# European XFEL Intra-train Beam Based Feedback Manual

Revision 1.1 PSI, Villigen, 06.09.2016

# Content

| 1 |                                                                       | 3              |
|---|-----------------------------------------------------------------------|----------------|
|   | 1.1 Purpose                                                           | 3              |
|   | 1.2 Scope                                                             | 3              |
|   | 1.3 History                                                           |                |
|   | 1.4 Firmware and Software Version                                     | 3              |
|   | 1.5 Definitions, acronyms, and abbreviations                          | 4              |
|   | 1.6 References                                                        | 5              |
|   | 1.7 Bytes and Bits Indexing Convention                                | 5              |
| 2 | System Overview                                                       | 6              |
|   | 2.1 Hardware Overview                                                 | 6              |
|   | 2.1.1 GPAC Configurations and Interfaces                              | 6              |
|   | 2.1.2 IBFB Installation in a VME Crate                                |                |
|   | 2.2 Firmware Overview                                                 | 10             |
| 3 | IBFB Controller                                                       | 11             |
|   | 3.1 Firmware Overview                                                 | 11             |
|   | 3.2 Orbit calculation                                                 | 11             |
|   | 3.3 Correction Algorithm                                              | 12             |
|   | 3.4 Case Studies                                                      | 12             |
|   | 3.4.1 Case 1: Downstream BPMs. All components in drift space          | 12             |
|   | 3.4.2 Case 2: Downstream BPMs. Applied real transfer matrices between |                |
|   | components                                                            | 13             |
|   | 3.4.3 Case 3: Downstream BPMs. Transfer matrix from lattice. Beam ene | rgy deviation. |
|   | 3.5 Firmware implementation                                           | 15             |
|   | 3.6 BP FPGA                                                           |                |
|   | 3.7 IBFB Controller Register Map                                      |                |
| 4 |                                                                       |                |
|   | 4.1 Undulator Network                                                 |                |
|   | 4.2 IBFB Network Protocol                                             |                |
|   | 4.3 Downstream and Upstream BPMs Network                              |                |
|   | 4.4 IBFB Switch Firmware                                              |                |
|   | 4.4.1 IBFB Switch Register Map                                        | 27             |
| 5 | IBFB Monitoring                                                       | 33             |
|   | 5.1 IBFB Monitoring Firmware                                          |                |
|   | 5.1.1 IBFB Monitor Register Map                                       |                |
| 6 | · · · · · · · · · · · · · · · · · · ·                                 |                |
|   | 6.1 Register Map                                                      |                |
| 7 |                                                                       |                |
|   |                                                                       |                |
|   | 7.1 IBFB Player Firmware                                              | 38             |
|   |                                                                       |                |
| 8 | 7.2 Test Setup                                                        | 39             |
| 8 | 7.2 Test Setup                                                        | 39<br>39       |
| 8 | 7.2 Test Setup                                                        | 39<br>39<br>39 |

### 1 Introduction

The E-XFEL IBFB...

### 1.1 Purpose

The aim of this document is to provide a global overview of the measurement technique and to describe the user interface to the GPAC firmware and software.

### 1.2 Scope

This document provides a global overview of the IBFB system and specifies the user interface. This document is a starting point which links to the detail information in the implementation in hardware, firmware and/or software.

### 1.3 History

| Revision | Date       | Author    | Description               |
|----------|------------|-----------|---------------------------|
| 1.0      | 04.01.2016 | W. Koprek | DAC16HL console operation |
| 1.1      | 06.09.2016 | W. Koprek | EPICS records description |

### 1.4 Firmware and Software Version

This document is valid for the firmware and software version presented in the screen shot in Fig 1.1.







Figure 1.1. Screen shot of the EPICS panel with firmware and software version.

### 1.5 Definitions, acronyms, and abbreviations

This document is based on the "IEEE Recommended Practice for Software Requirements Specifications" [1].

| ADC     | Analog Digital Converter.                                                                         |
|---------|---------------------------------------------------------------------------------------------------|
| ADC12FL | GPAC piggyback with eight 12-bit ADCs                                                             |
| BPM     | Beam Position Monitor. Usually measures the transversal beam bunch position and the bunch charge. |

| DAC16HL | GPAC piggyback with four 16-bit DACs                               |
|---------|--------------------------------------------------------------------|
|         |                                                                    |
|         |                                                                    |
| FPGA    | Field Programmable Gate Array. Programmable logic                  |
|         | device.                                                            |
| I2C     | see IIC                                                            |
| IIC     | IIC or I <sup>2</sup> C (Inter Integrated Circuit bus) is a multi- |
|         | master serial bus defined / specified by Philips.                  |
| MPLB    | PLB Master                                                         |
| PLB     | IBM Processor Local Bus                                            |
| PPC     | PowerPC (Performance optimization with enhanced                    |
|         | risc Performance Computing) is a RISC architecture                 |
|         | created by an alliance of big companies                            |
|         | Apple/IBM/Motorola.                                                |
| QSFP    | GPAC piggyback with quad SFP cage.                                 |
| RTM     | Rear transition card. Sometimes called "Transition                 |
|         | Card"                                                              |
| RTMG    | Rear transition card for GPAC.                                     |
| SFP     | Small form-Factor Pluggable is a compact, hot-                     |
|         | pluggable multi-gigabit optical or/and electrical                  |
|         | transceiver interface.                                             |
| SPLB    | PLB Slave                                                          |

### 1.6 References

- [1] "BPM packet router for IBFB" Firmware Data Sheet, ibfb\_bpm\_router, Revision 1.0
- [2] "IBFB Switch" Firmware Data Sheet, ibfb\_switch, Revision 2.1
- [3] "IBFB Kicker Attenuator Fan Controller" Firmware Data Sheet, ibfb\_kick\_cool\_mon, Revision 1.1
- [4] "European XFEL Timing System Receiver" Firmware Data Sheet, xfel\_timing, Revision 2.0
- [5] "CFG FPGA Firmware in GPAC 2.1" Firmware Data Sheet, Revision 1.8
- [6] "IBFB packet player" Firmware Data Sheet, ibfb player, Revision 1.0
- [7] "European X-Ray FEL Transverse Intra Bunch Train Feedback System" Conceptual and Technical Design Report

### 1.7 Bytes and Bits Indexing Convention

The convention for indexing bytes and bits within a 32-bit word is as presented in Fig. 2. This convention is valid for the whole document.



Figure 1.2. Byte and bit convention

# 2 System Overview

### 2.1 Hardware Overview



Figure 2.1: Block diagram of the IBFB hardware

### 2.1.1 GPAC Configurations and Interfaces

The IBFB hardware consists of the following components:

- three GPAC boards each in different piggyback configuration
- two piggybacks with four 16-bit DACs (DAC16HL)
- two piggybacks with eight 12-bit ADCs (ADC12FL)
- two quad SFP piggybacks (QSFP)
- three rear transition modules for GPAC (RTMG)

The three pairs of the piggybacks are installed on three GPAC boards. The GPAC configuration with two DAC16HL piggybacks is called IBFB controller. The configuration with two QSFP piggybacks is called IBFB switch, and the GPAC with two ADC12FL is called IBFB monitor. Each GPAC board has corresponding RTMG which provides eight interfaces for optical links and eight RJ45 connectors for electrical interfaces. Each GPAC configuration is described in the following subsections.

### 2.1.1.1 Common Interfaces

There are three common interfaces which are present in every GPAC configuration:

- Ethernet this interface is connected to the SFP1 cage on the front panel of the GPAC. It uses copper SFP for connecting a patch cable. The Ethernet interface is used by Linux running on GPAC and it is used as a maintenance interface.
- DOOCS interface is a fiber link connected to SFP2 cage on the front panel of the GPAC.
   This interface is used to operate GPAC function from DOOCS control system. This is the main interface used for operation.
- Timing interface is a fiber link connected to E-XFEL timing system. This interfaces works
  only as a receiver of the timing stream. It is connected to RTMG to port SYS-1.

### 2.1.1.2 IBFB Controller



Figure 2.2: GPAC with two DAC16HL piggybacks and an RTMG

### 2.1.1.3 IBFB Undulator Network Switch



Figure 2.3: GPAC with two QSFP piggybacks and an RTMG

### 2.1.1.4 IBFB Monitoring



Figure 2.4: GPAC with two ADC12FL piggybacks and an RTMG

# 2.1.2 IBFB Installation in a VME Crate



Figure 2.5: IBFB hardware installed in a VME crate – front side



Figure 2.6: IBFB hardware installed in a VME crate – rear side

# 2.2 Firmware Overview

### 3 IBFB Controller

### 3.1 Firmware Overview



### 3.2 Orbit calculation

The following formula calculates beam orbit based on position measurement from two BPMs. The beam orbit at location of these BPMs is  $B_1 = \begin{bmatrix} b_1 \\ b_1' \end{bmatrix}$ , and  $B_2 = \begin{bmatrix} b_2 \\ b_2' \end{bmatrix}$  and known transfer matrix between these two BPMs,  $M_{B1B2} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ .

The relation between orbits at these two BPMs is

$$\begin{bmatrix} b_2 \\ b_2' \end{bmatrix} = M_{B1B2} * \begin{bmatrix} b_1 \\ b_1' \end{bmatrix} \quad (3.1.1)$$

We know the  $M_{B1B2}$  from the machine lattice, and the  $b_1$  and  $b_2$  are measured. In order to calculate  $b_1'$  and  $b_2'$  we need to transform the equation (3.1.1) to

$$\begin{bmatrix} b_1' \\ b_2' \end{bmatrix} = M_{B1B2}^o * \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

where matrix  $M_{b1b2}^o$  has the following coefficients

$$M_{b1b2}^{o} = \begin{bmatrix} -\frac{m_{11}}{m_{12}} & \frac{1}{m_{12}} \\ \frac{m_{12}*m_{21}-m_{22}*m_{11}}{m_{12}} & \frac{m_{22}}{m_{12}} \end{bmatrix}$$

The above formulas are valid both for x and y planes. The coefficients of the matrix  $M_{b1b2}^o$  are constant for given beam energy and can be calculated in software. The beam orbit at given location requires two multiplications and one addition per location.

### 3.3 Correction Algorithm

### 3.4 Case Studies

### 3.4.1 Case 1: Downstream BPMs. All components in drift space

The simplest case when all IBFB components are in a drift space. The feedback uses downstream BPMs and the set point orbit is defined at BPM2.



Figure 3.1 Schematic representation of IBFB components with marked transfer matrices

The generic transport matrix for drift space is  $M_{s0s1} = \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix}$  where L is a distance between  $s_0$  and  $s_1$ . Hence the transfer matrices necessary for further calculations are the transfer matrix from the first kicker to the second one

$$\begin{aligned} K_{2U} &= M_{K1K2} * K_{1D} \\ \begin{bmatrix} k_{2U} \\ k_{2U}' \end{bmatrix} &= \begin{bmatrix} 1 & L_{K1K2} \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} k_{1D} \\ k_{1D}' \end{bmatrix} \end{aligned}$$

and from the second kicker to BPM  $B_2$ 

$$B_2 = M_{K2B2} * K_{2D}$$
$$\begin{bmatrix} b_2 \\ b_2' \end{bmatrix} = \begin{bmatrix} 1 & L_{K2B2} \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} k_{2D} \\ k_{2D}' \end{bmatrix}$$

where  $\begin{bmatrix} k_{2U} \\ k'_{2U} \end{bmatrix}$  is the orbit at the upstream side of the second kicker, and  $\begin{bmatrix} k_{1D} \\ k'_{1D} \end{bmatrix}$ ,  $\begin{bmatrix} k_{2D} \\ k'_{2D} \end{bmatrix}$  are the orbits at the downstream side of the kicker one and two.

Assuming the kicker is a perfect device, which only changes the beam angle then its transfer matrix looks like

$$K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & m_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

where  $m_{23} = \theta_K$  and it is the beam angle change caused by the kicker. The third row and column in this matrix was added for simplification of the matrix calculations.

In case when kickers are off the total transfer matrix from the upstream side of kicker one to the second downstream BPM is

$$B_2 = M_{K1K2} * M_{K2B2} * K_{1U}$$
 (3.3.1.1)

which is

$$B_2 = \begin{bmatrix} b_2 \\ b_2' \end{bmatrix} = \begin{bmatrix} 1 & L_{K2B2} \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & L_{K1K2} \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} k_{1U} \\ k_{1U}' \end{bmatrix} = \begin{bmatrix} k_{1U} + k_{1U}' * (L_{K1K2} + L_{K2B2}) \\ k_{1U}' \end{bmatrix} \quad \text{(3.3.1.2)}$$
 When the kickers are on the total transfer matrix is extended by two kicker transfer matrices

$$B_2 = M_{K1} * M_{K1K2} * M_{K2} * M_{K2B2} * K_{1U}$$
 (3.3.1.3)

which is

$$B_2 = \begin{bmatrix} b_2 \\ b_2' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & L_{K2B2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \theta_{K2} \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & L_{K1K2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \theta_{K1} \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} k_{1U} \\ k_{1U}' \\ 1 \end{bmatrix}$$

ter matrix multiplication we obtain 
$$B_2 = \begin{bmatrix} \theta_{K1} * (L_{K1K2} + L_{K2B2}) + \theta_{K2} * L_{K2B2} + k_{1U} + k'_{1U} * (L_{K1K2} + L_{K2B2}) \\ \theta_{K1} + \theta_{K2} + k'_{1U} \end{bmatrix}$$
(3.3.1.4)

If the  $B_2 = B_{2M}$  from equation 3.1.1.2 is the measured beam orbit without correction and the  $B_2 = B_{2SP}$  from equation 3.1.1.4 is the set point orbit achieved by active kickers then the difference of both gives the orbit error

$$B_{2ERR} = B_{2SP} - B_{2M}$$

then the difference of these two matrices gives 
$$B_{2ERR} = \begin{bmatrix} b_{2ERR} \\ b_{2ERR}' \end{bmatrix} = \begin{bmatrix} \theta_{K1} * (L_{K1K2} + L_{K2B2}) + \theta_{K2} * L_{K2B2} \\ \theta_{K1} + \theta_{K2} \end{bmatrix} = \begin{bmatrix} L_{K1K2} + L_{K2B2} & L_{K2B2} \\ 1 & 1 \end{bmatrix} * \begin{bmatrix} \theta_{K1} \\ \theta_{K2} \end{bmatrix} = \begin{bmatrix} b_{2ERR} \\ b_{2ERR}' \end{bmatrix} = M_{corr} * \begin{bmatrix} \theta_{K1} \\ \theta_{K2} \end{bmatrix}$$

From this equation we can calculate the required kick angle for both kickers which gives

$$\begin{bmatrix} \theta_{K1} \\ \theta_{K2} \end{bmatrix} = M_{corr}^{-1} * \begin{bmatrix} b_{2ERR} \\ b_{2ERR}' \\ b_{2ERR}' \end{bmatrix} = \begin{bmatrix} \frac{1}{L_{K1K2}} & -\frac{L_{K2B2}}{L_{K1K2}} \\ -\frac{1}{L_{K1K2}} & \frac{L_{K1K2} + L_{K2B2}}{L_{K1K2}} \end{bmatrix} * \begin{bmatrix} b_{2ERR} \\ b_{2ERR}' \end{bmatrix}$$

where

$$M_{corr}^{-1} = \begin{bmatrix} \frac{1}{L_{K1K2}} & -\frac{L_{K2B2}}{L_{K1K2}} \\ -\frac{1}{L_{K1K2}} & \frac{L_{K1K2} + L_{K2B2}}{L_{K1K2}} \end{bmatrix}$$
(3.3.1.5)

The inversed correction matrix  $M_{corr}^{-1}$  consists of constant values for given beam energy. Hence the firmware implementation of the correction kick consists of two multiplications and one addition per kicker.

### 3.4.2 Case 2: Downstream BPMs. Applied real transfer matrices between feedback components.

This case is based on the case 1. The two transfer matrices  $M_{K1K2}$  and  $M_{K2B2}$  do not represent drift spaces but real matrices calculated from the accelerator lattice. The coefficients of the matrices use the following symbols

$$M_{K1K2} = \begin{bmatrix} kk_{11} & kk_{12} \\ kk_{21} & kk_{22} \end{bmatrix}$$

$$M_{K2B2} = \begin{bmatrix} kb_{11} & kb_{12} \\ kb_{21} & kb_{22} \end{bmatrix}$$

Applying the above matrices to equation (3.1.1.1) to calculate the transfer matrix from upstream side of the kicker one to BPM2 we obtain

$$M_{K1B2} = \begin{bmatrix} kb_{11}*kk_{11} + kb_{12}*kk_{21} & kb_{11}*kk_{12} + kb_{12}*kk_{22} & 0 \\ kb_{21}*kk_{11} + kb_{22}*kk_{21} & kb_{21}*kk_{12} + kb_{22}*kk_{22} & 0 \end{bmatrix}$$

$$M_{K1B2} = \begin{bmatrix} kb_{11} * kk_{11} + kb_{12} * kk_{21} & kb_{11} * kk_{12} + kb_{12} * kk_{22} & \theta_{K1} * (kb_{11} * kk_{12} + kb_{12} * kk_{22}) + \theta_{K1} * kb_{12} \\ kb_{21} * kk_{11} + kb_{22} * kk_{21} & kb_{21} * kk_{12} + kb_{22} * kk_{22} & \theta_{K1} * (kb_{21} * kk_{12} + kb_{22} * kk_{22}) + \theta_{K1} * kb_{22} \end{bmatrix}$$

Subtracting both matrices and extracting the correction angles we obtain the correction matrix

$$M_{corr} = \begin{bmatrix} kb_{11} * kk_{12} + kb_{12} * kk_{22} & kb_{12} \\ kb_{21} * kk_{12} + kb_{22} * kk_{22} & kb_{22} \end{bmatrix}$$

and the inversed correction matrix

$$M_{corr}^{-1} = \begin{bmatrix} \frac{kb_{22}}{kb_{11}*kb_{22}*kk_{12}-kb_{12}*kb_{21}*kk_{12}} & -\frac{kb_{12}}{kb_{11}*kb_{22}*kk_{12}-kb_{12}*kb_{21}*kk_{12}} \\ -\frac{kb_{21}*kk_{12}+kb_{22}*kk_{22}}{kb_{11}*kb_{22}*kk_{12}-kb_{12}*kb_{21}*kk_{12}} & \frac{kb_{11}*kb_{22}*kk_{12}-kb_{12}*kb_{21}*kk_{12}}{kb_{11}*kb_{22}*kk_{12}-kb_{12}*kb_{21}*kk_{12}} \end{bmatrix}$$
(3.3.2.1)

And again all coefficients are constant for given beam energy and can be calculated in software. Hence the firmware implementation of the correction kick consists of two multiplications and one addition per kicker.

# 3.4.3 Case 3: Downstream BPMs. Transfer matrix from lattice. Beam energy deviation.

In this case the conditions from case 2 are considered but the transfer matrix of the kickers contains components related to energy deviation.

### 3.5 Firmware implementation

### 3.5.1 IBFB Controller

### 3.5.2 IBFB Amplifier Monitor



### 3.5.3 DAC16HL Monitor and Control

### 3.5.3.1 GPAC Console configuration

- Connect debug box to GPAC and to USB port in a PC.
- Check in the 'Device Manager' which COM ports were assigned to the GPAC serial ports.
- Connect with Putty to the higher number COM port. The COM parameters are 9600, 8, 1, None, XON/XOFF.
- Type in the Putty console 'u' to select FPGA chip. Select '2' for BPM1 FPGA.
- Connect with Putth to the lower number COM port. The COM parameters are 9600, 8, 1, None, XON/XOFF.

### 3.5.3.2 IBFB BPM FPGA Console Manual

Type 'help' for list of commands.

dac16hl <switch> [parameters]

### switches:

 read back the PLL registers and verify against the selected configuration. Only registers with different content are displayed.

3.5.4 IBFB Controller Register Map

| Address     | Type     | R/W      | Description                                                                     | MEDM |  |  |  |  |  |  |  |
|-------------|----------|----------|---------------------------------------------------------------------------------|------|--|--|--|--|--|--|--|
|             |          |          | SYS FPGA                                                                        |      |  |  |  |  |  |  |  |
| 0x00000000  | SYS FP   | GA Ser   | vice Component                                                                  |      |  |  |  |  |  |  |  |
| 0x000000FF  |          |          |                                                                                 |      |  |  |  |  |  |  |  |
| 0x00000100  | XFEL T   | iming Sy | /stem Receiver (Registers) – see documentation [4] for details.                 |      |  |  |  |  |  |  |  |
| 0x000001FF  |          |          |                                                                                 |      |  |  |  |  |  |  |  |
| 0x00003000  | CFG FF   | GA Acc   | ess Memory – see CFG FPGA documentation for details [5].                        |      |  |  |  |  |  |  |  |
| 0x00003FFF  |          | ,        |                                                                                 |      |  |  |  |  |  |  |  |
| 0x00008000  | XFFL T   | imina Sv | /stem Receiver (Memory) – see documentation [4] for details.                    |      |  |  |  |  |  |  |  |
| 0x0000FFFF  | <b>-</b> | g •,     | (                                                                               |      |  |  |  |  |  |  |  |
| 0,000001111 | L        |          | BP FPGA                                                                         |      |  |  |  |  |  |  |  |
| 0x00100500  | uint32   | RW       | Amplifiers control - reset loss of synchronization indicator. Write anything to | 203  |  |  |  |  |  |  |  |
| 0,000100000 | unitoz   | '''      | this register to reset the indicators                                           | 200  |  |  |  |  |  |  |  |
| 0x00100504  | uint32   | RO       | Amplifier status register 1 for KICK-Y1-N:                                      |      |  |  |  |  |  |  |  |
| 0,000100001 | unitoz   | '``      | Bit 29:9 – gate delay in [us]. Scaling factor is 0.016.                         | 205  |  |  |  |  |  |  |  |
|             |          |          | Bit 8 – when high then gate enabled (green indicator)                           | 206  |  |  |  |  |  |  |  |
|             |          |          | Bit 7:0 – link speed in [MHz]. Scaling factor 62.5/(2*(val+1))                  | 207  |  |  |  |  |  |  |  |
| 0x00100508  | uint32   | RO       | Amplifier status register 2 for KICK-Y1-N:                                      |      |  |  |  |  |  |  |  |
| 0,000100000 | unitoz   | '``      | Bit 31 – when high then loss of synchronization detected (red indicator)        | 208  |  |  |  |  |  |  |  |
|             |          |          | Bit 25:9 – gate length in [us]. Scaling factor is 0.016                         | 209  |  |  |  |  |  |  |  |
|             |          |          | Bit 8 – when high then the amplifier is connected (green indicator)             | 204  |  |  |  |  |  |  |  |
|             |          |          | Bit 7:0 – link delay expressed in clock cycles of clock 62.5MHz                 | 210  |  |  |  |  |  |  |  |
| 0x0010050C  | uint32   | RW       | Reserved. Do not write anything to this register                                |      |  |  |  |  |  |  |  |
| 0x00100510  | uint32   | RO       | Amplifier status register 3 for KICK-Y1-N:                                      |      |  |  |  |  |  |  |  |
| 0,000100010 | unitoz   | '\       | Bit 31 – when high then DC power is OK (red/green indicator)                    | 211  |  |  |  |  |  |  |  |
|             |          |          | Bit 30 – when high there is forward power at the amplifier output (green        | 216  |  |  |  |  |  |  |  |
|             |          |          | indicator                                                                       | 210  |  |  |  |  |  |  |  |
|             |          |          | Bit 29 – when high then there amplifier has to high temperature (green          | 217  |  |  |  |  |  |  |  |
|             |          |          | indicator)                                                                      |      |  |  |  |  |  |  |  |
|             |          |          | Bit 28 – when high then there was over duty in the last pulse (red indicator)   | 218  |  |  |  |  |  |  |  |
|             |          |          | Bit 25 – when high the amplifier has fault (red indicator)                      |      |  |  |  |  |  |  |  |
|             |          |          | Bit 24 – when high the amplifier is shut down (red indicator)                   | 215  |  |  |  |  |  |  |  |
|             |          |          | Bit 23 – when high then the amplifier is selected (blue indicator)              | 214  |  |  |  |  |  |  |  |
|             |          |          | Bit 22 – when high then the amplifier is enabled (green indicator)              | 212  |  |  |  |  |  |  |  |
|             |          |          | Bit 21 – when high then the amplifier was overdriven (red indicator)            | 213  |  |  |  |  |  |  |  |
|             |          |          | Bit 20 – when high then power supply 1 status is OK (green indicator)           | 219  |  |  |  |  |  |  |  |
|             |          |          | Bit 19 – when high then power supply 2 status is OK (green indicator)           | 220  |  |  |  |  |  |  |  |
|             |          |          | Bit 17 – when high then amplifier 1 status is OK (green indicator)              | 221  |  |  |  |  |  |  |  |
|             |          |          | Bit 16 – when high then amplifier 2 status is OK (green indicator)              | 222  |  |  |  |  |  |  |  |
|             |          |          |                                                                                 | 223  |  |  |  |  |  |  |  |
| 0x00100514  | uint32   | RO       | Amplifier status register 1 for KICK-Y1-P:                                      |      |  |  |  |  |  |  |  |
|             |          |          | Bit 29:9 – gate delay in [us]. Scaling factor is 0.016.                         | 205  |  |  |  |  |  |  |  |
|             |          |          | Bit 8 – when high then gate enabled (green indicator)                           | 206  |  |  |  |  |  |  |  |
|             |          |          | Bit 7:0 – link speed in [MHz]. Scaling factor 62.5/(2*(val+1))                  | 207  |  |  |  |  |  |  |  |
| 0x00100518  | uint32   | RO       | Amplifier status register 2 for KICK-Y1-P:                                      |      |  |  |  |  |  |  |  |
|             |          |          | Bit 31 – when high then loss of synchronization detected (red indicator)        | 208  |  |  |  |  |  |  |  |
|             |          |          | Bit 25:9 – gate length in [us]. Scaling factor is 0.016                         | 209  |  |  |  |  |  |  |  |
|             |          |          | Bit 8 – when high then the amplifier is connected (green indicator)             | 204  |  |  |  |  |  |  |  |
|             |          |          | Bit 7:0 – link delay expressed in clock cycles of clock 62.5MHz                 | 210  |  |  |  |  |  |  |  |
| 0x0010051C  | uint32   | RW       | Reserved. Do not write anything to this register                                |      |  |  |  |  |  |  |  |
| 0x00100520  | uint32   | RO       | Amplifier status register 3 for KICK-Y1-P:                                      |      |  |  |  |  |  |  |  |

|             |         |      | Bit 31 – when high then DC power is OK (red/green indicator)                                                                             | 211        |
|-------------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------|------------|
|             |         |      | Bit 30 – when high there is forward power at the amplifier output (green indicator                                                       | 216        |
|             |         |      | Bit 29 – when high then there amplifier has to high temperature (green indicator)                                                        | 217        |
|             |         |      | Bit 28 – when high then there was over duty in the last pulse (red indicator) Bit 25 – when high the amplifier has fault (red indicator) | 218        |
|             |         |      | Bit 24 – when high the amplifier is shut down (red indicator)                                                                            | 215        |
|             |         |      | Bit 23 – when high then the amplifier is selected (blue indicator)                                                                       | 214        |
|             |         |      | Bit 22 – when high then the amplifier is enabled (green indicator)                                                                       | 212        |
|             |         |      | Bit 21 – when high then the amplifier was overdriven (red indicator)                                                                     | 213        |
|             |         |      | Bit 20 – when high then power supply 1 status is OK (green indicator)                                                                    | 219        |
|             |         |      | Bit 19 – when high then power supply 2 status is OK (green indicator)                                                                    | 220        |
|             |         |      | Bit 17 – when high then amplifier 1 status is OK (green indicator)                                                                       | 221        |
|             |         |      | Bit 16 – when high then amplifier 2 status is OK (green indicator)                                                                       | 222        |
|             |         |      |                                                                                                                                          | 223        |
| 0x00100524  | uint32  | RO   | Amplifier status register 1 for KICK-Y2-N:                                                                                               |            |
|             |         |      | Bit 29:9 – gate delay in [us]. Scaling factor is 0.016.                                                                                  | 205        |
|             |         |      | Bit 8 – when high then gate enabled (green indicator)                                                                                    | 206        |
| 000400500   |         | DO.  | Bit 7:0 – link speed in [MHz]. Scaling factor 62.5/(2*(val+1))                                                                           | 207        |
| 0x00100528  | uint32  | RO   | Amplifier status register 2 for KICK-Y2-N:                                                                                               | 200        |
|             |         |      | Bit 31 – when high then loss of synchronization detected (red indicator)                                                                 | 208        |
|             |         |      | Bit 25:9 – gate length in [us]. Scaling factor is 0.016 Bit 8 – when high then the amplifier is connected (green indicator)              | 209<br>204 |
|             |         |      |                                                                                                                                          | 210        |
| 0x0010052C  | uint32  | RW   | Bit 7:0 – link delay expressed in clock cycles of clock 62.5MHz  Reserved. Do not write anything to this register                        | 210        |
| 0x0010052C  | uint32  | RO   | Amplifier status register 3 for KICK-Y2-N:                                                                                               |            |
| 0.00100330  | uiiii32 | I NO | Bit 31 – when high then DC power is OK (red/green indicator)                                                                             | 211        |
|             |         |      | Bit 30 – when high there is forward power at the amplifier output (green                                                                 | 216        |
|             |         |      | indicator                                                                                                                                | 2.0        |
|             |         |      | Bit 29 – when high then there amplifier has to high temperature (green                                                                   | 217        |
|             |         |      | indicator)                                                                                                                               |            |
|             |         |      | Bit 28 – when high then there was over duty in the last pulse (red indicator)                                                            | 218        |
|             |         |      | Bit 25 – when high the amplifier has fault (red indicator)                                                                               |            |
|             |         |      | Bit 24 – when high the amplifier is shut down (red indicator)                                                                            | 215        |
|             |         |      | Bit 23 – when high then the amplifier is selected (blue indicator)                                                                       | 214        |
|             |         |      | Bit 22 – when high then the amplifier is enabled (green indicator)                                                                       | 212        |
|             |         |      | Bit 21 – when high then the amplifier was overdriven (red indicator)                                                                     | 213        |
|             |         |      | Bit 20 – when high then power supply 1 status is OK (green indicator)                                                                    | 219        |
|             |         |      | Bit 19 – when high then power supply 2 status is OK (green indicator)                                                                    | 220        |
|             |         |      | Bit 17 – when high then amplifier 1 status is OK (green indicator)                                                                       | 221        |
|             |         |      | Bit 16 – when high then amplifier 2 status is OK (green indicator)                                                                       | 222        |
| 0x00100534  | uint32  | RO   | Amplifier status register 1 for KICK-Y2-P:                                                                                               | 223        |
| 0x00100554  | uiiiloz | KO   | Bit 29:9 – gate delay in [us]. Scaling factor is 0.016.                                                                                  | 205        |
|             |         |      | Bit 8 – when high then gate enabled (green indicator)                                                                                    | 206        |
|             |         |      | Bit 7:0 – link speed in [MHz]. Scaling factor 62.5/(2*(val+1))                                                                           | 207        |
| 0x00100538  | uint32  | RO   | Amplifier status register 2 for KICK-Y2-P:                                                                                               | 201        |
| 0,000100000 | diritoz | '``  | Bit 31 – when high then loss of synchronization detected (red indicator)                                                                 | 208        |
|             |         |      | Bit 25:9 – gate length in [us]. Scaling factor is 0.016                                                                                  | 209        |
|             |         |      | Bit 8 – when high then the amplifier is connected (green indicator)                                                                      | 204        |
|             |         |      | Bit 7:0 – link delay expressed in clock cycles of clock 62.5MHz                                                                          | 210        |
| 0x0010053C  | uint32  | RW   | Reserved. Do not write anything to this register                                                                                         |            |
| 0x00100540  | uint32  | RO   | Amplifier status register 3 for KICK-Y2-P:                                                                                               |            |
|             |         |      | Bit 31 – when high then DC power is OK (red/green indicator)                                                                             | 211        |
|             |         |      | Bit 30 - when high there is forward power at the amplifier output (green                                                                 | 216        |
|             |         |      | indicator                                                                                                                                |            |
|             |         |      | Bit 29 - when high then there amplifier has to high temperature (green                                                                   | 217        |
|             |         |      | indicator)                                                                                                                               | 040        |
|             |         |      | Bit 28 – when high then there was over duty in the last pulse (red indicator)                                                            | 218        |
|             |         |      | Bit 25 – when high the amplifier has fault (red indicator)                                                                               | 215        |
|             |         |      | Bit 24 – when high the amplifier is shut down (red indicator)                                                                            | 215        |
|             |         |      | Bit 23 – when high then the amplifier is selected (blue indicator)                                                                       | 214<br>212 |
|             |         |      | Bit 22 – when high then the amplifier is enabled (green indicator) Bit 21 – when high then the amplifier was overdriven (red indicator)  | 212        |
|             |         |      | Bit 20 – when high then power supply 1 status is OK (green indicator)                                                                    | 213        |
|             |         |      | Bit 19 – when high then power supply 1 status is OK (green indicator)                                                                    | 219        |
|             |         | 1    | 1 Dit 10 mileti riigit tileti pewet suppiy 2 status is Oit (green indicator)                                                             |            |

|              | 1       | 1   | Dit 47 when high their condition 4 status is OK (green indicator)                                                                        | 224        |
|--------------|---------|-----|------------------------------------------------------------------------------------------------------------------------------------------|------------|
|              |         |     | Bit 17 – when high then amplifier 1 status is OK (green indicator) Bit 16 – when high then amplifier 2 status is OK (green indicator)    | 221<br>222 |
|              |         |     |                                                                                                                                          | 223        |
| 0x00100544   | uint32  | RO  | Amplifier status register 1 for KICK-X1-N:                                                                                               |            |
|              |         |     | Bit 29:9 – gate delay in [us]. Scaling factor is 0.016.                                                                                  | 205        |
|              |         |     | Bit 8 – when high then gate enabled (green indicator)                                                                                    | 206        |
| 0.00400540   | 1 100   |     | Bit 7:0 – link speed in [MHz]. Scaling factor 62.5/(2*(val+1))                                                                           | 207        |
| 0x00100548   | uint32  | RO  | Amplifier status register 2 for KICK-X1-N:                                                                                               | 000        |
|              |         |     | Bit 31 – when high then loss of synchronization detected (red indicator)                                                                 | 208        |
|              |         |     | Bit 25:9 – gate length in [us]. Scaling factor is 0.016                                                                                  | 209        |
|              |         |     | Bit 8 – when high then the amplifier is connected (green indicator)                                                                      | 204        |
| 0:-00400540  |         | DIA | Bit 7:0 – link delay expressed in clock cycles of clock 62.5MHz                                                                          | 210        |
| 0x0010054C   | uint32  | RW  | Reserved. Do not write anything to this register                                                                                         |            |
| 0x00100550   | uint32  | RO  | Amplifier status register 3 for KICK-X1-N:                                                                                               | 044        |
|              |         |     | Bit 31 – when high then DC power is OK (red/green indicator)                                                                             | 211        |
|              |         |     | Bit 30 - when high there is forward power at the amplifier output (green                                                                 | 216        |
|              |         |     | indicator                                                                                                                                | 0.4.7      |
|              |         |     | Bit 29 - when high then there amplifier has to high temperature (green                                                                   | 217        |
|              |         |     | indicator)                                                                                                                               | 040        |
|              |         |     | Bit 28 – when high then there was over duty in the last pulse (red indicator)                                                            | 218        |
|              |         |     | Bit 25 – when high the amplifier has fault (red indicator)                                                                               | 245        |
|              |         |     | Bit 24 – when high the amplifier is shut down (red indicator)                                                                            | 215        |
|              |         |     | Bit 23 – when high then the amplifier is selected (blue indicator)                                                                       | 214        |
|              |         |     | Bit 22 – when high then the amplifier is enabled (green indicator)                                                                       | 212        |
|              |         |     | Bit 21 – when high then never supply 1 status is QK (green indicator)                                                                    | 213        |
|              |         |     | Bit 20 – when high then power supply 1 status is OK (green indicator)                                                                    | 219        |
|              |         |     | Bit 19 – when high then power supply 2 status is OK (green indicator) Bit 17 – when high then amplifier 1 status is OK (green indicator) | 220<br>221 |
|              |         |     |                                                                                                                                          | 222        |
|              |         |     | Bit 16 – when high then amplifier 2 status is OK (green indicator)                                                                       | 223        |
| 0x00100554   | uint32  | RO  | Amplifier status register 1 for KICK-X1-P:                                                                                               | 223        |
| 0x00100554   | uiiiloz | KO  | Bit 29:9 – gate delay in [us]. Scaling factor is 0.016.                                                                                  | 205        |
|              |         |     | Bit 8 – when high then gate enabled (green indicator)                                                                                    | 206        |
|              |         |     | Bit 7:0 – link speed in [MHz]. Scaling factor 62.5/(2*(val+1))                                                                           | 207        |
| 0x00100558   | uint32  | RO  | Amplifier status register 2 for KICK-X1-P:                                                                                               | 201        |
| 0.0001000000 | uiiitoz | INO | Bit 31 – when high then loss of synchronization detected (red indicator)                                                                 | 208        |
|              |         |     | Bit 25:9 – gate length in [us]. Scaling factor is 0.016                                                                                  | 209        |
|              |         |     | Bit 8 – when high then the amplifier is connected (green indicator)                                                                      | 204        |
|              |         |     | Bit 7:0 – link delay expressed in clock cycles of clock 62.5MHz                                                                          | 210        |
| 0x0010055C   | uint32  | RW  | Reserved. Do not write anything to this register                                                                                         | 2.0        |
| 0x00100560   | uint32  | RO  | Amplifier status register 3 for KICK-X1-P:                                                                                               |            |
|              |         |     | Bit 31 – when high then DC power is OK (red/green indicator)                                                                             | 211        |
|              |         |     | Bit 30 – when high there is forward power at the amplifier output (green                                                                 | 216        |
|              |         |     | indicator                                                                                                                                |            |
|              |         |     | Bit 29 - when high then there amplifier has to high temperature (green                                                                   | 217        |
|              |         |     | indicator)                                                                                                                               |            |
|              |         |     | Bit 28 – when high then there was over duty in the last pulse (red indicator)                                                            | 218        |
|              |         |     | Bit 25 – when high the amplifier has fault (red indicator)                                                                               |            |
|              |         |     | Bit 24 – when high the amplifier is shut down (red indicator)                                                                            | 215        |
|              |         |     | Bit 23 – when high then the amplifier is selected (blue indicator)                                                                       | 214        |
|              |         |     | Bit 22 – when high then the amplifier is enabled (green indicator)                                                                       | 212        |
|              |         |     | Bit 21 – when high then the amplifier was overdriven (red indicator)                                                                     | 213        |
|              |         |     | Bit 20 – when high then power supply 1 status is OK (green indicator)                                                                    | 219        |
|              |         |     | Bit 19 – when high then power supply 2 status is OK (green indicator)                                                                    | 220        |
|              |         |     | Bit 17 – when high then amplifier 1 status is OK (green indicator)                                                                       | 221        |
|              |         |     | Bit 16 – when high then amplifier 2 status is OK (green indicator)                                                                       | 222        |
|              |         |     |                                                                                                                                          | 223        |
| 0x00100564   | uint32  | RO  | Amplifier status register 1 for KICK-X2-N:                                                                                               |            |
|              |         |     | Bit 29:9 – gate delay in [us]. Scaling factor is 0.016.                                                                                  | 205        |
|              |         |     | Bit 8 – when high then gate enabled (green indicator)                                                                                    | 206        |
|              |         |     | Bit 7:0 – link speed in [MHz]. Scaling factor 62.5/(2*(val+1))                                                                           | 207        |
| 0x00100568   | uint32  | RO  | Amplifier status register 2 for KICK-X2-N:                                                                                               |            |
|              |         |     | Bit 31 – when high then loss of synchronization detected (red indicator)                                                                 | 208        |
|              |         |     | Bit 25:9 – gate length in [us]. Scaling factor is 0.016                                                                                  | 209        |
|              |         |     | Bit 8 – when high then the amplifier is connected (green indicator)                                                                      | 204        |
|              | I       |     | Bit 7:0 – link delay expressed in clock cycles of clock 62.5MHz                                                                          | 210        |
| 0x0010056C   | uint32  | RW  | Reserved. Do not write anything to this register                                                                                         |            |

| 0.00400570               | :              | _ DO     | Amenifican status remister 2 for KICK V2 No.                                                                                               |            |
|--------------------------|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 0x00100570               | uint32         | RO       | Amplifier status register 3 for KICK-X2-N: Bit 31 – when high then DC power is OK (red/green indicator)                                    | 211        |
|                          |                |          | Bit 30 — when high there is forward power at the amplifier output (green                                                                   | 216        |
|                          |                |          | indicator                                                                                                                                  |            |
|                          |                |          | Bit 29 – when high then there amplifier has to high temperature (green                                                                     | 217        |
|                          |                |          | indicator) Bit 28 – when high then there was over duty in the last pulse (red indicator)                                                   | 218        |
|                          |                |          | Bit 25 – when high the amplifier has fault (red indicator)                                                                                 | 210        |
|                          |                |          | Bit 24 – when high the amplifier is shut down (red indicator)                                                                              | 215        |
|                          |                |          | Bit 23 – when high then the amplifier is selected (blue indicator)                                                                         | 214        |
|                          |                |          | Bit 22 – when high then the amplifier is enabled (green indicator)                                                                         | 212        |
|                          |                |          | Bit 21 – when high then the amplifier was overdriven (red indicator) Bit 20 – when high then power supply 1 status is OK (green indicator) | 213<br>219 |
|                          |                |          | Bit 19 – when high then power supply 2 status is OK (green indicator)                                                                      | 220        |
|                          |                |          | Bit 17 – when high then amplifier 1 status is OK (green indicator)                                                                         | 221        |
|                          |                |          | Bit 16 – when high then amplifier 2 status is OK (green indicator)                                                                         | 222        |
| 0.00400574               |                | DO       | Amenificated the secretary 4 for IVIOV VO D.                                                                                               | 223        |
| 0x00100574               | uint32         | RO       | Amplifier status register 1 for KICK-X2-P: Bit 29:9 – gate delay in [us]. Scaling factor is 0.016.                                         | 205        |
|                          |                |          | Bit 8 – when high then gate enabled (green indicator)                                                                                      | 206        |
|                          |                |          | Bit 7:0 – link speed in [MHz]. Scaling factor 62.5/(2*(val+1))                                                                             | 207        |
| 0x00100578               | uint32         | RO       | Amplifier status register 2 for KICK-X2-P:                                                                                                 |            |
|                          |                |          | Bit 31 – when high then loss of synchronization detected (red indicator)                                                                   | 208        |
|                          |                |          | Bit 25:9 – gate length in [us]. Scaling factor is 0.016                                                                                    | 209        |
|                          |                |          | Bit 8 – when high then the amplifier is connected (green indicator) Bit 7:0 – link delay expressed in clock cycles of clock 62.5MHz        | 204<br>210 |
| 0x0010057C               | uint32         | RW       | Reserved. Do not write anything to this register                                                                                           | 210        |
| 0x00100580               | uint32         | RO       | Amplifier status register 3 for KICK-X2-P:                                                                                                 |            |
|                          |                |          | Bit 31 – when high then DC power is OK (red/green indicator)                                                                               | 211        |
|                          |                |          | Bit 30 - when high there is forward power at the amplifier output (green                                                                   | 216        |
|                          |                |          | indicator                                                                                                                                  | 047        |
|                          |                |          | Bit 29 – when high then there amplifier has to high temperature (green indicator)                                                          | 217        |
|                          |                |          | Bit 28 – when high then there was over duty in the last pulse (red indicator)                                                              | 218        |
|                          |                |          | Bit 25 – when high the amplifier has fault (red indicator)                                                                                 |            |
|                          |                |          | Bit 24 – when high the amplifier is shut down (red indicator)                                                                              | 215        |
|                          |                |          | Bit 23 – when high then the amplifier is selected (blue indicator)                                                                         | 214        |
|                          |                |          | Bit 22 – when high then the amplifier is enabled (green indicator) Bit 21 – when high then the amplifier was overdriven (red indicator)    | 212<br>213 |
|                          |                |          | Bit 20 – when high then power supply 1 status is OK (green indicator)                                                                      | 219        |
|                          |                |          | Bit 19 – when high then power supply 2 status is OK (green indicator)                                                                      | 220        |
|                          |                |          | Bit 17 – when high then amplifier 1 status is OK (green indicator)                                                                         | 221        |
|                          |                |          | Bit 16 – when high then amplifier 2 status is OK (green indicator)                                                                         | 222        |
| 0::00404004              |                | DW       | DD4 DAG0 and if an archie Miles (4) then the annulified is scaled                                                                          | 223        |
| 0x00104004<br>0x00104005 | uint8<br>uint8 | RW<br>RW | PB1 DAC0 amplifier enable. When '1' then the amplifier is enabled.  PB1 DAC1 amplifier enable. When '1' then the amplifier is enabled.     | 508<br>508 |
| 0x00104005               | uint8          | RW       | PB1 DAC1 amplifier enable. When '1' then the amplifier is enabled.                                                                         | 508        |
| 0x00104000               | uint8          | RW       | PB1 DAC3 amplifier enable. When '1' then the amplifier is enabled.                                                                         | 508        |
| 0x00104008               | uint8          | RW       | PB1 DAC0 enable. When '1' then the amplifier is enabled.                                                                                   | 509        |
| 0x00104009               | uint8          | RW       | PB1 DAC1 enable. When '1' then the amplifier is enabled.                                                                                   | 509        |
| 0x0010400A               | uint8          | RW       | PB1 DAC2 enable. When '1' then the amplifier is enabled.                                                                                   | 509        |
| 0x0010400B               | uint8          | RW       | PB1 DAC3 enable. When '1' then the amplifier is enabled.                                                                                   | 509        |
| 0x00104018               | uint8          | RO       | External clock present (green/red indicator): =0 – missing clock                                                                           | 435        |
|                          |                |          | <pre><pre>&lt;&gt;0 - missing clock &lt;&gt;0 - clock present</pre></pre>                                                                  |            |
| 0x00104040               | int32          | RW       | PB1 DAC0 amplifier common mode voltage in bits.                                                                                            | 510        |
| 0x00104044               | int32          | RW       | PB1 DAC1 amplifier common mode voltage in bits.                                                                                            | 510        |
| 0x00104048               | int32          | RW       | PB1 DAC2 amplifier common mode voltage in bits.                                                                                            | 510        |
| 0x0010404C               | int32          | RW       | PB1 DAC3 amplifier common mode voltage in bits.                                                                                            | 510        |
| 0x00104050               | int32          | RW       | PB1 DAC0 comparator reference voltage in bits.                                                                                             | 511        |
| 0x00104054<br>0x00104058 | int32<br>int32 | RW<br>RW | PB1 DAC1 comparator reference voltage in bits. PB1 DAC2 comparator reference voltage in bits.                                              | 511<br>511 |
| 0x00104058<br>0x0010405C | int32          | RW       | PB1 DAC2 comparator reference voltage in bits.  PB1 DAC3 comparator reference voltage in bits.                                             | 511        |
| 0x0010403C               | uint32         | RO       | PB1 DAC3 comparator reference voltage in bits.  PB1 DAC external clock level detection (red indicator):                                    | 500        |
| 5.00101010               | dii itoz       |          | 0 – clock present                                                                                                                          |            |
|                          |                |          | 1 – no clock connected                                                                                                                     |            |

| 0x00104018 | uint32 | RO           | PB1 DAC PLL 1 locked (green indicator):                                                                                | 501      |
|------------|--------|--------------|------------------------------------------------------------------------------------------------------------------------|----------|
|            |        |              | 0 – not locked                                                                                                         |          |
| 0,00404040 |        | DO           | not zero – locked                                                                                                      | 500      |
| 0x0010401C | uint32 | RO           | PB1 DAC PLL 2 locked (green indicator): 0 – not locked                                                                 | 502      |
|            |        |              | not zero – locked                                                                                                      |          |
| 0x00106000 | int32  | RO           | PB1 DAC0 temperature in degC. Scaling factor is 0.00390625                                                             | 503      |
| 0x00106010 | int32  | RO           | PB1 DAC1 temperature in degC. Scaling factor is 0.00390625                                                             | 503      |
| 0x00106020 | int32  | RO           | PB1 DAC2 temperature in degC. Scaling factor is 0.00390625                                                             | 503      |
| 0x00106020 | int32  | RO           | PB1 DAC3 temperature in degC. Scaling factor is 0.00390625                                                             | 503      |
| 0x00108004 | uint8  | RW           | PB2 DAC0 amplifier enable. When '1' then the amplifier is enabled.                                                     | 508      |
| 0x00108005 | uint8  | RW           | PB2 DAC1 amplifier enable. When '1' then the amplifier is enabled.                                                     | 508      |
| 0x00108006 | uint8  | RW           | PB2 DAC2 amplifier enable. When '1' then the amplifier is enabled.                                                     | 508      |
| 0x00108007 | uint8  | RW           | PB2 DAC3 amplifier enable. When '1' then the amplifier is enabled.                                                     | 508      |
| 0x00108008 | uint8  | RW           | PB2 DAC0 enable. When '1' then the amplifier is enabled.                                                               | 509      |
| 0x00108009 | uint8  | RW           | PB2 DAC1 enable. When '1' then the amplifier is enabled.                                                               | 509      |
| 0x0010800A | uint8  | RW           | PB2 DAC2 enable. When '1' then the amplifier is enabled.                                                               | 509      |
| 0x0010800B | uint8  | RW           | PB2 DAC3 enable. When '1' then the amplifier is enabled.                                                               | 509      |
| 0x00108018 | uint8  | RO           | PB2 DAC External clock present (green/red indicator):                                                                  | 435      |
|            |        |              | =0 – missing clock                                                                                                     |          |
|            |        |              | <>0 – clock present                                                                                                    |          |
| 0x00108040 | int32  | RW           | PB2 DAC0 amplifier common mode voltage in bits.                                                                        | 510      |
| 0x00108044 | int32  | RW           | PB2 DAC1 amplifier common mode voltage in bits.                                                                        | 510      |
| 0x00108048 | int32  | RW           | PB2 DAC2 amplifier common mode voltage in bits.                                                                        | 510      |
| 0x0010804C | int32  | RW           | PB2 DAC3 amplifier common mode voltage in bits.                                                                        | 510      |
| 0x00108050 | int32  | RW           | PB2 DAC0 comparator reference voltage in bits.                                                                         | 511      |
| 0x00108054 | int32  | RW           | PB2 DAC1 comparator reference voltage in bits.                                                                         | 511      |
| 0x00108058 | int32  | RW           | PB2 DAC2 comparator reference voltage in bits.                                                                         | 511      |
| 0x0010805C | int32  | RW           | PB2 DAC3 comparator reference voltage in bits.                                                                         | 511      |
| 0x00108010 | uint32 | RO           | PB2 DAC external clock level detection (red indicator):                                                                | 500      |
|            |        |              | 0 – clock present                                                                                                      |          |
|            |        |              | 1 – no clock connected                                                                                                 |          |
| 0x00108018 | uint32 | RO           | PB2 DAC PLL 1 locked (green indicator):                                                                                | 501      |
|            |        |              | 0 – not locked                                                                                                         |          |
| 0.00400040 |        | DO.          | not zero – locked                                                                                                      | 500      |
| 0x0010801C | uint32 | RO           | PB2 DAC PLL 2 locked (green indicator): 0 – not locked                                                                 | 502      |
|            |        |              | not zero – locked                                                                                                      |          |
| 0x0010A000 | int32  | RO           | PB2 DAC0 temperature in degC. Scaling factor is 0.00390625                                                             | 503      |
| 0x0010A000 | int32  | RO           | PB2 DAC1 temperature in degC. Scaling factor is 0.00390625  PB2 DAC1 temperature in degC. Scaling factor is 0.00390625 | 503      |
| 0x0010A010 | int32  | RO           | PB2 DAC1 temperature in degC. Scaling factor is 0.00390625  PB2 DAC2 temperature in degC. Scaling factor is 0.00390625 | 503      |
| 0x0010A020 | int32  | RO           | PB2 DAC3 temperature in degC. Scaling factor is 0.00390625                                                             | 503      |
| 000010000  | IIIIOZ | <u> I NO</u> | BPM1 FPGA                                                                                                              | 303      |
| 0x00A00104 | int8   | RO           | PB1 DAC0 output N comparator state                                                                                     | 504      |
| 0x00A00104 | int8   | RO           | PB1 DAC1 output N comparator state                                                                                     | 504      |
| 0x00A00105 | int8   | RO           | PB1 DAC2 output N comparator state                                                                                     | 504      |
| 0x00A00100 | int8   | RO           | PB1 DAC3 output N comparator state                                                                                     | 504      |
| 0x00A00107 | int8   | RO           | PB1 DAC0 output P comparator state                                                                                     | 505      |
| 0x00A00100 | int8   | RO           | PB1 DAC1 output P comparator state                                                                                     | 505      |
| 0x00A0010A | int8   | RO           | PB1 DAC2 output P comparator state                                                                                     | 505      |
| 0x00A0010A | int8   | RO           | PB1 DAC3 output P comparator state                                                                                     | 505      |
| 0x00A0010C | uint8  | RO           | PB1 DAC0 DCM locked                                                                                                    | 507      |
|            |        |              | 0 – not locked                                                                                                         |          |
|            |        |              | 1 - locked                                                                                                             |          |
| 0x00A0010D | uint8  | RO           | PB1 DAC1 DCM locked                                                                                                    | 507      |
|            |        |              | 0 – not locked                                                                                                         |          |
|            |        |              | 1 - locked                                                                                                             |          |
| 0x00A0010E | uint8  | RO           | PB1 DAC2 DCM locked                                                                                                    | 507      |
|            |        |              | 0 – not locked                                                                                                         |          |
|            |        | <u> </u>     | 1 - locked                                                                                                             |          |
| 0x00A0010F | uint8  | RO           | PB1 DAC3 DCM locked                                                                                                    | 507      |
|            |        |              | 0 – not locked                                                                                                         |          |
|            | 1      |              | 1 - locked                                                                                                             | <u> </u> |
| 0x00A00114 | uint32 | RO           | PB1 DAC0 DCM output frequency measurement in [MHz]. Scaling factor is                                                  | 506      |
|            |        | 1            | 0.000001                                                                                                               | İ        |

| 0x00A00118 | uint32 | RO | PB1 DAC1 DCM output frequency measurement in [MHz]. Scaling factor is 0.000001                                                                                             | 506 |
|------------|--------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 0x00A0011C | uint32 | RO | PB1 DAC2 DCM output frequency measurement in [MHz]. Scaling factor is 0.000001                                                                                             | 506 |
| 0x00A00120 | uint32 | RO | PB1 DAC3 DCM output frequency measurement in [MHz]. Scaling factor is 0.000001                                                                                             | 506 |
| 0x00A00124 | uint32 | RO | PB1 DAC0 DCM phase shifter state: 0x0 – phase shifter OK                                                                                                                   | 518 |
| 0x00A00128 | uint32 | RO | 0x10000 – phase shifter overflow  PB1 DAC1 DCM phase shifter state:  0x0 – phase shifter OK  0x10000 – phase shifter overflow                                              | 518 |
| 0x00A0012C | uint32 | RO | PB1 DAC2 DCM phase shifter state:  0x0 – phase shifter OK  0x10000 – phase shifter overflow                                                                                | 518 |
| 0x00A00130 | uint32 | RO | PB1 DAC3 DCM phase shifter state:  0x0 – phase shifter OK  0x10000 – phase shifter overflow                                                                                | 518 |
| 0x00A00138 | uint8  | RO | PB1 DAC0 DCM phase shifter step from 0 to 255                                                                                                                              | 516 |
| 0x00A00139 | uint8  | RO | PB1 DAC1 DCM phase shifter step from 0 to 255                                                                                                                              | 516 |
| 0x00A0013A | uint8  | RO | PB1 DAC2 DCM phase shifter step from 0 to 255                                                                                                                              | 516 |
| 0x00A0013B | uint8  | RO | PB1 DAC3 DCM phase shifter step from 0 to 255                                                                                                                              | 516 |
| 0x00A00257 | uint8  | RO | External trigger missing (red indicator): =0 - trigger detected <>0 - missing trigger                                                                                      | 417 |
| 0x00A01004 | uint8  | RW | Trigger source: 0 – Signal 1 – Machine trigger 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)    | 412 |
| 0x00A01005 | uint8  | RW | Trigger mode: 0 – Continuous 1 – Single                                                                                                                                    | 413 |
| 0x00A01008 | uint32 | RW | Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.                                                                                      | 414 |
| 0x00A0100C | uint16 | RW | Number of bunches. Now has to be set manually. Later the value comes from timing system.                                                                                   | 415 |
| 0x00A0100E | uint16 | RW | Bunch spacing in ADC clock cycles. Now has to be set manually. Later the value comes from the timing system.                                                               | 416 |
| 0x00A01010 | uint8  | RW | PB1 DAC0 operation mode:  0 – DAC off  1 – Constant level  2 – Sinewave  3 - Squarewave  4 - Noise  5 - Saw  6 – Doublet  7 – User pattern  8 – IBFB  9 – Test phase shift | 512 |
| 0x00A01011 | uint8  | RW | PB1 DAC1 operation mode:  0 – DAC off  1 – Constant level  2 – Sinewave  3 - Squarewave  4 - Noise  5 - Saw  6 – Doublet  7 – User pattern  8 – IBFB  9 – Test phase shift | 512 |
| 0x00A01012 | uint8  | RW | PB1 DAC2 operation mode:<br>0 – DAC off                                                                                                                                    | 512 |

|                          |                  |               | 1 – Constant level                                                                                                |            |
|--------------------------|------------------|---------------|-------------------------------------------------------------------------------------------------------------------|------------|
|                          |                  |               | 2 – Sinewave                                                                                                      |            |
|                          |                  |               | 3 - Squarewave                                                                                                    |            |
|                          |                  |               | 4 - Noise<br>5 - Saw                                                                                              |            |
|                          |                  |               | 6 – Doublet                                                                                                       |            |
|                          |                  |               | 7 – User pattern                                                                                                  |            |
|                          |                  |               | 8 – IBFB                                                                                                          |            |
|                          |                  |               | 9 – Test phase shift                                                                                              |            |
| 0x00A01013               | uint8            | RW            | PB1 DAC3 operation mode:                                                                                          | 512        |
| 0,00,101010              | dirito           | ' ' '         | 0 – DAC off                                                                                                       | 0.2        |
|                          |                  |               | 1 – Constant level                                                                                                |            |
|                          |                  |               | 2 – Sinewave                                                                                                      |            |
|                          |                  |               | 3 - Squarewave                                                                                                    |            |
|                          |                  |               | 4 - Noise                                                                                                         |            |
|                          |                  |               | 5 - Saw                                                                                                           |            |
|                          |                  |               | 6 – Doublet                                                                                                       |            |
|                          |                  |               | 7 – User pattern                                                                                                  |            |
|                          |                  |               | 8 – IBFB                                                                                                          |            |
| 0,000,040,40             | oin ele          | DVA           | 9 – Test phase shift  PP4 PACO constant/wayeform amplitude in IV/I Pange 0.41/                                    | F40        |
| 0x00A01018               | single           | RW            | PB1 DAC0 constant/waveform amplitude in [V]. Range 0-1V.                                                          | 513        |
| 0x00A0101C               | single           | RW            | PB1 DAC1 constant/waveform amplitude in [V]. Range 0-1V.                                                          | 513<br>513 |
| 0x00A01020<br>0x00A01024 | single<br>single | RW<br>RW      | PB1 DAC2 constant/waveform amplitude in [V]. Range 0-1V. PB1 DAC3 constant/waveform amplitude in [V]. Range 0-1V. | 513        |
| 0x00A01024<br>0x00A01028 |                  | RW            |                                                                                                                   | 514        |
| 0x00A01028               | single<br>single | RW            | PB1 DAC0 waveform frequency in [MHz].  PB1 DAC1 waveform frequency in [MHz].                                      | 514        |
| 0x00A0102C               | single           | RW            | PB1 DAC2 waveform frequency in [MHz].                                                                             | 514        |
| 0x00A01030               | single           | RW            | PB1 DAC3 waveform frequency in [MHz].                                                                             | 514        |
| 0x00A01034               | single           | RW            | PB1 DAC0 waveform phase in [deg] in range from -180 to 180.                                                       | 515        |
| 0x00A0103C               | single           | RW            | PB1 DAC1 waveform phase in [deg] in range from -180 to 180.                                                       | 515        |
| 0x00A01040               | single           | RW            | PB1 DAC2 waveform phase in [deg] in range from -180 to 180.                                                       | 515        |
| 0x00A01044               | single           | RW            | PB1 DAC3 waveform phase in [deg] in range from -180 to 180.                                                       | 515        |
| 0x00A0105C               | uint8            | RW            | PB1 DAC0 DCM command. The following values cause actions:                                                         | 517        |
|                          |                  |               | 1 – increment phase by one                                                                                        |            |
|                          |                  |               | 2 – set phase shifter to 0 steps                                                                                  |            |
| 0x00A0105D               | uint8            | RW            | PB1 DAC1 DCM command. The following values cause actions:                                                         | 517        |
|                          |                  |               | 1 – increment phase by one                                                                                        |            |
|                          |                  |               | 2 – set phase shifter to 0 steps                                                                                  |            |
| 0x00A0105E               | uint8            | RW            | PB1 DAC2 DCM command. The following values cause actions:                                                         | 517        |
|                          |                  |               | 1 – increment phase by one                                                                                        |            |
|                          |                  | 5144          | 2 – set phase shifter to 0 steps                                                                                  |            |
| 0x00A0105F               | uint8            | RW            | PB1 DAC3 DCM command. The following values cause actions:                                                         | 517        |
|                          |                  |               | 1 – increment phase by one step                                                                                   |            |
|                          |                  | -             | 2 – set phase shifter to 0 steps                                                                                  |            |
|                          |                  |               | BPM2 FPGA                                                                                                         |            |
| 0x01200104               | int8             | RO            | PB2 DAC0 output N comparator state                                                                                | 504        |
| 0x01200104               | int8             | RO            | PB2 DAC1 output N comparator state                                                                                | 504        |
| 0x01200103               | int8             | RO            | PB2 DAC2 output N comparator state                                                                                | 504        |
| 0x01200100               | int8             | RO            | PB2 DAC3 output N comparator state                                                                                | 504        |
| 0x01200107               | int8             | RO            | PB2 DAC0 output P comparator state                                                                                | 505        |
| 0x01200109               | int8             | RO            | PB2 DAC1 output P comparator state                                                                                | 505        |
| 0x0120010A               | int8             | RO            | PB2 DAC2 output P comparator state                                                                                | 505        |
| 0x0120010R               | int8             | RO            | PB2 DAC3 output P comparator state                                                                                | 505        |
| 0x0120010C               | uint8            | RO            | PB2 DAC0 DCM locked                                                                                               | 507        |
|                          |                  |               | 0 – not locked                                                                                                    |            |
|                          |                  | <u> </u>      | 1 - locked                                                                                                        |            |
| 0x0120010D               | uint8            | RO            | PB2 DAC1 DCM locked                                                                                               | 507        |
|                          |                  |               | 0 – not locked                                                                                                    |            |
|                          |                  | <del>  </del> | 1 - locked                                                                                                        |            |
| 0x0120010E               | uint8            | RO            | PB2 DAC2 DCM locked                                                                                               | 507        |
|                          |                  |               | 0 – not locked                                                                                                    |            |
| 0.01000105               | ui+0             |               | 1 - locked                                                                                                        | F07        |
| 0x0120010F               | uint8            | RO            | PB2 DAC3 DCM locked 0 – not locked                                                                                | 507        |
|                          |                  |               | 1 - locked                                                                                                        |            |
|                          | ı                |               | I - IOONGU                                                                                                        |            |

| 0x01200114               | uint32 | RO | PB2 DAC0 DCM output frequency measurement in [MHz]. Scaling factor is                                                                                                      | 506 |
|--------------------------|--------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 0x01200118               | uint32 | RO | 0.000001   PB2 DAC1 DCM output frequency measurement in [MHz]. Scaling factor is                                                                                           | 506 |
| 0x0120011C               | uint32 | RO | 0.000001<br>  PB2 DAC2 DCM output frequency measurement in [MHz]. Scaling factor is                                                                                        | 506 |
| 0x01200120               | uint32 | RO | 0.000001  PB2 DAC3 DCM output frequency measurement in [MHz]. Scaling factor is                                                                                            | 506 |
|                          |        |    | 0.000001                                                                                                                                                                   |     |
| 0x01200124               | uint32 | RO | PB2 DAC0 DCM phase shifter state: 0x0 – phase shifter OK 0x10000 – phase shifter overflow                                                                                  | 518 |
| 0x01200128               | uint32 | RO | PB2 DAC1 DCM phase shifter state: 0x0 – phase shifter OK 0x10000 – phase shifter overflow                                                                                  | 518 |
| 0x0120012C               | uint32 | RO | PB2 DAC2 DCM phase shifter state:  0x0 – phase shifter OK  0x10000 – phase shifter overflow                                                                                | 518 |
| 0x01200130               | uint32 | RO | PB2 DAC3 DCM phase shifter state:<br>0x0 – phase shifter OK                                                                                                                | 518 |
| 0x01200138               | uint8  | RO | 0x10000 – phase shifter overflow PB2 DAC0 DCM phase shifter step from 0 to 255                                                                                             | 516 |
| 0x01200130<br>0x01200139 | uint8  | RO | PB2 DAC1 DCM phase shifter step from 0 to 255                                                                                                                              | 516 |
| 0x01200139<br>0x0120013A | uint8  | RO | PB2 DAC1 DCM phase shifter step from 0 to 255                                                                                                                              | 516 |
| 0x0120013A               | uint8  | RO | PB2 DAC3 DCM phase shifter step from 0 to 255                                                                                                                              | 516 |
| 0x01200257               | uint8  | RO | External trigger missing (red indicator): =0 - trigger detected <>0 - missing trigger                                                                                      | 422 |
| 0x01201004               | uint8  | RW | Trigger source: 0 – Signal 1 – Machine trigger 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)    | 417 |
| 0x01201005               | uint8  | RW | Trigger mode: 0 – Continuous 1 – Single                                                                                                                                    | 418 |
| 0x01201008               | uint32 | RW | Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.                                                                                      | 419 |
| 0x0120100C               | uint16 | RW | Number of bunches. Now has to be set manually. Later the value comes from timing system.                                                                                   | 420 |
| 0x0120100E               | uint16 | RW | Bunch spacing in ADC clock cycles. Now has to be set manually. Later the value comes from the timing system.                                                               | 421 |
|                          |        |    |                                                                                                                                                                            |     |
|                          |        |    |                                                                                                                                                                            |     |
| 0x01201010               | uint8  | RW | PB2 DAC0 operation mode:  0 – DAC off  1 – Constant level  2 – Sinewave  3 - Squarewave  4 - Noise  5 - Saw  6 – Doublet  7 – User pattern  8 – IBFB  9 – Test phase shift | 512 |
| 0x01201011               | uint8  | RW | PB2 DAC1 operation mode: 0 – DAC off 1 – Constant level 2 – Sinewave 3 - Squarewave                                                                                        | 512 |

|                          |        | 1        |                                                                                                                         |            |
|--------------------------|--------|----------|-------------------------------------------------------------------------------------------------------------------------|------------|
|                          |        |          | 4 - Noise                                                                                                               |            |
|                          |        |          | 5 - Saw                                                                                                                 |            |
|                          |        |          | 6 – Doublet                                                                                                             |            |
|                          |        |          | 7 – User pattern                                                                                                        |            |
|                          |        |          | 8 – IBFB                                                                                                                |            |
|                          |        |          | 9 – Test phase shift                                                                                                    |            |
| 0x01201012               | uint8  | RW       | PB2 DAC2 operation mode:                                                                                                | 512        |
|                          |        |          | 0 – DAC off                                                                                                             |            |
|                          |        |          | 1 – Constant level                                                                                                      |            |
|                          |        |          | 2 – Sinewave                                                                                                            |            |
|                          |        |          | 3 - Squarewave                                                                                                          |            |
|                          |        |          | 4 - Noise                                                                                                               |            |
|                          |        |          | 5 - Saw                                                                                                                 |            |
|                          |        |          | 6 – Doublet                                                                                                             |            |
|                          |        |          | 7 – User pattern                                                                                                        |            |
|                          |        |          | 8 – IBFB                                                                                                                |            |
|                          |        |          | 9 – Test phase shift                                                                                                    |            |
| 0x01201013               | uint8  | RW       | PB2 DAC3 operation mode:                                                                                                | 512        |
|                          |        |          | 0 – DAC off                                                                                                             |            |
|                          |        |          | 1 – Constant level                                                                                                      |            |
|                          |        |          | 2 – Sinewave                                                                                                            |            |
|                          |        |          | 3 - Squarewave                                                                                                          |            |
|                          |        |          | 4 - Noise                                                                                                               |            |
|                          |        |          | 5 - Saw                                                                                                                 |            |
|                          |        |          | 6 – Doublet                                                                                                             |            |
|                          |        |          | 7 – User pattern                                                                                                        |            |
|                          |        |          | 8 – IBFB                                                                                                                |            |
|                          |        |          | 9 – Test phase shift                                                                                                    |            |
| 0x01201018               | single | RW       | PB2 DAC0 constant/waveform amplitude in [V]. Range 0-1V.                                                                | 513        |
| 0x0120101C               | single | RW       | PB2 DAC1 constant/waveform amplitude in [V]. Range 0-1V.                                                                | 513        |
| 0x01201020               | single | RW       | PB2 DAC2 constant/waveform amplitude in [V]. Range 0-1V.                                                                | 513        |
| 0x01201024               | single | RW       | PB2 DAC3 constant/waveform amplitude in [V]. Range 0-1V.                                                                | 513        |
| 0x01201028               | single | RW       | PB2 DAC0 waveform frequency in [MHz].                                                                                   | 514        |
| 0x0120102C               | single | RW       | PB2 DAC1 waveform frequency in [MHz].                                                                                   | 514        |
| 0x01201030               | single | RW       | PB2 DAC2 waveform frequency in [MHz].                                                                                   | 514        |
| 0x01201034               | single | RW       | PB2 DAC3 waveform frequency in [MHz].                                                                                   | 514        |
| 0x01201034<br>0x01201038 | single | RW       | PB2 DAC0 waveform phase in [deg] in range from -180 to 180.                                                             | 515        |
| 0x01201036               |        | RW       | PB2 DAC0 waveform phase in [deg] in range from -180 to 180.                                                             | 515        |
| 0x0120103C               | single |          |                                                                                                                         |            |
|                          | single | RW       | PB2 DAC2 waveform phase in [deg] in range from -180 to 180.                                                             | 515        |
| 0x01201044               | single | RW       | PB2 DAC3 waveform phase in [deg] in range from -180 to 180.                                                             | 515        |
| 0x0120105C               | uint8  | RW       | PB2 DAC0 DCM command. The following values cause actions:                                                               | 517        |
|                          |        |          | 1 – increment phase by one                                                                                              |            |
|                          |        |          | 2 – set phase shifter to 0 steps                                                                                        |            |
| 0x0120105D               | uint8  | RW       | PB2 DAC1 DCM command. The following values cause actions:                                                               | 517        |
|                          |        | 1        | 1 – increment phase by one                                                                                              |            |
|                          |        |          |                                                                                                                         | l          |
|                          |        |          | 2 – set phase shifter to 0 steps                                                                                        |            |
| 0x0120105E               | uint8  | RW       | PB2 DAC2 DCM command. The following values cause actions:                                                               | 517        |
| 0x0120105E               | uint8  | RW       |                                                                                                                         | 517        |
| 0x0120105E               | uint8  | RW       | PB2 DAC2 DCM command. The following values cause actions:                                                               | 517        |
|                          |        |          | PB2 DAC2 DCM command. The following values cause actions:  1 – increment phase by one  2 – set phase shifter to 0 steps |            |
| 0x0120105E<br>0x0120105F | uint8  | RW<br>RW | PB2 DAC2 DCM command. The following values cause actions: 1 – increment phase by one                                    | 517<br>517 |

# 4 IBFB Switch and IBFB Network

### 4.1 Undulators Network



Figure 4.1: Physical location of undulators

### 4.2 IBFB Network Protocol

| SOF                  |
|----------------------|
| Control Byte         |
| BPM Number           |
| Bucket Number Byte 0 |
| Bucket Number Byte 1 |
| Pos X Byte 0         |
| Pos X Byte 1         |
| Pos X Byte 2         |
| Pos X Byte 3         |
| Pos Y Byte 0         |
| Pos Y Byte 1         |
| Pos Y Byte 2         |
| Pos Y Byte 3         |
| CRC 8                |
| EOF                  |
|                      |

Figure 4.2: Frame content of the network packet

# 4.3 Downstream and Upstream BPMs Network



Figure 4.3: Connection of downstream and upstream BPMs to IBFB controller

### 4.4 IBFB Switch Firmware

### 4.4.1 IBFB Filter and Router



Fig 4.4 Block diagram of the firmware for IBFB switch

### 4.4.2 Kicker Attenuator Fans Control



Figure 4.5: Hardware block diagram of the kicker attenuator fan control

### 4.4.3 IBFB Switch Register Map

All addresses in this table have absolute values. The additional columns indicates in which FPGA is located each register.

| Address    | Туре   | R/W      | Description                                                                                               | MEDM |
|------------|--------|----------|-----------------------------------------------------------------------------------------------------------|------|
|            |        |          | SYS FPGA                                                                                                  |      |
| 0x00000000 | SYS FF | GA Ser   | vice Component                                                                                            |      |
| 0x000000FF |        |          |                                                                                                           |      |
| 0x00000100 | XFEL T | iming Sy | stem Receiver (Registers) – see documentation [4] for details.                                            |      |
| 0x000001FF |        |          |                                                                                                           |      |
| 0x00003000 | CFG FF | PGA Acc  | ess Memory – see CFG FPGA documentation for details [5].                                                  |      |
| 0x00003FFF |        |          |                                                                                                           |      |
| 0x00008000 | XFEL T | iming Sy | stem Receiver (Memory) – see documentation [4] for details.                                               |      |
| 0x0000FFFF |        |          |                                                                                                           |      |
|            |        |          | BP FPGA                                                                                                   |      |
| 0x00100300 | uint8  | RO       | The SFP of port QSFP1_0 sees no light – SASE1 upstream 0 – no light (red indicator) 1 – SFP RX sees light | 300  |
| 0x00100301 | uint8  | RO       | The SFP of port QSFP1_1 sees no light – SASE2 upstream                                                    | 300  |

|                          |         |     | 0 – no light (red indicator) 1 – SFP RX sees light                                                    |       |
|--------------------------|---------|-----|-------------------------------------------------------------------------------------------------------|-------|
| 0x00100302               | uint8   | RO  | The SFP of port QSFP1_2 sees no light – SASE1 downstream                                              | 300   |
|                          |         |     | 0 – no light (red indicator) 1 – SFP RX sees light                                                    |       |
| 0x00100303               | uint8   | RO  | The SFP of port QSFP1_3 sees no light – SASE2 downstream                                              | 300   |
| 0,00100000               | dirito  | 1.0 | 0 – no light (red indicator)                                                                          | 000   |
|                          |         |     | 1 – SFP RX sees light                                                                                 |       |
| 0x0010030C               | uint8   | RO  | The SFP of port QSFP1_0 is in – SASE1 upstream                                                        | 301   |
|                          |         |     | 0 – SFP not in                                                                                        |       |
|                          |         |     | 1 – SFP plugged in the cage (green indicator)                                                         |       |
| 0x0010030D               | uint8   | RO  | The SFP of port QSFP1_1 is in – SASE2 upstream                                                        | 301   |
|                          |         |     | 0 – SFP not in                                                                                        |       |
|                          |         |     | 1 – SFP plugged in the cage (green indicator)                                                         |       |
| 0x0010030E               | uint8   | RO  | The SFP of port QSFP1_2 is in – SASE1 downstream                                                      | 301   |
|                          |         |     | 0 – SFP not in                                                                                        |       |
| 0.0040000                | :       | DO. | 1 – SFP plugged in the cage (green indicator)                                                         | 204   |
| 0x0010030F               | uint8   | RO  | The SFP of port QSFP1_3 is in – SASE2 downstream                                                      | 301   |
|                          |         |     | 0 – SFP not in                                                                                        |       |
| 0x00100310               | uint8   | RO  | 1 – SFP plugged in the cage (green indicator)  The SFP of port QSFP2 0 sees no light – SASE3 upstream | 302   |
| 0,0001000310             | unito   | 1.0 | 0 – no light (red indicator)                                                                          | 302   |
|                          |         |     | 1 – SFP RX sees light                                                                                 |       |
| 0x00100311               | uint8   | RO  | The SFP of port QSFP2_1 sees no light – Collimator BPM                                                | 302   |
|                          |         |     | 0 – no light (red indicator)                                                                          | 332   |
|                          |         |     | 1 – SFP RX sees light                                                                                 |       |
| 0x00100312               | uint8   | RO  | The SFP of port QSFP2_2 sees no light – SASE3 downstream                                              | 302   |
|                          |         |     | 0 – no light (red indicator)                                                                          |       |
|                          |         |     | 1 – SFP RX sees light                                                                                 |       |
| 0x0010031C               | uint8   | RO  | The SFP of port QSFP1_0 is in – SASE3 upstream                                                        | 303   |
|                          |         |     | 0 – SFP not in                                                                                        |       |
|                          |         |     | 1 – SFP plugged in the cage (green indicator)                                                         |       |
| 0x0010031D               | uint8   | RO  | The SFP of port QSFP1_1 is in – Collimator BPM                                                        | 303   |
|                          |         |     | 0 – SFP not in                                                                                        |       |
| 0.00400045               |         |     | 1 – SFP plugged in the cage (green indicator)                                                         | 000   |
| 0x0010031E               | uint8   | RO  | The SFP of port QSFP1_2 is in – SASE3 downstream                                                      | 303   |
|                          |         |     | 0 – SFP not in                                                                                        |       |
| 0200100100               | uint0   | RO  | 1 – SFP plugged in the cage (green indicator)  RTMG, SFP BPM1-0 status:                               | 304.  |
| 0x00100408               | uint8   | RO  | Bit 0 – when high no light received by SFP                                                            | 108   |
|                          |         |     | Bit 1 – when high the SFP is not plugged in the cage                                                  | 100   |
|                          |         |     | Bit 2 – when high the transmitter is disabled                                                         | 109   |
|                          |         |     | Bit 3 – when high the transmitter has fault                                                           |       |
| 0x00100409               | uint8   | RO  | RTMG, SFP BPM1-1 status:                                                                              | 304   |
| 2,,00,100,100            | 3       |     | Bit 0 – when high no light received by SFP                                                            | 108   |
|                          |         |     | Bit 1 – when high the SFP is plugged in the cage                                                      | 109   |
|                          |         |     | Bit 2 – when high the transmitter is disabled                                                         |       |
|                          | <u></u> |     | Bit 3 – when high the transmitter has fault                                                           |       |
| 0x0010040A               | uint8   | RO  | RTMG, SFP BPM2-0 status:                                                                              | 304   |
|                          |         |     | Bit 0 – when high no light received by SFP                                                            | 108   |
|                          |         |     | Bit 1 – when high the SFP is plugged in the cage                                                      |       |
|                          |         |     | Bit 2 – when high the transmitter is disabled                                                         |       |
| 0.00100:                 |         | 5.5 | Bit 3 – when high the transmitter has fault                                                           |       |
| 0x0010040B               | uint8   | RO  | RTMG, SFP BPM2-1 status:                                                                              | 108   |
|                          |         |     | Bit 0 – when high no light received by SFP                                                            | 109   |
|                          |         |     | Bit 1 – when high the SFP is plugged in the cage                                                      |       |
|                          |         |     | Bit 2 – when high the transmitter is disabled                                                         |       |
| 0.00400400               | uinto   | DC. | Bit 3 – when high the transmitter has fault                                                           | 400   |
| 0x0010040C               | uint8   | RO  | RTMG, SFP SYS-0 status:                                                                               | 108   |
|                          |         |     | Bit 0 – when high no light received by SFP                                                            | 109   |
|                          |         |     | Bit 1 – when high the SFP is plugged in the cage Bit 2 – when high the transmitter is disabled        |       |
|                          |         |     | Bit 3 – when high the transmitter has fault                                                           |       |
| 0x0010040D               | uint8   | RO  | RTMG, SFP SYS-1 status:                                                                               | 108,  |
| 5700 100 <del>1</del> 0D | dirito  | '\\ | Bit 0 – when high no light received by SFP                                                            | 100,  |
|                          |         |     |                                                                                                       | 1 100 |

|                          |                 |          | Bit 2 – when high the transmitter is disabled                                               |            |
|--------------------------|-----------------|----------|---------------------------------------------------------------------------------------------|------------|
| _                        |                 |          | Bit 3 – when high the transmitter has fault                                                 |            |
| 0x0010040E               | uint8           | RO       | RTMG, SFP SYS-2 status:                                                                     | 108,       |
|                          |                 |          | Bit 0 – when high no light received by SFP Bit 1 – when high the SFP is plugged in the cage | 109        |
|                          |                 |          | Bit 2 – when high the transmitter is disabled                                               |            |
|                          |                 |          | Bit 3 – when high the transmitter has fault                                                 |            |
| 0x0010040F               | uint8           | RO       | RTMG, SFP SYS-3 status:                                                                     | 108,       |
| 0,000,000,000            | dirito          |          | Bit 0 – when high no light received by SFP                                                  | 109        |
|                          |                 |          | Bit 1 – when high the SFP is plugged in the cage                                            |            |
|                          |                 |          | Bit 2 – when high the transmitter is disabled                                               |            |
|                          |                 |          | Bit 3 – when high the transmitter has fault                                                 |            |
| 0x0010060A               | uint8           | RW       | Set fan KICK-Y1-N speed in percentage.                                                      | 201        |
| 0x0010060B               | uint8           | RW       | Reset fan KICK-Y1-N. Level sensitive reset:                                                 | 200        |
|                          |                 |          | 0 – normal operation                                                                        |            |
|                          |                 |          | 1 – reset state                                                                             |            |
| 0x0010060C               | uint32          | RO       | Tachometer of the fan KICK-Y1-N                                                             | 202        |
| 0x00100612               | uint8           | RW       | Set fan KICK-Y1-P speed in percentage.                                                      | 201        |
| 0x00100613               | uint8           | RW       | Reset fan KICK-Y1-P. Level sensitive reset:                                                 | 200        |
|                          |                 |          | 0 – normal operation                                                                        |            |
| 0,00400044               | ui-+00          | DC.      | 1 – reset state                                                                             | 000        |
| 0x00100614<br>0x0010061A | uint32<br>uint8 | RO<br>RW | Tachometer of the fan KICK-Y1-P Set fan KICK-Y2-N speed in percentage.                      | 202<br>201 |
| 0x0010061A               | uint8           | RW       | Reset fan KICK-Y2-N. Level sensitive reset:                                                 | 200        |
| 0000100016               | uiiilo          | KVV      | 0 – normal operation                                                                        | 200        |
|                          |                 |          | 1 – reset state                                                                             |            |
| 0x0010061C               | uint32          | RO       | Tachometer of the fan KICK-Y2-N                                                             | 202        |
| 0x00100622               | uint8           | RW       | Set fan KICK-Y2-P speed in percentage.                                                      | 201        |
| 0x00100623               | uint8           | RW       | Reset fan KICK-Y2-P. Level sensitive reset:                                                 | 200        |
|                          |                 |          | 0 – normal operation                                                                        |            |
|                          |                 |          | 1 – reset state                                                                             |            |
| 0x00100624               | uint32          | RO       | Tachometer of the fan KICK-Y2-P                                                             | 202        |
| 0x0010062A               | uint8           | RW       | Set fan KICK-X1-N speed in percentage.                                                      | 201        |
| 0x0010062B               | uint8           | RW       | Reset fan KICK-X1-N. Level sensitive reset:                                                 | 200        |
|                          |                 |          | 0 – normal operation                                                                        |            |
| 0x0010062C               | uint32          | RO       | 1 – reset state Tachometer of the fan KICK-X1-N                                             | 202        |
| 0x0010062C               | uint8           | RW       | Set fan KICK-X1-P speed in percentage.                                                      | 201        |
| 0x00100632               | uint8           | RW       | Reset fan KICK-X1-P. Level sensitive reset:                                                 | 200        |
| 0,000100000              | dirito          | 1        | 0 – normal operation                                                                        | 200        |
|                          |                 |          | 1 – reset state                                                                             |            |
| 0x00100634               | uint32          | RO       | Tachometer of the fan KICK-X1-P                                                             | 202        |
| 0x0010063A               | uint8           | RW       | Set fan KICK-X2-N speed in percentage.                                                      | 201        |
| 0x0010063B               | uint8           | RW       | Reset fan KICK-X2-N. Level sensitive reset:                                                 | 200        |
|                          |                 |          | 0 – normal operation                                                                        |            |
|                          |                 |          | 1 – reset state                                                                             |            |
| 0x0010063C               | uint32          | RO       | Tachometer of the fan KICK-X2-N                                                             | 202        |
| 0x00100642               | uint8           | RW       | Set fan KICK-X2-P speed in percentage.                                                      | 201        |
| 0x00100643               | uint8           | RW       | Reset fan KICK-X2-P. Level sensitive reset:  0 – normal operation                           | 200        |
|                          |                 |          | 1 – reset state                                                                             |            |
| 0x00100644               | uint32          | RO       | Tachometer of the fan KICK-X2-P                                                             | 202        |
| 0,00100011               | unitoz          | 1        | BPM1 FPGA                                                                                   | 202        |
| 0x00A00800               | uint32          | RW       | Reset loss of sync counters. It is level sensitive:                                         | 305        |
|                          |                 |          | - write 0x00000000 to disable reset                                                         |            |
|                          |                 | <u> </u> | - write 0x0FF00000 to keep the counters in reset state                                      |            |
| 80800A00x0               | uint8           | RO       | Status of enabled router outputs:                                                           | 328        |
|                          |                 |          | Bit0-3 – not used always zero                                                               |            |
|                          |                 |          | Bit4 – enabled BPM1 GTX output                                                              |            |
|                          |                 |          | Bit5 – enabled MBU COM BPM1-0 output Bit6 – enabled BPM0 GTX output                         |            |
|                          |                 |          | Bit7 – enabled MBU COM BPM1-1 output                                                        |            |
|                          | 1               | 1        |                                                                                             |            |
| OxOOAOOROD               | uintA           | RΩ       | Status of the BPM01 GTX:                                                                    | 1.306      |
| 0x00A0080D               | uint8           | RO       | Status of the BPM01 GTX: Bit 7 – loss of synchronization for BPM1 GTX                       | 306        |

| 0x00A0080E               | uint8  | RO   | Status of the QSFP02 GTX: Bit 7 – loss of synchronization for QSFP0 GTX – SASE1 upstream   | 307      |
|--------------------------|--------|------|--------------------------------------------------------------------------------------------|----------|
|                          |        |      | Bit 5 – loss of synchronization for QSFP2 GTX – SASE2 downstream                           |          |
| 0x00A0080F               | uint8  | RO   | Status of the QSFP13 GTX:                                                                  | 307      |
|                          |        |      | Bit 7 – loss of synchronization for QSFP1 GTX – SASE2 upstream                             |          |
|                          |        |      | Bit 5 – loss of synchronization for QSFP3 GTX – SASE2 downstream                           |          |
| 0x00A00813               | uint8  | RO   | Status of the MBU COM GTX:                                                                 | 308      |
|                          |        |      | Bit 7 – loss of synchronization for MBU COM GTX0 – IBFB controller Y                       |          |
|                          |        |      | Bit 5 – loss of synchronization for MBU COM GTX1 – IBFB controller X                       |          |
| 0x00A0081C               | uint8  | RW   | BPM1 ID for SASE2, Y plane                                                                 | 309      |
| 0x00A0081D               | uint8  | RW   | BPM2 ID for SASE2, Y plane                                                                 | 309      |
| 0x00A0081E               | uint8  | RW   | BPM1 ID for SASE2, X plane                                                                 | 309      |
| 0x00A0081F               | uint8  | RW   | BPM2 ID for SASE2, X plane                                                                 | 309      |
|                          |        | RW   | BPM1 ID for SASE1, Y plane                                                                 | 309      |
| 0x00A00820               | uint8  |      |                                                                                            |          |
| 0x00A00821               | uint8  | RW   | BPM2 ID for SASE1, Y plane                                                                 | 309      |
| 0x00A00822               | uint8  | RW   | BPM1 ID for SASE1, X plane                                                                 | 309      |
| 0x00A00823               | uint8  | RW   | BPM2 ID for SASE1, X plane                                                                 | 309      |
| 0x00A00824               | uint16 | RO   | Loss counter for QSFP1 – SASE2 upstream                                                    | 310      |
| 0x00A00826               | uint16 | RO   | Loss counter for QSFP0 – SASE1 upstream                                                    | 310      |
| 0x00A00828               | uint16 | RO   | Loss counter for QSFP3 – SASE2 downstream                                                  | 310      |
| 0x00A0082A               | uint16 | RO   | Loss counter for QSFP2 – SASE1 downstream                                                  | 310      |
| 0x00A0082C               | uint16 | RO   | Loss counter for BPM1 GTX                                                                  | 312      |
| 0x00A0082E               | uint16 | RO   | Loss counter for BPM0 GTX                                                                  | 311      |
| 0x00A00834               | uint16 | RO   | Loss counter for MBU COM GTX0 – IBFB controller Y                                          | 313      |
| 0x00A00836               | uint16 | RO   | Loss counter for MBU COM GTX1 – IBFB controller X                                          | 313      |
| 0x00A00853               | uint8  | RO   | External trigger missing                                                                   | 400      |
| 0x00A00854               | uint16 | RO   | Packet counter for SASE1 upstream                                                          | 314      |
| 0x00A00856               | uint16 | RO   | Packet counter for SASE1 downstream                                                        | 314      |
| 0x00A00858               | uint16 | RO   | Packet counter for SASE2 upstream                                                          | 314      |
| 0x00A0085A               | uint16 | RO   | Packet counter for SASE2 downstream                                                        | 314      |
|                          |        | RO   |                                                                                            | 315      |
| 0x00A0085C               | uint16 |      | Discarded packets for SASE1                                                                |          |
| 0x00A00860               | uint16 | RO   | Discarded packets for SASE2                                                                | 315      |
| 0x00A00864               | uint8  | RO   | Invalid BPM ID for SASE1. When bigger than 0 then an invalid BPM send data                 | 316      |
| 0x00A00866               | uint8  | RO   | Invalid BPM ID for SASE2. When bigger than 0 then an invalid BPM send data                 | 316      |
| 0x00A00868               | uint16 | RO   | Passed packets for SASE1 plane X                                                           | 317      |
| 0x00A0086A               | uint16 | RO   | Passed packets for SASE1 plane Y                                                           | 317      |
| 0x00A0086C               | uint16 | RO   | Passed packets for SASE2 plane X                                                           | 317      |
| 0x00A0086E               | uint16 | RO   | Passed packets for SASE2 plane Y                                                           | 317      |
| 0x00A00870               | uint16 | RO   | SASE1 filter – star bucket number                                                          | 318      |
| 0x00A00872               | uint16 | RO   | SASE1 filter – stop bucket number                                                          | 318      |
| 0x00A00874               | uint16 | RO   | SASE2 filter – star bucket number                                                          | 318      |
| 0x00A00876               | uint16 | RO   | SASE2 filter – stop bucket number                                                          | 318      |
| 0x00A00880               | uint8  | RW   | Enable ping packet for SASE1 upstream chain                                                |          |
| 0x00A00881               | uint8  | RW   | Enable ping packet for SASE2 upstream chain                                                |          |
| 0x00A00882               | uint8  | RW   | Enable ping packet for SASE1 downstream chain                                              |          |
| 0x00A00883               | uint8  | RW   | Enable ping packet for SASE2 downstream chain                                              |          |
| 0x00A00884               | uint8  | RO   | Received ping packet for SASE1 upstream chain                                              |          |
| 0x00A00885               | uint8  | RO   | Received ping packet for SASE2 upstream chain                                              | 1        |
| 0x00A00886               | uint8  | RO   | Received ping packet for SASE1 downstream chain                                            | <b>†</b> |
| 0x00A00887               | uint8  | RO   | Received ping packet for SASE2 downstream chain                                            | 1        |
| 0x00A00888               | uint32 | RO   | Ping packet delay for SASE1 upstream chain                                                 | †        |
| 0x00A0088C               | uint32 | RO   | Ping packet delay for SASE1 upstream chain                                                 | +        |
| 0x00A0088C               | uint32 | RO   | Ping packet delay for SASE2 dpstream chain                                                 | +        |
| 0x00A00890<br>0x00A00894 | uint32 | RO   | Ping packet delay for SASE1 downstream chain  Ping packet delay for SASE2 downstream chain | +        |
| 0x00A00894<br>0x00A01004 |        | RW   |                                                                                            | 401      |
| 0X00A01004               | uint8  | RVV  | Trigger source:                                                                            | 401      |
|                          |        |      | 0 – Signal                                                                                 |          |
|                          |        |      | 1 – Machine trigger                                                                        |          |
|                          |        |      | 2 – Auto trigger (2 s)                                                                     |          |
|                          |        |      | 3 – Auto trigger (1 s)                                                                     |          |
|                          |        |      | 4 – Auto trigger (0.5 s)                                                                   |          |
|                          |        |      | 5 – Auto trigger (0.2 s)                                                                   |          |
| 0.0040400=               |        | D) 1 | 6 – Auto trigger (0.1 s)                                                                   | 400      |
| 0x00A01005               | uint8  | RW   | Trigger mode:                                                                              | 402      |
|                          |        |      | 0 – Continuous<br>1 – Single                                                               |          |
|                          |        |      | 1. 1. — SIDOIA                                                                             |          |

| 0x00A01008               | uint32         | RW       | Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.                         | 403        |
|--------------------------|----------------|----------|---------------------------------------------------------------------------------------------------------------|------------|
| 0x00A0100C               | uint16         | RW       | Number of buckets. Now has to be set manually. Later the value comes from timing system.                      | 404        |
| 0x00A0100E               | uint16         | RW       | Bucket spacing in ADC clock cycles. Now has to be set manually. Later the value comes from the timing system. | 405        |
|                          |                |          | BPM2 FPGA                                                                                                     |            |
| 0x01200800               | uint32         | RW       | Reset loss of sync counters. It is level sensitive:                                                           | 319        |
|                          |                |          | - write 0x00000000 to disable reset                                                                           |            |
|                          |                |          | <ul> <li>write 0x0FF00000 to keep the counters in reset state</li> </ul>                                      |            |
| 0x01200808               | uint8          | RO       | Status of enabled router outputs:                                                                             | 329        |
|                          |                |          | Bit0-3 – not used always zero                                                                                 |            |
|                          |                |          | Bit4 – enabled BPM1 GTX output                                                                                |            |
|                          |                |          | Bit5 – enabled MBU COM BPM1-0 output                                                                          |            |
|                          |                |          | Bit6 – enabled BPM0 GTX output                                                                                |            |
| 0.0400000                | :40            | DO       | Bit7 – enabled MBU COM BPM1-1 output  Status of the QSFP02 GTX:                                               | 220        |
| 0x0120080E               | uint8          | RO       | Bit 7 – loss of synchronization for QSFP0 GTX – SASE1 upstream                                                | 320        |
|                          |                |          | Bit 5 – loss of synchronization for QSFP2 GTX – SASE1 upstream                                                |            |
| 0x0120080F               | uint8          | RO       | Status of the QSFP13 GTX:                                                                                     | 320        |
| 0.01200001               | unito          | INO      | Bit 7 – loss of synchronization for QSFP1 GTX – SASE2 upstream                                                | 320        |
|                          |                |          | Bit 5 – loss of synchronization for QSFP3 GTX – SASE2 downstream                                              |            |
| 0x0120081C               | uint8          | RW       | BPM1 ID for SASE3, Y plane                                                                                    | 321        |
| 0x0120081D               | uint8          | RW       | BPM2 ID for SASE3, Y plane                                                                                    | 321        |
| 0x0120081E               | uint8          | RW       | BPM1 ID for SASE3, X plane                                                                                    | 321        |
| 0x0120081F               | uint8          | RW       | BPM2 ID for SASE3, X plane                                                                                    | 321        |
| 0x01200820               | uint8          | RW       | BPM1 ID for Collimator BPM, Y plane                                                                           | 321        |
| 0x01200824               | uint16         | RO       | Loss counter for QSFP1 – Collimator BPM                                                                       | 322        |
| 0x01200826               | uint16         | RO       | Loss counter for QSFP0 – SASE3 upstream                                                                       | 322        |
| 0x01200828               | uint16         | RO       | Reserved                                                                                                      |            |
| 0x0120082A               | uint16         | RO       | Loss counter for QSFP2 – SASE3 downstream                                                                     | 322        |
| 0x01200853               | uint8          | RO       | External trigger missing                                                                                      | 406        |
| 0x01200854               | uint16         | RO       | Packet counter for SASE3 upstream                                                                             | 323        |
| 0x01200856               | uint16         | RO       | Packet counter for SASE3 downstream                                                                           | 323        |
| 0x01200858               | uint16         | RO       | Packet counter Collimator BPM                                                                                 | 323        |
| 0x0120085A               | uint16         | RO       | Reserved                                                                                                      |            |
| 0x0120085C               | uint16         | RO       | Discarded packets for SASE3                                                                                   | 324        |
| 0x01200860               | uint16         | RO       | Discarded packets for Collimator BPM                                                                          | 324        |
| 0x01200864<br>0x01200866 | uint8          | RO<br>RO | Invalid BPM ID for SASE3. When bigger than 0 then an invalid BPM send data                                    | 325<br>325 |
| UXU12UU000               | uint8          | KU       | Invalid BPM ID for Collimator BPM. When bigger than 0 then an invalid BPM send data                           | 325        |
| 0x01200868               | uint16         | RO       | Passed packets for SASE3 plane X                                                                              | 326        |
| 0x0120086A               | uint16         | RO       | Passed packets for SASE3 plane Y                                                                              | 326        |
| 0x0120086C               | uint16         | RO       | Passed packets for Collimator BPM                                                                             | 326        |
| 0x0120086E               | uint16         | RO       | Reserved                                                                                                      |            |
| 0x01200870               | uint16         | RO       | SASE3 filter – star bucket number                                                                             | 327        |
| 0x01200872               | uint16         | RO       | SASE3 filter – stop bucket number                                                                             | 327        |
| 0x01200880               | uint8          | RW       | Enable ping packet for SASE1 upstream chain                                                                   | 1          |
| 0x01200881               | uint8          | RW<br>RW | Enable ping packet for SASE2 upstream chain                                                                   |            |
| 0x01200882<br>0x01200883 | uint8<br>uint8 | RW       | Enable ping packet for SASE1 downstream chain Enable ping packet for SASE2 downstream chain                   |            |
| 0x01200883               | uint8          | RO       | Received ping packet for SASE2 downstream chain                                                               | -          |
| 0x01200885               | uint8          | RO       | Received ping packet for SASE1 upstream chain  Received ping packet for SASE2 upstream chain                  |            |
| 0x01200886               | uint8          | RO       | Received ping packet for SASE2 upstream chain  Received ping packet for SASE1 downstream chain                |            |
| 0x01200887               | uint8          | RO       | Received ping packet for SASE2 downstream chain                                                               |            |
| 0x01200888               | uint32         | RO       | Ping packet delay for SASE1 upstream chain                                                                    |            |
| 0x0120088C               | uint32         | RO       | Ping packet delay for SASE2 upstream chain                                                                    |            |
| 0x01200890               | uint32         | RO       | Ping packet delay for SASE1 downstream chain                                                                  |            |
| 0x01200894               | uint32         | RO       | Ping packet delay for SASE2 downstream chain                                                                  |            |
| 0x01201004               | uint8          | RW       | Trigger source:                                                                                               | 407        |
|                          |                |          | 0 – Signal                                                                                                    | 1          |
|                          |                |          | 1 – Machine trigger                                                                                           |            |
|                          |                |          | 2 – Auto trigger (2 s)                                                                                        |            |
|                          |                |          | 3 – Auto trigger (1 s)                                                                                        |            |
|                          |                |          | 4 – Auto trigger (0.5 s)                                                                                      |            |

|            |        |    | 5 – Auto trigger (0.2 s)<br>6 – Auto trigger (0.1 s)                                                          |     |
|------------|--------|----|---------------------------------------------------------------------------------------------------------------|-----|
| 0x01201005 | uint8  | RW | Trigger mode: 0 – Continuous 1 – Single                                                                       | 408 |
| 0x01201008 | uint32 | RW | Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.                         | 409 |
| 0x0120100C | uint16 | RW | Number of buckets. Now has to be set manually. Later the value comes from timing system.                      | 410 |
| 0x0120100E | uint16 | RW | Bucket spacing in ADC clock cycles. Now has to be set manually. Later the value comes from the timing system. | 411 |

# **5 IBFB Monitoring**

# **5.1 IBFB Monitoring Firmware**



# 5.1.1 IBFB Monitor Register Map

| Address    | Туре    | R/W     | Description                                                    | MEDM |
|------------|---------|---------|----------------------------------------------------------------|------|
|            |         |         | SYS FPGA                                                       |      |
| 0x00000000 | SYS FP  | GA Serv | ice Component                                                  |      |
| 0x000000FF |         |         |                                                                |      |
| 0x00000100 | XFEL Ti | ming Sy | stem Receiver (Registers) – see documentation [4] for details. |      |
| 0x000001FF |         |         |                                                                |      |
| 0x00003000 | CFG FP  | GA Acc  | ess Memory – see CFG FPGA documentation for details [5].       |      |
| 0x00003FFF |         |         |                                                                |      |
| 0x00008000 | XFEL Ti | ming Sy | stem Receiver (Memory) – see documentation [4] for details.    |      |
| 0x0000FFFF |         |         |                                                                |      |
|            |         |         | BP FPGA                                                        |      |

| 0x00100408                             | uint8                      | RO             | RTMG, SFP BPM1-0 status:                                                                                                                                                                                                                                                                                                                                                                                                                                         | 304,              |
|----------------------------------------|----------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 0,000100400                            | unito                      | INO            | Bit 0 – when high no light received by SFP                                                                                                                                                                                                                                                                                                                                                                                                                       | 108,              |
|                                        |                            |                | Bit 1 – when high the SFP is not plugged in the cage                                                                                                                                                                                                                                                                                                                                                                                                             | 100,              |
|                                        |                            |                | Bit 2 – when high the transmitter is disabled                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                        |                            |                | Bit 3 – when high the transmitter has fault                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 0x00100409                             | uint8                      | RO             | RTMG, SFP BPM1-1 status:                                                                                                                                                                                                                                                                                                                                                                                                                                         | 304,              |
|                                        |                            |                | Bit 0 – when high no light received by SFP                                                                                                                                                                                                                                                                                                                                                                                                                       | 108,              |
|                                        |                            |                | Bit 1 – when high the SFP is plugged in the cage                                                                                                                                                                                                                                                                                                                                                                                                                 | 109               |
|                                        |                            |                | Bit 2 – when high the transmitter is disabled                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                        |                            |                | Bit 3 – when high the transmitter has fault                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 0x0010040A                             | uint8                      | RO             | RTMG, SFP BPM2-0 status:                                                                                                                                                                                                                                                                                                                                                                                                                                         | 304,              |
|                                        |                            |                | Bit 0 – when high no light received by SFP                                                                                                                                                                                                                                                                                                                                                                                                                       | 108               |
|                                        |                            |                | Bit 1 – when high the SFP is plugged in the cage                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|                                        |                            |                | Bit 2 – when high the transmitter is disabled                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| 00040040D                              |                            | D0             | Bit 3 – when high the transmitter has fault                                                                                                                                                                                                                                                                                                                                                                                                                      | 400               |
| 0x0010040B                             | uint8                      | RO             | RTMG, SFP BPM2-1 status:  Bit 0 – when high no light received by SFP                                                                                                                                                                                                                                                                                                                                                                                             | 108,<br>109       |
|                                        |                            |                | Bit 1 – when high the SFP is plugged in the cage                                                                                                                                                                                                                                                                                                                                                                                                                 | 109               |
|                                        |                            |                | Bit 2 – when high the transmitter is disabled                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                        |                            |                | Bit 3 – when high the transmitter has fault                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 0x0010040C                             | uint8                      | RO             | RTMG, SFP SYS-0 status:                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108,              |
| 0,00100400                             | dirito                     | 110            | Bit 0 – when high no light received by SFP                                                                                                                                                                                                                                                                                                                                                                                                                       | 100,              |
|                                        |                            |                | Bit 1 – when high the SFP is plugged in the cage                                                                                                                                                                                                                                                                                                                                                                                                                 | 100               |
|                                        |                            |                | Bit 2 – when high the transmitter is disabled                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                        |                            |                | Bit 3 – when high the transmitter has fault                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 0x0010040D                             | uint8                      | RO             | RTMG, SFP SYS-1 status:                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108,              |
|                                        |                            |                | Bit 0 – when high no light received by SFP                                                                                                                                                                                                                                                                                                                                                                                                                       | 109               |
|                                        |                            |                | Bit 1 – when high the SFP is plugged in the cage                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|                                        |                            |                | Bit 2 – when high the transmitter is disabled                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                        |                            |                | Bit 3 – when high the transmitter has fault                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 0x0010040E                             | uint8                      | RO             | RTMG, SFP SYS-2 status:                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108,              |
|                                        |                            |                | Bit 0 – when high no light received by SFP                                                                                                                                                                                                                                                                                                                                                                                                                       | 109               |
|                                        |                            |                | Bit 1 – when high the SFP is plugged in the cage                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|                                        |                            |                | Bit 2 – when high the transmitter is disabled                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                        | _                          |                | Bit 3 – when high the transmitter has fault                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 0x0010040F                             | uint8                      | RO             | RTMG, SFP SYS-3 status:                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108,              |
|                                        |                            |                | Bit 0 – when high no light received by SFP                                                                                                                                                                                                                                                                                                                                                                                                                       | 109               |
|                                        |                            |                | Bit 1 – when high the SFP is plugged in the cage                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|                                        |                            |                | Bit 2 – when high the transmitter is disabled                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                        |                            |                | Bit 3 – when high the transmitter has fault  BPM1 FPGA                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| 0x00A00154                             | uint8                      | RO             | External trigger missing (red indicator):                                                                                                                                                                                                                                                                                                                                                                                                                        | 428               |
| 0X00A00154                             | uiiito                     | I KO           | =0 – trigger detected                                                                                                                                                                                                                                                                                                                                                                                                                                            | 420               |
|                                        |                            |                | -0 = trigger detected <>0 = missing trigger                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 0x00A0050E                             | uint16                     | RO             | Number of samples stored in QDR2 memory                                                                                                                                                                                                                                                                                                                                                                                                                          | 608               |
|                                        | uint8                      | RW             | Trigger source:                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 423               |
| 0x00A01004                             | unito                      | 1              | 0 – Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 720               |
|                                        |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|                                        |                            |                | 1 1 – Machine trigger                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
|                                        |                            |                | 1 – Machine trigger<br>2 – Auto trigger (2 s)                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                        |                            |                | 2 – Auto trigger (2 s)                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|                                        |                            |                | 2 – Auto trigger (2 s)<br>3 – Auto trigger (1 s)                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|                                        |                            |                | 2 – Auto trigger (2 s)                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|                                        |                            |                | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)                                                                                                                                                                                                                                                                                                                                         |                   |
| 0x00A01005                             | uint8                      | RW             | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s) Trigger mode:                                                                                                                                                                                                                                                                                                                           | 424               |
| 0x00A01005                             | uint8                      | RW             | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)  Trigger mode: 0 – Continuous                                                                                                                                                                                                                                                                                                           | 424               |
|                                        | uint8                      |                | 2 - Auto trigger (2 s) 3 - Auto trigger (1 s) 4 - Auto trigger (0.5 s) 5 - Auto trigger (0.2 s) 6 - Auto trigger (0.1 s)  Trigger mode: 0 - Continuous 1 - Single                                                                                                                                                                                                                                                                                                | 424               |
|                                        | uint8                      | RW             | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)  Trigger mode: 0 – Continuous 1 – Single  Delay of the first bunch with respect to the pulse trigger. Measured in clock                                                                                                                                                                                                                 | 424               |
| 0x00A01008                             | uint32                     | RW             | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)  Trigger mode: 0 – Continuous 1 – Single  Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.                                                                                                                                                                                                         | 425               |
| 0x00A01005<br>0x00A01008<br>0x00A0100C |                            |                | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)  Trigger mode: 0 – Continuous 1 – Single  Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.  Number of bunches. Now has to be set manually. Later the value comes from                                                                                                                              |                   |
| 0x00A01008<br>0x00A0100C               | uint32<br>uint16           | RW             | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)  Trigger mode: 0 – Continuous 1 – Single  Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.  Number of bunches. Now has to be set manually. Later the value comes from timing system.                                                                                                               | 425<br>426        |
| 0x00A01008                             | uint32                     | RW             | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)  Trigger mode: 0 – Continuous 1 – Single  Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.  Number of bunches. Now has to be set manually. Later the value comes from timing system.  Bunch spacing in ADC clock cycles. Now has to be set manually. Later the                                     | 425               |
| 0x00A01008<br>0x00A0100C<br>0x00A0100E | uint32<br>uint16<br>uint16 | RW<br>RW<br>RW | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)  Trigger mode: 0 – Continuous 1 – Single  Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.  Number of bunches. Now has to be set manually. Later the value comes from timing system.  Bunch spacing in ADC clock cycles. Now has to be set manually. Later the value comes from the timing system. | 425<br>426<br>427 |
| 0x00A01008<br>0x00A0100C               | uint32<br>uint16           | RW             | 2 – Auto trigger (2 s) 3 – Auto trigger (1 s) 4 – Auto trigger (0.5 s) 5 – Auto trigger (0.2 s) 6 – Auto trigger (0.1 s)  Trigger mode: 0 – Continuous 1 – Single  Delay of the first bunch with respect to the pulse trigger. Measured in clock cycles.  Number of bunches. Now has to be set manually. Later the value comes from timing system.  Bunch spacing in ADC clock cycles. Now has to be set manually. Later the                                     | 425<br>426        |

|             | (2048)  |      | range of +/- 32767                                                                        |          |
|-------------|---------|------|-------------------------------------------------------------------------------------------|----------|
| 0x00B40000  | int16   | RO   | Amplifier output monitor for KICK-Y2-N. It is a waveform of 2048 samples in               | 602      |
| 0.000       | (2048)  | 1.0  | range of +/- 32767                                                                        | 002      |
| 0x00B60000  | int16   | RO   | Amplifier output monitor for KICK-Y2-P. It is a waveform of 2048 samples in               | 603      |
|             | (2048)  |      | range of +/- 32767                                                                        |          |
| 0x00B80000  | int16   | RO   | Amplifier output monitor for KICK-Y1-N. It is a waveform of 2048 samples in               | 604      |
|             | (2048)  |      | range of +/- 32767                                                                        |          |
| 0x00BA0000  | int16   | RO   | Amplifier output monitor for KICK-Y1-P. It is a waveform of 2048 samples in               | 605      |
|             | (2048)  |      | range of +/- 32767                                                                        |          |
| 0x00BC0000  | int16   | RO   | Amplifier output monitor for KICK-Y2-N. It is a waveform of 2048 samples in               | 606      |
|             | (2048)  |      | range of +/- 32767                                                                        |          |
| 0x00BE0000  | int16   | RO   | Amplifier output monitor for KICK-Y2-P. It is a waveform of 2048 samples in               | 607      |
|             | (2048)  |      | range of +/- 32767                                                                        |          |
|             |         |      | BPM2 FPGA                                                                                 |          |
| 0x01200154  | uint8   | RO   | External trigger missing (red indicator):                                                 | 434      |
|             |         |      | =0 – trigger detected                                                                     |          |
|             |         |      | <>0 – missing trigger                                                                     |          |
| 0x0120050E  | uint16  | RO   | Number of samples stored in QDR2 memory                                                   | 708      |
| 0x01201004  | uint8   | RW   | Trigger source:                                                                           | 429      |
|             |         |      | 0 – Signal                                                                                |          |
|             |         |      | 1 – Machine trigger                                                                       |          |
|             |         |      | 2 – Auto trigger (2 s)                                                                    |          |
|             |         |      | 3 – Auto trigger (1 s)                                                                    |          |
|             |         |      | 4 – Auto trigger (0.5 s)                                                                  |          |
|             |         |      | 5 – Auto trigger (0.2 s)                                                                  |          |
| 0.04004005  | 0       | DVA  | 6 – Auto trigger (0.1 s)                                                                  | 400      |
| 0x01201005  | uint8   | RW   | Trigger mode:                                                                             | 430      |
|             |         |      | 0 – Continuous                                                                            |          |
| 0x01201008  | uint32  | RW   | 1 – Single  Delay of the first bunch with respect to the pulse trigger. Measured in clock | 431      |
| 0001201000  | uiiiloz | KVV  | cycles.                                                                                   | 431      |
| 0x0120100C  | uint16  | RW   | Number of bunches. Now has to be set manually. Later the value comes from                 | 432      |
| 0.01201000  | unitio  | IXVV | timing system.                                                                            | 432      |
| 0x0120100E  | uint16  | RW   | Bunch spacing in ADC clock cycles. Now has to be set manually. Later the                  | 433      |
| 0X0120100L  | unitio  | 1200 | value comes from the timing system.                                                       | 700      |
| 0x01300000  | int16   | RO   | Kicker output monitor for KICK-Y1-N. It is a waveform of 2048 samples in                  | 700      |
| 0.00100000  | (2048)  | 1.0  | range of +/- 32767                                                                        | 700      |
| 0x01320000  | int16   | RO   | Kicker output monitor for KICK-Y1-P. It is a waveform of 2048 samples in                  | 701      |
| 0.001020000 | (2048)  | 1.0  | range of +/- 32767                                                                        | ' ' '    |
| 0x01340000  | int16   | RO   | Kicker output monitor for KICK-Y2-N. It is a waveform of 2048 samples in                  | 702      |
|             | (2048)  |      | range of +/- 32767                                                                        |          |
| 0x01360000  | int16   | RO   | Kicker output monitor for KICK-Y2-P. It is a waveform of 2048 samples in                  | 703      |
|             | (2048)  |      | range of +/- 32767                                                                        |          |
| 0x01380000  | int16   | RO   | Kicker output monitor for KICK-Y1-N. It is a waveform of 2048 samples in                  | 704      |
|             | (2048)  |      | range of +/- 32767                                                                        |          |
| 0x013A0000  | int16   | RO   | Kicker output monitor for KICK-Y1-P. It is a waveform of 2048 samples in                  | 705      |
|             | (2048)  |      | range of +/- 32767                                                                        |          |
| 0x013C0000  | int16   | RO   | Kicker output monitor for KICK-Y2-N. It is a waveform of 2048 samples in                  | 706      |
|             | (2048)  |      | range of +/- 32767                                                                        | <u> </u> |
| 0x013E0000  | int16   | RO   | Kicker output monitor for KICK-Y2-P. It is a waveform of 2048 samples in                  | 707      |
|             | (2048)  |      | range of +/- 32767                                                                        | 1        |

# 6 Cavity BPM Extension for IBFB

The IBFB uses as sensors the Cavity BPMs located in various locations. The position measured by the Cavity BPMs is sent over fiber link connected to MBU COM board. The transmission protocol described in section 4.2 is involved to deliver the position data to the IBFB electronics.

The block diagram of the firmware extension is presented in Fig. 6.1. Each MBU is connected by two fiber cables. A series of MBUs connected in the same way create two chains. The ends of both chains are connected to the IBFB controller.

The firmware extension is implemented in both BPM1 and BPM2 FPGA. The firmware is symmetric and performs the following functions:

- Transmission of the position from local BPM
- Transmission of the position from the BPM in another BPM FPGA in the same MBU
- Forwarding of the packets sent by other MBUs

In addition the firmware has the following features:

- Present status of the fiber connection such as loss of signal, loss of synchronization, loss of synchronization counter
- Disable/enable transmission from local BPM
- BPM ID register for unique identification of the packets in the IBFB network.



Figure 6.1: Block diagram of the firmware extension for Cavity BPM.

The Cavity BPM extension is used for all BPMs connected to the IBFB system and these are:

- four MBUs in rack 1899 with IBFB upstream and downstream BPMs
- 35 BPMs in undulator 1
- 35 BPMs in undulator 2
- 20 BPMs in undulator 3
- one collimator BPM

### 6.1 Register Map

The address offset is 0x00000400 with respect to base address of the BPM FPGA which means:

- 0x00800400 for Cavity BPM10x01000400 for Cavity BPM2

| Address | Туре   | R/W | Description                                                                                                                 | MEDM |
|---------|--------|-----|-----------------------------------------------------------------------------------------------------------------------------|------|
| 0x0000  | uint32 | RW  | Reserved. Always write 0.                                                                                                   |      |
| 0x0004  | uint8  | RW  | BPM identification field. This field is used to configure the unique BPM number which is sent by the IBFB feedback protocol |      |
| 0x0005  | uint8  | RW  | Reserved. Always write 0 to this register                                                                                   |      |
| 0x0006  | uint8  | RW  | Reserved. Always write 0 to this register                                                                                   |      |
| 0x0007  | uint8  | RW  | Reserved. Always write 0 to this register                                                                                   |      |
| 0x0008  | uint8  | RO  | Reserved.                                                                                                                   |      |
| 0x0009  | uint8  | RO  | Reserved.                                                                                                                   |      |
| 0x000A  | uint8  | RO  | Status of GTX0 and GTX1 between BPM1 FPGA and BPM2 FPGA:                                                                    |      |
|         |        |     | Bit 7 – GTX1 loss of synchronization                                                                                        |      |
|         |        |     | Bit 5 – GTX0 loss of synchronization                                                                                        |      |
|         |        |     | Bit 2 – GTX1 reset done                                                                                                     |      |
|         |        |     | Bit 1 – GTX 0 reset done                                                                                                    |      |
|         |        |     | Bit 0 – GTX PLL locked                                                                                                      |      |
| 0x000B  | uint8  | RO  | Status of GTX0 and GTX1 on the MBU COM board:                                                                               |      |
|         |        |     | Bit 7 – GTX1 loss of synchronization                                                                                        |      |
|         |        |     | Bit 5 – GTX0 loss of synchronization                                                                                        |      |
|         |        |     | Bit 2 – GTX1 reset done                                                                                                     |      |
|         |        |     | Bit 1 – GTX 0 reset done                                                                                                    |      |
|         |        |     | Bit 0 – GTX PLL locked                                                                                                      |      |
| 0x000C  | uint16 | RO  | MBU COM board GTX1 loss of sync counter                                                                                     |      |
| 0x000E  | uint16 | RO  | MBU COM board GTX0 loss of sync counter                                                                                     |      |
| 0x0010  | uint16 | RO  | BPM1 FPGA to BPM2 FPGA GTX0 loss of sync counter                                                                            |      |
| 0x0012  | uint16 | RO  | BPM1 FPGA to BPM2 FPGA GTX0 loss of sync counter                                                                            |      |
| 0x0014  | uint32 | RO  | Reserved                                                                                                                    |      |
| 0x0018  | uint32 | RO  | Reserved                                                                                                                    |      |
| 0x001C  | uint32 | RO  | Reserved                                                                                                                    |      |
| 0x0020  | uint32 | RO  | Reserved                                                                                                                    |      |
| 0x0024  | uint32 | RW  | Enable BPM to transmit position to IBFB network                                                                             |      |
|         |        |     | 0 – disabled                                                                                                                |      |
|         |        |     | 1 – enabled                                                                                                                 |      |

# 7 IBFB Player

#### 7.1 IBFB Player Firmware



Figure 7.1: IBFB player firmware block diagram

#### 7.2 Test Setup



Figure 7.2: Block diagram of the test setup if IBFB electronics and IBFB player

# 8 Appendix

#### 8.1 EPICS Screenshots

The following screenshot have blue labels referring to address map tables in the previous chapters.



Figure 8.1: Main EPICS panel for IBFB



Figure 8.2: PSI timing receiver for E-XFEL uTCA timing system



Figure 8.3: Amplifiers status and control



Figure 8.4: IBFB switch control and status



Figure 8.5: IBFB timing settings



Figure 8.6 DAC status and control



Figure 8.7: IBFB amplifier output monitor



Figure 8.8: IBFB kicker output monitor

# 8.2 Latency Analysis and Measurement



Fig 8.1 X Plane



Fig 8.2 Y Plane

| SASE1         |              |              |              |                        |                    |
|---------------|--------------|--------------|--------------|------------------------|--------------------|
| Device        | Location [m] | Distance [m] | Latency [ns] | Latency in vacuum [ns] | Total Latency [ns] |
| BPME.2241.SA1 | 2247         | 0            | 189          |                        |                    |
| BPME.2241.SA1 | 2241         | 6            |              | -                      |                    |
| IBFB Rack     | 1900         | 341          | 1652         | 1156                   | 2997               |

| SASE2         |              |              |              |                        |                    |
|---------------|--------------|--------------|--------------|------------------------|--------------------|
| Device        | Location [m] | Distance [m] | Latency [ns] | Latency in vacuum [ns] | Total Latency [ns] |
| BPME.2209.SA2 | 2209         | 0            | 189          |                        |                    |
| BPME.2203.SA2 | 2203         | 6            |              | <del>-</del>           |                    |
| IBFB Rack     | 1900         | 309          | 1471         | 1030                   | 2690               |

|               |              | SASE3        |                       |                        |                    |
|---------------|--------------|--------------|-----------------------|------------------------|--------------------|
| Device        | Location [m] | Distance [m] | Latency in fiber [ns] | Latency in vacuum [ns] | Total Latency [ns] |
| BPME.2812.SA3 | 2812         | 0            | 189                   | 2                      |                    |
| BPME.2806.SA3 | 2806         | 6            |                       |                        |                    |
| IBFB Rack     | 1900         | 906          | 4342                  | 3040                   | 7571               |

Fig 8.3 Undulator Latencies

### 8.3 Auxiliary calculations

We measure the beam position at  $B_2 = (x_{B2}, x'_{B2})$ . The set point at this position is  $B_{2SP} =$  $(x_{SP}, s_{SP}')$  and after transformation of the set point from position  $B_2$  to position  $K_2$  we obtain

$$K_{2SP} = M_{K2B2}^{-1} * B_{2SP}$$

 $K_{2SP}=M_{K2B2}^{-1}*B_{2SP}$  which of course gives  $K_{2SP}=(0,0)$ , and after transforming measured position  $B_{2M}$  to  $K_{2M}$  using equation

$$K_{2M} = M_{K2B2}^{-1} * B_{2M}$$

$$\begin{bmatrix} k_{2M} \\ k'_{2M} \end{bmatrix} = \begin{bmatrix} 1 & -L_{K2B2} \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} b_{2M} \\ b'_{2M} \end{bmatrix}$$

The beam position in front of the first kicker  $K_{1U}$  is transformed to the position after the second kicker  $K_{2D}$  with the transfer matrix  $M_{K1K2} = \begin{bmatrix} 1 & L_{K1K2} \\ 0 & 1 \end{bmatrix}$  where  $L_{K1K2}$  is the distance between the first kicker and the second. And the transformation equation looks like

$$K_{2D} = M_{K1K2} * K_{1U}$$

 $K_{2D} = M_{K1K2} * K_{1U}$ In case of the active kickers additional two matrices have to be added to this equation

$$K_{2D} = M_{K2} * M_{K1K2} * M_{K1} * K_{1U}$$
 (3.3.1.1)

Putting the matrix coefficients in equation 3.3.1.1 we ob-

$$\begin{bmatrix} k_{2D} \\ k_{2D}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \theta_{K2} \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & L_{K1K2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \theta_{K1} \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} k_{1U} \\ k_{1U}' \\ 1 \end{bmatrix}$$

which gives finally after matrix multiplication

$$\begin{bmatrix} k_{2D} \\ k'_{2D} \\ 1 \end{bmatrix} = \begin{bmatrix} k_{1U} + (k'_{1U} + \theta_{K1}) * L_{K1K2} \\ k'_{1U} + \theta_{K1} + \theta_{K2} \\ 1 \end{bmatrix}$$

When compare now the position of the beam after the kicker two with the desired set point at kicker two

$$K_{2SP} = K_{2D} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

then we can quickly calculate the required kick angle for both kickers

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -k'_{1U} - \frac{k_{1U}}{L_{K1K2}} \\ \frac{k_{1U}}{L_{K1K2}} \end{bmatrix}$$