Künstliche neuronale Netze

Deep Convolutional Neural Networks

Jens Ostertag

6. Juli 2022

Allgemeines

Wo werden neuronale Netze angewendet?

- Straßenverkehr
- · Medizinischer Bereich
- Industrie
- Soziale Netzwerke

Aufbau neuronaler Netze (1/3)

- · Sehr stark an natürliche neuronale Netze angelehnt
 - · Neuronen mit Synapsen verbunden
 - · Synapsengewicht regelt Stromfluss zwischen zwei Neuronen

Aufbau neuronaler Netze (2/3)

- · Ausgaben von Neuronen und Synapsengewichte werden als Zahl betrachtet \rightarrow Berechenbarkeit
- · Einteilung der Neuronen in unterschiedliche Schichten
 - Input Layer
 - · Hidden Layer
 - Output Layer

Aufbau neuronaler Netze (3/3)

· Berechnung der Ausgabe eines Neurons mit der Formel

$$o_{i,j} = \varphi \left(\sum_{k=0}^{|n_{i-1}|-1} o_{i-1,k} * w_{i-1,k,j} \right)$$

- $n_{i,j}$: Neuron in der Schicht i an der Stelle j
- · $o_{i,j}$: Ausgabe des Neurons $n_{i,j}$
- \cdot φ : Differenzierbare Aktivierungsfunktion
- · $|n_i|$: Anzahl der Neuronen in der Schicht i
- · $w_{i,k,j}$: Synapsengewicht zwischen den Neuronen $n_{i,k}$ und $n_{i+1,j}$

Arten des maschinellen Lernens

- · Überwachtes Lernen
 - · Lernen mit einem vorgegebenen Datensatz
 - · Erkennen von Eigenschaften der Daten
 - · z.B. zur Klassifikation von Daten
- Unüberwachtes Lernen
 - · Erkennen von Ähnlichkeiten in einer Datenmenge
 - · z.B. zur Gruppierung von Daten
- · Bestärktes Lernen
 - · Lernen mit einem Belohnungssystem
 - · z.B. zur Durchführung von Aufgaben

Umgang mit neuronalen Netzen

Hier am Beispiel des überwachten Lernens

- · Vorbereiten eines Trainingsdatensatzes
 - · Beispieldaten werden händisch klassifiziert
 - · Evtl. einheitliche Bearbeitung von Daten
 - · Erstellen eines Testdatensatzes zur Auswertung
- Trainieren
 - · Trainieren mit unterschiedlichen Algorithmen
- · Auswertung und Anwendung
 - · Auswertung mithilfe des Testdatensatzes
 - · Exportieren der Netzstruktur und der Gewichte
 - · Importieren in Anwendung

Deep Convolutional Neural Networks

am Beispiel der Bilderkennung

Abwandlung der neuronalen Netze

Warum werden Convolutional Neural Networks benötigt?

- · Zu lange Trainingsdauer
- · Art und Weise der Erkennung eines Objekts
 - · Zwei Pixel-Paare sind gleich relevant, unabhängig von Entfernung
- ⇒ Risiko des Overfittings

Vorteile:

- Viel bessere Genauigkeit
 - · Lernvorgänge noch ähnlicher zu denen des Menschen
- Schnelleres Training
 - · Weniger anzupassende Gewichte

Convolution / Cross Correlation im eindimensionalen Raum

$$y_i = \sum_{k=0}^{|w|-1} x_{i+k} * w_k$$

- · y_i : Ausgabe an der Stelle i
- · x_i : Eingabe an der Stelle i
- · w_i: Wert des Kernels an der Stelle i

Padding

Problem: Ausgabe wird kleiner als Eingabe

⇒ Detailverlust

Lösung: Eingabe mit Nullen erweitern

Convolution / Cross Correlation im zweidimensionalen Raum

Convolutional Layer

- · Mehrere Eingabechannel (zum Beispiel unterschiedliche Farbkanäle)
- · Mehrere Ausgabechannel
- · Jeder Eingabechannel hat Einfluss auf jeden Ausgabechannel
 - ⇒ Mehrere Kernel pro Convolutional Layer
- · Ausgabe eines Convolutional Layer: Feature Map
 - · Allgemeine Eigenschaften in höheren Schichten
 - · Komplexere Eigenschaften in tieferen Schichten

Subsampling

- · Verringerung der Eigenschaften durch Pooling-Operationen
- · Schnellerer Trainingsvorgang, nur geringer Leistungsverlust

· Keine anzupassenden Gewichte

Aufbau eines Convolutional Neural Networks

Trainingsablauf

Praxisbeispiel