Regressions- och tidsserieanalys

Föreläsning 5 - Modeller: antaganden, kontroll och utvärdering

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Modellkontroll
- Binära och kategoriska förklarande variabler.
- Modellutvärdering

Multipel linjär regression - antaganden

Populationsmodell för multipel regression:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$$

Antaganden

- ightharpoonup Betingade väntevärdet $\mu_{y|x}$ är en linjär funktion av x
- ightharpoonup Feltermerna ε_i har **samma varians** σ_{ε}^2 (homoskedastiticitet)
- ► Feltermerna är normalfördelade
- Feltermerna är oberoende.

Mattias Villani

ST123G

Antagandet om linjäritet, normalitet och oberoende

- Linjäritet:
 - ► Plotta residualerna mot varje förklarande variabel
 - ► Testa om icke-linjära effekter är signifikanta (se F7).
- Normalitet:
 - ► Histogram över residualerna
 - ► Q-Q-plot för residualerna
 - Normalitetstest
- Oberoende residualer? Ofta problem när variabler i regression är observerade över tid. Ex. cykeluthyrningsdata. Återkommer till detta när vi pratar om tidsserier.

Hälsobudgetdata

Hälsobudgetdata - utan USA

Cykeluthyrningar

Antagandet om konstant varians

- Plotta residualerna mot varje förklarande variabel.
- Test för heteroskedasticitet:

 H_0 : feltermerna har samma varians (homoskedastiska)

 H_1 : feltermerna har olika varians (heteroskedastiska)

Testprocedur

skatta regression med kvadrerade residualer e² som y-variabel

$$e^2 = \tilde{a} + \tilde{b}_1 x_1 + \ldots + \tilde{b}_k x_k + \tilde{\varepsilon}$$

- ightharpoonup använd t ex F-test för att testa $H_0: ilde{b}_1 = \ldots = ilde{b}_k = 0$.
- om F-testet förkastas så förkastar vi homoskedastiticitet.
- AJÅ: kvadrater x_1^2, \ldots, x_k^2 som förklarande variabler i regressionen för e^2 . Kollar om variansen är ett icke-linjär funktion av någon förklarande variabel. Se F7.

Multikollinearitet

- Förklarande variabler är ofta korrelerade.
- **Multikollinearitet** linjära beroenden mellan olika x_j .

- Problem vid multikollinearitet:
 - svårt att separera de olika förklarande variablernas effekt på y
 - stora standardfel för b_i.
 - insignifikans
- Prediktioner påverkas inte av multikollinearitet.

Variance inflation factors

Variance Inflation Factor (VIF) för förklarande variabeln x_j

$$VIF_j = \frac{1}{1 - R_j^2}$$

- R_j² är förklaringsgraden i regressionen med x_j som responsvariabel och alla andra x som förklarande variabler.
- Tumregel: VIF > 10 är stark multikollinearitet.
- Cykeluthyrning. Ny variabel: upplevd temperatur (feeltemp).

variable	R ²	VIF
temp	0.033	1.034
hum	0.070	1.075
windspeed	0.078	1.085

variable	R ²	VIF
temp	0.984	62.969
feeltemp	0.984	63.632
hum	0.073	1.079
windspeed	0.113	1.127

Binära förklarande variabler

Binära (dummy) variabler som bara kan anta två värden. Ex:

$$holiday = \begin{cases} 1 & \text{om r\"od dag} \\ 0 & \text{annars} \end{cases}$$

$$working day = \begin{cases} 1 & \text{om arbetsdag} \\ 0 & \text{om helg eller arbetsfri dag} \end{cases}$$

- Varianter av kodning: (0-1) eller (-1,1), eller (true,false).
- Regressionsmodell med binär förklarande variabel:

$$y = \alpha + \beta_1 \cdot \text{temp} + \beta_2 \cdot \text{workingday} + \varepsilon$$

innebär att vi får två parallella regressionlinjer

$$y = \begin{cases} \alpha + \beta_1 \cdot \text{temp} + \varepsilon & \text{om workingday} = 0\\ (\alpha + \beta_2) + \beta_1 \cdot \text{temp} + \varepsilon & \text{om workingday} = 1 \end{cases}$$

Mattias Villani ST123G

Binära förklarande variabler

Kategoriska förklarande variabler

- Kategoriska (klass) förklarande variabler.Ex: cykeluthyrningsdata:

$$season = \begin{cases} 1 & \text{om vinter} \\ 2 & \text{om vår} \\ 3 & \text{om sommar} \\ 4 & \text{om höst} \end{cases}$$

Koda som fyra binära variabler

	vinter	vår	sommar	höst	temp	
2011-01-01	1	0	0	0	0.344	
2011-01-02	1	0	0	0	0.363	
:						
2011-04-28	0	1	0	0	0.453	
• •						
2011-07-14	0	0	1	0	0.830	
2011-07-15	0	0	1	0	0.780	

Mattias Villani

Kategoriska förklarande variabler

Regressionen kan inte skattas pga perfekt multikollinearitet!

$$y = a + b_1 \cdot \text{temp} + b_2 \cdot \text{vinter} + b_3 \cdot \text{var} + b_4 \cdot \text{sommar} + b_5 \cdot \text{host}$$

Lösning: ta bort en av de fyra dummyvariabler, t ex vinter:

$$y = a + b_1 \cdot \text{temp} + b_3 \cdot \text{var} + b_4 \cdot \text{sommar} + b_5 \cdot \text{høst}$$

- Vinter blir nu referenskategorin (all tre dummies är noll då).
- Vinterdag:

$$y = a + b_1 \cdot \text{temp}$$

Vårdag:

$$y = (a + b_3) + b_1 \cdot \text{temp}$$

- Koefficienten b₃ är hur många fler cyklar hyrs ut under en vårdag jämfört med en vinterdag.
- Koefficienten b_4 är hur många fler cyklar hyrs ut under en sommardag jämfört med en vinterdag.

Cykeluthyrning - säsongsdummies

nRides \sim 1 + temp + spring + summer + fall

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%
(Intercept) temp spring summer	745.787 6241.35 848.724 490.196	187.476 518.142 197.082 259.006	3.98 12.05 4.31 1.89	<1e-04 <1e-29 <1e-04 0.0588	377.728 5224.11 461.806 -18.2936	1113.85 7258.58 1235.64 998.685
fall	1342.87	164.588	8.16	<1e-14	1019.75	1666.0

Mattias Villani

ST1230

Prognosförmåga på testdata

- Välj den modell som ger bäst prediktioner på nya (test) data.
- Dela upp observationer i två delmängder:
 - ► Träningsdata för att skatta modellens parametrar.
 - ► Testdata för att utvärdera modellens prediktioner.
- Modellen får aldrig chans att anpassa sig till testdata.
- Prediktionsmått: kvadrerade prediktionsfel på testdata

$$Q_{\text{test}} = \sum_{j=1}^{n_{\text{test}}} (y_j - \hat{y}_j)^2$$

- Observera:
 - > summan är över observationerna i testdata.
 - \blacktriangleright modellen som ger \hat{y}_j är skattad enbart på träningsdata.
 - ▶ överanpassning på träningsdata ⇒ dåliga prediktioner på testdata.

Korsvalidering

- Vilka observationer ska vara i träning respektive test? Korsvalidering.
- Mått på modellens prognosförmåga: genomsnittligt Q_{test} över alla K=3 testdataset.

Maskininlärning 7.5 hp.