Restriction: So far code requires that b be even

Other notes & code modifiers (This section doesn't run anything)

To use the code below you may uncomment them and then copy and paste where desired To uncomment, highlight the desired selection then press Alt and / simultaneously. Or delete the outer (* and *) brackets manually.

```
(*{Wgenesample,basepairs,source,SpecialNote}=
    {StringJoin[ToString[InputString["What Gene is this?"]]," gene"]
    ,ToString[{InputString["Paste the base pair sequence (ex: AAGCTATGG ) here"]}]
    ,ToString[InputString["What's the source? (ex: GenBank: AB043895.5)"]]
    ,ToString[InputString["Any Special Notes? If not type 'no'. "]]};*)

(*infobutton=
    Button["Click here to enter info",{Wgenesample,basepairs,source,SpecialNote}=
        {StringJoin[ToString[InputString["What Gene is this?"]]," gene"]
        ,ToString[{InputString["Paste the base pair sequence (ex: AAGCTATGG ) here"]}]
        ,ToString[InputString["What's the source? (ex: GenBank: AB043895.5)"]]
        ,ToString[InputString["Any Special Notes? If not type 'no'. "]]}
    ,Method→"Queued"];*)
```

Dealing with other Nucleotide codes: Noting that sets of genetic data will often contain symbols denoting nucleotide pairs of the form

- A Adenine
- G Guanine
- C Cytosine
- T Thymine
- U Uracil
- R Purine (A or G)
- Y Pyrimidine (C or T)
- N Any nucleotide
- W Weak (A or T)
- S Strong (G or C)
- M Amino (A or C)
- K Keto (G or T)
- B Not A (G or C or T)
- H Not G (A or C or T)
- D Not C (A or G or T)
- V Not T (A or G or C)

We treat Uracil (U) the same as we treat Thymine (T), since U replaces T in RNA sequences.

We treat the rest probabilistically. For example, in the instance of the appearance of an R (indicating a Purine A or G in the sequence), we assign R to be either A or G randomly by

```
xx = 3;
If [xx > 4, xx - 2, Abort]
This code aborts the computation if the condition xx >
 4 is not met. May use this type of code to control the program below
(*StringReplace["RRRRRRRRR","R"→ToString[RandomInteger[{0,1}]]]*)
Note that Log[2,x] = \frac{Log[x]}{Log[2]}, so any linearity of Log_2 plot implies linearity of Log_e plot, just rescaled
```

Analysis

```
SetOptions[EvaluationNotebook[],
 CellEpilog :> (SelectionMove[EvaluationNotebook[], All, EvaluationCell];
   FrontEndTokenExecute["SelectionCloseUnselectedCells"])]
```

```
Wgenesample = StringJoin[ToString[InputString["What Gene is this?"]], " DNA sequence"];
basepairs =
  ToString[{InputString["Paste the base pair sequence (ex: AAGCTATGG ) here"]}];
source = ToString[InputString["What's the source? (ex: GenBank: AB043895.5)"]];
SpecialNote = ToString[InputString["Any Special Notes? If not type 'no'. "]];
(* OtherInput = ToString[InputString[" Enter Prompt for OtherInput Here "]];*)
```

```
lettersample = {basepairs} // ToString;
LetterDNAtoNum[Sample_] := ToExpression[StringReplace[ToString[
     {StringReplace[StringReplace[ToString[{Sample}], {"," → "", " → "", "{" → "",
           " \} " \to "", " (" \to "", ")" \to "", " [" \to "", "]" \to "", ";" \to "", ":" \to "", "\_" \to "",
          "+" \rightarrow "", "&" \rightarrow "", "/" \rightarrow "", "." \rightarrow "", "RowBox" \rightarrow "", "Null" \rightarrow "", "
" \rightarrow ""}], {"0" \rightarrow "0,", "1" \rightarrow "1,", "2" \rightarrow "2,",
         "3" → "3,", "A" → "0,", "C" → "1,", "G" → "2,", "T" → "3,", "a" → "0,"
         "c" → "1,", "g" → "2,", "t" → "3,", "U" → "3", "u" → "3", "N" → "" }]}
    ], ", \}" \rightarrow "\}"
(* N Removed by/in the above code *)
numgenesample = LetterDNAtoNum[lettersample];
lengthofgeneitself = Length[Flatten[numgenesample]];
M = numgenesample;
```

In RNA samples thymine (T) is replaced by uracil (U). Some Samples may already replace T -> U, but if not it is necessary to do so here. If dealing with RNA, inlcude the following code. For this reason the code "U"→ "3","u"→ "3" was included in the above (yellow) cell.

To produce a .txt file of the gene run the following (grey) cell To open the created file include SystemOpen[txtfilename]

n = Length[set];

linearfitEigens =

 $(* H_1 = Shannon Entropy*)$

 $H[\alpha_{-}] := \frac{1}{1-\alpha} Log[2, Sum[(set[[i]])^{\alpha}, \{i, 1, n\}]] // N$

 $H2onward = Table[H[a], {a, 2, 20}] // N; (* H₂ onward *)$ RenyiEntropyofEigenvalues = Join[{H0}, {H1}, H2onward];

 $H1 = -Sum[((set[[i]])(Log[2, set[[i]])), {i, 1, n}] // N;$

Fit[Table[{i, Log[rhoEigens[[i]]]}, {i, 2, Length[rhoEigens]}], {1, x}, x];

 $H0 = Log[n] // N; (* H_0 = Hartley Entropy*)$

```
txtfilename =
  StringReplace[StringJoin[StringReplace[StringJoin[Wgenesample, " ", source],
      {"gene" → "", "." → "_", " " → ""}], ".txt"], {"GenBank:" → "gb"}];
Export[txtfilename, Flatten[numgenesample]]
Print["This produced a .txt file with the name ", txtfilename]
SystemOpen[txtfilename]
pdffilename =
  StringReplace[StringJoin[StringReplace[StringJoin[Wgenesample, " ", source],
      {"gene" \rightarrow "", "." \rightarrow "_", " " \rightarrow ""}], ".pdf"], {"GenBank:" \rightarrow "gb"}];
For [npow = 1, npow < 1000, npow++, If [Length[M] < ((npow)^2), Break[]];
  FilledSize = ((npow + 1)^2);
Filler[vecvar1_] := Table[4, {i, 1, FilledSize - lengthofgeneitself}]
FilledVec[vecvar2] := Join[Flatten[vecvar2], Filler[vecvar2]]
Filler[vecvar4_] := Table[4, {i, 1, FilledSize - lengthofgeneitself}]
FilledVec[vecvar5] := Join[Flatten[vecvar5], Filler[vecvar5]]
For [npow = 1, npow < 1000, npow++, If [lengthofgeneitself <math>\leq ((npow)^2), Break[]];
(* gives npow such that npow^2 > lengthofgeneitself > (npow -1)^2 *
FilledSize = npow^2;
FilledM = FilledVec[M];
numrowsW = \sqrt{Length[FilledM]};
W = Table Table FilledM[[i]],
     \left\{i, \left(\left(j-1\right)*\left(\mathsf{numrowsW}\right)\right)+1\right), \left(j*\left(\mathsf{numrowsW}\right)\right)\right\}\right], \left\{j, 1, \mathsf{numrowsW}\right\}\right];
\rho = (W.Transpose[W]); (* <math>\rho as inner product *)
rhoEigens = Sort[DeleteCases[Eigenvalues[\rho] // N, 0.], Greater];
(*DeleteCases Removes 0's from the set of Eigenvalues,
Sort puts the list in order of greatest to least *)
         rhoEigens
      Total[rhoEigens]
(* This is the set of nonzero normalized eigenvalues in order of greatest to least *)
```

```
(*linearfitEntropies=Fit[Table[{i,Log[rhoEigens[[i]]]},
    {i,2,Length[rhoEigens]}], {1,x},x];*)
button =
  Button ["Click here for output and pdf", Print [Style [Wgenesample, Black, Bold, 28]] x
    Print[Style["From ", Black, Bold, 18], Style[source, source, Black, Bold, 18]] 	imes
    Print[Style["The ", Blue, Italic, 18], Style[Wgenesample, Black, Italic, 18],
     Style[" has ", Blue, Italic, 18], Style[lengthofgeneitself, Black, Italic, 18],
     Style[" base pairs ", Blue, Italic, 18]] x
    If[StringLength[SpecialNote] > 3, Print[Style["(Special Note): ", Black, Bold, 16],
      Style[SpecialNote, Black, Italic, 12]], Print[" "]] x
    Print[Style["W is a ", Blue, Italic, 18], Style[Length[W], Black, Italic, 18],
     Style[" by ", Blue, Italic, 18], Style[Length[W[[1]]], Black, Italic, 18],
     Style[" matrix with ", Blue, Italic, 18],
     Style[Length[W] * Length[W[[1]]], Black, Italic, 18],
     Style[" = 2^b elements", Blue, Italic, 18], Style[" for b = ", Blue, Italic, 18],
     Style[Log[2, Length[W] * Length[W[[1]]]], Black, Italic, 18] x
    If [(Length[W] * Length[W[[1]]]) = (Length[W])^2,
     Print[Style["(If statement safecheck): ", Black, Bold, 12],
      Style[Length[W], Black, Italic, 12], Style[" times ", Red, Italic, 12],
      Style[Length[W[[1]]], Black, Italic, 12],
      Style[" equals ", Red, Italic, 12], Style[(Length[W]^2), Black, Italic, 12],
      Style[" W is of the right size, you may proceed ", Red, Italic, 12]],
     Print[Style["(If statement safecheck): ", Black, Bold, 12],
      Style["Warning!!!", Red, Italic, 28],
      Style["
                 W is of wrong size, STOP and check W ", Red, Italic, 12]]\times
    Print["The number of nonzero eigenvalues is = ", Length[rhoEigens]] x
    Print[Table[(rhoEigens)[[i]], {i, 1, Length[rhoEigens]}]] x
    Do[Print["The i-th Eigenvalue "\lambda_i, " is = ", (rhoEigens)[[i]]],
     {i, 1, Length[rhoEigens]}] x
    Print[Graphics[ListPlot[rhoEigens // N, AxesLabel → {Style["i", Medium, Bold],
          Style["\lambda_i", Medium, Bold]}, PlotLabel \rightarrow "Eigenvalue PLOT"]]] \times
    Print[Graphics[ListLogPlot[rhoEigens // N], AxesLabel → {Style["i", Medium, Bold],
         Style["Log[\lambda_i]", Medium, Bold]}, PlotLabel \rightarrow "Eigenvalue Log PLOT"]] \times
    Print["Zooming in on the Log Plot so as to Exclude the first
        eigenvalue gives the following plot:"]
    Print[Graphics[
      Show[ListLogPlot[Table[{i, rhoEigens[[i]]}, {i, 2, Length[rhoEigens]}],
         AxesLabel \rightarrow {Style["i", Medium, Bold], Style["Log[\lambda_i]", Medium, Bold]},
         PlotRange → {{10, 2 * rhoEigens[[2]]}}, PlotStyle → Red,
         PlotLabel \rightarrow Style["Logplot of Eigenvalues, excluding \lambda_1", Red, Bold, 16]],
        Plot[linearfitEigens, {x, 1, Length[rhoEigens]}]]]] x
    Print[
     "The Blue line is a linear fit. The approximate linearity of the above plot tells
        us that the eigenvalues decrease exponentially. If it's
        nowhere near linear try adjusting the plot range. "]
    (*Print[Graphics[
       ListPlot[Table[{i,Log[2,rhoEigens[[i]]]},{i,2,Length[rhoEigens]}],AxesLabel→
```

```
\{Style["i",Medium,Bold],Style["Log[<math>\lambda_i]",Medium,Bold]},PlotStyle\rightarrow Red,
        PlotLabel\rightarrowStyle["Log<sub>2</sub>plot of Eigenvalues, excluding \lambda_1",Red,Bold,16]] ]]*)
     Print[" "] ×
     Print[Style[
                                                                                      ■", 18]]×
     Print[" "]
     Print[Style["The First normalized eigenvector is: ", Blue, Italic, 18],
      Style[set[[1]], Blue, Italic, 18]] x
     Print[Style["The Second normalized eigenvector is: ", Blue, Italic, 18],
      Style[set[[2]], Blue, Italic, 18]] ×
     Print[Style["The Last (n-th) normalized (nonzero) eigenvector is:
       Blue, Italic, 18], Style[set[[n]], Blue, Italic, 16]] x
     If[Total[set] == 1, Print[Style["(If statement safecheck): ", Black, Bold, 12],
       Style["Total[set] = ", Red, Italic, 12], Style[Total[set], Black, Italic, 12],
       Style[" = 1, so the Eigenvalue set is properly normalized", Red, Italic, 12]],
      Print[Style["(If statement safecheck): ", Black, Bold, 12],
       Style["Warning!!!", Red, Italic, 28], Style[" Total[set] = ", Red, Italic, 12],
       Style[Total[set], Black, Italic, 12], Style[" # 1, ", Red, Italic, 12],
       Style[" so the Eigenvalue set is NOT properly normalized.", Red, Italic, 12],
       Style[" This will render the entropies invalid. Fix it. ", Red, Italic, 12]]]
     Print[" "] ×
     Print[Style[
                                                                                  18]] ×
     Print[" "]
     Do[Print["The \alpha-th Renyi Entropy H_{\alpha} \rightarrow H_{i-1}, " is = ",
       RenyiEntropyofEigenvalues[[i]]], {i, 1, Length[RenyiEntropyofEigenvalues]}] x
     Print[Graphics[Show[
        ListPlot[RenyiEntropyofEigenvalues, PlotRange → All,
         AxesLabel \rightarrow {Style["\alpha", Large, Bold], Style["H\alpha", Large, Bold]}],
        ListLinePlot[RenyiEntropyofEigenvalues, PlotStyle → {Red, Thin}]
     Print[Graphics[ListPlot[Table[{i, Log[2, RenyiEntropyofEigenvalues[[i]]]}},
          {i, 1, Length[RenyiEntropyofEigenvalues]}],
        AxesLabel \rightarrow {Style["\alpha", Large, Bold], Style["Log<sub>2</sub>[H<sub>\alpha</sub>]", Large, Bold]},
        PlotLabel \rightarrow Style["Plot of Log<sub>2</sub>[H<sub>\alpha</sub>]", Black, Bold, 12]]]] \times
     Print[Graphics[ListPlot[Table[{i, Log[2, RenyiEntropyofEigenvalues[[i]]]},
          {i, 2, Length[RenyiEntropyofEigenvalues]}],
        AxesLabel \rightarrow {Style["\alpha", Large, Bold], Style["Log<sub>2</sub>[H_{\alpha}]", Large, Bold]},
        PlotLabel \rightarrow Style["Logplot of H_{\alpha}, excluding H_{1}", Black, Bold, 12]]]
     Export[pdffilename, EvaluationNotebook[]] x
     NotebookSave[EvaluationNotebook[], "rhoCalcOutput"];
   SystemOpen[pdffilename] x
     NotebookClose[]
    , Background → Green];
nb = CreateDocument[];
```

```
Paste[nb, button]
NotebookEvaluate[nb];
CellPrint[Cell[StringJoin["Eigen Entropy Analysis for: W = ",
   StringJoin[Wgenesample, " ", source]], "Section", CellAutoOverwrite → False]]
CellPrint[Cell["gene data", "Subsubsection", CellAutoOverwrite → False]]
TextCell["The gene sequence is"]
ExpressionCell[numgenesample]
CellPrint[Cell["W data", "Subsubsection", CellAutoOverwrite → False]]
TextCell["The W is"]
ExpressionCell[W]
CellPrint[Cell["Eigenvalue Analysis", "Subsubsection", CellAutoOverwrite → False]]
Print["The number of nonzero eigenvalues is = ", Length[rhoEigens]]
Do[Print["The i-th Eigenvalue "\lambda_i, " is = ", (rhoEigens)[[i]]],
 {i, 1, Length[rhoEigens]}]
Print[Graphics[ListPlot[rhoEigens // N,
   AxesLabel \rightarrow {Style["i", Medium, Bold], Style["\lambda_i", Medium, Bold]},
   PlotLabel → "Eigenvalue PLOT"]]]
Print[Graphics[ListLogPlot[rhoEigens // N,
   AxesLabel \rightarrow {Style["i", Medium, Bold], Style["Log[\lambda_i]", Medium, Bold]},
   PlotLabel → "Eigenvalue Log PLOT"]]]
Print["Zooming in on the Log Plot so as to Exclude the
   first eigenvalue gives the following plot:"]
Print[Graphics[ListLogPlot[Table[{i, rhoEigens[[i]]}, {i, 2, Length[rhoEigens]}],
   AxesLabel \rightarrow {Style["i", Medium, Bold], Style["Log[\lambda_i]", Medium, Bold]},
   PlotRange → {{10, 2 * rhoEigens[[2]]}}, PlotStyle → Red,
   PlotLabel \rightarrow Style["Logplot of Eigenvalues, excluding \lambda_1", Red, Bold, 16]] []
Print["The approximate linearity of the above plot tells us
   that the eigenvalues decrease exponentially. If it's
   nowhere near linear try adjusting the plot range. "]
Print[" "]
Print[
 Style["
                                                                            ", 18]]
Print[" "]
Print[Style["The First normalized eigenvector is: ", Blue, Italic, 18],
 Style[set[[1]], Blue, Italic, 18]]
Print[Style["The Second normalized eigenvector is: ", Blue, Italic, 18],
 Style[set[[2]], Blue, Italic, 18]]
Print[Style["The Last (n-th) normalized (nonzero) eigenvector is:
  Blue, Italic, 18], Style[set[[n]], Blue, Italic, 16]]
If[Total[set] == 1, Print[Style["(If statement safecheck): ", Black, Bold, 12],
  Style["Total[set] = ", Red, Italic, 12], Style[Total[set], Black, Italic, 12],
  Style[" = 1, so the Eigenvalue set is properly normalized", Red, Italic, 12]],
 Print[Style["(If statement safecheck): ", Black, Bold, 12],
  Style["Warning!!!", Red, Italic, 28], Style[" Total[set] = ", Red, Italic, 12],
  Style[Total[set], Black, Italic, 12], Style[" # 1, ", Red, Italic, 12],
  Style[" so the Eigenvalue set is NOT properly normalized.", Red, Italic, 12],
  Style[" This will render the entropies invalid. Fix it. ", Red, Italic, 12]]]
CellPrint[Cell["Entropy Analysis", "Subsubsection", CellAutoOverwrite → False]]
```

```
Do[Print["The \alpha-th Renyi Entropy H_{\alpha} -> "H_{i-1}, " is = ",
  RenyiEntropyofEigenvalues[[i]]], {i, 1, Length[RenyiEntropyofEigenvalues]}]
Print[Graphics[Show[
    ListPlot [RenyiEntropyofEigenvalues, PlotRange → All,
     AxesLabel \rightarrow {Style["\alpha", Large, Bold], Style["H_{\alpha}", Large, Bold]}],
    ListLinePlot[RenyiEntropyofEigenvalues, PlotStyle → {Red, Thin}]
  ]]]
Print[Graphics[ListPlot[Table[{i, Log[2, RenyiEntropyofEigenvalues[[i]]]},
     {i, 1, Length[RenyiEntropyofEigenvalues]}],
    AxesLabel \rightarrow {Style["\alpha", Large, Bold], Style["Log<sub>2</sub>[H<sub>\alpha</sub>]", Large, Bold]},
    PlotLabel \rightarrow Style["Plot of Log<sub>2</sub>[H<sub>\alpha</sub>]", Black, Bold, 12]]]]
Print[Graphics[ListPlot[Table[{i, Log[2, RenyiEntropyofEigenvalues[[i]]]}},
     {i, 2, Length[RenyiEntropyofEigenvalues]}],
    AxesLabel \rightarrow {Style["\alpha", Large, Bold], Style["Log<sub>2</sub>[H_{\alpha}]", Large, Bold]},
    PlotLabel \rightarrow Style["Logplot of H_{\alpha}, excluding H_{1}", Black, Bold, 12]]]
```

Eigen Entropy Analysis for: W = Homo sapiens isolate AF51 mitochondrion, complete genome DNA sequence GenBank: DQ112961.2

gene data

W data

Eigenvalue Analysis

```
The number of nonzero eigenvalues is =
                                                 125
The i-th Eigenvalue \lambda_1 is = 27776.2
The i-th Eigenvalue \lambda_2 is = 962.753
The i-th Eigenvalue \lambda_3 is = 751.971
The i-th Eigenvalue \lambda_4 is = 641.505
The i-th Eigenvalue \lambda_5 is = 563.544
The i-th Eigenvalue \lambda_6 is = 524.978
The i-th Eigenvalue \lambda_7 is = 515.712
The i-th Eigenvalue \lambda_8 is = 507.476
The i-th Eigenvalue \lambda_9 is = 476.687
The i-th Eigenvalue \lambda_{10} is = 469.564
The i-th Eigenvalue \lambda_{11} is = 458.692
The i-th Eigenvalue \lambda_{12} is = 437.925
The i-th Eigenvalue \lambda_{13} is = 427.838
```

```
The i-th Eigenvalue \lambda_{14} is = 426.225
The i-th Eigenvalue \lambda_{15} is = 418.411
The i-th Eigenvalue \lambda_{16} is = 411.344
The i-th Eigenvalue \lambda_{17} is = 393.475
The i-th Eigenvalue \lambda_{18} is = 372.737
The i-th Eigenvalue \lambda_{19} is = 369.724
The i-th Eigenvalue \lambda_{20} is = 358.539
The i-th Eigenvalue \lambda_{21} is = 343.116
The i-th Eigenvalue \lambda_{22} is = 340.388
The i-th Eigenvalue \lambda_{23} is = 331.919
The i-th Eigenvalue \lambda_{24} is = 324.226
The i-th Eigenvalue \lambda_{25} is = 315.412
The i-th Eigenvalue \lambda_{26} is = 307.898
The i-th Eigenvalue \lambda_{27} is = 297.592
The i-th Eigenvalue \lambda_{28} is = 292.272
The i-th Eigenvalue \lambda_{29} is = 281.952
The i-th Eigenvalue \lambda_{30} is = 275.785
The i-th Eigenvalue \lambda_{31} is = 272.602
The i-th Eigenvalue \lambda_{32} is = 266.739
The i-th Eigenvalue \lambda_{33} is = 252.556
The i-th Eigenvalue \lambda_{34} is = 249.638
The i-th Eigenvalue \lambda_{35} is = 245.233
The i-th Eigenvalue \lambda_{36} is = 237.885
The i-th Eigenvalue \lambda_{37} is = 232.821
The i-th Eigenvalue \lambda_{38} is = 232.054
The i-th Eigenvalue \lambda_{39} is = 227.499
The i-th Eigenvalue \lambda_{40} is = 210.748
The i-th Eigenvalue \lambda_{41} is = 209.347
The i-th Eigenvalue \lambda_{42} is = 205.111
The i-th Eigenvalue \lambda_{43} is = 195.265
The i-th Eigenvalue \lambda_{44} is = 188.818
The i-th Eigenvalue \lambda_{45} is = 181.753
The i-th Eigenvalue \lambda_{46} is = 178.935
The i-th Eigenvalue \lambda_{47} is = 170.307
The i-th Eigenvalue \lambda_{48} is = 168.475
```

The i-th Eigenvalue λ_{49} is = 158.005

```
The i-th Eigenvalue \lambda_{50} is = 156.346
The i-th Eigenvalue \lambda_{51} is = 150.35
The i-th Eigenvalue \lambda_{52} is = 147.295
The i-th Eigenvalue \lambda_{53} is = 146.699
The i-th Eigenvalue \lambda_{54} is = 137.623
The i-th Eigenvalue \lambda_{55} is = 132.898
The i-th Eigenvalue \lambda_{56} is = 127.567
The i-th Eigenvalue \lambda_{57} is = 124.123
The i-th Eigenvalue \lambda_{58} is = 122.638
The i-th Eigenvalue \lambda_{59} is = 120.297
The i-th Eigenvalue \lambda_{60} is = 112.268
The i-th Eigenvalue \lambda_{61} is = 108.909
The i-th Eigenvalue \lambda_{62} is = 105.949
The i-th Eigenvalue \lambda_{63} is = 102.189
The i-th Eigenvalue \lambda_{64} is = 98.7428
The i-th Eigenvalue \lambda_{65} is = 94.2229
The i-th Eigenvalue \lambda_{66} is = 89.4027
The i-th Eigenvalue \lambda_{67} is = 85.7937
The i-th Eigenvalue \lambda_{68} is = 82.4935
The i-th Eigenvalue \lambda_{69} is = 81.7823
The i-th Eigenvalue \lambda_{70} is = 77.3441
The i-th Eigenvalue \lambda_{71} is = 74.734
The i-th Eigenvalue \lambda_{72} is = 72.8503
The i-th Eigenvalue \lambda_{73} is = 72.0289
The i-th Eigenvalue \lambda_{74} is = 66.9844
The i-th Eigenvalue \lambda_{75} is = 66.4543
The i-th Eigenvalue \lambda_{76} is = 62.3326
The i-th Eigenvalue \lambda_{77} is = 58.9473
The i-th Eigenvalue \lambda_{78} is = 57.3468
The i-th Eigenvalue \lambda_{79} is = 54.6782
The i-th Eigenvalue \lambda_{80} is = 53.2034
The i-th Eigenvalue \lambda_{81} is = 50.4799
The i-th Eigenvalue \lambda_{82} is = 50.3162
The i-th Eigenvalue \lambda_{83} is = 46.1309
```

The i-th Eigenvalue λ_{84} is = 45.054 The i-th Eigenvalue λ_{85} is = 42.8022 The i-th Eigenvalue λ_{86} is = 38.6989 The i-th Eigenvalue λ_{87} is = 35.978 The i-th Eigenvalue λ_{88} is = 35.23 The i-th Eigenvalue λ_{89} is = 33.1314 The i-th Eigenvalue λ_{90} is = 31.3322 The i-th Eigenvalue λ_{91} is = 30.1446 The i-th Eigenvalue λ_{92} is = 29.0937 The i-th Eigenvalue λ_{93} is = 27.12 The i-th Eigenvalue λ_{94} is = 26.2301 The i-th Eigenvalue λ_{95} is = 24.5243 The i-th Eigenvalue λ_{96} is = 23.0644 The i-th Eigenvalue λ_{97} is = 20.6211 The i-th Eigenvalue λ_{98} is = 19.1888 The i-th Eigenvalue λ_{99} is = 18.8824 The i-th Eigenvalue λ_{100} is = 16.5693 The i-th Eigenvalue λ_{101} is = 15.1341 The i-th Eigenvalue λ_{102} is = 14.5547 The i-th Eigenvalue λ_{103} is = 13.7425 The i-th Eigenvalue λ_{104} is = 12.6369 The i-th Eigenvalue λ_{105} is = 10.5469 The i-th Eigenvalue λ_{106} is = 9.75235 The i-th Eigenvalue λ_{107} is = 8.77028 The i-th Eigenvalue λ_{108} is = 7.94535 The i-th Eigenvalue λ_{109} is = 6.73076 The i-th Eigenvalue λ_{110} is = 6.47943 The i-th Eigenvalue λ_{111} is = 5.37674 The i-th Eigenvalue λ_{112} is = 5.00616 The i-th Eigenvalue λ_{113} is = 4.25193 The i-th Eigenvalue λ_{114} is = 3.58972 The i-th Eigenvalue λ_{115} is = 2.8598 The i-th Eigenvalue λ_{116} is = 2.3459 The i-th Eigenvalue λ_{117} is = 1.83651 The i-th Eigenvalue λ_{118} is = 1.59967 The i-th Eigenvalue λ_{119} is = 1.32176

The i-th Eigenvalue λ_{120} is = 0.798869 The i-th Eigenvalue λ_{121} is = 0.446036

```
The i-th Eigenvalue \lambda_{122} is = 0.340878
The i-th Eigenvalue \lambda_{123} is = 0.112689
The i-th Eigenvalue \lambda_{124} is = 0.0434892
The i-th Eigenvalue \lambda_{\text{125}} is = 0.00711358
```


Zooming in on the Log Plot so as to Exclude the first eigenvalue gives the following plot:

The approximate linearity of the above plot tells us that the eigenvalues decrease exponentially. If it's nowhere near linear try adjusting the plot range.

```
The First normalized eigenvector is: 0.575256
The Second normalized eigenvector is:
                                          0.019939
The Last (n-th) normalized (nonzero) eigenvector is:
1.47325 × 10<sup>-7</sup>
```

(If statement safecheck): Total[set] = 1. = 1, so the Eigenvalue set is properly normalized

Entropy Analysis

```
The \alpha-th Renyi Entropy H_{\alpha} -> H_{\theta} is = 4.82831
The \alpha-th Renyi Entropy H_{\alpha} -> H_{1} is = 3.60657
The \alpha-th Renyi Entropy H_{\alpha} -> H_2 is = 1.58174
The \alpha-th Renyi Entropy H_{\alpha} -> H_{3} is = 1.19646
The \alpha-th Renyi Entropy H_{\alpha} -> H_{4} is = 1.06363
The \alpha-th Renyi Entropy H_{\alpha} -> H_{5} is = 0.997155
The \alpha-th Renyi Entropy H_{\alpha} -> H_{6} is = 0.957269
The \alpha-th Renyi Entropy H_{\alpha} -> H_{7} is = 0.930678
The \alpha-th Renyi Entropy H_{\alpha} -> H_{8} is = 0.911685
The \alpha-th Renyi Entropy H_{\alpha} -> H_{9} is = 0.89744
The \alpha-th Renyi Entropy H_{\alpha} -> H_{10} is = 0.88636
The \alpha-th Renyi Entropy H_{\alpha} -> H_{11} is = 0.877497
The \alpha-th Renyi Entropy H_{\alpha} -> H_{12} is = 0.870245
The \alpha-th Renyi Entropy H_{\alpha} -> H_{13} is = 0.864201
```

The α -th Renyi Entropy H $_{\alpha}$ -> H $_{14}$ is = 0.859088 The α -th Renyi Entropy H $_{\alpha}$ -> H $_{15}$ is = 0.854705 The α -th Renyi Entropy H $_{\alpha}$ -> H $_{16}$ is = 0.850906 The α -th Renyi Entropy H_{α} -> H_{17} is = 0.847582 The α -th Renyi Entropy H $_{\alpha}$ -> H $_{18}$ is = 0.844649 The $\alpha\text{-th}$ Renyi Entropy H_{α} -> H_{19} is = 0.842042 The α -th Renyi Entropy H $_{\alpha}$ -> H $_{20}$ is = 0.83971

$Log_2[H_\alpha]$

Logplot of H_{α} , excluding H_1

$Log_2[H_\alpha]$

Eigen Entropy Analysis for: W = Gallus gallus isolate SQ endogenous virus Avian endogenous retrovirus EAV-HP genomic sequence DNA sequence GenBank: KY085958.1

gene data

W data

Eigenvalue Analysis

```
The number of nonzero eigenvalues is =
The i-th Eigenvalue \lambda_1 is = 9183.96
The i-th Eigenvalue \lambda_2 is = 254.636
The i-th Eigenvalue \lambda_3 is = 240.269
The i-th Eigenvalue \lambda_4 is = 226.51
The i-th Eigenvalue \lambda_5 is = 208.131
The i-th Eigenvalue \lambda_6 is = 200.419
The i-th Eigenvalue \lambda_7 is = 189.047
The i-th Eigenvalue \lambda_8 is = 185.622
The i-th Eigenvalue \lambda_9 is = 182.218
The i-th Eigenvalue \lambda_{10} is = 173.033
The i-th Eigenvalue \lambda_{11} is = 170.889
The i-th Eigenvalue \lambda_{12} is = 151.198
The i-th Eigenvalue \lambda_{13} is = 138.936
The i-th Eigenvalue \lambda_{14} is = 135.811
The i-th Eigenvalue \lambda_{15} is = 130.008
The i-th Eigenvalue \lambda_{16} is = 120.165
The i-th Eigenvalue \lambda_{17} is = 116.416
The i-th Eigenvalue \lambda_{18} is = 110.838
The i-th Eigenvalue \lambda_{19} is = 97.9948
The i-th Eigenvalue \lambda_{20} is = 94.3576
The i-th Eigenvalue \lambda_{21} is = 92.4365
The i-th Eigenvalue \lambda_{22} is = 90.1322
The i-th Eigenvalue \lambda_{23} is = 88.8264
The i-th Eigenvalue \lambda_{24} is = 83.1563
```

- The i-th Eigenvalue λ_{25} is = 73.9591 The i-th Eigenvalue λ_{26} is = 71.3354 The i-th Eigenvalue λ_{27} is = 65.8432 The i-th Eigenvalue λ_{28} is = 62.2285
- The i-th Eigenvalue λ_{29} is = 59.1614
- The i-th Eigenvalue λ_{30} is = 53.946
- The i-th Eigenvalue λ_{31} is = 51.8255
- The i-th Eigenvalue λ_{32} is = 48.7164
- The i-th Eigenvalue λ_{33} is = 47.1773
- The i-th Eigenvalue λ_{34} is = 43.4981
- The i-th Eigenvalue λ_{35} is = 37.9749
- The i-th Eigenvalue λ_{36} is = 34.9803
- The i-th Eigenvalue λ_{37} is = 33.7745
- The i-th Eigenvalue λ_{38} is = 31.4042 The i-th Eigenvalue λ_{39} is = 28.9003
- The i-th Eigenvalue λ_{40} is = 27.4461
- The i-th Eigenvalue λ_{41} is = 24.9996
- The i-th Eigenvalue λ_{42} is = 22.9941
- The i-th Eigenvalue λ_{43} is = 20.2956
- The i-th Eigenvalue λ_{44} is = 16.9276
- The i-th Eigenvalue λ_{45} is = 14.8208
- The i-th Eigenvalue λ_{46} is = 13.3272
- The i-th Eigenvalue λ_{47} is = 11.9063
- The i-th Eigenvalue λ_{48} is = 10.0514
- The i-th Eigenvalue λ_{49} is = 9.30551
- The i-th Eigenvalue λ_{50} is = 8.45009
- The i-th Eigenvalue λ_{51} is = 7.27305
- The i-th Eigenvalue λ_{52} is = 5.20547
- The i-th Eigenvalue λ_{53} is = 4.69746
- The i-th Eigenvalue λ_{54} is = 4.30388
- The i-th Eigenvalue λ_{55} is = 3.25927
- The i-th Eigenvalue λ_{56} is = 2.44263
- The i-th Eigenvalue λ_{57} is = 1.99413
- The i-th Eigenvalue λ_{58} is = 1.0508
- The i-th Eigenvalue λ_{59} is = 0.890141
- The i-th Eigenvalue λ_{60} is = 0.53577

The i-th Eigenvalue λ_{61} is = 0.0783394 The i-th Eigenvalue λ_{62} is = 0.00683285

Eigenvalue Log PLOT

Zooming in on the Log Plot so as to Exclude the first eigenvalue gives the following plot:

Logplot of Eigenvalues, excluding λ_1

The approximate linearity of the above plot tells us that the eigenvalues decrease exponentially. If it's nowhere near linear try adjusting the plot range.

```
The First normalized eigenvector is:
                                                              0.674201
The Second normalized eigenvector is:
                                                                0.018693
The Last (n-th) normalized (nonzero) eigenvector is:
 5.01604 \times 10^{-7}
(If statement safecheck): Total[set] = 1. = 1, so the Eigenvalue set is properly normalized
Entropy Analysis
The \alpha-th Renyi Entropy H_{\alpha} -> H_{\theta} is = 4.12713
The \alpha-th Renyi Entropy H_{\alpha} -> H_{1} is = 2.61545
The \alpha-th Renyi Entropy H_{\alpha} -> H_2 is = 1.12674
The \alpha-th Renyi Entropy H_{\alpha} -> H_{3} is = 0.853021
The \alpha-th Renyi Entropy H_{\alpha} -> H_4 is = 0.758331
The \alpha-th Renyi Entropy H_{\alpha} -> H_{5} is = 0.710937
The \alpha-th Renyi Entropy H_{\alpha} -> H_{6} is = 0.682499
The \alpha-th Renyi Entropy H_{\alpha} -> H_7 is = 0.663541
```

The α -th Renyi Entropy H_{α} -> H_{8} is = 0.65

The α -th Renyi Entropy H_{α} -> H_{9} is = 0.639843 The α -th Renyi Entropy H_{α} -> H_{10} is = 0.631944 The α -th Renyi Entropy H $_{\alpha}$ -> H $_{11}$ is = 0.625625 The α -th Renyi Entropy H_{α} -> H_{12} is = 0.620454 The α -th Renyi Entropy H_{α} -> H_{13} is = 0.616145 The α -th Renyi Entropy H_{α} -> H_{14} is = 0.6125 The α -th Renyi Entropy H_{α} -> H_{15} is = 0.609375 The α -th Renyi Entropy H $_{\alpha}$ -> H₁₆ is = 0.606666 The α -th Renyi Entropy H $_{\alpha}$ -> H₁₇ is = 0.604296 The α -th Renyi Entropy H_{α} -> H_{18} is = 0.602205 The α -th Renyi Entropy H_{α} -> H_{19} is = 0.600347 The α -th Renyi Entropy H_{α} -> H_{20} is = 0.598684

Eigen Entropy Analysis for: W = Escherichia phage Sloth, partial genome DNA sequence GenBank: KX534339.1

gene data

W data

Eigenvalue Analysis

```
The number of nonzero eigenvalues is =
                                                   213
The i-th Eigenvalue \lambda_1 is = 105815.
The i-th Eigenvalue \lambda_2 is = 957.176
The i-th Eigenvalue \lambda_3 is = 916.249
The i-th Eigenvalue \lambda_4 is = 905.396
The i-th Eigenvalue \lambda_5 is = 900.35
The i-th Eigenvalue \lambda_6 is = 855.146
The i-th Eigenvalue \lambda_7 is = 839.325
The i-th Eigenvalue \lambda_8 is = 831.716
The i-th Eigenvalue \lambda_9 is = 806.893
The i-th Eigenvalue \lambda_{10} is = 782.207
The i-th Eigenvalue \lambda_{11} is = 762.335
The i-th Eigenvalue \lambda_{12} is = 758.481
The i-th Eigenvalue \lambda_{13} is = 748.259
The i-th Eigenvalue \lambda_{14} is = 729.942
The i-th Eigenvalue \lambda_{15} is = 721.939
The i-th Eigenvalue \lambda_{16} is = 718.208
The i-th Eigenvalue \lambda_{17} is = 700.229
The i-th Eigenvalue \lambda_{18} is = 692.513
The i-th Eigenvalue \lambda_{19} is = 683.066
The i-th Eigenvalue \lambda_{20} is = 663.083
The i-th Eigenvalue \lambda_{21} is = 659.994
The i-th Eigenvalue \lambda_{22} is = 644.282
The i-th Eigenvalue \lambda_{23} is = 639.902
The i-th Eigenvalue \lambda_{24} is = 636.912
The i-th Eigenvalue \lambda_{25} is = 624.275
The i-th Eigenvalue \lambda_{26} is = 609.483
The i-th Eigenvalue \lambda_{27} is = 598.336
The i-th Eigenvalue \lambda_{28} is = 590.004
The i-th Eigenvalue \lambda_{29} is = 583.172
The i-th Eigenvalue \lambda_{30} is = 572.984
The i-th Eigenvalue \lambda_{31} is = 569.251
The i-th Eigenvalue \lambda_{32} is = 563.477
```

The i-th Eigenvalue λ_{33} is = 550.554 The i-th Eigenvalue λ_{34} is = 534.526 The i-th Eigenvalue λ_{35} is = 522.351 The i-th Eigenvalue λ_{36} is = 519.383 The i-th Eigenvalue λ_{37} is = 503.817 The i-th Eigenvalue λ_{38} is = 500.691 The i-th Eigenvalue λ_{39} is = 493.741 The i-th Eigenvalue λ_{40} is = 484.919 The i-th Eigenvalue λ_{41} is = 481.963 The i-th Eigenvalue λ_{42} is = 474.291 The i-th Eigenvalue λ_{43} is = 469.023 The i-th Eigenvalue λ_{44} is = 460.449 The i-th Eigenvalue λ_{45} is = 456.376 The i-th Eigenvalue λ_{46} is = 444.584 The i-th Eigenvalue λ_{47} is = 436.004 The i-th Eigenvalue λ_{48} is = 431.325 The i-th Eigenvalue λ_{49} is = 427.994 The i-th Eigenvalue λ_{50} is = 418.45 The i-th Eigenvalue λ_{51} is = 416.223 The i-th Eigenvalue λ_{52} is = 406.103 The i-th Eigenvalue λ_{53} is = 397.777 The i-th Eigenvalue λ_{54} is = 392.903 The i-th Eigenvalue λ_{55} is = 388.171 The i-th Eigenvalue λ_{56} is = 385.268 The i-th Eigenvalue λ_{57} is = 377.915 The i-th Eigenvalue λ_{58} is = 370.854 The i-th Eigenvalue λ_{59} is = 367.364 The i-th Eigenvalue λ_{60} is = 363.559 The i-th Eigenvalue λ_{61} is = 361.791 The i-th Eigenvalue λ_{62} is = 350.646 The i-th Eigenvalue λ_{63} is = 347.366 The i-th Eigenvalue λ_{64} is = 343.976 The i-th Eigenvalue λ_{65} is = 337.836 The i-th Eigenvalue λ_{66} is = 334.674 The i-th Eigenvalue λ_{67} is = 330.129

The i-th Eigenvalue λ_{68} is = 324.153

- The i-th Eigenvalue λ_{69} is = 316.679
- The i-th Eigenvalue λ_{70} is = 307.634
- The i-th Eigenvalue λ_{71} is = 305.312
- The i-th Eigenvalue λ_{72} is = 300.651
- The i-th Eigenvalue λ_{73} is = 300.304
- The i-th Eigenvalue λ_{74} is = 290.296
- The i-th Eigenvalue λ_{75} is = 286.831
- The i-th Eigenvalue λ_{76} is = 284.018
- The i-th Eigenvalue λ_{77} is = 275.922
- The i-th Eigenvalue λ_{78} is = 270.246
- The i-th Eigenvalue λ_{79} is = 267.623
- The i-th Eigenvalue λ_{80} is = 265.308
- The i-th Eigenvalue λ_{81} is = 258.354
- The i-th Eigenvalue λ_{82} is = 251.602
- The i-th Eigenvalue λ_{83} is = 245.994
- The i-th Eigenvalue λ_{84} is = 242.363
- The i-th Eigenvalue λ_{85} is = 240.236
- The i-th Eigenvalue λ_{86} is = 233.92
- The i-th Eigenvalue λ_{87} is = 228.724
- The i-th Eigenvalue λ_{88} is = 225.89
- The i-th Eigenvalue λ_{89} is = 221.001
- The i-th Eigenvalue λ_{90} is = 218.668
- The i-th Eigenvalue λ_{91} is = 213.382
- The i-th Eigenvalue λ_{92} is = 212.691
- The i-th Eigenvalue λ_{93} is = 210.731
- The i-th Eigenvalue λ_{94} is = 207.089
- The i-th Eigenvalue λ_{95} is = 198.58
- The i-th Eigenvalue λ_{96} is = 194.398
- The i-th Eigenvalue λ_{97} is = 188.377
- The i-th Eigenvalue λ_{98} is = 183.465
- The i-th Eigenvalue λ_{99} is = 181.402
- The i-th Eigenvalue λ_{100} is = 180.283
- The i-th Eigenvalue λ_{101} is = 176.056
- The i-th Eigenvalue λ_{102} is = 170.865
- The i-th Eigenvalue λ_{103} is = 169.764
- The i-th Eigenvalue λ_{104} is = 168.141

The i-th Eigenvalue λ_{105} is = 163.743 The i-th Eigenvalue λ_{106} is = 162.322 The i-th Eigenvalue λ_{107} is = 161.266 The i-th Eigenvalue λ_{108} is = 155.636 The i-th Eigenvalue λ_{109} is = 148.968 The i-th Eigenvalue λ_{110} is = 145.073 The i-th Eigenvalue λ_{111} is = 143.676 The i-th Eigenvalue λ_{112} is = 141.843 The i-th Eigenvalue λ_{113} is = 137.887 The i-th Eigenvalue λ_{114} is = 135.66 The i-th Eigenvalue λ_{115} is = 134.059 The i-th Eigenvalue λ_{116} is = 131.85 The i-th Eigenvalue λ_{117} is = 131.63 The i-th Eigenvalue λ_{118} is = 128.11 The i-th Eigenvalue λ_{119} is = 125.871 The i-th Eigenvalue λ_{120} is = 118.468 The i-th Eigenvalue λ_{121} is = 116.358 The i-th Eigenvalue λ_{122} is = 115.668 The i-th Eigenvalue λ_{123} is = 113.791 The i-th Eigenvalue λ_{124} is = 112.208 The i-th Eigenvalue λ_{125} is = 107.404 The i-th Eigenvalue λ_{126} is = 106.112 The i-th Eigenvalue λ_{127} is = 105.009 The i-th Eigenvalue λ_{128} is = 101.564 The i-th Eigenvalue λ_{129} is = 99.6839 The i-th Eigenvalue λ_{130} is = 98.7898 The i-th Eigenvalue λ_{131} is = 92.5732 The i-th Eigenvalue λ_{132} is = 91.0531 The i-th Eigenvalue λ_{133} is = 89.9294 The i-th Eigenvalue λ_{134} is = 84.8674 The i-th Eigenvalue λ_{135} is = 84.1164 The i-th Eigenvalue λ_{136} is = 81.9354 The i-th Eigenvalue λ_{137} is = 80.955 The i-th Eigenvalue λ_{138} is = 77.9368 The i-th Eigenvalue λ_{139} is = 76.2947

The i-th Eigenvalue λ_{140} is = 73.6796

- The i-th Eigenvalue λ_{141} is = 71.7029
- The i-th Eigenvalue λ_{142} is = 70.0536
- The i-th Eigenvalue λ_{143} is = 66.1184
- The i-th Eigenvalue λ_{144} is = 65.6947
- The i-th Eigenvalue λ_{145} is = 63.7168
- The i-th Eigenvalue λ_{146} is = 62.0176
- The i-th Eigenvalue λ_{147} is = 61.6468
- The i-th Eigenvalue λ_{148} is = 59.377
- The i-th Eigenvalue λ_{149} is = 56.9121
- The i-th Eigenvalue λ_{150} is = 56.274
- The i-th Eigenvalue λ_{151} is = 54.1117
- The i-th Eigenvalue λ_{152} is = 53.1847
- The i-th Eigenvalue λ_{153} is = 49.8341
- The i-th Eigenvalue λ_{154} is = 48.8197
- The i-th Eigenvalue λ_{155} is = 47.5296
- The i-th Eigenvalue λ_{156} is = 46.5257
- The i-th Eigenvalue λ_{157} is = 43.3888
- The i-th Eigenvalue λ_{158} is = 42.4546
- The i-th Eigenvalue λ_{159} is = 38.2819
- The i-th Eigenvalue λ_{160} is = 37.1963
- The i-th Eigenvalue λ_{161} is = 36.437
- The i-th Eigenvalue λ_{162} is = 35.1961
- The i-th Eigenvalue λ_{163} is = 33.8031
- The i-th Eigenvalue λ_{164} is = 32.561
- The i-th Eigenvalue λ_{165} is = 31.6356
- The i-th Eigenvalue λ_{166} is = 29.945
- The i-th Eigenvalue λ_{167} is = 29.9002
- The i-th Eigenvalue λ_{168} is = 28.6454
- The i-th Eigenvalue λ_{169} is = 26.4814
- The i-th Eigenvalue λ_{170} is = 25.9503
- The i-th Eigenvalue λ_{171} is = 25.1992
- The i-th Eigenvalue λ_{172} is = 24.4659
- The i-th Eigenvalue λ_{173} is = 22.3118
- The i-th Eigenvalue λ_{174} is = 21.4294
- The i-th Eigenvalue λ_{175} is = 20.667
- The i-th Eigenvalue λ_{176} is = 20.0219

The i-th Eigenvalue λ_{177} is = 17.7845 The i-th Eigenvalue λ_{178} is = 16.7375 The i-th Eigenvalue λ_{179} is = 14.9323 The i-th Eigenvalue λ_{180} is = 14.4875 The i-th Eigenvalue λ_{181} is = 13.3367 The i-th Eigenvalue λ_{182} is = 12.5614 The i-th Eigenvalue λ_{183} is = 12.1164 The i-th Eigenvalue λ_{184} is = 11.3046 The i-th Eigenvalue λ_{185} is = 10.9525 The i-th Eigenvalue λ_{186} is = 9.85105 The i-th Eigenvalue λ_{187} is = 9.53192 The i-th Eigenvalue λ_{188} is = 8.10915 The i-th Eigenvalue λ_{189} is = 7.60805 The i-th Eigenvalue λ_{190} is = 7.14287 The i-th Eigenvalue λ_{191} is = 6.20801 The i-th Eigenvalue λ_{192} is = 5.61251 The i-th Eigenvalue λ_{193} is = 5.34042 The i-th Eigenvalue λ_{194} is = 5.13908 The i-th Eigenvalue λ_{195} is = 4.22584 The i-th Eigenvalue λ_{196} is = 3.67045 The i-th Eigenvalue λ_{197} is = 3.29192 The i-th Eigenvalue λ_{198} is = 3.05582 The i-th Eigenvalue λ_{199} is = 2.56509 The i-th Eigenvalue λ_{200} is = 1.88898 The i-th Eigenvalue λ_{201} is = 1.61311 The i-th Eigenvalue λ_{202} is = 1.39531 The i-th Eigenvalue λ_{203} is = 1.11775 The i-th Eigenvalue λ_{204} is = 0.95345 The i-th Eigenvalue λ_{205} is = 0.80627

The i-th Eigenvalue λ_{206} is = 0.663343 The i-th Eigenvalue λ_{207} is = 0.39026 The i-th Eigenvalue λ_{208} is = 0.336363 The i-th Eigenvalue λ_{209} is = 0.299751 The i-th Eigenvalue λ_{210} is = 0.10804 The i-th Eigenvalue λ_{211} is = 0.0493492 The i-th Eigenvalue λ_{212} is = 0.0111244

Eigenvalue Log PLOT

Zooming in on the Log Plot so as to Exclude the first eigenvalue gives the following plot:

Logplot of Eigenvalues, excluding λ_1

The approximate linearity of the above plot tells us that the eigenvalues decrease exponentially. If it's nowhere near linear try adjusting the plot range.

```
The First normalized eigenvector is: 0.670945
The Second normalized eigenvector is:
                                          0.00606922
The Last (n-th) normalized (nonzero) eigenvector is:
8.42381 \times 10^{-9}
```

(If statement safecheck): Total[set] = 1. = 1, so the Eigenvalue set is properly normalized

Entropy Analysis

```
The \alpha-th Renyi Entropy H_{\alpha} -> H_{\theta} is = 5.36129
The \alpha-th Renyi Entropy H_{\alpha} -> H_{1} is = 3.21671
The \alpha-th Renyi Entropy H_{\alpha} -> H_2 is = 1.14817
The \alpha-th Renyi Entropy H_{\alpha} -> H_{3} is = 0.86359
The \alpha-th Renyi Entropy H_{\alpha} -> H_4 is = 0.767644
The \alpha-th Renyi Entropy H_{\alpha} -> H_{5} is = 0.719666
The \alpha-th Renyi Entropy H_{\alpha} -> H_{6} is = 0.69088
The \alpha-th Renyi Entropy H_{\alpha} -> H_{7} is = 0.671688
The \alpha-th Renyi Entropy H_{\alpha} -> H_{8} is = 0.657981
The \alpha-th Renyi Entropy H_{\alpha} -> H_{9} is = 0.6477
The \alpha-th Renyi Entropy H_{\alpha} -> H<sub>10</sub> is = 0.639703
The \alpha-th Renyi Entropy H_{\alpha} -> H_{11} is = 0.633306
The \alpha-th Renyi Entropy H_{\alpha} -> H<sub>12</sub> is = 0.628072
The \alpha-th Renyi Entropy H_{\alpha} -> H_{13} is = 0.623711
The \alpha-th Renyi Entropy H_{\alpha} -> H_{14} is = 0.62002
The \alpha-th Renyi Entropy H_{\alpha} -> H_{15} is = 0.616857
The \alpha-th Renyi Entropy H_{\alpha} -> H_{16} is = 0.614115
The \alpha-th Renyi Entropy H_{\alpha} -> H<sub>17</sub> is = 0.611716
The \alpha-th Renyi Entropy H_{\alpha} -> H_{18} is = 0.6096
The \alpha-th Renyi Entropy H_{\alpha} -> H_{19} is = 0.607718
The \alpha-th Renyi Entropy H_{\alpha} -> H_{20} is = 0.606035
```


Logplot of H_{α} , excluding H_1

Eigen Entropy Analysis for: W = Canis lupus familiaris breed boxer unplaced genomic scaffold, CanFam3.1, whole genome shotgun sequence DNA sequence NCBI Reference Sequence: NW_ 003726289.1

gene data

W data

Eigenvalue Analysis

```
The number of nonzero eigenvalues is =
                                                   250
The i-th Eigenvalue \lambda_1 is = 146836.
The i-th Eigenvalue \lambda_2 is = 1306.88
The i-th Eigenvalue \lambda_3 is = 1046.52
The i-th Eigenvalue \lambda_4 is = 989.349
The i-th Eigenvalue \lambda_5 is = 948.989
The i-th Eigenvalue \lambda_6 is = 936.011
The i-th Eigenvalue \lambda_7 is = 925.724
The i-th Eigenvalue \lambda_8 is = 903.262
The i-th Eigenvalue \lambda_9 is = 884.141
The i-th Eigenvalue \lambda_{10} is = 882.386
The i-th Eigenvalue \lambda_{11} is = 864.526
The i-th Eigenvalue \lambda_{12} is = 861.245
The i-th Eigenvalue \lambda_{13} is = 832.796
The i-th Eigenvalue \lambda_{14} is = 822.954
The i-th Eigenvalue \lambda_{15} is = 805.522
The i-th Eigenvalue \lambda_{16} is = 800.687
The i-th Eigenvalue \lambda_{17} is = 789.906
The i-th Eigenvalue \lambda_{18} is = 765.827
The i-th Eigenvalue \lambda_{19} is = 761.63
The i-th Eigenvalue \lambda_{20} is = 743.741
The i-th Eigenvalue \lambda_{21} is = 735.711
The i-th Eigenvalue \lambda_{22} is = 728.508
The i-th Eigenvalue \lambda_{23} is = 720.587
The i-th Eigenvalue \lambda_{24} is = 700.051
```

- The i-th Eigenvalue λ_{25} is = 690.307 The i-th Eigenvalue λ_{26} is = 685.544 The i-th Eigenvalue λ_{27} is = 670.109
- The i-th Eigenvalue λ_{28} is = 662.501
- The i-th Eigenvalue λ_{29} is = 651.427
- The i-th Eigenvalue λ_{30} is = 646.796
- The i-th Eigenvalue λ_{31} is = 635.943
- The i-th Eigenvalue λ_{32} is = 621.01
- The i-th Eigenvalue λ_{33} is = 618.785
- The i-th Eigenvalue λ_{34} is = 612.251
- The i-th Eigenvalue λ_{35} is = 603.912
- The i-th Eigenvalue λ_{36} is = 598.255
- The i-th Eigenvalue λ_{37} is = 583.339
- The i-th Eigenvalue λ_{38} is = 571.945
- The i-th Eigenvalue λ_{39} is = 558.588
- The i-th Eigenvalue λ_{40} is = 556.799
- The i-th Eigenvalue λ_{41} is = 550.737
- The i-th Eigenvalue λ_{42} is = 541.767
- The i-th Eigenvalue λ_{43} is = 538.525
- The i-th Eigenvalue λ_{44} is = 525.347
- The i-th Eigenvalue λ_{45} is = 518.844
- The i-th Eigenvalue λ_{46} is = 509.215
- The i-th Eigenvalue λ_{47} is = 503.891
- The i-th Eigenvalue λ_{48} is = 502.728
- The i-th Eigenvalue λ_{49} is = 493.412
- The i-th Eigenvalue λ_{50} is = 483.86
- The i-th Eigenvalue λ_{51} is = 479.323
- The i-th Eigenvalue λ_{52} is = 476.931
- The i-th Eigenvalue λ_{53} is = 467.336
- The i-th Eigenvalue λ_{54} is = 461.696
- The i-th Eigenvalue λ_{55} is = 458.497
- The i-th Eigenvalue λ_{56} is = 450.6
- The i-th Eigenvalue λ_{57} is = 449.412
- The i-th Eigenvalue λ_{58} is = 445.475
- The i-th Eigenvalue λ_{59} is = 436.798
- The i-th Eigenvalue λ_{60} is = 433.725

The i-th Eigenvalue λ_{61} is = 427.012 The i-th Eigenvalue λ_{62} is = 421.152 The i-th Eigenvalue λ_{63} is = 417.051 The i-th Eigenvalue λ_{64} is = 411.022 The i-th Eigenvalue λ_{65} is = 406.557 The i-th Eigenvalue λ_{66} is = 398.028 The i-th Eigenvalue λ_{67} is = 393.657 The i-th Eigenvalue λ_{68} is = 388.071 The i-th Eigenvalue λ_{69} is = 379.457 The i-th Eigenvalue λ_{70} is = 374.676 The i-th Eigenvalue λ_{71} is = 370.341 The i-th Eigenvalue λ_{72} is = 368.463 The i-th Eigenvalue λ_{73} is = 367.729 The i-th Eigenvalue λ_{74} is = 354.797 The i-th Eigenvalue λ_{75} is = 353.678 The i-th Eigenvalue λ_{76} is = 347.185 The i-th Eigenvalue λ_{77} is = 346.117 The i-th Eigenvalue λ_{78} is = 342.507 The i-th Eigenvalue λ_{79} is = 332.422 The i-th Eigenvalue λ_{80} is = 328.09 The i-th Eigenvalue λ_{81} is = 322.547 The i-th Eigenvalue λ_{82} is = 321.131 The i-th Eigenvalue λ_{83} is = 319.316 The i-th Eigenvalue λ_{84} is = 316.465 The i-th Eigenvalue λ_{85} is = 313.39 The i-th Eigenvalue λ_{86} is = 303.915 The i-th Eigenvalue λ_{87} is = 302.589 The i-th Eigenvalue λ_{88} is = 299.944 The i-th Eigenvalue λ_{89} is = 292.957 The i-th Eigenvalue λ_{90} is = 289.736 The i-th Eigenvalue λ_{91} is = 284.3 The i-th Eigenvalue λ_{92} is = 279.601 The i-th Eigenvalue λ_{93} is = 276.434 The i-th Eigenvalue λ_{94} is = 271.025 The i-th Eigenvalue λ_{95} is = 268.262

The i-th Eigenvalue λ_{96} is = 262.671

- The i-th Eigenvalue λ_{97} is = 261.698
- The i-th Eigenvalue λ_{98} is = 252.871
- The i-th Eigenvalue λ_{99} is = 250.778
- The i-th Eigenvalue λ_{100} is = 250.301
- The i-th Eigenvalue λ_{101} is = 246.568
- The i-th Eigenvalue λ_{102} is = 241.909
- The i-th Eigenvalue λ_{103} is = 237.712
- The i-th Eigenvalue λ_{104} is = 236.222
- The i-th Eigenvalue λ_{105} is = 232.119
- The i-th Eigenvalue λ_{106} is = 230.056
- The i-th Eigenvalue λ_{107} is = 226.329
- The i-th Eigenvalue λ_{108} is = 222.119
- The i-th Eigenvalue λ_{109} is = 215.347
- The i-th Eigenvalue λ_{110} is = 214.223
- The i-th Eigenvalue λ_{111} is = 209.153
- The i-th Eigenvalue λ_{112} is = 207.399
- The i-th Eigenvalue λ_{113} is = 205.644
- The i-th Eigenvalue λ_{114} is = 202.342
- The i-th Eigenvalue λ_{115} is = 200.882
- The i-th Eigenvalue λ_{116} is = 196.973
- The i-th Eigenvalue λ_{117} is = 193.528
- The i-th Eigenvalue λ_{118} is = 189.754
- The i-th Eigenvalue $\,\lambda_{\text{119}}$ is = 186.81
- The i-th Eigenvalue λ_{120} is = 185.422
- The i-th Eigenvalue λ_{121} is = 180.679
- The i-th Eigenvalue λ_{122} is = 177.161
- The i-th Eigenvalue λ_{123} is = 172.922
- The i-th Eigenvalue λ_{124} is = 167.751
- The i-th Eigenvalue λ_{125} is = 166.002
- The i-th Eigenvalue λ_{126} is = 164.993
- The i-th Eigenvalue λ_{127} is = 163.628
- The i-th Eigenvalue λ_{128} is = 161.594
- The i-th Eigenvalue λ_{129} is = 151.851
- The i-th Eigenvalue λ_{130} is = 150.909
- The i-th Eigenvalue λ_{131} is = 147.676
- The i-th Eigenvalue λ_{132} is = 145.064

The i-th Eigenvalue λ_{133} is = 141.309 The i-th Eigenvalue λ_{134} is = 140.245 The i-th Eigenvalue λ_{135} is = 136.668 The i-th Eigenvalue λ_{136} is = 134.436 The i-th Eigenvalue λ_{137} is = 133.609 The i-th Eigenvalue λ_{138} is = 131.405 The i-th Eigenvalue λ_{139} is = 129.734 The i-th Eigenvalue λ_{140} is = 126.919 The i-th Eigenvalue λ_{141} is = 124.485 The i-th Eigenvalue λ_{142} is = 120.282 The i-th Eigenvalue λ_{143} is = 119.074 The i-th Eigenvalue λ_{144} is = 117.26 The i-th Eigenvalue λ_{145} is = 116.993 The i-th Eigenvalue λ_{146} is = 112.496 The i-th Eigenvalue λ_{147} is = 111.558 The i-th Eigenvalue λ_{148} is = 106.309 The i-th Eigenvalue λ_{149} is = 105.905 The i-th Eigenvalue λ_{150} is = 101.958 The i-th Eigenvalue λ_{151} is = 101.414 The i-th Eigenvalue λ_{152} is = 98.4873 The i-th Eigenvalue λ_{153} is = 96.6594 The i-th Eigenvalue λ_{154} is = 94.0711 The i-th Eigenvalue λ_{155} is = 91.4456 The i-th Eigenvalue λ_{156} is = 90.8642 The i-th Eigenvalue λ_{157} is = 87.8895 The i-th Eigenvalue λ_{158} is = 84.8424 The i-th Eigenvalue λ_{159} is = 83.987 The i-th Eigenvalue λ_{160} is = 83.6707 The i-th Eigenvalue λ_{161} is = 81.5147 The i-th Eigenvalue λ_{162} is = 80.0057 The i-th Eigenvalue λ_{163} is = 76.5473 The i-th Eigenvalue λ_{164} is = 75.4132 The i-th Eigenvalue λ_{165} is = 74.0153 The i-th Eigenvalue λ_{166} is = 72.0788

The i-th Eigenvalue λ_{167} is = 71.1526 The i-th Eigenvalue λ_{168} is = 69.8712

- The i-th Eigenvalue λ_{169} is = 66.6794
- The i-th Eigenvalue λ_{170} is = 65.1462
- The i-th Eigenvalue λ_{171} is = 64.5244
- The i-th Eigenvalue λ_{172} is = 62.4191
- The i-th Eigenvalue λ_{173} is = 56.8682
- The i-th Eigenvalue λ_{174} is = 56.7442
- The i-th Eigenvalue λ_{175} is = 56.6489
- The i-th Eigenvalue λ_{176} is = 55.1069
- The i-th Eigenvalue λ_{177} is = 52.5971
- The i-th Eigenvalue λ_{178} is = 51.2407
- The i-th Eigenvalue λ_{179} is = 49.3241
- The i-th Eigenvalue λ_{180} is = 49.1159
- The i-th Eigenvalue λ_{181} is = 47.5609
- The i-th Eigenvalue λ_{182} is = 46.1567
- The i-th Eigenvalue λ_{183} is = 45.1553
- The i-th Eigenvalue λ_{184} is = 44.0564
- The i-th Eigenvalue λ_{185} is = 41.7157
- The i-th Eigenvalue λ_{186} is = 40.7812
- The i-th Eigenvalue λ_{187} is = 40.0958
- The i-th Eigenvalue λ_{188} is = 38.457
- The i-th Eigenvalue λ_{189} is = 36.9389
- The i-th Eigenvalue λ_{190} is = 35.6729
- The i-th Eigenvalue $\,\lambda_{191}$ is = 34.704
- The i-th Eigenvalue λ_{192} is = 33.4259
- The i-th Eigenvalue λ_{193} is = 32.6633
- The i-th Eigenvalue λ_{194} is = 31.1053
- The i-th Eigenvalue λ_{195} is = 30.0484
- The i-th Eigenvalue λ_{196} is = 28.6647
- The i-th Eigenvalue λ_{197} is = 27.6615
- The i-th Eigenvalue λ_{198} is = 26.7026
- The i-th Eigenvalue λ_{199} is = 26.1678
- The i-th Eigenvalue λ_{200} is = 25.3917
- The i-th Eigenvalue λ_{201} is = 23.443
- The i-th Eigenvalue λ_{202} is = 21.8123
- The i-th Eigenvalue λ_{203} is = 21.3548
- The i-th Eigenvalue λ_{204} is = 20.8615

The i-th Eigenvalue λ_{205} is = 19.6617 The i-th Eigenvalue λ_{206} is = 19.498 The i-th Eigenvalue λ_{207} is = 18.3371 The i-th Eigenvalue λ_{208} is = 17.4305 The i-th Eigenvalue λ_{209} is = 16.5531 The i-th Eigenvalue λ_{210} is = 16.1394 The i-th Eigenvalue λ_{211} is = 15.4673 The i-th Eigenvalue λ_{212} is = 15.4197 The i-th Eigenvalue λ_{213} is = 14.699 The i-th Eigenvalue λ_{214} is = 13.8092 The i-th Eigenvalue λ_{215} is = 12.7673 The i-th Eigenvalue λ_{216} is = 11.9365 The i-th Eigenvalue λ_{217} is = 11.3576 The i-th Eigenvalue λ_{218} is = 10.7667 The i-th Eigenvalue λ_{219} is = 10.3835 The i-th Eigenvalue λ_{220} is = 9.55166 The i-th Eigenvalue λ_{221} is = 9.27497 The i-th Eigenvalue λ_{222} is = 7.92206 The i-th Eigenvalue λ_{223} is = 7.09931 The i-th Eigenvalue λ_{224} is = 6.62117 The i-th Eigenvalue λ_{225} is = 6.39553 The i-th Eigenvalue λ_{226} is = 5.75278 The i-th Eigenvalue λ_{227} is = 5.45777 The i-th Eigenvalue λ_{228} is = 5.03591 The i-th Eigenvalue λ_{229} is = 4.36342 The i-th Eigenvalue λ_{230} is = 4.08928 The i-th Eigenvalue λ_{231} is = 3.6739 The i-th Eigenvalue λ_{232} is = 3.50455 The i-th Eigenvalue λ_{233} is = 3.00849 The i-th Eigenvalue λ_{234} is = 2.73564 The i-th Eigenvalue λ_{235} is = 2.51786 The i-th Eigenvalue λ_{236} is = 2.14858 The i-th Eigenvalue λ_{237} is = 1.92828 The i-th Eigenvalue λ_{238} is = 1.53738 The i-th Eigenvalue λ_{239} is = 1.29642

The i-th Eigenvalue λ_{240} is = 1.21172

```
The i-th Eigenvalue \lambda_{241} is = 0.976616
The i-th Eigenvalue \lambda_{242} is = 0.747839
The i-th Eigenvalue \lambda_{243} is = 0.526189
The i-th Eigenvalue \lambda_{244} is = 0.507367
The i-th Eigenvalue \lambda_{245} is = 0.284191
The i-th Eigenvalue \lambda_{246} is = 0.147904
The i-th Eigenvalue \lambda_{247} is = 0.121052
The i-th Eigenvalue \lambda_{248} is = 0.0399042
The i-th Eigenvalue \lambda_{249} is = 0.0297408
The i-th Eigenvalue \lambda_{250} is = 0.000782993
```


Eigenvalue Log PLOT

Zooming in on the Log Plot so as to Exclude the first eigenvalue gives the following plot:

The approximate linearity of the above plot tells us that the eigenvalues decrease exponentially. If it's nowhere near linear try adjusting the plot range.

```
The First normalized eigenvector is:
                                         0.694847
The Second normalized eigenvector is:
                                          0.00618429
The Last (n-th) normalized (nonzero) eigenvector is:
3.70521 \times 10^{-9}
```

(If statement safecheck): Total[set] = 1. = 1, so the Eigenvalue set is properly normalized

Entropy Analysis

```
The \alpha-th Renyi Entropy H_{\alpha} -> H_{\theta} is = 5.52146
The \alpha-th Renyi Entropy H_{\alpha} -> H_{1} is = 3.08734
The \alpha-th Renyi Entropy H_{\alpha} -> H_2 is = 1.04815
The \alpha-th Renyi Entropy H_{\alpha} -> H_3 is = 0.787844
The \alpha-th Renyi Entropy H_{\alpha} -> H_4 is = 0.700311
The \alpha-th Renyi Entropy H_{\alpha} -> H_{5} is = 0.656541
The \alpha-th Renyi Entropy H_{\alpha} -> H_{6} is = 0.63028
The \alpha-th Renyi Entropy H_{\alpha} -> H_{7} is = 0.612772
The \alpha-th Renyi Entropy H_{\alpha} -> H_{8} is = 0.600266
The \alpha-th Renyi Entropy H_{\alpha} -> H_{9} is = 0.590887
The \alpha-th Renyi Entropy H_{\alpha} -> H_{10} is = 0.583592
The \alpha-th Renyi Entropy H_{\alpha} -> H_{11} is = 0.577756
The \alpha-th Renyi Entropy H_{\alpha} -> H_{12} is = 0.572982
The \alpha-th Renyi Entropy H_{\alpha} -> H_{13} is = 0.569003
```

The α -th Renyi Entropy H $_{\alpha}$ -> H $_{14}$ is = 0.565636 The $\alpha-$ th Renyi Entropy H_{α} -> H_{15} is = 0.56275 The α -th Renyi Entropy H $_{\alpha}$ -> H $_{16}$ is = 0.560249 The α -th Renyi Entropy H_{α} -> H_{17} is = 0.55806 The α -th Renyi Entropy H $_{\alpha}$ -> H $_{18}$ is = 0.556129 The α -th Renyi Entropy H_{α} -> H_{19} is = 0.554413 The α -th Renyi Entropy H $_{\alpha}$ -> H $_{20}$ is = 0.552877

$Log_2[H_\alpha]$

Logplot of H_{α} , excluding H_1

