Name:	

MIDTERM EXAM

Math 237 – Linear Algebra

Version 5

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_4 = -1$$

Solution:

$$\begin{bmatrix} 1 & 0 & 4 & 0 & 1 \\ 0 & 1 & -1 & 0 & 7 \\ 1 & -1 & 0 & 3 & -1 \end{bmatrix}$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 3 & -2 & 1 & 8 & | & -5 \\ 2 & 2 & 0 & 6 & | & -2 \\ -1 & 1 & 1 & -4 & | & 6 \end{bmatrix}$$

Solution:

$$RREF A = \begin{bmatrix} 1 & 0 & 0 & 3 & | & -2 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & -1 & | & 3 \end{bmatrix}$$

E3. Solve the system of equations

$$x + 3y - 4z = 5$$
$$3x + 9y + z = 2$$

Solution:

$$RREF\left(\begin{bmatrix} 1 & 3 & -4 & 5 \\ 3 & 9 & 1 & 2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

So the solution set is

$$\left\{ \begin{bmatrix} 1 - 3c \\ c \\ -1 \end{bmatrix} \middle| c \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set to the system of equations

$$x + 2y - 3z = 0$$
$$2x + y - 4z = 0$$
$$3y - 2z = 0$$
$$x - y - z = 0$$

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ 0 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -\frac{5}{3} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} \frac{5}{3}a\\ \frac{2}{3}a\\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

So a basis is $\left\{ \begin{bmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\}$ or $\left\{ \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} \right\}$.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector **addition** \oplus is **associative**: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $x, y, z \in \mathbb{R}$. Then

$$(x \oplus y) \oplus z = \sqrt{x^2 + y^2} \oplus z$$

$$= \sqrt{(\sqrt{x^2 + y^2})^2 + z^2}$$

$$= \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{x^2 + (\sqrt{y^2 + z^2})^2}$$

$$= x \oplus \sqrt{y^2 + z^2}$$

$$= x \oplus (y \oplus z)$$

However, this is not a vector space, as there is no zero vector.

V2. Determine if $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\1\\0 \end{bmatrix}$, and $\begin{bmatrix} 8\\3\\5\\-1 \end{bmatrix}$.

Solution:

$$RREF \left(\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The system has no solution, so $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ is not a linear combination of the three other vectors.

V3. Determine if the vectors $\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF\left(\begin{bmatrix} 2 & 3 & 0 & 1\\ 0 & 1 & 0 & 2\\ -2 & 3 & 1 & 0\\ 0 & 6 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2}\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -11\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a zero row, the vectors do not span \mathbb{R}^4 .

V4. Determine if
$$\left\{ \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^4 .

Solution: It is closed under addition and scalar multiplication, so it is a subspace. Alternatively, it is the image of the linear transformation from $\mathbb{R}^3 \to \mathbb{R}^4$ given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix}.$$

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} -3\\8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\-1\\3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Solution:

RREF
$$\left(\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

This has a non pivot column, therefore the set is linearly dependent.

S2. Determine if the set $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$ is a basis of \mathcal{P}_3

Solution:

$$RREF \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

S3. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix},\begin{bmatrix} 1\\2\\2\end{bmatrix},\begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$. Find a basis for W.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are

pivot columns, $\left\{ \begin{bmatrix} -3\\-8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$ is a basis for W.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$. Find the dimension of W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has two pivot columns, so W has dimension 2.