#### P-Value

- To report the result of a hypothesis-testing analysis is to simply say whether the null hypothesis was rejected at a specified level of significance. This type of statement is somewhat inadequate because it says nothing about whether the conclusion was a very close call or quite clear cut.
- P-value is a quantity that conveys much information about the strength of evidence against  $H_0$  and allows an individual decision maker to draw a conclusion at any specified level  $\alpha$ .
- The P-value (observed significance level) is the probability, under the null hypothesis, that the test statistic is more **extreme** than the observed statistic.

### What P-Values are not

- ▶ The P-value is not the probability that  $H_0$  is true.
- ▶ The P-value is not Type I Error  $\alpha$ .
- ▶ The P-value is not the significance level.
- ▶ The P-value is not Type II Error  $\beta$

# Comparison Between P-value and Type I Error $\alpha$

- P-value=P(Test Statistic is more extreme than observed Test Statistic
   Value under Null Hypothesis)
- Type I Error=P(Test Statistic falls into Rejection Region under Null Hypothesis)

### Remarks

- The smaller the P-value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis.
- P-values can be seen as a more flexible procedure of Hypothesis Testing. The practical advantage is that it is easier to switch to a test of different significance level
- The decision rule based on P-values

```
Decision rule based on the P-value Select a significance level \alpha (as before, the desired type I error probability). Then  \text{reject H}_0 \text{ if } P\text{-value} \leq \alpha   \text{do not reject H}_0 \text{ if } P\text{-value} > \alpha
```

▶ The P-value is the smallest significance level  $\alpha$  at which the null hypothesis can be rejected.

### P-values and Tails

Like Rejection Region, P-values are also related to the type of test we are concerning, uppper-tailed, lower-tailed or two-tailed.





# Two sample tests

- A new drug is claimed to significantly reduce the blood pressure for high blood pressure patients. What kind of tests can we use to verify the claim?
- A new drug is claimed to perform much better in terms of reducing blood pressure than an old drug. What kind of tests can we use to verify the claim?

# Things to cover

- As in the one sample testing problem, we will cover the following cases:
  - Two normal populations with known variance.
  - 2. Two populations with unknown distribution and large sample size.
  - Two normal populations with unknown variance.
  - 4. Two population proportions with large sample size.
  - 5. Tests about variances. (NOT required.)
- Basic assumptions for comparing population means:
  - 1.  $X_1, X_2, ..., X_m$  is a random sample (i.i.d.) from a population with mean  $\mu_1$  and variance  $\sigma_1^2$ .
  - Y<sub>1</sub>, Y<sub>2</sub>, ..., Y<sub>n</sub> is a random sample (i.i.d.) from a population with mean  $\mu_2$  and variance  $\sigma_2^2$ .
  - 3. The X and Y samples are independent of one another.

#### **Test statistics**

 Since we are comparing the population means, a natural test statistic to use would be the difference of two sample means. Because of independence we have,

$$E(\bar{X} - \bar{Y}) = \mu_1 - \mu_2$$

$$Var(\bar{X} - \bar{Y}) = \frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}$$

### Case I: normal, known variance

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

Test statistic: 
$$\frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{{\sigma_1}^2}{m} + \frac{{\sigma_2}^2}{n}}} \sim N(0, 1)$$

$$H_a: \mu_1 - \mu_2 > \Delta_0$$
, reject if  $\frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} > Z_{\alpha}$ 

$$H_a: \mu_1 - \mu_2 < \Delta_0$$
 , reject if  $\dfrac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\dfrac{{\sigma_1}^2}{m} + \dfrac{{\sigma_2}^2}{n}}} < -Z_{\alpha}$ 

$$H_a: \mu_1 - \mu_2 \neq \Delta_0 \text{ , reject if } \frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{{\sigma_1}^2}{m} + \frac{{\sigma_2}^2}{n}}} < -Z_{\alpha/2} \text{ or } \frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{{\sigma_1}^2}{m} + \frac{{\sigma_2}^2}{n}}} > Z_{\alpha/2}$$

### **Questions**

- How to compute P-value for case I?
- How to compute type II errors for case I?
- In a balanced design, derive the sample size calculation formula (for alternative ">"):

$$m = n = \frac{(\sigma_1^2 + \sigma_2^2)(Z_{\alpha} + Z_{\beta})^2}{(\Delta' - \Delta_0)^2}$$

# Case II: large sample

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

Test statistic: 
$$\frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} \sim AN(0,1)$$

$$H_a: \mu_1 - \mu_2 > \Delta_0$$
 , reject if  $\frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} > Z_{\alpha}$ 

$$H_a: \mu_1 - \mu_2 < \Delta_0$$
, reject if  $\frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} < -Z_{\alpha}$ 

$$H_a: \mu_1 - \mu_2 \neq \Delta_0 \text{ , reject if } \frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} < -Z_{\alpha/2} \text{ or } \frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} > Z_{\alpha/2}$$

### **Questions**

• How to construct confidence interval for  $\mu_1 - \mu_2$  in case II?

# Case III: normal, unknown variance

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

Test statistic:  $\frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} \sim t_v$ , v is the df of the t-distribution and it's approximately estimated

by the sampled data: 
$$v = \frac{\left(\frac{S_1^2}{m} + \frac{S_2^2}{n}\right)^2}{\frac{\left(S_1^2/m\right)^2}{m-1} + \frac{\left(S_2^2/n\right)^2}{n-1}}$$
, and round  $v$  town to the nearest integer.

#### Case III cont.

$$H_a: \mu_1 - \mu_2 > \Delta_0$$
, reject if  $\frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} > t_{\alpha,\nu}$ 

$$H_a: \mu_1 - \mu_2 < \Delta_0 \text{ , reject if } \frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} < -t_{\alpha, \nu}$$

$$H_a: \mu_1 - \mu_2 \neq \Delta_0 \text{, reject if } \frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} < -t_{\alpha/2, \nu} \text{ or } \frac{\overline{X} - \overline{Y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} > t_{\alpha/2, \nu}$$

### **Questions**

- How to compute P-values of the test?
- How to construct confidence interval for  $\mu_1 \mu_2$  in case III?
- What if we know that  $\sigma_1^2 = \sigma_2^2$ ?

The *pooled estimator* of  $\sigma^2 = \sigma_1^2 = \sigma_2^2$  is given by

$$S_p^2 = \frac{m-1}{m+n-2} \cdot S_1^2 + \frac{n-1}{m+n-2} \cdot S_2^2$$

#### Case IV

$$H_0: p_1 - p_2 = 0$$

Test statistic: 
$$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{m} + \frac{1}{n}\right)}}, \quad \hat{p} = \frac{m}{m+n} \hat{p}_1 + \frac{n}{m+n} \hat{p}_2 \quad \text{(the weighted average of } \hat{p}_1$$

and  $\hat{p}_2$ )

### Case IV cont.

$$H_a: p_1 - p_2 > 0$$
, reject if  $\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{m} + \frac{1}{n}\right)}} > Z_{\alpha}$ 

$$H_a: p_1 - p_2 < 0$$
, reject if  $\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{m} + \frac{1}{n}\right)}} < -Z_{\alpha}$ 

$$H_a: p_1 - p_2 \neq 0 \text{, reject if } \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{m} + \frac{1}{n}\right)}} > Z_{\alpha/2} \text{ or } \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{m} + \frac{1}{n}\right)}} < -Z_{\alpha/2}$$

#### Paired t-test

- As in the previous example, the data is paired, the two scores (before and after) recorded for each individual are dependent, but the between individuals the pairs are independent.
- Thus in order to test  $H_0$ :  $\mu_1 \mu_2 = 0$ , one has to look at the difference of each pair. The problem eventually becomes a one sample t-test problem.