

Reconhecimento de Padrões

Feature Selection

Profa: Deborah Magalhães

44

Feature engineering é o processo de transformar dados em features que melhor representam o problema tratado, resultando na melhoria de desempenho do algoritmo de aprendizado de máquina.

46

Atributo é geralmente o termo dado a uma coluna de uma tabela de dados, enquanto característica (feature) se refere apenas ao atributo que contribui para o sucesso do algoritmos de aprendizado de máquina.

Say no to bad attributes

- ✓ Performance
- ✓ Time

Baseados em estatística

- Correlação de Pearson
- Testes de Hipótese

Baseados em modelos

- Recursive Feature
 Elimination (RFE)
- Information Gain (IG)

Pearson product-moment correlation coefficient (PPMCC) OU Coeficiente de **Pearson**

$$r_{xy} = \frac{\sum x_i y_i - n \ \overline{x} \ \overline{y}}{\sqrt{\sum x_i^2 - n \overline{x}^2} \sqrt{\sum y_i^2 - n \overline{y}^2}},$$
onde:

 $n: tamanho\ da\ amostra$

 $x_i, y_i : valor \ da \ observação \ indexado \ por \ i$

 $\overline{x}, \overline{y}: media \ amostral$

Coeficiente de Pearson

Força da Associação	Coeficiente (r)	
	Positiva	Negativa
Pequena	.1 a .3	1 a3
Média	.3 a .5	3 a5
Grande	.5 a 1.0	5 a -1.0

Desvantagens da Correlação de Pearson

#1 - Não se pode utilizar qualquer tipo de variável

Quantitativa vs. Categória

Contínua	Número infinito entre quaisquer dois valores	Comprimento, volume, saldo
Discreta	Número contável entre quaisquer dois valores	Número de reclamações de clientes, número de falhas de uma peça
Quantitativa	O que os dados representam?	Exemplos

#2 - Não há diferença entre variáveis dependentes e independentes

#3 - Não representa a inclinação da linha de melhor ajuste

Premissas da correlação de Pearson

#1: as duas variáveis devem ser contínuas

#2: independência das observações

#3: as variáveis devem seguir a distribuição normal univariada

#4: as variáveis devem possuir uma relação linear

Muito Obrigada!

Se você tiver qualquer dúvida ou sugestão:

deborah.vm@ufpi.edu.br

