Python for Data Science

Ch. 5 Visualisasi

Ahmad Rio Adriansyah

Visualisasi

- Untuk menyampaikan informasi, gambar mewakili ribuan kata
- Visualisasi digunakan untuk menyampaikan informasi yang didapatkan dari data dalam bentuk gambar
- Menampilkan pola yang sulit terdeteksi dengan tulisan saja
- Modul yang umum digunakan
 - Matplotlib
 - Seaborn
 - Ggplot
 - Plotly

Matplotlib

- Bisa digunakan untuk menggambar grafikgrafik sederhana
 - Diagram garis
 - Diagram batang
 - Histogram
 - Scatter plot
 - dll

```
import matplotlib.pyplot as plt
```

Load Dataset

```
import statsmodels.api as sm
mtcars = sm.datasets.get_rdataset('mtcars').data
mtcars.sample(5)
```

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

Plot

 Bandingkan jarak tempuh mobil per galon (mpg) dengan berat mobil (wt)

```
plt.plot(mtcars.mpg,mtcars.wt)
plt.show()
```

 Note: jangan lupa plotnya dishow untuk menampilkan gambarnya

Hasil : Makin Tidak Terbaca Informasinya

Salah memilih jenis grafik/diagram

Bad Visualization

Bad Visualization

- Key principle :
 - Memahami konteks visualisasi
 - Memilih display yang sesuai
 - Menghilangkan clutter
 - Fokuskan perhatian ke tempat yang diinginkan
 - Berpikirlah seperti seorang desainer
 - Bercerita dengan data (tujuannya ke arah *insight*)

Estetika

Sumber: Slide Risman Adnan

Plot

- Defaultnya sebagai diagram garis
- Variabel pertama sebagai sumbu x, variabel kedua sebagai sumbu y
- Jika hanya diinput satu variabel, variabel x akan diambil dari index
- Bisa meletakkan beberapa plot dalam satu gambar

https://matplotlib.org/examples/showcase/anatomy.html

Kostumisasi Plot

- Ada argumen ketiga yang dapat diberikan dalam bentuk string (optional) untuk mengubah warna dan tipe plotnya
- Contoh:
 g^ untuk plot
 berwarna hijau (g)
 bentuk segitiga (^)

Kostumisasi Plot

 Formatnya [marker] [line] [color], tapi urutan yang lain juga bisa (parsing mungkin ambigu)

character	description	character	description	character	color
1.1	point marker	1_1	solid line style	'b'	blue
, ,	pixel marker	''	dashed line style	'g'	green
'0'	circle marker	''	dash-dot line style	'r'	red
'v'	triangle_down marker	':'	dotted line style	'c'	cyan
' ^ '	triangle_up marker			'm'	magenta
'<'	triangle_left marker			'у'	yellow
'>'	triangle_right marker			'k'	black
'1'	tri_down marker			'w'	white
'2'	tri_up marker				

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.plot.html

Judul dan Label

```
plt.plot(mtcars.mpg,mtcars.wt,'or')
plt.xlabel('Mileage per Galon')
plt.ylabel('Weight')
plt.title('Weight vs MPG')
plt.show()
                                                       Weight vs MPG
                          5.5
                          5.0
                          4.5
                          4.0
                      Weight
                          3.5
                          3.0
                          2.5
                          2.0
                          1.5
                                            15
                                                         20
                                                                       25
                                                                                    30
                               10
                                                                                                 35
                                                       Mileage per Galon
```

Menginput Teks

```
from scipy.stats import pearsonr
corr,_ = pearsonr(mtcars.mpg,mtcars.wt)

plt.plot(mtcars.mpg,mtcars.wt,'or')
plt.xlabel('Mileage per Galon')
plt.ylabel('Weight')
plt.title('Weight vs MPG')
plt.text(27,5, r'$corr = {:.2f}$'.format(corr), fontsize=12)
plt.show()

Weight vs MPG
```


Varian Lain dan Demo

Dapat dilihat di https://matplotlib.org/

Seaborn

```
import seaborn as sns
sns.set()
sns.relplot(data=mtcars,x='mpg', y='wt', col= 'cyl', size='hp', style='am')
```

<seaborn.axisgrid.FacetGrid at 0xf792437ac8>

Estimasi Statistik dan Error Bars

 Seaborn dapat secara otomatis menampilkan rata-rata nilai suatu variabel sebagai fungsi dari variabel lainnya

<seaborn.axisgrid.FacetGrid at 0xf79230d080>

Boston House Price Dataset

 Sebagai contoh untuk memplot beberapa model berikutnya, kita gunakan boston house price dataset

```
from sklearn.datasets import load_boston
boston = pd.DataFrame(load_boston().data, columns=load_boston().feature_names)
boston['MEDV'] = load_boston().target
boston.sample(5)
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
53	0.04981	21.0	5.64	0.0	0.439	5.998	21.4	6.8147	4.0	243.0	16.8	396.90	8.43	23.4
383	7.99248	0.0	18.10	0.0	0.700	5.520	100.0	1.5331	24.0	666.0	20.2	396.90	24.56	12.3
325	0.19186	0.0	7.38	0.0	0.493	6.431	14.7	5.4159	5.0	287.0	19.6	393.68	5.08	24.6
482	5.73116	0.0	18.10	0.0	0.532	7.061	77.0	3.4106	24.0	666.0	20.2	395.28	7.01	25.0
55	0.01311	90.0	1.22	0.0	0.403	7.249	21.9	8.6966	5.0	226.0	17.9	395.93	4.81	35.4

Description

Bisa didapat dari fungsi load_boston().DESCR

```
Boston house prices dataset
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.
    :Attribute Information (in order):
       - CRIM
                   per capita crime rate by town
                   proportion of residential land zoned for lots over 25,000 sg.ft.

    ZN

        - INDUS
                   proportion of non-retail business acres per town
        - CHAS
                   Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        NOX
                   nitric oxides concentration (parts per 10 million)

    RM

                   average number of rooms per dwelling
       - AGE
                   proportion of owner-occupied units built prior to 1940
        - DIS
                   weighted distances to five Boston employment centres
        - RAD
                   index of accessibility to radial highways
                   full-value property-tax rate per $10,000
        - TAX
       - PTRATIO pupil-teacher ratio by town
        - B
                   1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
        - LSTAT
                   % lower status of the population

    MEDV

                  Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
```

LM Plot

```
sns.set()
sns.lmplot(x='RM', y='MEDV', hue='CHAS', data=boston)
```

<seaborn.axisgrid.FacetGrid at 0xf79561bac8>

Pair Plot

sns.pairplot(data=boston[['CRIM','RM','AGE','DIS','MEDV']])

<seaborn.axisgrid.PairGrid at 0x726a218f98>

Galeri Contoh

Galeri Contoh

Galeri Contoh

http://seaborn.pydata.org/examples/index.html