

León Rosas Manuel Alejandro y Ramos Herrera Iván Alejandro

Autores:

· Ramos Herrera Iván Alejandro

OBJETIVOS GENERALES

TAREA A

Clasificar un texto en ínglés bajo alguna de las dos etiquetas:

- Humano
- Máquina

TAREA B

Si un texto en inglés es generado por máquina, darle una etiqueta correspondiente al modelo que lo generó

FASES RELEVANTES

×

PREPARACIÓN

Se aplicaron técnicas de pre-procesamiento para generar 4 conjuntos de datos distintos

MODELOS

Se implementó:

- Red Neuronal Recurrente LSTM
- KNN Classificator

EVALUACIÓN

Con Kfolds CV de 5 y las métricas:

- 1. Accuracy
- 2. F1-Micro
- 3. F1-Macro

Aplicada sobre los datos de ejemplo

TAREA A

```
[ ] # Verificando la cantidad de autores:
    dataAdev["model"].unique()
    array(['bloomz', 'human'], dtype=object)

[ ] dataAtrain["model"].unique()
    array(['chatGPT', 'cohere', 'davinci', 'dolly', 'human']
```

TAREA B

```
[ ] # Verificando la cantidad de autores:
    dataBdev["model"].unique()
    array(['chatGPT', 'human', 'davinci', 'cohere', 'bloomz', 'dolly'],
          dtype=object)
    dataBtrain["model"].unique()
    array(['chatGPT', 'human', 'cohere', 'davinci', 'bloomz', 'dolly'],
          dtype=object)
```

DATASETS GENERADOS

×

- A. Cleaned => Lemma => UNK => GENSIM Own Embbedings
- B. Cleaned => Lemma => UNK => CBOW OWN Embbedings
- C. Cleaned => UNK => GENSIM Own Embbedings

×

D. Cleaned => UNK => CBOW OWN Embbedings

NOTA

×

A. PARA LA TAREA A SE EXPLORÓ LA DISTRIBUCIÓN DE LAS ETIQUETAS Y SE CONFIRMÓ QUE NO FUE NECESARIO UN RESAMPLEO:

Instancias de textos [HUMANOS][LABEL: 0] 63351 Instancias de textos [MÁQUINA][LABEL: 1] 56406

×

B. PARA LA TAREA B SE ENCONTRÓ DESBALANCE; POR ELLO LA MÉTRICA FI SERÁ MÁS RELEVANTE QUE EL ACCURACY:

Instancias de textos [HUMANOS][LABEL: 1] 11995 Instancias de textos [MÁQUINA][LABEL: 0, 2, 3, 4, 5] 59032

Paso CLEANED

1. Se tra<u>nsforma el texto a minúsculas</u>

×

 Se reemplazan algunos símbolos selectivos por palabras representativas (para no perder los símbolos en la tokenización)*

```
# Símbolos que se reemplazarán por texto:
symbols_replacement = {
    "(": " xparenthesis ",
    ")": " parenthesisx ",
    ",": " xcomma ",
    ":": " xpoint ",
    ";": " xpointcomma ",
    "\"": " xdoublequote ",
    "\": " xsimplequote ",
    "-": " xdash ",
    "?": " xinterrogation ",
    "!": " xadmiration ",
    "&": " xand "
}
```

 Se eliminan todo el resto de símbolos especiales que no sean letras o números

Paso LEMMA

X

Se aplicó lemmatización con el WordNetLemmatizer de NLTK

×

Paso UNK

A las palabras con frecuencia menor a 4 en todo el dataset se reemplazaron por la palabra "xunk"

EMBEDDINGS

×

A. EMBEDDINGS GENSIM:

- A. Embeddings de librería de Python:
 - from gensim.models import Word2Vec
- B. Vectores de palabras de dimensión 50
- C. Window: 5
- D. Workers: 4
- **B.** EMBEDDINGS PROPIOS:
 - A. Algoritmo CBOW:
 - h = W1 * X + b1
 - a = ReLU(h)
 - z = W2 * a + b2
 - y = Softmax(z)
 - B. Vectores de palabras de dimensión 50

02

MODELOS

Para la clasificación en ambas tareas

OBJETIVOS GENERALES

KNN-Coseno

Clasificador de Vecinos Más Cercanos con Distancia Coseno

RNN LSTM

Red Neuronal Recurrente con la forma: LSTM => FeedForward

03 EVALUACIÓN

Métricas para los experimentos

A

Binaria

Texto de máquina vs Texo humano

KNN D-COSENO TAREA A 1-grama de oraciones

CON 70% ENTRENAMIENTO – 30% EN EL DATASET "TRAIN"

DATASET	ACCURACY	WEIGAVG	F1-MACRO
Clean => Lemma => Unk => Gensim Emb	83%	83%	82%
Clean => Lemma => Unk => Own Emb	77%	77%	77%
Clean => Unk => Gensim Emb	80%	79%	79%
Clean => Unk => Own Emb	73%	73%	73%

KNN D-COSENO TAREA A 1-grama de oraciones

PREDICCIÓN CON EL DATASET DE PRUEBA DEL EJERCICIO					
DATASET ACCURACY F1-MICRO F1-MAC					
Clean => Lemma => Unk => Gensim Emb	58%	55%	55%		

	precision	recall	f1-score	support
0	0.55	0.83	0.66	2500
1	0.65	0.32	0.43	2500
accuracy			0.58	5000
macro avg	0.60	0.58	0.55	5000
weighted avg	0.60	0.58	0.55	5000

KNN D-COSENO TAREA B 1-grama de oraciones

CON 70% ENTRENAMIENTO – 30% EN EL DATASET "TRAIN"

DATASET	ACCURACY	WEIGAVG	F1-MACRO
Clean => Lemma => Unk => Gensim Emb	52%	51%	51%
Clean => Lemma => Unk => Own Emb	50%	51%	50%
Clean => Unk => Gensim Emb	49%	49%	50%
Clean => Unk => Own Emb	46%	44%	46%

KNN D-COSENO TAREA B 1-grama de oraciones

PREDICCIÓN CON EL DATASET DE PRUEBA DEL EJERCICIO					
DATASET	ASET ACCURACY F1-MICRO F1-MA				
Clean => Lemma => Unk => Gensim Emb	51%	50%	50%		

	precision	recall	fl-score	support
0	0.48	0.68	0.56	2963
1	0.48	0.63	0.54	3016
2	0.51	0.47	0.49	2778
3	0.33	0.34	0.34	3027
4	0.84	0.73	0.78	2993
5	0.50	0.21	0.29	2980
accuracy			0.51	17757
macro avg	0.52	0.51	0.50	17757
weighted avg	0.52	0.51	0.50	17757

A

Binaria

Texto de máquina vs Texo humano

RNN LSTM TAREA A

0.01% del dataset 3 épocas

CON	V FO	DC CV	
CON	N-FU	LDS-CV	r = 5

DATASET	ACCURACY	F1-MICRO	F1-MACRO	
Clean => Lemma => Unk => Gensim Emb	58.33%	58.33%	36.84%	
Clean => Lemma => Unk => Own Emb	-	-	-	
Clean => Unk => Gensim Emb	-	-	-	
Clean => Unk => Own Emb	-	-	-	