2-1 19 120 - Cy 200°C = 7:171. HISE Lyce 1.678 150 - Cy 251'a 28 Resins (Acchane wash, dry) 1/An @ 60°C = 3:679 Hitse lyce 1.679 150 - Cy 25:679 Hitse lyce 1.57		6-29-79
1.878 130- Cy - R-2 100 5010 1 ag Resins (Acctone wash, dry) 1/h @ 60°C - 5.69 Htts for R-3 959 150- Cy - 1.57 t-0004 hydro 2.5 Resins (Acctone wash, dry) 1/h @ 60°C 1.09 the ly C.32 2.115th = 780,4848.	8-1	1.9 g 1x - C, = 6-29-79
R-2 10, so'a R-2 10, so'a As Resins (Acctions wash, dry) // @ 60°C = 5.6% Httst ly GC R-3 9.50 150-Cy R-3 9.50 Toluene 1.5% t- origin hydro 28 Resins (Acctions week, dry) // As @ 60°C 1.0% this y G.32 1, INTL = 787/48/HTC.		29 Resins (Acetona wash, dry)
1.878 150- Cy = 103 Sol's 1 28 Resins (Acctone wash, dry) 11 @ 60°C = 5.6% HIBE by CC R-3 85 Tolvene 1.53 tooth hydro 28 Resins (Acctone wash, dry) 1.44 @ 60°C 1.0 g the by C.32 2, 1 Will = 780 XBHPC		1h @ 60°C
1h @ 60°C = 5.6% HIBE by CC R-3 8.50 Tolvene 1.52 t-80+81 hydro 25 Resms (Acetone weigh, dry) 1h @ 60°C 1.09 the by C.37 1,15th = 781,2848	-,-	= 71/90 PIDE Lyte
1h @ 60°C = 5.6% HIBE by CC R-3 8.50 Tolvene 1.52 t-80+81 hydro 25 Resms (Acetone weigh, dry) 1h @ 60°C 1.09 the by C.37 1,15th = 781,2848	<u>·</u>	1.870 150 - C. =
1h @ 60°C = 5.6% HIBE by CC R-3 8.50 Tolvene 1.52 t-80+81 hydro 25 Resms (Acetone weigh, dry) 1h @ 60°C 1.09 the by C.37 1,15th = 781,2848	R-2	10, 50/0 /
1h @ 60°C = 5.6% HIBE by CC R-3 8.50 Tolvene 1.52 t-80+81 hydro 25 Resms (Acetone weigh, dry) 1h @ 60°C 1.09 the by C.37 1,15th = 781,2848		ag kesins theetine wash, dry
R-3		
R-3 8.50 Tolvene 1.53 £-004/1 hydro 28 Resma (Acetone week, dry) 1.0 g the ly 6.32 1 NTL = 780, x84Pl		1h @ 60°C = 5.69 HIBE la GO
1 hr @ 60°C 1.0 g the by 6.32 1 Nothing = 787/ x84Pl	· .	
1 hr @ 60°C 1.0 g the by 6.32 1 Nothing = 787/ x84Pl	0 7	.95g 150 - Cy=
1 hr @ 60°C 1.0 g the by 6.32 1 Nothing = 787/ x84Pl	K-3	1.52 t-Botyl hydro
1.0 g title by 6.32 1 NTh = 78% x8HPl-		28 Resons (Acetone week, dry)
1.0 g title by 6.32 1 NTh = 78% x8HPl-		
Chas Kollan		1.0 g title by 6.32 , I Within = 78% x 8HPlens
Chas Kollan		
		Chip Kolley
	1	