I.Dataset Url:

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data

II.Preprocessing:

There were no NA or the empty values in the data. So, it was not required to remove them.

1. Normalized all the values between 0 and 1

Pseudocode:

```
numFolds = 10
classifiers = {Decision Trees, Perceptron, Neural Net, Deep Learning, SVM, naïve Bayes,
Logistic Regression, k-Nearest Neighbors, Bagging, Random Forests, AdaBoost, Gradient
Boosting} // list of n classifiers with best parameters
split the data into 10 folds d[1...10]
for i in 1 to 10
// create training dataset by combining all folds except d[i]
train = \{d[1] + d[2] + ... + d[i-1] + d[i+1] + ... + d[10]\}
// create test dataset using d[i]
test = d[i]
for c in classifiers classifiers
// create a model of type c using train
model <- createModel(c, train)
// find accuracy of model of type c on test
for classifier c: accuracy[i] <- findAccuracy(model, test)
for classifier c: other parameter[i] <- findEvaluation(model, test)
next c
next i
print average accuracies
print precisions
```

Evaluation Metrics used:

- 1. Accuracy
- 2. Precision

III.Finding best classifier parameters:

Expe rime nt#	Classifier	CrossValidat ion fold	Parameter1	Parameter2	Parameter3	Parameter4	Average Accuracy of 10 folds
1	Decision Trees	10	maxDepth:30	Cp: 0.01	Minbucket: 10	Minsplit: 3	78.5
	Decision Trees	10	maxDepth:30	Cp: 0.01	Minbucket: 1	Minsplit: 3	84.5
	Decision Trees	10	maxDepth:30	Cp: 0.001	Minbucket: 1	Minsplit: 3	94.5
2	Perceptron	10	Threshold: 500				55.92
	Perceptron	10	Threshold:100				87.3
	Perceptron	10	Threshold:10				98.6
3	Neural Net	10	#of Hidden layers:3	Nodes: (3,3,3)	Threshold:10		65.02
	Neural Net	10	#of Hidden layers:4	Nodes:(4,4,4, 4)	Threshold:10		62.9
	Neural Net	10	#of Hidden layers:3	Nodes :(4,4,4)	Threshold:1		98.1
4	Deep Learning	10	#of Hidden layers:7	Nodes: 10 each	Threshold:10		65.0
	Deep Learning	10	#of Hidden layers:9	Nodes :10 each	Threshold:0.1		93.9
	Deep Learning	10	#of Hidden layers:12	Nodes :10 each	Threshold:0.1		98.24
5	SVM	10	Kernel: radial				88.17
	SVM	10	Kernel:				65.02

			polynomial			
	SVM	10	Kernel: sigmoid			66.34
6	naïve Bayes	10				96.3
7	Logistic Regression	10	maxit=10	trace= true		96.75
	Logistic Regression	10				
8	k-Nearest Neighbors	10	K = 2			55.5
	k-Nearest Neighbors	10	k=50			63.6
	k-Nearest Neighbors	10	k=300			65
9	Bagging	10	Nb bag: 0.1	coob=true		96.0
	Bagging	10	Nb bag: 100	coob=true		96.3
	Bagging	10	Nb bag: 100	coob=false		95.9
10	Random Forests	10	Importance: true	Proximity: true	Ntree: 1	94
	Random Forests	10	Importance: false	Proximity: false	Ntree: 100	96
	Random Forests	10	Importance: true	Proximity: true	Ntree: 500	97.3
11	AdaBoost	10	Iter: 20	Nu: 1		96.7
	AdaBoost	10	Iter: 2	Nu: 1		94
	AdaBoost	10	Iter: 20	Nu: 2		94.2
12	Gradient Boosting	10	Minobsinnode:	Trees: 1	Distribution: gaussian	74.3
	Gradient Boosting	10	Minobsinnode:	Trees: 1	Distribution: bernoulli	84.6

	Gradient	10	Minobsinnode:	Trees: 100	Distribution:	71.3	
	Boosting		1		bernoulli		

of instances in dataset: 699 # of attributes in dataset: 10

10 fold cross-validation performed

IV.Results with best parameters:

Classifier	Best Parameters	Accuracy	Precision
Decision Trees	maxDepth:30 Cp: 0.001 Minbucket: 1 Minsplit: 3	94.5	89.5
Perceptron	Threshold:10	98.6	97.8
Neural Net	#of Hidden layers:3 Nodes :(4,4,4) Threshold:1	98.1	98.2
Deep Learning	#of Hidden layers:12 Nodes :10 each Threshold:0.1	98.24	97.9
SVM	Kernel: radial	88.17	169.2
naïve Bayes		96.3	96.5
Logistic Regression	maxit=10 trace= true	96.75	95.6
k-Nearest Neighbors	k=300	65	169.6
Bagging	Nb bag: 100 coob=true	96.3	179.12
Random Forests	Importance: true Proximity: true Ntree: 500	97.3	96
AdaBoost	Iter: 20 Nu: 1	96.7	96.9
Gradient Boosting	Minobsinnode:1 Trees: 1 Distribution: bernoulli	84.6	73.8

Analysis:

- 1. The algorithm working majorly depends on the data we select.
- 2. Perceptron and Neural Net gave the best results on the data where SVM, Gradient boost were not effective on this data.
- 3. Accuracy gave the best measure of the correctness. Though we were able to identify the precision of the classifier, it didn't give a clear picture of the correctness.
- 4. On contrary to theory, the number of nodes in the neural net or in deep learning did not change the accuracy too much as the data is scaled between 0&1 and weights were also very low.