

Open-Minded

Rosenblatt Perceptron

Neuroinformatics Tutorial 6

Duc Duy Pham¹

¹Intelligent Systems, Faculty of Engineering, University of Duisburg-Essen, Germany

Content

- Revision: Practical Task
- Revision: Lecture
- New Practical Task

Content

- Revision: Practical Task
- Revision: Lecture
- New Practical Task

Calculation of propagated value

$$h_1 = \sum_{i=0}^{3} w_{i1} x_i$$

$$h_2 = \sum_{i=0}^3 w_{i2} x_i$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad W = \begin{bmatrix} w_{01} & w_{02} \\ w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix}$$

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = W^T \cdot x$$

- Given:
 - Outputs of previous neurons (can also be input neurons)

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme: input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme : input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme: input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme : input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme: input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α
- Learning Rule:
 - Update weights by comparing similarity of outputs

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme: input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α
- Learning Rule:
 - Update weights by comparing similarity of outputs
 - $\Delta w_{i,j} := \alpha \cdot x_i \cdot h_j$

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme: input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α
- Learning Rule:
 - Update weights by comparing similarity of outputs
 - $\Delta w_{i,j} := \alpha \cdot x_i \cdot h_j$
 - $w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme: input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α
- Learning Rule:
 - Update weights by comparing similarity of outputs
 - $\Delta w_{i,j} := \alpha (x_i \cdot h_i)$
 - $w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme: input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α
- Learning Rule:
 - Update weights by cor
 - $\Delta w_{i,j} := \alpha (x_i \cdot h_j)$
 - $w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$

$$\begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} h_1 & h_2 \end{pmatrix}$$

Content

- Revision: Practical Task
- Revision: Lecture
- New Practical Task

• Which statements regarding Rosenblatt Perceptron are true?

- Which statements regarding Rosenblatt Perceptron are true?
 - 1. The weights and threshold of a RBP defines a hyperplane
 - 2. The extended version of the RBP lifts the input space into a higher dimension
 - 3. In the extended version of the RBP the hyperplane always goes through the origin
 - 4. The RBP can be viewed as a generalized McCulloch Pitts Neuron

- Which statements regarding Rosenblatt Perceptron are true?
 - 1. The weights and threshold of a RBP defines a hyperplane
 - 2. The extended version of the RBP lifts the input space into a higher dimension
 - 3. In the extended version of the RBP the hyperplane always goes through the origin
 - 4. The RBP can be viewed as a generalized McCulloch Pitts Neuron

A: all B: 1,2,4

C: 1 D: 1,3,4

- Which statements regarding Rosenblatt Perceptron are true?
 - 1. The weights and threshold of a RBP defines a hyperplane
 - 2. The extended version of the RBP lifts the input space into a higher dimension
 - 3. In the extended version of the RBP the hyperplane always goes through the origin
 - 4. The RBP can be viewed as a generalized McCulloch Pitts Neuron

A: all B: 1,2,4

C: 1 D: 1,3,4

Interpretation of formulas

Scheme of Artificial Neuron

 $f_p|f_a$ wird oft weggelassen, wenn aus dem Zusammenhang klar.

 How does the Rosenblatt Learning Rule/Algorithm work? (must know!)

- How does the Rosenblatt Learning Rule/Algorithm work? (must know!)
 - Let $w := (-\Theta, w_1, \dots, w_n)^T \in \mathbb{R}^{n+1}$ denote the extended weight vector including the bias

- How does the Rosenblatt Learning Rule/Algorithm work? (must know!)
 - Let $w:=(-\Theta,w_1,\ldots,w_n)^T\in\mathbb{R}^{n+1}$ denote the extended weight vector including the bias
 - Let w(i) denote the weight vector at iteration i

- How does the Rosenblatt Learning Rule/Algorithm work? (must know!)
 - Let $w:=(-\Theta,w_1,\ldots,w_n)^T\in\mathbb{R}^{n+1}$ denote the extended weight vector including the bias
 - Let w(i) denote the weight vector at iteration i
 - Let $x := (1, x_1, \dots, x_n)^T \in \Omega := \mathcal{P} \cup \mathcal{N} \subset \mathbb{R}^{n+1}$ denote an arbitrary extended sample point from the training data set

• Let
$$\hat{y}(x) := \begin{cases} 1 & \text{if } x \in \mathcal{P} \\ -1 & \text{else} \end{cases}$$
 denote the desired target output

- Let $\hat{y}(x) := \begin{cases} 1 & \text{if } x \in \mathcal{P} \\ -1 & \text{else} \end{cases}$ denote the desired target output
- Let $ilde{y}_{w(i)}(x) := f_a(f_p(x))$ denote the actual output of the perceptron with weight vector w(i)

- Idea:
 - Draw a sample point \boldsymbol{x} randomly

- Idea:
 - Draw a sample point \boldsymbol{x} randomly
 - Check if perceptron output is target output

- Idea:
 - Draw a sample point \boldsymbol{x} randomly
 - Check if perceptron output is target output
 - If not:
 - If should have been positive: add $oldsymbol{x}$ to weight vector

- Idea:
 - Draw a sample point \boldsymbol{x} randomly
 - Check if perceptron output is target output
 - If not:
 - ullet If should have been positive: add $oldsymbol{x}$ to weight vector
 - If should have been negative: subtract $oldsymbol{x}$ from weight vector

• If
$$\hat{y}(x) == \tilde{y}_{w(i)}(x)$$

Do nothing

- If $\hat{y}(x) == \tilde{y}_{w(i)}(x)$ Do nothing
- If $\hat{y}(x) \neq \tilde{y}_{w(i)}(x)$

- If $\hat{y}(x) == \tilde{y}_{w(i)}(x)$ Do nothing
- If $\hat{y}(x) \neq \tilde{y}_{w(i)}(x)$
 - If $\hat{y}(x) == 1$ $w(i+1) \leftarrow w(i) + x$

- If $\hat{y}(x) == \tilde{y}_{w(i)}(x)$ Do nothing
- If $\hat{y}(x) \neq \tilde{y}_{w(i)}(x)$
 - If $\hat{y}(x) == 1$ $w(i+1) \leftarrow w(i) + x$
 - else

$$w(i+1) \leftarrow w(i) - x$$

• Under which condition(s) does the Perceptron Learning Rule terminate?

- Under which condition(s) does the Perceptron Learning Rule terminate?
 - 1. The alg always terminates
 - 2. Both sets need to be absolutely linearly separable
 - 3. The alg never terminates
 - 4. Both sets need to be linearly separable

- Under which condition(s) does the Perceptron Learning Rule terminate?
 - 1. The alg always terminates
 - 2. Both sets need to be absolutely linearly separable
 - 3. The alg never terminates
 - 4. Both sets need to be linearly separable

- Under which condition(s) does the Perceptron Learning Rule terminate?
 - 1. The alg always terminates
 - 2. Both sets need to be absolutely linearly separable
 - 3. The alg never terminates
 - 4. Both sets need to be linearly separable

• What is the *equivalent* Learning Problem?

- What is the equivalent Learning Problem?
 - 1. Points from N are all negated
 - 2. Points from N are all point reflected though the origin
 - 3. Try to find hyperplane such that all (transformed) points are on same side
 - 4. Try to find hyperplane that separates transformed points from original points

- What is the equivalent Learning Problem?
 - 1. Points from N are all negated
 - 2. Points from N are all point reflected though the origin
 - 3. Try to find hyperplane such that all (transformed) points are on same side
 - 4. Try to find hyperplane that separates transformed points from original points

A: 1,3 B: 1,2,3 C: all

- What is the equivalent Learning Problem?
 - 1. Points from N are all negated
 - 2. Points from N are all point reflected though the origin
 - Try to find hyperplane such that all (transformed) points are on same side
 - 4. Try to find hyperplane that separates transformed points from original points

A: 1,3 B: 1,2,3 C: all

$$\Omega':=\mathcal{P}'\cup\mathcal{N}' ext{ mit}$$
 $\mathcal{P}':=$
 $\{\zeta^m=x^m|x^m\in\mathcal{P}\}$
 $\mathcal{N}':=$
 $\mathcal{N}':=$
 $\{\zeta^m=x^m|x^m\in\mathcal{P}\}$
 $\mathcal{N}':=$
 $\{\zeta^m=-x^m|x^m\in\mathcal{N}\}$

Äquivalentes Lernproblem: Finde Gewichtsvektor w, so dass $w^T \zeta > 0$, $\forall \zeta \in \Omega'$.

Content

- Revision: Practical Task
- Revision: Lecture
- New Practical Task

