Solution of Tutorial Problems set-II

Note: All these problems can be solved using the results of Chapter-2.

[0.0.1] *Exercise* Find a necessary and sufficient condition for $\langle x, y \rangle = \sum_{i=1}^{n} \alpha_i x_i y_i$ to be an inner product on \mathbb{R}^n .

Sol. We assume that $\langle x, y \rangle = \sum_{i=1}^{n} \alpha_i x_i y_i$ is an inner product on \mathbb{R}^n . Take e_i . Then $\langle e_i, e_i \rangle = \alpha_i > 0$ for $i = 1, \ldots, n$.

Converse: Assume that $\alpha_i > 0$ for i = 1, ..., n. To show $\langle x, y \rangle = \sum_{i=1}^n \alpha_i x_i y_i$ is an inner product on \mathbb{R}^n .

1(a).
$$\langle x, x \rangle = \sum_{i=1}^{n} \alpha_i x_i^2 > 0$$
 as $\alpha_i > 0$ for $i = 1, ..., n$.

1(b).
$$\langle x, x \rangle = \sum_{i=1}^{n} \alpha_i x_i^2 = 0 \implies x_i = 0 \text{ for } i = 1, \dots, n.$$

- 2. It is trivial.
- 3. It is trivial.
- 4. It is trivial.

[0.0.2] Exercise Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ be a 2×2 matrix with real entries. Let $f_A : \mathbb{R}^2 \to \mathbb{R}$ be a map defined by $f_A(x,y) = y^t A x$, where $x,y \in \mathbb{R}^2$. Show that f_A is an inner product on \mathbb{R}^2 if and only if $A = A^t$, $a_{11} > 0$, $a_{22} > 0$ and det(A) > 0.

Sol. We first assume that f_A is an inner product. Using definition of inner product, we have $f_A(x,x) > 0$ for all non-zero $x \in \mathbb{R}^2$. Then $f_A(e_1,e_1) = e_1^t A e_1 = (1,0) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} > 0 \implies a_{11} > 0$. Using e_2 , we can show that $a_{22} > 0$.

Using definition of inner product we have $f_A(x,y) = \overline{f_A(y,x)} = f_A(y,x)$ as this is a real inner product space. Therefore we have

$$y^t A x = x^t A y$$

$$\implies (y^t A x)^t = x^t A y$$

$$\implies x^t A^t y = x^t A y$$

 $\implies x^t(A^t-A)y=0$. This is true for all $x,y\in\mathbb{R}^2$.

Take $x = (1,0)^t$ and $y = (0,1)^t$. Then we have $(1,0) \begin{pmatrix} 0 & a_{21} - a_{12} \\ a_{12} - a_{21} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$. This implies that $a_{21} - a_{12} = 0 \implies a_{12} = a_{21}$. Hence $A = A^t$.

To prove DET (A) > 0, we take $x = (a_{22}, -a_{12})$.

Since
$$f_A(x,x) > 0$$
, we have $(a_{22}, -a_{12}) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} a_{22} \\ -a_{12} \end{pmatrix} > 0$
Then $a_{22} \begin{pmatrix} a_{11}a_{22} - a_{12}^2 \\ a_{12} \end{pmatrix} > 0$.

$$\begin{pmatrix} a_{11}a_{22} - a_{12}^2 \\ a_{12} \end{pmatrix} > 0 \text{ as } a_{22} > 0.$$

Hence det(A) > 0.

We now prove the converse.

1(a).
$$f_A(x, x) = (x_1, x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 \text{ (as } a_{12} = a_{21})$$

$$= a_{11}(x_1 + \frac{a_{12}}{a_{11}x_2})^2 + \frac{a_{11}a_{22} - a_{12}^2}{a_{11}}x_2^2 \text{ (as } a_{11} > 0)$$

$$> 0$$

1(b).
$$f_A(x,x) = 0$$
. Using $a_{11}(x_1 + \frac{a_{12}}{a_{11}x_2})^2 + \frac{a_{11}a_{22} - a_{12}^2}{a_{11}}x_2^2$, we have $x_1 = 0$ and $x_2 = 0$.

- 2. It is trivial.
- 3. It is trivia.
- 4. It is trivia.

[0.0.3] *Exercise* Let \mathbb{V} be a finite-dimensional vector space and let $B = \{u_1, \ldots, u_n\}$ be a basis for \mathbb{V} . Let $\langle x, y \rangle$ be an inner product on \mathbb{V} . If c_1, \ldots, c_n are any n scalars, show that there is exactly one vector x in \mathbb{V} such that $\langle x, u_i \rangle = c_i$ for $i = 1, \ldots, n$.

Sol. This solution will be sent later.

[0.0.4] Exercise Let $(\mathbb{V}, \langle, \rangle)$ be an inner product space. Show that $\langle x, y \rangle = 0$ for all $y \in \mathbb{V}$, then x = 0.

Sol. Given that that $\langle x, y \rangle = 0$ for all y in \mathbb{V} . To show that x = 0. Since $\langle x, y \rangle = 0$ for all $y \in \mathbb{V}$, then $\langle x, x \rangle = 0$ as x is an element in \mathbb{V} . Using definition of inner product, $\langle x, x \rangle = 0 \implies x = 0$.

[0.0.5] *Exercise* Show that $\langle x,y\rangle = \sum_{i=1}^n \overline{x_i}y_i$ is not an inner product on \mathbb{C}^n .

Sol. This is not an inner product on \mathbb{C}^n . It does not satisfy homogeneity property, that is $\langle \alpha x, y \rangle \neq \alpha \langle x, y \rangle$. For example, take $x = (1, 0, 0, \dots, 0), \ y = (1, 0, 0, \dots, n)$ and $\alpha = i$. Then $\langle \alpha x, y \rangle = -i$ and $\alpha \langle x, y \rangle = i$ They are not equal.

[0.0.6] *Exercise* Let $(\mathbb{V}, \langle, \rangle)$ be a finite dimensional inner product space. Prove that for $v \in \mathbb{V} - \{0\}$, the set $\mathbb{W} = \{w \in \mathbb{V} : \langle w, v \rangle = 0\}$ is a subspace of \mathbb{V} of dimension DIM $\mathbb{V} - 1$.

Sol. The definition of \mathbb{W} says that $\mathbb{W}=\{v\}^{\perp}$. Hence \mathbb{W} is a subspace of \mathbb{V} . To find the dimension of \mathbb{W} , we use the following fact. Let S be a subset of \mathbb{V} , then $S^{\perp}=(LS(S))^{\perp}$. Using this fact $\{v\}^{\perp}=LS(\{v\})^{\perp}=\mathbb{W}$. Then $\mathbb{V}=\mathbb{W}+LS(\{v\})$ (internal direct sum). We know that $\mathrm{DIM}(LS(\{v\}))=1$. Hence $\mathrm{DIM}\,\mathbb{W}=\mathrm{DIM}\,\mathbb{V}-1$.

[0.0.7] Exercise Decide which of the following functions define an inner product \mathbb{C}^2 . For $x = (x_1, y_1)$, $y = (y_1, y_2)$.

- 1. $\langle x, y \rangle = x_1 \overline{y_2}$
- $2. \langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2}$
- 3. $\langle x, y \rangle = x_1 y_1 + x_2 y_2$
- 4. $\langle x, y \rangle = 2x_1\overline{y_1} + i(x_2\overline{y_1} x_1\overline{y_2}) + 2x_2\overline{y_2}$

Sol.

- 1. Not an inner product. Take x = (1,0). $\langle x, x \rangle = 0$ but x is not equal to zero.
- 2. Yes, inner product.
- 3. Not an inner product. Conjugate symmetry does not satisfy.
- 4. Not an inner product. Conjugate symmetry does not satisfy. Take x = (1, i) and y = (i, 1).

[0.0.8] *Exercise* Let $\mathbb{V} = \mathbb{P}_3(x)$ be a subspace of real polynomials of degree at most 3. Equip \mathbb{V} with the inner product

$$\langle f, g \rangle = \int_{0}^{1} f(x)g(x)dx$$

1. Find the orthogonal complement of the subspace of scalar polynomials.

-1

- 2. Apply the Gram Schmidt process to the basis $\{1, x, x^2, x^3\}$.
- **Sol.** 1. To find the orthogonal complement of the subspace of scalar polynomials (scalar polynomial means zero degree polynomial).

Let W be the orthogonal complement of the subspace of scalar polynomials.

Let $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ be an arbitrary element in \mathbb{W} . Then $\langle 1, P(x) \rangle = 0 \implies \int_0^1 P(x) dx = 0$

$$\int_{0}^{1} (a_0 + a_1 x + a_2 x^2 + a_3 x^3) dx = 0$$

$$\implies a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \frac{a_3}{4} = 0$$

$$\implies 12a_0 + 6a_1 + 4a_2 + 3a_3 = 0$$

$$\implies a_0 = \frac{-6a_1 - 4a_2 - 3a_3}{12}.$$

$$P(x) = \frac{-6a_1 - 4a_2 - 3a_3}{12} + a_1 x + a_2 x^2 + a_3 x^3$$

$$= a_1(x - 1/2) + a_2(x^2 - 1/3) + a_3(x^3 - 1/4)$$

This says that P(x) is a linear combination of x - 1/2, $x^2 - 1/3$ and $x^3 - 1/4$.

Hence
$$W = LS(\{x - 1/2, x^2 - 1/3, x^3 - 1/4\}).$$

The set of scalar polynomials is equal the \mathbb{R} and we know the dimension of \mathbb{R} is 1.

We also know that $\mathbb{P}_3(x) = \mathbb{R} \oplus \mathbb{W}$. Hence $\dim \mathbb{W} = 3$.

Therefore $\{x - 1/2, x^2 - 1/3, x^3 - 1/4\}$ is basis of W.

2. Consider $u_1 = 1, u_2 = x, u_3 = x^2, u_4 = x^3$.

$$v_1 = u_1 = 1$$

$$v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = x - 1/2.$$

$$v_3 = u_3 - \frac{\langle u_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 - \frac{\langle u_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = x^2 - x + 1/6.$$

$$v_4 = u_4 - \frac{\langle u_4, v_3 \rangle}{\langle v_3, v_3 \rangle} v_3 - \frac{\langle u_4, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 - \frac{\langle u_4, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = x^3 - \frac{3}{2}x^2 + \frac{3}{5}x - \frac{1}{20}.$$

[0.0.9] *Exercise* Find an inner product on \mathbb{R}^2 such that $\langle e_1, e_2 \rangle = 2$.

Sol. Exercise 0.0.2 helps you to solve Exercise 0.0.9. If you are able to find a symmetric matrix A with each diagonal entry is positive and det(A) > 0 such that $e_1^t A e_2 = 2$ then you are done and your desire inner product will be $\langle x,y \rangle = y^t A x$. Take $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$. You can easily check that A is symmetric, each diagonal entry of A is positive and det(A) > 0. Notice that $e_1^t A e_2 = 2$.

Hence your desire inner product is $\langle x, y \rangle = y^t A x = \begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3x_1y_1 + 2x_2y_1 + 2x_1y_2 + 3x_2y_2.$

[0.0.10] Exercise Let \mathbb{V} be the space of all $n \times n$ over \mathbb{R} with the inner product $\langle A, B \rangle = trace(AB^t)$. Find the orthogonal complement of the subspaces of diagonal matrices.

[0.0.11] *Exercise* Let $(\mathbb{V}, \langle, \rangle)$ be an IPS. Let $\alpha, \beta \in \mathbb{V}$. Then show that $\alpha = \beta$ if and only if $\langle \alpha, \gamma \rangle = \langle \beta, \gamma \rangle$ for all $\gamma \in \mathbb{V}$.

Sol. First we assume that $\langle \alpha, \gamma \rangle = \langle \beta, \gamma \rangle$ for all $\gamma \in \mathbb{V}$. Then $\langle \alpha - \beta, \gamma \rangle = 0$ for all $\gamma \in \mathbb{V}$. Using Exercise 0.0.4, we have $\alpha - \beta = 0$. Hence $\alpha = \beta$.

Now we assume that alpha=beta, that is $\alpha - \beta = 0$. Then $\langle \alpha - \beta, \gamma \rangle = 0$ for all $\gamma \in \mathbb{V}$. This implies that $\langle \alpha, \gamma \rangle = \langle \beta, \gamma \rangle$ for all $\gamma \in \mathbb{V}$.

[0.0.12] Exercise Apply Gram Schmidt process to the vectors $u_1 = (1,0,1)$, $u_2 = (1,0,-1)$ and $u_3 = (0,3,4)$ to obtain an orthonormal basis for \mathbb{R}^3 with the standard inner product.

Sol.
$$v_1 = u_1 = (1, 0, 1).$$

=(0,3,0).

$$v_2 = u_2$$

$$v_3 = u_3 - \frac{\langle u_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 - \frac{\langle u_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1.$$

$$= (0, 3, 4) - \frac{-4}{2} (1, 0, -1) - \frac{4}{2} (1, 0, 1).$$

$$= (0, 3, 4) + 2(1, 0, -1) - 2(1, 0, 1)$$

$$= (0, 3, 4) + (0, 0, -4)$$

basis of \mathbb{R}^3 .

 $v_1 = (1,0,1), v_2 = (1,0,-1)$ and $v_3 = (0,3,0)$ are orthogonal.

[0.0.13] Exercise Consider the inner product $\langle x,y\rangle=y^tAX$ on \mathbb{R}^3 where $A=\begin{bmatrix}2&1&-1\\1&1&0\\-1&0&3\end{bmatrix}$. Find an orthonormal basis B of $S:=\{(x_1,x_2,x_3):\ x_1+x_2+x_3=0\}$ and then extend it to an orthonormal

Sol. We first find a basis of S. Let (x_1, x_2, x_3) be an arbitrary element in S. Then $x_1 + x_2 + x_3 = 0$. This implies $(x_1, x_2, x_3) = (-x_2 - x_3, x_2, x_3) = x_2(-1, 1, 0) + x_3(-1, 0, 1)$.

Notice that $S = LS(\{(-1,1,0),(-1,0,1)\})$. It is easy to prove that $\{(-1,1,0),(-1,0,1)\}$ is linearly independent. Hence $\{(-1,1,0),(-1,0,1)\}$. Applying Gram Schmidt process on $\{(-1,1,0),(-1,0,1)\}$. Let $u_1 = (-1,1,0)$ and $u_2 = (-1,0,1)$.

$$v_1 = u_1 = (-1, 1, 0).$$

$$v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1.$$

We have to calculate $\langle u_2, v_1 \rangle$ and $\langle v_1, v_1 \rangle$.

$$\langle u_2, v_1 \rangle = v_1^t A u_2 = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = 2$$

$$\begin{bmatrix} 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$$

$$\langle v_1, v_1 \rangle = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = 1.$$

Then
$$v_2 = u_2 - 2v_1 = (-1, 0, 1) - 2(-1, 1, 0) = (1, -2, 1)$$

 $\left\{\frac{1}{\sqrt{\langle v_1, v_1 \rangle}} v_1, \frac{1}{\sqrt{\langle v_2, v_2 \rangle}} v_2\right\} = \left\{(-1, 1, 0), (-1, 2, -1)\right\} \left(\langle v_1, v_1 \rangle = 1, \langle v_2, v_2 \rangle = -1\right)$ is an orthonormal basis of S.

You can notice that (1,1,1) is orthogonal to (-1,1,0) and (-1,2,-1). Therefore $\{(-1,1,0),(-1,2,-1),(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})\}$ is an orthonormal set in \mathbb{R}^3 . They are linearly independent and dimension of \mathbb{R}^3 is 3. Then $\{(-1,1,0),(-1,2,-1),(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})\}$ is an orthonormal basis on \mathbb{R}^3 .

[0.0.14] Exercise Let $(\mathbb{V}, \langle, \rangle)$ be an IPS. Let $||u|| = \sqrt{\langle u, u \rangle}$ for all $u \in \mathbb{V}$ be the norm induced by \langle, \rangle . Then prove that $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$.

Sol. Note: Before going to solve this problem, I would like to introduce something. $||x|| = \sqrt{\langle x, x \rangle}$.

We have seen that this a norm on \mathbb{V} . This is called a norm induced by the inner product \langle , \rangle .

This problem says that any norm which is induced by an inner product that norm must satisfy this condition $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$.

$$||u+v||^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle.$$

$$||u-v||^2 = \langle u-v, u-v \rangle = \langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle.$$

After adding them, we have $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$. This is clied Parallelogram Identity.

Note: The Parallelogram Identity is not true in general for any arbitrary norm.

[0.0.15] Exercise Let $(\mathbb{V}, \langle, \rangle)$ be a finite dimensional IPS. Let $B = \{u_1, u_2, \dots, u_n\}$ be a basis of \mathbb{V} . Then prove that $\langle u, v \rangle = \bar{y}^t A x$ for all $u, v \in \mathbb{V}$ where $x = (x_1, \dots, x_n)^t$, $y = (y_1, \dots, y_n)^t$ are coordinates of u and v with respect to basis B and $a_{ij} = \langle u_i, u_j \rangle$.

Sol. Given that $(\mathbb{V}, \langle , \rangle)$ is a finite dimensional IPS and $B = \{u_1, u_2, \dots, u_n\}$ is a basis of \mathbb{V} . Let $u, v \in \mathbb{V}$. Then $x = x_1u_1 + \dots + x_nu_n$ and $y = y_1u_1 + \dots + y_nu_n$. Here $x = (x_1, \dots, x_n)^t$ and $y = (y_1, \dots, y_n)^t$ are the coordinates of u and v with respect to basis B.

$$\langle u, v \rangle = \langle x_1 u_1 + \dots + x_n u_n, y_1 u_1 + \dots + y_n u_n \rangle$$

$$= \sum_{i,j=1}^n x_i \overline{y_j} \langle u_i, u_j \rangle.$$

$$= \overline{y}^t A x \text{ where } a_{ij} = \langle u_i, u_j \rangle \text{ and } x = (x_1, \dots, x_n)^t \text{ and } y = (y_1, \dots, y_n)^t.$$