Linear Algebra Done Right

Section 3A

Selected solutions by Benjamin Basseri

1. Suppose $b, c \in \mathbb{R}$. Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T(x,y,z) = (2x - 4y + 3z + b, 6x + cxyz)$$

Show that *T* is linear if and only if b = c = 0.

Solution. For the forward proof, assume T is linear. Suppose we have two vectors in \mathbb{R}^3 , $\mathbf{x} = (x, y, z)$ and $\mathbf{x}' = (x', y', z')$. Then by definition of T and vector addition:

$$T(\mathbf{x} + \mathbf{x}') = T(x + x', y + y', z + z')$$

= $(2(x + x') - 4(y + y') + 3(z + z') + b, 6(x + x') + c(x + x')(y + y')(z + z'))$

Since *T* is linear, it is additive and we can also write $T(\mathbf{x} + \mathbf{x}')$ as:

$$T(\mathbf{x} + \mathbf{x}') = T(\mathbf{x}) + T(\mathbf{x}')$$
 linearity
= $(2x - 4y + 3z + b, 6x + cxyz)$
+ $(2x' - 4y' + 3z' + b, 6x' + cx'y'z')$
= $(2(x + x') - 4(y + y') + 3(z + z') + 2b, 6(x + x') + c(xyz + x'y'z'))$

By matching coordinates, we have $2b = b \implies b = 0$. We must also have c(x + x')(y + y')(z + z') = c(xyz + x'y'z') for all $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^3$, which implies c = 0. Since T is linear it has homogeneity, so we can write:

$$\lambda T(\mathbf{x}) = \lambda (2x - 4y + 3z + b, 6x + cxyz) = T(\lambda \mathbf{x})$$

by distributivity of multiplication.

For the reverse direction, assume b = c = 0. Then from the expansion of $T(\mathbf{x} + \mathbf{x}')$ above we see that the surviving terms in both coordinates satisfy linearity.