Classification

Given: Training data: $(x_1, y_1), \ldots, (x_n, y_n)/x_i \in \mathbb{R}^d$ and y_i is discrete (categorical/qualitative), $y_i \in \mathbb{Y}$.

Example
$$\mathbb{Y} = \{-1, +1\}, \mathbb{Y} = \{0, 1\}.$$

Task: Learn a classification function:

$$f: \mathbb{R}^d \longrightarrow \mathbb{Y}$$

Linear Classification: A classification model is said to be linear if it is represented by a linear function f (linear hyperplane)

Classification: examples

- 1. Fruit classification \rightarrow Banana/Orange?
- 2. Email Spam/Ham \rightarrow Which email is junk?
- 3. Tumor benign/malignant \rightarrow Which patient has cancer?
- 4. Credit default/not default → Which customers will default on their credit card debt?

Balance	Income	Default
300	\$20,000.00	no
2000	\$60,000.00	no
5000	\$45,000.00	yes
	Ē	Ē

Classification: example

Credit: Introduction to Statistical Learning.

- Belongs to Neural Networks class of algorithms (algorithms that try to mimic how the brain functions).
- The first algorithm used was the Perceptron (Resemblatt 1959).
- Worked extremely well to recognize:
 - 1. handwritten characters (LeCun et a. 1989),
 - 2. spoken words (Lang et al. 1990),
 - 3. faces (Cottrel 1990)
- NN were popular in the 90's but then lost some of its popularity.
- Now NN back with deep learning.

Perfectly separable data

- Linear classification method.
- Simplest classification method.
- Simplest neural network.
- For perfectly separated data.

Given n examples and d features.

$$f(x_i) = sign(\sum_{j=0}^{d} w_j x_{ij})$$

- Works perfectly if data is linearly separable. If not, it will not converge.
- Idea: Start with a random hyperplane and adjust it using your training data.
- Iterative method.

Perceptron Algorithm

```
Input: A set of examples, (x_1, y_1), \dots, (x_n, y_n)
Output: A perceptron defined by (w_0, w_1, \dots, w_d)
```

Begin

- 2. Initialize the weights w_j to 0 $\forall j \in \{0, \dots, d\}$
- 3. Repeat until convergence
 - 4. For each example $x_i \ \forall i \in \{1, \dots, n\}$
 - 5. if $y_i f(x_i) \leq 0$ #an error?
 - 6. update all w_j with $w_j := w_j + y_i x_i$ #adjust the weights

End

Some observations:

- ullet The weights w_1,\ldots,w_d determine the slope of the decision boundary.
- w_0 determines the offset of the decision boundary (sometimes noted b).
- Line 6 corresponds to:

Mistake on positive: add x to weight vector. Mistake on negative: substract x from weight vector. Some other variants of the algorithm add or subtract 1.

• Convergence happen when the weights do not change anymore (difference between the last two weight vectors is 0).

Finally converged!

With some test data:

- ullet The w_i determine the contribution of x_i to the label.
- $-w_0$ is a quantity that $\sum_{i=1}^n w_i x_1$ needs to exceed for the perceptron to output 1.
- Can be used to represent many Boolean functions: AND, OR, NAND, NOR, NOT but not all of them (e.g., XOR).

From perceptron to NN

- Neural networks use the ability of the perceptrons to represent elementary functions and combine them in a network of layers of elementary questions.
- However, a cascade of linear functions is still linear!
- And we want networks that represent highly non-linear functions.

Choice of the hyperplane

Lots of possible solutions!

Digression: Idea of SVM is to find the optimal solution.

Credit

- The elements of statistical learning. Data mining, inference, and prediction. 10th Edition 2009. T. Hastie, R. Tibshirani, J. Friedman.
- Machine Learning 1997. Tom Mitchell.