Lecture 7: Convex Optimization Problems

goals:

- e define class of convex optimization problems
- e equivalent optimization problems
- · review common examples

Standard form optimization problem

minimize
$$f(x)$$

subject to $g_i(x) \leq 0$ $i=1,...,m$
 $h_i(x) = 0$ $i=1,...,P$

We call the problem convex if

- · f and gi are all convex functions
- . hi are affine functions: hilx) = $a_i^T \times + b_i$ often written: $A \times + b = 0$ (or $A \times = b$)

- The feasible set of a convex optimization publicum is a convex set of
 - the feasible set associated w/ each inequality constraint is a wolevel set of a convex function, therefore convex
 - · each afterne equality construint defines a (convex) hyperplame
 - their intersection is a convex set

Some Fine Print,

· Note however that an optimization problem with convex objective and convex feasible set is not necessarily a convex problem (per our definition)

The minimize
$$X_1^2 + Y_2^2$$

subject to $g_1(x) = \frac{x_1}{1 + x_2} \leq 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- · not convex (by our definition): Q g; not convex h, not affine
- equivalent (that not same as) convex problem $\min \min_{x \in \mathbb{R}^2} x_1^2 + x_2^2$ subject to $x_1 \leq 0$ $x_1 + x_2 = 0$

DIn general, feasible set can be convex even when constraint functions are not

· ruled out by our definition

3 Some convex sets don't have an efficient faite representation:

Consider the convex come of copositive matrices

$$K_{cop} = \left\{ X \in S^n \mid y^T X y \ge 0, y \ge 0 \right\}$$

It's dual cone is the set of completely positive matrices $K_{cop}^* = conv \left\{ \times \times^T \mid \times \geq 0 \right\}$

- · It's possible to exactly reformulate non-convex quadratec, mixed integer problems (known to be computationally hard) as ones problems with where objectives of over those comes!
- · Issue is that these comes don't have an efficient finite representation: NP-hard to check it a given matrix is in the cone

** Computational tractability and convexity involve algebraic representation, not just geometry!

A feasibility problem

find ×

subject to $gi(x) \leq 0$ i=1,...,m

hi(*) = 0 i=1,...,P

or and constant

is a special case of standard form with f(x) = 0

Equivalent Optimization Problems

An optimization problem is lintormally) called equivalent to another it its solution can be easily obtained from the other, and vice versa

- o useful for both analysis and algorithms
- non
 some problems that appear "convex, may actually
 be convex in desguise, with an appropriate
 transformation to an equivalent problem
 - · now an art, lots of research into understanding this more systematically

· Some common transformations that preserve convexity Deleminating equality constraints minimize f(x)subject to $gi(x) \leq D$ i=1,...,m (=)Subject to $gi(Fz+k_0) \leq D$ i=1,...,m i=1,...,mwhere $A \times = b \iff X = Fz + x_0$ for some z (2) introducing equality constraints gover x, yi minimize f(Aox + bo)minimize $f(y_o)$ subject to $g_i(Aix + bi) \leq 0$ subject to $g_i(g_i) \leq 0$ i=0,1,...,m i=1,...,mlinear for inequalities pover x15 (3) introducing slack variables minimize f(x) minimize f(x)subject to $a_i^T x + s_i = b_i$ $s_i \ge 0$ $i=l_{1m}, m$ subject to $a_i^T X \leq b_i$ i=()..., m Depigraph form

minimize f(x)subject to $gi(x) \leq 0$ $i=l_{1}...,m$ $f(x) \leq t$ gil4) 60 i=1,..., m Ax = bAx=b

minimize
$$f(x_1, x_2)$$
 minimize $f(x_1)$
subject to $gi(x_1) \leq 0$ $= 0$ subject to $gi(x_1) \leq 0$
 $i=1,...,m$

where
$$\bar{f}(x_1) = \inf_{x_2} f(x_1, x_2)$$

- @ monotone transformations of objective and construints

 · ria composition rules
- (7) litting problems to higher dimensional spaces by redefining variables; convex relaxations
 - · sometimes can transform non-convex problems to convex ones exactly (more later)
 - often gives a useful convex relaxation of non-convex problems, even when inexact

Ex minimize
$$C^TX$$

subject to $a_i^TX \le b_i^T$
 $x_i \in \{0,1\}$

minimize c^TX

subject to $a_i^TX \le b_i^T$
 $x_i \in \{0,1\}$
 $x_i \in \{0,1\}$

· used extensively in branch-and-bound methods for mixed-integer programs

Common Convex Optimization Problems + Examples

- · Linear Program (LP)
 - · linear cost + constraint functions
 - · feasible set is a polyhedron

minimize $c^T \times$ subject to $G \times = h$ $A \times = b$

- o very common in applications
 - · variety of planning + scheduling problems
 - · problems involving III, or III as .
 - · piecewise linear publems
 - · Nash equilibria à Zero-sum games
 - · exact formulations of several omportant combinatorial optimization problems on graphs
 - · maximum flow, minimum ent
 - · shortest path
 - · bipartite matching
 - o relaxations of combinatorial problems + use in branch-and-bound methods

Ex Diet problem: choose quantities X1,..., Xn

- · one unit of food j costs Cj, has amount as of naturent in healthy died requires at least big of naturent i
- · finding cheapest healthy diet is an LP: minimize $c^T \times (total cost)$ subject to $A \times = b$ (health constraint) X = 0 (nonnegative amounts)

Ex Precewise Linear Minimization minimize $\max_{i} \{a_{i}^{T} \times b_{i}\}$

minimize tSubject to $\max \{a_i^T \times +b_i\} \leq t$ Subject to $a_i^T \times +b_i^T \leq t$

i=1, ..., m

· Quadratic Program (QP)

- · quadratec cost, linear construints
- · convex if P ≥ 0

minimize = xTPx + qTx subject to Gx & h. $A_{X} = b$

oleast squares is canonical example

Ex LP with random cost

- e cost parameter CERh is a random rector with mean I and covariance matrix ZES,
- penalize cost variations as measured by Ξ minimize $E[C^Tx] + Y Var[C^Tx] = \overline{C}^Tx + Y x^T \Xi x$ subject to $Gx \in h$ Ax = b
 - · See also Markowitz portfolio optimization

Quadratically Constrained Quadratic Program (QCQP)

minimize \frac{1}{2} \times TPX + q^TX

subject to $\frac{1}{2} \times^T P_i \times + q_i^T \times + r_i \leq 0$ i=1,...,m

P, Pi & S", 2,9; & 12", r; & 12"

- · quadratic costs and construents
- · feasible set is an intersection of ellipsoids (it problem is convex)
- · convex if P, Pi & D

* Second-Order Cone Program (SOCP)

minimize
$$f^T \times$$

Subject to $\|A_i \times + b_i\|_2 \leq C_i^T \times + d_i$ $i=1,...,m$
 $F \times = g$
 $A_i \in \mathbb{R}^{n_i \times n}$, $F \in \mathbb{R}^{p \times n}$

• inequalities are called second-order cone constructes $\left(A_i \times + b_i, C_i^T \times + d\right) \in K_{soc}^{n+1} = \left\{ (Z, E) \in \mathbb{R}^{n+1} \left| ||Z|| \leq t \right\}$ • strictly generalizes QCQP

Ex Pobust LP : minimize c^Tx Consider the LP: minimize c^Tx subject to $a_i^Tx \leq b_i$ i=1,...,m

where there is uncertainty in parameters at eR".
Assume at is only known to lie in an ellipsoid

 $a_i \in \mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \leq 1\}, P_i \in \mathbb{R}^{1 \times n}$

Pobust LP: require constraint satisfaction for all possible values of ai

minimize c^Tx subject to $a_i^Tx \in b_i$ $\forall a_i \in \mathcal{E}_i$, i=1,...,mBut $a_i^Tx \leq b_i$ $\forall a_i \in \mathcal{E}_i$ \iff $sup \left\{a_i^Tx \mid a_i \in \mathcal{E}_i\right\} \leq b_i$ The LHS can be written

 $\sup \left\{ a_{i}^{T} \times | a_{i} \in \mathcal{Z}_{i} \right\} = \bar{a}_{i}^{T} \times + \sup \left\{ u^{T} P_{i}^{T} \times | ||u||_{2} \leq l \right\}$ $= \bar{a}_{i}^{T} \times + ||P_{i}^{T} \times ||_{2}$

Thus the robust LP is equivalent to the SOCP

minimize c^Tx subject to $\bar{a}_i^Tx + ||P_ix||_2 \leq b_i$ i=1,...,m

· many other examples; see e.g. "Applications of second order cone programming" by Lobo et al (1998)

Generalized standard form using generalized (cone) inequalities

minimize f(x)subject to $g_i(x) \preceq_{K_i} 0$ i=1,...,mAx = b

where ki are proper cones

- · already seen special cases:
 - · K: = R++ : LP
 - · Ki = Ksoc = SOCP
- , another important special case: $K_t = S_t^n$: Semidetinite Programming (SDP)

· Semidefinite Program (SDP)

minimize $c^{T}x$ subject to $x_{1}F_{1}+\cdots+x_{n}F_{n}+G \preceq O$ Ax = b

Variable: XER", data: G, Fi,..., Fn ESK, AEIR
cern

- feasible set is intersection of an inverse image of S_t^n under affine function $Z_t^n F_i + G$ with an affine set
 - · sometimes called a spectrahedron
 - · far richer geometric objects than polyhedra (can have curved surfaces)

. other forms:

© "Standard" form

minimize trace (CX)

subject to trace (AiX) = bi

c=1,...,m

X≥0

variable: $X \in S^n$, data: $C, A_1, ..., A_m \in S^n$

D'Inequality form

minomize C^TX

subject to X, A, t… + X, H, ≤B

rariubles x e IRh

data: Ai, ..., An, B & SK

cerk

- · Why SDP?
 - · natural generalization of LP, but with much nicher expressive power
 - . in fact, we have

LP E QP E QCQP E SOCP E SDP

- · convex problems, with efficient software
- · occurs often in many systems and control design and analysis problems (much more later)
 - · (Lyapunov) stability analysis
 - · optimal control design
 - · invariant set computations
 - · system input output properties
 - · etc.
- · nece theory, much of it mirroring LP, and connections to many other areas of mathematics

Ex Eigenvalue minimization

minimize $\lambda_{max}(A(x))$ where $A(x) = A_0 + x_1A_1 + \cdots + x_nA_n$ $(A_i \in S^k)$ write in epigraph form:

minimize t

subject to $\lambda_{max}(A(x)) \leq t$ Note that $\lambda_{max}(A(x)) \leq t \iff A^{(x)} \leq t$

Equivalent SDP:

minimize t

subject to A(x) \leq tI

. .

Quasiconvex Optimization

minimize f(x)subject to $g_i(x) \leq 0$ i=1,...,mAx = b

with f quasiconvex and gi convex

· convex representation of sublevel sets of f:

if f is quasiconvex, there exists a family

of functions of such that

O $\phi_t(x)$ is convex in x for fixed t

2 t-sublevel set of f is O-sublevel set of of:

 $f(x) \leq t \iff \phi_{t}(x) \leq 0$

• Ex $f(x) = \frac{p(x)}{q(x)}$ with p convex, f(x) = 0 on dom(f) q concave, q(x) = 0

Consider $\phi_t(x) = P(x) - tq(x)$

Clearly: . oft(x) convex in x (for fixed t 20)

 $\frac{p(x)}{q(x)} \leq t \quad \Longleftrightarrow \quad \phi_t(x) \leq 0$

minimize
$$f(x)$$

subject to $gi(x) \le 0$
 $f(x) = 0$

• for fixed
$$t$$
, a convex feasibility problem on X
• feasible \Longrightarrow $t \ge f^*$ } use
• intensible \Longrightarrow $t \le f^*$ } bisection!

Bisection method for quasiconvex optimization given
$$f^* \in [l, u]$$
, tolerance 2 while $u-l>2$

$$0 t = \frac{1}{2}(l+u)$$

• requires exactly
$$\log_2\left(\frac{u-l}{2}\right)$$
 iterations
• e.g., $\frac{u-l}{2} = 10^{12} \Longrightarrow 40$ iterations