US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250267825 A1 August 21, 2025 Harel; Jean-Claude

COMPACT POWER CONVERTER WITH TRANSISTORS THERMALLY AND ELECTRICALLY CONNECTED TO A FLUID COOLED BUS BAR

Abstract

An apparatus may include a first device having a first metal structure, a first metal element, and a first transistor. The first metal structure may include first and second surfaces, that are flat and opposite facing. The first metal element may include first and second surfaces that are flat and opposite facing. The first transistor may include first and second terminals between which 1 amp or more of electrical current is transmitted when the first transistor is activated, wherein the first and second terminals may include first and second surfaces, respectively, that are substantially flat and opposite facing. The second surface of the first metal structure can be electrically and thermally connected to a bus bar. The first and second surfaces of the first and second terminals, respectively, may be sintered to the first and second surfaces, respectively, of the first metal structure and the first metal element, respectively.

Inventors: Harel; Jean-Claude (San Jose, CA)

Applicant: Marel Power Solutions, Inc. (Plymouth, MI)

Family ID: 1000008578191

Assignee: Marel Power Solutions, Inc. (Plymouth, MI)

Appl. No.: 19/197087

Filed: May 02, 2025

Related U.S. Application Data

parent US continuation 18751267 20240623 parent-grant-document US 12301110 child US 19197087

parent US continuation 17191816 20210304 parent-grant-document US 12027975 child US 18751267

us-provisional-application US 63028883 20200522

us-provisional-application US 63044763 20200626 us-provisional-application US 63136406 20210112

Publication Classification

Int. Cl.: H05K7/20 (20060101); H01L21/50 (20060101); H01L23/02 (20060101); H01L23/31 (20060101); H02B1/20 (20060101); H02K11/33 (20160101); H02M1/32 (20070101); H02M3/156 (20060101); H02M7/00 (20060101); H02M7/53846 (20070101); H05K7/14 (20060101)

U.S. Cl.:

CPC **H05K7/209** (20130101); **H01L21/50** (20130101); **H01L23/02** (20130101); **H01L23/31** (20130101); **H02B1/20** (20130101); **H02K11/33** (20160101); **H02M1/32** (20130101); **H02M3/1563** (20130101); **H02M7/003** (20130101); **H02M7/538466** (20130101); **H05K7/1432** (20130101); **H05K7/14329** (20220801); H02M1/327 (20210501)

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation of U.S. patent application Ser. No. 18/751,267, entitled "Compact Power Converter With Transistors Thermally And Electrically Connected To A Fluid Cooled Bus Bar," filed Jun. 23, 2024, which in turn is a continuation of U.S. patent application Ser. No. 17/191,816, entitled "Packaged Power Module with Sintered Switch," filed Mar. 4, 2021. U.S. patent application Ser. No. 17/191,816 claims domestic benefit under Title 35 of the United States Code § 119 (e) of U.S. Provisional Patent Application Ser. No. 63/028,883, entitled "Power Switch Package," filed May 22, 2020, U.S. Provisional Patent Application Ser. No. 63/044,763, entitled "Inverter Housing," filed Jun. 26, 2020, and U.S. Patent Application Ser. No. 63/136,406, entitled "Compact Inverter System," filed Jan. 12, 2021. All foregoing applications are incorporated by reference in their entirety and for all purposes as if completely and fully set forth here.

BACKGROUND

[0002] Electric motors (e.g., induction motors) are used in industrial fans, pumps, electric vehicles, etc. An induction motor is an alternating current (AC) electric motor in which electric current in a rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of a stator winding. In electric vehicles the torque is applied to a shaft, which propels the electric vehicle.

[0003] Microcontrollers or other data processing devices (e.g., system on a chip) control electric motors via power inverter systems. In essence a power inverter system changes direct current (DC) power from a battery, fuel cell or other source into AC power. A power inverter system can be operated in reverse to change AC power into DC power. A power inverter system may include three, six, nine, or more phases. In general each phase of a power inverter system includes at least one "high-side" switch connected to at least one "low-side" switch. A pair of connected high-side and low-side switches is called a "half bridge."

[0004] The present disclosure will be described with reference to three-phase power inverter systems for converting DC power into AC power for electrical motors of EVs, it being understood the present disclosure should not be limited thereto.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- [0005] The present technology may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
- [0006] FIG. **1***a* illustrates relevant components of an example three-phase power inverter.
- [0007] FIG. **1***b* illustrates an example timing diagram that shows gate control signals employed in the three-phase power inverter of FIG. **1***a*.
- [0008] FIGS. **2***a***-1** and **2***a***-2** are isometric and reverse isometric views of an example packaged switch.
- [0009] FIGS. **2***b***-1** and **2***b***-2** are isometric and reverse isometric views of an example packaged half bridge.
- [0010] FIG. **3***a***-1** is a schematic diagram that shows relevant components of the example of the packaged switch shown in FIGS. **2***a***-1** and **2***a***-2** when viewed from the top.
- [0011] FIG. **3***a***-2** is a schematic diagram that shows relevant components of the example of the packaged switch shown in FIGS. **2***a***-1** and **2***a***-2** when viewed from the side.
- [0012] FIG. **3***a*-**3** is a schematic diagram that shows relevant components of the example of the packaged switch shown in FIGS. **2***a*-**1** and **2***a*-**2** when viewed from the back.
- [0013] FIG. **3***a***-4** is a schematic diagram that illustrates relevant components of an example switch controller.
- [0014] FIGS. **3***a***-5** and **3***a***-6** are schematic diagrams that illustrate relevant components of example switches.
- [0015] FIG. **3***a***-7** is a schematic diagram that illustrates relevant components of an example gate driver.
- [0016] FIGS. **3***b***-1** is a schematic diagram that shows relevant components of another example packaged switch shown when viewed from the top.
- [0017] FIGS. **3***b***-2** is a schematic diagram that shows relevant components of the example packaged switch shown in FIG. **3***b***-1** when viewed from the side.
- [0018] FIGS. **3***b***-3** is a schematic diagram that shows relevant components of the example packaged switch shown in FIG. **3***b***-1** when viewed from the back.
- [0019] FIGS. **3***c***-1** is a schematic diagram that shows relevant components of another example packaged switch shown when viewed from the side.
- [0020] FIGS. **3***c***-2** is a schematic diagram that shows relevant components of the example packaged switch shown in FIG. **3***c***-1** when viewed from the back.
- [0021] FIGS. **3***d***-1** is a schematic diagram that shows relevant components of another example packaged switch shown when viewed from the side.
- [0022] FIGS. **3***d***-2** is a schematic diagram that shows relevant components of the example packaged switch shown in FIG. **3***d***-1** when viewed from the back.
- [0023] FIGS. **3***e***-1** is a schematic diagram that shows relevant components of another example packaged switch shown when viewed from the side.
- [0024] FIGS. **3***e***-2** is a schematic diagram that shows relevant components of the example packaged switch shown in FIG. **3***e***-1** when viewed from the back.
- [0025] FIGS. **3***f***-1** is a schematic diagram that shows relevant components of another example packaged switch shown when viewed from the side.
- [0026] FIGS. **3***f***-2** is a schematic diagram that shows relevant components of the example packaged switch shown in FIG. **3***f***-1** when viewed from the back.
- [0027] FIGS. **3***g***-1** is a schematic diagram that shows relevant components of the example packaged half bridge shown in FIGS. **2***b***-1** and **2***b***-2** when viewed from the side.
- [0028] FIGS. **3***g***-2** is a schematic diagram that shows relevant components of the example

- packaged half bridge shown in FIGS. **2***b***-1** and **2***b***-2** when viewed from the back.
- [0029] FIGS. **3***h***-1** is a schematic diagram that shows relevant components of another example packaged half bridge when viewed from the side.
- [0030] FIGS. **3***h***-2** is a schematic diagram that shows relevant components of the example packaged half bridge shown in FIG. **3***h***-1** when viewed from the back.
- [0031] FIGS. **3***i*-**1** is a schematic diagram that shows relevant components of another example packaged half bridge when viewed from the side.
- [0032] FIGS. **3***l***-2** is a schematic diagram that shows relevant components of the example packaged half bridge shown in FIG. **3***l***-1** when viewed from the back.
- [0033] FIGS. **3***k***-1** is a schematic diagram that shows relevant components of another example packaged half bridge when viewed from the side.
- [0034] FIGS. **3***k***-2** is a schematic diagram that shows relevant components of the example packaged half bridge shown in FIG. **3***k***-1** when viewed from the back.
- [0035] FIGS. *3l-1* is a schematic diagram that shows relevant components of another example packaged half bridge when viewed from the side.
- [0036] FIGS. *3l-2* is a schematic diagram that shows relevant components of the example packaged half bridge shown in FIG. *3l-1* when viewed from the back.
- [0037] FIG. 3j is a schematic diagram that shows relevant components of another example packaged half bridge when viewed from the side.
- [0038] FIG. **4***a***-1** is schematic diagram that shows relevant components of an example compact inverter system when viewed from the side.
- [0039] FIG. **4***a***-2** is schematic diagram of the compact inverter system of FIG. **4***a***-1** when viewed from the back.
- [0040] FIGS. **4***a***-3-4***a***-6** are cross sectional views of example pipes that can be employed in a compact inverter system.
- [0041] FIG. **4***b***-1** is schematic diagram that shows relevant components of another example compact inverter system when viewed from the side.
- [0042] FIG. **4***b***-2** is schematic diagram of the compact inverter system of FIG. **4***b***-1** when viewed from the back.
- [0043] FIG. **4***b***-3** illustrates example signals that are received from or transmitted to a phase of the compact inverter system shown in FIG. **4***b***-1**.
- [0044] FIG. **4***c*-**1** is schematic diagram that shows relevant components of another example compact inverter system when viewed from the side.
- [0045] FIG. **4***d***-1** is schematic diagram that shows relevant components of another example compact inverter system when viewed from the side.
- [0046] FIG. **4***d***-2** illustrates example signals that are received from or transmitted to a phase of the compact inverter system shown in FIG. **4***d***-1**.
- [0047] FIG. **4***e* is schematic diagram that shows relevant components of another example compact inverter system when viewed from the top.
- [0048] FIG. **4***f* is schematic diagram that shows relevant components of another example compact inverter system when viewed from the side.
- [0049] FIG. **4***g* is a schematic diagram that shows relevant components of another example compact inverter system when viewed from the side.
- [0050] FIG. **4***h* is a schematic diagram that shows relevant components of another example compact inverter system when viewed from the side.
- [0051] FIG. **4***i* is a schematic diagram that shows relevant components of another example compact inverter system when viewed from the side
- [0052] FIG. **4***j* is a schematic diagram that shows relevant components of another example compact inverter system when viewed from the side.
- [0053] FIG. **4***k* is a schematic diagram that shows relevant components of another example

- compact inverter system when viewed from the side.
- [0054] FIG. **5** is an isometric view of an embossed sheet of thin metal from which an example signal frame substrate can be formed.
- [0055] FIG. **6** is a reverse isometric view of embossed sheet shown in FIG. **5** after it has been cut.
- [0056] FIG. **7** is an isometric view of the cut sheet shown in FIG. **6** after several non-isolated signal leads are bent.
- [0057] FIG. **8** is a top view of signal frame substrate of FIG. **7** after leads of gate driver circuit are connected thereto.
- [0058] FIG. **9***a* is a top view of an example die substrate.
- [0059] FIG. **9***b* shows an example switch received on a surface of the die substrate shown in FIG. **9***a*.
- [0060] FIG. **9***c* shows a partial cross sectional view of the structure shown in FIG. **9***b*.
- [0061] FIG. **10** is top view of die substrate of FIG. **9***a* aligned with the signal frame substrate shown in FIG. **8**.
- [0062] FIGS. **11***a* and **11***b* are isometric and reverse isometric views of an example die clip.
- [0063] FIGS. **11***c* and **11***d* are top and bottom views of die clip shown in FIGS. **11***a* and **11***b* when aligned with die substrate and signal frame substrate of FIG. **10**.
- [0064] FIG. **11***e* is isometric view partially showing the structure of FIGS. **11***c* and **11***d* when viewed from the side.
- [0065] FIGS. **11***f* and **11***g* are top and isometric views of the structure shown in FIGS. **11***c* and **11***d* with additional components.
- [0066] FIGS. **12***a* and **12***b* are isometric and revere isometric views of the structure shown in FIGS. **11***f* and **11***g* with a molded plastic body.
- [0067] FIGS. **13***a* and **13***b* are side and isometric views of relevant components of an example packaged half bridge.
- [0068] FIGS. **14***a* and **14***b* are isometric and end views, respectively, of an example V+ bus bar employed in the compact inverter system of FIG. **4***d***-1**.
- [0069] FIGS. **15***a* and **15***b* are isometric and side views of V+ bus bar of FIGS. **14***a* and **14***b* after it receives example packaged half bridges.
- [0070] FIG. **16***a* is an isometric view of an example clamp that can be employed in the compact inverter system of FIG. **4***d***-1**.
- [0071] FIGS. **16***b* and **16***c* are end views of the clamp shown in FIG. **16***a*.
- [0072] FIGS. **17***a* and **17***b* are isometric and end views of the structure shown within FIGS. **15***a* and **15***b* B with the clamp of FIGS. **16** *a-c*.
- [0073] FIGS. **18***a***-18***c* are isometric, side and end views of the structure shown within FIGS. **17***a* and **17***b* with added heatsinks.
- [0074] FIGS. **19***a* and **19***b* are isometric and side views of the structure shown with in FIGS. **18***a*-**18***c* with additional clamps, half bridges, and heatsinks.
- [0075] FIGS. **20***a*-**2***c* are isometric, top, and end views of an example V-bus bar employed in the compact inverter system of FIG. **4***d*-**1**.
- [0076] FIG. **20***d* is a side view of the example V-bus bar shown in FIGS. **20***a***-2***c* with arrays of decoupling capacitors received therein.
- [0077] FIG. **21** is an end view of the structure shown with in FIGS. **19***a* and **19***b* with the V-bus and additional components.
- [0078] The use of the same reference symbols in different drawings indicates similar or identical items.

DETAILED DESCRIPTION

[0079] FIG. **1***a* illustrates relevant components of an example three-phase power inverter system (hereinafter inverter system) **100**. Each phase includes a half bridge: a high-side switch connected to a low-side switch. Each high-side switch includes a transistor THx connected in parallel with

diode DHx, and each low-side switch includes transistor TLx connected in parallel with diode DLx. Transistors TH1-TH3 and TL1-TL3 take form in insulated-gate bipolar transistors (IGBTs). [0080] High-side transistors TH1-TH3 are connected in series with low-side transistors TL1-TL3, respectively, via nodes N1-N3, respectively, which in turn are connected to respective terminals of wire windings Wa-Wc of an electric motor. The collectors of TH1-TH3 and the cathodes of DH1-DH3 are connected together and to a terminal of a battery that provides a positive voltage V+ (e.g., 50V, 100V, 200V, or higher), while the emitters of transistors TL1-TL3 and the anodes of diodes DL1-DL3 are connected together and to another terminal of the battery that provides a return or negative voltage V-.

[0081] High-side transistors TH1-TH3 and low-side transistors TL1-TL3 are controlled by microcontroller 110 via gate drivers H101-H103 and L101-L103, respectively. A gate driver is a circuit that accepts a low-power input signal from a device (e.g. a microcontroller), and produces a high-current output signal to control the gate of a transistor such as an IGBT or a metal-oxide-semiconductor field-effect transistor (MOSFET).

[0082] Control of the transistors is relatively simple. High-side gate drivers H101-H103 and low-side gate drivers L101-L103 receive low-power, driver control signals (i.e., pulse width modulation signals PWM-H1-PWM-H3 and PWM-L1-PWM-L3) from microcontroller 110. High-side gate drivers H101-H103 activate high-side transistors TH1-TH3, respectively, by asserting high-current, gate control signals VgH1-VgH3, respectively, when PWM-H1-PWM-H3 signals, respectively, are asserted. And low-side gate drivers L101-L103 activate low-side transistors TL1-TL3, respectively, by asserting high-current, gate control signals VgL1-VgL3, respectively, when PWM-L1-PWM-L3 signals, respectively, are asserted. Each of the transistors TH1-TH3 and TL1-TL3 conducts current to or from a connected winding W when activated.

[0083] Through coordinated activation of connected high-side and low-side transistors, the direction of current flow in a winding W is continuously and regularly flip-flopped (current travels into a winding, then abruptly reverses and flows back out). FIG. **1***b* illustrates an example timing diagram for gate control signals VgH**1**-VgH**3** and VgL**1**-VgL**3**. An interaction between a magnetic field of a motor's rotor (not shown), which is coupled to a drive shaft (not shown), and the changing current in wire windings Wa-Wc creates a force that propels an EV.

[0084] Microcontroller 110 controls high-side transistors TH1-TH3 and low-side transistors TL1-TL3 via PWM-H1-PWM-H3 and PWM-L1-PWM-L3 signals, respectively. Microcontrollers, such as microcontroller **110**, include a central processing unit (CPU), memory that stores instructions executable by the CPU, and peripherals such as timers, input/output (I/O) ports, etc. The CPU programs the timers in accordance with instructions stored in memory. Once programmed and started, these timers can autonomously generate the PWM-H1-PWM-H3 and PWM-L1-PWM-L3 signals. Gate drivers H101-H103 generate the VgH1-VgH3 signals based on the PWM-H1-PWM-H3 signals, and gate drivers L101-L103 generate the VgL1-VLH3 signals based on the PWM-L1-PWM-L3 signals. The CPU may reprogram the timers in order to adjust the duty cycle and/or period of the PWM signals, which in turn adjusts the rotational speed of the EV's drive shaft. [0085] Prior inverter systems are large, bulky, expensive, inefficient, etc. For example, a prior inverter system that can deliver 400 kW of peak power to an electric motor, occupies a volume exceeding 11 liters. A "compact power inverter system" (hereinafter compact inverter system) is disclosed that addresses many problems of prior inverter systems. For example, a compact inverter system, which includes ceramic decoupling capacitors like those described in FIG. **20***d* below, can deliver 400 kW of peak power, yet occupy a volume less than 0.25 liters. The size of compact inverters may increase if thin-film decoupling capacitors are used instead of ceramic decoupling capacitors, or system requirements require thin-film decoupling capacitors, or if thin-film decoupling capacitors are added along with the ceramic decoupling capacitors. Ultimately, the power density (volume/power) of the disclosed compact converter systems far exceeds that of prior inverter systems.

Packaged Switch Modules

[0086] "Packaged switch modules" are disclosed. Compact inverter systems of this disclosure use packaged switch modules, it being understood that packaged switch modules can be used in a variety of other systems, such as AC-DC converters, DC-DC converter systems, photo voltaic conversion systems, power charging stations, etc.

[0087] As its name implies, packaged switch modules contain one or more "switch modules." A switch module includes a "switch," and a "switch controller," it being understood that a switch module may include additional components. Switch controllers control switches (i.e., activate or deactivate switches). A packaged switch module that contains only one switch module is called a "packaged switch," and a packaged switch module that contains two switch modules is called a "packaged half bridge."

[0088] Packaged switches and packaged half bridges can be cubic shaped with six sides; top, bottom, front, back, left, and right. FIGS. **2***a***-1** and **2***a***-2** are isometric and reverse isometric views of an example packaged switch **200**. FIGS. **2***b***-1** and **2***b***-2** are isometric and reverse isometric views of an example packaged half bridge **250**. Packaged switches and half bridges can be manufactured with small form factors. For example, packaged switch **200** can measure 25×25×6 mm, and packaged half bridge **250** can measure 25×25×12 mm.

[0089] Packaged switches and half bridges have solid glass, plastic or ceramic cases. For the purposes of explanation only, cases are presumed to be plastic (e.g., epoxy resin). FIGS. **2***a***-1** and **2***a***-2** show packaged switch **200** with a plastic case **202**, and FIGS. **2***b***-1** and **2***b***-2** show packaged half bridge **250** with a plastic case **252**.

[0090] Plastic cases isolate, protect and/or support components such as switches, switch controllers, etc. Plastic cases also support "signal leads." A signal lead is an electrical connection consisting of a length of "wire" or a metal pad that is designed to connect two locations electrically. Signal leads carry signals (e.g., PWM signals, gate control signals, etc.) or voltages (e.g., supply voltages, ground, etc.) between internal components (e.g., between a switch controller and a switch), or between internal components (e.g., a switch controller) and external components (e.g., a microcontroller, voltage regulator, etc.). FIGS. 2a-1 and 2a-2 illustrate example signal leads 204 and 206. Signal lead 204 can convey a signal such as a low-power PWM signal to an internal component (e.g., a switch controller), while signal lead 206 can convey a supply voltage to the same internal component or a different internal component. Packaged half bridge 250 has similar signal leads 204H, 204L, 206H and 206L.

[0091] Signal leads have substantially flat surfaces. Unless otherwise signal lead surfaces are substantially flush with plastic case surfaces of a packaged switch or packaged half bridge. However, in other embodiments, the flat surfaces may be recessed below the surfaces of the plastic case, or the flat surfaces may protrude above the surfaces of the plastic case. FIG. 2a-1 shows example signal leads 204 and 206 with flat surfaces that are substantially flush with the top surface of packaged switch **200**. FIG. **2***a***-2** also shows example signal leads with flat surfaces that are substantially flush with the front surface of packaged switch 200. Signal leads can provide terminals (i.e., physical interfaces). Signal leads at the front of packaged switch **200** provide terminals through which signals or voltages are received or transmitted. For example, signal lead **204** provides a terminal that can receive a signal such as a low-power PWM signal from a microcontroller, while signal lead **206** provides a terminal for receiving a supply voltage from a power management integrated circuit (PMIC). In an alternative embodiment, signal leads at the top can provide terminals for receiving or transmitting signals or voltages. For purposes of explanation, only the front of packaged switches provide signal lead terminals for receiving or transmitting signals and voltages, it being understood that signal leads on the top can provide terminals in alternative embodiments. FIGS. 2b-1 and 2b-2 show similar signal leads 204 and 206 that are substantially flush with the front, top and bottom surfaces of packaged half bridge **250**. For purposes of explanation, only signal leads such as signal leads 204H, 204L, 206H and 206L at the

front of packaged half bridges provide terminals through which signals or voltages can be transmitted or received, it being understood that signal leads on the top and bottom surfaces can provide terminals in alternative embodiments.

[0092] A switch includes one or more power transistors (IGBTs, MOSFETs, etc.). A power transistor has two current terminals (collector and emitter in an IGBT, source and drain in a MOSFET, etc.) and a control or gate terminal. Multiple power transistors in a switch maybe connected in parallel and controlled by a common signal at their gates. A switch can transmit substantial levels of current at high switching speeds without failure depending on the size (i.e., gate width and length), type (e.g., MOSFET), semiconductor material (e.g., GaN), and number (e.g., three) of transistors in the switch. A power transistor can transmit current at high switching speeds (e.g., up to 100 kHz for Si IGBTs, up to 500 kHz for SiC MOSFETS, up to 1.0 GHz for GaN MOSFETs, etc.). When thermally connected to heat sinks, as will be described below, power transistors can transmit more current at higher switching speeds without failure.

[0093] Switches are sandwiched between separate metal conductors called "die substrates" and "die clips." More particularly, a first current terminal (e.g., collector or drain) and a second current terminal (e.g., emitter or source) of each transistor in a switch is connected (e.g., sintered, soldered, brazed, etc.) to a die substrate and a die clip, respectively. The gate of each transistor in a switch is connected to and controlled by a switch controller.

Die Substrate and Die Clip Terminals

[0094] Die substrates and die clips conduct current. In addition to conducting current, a die substrate conducts heat. A die substrate has a terminal for transmitting heat out of a packaged switch or packaged half bridge. The same die substrate terminal can transmit current into or out of the packaged switch or packaged half bridge. A die clip has at least one terminal for transmitting current into or out of a packaged switch or packaged half bridge. This terminal may also transmit some heat out of the packaged switch or packaged half bridge, but its primary purpose is to transmit current. In some embodiments, a die clip may have an additional terminal for transmitting heat out of a packaged switch or packaged half bridge.

[0095] A die substrate terminal can extend through a surface of a packaged switch or packaged half bridge. Likewise, a die clip terminal can extend through a surface of a packaged switch or packaged half bridge. Unless otherwise noted die substrate terminals and die clip terminals have substantially flat surfaces that are substantially flush with plastic case surfaces of a packaged switch or packaged half bridge. However, in other embodiments, these flat surfaces may be recessed below the surfaces of the plastic case, or the flat surfaces may protrude above the surfaces of the plastic case. FIG. 2*a*-1 shows an example die substrate terminal 230 with a substantially flat surface that is substantially flush with the top surface of packaged switch 200. FIG. 2*a*-1 also shows an example die clip terminal 232 with a substantially flat surface that is flush with the side surface of packaged switch 200. FIGS. 2*b*-1 and 2*b*-2 show similar die substrate terminals 230H and 230L, and die clip terminals 232H and 230L, with surfaces that are flush with the top, bottom, and side surfaces of packaged half bridge 250. A die clip terminal may include several recesses that can mate with extensions of an external conductor (e.g., a V-bus bar or clamp, which are more fully described below) to facilitate better electrical connection.

[0096] FIGS. 2*a*-1 and 2*a*-2 show example die substrate terminal 230 and die clip terminal 232 with substantially flat surfaces that are substantially flush with the surfaces of plastic case 202. FIGS. 2*b*-1 and 2*b*-2 show similar die substrate terminals 230, and die clip terminals 232 with substantially flat surfaces that are substantially flush with the surfaces of plastic case 252. It should be understood that die clip and die substrate terminals should not be limited to that shown within FIGS. 2*a*-1, 2*a*-2, 2*b*-1 and 2*b*-2. In alternative embodiments die clip and die substrate terminals may take different forms, shapes and sizes. Die clips and/or die substrates may be configured to have terminals with surfaces in planes that are substantially above or below parallel planes that contain surfaces of plastic cases 202 or 252.

[0097] Current can enter a packaged switch or half bridge via a die substrate terminal and subsequently exit via a die clip terminal, or current can flow through a packaged switch or half bridge in the reverse direction, although current flow in the reverse direction may not be as efficient. To illustrate, current can enter packaged switch **200** via die substrate terminal **230**, flow-through a die substrate, an activated switch, a die clip, and then exit the packaged switch **200** via die clip terminal **232**. In similar fashion current can enter packaged half bridge **250** via high-side die substrate terminal **230**H, flow-through a high-side die substrate, an activated high-side switch, a high-side die clip, and then exit the packaged half bridge **250** via low-side die substrate terminal **230**L, flow-through a low-side die substrate, an activated low-side switch, a low-side die clip, and then exit the packaged half bridge **250** via die low-side die clip terminal **232**L.

[0098] Die substrates and die clips, depending on their configuration (e.g., thickness, terminal width and length, metal type, etc.), can transmit high levels of current to or from their connected switches. For example a copper based die substrate with terminal 230 having a width of 24 mm and a length of 11.2 mm, can transmit 400 A or more of current, and a copper die clip with terminal 232 having a width of 1.6 mm and a length of 11.4 mm can transmit 400 A or more of current. [0099] Switches get hot, especially when they conduct current at high switching speed. A die substrate, depending on its configuration, including its thickness, can conduct large amounts of heat (e.g., 10, 20, 50, 100, 300-750 W or more) out of packaged switch or packaged half bridge via its die substrate terminal. Die substrates can transmit even more heat out of packaged switches or packaged half bridges when their terminals are thermally connected to heat sinks. In one embodiment as noted above, a die clip may have a terminal for conducting current into or out of a packaged switch or packaged half bridge, and a second terminal for conducting heat out of packaged switch or packaged half bridge. The second terminal can transmit even more heat out of a packaged switch or packaged half bridge when the second terminal is thermally connected to a heat sink. In general a connection between a pair of components can be direct (e.g. surfaces of the components contact each other), or a connection between a pair of components can be indirect via an intervening thermally and/or electrical material such as solder, a third metal component, combination of solder and a third metal component, conductive adhesives, sintering material such as silver, thermal grease, wire bond, etc. A connection can conduct heat, current, or both heat and current between components.

Example Packaged Switches

[0100] With continuing reference to FIG. 2*a*-1, FIGS. 3*a*-1, 3*a*-2 and 3*a*-3 are schematic diagrams of example packaged switch 200 that show several relevant components thereof. FIGS. 3*a*-1, 3*a*-2 and 3*a*-3 show relative positions of certain components when packaged switch 200 is viewed from the top, side and back, respectively. Packaged switch 200 contains example switch module 300 as shown in FIG. 3*a*-1. A packaged half bridge may include a pair of switch modules, such as switch module 300, as will be more fully described below.

[0101] Switch module **300** includes a switch controller **302** that controls switch **304** based on a low-power, PWM signal and/or other signals received from a microcontroller or similar processor based device. Switch **304** is connected to and positioned between die substrate **312** and die clip **316**, both of which are symbolically represented. Die substrate **312** and die clip **316** conduct large current. Die Substrate **312** is represented by a thicker line in the figures to indicate that it is also configured to conduct relatively more heat out of packaged switch **200** when compared to the amount of heat transferred out by die clip **316**. Switch module **300** also includes a temperature sensor circuit T_Sense for sensing temperature near switch **304**, and a current sensor circuit I_sense for sensing current transmitted by switch **304**. A switch module may contain fewer or more components than that shown in the figures. For example, switch module **300** may also include a voltage sensor circuit that senses the voltage across the current terminals of switch **304**.

[0102] FIGS. **3***a*-**1**, **3***a*-**2** and **3***a*-**3**, show relative positioning of components with respect to each

other. As seen in FIG. 3a-2 die substrate 312, switch 304, and die clip 316 are vertically stacked between the top T and bottom B. Stacking these components reduces the height, and thus the volume of packaged switch **200**. Switch controller **302** is positioned near the front F of packaged switch **200**, while switch **304** is positioned near the back Bk of packaged switch **200**. [0103] For ease of illustration and explanation, die substrate terminal **230** is symbolically represented as a square in the figures. Depending on the view, die clip terminal **232** is symbolically represented as a hexagon or as an octagon in the figures. For example, in the top and back views of FIGS. **3***a***-1** and **3***a***-3**, respectively, die clip terminal **232** is symbolically represented as hexagon. In the side view of FIG. 3*a*-2 die clip terminal 232 is represented as an octagon. [0104] Die substrate terminal **230** is positioned in FIGS. **3***a***-2** and **3***a***-3** to indicate that it is flush with the top surface of packaged switch **200**, and die clip terminal **232** is positioned in FIGS. **3***a***-1** and **3***a***-3** to indicate that it is flush with the left side surface of packaged switch **200**. Die clip terminal **232** is drawn with a center dot in FIG. **3***a***-2** to indicate that current enters or exits packaged switch **200** through its left side. FIGS. **3***b***-1**, **3***b***-2** and **3***b***-3** show an alternative packaged switch **201**, which is similar to packaged switch **200**, but with die clip terminal **232** positioned in FIGS. **3***b***-1** and **3***b***-3** to indicate that it is flush with the right side surface. Die clip terminal **232** in FIG. **3***b***-2** is drawn without a center dot to indicate that current enters or exits from of the right side of packaged switch **201**. It is noted that die substrate terminals or die clip terminals may be recessed below or protruding above a packaged switch surface or packaged half bridge surface in other embodiments.

[0105] With continuing reference to FIGS. **3***a***-1**, **3***a***-2** and **3***a***-3**, FIG. **3***a***-4** is a schematic diagram that shows an example switch controller **302**, which includes gate driver **306**, resistors R1 and R2, and diodes **308** and **310**. A switch controller may contain fewer or more components than that shown in the figure. FIG. 3*a*-4 shows switch 304, but not die substrate 312 and die clip 316. Although not shown in this figure, the cathode of diode **308** is connected to die substrate **312**. [0106] Prior art inverter systems mount gate drivers such as gate drivers H101-H103 and L101-L**103** of FIG. **1***a* on large and expensive printed circuit boards (PCBs). Long conductive traces on these PCBs carry signals between the gate drivers and power transistors (e.g., IGBTs), which are external to the PCBs. Long traces between the gate driver and the transistors increases parasitic induction and/or capacitance, which in turn increases unwanted power consumption and signal delay. Signals transmitted on longer traces are more susceptible to noise. In contrast switch controller **302**, which contains gate driver **306**, is contained inside a packaged switch or packaged half bridge, and positioned near switch **304**. A shorter conductive line (e.g., 5 mm or less) connects a control signal output of gate driver **306** and the gate(s) of switch **304** when compared to prior art inverter systems. The shorter conductive line reduces parasitic induction, signal delay, signal degradation due to noise, and/or other problems associated with gate drivers mounted on the aforementioned PCBs. Gate driver **306** consumes less power while driving the gate. And gate driver **306** can more quickly drive the gate of switch **304**.

[0107] In general a switch **304** includes one or more transistors such as an IGBT, MOSFET, JFET, BJT, etc. A switch **304** may include additional components such as a diode. The transistors and/or additional components in switch **304** can be made from any one of many different types of semiconductor materials such as Si, SiC, GaN, etc. FIGS. **3***a*-**5** and **3***a*-**6** are schematic diagrams that illustrate example switches **304**. In FIG. **3***a*-**5**, switch **304** includes a power IGBT connected in parallel with diode D. The collector c and diode cathode are attached (e.g., sintered, soldered, etc.) to die substrate **312**, while the emitter e and diode anode are attached (e.g., sintered, soldered, etc.) to die clip **316**. In some embodiments, an IGBT may have one emitter, but several emitter terminals. In those embodiments, each of the emitter terminals is attached to die clip **316**. In FIG. **3***a*-**6**, switch **304** includes power MOSFETS (e.g., SiC MOSFETS, GaN MOSFETS or MOSFETS made with other semiconductor material) N1 and N2 coupled in parallel. The drains d of MOSFETS N1 and N2 are attached (e.g., sintered, soldered, etc.) to die substrate **312**, while the sources s are

attached (e.g., sintered, soldered, etc.) to die clip **316**. Each gate g is controlled by a high-current, gate control signal Vg from driver **306**. Switches other than switch **304** shown in the figures can be used in alternative embodiments.

[0108] With continuing reference to FIGS. **3***a***-1** and **3***a***-4**, components are connected to signal leads (e.g., **204-208**), which are symbolically shown. Signal leads connect components internal to the switch module (e.g., gate driver **306** and resistor R**1**). Signal leads also connect components internal to the switch module (e.g., gate driver **306**) and components external to the switch module (e.g., a microcontroller, a voltage regulator, etc.). Several signal leads are not shown in FIGS. 3a-1 and **3***a***-4** for ease of illustration. Some components of a switch module may be connected to signal leads through additional wires. For example, wire bonding or other type of connection method may used to connect a gate g of switch **304** to a signal lead, which in turn is connected to resistor R2. [0109] Some switch module components may take form in packaged devices or bare semiconductor dies that can be purchased from original equipment manufacturers. The packaged devices have leads that are connected (e.g., soldered) to signal leads. Bare semiconductor dies have pads that can be wire bonded to signal leads. Unless otherwise noted, the switch module components are presumed to take form in packaged devices with leads that can be connected (e.g., soldered) to respective signal leads. For example gate driver **306** may take form in a packaged integrated circuit with leads that are soldered to signal leads such as signal leads **204** and **206**. Leads of a packaged I_Sense or I_Temp circuit may be connected to signal leads via a flexible flat cable (FFC, such as a flex PCB, not shown). FFC refers to any variety of electrical cable that is both flat and flexible, with flat conductors or traces formed on a substrate. Resistors R1 and R2, and diodes **308** and **310** can be packaged components with leads that are connected to signal leads. [0110] Signal leads (e.g., signal leads **204-208**) can be constructed from a metal structure called a "signal frame substrate," which will be more fully described below. Signal leads can be made using alternative methods. For example, liquid crystal polymer can be injected into a mold to create a rigid substrate. Conductive traces can then be patterned on the substrate to form the signal leads. However, for purposes of explanation, the remaining disclosure will presume construction of signal leads from a signal frame substrate. In general a signal frame substrate is similar to a "lead frame," which is a thin metal frame to which devices are attached during semiconductor package assembly. While in the signal frame substrate, the signal leads are not electrically isolated from each other. After conductive leads of a packaged gate driver **306** (or bare semiconductor die gate driver **306**), diode **308** and other components are attached to a signal frame substrate, it is encapsulated in plastic. The plastic and the signal frame substrate can be trimmed to produce, for example, packaged switch **200** or packaged half bridge **250** shown in FIGS. **2***a***-1**, **2***a***-2**, **2***b***-1**, and **2***b***-2**. More specifically portions of the signal frame substrate and plastic are trimmed after molding to yield plastic cases (e.g., cases 202 and 252) and signal leads (e.g., 204 and 206). After trimming the signal leads are isolated from each other, but held firmly in place by the plastic case. Importantly, the signal frame substrate can be designed to accommodate many different combinations, types, shapes, arrangement, etc., of components of a switch module. [0111] With continuing reference to FIGS. 3*a*-5 and 3*a*-6, switches 304 are electrically and

thermally connected to die substrates. In one embodiment a first current terminal (e.g., collector, drain, etc.) of each transistor in switch **304** is sintered to die substrate **312** via a layer of highly conductive sintering material such as silver. No dielectric exists between switch **304** and die substrate **312**. Die substrate terminals are configured for direct or indirect connection to external devices. For example die substrate terminal **230** can be connected to a "V+ bus bar," which in turn is connected to a V+ battery terminal. In general a bus bar is a metal element that is used for high current distribution. The material composition and cross-sectional size of a bus bar, or elements thereof, determine the maximum amount of current that can be safely carried. A V+ bus bar may also act as a heat sink with one or more channels through which a fluid (e.g., air or a liquid such as a mixture of water and ethylene glycol) can flow. Or the die substrate terminal **230** can be

connected to a "phase bus bar," which in turn is connected to a terminal of a winding W. A phase bus bar (hereinafter phase bar) may include a metal clamp that engages the die substrate terminal. A power cable can connect the metal clamp to a winding terminal. One end of the power cable is connected to the clamp, while the other end is connected to a winding terminal.

[0112] In FIG. 2*a*-1, die substrate terminal 230 has a flat surface that is exposed through an opening in the plastic case of packaged switch 200. Packaged half bridge 250 of FIGS. 2*b*-1 and 2*b*-2 have similar die substrate terminals 230L and 230H. The dimensions (e.g., width and length) of the exposed terminal 230 are configured to transmit substantial current and heat. In one embodiment, die substrate terminal 230 is parallel to, but oppositely facing (i.e., 180 degrees) at least one surface of die substrate 312 to which a first current terminal (e.g., collector, drain, etc.) is

attached.

[0113] Switches **304** are electrically and thermally connected to die clips. For example a second current terminal (e.g., emitter, source, etc.) of each transistor in switch **304** is sintered to die clip **316** via a layer of highly conductive sintering material such as silver. No dielectric exists between switch **304** and die clip **232**. Die clip terminals are configured for making direct or indirect connection to a device external to the packaged switch or packaged half bridge. Die clip terminal **232** can be connected to the clamp mentioned above, which in turn is connected to a terminal of a winding via a power cable. Or die clip terminal 232 can be connected to a "V-bus bar," which in turn is connected to a V-battery terminal. In some embodiments, the V-bus bar may also act as a heat sink with one or more channels through which a fluid, such as air, can flow. [0114] With continuing reference to FIG. 2*a*-1, die clip terminal 232 has a substantially flat surface area that is exposed through an opening in the plastic case of packaged switch 200. Packaged half bridge **250** of FIGS. **2***b***-1** and **2***b***-2** have similar die clip terminals **232**L and **232**H. The dimensions (e.g., width and length) of the exposed terminal 232 are configured to transmit substantial current. [0115] Gate drivers of a switch module can receive signals from a microcontroller, respective microcontrollers, or similar processor based device(s). For example gate driver circuit **306** of FIG. *3a-4* can receive a low-power PWM driver control signal similar to one of the PWM signals described with reference to FIG. 1a. In addition, gate driver 306 may receive a low-power Reset signal from the microcontroller or other device. Gate driver circuit 306 can selectively activate switch **304** in response to the assertion of the PWM signal it receives by asserting high-current, gate control signal Vg, after it receives an asserted Reset signal. The distance between the output of gate driver **306** and the gate or gates of switch **304** should be reduced in order to mitigate adverse effects on gate control signal Vg due to parasitic inductance, parasitic capacitance, noise, etc. Gate drivers can also transmit signals to a microcontroller or similar processor based device. For example gate driver circuit 306 can disable switch 304 (i.e., maintain the switch in a deactivated state) and assert the Fault signal when a fault, such as excessive current conduction through switch **304**, is detected. A microcontroller or similar processor device can receive and process the Fault signal. The other components such as the I_sense circuit and the Temp_sense circuit can transmit signals representative of current flow through and temperature of switch **304**. If included, a voltage sense circuit can likewise transmit a signal representative of the voltage across the switch **304**. The microcontroller or similar processor device can receive process the signals provided by the other components.

[0116] FIG. **3***a*-**7** illustrates an example gate driver **306**, which includes low-voltage, input stage **320** in data communication with high-voltage, output stage **320** via galvanic isolation circuit **324**. Galvanic isolation is used where two or more circuits must communicate, but their grounds are at different potentials. Galvanic isolation circuits may employ a transformer, capacitor, optical coupler, or other device to achieve isolation between circuits. For purposes of explanation only, galvanic isolation circuit **324** employs a transformer device to implement galvanic isolation. The low-voltage, input stage **322** is coupled to receive a first supply voltage VDDI and a first ground GI, and includes a logic circuit **330** that receives the PWM and Reset signals. The high-voltage,

output stage **322** is coupled to receive a second supply voltage VDDO+, a third supply voltage VDDO- and second ground GO, and includes a logic circuit **332** that receives a control signal from logic circuit **330** via galvanic isolation circuit **324**. High-voltage output stage **332** also includes a buffer **340** that is controlled by an output signal from logic circuit **332**. Buffer asserts Vg when the control signal output of isolation circuit **324** is asserted. Other types of gate drivers **306** are contemplated.

[0117] With continuing reference to FIGS. **3***a***-1**, I_sense generates a voltage signal Vi with a magnitude that is proportional to current flow through switch **304**. I_sense may include an inductive current sensor that measures a magnetic field created by the current flow through switch **304** in general and through the die clip in particular. As shown in FIG. **3***a***-3**, example die clip **316** includes horizontal and vertical portions. The I_sense circuit can measure current flow through a narrowed portion (not shown) of the horizontal portion. I_sense conditions the signal output of the inductive current sensor for subsequent use by a microcontroller. The inductive sensor is galvanically isolated from transistor T.

[0118] T_sense may include a thermistor that can generate a voltage signal Vt with a magnitude that is proportional to the temperature near switch **304**. A thermistor is a type of resistor whose resistance is dependent on temperature; the relationship between resistance and temperature is linear. T_sense conditions the signal output of thermistor for use by a microcontroller. The thermistor is galvanically isolated from transistor T.

[0119] Analog signals Vi and Vt from the I_sense and T_sense circuits, respectively, can be transmitted to a microcontroller for subsequent conversion into digital equivalents. Conductors such as traces in a flexible flat cabling (e.g., flex PCB, not shown) can be used to transmit signals, including Vi, Vt and Fault, between respective signal lead terminals of switch module 300 and the microcontroller via traces of a PCB (not shown). Other type of conductors can used to transmit signals to the microcontroller. Unless otherwise noted, this disclosure presumes use of a flexible flat cable such as a flex PCB. The flexible flat cabling can also be used to transmit other signals (e.g., PWM and Reset) and voltages (e.g., VDDI, VDDO+, GL, etc.) to switch module 300. The microcontroller can process the digital equivalents of signals (e.g., Fault, Vi and Vt) it receives in accordance with instructions stored in memory. The microcontroller can adjust the duty cycle and/or period of driver control signals PWM based on the digital equivalents of Vi and Vt. In embodiments of packaged power modules that contain a circuit for monitoring voltage across the switch, an analog signal Vv representing the voltage can be provided by the voltage monitoring circuit to the microcontroller for processing in accordance with instructions stored in memory. [0120] FIGS. **3***c***-1** and **3***c***-2** are schematic diagrams of an alternative packaged switch **203** that show several components thereof. FIGS. **3***c***-1** and **3***c***-2** show relative positions of components of packaged switch **203** when it is seen from the side and back, respectively. Like packaged switch **200**, packaged switch **203** includes a switch **304** that is controlled by switch controller **302**. Switch **304** is connected (e.g., sintered) to and between die substrate **312** and die clip **342**, which includes a die clip terminal **344**. Die clip **342** and die clip terminal **344** are shown symbolically. Both die substrate 312 and die clip 342 are represented by thick lines to indicate they are configured to transmit substantial current and heat. The shape and form of die clip **342** and its terminal **344** is substantially different from die clip 316 and its terminal 232. Die substrate 312 and die clip 342 can be substantially identical, with substantially identical die substrate and die clip terminals **230** and **344**, respectively.

[0121] FIGS. **3***c***-1** and **3***c***-2** illustrate relative positioning of components with respect to each other. Die substrate **312**, switch **304**, and die clip **342** are vertically stacked between the top T and bottom B of packaged switch **203**. Switch controller **302** is positioned near the front F of packaged switch **203**, while switch **304** is positioned near the back Bk. Die substrate terminal **230** is positioned in the figures to indicate that it is flush with the top surface of packaged switch **205**, and die clip terminal **344** is likewise positioned to indicate that it is flush with the bottom surface.

show several components thereof. FIGS. 3*d*-1 and 3*d*-2 show relative positions of components of packaged switch **205** when it is seen from the side and back, respectively. Like packaged switch **200**, packaged switch **205** includes a switch **304** that is controlled by switch controller **302**. Switch **304** is connected (e.g., sintered) to and between die substrate **312** and die clip **346**, which includes a die clip terminal **232**. Die clip **346** is similar to die clip **316** of packaged switch **200**, but with die clip terminal **232** flush with the back surface. Die clip **346** is shown symbolically. Die clip **346** is represented by a thin line to indicate that it is primarily configured to transmit current and not heat. Die clips **316** and **346** are substantially different in shape and form, but have similar terminals **232**. [0123] FIGS. **3***d***-1** and **3***d***-2** illustrate relative positioning of components with respect to each other. Die substrate **312**, switch **304**, and die clip **346** are vertically stacked between the top T and bottom B of packaged switch **205**. Switch controller **302** is positioned near the front F of packaged switch **205**, while switch **304** is positioned near the back Bk. Die substrate terminal **230** is positioned in the figures to indicate that it is flush with the top surface of packaged switch 203, and die clip terminal **324** is positioned in FIG. **3***d***-1** to indicate that it is flush with the back surface. [0124] FIGS. **3***e***-1** and **3***e***-2** are schematic diagrams of an alternative packaged switch **207** that show several components thereof. FIGS. 3e-1 and 3e-2 show relative positions of components of packaged switch **205** when it is seen from the side and back, respectively. Like packaged switch **200**, packaged switch **207** includes a switch **304** that is controlled by switch controller **302**. Switch 304 is connected (e.g., sintered) between die substrate 312 and die clip 345, which includes a pair of die clip terminals **232** and **344**. Die clip **345** and its terminals **232** and **344** are shown symbolically. Die clip 345 includes first and second portions 348 and 350, and a third portion 354 that extends perpendicularly from the first and second portions as shown. The third portion **354** is drawn thinner to indicate it is configured primarily to transmit current, while first and second portions **348** and **350** are drawn thicker line to indicate they are also configured to transmit heat. However, second portion **350** will conduct only heat if it is connected to an electrically isolated device like an electrically isolated heat sink. FIG. 3e-2 shows a current sensor circuit I_sense for sensing current transmitted through third portion **354**. [0125] FIGS. **3***e***-1** and **3***e***-2** illustrate relative positioning of components with respect to each other. Die substrate **312**, switch **304**, and die clip **345** are vertically stacked between the top T and bottom B of packaged switch **207**. Switch controller **302** is positioned near the front F of packaged switch **207**. Switch **304** is positioned near the back Bk. Die substrate terminal **230** is positioned in the figures to indicate that it is flush with the top surface of packaged switch **207**, die clip terminal **232** is positioned in FIG. 3*e*-2 to indicate that it is flush with the left side surface, and die clip terminal

[0122] FIGS. **3***d***-1** and **3***d***-2** are schematic diagrams of an alternative packaged switch **205** that

344 is positioned in the figures to indicate that it is flush with the bottom surface. [0126] FIGS. **3***f***-1** and **3***f***-2** are schematic diagrams of an alternative packaged switch **209** that show several components thereof. FIGS. **3***f***-1** and **3***f***-2** show relative positions of components of packaged switch **209** when it is seen from the side and back, respectively. Packaged switches **207** and **209** are substantially identical to each other. However, die clip terminal **232** in packaged switch **207** is positioned to indicate it is flush with the left side surface, while die clip terminal **232** in packaged switch **209** is positioned to indicate that it is flush with the right side surface as shown in FIG. **3***f***-2**.

Example Packaged Half Bridges

[0127] Packaged half bridges may include a pair of switch modules. With continuing reference to FIGS. **2***b***-1**, **2***b***-2**, FIGS. **3***g***-1** and **3***g***-2** are schematic diagrams of example packaged half bridge **250** that show several components thereof. FIGS. **3***g***-1** and **3***g***-2** show relative positions of certain components of packaged half bridge **250** when seen from the side and back, respectively. Packaged half bridge **250** contains a pair of switch modules **300** like that shown in FIG. **3***a***-1**. More particularly packaged half bridge **250** includes high-side switch module **300**H and low-side switch module **300**L. The switch modules are facing each other inside packaged half bridge **250**; high-side

switch module **300**H is flipped, and positioned below low-side switch module **300**L. For ease of illustration, most signal leads shown in FIG. **3***a***-1** are omitted from FIGS. **3***g***-1** and **3***g***-2**. [0128] FIGS. **3***g***-1** and **3***g***-2** illustrate relative positioning of certain components of half bridge **250** with respect to each other. Die substrates **312**, switches **304**, and die clips **316** are stacked between the top T and bottom B. Switch controllers **302** are likewise stacked between the top T and bottom B. Switch controllers **302** are positioned near the front F of packaged half bridge **250**, while switches **304** are positioned near the back Bk. Die substrate terminals **230**L and **230**H are accessible through the plastic case on the top T and bottom B, respectively, of packaged half bridge **250**, and die clip terminals **232**L and **232**H are accessible through the plastic case on right and left side surfaces, respectively, of packaged half bridge **250**. Die substrate terminals **230**L and **230**H are positioned in the figures to indicate they are flush with the top T and bottom B surfaces, respectively, and die clip terminals **232**L and **232**H are positioned in the FIG. **3***g*-**2** to indicate they are flush with the right and left side surfaces, respectively.

[0129] High-side switch 304H is connected to high-side die substrate 312H, which has terminal 230H for making a connection to a device external to packaged half bridge 250. For example, terminal 230H can be connected to a V+ bus bar, or terminal 230H may be connected to a phase bar or a component (e.g., clamp) thereof. High-side switch 304H is also connected to high-side die clip 316H, which has terminal 232H for making a connection to a device external to packaged half bridge 250. For example terminal 232H can be connected to the phase bar, or a V-bus bar. Low-side switch 304L is connected to low-side die substrate 312L, which has terminal 230L for making a connection to a device external to packaged half bridge 250. For example, the low-side die substrate terminal 232H is connected, or low-side die substrate terminal 230L can be connected to a heat sink. Low-side switch 304L is connected to die clip 316L, which has terminal 232L for making a connection to a device external to the packaged half bridge 250. For example terminal 232L can be connected to a V-bus bar or to a phase bus bar.

[0130] FIGS. **3***h***-1** and **3***h***-2** are schematic diagrams of an alternative packaged half bridge **251** that show several components thereof. Half bridge **251** is similar to packaged half bridge **250**, but with die clip **316**L rotated 180 degrees as shown. FIGS. **3***h***-1** and **3***h***-2** show relative positions of certain components of packaged half bridge **251** when seen from the side and back, respectively. Die clip **316** may be slightly modified to accommodate the 180 degree rotation. FIG. **3***h***-2** shows low-side die clip terminal **232**L and high side die clip terminal **232**H positioned to indicate they are flush with the left side surface.

[0131] FIGS. 3*l*-1 and 3*i*-2 are schematic diagrams of yet alternative packaged half bridge 253 that show several components thereof. FIGS. 3*l*-1 and 3*l*-2 show relative positions of components of packaged half bridge 253 when seen from the side and back, respectively. Packaged half bridge 253 is similar to packaged half bridge 250, but with both die clip terminals 316 rotated 180 degrees as shown. FIG. 3*l*-2 shows low-side die clip terminal 232L positioned to indicate that it is flush with the right side surface, and high-side die clip terminal 232H positioned to indicate that it is flush with the left side surface.

[0132] FIGS. **3***k***-1** and **3***k***-2** are schematic diagrams that show side and back views of still another packaged half bridge **255**, which is similar to packaged half bridge **250**, but with die clips **316**H and **316**L replaced by a unified die clip **315**, which is attached (e.g., sintered) to switches **304**H and **304**L. Die clip **315** has a terminal **232** that is identical to the die clip terminal **232** of die clip **316**. The die clip terminal **232** is positioned in FIG. **3***k***-2** to indicate that it is flush with the right side surface.

[0133] FIGS. 3*l*-1 and 3*l*-2 are schematic diagrams of another packaged half bridge **259** that show several components thereof. Half bridge **259** is similar to packaged half bridge **250**, but with die clips **316**L and **316**H replaced by die clips **317**L and **317**H, respectively. FIGS. 3*l*-1 and 3*l*-2 show relative positions of certain components of packaged half bridge **259** when seen from the side and

232H positioned to indicate they are flush with the right side surface. Die clips **317** and **316** are similar in many features. For example, like die clip **316**, die clip **317** includes horizontal and vertical portions. FIG. **3***l*-**1** shows only the vertical portions of die clips **317**. At least one substantial difference exists between die clips **316** and **317**; the horizontal portion of die clip **317** is extended and positioned between oppositely facing die clip terminals **232** and **233**. Both die clip terminals **232** and **233** are accessible through the plastic case of half bridge package **259**. Die clip terminals **232** and **233** are flush with opposite side surfaces of packaged half bridge **259** as shown. Die clip terminals **232** and **233** may be similar in shape and size and configured to transmit high current into or out of packaged half bridge **259**. width

[0134] FIG. **3***j* is a schematic diagram of still another packaged half bridge **261** that shows several components thereof. Half bridge **261** is similar to packaged half bridge **250**, but with die clips **316**L and **316**H replaced by die clips **319**L and **319**H, respectively. FIG. **3***j* shows relative positions of certain components of packaged half bridge **261** when seen from the side. FIG. **3***j* shows low-side die clip terminal **232**L and high side die clip terminal **232**H positioned to indicate they are flush with the back surface.

Example Compact Inverter Systems

[0135] Compact inverter systems have high power densities compared to prior inverter systems. For example, compact inverter systems can deliver 400 kW or more of peak power to an electric motor or other device while occupying a volume of 0.25 liters or less. Space is conserved in part by arranging packaged switches, packaged half bridges, heat sinks, bus bars, etc., one on top of another.

[0136] FIG. **4***a***-1** is schematic diagram showing a side view of an example compact inverter system **400**. Inverter system **400** includes packaged half bridges **250** like that shown in FIG. **3***g***-1**. For ease of illustration, switch controllers, T_Sense circuits, I_sense circuits, and signal leads are not shown. [0137] Compact inverter system **400** includes three phases designated a-c. Phases a-c include packaged half bridges **250***a***-250***c*, respectively, that are connected to phase bars PBa-PBc, respectively, which in turn are connected to windings Wa-Wc, respectively. The phase bars PB in compact inverter system **400** and the phase bars PB in the other compact inverter systems described below, could have different configurations. However, for ease of explanation the differences in the phase bars of the various compact inverter system embodiments are not discussed unless otherwise noted.

[0138] Die substrate terminals **230**La-**230**Lc are connected to heat sinks **402***a*-**402***c*, respectively. Heat sinks **402***a*-**402***c* are electrically isolated from each other. Each heat sink **402** has one or more channels (not shown in FIG. **4***a*-**1**) through which an electrically isolated cooling fluid can flow. Die substrate terminals **230**H are connected to V+ bus bar **404**, which also acts as a heat sink with one or more channels (not shown in FIG. **4***a*-**1**) through which an electrically isolated cooling fluid can flow. FIG. **4***a*-**2** is a view of phase-a from the back. This view shows example channels of heat sink **402***a* and V+ bus bar **404**. To enhance heat transfer, the channels in each can be positioned closer to the surface that contacts the die substrate terminals **230** as shown.

[0139] In general heat sinks and/or V+ bus bars employed in disclosed compact inverter systems, like those shown in FIGS. **4***a***-1** and **4***a***-2**, contain channels. Some V-bus bars may also contain channels. The channels are configured to hold conduits (e.g., pipes), which in turn have their own channels through which a cooling fluid may flow. For the purposes of explanation, all heat sinks and V+ bus bars are presumed to have channels that contain conduits. And all V-bus bars that also act as heat sinks are also presumed have channels that contain conduits. Further, it is presumed that channels are cylindrical in cross section, and that the conduits are pipes, it being understood the present disclosure should not be limited thereto.

[0140] FIGS. **4***a***-3**-**4***a*-**6** are cross sectional views of example cylindrical pipes **420***a*-**420***d*, respectively. Outer surfaces of pipes **420***a*-**420***d* contact surfaces of the cylindrical channels of any

one or more of the heat sinks, V+ bus bars, or certain V-bus bars disclosed herein. Each of the illustrated example pipes **420***a-c* includes a thin layer (e.g., 0.1-1.0 mm) **422** of dielectric material (e.g., aluminum oxide, aluminum nitride, silicon nitride, chemical vapor deposited diamond coating, etc.) that coats the pipe's outer surface. In an alternative embodiment, the line layer of dielectric coats the pipe's inner surface. For purposes of explanation, this disclosure presumes that all thin layers thin layers **422** are applied to and coat the pipe's outer surface.

[0141] The dielectric material in layer **422** should have a strength of 0-10 k V. Dielectric layer **422** is presumed to be 0.2 mm in FIGS. **4***a*-**3**-**4***a*-**6**. The thickness and material of dielectric layer **422** affects the heat transfer of the pipe.

[0142] The table below includes calculated heat transfer W for dielectric layer **422** formed from different materials and thicknesses. W is proportional to k.Math.A.Math.(T1-T2)/d, where k is the thermal conductivity, A is area, T1-T2=70 is the temperature difference across the dielectric layer, and d is the thickness in micrometers.

TABLE-US-00001 Thickness Thermal Dielectric Requirement Heat Transfer (W) Conductivity Strength (@4000 V) (@ Δ T-° C., area-cm.sup.2) (W/mK) (kV/mm) (µm) (mils) (W) Δ T = 70 A = 1 Al.sub.2O.sub.3 24.0 16.9 236.7 9.3 710 Si.sub.3N.sub.4 90.0 12.0 333.3 13.1 1,890 AlN 170.0 16.7 239.5 9.4 4,968 BN-Hex 30.0 40.0 100.0 3.9 2,100 AlN + AO (50/50) 92.0 26.6 150.5 5.9 4,279 AlN + AO (75/25) 126.0 21.7 184.7 7.3 4,775 HBN + AO (50/50) 27.5 35.7 112.0 4.4 1,718 Diamond 1500.0 1000.0 4.0 0.2 2,625,000 Epoxy 4.0 19.7 203.0 8.0 138 Teflon 0.3 60.0 66.7 2.6 34 HDPE 0.2 20.0 200.0 7.9 7 Nylon 0.3 14.0 285.7 11.2 6 Rubber 0.1 12.0 333.3 13.1 3 Phenolic 0.2 6.9 579.7 22.8 2 Polyamide 0.3 55.0 72.7 2.9 29 Polycarbonate 0.2 38.0 105.3 4.1 15 Liquid Crystal 1.6 25.6 156.3 6.2 72 Polymer

[0143] Dielectric **422** directly engages the channel surface of the bus bar or heat sink in which the pipe is contained. Each pipe includes one or more channels through which a cooling fluid can flow. The pipe channels have different cross sectional shapes as shown. Pipes **420***a* and **420***b* include a single channel, while pipes **420***c* and **420***d* include multiple channels. Dielectric layer **422** electrically isolates the pipe and thus the fluid in the pipe's channels. Dielectric layer **422**, however, transfers heat to the cooling fluid flowing through the pipe channel. In an alternative embodiment, no dielectric (e.g., layer **422**) exists between the cooling fluid and switch **304**s. However, in this alternative embodiment, the cooling fluid should be a dielectric.

[0144] Although not shown in the schematic figures of compact inverter systems, all die substrate terminals **230** are connected to corresponding pedestals on heat sinks, V+ bus bars, phase bars, or V-bus bars. The pedestals can have substantially flat surfaces. More specifically each pedestal can have a flat surface that is connected to a die substrate terminal. The pedestal surface is substantially similar in size and shape to the die substrate terminal to which it is connected. Heat and/or current is transferred between a die substrate terminal and its connected pedestal. Although not required, a thin layer of thermally and/or electrically conductive grease can connect a die substrate terminal to a pedestal surface to enhance thermal and/or electrical conductivity therebetween. The pedestals can be configured to create an air gap between signal leads of packaged switches or packaged half bridges, and, V-bus bars, heat sinks, phase bars, or V+ bus bars. The air gaps electrically isolate signal leads from the heat sinks, V-bus bars, phase bars, or V+ bus bars. In an alternative embodiment, a layer of dielectric material can be placed in the air gaps to further ensure electrical isolation of signal leads from heat sinks, V-bus bars, phase bars, or V+ bus bars. Clamps, bolts, and other such fasteners may be used to releasably connect packaged switches or packaged half bridges to pedestals so that malfunctioning packaged switches or packaged half bridges of a compact invertor system can be more easily replaced.

[0145] Returning to FIG. **4***a***-1**, phase bars PBa-PBc are symbolically shown. Phase bars PBa-PBc conduct current between windings Wa-Wc, respectively, and packaged half bridges **250***a***-250***c*, respectively. Phase bars PBa-PBc have terminals that are connected to high-side die clip terminals **232**Ha-**232**Hc, respectively, and phase bars PBa-PBc have separate terminals that are connected to

heat sinks **402***a***-402***c*, respectively. The low-side die clip terminals **232**La**-232***c* are connected to a V-bus bar **401**, which in turn is coupled to a V-battery terminal. Although compact inverter system **400** is shown schematically, half bridge **250**, heat sink **402**, and V+ bus bar **404** of each phase are shown in side view to illustrate the vertical positioning of these components with respect to each other. The V-bus bar **401** is symbolically shown and positioned behind packaged half bridges **250** in the figure.

[0146] FIG. **4***a***-1** includes current symbols that represent current flow through inverter system **400** at an instant in time. More particularly, FIG. **4***a***-1** shows current flow through activated high-side switch **304**H of phase-a, while low-side switches **304**L of phases b and c are activated and conducting current to V-via the V-bus bar **401**. All other switches are deactivated in the figure. Importantly, all die substrate terminals **230** are thermally and electrically connected to V+ bus bar heat sink, heat sink **402***a*, heat sink **402***b*, or heat sink **402***c*.

[0147] FIG. **4***b***-1** is a schematic diagram showing a side view of another compact inverter system **406**. Each of the phases a-c in this system includes a packaged half bridge **250** like that shown in FIG. **3***g***-1**, and a packaged half bridge **253** like that shown in FIG. **3***l***-1**. For ease of illustration, switch controllers, T_Sense circuits, I_sense circuits, and signal leads are not shown. [0148] Packaged half bridges **250** and **253** in each phase are connected to a respective phase bar PB. Phase bars PBa-PBc conduct current between windings Wa-Wc, respectively, and the packaged half bridges in phases a-c, respectively. Each phase bar PB includes metal extensions **409-1** and **409-2**. Die substrate terminals **230**L**1** and **230**H**2** are connected to extensions **409-1** and **409-2**, respectively, in each phase. And metal heat sinks **402-1** and **402-2** are connected to extensions **409**-**1** and **409-2**, respectively, in each phase. The phase bar extensions **409** are formed of thermally and electrically conductive metal. Phase bar extensions 409-1 and 409-2 in each phase conduct heat from die substrate terminals **230**L**1** and **230**H**2**, respectively, to heat sinks **402-1** and **402-2**, respectively. The phase bar PB also has extensions or terminals that are connected to the die clip terminals **232**H**1** and **232**L**2** in each phase. Die substrate terminals **230**H**1** and **230**L**2** in each phase are connected to V+ bus bar **415**. Die clip terminals **232**L**1** and **232**H**2** in each phase are connected to a V-bus bar.

[0149] FIG. **4***b***-2** is a view of phase-a from the back. This view shows example channels within heat sink 402-1a, 402-2a and V+ bus bar 415 through which cooling fluid can flow. To enhance heat dissipation, the channels in the heat sinks are positioned closer to the surface that contacts extensions **409** in the embodiment shown. In alternative embodiments, the channels can be positioned elsewhere. V+ bus bar **415** in FIG. **4***b***-2** has more channels than V+ bus bar heat sink shown in FIG. 4*a*-2. Although compact inverter system 406 is shown schematically, packaged half bridges **250** and **253**, heat sinks **402**, and V+ bus bar **415** of each phase are shown in FIGS. **4***b***-1** and **4***b***-2** to illustrate the vertical positioning of these components with respect to each other. [0150] FIG. **4***c***-1** is a schematic diagram showing a side view of another compact inverter system **411**. Compact inverter systems **406** and **411** are similar. However, one substantial difference exists; the phase bar PB in each phase of FIG. **4***c***-1** lacks extensions **409-1** and **409-2** that are positioned between half bridge packages and heat sinks **40**. In this embodiment, each phase bar PB is connected die substrates 230L1 and 230H1 via heat sinks 402-1 and 402-2, respectively. [0151] FIGS. **4***b***-1** and **4***c***-1** include current symbols that represent current flow through inverter system **406** and **411** at an instant in time. More particularly, each figure shows current flow when switches **304**H**1** and **304**L**2** of phase-a are activated and conducting current from V+ bus bar **415**, and when all switches **304**L**1** and **304**H**2** in phases b and c are activated and conducting current to V-via the V-bus bar. All other switches are deactivated in these figures. [0152] FIG. **4**b-**3** shows PWM and Reset signals received by phase-a of FIG. **4**b-**1**. FIG. **4**b-**3** also

shows Fault, Vi, and Vt outputs from phase-a. Each packaged half bridge **250** or **253** in a phase is controlled by separate sets of PWM and Reset signals. In an alternative embodiment, the high-side gate driver and low-side gate driver of packaged half bridges **250** and **253**, respectively, may be

controlled by a first PWM signal from the microcontroller, and the low-side gate driver and high-side gate driver of packaged half bridges **250** and **253**, respectively, may controlled by a second PWM signal from the microcontroller.

[0153] Each phase of example compact inverter systems in FIGS. 4*a*-1, 4*b*-1, and 4*c*-1 has one or two packaged half bridges. Compact inverter systems should not be limited thereto. Compact inverter systems can have phases with three, four or more packaged switches or packaged half bridges. Further compact inverter systems can be stacked and connected in parallel. FIG. **4***d***-1** is schematic diagram that shows a side view of yet another compact inverter system **408**. In this embodiment, each of the phases a-c includes four packaged half bridges: two packaged half bridges **250-1** and **250-2**, and two packaged half bridges **253-1** and **253-2**. For ease of illustration, switch controllers, T Sense circuits, I sense circuits, and signal leads are not shown in FIG. 4*d*-1. [0154] Phase bars PBa-PBc are symbolically shown. Phase bars PBa-PBc conduct current between windings Wa-Wc, respectively, and packaged half bridges in phases a-c, respectively. Each phase bar includes metal extensions **411-1** and **411-2**. Die substrate terminals **230**L of packaged half bridges **250** in each phase are connected to extension **411-1**, which in turn is connected to metal heat sink **419-1**. And die substrate terminals **230**H of packaged half bridges **253** are connected to extension **411-2**, which in turn is connected to metal heat sink **419-2**. The phase bar extensions **411** are formed of thermally and electrically conductive metal. Phase bar extension **411-1** in each phase conducts heat from die substrate terminals **230**L of packaged half bridges **250** to heat sinks **419-1**, and phase bar extension **411-2** in each phase conducts heat from die substrate terminals **230**H of packaged half bridges **253** to heat sinks **419-2**. The phase bar in each phase also includes terminals that are connected to die clip terminals **232**H in packaged half bridges **250**, and die clip terminals **232**L in packaged half bridges **253**. The die substrate terminals **230**H of packaged half bridges **250**, and the die substrate terminals 230L of packaged half bridges 253 in each phase are connected to V+ bus bar **417**, which is an elongated version of the V+ bus bar shown in FIG. **4***b***-1**. [0155] Threaded bolts or other such fasteners can be used to releasably connect packaged half bridges **250**, **253**, V+ bus bar **417**, extensions **411** and heat sinks **419** together as shown. Sintering can also be used to fixedly connect connect packaged half bridges **250**, **253**, V+ bus bar **417**, extensions 411 and heat sinks 419 together in an alternative embodiment. However, it will be presumed that the components are releasably connected, and as a result malfunctioning packaged half bridges can be more easily replaced. In one embodiment, each phase bar PB may include a Cshaped clamp, which include extensions **411-1** and **411-2**. Half bridges **250**, **253**, and V+ bus bar **417** in each phase are releasably connected together by the C-shaped clamp and fasteners. In this embodiment, die substrates **230** directly contact surfaces of extensions **411** or surfaces of V+ bus bar **417**. Heat sinks **419** in FIG. **4***d***-2** are elongated versions of the heat sinks **402** in FIG. **4***a***-1**. Threaded bolts or other such fasteners can be used to connect heat sinks **419** to extensions **411**. In this embodiment, surfaces of metal heat sinks **409** directly contact surfaces of extensions **411**. In another embodiment, packaged half bridges **250**, **253**, V+ bus bar **417**, extensions **411** and heat sinks **419** can be soldered or sintered together.

[0156] Although compact inverter system **408** is shown schematically, packaged half bridges **250** and **253**, heat sinks **419**, PB extensions **411**, and V+ bus bar **417** of each phase are shown in side view to illustrate the vertical and horizontal positioning of these components with respect to each other.

[0157] FIG. **4***d***-2** shows PWM and Reset signals received by phase-a of FIG. **4***d***-1**. FIG. **4***d***-2** also shows Fault, Vi, and Vt outputs from phase-a. Each packaged half bridge **250** or **253** in a phase is controlled by respective and distinct sets of PWM and Reset signals. In an alternative embodiment, the high-side gate drivers of packaged half bridges **250-1** and **250-2**, and the low-side gate drivers of packaged half bridges **253-1** and **253-2** may be controlled by a single high-side PWM-H signal from a microcontroller, while the low-side gate drivers of packaged half bridges **250-1** and **250-2**, and the high-side gate drivers of packaged half bridges **253** may controlled by a single low-side

PWM-L signal from the microcontroller. In still another embodiment, the high-side gate drivers of packaged half bridges **250-1** and **250-2** may be controlled by a first high-side PWM-H signal, while low-side gate drivers of packaged half bridges **253-1** and **253-2** are controlled by a second high-side PWM-H; and the low-side gate drivers of packaged half bridges **250-1** and **250-2** may be controlled by a first low-side PWM-L signal, while the high-side gate drivers of packaged half bridges **253-1** and **253-2** are controlled by a second low-side PWM-L signal.

[0158] FIG. 4*e* is schematic diagram showing a top view of still another compact inverter system 430 that includes packaged half bridges 250 and 253. Compact inverter system 430 includes three phases a-c connected to phase bars PBa-PBc, respectively. Each phase includes a packaged half bridge 250 and a packaged half bridge 253 that are connected between metal heat sink 403 (shown in transparency) and V+ bus bar 405. More specifically die substrate terminals 230H (not show) and 230L in each phase are connected to V+ bus bar 405 and a corresponding heat sink 403, respectively. Phase bar PB in each phase is connected to a heat sink 403 and high-side die clip terminals 232H. The low side-die clip terminals 232L are connected to V-bus bar 413. Heat sinks 403*a*-403*c* are electrically isolated from each other, each having one or more channels (not shown) through which an electrically isolated cooling fluid can flow. V+ bus bar 405 acts as a heat sink with one or more channels (not shown) through which an electrically isolated cooling fluid can flow.

[0159] FIG. 4*f* is schematic diagram showing a side view of yet another compact inverter system **410** that uses packaged half bridges **251** shown in FIG. 3*h*-1. There are many similarities between inverter systems **400** and **410**. However, several differences exist. Phases a-c include three packaged half bridges **251***a*-**251***c*, respectively. Low-side die substrate terminals **230**L and high-side die substrate terminals **230**H are connected to V-bus bar **412** and V+ bus bar **404**, respectively. V-bus bar **412** also acts as a heat sink with one or more channels (not shown in FIG. 4*f*) through which a cooling fluid can flow. The phase bars PBa-PBc are connected to die clip terminals **232** in phases a-c, respectively, as shown. Although inverter system **410** is shown schematically, half bridge **251**, V+ bus bar **404**, and V-bus bar **412** of each phase are shown in side view to illustrate the vertical positioning of these components with respect to each other.

[0160] FIG. **4***f* includes current symbols that represent current flow through inverter system **410** at an instant in time. More particularly, FIG. **4***f* shows current flow through inverter system **410** when the high-side switch **304**H of phase-a is activated and conducting current, while low-side switches **304**L of phases b and c are activated and conducting current. All other switches are deactivated in the figure. Importantly, the activated switches are thermally connected to V+ bus bar **404** or V-bus bar **412**.

[0161] FIG. 4*g* is a schematic diagram showing a side view of still another compact inverter system 412 that uses packaged half bridges 251 like that shown in FIG. 3*h*-1. Each of the phases a-c includes a corresponding phase bar PB that is connected to the die clip terminals 232. Die substrate terminals 230L1 and 230H2 in each phase are connected to metal V-bus bars 412-1 and 412-2, respectively. V-bus bars 412-1 and 412-2 may include channels through which a cooling fluid can flow. Die substrate terminals 230H1 and 230L2 in each phase is connected to V+ bus bar 415. Although compact inverter system 412 is a schematic diagram, the half bridges 251, heat sink/bus bars 412, and heat sink/bus bar 415 of each phase are shown in side view to illustrate the vertical positioning of these components with respect to each other.

[0162] FIG. **4***g* includes current symbols that represent current flow through inverter system **412** at an instant in time. More particularly, FIG. **4***g* shows current flow through inverter system **412** when switches **304**H**1** and **304**L**2** of phase-a are activated and conducting current, while switches **304**L**1** and **304**H**2** of phases b and c are activated and conducting current to V–. All other switches are deactivated in the figure. Importantly, the activated switches are thermally and electrically connected to V+ bus bar **415**, V-bus bar **412-1**, or V-bus bar **412-2**.

[0163] FIG. **4***h* is a schematic diagram that shows a side view of yet another compact inverter

system **414**. Each of the phases a-c includes four packaged switches **203** like that shown in FIG. *3c-1*. Heat sinks **418**-*a-***418**-*c* are connected to phase bars PBa-PBc, respectively, which in turn are connected to windings Wa-Wc, respectively. Heat sinks **418**-*a*-**418**-*c* are electrically isolated from each other and have one or more channels (not shown) through which an electrically isolated cooling fluid can flow. Die substrate terminals **230** of packaged switches **203-1** and **203-2** in each phase are connected to V+ bus bar **404**, and die substrate terminals **230** of packaged switches **203-3** and **203-4** are electrically connected to respective heat sinks **418**-*a*-**418**-*c*. Die clip terminals **344** of packaged switches **203-1** in **203-2** in each phase are connected to respective heat sinks **418**-*a*-**418**c, and die clip terminals **344** of packaged switches **203-3** and **203-4** in each phase are connected to V-bus bar **412**. Each of the bus bars **404** and **412** includes one or more channels through which cooling fluid flows. Although compact inverter system **414** is shown schematically, the packaged switches **203**, V+ bus bar **404**, heat sinks **418**, and V-bus bar **412** of each phase are shown in side view to illustrate the vertical positioning of these components with respect to each other. [0164] FIG. 4h includes current symbols that represent current flow through inverter system 414 at an instant in time. More particularly, FIG. **4***h* shows current flow through inverter system **414** when switches **203-1** and **203-2** of phase-a are activated and conducting current from V+ bus bar **404**, while switches 203-3 and 203-4 of phases b and c are activated and conducting current to V-via Vbus bar **412**.

[0165] FIG. 4*i* is a schematic diagram that shows a side view of still another compact inverter system 416 that uses packaged switches 207 shown in FIG. 3*e*-1, and packaged switches 209 shown in FIG. 3*f*-1. Each of the phases a-c includes a pair of packaged switches 209 and a pair of packaged switches 207. The die clip terminals 344 in each phase are connected to a corresponding heat sink 418. Heat sinks 418-*a*-418-*c* are electrically isolated from each other and have one or more channels (not shown) through which an electrically isolated cooling fluid can flow. Current does not flow through heat sinks 418 since they are electrically isolated. In each phase terminals 230 in packaged switches 209 are connected to V+ bus bar 404, and terminals 230 in packaged switches 207 are connected to V-bus bar 412. Phase bars PBa-PBc are connected to die clip terminals 232 in phases a-c, respectively. Although compact inverter system 416 is shown schematically, heat sinks 418, packaged switches 207 and 209, V+ bus bar 404, and V-bus bar 412 are shown in side view to illustrate the vertical and horizontal positioning of these components with respect to each other.

[0166] FIG. 4*i* includes current symbols that represent current flow through inverter system **416** at an instant in time. More particularly, FIG. 4*i* shows current flow through inverter system **416** when switches **304** of packaged switches **209** in phase-b are activated and conducting current, while switches **304** of packaged switches **207** in phases a and c are activated and conducting current to V-via V-bus bar **412**.

[0167] FIG. 4*j* is a schematic diagram that shows a side view of yet another compact inverter system **423**. Similarities exist between compact inverter system **423** and compact inverter system **400** shown in FIG. **4***a***-1**. One substantial difference exists; half bridges **250** are rotated 90 degrees so that the backs Bk and fronts F of the half bridges **250** face out from respective sides of inverter system **423**.

[0168] FIG. **4***k* is a schematic diagram that shows a side view of yet another compact inverter system **425**. Similarities exist between compact inverter system **425** and compact inverter system **406** shown in FIG. **4***b***-1**. One substantial difference exists; half bridges **250** and **253** are rotated 90 degrees so that the backs Bk and fronts F of the half bridges **250** and **253** face out from respective sides of inverter system **423**.

Example Packaged Switch 200

Example Signal Frame Substrate

[0169] Packaged switches contain switch modules, which in turn contain components such as switches connected between die clips and die substrates, gate drivers, etc. Example packaged

switch **200** includes switch module **300** shown in FIG. **3***a***-1**.

[0170] During assembly switch module components such as gate drivers are attached (bonded, soldered, etc.) to a signal frame substrate. FIG. 5 is an isometric view of an embossed sheet 500 of thin (e.g. 0.1 mm-1.0 mm) metal (e.g., copper) from which an example signal frame substrate can be formed. For purposes of explanation only, embossed sheet 500 is formed from a sheet of copper that is 0.25 mm thick. The embossed sheet 500 is created by pressing the flat metal sheet between a female metal die and a counter male metal die. The embossing creates non-isolated signal leads. FIG. 6 is a reverse isometric view of embossed sheet 500 after it is cut. FIG. 6 more clearly shows non-isolated signal leads 204, 206, 604, and 608. Signal leads such as signal leads 204, 206, 604 and 608 in FIG. 6 are non-isolated because they are connected through un-embossed portion 610. The non-isolated signal leads are contained in a plane that is parallel to the plane that contains unembossed portion 610, which is also referred to as the "negative layer." Eventually, the negative layer 610 will be removed by the trimming process mentioned above, which electrically isolates signal leads from each other.

[0171] Several non-isolated signal leads can be bent to create signal frame substrate **700** shown in FIG. **7.** Signal frame substrate **700** includes framing with alignment apertures **701**. The apertures aid in aligning signal frame substrates, die substrates, die clips during construction of switch module **300** shown in FIG. **3***a***-1**.

[0172] With continuing reference to FIGS. **3***a***-1** and **3***a***-4**, FIG. **8** is a top view of signal frame substrate **700** after leads **802** of gate driver circuit **306** are connected (e.g., solder bonded) to respective non-isolated signal leads. Signal frame substrate **700** can receive additional components (e.g., resistors R**1** and R**2**, and diodes **308** and **310** of FIG. **3***a***-4**) of switch module **300**. For ease of illustration, the additional components are not shown in FIG. **8**.

Example Die Substrates and Die Clips

[0173] As seen in FIGS. **3***a*-**2** and **3***a*-**3**, switch module **300** contains switch **304**, which is sandwiched between die substrate **312** and die clip **316**. Die substrates and die clips can be formed from separate thin sheets of metal such as copper using a punch press machine or similar tool. FIG. **9***a* is an isometric view of an example die substrate **312** formed from a thin sheet (e.g., 0.1 mm-6.0 mm) of copper. Certain types of switches (MOSFET based switches) heat up faster than other types of switches (e.g., IGBT based switches). The thickness of the die substrate may depend on the type of switch to accommodate the differences in the rates at which they heat up. In one embodiment a 1.6 mm thick die substrate may be used for switches that employ SiC MOSFETs, while a 4.0 mm thick die substrate may be used for switches that employ IGBTs. Die substrate **312** is connected between frames that include apertures **901**, which are configured for alignment with respective signal frame substrate apertures **701** as will be more fully described below. Die substrate **312** has oppositely facing flat surfaces. A switch can be mounted on one surface, while the oppositely facing surface forms die substrate terminal **230**.

[0174] FIG. **9***b* shows die substrate **312** with switch **304** (i.e., IGBT and diode D of FIG. **3***a***-5**) sintered to surface **902**. For purposes of explanation only, it will be presumed that all switches are sintered to die substrates and die clips. A switch can be sintered to a die clip before or after the switch is sintered to a die substrate, or vice versa. For purposes of explanation, die clips and switches are sintered together after the switches are sintered to die substrates.

[0175] Sintering is a process of forming a solid mass by the application of heat and/or pressure without melting a sintering material to the point of liquefaction. Before a switch is sintered to a die substrate or die clip, a thin layer of sintering material (e.g., silver) is applied to the surface of the die substrate or die clip. During the sintering process the atoms in the sintering material diffuse across boundaries of the items to be sintered, fusing them together and creating one solid piece. The sintering temperature does not have to reach the melting point of the sintering material, nor does the sintering reach the melting point of the items (e.g., a die substrate and the collector of an IGBT) to be sintered together. And as a result sintering, unlike soldering, does not create bubbles or

other voids that can adversely affect thermal and electrical conductivity between the items (e.g., switch and die substrate). In other words, sintering can provide a better thermal and electrical connection between a switch and its die substrate and/or die clip. While other methods of attaching switches to die substrates or die substrates can be employed, sintering is preferred since it creates a mechanically stronger bond, especially when compared to solder bonding. A strong bond is particularly important when it is subjected to stress (e.g., thermal and mechanical stress) of an extreme environments. For example, the bond can be subjected to severe mechanical stress caused by road vibrations of moving electric vehicles. Moreover, since the melting point of the sintering material is higher than the temperature used in soldering, brazing, epoxy bonding, sintering, or other processes used in the construction of a packaged switch or packaged half bridge, those processes will not disturb the sintered connection between a switch and a die substrate, or between a switch and a die clip.

[0176] Returning to FIG. **9**b, diode D includes anode terminal **904**. An oppositely facing cathode terminal (not shown) is sintered to die substrate surface **902** via a thin layer of sintering material. IGBT **905** has one emitter, but several emitter terminals **906** in the embodiment shown. IGBT also includes gate terminal **912**. An oppositely facing collector terminal(s) (not shown) is sintered to die substrate surface **902** via a thin layer of sintering material. FIG. **9**c shows an expanded cross sectional view of die substrate surface **902** and IGBT **905** taken along line A-A of FIG. **9***b*. A thin layer of sintering material **920** is positioned between and integrates into a collector terminal of IGBT **905** and die substrate surface **902**. Anode terminal **904** and emitter terminals **906** shown in FIG. **9***b* are configured to be connected (e.g., sintered) to a die clip. Gate **912** is configured for connection to a non-isolated signal-lead of signal frame substrate 700, which in turn is coupled to an output of gate driver **306**. The type of connection may depend on the characteristics of gate **912**. For example, gates formed from aluminum or a composite with base aluminum (e.g., Al/Cu (0.5%)/Si (1%)) may quickly oxidize. The oxidation may preclude use of a solder bond. If gate **912** is formed from aluminum or a composite with base aluminum, the connection may require a wire bond, one end of which is connected to gate 912. A solder bond connection to gate 912 may be used if gate **912** is formed from silver, copper or gold, or a composite with these metals. [0177] The die substrate **312** can be connected to the signal frame substrate **700**. FIG. **10** is top view of die substrate **312** aligned with the signal frame substrate **700** shown in FIG. **8**. With apertures **901** aligned with apertures **701**, die substrate **312** can be connected to signal frame substrate **700**. For example, a side wall of die substrate **312** can be soldered to bent signal lead **604**. This connection creates the electrical path between diode **308** (see, FIG. **3***a***-5**) and collector c of IGBT **905**. Gate **912** can be connected to gate driver **306** via a signal lead. For example, a wire bond and/or other conductor (e.g., a flat flexible cable) can be added to connect gate **912** to a signal lead of signal frame substrate **700**, which in turn is also connected to an output lead of gate driver **306**.

[0178] FIGS. **11***a* and **11***b* are isometric and reverse isometric views of an example die clip **316** formed from a thin (e.g., 0.1 mm-4.0 mm) sheet of copper. Die clip **316** is connected between frames that include alignment apertures **1101**. Die clip **316** includes pedestals **1104** that can be formed using a punch press or similar tool. In one embodiment, the recesses **1102** remaining by the creation of the **1104** pedestals, can be filled with a thermally and electrically conductive material. Die clip **316** includes a surface that forms die clip terminal **232**. Further die clip **316** includes a narrowed portion **1108** positioned between recesses **1102** and terminal **232**. I_Sense circuit can be positioned over narrowed portion **1108** for measuring current flow to or from a switch **304** when it is connected to die clip **316**.

[0179] With continuing reference to FIGS. **10**, **11***a*, and **11***b*, the end surfaces of pedestals **1104** can be sintered to respective emitter terminals **906** and anode terminal **904**. The end surfaces of pedestals **1104** should be flat with a shape and size that is substantially similar to, but slightly smaller than the surfaces of emitter terminals **906**. This ensures the pedestals **1104** do not contact

and possibly damage IGBT **905** outside the areas occupied by emitter terminals **906**. The size and shape of the end surfaces of pedestals **1104** also reduces the chance that unwanted hot spots are created due to concentrated current flow through an a narrowed point connection between pedestal **1104** and emitter terminal **906**. When sintered together the pedestals create an air gap between IGBT **905** and die clip **316**. When alternating current flows through the die clip, it creates an electromagnetic field that may adversely affect operation of IGBT **905**. The air gap reduces adverse electromagnetic effects on the operation of IGBT **905**.

[0180] FIGS. **11***c* and **11***d* show top and bottom views of die clip **316**, die substrate **312** and signal frame substrate **700** in alignment. More particularly, apertures **1101** are aligned with respective die substrate apertures **901** and signal frame substrate apertures **701**. While aligned, the end surfaces of pedestals **1104** of die clip **316** can be sintered to respective terminals of the switch (e.g., emitter terminals **906** of IGBT **905** and anode terminal **904** of diode **904**). FIG. **11***e* is partial isometric view showing anode **904** and emitter terminals **906** sintered to ends of pedestals **1104**. Additionally die clip **316** can be connected to signal frame substrate **700**. For example, a side surface of die clip **312** can be soldered to signal lead **608**.

[0181] The T_Sense circuit and the I_Sense circuit of FIG. **3***a***-1** can be added to the partially constructed switch module **300** shown in FIG. **11***c*. A FFC can be used for connecting the T_Sense and I_Sense circuits to signal leads of the signal frame substrate. The FFC can also be used to connect an output of the gate driver **306** to the gate of the switch via a signal lead. FIG. **11***f* shows partially constructed switch module **300** with packaged I_sense circuit **1112** and packaged T_sense circuit **1114** mounted on FFC **1116**. One portion of FFC **1116** is positioned over gate **912**. I_sense circuit **1112** is positioned on another portion of FFC **1116**, which in turn is positioned over narrowed section **1108** of die clip **312**. FIG. **11***g* is an isometric view of the switch module **300** shown in FIG. **11***f*.

[0182] FFC **1116** includes conductive traces extending between first and second terminals. First trace terminals can be soldered to bent signal leads, respectively, of signal frame substrate **700**. Second trace terminals can be soldered to respective leads of packaged I_Sense circuit **1112** and packaged T_sense circuit **1114**. In addition to transmitting output analog signals Vi and Vt from I_Sense circuit **1112** and T_sense circuit **1114**, respectively, FFC **1116** can provide supply and ground voltages to these components.

[0183] FFC **1116** includes at least one trace, a second terminal of which is soldered to gate **912** of IGBT **905**. This FFC trace can transmit gate control signal Vg between gate driver **306** and gate **912**. The embodiment shown presumes gate **912** is compatible with solder bonding, and as a result gate **912** is soldered to one or more traces of FFC **1116**. In an alternative embodiment, gate **912** is wire bonded to a trace terminal of FFC **1116**, which extends to but does not cover gate **912**. Other methods are contemplated for connecting gate **912** to a signal lead that is also connected to gate driver **306**.

[0184] The switch module **300** shown in FIG. **11** can be placed in a mold. Then liquid plastic (e.g., epoxy resin) poured into the mold. Once hardened, the liquid plastic forms a plastic body. The switch module **300** and hardened plastic body are removed from the mold and trimmed. FIG. **12** *a* is an isometric view of the switch module **300** with molded plastic body **1200** after removal from the mold. In an alternative embodiment, transfer molding could be used to create the plastic body. In either embodiment bent signal leads of signal frame substrate **700**, including signal leads **204** and **206**, are exposed through the front of molded plastic body **1200**. FIG. **12** *a* also shows die clip terminal **232**, which is exposed through the side of molded plastic body **1200**. FIG. **12** *b* is a reverse isometric view, which shows negative layer **610** of signal frame substrate **700**. Negative layer **610** and a portion of molded plastic body **1200** can be trimmed away using any one of many different trimming tools or techniques (e.g., grinding). The die substrate terminal **230** is exposed and signal leads are isolated by the trimming process. FIGS. **2***a***-1** and **2***a***-2** show the packaged switch after the trimming process.

Example Packaged Half Bridge **250**

[0185] Switch modules like that shown in FIG. 11f can be stacked to create example packaged half bridge 250. FIGS. 13a and 13b are side and isometric views of two switch modules 300 shown in FIG. 11f. More particularly FIGS. 13a and 13b show a high-side switch module 300H, and low-side switch module 300L. Switch module 300H is flipped and positioned above switch module 300L inside a mold (not shown). Frames with apertures 701, 901, and 1101 are not shown in FIGS. 13a and 13b for ease of illustration. However, these apertures can be used to align the oppositely facing switch modules 300H and 300L while they are positioned inside the mold. Liquid plastic can be poured into the mold and hardened to form a plastic body. The oppositely faced switch modules 300H and 300L and hardened plastic body are removed from the mold and trimmed. Portions of the plastic body, and negative layers 610L and 610H can be removed using any one of many different trimming tools or techniques. The die substrate terminals 230H and 230L are exposed, and signal leads are isolated by the trimming process. Die substrate terminals 230H and 230L may protrude from the plastic surface of the top and bottom depending on the amount of plastic body that is trimmed away. FIGS. 2b-1 and 2b-2 show the packaged half bridge after the trimming process. Example Compact Inverter System 408

[0186] Compact inverter systems include vertically stacked components. For example, FIG. **4***d***-1** shows compact inverter system **408** that includes packaged half bridges **250** and **253**, heat sinks **419**, phase bar extensions **411**, and V+ bus bar **417**, which are stacked one on top of the other. [0187] FIGS. **14***a* and **14***b* are isometric and end views, respectively, of an example V+ bus bar **417**, which can be formed from a metal such as copper. V+ bus bar **417** conducts current between packaged half bridges and a battery. Although not shown, a metal cable can connect a V+ terminal of the battery to one or more terminal structures of V+ bus bar **417**. The Width W and height H shown in end view **14***b* can vary depending on the embodiment. In the illustrated embodiment H=16 mm, and W=29 mm.

[0188] Pedestals on oppositely facing surfaces of V+ bus bar **417** receive packaged half bridges **250** and **253**. FIGS. **14***a* and **14***b* show example pedestals **1402**, which have substantially flat surfaces **1405** for engaging die substrate terminals **230** of packaged half bridges **250** and **253**. Each pedestal **1402** can be positioned between short, oppositely-facing stop walls **1403** that can engage left and right sides of packaged half bridge 250 or 253. Stop walls 1403 inhibit lateral movement of packaged half bridges **250** or **253** when they are received by the pedestals **1402**. In the illustrated embodiment, pedestal surfaces **1405** extend fully between stop walls **1403**. In an alternative embodiment, the pedestals **1402** may have flat surfaces that are shaped similar to, but smaller than die substrate terminals **230** so that the pedestals can engage die substrate terminals that are flush with or recessed below the plastic case surfaces of packaged half bridges. For purposes of explaining example inverter system 408, packaged half bridges 250 and 253 are presumed to have die substrate terminals 230 that protrude slightly from their plastic case surfaces. Moreover die substrate terminals 230 are presumed to be directly connected to pedestal surfaces 1405, it being understood die substrate terminals **230** can be indirectly connected to pedestal surfaces **1405** via a thermally and electrically conductive material such as solder or grease in other embodiments. Air gaps are created between signal leads (see, e.g., signal leads of FIGS. **2***b***-1**) of the packaged half bridges and V+ bus bar **417** when die substrate terminals **230** are received by surfaces **1405** of pedestals **1402**.

[0189] With reference to FIG. **14***b*, V+ bus bar **417** includes channels that receive pipes **420***a* shown in FIG. **4***a***-3**. Other pipes, including as pipes **420***b***-420***d* shown in FIGS. **4***a***-4-4***a***-6**, respectively, can be used in alternative embodiments. As noted earlier the outer cylindrical surface of each pipe **420***a* is coated with a thin layer **422** of dielectric material such as aluminum oxide. The dielectric layer **422** electrically insulates fluid in pipe **420***a* from V+ bus bar **417**. The dielectric layer **422** conducts substantial heat between the fluid and V+ bus bar **417**. [0190] With continuing reference to FIGS. **4***d***-1** and **14***a*, FIG. **15***a* is an isometric view of V+ bus

bar **417** with packaged half bridges **250** and **253**. Although not shown in this figure, die substrates **230**H and **230**L of packaged half bridges **250** and **253**, respectively, are in direct contact with surfaces **1405** of respective pedestals **1402** on opposite sides of V+ bus bar **417**. FIG. **15***b* is a side view, which reveals small air gaps between V+ bus bar **417** and signal leads (see, e.g., signal leads of FIGS. **2***b***-1**) of packaged half bridges **250** and **253**. The partial air gaps separate V+ bus bar **417** and signal leads on the bottom and top surfaces of packaged half bridges **250** and **253**, respectively. The length L shown in side view of FIG. **15***b* can vary depending on the embodiment. In the illustrated embodiment L=200 mm.

[0191] With continuing reference to FIG. **4***d***-1**, phase bars PBa-PBc of inverter system **408** conduct current between windings Wa-Wc, respectively, and packaged half bridges in phases a-c, respectively. Each phase bar includes metal extensions **411-1** and **411-2** connected between heat sinks **419-1** and **419-2**, respectively, and die substrate terminals **230**L and **230**H, respectively, of packaged half bridges **250** and **253**, respectively. In one embodiment, each phase bar PB may include a C-shaped clamp and a metal cable. The clamp includes metal extensions **411-1** and **411-2** and a terminal structure. One end of the cable is connected to the terminal structure, while the other end of the cable is connected to a wire winding.

[0192] FIGS. **16***a*, **16***b* and **16***c* are isometric and end views of an example C-shaped clamp **1604**. Extensions **411-1** and **411-2** extend from a common base **1602** as shown in FIG. **16***a*. Each extension **411** includes a pair of pedestals **1606** with surfaces **1607** configured to engage corresponding die substrate terminals **230**L and **230**H of packaged half bridges **250** and **253**, respectively. In an alternative embodiment, pedestals **1606** may have flat surfaces **1607** that are shaped similar to, but smaller than die substrate terminals so that the pedestal surfaces can engage die substrate terminals that are flush with or slightly recessed below the plastic surfaces of packaged half bridges. Air gaps are created between clamp **1604** and signal leads (see, e.g., signal leads of FIGS. **2***b***-1**) of packaged half bridges **250** and **253** and when die substrate terminals **230** are received by surfaces **1607** of pedestals **1606**

[0193] With continuing reference to FIG. **16***a*, clamp **1604** also includes a metal terminal structure **1610** that is mechanically connected to base **1602** by fasteners **1611** (e.g. threaded bolts). Fasteners **1611** secure electrical connection between the base **1602** and terminal structure **1610**. Terminal structure **1610** includes a channel **1612**, which is configured to receive one end of the aforementioned metal cable. Fasteners **1614** extend through apertures of terminal structure **1610**, and are configured to press the cable against the wall of channel **1612** in order to secure electrical connection therebetween.

[0194] With reference to FIG. **16***b*, clamp **1604** includes terminals **1615** that are connected to and extend from base **1602**. The terminals have substantially flat end surfaces **1619** that can engage die clip terminals **232**H and **232**L of packaged half bridges **250** and **253**, respectively, and establish electrical connection therebetween. Clamp **1604** conducts substantial current between the cable to which it is attached and packaged half bridges **250** and **253** via terminals **1615**.

[0195] Clamp **1604** includes fasteners (e.g. threaded bolts) **1620** at the lateral ends of extensions **411**. These fasteners extend through apertures of extensions **411** and are configured to secure clamp **1604** to a dielectric block (not shown). With the dielectric block positioned between the ends of extensions **411** and fasteners **1620** tightened, the clamp presses die substrate terminals **230** against pedestal surfaces **1405** and **1607** of V+ bus bar **417** and clamp **1604**, respectively.

[0196] FIG. **17***a* shows packaged half bridge **250-2**, V+ bus bar **417**, and packaged half bridge **253-2** positioned between extensions **411-1** and **411-2** of clamp **1604**. Although not shown in this figure, die substrate terminals **230**L and **230**H of packaged half bridge **250** are releasably connected to respective pedestal surfaces **1607** and **1405** of clamp **1604** and V+ bus bar **417**, respectively, and die substrate terminals **230**L and **230**H of packaged half bridge **253** are releasably connected to respective surfaces of pedestal surfaces **1405** and **1607** of V+ bus bar **417** and clamp **1604**, respectively. With fasteners **1620** engaging the above-mentioned dielectric block (not shown),

clamp **1604** maintains the die substrate terminals and pedestal surfaces in firm contact with each other. FIG. **17***b* is an end view of the assembly shown in FIG. **17***a*. Although not clearly shown in this figure, the end surfaces **1619** of terminals **1615** engage respective die clip terminals **232**H and **232**L of packaged half bridges **250** and **253**.

[0197] FIG. 4*d*-1 shows heat sinks 419-1 and 419-2 connected to extensions 411-1 and 411-2, respectively, in each phase. With continuing reference to FIG. 4d-1, FIGS. 18a-18c show isometric, side and end views, respectively, of the assembly shown in FIGS. **17***a* and **17***b* with example heat sinks **419-1** and **419-2** added thereto. The heat sinks **419-1** and **419-2** are substantially similar in this embodiment. Each of these heat sinks has channels that receive pipes such as pipes **420***a*. Heat sinks **419-1** and **419-2** are releasably connected to clamp **1604**. More particularly, fasteners (e.g., threaded bolts, not shown) extend through apertures and fasten heat sinks **419-1** and **419-2** to clamp **1604**. Surfaces of heat sinks **419-1** and **419-2** and clamp **1604** are maintained in firm connection by these fasteners. The connection enables heat transfer from packaged half bridges **250-2** and **253-2** to heat sinks **419-1** and **419-2**, respectively, via extensions **411-1** and **411-2**, respectively, of clamp **1604**. In another embodiment solder, sintering, or thermal grease be used between heat sinks 419-1 and 419-2 and clamp extensions 411-1 and 411-2, respectively. [0198] FIGS. **19***a* and **19***b* show isometric and side views of the structure of FIG. **18***a***-18***c* with additional, clamps **1604**, heat sinks **419**, and packaged half bridges **250** and **253**. Heat sinks **419**-**1***a***-419-1***c* and **419-2***a***-419-2***c* are similar to each other. Likewise clamps **1604***a***-1604***c* are similar to each other and to that shown in FIGS. **16***a***-16***c*. Pipes **420***a* received by heat sinks **419-1***a***-419**-**1***c* move fluid through them. Pipes **420***a* received by heat sinks **419-1***a***-419-1***c* move fluid through them. Heat sinks **419-1***a***-419-1***c* are separated from each other to maintain electrical isolation. Likewise sinks **419-2***a***-419-2***c* are separated from each other to maintain electrical isolation. Heat sinks **419-1***a***-419-1***c*, however, are thermally connected together by fluid in common pipes **420***a*. Likewise heat sinks **419-2***a***-419-2***c* are thermally connected together by fluid in common pipes **420**a.

[0199] FIG. 4*d*-1 shows V-bus bar 407. Die clip terminals 232L of packaged bridges 250 and die clip terminals **232**H packaged half bridges **253** are connected to V-bus bar **407**. With continuing reference to FIG. **4***d***-1**, FIGS. **20***a*, **20***b*, and **20***c* show isometric, top and end views of an example V-bus bar 407 formed from a metal such as copper. Fasteners (e.g., threaded bolts) 1616 mechanically connect terminal structures **1630** to ends of base **1618**. The fasteners maintain electrical connection between terminal structures 1630 and base 1618. Terminal structures 1630 have channels **1617** that are configured to receive ends of metal cables (not shown). The other ends of these metal cables can be connected to a V-battery terminal (not shown). Fasteners **1622** (e.g., threaded bolts) extend through apertures of terminal structure **1630** and are configured to engage with and press the end of the received metal cable against the wall of channel **1617**. Fasteners **1622** ensure electrical connection between the metal cable and V-bus bar 407. Openings 1634 are configured to receive PCBs, each with an X by Y array of decoupling capacitors mounted thereon. FIG. **20***d* is a side view of V-bus bar **407** with PCBs **1636** received in openings **1634**. Each PCP **1636** includes an array of 3×13 capacitors **1638**. In the depicted embodiment ceramic capacitors are mounted on PCBs **1636**. In other embodiments, thin film or electrolytic capacitors can be used. In still other embodiments, a combination of capacitor types can be used. Ceramic capacitors are smaller than thin film capacitors, and use of ceramic capacitors can be advantageous in that they can reduce the overall volume occupied by example compact inverter system **408**. Each decoupling capacitor **1638** can be contained in a package with a pair of leads, one of which is connected to Vbus bar **407**, while the other is connected to V+ bus bar **417**. Traces of PCBs **1636** enable the connections to V-bus bar **407** and the V+ bus bar **417**. A ceramic capacitor **1638** can fail and create a short between its terminals, which in turn creates a short between V-bus bar **407** and V+ bus bar **417**. PCB **1636** with ceramic capacitors **1638** should include one or more fused or fusible links, each of which is positioned to interrupt current flow between V-bus bar **407** and V+ bus bar **417** if

a ceramic capacitor fails. The arrays of decoupling capacitors **1638** can provide a collective decoupling capacitance of 78 μ F or more, it being understood that less decoupling capacitance can be used in other compact inverter system embodiments.

[0200] Decoupling capacitors **1638** reduce voltage spikes, ripple currents or other unwanted AC voltage components at the current terminals of switches (e.g., IGBTs) 304 in packaged half bridges **250** and **253**. Conductors connected between switches and terminals of a battery, or conductors between switches and windings of an electric motor have parasitic inductance. Narrow and long conductors have more parasitic inductance than shorter and wider conductors. Parasitic inductance also increases with an increase in the current carried by the conductor. Parasitic inductance presents several risks to switches **304**. In the process of turning off switches **304**, for example, voltage spikes will occur at the current terminals of switches due to the sharp decrease of current. This voltage spike is due to the release of energy stored in the parasitic inductance of the conductor between the switch and the battery. Switch **304** could be subjected to a voltage spike that is outside its normal operating range. As such it may be necessary to use a switch with a higher voltage level, but a switch with higher voltage level will be less efficient and more expensive. Positioning the PCBs **1636** in the openings **1634**, places the decoupling capacitors **1638** close (e.g., 1 cm or less) to the current terminals of switches in packaged half bridges **250** and **253**. This ensures that more of the current released by the parasitic induction of the conductive line is received and stored by the decoupling capacitors **1638**, which in turn reduces the voltage spike at the terminal of the switch. As a result of the proximity of the decoupling capacitors **1638** to switches **304**, smaller and more efficient switches **304** can be employed in packaged half bridges **250** and **253**. [0201] As shown in FIGS. **20***b* and **20***c* V-bus bar **407** have terminals **1640** connected to and extending from base **1618**. Terminals **1640**-L have flat end surfaces for engaging die clip terminals **232**L of packaged half bridges **250**, and terminals **1640**-H for engaging die clip terminals **232**H of packaged half bridges **253**. V-bus bar **407** and V+ bus bar should be electrically isolated from each other. FIG. **21** is an end view of the assembly shown in FIG. **19** with V-bus bar **407** added thereto. An air gap exists between extensions **411** of clamp **1604***a* and V-bus bar **407** to ensure electrical isolation therebetween. Although not visible in this figure, end surfaces of terminals 1640 are releasably connected to corresponding die clip terminals 232L and 232H, respectively. [0202] A compact inverter system may include one or more control PCBs, or may be connected to one or more control PCBs. For example, components such as a packaged power management integrated circuit (PMIC), one or more microcontrollers, etc., can be mounted (e.g. soldered) on control PCBs. PMICs contain voltage regulators that provide stable supply voltages for components (e.g., gate drivers) of packaged switches or packaged half bridges. A microcontroller provides control signals (e.g., PWM signals) to one or more packaged switches or packaged half bridges. The microcontroller also receives signals (e.g., fault signals) from one or more packaged switches or packaged half bridges. The control PCB can be connected to the packaged switches or packaged half bridges of a compact inverter system via respective FFCs. The FFCs convey voltages and signals between the control PCB and packaged switches or packaged half bridges. [0203] The control PCB can have several interfaces, each of which is configured for connection to a respective first interface of a corresponding FFC. Second interfaces of the FFCs are configured for connection to respective packaged switches or packaged half bridges. In one embodiment, the second interfaces of the FFCs connect with signal leads of respective packaged half bridges or packaged switches. FIG. 21 shows an example control PCB 1650 with PMICs 1652 mounted thereon.

[0204] Although the present invention has been described in connection with several embodiments, the invention is not intended to be limited to the specific forms set forth herein. On the contrary, it is intended to cover such alternatives, modifications, and equivalents as can be reasonably included within the scope of the invention as defined by the appended claims.

Claims

- **1.** An apparatus comprising: a first bus bar comprising a first cylindrical channel; a first cylindrical pipe thermally connected to the first bus bar and contained in the first cylindrical channel; a first transistor, which comprises first and second terminals between which electrical current is transmitted when the first transistor is activated, and a first gate terminal for controlling the first transistor; wherein the first terminal is thermally and electrically connected to the first bus bar; wherein the first cylindrical pipe is configured to transmit a first fluid, and; wherein the first cylindrical pipe is configured to electrically isolate the first fluid from the first bus bar.
- **2**. The apparatus of claim 1 wherein the first cylindrical pipe comprises dielectric material that electrically isolates the first fluid from the first bus bar.
- **3.** The apparatus of claim 2 wherein: the first cylindrical pipe comprises a first inner pipe, and; the dielectric material is positioned between an outer surface of the first inner pipe and the first bus bar.
- **4**. The apparatus of claim 2 wherein: the first cylindrical channel comprises a cylindrical surface, and; the dielectric material contacts the cylindrical surface.
- **5**. The apparatus of claim 2 wherein the dielectric material comprises aluminum nitride.
- **6**. The apparatus of claim 1 wherein the first cylindrical pipe transmits the first fluid, which comprises ethylene glycol.
- 7. The apparatus of claim 1 further comprising: a first metal conductor comprising first and second flat surfaces, which are electrically connected and oppositely facing; wherein the first flat surface is sintered to the first terminal of the first transistor; wherein the second flat surface is electrically and thermally connected to a flat surface of the first bus bar.
- **8**. The apparatus of claim 7 further comprising: a first metal heat sink comprising a first heat sink cylindrical channel; a second cylindrical pipe contained in the first heat sink cylindrical channel and thermally connected to the first metal heat sink; a second metal conductor comprising first and second flat surfaces, which are electrically connected and oppositely facing; wherein the second flat surface of the second metal conductor is sintered to the second terminal of the first transistor; wherein the first flat surface of the second metal conductor is electrically and thermally connected to a flat surface of the first metal heat sink; wherein the first terminal is thermally and electrically connected to the first bus bar; wherein the second cylindrical pipe is configured to transmit a second fluid, and; wherein the second cylindrical pipe is configured to electrically isolate the second fluid from the first metal heat sink.
- **9.** The apparatus of claim 8 further comprising: a second bus bar comprising a second cylindrical channel; a third cylindrical pipe contained in the second cylindrical channel and thermally connected to the second bus bar; a second transistor, which comprises third and fourth terminals between which current is transmitted when the second transistor is activated, and a second gate terminal for controlling the second transistor; wherein the fourth terminal is thermally and electrically connected to the second bus bar; wherein the third terminal is electrically and thermally connected to the first metal heat sink; wherein the third cylindrical pipe is configured to transmit a third fluid, and; wherein the third cylindrical pipe is configured to electrically isolate the third fluid from the second bus bar.
- **10.** The apparatus of claim 9 further comprising: a second metal heat sink comprising a second heat sink cylindrical channel; wherein the second cylindrical pipe is contained in the first and the second heat sink cylindrical channels, and; wherein the second cylindrical pipe is configured to electrically isolate the second fluid from the first and second metal heat sinks.
- **11.** An apparatus comprising: a first pipe configured to transmit a first fluid; a first bus bar formed around the first pipe and thermally connected thereto; a first transistor, which comprises first and second terminals between which electrical current is transmitted when the first transistor is activated, and a first gate terminal for controlling the first transistor; wherein the first terminal is

- thermally and electrically connected to the first bus bar; wherein the first pipe is configured to electrically isolate the first fluid from the first bus bar.
- **12**. The apparatus of claim 11 wherein the first pipe comprises dielectric material that electrically isolates the first fluid from the first bus bar.
- **13**. The apparatus of claim 12 wherein: the first pipe comprises a first inner pipe, and; the dielectric material is positioned between an outer surface of the first inner pipe and the first bus bar.
- **14**. The apparatus of claim 12 wherein the dielectric material comprises aluminum nitride.
- **15**. The apparatus of claim 11 wherein the first pipe transmits the first fluid, which comprises an electrically conductive liquid.
- **16**. The apparatus of claim 15 wherein the electrically conducive liquid comprises ethylene glycol.
- **17**. The apparatus of claim 11 further comprising: a first metal conductor comprising first and second flat surfaces, which are electrically connected and oppositely facing; wherein the first flat surface is sintered to the first terminal of the first transistor; wherein the second flat surface is electrically and thermally connected to a flat surface of the first bus bar.
- **18**. The apparatus of claim 17 further comprising: a second pipe configured to transmit a second fluid; a first metal heat sink formed around the second pipe and thermally connected thereto; a second metal conductor comprising first and second flat surfaces, which are electrically connected and oppositely facing; wherein the second flat surface of the second metal conductor is sintered to the second terminal of the first transistor; wherein the first flat surface of the second metal conductor is electrically and thermally connected to a flat surface of the first metal heat sink, and; wherein the second pipe is configured to electrically isolate the second fluid from the first metal heat sink.
- **19**. The apparatus of claim 18 further comprising: a third pipe configured to transmit a third fluid; a second bus bar formed around the third pipe and thermally connected thereto; a second transistor, which comprises third and fourth terminals between which current is transmitted when the second transistor is activated, and a second gate terminal for controlling the second transistor; wherein the fourth terminal is thermally and electrically connected to the second bus bar; wherein the third terminal is electrically and thermally connected to the first metal heat sink, and; wherein the third pipe is configured to electrically isolate the third fluid from the second bus bar.
- **20**. The apparatus of claim 19 further comprising: a second metal heat sink formed around the second pipe; wherein the second pipe is configured to electrically isolate the second fluid from the first and second metal heat sinks.