

Computer Architecture

Hossein Asadi
Department of Computer Engineering
Sharif University of Technology
asadi@sharif.edu

Lecture 3

Today's Topics

· Register Transfer Language (RTL)

Copyright Notice

- Parts (text & figures) of this lecture adopted from:
 - Computer Organization & Design, The Hardware/Software Interface, 3rd Edition, by D. Patterson and J. Hennessey, MK publishing, 2005.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, CMU, Spring 2009.
 - "Computer Architecture & Engineering" handouts, by Prof. Kubiatowicz, UC Berkeley, Spring 2004.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, UWisc, Spring 2019.
 - "Computer Arch I" handouts, by Prof. Garzarán, UIUC, Spring 2009.

Data Movements in Digital Systems

- · Digital Systems Consists of
 - Combinational logic
 - · AND gate, OR gate, NOT gate, etc
 - Sequential elements
 - · FFs, latches
- · Question:
 - How we can describe data movements in digital systems?
 - · Gate-level?
 - Too much details and very complicated

RTL & Micro-Operation

- · Data Movement Characterized in terms of:
 - Registers
 - Set of flip-flops/latches
 - Operations done on registers
- Register Transfer Language (RTL)
 - Data movement at register level
 - A language to describe behavior of computers in register flow format
- Micro-operation (Micro-ops or uOps)
 - Functions performed on registers
 - · Shift, clear, load, increment, etc.

Micro-Operation

- · Definition:
 - An elementary operation performed on information stored in one or more registers
 - During one clock pulse
 - $-R \leftarrow F(R,R)$
 - F: shift, load, clear, and, or, xor, etc.

High-Level Description of Computer uArch

- · In Terms of RTL & uOps:
 - Set of registers and their functions
 - Microoperations set
 - Set of allowable uops provided by uArch
 - Control signals that initiate sequence of uOps to perform functions

Register Transfer Language

- Our Focus in RTL
 - System's registers
 - Data transfers between them
 - Data transformations in them

Designation of Registers

- · How Registers Designated?
 - Using capital letters
 - Sometimes followed by numbers
 - · e.g., A, R13, IR
- Often names indicate function:
 - PC
 - Program Counter
 - IR
 - Instruction Register
 - MAR
 - Memory Address Register

Designation of Registers (cont.)

- How Registers Represented?
 - Registers and their contents can be viewed and represented in various ways
 - A register can be viewed as a single entity:

MAR

- Registers may also be represented showing bits of data they contain

Designation of Registers (cont.)

- How Registers Represented?
 Common ways of drawing the block
 - diagram of a register

Register			
	R1		
15		0	•
	R2		
Numk	pering of bits		

Data Transfer

- · Data Transfer:
 - Copying contents of one reg to another reg
- Example:
 - R2 ← R1
 - Contents of R1 copied (loaded) into R2
 - A simultaneous transfer from R1 to R2
 - · All bits transferred at same time on one clock cycle
 - · R1: source, R2: destination
 - Data lines from R1 to R2
 - This is a non-destructive
 - Contents of R1 not altered by copying them to R2
 - Control lines to perform action

Data Transfer (cont.)

- · Controlled (Conditional) Data Transfer
 - Actions will occur if a certain condition is true
 - Similar to an "if" statement in SW programming
 - Represented as:

P: R2 ← R1

"if P = 1, then load contents of R1 into R2", i.e., if (P = 1) then $(R2 \leftarrow R1)$

Controlled Data Transfer

HW Implementation

P: R2 ← R1

Block diagram

Timing diagram

•Registers assumed to use positive-edge-triggered flip-flops

Data Transfer (cont.)

- Simultaneous Micro-operations
 - If two or more operations are to occur simultaneously, they are separated with commas

P: R3
$$\leftarrow$$
 R5, MAR \leftarrow IR

- Here, if control function P = 1 →
 - Load contents of R5 into R3
 - At same clock, load contents of IR into MAR

Data Transfer (cont.)

- Practice
 - Draw hardware implementation of following statement
 - P: R1 ← R2, R2← R1

Blocking and Non-Blocking Statements in RTL

- Non-Blocking Statements
 - Statement scheduled and executed together with other non-blocking assignments
 - Example in Verilog
 - A <= B
 - B <= C
- Blocking Statements
 - Statement executed sequentially
 - Example in Verilog
 - A = B
 - B = C

Practice

- Code1
 - R1 \leftarrow R2, R2 \leftarrow R1
- · Code2
 - R1 ← R2
 - R2 ← R1
- Code3
 - R1 <= R2
 - R2 <= R1
- Question:

Lecture 3

- New values of R1 and R2?

Common Micro-Ops

- Transfer ($R0 \leftarrow R1$)
 - Transfers data from a reg to another reg
- · Arithmetic (R0 ← R1 + R2)
 - Performs arithmetic on data in registers
- · Logic/Bit Manipulation
 - Performs bit (Boolean) operations on data R0 ← R1 & R2 ; or R0 ← R1 | R2
- · Shift
 - Shift data in regs by n bits positions $R0 \leftarrow R1 << 3$; or $R0 \leftarrow R2 >> 2$

RTL & MIPS Assembly

MIPS Code	RTL Code
add \$t0, \$s2, \$s4	\$t0 < \$s2 + \$s4
and r1, r2, r3	r1 ← r2 ^ r3
lw \$s1, 100(\$s2)	\$s1 ← Mem[\$s2 + 100]
sw \$s1, 100(\$s2)	Mem[\$s2 + 100] ← \$s1

Summary of Reg Transfer & Micro-Ops

 $A \leftarrow B$

 $AR \leftarrow DR(AD)$

 $A \leftarrow constant$

ABUS \leftarrow R1,

R2 ← ABUS

AR

DR

M[R]

M

 $DR \leftarrow M$

 $M \leftarrow DR$

Transfer content of reg. B into reg. A

Transfer content of AD portion of reg. DR into reg. AR

Transfer a binary constant into reg. A

Transfer content of R1 into bus A and, at the same time,

Transfer content of bus A into R2

Address register

Data register

Memory word specified by reg. R

Equivalent to M[AR]

Memory read operation: transfers content of

memory word specified by AR into DR

Memory write operation: transfers content of

DR into memory word specified by AR

Summary of Reg Transfer & Micro-Ops (cont.)

- GPR[rs]
 - General Purpose Registers
 - A register from Register File indicated by index rs
- RF[rs]
 - Register File

Register Transfers: Interconnect

- · Point-to-Point Connection
 - Dedicated wires
 - Muxes on inputs of each register
- Common Input from mux
 - Load enables for each register
 - Control signals for multiplexer
- Common Bus with Output Enables
 - Output enables and load enables for each register

rd

rd

R4

MUX

R4

Register Transfer: Multiple Busses One transfer per bus

- Each set of wires can carry one value
- State Elements
 - Registers
 - Register files
 - Memory
- · Combinational Elements
 - Busses
 - ALUS
 - Memory (read)
 Lecture 3 Share

Connecting Registers

- How to Connect 32 Registers to each other?
 - Impractical to have data and control lines to directly allow each register to be loaded with contents of every possible other registers
- To completely connect n registers
 - \rightarrow n(n-1) lines
 - $-O(n^2)$ cost
 - Not a realistic approach to use in a large system

Connecting Registers

- Point-to-Point Connection
 - Dedicated wires
 - Muxes on inputs of each register

Connecting Registers (cont.)

- · Instead, Take a Different Approach
 - One centralized set of circuits for data transfer, called bus
 - Have control circuits to select:
 - Which reg as source
 - Which reg as destination
- Bus Definition:
 - A path (of a group of wires) over which information is transferred, from any of several sources to any of several destinations
 - A group of wires with multiple drivers

Bus Transfer

From a register to bus: BUS ← R

Bus Transfer: Bus to Destination Reg

3-State Buf vs Mux implementation

Pros: area efficient & more scalable

Cons: probably more power consumption (leakage current in high-Z)

Lecture 3

Sharif University of Technology, Spring 2019

Bus vs. Point-To-Point

- Pros (Advantages)
 - Much less routing
 - Less area
 - Easy to scale
- Cons (Disadvantages)
 - Only one data transfer per clock cycle

Memory & Memory Transfer

- Memory (RAM)
 - Can be thought as a sequential circuit containing some number of registers
- · Assume RAM with r = 2k Words
 - n data input lines
 - n data output lines
 - k address lines
 - A read control line
 - A write control line

Memory & Memory Transfer (cont.)

- Memory Transfer
 - Memory viewed at register level as a device (M)
 - Should specify which address in memory
 - · Since it contains multiple locations
- Memory Accesses
 - Provide target address in a special register
 - Memory Address Register (MAR, or AR)
 - Contents of MAR sent to memory address lines

Memory & Memory Transfer (cont.)

- Memory Read
 - To read a value from a location in memory and load it into a register
 - RTL notation looks like this:

MAR ← Address

 $R1 \leftarrow M[MAR]$

Memory & Memory Transfer (cont.)

- Memory Write
 - To write a value from a reg to a location in memory
 - RTL notation looks like this:

MAR ← address M[MAR] ← R1

RTL Example

- Memory Buffer Register
 - MBR
- Accumulator
 - AC
- Program Counter
 - PC
- Memory Address Register
 - MAR
- Instruction Register

The Essentials of Computer Organization
& Architecture, by L. Null and J. Lobur, 2003
Lecture 3 Sharif University of Technol

RTL Example (cont.)

- Store X
 - MAR \leftarrow X, MBR \leftarrow AC
 - $M[MAR] \leftarrow MBR$
- Add X
 - MAR \leftarrow X
 - $MBR \leftarrow M[MAR]$
 - $-AC \leftarrow AC + MBR$

Practice

What is RTL description of this circuit?

Practice (cont.)

- In Each Clock Cycle:
 - ~53.~52.~51: R1 ← R0
 - ~53.52.~50: R0 ← R1
 - 53.~52.~51: ACC ← RO + ACC
 - 53.52.~50: ACC ← R1 + ACC
 - What else?
 - R1 ← ACC
- Or use "if-then-else"
 - If (S3=1 and S1=0) then ... R1

Backup

