THE INTERVAL TRUTH MODEL: A CULTURAL CONSENSUS MODEL FOR CONTINUOUS BOUNDED INTERVAL RESPONSES

Matthias Kloft, Björn Siepe, & Daniel Heck

Workshop of the IBS-DR working groups Non-clinical statistics and Bayes Methods, Göttingen, December 5-6, 2024

MOTIVATING EXAMPLE: PRIOR ELICITATION

- Multiple experts
- Multiple drugs
- Expert ratings of 95% CIs for the response rate of the drugs
- Aggregation into one 95% CI per drug
 - Consensus

INTERVAL RESPONSES

Dual-range slider (DRS)

INTERVAL RESPONSES

Dual-range slider (DRS)

INTERVAL RESPONSES

INTERVAL RESPONSES: APPLICATIONS

Variability of personality:

• "I am a well organized person."

Uncertainty in forecasting:

• "What will be the response rate for drug X?"

Ambiguity of verbal quantifiers:

• "What is the probability for an event that is described with the verbal quantifier **seldom**?"

TOPICS OF THE TALK

What is an appropriate link function for interval responses?

Smithson & Broomell (2024)

Application: consensus model

Kloft et al. (2024, in preparation)

A LINK FUNCTION FOR INTERVAL RESPONSES

Smithson & Broomell (2024)

WHY DO WE NEED A LINK FUNCTION?

Bounded Data

- Skew
- Dependencies between Location and Width

Aim

- Bivariate normal space for modeling
- Interpretable dimensions:
 - Location
 - Width

COMPOSITIONAL DATA

Components must sum to one: simplex

COMPOSITIONAL DATA

Components must sum to one: simplex

Unbounded **Location**:
$$\log \left(\frac{y^{(1)}}{y^{(3)}} \right)$$

Compares outer components

Unbounded **Location**: $\log \left(\frac{y^{(1)}}{y^{(3)}} \right)$

$$\mathbf{y} = [.33, .33, .33]$$

$$\log\left(\frac{.33}{.33}\right) = \log(1) = 0$$

Unbounded Width:
$$\log \left(\frac{y^{(2)}}{\sqrt{y^{(1)} \times y^{(3)}}} \right)$$

Compares interval width to geometric mean of outer components

Unbounded Width: $\log \left(\frac{y^{(2)}}{\sqrt{y^{(1)} \times y^{(3)}}} \right)$

$$\mathbf{y} = [.33, .33, .33]$$

Unbounded Width:
$$log\left(\frac{y^{(2)}}{\sqrt{y^{(1)}\times y^{(3)}}}\right)$$

$$\mathbf{y} = [.33, .33, .33]$$

relates to the origin of the unbounded space

ISOMETRIC LOG-RATIO TRANSFORMATION

Smithson & Broomel (2024)

$$\mathbf{z} = \begin{pmatrix} z^{loc} \\ z^{wid} \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{1}{2}} \log \left(\frac{y^{(1)}}{y^{(3)}} \right) \\ \sqrt{\frac{2}{3}} \log \left(\frac{y^{(2)}}{\sqrt{y^{(1)} \times y^{(3)}}} \right) \end{pmatrix}$$

DATA EXAMPLE

Bivariate Normal

DATA EXAMPLE

DATA EXAMPLE

More suitable for models using a normal distribution

APPLICATION: CONSENSUS MODEL

Kloft et al. (2024, in preparation)

CONSENSUS MODELS

Setup:

- Multiple items,
 - e.g., different drugs for which we need ratings of 95% prior CIs
- Multiple experts / raters

Aim:

- Estimate averaged intervals
- A rater's influence is weighted by their expertise, i.e., consistency

INTERVAL TRUTH MODEL: OVERVIEW

 Extension of a univarite logit-normal model (Anders et al., 2014)

- ➤ Bivariate logit-normal model
 - Link function: isometric log-ratio (ILR)

$$ILR(\mathbf{z}_{ij}) \sim BVN(\boldsymbol{\mu}_{ij}, \boldsymbol{\Sigma}_{ij})$$

Implementation in Stan

ASSUMPTIONS & PREREQUISITES

Multiple raters

Multiple interval ratings per rater

 True latent consensus interval per item for the group of raters

 Raters make a latent appraisal of the true consensus

ASSUMPTIONS & PREREQUISITES

Variance in the level of expertise of raters

 Expertise can be estimated based on consistency of ratings in relation to the latent consensus intervals

- Expertise can be used to weight ratings in the aggregation of responses
 - Joint estimation of expertise and latent consensus

ASSUMPTIONS & PREREQUISITES

 Rater Biases further distort the latent appraisal before we arrive at the observed ratings

MODEL MECHANICS: LATENT APPRAISAL

 Latent appraisal: latent consensus plus some error

- Error / Precision based on:
 - Proficiency of the rater
 - Discernibility of the item

- Bivariate normal distribution for appraisals
 - 2D: location and width
 - Expected value: latent consensus

Rater i on item j

$$\begin{pmatrix} A_{ij}^{loc} \\ A_{ij}^{wid} \end{pmatrix} = \begin{pmatrix} T_{j}^{loc} \\ T_{j}^{wid} \end{pmatrix} + \begin{pmatrix} \epsilon_{ij}^{loc} \\ \epsilon_{ij}^{wid} \end{pmatrix}$$

$$\begin{pmatrix} \epsilon_{ij}^{loc} \\ \epsilon_{ij}^{wid} \end{pmatrix} \sim BVN \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{\Sigma}_{ij} \end{pmatrix}$$

Latent Appraisal

$$\begin{pmatrix} A_{ij}^{loc} \\ A_{ij}^{wid} \end{pmatrix} = \begin{pmatrix} T_{j}^{loc} \\ T_{j}^{wid} \end{pmatrix} + \begin{pmatrix} \epsilon_{ij}^{loc} \\ \epsilon_{ij}^{wid} \end{pmatrix}$$

$$\begin{pmatrix} \epsilon_{ij}^{loc} \\ \epsilon_{ij}^{wid} \end{pmatrix} \sim BVN \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{\Sigma}_{ij} \end{pmatrix}$$

Latent True Consensus

$$\begin{pmatrix} A_{ij}^{loc} \\ A_{ij}^{wid} \end{pmatrix} = \begin{pmatrix} T_j^{loc} \\ T_j^{wid} \end{pmatrix} + \begin{pmatrix} \epsilon_{ij}^{loc} \\ \epsilon_{ij}^{wid} \end{pmatrix}$$

$$\begin{pmatrix} \epsilon_{ij}^{loc} \\ \epsilon_{ij}^{wid} \end{pmatrix} \sim BVN \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{\Sigma}_{ij} \end{pmatrix}$$

Error / Precision of appraisal

$$egin{pmatrix} A_{ij}^{
m loc} \ A_{ij}^{
m wid} \end{pmatrix} = egin{pmatrix} T_{
m j}^{
m loc} \ T_{
m j}^{
m wid} \end{pmatrix} + egin{pmatrix} \epsilon_{ij}^{loc} \ \epsilon_{ij}^{
m wid} \end{pmatrix}$$

$$\begin{pmatrix} \epsilon_{ij}^{loc} \\ \epsilon_{ij}^{wid} \end{pmatrix} \sim BVN \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{\Sigma}_{ij} \end{pmatrix}$$

Error / Precision of appraisal

$$\mathbf{\Sigma}_{ij} = egin{pmatrix} \left(\left(rac{1}{E_i^{loc}} rac{1}{\lambda_j^{loc}}
ight)^2 &
ho_{ij} \\
ho_{ij} & \left(rac{1}{E_i^{wid}} rac{1}{\lambda_j^{wid}}
ight)^2 \end{pmatrix}$$

$$\rho_{ij} = \sqrt{\omega_j \left(\frac{1}{E_i^{loc}} \frac{1}{\lambda_j^{loc}}\right)^2 \left(\frac{1}{E_i^{wid}} \frac{1}{\lambda_j^{wid}}\right)^2}$$

Rater proficiency to detect consensus

$$\mathbf{\Sigma}_{ij} = \begin{pmatrix} \left(\frac{1}{E_i^{loc}} \frac{1}{\lambda_j^{loc}}\right)^2 & \rho_{ij} \\ \rho_{ij} & \left(\frac{1}{E_i^{wid}} \frac{1}{\lambda_j^{wid}}\right)^2 \end{pmatrix}$$

$$\rho_{ij} = \sqrt{\omega_j \left(\frac{1}{E_i^{loc}} \frac{1}{\lambda_j^{loc}}\right)^2 \left(\frac{1}{E_i^{wid}} \frac{1}{\lambda_j^{wid}}\right)^2}$$

Item discernibility / difficulty

$$oldsymbol{\Sigma}_{ij} = egin{pmatrix} \left(rac{1}{E_i^{loc}} rac{1}{\lambda_j^{loc}}
ight)^2 &
ho_{ij} \
ho_{ij} & \left(rac{1}{E_i^{wid}} rac{1}{\lambda_j^{wid}}
ight)^2 \end{pmatrix}$$

$$\rho_{ij} = \sqrt{\omega_j \left(\frac{1}{E_i^{loc}} \frac{1}{\lambda_j^{loc}}\right)^2 \left(\frac{1}{E_i^{wid}} \frac{1}{\lambda_j^{wid}}\right)^2}$$

Residual covariance between location and width

$$oldsymbol{\Sigma}_{ij} = egin{pmatrix} \left(rac{1}{E_i^{loc}} rac{1}{\lambda_j^{loc}}
ight)^2 &
ho_{ij} \
ho_{ij} & \left(rac{1}{E_i^{wid}} rac{1}{\lambda_j^{wid}}
ight)^2 \end{pmatrix}$$

$$\rho_{ij} = \sqrt{\omega_j \left(\frac{1}{E_i^{loc}} \frac{1}{\lambda_j^{loc}}\right)^2 \left(\frac{1}{E_i^{wid}} \frac{1}{\lambda_j^{wid}}\right)^2}$$

Residual correlation between location and width

$$\mathbf{\Sigma}_{ij} = \begin{pmatrix} \left(\frac{1}{E_i^{loc}} \frac{1}{\lambda_j^{loc}}\right)^2 & \rho_{ij} \\ \rho_{ij} & \left(\frac{1}{E_i^{wid}} \frac{1}{\lambda_j^{wid}}\right)^2 \end{pmatrix}$$

$$\rho_{ij} = \sqrt{\omega_j \left(\frac{1}{E_i^{loc}} \frac{1}{\lambda_j^{loc}}\right)^2 \left(\frac{1}{E_i^{wid}} \frac{1}{\lambda_j^{wid}}\right)^2}$$

MODEL MECHANICS: BIASES

- Latent appraisal is scaled and shifted by the rater's biases
 - These affect all responses of a particular rater
- Shifting Biases
 - Interval locations shift to the left / right on the response scale
 - Interval widths get wider / narrower
- Scaling Bias (extremity bias):
 - Pushes / pulls the location outwards / inwards with respect to the response scale's center

A rater's biases shift and scale the latent appraisal

$$ILR(\mathbf{y}_{ij}) = \left(A_{ij}^{loc}a_i^{loc} + b_i^{loc}, A_{ij}^{wid} + b_i^{wid}\right)^{\top}$$

Shifting biases (like a random intercept)

$$ILR(\mathbf{y}_{ij}) = \left(A_{ij}^{loc}a_i^{loc} + b_i^{loc}, A_{ij}^{wid} + b_i^{wid}\right)^{T}$$

Scaling bias (extremety bias)

$$ILR(\mathbf{y}_{ij}) = \left(A_{ij}^{loc}a_i^{loc} + b_i^{loc}, A_{ij}^{wid} + b_i^{wid}\right)^{\top}$$

High proficiency, location

Low proficiency, location

High proficiency, location

Low proficiency, location

High proficiency, width

Low proficiency, width

High proficiency, width

Low proficiency, width

No biases,
High
proficiencies

Positive
location
shifting
bias

No biases,
High
proficiencies

Positive
location
shifting
bias

MODEL MECHANICS: BIASES

No biases,
High
proficiencies

Positive width shifting bias

No biases, High proficiencies

Positive width shifting bias

No biases,
High
proficiencies

Positive
location
scaling
bias

No biases, High proficiencies

Positive
location
scaling
bias

EMPIRICAL EXAMPLE: VERBAL QUANTIFIERS

"50-50 Chance"

- Control item in the study
- Should be centered on x = 50 and narrow

EMPIRICAL EXAMPLE: VERBAL QUANTIFIERS

Mean of logit-transformed location and width

Estimated consensus interval

TAKE-HOME POINTS

 Isometric log-ratio transformation makes interval responses more suitable for modeling frameworks using normal distributions

 We can estimate weighted consensus intervals to smooth out extreme ratings

THANKS TO:

• Prof. Dr. Daniel W. Heck

Björn Siepe

Contact:

kloft@uni-marburg.de

Slides:

https://github.com/matthiaskloft/

REFERENCES

- Anders, R., Oravecz, Z., & Batchelder, W. H. (2014). Cultural consensus theory for continuous responses: A latent appraisal model for information pooling. *Journal of Mathematical Psychology*, 61, 1–13. https://doi.org/10.1016/j.jmp.2014.06.001
- **Kloft, M.**, & Heck, D. W. (2024). Discriminant validity of interval response formats: Investigating the dimensional structure of interval widths. *Educational and Psychological Measurement*, 0 (0). https://doi.org/10.1177/00131644241283400
- Kloft, M., Siepe, B.S., & Heck, D.W. (2024). The interval truth model: A consensus model for continuous bounded interval responses. PsyArXiv. https://doi.org/10.31234/osf.io/dzvw2
- Smithson, M., & Broomell, S. B. (2024). Compositional data analysis tutorial: Psychological Methods. *Psychological Methods*, *29* (2), 362–378. https://doi.org/10.1037/met0000464

ADDITIONAL SLIDES

Model Estimation

Concept:

 Specify **priors** (i.e. sample parameters) on the original **bounded** scale

 Transform the sampled parameters to the unbounded space to insert them in the bivariate normal model

Weakly informative prior on marginal distribution of interval width:

$$T_j^{wid(0,1)} \sim \text{Beta}(1.2,3)$$

Uninformative prior on distribution of location shift, conditional on a particular width:

$$s_j \sim \text{Beta}(1, 1)$$

$$T_j^{loc(0,1)} = s_j \left(1 - T_j^{wid(0,1)} \right) + \frac{T_j^{wid(0,1)}}{2}$$

Transform the bounded intervals to the unbounded space:

$$\begin{pmatrix} T_{j}^{loc} \\ T_{j}^{wid} \end{pmatrix} = ILR \begin{pmatrix} T_{j}^{loc(0,1)} - \frac{T_{j}^{wid(0,1)}}{2} \\ T_{j}^{wid(0,1)} + \frac{T_{j}^{wid(0,1)}}{2} \end{pmatrix}$$