Tecnológico de Monterrey IN 4027: Data Science and Statistical Inference September, 27th, 2019

Midterm Exam

Name:		
Student Number:		

1. Please perform the computations described on points a) – c) for the dataset \boldsymbol{x} given below.

x = [2.15, 2.12, 3.78, 1.86, 5.01, 6.01, 4.98, 2.78, 3.61, 1.73, 7.47, 3.11, 7.51, 3.58, 3.2]

- a) Compute the \bar{x} and median estimators (5 points).
- b) Provide the standard error around both of them using bootstrapping with B=5 (10 points).
- c) How higher is the standard error for \bar{x} using bootstrapping vs. using the exact formula for $\hat{\sigma}_{\bar{x}}$? (10 points)
- 2. Say we are estimating parameter λ from a $Poi(\lambda)$ distribution, using both MLE and Bayesian estimation. Assume that the sample mean of your observation vector \boldsymbol{x} is $\overline{x_0}$. Please come up with a conjugate prior for λ such that the Maximum a Posteriori estimate of your Bayesian estimation $\widehat{\lambda}^{\widehat{MAP}}$ is a little higher than the MLE estimator $\widehat{\lambda}^{\widehat{MLE}}$. (20 points)
- 3. Given the two samples x_1 and x_2 from a $N(0,\sigma^2)$ shown below:

	sample_1	sample_2
0	5.291559	-4.340402
1	1.577549	-2.188433
2	-0.922735	2.411433
	-1.313747	-1.545780
4	2.271424	7.958170
		8.005331
•	3.360876	
6	4.541458	-4.984437
7	-1.690501	2.968349
3	4.180382	3.033462

a) Compute MLE estimators $\hat{\sigma}_1^{\ MLE}$ and $\hat{\sigma}_2^{\ MLE}$ for each sample. (10 points)

- b) Compute the standard error around your $\hat{\sigma}_1^{MLE}$ and $\hat{\sigma}_2^{MLE}$ estimators using the *Observed Fisher Information* bound. (15 points)
- c) What distributions do your $\hat{\sigma}_1^{MLE}$ and $\hat{\sigma}_2^{MLE}$ estimates approximately follow? (10 points)
- 4. A colleague of yours is having trouble distinguishing if the probability of a defect in his products is higher on one produced on Plant 1 vs. Plant 2. The defect rate on Plant 1 follows a Be(2,2) distribution. He suspects that Plant 2 might have a defect rate that is higher and better represented by a Be(3,2) distribution.
- a) Describe (like a step-by-step algorithm) the hypothesis testing procedure you would recommend your colleague to follow (15 points).
- b) Comment on the behavior of Type I Error vs. Type II error that your colleague will experience if he uses this hypothesis test. (10 points).