משתנה מקרי (מ"מ): פונקציה שערכיה ממשיים, המוגדרת על מרחב המדגם של ניסוי מקרי. כלומר, פונקציה המתאימה לכל תוצאה אפשרית של ניסוי מקרי מספר ממשי כלשהו.

משתנה מקרי בדיד: משתנה מקרי שקבוצת ערכיו האפשריים סופית או אינסופית בת-מניה.

, ... $,x_2$ $,x_1$ הטתברות של משתנה מקרי בדיד: אם X משתנה מקרי בדיד: אם אם הערכים $\sum_i P\{X=x_i\}=1$. $\sum_i P\{X=x_i\}=1$ ומתקיים אז הפונקציה $p(x_i)=P\{X=x_i\}$

 $F(x) = P\{X \le x\} = \sum_{i: x_i \le x} P\{X = x_i\}$ פונקציית ההתפלגות המצטברת של משתנה מקרי בדיד:

לגרף של פונקציית ההתפלגות המצטברת של משתנה מקרי בדיד, יש צורה של פונקציית מדרגות.

. $\lim_{x\to\infty}F(x)=1$, $\lim_{x\to-\infty}F(x)=0$, יורדת, לא יורדת: רציפה מימין ווראים: תכונותיה: רציפה מימין, לא

 $E[X] = \sum_i x_i P\{X = x_i\}$ התוחלת של המומנת ב- E[X], ומוגדרת על-ידי התוחלת של מסומנת ב-

התוחלת היא הממוצע המשוקלל של הערכים האפשריים של המשתנה המקרי, כאשר המשקלות (בחישוב הממוצע) הן ההסתברויות שבהן הערכים מתקבלים.

תוחלת של פונקציה של משתנה מקרי:

 $E[g(X)] = \sum_i g(x_i) P\{X = x_i\}$ אז אז איז פונקציה ממשית המוגדרת לכל הערכים האפשריים של g(x)

- שונות: השונות של X מסומנת ב- $(\mathrm{Var}(X)$, ומוגדרת על-ידי

$$\mbox{Var}(X) = E[(X - E[X])^2] = \sum_i (x_i - E[X])^2 P\{X = x_i\}$$

$$\mbox{Var}(X) = E[X^2] - (E[X])^2 = \sum_i x_i^2 P\{X = x_i\} - (E[X])^2 \qquad \qquad - \mbox{ שמתקיים }$$

השונות היא מידה לפיזור הערכים האפשריים של משתנה מקרי ביחס לתוחלת שלו.

. השונות שווה לאפס אך ורק כאשר ל-Xיש ערך אפשרי יחיד

 σ_X או $\mathrm{SD}(X):$ סטיית סימון של אונותו. החיובי של היא השורש החיובי של סטיית התקן או

E[aX+b]=aE[X]+b התוחלת מקיימת את השוויון ${
m Var}(aX+b)=a^2{
m Var}(X)$ השונות מקיימת את השוויון ${
m SD}(aX+b)=|a|{
m SD}(X)$ סטיית התקן מקיימת את השוויון

תוחלת של משתנה מקרי אי-שלילי: אם X הוא משתנה מקרי שערכיו שלמים אי-שליליים, אפשר למצוא את תוחלת של משתנה מקרי אי-שלילי: אב $E[X] = \sum_{i=1}^{\infty} P\{X \geq i\}$ תוחלתו באמצעות השוויון

משתנה מקרי מיוחד הוא משתנה מקרי שלניסוי, שעל-פיו הוא מוגדר, יש תבנית מסוימת וכך גם לאופן שבו הוא מוגדר על-סמך הניסוי. כתוצאה מכך, אפשר לבנות למשתנה המקרי המיוחד פונקציית הסתברות שצורתה קבועה.

משתנים מקריים מיוחדים

משתנה מקרי אחיד בדיד בין m+n ל- m+n שלמים, $n \geq 1$ שלמים, m+1 משתנה מקרי אחיד בדיד בין m+1

 $P{X = i} = \frac{1}{n}$ i = m+1, m+2, ..., m+n

 $E[X] = m + \frac{1+n}{2}$ $Var(X) = \frac{n^2 - 1}{12}$

 $\frac{n}{2}$ ניסוי מקרי שעל-פיו אפשר להגדיר משתנה מקרי אחיד בדיד בין 1 ל

בוחרים עצמים בזה אחר זה וללא החזרה מתוך אוכלוסייה בת n עצמים, שאחד מתוכם מיוחד, עד לבחירת העצם המיוחד.

. המשתנה המקרי X מוגדר כמספר בחירות-העצמים שנעשות עד לבחירתו של העצם המיוחד

1-p וייכשלוןיי בהסתברות p וייכשלוןיי בהסתברות אפשריות, ייהצלחהיי בהסתברות ניסוי בעל שתי תוצאות אפשריות, ייהצלחהיי

 $X \sim Geo(p)$ משתנה מקרי גיאומטרי: 0

 $P{X = i} = (1 - p)^{i-1} \cdot p$ i = 1, 2, 3, ...

 $E[X] = \frac{1}{p} \qquad \text{Var}(X) = \frac{1-p}{p^2}$

ניסוי מקרי גיאומטרי: עורכים בזה אחר זה, ניסויי ברנולי בלתי-תלויים, שלכולם הסתברות p להצלחה עד לקבלת הראשונה.

המשתנה המקרי X מוגדר כמספר הסידורי של הניסוי שבו התקבלה ההצלחה הראשונה.

- אז p אוא הפרמטר עם הפרמטרי מקרי גיאומטרי אם X הוא הערה:

 $P\{X > i\} = P\{$ י-i-י הניסוי הראשונה התקבלה אחרי הניסוי ה-i- ו הראשונה הראשונה בתקבלה אחרי הניסוי הייליים P(X > i) = P(X > i)

 $X \sim B(n,p)$ טבעי ו- 0 טבעי וי <math>n

 $P\{X = i\} = \binom{n}{i} \cdot p^{i} \cdot (1 - p)^{n - i} \qquad i = 0, 1, ..., n - 1, n$

E[X] = np Var(X) = np(1-p)

ניסוי מקרי בינומי: ניסוי המורכב מ-n ניסויי ברנולי בלתי-תלויים, שלכולם אותה הסתברות p להצלחה.

המשתנה המקרי X מוגדר כמספר ההצלחות בניסוי מקרי בינומי.

$$X \sim Po(\lambda)$$
 משתנה מקרי פואסוני:

$$P\{X = i\} = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$
 $i = 0, 1, 2, ...$

$$E[X] = \lambda$$
 $Var(X) = \lambda$

אפשר המשתנה המשתנה המקרי X כמספר המופעים של מאורע, המתרחשים ביחידת זמן אחת בהתאם להנחות של תהליך פואסון.

תהליך פואסון הוא תהליך מנייה שבו סופרים את המופעים של מאורע מסוים במרווח-זמן נתון.

. הוא קצב התרחשות המופעים ביחידת זמן אחת λ

על-סמך שלוש הנחות בהגדרת תהליך פואסון, מקבלים שמספר המופעים המתרחשים ביחידת זמן אחת על-סמך שלוש הנחות בהגדרת תהליך פואסון. λ

h שלוש ההנחות עוסקות בסדר הגודל של ההסתברויות שיהיה בדיוק מופע אחד במרווח-זמן "קטן" שאורכו ושיהיו לפחות שני מופעים במרווח-זמן "קטן" שאורכו h ובאי-התלות בין מרווחי-זמן זרים.

 Δt אפשר להראות, שבמרווח זמן שאורכו t קצב התרחשות המופעים הוא

משתנים מקריים פואסוניים המוגדרים על מרווחי-זמן שאינם חופפים, הם בלתי-תלויים.

הקירוב הפואסוני לבינומי:

$$P\{X=i\}pprox e^{-np}rac{(np)^i}{i!}$$
 מתקיים $i=0,1,...,n$ אם לכל $X\sim B(n,p)$ מתקיים $X\sim B(n,p)$

. p < 0.1 ו- np > 10 ויה משמעו: p > 10 ויה הטוענים, כי וור יגדולי ויף אדולי ויקטן משמעו: יש הטוענים, כי

$$X \sim NB(r,p)$$
 טבעי ו- $0 טבעי וי r טבעי וי$

$$P\{X = i\} = {i-1 \choose r-1} (1-p)^{i-r} \cdot p^r \qquad i = r, r+1, r+2, ...$$

$$E[X] = \frac{r}{p} \qquad \text{Var}(X) = \frac{r(1-p)}{p^2}$$

ניסוי מקרי בינומי שלילי: עורכים בזה אחר זה, ניסויי ברנולי בלתי-תלויים, שלכולם הסתברות p להצלחה שלילי: עד לקבלת ההצלחה ה-r-ית.

. ניסויים בלתי-תלויים בלתי-תלויים בלתי-תלויים $\it r$ ניסויים בלתי-תלויים

x מוגדר כמספר הסידורי של הניסוי שבו התקבלה ההצלחה ה-r-ית.

$$X \sim H(N,m,n)$$
 אור משתנה מקרי היפרגיאומטרי: $n \rightarrow m$ ו- $n \rightarrow m$ אור משתנה מקרי היפרגיאומטרי:

$$P\{X = i\} = \frac{\binom{m}{i} \binom{N-m}{n-i}}{\binom{N}{n}}$$
 $i = \max\{0, n-(N-m)\}, ..., \min\{m,n\}$

$$E[X] = \frac{nm}{N} \qquad Var(X) = \frac{N-n}{N-1} n \frac{m}{N} (1 - \frac{m}{N})$$

ניסוי מקרי היפרגיאומטרי: בוחרים מדגם מקרי (ללא החזרה) בגודל n עצמים ש- m מהם מיוחדים. מקרי מקרי מקרי מוגדר כמספר העצמים המיוחדים שהוצאו במדגם המקרי.