Arithmetic and Geometric Progression

Sequences & Series

- A sequence is a list of terms separated by commas
 - 2, 4, 6, 8, 10, 12
 - It has the notation n terms for the location in the list n=1, n=2, n=3 ect.
 - It has the notation a terms for the value in that list $a_1=2$, $a_2=4$, $a_3=6$

 A series is a sum, you are adding up all the terms in the list

• 2+4+6+8+10+12

Arithmetic vs Geometric

- Arithmetic sequences add the same thing each time to get to the next term.
- Geometric sequences multiply by the same thing each time to get to the next term.

Are These Sequences Arithmetic or Geometric

- 1, 5, 9, 13, 17...
- 10, 40, 160, 640...
- 1024, 962, 900, 838...
- x, 8x, 64x, 512x...

- 2x, 2x-3, 2x-6, 2x-9...
- $a_n = 2+4(n-1)$
- $a_n = 2(4)^{n-1}$

Finding a Value in an Arithmetic Sequence

- We want to find the 6th value in this sequence
- 8, 12, 16, 20, 24, ?
- Common difference between values (d) = 12-8 = 4
- By the 6th value how many times will we have added 4? (5 times)
- We can take our first value and then add on all the times we would have added 4
- 8 + 4 + 4 + 4 + 4 + 4 = 8 + 4(5) = 28
- We can reverse engineer our equation for the value in an arithmetic sequence as $a_n = a_1 + d(n-1)$

Finding a Value in a Geometric Sequence

- We want to find the 9th value in this sequence
- 12, 36, 108, 324, ..., 26244, ?
- Common ratio between values (r) = 36/12 = 3
- By the 9th value how many times will we have multiplied by 3? (8 times)
- We can take our first value and then multiply by the common ratio for the number of times.
- 8 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 = 8(3)⁸
- We can reverse engineer our equation for the value in an arithmetic sequence as $a_n = a_1(r)^{n-1}$

Your Turn

Can you find the nth term a,b,c,d,e,f of each sequence:

n values:

a)
$$n = 6$$

b)
$$n = 12$$

c)
$$n = 25$$

d)
$$n = 100$$

e)
$$n = 2.5$$

f)
$$n = -10$$

Sequences:

Arithmetic:

$$a_n = a_1 + d(n-1)$$

Geometric:

$$a_n = a_1(r)^{n-1}$$

Bonus Challenge:

If we have a geometric sequence with a common ratio of 1.01, an initial value of 8.2 and $a_n = 31.13948635$ what is n?

Answers

	a) n = 6	b) n = 12	c) n = 25	d) n = 100	e) n = 2.5	f) n = -10
1	18	36	75	300	7.5	-30
2	1458	1062882	1.694x10 ¹²	1.030x10 ⁴⁸	31.176	3.387x10 ⁻⁰⁵
3	3.2768	0.859	0.047	2.546x10 ⁻⁰⁹	7.155	116.415
4	36.1	72.7	152	609.5	14.75	-55.4
5	-24.414	-93.132	1694.066	-3.141x10 ¹⁰	UNDEFINED	-0.687

Bonus Challenge:

135.1

Finding the Sum of an Arithmetic Series

- When finding the value of a series we could add up each individual value but for long series that could take ages
- We know that pairs of numbers around the median add up to a number but how pairs are there?
- n/2

Finding the Sum of an Arithmetic Series

- How do we find the difference between pairs?
- We can work out the second number by adding n-1(d) to the first number so in this example 6 + 12-1(5) = 61
- To work out the sum of that pair we can do 2x the initial number plus the gap between the two numbers for example (2*6)+12-1(5) = (2*6)+55 = 67
- This times by the n/2 gives us our sum value $\frac{n}{2}(2a_1+(n-1)d)$
- So in this example: $\frac{12}{2} (2 \cdot 6 + (12 1)5) = 402$

Finding the Sum of a Geometric Series

- To find the sum of a geometric sequence we use this formula:
- So for the sequence 12, 24, 48, 96, 192

$$s_n = \frac{a_1(1-r^n)}{1-r}$$

• We do
$$s_n = \frac{12(1-2^5)}{1-2}$$
 as n = 5, r = 2, a_1 = 12

This gives us 372

Your Turn

Can you find the sum @ the nth term a,b,c,d,e,f of each sequence:

n values:

a) n = 6

b)
$$n = 12$$

c)
$$n = 25$$

d)
$$n = 100$$

e)
$$n = 2.5$$

f)
$$n = -10$$

Series:

1)
$$3+6+9+12+15...$$

3)
$$10 + 8 + 6.4 + 5.12 + 4.096...$$

5)
$$8 + -10 + 12.5 + -15.625 + 19.53125...$$

Bonus Challenge:

If we have a geometric series with a common ratio of 1.01, an initial value of 8.2 and $s_n = 67.94249862$ what is n?

Answers

	a) n = 6	b) n = 12	c) n = 25	d) n = 100	e) n = 2.5	f) n = -10
1	81	270	1050	15450	20.625	105
2	2184	1594320	2.542x10 ¹²	1.546x10 ⁴⁸	43.765	-2.999
3	36.89	46.564	49.811	49.999	21.378	-415.661
4	125.1	469.8	1970	30755	25.4375	279.5
5	17.119	55.296	944.703	1.745x10 ¹⁰	9.767	3.937

Bonus Challenge:

۶

Equations

	Arithmetic	Geometric
Sequence	$a_n = a_1 + d(n-1)$	$a_n = a_1(r)^{n-1}$
Series	$s_n = \frac{n}{2} \left(2a_1 + (n-1)d \right)$	$s_n = \frac{a_1(1-r^n)}{1-r}$