PAT-NO:

JP02001066963A

DOCUMENT-IDENTIFIER: JP 2001066963 A

TITLE:

ELECTROPHOTOGRAPHIC IMAGE FORMING METHOD,

ELECTROPHOTOGRAPHIC IMAGE FORMING DEVICE AND PROCESS

CARTRIDGE USED FOR THE DEVICE

PUBN-DATE:

March 16, 2001

INVENTOR-INFORMATION:

NAME COUNTRY
ITAMI, AKIHIKO N/A
OSHIBA, TAKEO N/A
SAKIMURA, TOMOO N/A
KITAHARA, YOKO N/A
KURACHI, MASAHIKO N/A
SHIDA, KAZUHISA N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY N/A

KONICA CORP

APPL-NO:

JP2000175201

APPL-DATE:

June 12, 2000

PRIORITY-DATA: 11178558 (June 24, 1999)

INT-CL (IPC): G03G021/10, C08G077/26, C08G077/28, C08K005/00, C08L083/08

, C08L101/00 , G03G005/147

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a satisfactory and stable electrophotographic image forming method capable of removing toner remaining on an electrophotographic photoreceptor effectively by preventing the occurrence of excessive frictional force generated between the photoreceptor and an elastic gum blade, thereby preventing the blade from turning up at the time of cleaning the toner remaining on the photoreceptor with the elastic gum blade, and to provide a process cartridge used therefor.

SOLUTION: In this electrophotographic image forming method by which the toner remaining on the photoreceptor is cleaned with the elastic gum blade after a toner image on the photoreceptor is transferred to a recording material, the photoreceptor has structural unit having charge transfer performance and a resin layer containing siloxane-based resin having

5/27/05, EAST Version: 2.0.1.4

BEST MAILABLE COR

crosslinked structure, then the toner remaining on the photoreceptor is cleaned by allowing the gum blade to abut on the photoreceptor in a counter direction and vibrating the gum blade at the vibration of 10 to 200 μm.

COPYRIGHT: (C)2001,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-66963 (P2001-66963A)

(43)公開日 平成13年3月16日(2001.3.16)

(51) Int.CL'	識別記号	ΡI		ร ั~	テーマコード(参考)		
G03G 21/10		G03G 2	1/00	318			
C08G 77/26		C08G 7	7/26				
77/28		7	7/28				
C08K 5/00		C08K !	5/00				
C08L 83/08		C08L 8	3/08				
	審查請求	未請求 請求項	fの数10 OL	(全 30 頁)	最終頁に続く		
(21)出願番号	特顧2000-175201(P2000-175201)	(71)出顧人					
5		•	コニカ株式会				
(22)出顧日	平成12年6月12日(2000.6.12)	Amo) starret de	東京都新宿区	西斯宿1丁目2	6番2号		
Annah bush da bir hardi edi ed	An interest a services	(72)発明者	• • • • • • • • • • • • • • • • • • • •	- Learn to Difference on	0 1d 2-1d-b		
(31)優先権主張番号				市石川町2970建	を地コニカ株式		
(32) 優先日	平成11年6月24日(1999.6.24)	(ma)	会社内				
(33)優先權主張国	日本 (JP)	(72)発明者					
				市石川町2970和	能地コニカ株式		
			会社内				
		(72)発明者	▲崎▼村 友	~			
				市石川町2970番	トルコニカ株式		
			会社内				
					最終頁に続く		

(54) 【発明の名称】 電子写真画像形成方法、電子写真画像形成装置、及び装装置に用いられるプロセスカートリッジ

(57)【要約】

【課題】 本発明の目的は電子写真感光体上に残留するトナーを弾性体ゴムブレードでクリーニングを行う電子写真画像形成方法に於いて、電子写真感光体と弾性体ゴムブレードの間に生ずる過大な摩擦力の発生を防止し、ブレードめくれの発生を防止し、効果的に前記感光体上に残留するトナーを除去することができ、良好で安定した電子写真画像形成方法、電子写真画像形成装置、及び該電子写真画像形成装置に用いられプロセスカートリッジを提供する事である。

【解決手段】 電子写真感光体上のトナー像を記録材へ 転写後に、前記感光体上に残留するトナーを弾性体ゴム ブレードでクリーニングを行う電子写真画像形成方法に おいて、前記感光体が電荷輸送性能を有する構造単位を 有し、且つ架橋構造を有するシロキサン系樹脂含有する 樹脂層を有し、該ゴムブレードを前記感光体に対してカ ウンター方向で当接させ、且つ該ゴムブレードを振動大 きさ10~200μmの条件で振動させて前記感光体上 に残留するトナーをクリーニングすることを特徴とする 電子写真画像形成方法。

【特許請求の範囲】

【請求項1】 電子写真感光体上のトナー像を記録材へ 転写後に、前記感光体上に残留するトナーを弾性体ゴム ブレードでクリーニングを行う電子写真画像形成方法に おいて、前記感光体が電荷輸送性能を有する構造単位を 有し、且つ架橋構造を有するシロキサン系樹脂を含有す る樹脂層を有し、該ゴムブレードを前記感光体に対して カウンター方向で当接させ、且つ該ゴムブレードを振動 大きさ10~200μmの条件で振動させて前記感光体 上に残留するトナーをクリーニングすることを特徴とす る電子写真画像形成方法。

【請求項2】 電子写真感光体上のトナー像を記録材へ 転写後に、前記感光体上に残留するトナーを弾性体ゴム ブレードでクリーニングを行う電子写真画像形成方法に おいて、前記感光体が電荷輸送性能を有する構造単位を 有し、且つ架橋構造を有するシロキサン系樹脂を含有す る樹脂層を有し、且つ前記弾性体ゴムブレードに25± 5℃に於ける硬度がJISAスケールで65以上80以 下であり、25℃±0.2℃に於ける反発弾性が20以 上75以下であるポリウレタンゴムを用い、前記感光体 に対してカウンター方向で当接させて前記感光体上に残 留するトナーをクリーニングすることを特徴とする電子 写真画像形成方法。

【請求項3】 前記弾性体ゴムブレードの前記感光体に 対する静止摩擦係数を1.0以下とすることを特徴とす る請求項1又は2記載の電子写真画像形成方法。

【請求項4】 前記樹脂層が平均粒径0.05μm~1 0μmの有機微粒子を含有することを特徴とする請求項 1~3のいずれか1項に記載の電子写真画像形成方法。

【請求項5】 前記有機微粒子がフッ素原子含有樹脂微 30 粒子であることを特徴とする請求項1~4のいずれか1 項に記載の電子写真画像形成方法。

【請求項6】 前記樹脂層が酸化防止剤を含有することを特徴とする請求項1~5のいずれか1項に記載の電子写真画像形成方法。

【請求項7】 前記感光体の樹脂層が水酸基或いは加水 分解性基を有する有機ケイ素化合物と水酸基を有する電 荷輸送性化合物とを反応させて得られる架橋構造を有す るシロキサン系樹脂であることを特徴とする請求項1~ 6のいずれか1項に記載の電子写真画像形成方法。

【請求項8】 電子写真感光体上のトナー像を記録材へ 転写後に、前記感光体上に残留するトナーを弾性体ゴム ブレードでクリーニングを行う電子写真画像形成装置に おいて、前記感光体が電荷輸送性能を有する構造単位を 有し、且つ架橋構造を有するシロキサン系樹脂含有する 樹脂層を有し、該ゴムブレードを前記感光体に対してカ ウンター方向で当接させ、且つ該ゴムブレードを振動大 きさ10~200μmの条件で振動させて前記感光体上 に残留するトナーをクリーニングすることを特徴とする 電子写真画像形成装置。 【請求項9】 電子写真感光体上のトナー像を記録材へ 転写後に、前記感光体上に残留するトナーを弾性体ゴム ブレードでクリーニングを行う電子写真画像形成装置に おいて、前記感光体が電荷輸送性能を有する構造単位を 有し、且つ架橋構造を有するシロキサン系樹脂含有する 機略図を有し、目つ前記録性体ブムブレードに25+5

有し、且つ架橋構造を有するシロキサン系樹脂含有する 樹脂層を有し、且つ前記弾性体ゴムブレードに25±5 でに於ける硬度がJISAスケールで65以上80以下 であり、25℃±0.2℃に於ける反発弾性が20以上 75以下であるポリウレタンゴムを用い、前記感光体に 対してカウンター方向で当接させて前記感光体上に残留

上に残留するトナーをクリーニングすることを特徴とす 10 対してカウンター方向で当接させて前記感光体上に残留 る電子写真画像形成方法。 するトナーをクリーニングすることを特徴とする電子写 【請求項2】 電子写真感光体上のトナー像を記録材へ 真画像形成装置。

【請求項10】 電子写真感光体上のトナー像を記録材へ転写後に、前記感光体上に残留するトナーを弾性体ゴムブレードでクリーニングを行う電子写真画像形成装置に使用するプロセスカートリッジが、電荷輸送性能を有する構造単位を有し、且つ架橋構造を有するシロキサン系樹脂を含有する樹脂層を有する電子写真感光体、及び25±5℃に於ける硬度がJISAスケールで65以上80以下であり、25℃±0.2℃に於ける反発弾性が20以上75以下であるポリウレタンゴムを用いた弾性体ゴムブレードを前記感光体に対してカウンター方向で当接せしめたクリーニング手段を少なくとも一体として有しており、該電子写真画像形成装置に着脱可能に設計されていることを特徴とするプロセスカートリッジ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真画像形成方法、電子写真画像形成装置、及び該装置に用いられるプロセスカートリッジに関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真画像形成方法、電子写真画像形成装置、及び該装置に用いられるプロセスカートリッジに関するものである。

[0002]

【従来の技術】近年、電子写真感光体(以下感光体とも云う。)は有機光導電性物質を含有する有機感光体が最も広く用いられている。有機感光体は可視光から赤外光まで各種露光光源に対応した材料が開発し易いこと、環境汚染のない材料を選択できること、製造コストが安いこと等が他の感光体に対して有利な点であるが、唯一の欠点は機械的強度が弱く、多数枚の複写やプリント時に感光体表面の劣化や傷の発生がある事である。

【0003】一般に、カールソン法の電子写真複写装置においては、感光体を一様に帯電させた後、露光によって画像様に電荷を消去して静電潜像を形成し、その静電潜像をトナーによって現像、可視化し、次いでそのトナーを紙等に転写、定着させる。

【0004】しかしながら、感光体上のトナーは全てが 転写されることはなく、一部のトナーは感光体に残留

50 し、この状態で繰り返し画像形成した場合、残留トナー

の影響で潜像形成が乱されるため汚れのない高画質な複 写を得ることができない。このため、残留トナーの除去 が必要となる。クリーニング手段にはファーブラシロー ラー、磁気ブラシローラーまたはブレード(クリーニン グブレードとも云う) 等が代表的であるが、性能、構成 等の点からブレードが主に用いられている。このときの ブレード部材としては、板状のゴム弾性体が一般的であ る.

【0005】このように、電子写真感光体の表面は、帯 電器、現像器、転写手段、及びクリーニング器等によ り、電気的、機械的な外力が直接加えられるため、それ らに対する耐久性が要求され、特に摺擦による感光体表 面の摩耗や傷の発生、異物の混入や紙詰まり処理時の衝 撃等による膜剥がれ等に対する機械的耐久性が要求され る。なかでも衝撃による傷や膜剥がれに対する耐久性に ついては、無機感光体並みの強度が強く求められてい る.

【0006】前記のような要求される様々な特性を満た すため、これまで種々の技術事項が検討されてきた。

【0007】機械的耐久性に関しては、有機感光体の表 20 面にビスフェノールZ型ポリカーボネートをバインダー (結着樹脂)として用いることにより、表面の摩耗特 性、トナーフイルミング特性が改善される事が報告され ている。又、特開平6-118681号公報では感光体 の表面層として、コロイダルシリカ含有硬化性シリコン 樹脂を用いることが報告されている。

【0008】しかし、ピスフェノールZ型ポリカーポネ ートバインダーを用いた感光体では、なお耐摩耗特性が 不足しており、十分な耐久性を有していない。一方、コ ロイダルシリカ含有硬化性シリコン樹脂の表面層は強度 30 特性に優れ、従来有機感光体(以下OPCとも云う)の 欠点であった耐摩耗性や耐傷性向上の手段として広く検 討されてきた。しかしながら、シロキサン樹脂を表面層 として用いた場合には特に低湿環境での電位特性に問題 があった。これを改善するために導電性粒子を添加する などの方法によって表面抵抗を下げる試みがなされてき たが、この方法では逆に高温高温環境下での画像流れが 発生する問題が生じていた。これらの問題について発明 者らは電荷輸送性能を有する構造単位をシロキサン樹脂 中に組み込むことで、低温低湿環境下での電位特性が改 40 善されることを見いだした (特願平11-70380 号)。しかしながら、電荷輸送性能を有する構造単位を 組み込んだ結果、クリーニング時の感光体とクリーニン グブレード間の摩擦抵抗が上昇し、ブレードの反転(以 下ブレードめくれとも云う)が起こりやすくなることが 見出されたした。

[0009]

【発明が解決しようとする課題】本発明の目的は電子写 真感光体上に残留するトナーを弾性体ゴムブレードでク リーニングを行う電子写真画像形成方法に於いて、電子 50 とを特徴とする前記1~5のいずれか1項に記載の電子

写真感光体と弾性体ゴムブレードの間に生ずる過大な摩 擦力の発生を防止し、ブレードめくれの発生を防止し、 効果的に前記感光体上に残留するトナーを除去すること ができ、良好で安定した電子写真画像形成方法、電子写

1

真画像形成装置、及び該電子写真画像形成装置に用いら れプロセスカートリッジの提供する事である。

[0010]

【課題を解決するための手段】本発明者等は、上記問題 解決のため鋭意努力した結果、感光体として電荷輸送性 10 能を有する構造単位を有し、且つ架橋構造を有するシロ キサン系樹脂を含有する樹脂層を有する電子写真感光体 を用い、該感光体上に残留するトナーを弾性体ゴムブレ ードを有するクリーニング工程で除去するとき、前記弾 性体ゴムブレードを特定の条件にコントロールする事に より本発明の目的が達成されることを見いだした。

【0011】即ち、下記構成の何れかをとることにより 本発明の目的が達成されることを見いだした。

【0012】1.電子写真感光体上のトナー像を記録材 へ転写後に、前記感光体上に残留するトナーを弾性体ゴ ムブレードでクリーニングを行う電子写真画像形成方法 において、前記感光体が電荷輸送性能を有する構造単位 を有し、且つ架橋構造を有するシロキサン系樹脂含有す る樹脂層を有し、該ゴムブレードを前記感光体に対して カウンター方向で当接させ、且つ該ゴムブレードを振動 大きさ10~200µmの条件で振動させて前記感光体 上に残留するトナーをクリーニングすることを特徴とす る電子写真画像形成方法。

【0013】2. 電子写真感光体上のトナー像を記録材 へ転写後に、前記感光体上に残留するトナーを弾性体ゴ ムブレードでクリーニングを行う電子写真画像形成方法 において、前記感光体が電荷輸送性能を有する構造単位 を有し、且つ架橋構造を有するシロキサン系樹脂を含有 する樹脂層を有し、且つ前記弾性体ゴムブレードに25 ±5℃に於ける硬度がJISAスケールで65以上80 以下であり、25℃±0.2℃に於ける反発弾性が20 以上75以下であるポリウレタンゴムを用い、前記感光 体に対してカウンター方向で当接させて前記感光体上に 残留するトナーをクリーニングすることを特徴とする電 子写真画像形成方法。

【0014】3. 前記弾性体ゴムブレードの前記感光体 に対する静止摩擦係数を1.0以下とすることを特徴と する前記1又は2記載の電子写真画像形成方法。

【0015】4. 前記樹脂層が平均粒径0. 05μm~ 10 mmの有機微粒子を含有することを特徴とする前記 1~3のいずれか1項に記載の電子写真画像形成方法。 【0016】5. 前記有機微粒子がフッ素原子含有樹脂 微粒子であることを特徴とする前記1~4のいずれか1 項に記載の電子写真画像形成方法。

【0017】6. 前記樹脂層が酸化防止剤を含有するこ

写真画像形成方法。

【0018】7. 前記感光体の樹脂層が水酸基或いは加水分解性基を有する有機ケイ素化合物と水酸基を有する電荷輸送性化合物とを反応させて得られる架橋構造を有するシロキサン系樹脂であることを特徴とする前記1~6のいずれか1項に記載の電子写真画像形成方法。

【0019】8. 電子写真感光体上のトナー像を記録材へ転写後に、前記感光体上に残留するトナーを弾性体ゴムブレードでクリーニングを行う電子写真画像形成装置において、前記感光体が電荷輸送性能を有する構造単位 10を有し、且つ架橋構造を有するシロキサン系樹脂含有する樹脂層を有し、該ゴムブレードを前記感光体に対してカウンター方向で当接させ、且つ該ゴムブレードを振動大きさ10~200μmの条件で振動させて前記感光体上に残留するトナーをクリーニングすることを特徴とする電子写真画像形成装置。

【0020】9. 電子写真感光体上のトナー像を記録材へ転写後に、前記感光体上に残留するトナーを弾性体ゴムブレードでクリーニングを行う電子写真画像形成装置において、前記感光体が電荷輸送性能を有する構造単位 20を有し、且つ架橋構造を有するシロキサン系樹脂含有する樹脂層を有し、且つ前記弾性体ゴムブレードに25±5℃に於ける硬度がJISAスケールで65以上80以下であり、25℃±0.2℃に於ける反発弾性が20以上75以下であるボリウレタンゴムを用い、前記感光体に対してカウンター方向で当接させて前記感光体上に残留するトナーをクリーニングすることを特徴とする電子写真画像形成装置。

【0021】10.電子写真感光体上のトナー像を記録材へ転写後に、前記感光体上に残留するトナーを弾性体 30 ゴムブレードでクリーニングを行う電子写真画像形成装置に使用するプロセスカートリッジが、電荷輸送性能を有する構造単位を有し、且つ架橋構造を有するシロキサン系樹脂を含有する樹脂層を有する電子写真感光体、及び25±5℃に於ける硬度がJISAスケールで65以上80以下であり、25℃±0.2℃に於ける反発弾性が20以上75以下であるポリウレタンゴムを用いた弾性体ゴムブレードを前記感光体に対してカウンター方向で当接せしめたクリーニング手段を少なくとも一体として有しており、該電子写真画像形成装置に着脱可能に設 40計されていることを特徴とするプロセスカートリッジ。【0022】本発明を更に詳しく説明する。

【0023】本発明者等は上記本発明の構成を取ることにより、電子写真感光体上に残留するトナーを弾性体ゴムブレードでクリーニングを行う電子写真画像形成方法に於いて、電子写真感光体と弾性体ゴムブレードの間に生ずる摩擦力を過大にすることなく、ブレードめくれの発生を防止し、効果的に前記感光体上に残留するトナーを除去することができ、良好で安定した画像を長期間に渡り、得ることができることを見出した。

【0024】図1は本発明の電子写真画像形成方法を説明する構成概要図である。

【0025】図1において10は矢印方向に回転する有 機感光体ドラムであり、11は前記感光体ドラムに一様 な帯電を付与する帯電器であり、コロナ放電帯電器、ロ ーラー帯電器、又は磁気ブラシ帯電器とされてもよい。 12はアナログ像露光又はLED、LD等を用いたデジ タル像露光であり、該像露光により感光体上に静電潜像 が形成される。この静電潜像は、一成分系又は二成分系 現像剤、好ましくは二成分系現像剤であって体積平均3 ~15µmの微粒子トナーを含有する現像剤を収納する 現像器13により接触又は非接触で現像されて前記感光 体上にトナー像が形成される。このトナー像はタイミン グを合わせて搬送された記録材 (記録紙とも云う) p上 に転写器(コロナ放電による転写器又はローラー転写 器) 14により静電転写さる。次にトナー像を担持した 記録材は分離電極15により分離され、搬送手段16に より定着器17へと搬送、定着される。

【0026】転写後に感光体表面は除電器18により除電された後、本発明に係るクリーニングブレード19により前記感光体10に対してカウンター方向(クリーニングブレードと感光体の接触点に於ける接触角(図3のθ)が鋭角であること。)で当接してクリーニングされ、その後除電ランプ20により除電されて次の像形成に備えられる。

【0027】前記クリーニングブレード19は本発明では25℃±0.2℃に於ける反発弾性が20以上75以下であるボリウレタンゴムから成り、図2のように感光体ドラム10にカウンター方向で当接され、該感光体ドラムの矢印方向への回転に伴い相互の摩擦係数に応じて点線19aに移動するが、前記ブレードの反発弾性により点線19bにステップスリップし、該ステップスリップによりトナー19cが前記ドラム面上から除去されてクリーニングされる。

【0028】次に図2のクリーニングの機構を説明する 図を用いて説明する。

【0029】本発明では前記ステップスリップを行う時の、後記測定法に基づく振動の大きさK1を10~200μmの条件で振動させることである。後記測定法では図2に示すようにブレード先端から約3mmの位置にセットされたピエゾセンサー30でブレード振動の加速度を読み取り、得られた加速度信号32を演算器31に入力して演算処理33してブレードの振動の大きさ(センサーセット位置のブレードの振幅)Kμmを出力する。このデーターとK1の10~200μmとを比較してブレード条件の適、不適を判別し、不適の場合、ブレードの交換又はブレード当接荷重P(g/cm)、当接角の、自由長1mmその他を修正して、適性条件で画像形成を行うようにする。

50 【0030】本発明において、クリーニングブレードの

振動の大きさが10μmより小さいと、振動のエネルギ ーが小さくなり、トナーが前記ブレードの下をすりぬけ て画像カブリが発生し、その他ポチ故障、筋故障が発生 し易くなる。

【0031】又前記振動の大きさが200µmより大き いと前記ブレードの振動のエネルギーが過大となり、ブ レードめくれが発生したり、感光体上で跳ねて横線カブ リ (黒筋)を発生し、クリーニング不良を引き起こす。 【0032】なお前記クリーニングブレードの振動の大 きさの測定は以下のようである。

【0033】小野測器社製加速度検出器NP-3210 のセンサーをクリーニングブレードの中央(先端から3 mmの所)に取り付け、感光体が一定回転になったとき の振動を前記センサーにより10秒間読取り、該センサ ーからの出力データーを「ONO SOKKI CF6 400 4チャンネルインテリジェントFFアナライ ザ」で演算処理して前記振動の振幅の平均値を得、これ を前記ブレードの振動の大きさとする。

【0034】次に図3のクリーニングの機構を説明する 図を用いて説明する。

【0035】本発明において前記クリーニングブレード の感光体への当接荷重P、当接角の好ましい値として は、 $P=5\sim40$ g/cm、 $\theta=5\sim35$ ° である。

【0036】又、前記クリーニングブレード自由長1は 図3に示すように支持部材191の端部から変形前のブ レードの先端点の長さを表す。該自由長の好ましい値と しては $1=6\sim15$ mm、である。前記クリーニングブ レードの厚さは0.5~10mmが好ましい。

【0037】当接荷重Pはブレード19を感光体ドラム 10に当接させたときの圧接力P'の法線方向ベクトル 30 値である。

【0038】又当接角 6 は感光体の当接点Aにおける接 線Xと変形前のブレード(図面では点線で示した)との なす角を表す。

【0039】本発明では弾性体ゴムブレードの振動を1 0~200μmの条件でに制御して使用することにより ブレードの反転もなく、クリーニング性が向上し、感光 体層の摩耗も小さくなることが見出された。

【0040】本発明の樹脂層をクリーニングする弾性体 ゴムブレードの物性のうち硬度と反発弾性を同時にコン 40 トロールすることにより、より有効にブレードの反転を 抑制できる。25±5℃に於けるブレードのJISA硬 度が65よりも小さくなるとブレードの反転が起こり易 くなり、80より大きくなるとクリーニング性能が低下 する。また、反発弾性が75を超えるとブレードの反転 がおこり易くなり、20以下だとクリーニング性能が低 下する。これら硬度と反発弾性が同時に請求範囲を満た さないと効果が得られない。更に、好ましくは反発弾性 は20以上40以下である。(JISA硬度及び反発弾 性ともJISK6301の加硫ゴム物理試験方法に基づ 50 炭素が直接結合した形の有機基としては、メチル、エチ

き測定する。反発弾性の数値は%を示す。)上記クリー ニングブレードの硬度と反発弾性をコントロールするこ とによって長期にわたってブレードの反転もなく安定な クリーニング性能を維持することが可能となった。その 結果、減耗も少なくクリーニング性にも優れた高耐久電 子写真画像形成方法を提供することができる。

【0041】また、樹脂層中に有機微粒子を添加するこ とにより感光体表面とクリーニングブレード間の摩擦力 を低減させることが可能であり、特に感光体とクリーニ 10 ングブレードの摩擦係数を1.0以下にすることで長期 にわたってブレードの反転を効果的に抑制することがで きる。

【0042】前記ブレードクリーニング方式に用いられ る弾性体ゴムブレードの材質としてはウレタンゴム、シ リコンゴム、フッソゴム、クロロピレンゴム、ブタジエ ンゴム等が知られているが、これらの内、ウレタンゴム は他のゴムに比して摩耗特性が優れている点で特に好ま しい。例えば、特開昭59-30574号に記載のポリ カプロラクトンエステルとポリイソシアネートとを反応 20 硬化せしめて得られるウレタンゴム等が好ましい。

【0043】次に、本発明に用いられる電子写真感光体 について詳細に説明する。

【0044】本発明において、電荷輸送性能を有する構 造単位を有し、且つ架橋構造を有するシロキサン系樹脂 に於けるシロキサン系樹脂は公知の方法により、即ち水 酸基或いは加水分解性基を有する有機ケイ素化合物を用 いて製造される。前記有機ケイ素化合物は下記一般式 (A)~(D)の化学式で示される。

[0045]

【化1】

【0046】(式中、R1~R6は式中のケイ素に炭素が 直接結合した形の有機基を表し、Z1~Z4は水酸基又は 加水分解性基を表す。)

上記一般式中のZ1~Z4が加水分解性基の場合は、加水 分解性基としてメトキシ基、エトキシ基、メチルエチル ケトオキシム基、ジエチルアミノ基、アセトキシ基、プ ロペノキシ基、プロポキシ基、ブトキシ基、メトキシエ トキシ基等が挙げられる。R1~R6に示されるケイ素に ル、プロピル、ブチル等のアルキル基、フェニル、トリ ル、ナフチル、ピフェニル等のアリール基、アーグリシ ドキシプロピル、β-(3,4-エポキシシクロヘキシ ル) エチル等の含エポキシ基、ケーアクリロキシプロピ ル、アーメタアクリロキシプロピルの含(メタ)アクリ ロイル基、アーヒドロキシプロピル、2,3ージヒドロ キシプロピルオキシプロピル等の含水酸基、ビニル、プ ロペニル等の含ビニル基、アーメルカプトプロビル等の 含メルカプト基、 γ ーアミノプロピル、 $N-\beta$ (アミノ ロロプロピル、1, 1, 1-トリフロオロプロピル、ノ ナフルオロヘキシル、パーフルオロオクチルエチル等の 含ハロゲン基、その他ニトロ、シアノ置換アルキル基等 を挙げることができる。又、R1~R6はそれぞれの有機 基が同一でも良く、異なっていてもよい。

【0047】前記シロキサン系樹脂の原料として用いら れる前記有機ケイ素化合物は、一般にはケイ素原子に結 合している加水分解性基の数 n が 1 のとき、 有機ケイ素 化合物の高分子化反応は抑制される。nが2、3又は4 では高度に架橋反応を進めることが可能である。従っ て、これらをコントロールすることにより得られる塗布 層液の保存性や塗布層の硬度等を制御することが出来

【0048】又、前記シロキサン系樹脂の原料としては 前記有機ケイ素化合物を酸性条件下又は塩基性条件下で 加水分解してオリゴマー化或いはポリマー化した加水分 解縮合物を用いることもできる。

【0049】尚、本発明のシロキサン系樹脂とは前記の 如く、予め化学構造単位にシロキサン結合を有するモノ 30 マー、オリゴマー、ポリマーを反応させて(加水分解反 応、触媒や架橋剤を加えた反応等を含む)3次元網目構 造を形成し、硬化させた樹脂を意味する。即ち、シロキ サン結合を有する有機珪素化合物を加水分解反応とその 後の脱水縮合によりシロキサン結合を促進させ3次元網 目構造を形成させ、その結果生成した架橋構造を有する シロキサン系樹脂を意味する。

【0050】又、前記シロキサン系樹脂は水酸基或いは 加水分解性基を有するコロイダルシリカを含ませて、架 **橋構造の一部にシリカ粒子を取り込んだ樹脂としてもよ 40** 11

【0051】本発明における電荷輸送性能を有する構造 単位を有し、且つ架橋構造を有するシロキサン系樹脂と は電子或いは正孔のドリフト移動度を示す特性を有する 化学構造(=電荷輸送性能を有する構造単位)をシロキ サン系樹脂中に部分構造として組み込んだものである。 具体的には本発明の電荷輸送性能を有する構造単位を有 し、且つ架橋構造を有するシロキサン系樹脂は一般的に 電荷輸送物質として用いられる化合物(以後電荷輸送性 化合物又はCTMとも云う)を該シロキサン系樹脂中に 50

部分構造として有している。

【0052】尚、前記の電荷輸送性能を有する構造単位 とは電子或いは正孔のドリフト移動度を有する性質を示 す構造単位、或いは電荷輸送性化合物残基であり、又別 の定義としてはTime-Of-Flight法などの 電荷輸送性能を検知できる公知の方法により電荷輸送に 起因する検出電流が得られる構造単位、或いは電荷輸送 性化合物残基として表現することもできる。

10

【0053】以下にシロキサン系樹脂中に有機珪素化合 エチル)ーケーアミノプロビル等の含アミノ基、ケーク 10 物との反応により電荷輸送性能を有する構造単位を形成 することのできる電荷輸送性化合物について説明する。 【0054】例えば正孔輸送型CTM:キサゾール、オ キサジアゾール、チアゾール、トリアゾール、イミダゾ ール、イミダゾロン、イミダゾリン、ピスイミダゾリジ ン、スチリル、ヒドラゾン、ベンジジン、ピラゾリン、 スチルベン化合物、アミン、オキサゾロン、ベンゾチア ゾール、ベンズイミダゾール、キナゾリン、ベンゾフラ ン、アクリジン、フェナジン、アミノスチルベン、ポリ -N-ビニルカルバゾール、ポリ-1-ビニルピレン、 のときは高分子化反応が起こりやすく、特に3或いは4 20 ポリータービニルアントラセンなどの化学構造を前記シ ロキサン系樹脂の部分構造として含有する。

> 【0055】一方、電子輸送型CTMとしては無水コハ ク酸、無水マレイン酸、無水フタル酸、無水ピロメリッ ト酸、無水メリット酸、テトラシアノエチレン、テトラ シアノキノジメタン、ニトロベンゼン、ジニトロベンゼ ン、トリニトロベンゼン、テトラニトロベンゼン、ニト ロベンゾニトリル、ピクリルクロライド、キノンクロル イミド、クロラニル、ブロマニル、ベンゾキノン、ナフ トキノン、ジフェノキノン、トロポキノン、アントラキ ノン、1-クロロアントラキノン、ジニトロアントラキ ノン、4-ニトロペンゾフェノン、4,4'ージニトロ ベンゾフェノン、4-ニトロベンザルマロンジニトリ ν 、 α -シアノ- β - (p-シアノフェニ ν) -2-(p-クロロフェニル) エチレン、2, 7-ジニトロフ ルオレン、2,4,7-トリニトロフルオレノン、2, 4,5,7ーテトラニトロフルオレノン、9ーフルオレ ニリデンジシアノメチレンマロノニトリル、ポリニトロ -9-フルオロニリデンジシアノメチレンマロノジニト リル、ピクリン酸、o-ニトロ安息香酸、p-ニトロ安 息香酸、3,5-ジニトロ安息香酸、ペンタフルオロ安 息香酸、5-二トロサリチル酸、3,5-ジニトロサリ チル酸、フタル酸、メリット酸などの化学構造を前記シ ロキサン系樹脂の部分構造として含有する。

【0056】本発明において、好ましい電荷輸送性能を 有する構造単位は、前記の如き通常用いられる電荷輸送 性化合物の残基であり、該電荷輸送性化合物を構成する 炭素原子又は珪素原子を介して下記式中のYで示される 連結原子又は連結基に結合し、Yを介してシロキサン系 樹脂中に含有される。

【0057】

【化2】

【0058】(式中、Xは電荷輸送性能を有する構造単位であって、該付与基を構成する炭素原子又は珪素原子を介して式中のYと結合する基、Yは隣接する結合原子(SiとC)を除いた2個以上の原子又は基である。)但し、Yが3個以上の原子の時は式中のSiとC以外のYの結合手は結合が可能な前記硬化性樹脂中のいずれか 10の構成原子と結合しているか又は他の原子、分子基と連結した構造(基)を有する。

【0059】又、前記一般式の中で、Y原子として、特に酸素原子(O)、硫黄原子(S)、窒素原子(N)が好ましい。

【0060】ここで、Yが窒素原子(N)の場合、前記連結基は-NR-で表される。(Rは水素原子又は1値の有機基である。)

電荷輸送性能を有する構造単位Xは式中では1個の基として示されているが、シロキサン系樹脂と反応させる電 20 荷輸送性化合物が2つ以上の反応性官能基を有している場合は硬化性樹脂中で2個以上のクロスリンク基として接合してもよく、単にペンダント基として接合していてもよい

【0061】前記原子、即ち〇、S、Nの原子はそれぞれ電荷輸送能を有する化合物中に導入された水酸基、メルカプト基、アミン基と水酸基或いは加水分解性基を有する有機珪素化合物との反応によって形成され、シロキサン系樹脂中に電荷輸送性能を有する構造単位を部分構造として取り込む連結基である。

【0062】次に本発明中の水酸基、メルカプト基、アミン基、有機珪素含有基を有する電荷輸送性化合物について説明する。

【0063】前記水酸基を有する電荷輸送性化合物は、通常用いられる構造の電荷輸送物質で、且つ水酸基を有している化合物である。即ち、代表的には硬化性有機ケイ素化合物と結合して、樹脂層を形成することが出来る下記一般式で示される電荷輸送性化合物を挙げることができるが、下記構造に限定されるものではなく、電荷輸送能を有し、且つ水酸基を有している化合物であればよ40い。

 $[0064]X - (R_7 - OH)$

ここにおいて、

X: 電荷輸送性能を有する構造単位、

R7:単結合、置換又は無置換のアルキレン基、アリーレン基、

m:1~5の整数である。

【0065】その中でも代表的なものを挙げれば下記の

12

ごときものがある。例えばトリアリールアミン系化合物は、トリフェニルアミン等のトリアリールアミン構造を電荷輸送性能を有する構造単位=Xとして有し、前記Xを構成する炭素原子を介して、又はXから延長されたアルキレン、アリーレン基を介して水酸基を有する化合物が好ましく用いられる。

【0066】1. トリアリールアミン系化合物 【0067】

【化3】 T-1

T-2

HO—N
OH

T-3
HOH₂CH₂C
CH₃
CH₃
CH₃
CH₃

T-4

H₃C

CH₃

CH₂CH₂OH

【0068】2. ヒドラジン系化合物 【0069】 【化4】

【0070】3. スチルベン系化合物 【0071】 *【化5】

【0072】4. ベンジジン系化合物 [0073]

*【化6】

【0074】5. ブタジエン系化合物

*【化7】

[0075]

Bu-1
$$(C_2H_8)_2N - C=CH-CH=C$$

$$(C_2H_5)_2N - CH_2OH$$

$$(C_2H_5)_2N - CH_2OH$$

【0076】6. その他の化合物 【0077】 ※【化8】

*

【0078】次に、水酸基を有する電荷輸送性化合物の 合成例について述べる。

【0079】例示化合物T-1の合成

20

[0080]

【化9】

【0081】ステップA

温度計、冷却管、攪拌装置、滴下ロートの付いた四頭コルベンに、化合物(1)49gとオキシ塩化リン184gを入れ加熱溶解した。滴下ロートよりジメチルホルムアミド117gを徐々に滴下し、その後反応液温を85~95℃に保ち、約15時間攪拌を行った。次に反応液を大過剰の温水に徐々に注いだ後、攪拌しながらゆっくか冷却した。

22

【0082】析出した結晶を沪過及び乾燥した後、シリカゲル等により不純物吸着及びアセトニトリルでの再結晶により精製を行って化合物(2)を得た。収量は30gであった。

【0083】ステップB

化合物(2)30gとエタノール100m1をコルベンに投入し攪拌した。水素化ホウ素ナトリウム1.9gを徐々に添加した後、液温を40~60℃に保ち、約2時間攪拌を行った。次に反応液を約300m1の水に徐々にあけ、攪拌して結晶を析出させた。沪過後充分水洗して、乾燥し化合物(3)を得た。収量は30gであっ

20 た。

【0084】例示化合物S-1の合成 【0085】 【化10】

30

【0086】ステップA

温度計及び撹拌装置を付けた300m1コルベンに、Cuを30g、K2CO3を60g、化合物(1)8g、化 40合物(2)100gを投入し、約180℃まで昇温して20時間撹拌した。冷却後沪過し、カラム精製により化合物(3)7gを得た。

【0087】ステップB

温度計、滴下ロート、アルゴンガス導入装置及び攪拌装置を付けた100m1コルベンをアルゴンガス雰囲気にし、これに化合物(3)7g、トルエン50m1、塩化ホスホリル3gを投入した。室温下で攪拌しながら、DMF2gをゆっくりと滴下し、その後約80℃に昇温して16時間攪拌した。約70℃の温水にあけてから冷却*50

*した。これをトルエンにて抽出し、抽出液を水のpHが7になるまで水洗した。硫酸ナトリウムにて乾燥した後に濃縮し、カラム精製により化合物(4)5gを得た。 【0088】ステップC

アルゴンガス導入装置及び撹拌装置を付けた100ml コルベンにt-BuOK1.0g、DMF60mlを投入し、アルゴンガス雰囲気にした。これに化合物(4) 2.0g、化合物(5)2.2gを加え、室温で1時間 撹拌した。これを大過剰の水にあけ、トルエンにて抽出 し、抽出液を水洗した後、硫酸ナトリウムにて乾燥後、 濃縮してからカラム精製を行い化合物(6)2.44g を得た。

【0089】ステップD

温度計、滴下ロート、アルゴンガス導入装置及び攪拌装置を付けた100mlコルベンにトルエンを投入し、アルゴンガス雰囲気にした。これにn-BuLiのヘキサン溶液(1.72M)15mlを加え、50℃に加温した。これに化合物(6)2.44gをトルエン30ml溶解させた液を滴下し、50℃に保って3時間攪拌した。これを-40℃に冷却した後、エチレンオキサイド8mlを加え、-15℃まで昇温して1時間攪拌した。その後室温まで昇温し、水5mlを加えて、エーテル200mlにて抽出後、抽出液を飽和食塩水で洗浄した。洗浄液がpHになるまで洗浄した後、硫酸ナトリウムにて乾燥、濃縮、カラム精製して化合物(7)1.0gを得た。

【0090】次に、メルカプト基を有する電荷輸送性化 合物の具体例を下記に例示する。

【0091】メルカプト基を有する電荷輸送性化合物とは、通常用いられる構造の電荷輸送物質で、且つメルカ

26

アト基を有している化合物である。即ち、代表的には硬化性有機ケイ素化合物と結合して、樹脂層を形成することが出来る下記一般式で示される電荷輸送性化合物を挙げることができるが、下記構造に限定されるものではなく、電荷輸送能を有し、且つメルカプト基を有している化合物であればよい。

 $[0092]X-(R_8-SH)$

ここにおいて、

X:電荷輸送性能を有する構造単位、

10 R₈: 単結合、置換又は無置換のアルキレン、アリーレン基、

m:1~5の整数である。

【0093】その中でも代表的なものを挙げれば下記のごときものがある。

[0094]

【化11】

【0095】更に、アミノ基を有する電荷輸送性化合物 について説明する。

【0096】アミノ基を有する電荷輸送性化合物は、通 常用いられる構造の電荷輸送物質で、且つアミノ基を有 している化合物である。即ち、代表的には硬化性有機ケ イ素化合物と結合して、樹脂層を形成することが出来る 下記一般式で示される電荷輸送性化合物を挙げることが できるが、下記構造に限定されるものではなく、電荷輸 送能を有し、且つアミノ基を有している化合物であれば*50 m:1~5の整数である。

*よい。

 $[0097]X-(R_9-NR_{10}H)$

ここにおいて、

X: 電荷輸送性能を有する構造単位、

Rg: 単結合、置換、無置換のアルキレン、置換、無置 換のアリーレン基、

R10: 水素原子、置換、非置換のアルキル基、置換、非 置換のアリール基、

29 30 【0098】その中でも代表的なものを挙げれば下記の * [0099] ごときものがある。 【化12】 W-1 W-2 CH2NH2 CH2NH2 CH2NH2

【0100】アミノ基を有する電荷輸送性化合物の中 で、第一級アミン化合物 (-NH2) の場合は2個の水 素原子が有機珪素化合物と反応し、シロキサン構造に連 結しても良い。第2級アミン化合物 (-NHR10) の場 合は1個の水素原子が有機珪素化合物と反応し、Rioは ブランチとして残存する基でも良く、架橋反応を起こす 基でも良く、電荷輸送物質を含む化合物残基でもよい。※50 【0103】

※【0101】更に、ケイ素原子含有基を有する電荷輸送 性化合物について説明する。

【0102】ケイ素原子含有基を有する電荷輸送性化合 物は、以下のような構造の電荷輸送物質である。この化 合物も硬化性有機ケイ素化合物と結合して、樹脂層を形 成することが出来る。

 $X - (-Y - Si(R_{11})_{3-a}(R_{12})_a)_n$

(式中、Xは電荷輸送性能を有する構造単位を含む基で あり、R11は水素原子、置換若しくは未置換のアルキル 基、アリール基を示し、Rizは加水分解性基又は水酸基 を示し、Yは置換若しくは未置換のアルキレン基、アリ ーレン基を示す。aは1~3の整数を示し、nは整数を **示す。)**

その中でも代表的なものを挙げれば下記のごときものが ある。

【0104】前記シロキサン系樹脂の形成原料:前記一 10 殷式(A)から(D)(以下(A)~(D)という)組 成比としては、有機珪素化合物: (A)+(B)成分1 モルに対し、(C)+(D)成分0.05~1モルを用 いることが好ましい。

【0105】またコロイダルシリカ(E)を添加する場 合は前記(A)+(B)+(C)+(D)成分の総重量 100部に対し(E)を1~30重量部を用いることが 好ましい。

・【0106】また前記有機ケイ素化合物やコロイダルシ リカと反応して樹脂層を形成することができる反応性電 20 荷輸送性化合物 (F) の添加量は、前記 (A) + (B) + (C) + (D) 成分の総重量100部に対し(F)を 1~500重量部を用いることが好ましい。前記(A) + (B) 成分が前記の範囲を超えて使用されると、

(A) + (B) 成分が少ない場合はシロキサン樹脂層は 架橋密度が小さすぎ硬度が不足する。又、(A)+

(B) 成分が多すぎると架橋密度が大きすぎ硬度は十分 だが、脆い樹脂層となる。(E)成分のコロイダルシリ カ成分の過不足も、(A)+(B)成分と同様の傾向が みられる。一方、(F)成分が少ない場合はシロキサン 30 アルコキシに変成されていても良い。)。 樹脂層の電荷輸送能が小さく、感度の低下、残電の上昇 を生じ、(F)成分が多い場合はシロキサン樹脂層の膜 強度が弱くなる傾向がみられる。

【0107】本発明の電荷輸送性能を有する構造単位を 有し、且つ架橋構造を有するシロキサン系樹脂は予め構 造単位にシロキサン結合を有するモノマー、オリゴマ ー、ポリマーに触媒や架橋剤を加えて新たな化学結合を 形成させ3次元網目構造を形成する事もあり、又加水分 解反応とその後の脱水縮合によりシロキサン結合を促進 させモノマー、オロゴマー、ポリマーから3次元網目構 40 造を形成する事もできる。

【0108】一般的には、アルコキシシランを有する組 成物又はアルコキシシランとコロイダルシリカを有する 組成物の総合反応により3次元網目構造を形成すること ができる。

【0109】また前記の3次元網目構造を形成させる触 媒としては有機カルボン酸、亜硝酸、亜硫酸、アルミン 酸、炭酸及びチオシアン酸の各アルカリ金属塩、有機ア ミン塩(水酸化テトラメチルアンモニウム、テトラメチ ルアンモニウムアセテート)、スズ有機酸塩(スタンナ 50 P9)記載の化合物も挙げられるが本発明はこれに限定

スオクトエート、ジブチルチンジアセテート、ジブチル チンジラウレート、ジブチルチンメルカプチド、ジブチ ルチンチオカルボキシレート、ジブチルチンマリエート 等)、アルミニウム、亜鉛のオクテン酸、ナフテン酸 塩、アセチルアセトン錯化合物等が挙げられる。

32

【0110】また本発明中の樹脂層には酸化防止剤を添 加することが好ましい。酸化防止剤には、熱、光等によ り発生するラジカルを捕捉するラジカル連鎖禁止の作用 を持つもの、例えばヒンダートフェノール又はヒンダー トアミンの化学構造を有する化合物や過酸化物を分解す る作用を持つ化学構造を有する化合物、例えばチオエー テル、ホスファイト等の化学構造を有する化合物基が挙 げられる。これらの内、特にヒンダードフェノール系、 ヒンダードアミン系酸化防止剤が高温高湿時のカブリの 発生や画像ボケ防止に効果が大きい。

【0111】 ヒンダードフェノール系或いはヒンダード アミン系酸化防止剤の樹脂層中の含有量は0.01~1 ○重量%が好ましい。○. ○1重量%未満だと高温高湿 時のカブリや画像ボケに効果がなく、10重量%より多 い含有量では樹脂層中の電荷輸送能の低下がおこり、残 留電位が増加しやすくなり、又膜強度の低下が発生す る.

【0112】又、前記酸化防止剤は下層の電荷発生層或 いは電荷輸送層、中間層等にも必要により含有させて良 い。これらの層への前記酸化防止剤の添加量は各層に対 して0.01~10重量%が好ましい。

【0113】ここでヒンダードフェノールとはフェノー ル化合物の水酸基に対しオルト位置に分岐アルキル基を 有する化合物類及びその誘導体を云う(但し、水酸基が

【0114】又、ヒンダードアミンは、例えば下記構造 式で示される有機基を有する化合物類が挙げられる。

[0115]

【化13】

$$\begin{array}{c|c} & & & R_{14} \\ & & & R_{15} \\ & & & N-R_{12} \\ & & & R_{16} \\ & & & R_{17} \end{array}$$

【0116】(式中のR13は水素原子又は1価の有機 基、R14、R15、R16、R17はアルキル基、R18は水素 原子、水酸基又は1価の有機基を示す。)

ヒンダードフェノール部分構造を持つ酸化防止剤として は、例えば特開平1-118137号 (P7~P14) 記載の化合物が挙げられるが本発明はこれに限定される ものではない。

【0117】ヒンダードアミン部分構造を持つ酸化防止 剤としては、例えば特開平1-118138号 (P7~

されるものではない。

【0118】有機リン化合物としては、例えば、一般式 RO-P(OR)-ORで表される化合物で代表的なも のとして下記のものがある。尚、ここにおいてRは水素 原子、各々置換もしくは未置換のアルキル基、アルケニ ル基又はアリール基を表す。

【0119】有機硫黄系化合物としては、例えば、一般*

*式R-S-Rで表される化合物で代表的なものとして下 記のものがある。尚、ここにおいてRは水素原子、各々 置換もしくは未置換のアルキル基、アルケニル基又はア リール基を表す。

【0120】以下に各種代表的な化合物を例示する。 【0121】

【化14】

$$\begin{array}{c|c}
 & (CH_3)_3C \\
 & HO \longrightarrow CH_2CH_2COOCH_2 \longrightarrow C\\
 & (CH_3)_3C
\end{array}$$

1-5

$$CH_3$$
 CH_3
 CH_3
 CH_2
 CH_3
 CH_3

[0122]

※ ※【化15】

1-6 35

$$\begin{array}{c|c} (t)H_9C_4 & & & \\ & & & \\ HO - & & & \\ & +CH_2 - P(OC_2H_5)_2 \\ & (t)H_9C_4 \end{array}$$

1-7

$$\begin{pmatrix} (t)H_9C_4 \\ HO - CH_2CH_2CONH - \\ (t)H_9C_4 \end{pmatrix}$$

1-8

1-9

$$(t)H_{9}C_{4} \longrightarrow OH \qquad N$$

$$C_{4}H_{9}(t)$$

1-10

[0123]

$$\begin{array}{c|c} OH & OH \\ C_4H_9(t) & CH_3 \\ CH_2CH_2COOCH_2CH_2-N & OOCCH_2-CH_2 \\ CH_3 & CH_3 \end{array}$$

2-2

2-3

[0124]

2-5

2-6

2-7

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2\text{CH}_2\text{COOCH}_2\text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{OH} \\ \text{CH}_2\text{CH}_2\text{COOCH}_2\text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array}$$

[0125]

* *【化18】

$$3-1$$

$$3-6$$
 (C₁₃H₂₇O)₃P

$$\left(\bigcirc -O \right)_3 P - OC_{10}H_{21}$$

[0126]

* *【化19】

4-2

(C10H21OCOCH2CH2)28

44

(CaH17OCOCH2CH2)2S

(C12H25OCOCH2CH2)2S

(C14H29OCOCH2CH2)2S

(C12H57OCOCH2CH2)2S

【0127】又、製品化されている酸化防止剤としては 以下のような化合物、例えば「イルガノックス107 6」、「イルガノックス1010」、「イルガノックス 1098」、「イルガノックス245」、「イルガノッ クス1330」、「イルガノックス3114」、「イル ガノックス1076」「3、5-ジーt-ブチルー4-ヒドロキシビフェニル」以上ヒンダードフェノール系、 「サノールLS2626」、「サノールLS765」 「サノールLS2626」、「サノールLS770」、 「サノールLS744」、「チヌピン144」、「チヌ ピン622LD」、「マークLA57」、「マークLA 67」、「マークLA62」、「マークLA68」、 「マークLA63」以上ヒンダードアミン系が挙げられ

【0128】 〈有機微粒子〉 有機微粒子は体積平均粒径 $が0.05 \mu m \sim 10 \mu m$ 、好ましくは $0.1 \sim 5 \mu m$ であり、感光体の最樹脂層に0.01重量%~50重量 %添加される。有機微粒子としては例えばポリテトラフ ルオロエチレン、ポリクロロトリフルオロエチレン、ポ リフッ化ビニリデン、ポリフルオロエチレン、ポリジク ロロジフルオロエチレン、テトラフルオロエチレンーパ ーフルオロアルキルビニルエーテル共重合体、テトラフ 40 ルオロエチレンーヘキサフルオロプロピレン共重合体、 テトラフルオロエチレンーエチレン共重合体、テトラフ ルオロエチレンーヘキサフルオロプロピレンーパーフル オロアルキルビニルエーテール共重合体或いはシリコー ン樹脂、ポリエチレン、ポリプロピレン、メラミンなど の樹脂微粒子が挙げられるが、特にフッ素原子含有樹脂 微粒子が好ましい。これら有機微粒子の前記樹脂層中へ の含有量は本発明中に適用される前記弾性体ゴムブレー ドの感光体に対する静止摩擦係数が1.0以下に成るよ

*以下にする事によりクリーニングブレードのめくれの発 20 生が防止され、残留トナーのクリーニングが容易にな る。

【0129】前記静止摩擦係数μは前記感光体がシート 状、平板状又はエンドレスベルト状の場合は通常HEI DON社製の表面性試験装置(型式HEIDON-1 4)により測定される。

【0130】しかし実用上電子写真画像形成装置に組み 込まれる感光体は感光体ドラムが主流であり、この場合 の前記静止摩擦係数μの測定は感光体ドラムの回転トル クT (kg·cm)の測定により求められる。

30 【0131】即ち感光体ドラム自体の回転トルクT 1(kg·cm)及びブレードクリーニング部材が荷重 F(kg)で圧接された感光体ドラムの回転トルクT2 (kg・cm)を測定し、下記式により計算して求めら れる。

[0132]

静止摩擦係数 $\mu = (T_2 - T_1) / (F \cdot \gamma)$

但し、rは感光体ドラムの半径(cm)である。

【0133】本発明の電子写真感光体の層構成は、特に 限定はないが、電荷発生層、電荷輸送層、或いは電荷発 生・電荷輸送層 (電荷発生と電荷輸送の両方の機能を有 する単層型感光層)等の感光層とその上に本発明の樹脂 層を塗設した構成をとるのが好ましい。又、前記電荷発 生層、電荷輸送層、或いは電荷発生・電荷輸送層は各層 が複数の層から構成されていてもよい。

【0134】本発明の感光層に含有される電荷発生物質 (CGM)としては、例えばフタロシアニン顔料、多環 キノン顔料、アゾ顔料、ペリレン顔料、インジゴ顔料、 キナクリドン顔料、アズレニウム顔料、スクワリリウム 染料、シアニン染料、ピリリウム染料、チオピリリウム うに設定することが好ましい。該静止摩擦係数を1.0*50 染料、キサンテン色素、トリフェニルメタン色素、スチ

リル色素等が挙げられ、これらの電荷発生物質(CG M) は単独で又は適当なバインダー樹脂と共に層形成が 行われる。

【0135】前記感光層に含有される電荷輸送物質(C TM)としては、例えばオキサゾール誘導体、オキサジ アゾール誘導体、チアゾール誘導体、チアジアゾール誘 導体、トリアゾール誘導体、イミダゾール誘導体、イミ ダゾロン誘導体、イミダゾリン誘導体、ビスイミダゾリ ジン誘導体、スチリル化合物、ヒドラゾン化合物、ベン ジジン化合物、ピラゾリン誘導体、スチルベン化合物、 アミン誘導体、オキサゾロン誘導体、ベンゾチアゾール 誘導体、ベンズイミダゾール誘導体、キナゾリン誘導 体、ベンゾフラン誘導体、アクリジン誘導体、フェナジ ン誘導体、アミノスチルベン誘導体、ポリーNービニル カルバゾール、ポリー1ービニルピレン、ポリー9ービ ニルアントラセン等が挙げられこれらの電荷輸送物質 (CTM)は通常バインダーと共に層形成が行われる。

【0136】単層構成の感光層及び積層構成の場合の電 荷発生層 (CGL)、電荷輸送層 (CTL) に含有され るバインダー樹脂としては、ポリカーボネート樹脂、ポ 20 薄肉円筒状のアルミニウム素管が多く用いられる。 リエステル樹脂、ポリスチレン樹脂、メタクリル樹脂、 アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデ ン樹脂、ポリビニルブチラール樹脂、ポリビニルアセテ ート樹脂、スチレン-ブタジエン樹脂、塩化ビニリデン -アクリロニトリル共重合体樹脂、塩化ビニル-無水マ レイン酸共重合体樹脂、ウレタン樹脂、シリコン樹脂、 エポキシ樹脂、シリコンーアルキッド樹脂、フェノール 樹脂、ポリシラン樹脂、ポリビニルカルパゾール等が挙 げられる。

質とバインダー樹脂との割合は重量比で1:10~1 0:1が好ましい。また電荷発生層の膜厚は5µm以下 が好ましく、特に0.05~2µmが好ましい。

【0138】又、電荷輸送層は前記の電荷輸送物質とバ インダー樹脂を適当な溶剤に溶解し、その溶液を塗布乾 燥することによって形成される。電荷輸送物質とバイン ダー樹脂との混合割合は重量比で10:1~1:10が 好ましい。

【0139】電荷輸送層の膜厚は通常5~50µm、特 に10~40µmが好ましい。また、電荷輸送層が複数 40 設けられている場合は、電荷輸送層の上層の膜厚は10 μm以下が好ましく、かつ、電荷輸送層の上層の下に設 けられた電荷輸送層の全膜厚より小さいことが好まし

【0140】本発明のシロキサン系樹脂層は、樹脂層が 電荷輸送層の場合は前記電荷輸送層を兼ねても良く、又 単層型の場合は感光層自体を樹脂層としても良いが、好 ましくは、電荷輸送層もしくは電荷発生層或いは単層型 の電荷発生・輸送層等の感光層の上に、これらとは別層 の樹脂層として設けるのがよい。この場合、前記感光層 50 は円形量規制型(円形スライドホッパ型がその代表例)

と本発明の樹脂層の間に接着層を設けても良い。又電子 写真感光体の表面特性を改良する目的で該樹脂層の上に

46

【0141】次に本発明の電子写真感光体の導電性支持 体としては、

1)アルミニウム板、ステンレス板などの金属板、

更に薄層の表面層を設けても良い。

- 2) 紙或いはプラスチックフィルムなどの支持体上に、 アルミニウム、パラジウム、金などの金属薄層をラミネ ート若しくは蒸着によって設けたもの、
- 3) 紙或いはプラスチックフィルムなどの支持体上に、 導電性ポリマー、酸化インジウム、酸化錫などの導電性 化合物の層を塗布若しくは蒸着によって設けたもの等が 挙げられる。

【0142】本発明で用いられる導電性支持体の材料と しては、主としてアルミニウム、銅、真鍮、スチール、 ステンレス等の金属材料、その他プラスチック材料をベ ルト状またはドラム状に成形加工したものが用いられ る。中でもコスト及び加工性等に優れたアルミニウムが 好ましく用いられ、通常押出成型または引抜成型された

【0143】又、前記導電性支持体は、その表面に封孔 処理されたアルマイト膜が形成されたものであっても良 41.

【0144】また、支持体の形状はドラム状でもシート 状でもベルト状でもよく、適用する電子写真装置に最適 した形状であることが好ましい。

【0145】本発明の感光体の製造に用いられる溶媒又 は分散媒としては、nーブチルアミン、ジエチルアミ ン、エチレンジアミン、イソプロパノールアミン、トリ 【0137】本発明に於いて電荷発生層中の電荷発生物 30 エタノールアミン、トリエチレンジアミン、N,N-ジ メチルホルムアミド、アセトン、メチルエチルケトン、 メチルイソプロピルケトン、シクロヘキサノン、ベンゼ ン、トルエン、キシレン、クロロホルム、ジクロロメタ ン、1,2-ジクロロエタン、1,2-ジクロロプロパ ン、1, 1, 2-トリクロロエタン、1, 1, 1-トリ クロロエタン、トリクロロエチレン、テトラクロロエタ ン、テトラヒドロフラン、ジオキソラン、ジオキサン、 メタノール、エタノール、ブタノール、イソプロパノー ル、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、

メチルセロソルブ等が挙げられる。本発明はこれらに限 定されるものではないが、ジクロロメタン、1.2~ジ クロロエタン、メチルエチルケトン等が好ましく用いら れる。また、これらの溶媒は単独或いは2種以上の混合 溶媒として用いることもできる。

【0146】次に本発明の電子写真感光体を製造するた めの塗布加工方法としては、浸漬塗布、スプレー塗布、 円形量規制型塗布等の塗布加工法が用いられるが、感光 層の樹脂層側の塗布加工は下層の膜を極力溶解させない ため、又、均一途布加工を達成するためスプレー途布又 塗布等の塗布加工方法を用いるのが好ましい。なお前記 スプレー塗布については例えば特開平3-90250号 及び特開平3-269238号公報に詳細に記載され、 前記円形量規制型塗布については例えば特開昭58-1 89061号公報に詳細に記載されている。

【0147】本発明の感光体は前記樹脂層が塗布形成された後、50℃以上好ましくは、60~200℃の温度で加熱乾燥する事が好ましい。この加熱乾燥により、残存塗布溶媒を少なくすると共に、硬化性樹脂層を十分に硬化させることができる。

【0148】本発明においては導電性支持体と感光層の 間に、バリヤー機能を備えた中間層を設けることが好ま しい。

【0149】中間層用の材料としては、カゼイン、ポリビニルアルコール、ニトロセルロース、エチレンーアクリル酸共重合体、ポリビニルブチラール、フェノール樹脂ポリアミド類(ナイロン6、ナイロン66、ナイロン610、共重合ナイロン、アルコキシメチル化ナイロン等)、ポリウレタン、ゼラチン及び酸化アルミニウムを用いた中間層、或いは特開平9-68870号公報の如20く金属アルコキシド、有機金属キレート、シランカップリング剤による硬化型中間層等が挙げられる。中間層の膜厚は、0.1~10μmが好ましく、特には0.1~5μmが好ましい。

【0150】本発明においては、更に、支持体と中間層との間に支持体の表面欠陥を補うための被覆を施すことや、特に画像入力がレーザー光の場合には問題となる干渉稿の発生を防止することなどを目的とした導電層を設けることができる。この導電層は、カーボンブラック、金属粒子又は金属酸化物粒子等の導電性粉体を適当なバ 30 インダー樹脂中に分散した溶液を塗布乾燥して形成することができる。導電層の膜厚は5~40μmが好ましく、特には10~30μmが好ましい。

【0151】本発明の電子写真感光体は、複写機、レーザープリンター、LEDプリンター、液晶シャッター式プリンター等の電子写真装置一般に適用し得るものであるが、更には電子写真技術を応用したディスプレイ、記録、軽印刷、製版、ファクシミリ等の装置にも広く適用し得るものである。

【0152】図4は本発明の電子写真感光体を有する電 40 子写真画像形成装置の1例を示す断面図である。

【0153】図4に於いて50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布し、その上に本発明の樹脂層を塗設した感光体で、接地されて時計方向に駆動回転される。52はスコロトロンの帯電器で、感光体ドラム50周面に対し一様な帯電をコロナ放電によって与えられる。この帯電器52による帯電に先だって、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた露光部51による露光を行って感光体周面の除電をしてもよい。

【0154】感光体への一様帯電ののち像露光器53により画像信号に基づいた像露光が行われる。この図の像露光器53は図示しないレーザーダイオードを露光光源とする。回転するポリゴンミラー531、f θレンズ等を経て反射ミラー532により光路を曲げられた光によ

48

とする。回転するポリゴンミラー531、 $f\theta$ レンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。

【0155】その静電潜像は次いで現像器54で現像さ れる。 感光体ドラム50周縁にはイエロー(Y)、 マゼ 10 ンタ (M)、シアン (C)、黒色 (K) 等のトナーとキ ャリアとから成る現像剤をそれぞれ内蔵した現像器54 が設けられていて、先ず1色目の現像がマグネットを内 蔵し現像剤を保持して回転する現像スリーブ541によ って行われる。現像剤は、例えばフェライトをコアとし てそのまわりに絶縁性樹脂をコーティングしたキャリア と、ポリエステルを主材料として色に応じた顔料と荷電 制御剤、シリカ、酸化チタン等を加えたトナーとからな るもので、現像剤は図示していない層形成手段によって 現像スリーブ541上に100~600µmの層厚に規 制されて現像域へと搬送され、現像が行われる。この時 通常は感光体ドラム50と現像スリーブ541の間に直 流及び/又は交流バイアス電圧をかけて現像が行われ る。

【0156】カラー画像形成に於いては、1色目の頻像化が終った後2色目の画像形成行程にはいり、再びスコロトロン帯電器52による一様帯電が行われ、2色目の潜像が像露光器53によって形成される。3色目、4色目についても2色目と同様の画像形成行程が行われ、感光体ドラム50周面上には4色の頻像が形成される。

【0157】一方モノクロの電子写真装置では現像器5 4は黒トナー1種で構成され、1回の現像で画像を形成 することができる。

【0158】記録紙Pは画像形成後、転写のタイミング の整った時点で給紙ローラ57の回転作動により転写域 へと給紙される。

【0159】転写域においては転写のタイミングに同期 して感光体ドラム50の周面に転写ローラ(転写器)5 8が圧接され、給紙された記録紙Pを挟着して多色像が 一括して転写される。

【0160】次いで記録紙Pは転写ローラとほぼ同時に 圧接状態とされた分離ブラシ(分離器)59によって除 電がなされ、感光体ドラム50の周面により分離して定 着装置60に搬送され、熱ローラ601と圧着ローラ6 02の加熱、加圧によってトナーを溶着したのち排紙ローラ61を介して装置外部に排出される。なお前記の転 写ローラ58及び分離ブラシ59は記録紙Pの通過後感 光体ドラム50の周面より退避離間して次なるトナー像 の形成に備える。

【0161】一方記録紙Pを分離した後の感光体ドラム 50 50は、クリーニング器62のブレード621の圧接に

より残留トナーを除去・清掃し、再び露光部51による 除電と帯電器52による帯電を受けて次なる画像形成の プロセスに入る。なお感光体上にカラー画像を重ね合わ せて形成する場合には、前記のブレード621は感光体 面のクリーニング後直ちに移動して感光体ドラム50の 周面より退避する。

【0162】尚、70は感光体、帯電器、転写器・分離 器及びクリーニング器を一体化されている着脱可能なプ ロセスカートリッジである。

【0163】電子写真画像形成装置としては、上述の感 10 光体と、現像器、クリーニング器等の構成要素をプロセ スカートリッジとして一体に結合して構成し、このユニ ットを装置本体に対して着脱自在に構成しても良い。 又、帯電器、像露光器、現像器、転写又は分離器、及び クリーニング器の少なくとも1つを感光体とともに一体 に支持してプロセスカートリッジを形成し、装置本体に

着脱自在の単一ユニットとし、装置本体のレールなどの

案内手段を用いて着脱自在の構成としても良い。

【0164】プロセスカートリッジには、一般には以下 に示す一体型カートリッジ及び分離型カートリッジがあ 20 し得るものである。 る。一体型カートリッジとは、帯電器、像露光器、現像 器、転写又は分離器、及びクリーニング器の少なくとも 1つを感光体とともに一体に構成し、装置本体に着脱可 能な構成であり、分離型カートリッジとは感光体とは別 体に構成されている帯電器、像露光器、現像器、転写又*

*は分離器、及びクリーニング器であるが、装置本体に着 脱可能な構成であり、装置本体に組み込まれた時には感 光体と一体化される。本発明におけるプロセスカートリ ッジは上記双方のタイプのカートリッジを含む。

50

【0165】像露光は、電子写真画像形成装置を複写機 やプリンターとして使用する場合には、原稿からの反射 光や透過光を感光体に照射すること、或いはセンサーで 原稿を読み取り信号化し、この信号に従ってレーザービ ームの走査、LEDアレイの駆動、又は液晶シャッター アレイの駆動を行い感光体に光を照射することなどによ り行われる。

【0166】尚、ファクシミリのプリンターとして使用 する場合には、像露光器53は受信データをプリントす るための露光を行うことになる。

【0167】本発明の電子写真感光体は、複写機、レー ザープリンター、LEDプリンター、液晶シャッター式 プリンター等の電子写真装置一般に適用し得るものであ るが、更には電子写真技術を応用したディスプレイ、記 録、軽印刷、製版、ファクシミリ等の装置にも広く適用

[0168]

【実施例】以下、実施例を挙げて本発明を詳細に説明す るが、本発明の態様はこれに限定されない。

【0169】下記のごとくして、感光体を作製した。 [0170]

感光体1の作製

〈中間層〉

ポリアミド樹脂 (アミランCM-8000: 東レ社製)

60g

メタノール

1600ml

1-ブタノール

400m1

上記成分を混合溶解して中間層塗布液を調整した。この 塗布液を直径80mm、長さ360mmの円筒状アルミ ニウム基体上に浸漬塗布法で塗布し、膜厚0.3μmの※ ※中間層を形成した。

[0171]

〈電荷発生層〉

チタニルフタロシアニン

60g

シリコーン樹脂溶液

(KR5240、15%キシレン-ブタノール溶液:信越化学社製)

700g

2ーブタノン

2000ml

上記成分を混合し、サンドミルを用いて10時間分散 し、電荷発生層塗布液を調製した。この塗布液を前記中 間層の上に浸漬塗布法で塗布し、膜厚O.2 μmの電荷 発生層を形成した。チタニルフタロシアニンのCu-K★

40★ α特性X線回折スペクトルを測定した結果、ブラッグ角 2θ の最大ピークが27.2°に認められた。

[0172]

〈電荷輸送層〉

トリフェニルアミン

200g

ビスフェノール乙型ポリカーボネート

(ユーピロン2300:三菱ガス化学社製)

300g

1,2-ジクロロエタン

2000m1

上記成分を混合溶解して電荷輸送層塗布液を調製した。☆50☆この塗布液を前記電荷発生層の上に浸漬塗布法で塗布

し、膜厚25 µmの電荷輸送層を形成した。

* * 【0173】

〈樹脂層〉

トリメトキシメチルシラン 180g 1-ブタノール 280m1 1%酢酸水溶液 106ml

上記成分を混合して60℃で2時間攪拌した後、さらに ※けた。 370m1の1-ブタノールを加えて48時間攪拌を続※ 【0174】

〈樹脂層〉

トリメトキシメチルシラン 180g 1-ブタノール 280ml 106ml 1%酢酸水溶液

上記成分を混合して60℃で2時間攪拌した後、さらに 370m1の1-ブタノールを加えて48時間撹拌を続 けた。

【0175】これにジヒドロキシメチルトリフェニルア ミン(例示化合物T-1)67.5g、酸化防止剤(サ ノールLS2626:三共社製) 1.7g、ジブチル錫 アセテート4.5gを加えて混合し、この溶液を乾燥膜 厚1µmの樹脂層として塗布して、120℃、1時間の 加熱硬化を行い、電荷輸送性能を有する構造単位を有 し、且つ架橋構造を有するシロキサン系樹脂含有する樹 脂層を有する感光体1を作製した。

★【0176】感光体2の作製

感光体1において樹脂層中のジヒドロキシメチルトリフ ェニルアミンを4-[2-(トリエトキシシリル)エチ ル] トリフェニルアミンに代えた以外は全く同様にし て、電荷輸送性能を有する構造単位を有し、且つ架橋構 造を有するシロキサン系樹脂含有する樹脂層を有する感 光体2を作製した。

52

【0177】感光体3の作製

20 感光体1と同様に電荷輸送層まで作製した。

[0178]

〈樹脂層〉

トリメトキシメチルシラン 120g アーグリシドキシプロピルトリメトキシシラン 60g 1-ブタノール 280m1 1%酢酸水溶液 106ml

を混合して60℃で2時間撹拌した後、さらに370m 1の1-ブタノールを加えて48時間攪拌を続けた。 【0179】これに例示化合物S-2を60g、平均粒 30 作製した。 径0. 2μmのPTFE微粒子(ルブロンL2:ダイキ

ン工業社製) 10g、ジブチル錫アセテート4.5gを 加えて混合し、この溶液を乾燥膜厚1μmの樹脂層とし て塗布して、120℃、1時間の加熱硬化を行い、電荷☆

【0180】感光体4の作製 感光体1と同様に電荷輸送層まで作製した。

☆輸送性能を有する構造単位を有し、且つ架橋構造を有す

るシロキサン系樹脂含有する樹脂層を有する感光体3を

[0181]

〈樹脂層〉

トリメトキシメチルシラン 120g **ァーグリシドキシプロピルトリメトキシシラン** 60g 1-ブタノール 280m1 1%酢酸水溶液 106ml

1の1-ブタノールを加えて48時間機拌を続けた。

【0182】これに例示化合物H-1を60g、平均粒 径0. 2μmのPTFE微粒子(ルブロンL2:ダイキ ン工業社製)10g、コロイダルシリカ(固形分30% メタノール溶液) 100gを加えて混合し、この溶液を 乾燥膜厚1μmの樹脂層として塗布して、120℃、1 時間の加熱硬化を行い、電荷輸送性能を有する構造単位 を有し、且つ架橋構造を有するシロキサン系樹脂含有す る樹脂層を有する感光体4を作製した。

【0183】 感光体5の作製

を混合して60℃で2時間攪拌した後、さらに370m 40◆感光体1において樹脂層中のジヒドロキシメチルトリフ ェニルアミン (例示化合物T-1) を除いた他は感光体 1と同様にして感光体5を作製した。

【0184】感光体6の作製

感光体1において樹脂層を除いた他は感光体1と同様に して感光体6を作製した。

【0185】実施例及び比較例(全12例)

感光体1~6、及び硬度、反発弾性の異なるウレタンゴ ムからなるクリーニングブレードをコニカ社製デジタル 複写機Konica7050改造機(反転現像プロセス

◆50 を用いている)に装着し、20℃、50%の環境下で5

万コピーの実写テストを行った。ブレードの設定条件としてはブレードの自由長を9mmに固定し、感光体への当接角度:20°、当接荷重:20(g/cm)になるように調整した。評価は5万枚のコピーの画質及び残留トナーのクリーニング性、ブレードめくれの発生有無について行い結果を表1に示した。

[0186]

【表1】

ブレードめくれの 教生有験	を仕事	発作者	素が栄	を作業	発生機	集生集	発生機	発生機	養本養	めくれ発生(2回)	lio	多件部	黎生館
楽像トナーのクリーニング	0	0	9	٩	©	•	@	٥	×	×	×	×	×
の画画	0	0	0	9	0	0	0	0	××	××	××	0	×
7 1 1 1 1 1 1 1	0	0	0	0	©	0	0	0	0	0	0	0	0
再排係數	0.63	86.0	0.74	0.49	0.55	0.84	0.25	0.33	0.42	1.29	1.52	0.66	0.71
森像屋(木/ww)	9	9	9	9	9	9	9	6	5	4	4	5	S
新年間 (エエ)	0.4	0.23	0.37	0.28	0.43	0.54	0.28	0.34	0.58	0.28	0.53	2.56	5.87
機関の大き み(μm)	175	40	180	95	122	185	37	53	8	258	122	122	207
反発彈性	99	28	52	45	99	09	09	09	18	7.7	89	99	77
(。)	70	70	67	65	77	70	70	70	70	70	70	70	70
西光体加	-	1	1	1		2	3	4	1	-	5	8	8
実施例No 磁光体N	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	実施例7	実施例8	比較例1	比較例2	比較例3	上配例4	比較例5

54

【0187】評価は、画素率が7%の文字画像、人物顔写真、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4で1枚間欠モードにて5万枚の複写を行い、1000枚毎にハーフトーン、ベタ白画像、ベタ黒画像を評価した。クリーニング不良はベタ黒画像上に存在する白点の有無(直径0.3mmを以上のもの)を評価し、この白点が5個以上発生した枚数で評価した。また、画像濃度はベタ黒画像の濃度をマクベス社製RD-918を使用し絶対反射濃度で測定し、初期と5万枚後の画像で比較した。さらに、カブリについてはベタ白画像を使用し、初期と5万枚後カブリを目視で確認した。

【0188】又、ブレードめくれは5万枚複写実写テスト中のめくれ発生回数で評価した。

【0189】画像濃度

◎:1.2以上:良好

○:1.2未満~0.8:実用上問題ないレベル

×:0.8未満:実用上問題となるレベル

カブリ

20 〇 : カブリ発生無し

× : 時々カブリ発生有り

××:連続したカブリ発生有り

クリーニング不良の発生

◎:白点の発生が5万枚中5枚以下

〇: 白点の発生が5万枚中6枚~20枚

×: 白点の発生が5万枚中20枚以上

【0190】表1から次のことが分かる。従来の感光体 6 (表面がポリカーボネート)を用いた比較例4,5で クリーニングしたところ、測定時点で画質(濃度、カブ

- 30 リ、クリーニング性能)は良好であったが、実写テスト (5万枚)終了後、感光体表面の減耗の量が本発明の実 施例1乃至8に比べて非常に大きくなっている。(ブレ ードの振動の大きさや反発弾性が所定範囲にあっても実 施例1乃至8に比べ非常に大きく減耗している。) また、本発明の感光体と異なる感光体を使用した比較例 3では、感光体表面の減耗は低下したが、クリーニング 性、画質(カブリ)、ブレードめくれが発生した。一方 比較例1、2では本発明と同様の感光体を使用してい る。しかし、ブレード条件(振動の大きさ、反発弾性)
- 40 が所定の範囲外では、減耗量は少ないものの、画質、ク リーニング性、ブレードめくれという問題を完全に解決 できないことが分かる。

【0191】このように、実施例1乃至8では特定の感光体とブレードの条件の組み合わせによって、感光体の減耗だけでなく、画質、クリーニング性、ブレードのめくれの問題を解決することができた。特に比較例でも分かるように、ブレード条件の制御は従来の感光体では効果的ではなかった。ところが、、本発明では特定の感光体において特定のブレード条件の組み合わせが非常に効

50 果的であることを見出した。

[0192]

【発明の効果】本発明の電子写真感光体とブレードクリーニングの振動条件を組み合わせた構成をとることで、クリーニング不良の発生及びブレードめくれの発生がなく、良好で、安定した複写画像が得られる電子写真画像形成方法及び電子写真画像形成装置及び該装置に用いられるプロセスカートリッジ提供することが出来る。

【図面の簡単な説明】

【図1】本発明の電子写真画像形成方法を説明する構成 **観**要図。

- 【図2】クリーニングの機構を説明する図。
- 【図3】 クリーニングの機構を説明する図。
- 【図4】本発明の電子写真感光体を有する電子写真画像 形成装置の1例を示す断面図。

【符号の説明】

- 10 有機感光体ドラム
- 11 帯電器
- 12 像露光
- 13 現像器
- 14 転写器
- 15 分離電極
- 16 搬送手段
- 18 除電器

- 56 19 クリーニングブレード
- 20 除電ランプ
- 30 ピエゾセンサー
- 31 演算器
- p 記録材
- θ 当接角
- 1 自由長
- P 当接荷重
- 50 感光体ドラム(又は感光体)
- 10 51 発光ダイオード等を用いた露光部
 - 52 帯電器
 - 53 像露光器
 - 54 現像器
 - 57 給紙ローラ
 - 58 転写ローラ (転写器)
 - 59 分離ブラシ(分離器)
 - 60 定着装置
 - 61 排紙ローラ
 - 62 クリーニング器
- 20 70 感光体、帯電器、転写器・分離器及びクリーニン グ器が一体化されている着脱可能なプロセスカートリッ ジ

フロントページの続き

(72)発明者 北原 洋子 東京都八王子市石川町2970番地コニカ株式 会社内 (72)発明者 倉地 雅彦 東京都八王子市石川町2970番地コニカ株式 会社内 (72)発明者 志田 和久 東京都八王子市石川町2970番地コニカ株式

会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.