MESURAGE RAPIDE DU DEPHASAGE : LA COURBE DE LISSAJOUS

Remarque liminaire:

La méthode de Lissajous ne permet pas d'accéder au signe du déphasage. Celui-ci est visible sur le chronogramme (courbe en fonction du temps, figure 1) des signaux d'entrée u_i et de sortie u_o . Rappelons que $-\pi < \phi < \pi$.

Méthode:

Comme φ est de signe inconnu, φ est arbitrairement placé dans l'expression du signal d'entrée.

$$\begin{cases} u_i = U_i \sin(\omega t + \varphi) \\ u_O = U_O \sin(\omega t) \end{cases}$$

Figure 1 : Chronogramme de l'entrée u_i et de la sortie u_o . a) u_o est en retard sur u_i , $\Rightarrow \varphi < 0$ b) u_o est en avance sur u_i , $\Rightarrow \varphi > 0$

Appliquons l'entrée ui sur la

voie X de l'oscilloscope et la sortie u_0 sur la voie Y (figure 2). L'amplitude U_i du signal d'entrée est indépendante de la fréquence. Donc la longueur de la projection A de l'ellipse sur l'axe des abscisses est constante : $A = 2U_i$. Par contre les intersections de l'ellipse avec l'axe des abscisses, P_1 et P_2 , sont séparées par P_2 , qui dépend de P_2 .

Figure 2 : Ellipse $u_0(u_i)$ produite par la composition des fonctions sinusoïdales u_i et u_0 .

 $\begin{array}{cccc} \text{Aux points P_1 et P_2, $u_0=0$} & \Rightarrow & t=0\pm k\pi/\omega & \Rightarrow & u_i=U_i\sin(\phi) & \text{soit donc : } \boxed{b=2U_i\sin(\phi)} \\ \\ \text{d'où} & \boxed{\phi=\arcsin\left(\frac{b}{A}\right)} \end{array}$

Pour simplifier les calculs, choisissons l'amplitude U_i et le calibre de la voie X de l'oscilloscope (axe des abscisses) de telle sorte que A égale exactement 10 carreaux. Il suffit alors de compter b en carreaux, sans tenir compte du calibre. **Remarques :** (1) Les réglages se font dans la bande passante du système. (2) Nous pouvons mesurer simultanément le

Remarques : (1) Les réglages se font dans la bande passante du système. (2) Nous pouvons mesurer simultanément le gain et le déphasage, en règlant $U_i = 0$ dB, et A égale 10 carreaux. (3) Le bruit qui s'ajoute au signal épaissit la trace, nous choisissons donc U_i , et l'échelle des X, assez grands pour que le bruit soit négligeable, sans saturer le système.

Avantages : (1) La lecture de b est rapide. (2) Les réglages de l'oscilloscope sont fixes tant que U_i n'est pas modifiée. **Inconvénients :** (1) La précision de la mesure est faible. L'épaisseur du trait à l'écran et le centrage de l'ellipse introduisent des incertitudes sur A et sur b. (2) La mesure est délicate lorsque φ est proche de 0 (l'ellipse est une droite) ou de $\pi/2$ (l'ellipse est un cercle). Il est toujours possible de dilater l'échelle verticale pour mieux localiser P_1 et P_2 .