TERMODINÁMICA

Ejercicio del Tema 3

Nombre	Grupo	F
--------	-------	---

Un dispositivo cilindro-pistón con paredes perfectamente aisladas y en posición vertical tiene el pistón unido a un muelle de constante K=50 kN/m. Inicialmente el pistón se encuentra separado 0,67 m de la base del cilindro. El pistón tiene diámetro 0,32 m y masa 4140 kg y está perfectamente aislado. La presión atmosférica reinante es de 95 kPa. En esa posición inicial el muelle está en su longitud natural. El cilindro contiene 1,2 kg de una sustancia pura, de la cual se conocen las propiedades que se adjuntan, que inicialmente está en equilibrio.

Se sitúa en la base del cilindro, retirando el aislamiento, un cuerpo sólido a una temperatura inferior a la de la sustancia contenida en el cilindro. El sistema evoluciona de forma cuasiestática hasta que el pistón queda separado 26,57 mm de la base del cilindro.

- a) Calcular la transferencia de calor que ha tenido lugar en el proceso.
- b) Representar el proceso en un diagrama p-v respecto a la campana bifásica.

p	T	V _f	v _g	u _f	u _g	h _f	h _g	s _f	s _g
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
2	-25,44	0,001781	0,21929	137,897	501,7	138,25	545,6	0,76478	2,40912
4	-5,476	0,001865	0,11397	185,583	523,1	186,33	568,7	0,94996	2,37834
6	7,916	0,001932	0,07696	219,006	537,2	220,16	583,4	1,07190	2,36424
8	18,31	0,001990	0,05778	245,855	547,9	247,45	594,1	1,16584	2,35536
10	26,94	0,002045	0,04608	268,806	556,6	270,85	602,6	1,24360	2,34928
12	34,38	0,002097	0,03812	289,143	563,8	291,66	609,5	1,31073	2,34429
14	40,96	0,002149	0,03233	307,594	569,8	310,60	615,1	1,37031	2,33976
16	46,88	0,002200	0,02792	324,623	575,0	328,14	619,7	1,42426	2,33529
18	52,28	0,002252	0,02444	340,547	579,4	344,60	623,4	1,47387	2,33064
20	57,26	0,002305	0,02161	355,597	583,2	360,21	626,4	1,52007	2,32563
22	61,88	0,002361	0,01925	369,952	586,3	375,15	628,6	1,56357	2,32010
24	66,2	0,002419	0,01725	383,757	588,8	389,56	630,2	1,60490	2,31390
26	70,25	0,002481	0,01552	397,136	590,7	403,59	631,0	1,64455	2,30685
28	74,08	0,002548	0,01400	410,205	592,0	417,34	631,2	1,68292	2,29878
30	77,7	0,002622	0,01266	423,077	592,6	430,94	630,6	1,72041	2,28941
32	81,14	0,002706	0,01144	435,878	592,5	444,54	629,1	1,75745	2,27841
34	84,41	0,002802	0,01031	448,767	591,5	458,29	626,6	1,79456	2,26523
36	87,53	0,002918	0,00925	461,981	589,4	472,49	622,7	1,83248	2,24900
38	90,51	0,003067	0,00822	475,956	585,6	487,61	616,9	1,87259	2,22802
40	93,35	0,003283	0,00715	491,811	578,9	504,94	607,5	1,91833	2,19812
42	96,06	0,003787	0,00575	515,971	563,0	531,88	587,2	1,98961	2,13933

F

$$R = 0.32 \text{ m}$$
 $R = 0.32 \text{ m}$
 $R = 0.32 \text{ m}$
 $R = 9.5 \text{ kPa}$
 $R = 9.5 \text{ kPa}$
 $R = 50 \text{ kN/m}$
 $R = 1.2 \text{ kg}$
 $R = 1.2$

Estado inicial

$$P_1 = P_0 + \frac{10.32^2}{4} \times 0.67 / 1.2 = 0.0449 \text{ m}^3 / \text{kg} = 0.0$$

$$= \frac{\pi 0.32^{2}}{4} \times 0.67 / 1.2 = 0.0449 \times 1.7$$

$$= 0.001932 + \times 1 (0.07696 - 0.001932) \rightarrow \times 1 = 0.5727$$

$$= 0.001932 + \times 1 (0.07696 - 0.001932) \rightarrow \times 1 = 0.5727$$

$$= 0,001932 + 1(0)0$$

$$= 0,001932 + 1(0)0$$

$$= 401,2497 + 1/49$$

$$U_1 = 219,006 + 0'5727(537,2 - 219,006) = 401,2497 + 1/49$$

$$F_{M} = K(2, -2) = \frac{K}{A}(J, -J)$$

PoA | From

$$P = Po + \frac{MPY}{A} - \frac{K}{A^2}(V_1 - V_1) = \frac{1}{P}$$
 $P = Po + \frac{MPY}{A} - \frac{K}{A^2}(V_1 - V_2) = \frac{1}{P}$
 $P = Po + \frac{MPY}{A} - \frac{K}{A^2}(V_1 - V_2) = \frac{1}{P}$
 $P = Po + \frac{MPY}{A} - \frac{K}{A^2}(V_1 - V_2) = \frac{1}{P}$
 $P = Po + \frac{MPY}{A} - \frac{K}{A^2}(V_1 - V_2) = \frac{1}{P}$
 $P = Po + \frac{MPY}{A} - \frac{K}{A^2}(V_1 - V_2) = \frac{1}{P}$

$$\frac{\text{Estado final}}{P_2 = 600} - \frac{50}{\left[\frac{710.32^2}{4}\right]^{2}} \left(0.67 - 0.02657\right) \frac{710.82^2}{4} =$$

$$v_2 = \frac{70.32^2}{4} \times 0.05623/1.5 = 0.0011480 \pm m_3/kh = 0.001480 \pm m_3/kh = 0.001480$$

Primor Primaipio

aptrodo a la sustancia:

rudo a la Pastacia.

$$W_{12} = \left(\frac{P_1 + P_2}{2}\right)(V_2 - V_1) = 400 \times \frac{70.32^2}{4}(0.026 + 7 - \frac{1}{4})$$

$$\Delta E = m(u_2 - u_1) = 1.2 (137, 897 - 401, 2497) = -316,0232 \text{ kJ}$$

TERMODINÁMICA

Ejercicio del Tema 3

Nombre	Grupo A	, D,	G
	010001	., ,	_

Un dispositivo cilindro-pistón con paredes perfectamente aisladas y en posición vertical tiene unos apoyos para el pistón situados a 0,5 m sobre la base del cilindro (ver esquema). El pistón tiene una masa de 1445 kg, su diámetro es de 0,16 m y está perfectamente aislado. El cilindro contiene 1,2 kg de una sustancia, de la cual se adjuntan las tablas de propiedades, y se sabe que inicialmente se encuentra en equilibrio en estado de vapor saturado. El pistón se encuentra por encima de los apoyos (no necesariamente en contacto con ellos).

Se retira el aislamiento de la base del cilindro y se coloca un cuerpo sólido a una temperatura inicial inferior a la de la sustancia del cilindro y se deja que el sistema alcance el equilibrio, desarrollándose el proceso de modo cuasiestático. La presión ambiente es de 95 kPa.

- a) Determinar la cota respecto a la base del cilindro a la que está el pistón en el estado inicial.
- b) Calcular la transferencia de calor que se produce en el proceso si la presión al final del mismo es la cuarta parte que la presión inicial.
- c) Representar el proceso en un diagrama p-v respecto a la campana bifásica.

							L		
p	T	v _f	v _g	u _f	u _g	h _f	h _g	s _f	s _g
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
2	-25,44	0,001781	0,21929	137,897	501,7	138,25	545,6	0,76478	2,40912
4	-5,476	0,001865	0,11397	185,583	523,1	186,33	568,7	0,94996	2,37834
6	7,916	0,001932	0,07696	219,006	537,2	220,16	583,4	1,07190	2,36424
8	18,31	0,001990	0,05778	245,855	547,9	247,45	594,1	1,16584	2,35536
10	26,94	0,002045	0,04608	268,806	556,6	270,85	602,6	1,24360	2,34928
12	34,38	0,002097	0,03812	289,143	563,8	291,66	609,5	1,31073	2,34429
14	40,96	0,002149	0,03233	307,594	569,8	310,60	615,1	1,37031	2,33976
16	46,88	0,002200	0,02792	324,623	575,0	328,14	619,7	1,42426	2,33529
18	52,28	0,002252	0,02444	340,547	579,4	344,60	623,4	1,47387	2,33064
20	57,26	0,002305	0,02161	355,597	583,2	360,21	626,4	1,52007	2,32563
22	61,88	0,002361	0,01925	369,952	586,3	375,15	628,6	1,56357	2,32010
24	66,2	0,002419	0,01725	383,757	588,8	389,56	630,2	1,60490	2,31390
26	70,25	0,002481	0,01552	397,136	590,7	403,59	631,0	1,64455	2,30685
28	74,08	0,002548	0,01400	410,205	592,0	417,34	631,2	1,68292	2,29878
30	77,7	0,002622	0,01266	423,077	592,6	430,94	630,6	1,72041	2,28941
32	81,14	0,002706	0,01144	435,878	592,5	444,54	629,1	1,75745	2,27841
34	84,41	0,002802	0,01031	448,767	591,5	458,29	626,6	1,79456	2,26523
36	87,53	0,002918	0,00925	461,981	589,4	472,49	622,7	1,83248	2,24900
38	90,51	0,003067	0,00822	475,956	585,6	487,61	616,9	1,87259	2,22802
40	93,35	0,003283	0,00715	491,811	578,9	504,94	607,5	1,91833	2,19812
42	96,06	0,003787	0,00575	515,971	563,0	531,88	587,2	1,98961	2,13933

low in i Estodo

Si el pishin sturiere oprypodo:

$$P_{1}^{*} = P_{0} + \frac{My^{9}}{A} - \frac{R}{A} = 799,31 - \frac{R}{A}$$
1 8bor - $\frac{R}{A}$

$$O_1^* = \frac{10.16^2}{4} \times 0.5 / 1.2 = 0.0083776 \text{ m}^3/\text{ky}$$

Por touto:

tauto:

$$P_1 = 8 \text{ bar}$$
; $O_1 = 0.05778 \text{ m}^3/\text{ky}$
 $\frac{21}{4} = \frac{0.05778 \times 1.2}{10.16^2} = \frac{3'4485 \text{ m}}{4}$

Proceso:

El pistin desciende a p=de, pudiendo llegor a town la topes (hoy que compubulo).

Cours P2 = P1/4 = 8 bor/4 = 2 bor es obvio que termine apryode, para que atire R rebojando la presids.

 $U_2 = 0'0083776 \text{ m}^2/\text{kg} = 0'001781 + x_2(0.21929 - 0.001781) <math>\implies x_2 = 0.03033$

 $u_{2} = 137,897 + 0.03033 (tol.7 - 137,897) = 148,97 KJ/ky$ -137,897) = 148,97 KJ/ky $W_{12} = 799,31 \times \frac{70,16^{2}}{4} \times (0.5 - 47,3856 KJ - 3,4485) = -47,3856 KJ$

Q12 = 1,2(148,93 - 547,9) - 41,3856 = - 526,15 KJ

TERMODINÁMICA

Ejercicio del Tema 3

Nombre Gr	upos E	3, C	١, ١	E
-----------	--------	------	------	---

Un dispositivo cilindro-pistón con paredes perfectamente aisladas y en posición vertical tiene unos apoyos para el pistón situados a 0,5 m sobre la base del cilindro (ver esquema). El pistón tiene una masa de 1445 kg, su diámetro es de 0,16 m y está perfectamente aislado. El cilindro contiene 1,2 kg de una sustancia, de la cual se adjuntan las tablas de propiedades, y se sabe que inicialmente se encuentra en equilibrio en estado de vapor saturado. El pistón se encuentra por debajo de los apoyos (no necesariamente en contacto con ellos).

Se retira el aislamiento de la base del cilindro y se coloca un cuerpo sólido a una temperatura inicial inferior a la de la sustancia del cilindro y se deja que el sistema alcance el equilibrio. La presión ambiente es de 95 kPa.

- a) Determinar la cota respecto a la base del cilindro a la que está el pistón en el estado inicial.
- b) Calcular la transferencia de calor que se produce en el proceso si el volumen ocupado por la sustancia al final del mismo es el 23,75% del inicial.
- c) Representar el proceso en un diagrama p-v respecto a la campana bifásica.

p	T	V _f	v _g	u _f	u _g	h _f	h _g	s _f	s _g
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
2	-25,44	0,001781	0,21929	137,897	501,7	138,25	545,6	0,76478	2,40912
4	-5,476	0,001865	0,11397	185,583	523,1	186,33	568,7	0,94996	2,37834
6	7,916	0,001932	0,07696	219,006	537,2	220,16	583,4	1,07190	2,36424
8	18,31	0,001990	0,05778	245,855	547,9	247,45	594,1	1,16584	2,35536
10	26,94	0,002045	0,04608	268,806	556,6	270,85	602,6	1,24360	2,34928
12	34,38	0,002097	0,03812	289,143	563,8	291,66	609,5	1,31073	2,34429
14	40,96	0,002149	0,03233	307,594	569,8	310,60	615,1	1,37031	2,33976
16	46,88	0,002200	0,02792	324,623	575,0	328,14	619,7	1,42426	2,33529
18	52,28	0,002252	0,02444	340,547	579,4	344,60	623,4	1,47387	2,33064
20	57,26	0,002305	0,02161	355,597	583,2	360,21	626,4	1,52007	2,32563
22	61,88	0,002361	0,01925	369,952	586,3	375,15	628,6	1,56357	2,32010
24	66,2	0,002419	0,01725	383,757	588,8	389,56	630,2	1,60490	2,31390
26	70,25	0,002481	0,01552	397,136	590,7	403,59	631,0	1,64455	2,30685
28	74,08	0,002548	0,01400	410,205	592,0	417,34	631,2	1,68292	2,29878
30	77,7	0,002622	0,01266	423,077	592,6	430,94	630,6	1,72041	2,28941
32	81,14	0,002706	0,01144	435,878	592,5	444,54	629,1	1,75745	2,27841
34	84,41	0,002802	0,01031	448,767	591,5	458,29	626,6	1,79456	2,26523
36	87,53	0,002918	0,00925	461,981	589,4	472,49	622,7	1,83248	2,24900
38	90,51	0,003067	0,00822	475,956	585,6	487,61	616,9	1,87259	2,22802
40	93,35	0,003283	0,00715	491,811	578,9	504,94	607,5	1,91833	2,19812
42	96,06	0,003787	0,00575	515,971	563,0	531,88	587,2	1,98961	2,13933

Estado inicial

Si d pishou staviere towardo las topes:
$$P_1 = 95 + \frac{1445 \times 9'8 \times 10^{-3}}{4} + \frac{R}{A} = 799.31 + \frac{R}{A} = \frac{799.31}{4} + \frac{R}{A} = \frac{199.31}{4} + \frac{199.31}{$$

$$0_1^* = \frac{70.16^2}{4} \times 0.5 / 1.2 = 0.0083776 \text{ m}^3/\text{Ky}$$

by (P1) ≤ by (8bur) = 0'017778 m³/ky Por teul, si eto tocendo, mendo 0, = 0'0083 = 76 m3/kg. Interpolando en la alumna de Vy:

$$P_1 = 37,694$$
 bor; $U_1 = 586,18$ kJ/ky

ans d'volumen re veduce, el pristir derciende Proceso y nearmente de repara de les topes. La reacción desipone e:

D2 = 0,5371 × 0,00 83 119 = 9 001 8861 m3/100 F 2 0+ (8 por)

El stado timel e de liquido saturado:

1 4 (8 bur) = 245,855 KJ

Aplicando el PP a la sistancia:

W12 = 799,31 2 (0,2375 - 4) x 0,0083776 x 1,2 = = -6,12 71 KJ

AE = 1,2 (245, 855 - 586/8) = -408,38 KJ

Q12 = - 408, 39 - 6, 1271 = -414,52 K7