CS 453/698: Software and Systems Security

Module: Bug Finding Tools and Practices

Lecture: Abstract interpretation

Meng Xu (University of Waterloo)
Winter 2025

Outline

- 1 Introduction to abstraction interpretation
- 2 Reaching fixedpoint: joining, widening, and narrowing
- 3 Comparison with other techniques

Why this topic?

A significant portion of software security research is related to program analysis:

- \bullet derive properties which hold for program P (i.e., inference)
- \bullet prove that some property holds for program P (i.e., verification)
- ullet given a program P, generate a program P' which is
 - in most ways equivalent to P
 - behaves better than $P\ \mbox{w.r.t}$ some criteria

(i.e., transformation)

Why this topic?

A significant portion of software security research is related to program analysis:

- \bullet derive properties which hold for program P (i.e., inference)
- \bullet prove that some property holds for program P (i.e., verification)
- ullet given a program P, generate a program P' which is
 - in most ways equivalent to P
 - behaves better than P w.r.t some criteria

(i.e., transformation)

Abstract interpretation provides a formal framework for developing program analysis tools.

Consider detecting that one branch will not be taken in: int $x,y,z; \quad y:=read(file); \quad x:=y*y;$ if $x \geq 0$ then z:=1 else z:=0

Consider detecting that one branch will not be taken in:

```
int x, y, z; y := read(file); x := y * y; if x > 0 then z := 1 else z := 0
```

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs uses abstractions: signs, order of magnitude, odd/even, ...

Consider detecting that one branch will not be taken in:

```
int x, y, z; y := read(file); x := y * y; if x > 0 then z := 1 else z := 0
```

- Exhaustive analysis in the standard domain: non-termination
- Human reasoning about programs uses abstractions: signs, order of magnitude, odd/even, ...

Basic idea: use approximate (generally finite) representations of computational objects to make the problem of program dataflow analysis tractable.

Abstract interpretation is a formalization of the above procedure:

- define a non-standard semantics which can approximate the meaning (or behaviour) of the program in a finite way
- expressions are computed over an approximate (abstract) domain rather than the concrete domain (i.e., meaning of operators has to be reconsidered w.r.t. this new domain)

Example: integer sign arithmetic

Consider the domain D=Z (integers) and the multiplication operator: $*:Z^2\to Z$

We define an "abstract domain:" $D_{\alpha} = \{[-], [+]\}$ and abstract multiplication: $*_{\alpha} : D_{\alpha}^2 \to D_{\alpha}$ defined by:

$*_{\alpha}$	[-]	[+]
[-]	[+]	[-]
[+]	[-]	[+]

Intro

Consider the domain D = Z (integers) and the multiplication operator: $*: \mathbb{Z}^2 \to \mathbb{Z}$

We define an "abstract domain:" $D_{\alpha} = \{[-], [+]\}$ and abstract multiplication: $*_{\alpha}: D_{\alpha}^2 \to D_{\alpha}$ defined by:

$*_{\alpha}$	[-]	[+]
[-]	[+]	[-]
[+]	[-]	[+]

This allows us to conclude, for example, that $y = x^2 = x * x$ is never negative.

Some observations

- The basis is that whenever we have z=x*y then: if $x,y\in Z$ are approximated by $x_{\alpha},y_{\alpha}\in D_{\alpha}$ then $z\in Z$ is approximated by $z_{\alpha}=x_{\alpha}*_{\alpha}y_{\alpha}$
 - Essentially, we map from an unbounded domain to a finite domain.
- It is important to formalize this notion of approximation,
 in order to be able to reason/prove that the analysis is correct.
- Approximate computation is generally less precise but faster (hence the tradeoff).

Example: integer sign arithmetic (refined)

Again, D = Z (integers) and: $*: Z^2 \to Z$

We can define a more refined "abstract domain" $D'_{\alpha} = \{[-], [0], [+]\}$

and the corresponding abstract multiplication: $*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$

$*_{\alpha}$	[-]	[0]	[+]
[-]	[+]	[0]	[-]
[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]

Example: integer sign arithmetic (refined)

Again, D = Z (integers) and: $*: Z^2 \rightarrow Z$

We can define a more refined "abstract domain" $D'_{\alpha} = \{[-], [0], [+]\}$

and the corresponding abstract multiplication: $*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$

$*_{\alpha}$	[-]	[0]	[+]
[-]	[+]	[0]	[-]
[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]

This allows us to conclude, for example, that z = y * (0 * x) is zero.

More observations

- There is a degree of freedom in defining different abstract operators and domains.
- The minimal requirement is that they be "safe" or "correct".
- Different "safe" definitions result in different kinds of analysis.

Again, D=Z (integers) and now we want to define the *addition* operator $+:Z^2\to Z$

Again, D=Z (integers) and now we want to define the addition operator $+:Z^2\to Z$

We cannot use $D'_{\alpha}=\{[-],[0],[+]\}$ because we wouldn't know how to represent the result of $[+]+_{\alpha}[-]$, (i.e., the abstract addition would not be closed).

Again, D=Z (integers) and now we want to define the addition operator $+:Z^2\to Z$

We cannot use $D'_{\alpha}=\{[-],[0],[+]\}$ because we wouldn't know how to represent the result of $[+]+_{\alpha}[-]$, (i.e., the abstract addition would not be closed).

Solution: introduce a new element " \top " in the abstract domain as an approximation of any integer.

New "abstract domain": $D'_{\alpha} = \{[-], [0], [+], \top\}$

Abstract
$$+_{\alpha}: D'_{\alpha}^{2} \to D'_{\alpha}$$

$+_{\alpha}$	[-]	[0]	[+]	Т
[-]	[-]	[-]	Т	\top
[0]	[-]	[0]	[+]	T
[+]	T	[+]	[+]	T
T	T	T	Т	Т

Abstract $*_{\alpha}: D'^{2}_{\alpha} \to D'_{\alpha}$

$*_{\alpha}$	[-]	[0]	[+]	Т
[-]	[+]	[0]	[-]	Т
[0]	[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]	T
T	T	[0]	Т	T

New "abstract domain": $D'_{\alpha} = \{[-], [0], [+], \top\}$

Abstract
$$+_{\alpha}: D'_{\alpha}^{2} \to D'_{\alpha}$$

$+_{\alpha}$	[-]	[0]	[+]	H
[-]	[-]	[-]	Т	\top
[0]	[-]	[0]	[+]	\top
[+]	T	[+]	[+]	\top
Т	T	T	Т	\top

Abstract
$$*_{\alpha}: D'_{\alpha}^2 \to D'_{\alpha}$$

$*_{\alpha}$	[-]	[0]	[+]	Т
[-]	[+]	[0]	[-]	Т
[0]	[0]	[0]	[0]	[0]
[+]	[-]	[0]	[+]	T
T	T	[0]	Т	T

We can now reason that $z = x^2 + y^2$ is never negative

More observations

- In addition to the imprecision due to the coarseness of D_{α} , the abstract versions of the operations (dependent on D_{α}) may introduce further imprecision
- Thus, the choice of abstract domain and the definition of the abstract operators are crucial.

Concerns in abstract interpretation

• Required:

- Correctness safe approximations: the analysis should be "conservative" and errs on the "safe side"
- Termination compilation should definitely terminate
 (note: not always the case in everyday program analysis tools!)

- Desirable "practicality":
 - Efficiency in practice finite analysis time is not enough: finite and small is the requirement.
 - Accuracy too many false alarms is harmful to the adoption of the analysis tool ("the boy who cried wolf").
 - Usefulness determines which information is worth collecting.

Outline

- 1 Introduction to abstraction interpretation
- 2 Reaching fixedpoint: joining, widening, and narrowing
- 3 Comparison with other techniques

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers):

$$x = [a, b]$$
 where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞ .

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers):

$$x = [a, b]$$
 where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞ .

Example:

$$\begin{aligned} & \{x^\# = [0,3], \ y^\# = [0,2] \} \\ & \mathbf{z} = \mathbf{2} \ ^* \ \mathbf{x} + \mathbf{4} \ ^* \ \mathbf{y} \\ & \{z^\# = 2 \times^\# [0,3] +^\# \mathbf{4} \times^\# [0,2] = [0,14] \} \end{aligned}$$

Abstract domain example: intervals

Consider the following abstract domain for $x \in Z$ (integers):

$$x = [a, b]$$
 where

- a can be either a constant or $-\infty$ and
- b can be either a constant or ∞ .

Example:

$$\begin{aligned} & \{x^\# = [0,3], \ y^\# = [0,2] \} \\ & \mathbf{z} = \mathbf{2} \ ^* \ \mathbf{x} + \mathbf{4} \ ^* \ \mathbf{y} \\ & \{z^\# = 2 \times^\# [0,3] +^\# \mathbf{4} \times^\# [0,2] = [0,14] \} \end{aligned}$$

Q: Why $z^{\#}$ is an abstraction of z?

Join operator

The join operator ⊔ merges two or more abstract states into one abstract state.

$$\{x^{\#} = [0, 10]\}$$
if $(x < 0)$ then
$$s := -1$$
else if $(x > 0)$ then
$$s := 1$$
else

s := 0

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
   \{x^\# = \emptyset\}
   s := -1
   \{x^\# = \emptyset, \, s^\# = \emptyset\}
else if (x > 0) then
   s := 1
else
   s := 0
```

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
   \{x^{\#} = \emptyset\}
   s := -1
   \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
   \{x^{\#} = [1, 10]\}
   s := 1
   \{x^{\#} = [1, 10], s^{\#} = [1, 1]\}
else
    s := 0
```

```
\{x^{\#} = [0, 10]\}
if (x < 0) then
   \{x^{\#} = \emptyset\}
   s := -1
    \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
   \{x^{\#} = [1, 10]\}
   s := 1
   \{x^{\#} = [1, 10], s^{\#} = [1, 1]\}
else
   \{x^{\#} = [0,0]\}
   s := 0
    \{x^{\#} = [0,0], s^{\#} = [0,0]\}
```

 $\{x^{\#} = [0, 10]\}$

```
if (x < 0) then
   \{x^\# = \emptyset\}
    s := -1
   \{x^{\#} = \emptyset, s^{\#} = \emptyset\}
else if (x > 0) then
   \{x^{\#} = [1, 10]\}
    s := 1
   \{x^{\#} = [1, 10], s^{\#} = [1, 1]\}
else
   \{x^{\#} = [0,0]\}
    s := 0
    \{x^{\#} = [0,0], s^{\#} = [0,0]\}
\{x^{\#} = \emptyset \sqcup [1, 10] \sqcup [0, 0] = [0, 10], s^{\#} = \emptyset \sqcup [1, 1] \sqcup [0, 0] = [0, 1]\}
```

```
\{x^{\#} = \emptyset\}
x := 0
while (x < 100) {
x := x + 2
```

```
  \left\{ x^{\#} = \emptyset \right\} 
  x := 0 
  \left\{ x^{\#} = \langle even \rangle \right\} 
  \text{while } (x < 100) \{ 
  \left\{ x^{\#} = \langle even \rangle \right\}_{1} 
  x := x + 2 
  \left\{ x^{\#} = \langle even \rangle \right\}_{1} 
  \left\{ x^{\#} = \langle even \rangle \right\}_{1}
```

```
  \left\{ x^{\#} = \emptyset \right\} 
  x := 0 
  \left\{ x^{\#} = \langle even \rangle \right\} 
  while (x < 100) \{ 
  \left\{ x^{\#} = \langle even \rangle \right\}_{1} 
  x := x + 2 
  \left\{ x^{\#} = \langle even \rangle \right\}_{1} 
  \left\{ x^{\#} = \langle even \rangle \right\}_{1} 
  \left\{ x^{\#} = \langle even \rangle \right\}
```

Two iterations to reach fixedpoint (i.e., none of the abstract states changes).

```
\{x^{\#} = \emptyset\}
x := 0
while (x < 100) {
x := x + 2
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \quad \{x^{\#} = [0, 0] \sqcup [2, 2] = [0, 2]\}_2 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \quad \{x^{\#} = [2, 2] \sqcup [2, 4] = [2, 4]\}_2 \\ &\} \end{aligned}
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [0, 2] \sqcup [2, 4] = [0, 4]\}_3
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0,0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0,0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2,2]\}_1 \end{aligned} \quad \{\cdots\}_4, \{\cdots\}_5, \cdots \}
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [0, 96] \sqcup [2, 98] = [0, 98]\}_{50} \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [2, 98] \sqcup [2, 100] = [2, 100]\}_{50}
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ & \text{while } (\mathbf{x} < 100) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [0, 96] \sqcup [2, 98] = [0, 98]\}_{50} \\ &\{x^{\#} = [2, 2]\}_1 \qquad \{x^{\#} = [2, 98] \sqcup [2, 100] = [2, 100]\}_{50} \\ &\{x^{\#} = [100, 100]\} \end{aligned}
```

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ & \text{while } (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [0, 96] \sqcup [2, 98] = [0, 98]\}_{50} \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [2, 98] \sqcup [2, 100] = [2, 100]\}_{50} \\ &\{x^{\#} = [100, 100]\}
```

50 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Q: can we reach the fixedpoint faster?

Widening operator

We compute the limit of the following sequence:

$$X_0 = \perp$$
$$X_{i+1} = X_i \nabla F^{\#}(X_i)$$

where ∇ denotes the widening operator.

```
\{x^{\#} = \emptyset\}
x := 0
while (x < 100) {
x := x + 2
```

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, 0]\}_1 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \begin{aligned} &\{x^{\#} = [0, +\infty] \nabla [2, +\infty] = [0, +\infty]\}_3 \\ &\{x^{\#} = [2, 2]\}_1 \end{aligned} \qquad \{x^{\#} = [2, +\infty]\}_3 \\ &\{x^{\#} = [100, +\infty]\} \end{aligned}
```

3 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Narrowing operator

We compute the limit of the following sequence:

$$X_0 = \perp$$
$$X_{i+1} = X_i \triangle F^{\#}(X_i)$$

where \triangle denotes the narrowing operator.

```
 \begin{aligned} &\{x^{\#} = \emptyset\} \\ &\mathbf{x} := \mathbf{0} \\ &\{x^{\#} = [0, 0]\} \\ &\mathbf{while} \ (\mathbf{x} < \mathbf{100}) \ \{ \\ &\{x^{\#} = [0, +\infty]\} \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, +\infty]\} \end{aligned} \qquad \begin{aligned} &\{x^{\#} = [2, 101] \triangle [0, 99] = [0, 99]\}_2 \\ &\mathbf{x} := \mathbf{x} + 2 \\ &\{x^{\#} = [2, +\infty]\} \end{aligned} \qquad \{x^{\#} = [2, 101]\}_2 \\ &\} \\ &\{x^{\#} = [100, 101]\} \end{aligned}
```

2 iterations to reach fixedpoint (i.e., none of the abstract states changes).

Outline

- 1 Introduction to abstraction interpretation
- 2 Reaching fixedpoint: joining, widening, and narrowing
- 3 Comparison with other techniques

Abstract interpretation in a nutshell

Acknowledgement: the illustrations in this section is borrowed from Prof. Patrick Cousot's webpage Abstract Interpretation in a Nutshell.

Program analysis: concrete semantics

The concrete semantics of a program is formalized by the set of all possible executions of this program under all possible inputs.

The concrete semantics of a program can be a *close to infinite* mathematical object / sequence which is impractical to enumerate.

Program analysis: safety properties

Safety properties of a program express that no possible execution of the program, when considering all possible execution environments, can reach an erroneous state.

Program analysis: testing

Testing consists in considering a subset of the possible executions.

Program analysis: bounded model checking

Bounded model checking consists in exploring the prefixes of the possible executions.

Program analysis: abstract interpretation

Abstract interpretation consists in considering an abstract semantics, that is a superset of the concrete program semantics.

The abstract semantics covers all possible cases if the abstract semantics is safe (i.e. does not intersect the forbidden zone) then so is the concrete semantics.

Program analysis: abstract interpretation false alarm 1

False alarms caused by widening during execution.

Program analysis: abstract interpretation false alarm 2

False alarms caused by abstract domains.

 \langle End \rangle