FIG. 1A

Ile ATC Ser TCC 180 09 Leu CTC Val GTA Leu Ala GCT Met ATG Thr cysTGC Leu 40 Leu CTG Val GTG Leu CTG MetAsn Val AAT-GTG Ala GCC ${ t Tyr} { t TAT}$ Gly GGC Tyr TAC50 Phe TTT Asn AAC ${
m Tyr} \ {
m TAC}$ Val GTC Ile ATC His CAC Ile ATC $\frac{Pro}{CCC}$ Arg AGG Phe TTT

30 Asp GAC 90

> Ala GCA

Lys AAG

 $_{
m GLy}$

Glu

Ser TCA

G1y

Asn

Phe TTC

Pro CCC

20 Arg CGG

> Ser AGC

 $\operatorname{Trp}_{\operatorname{TGG}}$

Asn AAC

Gln CAG

Ser	90 Trp TGG 270	HH	120 Ala GCA 360	C L	150 Arg CGC	2
Val GTC	Pro	Arg	Thr	Thr	Lys AAG	
Ile	Met	Ser AGC	Cys TGC	Tyr TAC	Ser	
Leu TTG	Val GTA	Phe TTC	Met ATG	Arg AGG	Ser AGC	
Tyr	Leu CTG	Lys AAA	Met ATG	Asp GAC	Tyr TAC	
70 Asn AAC	Thr	100 Trp TGG	Val GTC	130 11e ATT	Arg	
Thr	Ala GCC	Glu	Asp GAT	Ser AGC	Thr	
Thr	Val GTG	G1y GGT	Leu	Ile	Asn AAC	
Thr	Leu CTG	Val GTG	$\operatorname{Thr}_{\operatorname{ACT}}$	Ala GCC	$\mathtt{T}\mathtt{y}_{\mathtt{T}}$	
Gln	Leu	Val GTG	Val	Cys TGT	Leu	
Leu TTG	80 Asp GAT	Glu GAG	110 Phe TTT	Leu	140 Met ATG	
Ala GCT	Ala GCT	Leu	Ile ATC	Asn AAC	Pro	
Lys AAG	Val	Tyr	Asp	Leu CTG	Met ATG	m
G1u GAG	Ala GCT	Val GTC	Cys TGT	Ile	Ala GCA	1. 18
Arg GCA	Leu	Val	His	Ser AGC	Val GTG	FIG.

Thr		⊢ j	210 11e ATC	N A O	240 Leu	7
Phe TTC	Gln CAG	Ser TCC	Tyr TAT	Asn	Pro	
Ser	Asp GAC	Ser	Val GTC	Val GTC	Thr	
Leu	Thr ACA	Tyr TAC	Leu CTG	Arg CGG	Lys)
Val	Asn AAT	Val GTC	Leu	Lys AAG	Leu	
160 Trp TGG	Asn	190 Val GTG	Thr	220 Arg CGG	Asn	,
Val	Leu	Phe TTT	Val	Arg CGC	Ala GCC	
Ile	G1y GGA	Ala GCC	Ile ATC	Lys	Arg AGA	
Ala GCC	Phe TTC	Pro	Phe TTC	Arg	$rac{ ext{Phe}}{ ext{TTC}}$	
Ile ATT	Leu	Asn	Pro	Leu	Ala GCT	
Met	170 Leu CTG	Ala GCC	200 Val GTG	Val GTC	230 Arg CGA	
Val GTC	Pro	Ile ATT	Tyr TAC	Ile	Ser	
$\operatorname{Thr}_{\operatorname{ACT}}$	Cys TGC	Ile ATC	Phe TTC	Tyr TAC	Ser	
Val GTT	Ser TCC	Cys TGT	Ser TCA	Ile ATC	Arg	. 10
Arg CGA	Ile ATC	Glu GAG	Val GTC	Lys AAA	Lys	FIG.

Leu	270 Pro CCT		0 1 0		e G	ATG 990
 Met	Ile	His	Asn	Glu	hr hr	<u>ე</u>
Glu GAG	Pro	His CAC	Lys AAG	Phe (-	ح.
Met ATG	Ser AGC	Ser	Gly 1 GAG 4	he	n e	7 7
Glu GAA	Tyr TAT	Pro CCA	Pro (CCA (Lys P AAG T'	er L	ر ر
250 Leu CTG	Arg	280 Asp] GAT: (Lys F	10 1a CC	Thr S	4
Glu	Thr ACC	Pro /	Ala I GCC A	3 le A TT G	rg T GG A)
Gln	Arg AGG	Leu] CTC (Pro A	Arg I AGG A'	A D	•
Ala GCT	Glu GAG	Thr]	Ser E AGT (CC	Lys Th	
Arg	Pro	Leu '	Asp g GAC A	Asn P AAT C	Gly L GGC A	. 1
Arg CGC	260 Pro CCC	Gln	290 Pro / CCT (al TC	320 Asn G AAT G	
Ala GCC	Ser AGC	His	Asn]	Ile V ATT G	ro	
Ala GCT	Thr ACC	His	Ser /	Lys 1	Met P ATG C	
Asp GAT	Ser AGC	Ser	His CAT	Ala I GCC A	Thr M ACC A	1D
Lys	Ser TCA	Pro CCC	Leu F CTA (His A CAC G	Gln T CAG A	FIG. 1D
		_		H)	50	_

		·				
	Gln	36 Pr	1080 Ile ATC	A(8)	17 Ph TT	
	Thr	Leu CTG	Asn AAC	Val GTC	l Glu GAG	ر
	Ala GCC	${ m Trp} \ { m TGG}$	Cys TGC	Tyr	Ile (ATC (ויטט
	Lys	Cys	Asp GAT	Gly GGC	Asn]	CTGC
,	Lys AAG	Ile	$\frac{\text{Cys}}{\text{TGT}}$	Leu	Phe / TTC /	TGAGT
	340 G1u GAG	Ile	370 His CAC	Trp	400 Thr ACC	415 Cys TGC
	Lys	Phe TTC	Ile ATA	Thr ACA	Thr ACC	His
	Gln CAG	Val GTG	Asn AAT	Phe TTC	Tyr TAC	Leu
	Gln CAG	G1y GGT	Leu CTG	Ala GCC	Ile	Ile ATC
	Ser TCC	Leu	Ile ATC	Ser AGC	Ile ATC	Lys AAG
	Leu	350 Val GTT	His	380 Tyr TAC	Pro	410 Met ATG
	Lys AAG	Ile ATT	Thr	Leu CTC	Asn AAC	Phe TTC
	Arg AGA	Ala GCC	Ile ATC	Val	Val GTC	Ala GCC
	Arg CGC	Leu	Phe TTC	Pro CCA	Ala GCC	Lys
,	Ser AGC	Met	Phe TTC	Pro CCA	Ser AGT	Arg CGC

FIG. 1E

ATAGGAACCACATAGGAAAGCAGGGAACACGCCCAAGTCCTCCAGGCACATCAGTGTCAGG TGTTTTCCACTCCAACTCTAGTGTGGGTCCCTACTTTTCATAGCCATGGGTATTACTATG TGGGCAGAAAGGCCCAGATGAACTTGGCCTTCTCTCGACCCTGCAGGCCCTGCAGTGTTA **AGACTGGTATCTTACCAGCTCTGGGGTTGGACCCATGGCTCAGGGCAGCTCACAGAGTGC** TTCCTCTTGGGCACAGAACTAGCTCAGTGGTCGAGCACCCCTGATCGCTGGCTTGGCC 1740 AGACACACATAAACACCAGGTAGCTCCATGGACCCCAGAGAAACTGAGGCTGAAAAATC GCTTGGCTCGATGCCCCTCTCTGCCCACACCCTCATCCTGCCAGGGTAGGGCCAGGG CACAGCAGCTGCTTCCCACCTCCCTGCCTATGCAGGCCAGACCTCATCCCTGCAAGCTG FIG. 1F

CCTCTGCCTTAGAAGAGGCTGTGGATGGGGTGCTGGACTGCTGATACCATTGGGCCTGG **ATCCTCAAGGCCCCCAAGAGAATCTGTAAGGAGAAAAATAGGCTGATCTCCCTCTACTCT** CTGGCCAGTCAGGCCTTGGACCAGTGTTGGAGTTGGAGCTGGATGTGGTAACTTGGGGGCT CCAATCCACTCCACCTTCTTGATATACCTTGGATGTATCCATTCCTCACAGCAAATG CCCTGAATGAGGGGGAAGCTGCAGTTTGGAGGGTTCTGGGGATCCAACTCTGTAACAT TCCTACCTTGTTATAGTATCCCATGGGGTTTCTGTACCATTTGGGGGAAAACAACTCTA

FIG. 1G

MDFLMISWYDDDLERQNWSRPFNGSEGKADRPHYNYYAMIIMLL.IFIIVFGNVLVCMAVSREKALQTHTNY MGPFGNDSDFLLTTNGSHVPDHDVTEERDEAWVVGMAILMSVIVLAIVFGNVLVITAIAKFERLQTVTNY MGSLQ.PQA.GNASMNGTEAPGGGARATPYSLQVTLTLVCLAGLL.MLTVFGNVLVITAIAKFERLQTVTNY MDVLS.BGQ.GNNTTSPPAPFETGGNTTGISDVTVSYQV.ITSLIJGJU.MLTVFGNVLVIIAVFTSRAIKAPONL MNTSAPPAVSPNITVLAPGKGPWQVAFIGITTGLL.SLATVIGNILVIISFKVNTELKTIVNNY MGACV.VMTDINIESGLDSNATGITAFSMPGWQLALWTAAYLAL.VLVAVMGNATVIWIILAHQRMRIVTNY II	LIVSLAMADINVATLVMFMVVYLENVGENKFSRIHCDIFVTLDVMMCTASILNLCAISIORYTAVAMFMINMTRYSSKRRFIDSLACADLVMGIANVRFGASHIMKMNFGRFWTGFFWTGIAVORYTAVAMFRYQSLLTKNKAFIDSLACADLVMGIANVRFGASHIMKMNFGRFWTGFFWTSIQVLCVTASIETLCVTAVORYTAITATLYNCKALTKNKALTIVSLASADLINATLVIRFSLANEVNYREGKTWCEIYLALDVLCTISSIVHLCAISIQRYWSITQAIETNLKRTPRRILLIGSLAVTDIMVSVLVITRMAALYQVLNNWTLGQVTCDLFIALDVLOCTSSILHLCAIAIQRYWMITDPIDTVNKRTPRPRFRFLISLACADLIIGHESMNLYTTYLLMQIWALGTLACDLWLALDYVASNASWMNLTIISFQRYFSVTRPLSYRAKTRPRRAFIVNLALADICMMAFNAAFNFVASHNIWYFGRAFCYFQNLFPITAMFVKIYSMTAIAAQRYMMILIISFQRYFSVTRPRRAFIN	VIVATAINTAINTAINTAISC.PLLFGLNNTDQNECIIANPAFVVYSS RMW.HLMVWIVSGLTSFIPIQMHWYRATHQKAIDCYHRETCCDFFTNQAYA KAI.LJITVWVISAVISFPLISIEKKGGGGGPQPAEPRCEINDQKWYV ALT.SLT.WLIGFLLSIFPMLGWRTPEDRSDPDACTISKDMGYT ALM.TGLAWLVSEVLWA.PAILFWQYLVGERTVLAGQCYIQFLSQPIIT ALM.TJAGTWLVSEVLWA.PAILFWQYLVGERTVLAGQCYIQFLSQPIIT	KEKKATOMIAIVIGAFIICWLPFFITHIINIHCOCNIPPVLYSAFIWLGYVNSAVNPIHYTTENTERNAFMKIIHG -KEHKALKTHOLIMOIFTICWLPFFIVNLVHVIODNLIPKEVYILLNWLGYVNSARNPIHYCRSP.DFRIAFOEIJJ.CL(3 -REKRFTFVIAVVIGARRVCWEPFFFTYTITAVGCSVPRTHFKFFPWBGYCNSSLNPVLYTTFNHDFRRAFWKIIJ.CRC(-REKRFTFVIAVVIGARRVCWEPFFFTYTITAVCSVPRTHFKFFPWBGYCNSSLNPVLYTTFNHDFRRAFWKIIJ.CRC(-RERKTVKTHOLIMGIFILCWIPFFIVALVLPPCESSCHMPTILGAIINWLGYSNSLINPVLYAYENKDFRRAFRDTFRLILIHGR(2 -KEKKAARTLSAILLAFIYTWI YNVYTEAICWLBYHLYFFIJGTFGEDIYCHKFIQQVYLALFWIGYVNSTLNPMCYALCHNFRRSOFRI.APRC(2
D ₆ MGI P ₆ MGI OC ₄ MGS G-21 MGI M ₁ MNT	De Pe C C C C C C C C C C C C C C C C C C	De VIII	D. P. C. L. C.

DRUG		Ki (nM)		
	RGB-2		180	
	Transformed Ltk-Cells	Rat	t Striatum	
(+)-Butaclamol	0.83		1.0	
<pre>(-)-bucaciamoi laloperidol)opamine + GTP</pre>	3.0 3.0 17,000		>1,000 5.3 6,300	
Sulpiride high affinity low affinity	08		67 >10,000 ((87%)
high affinity low affinity	1,000		35 ((16%)
high affinity low affinity	>1,000		27 ((25%)

FIG. 4C

FIG. 6B

FIG. 6C

FIG. 6D

T.O. 14

GGT CGA 5 CCA GCT 3 Ser Pro Pro Glu Arg Thr Arg Tyr Ser Pro Ile Pro Pro Ser His His Gln Leu Pro Ala Ala His Pro Arg Gly Pro Gly Thr Ala Pro Ser His Pro Ala Thr Thr Ser 5' CAG CCC ACC

Leu Ser Pro Thr Arg Pro Thr MET Val Ser Thr Ala Leu Pro Thr Ala Pro Pro Thr Leu Pro Asp Pro Ser His His Gly Leu His Ser Thr Pro Asp Ser Pro Ala Ser Arg Gln Pro Arg Ser Pro Arg Pro Val Pro Pro Trp Ser Pro Gln His

Gln Thr Arg Glu Glu Trp Ala Cys Gln Lys Asp His Pro Lys Asp Cys Gln Asp Lys Pro Glu Lys Asn Gly His Ala Lys Arg Thr Thr Pro Arg Ile Ala Lys Ile CTAGAT Asn Gln. Arg Arg MET Gly MET Pro Lys Gly Pro Pro Gln Gly Leu Pro Arg GTT TGG TCT CTT ACC CGT ACG GTT TTC CTG GTG GGG TTC CTA ACG GTT CAA ACC AGA GAA TGG GCA TGC CAA AAG GAC CAC CCC AAG GAT TGC CAA

 \mathtt{GTA} His CIGGAC Gln Asp Ser Leu Lys GLLCAA CTA GGT CTG GTA CGG GTT ĀCC GTT TTG GGC CTG GAG GGA GAT CCA GAC CAT GCC CAA TGG CAA AAC CCG GAC CTC CCT Asp Pro Asp His Ala Gln Trp Gln Asn Pro Asp Leu Pro Glu Ile Gln Thr MET Pro Asn Gly Lys Thr Arg Thr GAT CCA TGA Len

FIG. 7B

Ser Arg Arg Arg Lys Pro Leu Arg Cys Ser Pro 270 GCG CTT C6A G55 GGT CGT CTT CCT CTT TCG GTG AGT CTA CGA GAA G3T C44 CCA GCA GAA GGA GAA GAA AGC CAC TCA GAT GCT 243 CTT CCT GGC ATC C Glu Pro GAG

Phe Ser Ala Cys Ser Ser Ser Ala Gly Cys Pro Ser Ser His Thr Ser TA 5CA AGA GCC GCA CAA GTA GTA GAC GAC CGA CGG GAA GAA GTA GTG TGT GTA AT 4GT TCT CGG CGT GTT CAT CAT CAC ACA CAT is T Ser Arg Arg Val His His Leu Leu Ala Ala Leu Leu His His Thr His ILE Val Leu Gly Val Phe Ile Ile Cys Trp Leu Pro Phe Phe Ile Thr His Ile CAT

Thr Tyr Thr Val Thr Ála Thr Ser Arg Leu Ser Cys Thr Ala Pro Ser Arg ro Glu His Thr Leu . Leu Gln His Pro Ala Cys Pro Val Gln Arg Leu His Leu Asn Ile His Cys Asp Cys Asn Ile Pro Pro Val Leu Tyr Ser Ala Phe Thr CTT GTA TGT GAC ACT GAC GTT GTA GGG CGG ACA GGA CAT GTC GCG GAA GTG GAA CAT ACA CTG TGA CAT CCC GCC TGT CCT GTA CAG CGC CTT CAC GLU His Thr Leu . Leu Gln His Pro Ala Cys Pro Val Gln Arg Leu His Pro

Thr Pro Pro Ser Thr CAC CGA CCC GAT ACA GTT GTC GCG GCA CTT GGG GTA GTA GAT GTG GTG GAA GTT GTG GCT CAA CAC CGC CGT GAA CCC CAT CAT CTA CAC CAC CTT CAA Val Ala Gly Leu Cys Gln Gln Arg Arg Glu Pro His His Leu His Leu Gln Trp Leu Gly Tyr Val Asn Ser Ala Val Asn Pro Ile Ile Tyr Thr Thr Phe Asn Ser Thr Pro Ser 405 Gly Trp Ala MET Ser Thr Ala Pro

Arg Ser Ser Thr Ala Asp Ser Ala Ala Cys Ile Glu Phe Arg Lys Ala Phe Leu Lys Ile Leu His Cys STOPLeu Cys Cys Leu GGA CCT Gln Gly Leu Pro Glu Asp Pro Pro Leu Leu Thr Leu Leu Pro CTGGAC CTG GAC TGA GAC CTG ACT CTG GGA GGT GAC CCT CCA CTG CTT CTA GAA GAT CAA GGC CTT CCT Leu Ser Ser Ala Arg Pro Ser CCG GAA CAA GGC (GTT CCG (Val Pro (TGACAT His

Arg Thr Ala Ala Cys Phe Pro Pro Pro Cys Pro Val Pro Aía Ser Leu Thr Leu la Ala Gln Gln Pro Ala Ser His Leu Pro Ala Gln Cys Arg Pro Ala Ser Pro Pro His Ser Ser Leu Leu Pro Thr Ser Leu Pro Ser Ala Gly Gln Pro His Pro SSS 999 GAG GGA CGG GTC ACG GCC GGT CGG AGT CTC CCT GCC CAG TGC CGG CCA GCC TCA CTC CCT GCC CAC CGT GTC GTC GGA CGA AGG GTG GCT TCC GCA CAG CAG CCT Aia Ala

Pro Arg 500 000 v Ala Gly Arg Pro Gly Trp Ile Gly Leu Leu Phe . Pro Arr ACC CAC CTA GCC GGA GGA GAT TGG GTG GAT CGG CCT CCT CTT CTA Ála Asn Arg Glu Gln Gľu Gľy Leu Gľy Gly Ser Aľa Ser 567 AAC GCT TGG CAC TCG TCC TTC CGG TTG CGA ACC GTG AGC AGG GCC Ser Arg Lys Ala Val Cys Glu Pro Leu Arg Thr

FIG. 70

		FSK+DA		23.1	0.5	- 4- 84)
+ D +	• •	FSK		26.7	2.0	1	
		BASAL		1.7	0.4	. 1	
		FSK+DA		5.3	7.7	4 %	
CONTROL		FSK		22.6	7.7	Ì	
		BASAL		- ° C	7.0	1	
		-	1	× u		I	•
				D C	[
				FIG 12A	; -		

		T	
	VIP+DA	2.56	%
+P.T.	DA	0.55	80-
+	VIP	2.68	1
	BASAL	0.09	1
	VIP+DA	0.84	71%
CONTROL	DA	0.32	53%
CON	VIP	2.41	
	BASAL	0.60	
		s. E ≺i	I Z
		128	
		FIG. 12B	

	A		
	VIP+DA	4.76	- %
F	DA	0.66	%
+ P. T.	VIP	5.29	. I
	BASAL	0.64	1
	VIP+DA	0.76	88%
CONTROL	DA	0.25	.68%
CON	AL VIP	5.1	1
·	BASAL	0.78	.
		ა i× ii	HNI
		12C	
		FIG. 12C	

-33 AGAGCCTGGCCACCCAGTGGCTCCACCGCCCTG

ATGGATCCACTGAATCTGTCCTGGTATGATGATCTGGAGGCGGGAACTGGAGCCGG ${\tt METAspProLeuAsnLeuSerTrpTyrAspAspAspLeuGluArgGlnAsnTrpSerArg}$ **ATGGATCCACTGAACCTGTCCTGGTACGATGACGATCTGGAGGCCAGAACTGGAGCCGG**

ProPheAsnGlySerAspGlyLysAlaAspArgProHisTyrAsnTyrTyrAlaThrLeu CCCTTCAACGGGTCAGACGGGGACAGACCCCCACTACAACTACTATGCCACACTG CCCTTCAATGGGTCAGAAGGCAGACAGGCCCCACTACAACTACTATGCCATGCTG

FIG. 18A

240 <u>LeuThrLeuLeuIleAlaValIleValPheGlyAsnValLeuValCysMETAlaValSer</u> CTCACCCTCCTCATCTTTATCATCGTCTTTGGCAATGTGCTGGTGTGTGCTGCTGTATCC CTCACCCTGCTCATCGCTGTCTTCGGCAACGTGCTGGTGTTGCTTGGCTGTGTCC ArgGluLysAlaLeuGlnThrThrThrAsnTynLeuIleValSerLeuAlaValAlaAsp LeuLeuValAlaThrLeuValMETProTrpValValTyrLeuGluValValGlyGluTrp 90 Phelle

CTCCTCGTCGCCACACTGGTCATGCCCTGGGTTGTCTACCTGGAGGTGGTAGGTGAGTGG CTTCTGGTGGCCACACTGGTAATGCCGTGGGTTGTCTACCTGGAGGTGGTGGTGAGTGG

FIG. 18B

		36
120	sThrAla	CACGGCG 111 11 CACAGCA
	alMETMETC _{>}	TCATGATGT
110	LysPheSerArgIleHisCysAspllePheValThrLeuAspValMETMETCysThrAla	AAATTCAGCAGGATTCACTGTGACATCTTCGTCACTCTGGACGTCATGATGTGCACGCGGGGGIIIIIIIIII

SerIleLeuAsnLeuCysAlaIleSerIleAspArgTyrThrAlaValAlaMETProMET
AGCATCCTGAACTIGTGCCATCAGCATCGACAGGTACACAGCTGTGGCCATGCCCATG

480 LeuTyrAsnThrArgTyrSerSerLysArgArgValThrValMETIleSerIleValTrp

FIG. 18C

ValLeuSerPheThrIleSerCysProLeuLeuPheGlyLeuAsnAsnAlaAspGlnAsn

GTCCTGTCCTTCACCATCTCCTGCCCACTCCTCTTCGGACTCAATAACGCAGACCAGAAC

200 GluCysIleIleAlaAsnProAlaPheValValTyrSerSerIleValSerPheTyrVal 190

GAGTGCATCATTGCCAACCCGGCCTTCGTGGTCTACTCCTCCATCGTCTTCTTCTACGTG GAGTGTATCATTGCCAACCCTGCCTTTGTGGTCTACTCCTCCATTGTCTCATTCTACGTG

ProPhelleValThrLeuLeuValTyrIleLysIleTyrIleValLeuArgArgArgArg

CCCTTCATCGTCACTCTGGTCTATATCAAAATCTACATCGTCCTCCGGAAGCGCCGG CCCTTCATTGTCACCCTGCTGTCTACATCAAGATCTACATTGTCCTCCGCAGACGCCGC

FIG. 18D

009

840	
	GGAGTTTCCCAGTGAACAGGCGGAGAGTGGAGCTGCCCGGCGAGCCCAGGAGCTGGAG
	280 280;1ySerPheProValAsnArgArgArgValGluAlaAlaArgArgArgAlaGluLeuGlu
	.AG
	AGGCCAACTGTACTCACCCCGAGGACATGAACTCTGCACCGTTATCATGAAGTCTAAT
	* ysGlyAsnCysThrHisProGluAspMETLysLeuCysThrValIleMETLysSerAsn
720	AGCGAGTCAACACCAAACGCAGCCGAGCTTTCAGGGCCCCACTGAGGGCTCCACTA 1111 1111111111 1111111 1111111 1 111111
	240 ysArgValAsnThrLysArg <u>SerSer</u> ArgAlaPheArgAlaHisLeuArgAlaProLeu

FIG. 18E

300
MEIGIUMEILeuserserinrserfrofroGluArgThrArgTyrSerProIleProPro
ATGGAGATGCTCTCCAGCACCAGCCGAGGAGGACCCGGTACACACCCAAAAAAAA
ATGGAGATGCTGTCAAGCAAGCAAGCAAAAAAAAAAAAA
*** O'T' (

	096
320 SerHisHisGlnLeuThrLeuProAspProSerHisHisGlyLeuHisSerThrProAsp	AGCCACCACCAGCTGACTCTCCCGACCCGTCCCATGGTCTCCACGCACTCCCGAC 11 1111111111 111111 11 11 11 11 11 111 AGTCACCACGACCTCCTGATCCATCCACCACGCCTACATAGCAACCCTGAC Asn

AGTCCTGCCAAACCAGAGAATGGGCACGCCAAGATTGTCAATCCCAGGATTGCCAAG AspHisProLyslleAlaLys . GACCACCCCAAGATTGCCAAG IleValAsn 330 SerProAlaLysProGluLysAsnGlyHisAlaLys **AGCCCCCCCAAACCAGAAGAATGGGCATGCCAAA**

FIG. 18F

TTCTTTGAGATCCAGACCATGCCCAATGGCAAAACCCGGGACCTCCCTTAAGACGATGAGC ${\tt IlePheGluIleGlnThrMETProAsnGlyLysThrArgThrSerLeuLysThrMETSer}$

ArgArgLysLeuSerGlnGlnLysGluLysLysAlaThrGlnMETLeuAlaIleValLeu

CGCAGAAAGCTCTCCCAGCAGAAGGAAGAAAGCCACTCAGATGCTTGCCATTGTTCTC CGTAGGAAGCTCTCCCAGCAGAAGAAGAAAGCCACTCAGATGCTCGCCATTGTTCTC

GlyValPheIleCysTrOLeuProPhePheIleThrHisIleLeuAsnIleHisCys

1197 **3CCGTCAACCCCATCATCTACACCTTCAACATCGAGTTCCGCAAGGCCTTCATGAAG**

FIG. 18G

AspCysAsnIleProProValLeuTyrSerAlaPhéThrTrpLeuGlyTyrValAsnSer

GACTGCAACATCCCGCCTGTCCTGTACAGCGCCTTCACGTGGCTGGGCTATGTCAACAGC GATTGCAACATCCCACCAGTCCTCTACAGCGCCTTCACATGGCTGGGCTATGTCAACAGT

AlaValAsnProIleIleTyrThrThrPheAsnIleGluPheArgLysAlaPheLeuLys

GCCGTGAACCCCATCATCTACACCACCTTCAACATTGAGTTCCGCAAGGCCTTCCTGAAG GCCGTCAACCCCATCATCTACACCACCTTCAACATCGAGTTCCGCAAGGCCTTCATGAAG

IleLeuHisCys *

ATCCTCCACTGCTGACTCTGCCTGCCGCACAGCAGCCTGCTTCCCACCTCCCTGCC

ATCTTGCACTGCTGA

FIG. J&F

1917	CCCAAGGATTCCCAAGCCAAAACCTTAGCTCCCTCCCGCACCCCGATGTGGACCTCTA
	GAGGAGCCAGGCAACTTCAGTCCTGGGAGACCCATGTAAATACCAGACTGCAGGTTGGA
1797	GGGAGAGATGGACAGTTCACACCCTGCAAGGCCCACAGGGAGGCAAGCTCTTTGC
	TGAGTCAGGGCCCAGAGGCTGAGTTTTCTCTTTGTGGGGCTTGGCGTGGAGCAGGCGGT
1677	GCACCAAAGATGCAGCCGCCTTCCTTGACCTTCCTGGGGCTCTAGGGTTGCTGGAGC
	GCCCCAGCTCAGAGCTCCCCCCCCCCCCCACTCCCCCCTCCCT
1557	ACACCCTCACTCTGCCAGGCCAGTGCTAGTGAGCTGGGCATGGTACCAGCCCTGGGGCT
•	TCTTCTTAGCCCCGGCAGGCCCTGCAGTGTTCGCTTGGCTCCATGCTCCTCACTGCCCG
1437	AGGCCGGCCAGCTTCACCCTTGCGAACCGTGAGGCAAGGCCTGGGTGGATCGGCCTC

			E
			<
			<
			Ć
			ر
			-
			-
		(
		,	-
		Ċ	_
		٠	٩
			◁
		Ì	_
	•	(_
		5	_
		į	CAC
		Ċ	5
		<	۲
		ر د د	ز
		۲	777
		È	4
٠	1		לַ
			ر د
	ì		ر (
			5
•	,	٥	ζ
	,		ر ب
	ċ)
		_	2
•	<	1	
	ť	_)
	ç	3)
	<	٢	1
		כ).
	č	י	,
	Č	נ	
	E	4	
	۲	כ	
	< [-	Į	
	ز	ر	
	C	כ	
		2	
	< [Ę	
	C	ر د	
	È	4	
	Ē	4	
	۲	4	

- GCTCTGAGAAGAGGCCCTCATCTTGAAGGGCCCCAGGAGGGTCTATGGGGAGAGGT
- CCTTGGCCTAGCCCACCCTGCTTCTGACGGCCCTGCAATGTATCCCTTCTCACAGC
- ACATGCTGGCCAGCCTGGCCTGGCAGGGTCAGGCCCTGGAACTCTATCTGGGCCT 2157
- GGGCTAGGGACATCAGAGGTTCTTTGAGGGACTGCCTCTGCCACACTCTGACGCAAAACC
- CTCTGCCTTAGAGGGCCCACGGCTAAGAGGCTGCTGAAAACCATCTGGCCTGGCCTGGC
- CCTGCCCTGAGGAAGGAGGGCAAGCTGCAGCTTGGGAGAGCCCCTGGGGCCTAGACTCTG 2397
- TAACATCACTATCCGATGCACCAAACTAATAAAACTTTGACGAGTCACCTTC (A)_n 2449

FIG. 18J

kb

-12.0

6.0 4.0

2.0

1.6

1.0

FIG. 20

DRUG	HUMAN D ₂	RAT D ₂	HUMAN D ₂ RAT D ₂ RAT STRIATUM
SPIPERONE	0.125	0.35	0.56
(+)BUTACLAMOL	0.94	2.1	9
HALOPERIDOL	2.4	5.1	
SULPIRIDE	506	091	205
MIANSERIN (5-HT)	2685	4300	4600
SCH 23390 (DI)	2145	2500	3300
(+) BUTACLAMOL	>10,000	>10,000	00001<
Kd [3H] DOMPERIDONE		0.40	0.40

FIG. 22