EPITA / InfoS3	Novembre 2020

NOM :	. Prénom :	Groupe:

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

<u>Exercice 1.</u> Questions de cours (QCM sans points négatifs – 4 points)

	Choisissez	la ou les	bonnes	réponses :
--	------------	-----------	--------	------------

Q1.	Que peut-or	n dire de la tensio	n aux bornes d'un	interrupteur ouvert?
-----	-------------	---------------------	-------------------	----------------------

a- Elle est nulle

c- Elle est toujours négative

b- Elle dépend du circuit

d- Elle est toujours positive

Q2. Le dopage permet d'augmenter la résistivité du semi-conducteur

a- VRAI b- FAUX

Q3. Quand on associe deux morceaux de silicium dopés différemment, il se crée, au niveau de la séparation entre les 2 morceaux, une zone de charges immobiles. Comment appelle-t-on cette zone?

a- Une diode

c- Une pile

b- Une zone de déplétion

d- Une zone interdite

Q4. La cathode d'une diode : (une ou plusieurs réponses sont possibles)

- a- est la borne par laquelle entre le courant en sens direct
- b- correspond à la zone dopée N
- c- Est la borne de potentiel le plus bas lorsque la diode est polarisée en sens direct
- **Q5.** Un matériau semi-conducteur ayant un dopage de type P présente :
 - a- un défaut d'électrons dans sa structure cristaline
 - b- un surnombre d'électrons dans sa structure cristaline
- **Q6.** Si on utilise son modèle réel (générateur de tension imparfait), par quoi remplace-t-on la diode quand elle est bloquée :

a- Un fil

c- Un générateur de tension idéal

b- Un interrupteur ouvert

d- Un générateur de Thévenin

Q7. Par quoi remplace-t-on la diode passante si on utilise le modèle réel (générateur de tension imparfait)? On notera V_0 sa tension de seuil.

Q8. Soit le circuit ci-contre, dans lequel on considère la diode idéale (interrupteur)

Que vaut la tension V_d aux bornes de la diode si E=10V, $R=100\Omega$.

$$c-10V$$

d-
$$-0,1 V$$

Exercice 2. Révisions de SUP et diodes (6 points)

Soit le circuit suivant.

1. Déterminer le générateur de Thévenin vu par la diode.

•	 A quelle condition la diode est-elle passante? On utilisera le modèle à seuil (Modèle générateur de tension parfait).
	i

EPITA / InfoS3

Novembre 2020

Exercice 3. Diodes (5 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil (générateur de tension idéal) avec $V_0=0.7V$. Pour les 2 questions suivantes, vous utiliserez un raisonnement par l'absurde.

1.	. Si $R=1k\Omega$, $I_0=10mA$ et $E=5V$, montrer que la diode est bloquée. Déterminer alors l'intensité du courant I_R qui traverse la résistance.		

2.	Si $R=10\Omega$, $I_0=10mA$ et $E=5V$, montrer que la diode est passante. Déterminer alors
	l'intensité du courant I_D qui traverse la diode.

Exercice 4. Écrêteur (5 points)

Soit le circuit suivant, dans laquelle on considère la diode idéale.

On donne $e(t) = E.\sqrt{2}.\sin(\omega t)$ avec $E > E_0$ ($E_0 = cste$)

1	Dátarminar I	a toncion u(t) aux bornes de R_I	ci la diada act	naccanto
Ι.	Determiner	a tension $u(t)$) aux borries de Λ_i	i si ia uloue est	passante.

2. Déterminer l'expression de la tension u(t) aux bornes de R_L si la diode est bloquée. On supposera que $r \ll R_L$.

Quelle est alors l'expression de la tension $v_{\it D}(t)$ aux bornes de la diode. En déduire pour quelles valeurs de e(t) la diode est bloquée.

EPITA / InfoS3 Novembre 2020

3. Tracer sur le graphe ci-dessous la tension u(t) aux bornes de R_L si $E_0=5V$

