Mining Knowledge Graphs from Text

WSDM 2018

JAY PUJARA, SAMEER SINGH

Tutorial Overview

https://kgtutorial.github.io

Part 1: Knowledge Graphs

Part 4: Critical Analysis

Tutorial Outline

Knowledge Graph Primer

[Jay]

Knowledge Extraction Primer

[Jay]

Knowledge Graph Construction

Probabilistic Models

[Jay]

Coffee Break

4. Critical Overview and Conclusion [Sameer]

Embedding Techniques

Tutorial Outline

Knowledge Graph Primer

[Jay]

Knowledge Extraction from Text

NLP Fundamentals

[Sameer]

Information Extraction

[Bhavana]

Coffee Break

- **Knowledge Graph Construction**
 - **Probabilistic Models**

[Jay]

Embedding Techniques

[Sameer]

4. Critical Overview and Conclusion [Bhavana]

Knowledge Graph Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

EMBEDDING TECHNIQUES

Knowledge Graph Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

EMBEDDING TECHNIQUES

Reminder: Basic problems

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

Extracted knowledge is:

- ambiguous:
 - Ex: Beetles, beetles, Beatles
 - Ex: citizenOf, livedIn, bornIn

Extracted knowledge is:

ambiguous

incomplete

Ex: missing relationships

Ex: missing labels

Ex: missing entities

Extracted knowledge is:

ambiguous

incomplete

- inconsistent
 - Ex: Cynthia Lennon, Yoko Ono
 - Ex: exclusive labels (alive, dead)
 - Ex: domain-range constraints

Extracted knowledge is:

ambiguous

incomplete

inconsistent

Graph Construction approach

Graph construction cleans and completes extraction graph

Incorporate ontological constraints and relational patterns

Discover statistical relationships within knowledge graph

Knowledge Graph Construction

TOPICS:

PROBLEM SETTING

Probabilistic Models

EMBEDDING TECHNIQUES

Graph Construction Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

Graph Construction Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

Beyond Pure Reasoning

Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

Beyond Pure Reasoning

- Classical AI approach to knowledge: reasoning
 Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)
- Reasoning difficult when extracted knowledge has errors

Beyond Pure Reasoning

Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

- Reasoning difficult when extracted knowledge has errors
- Solution: probabilistic models

P(Lbl(Socrates, Mortal) | Lbl(Socrates, Man)=0.9)

Graph Construction Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

Graphical Models: Overview

- Define joint probability distribution on knowledge graphs
- Each candidate fact in the knowledge graph is a variable
- Statistical signals, ontological knowledge and rules parameterize the **dependencies** between variables
- Find most likely knowledge graph by optimization/sampling

Knowledge Graph Identification

Define a graphical model to perform all three of these tasks simultaneously!

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

Knowledge Graph Identification

Probabilistic Models

- Use dependencies between facts in KG
- Probability defined jointly over facts

Statistical signals from text extractors and classifiers

- Statistical signals from text extractors and classifiers
 - P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
 - LevenshteinSimilarity(Beatles, Beetles) = 0.9

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Statistical signals from text extractors and classifiers

- Ontological knowledge about domain
 - Functional(Spouse) & R(A,Spouse,B) -> !R(A,Spouse,C)
 - Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Rules and patterns mined from data

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

- Rules and patterns mined from data
 - R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
 - R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)

Statistical signals from text extractors and classifiers

- P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
- LevenshteinSimilarity(Beatles, Beetles) = 0.9

Ontological knowledge about domain

- Functional(Spouse) & R(A,Spouse,B) -> !R(A,Spouse,C)
- Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)

Rules and patterns mined from data

- R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
- R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)

Example: The Fab Four

BEATLES

Uncertain Extractions:

.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles, Album Artist, Abbey Road)

Uncertain Extractions:

.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles, Album Artist, Abbey Road)

Uncertain Extractions:

.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles, AlbumArtist, Abbey Road)

Ontology:

Dom(albumArtist, musician)
Mut(novel, musician)

Uncertain Extractions:

.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles, AlbumArtist, Abbey Road)

Ontology:

Dom(albumArtist, musician)
Mut(novel, musician)

Entity Resolution:

SameEnt(Fab Four, Beatles)

Uncertain Extractions:

.5: Lbl(Fab Four, novel)

.7: Lbl(Fab Four, musician)

.9: Lbl(Beatles, musician)

.8: Rel(Beatles, AlbumArtist, Abbey Road)

Ontology:

Dom(albumArtist, musician)
Mut(novel, musician)

Entity Resolution:

SameEnt(Fab Four, Beatles)

PUJARA+ISWC13; PUJARA+AIMAG15

Probabilistic graphical model for KG

Defining graphical models

- Many options for defining a graphical model
- We focus on two approaches, MLNs and PSL, that use rules
- MLNs treat facts as Boolean, use sampling for satisfaction
- PSL infers a "truth value" for each fact via optimization

Rules for KG Model

```
Subsumes(L1,L2) & Label(E,L1)
100:
                                          -> Label(E,L2)
      Exclusive(L1,L2)
100:
                        & Label(E,L1)
                                          -> !Label(E,L2)
100:
      Inverse(R1,R2)
                        & Relation(R1,E,O) -> Relation(R2,O,E)
      Subsumes(R1,R2)
                        & Relation(R1,E,O) -> Relation(R2,E,O)
100:
                        & Relation(R1,E,O) -> !Relation(R2,E,O)
100:
      Exclusive(R1,R2)
100:
      Domain(R,L) & Relation(R,E,O) -> Label(E,L)
      Range(R,L)
                        & Relation(R,E,O) -> Label(O,L)
100:
10:
      SameEntity(E1,E2) & Label(E1,L) -> Label(E2,L)
10:
      SameEntity(E1,E2) & Relation(R,E1,0) -> Relation(R,E2,0)
      Label_OBIE(E,L)
                                          -> Label(E,L)
1:
1:
      Label_OpenIE(E,L)
                                          -> Label(E,L)
1:
      Relation_Pattern(R,E,0)
                                          -> Relation(R,E,0)
                                             !Relation(R,E,O)
1:
                                             !Label(E,L)
1:
```

Rules to Distributions

Rules are grounded by substituting literals into formulas

 $\mathbf{w_r}: SameEnt(Fab Four, Beatles) \land$

 $Lbl(Beatles, musician) \Rightarrow Lbl(Fab Four, musician)$

• Each ground rule has a weighted satisfaction derived from the formula's truth value

$$P(G|E) = \frac{1}{Z} \exp \left[\sum_{r \in R} w_r \phi_r(G, E) \right]$$

 Together, the ground rules provide a joint probability distribution over knowledge graph facts, conditioned on the extractions

Probability Distribution over KGs

$$P(G | E) = \frac{1}{Z} \exp\left[-\sum_{r \in R} w_r \, \varphi_r(G)\right]$$

 ${
m CANDLBL}_T({ t FabFour}, { t novel})$

 \Rightarrow LBL(FabFour, novel)

Muttarrow T(novel, musician)

 \land LBL(Beatles, novel)

 $\Rightarrow \neg LBL(Beatles, musician)$

SAMEENT(Beatles, FabFour)

 \land LBL(Beatles, musician)

 \Rightarrow LBL(FabFour, musician)

 \Rightarrow LBL(Beatles, musician)

 $\wedge LBL(FabFour, musican)$

 $\Rightarrow \neg LBL(FabFour, novel)$

 $[\phi_5] \; \mathrm{Mut}(\mathtt{musician},\mathtt{novel})$

How do we get a knowledge graph?

Have: P(KG) forall KGs

Need: best KG

MAP inference: optimizing over distribution to find the best knowledge graph

Inference and KG optimization

- Finding the best KG satisfying weighed rules: NP Hard
- MLNs [discrete]: Monte Carlo sampling methods
 - Solution quality dependent on burn-in time, iterations, etc.
- PSL [continuous]: optimize convex linear surrogate
 - Fast optimization, ¾-optimal MAX SAT lower bound

Graphical Models Experiments

Data: ~1.5M extractions, ~70K ontological relations, ~500 relation/label types

Task: Collectively construct a KG and evaluate on 25K target facts

Comparisons:

Extract Average confidences of extractors for each fact in the NELL candidates

Rules Default, rule-based heuristic strategy used by the NELL project **MLN** Jiang+, ICDM12 – estimates marginal probabilities with MC-SAT

PSL Pujara+, ISWC13 – convex optimization of continuous truth values with ADMM

Running Time: Inference completes in 10 seconds, values for 25K facts

	AUC	F1
Extract	.873	.828
Rules	.765	.673
MLN (Jiang, 12)	.899	.836
PSL (Pujara, 13)	.904	.853

Graphical Models: Pros/Cons

BENEFITS

 Define probability distribution over KGs

Easily specified via rules

 Fuse knowledge from many different sources

DRAWBACKS

 Requires optimization over all KG facts - overkill

- Dependent on rules from ontology/expert
- Require probabilistic semantics - unavailable

Graph Construction Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

Random Walk Overview

- Given: a query of an entity and relation
- Starting at the entity, randomly walk the KG
- Random walk ends when reaching an appropriate goal
- Learned parameters bias choices in the random walk
- Output relative probabilities of goal states

Query Q: R(Lennon, PlaysInstrument, ?)

 $P(Q|\pi=<coworker,playsInstrument>)W_{\pi}$

Query Q: R(Lennon, PlaysInstrument, ?)

 $P(Q|\pi=<coworker,playsInstrument>)W_{\pi}$

Query Q: R(Lennon, PlaysInstrument, ?)

 $P(Q|\pi=<albumArtist,hasInstrument>)W_{\pi}$

Query Q: R(Lennon, PlaysInstrument, ?)

 $P(Q|\pi=<albumArtist,hasInstrument>)W_{\pi}$

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns parameters for paths through the KG

Propper: Programming with Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns parameters for paths through the KG

Propper: Programming with Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

$$score(q.s \to e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \to e; \pi_i) W_{\pi_i}$$

$$\operatorname{score}(q.s \to e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \to e; \pi_i) W_{\pi_i}$$

Filter paths based on HITS and accuracy

$$score(q.s \to e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \to e; \pi_i) W_{\pi_i}$$

Filter paths based on HITS and accuracy

Estimate probabilities efficiently with dynamic programming

$$score(q.s \to e; q) = \sum_{\pi_i \in \Pi_b} P(q.s \to e; \pi_i) W_{\pi_i}$$

Filter paths based on HITS and accuracy

Estimate probabilities efficiently with dynamic programming

Path weights are learned with logistic regression

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns parameters for paths through the KG

ProPPR: ProbLog + Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

Query Q: R(Lennon, PlaysInstrument, ?)

Unbound variables in proof tree!

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

R(,Coworker,) R(,PlaysInstrument,Y)

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

R(,Coworker,) R(,PlaysInstrument,Y)

BEATLES

BEATLES

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

R(,,AlbumArtist,,HasInstrument,K)

ProPPR in a nutshell

$$\min_{\mathbf{w}} - \left(\sum_{k \in +} \log \mathbf{p}_{\nu_0}[u_+^k] + \sum_{k \in -} \log(1 - \mathbf{p}_{\nu_0}[u_-^k]) + \mu ||\mathbf{w}||_2^2 \right)$$

- Input: queries positive answers, negative answers
- Goal: $\mathbf{p}_{\nu_0}[u_+^k] \geq \mathbf{p}_{\nu_0}[u_-^k]$ (page rank from RW)
- Learn: random walk weights
- Train via stochastic gradient descent

Results from PRA and ProPPR

- Task:
 - 1M extractions for 3 domains;
 - ~100s of training queries
 - ~1000s of test queries
 - AUC of extractions alone is 0.7

Random Walks: Pros/Cons

BENEFITS

 KG query estimation independent of KG size

 Model training produces interpretable, logical rules

 Robust to noisy extractions through probabilistic form

DRAWBACKS

 Full KG completion task inefficient

 Training data difficult to obtain at scale

 Input must follow probabilistic semantics

Two classes of Probabilistic Models

GRAPHICAL MODELS

- Possible facts in KG are variables
- Logical rules relate facts

- Probability

 satisfied
- Universally-quantified

RANDOM WALK METHODS

- Possible facts posed as queries
- Random walks of the KG constitute "proofs"
- Locally grounded