时间序列分析作业

10161511428, 孔寅豪 2019 年 11 月 26 日

题目 1: 设 $[x,y]^T$ 为二维正态向量, 求用 y 对 x^2 的最小方差估计及线性无偏最小方差估计

答: (1) 设 $[x,y]^T \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \rho)$, 则 y 对 x 的最小方差估计是 $E[x^2|y]$, 令 $z=x^2$, 我们有

$$E[z|y] = E[x^{2}|y] = E^{2}(x|y) + Var(x|y)$$
$$= (\mu_{1} + \rho\sigma_{1}(y - \mu_{2})/\sigma_{2}^{2})^{2} + \sigma_{1}^{2}(1 - \rho^{2})$$

(2) y 对 x^2 的线性无偏最小方差估计 $\hat{z}_y = Ez + R_{zy}R_y^+(y - Ey)$

$$Ez = VarX + (Ex)^2 = \sigma_1^2 + \mu_1^2$$

题目 2: 考虑如下的线性随机递推

$$\begin{cases} x(k+1) = Ax(k) + D(\omega(k+1)) \\ y(k) = Cx(k) + F\omega(k) \end{cases}$$

$$x(k) \in \mathbb{R}^n, y(k) \in \mathbb{R}^n, \omega(k) \in \mathbb{R}^n$$

 $\omega(k)$ 满足 $\omega(k+1)=M\omega(k)+\xi(k), M\in\mathbb{R}^{m\times m}, \xi(k)$ 为零均值白噪声用 y^k 求 x(k), x(k+1) 线性无偏最小方差估计,并求 Kalman 滤波方程

答: y^k 对 x(k), x(k+1) 的线性无偏最小方差估计为 $\hat{x}(k|k)$, $\hat{x}(k+1|k)$