# Algorithms of Information Security: Error-correcting codes III

Faculty of Information Technology Czech Technical University in Prague

October 13, 2021



## Reed-Muller codes

- Reed-Muller codes are named after David E. Muller, who developed the codes in 1954, and Irving S. Reed, who designed the first efficient decoding algorithm.
- Reed-Muller codes are error correcting codes that are used in wireless communication applications, especially in space communication.
- Reed-Muller codes with parameters r and m are denoted by R(r,m), where r and m are integers such that  $0 \le r \le m$ .
- Reed-Muller codes can be considered as a generalization of Reed-Solomon codes.
- Reed-Muller codes are linear codes defined by evaluating polynomials of several variables. In the lecture we consider mainly binary Reed-Muller codes.

#### Definition

The Boolean function of m variables is a map  $F_2^m \to F_2$ .

## Definition

Polynomial  $f(x_1, \ldots, x_m)$  in m variables over  $F_2$  is boolean polynomial, if in each member of the sum

$$f(x_1, \dots, x_m) = \sum_{(i_1, \dots, i_m)} a_{i_1 \dots i_m} x_1^{i_1} \dots x_m^{i_m}$$

all exponents  $i_1, \ldots, i_m$  are equal to 0 or 1.

• Boolean polynomial  $f(x_1, \ldots, x_m)$  is thus the sum of monomials in a form

$$x_{j_1}x_{j_2}\dots x_{j_k}$$

where  $1 \le j_1 < ... < j_k \le m$ .

ullet Each set  $I\subset\{1,\ldots,m\}$  corresponds to a monomial

$$x_I = \prod_{i \in I} x_i.$$

- Monomial  $x_{\emptyset}$  is denoted by the symbol 1.
- Polynomial 0 denotes the sum of an empty set of monomials.
- The total degree of the polynomial  $f \in F_q[x_1, \ldots, x_m]$  is the value  $\max \sum_{j=1}^m i_j$ , where the maximum is over all members  $x_1^{i_1} \ldots x_m^{i_m}$ , which have a non-zero coefficient.



• Since in the field  $F_2$  holds that  $0^2=0$  and  $1^2=1$ , then for  $i=1,\ldots,m$  the following equality holds:

$$x_i^2 = x_i$$
.

 Using this property, we can (uniquely) modify the product of two Boolean polynomials into a polynomial, which is again Boolean. For example:

$$x_1x_3 \cdot (x_1 + x_2) = x_1x_3 + x_1x_2x_3.$$

- Each Boolean polynomial f determines the Boolean function  $\hat{f}$ : if we substitute for individual variables, the resulting value is uniquely determined.
- $\bullet$  The number of Boolean functions of m variables is the same as the number of Boolean polynomials in the variables



#### Theorem

For every Boolean function h with m variables, there is a Boolean polynomial  $f \in F_2[x_1, \ldots, x_m]$  having the property that  $h = \hat{f}$ .

*Note.* The above theorem allows us to identify a Boolean function with a uniquely determined Boolean polynomial.

Notation. If  $b=(b_1,\ldots,b_m)$  is an ordered m-tuple of elements of the field  $F_q$ , then the symbol f(b) denotes the value  $f(b_1,\ldots,b_m)$ .

#### Definition

Let  $B_0, \ldots, B_{q^m-1}$  be the numbering of all ordered m-tuples over  $F_q$ . Reed-Muller code  $R_q(r,m)$  consists of the words in a form:

$$(f(B_0), f(B_1), \ldots, f(B_{q^m-1}))$$

where words are obtained from all polynomials f in  $F_q[x_1, \ldots, x_m]$ , whose total degree is at most r. The length of the code  $R_q(r, m)$  is therefore  $q^m$ .

# Binary Reed-Muller codes

*Notation.* For any polynomial  $f \in F_2[x_1, \ldots, x_m]$  let's denote

$$N(f) = \{(i_1, \dots, i_m) \in F_2^m : f(i_1, \dots, i_m) = 1\}.$$

The lower bound on the size of the set N(f) implies an estimate of the minimum distance of the (binary) Reed-Muller codes.

#### Theorem

Let  $f \in F_2[x_1, \ldots, x_m]$  be nonzero Boolean polynomial of total degree at most r. Then

$$|N(f)| \ge 2^{m-r}.$$

**Consequence.** A set  $B_r \subset R(r,m)$ , consisting of the evaluations of all monomials of the total degree at most r is the base of the code R(r,m). **Consequence.** Reed–Muller code R(r,m) has length  $2^m$ , dimension  $\binom{m}{0} + \ldots + \binom{m}{r}$  and minimal weight  $2^{m-r}$ .

#### **Theorem**

The codes R(r,m) and R(m-r-1,m) are dual to each other.



# Binary Reed-Muller codes

Example. Let r=1 and m=3, then the length of  $R_2(1,3)$  code is n=8. Monomials in  $F_2[x_1,x_2,x_3]$  of degree atmost 1 are  $\{1,x_1,x_2,x_3\}$ . When evaluating, consider the elements of the set  $F_2^3$  in the order:

$$(x_3x_2x_1):000,001,010,011,100,101,110,111.$$

Vectors over  $F_2^8$  associated with these monomials are:

Therefore, the generating matrix of the code  $R_2(1,3)$  is as follows:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

## Fuzzy extractors - motivation

- Fuzzy extractors present an approach for handling secret biometric data in cryptographic applications.
- Fuzzy extractor extracts a uniformly random string R from its input w in a noise-tolerant way.
- If the input w changes to w', which is only "slightly" different from w, the string R can be reproduced exactly.
- Fuzzy extractors are used for encryption and authentication, using biometric input as a key.

# Fuzzy extractors - basic definitions and notations

- $U_{\ell}$  denotes the uniform distribution  $\{0,1\}^{\ell}$ .
- If a function f is randomized, we denote by f(x;r) the result of computing f on input x with randomness r.
- Predictability of a random variable A is  $\max_a \mathbb{P}[A=a]$ .
- min-entropy  $H_{\infty}(A)$  is  $-\log(\max_a \mathbb{P}[A=a])$ .  $H_{\infty}(A)$  can be viewed as the "worst-case" entropy.
- A random variable with min-entropy at least m is called an m-source.

# Fuzzy extractors - basic definitions and notations

- Consider now a pair of (possibly correlated) random variables A and B. If the adversary finds out the value b of B, then the predictability of A becomes  $\max_a \mathbb{P}[A = a | B = b]$ .
- On average, the adversary's chance of success in predicting A is  $\mathbb{E}_{b \leftarrow B} \left[ \max_a \mathbb{P}[A = a | B = b] \right]$ . (We are taking the average over B (which is not under adversarial control), but the worst case over A).
- Conditional min-entropy  $\widetilde{H}_{\infty}(A|B) \stackrel{\text{def}}{=} -\log \mathbb{E}_{b \leftarrow B} \left[ \max_{a} \mathbb{P}[A = a|B = b] \right] =$   $= -\log \mathbb{E}_{b \leftarrow B} \left[ 2^{-H_{\infty}(A|B = b)} \right]$

## Conditional min-entropy

- Conditional min-entropy satisfies a weak chain rule, namely, revealing any  $\lambda$  bits of information about A can cause its entropy to drop by at most  $\lambda$ .
- The definition of conditional min-entropy is suitable for cryptographic purposes and, in particular, for extracting "nearly" uniform randomness from A.
- "nearly" here corresponds to the *statistical distance* between two probability distributions A and B, defined as  $SD[A,B]=\frac{1}{2}\sum_v|\mathbb{P}[A=v]-\mathbb{P}[B=v]|.$
- SD can be interpreted as a measure of distinguishability. We write  $A \approx_{\varepsilon} B$  to say that A and B are at distance at most  $\varepsilon$ .

## Strong extractor

## Definition

A randomized function  $Ext:\mathcal{M}\to\{0,1\}$  with randomness of length r is an  $(m,\ell,\varepsilon)$ -strong extractor if for all m-sources W on  $\mathcal{M}$ ,  $(Ext(W;I),I)\approx_{\varepsilon}(U_{\ell},U_{r})$ , where  $I=U_{r}$  is independent of W.

We think of the output of the extractor as a key generated from  $w \leftarrow W$  with the help of a seed  $i \leftarrow I$ .

#### Lemma

Strong extractors can extract at most  $\ell = m - 2\log(1/\varepsilon) + \mathcal{O}(1)$  bits from (arbitrary) m-sources.

## Properties of strong extractor

## Definition

Ext(w;i) with an  $\ell$ -bit output is universal if for each  $w_1 \neq w_2$  ,  $\mathbb{P}_i[Ext(w_1;i)=Ext(w_2;i)]=2^{-\ell}$ .

If elements of  $\mathcal M$  can be represented as n-bit strings, universal hash functions can be built using seeds of the length n: for instance, simply view w and x as members of  $GF(2^n)$  and let Ext(w;x) be  $\ell$  least significant bits of wx.

Using universal hash functions we can extract  $\ell = m + 2 - 2\log(1/\varepsilon)$  bits:

#### Lemma

Let for any E (possibly dependent on W), if  $\widetilde{H}_{\infty}(W|E) \geq m$  and  $\ell = m + 2 - 2\log(1/\varepsilon)$ , then  $(Ext(W;I),I,E) \approx_{\varepsilon} (U_{\ell},I,E)$ .

# Secure sketches and fuzzy extractors



Fig. 5.1. (a) Secure sketch; (b) fuzzy extractor; (c) a sample application. The user encrypts a sensitive record using a key R extracted from biometric w via a fuzzy extractor; both P and the encrypted record may be sent or stored in the clear.

## Secure sketch

Let  $\mathcal M$  be a metric space with distance function dis. Informally, a secure sketch enables recovery of a string  $w \in \mathcal M$  from any "close" string  $w' \in \mathcal M$  without leaking too much information about w.

## Definition

An  $(m,\widetilde{m},t)$ -secure sketch is a pair of efficient randomized procedures (SS,Rec) ("sketch" and "recover") such that the following hold:

- **1** The sketching procedure SS on input  $w \in \mathcal{M}$  returns a string  $s \in \{0,1\}^*$ . The recovery procedure Rec takes an element  $w' \in M$  and  $s \in \{0,1\}^*$ .
- 2 Correctness: If  $dis(w, w') \le t$ , then Rec(w', SS(w)) = w.
- $\begin{array}{l} \textbf{3} \ \, \text{Security: For any $m$-source over $\mathcal{M}$, the min-entropy of $W$} \\ \text{given $s$ is high: For any $(W,E)$, if $\widetilde{H}_{\infty}(W|E) \geq m$, then } \\ \widetilde{H}_{\infty}(W|SS(W),E) \geq \widetilde{m}. \end{array}$

# Fuzzy extractor -informal

Fuzzy extractors do not recover the original input but, rather, enable generation of a close-to-uniform string R from w and its subsequent reproduction given any w' close to w.

The reproduction is done with the help of the helper string P produced during the initial extraction; yet P need not remain secret, because R is nearly uniform even given P.

## Fuzzy extractor

#### Definition

An  $(m,\ell,t,\varepsilon)$ -fuzzy extractor is a pair of efficient randomized procedures (Gen,Rep) ("generate" and "reproduce") such that the following hold:

- **1** Gen, given  $w \in \mathcal{M}$ , outputs an extracted string  $R \in \{0,1\}^{\ell}$  and a helper string  $P \in \{0,1\}^*$ . Rep takes an element  $w' \in \mathcal{M}$  and a string  $P \in \{0,1\}^*$ .
- 2 Correctness: If  $dis(w,w') \leq t$  and  $(R,P) \leftarrow Gen(w)$ , then Rep(w',P) = R.
- 3 Security: For all m-sources W over  $\mathcal{M}$ , the string R is nearly uniform even given P; that is, if  $\widetilde{H}_{\infty}(W|E) \geq m$ , then  $(R,P,E) \approx_{\varepsilon} (U_{\ell},P,E)$ .

## Fuzzy extractor - notes

- Entropy loss of a secure sketch (resp. fuzzy extractor) is  $m-\widetilde{m}$  (resp.  $m-\ell$ ).
- the nearly-uniform random bits output by a fuzzy extractor can be used in a variety of cryptographic contexts that require uniform random bits (e.g., for secret keys).
- The slight nonuniformity of the bits may decrease security, but by no more than their distance  $\varepsilon$  from uniform.
- By choosing  $\varepsilon$  sufficiently small (e.g.,  $2^{-100}$ ) one can make the reduction in security irrelevant.
- If more than  $\ell$  random bits are needed, then pseudorandom bits can be obtained by inputting R to a pseudorandom generator.

# Secure Sketches Imply Fuzzy Extractors

Given a secure sketch, we can always construct a fuzzy extractor that generates a key of length almost  $\widetilde{m}$  by composing the sketch with a good (standard) strong extractor. The following lemma is stated for universal hash functions:

#### Lemma

Suppose we compose an  $(m, \widetilde{m}, t)$ -secure sketch (SS, Rec) for a space  $\mathcal{M}$  and a universal hash function  $Ext: M \to \{0,1\}^*$  as follows: In Gen, choose a random i and let P = (SS(w), i) and R = Ext(w; i); let Rep(w', (s, i)) = Ext(Rec(w', s), i). The result is an  $(m, \ell, t, \varepsilon)$ -fuzzy extractor with  $\ell = \widetilde{m} + 2 - 2\log(1/\varepsilon)$ .

# Secure Sketches Imply Fuzzy Extractors





# Construction of secure sketch for Hamming distance

- Constructions of secure sketches are based on error-correcting codes.
- To obtain a secure sketch for correcting Hamming errors over  $\mathbb{F}^n$  ( $\mathbb{F}$  is a field), we start with a [n,k,2t+1] error-correcting (linear) code C.
- The idea is to use C to correct errors in w, even though w
  may not be in C, by shifting the code so that a codeword
  matches up with w and storing the shift as the sketch.

# Construction of secure sketch for Hamming distance

## Definition

Construction 1 (Code-offset construction). On input w, select a uniformly random codeword  $c \in C$ , and set SS(w) to be the shift needed to get from c to w: SS(w) = w - c. To compute Rec(w',s), subtract the shift s from w' to get c' = w' - s, decode c' to get c (note that since  $dis_{\mathrm{Ham}}(w',w) \leq t$  then  $dis_{\mathrm{Ham}}(c',c) \leq t$ ), and compute w by shifting back to get w = c + s.



# Construction of fuzzy extractor for Hamming distance

#### Theorem

For any m, given an [n,k,2t+1] error-correcting code, Construction 1 is an  $(m,m-(n-k)\log |\mathbb{F}|,t)$ -secure sketch for the Hamming distance over  $\mathbb{F}^n$ . Combined with Lemma "Secure Sketches Imply Fuzzy Extractors", this construction give, for any  $\varepsilon$ , an  $(m,m-(n-k)\log |\mathbb{F}|+2-2\log(1/\varepsilon),t,\varepsilon)$  fuzzy extractor for the same metric.

# Construction of fuzzy extractor for Hamming distance

- The trade-off between the error tolerance and the entropy loss depends on the choice of error-correcting code.
- For large alphabets ( $\mathbb F$  is a field of size  $\geq n$ ), one can use Reed-Solomon codes to get the optimal entropy loss of  $2t\log |\mathbb F|$ .
- No secure sketch construction can have a better trade-off between error tolerance and entropy loss than Construction 1 (there are more constructions, see [2])), as searching for better secure sketches for the Hamming distance is equivalent to searching for better error-correcting codes.

## Source

- [1] [Czech] Samoopravné kódy, učební text prof. Kaisera http://home.zcu.cz/ kaisert/kody/kody.pdf
- [2] Tuyls, P., Škoric, B., & Kevenaar, T. (Eds.). (2007). Security with noisy data: on private biometrics, secure key storage and anti-counterfeiting. Springer Science & Business Media.