

科技创新类通识课程

# 运筹与决策

浙江大学数学科学学院 谈之奕



### 数学规划



- 若干个变量在满足一些等式或不等式限制条件下,使一个或多个目标函数取得最大值或最小值
- 极值问题
  - 求函数  $f(\mathbf{x})$ 在  $\mathbf{x} \in S$  上的 极大(小)值
- 条件极值
  - 求函数  $f(\mathbf{x})$  在满足  $h_j(\mathbf{x}) = 0, \quad j = 1, \dots, t$  条件下的极大(小)值

• 数学规划



#### 分类



- 线性规划与非线性规划
  - 线性规划: 目标函数为线性函数,约束条件为线性等式或不等式
  - 非线性规划:目标函数为非线性函数,或者至少有一个约束条件为非线性等式或不等式
    - 二次规划(Quadratic Programming):目标函数为二次函数,约束条件为线性等式或不等式
    - 带二次约束的二次规划(Quadratically Constrained Quadratic Program, QCQP): 目标函数为二次函数,约束条件为线性或二次等式或不等式
- 整数规划: 至少有一个决策变量限定取整数值
  - 混合整数规划(Mixed Integer Programming, MIP): 部分决策 变量取整数值
  - 0-1规划:所有决策变量都取 0 或 1



#### 问题建模

**M**沙儿学 ZheJlang University 运筹与决策

- 将实际问题表示成数学规划的 形式使得可以借助数学规划的 算法或软件求解一些具体的实 例,也可利用数学规划的理论 和方法分析解决问题
- 建立实际问题的数学规划模型 一般包含确定决策变量、给出 目标函数、列出约束条件等步 骤





Williams HP. Model Building in Mathematical Programming. Wiley, 2013.

Chen DS, Batson RG, Dang Y. Applied Integer Programming: Modeling and Solution. Wiley, 2011.



- 食谱问题 (diet problem)
  - 在市场上可以买到 n种不同的食品,第 j种食品的单位售价为  $c_j$
  - 人体正常生命活动过程需要 m 种基本营养成分,一个人每天至少需要摄入第 i 种营养成分  $b_i$  个单位
  - 每单位第j种食物包含第i种营养成分 $a_{ij}$ 个单位
  - 在满足人体营养需求的前提下,如何寻找最经济的配食方案



George Joseph Stigler (1911-1991) 美国经济学家 1982年诺贝尔经 济学奖得主





- 决策变量: 食谱中第 j 种食物的数量为  $x_j$  个单位,  $j=1,\dots,n$
- 目标函数: 所有食物费用之和  $\sum_{j=1}^{n} c_j x_j$
- 约束条件:
  - 满足人体营养需求
    - $x_i$  个单位第 j 种食物中含第 i 种营养成分  $a_{ij}x_j$  个单位
    - 人体摄入的第 i 种营养成分的总量为  $\sum_{i=1}^{n} a_{ij} x_{j}$
    - 每种营养成分应满足人体需要  $\sum_{i=1}^{n} a_{ij} x_j^{j=1} \geq b_i, i=1,\dots,m$
  - 摄入食物量非负  $x_j \ge 0, j = 1, \dots, n$



$$\min \sum_{j=1}^{n} c_j x_j$$

s.t. 
$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}, i = 1, \dots, m$$
  
 $x_{j} \ge 0, j = 1, \dots, n$ 

min cx

$$\mathbf{x} = (x_1, x_2, \cdots, x_n)^{\mathrm{T}}$$

s.t.  $Ax \ge b$ 

$$\mathbf{A} = (a_{ij})_{m \times n}$$

$$\mathbf{c} = (c_1, \dots, c_n)$$

$$x \ge 0$$

$$\mathbf{b} = (b_1, \dots, b_m)^{\mathrm{T}}$$

#### MATHEMATICA

```
In[55]:= c = \{4, 2, 3\};

b = \{4, 11\};

A = \begin{pmatrix} 2 & 0 & 2 \\ 4 & 3 & 1 \end{pmatrix};
```

LinearProgramming[c, A, b]

Out[58]=  $\{2, 1, 0\}$ 



#### MODEL:

nut/1..2/:b; food/1..3/:c,x; cost(nut,food):a; endsets Global optimal solution found. Objective value: Infeasibilities: Total solver iterations:

Variable Value X(1) 2.000000 X(2) 1.000000 X(3) 0.000000

10.00000

0.000000

#### a=2 0 2 4 3 1; enddata

c=4 2 3;

data:

min=@sum(food(j):c(j)\*x(j));
@for(nut(i): @sum(food(j):a(i,j)\*x(j))>b(i););
END



| 营养物质  | PDA           |
|-------|---------------|
| 热量    | 3000卡         |
| 蛋白质   | 70克           |
| 钙     | 0.8克          |
| 铁     | 12毫克          |
| 维生素A  | <b>5000IU</b> |
| 维生素B1 | 1.8毫克         |
| 维生素B2 | 2.7毫克         |
| 烟碱酸   | 18毫克          |
| 维生素C  | 75毫克          |

1943年美国研究院发布的从事中等强度活动,体重为154磅的成年男性9种营养成分的每天推荐摄入量(PDA)

TABLE A. NUTRITIVE VALUES OF COMMON FOODS PER DOLLAR OF EXPENDITURE, AUGUST 15, 1989

| Commodity                                                                                                              | Unit                                                           | Price<br>Aug. 15,<br>1939<br>(cents)                | Edible<br>Weight<br>per \$1.00<br>(grams)                    | Calories<br>(1,000)                                  | Protein<br>(grams)                              | Calcium<br>(grams)                   | Iron<br>(mg.)                            | Vitamin A<br>(1,000<br>I.U.) | Thiamine (mg.)                                     | Ribo-<br>flavin<br>(mg.)                       | Niacin<br>(mg.)                            | Ascorbic<br>Acid<br>(mg.) |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------|---------------------------|
| **1. Wheat Flour (Enriched) 2. Macaroni 3. Wheat Cereal (Enriched) 4. Corn Flakes 5. Corn Meal 6. Hominy Grits 7. Rice | 10 lb.<br>1 lb.<br>28 oz.<br>8 oz.<br>1 lb.<br>24 oz.<br>1 lb. | 36.0<br>14.1<br>24.2<br>7.1<br>4.6<br>8.5<br>7.5    | 12,600<br>3,217<br>3,280<br>3,194<br>9,861<br>8,005<br>6,048 | 44.7<br>11.6<br>11.8<br>11.4<br>36.0<br>28.6<br>21.2 | 1,411<br>418<br>377<br>252<br>897<br>680<br>460 | 2.0<br>.7<br>14.4<br>.1<br>1.7<br>.8 | 365<br>54<br>175<br>56<br>99<br>80<br>41 | 30.9                         | 55.4<br>3.2<br>14.4<br>13.5<br>17.4<br>10.6<br>2.0 | 33.3<br>1.9<br>8.8<br>2.3<br>7.9<br>1.6<br>4.8 | 441<br>68<br>114<br>68<br>106<br>110<br>60 |                           |
| 71. Tea 72. Cocoa 73. Chocolate 74. Sugar 75. Corn Sirup 76. Molasses 77. Strawberry Preserves                         | 1 lb.<br>8 oz.<br>8 oz.<br>10 lb.<br>24 oz.<br>18 oz.<br>1 lb. | 17.4<br>8.6<br>16.2<br>51.7<br>13.7<br>13.6<br>20.5 | 652<br>2,637<br>1,400<br>8,773<br>4,966<br>3,752<br>2,213    | 8.7<br>8.0<br>84.9<br>14.7<br>9.0<br>6.4             | 287<br>77<br>—<br>—<br>—<br>—                   | 3.0<br>1.3<br>                       | 72<br>39<br>74<br>244<br>7               | .2                           | 2.0<br>.9                                          | 2.3<br>11.9<br>3.4<br>7.5                      | 42<br>40<br>14<br>5<br>146<br>3            |                           |

77种常见食物所含各种营养成分数量(以价值1美元计)

G. J. Stigler, The Cost of Subsistence, *Journal of Farm Economics*, 27, 303-314, 1945



| 食品种类                  | Stigler所 | 得近似解   | 最优解                                    |        |  |
|-----------------------|----------|--------|----------------------------------------|--------|--|
| (选自77种常用食品)           | 年摄入量     | 费用(\$) | 年摄入量                                   | 费用(\$) |  |
| 小麦粉(Wheat Flour)      | 370磅     | 13.33  | 299磅                                   | 10.78  |  |
| 炼乳(Evaporated Milk)   | 57加仑     | 3.84   |                                        |        |  |
| 卷心菜(Cabbage)          | 111磅     | 4.11   | 111磅                                   | 4.10   |  |
| 菠菜(Spinach)           | 23磅      | 1.85   | 23磅                                    | 1.83   |  |
| 干菜豆(Dried Navy Beans) | 285磅     | 16.80  | 378磅                                   | 22.29  |  |
| 牛肝(Beef Liver)        |          |        | 2.57磅                                  | 0.69   |  |
| 年度总费用                 |          | 39.93  |                                        | 39.69  |  |
| (以1939年度价格计算)         |          | 37.73  | The little grade and the second second | 37.07  |  |



#### 运输问题



## • 运输问题(Transportation Problem)

- 某货物有m个产地,产地i的产量为 $a_i$ ,  $i=1,\dots,m$ ,n个销地,销地j的销量为 $b_i$ ,  $j=1,\dots,n$
- 由产地 i 到销地 j 的运输单价为  $c_{ii}$  ,  $i=1,\dots,m,\ j=1,\dots,n$
- 产销平衡, $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$
- 如何调运货物从产地到销地, 可使总运输费用最小

1925年全球主要港口到港离港货物量(百万吨)

Koopmans TC. Optimum utilization of the transportation system. Econometrica, 17(S), 136-146, 1949.

|                       | 到港    | 离岗    | 净值   |
|-----------------------|-------|-------|------|
| 纽约(New York )         | 23.5  | 32.7  | -9.2 |
| 旧金山(San Francisco)    | 7.2   | 9.7   | -2.5 |
| 圣托马斯(St. Thomas)      | 10.3  | 11.5  | -1.2 |
| 布宜诺斯艾利斯(Buenos Aires) | 7.0   | 9.6   | -2.6 |
| 安托法加斯塔(Antofagasta)   | 1.4   | 4.6   | -3.2 |
| 鹿特丹(Rotterdam)        | 126.4 | 130.5 | -4.1 |
| 里斯本 (Lisbon)          | 37.5  | 17.0  | 20.5 |
| 雅典(Athens)            | 28.3  | 14.4  | 13.9 |
| 敖德萨(Odessa)           | 0.5   | 4.7   | -4.2 |
| 拉各斯(Lagos)            | 2.0   | 2.4   | -0.4 |
| 德班 (Durban)           | 2.1   | 4.3   | -2.2 |
| 孟买 (Bombay)           | 5.0   | 8.9   | -3.9 |
| 新加坡(Singapore)        | 3.6   | 6.8   | -3.2 |
| 横滨(Yokohama)          | 9.2   | 3.0   | 6.2  |
| 悉尼(Sydney)            | 2.8   | 6.7   | -3.  |

### 运输问题



#### • 决策变量

• *x<sub>ij</sub>* : 产地 *i* 调运到 销地 *j* 的货物数量

$$\min \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

s.t. 
$$\sum_{j=1}^{n} x_{ij} = a_i, i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = b_{j}, j = 1, \dots, n$$

$$x_{ij} \ge 0$$



以净输入港口为产地,净输出港口为销地的运输问题的最优解,给出了最优空船调运路线

#### 下料问题



- 下料问题(Cutting-Stock Problem)
  - 给定生产一批产品所需的某种材料的大小与数量列表,如何从相同规格的原料中下料,使所用的原料最少

现有15米长的钢管若干,生产某产品需4米,5米,7米长的钢管各100,150,200根,如何截取方能使材料最省如何选择决策变量

- 装箱问题(bin-packing problem)
  - 给定一系列大小已知的物品 和若干个容量相同的箱子, 如何将物品放入箱子中,使 所用箱子数尽可能少







#### 下料问题



- 列举所有可能的截取方式
- 决策变量
  - $x_i$ : 按第 i 种方式截取的原料的数量,  $i=1,\dots,7$
  - $x_i$  必须取正整数值

| 方式 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|----|---|---|---|---|---|---|---|
| 7米 | 2 | 1 | 1 | 0 | 0 | 0 | 0 |
| 5米 | 0 | 1 | 0 | 3 | 2 | 1 | 0 |
| 4米 | 0 | 0 | 2 | 0 | 1 | 2 | 3 |
| 余料 | 1 | 3 | 0 | 0 | 1 | 2 | 3 |

min 
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$
  
 $s.t.$   $2x_1 + x_2 + x_3$   $\geq 200$   
 $x_2 + 3x_4 + 2x_5 + x_6$   $\geq 150$   
 $2x_3 + x_5 + 2x_6 + 3x_7 \geq 100$   
 $x_i \geq 0$  且  $x_i$  为整数,  $i = 1, 2, \dots, 7$ .

#### 选址问题

Mがよう ZhoJiang University 运筹与决策

#### • 选址问题

- 设在平面上有 n 个点,第 j 个点的坐标为  $(x_i, y_i)$
- 求一个面积最小的圆,使这*n*个点均为 该圆内的点

A QUESTION IN THE GEOMETRY OF SITUATION.

By J. J. SYLVESTER.

It is required to find the least circle which shall contain a given system of points in a plane.

HE

QUARTERLY JOURNAL

OP

PURE AND APPLIED

MATHEMATICS.

EDITED BY

J. J. SYLVESTER, M.A., F.R.S.,
PROFESSOR OF MATHEMATICS IN THE ROYAL MILITARY ACADEMY,
WOOLWICH; AND

N. M. FERRERS, M.A.,

FELLOW OF GONVILLE AND CAIUS COLLEGE, CAMBRIDGE:

ASSISTED BY

G. G. STOKES, M.A., F.R.S.,

A. CAYLEY, M.A., F.R.S., LATE FELLOW OF TRINITY COLLEGE, CAMBRIDGE; AND

M. HERMITE,

CORRESPONDING EDITOR IN PARIS.

VOL. I.

ο τι ούσία πρός γένεσιν, έπιστημή πρός πίστιν καὶ διάνοια πρός εἰκασίαν ἔστι,

LONDON:

JOHN W. PARKER AND SON, WEST STRAND.

1857.

#### 选址问题



- 选址问题
  - 决策变量: 圆心(x<sub>0</sub>, y<sub>0</sub>), 半径 r
  - 目标函数: r<sup>2</sup>
  - 约束条件:每个点到圆心的距离不超过半径

 $\min r^2$ 

带二次约束的二次规划

s.t. 
$$(x_i - x_0)^2 + (y_i - y_0)^2 \le r^2$$
,  $i = 1, 2, \dots, n$ 

• 定义新决策变量  $\lambda = r^2 - (x_0^2 + y_0^2)$  替代 r

min 
$$\lambda + x_0^2 + y_0^2$$

二次规划

s.t. 
$$\lambda + 2x_0 x_i + 2y_0 y_i \ge x_i^2 + y_i^2$$
,  $i = 1, 2, \dots, n$ 



James Joseph Sylvester (1814-1897) 英国数学家

$$x_i^2 - 2x_0x_i + x_0^2 + y_i^2 - 2y_0y_i + y_0^2 \le r^2 \implies x_i^2 - 2x_0x_i + y_i^2 - 2y_0y_i \le r^2 - x_0^2 - y_0^2 = \lambda$$

#### 数学规划



- 建立实际问题数学规划的原则与技巧
  - 选择合适的决策变量,数量适中,目标函数和约束条件表达清晰、形式简单
  - 约束条件完整反映问题要求,不遗漏,不冗余。确保数学规划的最优值与原问题的最优值一致
  - 善于转化和变形,一般应尽量减少非线性约束和整数取值限制,灵活处理绝对值、分段函数等复杂情况
  - 善于运用0-1变量建立决策变量之间的联系和描述逻辑关系
  - 结合计算求解检验、修正和改进已有规划

