Un espace "sans rétracts"

par Alain Clément

Dans le précédent numéro (cf. [2]), on a construit un espace topologique X qui ne possède que deux groupes d'homotopie non-triviaux, à savoir $\pi_2(X) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$ et $\pi_3(X) \cong \mathbb{Z}/2$, pour lequel ni $K(\mathbb{Z}/2,2)$ ni $K(\mathbb{Z}/2,3)$ ne sont des facteurs directs, mais dont $K(\mathbb{Z}/2,2)$ est un rétract. De plus, on a remarqué que l'existence d'un tel rétract implique que $H^{2^r+1}(X;\mathbb{Z})$ possède un élément d'ordre 2^r pour tout $r \geq 1$.

On va considérer ici un autre espace topologique X qui ne possède que deux groupes d'homotopie non-triviaux, à savoir $\pi_2(X) \cong \mathbb{Z}/2 \cong \pi_3(X)$, pour lequel ni $K(\mathbb{Z}/2,2)$ ni $K(\mathbb{Z}/2,3)$ ne sont des rétracts, mais pour lequel $H^{3\cdot 2^r+1}(X;\mathbb{Z})$ possède un élément d'ordre 2^r pour tout $r\geq 1$.

1. Cohomologie modulo 2 des espaces d'Eilenberg-MacLane $K(\mathbb{Z}/2, n), n \geq 1$

En 1953, Jean-Pierre Serre (cf. [5]) donna une description de l'algèbre de cohomologie $H^*(K(\mathbb{Z}/2, n); \mathbb{F}_2)$ en termes d'opérations cohomologiques. Ces opérations furent introduites en 1947 par Norman Steenrod. De façon générale, une opération cohomologique de type (k, n, k', m) est une transformation naturelle η : $H^n(-;k) \to H^m(-;k')$. Par exemple, le produit cup sur $H^*(X;\mathbb{F}_2)$ définit des opérations cohomologiques de type $(\mathbb{F}_2, n, \mathbb{F}_2, 2n)$ pour tout $n \geq 0$.

Théorème 1.

Pour tout entier $n \geq 0$ il existe des opérations cohomologiques de type $(\mathbb{F}_2, n, \mathbb{F}_2, n+i)$

$$Sq^i: H^n(-; \mathbb{F}_2) \to H^{n+i}(-; \mathbb{F}_2),$$

appelées carrés de Steenrod, qui vérifient les propriétés suivantes :

- 1. Sq^0 est l'identité,
- 2. si $x \in H^n(X; \mathbb{F}_2)$ alors $Sq^n x = x^2$,
- 3. (instabilité) si $x \in H^n(X; \mathbb{F}_2)$ alors $Sq^i x = 0$ pour tout i > n,
- 4. (formule de Cartan) pour tout $x, y \in H^*(X; \mathbb{F}_2)$ on a

$$Sq^{i}(x \cup y) = \sum_{k+l=i} Sq^{k}x \cup Sq^{l}y,$$

5. (relations d'Adem) si 0 < i < 2j alors

$$Sq^iSq^j = \sum_{k=0}^{[i/2]} \binom{j-1-k}{i-2k} Sq^{i+j-k} Sq^k,$$

où [i/2] désigne la partie entière de i/2 et $\binom{j-1-k}{i-2k}$ est le coefficient binomial (modulo 2).

Remarquons que dans la relation d'Adem ci-dessus on a clairement $i+j-k \ge i+j-[i/2] \ge [i/2]+j \ge 2k$, de sorte qu'on peut toujours ramener une composition de deux carrés de Steenrod à une somme de compositions de la forme Sq^iSq^j avec $i \ge 2j$. Ceci donne naturellement lieu à la définition suivante.

Définition 1.

Une suite finie non-vide de nombre entiers $I=(a_0,a_1,a_2,\ldots,a_{k-1},a_k)$ est admissible si $a_0\geq 2a_1,$ $a_1\geq 2a_2,\ldots,a_{k-1}\geq 2a_k$. Le degré de I, noté |I|, est donné par $a_0+a_1+a_2+\ldots+a_k$. L'excès de I, noté e(I), est donné par $a_0-a_1-a_2-\ldots-a_k=2a_0-|I|$. On notera Sq^I , ou Sq^{a_0,a_1,\ldots,a_k} , au lieu de $Sq^{a_0}Sq^{a_1}\ldots Sq^{a_k}$.

Théorème 2. (Jean-Pierre Serre, 1953, cf. [5])

L'algèbre graduée de cohomologie $H^*(K(\mathbb{Z}/2,n),\mathbb{F}_2)$ est isomorphe à l'algèbre graduée de polynômes engendrée par tous les éléments de la forme Sq^Iu_n avec I admissible, $e(I) < n, u_n \in H^n(K(\mathbb{Z}/2,n);\mathbb{F}_2)$ la classe caractéristique et le degré de Sq^Iu_n donné par |I| + n.

Remarquons qu'une suite admissible I est d'excès nul si et seulement si I=(0). Ainsi on a

$$H^*(K(\mathbb{Z}/2,1);\mathbb{F}_2) \cong \mathbb{F}_2[u_1].$$

Il est également facile de voir qu'une suite admissible I est d'excès 1 si et seulement si $I=(2^r,\ldots,4,2,1)$ pour un certain $r\geq 0$. Ainsi on a

$$H^*(K(\mathbb{Z}/2,2);\mathbb{F}_2) \cong \mathbb{F}_2[u_n, Sq^{2^r,\dots,4,2,1}u_n \mid r \geq 0].$$

Considérons la suite exacte courte

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\rho} \mathbb{Z}/2 \longrightarrow 0$$

où ρ désigne la réduction modulo 2. Pour tout espace topologique X elle induit la suite exacte longue

$$\cdots \longrightarrow H^n(X;\mathbb{Z}) \xrightarrow{\rho_*} H^n(X;\mathbb{Z}/2) \xrightarrow{\beta} H^{n+1}(X;\mathbb{Z}) \xrightarrow{\cdot 2} H^{n+1}(X;\mathbb{Z}) \longrightarrow \cdots$$

où $\beta: H^n(X; \mathbb{F}_2) \to H^{n+1}(X; \mathbb{Z})$ désigne l'homomorphisme de connexion que l'on nomme ici homomorphisme de Bockstein.

Théorème 3.

Pour tout $r \geq 1$, l'élément $\beta((Sq^{2,1}u_3)^{2^{r-1}})$ est d'ordre 2^r dans $H^{3\cdot 2^r+1}(K(\mathbb{Z}/2,3);\mathbb{Z})$.

La preuve de ce théorème fait principalement intervenir la méthode développée par Henri Cartan pour le calcul de l'homologie des espaces d'Eilenberg-MacLane (cf. [1], exposés 1 à 11) et la suite spectrale de Bockstein cohomologique (cf. [4], chapter 10, pp. 455-484).

3. Construction de l'espace

Le théorème de classification d'Eilenberg (cf. [2]) met en bijection l'ensemble $[K(\mathbb{Z}/2,2),K(\mathbb{Z}/2,4)]$ avec le groupe de cohomologie $H^4(K(\mathbb{Z}/2,2);\mathbb{F}_2)$ qui est isomorphe au \mathbb{F}_2 -espace vectoriel $\mathbb{F}_2\{Sq^2u_2\} = \mathbb{F}_2\{u_2^2\}$ d'après le théorème de Serre ci-dessus. Considérons donc une application continue $k:K(\mathbb{Z}/2,2)\to K(\mathbb{Z}/2,4)$ telle que $k^*(u_4)=u_2^2$ avec $u_4\in H^4(K(\mathbb{Z}/2,4);\mathbb{F}_2)$ la classe caractéristique. On définit X comme la fibre de cette application. On a ainsi les fibrations

$$X \xrightarrow{\alpha} K(\mathbb{Z}/2,2) \xrightarrow{k} K(\mathbb{Z}/2,4) \text{ et}$$

$$K(\mathbb{Z}/2,3) \xrightarrow{j} X \xrightarrow{\alpha} K(\mathbb{Z}/2,2).$$

On montre facilement que ni $K(\mathbb{Z}/2,2)$ ni $K(\mathbb{Z}/2,3)$ ne sont des rétracts de X.

Théorème 4.

Il existe $x \in H^4(X; \mathbb{F}_2)$ tel que $j^*(x) = Sq^1u_3$.

Preuve: On va utiliser la suite spectrale de Serre cohomologique

$$E_2^{s,t}(X) \cong H^s(K(\mathbb{Z}/2,2);\mathbb{F}_2) \otimes H^t(K(\mathbb{Z}/2,3);\mathbb{F}_2) \Longrightarrow H^{s+t}(X;\mathbb{F}_2)$$

(cf. [3]) associée à la fibration $K(\mathbb{Z}/2,3) \xrightarrow{j} X \xrightarrow{\alpha} K(\mathbb{Z}/2,2)$. Considérons la partie de la page $E_2^{s,t}$ suivante :

Pour des raisons que connexité, l'élément $u_3 \in E_4^{0,3} \cong H^3(K(\mathbb{Z}/2,3);\mathbb{F}_2)$ est transgressif (cf. [4], definition 6.13, p. 192) et

$$d_4u_3 = u_2^2 \in E_4^{4,0} \cong H^4(K(\mathbb{Z}/2,2); \mathbb{F}_2).$$

Montrons que $Sq^1u_3 \neq 0 \in E_{\infty}^{0,4}$. Commençons par montrer que $Sq^1u_3 \neq 0 \in E_5^{0,4}$. Pour des raisons de connexité, il suffit de voir que $d_2Sq^1u_3 = 0 \in E_2^{2,3} = \mathbb{F}_2\{u_2u_3\}$. Supposons que $d_2Sq^1u_3 = u_2u_3$. On a alors $0 = d_4(u_2u_3) = (d_4u_2)u_3 + u_2(d_4u_3) = u_2^3$, ce qui est absurde puisque $u_2^3 \neq 0 \in E_4^{6,0}$ pour des raisons de connexité. Il reste à montrer que $d_5Sq^1u_3 = 0$. Comme les opérations cohomologiques commutent avec les transgressions (cf. [4], corollary 6.9, p. 189), on a $d_5Sq^1u_3 = Sq^1d_4u_3 = Sq^1u_2^2 = 0$. Ainsi $Sq^1u_3 \neq 0 \in E_6^{0,4} \cong E_{\infty}^{0,4}$, d'où le résultat.

4. Eléments de torsion dans $H^*(X; \mathbb{Z})$

Théorème 5.

Pour tout $r \geq 1$, l'élément $\beta((Sq^2x)^{2^{r-1}})$ est d'ordre un multiple de 2^r dans $H^{3\cdot 2^r+1}(X;\mathbb{Z})$.

Preuve: Par naturalité des opérations cohomologiques et par le théorème précédent on a clairement

$$j^*((Sq^2x)^{2^{r-1}}) = (Sq^{2,1}u_3)^{2^{r-1}}.$$

De plus, par naturalité de la suite exacte longue en cohomologie, on a le diagramme commutatif

$$H^*(X; \mathbb{F}_2) \xrightarrow{j^*} H^*(K(\mathbb{Z}/2, 3); \mathbb{F}_2)$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta}$$

$$H^{*+1}(X; \mathbb{Z}) \xrightarrow{j^*} H^{*+1}(K(\mathbb{Z}/2, 3); \mathbb{Z}).$$

Ainsi $j^*\beta((Sq^2x)^{2^{r-1}}) = \beta j^*((Sq^2x)^{2^{r-1}}) = \beta((Sq^{2,1}u_3)^{2^{r-1}})$ est d'ordre 2^r , d'où le résultat.

En fait, on peut prouver que l'ordre de l'élément $\beta((Sq^2x)^{2^{r-1}})$ est exactement 2^r .

5. Bibliographie

- [1] Henri Cartan, Algèbres d'Eilenberg-MacLane et homotopie, Séminaire H. Cartan, Ecole Norm. Sup., 1955
- [2] Alain Clément, Un espace pour lequel $K(\mathbb{Z}/2\mathbb{Z},2)$ est un rétract, Journal de l'IMA, seconde parution, Université de Lausanne, 2000
- [3] Luc Dessauges, Théorèmes des coefficients universels et suite spectrale, Journal de l'IMA, première parution, Université de Lausanne, 2000
- [4] John McCleary, User's Guide to Spectral Sequences, Cambridge studies in advanced mathematics 58, Cambridge University Press, 2000
- [5] Jean-Pierre Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv. 27, 1953
- [6] George W. Whitehead, *Elements of Homotopy Theory*, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, 1978