Vector Calculus Formulae

Leo Ngan

August 2020

Contents

1 Fo		Formulae		
	1.1	Vector	Differentiation	
		1.1.1	For a parameterized curve $r(t)$	
		1.1.2	Unit Tangent, Normal and Binomial Vector of r	
		1.1.3	Gradient, Divergence and Curl	
	1.2	Vector	Integral	
		1.2.1	Substitution to polar, cylindrical and spherical coordinate system	
		1.2.2	Line Integral	
		1.2.3	Line Integral over Vector Field	
		1.2.4	Surface Integral	
		1.2.5	Surface Integral over Vector Field	
		1.2.6	Stoke's theorem	
		1.2.7	Divergence's theorem	

1 Formulae

1.1 Vector Differentiation

1.1.1 For a parameterized curve r(t)

$$\vec{r}(t) = \begin{bmatrix} f_1(t) \\ f_2(t) \\ \vdots \end{bmatrix}$$

$$\frac{d\vec{r}}{dt} = \begin{bmatrix} df_1/dt \\ df_2/dt \\ \vdots \end{bmatrix}$$

1.1.2 Unit Tangent, Normal and Binomial Vector of r

$$\vec{T} = \frac{\vec{r'}(t)}{\left|\vec{r'}(t)\right|} \qquad \qquad \vec{N} = \frac{\vec{T'}(t)}{\left|\vec{T'}(t)\right|} \qquad \qquad \vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$$

1.1.3 Gradient, Divergence and Curl

$$\nabla = \begin{bmatrix} d/dx_1 \\ d/dx_2 \\ \vdots \end{bmatrix} \qquad \nabla F = \begin{bmatrix} d(F_1)/dx_1 \\ d(F_2)/dx_2 \\ \vdots \end{bmatrix} \qquad \nabla \cdot F = \frac{d(F_1)}{dx_1} + \frac{d(F_2)}{dx_2} \dots$$

$$\nabla \times f = \det \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ d/dx_1 & d/dx_2 & d/dx_3 & \dots \\ F_1 & F_2 & F_3 & \dots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

1.2 Vector Integral

1.2.1 Substitution to polar, cylindrical and spherical coordinate system

$$\begin{bmatrix} x = r\cos(\theta) \\ y = r\sin(\theta) \end{bmatrix} \qquad \begin{bmatrix} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = z \end{bmatrix} \qquad \begin{bmatrix} x = \rho\sin(\phi)\cos(\theta) \\ y = \rho\sin(\phi)\sin(\theta) \\ x = \rho\cos(\phi) \end{bmatrix}$$
$$dA = rdr d\theta \qquad dV = r dz dr d\theta \qquad dV = \rho^2 \sin(\phi) d\rho d\theta d\phi$$

1.2.2 Line Integral

$$\int_{C} f(x,y)ds = \int_{a}^{b} f(h(t), g(t)) \left| \vec{r'}(t) \right| dt$$

3

1.2.3 Line Integral over Vector Field

$$\int\limits_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r'}(t) dt$$

Green's Theorem

$$\oint\limits_{C} Pdx + Qdy = \iint_{D} \left(\frac{\sigma Q}{\sigma x} - \frac{\sigma P}{\sigma y} \right) dA$$

1.2.4 Surface Integral

$$\vec{r}(u,v) = x(u,v)\hat{i} + y(u,v)\hat{j} + x(u,v)\hat{k}$$

Given $\vec{r}(u, v)$

$$\int\limits_{S} f(x,y,z) dS = \iint_{D} f(\vec{r}(u,v) \, | \vec{r_v} \times \vec{r_u} | \, dA$$

If $\vec{r}(x,y) = x\hat{i} + y\hat{j} + g(x,y)\hat{k}$

$$|\vec{r_v} \times \vec{r_u}| = \sqrt{\left(\frac{\sigma g}{\sigma x}\right)^2 + \left(\frac{\sigma g}{\sigma y}\right)^2 + 1}$$

1.2.5 Surface Integral over Vector Field

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_S \vec{F} \cdot \vec{n} \; dS = \iint_S \vec{F} \cdot (\vec{r_v} \times \vec{r_u}) \; dA$$

1.2.6 Stoke's theorem

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} (\nabla \times \vec{F}) \cdot d\vec{S}$$

1.2.7 Divergence's theorem

$$\int_{S} \vec{F} \cdot d\vec{S} = \iiint_{E} (\nabla \cdot \vec{F}) dV$$

[1]

References

[1] Paul's calculus notes, 2003-2020.