Лекция 9. Электромагнитная индукция

- 1. Закон Фарадея.
- 2. Правило Ленца.
- 3. Самоиндукция.
- 4. Взаимная индукция.
- 5. Вихревые токи.
- 6. Плотность энергии магнитного поля.
- 7. Энергия и силы в магнитном поле.
- 8. Магнитное давление.

Всё что видим мы - видимость только одна, Ибо тайная сущность вещей не видна.

Омар Хайям

Видимость сущности в противоположном.

Гегель

В 1831-м Майкл Фарадей открыл электромагнитную индукцию — возникновение разности электрических потенциалов между частями проводника, движущегося в магнитном поле.

На лекциях его не раз спрашивали о возможной пользе от электромагнитной индукции. История донесла два ответа: светской даме — «Мадам, а какова польза от новорождённого младенца?» и министру финансов — «Когда-нибудь Вы сможете обложить это налогом».

ФАРАДЕЙ Майкл (1791 – 1867) – знаменитый английский физик. Исследования в области электричества, магнетизма, магнитооптики, электрохимии. Создал лабораторную модель электродвигателя. Открыл экстротоки

при замыкании и размыкании цепи и установил их направление. Открыл законы электролиза, первый ввел понятия поля и диэлектрической проницаемости, в 1845 употребил термин «магнитное поле».

Кроме всего прочего М. Фарадей открыл явления диа и парамагнетизма. Он установил, что все материалы в магнитном поле ведут себя по-разному: ориентируются по полю (пара и ферромагнетики) или поперек поля — диамагнетики.

А.С. Чуев. 2022 г. 4

Диамагнетики и парамагнетики в магнитном поле

Сила Лоренца или закон Фарадея? Два разных объяснения одного и того же явления

Первая составляющая ЭДС - закон Фарадея, вторая составляющая — изза сила Лоренца. Для лучшего понимания формулы все части следует умножить на q.

$$\mathcal{E}_{i} = \overrightarrow{\mathbf{B}} \left[\overrightarrow{\mathbf{l}} \mathbf{v} \right] = \frac{\overrightarrow{\mathbf{B}} \left[\overrightarrow{\mathbf{l}}, \overrightarrow{\mathbf{v}} dt \right]}{dt}.$$

$$[\vec{1}, \vec{v} dt] = -\vec{n} dS,$$

$$\vec{\mathbf{B}} [\vec{\mathbf{I}}, \vec{\mathbf{v}} dt] = -\vec{\mathbf{B}}\vec{\mathbf{n}} dS = -d\Phi.$$

$$\mathcal{E}_i = -\frac{d\Phi}{dt} .$$

Известные *опыты Фарадея* по магнетизму: катушка и постоянный магнит

Если перемещать магнит относительно катушки, то в катушке возникнет электрический ток.

То же самое с двумя близко расположенными катушками: если к одной из катушек подключить источник переменного тока, то в другой тоже возникает переменный ток.

Эффект усилится, если две катушки соединить намагничиваемым сердечником.

При этом, явление совершенно не зависит от способа изменения потока вектора магнитной индукции.

Получается, что движущиеся заряды (ток) создают магнитное поле, а движущееся магнитное поле создает (вихревое) электрическое поле или индукционный ток

Для многих витков или источников

$$\mathcal{E}_i = -\sum \frac{d\Phi}{dt} = -\frac{d}{dt} \left(\sum \Phi \right).$$

$$\Psi = \sum \Phi$$
 - потокосцепление

При равенстве потоков $\Psi = N \Phi$.

$$\Psi = N \Phi$$
.

$$\mathcal{E}_i = -\frac{d\Psi}{dt}$$
.

В 1833 г. Ленц установил общее правило нахождения направления индукционного тока: индукционный ток всегда направлен так, что магнитное поле этого тока препятствует изменению магнитного потока, вызывающего индукционный ток.

Это утверждение носит название правило Ленца.

Алюминиевое кольцо выталкивается и зависает над сердечником соленоида, подключенного к генератору переменного электрического тока.

Сила отталкивания возникает в соответствии с правилом Ленца – индукционный ток порождает магнитное поле, препятствующее изменению магнитного потока в контуре

Явление самоиндукции

До сих пор мы рассматривали изменяющиеся магнитные поля не обращая внимание на то, что является их источником. На практике, чаще всего магнитные поля создаются с помощью различного рода соленоидов, т.е. многовитковых контуров с током.

Здесь возможны два случая:

при изменении тока в контуре изменяется магнитный поток, пронизывающий:

а) этот же контур,

б) соседний контур.

- ЭДС индукции, возникающая в самом же контуре называется ЭДС самоиндукции, а само явление самоиндукция.
- Если же ЭДС индукции возникает в соседнем контуре, то говорят о явлении взаимной индукции.
- Ясно, что природа явления одна и та же, а разные названия чтобы подчеркнуть место возникновения ЭДС индукции.

Т.к. магнитная индукция **В** пропорциональна току **I** $(B = \mu \mu_0 n I)$, следовательно

$$\Psi = LI$$
,

где **L** — коэффициент пропорциональности, названный **индуктивностью контура**.

 $m{L} = {\sf const}, \, {\sf если} \, {\sf внутри} \, {\sf контура} \, {\sf нет} \, {\sf ферромагнетиков},$ т.к. $m{\mu} = f(I) = f(H)$

Индуктивность контура **L зависит от геометрии** контура: числа витков, площади витка контура.

За единицу индуктивности в СИ принимается индуктивность такого контура, у которого при токе I = 1A возникает полный поток $\Psi = 1B6$. Эта единица называется Генри (Гн).

Единица измерения индуктивности

$$[L] = \mathcal{T}_{\mathcal{H}}$$

$$[L] = \frac{\Psi}{[I]} = \frac{B\delta}{A} = \frac{B \cdot c}{A} = O_{\mathcal{M}} \cdot c = 1\Gamma_{\mathcal{H}}$$

Индуктивность соленоида *L*.

Было в лекции 5

Если длина соленоида l гораздо больше его диаметра d (l >> d), то к нему можно применить формулы для бесконечно длинного соленоида.

Из циркуляции вектора B

$$B = \mu \mu_0 I \frac{N}{l}$$

Здесь N — число витков.

Поток через каждый из витков $\Phi = BS$

Потокосцепление
$$\Psi = NBS = \mu\mu_0 I \frac{N}{l} NS = \mu\mu_0 \frac{N^2S}{l} I$$

По определению:

$$\Psi = LI \qquad L = \mu \mu_0 \frac{N^2 S}{l}$$

$$L = \mu \mu_0 n^2 V$$

20

При изменении тока в контуре в нем возникает ЭДС самоиндукции, равная

$$\mathsf{E}_{i} = -\frac{\mathrm{d}\Psi}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}t}(IL) = -L\frac{\mathrm{d}I}{\mathrm{d}t}$$

Знак минус в этой формуле обусловлен правилом Ленца.

$$\mathsf{E}_i = -L \frac{\mathrm{d}I}{\mathrm{d}t}$$

Явление самоиндукции при замыкании и размыкании цепи, содержащей индуктивность

Случай 1. Подключение к источнику цепи с индуктивностью

По правилу Ленца, токи возникающие в цепях вследствие самоиндукции всегда направлены так, чтобы препятствовать изменению тока, текущего в цепи. 22

Это приводит к тому, что при замыкании ключа K установление тока I_2 в цепи содержащей индуктивность L ,будет происходить не мгновенно, а постепенно.

Сила тока в этой цепи будет удовлетворять уравнению

$$I_2 = I_0 \left(1 - e^{-\frac{R}{L}t} \right)$$

Скорость возрастания тока будет характеризоваться постоянной

23

времени цепи

$$\tau = \frac{L}{R}$$

В цепи, содержащей только активное сопротивление R ток I_1 установится практически мгновенно.

Случай 2. Отключение цепи, содержащей индуктивность L, от источника.

Размыкание цепи в момент времени t_0

приводит к резкому возрастанию ЭДС индукции, определяемой по формуле

$$\mathbf{E}_{t} = -L \frac{dI}{dt}.$$
 $R \to \infty$

Происходит этот скачок напряжения вследствие большой величины скорости изменения тока $\frac{dI}{dt}$

А.С. Чуев. 2022 г.

Нельзя резко размыкать цепь, состоящую из трансформатора и других индуктивностей.

Взаимная индукция

Возьмем два контура, расположенные недалеко друг от друга

В первом контуре течет ток I_1 .

Он создает магнитный поток, который пронизывает и витки второго контура.

$$\Psi_2 = L_{21}I_1$$

При изменении тока I_1 во втором контуре наводится ЭДС индукции

$$\Psi_1 = L_{12}I_2$$

Аналогично, ток I_2 второго контура создает магнитный поток пронизывающий первый контур dI_1

$$\mathbf{E}_{12} = -L_{21} \frac{dI_1}{dt}$$

И при изменении тока I_2 наводится ЭДС

$$\mathsf{E}_{11} = -L_{12} \, \frac{dI_2}{dt}$$

Контуры называются *связанными*, а *явление* – *взаимной индукцией*.

Коэффициенты L_{21} и L_{12} называются взаимной индукции.

Причём
$$L_{21} = L_{12}$$
.

Трансформатор является типичным примером двух связанных контуров.

Устройство трансформатора

Явление взаимной индукции используется в широко распространенных устройствах – трансформаторах.

Трансформатор был изобретен Яблочковым – русским ученым, в 1876г. для раздельного питания отдельных электрических источников света (свечи Яблочкова).

А.С. Чуев. 2022 г.

Вихревые токи (токи Фуко)

Энергия магнитного поля

Рассмотрим случай отключения индуктивности от источника тока

Считается, что ток в цепи после отключения поддерживается за счет ранее накопленной энергии магнитного поля

Энергия индуктивности с током

$$dA = E_{i}Idt$$

$$dA = -L\frac{dI}{dt}Idt = -LIdI$$

$$A = -L\int_{I}^{0}IdI = \frac{LI^{2}}{2}$$

$$W = \frac{LI^2}{2}$$

$$W = \frac{\Phi^2}{2L}$$

$$W = \frac{LI^2}{2}$$

$$L = \mu_0 \mu n^2 V; \quad H = nI$$
 или $I = \frac{H}{n}$

n – количество витков на единицу длины соленоида

Объемная плотность энергии магнитного поля

$$W = \frac{\mu \mu_0 n^2 V H^2}{2n^2} = \frac{\mu \mu_0 H^2}{2} V \qquad W = \frac{\mu \mu_0 H^2}{2} V$$

$$w=rac{\mu_0\mu H^2}{2}$$
 .

$$w = \frac{\mu_0 \mu H^2}{2} = \frac{HB}{2} = \frac{B^2}{2\mu_0 \mu}$$
.

Магнитное давление

Магнитокумулятивный генератор

Андрей Сахаров

Кларенс Фоулер

А.С. Чуев. 2022 г.

Факультативный материал и материал для повторения

Система электромагнитных величин и их взаимосвязей

СИСТЕМА ЭЛЕКТРОМАГНИТНЫХ ВЕЛИЧИН И ИХ ВЗАИМОСВЯЗЕЙ

Система электромагнитных величин и их взаимосвязей

Источники электрического и магнитного полей

$$q = \lambda l = \sigma S = \rho V; \quad \vec{p}_e = q \vec{l}$$

$$q\vec{\mathbf{v}} = I\vec{l} = \vec{j}V; \quad \vec{p}_{\mathrm{m}} = IS\vec{n}$$

Основные полевые параметры без учета влияния вещественной среды

$$\varphi = \frac{W}{q_{\Pi p}}; \quad \varphi = \frac{1}{\epsilon_0 4\pi r} \int \rho dV;$$

$$\left| \vec{A} \right| = \frac{W}{\left| \vec{j} V \right|_{\Pi p}}; \quad \vec{A} = \frac{\mu_0}{4\pi r} \int \vec{j}_0 dV;$$

$$ec{E}=rac{ec{F}}{q_{\Pi \mathrm{p}}}; \quad ec{E}=rac{1}{4\pi arepsilon_0}rac{q_0}{r^2}ec{e}_{\mathrm{r}}$$

$$B = \frac{F}{jV_{\text{TD}}}; \quad d\vec{B} = \frac{\mu_0}{4\pi r^2} [\vec{j}_0 \times \vec{e}_r] dV$$

Взаимосвязь полевых параметров и источников поля

$$\vec{E} = -\text{grad } \varphi$$
; $\Delta \varphi = \rho/\epsilon_0$

$$\vec{B} = \text{rot } \vec{A}; \quad \Delta \vec{A} = \mu_0 \vec{j}$$

Силовое поле, создаваемое диполем

$$E = \frac{1}{\varepsilon_0} \frac{p_e}{4\pi r^3} \sqrt{1 + 3\cos^2\theta}$$

$$B = \mu_0 \frac{p_{\rm m}}{4\pi r^3} \sqrt{1 + 3\cos^2 \theta}$$

Потенциальная энергия диполя, находящегося в силовом поле

$$W = -\vec{p}_{a}\vec{E}$$

$$\vec{E}$$
 $W = -\vec{p}_m \vec{B}$

Вращательный момент сил, действующих на диполь в однородном поле

$$\vec{M} = [\vec{p}_e \times \vec{E}]$$

$$\vec{M} = [\vec{p}_m \times \vec{B}]$$

Сила, действующая на диполь в неоднородном поле

$$F = p_{\rm e} \frac{\partial E}{\partial x}$$

$$F = p_{\rm m} \frac{\partial B}{\partial x}$$

Реакция вещества на внешнее поле

$$\vec{P} = \frac{(\epsilon - 1)\vec{D}}{\epsilon} = \kappa \epsilon_0 \vec{E}; \quad \kappa = \epsilon - 1; \quad \vec{P} = \frac{\sum \vec{P}_q}{V}$$

$$\vec{J} = \chi \vec{H}$$
; $\chi = \mu - 1$; $\vec{J} = \frac{\sum \vec{p}_{\text{m}}}{V}$

Основные соотношения векторов

$$\vec{E} = \frac{1}{\varepsilon_0} (\vec{D} - \vec{P}) = \frac{1}{\varepsilon \varepsilon_0} \vec{D}$$

$$\vec{B} = \mu_0(\vec{H} + \vec{J}) = \mu\mu_0\vec{H}$$

Граничные условия для векторов

$$E_{\tau 1} = E_{\tau 2}; \quad D_{n1} = D_{n2};$$

$$P_{n} == \sigma' = \frac{q'^{\text{nob}}}{S}$$

$$H_{ au 1} = H_{ au 2}; \quad B_{\mathrm{n}1} = B_{\mathrm{n}2}; \ J_{\mathrm{R}} = i'^{\mathrm{nob}} = rac{I'^{\mathrm{nob}}}{2\pi R}$$

Характерные интегральные соотношения для векторов

$$\oint \vec{D} d\vec{S} = q; \qquad \oint \vec{P} d\vec{S} = -q'$$

$$\oint \vec{E} d\vec{S} = \frac{1}{\varepsilon_0} (q + q') = \frac{q}{\varepsilon \varepsilon_0}; \qquad \oint \vec{E} d\vec{l} = 0$$

$$\oint \vec{H} d\vec{l} = \sum I; \qquad \oint \vec{J} d\vec{l} = \sum I'$$

$$\oint \vec{B} d\vec{l} = \mu_0 (I + I') = \mu \mu_0 I; \qquad \oint \vec{B} d\vec{S} = 0$$

Характерные дифференциальные соотношения для векторов

$$\begin{aligned} \operatorname{div} \vec{D} &= \rho \; ; & \operatorname{div} \vec{P} &= -\rho' \\ \operatorname{div} \vec{E} &= \frac{1}{\varepsilon_0} (\rho + \rho') = \frac{\rho}{\varepsilon \varepsilon_0} \; ; & \operatorname{rot} \vec{E} &= 0 \\ |_{\text{A.C. Чуев. 2022 Г.}} \operatorname{rot} \vec{B} &= \mu_0 (\vec{j} + \vec{j}') = \mu \mu_0 \vec{j} \; ; & \operatorname{div} \vec{B} &= 0 \end{aligned}$$

$$\operatorname{rot} \vec{H} = \vec{j}; \qquad \operatorname{rot} \vec{J} = \vec{j}'$$

$$\operatorname{rot} \vec{B} = \mu_0 (\vec{j} + \vec{j}') = \mu \mu_0 \vec{j}; \quad \operatorname{div} \vec{B} = 0$$

Примечания Чуева, выделены рамкой красного цвета

$$ec{D} = rac{\sum ec{p}_{
m e}^{
m \ BMPT}}{V}$$

$$D_{\rm n1} = D_{\rm n2}; \quad D_{\rm \tau 1} = D_{\rm \tau 2}.$$

На границе двух диэлектриков, возможно

$$\oint \vec{E} d\vec{l} \neq 0$$

 $_{\rm H} \quad {\rm rot} \vec{E} \neq 0$

$$ec{H} = rac{\sum ec{p}_{
m m}^{
m \ BMPT}}{V}$$
 $H_{ au 1} = H_{ au 2}$; $H_{ au 1} = H_{ au 2}$; $\operatorname{div} ec{H} = 0$. На полюсах магнита и в отсутствии токов проводимости $\operatorname{div} ec{B}/\mu_0 = -\operatorname{div} ec{J}$

Соотношения, выделенные рамкой красного цвета, не являются общепризнанными.

Подтверждающие примеры

Рис 162. Железные проволоки порознь намагничиваются сильнее, чем толстый стержень, составленный из этих проволок

Парадокс изображения магнитных полей

Закон Б-С-Л не выполняется

$$d\vec{B} = \frac{\mu\mu_0}{4\pi} \frac{I[d\vec{l}, \vec{r}]}{r^3}$$

$$d\vec{H} = \frac{I[d\vec{l}, \vec{r}]}{4\pi r^3}.$$

Правильные соотношения магнитных векторов внутри магнетиков

Конец лекции 9