Storytelling Case Study: Airbnb, NYC

- Anuj Srivastava, Karthik Raj Narayanan, Malini S

AGENDA

- Objective
- Background
- Dataset preparation
- Key insights
- Inferences
- Appendix Data Sources
 - Data Methodology
 - Assumptions

OBJECTIVE

• Airbnb is an online marketplace that connects homeowners looking to rent out their properties with **individuals seeking short-term accommodations** that **prioritize safety**.

• Airbnb follows a peer-to-peer model, enabling hosts to list their properties and customers to book directly, with the goal of maximizing revenue in **high-demand** areas.

• Airbnb focuses on popular locations and partners with well-known hosts to increase visibility and drive bookings for less popular properties

BACKGROUND

- Airbnb has experienced a *significant drop in revenue in recent months* due to pandemic.
- Travel *restrictions are now being lifted*, and people are beginning to travel more.
- Airbnb aims to ensure it is *well-prepared for this shift* in the travel landscape.

Dataset preparation

- Load the dataset into a DataFrame, and cleaned the data by handling missing values through imputation for both numerical and categorical columns.
- Conducted univariate analysis on categorical and numerical variables using visualizations, followed by handling outliers using Interquartile Range (IQR) methods.
- Performed bivariate analysis in Python, with additional bivariate and multivariate analysis in Tableau to derive the meaningful insights.

High Costs Fail to Deter Customers from Manhattan and Brooklyn Boroughs

Univariate Analysis – neighbourhood_group

Bivariate Analysis – neighbourhood_group Vs Price

Highest Minimum Stay for Safety with Room type

Univariate Analysis – minimum_nights

Bivariate Analysis – minimum_nights Vs room_types

Reviews drive customer choices

Price of airbnb's based on Reviews in neighbourhood group

	Neighbourh	Number Of Reviews Bin			
Room T		Good	Med	Poor	Very
Entire home/ apt	Bronx	127.2	115.0	147.3	111.0
	Brooklyn	170.4	179.7	195.2	158.8
	Manhattan	232.1	223.0	273.2	225.9
	Queens	144.4	144.3	164.5	126.5
	Staten Island	121.7	139.2	286.4	112.3
Private room	Bronx	54.1	59.5	85.7	54.4
	Brooklyn	75.0	76.2	78.8	72.3
	Manhattan	102.7	113.5	132.7	98.2
	Queens	65.1	67.6	82.6	62.1
	Staten Island	51.3	61.1	81.4	55.7
Shared room	Bronx	45.0	39.4	74.0	20.0
	Brooklyn	40.2	45.2	56.7	46.0
	Manhattan	80.2	79.2	106.0	68.3
	Queens	46.9	103.6	75.2	41.7
	Staten Island		13.0	63.0	

Customer Preference for Home Apartments: Prioritizing Safety and Privacy

Bivariate Analysis neighbourhood_group Vs room_type

Bivariate Analysis neighbourhood_group Vs room_type

Maximizing Airbnb Availability: Off-Peak Seasons, Midweek Stays, and Early Bookings

neighbourhood_group Vs availability_365

neighbourhood_group Vs availability_365

Locality Preferences of Customers: Key Factors Driving Their Choices

- The top 6 locality preferences are :
 - 1. Williamsburg
 - 2. Bedford-Stuyvesant
 - 3. Harlem
 - 4. Upper West Side
 - 5. Hell's Kitchen,
 - 6. East Village.
- Williamsburg, Bedford-Stuyvesant, Bushwick, neighbourhood is situated in Borough Brooklyn whereas Harlem, Upper West Side, Hell's Kitchen located in borough Manhattan.

Top 10 hosts with Neighbourhood group

 Sonder (NYC) and Blueground from Manhatten are the top hosts followed by David and Alex.

Multivariate Analysis – Heat map

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

Inferences:

- Customers favor Entire *Homes/Apartments* over Private and Shared Rooms due to *safety and privacy concerns*. To increase bookings for Shared Rooms, special offers could be considered.
- Based on price and reviews, *Manhattan* and **Brooklyn** attract a higher number of customers despite their high costs.
- The top 6 locality preferences are Williamsburg, Bedford-Stuyvesant, Bushwick, neighbourhood is situated in **Borough Brooklyn** whereas Harlem, Upper West Side, Hell's Kitchen located in borough *Manhattan*.
- Staten Island has the highest availability for booking. Hence, management can communicate with famous hosts who have listed their properties in Staten Island to help boost attraction for unpopular properties.

Appendix: Data Sources

Here is a snapshot of our data dictionary.

Column	Description		
id	listing ID		
name	name of the listing		
host_id	host ID		
host_name	name of the host		
neighbourhood_group	location		
neighbourhood	area		
latitude	latitude coordinates		
longitude	longitude coordinates		
room_type	listing space type		
price			
minimum_nights	amount of nights minimum		
number_of_reviews	number of reviews		
last_review	latest review		
reviews_per_month	number of reviews per month		
calculated_host_listings_count	amount of listing per host		
availability 365	number of days when listing is available for booking		

data sources: (for downloading the dataset)

https://learn.upgrad.com/course/5674/segment/53344/324214/981584/4903670#:~:text =New%20York%20Airbnbs%20Dataset

Appendix – Data Methodology

- Step 1: Import necessary python libraries
- Step 2: Reading the dataset
 - A. Conversion of data into dataframe
 - B. Examining the dataframe
- Step 3: Data cleaning

Handling missing values

- A. Segregation of numerical and categorical column
- B. Imputation on numerical and categorical column
- Step 4: Univariate Analysis
 - A. Categorical variables
 - B. Numerical variables
- Step 5: Inferences from univariate analysis
- Step 6: Handling outliers
- Step 7: Bivariate Analysis and Multivariate Analysis
 - A. Bivariate Analysis carried out in python
 - B. few other Bivariate Analysis carried out using Tableau

Appendix – Data Assumptions

Assume the data is from a reliable source, analysed, knowing that the accuracy and validity of the insights and conclusions will be well-supported.