Teorie množin

Tomáš Turek

Poznámka: Následující text jsou moje osobní zápisky z Teorie množin z roku 2021-2022. V textu se můžou vyskytovat jak gramatické chyby, tak i technicé chyby (jako ne zcela správný důkaz apod.), tím pádem berte text jako doplňek přednášky.

Přednáška 1

Jazyk teorie množin

- Jazyk teorie $x \in Y$.
- Také se bude používat *metajazyk* jako například: "definovat", "formule" a "třída".

Symboly

- Proměnné pro množiny X, Y, Z, x_1, x_2, \dots
- Binární predikátový (relační) symbol = a taky ∈ (náležení).
- Dále také logické spojky: $\neg, \land, \lor, \rightarrow, \leftarrow (\Leftarrow, \Rightarrow)$.
- Také kvantifikátory: \forall a \exists .
- Samozřejmě i závorky (), [].

Formule

- Atomické formule x = y a $x \in y$.
- 1. Jsou-li φ, ψ formule, pak $\neg \varphi, \varphi \lor \psi, \varphi \land \psi, \varphi \to \psi, \varphi \leftrightarrow \psi$ jsou také formule (popřípadě i uzávorkované).
- 2. Je-li φ formule, pak $(\forall x)\varphi$ a $(\exists x)\varphi$ jsou také formule.
- Každá formule pak lze dostat z atomických formulí konečně mnoha pravidly 1 a 2.

Rozšíření jazyka (zkratky)

- $x \neq y$ je pro $\neg(x = y)$.
- $x \notin y$ je pro $\neg (x \in y)$.

- $x \subseteq y$ je pro "x je podmnožina y" $(\forall u)(u \in x \to u \in y)$.
- $x \subset y$ je pro "x je vlastní podmnožina" $(x \subseteq y \land x \neq y)$.

Cvičeni

Napište formulí "množina x je prázdná".

Axiomy logiky ("jak se chovají logické symboly")

• Axiomy výrokové logiky např.: schéma axiomů: Jsou-li φ, ψ formule, pak

$$\varphi \to (\psi \to \varphi)$$

- je axiom.
- Axiomy predikátové logiky např.: Schéma axiomů: Jsou-li φ,ψ formule, x proměnná, která není volná ve φ , pak

$$(\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi)$$

- je axiom.
- Axiomy pro rovnost:
 - -x je proměnná, pak x = x je axiom.
 - -x,y,z jsou proměnné, R je relační symbol, pak

$$(x = y) \rightarrow (\forall z)(R(x, z) \leftrightarrow R(y, z))$$

$$(x = y) \to (\forall z)(x \in z \leftrightarrow y \in z)$$

$$(x = y) \to (\forall z)(z \in x \leftrightarrow z \in y)$$

- Odvozovací pravidla:
 - $Z \varphi, \varphi \rightarrow \psi$ odvoď ψ .
 - $\operatorname{Z} \varphi' \operatorname{odvod} (\forall x) \varphi.$

Axiomy teorie množin

"Jak se chová ∈." "Jaké množiny existují."

- Zermelo-Fraenkelova teorie, zkráceně ${\bf ZF}$ má celkem 9 axiomů (resp. 7 axiomů a 2 schémata).
- Pak je ještě 10.axiom výběru (AC) to pak je *ZF+AC=*ZFC.

1. Axiom existence množin

• "Existuje množina."

$$(\forall x)(x=x)$$

2. Axiom extensionality

- Udává souvislost mezi \in a =.
- "Množina je určena svými prvky."

$$(\forall z)(z \in x \leftrightarrow z \in y) \to x = y$$

Cvičeni

Dokažte $((x \subseteq y) \land (y \subseteq z)) \rightarrow x \subset z$.

Přednáška 2

3. Schéma axiomu vydělení

Je-li $\varphi(x)$ formule, která neobsahuje volnou proměnnou z. Pak:

$$(\forall a)(\forall x)(\exists z)(x \in z \leftrightarrow (x \in a \land \varphi(x))$$

je axiom.

- "Z množiny avybereme prvky s vlastností $\varphi(x)$ a ty vytvoří novou množinu z."
- Díky axiomu extenzionality je taková z právě jedna.

Značení:

- $\{x; x \in a \land \varphi(x)\}$ je zkrácení.
- $\{x \in a; \varphi(x)\}$ "Množina všech prvků a splňující $\varphi(x)$."

Definice:

- Průnik: $a \cap b$ je $\{x, x \in a \land x \in b\}$.
- Rozdíl: $a \setminus b$ je $\{x, x \in a \land x \notin b\}$

Cvičení

- Napište formulí "množina a je jednoprvková".
- Dokažte, že množina všech množin neexistuje.

4. Axiom dvojice

$$(\forall a)(\forall b)(\exists z)(\forall x)(x \in z \leftrightarrow (x = a \lor x = b))$$

• "(Ne)každým dvěma množinám a, b existuje množina z, která má za prvky právě a, b."

Definice:

- $\{a,b\}$ je **neuspořádaná dvojice** množin a,b, jakožto dvouprvková množina s prvky a,b (pokud $a \neq b$).
- $\{a\}$ znamená $\{a,a\}$, nebo-li jednoprvková množina s prvkem a.

Příklad:

Můžeme vytvořit $\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \dots$

Cvičení

 $Doka\check{z}te\ (\forall z)(x\in z\leftrightarrow y\in z)\to x=y.$

Definice:

(a,b) je **uspořádaná dvojice** množina,b. To je pak množina $\{\{a\},\{a,b\}\}$

Poznámka:

Pro
$$a = b$$
 je $(a, b) = \{\{a\}, \{a, a\}\} = \{\{a\}, \{a\}\} = \{\{a\}\}.$

Lemma

$$(x,y) = (u,v) \leftrightarrow (x = u \land y = v)$$

Důkaz:

- $\{x\} = \{u\}$ plyne z axiomu extensionality. - $\{x,y\} = \{u,v\}; \{\{x\},\{x,y\}\} = \{\{u\},\{u,v\}\}$
- \rightarrow $\{\{x\}, \{x,y\}\} = \{\{u\}, \{u,v\}\}$ to pak znamená, že $\{x\} = \{u\} \lor \{x\} = \{u,v\}$ kde v obou případech x = u.
 - $\{u, v\} = \{x\} \lor \{u, v\} = \{x, y\} \text{ tedy } v = x \lor v = y$
 - Pokud v = x pak z x = u plyne, že v = u = x.

Definice:

Jsou-li $a_1, a_2, a_3, \ldots, a_n$ množiny, definujeme **uspořádanou** n-tici $(a_1, a_2, a_3, \ldots, a_n)$. Následně (a_1) znamená a_1 a je-li definována (a_1, \ldots, a_k) pak $(a_1, \ldots, a_k, a_{k+1})$ je $((a_1, \ldots, a_k), a_{k+1})$.

Lemma

$$(a_1, a_2, a_3, \dots, a_n) = (b_1, b_2, b_3, \dots, b_n) \leftrightarrow (a_1 = b_1 \land \dots \land a_n = b_n)$$

Důkaz:

• Jako cvičení.

5. Axiom sumy (axiom of the union)

$$(\forall a)(\exists z)(\forall x)(x \in z \leftrightarrow (\exists y)(x \in y \land y \in a))$$

Definice:

 $\bigcup a$ je **suma** množiny a. Tzn " $\{x, (\exists y)(x \in y \land y \in a)\}$ ".

Pozorování

Pokud $a = \{b, c\}$, pak $\bigcup \{b, c\} = \{x, x \in b \lor x \in c\}$.

Definice:

 $b \cup c$ je $\bigcup \{b, c\}$ sjednocení množin b, c.

Definice:

Jsou-li $a_1, \ldots a_n$ množiny, definujeme **neuspořádanou** n-tici $\{a_1, \ldots a_n\}$ (n-prvkovou množinu, pokud každé a_i je různé) rekurzivně. Je-li definovaná $\{a_1, \ldots a_k\}$ pro $k \geq 2$, pak $\{a_1, \ldots a_k, a_{k+1}\}$ je $\{a_1, \ldots a_k\} \cup \{a_{k+1}\}$.

6. Axiom potence (power set, potenční množina)

$$(\forall a)(\exists z)(\forall x)(x \in z \leftrightarrow x \subseteq a)$$

• "Existuje množina zjejichž prvky jsou právě podmnožiny množiny a."

Definice:

 $\mathcal{P}(a)$ je " $\{x; x \subseteq a\}$ " potenční množina $[2^a]$ množiny a (potence a).

Příklad:

$$\mathcal{P}(\emptyset) = \{\emptyset\} \ a \ \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$$

Cvičení

Co je
$$\mathcal{P}(\bigcup a)$$
 a jestli $\bigcup (\mathcal{P}(a)) = a$?

7. Schéma axiomu nahrazení

• "Obraz množiny funkcí je množina." Je-li $\psi(u,v)$ formule, která neobsahuje volné proměnné w,z, pak

$$(\forall u)(\forall v)(\forall w)((\psi(u,v) \land \psi(u,w)) \rightarrow v = w) \rightarrow (\forall a)(\forall z)(\forall v)(v \in z \leftrightarrow (\exists u)(u \in a \land \psi(u,v)))$$

je axiom.

- "Je-li ψ funkce (částečná) určená formulí: $\psi(u,v)$ je f(u)=v, pak obrazem a touto funkcí je opět množina (z)."
- Také implikuje schéma vydělení: $\varphi(u) \wedge u = v$.
- Poznámka: transfinitní rekurze, konstrukce $\omega + \omega$, Zornovo lemma, věta o dobrém uspořádání.

Přednáška 3

$8. Axiom \ fundovanosti \ (foundation, \ regularity)$

$$(\forall a)(a \neq \emptyset \to (\exists x)(x \in a \land x \cap a = \emptyset))$$

• "Každá množina má prvek, který je s ní disjunktní."

Cvičení

Ukažte, že Axiom fundovanosti zakazuje existenci konečných cyklů relace \in . Tedy množiny y takové, že $y \in y$, ale i y_1, y_2, \ldots, y_n takové, že $y_1 \in y_2 \in \cdots \in y_n \in y_1$.

• Díky axiomu fundovanosti lze všechny množiny vygenerovat z prázdné množiny operacemi \mathcal{P}, \bigcup .

Třídy

Definice:

 $\varphi(x)$ je formule a $\{x;\varphi(x)\}$ označuje "seskupení" množin, pro které platí $\varphi(x).$

- Pokud $\varphi(x)$ je tvaru $x \in a \land \psi(x)$, pak je to množina (axiom vydělení).
- $\{x; \varphi(x)\}$ je třídový term, soubor které označuje je **třída** určená formulí $\varphi(x)$.
 - "Definovatelný soubor množin."

- Je-li y množina, pak $y=\{x;x\in y \land x=x\}$ je třída. Tedy každá množina je i třída.
- Vlastní třída je třída, která není množinou.

Rozšíření jazyka:

- Ve formulích na místě volných proměnných připustíme třídové termy.
- Navíc proměnné pro třídy jsou X, Y, \dots (nebude možné je kvantifikovat).

Atomické proměnné

- $x = y, x \in y, x = X, x \in X, X \in x, X = Y, X \in Y$
- Plus ještě výrazy vzniklé nahrazením $\{x, \varphi(x)\}$ za x a $\{y, \varphi(y)\}$ za y.
- Ostatní formule rozšířeného jazyka vznikají pomocí logických spojek $(\neg, \lor, \land, \leftarrow, \rightarrow, \leftrightarrow)$ a kvantifikací množinových proměnných $((\forall x) \dots (\exists y) \dots)$.
- Formule s třídovými termy bez třídových proměnných označován jako "zkrácený zápis" formule základního jazyka.
- Formule s třídovými proměnnými označované jako "schéma formulí" základního (popř. rozšířeného) jazyka.

Eliminace třídových termů

- x,y,z,X,Y jsou proměnné a $\varphi(x),\psi(x)$ formule základního jazyka. X zastupuje $\{x,\varphi(x)\}$ a Y zastupuje $\{y,\varphi(y)\}$.
- 1. $z \in X$ zastupuje $z \in \{x, \varphi(x)\}.$
 - "z je prvkem třídy všech množin, splňující $\varphi(x)$."
 - Nahradíme: $\varphi(z)$.
- 2. z = X zastupuje $z = \{x, \varphi(x)\}.$
 - "Množina z se rovná třídě X."
 - Nahradíme: $(\forall u)(u \in z \leftrightarrow \varphi(u))$.
- 3. $X \in Y$ zastupuje $\{x, \varphi(x)\} \in \{y, \psi(y)\}.$
 - Nahradíme: $(\exists u)(\forall v)((v \in u \leftrightarrow \varphi(v)) \land \psi(u)).$
- 4. $X \in y$ zastupuje $\{x, \varphi(x)\} \in y$.
 - Nahradíme: $(\exists u)(\forall v)((v \in u \leftrightarrow \varphi(v)) \land u \in y)$.
- 5. X = Y zastupuje $\{x, \varphi(x)\} = \{y, \psi(y)\}.$
 - Nahradíme: $(\forall u)(\varphi(u) \leftrightarrow \psi(v))$

Meta pozorování

Formule rozšířeného jazyka určují stejné třídy jako formule základního jazyka. Příklad $\{x;x\notin\{z,\psi(z)\}\}\to\{x;\neg\psi(x)\}.$

Třídové operace

Definice:

- $A \cap B$ je $\{x, x \in A \land x \in B\}$.
- $A \cup B$ je $\{x, x \in A \lor x \in B\}$.
- $A \setminus B$ je $\{x, x \in A \land x \notin B\}$.
- Pokud $A = \{x, \varphi(x)\}$ a $B = \{y, \psi(y)\}$, pak $A \cap B = \{z, \varphi(z) \land \psi(z)\}$.

Definice:

 $\{x; x = x\}$ je **univerzální třída**, která se značí jako V.

- A je třída, (absolutní) doplněk A je $V \setminus A$, který se značí jako -A.
- $A \subseteq B, A \subset B$ značí, že A je podtřídou B (popř. vlastní podtřídou).

$Cvi\check{c}en\acute{\imath}$

Rozepište v základním jazyce teorie množin.

- 1. $\bigcup A \text{ nebo-li suma } t\check{r}idy A \text{ je } \{x, (\exists a)(a \in A \land x = a)\}$
- 2. $\bigcap A$ nebo-li průnik třídy A je $\{x, (\forall a)(a \in A \to x = a)\}$
- 3. $\mathcal{P}(A)$ nebo-li potenciál třídy A je $\{a, a \subseteq A\}$.
- $\bigcap \emptyset = V$, protože $\{x, (\forall a)(a \in \emptyset \to x \in a)\}.$

$Cvi\check{c}eni$

 $a \neq \emptyset$, je $\bigcap a \ mno\check{z}ina$?

Cvičení

Je
$$\mathcal{P}(V) = V^2$$
?

Lemma

Univerzální třída V není množina.

Důkaz:

Cvičení.

Lemma

Je-li A třída a množina, průnik $A \cap a$ je množina.

Důkaz:

Schéma axiomu vydělení $A = \{x, \varphi(x)\}, a \cap A = \{x, x \in a \land \varphi(x)\}.$

Definice:

Kartézský součin tříd A, B značen $A \times B$ je $\{(a, b), a \in A \land b \in B\}$ což je zkrácený zápis pro $\{x, (\exists a)(\exists b)(x = (a, b) \land a \in A \land b \in B)\}.$

Lemma

Jsou-li a, b množiny pak i $a \times b$ je množina.

Důkaz:

- Platí $a \times b \subseteq \mathcal{P}(\mathcal{P}(a \cup b))$.
- Vpravo je množina axiomu dvojice , sumy, dvakrát potence.
- Pak podle lemma (axiomu vydělení) $A=a\times b, a=\mathcal{P}(\mathcal{P}(a\cup b))$ tedy $a\times b$ je množina.
- Pokud $u \in a, v \in b$, pak $\{u\}, \{u, v\} \subseteq a \cup b$ tedy $\{u\}, \{u, v\} \in \mathcal{P}(a \cup b)$, stejně pak $\{\{u\}, \{u, v\}\} \subseteq \mathcal{P}(a \cup b)$ a $\{\{u\}, \{u, v\}\} \in \mathcal{P}(\mathcal{P}(a \cup b))$.

Definice:

X je třída, pak $X^1 = X$, induktivně pak $X^n = X^{n-1} \times X$.

• X^n je třída všech uspořádaných n-tic prvků X.

Pozorování

$$V^n\subseteq V^{n-1}\subseteq\cdots\subseteq V^1=V$$

Cvičení

Ukažte, že obecně neplatí $X \times X^2 = X^3$. Například pro $X = \{\emptyset\}$.

Přednáška 4

Relace

Definice:

- Třída R je (binární) **relace**, pokud $R \subseteq V \times V$.
- xRy zkratka za $(x, y) \in R$.
- n-ární relace je $R \subseteq V^n$.

Příklad:

- Relace náležení E je $\{(x,y), x \in y\}$.
- Relace identity Id je $\{(x,y), x=y\}$.

Definice:

Je-li X relace (libovolná třída), pak:

- Dom(X) je $\{u, (\exists v)(u, v) \in X\}$
- Rng(X) je $\{v, (\exists u)(u, v) \in X\}$
- Je-li Y třída, pak $X \sqcup Y(X[Y])$ je $\{z, (\exists y)(y \in Y \land (y, z) \in X\}.$
 - Nebo-li obraz třídy Ytřídou X.
- $X \upharpoonright Y$ je $\{(y, z), y \in Y \land (y, z) \in X\}$.
 - Zúžení třídy X na třídu Y. (restrikce, parcelizace)

Lemma

Je-li x množina, Y třída, pak Dom(x), Rng(x), $x \upharpoonright Y$, $x \sqcap Y$ jsou množiny.

Důkaz:

- Vnoříme do větší množiny.
- Platí $Dom(x) \subseteq \bigcup (\bigcup (x))$.
 - Když $u \in Dom(x)$ pak $(\exists v)(u,v) \in x$ a $u \in \{u\} \in (u,v) \in x$. Tedy $\{u\} \in \bigcup (x)$, tedy $u \in \bigcup (\bigcup (x))$.
- Podobně i pro $Rng(x) \subseteq \bigcup(\bigcup(x))$.
 - $-v \in Rng(x): (\exists u)(u,v) \in x$
 - $-v \in \{u,v\} \in (u,v) \in x \text{ tedy } v \in \bigcup(\bigcup(x)).$
- Pak už jenom $x \upharpoonright Y \subseteq x; x \sqcap Y \subseteq Rng(x)$

Definice:

- R, S jsou relace. Pak R^{-1} je $\{(u, v), (v, u) \in R\}$.
 - Nebo-li relace **inverzní** k ${\cal R}.$
- $R \circ S$ je $\{(u, v); (\exists w)((u, w) \in R \land (w, v) \in S)\}.$
 - $-\,$ Nebo-li složení relací R a S.

Poznámka:

$$(f \circ g)(x) = g(f(x))$$

$Cvi\check{c}en\acute{\iota}$

- Ověřte, že pro libovolnou relaci R je $Id \circ R = R = R \circ Id$.
- $(x,y) \in E \circ E \leftrightarrow x \in \bigcup y$

Definice:

Relace F je **zobrazení (funkce)** pokud:

$$(\forall u)(\forall v)(\forall w)(((u,v)\in F\wedge (u,w)\in F)\to v=w)$$

- "Pro každé $v \in Dom(F)$ existuje právě jedna množina v taková, že $(u,v) \in F$."
- Píšeme F(u) = v.

Definice:

- F je zobrazení třídy X do třídy Y; $F: X \to Y$, pokud Dom(F) = X a $Rng(F) \subseteq Y$.
- F je zobrazení třídy X na třídu Y; pokud navíc platí Rng(F) = Y.
- F je **prosté** zobrazení pokud F^{-1} je zobrazení.
 - Pokud $(\forall v)(\forall u)(\forall w)((F(u) = w \land F(v) = w) \rightarrow u = v).$
 - "Každý prvek Rnq(F) má právě jeden vzor."

Pozorování

Pokud F je prosté zobrazení, pak F^{-1} je také prosté zobrazení.

Definice:

A je třída, φ je formule pak:

- $(\exists x \in A)\varphi$ je zkratka za $(\exists x)(x \in A \land \varphi)$.
- $(\forall x \in A)\varphi$ je zkratka za $(\forall x)(x \in A \to \varphi)$.

Značení:

Obraz / vzor třídy X zobrazením F.

- F[X] místo $F \shortparallel X$: $F[X] = \{y, (\exists x \in X)y = F(x)\}$
- $F^{-1}[X]$ místo $F^{-1} \sqcup X : F^{-1}[X] = \{y, (\exists x \in X)x = F(y)\}$

Definice:

Aje třída, aje množina, pak aA je $\{f; f: a \to A\},$ třída všech zobrazení za do A.

Poznámka:

- Z axiomu nahrazení Rng(f) je množina, $f \subseteq a \times Rng(f)$, tedy f je množina.
- Nelze definovat ^BA pokud B je vlastní třída a $A \neq \emptyset$, protože je-li Dom(f) vlastní třída, pak je i f.
- ${}^{\emptyset}A = \{\emptyset\}$
- $x\emptyset = \emptyset$

Lemma

- 1. Pro libovolné množiny x, y je xy množina.
- 2. Je-li $x \neq \emptyset, Y$ je vlastní třída, pak xY je vlastní třída.

Důkaz:

- 1. Pokud $f: x \to y$. pak $f \subseteq x \times y$, tedy $f \in \mathcal{P}(x \times y)$. Tedy $x \in \mathcal{P}(x \times y)$.
- 2. Pro $y \in Y$ definujeme konstantní zobrazení $K_y : x \to Y$ tak, že $(\forall u \in x)(K_y(u) = y)$. $K_y = x \times y$, protože $x \neq \emptyset$, pro $y \neq y'$ platí $K_y \neq K_{y'}$. $K = \{K_y, y \in Y\}$ máme $K \subseteq^x Y$.
 - Teď sporem: Pokud xY je množina, pak K je množina. Definujeme $F:K\to Y$ jako $F(K_y)=y$. Z axiomu nahrazení Y je množina a to je spor.

Uspořádání

Definice:

Relace $R(\subseteq V \times V)$ je na třídě A:

• Reflexivní:

$$(\forall x \in A)((x, x) \in R)$$

• Antireflexivní:

$$(\forall x \in A)((x, x) \notin R)$$

• Symetrická:

$$(\forall x, y \in A)((x, y) \in R \leftrightarrow (y, x) \in R)$$

• Slabě antisymetrická:

$$(\forall x, y \in A)(((x, y) \in R \land (y, x) \in R) \rightarrow y = x)$$

• Antisymetrická

$$(\forall x \in A)(\forall y \in A)(xRy \to \neg(yRx))$$

• Trichotomická:

$$(\forall x \in A)(\forall y \in A)(xRy \lor yRx \lor x = y)$$

• Tranzitivní:

$$(\forall x, y, z \in A)((xRy \land yRz) \to xRz)$$

Pozorování

Tyto vlastnosti jsou **dědičné**, to znamená, že platí na každé podtřídě $B \subseteq A$.

Definice:

- Relace R je **uspořádání na třídě** A, pokud R je reflexivní, slabě antisymetrická a tranzitivní.
- $x, y \in A$ jsou **porovnatelné** (srovnatelné) relací R pokud $xRy \vee yRx$.

Značení:

 $x \leq_R y$ znamená xRy.

• "x je menší nebo rovno y vzhledem k R."

Definice:

- Uspořádání R je lineární pokud R je trichotomické.
- R' je **ostré** uspořádání pokud je tvaru $R \setminus Id$ (je antireflexivní, antisymetricá a tranzitivní).
- $x <_R y$ značí xR'y

Cvičení

• Doplňte tabulku ANO/NE.

Relace	$Uspo\v{r}\'ad\'an\'i?$	Ostré?
\overline{E}		
Id		

Přednáška 5

Definice:

Nechť R je uspořádání na třídě A a nechť $X\subseteq A$. Řekněme, že $a\in A$ je (vzhledem k R a A):

- Majorita (horní mez) třídy X, pokud $(\forall x \in X)(x \leq_R a)$.
- Minoranta (dolní mez) třídy X, pokud $(\forall x \in X)(a \leq_R x)$.
- Maximální prvek třídy X, pokud $a \in X \land (\forall x \in X)(\neg(a <_R x))$.
- Minimální prvek třídy X, pokud $a \in X \land (\forall x \in X)(\neg(x <_R a))$.
- Největší prvek třídy X, pokud $a \in X$ a a je majoranta X.
- Největší prvek třídy X, pokud $a \in X$ a a je minoranta X.
- Supremum třídy X, pokud a je nejmenší prvek třídy všech majorant X.
- Infimum třídy X, pokud a je největší prvek třídy všech minorant X.

Pozorování

- Největší implikuje maximální, pokud R je lineární, tak platí i opačná implikace.
- Největší a supremum je vždy nejvýše 1. Lze značit jako $a = \max_R(X)$ a $a = \sup_R(X)$.

Definice:

- X je **shora omezená**, pokud existuje majoranta X v A.
- X je $zdola\ omezen\acute{a}$, pokud existuje minoranta X v A.
- X je **dolní množina**, pokud $(\forall x \in X)(\forall y \in A)(y \leq_R x \to y \in X)$.
- Analogicky i horní množina.
- $x \in A$, pak $|\leftarrow, x|$ je $\{y, y \in A \land y \leq_R x\}$. Nebo-li horní ideál omezená x.

Pozorování

R uspořádání na A, pak pro libovolné $x, y \in A$ platí $x \leq_R y \leftrightarrow |\leftarrow, x| \subseteq |\leftarrow, y|$.

Poznámka:

- Konstrukce \mathbb{R} $z \mathbb{Q}$: **Dedekindovy řezy**.
- $X\subseteq \mathbb{Q}, X$ je dolní množina (vzhledem $k\subseteq$) a navíc existuje-li $\sup X$, pak $\sup X\subseteq X$.

Definice:

Uspořádání R na třídě A je **dobré**, pokud každá neprázdná podmnožina A: $(u \subseteq A)$ má nejmenší prvek vzhledem k R.

Cvičení

Napsat definice pomocí logických formulí.

Pozorování

- "Dobré" je dědičná vlastnost.
- Dobré implikuje lineární.

$Cvi\check{c}en\acute{\iota}$

Najděte nějaké množiny, na nichž je E dobré ostré uspořádání.

Definice:

Ekvivalence je pokud je reflexivní, symetrická a tranzitivní.

Srovnávání mohutností

Definice:

- Množiny x,y mají **stejnou mohutnost** (psáno $x \approx y$) pokud existuje prosté zobrazení x na y (nebo-li bijekce). Někdy označováno jako x je ekvivalentní y.
- Množina x má mohutnost menší nebo rovnou mohutnosti y (psáno x ≤ y) pokud existuje prosté zobrazení x do y. Někdy označováno jako x je subvalentní y.
- x má **menší mohutnost** než y (psáno $x \prec y$) pokud platí $x \leq y \land \neg(x \approx y)$).

Pozorování

- $x \subseteq y \to x \preceq y$ (identita)
- $x \subset y \to x \leq y$ (ne $x \prec y$, například $\mathbb{N} \approx \mathbb{N} \setminus \{1\}$)

Poznámka:

To jestli \leq je trichotomická v **ZF** nelze rozhodnout. Přidáím axiomu výběru už ale ano.

Lemma

Jsou-li x, y, z množiny, potom:

- 1. $x \approx x$
- 2. $x \approx y \rightarrow y \approx x$
- 3. $((x \approx y) \land (y \approx z)) \rightarrow x \approx z$, tedy \approx je ekvivalence.
- $4. \ x \prec x$
- 5. $x \leq y \land y \leq z \rightarrow x \leq z$

Důkaz:

- Prakticky jen triviální, stačí najít dané zobrazení.
 - 1. *Id*
 - $2.\ F\to F^{-1}$
 - 3. $F \wedge G \rightarrow F \circ G$
 - 4. *Id*
 - 5. $F \wedge G \rightarrow F \circ G$

Pozorování

$$x \approx y \to (x \leq y \land y \leq x)$$

Přednáška 6

Věta (Cantor-Bernstein)

$$(x \leq y \land y \leq x) \to x \approx x$$

Důkaz:

- Důkaz se provede pomocí grafů. Také bude potřeba dodatečné lemma, které bude později.
- Jako graf si představíme bipartitní, kde jedna partita je x a druhá y. Následně přidáme orientované hrany jakožto funkce f a g, kde $f: x \to y, g: y \to x$ jsou prosté zobrazení.
- Teď se podíváme na komponenty grafu.
 - 1. Buď může být kružnice sudé délky.
 - 2. Nebo cesta s počátkem.
 - 3. Anebo cesty obousměrné.
- Nyní uvažme "indukovaná" zobrazení: $(\hat{f}): \mathcal{P}(x) \to \mathcal{P}(y)$.
- Tahle funkce je monotónní vzhledem k inkluzi.

- Definujeme $H: \mathcal{P}(x) \to \mathcal{P}(x)$ takto: Pro $u \subseteq x$ necht H(u) = x g[y f[u]].
- H je monotónní vzhledem k inkluzi.
 - $-u_1 \subseteq u_2 \Rightarrow f[u_1] \subseteq f[u_2] \Rightarrow y f[u_1] \supseteq y f[u_2] \Rightarrow$ $-\Rightarrow g[y - f[u_1] \supseteq g[y - f[u_2] \Rightarrow H(u_1) \subseteq H(u_2).$
- Podle lemma o pevném bodě $(\exists c)(H(c) = c)$, tedy $x g[y f[c]] = c \Rightarrow x c = g[y f[c]]$.
- Tedy g^{-1} je prosté zobrazení $x \setminus c$ na $y \setminus f[c]$.
- Stačí definovat $h: x \to y$ jako:

$$h(u) = \begin{cases} f(u) & \text{pokud } u = c \\ g^{-1}(u) & \text{jinak} \end{cases}$$

• h je prosté zobrazení x na y.

Definice:

Zobrazení $H: \mathcal{P}(x) \to \mathcal{P}(x)$ je **monotónní** (vzhledem k inkluzi) pokud pro každé dvě množiny $u, v \subseteq x$ platí $u \subseteq v \to H(u) \subseteq H(v)$.

Lemma

Je-li $H: \mathcal{P}(x) \to \mathcal{P}(x)$ zobrazení monotónní vzhledem k inkluzi, pak existuje podmnožina $c \subseteq x$ taková, že H(c) = c. Též označován jako **pevný bod**.

Důkaz:

- $A = \{u, u \subseteq x \land u \subseteq H(u)\}$
- $c = \bigcup A$ neboli supremum.
- $u \in A$ pak dostanu dvě možnosti:
 - 1. $u \subseteq c$
 - 2. $u \subseteq H(u) \subseteq H(c)$ (díky tomu, že H je monotónní)
- Z toho pak plyne, že H(c) je majoranta a tedy $c \subseteq H(c)$.
- Pak z monotonie platí $H(c) \subseteq H(H(c))$, tedy $H(c) \in A$, takže $H(c) \subseteq c$, nebo-li c je majoranta.
- Z obou inkluzí pak plyne, že c = H(c).

Cvičení

Ilustrace monotńní funkce $h:[0,1] \rightarrow [0,1]$.

$Cvi\check{c}en\acute{\iota}$

 $A\subseteq \mathcal{P}(x)\ a\ uspo\check{r} \acute{a} d\acute{a} n \acute{i}\subseteq \ ,\ pak\ \mathrm{sup}_{\subset}\ A=\bigcup A\ a\ \mathrm{inf}_{\subseteq}\ A=\bigcap A.$

Příklad:

- $\omega = \mathbb{N}_0 \ pak \ \omega \approx \omega \times \omega$
- $f: \omega \to \omega \times \omega \ jako \ f(n) = (0, n)$
- $g: \omega \times \omega \to \omega$ jako $g((m,n)) = 2^m 3^n$
- Podle Věty platí $\omega \approx \omega \times \omega$.
- $h: \omega \to \omega \times \omega$ jako $h((m,n)) = 2^m(2n+1) 1$

Cvičení

Ověřte, že g je prosté a h je bijekce.

$Cvi\check{c}en\acute{\iota}$

 $\mathbb{N}\approx\mathbb{Q}$

Cvičení

$$[0,1] \approx [0,1] \times [0,1]$$

Lemma

Nechť x, y, z, x_1, y_1 jsou množiny, pak:

- 1. $x \times y \approx y \times x$
- 2. $x \times (y \times z) \approx (x \times y) \times z$
- 3. $(x \approx x_1 \land y \approx y_1) \rightarrow (x \times y \approx x_1 \times y_1)$
- 4. $x \approx y \to \mathcal{P}(x) \approx \mathcal{P}(y)$
- 5. $\mathcal{P}(X) \approx^x 2$, kde $2 = \{\emptyset, \{\emptyset\}\}$

Důkaz:

- Vždy jde o to najít vhodné funkce.
- 1. $(u,v) \rightarrow (v,u)$
- 2. $(u, (b, c)) \to ((u, b), c)$
- 3. $f: x \to x_1, g: y \to y_1: (a, b) \to (f(a), g(b))$
- 4. $f: x \to y, u \to f[u]$ (izomorfismus vzhledem k inkluzi)
- 5. Pro $u \subseteq x$ definujeme charakteristickou funkci $\chi_a : x \to 2$, kde;

$$\chi_a(v) = \begin{cases} 1 & v \in a \\ 0 & v \notin a \end{cases}$$

• Zobrazení $\{(a,\chi_a); a\subseteq x\}$ je prosté a zobrazuje $\mathcal{P}(x)$ na x2 .

Konečné množiny

Definice: (Tarski)

Množina x je **konečná**, označíme Fin(x), pokud každá neprázdná podmnožina $\mathcal{P}(x)$ má **maximální** prvek vzhledem k inkluzi.

$Cvi\check{c}en\acute{\iota}$

Napište definici pomocí formule.

Přednáška 7

Pozorování

xje konečná právě tehdy, když každá neprázdná podmnožina $\mathcal{P}(x)$ má minimální prvek vzhledem k inkluzi.

Důkaz:

- Uvažme $d: \mathcal{P}(x) \to \mathcal{P}(x)$ jako $d(u) = x \setminus u$.
- $u \subseteq v \Leftrightarrow d(u) \supseteq d(v)$

Definice:

Množina a je **Dedekindovsky konečná** pokud má větší mohutnost než každá vlastní podmnožina $b \subset a$. (Nebo-li neexistuje prosté zobrazení a na b.)

Lemma

Je-li množina a konečná tak je i Dedekindovsky konečná.

Důkaz:

- Nutno dokázat, že pokud $b \subset a$ pak $b \leq a$.
- Sporem: $b \approx a$.
- Nechť $y=\{b,b\subset a\wedge b\approx a\},y\neq\emptyset,y\in\mathcal{P}(a).$ Nechť $c\in y$ je minimální prvek y vzhledem k \subseteq .
- Necht $f: a \to a$ je prosté zobrazení a na c. d = f[c].

- $f \upharpoonright c$ je prosté zobrazení c na d. Tedy $c \approx d$, tedy $d \in y$.
- $d \subseteq c : (\exists x)(x \in a \setminus c) \text{ pak } f(x) \in c \setminus d$.
- Spor s minimalitou volby c.

Poznámka:

Opačná implikace v **ZF** není dokazatelná.

- Existuje lineární uspořádání \leq , které je dobré, pak i \geq je dobré.
- Existuje lineární uspořádání a každá 2 lineární uspořádání jsou izomorfní.
- x je konečná $\Leftrightarrow \mathcal{P}(\mathcal{P}(x))$ je dedekindovsky konečná

Věta

- 1. Je-li a konečná uspořádaná množina (relací \leq) pak každá její neprázdná podmnožina $b\subseteq a$ má maximální prvek.
- 2. Každé lineární uspořádání na konečné množině je dobré.

Důkaz:

- 1. Pro každé $x \in a$ uvažme $|\leftarrow, x| = \{y, y \in a \land y \le x\}$.
- $u = \{ (x, x), x \in b \}, u \subseteq \mathcal{P}(a), u \neq \emptyset$
- Z konečnosti aexistuje $m \in b$ takové, že $| \leftarrow, m]$ je maximální prvek vzhledem k $\subseteq.$
- $x \le y \Leftrightarrow |\leftarrow, x| < |\leftarrow, y|$
- Tedy m je maximální prvek b vzhledem k \subseteq .
- Minimální prvek se najde podobně, akorát to bude horní množina a minimální prvek.
- 2. Minimální prvek v lineárním uspořádání je už nejmenší.

Definice:

F je zobrazení A_1 do A_2 , R_1 , R_2 jsou relace. F je **izomorfismus** tříd A_1 , A_2 vzhledem k R_1 , R_2 pokud F je prosté zobrazení A_1 na A_2 a $(\forall x \in A_1)(\forall y \in A_2)(x,y) \in R_1 \leftrightarrow (F(x),F(y)) \in R_2$.

Definice:

- A je mmožina uspořádaná relací R.
- B je mmožina uspořádaná relací S.

- Zobrazení F je **počátkové vnoření** A do B, pokud $A_1 = Dom(F)$ je dolní podmnožina A a $B_1 = Rng(F)$ je dolní podmnožina B.
- A F je izomorfismus A_1 a B_1 vzhledem k R, S.

Lemma

Nechť F,G jsou počátkové vnoření dobře uspořádané množiny A do dobře uspořádané množiny B. Potom $F \subseteq G$ nebo $G \subseteq F$.

Důkaz:

- Nechť R je dobré uspořádání množiny A.
- Nechť S je dobré uspořádání množiny B.
- Dom(F), Dom(G) jsou dolní podmnožiny A.
- R je lineární, tedy $Dom(F) \leq Dom(G) \vee Dom(G) \leq Dom(F)$. (BÚNO: $Dom(F) \leq Dom(G)$, jinak přejmenuji množiny).
- Dokážeme $(\forall x \in Dom(F))F(x) = G(x)$.
- Sporem Nechť x je nejmenší (vzhledem kR) prvek množiny $\{z,z\in A \land G(z)\neq F(z)\}.$
- Tedy $\forall y <_R x : F(y) = G(y)$.
- Z linearity S je $F(x) <_S G(x) \vee G(x) <_S F(x)$ (BÚNO: $F(x) <_S G(x)$).
- Necht b = F(x).
- Je-li $z \in Dom(G)$ pak buď:

$$- z <_R x G(z) = F(z)$$

$$-z \ge_R x F(x) = b$$

- Pak $G(z) \ge_S G(x) >_S F(x) = b$.
- V obou případech $b \notin Rng(G)$ a tedy Rng(G) není dolní množina a to je spor.

Cvičení

Lineární uspořádání jsou každé dvě dolní množiny porovnatelné inkluzí.

Cvičení

Co když místo dobrého uspořádání bude jen lineární uspořádání.

Věta (O porovnávání dobrých uspořádání.)

- A je množina dobře uspořádaná relací R.
- \boldsymbol{B} je množina dobře uspořádaná relací $\boldsymbol{S}.$
- Pak existuje právě jedno zobrazení F, které je izomorfismus A a dolní množiny B, nebo B a dolní množiny A.

Důkaz:

- P je množina všech počátečních vnoření A do B. Necht $F = \bigcup P$.
- F je zobrazení: Když $(x,y_1)(x,y_2) \in F$ existuje počáteční vnoření F_1,F_2 , že $(x,y_1) \in F_1, (x,y_2) \in F_2$. Podle lemma $F_1 \subseteq F_2$ nebo naopak. Předpokládejme, že nastala tato situace.
- Tedy $(x, y_1) \in F_2$; F_2 je zobrazení, tedy $y_1 = y_2$.
- F je počáteční vnoření: Když $x_1 <_R x_2 \in Dom(F)$ tak existuje počáteční vnoření F' že $x_2 \in Dom(F')$. Tedy $x_1 \in Dom(F') \subseteq Dom(F)$.
- Podobně pro $Rng(F) = \bigcup Rng(F')$ je dolní.
- $F(x_1) = F'(x_1) <_S F'(x_2) = F(x_2)$
- $Dom(F) = A \vee Rng(F) = B$.
- Sporem: $A \setminus Dom(F), B \setminus Rng(F)$ jsou neprázdné, mající nejmenší prvky a, b.
- Definujeme $F' = F \cup \{(a,b)\}$ je počáteční vnoření $F' \in P, F' \subseteq F$ a to je spor.

Cvičení

 $Jednoznačnost\ F.$

Cvičení

Sjednocení dolních množin je dolní množina.

Přednáška 8

Věta

a je konečná množina, pak každé lineární uspořádání na a jsou izomorfní.

Důkaz:

- \bullet R, S jsou dvě lineární uspořádání a také dobrá uspořádání.
- (a,R) je izomorfní dolní množině (a,S) nebo dolní množina (a,R) je izomorfní (a,S).
- Dolní množina $b, b \approx a$, z Dedekindovy konečnosti platí, že a = b.

Lemma (Zachovávání konečnosti.)

- 1. $(Fin(x) \land y \subseteq x) \rightarrow Fin(y)$
- 2. $(Fin(x) \land y \approx x) \rightarrow Fin(y)$
- 3. $(Fin(x) \land y \leq x) \rightarrow Fin(y)$

Důkaz:

- 1. $w \subseteq \mathcal{P}(y) \subseteq \mathcal{P}(x)$
- 2. $\mathcal{P}(y)$ je izomorfní $\mathcal{P}(x)$
- 3. Plyne z 1 a 2. $\,$

Lemma (sjednocení konečných množin)

- 1. $Fin(x) \wedge Fin(y) \rightarrow Fin(x \cup y)$
- 2. $Fin(x) \rightarrow (\forall y) Fin(x \cup \{y\})$

Důkaz:

- $w \subseteq \mathcal{P}(x \cup y)$ neprázdná
- $w_1 = \{u, (\exists t \in w)(u = t \cap x)\} \subseteq \mathcal{P}(x)$ - Má maximální prvek v_1 .
- $w_2 = \{u, (\exists t \in w)(t \cap x = v_1 \land t \cap y = u)\} \subseteq \mathcal{P}(y)$ - Má maximální prvek v_2 .
- $v_1 \cup v_2$ je maximální prvek w.

Definice:

Třída všech konečných množin $Fin = \{x, Fin(x)\}.$

Věta (Princip indukce pro konečné množiny)

Je-li X třída, pro kterou platí:

- 1. $\emptyset \in X$,
- 2. $x \in X \to (\forall y)(x \cup \{y\} \in X)$, pak $Fin \subseteq X$.

Důkaz:

- Sporem: Pokud $x \in Fin \setminus X$. necht $w = \{v, v \subseteq x \land v \in X\}$.
- Podle 1: $\emptyset \in w$
- $w \subseteq \mathcal{P}(x)$, neprázdná.
- w má maximální prvek v_0 .

- $v_0 \subseteq x$
- $v_0 \in X$, tedy $v_0 \neq x$ a $v_0 \subset X$.
- Tedy existuje $y \in x \setminus v_0$.
- Necht $v_1 = v_0 \cup \{y\}$.
- Podle 2: $v_1 \in X$.
- Tedy $v_1 \in w$, spor s maximalitou v_0 .

Lemma

 $Fin(x) \to Fin(\mathcal{P}(x))$

Důkaz:

- Indukcí: Nechť $X = \{x, Fin(\mathcal{P}(x))\}.$
- $\emptyset \in X$, protože $\mathcal{P}(\emptyset) = \{\emptyset\}$ je konečná.
- Nechť $x \in X, y$ je množina. Chceme aby $x \cup \{y\} \in X$.
- BÚNO: $y \notin x$ (jinak triviální).
- Rozdělíme $\mathcal{P}(x \cup \{y\})$ na dvě části:
 - $\mathcal{P}(x \cup \{y\}) = \mathcal{P}(x) \cup (\mathcal{P}(x \cup \{y\}) \setminus \mathcal{P}(x))$
- Platí $\mathcal{P}(x) \approx z$, kde z se rovná předchozímu druhému prvku v sjednocení.
- Pro $u \in \mathcal{P}(x)$ definujeme $f(u) = u \cup \{y\}$. -f je prosté zobrazení $\mathcal{P}(x)$ na z.
- Podle předpokladu $Fin(\mathcal{P}(x))$.
- Podle lemma Fin(z).
- Podle lemma o sjednocení $Fin(\mathcal{P}(x) \cup z)$.
- Podle principu indukce $Fin \subseteq X$.

Důsledek:

 $Fin(x) \cap Fin(y) \to Fin(x \times y)$

Důkaz:

- Necht $z = x \cup y$, víme Fin(z).
- $x \times y \subseteq z \times z \subseteq \mathcal{P}(\mathcal{P}(z))$.

Lemma ("sjednocení konečně mnoha konečných množin je konečná množina")

Je-li Fin(a) a $(\forall b \in a)Fin(b)$, pak $Fin(\bigcup a)$.

Důkaz:

- Indukcí: $X = \{x, x \subseteq Fin \to Fin(\bigcup x)\}.$
- 1. $\emptyset \in X$, protože $\bigcup \emptyset = \emptyset$.
- 2. Nechť $x \in X, y$ množina. Chceme aby $x \cup \{y\} \in X$.
- Předpokládejme, že $x \cup \{y\} \subseteq Fin$. Speciálně $x \subseteq Fin$.
- $\bigcup (x \cup \{y\}) = \bigcup x \cup y$
 - Obě dvě jsou konečné a sjednocení tím pádem je také konečné.
- Tedy $x \cup \{y\} \in X$.
- Podle principu indukce $Fin \subseteq X$.

Důsledek: (Dirichletův princip pro konečné množiny.)

Je-li nekonečná množina sjednocení konečně mnoha množin, pak jedna z nich musí být nekonečná.

Lemma ("Každá konečná množina je srovnatelná se všemi množinami.")

 $Fin(x) \to (\forall y)(y \le x \lor x \le y)$

Důkaz:

- Indukcí: $x = \{x, (\forall y)(y \leq x \lor x \leq y)\}$
- 1. $\emptyset \in X$, protože $(\forall y)\emptyset \subseteq y$ tedy $\emptyset \leq y$.
- 2. Nechť $x \in X, u$ je množina. BÚNO: $u \notin X$. Chceme $x \cup \{u\} \in X$, nechť X je množina.
- Když $y \leq x$, pak $x \leq x \cup \{u\}$ z tranzitivity $y \leq x \cup \{u\}$.
- Nechť $x \prec y$. g je prosté zobrazení x do y.
- Necht $v \in X \setminus Rng(g)$.
- Definujeme $h = g \cup \{(u, v)\}, h$ je prosté zobrazení $x \cup \{u\}$ do y.
- Tedy $x \cup \{u\} \leq y$.
- Z principu indukce $Fin \subseteq X$.

$Cvi\check{c}en\acute{\iota}$

Fin(x) a $f: x \to y$, pak $Rng(f) \leq x$ (pomocí indukce).

$Cvi\check{c}en\acute{\iota}$

 $(\forall x)Fin(x)$ lze dobře uspořádat (indukcí).

Přirozená čísla

Definice: (von Neumann)

- Myšlenka: "Přirozené číslo je množina všech menších přirozených čísel."
- $0 = \emptyset; 1 = \{0\} = \{\emptyset\}; 2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}; 3 = \{0, 1, 2\} = \dots$

Definice:

w je **induktivní množina**, pokud $\emptyset \in w \land (\forall v \in w)(v \cup \{v\} \in w)$.

9. Axiom nekonečna ("Existuje induktivní množina.")

$$(\exists z)(0 \in z \land (\forall x)(x \in z \to x \cup \{x\} \in z))$$

Definice:

Množina všech přirozených čísel ω je $\bigcap \{w, w \text{ je induktivní množina}\}.$

Lemma

 ω je nejmenší induktivní množina.

Důkaz:

- $0 \in \omega$
- $x \in \omega, x$ patří do každé induktivní množiny.
- $x \cup \{x\}$ patří do každé induktivní množiny.
- $x \cup \{x\} \in \omega$.

• Prvky ω jsou **přirozená čísla** v teorii množin.

Přednáška 9

Definice:

Funkce následník $S: \omega \to \omega$. Pro $v \in \omega: S(v) = v \cup \{v\}$.

• "Následník čísla v."

Věta Princip (slabé) indukce pro přirozená čísla.

Je-li $X\subseteq\omega$ taková, že platí:

- 1. $0 \in X$,
- 2. $x \in X \to S(x) \in X$. Pak $X = \omega$.

Důkaz:

• 1 a 2 dohromady říká, že X je induktivní, tedy $\omega \subseteq X$.

Příklad:

- Důkaz indukcí:
 - Chceme dokázat: $(\forall n \in \omega)(\varphi(n))$.
 - Dokazujeme: 1. $\varphi(0)$ a 2. $(\forall n \in \omega)(\varphi(n) \to \varphi(S(n)))$.

Poznámka:

Princip silné indukce: 2: $((\forall m \in \omega) m \in X) \to n \in X$.

Lemma "∈ je ostré uspořádání"

Pro libovolné $m, n \in \omega$ platí:

- 1. $n \in \omega \to n \subseteq \omega$
 - "Prvky přirozených čísel jsou přirozená čísla."
- 2. $m \in n \to m \subseteq n$
 - "Náležení je tranzitivní na ω."
- 3. $n \not\subseteq n$
 - " \in je antireflexivní na ω ."
- Z toho všeho plyne, že se jedná o ostré uspořádání.

Důkaz:

- Indukcí:
- 1. $0 \subseteq \omega$, a indukční krok $n \in \omega$, předpokládáme, že $n \subseteq \omega$. Pak $\{n\} \subseteq \omega$ tedy $n \cup \{n\} \subseteq \omega$.
- 2. Indukcí podle n:
 - 1. Krok: $m \notin 0$ tím pádem implikace splněna.

- 2. Krok $X = \{n, n \in \omega \land (\forall m) (m \in n \to m \subseteq n)\}.$
- Víme $0 \in X$.
- Nechť $n \in X$, víme $S(n) \in \omega$.
- Nechť $m \in S(n) = n \cup \{n\}$. Pak buď $m \in n$ a z IP pak $m \subseteq n$ anebo m = n tím pádem také $m \subseteq n \subseteq S(n)$.
- 3. $0 \not\subseteq 0$ platí, nechť $n \in \omega$ a $n \not\subseteq n$.
 - Sporem $S(n) \subseteq S(n) = n \cup \{n\}$. Z toho pak plyne, že buď $S(n) \subseteq \{n\}$ anebo $S(n) \subseteq n$. V obou případech je $S(n) \subseteq n$, ale to pak znamená, že $n \in S(n) \subseteq n$ což je spor s předpokladem.

Lemma

Každé přirozené číslo je konečná množina.

Důkaz:

Indukcí: $Fin(\emptyset)$ víme. Podle lemma $Fin(x) \to (\forall y)Fin(x \cup \{y\})$, speciálně pro $Fin(x \cup \{x\})$ a to je následník.

Věta

Množina x je konečná právě tehdy, když $(\exists n \in \omega)x \approx n$.

Důkaz:

- $\Leftarrow Fin(n)$ tedy Fin(x).
- \Rightarrow indukcí:
 - $-X = \{x; (\exists n \in \omega) x \approx n\}$
 - Víme, že $0 \in X$ protože $0 \approx 0$.
 - Nechť $x \in X, y$ množina. Víme, že $(\exists n \in \omega)n \approx x$.
 - $-y \in x \text{ pak } x \cup \{y\} = x \approx n$
 - $-y \notin x \text{ pak } x \cup \{y\} \approx S(n) = n \cup \{n\}$
 - K bijekci x a n přidáme (y, n).
 - Tedy $Fin \subseteq X$.

Lemma

Množina ω i každá induktivní množina je nekonečná.

Důkaz:

- Podle lemma: $1 \ n \in \omega \to n \subseteq \omega$, tedy $n \in \mathcal{P}(n)$ tedy $\omega \subseteq \mathcal{P}(n), \omega$ je neprázdná ale nemá maximální prvek vzhledem k inkluzi. Když $n \subseteq \omega$ pak podle lemma $3. \ n \not\subseteq n$ a tedy $n \subset n \cup \{n\} = S(n)$.
- $\omega \subseteq W$ tedy i induktivní množiny.

Cvičení

 ω je Dedekindovsky nekonečná.

Lemma (Linearita \in na ω .)

- $\bullet \quad m,n\in \omega$
- Platí:
 - 1. $m \in n \leftrightarrow m \subset n$
 - 2. $m \in n \lor m = n \lor n \in m \ (trichotomie)$

Důkaz:

- 1. \rightarrow plyne z lemma 2 $m \in n \rightarrow m \subset n \land n \nsubseteq n$
 - \leftarrow indukcí podle n; n = 0 nelze splnit.
 - Indukční krok. Nechť platí pro nějaké n a $\forall m$.
 - Nechť $m \subset S(n) = n \cup \{n\}$ a $m \subseteq n$, kdyby ne pak $n \in m$ tedy $n \subseteq m$ tedy $S(n) = n \cup \{n\} \subseteq m$ a to je spor.
 - $m \subset n \text{ z IP } m \in n \subseteq S(n) \text{ tedy } m \in S(n)$
 - $m = n \text{ pak } n \in S(n)$
- 2. Pro $n \in \omega$ necht $A(n) = \{m \in \omega, m \in n \lor m = n \lor n \in m\}$.
 - Dokážeme, že A(n) je induktivní, indukcí podle m.
 - $n=0:0\in A(0),$ protože 0=0
 - Je-li $m \in A(0)$, pak: $m = 0 : 0 \in \{m\}$ anebo $0 \in m$ a z obou plyne $0 \in m \cup \{m\} = S(n)$.
 - Tedy $S(n) \in A(0)$.
 - Tedy $A(0) = \omega$.
 - Tedy také $(\forall n \in \omega) 0 \in A(n)$.
 - $n \in \omega, m \in \omega$, předpokládejme, že $m \in A(n)$. Ukážeme, že $S(m) \in A(n)$.
 - $-m\in n\to m\subset n;\{m\}\subseteq n$ tedy $S(m)\subseteq n$ z toho plyne, že $S(m)=n\vee S(m)\in n.$
 - $-m = n \lor n \in m \text{ potom } n \in m \cup \{m\} = S(m)$
 - Ve všech případech ke $S(m) \in A(n)$.

Věta

Množina ω je dobře (ostře) uspořádaná relací \in .

Důkaz:

- Nechť $a \subseteq \omega, a \neq \emptyset$. Zvolme $n \in a$.
- Není-li n nejmenší (minimální), tak definuji $b=n\cap a.$ n je konečná, tak i b je konečná a neprázdná.
- $b \subseteq \omega$ tedy b má minimální prvek m vzhledem k náležení.
- m je minimální i v množině a: kdyby $(\exists x \in a)x \in m$, tak víme, že $m \in n$, tedy $m \subseteq n$, tedy $x \in n$, tedy $x \in b$. To je spor s minimalitou m v b.
- $\bullet \in$ je lineární na $\omega,$ tedy m je nejmenší prvek va. Tedy \in je dobré uspořádání.

Poznámka:

Nekonečná množina A s lineárním (ostrým) uspořádáním < pro každé $a \in A$: $|\leftarrow,a|$ je konečná. Pak < je dobré a (A,<) je izomorfní (ω,\in) .

Přednáška 10

Věta (Charakterizace uspořádání \in na ω)

Nechť A je nekonečná množina, lineárně uspořádaná (ostře) relací < tak, že pro každé $a \in A$ je dolní množina $|\leftarrow,a|$ konečná. Pak < je dobré a množiny A,ω jsou izomorfní vzhledem k <, \in .

Důkaz:

- < je dobré: $\emptyset \neq c \in A$. Nechť $a \in c$, předpokládejme, že a není minimální v c, pak definujeme $b = c \cap |\leftarrow, a|$. b je konečná. Tedy má minimální prvek m, m je minimální i v c.
- Protože $m \le a$, pak $x \le a$ tedy $x \in [-a]$ tedy $x \in b$ a to je spor.
- Izomorfismus: podle věty o porovnávání dobrých uspořádání jsou 2 možnosti:
- 1. A je izomorfní s dolní podmnožinou $B \subseteq \omega$, pak B není shora omezená. Neexistuje $n \in \omega(\forall b \in B)b \in n$. Sporem $B \subseteq S(n)$ tedy B by byla konečná a to je spor.
- To znamená, že $(\forall n\in\omega)$ je menší než nějaký prvek $b\in B.$ B je dolní množina, tedy $n\in B\to\omega\subseteq B\to\omega=B.$

2. ω je izomorfní dolní podmnožině $C\subseteq A$. C není shora omezená, kdyby ano, tak $\exists a\in A: C\subseteq |\leftarrow,a|, C$ by byla konečná, spor. $(\forall a\in A, \exists c\in C: a\subseteq c, C$ je dolní, tedy C=A.

Spočetné množiny

Definice:

- Množina x je **spočetná**, pokud $x \approx \omega$.
- Množina x je **nejvýše spočetná**, pokud je konečná nebo spočetná.
- Jinak je množina **nespočetná**.

Věta

- 1. Každá shora omezená množina $A\subseteq\omega$ je konečná, každá shora neomezená $A\subset\omega$ je spočetná.
- 2. Každá podmnožina spočetné množiny je nejvýše spočetná.

Důkaz:

- 1. A omezená, to znamená, že $\exists n: A\subseteq S(n)$. Takže $Fin(S(n))\to Fin(A)$.
- Pokud je A neomezená, pak je nekonečná. To lze dokázat sporem, že kdyby byla konečná, pak má A maximální prvek m, tedy je shora omezená m, to je spor.
- A je lineárně uspořádaná \in . Pro každé $n \in A$ je $|\leftarrow, n| \subseteq S(n)$, tedy $|\leftarrow, n|$ je konečná. Podle charakterizační věty A je izomorfní ω . Takže
- 2. A je spočetná $f:A\to\omega$ (bijekce). $B\subseteq A$, pak $B\approx f[B]\subseteq\omega$. Podle 1) je f[B] spočetná anebo konečná.

Příklad:

Lexikografické uspořádání na $\omega \times \omega$.

$$(m_1, n_1) <_L (m_2, n_2) \leftrightarrow (m_1 \in m_2 \lor ((m_1 = m_2) \land (n_1 \in n_2)))$$

Cvičení

Ověřte, že $<_L$ je dobré uspořádání na $\omega \times \omega$.

$Cvi\check{c}en\acute{\imath}$

Ověřte, že $<_L$ na $\omega \times 2$ je izomorfní s (ω, \in) .

$Cvi\check{c}en\acute{\iota}$

Ověřte, že $<_L$ na $2 \times \omega$ není izomorfní $s (\omega, \in)$.

Definice:

Maximo-lexikografické uspořádání na $\omega \times \omega$ je:

$$\max(m, n) = \begin{cases} m & n \in m \\ n & \text{jinak} \end{cases}$$

$$(m_1, n_1) <_{ML} (m_2, n_2)$$

$$\updownarrow$$

$$((\max(m_1, n_1) \in \max(m_2, n_2)) \lor ((\max(m_1, n_1) = \max(m_2, n_2)) \land ((m_1, n_1) <_L (m_2, n_2))))$$

$Cvi\check{c}en\acute{\iota}$

Ověřte, že $\omega \times \omega <_{ML}$ je izomorfní (ω, \in) .

Věta

Jsou-li A, B spočetné množiny, pak $A \cup B$ a $A \times B$ jsou spočetné.

Důkaz:

- $f: A \to \omega$ a $g: B \to \omega$ jsou bijekce.
- Definujeme $h:A\cup B\to\omega\times 2\approx\omega$ jako:

$$h(x) = \begin{cases} (f(x), 0) & x \in A \\ (g(x), 1) & x \in B \setminus A \end{cases}$$

- h je prosté. Tedy $A \cup B \subseteq \omega \times 2 \approx \omega \wedge \omega \preceq A \preceq A \cup B$ a z Cantor-Bernsteinovy věty implikuje, že $\omega \approx A \cup B$.
- $A \times B$ definujeme $k: A \times B \to \omega \times \omega$ jako k((a,b)) = (f(a),g(b)), k je bijekce.
- Opět mám $A \times B \approx \omega \times \omega \approx \omega$.

Důsledek:

 \mathbb{Z}, \mathbb{Q} jsou spočetné. Kde \mathbb{Z} lze modelovat jako množinu dvojic, kde první je číslo a druhé bool jestli je kladné nebo ne. A \mathbb{Q} jako množinu dvojic (m,n) kde je číslo nejmenší společný dělitel (m,n)=1 a číslo je $\frac{m}{n}$.

Důsledek:

- Konečná sjednocení, konečné součiny jsou spočetné.
- Dirichletův princip: je-li A nespočetná, $A = A_1 \cup A_2 \cup \cdots \cup A_n$, potom aspoň jedna množina A_i je nespočetná.
- Konečná podmnožina $[A]^{<\omega}$ konečné posloupnosti jsou spočetné.

Cvičení

 $\begin{tabular}{ll} \it{Je-li} \ A \ nespočetn\'e, \ B \ spočetn\'e, \ C \ konečn\'a, \ potom \ A \cup C, A \setminus C \ jsou \ nespočetn\'e \\ \it{a} \ B \cup C, B \setminus C \ jsou \ spočetn\'e, \ A \cup B, A \setminus B \ jsou \ nespočetn\'e. \\ \end{tabular}$

Poznámka:

Spočetné sjednocení spočetně mnoha množin $\bigcup A$, kde A je spočetná a $(\forall a \in A)$ jsou spočetné.

Přednáška 11

Věta (Cantor)

$$x \prec \mathcal{P}(x)$$

Důkaz:

- Pomocí diagonální metody.
- $\leq : f(y) = \{y\}, f : x \to \mathcal{P}(x)$ je prosté.
- Definujme $y=\{t,t\in x \land t\notin f(t)\}$. Potom $y\subseteq \mathcal{P}(x)$ nemá vzor při f. Kdyby

$$f(v) = y : \left\{ \begin{array}{ll} v \in y & \text{pak } v \not \in f(v) = y & \text{SPOR} \\ v \not \in y = f(v) & \text{tedy } v \in y & \text{SPOR} \end{array} \right.$$

Důsledek:

 $\mathcal{P}(\omega)$ je nespočetná.

Důsledek:

Vnení množina: $\mathcal{P}(V)\subseteq V,$ kdyby byla množina, pak by musela platit Cantorova věta.

Věta

$$\mathcal{P}(\omega) \approx \mathbb{R} \approx [0, 1]$$

Důkaz:

- Víme $\mathcal{P}(\omega) \approx^{\omega} 2$ podmnožiny \leftrightarrow charakteristická funkce \leftrightarrow posloupnosti (a_0, a_1, a_2, \dots) , kde $a_i \in \{0, 1\}$.
- $[0,1] \approx^{\omega} 2 : a \in [0,1]$ zapíšu v binární soustavě tak, že pokud je to nula, tak je to nekonečně nul a jinak vždy tak, aby obsahovalo nekonečno jedniček.
- \leftarrow použijeme trojkovou soustavu. $(a_0, a_1, a_2, \dots) \rightarrow a = \sum_{n=0}^{\infty} \frac{a_n}{3^{n+1}}$.
- Cantor-Bernstein $\rightarrow [0,1] \approx^{\omega} 2$. (pozn.: Cantorovo diskontinuum).
- $[0,1] \subseteq \mathbb{R}$
- $\mathbb{E} \to [0,1]$ nějakou vhodnou funkci např. $\frac{\pi/2 \arctan(x)}{\pi}$.

Poznámka:

Množina algebraických čísel (tj. kořeny polynomů s racionálními koeficienty) je spočetná.

Cvičení

- Pokrytí N intervaly.
- 1. Konečně.
 - $A \subseteq I_1 \cup I_2 \cup \cdots \cup I_n \ pak \sum (b_i a_i \ge 1)$
- 2. Nekonečně.
 - $\forall \epsilon > 0 : \exists I_1, I_2, \dots, A \subseteq \bigcup I_i; \sum (b_i a_i) < \epsilon$

Poznámka:

Hypotéza kontinua je, že každá nekonečná podmnožina \mathbb{R} je buď spočetná anebo ekvivalentní s \mathbb{R} .

Axiom výběru

Princip výběru

Pro každý rozklad r množiny x existuje **výběrová množina**. To jest $v \subseteq x$, pro kterou platí $(\forall u \in r)(\exists x)(v \cap u = \{x\})$.

Definice:

Je-li X množina, pak funkce f definovaná na X splňující $(y \in X \land y \neq \emptyset) \rightarrow f(y) \in y$ se nazývá **selektor** na množině X.

10. Axiom výběru (AC - axiom of choice)

Na každé množině existuje selektor.

Ekvivalentně

- Každou množinu lze dobře uspořádat.
- \leq je trichotomická.
- Zornovo lemma.

Důsledky:

- Každý vektorový prostor má bázi.
- Součin kompaktních topologických prostorů je kompaktní.
- Hahn-Banachova věta.
- Princip kompaktnosti.
- Banach Tarski (rozdělení koule na malé části a vytvoření dvou stejně velkých koulí).

Definice:

(Indexový) soubor množin $\langle F_j; j \in J \rangle$. Kde F je zobrazení s definovaným obrazem J. Pro $j \in J : F_j = F(j)$. J je **indexová třída** a jeho prvky jsou **indexy**.

• Lze definovat:

$$\left\{ \begin{array}{l} \bigcup_{j \in J} F_j \text{ jako } \{x, (\exists j \in J) x \in F_j)\} \\ \bigcup_{j \in J} F_j = \bigcup Rng(F) \end{array} \right.$$

$$\left\{ \begin{array}{l} \bigcap_{j \in J} F_j \text{ jako } \{x, (\forall j \in J) x \in F_j)\} \\ \bigcap_{j \in J} F_j = \bigcap Rng(F) \end{array} \right.$$

• Kartézský součin souboru množin indexovaného množinou J je $X_{j\in J}F_j:\{f,f:J\to\bigcup_{j\in J}F_j\wedge(\forall j\in J)f(j)\in F_j\}.$

Lemma

Je-li Jmnožina, pak XF_j je množina. Je-li $(\forall j\in J)F_j=Y,$ pak $X_{j\in J}F_j=^JY.$

Důkaz:

• Axiom nahrazení. Rng(F) je množina, $\bigcup Rng(F)$ je množina. $^J\bigcup_{j\in J}F_j$ je množina. $XF_j\subseteq ^J\bigcup_{j\in J}F_j$.

Přednáška 12

Lemma

NTJE: (Následující tvrzení jsou si ekvivalentní.)

- 1. Axiom výběru.
- 2. Princip výběru.
- 3. Pro každou množinovou relaci s existuje funkce $f\subseteq s$ taková, že Dom(f)=Dom(s).
- 4. Kartézský součin $X_{i \in x} a_i$ neprázdného souboru neprázdných množin je neprázdný.

Důkaz:

- 1 \Rightarrow 2 : r rozklad X, podle 1 existuje selektor f na r. Pak Rng(f) je výběrová množina.
- $2 \Rightarrow 3$: BÚNO: $s \neq \emptyset$. Vytvoříme rozklad s.
 - $-\ n = \{\{i\} \times s \ \mathsf{ii} \ \{i\}; i \in Dom(s)\} = \{\{(i,x), (i,x) \in s\}, i \in Dom(s)\}$
 - Výběrová množina n je funkce, která je podmnožina s a má stejný definiční obor.
- 3 \Rightarrow 4 : Máme soubor množin $< a_i, i \in x >$. Vytvoříme relaci $s = \{(i,y), i \in x \land y \in a_i\}$.
 - Funkce $f \subseteq s : Dom(f) = Dom(s) = x$ je prvkem $X_{i \in x} a_i$.
- 4 \Rightarrow 1 : x množina. BÚNO: $x \neq \emptyset, \emptyset \in X$. $ID \upharpoonright x$ určuje soubor $\langle y; y \in x \rangle$. Každý prvek $X_{y \in x} y$ je selektor na x.

Lemma

Sjednocení spočetného souboru spočetných množin je spočetné. (Popřípadě je všude místo spočetné nejvýše spočetné.)

Důkaz:

- Soubor $\langle B_j; j \in J \rangle$. BŮNO: $I = \omega$.
- Najděme prosté zobrazení $\bigcup_{j\in\omega}B_j$ do $\omega\times\omega$. Uvažujme soubor $< E_j; j\in\omega>$ kde E_j je množina všech prostých zobrazení B_j do ω .
- Podle lemma 4) je $X_{j\in\omega}E_j$ neprázdný, tedy existuje soubor $\langle f_j; j\in\omega \rangle$, kde $f_j \in F_j$.
- Definujme $h; \bigcup_{j \in \omega} B_j \to \omega \times \omega$ jako $h(x) = (j, f_j(x))$. Kde j je nejmenší prvek ω pro který $x \in B_i$.

Poznámka:

Bez AC je bezesporné ZF a to, že "R jsou spočetným sjednocením spočetných množin".

Princip maximality (PM)

- $\bullet \ \ \, AC \leftrightarrow PM$
- Je-li A množina uspořádaná relací \leq tak, že každý řetězec má horní mez.
- Pak pro každé $a \in A$ existuje maximální prvek $b \in A$ takový, že $a \leq b$.

Definice:

 $B \subseteq A$ je **řetězec** pokud B je lineárně uspořádaná \leq .

Poznámka:

V aplikacích často pro (A, \subseteq) ; $A \subseteq \mathcal{P}(x)$ stačí ověřit, že $\bigcup B \in A$.

Cvičení

Ukažte pomocí PM: Je-li (A, \leq) uspořádaná množina, pak pro každý řetězec $B \subseteq A$ existuje maximální řetězec C splňující $B \subseteq C \subseteq A$.

Princip maximality II (PMS)

Je-li (A, \leq) uspořádaná množina, kde každý řetězec má suprémum, pak pro každé $a \in A$ existuje $b \in A$ maximální prvek splňující $a \leq b$.

Cvičení

 $Dokažte: PM \leftrightarrow PMS.$

Princip trichotomie $\leq (PT)$

Pro každé dvě množiny x,y platí $x \leq y$ nebo $y \leq x$.

Lemma

 $PM \rightarrow PT$.

Důkaz:

- Definuji množinu $D = \{f, f \text{ prost\'e zobrazen\'e} \land Dom(f) \subseteq x \land Rng(f) \subseteq y\}.$
- (D, \subseteq) splňuje předpoklady PM.
- Tedy má maximální prvek g.
- Kdyby $x \setminus Dom(f) \neq \emptyset$ a $y \setminus Rng(f) \neq \emptyset$, pak lze g rozšířit o novou dvojici (u, v), spor s maximalitou g.
- Pokud Dom(f) = x, pak $x \leq y$.
- Pokud Rng(f) = y, pak g^{-1} je prosté zobrazení y do x, tedy $y \leq y$.

Cvičení:

Sjednocení řetězce prostých zobrazení je prosté zobrazení.

Princip dobrého uspořádání (VVO)

- Každou množinu lze dobře uspořádat.
- Známo jako Zermelova věta.
- AC \leftrightarrow VVO

Lemma

 $VVO \rightarrow AC$

Důkaz:

- $x \neq \emptyset, \emptyset \notin x$ podle VVO máme dobré uspořádání na $\bigcup x$.
- Každý $y \in x$ je neprázdná podmnožina $\bigcup x,$ tedy má nejmenší prvek $\min_{\leq} y.$
- Definujeme $f: x \to \bigcup x$ jako $f(y) = \min_{\leq}(y)$. Tato f je selektorem na množině x.

$Cvi\check{c}en\acute{\iota}$

 $PM \rightarrow VVO$

Ordinální čísla

"Typy dobře uspořádaných množin."

- Kardinální čísla \subseteq ordinální čísla. Mohutnosti dobře uspořádaných množin. S (AC) mohutnosti všech množin.
- Ordinální čísla jsou dobře uspořádaná ∈, platí pro ně princip transfinitní indukce.

Definice:

Třída X je **tranzitivní** pokud $x \in X \to x \subseteq X$.

Příklad:

 ω i každé $n \in \omega$ jsou tranzitivní i V.

Cvičení

 $X tranzitivni \leftrightarrow \bigcup X \subseteq X$

Lemma

- 1. Jsou-liX,Ytranzitivní pak $X\cap Y,X\cup Y$ jsou tranzitivní.
- 2. Xtřída, pro kterou každé $x \in X$ je tranzitivní množina, pak $\bigcap X$ a $\bigcup X$ jsou tranzitivní.
- 3. Je-li Xtranzitivní třída, pak \in je tranzitivní na $X \leftrightarrow$ každý $x \in X$ je tranzitivní množina.

Důkaz:

- 1. Je pozorování.
- 2. Plyne analogicky z 1.
- 3. Jako Cvičení.

Definice:

Množina x je **ordinální číslo (ordinála)** pokud x je tranzitivní množina a \in je dobré uspořádání na x.

- Třídu všech ordinálních čísel značíme On.

Příklad:

 ω a každé $n \in \omega$ je ordinální číslo.

Přednáška 13

Důsledek:

Pro každou nekonečnou množinu x platí $\omega \preceq x.$

Lemma

On je tranzitivní třída.

Důkaz:

• $y \in x \in On$. Máme $y \le x, \in$ je dobré ostré uspořádání na y.

- \in je dobré ostré na x.
- Z lemma 3) je y tranzitivní množina.
- y je ordinála.

Lemma

 \in je tranzitivní na On.

Lemma

 $x, y \in On$, pak:

- 1. $x \notin x$
- $2. x \cap y \in On$
- $3. \ x \in y \leftrightarrow x \subset y$

Důkaz:

- 1. Sporem z antireflexivity \in na x.
- 2. Přímo z definice.
- 3. \rightarrow z tranzitivity y a 1)
- $\leftarrow y \setminus x \neq \emptyset \subseteq y, y \setminus x$ má nejmenší prvek z. Platí z = x (Cvičení).

Věta

 \in je dobré ostré uspořádání třídy On.

Důkaz:

- Antireflexivita z lemma 1), tranzitivita pak dohromady dává ostré uspořádání.
- Trichotomie: $x \neq y \in On$ podle lemma 2) $x \cap y \in On$. Sporem kdyby $x \cap y \subset x \land x \subset y$ pak $x \cap y \in y \land x \cap y \in x$, tedy $x \cap y \in x \cap y$ a to je spor s lemma 1).
- Když tedy $x \cap y = x$ pak $x \subset y$ tedy $x \in y$. Z toho plyne, že se jedná o lineární uspořádání.
- Pro dobrost stačí existence minimálního prvku (*Cvičení*).

Důsledek:

- On je vlastní třída.
- Je-li X vlastní třída, tranzitivní, dobře uspořádaná \in , pak X = On.

Značení:

- $\alpha, \beta, \gamma, \dots$ jsou ordinální čísla.
- $\alpha < \beta$ místo $\alpha \in \beta$.
- $\alpha \leq \beta$ místo $\alpha \in beta \vee \alpha = \beta$.

Lemma

- 1. Množina $x \subseteq On$ je ordinální číslo $\leftrightarrow x$ je tranzitivní.
- 2. $A \subseteq On, A \neq \emptyset$, pak $\bigcap A$ je nejmenší prvek A vzhledem k \leq .
- 3. $a \subseteq On$ množina, pak $\bigcup a \in On$ a $\bigcup a = \sup_{\leq} a$.

Důkaz:

- 1. \rightarrow z definice, \leftarrow z věty.
- 2. Z věty a $\bigcap A = \inf A$.
- 3. $\bigcup a$ je tranzitivní, $\bigcup a \subseteq On$ podle 1) je ordinální číslo.

Důsledek:

 ω je supremum množiny všech přirozených čísel v On. Konečné ordinály jsou právě přirozená čísla.

Cvičení

 $D\mathring{u}kaz: \ \bigcup \omega \in On \wedge \bigcup \omega = \sup_{<} \omega. \ Zb\acute{y}v\acute{a} \ ov\check{e}\check{r}it \ \omega = \bigcup \omega.$

Lemma

 $\alpha \in On,$ pak $\alpha \cup \{\alpha\}$ je nejmenší ordinální číslo větší než $\alpha.$

Důkaz:

- $\alpha \subseteq On$ protože On je tranzitivní.
- $\alpha \cup \{\alpha\}$ je tranzitivní množina ordinálních čísel.
- Podle lemma 1) $\alpha \cup \{\alpha\}$ je ordinální číslo.
- Je-li $\beta \in On, \beta \in \alpha\{\alpha\}$, pak $\beta \in \alpha \vee \beta = \alpha$ tedy $\beta \subseteq \alpha$.

Definice:

- $\alpha \cup \{\alpha\}$ je následník α .
- α je **předchůdce** $\alpha \cup \{\alpha\}$.
- α je **izolované** pokud $\alpha = 0$ nebo pokud α má předchůdce,
- jinak je limitní.

Věta (O typu dobrého uspořádání.)

Je-li a množina dobře uspořádaná relací r, pak existuje právě jedno ordinální číslo α a právě jeden izomorfismus (a, r) a (α, \leq) .

Bez důkazu.

Definice:

 α je **typ** dobrého uspořádání r.

Poznámka:

 $Na\ On^2 = On \times On$ lze definovat lexikografické uspořádání i maximo-lexikografické uspořádání.

Princip transfinitní indukce

Je-li $A\subseteq On$ třída splňující $(\forall \alpha\in On)(\alpha\subseteq A\to \alpha\in A)$, potom A=On.

Důkaz:

Sporem: $On \setminus A \neq \emptyset$ díky dobrému uspořádání \in existuje nejmenší prvek $\alpha \in On \setminus A$. Potom každé $\beta \in \alpha$ už je prvkem A, tedy $\alpha \subseteq A$, z předpokladu věty $\alpha \in A$ a to je spor.

Věta (Druhá verze principu transfinitní indukce.)

Je-li $A \subseteq On$ třída splňující:

- 1. $0 \in A$
- 2. Pro každý $\alpha \in On$ platí $\alpha \in A \to \alpha \cup \{\alpha\} \in A$.
- 3. Je-li α lineární pak $\alpha\subseteq A\rightarrow\alpha\in A.$

Pak A = On.

Věta (O konstrukci transfinitních rekurzí.)

Je-li $G: V \to V$ třídové zobrazení, pak existuje právě jedno zobrazení $F: On \to V$ splňující $(\forall \alpha \in On)F(\alpha) = G(F \upharpoonright \alpha)$.

- Varianty:
 - $-F(\alpha = G(F[\alpha])$
 - $F(\alpha) = G(\alpha, F \upharpoonright \alpha)$
 - $-G_1(F(\beta))$ je-li α následník β , jinak $G_2(F[\alpha])$ je-li α limitní.

Důkaz:

Je pomocí transfinitní indukce a axiomu nahrazení.

Příklad:

- m+n: F(m)=n+m se dá nadefinovat jako F(0)=n, F(S(m))=S(F(m)).
- $AC \rightarrow VVO$: A množina g selektor na $\mathcal{P}(A)$ tak f(0) = g(A) a $f(\beta) = g(A f[\beta])$.