

数据科学导论 Introduction to Data Science

第四章 数据挖掘基础

刘淇

Email: qiliuql@ustc.edu.cn

课程主页:

http://staff.ustc.edu.cn/~qiliuql/DS2017.html

2

□ Clustering——面临挑战:Class Imbalance Problem(类不平衡问题)

实际生活中存在很多非平衡问题

SIM

KNN

传统方法在非平衡数据集上性能不好

3

- □ Clustering——面临挑战: Class Imbalance Problem(类不平衡问题)
- □非平衡数据集
 - □ 绝对稀少
 - 比例1:99,1000个数据
 - □相对稀少
 - 比例1:99,100,000个数据
 - □类间不平衡
 - □ 类内不平衡

4

□ Clustering——面临挑战:Class Imbalance Problem(类不平衡问题)

- □ 如何解决?
- □ 预处理
 - 上采样
 - 下采样
 - 混合采样
- □算法改进
 - 单类学习分类
 - 集成学习
 - 代价敏感学习
 - 基于聚类
 -
- □混合

□常用方法——关于四个任务有哪些常用方法?

- □ 常用方法—— Association Rule Mining (关联规则挖掘)
 - □ 给出事务的集合,能够发现一些规则:当事务中某些子项出现时,预测其他子项也出现

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$${ ext{Diaper}} \rightarrow { ext{Beer}}, \ { ext{Milk, Bread}} \rightarrow { ext{Eggs,Coke}}, \ { ext{Beer, Bread}} \rightarrow { ext{Milk}},$$

Implication means co-occurrence, not causality!

□ 关联规则挖掘——频繁项集

□ Itemset (项集)

- A collection of one or more items
- Example: {Milk, Bread, Diaper}
- k-itemset
- An itemset that contains k items

□ Support count (♂) (支持数)

- Frequency of occurrence of an itemset
- E.g. ({Milk, Bread, Diaper}) = 2

□ Support (支持度)

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

□ Frequent Itemset (频繁项集)

An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

□ 关联规则挖掘——关联规则

Association Rule

- An implication expression of the form
- \blacksquare X \rightarrow Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s,支持度)
 - Fraction of transactions that
 - contain both X and Y
- Confidence (c,置信度)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

{Milk, Diaper} ⇒ Beer

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

□ 关联规则挖掘——关联规则挖掘任务

- □ 给定事务集合 T, 关联规则发现是指找出支持度大于等于 minsup 并且 置信度大于等于 minconf 的所有规则
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - 列出所有可能的关联规则
 - 计算每一个规则的支持度和置信度
 - 修剪不符合minsup and minconf 的规则
 - ⇒ Computationally prohibitive!

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 ${Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)$ ${Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)$ ${Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)$ ${Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)$ ${Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)$ ${Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset:
 {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

11

□ 关联规则挖掘——频繁项集生成策略

- Two-step approach:
 - 1. 频繁项集生成
 - Generate all itemsets whose support ≥ minsup
 - 2. 规则产生
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- **□** Frequent itemset generation is still computationally expensive

12

□关联规则挖掘——频繁项集生成

Brute-force approach:

Each itemset in the lattice is a candidate frequent itemset Count the support of each candidate by scanning the database

Match each transaction against every candidate Complexity ~ O(NMw) => Expensive since M = 2^d !!!

□关联规则挖掘——计算复杂度

Given d unique items:

Total number of itemsets = 2^d

Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

□ 关联规则挖掘——频繁项集生成策略

- □ 减少候选项集数目(M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- □ 减少事务数目 (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- □ 减少比较次数 (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

16

□ 关联规则挖掘——减少候选项集数目

- Apriori 原理:
 - 如果一个项集是频繁的,则它的所有子集一定也是频繁的
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone (反单调性) property of support

17

□ 关联规则挖掘——使用 Apriori原理

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

11	0 1
Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,		
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$		
With support-based pruning,		
6 + 6 + 1 = 13		

Itemset	Count
{Bread,Milk,Diaper}	3

19

- □ 关联规则挖掘—— Apriori Algorithm
 - Method:
 - Let k=1
 - 生成长度为 1 的频繁项集
 - 重复下述步骤直到没有新的频繁项集
 - 从长度为 k 的频繁项集生成长度为 (k+1) 候选项集
 - Prune candidate itemsets containing subsets of length k that are infrequent (修剪不频繁的项集)
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent (只留下频繁项集)

20

□ 关联规则挖掘——生成候选项集合

- □ Apriori算法是根据有关频繁项集性质的先验知识Apriori Principal命名的。 该算法使用一种逐层搜索的迭代方法,利用k-项集产生(k+1)-项集。
- □ 具体做法:首先找出频繁1-项集的集合,记为L1;再用L1找频繁2-项集的集合L2;再用L2找L3...如此下去,直到不能找到频繁k-项集为止。 找每个Lk需要一次数据库扫描。

□关联规则挖掘——生成候选项集合

- □ 整个过程由连接和剪枝两步组成,即:
 - (1)连接步
 - 为找Lk,可通过Lk-1与自己连接,产生一个候选k-项集的集合,该候选项集的集合记作Ck
 - 设 | 1 和 | 2 是 Lk-1 中的项集,记号 | [i]表示 | 的第 j 项。为方便计,假定事务或项集中的项按字典次序排序。
 - 执行连接 L_{k-1} \bowtie L_{k-1} ,其中 Lk-1 的元素是可连接的,如果它们前(k-2)个项相同。

□ 关联规则挖掘——生成候选项集合

- □ 整个过程由连接和剪枝两步组成,即:
 - (2)剪枝步
 - Ck是Lk的超集,即它的成员不一定都是频繁项集,但所有的频繁k-项集都包含在Ck中。
 - 扫描数据库,确定Ck中每个候选项集的计数,从而确定Lk。然而, Ck可能很大,这样所涉及的计算量就很大。
 - 为了压缩Ck,可利用Apriori性质:任何非频繁的(k-1)-项集都不可能是频繁k-项集的子集。因此,若一个候选k-项集的(k-1)-项子集不在Lk-1中,则该候选也不可能是频繁的,从而可以从Ck中删除。

□ 关联规则挖掘——候选项目集的生成函数

□ 以Lk-1作为输入,输出全部频繁k-项目集的一个超集。该函数包含两个操作,连接(join)与修剪(prune)。连接操作将Lk-1中的频繁项目集按如下方式进行拼接:

insert into Ck
select p.item1, p.item2, ..., p.itemk-1, q. itemk-1
from Lk-1 p, Lk-1 q
where p. item1=q. item1,..., p. itemk-2=q. itemk-2, p. itemk-1 < q. itemk-1;

24

- □关联规则挖掘——修剪操作
 - □ 对Ck中任一候选项集c,若c的某个大小为k-1的子集不属于Lk-1,则 将其从Ck中删除。
 - ☐ forall itemsets c∈ Ck do

```
forall (k-1)-subsets s of c do

if (s∉Lk-1) then

delete c from Ck;
```


□ 关联规则挖掘—— Apriori Algorithm

【例】一个Apriori的具体例 子,该例基于右图某商店的 事务DB。DB中有9个事务, Apriori假定事务中的项按 字典次序存放。

TID	项ID的列表
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11, 13
T600	12, 13
T700	11, 13
T800	11, 12, 13, 15
T900	11, 12, 13

□ 关联规则挖掘—— Apriori Algorithm

(1) 在算法的第一次迭代,每个项都是*候选1-项集*的集合 C_1 的成员。算法简单地扫描所有的事务,对每个项的出现次数计数。 C_1

扫描], 对每个候选计数

项集	支持度计数
<i>{I1}</i>	6
{12}	7
<i>{I3}</i>	6
{14}	2
<i>{I5}</i>	2

□ 关联规则挖掘—— Apriori Algorithm

(2) 设最小支持计数为2, 可以确定*频繁*1-*项集*的集合 L_1 。它由具有最小支持度的*候选*1-*项集*组成。

 L_1

比较候选支持度计数 与最小支持度计数

项集	支持度计数
<i>{I1}</i>	6
<i>{12}</i>	7
<i>{13}</i>	6
<i>{14}</i>	2
<i>{15}</i>	2

□ 关联规则挖掘—— Apriori Algorithm

(3) 为发现频繁2-项集的集合 L_2 ,算法 使用 L_1 产生*候选2-项集*集合 C_2 。

 C_2

由 L_1 产生候选 C_2

项集		
{11,	12}	
{11,	<i>13</i> }	
{11,	14}	
{11,	<i>15</i> }	
{I2,	13}	
<i>{12,</i>	14}	
{12,	<i>15</i> }	
{13,	14}	
{13,	<i>15</i> }	
{14,	<i>15</i> }	

29

□ 关联规则挖掘—— Apriori Algorithm ——

(4) 扫描D中事务,计算 C_2 中每个 候选项集的支持计数。

 C_2

扫描①,对每个候选计数

项集	支持度计数
{11, 12}	4
{11, 13}	4
{11, 14}	1
<i>{11, 15}</i>	2
{12, 13}	4
<i>{12, 14}</i>	2
{ <i>12,15</i> }	2
{13, 14}	0
{ <i>13</i> , <i>15</i> }	1
<i>{14, 15}</i>	0

30

□ 关联规则挖掘—— Apriori Algorithm

(5) 确定*频繁2-项集*的集合 L_2 ,它由具有最小支持度的 C_2 中的*候选2-项集*组成。

比较候选支持度计数 与最小支持度计数 L_2

项集	支持度计数
{11, 12}	4
{11, 13}	4
{11, 15}	2
{12, 13}	4
{12, 14}	2
{12, 15}	2

- □ 关联规则挖掘—— Apriori Algorithm
 - (6) 候选3-项集的集合 C_3 的产生如下:

① 连接:
$$C_3 = L_2 \bowtie L_2$$

$$= \{\{11, 12\}, \{11, 13\}, \{11, 15\}, \{12, 13\}, \{12, 14\}, \{12, 15\}\}\}$$

$$\{\{11, 12\}, \{11, 13\}, \{11, 15\}, \{12, 13\}, \{12, 14\}, \{12, 15\}\}$$

 $= \{\{11, 12, 13\}, \{11, 12, 15\}, \{11, 13, 15\}, \{12, 13, 14\}, \{12, 13, 15\}, \{12, 14, 15\}\}$

32

- □ 关联规则挖掘—— Apriori Algorithm
- $L_{\gamma} = \{\{11, 12\}, \{11, 13\}, \{11, 15\}, \{12, 13\}, \{12, 14\}, \{12, 15\}\}$
- C_3 {{11, 12, 13}, {11, 12, 15}, {11, 13, 15}, {12, 13, 14}, {12, 13, 15}, {12, 14, 15}}
 - ② 利用Apriori性质剪枝: 频繁项集的所有子集必须是频繁的。存在候选项集, 判断其子集是否频繁。

 - [11,13,15]的2-*项子集*是[11,13],[11,15]和[13,15], [13,15]不是[13,15]不是[13,15]不是[13,15]不是[13,15]。

. . . .

□ 关联规则挖掘—— Apriori Algorithm

- ③ 这样,剪枝后 $C_3 = \{\{|1,|2,|3\}, \{|1,|2,|5\}\}$ 。
- (7) 扫描 \mathbb{D} 中事务,以确定 \mathbb{L}_3 ,它由 \mathbb{C}_3 中具有最小支持度的的*候选3-项集*组成。

由 L_2 产生候选 C_3

	项集	<i>C3</i>
{I1,	12,	<i>13</i> }
{11,	12,	<i>15</i> }

扫描]),对每 个候选计数

项 集C3	支持度计数
{I1 , I2 , I3}	2
<i>{11, 12, 15}</i>	2

34

- □ 关联规则挖掘—— Apriori Algorithm
- (8) 算法使用 $L_3 \bowtie L_3$ 产生*候选4-项集*的集合 C_4 。尽管连接产生结果 {{\\| \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) (五) \(\) (3) \(\) (4) \(\) (4) \(\) (4) \(\) (5) \(\) (5) \(\) (5) \(\) (5) \(\) (5) \(\) (5) \(\) (5) \(\) (5) \(\) (6) \(\) (6) \(\) (7) \(\) (7) \(\) (8) \(\) (8) \(\) (9)

 L_3

比较候选支持度计数 与最小支持度计数

项集	支持度计数
{11, 12, 13}	2
{11, 12, 15}	2

练习

□ 设min_sup = 50%求出右图事务列表中所有的频繁项集

□ (包括1-频繁,2-频繁,3-频繁等,给出求解过程)

TID	Item
100	1234
200	125
300	1235
400	245
500	123

D

TID	Item
100	1234
200	125
300	1235
400	245
500	123

 $\mathbf{L}_{\mathbf{l}}$

Itemset	Support
{1}	4
{2}	5
{3}	3
{5}	3

 C_2

Itemset	Support
{12}	4
{13}	3
{15}	2
{23}	3
{25}	3
{35}	1

 \mathcal{L}_2

Itemset	Support
{12}	3
{13}	4
{23}	3
{25}	3

C

Itemset	Support
{123}	3
{235}	1

 L_3

Itemset	Support
{123}	3

- □ 关联规则挖掘—— 规则生成(Rule Generation)
- □ Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f
 - \rightarrow L f satisfies the minimum confidence requirement
 - □ If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

□ If |L| = k, then there are 2^k – 2 candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

- □ 关联规则挖掘—— 规则生成(Rule Generation)
- How to efficiently generate rules from frequent itemsets?
 - □ In general, **confidence** does not have an **anti-monotone** property $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$
 - But confidence of rules generated from the same itemset has an anti-monotone property
 - e.g., $L = \{A,B,C,D\}$:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

39

□ 关联规则挖掘—— 规则生成(Rule Generation)

- □ 关联规则挖掘—— 规则生成(Rule Generation)
- □ Rule Generation for Apriori Algorithm

□ Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

- join(CD=>AB,BD=>AC)would produce the candidaterule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

41

□关联规则挖掘——如何处理连续属性?

Gender	757	Age	Annual	No of hours spent	No of email	Privacy
			Income	online per week	accounts	Concern
Female		26	90K	20	4	Yes
Male		51	135K	10	2	No
Male		29	80K	10	3	Yes
Female		45	120K	15	3	Yes
Female		31	95K	20	5	Yes
Male		25	55K	25	5	Yes
Male		37	100K	10	1	No
Male	1000	41	$65\mathrm{K}$	8	2	No
Female		26	$85 \mathrm{K}$	12	1	No
	101010		1.1.1	# # C# ES	# # #	

Example of Association Rule:

{Gender=Male, Age \in [21,30)} \rightarrow {No. of hours online \ge 10}

- □ 关联规则挖掘——产生分类、异常检测的效果
- Example: Internet Usage Data

Gender	Level of	State	Computer	Online	Chat	Online	Privacy
	Education		at Home	Auction	Online	Banking	Concerns
Female	Graduate	Illinois	Yes	Yes	Daily	Yes	Yes
Male	College	California	No	No	Never	No	No
Male	Graduate	Michigan	Yes	Yes	Monthly	Yes	Yes
Female	College	Virginia	No	Yes	Never	Yes	Yes
Female	Graduate	California	Yes	No	Never	No	Yes
Male	College	Minnesota	Yes	Yes	Weekly	Yes	Yes
Male	College	Alaska	Yes	Yes	Daily	Yes	No
Male	High School	Oregon	Yes	No	Never	No	No
Female	Graduate	Texas	No	No	Monthly	No	No
	***	2307	3.23	***		***	

{Level of Education=Graduate, Online Banking=Yes}

→ {Privacy Concerns = Yes}

43

- □ 关联规则挖掘—— Pattern Evaluation (规则评估)
 - □ 关联规则往往会生成很多规则
 - many of them are uninteresting or redundant (冗余)
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
 - □ Interestingness measures(兴趣度量) can be used to prune(修剪)/rank the derived patterns 衍生模式
 - □ In the original formulation of association rules, **support & confidence** are the only measures used

□ 关联规则挖掘—— Drawback of Confidence

 Coffee
 Coffee

 Tea
 15
 5
 20

 Tea
 75
 5
 80

 90
 10
 100

Association Rule: Tea → Coffee

Support = P(Coffee, Tea| ALL) =? ; Confidence = P(Coffee| Tea) = ?

but P(Coffee) = ?

- ⇒ Although confidence is high, rule is misleading
- ⇒ P(Coffee|Tea) =?

45

□ 关联规则挖掘——计算兴趣度量

ullet Given a rule X o Y, information needed to compute rule interestingness can be obtained from a contingency table(相依表)

Contingency table for $X \rightarrow Y$

	Y	Y	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

f₀₁: support of X and Y

f₀₀: support of X and Y

Used to define various measures

support, confidence, lift, Gini, J-measure, etc.

□ 关联规则挖掘—— Statistical Independence

- **□** Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - $P(S \land B) = P(S) \times P(B) =>$ Statistical independence
 - $P(S \land B) > P(S) \times P(B) =>$ Positively correlated
 - P(S∧B) < P(S) × P(B) => Negatively correlated

□ 关联规则挖掘—— Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

48

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

What about Aprioristyle support based pruning? How does it affect these measures'

	#	Measure	Formula
	1	ϕ -coefficient	P(A,B)-P(A)P(B)
		·	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$ $\frac{\sum_{j} \max_{k} P(A_{j},B_{k})+\sum_{k} \max_{j} P(A_{j},B_{k})-\max_{j} P(A_{j})-\max_{k} P(B_{k})}{2-\max_{j} P(A_{j})-\max_{k} P(B_{k})}$
	2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} \left(\sum_{j} \sum_{k} \max_{j} \left(\sum_{j} \sum_{k} \sum_{k} \sum_{j} \sum_{j} \sum_{k} \sum_{j} \sum_{j} \sum_{k} \sum_{j} \sum_{j} \sum_{k} \sum_{j} \sum_$
	3	Odds ratio (α)	$\frac{P(A,B)P(A,B)}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$rac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)}=rac{lpha-1}{lpha+1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
	6	Kappa (κ)	$\frac{P(A,B)P(\overline{AB}) + \sqrt{P(A,B)P(A,B)}}{P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})}}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$ $\sum_{i} \sum_{j} P(A_{i},B_{j}) \log \frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}$
n	7	Mutual Information (M)	$\overline{\min(-\sum_i P(A_i) \log P(A_i), -\sum_j P(B_j) \log P(B_j))}$
	8	$\operatorname{J-Measure}\left(J\right)$	$\max\Big(P(A,B)\log(rac{P(B A)}{P(B)}) + P(A\overline{B})\log(rac{P(\overline{B} A)}{P(\overline{B})}),$
			$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})})\Big)$
Γ	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
			$(-P(B)^2 - P(\overline{B})^2,$
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
			$-P(A)^2-P(\overline{A})^2$
	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
ľ	12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
	15	cosine (IS)	$\frac{\frac{P(A,B)}{P(A)P(B)}}{\frac{P(A,B)}{\sqrt{P(A)P(B)}}}$
_	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
s?	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})}}{\frac{P(A,B)}{P(A,B)}} \times \frac{\frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}}{\frac{1-P(A,B)-P(\overline{AB})}{1-P(A,B)-P(\overline{AB})}}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

辛普森悖论 Simpson's Paradox

- Observed relationship in data may be influenced by the presence of other confounding factors (hidden variables)
 - □ Hidden variables may cause the observed relationship to disappear or reverse its direction!
- □ Proper stratification(分层) is needed to avoid generating spurious(虚假) patterns

辛普森悖论 Simpson's Paradox

50

Association patterns may behave differently at the local level from the global level

Global Observation	Local Observation	Pitfalls(陷阱)
Significant	Insignificant	False Positive
Insignificant	Significant	False Negative

- Simpson's Paradox
 - □ The (global) pattern differs from each local segment
 - Direction of the correlation might be reversed

Simpson's Paradox: An Example*

□ UC Berkeley was sued for bias against women applying to graduate school.

M	en	Women		
#Applicants	%Admitted	#Applicants	%Admitted	
832	44%	366	11%	

□ In fact, most departments had a small bias against men

Major	Me	en	Women	
	#Applicants	%Admitted	#Applicants	%Admitted
В	560	63%	25	68%
F	272	6%	341	7%

适当的数据分层有助于避免辛普森悖论

- Adapted from the example at http://en.wikipedia.org/wiki/Simpson's_paradox. See the following paper for more details: P.J. Bickel, E.A. Hammel and J.W. O'Connell (1975). "Sex Bias in Graduate Admissions: Data From Berkeley". Science 187 (4175): 398–404.
- https://en.wikipedia.org/wiki/Simpson%27s_paradox

练习

□ 请依据下表计算出关于早餐的关联规则{面包}->{豆浆}的支持度与置信度。结合此例说明支持度与置信度的不足,同时给出一个可以更准确的评价关联规则的方法(也可以是多个)。

	买豆浆	不买豆浆	
买面包	90	30	120
不买面包	390	90	480
	480	120	600

- □关联规则挖掘——扩展算法:序列模式挖掘
 - □ 序列模式的概念最早是由Agrawal和Srikant 提出的。
 - 动机:大型连锁超市的交易数据有一系列的用户事务数据库,每一条记录包括用户的ID,事务发生的时间和事务涉及的项目。如果能在其中挖掘涉及事务间关联关系的模式,即用户几次购买行为间的联系,可以采取更有针对性的营销措施。
 - □ 应用领域:
 - 客户购买行为模式预测
 - Web访问模式预测
 - 疾病诊断
 - 自然灾害预测DNA序列分析

□ 关联规则挖掘—— 扩展算法:序列模式挖掘

■ 查询扩展是搜索领域一个重要的问题。用户提交的查询往往不能完全反映其信息需求。一些研究工作尝试用用户的查询序列模式来辅

助原始查询

SID	Search Session
1	丰田→雷诺→宝马→奔驰
2	宝马→奔驰→法拉利
3	本田→丰田→通用→宝马
4	吉利→奇瑞→长城→江淮
5	比亚迪→吉利→江淮→长安
6	长城→江淮→华泰→长安

意图:

国际汽

意图: 国内汽 车品牌

55

□序列模式挖掘算法

类Apriori算法

■ 序列模式的任一子序列也是序列模式。算法首先自底向上的根据较短的序列模式生成较长的候选序列模式,然后计算候选序列模式的支持度。典型的代表有 GSP算法, spade算法等。

■ 基于划分的模式生长算法

■ 基于分治的思想,迭代的将原始数据集进行划分,减少数据规模,同时在划分的过程中动态的挖掘序列模式,并将新发现的序列模式作为新的划分元。典型的代表有FreeSpan算法和prefixSpan算法。

■ 基于序列比较的算法

- 首先定义序列的大小度量,接着从小到大的枚举原始序列数据库中包含的所有 k-序列,理论上所有的k-序列模式都能被找到。算法制定特定的规则加快这种 枚举过程。典型的代表为Disc-all算法。
- □ Lei Zhang, Ping Luo, Linpeng Tang, Enhong Chen, Qi Liu, Min Wang, Hui Xiong, Occupancy-based Frequent Pattern Mining, ACM Transactions on Knowledge Discovery from Data.

56

□序列模式挖掘算法扩展—根据序列模式预测未来

- 时间序列分析方法
 - 序列自回归模型(AR)、移动平均模型(MA)、自回归移动平均模型(ARMA)

如果时间序列 X_{t} 是它的前期值和随机项的线性函数,即可表示为 $X_{t} = \varphi_{1}X_{t-1} + \varphi_{2}X_{t-2} + \cdots + \varphi_{p}X_{t-p} + u_{t}$ [1]

【1】式称为p 阶自回归模型,记为AR (p)

■ 隐马尔可夫模型(Hiden Markov Model, HMM) ---CRF

SID	Search Session
1	丰田→雷诺→宝马→奔驰
2	宝马→奔驰→法拉利
3	本田→丰田→通用→宝马
4	吉利→奇瑞→长城→江淮
5	比亚迪→吉利→江淮→长安
6	长城→江淮→华泰→长安

Figure 1: Graphical structure of the vlHMM.

□序列模式挖掘算法扩展—根据序列模式预测未来

- Huanhuan Cao, Derek Hao Hu, Dou Shen, Daxin Jiang, Jian-Tao Sun, Enhong Chen, Qiang Yang, Context-Aware Query Classification, SIGIR'2009.
- Huanhuan Cao, Daxin Jiang, Jian Pei, Enhong Chen, Hang Li, Towards Context-Aware Search by Learning A Very Large Variable Length Hidden Markov Model from Search Logs, WWW'2009.
- Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen liao, Enhong Chen, Hang Li, Context-Aware Query
 Suggestion by Mining Click-Through and Session Data, KDD'2008. (Best Application Paper Award).
- Biao Chang, Hengshu Zhu, Yong Ge, Enhong Chen*, Hui Xiong, Chang Tan, Predicting the Popularity of Online Serials with Autoregressive Models, CIKM'2014.
- Hengshu Zhu, Chuanren Liu, Yong Ge, Hui Xiong, Enhong Chen, Popularity Modeling for Mobile Apps:
 A Sequential Approach, IEEE Transactions on Cybernetics (IEEE TC), 45(7): 1303-1314, July 2015.
- Hongke Zhao, Qi Liu*, Hengshu Zhu, Yong Ge, Enhong Chen, Yan Zhu, Junping Du, A Sequential Approach to Market State Modeling and Analysis in Online P2P Lending, IEEE Transactions on Systems, Man, and Cybernetics: Systems (IEEE TSMC-S), accepted, 2017.
- Le Wu, Yong Ge, Qi Liu, Enhong Chen, Richang Hong, Meng Wang, Junping Du, Modeling the Evolution of Users' Preferences and Social Links in Social Networking Services, IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE), 29(6): 1240-1253, June 2017.
- Le Wu, Qi Liu, Enhong Chen, Xing Xie and Chang Tan, **Product Adoption Rate Prediction: A Multi-factor View**, **SDM'2015**.

□常用方法——关于四个任务有哪些常用方法?

□ Anomaly Detection——异常/离群点 检测

- □ 什么是异常/离群点?
 - The set of data points that are considerably different than the remainder of the data

- One in a thousand occurs often if you have lots of data
- Context is important, e.g., freezing temps in July
- □ 可能是重要的也可能是有害的
 - 10 foot tall 2 year old
 - Unusually high blood pressure

- □ Anomaly Detection——异常/离群点 检测
- □ 给定数据集 D, 发现所有点 $x \in D$,其异常得分大于阈值t
- □ 给定数据集 D, 发现前 top-n 得分的点 $x \in D$

□ 给定数据集 D, 包含一般 (未标记) 数据点, 对于测试点 t x, 根据 D 计算它的异常得分

- □ Anomaly Detection——异常检测模型
- Build a model for the data and see
 - Unsupervised
 - 异常是那些不能拟合的点
 - 异常是那些扭曲模型的点
 - Examples:
 - Statistical distribution
 - Clusters
 - Regression
 - Geometric
 - Graph
 - Supervised
 - Anomalies are regarded as a rare class
 - Need to have training data

- Anomaly Detection——异常检测的方法
 - □ 基于邻近度的离群点检测
 - Anomalies are points far away from other points
 - Can detect this graphically in some cases
 - □ 基于密度的离群点检测
 - Low density points are outliers
 - □ 模式匹配
 - Create profiles or templates of atypical but important events or objects
 - Algorithms to detect these patterns are usually simple and efficient

[1] Xue Bai, Yun Xiong, Yangyong Zhu, Qi Liu and Zhiyuan Chen. Co-anomaly Event Detection in Multiple Temperature Series. Springer KSEM 2013, pages: 1-14,2013. (Best Paper Award).

[2] Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen, Discovery of Ranking Fraud for Mobile Apps, IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE).

□ Anomaly Detection——异常检测

- □大数据告诉你:公交车上谁是小偷!
 - □ (a)正常出行者,主要在居住地、工作地、途经区域活动
 - □ (b) 旅游者, 频繁访问圆明园、天安门、南锣鼓巷等景点区域。
 - □ (c)购物者,主要访问王府井、西单等购物区域。
 - □ (d) 扒手,他们是一种**流浪的模式**,没有清晰的目的地,他们频繁地换乘,随机的停留,经常进行短途的出行。他们还(一段时间内)频繁地访问多种功能区:交通枢纽(例如西直门)、购物区(例如王府井)、景点(例如鼓楼)

- □数据挖掘定义、四类任务及其应用场景
- □分类任务
 - □ 有监督:决策树、朴素贝叶斯、K近邻、SVM、集成分类器、评估方法
- □聚类任务
 - □ 无监督:K-Means、DBSCAN、评估方法
- □关联规则挖掘
 - □ 支持度和置信度、Apriori、序列模式挖掘、评估方法
- □异常检测

Tips: 在设计针对大数据与小数据的挖掘方法时,所用的思想在本质上是一致的。

THANK YOU!

