INTRODUZIONE A NERVES

Elixir per sistemi embedded

Christian Sarnataro

Elixir Language Milano - 20 Maggio 2025

CHI SONO

Christian Sarnataro

- Sviluppatore frontend in Arduino dal 2021
 - Arduino è una piattaforma hardware e software open source progettata per un accesso semplificato all'elettronica
- In precedenza, programmatore full-stack e mobile, web architect
- LinkedIn: https://www.linkedin.com/in/sarnataro

ARDUINO UNO

• Più di 10_000_000 schede vendute

ARDUINO IDE

• Gratuita, open source, multi piattaforma

DISCLAIMER

(traduz.: "metto le mani avanti")

- Non sono un esperto di BEAM/OTP/Elixir (ma mi interessa saperne di più)
- Non sono un esperto di Elettronica (ma mi interessa il "physical computing")

AGENDA

- 1. Cosa sono i sistemi embedded?
- 2. Introduzione a Nerves
- 3. Demo:
 - i. Blink, l'*Hello World* dei sistemi embedded (ma ++)
 - ii. App Phoenix/Liveview con Nerves
 - iii. Misurazione di temperatura con Livebook
 - iv. (Opzionale) Pomodoro Timer
- 4. Q/A

ERLANG, BEAM, OTP, ELIXIR?

- Erlang (1986)
 - Linguaggio funzionale (ispirato a Prolog) [1]
 - Applicazioni concorrenti, distribuite, fault-tolerant
- BEAM Bogdan's Erlang Abstract Machine (1993)
 - Una macchina virtuale per Erlang

[1] A History of Erlang by Joe Armstrong

ERLANG, BEAM, OTP, ELIXIR?

- OTP Open Telecom Platform (1996)
 - Erlang, librerie, runtime, documentazione, pattern
 - secondo altre fonti, Outlaw Techno Psychobitch [2]
- Elixir (2012)
 - versione moderna di Erlang (ispirato a Ruby)

[2] Erlang The Movie II: The Sequel minuto 3:03

ANALOGIE CON JAVA

(Mia personale interpretazione)

Erlang	=>	Java
BEAM	=>	JVM
OTP	=>	JDK/JEE
Elixir	=>	Kotlin

NERVES E SISTEMI EMBEDDED

- **Nerves** è una piattaforma open-source che unisce la solidità della virtual machine BEAM con l'ecosistema Elixir per costruire e mettere in produzione sistemi embedded. (*tradotto da nerves-project.org*).
- Normalmente i sistemi embedded sono programmati con linguaggi a basso livello, ad es.: Bare metal,
 Assembly, C/C++ e più recentemente Rust/Zig

COSA SONO I SISTEMI EMBEDDED?

- Molteplici definizioni di sistemi embedded
- Quella che preferisco:

I sistemi embedded sono computer pensati per un singolo scopo specifico (single purpose computer)

 Un calcolatore che risolve un singolo problema nel mondo reale (interazioni fisiche e alta affidabilità)

APPLICAZIONI

- Domotica, automazione industriale, automotive, robots, droni, IoT
- Elettronica di consumo "smart"
- Installazioni artistiche interattive
- Vincoli in termini di:
 - costo
 - consumo di elettricità
 - dimensioni ridotte

UN ESEMPIO (ROTTO)

 Questo dispositivo embedded NON usa Nerves, ma sarebbe un ottimo caso d'uso

login: Fri Har 28 06:56:16 CET 2025 on ttyl

raspherrypi 5.4.03-07: #1379 SW flow Dec 14 13:60:57 GM 2020 arms1 rograms included with the Bebian GNU/Linux system are free software: xact distribution terms for each program are described in the

n GML/Linux comes with ABSULUTELY NO UARRANTY, to the extent

s enabled and the default password for the 'pi' user has not been changed.
is a security risk - please login as the 'pi' user and type 'passud' to set a new password.

is currently blocked by rfkill. aspi-config to set the country before use.

SCRUCT CPPOP! Cannot open log file local/share/xory/Xory.0.log"

e consult the The on support at http://w help.

giving up

unable to connect to K server: Connection refused

SEPVER ERFOR

aberrupt

TIPOLOGIE

Microprocessori	Microcontrollori
Più veloci (4 GHz)	Più lenti (200 MHz) (ma in real time)
GB di RAM	KB di RAM
Con OS (Linux)	Bare metal o RTOS
Per es: Raspberry Pl	Per es: Arduino, ESP32
Arduino X8?	AtomVM
Nerves <a>	Nerves X

Adattato da: Frank Hunleth (core maintainer di Nerves e autore di "Build a Weather Station with Elixir and Nerves") youtu.be/P_xryjmG35I minuto 11:19

PERCHÉ NERVES

- Nerves è testato e utilizzato in produzione in svariati progetti (per es. automazione industriale o agricoltura)
- Orientato a networking, concorrenza e affidabilità

Per fortuna, non devo spiegare i punti di forza della BEAM in un meetup Elixir (*)

(*) Rubata a Giacomo Cavalieri

INTRODUZIONE A NERVES

- Alcuni pre-requisiti
 - Raspberry PI (o simili)
 - Scheda Micro SD
 - Hardware (LED, motori, sensori, cavetti, display) e, eventualmente, saldatore a stagno
 - Iniziare a familiarizzare con i datasheet e il gergo utilizzato nell'ambito dei sistemi embedded
- Iniziare a sperimentare con hardware e **Livebook**

"HELLO WORLD" CON NERVES

• Con Elixir e mix già installati:

```
$ mix archive.install hex nerves_bootstrap #nerves generators
$ mix nerves.new hello_nerves #creates new project
$ cd hello_nerves
$ export MIX_TARGET=rpi0 # VERY IMPORTANT
$ mix deps.get
$ mix firmware # builds the firmware for MIX_TARGET
$ mix burn # burns your firmware on an SD card
```

 Inserire la SD card nel device (nel nostro caso Raspberry Pi Zero)

```
1 $ ssh nerves.local
2 $ HelloNerves.hello
3 :world
```

PAIN POINTS

- Mettere/togliere la scheda SD, mix firmware e mix firmware.burn richiedono un sacco di tempo
 - esiste script upload. sh per aggiornare il firmware senza rimuovere la scheda SD dalle volte successive
 - esiste NervesHub, un servizio per aggiornamenti over-the-air (OTA).

Nota: non testato, ma molto interessante

 Quando si crea un nuovo firmware con firmware.burn la chiave ssh cambia e va rigenerata con ssh-keygen -R nerves.local

DEMO 1: ACCENDERE UN LED

(a.k.a. "Blink", a.k.a. l'*Hello World* dei sistemi embedded)

- "Blink++": usa un LED per codificare un messaggio in codice Morse (con effetti sonori)
- Circuits.GPIO per gestire GPIO (General Purpose Input Output)

https://hexdocs.pm/circuits_gpio

- Pigpiox per gestire PWM (*Pulse Width Modulation*)
 - https://hexdocs.pm/pigpiox
- Show me the code! Linux / Mac / GitHub

DEMO 2: APP PHOENIX/LIVEVIEW

- Se vedete queste slide, *questa* è la demo 2
 - Phoenix è un framework web per Elixir
- App Phoenix in esecuzione su Raspberry Pi 4
- Aggiorniamo le slide

DEMO 3: LIVEBOOK CON NERVES COS'È LIVEBOOK?

- Applicazione web per eseguire notebook interattivi con Elixir direttamente nel browser
- Simile a Python Jupyter Notebooks
- Supporta Markdown, "celle" Elixir, grafici interattivi, integrazione con Hugging Face

DEMO 3: LIVEBOOK CON NERVES

- Distribuzione di Livebook specifica per Nerves
- Ottimo per docenti/formatori: Elixir in azione nel browser
- Ottimo per sperimentare con l'hardware in maniera iterativa
- Livebook

DEMO 4. POMODORO TIMER

- Oled + Chisel per gestione schermo e font
 - https://hexdocs.pm/oled
 - https://hexdocs.pm/chisel
- Circuits.GPIO per gestione pulsante
 - https://hexdocs.pm/circuits_gpio
- Implementa una macchina a stati finiti con :gen_statem
- Codice: Linux / Mac

CONCLUSIONI

- Nerves permette lo sviluppo di applicazioni embedded complesse, connesse e affidabili con Elixir
- Livebook semplifica la prototipazione con l'hardware
- L'elettronica è oggi molto accessibile, anche per chi ha un background prevalentemente software
- Le possibilità, combinando "a piacere" sensori, motori, luci, pulsanti, telecamere - e magari una spruzzatina di Al - sono praticamente infinite

RIFERIMENTI

- Demo e slide https://github.com/csarnataro/ nerves_talk
- Nerves project https://nerves-project.org/
- Elixir https://elixir-lang.org/
- Erlang: The Movie https://www.youtube.com/watch?
 v=xrljfljssLE

DOMANDE?

Fine della presentazione