# SISTEM OPERASI

PERTEMUAN VI : PENJADWALAN PROSES



# SIKLUS CPU-I/O BURST



### JENIS PENJADWALAN

- ❖ Preempted → Stategi penjadwalan yang MEMPERBOLEHKAN untuk menghentikan sementara proses yang sedang dieksekusi.
  - ❖ Running → Ready
  - ♦ Waiting → Ready
- ❖ Non-Preempted → Stategi penjadwalan yang TIDAK MEMPERBOLEHKAN untuk menghentikan sementara proses yang sedang dieksekusi
  - ❖ Running → Waiting
  - Terminated

### ISTILAH DALAM PENJADWALAN

- ❖ Throughput → Jumlah proses yang dapat selesai dieksekusi dalam satu waktu.
- ❖ Turn around time → Waktu yang dibutuhkan suatu proses dari status ready sampai selesai.
- ❖ Waiting time → Waktu yang terhitung sejak berada dalam status ready hingga akan dieksekusi.
- ❖ Response time → Waktu dari response sistem kepada user.
- ❖ Burst time → Waktu yang dibutuhkan untuk mengeksekusi suatu proses.

## KRITERIA PENJADWALAN

- Memaksimalkan kinerja CPU
- Memaksimalkan nilai throughput
- Meminimalisasi nilai turn around time
- Meminimalisasi nilai waiting time
- Meminimalisasi nilai response time

## FIRST-COME, FIRST-SERVED

- Algoritma ini akan mendahulukan proses yang lebih dulu datang.
- Bersifat non-preemptive.
- Convoy effect, kondisi dimana CPU baru akan mendealokasi sumber dayanya jika satu proses telah terselesaikan.
- Kelemahannya adalah memiliki rata-rata waiting time yang relatif besar.

Hitunglah waiting time, avg.waiting time, Turn around time, dan avg. turn around time

| PROSES | BRUST TIME | WAKTU KEDATANGAN |
|--------|------------|------------------|
| P1     | 24         | 0                |
| P2     | 3          | 1                |
| P3     | 3          | 5                |

|   | P1 |    | P2 | Р3 |
|---|----|----|----|----|
| 0 |    | 24 | 27 | 30 |

Waiting Time 
$$\rightarrow P1 = 0$$
;  $P2 = 24 - 1 = 23$ ;  $P3 = 27 - 5 = 22$ 

Average Waiting Time = 
$$\frac{0 + 23 + 22}{3} = 15$$

Turn Around Time 
$$\rightarrow P1 = 24$$
;  $P2 = 27 - 1 = 26$ ;  $P3 = 30 - 5 = 25$ 

Average Turn Around Time 
$$=$$
  $\frac{24+26+25}{3}$   $=$  25

Hitunglah waiting time, avg.waiting time, Turn around time, dan avg. turn around time

| PROSES | BRUST TIME | WAKTU KEDATANGAN |
|--------|------------|------------------|
| P1     | 24         | 5                |
| P2     | 3          | 1                |
| P3     | 3          | 0                |



Waiting Time 
$$\rightarrow P1 = 6 - 5 = 1$$
; P2 = 3 - 1 = 2; P3 = 0

Average Waiting Time 
$$=\frac{1+1+0}{3}=0.66$$

Turn Around Time 
$$\rightarrow P1 = 30 - 5 = 25$$
;  $P2 = 6 - 1 = 5$ ;  $P3 = 3 - 0 = 3$ 

Average Turn Around Time 
$$=$$
  $\frac{25+5+3}{3}$   $=$  11

| FCFS I            | FCFS II           |  |
|-------------------|-------------------|--|
| Avg. Waiting Time | Avg. Waiting Time |  |
| 15                | 0.66              |  |

Jadi dapat dikatakan bahwa Algoritma FCFS lebih optimal jika pada kondisi dimana proses dgn burst pendek dieksekusi terlebih dahulu.

## ROUND-ROBIN SCHEDULLING

- Bersifat FCFS.
- ❖ Memiliki Time Quantum → Porsi waktu yang diberikan kepada setiap proses.
- Tak ada konsep prioritas.
- Bersifat preemptive.
- Kelemahannya adalah jika time quantum terlalu besar, maka sama dengan Algoritma FCFS, jika terlalu kecil maka semakin banyak peralihan proses sehingga banyak waktu terbuang.

## CASE EXAMPLE (ROUND ROBIN)

Hitunglah waiting time, avg. waiting time, Turn around time, dan avg. turn around time

| PROSES | BRUST TIME | WAKTU<br>KEDATANGAN | Time Quantum |
|--------|------------|---------------------|--------------|
| P1     | 9          | 0                   | 3            |
| P2     | 6          | 1                   |              |

## CASE EXAMPLE (ROUND ROBIN)

|   | P1 | P2 | P1 | P2 | P1 |
|---|----|----|----|----|----|
| 0 | 3  | 6  | 9  | 12 | 15 |

Waiting Time 
$$\rightarrow P1 = 0 + 3 + 3 = 6$$
;  $P2 = (3 - 1) + 3 = 5$ 

Average Waiting Time 
$$=\frac{6+5}{2}=5,5$$

Turn Around Time 
$$\rightarrow P1 = 15$$
; P2 = 12 - 1 = 11

Average Turn Around Time 
$$=\frac{15+11}{2}=13$$

## PRIORITY SCHEDULLING

- Memberikan skala prioritas kepada tiap proses.
- Proses yang mendapat prioritas terbesar akan didahulukan.
- Dapat bersifat preemptive maupun non-preemptive.
- \* Kelemahannya adalah proses dengan prioritas kecil akan mendapat jatah CPU terakhir. Hal ini dapat diatasi dengan aging.
- ❖ Aging → Semakin lama menunggu, prioritas semakin tinggi.

## CASE EXAMPLE (PRIORITY)

Hitunglah waiting time, avg.waiting time, Turn around time, dan avg. turn around time berdasarkan preemptive dan non-preemptive.

| PROSES | BRUST TIME | WAKTU<br>KEDATANGAN | PRIORITAS |
|--------|------------|---------------------|-----------|
| P1     | 9          | 0                   | 3         |
| P2     | 6          | 1                   | 2         |
| P3     | 3          | 2                   | 1         |

## CASE EXAMPLE (PRIORITY PREEMPTIVE)

|   | P1 | P2 | Р3 | P2 | P1 |
|---|----|----|----|----|----|
| 0 | 1  | 2  | 5  | 10 | 18 |

Waiting Time 
$$\rightarrow P1 = 0 + (10 - 1) = 9$$
;  $P2 = (1 - 1) + (5 - 2) = 3$ ;  $P3 = (2 - 2) = 0$ 

Average Waiting Time 
$$=\frac{9+3+0}{3}=4$$

Turn Around Time 
$$\rightarrow P1 = 18$$
; P2 = 10 - 1 = 9; P3 = 5 - 2 = 3

Average Turn Around Time 
$$=$$
  $\frac{18+9+3}{3}=10$ 

## CASE EXAMPLE (PRIORITY NON-PREEMPTIVE)

| P1 |   | Р3 | P2 |
|----|---|----|----|
| 0  | 9 | 12 | 18 |

Waiting Time 
$$\rightarrow P1 = 0$$
; P2 = (12 - 1) = 11; P3 = (9 - 2) = 7

Average Waiting Time 
$$=\frac{0+11+7}{3}=6$$

Turn Around Time 
$$\rightarrow P1 = 9$$
; P2 = 18 - 1 = 17; P3 = 12 - 2 = 10

Average Turn Around Time = 
$$\frac{9+17+10}{3} = 12$$

## SHORTEST-JOB FIRST SCHEDULLING

- Eksekusi berdasarkan panjang CPU burst berikutnya (lebih tepatnya shortest next CPU burst).
- Avg. Waiting time relatif kecil, sehingga layak disebut optimal.
- Dapat bersifat preemptive atau non-preemptive.
  - ❖ Preemptive → jika ada proses datang dengan CPU burst yang lebih kecil daripada yang sedang dieksekusi, maka proses tersebut akan menggantikan proses yang sedang dieksekusi.
- Kelemahan algoritma ini yaitu kita tak pernah tahu secara pasti panjang CPU burst proses berikutnya.

# CASE EXAMPLE (SHORTEST-JOB FIRST)

Hitunglah waiting time, avg. waiting time, Turn around time, dan avg. turn around time berdasarkan preemptive dan non-preemptive.

| PROSES | BRUST TIME | WAKTU KEDATANGAN |
|--------|------------|------------------|
| P1     | 9          | О                |
| P2     | 6          | 1                |
| P3     | 3          | 2                |

# CASE EXAMPLE (SHORTEST-JOB FIRST PREEMPTIVE)

| P | 21 | P2 | P3 | P2 | P1 |
|---|----|----|----|----|----|
| 0 | 1  | 2  | 5  | 10 | 18 |

Waiting Time 
$$\rightarrow P1 = 0 + (10 - 1) = 9$$
;  $P2 = (1 - 1) + (5 - 2) = 3$ ;  $P3 = (2 - 2) = 0$ 

Average Waiting Time 
$$=$$
  $\frac{9+3+0}{3}$   $=$   $\frac{4}{3}$ 

Turn Around Time 
$$\rightarrow P1 = 18$$
; P2 = 10 - 1 = 9; P3 = 5 - 2 = 3

Average Turn Around Time 
$$=$$
  $\frac{18+9+3}{3} = 10$ 

# CASE EXAMPLE (SHORTEST-JOB FIRST NON-PREEMPTIVE)



Waiting Time 
$$\rightarrow P1 = 0$$
; P2 = (12 - 1) = 11; P3 = (9 - 2) = 7

Average Waiting Time = 
$$\frac{0+11+7}{3}$$
 = 6

Turn Around Time 
$$\rightarrow P1 = 9$$
; P2 = 18 - 1 = 17; P3 = 12 - 2 = 10

Average Turn Around Time 
$$=$$
  $\frac{9+17+10}{3}$   $=$  12

## LATIHAN (ROUND ROBIN)

Hitunglah waiting time, avg. waiting time, Turn around time, dan avg. turn around time

| PROSES | BRUST TIME | WKT<br>KEDATANGAN | Time    |
|--------|------------|-------------------|---------|
| P1     | 9          | 0                 | Quantum |
| P2     | 5          | 1                 | 5       |
| P3     | 6          | 3                 |         |

## LATIHAN (PRIORITY)

Hitunglah waiting time, avg. waiting time, Turn around time, dan avg. turn around time berdasarkan preemptive dan non-preemptive.

| PROSES | BRUST TIME | WKT<br>KEDATANGAN | PRIORITY |
|--------|------------|-------------------|----------|
| P1     | 9          | 0                 | 3        |
| P2     | 6          | 1                 | 2        |
| P3     | 3          | 2                 | 1        |
| P4     | 5          | 4                 | 1        |

## LATIHAN (SHORTEST-JOB FIRST)

Hitunglah waiting time, avg. waiting time, Turn around time, dan avg. turn around time berdasarkan preemptive dan non-preemptive.

| PROSES | BRUST TIME | WKT<br>KEDATANGAN |
|--------|------------|-------------------|
| P1     | 9          | 0                 |
| P2     | 6          | 1                 |
| P3     | 3          | 2                 |
| P4     | 5          | 4                 |