Projecto de Algoritmos e Modelação Computacional

Francisco Dionísio, Paulo Mateus, João Ribeiro

2024/2025

Objectivo

- Implementar um algoritmo de aprendizagem baseado em *Campos de Markov Aleatórios (Markov Random Fields, MRFs)* um bloco constituinte das Deep Belief

 Networks (quando se usam variáveis escondidas);
- Mais concretamente, implementar o algoritmo de Chow-Liu para aprender MRFs ótimas no contexto de classificação;
- Os dados biomédicos são públicos e fornecidos na página da disciplina, e provêm do UCI machine learning repository — http://archive.ics.uci.edu/ml/

A "história"

Classificadores

- Um classificador sobre um domínio D é uma função $f:D\to C$, onde C é um "conjunto de classes";
- Exemplo: Para a base de dados *Cancer*, o conjunto de classes é $C = \{ \text{benign, malignant} \}$, e elementos de D correspondem a tuplos de medições.
- No nosso caso, teremos sempre $D=D_1\times D_2\times \cdots \times D_n$, onde n é o número de medições e D_i é o domínio da i-ésima medição.

Dados

- Um classificador é construído ("aprendido") a partir de um conjunto de dados $T = \{T_1, T_2, ..., T_m\}$. Chamamos a m a $dimens\~ao$ dos dados;
- Os elementos de T são da forma (d_1,d_2,\ldots,d_n,c) , onde $(d_1,\ldots,d_n)\in D=D_1\times\cdots\times D_n \text{ representam medições e }c\in C \text{ \'e a classe correspondente;}$
- No nosso caso, teremos sempre $D_i \subseteq \mathbb{N}$ (domínios discretizados) e $C \subseteq \mathbb{N}$, e portanto podemos ver o conjunto de dados T como uma matriz de dimensões $m \times (n+1)$ com entradas naturais (a i-ésima linha corresponde a T_i).

Classificação e estimativas de distribuição

- Podemos interpretar medições $X_1, ..., X_n$ e a classe correspondente C como variáveis aleatórias cuja distribuição de probabilidades desconhecemos;
- Se conhecermos a distribuição de probabilidades de $(X_1, X_2, ..., X_n, C)$, podemos construir o classificador f usando uma estimativa de máxima verosimilhança;
- Mais precisamente, dadas medições d_1, \ldots, d_n , temos $f(d_1, \ldots, d_n) = c^*$, onde c^* é a classe "mais provável" para estas medições, que satisfaz $\Pr[(X_1, \ldots, X_n, C) = (d_1, \ldots, d_n, c^*)] \ge \Pr[(X_1, \ldots, X_n, C) = (d_1, \ldots, d_n, c)]$

para qualquer classe $c \in C$.

Uma primeira tentativa

- Poderíamos tentar estimar a verdadeira distribuição de probabilidades de $(X_1, ..., X_n, C)$ aplicando a <u>"lei dos grandes números"</u> ao conjunto de dados T que temos disponível;
- Lei dos grandes números: Para estimar $\Pr[(X_1, ..., X_n, C) = (d_1, ..., d_n, c)],$ contar número de ocorrências de $(d_1, ..., d_n, c)$ em T, e dividir pela dimensão de T;
- Para evitar *overfitting*, esta estratégia requer um conjunto de dados extremamente grande...:(

Método alternativo — Markov Random Fields

Markov Random Field (MRF)

- Um conjunto de variáveis aleatórias $X=(X_1,...,X_n)$ com $\Pr[(X_1,...,X_n)=(x_1,...,x_n)]>0$ para todo o $(x_1,...,x_n)$;
- Um grafo G = (X, E) (o suporte do MRF);
- Dependências limitadas: Sejam A e B conjuntos disjuntos de vértices de G e $X_A = (X_i)_{i \in A}$. Então temos a decomposição

$$Pr[X_A = x_A, X_B = x_B | X_S = x_S] = Pr[X_A = x_A | X_S = x_S] \cdot Pr[X_B = x_B | X_S = x_S]$$

para quaisquer x_A, x_B, x_S e qualquer conjunto S tal que qualquer caminho em G de A para B passa por S. Ou seja, X_A e X_B são independentes dado X_S .

Dificuldade de aprender MRFs

Depende do grafo de dependências!

- Quanto mais esparso o grafo, mais hipóteses de independência são feitas;
- Se o grafo é completo, voltamos à situação inicial.
- Só conhecemos um algoritmo de aprendizagem eficiente para árvores!

Algoritmo de Chow-Liu

O cerne do projecto

Classificar usando MRFs

Input: um conjunto de dados T (m vectores $(x_1, ..., x_n, c)$ onde $(x_1, ..., x_n)$ são medições e c a respectiva classe:

- **1.** Para cada classe $c \in D_C$, definimos $T_c = \{(x_1, ..., x_n) : (x_1, ..., x_n, c) \in T\}$ como o conjunto das medições com classe associada c. Chamamos *fibra* a cada conjunto T_c .
- 2. Para cada $c \in D_C$ aprendemos uma MRF M_c usando T_c , através do algoritmo de Chow-Liu;
- 3. Definimos $\Pr[(X_1,\ldots,X_n,C)=(x_1,\ldots,x_n,c)]=p_C(c)\cdot p_{M_c}(x_1,\ldots,x_n)$, onde $p_C(c)=\frac{|T_c|}{m}$ e $p_{M_c}(x_1,\ldots,x_n)$ é a "probabilidade" atribuída às medições (x_1,\ldots,x_n) pela MRF M_c .
- 4. Classificação de $(x_1, ..., x_n)$: A classe c^* que maximiza $p_C(c) \cdot p_{M_c}(x_1, ..., x_n)$.

Como encontrar a melhor árvore para um MRF?

Algoritmo de Chow-Liu: Input um conjunto T_c de m_c vectores de medições (x_1,\ldots,x_n) .

- 1. Construir o grafo **pesado** completo G = (X, E) com pesos definidos abaixo;
- **2.** A cada aresta $\{i,j\} \in E$ associar como peso a informação mútua entre X_i e X_j :

$$I(X_i;X_j) = \sum_{x_i \in D_i, x_j \in D_j} p_{i,j}(x_i,x_j) \cdot \log \left(\frac{p_{i,j}(x_i,x_j)}{p_i(x_i) \cdot p_j(x_j)}\right), \quad \text{n° vezes que } \underbrace{(X_i,X_j) \text{ tomam simultaneamente os valores}}_{\text{simultaneamente os valores}} \\ \text{onde } p_i(x_i) = \underbrace{\frac{Count(T_c,i,x_i)}{m_c}}_{\text{n° vezes que } X_i \text{ toma}}, \quad p_{i,j}(x_i,x_j) = \underbrace{\frac{Count(T_c,(i,j),(x_i,x_j))}{m_c}}_{\text{n° vezes que } X_i \text{ toma}}, \quad p_{i,j}(x_i,x_j) = \underbrace{\frac{Count(T_c,(i,j),(x_i,x_j))}{m_c}}_{\text{n° vezes que } X_i \text{ toma}}, \quad p_{i,j}(x_i,x_j) = \underbrace{\frac{Count(T_c,(i,j),(x_i,x_j))}{m_c}}_{\text{n° vezes que } X_i \text{ toma}}, \quad p_{i,j}(x_i,x_j) = \underbrace{\frac{Count(T_c,(i,j),(x_i,x_j))}{m_c}}_{\text{n° vezes que } X_i \text{ toma nos olog } 0 = 0.$$

3. Retornar a *Maximum Weight Spanning Tree* de G. Intuição: É a árvore que retém mais "informação" entre as variáveis aleatórias.

MRFs baseados em árvores

Assumindo que já aprendemos um MRF M baseado numa árvore G, como obtemos a distribuição que maximiza a verosimilhança dos dados e que nos permite classificá-los?

Resumo: Obtemos uma orientação de G. Seja E o conjunto de arestas desta versão dirigida de G. A cada aresta $(i,j) \in E$ e possíveis medições (x_i,x_j) associamos um certo valor $\phi_{i,j}(x_i,x_j)$.

Usamos a estrutura da árvore dirigida G = (X, E) para definir

$$p_M(x_1, ..., x_n) = \prod_{(i,j) \in E} \phi_{i,j}(x_i, x_j).$$

MRFs baseados em árvores

Como orientar a árvore e calcular os $\phi_{i,j}(x_i,x_j)$ para uma dada fibra T_c ?

- 1. Escolhemos um vértice arbitrário como raíz (por exemplo, o primeiro) e uma aresta especial e adjacente a esse vértice;
- n° vezes que (X_i, X_j) tomam 2. A escolha da raíz induz uma orientação no grafo; simultaneamente os valores (x_i, x_j) em T_c
- 3. Se $(i,j) \neq e$, associamos $\phi_{i,j}(x_i,x_j) = \frac{Count(T_c,(i,j),(x_i,x_j))}{Count(T_c,i,x_i)}$ o valor x_i em T_c
- 4. Se (i,j) = e, associamos $\phi_{i,j}(x_i,x_j) = \frac{Count(T_c,(i,j),(x_i,x_j))}{m_c}$ cardinalidade de T_c

se escolhermos 4 como raíz

Na realidade, pseudo-contagens!

Por vezes, podemos ter $Count(T_c, (i, j), (x_i, x_j)) = 0$, o que contradiz a definição de MRF...

Assumimos então uma pseudo-contagem base $\delta=0.2$ para todos os dados, e usamos uma expressão alternativa para $\phi_{i,j}(x_i,x_j)$ que garante sempre probabilidades positivas:

Para
$$(i,j) \neq e$$
, definimos $\phi_{i,j}(x_i,x_j) = \frac{Count(T_c,(i,j),(x_i,x_j)) + \delta}{Count(T_c,i,x_i) + \delta \mid D_j \mid Count(T_c,i,x_i) + \delta \mid Count(T_c,$

Para
$$(i,j)=e$$
, definimos $\phi_{i,j}(x_i,x_j)=\dfrac{Count(T_c,(i,j),(x_i,x_j))+\delta}{m_c+\delta\,|D_j|\,|D_i|}$

Resumindo...

Se o MRF M_c aprendido para a fibra T_c é baseado na árvore dirigida $G_c = (X, E_c)$ com orientação induzida pela escolha da raíz r e aresta especial e adjacente a r, então definimos

$$p_{M_c}(x_1, ..., x_n) = \prod_{(i,j) \in E_c} \phi_{i,j}(x_i, x_j),$$

onde (com $\delta = 0.2$):

Entrega — 10 Janeiro 2025

Classes:

- Dataset:
 - Count: Recebe uma lista de índices de variáveis e valores destas, e devolve o número de vezes que estas variáveis tomam simultaneamente esses valores no dataset.
 - Add: Adiciona um vector ao dataset.
 - Fiber: Dado um valor da classe, devolve a fibra (Dataset) associada a esse valor da classe.
- MRFT (Markov Random Field Tree):
 - Construtor que recebe uma árvore e um dataset e calcula os valores $(\phi_{i,j}(x_i,x_j))_{x_i,x_j}$ (que podem ser representados por uma matriz indexada pelos possíveis valores de x_i e x_j) para cada aresta (i,j) da árvore.
 - Prob: Dado um vector de medições (x_1, \ldots, x_n) , devolve a probabilidade destes dados ocorrerem segundo a MRFT: $\operatorname{Prob}(x_1, \ldots, x_n) = \prod_{(i,j) \in E} \phi_{i,j}(x_i, x_j)$.

Entrega — 10 Janeiro 2025

Classes (continuação):

- Weighted Graph:
 - Add recebe dois nós e um peso e adiciona uma aresta entre os dois nós com esse peso;
 - Maximal weight spanning tree.
- Classifier:
 - Construtor recebe um array de MRFTs, um para cada valor da classe, e um array com a frequência das classes (os valores $p_C(c)$ para $c \in D_C$);
 - Classify dados valores (x_1,\ldots,x_n) das variáveis, devolve o valor da classe mais provável, ou seja, a classe c que maximiza $p_C(c)\cdot p_{M_c}(x_1,\ldots,x_n)$.
- Algoritmo de Chow-Liu (aplicado a cada fibra);
- Interface gráfica (minimalista é OK!):
 - Ler dados, aprender o classificador, gravá-lo num ficheiro;
 - Ler classificador e classificar pacientes.

Cotações

- Dataset (1.5 val)
- MRFT e Classifier (1.5 val)
- Input/output de dados e resultados (2 val)
- Algoritmo de aprendizagem e inicialização (3 val)
- Aplicações gráficas (1 val)
- Relatório minimalista (1 val)

Será entregue uma ficha de autoavaliação a preencher antes da discussão oral.

Eficiência da implementação é parâmetro diferenciador na nota final!