6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at 20°C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearProperties.

Material	Z	A	$\langle Z/A \rangle$	collision	interaction length λ_I	$\frac{dE/dx _{\min}}{\left\{\frac{\text{MeV}}{\text{g/cm}^2}\right\}}$		X_0 X_0 X_0 X_0	Density $\{g/cm^3\}$ $(\{g/\ell\}$ for gas)	Liquid boiling point at 1 atm(K)	Refractive index n $((n-1)\times10^6$ for gas)
H_2 gas	1	1.00794	0.99212	43.3	50.8	(4.103)	$61.28 \frac{d}{}$	(731000)	(0.0838)[0.0899]		[139.2]
H_2 liquid	1	1.00794	0.99212	43.3	50.8	4.034	$61.28 \ ^d$	866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	,	122.4	724	0.169[0.179]	23.65	1.128 [138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		_
C	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 ^e	00	
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205 [298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22 [296]
F_2 Ne	9	18.9984032	0.47372	65.5 66.1	95.3 96.6	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Al	10 13	$20.1797 \\ 26.981539$	0.49555 0.48181	$66.1 \\ 70.6$	106.4	(1.724) 1.615	28.94 24.01	24.0 8.9	1.204[0.9005] 2.70	27.09	1.092 [67.1]
Si	14	28.0855	0.49848	70.6	106.4	1.664	24.01 21.82	9.36	2.33		3.95
Ar	18	39.948	0.49848 0.45059	76.4	100.0 117.2	(1.519)	19.55	9.50	1.396[1.782]	87.28	3.93 1.233 [283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54	01.20	
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		_
re Cu	29	63.546	0.46536 0.45636	85.6	134.9	1.401 1.403	13.84 12.86	1.43	8.96		_
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		_
Sn	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		_
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[701]
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		_
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		_
U	92	238.0289	0.38651	117.0	199	1.082	6.00	≈ 0.32	≈ 18.95		_
Air, (20°C, 1	atm.), [S	STP]	0.49919	62.0	90.0	(1.815)	36.66	[30420]	(1.205)[1.2931]	78.8	(273) [293]
H_2O	// [,	0.55509	60.1	83.6	1.991	36.08	36.1	1.00	373.15	1.33
CO_2 gas			0.49989	62.4	89.7	(1.819)	36.2	[18310]	[1.977]		[410]
CO_2 solid (dr			0.49989	62.4	89.7	1.787	36.2	23.2	1.563	${\rm sublimes}$	_
Shielding cond	$\operatorname{crete} f$		0.50274	67.4	99.9	1.711	26.7	10.7	2.5		_
SiO_2 (fused qu			0.49926	66.5	97.4	1.699	27.05	12.3	$2.20^{\ g}$		1.458
Dimethyl ethe	$er, (CH_3)$) ₂ O	0.54778	59.4	82.9		38.89			248.7	
$Methane,\ CH_{2}$	4		0.62333	54.8	73.4	(2.417)	46.22	[64850]	0.4224[0.717]	111.7	$[444]_{}$
Ethane, C_2H_6			0.59861	55.8	75.7	(2.304)	45.47	[34035]	$0.509(1.356)^{1}$		$(1.038)^{h}$
Propane, C_3H	-		0.58962	56.2	76.5	(2.262)	45.20		(1.879)	231.1	_
Isobutane, (C.			0.58496	56.4	77.0	(2.239)	45.07	[16930]	[2.67]	261.42	[1900]
Octane, liquid			0.57778	56.7	77.7	2.123	44.86	63.8	0.703	398.8	1.397
Paraffin wax,		$l_2)_{n\approx 23}CH_3$	0.57275	56.9	78.2	2.087	44.71	48.1	0.93		_
Nylon, type 6			0.54790	58.5	81.5	1.974	41.84	36.7	1.14		_
Polycarbonate			0.52697	59.5	83.9	1.886	41.46	34.6	1.20		_
Polyethylene t		ate (Mylar) ^k	0.52037	60.2	85.7	1.848	39.95	28.7	1.39		_
Polyethylene ^l			0.57034	57.0	78.4	2.076	44.64	≈ 47.9	0.92 – 0.95		_
Polyimide film		on) ^m	0.51264	60.3	85.8	1.820	40.56	28.6	1.42		
Lucite, Plexig		0	0.53937	59.3	83.0	1.929	40.49	≈34.4	1.16-1.20		≈1.49
Polystyrene, s			0.53768	58.5	81.9	1.936	43.72	42.4	1.032		1.581
Polytetrafluor			0.47992	64.2	93.0	1.671	34.84	15.8	2.20		
Polyvinyltolul			0.54155	58.3	81.5	1.956	43.83	42.5	1.032		
Aluminum oxi	\ _	-,	0.49038	67.0	98.9	1.647	27.94	7.04	3.97		1.761
Barium fluorio			0.42207	92.0	145	1.303	9.91	2.05	4.89		1.56
Bismuth germanate (BGO) ^r		0.42065	98.2	157	1.251	7.97	1.12	7.1		2.15	
Cesium iodide			0.41569	102	167	1.243	8.39	1.85	4.53		1.80
Lithium fluori			0.46262	62.2	88.2	1.614	39.25	14.91	2.632		1.392
Sodium fluorio)	0.47632	66.9 04.6	98.3 151	1.69	29.87	11.68	2.558		1.336
Sodium iodide	\ /		0.42697	94.6	151	1.305	9.49	2.59	3.67		1.775
Silica Aerogel			0.50093	66.3	96.9	1.740	27.25	$136@\rho=0.$			$1.0+0.21\rho$
NEMA G10 p	late '			62.6	90.2	1.87	33.0	19.4	1.7		

Material	Dielectric	Young's	Coeff. of	Specific	Electrical	Thermal conductivity	
	constant $(\kappa = \epsilon/\epsilon_0)$	modulus	thermal	heat	resistivity		
	() is $(\kappa - 1) \times 10^6$	$[10^6 \text{ psi}]$	expansion	[cal/g-°C]	$[\mu\Omega cm(@^{\circ}C)]$	[cal/cm-°C-sec]	
	for gas	,	$[10^{-6} \text{cm/cm-}^{\circ}\text{C}]$. , , , ,			
H_2	(253.9)	_	_	_	_	_	
He	(64)		_	_	_	_	
Li	_	_	56	0.86	$8.55(0^{\circ})$	0.17	
Be	_	37	12.4	0.436	$5.885(0^{\circ})$	0.38	
C	_	0.7	0.6-4.3	0.165	1375(0°)	0.057	
N_2	(548.5)		_	_		_	
O_2	(495)		_	_	_	_	
Ne	(127)	_	_	_	_	_	
Al	<u> </u>	10	23.9	0.215	$2.65(20^{\circ})$	0.53	
Si	11.9	16	2.8 – 7.3	0.162		0.20	
Ar	(517)	_	_			_	
Ti	_	16.8	8.5	0.126	$50(0^{\circ})$	_	
Fe	_	28.5	11.7	0.11	9.71(20°)	0.18	
Cu	_	16	16.5	0.092	$1.67(20^{\circ})$	0.94	
Ge	16.0	_	5.75	0.073	_	0.14	
Sn	_	6	20	0.052	$11.5(20^{\circ})$	0.16	
Xe	_	_	_			_	
W	_	50	4.4	0.032	$5.5(20^{\circ})$	0.48	
Pt	_	21	8.9	0.032	$9.83(0^{\circ})$	0.17	
Pb	_	2.6	29.3	0.038	$20.65(20^{\circ})$	0.083	
U	_	_	36.1	0.028	$29(20^{\circ})$	0.064	

- R.M. Sternheimer, M.J. Berger, and S.M. Seltzer, Atomic Data and Nuclear Data Tables 30, 261–271 (1984).
- S.M. Seltzer and M.J. Berger, Int. J. Appl. Radiat. 33, 1189–1218 (1982).
- D.E. Groom, N.V. Mokhov, and S.I. Striganov, "Muon stopping-power and range tables," Atomic Data and Nuclear Data Tables 78, 183–356 (2001).
- 4. S.M. Seltzer and M.J. Berger, Int. J. Appl. Radiat. 35, 665 (1984) & http://physics.nist.gov/PhysRefData/Star/Text/contents.html.
- a. σ_T , λ_T and λ_I are energy dependent. Values quoted apply to high energy range, where energy dependence is weak. Mean free path between collisions (λ_I) or inelastic interactions (λ_I) , calculated from $\lambda^{-1} = N_A \sum w_j \, \sigma_j \, / A_j$, where N is Avogadro's number and w_j is the weight fraction of the jth element in the element, compound, or mixture. σ_{total} at 80–240 GeV for neutrons ($\approx \sigma$ for protons) from Murthy et al., Nucl. Phys. **B92**, 269 (1975). This scales approximately as $A^{0.77}$. $\sigma_{\text{inelastic}} = \sigma_{\text{total}} \sigma_{\text{elastic}} \sigma_{\text{quasielastic}}$; for neutrons at 60–375 GeV from Roberts et al., Nucl. Phys. **B159**, 56 (1979). For protons and other particles, see Carroll et al., Phys. Lett. **80B**, 319 (1979); note that $\sigma_I(p) \approx \sigma_I(n)$. σ_I scales approximately as $A^{0.71}$.
- b. For minimum-ionizing muons (results are very slightly different for other particles). Minimum dE/dx from Ref. 3, using density effect correction coefficients from Ref. 1. For electrons and positrons see Ref. 4. Ionization energy loss is discussed in Sec. 26.
- c. From Y.S. Tsai, Rev. Mod. Phys. **46**, 815 (1974); X_0 data for all elements up to uranium are given. Corrections for molecular binding applied for H_2 and D_2 . For atomic H, $X_0 = 63.05$ g/cm².
- d. For molecular hydrogen (deuterium). For atomic H, $X_0 = 63.047 \text{ g cm}^{-2}$.
- e. For pure graphite; industrial graphite density may vary 2.1–2.3 g/cm³.
- f. Standard shielding blocks, typical composition O_2 52%, Si 32.5%, Ca 6%, Na 1.5%, Fe 2%, Al 4%, plus reinforcing iron bars. The attenuation length, $\ell=115\pm5$ g/cm², is also valid for earth (typical $\rho=2.15$), from CERN–LRL–RHEL Shielding exp., UCRL–17841 (1968).
- g. For typical fused quartz. The specific gravity of crystalline quartz is 2.64.
- h. Solid ethane density at -60° C; gaseous refractive index at 0° C, 546 mm pressure.
- i. Nylon, Type 6, $(NH(CH_2)_5CO)_n$
- j. Polycarbonate (Lexan), $(C_{16}H_{14}O_3)_n$
- k. Polyethylene terephthlate, monomer, C₅H₄O₂
- l. Polyethylene, monomer $CH_2 = CH_2$
- m. Polymide film (Kapton), $(C_{22}H_{10}N_2O_5)_n$
- n. Polymethylmethacralate, monomer $CH_2 = C(CH_3)CO_2CH_3$
- o. Polystyrene, monomer $\mathrm{C_6H_5CH}{=}\mathrm{CH_2}$
- p. Teflon, monomer $CF_2 = CF_2$
- q. Polyvinyltolulene, monomer 2-CH₃C₆H₄CH=CH₂
- r. Bismuth germanate (BGO), $(Bi_2O_3)_2(GeO_2)_3$
- s. 97% SiO₂ + 3% H₂O by weight; see A. R. Buzykaev et al., Nucl. Instrum. Methods A433, 396 (1999). Aerogel in the density range $0.04-0.06 \text{ g/cm}^3$ has been used in Čerenkov counters, but aerogel with higher and lower densities has been produced. $\rho = \text{density in g/cm}^3$.
- t. G10-plate, typically $60\%~\mathrm{SiO_2}$ and 40% epoxy.