$11n_2 \ (K11n_2)$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle -2u^{33} - 5u^{32} + \dots + 2b - u, -2u^{33} - 4u^{32} + \dots + a + 1, u^{34} + 3u^{33} + \dots + 3u^2 - 1 \rangle$$

$$I_2^u = \langle -u^2b + b^2 + bu - u + 1, a, u^3 - u^2 + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -2u^{33} - 5u^{32} + \dots + 2b - u, -2u^{33} - 4u^{32} + \dots + a + 1, u^{34} + 3u^{33} + \dots + 3u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{33} + 4u^{32} + \dots + 2u - 1 \\ u^{33} + \frac{5}{2}u^{32} + \dots - 2u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{4} + u^{2} - 1 \\ -\frac{1}{2}u^{32} - u^{31} + \dots + 3u^{2} + \frac{3}{2}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{33} + u^{32} + \dots + 2u + \frac{1}{2} \\ \frac{1}{2}u^{33} + 4u^{32} + \dots + 4u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{33} - 4u^{32} + \dots - 2u + 1 \\ -2u^{33} - \frac{11}{2}u^{32} + \dots - \frac{5}{2}u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ u^{8} - 2u^{6} + 2u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ u^{8} - 2u^{6} + 2u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{17}{2}u^{33} + 19u^{32} + \dots + 10u \frac{25}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{34} + 4u^{33} + \dots + 7u + 1$
c_2	$u^{34} + 20u^{33} + \dots - 31u + 1$
c_{3}, c_{7}	$u^{34} + u^{33} + \dots - 160u - 64$
<i>C</i> ₅	$u^{34} - 4u^{33} + \dots + 19u + 2$
c_6, c_{10}	$u^{34} + 3u^{33} + \dots + 3u^2 - 1$
<i>c</i> ₈	$u^{34} - 3u^{33} + \dots + 4u - 1$
c_9, c_{11}	$u^{34} + 13u^{33} + \dots + 6u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{34} + 20y^{33} + \dots - 31y + 1$
c_2	$y^{34} - 8y^{33} + \dots - 1215y + 1$
c_3, c_7	$y^{34} - 35y^{33} + \dots - 29696y + 4096$
<i>C</i> 5	$y^{34} - 36y^{33} + \dots - 209y + 4$
c_6,c_{10}	$y^{34} - 13y^{33} + \dots - 6y + 1$
<i>C</i> ₈	$y^{34} - 41y^{33} + \dots - 6y + 1$
c_9,c_{11}	$y^{34} + 19y^{33} + \dots + 122y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.992042 + 0.199548I		
a = -0.462101 - 0.975157I	-3.59663 + 0.10881I	-14.08590 - 0.63240I
b = 0.138300 - 0.172846I		
u = -0.992042 - 0.199548I		
a = -0.462101 + 0.975157I	-3.59663 - 0.10881I	-14.08590 + 0.63240I
b = 0.138300 + 0.172846I		
u = -0.794834 + 0.581726I		
a = 0.594117 + 0.707965I	1.44216 - 0.29929I	-6.95462 + 0.76731I
b = 0.427182 - 0.203209I		
u = -0.794834 - 0.581726I		
a = 0.594117 - 0.707965I	1.44216 + 0.29929I	-6.95462 - 0.76731I
b = 0.427182 + 0.203209I		
u = -0.524940 + 0.808295I		
a = 0.56013 + 1.37764I	-2.09915 - 1.64840I	-5.13395 + 0.24192I
b = -0.888548 + 0.835142I		
u = -0.524940 - 0.808295I		
a = 0.56013 - 1.37764I	-2.09915 + 1.64840I	-5.13395 - 0.24192I
b = -0.888548 - 0.835142I		
u = 0.840078 + 0.614168I		
a = -0.613136 - 0.577949I	1.86820 - 2.41838I	-3.21586 + 3.79872I
b = -1.41546 + 0.81235I		
u = 0.840078 - 0.614168I		
a = -0.613136 + 0.577949I	1.86820 + 2.41838I	-3.21586 - 3.79872I
b = -1.41546 - 0.81235I		
u = -0.560590 + 0.879313I		
a = -0.41210 - 1.50617I	-5.42766 - 6.75489I	-7.92215 + 3.41714I
b = 1.46754 - 1.00369I		
u = -0.560590 - 0.879313I		
a = -0.41210 + 1.50617I	-5.42766 + 6.75489I	-7.92215 - 3.41714I
b = 1.46754 + 1.00369I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.412943 + 0.845694I		
a = -0.76752 - 1.52606I	-6.32362 + 2.72594I	-8.84636 - 2.76466I
b = 0.44847 - 1.45277I		
u = -0.412943 - 0.845694I		
a = -0.76752 + 1.52606I	-6.32362 - 2.72594I	-8.84636 + 2.76466I
b = 0.44847 + 1.45277I		
u = -0.893031 + 0.587012I		
a = -0.693593 - 0.583293I	1.13021 + 4.95087I	-8.36503 - 5.99635I
b = -0.956249 - 0.192787I		
u = -0.893031 - 0.587012I		
a = -0.693593 + 0.583293I	1.13021 - 4.95087I	-8.36503 + 5.99635I
b = -0.956249 + 0.192787I		
u = 0.985371 + 0.556607I		
a = 0.620847 + 0.887273I	-1.53468 - 5.70085I	-9.72834 + 6.45202I
b = 1.96665 - 0.76219I		
u = 0.985371 - 0.556607I		
a = 0.620847 - 0.887273I	-1.53468 + 5.70085I	-9.72834 - 6.45202I
b = 1.96665 + 0.76219I		
u = 0.834354 + 0.777211I		
a = -0.618925 + 0.083135I	2.63328 - 1.69138I	-7.83080 + 4.78233I
b = -0.304799 + 1.255790I		
u = 0.834354 - 0.777211I		
a = -0.618925 - 0.083135I	2.63328 + 1.69138I	-7.83080 - 4.78233I
b = -0.304799 - 1.255790I		
u = 1.15996		
a = 1.41319	-8.01260	-11.0100
b = 1.11298		
u = 0.691950 + 0.428071I		
a = 0.759172 + 0.721685I	-0.45796 + 1.44409I	-6.46359 + 0.67387I
b = 1.51068 - 1.17159I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.691950 - 0.428071I		
a = 0.759172 - 0.721685I	-0.45796 - 1.44409I	-6.46359 - 0.67387I
b = 1.51068 + 1.17159I		
u = 1.197460 + 0.057621I		
a = -1.51287 - 0.16435I	-12.04690 - 5.13421I	-13.68860 + 3.30024I
b = -0.911142 + 0.347693I		
u = 1.197460 - 0.057621I		
a = -1.51287 + 0.16435I	-12.04690 + 5.13421I	-13.68860 - 3.30024I
b = -0.911142 - 0.347693I		
u = 0.921897 + 0.768739I		
a = 0.213500 - 0.587608I	2.37182 - 4.13713I	-9.61954 + 1.32790I
b = -1.053180 - 0.826825I		
u = 0.921897 - 0.768739I		
a = 0.213500 + 0.587608I	2.37182 + 4.13713I	-9.61954 - 1.32790I
b = -1.053180 + 0.826825I		
u = -1.072580 + 0.660990I		
a = -1.205520 - 0.383155I	-3.72457 + 7.16368I	-7.25453 - 4.71165I
b = -1.20314 - 2.13287I		
u = -1.072580 - 0.660990I		
a = -1.205520 + 0.383155I	-3.72457 - 7.16368I	-7.25453 + 4.71165I
b = -1.20314 + 2.13287I		
u = -1.110150 + 0.615554I		
a = 1.267740 + 0.575502I	-8.42620 + 2.66430I	-11.45013 - 1.91985I
b = 0.56941 + 2.11006I		
u = -1.110150 - 0.615554I		
a = 1.267740 - 0.575502I	-8.42620 - 2.66430I	-11.45013 + 1.91985I
b = 0.56941 - 2.11006I		
u = -1.089780 + 0.695595I		
a = 1.309000 + 0.281439I	-7.0419 + 12.5932I	-9.63219 - 7.64177I
b = 1.38267 + 2.54914I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.089780 - 0.695595I		
a = 1.309000 - 0.281439I	-7.0419 - 12.5932I	-9.63219 + 7.64177I
b = 1.38267 - 2.54914I		
u = -0.643512		
a = 0.650445	-0.881314	-11.5070
b = 0.109056		
u = 0.221560 + 0.275264I		
a = 0.92943 + 1.46869I	-0.37760 + 1.65869I	-3.04964 - 3.10072I
b = 0.710592 - 0.584374I		
u = 0.221560 - 0.275264I		
a = 0.92943 - 1.46869I	-0.37760 - 1.65869I	-3.04964 + 3.10072I
b = 0.710592 + 0.584374I		

II.
$$I_2^u = \langle -u^2b + b^2 + bu - u + 1, \ a, \ u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

a) Art colorings
$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ -u^2 + u + 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u \\ -2u^2 + b + 2u + 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -u^2 + 1 \\ -u^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^2 + 1 \\ u^2 - u - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u^2 b \\ bu + 2b \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2b 6bu u^2 + 6u 11$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^3$
c_3, c_7	u^6
C4	$(u^2 - u + 1)^3$
<i>C</i> ₆	$(u^3 + u^2 - 1)^2$
c_8, c_{11}	$(u^3 + u^2 + 2u + 1)^2$
<i>C</i> 9	$(u^3 - u^2 + 2u - 1)^2$
c_{10}	$(u^3 - u^2 + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2+y+1)^3$
c_3, c_7	y^6
c_6,c_{10}	$(y^3 - y^2 + 2y - 1)^2$
c_8, c_9, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = 0	3.02413 - 4.85801I	-2.74410 + 7.22587I
b = -0.818128 - 0.292480I		
u = 0.877439 + 0.744862I		
a = 0	3.02413 - 0.79824I	-4.03424 - 1.64667I
b = 0.155769 + 0.854759I		
u = 0.877439 - 0.744862I		
a = 0	3.02413 + 4.85801I	-2.74410 - 7.22587I
b = -0.818128 + 0.292480I		
u = 0.877439 - 0.744862I		
a = 0	3.02413 + 0.79824I	-4.03424 + 1.64667I
b = 0.155769 - 0.854759I		
u = -0.754878		
a = 0	-1.11345 - 2.02988I	-12.72167 + 5.84990I
b = 0.662359 + 1.147240I		
u = -0.754878		
a = 0	-1.11345 + 2.02988I	-12.72167 - 5.84990I
b = 0.662359 - 1.147240I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u + 1)^3)(u^{34} + 4u^{33} + \dots + 7u + 1)$
c_2	$((u^2 + u + 1)^3)(u^{34} + 20u^{33} + \dots - 31u + 1)$
c_3, c_7	$u^6(u^{34} + u^{33} + \dots - 160u - 64)$
c_4	$((u^2 - u + 1)^3)(u^{34} + 4u^{33} + \dots + 7u + 1)$
<i>C</i> ₅	$((u^2 + u + 1)^3)(u^{34} - 4u^{33} + \dots + 19u + 2)$
<i>c</i> ₆	$((u^3 + u^2 - 1)^2)(u^{34} + 3u^{33} + \dots + 3u^2 - 1)$
<i>C</i> 8	$((u^3 + u^2 + 2u + 1)^2)(u^{34} - 3u^{33} + \dots + 4u - 1)$
c_9	$((u^3 - u^2 + 2u - 1)^2)(u^{34} + 13u^{33} + \dots + 6u + 1)$
c_{10}	$((u^3 - u^2 + 1)^2)(u^{34} + 3u^{33} + \dots + 3u^2 - 1)$
c_{11}	$((u^3 + u^2 + 2u + 1)^2)(u^{34} + 13u^{33} + \dots + 6u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_4	$((y^2 + y + 1)^3)(y^{34} + 20y^{33} + \dots - 31y + 1)$
c_2	$((y^2 + y + 1)^3)(y^{34} - 8y^{33} + \dots - 1215y + 1)$
c_3, c_7	$y^6(y^{34} - 35y^{33} + \dots - 29696y + 4096)$
c_5	$((y^2 + y + 1)^3)(y^{34} - 36y^{33} + \dots - 209y + 4)$
c_6, c_{10}	$((y^3 - y^2 + 2y - 1)^2)(y^{34} - 13y^{33} + \dots - 6y + 1)$
c_8	$((y^3 + 3y^2 + 2y - 1)^2)(y^{34} - 41y^{33} + \dots - 6y + 1)$
c_{9}, c_{11}	$((y^3 + 3y^2 + 2y - 1)^2)(y^{34} + 19y^{33} + \dots + 122y + 1)$