

HCC4054B/55B/56B HCF4054B/55B/56B

LIQUID-CRYSTAL DISPLAY DRIVERS

- 4054B 4-SEGMENT DISPLAY DRIVER STROBED LATCH FUNCTION
- 4055B BCD TO 7-SEGMENT DECODER/DRIVER, WITH "DIS-PLAY-FREQUENCY" OUTPUT
- 4056B BCD TO 7-SEGMENT
 DECODER/DRIVER WITH
 STROBED LATCH FUNCTION
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- OPERATION OF LIQUID CRYSTALS WITH COS/MOS CIRCUITS PROVIDES ULTRA-LOW-POWER DISPLAYS
- EQUIVALENT AC OUTPUT DRIVE FOR LI-QUID-CRYSTAL DISPLAYS-NO EXTERNAL CAPACITOR REQUIRED
- VOLTAGE DOUBLING ACROSS DISPLAY [(V_{DD} - V_{EE}) = 18V)] RESULTS IN EFFECTIVE 36V (p-p) DRIVE ACROSS SELECTED DIS-PLAY SEGMENTS
- LOW-OR HIGH-OUTPUT LEVEL DC DRIVE FOR OTHER TYPES OF DISPLAYS
- ON-CHIP LOGIC-LEVEL CONVERSION FOR DIFFERENT INPUT AND OUTPUT-LEVEL SWINGS
- FULL DECODING OF ALL INPUT COMBINA-TIONS: "0 – 9, L, H, P, A–" AND BLANK POSI-TIONS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTENTATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4054B, HCC4055B and HCC4056B (extended temperature range) and the HCF4054B, HCF4055B and HCF4056B (intermediate temperature range) are monolithic integrated circuits available in 16-lead dual in-line plastic or ceramic package and plastic micro package. The HCC/HCF4055B and HCC/HCF4056B types are single-digit BCD-to-7-segment decoder/driver circuits that provide level-shifting functions on the chip. This feature permits the BCD input-signal swings (VDD to Vss) to be the same as

or different from the 7-segment output-signal swings (V_{DD} to V_{EE}). For example, the BCD input-signal swings (V_{DD} to V_{SS}) may be as low as 0 to -3V, whereas the output-display drive-signal swing (VDD) to VEE) may be from 0 to -5V. If VDD to VEE exceeds 15V, V_{DD} to V_{SS} should be at least 4V. The 7-segment outputs are controlled by the DISPLAY-FRE-QUENCY (DF) input which causes the selected segment outputs to be low, high, or a square-wave output (for liquid-crystal displays). When the DF input is low the output segments will be high when selected by the BCD inputs. When the DF input is high, the output segments will be low when selected by the BCD inputs. When a square-wave is present at the DF input, the selected segments will have a square-wave output that is 180° out of phase with the DF input. Those segments which are not selected will have a square-wave output that is in phase with the input. DF square-wave repetition rates for liquid-crystal displays usually range from 30Hz (well above flicker rate) to 200Hz (well below the upper limit of the liquid-crystal frequency response). The HCC/HCF4055B provides a levelshifted high-amplitude DF output which is required for driving the common electrode in liquid-crystal displays. The HCC/HCF4056B provides a strobedlatch function at the BCD inputs. Decoding of all input combinations on the HCC/HCF4055B and HCC/HCF4056B provides displays of 0 to 9 as well

March 1989 1/15

as L, P, H, A,-, and a blank position. (see typical application for other letters). The HCC/HCF4054B provides level shifting similar to the HCC/HCF4055B and HCC/HCF4056B independently strobed latches, and common DF control on 4 signal lines. The HCC/HCF4054B is intended to provide drive-signal compatibility with the HCC/HCF4055B HCC/HCF4056B 7-segment decoder types for the decimal point, colon, polarity, and similar display lines. A level-shifted high-amplitude DF output can be obtained from any HCC/HCF4054B output line by connecting the corresponding input and strobe lines to and high level, respectively. HCC/HCF4054B may also be utilized for logic-level "up conversion" or "down conversion". For example, input-signal swings (VDD to VSS) from + 5 to 0V can be converted to output-signal swings (VDD to VEE) of + 5 to - 5V. The level-shifted function on all three types permits the use of different input-and outputsignal swings. The input swings from a low level of Vss to a high level of VDD while the output swings

from a low level of VEE to the same high level of VDD. Thus, the input and output swings can be selected independently of each other over a 3-to-18V range. Vss may be connected to VEE when no level-shift function is required. For the **HCC/HCF 4054B** and HCC/HCF 4056B, data are transferred from input to output by placing a high voltage level at the strobe input. A low voltage level at the strobe input latches the data input and the corresponding output segments remain selected (or non-selected) while the strobe is low. Whenever the level-shifting function is required, the HCC/HCF4055B can be used by itself to drive a liquid-crystal display (fig. 10 and fig. 12). The HCC/HCF4056B, however, must be used together with a HCC/HCF4054B to provide the common DF output (fig. 14). The capability of extending the voltage swing on the negative end (this voltage cannot be extended on the positive end) can be used to advantage in the set-up of fig. 11. Fig. 9 is common to all three types.

PIN CONNECTIONS

FUNCTIONAL DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200 100	mW mW
T _{op}	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to 125 - 40 to 85	°C °C

TRUTH TABLE

4055 B and 4056 B

In	put	Со	de		C	Outp	out (Stat	е		Display
2 ³	2 ²	2 ¹	2 ⁰	а	b	С	d	е	f	g	Character
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	0	1	1	1	1	1	6
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	1	0	1	1	9
1	0	1	0	0	0	0	1	1	1	0	L
1	0	1	1	0	1	1	0	1	1	1	Н
1	1	0	0	1	1	0	0	1	1	1	Р
1	1	0	1	1	1	1	0	1	1	1	Α
1	1	1	0	0	0	0	0	0	0	1	_
1	1	1	1	0	0	0	0	0	0	0	BLANK

Data Setup Time and Strobe Pulse Duration.

^{*} All voltage values are referred to V_{SS} pin voltage.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

				Test	Condi	tions				Value					
Symbol	Parame	ter	V _{EE}	Vı	Vo	Vss	V _{DD}	T ₁	ow*		25°C		T _H	igh [*]	Unit
			(V)	(V)	(V)	(V)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		- 5	0/5		0	5		5		0.04	5		150	
	Supply	HCC	0	0/10		0	10		10		0.04	10		300	1
	Current	Types	0	0/15		0	15		20		0.04	20		600	
			0	0/20		0	20		100		0.08	100		3000	μΑ
			- 5	0/5		0	5		20		0.04	20		150	1
		HCF Types	0	0/10		0	10		40		0.04	40		300	
		Турсз	0	0/15		0	15		80		0.04	80		600	
V _{OH}	Output High)	0	0/5		0	5	4.95		4.95			4.95		
	Voltage		0	0/10		0	10	9.95		9.95			9.95		V
			0	0/15		0	15	14.95		14.95			14.95		
V _{OL}	Output Low		0	5/0		0	5		0.05			0.05		0.05	
	Voltage		0	10/0		0	10		0.05			0.05		0.05	V
			0	15/0		0	15		0.05			0.05		0.05	
V_{IH}	Input High		- 5		0.5/4.5	0	5	3.5		3.5			3.5		
	Voltage		0		1/9	0	10	7		7			7		V
			0		1.5/13.5	0	15	11		11			11		
V_{IL}	Input Low		5		0.5/4.5	0	5		1.5			1.5		1.5	
	Voltage		0		9/1	0	10		3			3		3	V
			0		1.5/13.5	0	15		4			4		4	
I _{OH}	Output	HCC	- 5	0/5	4.5	0	5	- 0.6		- 0.45	- 0.9		- 0.3		
	High Current	Types	0	0/10	9.5	0	10	- 0.6		- 0.45	- 0.9		- 0.3		
	Curron		0	0/15	13.5	0	15	- 1.9		- 1.5	- 3		- 1.1		mA
		HCF	– 5	0/5	4.5	0	5	- 0.47		- 0.38	- 0.9		- 0.28	_	
		Types	0	0/10	9.5	0	10	- 0.47		- 0.38	- 0.9		- 0.28		
			0	0/15	13.5	0	15	– 1.58		- 1.27	- 3		- 0.95		
I _{OL}	Output	нсс	- 5	0/5	0.4	0	5	1.6		1.3	2.6		0.9		
	Low Current	Types	0	0/10	0.5	0	10	1.6		1.3	2.6		0.9		
			0	0/15	1.5	0	15	4.2		3.4	6.8		2.4		mA
		HCF	- 5	0/5	0.4	0	5	1.37		1.1	2.6		0.82		
		Types	0	0/10	0.5	0	10	1.37		1.1	2.6		0.82		
			0	0/15	1.5	0	15	3.62		2.9	6.8		2.17		
I _{IH} , I _{IL} **	Leakage Types		0	0/18		0	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ
	Current	HCF Types	0	0/15		0	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΑ
C ₁ **	Input Capad	citance									5	7.5			pF

^{*} T_{Low} = -55°C for HCC device : -40°C for HCF device.

* T_{High} = 125°C fr HCC device : +85°C for HCF device.

The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5 V min. with V_{DD} = 15V.

** Any input

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall times = 20ns)

		Te	st Co	nditions Types								
Symbol	Parameter		\ <u></u>	\ <u></u>	\ <u></u>		4054E	3	4055	B, 40)56B	Unit
			(V)	(V)	(V)	Min.	Тур.	Мах.	Min.	Тур.	Max.	
t _{PHL} , t _{PLH}	Propagation Delay Time (any		- 5	0	5		400	800		650	1300	
	input to any output)		0	0	10		340	680		575	1150	ns
			0	0	15		250	500		375	750	
t _{THL} , t _{TLH}	Transition Time (any output)		- 5	0	5		100	200		100	200	
			0	0	10		100	200		100	200	ns
			0	0	15		75	150		75	150	
t _{setup} *	Data Setup Time		- 5	0	5	220	110		220	110		
			0	0	10	100	50		100	50		ns
			0	0	15	70	35		70	35		
t _W *	Strobe Pulse Width		- 5	0	5	220	110		220	110		
			0	0	10	100	50		100	50		ns
			0	0	15	70	35		70	35		

^{*} HCC/HCF4054B and HCC/HCF4056B only.

Figure 1 : Typical Output Low (sink) Current Characteristics.

Figure 2 : Minimum Output High (source) Current Characteristics.

Figure 3: Typical Output High (source) Current Characteristics.

Figure 5 : Typical Propagation Delay Time vs. Load Capacitance (for 4054B).

Figure 7 : Typical Transition Time vs. Load Capacitance.

Figure 4 : Minimum Output (source) Current Characteristics.

Figure 6 : Typical Propagation Delay Time vs. Load Capacitance (for 4055B and 4056B).

Figure 8 : Typical Dynamic Power Dissipation vs. Frequency.

TYPICAL APPLICATIONS

Figure 9: Display-driver Circuit for one Segment Line and Waveforms.

Figure 10: Clock Display.

 $V_{DD} = 0V$, $V_{SS} = -5V$, $V_{EE} = -15V$, $F_{IN} = 30$ Hz square wave.

Figure 11: Digital (0 to + 5V) to bidirectional Analog Control (+5 to -5V) Level Shifter.

TYPICAL APLLICATIONS (continued)

Figure 12: Single-digit Liquid Crystal Display.

Figure 13: Conversion of "H" Display to "F" Display.

TYPICAL APLLICATIONS (continued)

Figure 14: Typical 3 $\frac{1}{2}$ – Digit–crystal Display: ($V_{DD} = + 5V$, $V_{SS} = 0V$, $V_{EE} = - 10V$, $DF_{N} = 30$ Hz square).

In addition to the letters L, H, P, and A, five other letters can be displayed through the use of simple logic circuits preceding and following the **HCC/HCF4055B** or **HCC/HCF4056B** devices. Fig. 13 is an example of a circuit that converts an "H" display, (code 1011) to an "F" display. One condition that must be met is that $V_{EE} = V_{SS}$. If $V_{EE} \neq V_{SS}$, the **HCC/HCF4054B** must be used to level shift in the

appropriate places. In a similar manner the letters C, E, J, and U can be displayed. These circuits can also be used to drive LED displays provided the exclusive-OR gates have sufficient output-current drive. The letters B, D, G, I, O, and S may be represented by the codes for numbers 8, 0, 6, 1, 0, and 5, respectively, when there is preknowledge that only letters are to be displayed.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (max.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

