CCNA_210804

OSPF (설정 후)

1.neighbor 관계를 수립(Hello packet)

4가지 항목이 일치: timer (Hello/Dead),

d), 영역ID, Stub Area 설정

인증유형/인증암호,

기본설정(H:10초, D:40초) 정) 정의(기본설정x)

정의(반드시 설

정의

OSPF 네트워크 유형

-BMA/p2p: 10/40(H/D)

1가치 반드시 일치하지 않아야함: router ID

neighbor 관계를 맺으면 neighor 테이블에 등록됨.

show ip ospf neighbor

2.neighbor간에 라우팅 정보를 교환.

교환된 라우팅 정보를 LSDB(Link State Database)에 저장함.

해당 라우터가 알고있는 OSPF 경로정보가 저장되어있음. show ip ospf database명력어를 통해 LSDB 내용을 확인 할 수 있음.

3.LSDB에 저장된 경로정보를 이용하여 최적의 경로를 결정함. 이때 SPF 알고리 즘으로 다익스트라 알고리즘을 사용하여 최적의 경로를 계산함.

최적의 경로를 계산 한 후 해당 경로를 라우팅 테이블에 등록함.

. .

show ip route

*OSPF

Link State Routing Protocol

----상태

Link는 라우터의 인터페이스

IP/SM, OSPF 네트워크타입, Cost(메트릭) 등. => 링크상태정보로 이러한것들을 OSPF 업데이트 패킷에 담아서 보내는것.

*OSPF 설정

Router(config)# router ospf Process_ID ! Process_ID 범위 : 1 ~ 65535 Router(config-router)# network Address Wildcard_Mask area area_ID

-Single Area: 하나의 영역만 정의된 OSPF 구성 -Multi Area: 여러개의 영역으로 정의된 OSPF 구성

*OSPF 메트릭 공식

COST = 참조 대역폭 (10에8승) -----인터페이스 대역폭 (bps)

*실습하기

*DR/BDR 선출조건

1.우선 순위 값을 비교해서 가장 큰 우선순위 값을 가진 라우터가 DR이 되고, 그 다음 우선순위가 높은 라우터는 BDR이 된다. 그 외에 나머지 라우터는 자동 으로 DROther로 결정된다. >>모든 라우터의 우선순위 값은 동일함. 즉, 기본값으로 1을 사용함. >>특정 라우터에 우선 순위 값을 0으로 정의하면 해당 라우터는 DRother로 결 정됨.

>>Router(config-if)# ip ospf priority_value (0 ~ 255)

다수의 네이버 라우터와 연결된 인터페이스에 우선순위값을 설정한다.

2.라우터 ID를 비교해서 가장 큰 라우터 ID를 가진 라우터가 DR이 되고, 그 다음 라우터가 BDR이된다.

그 외에 나머지 라우터는 자동으로 DRother로 결정이 된다.

*Timer (H/D) 설정

Router(config-if)# ip ospf hello-interval timer_values Router(config-if)# ip ospf dead-interval timer values

*OSPF 인증설정

평문 암호 인증

Step 1. 인증에 사용할 암호 정의

Router(config-if)# ip ospf authentication-key 인증암호

Step 2. 인증 유형 지정(평문 암호 인증 활성화)

Router(config-if)# ip ospf authentication

MD5 암호 인증

Step 1. 인증에 사용할 암호 정의

Router(config-if)# ip ospf authentication-key 인증암호

Step 2. 인증 유형 지정(MDR 암호 인증 활성화)

Router(config-if)# ip ospf authentication message-digest

*문제 해결 (debug 명령어는 장비에 많은 부하를 줄 수 있기때문에 해당 내용을 확인한 반드시 중지시켜야함)

undebug all (모든 디버그 비활성화)

Router# debug ip ospf events

>> timers 가 일치하지 않으면 해당 디버그 명령어를 통해 확인할 수 있음.

Router# debug ip ospf adj

>> neighbor 인증 유형/암호가 일치하는지 여부를 확인할 수 있음.

*ACL(Access Control List, 접근 제어 목록)

: 패킷 필터링

: IP 주소를 패킷 필터링

: IP(v4) ACL

ACL 유형

1.Standard ACL (표준ACL): 패킷의 출발지 주소만 확인하여 필터링을 함

IP 헤더의 Source Address를 의미 함.

2.Extended ACL (확장ACL): 패킷의 출발지 주소/ 목적지 주소

TCP/UDP 헤더의 출발지 포트 번호/ 목적지 포트번호

를 이용해서 패킷을 필터링 함.

Standar ACL 설정

Step 1.정의

Router(config)# access-list list_number [permit | deny] address wildcard mask

1~99사이의 숫자

Step 2.적용

Router(config-if)# ip access-group list_number [in | out] |or의 뜻

>> Standard ACL 정의 예제

Router(config)# access-list 1 permit 192.168.1.0 0.0.0.255

출발지 네트워크

192.168.1.0 255.255.255.0

= 192.168.1.0 / 24

= 192.168.1.0 ~ 192.168.1.255

--> 192.168.1.1 ~ 192.168.1.254

>> 수신 패킷의 출발지 주소(IP헤더)가 192.168.1.1 ~ 192.168.1.254 범위에 속한다면, 해당 패킷은 허용(permit)하겠다.