	Straight channels		Double-ended wrench	
h	BDM- $\ \operatorname{div}(u_h)\ _{L^2(\Omega)}$	Taylor-Hood- $\ \operatorname{div}(u_h)\ _{L^2(\Omega)}$	$BDM\text{-}\ \mathrm{div}(u_h)\ _{L^2(\Omega)}$	Taylor-Hood- $\ \mathrm{div}(u_h)\ _{L^2(\Omega)}$
0.04506939094329987	1.0032120253073012e-08	0.24864752678250457	2.589641591591371e-06	0.32425972880368176
0.022534695471649935	6.349594001285017e-09	0.10867851732394329	2.7503741332464177e-08	0.13498511642628475

 $L^2(\Omega)$ -norm of the divergence of the velocity