### Just an Idea

January 28, 2023

Problem ? >> Particle level information (generated) get distorted in the detector level due to acceptance and in-efficiencies.



Figure 1: Generated  $\phi$  vs.  $\cos(\theta)$  distribution.

Figure 2: Reconstructed  $\phi$  vs.  $cos(\theta)$  distribution.

Need a method to extract particle level information using the detector level information (measured).

# MNIST data and fully connected CNN's



## How can we use this method to our problem ?



Figure 3: Reconstrued phi-costh distribution as a image. Note since we use event weight to fill the hitogram, we have scale the bin content using standard scaler in sklearn.

- >>> We can assume bins in histogram is same as pixels in an image. We use reconstrued drell-yan events with FPGA1 trigger with 4.5 < mass < 8.0.
- >> Input = phi-costh 2D histogram and target =  $[\lambda, \mu, \nu]$ .
- >> We created 293 phi-costh histograms with  $\lambda$ ,  $\mu$ ,  $\nu$  = 1.0, 0.0, 0.0.
- >> Histograms were split to train: validation: test = 60: 20: 20.
- >> With batch size = 10, learning
  rate = 0.01, L2 penalty =
  0.001 and epochs = 20.

#### Results



Figure 4: Loss curve

- >> Use fully connected CNN with regression (instead of classification as in MNIST data).
- We test the trained CNN with 10 images. Average values are;

```
lambda = 1.0019 +/- 0.0037

mu = -0.0006 +/- 0.0002

nu = 0.0006 +/- 0.0005
```

This results is biased (only one target).

#### Pseudo data

- **>>** We create  $\phi = [-\pi, \pi]$  and  $\theta = [0., \pi]$  randomly.
- **>>** Weights were created as  $z=\lambda+\mu\cos(\phi)+\mu\phi^2\cos(\theta)$  and  $\lambda,\mu,\nu=[-1.0,1.0]$  created randomly.
- ightarrow Smearing were introduced for both heta and  $\phi$  with;

```
double smear(double xt)
{
double xsmear = gRandom->Gaus(-0.5, 1.0);
return xt + xsmear;
}
```



- **>>** We create 60k histograms with 50k events per histogram. All the variables  $[\phi,\theta,\lambda,\mu,\nu]$  are created randomly.
- **>>** Input = 2D histogram of  $\phi$  vs.  $\cos(\theta)$  and target is  $\lambda, \mu, \nu$ . Our goal is to predict generated  $\lambda, \mu, \nu$ .





Figure 5: Loss curve for toy data.

CNN is tested with 15 histograms with

 $\lambda,\mu,\nu=[0.7,0.4,0.3]$  . The average values of the predictios are;

lambda = 0.6492 +/- 0.0098 mu = 0.4881 +/- 0.0620 nu = 0.2280 +/- 0.0686

Results are not that impressive. But can be improved.

- $\rightarrow$   $\lambda$ ,  $\mu$ ,  $\nu$  is introduced to the generated data by weights.
- » If we can produce 2D histograms with different  $\lambda$  ,  $\mu$  ,  $\nu$  may be we can get better results.
- >> Git repo. https://github.com/dinupa1/unfoldML
- >> To do:
  - >> Plan to do a efficiency study after the survay is done.
  - ightharpoonup Plan to do a false asymmetry study for  $J/\psi$  production.