The code in the function file is reproduced at the end of this file. The second line defines the error vector **e**.

Using the error vector \mathbf{e} and the instrument vector \mathbf{Z} , the third line constructs the sample moments. In particular, \mathbf{m} _bar contains a set of sample moments. It contains N_mom sample moments, and hence it is a N_mom \times 1 vector. The first sample moment is the zero mean moment for the error term. The other sample moments result from the requirement that each of the N_mom variables in \mathbf{Z} is uncorrelated with the error \mathbf{e} . Note that we have N_par parameters to estimate in B_true. If the number of moments is larger than the number of parameters to estimate, the model is over-identified.

Using the sample moments, the fourth line constructs the GMM criterion function. We consider a quadratic form of m_bar. This is our objective function. The unique B_hat that solves this function is the GMM estimator. We ask fminunc to evaluate this function at B_true. Obj takes a scalar value at the minimising B_hat.

 $G_{\mathtt{bar}}$ is the derivative of the sample moment vector with respect to parameter vector $B_{\mathtt{true}}$.

GradObj is the gradient of the objective function. The gradient is the partial derivatives of the objective function with respect to each element of B_true. That is, the component *i* of the gradient is the partial derivative of the function with respect to the component *i* of B_true. B_true has N_par elements, and therefore the gradient has N_par elements. The gradient is evaluated at B_true because G_bar is evaluated at B_true.

Given the arguments defined above, we can now instruct MATLAB that our function is exercisegmmfunction, and it accepts y, X, Z, B_true, W_hat, N_obs, and N_par as input arguments, and returns Obj and GradObj as output arguments.

```
function [Obj,GradObj] = exercisegmmfunction(y,X,Z,B_true,W_hat,N_obs,N_par)
e = y-exp(X*B_true);
m_bar = (1/N_obs)*Z'*e;
Obj = m_bar'*W_hat*m_bar;
G_bar = -(1/N_obs)*Z'*(X.*repmat(exp(X*B_true),[1 N_par]));
GradObj = 2*G_bar'*W_hat*m_bar;
end
```