LECTURE 10:INFLUENCE MAXIMIZATION IN NETWORKS

How to Create Big Cascades?

Blogs — Information epidemics:

- Which are the influential blogs?
- Which blogs create big cascades?
- Where should we advertise?

Which node shall we target?

VS.

Viral Marketing?

We are more influenced by our friends than strangers

Viral Marketing

Identify influential customers

Convince them to adopt the product – Offer discount/free samples

These customers endorse the product among their friends

Probabilistic Contagion

- Independent Cascade Model
 - \square Directed finite G = (V, E)
 - Set S starts out with new behavior
 - Say nodes with this behavior are "active"
 - $lue{}$ Each edge (v,w) has a probability p_{vw}
 - \blacksquare If node v is active, it gets one chance to make w active, with probability p_{vw}
 - Each edge fires at most once
- Does scheduling matter? No
 - $\blacksquare u, v$ both active, doesn't matter which fires first
 - But the time moves in discrete steps

Independent Cascade Model

- □ Initially some nodes S are active
- $lue{}$ Each edge (v,w) has probability (weight) p_{vw}

- □ When node v becomes active:
 - lacksquare It activates each out-neighbor w with prob. p_{vw}
- Activations spread through the network

Most Influential Set of Nodes

- □ S: is initial active set
- \Box f(S): The expected size of final active set

 \bigcup ... influence set X_{ij} of node u

□ Set S is more influential if f(S) is larger

$$f({a,b}) < f({a,c}) < f({a,d})$$

Most Influential Set

Problem:

Most influential set of size
 k: set S of k nodes
 producing largest expected
 cascade size f(S) if
 activated [Domingos-Richardson '01]

Optimization problem:

$$\max_{S \text{ of size k}} f(S)$$

Why "expected cascade size"? X_a is a result of a random process. So in practice we would want to compute many realizations of X_a and then maximize the avg. f(S)

$$f(S) = \sum_{\substack{\text{Random} \\ \text{realizations } i}} f_i(S)$$

HOW HARD IS INFLUENCE MAXIMIZATION?

Most Influential Subset of Nodes

- Most influential set of k nodes:
 set S on k nodes producing largest expected cascade size f(S) if activated
- □ The optimization problem:

$$\max_{Sof size k} f(S)$$

- □ How hard is this problem?
 - NP-COMPLETE!
 - Show that finding most influential set is at least as hard as a vertex cover

Background: Vertex Cover

□ Vertex cover problem

(a known NP-complete problem):

□ Given universe of elements $U = \{u_1, ..., un\}$

and sets $X_1, \dots, X_m \subseteq U$

- Are there k sets among $X_1,...,X_m$ such that their union is U?
- □ Goal:

Encode vertex cover as an instance of

Influence Maximization is NP-hard

- Given a vertex cover instance with sets X_1, \ldots, X_m
- □ Build a bipartite "X-to-U" graph:

e.g.: $X_1 = \{u_1, u_2, u_3\}$

Construction:

- Create edge
 (X_i, u) ∀ X_i ∀ u ∈ X_i
 directed edge
 from sets to their elements
 Put weight 1 on
- Put weight 1 o each edge (e.i., activation is deterministic)
- Vertex cover as Influence Maximization in X-to-U graph: There exists a set S of size k with f(S)=k+n iff there exists a size k set cover

Note: Optimal solution is always a set of sets X_i . This problem is hard in general, could be special cases that are easier.

Summary so Far

- □ Bad news:
 - Influence maximization is NP-complete
- □ Next, good news:
 - There exists an approximation algorithm!
- Consider the Hill Climbing algorithm to find S:
 - Input:

Influence set of each node u: $X_u = \{v_1, v_2, \dots\}$

- lacksquare If we activate u, nodes $\{v_1, v_2, \dots\}$ will eventually get active
- **Algorithm:** At each iteration i take the node u that gives best marginal gain: $\max_{x} f(S_{i-1} \cup \{u\})$

 S_i ... Initially active set $f(S_i)$... Size of the union of X_u , $u \in S_i$

(Greedy) Hill Climbing

Algorithm:

- \square Start with $S_0 = \{\}$
- \square For $i = 1 \dots k$
 - Take node u that $\max f(S_{i-1} \cup \{u\})$
 - lacksquare Let S_{i} $S_{i-1} \cup \{u\}$

Example:

- \blacksquare Eval. $f(\{a\}), ..., f(\{e\})$, pick max of them
- Eval. $f(\{a, b\}), ..., f(\{a, e\})$, pick max
- Eval. f(a, b, c), ..., $f(\{a, b, e\})$, pick max

$$f(S_{i-1} \cup \{u\})$$

Approximation Guarantee

- Hill climbing produces a solution S where: $f(S) \ge (1-1/e)*OPT$ (f(S) > 0.63*OPT) [Nemhauser, Fisher, Wolsey '78, Kempe, Kleinberg, Tardos '03]
- \square Claim holds for functions $f(\cdot)$ with 2 properties:
 - f is monotone: (activating more nodes doesn't hurt) if $S \subset T$ then $f(S) \leq f(T)$ and $f(\{\})=0$
 - f is submodular: (activating each additional node helps less) adding an element to a set gives less improvement than adding it to one of its subsets: $\forall S \subseteq T$

$$f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$$
Gain of adding a node to a small set
Gain of adding a node to a large set

Submodularity – Diminishing returns

Diminishing returns:

$$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$$

Gain of adding a node to a small set

Gain of adding a node to a large set

Solution Quality

We just proved:

□ Hill climbing finds solution S which $f(S) \ge (1-1/e)*OPT$ i.e., $f(S) \ge 0.63*OPT$

- □ This is a data independent bound
 - This is a worst case bound
 - No matter what is the input data (influence sets), we know that the Hill-Climbing won't never do worse than 0.63*OPT

Evaluating f(S)?

- \Box How to evaluate f(S)?
 - Still an open question of how to compute efficiently
- But: Very good estimates by simulation
 - \blacksquare Repeating the diffusion process often enough (polynomial in n; $1/\epsilon$)
 - \blacksquare Achieve $(1 \pm \varepsilon)$ -approximation to f(S)
 - Generalization of Nemhauser-Wolsey proof: Greedy algorithm is now a $(1-1/e-\varepsilon')$ -approximation

SIMULATION EXPERIMENTS

Experiment Data

- A collaboration network: co-authorships in papers of the arXiv high-energy physics theory:
 - □ 10,748 nodes
 - 53,000 edges
- □ Independent Cascade Model:
 - □ Case 1: Uniform probabilities p on each edge
 - **Case 2:** Edge from v to ω has probability $1/\deg(ω)$ of activating ω.

Experiment Settings

- Simulate the process 10,000 times for each targeted set
 - Every time re-choosing edge outcomes randomly
- Compare with other 3 common heuristics
 - Degree centrality,
 - Distance centrality
 - Random nodes

Independent Cascade Model

Independent Cascade Model

