Informatika, informatizácia a informačná spoločnosť

 Informatika je veda o získavaní, zbere, prenose, triedení, ukladaní, uchovávaní (pamätaní), aktualizovaní, spracovaní, vyhodnocovaní a využívaní informácií na úrovni signálov, údajov, symbolov, správ, poznatkov a znalostí

Výpočtová technika

- skúma zákonitosti a princípy tvorby informačných procesov a spôsoby ich realizácie
- zaoberá sa vlastnosťami a zákonitosťami týchto procesov a ich algoritmickou realizáciou
- zahrňuje tvorbu, vývoj a využitie programových a technických prostriedkov výpočtovej techniky, ako nástroja na automatizované a automatické spracovanie informácií

Číslicový počítač (ČP)

 je zložitý univerzálny číslicový systém určený na samočinné vykonávanie postupnosti operácií nad údajmi zobrazenými číslicovým kódom, na základe vopred pripraveného a v pamäti uloženého programu

Systém a jeho vlastnosti

- je súhrn prvkov komponovaných do jedného celku za účelom dosiahnutia definovaného cieľa
- Kompozícia systému vlastnosť sa nazýva zložitosť systému
- Opísanie systému sa uskutočňuje na základe určenia jeho funkcie a štruktúry
- Funkcia systému predstavuje pravidlo na dosiahnutie požadovaného cieľa
- Štruktúra systému vyjadruje kompozíciu jeho prvkov a ich vzájomných väzieb
- Organizácia systému je spôsob vytvorenia systému na báze kompozície prvkov z ktorých pozostáva za účelom dosiahnutia zadaných funkčných vlastností
- Počítačový systém (PS) systém vytvorený na báze jedného alebo viacerých ČP, je charakterizovaný svojou:
 - o funkčnou organizáciou
 - o štruktúrnou organizáciou
- Funkčná organizácia PS je definovaná formou zobrazovania informácií, štruktúrou inštrukčných súborov, charakterom vnútorného a vonkajšieho riadenia operácií, spôsobom riadenia procesu spracovania informácií, prístupovým režimom používateľov k PS
- Štruktúrna organizácia PS je definovaná logickým a systémovým usporiadaním jeho komponentov, spôsobom ich vzájomnej komunikácie, konštrukčnou a technologickou realizáciou jeho komponentov
- Architektúra PS zahrňuje:
 - o požiadavky programových prostriedkov inštrukčno orientovaná architektúra
 - vnútornú organizáciu jeho technických prostriedkov implementačno orientovaná architektúra
- Z hľadiska požiadaviek programovania inštrukčno orientovaná architektúra PS predstavuje abstrakciu prostredníctvom súboru inštrukcií - kódy operácií, adresovacie módy, špecifikáciu registrov, virtuálnu pamäť a pod
- Z hľadiska implementácie tech. prostriedkov implementačno orientovaná architektúra PS predstavuje abstrakciu na úrovni štruktúrnej organizácie centrálnych procesorových jednotiek, komponentov pamäťového podsystému, zbernicových systémov, mikrokódu, prúdových funkčných jednotiek

Model PS

Piliere číslicových systémov

• Abstrakcia, Disciplína, Hierarchia, Modularita, Jednotnosť

Analytický stroj

- Charles Babbage pracoval na ňom od 1833 do smrti (1871)
- Považuje sa za prvý číslicový počítač

George Boole, 1815-1864

Zakladateľ matematickej logiky, vybudoval základy, na ktorých stojí dnešná informatika

Binárne hodnoty

- Číslicové obvody používajú príslušnú hladinu napätia na reprezentáciu log. hodnôt 1 0
- Bit: Binary digit základná jednotka informácie

Číselné sústavy (ČS)

Pozičné, Nepozičné, Symetrické, Nesymetrické

Číselné sústavy

Desiatková, Binárna, Osmičková, Hexadecimálna

Aritmetika v binárnej ČS

Pretečenie

• ak hodnotu výsledku operácie nie je možné reprezentovať na N-bitoch

Priamy kód (PK)

- 1 znamienkový bit, N-1 bit pre magnitúdu
- Najľavejší bit je znamienkový bit Kladné čísla: z.bit = 0, Záporné čísla: z.bit = 1
- Dve "verzie" nuly (± 0): 1000 (záporná), 0000 (kladná)

Doplnkový kód (DK)

- Existuje len jedna reprezentácia nuly (1000)
- Najvýznamnejší bit reprezentuje z.bit (0 = kladné, 1 = záporné)

Inverzný kód (IK)

• Kopírovanie hodnoty z.bitu, Pridávanie núl sprava

Hradlá

- Realizujú logické funkcie
 - Jedno-vstupové:
 - NOT gate, buffer

- o Dvoj-vstupové:
 - AND, OR, XOR, NAND, NOR, XNOR

Viac-vstupové

Logické úrovne

- Číslicové signály majú konečný počet diskrétnych hodnôt, väčšinou dve
- Rozdielne pásmo pre vstup a výstup

Tranzistory

- Základným stavebným prvkom hradiel
- Má 3-elektródy:
 - o bipolárne: C, B, E; unipolárne: D, G, S, d a s sú spojené (ON) ak g je 1

MOS Tranzistor (Metal Oxide Silicon)

- Najrozšírenejší druh tranzistorov riadených elektrickým poľom
- Vodivosť kanálu medzi s a d je riadená nepätím privedeným na g

pMOS tranzistor je komplementom k nMOS - je ON ak Gate = 0, OFF ak Gate = 1

• nMOS: dobre prenáša "nuly", pMOS: dobre prenáša "jednotky"

Gordon Moore, 1929-

- Spoluzakladateľ firmy Intel
- Moore-ov zákon: Počet tranzistorov sa zdvojnásobí každý "rok" (empirické pravidlo, 1965)

Logický systém

- je charakterizovaný
 - o abstraktným opisom funkcie systému
 - štruktúra systému → logický obvod
- Logický obvod (LO) je definovaný pomocou:
 - svojich vstupov (X) a výstupov (Y), funkčnej špecifikácie a časových charakteristík

Logické obvody

- Štruktúru logického obvodu tvoria logické členy a vzájomné väzby medzi nimi
- Uzly spojenie dvoch alebo viacerých kanálov
- Typy logických obvodov
 - Kombinačný logický obvod (KLO)
 - Výstup závisí len od okamžitej kombinácii vstupných hodnôt
 - Sekvenčný logický obvod (SLO)
 - výstup závisí od kombinácie vstupov a od vnútorných stavov obvodu z predchádzajúceho taktu

Kombinačný log. obvod

- Každý element obvodu je kombinačný obvod
- Každý vstup je spojený s výstupom len z jedného elementu obvodu
- Obvod neobsahuje slučky

Booleovské rovnice

• Definujú vzťah medzi vstupnými a výstupnými b. premennými

Definície

- Komplement: negovaná b. premenná $\overline{A}, \overline{B}, \overline{C}$
- Literál: b. premenná v priamej alebo v negovanej forme A, A, B, B, C, C
- Implikant: súčin všetkých vstupných b. premenných v priamej alebo negovanej forme
- Implicent: súčet všetkých vstupných b. premenných v priamej alebo negovanej forme

Disjunktívna normálna forma

- je súčet implikantov, Implikant je súčin literálov
- Každý implikant definuje pravdivostnú hodnotu TRUE

A	В	Y	implikant	označenie implikantu	
0	0	0	$ar{A}ar{B}$	m ₀	
0	1	1	\bar{AB}	m ₁	
1	0	0	$Aar{B}$	m ₂	
1	1	1	AB	m ₃	

$$Y = F(A,B) = \overline{A}B + AB = \sum (1,3)$$

Konjunktívna normálna forma

- je súčin implicentov, Implicent je súčet literálov
- Každý implicent definuje pravdivostnú hodnotu FALSE

Α	В	Y	Y implicent označeni implicent		
0	0	0	A + B	M ₀	
0	1	1	$A + \bar{B}$	M ₁	
1	0	0	$\bar{A} + B$	M ₂	
1	1	1	$\bar{A} + \bar{B}$	M ₃	

$$Y = F(A, B) = (A + B).(\overline{A} + B) = \prod (0, 2)$$

Algebraické vyjadrenia a LO

- Booleova algebra: Na báze: NOT, AND, OR
- Shefferova algebra: Na báze: NAND
- Peirceova algebra: Na báze: NOR
- Prevodov NAND na OR s neg. vstupmi:

Prevod OR s neg. vstupmi na NAND:

Pravidlá kreslenia schém LO

- Vstupy sú naľavo, Výstupy sú napravo, Hradlá sú orientované zľava doprava, Každý kanál sa znázorňuje samostatnou čiarou
- Kríženie vodičov bez bodky: nie je vodivé spojenie medzi kanálmi
- Signál s hodnotou "X":
 - o X reprezentuje hodnotu na ktorej nezáleží, X reprezentuje konflikt
- Vysokoimpedančná hodnota "Z":
 - o Reprezentuje vysokoimpedančný stav zdroja signálu
 - výstupný signál môže mať hodnotu 0 ako aj 1
- Trojstavové zbernice: Obvody sú v stave vysokej impedancie, odpojené od zbernice

Karnaughové mapy (K-mapy)

- Princíp minimalizácie pomocou Karnaughových máp spočíva v aplikovaní pravidla spojovania na všetky dvojice susedných elementárnych súčinov
- Komplement: b. premenná v negovanej forme
- Literál: b. premenná v priamej forme alebo jej komplement
- Implikant: súčin literálov
- Prostý implikant: implikant definovaný s pravidelnou konfiguráciou s maximálnym možným stupňom k

Kombinačné logické obvody

 Multiplexor, Dekodér, Demultiplexor, Komparátor, Prevodník kódu, Polovičná a úplná sčítačka

Multiplexor (MUX)

- Má M adresných (riadiacich), N dátových vstupov a jeden výstup, M = log2N
- Implementácia: Pomocou hradiel, Trojstavové buffre

Dekodéry

- Má N vstupov, 2^N výstupov
- One-hot kódovanie: v danom čase je len jeden výstup HIGH

Časové charakteristiky

- Dynamické charakteristiky číslicových signálov
- Doba oneskorenia priechodu signálu
- Propagačné oneskorenie: t_{nd} = max oneskorenie signálu
- Kontaminačné oneskorenie: t_{cd} = min oneskorenie signálu

Propagačné a kontaminačné oneskorenie

Oneskorenie je spôsobené: Vlastnosťami vodičov, Rýchlosť pohybu elektrónov
 Kritická a najkratšia cesta

Falošné impulzy, hazardy

- Ak jedna zmena vstupného signálu vyvolá viacnásobnú zmenu výstupného signálu
- či vôbec vznikne rozhodujú časové charakteristiky vstupných signálov

Sekvenčné logické obvody (SLO)

- výstup závisí od kombinácie vstupov a od vnútorných stavov obvodu z predchádzajúceho taktu, má pamäť
- Definície:
 - O Stav: konfigurácia nezávislých a závislých veličín
 - o Preklápacie obvody: uchováva jednobitovú informáciu
 - Sekvenčný obvod: pozostáva z KLO a z preklápacích obvodov
- výstupný vektor je závislý od sekvencie vektorov na vstupe v predchádzajúcich taktoch
- sekvenčný logický systém obsahuje podsystémy, ktoré sú schopné pamätať si informáciu z predchádzajúcich taktov

2:4

Obvody určené na pamätanie

- Na uchovávanie vnútorného stavu
- Bistabilné obvody
- Preklápacie obvody:
 - Hladinou riadené a hranou riadené (angl. flip-flop)
 - Synchrónne a asynchrónne
 - o D, T, SR, JK

Bistabilný obvod

- Základ obvodov určených na pamätanie info., Má dva stabilné stavy: Q, \bar{Q}
- Uchováva 1 bit informácie pomocou stavovej premennej Q, Nemá žiadny vstup

SR (Set/Reset) preklápací obvod

- Uchováva 1 bit informácie (Q) o stave systému
- Na kontrolu sa používajú vstupy S a R: Set: Nastaví výstup na 1, Reset: Nastaví výstup na 0, Je potrebné zabrániť kombinácií S = R = 1

D PO

- Dva vstupy: CLK, D
 - CLK definuje moment vzorkovania vstupu
 - D na akú hodnotu má byť nastavený výstup
- Funkcia
 - ak CLK = 1, D sa dostane na Q0
 - ak CLK = 0, Q si pamätá predchádzajúcu hodnotu

D Flip-Flop (D FF)

- Vstupy: CLK, D
- Funkcia:
 - Vzorkuje *D* pri prechode *CLK* z jednej úrovne na druhú

Hranou riadený PO

D FF so vstupom EN

- Vstupy: CLK, D, EN
- Vstup ENable riadi moment, kedy sa dostane dátový vstup D na výstup

D FF s možnosťou a. resetu

Vstupy: CLK, D, Reset

- Dva typy:
 - o Synchrónne: len pri zmene CLK
 - Asynchrónne: hneď čo sa nastaví Reset = 1

D FF s možnosťou nastavovania

- Vstupy: CLK, D, Set
- Funkcia
 - \circ **Set** = **1**: 0 = **1**
 - Set = 0: pracuje v "normálnom" režime

Sekvenčný LO

Bez vstupov 3 "vnútorné" signály, Astabilný obvod → osciluje, Má to slučku

Synchrónny sekvenčný LO

• vkladáme registre, uchovávajú info. o vnútornom stave systému, Stav sa mení pri zmene CLK: systém je synchronizovaný s hodinovým signálom

Konečno-stavové automaty (KSA)

- Obsahuje: Stavový register, Kombinačná logika
- Ďalší stav je definovaný aktuálny vnútorným stavom systému a momentálnym stavom na vstupe
- Dva typy:
 - Automat Moore: výstup je závislý len od vnútorného stavu
 - Automat Mealy: výstup je závislý tak od vnútorného stavu ako aj od vstupu

Graf prechodov

• KSA Moore: výstup je značený v uzle, Stavy: Uzly, Prechody: Hrany **Moore FSM Mealy FSM**

Kódovanie stavov v KSA

- Binárne kódovanie
- One-hot kódovanie

Faktorizácia KSA

Rozdelenie "veľkého" KSA na menšie interagujúce KSA

Časové charakteristiky SLO

- Hranou riadený PO
 - je nutné dodržať niektoré dynamické parametre vstupných signálov:
 - doba predstihu
 - doba presahu
 - minimálna strmosť hrany hodinového impulzu
 - minimálna doba jeho trvania
 - Nedodržanie môže vyvolať metastabilný stav
- Základné vlastnosti hranou riadeného PO:

- o Rozhodujúci je stav na vstupoch v tesnom okolí nábežnej hrany
- o Metastabilný stav má za následok nespoľahlivú funkciu preklápacieho obvodu

Časovanie signálov v SLO

- Doba nastavenia: t_{setup} = časový úsek pred zmenou CLK, počas ktorého vstup by mal byť stabilný
- Doba presahu: t_{hold} = časový úsek po zmene CLK, počas ktorého vstup by mal byť stabilný
- Vzorkovací interval: t_a = v tomto časovom intervale sa nesmie zmeniť hodnota vstupu ($t_a = t_{setup} + t_{hold}$)

- Propagačné oneskorenie: t_{pcq} = časový úsek po uplynutí ktorého je garantované, že Q má stabilnú hodnotu
- Kontaminačné oneskorenie: t_{ccq} = časový úsek po uplynutí ktorého sa začína prejavovať zmena na Q

- Vstupy do SLO musia byť stabilné počas vzorkovania:
 - \circ minimálne počas doby t_{setup} pred zmenou CLK
 - \circ minimálne počas doby t_{hold} po zmene CLK
- Signál, kt. prechádza cez KLO medzi registrami je charakterizovaný kontaminačným a propagačným oneskorením

Doba nastavenia

Závisí od propagačného oneskorenia signálu

Doba presahu

Závisí od kontaminačného oneskorenia signálu

Odchýlka v časovaní

- Hodinový impulz prichádzajúci na vstupy rôznych registrov nie v rovnakom momente **Porušenie dynamickej disciplíny**
- Asynchrónne vstupy môžu mať za následok nepredvídateľné správanie sa obvodu
 Metastabilný stav
 - Bistabilné zariadenia: dva stabilné stavy a jeden metastabilný stav
 - Flip-flop: dva stabilné stavy (1 a 0) a jeden metastabilný stav

Paralelizmus

- Token: dátový vstup
- Doba odozvy: čas prechodu tokenu log. systémom
- Priepustnosť: počet tokenov spracovaných za jednotku času
- Paralelizmus zvyšuje priepustnosť

- Dva typy paralelizmu:
 - o Priestorový paralelizmus Zvýšenie počtu funkčných jednotiek
 - Temporálny paralelizmus Úloha sa rozdelí na dielčie kroky, ktoré sa vykonávajú súbežne

Návrh LS

- Jazyk pre opis hardvéru (Hardware description language; HDL)
- HDL nie je programovací jazyk, je to jazyk, ktorý slúži na opis HW
- Dva hlavné HDL:
 - VHDL (VHDL 2008)
 - Verilog (SystemVerilog)
- Syntéza Prevod HDL kódu do netlist reprezentácie
- Simulácia Verifikácia činnosti obvodu

VHDL moduly

- Spôsoby opisu LS:
 - Behaviorálny: na čo slúži / z pohľadu chovania
 - Štrukturálny: modulárny opis / z akých komponentov pozostáva
 - o Toku dát (dataflow): tok dát medzi komponentmi
- VHDL Je "case insensitive"

ILIVC		
ajvyššia	not	not
	*, /, mod, rem	mult, div, mod
	+, -	add, sub
	rol, ror	rotate
	srl, sll	shift logical
	<, <=, >, >=	relative comparison
	=, /=	equal, not equal
	and, nand	AND, NAND
	xor, xnor	XOR, XNOR
ajnižšia	or, nor	OR, NOR

Sekvenčná logika

- VHDL používa návrhové vzory na modelovanie správania sa preklápacích obvodov a stavových automatov
- Príkaz process Príkazy vo vnútri bloku process sú vykonané len vtedy, ak je zaznamenaná zmena aspoň jedného signálu
- Sekvenčný príkaz je súčasťou príkazu/bloku process: if / else, case, case?, loop
- Na modelovanie kombinačných logických obvodov (KLO) je vhodnejšie použiť konkurenčné (paralelné) príkazy
- Príkaz case vedie na syntézu KLO len vtedy ak sme pokryli všetky možné vstupné kombinácie
- Príkaz case? na rozdiel od "obyčajného"case dokáže pracovať aj s
- "don't care" hodnotami
- SLO: Použi príkaz process(clk)a neblokujúce priradenie (<=) pre modelovanie SLO
- KLO: Použi konkurenčné (paralelné) príkazy na tvorbu KLO

Konečno-stavové automaty(FSMs)

Tri bloky: Vstupný logický obvod, Stavový register, Výstupný logický obvod

Parametrizované moduly

- Kľúčové slovo generic generická konštanta vo vnútri bloku entity
- Kľúčové slovo generate Genreujúci príkaz

Simulácia / testbench súbory

- Na simuláciu modulov použijeme testbench súbor
- Testbench nie je určený na syntézu
- Typy:
 - Jednoduchá funkčná
 - S autokontrolou
 - S autokontrolou na báze testovacieho súboru s testovacími vektormi
- Hodinový signál:
 - Inicializuj vstupy (počas nábehovej hrany)
 - Porovnaj výstup s očakávanými výstupmi (počas dobehovej hrany)
- Hodinový signál je nevyhnutný v prípade synchrónnych sekvenčných obvodov

Komponenty číslicových systémov:

• hradlá, multiplexory, dekodéry, obvody na realizáciu aritmetických a logických operácií, počítadlá, registre, pamäte, ...

Pri návrhu a kompozícií sa uplatňujú princípy HMJ

- Rozdelenie systémov do modulov
- Moduly majú dobre zadefinované funkcie a rozhrania
- Možnosť znovupoužitia

Sčítačky

- Sčítanie dvoch N-bitových čísel
 - Sčítačka so sériovým prenosom (pomalá)
 - Sčítačka so zrýchleným prenosom (rýchlejšia)
 - Paralelné prefixové sčítačky (najrýchlejšia)
- Sčítačky so ZP a prefixové sčítačky sú rýchle ale potrebujú viac hradiel

Sériová sčítačka

- Kaskáda 1b sčítačiek, Prenos sa šíri od najnižšieho až po najvyšší rád
- Výhoda: jednoduchý návrh, Nevýhoda: pomalá

Sčítačka so zrýchleným prenosom

- Výpočet prenosu (Cout) z k-bit veľkého bloku pomocou vlastného a tranzitívneho prenosu
- Prenos z i-teho rádu nastane vtedy ak je to dané vlastným prenosom (Gi) alebo v súčinnosti s indikovaným príznakom tranzitívneho prenosu (Pi)

32b:4b CLA

Schéma prefixovej sčítačky

Odčítačka

Symbol

Implementácia

Komparátor : rovnosť

Symbol

Implementácia

Komparátor : menší

Aritmeticko-logická jednotka (ALJ)

Jednoduchá ALJ

Posuvné (funkčné) jednotky (PFJ)

Logický posun: posun doprava alebo doľava s pridaním 0

 Aritmetický posun: posun doľava je ako logický posun doľava; pri posune doprava sa kopíruje hodnota msb.

• Rotácia: bit ktorý sa pri rotácií dostane mimo rámec zobrazenia sa objaví v pozícií msb (doprava) alebo lsb (doľava)

11001 ROR 2 = 01110

11001 ROL 2 = 00111

Návrh posuvnej jednotky (KLO)

Násobička 4 x 4

Delička 4 x 4

Reprezentácia čísel

- ČP používa binárnu č. sústavu
 - Prirodzené čísla
 - Bezznamienkové binárne čísla
 - Celé čísla
 - Priamy kód
 - Doplnkový kód
 - Kód s posunutím

- Reálne čísla
 - Pevná rádová čiarka (PRČ) Q notácia
 - Pohyblivá rádová čiarka (PHRČ)

Pevná rádová čiarka

 Vyjadri 6,75 v Q4.4 (= 4 bity pre celú časť vrátane znamienka a 4 pre desatinnú časť): 01101100

0110,1100
$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

- Pozícia desatinnej čiarky je striktne určená
- Je potrebné sa dohodnúť na počte bitov vyhradených pre celú a pre desatinnú časť čísla

Pohyblivá rádová čiarka

- ullet Čísla v pohyblivej rádovej čiarke sa vyjadrujú v tvare $\,\pm M imes b^E$
- M = mantisa, b = základ, E = exponent
- napr.: 273 = 2,73 × 10^2

- Príklad: Vyjadrite reálne číslo 228,010 v 32-bitovom formáte
 - o Binárna reprezentácia: $228_{10} = 11100100_2$
 - Vedecký binárny zápis: $11100100_2 = 1,11001_2 \times 2^7$
 - o 32-bitovú reprezentácia čísla v pohyblivej rádovej čiarke
 - Znamienkový bit = 0 (kladné)
 - 8-bitový exponent = 7
 - Mantisa na 23 bitoch (doplnené 0)

IEEE-754 formáty

- Formát jednoduchej presnosti:
 - o 32 bitov
 - 1b znamienko, 8b charakteristika, 23b mantisa
 - o bias = 127
- Formát dvojitej presnosti:
 - o 64 bitov
 - 1b znamienko, 11b charakteristika, 52b mantisa
 - \circ bias = 1023

PHRČ: zaokrúhlenie

- Pretečenie: číslo je príliš veľké pre zobrazenie v danom formáte
- Podtečenie: číslo je príliš malé pre zobrazenie v danom formáte
- Techniky zaokrúhľovania:
 - o Nadol (down)
 - Nahor (up)
 - Smerom k nule (toward zero)
 - Na najbližšiu hodnotu (to nearest)

Počítadlo

Hodnota sa inkrementuje/dekrementuje pri každom takte

Symbol

- Prípady použitia:
 - o Riadenia synchronizačných impulzov v digitálnych zobrazovačoch
 - Programové počítadlo

Implementácia

Posuvný register

- Pri každom takte vstupuje do a vystupuje z registra 1b
- Prevod sériového kódu na kód paralelný

Implementácia Symbol:

Posuvný register s paralelným nastavením

- Ak Load = 1, pacuje ako (bežný) N-bitový register
- Ak Load = 0, pracuje ako posuvný register

Pamäte

- Slúži na pamätanie údajov
- 3 základné typy:
 - Dynamic random access memory (DRAM)
 - Static random access memory (SRAM)
 - Read only memory (ROM)
- M-bit široký dátový výstup/vstup Data pre čítanie/zápis do pamäte na adresu definovanú N-bit širokým vstupom Address

- 2D pole pamäťových buniek, Každý element dokáž uchovať 1b údaj
- realizácia pamäti

- Adresná linka (wordline)
 - o unikátna adresa slova, jeden riadok v pamäti pre čítanie/zápis

Typy pamätí

- Random access memory (RAM) volatilná pamäť, energeticky závislá
- Read only memory (ROM) nevolatilná pamäť, energeticky nezávislá

RAM: s náhodným prístupom

- Stráca obsah po odpojení elektrickej energie
- Čítanie a zápis sú relatívne rýchle operácie
- Hlavná pamäť počítača je typu RAM (DRAM)

ROM: určené len na čítanie

- NVRAM = Nestráca obsah po odpojení elektrickej energie
- Rýchle čítanie, zápis je pomalý, BIOS, PROM, EPROM, EAROM, EEPROM, Flash pamäť

Pamäte RAM

- DRAM (Dynamic random access memory)
- SRAM (Static random access memory)
- Rozdiel je v spôsobe ukladania dát:
 - DRAM používa kondenzátory
 - SRAM používa dvojicu invertorov v slučke

DRAM

Konštrukčným základom bunky je kondenzátor

SRAM

Viacportové pamäte

- Port: zabezpečuje vstup/výstup
- Súbor registrov: malá viacportová pamäť

Logické polia

- PLAs (Programmable logic arrays)
 - o Pole AND členov napojené na pole OR členov, Kombinačná logika
- FPGAs (Field programmable gate arrays)
 - o Pole logických elementov, Kombinačná/sekvenčná logika, Reprogramovateľné
 - Pozostáva:
 - LE (Logic elements): realizácia logiky
 - IOE (Input/output elements): rozhranie pre komunikáciu s vonkajším svetom
 - Prepojovacia sieť: spája LE a IOE

- LE: Logický element pozostáva
 - LUT (lookup tables)
 - Preklápacie obvody (flip-flops)
 - Multiplexory

Altera Cyclone IV LE

ISA: inštrukčnoorientovaná architektúra

abstrakcia prostredníctvom súboru inštrukcií

IA: implementačnoorientovaná architektúra

• abstrakcia na úrovni štruktúrnej organizácie

Asembler

- Asembler: jazyk symbolických inštrukcií
- Strojový jazyk/kód: inštrukcie sú v podobe binárneho reťazca
- MIPS architektúra
 - Vývoj 80-tych rokoch na Stanfordskej univerzite pod vedením Johna Hennessyho
 - o Použitá v zariadeniach od Silicon Graphics, Nintendo, a Cisco

Princípy návrhu počítačových architektúr

- Hennessy a Patterson navrhujú postupovať pri návrhu architektúry tak, aby boli dodržané nasledujúce odporúčania:
 - Jednoduchosť podporuje jednotnosť
 - Jadro musí byť rýchle
 - o Zníženie počtu komponentov zvyšuje rýchlosť
 - Dobrý návrh vychádza z kompromisov

Inštrukcia: sčítavanie – add Inštrukcia: odčítavanie – sub

Adresovanie

Každé 32b slovo má svoju unikátnu adresu

Word Address				Da	ta					
				•						
•				•						
•				•						
0000003	4	0	F	3	0	7	8	8	Word 3	
00000002	0	1	Е	Ε	2	8	4	2	Word 2	
0000001	F	2	F	1	Α	С	0	7	Word 1	
00000000	Α	В	С	D	E	F	7	8	Word 0	

Čítanie z pamäte – load Zápis do pamäte – store

Organizácia zobrazovania objektov v pamäti

- Zarovnávanie viacbajtových objektov
 - Usporiadanie bajtov objektov v informačných slovách
- Ukladací endian Malý endian, Veľký endian

Adresovanie slov po bajtoch

• Každý bajt v slove má svoju unikátnu adresu

MIPS používa bajtovú organizáciu pamäte pri ukladaní 32b slov

Čítanie slova z pamäti

MIPS kód

lw \$s3, 4(\$0)

Zápis slova do pamäti

MIPS kód sw \$t7, 44(\$0)

Ukladací endian

- Malý endian: v smere od najnevýznamnejších (LSB) po najvýznamnejšie bajty (MSB)
- Veľký endian: v smere od jeho najvýznamnejších bajtov po najnevýznamnejšie bajty Big-Endian Little-Endian

Byte Address				S	Word Address	ļ	By Add		S
	1 : 1				:				
	С	D	Е	F	С	F	Е	D	С
	8	9	Α	В	8	В	Α	9	8
	4	5	6	7	4	7	6	5	4
	0	1	2	3	0	3	2	1	0
MSB LSB				LSE	B 1	MSE	3		LSE

Strojový jazyk / kód

- Binárna reprezentácia inštrukcie
- 3 inštrukčné formáty (IF):
 - o Typ R: operandy sú v registroch

Typ I: používa priamy operand

I-Type						
ор	rs	rt	imm			
6 bits	5 bits	5 bits	16 bits			

o Typ J: vetvenia

	J-Type	
ор	addr	
6 bits	26 bits	

Program v pamäti

- Inštrukcia a aj dáta sú v pamäti
- Rozdielna sekvencia inštrukcií = rozdielny program
- Spracovanie programu:
 - o Procesor číta inštrukcie z pamäte počítača
 - Procesor vykonáva inštrukcie
- Programové počítadlo (PC): definuje poradie spracovania inštrukcií

Logické inštrukcie

- and, or, xor, nor
 - o and: používa sa pri maskovaní bitov
 - o r: používa sa pri rekombinácií bitov
 - o nor: používa sa pri invertovaní bitov
- andi, ori, xori

Inštrukcie posuvu

- sll/sllv: logický posuv doľava
- srl/srlv: logický posuv doprava
- sra/srav: aritmetický posuv doprava

Vetvenie

- Ovplyvňuje poradie vykonania inštrukcií
- Typy vetvení:
 - o Podmienené beq, bne
 - Nepodmienené j, jr, jal

Polia

- Kompozitná dátová štruktúra
- Index: určuje pozíciu prvku v poli
- Veľkosť: počet prvkov v poli

ASCII kód

- American Standard Code for Information Interchange
- Každý znak má svoj unikátny kód

Práca s funkciami

- Volajúci:
 - odovzdáva argumenty volanej funkcie
- Volaný:
 - Vykoná funkciu, Vráti výsledok, Zabezpečí návrat, Nesmie prepísať obsah registrov a pamäťových miest

Zásobník

- Pamäť pre dočasné premenné, Je typu LIFO (last-in-first-out)
- Zväčšuje sa dynamicky: Ak potrebujem ukladať viac dát
- Zmenšuje sa dynamicky: Ak už nepotrebujem tie dáta
- Rastie smerom nadol
- Smerník zásobníka: \$sp ukazuje na vrchol zásobníka

Zásobník počas rekurzie

Adresovacie módy

- Registrový mód Operand je uložený v registri
- Bezprostredný mód 16b konštanta je súčasťou inštrukcie
- Posúvací mód Adresa operanda sa počíta ako: Bázová adresa + posuv
- PC-Relatívny mód

Nepriamy indexovací mód

Čo je uložené v pamäti?

inštrukcie, dáta

MIPS pamäť

Segment

Reserved

Dynamic Data

Static Data

Text

Address

OVEEEEEE

0x7FFFFFF

0x1001000

0x0FFFFFFC

Preklad & spúšťanie programu

Loader

Spustiteľný kód v pamäti

Mikroarchitektúra

abstrakcia na úrovni štruktúrnej organizácie

Procesor

- Tok dát/operandov: spájanie funkčných jednotiek
- Tok riadenia: distribúcia riadiacich signálov

Mikroarchitektúra

- Rôzne IA pre tú istú ISA:
 - o Jednocyklová: Každá inštrukcia sa vykoná za jeden strojový cyklus
 - Viaccyklová: Inštrukcie sa vykonajú za jeden alebo viac cyklov
 - o Prúdová: Vykonanie inštrukcie sa rozloží na dielčie kroky

Výkonnostné parametre

- Čas vykonania programu
- Definícia: CPI: počet SC procesora v priebehu ktorých sa vykoná jedna inštrukcia
- Výzvou je nájsť správnu rovnováhu medzi parametrami: cena spotreba výkon

MIPS Procesor

- Nech je daná podmnožina MIPS inštrukčnej sady:
 - Inštrukcie typu R: and, or, add, sub, slt
 - Inštrukcie pre prácu s pamäťou: lw, sw
 - o Inštrukcia vetvenia: beq

Vnútorný stav architektúry

- V ktorom stave sa architektúra nachádza závisí od:
 - Hodnoty programového počítadla (PC)
 - Hodnôt uchovaných v registroch architektúry
 - Obsahu pamäte

Stavové elementy MIPS

Jednocyklový MIPS procesor

- Návrh procesora vychádza z návrhu jeho komponentov a prepojovacej sústavy, pričom sa zohľadňuje
 - o tok dát/operandov medzi funkčnými jednotkami procesora
 - o tok riadenia
- čítanie inštrukcie:

riadenie

F _{2:0}	Funkcia
000	A & B
001	A B
010	A+B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

• Aritmeticko-logická jednotka

- Výkon jednocyklového procesora
 - o Kritická cesta:

$$\begin{aligned} T_c &= t_{pcq_PC} + t_{\text{mem}} + \max(t_{RF\text{read}}, \, t_{sext} + t_{\text{mux}}) + t_{\text{ALU}} + t_{\text{mem}} \\ &+ t_{\text{mux}} + t_{RF\text{setup}} \end{aligned}$$

o vo väčšine prípadov

$$T_c = t_{pcq\ PC} + 2t_{mem} + t_{RFread} + t_{mux} + t_{ALU} + t_{RFsetup}$$

Viaccyklový MIPS procesor

- + vyššia taktovacia frekvencia
- + jednoduchšie inštrukcie vyžadujú kratší čas
- + znovupoužiteľnosť niektorých funkčných jednotiek počas realizácie inštrukcie
- - zložitejšie riadenie
- Podobný postup: návrh smerovania toku dát/operandov & smerovania riadiacich signálov

Riadiaca jednotka viaccyklového MIPS procesora

- Výkon viaccyklového procesora
 - Kritická cesta

$$T_c = t_{pcq} + t_{mux} + max(t_{ALU} + t_{mux}, t_{mem}) + t_{setup}$$

Prúdový MIPS procesor

- Temporálny paralelizmus
- Rozdeľ vykonanie inštrukcie v jednocyklovom procesore na 5 fáz:
 - Čítanie inštrukcie / Fetch
 - Dekódovanie inštrukcie / Decode
 - Vykonanie inštrukcie / Execute
 - o Pamätanie výsledku / Memory
 - Zápis do pamäte / Writeback
- Pridaj záchytné registre medzi jednotlivé stupne zreťazenia

Jednocyklový vs. prúdový MIPS

Jednocyklový MIPS

Riadenie prúdového MIPS

Hazardy prúdového spracovania

- Ak vykonanie inštrukcie je závislé od inštrukcie, ktorá ešte nebola dokončená
- Typy:
 - o Údajový hazard: v dôsledku nedostupnosti operandov pri vykonaní inštrukcií

- eliminácia: sw prostriedky vloženie NOP po inštrukcií, preusporiadanie inštrukcii, hw prostriedky – blokovanie prúdového spracovania, dopredné generovanie výsledku predchádzajúcej inštruckie
- Hazard riadenia: v dôsledku vetvení
- Pokutovanie nesprávneho odhadu skoku
 - Vyradenie inštrukcií z procesu spracovania ak sa skok uskutoční
 - Predikovanie skoku

o **Zdrojový hazard**: nie sú dostupné zdroje na vykonanie inštrukcie

Moderné mikroarchitektúry

- "Hlboké" prúdové funkčné jednotky: 10-20 stupňov
- Špekulatívne vetvenie: Ideálny prúdový procesor: CPI = 1, Zlá predikcia zvyšuje CPI
 - o Statická predikcia vetvenia: Kontrola smeru skoku
 - Dynamická predikcia vetvenia: Na základe histórie skokov
- Superskalárne procesory : Viac inštrukcií je spracovaných naraz, Hazardy môžu byť problém
- Vykonávanie mimo poradia: Analýza niekoľkých inštrukcií, Priprav čo najviac inštrukcií na spracovanie, Spracuj inštrukcie aj mimo poradia
 - závislosti:
 - RAW (read after write): údajová závislosť
 - WAR (write after read): údajová antizávislosť
 - WAW (write after write): výstupná závislosť
 - o Plánovanie spracovania inštrukcií
 - Instruction level parallelism (ILP)
 - Prehľadávací obvod (Scoreboard)
- Premenovávanie registrov
- SIMD : Single Instruction Multiple Data
 - Jeden prúd inštrukcií spracováva viacnásobný tok dát
- Multivláknové procesory: mikro, nano, ...
- Multiprocesory: jeden čip ale viac procesorov

Proces vs vlákno

- Proces: program vykonávaný na počítači
 - Je možné spúšťať niekoľko procesov súčasne
- Vlákno: časť programu
 - o Proces môže pozostávať z niekoľkých vlákien
- Vlákna v konvenčných procesoroch
 - V danom čase "beží" len jedno vlákno
 - Ak sa pozastaví činnosť vlákna
 - Uloží sa stav vlákna
 - Načíta a spustí sa druhé (čakajúce) vlákno
 - Volá sa to zmena kontextu
- Multithreading
 - o Aktivuje sa niekoľko vlákien súčasne
 - Nezvyšuje mieru paralelizmu na úrovni inštrukcií (ILP) v rámci vlákna, ale zvyšuje priepustnosť

Multiprocesory

- Multiprocesorové systémy s definovanou komunikačnou topológiou
 - Tesne viazané multiprocesory
 - Voľne viazané multiprocesory

Výkonnostné parametre

- Výkon PS závisí od
 - Výkonu procesora
 - o Pamäťového podsystému

Rozhranie pamäťového podsystému

Návrh pamäťových modulov

- Cieľom je navrhnúť pamäťový podsystém tak rýchly ako je sám procesor
- Aplikuje sa hierarchická stavba PaP
- Vlastnosti ideálnej pamäte:
 - o rýchla
 - o lacná

dve sú splniteľné

veľká kapacita

Hierarchia PaP

Lokalita

- Temporálna lokalita:
 - Časová charakteristika prístupu
- Priestorová lokalita:
 - o Priestorová charakteristika prístupu

Výkonnostné parametre

- Úspešné sprístupnenie (hit): údaj sa našiel na danej úrovni PaP
- Neúspešné sprístupnenie (miss): údaj sa nenašiel
- Koeficient úspešnosti (Hit Rate; HR)
 - HR = # úspešné sprístupnenie / # prístupov do pamäte = 1 MR
- Koeficient neúspešnosti (Miss Rate; MR)
 - MR = # neúspešné sprístupnenie / # prístupov do pamäte = 1 HR
- Priemerná doba prístupu do pamäte (AMAT):
 - $\Delta MAT = HR_{cache} t_{cache} + MR_{cache} [HR_{MM} t_{MM} + MR_{MM} (HR_{VM} t_{VM})]$

Gene Amdahl, 1922-

 Amdahlov "zákon": úsilie vynaložené na zvýšenie výkonu subsystému minie účinkom, pokiaľ subsystém neovplyvní veľké percento celkového výkonu

Vyrovnávacia pamäť typu "cache"

- Pamäť určená na vyrovnávanie rýchlosti prenosu údajov medzi procesorom a hlavnou pamäťou
- Je to rýchla asociatívna pamäť
- Parametre cache
 - Kapacita (C)
 - Veľkosť bloku / skupiny slov v pamäti (b)
 - Počet blokov v pamäti (B = C/b)
 - Stupeň asociativity (N)
 - Rám bloku cache (S = B/N)
- Ideálne, často používané dáta sú uložené v cache
- Cache sa delí podľa stupňa asociativity:
 - o Cache s priamym mapovaním

N-cestná asociatívna pamäť

> Plne asociatívna cache – zníži počet konfliktov, je to drahé riešenie

V Príznak Dáta V Príznak Data V Príznak Dáta V Príznak Dáta

- Kapacita pamäte cache
 - o Pamäť cache má obmedzenú kapacitu
- Metódy vyraďovania
 - Náhodný výber
 - Výber podľa príznaku aktivity
 - Stratégia LRU (Least recently used)
- Viacúrovňová organizácia cache
 - Veľká cache má nižší koeficient neúspešnosti a prístupová doba je väčšia v porovnaní s menšou cache

Virtuálna pamäť

- Virtuálnou pamäťou sa získa väčší pamäťový priestor než čo nám ponúka hlavná pamäť
- Virtuálna adresa
 - V programe sa používa virtuálna adresa na určenie miesta kde sa údaj nachádza
- Ochrana pamäte
 - o Každý program má vlastnú schému prekladu virtuálnych adries na fyzické
- Cache vs virtuálna pamäť

Cache	Virtuálna pamäť
Blok	Stránka
Neúspešný prístup	Výpadok stránky
Príznak (kľúč) asociatívneho výberu = kópia bázovej adresy bloku v cache	Virtuálna adresa stránky

- transformácia virtuálnych adries na fyzické adresy sa nazýva mapovanie adries
- Virtuálna adresa je adresa, ktorou sa identifikuje slovo (blok) programu v logickom adresovom priestore
- Fyzická adresa predstavuje adresu kópie tohto slova (bloku) lokalizovaného v HP
- Existujú dve skupiny VP
 - o s pevnou dĺžkou blokov, ktoré sa nazývajú stránky
 - s premenlivou dĺžkou blokov, ktoré sa nazývajú segmenty

Mapovanie pamäte

Tabuľka stránok

- Priebežný stav pamäte ČP v procese mapovania je registrovaný pomocou tabuľky stránok
- Adresa stránky funguje ako index položky v tabuľke stránok

Pamäť preložených adries (TLB) - Translation Lookaside Buffer

- mapovanie prostredníctvom pamäte preložených adries
- sú uložené adresy najčastejšie používaných stránok
- Ukážka TLB

Vstupno-výstupný podsystém

- Každé V/V zariadenie má svoju adresu
- Čítanie/zápis z/do V/V zariadenia vyžaduje adresu V/V zariadenia
- Rozhranie V/V podsystému

- Komponenty V/V podsystému
 - o Dekodér adries Zisťuje adresu zariadenia
 - o V/V registre Obsahujú dáta určené pre V/V zariadenia
 - Multiplexor ReadData Zabezpečuje smerovanie medzi V/V zariadením