Project: Customer Segmentation

Team member:

- MAMADI FOFANA
- mamadi.fofana@edu.dsti.institute
- Republic of Guinea
- Data Science Tech Institute (DSTI)
- Data Science Specialization

I. Problem description

Problem Statement: XYZ bank wants to roll out Christmas offers to their customers. But Bank does not want to roll out same offer to all customers instead they want to roll out personalized offer to particular set of customers. If they manually start understanding the category of customer then this will be not efficient and also, they will not be able to uncover the hidden pattern in the data (pattern which group certain kind of customer in one category). Bank approached ABC analytics company to solve their problem. Bank also shared information with ABC analytics that they don't want **more than 5 group** as this will be inefficient for their campaign.

Business understanding (Customer Segmentation)

We will propose customer segmentation approach to the Bank.

Our goal will be to create models which we use in turn to find a solution

We will adopt three predictive models:

- Clustering models which group similar behavior customers in one category and others in different category.
- Classification or Recommender models to predict group of a customer and which will be used to evaluate quality of the clustering model.

Project lifecycle along with deadline

1	Rusiness	Understanding	(Week 7)
	Dualitaaa	CHUCIORALIUNIU	1 1 1 1 1 1 1 1

2. Data Understanding (week 8)

3. EDA (Week 8)

4. Feature Engineering (Week 9)

4. Model Building (Week 10)

5. Model Evaluation (Week 11)

6. Presentation (week 12)

7. Document the challenges (Week 13)

II. Data understanding

Data source

Data source used is: cust_seg.csv

Data source Link:

https://drive.google.com/drive/folders/1bfCpJIKmp6IHxiLPWvOS2nU1dc24pViB

Column Name	Description
fecha_dato	The table is partitioned for this column
ncodpers	Customer code
ind_empleado	Employee index: A active, B ex employed, F filial, N not employee, P pasive
pais_residencia	Customer's Country residence
sexo	Customer's sex
age	Age
fecha_alta	The date in which the customer became as the first holder of a contract in the bank
ind_nuevo	New customer Index. 1 if the customer registered in the last 6 months.
antiguedad	Customer seniority (in months)
indrel	1 (First/Primary), 99 (Primary customer during the month but not at the end of the month)
ult_fec_cli_1t	Last date as primary customer (if he isn't at the end of the month)
indrel_1mes	Customer type at the beginning of the month ,1 (First/Primary customer), 2 (co-owner), P (Potential),3 (former primary), 4(former co-owner)
tiprel_1mes	Customer relation type at the beginning of the month, A (active), I (inactive), P (former customer),R (Potential)
indresi	Residence index (S (Yes) or N (No) if the residence country is the same than the bank country)
indext	Foreigner index (S (Yes) or N (No) if the customer's birth country is different than the bank country)

conyuemp	Spouse index. 1 if the customer is spouse of an employee					
canal_entrada	channel used by the customer to join					
indfall	Deceased index. N/S					
tipodom	Addres type. 1, primary address					
cod_prov	Province code (customer's address)					
nomprov	Province name					
ind_actividad_cliente	Activity index (1, active customer; 0, inactive customer)					
renta	Gross income of the household					
ind_ahor_fin_ult1	Saving Account					
ind_aval_fin_ult1	Guarantees					
ind_cco_fin_ult1	Current Accounts					
ind_cder_fin_ult1	Derivada Account					
ind_cno_fin_ult1	Payroll Account					
ind_ctju_fin_ult1	Junior Account					
ind_ctma_fin_ult1	Más particular Account					
ind_ctop_fin_ult1	particular Account					
ind_ctpp_fin_ult1	particular Plus Account					
ind_deco_fin_ult1	Short-term deposits					
ind_deme_fin_ult1	Medium-term deposits					
ind_dela_fin_ult1	Long-term deposits					
ind_ecue_fin_ult1	e-account					
ind_fond_fin_ult1	Funds					
ind_hip_fin_ult1	Mortgage					
ind_plan_fin_ult1	Pensions					
ind_pres_fin_ult1						
	Loans					
ind_reca_fin_ult1	Loans Taxes					
ind_reca_fin_ult1 ind_tjcr_fin_ult1						
	Taxes					
ind_tjcr_fin_ult1	Taxes Credit Card					
ind_tjcr_fin_ult1 ind_valo_fin_ult1	Taxes Credit Card Securities					
ind_tjcr_fin_ult1 ind_valo_fin_ult1 ind_viv_fin_ult1	Taxes Credit Card Securities Home Account					

Type of data

Data source contains several sources of data:

- Numerical: integer and float
- Categorical:

Sweetviz (EDA Tool) overview

1000000	ROWS	
0	DUPLICATES	
1.1 GB	RAM	
47	FEATURES	
39	CATEGORICAL	
3	NUMERICAL	
5	TEXT	

Pandas overview

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 47 columns):

#	Column	Non-Null Count	Dtype
		1000000 1	
0	fecha_dato	1000000 non-null	object
1	ncodpers	1000000 non-null	int64
2	ind_empleado	989218 non-null	object
3	pais_residencia	989218 non-null	object
4	sexo	989214 non-null	object
5	age	1000000 non-null	object
6	fecha_alta	989218 non-null	object
7	ind_nuevo	989218 non-null	float64
8	antiguedad	1000000 non-null	object
9	indrel	989218 non-null	float64
10	ult_fec_cli_1t	1101 non-null	object
11	indrel_1mes	989218 non-null	float64
12	tiprel_1mes	989218 non-null	object
13	indresi	989218 non-null	object
14	indext	989218 non-null	object
15	conyuemp	178 non-null	object
16	canal_entrada	989139 non-null	object
17	indfall	989218 non-null	object
18	tipodom	989218 non-null	float64
19	cod_prov	982266 non-null	float64
20	nomprov	982266 non-null	object
21	ind_actividad_cliente	989218 non-null	float64
22	renta	824817 non-null	float64
23	ind_ahor_fin_ult1	1000000 non-null	int64

```
24
    ind_aval_fin_ult1
                           1000000 non-null
                                             int64
25
    ind_cco_fin_ult1
                           1000000 non-null
                                             int64
26
    ind_cder_fin_ult1
                           1000000 non-null
                                             int64
27
    ind_cno_fin_ult1
                           1000000 non-null
                                             int64
28
    ind_ctju_fin_ult1
                           1000000 non-null
                                             int64
    ind_ctma_fin_ult1
                           1000000 non-null
29
                                             int64
    ind_ctop_fin_ult1
30
                           1000000 non-null
                                             int64
    ind_ctpp_fin_ult1
                           1000000 non-null
                                             int64
31
                           1000000 non-null
32
    ind_deco_fin_ult1
                                             int64
    ind_deme_fin_ult1
                           1000000 non-null
33
                                             int64
34
    ind_dela_fin_ult1
                           1000000 non-null
                                             int64
    ind_ecue_fin_ult1
                           1000000 non-null
35
                                             int64
36
    ind_fond_fin_ult1
                           1000000 non-null
                                             int64
    ind_hip_fin_ult1
37
                           1000000 non-null
                                             int64
    ind_plan_fin_ult1
                           1000000 non-null
38
                                             int64
                           1000000 non-null
    ind_pres_fin_ult1
39
                                             int64
    ind_reca_fin_ult1
                           1000000 non-null
40
                                             int64
41
    ind_tjcr_fin_ult1
                           1000000 non-null
                                             int64
    ind_valo_fin_ult1
                           1000000 non-null
42
                                             int64
    ind_viv_fin_ult1
                           1000000 non-null
43
                                             int64
44
    ind_nomina_ult1
                           994598 non-null
                                             float64
                           994598 non-null
    ind_nom_pens_ult1
                                             float64
45
46
    ind_recibo_ult1
                           1000000 non-null
                                             int64
```

dtypes: float64(9), int64(23), object(15)

memory usage: 358.6+ MB

Problems in the data

After descriptive analysis (univariate analysis), correlation analysis (bivariate analysis), we notice following:

• Missing value in some fields

We have a total of 2 371 207 missing values as per column

•	ind_empleado	10782
•	pais_residencia	10782
•	sexo	10786
•	fecha_alta	10782
•	ind_nuevo	10782
•	indrel	10782
•	ult_fec_cli_1t	998899
•	indrel_1mes	10782
•	tiprel_1mes	10782
•	indresi	10782
•	indext	10782
•	conyuemp	999822
•	canal_entrada	10861
•	indfall	10782
•	tipodom	10782
•	cod_prov	17734
•	nomprov	17734
•	ind_actividad_cliente	10782
•	renta	175183
•	ind_nomina_ult1	5402
•	ind_nom_pens_ult1	5402

For missing value in categorical columns, we replace missing value with a new category

For missing value in numerical values, we replace missing value with mean or median value of the columns

Duplicate values

No duplicated values were found before data preprocessing, but found out duplicated values after removing some columns

Those duplicated value has been removed

• High percentage of missing values in some columns in features:

We dropped columns with high percentage of missing value which cannot decrease performance of the model

- ult_fec_cli_1t
- conyuemp

Column with unique categorical value

We remove column with unique categorical value since it brings no insight to the model

tipodom

Low variance in some numeric attributes

So far, no variance issue has been observed in the numerical column

Low entropy in some categorical attributes.

The identified problem is a very small entropy of the feature, which means that most of the records have the same categorical values. In most cases, it is safe to remove categorical attributes with low entropy. This will not harm the performance of the model, and it can reduce the complexity of the model.

- ind_nuevo
- indrel
- indrel_1mes
- indresi

- indfall
- ind_ahor_fin_ult1
- ind_aval_fin_ult1
- ind_cder_fin_ult1
- ind_deco_fin_ult1
- ind_deme_fin_ult1
- ind_pres_fin_ult1
- ind_viv_fin_ult1
- ind_hip_fin_ult1
- ind_plan_fin_ult1
- ind_valo_fin_ult1
- ind_fond_fin_ult1
- ind_ctma_fin_ult1
- ind_ctju_fin_ult1
- indext
- ind_empleado
- pais_residencia

high correlated columns (cor with ind_nom_pens_ult1 >0.8)

We remove columns highly correlated with others (we choose abs(correlation) > 0.8)

- ind_cno_fin_ult1
- ind_nomina_ult1
- fecha_alta

Columns with high cardinality

The identified problem occurs when the number of unique values is too large for categorical attributes. This high cardinality creates problems for the typical one-hot-encoding process, creating a representation in an extremely high-dimensional space

Removing the feature if the number of occurrences per unique value of the attributes is too low

- ncodpers
- fecha_alta

• Data in wrong format

Some data are in wrong format need to be converted in the right format

- Age
- Antiguedad

• Outliers and errors management

Field *antiguedad* contains an errors value (-999 999) which need to be replaced by the median value of the field

Data not scaled for some numerical variable

For the clustering algorithm to consider all numerical attributes as equal, they must all have the same scale

Moreover, in order to comply to some assumptions of analysis and to reduce skewness, we applied gaussian transformation to those variables

- Age
- Antiguedad
- Renta

We have to scale those columns using Z-score and log transformation

III. **Exploratory Data Analysis (EDA) performed on the data**

After EDA performed of data, we finally got this new this data structure:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 961479 entries, 0 to 961478 Data columns (total 18 columns):

υата	columns (total 18 colum	mns):	
#	Column	Non-Null Count	Dtype
0	fecha_dato	961479 non-null	object
1	sexo	961479 non-null	object
2	age	961479 non-null	float64
3	antiguedad	961479 non-null	float64
4	tiprel_1mes	961479 non-null	object
5	canal_entrada	961479 non-null	object
6	nomprov	961479 non-null	object
7	ind_actividad_cliente	961479 non-null	int32
8	renta	961479 non-null	float64
9	ind_cco_fin_ult1	961479 non-null	int64
10	ind_ctop_fin_ult1	961479 non-null	int64
11	ind_ctpp_fin_ult1	961479 non-null	int64
12	ind_dela_fin_ult1	961479 non-null	int64
13	ind_ecue_fin_ult1	961479 non-null	int64
14	ind_reca_fin_ult1	961479 non-null	int64
15	ind_tjcr_fin_ult1	961479 non-null	int64
16	ind_nom_pens_ult1	961479 non-null	int32
17	ind_recibo_ult1	961479 non-null	int64
dtype	es: float64(3), int32(2)), int64(8), obje	ct(5)
memor	ov usage: 124.7± MR		

memory usage: 124.7+ MB

Data set transformed is located in the file: cust_seg_Updated

Automated exploratory data analysis for this new data set could be found in the file:

EDA_Cust_Fin.html

Correlation analysis

Numerical correlation

	age	antiguedad	ind activic	renta	ind cco fi	ind cton	ind cton	find dela	ind acue	ind reca	ind tier fi	ind nom	ind recibo
	ugc	antigueuat	mu_activit	Tenta									
age	1	0.602371	0.146407	0.173596	-0.14495	0.32942	0.11987	0.173536	0.134264	0.095878	0.1062	0.082601	0.096204
antiguedad	0.602371	1	0.139859	0.208611	-0.23161	0.441233	0.143707	0.120671	0.116528	0.171683	0.171289	0.114477	0.133276
ind_activic	0.146407	0.139859	1	0.10007	-0.05822	0.108476	0.141541	0.218361	0.251626	0.201941	0.220466	0.241334	0.372467
renta	0.173596	0.208611	0.10007	1	-0.06705	0.100847	0.060196	0.064223	0.069446	0.077423	0.067651	0.044455	0.056074
ind_cco_fi	-0.14495	-0.23161	-0.05822	-0.06705	1	-0.10264	-0.13634	-0.04728	-0.17945	-0.17292	-0.19257	-0.39773	-0.20332
ind_ctop_f	0.32942	0.441233	0.108476	0.100847	-0.10264	1	-0.01964	0.045601	-0.06203	0.020359	0.021212	-0.00975	-0.00702
ind_ctpp_f	0.11987	0.143707	0.141541	0.060196	-0.13634	-0.01964	1	0.065078	0.051241	0.158959	0.158365	0.176897	0.21122
ind_dela_f	0.173536	0.120671	0.218361	0.064223	-0.04728	0.045601	0.065078	1	0.222399	0.056459	0.100476	0.092534	0.094016
ind_ecue_	0.134264	0.116528	0.251626	0.069446	-0.17945	-0.06203	0.051241	0.222399	1	0.19003	0.253194	0.277997	0.302286
ind_reca_f	0.095878	0.171683	0.201941	0.077423	-0.17292	0.020359	0.158959	0.056459	0.19003	1	0.256445	0.280134	0.343754
ind_tjcr_fi	0.1062	0.171289	0.220466	0.067651	-0.19257	0.021212	0.158365	0.100476	0.253194	0.256445	1	0.355023	0.384043
ind_nom_p	0.082601	0.114477	0.241334	0.044455	-0.39773	-0.00975	0.176897	0.092534	0.277997	0.280134	0.355023	1	0.472749
ind_recibo	0.096204	0.133276	0.372467	0.056074	-0.20332	-0.00702	0.21122	0.094016	0.302286	0.343754	0.384043	0.472749	1

Numerical correlation could be found in the file *corr_Fin.csv*We notice a weak correlation between features

Relationship between two categorical features

Chi-Square Test for independence between 'tiprel_1mes' and 'ind_actividad_cliente'

Null hypothesis: 'features tiprel_1mes' and 'ind_actividad_cliente' are independent

pValue equal 0 which means that we can reject null hypothesis: So 'tiprel_1mes' and 'ind_actividad_cliente' are strongly dependent

Categorical and numerical relationship

Anova test between feature 'renta' and 'ind_dela_fin_ult1'

We need to test if it exists a relationship between long term deposit and Gross income of the household

The null hypothesis is the mean of gross income between category of long-term deposit is equal

pValue equal 0 which means that we can reject null hypothesis: So, long term deposit could be related to gross income We can observe this fact also in the Boxplot

Anova test between feature 'antiguedad' and 'ind_dela_fin_ult1'

We need to test if it exists a relationship between long term deposit and customer seniority. The null hypothesis is the mean of customer seniority between category of long-term deposit is equal

pValue equal 0 which means that we can reject null hypothesis: So, long term deposit could be related to customer seniority We can observe this fact also in the Boxplot

Anova test between feature 'age' and 'ind_dela_fin_ult1'

We need to test if it exists a relationship between long term deposit and age The null hypothesis is the mean of age between category of long-term deposit is equal

pValue equal 0 which means that we can reject null hypothesis: So, long term deposit could be related to customer age We can observe this fact also in the Boxplot

Anova test between feature 'age' and 'ind_ecue_fin_ult1'

We need to test if it exists a relationship between eaccount and age The null hypothesis is the mean of age between category of eaccount is equal

pValue equal 0 which means that we can reject null hypothesis: So having eaccount could be related to age We can observe this fact also in the Boxplot

Average age by province and gender

We noticed that average age is quite similar for both gender for most of provinces (nomprov) except for few provinces.

Only province 'Las palmas 'has a significant missing value for age variable

Also, a new category (Unknown) has been created to impute missing value for variable 'nomprov'

Average seniority by province and gender

We noticed that average seniority is quite similar for both gender for most of provinces (nomprov) except for few provinces

Only province 'Las palmas ' and 'madrid' have a significant missing value for seniority variable Also, a new category (Unknown) has been created to impute missing value for variable 'nomprov'

Average gross income by province and gender

We noticed that average seniority is quite similar for both gender for most of provinces (nomprov) except for few provinces (ie 'madrid', 'balnear iles' etc.)

Only province 'Las palmas ' and 'madrid' have a significant missing value for gross income variable

Also, a new category (Unknown) has been created to impute missing value for variable 'nomprov'

Recommendations

We can reduce number of study variables since most of them are not necessary to the analysis

We need to improve data collect in some provinces, especially for 'madrid' and 'Las palmas' since those variables contains a lot of missing data

We have tested 5 hypotheses with following conclusions:

- Customer relationship at the beginning of the month 'tiprel_1mes' and customer activation 'ind actividad cliente' are strongly dependent
- Long term deposit could be related to gross income
- Long term deposit could be related to customer seniority
- Long term deposit could be related to customer age
- Having eaccount could be related to age