Problem 5 Suppose $\infty < a \le b < \infty$. Show that the indicator function $1_{(a,b]}(x)$ can be approximated by bounded and continuous functions; that is, show that there exist a sequence of contious functions $0 \le f_n \le 1$ such that $f_n \to 1_{(a,b]}$ pointwise.

Proof.

Let

$$f_n(x) = n(x-a)1_{(a,a+1/n]}(x) + 1_{(a+1/n,b]}(x) - n(x-b-1/n) (b,b+1/n] (x)$$

$$= \begin{cases} n(x-a), & \text{if } x \in (a,a+1/n], \\ 1, & \text{if } x \in (a+1/n,b], \\ -n(x-b-1/n), & \text{if } x \in (b,b+1/n]. \end{cases}$$

Then we can find $0 \le f_n \le 1$ given $\infty < a \le b < \infty$.

 $f_n((a+1/n)^-) = 1 = f_n((a+1/n)^+) = 1 = f_n(a+1/n)$ and $f_n(b^-) = 1 = f_n(b^+) = 1 = f_n(b)$.

Namely, f is continuous at point a + 1/n and b.

It is obvious that f is also continuous on other points of (a, b].

Thus, f_n is continuous on (a, b].

Let $x_0 \in (a, b]$. Then there exists $N \in \mathbb{N}$ such that $a + 1/n < x_0 \le b$ as $n \ge N$.

So when n > N, $f_n(x_0) = 1$ since $x_0 \in (a + 1/n, b]$ as $n \ge N$.

So $|f_n(x_0) - 1_{(a,b]}(x_0)| = 0$ as $n \ge N$.

Hence, $f_n \to 1_{(a,b]}$ pointwise.