# Control Systems LAB Digital Assignment 4

Submitted by:

Swarup Tripathy — 19BEE0167



School of Electrical Engineering

Faculty: **Professor Dhanamjayalu** C

Course: **EEE-3001** 

Course Name: Control Systems Lab

Lab Slot: L45 + L46

# Study of First Order System

Exp No: 4

Date: 23-02-2022

### $\mathbf{AIM}$

1. To obtain the time and frequency response for a step input of a First order electrical system and correlate experimental results with theoretical.

### APPARATUS REQUIRED

| S.No | Name of the apparatus /  | Specification / | Quantity |
|------|--------------------------|-----------------|----------|
|      | equipment                | Range           |          |
| 1    | Resistance               | 10 k            | 1        |
| 2    | Capacitance              | 0.01µf          | 1        |
| 3    | Function generator       |                 | 1        |
| 4    | Cathode ray oscilloscope |                 | 1        |

#### **THEORY**

1. A first Order system whose input -output relationship is given by

$$C(s) / R(s) = 1/(1+sT)$$

Here we are analyzing the output of the system for a step input R(s)=1/s Therefore . C(s)=1/1+sT [R(s)]

Taking inverse laplace transform of C(s), we get C(t) = 1 – for to

From the equation we can see that c(t) = 0 initialy (i.e., at t=0) and finally becomes unity (i.e., at t=T, c(t) = 1 - 0.632. There fore one of the important characteristics of such curve is that t=T sec. system response is 63.2

Smaller the time constant T, faster the system response dc/dt = 1/T at t=0 , dc/dt = 1/T

Another important characteristics of the exponential response curve are that at t = 0. Slope of the tangent line is 1/t.

2. Frequency Response A sinusoidal transfer function may be represented by two separate plots, one giving the magnitude versus frequency and the others phase angle in degree versus frequency. A bode diagram consists of two graph , plot of magnitude of sinusoidal transfer function and other is a plot of phase angle both drawn to logarithmic scale. The standard representation of logarithmic magnitude of G (jw) is 20 log G (jw) where the base of the logarithm is 10. The unit is decibel.

The main advantage of using a semi log sheet and using logarithmic plot is that multiplication of magnitudes can be converted to addition. The experimental

1

determination of transfer function can be made simple if frequency response datas are represented in the bode diagram.

#### **PROCEDURE**

- 1. Connections are made as shown in figure 1.
- 2. Keep the appropriate value for resistance and capacitance using respectively
- 3. A step input (square pulse of very low frequency i.e. large time period)) is given at input and output is observed across the capacitor using CRO.
- 4. Output shows a damped oscillation before it comes to steady state. Maximum overshoot or peak overshoot is noted.
- 5. A graph is plotted showing the variation of output voltage with time.
- 6. To get frequency response a sinusoidal signal is given as input and output (peak to peak value) is noted.
- 7. The input voltage is kept constant and output is noted for different frequency. Also the phase angle is noted, the output waveforms are noted using CRO.
- 8. The magnitude in decibel and phase angle in degree is plotted as a function of frequency ran/sec. In the semilog graph sheet.

#### CIRCUIT DIAGRAM



Fig. 1. Circuit Diagram for First order System

# TIME RESPONSE



Time (Step) response of the first order system for unit step input.

# FREQUENCY RESPONSE



Frequency Response of the First order system

### MODEL CALCULATION



# RESULT

# 1. UNIT STEP INPUT



### 2. SINUSOIDAL INPUT



# 3. UNIT RAMP INPUT



### 4. UNIT IMPULSE INPUT

