Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.11.1

Key words: König's Theorem, SCR, bipartite graph, Pigeonhole Principle

Recall (König's Theorem) Let A be an $m \times n$ 0-1 matrix. Let r be the maximum number of independent 1's, R be the minimum number of rows and columns required to cover all 1's in A. Then, r = R. ($\iff A$ doesn't have a 0-submatrix of size $c \times d$ such that c + d = m + n - r + 1.)

Definition. A system of common representatives (SCR) of two sequences of sets A_1, \dots, A_m and B_1, \dots, B_m is a sequence x_1, \dots, x_m (not necessarily distinct) such that $x_i \in A_i \cap B_{\pi(i)}, i \in [m]$ for some $\pi \in S_m$.

Theorem 1. Suppose X has two partitions: $X = A_1 \cup \cdots \cup A_m = B_1 \cup \cdots \cup B_m$. Then they have an SCR if and only if for $\forall I \subset [m]$, $\bigcup_{i \in I} A_i$ contains at most |I| sets of B_j , $j \in [m]$.

<u>proof 1:</u> Let $Y = \{B_1, \dots, B_m\}$. For $\forall i \in [m]$, let $S_i = \{B_j : B_j \cap A_i \neq \emptyset\}$. Then \exists SCR $\iff S_1, \dots, S_m$ have an SDR. So it suffices to check that S_1, \dots, S_m satisfy the Hall Condition, i.e. $\forall I \subset [m], |\cup_{i \in I} S_i| \geqslant |I|$.

In fact, this is equivalent to: for $\forall I \subset [m]$, we have at least |I| sets B_j such that each B_j intersect some $A_i, i \in I$. Since A_1, \dots, A_m and B_1, \dots, B_m are partitions, this is equivalent to say that $\bigcup_{j \in [m] \setminus I} A_j$ contains at most m - |I| sets B_j , which is just the given condition.

proof 2: Consider the intersection matrix of the two partitions $C = \overline{(c_{ij})}$, where

$$c_{ij} = \begin{cases} 1 & \text{if } A_i \cap B_j \neq \emptyset \\ 0 & \text{else} \end{cases}.$$

Then \exists SCR \iff C has m independent 1's \iff C has no $(m-k) \times (k+1)$ 0-submatrix for any $0 \le k \le m-1 \iff \nexists m-k$ sets A_i such that their union is disjoint with k+1 sets $B_j \iff \nexists k$ sets A_i such that their union contains k+1 sets $B_j \iff \exists k$ sets A_i ontains at most k sets B_j .

Definition.

- G = (V, E) is called a bipartite graph, if $V = A \sqcup B$, and $i \sim j$ only if i, j are in different sets. G is called a complete bipartite graph, if G is bipartite, and every possible edge belongs to E.
- Two edges are disjoint, if they have no common vertex.
- A matching is a set of pairwise disjoint edges.
- A vertex is called matched (or saturated) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is called free (or unmatched).
- If a matching matches all vertices in A, then we say it's a matching of A into B. A perfect matching is a matching of A into B when |A| = |B|.
- A vertex $x \in A$ is a neighbor of a vertex $y \in B$, if $\{x, y\} \in E$. Let S_x be the set of all neighbors of x, and call $\deg(x) := |S_x|$ the degree of x.

Fact. \exists a matching of A into B if and only if S_x , $x \in A$ has an SDR.

Theorem 2. If G is a bipartite graph with bipartitions A, B, then G has a matching of A into B iff $\forall k$ vertices in A have at least k neighbors.

Definition. A vertex cover in $G = (A \cup B, E)$ is a set of vertices

 $S \subseteq A \cup B$ such that every edge is incident to at least one vertex in S.

Theorem 3. For bipartite graphs, the maximum size of a matching is equal to the minimum size of a vertex cover.

Proposition 4. |X| = n. For any $k \leq \frac{n-1}{2}$, it is possible to extend every k-element subset of X to a (k+1)-subset such that the extensions of no two sets coincide.

Koing

<u>proof:</u> Consider the bipartite graph $G = (A \cup B, E)$, where $A = \{\text{all } k\text{-subsets of } X\}$, $B = \{\text{all } (k+1)\text{-subsets of } X\}$, and for any $x \in A$, $y \in B$, $x \sim y$ iff $x \subset y$. Then we only need to prove G has a matching of A into B.

For each $x \in A$, $\deg(x) = n - k$. For each $y \in B$, $\deg(y) = k + 1$. For $\forall I \subseteq A$, let $S(I) = \bigcup_{x \in I} S_x$, then

$$|I|(n-k) \leqslant |S(I)|(k+1) \Longrightarrow |S(I)| \geqslant |I| \frac{n-k}{k+1} \geqslant |I|.$$

By Theorem 2, we're done.

Pigeonhole Principle and Graphs

Remark. Here, we only consider finite simple graphs: no loops, no multiple edges.

Theorem 1 (Handshaking Lemma) In any finite graph, the number of vertices which have odd degrees is even.

proof: Double counting.

 $\overline{\text{For } G} = (V, E), \text{ count } \# \text{ ordered pairs } (x, y) \in E,$

$$2|E| = \sum_{x \in V} \deg(x) = \sum_{x \in V, \deg(x) \text{ is odd}} \deg(x) + \sum_{x \in V, \deg(x) \text{ is even}} \deg(x).$$

If we have odd number of vertices with odd degree, then the first item is odd and the second item is even, a contradiction. \Box

Definition. G = (V, E) is a graph.

- A set of pairwise nonadjacent vertices is called an independent set. Independent number $\alpha(G)$ is the maximum size of such a set, i.e. $\alpha(G)$ is the maximum number of pairwise nonadjacent vertices of G.
- A coloring of V is called proper, if no two adjacent vertices have the same color. Chromatic number $\chi(G)$ is the minimum number of colors in a proper coloring.

Proposition 2. In any graph G with n vertices, $n \leq \alpha(G)\chi(G)$.

proof: Given a proper coloring of G with $\chi(G)$ colors and partition V(G) into $\chi(G)$ color classes. By Pigeonhole Principle, one of the color classes has size $\geqslant \frac{n}{\chi(G)}$. Note that these vertices are pairwise nonadjacent, so $\alpha(G) \geqslant \frac{n}{\chi(G)}$.