LC 12 : Caractérisation par spectroscopie en synthèse organique

Niveau: Lycée

Prérequis:

- Spectroscopie infrarouge
- Schéma de Lewis
- Equation bilan
- Groupes caractéristiques et nomenclature
- Principe de l'extraction liquide-liquide

Fonctionnement du spectromètre infrarouge

Source de rayonnement infrarouge

Echantillon du produit de synthèse à contrôler

Cellule de photodétection

Type de liaison	Nombre d'onde (cm ⁻¹)	
O-H sans liaison hydrogène	3580 - 3650	
O-H avec liaison hydrogène	3200 - 3300	
O-H d'un acide carboxylique	2500 - 3200	
C-H des groupes CH ₂ , CH ₃ , CH dans les alcanes, les alcènes et les cycles aromatiques	2900 -3100	
C=C dans un cycle aromatique	1500 - 1600	
C=O d'un acide carboxylique	1700 - 1725	

Equation bilan de la synthèse de l'ester de poire

Alcool isoamylique

Acide éthanoïque Ethanoate d'isoamyle

Equation bilan de la synthèse de l'ester de poire

Protocole de la synthèse

- Alcool isoamylique (3mL)
- Acide éthanoïque pur (3mL)
- Acide sulfurique (quelques gouttes)

2 minutes au micro-ondes à 500W (chauffage)

Type de liaison	Nombre d'onde (cm ⁻¹)	
O-H sans liaison hydrogène	3580 - 3650	
O-H avec liaison hydrogène	3200 - 3300	
O-H d'un acide carboxylique	2500 - 3200	
C-H des groupes CH ₂ , CH ₃ , CH dans les alcanes, les alcènes et les cycles aromatiques	2900 -3100	
C=C dans un cycle aromatique	1500 - 1600	
C=O d'un acide carboxylique	1700 - 1725	

Spectre infrarouge de l'alcool isomaylique

Type de liaison	Nombre d'onde (cm ⁻¹)	
O-H sans liaison hydrogène	3580 - 3650	
O-H avec liaison hydrogène	3200 - 3300	
O-H d'un acide carboxylique	2500 - 3200	
C-H des groupes CH ₂ , CH ₃ , CH dans les alcanes, les alcènes et les cycles aromatiques	2900 -3100	
C=C dans un cycle aromatique	1500 - 1600	
C=O	1700 - 1725	

Spectre infrarouge du brut réactionnel

(cm⁻¹)

3580 - 3650

3200 - 3300

2500 - 3200

2900 -3100

1500 - 1600

1700 - 1725

Extraction liquide-liquide

On extrait l'ester avec 3 x 10 mL de diéthyléther

Lavage de la phase organique

	eau	diéthyléther
Ester	Peu soluble	Soluble
Ions éthanoate, Hydrogénocarbonate	Soluble	Peu soluble

Phase aqueuse: ions hydrogénocarbonate et éthanoate, dioxyde de carbone dissous

Obtention de l'ester isolé

Une fois la phase organique lavée :

- On la sèche avec du MgSO₄ anhydre pour éliminer les dernières traces d'eau
- On évapore le diéthyléther à l'évaporateur rotatif.

Spectre infrarouge de l'ester de poire isolé

Type de liaison	Nombre d'onde (cm ⁻¹)
O-H sans liaison hydrogène	3580 - 3650
O-H avec liaison hydrogène	3200 - 3300
O-H d'un acide carboxylique	2500 - 3200
C-H des groupes CH ₂ , CH ₃ , CH dans les alcanes, les alcènes et les cycles aromatiques	2900 -3100
C=C dans un cycle aromatique	1500 - 1600
C=O	1700 - 1725

Il y a disparition de la bande correspondant à la liaison O-H : on a bien isolé un ester.

Principe de la RMN

Illustration de la résonance magnétique nucléaire (ici sur la molécule d'éthane)

Environnement chimique, protons équivalents et voisins

- Deux protons équivalents partagent le même environnement chimique. <u>Exemple</u>: deux atomes d'hydrogènes liés au même atome de carbone, deux groupes de protons dont les dispositions sont symétriques
- Deux protons voisins sont liés à deux carbones partageant eux mêmes une liaison covalente. *Exemple de l'éthanol* :

Spectre RMN de l'éthanol

Spectre RMN de l'ester de poire

