A2 Mathematics Beginning of the Year Review

IN	ame:	
1	Expand $(1+3x)^{\frac{2}{3}}$ in ascending powers of x, up to and including the term in x^3 , simplifying coefficients.	the [4]
2	(a) Sketch, on the same diagram, the graphs of $y = 2x - 9 $ and $y = 5x - 3$. [2]]
	(b) Solve the equation $ 2x - 9 = 5x - 3$. [2]	
3	(a) Express $3 \sin 2\theta \sec \theta + 10 \cos(\theta - 30^\circ)$ in the form $R \sin(\theta + \alpha)$ where $R > 0$ and $0^\circ < \alpha < 90^\circ$. Give the value of α correct to 2 decimal places. [6]	
	(b) Hence solve the equation $3 \sin 4\beta \sec 2\beta + 10 \cos(2\beta - 30^\circ) = 2$ for $0^\circ < \beta < 90^\circ$. [3]	
4	Find, in terms of a , the set of values of x satisfying the inequality	
	2 3x+a < 2x+3a ,	
	where a is a positive constant.	[4]
5	Solve the equation $\cos(\theta - 60^{\circ}) = 3\sin\theta$, for $0^{\circ} \le \theta \le 360^{\circ}$.	[5]
6	(a) By first expanding $\tan(2\theta + 2\theta)$, show that the equation $\tan 4\theta = \frac{1}{2} \tan \theta$ may be expressed as $\tan^4 \theta + 2 \tan^2 \theta - 7 = 0$. [4]	
	(b) Hence solve the equation $\tan 4\theta = \frac{1}{2} \tan \theta$, for $0^{\circ} < \theta < 180^{\circ}$. [3]	

7 Let $f(x) = \frac{5x^2 + 8x - 3}{(x - 2)(2x^2 + 3)}$.

- (a) Express f(x) in partial fractions. [5]
- (b) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 .
- 8 The polynomial p(x) is defined by

$$p(x) = ax^3 - 11x^2 - 19x - a,$$

where a is a constant. It is given that (x-3) is a factor of p(x).

- (a) Find the value of a. [2]
- (b) When a has this value, factorise p(x) completely. [3]
- (c) Hence find the exact values of y that satisfy the equation $p(e^y + e^{-y}) = 0$. [4]
- 9 (a) Solve the equation ln(2+x) ln x = 2 ln 3. [3]
 - (b) Hence solve the equation $\ln(2 + \cot y) \ln(\cot y) = 2 \ln 3$ for $0 < y < \frac{1}{2}\pi$. Give your answer correct to 4 significant figures. [2]
- (a) Find the quotient when $x^4 32x + 55$ is divided by $(x 2)^2$ and show that the remainder is 7.
 - **(b)** Factorise $x^4 32x + 48$. [2]
 - (c) Hence solve the equation $e^{-12y} 32e^{-3y} + 48 = 0$, giving your answer in an exact form. [2]

Solutions

- 1. May 2021 P33
- 2. May 2022 P23
- 3. May 2022 P23
- 4. May 2022 P33
- 5. May 2022 P33

- 6. May 2021 P33
- 7. May 2022 P33
- 8. May 2021 P21
- 9. May 2021 P22
- 10. May 2021 P22