Linear Models for Regression

Sargur Srihari srihari@cedar.buffalo.edu

Topics in Linear Regression

- What is regression?
 - Polynomial Curve Fitting with Scalar input
 - Linear Basis Function Models
- Maximum Likelihood and Least Squares
- Stochastic Gradient Descent
- Regularized Least Squares

The regression task

- It is a supervised learning task
- Goal of regression:
 - predict value of one or more <u>target</u> variables t
 - given <u>d</u>-dimensional vector x of input variables
 - With dataset of known inputs and outputs
 - $(x_1,t_1), ...(x_N,t_N)$
 - Where x_i is an input (possibly a vector) known as the predictor
 - t_i is the target output (or response) for case i which is real-valued
 - Goal is to predict t from x for some future test case
 - We are not trying to model the distribution of x
 - We dont expect predictor to be a linear function of x
 - So ordinary linear regression of inputs will not work
 - We need to allow for a nonlinear function of x
 - We don't have a theory of what form this function to take₃

An example problem

- Fifty points generated
 - With x uniform from (0,1)
 - y generated from formula $y=\sin(1+x^2)+\text{noise}$
 - Where noise has $N(0,0.03^2)$ distribution
 - Noise-free true function and data points are as shown

Application of Regression

- Expected claim amount an insured person will make (used to set insurance premiums) or prediction of future prices of securities
 - Also used for algorithmic trading

ML Terminology

- Regression
 - Predict a numerical value t given some input
 - Learning algorithm has to output function $f: \mathbb{R}^n \rightarrow \mathbb{R}$
 - where n = no of input variables
- Classification
 - If t value is a label (categories): $f: \mathbb{R}^n \rightarrow \{1,...,k\}$
- Ordinal Regression
 - Discrete values, ordered categories

Polynomial Curve Fitting with a Scalar

- With a <u>single</u> input variable x- $y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=1}^{M} w_j x^j$ M is the order of the polynomial,

 x^{j} denotes x raised to the power j,

Training data set N=10, Input x, target t

Coefficients w_0, \dots, w_M are collectively denoted by vector w

- Task: Learn w from training data $D = \{(x_i, t_i)\}, i = 1,...,N$
 - Can be done by minimizing an error function that minimizes the misfit between $y(x, \mathbf{w})$ for any given \mathbf{w} and training data
 - One simple choice of error function is sum of squares of error between predictions $y(x_n, \mathbf{w})$ for each data point x_n and corresponding target values t_n so that we minimize $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$
 - It is zero when function y(x,w) passes exactly through each training data point

Results with polynomial basis

Regression with multiple inputs

Generalization

- Predict value of continuous target variable t given value of D input variables $\mathbf{x} = [x_1, ... x_D]$
- t can also be a set of variables (multiple regression)
- Linear functions of adjustable parameters
 - Specifically linear combinations of <u>nonlinear</u> functions of input variable

Polynomial curve fitting is good only for:

- Single input variable scalar x
- It cannot be easily generalized to several variables, as we will see

Simplest Linear Model with D inputs

Regression with D input variables

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + ... + w_d x_D = \mathbf{w}^T \mathbf{x}$$

This differs from Linear Regression with <u>one</u> variable and Polynomial Reg with <u>one</u> variable

where $\mathbf{x} = (x_1, ..., x_D)^T$ are the input variables

- Called Linear Regression since it is a linear function of
 - parameters $w_0,...,w_D$
 - input variables $x_1,...,x_D$
- Significant limitation since it is a linear function of input variables
 - In the one-dimensional case this amounts a straight-line fit (degree-one polynomial)

$$- y(x, \mathbf{w}) = w_0 + w_1 x$$

Fitting a Regression Plane

- Assume t is a function of inputs $x_1, x_2, ..., x_D$ Goal: find best linear regressor of t on all inputs
 - Fitting a hyperplane through N input samples
 - For D = 2:

	x_1	<i>x</i> ₂	t
•	1	2	2
	2	5	1
	2	3	2
	2 2 2 3	2	2
	3	2 4 5	1
	3 4 5 5		3
	4	6	2
	5	6 5 6	3 4
	5		4
	5	7	3
	6	8	4
	7	6	2
	8	4	4
	8	4 9 8	3 4
	9	8	4

- Being a linear function of input variables imposes limitations on the model
 - Can extend class of models by considering fixed nonlinear functions of input variables

Basis Functions

- In many applications, we apply some form of fixed-preprocessing, or feature extraction, to the original data variables
- If the original variables comprise the vector \mathbf{x} , then the features can be expressed in terms of basis functions $\{\phi_j(\mathbf{x})\}$
 - By using nonlinear basis functions we allow the function $y(\mathbf{x},\mathbf{w})$ to be a nonlinear function of the input vector \mathbf{x}
 - They are linear functions of parameters (gives them simple analytical properties), yet are nonlinear wrt input variables

Linear Regression with M Basis Functions

Extended by considering nonlinear functions of input variables

$$y(x,w) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x)$$

- where $\phi_i(x)$ are called Basis functions
- We now need M weights for basis functions instead of D weights for features
- With a dummy basis function $\phi_0(\mathbf{x})=1$ corresponding to the bias parameter w_0 , we can write

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \boldsymbol{\phi}_j(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$$

- where $\mathbf{w} = (w_0, w_1, ..., w_{M-1})$ and $\Phi = (\phi_0, \phi_1, ..., \phi_{M-1})^T$
- Basis functions allow non-linearity with D input variables

Choice of Basis Functions

- Many possible choices for basis function:
 - 1. Polynomial regression
 - Good only if there is only one input variable
 - 2. Gaussian basis functions
 - 3. Sigmoidal basis functions
 - 4. Fourier basis functions
 - 5. Wavelets

1. Polynomial Basis for one variable

Linear Basis Function Model

$$y(x, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(x) = \mathbf{w}^T \phi(x)$$

• Polynomial Basis (for single variable x) $\phi_j(x) = x^j$ with degree M-1 polynomial

- Disadvantage
 - Global:
 - changes in one region of input space affects others
 - Difficult to formulate
 - Number of polynomials increases exponentially with M
 - Can divide input space into regions
 - use different polynomials in each region:
 - equivalent to spline functions

Can we use Polynomial with *D* variables? (Not practical!)

- Consider (for a vector x) the basis: $\phi_j(\mathbf{x}) = ||\mathbf{x}||^j = \left[\sqrt{x_1^2 + x_2^2 + ... + x_d^2}\right]^j$
 - x=(2,1) and x=(1,2) have the same squared sum, so it is unsatisfactory
 - Vector is being converted into a scalar value thereby losing information
- Better polynomial approach:
 - Polynomial of degree M-1 has terms with variables taken none, one, two... M-1 at a time.
 - Use multi-index $j=(j_1,j_2,...j_D)$ such that $j_1+j_2+...j_D \leq M-1$
 - For a quadratic (M=3) with three variables (D=3)

$$y(\mathbf{x}, \mathbf{w}) = \sum_{(j_1, j_2, j_3)} w_j \phi_j(\mathbf{x}) = w_0 + w_{1,0,0} x_1 + w_{0,1,0} x_2 + w_{0,0,1} x_3 + w_{1,1,0} x_1 x_2 + w_{1,0,1} x_1 x_3 + w_{0,1,1} x_2 x_3 + w_{2,0,0} x_1^2 + w_{0,2,0} x_2^2 + w_{0,0,2} x_3^2$$

- Number of quadratic terms is 1+D+D(D-1)/2+D
- For D=46, it is 1128
- Better to use Gaussian kernel, discussed next

Disadvantage of Polynomial

- Polynomials are global basis functions
 - Each affecting the prediction over the whole input space
- Often local basis functions are more appropriate

2. Gaussian Radial Basis Functions

- Gaussian $\left|\phi_j(x) = \exp\left|\frac{(x-\mu_j)^2}{2\sigma^2}\right|\right|$
 - Does not necessarily have a probabilistic interpretation
 - Usual normalization term is unimportant
 - since basis function is multiplied by weight w_i

- Can be an arbitrary set of points within the range of the data
 - Can choose some representative data points
- $-\sigma$ governs the spatial scale
 - Could be chosen from the data set e.g., average variance

Several variables

- A Gaussian kernel would be chosen for each dimension.
- For each j a different set of means would be needed—perhaps chosen from the data

$$\left|\phi_{j}(\mathbf{x}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{j})^{t} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{j})\right)\right|$$

Result with Gaussian Basis Functions

$$\phi_j(x) = \exp(-(x - \mu_j)^2 / 2s^2)$$

Basis functions for s=0.1, with the μ_j on a grid with spacing s

 $w_{\rm j}$ s for middle model:

Biological Inspiration for RBFs

- Nervous system contains many examples
 - Local receptive fields in visual cortex

RBF Network

- Receptive fields overlap
- So there is usually more than one unit active
- But for given input, total no. of active units is small₂₀

Tiling the input space

Determining centers

- k-means clustering
 - Choose k cluster centers
 - Mark each training point as captured by cluster to which it is closest
 - Move each cluster center to mean of points it captured

Determining variance σ²

Global: σ =mean distance between each unit j and its closest neighbor

P-nearest neighbor: set each σ_j so that there is certain overlap with P closest neighbors of unit j

Machine Learning

3. Sigmoidal Basis Function

Sigmoid

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$
 where $\sigma(a) = \frac{1}{1 + \exp(-a)}$

Equivalently, tanh because it is related to logistic sigmoid by

$$\tanh(a) = 2\sigma(a) - 1$$

Logistic Sigmoid For different μ_i

4. Other Basis Functions

- Fourier
 - Expansion in sinusoidal functions
 - Infinite spatial extent
- Signal Processing
 - Functions localized in time and frequency
 - Called wavelets
 - Useful for lattices such as images and time series
- Further discussion independent of choice of basis including $\phi(\mathbf{x}) = \mathbf{x}$

Relationship between Maximum Likelihood and Least Squares

- Will show that Minimizing sum-of-squared errors is the same as maximum likelihood solution under a Gaussian noise model
- Target variable is a scalar t given by deterministic function y (x,w) with additive Gaussian noise ϵ

$$t = y(x,w) + \varepsilon$$

- which is a zero-mean Gaussian with precision β
- Thus distribution of t is univariate normal:

$$p(t|\mathbf{x},\mathbf{w},\boldsymbol{\beta}) = N(t|\underline{y(\mathbf{x},\mathbf{w})},\underline{\boldsymbol{\beta}}^{-1})$$
 mean variance

Likelihood Function

Data set:

- Input $X=\{x_1,...x_N\}$ with target $t=\{t_1,...t_N\}$
- Target variables t_n are scalars forming a vector of size N
- Likelihood of the target data
 - It is the probability of observing the data assuming they are independent
 - since $p(t|x,w,\beta)=N(t|y(x,w),\beta^{-1})$
 - and $y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$

$$p(\operatorname{t} \mid X, \operatorname{w}, eta) = \prod_{n=1}^{N} N(t_{n} \mid \operatorname{w}^{T} \boldsymbol{\phi}(\operatorname{x}_{n}), eta^{-1})$$

Log-Likelihood Function

Likelihood

$$p(\mathbf{t} \mid X, \mathbf{w}, \beta) = \prod_{n=1}^{N} N(t_n \mid \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$

Using standard univariate Gaussian

$$N(x \mid \mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\}$$

$$\ln p(\mathbf{t} \mid \mathbf{w}, \beta) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln 2\pi - \beta E_{D}(\mathbf{w})$$

Where

$$\left| E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(x_n) \right\}^2 \right|$$
 Sum-of-squares Error Function

With Gaussian basis functions

$$\phi_j(\mathbf{x}) = \exp\left(\frac{(\mathbf{x} - \boldsymbol{\mu}_j)^t(\mathbf{x} - \boldsymbol{\mu}_j)}{2s^2}\right)$$

Maximizing Log-Likelihood Function

Log-likelihood

$$\ln p(\mathbf{t} \mid \mathbf{w}, \boldsymbol{\beta}) = \sum_{n=1}^{N} \ln N \left(t_n \mid \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \boldsymbol{\beta}^{-1} \right)$$
$$= \frac{N}{2} \ln \boldsymbol{\beta} - \frac{N}{2} \ln 2\pi - \boldsymbol{\beta} E_D(\mathbf{w})$$

- where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \boldsymbol{\varphi}(x_n) \right\}^2$$

• Therefore, maximizing likelihood is equivalent to minimizing $E_D(\mathbf{w})$

Determining max likelihood solution

The likelihood function has the form

$$\ln p(\mathbf{t} \mid \mathbf{w}, \boldsymbol{\beta}) = \frac{N}{2} \ln \boldsymbol{\beta} - \frac{N}{2} \ln 2\pi - \boldsymbol{\beta} E_D(\mathbf{w})$$
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right\}^2$$

- where
- We will show that the maximum likelihood solution has a closed form
- Take derivative of $\ln p(\mathbf{t} \mid \mathbf{w}, \boldsymbol{\beta})$ wrt w and set equal to zero and solve for w
 - or equivalently just the derivative of $E_D(\mathbf{w})$

Gradient of Log-likelihood wrt w

$$\nabla \ln p(\mathbf{t} \mid \mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_{n} - \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) \right\} \boldsymbol{\phi}(\mathbf{x}_{n})^{T}$$

-which is obtained from log-likelihood expression and by using calculus result

$$\nabla_w \left[-\frac{1}{2} \left(a - wb \right)^2 \right] = (a - wb)b$$

Gradient is set to zero and we solve for w

$$0 = \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) - \mathbf{w}^{\mathrm{T}} \left(\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \right)$$
 as shown in next slide

 Second derivative will be negative making this a maximum

Max Likelihood Solution for w

Solving for w we obtain:

$$\mathbf{w}_{ML} = \mathbf{\Phi}^+ \mathbf{t}$$

 $X=\{\mathbf{x}_1,...\mathbf{x}_N\}$ are samples (vectors of d variables) $\mathbf{t}=\{t_1,...t_N\}$ are targets (scalars)

where $\Phi^+ = (\Phi^T \Phi)^{-1} \Phi^T$ is the Moore-Penrose pseudo inverse of the $N \times M$ Design Matrix Φ whose elements are given by $\Phi_{nj} = \phi_j(\mathbf{x}_n)$

Known as the normal equations for the least squares problem

Design Matrix:Rows correspond to *N* samples,
Columns to *M* basis functions

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \dots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & & & \\ \phi_0(\mathbf{x}_N) & & & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

Pseudo inverse:

generalization of notion of matrix inverse to non-square matrices If <u>design matrix</u> is square and invertible. then pseudo-inverse is same as inverse

 $\phi_i(x_n)$ are M basis functions, e.g., Gaussians centered on M data points

$$\left|\phi_{\boldsymbol{j}}(\mathbf{x}) = \exp\!\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{\boldsymbol{j}})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{\boldsymbol{j}})\right)\right|$$

Design Matrix Φ

Note that ϕ_0 corresponds to bias, which is set to 1

Φ is an $N \times M$ matrix Thus Φ^{T} is an $M \times N$ matrix Thus, Φ^{T} Φ is $M \times M$, and so is $[\Phi^{T} \Phi]^{-1}$ So we have $[\Phi^{T} \Phi]^{-1} \times \Phi^{T}$ is $M \times N$ Since t is $N \times 1$, we have that $\mathbf{w}_{\mathsf{ML}} = [\Phi^{T} \Phi]^{-1} \times \Phi^{T}$ t is $M \times 1$. which consists of the M weights (including bias).

Srihari

What is the role of Bias parameter w_0 ?

• Sum-of squares error function is: $E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \}^2$

- Substituting: $y(x,w) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x)$ we get:

$$E_{D}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_{n} - w_{0} - \sum_{j=1}^{M-1} w_{j} \phi_{j}(\mathbf{x}_{n}) \right\}^{2}$$

- Setting derivatives wrt w_0 equal to zero and solving for w_0

$$\left| w_0 = \overline{t} - \sum_{j=1}^{M-1} w_j \overline{\phi_j} \right| \quad \text{where} \quad \overline{t} = \frac{1}{N} \sum_{n=1}^{N} t_n \quad \text{and} \quad \overline{\phi}_j = \frac{1}{N} \sum_{n=1}^{N} \phi_j(\mathbf{x}_n)$$

- First term is average of the N values of t
- Second term is weighted sum of the average basis function values over N samples
- Thus bias w_0 compensates for difference between average target values and weighted sum of averages of basis function values

Maximum Likelihood for precision β

- We have determined m.l.e. solution for w using a probabilistic formulation
 - $p(t|x,w,\beta)=N(t|y(x,w),\beta^{-1})$
 - With log-likelihood

$$\mathbf{w}_{ML} = \mathbf{\Phi}^{+} \mathbf{t}$$

33

$$\ln p(\mathbf{t} \mid \mathbf{w}, \boldsymbol{\beta}) = \frac{N}{2} \ln \boldsymbol{\beta} - \frac{N}{2} \ln 2\boldsymbol{\pi} - \boldsymbol{\beta} E_D(\mathbf{w}) \left[\nabla \ln p(\mathbf{t} \mid \mathbf{w}, \boldsymbol{\beta}) = \boldsymbol{\beta} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^T \right]$$

$$\nabla \ln p(\mathbf{t} \mid \mathbf{w}, \boldsymbol{\beta}) = \boldsymbol{\beta} \sum_{n=1}^{N} \left\{ t_{n} - \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) \right\} \boldsymbol{\phi}(\mathbf{x}_{n})^{T}$$

Taking gradient wrt β gives

$$\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}_{ML}^T \phi(\mathbf{x}_n) \right\}^2$$

 Thus Inverse of the noise precision gives Residual variance of the target values around the regression function

Geometry of Least Squares

- Geometrical Interpretation of Least Squares Solution instructive
- Consider N-dim space with axes t_n so that $\mathbf{t} = (t_1, \dots, t_N)^T$ is a vector in this space

- Each basis $\phi_j(\mathbf{x}_n)$ evaluated at N points can also be represented as a vector in the same space
- ϕ_j corresponds to $\jmath^{\rm th}$ column of Φ , whereas $\phi({\bf x_n})$ corresponds to the the $n^{\rm th}$ row of Φ
- If the no of basis functions is smaller than the no of data points
 - i.e., M < N then the M vectors $\phi_i(\mathbf{x}_n)$ will span linear subspace S of dim M
- Define y to be an N-dim vector whose n^{th} element is $y(\mathbf{x}_n, \mathbf{w})$
- Sum-of-squares error is equal to squared Euclidean distance between \boldsymbol{y} and \mathbf{t}
- Solution w corresponds to y that lies in subspace S that is closest to t
 - Corresponds to orthogonal projection of ${f t}$ onto S

Difficulty of Direct solution

Direct solution of normal equations

$$W_{ML} = \Phi^+ t$$

$$\mathbf{\Phi}^+ = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T$$

- This direct solution can lead to numerical difficulties
 - When $\Phi^T\Phi$ is close to singular (determinant=0)
 - When two basis functions are collinear parameters can have large magnitudes
- Not uncommon with real data sets
- Can be addressed using
 - Singular Value Decomposition
 - Addition of regularization term ensures matrix is non-singular

Method of Gradient Descent

- Criterion f(x) minimized by moving from current solution in direction of negative of gradient f'(x)
- Steepest descent proposes a new point

$$x' = x - \eta f'(x)$$

- where η is the learning
- rate, a positive scalar.
- Set to a small constant.

Gradient with multiple inputs

- For multiple inputs we need partial derivatives:
 - $\left| rac{\partial}{\partial x_i} f(oldsymbol{x})
 ight|$ is how f changes as only x_i increases
 - Gradient of f is a vector of partial derivatives $\nabla_{r}f(x)$

$$\nabla_x f(x)$$

Gradient descent proposes a new point

$$\left| oldsymbol{x}' = oldsymbol{x}$$
 – $\eta
abla_x f \Big(oldsymbol{x} \Big)
ight|$

- where η is the learning rate, a positive scalar
 - Set to a small constant

Direction in w_0 - w_1 plane producing steepest descent

Gradient Descent for Regression

• Error function
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \}^2$$
 sums over data

- Denoting $E_D(\mathbf{w}) = \sum_n E_n$, update \mathbf{w} using

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

- where τ is the iteration number and η is a learning rate parameter
- Substituting for the derivative $\left| \nabla E_n = -\sum_{n=1}^{N} \left\{ t_n \mathbf{w}^T \phi(\mathbf{x}_n) \right\} \phi(\mathbf{x}_n)^T \right|$

$$\nabla E_n = -\sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^T$$

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}_n) \boldsymbol{\phi}_n$$

where
$$\phi_n = \phi(\mathbf{x}_n)$$

- w is initialized to some starting vector w⁽⁰⁾
- η chosen with care to ensure convergence
- Known as Least Mean Squares Algorithm

Choosing the Learning rate

- Useful to reduce η as training progresses
- Constant learning rate is default in Keras
 - Momentum and decay are set to 0 by default
 - keras.optimizers.SGD(lr=0.1, momentum=0.0, decay=0.0, nesterov=False)

Constant learning rate

Time-based decay: decay_rate=learning_rate/epochs)
SGD(lr=0.1, momentum=0.8, decay=decay_rate,
Nesterov=False)

Sequential (On-line) Learning

Maximum likelihood solution is

$$\mathbf{W}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

- It is a batch technique
 - Processing entire training set in one go
 - It is computationally expensive for large data sets
 - Due to huge $N \times M$ Design matrix Φ
- Solution: use a sequential algorithm where samples are presented one at a time (or a minibatch at a time)
 - Called stochastic gradient descent

Computational bottleneck

- A recurring problem in machine learning:
 - large training sets are necessary for good generalization
 - but large training sets are also computationally expensive
- SGD is an extension of gradient descent that offers a solution
 - Moreover it is a method of generalization beyond the training set

Insight of SGD

Gradient is an expectation

$$oxed{ \nabla \ln p(y \mid X, heta, eta) = eta \sum_{i=1}^m \left\{ \; y^{(i)} - heta^T oldsymbol{x}^{(i)}
ight\} \; oldsymbol{x}^{(i)T} }$$

- Expectation may be approximated using small set of samples
- In each step of SGD we can sample a minibatch of examples $B = \{x^{(1)},...,x^{(m')}\}$
 - drawn uniformly from the training set
 - Minibatch size m' is typically chosen to be small: 1 to a hundred
 - Crucially m' is held fixed even if sample set is in billions
 - We may fit a training set with billions of examples using updates computed on only a hundred examples

Regularized Least Squares

- As model complexity increases, e.g., degree of polynomial or no.of basis functions, then it is likely that we overfit
- One way to control overfitting is not to limit complexity but to add a regularization term to the error function
- Error function to minimize takes the form

$$E(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

• where λ is the *regularization coefficient* that controls relative importance of data-dependent error $E_D(\mathbf{w})$ and regularization term $E_W(\mathbf{w})$

Simplest Regularizer is weight decay

Regularized least squares is

$$E(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

• Simple form of regularization term is

$$E_W(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

Thus total error function becomes

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(x_n) \right\}^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

- This regularizer is called weight decay
 - because in sequential learning weight values decay towards zero unless supported by data
- Also, the error function remains a quadratic function of w, so exact minimizer found in closed form

Closed-form Solution with Regularizer

Error function with quadratic regularizer is,

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(x_n) \right\}^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

- Its exact minimizer can be found in closed form
 - By setting gradient wrt w to zero and solving for w

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

This is a simple extension of the least squared solution

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

Geometric Interpretation of Regularizer

 $E(\mathbf{w})$

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(x_n) \right\}^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$

Minimization of Unregularized Error subject to constraint

 Blue: Contours of unregularized error function

Constraint region

w* is optimum value

A more general regularizer

Regularized Error

$$\frac{1}{2} \sum_{n=1}^{N} \left\{ t_{n} - \mathbf{w}^{T} \phi(\mathbf{x}_{n}) \right\}^{2} + \frac{\lambda}{2} \sum_{j=1}^{M} |w_{j}|^{q}$$

- Where q=2 corresponds to the *quadratic* regularizer q=1 is known as *lasso*
- Lasso has the property that if λ is sufficiently large some of the coefficients w_j are driven to zero leading to a sparse model in which the corresponding basis functions play no role

Contours of regularization term

$$\frac{1}{2} \sum_{n=1}^{N} \left\{ t_{n} - \mathbf{w}^{T} \phi(\mathbf{x}_{n}) \right\}^{2} + \frac{\lambda}{2} \sum_{j=1}^{M} |w_{j}|^{q}$$

• Contours of regularization term $|w_j|^q$ for values of q

Space of w_1, w_2

Any choice along the contour has the same value of w

$$\sqrt{w_1} + \sqrt{w_2} = const \qquad w_1 + w_2 = const \qquad w_1^2 + w_2^2 = const \qquad w_1^4 + w_2^4 = const$$

$$q = 0.5 \qquad q = 1 \qquad q = 2 \qquad q = 4$$
 Lasso Quadratic

Sparsity with Lasso constraint

- With q=1 and λ is sufficiently large, some of the coefficients w_i are driven to zero
- Leads to a sparse model
 - where corresponding basis functions play no role
- Origin of sparsity is illustrated here:

Quadratic solution where w_1^* and w_0^* are nonzero

Minimization with Lasso Regularizer A sparse solution with $w_1 = 0$

Regularization: Conclusion

- Regularization allows
 - complex models to be trained on small data sets
 - without severe over-fitting
- It limits model complexity
 - i.e., how many basis functions to use?
- Problem of limiting complexity is shifted to
 - one of determining suitable value of regularization coefficient

Srihari Machine Learning

Linear Regression Summary

Linear Regression with M basis functions:

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

$$\left| y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \boldsymbol{\phi}_j(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) \right| \qquad \left| \boldsymbol{\phi}_j(\mathbf{x}) = \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_j)^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_j) \right) \right|$$

Objective Function without/with regularization is

$$E_{\scriptscriptstyle D}(\mathbf{w}) = \frac{1}{2} \sum_{\scriptscriptstyle n=1}^{\scriptscriptstyle N} \left\{ t_{\scriptscriptstyle n} - \mathbf{w}^{\scriptscriptstyle T} \boldsymbol{\phi}(\mathbf{x}_{\scriptscriptstyle n}) \right\}^2$$

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2$$

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

Closed-form ML solution is:

$$\mathbf{w}_{ML} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

$$\left|\mathbf{w}_{\scriptscriptstyle ML} = (\Phi^{\scriptscriptstyle T}\Phi)^{\scriptscriptstyle -1}\Phi^{\scriptscriptstyle T}\mathbf{t}\right| \quad \left|\mathbf{w}_{\scriptscriptstyle ML} = (\lambda I + \Phi^{\scriptscriptstyle T}\Phi)^{\scriptscriptstyle -1}\Phi^{\scriptscriptstyle T}\mathbf{t}\right|$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \dots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & & & \\ \phi_0(\mathbf{x}_N) & & & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

• Gradient Descent: $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$

$$\nabla E_{n} = -\sum_{n=1}^{N} \left\{ t_{n} - \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}) \right\} \boldsymbol{\phi}(\mathbf{x}_{n})^{T}$$

$$\nabla E_n = \left[-\sum_{n=1}^N \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\} \phi(\mathbf{x}_n)^T \right] + \lambda \mathbf{w}$$

Returning to LeToR Problem

- Try:
- Several Basis Functions
- Quadratic Regularization
- Express results as E_{RMS}
 - rather than as squared error $E(\mathbf{w}^*)$ or as Error Rate with thresholded results

$$E_{RMS} = \sqrt{2E(\mathbf{w}^*)/N}$$

Multiple Outputs

- Several target variables $t = (t_1,...,t_K)$ K > 1
- Can be treated as multiple (K) independent regression problems
 - Different basis functions for each component of t
- More common solution: same set of basis functions to model all components of target vector $y(x,w)=W^T\phi(x)$
 - where y is a K-dim column vector, W is a $M \times K$ matrix of weights and $\phi(x)$ is a M-dimensional column vector with with elements $\phi_i(x)$

Solution for Multiple Outputs

- Set of observations $\mathbf{t}_1,...,\mathbf{t}_N$ are combined into a matrix T of size N x K such that the n^{th} row is given by $\mathbf{t}_n^{\mathrm{T}}$
- Combine input vectors $x_1,...,x_N$ into matrix X
- Log-likelihood function is maximized
- Solution is similar: $W_{ML} = (\Phi^T \Phi)^{-1} \Phi^T T$