Trabajo Práctico de Laboratorio Universidad Tecnológica Nacional

Medidas Electrónicas I

R4052 Año:2023

TPL3: Calibración

Profesores:

- Ing. Marinsek Emiliano
- Ing. Perdomo Juan Manuel

Integrantes:

- Borello Federico
- Dimaio Agustin
- Manoukian Francisco Tomas
- Mella Camila
- Ronchetti Juan Manuel

Objetivo

Calibrar, en tensión y en corriente, un multímetro genérico. Se entiende por calibración, al traspaso de la incertidumbre de un patrón al instrumento a calibrar.

Para ello se proponen varios puntos de calibración que deben ser usados como referencia en todas las escalas del instrumento posibles. Una vez obtenidos los valores y su incertidumbre, evaluar la veracidad de la hoja de datos del equipo calibrado contrastando los valores obtenidos frente al semi rango definido por el fabricante.

Lo circuitos a evaluar son los siguientes:

Donde V_i es el valor indicado por el voltímetro genérico y V_p es el indicado por el voltímetro patrón.

Donde A_i es el valor indicado por el amperímetro genérico y A_p es el indicado por el amperímetro patrón.

Desarrollo

Para determinar la incertidumbre y la desviación en cada uno de los puntos de calibración utilizados como referencia se utilizará respectivamente:

$$S_i = (rac{e\%}{100} + rac{2}{V_m \cdot f_c}) \cdot V_m \cdot rac{k}{\sqrt{3}}$$

$$\Delta_i = V_m - V_p$$

Calibración en tensión

1.1

$$S_{1.1} = (\frac{0.5}{100} + \frac{2}{0.104 \cdot 1000}) \cdot 0.104 \cdot \frac{2}{\sqrt{3}} = 0.00291$$

$$\Delta_{1.1} = 0.104 - 0.10463 = -0.00063$$

1.2

$$S_{1.2} = (rac{0.5}{100} + rac{2}{0.1052 \cdot 1000}) \cdot 0.1052 \cdot rac{2}{\sqrt{3}} = 0.00292$$

$$\Delta_{1.2} = 0.1052 - 0.10453 = 0.00067$$

1.3

N/A: Fuera de rango

1.4

$$S_{1.4} = (\frac{0.5}{100} + \frac{2}{0.9 \cdot 10}) \cdot 0.9 \cdot \frac{2}{\sqrt{3}} = 0.23614$$

$$\Delta_{1.4} = 0.9 - 0.99711 = -0.09711$$

1.5

$$S_{1.5} = \left(\frac{0.5}{100} + \frac{2}{9.11 \cdot 100}\right) \cdot 9.11 \cdot \frac{2}{\sqrt{3}} = 0.07569$$

$$\Delta_{1.5} = 9.11 - 9.072 = 0.038$$

1.6

$$S_{1.6} = \left(\frac{0.5}{100} + \frac{2}{9.0 \cdot 10}\right) \cdot 9.0 \cdot \frac{2}{\sqrt{3}} = 0.28291$$

$$\Delta_{1.6} = 9.0 - 9.0639 = -0.0639$$

1.7

$$S_{1.7} = \left(\frac{0.5}{100} + \frac{2}{23.9 \cdot 10}\right) \cdot 23.9 \cdot \frac{2}{\sqrt{3}} = 0.36894$$

$$\Delta_{1.7} = 23.9 - 24.0056 = -0.10560$$

1.8

$$S_{1.8} = (rac{0.8}{100} + rac{2}{23\cdot 1}) \cdot 23 \cdot rac{2}{\sqrt{3}} = 2.52194$$

$$\Delta_{1.8} = 23 - 23.9976 = -0.9976$$

Tabla de resultados calibración en tensión

Tensión												
Referencia	Valor Nominal	Escala	Valor Verdadero	Valor Medido	Punto calibrado	Factor de expansion	Indicacion Instrumento	Incertidumbre	Desviacion	Verfica		
1.1	100mv	2000mV	0,10463	0,104	0.1 +- 0.04 V	2		0,00291	-0,00063	Sí		
1.2		200mV	0,10453	0,1052	0.1 +- 0.005 V	2		0,00292	0,00067	Sí		
1.3	1V	200mV	1,00306	Fuera de rango				Fuera de rango				
1.4		200V	0,99711	0,9	1.0 +- 0.1 V	2	0.5% + 2d	0,23614	-0,09711	Sí		
1.5	9V	20V	9,07200	9,11	9.0 +- 0.11 V	2		0,07569	0,03800	Sí		
1.6		200V	9,06390	9,0	9.0 +- 0.0 V	2		0,28291	-0,06390	Sí		
1.7	24V	200V	24,00560	23,9	24.0 +- 0.1 V	2		0,36894	-0,10560	Sí		
1.8		1000V	23,99760	23	24.0 +- 1 V	2	0.8% + 2d	2,52194	-0,99760	Sí		

Calibración en corriente

2.1

$$S_{2.1} = \left(\frac{2}{100} + \frac{2}{0.09 \cdot 1000}\right) \cdot 0.09 \cdot \frac{2}{\sqrt{3}} = 0.00439$$

$$\Delta_{2.1} = 0.09 - 0.001 = 0.089$$

2.2

$$S_{2.2} = (\frac{1.2}{100} + \frac{2}{1.47 \cdot 1000}) \cdot 1.47 \cdot \frac{2}{\sqrt{3}} = 0.02268$$

$$\Delta_{2.2} = 1.47 - 0.001 \cdot 1000 = 0.47$$

2.3

N/A: Fuera de rango

2.4

$$S_{2.4} = \left(\frac{1.2}{100} + \frac{2}{14.76 \cdot 1000}\right) \cdot 14.76 \cdot \frac{2}{\sqrt{3}} = 0.20684$$

$$\Delta_{2.4} = 14.76 - 0.01 \cdot 1000 = 4.76$$

2.5

$$S_{2.5} = (\frac{2}{100} + \frac{2}{0.08 \cdot 1000}) \cdot 0.08 \cdot \frac{2}{\sqrt{3}} = 0.00416$$

$$\Delta_{2.5} = 0.08 - 0.1 = -0.02010$$

2.6

$$S_{2.6} = (rac{1.4}{100} + rac{2}{102.5 \cdot 1000}) \cdot 102.5 \cdot rac{2}{\sqrt{3}} = 1.65935$$

$$\Delta_{2.6} = 102.5 - 0.09983 \cdot 1000 = 2.67$$

Tabla de resultados calibración en corriente

Corriente											
Referencia	Valor Nominal	Escala	Valor Verdadero	Valor Medido	Punto calibrado	Factor de expansion	Indicacion Instrumento	Incertidumbre	Desviacion	Verifica	
2.1	1mA	20A	0,00100	0,09000	1.0 +- 0.01 mA	2	2% + 2d	0,00439	0,08900	Sí	
2.2		20mA	0,00100	1,47000	1.0 +- 0.47 mA	2		0,02268	0,47000	Sí	
2.3	- 10mA	2mA	0,01000	Fuera de rango			1.2% + 2d	Fuera de rango			
2.4		20mA	0,01000	14,76000	10 +- 4.76 mA	2]	0,20684	4,76000	Sí	
2.5	100mA	20A	0,10010	0,08000	100 +- 20 mA	2	2% + 2d	0,00416	-0,02010	Sí	
2.6		200mA	0,09983	102,50000	100 +- 2.5 mA	2	1.4% + 2d	1,65935	2,67000	Sí	

Conclusiones

Se concluye que la experiencia fue exitosa: se pudo verificar la concordancia entre el semi rango indicado por el fabricante del instrumento a calibrar y la incertidumbre obtenida a partir de los valores medidos obtenidos en la práctica de laboratorio.