Printed Pages:2 he: Ankit Kuman odent University Roll No.: 1216 422682
School of Engineering

First Sessional Examination, Even Semester (AS: 2021-22) B. Tech: CSI

Year: 1 Semester: II

Max Marks: 30 Course Title: Basic Electrical Engineering Time: 1 hr

Course Code: BEE3201

	SECTION 'A' N.1. Attempt all parts of the following:	Course Objecti ve	Mar ks
a)/ Define 'linear' & 'nonlinear' circuit elements.			1
a)/	Define linear & nonlinear enears	CO1	1
b)	What is an ideal current source?	CO1	1
c)	State Millman's Theorem.	CO2	1
d)	What is Quality Factor?	CO2	1
Define Peak Factor and Form Factor. SECTION 'B' Q.N.2. Attempt any two parts of the following:			Mar ks
1)	Explain Star to Delta transformation to solve network problems.		7.5
0)	State and explain Maximum Power transfer theorem to solve network problems, and also write		7.5
:)	Prove that the maximum value of current is equa	1 CO2	7.5
d)	to root two times of rms value. Define: Real, Reactive & Apparent power in AC	CO2	7.5

Name: Course Title

O.Z. ill

Course Objecti Mar ks

0			
	b)	2) 0	
Prove that the average power consumed in pure inductive circuit is zero.	Calculate the current in branch AB in given circuit, using Thevenin theorem.	Q.N.3. Attempt any one part of the following: By using nodal analysis, find the current in all resistive branches. 0.5 ohm 1.5v 2.0v 1.5v 2.0 ohm 1.5v 2.0 ohm 1.5v 1.5v	SECTION C'
C02	Co	COI	Objecti ve
10	10	10	ks

Table I: Mapping between COs and questions
(Number of COs may very from course to course)

	CO2		COs	
	1(d, e) 2(c, d) 3(c)	1 (a, b, c) 2(a, b) 3(a, b)	Questions Numbers	
	27	38	Total Marks	