Images Preprocessing and Dimensionality reduction (PCA)

Introduction

- Dataset: Labeled Faces in the Wild
- Standardize or not standardize?
- Extract features: VGGFace
- Apply PCA
- Retrieval task using Faiss library
- Face recognition task using KKN neighborhood

Principal component analysis

• Train: Given sample

$$D = \{x_1, \dots, x_n\}, x_i \in \mathbb{R}^n$$

- Compute:

$$\mu = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T$$

– Compute eigenvalues and eigenvectors of Σ , where:

$$\Sigma = \Phi \Lambda \Phi^T, \ \Lambda = diag(\sigma_1^2, \ldots, \sigma_n^2), \ \Phi^T \Phi = I$$

- Order eigenvalues $\sigma_1^2 > \ldots > \sigma_n^2$
- Select K eigenvalues and eigenvectors
- Test: Given principal components $\phi_i, i \in 1, \ldots, k$ and test sample $T = \{t_1, \ldots, t_n\} \in \mathbb{R}^d$
 - Subtract mean from each point $t_i' = t_i \hat{\mu}$
 - Project onto eigenvector space $y_i = At_i'$ where

$$A = egin{pmatrix} \phi_1^T \ dots \ \phi_k^T \end{pmatrix}$$

- Use
$$T' = \{y_1, \dots, y_n\}$$

Choose number of components

FAISS library

Key points:

- Exhaustive search with IndexFlatL2 and IndexFlatIP
- Flat indexes just encode the vectors into codes of a fixed size and store them in an array.
 - At search time, all the indexed vectors are decoded sequentially and compared to the query vectors.
 - IndexFlat: the vectors are stored without compression
- IndexFlatIP can be used as cosine similarity

Cosine Similarity and L2 Dist. for Normalized Vectors

Cosine Similarity with Normalized Vectors:

cosine_similarity(
$$\mathbf{a}, \mathbf{b}$$
) = $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \mathbf{a} \cdot \mathbf{b}$

L2 Distance with Normalized Vectors:

$$\begin{aligned} \text{L2_distance}(\mathbf{a}, \mathbf{b}) &= \|\mathbf{a} - \mathbf{b}\|_2 \\ &= \sqrt{(\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b})} \\ &= \sqrt{\mathbf{a} \cdot \mathbf{a} - 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b}} \end{aligned}$$

3.1. Substitute $\|\mathbf{a}\| = \|\mathbf{b}\| = 1$:

$$= \sqrt{1 - 2(\mathbf{a} \cdot \mathbf{b}) + 1}$$
$$= \sqrt{2 - 2(\mathbf{a} \cdot \mathbf{b})}$$

$$cosine_similarity(\mathbf{a},\mathbf{b}) = \mathbf{a} \cdot \mathbf{b}$$

L2_distance(
$$\mathbf{a}, \mathbf{b}$$
) = $\sqrt{2 - 2(\mathbf{a} \cdot \mathbf{b})}$

We observe that both expressions are equivalent. Hence, for normalized vectors, cosine similarity is indeed equivalent to L2 distance.

Cosine Similarity

Cosine distance is not a true distance metric!!

Project structure

- Get face images: sklearn LFW datasets with RGB images where the lowest number of samples was 55 (9 different faces).
- Balancing data (opt.): Selecting the minimum number of available samples for the underrepresented class.
- Split dataset: I partitioned the dataset into training and testing sets
- Pixel standardization (opt.): I scaled pixel values of train set to have a zero mean and unit variance
- Resize images: Resized images to 224x224 size
- **Extracting features**: I used VGGFace without the 3 fully connected layers at the top of the network. So for each sample, I got a tensor with shape (7, 7, 512).
- Reduction: I applied PCA reductions to the features extracted from VGGFace.

Tests

- Standardization or not standardization?
- PCA or not PCA?

TESTS:

- Retrieval task
 - RAW features vs PCA (with 20, 50,100, 396) vs PCA (excluding first 1,2,3 components out of 20, 50, 396)
 - Computing the mean over 9 differents splits of train-test set, I measure the precision at various level (@5, @10, @20, @ALL)
 - Everything tested with standardized and non-standardized images
- Recognition task
 - K-Nearest Neighbors
 - In a tie, sum "distances" per label, favor the greatest similarity
 - Tested with std and non-std, balanced and unbalanced dataset

Results retrieval task

ID I	P@10-STD						
ID Image	RAW	20	50	100	396		
0	0.97	0.96	0.96	0.96	0.96		
1	0.97	0.92	0.93	0.93	0.93		
2	0.94	0.93	0.92	0.91	0.91		
3	0.92	0.85	0.85	0.85	0.84		
4	0.86	0.83	0.82	0.80	0.79		
5	0.95	0.94	0.95	0.95	0.94		
6	0.91	0.86	0.86	0.86	0.87		
7	0.99	0.98	0.98	0.98	0.98		
8	0.86	0.84	0.84	0.85	0.84		
AVG	0.93	0.90	0.90	0.90	0.90		

Table 1. Table displaying P@ 10 scores over 9 runs with different split test-train. Comparing PCA with 20,50,100,396 and 7x7x512 components with image standardization.

IDI	P@10						
ID Image	RAW	20	50	100	396		
0	0.96	0.86	0.87	0.87	0.86		
1	0.93	0.86	0.86	0.87	0.86		
2	0.87	0.83	0.83	0.84	0.83		
3	0.81	0.75	0.75	0.75	0.75		
4	0.79	0.66	0.68	0.70	0.67		
5	0.85	0.85	0.86	0.86	0.84		
6	0.85	0.82	0.83	0.84	0.84		
7	0.98	0.97	0.96	0.96	0.96		
8	0.82	0.77	0.77	0.76	0.76		
AVG	0.87	0.82	0.82	0.83	0.82		

Table 2. Table displaying P@10 scores over 9 runs with different split test-train. Comparing PCA with 20,50,100,396, 7x7x512 components without image standardization

Results retrieval task

IDI	STD-P@10									
ID Image	-1/20	-1/50	-1/396	-2/20	-2/50	-2/396	-3/20	-3/50	-3/396	
0	0.95	0.96	0.96	0.93	0.94	0.94	0.94	0.88	0.88	
1	0.87	0.88	0.87	0.84	0.86	0.84	0.84	0.84	0.83	
2	0.92	0.91	0.91	0.94	0.93	0.93	0.93	0.94	0.94	
3	0.81	0.81	0.80	0.80	0.81	0.79	0.79	0.78	0.76	
4	0.82	0.80	0.79	0.82	0.81	0.80	0.80	0.82	0.82	
5	0.92	0.92	0.91	0.91	0.91	0.90	0.90	0.91	0.90	
6	0.85	0.86	0.87	0.88	0.87	0.88	0.88	0.85	0.83	
7	0.98	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.96	
8	0.80	0.80	0.80	0.82	0.81	0.79	0.79	0.81	0.79	
AVG	0.88	0.88	0.87	0.88	0.88	0.87	0.87	0.86	0.86	

Table 9. Table displaying rounded Precision@10 scores for different PCA settings; "-X/K" denotes the removal of the first X out of K components in PCA reconstruction. Mean computed over 9 runs.

ID I		P@10									
$ID\ Image$	-1/20	-1/50	-1/396	-2/20	-2/50	-2/396	-3/20	-3/50	-3/396		
0	0.87	0.88	0.88	0.83	0.84	0.84	0.84	0.84	0.85		
1	0.84	0.85	0.85	0.83	0.85	0.84	0.80	0.81	0.79		
2	0.86	0.86	0.85	0.87	0.87	0.87	0.91	0.91	0.90		
3	0.80	0.78	0.79	0.82	0.79	0.81	0.75	0.68	0.71		
4	0.71	0.73	0.69	0.71	0.72	0.69	0.73	0.74	0.73		
5	0.87	0.88	0.88	0.85	0.86	0.86	0.86	0.86	0.84		
6	0.86	0.89	0.88	0.83	0.86	0.85	0.86	0.89	0.86		
7	0.97	0.97	0.96	0.96	0.96	0.96	0.95	0.95	0.96		
8	0.80	0.81	0.81	0.70	0.71	0.72	0.70	0.69	0.70		
AVG	0.84	0.85	0.84	0.82	0.83	0.83	0.82	0.82	0.82		

Table 10. Feature extracted has been standardized before to extract features and applying PCA. "-X/K" denotes the removal of the first X out of K components in PCA reconstruction. Mean computed over 9 runs.

Results retrieval task

STD PCA red.	P@5	P@10	P@20	P@ALL
20	0.94	0.90	0.84	0.33
50	0.94	0.90	0.82	0.28
100	0.94	0.90	0.82	0.27
396	0.94	0.90	0.81	0.27
0	0.96	0.93	0.83	0.14
-1/20	0.93	0.88	0.78	0.28
-2/20	0.92	0.88	0.79	0.29
-3/20	0.91	0.87	0.77	0.25
-1/50	0.93	0.88	0.76	0.24
-2/50	0.93	0.88	0.77	0.23
-3/50	0.92	0.86	0.74	0.20
-1/396	0.93	0.87	0.74	0.23
-2/396	0.93	0.87	0.74	0.22
-3/396	0.92	0.86	0.70	0.19

Table 3. Feature extracted has been standardized before to extract features and apply PCA. Precision as a mean value between all classes at different cut-off values for PCA components. Mean computed over 9 runs. 0 means no reduction

PCA red.	P@5	P@10	P@20	P@ALL
20	0.87	0.82	0.73	0.22
50	0.89	0.82	0.72	0.20
100	0.89	0.83	0.71	0.20
396	0.89	0.82	0.70	0.20
0	0.93	0.87	0.72	0.12
-1/20	0.88	0.84	0.76	0.23
-2/20	0.88	0.82	0.71	0.21
-3/20	0.87	0.82	0.71	0.21
-1/50	0.89	0.85	0.74	0.21
-2/50	0.89	0.83	0.69	0.18
-3/50	0.88	0.82	0.67	0.18
-1/396	0.90	0.84	0.72	0.20
-2/396	0.90	0.83	0.66	0.17
-3/396	0.89	0.82	0.64	0.17

Table 4. Precision as a mean value between all classes at different cut-off values for PCA components. Mean computed over 9 runs. 0 means no reduction.

Results recognition task

ID test	Accuracy w/ n components STD							
	RAW	20	50	100	396			
test 1	0.979	0.989	0.989	0.969	0.979			
test 2	0.989	0.949	0.939	0.959	0.969			
test 3	1.000	0.989	0.989	1.000	0.989			
test 4	0.989	0.989	0.989	1.000	0.979			
test 5	1.000	0.979	0.989	0.989	1.000			
test 6	0.989	0.949	0.959	0.959	0.969			
test 7	0.979	0.969	0.969	0.969	0.969			
test 8	0.989	1.000	0.979	0.989	1.000			
test 9	0.979	0.979	0.979	0.979	0.969			
AVG	0.988	0.977	0.976	0.979	0.980			

Table 6. Accuracy in face recognition with different train-test splits and using KKN with k=9. All images have been pre-processed with standardization and a balanced dataset

ID test	Accuracy w/ n components							
	RAW	20	50	100	396			
test 1	0.985	0.971	0.964	0.967	0.975			
test 2	0.989	0.960	0.964	0.975	0.978			
test 3	0.978	0.971	0.971	0.964	0.971			
test 4	0.989	0.946	0.953	0.957	0.967			
test 5	0.982	0.943	0.950	0.960	0.960			
test 6	0.982	0.950	0.957	0.950	0.957			
test 7	0.982	0.946	0.953	0.960	0.957			
test 8	0.982	0.957	0.960	0.967	0.971			
test 9	0.989	0.960	0.971	0.975	0.978			
AVG	0.984	0.956	0.960	0.964	0.968			

Table 5. Accuracy in face recognition with different train-test splits and using KKN with k=9

Results recognition task

ID test	Accuracy w/ n components STD 30							
ID test	RAW	20	50	100	396			
test 1	0.965	0.901	0.941	0.960	0.960			
test 2	0.970	0.911	0.926	0.936	0.950			
test 3	0.990	0.931	0.960	0.960	0.970			
test 4	0.980	0.931	0.950	0.960	0.965			
test 5	0.975	0.955	0.965	0.960	0.960			
test 6	0.985	0.965	0.960	0.965	0.980			
test 7	0.980	0.926	0.975	0.980	0.985			
test 8	0.990	0.936	0.965	0.970	0.980			
test 9	0.980	0.960	0.955	0.960	0.975			
AVG	0.979	0.934	0.955	0.961	0.970			

Table 8. Accuracy in face recognition with different train-test splits and using KKN with k=9. All images have been preprocessed w standardization and used a balanced dataset where min_faces_per_person=30

ID test	Accuracy w/ n components Unb. STD 30							
	RAW	20	50	100	396			
test 1	0.970	0.924	0.945	0.959	0.959			
test 2	0.983	0.949	0.966	0.978	0.983			
test 3	0.978	0.926	0.953	0.959	0.962			
test 4	0.978	0.917	0.947	0.962	0.964			
test 5	0.978	0.932	0.953	0.968	0.970			
test 6	0.987	0.945	0.955	0.968	0.968			
test 7	0.985	0.947	0.949	0.955	0.970			
test 8	0.976	0.928	0.951	0.953	0.964			
test 9	0.966	0.907	0.938	0.949	0.951			
AVG	0.978	0.930	0.951	0.961	0.966			

Table 9. Accuracy in face recognition with different train-test splits and using KKN with k=9. All images have been preprocessed w standardization and used an unbalanced dataset where min_faces_per_person=30

Conclusion

- Feature Extraction using VGGFace and PCA:
 - Introduction of image standardization enhances algorithm performance.
 - Consistency in maintaining all components yields superior results across scenarios.
 - PCA offers a solution for resource-constrained environments
- Impact of Removing PCA Components:
 - Best results achieved without standardization, removing the first component.
 - However, degradation in overall performance observed compared to standard method.
- Face Recognition using KNN with PCA:
 - Standardized images generally outperform non-standardized ones in recognition tasks.
 - Using unbalanced datasets doesn't decrease performance in recognition