Open Graphics Project

Product Specification

This document describes a preliminary feature set for the Tech Source Open Graphics card. It is being published as a status update and as a call for more feedback from the community so that we can identify any important features which may be missing. It is important to note that this is a proposed, *unapproved* specification, meaning that it hasn't been evaulated by management, and there are no guarantees that any listed features will appear in the final product.

Physical component break-down

PCB	 half-height/half-length PCI version half-height/half-length AGP version (probably)
GPU	Xilinx Spartan III 1500 FPGA
ROMs	BIOS/firmwareSerial prom for FPGA
RAM	128 Megabytes (four 256 megabit chips)
Video	DVI-I providing both digital and analog
Host interface	PCI and AGP
Misc.	DVI-I connector, face plate, power supply, general (user) I/O pads

GPU component break-down

Host interface	 PCI and (probably) AGP 4x versions DMA for rendering commands YUV<->RGB conversion Emulation of 8-bit and 16-bit framebuffer pixel sizes Bit swapping for big-endian/little-endian conversion Some MesaGL security features (possible feature) Interrupts for rendering and DMA state changes
Video	 Single channel (multi-channel in future) Fully programmable, supporting VESA, DVI reduced-blanking, progressive scan, interlaced, etc. Up to 250Mhz (165Mhz for DVI) pixel clock Single 64x64 full-color alpha-blended hardware cursor Integer scaling (possible feature) Window-ID, 8-bit overlay, dual-LUT Vertical interrupts

Memory	 Quad-channel 400Mhz DDR Maximum total bandwidth: 1.6 billion pixels/second Linear and tiled addressing DMA bypass for accessing host images
VGA	80x25 text, 640x480x16, etc.Can be disabled for secondary cards
3D renderer	Support for basic 3D rendering plus extensions for 2D (see below)
Misc.	PROM reading/writing interface, peripheral bus, user-programmable I/O

Rendering engine features

Data format	 All rendering coordinates are in 16.16 fixed point. All colors are in 8.8 fixed point. Framebuffer pixels are always 32-bit ARGB
Performance	 Dual-pixel pipeline at 200 Mhz 400 million pixels/second [*] Triangle rate limited by host interface speed
Gouraud shading	 Simple linear interpolation Second-order differential for approximation of Phong shading (possible feature)
Texture mapping	 Simple linear interpolation Second-order differential for approximation of perspective correction (possible feature) Bilinear interpolation
Antialiasing	Power-of-two super-sampling
Other 3D features	 Z-buffering (32-bit) Fog Alpha test Alpha blend Arithmetic raster-op Stencil/Mask/Color key
2D features	 Polylines (solid and patterned) [**] Plane mask Logical raster-op (GDI ROP4) Patterns (8x8 color, 32x32 mono) Rectangular clipping

Open Source software

- Linux drivers (DRI, X.org, MesaGL) under BSD+MIT+GPL licenses
- Windows drivers (if possible, considering IP constraints)
- x86 PC BIOS
- Sun OpenBoot

NOTES

[*] Different parts of the pipeline attempt to access memory simultaneously. There is a total bandwidth limit of 1.6 billion pixels/second. This means that although a bitblt/texture operation doubles the memory bandwidth requirement as compared to as solid fill (read 400MP/s and write 400MP/s, for a total of 800MP/s), the pipeline will still operate at full speed because the limit of 1600MP/sec hasn't been reached.

[**] Having a unified pipeline, most 2D rendering primitives are drawn as special cases of 3D primitives.