ISEL - DEETC - LERCM

Processamento Digital de Sinais 2ª chamada - Semestre Verão 2011/12 - 17/07/2012 Duração: 2h30m

1. Considere o sinal $x(t) = -1 + \cos(2\pi 5t + \frac{\pi}{4})$. Considere também o sinal y(t) cujos coeficientes da série de Fourier são dados por:

$$Y_k = \begin{cases} 10 & , & k = 0 \\ 4/j & , & k = 1 \\ -4/j & , & k = -1 \\ 1 & , & k = 4 e - 4 \end{cases}$$

- (a) $\{1v\}$ Represente graficamente x(t). Qual o período de x(t)?
- (b) $\{1.5v\}$ Represente graficamente o espectro de amplitude, |X(f)| e de fase $\angle X(f)$ do sinal x(t).
- (c) $\{1.5v\}$ Considerando que a frequência fundamental de y(t), f_0 , é 10Hz, determine a expressão analítica de y(t).
- (d) {2v} Seja v(t) = x(t) + y(t). Será v(t) periódico? Se sim, qual o período? Qual o espectro de v(t)?
- (e) Supondo que se utiliza amostragem ideal, qual o sinal discreto que se obtém quando:
 - i. $\{1v\}$ x(t) é amostrado com Fs=4 amostras por segundo.
 - ii. $\{1v\}$ y(t) é amostrado com Fs=50 amostras por segundo.
- 2. Considere o sistema S_1 , cuja resposta em frequência está representada na Figura. Considere também um outro sistema S_2 cuja resposta em frequência é dada por $H_2(w) = 1 H_1(w)$.
 - (a) $\{1v\}$ Seja o sinal de entrada $x[n] = 3 + 2\cos\left[\frac{\pi}{3}n\right] + 5\sin\left[\frac{4}{5}\pi n\right].$ Qual o sinal à saída de S_1 ?
 - (b) $\{1v\}$ Represente graficamente $H_2(w)$. Que tipo de filtragem é realizado por S_2 ?
 - (c) $\{2v\}$ Qual o sinal à saída de S_2 quando à sua entrada está x[n]?

- 3. Considere um SLIT S, cuja função de transferência é dada por: $H(z) = (2 1.4z^{-1} 0.45z^{-2}), z \neq 0.$
 - (a) $\{1v\}$ Calcule a resposta impulsional, h[n].
 - (b) {2v} Esboce a saída do sistema, y[n], quando na entrada está presente o sinal $x[n] = \delta[n-2] 7\delta[n-4] + 3\delta[n-5]$.
 - (c) {1v} Caracterize, justificando, o sistema quanto às seguintes propriedades: tipo(FIR/IIR), linearidade e causalidade.
- 4. Considere o SLIT discreto dado pelo diagrama de blocos representado na Figura, onde $a_1 = -0.4$, $b_0 = 2$ e $b_1 = -1.8$.
 - (a) {1v} Determine a equação às diferenças deste sistema.
 - (b) $\{1v\}$ Determine a função de transferência H(z) e os correspondentes pólos e zeros.
 - (c) $\{2v\}$ Calcule e esboce a resposta em frequência, $H(\hat{w})$. O sistema realiza que tipo de filtragem (passa-baixo/banda/alto)?

Figura 1: Diagrama de blocos representando um SLIT.