微分積分学②(火曜 4 限; O 先生)の講義資料の行間を埋める資料です.

目次

2		多変数関数の微分	2
	2.8	テイラーの定理(2 変数 version)	2
	2.8.1	連鎖律と数学的帰納法	2
	2.9	C^2 級の 2 変数関数の極大・極小 \ldots	3
	2.9.1	極値を取るための必要条件	3
	2.9.2	A,B,C と a,b,c の関係性 \ldots	3
	2.9.3	「 t : 十分小」の意味	4
	2.9.4	「 $iii)$ $A=0$ のとき」の省略された計算 \dots	4
3		1 変数関数の積分	5
•			5
	3.2.1		5
	0		6
	3.4.1	すぐに分かること2....................................	6
	3.4.2	有界閉区間上の連続関数の一様連続性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
	3.4.3	リーマンの判定法	7
	3.5	リーマン積分の基本性質	7
	3.5.1	リーマン積分の線型性 (1)	7
	3.5.2	リーマン積分の線型性 (2)	8
	3.5.3	積のリーマン積分可能性	8
	3.5.4	商のリーマン積分可能性 10	0
	3.5.5	被積分関数の大小と積分値の大小1	2
	3.5.6	積分範囲の分割	3
	3.5.7		4

2 多変数関数の微分

2.8 テイラーの定理(2変数 version)

2.8.1 連鎖律と数学的帰納法

行間 1. 自然数 k = 1, 2, ..., n + 1 に対して

$$\varphi^{(k)}(t) = \sum_{i=0}^{k} {}_{k} C_{i} \frac{\partial^{k} f}{\partial x^{k-i} \partial y^{i}}(x(t), y(t)) \cdot (x_{1} - x_{0})^{k-i} (y_{1} - y_{0})^{i}$$
(1)

が成立する. ただし n, φ, f, x, y は講義資料で定義されたものである.

この命題は,テイラーの定理(2変数 version)の証明のなかで「同様に連鎖律をくり返し使うことにより…」 と議論が省略されている部分です.

<u>証明.</u> $\Delta x = x_1 - x_0, \Delta y = y_1 - y_0$ とおく、まず k = 1 に対して (1) は明らかに成立する、つぎに $k (=1,2,\ldots,n)$ を任意にとり、(1) の成立を仮定する、(1) の両辺を t で微分して次を得る.

$$\varphi^{k+1}(t) = \sum_{i=0}^{k} {}_{k}C_{i} \left\{ \frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t), y(t))\Delta x^{k+1-i}\Delta y^{i} \right. \\
+ \frac{\partial^{k+1}f}{\partial x^{k-i}\partial y^{i+1}}(x(t), y(t))\Delta x^{k-i}\Delta y^{i+1} \right\}$$

$$= \sum_{i=0}^{k} {}_{k}C_{i} \frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t), y(t))\Delta x^{k+1-i}\Delta y^{i} \\
+ \sum_{i=0}^{k} {}_{k}C_{i} \frac{\partial^{k+1}f}{\partial x^{k-i}\partial y^{i+1}}(x(t), y(t))\Delta x^{k-i}\Delta y^{i+1}$$

$$= \sum_{i=0}^{k} {}_{k}C_{i} \frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t), y(t))\Delta x^{k+1-i}\Delta y^{i} \\
+ \sum_{i=1}^{k+1} {}_{k}C_{i-1} \frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t), y(t))\Delta x^{k+1-i}\Delta y^{i}$$

$$= \frac{\partial^{k+1}f}{\partial x^{k+1}}(x(t), y(t))\Delta x^{k+1} + \frac{\partial^{k+1}f}{\partial y^{k+1}}(x(t), y(t))\Delta y^{k+1} \\
+ \sum_{i=1}^{k} {}_{k+1}C_{i} \frac{\partial^{k+1}f}{\partial x^{k+1-i}\partial y^{i}}(x(t), y(t))\Delta x^{k+1-i}\Delta y^{i}$$
(5)

したがって k+1 に対しても (1) が成立する. 以上より、自然数 $k=1,2,\ldots,n+1$ に対して (1) が成立する.

2.9 C^2 級の2変数関数の極大・極小

2.9.1 極値を取るための必要条件

行間 2. $点(x_0,y_0)$ で f が極大, または極小になるならば

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0 \quad \text{if} \quad \frac{\partial f}{\partial y}(x_0, y_0) = 0 \tag{7}$$

である. ただし x_0, y_0, f は講義資料で定義されたものである.

この命題は「すぐにわかる」ものです.

<u>証明</u>. 点 (x_0,y_0) が f の極大点である場合を示す。極小点の場合も同様である。一変数関数 g,h を $g(x)=f(x,y_0),h(y)=f(x_0,y)$ と定めると,g,h はそれぞれ点 x_0,y_0 で微分可能であって局所的に最大となる。したがって,共通資料第 4 章命題 2 より点 x_0,y_0 はそれぞれ g,h の停留点である。よって

$$\frac{\partial f}{\partial x}(x_0, y_0) = g'(x_0) = 0, \quad \frac{\partial f}{\partial y}(x_0, y_0) = h'(y_0) = 0$$
 (8)

が従う. ■

2.9.2 A, B, C と a, b, c の関係性

行間 3. (x_0, y_0) に十分近い任意の点 (x, y) に対して

$$A > 0$$
 かつ $AC - B^2 > 0$ ⇒ 常に $a > 0$ かつ $ac - b^2 > 0$ (9)

が成立する. ただし $x, y, x_0, y_0, A, B, C, a, b, c$ は講義資料で定義されたものである.

この命題は,A,B,C に関する大小関係がまわりの a,b,c に関しても成立するというものです.

証明. $(x,y) \to (x_0,y_0)$ で

$$a \to A > 0 \tag{10}$$

$$ac - b^2 \to AC - B^2 > 0 \tag{11}$$

なので、ある $\delta > 0$ が存在して

$$0 < \|(x,y) - (x_0,y_0)\| < \delta \implies a > 0 \text{ in } ac - b^2 > 0$$
 (12)

2.9.3 「|t|: 十分小」の意味

行間 4. 「|t|: 十分小」という制約は,f が C^2 級である領域の上だけを点 (x_0+t,y_0) が動くように課されている.

「 $AC - B^2 < 0$ の場合」というスライドでは「|t|: 十分小」という制約が登場しますが、これは何のためにあるのか気になりませんか? O 先生に尋ねたところ上のような回答でした。証明はとくにありません。

2.9.4 「iii) A=0 のとき」の省略された計算

行間 5. 講義資料のように

$$\varphi(t) = f(x_0 + p_1 t, y_0 + t), \quad \psi(t) = f(x_0 + p_2 t, y_0 + t)$$
(13)

とおくと次が成り立つ.

$$\varphi'(0) = \psi'(0) = 0, \quad \varphi''(0) = 2p_1B + C, \quad \psi''(0) = 2p_2B + C$$
 (14)

ただし x_0, y_0, p_1, p_2, B, C は講義資料で定義されたものである.

証明. φ についてのみ示す. ψ の場合も同様である. f が C^2 級関数であることに注意すれば, φ の導関数は

$$\varphi'(t) = \frac{\partial f}{\partial x}(x_0 + p_1 t, y_0 + t) \cdot p_1 + \frac{\partial f}{\partial y}(x_0 + p_1 t, y_0 + t) \cdot 1 \tag{15}$$

$$\varphi''(t) = \frac{\partial^2 f}{\partial x^2} (x_0 + p_1 t, y_0 + t) \cdot p_1^2$$

$$+2\frac{\partial^{2} f}{\partial x \partial y}(x_{0}+p_{1}t,y_{0}+t)\cdot p_{1}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0}+p_{1}t,y_{0}+t)\cdot 1$$
(16)

である. 点 (x_0,y_0) は f の停留点なので、(15) より $\varphi'(0)=0$ である. また、A,B,C の定義と A=0 に注意すれば、(16) より

$$\varphi''(0) = 0 \cdot p_1^2 + 2B \cdot p_1 + C \cdot 1 = 2p_1B + C \tag{17}$$

を得る. ■

3 1変数関数の積分

3.2 区分求積法

3.2.1 区分求積法の成立

行間 6. 関数 $f:[a,b]\to\mathbb{R}$ がリーマン積分可能であるとき, $\lim_{n\to\infty}|\triangle_n|=0$ なる [a,b] の分割の列 $\{\triangle_n\}_{n=1,2,\dots}$ を任意にとり,各 \triangle_n の代表点集合 $\xi_{\mathbf{n}}$ を任意にとれば,

$$\lim_{n \to \infty} R(f: \triangle_n, \xi_{\mathbf{n}}) = \int_a^b f(x) dx \tag{18}$$

が成立する.

こちらはリーマン積分可能性の定義から区分求積法の成立を導くものです.

<u>証明.</u> $S=\int_a^b f(x)dx$ とおく. 正数 ϵ を任意にとる. f はリーマン積分可能なので、ある正数 δ であって次を満たすものが存在する.

このような δ をひとつとる. $\lim_{n\to\infty} |\Delta_n| = 0$ より、ある自然数 N であって次を満たすものが存在する.

$$n > N \Longrightarrow |\Delta_n| < \delta$$
 (20)

このような N をひとつとる. 自然数 n > N を任意にとる. (20), (19) より

$$|R(f:\Delta_n,\xi_n) - S| < \epsilon \tag{21}$$

が成立する. すなわち

$$\lim_{n \to \infty} R(f : \Delta_n, \xi_{\mathbf{n}}) = S = \int_a^b f(x) dx$$
 (22)

が成立する.

3.4 有界な関数のリーマン積分可能性・不可能性

3.4.1 すぐに分かること2

行間 7. 区間 [a,b] の 2 つの分割 \triangle_1 と \triangle_2 について, \triangle_2 が \triangle_1 の細分ならば

$$s(f:\Delta_1) \le s(f:\Delta_2) \le S(f:\Delta_2) \le S(f:\Delta_1) \tag{23}$$

が成立する.

この命題は「簡単なので略」されています.

<u>証明</u>. (23) の最も左の不等号についてのみ示す.分割 \triangle_1 の隣り合う分点 x_{j-1} と x_j の間に分点 x' を追加することを考える.区間 $[x_{j-1},x_j],[x_{j-1},x'],[x',x_j]$ 上での f の下限をそれぞれ m_j,m'_j,m'_{j+1} とおく.ここで,

$$m_i', m_{i+1}' \ge m_i \tag{24}$$

ゆえに

$$s(f:\Delta_2) - s(f:\Delta_1) = m_i'(x' - x_{i-1}) + m_{i+1}'(x_i - x') - m_i(x_i - x_{i-1})$$
(25)

$$\geq m_j(x'-x_{j-1}) + m_j(x_j - x') - m_j(x_j - x_{j-1}) \tag{26}$$

$$=0 (27)$$

が成立する. ■

3.4.2 有界閉区間上の連続関数の一様連続性

行間 8. 関数 $f:D\to \mathbb{R}$ について,D が \mathbb{R} の有界閉集合かつ f が連続であるならば,f は一様連続である.

これは証明が解析学基礎に投げられている定理ですが、数学 IA 演習 (2014 年度) 第 9 回講義資料* 1 * 2 の定理 8 で証明されていますので、証明はそちらに譲ります。

^{*1} https://lecture.ecc.u-tokyo.ac.jp/~nkiyono/14_kami.html

 $^{^{*2}}$ K 先生の資料は神です

3.4.3 リーマンの判定法

行間 9. 有界関数 $f:[a,b]\to\mathbb{R}$ について,

 $\forall \epsilon > 0$ に対し、区間 [a,b] のある分割 \triangle が存在して $S(f:\triangle) - s(f:\triangle) < \epsilon$ となる.

 $\iff f$ が区間 [a,b] 上でリーマン積分可能

これは「ダルブーの定理」というものが必要です、として証明が省略されていますが、リーマンの判定法の証 明のためにはダルブーの定理以外にも色々と補題を準備しておかないといけません.

この定理は数学 IA 演習 (2014 年度) 第 9 回講義資料 *3 で証明されていますので、証明はそちらに譲ります。 以下, 講義資料内の定理番号を用いて証明の流れを示します.

行間 14 の主張は直接的には定理 13「積分可能条件: ϵ - δ バージョン」として証明されますが、もともとのリー マン積分可能性の定義と定理13のいう積分可能条件との同値性は次のように示されます. ただし, 同値記号 の下に書き添えてある定理は、その同値性を示すために用いられる定理です.

定理 13 のいう積分可能条件 ⇒ 定理 12 のいう積分可能条件

⇒ 定理 6 のいう積分可能条件 定理 11

⇔ 定理 4 のいう積分可能条件

3.5 リーマン積分の基本件質

3.5.1 リーマン積分の線型性(1)

行間 10. 関数 $f:[a,b]\to\mathbb{R},\ g:[a,b]\to\mathbb{R}$ がともにリーマン積分可能であるとき, 関数 $f+g:[a,b]\to\mathbb{R}$ $\mathbb{R}(x \mapsto f(x) + g(x))$ もリーマン積分可能で

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
 (28)

証明. 表記の簡略化のため $\alpha = \int_a^b f(x)dx$, $\beta = \int_a^b g(x)dx$ とおく.

正数 ϵ を任意にとる. f,g がリーマン積分可能であることから、ある正数 δ が存在して

^{*3} https://lecture.ecc.u-tokyo.ac.jp/~nkiyono/14_kami.html

が成立する. ここで, リーマン和の定義から明らかに

$$R(f+g:\triangle,\xi) = R(f:\triangle,\xi) + R(g:\triangle,\xi) \tag{29}$$

なので

$$|R(f+g:\Delta,\xi) - (\alpha+\beta)| = |R(f:\Delta,\xi) + R(g:\Delta,\xi) - (\alpha+\beta)| \tag{30}$$

$$\leq |R(f:\Delta,\xi) - \alpha| + |R(g:\Delta,\xi) - \beta| \tag{31}$$

$$<\epsilon$$
 (32)

が成立する. したがって (28) が成立する.

3.5.2 リーマン積分の線型性 (2)

行間 **11.** 関数 $f:[a,b]\to\mathbb{R}$ がリーマン積分可能であるとき、 $\forall c\in\mathbb{R}$ に対し、関数 $cf:[a,b]\to\mathbb{R}$ $(x\mapsto cf(x))$ もリーマン積分可能で

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx \tag{33}$$

証明. 表記の簡略化のため $\alpha = \int_a^b f(x) dx$ とおく.

 $c \in \mathbb{R}$ を任意にとる. 正数 ϵ を任意にとる. f がリーマン積分可能であることから, ある正数 δ が存在して

$$\begin{cases} |\Delta| < \delta \text{ なる } [a,b] \text{ の任意の分割 } \Delta \\ \triangle \text{ の任意の代表点集合 } \xi \end{cases} \quad \text{に対し} \quad |R(f:\Delta,\xi) - \alpha| < \frac{\epsilon}{|c|+1}$$

が成立する. ここで、リーマン和の定義から明らかに

$$R(cf:\Delta,\xi) = cR(f:\Delta,\xi) \tag{34}$$

なので

$$|R(cf:\Delta,\xi) - c\alpha| = |cR(f:\Delta,\xi) - c\alpha| \tag{35}$$

$$= |c||R(f:\Delta,\xi) - \alpha| \tag{36}$$

$$\leq |c| \frac{\epsilon}{|c|+1} \tag{37}$$

$$<\epsilon$$
 (38)

が成立する. したがって (33) が成立する.

3.5.3 積のリーマン積分可能性

行間 12. 関数 $f:[a,b]\to\mathbb{R}$, $g:[a,b]\to\mathbb{R}$ がともにリーマン積分可能であるとき,関数 $fg:[a,b]\to\mathbb{R}$ $(x\mapsto f(x)g(x))$ もリーマン積分可能である.

この証明にはリーマンの判定法を利用します.

証明.まず

$$M = \max \left\{ \sup_{x \in [a,b]} |f(x)|, \sup_{x \in [a,b]} |g(x)| \right\}$$
(39)

とおく*4. M=0 の場合は f=g=0 ゆえに明らかに主張が成立するから,M>0 の場合を考える.

正数 ϵ を任意にとる. f,g はリーマン積分可能なので,リーマンの判定法によれば [a,b] の分割 \triangle_f,\triangle_g が存在して

$$S(f:\Delta_f) - s(f:\Delta_f) < \frac{\epsilon}{2M},\tag{40}$$

$$S(g:\Delta_g) - s(g:\Delta_g) < \frac{\epsilon}{2M} \tag{41}$$

が成立する. \triangle_f, \triangle_g の分点をあわせた分割を $\triangle : a = x_0 < x_1 < \cdots < x_n = b$ とおく.

 \triangle に関する関数 fg の上限和と下限和の差を評価する. まず

$$S(fg:\triangle) - s(fg:\triangle) = \sum_{i=1}^{n} \sup_{x \in [x_{i-1}, x_i]} f(x)g(x)(x_i - x_{i-1}) - \sum_{i=1}^{n} \inf_{x \in [x_{i-1}, x_i]} f(x)g(x)(x_i - x_{i-1})$$
(42)

$$= \sum_{i=1}^{n} \sup_{x,y \in [x_{i-1},x_i]} |f(x)g(x) - f(y)g(y)|(x_i - x_{i-1})$$
(43)

である (補題 1). ここで

$$|f(x)g(x) - f(y)g(y)| = |g(x)\{f(x) - f(y)\} + f(y)\{g(x) - g(y)\}|$$
(44)

$$\leq |g(x)||f(x) - f(y)| + |f(y)||g(x) - g(y)| \tag{45}$$

$$\leq M|f(x) - f(y)| + M|g(x) - g(y)|$$
 (46)

により

$$((43)\mathbb{R}) \le \sum_{i=1}^{n} \sup_{x,y \in [x_{i-1},x_i]} \{M|f(x) - f(y)| + M|g(x) - g(y)|\}(x_i - x_{i-1})$$

$$(47)$$

$$= M \sum_{i=1}^{n} \sup_{x \in [x_{i-1}, x_i]} |f(x) - f(y)|(x_i - x_{i-1}) + M \sum_{i=1}^{n} \sup_{x \in [x_{i-1}, x_i]} |g(x) - g(y)|(x_i - x_{i-1})$$
 (48)

$$= M\{S(f:\Delta) - s(f:\Delta)\} + M\{S(q:\Delta) - s(q:\Delta)\}$$

$$\tag{49}$$

が成立する. \triangle は \triangle_f, \triangle_g の細分であることに注意すれば

$$((49) \ \vec{\Xi}) \le M\{S(f:\Delta_f) - s(f:\Delta_f)\} + M\{S(g:\Delta_g) - s(g:\Delta_g)\}$$

$$(50)$$

$$\leq M \frac{\epsilon}{2M} + M \frac{\epsilon}{2M} \tag{51}$$

$$=\epsilon$$
 (52)

が成立する. すなわち

$$S(fg:\triangle) - s(fg:\triangle) < \epsilon \tag{53}$$

である. したがって、リーマンの判定法により fg はリーマン積分可能である.

^{*4} f, q の有界性により上限が存在します.

補題 1. 有界な実関数 f と f の定義域の任意の部分集合 A に対して

$$\sup_{x \in A} f(x) - \inf_{x \in A} f(x) = \sup_{x, y \in A} |f(x) - f(y)|$$
 (54)

が成立する.

証明.

$$\sup_{x \in A} f(x) - \inf_{x \in A} f(x) = \sup_{x \in A} f(x) + \sup_{x \in A} \{-f(x)\}
= \sup_{x, y \in A} \{f(x) - f(y)\}
= \sup_{x, y \in A} |f(x) - f(y)|$$
(55)

(56)

$$= \sup_{x,y \in A} \{f(x) - f(y)\}\tag{56}$$

$$= \sup_{x,y \in A} |f(x) - f(y)| \tag{57}$$

3.5.4 商のリーマン積分可能性

補題 2. 関数 $g:[a,b] \to \mathbb{R}$ がリーマン積分可能であるとき,

関数
$$\frac{1}{g}:[a,b]\to\mathbb{R}$$
 $\left(x\mapsto\frac{1}{g(x)}\right)$ が有界関数 (58)

ならば、関数 $\frac{1}{q}:[a,b] \to \mathbb{R}\left(x \mapsto \frac{1}{q(x)}\right)$ もリーマン積分可能である.

まずひとつ補題を証明しておきます.

<u>証明.</u> (58) により $M=\sup_{x\in[a,b]}\left|\frac{1}{g(x)}\right|$ なる実数 M が存在する.このような M をひとつとる.補題 1 に も注意すれば

$$\sup_{x \in [a,b]} \frac{1}{g(x)} - \inf_{x \in [a,b]} \frac{1}{g(x)} = \sup_{x,y \in [a,b]} \left| \frac{1}{g(x)} - \frac{1}{g(y)} \right|$$
 (59)

$$= \sup_{x,y \in [a,b]} \left| \frac{1}{g(x)} \right| \left| \frac{1}{g(y)} \right| |g(x) - g(y)|$$
 (60)

$$\leq M^2 \sup_{x,y \in [a,b]} |g(x) - g(y)|$$
 (61)

$$= M^{2} \left\{ \sup_{x \in [a,b]} g(x) - \inf_{x \in [a,b]} g(x) \right\}$$
 (62)

(63)

であるから、任意の分割 △ に対して

$$S\left(\frac{1}{g}:\Delta\right) - s\left(\frac{1}{g}:\Delta\right) \le M^2 \left\{S(g:\Delta) - s(g:\Delta)\right\} \tag{64}$$

が成立する. 正数 ϵ を任意にとる. g はリーマン積分可能であるから, リーマンの判定法によれば, ある分割 \triangle が存在して

$$((64) の右辺) \le \epsilon \tag{65}$$

が成立する. よって

$$((64) の左辺) \le \epsilon \tag{66}$$

が成立する. したがって、リーマンの判定法により $\frac{1}{g}$ はリーマン積分可能である. \blacksquare

行間 13. 関数 $f:[a,b]\to\mathbb{R},\ g:[a,b]\to\mathbb{R}$ がともにリーマン積分可能であるとき,

ならば、関数 $\frac{f}{g}$ もリーマン積分可能である.

講義資料のもともとの定理は $\frac{f}{g}$ の有界性を前提としていますが、かわりに $\frac{1}{g}$ の有界性を前提としたものを先に示しておきましょう.この証明には補題 2 を使います.

<u>証明</u>・補題 2 により $\frac{1}{g}$ はリーマン積分可能なので,積のリーマン積分可能性により $\frac{f}{g}$ もリーマン積分可能である.

行間 14. 関数 $f:[a,b]\to\mathbb{R},\ g:[a,b]\to\mathbb{R}$ がともにリーマン積分可能であるとき,

ならば、関数 $\frac{f}{g}$ もリーマン積分可能である.

つぎに、講義資料のもともとの定理を示します。できれば行間 13 を利用したいところですが、残念ながら行間 14 の前提を満たしても行間 13 の前提を満たすとは限らない *5 ので利用できません。

$$f(x) = x \tag{69}$$

$$g(x) = x(x \neq 0), 1(x = 0) \tag{70}$$

 $^{^{*5}}$ 有界閉区間 [0,1] 上で f,g を次のように定めたものはそのような例のひとつです.

そこで、この証明にはルベーグの可積分条件*6を使います。零集合であることとルベーグ測度が 0 であることの同値性や、測度の基本的性質は認めるものとします。

<u>証明.</u> μ をルベーグ測度とする。 $f,g,\frac{f}{g}$ の不連続点全体の集合をそれぞれ D,D_f,D_g とおく。 $\frac{f}{g}$ がリーマン積分不可能であると仮定して矛盾を導く。

 $rac{f}{g}$ は有界関数なので,ルベーグの可積分条件によれば $\mu(D)>0$ である.一方 f,g はリーマン可積分なので $\mu(D_f)=\mu(D_g)=0$ であり,したがって $\mu(D\cap D_f)=\mu(D\cap D_g)=0$ である*7.

ここで,D の点 x であって g が x で連続であるようなもの全体の集合,すなわち $D\setminus (D_q\cap D)$ について

$$\mu(D \setminus (D_q \cap D)) = \mu(D) - \mu(D_q \cap D) \quad (: D_q \cap D \subset D)$$
(71)

$$= \mu(D) \quad (\because \mu(D \cap D_q) = 0) \tag{72}$$

が成立する. 一方, D の任意の点x に対して

$$g$$
 が x で連続ならば $f = \frac{f}{g}g$ は x で不連続である (74)

が成立するから, $D\setminus (D_g\cap D)\subset D_f\cap D$ である.したがって $\mu(D_f)\geq \mu(D_f\cap D)\geq \mu(D\setminus (D_g\cap D))>0$ である.f は有界関数であることに注意すれば,ルベーグの可積分条件によって f はリーマン積分不可能であるという矛盾を得る.

3.5.5 被積分関数の大小と積分値の大小

まずひとつ補題を証明しておきます.

補題 3. 関数 $f:[a,b] \to \mathbb{R}$ がリーマン積分可能であるとき,

$$\forall x \in [a, b]$$
 に対して $f(x) \ge 0 \implies \int_a^b f(x) dx \ge 0$ (75)

が成立する。とくに f が連続であるとすると、右辺の等号が成立するのは f の値が恒等的に 0 のとき、またそのときのみである。

証明. 任意の分割 △ と任意の代表点集合 ξ に対して

$$R(f: \triangle, \xi) \ge \inf_{x \in [a,b]} f(x)(b-a) \tag{76}$$

 $^{^{*6}}$ 杉浦 光夫『解析入門 I』東京大学出版会〈基礎数学 2〉 $\mathrm{p.266}$

^{*7} $D\cap D_f\subset D_f$ なので、測度の単調性より $\mu(D\cap D_f)\leq \mu(D_f)$ が成立します。このことと、測度の非負性および $\mu(D_f)=0$ より $\mu(D\cap D_f)=0$ が従います。 D_g についても同様です。

であり、 $\forall x \in [a,b]$ に対して $f(x) \ge 0$ であると仮定すると (76) の右辺は 0 以上である. したがって

$$\int_{a}^{b} f(x)dx \ge 0 \tag{77}$$

である.

以下, f は連続であるとする. f の値が恒等的に 0 ならば, 明らかに

$$\int_{a}^{b} f(x)dx = 0 \tag{78}$$

である。一方,ある $c \in [a,b]$ が存在して f(c) > 0 であると仮定する。このような c をひとつとる。f の連続性により,ある正数 δ が存在して,閉区間 $I = [c - \delta, c + \delta] \cap [a,b]$ 上で f は常に正の値をとる。よって f の I 上での積分値は正である。また,この証明の前半の議論によれば f の $[a,b] \setminus I$ 上での積分値は非負である。これらを足し合わせることにより

$$\int_{a}^{b} f(x)dx > 0 \tag{79}$$

が従う.

行間 15. 関数 $f:[a,b]\to\mathbb{R},\ g:[a,b]\to\mathbb{R}$ がともにリーマン積分可能であるとき,

$$\forall x \in [a, b]$$
 に対して $f(x) \le g(x)$ \implies $\int_a^b f(x)dx \le \int_a^b g(x)dx$ (80)

が成立する。とくに f,g が連続であるとすると、右辺の等号が成立するのは f,g が恒等的に等しいとき、またそのときのみである。

証明. 補題 3 とリーマン積分の線型性からすぐにわかる.

3.5.6 積分範囲の分割

行間 **16.** 関数 $f:[a,b] \to \mathbb{R}$ がリーマン積分可能であるとき,a < c < b となる任意の実数 c に対して,関数 f は [a,b] 上でも [c,b] 上でもリーマン積分可能で,

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
(81)

証明. f はリーマン積分可能なので、任意の正数 ϵ に対して、ある [a,b] の分割 \triangle が存在して

$$S(f:\triangle) - s(f:\triangle) < \epsilon \tag{82}$$

が成立する. \triangle の分点に c を追加したものを \triangle' とおくと, \triangle' は \triangle の細分なので

$$S(f:\Delta') - s(f:\Delta') < \epsilon \tag{83}$$

が成立する. \triangle' の [a,c] の部分, [c,b] の部分をそれぞれ \triangle_1,\triangle_2 とおく. \triangle_1 について

$$S(f:\Delta_1) - s(f:\Delta_1) \le S(f:\Delta_1) - s(f:\Delta_1) + S(f:\Delta_2) - s(f:\Delta_2)$$
(84)

$$\leq S(f:\Delta') - s(f:\Delta') \tag{85}$$

$$<\epsilon$$
 (86)

が成立するから、リーマンの判定法によれば f は [a,c] 上でリーマン積分可能である. \triangle_2 についても同様の議論を行うことによって、f は [c,b] 上でリーマン積分可能である.

さて、f は区間 [a,c],[c,b] 上でリーマン積分可能であるから、リーマンの判定法によれば、それぞれの区間の分割の列 $\{\triangle_{1,n}\},\{\triangle_{2,n}\}$ であって $n\to\infty$ で幅が 0 に収束するようなものが存在する。このような $\{\triangle_{1,n}\},\{\triangle_{2,n}\}$ をひとつずつとり、 $\triangle_{1,n}$ と $\triangle_{2,n}$ を合わせたものを \triangle_n とおけば、 $\{\triangle_n\}$ は [a,b] の分割の列であって、 $n\to\infty$ で幅が 0 に収束する。ここで

$$S(f:\Delta_n) = S(f:\Delta_{1,n}) + S(f:\Delta_{2,n})$$
(87)

であるから,数学 IA 演習 (2014年度)第9回講義資料*8の定理3より,

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \tag{88}$$

が成立する.

3.5.7 積分の平均値の定理

行間 17. 関数 $f:[a,b] \to \mathbb{R}$ がリーマン積分可能であるとき,f の上限,下限をそれぞれ M,m とすると,

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le M \tag{89}$$

が成立する. とくに f が連続ならば、a < c < b なる c が存在して

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx = f(c) \tag{90}$$

が成立する.

証明. 任意の分割 \triangle と任意の代表点集合 ξ に対して

$$m(b-a) \le R(f: \triangle, \xi) \le M(b-a) \tag{91}$$

であるから,

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a) \tag{92}$$

すなわち (89) が成立する.

^{*8} https://lecture.ecc.u-tokyo.ac.jp/~nkiyono/14_kami.html

以下, f が連続であるとする. 最大値の定理により m,M はそれぞれ f の最小値, 最大値に等しい.

まず m=M の場合を考える. これは f が定数関数ということであるから,a < c < b なる任意の c に対して f(c) = m である. 一方, (89) によれば

$$m = \frac{1}{b-a} \int_{a}^{b} f(x)dx \tag{93}$$

である. したがって, a < c < b なる c が存在して

$$\frac{1}{b-a} \int_a^b f(x)dx = f(c) \tag{94}$$

が成立する.

つぎに m < M の場合を考える. このとき, f は恒等的には f(x) = m でも f(x) = M でもないから, 行間 15 より

$$m(b-a) = \int_{a}^{b} m dx < \int_{a}^{b} f(x) dx < \int_{a}^{b} M dx = M(b-a)$$
 (95)

すなわち

$$m < \frac{1}{b-a} \int_{a}^{b} f(x)dx < M \tag{96}$$

である.一方,中間値の定理によれば,m < y < M なる任意の y に対して,y = f(c),a < c < b なる c が存在する.したがって,a < c < b なる c が存在して

$$\frac{1}{b-a} \int_a^b f(x)dx = f(c) \tag{97}$$

が成立する.