Practical - 9

AIM : Study of Artificial Neural Network (ANN) using the Churn_Modelling.csv dataset. The dataset includes customer attributes such as RowNumber, CustomerId, Surname, CreditScore, Geography, Gender, Age, Tenure, Balance, NumOfProducts, HasCrCard, IsActiveMember, EstimatedSalary, and Exited. Implement and analyze various activation functions within the ANN to predict customer churn. Compare the performance of different activation functions and evaluate their impact on the model's accuracy in predicting customer attrition based on the given attributes.

Imported Libraries:

Code: import pandas as pd from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.preprocessing import
OneHotEncoder from keras.models import Sequential from keras.layers import Dense from sklearn.metrics import confusion_matrix, accuracy_score

Step 1: Load the Dataset

- 1. Import the Churn_Modelling.csv dataset, which contains customer details.
- 2. This dataset includes attributes like RowNumber, CustomerId, Surname, CreditScore, Geography, Gender, Age, Balance, NumOfProducts, and Exited (indicating if a customer has churned).

Code : df =
pd.read_csv("/content/drive/MyDrive/DATASET/Churn_Modelling.csv")
df.head()

Output:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15847311	Hill	608	Spain	Female	41	31	83807.86	- 1	0	21	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

Step 2: Prepare Feature and Target Data

- 1. **Feature Data (X)**: Select all columns from CreditScore to EstimatedSalary.
- 2. **Target Data (Y)**: Select the Exited column (indicating churn).

Code:

X = df.loc[:,'CreditScore':'EstimatedSalary']

Name: DHRUV SHERE Enrollment No: 23012022021

Batch: 4IT-B-2 Page | 1

Practical 9

Y = df['Exited']

Output:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	619	France	Female	42	2	0.00	1	1	1	101348.88
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58
2	502	France	Female	42	8	159660.80	3	1	0	113931.57
3	699	France	Female	39	1	0.00	2	0	0	93826.63

	Exited
0	1
1	0
2	1
3	0
4	0

Step 3: Process Categorical Variables

- 1. Identify categorical columns in X (e.g., Geography, Gender).
- 2. Convert these columns into numeric form using one-hot encoding, dropping the first column of each categorical variable to avoid redundancy.

```
Code: categorical_cols = ['Geography', 'Gender'] enc = OneHotEncoder(handle_unknown='ignore', drop='first') encoded_features = enc.fit_transform(X[categorical_cols]).toarray() encoded_df = pd.DataFrame(encoded_features, columns=enc.get_feature_names_out(categorical_cols)) X = X.drop(categorical_cols, axis=1) X = pd.concat([X, encoded_df], axis=1)
```

Output:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Geography_Germany	Geography_Spain	Gender_Male
0	619	42	2	0.00	1	1	1	101348.88	0.0	0.0	0.0
1	608	41	1	83807.86	1	0	1	112542.58	0.0	1.0	0.0
2	502	42	8	159660.80	3	1	0	113931.57	0.0	0.0	0.0
3	699	39	1	0.00	2	0	0	93826.63	0.0	0.0	0.0
4	850	43	2	125510.82	1	1	1	79084.10	0.0	1.0	0.0

Name: DHRUV SHERE Enrollment No: 23012022021

Batch: 4IT-B-2 Page | 2

Practical 9

Step 4: Split Data into Training and Testing Sets

1. Divide the X dataset into training and testing subsets (e.g., 80% for training, 20% for testing).

Code:

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0) X_train.shape, X_test.shape, y_train.shape, y_test.shape Output:
```

```
((8000, 11), (2000, 11), (8000,), (2000,))
```

Step 5: Create the ANN Model

- 1. Using the **Keras** library, create a **Sequential** ANN model.
- 2. Add input layers and two hidden layers: o Initialize weights using a uniform distribution. o Use **ReLU** (Rectified Linear Unit) activation for hidden layers.

```
o Use Sigmoid activation for the output layer to predict churn probability. Code: classifier = Sequential() classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11)) classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu')) classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid')) Output:
```

Step 6: Compile the Model

- 1. Compile the model with:
 - o Adam optimizer (for efficient gradient descent), o

```
Binary Crossentropy loss function (suitable
```

```
for binary classification), o Accuracy as the
```

```
evaluation metric. Code:
```

```
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
```

Step 7: Model Summary

1. Print a summary of the neural network architecture, which includes the number of layers, and parameters. **Code:** classifier.summary() **Output:**

Step 8: Train the Model

1. Train the ANN model using the training dataset with:

Name: DHRUV SHERE Enrollment No: 23012022021

Batch: 4IT-B-2 Page | 3

Practical 9

 \circ Batch size of 10 (number of samples per gradient update), 100 epochs (iterations over the entire dataset).

```
Code : classifier.fit(X_train, y_train, batch_size = 10, epochs = 100) Output
```

:

Epoch 1/100							
800/800 3s	2ms/step	-	accuracy:	0.7260	=	loss:	0.9107
Epoch 2/100							
800/800 ———— 2s	1ms/step	100	accuracy:	0.7950	Œ.	loss:	0.5326
Epoch 3/100							
800/800 — 1s	2ms/step	1 2 3	accuracy:	0.7895	8	loss:	0.5277
Epoch 4/100							
800/800 — 1s	2ms/step	151	accuracy:	0.7948	8	loss:	0.5140
Epoch 5/100							
800/800 — 1s	2ms/step	3111	accuracy:	0.7990	2	loss:	0.5048
Epoch 6/100							
800/800 — 1s	1ms/step	-	accuracy:	0.7896	_	loss:	0.5105
Epoch 7/100							
800/800 — 1s	1ms/step	-	accuracy:	0.7967	\approx	loss:	0.5029
Epoch 8/100							
800/800 — 2s	2ms/step	-	accuracy:	0.7976	\approx	loss:	0.4973
Epoch 9/100							

Step 9: Make Predictions

- 1. Use the test dataset to generate predictions.
- 2. Set a threshold of 0.5 for classifying outputs:
 - If prediction ≥ 0.5, classify as churned
 (1),
 - If prediction < 0.5, classify as not churned (0).

Code:

Step 10: Evaluate the Model

- 1. Print a **Confusion Matrix** to evaluate performance.
- 2. Calculate and display the **accuracy** of the model in predicting customer churn.

Name: DHRUV SHERE Enrollment No: 23012022021

Batch: 4IT-B-2

Practical 9

```
Code : cm = confusion_matrix(y_test,
y_pred) print("Confusion Matrix:\n", cm)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy) Output
:
```

```
Confusion Matrix:

[[1595 0]

[ 405 0]]

Accuracy: 0.7975
```

Name: DHRUV SHERE Enrollment No: 23012022021