

Tema 1. ÁLGEBRA DE BOOLE

Tema 1. ÁLGEBRA DE BOOLE

DETALLE DEL TEMARIO

- 1.1. Álgebra de Boole y Álgebra de Conmutación: axiomas, teoremas y operaciones básicas.
- 1.2. Funciones lógicas.
 - 1.2.1. Representaciones de las funciones lógicas.
 - 1.2.2. Minimización de funciones lógicas. Mapas de Karnaugh
 - 1.2.3. Términos irrelevantes (don't care).

Tema 1. ÁLGEBRA DE BOOLE

SISTEMA DIGITAL

¿Comportamiento (funcionamiento)? ' función lógica

SISTEMA DIGITAL

Tema 1. ÁLGEBRA DE BOOLE

ÁLGEBRA DE BOOLE

Tema 1. ÁLGEBRA DE BOOLE

ÁLGEBRA DE BOOLE

ÁLGEBRA DE BOOLE

TEORÍA DE (B,U,)) CONJUNTOS

 $B:\{A, B, C, \ldots, \emptyset, U\}$

LÓGICA PROPOSICIONAL

(B,v,)) B:{p, q, r,...,F,T}

(SWITCHING ALGEBRA)

(B,+,·) B:{0,1}

Tema 1. ÁLGEBRA DE BOOLE

ÁLGEBRA DE CONMUTACIÓN

Tema 1. ÁLGEBRA DE BOOLE

ÁLGEBRA DE BOOLE

 George Boole en 1845 propuso descripción algebraica de la Lógica: Álgebra de Boole.

 Claude Shannon en 1938 demostró que el binario y el álgebra booleana podían simplificar el diseño de circuitos digitales:

Álgebra de Conmutación

Tema 1. ÁLGEBRA DE BOOLE

ÁLGEBRA DE BOOLE

ALGEBRA DE BOOLE

Tema 1. ÁLGEBRA DE BOOLE

AXIOMAS DEL ÁLGEBRA DE BOOLE

- Un álgebra:
 - Conjunto de elementos.
 - Unas operaciones con dichos elementos.
 - Un conjunto de axiomas.

Leyes y **teoremas**

- Axiomas del Álgebra de Boole para:
 - Un conjunto de elementos B: {a, b, c, ...}.
 - Dos operaciones cerradas: (+, •).
 - Suma '+'
 - Producto '•'

AXIOMAS DEL ÁLGEBRA DE BOOLE

Axioma A1: El conjunto B es cerrado

$$\forall a, b \in B \rightarrow a + b \in B$$

 $\forall a, b \in B \rightarrow a \cdot b \in B$

Axioma A2: Existen al menos 2 elementos distintos

$$\exists a,b \in B / a \neq b$$

Axioma A3: Existe elemento neutro

$$\exists \ 0 \in B \ / \ \forall a \in B \longrightarrow a + 0 = a$$

$$\exists 1 \in B / \forall a \in B \rightarrow a \cdot 1 = a$$

AXIOMAS DEL ÁLGEBRA DE BOOLE

Axioma A4: Propiedad Conmutativa

$$\forall a, b \in B \rightarrow a + b = b + a$$

 $\forall a, b \in B \rightarrow a \cdot b = b \cdot a$

Axioma A5: Propiedad Asociativa

$$\forall a, b, c \in B \to (a+b) + c = a + (b+c)$$
$$\forall a, b, c \in B \to (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Tema 1. ÁLGEBRA DE BOOLE

AXIOMAS DEL ÁLGEBRA DE BOOLE

(Propiedad Distributiva del Producto respecto a la Suma o Factor Común)

Axioma A6: Propiedad Distributiva

$$a+bc = (a+b)(a+c)$$

$$\forall a,b,c \in B \rightarrow a + (b \cdot c) = (a+b) \cdot (a+c)$$

$$\forall a,b,c \in B \rightarrow a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

$$a(b+c) = ab + ac$$

Axioma A7: Existe Elemento Complementario

$$\forall a \in B \quad \exists \overline{a} \in B / a \cdot \overline{a} = 0$$

 $\forall a \in B \quad \exists \overline{a} \in B / a + \overline{a} = 1$

TEOREMAS DEL ÁLGEBRA DE BOOLE

Teorema T1: Ley de Idempotencia (o de Tautología)

$$\forall a \in B \rightarrow a + a = a$$

$$\forall a \in B \rightarrow a \cdot a = a$$

Teorema T2: Teorema de los Elementos Dominantes

$$\forall a \in B \rightarrow a \cdot 0 = 0$$

$$\forall a \in B \rightarrow a+1=1$$

Teorema T3: Ley de Absorción

$$\forall a, b \in B \rightarrow a + (a \cdot b) = a$$

$$\forall a, b \in B \rightarrow a \cdot (a+b) = a$$

TEOREMAS DEL ÁLGEBRA DE BOOLE

Teorema T4: Ley de Involución

$$\forall a \in B \rightarrow \overline{\overline{a}} = a$$

Teorema T5: Ley de Adyacencia

$$\forall a, b \in B \rightarrow ab + a\overline{b} = a$$

$$\forall a, b \in B \rightarrow ab + a\overline{b} = a$$

 $\forall a, b \in B \rightarrow (a+b)(a+\overline{b}) = a$

Teorema T6: Ley de Simplificación

$$\forall a, b \in B \rightarrow a + \overline{a} \cdot b = a + b$$

 $\forall a, b \in B \rightarrow a \cdot (\overline{a} + b) = a \cdot b$

TEOREMAS DEL ÁLGEBRA DE BOOLE

Teorema T7: Complementario de los Elementos Neutros

$$\frac{\overline{0}}{1} = 1$$

Teorema T8: Leyes de De Morgan

$$\forall a, b \in B \to \overline{a + b} = \overline{a} \cdot \overline{b}$$

$$\forall a, b \in B \to \overline{a \cdot b} = \overline{a} + \overline{b}$$

$$\frac{\overline{a+b} \neq \overline{a+b}}{\overline{a\cdot b} \neq \overline{a\cdot b}}$$

TEOREMAS DEL ÁLGEBRA DE BOOLE

Teorema T7: Complementario de los Elementos Neutros

Principio de Dualidad

Todo axioma tiene 2 formas equivalentes si:

- se intercambia suma por producto (+ ⇔ •),
- se intercambian los elementos neutros (0 ⇔ 1).

$$\frac{a + v + a + v}{a \cdot b \neq a \cdot b}$$

Tema 1. ÁLGEBRA DE BOOLE

ÁLGEBRA DE BOOLE

ÁLGEBRA DE BOOLE

ÁLGEBRA DE CONMUTACIÓN

(SWITCHING ALGEBRA)

Tema 1. ÁLGEBRA DE BOOLE

ÁLGEBRA DE CONMUTACIÓN

Sólo dos elementos.

$$-B = \{0, 1\}$$

- Dos operaciones cerradas.
 - Suma lógica '+'
 - Producto lógico '•'

Tema 1. ÁLGEBRA DE BOOLE

ÁLGEBRA DE CONMUTACIÓN

Las operaciones del Álgebra de Conmutación se definen de forma **exhaustiva** por su Tabla de Verdad.

Suma	lógica

a b a+b 0 0 0 0 1 1 1 0 1

Producto lógico

a	b	a•b
0	0	0
0	1	0
1	0	0
1	1	1

Tema 1. ÁLGEBRA DE BOOLE

ÁLGEBRA DE CONMUTACIÓN

Y el complementario, se denomina inversión lógica o:

Negación

ÁLGEBRA DE CONMUTACIÓN

 Se comprueba que las operaciones así definidas verifican los Axiomas de Huntington (A1,...,A7).

 En consecuencia, son de aplicación los teoremas y leyes del Álgebra de Boole (T1,...,T8).

Tema 1. ÁLGEBRA DE BOOLE

FUNCIONES LÓGICAS (O DE CONMUTACIÓN)

• Dadas n variables booleanas se pueden definir 2^{2^n} funciones diferentes:

			n			2^{2^n}							
	X _{n-1}	X _{n-2}		X ₁	X ₀	f_0	f ₁	f ₂	f ₃	•••	f _{r-3}	f _{r-2}	f _{r-1}
1	0	0		0	0	0	0	0	0		1	1	1
	0	0		0	0	0	0	0	0		1	1	1
	0	0		1	0	0	0	0	0		1	1	1
2^n	:	ŧ		ŧ	÷	÷	÷	÷	:		÷	÷	÷
	1	1		0	1	0	0	0	0		1	1	1
	1	1		1	0	0	0	1	1		0	1	1
	1	1		1	1	0	1	0	1		1	0	1

Tema 1. ÁLGEBRA DE BOOLE

FUNCIONES LÓGICAS (O DE CONMUTACIÓN)

• $n = 1 \rightarrow 4$ funciones

а	f_0	f_1	f ₂	f_3
0	0	0	1	1
1	0	1	0	1

$$f_0 = 0$$
 $f_1 = a$ $f_2 = \overline{a}$ $f_3 = 1$

Tema 1. ÁLGEBRA DE BOOLE

FUNCIONES LÓGICAS (O DE CONMUTACIÓN)

• $n = 2 \rightarrow 16$ funciones

$$f_{6}=\overline{a}b+a\overline{b}=a\oplus b$$
 suma exclusiva $f_{9}=\overline{a}\overline{b}+ab=a\otimes b$ equivalencia

а	b	f_0	f ₁	f ₂	f ₃	f ₄	f ₅	f ₆	f ₇	f ₈	f ₉	f ₁₀	f ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

$$f_1 = a \cdot b$$

$$f_7 = a + b$$

FUNCIONES LÓGICAS (O DE CONMUTACIÓN)

• $n = 2 \rightarrow 16$ funciones

$$f_6 = \overline{a}b + ab = a \oplus b$$
 suma exclusiva $f_0 = \overline{a}\overline{b} + ab = a \otimes b$ equivalencia

Principio de Dualidad (ampliación)

Todo axioma tiene 2 formas equivalentes si:

- se intercambia suma por producto (+ ⇔ •),
- se intercambian los complementarios (a ⇔ ā).
 antes (0 ⇔ 1)

$$f_1 = a \cdot b$$

$$f_7 = a + b$$

SISTEMA DIGITAL

¡Pero no perdamos la perspectiva!

¿Comportamiento (funcionamiento)? ' función lógica

SISTEMA DIGITAL

Problema: ¿Cómo obtener una función lógica a partir de una tabla de verdad?

X_2	X ₁	$\mathbf{X_0}$	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$\xi f(x_2, x_1, x_0)$$
?