

Zastosowania i efektywność modeli kopułowych w wybranych obszarach zarządzania ryzykiem

Praca dyplomowa – Piotr Mikler

Cel pracy

- Przedstawienie modeli Vine Copula jako modeli wielowymiarowych zależności
- Analiza 3-wymiarowych danych rzeczywistych
- Symulacyjna wycena opcji na spread aktywów
- Porównanie wyników symulacji Vine Copula vs GMV

Dane

Motywacja

Wyniki

Motywacja

- Powszechność problemów opartych o wielowymiarowe zmienne losowe
- Nieskuteczność najpopularniejszych narzędzi
- Ryzyko modelu
- Vine Copula jako elastyczne narzędzie, posiadające pożądane własności

Rysunek: **Współczynnik korelacji dla rozkładów nie-gaussowskich.** Wykresy punktowe symulacji z czterech różnych dwuwymiarowych rozkładów łącznych, o tych samych rozkładach brzegowych.

Twierdzenie 2.6 (Probability integral transform). Jeśli $X \sim F$ jest ciągłą zmienną losową, to U := F(X) ma rozkład jednostajny.

Rysunek: **Dane w skali rzeczywistej.**Oryginalne dane,
o dowolnych ciągłych rozkładach brzegowych.

Rysunek: **Dane w skali kopuły.**Dane przetransformowane poprzez PIT,
o jednostajnych rozkładach brzegowych.

Rysunek: **Różnorodność kopuł.** Wykresy konturowe gęstości kopuł, w skali brzegowo-znormalizowanej.

Rysunek: **Przykładowa struktura D-Vine.** Struktura R-Vine w 4 wymiarach, należąca do podklasy D-Vine

Model

Struktura proponowanego modelu

Dane

Definicja soybean crush spreadu

Rysunek: **Historyczne wartości Soybean Crush Spreadu.**Tygodniowe ceny spot dla soybean crush spreadu, obliczone z cen spot jego komponentów.

Zgodnie z definicją giełdy CME:

- $\clubsuit M_t$ cena futures na mączkę sojową
- \bullet O_t cena futures na olej sojowy
- S_t cena futures na soję

$$s_t = (0.022 \cdot M_t + 0.11 \cdot O_t) - S_t$$

Model ARIMA(0,0,0)-GARCH(2,3)

Rysunek: **Struktura zależności reziduów.** Wykresy punktowe każdy-z-każdym, oraz histogramy reziduów.

Vine Copula

$$T_2: S,O \xrightarrow{C_{O,M;S}} S,M$$
Frank $(\delta = -4.28)$

Rysunek: **Dopasowana struktura D-vine.** Struktura modelu Vine Copula pomiędzy komponentami spreadu.

Rysunek: **Kopuły dopasowanej struktury.**Wykresy konturowe kopuł dopasowanych do danych
w strukturze D-Vine

Przykładowa symulacja z modelu

Rysunek: **Symulacja trajektorii spreadu.**Przykładowa symulacja z dopasowanego modelu
ARIMA-GARCH-VineCopula

Wycena opcji za pomocą modelu Vine Copula

Rysunek: **6-miesięczna symulacja spreadu.** Histogram wielkości wysymulowanego spreadu w momencie wykonania opcji

	Call		Put	
\mathbf{Strike}	Price	Std. Err.	Price	Std. Err.
1.00	1.37	0.04	0.1	0.01
1.33	1.19	0.03	0.13	0.02
1.67	1.01	0.03	0.18	0.02
ATM	0.85	0.03	0.24	0.02
2.33	0.7	0.03	0.31	0.02
2.67	0.57	0.03	0.4	0.02
3.00	0.46	0.03	0.51	0.03
3.33	0.37	0.02	0.64	0.03
3.67	0.29	0.02	0.79	0.03
4.00	0.23	0.02	0.94	0.03

Tabela: Ceny europejskich opcji.

Ceny opcji europejskich kupna i sprzedaży w modelu symulacyjnym ARIMA-GARCH-VineCopula, razem z ich błędami standardowymi. Wyniki otrzymane dla 1000 powtórzeń Monte Carlo

Vine Copula vs Gaussian Multivariate Copula

Rysunek: **Ewolucja kwantyli symulacji spreadu.**Wybrane krzywe kwantylowe dla modeli Vine Copula i Gaussian Multivariate Copula (GMV) wyestymowane na podstawie symulacji.

Rysunek: **Ciężkoogonowość spreadu.**Ogony logarytmicznych zwrotów spreadu
dla modeli Vine Copula i Gaussian Multivariate Copula (GMV).
Porównanie z ogonem rozkładu normalnego.

Dziękuję za uwagę

Teoria

Definicja 2.4 (Dwuwymiarowa kopuła). Dwuwymiarową kopułą C nazwiemy funkcję rzeczywistą zdefiniowaną na kwadracie jednostkowym:

$$C \colon [0,1] \times [0,1] \mapsto \mathbb{R},$$

o następujących własnościach:

- uziemiona (C(v, 0) = 0 = C(0, z))
- dwu-rosnąca
- C(v,1) = v oraz C(1,z) = z dla wszystkich $(v,z) \in [0,1] \times [0,1]$.

Twierdzenie 2.1 (Twierdzenie Sklara). Niech X_1, X_2, \ldots, X_d będą zmiennymi losowymi ciągłymi, o dystrybuantach F_1, \ldots, F_d , i rozkładzie łącznym z dystrybuantą F. Wtedy istnieje dokładnie jedna kopuła C, taka że dla wszystkich $\mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$:

$$F(x_1, \dots, x_d) = C(F_1(x_1), \dots, F_d(x_d)). \tag{2.1}$$

Zachodzi również twierdzenie odwrotne: Mając dowolne dystrybuanty F_1, \ldots, F_d i kopułę C, funkcja F zdefiniowana według 2.1 jest d-wymiarową dystrybuantą, o rozkładach brzegowych F_1, \ldots, F_d .

Definicja 2.37 (Regular vine). Zbiór drzew $\mathcal{V} = (T_1, \dots, T_{d-1})$ nazywamy regular vine lub R-vine jeżeli:

- 1. Każde drzewo $T_j = (N_j, E_j)$ jest spójne
- 2. T_1 jest drzewem o zbiorze wierzchołków N_1 i zbiorze krawędzi E_1
- 3. Dla $j \ge 2$, T_j jest drzewem o zbiorze wierzchołków $N_j = E_{j-1}$ i zbiorze krawędzi E_{j-1}
- 4. Dla j = 2, ..., d-1 oraz $\{a, b\} \in E_j$ mamy $|a \cap b| = 1$.

Rysunek: **Przykładowa struktura D-Vine.** Struktura R-Vine w 4 wymiarach, należąca do podklasy D-Vine

Twierdzenie 2.41 (Istnienie rozkładu R-vine). Niech $(\mathcal{F}, \mathcal{V}, \mathcal{B})$ spełnia warunki z definicji 2.40. Wtedy istnieje dokładnie jeden d-wymiarowy rozkład F o gęstości:

$$f_{1,\dots,d}(x_1,\dots,x_d) = f_1(x_1)\dots f_d(x_d) \cdot \prod_{i=1}^{d-1} \prod_{e \in E_i} c_{C_{e,a}C_{e,b};D_e}(F_{C_{e,a}|D_e}(x_{C_{e,a}|x_{D_e}}), F_{C_{e,b}|D_e}(x_{C_{e,b}|x_{D_e}})),$$

taki, że dla każdego $e \in E_i, i = 1, ..., d-1$ oraz $e = \{a, b\}$ rozkład $X_{C_{e,a}}$ i $X_{C_{e,b}}$ pod warunkiem $X_{D_e} = x_{D_e}$ wyraża się poprzez:

$$F_{C_{e,a}C_{e,b}|D_e}(x_{C_{e,a}},x_{C_{e,b}}|x_{D_e}) = C_e(F_{C_{e,a}|D_e}(x_{C_{e,a}|x_{D_e}}),F_{C_{e,b}|D_e}(x_{C_{e,b}|x_{D_e}})).$$

Ponadto rozkłady brzegowe F zadane są jako $F_i(x_i), i = 1, \ldots, d$.

Rysunek: **Gęstość symulacji spreadu w czasie.** Wartości gęstości rozkładu symulowanego spreadu S(t), dla każdego momentu czasowego