Lecture 7

Classification Analysis and Ensemble Models

Ashish Dandekar

Lecture Overview

Naive Bayes Classifier
Decision Trees
Ensemble Models

Naive Bayes Classifier

Formulation

▶ Formulation

Conditional Independence Naive Bayes Assumption Comments

Age	Edu	Marital	Income	Credit
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

- Will a 24 years old unmarried bachelor with an annual income of 50k get the credit card approved?
- Will a 45 years old single PhD person with the annual income of 95 k be eligible for the credit card?

Can we use logistic regression to solve this problem?

Formulation

▶ Formulation

Conditional Independence Naive Bayes Assumption Comments

The Problem

Given a labeled dataset $D = \{(x_i, y_i)\}$ of n points where $\mathbf{x_i}$ s are the predictors and $y_i \in C$ is the label of the datapoint. $C = \{c_1, c_2, ..., c_l\}$ is the set of labels.

A datapoint **X** is assigned a label as follows:

$$\hat{y} = \underset{c \in C}{\operatorname{arg max}} Pr[y = c \mid \mathbf{x}]$$

Using Baye's Rule,

$$Pr[y=c \mid \mathbf{x}] \propto Pr[\mathbf{x} \mid y=c]Pr[y=c]$$

How to compute $Pr[\mathbf{x} \mid y = c]$?

Conditional Independence

Formulation

➤ Conditional Independence

Naive Bayes Assumption Comments

Conditional Independence

Given three random variables X, Y and Z. X and Y are said to be conditionally independent given Z if and only if:

$$Pr[X \mid Y, Z] = Pr[X \mid Z]$$

X and Y may or may not be independent variables.

Confounding variable!

There are two friends who are going for a party. Both of them are late. Let's consider their tardiness as a random variable. Are these dependent on each other? What if it was raining outside?

Conditional Independence

Formulation
Conditional
Independence
Naive Bayes
Assumption
Comments

Naive Bayes Assumption

All predictors are conditionally independent given the label of the datapoint.

$$Pr[\mathbf{x} \mid y = c] = Pr[x_1 \mid y = c]Pr[x_2 \mid y = c] \dots Pr[x_d \mid y = c]$$

Applying to the earlier example:

$$Pr[credit = yes \mid age = 24, edu = bachelor, income = 50k]$$

$$=Pr[age = 24, edu = bachelor, income = 50k \mid credit = yes]$$

$$\times Pr[credit = yes]$$

$$=$$
 $Pr[age = 24 \mid credit = yes] \times Pr[edu = bachelor \mid crdit = yes] \times$

$$\times$$
 Pr[income = 50k | crdit = yes] \times Pr[credit = yes]

Conditional Independence

Formulation
Conditional
Independence
Naive Bayes Assumption
Comments

Pros

- Works with non-numerical data.
- Not sensitive to the outliers in the data.
- Easy to implement and highly interpretable.

Cons

- Conditional independence may not be a realistic assumption.
- Sensitive to imbalanced data.
- Suffers from black-swan events.

Decision Trees

Introduction

▶ Introduction

Building the tree Purity metrics Information Gain Comments

Age	Edu	Marital	Income	Credit
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

Components of Decision Tree

- Inner node. test a feature
- Leaf node. label

Which tree to use?

> Introduction

Building the tree Purity metrics Information Gain Comments

Age	Edu	Marital	Income	Credit
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

Will the credit card be approved for a person with the following attributes: Age:50, Education: PhD, Marital_Status: Singsle and Income:70k?

Which tree to use?

> Introduction

Building the tree Purity metrics Information Gain Comments

Age	Edu	Marital	Income	Credit
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

Will the credit card be approved for a person with the following attributes: Age:50, Education: PhD, Marital_Status: Single and Income:70k?

Introduction

> Building the tree

Purity metrics

Information Gain

Comments

General Procedure

- Start at the root node with all records.
- If all records in the node has the same label it is a leaf node.
- Otherwise, "choose" a test (feature and condition) to split the node into smaller subsets.
- Recursively apply the procedure on each of the nodes.

Introduction

> Building the tree

Purity metrics

Information Gain

Comments

Age	Edu	Marital	Income	Credit
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

Introduction

> Building the tree

Purity metrics
Information Gain
Comments

Age	Edu	Marital	Income	Credit
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

Age	Edu	Marital	Income	Credit
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

Introduction

> Building the tree

Purity metrics

Information Gain

Comments

General Procedure

- Start at the root node with all records.
- If all records in the node has the same label it is a leaf node.
- Otherwise, "choose" a test (feature and condition) to split the node into smaller subsets.
- Recursively apply the procedure on each of the nodes.

How to choose a feature? How to handle non-binary attributes?

Purity Metrics

Introduction
Building the tree
Purity metrics
Entropy

Gini Index
Information Gain
Comments

AAAAAAA

AAAABBCD

AABBCCDD

Bucket 1

Low Entropy

ergo to higher impurity!

Bucket 2

Medium Entropy

Bucket 3

High Entropy

Entropy

$$H(X) = -\sum_{x} p(x) \log p(x)$$

Higher randomness leads to higher entropy,

	Distribution	Entropy
Bucket 1	[8, 0, 0, 0]	0
Bucket 2	[4, 2, 1, 1]	1.75
Bucket 3	[2, 2, 2, 2]	2

Purity Metrics

Introduction
Building the tree
Purity metrics
Entropy
Gini Index
Information Gain

Comments

AAAAAAA

AAAABBCD

AABBCCDD

Bucket 1

Low Entropy

Bucket 2

Medium Entropy

Bucket 3

High Entropy

Gini Index

$$G(X) = 1 - \sum_{X} P(X)^2$$

Higher randomness leads to higher gini index, ergo to higher impurity!

	Distribution	Gini
Bucket 1	[8, 0, 0, 0]	0
Bucket 2	[4, 2, 1, 1]	0.66
Bucket 3	[2, 2, 2, 2]	0.75

Informtion Gain

Introduction
Building the tree
Purity metrics
Information Gain
Comments

Assume that a node \boldsymbol{u} is split into \boldsymbol{k} children $(\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_k)$ such that

- n_i is the number of records in n^{th} child.
- *n* is the total number of records.
- $I(\cdot)$ is the impurity of the node.

Information gain is computed as:

$$IG = I(u) - \sum_{i=1}^{k} \frac{|v_i|}{|u|} I(v_i)$$

Computing Information Gain

Introduction
Building the tree
Purity metrics
Information Gain
Comments

Age	Edu	Marital	Income	Credit
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

Entropy before splitting:

$$H[(5,4)] = 0.99$$

Splitting on Marital Status.

•
$$H[v_1] = H[(2,2)] = 1$$

•
$$H[v_2] = H[(3,2)] = 0.97$$

Information gain is computed as follows:

$$IG = 0.99 - (\frac{4}{9} + \frac{5}{9} \cdot 0.97) = 0.006$$

Computing Information Gain

Introduction
Building the tree
Purity metrics
Information Gain
Comments

Age	Edu	Marital	Income	Credit
23	Masters	Single	75k	Yes
35	Bachelor	Married	50k	No
26	Masters	Single	70k	Yes
41	PhD	Single	95k	Yes
18	Bachelor	Single	40k	No
55	Masters	Married	85k	No
30	Bachelor	Single	60k	No
35	PhD	Married	60k	Yes
28	PhD	Married	65k	Yes

Entropy before splitting:

$$H[(5,4)] = 0.99$$

Splitting on Educational Status.

•
$$H[v_1] = H[(0,3)] = 0$$

•
$$H[v_2] = H[(5,1)] = 0.65$$

Information gain is computed as follows:

$$IG = 0.99 - (\frac{3}{9} \cdot 0 + \frac{6}{9} \cdot 0.65) = 0.556$$

Comments

Introduction
Building the tree
Purity metrics
Information Gain
Comments

Splitting non-binary attributes.

- Multiway split
- Binary split by merging categories

Splitting continuous attributes.

- Try every possible value.
- Sort the data and use the quantiles as a a splitting criteria.

Optimality

• Finding optimal decision tree is NP-Complete.

Drawbacks

- Prone to overfitting
- Interpretability reduces as the size grows.
- Inefficient on very large atasets.

Ensemble Models

Motivation

▶ Motivation

Bagging Boosting

The aim of ensemble method is to take a simple, perhaps an inefficient, base learner and boost its efficiency through collective efforts.

- Diverse models
- Diverse hyper-parameters
- Diverse input representations
- Diverse traing data

Bagging

Motivation

> Bagging Introduction

Algorithm Random Forest How it works! **Boosting**

Source: ResearchGate

- Bootstrap Sampling. Repeatedly drawing samples with replacements.
- **Bagging.** It refers to bootstrap aggregation.

Algorithm

Motivation

> Bagging

Introduction

Algorithm

Random Forest How it works!

Boosting

- A learner is said to be *unstable* if a small change in the training data results in large deviation in the output of the learner.
- Bagging works well with unstable base learners.

Algorithm 1 Bagging

- 1: **for** $j \in [1..L]$ **do**
- 2: Create D_i by sampling N points from D with replacement.
- 3: Train a hypothesis h_i on the dataset D_i .
- 4: Put a weight $\alpha_i = 1/L$.
- 5: end for
- 6: Final classifier is given by $H(x) = sign(\sum_{j} \alpha_{j} h_{j}(x))$

Random Forest

Motivation

> Bagging

Introduction Algorithm

Random Forest

How it works! **Boosting**

Random Forest Simplified Instance Random Forest Tree-1 Class-A Class-B Majority-Voting Final-Class

Source: Medium

Heuristics

• Randomly chooses \sqrt{k} features in every bootstrap sample out of k features in the training dataset.

Pros

- High effectiveness (fairly state-of-the-art)
- Parallelisable training
- No fine-tuning necessary

Cons

• Less interpretable

How does it work?

Motivation

> Bagging

Introduction Algorithm Random Forest

How it works!
Boosting

Let $E[h_i]$ and $Var[h_i]$ denote the expected value value for the individual base learners.

$$E[h] = E[1/L\sum_{j} h_{j}] = \frac{1}{L}LE[h_{j}] = E[h_{j}]$$

$$Var[h_j] = Var[1/L\sum_j h_j] = \frac{1}{L^2}LVar[h_j] = \frac{Var[h_j]}{L}$$

- Bagging reduces the variance of base learners without affecting the base learners.
- Unstable learners are overfit and thye already have a lower bias.

Boosting

Motivation
Bagging
Soosting
Introduction
AdaBoost

Boosting is a seuqential re-training of the *weak* learners by re-weighting the training datapoints based on their classification result.

Boosting

Motivation
Bagging

Boosting
Introduction
AdaBoost

Algorithm 2 AdaBoost

```
1: for j \in [1..L] do
2: if j = 1 then
3: Initialise weights D_{1,i} = 1/n
4: else
5: Update weights D_{j,i} \leftarrow D_{j-1,i} \exp\left(-\alpha_{j-1} y^i h_{j-1}(x^i)\right)
6: end if
7: Train hypothesis h_j on dataset D_j.
8: Evaluate weighted error \epsilon_j = \sum_i D_{j-1,i} \mathbb{I}(h_j(x^i) \neq y^i).
9: Put a weight \alpha_j = \frac{1}{2} \ln\left(\frac{1-\epsilon_j}{\epsilon_j}\right)
10: end for
11: Final classifier is given by H(x) = sign(\sum_i \alpha_j h_j(x))
```