Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 27.06.2014

Arbeitszeit: 120 min

Name:

Vorname(n): Matrikelnumme	er:						Note
	Aufgabe erreichbare Punkte erreichte Punkte	1 12	2 8	3 11	4 9	$\begin{array}{ c c c c }\hline \Sigma & \\ 40 & \\ \hline \end{array}$	
	erreichte runkte						
Bitte							
tragen Sie	e Name, Vorname und	Matrik	kelnumr	ner auf	dem I	Deckblat	et ein,
rechnen S	ie die Aufgaben auf se	eparate	n Blätt	ern, ni	c ht auf	dem A	ngabeblatt,
beginnen	Sie für eine neue Aufg	gabe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Namen	sowie d	die Mat	rikelnu	mmer a	ın,
begründe	n Sie Ihre Antworten a	ausführ	lich und	d			
kreuzen S antreten l	ie hier an, an welchem könnten: \Box \Box	der fol Di., 08.0	_			zur mün i., 09.07	

1. Bearbeiten Sie die folgenden Teilaufgaben.

12 P.|

a) Gegeben ist das nichtlineare, zeitdiskrete System mit dem Eingang u_k und dem $1.5 \,\mathrm{P.}|$ Ausgang y_k durch die Differenzengleichung 3. Ordnung der Form

$$x_{k+3} = -3x_{k+2}^2 + 2x_{k+1}^2 - \frac{5}{\pi}\cos\left(\frac{\pi}{2}x_{k+1}\right) + x_k^2 + x_k + 2u_k$$

und die Ausgangsgleichung

$$y_k = -\frac{1}{2}x_{k+2} + \left(\sin\left(\frac{\pi}{2}x_k\right)\right)^2 + \frac{1}{\pi}\arccos\left(\frac{2\pi}{5}u_k\right).$$

Ermitteln Sie für dieses System eine Darstellung in Form eines Systems von Differenzengleichungen 1. Ordnung. Verwenden Sie dazu die Bezeichnungen $x_k = x_{1,k}, x_{k+1} = x_{2,k}, \dots$

- b) Berechnen Sie sämtliche Ruhelagen des Systems für die $y_r=1$ gilt. 2.5 P.| Hinweis: Die Ruhelagen lassen sich in Form von ganzen Zahlen ausdrücken.
- c) Linearisieren Sie das System um eine allgemeine Ruhelage und bestimmen Sie 3 P.| anschließend die Matrizen Φ , Γ , \mathbf{c}^{T} und d für jene Ruhelage, bei der $x_r > 0$ gilt.

Hinweis: Es gilt $\frac{\partial}{\partial x} \arccos(x) = -1/\sqrt{1-x^2}$.

d) Gegeben ist das charakteristische Polynom eines zeit
diskreten Systems in der $\ 5\,\mathrm{P.}|$ Form

$$2z^3 + kz^2 + kz + 1$$
.

Ermitteln Sie den Wertebereich von k mit Hilfe des Jury-Verfahrens so, dass das zugehörige zeitdiskrete System asymptotisch stabil ist.

2. Bearbeiten Sie die folgenden Teilaufgaben.

8 P.|

a) Gegeben ist die zeitdiskrete Übertragungsfunktion

$$G(z) = \frac{y(z)}{u(z)} = \frac{z^2 - 2z\cos(5T_a) + 1}{\left(z - \frac{1}{2}\right)\left(z - \frac{1}{4}\right)^2}$$

Bestimmen Sie mögliche Werte für ω_0 und φ_0 der Eingangsfolge

$$(u_k) = (3\sin(\omega_0 kT_a + \varphi_0))$$

so, dass die eingeschwungene Lösung von (y_k) verschwindet.

b) Gegeben ist das lineare zeitinvariante System der Form

4 P.|

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \begin{bmatrix} -1 & 0 & 0 \\ -4 & 0 & 5 \\ -6 & -5 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}.$$

Prüfen Sie mit Hilfe des PBH-Eigenvektortests, ob das System vollständig beobachtbar ist.

c) Geben Sie eine mögliche **nichttriviale** Wahl ($\mathbf{x}_0 \neq \mathbf{0}$) für den Anfangszustand 1 P.| $\mathbf{x}_0 = \mathbf{x}(0)$ des Systems aus Aufgabe 2b) so an, dass der Ausgang y für u = 0 für alle Zeiten verschwindet, d.h. y = 0 gilt. Begründen Sie Ihre Wahl!

3. Die Übertragungsfunktionen des in Abbildung 1 dargestellten Regelkreises lauten 11 P.

$$G(s) = \frac{1}{10s},$$
 $R(s) = \frac{10(2s+1)}{s},$ $F(s) = \frac{10s}{s+1}.$

Abbildung 1: Regelkreis.

- a) Geben Sie die Führungsübertragungsfunktion $T_{r,y}(s)$ an. 2 P.
- b) Geben Sie die Störübertragungsfunktion $T_{d,y}(s)$ an. 1.5 P.|
- c) Zeichnen Sie das Bode-Diagramm der Störübertragungsfunktion $T_{d,y}(s)$ in der $2.5\,\mathrm{P.}|$ beiliegenden Vorlage ein.
- d) Für den Eingang $r(t)=(1-e^{-t})\,\sigma(t)$ und eine Störung d(t) lautet die Sy- 5 P.| stemanwort

$$y(t) = \sigma(t) + e^{-t} \left(-\frac{1}{6}t^3 + t^2 - \frac{9}{10}t - 1 \right) \sigma(t).$$

Berechnen Sie die Störung d(t).

- 4. Bearbeiten Sie folgende Teilaufgaben.
 - a) Ein durch die s-Übertragungsfunktion 4 P.

$$G(s) = \frac{2s}{s^2 - 6s + 13}. (1)$$

9 P.

gegebenes zeitkontinuierliches System wird mit der Abtastzeit T_a diskretisiert. Berechnen Sie die z-Übertragungsfunktion G(z) des zugehörigen Abtastsystems und deren Polstellen.

- b) Schreiben Sie die Übertragungsfunktion (1) in Zustandsdarstellung an. 1 P.
- c) Für das Differenzengleichungssystem 2 P.|

$$\mathbf{x}_{k+1} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k$$

$$y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}_k$$
(2)

ist ein Zustandsregler durch das Regelgesetz

$$u_k = \begin{bmatrix} -7.75 & -4 \end{bmatrix} \mathbf{x}_k + r_k$$

gegeben. Berechnen Sie die Eigenwerte der Dynamik
matrix Φ_g des geschlossenen Regelkreises.

d) Wird das System (2) um einen Integrator erweitert, kann ein PI-Zustandsregler 2 P. mit dem Regelgesetz

$$u_k = \begin{bmatrix} \mathbf{k}_x^T & k_I \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ x_{I,k} \end{bmatrix} + k_P \left(r_k - \mathbf{c}^T \mathbf{x}_k \right)$$

angegeben werden. Bestimmen Sie die Dynamikmatrix des geschlossenen Regelkreises.

