MSc Data Science for Business

Introduction to Machine Learning

Map 534

Julie Josse

Logistic Regression

J. Josse

Previous lecture: supervised learning

- Framework
- SVM
- Linear discriminant analysis

Today: Logistic regression

Outline

- 1 Introduction
- 2 Logistic model
- 3 Estimation
- 4 Interpretation
- 5 Asymptotic distribution Test
- 6 Prediction
- 7 To go further

Plan

- 1 Introduction
- 2 Logistic model
- 3 Estimation
- 4 Interpretation
- 5 Asymptotic distribution Test
- 6 Prediction
- 7 To go further

CHD example

Sample of males in a heart-disease high-risk region (Western Cape, South Africa).

```
- sbp systolic blood pressure
```

- tobacco cumulative tobacco (kg)
- ldl low density lipoprotein, bad cholesterol
- famhist family history of heart disease
- typea type-A behavior
- obesity
- alcohol current alcohol consumption
- age age
- chd response, coronary heart disease

Model CDH as a bunch of coin flips with a success probability that depends on covariates

CHD example

 $\verb|read.table("https://web.stanford.edu/"hastie/ElemStatLearn/datasets/SAheart.datasets/SA$

```
sbp tobacco ldl adiposity famhist typea obesity alcohol age chd
1 160
      12.00 5.73
                   23.11 Present
                                 49
                                     25.30
                                            97.20 52 Yes
2 144 0.01 4.41
                                 55 28.87 2.06 63 Yes
                   28.61 Absent
3 118 0.08 3.48 32.28 Present 52 29.14 3.81 46 No
4 170 7.50 6.41 38.03 Present
                                51 31.99 24.26 58 Yes
                                 60 25.99 57.34 49 Yes
5 134 13.60 3.50 27.78 Present
6 132 6.20 6.47 36.21 Present
                                 62 30.77
                                           14.14 45 No
. . .
```

n=462, 160 cases (cdh = 1) and 302 control

CHD example

Questions

- Analysis: Understand which factors in this dataset are linked to the desease (chd)
 - Importance of the effect
 - Positive or negative effect
 - Significativity
 - \rightarrow Prevention
- **Prediction**: Predict, for a new patient, the risk to declare the desease.
 - Quality of the prediction
 - Parcimonious model
 - → Better monitoring of the at-risk patient

Scoring

Credit Default, Credit Score, Bank Risk, Market Risk Management

Data: Client profile, Client credit history...

Input: Client profile

Output: Credit risk

Scoring exemple

We have at hands a dataset of 5380 customers

```
Observations: 5,380
Variables: 19
## $ Id_Customer
                       <int> 7440, 573, 9194, 3016, 6524, 3858, 2189, 9...
## $ Y
                       <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, ...
## $ Customer_Type
                       <chr> "Non Existing Client", "Existing Client", ...
                       <chr> "07/08/1977", "13/06/1974", "07/11/1973", ...
## $ BirthDate
                       <chr> "13/02/2012", "04/02/2009", "03/04/2012", ...
## $ Customer_Open_Date
## $ P_Client
                       <chr> "NP_Client", "P_Client", "NP_Client", "NP_...
## $ Educational_Level
                       <chr> "University", "University", "University", ...
## $ Marital Status
                       <chr> "Married", "Married", "Married", "Married"...
                       <int> 3, 0, 2, 3, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, ...
## $ Number_Of_Dependant
## $ Years At Residence
                       <int> 1, 12, 10, 3, 1, 28, 10, 15, 0, 35, 10, 10...
## $ Net Annual Income
                       <dbl> 36.000, 18.000, 36.000, 36.000, 36.000, 60...
## $ Years_At_Business
                       <int> 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 3, 2, 4, 1, ...
## $ Prod_Sub_Category
                       ## $ Prod_Decision_Date
                       <chr> "14/02/2012", "30/06/2011", "04/04/2012", ...
## $ Source
                       <chr> "Sales", "Sales", "Sales", "Sales", "Sales...
## $ Type_Of_Residence
                       <chr> "Owned", "Parents", "Owned", "New rent", "...
## $ Nb_Of_Products
                       ## $ Prod Closed Date
                       <chr> NA, NA, NA, "31/12/2012", NA, NA, NA, "16/...
## $ Prod_Category
                       <chr> "B", "G", "B", "L", "D", "C", "B", "B", "E...
```

Scoring exemple

Questions

- Analysis: Understand which factors in this dataset are linked to the default
 - Importance of the effect
 - Positive or negative effect
 - Significativity
 - \rightarrow Customer analysis
- **Prediction**: Predict, for a new client, the risk to default.
 - Quality of the prediction
 - Parcimonious model
 - \rightarrow Decision aid.
- Similar questions in most setting: analysis / prediction...

CHD exemple

Goal: Predict CHD from the AGE.

First attempt

Is it possible to use linear regression?

How can we interpret it?

Binned Data

Binned Data

- Gather all the observation having a similar AGE and estimate the proportion in this class.
- Easy estimation by the empirical proportion.

Age_k	Ck	n_k	$n_k[CHD=0]$	n_k [CHD=1]	π_k
[20,29]	24.5	10	9	1	0.10
[30,34]	32	15	13	2	0.13
[35,39]	37	12	9	3	0.25
[40,44]	42	15	10	5	0.33
[45,49]	47	13	7	6	0.46
[50,54]	52	8	3	5	0.63
[55,59]	57	17	4	13	0.76
[60,69]	64.5	10	2	8	0.80

Estimated proportions

Binned Data

Estimated proportions

Bernoulli distribution

- Data: outcome $Y \in \{0,1\}$, covariates $\mathbf{X} \in \mathbb{R}^d$
- Goal: predict the probability that Y is 0 or 1 given $\mathbf{X} \in \mathbb{R}^d$
- Bernoulli $\mathcal{B}(p)$: law on $\{0,1\}$ such that

$$Y \sim \mathcal{B}(
ho) \Leftrightarrow egin{cases} \mathbb{P}\left(Y=1
ight) =
ho \ \mathbb{P}\left(Y=0
ight) = 1-
ho \end{cases}$$

Conditional Bernoulli Law

$$Y_i | \mathbf{X} = \mathbf{x}_i \sim \mathcal{B}(p_i)$$

 $Y_i | \mathbf{X} = \mathbf{x}_i \sim \mathcal{B}(\mathbb{P}(Y_i = 1 | \mathbf{X} = \mathbf{x}_i))$

- ⇒ Model the probability to have a disease.
- \Rightarrow It's a bunch of coin flips. However, the success probability will differ from one person to the other depending on their covariates

Plan

- 1 Introduction
- 2 Logistic model
- 3 Estimation
- 4 Interpretation
- 5 Asymptotic distribution Test
- 6 Prediction
- 7 To go further

Probabilistic model

- $Y_i|\mathbf{X}=\mathbf{x}_i\sim\mathcal{B}\left(p_i\right)$
- $E(Y_i|\mathbf{X}=\mathbf{x}_i)=p_i$
- We assume linearity in **X**: $\eta_i = \sum_i \beta_i x_{ij}$
- \Rightarrow We need to apply some transformation to the η_i that can vary between $-\infty$ and $+\infty$ so that it varies between 0 and 1.

Logistic regression, S shape

$$E(Y_i|\mathbf{X}=\mathbf{x}_i) = p_i = \frac{e^{\eta_i}}{1+e^{\eta_i}}$$
 $p_{eta}(\mathbf{x}_i) = \frac{e^{\mathbf{x}_i^t eta}}{1+e^{\mathbf{x}_i^t eta}}$

The expit function

$$E(Y_i|\mathbf{X}=\mathbf{x}_i)=p_i=p_{\beta}(\mathbf{x}_i)=rac{\mathrm{e}^{\eta_i}}{1+\mathrm{e}^{\eta_i}}=rac{\mathrm{e}^{\mathbf{x}_i^t\beta}}{1+\mathrm{e}^{\mathbf{x}_i^t\beta}}$$

Logistic Regression: odds: $(0; +\infty)$ log odds $(-\infty; +\infty)$ p_i (0; 1)

$$\log \left(\frac{p_i}{1-p_i}\right) = \eta_i.$$

$$g: t \mapsto \log \left(\frac{t}{1-t}\right), \text{logit function } g(p_i) = \eta_i,$$

$$\log \left(odds\right) = \eta_i.$$

$$\log \left(\frac{\mathbb{P}\left(Y_i = 1 | \mathbf{X} = \mathbf{x}_i\right)}{\mathbb{P}\left(Y_i = 0 | \mathbf{X} = \mathbf{x}_i\right)}\right) = \sum_j \beta_j x_{ij}.$$

The expit function

$$E(Y_i|\mathbf{X}=\mathbf{x}_i)=p_i=p_{\beta}(\mathbf{x}_i)=rac{\mathrm{e}^{\eta_i}}{1+\mathrm{e}^{\eta_i}}=rac{\mathrm{e}^{\mathbf{x}_i^t\beta}}{1+\mathrm{e}^{\mathbf{x}_i^t\beta}}$$

Logistic Regression: odds: $(0; +\infty)$ log odds $(-\infty; +\infty)$ p_i (0; 1)

$$\log\left(\frac{p_i}{1-p_i}\right) = \eta_i.$$

$$g: t \mapsto \log\left(\frac{t}{1-t}\right), \text{ logit function } g(p_i) = \eta_i,$$

$$\log\left(odds\right) = \eta_i.$$

$$\log\left(\frac{\mathbb{P}\left(Y_i = 1 | \mathbf{X} = \mathbf{x}_i\right)}{\mathbb{P}\left(Y_i = 0 | \mathbf{X} = \mathbf{x}_i\right)}\right) = \sum_j \beta_j x_{ij}.$$

All in all: Logistic Regression

$$Y \in \{0,1\}$$

$$P(Y_i = 1 | \mathbf{X} = \mathbf{x}_i) = p_i = \frac{e^{\mathbf{x}_i^t \beta}}{1 + e^{\mathbf{x}_i^t \beta}} = \frac{1}{1 + e^{-\mathbf{x}_i^t \beta}}$$
 $P(Y_i = 0 | \mathbf{X} = \mathbf{x}_i) = 1 - p_i = \frac{1}{1 + e^{\mathbf{x}_i^t \beta}}$

All in all: Logistic Regression

$$Y \in \{-1,1\}$$

$$P(Y_i = y_i | \mathbf{X} = \mathbf{x}_i) = \frac{1}{1 + e^{-y_i \mathbf{x}_i^t \beta}}$$

All in all: Logistic Regression

$$Y \in \{0,1\}$$

$$P(Y_i = 1 | \mathbf{X} = \mathbf{x}_i) = p_i = \frac{e^{\mathbf{x}_i^t \beta}}{1 + e^{\mathbf{x}_i^t \beta}} = \frac{1}{1 + e^{-\mathbf{x}_i^t \beta}}$$
 $P(Y_i = 0 | \mathbf{X} = \mathbf{x}_i) = 1 - p_i = \frac{1}{1 + e^{\mathbf{x}_i^t \beta}}$

All in all: Logistic Regression

$$Y \in \{-1,1\}$$

$$P(Y_i = y_i | \mathbf{X} = \mathbf{x}_i) = \frac{1}{1 + e^{-y_i \mathbf{x}_i^t \beta}}$$

How to estimate β ?

Plan

- 1 Introduction
- 2 Logistic model
- 3 Estimation
- 4 Interpretation
- 5 Asymptotic distribution Test
- 6 Prediction
- 7 To go further

Simulations

Likelihood

The likelihood of the model is defined as:

$$L_n(y_1,\ldots,y_n,\beta)=\prod_{i=1}^n\mathbb{P}\left(Y=y_i|\mathbf{X}=\mathbf{x}_i\right)$$

which is simply denoted by $L_n(\beta)$.

Let us write the likelihood as a function of β :

$$L_n(\beta) = \prod_{i=1}^n \mathbb{P}(Y = y_i | \mathbf{X} = \mathbf{x}_i) = \prod_{i=1}^n p_{\beta}(\mathbf{x}_i)^{y_i} (1 - p_{\beta}(\mathbf{x}_i))^{1-y_i}.$$

$$L_n(\beta) = \prod_{i=1}^n \mathbb{P}(Y = y_i | \mathbf{X} = \mathbf{x}_i) = \prod_{i=1}^n g^{-1}(\mathbf{x}_i^t \beta)^{y_i} (1 - g^{-1}(\mathbf{x}_i^t \beta))^{1 - y_i}.$$

$$L_n(\beta) = \prod_{i=1}^n \left(\frac{e^{\mathbf{x}_i^t \beta}}{1 + e^{\mathbf{x}_i^t \beta}}\right)^{y_i} \left(\frac{1}{1 + e^{\mathbf{x}_i^t \beta}}\right)^{1 - y_i}$$
$$= \prod_{i=1}^n \left(\frac{e^{\mathbf{x}_i^t \beta y_i}}{1 + e^{\mathbf{x}_i^t \beta}}\right)$$

log-likelihood

$$\log(L_n(\beta)) = \sum_{i=1}^n \left(y_i \mathbf{x}_i^t \beta - \log(1 + e^{\mathbf{x}_i^t \beta}) \right)$$

Score equation

$$\nabla (\log(L_n(\beta))) = \left(\frac{\partial}{\partial \beta_0}(\beta), \cdots, \frac{\partial}{\partial \beta_d}(\beta)\right)$$

$$\frac{\partial (\log(L_n(\beta)))}{\partial \beta_j} = \sum_{i=1}^n \left(y_i x_{ij} - \frac{x_{ij} e^{\mathbf{x}_i^t \beta}}{(1 + e^{\mathbf{x}_i^t \beta})}\right)$$

$$= \sum_{i=1}^n x_{ij} (y_i - p_{\beta}(\mathbf{x}_i))$$

$$S(\beta) = \mathbf{X}'(Y - P_{\beta}) = 0$$

Unfortunately...

■ For linear regression, we have an explicit expression for the maximizer $\widehat{\beta}$ of the likelihood:

$$\widehat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t Y.$$

■ For logistic regression, there is no explicit expression for the maximizer $\widehat{\beta}$ of the likelihood.

Fortunately...

Generally, likelihood has a unique maximum, and there exist plenty of numeric algorithms to find this maximum

Hypothesis

- H1: rank of $\mathbf{X} = d$
- H2: No separability: there exists $\beta \ \forall i, Y_i = 1$ when $\mathbf{x}_i^t \beta \geq 0$ and $\forall i, Y_i = 0$ when $\mathbf{x}_i^t \beta \leq 0$
- Under H1 and H2, the log-likelihood $\beta \to L_n(\beta)$ is strictly concave so that $\hat{\beta}$ exists and is unique.
- **1** Maximize $L_n(\beta)$ or minimizing $\mathcal{D} = -2L_n(\beta)$

IRWLS algorithm

Iterative Reweighted Least Squares - Newton-Raphson.

Univariate β

- Init: β⁰
- Let us note $\beta^1 = \beta^0 + h$ a candidate solution of $S(\beta) = 0$, $S(\beta^0 + h) = 0$
- First order Taylor: $S(\beta^0 + h) \approx S(\beta^0) + hS'(\beta^0)$ $h = \frac{-S(\beta^0)}{S'(\beta^0)}$

$$\beta^1 = \beta^0 - \frac{S(\beta^0)}{S'(\beta^0)}$$

IRWLS algorithm

Vector $\beta \in \mathbb{R}^d$

$$S(\beta) = \nabla(\log L_n(\beta))$$

$$H = \nabla^2 (\log L_n(\beta))_{(k,l)} = \frac{\partial^2 \log L_n}{\partial_{\beta_k} \partial_{\beta_l}}$$

Algorithm

- Init: β⁰
- $\beta^1 = \beta^0 \{\nabla^2(\log L_n(\beta))\}^{-1}\nabla(\log L_n(\beta))$
- $\beta^{k+1} = \beta^k + A^k \nabla (\log L_n(\beta^k))$
- $k \leftarrow k + 1$
- Stop when $\beta^{k+1} \approx \beta^k$

IRWLS algorithm

Exercice

Show that

$$H = \mathbf{X}^t \mathbf{W}_{\beta} \mathbf{X}$$

with
$$\mathbf{W}_{\beta_{n\times n}} = -\operatorname{diag}(p_{\beta}(\mathbf{x}_i)(1-p_{\beta}(\mathbf{x}_i))_{i=1,\cdots,n})$$

Weighted regression

$$\begin{split} \boldsymbol{\beta}^{k+1} &= \boldsymbol{\beta}^k + (\mathbf{X}^t \mathbf{W}_{\boldsymbol{\beta}^k} \mathbf{X})^{-1} \mathbf{X}' (\mathbf{Y} - \mathbf{P}_{\boldsymbol{\beta}^k}) \\ &= (\mathbf{X}^t \mathbf{W}_{\boldsymbol{\beta}^k} \mathbf{X})^{-1} \mathbf{X}^t \mathbf{W}_{\boldsymbol{\beta}^k} \left(\mathbf{X} \boldsymbol{\beta}^k + \mathbf{W}_{\boldsymbol{\beta}^k}^{-1} (\mathbf{Y} - \mathbf{P}_{\boldsymbol{\beta}^k}) \right) \\ &= (\mathbf{X}^t \mathbf{W}_{\boldsymbol{\beta}^k} \mathbf{X})^{-1} \mathbf{X}^t \mathbf{W}_{\boldsymbol{\beta}^k} \mathbf{Z}^k \end{split}$$

Plan

- 1 Introduction
- 2 Logistic model
- 3 Estimation
- 4 Interpretation
- 5 Asymptotic distribution Test
- 6 Prediction
- 7 To go further

Logistic Regression CDH on Age

```
> CHD.logit = glm(CHD~AGE, family=binomial(link="logit"))
> summary(CHD.logit)
```

Coefficients:

Number of Fisher Scoring iterations: 4

$$\log \left(\frac{\mathbb{P}\left(\mathrm{CHD} = 1 | \boldsymbol{X} \right)}{\mathbb{P}\left(\mathrm{CHD} = 0 | \boldsymbol{X} \right)} \right) = \underbrace{-5.31}_{\hat{\beta}_0} + \underbrace{0.11}_{\hat{\beta}_1} \times \mathrm{AGE}.$$

Logistic Regression CDH on Age

Logistic coefficient interpretation: odds-ratio

$$\log \left(\frac{\mathbb{P}\left(\text{CHD} = 1 | \mathbf{X} \right)}{\mathbb{P}\left(\text{CHD} = 0 | \mathbf{X} \right)} \right) = \underbrace{-5.31}_{\hat{\beta}_0} + \underbrace{0.11}_{\hat{\beta}_1} \times \text{AGE}.$$

 β_j : increases in the log-odds when $x^{(j)}$ increases by one unit, **the other variables begin fixed** (Be careful when interpreting, simple regression different from multiple regression)

Logistic coefficient interpretation: odds-ratio

$$\log \left(\frac{\mathbb{P}\left(\mathrm{CHD} = 1 | \boldsymbol{\mathsf{X}} \right)}{\mathbb{P}\left(\mathrm{CHD} = 0 | \boldsymbol{\mathsf{X}} \right)} \right) = \underbrace{-5.31}_{\hat{\beta}_0} + \underbrace{0.11}_{\hat{\beta}_1} \times \mathrm{AGE}.$$

 β_j : increases in the log-odds when $x^{(j)}$ increases by one unit, **the other variables begin fixed** (Be careful when interpreting, simple regression different from multiple regression)

Interpretation

- A coefficient $\beta_1 = 0$ corresponds to no influence of $x^{(j)}$ on Y.
- A coefficient $\beta_1 < 0$ corresponds to a negative influence of $x^{(j)}$ on Y.
- A coefficient $\beta_1 > 0$ corresponds to a positive influence of $x^{(j)}$ on Y.

Logistic Regression CDH on Age

 β_1 does not correspond to the change in the proba associated with a one-unit increase in X. The amount that changes due to a one-unit change in X will depend on the current value of X.

Logistic coefficient interpretation: odds-ratio

$$egin{aligned} Odds(\mathbf{x}_i) &= rac{p_i}{1-p_i} \ OddsRatio(\mathbf{x}_i, ilde{\mathbf{x}}_i) &= rac{Odds(\mathbf{x}_i)}{Odds(ilde{\mathbf{x}}_i)} \end{aligned}$$

 \mathbf{x}_i and $\tilde{\mathbf{x}}_i$ differ only on the variable j of one unit. (ex: To check)

$$OddsRatio(\mathbf{x}_i, \tilde{\mathbf{x}}_i) = e^{\beta_j}$$

The OR for AGE is $exp(\beta_1) = exp(0.11) = 1.117$

$$log(OR) = \beta_i$$

Odds-ratio

It measures the evolution of the ratio of the probability of the event Y=1 by the probability of the event Y=0 when the variable j goes from $x^{(j)}$ to $x^{(j)}+1$, the other variables being constant. When $x^{(j)}$ increases by one unit, it multiplies the odds by e^{β_j} .

Logistic coefficient interpretation: odds-ratio

It comes from the horse bets....
Be careful!

$$OR = \begin{pmatrix} \frac{\mathbb{P}(CDH=1|x^{(j)}=1)}{\mathbb{P}(CDH=0|x^{(j)}=1)} \\ \frac{\mathbb{P}(CDH=1|x^{(j)}=0)}{\mathbb{P}(CDH=0|x^{(j)}=0)} \end{pmatrix} = \exp(\beta_j)$$

SO

$$\mathrm{OR} pprox \left(rac{\mathbb{P}\left(\mathsf{CDH} = 1 | x^{(j)} = 1\right)}{\mathbb{P}\left(\mathsf{CDH} = 1 | x^{(j)} = 0\right)} \right)$$

only when the probabilities are very small...

Plan

- 1 Introduction
- 2 Logistic model
- 3 Estimation
- 4 Interpretation
- 5 Asymptotic distribution Test
- 6 Prediction
- 7 To go further

Asymptotic Behavior of the MLE

Theorem:

- a $\hat{\beta} \rightarrow_{a.s} \beta$ when $n \rightarrow \infty$
- b $\sqrt(n)(\hat{\beta} \beta) \to \mathcal{N}(0, I(\beta)^{-1})$ with the Fisher information $I(\beta)_{k,l} = -E\left(\frac{\partial^2 \log L_n}{\partial \beta_k \partial_{\beta_l} L_n(\beta)}\right)$

Theorem:

$$(\hat{\beta} - \beta)' \operatorname{nl}(\beta)(\hat{\beta} - \beta) \to \chi_d^2$$

Law of large number + Slutsky Lemma + Convergence in Law

- $\hat{I}(\beta) = \frac{1}{n} \mathbf{X}^t \mathbf{W}_{\beta} \mathbf{X}$ converge a.s. to $I(\beta)$
- $\bullet (\hat{\beta} \beta)'(\mathbf{X}^t \mathbf{W}_{\hat{\beta}} \mathbf{X})(\hat{\beta} \beta) \to \chi_{\mathbf{d}}^2$

Asymptotic Confidence interval. Wald

Asymptotic distributions

$$egin{aligned} rac{(\hat{eta}_j - eta_j)^2}{\hat{\sigma}_j^2} &
ightarrow \chi_1^2 \ rac{(\hat{eta}_j - eta_j)}{\hat{\sigma}_j} &
ightarrow \mathcal{N}(0,1) \end{aligned}$$

Confidence interval

$$IC_{1-\alpha}(\beta_j) = \left[\hat{\beta}_j - u_{1-\alpha/2}\hat{\sigma}_j; \hat{\beta}_j - u_{1-\alpha/2}\hat{\sigma}_j\right]$$

Significativity test of the coefficients

To test

$$H_0: \beta_j = 0$$
 against $H_1: \beta_j \neq 0$

one uses

$$Z_j = rac{\hat{eta}_j}{\hat{\sigma}_j} \sim \mathcal{N}(0,1)$$

Significativity test of all the coefficients

To test

one uses Wald test

$$(\hat{eta} - 0)(\mathbf{X}^t \mathbf{W}_{\hat{eta}} \mathbf{X}^t)(\hat{eta} - \mathbf{0}) \sim \chi_{\mathbf{d}}^2$$

4

Logistic Regression CDH on Age

Number of Fisher Scoring iterations: 4

Test: $eta_1=0$: test if the proba of CDH is independent of Age: $\hat{p}_i=rac{e^{\hat{eta}_0}}{1+e^{\hat{eta}_0}}$

Plan

- 1 Introduction
- 2 Logistic model
- 3 Estimation
- 4 Interpretation
- 5 Asymptotic distribution Test
- 6 Prediction
- 7 To go further

Prediction Error (CHD example)

Prediction (threshold = 0.5)

Then, for a given x,

- If $\widehat{\mathbb{P}}(Y = \mathrm{Yes}|\mathbf{X} = \mathbf{x}) > 0.5$, we predict $\widehat{y} = \mathrm{Yes}$;
- If $\widehat{\mathbb{P}}(Y = \text{Yes}|\mathbf{X} = \mathbf{x}) \leq 0.5$, we predict $\widehat{y} = \text{No}$.

Confusion Matrix: Cross table of the prediction vs the truth

```
## CHD No Yes
## No 45 12
## Yes 14 29
```

Prediction error : (14 + 12)/100 = 0.26

Classical Metrics

		Predicted Class	
		Yes	No
Actual Class	Yes	TP	FN
	No	FP	TN

Score

$$\mathsf{Accuracy} = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{TP} + \mathsf{TN} + \mathsf{FP} + \mathsf{FN}}$$

Classical Metrics

Scores

$$\mathsf{Accuracy} = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{TP} + \mathsf{TN} + \mathsf{FP} + \mathsf{FN}}$$

$$\mbox{True Positive Rate} = \mbox{Sensitivity} = \frac{\mbox{TP}}{\mbox{TP} + \mbox{FN}}$$

False Positive Rate =
$$1 - Specificity = \frac{FP}{FP + TN}$$

$$Precision = \frac{TP}{\#(predicted P)} = \frac{TP}{TP + FP}$$

■ Many other metrics...

ROC Curve

ROC Curve (Receiver Operating Characteristic)

- For binary classification
- True positive Rate TPR = $\frac{TP}{TP+FN}$
- False positive Rate $FPR = \frac{FP}{FP+TN}$
- *x*-axis: FPR, *y*-axis: TPR
- Each point A_t of the curve has coordinates (FPR_t, TPR_t), where FPR_t and TPR_t are FPR and TPR of the confusion matrix obtained by the classification rule

$$\hat{y}_i = \mathbf{1}\hat{p}_i \geq t$$

AUC score is the Area Under the ROC Curve

ROC Curve

Area under the curve: 0.8331

How to draw benefits from the estimated model?

Prediction for a new individual:

- A new individual \mathbf{x}_{new} appears and we want to predict if he has the disease $(y_{new} = 1)$ or not $(y_{new} = 0)$.
- We have estimated the logistic coefficients $\widehat{\beta}$ so that, for all \mathbf{x} ,

$$\mathbb{P}\left(Y=1|\mathbf{X}=\mathbf{x}
ight)pproxrac{e^{\widehat{eta}^T\mathbf{x}}}{1+e^{\widehat{eta}^T\mathbf{x}}}.$$
 (1)

• Any ideas to predict y_{new} ?

Plan

- 1 Introduction
- 2 Logistic model
- 3 Estimation
- 4 Interpretation
- 5 Asymptotic distribution Test
- 6 Prediction
- 7 To go further

Generalized linear model

Reference: Generalized Linear Models. P. McCullagh, John A. Nelder, Chapman and Hall/CRC.

GLM

- Distribution: $E[Y_i] = \mu_i$
- Linear predictor $\eta_i = \sum_j x_{ij} \beta_j$
- Link function $g(\mu) = \eta$

GLM

- Gaussian: linear regression
- Bernouilli: logistic regression
- Poisson: poisson regression (counts)

Much more...

Logistic regression

Interpret the coefficients for categorical predictors
Interpret interaction
Inspect residuals - Model checking
With more than two categories: multinomial regression multinom function nnet package
clm function of ordinal package
polr mass package
Model selection - Likelihood Ratio
In high dimension, regularization

R package: glmnet

Model Selection

I Given Y a variable to explain by d variables $X^{(1)}, \ldots, X^{(d)}$, how to select (systematically) the most interesting subset of variables to do the prediction?

Variable selection

Find automatically a sub-group of variables to explain Y.

2 More generally, given k models $\mathcal{M}_1, \ldots, \mathcal{M}_k$, which one to use?

Model selection

Criterion to compare the performance of different models.

Embedded model testing I

- Assume we have two competing models \mathcal{M}_S (with S parameters) and \mathcal{M}_L (with L parameters) such that $\mathcal{M}_S \subset \mathcal{M}_L$.
- Can we test if \mathcal{M}_S is sufficient?

Example (S=2 and L=4)

- Models:
 - \mathcal{M}_S : $\operatorname{logit} p_{\beta}^{(S)}(\mathbf{x}) = \beta_0 + \beta_1 X^{(1)} + \beta_2 X^{(2)}$
 - \mathcal{M}_L : $\operatorname{logit} p_{\beta}^{(L)}(\mathbf{x}) = \beta_0 + \beta_1 X^{(1)} + \beta_2 X^{(2)} + \beta_3 X^{(3)} + \beta_4 X^{(4)}$
 - Test

$$H_0: \beta_3 = \beta_4 = 0$$
 against $H_1: \beta_3 \neq 0$ or $\beta_4 \neq 0$

Embedded model testing II

Deviance

- Log-likelihood \mathcal{M}_S : $\mathcal{L}_S = \log(L_S(\hat{\beta}, \mathcal{D}_n))$
- Log-likelihood of model \mathcal{M}_L : $\mathcal{L}_L = \log(L_L(\hat{\beta}, \mathcal{D}_n))$
- Likelihood Ratio: L_S/L_L . Log(R) = log(S) log(L). -2Log(R) = 2log(L) 2log(S) Deviance between the two models:

$$\mathcal{D}_{L-S} = 2(\mathcal{L}_L - \mathcal{L}_S) = 2(\log(L_L(\hat{\beta}, \mathcal{D}_n)) - \log(L_S(\hat{\beta}, \mathcal{D}_n)))$$

Asymptotically under $H_0: (\mathcal{D}_{L-S}) \sim \chi^2(L-S)$

Under R: If W and V are two glm objects such that W is a submodel of V, the command anova(W,V,test="Chisq") performs this test.

Embedded model testing III

LR to test the significance of all the coefficients

Deviance between the complete model and the null model with the intercept:

$$\mathcal{D}_{d-0} = 2(\mathcal{L}_d - \mathcal{L}_0) = 2(\log(L_d(\hat{\beta}, \mathcal{D}_n)) - \log(L_0(\hat{\beta}, \mathcal{D}_n))) \sim \chi^2(d)$$

AIC, BIC

- Let \mathcal{M} be a generic logistic model and denote p its number of parameters.
- Let $\hat{\beta}$ be the ML estimate in this model \mathcal{M} .

The AIC and BIC consist in minimizing

$$-2 \times \log(L(\hat{\beta}, \mathcal{D}_n)) + \kappa(n) \times p$$

over all models.

- Different choices for the factor $\kappa(n)$:
 - AIC : $\kappa(n) = 2$.
 - BIC : $\kappa(n) = \log n$.
- The BIC criterion leads to the selection of a model with a smaller dimension than AIC.

Logistic model

Other choices for g

lacksquare Classical choice for g such that $g:\mathbb{R} o[0,1]$,

$$g^{-1}(t)=rac{e^t}{1+e^t}$$
 logit $g^{-1}(t)=F_{\mathcal{N}}(t)$ probit $g^{-1}(t)=1-e^{-e^t}$ log-log

where $F_{\mathcal{N}}$ is the cumulative distribution function of a standard Gaussian $\mathcal{N}(0,1)$.

In high dimension

Penalized Likelihood

Minimization of

$$\operatorname*{argmin}_{\beta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i(\beta^t \mathbf{x}_i)}) + \operatorname{pen}(\beta)$$

where $pen(\beta)$ is a (sparsity promoting) penalty

■ Variable selection if β is sparse.

Classical Penalties

- AIC: $pen(\beta) = \lambda ||\beta||_0$ (non convex / sparsity)
- Ridge: $pen(\beta) = \lambda \|\beta\|_2^2$ (convex / no sparsity)
- Lasso: $pen(\beta) = \lambda ||\beta||_1$ (convex / sparsity)
- Elastic net: pen(β) = $\lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$ (convex / sparsity)

Regularization Parameter Issue

■ Need to choose λ from the data!

Error behaviour

- Learning/training error (error made on the learning/training set) decays when the regularization parameter decreases.
- Quite different behavior when the error is computed on new observations (generalization error).
- Overfit for complex models: parameters learned are too specific to the learning set!
- General situation! (Think of polynomial fit...)
- Need another criterion than the training error! → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → <

Cross Validation

- **Very simple idea:** use a second learning/verification set to compute a verification error.
- Sufficient to avoid over-fitting!

Cross Validation

- Use $\frac{V-1}{V}n$ observations to train and $\frac{1}{V}n$ to verify!
- Validation for a learning set of size $(1 \frac{1}{V}) \times n$ instead of n!
- Most classical variations:
 - Leave One Out,
 - V-fold cross validation.
- Accuracy/Speed tradeoff: V = 5 or V = 10!

Penalization and Cross-Validation

Practical Selection Methodology

- Choose a penalty shape $\widetilde{pen}(\beta)$.
- Compute a CV error for a penalty $\lambda \widetilde{pen}(\beta)$ for all $\lambda \in \Lambda$.
- Determine $\widehat{\lambda}$ the λ minimizing the CV error.
- Compute the final logistic regression with a penalty $\widehat{\lambda}$ pen(β).