8. Ferrous metals

- Ferrous alloys widespread use is accounted for by three factors:
- (1)Iron-containing compounds exist in abundant quantities within the earth's crust
- (2) Metallic iron and steel alloys may be produced using relatively economical extraction, refining, alloying, and fabrication techniques
- (3) Ferrous alloys are extremely versatile, in that they may be tailored to have a wide range of mechanical and physical properties

8.1 STEELS

- □Low-Carbon Steels
- □medium-Carbon Steels
- □High-Carbon Steels

Plain carbon steel: A ferrous alloy in which carbon is the prime alloying element

alloy steel: A ferrous (or iron-based) alloy that contains appreciable concentrations of alloying elements. These alloying elements are usually added to improve mechanical and corrosion-resistance properties.

8.1.1 Low-Carbon Steels (low alloy)

- ☐These generally contain less than about
- 0.25wt%C
- □Unresponsive to heat treatments
- □Strengthening is accomplished by cold work
- ☐Microstructures consist of ferrite and pearlite

Disadvantage:

- >Soft
- **>** weak

advantage:

- **>** ductility
- ➤Toughness
- ➤ Machinable
- ➤ Weldable
- >inexpensive

Application:

- >Automobile body components
- ➤ Structural shapes
- >Sheets

High-strength, low-alloy(HSLA)steels: relatively strong, low-carbon steels, with less than about to wt% total of alloying elements

AISI: American Iron and Steel Institute

SAE: the Society of Automotive Engineers

ASTM: American Society for Testing and Materials

UNS: the Uniform Numbering System

STEELS

Low-Carbon Steels

Compositions of Five Plain Low-Carbon Steels and Three High-Strength, Low-Alloy Steels

Desi	Composition(wt%) ^b							
AISI/SAE or ASTM Number	UNS Number	С	Mn	Other				
Plain Low-Carbon Steels								
1010	1010 G10100							
1020	G10200	0.20	0.45					
A36	K02600	0.29	1.00	0.20Cu(min)				
A516 Grade 70	K02700	0.31	1.00	0.25Si				
High	High- Strength, Low-Alloy Steels							
A440	K12810	0.28	1.35	0.30 Si(max), 0.20Cu(min)				
A633 Grade E	K12002	0.22	1.35	0.30Si, 0.08V, 0,02N,0.03Nb				
A656 Grade 1 K11804		0.18	1.60	0.60Si, 0.1V, 0.20Al, 0.015N				

Low-Carbon Steels

Mechanical Characteristics of Hot-Rolled Material and Typical Applications for Various Plain Low-Carbon and High-Strength, Low-Alloy Steels

AISI/SAE or ASTM Number	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications	
		Plain Low-Ca	rbon Steels		
1010	325 (47)	180 (26)	28	Automobile panels, nails, and wire	
1020	380 (55)	210 (30)	25	Pipe; structural and sheet steel	
A36	400 (58)	220 (32)	23	Structural (bridges and buildings)	
A516 Grade 70	485 (70)	260 (38)	21	Low-temperature pressure vessels	
	Hi	gh-Strength, Le	ow-Alloy Steels		
A440	435 (63)	290 (42)	21	Structures that are bolted or riveted	
A633 Grade E	520 (75)	380 (55)	23	Structures used at low ambient temperature	
A656 Grade 1	655 (95)	552 (80)	15	Truck frames and railway cars	

8.1.2 Medium-Carbon Steels (low alloy)

- ☐These generally contain less than about 0.25-
- 0.60wt%C
- □heat treatments by austenitizing, quenching
- ■Microstructures consist of martensite

Application:

- ➤ Railway wheels and tracks
- **≻**gear
- ➤ Crankshafts
- ➤Other machine part

STEELS

Medium-Carbon Steels

AISI/SAE and UNS Designation Systems and Composition Ranges for Plain Carbon Steels and Various Low-Alloy Steels

AISI/Designati	UNS Designaition	Composition Ranges (wt% of Alloying Elements in Addition to C) ^b					
ona		Ni	Cr	Мо	Other		
10XX,Plain	G10xx0						
carbon							
11XX,Free	G11xx0				0.08-0.33\$		
machining							
12XX,Free	G12xx0				0.10-0.35S		
machining							
					0.04-0.12P		
13XX	G13xx0				1.60-1.90Mn		
40XX	G40xx0			0.20-0.30			
41XX	G41xx0		0.80-1.10	0.15-0.25			
43XX	G43xx0	1.65-2.00	0.40-0.90				
46XX	G46xx0	0.70-2.00					
48XX	G48xx0	3.25-3.75					
51XX	G51xx0		0.70-1.10				
61XX	G61xx0		0.50-1.10		0.10-0.15V		
86XX	G86xx0	0.40-0.70	0.40-0.60	0.15-0.25			
92XX	G92xx0				1.80-2.20Si		

STEELS

Medium-Carbon Steels

Typical Applications and Mechanical Property for Oil-Quenched and Tempered Plain Carbon and Alloys Steels

UNS Number	Tensile	Yield Strength	Ductility(%EL	Typical Applications
	Strength(Mpa	(Mpa(ksi))	in 50 mm	
	(ksi))		(2in.)	
	Plain Carbo	n Steels		
G10400	605-780	430-585	33-19	Crankshafts, bolts
	(88-113)	(62-85)		
G10800	800-1310	480-980	24-13	Chisels, hammers
	(116-190)	(70-142)		
G10950	760-1280	510-830	26-10	Knives, hacksaw blades
	(110-186)	(74-120)		
	Alloys Stee	els		
G40630	786-2380	710-1770	24-4	Springs, hand tools
	(114-345)	(103-257)		
G43400	980-1960	895-1570	21-11	Bushings, aircraft tubing
	(142-284)	(130-228)		
G61500	815-2170	745-1860	22-7	Shafts, pistons, gears
	(118-315)	(108-270)		

8.1.3 High-Carbon Steels (low alloy)

- ☐These generally contain less than about 0.6-1.4wt%C
- □heat treatments by austenitizing, quenching
- ■Microstructures consist of martensite

advantage:

- >Hard
- >Strong
- >Wear resistant
- ➤ Good cutting performance

Application:

- **≻**knives
- > razors
- > Hacksaw blades
- **≻**Spring
- ➤ High-strength wire

STEELS

High-Carbon Steels

Designations, Compositions, and Applications for Six Tool Steels

UNS Numbe r	Compositions ((wt%) ^a					Typical Applications	
	С	Cr	Ni	Мо	W	V	
T11301	0.8 5	3.75	0.30ma x	8.70	1.75	1.20	Drills, saws, lathe and planer tools
T30102	1.0 0	5.15	0.30ma x	1.15		0.35	Punches, embossing dies
T30402	1.5 0	12	0.30ma x	0.95		1.10max	Cutlery, drawing dies
T31501	0.9 5	0.50	0.30ma x		0.50	0.30max	Shear blades, cutting tools
T41901	0.5 0	1.40	0.30ma x	0.50m ax	2.25	0.25	Pipe cutters, concrete drills
T72301	1.1	0.15 max	0.20ma x	0.10m ax	0.15 max	0.10max	Blacksmith tools, woodworking tools

8.1.4 Stainless Steels (high alloy)

Stainless steels: A steel alloy that is highly resistant to corrosion in a variety of environments. The predominant alloying element is chromium, which must be present in a concentration of at least 11wt%. Other alloy additions to include nickel and molybdenum, are also possible.

Stainless steels

- ➤ Martensitic----magnetic
- >ferritic----magnetic
- ➤ Austenitic -----most corrosion resistant

Application-resist oxidation:

- ➤ Gas turbines
- ➤ High-temperture steam boiler
- ➤ Heat-treating furnaces
- **≻**Aircraft
- **≻**Missiles
- ➤ Nuclear power-generating units

STEELS

Stainless Steels
Designations, Compositions, Mechanical Properties, and Typical Applications for Austenitic, Ferritic, Martensitic, and Precipitation-Hardenable Stainless Steels

				Mechanical Proper			
AISI Number	UNS Number	Compositions((wt %) ^a	Condition ^b	Tensile Strength(Mpa(ksi))	Yield Strength (Mpa(ksi))	Ductility(%EL in 50 mm (2in.)	Typical Applications
			Ferriti	С			
409	S40900	0.08C,11.0Cr,1.0 Mn,0.50Ni,0.75Ti	Annealed	380(55)	205(30)	20	Automotive exhaust component, tanks for agricultural spray
446	S44600	0.20C,25Cr,1.5M n	Annealed	515(75)	275(40)	20	Valves(high temperature), glass molds, combustion chambers
			Austen	itic			
304	\$30400	0.08C,19Cr,9Ni,2. 0Mn	Annealed	515(75)	205(30)	40	Chemical and food processing equipment, cryogenic vessels
316L	S31603	0.03C,17Cr,12Ni, 2.5Mo,2.0Mn	Annealed	485(70)	170(25)	40	Welding construction
			Martens	sitic			
410	S41000	0.15C,12.5Cr,1.0 Mn	Annealed Q&T	485(70) 825(120)	275(40) 620(90)	20 12	Rifle barrels, cutlery, jet engine parts
440A	S44002	0.70C,17Cr,0.75 Mo,1.0Mn	Annealed Q&T	725(105) 1790(260)	415(60) 1650(240)	20 5	Cutlery, bearings, surgical tools
			Precipitation H				
17-7PH	S17700	0.09C,17Cr,7Ni,1. 0Al,1.0Mn	Precipitatio-n hardened	1450(210)	1310(190)	1-6	Springs, knives, pressure vessels

8.2 Cast Irons

Cast Irons: Generically, a ferous alloy, the carbon content of which is greater than the maximum solubility in austenite at the eutectic temperature. Most commercial cast irons contain between 3.0 and 4.5 wt% C, and between 1 and 3 wt% Si.

Cast Irons

8.2.1 Gray Irons

Gray cast Irons: A cast iron alloyed with silicon in which the graphite exists in the form of flakes. A fractured surface appears gray.

- ➤ Brittle----sharp and point----stress concentration
- ➤ Damping vibrational energy
- >Wear resistant
- ➤ High fluidty---casting---intricate shapes
- ➤ Least expensive

Gray Iron

The dark graphite Flakes are embedded in an α -ferrite matrix

Comparison of the relative vibrational damping capacities of (a)Steel and (b) gray cast iron

8.2.2 Ductile Irons

Ductile (nodular) Irons: A cast iron that is alloyed with silicon and a small concentration of magnesium and/or cerium and in which the free graphite exists in nodular form, sometimes called nodular iron

- ➤ Castings are stronger
- > Much more ductile
- ➤ Mechanical characteristics approaching those of steel

Application:

- >valves
- ➤Pump bodies
- ➤ Crankshafts
- **≻**Gear
- ➤ Other automotive and machine components

Ductile Iron

The dark graphite nodule are surrounded by an α -ferrite matrix

8.2.3 White cast Irons

White cast Irons: A low-silicon(1.0wt%) and very brittle cast iron in which the carbon is in combined form as cementite; a fractured surface appears white

- ➤ Very hard
- ➤ Very brittle
- **>**Unmachinable

White Iron

The light cementite Regions are surrounded By pearlite, which has the ferrite-cementitle Layered structure

20 µm

8.2.4 Malleable Irons

Malleable Irons: white cast iron that has been heattreated to convert the cementite into graphite clusters; a relatively ductile cast iron.

Application:

- ➤ Connecting rods
- >Transmission gears
- ➤ Automotive industry
- ➤ Pipe fitting
- ➤ Valve parts for railroad

Malleable iron

Dark graphite Rosettes(temper carbon) in an α ferrite matrix

SIAE


```
Gf------flake graphite
Gr------graphite rosettes
Gn-----graphite nodules
P-----PEARLITE
A ------FERRITE
```


8.2.5 Compacted Graphite iron

Compacted Graphite iron

: A cast iron that is alloyed with silicon and a small amount of magnesium, cerium, or other additives, in which the graphite exists as wormlike particles.

C%=3.4%~3.6%; Si%=2.4%~3.0%;

Mn%=0.4%~0.6%; S%<0.06%; P%<0.07%

Lower strengths

- ➤ Higher ductilities
- >Tensile and ys better than gray irons

Characteristics:

- >Higher thermal conductivity
- > Better resistance to thermal shock
- >Lower oxidation at elevated temperatures

Application:

- ➤ Diesel engine blocks
- >Exhaust manifolds
- ➤ Gearbox housings
- ➤ Brake discs for high-speed train
- >flywheels

Compacted graphite Irons

Dark graphite wormlike particles Are embedded Within an α - ferrite matrix

