1 – Introdução e Conceitos básicos

Aula 02

Sumário

Capítulo 1 – Introdução e Conceitos básicos

- 1.1. Introdução
 - 1.1.1. Sintaxe e semântica
- 1.2. Conceitos básicos
 - 1.2.1. Alfabeto
 - 1.2.2. Palavra
 - 1.2.3. Linguagem Formal
 - 1.2.4. Gramática
- 1.3. Hierarquia Chomsky

Sumário

Capítulo 1 – Introdução e Conceitos básicos

1.2. Conceitos básicos

- 1.2.1. Alfabeto
- 1.2.2. Palavra
- 1.2.3. Linguagem Formal
- 1.2.4. Gramática
- 1.3. Hierarquia Chomsky

Introdução

- Linguagem
 - Dicionário: o uso da palavra articulada ou escrita como meio de expressão e comunicação entre pessoas
 - Não é suficiente preciso para definir modelos matemáticos
 - Então faremos algumas definições formais para nosso estudo
- Para definir linguagem formal
 - Precisamos de um alfabeto
 - E um cadeia de caracteres, ou palavras

Alfabeto

- DEFINIÇÃO: Conjunto finito de símbolo ou caractere
- Notação: Σ
 - Simbolos ou caracteres:
 - Entidade abstrata básica
 - Ex: letra, digitos...
 - São alfabetos
 - {a, b, c}
 - Ø, conjunto vazio
 - Não são alfabetos
 - **N**, conjunto dos naturais
 - {a, aab, bbb, aba, ...}

Alfabeto

- DEFINIÇÃO: Conjunto finito de símbolo ou caractere
- Alfabeto em Linguagem de programação
 - Conjunto de todos os simbolos utilizados na linguagem
 - Letras
 - Digitos
 - Caracteres especiais ">, <, <=, /, *" etc
 - Espaços ou brancos
- Alfabeto binário
 - Domínio de valores de um bit
 - Podemos usar {a,b} ou {0,1}
 - Muito usado para simplificar as abordagens estudas

- Também chamada de:
 - Cadeia de caracteres
 - Sentença
- DEFINIÇÃO: **Sequência finita** de símbolos justapostos ou caractere
- Notação: w
- São palavras no alfabeto {a,b}
 - ab, bb, aaa
 - ε, cadeia vazia
 - Não são palavras no alfabeto{a,b}
 - ab..., aaa..., abc

- Elementos de uma palavra
 - Prefixo
 - Qualquer sequência inicial de simbolos de uma palavra
 - Sufixo
 - Qualquer sequência final de simbolos de uma palavra
 - Subpalavra
 - Qualquer sequência de simbolos contiguos de uma palavra
 - Comprimento |w|
 - Número de caracteres de uma palavra
 - Ex:

w = abcb palavra sobre o alfabeto {a,b,c}

- ε, a, ab, abc, abcb são prefixos
- ε, a, ab, abc, abcb são sufixos
- Todos sufixo e prefixo é uma subpalavra
- |w| = 4
- $|\epsilon| = 0$

- Exemplo de palavra em Linguagem de programação
 - Um Bloco de programa
 - Uma palavra-chave, if, while...
 - Um programa inteiro

- Concatenação
 - Operação binária sobre um conjunto de palavras
 - Associa duas palavras
 - É a justaposição da primeira com a segunda
- Propriedades
 - Elemento neutro: ε w = w = w ε
 - Associativa: v (w t) = (v w) t
- Exemplos
 - $\Sigma = \{a,b\}$ um alfabeto. Para v = baaab, w=bb
 - vw = baaabbb
 - $v\varepsilon = baaab$

- Concatenação sucessiva
 - $b^4 = bbbb$
 - $-a_0 = \varepsilon$
 - a³b⁵ = aaabbbbb
- Se Σ é um alfabeto
 - Σ^* é conjunto de todas as palavras possíveis sobre Σ
 - $\Sigma^+ = \Sigma^* \epsilon$

Sumário

Capítulo 1 – Introdução e Conceitos básicos

- 1.2. Conceitos básicos
 - 1.2.1. Alfabeto
 - 1.2.2. Palavra
 - 1.2.3. Linguagem Formal
 - 1.2.4. Gramática
- 1.3. Hierarquia Chomsky

- DEFINIÇÃO: é um subconjunto de Σ*
 - Isto é, um subconjunto de todas "palavras" possíveis dentro de um alfabeto
- Notação: L

- DEFINIÇÃO: é um subconjunto de Σ*
 - Isto é, um subconjunto de todas "palavras" possíveis dentro de um alfabeto
- Notação: L
- Exemplos
 - Ø e {ε} são linguagens sobre qualquer alfabeto
 - Σ^* e Σ^+ são linguagens sobre qualquer alfabeto
 - Conjunto de palindromes sobre $\Sigma = \{a, b\}$
 - {ε, a, b, aa, aba, bab, aabbaa, ...}

- DEFINIÇÃO: é um subconjunto de Σ*
 - Isto é, um subconjunto de todas "palavras" possíveis dentro de um alfabeto
- Notação: L
- Exemplos
 - Ø e {ε} são linguagens sobre qualquer alfabeto
 - Σ^* e Σ^+ são linguagens sobre qualquer alfabeto
 - Conjunto de palindromes sobre $\Sigma = \{a, b\}$
 - {ε, a, b, aa, aba, bab, aabbaa, ...}
 - Linguagem de programação
 - Conjunto de todos programas (palavras) da linguagem
 - Conjunto de palavras chave de uma linguagem, if, while, do, int, integer...

- Linguagem de programação
 - C++
 - {for, if, while, do, int, new, ...}
 - Delphi
 - {for, if, while, do, integer, begin, end ...}
 - Java
 - {for, if, while, do, int, forech, ...}
- Como podemos notar
- Cada linguagem tem um conjunto de palavras que aceita
- Ou seja, esse conjunto de palavras aceitas que chamamos de linguagem

- Linguagem de programação
 - A palavra "begin" é aceita pela linguagem c++ ?
 - A palavra "how" é aceita pela linguagem português ?
 - A palavra " teste := 2*x;" é aceita pela linguagem Java?

- DEFINIÇÃO: é um subconjunto de Σ*
 - Isto é, um subconjunto de todas "palavras" possíveis dentro de um alfabeto
- Notação: L
- Exemplos
 - Ø e {ε} são linguagens sobre qualquer alfabeto
 - Σ^* e Σ^+ são linguagens sobre qualquer alfabeto
 - Conjunto de palindromes sobre $\Sigma = \{a, b\}$
 - {ε, a, b, aa, aba, bab, aabbaa, ...}
 - Linguagem de programação c++
 - Conjunto de todos os programas (palavras) da linguagem
 - Conjunto de palavras: if, while, new, int, double...
 - Atenção, um programa como um todo é considerado uma "palavra"

Sumário

Capítulo 1 – Introdução e Conceitos básicos

- 1.2. Conceitos básicos
 - 1.2.1. Alfabeto
 - 1.2.2. Palavra
 - 1.2.3. Linguagem Formal
 - 1.2.4. Gramática
- 1.3. Hierarquia Chomsky

- DEFINIÇÃO:
 - Conjunto finito de regras
 - Quando aplicada sucessivas vezes, geram palavras
- O conjunto de todas as palavras geradas por uma gramática.
 - Define a Linguagem
- A gramática também é usada para definir semântica

DEFINIÇÃO FORMAL:

- Gramatica de Chomsky, gramática irrestrita, ou apenas gramática

$$G = (V, T, P, S)$$

- V conjunto finito de símbolos, variáveis ou não-terminais
- T conjunto finito de símbolos, terminais
- P produções
 - $(V_{\sqcup} T)^+$ $(V_{\sqcup} T)^+$, relação finita
 - Par de relação, regra de produção ou produção
- S elemento diferente de V, variável inicial

• Representação de uma regra de produção

$$\alpha \to \beta$$

- Se α tem mais de uma produção

$$\alpha \to \beta_1$$

$$\alpha \to \beta_2$$

$$\alpha \to \beta_3$$

Pode-se abreviar para

$$\alpha \rightarrow \beta_1 | \beta_2 | \beta_3$$

- Derivação
 - É o processo de aplicar as regras de produções
 - Inicia-se sempre de S
 - Permite gerar as palavras da linguagem
- Na prática derivar é:
 - Substituir uma uma **subpalavra**, segunda uma regra de produção
 - Ex:
 - Para estas regra de produções, $\alpha \rightarrow \beta_1 |\beta_2|\beta_3$
 - Podemos substituir α por β₁, por β₂, ou por β₃

• Exemplo:

Exemplo:

$$G = (V, T, P, S)$$

Para facilitar vamos numerar as produções

• Exemplo:

$$G = (V, T, P, S)$$

2

- $V = \{N, D\}$
- $T = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- $P = \{$ $N \to D$ $N \to DN$ $D \to 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$ }
- $S = \{N\}$

Para facilitar vamos numerar as produções

_(3)

- Exemplo:
 - Vamos derivar o numero 243

```
N → Aplicando 2 gera:
```

```
P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

Exemplo:

 $DN \rightarrow$

Vamos derivar o numero 243

```
N → Aplicando <sup>2</sup> gera:
```

```
P = \{ \\ N \to D \\ N \to DN \\ D \to 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
\}
```

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
```

 $DN \rightarrow$

Aplicando (3) gera:

```
P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
```

 $DN \rightarrow$

Aplicando (3) gera:

 $2N \rightarrow$

```
P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
```

 $DN \rightarrow$

 $2N \rightarrow$

Aplicando 2 gera:

$$P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
DN \rightarrow
2N \rightarrow Aplicando 2 gera:
2DN \rightarrow
```

```
P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
```

 $DN \to$

 $2N \rightarrow$

 $2DN \rightarrow$

Aplicando (3) gera:

$$P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
```

 $DN \to$

 $2N \rightarrow$

2DN →

Aplicando (3) gera:

 $24N \rightarrow$

```
P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
```

 $DN \to$

 $2N \rightarrow$

 $2DN \rightarrow$

 $24N \rightarrow$ Aplicando 1 gera:

$$P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
```

 $DN \to$

 $2N \rightarrow$

 $2DN \rightarrow$

24N → Aplicando 1 gera:

 $24D \rightarrow$

```
P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
\}
```

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
```

 $DN \to$

 $2N \rightarrow$

 $2DN \rightarrow$

 $24N \rightarrow$

24D → Aplicando 3 gera:

```
P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

- Exemplo:
 - Vamos derivar o numero 243

```
N \rightarrow
```

 $DN \to$

 $2N \rightarrow$

 $2DN \rightarrow$

 $24N \rightarrow$

 $24D \rightarrow$

243

```
P = \{ \\ N \rightarrow D \\ N \rightarrow DN \\ D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

Exercicio:

$$G = (V, T, P, S)$$
• $V = \{N, D\}$
• $T = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
• $P = \{$
• $N \rightarrow D$
• $N \rightarrow DN$
• $D \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$
• $S = \{N\}$

- Faça as seguintes derivações
 - 1000
 - 02
 - 5890
 - 3,45

- Podemos concluir que:
 - A gramática anterior produz a linguagem dos numeros naturais
 - Denotamos LINGUAGEM GERADA por:
 - **G**: **L(G)** ou **GERA(G)**
 - Para que duas linguagens G₁ e G₂ sejam iguais ou equivalentes

$$L(G_1) = L(G_2)$$

Isto é, o conjunto das palavras aceitas devem ser iguais

- Convencionaremos que:
 - A, B, C, S, ..., T, letras maiúsculas para Variáveis
 - a, b, c, s, ..., t, letras minúsculas para terminais
 - u, v, w, x, y, z, para palavras de simbolos terminais

• Exemplo 02:

```
• G = (V, T, P, S)
• V = {S, X, Y, A, B, F}
• T = \{a,b\}
• P = {
          S \rightarrow XY
          X \rightarrow XaA \mid XbB \mid F
          Aa → aA
          Ab \rightarrow bA
          AY → Ya
          Ba → aB
          Bb → bB
          BY → Yb
          Fa→aF
          Fb \rightarrow bF
          FY \rightarrow \epsilon
```

Esta gramática gera a linguagem:
 {ww | w é palavra de {a,b}* }

- Isto é:
 - ab<u>ab</u>
 - abb<u>abb</u>
 - aaa<u>aaa</u>
- Exercicio, derive:
- ba<u>ba</u>
- bbba<u>bbba</u>

Exemplo 03:

```
    G = (V, T, P, S)
    V = {A, B, C}
    T = {a,b}
    P = {
        S → aA | bB
        A → bB | aC
```

 $B \rightarrow aA \mid bC$

 $C \rightarrow a \mid b \mid aC \mid bC \mid \epsilon$

S

Esta gramática gera a linguagem:

?

- Testar se as palavras são aceitas
 - abab
 - aab
 - abaab
 - abb
 - babbabab

Exemplo 03:

•
$$V = \{A, B, C\}$$

•
$$T = \{a,b\}$$

 $S \rightarrow aA \mid bB$

 $A \rightarrow bB \mid aC$

 $B \rightarrow aA \mid bC$

 $C \rightarrow a \mid b \mid aC \mid bC \mid \epsilon$

}

S

• Esta gramática gera a linguagem:

{w | w tem pelo menos **aa** ou **bb** como subpalavra}

Testar se as palavras são aceitas

- abab
- aab
- abaab
- abb
- babbabab

Sumário

Capítulo 1 – Introdução e Conceitos básicos

- 1.2. Conceitos básicos
 - 1.2.1. Alfabeto
 - 1.2.2. Palavra
 - 1.2.3. Linguagem Formal
 - 1.2.4. Gramática

1.3. Hierarquia Chomsky

- Classificação de gramáticas formais
- Descrita pelo linguísta americano Noam Chmosky em 1950
- Possui 4 níveis
- O nível 0: maior grau de liberdade
- O nível 3: menor grau de liberdade, mais restrito
- Um gramática do nível n também é uma gramática do n-1

- Tipo 0 : Gramáticas com estruturas de frase
- Tipo 1: Gram. Sensíveis ao contexto
- Tipo 2: Gram. Livres de contexto
- Tipo 3: Gram. Regulares

- Tipo 0 : Gramáticas com estruturas de frase
 - Aquelas que n\u00e3o possuem limita\u00f3\u00f3es
- Tipo 1: Gram. Sensíveis ao contexto
- Tipo 2: Gram. Livres de contexto
- Tipo 3: Gram. Regulares

- Tipo 0 : Gramáticas com estruturas de frase
- Tipo 1: Gram. Sensíveis ao contexto
 - Nenhuma das regras de produção pode reduzir o comprimento da forma sentencial que for substituida
 - Se $\alpha \rightarrow \beta$ então $|\alpha| <= |\beta|$
- Tipo 2: Gram. Livres de contexto
- Tipo 3: Gram. Regulares

- Tipo 0 : Gramáticas com estruturas de frase
- Tipo 1: Gram. Sensíveis ao contexto
- Tipo 2: Gram. Livres de contexto
 - As regras tem apenas uma Variavel do lado esquerdo
 - Não pode ter terminal do lado esquerdo
 - São do tipo
 - $A \rightarrow \beta$
 - Aa → β, não pode
- Tipo 3: Gram. Regulares

- Tipo 0 : Gramáticas com estruturas de frase
- Tipo 1: Gram. Sensíveis ao contexto
- Tipo 2: Gram. Livres de contexto
- Tipo 3: Gram. Regulares
 - Além das restrições da tipo 2
 - Deve ser Linear à direita ou à esquerda
 - $A \rightarrow aB \mid a$
 - B → Ba | a
 - A → ABa, Não pode

