Alfred Rossi, Ph.D.

Lecture 4: Discrete Probability Theory

Let Ω denote a set of "atomic" events. This is known as a sample space. Examples:

- \blacktriangle Flipping a coins, $\Omega = \{H, T\}$.
- ▲ Rolling a six sided dice once, $\Omega = [6] = \{1, 2, ..., 6\}$.
- ▲ Flipping 2 coins, $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}.$
- Rolling two six sided dice,

$$\Omega = [6] \times [6] = \{(i,j) : 1 \le i, j \le 6\}$$

= \{(1,1),(1,2),\ldots(2,1),(2,2),\ldots(6,6)\}.

A (discrete) **probability space** (Ω, \Pr) models a randomized experiment, where Ω is a set containing all possible outcomes, where each $e \in \Omega$ which occurs with probability $\Pr(e)$.

- ▲ Intuitively, because \Pr represents a probability, $\Pr: \Omega \to [0,1]$.
- Arr Because the experiment must give an outcome, contained in Ω,

$$\sum_{e \in \Omega} \Pr(e) = 1.$$

Examples of probability spaces:

- ▲ One flip of a fair coin: $\Omega = \{H, T\}$, and $\Pr(H) = \Pr(T) = 1/2$.
- One roll of a fair six-sided dice $\Omega=\{1,2,3,4,5,6\}$, and $\Pr(i)=1/6$ for $1\leq i\leq 6$.
- **A** k flips of a fair coin, $\Omega=\{H,T\}^k$, $\Pr(e)=1/2^k$ for all $e\in\Omega$.
- ▲ The uniform distribution: Ω is finite and for all e ∈ Ω, Pr(e) = 1/|Ω|.

An event, E is a subset of Ω . We define $\Pr[E] = \sum_{e \in E} \Pr(e)$.	

Let E (O) denote the event that a fair, 6-sided, dice-roll is even (odd, respectively), then $E = \{2, 4, 6\}$ ($O = \{1, 3, 5\}$).

$$\Pr[E] = \Pr(2) + \Pr(4) + \Pr(6)$$

= 1/6 + 1/6 + 1/6 = 1/2.
 $\Pr[O] = \Pr(1) + \Pr(3) + \Pr(5)$

$$= 1/6 + 1/6 + 1/6 = 1/2.$$

What is the probability that a roll of a fair 20-sided dice yields a number less than 8 or more than 18?

- ▲ We're talking about events over the probability space where $\Omega = [20]$, and $\Pr(i) = 1/20$ for all $i \in \Omega$.
- ▲ The event E is $E = \{1, 2, 3, 4, 5, 6, 7, 19, 20\}$.
- It follows that,

$$Pr[E] = \sum_{i \in E} \Pr(i) = 1/20 \sum_{i \in E} 1 = 1/20 |E|$$

= 9/20 = 0.45.

What is the probability of rolling a 20-sided dice and getting a number less than 8 or more than 18 where the dice biased towards even values such that $\Pr(i) = 1/15$ when i is even and $\Pr(i) = 1/30$ when i is odd?

- ▲ We're talking about events over the probability space where Ω = [20], and Pr(i) = 1/15 when i is even, and Pr(i) = 1/30 when i is odd.
- ▲ The event E is $E = \{1, 2, 3, 4, 5, 6, 7, 19, 20\}$.
- It follows that,

$$egin{aligned} \Pr[E] &= \sum_{i \in E} \Pr(i) = \sum_{i \in E, \, i \text{ is even}} 1/15 + \sum_{i \in E, \, i \text{ is odd}} 1/36 \ &= 1/15 \cdot 4 + 1/30 \cdot 5 = 13/30 pprox 0.43. \end{aligned}$$

Notation

- ▲ A set of sets is called a set-system.
- ▲ We will sometimes write $\{E_i\}_{i=1}^n$ to denote a set-system comprised of sets E_1 , E_2 , ..., E_n .
- ▲ Two sets A, B are **disjoint** if $A \cap B = \emptyset$.
- ▲ A set-system S is said to be *pairwise disjoint* if, $A, B \in S$, are disjoint whenever $A \neq B$.
- ▲ Let Ω be a set. We say a set-system, S, is a set-system over Ω if every set in S is a subset of Ω.
- Let Ω be a set. We say that a set-system S partitions Ω provided that S is pair-wise disjoint, and $⋃_{E∈S}E = Ω$.

Let (Ω, \Pr) be a (discrete) probability space, and let $E_1, E_2 \subset \Omega$ be **disjoint** events, then

$$\Pr[E_1 \cup E_2] = \Pr[E_1] + \Pr[E_2]$$

Proof.

Note that for any $e \in E_1 \cup E_2$, it must be that either $e \in E_1$ or $e \in E_2$ but not both. Therefore,

$$egin{aligned} \Pr[E_1 \cup E_2] &= \sum_{e \in E_1 \cup E_2} \Pr(e) = \sum_{e \in E_1} \Pr(e) + \sum_{e \in E_2} \Pr(e) \\ &= \Pr[E_1] + \Pr[E_2]. \end{aligned}$$

ᆫ

Let (Ω, \Pr) be a (discrete) probability space, and let $E_1, E_2 \subset \Omega$ be events, then

$$\Pr[E_1 - E_2] = \Pr[E_1] - \Pr[E_1 \cap E_2]$$

Proof.

Note that E_1 is the union of disjoint sets $(E_1 - E_2)$ and $E_1 \cap E_2$. Therefore,

$$\Pr[E_1] = \Pr[(E_1 - E_2) \cup (E_1 \cap E_2)]$$

= $\Pr[E_1 - E_2] + \Pr[E_1 \cap E_2].$

It follows immediately that

$$\Pr[E_1 - E_2] = \Pr[E_1] - \Pr[E_1 \cap E_2].$$

ᆫ

Let (Ω, \Pr) be a (discrete) probability space, and let $E_1, E_2 \subset \Omega$ be events, then

$$\Pr[E_1 \cup E_2] = \Pr[E_1] + \Pr[E_2] - \Pr[E_1 \cap E_2].$$

Proof.

The set $E_1 \cup E_2$ can be written as the pairwise disjoint union of sets $E_1 - E_2$, $E_1 \cap E_2$, and $E_2 - E_1$. Therefore,

$$\begin{aligned} \Pr[E_1 \cup E_2] &= \Pr[(E_1 - E_2) \cup (E_1 \cap E_2) \cup (E_2 - E_1)] \\ &= \Pr[E_1 - E_2] + \Pr[E_1 \cap E_2] + \Pr[E_2 - E_1] \\ &= \Pr[E_1] - \Pr[E_1 \cap E_2] + \Pr[E_1 \cap E_2] \\ &+ \Pr[E_2] - \Pr[E_2 \cap E_1] \\ &= \Pr[E_1] + \Pr[E_2] - \Pr[E_1 \cap E_2]. \end{aligned}$$

ᆫ

Let (Ω, \Pr) be a (discrete) probability space, and $E \subset \Omega$ be an event. Then $E^c = (\Omega - E)$ is an event with $\Pr[E^c] = 1 - \Pr[E]$.

Proof.

Note that $\Omega = E \cup E^c$, and that E and E^c are disjoint. Therefore,

$$\begin{split} 1 &= \sum_{e \in \Omega} \Pr(e) \\ &= \sum_{e \in E} \Pr(e) + \sum_{e \in E^c} \Pr(e) \\ &= \Pr[E] + \Pr[E^c]. \end{split}$$

It follows immediately that $\Pr[E^c] = 1 - \Pr[E]$.

A biased coin is heads with probability p. What is the probability of seeing at least two heads if it is flipped 3 times?

- $\Lambda = \{H, T\}^3$, $\Pr(e) = p^{n_H} (1-p)^{3-n_H}$, where n_H denotes the number of heads in the triple (example: $\Pr((H, H, T)) = p^2 (1-p)$).
- ▲ Let E_i denote the event where the triple contains exactly i heads for $0 \le i \le 3$. Note that E_i partition Ω. That is, Ω is their union but $E_i \cap E_j = \emptyset$ for all $i \ne j$, $0 \le i,j \le 3$.
- lacktriangle We are uninterested in E_0 or E_1 . The event we are after is $E=E_2\cup E_3$. Since they are disjoint, $\Pr[E]=\Pr[E_2]+\Pr[E_3]$.
- ▲ Note $E_2 = \{(H, H, T), (H, T, H), (T, H, H)\}$, Note $\Pr[E_2] = 3p^2(1-p)$. Similarly $E_3 = \{(H, H, H)\}$, $\Pr[E_3] = p^3$. Therefore,

$$\Pr[E] = \Pr[E_2] + \Pr[E_3] = 3p^2(1-p) + p^3.$$

A biased coin is heads with probability p. What is the probability of seeing at least two heads if it is flipped n times? Hard way:

- $\Delta \Omega = \{H, T\}^n$, $\Pr(e) = p^{n_H} (1 p)^{n n_H}$, where n_H denotes the number of heads in the event n-tuple.
- ▲ Let E_i denote the event where the event contains exactly i heads for $0 \le i \le n$. Note that E_i partition Ω.
- ▲ We are uninterested in E_0 or E_1 . The event we are after is $E = E_2 \cup E_3 \cup \cdots \cup E_n$. Since they are disjoint, $\Pr[E] = \Pr[E_2] + \Pr[E_3] + \cdots + \Pr[E_n]$.
- lacktriangle Note: for $e \in E_i$, $\Pr(e) = p^i (1-p)^{n-i}$. Therefore,

$$\Pr[E_i] = \sum_{e \in E_i} \Pr(e) = p^i (1-p)^{n-i} |E_i|.$$

- $lack \operatorname{Recall}, \Pr[E_i] = p^i (1-p)^{n-i} |E_i|.$
- ▲ To figure out $|E_i|$, note that this is equal to the number of ways to choose i items to be heads out out n. There are n different positions to choose for the first, n-1 for the second, ..., n-(i-1)=n-i+1 ways for the i-th. So there are $n\cdot (n-1)\cdot (n-2)\cdots (n-i+1)=n!/(n-i)!$, but this logic is order-dependent, and so we count the same set of picked positions i! times. Therefore,

$$|E_i| = rac{n!}{i!(n-i)!} = inom{n}{i}.$$

▲ So,

$$\Pr[E_i] = inom{n}{i} p^i (1-p)^{n-i}$$

$$\Pr[E] = \sum_{i=2}^n \Pr[E_i] = \sum_{i=2}^n \binom{n}{i} p^i (1-p)^{n-i}.$$

Recall, from some past math class, the binomial theorem:

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}.$$

Picking x = p, y = 1 - p gets us pretty close with

$$1 = (p+1-p)^n = \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i},$$

except the RHS has two extra terms $\binom{n}{0}p^0(1-p)^n=(1-p)^n$, and $\binom{n}{1}p^1(1-p)^{n-1}=np(1-p)^{n-1}$.

Subtracting these terms from both sides,

$$egin{aligned} \Pr[E] &= \sum_{i=2}^n inom{n}{i} p^i (1-p)^{n-i} \ &= 1 - (1-p)^n - np (1-p)^{n-1}. \end{aligned}$$

The easy way. Use the event algebra.

- A Recall $\{E_i\}_{i=0}^n$ partition Ω . So E_i 's are pairwise disjoint and $\Omega = \bigcup_{i=0}^n E_i$.
- \blacktriangle Recall, $E = E_2 \cup E_3 \cup \cdots \cup E_n$.
- \blacktriangle Recall, $\Pr[E] = 1 \Pr[E^c]$
- lacktriangle Recall, $E^c = \Omega E$. It follows that $E^c = E_0 \cup E_1$.
- A Recall, E_0 is the event consisting of n-tuples with no heads. There is just one of those $(T, T, \ldots T)$, and it occurs with probability $(1-p)^n$. So $\Pr[E_0] = (1-p)^n$.
- ▲ Recall, E_1 is the event consisting of n-tuples with exactly 1 heads. There are n of these, one for when the H occurs in each possible position. Each occur with probability $p(1-p)^{n-1}$, so $\Pr[E_1] = np(1-p)^{n-1}$.

Therefore,

$$egin{aligned} \Pr[E]&=1-\Pr[E^c] \ &=1-\Pr[E_0\cup E_1] \ &=1-\Pr[E_0]-\Pr[E_1] \ &=1-(1-p)^n-np(1-p)^{n-1}. \end{aligned}$$
 (by the event algebra)

Note! Even though we essentially did the same thing, we did not have to know anything about the binomial theorem or $\binom{n}{i}$.

A **random variable** is a function $x : \Omega \to \mathbb{R}$.

The **expectation** of x, denoted $\mathbb{E}[x]$, is given by

 $\mathbb{E}[\mathbf{x}] = \sum_{\mathbf{e} \in \Omega} \mathbf{x}(\mathbf{e}) \Pr(\mathbf{e}).$

Let $c \in \mathbb{R}$. We use the notation $\{x = c\}$ to denote the event x = c. That is, if

$$\{\mathbf{x} = \mathbf{c}\} = \{\mathbf{e} : \mathbf{e} \in \Omega \text{ and } \mathbf{x}(\mathbf{e}) = \mathbf{c}\}.$$

It is sometimes useful to express the expectation of x as

 $c \in \text{Range}(x)$

$$\mathbb{E}[x] = \sum_{c \in \mathbb{F}[\{x = c\}]} c \Pr[\{x = c\}].$$

This works because the events $E = \{\{x = c\} : c \in \text{Range}(x)\}$ partition Ω , so

$$\begin{split} \mathbb{E}[\mathbf{x}] &= \sum_{e \in \Omega} \mathbf{x}(\mathbf{e}) \Pr(\mathbf{e}) \\ &= \sum_{c \in \mathrm{Range}(\mathbf{x})} \sum_{e \in \{\mathbf{x} = c\}} \mathbf{x}(e) \Pr(\mathbf{e}) \\ &= \sum_{c \in \mathrm{Range}(\mathbf{x})} \sum_{e \in \{\mathbf{x} = c\}} c \Pr(\mathbf{e}) \\ &= \sum_{c \in \mathrm{Range}(\mathbf{x})} c \sum_{e \in \{\mathbf{x} = c\}} \Pr(\mathbf{e}) \\ &= \sum_{c \in \mathrm{Range}(\mathbf{x})} c \Pr[\{\mathbf{x} = c\}] \end{split}$$

Expressions of random variables are random variables. E.g. Let X, Y be random variables. Then S = X + Y is a random

variable. That is $S:\Omega\to\mathbb{R}$ such that S(e)=X(e)+Y(e).

Indicator Variables

Let *S* be a set. A *predicate* on *S* is a function $p: S \rightarrow \{True, False\}$.

Let p be a **predicate** on the sample space, Ω . An **indicator** variable for a predicate p, denoted $\mathbb{1}_p$, is the random variable

$$\mathbb{1}_p(e) = egin{cases} 1 & ext{if } p(e) = ext{True}, \ 0 & ext{otherwise}. \end{cases}$$

Cool Trick!

The expectation of an indicator variable gives the probability that the predicate holds for any $e \in \Omega$. To see this, observe

$$\begin{split} \mathbb{E}[\mathbb{1}_p] &= \sum_{a \in \text{Range}(\mathbb{1}_p)} a \Pr\left[\{\mathbb{1}_p = a\}\right] \\ &= \sum_{a \in \{0,1\}} a \Pr\left[\{\mathbb{1}_p = a\}\right] \\ &= 0 \cdot \Pr\left[\{\mathbb{1}_p = 0\}\right] + 1 \cdot \Pr\left[\{\mathbb{1}_p = 1\}\right] \\ &= \Pr\left[\{\mathbb{1}_p = 1\}\right] \\ &= \Pr\left[\{e : p(e) = \mathsf{True}\}\right]. \end{split}$$

This may look like a lot of nothing but it will prove to save us work!

Linearity of Expectation

Consider $\mathbb{E}[X+Y]$. We have,

$$\begin{split} \mathbb{E}[X+Y] &= \sum_{e \in \Omega} \left[X(e) + Y(e) \right] \Pr(e) \\ &= \sum_{e \in \Omega} X(e) \Pr(e) + \sum_{e \in \Omega} Y(e) \Pr(e) \\ &= \mathbb{E}[X] + \mathbb{E}[Y] \end{split}$$

In other words, the **expectation of a sum is the sum of expectations**! (May not seem that exciting but this will save us work.)

Linearity of Expectation

Also, consider multiplication of a random variable, X, by a constant, $c \in \mathbb{R}$. The result, cX, is a random variable. Observe,

$$\mathbb{E}[cX] = \sum_{e \in \Omega} cX(e) \Pr(e) = c \sum_{e \in \Omega} X(e) \Pr(e) = c\mathbb{E}[X]$$

Note, however, that

 $\mathbb{E}[XY] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y].$

To see why, observe

$$\begin{split} \mathbb{E}[X] \cdot \mathbb{E}[Y] &= \sum_{x \in \text{Range}(X)} x \Pr[\{X = x\}] \sum_{y \in \text{Range}(Y)} y \Pr[\{Y = y\}] \\ &= \sum_{x \in \text{Range}(X)} \sum_{y \in \text{Range}(Y)} xy \Pr[\{X = x\}] \Pr[\{Y = y\}]. \end{split}$$

While,

$$\begin{split} \mathbb{E}[XY] &= \sum_{z \in \text{Range}(XY)} z \Pr[\{XY = z\}] \\ &= \sum_{x \in \text{Range}(X)} \sum_{y \in \text{Range}(Y)} xy \Pr[\{XY = xy\}]. \end{split}$$

It follows that these are equal if X, Y are independent. That is,

$$\Pr[\{XY = xy\}] = \Pr[\{X = x\}] \Pr[\{Y = y\}].$$

Consider n flips of a biased coin that is heads with probability p. What is X, the expected number of heads? (Long solution.)

$$\mathbb{E}[X] = \sum_{i=0}^{n} i \Pr[\{x = i\}] = \sum_{i=0}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i}$$

This kind of looks like a binomial expansion of $(p + (1 - p))^n$ but there is an i in the way.

Note that,

$$i\binom{n}{i}=n\binom{n-1}{i-1}.$$

To see why, consider two ways to count number of committees formed of i people selected from n people where one of the committee members serves as president:

- ▲ On one hand, we have $\binom{n}{i}$ choices of committee members and, for each, i choices for president. Thus, there are $i\binom{n}{i}$ ways to pick this committee.
- ▲ On the other, if we pick the president first we have n choices of president. We then must choose the other i-1 committee members from the remaining n-1 people. That is, we have $n\binom{n-1}{i-1}$ ways to pick this committee.

Consider n flips of a biased coin that is heads with probability p. What is X, the expected number of heads? (Long solution.)

$$\mathbb{E}[X] = \sum_{i=0}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i} = \sum_{i=1}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i}$$

$$= n \sum_{i=1}^{n} \binom{n-1}{i-1} p^{i} (1-p)^{n-i}$$

$$= n \sum_{i=0}^{n-1} \binom{n-1}{i} p^{i+1} (1-p)^{n-(i+1)}$$

$$= n p \sum_{i=0}^{n-1} \binom{n-1}{i} p^{i} (1-p)^{(n-1)-i}$$

$$= n p (p + (1-p))^{n-1} = n p,$$

where the second-to-the-last equality follows from the binomial theorem.

Consider n flips of a biased coin that is heads with probability p. What is X, the expected number of heads? (Short solution.)

Let X_i be the indicator variable that the i-th flip is heads. That is,

$$X_i((f_1,f_2,\ldots,f_n)) = egin{cases} 1 & ext{if } f_i = H, \ 0 & ext{otherwise}. \end{cases}$$

Note that $X=X_1+X_2+\ldots+X_n$, and that $\mathbb{E}[X_i]=p$. Observe,

$$\mathbb{E}[X] = \mathbb{E}\left[\left|\sum_{i=1}^n X_i
ight| = \sum_{i=1}^n \mathbb{E}[X_i] = \sum_{i=0}^n p = np.$$

Moral of the Story: Combining *indicator variables* with *linearity of expectation* can *save us work*!