IEEE 802.11 WLAN

Netzwerkgrundlagen

Markus Zeilinger¹

 ${}^1{\sf FH}$ Oberösterreich Department Sichere Informationssysteme

Sommersemester 2023

Wichtiger Hinweis

Alle Materialien, die im Rahmen dieser LVA durch den LVA-Leiter zur Verfügung gestellt werden, wie zum Beispiel Foliensätze, Audio-Aufnahmen, Übungszettel, Musterlösungen, ... dürfen ohne explizite Genehmigung durch den LVA-Leiter NICHT weitergegeben werden!

Überblick Funktechnologien (unvollständig!)

Distanz	Ausdehnung	Benennung	Technologien			
0 m	"Am Körper"	Wireless Body Area Networks (WBAN)	ZigBee, Bluetooth/BLE, Z-Wave, Thread & Matter,			
1 m	"In Griffweite"	Wireless Personal Area Networks (WPAN)	EnOcean, RFID/NFC, KNX-RF, IEEE 802.15.4,			
10 m	Raum		6LoWPAN, HomeMatic/BidCoS, DECT ULE,			
100 m	Gebäude	Wireless Local Area Network (WLAN)	IEEE 802.11 WLAN			
1 km	Campus		IEEE 802.11 WLAN			
10 km	Stadt, Ort	Wireless Metropolitan Area Network (WMAN)	WiMAX			
100 km	Land/Staat	Wireless Wide Area Network (WWAN)	LoRaWAN, SigFox,			
1000 km	Kontinent	villeless vilde Area Network (VVVAN)	3G/4G/5G, NarrowBand-IoT, LTE-M			
10000 km	Planet Erde	I	nternet			

3 | 34

Funktechnologien, Interest Groups, Standards & Links

Technologie	Hersteller/Treiber	Link
Zigbee	Connectivity Standards Alliance (CSA)	https://csa-iot.org/all-solutions/zigbee/
Bluetooth	Bluetooth SIG	https://www.bluetooth.com/
Z-Wave	Z-Wave Alliance	https://z-wavealliance.org/
Thread	The Thread Group	https://www.threadgroup.org/
Matter	Connectivity Standards Alliance (CSA)	https://csa-iot.org/all-solutions/matter/
EnOcean	EnOcean Alliance	https://www.enocean-alliance.org/de/
RFID/NFC	NFC Forum	https://nfc-forum.org/
KNX-RF	KNX Association	https://www.knx.org/
6LoWPAN	6lowpan WG IETF (beendet)	https://datatracker.ietf.org/wg/6lowpan/about/
HomeMatic/BidCoS	eQ-3	https://www.eq-3.de/
DECT ULE	ULE Alliance	https://www.ulealliance.org/
IEEE 802.11 WLAN	Wi-Fi Alliance	https://www.wi-fi.org/
WiMAX	WiMAX-Forum	https://wimaxforum.org/
LoRaWAN	LoRa Alliance	https://lora-alliance.org/
SigFox	SigFox	https://www.sigfox.com/
3G/4G/5G, NB-IoT, LTE-M	3GPP	https://www.3gpp.org/

Medium Funk

- ► Viele Funktechnologien arbeiten auf lizenz- und meist auch genehmigungsfrei nutzbaren Frequenzbändern.
- ► ISM (Industrial, Scientific and Medical) Band, z. B.
 - ▶ 433.05 434.79 MHz (Autoschlüssel, Rauchmelder, Babyfon, Thermometer)
 - 2.4 2.5 GHz (WLAN, ZigBee, Bluetooth)
 - ► 5,725 GHz 5,875 GHz (WLAN)
 - ► 5,925 Ghz 7,125 GHz (WLAN, Wi-Fi 6) (!! NEW !!)
- ► SRD (Short Range Device) Band, z. B.
 - ▶ 863 870 MHz (Thermometer, Alarmanalagen, ZigBee, IEEE 802.15.4)
- Das Medium Funk ist störungsanfälliger als verdrahtete Kommunikation!
- Am Medium Funk sind Maßnahmen zur Realisierung der Schutzziele der Informationssicherheit Pflicht (Abhörbarkeit)!

IEEE 802.11 Wireless LAN (WLAN)

- ► IEEE 802.11 ist eine Standard-Familie für drahtlose Kommunikation im LAN-Bereich.
- ▶ Die erste Standardversion wurde 1997 veröffentlicht (aktuell IEEE 802.11-2020).
- Wi-Fi Alliance: Vereinigung von rund 900 Herstellern von Equipment im WLAN-Bereich.
 - Ziel: Sicherstellung der Kompatibilität von WLAN-Produkten verschiedener Hersteller.
- ▶ IEEE 802.11 WG: http://grouper.ieee.org/groups/802/11/
- ▶ WG Status: http://www.ieee802.org/11/Reports/802.11_Timelines.htm

IEEE 802.11 Standard - Historie

Jahr	Standard	Frequenz	Datenrate	Bemerkung				
1997	IEEE 802.11	2.4 GHz	2 Mbps	Wired Equivalent Privacy (WEP)				
1999	IEEE 802.11b	2.4 GHz	11 Mbps					
1999	IEEE 802.11a	5 GHz	54 Mbps	Wegen Interferenzen mit z. B. Radarsystemen in Europa kaum Verbreitung				
2001	WEP broken!	Seit	2001 gilt WE	P (bzw. der verwendete Stream Cipher RC4 []) als gebrochen!				
2003	IEEE 802.11g	2.4 GHz	54 Mbps					
2003	WPA			Wi-fi Protected Access (WPA)				
2004	IEEE 802.11i		MAC Securi	ty Enhancements (aka Wi-fi Protected Access 2 [WPA2])				
2009	IEEE 802.11n	2.4 & 5 GHz	600 Mbps	MIMO				
2011	WPS broken!		Mehre	ere Schwachstellen in Wi-fi Protected Setup (WPS)				
2013	IEEE 802.11ac	5 GHz	6.93 Gbps					
2017	KRACK			KRACK (Key Reinstallation AttaCK) []				
2018	WPA3			Wi-fi Protected Access 3 (WPA3)				
2021	IEEE 802.11-2020	Letzte ku	mmulierte Sta	ndard-Version (= IEEE 802.11-2016 + alle Erweiterungen seit 2016)				
2021	IEEE 802.11ax	2.4, 5 & 6 GHz	9.60 Gbps	High Efficiency WLAN (höhere Datenraten, geringer Latenz)				
2021	IEEE 802.11ay	60 GHz	20-40 Gbps	Nachfolger IEEE 802.11ad				

Quelle: http://www.ieee802.org/11/Reports/802.11_Timelines.htm

IEEE 802.11 Standard - Upcoming

Jahr	Standard	Frequenz	Datenrate	Bemerkung
2025?	IEEE 802.11be	2.4, 5 & 6 GHz	30 Gbps	Extremely High Throughput (EHT) (IEEE 802.11ax Nachfolger)
2026?	IEEE 802.11bi			Enhanced Data Privacy
2024?	IEEE 802.11bh			Randomized and Changing MAC Addresses

Quelle: http://www.ieee802.org/11/Reports/802.11_Timelines.htm

Aktuelle Zertifizierungsprogramme der Wi-fi Alliance

- ► Im Oktober 2018 veröffentlicht die Wi-fi Alliance ein neues Benennungsschema für WLAN-Generationen¹:
 - ► Wi-Fi 1-3: Legacy IEEE 802.11b-g
 - ► Wi-Fi 4: IEEE 802.11n
 - Wi-Fi 5: IEEE 802.11ac (State-of-the-Art)
 - Wi-Fi 6: IEEE 802.11ax (State-of-the-Art)
 - ▶ Wi-Fi 6E²: IEEE 802.11ax im 6 GHz Bereich
 - ► Wi-Fi 7³: IEEE 802.11be (angekündigt)

¹ https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-6

² https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-brings-wi-fi-6-into-6-ghz

³ https://www.wi-fi.org/who-we-are/current-work-areas#Wi-Fi%207

WLAN Equipment

- ► NICs für Endgeräte (Station, STA)
 - ▶ Via (Mini-)PCI(e), USB, früher: PCMCIA und Cardbus
- Access Points (AP)
 - Erlauben Kommunikation zw. den STAs im WLAN und zw. den STAs und dem verdrahteten Netz.
- WLAN Router, WLAN Repeater, Mesh Router
 - Equipment mit WLAN-Schnittstelle und erweiterten Funktionen (z. B. DSL/Kabel Modem, Switch, Firewall, Mesh Funktionalität, ...)
- Antennen
 - Rundstrahlantennen zur Abdeckung von Flächen (Räume, Stockwerke, Areale).
 - ▶ Richtfunkantennen (für Punkt-zu-Punkt-Verbindungen, z. B. zwischen Gebäuden).
 - ► Multi Input Multi Output (MIMO) Technik.

WLAN Modi

Infrastructure Mode

Abbildung 1: Infrastructure Mode: Der AP stellt die Kommunikation zwischen den STAs und vom/ins verdrahtete Netzwerk (Distribution System) sicher.

Abbildung 2: Ad-hoc Mode: Direkte STA zu STA Kommunikation ohne Infrastruktur.

WLAN Modi

Mesh Mode

Abbildung 3: Mesh Mode (IEEE 802.11s): Das Distribution System kann (auch) drahtlos sein, d. h. Mesh Router können Daten über die drahtlose Schnittstelle an andere Mesh Router weitergeben.

- ▶ Basic Service Set (BSS) = ein Access Point (AP) und die damit assoziierten Stations (STA).
- ► Independent Basic Service Set (IBSS) = die STAs eines Ad-hoc-Netzwerks.
- Extended Service Set (ESS) = mehrere BSS und Systeme im verdrahteten Netz verbunden über ein Distribution System (DS) (z. B. Campus WLAN).
- ▶ BSSID, IBSSID = MAC-Adresse des APs am WLAN Interface im BSS o. zufällig generiert im IBSS.
- ► ESSID, SSID = logischer Name des ESS (z. B. fhhgb, eduroam).

Frame Format nach IEEE 802.11

2 Byte	2 Byte	6 Byte	0/6 Byte	0/6 Byte	0/2 Byte	0/6 Byte	0/2 Byte	0/4 Byte	0 - max. 2304 Bytes	4 Bytes
Frame Control	Duration	Address 1	Address 2	Address 3	Sequence Control	Address 4	QoS Control	HT Control	Nutzdaten	Frame Check Sequence
										$\overline{}$
				Header						Trailer

- ► IEEE 802.11 WLAN kennt drei verschiedene Frame-Typen (definiert in Frame Control [FC]):
 - ► Management Frames: Steuerung der Services eines IEEE 802.11 WLANs, v. a. Ausgleich der fehlenden Link-Charakteristik.
 - ► Control Frames: Medienzugriffssteuerung, Acknowledgements
 - Data Frames: Nutzdaten
- ▶ Die vier Adressfelder werden je nach Quelle und Ziel des Frames (STA \rightarrow STA, STA \rightarrow Ethernet, Ethernet \rightarrow STA, ...) genutzt.
- ► Für IEEE 802.11/802.11a/b/g/n/ac ist die max. Framegröße 2304 Bytes, für IEEE 802.11ad 7920 Bytes (Maximum Transmission Unit, MTU) (s. [3, S. 768]).

Management Frames I

- ➤ Steuerung der Services eines IEEE 802.11 Netzwerks (z. B. Auffinden von APs, An-/Abmelden vom Netzwerk, ...).
- Ausgleichen der fehlenden Link-Charakteristik.

Subtype	Bezeichnung	Beschreibung
0000	Association Request	Erstellen und Übertragen
0001	Association Response	von AP-STA-Beziehungen
0010	Reassociation Request	(= Associations).
0011	Reassociation Request	(= Associations).
0100	Probe Request	Auffinden von APs/Netzen
0101	Probe Response	(allgemein oder bestimmt).
1000	Beacon	Signalisierung seiner Dienste durch einen AP.
1010	Diassociation	Löschen einer Association.
1011	Authentication	De-/Authentifizierung einer
1100	Deauthentication	STA an einem AP.

Management Frames II

Medienzugriffssteuerung (CSMA/CA) I

- ► IEEE 802.11 definiert eine s. g. Distributed Coordination Function (DCF) als Verfahren zur Medienzugriffssteuerung (dezentral, CSMA/CA)
- CSMA/CA = Carrier Sense Multiple Access with Collision Avoidance (vs. Detection bei CSMA/CD im Ethernet!)
 - Im Medium Funk sind Kollisionen wesentlich häufiger als auf einem Kabel.
 - Funkeinheit arbeitet Half-Duplex, d. h. gleichzeitiges Senden und Empfangen (Horchen auf Kollisionen während des Sendens) ist nicht möglich.
 - ► → Kollisionen verhindern, NICHT erkennen (Collision Avoidance)!

Medienzugriffssteuerung (CSMA/CA) II

- 1. Physikalische Carrier-Sense-Funktion, d. h. Horchen, ob das Medium frei ist.
- 2. Virtuelle Carrier-Sense-Funktion
 - ▶ Steuerung über einen Timer, s. g. Network Allocation Vector (NAV).
 - Dieser Timer wird durch Duration/ID-Werte aus empfangenen Frames gesetzt/aktualisiert.
 - ▶ Die im NAV gespeicherte Zeit wird gewartet, um laufende Übertragungen nicht zu unterbrechen.
- 3. Nach Ablauf des NAV + Medium ist frei + nach einer zufälligen Backoff-Zeit, erfolgt das Senden des Datenframes.
- 4. Empfänger sendet nach Empfang des Frames eine Bestätigung (ACK).
- 5. Nur wenn der Sender das ACK innerhalb einer definierten Zeitspanne empfängt, gilt das Frame als korrekt übertragen (ansonsten Retransmission).

Medienzugriffssteuerung (CSMA/CA) III

- ► Hidden-Station-Problem
 - Drei STAs A, B und C, B sieht/kennt A und C, A und C sehen/kennen einandern nicht (Funkreichweite).
 - Beide STAs A und C beginnen gleichzeitig, an B zu senden \rightarrow Kollision.
 - Lösung: Request-to-Send (RTS) & Clear-to-Send (CTS) Mechanismus.

Abbildung 4: Hidden-Station-Problem: STA B ist in Funkreichweite von STA A und STA C, die beiden aber nicht in der des ieweils anderen. Beginnnen STA A und STA C gleichzeitig an B zu senden, kommt es zu einer Kollision.

Medienzugriffssteuerung (CSMA/CA) IV

Abbildung 5: CSMA/CA mit RTS/CTS-Mechanismus zur Behebung des Hidden-Station-Problems (DIFS = DCF Interframe Space, SIFS = Short Interframe Space).

Add-Ons (Zusatzmaterial)

Allgemeines Frame Format nach IEEE 802.11

2 Byte	2 Byte	6 Byte	0/6 Byte	0/6 Byte	0/2 Byte	0/6 Byte	0/2 Byte	0/4 Byte	0 - max. 2304 Bytes	4 Bytes	
Frame Control	Duration	Address 1	Address 2	Address 3	Sequence Control	Address 4	QoS Control	HT Control	Nutzdaten	Frame Check Sequence	
				Υ						$\overline{}$	
				Header						Trailer	

- ► Frame Control (FC): Bitmap, u. a. zur Spezifikation des Frame Types, des Frame Subtypes und der verwendeten Adressfelder.
- ▶ Duration/ID: I. A. die Übertragungsdauer des Frames für die Medienzugriffssteuerung (virtuelle Carrier-Sense-Funktion) (Details s. [3, S. 766]).

Allgemeines Frame Format nach IEEE 802.11 II

2 Byte	2 Byte	6 Byte	0/6 Byte	0/6 Byte	0/2 Byte	0/6 Byte	0/2 Byte	0/4 Byte	0 - max. 2304 Bytes	4 Bytes
Frame Control	Duration	Address 1	Address 2	Address 3	Sequence Control	Address 4	QoS Control	HT Control	Nutzdaten	Frame Check Sequence
	Header									Trailer

- ► Address 1-4: Je nach Quelle und Ziel und deren Position im drahtlosen oder verdrahteten Netz werden ein bis alle der vier Adressfelder genutzt.
 - Destination Address (DA): Ziel des Frames.
 - ► Source Address (SA): Quelle des Frames.
 - Receiver Address (RA): Empfänger des Frames (z. B. Access Point).
 - ► Transmitter Address (TA): Sender des Frames (z. B. Access Point).
- ► IEEE 802.11 Adressen sind 48-Bit MAC Adressen.

Allgemeines Frame Format nach IEEE 802.11 III

	2 Byte	2 Byte	6 Byte	0/6 Byte	0/6 Byte	0/2 Byte	0/6 Byte	0/2 Byte	0/4 Byte	0 - max. 2304 Bytes	4 Bytes
	Frame Control	Duration	Address 1	Address 2	Address 3	Sequence Control	Address 4	QoS Control	HT Control	Nutzdaten	Frame Check Sequence
_					Header						$\overline{}$
					Trailer						

- ► Frame Body: Für IEEE 802.11/802.11a/b/g/n/ac ist die max. Framegröße 2304 Bytes, für IEEE 802.11ad 7920 Bytes (Maximum Transmission Unit, MTU) (s. [3, S. 768]).
- ► Frame Check Sequence (FCS): Prüfsumme für die Fehlererkennung, CRC (Cyclic Redundancy Check Verfahren), s. Ethernet.

Frame Control (FC) I

2 Bits	2 Bits	4 Bits	1Bit	1Bit	1Bit	1Bit	1Bit	1Bit	1Bit	1Bit
Protocol Version	Туре	Subtype	To DS	From DS	More Frag- ments	Retry	Power Mgmt	More Data	Prot. Frame	+HTC/ Order

- ► Type: Typ des IEEE 802.11 Frames
 - Management Frame (00): Steuerung der Services eines IEEE 802.11 WLANs, Ausgleich der fehlenden Link-Charakteristik
 - Control Frame (01): Medienzugriffsteuerung, Acknowledgements, ...
 - Data Frame (10): Nutzdaten
- ► Subtype: Untertyp, spezifiziert den Typ genauer, z. B. Type = 00 (Management Frame) + Subtype = 1000 (Beacon Frame).

Frame Control (FC) II

2 Bits	2 Bits	4 Bits	1Bit	1Bit	1Bit	1Bit	1Bit	1Bit	1Bit	1Bit
Protocol Version	Type	Subtype	To DS	From DS	More Frag- ments	Retry	Power Mgmt	More Data	Prot. Frame	+HTC/ Order

► ToDS & FromDS: Gibt an, ob Ziel oder Quelle im Distribution System (DS) liegen und gibt damit die Nutzung und Interpretation der vier Adressfelder vor.

#	ToDS	FromDS	Address 1	Address 2	Address 3	Address 4
1	0	0	RA = DA	TA = SA	BSSID	n/a
2	0	1	RA = DA	TA = BSSID	SA	n/a
3	1	0	RA = BSSID	TA = SA	DA	n/a
4	1	1	RA	TA	DA	SA

► In den meisten Management und in allen Control Frames sind ToDS und FromDS auf 0 gesetzt!

Frame Control (FC) III

2 Bits	2 Bits	4 Bits	1Bit	1Bit	1Bit	1Bit	1Bit	1Bit	1Bit	1Bit
Protocol Version		Subtype	To DS	From DS	More Frag- ments	Retry	Power Mgmt	More Data	Prot. Frame	+HTC/ Order

▶ Protected Frame: Gibt an, ob der Frame Body kryptographisch geschützt ist (egal ob WEP, WPA, WPA2 oder WPA3).

Intra-BSS Datenverkehr

	#	ToDS	FromDS	Address 1	Address 2	Address 3	Address 4
ſ	1	0	0	00:12:01:f0:8d:9f	00:4a:00:ef:89:c1	00:0a:1c:47:3a:22	n/a

Frame aus dem DS

#	ToDS	FromDS	Address 1	Address 2	Address 3	Address 4
2	0	1	00:12:01:f0:8d:9f	00:0a:1c:47:3a:22	00:01:16:f2:87:54	n/a

Frame in das DS

#	ToDS	FromDS	Address 1	Address 2	Address 3	Address 4
3	1	0	00:0a:1c:47:3a:22	00:12:01:f0:8d:9f	00:01:16:f2:87:54	n/a

Inter-BSS Datenverkehr über ein Wireless Distribution System (WDS)

Ī	#	ToDS	FromDS	Address 1	Address 2	Address 3	Address 4
I	4	1	1	00:0a:43:a9:21:1c	00:0a:1c:47:3a:22	00:0c:c1:ab:4a:62	00:4a:00:ef:89:c1

Referenzen I

- S. Fluhrer, I. Mantin und A. Shamir, [1] Weaknesses in the key scheduling algorithm of RC4, 2001. DOI: 10.1007/3-540-45537-x 1.
- M. Vanhoef und F. Piessens, "Key Reinstallation Attacks: Forcing Nonce Reuse in [2] WPA2.". 2017. ISBN: 9781450349468. DOI: 10.1145/3133956.3134027.
- [3] "IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks-Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, "Techn. Ber., 2021, S. 1–4379. DOI: 10.1109/IEEESTD.2021.9363693.

33 | 34

