AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

Claims 1-6 (canceled).

7. (previously presented): An optical material cured by exposing an actinic-energy-ray-curable composition for an optical material to an actinic-energy ray, the composition comprising (A) a di(meth)acrylate represented by the following general formula (1) and (B) a mono(meth)acrylate represented by the following general formula (2):

wherein R_1 and R_2 independently represent a hydrogen atom or a methyl group, R_3 and R_5 independently represent a hydrogen atom, a methyl group or an ethyl group, R_4 and R_6 independently represent a hydrogen atom, a methyl group or a bromine atom;

$$H_{2}C = C - C + (O - CH - CH_{2}) O - (2)$$

wherein R_9 and R_{10} independently represent a hydrogen atom or a methyl group, R_{11} represents a hydrogen atom, a phenyl group or a cumyl group, and n represents 0 or an integer of 1-5.

Application No.: 10/589,660

Attorney Docket No.: Q96171

8. (previously presented): The optical material according to Claim 7, wherein the composition contains 10 to 90 wt % of the component (A) and 90 to 10 wt % of the component

(B).

9. (previously presented): The optical material according to Claim 7, wherein each of

 R_1 and R_2 is a hydrogen atom in the general formula (1).

10. (currently amended): The active energy beam-curable composition for an optical

material according to Claim 7, wherein n is 0 and R₁₁ is a phenyl group or a cumyl group in the

general formula (2).

11. (previously presented): The optical material according to of Claim 7, wherein the

composition further comprises (C) a photoinitiator.

12. (previously presented): The optical material according to Claim 7, wherein all of

 R_3 to R_6 are hydrogen atoms; R_3 and R_5 are hydrogen atoms and R_4 and R_6 are methyl groups;

or R_3 and R_5 are hydrogen atoms and R_4 and R_6 are bromine atoms in the general formula (1).

13. (previously presented): The optical material according to Claim 7, wherein R₉ is a

hydrogen atom in the general formula (2).

14. (previously presented): The optical material according to Claim 7, wherein the

component (A) is at least a compound selected from the group consisting of bis(4-

3

Application No.: 10/589,660

Attorney Docket No.: Q96171

(meth)acryloyloxyphenyl) sulfide, bis(4-(meth)acryloyloxy-3-methylphenyl) sulfide, and bis(4-(meth)acryloyloxy-3-bromophenyl) sulfide.

15. (previously presented): The optical material according to Claim 7, wherein the component (B) is at least a compound selected from the group consisting of phenyl (meth)acrylate, p-cumylphenyl (meth)acrylate, o-phenylphenyl (meth)acrylate, m-phenylphenyl (meth)acrylate, p-phenylphenyl (meth)acrylate, phenoxyethyl (meth)acrylate, p-cumylphenoxyethyl (meth)acrylate, o-phenylphenoxyethyl (meth)acrylate, m-phenylphenoxyethyl (meth)acrylate, and p-phenylphenoxyethyl (meth)acrylate.

- 16. (previously presented): The optical material according to Claim 7, wherein the optical material has a refractive index (25°C) of 1.61 or more.
- 17. (previously presented): The optical material according to Claim 7, wherein the optical material is a lens sheet or a plastic lens.
- 18. (previously presented): A method for producing an optical material comprising:
 a step of applying or pouring an actinic-energy-ray-curable composition for an optical
 material to a casting mold having a predetermined shape, wherein the composition comprises (A)
 a di(meth)acrylate represented by the following general formula (1) and (B) a
 mono(meth)acrylate represented by the following general formula (2), and

a step of irradiating an active energy beam to the composition;

Application No.: 10/589,660

Attorney Docket No.: Q96171

wherein R_1 and R_2 independently represent a hydrogen atom or a methyl group, R_3 and R_5 independently represent a hydrogen atom, a methyl group or an ethyl group, R_4 and R_6 independently represent a hydrogen atom, a methyl group or a bromine atom;

$$H_{2}C = \overset{R_{9}}{C} - \overset{O}{C} + \overset{R_{10}}{C} + \overset{O}{C} + \overset{C}{C} + \overset{C}{C$$

wherein R_9 and R_{10} independently represent a hydrogen atom or a methyl group, R_{11} represents a hydrogen atom, a phenyl group or a cumyl group, and n represents 0 or an integer of 1-5.

- 19. (previously presented): A method for producing an optical material according to Claim 18, wherein the composition contains 10 to 90 wt % of the component (A) and 90 to 10 wt % of the component (B).
- 20. (previously presented): A method for producing an optical material according to Claim 18, wherein each of R_1 and R_2 is a hydrogen atom in the general formula (1).
- 21. (previously presented): A method for producing an optical material according to Claim 18, wherein n is 0 and R₁₁ is a phenyl group or a cumyl group in the general formula (2).
- 22. (previously presented): A method for producing an optical material according to Claim 18, wherein the composition further comprises (C) a photoinitiator.

Application No.: 10/589,660

•

Attorney Docket No.: Q96171

23. (previously presented): A method for producing an optical material according to

Claim 18, wherein all of R₃ to R₆ are hydrogen atoms; R₃ and R₅ are hydrogen atoms and R₄

and R_6 are methyl groups; or R_3 and R_5 are hydrogen atoms and R_4 and R_6 are bromine atoms

in the general formula (1).

24. (previously presented): A method for producing an optical material according to

Claim 18, wherein R₉ is a hydrogen atom in the general formula (2).

25. (previously presented): A method for producing an optical material according to

Claim 18, wherein the component (A) is at least a compound selected from the group consisting

of bis(4-(meth)acryloyloxyphenyl) sulfide, bis(4-(meth)acryloyloxy-3-methylphenyl) sulfide,

and bis(4-(meth)acryloyloxy-3-bromophenyl) sulfide.

26. (previously presented): A method for producing an optical material according to

Claim 18, wherein the component (B) is at least a compound selected from the group consisting

of phenyl (meth)acrylate, p-cumylphenyl (meth)acrylate, o-phenylphenyl (meth)acrylate, m-

phenylphenyl (meth)acrylate, p-phenylphenyl (meth)acrylate, phenoxyethyl (meth)acrylate, p-

cumylphenoxyethyl (meth)acrylate, o-phenylphenoxyethyl (meth)acrylate, m-

phenylphenoxyethyl (meth)acrylate, and p-phenylphenoxyethyl (meth)acrylate.

6