La Macchina di Turing: computazione

Oggi

- Formalizzare il concetto di computazione di una MdT, di parola accettata e di linguaggio riconosciuto
- Obiettivo: definire il concetto di «procedura effettiva», «algoritmo»
- Partendo dal modello semplice di DFA

ACCEPT

Una MdT

Una Turing Machine è

- una macchina a stati finiti con un nastro semi-infinito
- ▶ La testina può muoversi in entrambe le direzioni.
- ▶ Può leggere, scrivere in ogni cella del nastro
- Quando la MdT raggiunge uno stato accept/reject allora accetta/rifiuta immediatamente.

Una MdT

Il contenuto significativo del nastro è una stringa $w \in \Gamma^*$, con la convenzione che il suo ultimo carattere (se $w \neq \epsilon$) non sia blank.

La stringa w PUO' contenere blank al suo interno.

A volte nel progetto di una MdT si definiscono delle transizioni per scrivere un carattere speciale nella prima cella del nastro, per meglio individuarla.

Stati e Transizioni

Cancella ripetutamente: prima occorrenza di (a) e ultima di (b) se la stringa era del tipo a^nb^n , non rimangono simboli Cinque passi

Diagramma di stato

- 1. Se leggi _, vai a 5. Se leggi a, scrivi _ e vai a 2.
- 2. Spostati a destra (R) di tutti a e b. Al primo _, muovi a sinistra (L) e vai a 3
- 3. se leggi b, scrivi _ e vai a 4.
- 4. Spostati a sinistra (L) di tutti a e b. Leggendo _, muovi R e vai a 1.
- 5. Accept.

Le transizioni non indicate portano in uno stato di Reject (per esempio se in 1. leggi b).

Puntini, puntini ...

Descrizione formale MdT

Una Macchina di Turing è una settupla $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject})$

- ► Insieme Stati Q
- ▶ Alfabeto di lavoro Σ ($_ \notin \Sigma$)
- **►** Γ: Alfabeto del nastro ($_{-}$ ∈ Γ, $_{-}$ ⊂ Γ)
- ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: funzione transizione
- $ightharpoonup q_0$: stato iniziale
- q_{accept}: stato accept
- q_{reject}: stato reject

Una Macchina di Turing è una settupla $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject})$

- ► Insieme Stati Q
- ▶ Alfabeto di lavoro Σ ($_ \notin \Sigma$)
- **►** Γ: Alfabeto del nastro ($_$ ∈ Γ, Σ \subset Γ)
- ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: funzione transizione
- $ightharpoonup q_0$: stato iniziale
- q_{accept}: stato accept
- ▶ q_{reject}: stato reject

Un Automa Finito (DFA) è una quintupla $(Q, \Sigma, \delta, q_0, F)$

- ♦ Insieme Stati Q
- **♦** Alfabeto ∑
- lacktriangle $\delta: Q \times \Sigma \rightarrow Q:$ funzione di transizione
- ♦ $q_0 \in Q$: stato iniziale
- lacktriangle F \subseteq Q : stati **finali**

Caccia alle differenze!

Un passo della computazione del DFA

$$\delta (q_1, b) = q_2$$

Ua computazione del DFA

E' sufficiente elencare gli stati: q_0 , q_1 , q_2 , q_3 . E possiamo ricostruire tutta la computazione: il resto lo sappiamo.

Ua computazione del DFA

Dati un DFA, una stringa e una sequenza di stati possiamo capire se è una computazione valida del DFA sulla stringa.

Esempio: la sequenza q_0 , q_4 , q_2 , q_3 è una computazione valida del DFA su abb?

```
\delta(q_0, a) = q_4? dove a è la prima lettera di input
```

$$\delta(q_4, b) = q_2$$
? dove b è la seconda lettera di input

 $\delta(q_2, b) = q_3$? dove b è la successiva lettera di input

a	a	b	b	•••

Elencare gli stati: 1, 2, 2, 2, 2, 3, 4, 4, 4, 1, 2, 2, 3, 4, 1, 5

è sufficiente a definire la computazione?

Dati una MdT, una stringa e una sequenza di stati posso capire se è una computazione valida della MdT sulla stringa?

Esempio: la sequenza 1, 2, 2, 2, 3, 4, 1, 5 è una computazione valida del MdT su *ab*?

Devo tenere traccia di altre informazioni per poter verificare i passi.

Configurazione di una MdT

Occorre fare un'istantanea di stato, posizione e contenuto significativo del nastro correnti

 $a_a a a b q_2 b b$

Configurazione di una MdT

La configurazione C = u q v corrisponde a

Configurazione di una MdT

Descrizione concisa della situazione del calcolo di una MdT ad un certo istante, anche detta descrizione istantanea.

Configurazione di una MdT $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$

$$C = u q v$$

- $q \in Q$ è lo stato corrente
- $u v \in \Gamma^*$ è il contenuto significativo del nastro (senza _ finali, se $u v \neq \varepsilon$)
- La testina è posizionata sul primo simbolo di v, se $v \neq \varepsilon$, su altrimenti

Configurazione di una MdT: esempi

Qual è la configurazione corrispondente?

La configurazione corrispondente è: u q v = abaab q bb

Configurazione di una MdT: esempi

Quale situazione rappresenta la configurazione

$$u q v = a_bab q ba$$
?

Contenuto significativo del nastro è $u v = a_bab ba$

Configurazioni particolari

In una configurazione C = u q v, sia u che v possono essere ε

- Se $u = \varepsilon$, C = q v, allora la testina è posizionata sulla prima lettera di v nella prima cella del nastro (contenuto significativo nastro è ε v = v)
- Se $v = \varepsilon$, C = u q, allora la testina è posizionata sulla prima cella della porzione di nastro contenente solo _ (ricorda che uv=u è la porzione significativa del nastro, senza la coda infinita di _)
- u q è equivalente a $u q_{-}$; la parte vuota del nastro è riempita con tutti

Computazione di una MdT: passo verso sinistra

Supponiamo che $C = u a q_i b v$

Se $\delta(q_i, b) = (q_j, c, L)$ quale sarà la successiva configurazione C?

Diremo che C produce C', in simboli $C \rightarrow C'$

Computazione di una MdT: passo verso destra

Supponiamo che $C = u a q_i b v$

Se $\delta(q_i, b) = (q_j, c, R)$ quale sarà la successiva configurazione C?

Diremo che C produce C', in simboli $C \rightarrow C'$

Casi particolari

La definizione generale è più complessa perché bisogna considerare anche i casi particolari (C = qv, C = uq con u, v eventualmente uguali a ϵ).

Ad esempio q_ibv produce q_jcv se $\delta(q_i, b) = (q_j, c, L)$.

 $q_i bv$ produce $cq_i v$ se $\delta(q_i, b) = (q_i, c, R)$.

Passo di computazione

Siano C_1 , C_2 due configurazioni di una MdT M.

Se C_1 produce C_2 , scriveremo

$$C_1 \rightarrow C_2$$

La trasformazione \rightarrow di C_1 in C_2 prende il nome di **passo di computazione**.

Corrisponde a un'applicazione della funzione di transizione di M.

Esempio

$$\delta(q_0,0) = (q_0,0,R), \quad \delta(q_0,1) = (q_0,1,R),$$
 $\delta(q_0,\sqcup) = (q_1,\sqcup,L),$
 $\delta(q_1,1) = (q_2,1,L), \quad \delta(q_2,0) = (q_3,0,L),$
 $\delta(q_3,1) = (q_{accept},1,L)$

$$q_011
ightarrow 1q_01
ightarrow 11q_0
ightarrow 1q_11
ightarrow q_211
ightarrow q_{reject}11$$
 $q_0101
ightarrow 1q_001
ightarrow 10q_01
ightarrow 101q_0
ightarrow 10q_11
ightarrow 1q_201
ightarrow q_3101
ightarrow q_{accept}101$

Computazione di una MdT

Siano C, C' configurazioni. $C \to^* C'$ se esistono configurazioni C_1, \ldots, C_k , $k \ge 1$ tali che

- **1** $C_1 = C$,
- 2 $C_i \rightarrow C_{i+1}$, per $i \in \{1, ..., k-1\}$, (ogni C_i produce C_{i+1})
- **3** $C_k = C'$.

Diremo che $C \to^* C'$ è una **computazione** (di lunghezza k-1).

Quando k = 1?

Configurazioni

Una configurazione C si dice:

- iniziale su input w se $C = q_0 w$, con $w \in \Sigma^*$
- di accettazione se $C = u q_{accept} v$
- di rifiuto se $C = u q_{reject} v$

Poiché non esistono transizioni da q_{accept} e da q_{reject} , allora le configurazioni di accettazione e di rifiuto sono dette configurazioni di arresto.

Risultati di una computazione

Tre possibili Risultati computazione:

- 1. M accetta se si ferma in q_{accept}
- 2. M rifiuta se si ferma in q_{reject}
- 3. *M* cicla/loop se non si ferma mai

Mentre M funziona non si può dire se è in loop; si potrebbe fermare in seguito oppure no.

Parola accettata

Definizione

Una MdT M accetta una parola $w \in \Sigma^*$ se esiste una computazione $C \to^* C'$, dove $C = q_0 w$ è la configurazione iniziale di M con input $w \in C' = uq_{accept} v$ è una configurazione di accettazione.

Quindi M accetta $w \in \Sigma^*$ se e solo se esistono configurazioni C_1, C_2, \ldots, C_k di M, tali che

- 1 $C_1 = q_0 w$ è la configurazione iniziale di M con input w
- **2** $C_i \to C_{i+1}$ per ogni $i \in \{1, ..., k-1\}$
- \mathcal{C}_k è una configurazione di accettazione.

Esempio 1

$$\delta(q_0,0) = (q_0,0,R), \quad \delta(q_0,1) = (q_0,1,R),$$
 $\delta(q_0,\sqcup) = (q_1,\sqcup,L),$
 $\delta(q_1,1) = (q_2,1,L), \quad \delta(q_2,0) = (q_3,0,L),$
 $\delta(q_3,1) = (q_{accept},1,L)$

$$q_011 o 1q_01 o 11q_0 o 1q_11 o q_211 o q_{reject}11$$
 $q_011 o^* q_{reject}11$: 11 è rifiutata.

$$\begin{array}{l} q_0101 \rightarrow 1q_001 \rightarrow 10q_01 \rightarrow 101q_0 \rightarrow 10q_11 \rightarrow 1q_201 \rightarrow \\ q_3101 \rightarrow q_{accept}101 \end{array}$$

 $q_0101 \rightarrow^* q_{accept}101$: 101 è accettata.

Esempio di non terminazione

Quali parole accettate?

Esempio di non terminazione

Esempio:
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$
, con $Q = \{q_0, q_{accept}, q_{reject}\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \bot\}, \delta(q_0, a) = (q_0, a, R), \delta(q_0, b) = (q_0, b, L), \delta(q_0, \bot) = (q_{accept}, \bot, L).$

$$q_0aa
ightarrow aq_0a
ightarrow aaq_0
ightarrow aq_{accept}a$$

 $q_0aa \rightarrow^* aq_{accept}a$: aa è accettata.

Esempio di non terminazione

Esempio:
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$
, con $Q = \{q_0, q_{accept}, q_{reject}\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \bot\}, \delta(q_0, a) = (q_0, a, R), \delta(q_0, b) = (q_0, b, L), \delta(q_0, \bot) = (q_{accept}, \bot, L).$

$$q_0aba \rightarrow aq_0ba \rightarrow q_0aba \rightarrow aq_0ba \rightarrow \dots$$

 $q_0aba \rightarrow^* aq_0ba$

cicla e non si ferma mai

aba non è accettata.

È errato dire che aba è rifiutata.

Linguaggio riconosciuto da una MdT

Definizione

Sia $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ una MdT. Il linguaggio L(M) riconosciuto da M, è l'insieme delle stringhe che M accetta:

$$L(M) = \{ w \in \Sigma^* \mid \exists u, v \in \Gamma^* \ q_0 w \to^* u q_{accept} v \}.$$

Quindi

$$L(M) = \{ w \in \Sigma^* \mid M \text{ accetta } w \}.$$

Problema della fermata

A differenza del caso degli automi finiti, per i quali una stringa input è accettata o rifiutata, nel caso delle macchine di Turing c'è una terza possibilità: che per un dato input la computazione non termini.

Data una configurazione di una MdT che non è di arresto, non possiamo sapere se, a partire da tale configurazione, la computazione terminerà in qualche istante futuro o meno.

Problema della fermata

A differenza del caso degli automi finiti, per i quali una stringa input è accettata o rifiutata, nel caso delle macchine di Turing c'è una terza possibilità: che per un dato input la computazione non termini.

Data una configurazione di una MdT che non è di arresto, non possiamo sapere se, a partire da tale configurazione, la computazione terminerà in qualche istante futuro o meno.

Sarebbe utile avere un algoritmo che, dato in input una MdT M e una stringa w, determini in un tempo finito se la computazione eseguita da M su w termini o meno (**Problema della fermata**).

Vedremo che un tale algoritmo non esiste.

Domanda

Sia M una MdT. Sia $w = a_1 \dots a_n$, con $a_j \in \Sigma$. Supponiamo che w è accettata da M.

Quindi esistono $u, v \in \Gamma^*$ tali che

$$q_0 w \to^* uq_{accept} v$$
.

Possiamo concludere che in questa computazione M deve aver letto tutti i caratteri a_j di w?

E quindi che la computazione deve avere lunghezza almeno n = |w|?

Esercizio: Si consideri il linguaggio $L = \{aw \mid w \in \{a, b\}^*\}.$

- Definire una macchina di Turing che accetta tutte e sole le stringhe di L ma che non si arresta su ogni input.
- Definire una macchina di Turing che accetta tutte e sole le stringhe di L, che si arresta su ogni input, con tre stati e senza cicli nel diagramma di stato. (svolto)

Troverete questi e altri esercizi sulla piattaforma/team