Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Fig. 9.2-1. Reduced thermal conductivity for monatomic substances as a function of the reduced temperature and pressure [E. J. Owens and G. Thodos, *AlChE Journal*, 3, 454–461 (1957)]. A large-scale version of this chart may be found in O. A. Hougen, K. M. Watson, and R. A. Ragatz, *Chemical Process Principles Charts*, 2nd edition, Wiley, New York (1960).

- Si on connaît la conductivité k d'un gaz en un point expérimental (T,P),
- et on connaît les propriétés critiques
 T_c et P_c.
- Alors, on évalue sur le graphique la valeur de k_R et ensuite la valeur de k_C sera évaluée en faisant simplement k_C= k/k_R.
- Par la suite il sera facile de déterminer la conductivité en tout autre point.

Tr=T/Tc: température réduite

Lorsque les données de conductivité thermique pour un composé particulier ne peuvent pas être trouvées, on peut effectuer une estimation en utilisant ce graphique qui est basé sur les données de conductivité thermique pour plusieurs substances monoatomiques.

Fig. 9.2-1. Reduced thermal conductivity for monatomic substances as a function of the reduced temperature and pressure [E. J. Owens and G. Thodos, *AIChE Journal*, 3, 454–461 (1957)]. A large-scale version of this chart may be found in O. A. Hougen, K. M. Watson, and R. A. Ragatz, *Chemical Process Principles Charts*, 2nd edition, Wiley, New York (1960).

Tr=T/Tc: température réduite

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Exemple d'application

Estimer la conductivité thermique de l'éthane (C2H6) à 100.7°F et 191.1 atm. Avec:

$$T(^{\circ}F) = \frac{9}{5}t(^{\circ}C) + 32$$

à partir de :

- la valeur expérimentale connue: k=0.0159 Btu/hr.ft.°F à 100.7°F et 1 atm. (1 Btu=1055,06 J; 1feet (ft)=0,30 m)
- Point critique: Données T_c=32.4^oC et P_c=48.2atm.

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Réponse:

Une valeur mesurée de κ est connue. On calcule T_r et P_r dans les conditions de la valeur mesurée.

$$T_r = \frac{T_{\exp\acute{e}rim}}{T_c} = \frac{100.7 \,^{\circ} F}{1.8 \,^{*} T_c + 32} = \frac{100.7}{1.8 \,^{*} 32.4 + 32} = 1.115$$

$$P_r = \frac{P_{\text{exp\'erim}}}{P_c} = \frac{1}{48.2} = 0.021$$

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Réponse:

Maintenant, on calcule T_r et P_r dans les conditions où on veut déterminer la conductivité:

$$T_r = \frac{T_{conditions}}{T_c} = \frac{100.7 \,^{\circ} F}{1.8 \,^{*} T_c + 32} = \frac{100.7}{1.8 \,^{*} 32.4 + 32} = 1.115$$

$$P_r = \frac{P_{conditions}}{P_c} = \frac{191.9}{48.2} = 3.98$$

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Fig. 9.2-1. Reduced thermal conductivity for monatomic substances as a function of the reduced temperature and pressure [E. J. Owens and G. Thodos, AIChE Journal, 3, 454–461 (1957)]. A large-scale version of this chart may be found in O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles Charts, 2nd edition, Wiley, New York (1960).

Donc:

$$\kappa = \kappa_r \kappa_c = 2.07 * 0.0442 = 0.0914 \frac{Btu}{hr}$$
 ft. F

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Exercice 1: Estimer la conductivité thermique de l'éthane à T=190 °F et P= 100 atm

à partir des valeurs expérimentales k = 0.0159 Btu/hr. ft .F à 1 atm et 153°F.

Données $T_c=32.4^{\circ}C$ et $P_c=48.2$ atm

Exercice 2: Calculez la conductivité thermique du tétrachlorométhane CCl₄ (liquide saturé) à 45 degrés C.

à partir des valeurs expérimentales k=0.09929 W/m.k à 300K Données T_c=556.4K, P_c=45 atm

DÉTERMINATION DE LA CONDUCTIVITÉ THERMIQUE DES GAZES

Théorie cinétique des gaz (Lennard-Jones), propose de calculer la conductivité thermique k pour un gaz monoatomique par:

$$k=1.9891\times10^{-4} \frac{\sqrt{T/M}}{\sigma^2 \Omega_k}$$
 Cal cm⁻¹s⁻¹K⁻¹

Relation Chapman-Enskog

$$T[K] \sigma [A^0] M[g/mol]$$

Table E-1 → paramètres de Lennard-Jones

Table E.1 Lennard-Jones (6-12) Potential Parameters and Critical Properties

	M	Lennard-Jones parameters			Critical properties ^{g,h}					
Substance	Molecular Weight M	σ (Å)	ε/K (K)	Ref.	T _c (K)	p _c (atm)	\tilde{V}_c (cm ³ /g-mole)	μ_c (g/cm·s × 10 ⁶)	k_c (cal/cm·s·K×10°)	
Light element	ks:									-
H ₂	2.016	2.915	38.0	а	33.3	12.80	65.0	34.7	_	
He	4.003	2.576	10.2	а	5.26	2.26	57.8	25.4	_	Constantes de
Noble gases:										Lennard-Jone
Ne	20.180	2.789	35.7	а	44.5	26.9	41.7	156.	79.2	
Ar	39.948	3.432	122.4	b	150.7	48.0	75.2	264.	71.0	
Kr	83.80	3.675	170.0	b	209.4	54.3	92.2	396.	49.4	
Xe	131.29	4.009	234.7	b	289.8	58.0	118.8	490.	40.2	
Simple polyat	tomic gases:									-
Air	28.964	3.617	97.0	а	132.4 ⁱ	37.0'	86.7 ⁱ	193.	90.8	
N_2	28.013	3.667	99.8	b	126.2	33.5	90.1	180.	86.8	
O_2	31.999	3.433	113.	а	154.4	49.7	74.4	250.	105.3	
CO	28.010	3.590	110.	а	132.9	34.5	93.1	190.	86.5	
CO ₂	44.010	3.996	190.	а	304.2	72.8	94.1	343.	122.	
NO	30.006	3.470	119.	а	180.	64.	57.	258.	118.2	
N_2O	44.012	3.879	220.	а	309.7	71.7	96.3	332.	131.	
SO ₂	64.065	4.026	363.	c	430.7	77.8	122.	411.	98.6	
F_2	37.997	3.653	112.	а	-	_	-	_	_	
Cl ₂	70.905	4.115	357.	а	417.	76.1	124.	420.	97.0	
Br_2	159.808	4.268	520.	а	584.	102.	144.	_	_	
I ₂	253.809	4.982	550.	а	800.					_
Hydrocarbons	s:									
CH ₄	16.04	3.780	154.	b	191.1	45.8	98.7	159.	158.	
CH=CH	26.04	4.114	212.	d	308.7	61.6	112.9	237.	_	

Paramètres de Lennard-Jones pour quelques gazes

Table E.2Collision Integrals for Use with the Lennard-Jones (6–12) Potential for thePrediction of Transport Properties of Gases at Low Densities*a,b,cConstantes de

	$\Omega_{\mu} = \Omega_{k}$			$\Omega_{\mu} = \Omega_{k}$	Lennard-Jones
$\kappa T/arepsilon$	(for viscosity	$\Omega_{\mathfrak{D},AB}$	KT/ε	(for viscosity	$\Omega_{\mathfrak{T},AB}$
or	and thermal	(for	or	and thermal	(for
$\mathrm{K}T/arepsilon_{AB}$	conductivity)	diffusivity)	KT/ε_{AB}	conductivity)	diffusivity)
0.30	2.840	2.649	2.7	1.0691	0.9782
0.35	2.676	2.468	2.8	1.0583	0.9682
0.40	2.531	2.314	2.9	1.0482	0.9588
0.45	2.401	2.182	3.0	1.0388	0.9500
0.50	2.284	2.066	3.1	1.0300	0.9418
0.55	2.178	1.965	3.2	1.0217	0.9340
0.60	2.084	1.877	3.3	1.0139	0.9267
0.65	1.999	1.799	3.4	1.0066	0.9197
0.70	1.922	1.729	3.5	0.9996	0.9131
0.75	1.853	1.667	3.6	0.9931	0.9068
0.80	1.790	1.612	3.7	0.9868	0.9008
0.85	1.734	1.562	3.8	0.9809	0.8952
0.90	1.682	1.517	3.9	0.9753	0.8897
0.95	1.636	1.477	4.0	0.9699	0.8845
1.00	1.593	1.440	4.1	0.9647	0.8796
1.05	1.554	1.406	4.2	0.9598	0.8748
1.10	1.518	1.375	4.3	0.9551	0.8703
1.15	1.485	1.347	4.4	0.9506	0.8659
1.20	1.455	1.320	4.5	0.9462	0.8617
1.25	1.427	1.296	4.6	0.9420	0.8576
1.30	1.401	1.274	4.7	0.9380	0.8537
1.35	1.377	1.253	4.8	0.9341	0.8499
1.40	1.355	1.234	4.9	0.9304	0.8463
1.45	1.334	1.216 Pr. N	ሳ. El M ரூ றுi	0.9268	0.8428
1.50	1.315	1.199	6.0	0.8962	0.8129

Constantes de Lennard-Jones

1.50	1.315	1.199	6.0	0.8962	0.8129
1.55	1.297	1.183	7.0	0.8727	0.7898
1.60	1.280	1.168	8.0	0.8538	0.7711
1.65	1.264	1.154	9.0	0.8380	0.7555
1.70	1.249	1.141	10.0	0.8244	0.7422
1.75	1.235	1.128	12.0	0.8018	0.7202
1.80	1.222	1.117	14.0	0.7836	0.7025
1.85	1.209	1.105	16.0	0.7683	0.6878
1.90	1.198	1.095	18.0	0.7552	0.6751
1.95	1.186	1.085	20.0	0.7436	0.6640
2.00	1.176	1.075	25.0	0.7198	0.6414
2.10	1.156	1.058	30.0	0.7010	0.6235
2.20	1.138	1.042	35.0	0.6854	0.6088
2.30	1.122	1.027	40.0	0.6723	0.5964
2.40	1.107	1.013	50.0	0.6510	0.5763
2.50	1.0933	1.0006	75.0	0.6140	0.5415
2.60	1.0807	0.9890	100.0	0.5887	0.5180

Exemple: Calculer la conductivité thermique du néon (Ne) à 1atm et 373.2K.

La masse molaire de Ne est 20.183 g/mol.

Table E.1: on trouve les paramètres de Lennard-Jones: σ ; ε/k

$$\sigma = 2.789 \stackrel{0}{A}$$
 et $\mathcal{E}_{k} = 35.7 K$

À T=373.2K, on forme le rapport:
$$kT/\varepsilon = 373.2/\sqrt{35.7} = 10.45$$

Exemple (suite):

À partir de
$$kT/\varepsilon = 373.2/35.7 = 10.45$$

$$\kappa = (1.9891 \times 10^{-4}) \frac{\sqrt{M}}{\sigma^2 \Omega_{\nu}}$$

Table E.2, on trouve $\Omega_k = 0.821$, d'où

$$\kappa = (1.9891 \times 10^{-4}) \frac{\sqrt{373.2/20.183}}{(2.789)^2 (0.821)}$$

$$\kappa = 1.338 \times 10^{-4} \text{ cal/cmsK}$$

Gaz polyatomique

Étape (1)

on détermine d'abord la **viscosité** par la méthode décrite au chapitre 1(transfert de quantité de mouvement), elle s'exprime en g/cm.s

$$\mu = 2.6693 \times 10^{-5} \frac{\sqrt{MT}}{\sigma^2 \Omega_{\mu}}$$

Étape 2: on utilise ensuite la relation approximée suivante (Eucken):

$$k = \left(\tilde{C}_p + \frac{5}{4}R\right)\mu/M \qquad \text{Avec} \qquad R = 1,987 \ cal \ / \ mol \ / \ K$$

Mélange de gazs

Formule de Wilke

$$k_{mix} = \sum_{i=1}^{n} \frac{x_i k_i}{\sum_{j=1}^{n} x_j \Phi_{ij}}$$

$$\Phi_{ij} = \frac{1}{\sqrt{8}} \left(1 + \frac{M_i}{M_j} \right)^{-\frac{1}{2}} \left[1 + \left(\frac{\mu_i}{\mu_j} \right)^{\frac{1}{2}} \left(\frac{M_j}{M_i} \right)^{\frac{1}{4}} \right]^2$$

Xi: fraction molaire de l'espèce i

Ki: conductivité thermique de l'espèce i

Mi: masse molaire de l'espèce i

μi: viscosité cinématique de l'espèce i

Conversion - unités

Gas law constant (R)	8.31451	J/g-mol·K
	8.31451×10^3	$kg \cdot m^2/s^2 \cdot kg - mol \cdot K$
	8.31451×10^7	$g \cdot cm^2/s^2 \cdot g \cdot mol \cdot K$
	1.98721	cal/g-mol·K
	82.0578	cm ³ atm/g-mol·K
	4.9686×10^{4}	$lb_m ft^2/s^2 \cdot lb - mol \cdot R$
	1.5443×10^{3}	$ft \cdot lb_f/lb-mol \cdot R$

Table F.3-5 Conversion Factors for Quantities Having Dimensions of ML/t^3T or F/tT (thermal conductivity)

Given a quantity in these units	Multiply by table value to convert to these units →	W/m·K or kg·m/s³·K	g·cm/s³·K or erg/s·cm·K	$lb_m ft/s^3 F$	$lb_f/s \cdot F$	cal/s·cm·K	k Btu/hr•ft•F
$W/m \cdot K = 1$	kg·m/s³·K	1	10 ⁵	4.0183	1.2489×10^{-1}	2.3901×10^{-3}	5.7780×10^{-1}
$g \cdot cm/s^3 \cdot K$		10-5	1	4.0183×10^{-5}	1.2489×10^{-6}	2.3901×10^{-8}	5.7780×10^{-6}
lb,, ft/s ³ F		2.4886×10^{-1}	2.4886×10^{4}	1	3.1081×10^{-2}	5.9479×10^{-4}	1.4379×10^{-1}
$lb_f/s \cdot F$		8.0068	8.0068×10^{5}	3.2174×10^{1}	1	1.9137×10^{-2}	4.6263
cal/s·cm·I	< ←	4.1840×10^{2}	4.1840×10^{7}	1.6813×10^{3}	5.2256×10^{1}	1	2.4175×10^{2}
Btu/hr · ft ·	F	1.7307	1.7307×10^{5}	6.9546	2.1616×10^{-1}	4.1365×10^{-3}	1