L6: Resistive RAM II

Recap

Top electrode (TE)

Metal-Insulator Transition (MIT)

- Metal-insulator transition
- Happens in metal oxides: VO₂, V₂O₃, VO and Ti₂O₃
- Transition temperature T_{MIT}

MIT Triggers

Triggered thermally, electrically, optically and magnetically

MIT Induced by Temperature

- Vanadium dioxide VO₂
- Metal-Insulator transition T_{MIT} ~
 340 K or 67 C
- Tunable T_{MIT} via strain
- Low-Temp Monoclinic phase (3d electrons localized on V site)
- High-Temp tetragonal phase (mobile 3d electrons)

Nakano et al., Nature, 2012

Inducing MIT with E-field

- No MIT has been achieved in VO₂ by pure electrostatic
 - requiring too high of an E-field
- T_{MIT} can be tuned by electron doping
 - ionic liquid gating → surface charge density
 10¹⁵ cm⁻²

10 nm VO₂

Nakano et al., Nature, 2012

Electrochemical Metallization (ECM) Device

- Switching type: bipolar
- Switching material: chalcogenides (GeS, Ag₂S, etc), amorphous film (a-Si, a-C, etc)
- E-field driven redox reactions
- Metal filament formation
- Electrode plays an active role (e.g. Ag or Cu)

High Speed AgGeSe Device

- AgGeSe compound with Ag electrode
- sub-70 ns switching speed

Kozicki et al., IEEE T-NANO, 2005

Cu-Te ECM Device

Table 1. Typical parameters and key features.

FEOL	180-nm CMOS
Active cell area	40 nmφ
Set pulse width	5 ns
Set current	110 μΑ
Set voltage	+3 V
Reset pulse width	1 ns
Reset current	125 µA
Reset voltage	−1.7 V
Resistance read	+0.1 V
voltage	TU. 1 V
Endurance	10 ⁷ cycles

High speed with good endurance

Aratani et al., IEDM, 2007

Au Atomic Switch

Terabe et al., Nature, 2005

Single Au atom bridge between TE and BE in Ag₂S

Stochastic Device

- Stochastic vs deterministic
- True random number generator
 - physical event: thermal noise, radioactive decay
 - too slow
- Filamentary formation is a stochastic process → following a Poisson distribution at a given condition

Effect of Compliance Current

Ielmini et al., SST., 2016

 Compliance determines filament size, thus on/off ratio and voltage

Modeling of Device

Ielmini et al., SST., 2016

- Modeling of resistive switching with different compliance current
- Affects number of filaments and the size of the filament

Scalability

- Conductive filament critical size
 - Switching mechanism
 - Endurance
- Better on/off ratio
- Reduced variability in operations

Scaling implications: Write/Erase endurance requires the existance of a large filament

(F)

New switching region formed

ReRAM?RAMs have extended write/erase lifetime

Switching Speed

- Benchmark: DRAM write/erase time < 10/10 ns
- Pt/Ti/TiO2/Pt cross-point
 - 1 ns rise/fall and 3 ns plateau

Hermes et al., IEEE EDL, 2011

Endurance

Jo et al., Nano Lett., 2008

- 10⁸ write/erase cycles
- 10⁶ on/off ratio
- Endurance depends on device dimensions

RRAM Device Structure Pillar vs. Crossbar

Pillar structure

Crossbar array

Jo et al., Nano Lett., 2008

- Pillar vs crossbar
- Pillar is easier to fabricate;
- crossbar has better density and offers random access

Sneak Path and Selection Device

- Sneak path in crossbar arrays
- Selection device is required
- 1 transistor 1 resistor (1T1R)
- 1 diode 1 resistor (1D1R), more compact

1T1R Array Demonstration

- 1T1R 1 transistor and 1 RRAM cell
- Prevents sneak path
- Good density

Valov et al., Nanotechnology, 2011

CNT Crossbar Devices

C.-L. Tsai, **F. Xiong**, E. Pop, M. Shim, *ACS Nano* **7**, 5360-5366 (2013)

- CNT crossbar electrodes ~ 2 nm²
- High performance and low power

Crossbar Array from Crossbar Inc.

RRAM crossbar array: 100 nm pitch

Kim et al., Nano Lett., 2012

10 Gbits/cm²

Towards Commercialization

- Crossbar Inc. founded in 2010 with \$85 M funding so far
- Commercial products offered in 2016 with 40 nm CMOS
- CMOS compatible
- 3D stackable with low thermal budget process

Samsung Vertical 3D

Fig. 1 Schematic drawings of (a) 3D X-point ReRAM, (b) Vertical ReRAM

- Samsung claims vertical RRAM is more cost effective
- Prototype cell works with a vertical structure (TaOx-based)

Baek, IEDM 2011, 31.8

Multi-Level Cell

- Multi-level cell (MLC) → higher density
- 8 levels → 3 bit per cell
- Stochastic process makes uniformity more challenging

Radiation Resistant

- RRAM is not charge-based (DRAM and flash)
- Radiation resistant → good for military and space applications
- HRS (HfO_x) may decrease slightly upon radiation

