实验报告

实验名称

指导教师: xxx

ASwallow

xx 大学

Experiment Date:

2025年2月18日

实验报告签字

目录

1	实验目的	2
2	主要实验仪器	2
3	实验原理	2
4	实验步骤	3
5	实验数据	3
6	数据处理	4
7	结论及误差分析	4
8	新发现及讲义中的问题	4
9	引用源代码	5
10	参考文献	5

1 实验目的

- 1
- 2

2 主要实验仪器

仪器 1:1

仪器 2:2

3 实验原理

$$\rho(\theta) = \rho_{\perp} + (\rho_{//} - \rho_{\perp})\cos^2\theta \tag{1}$$

其中, ρ_{\perp} , $\rho_{//}$ 表示电流垂直于磁化强度和平行于磁化强度的电阻率, θ 表示电流和磁化强度的夹角。

参考内部电路图 [1] 得到其输出电压为

图 1: 磁阻传感器内部部分电路

$$U_{out} = \frac{R + \Delta R}{2R} \cdot U_b - \frac{R - \Delta R}{2R} \cdot U_b = \frac{\Delta R}{R} \cdot U_b$$
 (2)

如果确定一定的工作电压,则有

$$U_{out} = U_0 + KB \tag{3}$$

$$B = \frac{\mu_0 NI}{R} \frac{8}{5^{3/2}} \tag{4}$$

取 N 为 500, R 为亥姆霍兹线圈半径。

4 实验步骤

- 1
- 2
- 3

5 实验数据

表 1: 磁阻传感器灵敏度

でも、PAATA 「そんか 用力でも人人								
励磁电流 I/mA	 磁咸应强度 R/10-4T	U/mV						
		正向 U_1/mV	反向 U_2/mV	平均 U /mV				

表 2: 磁倾角 β 的测量

β							
U_{total}							

表 3: 地磁场测量结果

E	1	2	3	4	5	结果			
I.	U_1/mV						$ U_{/\!/} =$		
	U_2/mV						$B_{/\!/} =$		
17	U_1/mV						$ U_{total} =$		
U_{total}	U_2/mV						$B_{total} =$		

6 数据处理

[在此部分详细描述对实验数据的处理过程] 例如:使用公式(5)对数据进行修正:

$$y = ax + b (5)$$

其中, a 和 b 为拟合参数。

图 2: 实验数据拟合图

7 结论及误差分析

根据实验数据处理结果,可以得出以下结论:

结论 1

结论 2

结论 3

在实验过程中,误差主要来源于以下几个方面:

仪器精度误差

人为操作误差

环境因素误差

8 新发现及讲义中的问题

新发现1

新发现 2

讲义中的问题 1

讲义中的问题 2

9 引用源代码

在实验中,使用了以下源代码实现数据处理(代码1):

Listing 1: 数据处理代码

```
clear
clc
A=[1 4 9 16 25];
plot(A)
```

10 参考文献

参考文献

[1] **王国余**, **张欣**, **景亮**. 新型磁阻传感器在地磁场测量中的应用 [D]. 北京: 清华大学, 2002.