Vectors & Matrices - Definitions

Lectured by Prof Paul Linden

Michaelmas 2013

1 Complex Numbers

Definition 1 (Complex Logarithm). For $z \in \mathbb{C}$, $\log z = \log |z| + i \arg z$.

Definition 2 (Complex Powers). For $z \neq 0$ and $z, w \in \mathbb{C}$, define z raised to power w as $z^w = \exp(w \log z)$.

2 Vector Algebra

Definition 3 (Vector). A *vector* is a quantity specified by a positive magnitude and a direction in space.

Definition 4 (Vector field). $\mathbf{F}(\mathbf{x})$ is a vector function of space. e.g. an electric field.

Definition 5 (Vector space). A vector space over the real numbers is the set of elements V under two binary operations, and with the null, inverse and identity element satisfying:

(i)
$$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$$
 (commutative)

(ii)
$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$
 (associative)

(iii)
$$\mathbf{a} + \mathbf{0} = \mathbf{a}$$
 (null vector)

(iv)
$$\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$$
 (additive inverse vector)

- (v) $(\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}$ (scalar multiplication distributive over scalar addition)
- (vi) $\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$ (scalar multiplication distributive over vector addition)

(vii)
$$\lambda(\mu \mathbf{a}) = (\lambda \mu)\mathbf{a}$$
 (scalar multiplication 'associative')

(viii)
$$1\mathbf{a} = \mathbf{a}$$
 (multiplicative identity)

Definition 6 (Scalar product). The *scalar product* or *dot product* of two vectors **a** and **b** is defined geometrically to be the real (scalar) number:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

where $0 \le \theta \le \pi$ is the non-reflex angle between **a** and **b** once they have been placed 'tail to tail'.

Definition 7 (Vector product). The *vector product* or *cross product* of two vectors **a** and **b** is defined geometrically to be a vector such that:

(i) $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$

with $0 \le \theta \le \pi$ defined as with the scalar product;

- (ii) $\mathbf{a} \times \mathbf{b}$ is perpendicular/orthogonal to both \mathbf{a} and \mathbf{b} ;
- (iii) $\mathbf{a} \times \mathbf{b}$ has the sense/direction defined by the 'right-hand rule', i.e. point the index finger in the direction of \mathbf{a} , the middle finger in the direction of \mathbf{b} , then $\mathbf{a} \times \mathbf{b}$ is in the direction of the thumb.

Definition 8 (Triple products). Given three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, we can form two triple products.

Scalar triple product

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

Vector triple product

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$$

Definition 9 (Linear independence). A set of m vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_m\}$, $\mathbf{v}_j \in \mathbb{R}^n$, $j = 1, 2, \dots m$ is linearly independent if for all scalars $\lambda_j \in \mathbb{R}$, $j = 1, 2, \dots m$

$$\sum_{i=1}^{m} \lambda_i \mathbf{v}_i = \mathbf{0} \implies \lambda_i = 0 \quad \text{for} \quad i = 1, 2, \dots m$$

Otherwise the vectors are said to be linearly dependent.

Definition 10 (Spanning set). A subset $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_m\}$ of vectors in \mathbb{R}^n is a spanning set for \mathbb{R}^n if for every vector $\mathbf{v} \in \mathbb{R}^n$, there exist scalars $\lambda_j \in \mathbb{R}, j = 1, 2, \dots m$, such that

$$\mathbf{v} = \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_m \mathbf{u}_m$$

Definition 11 (Basis). A linearly independent subset of vectors that spans \mathbb{R}^n is a *basis* for \mathbb{R}^n .

Definition 12 (Components). Given a basis $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_m\}$ of \mathbb{R}^n , for every vector $\mathbf{v} \in \mathbb{R}^n$ there exist *unique* scalars $\lambda_j \in \mathbb{R}, j = 1, 2, \dots n$ such that

$$\mathbf{v} = \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_n \mathbf{u}_n$$

The λ_j are the *components* of **v** with respect to the ordered basis S.

Definition 13 (Dimension). The *dimension* of a space is the number of vectors in a basis of the space.

Definition 14 (Scalar product for \mathbb{R}^n). For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, define the scalar product

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

Definition 15 (Euclidean norm). The length or Euclidean norm of a vector $\mathbf{x} \in \mathbb{R}^n$ is

$$|\mathbf{x}| \equiv (\mathbf{x} \cdot \mathbf{x})^{\frac{1}{2}} = \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}}$$

Definition 16 (Interior angle). The interior angle θ between two vectors \mathbf{x} and \mathbf{y} is

$$\theta = \arccos\left(\frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|}\right)$$

Definition 17 (Scalar product for \mathbb{C}^n). For $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$, define the scalar product

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i^* v_i = u_1^* v_1 + u_2^* v_2 + \ldots + u_n^* v_n$$

Definition 18 (Orthogonal). Non-zero vectors \mathbf{x}, \mathbf{y} are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$.

Definition 19 (Suffix notation). Using suffices, we can abbreviate expressions involving vectors by following these rules:

- if a suffix appears once it is taken to be a free suffix and ranged through,
- if a suffix appears twice it is taken to be a dummy suffix and summed over,
- if a suffix appears more than twice in one term, something has gone wrong.

Definition 20 (Kronecker delta). The Kronecker delta δ_{ij} , i, j = 1, 2, 3 is defined by

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j \end{cases}$$

Definition 21 (Levi-Civita symbol). The Levi-Civita symbol or alternating tensor ϵ_{ijk} is defined by

$$\epsilon_{ijk} = \begin{cases} 1 & \text{if } i, j, k \text{ is an even permutation of 1 2 3;} \\ -1 & \text{if } i, j, k \text{ is an odd permutation of 1 2 3;} \\ 0 & \text{otherwise} \end{cases}$$

Definition 22 (Subspace). A non-empty subset U of the elements of a vector space V is called a *subspace* of V if U is a vector space under the same operations as are used to define V.

3 Matrices and Linear Maps

Definition 23 (Map). Let A, B be sets. A map \mathcal{T} of A into B is a rule that assigns to each $x \in A$ a unique $x' \in B$. We write

$$\mathcal{T}: A \to B \text{ and/or } x \mapsto x' = \mathcal{T}(x)$$

A is the domain of \mathcal{T} .

B is the range, or codomain of \mathcal{T} .

 $\mathcal{T}(x) = x'$ is the *image* of x under \mathcal{T} .

 $\mathcal{T}(A)$ is the image of A under \mathcal{T} , i.e. the set of all image points $x' \in B$ of $x \in A$.

Definition 24 (Linear map). Let V, W be real vector spaces, e.g. $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$. The map $\mathcal{T}: V \to W$ is a linear map or linear transformation if for all $\mathbf{a}, \mathbf{b} \in V$ and $\lambda, \mu \in \mathbb{R}$,

(i)
$$\mathcal{T}(\mathbf{a} + \mathbf{b}) = \mathcal{T}(\mathbf{a}) + \mathcal{T}(\mathbf{b})$$

(ii)
$$\mathcal{T}(\lambda \mathbf{a}) = \lambda \mathcal{T}(\mathbf{a})$$

or equivalently if $\mathcal{T}(\lambda \mathbf{a} + \mu \mathbf{b}) = \lambda \mathcal{T}(\mathbf{a}) + \mu \mathcal{T}(\mathbf{b})$

Definition 25 (Rank). The *rank* of a linear map $\mathcal{T}: V \to W$ is the dimension of the image

$$r(\mathcal{T}) = \dim \mathcal{T}(V)$$

Definition 26 (Kernel). For a linear map $\mathcal{T}: V \to W$, the subset of V that maps to the zero element in W is called the *kernel* or *null space* of \mathcal{T}

$$K(\mathcal{T}) = \{ \mathbf{v} \in V : \mathcal{T}(\mathbf{v}) = \mathbf{0} \in W \}$$

Definition 27 (Nullity). The *nullity* of a linear map $\mathcal{T}: V \to W$ is the dimension of the kernel

$$n(\mathcal{T}) = \dim K(\mathcal{T})$$

Definition 28 (Composite map). Suppose that $S: U \to V$ and $T: V \to W$ are linear maps. The *composite* or *product* map TS is the map $TS: U \to W$ such that

$$\mathbf{u} \mapsto \mathbf{w} = \mathcal{T}(\mathcal{S}(\mathbf{u}))$$

Definition 29 (Transpose). If $A = \{A_{ij}\}$ is a $m \times n$ matrix, then its *transpose* A^T is defined to be a $n \times m$ matrix with elements

$$(\mathbf{A}^{\mathrm{T}})_{ij} = (\mathbf{A})_{ji} = \mathbf{A}_{ji}$$

Definition 30 (Hermitian conjugate). The Hermitian conjugate or conjugate transpose or adjoint of a matrix $A = \{A_{ij}\}$, where $A_{ij} \in \mathbb{C}$ is

$$A^{\dagger} = (A^{\mathrm{T}})^* = (A^*)^{\mathrm{T}}$$

Definition 31 (Symmetric). A square $n \times n$ matrix $A = \{A_{ij}\}$ is symmetric if

$$A = A^T$$

Definition 32 (Hermitian). A square $n \times n$ (complex) matrix $A = \{A_{ij}\}$ is Hermitian if

$$A = A^{\dagger}$$

Definition 33 (Antisymmetric). A square $n \times n$ matrix $A = \{A_{ij}\}$ is antisymmetric if

$$A = -A^{T}$$

Definition 34 (Skew-Hermitian). A square $n \times n$ (complex) matrix $A = \{A_{ij}\}$ is skew-Hermitian if

$$A = -A^{\dagger}$$

Definition 35 (Trace). The *trace* of a square $n \times n$ matrix $A = \{A_{ij}\}$ is equal to the sum of the diagonal elements

$$Tr(A) = A_{ii}$$

Definition 36 (Unit matrix). The unit or identity $n \times n$ matrix is

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Definition 37 (Inverse). Let A be a $m \times n$ matrix. A $n \times m$ matrix B is a *left inverse* of A if BA = I. A $n \times m$ matrix C is a *right inverse* of A if AC = I.

Definition 38 (Invertible). An $n \times n$ matrix A is *invertible* if there exists an $n \times n$ matrix B such that

$$BA = AB = I$$

The matrix B is called the *inverse* of A and is denoted A^{-1} .

Definition 39 (Orthogonal). An $n \times n$ real matrix $A = \{A_{ij}\}$ is orthogonal if

$$AA^{T} = I = A^{T}A$$

Definition 40 (Unitary). A complex square matrix U is *unitary* if its Hermitian conjugate is equal to its inverse

$$U^{\dagger} = U^{-1}$$

Definition 41 (Determinant). The determinant of a 3×3 matrix A is given by

$$\det A \equiv |A| = \epsilon_{ijk} A_{i1} A_{i2} A_{k3}$$

Definition 42 (Levi-Civita symbol - generalised).

$$\epsilon_{j_1 j_2 \dots j_n} = \begin{cases} 1 & \text{if } (j_1, j_2, \dots j_n) \text{ is an even permutation of } (1, 2, \dots n); \\ -1 & \text{if } (j_1, j_2, \dots j_n) \text{ is an odd permutation of } (1, 2, \dots n); \\ 0 & \text{otherwise (if any two labels are the same)} \end{cases}$$

Definition 43 (Determinant - generalised).

$$\det \mathbf{A} = \epsilon_{i_1 i_2 \dots i_n} A_{i_1 1} A_{i_2 2} \dots A_{i_n n} = \sum_{\sigma \in S_n} \epsilon(\sigma) A_{\sigma(1) 1} A_{\sigma(2) 2} \dots A_{\sigma(n) n}$$

where the i_k are summed over (summation convention).

Definition 44. For a square $n \times n$ matrix $A = \{A_{ij}\}$, define A^{ij} to be the $(n-1) \times (n-1)$ square matrix obtained by eliminating the *i*th row and the *j*th column of A.

$$A^{ij} = \begin{pmatrix} A_{11} & \dots & A_{1(j-1)} & A_{1(j+1)} & \dots & A_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ A_{(i-1)1} & \dots & A_{(i-1)(j-1)} & A_{(i-1)(j+1)} & \dots & A_{(i-1)n} \\ A_{(i+1)1} & \dots & A_{(i+1)(j-1)} & A_{(i+1)(j+1)} & \dots & A_{(i+1)n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{n(j-1)} & A_{n(j+1)} & \dots & A_{nn} \end{pmatrix}$$

Definition 45 (Minor). The minor M_{ij} of the ijth element of a square matrix A is the determinant of the square matrix obtained by eliminating the ith row and the jth column of A

$$M_{ij} = \det A^{ij}$$

Definition 46 (Cofactor). The cofactor Δ_{ij} of the ijth element of a square matrix A is

$$\Delta_{ij} = (-1)^{i-j} M_{ij} = (-1)^{i-j} \det A^{ij}$$

4 Matrix Inverses and Linear Equations

Definition 47 (Inhomogeneous). The system of equations $A\mathbf{x} = \mathbf{d}$ is a system of *inhomogeneous* equations if $\mathbf{d} \neq \mathbf{0}$.

If d = 0, it is a system of homogeneous equations.

Definition 48 (Rank). The *rank* of a matrix A, rank(A) is the maximum number of linearly independent columns/rows of A.

Definition 49 (Singular). A $n \times n$ square matrix A is *singular* if det A = 0 and *non-singular* if det A \neq 0.

5 Eigenvalues and Eigenvectors

Definition 50 (Eigenvector & eigenvalue). For a linear map $\mathcal{A} : \mathbb{F}^n \to \mathbb{F}^n$, if $\mathcal{A}(\mathbf{x}) = \lambda \mathbf{x}$ for some *non-zero* vector $\mathbf{x} \in \mathbb{F}^n$ and $\lambda \in \mathbb{F}$, then \mathbf{x} is an eigenvector of \mathcal{A} with eigenvalue λ .

Similarly, for an $n \times n$ square matrix A, if $A\mathbf{x} = \lambda \mathbf{x}$ for some non-zero vector $\mathbf{x} \in \mathbb{F}^n$ and $\lambda \in \mathbb{F}$, then \mathbf{x} is an eigenvector of A with eigenvalue λ .

Definition 51 (Characteristic polynomial). The *characteristic polynomial* of the matrix A is the polynomial

$$p_{A}(\lambda) = \det(A - \lambda I)$$

The characteristic equation is $p_A(\lambda) = 0$, and its solutions are the eigenvalues of A.

Definition 52 (Algebraic multiplicity). The multiplicity of an eigenvalue λ as a root of the characteristic polynomial is called the *algebraic multiplicity* of λ , denoted M_{λ} . An eigenvalue with an algebraic multiplicity greater than one is *degenerate*.

Definition 53 (Geometric multiplicity). The maximum number, m_{λ} , of linearly independent eigenvectors corresponding to λ is called the *geometric multiplicity* of λ .

Definition 54 (Defect). The difference $\Delta_{\lambda} = M_{\lambda} - m_{\lambda}$ is the defect of λ .

Definition 55 (Generalised eigenvector). A vector \mathbf{x} is a generalised eigenvector of a map $\mathcal{A}: \mathbb{F}^n \to \mathbb{F}^n$ if there is some eigenvalue $\lambda \in \mathbb{F}^n$ and some $k \in \mathbb{N}$ such that

$$(\mathcal{A} - \lambda \mathcal{I})^k(\mathbf{x}) = \mathbf{0}$$

Definition 56 (Diagonal matrix). A $n \times n$ matrix $D = \{D_{ij}\}$ is a diagonal matrix if $D_{ij} = 0$ whenever $i \neq j$, i.e. if

$$D = \begin{pmatrix} D_{11} & 0 & \dots & 0 \\ 0 & D_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & D_{nn} \end{pmatrix}$$

Definition 57 (Similar matrices). The $n \times n$ matrices A and B are *similar*, or *conjugate*, if for some invertible matrix P,

$$B = P^{-1}AP$$

Definition 58 (Diagonalizable). A linear map $\mathcal{A}: \mathbb{F}^n \to \mathbb{F}^n$ is diagonalizable if \mathbb{F}^n has a basis consisting of eigenvectors of \mathcal{A} .

An $n \times n$ matrix A is diagonalizable if A is similar with a diagonal matrix.

Definition 59 (Normal). A square matrix A is *normal* if

$$A^{\dagger}A = AA^{\dagger}$$

Definition 60 (Form). A map $\mathcal{F}(\mathbf{x})$

$$\mathcal{F}(\mathbf{x}) = \mathbf{x}^{\dagger} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i^* A_{ij} x_j$$

is a (sesquilinear) form; A is its coefficient matrix.

Definition 61 (Hermitian form). If A = H is an Hermitian matrix, the map $\mathcal{F}(\mathbf{x})$: $\mathbb{C}^n \to \mathbb{C}$, where

$$\mathcal{F}(\mathbf{x}) = \mathbf{x}^{\dagger} \mathbf{H} \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i^* H_{ij} x_j$$

is an Hermitian form on \mathbb{C}^n .

Definition 62 (Quadratic form). If A = S is a real symmetric matrix, the map $\mathcal{F}(\mathbf{x})$: $\mathbb{R}^n \to \mathbb{R}$, where

$$\mathcal{F}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{S} \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i S_{ij} x_j$$

is a quadratic form on \mathbb{R}^n .

Definition 63 (Hessian matrix). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function such that all the second-order partial derivative exist. The *Hessian matrix* $H(\mathbf{a})$ of f at $\mathbf{a} \in \mathbb{R}^n$ is defined to have components

$$H_{ij}(\mathbf{a}) = \frac{\partial^2 f}{\partial x_i \partial x_i}(\mathbf{a})$$