

Introductory Econometrics BUSI2053

The Simple Linear Regression Model II:

Statistical Inference and Goodness-of-fit

Lecture Outline

- Assumptions of OLS and G-M condition
- Properties of the OLS estimator
- Variance of OLS Estimator
- Statistical Inference
- Measuring Goodness-of-fit

Suggested Reading:

- Chapter 2, 3 & 4.1, 4.2: Hill, R.C., Griffiths W.E. and Lim, G.C. Principles of Econometrics, fourth edition, Wiley, 2012 (pp. 39-110)
- Chapter 7-8, 15.2: Westhoff (2013) An introduction to econometrics: a self-contained approach, MIT Press, 2013
- Chapter 1-3: Gujarati, D.N. and Porter D.C. Basic econometrics, 5th ed., McGraw-Hill, 2009 (pp. 34-117)
- Chapter 1 & 2: Dougherty, Christopher. Introduction to econometrics. 4th ed. Oxford University Press, 2011 (pp.83-147)

Assumptions of the Simple Linear Regression

SR1:The value of y, for each value of x, is given by the linear regression: $y = \beta_1 + \beta_2 x + e$

SR2: The expected value of the random error e is: $E(e_i) = 0$

SR3: The variance of the random error e is: $var(e_i) = \sigma^2 = var(y_i)$

<u>SR4</u>: The covariance between any pair of random errors, e_i and e_j is:

$$cov(e_i, e_j) = cov(y_i, y_j) = 0$$

SR5: The variable *x* is not random, and must take at least two different values

SR6: Optional
$$e \sim N(0, \sigma^2)$$

Properties of least square estimator

Gauss-Markov condition

Under the assumptions SR1-SR5 of the linear regression model, the OLS estimators b_1 and b_2 have the smallest variance of all linear and unbiased estimators of β_1 and β_2 .

They are the **Best Linear Unbiased Estimators (BLUE)** of β_1 and β_2 .

- 1. The estimators b_1 and b_2 are "best" compared to similar estimators because they have the minimum variance.
- 2. The **estimators** b_1 and b_2 (not specific b_1 and b_2) are linear (linear $b_2 = \frac{\Box(x_i \overline{x})(y_i \overline{y})}{\Box(x_i \overline{x})^2}$ combination of the dependent variable) and unbiased $(E(b_1) = \beta)$.
- 3. If any of these assumptions are *not* true, then b_1 and b_2 are *not* **BLUE**

See optional slides on Moodle for the proof of the properties

Sampling variation of a least squares estimator

- We are interested to estimate the relationship between the dependent variable y and independent variable x from the population regression model: $y = \beta_1 + \beta_2 x + e$
- We can estimate the population parameters β_1 and β_2 using least squares method and obtain sample (fitted) regression equation: $\hat{y}_i = b_1 + b_2 x_i$
- the OLS estimators b_1 and b_2 are estimators, hence these are random variables that varies according to its associated probability distribution.
- We need to look at the variation of estimators (variance) which represents the accuracy of our estimations.

21-Jul-25 Myint Moe Chit, BUSI2053

Variance of least squares estimator

Variances of b_1 and b_2

• If the assumptions SR1-SR5 are correct (SR6 is not required), then the variances of b_1 and b_2 are:

$$var(b_1) = \sigma_e^2 \left[\frac{\sum x_i^2}{n \sum (x_i - \bar{x})^2} \right]$$
 $var(b_2) = \frac{\sigma_e^2}{\sum (x_i - \bar{x})^2}$

 σ_e^2 =variance of random error term = var(e)

- The larger the sum of squares, $\sum (x_i \bar{x})^2$, the smaller the variances
- The larger the sample size n, the smaller the variances and covariance of the least squares estimators.

See optional slides on Moodle for the derivation of $var(b_2)$

Estimating the variances of b_1 and b_2

• Replace the unknown error variance σ_e^2 by $\hat{\sigma}_e^2$ to obtain:

$$\widehat{\text{var}}(b_1) = \widehat{\sigma}_e^2 \left[\frac{\sum x_i^2}{n \sum (x_i - \bar{x})^2} \right] \qquad \widehat{\text{var}}(b_2) = \frac{\widehat{\sigma}_e^2}{\sum (x_i - \bar{x})^2}$$

• The "standard errors" of b_1 and b_2

$$s.e(b_1) = \sqrt{\widehat{var}(b_1)};$$

$$s.e(b_2) = \sqrt{\widehat{var}(b_2)}$$

Variance of least squares estimator

Variances of b_1 and b_2

• The influence of variation in the explanatory variable x on precision of estimation (a) Low x variation, low precision (b) High x variation, high precision

- Statistical inference: Making a conclusion (testing hypothesis) about a population using the information contained in a sample of data
 - Given an economic and statistical model, hypotheses are formed about economic behavior.
 - Hypothesis tests use the information about a parameter that is contained in a sample of data, its least squares point estimate, and its standard error, to draw a conclusion about the population parameter

Testing Hypotheses

When testing the null hypothesis H_0 : $\beta_i = c$ against the alternative hypothesis H_1 : $\beta_i \neq c$ (2-tailed); H_1 : $\beta_i > c$ or < c (1-tailed),

Test statistic:
$$t = \frac{b_i - c}{s. e(b_i)}$$

Reject the null hypothesis and accept the alternative hypothesis if the absolute value of the test statistic $|t| \ge t_{(\alpha;n-k)}$ (k = number of parameters)

Alternatively, reject the null hypothesis if the observed P-value of the test is less than the level of significance (α).

Testing Hypotheses (Food Expenditure example)

- 1. The null $H_0:\beta_2=0$; The alternative $H_1:\beta_2>0$ One-tailed test
- 2. Using the food expenditure data, $b_2 = 10.21$ with standard error $se(b_2) = 2.09; n=40$

$$t = \frac{b_i - c}{s. e(b_i)} = \frac{10.21 - 0}{2.09} = 4.88$$

- 3. Select $\alpha = 0.05$; the critical value with n k = 40 2 = 38degrees of freedom, $t_{(0.05,38)} = 1.686$.
- Decision: Since the calculated t-value 4.88>1.686, reject the H_0 in favour of the alternative that $\beta_2 > 0$
- Conclusion: there is a statistically significant positive effect of household income on food expenditure

 Myint Moe Chit, BUSI2053

Model 1: OLS, using observations 1-40 Dependent variable: food_exp						
	coefficient	std. error				
const income	83.4160 10.2096	43.4102 2.09326				

t-distribution table

		Significance level					
Degrees of	Two-tailed test:	10%	5%	2%	1%	0.2%	0.1%
freedom	One-tailed test:	5%	2.5%	1%	0.5%	0.1%	0.05%
1		6.314	12,706	31.821	63.657	318.309	636.619
2		2.920	4,303	6.965	9.925	22.327	31.599
3		2.353	3,182	4.541	5.841	10.215	12.924
4		2.132	2,776	3.747	4.604	7.173	8.610
5		2.015	2,571	3.365	4.032	5.893	6.869
6 7 8 9		1.943 1.894 1.860 1.833 1.812	2.447 2.365 2.306 2.262 2.228	3.143 2.998 2.896 2.821 2.764	3.707 3.499 3.355 3.250 3.169	5.208 4.785 4.501 4.297 4.144	5.959 5.408 5.041 4.781 4.587
11 12 13 14		1.796 1.782 1.771 1.761 1.753	2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602	3.106 3.055 3.012 2.977 2.947	4.025 3.930 3.852 3.787 3.733	4.437 4.318 4.221 4.140 4.073
16		1.746	2.120	2.583	2.921	3.686	4.015
17		1.740	2.110	2.567	2.898	3.646	3.965
18		1.734	2.101	2.552	2.878	3.610	3.922
19		1.729	2.093	2.539	2.861	3.579	3.883
20		1.725	2.086	2.528	2.845	3.552	3.850
21		1.721	2.080	2.518	2.831	3.527	3.819
22		1.717	2.074	2.508	2.819	3.505	3.792
23		1.714	2.069	2.500	2.807	3.485	3.768
24		1.711	2.064	2.492	2.797	3.467	3.745
25		1.708	2.060	2.485	2.787	3.450	3.725
26		1.706	2.056	2.479	2.779	3.435	3.707
27		1.703	2.052	2.473	2.771	3.421	3.690
28		1.701	2.048	2.467	2.763	3.408	3.674
29		1.699	2.045	2.462	2.756	3.396	3.659
30		1.697	2.042	2.457	2.750	3.385	3.646
32		1.694	2.037	2.449	2.738	3.365	3.622
34		1.691	2.032	2.441	2.728	3.348	3.601
36		1.688	2.028	2.434	2.719	3.333	3.582
38 40		1.686 1.684	2.024 2.021	2.429 2.423	2.712	3.319	3.566
42		1.682	2.018	2.418	2.698	3.307 3.296	3.551 3.538

Testing Hypotheses (gretl regression output)

Decision: p-value = 0.0000195/2 < 0.01; reject the H_0 ; *** indicates that the coefficient is statistically significant at 1% level.

Note: p-value in GRETL result are for two-tailed test. For one-tailed test divide p-value by 2.

- In Regression analysis, the default null hypothesis is to test that the population parameter equals to zero (H_0 : $\beta_i = 0$), i.e., no influence of the independent variable (X) on the dependent variable (Y).
- Decide one-tailed or two-tailed test (based on research hypothesis/question) and set null and alternative hypotheses accordingly
- If *p*-value is not given (in exam), calculate *t*-statistic, compare with appropriate critical value and make decision
- If p-value is given, use the following decision rules (Note: p-value in GRETL or SAS result are for 2-tailed test. For 1-tailed test, divide p-value in GRETL/SAS result by 2)
 - p-value<0.01 \rightarrow Reject H_0 at 1% significance level (or the test is significant at 1% level)
 - 0.01 \leq p-value<0.05 \Rightarrow Reject H_0 at 5% significance level (or the test is significant at 5% level)
 - 0.05 \leq p-value<0.10 \Rightarrow Reject H_0 at 10% significance level (or the test is significant at 10% level)
 - p-value≥0.1 → Do not reject the null hypothesis (The test is not significant)

- An objective of econometric analysis is to use x_i to explain as much of the variation in the dependent variable y_i as possible.
- To develop a measure of the variation in y_i that is explained by the model, separating y_i into its explainable and unexplainable components.

$$y_i = E(y_i) + e_i$$

- we can rewrite $y_i = \hat{y}_i + \hat{e}_i$
- Subtracting the sample mean from both sides: $y_i \bar{y} = (\hat{y}_i \bar{y}) + \hat{e}_i$

Graphically:

$$y_i - \bar{y} = (\hat{y}_i - \bar{y}) + \hat{e}_i$$

Squaring and summing both sides we get:

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum \hat{e}_i^2$$

(see Hill et al. (2012) Appendix B4 for proof)

$$\sum (y_i - \bar{y})^2 = \text{Total Sum of Squares}$$

(SST) or (TSS)

Regression (or) Explained Sum of Squares **(SSR)** or (ESS)

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum \hat{e}_i^2 \text{ can be written as}$$

$$SST = SSR + SSE$$

The **coefficient of determination**, or R^2 , as the proportion of variation in y explained by x within the regression model:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \quad (0 \le R^2 \le 1)$$

For the food expenditure example, the sums of squares are:

$$SST = \sum (y_i - \bar{y})^2 = 495132.160$$

$$SSE = \sum (y_i - \hat{y})^2 = \sum \hat{e}_i^2 = 304505.176$$
Therefore: $R^2 = 1 - \frac{SSE}{SST}$

$$= 1 - \frac{304505.176}{495132.160}$$

$$= 0.385$$

*					
Model 1: OLS,	using observ	vations 1-4	0		
Dependent var	iable: food_e	exp			
	coefficient	std. erro	r t-ratio	p-value	
					i.
const	83.4160	43.4102	1.922	0.0622	*
income	10.2096	2.09326	4.877	1.95e-05	***
Mean dependen	t var 283.	5735 S.D.	dependent v	ar 112.6	752
Sum squared r	esid 30450	05.2 S.E.	of regressi	on 89.51	700
R-squared	0.38	5002 Adju	sted R-squar	ed 0.368	818
F(1, 38)	23.78	8884 P-va	lue(F)	0.000	019
Log-likelihoo	d -235.	5088 Akai	ke criterion	475.0	176
Schwarz crite	rion 478.	3954 Hann	an-Quinn	476.23	389
S.					

We conclude that 38.5% of the variation in food expenditure (about its sample mean) is explained by our regression model, which uses only income as an explanatory variable

Note: for a simple regression $r_{xy}^2 = 0.62^2 = 0.385 = R^2$

21-Jul-25

$$r_{xy}^2 = 0.62^2 = 0.385 = R^2$$

Number of Observations Read	40
Number of Observations Used	40

Analysis of Variance							
Source Squares Square F Value Pr							
Model	1	190627	190627	23.79	<.0001		
Error	38	304505	8013.29410				
Corrected Total	39	495132					

D2 _	<u> </u>	_ <u>190627</u> _	= 0.385
Λ -	$-\overline{SST}$	495132	- 0.303

Root MSE	89.51700	R-Square	0.3850
Dependent Mean	283.57350	Adj R-Sq	0.3688
Coeff Var	31.56748		

Parameter Estimates							
Variable Label Parameter Standard DF Estimate Error t Value Pr >							
Intercept	Intercept	1	83.41600	43.41016	1.92	0.0622	
income	weekly household income	1	10.20964	2.09326	4.88	<.0001	

Interpreting the regression results

- The key ingredients in a regression results are:
 - 1. the coefficient estimates
 - 2. the standard errors (or *t*-values)
 - 3. an indication of statistical significance (p-values)
 - 4. R²

21-Jul-25 Myint Moe Chit, BUSI2053

Interpreting the regression results (Homework)

Model 1: OLS, using observations 1-84

Dependent variable: Sales

	coefficient	std. error	t-ratio	p-value
const	502.917	4.13242		2.08e-094 ***
Ads	0.218314	0.0771261		0.0058 ***

advert.	gdt		
ID# ◀	Variable name	•	Descriptive label
0	const		
1	Sales		(thousands of \$)
2	Ads		(thousands of \$)

212.9912	5.D. dependent var	12.09/5/
12190.78	S.E. of regression	12.19295
0.089014	Adjusted R-squared	0.077904
8.012357	P-value(F)	0.005841
-328.2508	Akaike criterion	660.5016
665.3632	Hannan-Quinn	662.4559
	12190.78 0.089014 8.012357 -328.2508	12190.78 S.E. of regression 0.089014 Adjusted R-squared 8.012357 P-value(F) -328.2508 Akaike criterion

- What is the hypothesis we should test?
- Write down the regression equation.
- Interpret the estimated coefficient and R².
- Can you reject the hypothesis at 1% significance level? What is P-value of the test.

21-Jul-25

Summary

After this lecture, you should be able to:

- identify and explain the keys assumption of simple linear regression
- properties of least square estimators
- understand the concept of the variation of OLS estimator
- estimate the regression parameters and interpret the results
- conduct a hypothesis test on the significance of a regression coefficient
- understand and interpret the measure of goodness-of-fit
- report the regression results

