Матанализ

Канта контроль

1 ноября 2023 г.

1. Множества: упорядоченная пара, декартово произведение, операции над множествами. Правила де Моргана.

Множество - какой-то набор элементов. Для любого элемента можно сказать принадлежит множеству или нет.

 $A \subset B$, то есть $\forall x: x \in A \Rightarrow x \in B$ (А - подмножество В)

A = B, то есть $A \subset B \land B \subset A$ (A равно B)

 $A\subsetneq B$, то есть $A\subset B\land A\neq\varnothing\land A\neq B$ (A - собственное подмножество B) Способы задать множетсво:

- Полное задание: $\{a, b, c\}$.
- Неполное: $a_1, a_2, ..., a_k$. Но должно быть понятно как образована последовательно. Например $\{1, 5, ..., 22\}$ непонятно.
- Можно так же и бесконечные: $\{a1, a2, ...\}$.
- Словесным описанием. Например, множество простых чисел.
- Формулой. Например, пусть задана функция F(x) функция для всех чисел, которая возращает истину или ложь. Тогда можно взять множество $\{x:F(x)\}$.

Операции с множествами:

Символ	Определение	Описание
\cap	$A \cap B = \{x \mid x \in A \land x \in B\}$	Пересечение множеств
$\bigcap_{k=1}^{n} A_k$	$A = A_1 \cap A_2 \cap \ldots \cap A_n$	Пересечение множества множеств
U	$A \cup B = \{x \mid x \in A \lor x \in B\}$	Объединение множеств
$\bigcup_{k=1}^{n} A_k$	$A = A_1 \cup A_2 \cup \ldots \cup A_n$	Объединение множества множеств
\	$A \setminus B = \{x \mid x \in A \land x \notin B\}$	Разность множеств
×	$A \times B = \{(x, y) \mid x \in A, y \in B\}$	Декартово произведение
\triangle	$A \triangle B = (A \setminus B) \cup (B \setminus A)$	Симметрическая разность
Ø	$\forall x: x \notin \varnothing$	пустое множество
N		Натуральные числа
\mathbb{Z}		целые числа
Q	$\frac{a}{b}$, где $a \in \mathbb{Z}, b \in \mathbb{N}$	рациональные числа
\mathbb{R}		действительные числа
2^X		множество всех подмножеств X

Важный момент: $1 \in \{1\}$, но $1 \notin \{\{1\}\}$

Правила де Моргана:

Пусть есть $A_{\alpha} \subset X$

1.
$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}$$
.

2.
$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} X \setminus A_{\alpha}$$
.

Доказательство: $X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \{x : x \in X \land x \notin A_{\alpha} \ \forall \alpha \in I\} = \{x : \forall \alpha \in IX \setminus A_{\alpha}\} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}.$

Упорядоченная пара $\langle x,y \rangle$. Важное свойство $\langle x,y \rangle = \langle x',y' \rangle \iff x=x' \land y=y'$

2. Отношения: область определения, область значений, обратное отношение, композиция отношений, свойства, примеры.

Отношение $R \subset X \times Y$. x и y находятся в отношении R, если их $\langle x, y \rangle \in R$.

- Область определения $\delta_R = dom_R = \{x \in X : \exists y \in Y : \langle x, y \rangle \in R.$
- ullet Область значений $ho_R = ran_R = \{y \in Y: \; \exists x \in X: \; \langle x,y \rangle \in R \}$
- Обратное отношение $R^{-1} \subset Y \times X$ $R^{-1} = \{\langle x, y \rangle\} \in R$.
- Композиция отношения. $R_1 \subset X \times Y, R_2 \subset Y \times Z : R_1 \circ R_2 \subset X \times Z$.
- $R_1 \circ R_2 = \{ \langle x, z \rangle \in X \times Z \mid \exists y \in Y : \langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2 \}$

Свойства:

Функция из X в Y — отношение ($\delta_f = X$), для которого верно:

$$\begin{cases} \langle x, y \rangle \in f \\ \langle x, z \rangle \in f \end{cases} \Rightarrow y = z.$$

Используется запись y = f(x).

Последовательность - функция у которой $\delta_f=\mathbb{N}$

Отношение R называется рефлективным, если $\forall x: \langle x, x \rangle \in R$.

Отношение R называется симметричным, если $\forall x,y\in X:\ \langle x,y\rangle\in R\Rightarrow \langle y,x\rangle\in R$

Отношение R называется иррефлективным, если $\forall x \langle x, x \rangle \notin R$

Отношение R называется антисимметричным, если $\begin{cases} \langle x,y \rangle \in R \\ \langle y,x \rangle \in R \end{cases} \Rightarrow x=y$

Отношение R называется транзитивным, если $\begin{cases} \langle x,y\rangle \in R \\ \langle y,z\rangle \in R \end{cases} \Rightarrow \langle x,z\rangle \in R$

Отношение называется отношением эквивалентности, если отношение рефлективно, симметрично, транзитивно. Например: Равенство, сравнение по модулю \mathbb{Z} , \parallel , отношение подобия треугольников.

Если выполняется рефлективность, антисимметричность и транзитивность, от данное отношение — отношение нестрогого частичного порядка. Например: \geq ; $A \subset B$ на 2^X .

Если выполняется иррефлективность и транзитивность, то данное отношение — отношение строгого частичного порядка. Например: >; A собственное подмножество B на 2^X .

R - нестрогий ч.п. $\Rightarrow R = \{\langle x, y \rangle \in R : x \neq y\}$ — строгий ч.п.

Примеры отношений:

- Отношение равенства. $R = \{ \langle x, x \rangle : x \in X \}$. Но это просто равенство.
- " \geq " ($X = \mathbb{R}$). $R = \{\langle x, y \rangle : x \geq y\}$
- ">" $(X = \mathbb{R})$. $R = \{\langle x, y \rangle : x > y\}$ $\delta_{>} = 2, 3, 4 \dots$ $\rho_{>} = \mathbb{N}$ $>^{-1} = \langle = \{\langle x, y \rangle : x < t\}$ $> \circ > = \{\langle x, z \rangle | x - z \ge 2\}$
- X прямые на плоскости. " \bot ": $R=\{\langle x,y\rangle:\ x\perp y\}.$ $\delta_\bot=\rho_\bot=X$ $\bot^{-1}=\bot$ $\bot\circ\bot=\|$
- $\langle x,y \rangle \subset R$, когда x отец y. $\delta_R = \{ \text{Все, y кого есть сыновья} \}$. ρ_R религиозный вопрос. См. Библию $R^{-1} = \text{сын}$ $R \circ R = \{ \text{дед по отцовской линии} \}$
- 3. Аксиомы вещественных чисел. Математическая индукция. Существование наибольшего и наименьшего элемента в конечном множестве. Следствия.

Есть две операции:

- \bullet +: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$.
 - Коммутативность. x + y = y + x.
 - Ассоциативность. (x + y) + z = x + (y + z)
 - Существует ноль. $\exists 0 \in \mathbb{R} \ x + 0 = x$
 - Существует противоположный элемент. $\exists (-x) \in \mathbb{R} \ x + (-x) = 0$
- $\bullet : \mathbb{R} \times \mathbb{R} \to \mathbb{R}.$

- Коммутативность. $x \cdot y = y \cdot x$.
- Ассоциативность. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- Существует единица. $\exists 1 \in \mathbb{R} \ x \cdot 1 = x$
- Существует обратный элемент. $\exists x^{-1} \in \mathbb{R} \ x \cdot x^{-1} = 1$

Свойство дистрибутивности: $(x+y)\cdot z=x\cdot z+y\cdot z$. Структура с данными операциями называется полем.

Введем отношение \leq : Оно рефлексивно, антисимметрично и транизитивно, то есть нестрогий частичного порядка:

- 1. $a \leq a$
- 2. $a < b \land b < a \Rightarrow a = b$
- 3. $a \le b \land b \le c \Rightarrow a \le c$
- 4. $\forall a, b$ выполняется $a \leq b \lor b \leq a$
- 5. С операцией $+: \forall c$ выполняется $a \leq b \Rightarrow a + c \leq b + c$
- 6. С операцией $\cdot : a > 0, b > 0 \Rightarrow ab > 0$

Аксиома полноты: Если A и $B \subset \mathbb{R}$ и $\forall a \in A, b \in B : a \leq b$ и $A \neq \emptyset \land B \neq \emptyset$, тогда $\exists c \in \mathbb{R} \ a \leq c \leq b \ (+A \text{ левее } B)$.

Множество рациональных не удовлетворяет аксиоме полноты.

Например: $A=\{x\in\mathbb{Q}\mid x^2<2\},\, B=\{x\in\mathbb{Q}\mid x>0\land x^2>2\}.$ Единственная точка, между этими множествами — $\sqrt{2}$

Пусть P_n - последовательность утверждений. Тогда, если P_1 — верное и из того, что P_n — верно следует, что P_{n+1} — верно. Тогда все P_n верны $\forall n \in \mathbb{N}$

Наибольшие/наименьшие элементы: В непустом конечном множестве A есть наибольший и наименьший элементы.

Доказательство. Докажем по индукции:

- ullet База. |A| = 1. Очевидно.
- Переход. $n \to n+1$.
- Доказательство. Рассмотрим множество из n+1 элемента $\{x_1 \dots x_n, x_{n+1}\}$. Выкинем из него последний элемент. Тогда по индукционному предположению у нас есть максимальный элемент x_k . Тогда рассмотрим два случая:

- 1. $x_k \ge x_{n+1}$. Тогда x_k наибольший элемент множества $\{x_1 \dots x_n, x_{n+1}\}$.
- 2. $x_k < x_{n+1}$. Тогда по транзитивности x_{n+1} больше всех других элементов множества. Значит, x_{n+1} — наибольший элемент множества $\{x_1 \dots x_n, x_{n+1}\}$.

4. Принцип Архимеда. Следствия. Наибольший элемент в множестве целых чисел. Существование целой части числа.

Принцип Архимеда:

Пусть $x \in \mathbb{R} \land y > 0$. Тогда $\exists n \in \mathbb{N} : x < ny$

Доказательство:

 Φ иксируем g

$$A = \{ a \in \mathbb{R} \mid a < yn \}$$

$$B\mathbb{R} \setminus A \Rightarrow B = \{b \in \mathbb{R} \mid \forall n : b \ge yn\}$$

Пусть
$$B$$
 левее $A: \forall a, b; \exists n: \begin{cases} b \leq a \\ a < yn \end{cases} \Rightarrow b < yn??? \Rightarrow A$ левее $B \Rightarrow \exists c: \begin{cases} \forall \leq c \\ \forall \geq c \end{cases} \Rightarrow \begin{cases} c - y = a' \in A \\ c + y = b' \in B \end{cases} \Rightarrow c = a' + y < yn' + y = y(n' + 1) = y\widetilde{n}$

$$\begin{cases} \forall \le c \\ \forall \ge c \end{cases} \Rightarrow \begin{cases} c - y = a' \in A \\ c + y = b' \in B \end{cases} \Rightarrow c = a' + y < yn' + y = y(n' + 1) = y\widetilde{n}$$

$$b' = c + y \le y\widetilde{n} + y = y(\widetilde{n} + 1) = yn \Rightarrow b' \le yn??? \Rightarrow \begin{cases} B = \emptyset \Rightarrow A = \mathbb{R} \\ A = R \setminus B \end{cases}$$

Следствие:

Если $\epsilon > 0$, то $\exists n \in \mathbb{N} \ \frac{1}{n} < \epsilon$

Доказательство:

$$x=1, y=\epsilon \Rightarrow ny=n\epsilon > x=1 \iff \epsilon > \frac{1}{n}$$

Теорема:

В непустом ограниченном сверху (снизу) множестве целых чисел есть наибольший (наименьший) элемент.

Доказательство:

Пусть $A \subset \mathbb{Z}$. c — его верхняя граница.

Возьмем $b \in A$ и рассмотрим $B := x \in A \mid x \geq b$. Заметим, что B содержит конечное число элементов, значит в нем есть наибольший элемент. Пусть это $m \in B$: $\forall x \in B : x \leq m$. Докажем, что m — наибольший элемент и в A.

Для этого заметим, что любой $x \in A$ либо лежит в B, либо x < b, а по транзитивности $x < b \le m$.

Пусть $x \in \mathbb{R}$, тогда $[x] = \lfloor x \rfloor$ — наименьшее целое число, не превосходящее x.

1.
$$[x] \le x < [x] + 1$$

Левое неравенство очевидно. Правое неравенство можно доказать от противного: пусть $x \geq [x] + 1$, тогда справа целое число большое [x], но меньшее x. Противоречие.

$$2. x - 1 < [x] \le x$$

5. ! Супремум и инфимум. Определение и теорема существования. Характеристика супремума.

Определение. Пусть $A \subset \mathbb{R}$. Тогда A — ограничено сверху, если $\exists c \in \mathbb{R} : \forall a \in A \ a \leq c$. Такое c называется верхней границей.

Определение. Пусть $A\subset\mathbb{R}$. Тогда A — ограничено снизу, если $\exists b\in\mathbb{R}:\ \forall a\in A\ a\geq b$. Такое b называется нижней границей.

Определение. Пусть $A \subset \mathbb{R}$. Тогда A — ограничено, если оно ограничено сверху и снизу. Например: \mathbb{N} не ограничено сверху, но ограничено снизу.

Доказательсво. Пусть $\exists c \in \mathbb{R}: c \geq n \ \forall n \in \mathbb{N}.$ Тогда это противоречит принципу Архимеда при x=c,y=1.

Для ограниченности снизу достаточно взять c = -1.

 $\sup A$ — наименьшая верхняя граница множества A

 $A \subset \mathbb{R}, \, a \neq \emptyset, \, A$ - ограничено сверху

Характеристика: если $A\subset \mathbb{R},\, A\neq \varnothing,\, A$ - ограничено сверху, тогда $\exists \sup A$

 $\inf A$ — наибольшая нижняя граница множества A $A\subset \mathbb{R},\, a\neq \varnothing,\, A$ - ограничено снизу

Доказательсво существования: $B = \{$ все верхние границы множества $A\}$

$$B \subset \mathbb{R}, B \neq \emptyset$$
, A левее $B, a \leq b \ \forall a \in A, \forall b \in B \Rightarrow \exists c \in \mathbb{R} :$ $\begin{cases} a \leq c - \text{верх } A \\ c \leq b - \text{низ } A \end{cases}$ $\Rightarrow c = \sup A$

Аналогично с $\inf A$

6. ! Теорема о вложенных отрезках. Существенность условий.

Теорема о вложенных отрезках:

$$[a_1;b_1]\supset [a_2;b_2]\supset...\supset [a_n;b_n]\supset...$$
 Тогда $\bigcap_{n=1}^{+\infty}[a_n;b_n]\neq\varnothing$ ($\exists c: \forall n\ c\in [a_n;b_n]$) Доказательство:
$$\begin{cases} A=\{a_1,a_2,...,a_n,...\},\ A\neq\varnothing\\ B=\{b_1,b_2,...,b_n,...\},\ B\neq\varnothing\end{cases}\Rightarrow$$
 А левее $B,\ a_k\leq b_m\ \forall k,m$ \Rightarrow по аксиоме полноты $\exists c,\ \forall a\in A,\ \forall b\in B:\ a\leq c\leq b\Rightarrow\ \forall n\ a_n\leq c\leq b_n\Rightarrow c\in [a_n;b_n]\forall n\in\mathbb{N}\Rightarrow\bigcap_{n=1}^{+\infty}[a_n;b_n]\neq\varnothing$ А левее $B,\ \text{так как:}$

- 1. k = m
- 2. $m > k \ a_k < a_m < b_n$
- 3. $m < k \ a_k < b_k < b_m$

Существенность условий: для лучей и полуинтервалов неверно.

7. ! Монотонные и ограниченные последовательности. Два определения предела и их равносильность. Примеры.

 $\{x_n\}_{n=1}^{+\infty}$ - возрастающая (неубывающая), если $\forall n \ x_{n+1} \geq x_n$ $\{x_n\}_{n=1}^{+\infty}$ - строго возрастрает, если $\forall n \ x_{n+1} > x_n$ $\{x_n\}_{n=1}^{+\infty}$ - убывающая, если $\forall n \ x_{n+1} \leq x_n$ $\{x_n\}_{n=1}^{+\infty}$ - строго убывающая, если $\forall n \ x_{n+1} < x_n$

 $\{x_n\}_{n=1}^{+\infty}$ - ограниченна сверху, если $\exists m \in \mathbb{R}: \ \forall n \ x_n \leq m$

 $\{x_n\}_{n=1}^{+\infty}$ - ограниченна снизу, если $\exists m \in \mathbb{R}: \ \forall n \ x_n \ gem$

 $\{x_n\}_{n=1}^{n-1}$ - ограниченная, если ограниченна сверху и снизу

Опеределения предела:

He classic

 $a=\lim_{n\to +\infty}x_n$, если все любого интервала, содержащего точку a, находиться лишь конечное число членов.

Classic

$$a = \lim_{n \to +\infty} x_n \Leftrightarrow \forall \epsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n \ge N \ a - \epsilon < x_n < a + e$$

 $|x_n - a| < \epsilon$

Равносильность состоит в том, что внутри отрезка $[a-\epsilon;a+\epsilon]$ у нас находится бесконечное число членов, а значит вне его находится конечное число членов.

8. ! Простейшие свойства пределов последовательностей (единственность предела, предельный переход в неравенстве, ограниченность).

Единственность предела:

Если существует два разных предала одной последовательности, то вне двух интервалах находится конечное число членов $\Rightarrow \{x_n\}_{n=1}^{+\infty}$ имеет конечное число членов???

Ограниченность:

Если последовательность имеет предел, то она ограничена

$$\exists a: \lim_{n \to +\infty} = a \Rightarrow \{x_n\}_{n=1}^{+\infty}$$

Рассмотрим интервал [a-1; a+1]

 $\max((a+1), \text{ наибольшее невошедшее}) = верхняя граница$

 $\min((a-1), \text{ наименьшее невошедшее}) = \text{нижняя граница}$

Из ограниченности НЕ следует существование предела (Например: $x_n = (-1)^n$)

Если изменить конечное число членов последовательности, то предел не изменится или не появится. Если добавить/удалить/переставить конечное число элементов, то не изменится и не появится.

Предельный переход в неравенстве:

$$\begin{cases} \forall n \ x_n \le y_n \\ \lim x_n = a \end{cases} \Rightarrow a \le b$$
$$\lim y_n = b$$

Доказательство:

Пусть a > b

$$\lim_{n \to \infty} x_n = a \Rightarrow \forall \epsilon_1 > 0 \ \exists N_1 : \ \forall n_1 > N_1 \ |x_n - a| < \epsilon_1$$

$$\lim y_n = b \Rightarrow \forall \epsilon_2 > 0 \ \exists N_2 : \ \forall n_2 > N_2 \ |y_n - b| < \epsilon_2$$

$$\forall \epsilon \ N = \max(N_1, N_2) : \ \forall n > N \begin{cases} |\mathbf{x}_n - a| < \epsilon \\ |\mathbf{y}_n - b| < \epsilon \end{cases} \Rightarrow \begin{cases} \mathbf{a} - \epsilon < x_n < a + \epsilon \\ \mathbf{b} - \epsilon < y_n < b + \epsilon \\ \mathbf{a} > \mathbf{b} \Rightarrow \exists \epsilon : \ b + \epsilon < a - \epsilon \end{cases}$$

$$\Rightarrow y_n < x_n???? \Rightarrow a \leq b$$

9. ! Теорема о стабилизации знака и теорема о двух милиционерах. Следствия.

Теорема о стабилизации знака и теорема:

$$\forall n \ x_n < y_n \Rightarrow a \le b$$

Следствия:

$$\lim x_n = a$$

$$\forall n: \ x_n \ge A \Rightarrow a \ge A$$

$$\forall n: x_n \leq B \Rightarrow a \leq B$$

$$\forall n: x_n \in [\alpha; \beta] \Rightarrow a \in [\alpha; \beta]$$

Теорема о двух миллиционерах:

$$\forall n \in \mathbb{N} : \begin{cases} \lim x_n = a \\ \lim z_n = a \\ x_n \le y_n \le z_n \end{cases} \Rightarrow \lim y_n = a$$

Доказательство:

Фиксируем $\epsilon > 0$

$$\exists N_1: \ \forall n \geq N_1 \ |x_n - a| < \epsilon$$

$$\exists N_2: \ \forall n \geq N_2 \ |z_n - a| < \epsilon$$

$$N = \max(N_1, N_2)$$

$$N = \max(N_1, N_2)$$

$$\forall n \ge N \begin{cases} a - \epsilon < x_n < a + \epsilon \\ a - \epsilon < y_n < a + \epsilon \end{cases} \Rightarrow a - \epsilon < x_n \le y_n \le z_n < a + \epsilon \Rightarrow a - \epsilon < y_n < a + \epsilon \Rightarrow |y_n - a| < \epsilon \Rightarrow \lim y_n = a$$

10. ! Предел монотонной последовательности.

Теорема о пределе монотонной последовательности:

$$\{x\}_{x=1}^{+\infty}$$
 - возрастает и ограниченна сверху, тогда $\exists \lim x_n = S = \sup\{x_1, \ldots\}$

$$\{y\}_{x=1}^{+\infty}$$
 - убывает и ограниченна снизу, тогда $\exists \lim y_n$

$$\{z\}_{x=1}^{+\infty}$$
 - монотонная (+ ограниченная?), тогда $\exists \lim z_n \Leftrightarrow \{z_n\}$ - ограниченная Доказательство:

$$\{x\}_{n=1}^{+\infty}$$
 - ограниченная сверху $\Rightarrow \exists \sup\{x_1, x_2, ..., x_n, ...\} = S = \sup x_n$

$$\{x\}_{n=1}^{+\infty}$$
 - ограниченная сверху $\Rightarrow \exists \sup\{x_1, x_2, ..., x_n, ...\} = S = \sup x_n$
 $\forall \epsilon > 0 \ \exists x_{\widetilde{n}} : \begin{cases} x_{\widetilde{n}} > S - \epsilon \\ x_n - \text{возрастает} \end{cases} \Rightarrow \forall n \geq \widetilde{n}$
 $S + \epsilon > S \geq x_n \geq x_{\widetilde{n}} > S - \epsilon \Rightarrow |x_n - S| < \epsilon \Rightarrow \lim x_n = S$

$$S + \epsilon > S \ge x_n \ge x_{\widetilde{n}} > S - \epsilon \Rightarrow |x_n - S| < \epsilon \Rightarrow \lim x_n = S$$

11. Арифметические свойства пределов последовательности.

1.
$$\lim(x_n + y_n) = a + b$$

$$2. \lim (x_n \cdot y_n = a \cdot b)$$

3.
$$\lim(c \cdot x_n) = c \cdot a$$

$$4. \lim \left(\frac{x_n}{y_n}\right) = \frac{a}{b}$$

5.
$$\lim(|x_n+\alpha_n|)=|a|$$
, где α_n - б/м (то есть $\lim \alpha_n=0$)

Доказательства:

1.
$$\lim x_n \Leftrightarrow \lim (x_n + \alpha_n)$$

 $\lim y_n \Leftrightarrow \lim (y_n + \beta_n)$

$$x_n + y_n = (x_n + \alpha_n) + (y_n + \beta_n) = (a+b) + (\alpha_n + \beta_n) = a+b+\gamma_n \Rightarrow \lim(x_n + y_n) = a+b$$

2.
$$\begin{cases} \mathbf{x}_n = a + \alpha_n \\ \mathbf{y}_n = b + \beta_n \end{cases} \Rightarrow x_y \cdot y_n = (a + \alpha_n) \cdot (b + \beta_n) = ab + a\beta_n + \alpha_n b + \alpha_n \beta_n \\ (a\beta_n, \ \alpha_n b, \ \alpha_n \beta_n) - 6/\mathbf{M} \Rightarrow \lim(x_n \cdot y_n) = a \cdot b \end{cases}$$

$$4. \lim(\frac{x_n}{y_n}) = \lim(x_n \cdot \frac{1}{y_n})$$

$$\lim(\frac{1}{y_n}), \ y_n = b + \beta_n$$

$$\frac{1}{y_n} = \frac{1}{b + \beta_n} = \frac{1}{b} - \frac{1}{b} + \frac{1}{b + \beta_n} = \frac{1}{b} - \frac{b + \beta_n - b}{b(b + \beta_n)} = \frac{1}{b} - \beta_n \cdot \frac{1}{b(b + \beta_n)}$$

$$\frac{1}{b(b + \beta_n)} - \text{ограниченная, так как } \lim \frac{1}{b(b + \beta_n)} = \frac{1}{b^2} \Rightarrow \lim(\frac{1}{y_b}) = \frac{1}{b} \Rightarrow \lim(\frac{x_n}{y_n}) = \lim(x_n \cdot \frac{1}{y_n}) = a \cdot \frac{1}{b} = \frac{a}{b}$$

12. ! Бесконечные пределы. Бесконечно большие. Связь между бесконечно малыми и бесконечно большими. Аналоги теорем для бесконечных пределов.

Вспомним сначала бесконечно малые:

 $\{\alpha\}_{n+1}^{+\infty}$ - бесконечно малая $\Leftrightarrow \lim \alpha_n = 0$ Наблюдение: $\lim x_n = a \Leftrightarrow \{x_n - a\}_{n=1}^{+\infty}$ - бесконечно малая $\Leftrightarrow x_n - a = \alpha_n \Leftrightarrow x_n = 0$ $a + \alpha_n$

Доказательство: $\lim x_n = a \Leftrightarrow \forall \epsilon > 0 \; \exists N : \; \forall n \geq N : \; |x_n - a| < \epsilon \Rightarrow |(x_n - a) - 0| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_n - a| < \epsilon > 0 \; \exists N : \; |x_$ $\epsilon \Rightarrow \lim \alpha_n = 0$

Свойства:

•
$$\alpha_n, \beta_n$$
 - б/м $\Rightarrow \alpha_n + \beta_n$ - б/м
Доказательство:

$$\forall \epsilon > 0 \ \exists N_1 : \ \forall n \ge N_1 \ |\alpha_n| < \epsilon$$

$$\forall \epsilon > 0 \ \exists N_2 : \ \forall n \ge N_2 \ |\beta_n| < \epsilon$$

$$N = \max(N_1, N_2) \ \forall n \ge N$$

$$|\alpha_n + \beta_n| \le |\alpha_n| + |\beta_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \Rightarrow \forall \epsilon > 0 \ \exists N : \ \forall n \ge N \ |\alpha_n + \beta_n| < \epsilon \Leftrightarrow \lim(\alpha_n + \beta_n) = 0 \Rightarrow \alpha_n + \beta_n - 6/M$$

• α_n - б/м; a_n - ограниченная $\Rightarrow a_n \cdot \alpha_n$ - б/м Доказательство:

 $\{a_n\}$ - ограниченная $\Leftrightarrow \exists M>0: \ |\alpha_n| < M \ \forall n \in N$ Фиксируем $\epsilon>0 \Rightarrow \exists N: \ \forall n \geq N \ |\alpha_n| < \frac{\epsilon}{M}$ $|a_n\cdot\alpha_n|=|a_n|\cdot |\alpha_n| < M\cdot \frac{\epsilon}{M}=\epsilon \Rightarrow \alpha_n\cdot a_n$ - б/м

•
$$\begin{cases} \alpha_n, \beta_n - 6/M \\ p, q \in \mathbb{R} \end{cases} \Rightarrow p \cdot \alpha_n + q \cdot \beta_n - 6/M$$

•
$$\begin{cases} \alpha_n, \beta_n - 6/M \\ \beta_n - \text{opp.} \end{cases} \Rightarrow \alpha_n \cdot \beta_n - 6/M$$

Бесконечно большие последовательности:

Говорят, что $\lim x_n = +\infty$, если $\forall M \ \exists N : \ \forall n \geq N \ x_n > M$

Другими словами $\lim x_n = +\infty$, если вне любого луча вида $[M, +\infty)$ лежит лишь конечное число элементов последовательности

Говорят, что $\lim x_n = -\infty$, если $\forall M \; \exists N : \; \forall n \geq N \; x_n < M$ Другими словами $\lim x_n = -\infty$, если вне любого луча вида $(-\infty, M]$ лежит лишь конечное число элементов последовательности

Говорят, что $\lim x_n = \infty$, если $\forall M \; \exists N : \; \forall n \geq N \; |x_n| > M$ Другими словами $\lim x_n = \infty$, если вне любого луча вида [-M,M] лежит лишь конечное число элементов последовательности

$$\lim x_n = +\infty \Rightarrow \lim x_n = \infty$$
$$\lim x_n = -\infty \Rightarrow \lim x_n = \infty$$

$$\{x_n\}$$
 - б/б, если $\lim x_n = \infty$

Связь б/м и б/б:

$$\forall n \ x_n \neq 0$$
, тогда x_n - б/б $\Leftrightarrow \frac{1}{x_n}$ - б/м

Доказательство:

$$x_n - 6/6 \Leftrightarrow \forall M > 0: \exists N: \forall n \ge N |x_n| < M(>0) \Leftrightarrow \frac{1}{|x_n|} < \frac{1}{M}$$

$$\frac{1}{M} \in [0; +\infty] = \epsilon$$

$$\forall \epsilon \; \exists N \; \forall n \geq N : \; \frac{1}{x_n} < \epsilon \Rightarrow \frac{1}{x_n} - 6/M$$

Аналоги теорем для бесконечных пределов:

- Предел единственный
- Стабилизация знака
- Предельный переход
- Теорема о двух гаишниках

13. Арифметические действия в $\overline{\mathbb{R}}$. Примеры.

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$$

14. **Неравенство Берну**лли. Предел $\lim a^n$:

Неравенство Бернулли:

$$x > -1, \ n \in \mathbb{N}$$

$$(1+x)^n \ge 1 + nx$$
, причём true при $n=1$ или $x=0$

Доказательство (по ММИ):

База: при n=1 очев true

Переход: пусть при n true, тогда $(1+x)^{n+1} \ge (1+nx)(1+x) = 1+x+nx+nx^2 = 1+(n+1)x+nx^2$

Очев
$$nx^2 > 0 \Rightarrow 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

Предел $\lim a^n$: $q \in \mathbb{R}$

•
$$|q| > 1 \Rightarrow \lim q^n = \infty$$

•
$$|q| < 1 \Rightarrow \lim q^n = 0$$

Доказательство:
$$|q|>1 \Rightarrow |q|=1+x, \ x>0$$

$$|q^n| = (1+x)^n \ge 1 + nx > nx$$

$$\lim q^n = \infty$$

$$|q| < 1 \Leftrightarrow |rac{1}{q}| > 1 \Rightarrow rac{1}{q^n}$$
 - 6/6 $\Leftrightarrow q^n$ - 6/M

$$a=0$$
 - очев

15. ! Определение экспоненты и числа е.

Вывод экспоненты довольно душный, почитайте полную версию у вас в конспекте

или попросите у однокрурсников. Вот краткая версия:

 $x_n = (1 + \frac{a}{n})^n$ возрастает при n > -a, причём строго при $a \neq 0 \ (a \in \mathbb{R})$

Доказательство

$$\frac{x_n}{x_{n-1}} = \frac{(1+\frac{a}{n})^n}{(1+\frac{a}{n-1})^n-1} = \dots \ge \frac{n-1}{n-1+a} \cdot \frac{n-1+a}{n-1} \ge 1 \Rightarrow n > -a \text{ и}$$
 х_n возрастает

$$x_n = (1 + \frac{a}{n})^n$$
 - орг. сверху

Доказательство: $y_n = (1 + \frac{-a}{n})^n$

$$x_n \cdot y_n = (1 + \frac{a}{n})^n \cdot (1 + \frac{-a}{n})^n = (1 - \frac{a^2}{n^2})^n \le 1$$

$$x_n \le \frac{1}{y_n} \le \frac{1}{y_{n-1}} \le \frac{1}{y_{n-2}} \le \dots \le \frac{1}{y_1} \ (n > 0)$$

$$x_n \le \frac{1}{y_n} \le \dots \le \frac{1}{y_{[a]+1}} \ (a > 0)$$

Следствие:

1.
$$\{x_n\}$$
 - имеет предел

2.
$$z_n = (1 + \frac{1}{b})^n$$
 - убывает

Доказательство: x_n HCHM возрастает, x_n - огр. сверху \Rightarrow теорема о пределе последовательности $\Rightarrow \exists \lim x_n \in \mathbb{R}$

Итак, имеем:
$$x_n = \lim(1 + \frac{a}{n})^n = \exp(a)$$

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e = \exp(1)$$

16. Свойства экспоненты.

$$1. \exp(1) = e$$
$$\exp(0) = 1$$

2.
$$a \le b \Rightarrow \exp(a) \le \exp(b)$$

$$(1 + \frac{a}{n})^n \le (1 + \frac{b}{n})^n$$

Устремляем в
$$+\infty$$
 $\exp(a) \le \exp(b)$

3.
$$\exp(a) \ge 1+a$$

$$(1+\frac{a}{n})^n \ge 1+n\cdot\frac{a}{n}=1+a$$
 Устремляем в $+\infty$
$$\exp(a) \ge 1+a$$

4.
$$(\exp(a))(\exp(-a)) \le 1$$

5.
$$\exp(a) \le \frac{1}{1-a}$$

$$a < 1$$

$$\exp(a) \cdot \exp(-a) \le 1$$

$$\exp(a) \le \frac{1}{\exp(-a)}$$

6.
$$\forall n \ (1+\frac{1}{n})^n < \epsilon$$

$$\forall n \ (1+\frac{1}{n})^{n+1} > \epsilon$$

$$\mathrm{const} \ n, \ k > n+1$$

$$(1+\frac{1}{n})^n < (1+\frac{1}{n})^{n+1} < \ldots < (1+\frac{1}{k})^k$$
Устремляем в $+\infty$
 $e < e < \ldots < e$

7.
$$2 < e < 3$$

17. Формула для экспоненты суммы (с леммой).

$$\{a_n\}$$
: $\lim a_n = a$, тогда $\lim (1 + \frac{a_n}{n})^n = \exp(a)$
Док-во: $x_n = (1 + \frac{a_n}{n})^n$; $y_n = (1 + \frac{a}{n})^n$

$$|x_n - y_n| = |(1 + \frac{a_n}{n})^n - (1 + \frac{a}{n})^n| = |A^n - B^n| \begin{cases} A = (1 + \frac{a_n}{n})^n > 0, \ \exists N_1 \ \forall n > N_1 \\ B = (1 + \frac{a}{n})^n > 0, \ \exists N_2 \ \forall n > N_2 \end{cases}$$

$$\bigcap \begin{cases}
A < 1 + \frac{M}{n} \\
B < 1 + \frac{M}{n}
\end{cases} \quad \exists M > 0 \ |A^n - B^n| = |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A - B| \cdot (\sum_{i=0}^n A^{n-i} \cdot B^{i-1}) < |A$$

$$\left(\sum_{i=0}^{n} (1 + \frac{M}{n})^{n-i} \cdot (1 + \frac{M}{n})^{i-1} = |A - B| \cdot \left(\sum_{i=0}^{n} (1 + \frac{M}{n})^{n-1}\right) = |A - B| \cdot \left(1 + \frac{M}{n}\right)^{n-1} \cdot n = \frac{|a_n - a|}{n} \cdot \left(1 + \frac{M}{N}\right)^{n-1} \cdot n = |a_n - a| \left(1 + \frac{M}{n}\right)^n \left(1 + \frac{M}{n}\right)^{-1}$$

Устремим в бесконечность и получим: $0 \cdot \exp(M) \cdot 1 \Rightarrow |a_n - a| (1 + \frac{M}{n})^n (1 + \frac{M}{n})^{-1} \longrightarrow 0 \Rightarrow \{|A^n - B^n|\} \longrightarrow 0 \Rightarrow x_n - y_n - 6/M \Rightarrow \lim x_n = \lim y_n = a$

$$(1+\frac{a}{n})^n \cdot (1+\frac{b}{n})^n = (1+\frac{b}{n}+\frac{a}{n}+\frac{ab}{n^2}) = (1+\frac{a+b+\frac{ab}{n}}{n})$$
 Устремляем в бесконечность
$$\exp(a)\cdot\exp(b) = \exp(a+b)$$

18. Сравнение скорости возрастания последовательностей $n^k, a^n, n!$ и n^n . $n^k < a^n < n! < n^n$

1.
$$x_n = \frac{n^k}{a^n}$$
, $\forall n: x_n > 0$ (так как $n > 0, a > 1$)
$$\lim(\frac{x_{n+1}}{x_n}) = \lim(\frac{(n+1)^k a^n}{a^{n+1} n^k}) = \lim(\frac{1}{a} \cdot \frac{(n+1)^k}{n^k}) = \begin{cases} x_n > 0 \\ \frac{1}{a} < 1 \end{cases} \Rightarrow \lim(\frac{n^k}{a^n}) = 0$$

$$0 \Rightarrow n^k < a^n$$

2.
$$x_n = \frac{a^n}{n!}$$
, $\forall n: x_n > 0$ (так как $n > 0, a > 1$)
$$\lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right) = \lim_{n \to \infty} \left(\frac{a^{n+1}n!}{a^n(n+1)!} \right) = \lim_{n \to \infty} \left(a \cdot \frac{1}{n+1} \right) = \begin{cases} x_n > 0 \\ 0 < 1 \end{cases} \Rightarrow \lim_{n \to \infty} \left(\frac{a^n}{n!} \right) = 0 \Rightarrow a^n < n!$$

3.
$$x_n = \frac{n!}{n^n}$$
, $\forall n : x_n > 0 \ (n > 0)$

$$\lim(\frac{x_{n+1}}{x_n}) = \lim(\frac{(n+1)!n^n}{(n+1)^{n+1}n!}) = \lim(\frac{n!}{(n+1)^n}) = \lim(\frac{1}{(1+\frac{1}{n})^n}) = \begin{cases} x_n > 0 \\ \frac{1}{e} < 1 \end{cases}$$

$$\Rightarrow \lim(\frac{n!}{n^n}) = 0 \Rightarrow n! < n^n$$

- 19. Теорема Штольца (для неопределенности $\frac{\infty}{\infty}$). Сумма m-ых степеней натуральных чисел.
- 20. Теорема Штольца (для неопределенности $\frac{0}{0}$).
- 21. Подпоследовательности (определение и простейшие свойства). Теорема о стягивающихся отрезках.
- 22. ! Теорема Больцано-Вейерштрасса (в том числе и случай неограниченной последовательности).

- 23. ! Фундаментальные последовательности. Свойства. Критерий Коши.
- 24. Верхний и нижний пределы. Частичные пределы. Связь между ними.
- 25. Характеристика верхних и нижних пределов с помощью N и ϵ . Сохранение неравенств для верхних и нижних пределов.
- 26. ! Сходимость рядов. Необходимое условие сходимости рядов. Примеры.
- 27. Простейшие свойства сходящихся рядов.
- 28. Окрестности и проколотые окрестности. Предельные точки множества.
- 29. ! Определения предела функций в точке. Простейшие свойства.
- 30. ! Равносильность определения предела по Коши и по Гейне.
- 31. Свойства функций, имеющих предел.
- 32. Арифметические действия с пределами.
- 33. ! Теорема о предельном переходе в неравенствах. Теорема о двух милиционерах.
- 34. ! Критерий Коши для предела функций.
- 35. Левый и правый пределы. Предел монотонной функции.