SI231 - Matrix Computations, 2021 Fall

Solution of Homework Set #1

Prof. Yue Qiu

Acknowledgements:

- 1) Deadline: 2021-10-12 23:59:59
- 2) Late Policy details can be found on piazza.
- 3) Submit your homework in **Homework 1** on **Gradscope**. Entry Code: **2RY68R**. Make sure that you have correctly select pages for each problem. If not, you probably will get 0 point.
- 4) No handwritten homework is accepted. You need to write LaTeX. (If you have difficulty in using LaTeX, you are allowed to use **MS Word or Pages** for the first and the second homework to accommodate yourself.)
- 5) Use the given template and give your solution in English. Solution in Chinese is not allowed.
- 6) Your homework should be uploaded in the PDF format, and the naming format of the file is not specified.

I. VECTOR SPACE AND SUBSPACE

Problem 1. (6 points \times 3)

- 1) Let \mathcal{X} and \mathcal{Y} be two subspaces of a vector space \mathcal{V} :
 - a) Prove that the intersection $\mathcal{X} \cap \mathcal{Y}$ is also a subspace of \mathcal{V} .
 - b) Show that the union of $\mathcal{X} \cup \mathcal{Y}$ need not to be a subspace of \mathcal{V} .
- 2) Prove or give a counterexample:
 - a) If \mathcal{U}_1 , \mathcal{U}_2 , and \mathcal{W} are subspaces of \mathcal{V} such that $\mathcal{U}_1 + \mathcal{W} = \mathcal{U}_2 + \mathcal{W}$, then $\mathcal{U}_1 = \mathcal{U}_2$.
 - b) If \mathcal{U}_1 , \mathcal{U}_2 , and \mathcal{W} are subspaces of \mathcal{V} such that $\mathcal{V} = \mathcal{U}_1 \oplus \mathcal{W}$ and $\mathcal{V} = \mathcal{U}_2 \oplus \mathcal{W}$, then $\mathcal{U}_1 = \mathcal{U}_2$.
- 3) Let $\mathbf{U} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_r\}$ and $\mathbf{V} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_r, \mathbf{v}\}$ be two sets of vectors from the same vector space, prove that $span(\mathbf{U}) = span(\mathbf{V})$ if and only if $\mathbf{v} \in span(\mathbf{U})$.

Solution:

- 1) a) Let $\mathbf{u}, \mathbf{v} \in \mathcal{X} \cap \mathcal{Y}$ then $\mathbf{u}, \mathbf{v} \in \mathcal{X}$ and $\mathbf{u}, \mathbf{v} \in \mathcal{Y}$. From the closure property for vector addition that $\mathbf{u} + \mathbf{v} \in \mathcal{X}$ and $\mathbf{u} + \mathbf{v} \in \mathcal{Y}$, we have $\mathbf{u} + \mathbf{v} \in \mathcal{X} \cap \mathcal{Y}$. (2 points) From the closure property for scalar multiplication that $\alpha \mathbf{u} \in \mathcal{X}$ and $\alpha \mathbf{u} \in \mathcal{Y}$ for any α , we have $\alpha \mathbf{u} \in \mathcal{X} \cap \mathcal{Y}$.(2 points)
 - b) For example, the union of two lines through the Origin in \mathbb{R}^2 is not a subspace. (2 points)
- 2) a) Counterexample: If $\mathcal{U}_1 = \{(z, z) \in \mathbb{R}^2 : x \in \mathbb{R}\}, \mathcal{U}_2 = \{(0, y) \in \mathbb{R}^2 : x \in \mathbb{R}\}$ and $\mathcal{W} = \{(x, 0) \in \mathbb{R}^2 : z \in \mathbb{R}\}$, then $\mathcal{U}_1 + \mathcal{W} = \mathcal{U}_2 + \mathcal{W}$ but $\mathcal{U}_1 \neq \mathcal{U}_2$. (3 points)
 - b) Counterexample: If $\mathcal{U}_1 = \{(z, z) \in \mathbb{R}^2 : x \in \mathbb{R}\}$, $\mathcal{U}_2 = \{(0, y) \in \mathbb{R}^2 : x \in \mathbb{R}\}$ and $\mathcal{W} = \{(x, 0) \in \mathbb{R}^2 : z \in \mathbb{R}\}$, implies $\mathcal{U}_1 \cap \mathcal{W} = \{\mathbf{0}\}$ and $\mathcal{U}_2 \cap \mathcal{W} = \{\mathbf{0}\}$ then $\mathcal{V} = \mathcal{U}_1 \oplus \mathcal{W} = \mathcal{U}_2 \oplus \mathcal{W}$ but $\mathcal{U}_1 \neq \mathcal{U}_2$. (3 points)

¹Let S_1 and S_2 be two subspaces of \mathbb{R}^n , if $S_1 \cap S_2 = \{0\}$ and $S_1 + S_2 = \mathbb{R}^n$, we define the **direct sum** $\mathbb{R}^n = S_1 \oplus S_2$.

3) \Rightarrow If $span(\mathbf{U}) = span(\mathbf{V})$ then \mathbf{v} must be a linear combination of \mathbf{u}_i 's, then $\mathbf{v} \in span(\mathbf{U})$.(2 points) \Leftarrow First we can notice that $span(\mathbf{U}) \subseteq span(\mathbf{V})$. And given $\mathbf{v} \in span(\mathbf{U})$ there exists the linear combination $\mathbf{v} = \sum_{i=1}^r \alpha_i \mathbf{u}_i$. For any $\mathbf{y} \in span(\mathbf{V})$ we have

$$\mathbf{y} = \sum_{i=1}^{r} \beta_{i} \mathbf{u}_{i} + \beta_{r+1} \mathbf{v}$$

$$= \sum_{i=1}^{r} \beta_{i} \mathbf{u}_{i} + \beta_{r+1} \sum_{i=1}^{r} \alpha_{i} \mathbf{u}_{i}$$

$$= \sum_{i=1}^{r} (\beta_{i} + \beta_{r+1} \alpha_{i}) \mathbf{u}_{i}.$$

Then $y \in span(U)$, therefore $span(U) \supseteq span(V)$.(4 points)

II. BASIS, DIMENSION AND RANK

Problem 1. (5 points \times 2) For matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have $\mathcal{V} = \{\mathbf{X} \in \mathbb{R}^{n \times n} | \mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{A} \}$,

1) Prove that V is a linear subspace of the linear space $\mathbb{R}^{n \times n}$;

2) If
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
, please give a basis and the dimension of \mathcal{V} .

Solution:

1) For $\forall k \in \mathbb{R}^n$, and $\forall \mathbf{X}, \mathbf{Y} \in \mathcal{V}$, we have:

$$\mathbf{A}\mathbf{0}_{n\times n} = \mathbf{0}_{n\times n}\mathbf{A} \Rightarrow \{\mathbf{0}_{n\times n}\} \in \mathcal{V}.$$
 (1 points)
 $\mathbf{A}(k\mathbf{X}) = k\mathbf{A}\mathbf{X} = k\mathbf{X}\mathbf{A} = (k\mathbf{X})\mathbf{A} \Rightarrow k\mathbf{X} \in \mathcal{V}.$ (2 points)
 $\mathbf{A}(\mathbf{X} + \mathbf{Y}) = \mathbf{A}\mathbf{X} + \mathbf{A}\mathbf{Y} = \mathbf{X}\mathbf{A} + \mathbf{Y}\mathbf{A} = (\mathbf{X} + \mathbf{Y})\mathbf{A} \Rightarrow \mathbf{X} + \mathbf{Y} \in \mathcal{V}.$ (2 points)

So we can conclude that $\mathcal V$ is the linear subspace of the linear space $\mathbb R^{n\times n}$.

2) For
$$\forall \mathbf{X} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \in \mathcal{V}$$
:
$$\mathbf{A}\mathbf{X} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} = \begin{pmatrix} x_1 + x_3 & x_2 + x_4 \\ 2x_1 - x_3 & 2x_2 - x_4 \end{pmatrix}$$

$$\mathbf{X}\mathbf{A} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 & x_1 - x_2 \\ x_3 + 2x_4 & x_3 - x_4 \end{pmatrix}$$

$$\mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{A} \Rightarrow \begin{pmatrix} x_1 + x_3 & x_2 + x_4 \\ 2x_1 - x_3 & 2x_2 - x_4 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 & x_1 - x_2 \\ x_3 + 2x_4 & x_3 - x_4 \end{pmatrix} \Rightarrow \begin{cases} x_1 = 2x_2 + x_4 \\ x_2 = x_2 \\ x_3 = 2x_2 \end{cases}$$

$$\mathbf{A}\mathbf{X} = \mathbf{X}\mathbf{A} \Rightarrow \begin{pmatrix} 2x_2 + x_4 & x_2 \\ 2x_2 & x_4 \end{pmatrix} = x_2 \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
So for $\forall \mathbf{X} \in \mathcal{V}$, $\mathbf{X} = \begin{pmatrix} 2x_2 + x_4 & x_2 \\ 2x_2 & x_4 \end{pmatrix} = x_2 \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$
And $\begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ are linear independent.

Then $\left\{ \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is a basis of \mathcal{V} (2 points) whose dimension is 2. (2 points)

Problem 2. (5 points) The linear space S contains the following polynomials: $f_1(t) = 1 + 4t - 2t^2 + t^3$, $f_2(t) = -1 + 9t - 3t^2 + 2t^3$, $f_3(t) = -5 + 6t + t^3$, $f_4(t) = 5 + 7t - 5t^2 + 2t^3$. Please give the rank of the quadruple $(f_1(t), f_2(t), f_3(t), f_4(t))$ and its maximal linearly independent set.

Solution: We can choose a set of basis in linear space $S: 1, t, t^2, t^3$. (1 point)

$$(f_1(t), f_2(t), f_3(t), f_4(t)) = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{bmatrix} 1 & -1 & -5 & 5 \\ 4 & 9 & 6 & 7 \\ -2 & -3 & 0 & -5 \\ 1 & 2 & 1 & 2 \end{bmatrix}$$
(1point)

.

$$\begin{bmatrix} 1 & -1 & -5 & 5 \\ 4 & 9 & 6 & 7 \\ -2 & -3 & 0 & -5 \\ 1 & 2 & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & -5 & 5 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(1point)

So the rank of the $(f_1(t), f_2(t), f_3(t), f_4(t))$ is 2 (1 point) and its maximal linearly independent set is $(f_1(t), f_2(t))$ or $(f_1(t), f_3(t))$ or $(f_1(t), f_4(t))$ (1 point).

Problem 3.(5 points \times 2) For any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathcal{S}_1 = \{\mathbf{A} \in \mathbb{R}^{n \times n} | \mathbf{A}^T = \mathbf{A}\}$ and $\mathcal{S}_2 = \{\mathbf{A} \in \mathbb{R}^{n \times n} | \mathbf{A}^T = -\mathbf{A}\}$ are two subspaces of $\mathbb{R}^{n \times n}$,

- 1) Prove that $\mathbb{R}^{n \times n} = \mathcal{S}_1 \oplus \mathcal{S}_2$.
- 2) If n = 3, please give a basis of S_1 and the dimension of S_2 .

Solution:

- 1) For $\forall A \in \mathbb{R}^{n \times n}$, suppose $\mathbf{B} = \frac{A + A^T}{2}$, $\mathbf{C} = \frac{A A^T}{2}$, then we can get $\mathbf{B} \in \mathcal{S}_1$, $\mathbf{C} \in \mathcal{S}_2$, and $\mathbf{A} = \mathbf{B} + \mathbf{C}$. $\mathbb{R}^{n \times n} \subseteq \mathcal{S}_1 + \mathcal{S}_2$. (2 points) Vice versa, $\mathcal{S}_1 + \mathcal{S}_2 \subseteq \mathbb{R}^{n \times n}$. (2 points) So, $\mathbb{R}^{n \times n} = \mathcal{S}_1 + \mathcal{S}_2$. If $\mathbf{A} \in \mathcal{S}_1 \cap \mathcal{S}_2$, $\mathbf{A}^T = \mathbf{A}$ and $\mathbf{A}^T = -\mathbf{A}$, so $\mathbf{A} = \mathbf{0}_{n \times n}$, i.e. $\mathcal{S}_1 \cap \mathcal{S}_2 = \{\mathbf{0}_{n \times n}\}$. (1 point) Finally, we can conclude: $\mathbb{R}^{n \times n} = \mathcal{S}_1 \oplus \mathcal{S}_2$.
- 2) When n = 3, if $\mathbf{A} \in \mathcal{S}_1$, then $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} = a_{11} \cdot \mathbf{E}_{11} + a_{22} \cdot \mathbf{E}_{22} + a_{33} \cdot \mathbf{E}_{33} + a_{12} \cdot (\mathbf{E}_{12} + \mathbf{E}_{21}) + a_{13} \cdot (\mathbf{E}_{13} + \mathbf{E}_{31}) + a_{23} \cdot (\mathbf{E}_{23} + \mathbf{E}_{32})$. (1 point)

This shows: matrix \mathbf{A} can be expressed linearly with \mathbf{E}_{11} , \mathbf{E}_{22} , \mathbf{E}_{33} , $\mathbf{E}_{12} + \mathbf{E}_{21}$, $\mathbf{E}_{13} + \mathbf{E}_{31}$, $\mathbf{E}_{23} + \mathbf{E}_{32}$. Because they are linear independent, \mathbf{E}_{11} , \mathbf{E}_{22} , \mathbf{E}_{33} , $\mathbf{E}_{12} + \mathbf{E}_{21}$, $\mathbf{E}_{13} + \mathbf{E}_{31}$, $\mathbf{E}_{23} + \mathbf{E}_{32}$ are the basis of \mathcal{S}_1 . (2 points) $dim(\mathcal{S}_2) = \mathbb{R}^{3\times3} - dim(\mathcal{S}_1) = 9 - 6 = 3$. (2 points)

III. FOUR FUNDAMENTAL SUBSPACES

Problem 1.(2 points + 5 points) For an $n \times m$ real matrix A.

- 1) Determine the relationship of $dim(\mathcal{R}(\mathbf{A}))$, $dim(\mathcal{N}(\mathbf{A}))$, and $rank(\mathbf{A})$.
- 2) Prove that $\mathcal{N}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A^T}) = \mathbb{R}^m$.

Solution:

- 1) $dim(\mathcal{R}(\mathbf{A})) = rank(\mathbf{A})$, and $dim(\mathcal{N}(\mathbf{A})) = \mathbf{m} dim(\mathcal{R}(\mathbf{A}))$ Remarks: Each one is 1 point
- 2) $\mathcal{N}(\mathbf{A})$ and $\mathcal{R}(\mathbf{A^T})$ are two subspace of vector space $\mathbb{R}^{\mathbf{m}}$, then $dim(\mathcal{N}(\mathbf{A}) + \mathcal{R}(\mathbf{A^T})) = dim(\mathcal{N}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{A^T})) dim(\mathcal{N}(\mathbf{A}) \cap \mathcal{R}(\mathbf{A^T}))$. Because $\mathcal{R}(\mathbf{A}) \cap \mathcal{N}(\mathbf{A^T}) = \{0\}$, so $dim(\mathcal{N}(\mathbf{A}) \cap \mathcal{R}(\mathbf{A^T})) = 0$, (2.5 point) so $dim(\mathcal{N}(\mathbf{A}) + \mathcal{R}(\mathbf{A^T})) = dim(\mathcal{N}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{A^T})) = \mathbf{m}$, so $\mathcal{N}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A^T}) = \mathbb{R}^m$.(2.5 point)

Problem 2.(3 points + 5 points \times 3) Given matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$ and $rank([\mathbf{A}, \mathbf{B}]) = n$.

- 1) Determine the relationship between $dim(\mathcal{N}(\mathbf{A}^T))$ and $dim(\mathcal{R}(\mathbf{B}))$.
- 2) If $\mathbf{A}^T \mathbf{B} = 0$, determine the relationship between $\mathcal{N}(\mathbf{A}^T)$ and $\mathcal{R}(\mathbf{B})$.
- 3) Please determine the rank of $\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix}$.
- 4) Please determine the **Supremacy** and **Infimum** of the rank of $\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}$ using m or n. (All Matrix **A**'s, and **B**'s that satisfy the mentioned condition)

Solution:

- 1) $n = dim(\mathcal{R}(\mathbf{A})) + dim(\mathcal{N}(\mathbf{A^T}))$, and $n = rank([\mathbf{A}, \mathbf{B}]) = dim([\mathbf{A}, \mathbf{B}]) = dim(\mathcal{R}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{B})) dim(\mathcal{R}(\mathbf{A}) \cap \mathcal{R}(\mathbf{B})) <= dim(\mathcal{R}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{B}))$, Remarks: process 2 point so $dim(\mathcal{R}(\mathbf{B})) >= dim(\mathcal{N}(\mathbf{A^T}))$ Remarks: conclusion 1 point
- 2) Because $\mathbf{A^TB} = 0$, so $\mathcal{R}(\mathbf{B}) \subseteq \mathcal{N}(\mathbf{A^T})$. and so $dim(\mathcal{R}(\mathbf{B})) \leq dim(\mathcal{N}(\mathbf{A^T}))$; since as problem1 $dim(\mathcal{R}(\mathbf{B})) \geq dim(\mathcal{N}(\mathbf{A^T}))$, so $dim(\mathcal{R}(\mathbf{B})) = dim(\mathcal{N}(\mathbf{A^T}))$. Remarks: process 2 point . sum up, $\mathcal{R}(\mathbf{B}) = \mathcal{N}(\mathbf{A^T})$. conclusion 2 point .
- 3) If you consider the $\mathbf{A^TB} = 0$ condition, the answer is: $rank(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix}) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) + dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) + dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) + dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = 0$, so $dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) \cap \mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = 0$, Remarks: process 2 point . sum up, $rank(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix}) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) + dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) + dim(\mathcal{R}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{A})) = n$ (as above conditions, we have $dim(\mathcal{R}(\mathbf{B})) = dim(\mathcal{R}(\mathbf{A}))$). Remarks: conclusion 2.5 point . If you not consider the $\mathbf{A^TB} = 0$ condition, the answer is: $rank(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix}) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix}) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\mathbf{A}))$

$$dim(\mathcal{R}(\begin{pmatrix}\mathbf{A}\\0\end{pmatrix})) + dim(\mathcal{R}(\begin{pmatrix}0\\\mathbf{B}\end{pmatrix})) = dim(\mathcal{R}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{B})), \ dim(\mathcal{R}(\mathbf{A})) + dim(\mathcal{R}(\mathbf{B})) \geq n$$

$$, dim(\mathcal{R}(\mathbf{A})) \leq min(m,n), dim(\mathcal{R}(\mathbf{B})) \leq min(m,n). \ \text{Remarks: process 2 point . sum up:} n \leq rank(\begin{pmatrix}\mathbf{A}&0\\0&\mathbf{B}\end{pmatrix}) \leq min(2n,2m) \ \text{Remarks: conclusion 2.5 point .}$$

- 4) If you consider the $\mathbf{A^TB} = 0$ condition, the answer is: $dim(\mathcal{R}(\mathbf{A})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} \\ 0 \end{pmatrix})) <= dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix})),$ and $dim(\mathcal{R}(\mathbf{B})) = dim(\mathcal{R}(\begin{pmatrix} 0 \\ \mathbf{B} \end{pmatrix})) <= dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}))$, so $max(dim(\mathcal{R}(\mathbf{A})), dim(\mathcal{R}(\mathbf{B}))) <= dim(\mathcal{R}(\mathbf{A}))$ $dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix})); \text{ and } n = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & \mathbf{B} \end{pmatrix})) >= dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{B} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{A} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{A} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{A} & 0 \end{pmatrix})) = dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ \mathbf{A} & 0 \end{pmatrix})) = d$ min(n, m). Please using some special cases to prove the advisability of the equal sign. If you not consider the $\mathbf{A^TB} = 0$ condition, the answer is: $\lceil n/2 \rceil <= max(dim(\mathcal{R}(\mathbf{A})), dim(\mathcal{R}(\mathbf{B}))) <= dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix})) <= dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix})) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{B}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{B}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{B}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{B}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A}))) <= dim(\mathcal{R}(\mathbf{A}), dim(\mathcal{R}(\mathbf{A$ $min(dim(\mathcal{R}(\begin{pmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{pmatrix})), m) = min(2n, m)$. Please using some special cases to prove the advisability of
 - the equal sign. Remarks: Supremacy 2.5 points and Infimum 2.5 points ,if your answer is right ,you will get 5 points

IV. VECTOR NORM AND MATRIX NORM

Problem 1. (5 points \times 3) The Frobenius norm of a $\mathbb{R}^{m \times n}$ matrix **A** defined as the square root of the sum of the absolute squares of its elements,

$$\|\mathbf{A}\|_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2},$$

it also equal to the square root of the matrix trace of A^TA , where A^T is the transpose of A,

$$\|\mathbf{A}\|_F = \sqrt{\mathbf{Tr}(\mathbf{A}^T\mathbf{A})}.$$

1) Show that Frobenius norm is a matrix norm.

Hint: You may use the Cauchy-Schwarz inequality

$$\|\mathbf{A}\mathbf{B}\|_F \leq \|\mathbf{A}\|_F \|\mathbf{B}\|_F$$

2) The spectral norm of a matrix A is the largest singular value of A (the square root of the largest eigenvalue of the matrix $A^T A$,

$$\|\mathbf{A}\|_2 = \sqrt{\lambda_{max}(\mathbf{A}^T \mathbf{A})}.$$

Show that $\|\mathbf{A}\|_2 \leq \|\mathbf{A}\|_F \leq \sqrt{n} \|\mathbf{A}\|_2$

3) Suppose $\mathbf{A} = \mathbf{x}\mathbf{y}^T$, where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, show that

$$\|\mathbf{A}\|_F^2 = \|\mathbf{x}\|_2^2 \|\mathbf{y}\|_2^2$$

Solution:

1) If $\mathbf{A} = 0$, it's obvious that $\|\mathbf{A}\|_F = 0$, if $\mathbf{A} \neq 0$, there exists a element $a_{ij} \neq 0$, one has

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} \ge \sqrt{a_{ij}} > 0.$$
 (1 point)

Let $\alpha \in \mathbb{R}$ be arbitrarily chosen,

$$\|\alpha \mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |\alpha a_{ij}|^2} = \sqrt{\alpha^2 \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = |\alpha| \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = |\alpha| \|\mathbf{A}\|_F. (2 \text{ points})$$

Let **B** be a $\mathbb{R}^{n \times m}$ matrix,

$$\|\mathbf{A} + \mathbf{B}\|_F^2 = \text{Tr}((\mathbf{A} + \mathbf{B})^T(\mathbf{A} + \mathbf{B})) = \|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2 + \text{Tr}(\mathbf{A}^T\mathbf{B} + \mathbf{B}^T\mathbf{A})(2 \text{ points})$$

Using Cauchy-Schwarz inequality we have

$$\operatorname{Tr}(\mathbf{A}^T\mathbf{B} + \mathbf{B}^T\mathbf{A}) \le 2\|\mathbf{A}\|_F \|\mathbf{B}\|_F$$

and this gives

$$\|\mathbf{A} + \mathbf{B}\|_F^2 \le \|\mathbf{A}\|_F^2 + \|\mathbf{B}\|_F^2 + 2\|\mathbf{A}\|_F \|\mathbf{B}\|_F = (\|\mathbf{A}\|_F + \|\mathbf{B}\|_F)^2$$

It is obvious that (Cauchy-Schwarz inequality)

$$\|\mathbf{A}\mathbf{B}\|_F \le \|\mathbf{A}\|_F \|\mathbf{B}\|_F$$

2) Let $\sigma_1, \sigma_2, \dots, \sigma_n$ be singular values of **A**. Since

$$\sigma_1 \le \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2} \le \sqrt{\sigma_1^2 + \sigma_1^2 + \dots + \sigma_1^2} = \sqrt{n}\sigma_1.$$

Remarks:Supremacy 2 points and Infimum 2 points ,if your answer is right ,you will get 5 points

3)
$$\|\mathbf{A}\|_F^2 = \sum_{i=1}^n \|y_i \mathbf{x}\|_2^2 = \sum_{i=1}^n y_i^2 \|\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2 \sum_{i=1}^n y_i^2 = \|\mathbf{x}\|_2^2 \|\mathbf{y}\|_2^2 (5 \text{ points})$$

V. PROJECTOR AND PROJECTION

Problem 1. (2points + 5 points \times 3) A rotation matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix $(\mathbf{R}\mathbf{R}^T = \mathbf{I_n})^2$.

- 1) According to the above definition, find all rotation matrices in $\mathbb{R}^{2\times 2}$.
- 2) Let \mathbf{R}_1 and \mathbf{R}_2 be the rotation matrices in $\mathbb{R}^{2\times 2}$, if \mathbf{R}_1 is the rotation matrix that rotates vectors counterclockwise through α_1 and \mathbf{R}_2 is the rotation matrix that rotates vectors counterclockwise through α_2 . Consider: is $\mathbf{R}_1\mathbf{R}_2$ the rotation matrix? If the answer is "yes", what is the angle of rotation, or else explain why the answer is "no".
- 3) For arbitrarily rotation matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$, if $\mathbf{S} = (\mathbf{R} \mathbf{I_n})(\mathbf{R} + \mathbf{I_n})^{-1}$, show that \mathbf{S} is a skew symmetric matrix ($\mathbf{S}^T = -\mathbf{S}$)
- 4) If $\mathbf{S} \in \mathbb{R}^{n \times n}$ is a skew symmetric matrix, show that $\mathbf{R} = (\mathbf{I_n} \mathbf{S})^{-1}(\mathbf{I_n} + \mathbf{S})$ is a rotation matrix.

Solution:

1)
$$\mathbf{R} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, \mathbf{R} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix}$$
 remarks: The rotation matrix has geometric significance with $\det(\mathbf{R}) = 1$. So

if your answer is
$$\mathbf{R} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
 or $\mathbf{R} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, $\mathbf{R} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix}$, you will get 2 points

2)

$$\mathbf{R_1R_2} = \begin{bmatrix} \cos \alpha_1 & -\sin \alpha_1 \\ \sin \alpha_1 & \cos \alpha_1 \end{bmatrix} \begin{bmatrix} \cos \alpha_2 & -\sin \alpha_2 \\ \sin \alpha_2 & \cos \alpha_2 \end{bmatrix} = \begin{bmatrix} \cos(\alpha_1 + \alpha_2) & -\sin(\alpha_1 + \alpha_2) \\ \sin(\alpha_1 + \alpha_2) & \cos(\alpha_1 + \alpha_2) \end{bmatrix}$$

So R_1R_2 is a rotation matrix which rotates the plane through an angle of α_1 +

remarks :if you use the matrix $\mathbf{R} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix}$, the answer is $\alpha_1 - \alpha_2$. If you don't write the derivative process, you will lose 2 points.

3)

$$\mathbf{S} = (\mathbf{R} - \mathbf{I})(\mathbf{R} + \mathbf{I})^{-1} = \mathbf{R}(\mathbf{R} + \mathbf{I})^{-1} - (\mathbf{R} + \mathbf{I})^{-1}$$

and so

$$\mathbf{S}^{T} = (\mathbf{R}^{T} + \mathbf{I})^{-1} \mathbf{R}^{T} - (\mathbf{R}^{T} + \mathbf{I})^{-1}$$

$$= (\mathbf{R}^{T} + \mathbf{I})^{-1} \mathbf{R}^{-1} - (\mathbf{R}^{T} + \mathbf{R}\mathbf{R}^{T})^{-1}$$

$$= (\mathbf{R}(\mathbf{R}^{T} + \mathbf{I}))^{-1} - (\mathbf{R}^{T} + \mathbf{R}\mathbf{R}^{T})^{-1} \text{ (5 points)}$$

$$= (\mathbf{R}(\mathbf{R}^{T} + \mathbf{I}))^{-1} - ((\mathbf{I} + \mathbf{R})\mathbf{R}^{-1})^{-1}$$

$$= (\mathbf{I} + \mathbf{R})^{-1} - \mathbf{R}(\mathbf{R} + \mathbf{I})^{-1} = -\mathbf{S}$$

 $^{{}^{2}\}mathbf{I_{n}}$ is the identity matrix of $n \times n$

$$\mathbf{R}\mathbf{R}^{T} = (\mathbf{I} - \mathbf{S})^{-1}(\mathbf{I} + \mathbf{S})(\mathbf{I} + \mathbf{S})^{T}(\mathbf{I} - \mathbf{S})^{-T}$$

$$= (\mathbf{I} - \mathbf{S})^{-1}(\mathbf{I} + \mathbf{S})(\mathbf{I} - \mathbf{S})(\mathbf{I} + \mathbf{S})^{-1}$$

$$= (\mathbf{I} - \mathbf{S})^{-1}(\mathbf{I} + \mathbf{S} - \mathbf{S} - \mathbf{S}^{2})(\mathbf{I} + \mathbf{S})^{-1}$$

$$= (\mathbf{I} - \mathbf{S})^{-1}(\mathbf{I} - \mathbf{S})(\mathbf{I} + \mathbf{S})(\mathbf{I} + \mathbf{S})^{-1} = \mathbf{I}$$
(5 points)