

Mufida Nuha Salimah	Jumat, 1 November 2019
171511050	Komputasi Numerik
3B / D3 – Teknik Informatika	Drs. Eddy B. Soewono., M.Kom

SOURCE CODE

```
No.
                                         Code
     /* Iterasi Birge-Vieta */
     void birge_vieta(){
         int m,i,flag=0;
         float r, x,x1, fx, fdx;
         /*header*/
         printf("\t\tMETODE BIRGE-VIETA");
         /* Input koefisien tertinggi */
         printf("\n Input koefisien tertinggi dari sebuah persamaan polinom
               (max 5): ");
         scanf("%d",&m);
         /* Input nilai dari masing-masing koefisien */
         for(i=0;i<=m;i++){
           printf("\n Koefisien x^{d} = ",m-i);
           scanf("%f",&p[i]);
           ply[i] = p[i];
         /* Input nilai tebakan awal */
         printf("\n Input tebakan awal x0 : ");
         scanf("%f",&r);
         x = r;
1.
         /* Perhitungan */
         do{
           printf("\n%f\n",x);
           fx = synth(m,x);
           for(i=0;i<=m;i++){
              p[i]=q[i];
           fdx = synth(m-1,x);
           x1 = x - (fx/fdx);
            if(fabs(x1-x) <= 0.0009){
              flag = 1;
            }
           x = x1;
           for(i=0;i<=5;i++){
              p[i]=ply[i];
         }while(flag!=1);
```

```
float p[6], ply[6],q[6];
    float synth(int m, float r){
        int i;
        q[0] = p[0];
        for(i=1;i<=m;i++){
           q[i] = (q[i-1]*r)+p[i];
        printf("\n");
        for(i=0;i<m;i++){
           printf("\t%f",q[i]);
        printf("\t%f",q[m]);
       return(q[m]);
    }
    /* Mendefinisikan fungsi */
    #define f1(x,y,z) (26-19*y-14*z)
#define f2(x,y,z) (27-2*x-6*z)/3
#define f3(x,y,z) (3-6*x+y)/-3
     /* Mendefinisikan ordo maksimum matriks */
    #define SIZE
    /* Iterasi Jacobi */
    void jacobi_iteration(){
        float x0=0, y0=0, z0=0, x1, y1, z1;
        int count=1;
        /*header*/
        printf("\n\nDengan menggunakan METODE JACOBI\n");
        printf("\nIterasi x\t y\t z\n ke-\n");
2.
        /*Iterasi Jacobi*/
        for(int i=0;i<2;i++){
        /* Perhitungan */
            x1 = f1(x0, y0, z0);
            y1 = f2(x0, y0, z0);
            z1 = f3(x0,y0,z0);
            printf(" %d\t%0.2f\t%0.2f\t%0.2f\n",count, x1,y1,z1);
            /* Iterasi */
            count++;
            /* Untuk iterasi selanjutnya, input nilai baru */
            x0 = x1;
            y0 = y1;
            z0 = z1;
        }
    }
```

```
/* Iterasi Gauss Seidel */
    void gauss_seidel_iteration(){
       float x0=0, y0=0, z0=0, x1, y1, z1;
       int count=1;
       /*header*/
       printf("Dengan menggunakan METODE GAUSS SEIDEL");
       printf("\nIterasi x\t y\t z\n ke-\n");
       /*Iterasi Gauss Seidel*/
       for(int i=0;i<2;i++){
           /* Perhitungan */
           x1 = f1(x0, y0, z0);
3.
           y1 = f2(x1, y0, z0);
           z1 = f3(x1,y1,z0);
           printf(" %d\t%0.2f\t%0.2f\t%0.2f\n",count, x1,y1,z1);
           /* Iterasi */
           count++;
           /* Untuk iterasi selanjutnya, input nilai baru */
           x0 = x1;
           y0 = y1;
           z0 = z1;
       }
    }
    /* Metode faktorisasi segitiga dengan menggunakan eliminasi Gauss dengan
    menerapkan strategi (partial) pivoting */
       void gauss_elimination(){
       float a[SIZE][SIZE], x[SIZE], ratio;
       int i,j,k,n;
       /* Inputs */
       /* 1. Membaca hasil input ordo matriks*/
       printf("Input ordo matriks: ");
       scanf("%d", &n);
       /* 2. Input isi matirks*/
       for(i=1;i<=n;i++){
          for(j=1;j<=n+1;j++){
              printf("a[%d][%d] = ",i,j);
                 scanf("%f", &a[i][j]);
4.
          }
       }
       /* Eliminasi Gauss */
       for(i=1;i<=n-1;i++){
          if(a[i][i] == 0.0){
              printf("Mathematical Error!");
              exit(0);
          for(j=i+1;j<=n;j++){
              ratio = a[j][i]/a[i][i];
              for(k=1;k<=n+1;k++){}
                 a[j][k] = a[j][k] - ratio*a[i][k];
              }
          }
```

```
/* Memperoleh solusi dengan "Back Subsitution" */
  x[n] = a[n][n+1]/a[n][n];
  for(i=n-1;i>=1;i--){
     x[i] = a[i][n+1];
     for(j=i+1;j<=n;j++){
        x[i] = x[i] - a[i][j]*x[j];
     x[i] = x[i]/a[i][i];
       /* Menampilakan solusi */
  printf("\nSolusi :\n");
  for(i=1;i<=n;i++){
      printf("x[%d] = \%0.3f\n",i, x[i]);
  getch();
}
/* Kelengkapan program (menu,hiasan) */
void welcome(){
  printf("======Remedial Evaluasi Tengah Semester======\n");
  printf("=======Komputasi Numerik=======\n");
  printf("=======\n\n\n");
}
void equation(){
  printf("Diberikan persamaan sistem persamaan linear (SPL)\n");
  printf(" x + 19y + 14z = 26 n");
printf(" 2x + 3y + 6z = 27 n");
  printf(" 6x - y - 3z = 3\n");
}
int input_menu(){
  int menu_,no_menu;
  welcome();
  printf("1. Metode Bierge-Vieta\n");
  printf("2. Metode Jacobi\n");
  printf("3. Metode Gauss - Siedel\n");
  printf("4. Eliminasi Gauss\n");
  printf("Tampilkan jawaban dari no\n > ");
  scanf("%d", &no_menu);
  switch (no menu){
      case 1: menu_ = 1;
              break;
      case 2: menu = 2;
              break;
      case 3: menu = 3;
              break;
      case 4: menu_ = 4;
              break;
      default: printf("Input Error");
               exit(0);
```

```
return menu_;
}
void menu(int no_menu){
   switch (no_menu){
       case 1: system("cls");
               birge_vieta();
               break;
       case 2: system("cls");
               equation();
               jacobi_iteration();
               break;
       case 3: system("cls");
               equation();
               gauss_seidel_iteration();
               break;
       case 4: system("cls");
               equation();
               gauss_elimination();
               break;
       default: printf("Input Error");
                exit(0);
   }
/* main */
int main(){
   menu(input_menu());
   return 0;
```

SCREENSHOT PROGRAM

No	Deskripsi	Screenshot
	Menampilkan menu (memilih menu no.1)	E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe ======Remedial Evaluasi Tengah Semester===== =====Komputasi Numerik====================================
		1. Metode Bierge-Vieta 2. Metode Jacobi 3. Metode Gauss - Siedel 4. Eliminasi Gauss Tampilkan jawaban dari no > 1
	Metode Birge- Vieta (input nilai dari masing-masing	E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe METODE BIRGE-VIETA Input koefisien tertinggi dari sebuah persamaan polinom (max 5): 3 Koefisien x^3 = 3
	koefisien)	Koefisien x^2 = 0 Koefisien x^1 = 9 Koefisien x^0 = -3
1.	Input tebakan awal (x0)	■ E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe METODE BIRGE-VIETA Input koefisien tertinggi dari sebuah persamaan polinom (max 5): 3
		Koefisien $x^3 = 3$ Koefisien $x^2 = 0$ Koefisien $x^1 = 9$
		Koefisien x^0 = -3 Input tebakan awal x0 : 0.5
	Menampilkan solusi polinom dengan	Input tebakan awal x0 : 0.5 0.500000 3.000000 1.500000 9.750000 1.875000
	menggunakan Metode Birge- Vieta	3.000000 3.000000 11.250000 0.333333 3.000000 1.000000 9.333333 0.111111 3.000000 2.000000 10.000000
		3.000000 0.966667 9.311481 0.000366 3.000000 1.933333 9.934444 Process exited after 244.6 seconds with return value 0
		Press any key to continue

2.	Menampilkan menu (memilih menu no.2)	E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe ==============Komputasi Numerik====================================
	Menampilkan solusi dari sistem persamaan linear dengan menggunakan Metode Jacobi	E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe Diberikan persamaan sistem persamaan linear (SPL) x + 19y + 14z = 26 2x + 3y + 6z = 27 6x - y - 3z = 3 Dengan menggunakan METODE JACOBI Iterasi x y z ke- 1 26.00 9.00 -1.00 2 -131.00 -6.33 48.00 Process exited after 155 seconds with return value 0 Press any key to continue
	Menampilkan menu (memilih menu no.3)	E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe ==============Komputasi Tengah Semester====== ==============================
3.	Menampilkan solusi dari sistem persamaan linear dengan menggunakan Metode Gauss Siedel	E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe Diberikan persamaan sistem persamaan linear (SPL) x + 19y + 14z = 26 2x + 3y + 6z = 27 6x - y - 3z = 3 Dengan menggunakan METODE GAUSS SEIDEL Iterasi x y z ke- 1 26.00 -8.33 53.78 2 -568.56 280.48 -1231.60 Process exited after 1.42 seconds with return value 0 Press any key to continue

	Menampilkan menu (memilih menu no.4)	E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe ======Remedial Evaluasi Tengah Semester===== =====Komputasi Numerik====================================
	Input ordo matriks	■ E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe Input ordo matriks: 3
4.	Metode Eliminasi Gauss (input nilai dari masing-masing elemen matriks)	E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe Input ordo matriks: 3 a[1][1] = 1 a[1][2] = 19 a[1][3] = 14 a[1][4] = 26 a[2][1] = 2 a[2][2] = 3 a[2][2] = 3 a[2][3] = 6 a[2][4] = 27 a[3][1] = 6 a[3][2] = -1 a[3][3] = -3 a[3][4] = 3
	Menampilkan solusi sistem persamaan linear dengan menggunakan Eliminasi Gauss dengan menerapkan strategi (partial) pivoting	E:\Kuliah\Semester 5\[3] Komputasi Numerik\ETS\Komnum.exe Input ordo matriks: 3 a[1][1] = 1 a[1][2] = 19 a[1][3] = 14 a[1][4] = 26 a[2][1] = 2 a[2][2] = 3 a[2][3] = 6 a[2][4] = 27 a[3][1] = 6 a[3][2] = -1 a[3][3] = -3 a[3][4] = 3 Solusi : x[1] = 2.522 x[2] = -2.313 x[3] = 4.816