Single Source Shortest Spath המשך

[[שיניתי את path ל-the 's' is silent) spath) כדי לתמוך בסטנדרט של שאר המשפט.

תזכורות

: Relax (u, v)

- :אזי , d[v] > d[u] + w(u,v) אם •
- $d[v] \leftarrow d[u] + w(u,v)$ o

[אם מבצעים שורה זו, נקרא לקריאה לפונקציה "Relax אפקטיבי"]

פיקטיבי", ואז Relax שהוא לא פיקטיבי הוא Relax [[אחרת אפשר לקרוא לה "Relax פיקטיבי", ואז Relax א-פיקטיבי – או בקיצור, Relax א-פיקטיבי

(הערה: אין חשיבות להערה שכתבתי כאן whatsoever; פשוט תתעלמו ממנה (הערה: אין חשיבות להערה של Relax אפקטיבי.)

אלגוריתם גנרי למציאת מק"ב ממקור s

- <u>אתחול</u>:
- $d[s] \leftarrow 0$ o
- $\forall v \neq s \quad d[v] \leftarrow \infty \quad \circ$
 - <u>צעד:</u>
- . Relax(u,v) ונבצע (u,v) כבחר קשת \circ
 - <u>תנאי סיום:</u>
- אפקטיבי עבור אף קשת. Relax נסיים כאשר לא ניתן לעשות \circ

:כלומר, לכל E מתקיים (u,v) מתקיים

$$d[v] \le d[u] + w(u,v)$$

 $\forall v \ d[v]$ את נחזיר את:

<u>טענה</u>

 $v \cdot v \cdot s$ אורך/משקל של מסלול כלשהו מ- $d[v] \cdot v \cdot s$ אזי אורך/משקל של מסלול כלשהו מ-

משפט (נכונות של אלגוריתם גנרי – מרחקים)

 $d[v] = \delta(s,v)$ מתקיים $v \in V$ לכל \Leftrightarrow לכל

מסקנה

d[s] = 0 אם תנאי הסיום מתקיים אזי

<u>הסבר:</u>

. אזי לפי הטענה יש מסלול שלילי מ-s ל-s ל-s אזי לפי הטענה יש מסלול שלילי מ-s

לכן $\delta(s,v)$ לא חסום מלמטה (אפשר לחזור כרצוננו על המעגל) ולכן מתקיים $\delta(s,v)$ לא חסום מלמטה (אפשר לחזור כרצוננו על המעגל) לפי משפט הנכונות, תנאי הסיום לא יכול להתקיים.

[עץ מושרש]

עץ מושרש זה משהו שנראה כך: <mark>עץ מושרש</mark>

בגרף מכוון, זה תת-גרף מכוון T שגרף התשתית שלו (שזה גרף עם אותן הקשתות, אך לא מכוונות) בגרף מכוון, זה תת-גרף מכוון $v \in V$ שרש") כך ש- T מכיל מסלול מכוון מ $v \in V$ לכל קדקוד מיוחד $v \in V$ מכיל מסלול מכוון מ-

הגדרה: עץ מסלולים קצרים ביותר

עץ מסלולים מ-s לשאר הקדקודים הם ,s ען מושרש מושרש ביותר הוא עץ מושרש עם שורש המסלולים מ-s מק"ב.

בניית מסלולים קצרים ביותר

<u>נשים לב</u>: לכל קדקוד, מספיק לשמור את ההורה שלו בעץ [[ע"מ לשחזר את המסלולים הקצרים ביותר]].

:"v שדה "= $\pi[v]$ ההורה של נוסיף לכל שדה הגנרי בהתאם הגנרי בהתאם

: Relax (u, v)

- אזי: , d[v] > d[u] + w(u,v) אחי
- $d[v] \leftarrow d[u] + w(u,v)$ \circ
 - $\pi[v] \leftarrow u \quad \circ$

<u>האלגוריתם</u>:

- <u>אתחול</u>: •
- $d[s] \leftarrow 0$ o
- $\forall v \neq s \quad d[v] \leftarrow \infty \quad \circ$
- $\forall v \in V \quad \pi[v] \leftarrow \text{Null} \quad \emptyset$
 - :<u>צעד</u>
- . Relax(u,v) ונבצע (u,v) כבחר קשת \circ
 - <u>תנאי סיום</u>:
- אפקטיבי עבור אף קשת. Relax נסיים כאשר לא ניתן לעשות $(u,v)\in E$ כלומר, לכל

$$d[v] \le d[u] + w(u,v)$$

 $\forall v \ d[v]$ את: נחזיר את: •

דוגמה

Gentlemen, on the count of 10, draw your graphs!

הגדרה [זמן סיום של קדקוד]

אפקטיבי אחרון עבור Relax אפקטיבי אחרון עבור Relax אפקטיבי אחרון עבור Relax זמן סיום של און d[v] אפקטיבי אחרון עבור (u,v) כלשהי).

.(0) ממן סיום ראשון (זמן s -ש זמן סיום ראשון (זמן s).

משפט [מציאת עץ מק"ב]

אם תנאי הסיום מתקיים אזי התת-גרף:

$$T = \left(V, \left\{ \left(\pi[v], v\right) \middle| v \in V \right\} \right)$$

הוא עץ מק"ב.

[[דבר לא רלוונטי שמשעשע את תומר מס' 7+7: אם מחליפים את שתי האותיות הראשונות והאחרונות בביטוי עץ מק"ב מקבלים *קב מעץ*. [

טענת עזר

בזמן הסיום של v, הגרף T כבר מכיל מק"ב מ-s ל-v שמורכב מקדקודים עם זמני סיום שקודמים ל-v.

הוכחת המשפט

עץ פורש: כי לכל s יש הורה, ומס' הקשתות s. $v \neq s$ יש הורה, ומס' הקשתות s ל-v בגרף (אמרנו בתחילת הנושא שלנו שאנו מניחים הסבר: לכל v יש מסלול מכוון מ-v ל-v אין הורה אזי לא בוצע Relax אפקטיבי, ועדיין אחת ושניתן לבדוק זאת עם (BFS); אם ל-v אין הורה אזי לא בוצע v, בסתירה למשפט הנכונות-מרחקים.

כמו-כן, בזמן הסיום של v קיים מסלול מכוון מ-s ל-v ב-T, ומסלול זה לא משתנה אחרי זמן הסיום של v כי ערכי $\pi[\cdot]$ של שאר הקדקודים במסלול כבר עודכנו בפעם האחרונה.

עץ מק"ב: מאותה סיבה – יש מסלול מכוון מ-s ל-v ב-T בזמן הסיום של v, והוא T עץ מק"ב: מאותה סיבה – יש מסלול מכוון מ-t

הוכחת טענת העזר

באינדוקציה על זמני הסיום.

בסיס האינדוקציה:

6.4.2014

זמן הסיום הראשון הוא של s , ולפי המסקנה הנ"ל d[s]=0 , וזהו המרחק מ-s ל-s , וזה d[s]=0 , וזה שנמצא ב-T .

<u>צעד אינדוקטיבי</u>: ●

v את עבורה מעדכן את Relax (u,v) -שת אחרונה ש(u,v)

d[v] = d[u] + w(u, v) ביוון שה- Relax -כיוון שה- Relax

Relax הערך d[v] לא משתנה יותר (לפי ההנחה [[שזו הפעם האחרונה שהתבצע d[u] אפקטיבי []), אבל אם נניח בשלילה שd[u] עוד מתעדכן בהמשך, אזי בסוף האלגוריתם יתקיים d[u], בסתירה לתנאי הסיום.

v סיים לפני u

לפי הנחת האינדוקציה, באותו זמן היה מסלול מ-s ל-u שלא יכול להתעדכן יותר (וזמני הסיום של קדקודיו קודמים ל-u ובפרט ל-v), ומסלול זה הוא מק"ב מ-s ל-u. נקרא למסלול זה

ה- $Relax\left(u,v
ight)$ ל-T ועכשיו קיים מסלול Relax ה-רוים הצעד הוסיף קשת

ב-, שאורכו:
$$p' = p \circ (u, v)$$

משפט הנכונות-מרחקים הנחת האינדוקציה

$$w(p') = w(p) + w(u,v) = \delta(s,u) + w(u,v) = d[u] + w(u,v) = d[v] = \delta(s,v)$$

v - v - s מק"ב מs - s ל

תת-נושא: מק"ב עם מקור יחיד ומשקלות אי-שליליים

[דַיְקְסְטְרַה] Dijkstra האלגוריתם של

ציור של חלל הפה ע"י המרצה בשביל להסביר כיצד לבטא את השם

<u>האלגוריתם:</u>

- נתחזק:
- סופית קדקודים שמרחקם חושב סופית -S
- שלהם $d[\,]$ שאר הקדקודים, ממוינים לפי ערך ה- $Q \, \circ \,$
 - :אתחול

6.4.2014

- $d[s] \leftarrow 0$ o
- $\forall v \neq s \quad d[v] \leftarrow \infty \quad \circ$
- $\forall v \neq s \quad \pi[v] \leftarrow \text{Null} \quad \circ$
 - $S \leftarrow \varnothing$ o
 - $Q \leftarrow V \circ$

:צעד

- $(S \neq V) Q \neq \emptyset$ כל עוד
- עם d[u] מינימלי $u \in Q$
 - $Q \leftarrow Q \setminus \{u\}$
 - $S \leftarrow S \cup \{u\}$
- :עבצע $v \notin S$ -פך ש(u,v) נבצע
 - Relax(u,v) -
- <u>סיום</u>:
- $\pi[v], \ d[v]$ -ם נחזיר את כל ה

דוגמה

עיגולים עם קווים וחצים ומספרים

הוכחת נכונות

- . אחרי כניסת u ל-u, הערך d[u] לא מתעדכן יותר, u אחרי כניסת u, אחרי כניסת •
- $v \in V$ לכל $d[v] = \delta(s, v)$ משפט: האלגוריתם של דַיִקסטרה מחזיר ערכים
 - $d[u] = \delta(s,u)$ טענת עזר: בזמן כניסת u ל- u

הוכחת המשפט:

האלגוריתם לא נתקע, כי כל עוד יש $v \notin S$ גם יש קשת (x,y) לאורך מסלול מ-s לישיוצאת מ- $v \notin S$ גורם לכך ש- $v \notin S$ גורם לכך ש- $v \notin S$ בזמן $d[y] < \infty$ גורם לכך ש- $v \notin S$ גורם לכך ש- $v \notin S$ ולכי במחנה, ערך זה לא משתנה $d[u] = \delta(s,u)$, $u \in V$ כמו-כן, לכל $d[u] = \delta(s,u)$ במהלך שאר האלגוריתם.

את טענת העזר נוכיח באמצעות:

, $y \not\in S$ -ן $x \in S$ -ן כך ש-(x,y) כך ש-(x,y) כך ש-(x,y) כן ש-(x,y) כן ש-(x,y) בתחילת/סוף צעד כלשהו מתקיים ביותר שמסתיים בתחילת/סוף בעד כלשהו מתקיים פוער

6.4.2014

:הסבר ציורי

[ציור הסברי

הרצאה 11 עמוד 6 מתוך 6 מתוך 6 אוניברסיטת בן-גוריון אוניברסיטת בן-גוריון ''