дані за допомогою dist та входи на netprod. Другий шар має лінійні нейрони і розраховує вхідні ваги з по елементним множення і сумою. Обидва шари мають зсув.

5. Яка послідовність навчання радіальної мережі?

- 1. Підбір параметрів радіальної функції *fi* для кожного радіального нейрона.
 - 2. Підбір ваг вихідного шару нейронів.

6. Для яких цілей задається зсув мережі?

Зсув нейронної мережі використовується для коригування чутливості нейрона за допомогою функції *radbas*. Наприклад, якщо нейрон має зміщенням рівним 0.1, то його вихід буде дорівнювати 0.5 для будь-якого вектора входу р і вага нейрона *w* при відстані між векторами, що дорівнює 10.333 складе 10.833/b.

7. Що розуміють під радіальними базисними функціями?

Радіально базисна функція— дійснозначна функція, чиє значення залежить від відстані до початку системи координат, або відстані до деякої іншої точки *с*, яка називається центром.

8. Які функції використовує радіальний та лінійний шар радіальної мережі?

Перший шар включає нейрони, що використовують радіальні функції *radbas*. Функції обчислюють відстань за допомогою функції *dist* між нейронами мережі в ході навчання і вхідними векторами на основі відстані.

Другий шар радіальної мережі включає нейрони з лінійною функцією активації *purelin*.

9. Яким чином проводиться навчання радіальних базисних мереж?

Мережі тренуються з пар вхідних і цільових *значень* x(t),y(t), t=1,...,T, за двохетапним алгоритмом. На першому етапі обирається центр вектору c_i RBF функції у прихованому шарі. Цей етап виконується кількома способами; центри можуть бути випадково відібрані з деякого набору прикладів, або їх можна визначити за допомогою кластеризації методом к-середніх. Другий крок просто відповідає лінійній моделі з коефіцієнтами w_i до виходів прихованого шару з відношенням до деякої цільової функції.

10. Які параметри використовуються при завданні функції newrbe?

P – масив вхідних векторів;

T – масив цілей;

Spread – параметр впливу.

11. Навчання радіальних базисних мереж проводиться з учителем або без учителя?

3 учителем.

12. При вирішенні яких завдань використовуються радіальні базисні мережі?

Реконструкція поверхонь, моделювання поверхонь у тривимірному просторі за хмарою точок, інтерполяція поверхонь, подавлення шуму, тощо.

Індивідуальне завдання

Результати роботи програми:

Завдання 1. Вивчення архітектури та навчання радіальних базисних мереж в MATLAB.

Рисунок 1 – Апроксимація за допомогою базисної мережі newrb

Завдання 2. Створення базисної мережі з нульовою помилкою.

Рисунок 2 – Апроксимація за допомогою базисної мережі newrbe

Завдання 3. Створення нейронної мережі радіального типу для апроксимації поверхні.

Рисунок 3 – Апроксимація поверхні

Завдання 4. Створення графіків радіальних базисних функцій, визначення зваженої суми даних функцій.

Рисунок 4 – Графік функцій

Висновок:

У даній роботі було створено програму для апорксимації функції, навчання відбувалося за допомогою радіально базисних мереж і Matlab.

Результати програми можна використовувати для апроксимація функції, прогнозування часових рядів, задача класифікації та керування системою.

Отримані навички щодо навчання радіально базисних мереж можна використати в реконструкції поверхонь, моделюванні поверхонь у тривимірному просторі за хмарою точок, інтерполяцію поверхонь, подавлення шуму.

Код програми:

Завдання 1:

```
P = -2:.2:1.4;

T = cos(P+0.05*4)+0.04;

plot(P,T,'*r', 'MarkerSize',4,'LineWidth',2)

hold on

grid on

net = newrb(P,T);

V = sim(net,P);

plot(P,V,'ob','MarkerSize',5, 'LineWidth',2)

p = -2:.5:1.4;

v = sim(net,p);

plot(p,v,'+k','MarkerSize',10, 'LineWidth',2)
```

Завдання 2:

```
P = [0.2 \ 1 \ 1.8 \ 2.6 \ 3.4 \ 4.2 \ 5 \ 5.8 \ 6.6 \ 7.4 \ 8.2];
T = [1.18006 \ 0.74030 \ -0.02720 \ -0.65688 \ -0.76679 \ -0.29026 \ 0.483662185 \ 1.085519 \ 1.15023 \ 0.63854 \ -0.13915];
plot(P,T,^*r', 'MarkerSize',4,'LineWidth',2)
hold \ on \ grid \ on
net = newrbe(P,T);
disp(net.layers.size)
V = sim(net,P);
plot(P,V,'ob','MarkerSize',5, 'LineWidth',2)
p = [0.6 \ 1.6 \ 2.3 \ 4.0 \ 6.5];
v = sim(net,p);
plot(p,v,'+k','MarkerSize',10, 'LineWidth',2)
grid \ on
```

Завдання 3:

```
N = 4;

x = -3:.1*N:3;

y = -3:.1*N:3;

z = (cos(x'*sin(y+0.08)+0.16));

P = [x; y];

T = z;

net = newrb(P,T);

Y = sim(net, P);

mesh(x,y,z);
```

Завдання 4:

```
p = -3:0.1:3;
a1 = radbas(p);
a2 = radbas(p-1.5);
a3 = radbas(p+2);
a = a1 + a2*1 + a3*0.5;
plot(p,a1,p,a2,p,a3*0.5,p,a)
```