Sprawozdanie z projektu SPEKTROP Blok elektroniki spektrometru obrazującego

Creotech Instruments S.A. Centrum Badań Kosmicznych

$22~\mathrm{maja}~2014$

Spis treści

1	W_{S^1}	tęp	
2	Specyfikacja		
	2.1	Czujnik CMOS	
	2.2	Platforma sprzętowa	
	2.3	System rejestracji parametrów lotu	
	2.4	Tryby pracy	
	2.5	Wymagania elektryczne	
	2.6	Wymagania mechaniczne	
	2.7	Proponowany schemat funkcjonalny systemu	
		ncepcja realizacji	
4		alizacja	
	4.1	Platforma sprzętowa	
	4.2	Realizacja programowa	
	4.3	Akwizycja danych z czujnika	
	4.4	System rejestracji parametrów lotu	
		4.4.1 Zapis danych	
		4.4.2 Interfejs SATA	
5	Podsumowanie		

1 Wstęp

Poniższy dokument jest sprawozdaniem z projektu bloku elektroniki spektrometru obrazującego SPEK-TROP zaprojektowanego przez Creotech Instruments S.A. na zlecenie Centrum Badań Kosmicznych. Zawarto w nim specyfikację systemu, sposób działania oraz opis zastosowanych rozwiązań sprzętowych i programowych.

Projekt SPEKTROP jest systemem kamery spektralnej, umieszczonej na samolocie bądź UAV¹ pozwalającym na rejestrację obrazu lądu jednocześnie w wielu długościach fali. Takie rozwiązanie pozwala na analizę powierzchni różnych rodzajów obszarów jak lasy, jeziora, pola uprawne. Czy analizę możliwości wystąpienia złóż.

Rysunek 1: Przykładowy obraz z kamery spektralnej[5]

Sercem zaprojektowanego urządzenia jest układ SoC Zynq Z7045, który łączy w sobie układ FPGA Kintex 7 oraz dwurdzeniowy procesor ARM Cortex-A8. System pozwala na rejestrację danych z czujnika CMV4000 z maksymalną prędkością 100 FPS przy minimalnym czasie ekspozycji wynoszącym \sim 10 ms.Ponadto system umożliwia rejestrację parametrów lotu niezależnie od akwizycji obrazu oraz z możliwością przyporządkowania danych do poszczególnych klatek. Dzięki czemu możliwa jest późniejsz analiza zebranych danych. Zebrane dane są zapisywane na dysku/ach HDD poprzez interfejs SATA zaimplementowanym w logice FPGA przy pomocy transceiverów GTX.

Sterowanie i komunikacja z systemem odbywa się poprzez interfejs Ethernet przy pomocy dedykowanej aplikacji działającej pod systemem Linux.

2 Specyfikacja

2.1 Czujnik CMOS

- Detektor: CMV4000 [3] albo CIS 1910F [4].
- Tryby pracy czujnika:
 - Podstawowy: czas ekspozycji (EXP²) 1-10 ms, 100 FPS³
 - Manualny: dowolnie długi czas ekspozycji z mniejszą ilością FPS (np. 5-10 FPS przy EXP \sim 1-2 ms
- Rozdzielczość bitowa 16 bit/piksel, ENOB⁴:8-9 bitów
- Zakres temperatury pracy: $-10^{\circ}C \div +50^{\circ}C$

2.2 Platforma sprzętowa

• Xilinx Zyng Evaluation Board ZC706 [2]

¹UAV - Unmanned Aerial Vehicle

 $^{^2}$ EXP - Exposure

³FPS -Frames Per Second

⁴ENOB - Effective Number of Bits

2.3 System rejestracji parametrów lotu

- rejestracja parametrów lotu na podstawie systemów GPS oraz IMU⁵ z zapewnieniem synchronizacji czasowej względem akwizycji klatek i niezależnie
 - minimalny okres zapisu parametrów 0.1 s
- zapis czasu pomiaru (timestamp) i czasu akwizycji parametrów lotu
- $\bullet\,$ nośnikiem danych jest dysk twardy (SSD/HDD) z interfejsem SATA, zapis odbywa się przy pomocy interfejsu GTX

2.4 Tryby pracy

- Ręczny ustawiany przez operatora przy pomocy komputera PC (operator leci w samolocie)
- Autonomiczny posiadający następujące funkcje:
 - wyliczanie ekspozycji i częstotliwości akwizycji klatek na podstawie parametrów lotu dostarczanych przez systemy sterujące samolotu/UAV
 - sprawdzanie poprawności ekspozycji
 - możliwość wyzwalania pomiarów na podstawie osiągnięcia pozycji wskazanej przez GPS

2.5 Wymagania elektryczne

Napięcie zasilania 24 V albo 12 V.

2.6 Wymagania mechaniczne

Wymiary PCB: 85 mm x 160 mm.

2.7 Proponowany schemat funkcjonalny systemu

⁵IMU - Internal Management Unit

Rysunek 2: Schemat blokowy systemu

3 Koncepcja realizacji

Poniższy rozdział opisuje koncepcję realizacji bloku elektroniki projektu SPEKTROP. Rysunek [4] przedstawia główne elementy systemu:

- płytę ewaluacyjną ZC706
- czujnik CMOSIS MV4000
- interfejs SATA
- interfejs Ethernet
- połączenie z systemem GPS i IMU

Czujnik CMV4000 będzie połączony z modułem ZC706 poprzez złącze FMC. Zebrane dane będą przesłane poprzez interfejs SATA. Do systemu jest równiez dołączone IMU UAV/samolotu oraz moduł GPS. System jest sterowany poprzez interfejs Ethernet.

Rysunek 3: Główne elementy systemu

4 Realizacja

Rysunek [??] zawiera schemat blokowy systemu. System składa się z modułu ewaluacyjnego układu Zyną ZC706, oraz z modułu FMC z czujnikiem CMOSIS CMV4000.

Rysunek 4: Główne elementy systemu

4.1 Platforma sprzętowa

System oparty jest o moduł ewaluacyjny ZC706 posiadjący wszystkie podstawowe komponenty sprzętowe potrzebne do realizacji zaawansowanych systemów przetwarzania.

Rysunek 5: Elementy płyty ewaluacyjnej ZC706

Moduł posiada następujące komponenty:

- Układ SoC
 - Zynq-7000 XC7Z045 FFG900
- Konfiguracja
 - 2X16MB Quad SPI Flash
 - SDIO
 - PC4 i JTAG
- Pamięć
 - DDR3 Component Memory 1GB (PS)
 - DDR3 SODIM Memory 1GB (PL)
 - 2X16MB Quad SPI Flash
 - IIC 1 KB EEPROM
- Interfejsy komunikacyjne
 - PCIe Gen2x4
 - SFP+ and SMA Pairs
 - GigE RGMII Ethernet (PS)
 - 1 CAN with Wake on CAN (PS)
 - USB OTG 1 (PS) Host USB
 - IIC Bus Headers/HUB (PS)
 - USB UART (PS)
- Komponenty wideo
 - HDMI 8 color RGB 4.4.4 1080P-60 OUT
 - HDMI IN 8 color RGB 4.4.4
- Złącza we/wy
 - FMC LPC
 - FMC HPC
 - Pmod dualny i pojedynczy

- Dostęp do I2C
- USB OTG 1 (PS) Host USB
- IIC Bus Headers/HUB (PS)
- USB UART (PS)
- Sygnaly zegarowe
 - 33MHz Zegar systemowy
 - 200MHz PL Oscylator
 - złącza SMA dla zewnętrznych sygnałów zegarowych
 - referencyjne do GTX
 - OBSAI/CPRI SFP+
 - EXT Config CLK
- Sterowanie
 - 2 User Push Buttons/Dip Switch, 2 User LEDs
 - 3 User Push Buttons, 2 User Switches, 8 User LEDs
 - IIC access to 8 I/O
 - IIC access to a WTClock
- Zasilanie
 - 12 V
 - możliwość pomiaru prądu linii zasilających
- 4.2 Realizacja programowa
- 4.3 Akwizycja danych z czujnika
- 4.4 System rejestracji parametrów lotu
- 4.4.1 Zapis danych
- 4.4.2 Interfejs SATA

5 Podsumowanie

Literatura

- [1] Specyfikacja wymagań modułu odczytowgeo układu UFXC Firmware
- [2] Xilinx ZC706 Evaluation Board http://www.xilinx.com/products/boards-and-kits/ EK-Z7-ZC706-G.htm
- [3] CMOSIS CMV4000 Sensor http://www.cmosis.com/products/standard_products/cmv4000
- [4] CIS 1910F Sensor
- [5] http://www.steadidrone.eu/uav-hexacopter-h6x-for-precise-agriculture/