Analyze, Plan, and Compose: Towards Creative Text Generation

Nanyun (Violet) Peng
June 7th, NAACL Workshop on Narrative Understanding

A Cartoon for Controllable Story Generation

Creative Pun Generation

• Input: hare, hair

• Output: The greyhound stopped to get a hare cut.

Challenges of (Neural) Text Generation

- Title: bicycle path accident
- Generated Story: sam bought a new bicycle. his bicycle was in an accident. his bicycle was in an accident. his bicycle was in an accident. his bicycle was totaled.
- Title: darth vader on earth
- Generated Story: it was a very windy day. i 've never been to it before. i do not know what to do. i do not know what to do. i think it is a good idea.

How About GPT-2?

- bicycle path accident, but it's still a pretty bad event. But, you know, they're also doing other events. ... I'm pretty excited, actually. I'm really excited. And I hope, you know, there's some other people out there feeling it. ...
- darth vader on earth !!!
 HOLY HOP! HE JUST WOKE UP ON HIM!!! He
 did nothing wrong, he's a guy just like us. But it's
 funny how when someone says, "I'm so grateful
 he's alive. I'm so happy to see you're still alive."

. . .

The Missing Ingredient for (Controllable) Creative Text Generation

- The Lack of Understanding and Analysis Tools
 - To be able to control, and generate creative elements.
- What's in a story?
 - Characters, genre, key events, morals, conflicts, ending spirit...
- What makes a pun funny/memorable?
 - Incongruity theory, ambiguity, distinctiveness...

From Analyzing to Generation

- Aspirational goal: analyze large corpus of creative contents (stories/poems/puns) to
 - Understand:
 - help humans to come up with concrete theories of story, humor in pun, etc.
 - Generate:
 - control the content
 - interact with human
 - generate novel contents that are coherent, creative, and interesting

Outline

- Analyzing Story Structures
 - Plan-and-Write Hierarchical Story Generation
- Analyzing Humor in Puns
 - Pun Generation with Surprise

Analyzing to Generate Stories

 Analyzing stories to generate stories with minimal or no supervision.

Ending Valence: happy ending, sad ending

Storyline: tom \rightarrow wanted \rightarrow decided \rightarrow practiced \rightarrow won

Plan-and-Write Hierarchical Generation

- Can computer generate storylines automatically (given titles)?
 - Mimic human writers' common practice of writing a sketch/plot: have a big picture.
 - Equip our system with the ability to model "what happens next".
 - Computer and human can interactively modify the storylines, more fun interactions.

Yao et. al. (AAAI 2019). Demo: http://cwc-story.isi.edu/

Extracting Storylines

Title: christmas shopping

Story: <u>frankie</u> had christmas

shopping to do.

she went to the store.

inside, she walked around looking for gifts.

soon her cart was full.

she <u>paid</u> and took her things home.

Storyline (unsupervised extraction): frankie -> store -> gifts -> cart -> paid

Title: farm

Story: bogart lived on a farm.

he loved bacon.

he <u>decided</u> to buy a pig. shortly after, he grew fond of the <u>pig</u>.

bogart stopped eating bacon.

Storyline (unsupervised extraction): farm -> bacon -> decided -> pig -> bogart

- Dataset: ROCStories 90k turker generated fiveline stories.
- Extraction tool: A modification to RAKE (rapid automatic keyword extraction), Rose et. al. 2010.
- Storyline composition: extracting one word/phrase per sentence, and order them according to the narrative order.

Plan-and-Write Overview

The *planning* component generates storylines from titles. The *writing* component generates stories from storylines and titles.

Dynamic and Static Schemas

Dynamic Schema

We define context as: $ctx = [t; s_{1:i-1}]$

At the plan step, we model: $P(li|ctx, l_{1:i-1})$

At the write step, we model: $P(s_i|ctx, I_{1:i})$

The probabilities are computed by some specifically designed fusion-RNN cells.

Static Schema

At the plan step, we model: $P(li|t, li_{-1})$

At the write step, we model: $P(s_i | ctx, l_{1:5})$

The probabilities are computed by standard language models and sequence to sequence with attention models.

Some Observations

- Plan-and-Write strategies generate more interesting, less repetitive stories.
- Plan-and-Write strategies generate more on-topic stories.
- Static strategy works better than dynamic strategy.

Generation Results

Title: gymnastics

Without Storyline Planning

Story (generated):

i was very happy.

i wanted to learn how to draw. so, i decided to go to the gym. i went to the local gym. i got a lot of good grades.

With Storyline Planning

Storyline (generated): wanted -> decided -> class -> practiced -> well

Story (generated):

i <u>wanted</u> to be a gymnast.

i <u>decided</u> to learn how to do gymnastics.

i decided to take a <u>class</u>.

i <u>practiced</u> every day.

i was able to do <u>well</u> on the class.

Generation Results (Cont.)

Title: build a house

Without Storyline Planning

Story (generated):

When I was young, I wanted to build a house.

I went to the store and bought all the supplies I needed.

I went to the store and bought all the supplies I needed.

I went to the store and bought all the supplies I needed.

I bought the supplies and went home.

With Storyline Planning

Storyline (generated): build house -> decided -> built -> finished -> proud

Story (generated):

john wanted to <u>build</u> a <u>house</u>. he <u>decided</u> to build a house.

he built a small house.

he finished the house.

he was proud of himself.

Quantitative Results on Repetition

Inter- and intra-story tri-grams repetition rates, the lower the better. We also conduct the same computation for four and five-grams and observed the same trends. As reference points, the whole story repetition rates on the human-written training data are 34% and 0.3% for the inter- and intra-story measurements respectively.

User Preferences

Aspect	Dynamic v.s. Inc- S2S		Static v.s. Cond- LM		Static v.s. Dynamic	
	Dyna.	Inc.	Static	Cond.	Static	Dyna.
Fidelity	35.8%	12.9%	38.5%	16.3%	38.0%	21.5%
Coherence	37.2%	28.6%	39.4%	32.3%	49.5%	28.3%
Interesting	43.5%	26.7%	39.5%	35.7%	43.6%	34.4%
Overall	42.9%	27.0%	40.9%	34.2%	50.1%	30.1%

The human study is conducted on Amazon Mechanical Turk (AMT). 233 users were participated in the study.

Beyond Hierarchical Generation...

Controllable Generation

Creative Story Generation with Ending Valence Control

Peng et. al. (NAACL 2018, Storytelling Workshop).

Generation Samples

Computer generated	Human flip the *EndingSpirit		
*HappyEnding:	*HappyEnding -> *SadEnding:		
i was playing soccer with my	i was playing soccer with my		
friends.	friends.		
we were playing in the park.	we were playing in the park.		
i was a bit nervous.	i was a bit nervous.		
i never played.	i never played.		
i ended up winning the game.	i was n't very good at it.		
*SadEnding:	*SadEnding -> *HappyEnding:		
tom was on vacation.	tom was on vacation.		
he was going to the beach.	he was going to the beach.		
he had to go to the beach.	he had to go to the beach.		
he was on the beach.	he was on the beach.		
he was feeling sick.	he was so excited to go back.		

Human-Computer Collaborative Generation

Goldfarb-Tarrant et. al. (NAACL 2019, Demo).

Event Temporal and Causal Relation

- Kelly and her friends (e1:decided) to have a hot dog contest. The girls (e2:competed) against each other.
- Relation between <e1, e2>: before

Han et. al. (NAACL 2019, WNU).

Outline

Generation by ...

- Analyzing Story Structures
 - Plan-and-Write Hierarchical Story Generation
- Analyzing Humor in Puns
 - Pun Generation with Surprise

Generating Puns is Challenging

Creative Composition

- No large corpus of puns (poems, jokes, stories) to train a generative model.
- Even if a large pun corpus exists, learning the distribution of existing data and sampling from it will likely to just mimic/memorize, rather than generate truly novel, creative sentences.

He et. al. (NAACL 2019)

Surprise in Puns

Yesterday I accidentally swallowed some food coloring.

 \mathrel{lue} The doctor says I'm OK, but I feel like I've a little inside.

Local context

Global context

Pun word: dyed.

Alternative word: died

- In the local context:
 - died a little inside.

dyed a little inside.

- In the global context: swallowed some food coloring
 - dyed a little inside.

died a little inside.

Analyzing for Generation

- The surprisal principle for humor in pun.
 - Quantitative instantiate of the surprisal principle to measure funniness in pun.
 - Instantiate the principle in pun generation
 - Retrieve and edit

Prior Theories - Funniness in Puns

- Kao et. al. 2015 proposes two principles to quantify funniness in puns.
 - Ambiguity: The sentence has two meanings (necessary but insufficient condition)
 - the person died/dyed.
 - Distinctiveness: The two sentence meanings are supported by distinct subsets of words in the sentence.
- The incongruity theory.

Quantifying Local-Global Surprisal

- We quantify surprise using a pre-trained language model.

 Inspired by Levy, 2015
 - Local surprisal S_{local}
 - $-log \frac{p(like\ I've\ dyed\ a\ little\ inside)}{p(like\ I've\ died\ a\ little\ inside)}$
 - Global surprisal S_{global}
 - $-log \frac{p(Yesterday I ... like I've dyed a little inside.)}{p(Yesterday I ... like I've died a little inside.)}$
 - Local-global surprisal ratio: $S_{ratio} \stackrel{\text{def}}{=} \frac{S_{local}}{S_{global}}$ (the larger the better) Humor theory about incongruity resolution, Tony, 2004

Evaluating The Surprisal Principle

- Goal: compute the correlation between human ratings of funniness and the scores produced by our principle.
- Three types of sentences:
 - Pun: The magician got so mad he pulled his hare out.
 - Swap pun: The magician got so mad he pulled his hair out.
 - Non-pun: Look at that hare.
- Datasets
 - Derived from SemEval 2017 (130 sentences including the three cases)
 - Human rating of funniness from 1 (not at all) to 7 (extremely)

No Single Metric Works Well Across the Board

Spearman correlation on SemEval Dataset

Directly optimizing the surprisal score cannot work well for generation.

A Retrieve-and-Edit Framework for Pun Generation

the man stopped to get a hair cut.

the man stopped to get a <u>hare</u> cut.

the greyhound stopped to get a hare cut.

- Generating local-surprisal: retrieve and swap
- Generating global-local contrast: inserting a topic word at the beginning.
 - Relativeness measured by a distance skip-gram.

Baselines

- Retrieve: just retrieve a sentence that contains the pun word.
 - Look at that hare.
 - I dyed my hair.
- Neural Joint Decoder (Yu et al., 2018)
 - An implementation to the ambiguity principle

Evaluating the Generation System

- Selected 150 pun-alternative pairs.
- Each system generates puns from these words.
- Human ratings:
 - funniness (1-5),
 - grammaticality (1-5)
 - success (yes/no), given the formal definition in D. Aarons, 2017

Evaluating Generated Puns

Evaluating Generated Puns

Funniness and Grammaticality

Case Study

Method	Example					
Pun/alternative word pair: butter – better						
NJD	He is going to come up with the butter a 'very good' approach to the world's economic crisis, the world's biggest economic climate.	1				
SURGEN	Well, gourmet did it, he thought, it'd butter be right.	2				
Human	Why did the dairy churn? The less said, the butter	1.5				
Pun/alternative word pair: peace – piece						
NJD	Further, he said, at the end of the peace, it's not clear that it will be a good example.	1				
SURGEN	That's because negotiator got my car back to me in one peace.	1.5				
Human	Life is a puzzle; look here for the missing peace.	3				

Error Analysis

- The main challenge is to find good seed sentences.
- The pun word needs to fit.
- Strong local association for the alternative word.

Conclusion

- Big LMs and mimicking existing materials are not likely to generate truly novel, creative sentences.
 - Structures and inductive bias are needed
- Narrative understanding (NLU) is necessary for controllable, creative generation.
- Code and demo can be found at:
 - https://violetpeng.github.io//

Thanks! Questions?