Complex Numbers Revision- Cambridge

- 1 Find (a) $z_1 + z_2$ (b) $z_1 z_2$ (c) $z_1 z_2$ (d) $\frac{z_1}{z_2}$, when (i) $z_1 = 2 + i$, $z_2 = i$, (ii) $z_1 = 4 + i$, $z_2 = 2 + 3i$
- 2 Find (a) Re z (b) Im z (c) \bar{z} , when (i) z = 3 (ii) z = 4i (iii) z = 3 + 4i
- 3 Find real x and y, such that $(x + iy)^2 = 3 + 4i$
- 4 Solve (a) $x^2 + 2x + 2 = 0$ (b) $x^2 + (2 i)x 2i = 0$
- 5 Find |z| and arg z when (a) z = 2 (b) z = 2i (c) $z = 1 + \sqrt{3}i$ (d) $z = -\sqrt{3} - i$
- **6** Express in modulus/argument form (a) -1 + i (b) 1 i
- 7 Write z in the form a + ib when (a) |z| = 4 and arg $z = \frac{2\pi}{3}$ (b) |z| = 2 and arg $z = -\frac{\pi}{6}$
- 8 $z_1 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right), z_2 = \sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right]$. Find
 - (a) $|z_1 z_2|$ and $\arg(z_1 z_2)$ (b) $\left|\frac{z_1}{z_2}\right|$ and $\arg\left(\frac{z_1}{z_2}\right)$
- 9 z = 1 + i. Find $|z^{10}|$ and $arg(z^{10})$.
- 10 z = 1 + i. Mark on an Argand diagram the points representing (d) z + 1(a) z (b) \bar{z} (c) iz(e) z - 2i
- 11 Show geometrically how to construct the vectors representing (a) $z_1 + z_2$ (b) $z_1 - z_2$ (c) $z_2 - z_1$, when (i) $z_1 = 2$, $z_2 = i$ (ii) $z_1 = 4 + 2i$, $z_2 = 1 + 3i$
- 12 Express $(\cos \theta + i \sin \theta)^4$ in modulus/argument form.
- 13 Express $\cos 2\theta i \sin 2\theta$ in the form $(\cos \theta + i \sin \theta)^n$.
- 14 Use De Moivre's theorem with n=2 to show that $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ and $\sin 2\theta = 2 \sin \theta \cos \theta$. Hence show that $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$.
- 15 Express $z = 4\sqrt{2(1+i)}$ in modulus/argument form. Hence find the two square roots of z and mark their representations on an Argand diagram.
- 16 Indicate on an Argand diagram the locus of the point P representing z when

 - (a) $Re \ z = -2$ (b) $Im \ z = 1$ (c) |z| = 2 (d) |z 2 i| = 2 (e) $\arg z = -\frac{\pi}{3}$ (f) $\arg(z + i) = \frac{3\pi}{4}$
- 17 Indicate on an Argand diagram the region which contains the point P representing z when

(a)
$$|z| \le |z - 2|$$
 and $-\frac{\pi}{4} \le \arg z \le \frac{\pi}{4}$ (b) $|z| \le 1$ or $0 \le \arg z \le \frac{\pi}{2}$

Further questions 2

- 1 Express (3+2i)(5+4i) and (3-2i)(5-4i) in the form a+ib. Hence find the prime factors of 7^2+22^2 .
- 2 Complex numbers $z_1 = \frac{a}{1+i}$ and $z_2 = \frac{b}{1+2i}$, where a and b are real, are such that $z_1 + z_2 = 1$. Find a and b.
- 3 1 + i is a root of the equation $x^2 + (a + 2i)x + (5 + ib) = 0$, where a and b are real. Find the values of a and b.
- 4 1 2i is one root of the equation $x^2 + (1 + i)x + k = 0$. Find the other root and the value of k.
- 5 a and b are real numbers such that the sum of the squares of the roots of the equation $x^2 + (a + ib)x + 3i = 0$ is 8. Find all possible pairs of values a, b.
- 6 Solve $x^2 4x + (1 4i) = 0$.
- 7 Find the modulus and argument of each of the complex numbers $z_1 = 2i$ and $z_2 = 1 + \sqrt{3}i$. Mark on an Argand diagram the points P, Q, R and S representing z_1 , z_2 , $z_1 + z_2$ and $z_1 z_2$ respectively. Deduce the exact values of $\arg(z_1 + z_2)$ and $\arg(z_1 z_2)$.
- 8 On an Argand diagram, the points A, B, C and D represent z_1 , z_2 , z_3 and z_4 respectively. Show that if $z_1 z_2 + z_3 z_4 = 0$, then ABCD is a parallelogram, and if also $z_1 + iz_2 z_3 iz_4 = 0$, then ABCD is a square.
- 9 If |z| = r and arg $z = \theta$, show that $\frac{z}{z^2 + r^2}$ is real and give its value.
- 10 1, ω and ω^2 are the cube roots of unity. State the values of ω^3 and $1 + \omega + \omega^2$. Hence show that $(1 + \omega^2)^{12} = 1$ and $(1 \omega)(1 \omega^2)(1 \omega^4)(1 \omega^5)(1 \omega^7)(1 \omega^8) = 27$.
- 11 1, ω and ω^2 are the three cube roots of unity. Show that if the equations $z^3 1 = 0$ and $pz^5 + qz + r = 0$ have a common root, then $(p + q + r)(p\omega^5 + q\omega + r)(p\omega^{10} + q\omega^2 + r) = 0$.
- 12 Show that the roots of $z^6 + z^3 + 1 = 0$ are among the roots of $z^9 1 = 0$. Hence find the roots of $z^6 + z^3 + 1 = 0$ in modulus/argument form.
- 13 Indicate on an Argand diagram the region defined by the pair of inequalities $|z| \le 6$ and $|z 5| \le 5$. Write down the range of values of arg z for such z. Find the values of z for which both |z| = 6 and |z 5| = 5.
- 14 The point P represents the complex number z on an Argand diagram. Describe the locus of P in each of the following cases

(a)
$$|z| = |z - 2|$$
 (b) $\arg(z - 2) = \arg(z + 2) + \frac{\pi}{2}$

Find the complex number z which satisfies both of these equations.

Answers

1 2 + 2*i*, 2, -1 + 2*i*, 1 - 2*i*; 6 + 4*i*, 2 - 2*i*, 5 + 14*i*,
$$\frac{11}{13} - \frac{10}{13}i$$
 2 3, 0, 3; 0, 4, -4*i*; 3, 4, 3 - 4*i* 3 $x = 2$, $y = 1$ or $x = -2$, $y = -1$ 4 $x = -1 \pm i$; $x = -2$, i 5 2, 0; 2, $\frac{\pi}{2}$; 2, $\frac{\pi}{3}$; 2, $\frac{-5\pi}{6}$

6
$$\sqrt{2} \operatorname{cis} \frac{3\pi}{4}$$
, $\sqrt{2} \operatorname{cis} \left(\frac{-\pi}{4} \right)$ 7 $-2 + 2\sqrt{3}i$, $\sqrt{3} - i$ 8 $2\sqrt{2}$, $\frac{\pi}{12}$; $\sqrt{2}$, $\frac{7\pi}{12}$ 9 32 , $\frac{\pi}{2}$

12 cis 4θ 13 (cis θ)⁻²

Further questions 2

1 7 + 22*i*, 7 - 22*i*;
$$7^2 + 22^2 = (3^2 + 2^2)(5^2 + 4^2)$$
 2 $a = 4, b = -5$ 3 $a = -3, b = -1$

$$2 \ a = 4, b = -5$$
 $3 \ a$

4 -2 + i; k = 5i **5** a = 3, b = 1; a = -3, b = -1 **6** x = 4 + i, x = -i

$$6 \ x = 4 + i, x = -i$$

7 2,
$$\frac{\pi}{2}$$
; 2, $\frac{\pi}{3}$; $\frac{5\pi}{12}$, $\frac{11\pi}{12}$

9
$$\frac{1}{2r\cos\theta}$$

7 2,
$$\frac{\pi}{2}$$
; 2, $\frac{\pi}{3}$; $\frac{5\pi}{12}$, $\frac{11\pi}{12}$ 9 $\frac{1}{2r\cos\theta}$ 12 $\cos\left(\pm\frac{2\pi}{9}\right)$, $\cos\left(\pm\frac{4\pi}{9}\right)$, $\cos\left(\pm\frac{8\pi}{9}\right)$

13
$$\frac{-\pi}{2}$$
 < arg $z < \frac{\pi}{2}$; $\frac{18}{5} \pm \frac{24}{5}i$ 14 $x = 1$ and $y = \sqrt{(4 - x^2)}$; $1 + \sqrt{3}i$

14
$$x = 1$$
 and $y = \sqrt{(4 - x^2)}$; $1 + \sqrt{3}i$