FIFA World Cup (1930-2014)

Sri Aditya Panda (UIN: 223003437)
Arjun Jayaraj Moothedath (UIN: 722008073)
Dakshina Ilangovan (UIN: 622009678)
Rajashree Rao Polsani (UIN: 223001584)

4 FUNCTIONAL DEPENDENCIES AND MULTI-VALUE DEPENDENCIES

This section lists functional dependencies and multi-valued dependencies for each relation in the database schema. Furthermore we have checked if there are any BCNF and 4NF violations and in case of violations, decomposed the relation so that the end relations confirm to all normal forms

The following schemas have been derived based on the proposed ER diagram.

- 1. TEAM(Country Code, Country Name, Association, Points, Ranking)
- 2. WORLD_CUP (Year, Host_Country, Winner, Runner_Up)
- 3. PLAYER(Country Code, Player Name, Player_Role, DOB, Jersey_Number, Club)
- 4. MATCH(Stadium, Stadium_Address, <u>Match Number</u>, Winner, Decision, Team_1, Team_2, Team_1_Score, Team_2_Score, Date.Day, Date.Month, <u>Date.Year</u>)
- 5. GOAL(Match Number, Date. Year, Time)
- 6. TEAM_PARTICIPATES_IN_WORLD_CUP(Group, Country Code, Year)
- 7. WORLD CUP PLAYED BY PLAYER(Year, Player Name, Country Code)
- 8. MATCH_PLAYED_BY(Match_Number, Date.Year, Player_Name, Country_Code)
- 9. PLAYER_SCORES_GOALS(Player_Name, Country_Code, Match_Number, Date.Year, Time)

FUNCTIONAL DEPENDENCIES

1. WORLD CUP (Year, Host Country, Winner, Runner Up)

Initial FDs

Year → Winner

Year → Runner_Up

Year → Host_Country

Closures

{Year}⁺ = {Year, Winner, Runner_Up, Host_Country}

Closures for supersets of years is same as that of 'Year'. Rest of the closures contain same elements as the original set on which closure is being calculated.

New FDs

The FDs listed above are minimal FDs. Rest of the non-trivial FDs will have 'Year' as one of the attribute on the left hand side of dependency

Keys: Year

BCNF violations

Since the left hand side of all FDs is superset of 'Year'. There are no violations.

2. TEAM(Country_Code, Country_Name, Association, Points, Ranking)

Initial FDs

Country_Code → Ranking
Country_Code → Points
Country_Code → Association
Country_Code → Country_Name

Closures

{Country_Code}⁺ = {Country_Code, Ranking, Points, Association, Country_Name} Closures for supersets of 'Country_Code' is same as that of 'Country_Code'. Rest of the closures contain same elements as the original set on which closure is being calculated.

New FDs

The FDs listed above are minimal FDs. Rest of the non-trivial FDs will have 'Country_Code' as one of the attribute on the left hand side of dependency.

Keys: Country_Code

BCNF violations

Since the left hand side of all FDs is superset of 'Country Code'. There are no violations.

3. PLAYER(Country Code, Player Name, Player_Role, DOB, Jersey_Number, Club)

Initial FDs

Country_Code, Player_Name → Player_Role Country_Code, Player_Name → DOB Country_Code, Player_Name → Jersey_Number Country_Code, Player_Name → Club

Closures

{Country_Code, Player_Name}⁺ = {Player_Role, DOB, Jersey_Number, Club, Country_Code, Player_Name} Closures for supersets of {Country_Code, Player_Name} is same as that of {Country_Code, Player_Name}. Rest of the closures contain same elements as the original set on which closure is being calculated.

New FDs

The FDs listed above are minimal FDs. Rest of the non-trivial FDs will have {Country_Code, Player_Name} as one of the attribute on the left hand side of dependency

Keys: {Country_Code, Player_Name}

BCNF violations

Since the left hand side of all FDs is superset of {Country_Code, Player_Name}. There are no violations.

4. MATCH(Stadium, Stadium_Address, <u>Match_Number</u>, Winner, Decision, Team_1, Team_2, Team_1 Score, Team_2 Score, Date.Day, Date.Month, Date.Year)

Initial FDs

Match_Number, Date.Year → Stadium

Match_Number, Date.Year → Stadium_Address

Match_Number, Date.Year → Winner

Match Number, Date.Year → Decision

Match Number, Date.Year → Team 1

Match _Number, Date.Year → Team_2

Match Number, Date. Year → Team 1 Score

Match Number, Date. Year → Team 2 Score

Match_Number, Date.Year → Date.Day

Match_Number, Date.Year → Date.Month

Stadium → Stadium_Address

Closures

{Match_Number, Date.Year}⁺ = {Stadium, Stadium_Address, Winner, Decision, Team_1, Team_2, Team_1_Score, Team_2_Score, Date.Day, Date.Month, Match_Number, Date.Year}

{Stadium}⁺ = {Stadium, Stadium Address}

Closures for supersets of Stadium contain those of stadium and the set itself. Closures for supersets of {Match_Number, Date.Year} is same as that of {Match_Number, Date.Year}. Rest of the closures contain same elements as the original set on which closure is being calculated.

New FDs

The FDs listed above are minimal FDs. Rest of the non-trivial FDs will have {Match_Number, Date.Year} or Stadium as one of the attribute on the left hand side of dependency

Keys: Match_Number, Date.Year

BCNF Violations

Stadium → Stadium Address

This FD violates BCNF. Thus After decomposing we have two relations

STADIUM (Stadium, Stadium Address)

Keys: Stadium

FD: Stadium → Stadium_Address

MATCH (Match_Number, Date.Year, Stadium, Winner, Decision, Team_1, Team_2, Team_1_Score, Team_2 Score, Date.Day, Date.Month)

Keys: Match_Number, Date.Year

FDs:

Match_Number, Year → Stadium
Match_Number, Year → Winner
Match_Number, Year → Decision
Match_Number, Year → Team_1
Match_Number, Year → Team_2
Match_Number, Year → Team_1_Score
Match_Number, Year → Team_2_Score
Match_Number, Year → Date.Day
Match_Number, Year → Date.Month

5. GOAL_AND_PLAYER_SCORES_GOALS(<u>Match_Number</u>, <u>Date.Year</u>, <u>Time</u>, <u>Player_Name</u>, <u>Country_Code</u>)

GOAL AND PLAYER have a many-one relationship as PLAYER_SCORES_GOALS. The relations GOAL and PLAYER_SCORES_GOALS can be effectively combined as Time in GOAL is associated with exactly one player, hence no redundancy is introduced. We thus eliminate the relation PLAYER_SCORES_GOALS by combining it with relation GOAL to form GOAL_AND_PLAYER_SCORES_GOALS

No functional dependencies.

Keys: {Match Number, Year, Time, Player Name, Country Code}

6. TEAM_PARTICIPATES_IN_WORLD_CUP(Group, Country_Code, Year)

Initial FDs:

Country_Code, Year → Group

Closures

{Country_Code, Year} = {Country_Code, Year, Group}

Closures for supersets of {Country_Code, Year} is same as that of {Country_Code, Year}. Rest of the closures contain same elements as the original set on which closure is being calculated.

New FDs

The FDs listed above are minimal FDs. Rest of the non-trivial FDs will have {Country_Code, Year} as one of the attribute on the left hand side of dependency

Keys: {Country_Code, Year}

BCNF violations

Since the left hand side of all FDs is superset of {Country_Code, Year}. There are no violations.

7. WORLD_CUP_PLAYED_BY_PLAYER(Year, Player_Name, Country_Code)

No functional dependencies.

Keys: {Country_Code, Year, Player_Name}

8. MATCH PLAYED BY(Match Number, Date. Year, Player Name, Country Code)

No functional dependencies.

Keys: {Country_Code, Player_Name, Match_Number, Date.Year}

MULTI VALUED DEPENDENCIES

We did not find any MVDs in our database application since there is no redundant data in each of the relations after considering BCNF violations. If we consider any relation the probability of finding A1...An, B1...Bn, t, u as defined in slide 6 of Lecture 6 is very low. When we consider each relation it is difficult find two mutually exclusive subsets of attributes of the relation which hold same set of values for many tuples. For example if we consider two mutually exclusive attribute sets of PLAYER {Player_Role, DOB} and {Jersey_Number, Club}. Finding tuples which have same Player_Role and DOB or Jersey_Number and Club is difficult. Thus the MVD: Player_Name, Country_Code →→ Player_Role, DOB is not a valid MVD.

EXTRA NOTES:

- We have combined the relations GOAL and PLAYER_SCORES_GOALS into GOAL_AND_PLAYER_SCORES_GOALS relation since it is a many to one relation and every goal can be scored by exactly one player.
- 2. We would not prefer to combine any other relations as that would lead BCNF and 4NF violations.
- 3. As all the normal form violations have been resolved, we have decided not to change any aspects of database schema.

The final relations are

- 1. TEAM(Country_Code, Country_Name, Association, Points, Ranking)
- 2. WORLD CUP (Year, Host Country, Winner, Runner Up)
- 3. PLAYER(Country Code, Player Name, Player Role, DOB, Jersey Number, Club)
- 4. MATCH(Stadium, <u>Match_Number</u>, Winner, Decision, Team_1, Team_2, Team_1_Score, Team_2_Score, Date.Day, Date.Month, <u>Date.Year</u>)
- 5. STADIUM(<u>Stadium</u>, Stadium_Address)
- 6. GOAL_AND_PLAYER_SCORES_GOALS(<u>Match_Number</u>, <u>Date.Year</u>, <u>Time</u>, <u>Player_Name</u>, <u>Country_Code</u>)
- 7. TEAM PARTICIPATES IN WORLD CUP(Group, Country Code, Year)
- 8. WORLD CUP PLAYED BY PLAYER(Year, Player Name, Country Code)
- 9. MATCH_PLAYED_BY(Match Number, Date.Year, Player Name, Country Code)