WHAT IS CLAIMED IS:

1	1. An amplifier circuit comprising.
2	a limiter preamplifier including:
3	a differential amplifier coupled to receive a
4	differential input signal at its inputs, and configured to generate a differential
5	output signal made up of a first output signal and a second output signal, and
6	an output stage having a first differential output
7	amplifier coupled to the first output signal and a second differential output
8	amplifier coupled to the second output signal; and
9	a combiner distributed amplifier having a first input
0	coupled to a first output of the first differential output amplifier, and a second input
1	coupled to a first output of the second differential output amplifier,
1 2 3	wherein the output of the first differential output amplifier
3	and the output of the second differential output amplifier are of the same phase.
•	
1	2. The amplifier circuit of claim 1 further comprising:
2	
	a first level shift circuit coupled between the first output of
3	the first differential output amplifier and the first input of the combiner distributed
4	amplifier; and
5	a second level shift circuit coupled between the first output
6	of the second differential output amplifier and the second input of the combiner
7	distributed amplifier.
1	3. The amplifier circuit of claim 2 wherein the differential amplifier
2	of the limiter preamplifier comprises a plurality of serially-coupled differential
3	amplifier cells configured to amplify and limit a level of the differential input signal.
1	4. The amplifier circuit of claim 3 wherein each of the first and
2	second level shift circuitry comprises a plurality of serially-coupled diodes.

5. The amplifier circuit of claim 1 wherein the first differential output amplifier comprises a first input coupled to the first output signal, a second input that is resistively terminated, and a second output that is 180 degrees out of phase with respect to the first output of the first differential output amplifier, the second output being resistively terminated.

- 6. The amplifier circuit of claim 5 wherein the second differential output amplifier comprises a first input coupled to the second output signal, a second input that is resistively terminated, and a second output that is 180 degrees out of phase with respect to the first output of the second differential output amplifier, the second output being resistively terminated.
- 7. The amplifier circuit of claim 1 wherein the differential amplifier comprises:

a differential input stage having first and second inputs coupled to receive the differential input signal; and

a buffer output stage coupled to the differential input stage and configured to shift a signal level at an output of the differential input stage.

- 8. The amplifier circuit of claim 7 wherein the buffer output stage in the differential amplifier comprises:
- a first source-follower transistor coupled at a first output

 of the differential input stage;
 - a plurality of serially-coupled diodes coupled between a source terminal of the first source-follower transistor and the first output signal;
- a second source-follower transistor coupled at a second
- 8 output of the differential input stage; and

1

2

3

1...4

1

2

5

6

9

10

a plurality of serially-coupled diodes coupled between a source terminal of the second source-follower transistor and the second output signal.

1	9. The amplifier circuit of claim 1 wherein each of the first and the
2	second differential output amplifiers comprises:
3	a first field-effect transistor having a gate terminal forming
4	a first input node, a drain terminal forming a first output node, and a source terminal
5	coupled to a common source node;
6	a second field-effect transistor having a gate terminal
7	forming a second input node, a drain terminal forming a second output node, and a
8	source terminal coupled to the common source node;
9	a first load device coupled between the first output node
10	and a high power supply;
	a second load device coupled between the second output
12	node and the high power supply; and
13	a current-source device coupled between the common
14	source node and a low power supply.
11 11 11 2 12 11 11 11 2 13 11 11 11 2	10. The amplifier circuit of claim 9 wherein each of the first and the second load device comprises a resistor coupled in series to an inductor.
last.	seems to an inductor.
1	11. The amplifier circuit of claim 9 wherein the first output node in
2	each of the first and second differential amplifiers is a non-inverting node, and the
3	second output node is an inverting node.
1	12. The amplifier circuit of claim 11 wherein the first input of the
2	combiner distributed amplifier couples to the non-inverting node of the first
3	differential output amplifier, and the second input of the combiner distributed
4	amplifier couples to the inverting node of the second differential output amplifier.
1	13. The amplifier circuit of claim 12 wherein the load device coupled
2	to the non-inverting node of the first differential output amplifier comprises a resistor

- coupled to an inductor, while the load device coupled to the inverting node of the first 3
- 4 differential output amplifier is eliminated providing for a short between the inverting
- 5 node of the first differential output amplifier and the high power supply.

6

9

1

supply.

amplifier comprises:

- 14. 1 The amplifier circuit of claim 12 wherein the load device coupled 2 to the inverting node of the second differential output amplifier comprises a resistor 3 coupled to an inductor, while the load device coupled to the non-inverting node of the 4 second differential output amplifier is eliminated providing for a short between the non-inverting node of the second differential output amplifier and the high power 5
- 15. The amplifier circuit of claim 1 wherein the combiner distributed

a first plurality of transistor amplifier cells coupled in cascade having a common gate line coupled the first input of the combiner distributed amplifier, and a common drain line coupled to an output of the amplifier circuit; and a second plurality of transistor amplifier cells coupled in cascade having a common gate line coupled to the second input of the combiner distributed amplifier, and a common drain line coupled to the output of the amplifier circuit.

- 1 16. The amplifier circuit of claim 15 wherein each of the transistor amplifier cells comprises a single common-source field-effect transistor. 2
- 1 17. The amplifier circuit of claim 15 wherein each of the transistor amplifier cells comprises a cascode-coupled pair of field-effect transistors. 2
- 1 18. A method of amplifying a high frequency signal comprising: 2 receiving a differential signal at differential inputs of a 3 limiter circuit;
- 4 performing a limiting function on the differential signal;

5	using the finiter circuit to amplify the differential signal
6	and to generate a pair of in-phase output signals; and
7	applying, respectively, the pair of in-phase output signals
8	to a pair of input terminals of a combiner distributed amplifier.
1	19. The method of claim 18 further comprising level shifting the pair
2	of in-phase output signal before applying them to the pair of input terminals of the
3	combiner distributed amplifier.
1	20. A limiter amplifier comprising:
12	a differential amplifier coupled to receive a differential
	signal at its inputs and configured to generate a differential output signal made up of a
144	first signal and a second signal; and
<u> </u>	an output stage having a first differential output amplifier
16	coupled to the first signal and a second differential output amplifier coupled to the
<u></u>	second signal,
8	
* "8 *:#:	wherein, the first differential output amplifier is
į.u.i	configured to generate a first single-ended output signal and the second differential
10	output amplifier is configured to generate a second single-ended output signal that is
11	in phase with the first single-ended output signal.
1	21. The limiter amplifier of claim 20 wherein the first differential
2	output amplifier comprises a first input coupled to the first output signal, a second
3	input that is resistively terminated, and a second output that is 180 degrees out of
4	phase with respect to the first output of the first differential output amplifier, the
5	second output being resistively terminated.
1	22. The limiter amplifier of claim 21 wherein the second differential
2	output amplifier comprises a first input coupled to the second output signal, a second
3	input that is resistively terminated, and a second output that is 180 degrees out of

- 4 phase with respect to the first output of the second differential output amplifier, the
- 5 second output being resistively terminated.
- 1 23. The limiter amplifier of claim 20 wherein the differential 2 amplifier comprises:
- a differential input stage having first and second inputs
- 4 coupled to receive the differential input signal; and
- a buffer output stage coupled to the differential input stage
- 6 and configured to shift a signal level at an output of the differential input stage.
 - 24. The limiter amplifier of claim 20 wherein the differential amplifier comprises a plurality of serially-coupled differential amplifier cells configured to amplify and limit a level of the differential input signal.

1	25. A communication system comprising:
2	a receiver comprising:
3	an optical input circuit coupled to receive an optical signal
4	and to convert the optical signal to an electrical signal,
5	a trans-impedance amplifier coupled to receive and
6	amplify the electrical signal,
7	a limiter coupled to the trans-impedance amplifier; and
8	a demultiplexer coupled to receive an output of the limiter
9	and configured to de-serialize the electrical signal into a plurality of lower frequency
10	parallel signals to be transmitted to a signal processing unit; and
11	a transmitter comprising:
1111	a multiplexer coupled to receive a plurality of parallel
13	signals from the signal processing unit, and configured to serialize the parallel signals
14	into a single differential signal;
15	the driver amplifier of claim 1, coupled to receive the
16	differential signal and to generate an output signal; and
17	
10	an optical modulator coupled to the driver amplifier and
18	configured to convert the output signal into a modulated optical signal.