Comparação do desempenho de modelos propostos para o ajuste de dados de esportes coletivos

Mariana de Castro Pasqualini

2022-05-16

1. Introdução

Modelos estatísticos podem ser aplicados em diferentes áreas do conhecimento. Uma delas, que tem crescido nos últimos anos, é a análise de dados de competições e eventos esportivos. O número de gols marcados, por exemplo, pode ser tratado como dados de contagem e representados por modelos discretos. Estes modelos são vastamente representados na literatura desde a década de 80, como em Pollard (1985) que utiliza a distribuição Binomial Negativa, enquanto Baxter (1988) apresentam as diferenças entre a Binomial Negativa e Poisson para modelar o placar de partidas de futebol. Tais modelos desconsideram uma estrutura de correlação entre os gols de cada oponente. Karlis (2003) sugere a distribuição Poisson bivariada, que permite uma correlação entre o número de gols marcados pelo mandante e visitante e, ainda, há uma proposta de um modelo bayesiano hierárquico com efeitos aleatórios como definido por Baio (2010). Neste trabalho, são implementados, ajustados e comparados modelos baseados na distribuição Poisson para dados do Campeonato Brasileiro de 2019, obtido em Gomide (2022) utilizando o software Stan e Rstan para inferência bayesiana.

2. Modelos

Modelo 1

Baio (2010) sugerem um modelo bayesiano hierárquico para os gols marcados na partida. No modelo proposto, o número de gols marcados segue uma distribuição Poisson condicionalmente independentes, em que a correlação é incluída por meio dos hiperparâmetros. A distribuição Poisson é vastamente utilizada para problemas de contagem e amplamente aplicada à análises esportivas como sugerem M. Dixon and S. Coles (2007) e D. Karlis and I. Ntzoufras (2003), dentre outros autores.

O vetor $\mathbf{y} = (y_{g1}, y_{g2})$ como um vetor de contagens, podemos tomar

$$y_{qj}|\theta_{qj} \sim Poisson(\theta_{qj})$$

o vetor tendo uma distribuição Poisson condicional aos parâmetros $\theta = (\theta_{g1}, \theta_{g2})$, que representam a taxa de pontuação no g-ésimo jogo para o mandante, representado por j = 1 e o visitante j = 2.

Assumindo um modelo log-linear de efeitos aleatórios, temos

$$\log \theta_{g1} = home + att_{h(g)} + def_{a(g)}$$
$$\log \theta_{g2} = att_{a(g)} + def_{h(g)}$$

em que o parâmetro *home* é um efeito fixo representando a vantagem de ter um jogo em casa e a taxa de pontuação considera o *ataque* e a *defesa* dos dois times que estão jogando. Os índices representam o time que da casa h(q) e o time visitante a(q) no g-ésimo jogo.

Considerando que o modelo proposto segue a abordagem bayesiana, os efeitos aleatórios são objetos aleatórios de interesse e é apropriado definir uma distribuição à priori para cada um deles. As prioris sugeridas pelos autores são:

$$home \sim Normal(0, 0.0001) att_t \sim Normal(\mu_{att}, \tau_{att}), def_t \sim Normal(\mu_{def}, \tau_{def})$$

Sendo t
 cada um dos times do campeonato. A Normal é definida pela média e precisão. O modelo original foi implementado no WinBUGS, que utiliza a mesma parametrização apresentada no artigo. Como priori para μ é definida uma Normal(0,0.0001) tanto para o ataque quanto defesa, e Gamma(0.1,0.1) para os τ de ataque e defesa.

Aqui, o modelo foi implementado no Stan e uma adaptação foi necessária, considerando que a parametrização do software é diferente, com a Normal definida pela média e desvio padrão. Passamos a ter:

$$att_t \sim Normal(\mu_{att}, \sigma_{att}), def_t \sim Normal(\mu_{def}, \sigma_{def})$$

Conforme apresentado em (Almeida Inácio, n.d.), a priori não-informativa recomendada é uma Cauchy, portanto:

$$\sigma_{att} \sim Cauchy(0, 2.5), \sigma_{def} \sim Cauchy(0, 2.5)$$

Para garantir a identificabilidade do modelo, os autores sugerem a seguinte restrição nos parâmetros específicos de cada time:

$$\sum_{t=1}^{T} att_{t} = 0, \sum_{t=1}^{T} def_{t} = 0$$

Ainda é proposto a restrição em que um dos times é definido como ataque e defesa iguais a 0, o que implica interpretar os parâmetros para os outros times utilizando como referência o time de base. A proposta foi implementada neste trabalho, portanto, a restrição de identificabilidade é:

$$att_T = 0, def_T = 0$$

Tal restrição foi fundamental para que as cadeias de Markov convergissem, além de ser um método mais rápido para a execução do código.

Simulação

Para checar a implementação dos modelos e estimação correta dos parâmetros, foi feita uma simulação com 1000 réplicas de tamanho 380, que é o número de jogos de um campeonato com 20 times. Os parâmetros do modelo usados para simulação são definidos como:

- home = 0.13
- $\mu_{att} = 0.05$
- $\mu_{def} = 0.08$
- $\sigma_{att} = 0.56$
- $\sigma_{def} = 0.52$

Observa-se que as distribuições dos parâmetros estão centradas em torno dos valores "reais".

Figure 1: Simulação - Modelo 1

Diagnóstico de convergência da simulação As simulações foram realizadas com apenas 01 cadeia e 5000 interações. O gráfico traceplot mostra que a cadeia converge e consegue caminhar pelo espaço paramétrico.

Outra estatística útil é o \hat{R} , que próximo de 1 é condição para convergência. Todos os parâmetros apresentaram \hat{R} próximo de 1, sendo o menor $\hat{R}=0.9995999$ e maior $\hat{R}=1.002963$.

Ajuste

Para verificar o comportamento do modelo com um conjunto de dados reais, assim como no artigo original o modelo é ajustado para dados do campeonato italiano, aqui ele será testado com dados do Campeonato Brasileiro "Brasileirão" ano de 2019.

Os dados foram disponibilizados por Gomide (2022) no Github, com o seguinte formato:

$home_team$	away_team	home_score	away_score	$home_team_index$	away_team_index
282	314	2	1	10	16
315	285	2	0	17	13
262	283	3	1	1	11
276	263	2	0	8	2
293	267	4	1	15	6
265	264	3	2	4	3

As colunas *home_team_index* e *away_team_index* foram criadas atribuindo um valor inteiro ordinal para cada time, seguindo a notação do modelo.

Comparando a pontuação **acumulada** ao longo do campeonato observada e a pontuação estimada pelo modelo, tem-se o seguinte comportamento para cada time:

O desempenho do time 5 foi superestimado pelo modelo, enquanto o contrário aconteceu para o time 9, seu desempenho foi subestimado pelo modelo hierárquico. Os times 2, 12, 15 e 14 apresentam a pontuação acumulada mais próxima entre o estimado e o observado.

Santos foi time com maior pontuação atribuída pelo modelo, estimando exatamente a pontuação obtida pelo time no campeonato e, assim, sendo o campeão segundo o modelo. Porém, o campeão de 2019 foi o Flamengo e o vice-campeão o Santos.

Diagnóstico de convergência do ajuste

Modelo 2

A distribuição Poisson é um dos modelos mais utilizados na literatura para análises do número de gols marcados em uma partida de futebol. As variáveis-resposta são usualmente modeladas como duas Poisson independentes, considerando que o número de gols de um time não afeta o número de gols do outro time. Tal suposição não é muito razoável, considerando, por exemplo, que a força de defesa de um time interfere nas oportunidades para a marcação de gols do oponente. A partir disso, (Karlis 2003) sugerem a modelagem do número de gols a partir de uma Poisson bivariada, que permite a inclusão de uma covariância positiva que faz o papel da dependência entre as duas variáveis Poisson que, marginalmente, são independentes.

Sendo $X = X_1 + X_3$ e $Y = X_2 + X_3$, duas variáveis aleatórias com $X_i \sim Poisson(\lambda_i)$, então X e Y seguem conjuntamente uma Poisson bivariada $\mathbf{BP}(\lambda_1, \lambda_2, \lambda_3)$.

Conforme mencionado anteriormente, temos duas Poisson independentes marginalmente com $E(X) = \lambda_1 + \lambda_3$ e $Y = \lambda_2 + \lambda_3$. Além disso, $cov(X,Y) = \lambda_3$. Se $\lambda_3 = 0$, então temos simplesmente duas Poisson independentes. Os autores sugerem que o parâmetro λ_3 representam as condições de jogo comuns aos dois times da partida, como ritmo do jogo e condições climáticas.

team_name	$score_obs$	score_est_m1
Atlético-MG	48	45
Atlético-PR	64	52
Avaí	20	27
Bahia	49	57
Botafogo	43	55
Ceará-SC	39	57
Chapecoense	32	31
Corinthians	56	65
Cruzeiro	36	37
CSA	32	41
Flamengo	90	70
Fluminense	46	44
Fortaleza	53	52
Goiás	52	41
Grêmio	65	59
Internacional	57	40
Palmeiras	74	77
Santos	74	80
São Paulo	63	47
Vasco	49	52

Definindo diretamente o modelo aplicado à futebol, temos que para cada jogo i

$$X_i \sim Poisson(\lambda_{1i}), Y_i \sim Poisson(\lambda_{2i})$$

 \mathbf{e}

$$\log(\lambda_{1i}) = \mu + home + att_{h_i} + def_{g_i}, \log(\lambda_{2i}) = \mu + att_{g_i} + def_{h_i}.$$

Para a inclusão da covariância como λ_3 , Karlis (2003) apresenta o preditor linear que permite combinar diferentes modelos:

$$\log(\lambda_{3i}) = \alpha^{con} + \gamma_1 \alpha_{h_i}^{home} + \gamma_2 \alpha_{g_i}^{away}$$

No qual γ_j varia de acordo com o modelo de interesse: quando assume valor 0, temos que a covariância é constante.

Simulação

Com o objetivo de verificar a estimação certa dos parâmetros, também foi feita uma simulação com 1000 réplicas de tamanho 380, representando o número de jogos de um campeonato com 20 times. Neste modelo, os parâmetros para simulação são definidos como:

- home = 0.13
- $\mu = 0.21$
- $\alpha = 0.20$
- $\sigma_{att} = 0.92$
- $\sigma_{def} = 0.80$

A partir dos resultados dos histogramas obtidos na simulação, tem-se que o modelo estima corretamente os parâmetros.

Figure 2: Simulação - Modelo 2

Diagnóstico de convergência da simulação

As simulações foram realizadas com apenas 01 cadeia e 5000 interações. O gráfico traceplot mostra que a cadeia converge e consegue caminhar pelo espaço paramétrico.

A estatística \hat{R} para os parâmetros se mostrou próxima de 1, sendo o menor $\hat{R}=0.9995999$ e maior $\hat{R}=1.002963$.

Ajuste

Assim como o primeiro modelo, o modelo 2 foi ajustado para o Campeonato Brasileiro de 2019. Neste modelo, $\gamma_1 = \gamma_2 = 0$.

Figure 3: Pontuação acumulada - Modelo 2

O modelo 2 tem o Flamengo como maior pontuador ao longo do campeonato, acertando o vencedor. O segundo lugar ficou entre o Santos e Grêmio, segundo e quarto colocado respectivamente.

Além dos campeões, os quatro últimos times são rebaixados para a segunda divisão. Nesse modelo, há um empate na pontuação final dos times Cruzeiro e Ceará e, seguindo pelo critério do maior saldo de gols, o Cruzeiro seria rebaixado juntamente com Bahia, Chapecoense e CSA. Os times rebaixados no ano foram Cruzeiro, CSA, Chapecoense e Avaí, ou seja, o modelo 2 errou apenas uma das equipes.

Modelo 3

O modelo três é uma extensão do modelo 2, no qual $\gamma_1=1, \gamma_2=0$. Não foi feita uma simulação para o modelo por limitações de memória no computador.

Modelo 4

O modelo quatro é uma extensão do segundo modelo, no qual $\gamma_1 = 1, \gamma_2 = 1$. Também não foi realizada uma simulação pela mesma razão do modelo 3.

Extensão do modelo 3

team_name	score_obs	score_est_m2
Atlético-MG	48	72
Atlético-PR	64	53
Avaí	20	43
Bahia	49	35
Botafogo	43	46
Ceará-SC	39	37
Chapecoense	32	33
Corinthians	56	61
Cruzeiro	36	37
CSA	32	26
Flamengo	90	75
Fluminense	46	53
Fortaleza	53	56
Goiás	52	50
Grêmio	65	73
Internacional	57	54
Palmeiras	74	54
Santos	74	73
São Paulo	63	68
Vasco	49	42

Modelo 5

Modelo 6

3. Comparação dos modelos

4. Outros modelos

Exemplo Tabela

R Markdown

- ## Warning: `data_frame()` was deprecated in tibble 1.1.0.
- ## Please use `tibble()` instead.
- ## This warning is displayed once every 8 hours.
- ## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.

Table 1: Simulation parameters

parameter	value
λ_1 (old normal)	300
N (total days)	400
d_2 (time to new normal)	12

5. Referências

Almeida Inácio, Marco Henrique de. n.d. "Introdução Ao Stan Como Ferramenta de Inferência Bayesiana." https://marcoinacio.com/stan.

- Baio, Marta, Gianluca e Blangiardo. 2010. "Bayesian Hierarchical Model for the Prediction of Football Results." *Journal of Applied Statistics* 37 (2): 253–64. https://doi.org/10.1080/02664760802684177.
- Baxter, Richard, Mike e Stevenson. 1988. "Discriminating Between the Poisson and Negative Binomial Distributions: an Application to Goal Scoring in Association Football." *Journal of Applied Statistics* 15 (3): 347–54. https://doi.org/10.1080/02664768800000045.
- Gomide, Arnaldo, Henrique e Gualberto. 2022. CaRtola: Extração de Dados Da API Do CartolaFC, Análise Exploratória Dos Dados e Modelos Preditivos Em r e Python. https://github.com/henriquepgomide/caRtola.
- Karlis, Ioannis, Dimitris e Ntzoufras. 2003. "Analysis of Sports Data by Using Bivariate Poisson Models." Journal of the Royal Statistical Society: Series D (The Statistician) 52 (3): 381–93. https://doi.org/10.1 111/1467-9884.00366.
- Pollard, Richard. 1985. "69.9 Goal-Scoring and the Negative Binomial Distribution." The Mathematical Gazette 69 (447): 45–47. https://doi.org/10.2307/3616453.