Sprawozdanie

IDENTYFIKACJA I MODELOWANIE STATYSTYCZNE

Modelowanie i identyfikacja

Marcin Bober, 249426

 Prowadzący:
 Mgr inż. Maciej Filiński

Spis treści

1 Generator liczb pseudolosowych			2
	1.1	Opis	2
	1.2	Wpływ wartości początkowej X_0 na własności generatora	2
	1.3	Wpływ parametru Z na własności generatora	4
	1.4	Okres generatora dla wybranych wartości Z	6
	1.5	Podobieństwo histogramu ciągu wygenerowaych liczb, a gęstość rozkładu	
		jednostajnego	6
2	Pod	Isumowanie	7

1 Generator liczb pseudolosowych

1.1 Opis

Zadanie polega na implementacji generatora liczb pseudolosowych z rozkładu jednostajnego oraz analizie wyników uzyskanych z jego udziałem. Generator oparty jest na przekształceniu piłokształtnym o równaniu $X_{n+1}=X_n\cdot z-[X_n\cdot z]$

1.2 Wpływ wartości początkowej X_0 na własności generatora

Wartość Z ustawiona została na wartość 51. Wykorzystano 1000 próbek.

Wartość początkowa 0.01

Wartość początkowa 0.1

Wartość początkowa 0.99

Wartość początkowa 1.0

- Ustawienie wartości początkowej równej zero powoduje że wszystkie wygenerowane próbki są zerowe. (Patrz wykres 1.2) Dzieje się tak ponieważ algorytm opiera się o obliczenie iloczynu liczb, których jednym ze składników jest zero.
- Wybór liczby całkowitej spowoduje że pierwsza próbka jest równa tej wartości, a
 wszystkie kolejne są zerowe (Patrz wykres 1.2). Wynika to z faktu że obliczana
 jest reszta z dzielenia wartości przez jeden, która w taki wypadku zawsze równa
 jest zero.
- Zalecanym zakresem wyboru wartości początkowej jest przedział zawierający liczby większe od zera, z pominięciem liczb całkowitych.

1.3 Wpływ parametru Z na własności generatora

Wartość X_0 ustawiona została na wartość 0,01. Wykorzystano 1000 próbek.

Wartość współczynnika Z = 2

Wartość współczynnika Z = 3

- \bullet Dla zerowego współczynnika Zpierwsza próbka uzyskuje wartość początkowa, a kolejne są zerami. Wynika to z mnożenia tych wyników przez współczynnik Zczyli zero.
- \bullet Gdy wartość Zjest równa jedności, wszystkie otrzymane wyniki są identyczne z wartością startową.
- W przypadku wykorzystania liczb parzystych, uzyskiwane wyniki szybko trafiają na wartość zero, która powoduje zatrzymanie generowania kolejnych wartości losowych.
- \bullet Najlepsze wyniki otrzymywane są dla współczynnika Z będącego dużą liczbą pierwszą.

X_0	Z	okres generatora
0,1	1	1
0,1	2	4
0,1	3	4
0,1	4	$\overline{2}$
0,1	5	1
0,1	6	1
0,1	7	4
0,1	8	4

Tabela 1: Nastawy PD i odpowiadający im rząd błędu.

${\bf 1.4}~$ Okres generatora dla wybranych wartości Z

1.5 Podobieństwo histogramu ciągu wygenerowaych liczb, a gęstość rozkładu jednostajnego

Rysunek 1: Ilość wygenerowanych próbek - 20

Rysunek 2: Ilość wygenerowanych próbek - 200

Rysunek 3: Ilość wygenerowanych próbek - 2000

Rysunek 4: Ilość wygenerowanych próbek - 20000

2 Podsumowanie