Course: Comtemporary Algorithms T.II/2019-20

Lecture 19: Random Walks II

11 March 2020

Lecturer: Dr. Kanat Tangwongsan

Scribe: Suchanun P. & Suchanuch P.

1 Recap

1.1 Random Walks

- Start from $\vec{p_0} \in \mathbb{R}^n, \mathbb{1}^T \vec{p_0} = 1$
- Walk randomly to a neighbor
- Reach a steady state $\vec{\pi}$, where $\vec{\pi} = W\vec{\pi}$

1.2 Lazy Walks

• Start from $\widehat{W} = \frac{1}{2}(I+W)$

We see that

$$\widehat{W}\vec{\pi} = \frac{1}{2}I\vec{\pi} + \frac{1}{2}\widehat{W}\vec{\pi} = \frac{1}{2}\vec{\pi} + \frac{1}{2}\vec{\pi} = \vec{\pi}$$

1.3 Question: How fast does $W^t \vec{p_0}$ converges?

We want to show that \widehat{W} has eigenvalues

$$1 = \lambda_1 > \lambda_2 \ge \lambda_3 \ge \dots \ge \lambda_n \ge 0$$

where eigenvector correspoding to $\lambda_1=1$ is $\vec{\pi}$

And so $\widehat{\widehat{W}}^k$ has eigenvalues

$$\lambda_1^k > \lambda_2^k \ge \lambda_3^k \ge \dots \ge \lambda_n^k$$

where λ_1^k stays at 1 while $\lambda_2^k, \lambda_3^k, \dots$ eventually goes to zeros

Lemma 1.1. Let W be the walk matrix for a connected graph. Then all eigenvalues of W are between I and I. Plus, I has exactly one eigenvector with eigenvalue of I.

Proof. Let \vec{v} be eigenvector of W such that $W\vec{v} = \lambda \vec{v}$. Then,

$$\begin{split} |\lambda v_k| &= |(W\vec{v})_k| \\ &= \left| \sum_{i \sim k} W_{ik} \vec{v_i} \right| \\ &= \left| \sum_{i \sim k} \frac{v_i}{d_i} \right| \\ &\leq \sum_{i \sim k} \left| \frac{v_i}{d_i} \right| \quad \text{by triangle inequality} \\ &\leq \sum_{i \sim k} \left| \frac{v_k}{d_k} \right| \quad \text{since } \left| \frac{v_i}{d_i} \right| \leq \left| \frac{v_k}{d_k} \right| \\ &= |v_k| \end{split}$$

And so $|\lambda v_k| \leq |v_k| \to |\lambda| \leq 1$. For the second part, we see $\vec{\pi}$ is an eigenvector of $\lambda = 1$. We can also see that if $W\vec{v} = \lambda\vec{v}$, then $\widehat{W}\vec{v} = \left[\frac{1}{2}(1+\lambda)\right]\vec{v}$. This means that eigenvector of W and \widehat{W} is the same, but the eigenvector of \widehat{W} is between 0 and 1.

Claim 1.2. W is similar to $M = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ where $D^{\frac{1}{2}} = diag(d_1, d_2, ..., d_n)$ and A is an adjacent matrix.

Proof.
$$D^{\frac{1}{2}}MD^{-\frac{1}{2}}=D^{\frac{1}{2}}(D^{-\frac{1}{2}}AD^{-\frac{1}{2}})D^{-\frac{1}{2}}=AD^{-1}=W.$$
 Similarly, $\widehat{M}=D^{-\frac{1}{2}}\widehat{W}D^{-\frac{1}{2}}$ is similar to \widehat{W} .

We see that $M\vec{v} = \lambda \vec{v} \to D^{\frac{1}{2}}(D^{-\frac{1}{2}}AD^{\frac{1}{2}})\vec{v} = D^{\frac{1}{2}}\lambda\vec{v} = \lambda(D^{\frac{1}{2}}\vec{v}).$ For symmetric semipositive digenvalues B, the B-norm is given by

$$\|\vec{x}\|_B = \sqrt{\vec{x}^T B \vec{x}} = \sqrt{\vec{x}^T B^{\frac{1}{2}} B^{\frac{1}{2}} \vec{x}} = \sqrt{(B^{\frac{1}{2}} \vec{x})^T (B^{\frac{1}{2}} \vec{x})} = \left\| B^{\frac{1}{2}} \vec{x} \right\|_2$$

Theorem 1.3. Let \widehat{W} be the walk matrix for lazy random walks on a connected graph. FOr any initial distribution \widehat{p}_0 and timestep $t \geq 0$,

$$\left\| \widehat{W}^t \vec{p_0} - \vec{\pi} \right\|_{D^{-1}} \le \lambda_2^t \, \|\vec{p_0}\|_{D^{-1}}$$

where λ_2 is the second largest eigenvalue of \widehat{W} .

Proof. Let $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ be the eigenvectors of $\hat{M} = D^{-\frac{1}{2}} \widehat{W} D^{\frac{1}{2}}$. We see that $\widehat{M} = \sum_i \lambda_i \vec{v_i} \vec{v_i}^T$ by the Spectral theorem. Then,

$$\hat{W} = D^{\frac{1}{2}} \hat{M} D^{-\frac{1}{2}} = D^{\frac{1}{2}} \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) D^{-\frac{1}{2}}$$

We have

$$\begin{split} \widehat{W}^{t} &= \left[D^{\frac{1}{2}} \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) D^{-\frac{1}{2}} \right] \left[D^{\frac{1}{2}} \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) D^{-\frac{1}{2}} \right] \dots \left[D^{\frac{1}{2}} \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) D^{-\frac{1}{2}} \right] \\ &= D^{\frac{1}{2}} \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) \left(D^{-\frac{1}{2}} D^{\frac{1}{2}} \right) \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) D^{-\frac{1}{2}} \dots \left[D^{\frac{1}{2}} \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) D^{-\frac{1}{2}} \right] \\ &= D^{\frac{1}{2}} \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) I \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) I \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) \dots I \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right) D^{-\frac{1}{2}} \\ &= D^{\frac{1}{2}} \left(\sum_{i} \lambda_{i} \vec{v_{i}} \vec{v_{i}}^{T} \right)^{t} D^{-\frac{1}{2}} \end{split}$$

Since $\vec{v_i}^T \vec{v_j} = 0$

$$= D^{\frac{1}{2}} \left(\sum_{i} \lambda_{i}^{t} \vec{v_{i}} \vec{v_{i}}^{T} \right) D^{-\frac{1}{2}}$$

Then, we get

$$\widehat{W}^t \vec{p_0} = D^{\frac{1}{2}} \left(\sum_i \lambda_i^t \vec{v_i} \vec{v_i}^T \right) D^{-\frac{1}{2}} \vec{p_0}$$

Write

$$D^{-\frac{1}{2}}\vec{p_0} = \sum_{i} \vec{v_j} \left(D^{\frac{1}{2}} \vec{p_0} \right)^T \vec{v_j}$$

and define

$$\alpha_i = \vec{v_i}^T (D^{\frac{1}{2}} \vec{p_0})$$

Then,

$$\begin{array}{rcl} \vec{W}^t \vec{p_0} & = & D^{\frac{1}{2}} \left(\sum_i \lambda_i^t \vec{v_i} \vec{v_i}^T \right) \left(\sum_j \alpha_j \vec{v_j} \right) \\ \vec{W}^t \vec{p_0} & = & D^{\frac{1}{2}} \left(\sum_i \lambda_i^t \alpha_i \vec{v_i} \right) \\ \vec{W}^t \vec{p_0} & = & D^{\frac{1}{2}} \lambda_1^t \alpha_1 \vec{v_1} + \sum_{i \geq 2} D^{\frac{1}{2}} \lambda_i^t \alpha_i \vec{v_i} \\ \vec{W}^t \vec{p_0} & = & \vec{\pi} + \sum_{i \geq 2} D^{\frac{1}{2}} \lambda_i^t \alpha_i \vec{v_i} \end{array} \qquad \begin{array}{rcl} \text{Claim to be proved: } D^{\frac{1}{2}} \lambda_1^t \alpha_1 \vec{v_1} = \pi \\ \vec{W}^t \vec{p_0} - \vec{\pi} & = & \sum_{i \geq 2} D^{\frac{1}{2}} \lambda_i^t \alpha_i \vec{v_i} \\ D^{-\frac{1}{2}} (\vec{W}^t \vec{p_0} - \vec{\pi}) & = & D^{-\frac{1}{2}} \sum_{i \geq 2} D^{\frac{1}{2}} \lambda_i^t \alpha_i \vec{v_i} \\ D^{-\frac{1}{2}} (\vec{W}^t \vec{p_0} - \vec{\pi}) & = & \sum_{i \geq 2} \lambda_i^t \alpha_i \vec{v_i} \end{array}$$

Then,

$$\begin{split} \left\| \widehat{W}^t \vec{p_0} - \vec{\pi} \right\|_{D^{-1}} &= \left\| D^{-\frac{1}{2}} \left(\widehat{W}^t - \pi \right) \right\|_2 \\ &= \left\| \sum_{i \geq 2} \lambda_i^t \alpha_i \vec{v_i} \right\|_2 \\ &= \sqrt{\sum_{i \geq 2} \lambda_i^{2t} \lambda_i^2} \\ &\leq \lambda_2^t \sqrt{\sum_{i \geq 1} \alpha^2} \quad \text{since } \lambda_i \leq \lambda_2 \text{ for all } i \geq 2 \\ &= \lambda_2^t \left\| D^{-\frac{1}{2} \vec{p_0}} \right\|_2 \\ &= \lambda_2^t \left\| \vec{p_0} \right\|_{D^{-1}} \end{split}$$

Claim 1.4.
$$D^{\frac{1}{2}}\alpha_1 \vec{v_1} = \vec{\pi}$$

Proof.

$$\alpha_{1} = \vec{v_{1}}^{T} D^{-\frac{1}{2}} \vec{p_{0}}$$

$$= \left(\frac{D^{-\frac{1}{2}} \vec{\pi}}{\|D^{-\frac{1}{2}} \vec{\pi}\|}\right) D^{-\frac{1}{2}} \vec{p_{0}} \quad \text{since } \vec{v_{1}} \text{ is a unit vector of } D^{-\frac{1}{2}} \vec{\pi}$$

$$= \left(\frac{D^{-\frac{1}{2}} \vec{d}}{\|D^{-\frac{1}{2}} \vec{d}\|}\right) D^{-\frac{1}{2}} \vec{p_{0}} \quad \text{since } \pi = \frac{1}{2m} \vec{d}$$

$$= \frac{1^{T} \vec{p_{0}}}{\|\vec{d^{\frac{1}{2}}}\|}$$

$$= \frac{1}{\|\vec{d^{\frac{1}{2}}}\|}$$

$$D^{\frac{1}{2}}\alpha_{1}\vec{v_{1}} = \frac{D^{\frac{1}{2}}D^{-\frac{1}{2}}\vec{d}}{\|\vec{d}^{\frac{n}{2}}\|} \cdot \frac{1}{\|\vec{d}^{\frac{n}{2}}\|}$$

$$= \frac{\vec{d}}{\|\vec{d}^{\frac{n}{2}}\|^{2}}$$

$$= \frac{\vec{d}}{2m}$$

$$= \vec{\pi}$$

1.4 Page Rank

- With some probability α , go to every page.
- $\bullet \ \mbox{With probability } 1-\alpha, \mbox{walk to a neighbor node.}$
- Cluster up at some most visited page (high influence)