Enzyme kinetics

- Study of the rates of enzyme-catalyzed reactions
- Provides information on enzyme specificities and mechanisms

Formula for a simple enzyme-catalyzed reaction

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$$

- E = free enzyme
- S = substrate
- ES = enzyme-substrate complex
- P = product

What are we measuring?

Initial velocity

 Measured at the very beginning of a reaction when very little P has been made.

First order equation in respect to substrate concentration

For enzyme-catalyzed reactions

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\Longrightarrow} E + P$$

- k_1 is rate constant for formation of ES
- k_{-1} is rate constant for conversion of ES to E+S
- k_2 is rate constant for product formation. For this reaction, $k_2 = kcat$
- Initial velocity assumption: measure activity before appreciable P accumulates: $v_0 = k_2$ [ES]

Enzyme-catalyzed reactions exhibit saturation kinetics

$$E + S \stackrel{k_1}{\rightleftharpoons} E + P$$

At high [S], the enzyme is said to be saturated with respect to substrate

Steady State

The more ES present, the faster ES will dissociate into E + P or E + S. Therefore, when the reaction is started by mixing enzymes and substrates, the [ES] builds up at first, but quickly reaches a STEADY STATE, in which [ES] remains constant. This steady state will persist until almost all of the substrate has been consumed.

Michaelis-Menten equation

 If you assume that the formation of ES equals its $E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$ breakdown, making [ES] constant (steady state), then:

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$$

$$k_1[E][S] = k_{-1}[ES] + k_2[ES]$$

$$K_{\rm m} = \frac{k_{-1} + k_2}{k_1}$$

$$v = \frac{V_{\text{max}} \cdot [S]}{K_{\text{m}} + [S]}$$

K_{m}

- K_m is the [S] at 1/2 V_{max}
- K_m is a constant for a given enzyme
- K_m is an estimate of the equilibrium constant for S binding to E
- Small K_m means tight binding; high K_m means weak binding

K_M is a measure of [S] required for effective catalysis to occur

Understanding V_{max}

The theoretical maximal velocity

- V_{max} is a constant for a given enzyme
- V_{max} is the theoretical maximal rate of the reaction - but it is NEVER achieved
- To reach V_{max} would require that ALL enzyme molecules have tightly bound substrate

The turnover number

A measure of catalytic activity

- The k_{cat} is a direct measure of the catalytic production of product under saturating substrate conditions.
- k_{cat}, the turnover number, is the maximum number of substrate molecules converted to product per enzyme molecule per unit of time.
- According to M-M model, $k_{cat} = V_{max}/E_t$
- Values of k_{cat} range from less than 1/sec to many millions per sec

The catalytic efficiency

- It shows what the enzyme can accomplish when abundant enzyme sites are available.
- It is the k_{cat}/K_M value that allows direct comparison of the effectiveness of an enzyme toward different substrates.

Values of k_{cat} (Turnover Number) for Some Enzymes

Enzyme	$k_{\rm cat}~({ m sec}^{-1})$
Catalase	40,000,000
Carbonic anhydrase	1,000,000
Acetylcholinesterase	14,000
Penicillinase	2,000
Lactate dehydrogenase	1,000
Chymotrypsin	100
DNA polymerase I	15
Lysozyme	0.5

Enzymes Whose k_{cat}/K_m Approaches the Diffusion-Controlled Rate of Association with Substrate

Enzyme	Substrate	$k_{ m cat} \ ({ m sec}^{-1})$	K_m (M)	$rac{k_{ m cat}/K_m}{(\sec^{-1}M^{-1})}$
Acetylcholinesterase	Acetylcholine	1.4×10^4	9×10^{-5}	1.6×10^8
Carbonic anhydrase	${ m CO_2} \ { m HCO_3}^-$	1×10^6 4×10^5	0.012 0.026	8.3×10^{7} 1.5×10^{7}
Catalase	H_2O_2	4×10^7	1.1	4×10^7
Crotonase	Crotonyl-CoA	5.7×10^3	2×10^{-5}	2.8×10^{8}
Fumarase	Fumarate Malate	800 900	5×10^{-6} 2.5×10^{-5}	1.6×10^8 3.6×10^7
Triosephosphate isomerase	Glyceraldehyde- 3-phosphate*	4.3×10^3	1.8×10^{-5}	2.4×10^8
eta-Lactamase	Benzylpenicillin	2×10^3	2×10^{-5}	1×10^8

Measuring $K_{\rm m}$ and $V_{\rm max}$

- Curve-fitting algorithms can be used to determine K_m and V_{max} from v vs. [S] plots
- Michaelis-Menton
 equation can be
 rearranged to the
 "double reciprocal" plot
 and K_m and V_{max} can be
 graphically determined

Lineweaver-Burk equation:

$$\frac{1}{v_0} = \left(\frac{K_{\rm m}}{V_{\rm max}}\right) \frac{1}{[\rm S]} + \frac{1}{V_{\rm max}}$$

Eadie-Hofstee Plot

$$V_0/[S] = V_{\text{max}}/K_M - V_0/K_M$$

Enzyme Activity

- Amount of reaction that a certain amount of enzyme will produce in a specified period of time
- Activity determined by measuring the amount of product formed or substrate that disappeared
- IU of enzyme activity is
 - The amount of enzyme necessary to produce 1 μmole of product (or the loss of 1 μmol of substrate) per minute under specified conditions of substrate concentration, pH and Temperature

Enzyme Inhibition

- Many different kinds of molecules inhibit enzymes and act in a variety of ways.
- One major distinction is whether the inhibition is
 - Reversible
 - Competitive with the substrate or
 - Non-competitive with the substrate
 - Irreversible (I is covalently bound, incapacitating the enzyme)

Reversible Inhibition: Competitive

 Inhibitor resembles substrate but can't undergo the catalytic step, so it wastes the enzyme's time by preventing S binding. i.e. Inhibitor COMPETES with substrate for binding.

$$E + S \xrightarrow{k_1} E \cdot S \xrightarrow{k_{cat}} E + P$$

$$+ I$$

$$k_I \downarrow \uparrow$$

$$EI$$

Reversible Inhibition: Competitive

Reversible Inhibition: Non-Competitive

 A molecule or ion binds at a remote site on the enzyme in such a way that it affects k_{cat}.

$$E + S \xrightarrow{k_{1}} E \cdot S \xrightarrow{k_{cat}} E + P$$

$$+ \qquad \qquad +$$

$$K_{I} \downarrow \uparrow \qquad \qquad \downarrow K_{I}$$

$$EI + S \xrightarrow{k_{1}} EIS$$

$$E + P$$

$$+ \qquad \qquad \downarrow K_{Cat}$$

$$+ \qquad \qquad \downarrow K_{Cat$$

Enzyme Inhibition

Inhibitor Type	Binding Site on Enzyme	Kinetic effect
Competitive Inhibitor	Specifically at the catalytic site, where it competes with substrate for binding in a dynamic equilibrium- like process. Inhibition is reversible by substrate.	V_{max} is unchanged; K_{m} , is increased.
Noncompetitive Inhibitor	Binds E or ES complex other than at the catalytic site. Substrate binding unaltered, but ESI complex cannot form products. Inhibition cannot be reversed by substrate.	K _m appears unaltered; V _{max} is decreased proportionately to inhibitor concentration.
Uncompetitive Inhibitor	Binds only to ES complexes at locations other than the catalytic site. Substrate binding modifies enzyme structure, making inhibitor- binding site available. Inhibition cannot be reversed by substrate.	Apparent V _{max} decreased; K _m , is decreased.