Devoir de mathématiques

Exercice 1

- 1. On considère la suite $(u_n)_{n\geq 0}$ définie par la forme explicite $u_n=4n+3$, $n\geqslant 0$.
 - (a) Prouver que la suite $(u_n)_{n\geqslant 0}$ est une suite arithmétique dont on déterminera le terme initial ainsi que la raison.
 - (b) Déterminer le rang du terme 311.
 - (c) Calculer la somme $S = 3 + 7 + 11 + \dots + 303 + 307 + 311$.
- 2. On considère la suite $(v_n)_{n\geqslant 0}$ définie par la forme explicite $v_n=\frac{2n-1}{3n+2}$, $n\geqslant 0$.
 - (a) Calculer les quatre premiers termes de la suite $(v_n)_{n\geq 0}$.
 - (b) Prouver que la suite $(v_n)_{n\geqslant 0}$ est croissante.
 - (c) Prouver que la suite $(v_n)_{n\geq 0}$ est convergente et calculer sa limite.

Exercice 2

On considère la fonction $f(x) = \frac{x^2 + x - 1}{x - 1}$.

- 1. Déterminer l'ensemble de définition de la fonction f ainsi que l'ensemble des réels x en lesquels la fonction est dérivable.
- 2. Déterminer la limite de f(x) en 1 par valeurs inférieures.
- 3. Calculer la dérivée f' de la fonction f.
- 4. En déduire le tableau de variations de la fonction f.
- 5. Montrer que la droite d'équation y=x+2 est une asymptote oblique en $+\infty$ et $-\infty$ à la courbe représentative de la fonction f.
- 6. Construire la courbe représentative de la fonction f avec pour unités 2 cm en abscisse et 1 cm en ordonnée et mettre en évidence sur la figure les tangentes horizontales ainsi que les asymptotes.

Exercice 3

- 1. On rappelle la formule $\cos(a+b) = \cos a \cos b \sin a \sin b$, démontrer la formule $\cos(2x) = 2\cos^2 x 1$.
- 2. On considère le réel $\alpha \in [0; \frac{\pi}{4}]$ tel que $\cos \alpha = \frac{1 + \sqrt{5}}{4}$.
 - (a) Calculer la valeur exacte de $\cos(2\alpha)$.
 - (b) Calculer la valeur exacte de $\cos(4\alpha)$.
 - (c) Prouver que $4\alpha = \pi \alpha$ et en déduire la valeur exacte de α .

Sujet droit Devoir de mathématiques

Exercice 4

Dans le plan muni d'un repère orthonormé, on considère les points A(-7;2), B(5;-6), $\Omega(4;-1)$, C(1;1) et D(7;-3) ainsi que le vecteur $\overrightarrow{u}\begin{pmatrix} 4\\6 \end{pmatrix}$. Placer les points sur la figure ci-dessous qui sera complétée au fur et à mesure des questions.

- 1. (a) Montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{u} sont orthogonaux.
 - (b) Que représente le vecteur \overrightarrow{u} pour la droite (AB)? En déduire une équation cartésienne de la droite (AB).
- 2. (a) Calculer les produits scalaires $\overrightarrow{\Omega A}$. \overrightarrow{u} et $\overrightarrow{\Omega B}$. \overrightarrow{u} .
 - (b) Pour tout point M(x;y) du plan exprimer en fonction de x et y le produit scalaire $\overrightarrow{\Omega M}$. \overrightarrow{u} .
 - (c) On suppose que les points M, A et B sont alignés, démontrer que 2x+3y+8=0 et en déduire que le produit scalaire $\overrightarrow{\Omega M}$. \overrightarrow{u} est indépendant de x et y.
- 3. (a) Montrer que l'équation du cercle de diamètre [CD] est $x^2+y^2-8x+2y+4=0$.
 - (b) Calculer les coordonnées du (ou des) point(s) d'intersection de ce cercle avec la droite d'équation 2x + 3y = -8.

Exercice 5

Dans le plan, on considère un segment [AB] de longueur 12 cm et on cherche à déterminer l'ensemble des points M tels que $MA^2 + 3MB^2 = 144$.

- 1. On pose $G = \text{bar}\{(A; 1), (B; 3)\}$, exprimer le vecteur \overrightarrow{AG} en fonction du vecteur \overrightarrow{AB} et calculer les longueurs GA et GB.
- 2. En utilisant la relation de Chasles, prouver que $4MG^2 + GA^2 + 3GB^2 = 144$.
- 3. En déduire l'ensemble des points M cherchés puis réaliser une figure.