Convex Optimization: Homework 1

Martín Prado

August 15, 2024 Universidad de los Andes — Bogotá Colombia

Exercise 1.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $|f(x)| \leq ||x||^2$ for every x.

Exercise 2.

- (a) Let $u(x,y) = x^3 3xy^2$. Find all the entire functions f such that u = Re(f).
- (b) Let $v(x,y) = x^2 + y^2$. Find all the entire functions f such that v = Im(f).
- (c) Let $U \subseteq \mathbb{C}$ be a region and let $f,g:U\to\mathbb{C}$ be holomorphic functions such that $f(U)\subset\mathbb{R}$ and $g(U)\subset\mathbb{S}^1:=\{z\in\mathbb{C}:|z|=1\}$. Prove that f and g are constant.

Exercise 3.

- (a) $\exp(z+w) = \exp(z)\exp(w)$.
- (b) $\exp(z) \neq 0$ for all $z \in \mathbb{C}$.
- (c) $|\exp(z)| = 1$ if and only if $z \in i\mathbb{R}$.
- (d) $\cos^2(z) + \sin^2(z) = 1$ for all $z \in \mathbb{C}$.
- (e) $\cos(z+2\pi) = \cos(z)$ and $\sin(z+2\pi) = \sin(z)$ for all $z \in \mathbb{C}$.
- (f) $\cos(z) = 0$ or $\sin(z) = 0 \implies z \in \mathbb{R}$.

(g) For every $x \in \mathbb{R}$, $\lim_{t \to \pm \infty} |\cos(x+it)| = \infty$ and $\lim_{t \to \pm \infty} |\sin(x+it)| = \infty$. The limit is uniform in x.

Exercise 4.

Prove that

- (a) $\sum_{n=1}^{\infty} nz^n$ does not converge to any point for $z \in \mathbb{S}^1$.
- (b) $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ converges to every point for $z \in \mathbb{S}^1$
- (c) $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converges to every point for $z \in \mathbb{S}^1$, except for 1.

Exercise 5.

A subset $S \subset \mathbb{N}$ is in arithmetic progression if there exists $a, d \in \mathbb{N}$ such that

$$S = \{a + nd : n \in \mathbb{N}_0\}.$$

The number d is called the difference of the progression. Prove that \mathbb{N} cannot be partitioned in a finite number greater than 1 of arithmetic progressions with different differences.