SeReMpy library

External libraries

SeReMpy uses the following Python libraries:

- NumPy 1.19.2
- SciPy 1.6.2
- matplotlib 3.4.1

Data

The folder Data contains multiple synthetic datasets. All the data are synthetic and covered by the MIT license included with the code.

Output

The folder Output contains sample output files of the proposed scripts.

Description of modules

Functions included in the RockPhysics.py module

Function	Description
DensityModel	linear porosity-density relation to compute density
MatrixFluidModel	Voigt-Reuss-Hill averages to compute the elastic moduli and
	density of the solid and fluid phases
GassmannModel	Gassmann's equations to compute the elastic moduli of the
	fluid-saturated rock
VelocityDefinitions	definitions of P-wave and S-wave velocity
LinearizedRockPhysicsModel	linear rock physics model based on a multilinear regression to
	compute P-wave and S-wave velocity and density
WyllieModel	Wyllie equation to compute P-wave velocity
RaymerModel	Raymer's equation to compute P-wave velocity
SoftsandModel	Dvorkin's soft sand model to compute P-wave and S-wave
	velocity
StiffsandModel	Dvorkin's stiff sand model to compute P-wave and S-wave
	velocity
SphericalInclusionModel	inclusion model for spherical pores to compute P-wave and S-
	wave velocity
BerrymanInclusionModel	Berryman's inclusion model for prolate and oblate pores to
	compute P-wave and S-wave velocity

Functions included in the Geostats.py module

Function	Description
ExpCov	exponential spatial covariance model
GauCov	Gaussian spatial covariance model
SphCov	spherical spatial covariance model
SpatialCovariance1D	1D spatial covariance function according to one of the
	available models (exponential, Gaussian, and spherical);
RadialCorrLength	radial correlation length for 2D spatial covariance functions
SpatialCovariance2D	2D spatial covariance function according to one of the
	available models (exponential, Gaussian, and spherical);
SimpleKriging	simple kriging interpolation at a given location based on a set
	of measurements
OrdinaryKriging	ordinary kriging interpolation at a given location based on a
	set of measurements
IndicatorKriging	indicator kriging interpolation at a given location based on a
	set of measurements
GaussianSimulation	Gaussian simulation to generate a sample of a random variable
	at a given location based on a set of measurements
RandDisc	Simulation of a discrete random variable with given
	probability mass function
SeqGaussianSimulation	Sequential Gaussian Simulation method to generate spatially
	correlated realizations of a continuous random variable based
	on a set of measurements given a set of location coordinates
SeqIndicatorSimulation	Sequential Indicator Simulation method to generate spatially
	correlated realizations of a discrete random variable based on
	a set of measurements given a set of location coordinates
CorrelatedSimulation	sampling approach to simulate spatially correlated stochastic
	(1D) realizations of multiple random variables given a set of
	location coordinates
MarkovChainSimulation	sampling approach to simulate multiple 1-dimensional
	realizations of a discrete random variable based on a stationary
	first-order Markov chain

Functions included in the Inversion.py module

Function	Description
RickerWavelet	Ricker wavelet with given dominant frequency
AkiRichardsCoefficientsMatrix	Aki Richards coefficient matrix
DifferentialMatrix	differential matrix for discrete differentiation
WaveletMatrix	wavelet Toeplitz matrix for discrete convolution
SeismicModel	synthetic seismic data according to a linearized seismic
	model based on the convolution of a wavelet and the
	linearized approximation of Zoeppritz equations
SeismicInversion	posterior distribution of elastic properties according to
	the Bayesian linearized AVO inversion
RockPhysicsLinGaussInversion	posterior distribution of petrophysical properties
	conditioned on elastic properties assuming a Gaussian
	distribution and a linear rock physics model
RockPhysicsLinGaussMixInversion	posterior distribution of petrophysical properties
	conditioned on elastic properties assuming a Gaussian
	mixture distribution and a linear rock physics model
RockPhysicsGaussInversion	posterior distribution of petrophysical properties
	conditioned on elastic properties assuming a Gaussian
	distribution estimated from a training dataset
RockPhysicsGaussMixInversion	posterior distribution of petrophysical properties
	conditioned on elastic properties assuming a Gaussian
D 101 ' 1007	mixture distribution estimated from a training dataset
RockPhysicsKDEInversion	posterior distribution of petrophysical properties
	conditioned on elastic properties assuming a non-
	parametric distribution estimated from a training
EpanechnikovKernel	dataset using kernel density estimation
EnsembleSmootherMDA	Epanechnikov kernel used in kernel density estimation
FITSERIOTESHIOOCHELMDA	updated model realizations of the model variables
LogitBounded	conditioned on seismic data using the ES-MDA method logit transformation for bounded properties
InvLogitBounded	
TIIVLOGICBOUIIGEG	inverse logit transformation for bounded properties

Functions included in the Facies.py module

Function	Description
BayesGaussFaciesClass	Bayesian facies classification assuming a multivariate Gaussian
	distribution of the continuous properties
BayesKDEFaciesClass	Bayesian facies classification assuming a multivariate non-
	parametric distribution of the continuous properties
ConfusionMatrix	classification confusion matrix