

19CSE337 Social Networking and Security

Lecture 23

Topics to Discuss

Evaluating Recommendations.

Evaluating Recommendations

- Recommendation algorithms can predict missing rates but we need mechanisms to evaluate the accuracy of predictions or recommendations.
- The methods are:
 - Evaluating accuracy of predictions.
 - Relevancy of recommendations.
 - Rankings of recommendations.

Evaluating accuracy of predictions

- Measure how close predicted ratings are to the true ratings.
- One simplest method Mean Absolute Error (MAE).

$$MAE = \frac{\sum_{ij} |\hat{r}_{ij} - r_{ij}|}{n}$$

Where n is the number of predicted ratings, $\hat{r_{ij}}$ is the predicted rating, r_{ii} is the true rating.

Evaluating accuracy of predictions

Normalized MAE (NMAE)

$$NMAE = \frac{MAE}{r_{\text{max}} - r_{\text{min}}}$$

Where r_{max} is the max. rate an item can take and r_{min} is the min. rate an item can take.

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i,j} (\hat{r}_{ij} - r_{ij})^2}.$$

Problem

 Consider the following table with both predicted ratings and true rating of five items. Calculate MAE, NMAE, RMSE?

Item	Predicted Rating	True Rating
1	1	3
2	2	5
3	3	3
4	4	2
5	4	1

Solution

The MAE, NMAE, and RMSE values are

$$MAE = \frac{|1-3|+|2-5|+|3-3|+|4-2|+|4-1|}{5} = 2.$$

$$NMAE = \frac{MAE}{5-1} = 0.5.$$

$$RMSE = \sqrt{\frac{(1-3)^2+(2-5)^2+(3-3)^2+(4-2)^2+(4-1)^2}{5}}.$$

$$= 2.28.$$

- When evaluating recommendations based on relevancy, ask users if they find the recommendation relevant or not.
- User will describe relevancy either as relevant or irrelevant.
- Based on selection of items for recommendations and their relevancy, four types are there: selected relevant, selected irrelevant, not-selected relevant, not-selected irrelevant.

	Selected	Not Selected	Total
Relevant	N_{rs}	N_{rn}	$\overline{N_r}$
Irrelevant	N_{is}	N_{in}	N_i
Total	N_s	N_n	N

 Precision: fraction of relevant items among recommended items.

$$P = \frac{N_{rs}}{N_s}$$

 Recall: probability of selecting a relevant item for recommendation.

$$R = \frac{N_{rs}}{N_r}$$

• F-measure: Harmonic mean of precision and recall.

$$F = \frac{2PR}{P + R}.$$

Problem

 Consider the following recommendation relevancy matrix. Calculate precision, recall and F-score.

	Selected	Not Selected	Total
Relevant	9	15	24
Irrelevant	3	13	16
Total	12	28	40

Solution

$$P = \frac{9}{12} = 0.75.$$

$$R = \frac{9}{24} = 0.375.$$

$$F = \frac{2 \times 0.75 \times 0.375}{0.75 + 0.375} = 0.5.$$

- We predict ratings for multiple products for a user.
- Ranking of products are based on its level of interestingness to the user.
- Rank correlation measures the correlation between predicted ranking and true ranking.

Spearman's rank correlation.

$$\rho = 1 - \frac{6\sum_{i=1}^{n}(x_i - y_i)^2}{n^3 - n}$$

Where n is the total number of items, x_i , $1 < x_i < n$, denote the rank predicted for an item i, y_i , $1 < y_i < n$ denote the true rank of item i.

Kendall's tau

A pair of items (i,j) are concordant if their ranks (x_i,y_i) and (x_i,y_i) are in order:

$$x_i > x_j$$
, $y_i > y_j$ or $x_i < x_j$, $y_i < y_j$

Or discordant if their corresponding ranks are not in order.

When $x_i=x_j$, or $y_i=y_j$ the pair is neither concordant nor discordant.

- Let c denote the total number of concordant item pairs and d the total number of discordant item pairs.
- Kendall's tau computes the difference between the two normalized by the item pairs.
- Kendall's tau takes the value in the range [-1,1].

$$\tau = \frac{c - d}{\binom{n}{2}}$$

 When the ranks completely agree, all pairs are concordant and Kendall's tau takes value 1 and when the ranks completely disagree, all pairs are discordant and Kendall's tau takes value -1.

Problem

 Consider the set of four items I={i₁, i₂, i₃, i₄} for which the predicted and true rankings are as follows.
 Calculate Kendall's tau for the items.

	Predicted Rank	True Rank
i_1	1	1
i_2	2	4
i_3	3	2
i_4	4	3

Solution

- The possible pairs are (i₁, i₂), (i₁, i₃), (i₁, i₄), (i₂, i₃), (i₂, i₄), (i₃, i₄).
- Check for (i₁, i₂).
 - 1<2, 1<4 -> concordant.
- Check for (i₁, i₃)
 - 1<3, 1<2 -> concordant.

$x_i >$	x_i	$y_i > y_i$	or	$x_i < x_j$,	$y_i < y_i$
101	"	\mathcal{I}^{i}	01	101	$\mathcal{I}^{\iota} \rightarrow \mathcal{I}^{\iota}$

	Predicted Rank	True Rank
i_1	1	1
i_2	2	4
i_3	3	2
i_4	4	3

Solution

The pair of items and their status {concordant/discordant} are

 (i_1, i_2) : concordant

 (i_1, i_3) : concordant

 (i_1, i_4) : concordant

 (i_2, i_3) : discordant

 (i_2, i_4) : discordant

 (i_3, i_4) : concordant

Thus, Kendall's tau for the rankings is

$$\tau = \frac{4-2}{6} = 0.33.$$

Thanks.....