# **Sovereign Default with Bounded Rationality**

#### [INCOMPLETE AND COMMENTS WELCOME]

Chen Gao

June 11, 2025

National School of Development, Peking University

#### Outline

Motivation

Model

Theoretical Results

**Quantative Results** 

Recap

**Motivation** 

#### **Motivation**

#### The Stylized Facts:

- Emerging market sovereign spreads
   high and extremely volatile
- Crises ⇒ sudden spikes in spreads
- Standard models generated spreads ⇒ too low and too smooth

#### **Gap in Literature:**

 Most of the papers in this literature assume full rationality

Figure 1: Argentina's Spread (1983-2003)



Data Source: (Arellano, 2008)

# A Model with Bounded Rationality

**This paper**: Relax the full rationality assumption  $\implies$  **heterogeneous** Lenders

Boundedly rational agents (Information & Cognitive Costs ⇒ Heuristic decision)

#### **Key Results:**

Theoretical: Endogenous price discontinuity

· A new mechanism for sudden crises

**Quantitative**: Match high average spreads AND

- Extreme spread volatility
- Higher financial fragility (more debt & defaults)

Model

#### **Model Setup**

A small open economy with AR(1) potential output stream  $\{y_t\}_{t=0}^{\infty}$ :

$$\ln(y_{t+1}) = \rho \ln(y_t) + \varepsilon_{t+1}$$
, where  $\varepsilon_{t+1} \sim N(0, \sigma_{\varepsilon}^2)$ 

described by a kernel p(y', y)

The government maximizes:

$$\mathbb{E}_{0}\left[\sum_{t=0}^{\infty}\beta^{t}u\left(c_{t}\right)\right]$$

The government smooth consumption by borrowing from (and lending to) foreign creditors

5

#### **Government & Financial Market**

# The Sovereign Government

**Decision:** Default or Repay?

- If Default:
  - Output cost:  $y \rightarrow h(y) \le y$
  - · Excluded from credit markets
  - Re-entry with probability  $\theta$  each period
- If Repay:
  - · Honors current debt B
  - Chooses next period's assets B'

**Budget Constraint** (when repaying):

$$c = y + B - q(B', y)B'$$

#### The Financial Market

- Lenders: Competitive & Risk-Neutral
- Asset: One-period, non-contingent bond
- The Bond Pricing Equation:

$$q(B', y) = \frac{1 - \delta(B', y)}{1 + r}$$
 (1)

 $\delta(B',y)$ : probability of default on the new debt B'

#### **Recursive Government's Problem**

The Value of Default,  $V^D(y)$ 

$$V^{D}(y) = u(h(y)) + \beta \mathbb{E}_{y'} \left[ \theta V(0, y') + (1 - \theta) V^{D}(y') | y \right]$$
 (2)

The Value of Repayment,  $V^R(B, y)$ 

$$V^{R}(B,y) = \max_{B' > -Z} \left\{ u \left( y + B - q(B',y)B' \right) + \beta \mathbb{E}_{y'}[V(B',y')|y] \right\}$$
 (3)

The Optimal Decision & Overall Value Function, V(B, y)

Defaults if and only if  $V^D(y) > V^R(B, y)$ 

$$V(B,y) = \max \left\{ V^{R}(B,y), V^{D}(y) \right\}$$
 (4)

# **Default Probability with** $\lambda$ **-Rationality**

Assuming the market consists of two types of lenders:

#### Fraction $\lambda$ : Rational Lenders

$$\delta_{r}(B',y) = \mathbb{E}_{y'}\left[\mathbb{I}_{\{V^{D}(y')>V^{R}(B',y')\}}|y\right] = \int \mathbb{I}_{\{\dots\}}p(y,y')dy'$$
(5)

Fraction  $(1 - \lambda)$ : Boundedly Rational Lenders

**Motivation**: Information & cognitive costs

$$\delta_{ir}(B',y) = \mathbb{I}_{\{V^D(\mathbb{E}[y'|y]) > V^R(B',\mathbb{E}[y'|y])\}}$$
(6)

#### **Aggregate Market Belief**

The weighted average of the two groups' beliefs

$$\delta(\mathbf{B}', \mathbf{y}; \lambda) = \lambda \delta_{\mathbf{r}}(\mathbf{B}', \mathbf{y}) + (1 - \lambda) \delta_{i\mathbf{r}}(\mathbf{B}', \mathbf{y})$$
(7)



#### The Discontinuous Price Schedule

Bounded rationality  $\implies$  "price cliff"

#### **Theorem**

With a fraction  $(1 - \lambda) > 0$  of boundedly rational lenders, the equilibrium bond price schedule  $\mathbf{q}(\mathbf{B}', \mathbf{y}; \lambda)$  has a unique discontinuity at a critical debt threshold  $\tilde{\mathbf{B}}'(\mathbf{y})$ . Specifically:

The price drop at the threshold

$$\lim_{B'\to \tilde{B}'(y)^+} q(B',y;\lambda) - \lim_{B'\to \tilde{B}'(y)^-} q(B',y;\lambda) = \frac{1-\lambda}{1+r}$$

- For "safe" debt levels (B' >  $\tilde{B}'(y)$ ),  $q(B',y;\lambda) \ge q(B',y;1)$
- For "risky" debt levels (B' <  $\tilde{B}'(y)$ ),  $q(B',y;\lambda) \le q(B',y;1)$

**Intuition:** Shift in the beliefs of boundedly rational lenders  $\implies$  sudden drop in the market price

# **Implications & Dynamics**

#### **Implication 1: Endogenous Interest Rate Spikes**

#### Corollary

For adverse states (B, y) where  $B' < \tilde{B}'(y)$ , the resulting interest rate

$$r^{c}(B,y) = \frac{1}{q(B'(B,y),y;\lambda)} - 1$$

is **strictly higher** than in the fully rational benchmark

Implication 2: State-Dependent Financial Fragility

### **Proposition**

The critical debt threshold  $\tilde{B}'(y)$  is **decreasing** in y, i.e.,  $\frac{dB'(y)}{dy} < 0$ 

**Intuition:** In good times  $\implies$  lenders are more optimistic  $\implies$  the government sustain more debt before a crisis is triggered



# **Price Drop & Interest Rate Spike**



In adverse states (low y, high initial debt B)  $\Longrightarrow$  "forced" over the cliff  $\Longrightarrow$  **high** equilibrium interest rates

# **Equilibrium Policy & Financial Fragility**



Negligible "value effect" + the "price effect" dominates  $\implies$  more aggressive borrowing  $\implies$  endogenously more **fragile** 

# Recap

#### **Summary & Key Takeaways**

#### A New Mechanism for Sudden Crisis

Heterogeneous lender beliefs  $\implies$  both rational and boundedly rational agents

#### **Endogenous "Price Cliff"**

Endogenously generates a discontinuous bond price schedule

#### **Resolving the Spread Puzzles**

Can match the high average spreads observed in emerging markets

## **Endogenous Financial Fragility**

"Cheap" credit offered by optimistic lenders  $\implies$  induced to borrow more aggressively  $\implies$  endogenously more fragile