Data Visualization

Contents

1	Scatter Plots	2
2	Lines Plots	13
3	Facets	18
4	Barplots	22
5	Histograms	2 9
6	Boxplots	38
7	Dotted Plots	40
8	Heatmap	42
9	Violin Plots	43
10	References	45

```
library("ggplot2")
library("gapminder")
library("dplyr")
glimpse(gapminder)
## Rows: 1,704
## Columns: 6
## $ country
               <fct> Afghanistan, Afghanistan, Afghanistan, Afghanistan, Afgha...
## $ continent <fct> Asia, Asia...
               <int> 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 199...
## $ year
## $ lifeExp
               <dbl> 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 4...
## $ pop
               <int> 8425333, 9240934, 10267083, 11537966, 13079460, 14880372,...
## $ gdpPercap <dbl> 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.113...
```

1 Scatter Plots

ggplot(gapminder,aes(x = gdpPercap,y = lifeExp)) + geom_point()


```
# adding smoothing lines
ggplot(gapminder,aes(x = gdpPercap,y = lifeExp)) +
  geom_point() +
  geom_smooth()
```

$geom_smooth()$ using method = gam' and formula $y \sim s(x, bs = cs')'$

$geom_smooth()$ using formula 'y ~ x'


```
ggplot(gapminder,aes(x = log(gdpPercap),y = lifeExp)) +
 geom_smooth(method="gam") + #generalized additive model
 scale_x_log10()
```

`geom_smooth()` using formula 'y ~ s(x, bs = "cs")'


```
ggplot(gapminder,aes(x = log(gdpPercap),y = lifeExp)) +
  geom_point() +
  geom_smooth(method="gam") +
  scale_x_log10(labels=scales::dollar)
```

`geom_smooth()` using formula 'y ~ s(x, bs = "cs")'


```
# controlling colors, shapes, linestype, and transparency of points
ggplot(gapminder,aes(x = log(gdpPercap),y = lifeExp, color = continent)) +
geom_point()
```



```
## `geom_smooth()` using formula 'y ~ x'
```


`geom_smooth()` using formula 'y ~ x'

`geom_smooth()` using formula 'y ~ x'


```
ggplot(data = filter(gapminder, year == "2007"),
    mapping = aes(
        x = gdpPercap,
        y = lifeExp,
        shape = continent))+
geom_point(alpha = 0.4, size = 4) +
scale_x_log10(labels=scales::dollar)
```


`geom_smooth()` using formula 'y ~ x'

2 Lines Plots

3 Facets

```
ggplot(data = gapminder,
    mapping = aes(
         x = year,
         y = lifeExp,
         group = country)) +
geom_line() + facet_wrap(~ continent)
```


`geom_smooth()` using formula 'y ~ x'


```
library("NHANES")
data(NHANES)
head(NHANES)
```

```
## # A tibble: 6 x 76
##
        ID SurveyYr Gender
                             Age AgeDecade AgeMonths Race1 Race3 Education
     <int> <fct>
                    <fct>
                          <int> <fct>
                                               <int> <fct> <fct> <fct>
## 1 51624 2009_10
                              34 " 30-39"
                    male
                                                  409 White <NA>
                                                                 High Sch~
## 2 51624 2009 10 male
                              34 " 30-39"
                                                 409 White <NA>
                                                                 High Sch~
## 3 51624 2009 10
                              34 " 30-39"
                    male
                                                 409 White <NA>
                                                                 High Sch~
                               4 " 0-9"
## 4 51625 2009_10 male
                                                  49 Other <NA>
                                                                  <NA>
## 5 51630 2009_10 female
                              49 " 40-49"
                                                                  Some Col~
                                                 596 White <NA>
                               9 " 0-9"
## 6 51638 2009_10 male
                                                 115 White <NA>
    ... with 67 more variables: MaritalStatus <fct>, HHIncome <fct>,
       HHIncomeMid <int>, Poverty <dbl>, HomeRooms <int>, HomeOwn <fct>,
## #
## #
       Work <fct>, Weight <dbl>, Length <dbl>, HeadCirc <dbl>, Height <dbl>,
       BMI <dbl>, BMICatUnder20yrs <fct>, BMI_WHO <fct>, Pulse <int>,
## #
## #
       BPSysAve <int>, BPDiaAve <int>, BPSys1 <int>, BPDia1 <int>, BPSys2 <int>,
       BPDia2 <int>, BPSys3 <int>, BPDia3 <int>, Testosterone <dbl>,
## #
## #
       DirectChol <dbl>, TotChol <dbl>, UrineVol1 <int>, UrineFlow1 <dbl>,
## #
       UrineVol2 <int>, UrineFlow2 <dbl>, Diabetes <fct>, DiabetesAge <int>,
       HealthGen <fct>, DaysPhysHlthBad <int>, DaysMentHlthBad <int>,
## #
## #
       LittleInterest <fct>, Depressed <fct>, nPregnancies <int>, nBabies <int>,
       Age1stBaby <int>, SleepHrsNight <int>, SleepTrouble <fct>,
## #
## #
       PhysActive <fct>, PhysActiveDays <int>, TVHrsDay <fct>, CompHrsDay <fct>,
       TVHrsDayChild <int>, CompHrsDayChild <int>, Alcohol12PlusYr <fct>,
## #
```

Warning: Removed 366 rows containing missing values (geom_point).


```
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
```

^{##} Warning: Removed 366 rows containing non-finite values (stat_smooth).

^{##} Warning: Removed 366 rows containing missing values (geom_point).

4 Barplots

5 Histograms

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
31
```



```
ggplot(data = NHANES,
    mapping = aes(x = Age)) +
    geom_area(stat = "density", fill = "cadetblue1")
```


`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

6 Boxplots

7 Dotted Plots

8 Heatmap

```
gapminder %>%
    select(continent, year, lifeExp) %>%
    group_by(continent, year) %>%
    summarise(lifeExp = median(lifeExp, na.rm=TRUE)) %>%
    ungroup() -> d_gap2a

## `summarise()` regrouping output by 'continent' (override with `.groups` argument)

d_gap2a %>%
    filter(year == 2007) %>%
    arrange(desc(lifeExp)) -> d_gap2b

d_gap2a %>%
    mutate(continent = factor(continent, levels = d_gap2b$continent)) -> d_gap2

ggplot(data = d_gap2, mapping = aes(
    x = year, y = continent, fill = lifeExp)) +
    geom_tile() +
    scale_fill_viridis_c()
```


9 Violin Plots

10 References

Claus O. Wilke (2019). Fundamentals of Data Visualization. O'Reilly Media. https://serialmentor.com/dataviz/

Healy, Kieran (2018). Data Visualization: A Practical Introduction. Princeton University Press.
https://socviz.co/index.html

Winston Chang(2018). R Graphics Cookbook. O'Relly Media. https://r-graphics.org/