Pre-processing for Gibbs Random Fields CASI 2015

Aidan Boland, Nial Friel

12/5/15

Outline

- Short overview of Gibbs random fields.
- Outline current techniques and their pitfalls.
- Introduce an approach to improving the computational cost of analysis.

What is a Gibbs random field?

• Type of graphical model.

- Set of nodes with corresponding random variables (y).
- $y_i \in [-1, 1]$

- Our interest is the posterior posterior ∞ likelihood \times prior $\pi(\theta|y) \propto f(y|\theta)\pi(\theta)$
- However the likelihood is intractable for GRF's

What is a Gibbs random field?

• Type of graphical model.

- Set of nodes with corresponding random variables (y).
- $y_i \in [-1, 1]$

- Our interest is the posterior posterior \propto likelihood \times prior $\pi(\theta|y)\propto f(y|\theta)\pi(\theta)$
- However the likelihood is intractable for GRF's

Intractability of GRF's

The likelihood function is intractable

$$f(y|\theta) = \frac{q(y|\theta)}{Z(\theta)} = \frac{\exp(\theta^T s(y))}{Z(\theta)},$$

- θ tells us about the properties of the GRF.
- s(y) are summary statistics for the graph.

•
$$Z(\theta) = \sum_{y} \exp(\theta^T s(y)).$$

- $Z(\theta)$ is intractable for all but trivial graphs.
 - 16 \times 16 binary graph, $2^{16\times16} = 1.15 \times 10^{77}$ calculations.
 - 30 \times 30 binary graph, $2^{30\times30} = 8.453 \times 10^{270}$ calculations!

Examples of intractable methods

- Finance: Stochastic volatility model.
- Ecology: Spatial models for biodiversity.
- Genetics: Phylogenetic trees.
- Sociology: Social Networks
- Epidemiology: Stochastic models for disease transmission
- Machine Learning: Deep architecture

Current Methods

- Want to sample from the posterior $\pi(\theta|y)$
- Can use MCMC sampling.
- Metropolis-Hastings.
 - Propose to move to $\theta' \sim h(\cdot|\theta)$,
 - Accept move with probability α ,

$$\alpha = \min\left(1, \frac{f(y|\theta')}{f(y|\theta)} \frac{\pi(\theta')}{\pi(\theta)} \frac{h(\theta'|\theta)}{h(\theta|\theta')}\right)$$
$$= \min\left(1, \frac{q(y|\theta')}{q(y|\theta)} \frac{Z(\theta)}{Z(\theta')} \frac{\pi(\theta')h(\theta'|\theta)}{\pi(\theta)h(\theta|\theta')}\right)$$

Current Methods (Exchange Algorithm)

Sample instead from the augmented distribution

$$\pi(\theta', \mathbf{y}', \theta|\mathbf{y}) \propto f(\mathbf{y}|\theta)\pi(\theta)h(\theta'|\theta)f(\mathbf{y}'|\theta')$$

- Sample $y' \sim f(\cdot | \theta')$
- Acceptance ratio becomes

$$\alpha = \min\left(1, \frac{q(y|\theta')}{q(y|\theta)} \frac{\frac{Z(\theta)}{Z(\theta')} \frac{\pi(\theta')h(\theta'|\theta)}{\pi(\theta)h(\theta|\theta')} \frac{q(y'|\theta)}{q(y'|\theta')} \frac{\frac{Z(\theta)}{Z(\theta')}}{\frac{Z(\theta')}{\pi(\theta)h(\theta|\theta')} \frac{q(y'|\theta)}{q(y'|\theta')}\right)$$

$$= \min\left(1, \frac{q(y|\theta')}{q(y|\theta)} \frac{\pi(\theta')h(\theta'|\theta)}{\pi(\theta)h(\theta|\theta')} \frac{q(y'|\theta)}{q(y'|\theta')}\right)$$

Current Methods (ABC)

- Approximate Bayesian Computation
- Only requires the ability to sample from the likelihood
 - Sample $y' \sim f(\cdot | \theta')$
 - Accept θ' if $\rho(s(y) s(y')) < \varepsilon$
 - Where ρ is some distance function.
- ABC MCMC
- Use acceptance ratio,

$$\alpha = \min\left(1, \frac{\pi(\theta')h(\theta'|\theta)}{\pi(\theta)h(\theta|\theta')} \ \mathbb{1}[\rho(s(y) - s(y')) < \varepsilon]\right)$$

Pre-processing

- Computationally expensive to sample from $f(y|\theta)$
- Prior to algorithm, sample y' at fixed set of θ values (θ_{pre}).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
$$\theta$$

 When a sample is required, can interpolate from these pre sampled values.

$$s_{ heta'}(y') \sim \mathcal{N}\left(\mathbb{E}[s_{ heta'_{ ext{pre}}}(y)], ext{Var}(s_{ heta'_{ ext{pre}}}(y))
ight).$$

Pre-processing

- Computationally expensive to sample from $f(y|\theta)$
- Prior to algorithm, sample y' at fixed set of θ values (θ_{pre}).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
$$\theta$$

 When a sample is required, can interpolate from these pre sampled values.

$$s_{ heta'}(y') \sim \mathcal{N}\left(\mathbb{E}[s_{ heta'_{ ext{pre}}}(y)], ext{Var}(s_{ heta'_{ ext{pre}}}(y))
ight).$$

Estimating the normalising ratio

· Importance sampling,

$$\frac{Z(\theta)}{Z(\theta')} = \mathbb{E}_{f(y'|\theta')} \frac{q(y'|\theta)}{q(y'|\theta')} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{q(y_i'|\theta)}{q(y_i'|\theta')}$$

Numerical integration,

$$egin{aligned} \log\left[rac{Z(heta)}{Z(heta')}
ight] &= \int_{ heta'}^{ heta} \mathbb{E}_{y| heta}[s(y)] pprox \ &\sum_{i=a}^{b} \left\{ (heta_{i+1} - heta_i) rac{\mathbb{E}_{ heta_i}[s(y)] - \mathbb{E}_{ heta_{i+1}}[s(y)]}{2} - rac{(heta_{i+1} - heta_i)^2}{12}
ight. \ &\left. \left(V_{ heta_i}(s(y)) - V_{ heta_{i+1}}(s(y))
ight)
ight\} \end{aligned}$$

Estimating the normalising ratio

- Propose $\theta' \sim h(\cdot|\theta)$.
- · Find nearest pre computed values,
 - $\theta pprox heta_{
 m pre}$
 - $\theta' \approx \theta'_{\text{pre}}$.
- Approximate $\frac{Z(\theta)}{Z(\theta')} \approx \frac{\widehat{Z(\theta_{pre})}}{Z(\theta'_{pre})}$.
- Where $\frac{\bar{Z}(\theta_{pre})}{Z(\theta'_{pre})}$ is either the importance sampling or numerical integration estimate.

$$heta' \qquad heta \ heta \ heta'$$
 $heta'$ $heta'$

Correction

 We can use the pre computed values to improve the accuracy of the estimate.

$$\frac{Z(\theta_{pre})}{Z(\theta)} \approx \frac{\widehat{Z(\theta_{pre})}}{Z(\theta)} = \frac{1}{N} \sum_{i=1}^{N} \frac{q(y_i'|\theta_{pre})}{q(y_i'|\theta)}$$

• Where y_i' is the i th pre computed sample at θ_{pre} .

• Finally
$$\frac{Z(\theta)}{Z(\theta')} \approx \frac{\widehat{Z(\theta'_{pre})}}{Z(\theta')} \times \frac{\widehat{Z(\theta_{pre})}}{Z(\theta'_{pre})} \times \frac{\widehat{Z(\theta)}}{Z(\theta_{pre})}$$

Theoretical Guarantee

- Want $|\alpha(\theta, \theta') \hat{\alpha}(\theta, \theta', y')| \le \delta(\theta, \theta')$
- Letting $\hat{R}_i = \frac{\widehat{Z(\theta_{i+1})}}{Z(\theta_i)}$.
- · We get the following bound

$$\mathbb{P}\left(\left|\prod_{i=1}^{M}\hat{R}_{i}-\prod_{i=1}^{M}\mathbb{E}\left[\hat{R}_{i}\right]\right|\leq\gamma\right)\geq1-\varepsilon$$

with
$$\gamma = \alpha (1 + (M - 1)MK^{M-1})$$

and $\alpha = (b - a)\sqrt{\frac{1}{2N}\log\left(\frac{2M}{\varepsilon}\right)}$.

- where
 - M is the number of pre processed θ 's between θ and θ' .
 - N is the number of samples at each θ_{pre}
 - K is the upper bound on the ratio of likelihoods at any two consequtive values of θ_{pre} .

Ising

- · Single parameter model.
- · Defined on a rectangular lattice.
- Models spatial distribution of binary variables (-1,1).

•
$$f(y|\theta) = \frac{1}{Z(\theta)} \exp(\theta s(y))$$

- $s(y) = \sum_{j=1}^{N} \sum_{i \sim j} y_i y_j$
- i ~ j denotes that i and j are neighbours.
- θ determines the degree of association between neighbours.

Ising example

Simulation Study

- Simulated 24 80 × 80 Ising graphs.
- Ran an exchange algorithm for 24 hours to use as a 'ground truth'.
- Pre computation took 16 minutes per graph.

Mean bias (first 20 mins)

Simulation Study

- Simulated 24 graphs of size 80 × 80.
- Ran an exchange algorithm for 24 hours to use as a 'ground truth'.
- Pre computation took 16 minutes per graph.

END

Any questions?

Funded under the programme for Research in Third-level Institutions and co-funded under the European Regional Development fund.

