COL352 Lecture 10

Contents

1 Recap 1

2 Definitions 1

3 Content 1

1 Recap

Discussion in previous class about Myhill-Nerode theorem.

2 Definitions

3 Content

Given DFA $D = (Q, \Sigma, \delta, q_0, A)$ without unreachable states.

We want DFA $D^* = (Q^*, \Sigma, \delta^*, q_0^*, A^*)$ with min number of states that recognizes $\mathcal{L}(D)$.

We know \sim_D refines $=_{\mathcal{L}(D)}$, and \sim_{D^*} is identical to $=_{\mathcal{L}(D)}$.

Definition 1

$$C_q = \{ x \in \Sigma^* \mid \hat{\delta}(q_0, x) = q \}.$$

Note that none of the C_q 's are empty since D has no unreachable states.

We then know that these are equivalence classes of \sim_D .

Let x_q be an arbitrary string in C_q , i.e., $\hat{\delta}(q_0, x_q) = q$.

Definition 2

 \equiv is an equivalence relation on Q defined as $q \equiv q'$ if $C_q, C_{q'}$ are in the sam equivalence class of $=_{\mathcal{L}(D)}$.

Claim 0.1

$$q \equiv q' \iff x_q =_{\mathcal{L}(D)} x_q'$$

Proof. Forward direction: Obvious by the definition of \equiv and $x_q \in C_q, x_{q'} \in C_{q'}$

Backward direction: Follows from the fact that \sim_D refines $=_{\mathcal{L}(D)}$ and the equivalence class of x_q wrt \sim_D is C_q , and similarly for $C_{q'}$.

Claim 0.2

If
$$q \equiv q'$$
, then $\forall a \in \Sigma, \delta(q, a) \equiv \delta(q', a)$.

Proof. $q \equiv q' \iff x_q =_L x_{q'}$ from the previous claim.

$$\begin{array}{lll} x_q =_L x_{q'} & \Longrightarrow & x_q a =_L x_{q'} a \text{ (as done in last class)} & \Longrightarrow & \hat{\delta}(q_0, x_q a) \equiv \hat{\delta}(q_0, x_{q'} a) & \Longrightarrow & \delta(\hat{\delta}(q_0, x_q), a) \equiv \delta(\hat{\delta}(q_0, x_{q'}), a) & \Longrightarrow & \delta(q_0, x_q) = \delta(q$$

Claim 0.3

 $q \equiv q'$ iff $\forall z \in \Sigma^*, \hat{\delta}(q, z), \hat{\delta}(q', z)$ are both in A or both not in A.

Proof. $q \equiv q' \equiv x_q =_L x_{q'} \iff \forall z \text{ either both } x_q z, x_{q'} z \text{ are in } L \text{ or both not in } L \iff \forall z, \hat{\delta}(q_0, x_q z), \hat{\delta}(q_0, x_{q'} z) \text{ both in } A \text{ or both not in } A \text{ iff } \dots \text{ iff } \hat{\delta}(q, z), \hat{\delta}(q', z) \text{ both in } A \text{ or both not in } A.$

Having determined \equiv , D^* can be constructed as:

- 1. Q^* : one state from each equivalence class of \equiv .
- 2. rep : $Q \to Q'$ rep(q) = the representative fo equivalence class of q under \equiv .
- 3. $q_0^* = \text{rep}(q_0)$.
- 4. $\delta^*(r, a) = \operatorname{rep}(\delta(r, a)).$
- 5. $A^* = {\text{rep}(q) \mid q \in A}.$

The invariant is $\hat{\delta}^*(q_0^*, x) = \text{rep}(\hat{\delta}(q, x))$

Question 1

How do we construct this equivalence relation \equiv ?

Answer. Recall that $q \equiv q'$ iff $\forall z \in \Sigma^*, \hat{\delta}(q, z), \hat{\delta}(q', z)$ are both in A or both not in A.

Definition 3

 $q \equiv_n q'$ if for all $z \in \Sigma^*$ of length $\leq n, \forall z \in \Sigma^*, \hat{\delta}(q, z), \hat{\delta}(q', z)$ are both in A or both not in A.

Note 1

Note that each \equiv_n refines \equiv_{n-1} , and \equiv refines \equiv_n . Also, $q \equiv q \iff \forall n, q \equiv_n q'$.

Also note that \equiv_0 is easy to find: $q \equiv_0 q'$ iff either both q, q' are in A or both are not in A, so we can use \equiv_0 as an equivalent statement for either both q, q' being in A or not being in A.

Claim 0.4

$$q \equiv_n q' \text{ iff } q \equiv_{n-1} q' \land \forall a \in \Sigma, \delta(q, a) \equiv_{n-1} \delta(q', a).$$

Proof. Forward direction:

$$q \equiv_n q' \implies (\forall z, |z| \le n \implies \hat{\delta}(q, z) \equiv_0 \hat{\delta}(q', z))$$

Specialising to $|z| \le n-1$, we have $q \equiv_{n-1} q'$.

Now continuing, we have for z' of length $\leq n-1$, $\hat{\delta}(q,az') = \hat{\delta}(q',az') \iff \hat{\delta}(\delta(q,a),z') \equiv_0 \hat{\delta}(\delta(q',a),z')$, so $\delta(q,a) \equiv_{n-1} \delta(q',a)$. Backward direction:

If $|z| \leq n-1$, use $q \equiv_{n-1} q'$ to get $\hat{\delta}(q,z) \equiv_0 \hat{\delta}(q',z)$. If |z| = n, then z = az' for some $a \in \Sigma$, $z' \in \Sigma^*$, and $|z'| \leq n-1$. So we have $\hat{\delta}(q,z) = \hat{\delta}(q,az') = \hat{\delta}(\delta(q,a),z') \equiv_0 \hat{\delta}(\delta(q',a),z')$ (either both are or are not in A) = $\hat{\delta}(q',z)$, so $q \equiv_n q'$.

Question 2

Can we make an algorithm to find the equivalence classes?

Answer.

function Partition($D = (Q, \Sigma, \delta, q_0, A)$)

```
n \leftarrow 0
\equiv_0 = \{(q,q') \in Q \times Q \mid \text{ both } q,q' \in A \text{ or both } q,q' \notin A\}
while True do
n \leftarrow n+1
\equiv_n \leftarrow \{(q,q') \in \equiv_{n-1} \land \forall a \in \Sigma, (\delta(q,a),\delta(q',a)) \in \equiv_{n-1}\}.
if \equiv_n = \equiv_{n-1} then
break
end if
end while
return \equiv_n
end function
```

Claim 0.5

If \equiv_n is identical to \equiv_{n-1} , then they are identical to \equiv .

Proof. Next class. \Box