

Eine Sensorschaltung für die Temperaturmessung mit einem PT100-Platinwiderstand ist zu entwerfen. Die Schaltung soll über 5V versorgt und an einen Mikrocontroller mit ADC angeschlossen werden. Verschiedene Schaltungsvarianten werden untersucht.

Der Widerstand des PT100 (Klasse B) kann über die folgende Gleichung berechnet werden:

$$R_T = R_0 + R_0 \cdot \alpha_{Pt} \cdot \vartheta$$

მ in °C	R_T in Ω (berechnet)	
-25		
0		
25		
50		
100		

Sensor Klasse B
$$R_0 = 100\Omega \text{ bei } 0^{\circ}\text{C}$$

$$\alpha_{Pt} = 3,85 \cdot 10^{-3} \text{ } 1/\text{K}$$

Erstellen Sie die abgebildete einfache Sensorschaltung in Multisim oder öffnen Sie die Schaltung in MultisimLive: https://www.multisim.com/content/ztNrqoLsVMBNv6kWRXQJ3Y/1 1 pt100-sensor spannungsteiler/open/

Arbeitsauftrag 1:

- 1. Messen Sie U_t für -25°C, 0°C, 25°C, 50°C und 100°C. Tragen Sie die Messwerte in eine Excel-Tabelle ein.
- 2. Erstellen Sie eine Kennlinie in Excel $U_t = f(R_T)$. Beurteilen Sie die Linearität der Schaltung.
- 3. Der Messstrom I_m im PT100 sollte, aufgrund der Eigenerwärmung, 1mA nicht übersteigen. Berechnen Sie den Widerstand R_v so, dass diese Bedingung im gesamten Messbereich erfüllt ist.

Es gilt:
$$I_m = \frac{U_h}{R_V + R_{Tmin}}$$

4. Wiederholen Sie 1. und beurteilen Sie wieder die Linearität der Schaltung. Überprüfen Sie auch, ob der Strom nicht zu groß wird. Vergleichen Sie den Ausgangsspannungsbereich der beiden Schaltungen.

Dokumentieren Sie alle Messwerte, Kennlinien und Erkenntnisse in Ihrem Versuchsprotokoll.

Sensorschaltungen mit OPV

Name: Rahm
Datum: 17.02.2022
1_1_PT100_Sensor_mit_Spar

Einfacher Spannungsteiler

1.1.2

Lösung

1. Messtabelle

	Α	В	С	D
1	R_V in Ω	R_0 in Ω	α_{PT} in 1/K	
2	100	100	3,85E-03	
3				
4	T in °C	R_T in Ω	U _⊤ in mV	I _m in mA
5	-24	90,8	2,379	26,21
6	0	100,0	2,5	25
7	25	109,6	2,6145	23,85
8	50	119,3	2,72	22,8
9	99	138,1	2,9	21

2. Kennlinie und Linearitätsfehler

Sehr großer Linearitätsfehler, bis zu +8°C. Schaltung ist für genaue Temperaturmessung nicht geeignet.

3. Dimensionierung von Rv

$$I_{m} = \frac{u_{H}}{R_{V} + R_{Tmin}}$$

$$R_{V} = \frac{U_{H}}{I_{m}} - R_{Thin} = \frac{5V}{1mA} - 90,76\Omega$$

4. Da 4,7k < 4,91k, ist der Strom I_m geringfügig größer als 1mA (1,033 mA ... 1,044 mA). Die Kennlinie ist nun sehr linear, weil I_m bei Temperaturänderung näherungsweise konstant ist und die Spannung U_t jetzt nur noch von R_T abhängt.

R

Problem:

Die Empfindlichkeit der Temperaturmessung ist gegenüber Variante 1 mit R_V = 100 Ω sehr viel geringer. Variante1: ΔU_T = 520mV, Variante2: ΔU_T = 47mV