Laporan: Implementasi K-Means Clustering pada Gambar

Nama Anggota kelompok:

Riski probo sadewo (31210191) Johanes Mula Febrian Sihombing (312210224) Faiz Dzaki Ramadhani (312210223)

Pendahuluan

Clustering adalah teknik pengelompokan data yang bertujuan untuk mengelompokkan objek-objek yang memiliki karakteristik serupa ke dalam satu grup atau cluster. K-Means adalah salah satu algoritma clustering yang paling populer dan sering digunakan karena kesederhanaannya dan efisiensinya. Dalam laporan ini, kita akan menggunakan algoritma K-Means untuk segmentasi gambar, yang bertujuan untuk mengelompokkan piksel gambar ke dalam beberapa cluster berdasarkan kemiripan warnanya.

Tujuan

Mengimplementasikan algoritma K-Means untuk segmentasi gambar. Menampilkan hasil segmentasi gambar dengan jumlah cluster yang ditentukan.

Code

```
import numpy as np
import matplotlib.pyplot as plt
import cv2
# Membaca gambar (gunakan path gambar yang sesuai)
image = cv2.imread('monarch.ipg')
# Memeriksa apakah gambar berhasil dimuat
if image is None:
  print("Error: Gambar tidak ditemukan atau tidak dapat dimuat.")
else:
  # Mengubah warna gambar menjadi RGB (dari BGR)
  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
  # Menampilkan gambar asli
  plt.imshow(image)
  plt.title('Original Image')
  plt.axis('off') # Menyembunyikan axis
  plt.show()
  # Mengubah bentuk gambar menjadi array 2D dari piksel dan 3 nilai warna (RGB)
  pixel\_vals = image.reshape((-1, 3))
  # Mengonversi ke tipe float
  pixel_vals = np.float32(pixel_vals)
  # Langkah 1: Pilih jumlah cluster yang ingin dicari yaitu k.
```

Penjelasan Kode

...

Langkah 1: Membaca Gambar

plt.show()

plt.imshow(segmented_image)

plt.axis('off') # Menyembunyikan axis

plt.title('Segmented Image with K-Means Clustering')

```
python

image = cv2.imread('monarch.jpg')
```

Langkah pertama adalah membaca gambar dari file menggunakan fungsi ``cv2.imread.`` Gambar yang dibaca kemudian diubah warnanya dari BGR ke RGB menggunakan ``cv2.cvtColor`` untuk kompatibilitas dengan ``matplotlib``

Langkah 2: Mengubah Warna Gambar

```
python

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
```

Gambar yang dibaca oleh OpenCV menggunakan format BGR secara default. Fungsi cv2.cvtColor digunakan untuk mengubah gambar menjadi format RGB.

Langkah 3: Menampilkan Gambar Asli

```
python

plt.imshow(image)

plt.title('Original Image')

plt.axis('off')

plt.show()
```

Gambar asli ditampilkan menggunakan`` matplotlib`` untuk visualisasi awal.

Langkah 4: Mengubah Bentuk Gambar

```
python

pixel_vals = image.reshape((-1, 3))
```

Gambar diubah menjadi array 2D di mana setiap baris mewakili satu piksel dengan tiga nilai warna (RGB).

```
python

© Copy code

pixel_vals = np.float32(pixel_vals)
```

Langkah 5: Mengonversi ke Tipe Float

```
python

Copy code

pixel_vals = np.float32(pixel_vals)
```

Array piksel dikonversi ke tipe float untuk digunakan dalam algoritma K-Means.

Langkah 6: Menentukan Kriteria K-Means

```
python

Copy code

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.85)
```

Kriteria untuk algoritma K-Means ditentukan, yaitu berhenti setelah 100 iterasi atau mencapai akurasi 85%.

Langkah 7: Menjalankan K-Means Clustering

K-Means clustering dijalankan dengan jumlah cluster k yang ditentukan (dalam kasus ini, 4). Fungsi cv2.kmeans menangani proses penetapan titik data ke cluster, perhitungan pusat cluster, dan penyesuaian hingga konvergensi.

Langkah 8: Mengonversi Data ke Nilai 8-Bit

```
centers = np.uint8(centers)
segmented_data = centers[labels.flatten()]
```

Pusat cluster dikonversi menjadi nilai 8-bit dan data gambar yang di-segmentasi dibentuk ulang menjadi dimensi gambar asli

Langkah 9: Menampilkan Gambar yang Sudah Di-Segmentasi

```
segmented_image = segmented_data.reshape((image.shape))
plt.imshow(segmented_image)
plt.title('Segmented Image with K-Means Clustering')
plt.axis('off')
plt.show()
```

Gambar yang sudah di-segmentasi ditampilkan menggunakan matplotlib.

Нр	Itel p40
Dimension	1200x1600
Width	1200 pixels
Height	1600 pixels
Horizontal resolution	96 dpi
Vertical resolution	96 dpi
Bit depth	24

Нр	Samsung a54
Dimension	3060x4080
Width	3060 pixels
Height	4080 pixels
Horizontal resolution	96 dpi
Vertical resolution	96 dpi
Bit depth	24

Нр	Poco f4
Dimension	3123x4160
Width	3123 pixels
Height	4160 pixels
Horizontal resolution	96 dpi
Vertical resolution	96 dpi
Bit depth	24

Kesimpulan

Algoritma K-Means adalah metode yang efektif untuk segmentasi gambar berdasarkan warna. Dengan mengelompokkan piksel ke dalam beberapa cluster, kita dapat menyederhanakan gambar dan menyoroti area-area dengan warna serupa. Implementasi di atas menunjukkan langkahlangkah dasar untuk menjalankan K-Means clustering pada gambar menggunakan OpenCV dan matplotlib.