Recommendation Systems

GRADIENT DESCENT & SINGULAR VALUE DECOMPOSITION

Review ...

- Last time
 - ► Clustering mapreduce
 - ▶ Recommendation Systems
- ▶ Today
 - Decompositions of the Utility Matrix
 - Gradient Descent
 - Singular Value Decomposition

Assignment 1

- ▶ Interactive nodes
- ▶ ppn > 16
- Running out of memory

Dimensionality reduction

▶ Utility Matrix, M, is low rank → Singular Value Decomposition

- $M \rightarrow n \times m$
- ightharpoonup M = UV
- ightharpoonup U o n imes d, V o d imes m
- ightharpoonup How close is *UV* to $M \rightarrow$ root mean square error (RMSE)
 - Sqrt of Sum of difference over all nonblank entries

Incremental computation of *UV*

- Preprocess matrix M
- ightharpoonup Start with an initial guess for U, V
- \blacktriangleright Iteratively update U,V to minimize the RMSE
 - ▶ Optimization problem

We are estimating U, V using partial values of M

Preprocessing M

- Normalize for user
 - Subtract average user rating
- ▶ Normalize for item
 - Subtract average item rating
- Both
 - lacktriangle Subtract average of user and item rating from m_{ij}
- ▶ Need to undo normalization while making predictions ...

Initializing *U,V*

- Need a good guess
- Some randomness helps
- Initialize all entries to the same value
 - 0 is a good choice if normalized
 - ► Else, $\sqrt{\frac{a}{d}}$ is a good value
- ▶ Ideally start with multiple initial guesses centered around 0

Optimizing

- Gradient descent
- First order approximation
- Update using steps proportional to the negative gradient of the objective function (RMSE)
- Stop when gradient is zero
- Inefficient for large matrices
 - Stochastic Gradient descent
 - Randomized SVD

Gradient Descent

Given a multivariate function F(x), at point p

then, F(b) < F(a), where

$$b = a - \gamma \nabla F(a)$$

for some sufficiently small γ

$$\min \|M - UV\|$$

UV Decomposition

- ightharpoonup M, U, V, and P = UV
- ▶ Let us optimize for $x = u_{rs}$

$$p_{rj} = \sum_{k=1}^{d} u_{rk} v_{kj} = \sum_{k \neq s} u_{rk} v_{kj} + x v_{sj}$$

$$C = \sum_{j} (m_{rj} - p_{rj})^{2} = \sum_{j} \left(m_{rj} - \sum_{k \neq s} u_{rk} v_{kj} - x v_{sj} \right)^{2}$$

UV Decomposition

First order optimality $\rightarrow \partial \mathcal{C}/\partial x = 0$

$$C = \sum_{j} (m_{rj} - p_{rj})^{2} = \sum_{j} \left(m_{rj} - \sum_{k \neq s} u_{rk} v_{kj} - x v_{sj} \right)^{2}$$

$$\frac{\partial \mathcal{C}}{\partial x} = \sum_{j} -2v_{sj} \left(m_{rj} - \sum_{k \neq s} u_{rk} v_{kj} - x v_{sj} \right) = 0$$

$$x = \frac{\sum_{j} v_{sj} (m_{rj} - \sum_{k \neq s} u_{rk} v_{kj})}{\sum_{j} v_{sj}^{2}}$$

UV Decomposition

- ightharpoonup Choose elements of U and V to optimize
 - ▶ In order
 - Some random permutation
 - ▶ Iterate
- Correct way
 - ▶ Use expression to compute $\partial C/\partial x$ at current estimate
 - \blacktriangleright Expensive when number of unknowns is large (2 n d)
 - Use traditional gradient descent

Stochastic Gradient Descent

In cases where the objective function C(w) can be written in terms of local costs

$$C(w) = \sum_{n} C_{i}(w)$$

For the case of *UV* decomposition,

$$C = \sum_{i,j} c(M_{ij}, U_{i*}, V_{*j})$$

Stochastic Gradient Descent

Traditional gradient descent

$$w \leftarrow w - \lambda \sum_{n} \nabla C_i(w)$$

▶ In Stochastic GD, approximate true gradient by a single example:

$$w \leftarrow w - \lambda \nabla C_i(w)$$

Stochastic Gradient Descent

- ▶ Input: samples Z, initial values U_0 , V_0
- while not converged do
 - ▶ Select a sample $(i, j) \in Z$ uniformly at random

$$\blacktriangleright U_{i*} \leftarrow U'_{i*}$$

Singular Value Decomposition

Goal: Given a $m \times n$ matrix A, for large m, n, we seek to compute a rank-k approximation, with $k \ll n$,

$$A \approx U \qquad \Sigma \qquad V^* \qquad = \sum_{j=1}^k \sigma_j \boldsymbol{u}_j \boldsymbol{v}_j^*$$

$$m \times n$$
 $m \times k$ $k \times k$ $k \times n$

 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k \geq 0$ are the (approximate) singular values of A u_1, u_2, \ldots, u_k are orthonormal, the (approximate) left singular vectors of A, and v_1, v_2, \ldots, v_k are orthonormal, the (approximate) right singular vectors of A.

Singular Value Decomposition

- Closely related problems:
 - ▶ Eigenvalue decomposition $A \approx V \Lambda V^*$
 - ▶ Spanning columns or rows $A \approx C U R$
- Applications:
 - Principal Component Analysis: Form an empirical covariance matrix from some collection of statistical data. By computing the singular value decomposition of the matrix, you find the directions of maximal variance
 - ▶ Finding spanning columns or rows: Collect statistical data in a large matrix. By finding a set of spanning columns, you can identify some variables that "explain" the data. (Say a small collection of genes among a set of recorded genomes, or a small number of stocks in a portfolio)
 - \blacktriangleright Relaxed solutions to k-means clustering: Relaxed solutions can be found via the singular value decomposition
 - ▶ PageRank: primary eigenvector

Singular values, intuition

- \blacktriangleright Blue circles are m data points in 2D
- \blacktriangleright The SVD of the $m \times 2$ matrix
 - V₁: 1st (right) singular vector: direction of maximal variance,
 - σ_1 : how much of data variance is explained by the first singular vector
 - V₂: 2nd (right) singular vector: direction of maximal variance, after removing projection of the data along first singular vector.
 - σ_2 : measures how much of the data variance is explained by the second singular vector

Goal: Given a $m \times n$ matrix A, for large m, n, we seek to compute a rank-k approximation, with $k \ll n$,

$$A \approx U \qquad \Sigma \qquad V^* \qquad = \sum_{j=1}^k \sigma_j \boldsymbol{u}_j \boldsymbol{v}_j^*$$

$$m \times n$$
 $m \times k$ $k \times k$ $k \times n$

 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k \geq 0$ are the (approximate) singular values of A u_1, u_2, \ldots, u_k are orthonormal, the (approximate) left singular vectors of A, and v_1, v_2, \ldots, v_k are orthonormal, the (approximate) right singular vectors of A.

Randomized SVD

- 1. Draw an $n \times k$ Gaussian random matrix, Ω
- 2. Form the $m \times k$ sample matrix $Y = A\Omega$
- 3. Form an $m \times k$ orthonormal matrix Q such that Y = QR
- 4. Form the $k \times n$ matrix $B = Q^*A$
- 5. Compute the SVD of the small matrix $B = \widehat{U}\Sigma V^*$
- 6. Form the matrix $U = Q\widehat{U}$

Computational Costs?

2,4
$$\rightarrow k$$
 -Matrix-Vector product
3,5,6 \rightarrow dense operations on matrices
 $m \times k, k \times n$

Computational Costs

- ▶ If A can fit in RAM
 - Cost dominated by 2mnk flops required for steps 2,4
- ▶ If A cannot fit in RAM
 - Standard approaches suffer
 - Randomized SVD is successful as long as
 - \blacktriangleright Matrices of size $m \times k$ and $k \times n$ must fit in RAM
- Parallelization
 - ▶ Steps 2,4 permit k-way parallelization

Probabilistic Error Analysis

The error of the method is defined as

$$e_k = \|A - \hat{A}_k\|$$

 e_k is a random variable whose theoretical minimum value is $\sigma_{k+1} = \min(\|A - A_k\| : A_k \text{ has rank } k)$

Ideally, we would like e_k to be close to σ_{k+1} with high probability

Not true, the expectation of $\frac{e_k}{\sigma_{k+1}}$ is large and has very large variance

Oversampling ...

Oversample a little. If p is a small integer (think p=5), then we often can bound e_{k+p} by something close to σ_{k+1}

$$\mathbb{E}\|A - \hat{A}_{k+p}\| \le \left(1 + \sqrt{\frac{k}{p-1}}\right)\sigma_{k+1} + \frac{e\sqrt{k+p}}{p} \left(\sum_{j=k+1}^{n} \sigma_{j}^{2}\right)^{\frac{1}{2}}$$