CAPITOLO 9

Calcolo Integrale per Funzioni di due Variabili

Integrali Doppi: Definizione e prime Proprietà

Ci poniamo il seguente

PROBLEMA. Data una funzione $f:X\subset\mathbb{R}^2\to\mathbb{R}$ limitata, calcolare il volume V compreso tra il grafico di f (che in generale rappresenta una superfice nello spazio tridimensionale) e il piano xy.

Come nel caso degli integrali in una variabile, l'idea è di approssimare il volume V da sotto e da sopra, cioè per difetto (con somme inferiori) e per eccesso (con somme superiori). Però, in questo caso il dominio X non è più un semplice intervallo ma può avere una geometria molto più complicata.

Pertanto scegliamo prima un rettangolo $R = [a, b] \times [c, d]$ tale che $X \subseteq R$ e definiamo

(*)
$$\bar{f}(x,y) = \begin{cases} f(x,y), & \text{se } (x,y) \in X; \\ 0, & \text{se } (x,y) \in R \setminus X. \end{cases}$$

cioè estendiamo f ponendola 0 fuori da X. Allora, i volumi compresi tra i grafici di f e \bar{f} da un lato e il piano xy dall'altro sono uguali. Poi creiamo una partizione di R in sotto-rettangoli a partire da partizioni di [a,b] e [c,d] e approssimiamo il volume compreso tra il grafico di \bar{f} e ogni sotto-rettangolo. Più precisamente:

• Date due partizioni

$$P_x = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}$$
 di $[a, b]$ e
 $P_y = \{c = y_0 < y_1 < y_2 < \dots < y_m = d\}$ di $[c, d]$,

definiamo la partizione (cfr. Figura 85)

$$P_{xy} := P_x \times P_y$$
 di $R = [a, b] \times [c, d]$ nei rettangoli $R_{ij} := [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ per $i = 1, \dots, n, j = 1, \dots, m$.

FIGURA 85. Partizione del rettangolo R contenente X (n = 5, m = 4).

• Per P_{xy} poniamo per $i=1,\ldots,n, j=1,\ldots,m$

$$m_{ij} := \inf \{ \bar{f}(x,y) : (x,y) \in R_{ij} \},$$

 $M_{ij} := \sup \{ \bar{f}(x,y) : (x,y) \in R_{ij} \},$
 $|R_{ij}| := (x_i - x_{i-1}) \cdot (y_j - y_{j-1}) = \text{ area del rettangolo } R_{ij},$

e definiamo

$$s(\bar{f}, P_{xy}) := \sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} \cdot |R_{ij}| =: somma inferiore,$$

$$S(\bar{f}, P_{xy}) := \sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij} \cdot |R_{ij}| =: somma superiore.$$

Quindi per ogni partizione P_{xy} di R vale

$$s(\bar{f}, P_{xy}) \le V \le S(\bar{f}, P_{xy}),$$

cioè le somme inferiori sono sempre approssimazioni di V per difetto mentre le somme superiori danno sempre approssimazioni per eccesso. Perciò

- più grande è $s(\bar{f}, P_{xy})$ migliore è l'approssimazione (per difetto),
- più *piccolo* è $S(\bar{f}, P_{xy})$ migliore è l'approssimazione (per eccesso).

Se non c'è differenza tra la migliore approssimazione da sotto (cioè quella più grande) e quella migliore da sopra (cioè quella più piccola), allora il problema di determinare il volume V è (teoricamente) risolto e f si dice integrabile. Tutto ciò motiva la seguente

<u>Definizione</u> 9.1. Sia $f: X \subset \mathbb{R}^2 \to \mathbb{R}$ limitata. Se per \bar{f} definita in (*) vale

$$\sup\{s(\bar{f}, P_{xy}) : P_{xy} \text{ partizione di } R\} = \inf\{s(\bar{f}, P_{xy}) : P_{xy} \text{ partizione di } R\} =: I,$$

allora f si dice *integrabile* (secondo Riemann). In questo caso V = I e si definisce *l'integrale doppio*

$$\iint_X f(x,y) \, dx \, dy := I$$

della funzione integranda f nel dominio dell'integrazione X.

- OSSERVAZIONI. Si può dimostrare che la definizione precedente è indipendente dalla particolare scelta del rettangolo R contenente X.
 - Il volume sotto il piano xy conta in maniera negativo.
- ESEMPI. Se f è costante, cioè f(x,y) = c per ogni $(x,y) \in X := [a,b] \times [c,d]$ è facile verificare che f è integrabile con integrale $\iint_X f(x,y) \, dx = c \cdot (b-a) \cdot (d-c).$
 - Per costruire un esempio di funzione *non* integrabile, si può estendere la funzione di Dirichlet (cfr. pagina 97) in \mathbb{R}^2 . La funzione $f:[a,b]\times[c,d]\to\mathbb{R}$,

$$f(x,y) := \begin{cases} 1 & \text{se } x \text{ è razionale,} \\ 0 & \text{se } x \text{ è irrazionale} \end{cases}$$

non è integrabile. Infatti, come nel caso dell'esempio unidimensionale, per ogni partizione P_x di [a, b] si ha che ogni intervallo $[x_{i-1}, x_i]$ contiene sia punti razionali (in cui f ammette il valore 0). Quindi segue $m_{ij} = 0$ e $M_{ij} = 1$ per ogni $i = 1, 2, \ldots, n, j = 1, 2, \ldots, m$. Così risulta per ogni partizione P_{xy}

$$s(f, P_{xy}) = 0 \neq (b - a) \cdot (d - c) = S(f, P_{xy})$$

per cui f non è integrabile.

Visto che integrando la funzione identicamente 1 sul dominio X si ottiene il volume $V = 1 \cdot \text{area}(X)$ del cilindro contenente i punti compresi tra il grafico di f e il piano xy, cfr. Figura 86, si ottiene la seguente definizione di misura di un sottoinsieme di \mathbb{R}^2 .

FIGURA 86. La misura di un'insieme.

<u>Definizione</u> 9.2. Se $X \subset \mathbb{R}^2$ è un insieme limitato tale che la funzione $\mathbb{1}: X \to \mathbb{R}$, $\mathbb{1}(x,y) = 1$ è integrabile, allora si dice che X è *misurabile* e si pone

$$|X| := \iint_X 1 \, dx \, dy = misura (= area) \, di \, X$$

Proprietà dell'Integrale. Siano $f, g: X \to \mathbb{R}$ integrabili con $X \subset \mathbb{R}^2$ misurabile. Allora

• $\alpha \cdot f + \beta \cdot g$ è integrabile per ogni $\alpha, \beta \in \mathbb{R}$ (cioè l'insieme delle funzioni integrabili con dominio X è uno spazio vettoriale) e

$$\iint_X (\alpha \cdot f(x,y) + \beta \cdot g(x,y)) \, dx \, dy = \alpha \cdot \iint_X f(x,y) \, dx \, dy + \beta \cdot \iint_X g(x,y) \, dx \, dy$$

(cioè l'integrale è un'operazione *lineare*);

• Se $f(x,y) \leq g(x,y)$ per ogni $(x,y) \in X$ allora

$$\iint_X f(x,y) \, dx \, dy \le \iint_X g(x,y) \, dx \, dy$$

(cioè l'integrale è *monotono*);

• anche |f| è integrabile e

$$\left| \iint_X f(x,y) \, dx \, dy \right| \le \iint_X |f(x,y)| \, dx \, dy$$

 $(disuguaglianza\ triangolare).$

• Se |X| = 0, allora

$$\iint_X f(x,y) \, dx \, dy = 0$$

• Se $X = X_1 \cup X_2$ e $|X_1 \cap X_2| = 0$, allora

$$\iint_X f(x,y) \, dx \, dy = \iint_{X_1} f(x,y) \, dx \, dy + \iint_{X_2} f(x,y) \, dx \, dy$$

(additività dell'integrale rispetto alla decomposizione di insiemi)

A questo punto, come nel caso di funzioni di una variabile, si pongono due

- **Problemi**. (i) Quali funzioni $f: X \subset \mathbb{R}^2 \to \mathbb{R}$ sono integrabili?
- (ii) Se f è integrabile, come si può calcolare $\iint_X f(x,y) dx dy$?

Visto che l'integrabilità di $f: X \subset \mathbb{R}^2 \to \mathbb{R}$ dipende sia dal dominio X sia dalla regolarità di f, la situazione non è così semplice come per funzioni di una variabile.

Teorema di Fubini-Tonelli

Nel caso f è continua su una regione limitata da intervalli e grafici di funzioni il Teorema di Fubini-Tonelli da una risposta a entrambi i problemi.

<u>Definizione</u> 9.3. Un insieme $X \subset \mathbb{R}^2$ limitato si dice

(i) *y-semplice* se esistono due funzioni continue $g_1, g_2 : [a, b] \to \mathbb{R}$ tali che

$$X = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], g_1(x) \le y \le g_2(x)\}$$

(ii) x-semplice se esistono due funzioni continue $h_1,\ h_2:[c,d]\to\mathbb{R}$ tali che

$$X = \{(x, y) \in \mathbb{R}^2 : y \in [c, d], h_1(y) \le x \le h_2(y)\}$$

- (iii) semplice se è y-semplice o x-semplice
- (iv) regolare se è l'unione di un numero finito di domini semplici.

Figura 87. Domini y- e x-semplici.

L'idea del seguente risultato è quella di ridurre il calcolo dell'integrale doppio al calcolo in successione di due integrali in una variabile.

TEOREMA 9.4 (Teorema di Fubini-Tonelli). Sia $f: X \subset \mathbb{R}^2 \to \mathbb{R}$ una funzione continua e X un dominio semplice. Allora f è integrabile su X. Inoltre,

(i) se $X \ \dot{e} \ y$ -semplice

$$\iint_X f(x,y) \, dx \, dy = \int_{x=a}^b \left(\int_{y=g_1(x)}^{g_2(x)} f(x,y) \, dy \right) dx$$

(ii) se $X \stackrel{.}{e} x$ -semplice

$$\iint_X f(x,y) dx dy = \int_{y=c}^d \left(\int_{x=h_1(y)}^{h_2(y)} f(x,y) dx \right) dy$$

Interpretazione geometrica di Fubini-Tonelli. L'idea di fondo per calcolare V è di decomporlo in una unione di fette di spessore infinitesimale e poi sommare il volume di tale fette. Per spiegarlo meglio supponiamo che X sia y-semplice. Allora per ogni $x \in [a, b]$ consideriamo l'integrale interno

$$A(x) = \int_{y=q_1(x)}^{g_2(x)} f(x,y) \, dy$$

che rappresenta la superficie del taglio di V al punto x, cfr. Figura 88. Moltiplicando per lo spessore dx otteniamo $dV(x) := A(x) \cdot dx$ che rappresenta

FIGURA 88. Il teorema di Fubini-Tonelli per X y-semplice.

il volume della x-esima fetta infinitesimale. L'integrale esterno

$$\int_{x=a}^{b} dV(x) = \int_{x=a}^{b} A(x) dx = \int_{x=a}^{b} \left(\int_{y=g_1(x)}^{g_2(x)} f(x,y) dy \right) dx$$

poi somma i volumi di tutte le fette infinitesimali e quindi rappresenta il volume complessivo V.

Esempio. Calcolare

$$\iint_X 2x^2y \, dx \, dy \quad \text{ove} \quad X = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], \, x + 1 \le y \le 2\}.$$

Il dominio si presenta già nella forma di un dominio y-semplice, cf. Figura 89.

FIGURA 89. Esempio di un dominio y-semplice.

Quindi

$$\iint_X 2x^2 y \, dx \, dy = \int_{x=0}^1 \left(\int_{y=x+1}^2 2x^2 y \, dy \right) \, dx = \int_{x=0}^1 2x^2 \left[\frac{y^2}{2} \right]_{y=x+1}^2 \, dx$$

$$= \int_{x=0}^1 (4x^2 - x^4 - 2x^3 - x^2) \, dx = \left[4\frac{x^3}{3} - \frac{x^5}{5} - 2\frac{x^4}{4} - \frac{x^3}{3} \right]_{x=0}^1 = \frac{4}{3} - \frac{1}{5} - \frac{2}{4} - \frac{1}{3} - 0 = \frac{3}{10}$$

ESERCIZIO. Verificare che il dominio nell'esercizio precedente è anche x-semplice e calcolare l'integrale usando Fubini-Tonelli per domini x-semplici. (Soluzione: $X = \{(x, y) \in \mathbb{R}^2 : y \in [1, 2], 0 \le x \le y - 1\}$).

Esempio. Calcolare

$$\iint_X \sin(y^3) \, dx \, dy \quad \text{ove} \quad X = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], \sqrt{x} \le y \le 1\}.$$

Anche in questo caso, il dominio si presenta già nella forma di un dominio y-semplice, tuttavia se applichiamo la formula per domini y-semplici

$$\iint_X \sin(y^3) \, dx \, dy = \int_0^1 \left(\int_{\sqrt{x}}^1 \sin(y^3) \, dy \right) \, dx = ???$$

otteniamo la funzione integranda $\sin(y^3)$ che non è integrabile elementarmente rispetto y.

Però, vale anche $X = \{(x, y) \in \mathbb{R}^2 : y \in [0, 1], 0 \le x \le y^2\}$ e quindi X è anche x-semplice, cfr. Figura 90.

FIGURA 90. Dominio y- e x-semplice.

Così risulta

$$\iint_X \sin(y^3) \, dx \, dy = \int_0^1 \left(\int_0^{y^2} \sin(y^3) \, dx \right) dy = \int_0^1 [x]_0^{y^2} \cdot \sin(y^3) \, dy = \int_0^1 y^2 \cdot \sin(y^3) \, dy$$
$$= \left[-\frac{1}{3} \cos(y^3) \right]_0^1 = \frac{1}{3} \left(1 - \cos(1) \right)$$

Quindi in alcuni casi può essere necessario vedere il dominio come semplice rispetto ad una variabile piuttosto che all'altra.

OSSERVAZIONE. Dal teorema di Fubini-Tonelli segue che se il dominio è un rettangolo, cioè $X = [a, b] \times [c, d]$, e $f(x, y) = f_1(x) \cdot f_2(y)$, allora

$$\iint_X f(x,y) dx dy = \int_a^b f_1(x) dx \cdot \int_c^d f_2(y) dy.$$

Integrazione in Coordinate Polari

Per domini X "circolari" di integrazione conviene spesso di passare dalle coordinate cartesiane (x, y) alle coordinate polari (ρ, ϑ) per semplificare la rappresentzione di X. Per fare ciò serve il seguente risultato.

PROPOSIZIONE 9.5. Sia $f: X \subset \mathbb{R}^2 \to \mathbb{R}$ integrabile. Se il dominio X in coordinate cartesiane (x, y) corrisponde al dominio X' in coordinate polari (ρ, ϑ) , allora

$$\iint_X f(x,y) \, dx \, dy = \iint_{X'} f(\rho \cdot \cos(\vartheta), \rho \cdot \sin(\vartheta)) \cdot \frac{\rho}{\rho} \cdot d\rho \, d\vartheta$$

OSSERVAZIONE. Si noti che passano alle coordinate polari l'elemento infinitesimale di area dx dy si trasforma in $\rho \cdot d\rho d\vartheta$, cfr. Figura 91.

FIGURA 91. Cambiamento di variabili per coordinate polari.

Esempio. Calcolare

$$\iint_X xy \, dx \, dy \quad \text{ove} \quad X = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, \, 0 \le y \le x\}.$$

In questo tipo di problemi è opportuno dapprima disegnare il grafico.

FIGURA 92. Dominio in coordinate cartesiane e polari.

Il dominio è x- (e anche y-) semplice. Però il dominio essendo un settore circolare, è molto più facilmente rappresentabile in coordinate polari come $X' = \left\{ (\rho, \vartheta) \in [0, \infty) \times [0, 2\pi) : \ 0 \le \rho \le 1, \ 0 \le \vartheta \le \tfrac{\pi}{4} \right\} = [0, 1] \times [0, \tfrac{\pi}{4}].$

Quindi dalla proposizione precedente si ha (è importante non dimenticare il fattore $\rho!!$)

$$\iint_X xy \, dx \, dy = \iint_{[0,1] \times [0,\frac{\pi}{4}]} \rho \cos(\vartheta) \cdot \rho \sin(\vartheta) \cdot \frac{\rho}{\rho} \cdot d\rho \, d\vartheta$$

Visto che X' è un rettangolo, ricordando l'osservazione su pagina 278, segue

$$\iint_{[0,1]\times[0,\frac{\pi}{4}]} \rho^3 \cdot \cos(\vartheta) \sin(\vartheta) \, d\rho \, d\vartheta = \int_0^1 \rho^3 \, d\rho \cdot \int_0^{\frac{\pi}{4}} \cos(\vartheta) \sin(\vartheta) \, d\vartheta =$$
$$= \left[\frac{1}{4}\rho^4\right]_0^1 \cdot \left[\frac{\sin^2(\vartheta)}{2}\right]_0^{\frac{\pi}{4}} = \frac{1}{16}$$

ALTRI ESEMPI. • Calcolare la misura |X| del dominio $X \subset \mathbb{R}^2$ che in coordinate polari è dato da

$$X' = \{(\rho, \vartheta) : \vartheta \in [\vartheta_0, \vartheta_1], \ 0 \le \rho \le R(\vartheta)\}$$

per una funzione continua $R: [\vartheta_0, \vartheta_1] \to [0, +\infty)$, cfr. Figura 93.

Figura 93. Dominio in coordinate cartesiane e polari.

Visto che il dominio X' è ρ -semplice, passando alle coordinate polari otteniamo

$$|X| = \iint_X 1 \, dx \, dy = \iint_{X'} \rho \, d\rho \, d\vartheta$$
$$= \int_{\vartheta_0}^{\vartheta_1} \int_0^{R(\vartheta)} \rho \, d\rho \, d\vartheta = \int_{\vartheta_0}^{\vartheta_1} \left[\frac{\rho^2}{2} \right]_{\rho=0}^{\rho=R(\vartheta)} \, d\vartheta$$
$$= \frac{1}{2} \int_{\vartheta_0}^{\vartheta_1} R^2(\vartheta) \, d\vartheta.$$

Per dare un esempio concreto calcoliamo l'area della *spirale di Archimede* data in coordinate polari da $X' := \{(\rho, \vartheta) : \vartheta \in [0, 2\pi], \ 0 \le \rho \le \vartheta)\}$, cfr. Figura 94.

FIGURA 94. La spirale di Archimede.

In questo caso $R(\vartheta) = \vartheta$ e quindi otteniamo

$$|X| = \frac{1}{2} \int_0^{2\pi} \vartheta^2 d\vartheta = \frac{1}{2} \cdot \frac{\vartheta^3}{3} \Big|_0^{2\pi} = \frac{4}{3} \cdot \pi^3.$$

• Calcolare

$$I_R := \iint_{X_R} e^{-(x^2+y^2)} dx dy$$
 per $X_R := \{(x,y) : x^2 + y^2 \le R^2\}.$

Per risolvere l'integrale passiamo alle coordinate polari. Visto che il cerchio X_R in coordinate cartesiane corrisponde in coordinate polari al rettangolo $X'_R = [0, R] \times [0, 2\pi]$ risulta (usando l'osservazione a pagina 278)

$$I_R = \int_0^R \int_0^{2\pi} e^{-\rho^2} \rho \, d\vartheta \, d\rho = \int_0^R e^{-\rho^2} \rho \, d\rho \cdot \int_0^{2\pi} \, d\vartheta$$
$$= -\frac{e^{-\rho^2}}{2} \cdot 2\pi \Big|_0^R = \pi \cdot (1 - e^{-R^2}).$$

Osserviamo che $\lim_{R\to+\infty}I_R=\pi$. Visto che per $R\to+\infty$ (in un certo senso) $X_R\to\mathbb{R}^2=(-\infty,+\infty)\times(-\infty,+\infty)$ "segue" (usando di nuovo l'osservazione a pagina 278)

$$\pi = \iint_{(-\infty, +\infty) \times (-\infty, +\infty)} e^{-(x^2 + y^2)} dx dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-x^2} \cdot e^{-y^2} dx dy$$
$$= \int_{-\infty}^{+\infty} e^{-x^2} dx \cdot \int_{-\infty}^{+\infty} e^{-y^2} dy = \left(\int_{-\infty}^{+\infty} e^{-x^2} dx \right)^2.$$

Quindi siamo riusciti a calcolare

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

che non è possibile usando una primitiva di e^{-x^2} , cfr. l'osservazione a pagina 215. Invece, passando alle coordinate polari, grazie al fattore ρ , si passa da e^{-x^2} a $\rho \cdot e^{-\rho^2}$ che è molto semplice da integrare.