第一章:金属材料的塑性性质

一、材的性质		压 适	①弹性与塑性的本质区别不在于应力一应变关系是否线性,而在于卸载后变形是否可恢复 ②低碳钢屈服阶段很长,铝、铜、某些高强度合金钢没有明显的屈服阶段(此时取 0.2% 塑性						
二、塑性变形的	3、滑移	多系:	每个滑移面和		体心立方一:	12;	,称为消移方问; 面心立方一48;密排六方一3) 力分量达到剪切屈服应力 $ au_{Y}$;		
物理 基础	位错	刃形	泛位错: 位错运	动方向与 F 平行; 动方向与 F 垂直。	位错在晶体	体内的运动是塑性变形的根源; 时位错型聚集、杂质原则阻碍滑移造成强化。			
三 向 伸 时 性 失 <mark>稳</mark>		-		义应力: $\sigma=F/A_0$ 真应力: $\sigma=F/A$ 程应变: $\varepsilon=(l-l_0)/l_0$ 然应变/对数应变: $\varepsilon=\ln(1+\varepsilon)=\ln(l/l_0)$			采用应变的对数定义的优点: 1 、可以对应变使用加法: 2 、体积不可压缩条件: $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0$ 拉伸失稳条件: $d\sigma/d\varepsilon = \sigma$ (此时 $d\sigma/d\varepsilon = 0$)		
	1、材料 性行为 本假	基	2、材料具 ² 3、变形前本 4、重新加载 5、应变可分 6、塑性变形	塑性行为与时间、温度无关——研究常温静载下的材料;有无限的韧性; 材料是初始各向同性的,且拉伸、压缩的真应力—自然应变曲线一致 战后的屈服应力(后继屈服应力)=卸载前的应力 分解为弹性和塑性两部分: $\varepsilon=\varepsilon^e+\varepsilon^p$ 必是在体积不变的情况下产生的,静水压力不产生塑性变形; 调变化时有: $E(弹性模量)>E_s(割线模量)\geq E_t(切线模量)\geq 0$					
四、材 料塑 性行	-		简化模型				强化@理想弹塑性⑤弹一线性强化 1) n=0: 刚塑性材料;		
为理想 化	2、应力、 应变曲线 的理想化 模型		经验公式	$\sigma = \sigma_{Y} + H \varepsilon^{n}$ $(0 \le n \le 1)$ 修正的鲁得维克式: $\sigma = \begin{cases} E \varepsilon & (\exists \varepsilon \le \sigma_{Y} / E) \\ \sigma_{Y} (E \varepsilon / \sigma_{Y})^{n} (\exists \varepsilon \ge \sigma_{Y} / E) \end{cases}$ 普拉格表达式:			 2) 0<n≤1: li="" 刚线性强化材料<=""> 1) 弹性范围内用 Hooke 定律表达; 2) 塑性范围内用幂函数表达。 1) 该曲线在 ε = 0 处的斜率为 Ε; </n≤1:>		
	う 구로 //	レ ば		$\sigma = \sigma_Y \tanh(E\varepsilon/\sigma_Y)$ 不考虑包辛格效应;			2) 应力随应变的增加而趋于 σ_{y} 。		
	3、强化模型			考虑包辛格效应且总的弹性 模型:介于上述两者之间	生范围大小艺	不变	E (卸载时正负弹性与正常正负弹性);		

第二章:结构塑性性态的基本特征

 1、理想	①弹性阶段	方程: 平衡方程、物理方程、变形协调方程 $\Rightarrow F_e$ -弹性极限载荷						
1、 _理 恕	②约束塑性的							
材料的	③塑性流动阶	信构将产生无限制的塑性变形 $\Rightarrow F_{Y}$ - 塑性极限荷载(表征了结构的极限承载能力)						
三杆桁	④卸载	服从弹性规律,静不定系统残余应变中可以含有弹性应变						
架	⑤重复加载	挖掘出来的是结构承载潜力,而不是材料承载潜力						
2、线性强化弹塑性材料的三杆桁架	$\frac{F_1}{F_y} = 1 + \frac{1}{1 + \sqrt{2}}$ $\frac{F}{L}$ $\int_{-L}^{E} \frac{E_p/E = 0.1 \text{lpt}}{E_p/E = 0.1 \text{lpt}}$ $\frac{F_1/F_y = 1.041}{E_p/E = 0.1 \text{lpt}}$ 考虑材料强化与理想塑性极限载荷差别不大 F_1 一并不是桁架承载能力的极限,由强化材料制成的结构不会发生塑性流动,也不存在塑性极限载荷。 强化材料制成的桁架也有三个变形阶段:弹性阶段、约束塑性阶段、自由塑性变形阶段							
3、几何 大变形 对桁架 承载能 力的影 响	几何大变形对结构承载能力可能产生重大影响,一旦结构进入塑性流动阶段(对理想塑性材料)或自由塑性塑性变形阶段(对强化材料制成的结构),几何大变形对于结构的弹塑性性态来说,一般是一个不可忽略的因素,甚至是一个起决定性作用的因素。							
4、加载 路径对 桁架内 的应变 的影响	{非比例加载 比例加载 ⇒ {1、极限载荷值不因加载路径的不同而改变; 2、达到塑性极限载荷时,所得杆件中{应力相同 应变、位移不同 3、塑性变形的加载历史很重要							
	载荷空间	以结构上作用的各独立外载作为坐标轴形成的空间称作载荷空间。						
	①屈服曲线	初始弹性极限曲线,由 $ \sigma_1 \le \sigma_Y; \sigma_2 \le \sigma_Y; \sigma_3 \le \sigma_Y$ 确定						
5,	②极限曲线	发生无限制的塑性流动:形成塑性极限曲线一极限曲线						
载面屈线限和曲线	③后继屈服 曲线	選牌性极限曲线:塑性变形后重新加载得到的屈服曲线,残余应力与新载荷加; 1. 材料的后继屈服曲线与先前的变形历史有关; 2. 塑性变形后的屈服曲线在受载方向变尖,屈服载荷提高,与此相反,在加载方向相反的一侧变钝,且屈服载荷降低;包辛格效应来源类似:晶粒的不同方向上产生不同的滑移; 3、初始、后继屈服极限均不能超出极限曲线之外(极限曲线是所有后继屈服曲线的外包络线); 4、三种屈服曲线都是外凸的曲线。						

	1、应 力张 量及	柯西定理:法线为 N 的斜面上受力—— $S_{\scriptscriptstyle N1}$ = $\sigma_{\scriptscriptstyle ij}l_{\scriptscriptstyle j}$ (张量)								
		应力分解: $\sigma_{ij} = \sigma_m \delta_{ij} + s_{ij} =$ 应力球张量+应力偏张量								
	其分 解	塑性状态后: 体积变形是弹性的,只与 <u>应力球张量</u> 有关,形状改变只与 <u>应力偏张量</u> 有关								
		主平面: $S_N(力)$ 与N(法线)重合 \Rightarrow $S_{Ni} = \lambda l_i (\lambda - \frac{1}{2} \frac{1}$								
	2 、主 应力 和应 力不	方程: $\left \sigma_{ij} - \lambda \delta_{ij}\right = 0 \Rightarrow \lambda^3 - J_1 \lambda^2 - J_2 \lambda - J_3 = 0$ 其中 $\begin{cases} J_1 = \sigma_{kk} = \sigma_1 + \sigma_2 + \sigma_3 \\ J_2 = -\frac{1}{2} (\sigma_{ii} \sigma_{kk} - \sigma_{ik} \sigma_{ki}) = -(\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1) \\ J_3 = \left \sigma_{ij}\right = \sigma_1 \sigma_2 \sigma_3 \end{cases}$								
	変量	应力偏张量: $s_j = \sigma_j - \sigma_m$ 不变量 $J_2' = \begin{cases} s_{ij}s_{ij}/2 \\ -(s_1s_2 + s_2s_3 + s_3s_1) = (s_1^2 + s_2^2 + s_3^2)/2 \\ [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]/6 \end{cases}$								
		等斜面(八面体面):此平面的法线与三个应力主轴夹角相等,任一点共有8个此面;								
	3、等 斜面	八面体面受力: $ F_8 ^2 = (\sigma_1 l_1)^2 + (\sigma_2 l_2)^2 + (\sigma_3 l_3)^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2$								
	上的 应力	法线 N 方向受力: $\left \sigma_{8}\right ^{2} = \sigma_{1}l_{1}^{2} + \sigma_{2}l_{2}^{2} + \sigma_{3}l_{3}^{2} = \left(\sigma_{1} + \sigma_{2} + \sigma_{3}\right) / 3 = \sigma_{m} = J_{1}$								
一、 应		八面体上的剪应力: $\tau_8 = \sqrt{ F_8 ^2 - \sigma_8^2} = \sqrt{2J_2'/3} = \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}/3$								
力 分		金属材料的屈服条件主要取决于应力偏张量的第二不变量 J_2 '(应力平方的量纲)								
析	4 、等 效应	应力强度=等效应力: $J_2' = \sigma^2/3 \Rightarrow \overline{\sigma} = \sqrt{3J_2'} = \frac{1}{\sqrt{2}}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}$								
	力	剪应力强度= <mark>等效剪应力</mark> (由纯剪切 $\sigma_1 = \tau, \sigma_2 = 0, \sigma_3 = -\tau$ 得出):								
		$ \frac{1}{\tau} = \sqrt{J_2'} = \frac{1}{\sqrt{6}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} $ 莫 ①定义:在 σ - τ 平面上以(σ , 0)三点中任意两点为直径端点,可做三个莫尔圆								
	5、三	尔 ②主剪应力:三个圆的三个半径,最大者为最大剪应力;								
	向 尔 和 德 数	圆 ③移轴后的三向莫尔圆正是描述应力偏张量的三向 Mohr 圆.								
	6、 应 力空 间和	①应力空间:一点的应力状态可以用 9 维或 6 维应力空间中的一点来表示; ②主应力空间:塑性理论→各项同性→只考虑应力大小(忽略方向)→主应力空间 L直线:主应力空间中过原点并与坐标轴成等角的直线(静水压力状态——不产生塑性变形); π平面:主应力空间中过原点而与直线 L 相垂直的平面(只有应力偏张量、不引起体积改变)。								
	主应力空间	 主应力空间中任一点 P 向量可表示为:								

第三章-2:应变分析

	1、Cauchy 关系(张量式): $\varepsilon_{ij}=(\mu_{i,j}+\mu_{j,i})/2$							
	$2, \ \varepsilon_{xy}, \ \varepsilon_{yz}$	$_{z}$ 、 ε_{zx} 与工程剪应变 γ_{xy} 、 γ_{yz} 、 γ_{zx} 相	差一半⇒关系式能统一用张量表示					
一、 位移 与应	3、描述变	Lagrange 法: 在物体变形前的初如	格林(green)应变张量: $\varepsilon_{ij} = (\mu_{i,j} + \mu_{j,i} + \mu_{k,i} \mu_{k,j})/2$					
变的 关系	形的两种方法	中描述	在小变形情况下用 Cauchy 关系式代替格林应 变张量					
		Euler 法: 在物体变形后的瞬时坐	标中描述					
=,	1、分解	$ \varepsilon_{ij} = \varepsilon_m \delta_{ij} + e_{ij} = $ 应变球张量+应变	偏张量=体积改变+形状改变					
应变	2 了亦目	应变张量不变量: I_1 、 I_2 、 I_3 (类例	以应力张量不变量)					
张量的分	2、不变量	应变偏张量不变量: I ₁ '、I ₂ '、I ₃ '	(类似应力偏张量不变量)					
解应张的变量不量	3、偏张量 进一步分 解	$I_1' = 0 \Rightarrow \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{12} & e_{22} & e_{23} \\ e_{13} & e_{23} & e_{33} \end{bmatrix} = \begin{bmatrix} e_{11} & 0 & 0 \\ 0 & -e_{11} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \cdots \begin{bmatrix} 0 & 0 & 0 \\ 0 & e_{23} \\ 0 & e_{23} & 0 \end{bmatrix} \Rightarrow \begin{pmatrix} \dot{\text{De}}$ (应变偏张量 e_{ij} 只与材料) 单元体的剪切变形有关)						
	1、等斜面	[正应变: $\varepsilon_8 = (\varepsilon_1 + \varepsilon_2 + \varepsilon_3) / 3$] 剪应变: $\gamma_8 = 2\varepsilon_8 = 2\sqrt{(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2} / 3 = \sqrt{8I_2 / 3}$						
	2、等效应 变(应变 强度)	简单拉伸: $\varepsilon_1 = \varepsilon$, $\varepsilon_2 = \varepsilon_3 = -\varepsilon/2$ (材料不可压缩) $\Rightarrow I_2' = 3\varepsilon/4$						
三、效应变		等效应变: $\overline{\varepsilon} = \sqrt{4I_2/3} = \sqrt{2[(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2]}/3 = \sqrt{2e_{ij}e_{ij}/3}$						
和洛	3、等效剪 应变(剪	纯剪切: $\varepsilon_1 = -\varepsilon_3 = \gamma/2, \varepsilon_2 = 0 \Rightarrow I_2' = \gamma/4$						
德 应 变 参 数	应变强度)	等效剪应变: $\overline{\gamma} = 2\sqrt{I_2'} = \sqrt{3}\varepsilon$						
	4、Mohr	应变圆 略~~~						
	应变圆与 Lode 应 变参数	Lode 应 变参数 $\mu_{\varepsilon} = \frac{2\varepsilon_{2} - \varepsilon_{1} - \varepsilon_{3}}{\varepsilon_{1} - \varepsilon_{3}} \begin{cases} \text{单向} \\ \text{纯剪} \end{cases}$	泣伸: μ_{ε} =-1, θ_{σ} =-30° 刀: μ_{ε} =0, θ_{σ} =0 压缩: μ_{ε} =1, θ_{σ} =30°					
四、	1、应变率		$+du_{j,i})/2 = (v_{i,j} + v_{j,i})dt/2$					
应变	张量	对每一瞬时状态进行计算,而不是按	初始位置计算;这样定义的应变率具有普适性。 					
率 张 量 和 应 变	2、应变增	① 按瞬 $d\varepsilon_{ij} = (du_{i,j} + du_{j,i})/2$ 时计算 (正规计算)	大变形: $d\varepsilon_{ij} \neq d(\varepsilon_{ij})$ 小变形: $d\varepsilon_{ij} = d(\varepsilon_{ij})$ 小变形、各分量比例变化: $d\varepsilon_j = d(\varepsilon_j)$ -主应变					
增量 张量	量张量	② 按初 始计算 $d(\varepsilon_{ij}) = \varepsilon_{ij}(t + \Delta t) - \varepsilon_{ij}(t)$						

第四章:屈服条件

一. 初始屈服		料初始弹性状态的时,该点处的应力。			-). –	一在外载作用下,物	加体内某一点开始产			
	2、屈服条件	Φ $(\sigma_{ij}, \varepsilon_{ij}, i, j, i)$) =0 -	→在常温下且	.不考	虑时间效应 $\Rightarrow F(\sigma_{ij})$	=0-(屈服曲面)			
	3、屈服曲线	屈服曲面与 π 平面的交线是一条封闭曲线, 称为屈服曲线 C。								
条件	4、π平面 参数	$\begin{cases} x_s = (\sigma_1 - \sigma_3) / \sqrt{2} \\ y_s = (\sqrt{2}\sigma_2 - \sigma_1 - \sigma_2) \end{cases}$	$\begin{cases} x_s = (\sigma_1 - \sigma_3) / \sqrt{2} \\ y_s = (\sqrt{2}\sigma_2 - \sigma_1 - \sigma_3) / \sqrt{6} \end{cases} \Rightarrow \begin{cases} r_\sigma = \sqrt{x_s^2 + y_s^2} = \sqrt{2J_2'} = \sqrt{2}\tau = \sqrt{\frac{2}{3}}\sigma \\ \theta_\sigma = \arctan(y_s / x_s) = \arctan(\mu_\sigma / \sqrt{3}) \end{cases} \Rightarrow \begin{cases} r_\sigma - \text{正比于等效应力} \\ \theta_\sigma - \text{中间主应力影响} \\ z_\sigma - \text{静水压力大小} \end{cases}$							
	1、屈雷斯	定义 当最大剪	应力达到	削一定数值时	,材	料就开始屈服: ($\sigma_{ ext{l}}$ -	σ_3) $/2=\tau_{\text{max}}=k$			
	加(Tresca)	公式 $\sigma_1 - \sigma_2 =$	$\pm 2k$; σ_2 -	$-\sigma_3 = \pm 2k; \sigma_3$	$-\sigma_{_{\! 1}}$	$=\pm 2k \Rightarrow \pi$ 平面中的正	三六边形			
	屈服条件	屈雷斯卡条件一	般用于	主应力方向已	知的	I情形,且此时 σ_{Y} = 2τ	Y			
	2、米塞斯 (Mises)	$(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_2)^2$	σ_3) ² + ($\sigma_3 - \sigma_1$) ² =2 σ_Y^2		$\sigma_{\rm v} = \sqrt{3}\tau_{\rm v}(\pi$ 平面上的	1回\			
	屈服条件	$(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2$	σ_3) ² + ($\sigma_3 - \sigma_1)^2 = 6\tau_Y^2$		O _Y - √ 5t _Y (ル十国工力	JI <u>M</u>)			
		①假设单向拉伯	油时 两			接于 Mises 圆:				
二、两	3、两种屈	屈服条件相同	.l. H 1 , lv1	时,两 $\Rightarrow \frac{\tau_M}{\tau_T} = \frac{2}{\sqrt{3}} = 1.155$ (剪切屈服应力的比值)						
种常用 的屈服 条件	服条件比较	②假设纯剪切时 条件相同	屈服 $\Rightarrow \frac{\sigma_{M}}{\sigma_{T}} = \frac{\sqrt{3}}{2} = 0.866$ (拉伸屈服应力的比值)							
		①Hencky 提出	① Hencky 提出							
	4、 Mises 条件的物	条件的物 ②Nadai 提出		1)当 $\tau_8 = \sqrt{2J_2 / 3}$ 达到一定数值时材料屈服 2)这一解释只对立方晶格晶体(8 面体滑移面)有意义,对多晶体无意义						
	理解释	③Ros 与 Eichinger 提出				.的剪应力的均方值 $\tau_r = \sqrt{-\sigma_3} + (\sigma_3 - \sigma_1)^2]/15$	-			
		上:①薄圆管受拉力 F 和内压 p 的作用;②薄圆管受拉力 F 和扭矩 T 的作用								
三、试	2、结果:多数金属(钢、铜、铝、合金钢)的屈服性态接近 Mises 屈服条件									
验验证		E应力方向已知时 「超过 15.5%	用 Tresc	a 条件较方例	更,主	主应力方向未知时用 「	Mises 条件方便,二			
	用 $f(\sigma_{ij}) = 0$	表示初始屈服曲口	面		用Φ (σ_{ij} , h_a)= 0 表示后继属	屈服曲面/加载曲面			
四、后	1、等向强体	$\Phi = f(\sigma_{ij}) - K =$	$(1-K=0) \rightarrow K = \begin{cases} $ 等效塑性应变的函数: $K=\Psi(\int d\varepsilon^p) $ 塑性比功 dW^p 的函数: $K=F(\int dW^p)$			函数: $K = \Psi(\int d\varepsilon^p)$ 函数: $K = F(\int dW^p)$	K 是增函数,屈服圆 半径由加载过程中 最大应力点决定。			
继屈服	_ p.+1 -1-1 /1	$\Phi = f(\sigma_{ij} - \sigma)$	$=0 \rightarrow \Phi$	$P = f(\sigma_{ij} - C\varepsilon)$	$\frac{p}{ij}$) =	$0 \Rightarrow \Phi = \sigma_Y + 3C\varepsilon^p$				
条件	2、随动强体	π平面上随动	强化使M	fises屈服圆的	, J圆心	移动到 $C arepsilon_{ij}^{p}$ 、半径不	变的圆处			
	2 加入型机	$\Phi = f(\sigma_{ij} - \sigma_{ij})$)-K=0 ==	>屈服面中心	小位置	置与半径均变化				
	3、组合强体	实验结果: 随动]强化、具	有尖端的理论	模型	等,加载历史越复杂加载	(面越不规则。			

第五章:塑性本构关系

	1、本构关》	广义尚 (本)	月克定律: $oldsymbol{arepsilon}_{arepsilon}$ 积变化规律	$\begin{cases} \varepsilon_{ij} = \frac{\sigma_{ij}}{2G} - \frac{3v}{E} \sigma_m \delta_{ij} \\ \vdots : \sigma_m = 3K \varepsilon_m \end{cases} \Rightarrow \frac{\mathbf{e}_{ij}}{E} = \frac{1}{2G} \mathbf{s}_{ij} \Rightarrow \begin{cases} \sqrt{I'_2} = \frac{1}{2G} \sqrt{J'_2} \\ \sigma = 3G \varepsilon \end{cases} \Rightarrow \mathbf{s}_{ij} = \frac{2\sigma}{3\varepsilon} \mathbf{e}_{ij}$			
一、弹性 本构关系	2、卸载本构是系(增量)	$\int d\sigma_m = 3Kd\varepsilon_m$		满足的。			
	3V 141 ->	We - 1	<u> </u>	体积变形比能: $W_V^e = 3\sigma_{ij}\varepsilon_m/2$			
	3、彈性应為比能	$ \stackrel{\text{light}}{=} \frac{W}{2} = \frac{1}{2} \sigma_{ij} \varepsilon_{ij} \\ = \frac{3}{2} \sigma_{m} \varepsilon_{m} + \frac{1}{2} s_{ij} e_{ij} $		形状变形比能: $W_{\phi}^{e} = \frac{1}{2} s_{ij} e_{ij} = \frac{1}{2G} J'_{2} = \frac{1}{2} \overrightarrow{\tau \gamma} = \frac{1}{2} \overrightarrow{\sigma \varepsilon} = \frac{1}{2} G \overrightarrow{\gamma}^{2} = \frac{1}{6G} \overrightarrow{\sigma}^{2}$			
二、德鲁				下部作用,在其原有的应力状态之上慢慢地施加并卸除一组附加应力, 可 <mark>功是非负的(本质——塑性功不可逆)</mark> 。			
克 公 设 (Drucker 公设)				载面处处外凸 文性法则: $darepsilon_{ij}^{p}$ = $d\lambda\cdot\partial\Phi/\partial\sigma_{ij}$ (塑性应变增量沿着加载面的外法线)			
	况 Φ (σ	$\frac{1}{2}(h_a) = 0$	$\Rightarrow d\sigma_{ij}d\varepsilon_{ij}^{p}$	$^{\prime} \geq 0$ (稳定式) $\rightarrow d\sigma d\varepsilon \geq 0$ \Rightarrow 满足此情况均为稳定性材料(岩土不满足)			
三、加载、	1、理想	米塞斯加	1载面 加	阳载: $f(\sigma_{ij}) = 0; \overrightarrow{uo} \bullet$ 卸载: $f(\sigma_{ij}) = 0; \overrightarrow{uo} \bullet$			
卸载准则	塑性材料			n载: ἀυ• 或 • 卸载: ἀυ• 或 •			
(塑性的)	2、强化材料	加载: 4	0 =0; αυ•	中性变载: Φ=0; <u>uo</u> • 卸载: Φ=0; <u>uo</u> •			
	1、概述	$d\varepsilon_{ij}^{e} = \frac{d\sigma_{ij}}{2G} - \frac{3v}{E}d\sigma_{m}\delta_{ij}; d\varepsilon_{ij}^{p} = d\lambda \cdot \frac{\partial\Phi}{\partial\sigma_{ij}} \Rightarrow d\varepsilon_{ij} = \frac{d\sigma_{ij}}{2G} - \frac{3v}{E}d\sigma_{m}\delta_{ij} + d\lambda \cdot \frac{\partial\Phi}{\partial\sigma_{ij}}$					
	2、理想塑性 材料 $d arepsilon_{ij}^{p} = d \lambda \cdot s_{ij}$	与 Mises 相关	理想塑性(特一鲁伊 系(Prandtalf 理想刚塑 文一米塞 系(Levy—f	理性(列 選集) 美 (本) は $\frac{dW^p}{2J_2'} = \frac{dW_p}{2\tau_p^2} = \frac{3s_{ij}de_{ij}}{2\sigma_p^2} : \begin{cases} \sigma_{ij}, \ d\varepsilon_{ij} \Rightarrow d\lambda \Rightarrow ds_{ij}, \ d\sigma_{ij} \end{cases}$ (本) は $\frac{d\varepsilon_{ij} = d\lambda \cdot s_{ij}}{d\lambda = \frac{d\overline{\gamma}}{2\tau}} = \frac{3d\varepsilon}{2\sigma} $ $\Rightarrow s_{ij} = \frac{2\tau_s d\varepsilon_{ij}}{d\overline{\gamma}} = \frac{2\sigma_s d\varepsilon_{ij}}{3\overline{d\varepsilon}} \Rightarrow \begin{cases} s_{ij} \Rightarrow s_{ij} \\ d\varepsilon_{ij} \Rightarrow s_{ij} \end{cases}$ $dW^p = \begin{cases} \tau_{\gamma} \cdot \overline{d\gamma} \\ \sigma_{\gamma} \cdot \overline{d\varepsilon} \end{cases}$			
		与 Tresca	特点:①塑	望性应变增量确定不了屈服点 S;②Tresca 六角柱棱线不存在单一法线			
		相关	角点处 $darepsilon_{ m l}$	$ \varepsilon_1^p : d\varepsilon_2^p : d\varepsilon_3^p = 1 : (-u) : (u-1) $ 塑性功增量: $dW^p = \sigma_y \left d\varepsilon_j^p \right _{\text{max}}$			
	强化材料	$d\varepsilon_{ij}^{p} = \frac{3}{2} \cdot \frac{1}{a}$	$\frac{d\varepsilon^p}{\sigma} = \frac{3}{2\psi'} \cdot \frac{d\varepsilon}{\sigma}$	$\frac{d\overline{\sigma}}{\sigma} s_{ij}(\psi' = \frac{d\sigma}{d\varepsilon^p})$			
	1、依留申 理论						
五、全量	2、简单加			五力张量各分量比值不变 简单加载时 <mark>增量理论等价于全量理论</mark>			
理论	载			$-w(\varepsilon)]=3G\varepsilon[1-w(\varepsilon)]-材料不可压时v=1/2(\varepsilon\to\infty$ 时 $w=1,\varepsilon\to0$ 时 $w=\infty$)			
	3、简单加			形;②载荷按比例单调增长(有位移时只能是零位移边界条件)			
	载定理 所有的全量取			才料不可压缩 $v=0.5$; ④ σ ~ 曲线具有幂函数的形式 $\sigma = A\overline{\epsilon}''$ 但在应变空间中的变形路线逐渐趋于某一直线时,两结果相近。			
六、岩土 力学				$c\cos\varphi - \frac{\sigma_1 + \sigma_2}{2}\sin\varphi \qquad $			

			•							T	
					_	$ \mathcal{E}_{i} = 0;$ 几何方程: $\varepsilon_{ij} = (u_{i,j} + u_{j,i})/2$		/2	按位移求得:		
	1、全 量 理	V内	全量	量本构关系	$\xi: \ s_{ij} = \frac{2}{3} \frac{\sigma}{2}$	$\frac{\sigma(\varepsilon)}{\varepsilon}e_{ij};\sigma_{kk}$	$=\frac{E}{1-2v}$	\mathcal{E}_{kk}		$(K + \frac{G}{3})u_{k,ki} + Gu_{i,jj} - 2G(we_{ij}), j + F_i = 0$	
	论	s上	应	力条件: 。	$\sigma_{ij}l_j = T_i$	边界位	移条件:	$u_i = \overline{u}$	$\overline{l_i}$	其中: $K = \frac{E}{3(1-2v)}; u_{k,ki} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 w}{\partial x \partial z}$	
			平衡	方程: de	$\sigma_{ij,j} + dF_i =$: 0		几何	J关;	系: $d\varepsilon_{ij} = (du_{i,j} + du_{j,i})/2$	
一、弹塑				光日 777	弹性区	,		,	,	$2G - vd\sigma_{kk}\delta_{ij}/E$	
性边				塑性 材料	塑性区	,		, ,		$G - d\lambda \bullet \qquad \qquad d\varepsilon_{kk} = (1 - 2\nu)d\sigma_{kk} / E$	
值问 题的	• 1. \	V内	本构		-1/4 Let 100		,			$\lambda = 0;$ 当 $df = 0$ 时: $d\lambda \ge 0$	
提法	2、增量 理		关系	强化	弹性区	,		,	,	$\frac{2G - vd\sigma_{kk}\delta_{ij} / E(不变)}{G - d\lambda \bullet}$ $d\varepsilon_{kk} = (1 - 2v)d\sigma_{kk} / E$	
	论			材料	塑性区	9		9 9		オーロル・ $a\varepsilon_{kk} = (1-2\nu)aO_{kk}$ / E $d\lambda = 0$; 当 $d\phi > 0$ 时: $d\lambda = hd\phi$	
		边界		 操件: dσ _{ij}	$\frac{1}{1} = dT.$	$ \mu \psi -$	$\frac{uo_{ij}}{}$	9		条件: $du_i = d\overline{u_i}$	
		弹塑		立移连续		$du^{(e)}\mathbf{n} = d$	lu ^(p) n				
		性交	<u> </u>	主续条件					界面 Γ 上切向位移和切向应力是允 间断的。		
		界处					. ,			$\sigma = \sigma_z / \sigma_y; \tau = \tau_{\theta z} / \tau_y$	
	1、基		筒内应力: $\sigma_z = p/2\pi Rh$; $\tau_{\theta z} = T/2\pi R^2 h$ 弹性阶段胡克定律: $\sigma = \varepsilon$; $\tau = \gamma$						无量纲量: $\varepsilon = \varepsilon_z / \varepsilon_y; \gamma = \gamma_{\theta z} / \gamma_y$		
	原理		其中: $\sigma_{y} = \sqrt{3}\tau_{y}$; $\varepsilon_{y} = \sigma_{y} / E$; $\gamma_{y} = \tau_{y} / G$;							$\ddagger: \ \sigma_{Y} = \sqrt{3}\tau_{Y}; \varepsilon_{Y} = \sigma_{Y} / E; \gamma_{Y} = \tau_{Y} / G;$	
		型	塑性阶段 Mises: $J_2' = \sigma_z^2/3 + \tau_{\theta z}^2 = \tau_Y^2 \to \sigma^2 + \tau^2 = 1$ 不可压缩 $\to v = 0.5 \to G$						可压缩 $\rightarrow v = 0.5 \rightarrow G = E/3 \rightarrow \gamma_Y = \sqrt{3}\varepsilon_Y$		
	2、增力	 本 量	构关系:	$\begin{cases} \frac{1}{2} d\gamma_{\theta z} \end{cases}$	$\frac{1}{E}d\sigma_z + d$ $= \frac{1}{2G}d\tau_{\theta z}$	- + dλ•	>无量纲	引化dλ'	= 20	$G\lambda \to : \begin{cases} d\varepsilon = d\sigma + \sigma d\lambda' \\ d\gamma = d\tau + \tau d\lambda' \end{cases} \Rightarrow \frac{d\varepsilon - d\sigma}{d\gamma - d\tau} = \frac{\sigma}{\tau}$	
二薄圆的扭联	求解	方	程的解:	$\sigma^2 + \tau^2 =$	$=1 \to \begin{cases} \tau \\ \sigma dd \end{cases}$	$= \sqrt{1 - \sigma^2}$ $\sigma + \tau d\tau = 0$	$0 \Rightarrow \begin{cases} \frac{dc}{ds} \\ \frac{d}{ds} \end{cases}$	$\frac{\partial}{\partial z} = \sqrt{1 - \frac{\partial}{\partial z}} =$	$\frac{1}{-\sigma^2}$	$(\sqrt{1-\sigma^2}-\sigma\frac{d\gamma}{d\varepsilon})$ 如果已知某时刻的初始状态及该时刻 変形路径 $\gamma=\gamma(\varepsilon)$ 则得到 $\sigma\sim\varepsilon;\tau\sim\gamma$ 关系	
合变形						$ \frac{1}{\sigma} = \sigma_{y} = \sqrt{3}\alpha $ $ = \sqrt{\varepsilon_{z}^{2} + \frac{1}{3}\gamma} $	$\sigma_{\gamma} = \sqrt{3}\tau_{\gamma}$ $\sqrt{\varepsilon_{z}^{2} + \frac{1}{3}\gamma_{\theta z}^{2}}$ 无量纲化: $\sigma = \frac{\varepsilon}{\sqrt{\varepsilon^{2} + \gamma^{2}}}$ $\tau = \frac{\gamma}{\sqrt{\varepsilon^{2} + \gamma^{2}}}$ 求解条件: $\frac{1 - \tau}{\sigma} = \frac{\sqrt{\varepsilon^{2} + \gamma^{2}} - \gamma}{\varepsilon} (- 定)$ $\gamma = \gamma(\varepsilon) - \frac{\pi}{2}$			$\frac{\varepsilon}{\varepsilon^{2} + \gamma^{2}}$ 求解条件: $\begin{cases} \frac{1-\tau}{\sigma} = \frac{\sqrt{\varepsilon^{2} + \gamma^{2}} - \gamma}{\varepsilon} (-) $ $\gamma = \gamma(\varepsilon)$ —需给出	
		A	② 	c		量理论	路径3:	$\sigma = \tau =$	=0. 7		
	4、算例	列	/3	①	全量	量理论	路径1	2,	3:	$\sigma = \tau = 0.707$	
		o =	种加载路径	B ε x 最后应	>H V	_				虽最终变形相同,但最终应力不同; 下,两种理论结果才相同。	

	1 、梁的 弹塑性	弾 曲率 $\kappa=-d^2w/dx^2 \to \varepsilon=\kappa y \to \sigma=E\kappa y$ 性 コンス は $m=EI\kappa$
		塑性 計 響矩: $M = M_e(3 - \xi^2)/2$
	纯弯曲	截面形状系数 $\eta = M_p/M_e \rightarrow$ 抗弯潜力 \rightarrow 圆柱: $\eta = 1.7$, 圆筒: $\eta = 1.27$, 长方形: $\eta = 1.5$
		塑性铰 某截面完全进入塑性,特点: ①存在弯矩 $ M =M_p$, ②单向性
		塑性后回弹 $\phi^F = \phi - m = 1 - 1.5\phi + 0.5\phi^3 = 4(\sigma_Y \rho / Eh)^3 - 3(\sigma_Y \rho / Eh) + 1$
		卸载残余应力 在原理基础上减去: $M\sigma_{Y}/M_{e}$, 应力间断面 $\xi \to 0$,弹性层趋于 0 。
三、梁的弹	2、梁在	类比
塑性弯曲	横向载荷作用下的弹	挠度 $\frac{y"}{\kappa_e} \approx \frac{\kappa}{\kappa_e} = \begin{cases} m = p(1-\varsigma) & (1-1/p \le \varsigma < 1) \\ 1/\sqrt{3-2p+2p\varsigma} & (0 \le \varsigma \le 1-1/p) \end{cases}$ 其中: $p = F/F_e$ $\varsigma = x/l$
	塑性弯曲	梁端 $y(l) = \delta_e [5 - (3+p)\sqrt{3-2p}]/p^2; \delta_e = \kappa_e l^2/3; f = 1.5$ 时; 大挠度时,塑性区先增 后减至根部,塑性铰很 $\delta_p = 20\delta_e/9$; 残余挠度: $\delta^F = 13\kappa_e l^2/54$
	3、弯矩 与轴力 同时作 用	$1 + 1/111 + n^2 + 1m = N \times \times$
		$\frac{\kappa^F}{\kappa_e} = \begin{cases} 0 & \text{弹性区}: 0 \le m \le 1 - n \\ 1 - m[3 - m/(1 - n)]^2 / 4(1 - n) & \text{单侧塑性}: 1 - n \le m \le 1 + n - 2n^2 \\ 1 - m/\sqrt{3(1 - n^2) - 2m} & \text{双侧塑性}: 1 + n - 2n^2 \le m < 1.5(1 - n^2) \end{cases}$ 可见:拉力使回弹量减小,最终曲率变大,单侧塑性状态与双侧塑性状态与双侧塑性状态都是约束塑性状态
	1、应力 分布	平衡方程: $r\frac{d\sigma_r}{dr} = \sigma_\theta - \sigma_r$ $\Rightarrow \sigma_r = \begin{cases} \frac{2}{\sqrt{3}}\sigma_y \ln\frac{r}{b} & c \leq r \leq b \\ -\frac{2}{\sqrt{3}}\sigma_y \ln\frac{r}{b} & a \leq r \leq c \end{cases}$ $\sigma_\theta = \begin{cases} \frac{2}{\sqrt{3}}\sigma_y (1 + \ln\frac{r}{b}) & c \leq r \leq b \\ -\frac{2}{\sqrt{3}}\sigma_y (1 + \ln\frac{r}{b}) & a \leq r \leq c \end{cases} \Rightarrow \begin{cases} c = \sqrt{ab} \\ M = \frac{1}{2\sqrt{3}}\sigma_y t^2 \end{cases}$
四面变件板平应条下的	2、弯曲 时的变 形	不可压缩: $\frac{\partial u}{\partial r} + \frac{u}{r} - \frac{1}{r} \frac{\partial v}{\partial \theta} = 0$
塑性		$r_{_{\mathcal{E}}} = \sqrt{0.5(a^2+b^2)+0.5(b^2-a^2)\xi} \Rightarrow r_0 = \sqrt{a^2+b^2} / 2$ 、 $\xi_c = -(b-a)/(a+b)$ 中性面初始位置
弯曲	2 杜山	受拉区: 始终受压区: 先受压后受拉区:
	3、板内 各层的	$\xi \ge 0; \ \ r \ge \sqrt{(a^2 + b^2)} / 2$ $\xi \le \xi_c; \ \ \vec{\boxtimes} r \le \sqrt{ab}$ $\xi_c \le \xi \le 0; \ \ \vec{\boxtimes} c < r < \sqrt{a^2 + b^2} / 2$
	移动	总长未变化层 特点: ①塑性弯曲中中性层不断移动;

	1、基本 方程	$v = \alpha$	$\begin{cases} \alpha_{yz} \\ yz \\ yz \\ x, y) \end{cases} \Rightarrow \begin{cases} \varepsilon_{x} = \varepsilon_{y} = \varepsilon_{z} = \gamma_{xy} = 0 \\ \gamma_{xz} = \alpha(\partial \phi / \partial x - y) \\ \gamma_{xz} = \alpha(\partial \phi / \partial x + x) \end{cases} \Rightarrow \begin{cases} \sigma_{x} = \sigma_{y} = \sigma_{z} = \tau_{xy} = 0 \\ \sigma_{x} = \sigma_{y} = \sigma_{z} = \tau_{xy} = 0 \\ \sigma_{x} = $
	2、弹性 扭转 (薄	薄膜	$\begin{split} & \Phi_e \text{定义:} \ \tau_{xz} = \frac{\partial \Phi_e}{\partial y}; \tau_{yz} = -\frac{\partial \Phi_e}{\partial x} \Rightarrow \text{平衡方程:} \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} = 0; \text{协调方程:} \frac{\partial \tau_{yz}}{\partial x} - \frac{\partial \tau_{xz}}{\partial y} = 2G\alpha \\ & \text{将薄膜张于与柱体截面形状相同的边框上,加均匀压力,则应力函数} \ \Phi_e \text{与薄膜的} \\ & \text{高度成正比,} \ \textbf{T} \ \text{正比于薄膜的斜率,} \frac{\mathbf{H}\mathbf{E}}{\mathbf{H}\mathbf{E}} \ \mathbf{T} \text{ 与薄膜曲面下的体积成正比.} \\ & \text{合剪应力} \ \tau = grad\Phi_e ; \tau \text{的方向沿} \Phi_e = const \text{的切向;} \ T = 2\iint_A \Phi_e dx dy; \\ & \text{柱体截面的周界也是} \Phi_e = const \text{ 曲线族之} \end{split} \text{圆柱时:} \ \alpha_e = \tau_e / Ga, T_e = \pi \tau_y a^3 / 2 \end{split}$
五柱的塑自扭	3、全 ^磐 性扭转 (沙 埠 模拟) T≥T _p	2/ds 1/A	Φ_p 定义: $\tau_{xz} = \frac{\partial \Phi_p}{\partial y}$; $\tau_{yz} = -\frac{\partial \Phi_p}{\partial x}$ ⇒ 平衡方程: $\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} = 0$; 屈服条件: $\left(\frac{\partial \Phi_p}{\partial x}\right)^2 + \left(\frac{\partial \Phi_p}{\partial y}\right)^2 = \tau_y^2$ 将一个水平的底面做成截面形状, 在其上堆放干沙, 由于沙堆的静止摩擦角为常数,则沙将形成一个斜率为常数的表面,表面可用 Φ_p 表示, 只相差一个可由屈服应力和沙堆摩擦角觉得的比例因子. (整个截面都进入塑性) $T = 2 \iint \Phi_p dx dy \Rightarrow 圆柱时: T = 2\pi \tau_y a^3/3;$ 弹性收缩造成剪应力中断; 凸角处剪应
(刚 塑 性)	4、扭玻 b Tp 5 载弹余 c Tp 卸 m m m m m m m m m m m m m m m m m m	在平板 成的等 圆 截 面	力为 0(始终弾性),凹角剪应力无穷大. 法上,挖一个具有截面形状的孔,覆盖以薄膜,薄膜上面放一个按沙堆比拟形状做 延倾玻璃盖,则弹塑性的交界线 Γ , Γ 包围的区域仍是弹性区, Γ 之外的为塑性区。 $D = \begin{cases} \Phi_e = -\frac{1}{2} \alpha G(r^2 - \rho^2) + \tau_{\gamma}(a - \rho) & 0 \le r \le \rho \\ \Phi_p = \tau_{\gamma}(a - r) & \rho \le r \le a \end{cases}$ $\begin{cases} \rho = \tau_{\gamma}/\alpha G \to \alpha_e = \tau_{\gamma}/aG \\ T = \frac{4}{3} T_e [1 - \frac{1}{4} (\frac{\alpha_e}{\alpha})] \to \frac{T}{T_e} = 1 - \frac{\rho^3}{4a^3} \end{cases}$ $\alpha' = \alpha [1 - \frac{4}{3} \cdot \frac{\sigma^2}{a}] \qquad \qquad$
	材料 扭转	祖 圆柱 截面	作且 $\overline{\sigma} = \sigma_Y \left(\frac{\varepsilon}{\varepsilon_Y}\right)^m$, $0 < m < 1 \Rightarrow T = \frac{6\pi\sigma_Y \varepsilon_\alpha}{(m+3)\alpha^3 \varepsilon_Y^m} = \frac{2\pi\tau_Y}{m+3}$ $m=1$: 埋想线弾性 $m=0$: 理想塑性材料
六、内的壁質	本 方 程 2、弹 性解		$ \frac{\sigma_r}{r} + \frac{\sigma_r - \sigma_\theta}{r} = 0; \mathcal{E}_r = \frac{du}{dr}, \varepsilon_\theta = \frac{u}{r}, \varepsilon_z = \varepsilon_0 = const; \mathcal{B}_r = a \text{时}: \sigma_r = -p \\ r = b \text{D}: \sigma_r = 0 $ $ \frac{\sigma_r}{r} = \frac{p(1 - b^2/r^2) < 0; \sigma_z}{r} = F/\pi(b^2 - a^2) \\ \Rightarrow \sigma_\theta = \frac{p(1 + b^2/r^2) > 0; \sigma_z}{r} = 2v\overline{p} + E\varepsilon_0 \\ u = (1 + v)\overline{p}[(1 - 2v)r + b^2/r]/E - v\varepsilon_0 r $ $ \frac{\sigma_r}{r} = \frac{u}{r}, \varepsilon_z = \varepsilon_0 = const; \mathcal{B}_r = a \text{D}: \sigma_r = -p \\ r = b \text{D}: \sigma_r = 0 $ $ \frac{\sigma_r}{r} = \frac{pa^2}{b^2 - a^2} \sigma_z \Rightarrow \frac{\sigma_\theta - \sigma_r}{r} = \frac{2pb^2/r^2}{r^2} = \sigma_y \\ \varepsilon_0 = \frac{F - 2vp\pi a^2}{E\pi(b^2 - a^2)} P_e = \sigma_y (1 - a^2/b^2)/2 $
圆筒		值;(可通	達厚不会明显提高弹性极限压力 近望性变形残余应力或装配有预 时,内表面开始屈服时的压力值只与周围的材料的性质有关,与孔洞的半径无关。

	1	•						
		弹性区 c~r~b	解得: $\begin{cases} \sigma_{r}' = c^{2}\sigma_{Y}(1-b^{2}/r^{2})/2b^{2} \\ \sigma_{\theta}' = c^{2}\sigma_{Y}(1+b^{2}/r^{2})/2b^{2} \end{cases} \Rightarrow \begin{cases} \sigma_{z}' = vc^{2}\sigma_{Y}/b^{2} + E\varepsilon_{0} \\ u' = (1+v)c^{2}\sigma_{Y}[(1-2v)r/b^{2} + 1/r]/2E - v\varepsilon_{0}r \end{cases}$					
		c≤r≤b 塑性区 0≤r≤c	$\begin{cases} \sigma_{\theta} = c^{2}\sigma_{Y}(1+b^{2}/r^{2})/2b^{2} & u' = (1+v)c^{2}\sigma_{Y}[(1-2v)r/b^{2}+1/r]/2E-v\varepsilon_{0}r \\ \frac{d\sigma_{r}}{dr} + \frac{\sigma_{r}}{r} = 0 \Rightarrow \begin{cases} \sigma_{r} = \sigma_{Y}\ln(r/a) - p < 0 \\ \sigma_{\theta} = \sigma_{Y}[1+\ln(r/a)] - p > 0 \end{cases}$ 塑性区内应力分布只与 边界条件有关,与弹性 区的应力场无关。					
	3 弹	弹塑性边 界确定	$\sigma_{r}' _{r=c} = \sigma_{r}'' _{r=c} \Rightarrow p = \sigma_{Y} \left[\ln \frac{c}{a} + \frac{1}{2} (1 - \frac{c^{2}}{b^{2}}) \right] \Rightarrow \begin{cases} \sigma_{r}'' = \sigma_{Y} \left[\ln(r/c) - 0.5(1 - c^{2}/b^{2}) \right] \\ \sigma_{\theta}'' = \sigma_{Y} \left[\ln(r/c) + 0.5(1 + c^{2}/b^{2}) \right] \end{cases}$					
六、	塑性解	塑性极限状态	$\Leftrightarrow c = b \Rightarrow $ 塑性极 $p_s = \sigma_y \ln \frac{b}{a} \Rightarrow \text{此时} : \begin{cases} \sigma_r = \sigma_y \ln(r/b) \downarrow \\ \sigma_r = \sigma_y [1 + \ln(r/b)] \uparrow \end{cases}$ b 增加,塑性 极限应力增加					
受 压 厚 原		塑 性 区 内 的 <i>u</i> "	$\frac{\varepsilon_z}{\text{弹性}} \Rightarrow \begin{cases} \sigma_z " = -2vp + v\sigma_y[1 + 2\ln(r/a)] + E\varepsilon_0 \\ \varepsilon_0 = (F - 2vp\pi a^2) / E\pi[b^2 - a^2] \\ \text{材料不可压缩 \Leftrightarrow 平面应变条件} \longleftrightarrow \end{cases} \Rightarrow \begin{cases} \text{开口圆筒: } F = 0; \varepsilon_0 = -2vpa^2 / E(b^2 - a^2) \\ \text{封闭圆筒: } F = \pi a^2 p; \varepsilon_0 = (1 - 2v)pa^2 / E(b^2 - a^2) \\ \text{∞长圆筒(平面应变): } F = 2vp\pi a^2; \varepsilon_0 = 0 \end{cases}$					
圆筒		与 σ_z "	体积弹 $\frac{du"}{dr} + \frac{u"}{r} + \varepsilon_0 = \frac{1-2v}{E} (\sigma_r" + \sigma_\theta" + \sigma_z") \Rightarrow u" = \frac{(1-2v)(1+v)}{E} \sigma_\gamma [r \ln \frac{r}{c} + \frac{r}{2} \frac{c^2}{b^2} - \frac{r}{2}] - v\varepsilon_0 r + \frac{(1-v^2)\sigma_\gamma c^2}{Er}$ \Rightarrow 举例可证: 刚达到 p_s 时,筒的变形相对于本身尺寸时小的, $u"/a \approx 0.003$					
	4 卸 载 和	内压p* $p_e \le p^* \le p$						
	残 余 应力	"安定状	$b/a>2.22$ 时,材料处于 $b/a>2.22$ 时,p 到 $2p_e$ 之上时,筒仍 $b/a<2.22$ 时,到达塑性极态",卸载后材料弹 处于约束塑性状态,但卸载时会出 限压力时,圆筒卸载后仍 然为自增强处理。 现反向屈服。出现塑性循环破坏。 然不会出现反向屈服。					
	5、几何 对承载 的影响	就能力 不 不	形后: $p_{Y}' = \sigma_{Y} \ln \frac{b'}{a'}$; 由理想塑性材料制成的厚壁圆筒承受内压的塑可压缩: $b'^2 - a'^2 = b^2 - a^2 = const$ $\Rightarrow (\frac{b'}{a'})^2 = 1 + \frac{C}{a'^2}$ 性极限状态是不稳定的。					
	6、强化 材料长 后壁圆	徳鲁维 强化理	克 $ \dot{\mathfrak{C}}; \tau = \tau_0 \gamma_{\text{max}}^m \Rightarrow \begin{cases} \sigma_r = -p(b^{-2m} - r^{-2m})/(b^{-2m} - r^{-2m}) \\ \sigma_\theta = \sigma_r + 2\tau_0 (2A/r^2)^m \\ \sigma_z = \sigma_r + \tau_0 (2A/r^2)^m \end{cases} \qquad p = \frac{\tau_0}{m} (\frac{2A}{a^2})^m [1 - (\frac{a}{b})^{2m}] \\ m = 0 : 理想例塑性 \\ m = 1 : 线弹性$					
	析	可以看出: ① σ_r 与弹性解相差不大; ② σ_{θ} 与弹性解相差较大(若 $m>0.5$ 时,(σ_{θ}) _{r} 是内壁处的应力,递减; 若 $m<0.5$ 时,(σ_{θ}) _{$max 是外壁处的应力,递增)$}						
	1、弹 性解		$\frac{-\sigma_{\theta}}{r} \Rightarrow \begin{cases} \sigma_{r} = (3+v)\rho w^{2}(b^{2}-r^{2})/8 \\ \sigma_{\theta} = \frac{(3+v)}{8}\rho w^{2}b^{2} - \frac{(1+3v)}{8}\rho w^{2}r^{2} \end{cases} \rightarrow \mathbb{E} \mathbb{R} $ $\Re \mathcal{H} : \frac{3+v}{8}\rho w_{e}^{2}b^{2} = \sigma_{Y}$					
七、		塑性区	$d(r\sigma_r")/dr = \sigma_Y - \rho w^2 r^2 \Rightarrow \sigma_r" = \sigma_Y - \rho w^2 r^2 / 3; \sigma_\theta" = \sigma_Y (0 \le r \le a)$					
旋转圆盘	2 弹 塑 性 解	弹性区	弾性解: $ \begin{cases} \sigma_r = \frac{C_1}{r^2} + C_2 - \frac{3+v}{8} \rho w^2 r^2 \\ \sigma_\theta = -\frac{C_1}{r^2} + C_2 - \frac{1+3v}{8} \rho w^2 r^2 \end{cases} $ 其中 $ \begin{cases} C_1 = -\frac{1}{24} \rho w^2 a^4 (1+3v) \\ C_2 = \sigma_y + \frac{1}{12} \rho w^2 a^2 (1+3v) \end{cases} $					
	邢	0≤r≤a	a 确定: $w^2 = \frac{24b^2\sigma_y/\rho}{(1+3v)a^4 - 2(1+3v)a^2b^2 + 3(3+v)b^4}$ $\Rightarrow w_p^2 = 3\sigma_y/\rho b^2$					

第七章:理想刚塑性平面应变问题

— ,	1、平面	1、平面应变 沿长度方向 (z 轴) 的应变为零,横截面内的造型与 z 无关。 $\varepsilon_z = r_{xz} = \gamma_{yz} = 0; \sigma_z \neq 0$								
概念	2、极限	荷载 如果目的只是确定极限荷载,就无需从弹塑性状态一步步求解而采用刚塑性模型。								
	1、塑性	流动特点 ①流动平行于某一固定平面; ②流动与垂直于该平面的坐标(如 z) 无关								
平面	2、塑性									
应变	方程(σ,	基本 永远 平衡 $\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0$ 居服条件: $J_2' = s_{ij}s_{ij}/2 = k^2 \Rightarrow$ 本 $\varepsilon_{ij} = \lambda s_{ij} \Rightarrow i$ 构 $\frac{\partial v_x}{\partial x} - \frac{\partial v_y}{\partial y} = \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial y}$ $\frac{\partial v_x}{\partial y} - \frac{\partial v_y}{\partial y} = \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial y} = \frac{\partial v_y}{\partial y} + \frac{\partial v_y}{\partial y} = \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial y} = \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial y} = \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial y} = \partial$								
问题的基	是中间 3 力)	永远 平衡 $\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} = 0$ $\int_{2} \frac{1}{2} = s_{ij} s_{ij} / 2 = k^{2} \Rightarrow$ $\int_{2} \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} = 0$ $\int_{2} \frac{\partial x}{\partial y} + \frac{\partial x}{\partial y} = 0$ $\int_{2} \frac{\partial x}{\partial y} + \frac{\partial x}{\partial y} = 0$ $\int_{2} \frac{\partial x}{\partial y} + \frac{\partial x}{\partial y} = 0$ $\int_{2} \frac{\partial x}{\partial y} + \frac{\partial x}{\partial y} = 0$ $\int_{2} \frac{\partial x}{\partial y} + \frac{\partial x}{\partial y} = 0$ $\int_{2} \frac{\partial x}{\partial y} + \frac{\partial x}{\partial y} = 0$								
本方	737									
程	3、边界条件; ②应力边界条件; ②速度边界条件; ③刚、塑性交界 Γ 处条件: 应力方面一 σ_n 、 τ_{nt} 连续、 σ_t 可间断; 速度方面一 v_n 连续、 v_t 可间断。									
		$ = \frac{\sigma_1 + \sigma_2}{\sigma} = \frac{\sigma_x + \sigma_y}{\sigma_x = \sigma - k \sin 2\theta} \qquad \qquad \frac{\partial \sigma}{\partial \sigma} = \frac{\partial \theta}{\partial \sigma} + \sin 2\theta = \frac{\partial \theta}{\partial \sigma} = 0 $								
		$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$								
	1、应	$\begin{vmatrix} \frac{1}{4} \\ \frac{1}{5} \\ \frac{1}{6} \end{vmatrix} \begin{cases} \sigma = \frac{\sigma_1 + \sigma_2}{2} = \frac{\sigma_x + \sigma_y}{2} \\ \frac{1}{2} = \frac{\sigma_x - \sigma_y}{2\cos 2\phi} \end{cases} \Rightarrow \begin{cases} \sigma_x = \sigma - k\sin 2\theta \\ \sigma_y = \sigma + k\sin 2\theta \Rightarrow \\ \sigma_y = \sigma + k\sin 2\theta \Rightarrow \end{cases} $ $\Rightarrow \hat{T} \neq \hat{T} \begin{cases} \frac{\partial \sigma}{\partial x} - 2k(\cos 2\theta \frac{\partial \theta}{\partial x} + \sin 2\theta \frac{\partial \theta}{\partial y}) = 0 \\ \frac{\partial \sigma}{\partial y} - 2k(\sin 2\theta \frac{\partial \theta}{\partial x} - \cos 2\theta \frac{\partial \theta}{\partial y}) = 0 \end{cases}$								
	力方	滑移线 火轴逆时针转 🔾 角到 🥫 方向。								
	程和滑移	$($ 极 值 $ $ 特征方向· $\frac{dy}{d}$ $ $ $tan \theta$ α 方向 $ $ \mathbf{v} 轴逆时针转 \mathbf{b} 角到 \mathbf{g} . 方向·								
	线线	$\begin{vmatrix} \dot{g} & \dot{g} & \dot{g} \\ \dot{g} & \dot{g} \end{vmatrix}$ $dx = \begin{cases} -\cot \theta & \beta \hat{f} \\ \phi = \theta + 45^{\circ} \Rightarrow \sigma_{1}$ 顺转45到最大剪应力方向								
		应力								
	2 、速 度 方 程	本构关系: $\frac{\partial v_x}{\partial v_x} - \frac{\partial v_y}{\partial v_y} + \tan 2\theta (\frac{\partial v_x}{\partial v_x} + \frac{\partial v_y}{\partial v_y}) = 0$								
三、		$\begin{cases} $								
滑移										
线及		⇒沿特征线的正应变率为零,也就是滑移线没有伸缩								
其几何性	3、汉基第	(Hencky)在同族两条滑移 ①一组滑移线有一条为直线,则同族滑移线全为直线; 线和另一组滑移线的交点 ②在直的滑移线上,应力是常数;								
质	一定理	上,切线夹角不变。								
		定理: 沿一组滑移线移动, 领一组滑移线在交点处的曲率半径的改变量在数值上等于所								
	4、汉基第二定理	移动过的距离: $\partial R_{\alpha} / \partial s_{\beta} = -1; \partial R_{\beta} / \partial s_{\alpha} = -1;$ 其中: $1/R_{\alpha} = \partial \theta / \partial s_{\alpha}$, $1/R_{\beta} = -\partial \theta / \partial s_{\beta}$								
		推论: 同族的滑移线必向同一方向凹,并且曲率半径逐渐变为零。								
	5 间断	□在滑移线两侧,应力不会发生中断; ②如果沿某一滑移线,曲率半径跳跃,则对应的 □ 应力微商也要跳跃; ③沿任何线的法向速度一定连续,而切向速度的间断线一定是滑移 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □								
	值定理	应力倾向也安跳跃;								
	c 4/+	应力、速度、曲率半径三组方程: $\begin{cases} $								
	6 总结	特点: 在滑移线两侧, 应力不会发生间断, 切向速度可以间断, 沿滑移线曲率半径发生								
		间断时,应力导数也同时发生间断。								
四边	1、应力	s_T 上有 σ_n 、 $\tau_n \to \text{Mohr}$ 圆(r=k) $\Rightarrow \sigma$ 、 θ 、垂直截面法向应力 σ_t (均有两个)(需判断)								
界条	」、应力 边界 S _T	$Mohr$ 圆 $\Rightarrow \alpha$ 、 β : $\begin{cases} \tau_n = 0$ 时: 两滑移线与边界方向均成45°角; (<mark>其余情况介于二者之间</mark>) $\tau_n = k$: 一滑移线族与边界90°,另一族以边界线为包络线								
件	= 2 , = 1	$\tau_n = k$: 一滑移线族与边界90°,另一族以边界线为包络线								
(滑 移线		交界线 Г 为滑移线或滑移线的包络线,因为 Г 上必有速度间断。								
炒 线 坐标)	3、两塑性									
土がノ	交界线 L	此时,L与两边滑移线的夹角必相等。								

第七章:理想刚塑性平面应变问题

		钝角;	楔	角平分线附	 近为中心场,两边形成简	单应力场(等腰直	I 角三角形)		
	1、单 边 受	2γ>	90°	塑性极限载	这荷: $P_{\gamma}=2k(2\gamma+1-\pi/2)$	左右应力差 $\sigma_{\scriptscriptstyle B}$	$-\sigma_C = 2k(2\gamma - \pi/2)$		
	压的楔	锐角							
		2 γ <	90°	塑性极限载	这荷: $P_{\gamma} = 2k(1-\cos 2\gamma)$	左右应力差Δσ=	$=2k\cos 2\gamma$		
	2、冲	Prane	dtl解	$2\gamma = \pi \Rightarrow p$	$p_{Y} = 2k(1+\pi/2) \Rightarrow F_{Y} = 2bp_{Y}$	/(压模宽度为 <mark>2b</mark>)	正下方材料铅直向		
	头压入半		$v/\sqrt{2}$		压模左右各 2b;沿α滑移],边部偏向上;向上区域ឯ		下,粗糙压模情形		
_	平面(厚	Hill 角 $v_{\alpha} = 0$			试荷、应力情况相同,但速 E模两侧各 b 范围)	度场有区别,应	有水平分量, <mark>光滑</mark> 压模情形		
五、 用滑	材料不	Prage	er,	Hill 区域在点	压模边界小范围,先发生剪	是性变形	部分粗糙、部分光		
移线	挤出)	Hodg	ge 解	Prandtl 区均	成为除去 Hill 区域剩下的区:	滑			
场理求的	3、圆孔内均	$\frac{rd\varphi}{dr}$	$\frac{\sigma}{r} = \pm \tan \frac{\pi}{4} \Rightarrow \varphi = \varphi_0 \pm \ln \frac{r}{a} \Rightarrow \begin{cases} \varphi - \ln(r/a) = \alpha \\ \varphi + \ln(r/a) = \beta \end{cases} \Rightarrow \begin{cases} \text{边界} r_0 \text{处平均应力: } \sigma = -p + k \\ p \text{处平均应力: } \sigma_p = -p + k + 2k \ln(r/a) \end{cases}$						
范例	布p时 的极限 载荷	在 <i>p</i> 5	$\int \sigma_p =$	$ = -p + k + 2k \ln(r/a) = (\sigma_r + \sigma_\varphi) $ $ \Rightarrow \begin{cases} \sigma_r = \sigma_p - k = -p + 2k \ln(r/a) & 5 \neq \emptyset \\ \sigma_\varphi > \sigma_r \Rightarrow \sigma_\varphi - \sigma_r = 2k \end{cases} $ $ \Rightarrow \begin{cases} \sigma_r = \sigma_p - k = -p + 2k \ln(r/a) & 5 \neq \emptyset \\ \sigma_\varphi = \sigma_p + k = -p + 2k [1 + \ln(r/a)] & 6 \neq \emptyset \end{cases} $					
		中心切口 试件		拉伸件宽 2b,狭缝 2a,滑移线由切口两端出发各有一个均匀应力场: $\sigma_n = \sigma_x = \sigma_2 = 0, \sigma_t = \sigma_y = \sigma_1 = 2k \Rightarrow F_y = 2k(2b - 2a)t(和简单拉伸类似)$					
	• lat		根部	切口根部形成,逐渐向内扩张,取 1/4 转化为钝角楔单边受载问题。					
	4、切 口 试		为 0 边深	$\sigma_{Y} = 2k(1+\pi\sqrt{2}-\gamma) > 2k \Rightarrow$ 深切口中间材料承受 <mark>高于</mark> σ_{Y} 的应力,不是简单拉伸					
	件 的	件 的 切口 拉伸 切口		两侧为理想	狭缝: $\gamma \to 0 \Rightarrow \sigma_y = 2k(1+\pi/2)$	2) > k; (b / a > 8.62时	,增加宽度不提高F _y)		
	拉伸		根部圆角	h/a≤3.81	$r_1 = ae^{\gamma} \Rightarrow \sigma_y = \sigma_{\varphi} = 2k(1+\gamma)$	$\Rightarrow F_{Y} = 2t \int_{h}^{a+h} \sigma_{y} dr_{1} =$	$4kat(1+h/a)\ln(1+h/a)$		
		的双 口试	边切 件	h/a>3.81	$F_{Y} = 4kht(1+0.5\pi) - 4kta(e^{\pi/2} -$	$(1-0.5\pi)$ \Rightarrow a越大,	F _Y 越低(两情况都成立)		
	1、板条 问题的				n,如果楔角γ同 h/H 满足 ⁻ 	一定关系,滑移线	场将由均匀应力区和		
	线场	113/19/		轴向无剪应力,轴向方向必为主应力方向,后滑移线与之成 45°角。					
			出口久	上滑移线上: 5	平均应力 σ_0 =- $p+k+2k\gamma; \tau=1$	2k			
七、定常	2、应力	分布	(出口:	部分平衡: F	$=(\sigma_0 + k)h = [-p+2k(1+\gamma)]h$	$p/2k = (1+\gamma)h/R$	$H = (1+\gamma)/(1+2\sin\gamma)$		
塑性	与抽拉		整体	平衡: F=2 _f	<i>p</i> •斜边长度• − <i>h</i>) =	⇒	↓		
流动				h/I	$H = 1/(2\sin\gamma)$	$\frac{F}{2kh} = (1+\gamma)(1-\gamma)$	$-\frac{h}{H}) = \frac{2(1+\gamma)\sin\gamma}{1+2\sin\gamma}$		
问题	2 油度	八左	进入交	で界线 AC 上	法线速度连续,切线速度不	`连续,切线速度			
	3、速度	万	进出口	□速度: vh=ト	Hu——反应了材料的不可反	压缩性			
	4、刚性 校核	区的	出口原不屈用	$\stackrel{\text{fi}}{\triangleright} \Rightarrow \frac{F}{2kh} = (1$	$(1-\frac{h}{H}) = \frac{2(1+\gamma)\sin\gamma}{1+2\sin\gamma} < 1$	$\Rightarrow \gamma \sin \gamma < \frac{1}{2} \Rightarrow \gamma$	<42°27(否则无法实 现连续拉伸)		
	<u> </u>				·				

第八章:极限分析原理

一、 极限 状态	, <u>~</u>			及限状态和极限载荷的方法就叫 <mark>极限分析。</mark>	以				
	1、定		忽略强化,外载不变时理想塑性体发生无限制塑性变形,形成 <mark>极限状态</mark> 。所对应的载荷 为 <mark>极限载荷</mark> ;与之相应速度场称为 <mark>塑性破损机构</mark> 。						
				及限状态下,应变率的弹性部分恒为零,也就是说					
和极			性应变率	区。——采用理想刚塑性模型与弹塑性模型所得极	限状态一致。				
限分	2、性			艮状态的唯一性: 加载方式确定,极限载荷确定	与加载历史、初始状态无关。				
析				态与加载历史无 表初始状态无关。 极限载荷给定则极限状态唯一					
	((J MAT MORPHOOD	作用力与反作用力大小相等、				
_,	1 <			*** J _v * i'', **					
虚功	不考	虑体	力:∫ _V σ ° _{ij} ($T_i^* v_i^* dS$ 注线速度连续但 <mark>切线速度</mark>					
率原	T_{i} 一边	!界载7	苛 ;	度间 功率 [] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
理	$v_{i_*}^{\tau}$	域内	時; 満足v _i =0的	速度分布: $ \nabla $	$\ dS > 0 \Rightarrow \int_{S_T} T_i^* v_i^* dS = \int_V \sigma_{ij}^* i \qquad \int_{S_D} \tau^* \left[v_i^* \right] dS$				
	9			2)1 A(11 H4) (2) 4 / 3 1 P o					
	1、机动			: 可存在有限切线速度间断; S _V 上满足 V _i *=0;外力 <mark>和机动场的选择是任意的</mark>	Ii 住机纫场上敞止切。				
	场、 。 场	尹刀		$\sigma_{ij,j}^{\circ} + F_i = 0; f(\sigma_{ij}^{\circ}) \le 0; S_T \perp : \sigma_{ij}^{\circ} \eta_j = T_i^{\circ} = \eta^{\circ} \overline{T_i}$					
三、		7 70							
极限	2、极限分析原理		上限定:	理: $n^{\circ} < n$ 下限定理: $n^{*} > n$ 其中: $n^{*} = \int_{V} \sigma_{ij}^{*} i$	$\int_{S_D^*} \tau_Y \left[v_i^* \right] dS = P_i^*$				
分析			上限定理: $\eta^{\circ} \leq \eta$						
原理			静力场		载荷因子相同				
	3、 星 理		$ \eta = \max\{\eta^{\circ}\} = \min\{\eta^{*}\} $ $ \eta^{\circ} = \eta^{*} \Rightarrow \eta = \eta^{\circ} = \eta^{*} $ $ A$ 、 $ B$ 、 $ C$ 三个增大屈服面: $ \eta^{\circ} \le \eta_{A} \le \eta_{B} \le \eta_{C} \le \eta_{C}^{*} $						
	定理的 推论		在结构任何部分提高材料屈服极限不会降低结构的极限载荷(反之亦然)						
			在结构的自由边界上增加物质(不考虑自重),不会降低其极限载荷(反之亦然)						
	1、理论		下限求	解存在偏微分方程,在实际中应用上限法更简单。					
			上限求解选择分块均匀速度场,此时 $P_i^* = \sum \int_{S_D^*} au_Y \left[v_i^* \right] dS$						
		①单	面切口	工門 左京席 上 共田中 上 工 畑 上 上 限 : 切口处					
			边受M	下限: 在高度 h 范围内与无切口 $P_i^* = 2krws = 2$	$M^*w \Rightarrow$				
	l <u> </u>	作用		$M^* = 0.5 \text{km} \ \alpha \text{ c}$	$\sec^2 \alpha \Rightarrow M_{\min}^* = 0.69kh^2$				
四、			模对半 刚塑性	速度机动场用三个等腰三角形互相错动来表示。 1 cos a					
界限			的压人	$P_i^* = 2ka(\frac{1}{\sin\alpha\cos\alpha} + \frac{\cos\alpha}{\sin\alpha}) = p^* \bullet \qquad p_{\min}^* = 5.66k$	(滑移线结果 <u>5.14k</u>)				
定理	,	③通	过对称		etalpha、 C 点位置角 $ heta$ 有关				
的应	巫	楔形模的挤		适用于中等程度缩减比(H-h)/H,大相对缩减比	上时引入更多刚性匀速区。 2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1				
用	1夕	压 () 知	(名 加 台 七	•	1177人文夕117日77年后。				
)钝角楔单边受压 「α = -0.5(1+sin 2α)						
		C 点 \langle	$\tau_{nt} = -0$	$\begin{array}{l} 5(1+\sin 2\varphi) \\ 0.5\cos 2\varphi \end{array} \Rightarrow \left[\sigma\right] = \sigma_{Y}\sin 2\varphi \Rightarrow \sigma_{n} _{AB} = -\sigma_{Y}(1+\sin 2\varphi) = 0.5\cos 2\varphi $	$-p \Rightarrow \mathbb{T} \mathbb{R} p^{\circ} = \sigma_{Y} (1 + \sin 2\varphi)$				
		⑤端	部承受	不连续的应力场由四个均匀应力区组成;头部区域					
			载荷的 悬臂梁	梁的极限载荷下限为: $F^{\circ}=k$ • — —头部雪	连直长, <i>b</i> 一悬臂梁宽度)				

第九章:梁和刚架的极限分析(超静定)

	7	较	较复杂的静不定梁,极限状态下一般会出现包含 <mark>若干个</mark> 塑性铰的塑性破损机构。							
一、 有		N	N 次静不定梁需构造 N+1 个塑性铰,最终结果与梁采用理想弹塑性还是理想刚塑性无关。							
塑性针 破损机		定	算时先由的 反力,再由的 等矩		一端固支、	一端简支、中间受力 F: $F_1 = \frac{8M_p}{3l}$; $F_2 = \frac{3M_p}{l}$				
<u>_, }</u>	梁和	广面	义应力:截 M	真实极	真实极限状态 上限定理: $F^* \geq F_Y$ 其中 $F^* \Delta^* = \sum M_i^* \theta_i^*$					
刚架材		مدر	V 片赤 +4		可状态(机					
分析		,	义应变:截 转角 Θ		可状态(静	下限定理: $F^{\circ} \leq F_{\gamma}$ F° 是极限载荷的一个下限				
	1、	令	令外载在机构运动过程中所作的功等于在塑性铰上消耗的内功 $F^*=\min\{F^*\}$							
	机动法		塑性铰位 置							
	2、 静		在弯矩可能达到最大的一些截面处令弯矩达到塑性极限弯矩,之后得到整个结构的弯矩分布图,与此分布图相平衡的载荷就是真实极限载荷的一个下限							
	力法					5矩分布难以求出),求下极限载荷更困难				
三、机动		均布载荷梁	1000000	q *•						
法和静力法			静力法:	弯矩为二	.次函数:{ <i>M</i>	$\begin{aligned} M _{x=0} &= -M_p \\ _{x=0.5l} &= M_p \text{ (REE)} \Rightarrow q^\circ = (\frac{24}{25}) \end{aligned} \qquad 11.52 \frac{M_p}{l^2} \\ M _{x=l} &= 0 \end{aligned}$				
	3,	简单刚架		戊三个塑性	上铰, 搭配起	已来有三种可能的机构				
	举 例		法 $ F_{\scriptscriptstyle B}^* $	$=1.67\frac{M_p}{l};$	$F_c^* = 1.2 \frac{M}{l}$	$\frac{p}{l}; F_D^* = 1.5 \frac{M_p}{l} \Rightarrow F^* = 1.2 \frac{M_p}{l}$				
				$M_c = -2H$ $M_D = -2IH + 4H$ $M_A = 2.5H$	-21H lH + lV 2.51V – 31F lV – 51F	$\Rightarrow \diamondsuit \begin{cases} M_{C} = -M_{P} \\ M_{D} = -M_{P} \Rightarrow \\ M_{B} = -M_{P} \end{cases} \begin{cases} H = M_{p} / 2l \\ V = 2M_{p} / l \\ F = 5M_{p} / 3l \end{cases} \Rightarrow \begin{cases} F_{B}^{o} = \frac{3}{10} \cdot \frac{M_{p}}{2l} \\ \# : F_{C}^{o} = 1.2M_{p} / l \end{cases}$ $M_{A} = -10M_{p} / 3 \Rightarrow \begin{cases} F_{B}^{o} = \frac{3}{10} \cdot \frac{M_{p}}{2l} \\ F_{C}^{o} = 0.94M_{p} / l \end{cases}$				
	1、	概念: 若干外载同时作用时, 就需要用到载荷空间内的极限曲面的概念								
四、 极限 曲线	任何	、四杆例子:简单四杆刚架有四种极限载荷估计,四种机构各相应于一条直线。从原点出发 任何射线,表示 F 和 Q 的比例加载,此射线首先遇到的直线,就表示了在这种比例载荷作用下 该直线对应的机构破坏形式。								
及其			判断给定载	战荷组合是	是否安全					
应用	3、 用	应	对给定的加	口载比例,	求出极限载	戈荷的大小				
	7 14		当F与QF	中有一个已	· 巴知时,可求	长出对另一个的限制				

第十章:板的极限分析

	1、基								
	本 信 设 	$u = -z \frac{\partial w}{\partial x}; v = -z \frac{\partial w}{\partial y}; w = w(x, y) \Rightarrow \varepsilon_x = -z \frac{\partial^2 w}{\partial x^2}; \varepsilon_y = -z \frac{\partial^2 w}{\partial y^2}; \gamma_{xy} = -z \frac{\partial^2 w}{\partial x \partial y}; \varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0$							
板的	1	义应力 广义应变:							
基本方程	$M_{x} = \int_{-h/2}^{h/2} z \sigma_{z} dz; M_{y} = \int_{-h/2}^{h/2} z \sigma_{z} dz; M_{xy} = \int_{-h/2}^{h/2} z \tau_{xy} dz; \qquad \kappa_{x} = -\frac{\partial^{2} w}{\partial x^{2}}; \kappa_{y} = -\frac{\partial^{2} w}{\partial y^{2}}; \kappa_{xy} = -2\frac{\partial^{2} w}{\partial x \partial y};$								
	3、 点 服 件	$\begin{cases} Mises: m_x^2 - m_x m_y + m_y^2 + 3m_{xy}^2 = 1 \text{ \tilde{m} m							
	$1、 \sigma_{r}, \sigma_{\theta}, (不计\sigma_{z}, \tau_{xy}) \Rightarrow \Gamma 义应力M_{r} = \int_{-h/2}^{h/2} \sigma_{r}zdz; M_{\theta} = \int_{-h/2}^{h/2} \sigma_{\theta}zdz; \Gamma 义应变率: i$								
二、 圆板	2, {	$(rM_r)'-M_\theta=rQ$ \Rightarrow 平衡方程: $(rM_r)'-M_\theta=-\int_0^r rp(r)dr$. $Tresca$ 屈服条件 $\begin{cases} M_r =M_0, M_\theta =M_0\\ M_r-M_\theta =M_0 \end{cases}$							
新对 称弯		处于极限状态时,板内可分为若干环形区域,不同区域状态位于 Tresca 六边形不同线段 边界 Γ 上, M_r 、 Q 、 i 必须连续; 、 、 、 、 、 可间断。							
曲极限分	3 、 边界	i 不连续式 塑性铰圆; 时, 一定连续, 非塑性铰圆							
析	分析	板的边界条件: $\begin{cases} r=0 \text{时}, \ M_r=M_\theta; \ \text{简支边}, \ \text{i} \ , =0; \\ \text{固支边}, \ \text{i} \ , & \text{固支边塑性铰}, \end{cases}$							
三、	1 、 广义 应力	$p = \begin{cases} p_1 + p_2 & 0 \le r \le b \\ p_1 & b \le r \le a \end{cases} \Rightarrow M_\theta = M_0; M_r = \begin{cases} M_0 - \eta(p_1 + p_2)r^2 / 6 & 0 \le r \le b \\ M_0 - \frac{1}{6}\eta p_1 r^2 - \frac{1}{6}\eta p_2 (3b^2 - \frac{2b^3}{r}) b \le r \le a \end{cases}; \eta = \frac{6M_0}{ap_1^2 + b^2 p_2 (3 - 2b / a)} > 0(\mathbb{R})$							
简 题 板 极 段 载	2 、 速度 场	在 $Tresca$ 线的 BC 段 $\Rightarrow \begin{cases} i & & & \\ i & & & \\ i & & & \\ & & \\ & &$							
荷	3 、 特殊 情况	$p_2 = 0$ 时: $\eta p_1 = \frac{6M_0}{a^2} \Rightarrow \begin{cases} M_r = M_0(1 - r^2/a^2) \\ M_\theta = M_0 \end{cases}$ $p_1 = 0$ 时: $\eta p_2 = \frac{6M_0}{b^2(3 - 2b/a)}$ 集中力 $F_Y = 2\pi M_0$ (与半径 a 无关)							
四固圆的限荷	1 、 性质	极限在BCD上,靠近固支端: i							
	2 、 弯矩	$0 \le r \le r_1 \text{H$^{\frac{1}{2}}$:} \begin{cases} M_{\theta} = M_0 \\ M_r = M_0 - \frac{1}{6} p r^2 \end{cases}; r_1 \le r \le a \text{H$^{\frac{1}{2}}$:} \begin{cases} M_{\theta} - M_r = M_0 \\ M_r = M_0 \ln \frac{r}{r_1} - \frac{1}{4} p (r^2 - r_1^2) \end{cases}; \Rightarrow \begin{cases} r_1 / a = 0.730 \\ p = \frac{6M_0}{r_1^2} = 11.26 \frac{M_0}{a^2} \end{cases}$							
	3 、 速度 场	$ \begin{array}{ccccccccccccccccccccccccccccccccc$							

	钢筋的		也出现	理论:混凝土表面出现裂纹时,其内部 实质:构造一种有间断的机动场,假定 2出现了塑性铰,破裂线就是塑性铰的 塑性屈服只沿有限条直线发生,被这些				送发生,被这些	
	连线,		1	则板块绕着这些直线作相对运动。 直线分割开来的板块则只作刚体运动。					
	1、正i 形 相	カ 均 布 坂 载荷	2n条	绞线 $\rightarrow pna^2 \tan \frac{\pi}{n}$	• (外功率)=2nav	$w \tan \frac{\pi}{n}$ (内功率	$\not\cong$) \Rightarrow $p^* = 12M_0$	/ a ² (圆时11.26)	
Ti.,	(外 ⁵ 固支)		F*=	$4n\tan\frac{\pi}{n}M_0 \to \mathbb{Z}$	形时 $F^* = 4\pi M_0$ 个	简支时结果均	羽减半		
非圆板的	2 、圆斑板: 夕	不 内环加	载	$p^* = \frac{M_0}{b} \qquad $	合力 •	· 实心 · · ·	$ = 4\pi M_0 ()$	上节结果相同)	
机动解	固支口 自由	面均布	载荷	$p^* = 6M_0(2a -$	$(b)/(a-b)^2(a+b)^2$	<i>2b)→</i> 实心	。时 $p^* = 12M_0$	$/a^2$	
741	3、均 ² 载荷 <mark>1</mark>	方 言 情况	对角线 塑性铰	$\int_{1}^{a} p_{1}^{*} = \frac{6M_{0}}{a^{2}} \cdot \frac{a^{2} + b^{2}}{2b^{2}}$	45° 线 $p_2^* = \frac{6M_0}{a^2}$	$\begin{array}{c c} a+b & \boxed{\mathbb{B}} \\ 2b-a & \boxed{\mathbb{B}} \end{array}$	性较 $p_3^* = \frac{6M_0}{a^2}$	$p_2^* \le p_1^* \le p_3^*$	
	支矩升 板	形 取极 值	斜率为	可参数 $\Rightarrow p^* = \frac{6M_0}{a^2}$	$\frac{1}{(\sqrt{3+a^2/b^2}-a/b^2)}$	_ ⇒正四边 [}]	形 $p^* = \frac{6M_0}{a^2};b$ 很	大时 $p^* = \frac{2M_0}{a^2}$	
	此种假定塑性屈服只沿若干条直线塑性铰发生的机动法,适用于任意形状板的极限分于边界和载荷的对称性没有任何限制,是一种有广泛实用价值的方法。							的极限分析,对	
			_ 〔大区		, 可通过增大屈肝	 B应力	集中力作用]下简支圆板:	
	1 、	极限载荷	后	立变 → 应变强化小 大变形 → 可提高、	降低结构承载能	力	$F/F_0 = 1 + \epsilon$		
六、	概述			三同一量极时,板 逐变的同一量级,2				<mark>反</mark> ,极限载荷实 录	
圆板									
大变形后的承	Calla dine 方法	部分刚体转动,仅 能量 $\Rightarrow F = \frac{2\pi\sigma_y}{a} \int_A y dA \rightarrow \text{由等面} \Rightarrow \begin{cases} F/F_0 = 1 + (\delta/h)^2/3 & \delta/h \le 1 \end{cases}$ 情							
载能 力	3、	在板壳的	某些线	上,内力的某种组	组合达到一定值时	寸, 沿这些线	就形成塑性区	即广义屈服线。	
	广 屈 线 法	径向可移 Calladine	时与 结果一	\sim	$\begin{cases} 1 + 4(\delta/h)^2 \delta/h \le \\ 2\frac{\delta}{h} + \frac{1}{6}(\frac{h}{\delta}) \delta/h \ge \end{cases}$	$\begin{array}{ccc} 1/2 & 1 \\ \Rightarrow 2 \\ 1/2 & \bar{\beta} \end{array}$	为径向可移简 、支撑条件对于 承载能力影响极	支圆板两倍 大变形后 大	
	1、冲压问题:已知需要制作壳体几何形状,确定冲模所需尺寸(考虑回弹)以及所需的冲压力。								
七、圆板的压	2、模型描述:板中部为一包住凸模的球面,外环形区域为一截头圆锥面,球面与圆锥面在半径为b的圆上光滑连接,冲压过程中b值从0增加到半径a								
	3、中心挠度: $\Delta = (a-b)\sin\beta + R(1-\cos\beta) \Rightarrow$ 相对挠度 $\delta = \Delta/h \approx \alpha \rho (1-\rho/2)$;其中 $\alpha = a^2/Rh$ 、 $\rho = b/a$								
	4、 所需 $p = \frac{F}{F_0} = k\alpha;$ 其中 $k = \begin{cases} \rho(1-2\rho^2/3)/(1-\rho) & \rho \le 0.5 \\ (-0.5\rho^2 + \rho + 1/24)/(1-\rho) & \rho \ge 0.5 \end{cases}$ $\begin{vmatrix} \rho = b/a \\ \alpha = a^2/Rh \end{vmatrix}$								
	$\begin{bmatrix} 5 & \hat{m} \hat{n} \\ \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} & \hat{n} \end{bmatrix} \begin{bmatrix} \hat{n} & \hat{n} \\ \hat{n} \end{bmatrix} \begin{bmatrix} n$								
	6、ρ	6、 $\rho = \frac{b}{a} = 1$ 时冲压完成,设卸载后膜力完全释放,回弹量 $\frac{\kappa^F}{\kappa^D} = \frac{R}{R^F} \approx 1 - \frac{9\sigma_{\gamma}(1-v^2)}{2E}(\frac{R}{a})^2$							

第十一章:塑性动力学简介

1、 林林的功态有为。全国理性变形的机理是位错运动,位错 在金属温格中高速通过比较慢通过时限力大,导致高速变形的 聚条条的影响。(用服滞后、黑服 按系统 为 中市 教育时,所产作的放力,变形形的的形式传播出去。(受 前分析不关重要 为 的 为 中市 教育时,所产作的放力,变形形的的形式传播出去。(受 前分析不关重要 别 我们在 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是 是								
由、姆斯特	论	在金属晶 大屈服应	格中 之力现	高速通过比缓慢通过时阻力大,导致高速变形的象。	关系的影响。(屈服滞后、屈服			
(此时不再考虑波传播的影响)。理想例塑性假设——功大部分被塑性变形吸收,结构惯性力参与承载,抵抗变形。 $\frac{\partial u}{\partial x^2}$ 其中。 $\frac{\partial^2 u}{\partial x^2}$ 其	击、爆炸、锻	冲击载荷		所产生的应力、变形以波的形式传播出去。(受				
2、弹性应力 波的传播		(此时不	「再考	虑波传播的影响)。理想刚塑性假设——功大部				
z 被的传播				拉力正 压力负: $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$;其中: $c^2 = \frac{1}{\rho}$ $= \sqrt{\frac{E}{\rho}}$	u──沿受力方向位移 c──波传播速度			
被的 传播 H 大牧射 H	二、弹			程通解: $u = f_1(x-ct) + f_2(x+ct) \rightarrow \sigma = \rho c_0 v = \sqrt{I}$	$\overline{E\rho v}$ 其中 ρc_0 一波阻抗			
传播 $P_0 c_0 > P_0 c_0 > P_0 c_0 < $	应力	3、弹性	波反	$\begin{cases} \sigma_I + \sigma_R = \sigma_T & I \longrightarrow \lambda \\ v_I + v_B = v_T & T : 透射; R: 反射 \end{cases}$ 波的性质: 加载	说波or卸载波			
□ 为波、冲击波		射、投射		1 3 2 2 3 3 3				
上、高 应 变 字 下 材料 物感性 2 、应变率 敏感性 2 、应变率 敏感性 2 、应变率 敏感性 2 从 2				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
率 下 材 料 的 动 态 特 也 本 构关系: $\frac{d\varepsilon}{dt} = D(\sigma_y^d/\sigma_y - 1)^g \to \mathbb{R}$	三、高	1、应变率		准静态加载:10 ⁻⁴ ~10 ⁻¹ s ⁻¹ ;子弹打	靶10 ⁴ s ⁻¹ ;核爆10 ⁸ ~10 ⁹ s ⁻¹			
敏感性		• 	<u>t</u>	1叫粘塑性:材料本构关系对应变率的敏感程度。	(有些敏感、有些不敏感)			
本特性	材料			敏感材料: $\frac{d\varepsilon}{dt} = D(\sigma_y^d / \sigma_y - 1)^q \rightarrow$ 梁弯曲时 $\frac{d\kappa}{dt} = D_1 (M_p^d / \sigma_p - 1)^q - D$ 、 q 试验确定				
個定 ②忽略剪力影响;⑤卸载相当于叠加反向施加弹塑性弯矩引起的弹性弯曲	态 特	nSon 杆测		《冲,在界面 1、2 上均发生反射、投射,通过分				
四、刚 塑性 直 梁 为 和 承 受脉 的 动 为 响 应 $F_{y} < F \le F_{y}$ 时,塑性较在梁根部,动力响应运动机构与静极限载荷相同 $F_{y} < F \le F_{y}$ 时,内部塑性较代替根部塑性较,动载越大,塑性较离载荷越近只要是均匀直梁,其线密度的大小就不影响运动机构及剪力、弯矩的分布 的 悬臂								
四、刚 塑 性 直 梁 的 动 力 响 应 图 影		承受脉 冲载荷 的悬臂	跃载	同一悬臂梁可在大于 Fy 的动载 F(t) 作用下发生	上运动,承载范围扩大。			
直梁	四、刚			$F_{Y} < F \le F_{Y}$ 时,塑性铰在梁根部,动力响应	运动机构与静极限载荷相同			
本				$F > 3F_y$ 时,内部塑性铰代替根部塑性铰,因	动载越大,塑性铰离载荷越近			
应 的悬臂			何	只要是均匀直梁, 其线密度的大小就不影响运动	加构及剪力、弯矩的分布			
版 续变化、③绕梁根部 B 的转动。最终形状仅有 H ₀ B 段具有塑性曲率。			居辛		第 II 项最为重要,它的特征是由			
载越强则移行铰耗散的能量占的比例越大。,			脉	续变化、③绕梁根部 B 的转动。最终形状仅有 F	H₀B 段具有塑性曲率。			
本章公式基于刚塑性与小变形,仅为一级近似,对结果加以一定修正可以看成二级效应。			冲		项所耗散的能量却与 F ₀ 有关,外			
	本章公	式基于刚	塑性上	与小变形,仅为一级近似,对结果加以一定修正可	了以看成二级效应。			

第十二章:塑性变形原理在能量吸收设计中的应用

	. At E er	11. 4	는 J. HE AV - N - N I L I I VE D					
			撞中,吸能元件或结构经塑性变形或脆性断裂耗散冲击能量的过程。					
			與不可逆,能量通过塑性变形或其他耗散过程转化为非弹性能 					
			力应维持恒定或几乎恒定,以避免过高的减速 <mark>速率</mark>					
			力大小必须受到限制,达到"以时间买距离"的概念					
一、绪	l		材料应具有稳定的、可重复的变形模式,确保结构在复杂工况下可靠性					
论	(5	能量吸口	收装置一般为一次性,因此成本尽量要低些					
VE.	6	能量吸口	收装置本身质量要尽量轻, 具有较高比能量吸收能力					
	3、常见吸能原件 圆环、方管、圆环、蜂窝板、工字钢							
	4、如何考	虑 ①应	变率: 计算平均应变率, 之后根据率相关本构关系对动态屈服应力作修改					
	动力学因素		州 故					
	一、波的效应	.)	性效应: 只对输入能量和结构的塑性大变形所消耗的能量列出总体能量平衡					
	1、两刚性		的塑性大变形机构是一个四铰机构,载荷随挠度的增加而增加。					
二、横	板对压圆环		所得的圆环承载能力比计算结果要高,(因为塑性较应为塑性线为一区域)					
向 受	2、一对集		形机构仍是四铰机构,但圆环的承载能力随变形的增长而逐渐降低;					
压的	力受压圆环	- 1, ,	上由于材料强化、几何效应等使得载荷-位移曲线呈现时升时将的现象。					
圆环	3、横向受	-	受压和 U 型受压,在每两个受力点之间的某处形成塑性铰,塑性铰的增多导					
和圆	東的圆环		收能力增多,破坏力需增大。(受载大小与几何约束有无摩擦有很大关系)。					
管	4、圆环系		式:高速公路维修车 堆垒式:高速公路分叉 交叠式:仅用于圆管,每层					
	和圆管系统	1	式能力吸收装置。 口防护,可防角度大。 圆管平行,相邻互相垂直					
	1、压溃模	长圆管	先屈曲后大变形,①欧拉失稳②圆环模式屈曲;③钻石模式;(混合模式)					
	式和力-位	 力-位.移	;曲线:轴力先达到一个初始峰值,随后急剧下降,然后波动起伏。					
三、轴	移曲线							
向受	2、圆管的	抽 对称	(<mark>圆环模式</mark>): 承载力平均值 $F_m \approx 6\sigma_y t(Dt)^{1/2}$ (哪种模式看模型结构尺寸)					
压的圆管	理论模型	非轴对	称(<mark>钻石模式)</mark> : 承载力平均值 $F_m/2\pi M_0 \approx 1 + n \csc(\pi/2n) + n \cot(\pi/2n)$					
和方		在初始	峰值后,力急剧下降,然后周期性的波动,对应于一个个的褶皱和弯曲压扁。					
管	3、轴向受	正方形	正方形截面薄管轴向受压时,通常四个侧壁同时发生 Euler 屈曲, $F_m = 32\sqrt{3}M_0$					
	压的方管	锻炼韧性	生差时,轴压屈曲后承载能力下降,大变形时迅速产生沿棱线的开裂(<mark>能量吸收低</mark>)					
		方法: 该	5导方管在轴压下开裂与卷曲,发生卷曲的方管有可能成为性能良好的能量吸收装置					
四、各	1、比 定	义: 单位	自重所能消耗的能量值					
类吸能	耗能 圆]管破碎>方管开裂与卷曲>圆管折屈>圆管扩张>圆管翻转>圆管压扁						
原件的	2、相定	义:有效行程对原件长度的比值						
简单比		曲原件>方管开裂与卷曲>挤压装置>圆管组压扁>圆管折屈>圆管翻转						
较								
	1、加载速		低速: 所有圆环的变形都同时均匀的发生,准静态叠加得到整体响应					
五、加	形模式的影		高速:圆环变形是不均匀的,从第一个圆环的四铰变形模式开始,并逐渐向					
速度	部受冲击圆	环)	远端传播。(可用冲击波理论来解释)					
对 结	 2 、结构类	型对冲	I 类结构 (圆环、圆管等):					
构能	击速度的敏		载荷-位移曲线在塑性阶段是一个平台;对冲击速度不敏感					
量吸			II 类结构: 在载荷达到峰值后急剧下降: 对冲击速度相当敏感					
收性			静力平衡:结构的弹性变形使最大轴向载荷 Fmax 比刚塑性极限载荷 Fy 小很多					
能的	3、第 II 类		动态: ①碰撞有动能损失; ②损失仅与质量比、初始角有关; ③采用等效质					
影响	静态与动态	行为	量后能量随时等于两物体非弹性碰撞的能量损失, ④撞击能量相同时速度越					
			小则能量随时越大,此为造成"速度敏感性"的主要原因					
								