Deep Generative Models

Lecture 4

Roman Isachenko

Son Masters

Spring, 2022

Recap of previous lecture

Variational lower Bound (ELBO)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(q,oldsymbol{ heta}).$$

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{m{ heta}} p(\mathbf{x}|m{ heta}) \quad o \quad \max_{m{ heta},m{ heta}} \mathcal{L}(m{ heta},m{ heta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$\max_{q} \mathcal{L}(q, \theta) \equiv \min_{q} \mathit{KL}(q(\mathbf{z}) || p(\mathbf{z} | \mathbf{x}, \theta)).$$

Recap of previous lecture

EM-algorithm

► E-step

$$q^*(\mathbf{z}) = \argmax_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = \arg\min_{q} \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z} | \mathbf{x}, \boldsymbol{\theta}^*));$$

M-step

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Amortized variational inference

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta}_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\boldsymbol{\theta}_k = \boldsymbol{\theta}_{k-1} + \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\phi}_k, \boldsymbol{\theta})|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}}$$

Outline

- 1. Variational autoencoder (VAE)
- 2. VAE as Bayesian model

- 3. Posterior collapse and decoder weakening techniques
- 4. Tighter variational bound

Outline

- 1. Variational autoencoder (VAE)
- 2. VAE as Bayesian model

3. Posterior collapse and decoder weakening techniques

4. Tighter variational bound

Variational autoencoder (VAE)

Final algorithm

- ▶ pick random sample \mathbf{x}_i , $i \sim U[1, n]$.
- compute the objective:

$$oldsymbol{\epsilon}^* \sim r(oldsymbol{\epsilon}); \quad \mathbf{z}^* = g(\mathbf{x}, oldsymbol{\epsilon}^*, oldsymbol{\phi});$$
 $\mathcal{L}(oldsymbol{\phi}, oldsymbol{ heta}) pprox \log p(\mathbf{x}|\mathbf{z}^*, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{z}^*|\mathbf{x}, oldsymbol{\phi})||p(\mathbf{z}^*)).$

lacktriangle compute a stochastic gradients w.r.t. ϕ and heta

$$abla_{\phi} \mathcal{L}(\phi, \theta) pprox
abla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon^*, \phi), \theta) -
abla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}));$$

$$abla_{\theta} \mathcal{L}(\phi, \theta) pprox
abla_{\theta} \log p(\mathbf{x}|\mathbf{z}^*, \theta).$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, RMSProp):

$$\phi := \phi + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta),$$

$$\theta := \theta + \eta \nabla_{\theta} \mathcal{L}(\phi, \theta).$$

Variational autoencoder (VAE)

- ▶ VAE learns stochastic mapping between **x**-space, from complicated distribution $\pi(\mathbf{x})$, and a latent **z**-space, with simple distribution.
- The generative model learns a joint distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$ of the generative model.

Variational Autoencoder

Variational autoencoder (VAE)

- lacksquare Encoder $q(\mathbf{z}|\mathbf{x},\phi) = \mathsf{NN}_e(\mathbf{x},\phi)$ outputs $\mu_\phi(\mathbf{x})$ and $\sigma_\phi(\mathbf{x})$.
- ▶ Decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathsf{NN}_d(\mathbf{z}, \boldsymbol{\theta})$ outputs parameters of the sample distribution.

image credit:

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\pmb{\mu}_{\phi}(\mathsf{x}),\pmb{\sigma}_{\phi}^2(\mathsf{x})).$$

Outline

- 1. Variational autoencoder (VAE
- 2. VAE as Bayesian model

3. Posterior collapse and decoder weakening techniques

4. Tighter variational bound

Bayesian framework

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} \left(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right)$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{X})d\boldsymbol{\theta} = \int p(\mathbf{x}|\boldsymbol{\theta})\delta(\boldsymbol{\theta} - \boldsymbol{\theta}^*)d\boldsymbol{\theta} \approx p(\mathbf{x}|\boldsymbol{\theta}^*).$$

VAE as Bayesian model

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$

ELBO

$$\begin{aligned} \log p(\boldsymbol{\theta}|\mathbf{X}) &= \log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) - \log p(\mathbf{X}) \\ &= \mathcal{L}(q,\boldsymbol{\theta}) + \mathcal{K}L(q||p) + \log p(\boldsymbol{\theta}) - \log p(\mathbf{X}) \\ &\geq \left[\mathcal{L}(q,\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right] - \log p(\mathbf{X}). \end{aligned}$$

EM-algorithm

► E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*);$$

M-step

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \left[\mathcal{L}(q, oldsymbol{ heta}) + \log p(oldsymbol{ heta})
ight].$$

Outline

- 1. Variational autoencoder (VAE
- 2. VAE as Bayesian model

3. Posterior collapse and decoder weakening techniques

4. Tighter variational bound

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \boldsymbol{\sigma}_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\boldsymbol{\mu}_{oldsymbol{\phi}}(\mathsf{x}), \sigma^2_{oldsymbol{\phi}}(\mathsf{x})).$$

Posterior collapse

Representation learning

"Identifies and disentangles the underlying causal factors of the data, so that it becomes easier to understand the data, to classify it, or to perform other tasks".

$$p(\mathbf{x}|\theta) = \int p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \theta) p(\mathbf{z}) d\mathbf{z}$$

If the decoder model $p(\mathbf{x}|\mathbf{z}, \theta)$ is powerful enough to model $p(\mathbf{x}|\theta)$ the latent variables \mathbf{z} becomes irrelevant.

$$\mathcal{L}(q, \theta) = \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \right].$$

Early in the training the approximate posterior $q(\mathbf{z}|\mathbf{x})$ carries little information about \mathbf{x} and the model sets the posterior to the prior to avoid paying any cost $KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$.

PixelVAF

LVM

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}$$

- More powerful $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ leads to more powerful generative model $p(\mathbf{x}|\boldsymbol{\theta})$.
- ▶ Too powerful $p(\mathbf{x}|\mathbf{z}, \theta)$ could lead to posterior collapse, where variational posterior $q(\mathbf{z}|\mathbf{x})$ will not carry any information about data and close to prior $p(\mathbf{z})$.

How to make the generative model $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ more powerful?

Autoregressive decoder

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \prod_{i=1}^{n} p(x_i|\mathbf{x}_{1:i-1},\mathbf{z},\boldsymbol{\theta})$$

PixelVAF

Autoregressive decoder

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \prod_{i=1}^{n} p(x_i|\mathbf{x}_{1:i-1},\mathbf{z},\boldsymbol{\theta})$$

- Global structure is captured by latent variables.
- ► Local statistics are captured by limited receptive field autoregressive model.

MNIST results

Gulrajani I. et al. PixelVAE: A Latent Variable Model for Natural Images, 2016

Decoder weakening

- Powerful decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ makes the model expressive, but posterior collapse is possible.
- ▶ PixelVAE model uses the autoregressive PixelCNN model with small number of layers to limit receptive field.

How to force the model encode information about x into z?

KL annealing

$$\mathcal{L}(q, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Start training with $\beta=$ 0, increase it until $\beta=$ 1 during training.

Free bits

$$\mathcal{L}(q, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{z}, \theta) - \max(\lambda, KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))).$$

It ensures the use of less than λ bits of information and results in $\mathit{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \geq \lambda$.

Bowman S. R. et al. Generating Sentences from a Continuous Space, 2015 Kingma D. P. et al. Improving Variational Inference with Inverse Autoregressive Flow, 2016

Outline

1. Variational autoencoder (VAE)

2. VAE as Bayesian model

- 3. Posterior collapse and decoder weakening techniques
- 4. Tighter variational bound

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \boldsymbol{\sigma}_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\pmb{\mu}_{\phi}(\mathsf{x}),\pmb{\sigma}_{\phi}^2(\mathsf{x})).$$

Importance Sampling

Generative model

$$p(\mathbf{x}|\theta) = \int p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} = \int \left[\frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] q(\mathbf{z}|\mathbf{x}) d\mathbf{z}$$
$$= \int f(\mathbf{x}, \mathbf{z}) q(\mathbf{z}|\mathbf{x}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z})$$

Here
$$f(\mathbf{x}, \mathbf{z}) = \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}$$
.

ELBO

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z}) \geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \log f(\mathbf{x}, \mathbf{z}) = \\ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})} = \mathcal{L}(q, \boldsymbol{\theta}). \end{split}$$

Could we choose better $f(\mathbf{x}, \mathbf{z})$?

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})} \right] q(\mathbf{z}|\mathbf{x}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z})$$

Let define

$$f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x})}$$
$$\mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z} | \mathbf{x})} f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = p(\mathbf{x} | \boldsymbol{\theta})$$

ELBO

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z}, \dots, \mathbf{z}_K) \geq \\ &\geq \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log f(\mathbf{x}, \mathbf{z}, \dots, \mathbf{z}_K) = \\ &= \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log \left[\frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k|\boldsymbol{\theta})}{q(\mathbf{z}_k|\mathbf{x})} \right] = \mathcal{L}_K(q, \boldsymbol{\theta}). \end{split}$$

VAE objective

$$\log p(\mathbf{x}|oldsymbol{ heta}) \geq \mathcal{L}(q,oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x})}
ightarrow \max_{q,oldsymbol{ heta}}$$

$$\mathcal{L}(q, \theta) = \mathbb{E}_{\mathsf{z}_1, \dots, \mathsf{z}_K \sim q(\mathsf{z}|\mathsf{x})} \left(\frac{1}{K} \sum_{k=1}^K \log \frac{p(\mathsf{x}, \mathsf{z}_k|\theta)}{q(\mathsf{z}_k|\mathsf{x})} \right) o \max_{q, \theta}.$$

IWAE objective

$$\mathcal{L}_{K}(q, \boldsymbol{\theta}) = \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K} \sim q(\mathbf{z} | \mathbf{x})} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{x}, \mathbf{z}_{k} | \boldsymbol{\theta})}{q(\mathbf{z}_{k} | \mathbf{x})} \right) \rightarrow \max_{q, \boldsymbol{\theta}}.$$

If K = 1, these objectives coincide.

Theorem

- 1. $\log p(\mathbf{x}|\theta) > \mathcal{L}_K(q,\theta) > \mathcal{L}_M(q,\theta)$, for K > M;
- 2. $\log p(\mathbf{x}|\theta) = \lim_{K \to \infty} \mathcal{L}_K(q,\theta)$ if $\frac{p(\mathbf{x},\mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})}$ is bounded.

Proof of 1.

$$\begin{split} \mathcal{L}_{K}(q, \boldsymbol{\theta}) &= \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K}} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{x}, \mathbf{z}_{k} | \boldsymbol{\theta})}{q(\mathbf{z}_{k} | \mathbf{x})} \right) = \\ &= \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K}} \log \mathbb{E}_{k_{1}, \dots, k_{M}} \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\mathbf{x}, \mathbf{z}_{k_{M}} | \boldsymbol{\theta})}{q(\mathbf{z}_{k_{m}} | \mathbf{x})} \right) \geq \\ &\geq \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K}} \mathbb{E}_{k_{1}, \dots, k_{m}} \log \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\mathbf{x}, \mathbf{z}_{k_{m}} | \boldsymbol{\theta})}{q(\mathbf{z}_{k_{m}} | \mathbf{x})} \right) = \\ &= \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{M}} \log \left(\frac{1}{M} \sum_{m=1}^{M} \frac{p(\mathbf{x}, \mathbf{z}_{m} | \boldsymbol{\theta})}{q(\mathbf{z}_{m} | \mathbf{x})} \right) = \mathcal{L}_{M}(q, \boldsymbol{\theta}) \\ \frac{a_{1} + \dots + a_{K}}{K} &= \mathbb{E}_{k_{1}, \dots, k_{M}} \frac{a_{k_{1}} + \dots + a_{k_{M}}}{M}, \quad k_{1}, \dots, k_{M} \sim U[1, K] \end{split}$$

Burda Y., Grosse R., Salakhutdinov R. Importance Weighted Autoencoders, 2015

Theorem

- 1. $\log p(\mathbf{x}|\theta) \ge \mathcal{L}_K(q,\theta) \ge \mathcal{L}_M(q,\theta)$, for $K \ge M$;
- 2. $\log p(\mathbf{x}|\boldsymbol{\theta}) = \lim_{K \to \infty} \mathcal{L}_K(q, \boldsymbol{\theta})$ if $\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x})}$ is bounded.

Proof of 2.

Consider r.v. $\xi_K = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x})}$.

If summands are bounded, then (from the strong law of large numbers)

$$\xi_K \xrightarrow[K \to \infty]{a.s.} \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} = p(\mathbf{x}|\theta).$$

Hence $\mathcal{L}_K(q, \theta) = \mathbb{E} \log \xi_K$ converges to $\log p(\mathbf{x}|\theta)$ as $K \to \infty$.

$$\log p(\mathbf{x}|\boldsymbol{ heta}) \geq \mathcal{L}_K(q, oldsymbol{ heta}) \geq \mathcal{L}(q, oldsymbol{ heta})$$

If K > 1 the bound could be tighter.

$$egin{aligned} \mathcal{L}(q, oldsymbol{ heta}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log rac{p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x})}; \ \mathcal{L}_K(q, oldsymbol{ heta}) &= \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} \log \left(rac{1}{K} \sum_{k=1}^K rac{p(\mathbf{x}, \mathbf{z}_k|oldsymbol{ heta})}{q(\mathbf{z}_k|\mathbf{x})}
ight). \end{aligned}$$

- $\blacktriangleright \mathcal{L}_1(q,\theta) = \mathcal{L}(q,\theta);$
- $\blacktriangleright \ \mathcal{L}_{\infty}(q, \boldsymbol{\theta}) = \log p(\mathbf{x}|\boldsymbol{\theta}).$
- ▶ Which $q^*(\mathbf{z}|\mathbf{x})$ gives $\mathcal{L}(q^*, \theta) = \log p(\mathbf{x}|\theta)$?
- ▶ Which $q^*(\mathbf{z}|\mathbf{x})$ gives $\mathcal{L}(q^*, \theta) = \mathcal{L}_{\mathcal{K}}(q, \theta)$?

Theorem

 $\mathcal{L}(q^*, oldsymbol{ heta}) = \mathcal{L}_{\mathcal{K}}(q, oldsymbol{ heta})$ for the following variational distribution

$$q^*(\mathbf{z}|\mathbf{x}) = \mathbb{E}_{\mathbf{z}_2,...,\mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} q_{IW}(\mathbf{z}|\mathbf{x},\mathbf{z}_{2:K}),$$

where

$$q_{IW}(\mathbf{z}|\mathbf{x},\mathbf{z}_{2:K}) = \frac{\frac{p(\mathbf{x},\mathbf{z})}{q(\mathbf{z}|\mathbf{x})}}{\frac{1}{K}\sum_{k=1}^{K}\frac{p(\mathbf{x},\mathbf{z}_{k})}{q(\mathbf{z}_{k}|\mathbf{x})}}q(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x},\mathbf{z})}{\frac{1}{K}\left(\frac{p(\mathbf{x},\mathbf{z})}{q(\mathbf{z}|\mathbf{x})} + \sum_{k=2}^{K}\frac{p(\mathbf{x},\mathbf{z}_{k})}{q(\mathbf{z}_{k}|\mathbf{x})}\right)}.$$

IWAE posterior

True posterior

Cremer C., Morris Q., Duvenaud D. Reinterpreting Importance-Weighted Autoencoders, 2017

IWAF

Objective

$$\mathcal{L}_{\mathcal{K}}(q, oldsymbol{ heta}) = \mathbb{E}_{\mathsf{z}_1, ..., \mathsf{z}_K \sim q(\mathsf{z}|\mathsf{x}, oldsymbol{\phi})} \log \left(rac{1}{K} \sum_{k=1}^K rac{p(\mathsf{x}, \mathsf{z}_k | oldsymbol{ heta})}{q(\mathsf{z}_k | \mathsf{x}, oldsymbol{\phi})}
ight)
ightarrow \max_{oldsymbol{\phi}, oldsymbol{ heta}}.$$

Gradient

$$\Delta_{\mathcal{K}} =
abla_{oldsymbol{ heta}, oldsymbol{\phi}} \log \left(rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} rac{p(\mathbf{x}, \mathbf{z}_k | oldsymbol{ heta})}{q(\mathbf{z}_k | \mathbf{x}, oldsymbol{\phi})}
ight), \quad \mathbf{z}_k \sim q(\mathbf{z} | \mathbf{x}, oldsymbol{\phi}).$$

Theorem

$$\mathsf{SNR}_{\mathcal{K}} = rac{\mathbb{E}[\Delta_{\mathcal{K}}]}{\sigma(\Delta_{\mathcal{K}})}; \quad \mathsf{SNR}_{\mathcal{K}}(oldsymbol{ heta}) = O(\sqrt{\mathcal{K}}); \quad \mathsf{SNR}_{\mathcal{K}}(\phi) = O\left(\sqrt{rac{1}{\mathcal{K}}}
ight).$$

Hence, increasing K vanishes gradient signal of inference network $q(\mathbf{z}|\mathbf{x},\phi)$.

Rainforth T. et al. Tighter variational bounds are not necessarily better, 2018

Theorem

$$\mathsf{SNR}_{K} = \frac{\mathbb{E}[\Delta_{K}]}{\sigma(\Delta_{K})}; \quad \mathsf{SNR}_{K}(\boldsymbol{\theta}) = O(\sqrt{K}); \quad \mathsf{SNR}_{K}(\boldsymbol{\phi}) = O\left(\sqrt{\frac{1}{K}}\right).$$

- ► IWAE makes the variational bound tighter and extends the class of variational distributions.
- Gradient signal becomes really small, training is complicated.
- IWAE is very popular technique as a quality measure for VAE models.

Summary

- The VAE model is an LVM with two neural network: stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ and stochastic decoder $p(\mathbf{x}|\mathbf{z}, \theta)$.
- ightharpoonup VAE is not a "true" bayesian model since parameters heta do not have a prior distribution.
- Standart VAE has several limitations that we will address later in the course.
- More powerful decoder in VAE leads to more expressive generative model. However, too expressive decoder could lead to the posterior collapse.
- ► The decoder weakening is a set of techniques to avoid the posterior collapse.
- The IWAE could get the tighter lower bound to the likelihood, but the training of such model becomes more difficult.