

LEIM

Matemática para Computação Gráfica

Verão 2023-2024

Trabalho 6

print(t) print(t.h(2)) print(t.p(3)) print(t.v(1, 1)) print(t.v(3, 4)) from random import seed from random import randint seed(8655) def get_random_matrix(n_lines, n_columns): matrix = T(n_lines, n_columns) for e in range(1, n_lines+1): for b in range(1, n_columns+1): matrix.r(e, b, randint(-100, 100)) return matrix $u_1 = []$ $u_2 = []$ $u_3 = []$ for e in range(958): n_lines = randint(10, 20) n_columns = randint(10, 20) t = get_random_matrix(n_lines, n_columns) u_1.append(t) line_number = randint(1, n_lines) column_number = randint(1, n_columns) u_2.append(line_number) u_3.append(column_number) print('só para verificação da geração de valores pseudoaleatórios') matrix = get_random_matrix(4, 6) print(matrix) Acrescente a este programa a classe em falta, T. Os objetos instâncias da classe T representam matrizes. Para criar uma matriz fornece-se o número de linhas e o número de colunas da matriz, por esta ordem. Todas as entradas da matriz são inicializadas a zero. O método r permite especificar cada uma das entradas da matriz. Recebe como argumentos o número da linha, o número da coluna, e o valor da entrada, por esta ordem. Os números de linha e de coluna iniciam-se em um. O método h tem como argumento o número de uma linha da matriz, e retorna uma lista

Considere o programa Python 3 que se segue. Ignore os imports, bem como a utilização das funções importadas, que se destinam exclusivamente à geração de valores

pseudoaleatórios, de forma repetível.

 n_lines n_columns = 4

print(t)

t = T(n_lines, n_columns)

for e in range(1, n_lines+1):

for b in range(1, n_columns+1): $t.r(e, b, (e-1)*n_lines+(b-1))$

com todas as entradas dessa linha da matriz. O método p tem como argumento o número de uma coluna da matriz, e retorna uma lista com todas as entradas dessa coluna da matriz. O método v retorna uma entrada da matriz. Recebe como argumentos o número da linha,

o número da coluna, por esta ordem, da entrada a retornar. Tal como já foi referido os números de linha e de coluna iniciam-se em um. Pressupõem-se que os números de linha e de coluna fornecidos como argumentos, são sempre válidos, isto é dizem respeito a linhas e a colunas que existem. Assim, não é necessário efetuar qualquer validação a este respeito.

6 7 8 9 [3, 4, 5, 6] [2, 5, 8]

O *output* que se segue ilustra o funcionamento descrito.

só para verificação da geração de valores pseudoaleatórios -11 -23 -20 70 94 -17 -50 -75 -10 -52 -47 -37 27 56 -18 10 37 40 -45 -66 37 35 47 2

A lista u_1 é uma lista de matrizes. A lista u_2 é uma lista de números de linha. O elemento da lista u_2 em cada índice, é um número de linha da matriz que está na lista u_1, no mesmo índice.

0 0 0 0 0 0 0 0

0 1 2 3 3 4 5 6

0

A lista u_3 é uma lista de números de coluna. O elemento da lista u_3 em cada índice, é um número de coluna da matriz que está na lista u_1, no mesmo índice.

Acrescente também ao programa as lista u_4 e u_5. A lista u_4 é uma listas de linhas das matrizes da lista u_1. A lista u_5 é uma listas de colunas das matrizes da lista u_1.

O elemento da lista u_4, em cada índice, é a linha da matriz na lista u_1, cujo número está na lista u_2, ambos no mesmo índice.

O elemento da lista u_5, em cada índice, é a coluna da matriz na lista u_1, cujo número está na lista u_3, ambos no mesmo índice. Acrescente ainda ao programa o código que lhe permita indicar se é verdadeiro ou falso.

A soma do último elemento de todas as linhas na lista u 4, é -3308.

A soma do último elemento de todas as colunas na lista u 5, é -2869.

A soma da entrada na linha 1, coluna 1, de todas as matrizes na lista u 1, é 1453.

A soma do primeiro elemento de todas as linhas na lista u_4, é 1387.

A soma do primeiro elemento de todas as colunas na lista u_5, é 2682.