Reinforcement Learning Lecture 6

Georg Martius

Distributed Intelligence / Autonomous Learning Group, Uni Tübingen, Germany

November 19, 2024

Overview

- ► Last time: Multiarmed Bandits
 - RL without states
 - Optimal exploration in noisy reward environments
- ► Today: RL with function approximation
 - ► Value function approximation
- ► Next time: policy gradient

Value Function Approximation

Slides adapted from David Silver, Material from Sutton & Barto's RL book

Plan for today

- 1. Introduction
- 2. Incremental Methods
- 3. Batch Methods

Large-Scale Reinforcement Learning

What is the problem with the tabular case?

- ► State spaces are **exponentially large** for many interesting problems
 - ightharpoonup Backgammon: 10^{20} states
 - ► Go (Board Game): 10^{170}
- Or the state space is continuous
 - Robot control

What to do?

Approximate the value function by a function approximator.

Value Function Approximation

- The tabular value function
 - Every state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- ► Problem with large MDPs:
 - ► There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$
 or $\hat{q}(s, \mathbf{a}, \mathbf{w}) \approx q_{\pi}(s, \mathbf{a})$

- ► Generalize from seen states to unseen states
- ▶ Update parameter w using MC or TD learning
- ► Notation: approximations denoted with "hat"

Types of Value Function Approximation

Which Function Approximator?

There are many function approximators, for instance:

- ► Linear combinations of features
- Neural network
- Decision tree
- ► Nearest neighbors
- ► Fourier / wavelet bases

Which Function Approximator?

Differentiable function approximators will be handy:

- Linear combinations of features
- Neural network
- Decision tree
- ► Nearest neighbors
- ► Fourier / wavelet bases
- **.**.

the value changes with policy, so it is a moving target (not stationary)

We require a training method that is suitable for non-stationary, non-iid (not identically and independently distributed) data

Suitable learning algorithm: (Stochastic) Gradient Descent

Value Function Approximation

using supervised learning

- ▶ Value function parametrized by parameters \mathbf{w} : $\hat{v}(s, \mathbf{w})$
- ▶ Goal: find parameter vector \mathbf{w} minimizing difference between approximate value function $\hat{v}(s,\mathbf{w})$ and true value function $v_{\pi}(s)$

$$L(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(v_{\pi}(S) - \hat{v}(S, \mathbf{w}) \right)^{2} \right]$$

Gradient Descent

Loss function:

$$L(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(v_{\pi}(S) - \hat{v}(S, \mathbf{w}) \right)^{2} \right]$$

Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} L(\mathbf{w})$$
$$= \alpha \mathbb{E}_{\pi} \left[\left(v_{\pi}(S) - \hat{v}(S, \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$$

For convex functions:

The general case:

[Image: hackernoon.com]

Stochastic Gradient Descent (SGD)

General loss:

$$L(\mathbf{w}) = \mathbb{E}_{(x,y) \sim \mathcal{D}} \Big[\operatorname{d} \big(\underbrace{y}_{\text{target}}, \ \underbrace{\hat{y}(x)}_{\text{prediction}} \big) \Big]$$

- Loss is expected empirical error: sum over examples (batch)
- ► SGD: update parameters on every example:

$$\Delta \mathbf{w} = -\alpha \sum_{i}^{N} \nabla_{\mathbf{w}} \operatorname{d} \left(y^{(i)}, \hat{y}^{(i)} \right)$$

expected update is equal to full gradient update

Minibatches: average gradient over a small # of examples

instead of averaging gradient over all samples, do it in small batches

Feature Vectors

Represent state by a feature vector

$$\mathbf{x}(S) = \begin{pmatrix} x_1(S) \\ x_2(S) \\ \vdots \\ x_n(S) \end{pmatrix}$$

For example:

- Distance of robot from landmarks
- Trends in the stock market
- Piece and pawn configurations in chess

Linear Value Function Approximation

Represent value function by a linear combination of features

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S) \mathbf{w}_{j}$$

Objective function is quadratic in parameters w

$$L(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(v_{\pi}(S) - \mathbf{x}(S)^{\top} \mathbf{w} \right)^{2} \right]$$

Stochastic gradient descent converges on global optimum Update rule is particularly simple

$$\nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) = \mathbf{x}(S)$$
$$\Delta_{\mathbf{w}} = \alpha (v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \mathbf{x}(S)$$

▶ Update = step-size × prediction error × feature value

One-hot features = Tabular representation

Given a one-hot feature vector

$$\mathbf{x}(S) = \begin{pmatrix} \llbracket S = s_1 \rrbracket \\ \vdots \\ \llbracket S = s_n \rrbracket \end{pmatrix} \qquad \text{if in state s1:} \\ \mathbf{x}(\mathbf{S}) = (1, 0, ..., 0)$$

 $\mathbf{x}(S)^{\mathsf{T}}\mathbf{w}$ yields the individual "table entries"

Iterative Prediction Algorithms

In contrast to supervised learning, we do not have access to $v_\pi(s)$

- In RL: only rewards are given
- ▶ In practice, we substitute a target for $v_{\pi}(s)$
 - For MC, use the return G_t

$$\Delta \mathbf{w} = \alpha \left(G_t - \hat{v} \left(S_t, \mathbf{w} \right) \right) \nabla_{\mathbf{w}} \hat{v} \left(S_t, \mathbf{w} \right)$$

For TD(0): use TD-target $R_{t+1} + \gamma \hat{v}\left(S_{t+1}, \mathbf{w}\right)$

$$\Delta \mathbf{w} = \alpha \left(R_{t+1} + \gamma \hat{v} \left(S_{t+1}, \mathbf{w} \right) - \hat{v} \left(S_t, \mathbf{w} \right) \right) \nabla_{\mathbf{w}} \hat{v} \left(S_t, \mathbf{w} \right)$$

For TD(λ):use λ -return G_t^{λ}

$$\Delta \mathbf{w} = \alpha \left(G_t^{\lambda} - \hat{v} \left(S_t, \mathbf{w} \right) \right) \nabla_{\mathbf{w}} \hat{v} \left(S_t, \mathbf{w} \right)$$

- as before the TD-target is biased (we use our own estimate)
- Note: For TD: target is not independent of w. Semi-gradient methods: do not necessarily converge

Iterative Prediction Algorithm

for Linear Features

Consider the case of **linear features**: $\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^{\mathsf{T}}\mathbf{w}$:

- ► The derivative $\nabla_{\mathbf{w}} \hat{v}(s, \mathbf{w})$ is simply $\mathbf{x}(s)$
- ► MC:

$$\Delta \mathbf{w} = \alpha \left(G_t - \hat{v} \left(S_t, \mathbf{w} \right) \right) \nabla_{\mathbf{w}} \hat{v} \left(S_t, \mathbf{w} \right)$$
$$= \alpha \left(G_t - \hat{v} \left(S_t, \mathbf{w} \right) \right) \mathbf{x} (S_t)$$

► TD(0):

$$\Delta \mathbf{w} = \alpha \underbrace{\left(R_{t+1} + \gamma \hat{v}\left(S_{t+1}, \mathbf{w}\right) - \hat{v}\left(S_{t}, \mathbf{w}\right)\right)}_{\delta} \nabla_{\mathbf{w}} \hat{v}\left(S_{t}, \mathbf{w}\right)$$
$$= \alpha \delta_{t} \mathbf{x}(S_{t})$$

- ► TD(λ): Forward view: $\Delta \mathbf{w} = \alpha \left(G_t^{\lambda} \hat{v}(S_t, \mathbf{w}) \right) \mathbf{x}(S_t)$
- ▶ $\mathsf{TD}(\lambda)$: Backward view with Eligibility trace E:

$$E_t = \gamma \lambda E_{t-1} + \mathbf{x}(S_t)$$
$$\Delta \mathbf{w} = \alpha \delta_t E_t$$

For control: Action-Value Function

We can do the same procedure for the action-value function.

- Policy evaluation: update w
- Policy improvement: ϵ -greedy policy improvement

Linear Action-Value Function Approximation

Represent state and action by a feature vector

$$\mathbf{x}(S, A) = \begin{pmatrix} \mathbf{x}_1(S, A) \\ \vdots \\ \mathbf{x}_n(S, A) \end{pmatrix}$$

Represent action-value function by linear combination of features:

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\mathsf{T}} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

Stochastic gradient descent update

$$\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$
$$\Delta \mathbf{w} = \alpha \left(\underbrace{q_{\pi}(S, A)}_{\text{target}} - \hat{q}(S, A, \mathbf{w}) \right) \mathbf{x}(S, A)$$

ightharpoonup Replace target by: G_t or TD-target ...

On-policy control with function approximators

SARSA: using TD(0) target (semi-gradient method)

SARSA with function approximators (episodic)

```
Given: \hat{q}(s, a, \mathbf{w}) : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}
 1. Initialize w
2. Repeat (for each episode):
        2.1 S \leftarrow from environment
        2.2 A \sim \pi^{\hat{q}}(S)
                                                                               (e.g. \epsilon-greedy w.r.t. \hat{q})
        2.3 Repeat (for each step of episode):
              2.3.1 Take action A, observe R, S'
              2.3.2 if S' terminal
                         \mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})
                         Go to next episode
              2.3.3 A' \sim \pi^{\hat{q}}(S')
                                                                                 (e.g. \epsilon-greedy w.r.t. \hat{q})
              2.3.4 \mathbf{w} \leftarrow \mathbf{w} + \alpha [\underbrace{R + \gamma \hat{q}(S', A', \mathbf{w})}_{} - \hat{q}(S, A, \mathbf{w})] \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})
                                                     TD-target
              2.3.5 S \leftarrow S' : A \leftarrow A'
```

Topical Break / Discussion

What features can you think of for:

a cart-pendulum

- large chain (random walk example with 1000 states)
- grid worlds

21 / 45

Feature representations

- Polynomials:
 - when states are numbers: positions/velocities of robot, #cars in parking,
 - for continous state-space with $s_1, s_2 \in \mathbb{R}$, consider concrete example:

$$\mathbf{x}(s) = (s_1, s_2)^\top$$

Why is that not so good?

- if $s_1 = s_2 = 0$ then value is 0, no interaction between s_1 and s_2 , very inflexible
- $\mathbf{x}(s) = (1, s_1, s_2, s_1 s_2)^{\top} \text{ or } \mathbf{x}(s) = (1, s_1, s_2, s_1 s_2, s_1^2, s_2^2, s_1^2 s_2, s_1 s_2^2, s_1^2 s_2^2)^{\top}$
- for degree n and state-space k the number of features grows exponentially in k
- Fourier Basis
 - Cosine basis: $\mathbf{x}_i(s) = \cos(i\pi s), s \in [0, 1]$

Value Error (RMSE) for 1000 random states example and gradient MC \Rightarrow

Feature representations (Cont)

► Coarse Coding: inside circle: feature = 1

Initial generalization:

Feature representations (Cont II)

Radial basis functions (RBF)

$$\mathbf{x}_i(s) = \exp(\|s - c_i\|^2 / 2\sigma_i^2)$$

- ▶ How to choose c_i 'sand σ_i 's?
- Scales badly with the dimensionality

Non-linear function approximators

Neural Networks:

Direct approximation (implicit feature learning):

Example: Linear SARSA with Coarse Coding

Mountain Car Environment

Off-policy and Convergence

- Exactly the same can be done for the off-policy case (Q-Learning)
- ▶ In the tabular case we have proven TD to converge
- ► With function approximation and off-policy this cannot be done

Simple Example

▶ Two states: with features w and 2w:

- Assume initial w = 10
- ► Transition in data: left to right
- v(l) = 10 to v(r) = 20: TD error = 10
- ▶ Update for w with $\alpha = 0.1$: w = 11
- v(r) = 22
- Next update TD error = 11 (error is even larger!)

Incomplete MDP, so maybe not convincing

error is getting larger, but maybe not best of features

Off-policy and Convergence

TD off-policy diverges

Features / representation needs to be adapted and should not be fixed.

Convergence of Prediction Algorithms

	Algorithm	Table Lookup	Linear	Non-linear
On-Policy	MC	✓	✓	✓
	TD	✓	✓	X
	Gradient TD	✓	✓	✓
Off-Policy	MC	✓	✓	√
	TD	✓	X	X
	Gradient TD	✓	✓	✓

- ► TD does not follow the gradient of any objective function, divergence possible
- ► Gradient TD follows true gradient of projected Bellman error [Maei et al, 2009]

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-linear
Monte-Carlo Control	✓	(✓)	×
SARSA	✓	(✓)	×
Q-Learning	✓	X	X
Gradient Q-Learning	✓	✓	X

 (\checkmark) means that it fluctuate around near-optimal solution

For control with non-linear features, we cannot guarantee convergence.

Incremental or Batch?

- ➤ So far: Incremental update, i.e. update parameters towards targets locally by SGD
- ▶ Alternative: find a parameters that fit best the experience / training data
 - Batch methods

Least Squares Prediction

- ► Value function approximation $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$
- ► Experience *D*: pairs of (state, value)

$$\mathcal{D} = \{(s_1, v_1^{\pi}), (s_2, v_2^{\pi}), \dots, (s_T, v_T^{\pi})\}\$$

- ▶ Which parameters **w** give the best fitting value function $\hat{v}(s, \mathbf{w})$?
- Least squares algorithms:

$$LS(\mathbf{w}) = \sum_{t=1}^{T} (v_t^{\pi} - \hat{v}(s_t, \mathbf{w}))^2$$
$$= \mathbb{E}_{\mathcal{D}} \left[(v^{\pi} - \hat{v}(s, \mathbf{w}))^2 \right]$$

▶ If \hat{v} linear in features, then closed form solution

SGD with Experience Replay

What about using SGD, but train on data many times? Use experience \mathcal{D} :

$$\mathcal{D} = \{(s_1, v_1^{\pi}), (s_2, v_2^{\pi}), \dots, (s_T, v_T^{\pi})\}\$$

Repeat:

1. Sample state value pair (or mini-batch)

$$(s, v^{\mathsf{target}}) \sim \mathcal{D}$$

2. Apply stochastic gradient descent update:

$$\Delta \mathbf{w} = \alpha \left(v^{\mathsf{target}} - \hat{v}(s, \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{v}(s, \mathbf{w})$$

Converges to least square solution

$$\mathbf{w}^{\pi} = \operatorname*{arg\,min}_{\mathbf{w}} \mathrm{LS}(\mathbf{w})$$

Problems

- ▶ We need a lot of data for high-capacity models
- ▶ In the on-policy case we have to throw away all the collected experience :-(
- Off-policy should be more efficient
 - ▶ Wait: don't we have convergence problems?
 - Neural networks are very flexible and can in practice often break the parameter-state entanglement leading to divergence
 - If behavior policy is closed to target policy (e.g. ε-greedy version) less of a problem
 - ▶ We can freeze the value-target, more below

34 / 45

Deep Q-Networks (DQN)

Deep Q-Networks

- Q-Learning with Deep network as function approximator
- ► + Experience Replay
- ► + Target Network

Experience Replay

Data:
$$\mathcal{D} = \{(s_t, \mathbf{a}_t, r_{t+1}, s_{t+1})\}$$

Typically a fixed maximal size $|\mathcal{D}|$ (old data gets deleted)

Target Network

Two sets of parameters: \mathbf{w} and $\mathbf{w}^{\text{target}}$ ldea: keep $\mathbf{w}^{\text{target}}$ fixed for some time (old value of \mathbf{w})

TD: error is computed using $\mathbf{w}^{\text{target}}$

- avoids instabilities
- for a fixed w^{target} it is a gradient method

DQN [Mnih et al 2015], Earlier work: Neural fitted Q [Riedmiller 2005]

DQN

Given: Network $\hat{q}(s, \boldsymbol{a}; \mathbf{w})$, replay buffer \mathcal{D}

- 1. Initialize w, $\mathbf{w}^{\mathsf{target}} \leftarrow \mathbf{w}$
- 2. $s \leftarrow$ from environment
- 3. $a \sim \pi^{\hat{q}}(s)$

(e.g. ϵ -greedy w.r.t. \hat{q})

- 4. Repeat (for each step of episode):
 - **4.1** Take action a, observe r, s'
 - **4.2** $n \leftarrow \begin{cases} 0 & s' \text{ is terminal} \\ 1 & \text{otherwise} \end{cases}$

(not done flag)

- **4.3** Store $(s, \boldsymbol{a}, r, s', \boldsymbol{n})$ in \mathcal{D}
- **4.4** Sample random minibatch $D \subset \mathcal{D}$
- 4.5 Optimize with respect to:

$$\mathcal{L}\left(\mathbf{w}\right) = \mathbb{E}_{s,a,r,s',n\sim\mathcal{D}}\left[\left(r + n\gamma \max_{\mathbf{a}'} \hat{q}\left(s',\mathbf{a}';\mathbf{w}^{\mathsf{target}}\right) - \hat{q}\left(s,\mathbf{a};\mathbf{w}\right)\right)^{2}\right]$$

with favorit optimizer (ADAM, SGD)

5. after many update steps: $\mathbf{w}^{\text{target}} \leftarrow \mathbf{w}$

DQN [Mnih et al 2015], Earlier work: Neural fitted Q [Riedmiller 2005]

Every iteration or grouped training?

- Due to random sampling, the currently collected data-point has very small influence
- ▶ Often easier to collect a bunch of data (e.g. one episode)
- make a number of training steps and continue

DQN in Atari

What made Deep RL famous in 2015...

www.youtube.com/watch?v=rQIShnTz1kU

DQN in Atari

What made Deep RL famous in 2015...

- ▶ Observation space: raw pixels (84×84) , 4 frames
- ightharpoonup End-to-end learning of Q-values from pixels s
- Action space: 18 discrete joystick positions and buttons
- Network $q(s, \mathbf{w}) \mapsto \mathbb{R}^{18}$: direct prediction of Q-values for all actions
- ▶ Reward: change in score for that step

DQN Results in Atari

Best linear learner: using the best results with handcrafted features

Ablation

How important is Replay and Target Network?

Scores on some	Atari	games
----------------	-------	-------

	Replay Target-Q	Replay Q-learning	No replay Target-Q	No replay Q-learning
Breakout	316.81	240.73	10.16	3.17
Enduro	1006.30	831.25	141.89	29.10
Space Invaders	1088.94	826.33	373.22	301.99
Seaquest	2894.40	822.55	1003.00	275.81
River Raid	7446.62	4102.81	2867.66	1453.02

Linear Least Squares Prediction and Control

- Experience replay finds least squares solution but it may take many iterations
- ▶ Using linear value function approximation $\hat{v}(s, \mathbf{w}) = x(s)^{\top}\mathbf{w}$ solve the least squares solution in closed form

Linear Least Squares Prediction

Linear v.fn.: $\hat{v}(s, \mathbf{w}) = x(s)^{\top} \mathbf{w}$ Targets: v_t^{π} Loss: $L(\mathbf{w}) = \sum_{t=1}^{T} (v_t^{\pi} - \hat{v}(s_t, \mathbf{w}))^2$

Refresher: Linear Regression

► At minimum of LS(w): Derivative is zero.

$$\sum_{t=0}^{T} \mathbf{x} \left(s_{t} \right) \left(v_{t}^{\pi} - \mathbf{x} \left(s_{t} \right)^{\top} \mathbf{w} \right) = 0$$

$$\sum_{t=1}^{T} \mathbf{x}(s_t) v_t^{\pi} = \sum_{t=1}^{T} \mathbf{x}(s_t) \mathbf{x}(s_t)^{\top} \mathbf{w}$$

 $\nabla_{\mathbf{w}} L(\mathbf{w}) = 0$

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x} \left(s_{t}\right) \mathbf{x} \left(s_{t}\right)^{\top}\right)^{-1} \sum_{t=1}^{T} \mathbf{x} \left(s_{t}\right) v_{t}^{\pi}$$

- For N features, direct solution time is $O\left(N^3\right)$
- Incremental solution time is $O(N^2)$ using Shermann-Morrison

Convergence of Least Squares Prediction Algorithms

▶ As usual: plugging in different targets: LS{MC|TD|TD(λ }

	Algorithm	Table Lookup	Linear	Non-linear
On-Policy	MC	✓	✓	✓
	LSMC	✓	✓	_
	TD	✓	✓	X
	LSTD	✓	✓	_
Off-Policy	MC	1	✓	✓
	LSMC	✓	✓	_
	TD	✓	X	×
	LSTD	✓	✓	_

- On-Policy Least Squares needs lots of samples from current policy
- Putting it inside control: Policy iteration: LSPI
- ► LSPI also converges in off-policy setting (naturally limited to the linear case)

Questions?

[Image: globalrobots.com]