Computational and Applied Mathematics

Solve every problem.

Problem 1. Consider $\{p_i(x)\}_{i=0}^{\infty}$, a family of orthogonal polynomials associated with the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)w(x) dx, \quad w(x) > 0 \quad \text{for } x \in (-1, 1),$$

where $p_i(x)$ is a polynomial of degree i. Let x_0, x_1, \ldots, x_n be the roots of $p_{n+1}(x)$. Construct an orthonormal basis in the subspace of the polynomials of degree no more than n such that, for any polynomial in this subspace, the coefficients of its expansion into the basis are equal to the scaled values of this polynomial at the nodes x_0, x_1, \ldots, x_n .

Problem 2. Consider a 2D fixed point iteration of the form

$$x_{k+1} = f(x_k, y_k), \ y_{k+1} = g(x_k, y_k).$$
 (1)

Assume that the vector-valued function $\vec{H}(x, y) = (f(x, y), g(x, y))^T$ is continuously-differentiable, and the infinity norm of the Jacobian matrix is less than 1 at a unique fixed point (x_{∞}, y_{∞}) .

Now consider a new iteration:

$$x_{k+1} = f(x_k, y_k), \quad y_{k+1} = g(x_{k+1}, y_k).$$
 (2)

Prove that iteration (2) is convergent, to the same fixed point as iteration (1), for the initial conditions sufficiently close to the fixed point.

Problem 3. Let $A \in \mathbb{R}^{m \times m}$ be a matrix with entries a_{ij} which satisfy

$$a_{ii} \ge \sum_{i \ne i} |a_{ij}| + 2, \quad a_{ii} \le 7.$$

- (a) Prove that A^{-1} exists.
- **(b)** Prove that $||A||_{\infty}$ is the *max row sum* (of absolute values) of A.
- (c) Find both a lower and upper bound for $||A||_{\infty}$.
- (d) Now assume $A = A^T$. Find bounds for $||A||_2$ and $||A^{-1}||_2$.

Problem 4. Consider a system of ODE initial value problems of the form:

$$\frac{d}{dt}u = f(u), \quad u(0) = u_0.$$

Assume that f(u) has the property that the forward Euler (FE) method:

$$U^{n+1} = U^n + k f(U^n),$$

satisfies

$$\|U^{n+1}\| \leq \|U^n\|$$

for some norm $\|\cdot\|$ and for all time-steps k, $0 < k \le k_{FE}$. Now consider the 2-stage Runge-Kutta method:

$$U^{(1)} = U^n + k\beta_{10}f(U^n),$$

$$U^{n+1} = \{\alpha_{20}U^n + k\beta_{20}f(U^n)\} + \{\alpha_{21}U^{(1)} + k\beta_{21}f(U^{(1)})\}$$

where

$$\beta_{10} \ge 0$$
, $\beta_{20} \ge 0$, $\beta_{21} \ge 0$, $\alpha_{20} \ge 0$, $\alpha_{21} \ge 0$, $\alpha_{20} + \alpha_{21} = 1$.

(a) Prove that the above 2-stage Runge-Kutta method also satisfies the inequality:

$$||U^{n+1}|| \le ||U^n||$$

under some appropriate time-step restriction: $0 \le k \le k^*$, where you need to explicitly determine k^* in terms of k_{FE} .

(b) Explicitly determine the coefficients:

$$\beta_{10}$$
, β_{20} , β_{21} , α_{20} , α_{21} ,

so that

- (i) The method is second-order accurate; and
- (ii) The maximum allowed time-step, k^* , is as large as possible.

Problem 5. Construct a third-order accurate Lax-Wendroff-type method for $u_t + au_x = 0$ (a > 0 is a constant) in the following way:

- (a) Expand u(t + k, x) in a Taylor series and keep the first four terms. Replace all time derivatives by spatial derivatives using the equation.
 - Construct a cubic polynomial passing through the points $U_{i-2}^n, U_{i-1}^n, U_i^n, U_{i+1}^n$.
 - Approximate the spatial derivatives in the Taylor series by the exact derivatives of the above constructed cubic polynomial.
- **(b)** Verify that the truncation error is $O(k^3)$ if h = O(k).

Problem 6. Suppose you have \$60K to invest and there are 3 investment options available. You must invest in multiples of \$10K. If d_i dollars are invested in investment i then you receive a net value (as the profit) of $r_i(d_i)$ dollars. For $d_i > 0$ we have

$$r_1(d_1) = (7d_1 + 2) \times 10,$$

 $r_2(d_2) = (3d_2 + 7) \times 10,$
 $r_3(d_3) = (4d_3 + 5) \times 10,$

and $d_1(0) = d_2(0) = d_3(0)$. All are measured in \$10K dollars. The objective is to maximize the net value of your

investments. This can be formulated as a linear programming problem:

$$\begin{aligned} \max_{d_1,d_2,d_3} r_1(d_1) + r_2(d_2) + r_3(d_3), \\ \text{such that} \quad d_1 + d_2 + d_3 &\leq 6, \\ d_i &\geq 0 \quad i = 1,2,3 \quad \text{are integers.} \end{aligned}$$