Problem 1

 $Diagonalizability\ \hbox{--}\ geometric\ definition.}$

Let V be an n-dimensional vector space over a field \mathbb{F} and let $T:V\to V$ a transformation.

- (a) Write down the geometric definition (that we gave in class in terms of direct sum decomposition of V) for when T is diagonalizable.
- (b) Define what does it mean for $\lambda \in \mathbb{F}$ to be an eigenvalue of T. Denote $\operatorname{Spec}(T)$ the set of eigenvalues of T in \mathbb{F} . For each $\lambda \in \operatorname{Spec}(T)$, define the eigenspace V_{λ} . Show that the following are equivalent:
 - (i) T is diagonalizable.
 - (ii) $V = \bigoplus_{\lambda \in \text{Spec}(T)} V_{\lambda}$.
- (c) A linear transformation $P: V \to V$ is called a projector of $P^2 = P$. Show that any projector is diagonalizable.
- 1. We say that T is diagonalizable if there exists $\lambda_1, \ldots, \lambda_k \in \mathbb{F}$ distinct and subspaces $V_1, \ldots, V_k < V$ such that

$$V = \bigoplus_{i=1}^{k} V_i,$$

and T preserves each V_i , and $T|_{V_i} = \lambda_i Id_{V_i}$ for all $i = 1, \dots, k$.

Problem 2

 $Diagonalizability\ -\ computational\ definition.$

- (a) Let V be an n-dimensional vector space over a field \mathbb{F} and let $T:V\to V$ a linear transformation. Write down the computational definition (that we gave in class in terms of a basis \mathscr{B} and the corresponding matrix $[T]_{\mathscr{B}}$) for when T is diagonalizable.
- (b) For a matrix $A \in M_n(\mathbb{F})$, consider the linear transformation $T_A : \mathbb{F}^n \to \mathbb{F}^n$ given by $v \mapsto Av$. Show that the following are equivalent:
 - (i) T_A is diagonalizable (in this case we also say that A is diagonalizable).
 - (ii) There exists a diagonal matrix $D \in M_n(\mathbb{F})$ and an invertible matrix $C \in M_n(\mathbb{F})$ such that $C^{-1}AC = D$.
- (c) Consider the operator $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ where $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
 - (a) Show that T_A is diagonalizable
 - (b) find its eigenvalues
 - (c) find the direct sum decomposition for eigenspaces
 - (d) find a basis of eigenvectors
 - (e) find $D, C \in M_2(\mathbb{R})$ with D diagonal and C invertible such that $D = C^{-1}AC$.