

Técnicas de Amostragem - Aula 07

Comentários Pós N1 - Exercícios

Kaique Matias de Andrade Roberto

Ciências Atuariais

HECSA - Escola de Negócios

FIAM-FAAM-FMU

Conteúdo

- 1. Conceitos que aprendemos em Aulas anteriores
- 2. Exemplos da Aula
- 3. Exercícios da Lista
- 4. Comentários Finais
- 5. Referências

Conceitos que aprendemos em

Aulas anteriores

Conceitos que aprendemos em Aulas anteriores

- definição da AASc e AASs;
- propriedades das principais estatísticas;
- normalidade e intervalo de confiança;
- tamanho da amostra;
- fizemos uma breve introdução aos geradores de números aleatórios.

População ("Espaço de Eventos") é um (oniunto quelquer não-52€0. U= 11,..., NB Espaço Amostral ("Espaço de Probabil:-dades) 5 c 8(W) W= 3 1,2,33 -> Populsqão AAS6(2) = 2 (12); (13); (21); (13); (32); (32)} 12 150ms systes Vma Varissel aleatória é

uma função X:5 -> R

$$f_{1}$$
: AASs(z) = 1
 $f_{1}(1z) = 1$; $f_{1}(z3) = 0$
 $f_{1}(32) = 1$, ...

Uma distribuição de probabilidades $P(U) = L; P(\phi) = 0$ P(AUB) < P(A) + P(B) D(< V) = A

$$P(\leq X_1) = 1$$

$$(17)$$
 (-7) $\frac{1}{6}$ (13) (-7) $\frac{1}{6}$ (72) (-7) $\frac{1}{6}$ (72) (-7) $\frac{1}{6}$ (31) (-7) $\frac{1}{6}$ (32) (-7) $\frac{1}{6}$

[[X] = Z x, P(X=x;)

E[f]=

Exemplos da Aula

População

Exemplo 2.1

Considere a população formada por três domicílios $\mathcal U$ e que estão sendo observadas as seguintes variáveis: nome (do chefe), sexo, idade, fumante ou não, renda bruta familiar e número de trabalhadores. Os dados estão na planilha "aula-01-exemplo".

	Nome do Chefe	Sexo	Idade	Fumerie	Renda	Nº de Trab
1	Ada	0	70	O	[Z	<u>ا</u>
2	Beto	L	30	7	30	3
3	Emz	0	40		14	2

População

Vamos usar as notações

Unidade	i
Nome do Chefe	A_i
Sexo	Xi
ldade	Yi
Fumante	Gi
Renda Bruta Familiar	Fi
Número de Trabalhadores	T_i

Amostra

Exemplo 2.2

Seja $\mathcal{U} = \{1, 2, 3\}$ (vide planilha "aula-01-exemplo"). Os vetores

$$\mathbf{s}_1 = (1, 2)$$

 $\mathbf{s}_2 = (2, 1)$
 $\mathbf{s}_3 = (1, 1, 3)$

$$s_4 = (3)$$

$$\mathbf{s}_5 = (2, 2, 1, 3, 2)$$

são exemplos de amostras ordenadas de $\mathcal{U}.$

Definição 2.3

Uma função P(s) definida em $\mathcal{S}(\mathcal{U})$, satisfazendo

$$P(s) \geq 0$$
, para quaisquer $s \in \mathcal{S}(\mathcal{U})$

e tal que

$$\sum_{s \in \mathcal{S}(\mathcal{U})} P(s) = 1,$$

é chamado um planejamento amostral ordenado.

Exemplo 2.4

Considere $\mathcal{U} = \{1,2,3\}$ (vide planilha "aula-01-exemplo").

Considere os seguintes exemplos de planejamentos amostrais:

Plano A

$$P(11) = P(12) = P(13) = 1/9$$

 $P(21) = P(22) = P(23) = 1/9$
 $P(31) = P(32) = P(33) = 1/9$
 $P(s) = 0$, para as demais $s \in S$.

Plano B

$$P(12) = P(13) = P(21) = P(23) = P(31) = P(32) = 1/6$$

 $P(s) = 0$, para as demais $s \in S$.

M= 31,...,63

Plano T:

i- Serteie com ignal probabilidade
elementes de Water que aparega
o elemento 3.

(3), (13); (23);

Exemplo 2.5

Considere $\mathcal{U}=\{1,2,3\}$ (vide planilha "aula-01-exemplo") e a seguinte regra de sorteio:

- i sorteia-se com igual probabilidade um elemento de \mathcal{U} , e anota-se a unidade sorteada:
- ii este elemento é devolvido à população e sorteia-se um segundo elemento do mesmo modo.

Mostre que este é o mesmo plano amostral do Plano A. Este plano é conhecido como **amostragem aleatória simples com reposição** (e será detalhado algumas Aulas adiante).

1- Quais amostras aparecem no planos?

Z- Qual probabilidade ester associada

à cada uma dessas amostras?

1- Usando 25 regres i e ii, 25 amostras do plavo 5 tem temanhoz.

Umi anostra de 5 tem formato (xyl, com x,y EU; sem nenhuma restrição. logo

Plans S = 7 (111;(121;(131;(21);(21);(23); (31);(32);(33) }= Plans A.

2- (omo x e y 520 sorterdos com mesma probabilidade e o sortio de y é independente do sortio de x, P(xy) = Va (a mesma 00 plans Al. Logo os plans são 05 Mesmos.

Definição 2.6

Qualquer característica numérica dos dados correspondentes a amostra s é chamada estatística, ou seja, qualquer função $h(d_s)$ que relaciona as observações da amostra s.

Exemplo 2.7

Agora considere os dados na planilha "aula-02-exemplo" e a amostra s=(12). Desse modo, tem-se para o vetor $\begin{pmatrix} F_i \\ T_i \end{pmatrix}$ a seguinte matriz de dados da amostra:

$$\begin{pmatrix} 12 & 30 \\ 1 & 3 \end{pmatrix}.$$

$$\begin{pmatrix} 12 & 1 \\ 30 & 3 \end{pmatrix}$$

				+	7
Nome do	Sexo	Idade	Fumerie	Pend 2	No re
Chefe		_			Trab
A d >	0	70	0	[Z	2
Beto	L	30	1	30	3
Emz	0	40	1	14	2
	Chefe Ada Beto	Ada O Beto L	Ada 0 20 Beto 1 30	Ad2 0 20 0 Beto 1 30 1	Chefe Chefe Dexo Dexo

As médias

$$\overline{f} = \frac{12+30}{2} = 21 \text{ e } \overline{t} = \frac{1+3}{2} = 2,$$

ou a razão

$$r = \frac{12+30}{1+3} = 10,5$$

são exemplos de estatísticas calculadas na amostra s = (12).

$$\overline{f}(12) = f(1) + f(2) = 12 + 30 = 21$$

$$\overline{t}(17) = \frac{t(17+t(7))}{2} = \frac{1+3}{7} = 2$$

$$Y(17) = \frac{f(1) + f(1)}{f(1) + f(1)} = \frac{12 + 30}{1 + 3} = \frac{42}{4} = \frac{10.5}{1}$$

Escolhido um plano amostral A, tem-se associado o par (S_A, P_A) dos respectivos pontos amostrais e suas probabilidades.

Fixada agora uma estatística $h(\boldsymbol{d_s})$, quando \boldsymbol{s} percorre \mathcal{S}_A , ter-se-á associado uma variável aleatória $H(\boldsymbol{d_s})$ associada ao par (\mathcal{S}_A, P_A) .

Considere também a notação

$$p_h = P_A(\mathbf{s} \in \mathcal{S}_A; H(\mathbf{d}_{\mathbf{s}}) = h),$$

que denota a probabilidade sobre o conjunto de todas as amostras ${m s}$ tais que $H({m d}_{m s})=h.$

Conhecendo-se todos os valores de h e as suas respectivas probabilidades, tem-se bem identificada a (distribuição da) variável aleatória H.

Definição 2.8

A distribuição amostral de uma estatística $h(d_s)$ segundo um plano amostral A, é a distribuição de probabilidades de $H(d_s)$, definida sobre S_A , com função de probabilidade dada por

$$p_h = P_A(\mathbf{s} \in \mathcal{S}_A; H(\mathbf{d}_{\mathbf{s}}) = h) = P(h).$$

Exemplo 2.9

Para os dados na planilha "aula-02-exemplo" com dados amostrais

$$\mathbf{D} = \begin{pmatrix} F_i \\ T_i \end{pmatrix} = \begin{pmatrix} 12 & 30 & 18 \\ 1 & 3 & 2 \end{pmatrix}, i \in \mathcal{U},$$

considere a estatística $r = h(d_s)$ como sendo a razão entre o total da renda familiar e o número de trabalhadores na amostra. Considere também os planos amostrais A e B. Temos as seguintes distribuições amostrais:

Definição 2.10

Um estimador é dito **não-viciado** segundo um plano amostral A se

$$E_{A}[\hat{\theta}] = \theta.$$

Definição 2.11

O **viés** de um estimador $\hat{\theta}(\textbf{\textit{d}}_{s})$ segundo um plano amostral A, é dado por

$$B_A[\hat{\theta}] = E_A[\hat{\theta} - \theta] = E_A[\hat{\theta}] - \theta;$$

e o erro quadrático médio por

$$\mathsf{EQM}_{A}[\theta] = E_{A}[\hat{\theta} - \theta]^{2}.$$

Com essas definições verifica-se que

$$\mathsf{EQM}_A[\theta] = \mathsf{Var}_A[\theta] + B_A^2[\hat{\theta}].$$

Observe que para uma amostra particular \mathbf{s} , a diferença $\hat{\theta}(\mathbf{s}) - \theta$ mostra o desvio entre o valor estimado e o valor que se desejaria conhecer, ou seja, o erro cometido pelo uso da amostra e do estimador $\hat{\theta}$ para estimar a quantidade de interesse (parâmetro) θ .

Esse desvio é usualmente conhecido por **erro amostral**. Para dada amostra, o erro amostral só pode ser calculado, na situação improvável de θ ser conhecido.

Por isso, a estratégia da avaliação da amostragem não é julgar o resultado particular de uma amostra, mas do plano amostral. Em outras palavras, queremos avaliar as propriedades do estimador sob a ótica de um plano amostral A.

Exemplo 2.12

Usando os dados da planilha "aula-02-exemplo" (com as notações adotadas até então) temos

$$E_{AASc}(r) \cong 10.13 \text{ e Var}_{AASc}(r) \cong 0.6289.$$

Suponha que o parâmetro de interesse seja a renda média por trabalhador, R, ou seja,

$$R = \frac{12 + 30 + 18}{1 + 3 + 2} = \frac{60}{6} = 10.$$

Observa-se então que r é um estimador viesado para R, pois

$$E_{AASc}(r) \cong 10.13 \neq 10 = R.$$

O vício é dado por

$$B_{AASc}(r) \cong 10.13 - 10 = 0.13,$$

de modo que

$$EMQ_{AASc}(r) \cong 0.6289 + 0.13^2 = 0.6458.$$

Exemplo 2.13

Com os mesmos dados do Exemplo anterior, suponha agora que o parâmetro de interesse seja a renda média familiar $\mu_F=20$. Observe que

$$E_{AASc}(\overline{f}) = 20 \text{ e Var}_{AASc}(\overline{f}) = 28.$$

Isso implica que \overline{f} não é viciado para μ_F , ou seja, $B_{AASc}(\overline{f})=0$, de modo que

$$\mathsf{EMQ}_{\mathsf{AASc}}(\overline{f}) = \mathsf{Var}_{\mathsf{AASc}}(\overline{f}) = 28.$$

Amostragem Aleatória Simples Com Reposição (AASc)

Exemplo 2.14

Considere novamente os dados na planilha "aula-02-exemplo", e considere a variável renda familiar, onde o universo é $\mathcal U$ e o parâmetro populacional é $\mathbf D=(12,30,18)$. Vamos verificar como se comportam $\overline y$ e s^2 com relação as funções paramétricas μ e σ^2 de $\mathbf D$ para o plano amostral AASs com n=2.

$$V_F = \frac{12 + 30 + 140}{3} = \frac{60}{3} = 70$$

$$VT = \frac{1+3+2}{1+2+3} = 1$$

$$R = \frac{12 + 30 + 16}{1 + 3 + 7} = \frac{60}{6} = 10$$

$$AAS_5(7) = (12);(13);(72);(13);(37)$$

5	F	7
(17)	15	10.5
(13)	15	10
(71)	27	10.5
(73)	24	9,6
(3))	15	10
(37)	N 5	9.6

Disl. Arrostr. 1. F

15 21 24

P(f=h) 1/3 1/3

Dist. Amost. r

9.6 10 10.5

P(Y=h) 1/3 1/3

Disl. Arrostral. F 15 21 24 1/3 1/3 P(f=6) Etil = 2 h: P(F:4:) $= 15.\frac{1}{3} + 21.\frac{1}{3} + 24.\frac{1}{3}$ = 15 + 71 + 74 = 60 = 70 = 1/(F)=> = N20- Ties210 72+2 N(F).

Dist. Amost. or M 9.6 10 10.5 1/3 1/3 1/3 P(Y = h) E[r] = 5 h. P(r=h.) 9.6. \frac{1}{3} + 10. \frac{1}{3} + 10.5. \frac{1}{3} $= \underbrace{9.6 + 10 + 10.5}_{3} = \underbrace{10.33}_{3}$ 5) r e 16.33 + R 5, esada para R

Determinação do Tamanho da Amostra

Exemplo 2.15

Considere a população de moradores de um condomínio (N=540). Deseja-se estimar a idade média dos condôminos. Com base em pesquisas passadas, pode-se obter a estimativa para σ^2 de 463.32. Suponha que será retirada da população uma amostra segundo AASc. Admitindo que a diferença entre a média amostral e a verdadeira média populacional seja, no máximo, de 4 anos, com um nível de confiança de 95%, determine o tamanho da amostra a ser coletada.

$$M7, \frac{D^{2}}{(9/2)^{2}} = \frac{463.32}{(4/1.96)^{2}}$$

$$= \frac{463.32}{(2.04)^{2}} = \frac{463.32}{(4.17)^{2}} = 111.07$$

Estimação da Proporção

$$5^{2} = 0.7 \times 0.3$$

Exemplo 2.16

Suponha que p=30% dos estudantes de uma escola sejam mulheres. Colhemos uma AAS de n=10 estudantes e calculamos

 $\hat{p}=\,$ proporção de mulheres na amostra.

Qual a probabilidade de que \hat{p} difira de p em menos de 0,01?

$$P\left(|X-\bar{\mu}| < X_{\delta}\right) = \delta$$

$$\frac{5^{2}/\sqrt{n}}{5^{3}/\sqrt{n}}$$

IC = (0.3 - 0.13; 0.3 + 0.13)

Amostragem Aleatória Simples Sem Reposição (AASs)

Exemplo 2.17

Considere novamente os dados na planilha "aula-02-exemplo", e considere a variável renda familiar, onde o universo é $\mathcal U$ e o parâmetro populacional é $\boldsymbol D=(12,30,18)$. Verifique o comportamento das estatísticas $\overline y$ e s^2 com relação as funções paramétricas μ e σ^2 de $\boldsymbol D$ para o plano amostral AASs com n=2.

Normalidade e Intervalo de Confiança

Para esta amostra tem-se que uma estimativa de μ é dada por $\overline{y}=1,296$. Observa-se também que $s^2=2,397$. Usando a aproximação normal, vamos construir um intervalo de confiança para μ com 95% de confiança.

Determinação do Tamanho da Amostra

Para esta amostra tem-se que uma estimativa de μ é dada por $\overline{y}=1,296$. Observa-se também que $s^2=2,397$. Vamos encontrar n tal que B=0,05 e $\gamma=0,05$.

Estimação da Proporção

Exemplo 2.18

Considere a população dos operários faltosos dos exemplos anteriores. Suponha que até 3 faltas (3 dias) em 6 meses seja considerada aceitável. Vamos:

- 1. construir um intervalo de confiança para *P* com nível de confiança de 95%;
- 2. calcular o tamanho da amostra com precisão B=0,01 e nível de confiança de 95%.

Exemplo 3.1

Considere os dados na planilha "aula-02-exemplo" com dados amostrais

$$\mathbf{D} = \begin{pmatrix} F_i \\ T_i \end{pmatrix} = \begin{pmatrix} 12 & 30 & 18 \\ 1 & 3 & 2 \end{pmatrix}, i \in \mathcal{U}$$

e plano amostral AASc. Agora considere as estatísticas r e \overline{f} . Calcule

$$E_{AASc}[r], E_{AASc}[\overline{f}], \mathsf{Var}_{AASc}[r],$$

 $\mathsf{Var}_{AASc}[\overline{f}], \mathsf{Cov}_{AASc}[r, \overline{f}] \in \mathsf{Corr}_{AASc}[r, \overline{f}].$

Exemplo 3.2

Considere os dados na planilha "aula-02-exemplo" com plano amostral AASc. Verifique que r é um estimador viesado para R.

Exemplo 3.3

Considere os dados na planilha "aula-02-exemplo" com plano amostral AASc. Verifique que \overline{f} é um estimador não-viesado para μ_F .

Exemplo 3.4

Um plano AASc com n=30 foi adotado em uma área da cidade contendo 14848 residências. O número de pessoas por residência na amostra observada foi

$$\mathbf{d} = (5, 6, 3, 3, 2, 3, 3, 3, 4, 4, 3, 2, 7, 4, 3, 5, 4, 4, 3, 3, 4, 3, 3, 1, 2, 4, 3, 4, 2, 4).$$

- a Encontre uma estimativa do número médio de pessoas por residência na população e uma estimativa para a variância da estimativa obtida.
- b Encontre um intervalo de confiança para μ .
- c Suponha que seja de interesse uma estimativa duas vezes mais precisa que a obtida com a amostra acima. Qual o tamanho da amostra necessário para tal precisão?

$$\frac{x}{5^{2}/\sqrt{n}} = z\sqrt{3}$$

$$x\sqrt{3} = z\sqrt{3}$$

$$x\sqrt{3} = \sqrt{3}\sqrt{n}$$

$$b - IC = (3,47-0,54)$$

= $(2,93;4,02)$

Comentários Finais

Comentários Finais

Na aula de hoje nós fizemos um grande resumo da matéria.

Comentários Finais

Nas próximas aulas nós vamos começar o estudo da amostragem estratificada.

Referências

Referências

Referências

Bons Estudos!

