

ROC curves

(Receiver Operating Characteristics)

- Positive and negative classes. Type I and Type II errors
- Sensitivity, Specificity, Recall, Precision
- Why is accuracy not sufficient? F1 measure
- Face detection example
- ROC curves

Recall: Confusion matrix

Assigned

lrue

	Guilty (+)	Innocent (-)
Guilty (+)	TP Convict the guilty	FN Free the guilty
Innocent (-)	FP Convict the innocent	TN Free the innocent

Assigned

Healthy Disease (positive) (negative) TP FΝ Disease (positive) (true positives) (false negatives) Healthy FP TN (false positives) (negative) (true negative)

Assigned

Disease

(positive) (negative) Disease TP **TYPE I ERROR** (positive) (true positives) Healthy **TYPE II ERROR**

(negative)

TN

Healthy

Assigned

rue

	Disease (positive)	Healthy (negative)
Disease	TP	FN
(positive)	(true positives)	(false negatives)
Healthy	FP	TN
(negative)	(false positives)	(true negative)

Sensitivity of the test = TP / (TP + FN)

Specificity of the test = TN / (TN + FP)

Recall = Sensitivity of the test = TP / (TP + FN)

Precision = TP / (TP + FP)

Accuracy of the test = (TP + TN) / (TP + TN + FP + FN)

Why is ACCURACY not sufficient?

Sometimes the number of negative cases is much greater than the number of positive cases. This is the usual case in medical screening for a rare disease. **UNBALANCED CLASS PROBLEM**

Suppose there are 1000 cases, 995 of which are negative cases and 5 of which are positive cases. If the system classifies them all as negative, the accuracy would be 99.5%, even though the classifier missed all positive cases. An alternative performance measure that accounts for this is based on the harmonic mean of precision and recall

$$F1 = 2 \times \frac{\text{Precision x Recall}}{\text{Precision + Recall}}$$

Example of unbalanced classes: face detection

Prepare a data set from this image

c = 2 classes:
"face" and "no face"

objects = squares of a fixed size cropped from the image

features = any set of features extracted form the square

Example of unbalanced classes: face detection

Square 25x25

Image size: 79x118

Positives: 6

Q1. How many negatives are there? Suppose that we have a data set (obtained from images with faces) and a classifier D_{Proper} .

Assigned

True

	Face (positive)	No face (negative)
Face (positive)	96	9
No face (negative)	3,505	99,790

Total number of objects, N = 96 + 9 + 3,505 + 99,790 = 103,400

Sensitivity,
$$Sens = \frac{96}{105} = 0.9143$$

Specificity,
$$Spec = \frac{99,790}{103,295} = 0.9659$$

Accuracy

$$Acc = \frac{96 + 99,790}{103,400} = 0.9660$$

Suppose that we have a data set (obtained from images with faces) and a classifier D_{Proper} .

Assigned

	a)
	_	Ź
	_	J
Ĺ	_	
٢		_

	Face (positive)	No face (negative)
Face (positive)	96	9
No face (negative)	3,505	99,790

Total number of objects, N = 96 + 9 + 3,505 + 99,790 = 103,400

Recall =
$$\frac{96}{105}$$
 = 0.9143

Precision =
$$\frac{96}{3,601}$$
 = 0.0267

F1 measure

$$F_1 = 2 \times \frac{0.9143 \times 0.0267}{0.9143 + 0.0267} = \mathbf{0.0519}$$

Now suppose that we have a classifier $D_{Negative}$ which always predicts "no face"

Assigned

True

	Face (positive)	No face (negative)
Face (positive)	O	105
No face (negative)	О	103,295

Total number of objects, N = 96 + 9 + 3,505 + 99,790 = 103,400

Sensitivity,
$$Sens = \frac{0}{105} = 0$$

Specificity,
$$Spec = \frac{103,295}{103,295} = 1$$

Accuracy

$$Acc = \frac{103,295}{103,400} = \mathbf{0.9990}$$

Now suppose that we have a classifier $D_{Negative}$ which always predicts "no face"

True

	Face	No face	2	
Fa Is this (positive)	a better c	lassifie	r the	en
No face (negative)	0	103,295		

Total number of objects, N = 96 + 9 + 3,505 + 99,790 = 103,400

Sensitivity,
$$Sens = \frac{0}{105} = 0$$

Specificity,
$$Spec = \frac{103,295}{103,295} = 1$$

Accuracy

$$Acc = \frac{103,295}{103,400} = \mathbf{0.9990}$$

Now suppose that we have a classifier $D_{Negative}$ which always predicts "no face"

Assigned

True

	Face (positive)	No face (negative)
Face (positive)	0	105
No face (negative)	0	103,295

Total number of objects, N = 96 + 9 + 3,505 + 99,790 = 103,400

$$Recall = \frac{0}{105} = 0$$

Precision = does not exist because there are no positive labels. But even if there were, and even if precision was equal to 1, $F_1 = 2 \times \frac{0 \times 1}{0 + 1} = 0$.

Compare:

 D_{Proper}

Accuracy

Acc = 0.9660

 $F_1 = 0.0519$

$D_{Negative}$

Accuracy

Acc = 0.9990

$$F_1 = 0.0000$$

ROC curves (Receiver Operating Characteristic)

ROC curve is a graphical plot that illustrates the performance of a binary classifier (two classes).

ROC curves (Receiver Operating Characteristic)

ROC curves (Receiver Operating Characteristic)

ROC curves (Receiver Operating Characteristic)

ROC curves (Receiver Operating Characteristic)

Healthy

13

Q2. Plot the operational point for the classifier D, defined by the confusion matrix below

	Positive +	Negative -
Positive +	8	2
Negative -	100	900

ROC curves - MATLAB illustration

Q3. Build a ROC curve for a threshold classifier for the following one-dimensional classification problem (red crosses are class 'positive'):

- (If the points are given in random order, sort x and re-arrange the labels to match the sorted objects.)
- 2 Suppose that there is a threshold between every pair of consecutive objects. Starting with a threshold on the left of the smallest x, calculate the sensitivity and specificity assuming that all points above the threshold are labelled as class positive (This gives sensitivity 1 and specificity 0).
 - 3. Repeat for all possible thresholds moving to the right, one object at a time. The obtained pairs (sens, spec) will define the points of the ROC curve.
 - 4. Plot sensitivity (y-axis) versus 1-specificity (x-axis). Voila!

Answers to some questions:

In each row, there are 118 - 25 + 1 = 94 squares.

The number of rows with squares is 79 - 25 + 1 = 55 squares.

The total number of squares is therefore $94 \times 55 = 5170$.

The number of negatives is 5170 - 6 = 5164 squares.

Plot the operational point for the classifier D, defined by the confusion matrix below

	Positive +	Negative -
Positive +	8	2
Negative -	100	900

Sens =
$$8/(8+2) = 0.8$$

$$Spec = 900/(100+900) = 0.9$$

$$1-Spec = 1 - 0.9 = 0.1$$

