Ligações químicas

Combinação, diferentes substâncias.

Ganho e perda ou compartilhamento de elétrons.

Gases nobres distribuição eletrônica do nível de valência

$$_{2}$$
He — 1 $_{5}^{2}$
 $_{10}$ Ne — 2 $_{5}^{2}$ 2 $_{9}^{6}$
 $_{18}$ Ar — 3 $_{5}^{2}$ 3 $_{9}^{6}$
 $_{36}$ Kr — 4 $_{5}^{2}$ 4 $_{9}^{6}$
 $_{54}$ Xe — 5 $_{5}^{2}$ 5 $_{9}^{6}$

 $_{86}$ Rn — $6 s^2 6 p^6$

gases nobres - átomos isolados. estabilidade.

Teoria do Octeto: um grande número de átomos adquire estabilidade eletrônica quando apresenta oito elétrons na sua camada mais externa.

LIGAÇÃO IÔNICA

ligação entre íons positivos e negativos.

força de atração eletrostática

átomos que perdem elétrons famílias: IA,

IIA e IIIA

átomos que ganham: famílias VA, VIA e VIIA.

O hidrogênio (Z = 1) fica estável com 2 elétrons.

A ligação iônica é a única em que ocorre transferência definitiva de elétrons.

	A — e⁻ → B				
Tendência	ceder elétrons	receber elétrons			
Classificação	metais	ametais semimetais hidrogênio			
Interação	cátions 				

e = 18(-)

e = 17(-)

$Na^+ + C\ell^- \longrightarrow NaC\ell$

Ao lado, cristais do sal; à direita, representação de retículo de NaC ℓ — visão "microscópica". O cloreto de sódio, assim como todo composto iônico, é formado por um aglomerado de cátions e ânions.

- sólidos nas condições ambientes;
- elevadas temperatura de fusão e temperatura de ebulição;
- duros e quebradiços;
- apresentam condutibilidade elétrica quando dissolvidos em água ou em estado líquido: íons livres;
- seu melhor solvente é a água.

$$[A]_{y}^{+x} = B_{x}^{-y}$$

total de cargas positivas: $(y) \cdot (+x) = +xy$ total de cargas negativas: $(x) \cdot (-y) = -xy$ \sum das cargas = zero

(Fuvest-SP – mod.) Considere os íons: Ca^{2+} , PO_4^{3-} e OH^- . A combinação desses íons pode resultar na hidroxiapatita, mineral presente em ossos e dentes. A fórmula química pode ser representada por $Ca_x(PO_4)_3OH$. O valor de **x** nesta fórmula é: b) 2. c) 3. d) 4. a) 1. e) 5.

SOLUÇÃO

Como sabemos que o somatório das cargas deve ser igual a zero e que pela fórmula temos:

$$\text{Ca}_{x}^{2+} (\text{PO}_{4})_{3}^{3-} \text{OH}^{-}$$

Somatório das cargas: $x \cdot (+2) + 3 \cdot (-3) + 1 \cdot (-1) = 0 \Rightarrow x = 5$

LIGAÇÃO COVALENTE

Ambos os átomos precisam receber elétrons para chegar a 8 elétrons na última camada.

Par eletrônico.

Ocorre o compartilhamento de elétrons.

Moléculas.

Átomos	А	В			
Tendência	receber elétrons	receber elétrons			
Classificação	hidrogênio, ametais, semimetais	hidrogênio, ametais, semimetais			
Par de elétrons					

Elemento	Camada de valência	Quantidade de pares compartilhados	Possibilidades de ligação	
família VIIA	7 elétrons	1	$C\ell$	
família VIA	6 elétrons	2		
família VA	5 elétrons	3		
família IVA	4 elétrons	4		
hidrogênio	1 elétron	1	H	

a) **Molecular**: é a representação mais simples e indica apenas quantos átomos de cada elemento químico formam a molécula.

H₂O CO₂ água gás carbônico

b) Eletrônica: também conhecida como fórmula de Lewis, esse tipo de fórmula mostra, além dos elementos e do número de átomos envolvidos, os elétrons da camada de valência de cada átomo e a formação dos pares eletrônicos.

c) Estrutural plana: também conhecida como fórmula estrutural de Couper, ela mostra as ligações entre os elementos, sendo cada par de elétrons entre dois átomos representado por um traço.

$$H - O - H$$
 $O = C = O$ água gás carbônico

Nome	Constituição	Fórmula molecular	Fórmula eletrônica	Fórmula estrutural plana	Tipos de ligação
gás hidrogênio	2 átomos de hidrogênio	H ₂	H•• H	н—н	1 simples
gás oxigênio	2 átomos de oxigênio	O ₂	0.0	0=0	1 dupla

Nome	Constituição	Fórmula molecular	Fórmula eletrônica	Fórmula estrutural plana	Tipos de ligação
gás nitrogênio	2 átomos de nitrogênio	N ₂	:N •• N:	$N \equiv N$	1 tripla
água	2 átomos de hidrogênio e 1 de oxigênio	H ₂ O	H •• O •• H	H-O-H	2 simples
gás amônia	3 átomos de hidrogênio e 1 de nitrogênio	NH ₃	H •• N •• H	H — N — H H	3 simples
gás metano	4 átomos de hidrogênio e 1 de carbono	CH ₄	H I H I C II H I H	H H — C — H H	4 simples

LIGAÇÃO DATIVA

Essa ligação é semelhante à covalente comum, e **ocorre entre um átomo que já** atingiu a estabilidade eletrônica e outro ou outros que necessitem de dois elétrons para completar sua camada de valência.

amônia +
$$H^{+} \longrightarrow NH_{4}^{+}$$
 $H \longrightarrow N : \longrightarrow H^{+} \longrightarrow H \longrightarrow H$
 $H \longrightarrow H \longrightarrow H$

elétrons da camada de valência $H_x EO_y$

