Expected Height of a Randomly-Built Binary Search Tree

Based on the Cormen et al., Section 12.4, pp 299-303

To randomly build a binary search tree, all permutations of inputs (keys) are equally likely. In other words, given n keys, each of the n! inputs are equally likely. Note that this is different from stating that all binary search trees on n keys are equally likely. Why?

We will first introduce two random variables.

- 1. X_n is the height of a randomly-built binary search tree on n keys. Note that $X_1 = 0$.
- 2. $Y_n = 2^{X_n}$ is the exponential height of a randomly-built binary search tree on n keys where:
 - (a) $Y_0 = 0$ (by definition),
 - (b) $Y_1 = 1$, and
 - (c) $Y_n = 2 \cdot \max(Y_{i-1}, Y_{n-i})$.

The probability that a randomly-built binary search has a left subtree with i-1 keys and a right subtree with n-i keys, $1 \le i \le n$, is 1/n since each of the n keys is equally likely to be the root. Hence, the expected value of $E[Y_n]$ is expressed as:

$$E[Y_n] = \sum_{i=1}^n \frac{1}{n} \cdot E[2 \cdot \max(Y_{i-1}, Y_{n-i})]$$

$$= \frac{2}{n} \sum_{i=1}^n E[\max(Y_{i-1}, Y_{n-i})]$$

$$\leq \frac{2}{n} \sum_{i=1}^n (E[Y_{i-1}] + E[Y_{n-i}])$$

$$\leq \frac{4}{n} \sum_{i=1}^n E[Y_{i-1}]$$

$$\leq \frac{4}{n} \sum_{i=1}^{n-1} E[Y_i]$$

We will now prove by induction that $E[Y_n] \leq cn^3$ where $c \geq 1$.

Basis of Induction

$$E[Y_0] = Y_0 = 0 \le c \cdot 0^3 \text{ where } c \ge 1$$

 $E[Y_1] = Y_1 = 1 \le c \cdot 1^3 \text{ where } c \ge 1$

Induction Hypothesis Assume that $E[Y_i] \le c \cdot i^3$, $0 \le i < n$.

Inductive Step

$$E[Y_n] \leq \frac{4}{n} \sum_{i=0}^{n-1} E[Y_i]$$

$$\leq \frac{4}{n} \sum_{i=0}^{n-1} c \cdot i^3$$

$$\leq \frac{4}{n} \sum_{i=1}^{n-1} c \cdot i^3$$

$$\leq \frac{4c}{n} \left(\frac{(n-1)^2 \cdot n^2}{4} \right)$$

$$\leq cn(n-1)^2$$

$$\leq cn^3 \square$$

To determine the expected value of X_n , we can use Jensen's inequality which states that:

$$f(E[X]) \le E[f(X)]$$

provided f is a convex function. In our case, $f(X_n) = Y_n = 2^{X_n}$ is a convex function. Hence,

$$f(E[X_n]) = 2^{E[X_n]}$$

$$\leq E[2^{X_n}]$$

$$\leq E[Y_n]$$

$$\leq cn^3$$

Therefore, taking the \log_2 on both sides yields our result.

$$E[X_n] \le \log_2 c + 3\log_2 n \in O(\log n)$$