Due: Wed Jan 15 in class.	Name:	
Astronomy 105	Homework #1	Winter 2014
Part I		
Take a look at the notes from Wednes http://www.astro.washington.edu/use		$ ho/{ m Slide}0.{ m html}$
1 (5 pts) Determine how long it would	d take an astronaut to fall from a hei	ight of 2 meters on the Moon.
2 (5 pts) Determine how long it would	d take an astronaut to fall from a hei	ight of 2 meters on the Earth.

 ${\bf 3}$ (5 pts) Determine how long it would take an astronaut to fall from a height of 2 meters on the asteroid Vesta (g = 0.22 m/s²).

Part II

The rocket equation can be rewritten to find how much payload we can lift if we are given a value for ΔV and w:

$$\frac{M}{M_0} = e^{-\Delta V/u} = \exp(-\Delta V/u)$$

 M/M_0 is the fraction of the total rocket mass that is payload. For example, if $M/M_0 = 0.05$ that means that 5% of the rocket's mass can be payload.

For each of the problems below, calculate what fraction of your rocket can be payload. Assume that u=3 km/s. Express your answers in percentages (i.e. 5%). Show your work! **Hint**: Try typing $\exp(-1.1/2.0)$ into Google.

4 (3 pts) Surface of the Earth to low Earth orbit: $\Delta V = 9.4 \text{ km/s}$

5 (3 pts) Surface of the Earth to surface of the Moon: $\Delta V = 15 \text{ km/s}$

6 (3 pts) Place a Direct-TV satellite in geostationary orbit: $\Delta V = 13.3$ km/s

7 (3 pts) Surface of the Earth to escape solar system: $\Delta V = 18.2 \text{ km/s}$

8 (3 pts) Surface of the Earth to surface of the Mars: $\Delta V = 18.9 \text{ km/s}$