Co-Sacle Conv-Attentional Image Transformers

CoaT Paper Review

Sangho Kim

- Introduction
- Combination of CNN and Self-Attention
- Review Self-Attention in ViT
- Methods
- Model Architecture
- Experiments
- Conclusion

Introduction

- In essence, both the convolution and attention operations address the fundamental representation problem for structured data.
- The receptive fields in CNNs are gradually expanded through a series of convolution operations.
- The attention mechanism is different from the convolution operations.
 - 1) The receptive field at each location or token in self-attention readily covers the entire input space since each token is matched with all tokens.
 - 2) The self-attention operation for each pair of tokens computes a dot product between the query and the key to weight the value.
- In the self-attention mechanism, the weights are dynamically computed based on the similarity or affinity between every pair of tokens.
- As a consequence, the self-similarity operation in the self-attention provides modeling means that are potentially more adaptive and general than convolution operations.

- Introduction
- Combination of CNN and Self-Attention
- Review Self-Attention in ViT
- Methods
- Model Architecture
- Experiments
- Conclusion

Combination of CNN and Self-Attention

- In this paper, the authors propose the ideas combined convolutional networks and self-attention mechanism.
- The one of the advantages in CNNs is capturing local spatial information but it does not have long-range dependencies.
- And the self-attention mechanism has a advantage of long-range dependencies because it computes similarity between every pair of tokens.
- Therefore, we develop Co-scale conv-attentional image Transformers (CoaT).
- The contributions of our work are summarized as follows:
 - 1) We introduce a co-scale mechanism to image Transformers by maintaining encoder branches at sperate scales while engaging attention across scales.
 - 2) We design a conv-attention module to realize relative position embeddings with convolutions that achieves significantly enhanced computation efficiency.

- Introduction
- Combination of CNN and Self-Attention
- Review Self-Attention in ViT
- Methods
- Model Architecture
- Experiments
- Conclusion

Review Self-Attention in ViT

- Revisit Scaled Dot-Product Attention
- Transformers take as input a sequence of vector representations $X \in \mathbb{R}^{N \times C}$.
- The projection of the whole sequence generate representations $Q, K, V \in \mathbb{R}^{N \times C}$.
- The scaled dot-product attention is formulated as:

$$\operatorname{Att}(X) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{C}}\right)V$$

- Introduction
- Combination of CNN and Self-Attention
- Review Self-Attention in ViT
- Methods
- Model Architecture
- Experiments
- Conclusion

Factorized Attention Mechanism

- For equation of scaled dot-product attention in ViT, it leads to the $O(N^2)$ space complexity and $O(N^2C)$ time complexity.
- Inspired by recent works, we approximate the attention map by factorizing it using two functions $\phi(\cdot)$, $\psi(\cdot)$: $\mathbb{R}^{N \times C} \to \mathbb{R}^{N \times C'}$.
- Here, we develop our factorized attention mechanism following LambdaNets with ϕ as the identity function and ψ as the softmax:

$$\operatorname{FactorAtt}(X) = \frac{Q}{\sqrt{C}} \Big(\operatorname{softmax}(K)^{\top} V \Big)$$

• This factorized attention takes $O(NC + C^2)$ space complexity and $O(NC^2)$ time complexity.

Convolution as Position Encoding

- Without the position encoding, the Transformer is only composed of linear layers and self-attention modules.
- Thus, the output of a token is dependent on the corresponding input without awareness of any difference in its locally nearby features.
- This property is unfavorable for vision tasks such as semantic segmentation (e.g. the same blue patches in the sky and the sea are segmented as the same category).

Convolution Relative Position Encoding

- To enable vision tasks, ViT insert absolute position embeddings into the input, which may have limitations in modeling relations between local tokens.
- Instead, we can integrate a relative position encoding $P = \{ \mathbb{p}_i \in \mathbb{R}^C, i = -\frac{M-1}{2}, \dots, \frac{M-1}{2} \}$ with window size M to obtain the relative attention map $EV \in \mathbb{R}^{N \times C}$, if tokens are regarded as a 1D sequence:

$$\operatorname{RelFactorAtt}(X) = \frac{Q}{\sqrt{C}} \Big(\operatorname{softmax}(K)^\top V \Big) + EV$$

• Where the encoding matrix $E \in \mathbb{R}^{N \times N}$ has elements $E_{ij} = 1(i,j) \mathbf{q}_i \cdot \mathbf{p}_{j-1}$, $1 \le i,j \le N$ in which 1(i,j) is an indicator function.

Convolution Relative Position Encoding

- Unfortunately, the EV term in above function still requires $O(N^2)$ space complexity and $O(N^2C)$ time complexity.
- In CoaT, we propose to simplify the EV term to \widehat{EV} by considering each channel in the query, position encoding and value vectors as internal heads.

$$E_{ij}^{(l)} = \mathbb{1}(i,j)q_i^{(l)}p_{j-i}^{(l)}, \ \hat{EV}_i^{(l)} = \sum_j E_{ij}^{(l)}v_j^{(l)}$$

• In practice, we can use a 1D depthwise convolution to compute \widehat{EV} :

$$\begin{split} \hat{EV}^{(l)} &= Q^{(l)} \circ \text{Conv1D}(P^{(l)}, V^{(l)}), \\ \hat{EV} &= Q^{(l)} \circ \text{Conv1D}(P^{(l)}, V^{(l)}), \\ \hat{EV} &= Q^{(l)} \circ \text{Conv1D}(P^{(l)}, V^{(l)}), \\ \hat{EV} &= \text{Concat}(\hat{EV}^{\text{img}}, \mathbf{0}) \\ \hat{EV} &= \text{ConvAtt}(X) = \frac{Q}{\sqrt{C}} \Big(\text{softmax}(K)^{\top} V \Big) + \hat{EV} \end{split}$$

• This attention computes only O(NC) space complexity and $O(NCM^2)$ time complexity, aiming to achieve better efficiency.

Convolution Position Encoding

- We extend the idea of convolutional relative position encoding (CRPE) to a general convolutional position encoding (CPE) case.
- CRPE models local position-based relationships between queries and values.
- Similar to the absolute position encoding, we would like to insert the position relationship into the input images features directly to enrich the effects of relative position encoding.
- We insert a depthwise convolution into the input features X and concatenate the resulting position-aware features back to the input features.
- We set kernel size to 3 for the convolutional position encoding.
- We set kernel size to 3, 5 and 7 for image features from different attention heads for convolutional relative position encoding.
- Our work focuses on applying convolution as relative position encoding and a general position encoding with the factorized attention.

Reshape To Linear Layer Or Parallel Block Feed-Forward Conv-Attention Feed-Forward Conv-Attention Image Tokens Class Token Flatten Patch Embed

Output Feature Maps

CoaT Serial Block

- A serial block models image representations in a reduced resolution.
- We first down-sample input feature maps by a certain ratio using a patch embedding layer, and flatten the reduced feature maps into a sequence of tokens.
- Then, we concatenate tokens with an additional class token and apply multiple conv-attentional modules.
- Finally, we separate the class token from image tokens and reshape the image tokens to 2D feature maps for the next serial block.

Parallel Block Parallel Block Parallel Block Parallel Group W/o Co-Scale Conv-Att Cross-Att Cross-Att

CoaT Parallel Block

- In a parallel group, we have sequences of input features from serial blocks with different scales.
- In direct cross-layer attention, for attention cross different layers, we down-sample or up-sample the key and value vectors to match the resolution of other scales.
- Then, we perform cross-attention.
- Finally, we sum the outputs of conv-attention and cross-attention together and apply a shared feed-forward layer.
- In attention with feature interpolation, first, the input image features from different scales are processed by independent conv-attention modules.
- Then we down-sample or up-sample image features from each scale to match the dimensions of other scales using bilinear interpolation.
- The features belonging to the same scale are summed in the parallel group, and they are further passed into a shared feed-forward layer.

- Introduction
- Combination of CNN and Self-Attention
- Review Self-Attention in ViT
- Methods
- Model Architecture
- Experiments
- Conclusion

Model Architecture

CoaT-Lite

- This preprocess input images with a series of serial blocks following a fine-to-coarse pyramid structure.
- Given an input image $I \in \mathbb{R}^{H \times W \times C}$, each serial block down-samples the image features into lower resolution, resulting in a sequence of four resolutions: $F_1 \in \mathbb{R}^{\frac{H}{4} \times \frac{W}{4} \times C_1}$, $F_2 \in \mathbb{R}^{\frac{H}{8} \times \frac{W}{8} \times C_2}$, $F_3 \in \mathbb{R}^{\frac{H}{16} \times \frac{W}{16} \times C_3}$, $F_1 \in \mathbb{R}^{\frac{H}{32} \times \frac{W}{32} \times C_4}$.
- In CoaT-Lite, we obtain the class token in the last serial block, and perform classification via a linear projection layer.

Model Architecture

CoaT

- CoaT model consists of both serial and parallel blocks.
- Once we obtain mutl-scale feature maps $\{F_1, F_2, F_3, F_4\}$ from the serial blocks, we pass F_2, F_3, F_4 and corresponding class tokens into the parallel group with three separate parallel blocks.
- To perform classification, we aggregate the class tokens from all three scales.

Model Architecture

Table 1. Architecture details of CoaT-Lite and CoaT models. C_i represents the hidden dimension of the attention layers in block i; H_i represents the number of attention heads in the attention layers in block i; R_i represents the expansion ratio for the feed-forward hidden layer dimension between attention layers in block i. Multipliers indicate the number of conv-attentional modules in block i.

Blocks	Output		Coa	Γ-Lite	CoaT			
DIOCKS	Output	Tiny	Mini	Small	Medium	Tiny	Mini	Small
Serial Block (S ₁)	56×56	$\begin{bmatrix} C_1 = 64 \\ H_1 = 8 \\ R_1 = 8 \end{bmatrix} \times 2$	$\begin{bmatrix} C_1 = 64 \\ H_1 = 8 \\ R_1 = 8 \end{bmatrix} \times 2$	$\begin{bmatrix} C_1 = 64 \\ H_1 = 8 \\ R_1 = 8 \end{bmatrix} \times 3$	$\begin{bmatrix} C_1 = 128 \\ H_1 = 8 \\ R_1 = 4 \end{bmatrix} \times 3$	$\begin{bmatrix} C_1 = 152 \\ H_1 = 8 \\ R_1 = 4 \end{bmatrix} \times 2$	$\left[\begin{array}{c} C_1 = 152\\ H_1 = 8\\ R_1 = 4 \end{array}\right] \times 2$	$\left[\begin{array}{c} C_1 = 152\\ H_1 = 8\\ R_1 = 4 \end{array}\right] \times 2$
Serial Block (S ₂)	28×28	$\begin{bmatrix} C_2 = 128 \\ H_2 = 8 \\ R_2 = 8 \end{bmatrix} \times 2$	$\left[\begin{array}{c} C_2 = 128 \\ H_2 = 8 \\ R_2 = 8 \end{array} \right] \times 2$	$\begin{bmatrix} C_2 = 128 \\ H_2 = 8 \\ R_2 = 8 \end{bmatrix} \times 4$	$\begin{bmatrix} C_1 = 256 \\ H_1 = 8 \\ R_1 = 4 \end{bmatrix} \times 6$	$\begin{bmatrix} C_2 = 152 \\ H_2 = 8 \\ R_2 = 4 \end{bmatrix} \times 2$	$\begin{bmatrix} C_2 = 216 \\ H_2 = 8 \\ R_2 = 4 \end{bmatrix} \times 2$	$\left[\begin{array}{c} C_1 = 320\\ H_1 = 8\\ R_1 = 4 \end{array}\right] \times 2$
Serial Block (S ₃)	14×14	$\begin{bmatrix} C_3 = 256 \\ H_3 = 8 \\ R_3 = 4 \end{bmatrix} \times 2$	$\begin{bmatrix} C_3 = 320 \\ H_3 = 8 \\ R_3 = 4 \end{bmatrix} \times 2$	$\begin{bmatrix} C_3 = 320 \\ H_3 = 8 \\ R_3 = 4 \end{bmatrix} \times 6$	$\begin{bmatrix} C_1 = 320 \\ H_1 = 8 \\ R_1 = 4 \end{bmatrix} \times 10$	$\begin{bmatrix} C_3 = 152 \\ H_3 = 8 \\ R_3 = 4 \end{bmatrix} \times 2$	$\begin{bmatrix} C_3 = 216 \\ H_3 = 8 \\ R_3 = 4 \end{bmatrix} \times 2$	$\left[\begin{array}{c} C_1 = 320\\ H_1 = 8\\ R_1 = 4 \end{array}\right] \times 2$
Serial Block (S ₄)	7 × 7	$\begin{bmatrix} C_4 = 320 \\ H_4 = 8 \\ R_4 = 4 \end{bmatrix} \times 2$	$\left[\begin{array}{c} C_4 = 512\\ H_4 = 8\\ R_4 = 4 \end{array}\right] \times 2$	$\left[\begin{array}{c} C_4 = 512\\ H_4 = 8\\ R_4 = 4 \end{array}\right] \times 3$	$\left[\begin{array}{c} C_1 = 512\\ H_1 = 8\\ R_1 = 4 \end{array}\right] \times 8$	$\begin{bmatrix} C_4 = 152 \\ H_4 = 8 \\ R_4 = 4 \end{bmatrix} \times 2$	$\left[\begin{array}{c} C_4 = 216\\ H_4 = 8\\ R_4 = 4 \end{array}\right] \times 2$	$\left[\begin{array}{c} C_1 = 320\\ H_1 = 8\\ R_1 = 4 \end{array}\right] \times 2$
Parallel Group	$\left[\begin{array}{c} 28 \times 28 \\ 14 \times 14 \\ 7 \times 7 \end{array}\right]$					$\begin{bmatrix} C_4 = 152 \\ H_4 = 8 \\ R_4 = 4 \end{bmatrix} \times 6$	$\left[\begin{array}{c} C_4 = 216\\ H_4 = 8\\ R_4 = 4 \end{array}\right] \times 6$	$\left[\begin{array}{c} C_1 = 320\\ H_1 = 8\\ R_1 = 4 \end{array}\right] \times 6$
#Par	ams	5.7M	11M	20M	45M	5.5M	10M	22M

- Introduction
- Combination of CNN and Self-Attention
- Review Self-Attention in ViT
- Methods
- Model Architecture
- Experiments
- Conclusion

Table 2. CoaT performance on ImageNet-1K validation set. Our CoaT models consistently outperform other methods while being parameter efficient. ConvNets and ViTNets with similar model size are grouped together for comparison. "#GFLOPs" and Top-1 Acc are measured at input image size. "*" results are adopted from [33].

Arch.	Model	#Params	Input	#GFLOPs	Top-1 Acc.
ConvNets	EfficientNet-B0 [29]	5.3M	224^{2}	0.4	77.1%
	ShuffleNet [43]	5.4M	224^{2}	0.5	73.7%
ViTNets	DeiT-Tiny [30]	5.7M	2242	1.3	72.2%
	CPVT-Tiny [6]	5.7M	224^{2}	-	73.4%
	CoaT-Lite Tiny (Ours)	5.7M	224^{2}	1.6	77.5%
	CoaT Tiny (Ours)	5.5M	224^{2}	4.4	78.3%
ConvNets	EfficientNet-B2[29]	9M	260^{2}	1.0	80.1%
	ResNet-18* [11]	12M	224^{2}	1.8	69.8%
ViTNets	PVT-Tiny [33]	13M	224^{2}	1.9	75.1%
	CoaT-Lite Mini (Ours)	11 M	224^{2}	2.0	79.1%
	CoaT Mini (Ours)	10M	224^{2}	6.8	81.0%
ConvNets	EfficientNet-B4 [29]	19M	380^{2}	4.2	82.9%
	ResNet-50* [11]	25M	224^{2}	4.1	78.5%
	ResNeXt50-32x4d* [36]	25M	224^{2}	4.3	79.5%
ViTNets	DeiT-Small [30]	22M	2242	4.6	79.8%
	PVT-Small [33]	24M	224^{2}	3.8	79.8%
	CPVT-Small [6]	22M	224^{2}	-	80.5%
	T2T-ViT _t -14 [40]	22M	224^{2}	6.1	81.7%
	Swin-T [17]	29M	224^{2}	4.5	81.3%
	CoaT-Lite Small (Ours)	20M	224^{2}	4.0	81.9%
	CoaT Small (Ours)	22M	224^{2}	12.6	82.1%
ConvNets	EfficientNet-B6 [29]	43M	528^{2}	19	84.0%
	ResNet-101* [11]	45M	224^{2}	7.9	79.8%
	ResNeXt101-64x4d* [36]	84M	224^{2}	15.6	81.5%
ViTNets	PVT-Large [33]	61M	2242	9.8	81.7%
	T2T-ViT _t -24 [40]	64M	224^{2}	15	82.6%
	DeiT-Base [30]	86M	224^{2}	17.6	81.8%
	CPVT-Base [6]	86M	224^{2}	-	82.3%
	Swin-B [17]	88M	224^{2}	15.4	83.5%
	Swin-B [17]	88M	384^{2}	47	84.5%
	CoaT-Lite Medium (Ours)	45M	224^{2}	9.8	83.6%
	CoaT-Lite Medium (Ours)	45M	384^{2}	28.7	84.5%

Table 3. Object detection and instance segmentation results based on Mask R-CNN on COCO val2017. Experiments are performed under the MMDetection framework [4]. "*" results are adopted from Detectron2.

Backbone	#Params	w/ FPN $1\times$		w/ FPN 3×	
Dackbone	(M)	AP^{b}	AP^{m}	AP ^b	AP^{m}
ResNet-18*	31.3	34.2	31.3	36.3	33.2
PVT-Tiny [33]	32.9	36.7	35.1	39.8	37.4
CoaT-Lite Mini (Ours)	30.7	41.4	38.0	42.9	38.9
CoaT Mini (Ours)	30.2	45.1	40.6	46.5	41.8
ResNet-50*	44.3	38.6	35.2	41.0	37.2
PVT-Small [33]	44.1	40.4	37.8	43.0	39.9
Swin-T [17]	47.8	43.7	39.8	46.0	41.6
CoaT-Lite Small (Ours)	39.5	45.2	40.7	45.7	41.1
CoaT Small (Ours)	41.6	46.5	41.8	49.0	43.7

Table 4. Object detection and instance segmentation results based on Cascade Mask R-CNN on COCO val2017. Experiments are performed using the MMDetection framework [4].

Backbone	#Params	w/FF	PN 1×	w/ FPN $3\times$	
Dackbolle	(M)	AP^{b}	AP^{m}	AP^{b}	AP^{m}
Swin-T [17]	85.6	48.1	41.7	50.4	43.7
CoaT-Lite Small (Ours)	77.3	49.1	42.5	48.9	42.6
CoaT Small (Ours)	79.4	50.4	43.5	52.2	45.1

Table 6. **Effectiveness of position encodings.** All experiments are performed with the CoaT-Lite Tiny architecture. Performance is evaluated on the ImageNet-1K validation set.

Model	CPE	CRPE	Top-1 Acc.
CoaT-Lite Tiny	Х	×	68.8%
_	X	1	75.0%
	1	X	75.9%
	1	1	77.5%

Table 7. **Effectiveness of co-scale.** All experiments are performed with the CoaT Tiny architecture. Performance is evaluated on the ImageNet-1K validation set and the COCO val2017 dataset.

Model	#Params	Input	#GFLOPs	Top-1 Acc. @input	AP^{b}	AP^{m}
CoaT w/o Co-Scale CoaT w/ Co-Scale	5.5M	224^{2}	4.4	77.8%	41.6	37.9
 Direct Cross-Layer Attention Attention w/ Feature Interp. 	5.5M 5.5M	$224^2 \\ 224^2$	4.8 4.4	77.0% 78.3%	42.1 42.5	38.3 38.6

Table 8. ImageNet-1K validation set results compared with the concurrent work Swin Transformer[17]. Computational metrics are measured on a single V100 GPU.

Model	#Params	Input	GFLOPs	FPS	Latency	Mem	Top-1 Acc.	Top-5 Acc.
Swin-T [17]	28M	$ 224^{2}$	4.5	755	16ms	222M	81.2%	95.5%
CoaT-Lite Small (Ours)	20M	224^{2}	4.0	634	32ms	224M	81.9%	95.6%
CoaT Small (Ours)	22M	224^{2}	12.6	111	60ms	371M	82.1%	96.1%
Swin-S [17]	50M	$ 224^{2}$	8.7	437	29ms	372M	83.2%	96.2%
Swin-B [17]	88M	224^{2}	15.4	278	30ms	579M	83.5%	96.5%
CoaT-Lite Medium (Ours)	45M	224^{2}	9.8	319	52ms	429M	83.6%	96.7%
Swin-B [17]	88M	$ 384^{2} $	47.1	85	33ms	1250M	84.5%	97.0%
CoaT-Lite Medium (Ours)	45M	384^{2}	28.7	97	56ms	937M	84.5%	97.1%

- Introduction
- Combination of CNN and Self-Attention
- Review Self-Attention in ViT
- Methods
- Model Architecture
- Experiments
- Conclusion

Conclusion

- In this paper, we present a Transformer based image classifier, CoaT.
- This models attain strong classification results on ImageNet.
- And their applicability to downstream tasks has been demonstrated for object detection and instance segmentation.