รายงาน

เรื่อง CS:GO Round Winner Classification

เสนอ

ดร. นิวรรณ วัฒนกิจรุ่งโรจน์

จัดทำโดย

นาย ปิยชาติ เอี่ยมสำอางค์ รหัส 63130500081 นาย พีรพัฒน์ ค้าเกิด รหัส 63130500088 นาย ภัทรพล มรรคหิรัญ รหัส 63130500091 นาย วริศชัย สุรชัยธนวัฒน์ รหัส 63130500103 นาย สหทัศน์ ยิ่งสกุลเกียรติ 63130500113 นาย อภิวรรธน์ อาทิตย์เที่ยง รหัส 63130500130 นาย อริย์ธัช กรุดมินบุรี รหัส 63130500133

รายงานเล่มนี้เป็นส่วนหนึ่งของวิชา INT491 Introduction to Data Analytics and Big Data & Big Data Analytics ภาคเรียนที่ 1 ปีการศึกษา 2565

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

คำนำ

รายงานฉบับนี้เป็นส่วนหนึ่งของวิชา Introduction to Data Analytics and Big Data & Big Data Analytics รหัสวิชา INT491 โดยมีจุดประสงค์เพื่อศึกษาความรู้ที่ได้จาก เรื่อง ความแตกต่างด้านประสิทธิภาพจากการใช้ PySpark และ ไม่ได้ใช้ PySpark ในการ ประมวลผลเพื่อวิเคราะห์การทำนายผล ซึ่งรายงานนี้มีเนื้อหาเกี่ยวกับความรู้จาก การที่กลุ่ม ของเรานั้นได้ทำการทดลองและสรุปผลจากการสร้างเพื่อการวิเคราะห์การทำนายผล และ นำ มาเปรียบเทียบเพื่อสรุปผล ถึง ความแตกต่างของ PySpark และ ไม่ได้ใช้ PySpark

ทางกลุ่มผู้จัดท้ำหวังว่ารายงานฉบับนี้จะให้ความรู้ และเป็นประโยชน์แก่ผู้อ่านทุก ๆ ท่านหากมีขอผิดพลาดประการใดทางดลุ่มผู้จัดทำขออภัยไว้ ณ ที่นี้ด้วย

ลงชื่อ กลุ่มผู้จัด

สารบัญ

เรื่อง	หน้า
1.Dataset	4
2.แนวคิดในการวิเคราะห์	4
3.ผลการทดลอง (confusion matrix, accuracy, precision, recall, f1 และเวลาที่ใช้)	5
วิธี A แบบ non-PySpark : MLPClassifier	5
วิธี A แบบ PySpark : MultilayerPerceptronClassifier	7
วิธี B แบบ non-PySpark : DecisionTreeClassifier	9
วิธี B แบบ PySpark: DecisionTreeClassifier	11
สรุปจากผล AVG ทั้ง 2 model ที่ใช้ทั้ง PySpark และ non-PySpark	12
4.ตารางเปรียบเทียบประสิทธิภาพในแง่เวลาที่ใช้ในการประมวลผล	15
5.กราฟแสดงผลการทดลอง	16
6.สรุปผล	18
บรรณานกรม	21

1.Dataset

Dataset ที่ใช้ มีชื่อว่า CS:GO Round Winner โดยทำการ Classification เป็น dataset เกี่ยวกับผลการแพ้ชนะของเกม CS:GO โดยใน dataset มีข้อมูลได้แก่ timeleft, ct score, t score, map, bomb planted, ct health, t health, ct armor, t armor, ct money, ct helmets, t helmets, ct defuse kits, ct players alive, t players alive และ round winner ซึ่งใช้ dataset ดังกล่าวในการวิเคราะห์ผลแพ้ชนะของแต่ละรอบ และประเมิณประสิทธิภาพในการทำนายผลแพ้ชนะของแต่ละรอบ

2.แนวคิดในการวิเคราะห์

2.1) วิธี A : Neural network ແບບ Multi layer Perceptron

เป็นวิธีในการเรียนรู้เชิงลึก (deep learning) ของตัว model โดยอาศัย neural cell หรือเซลล์ประสาทของมนุษย์ในหลาย layer ในการประมวลผล เพื่อให้ได้ ผลลัพธ์ที่มีประสิทธิภาพมากขึ้น จึงมีการทำซ้ำไปเรื่อยๆ จากข้อผิดพลาดที่เกิดขึ้นทำให้เกิด การพัฒนาและเพิ่มประสิทธิภาพในการทำนายผล

- model: non-PySpark
 - classification method: MLPClassifier
 - import จาก sklearn.neural_network
- วิเคราะห์ข้อมูลจาก dataset โดยวิธีการแบบ MLP(Multilayer Perceptron) ด้วย MLPClassifier สำหรับการวิเคราะห์ข้อมูล ในวิธี A แบบ non-PySpark model
 - model: PySpark
 - o classification method: MultilayerPerceptronClassifier
 - o import จาก pyspark.ml.classification
- วิเคราห์ข้อมูลจาก dataset โดยวิธีการแบบ MultilayerPerceptronClassifier สำหรับการวิเคราะห์ข้อมูล ในวิธี A แบบ PySpark model
 - 2.2) วิธี B : DecisionTree
 - model: non-PySpark
 - classification method : DecisionTreeClassifier
 - o import จาก sklearn.tree
- วิเคราห์ข้อมูลจาก dataset โดยวิธีการแบบ DecisionTreeClassifier สำหรับการ วิเคราะห์ข้อมูล ในวิธี B แบบ non-PySpark model
 - model: PySpark
 - o classification method: DecisionTreeClassifier
 - o import จาก pyspark.ml.classification
- วิเคราห์ข้อมูลจาก dataset โดยวิธีการแบบ DecisionTreeClassifier สำหรับการ วิเคราะห์ข้อมูล ในวิธี B แบบ PySpark model

3.ผลการทดลอง (confusion matrix, accuracy, precision, recall, f1 และเวลาที่ใช้)

layer ที่เราใช้มี 3 layer ทดลองคือ (16,8,2) โดยที่ layer ชั้นแรก เป็น จำนวน column + bias unit ที่ใช้ในการสร้าง model และเวลา learn จะใช้ layer ในการ learn แต่ละครั้ง จน ได้ผลลัพธ์ เป็น 2 ค่า คือผู้ชนะคือ counter terrorist หรือ terrorist ในการทำนายในแต่ละ ครั้ง ทำให้ใช้เวลาที่นานขึ้น ถ้า layer ของ neural network มีขนาดที่เพิ่มขึ้น

วิธี A แบบ non-PySpark : MLPClassifier

รอบที่ 1

Summary	precision	recall	f1-score	support
СТ	0.73	0.78	0.75	12001
Т	0.77	0.72	0.74	12481
accuracy	-	-	0.75	24482
macro avg	0.75	0.75	0.75	24482
weighted avg	0.75	0.75	0.75	24482

Confusion Matrix

	Predict Class CT	Predict Class T
Actual Class CT	9307	2694
Actual Class T	3515	8966

รอบที่ 2

Summary	precision	recall	f1-score	support
СТ	0.73	0.77	0.75	12001
Т	0.77	0.72	0.75	12481
accuracy	ı	-	0.75	24482
macro avg	0.75	0.75	0.75	24482
weighted avg	0.75	0.75	0.75	24482

Confusion Matrix

	Predict Class CT Predict Class T	
Actual Class CT	9290	2711
Actual Class T	3461	9020

รอบที่ 3

Summary	precision	recall	f1-score	support
СТ	0.73	0.78	0.76	12001
Т	0.78	0.73	0.75	12481
accuracy	-	-	0.75	24482
macro avg	0.76	0.75	0.75	24482
weighted avg	0.76	0.75	0.75	24482

Confusion Matrix

	Predict Class CT Predict Class T	
Actual Class CT	9411	2590
Actual Class T	3432	9049

รอบที่ 4

Summary	precision	recall	f1-score	support
СТ	0.73	0.78	0.76	12001
Т	0.78	0.72	0.75	12481
accuracy	ı	-	0.75	24482
macro avg	0.75	0.75	0.75	24482
weighted avg	0.75	0.75	0.75	24482

Confusion Matrix

	Predict Class CT	Predict Class T
Actual Class CT	9394	2607
Actual Class T	3460	9021

รอบที่ 5

Summary	precision	recall	f1-score	support
СТ	0.73	0.75	0.74	12000
Т	0.75	0.73	0.74	12482
accuracy	-	-	0.74	24482
macro avg	0.74	0.74	0.74	24482
weighted avg	0.74	0.74	0.74	24482

Confusion Matrix

	Predict Class CT Predict Class T	
Actual Class CT	9009	2991
Actual Class T	3405	9077

python --- 150.62591242790222 วินาที ---

วิธี A แบบ PySpark : MultilayerPerceptronClassifier

Summary	รอบที่ 1	รอบที่ 2	รอบที่ 3	รอบที่ 4	รอบที่ 5
accuracy	0.72	0.73	0.74	0.72	0.7
precision	0.68	0.75	0.7	0.88	0.8
recall	0.85	0.71	0.85	0.52	0.55
f1	0.71	0.73	0.73	0.71	0.7

Confusion Matrix รอบที่ 1

	Predict Class CT	Predict Class T
Actual Class CT	6908	5089
Actual Class T	1834	10624

รอบที่ 2

	Predict Class CT	Predict Class T
Actual Class CT	8964	2926
Actual Class T	3591	8808

รอบที่ 3

	Predict Class CT	Predict Class T
Actual Class CT	7389	4503
Actual Class T	1922	10751

รอบที่ 4

	Predict Class CT	Predict Class T
Actual Class CT	11054	842
Actual Class T	5930	6421

รอบที่ 5

	Predict Class CT	Predict Class T
Actual Class CT	10381	1666
Actual Class T	5596	6772

PySpark --- 480.99161863327026 วินาที---

วิธี B แบบ non-PySpark : DecisionTreeClassifier

รอบที่ 1

Summary	precision	recall	f1-score	support
СТ	0.65	0.66	0.66	12001
Т	0.67	0.67	0.67	12481
accuracy	-	-	0.66	24482
macro avg	0.66	0.66	0.66	24482
weighted avg	0.66	0.66	0.66	24482

Confusion Matrix

	Predict Class CT	Predict Class T
Actual Class CT	7916	4085
Actual Class T	4175	8306

รอบที่ 2

Summary	precision	recall	f1-score	support
СТ	0.66	0.65	0.66	12001
Т	0.67	0.68	0.68	12481
accuracy	-	-	0.67	24482
macro avg	0.67	0.67	0.67	24482
weighted avg	0.67	0.67	0.67	24482

Confusion Matrix

	Predict Class CT	Predict Class T
Actual Class CT	7804	4197
Actual Class T	3947	8534

รอบที่ 3

Summary	precision	recall	f1-score	support
СТ	0.66	0.65	0.66	12001
Т	0.67	0.68	0.68	12481
accuracy	-	-	0.67	24482
macro avg	0.67	0.67	0.67	24482
weighted avg	0.67	0.67	0.67	24482

Confusion Matrix

	Predict Class CT	Predict Class T
Actual Class CT	7783	4218
Actual Class T	3924	8557

รอบที่ 4

Summary	precision	recall	f1-score	support
СТ	0.65	0.60	0.62	12001
Т	0.64	0.70	0.67	12481
accuracy	-	-	0.65	24482
macro avg	0.65	0.65	0.65	24482
weighted avg	0.65	0.65	0.65	24482

Confusion Matrix

	Predict Class CT	Predict Class T
Actual Class CT	7156	4845
Actual Class T	3806	8675

รอบที่ 5

Summary	precision	recall	f1-score	support
СТ	0.66	0.64	0.65	12000
Т	0.66	0.68	0.67	12482
accuracy	-	-	0.66	24482
macro avg	0.66	0.66	0.66	24482
weighted avg	0.66	0.66	0.66	24482

Confusion Matrix

	Predict Class CT	Predict Class T
Actual Class CT	7684	4316
Actual Class T	4014	8468

วิธี B แบบ PySpark: DecisionTreeClassifier

Summary	รอบที่ 1	รอบที่ 2	รอบที่ 3	รอบที่ 4	รอบที่ 5
accuracy	0.74	0.74	0.74	0.74	0.74
precision	0.79	0.8	0.8	0.83	0.79
recall	0.66	0.66	0.66	0.61	0.66
f1	0.74	0.74	0.74	0.73	0.74

Confusion Matrix รอบที่ 1

	Predict Class CT	Predict Class T
Actual Class CT	10024	2133
Actual Class T	4186	7961

รอบที่ 2

	Predict Class CT	Predict Class T
Actual Class CT	9877	2086
Actual Class T	4222	8256

รอบที่ 3

	Predict Class CT	Predict Class T
Actual Class CT	9946	2105
Actual Class T	4208	8234

รอบที่ 4

	Predict Class CT	Predict Class T
Actual Class CT	10511	1545
Actual Class T	4895	7559

รอบที่ 5

	Predict Class CT	Predict Class T
Actual Class CT	9789	2147
Actual Class T	4263	8139

สรุปจากผล *AVG* ทั้ง 2 model ที่ใช้ทั้ง PySpark และ non-PySpark

1. model A: MLPClassifier

1.1 non-PySpark

Summary precision	recall	f1-score	support	
-------------------	--------	----------	---------	--

СТ	0.73	0.772	0.752	12000.8
Т	0.77	0.724	0.746	12481.2
accuracy	-	-	0.748	24482
macro avg	0.75	0.748	0.748	24482
weighted avg	0.75	0.748	0.748	24482

AVG: confusion matrix

	Predict Class CT	Predict Class T
Actual Class CT	9282.2	2718.6
Actual Class T	3454.6	9026.6

1.2 PySpark

AVG : สรุปค่าเฉลี่ยจากทุก 5 รอบ

Summary		
accuracy	0.722	
precision	0.762	
recall	0.696	
f1	0.716	

AVG : สรุปจากการ predict class ทั้ง CT , T

	Predict Class CT	Predict Class T
Actual Class CT	8939.2	3005.2
Actual Class T	3774.6	8675.2

จากการสังเกต AVG ของ model-A โดยใช้ method-MLPClassifier แบบ non-PySpark vs. PySpark **สรุปได้ว่า** ::

model แบบ non-PySpark สามารถทำนายผลข้อมูลได้ดีกว่า model แบบ PySpark สังเกตได้จากตาราง confusion matrix ของทั้ง 2 แบบ จะพบว่า model แบบ non-PySpark มีจำนวนข้อมูลที่ทำนายถูกเยอะกว่าแบบ PySpark อธิบายคือ มีค่าของ True positive และ True negative มากกว่า

2. model B: DecisionTree

2.1 non-PySpark

Summary	precision	recall	f1-score	support
СТ	0.656	0.64	0.65	12000.8
Т	0.662	0.682	0.674	12481.2
accuracy	-	-	0.662	24482
macro avg	0.662	0.662	0.662	24482
weighted avg	0.662	0.662	0.662	24482

AVG: confusion matrix

	Predict Class CT	Predict Class T
Actual Class CT	7668.6	4332.2
Actual Class T	3973.2	8508

2.2 PySpark

Summary	Average
accuracy	0.74
precision	0.802
recall	0.65
f1	0.738

AVG: confusion matrix

	Predict Class CT	Predict Class T
Actual Class CT	10029.4	2003.2
Actual Class T	4354.8	8029.8

จากการสังเกต AVG ของ model-B โดยใช้ method-DecisionTreeClassifier แบบ non-PySpark vs. PySpark **สรุปได้ว่า** :: จากmodel B เปรียบเทียบระหว่างวิธี PySpark และ non-PySpark สามารถสรุปได้ ว่า วิธี model PySpark นั้นมีการทำนายที่ถูกต้องมากกว่า model non-PySpark โดย สามารถดูได้จากตาราง Average ของ confusion matrix ของทั้ง2 model จะพบว่า model ของ PySpark นั้นมีข้อมูลการทำนายถูกมากกว่าของ model non-PySpark

4.ตารางเปรียบเทียบประสิทธิภาพในแง่เวลาที่ใช้ในการ ประมวลผล

MLPClassifier

วิธี A แบบ non-PySpark

รอบที่ 1 - 35.73 วินาที

รอบที่ 2 - 30.7 วินาที

รอบที่ 3 - 29.33 วินาที

รอบที่ 4 - 25.23 วินาที

รอบที่ 5 - 29.12 วินาที

เวลาโดยเฉลี่ย - 30.02 วินาที

วิธี A แบบ PySpark

รอบที่ 1 - 52.66 วินาที

รอบที่ 2 - 153.06 วินาที

รอบที่ 3 - 143.75 วินาที

รอบที่ 4 - 66.91 วินาที

รอบที่ 5 - 56.87 วินาที

เวลาโดยเฉลี่ย - 94.65 วินาที

DecisionTreeClassifier

วิธี B แบบ non-PySpark

รอบที่ 1 - 7.34 วินาที

รอบที่ 2 - 8.96 วินาที

รอบที่ 3 - 9.01 วินาที

รอบที่ 4 - 9.03 วินาที

รอบที่ 5 - 8.68 วินาที

เวลาโดยเฉลี่ย - 8.604 วินาที

วิธี B แบบ PySpark

รอบที่ 1 - 50.14 วินาที

รอบที่ 2 - 31.69 วินาที

รอบที่ 3 - 31.17 วินาที

รอบที่ 4 - 32.06 วินาที

รอบที่ 5 - 30.70 วินาที เวลาโดยเฉลี่ย - 35.152 วินาที

จะเห็นว่าทำไม non-PySpark ทำการประมวลผลได้เร็วกว่า PySpark เพราะขนาด dataset ของเราใช้ในการทำนายผลแพ้ชนะของเกม CSGO มีจำนวน column และ record ที่อาจจะ ยังไม่มากพอสำหรับการการประมวลผลแบบ PySpark รวมถึงการใช้ Session ของ PySpark ทำให้ใช้เวลาการทำงานของ PySpark ทำได้ช้ากว่า non PySpark

5.กราฟแสดงผลการทดลอง

Method A

Accuracy

• จะเห็นได้ว่าจากกราฟนั้น method ที่เราใช้นั้นถ้าเป็น Non-PySpark นั้นจะมี Accuracy ที่คงที่กว่า
PySpark และ มี Accuracy ที่สูงกว่าตัวของ PySpark

Time

จะเห็นได้ว่าจากกราฟนั้น method ที่ใช้ PySpark นั้นมีการใช้เวลาที่เยอะหรือสูงกว่า Non-PySpark และ เวลานั้น Non-PySpark นั้นมีความนิ่งกว่าแบบ PySpark

Method B

Accuracy

 จะเห็นได้ว่าจากกราฟนั้น method ที่เราใช้นั้นถ้าเป็น PySparkนั้นจะมี Accuracy ที่คงที่กว่า Non-PySpark และ มี Accuracy ที่สูงกว่าตัวของ Non-PySpark

 จะเห็นได้ว่าจากกราฟนั้น method ที่ใช้ PySpark นั้นมีการใช้เวลาที่เยอะหรือสูงกว่า Non-PySpark และ เวลานั้น Non-PySpark นั้นมีความนิ่งกว่าแบบ PySpark

6.สรุปผล

จากผลการทดสอบ เป็นจำนวน 5 ครั้ง ของ วิธี A และ B สรุปได้ว่า

ີວີຣີ A ແບບ non-PySpark (MLPClassifier :: sklearn.neural_network)

- ใช้เวลาโดยเฉลี่ยที่ 30.02 วินาที มีความถูกต้อง(accuracy) ในการทำนายผลแพ้ชนะ ของเกมเฉลี่ยที่ 74.8%

วิธี A แบบ PySpark(MLPClassifier :: pyspark.ml.classification)

- ใช้เวลาโดยเฉลี่ยที่ 94.65 วินาที มีความถูกต้อง(accuracy) ในการทำนายผลแพ้ชนะ ของเกมเฉลี่ยที่ 72.2%

วิธี A แบบ non-PySpark จะใช้เวลาที่น้อยกว่า ในการประเมินผล/วิเคราะห์ จึงสรุปได้ว่า method: MLPClassifier(sklearn.neural_network) มีความเหมาะสมกว่า ในเรื่องของ การใช้เวลาประเมินผลที่น้อยกว่า แบบ PySpark

วิธี B แบบ non-PySpark (DecisionTreeClassifier :: sklearn.tree)

- ใช้เวลาโดยเฉลี่ยที่ 8.604 วินาที มีความถูกต้อง(accuracy) ในการทำนายผลแพ้ชนะ ของเกมเฉลี่ยที่ 66.2%

วิธี B แบบ PySpark(DecisionTreeClassifier :: pyspark.ml.classification)

- ใช้เวลาโดยเฉลี่ยที่ 35.152 วินาที มีความถูกต้อง(accuracy) ในการทำนายผลแพ้ ชนะของเกมเฉลี่ยที่ 74% วิธี B แบบ non-PySpark จะใช้เวลาที่น้อยกว่า ในการประเมินผล/วิเคราะห์ จึงสรุปได้ว่า method: DecisionTreeClassifier(sklearn.tree) มีความเหมาะสมกว่า ในเรื่องของการใช้ เวลาประเมินผลที่น้อยกว่า แบบ PySpark

อย่างไรก็ตาม data set นี้ มีปริมาณของข้อมูลที่น้อย และยังไม่เหมาะกับการดึง ประสิทธิภาพของ method จาก PySparkเท่าไหร่ จึงส่งผลให้เวลาโดยเฉลี่ยในการวิเคราะห์ ข้อมูลมากกว่าแบบ non-PySpark

ดังนั้นการใช้ pure-python / non-PySpark มีความเหมาะสมกว่าสำหรับการ วิเคราะห์ข้อมูลใน data set นี้ จากผลสรุปของเวลาโดยเฉลี่ยในการวิเคราะห์ข้อมูล

สรุปผลจากกราฟเปรียบเทียบ accuracy & time ของการวิเคราะห์ข้อมูลแบบ non-PySpark vs. PySpark(โดยใช้กราฟเส้นในการสรุปผล/เปรียบเทียบ)

- method:A (MLPClassifier) เมื่อเทียบผลของ accuracy & time จากการวิเคราะห์ ข้อมูลแบบ non-PySpark vs. PySparkสรุปได้ว่า

- non-PySpark นั้น มีค่า "Accuracy" ที่มั่นคง และสูงกว่า PySpark อีกทั้ง การเปรียบเทียบโดยใช้ "Time(s)" เป็นตัววัด พบว่า non-PySpark ใช้เวลาใน การวิเคราะห์ข้อมูลที่นิ่งกว่า และน้อยกว่าแบบ PySpark
- ดังนั้น การวิเคราะห์ข้อมูลสำหรับ data set นี้ โดยใช้ classification method: MLPClassifier แบบ non-PySpark มีความเหมาะสมในการ วิเคราะห์มากกว่า PySpark
- method:B (DecisionTreeClassifier) เมื่อเทียบผลของ accuracy & time จาก การวิเคราะห์ข้อมูลแบบ non-PySpark vs. PySpark สรุปได้ว่า

- PySpark มีค่า "Accuracy" ที่คงที่ และสูงกว่า non-PySpark แต่เมื่อ เปรียบเทียบโดยใช้ "Time(s)" เป็นตัววัด พบว่า non-PySpark มีการใช้เวลา ในการวิเคราะห์ที่น้อย และนิ่งกว่า PySpark
- ดังนั้น การวิเคราะห์ข้อมูลสำหรับ data set นี้ โดยใช้ classification method: DecisionTreeClassifier แบบ PySpark อาจมีความเหมาะสมกว่า non-PySpark ในเรื่องของ Accuracy/ความแม่นยำ แต่อย่างไรก็ตาม PySpark ยังคงวิเคราะห์ข้อมูลโดยใช้ระยะเวลาที่มากกว่า non-PySpark อยู่ ดี

บรรณานุกรม

CHRISTIAN LILLELUND.(2563).CS:GO Round Winner Classification.[ออนไลน์]. เข้าถึงได้จาก

https://www.kaggle.com/datasets/christianlillelund/csgo-round-winner-classifi cation (วันที่สืบคัน : 21 พฤจิกายน 2565)

Pranav Thaenraj.(2564). Spark MultiLayer Perceptron Classifier for POI Classification.[ออนไลน์].เข้าถึงได้จาก

https://towardsdatascience.com/spark-multilayer-perceptron-classifier-for-po i-classification-99e5c68b4a77 (วันที่สืบค้น : 21 พฤจิกายน 2565)

Vicky Zhang.(2559). Why does my Spark run slower than pure Python? Performance comparison.[ออนไลน์].เข้าถึงได้จาก

https://stackoverflow.com/questions/34625410/why-does-my-spark-run-slowe r-than-pure-python-performance-comparison (วันที่สืบค้น : 21 พฤจิกายน 2565)

scikit-learn developers.(2550).sklearn.preprocessing.StandardScaler.[ออ นไลน์1.เข้าถึงได้จาก

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Stand ardScaler.html (วันที่สืบค้น : 28 พฤจิกายน 2565)

scikit-learn developers.(2550).sklearn.tree.DecisionTreeClassifier.[ออนไลน์]. เข้าถึงได้จาก

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeCla ssifier.html (วันที่สืบค้น : 28 พฤจิกายน 2565)

scikit-learn developers.(2550).sklearn.neural_network.MLPClassifier.[ออนไลน์]. เข้าถึงได้จาก

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLP Classifier.html (วันที่สืบค้น : 28 พฤจิกายน 2565)

scikit-learn developers.(2550).sklearn.metrics.classification_report.[ออนไลน์]. เข้าถึงได้จาก https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classificatio n_report.html (วันที่สืบค้น : 28 พฤจิกายน 2565)

scikit-learn developers.(2550).sklearn.metrics.confusion_matrix.[ออนไลน์]. เข้าถึงได้จาก

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html (วันที่สืบค้น : 28 พฤจิกายน 2565)

Apache Spark developers.(2557).StringIndexer.[ออนไลน์].เข้าถึงได้จาก https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feat ure.StringIndexer.html (วันที่สืบคัน : 30 พฤจิกายน 2565)

Apache Spark developers.(2557).VectorAssembler.[ออนไลน์].เข้าถึงได้จาก https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.featu re.VectorAssembler.html (วันที่สืบค้น : 30 พฤจิกายน 2565)

Apache Spark developers.(2557).MultilayerPerceptronClassifier.[ออนไลน์].เข้าถึง ได้จาก

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.clas sification.MultilayerPerceptronClassifier.html (วันที่สืบค้น : 30 พฤจิกายน 2565)

Apache Spark developers.(2557).DecisionTreeClassifier.[ออนไลน์].เข้าถึงได้จาก https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.clas sification.DecisionTreeClassifier.html (วันที่สืบค้น : 30 พฤจิกายน 2565)

Apache Spark developers.(2557).MulticlassMetrics.[ออนไลน์].เข้าถึงได้จาก https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.mllib.ev aluation.MulticlassMetrics.html (วันที่สืบค้น : 30 พฤจิกายน 2565)

Apache Spark developers.(2557).MulticlassClassificationEvaluator.[ออนไลน์]. เข้าถึงได้จาก

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.eval uation.MulticlassClassificationEvaluator.html (วันที่สืบค้น : 30 พฤจิกายน 2565)

Vicky Zhang.(2559). Why does my Spark run slower than pure Python?
Performance comparison.[ออนไลน์].เข้าถึงได้จาก
https://stackoverflow.com/questions/34625410/why-does-my-spark-run-slowe
r-than-pure-python-performance-comparison (วันที่สืบค้น: 30 พฤจิกายน 2565)