1.5 Exercices classiques : choisir la forme adaptée

Exercice 1 — Grand classique. Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 + 4x - 16$.

- 1) Montrer que pour tout $x \in \mathbb{R}$ on a f(x) = (2x+4)(x-2)
- 2) Montrer que pour tout $x \in \mathbb{R}$ on a $f(x) = 2(x+1)^2 18$
- 3) Choisir la forme la plus adaptée pour répondre aux questions suivantes :
 - a) Complétez le tableau de variation de f:

x	$-\infty$	$+\infty$
f(x)		

- b) Résoudre l'équation f(x) = 0, inconnue x.
- c) Calculez f(0).
- d) Quel est le minimum de f sur \mathbb{R} .
- e) Résoudre l'équation f(x) = -16, inconne x.
- f) Résoudre l'inéquation f(x) > 0, inconne x.

Exercice 2 Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 + 14x + 15$ et \mathscr{P} sa représentation graphique.

- 1) Montrer que pour tout $x \in \mathbb{R}$ on a f(x) = (x+3)(3x+5).
- 2) Montrer par complétion au carré que $f(x) = 3\left(x + \frac{7}{3}\right)^2 \frac{4}{3}$
- 3) Choisir la forme la plus adaptée pour répondre aux questions suivantes :
 - a) Quel est le sommet de la parabole \mathscr{P} .
 - b) Résoudre l'équation f(x) = 0, inconnue x.
 - c) Calculer $f(\sqrt{2})$.
 - d) Quel est le nombre de solutions de l'équation f(x) = -1, inconnue x.
- e) Complétez le tableau de signe :

f) Résoudre l'équation f(x) = 15, inconnue x.

Exercice 3 Soit f la fonction définie sur \mathbb{R} par $f(x) = 4x^2 + 8x + 3$ et \mathscr{P} sa représentation graphique.

- 1) Montrer que pour tout $x \in \mathbb{R}$ on a f(x) = (2x+1)(2x+3).
- 2) Montrer par complétion au carré que $f(x) = 4(x+1)^2 1$
- 3) Choisir la forme la plus adaptée pour répondre aux questions suivantes :
 - a) Quel est le sommet de \mathcal{P} ?
 - b) Calculer $f(-\sqrt{2})$ et f(0).
 - c) Montrer que pour tout $x, f(x) \ge -1$.
- d) Résoudre l'équation f(x) = 0, inconnue x.
- e) Résoudre l'équation f(x) = 3, inconnue x.
- f) Résoudre l'équation f(x) = 9, inconnue x.

Exercice 4 Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+5)^2 - (3x-4)(x+5)$.

- 1) Factoriser et montrer que pour tout $x \in \mathbb{R}$, $f(x) = -2(x+5)(x-\frac{9}{2})$.
- 2) Montrer que $f(x) = -2x^2 x + 45$.
- 3) Montrer par complétion au carré que $f(x) = -2\left(x + \frac{1}{4}\right)^2 + 45{,}125.$
- 4) Choisir la forme la plus adaptée pour répondre aux questions suivantes :
 - a) Calculer f(0) et f(-1).
 - b) Donner l'équation réduite de l'axe de symétrie de la représentation graphique $\mathscr{P}.$
- c) Résoudre l'inéquation f(x) > 0, inconnue x.
- d) Résoudre l'équation f(x) = 45, inconnue x.
- e) Quel est le maximum de f?

Exercice 5 — Rapidité et sans calculatrice. Associez chaque fonction donnée par son expression à sa représentation. Justifiez votre choix.

$$f_1(x) = (x-1)(x-3)$$

$$f_2(x) = x^2 + 2x - 3$$

$$f_3(x) = (x+1)^2 + 2$$

$$f_4(x) = -x^2 + 2x - 3$$

Exercice 6 — Rapidité et sans calculatrice. Associez chaque fonction donnée par son expression à sa représentation. Justifiez votre choix.

$$f_1(x) = -(x-1)(x+3) + 2$$

$$f_2(x) = -x(x+3) + 2$$

$$f_3(x) = -(x-3)^2 - 2$$

$$f_4(x) = -x^2 + 3x + 2$$