Variables aléatoires : loi et espérance.

- 1. Dans une population de n oiseaux, on en capture m que l'on bague puis que l'on relâche. Un peu plus tard, on en capture à nouveau m.
- a) Soit $k \in \{0, ..., n\}$. Quelle est la probabilité que parmi les m oiseaux capturés, k soient bagués?
 - b) Pour quelle valeur de k la probabilité calculée ci-dessus est-elle maximale?
 - **2.** Soient $\alpha, \beta \in]0,1[$ deux réels. Pour tout $(i,j) \in \mathbb{N}^2$, on pose $p_{i,j} = \alpha\beta(1-\alpha)^i(1-\beta)^j$.
- a) Montrer qu'en posant $\mathbb{P}(\{(i,j)\}) = p_{ij}$ pour tout $(i,j) \in \mathbb{N}^2$, on définit une mesure de probabilités sur \mathbb{N}^2 .

Pour tout $(i, j) \in \mathbb{N}^2$, on pose X((i, j)) = i et Y((i, j)) = j.

- b) Déterminer la loi de X et la loi de Y.
- c) Calculer $\mathbb{P}(X < Y)$, $\mathbb{P}(X = Y)$ et $\mathbb{P}(X > Y)$.
- **3.** Soit X une variable aléatoire à valeurs dans \mathbb{N} . Pour tout $n \geq 0$, on note $p_n = \mathbb{P}(X = n)$ et on suppose $p_n > 0$. Soit $\lambda > 0$ un réel. Montrer que les deux assertions suivantes sont équivalentes.
- 1. La variable aléatoire X suit la loi de Poisson de paramètre λ .
- 2. Pour tout $n \ge 1$, on a $\frac{p_n}{p_{n-1}} = \frac{\lambda}{n}$.
 - 4. Soit X une variable aléatoire à valeurs dans \mathbb{N} . Montrer qu'on a l'égalité

$$\mathbb{E}[X] = \sum_{n \ge 1} \mathbb{P}(X \ge n).$$

5. Soient $X,Y:(\Omega,\mathscr{F},\mathbb{P})\to\mathbb{N}$ deux variables à valeurs dans \mathbb{N} . Montrer de deux façons différentes que

$$\sum_{n\geq 0} n\mathbb{P}(X=n) + \sum_{n\geq 0} n\mathbb{P}(Y=n) = \sum_{n\geq 0} n\mathbb{P}(X+Y=n).$$

6. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire telle que $X(\Omega) \subset \mathbb{N}$.

a) Montrer que pour tout réel $s \in [0,1]$, la fonction s^X est une variable aléatoire intégrable. On rappelle que par convention, $0^0 = 1$. On appelle fonction génératrice de X la fonction

$$G_X: [0,1] \longrightarrow \mathbb{R}$$

 $s \longmapsto \mathbb{E}[s^X].$

- b) Montrer que G_X est une fonction positive croissante. Calculer ses valeurs en 0 et en 1.
 - c) Calculer la fonction G_X lorsque X suit l'une des lois suivantes :
 - (i) Bernoulli de paramètre $p \in [0, 1]$,
 - (ii) binomiale de paramètres $n \ge 0$ et $p \in [0, 1]$,
 - (iii) géométrique de paramètre $p \in]0, 1[$,
 - (iv) Poisson de paramètre $\lambda > 0$.
- d) Que peut-on dire de deux variables aléatoires à valeurs entières qui ont la même fonction génératrice?
 - 7. Soit $X:(\Omega,\mathscr{F},\mathbb{P})\to\mathbb{R}$ une variable aléatoire. Soit a>0 un nombre réel.
 - a) Montrer que $\mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}(|X|)}{a}$.
- b) Que peut-on dire de la proportion de la population qui gagne plus de dix fois le salaire moyen?

L'inégalité démontrée au a) s'appelle l'inégalité de Markov.

- 8. Soit Ω un ensemble. Soit $f: \Omega \to \mathbb{R}$ une fonction. Montrer qu'il existe une unique paire de fonctions (g,h) de Ω dans \mathbb{R}_+ telles que f=g-h et qu'on ait à la fois $g \leq |f|$ et $h \leq |f|$. Montrer que si (\tilde{g},\tilde{h}) est une autre paire de fonctions positives telles que $f=\tilde{g}-\tilde{h}$, alors on a $g \leq \tilde{g}$ et $h \leq \tilde{h}$.
- 9. On effectue des lancers successifs et indépendants d'une pièce qui tombe sur pile avec probabilité p et sur face avec probabilité 1-p.
 - a) Décrire le modèle probabiliste utilisé pour modéliser cette situation.
- b) On appelle T_1 le numéro du premier lancer où l'on obtient pile. Déterminer la loi de T_1 .
- c) Pour tout $i \geq 1$, on appelle T_i le numéro du lancer où l'on obtient pile pour la i-ième fois. Déterminer la loi de T_i pour tout $i \geq 1$.