Activité VII.3 Qu'est ce que le produit scalaire?

En mécanique, une force s'appliquant en un point est représentée par un vecteur dont la norme est proportionnelle à l'intensité de la force exprimée en Newton.

△ Exercice 1.

Sur les schémas ci-dessous, le mobile rectangulaire se déplace toujours suivant le vecteur \overrightarrow{AB} . On lui applique une force \overrightarrow{F} au point A. Quel semble être l'effet de cette force sur le déplacement du mobile ?

△ Exercice 2.

On considère 2 forces $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ s'appliquant en un point O telles que l'angle $(\overrightarrow{F_1}, \overrightarrow{F_2})$ ait pour mesure α .

La force résultante \overrightarrow{R} est égale à $\overrightarrow{R} = \overrightarrow{F_1} + \overrightarrow{F_2}$.

On prend $\|\overrightarrow{F_1}\| = F_1 = 10N$, $\|\overrightarrow{F_2}\| = F_2 = 50N$ et $\alpha = \frac{\pi}{6}$.

1°) Graphiquement.

En prenant pour unité graphique 1 cm pour 10N, représenter les forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et \overrightarrow{R} .

En mesurant sur la représentation, donner une valeur approchée de l'intensité de la résultante.

2°) Dans un repère.

On considère le repère orthonormal $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$ tel que le vecteur $\overrightarrow{\iota}$ ait la même direction et le même sens que la force $\overrightarrow{F_1}$.

- (a) Faire une figure et construire la force résultante \overrightarrow{R} .
- (b) Écrire les coordonnées de $\overrightarrow{F_1}$ en fonction de F_1 .
- (c) Écrire les coordonnées de $\overrightarrow{F_2}$ en fonction de F_2 et α .
- (d) Écrire les coordonnées de \overrightarrow{R} .
- (e) Établir la relation suivante $R^2 = F_1^2 + F_2^2 + 2F_1F_2cos\alpha$.
- (f) Calculer alors l'intensité de la résultante pour les valeurs numériques données de F_1 , F_2 et α .

Le nombre $F_1F_2\cos\alpha$ est appelé produit scalaire des vecteurs $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$.