WiDS '22 - '23 Final Documentation

<Project UID: 46> <Traffic Sign Detection using YOLO> <Annie D'Souza, Priyanshi Gupta>

Team Member Name	Roll Number	Email-Id	
Shrey Gupta	190100112	shrreyygupta@gmail.com	

Introduction to Problem Statement

Given a dataset of real-life road images containing traffic sign and annotations, classify the traffic sign according to its type (danger, prohibitory, etc.) using YOLO (You Only Look Once) algorithm.

Existing Resources

Tutorials

- How to Train A Custom Object Detection Model with YOLO v5 | by Jacob Solawetz |
 Towards Data Science
- YOLOv5 Object Detection on Windows (Step-By-Step Tutorial) Weights & Biases

Proposed Solution

- 1. Understand the basics of python, numpy, opency and pytorch
- 2. Understand the how to do image processing using opency
- 3. Either create a dataset and annotate it using roboflow OR given a dataset of images and annotations use roflow for annotation
- 4. While annotating do proper preprocessing and augmentation of images
- 5. Import the dataset in your notebook
- 6. Import relevant python libraries and yolov5 model
- 7. Train the model using yolov5, find the best weights using the validation set and then test the weights on the test set

- 8. According to the metrics like precision, recall, Mean Average Precision(mAP) etc on the dataset update the hyperparameters like batch size, number of epochs etc.
- 9. Then repeat until you get satisfying prediction on the test dataset

Methodology & Progress (Mention the work done week-wise)

Week 1: Revising Python basics, Introduction to OpenCV and TensorFlow. Dataset generation for interested mentees.

Week 2, Week 3: Understanding object detection & classification and the working of the YOLO algorithm. Implementing the YOLO algorithm on the dataset.

Week 4: Summarizing and Report making

Results

https://github.com/Shrey371/WiDS-190100112

Learning Value

- Basics of numpy, python, opency and pytorch
- Generating my own dataset using python
- Annotating images for object detection using roboflow
- Data augmentation using various python libraries
- Theory behind object detection
- Implementation of yolo v5 model

Tech-stack Used

Operating system: Windows 11 Programming language: Python

Programming Environment: Jupyter Notebooks

Packages: Check the notebook given in the github repo

Suggestions for others

Be patient and try new stuff. If you hit a roadblock, check-out other methods to reach the destination.

Contribution by each Team Member

_				
Done	ind	livid	เมลโ	I٧
	1110	II V I U	uai	ıγ

References and Citations

Basics

- Python Tutorial GeeksforGeeks
- NumPy Tutorial
- OpenCV Python Tutorial GeeksforGeeks
- TensorFlow Basics

Generating Dataset

How to Create Your Own Image Dataset for Deep Learning | by Matt Oehler | Towards
 Data Science

Annotating Dataset

- How to use CVAT for computer vision [2022 updates]
- Roboflow

Image Augmentation

• Learn Image Augmentation Using 3 Popular Python Libraries

Object Detection Theory

- Classification, Object Detection and Image Segmentation Qualcomm Developer
 Network
- What is Object Detection?. Computer Vision Object detection... | by Ashish Patel | ML Research Lab | Medium