Universität Würzburg Übungsblätter Bachelor Mathematische Physik

Jun Wei Tan

November 10, 2023

Contents

1		8	5
	1.1	Blatt 1 $(30/50)$	
	1.2	Blatt 2	
	1.3	Blatt 3	
	1.4	Blatt 4)
2	Line	re Algebra 2 27	7
	2.1	Blatt 1 $(30/33)$	7
	2.2	Blatt 2	L
	2.3	Blatt 3	7
	2.4	Blatt $4 \ldots $	2
3	Ana	rsis 2	7
	3.1	Blatt 1 $(17.5/21)$	7
	3.2	Blatt 2	2
	3.3	Blatt 3	3
	3.4	Blatt 4	1
4	Ver	efung Analysis 69)
	4.1	Blatt 1 (18/21)	
	4.2	Blatt 2 $(16.5/20)$	
	4.3	Blatt $3 \ldots $	
	4.4	Blatt 4	
5	Ein	rung in die Algebra 81	i
_	5.1	Blatt 1	-
	5.2	Blatt 2	
	5.3	Blatt 3	
6	The	retische Mechanik 91	L
-	6.1	Blatt 1	_
	6.2	Blatt 2	
	6.3	Blatt 3	

Lineare Algebra 1

1.1 Blatt 1 (30/50)

Definition 1.1. Sind $a_1, a_2, b \in \mathbb{R}$ mit $(a_1, a_2) \neq (0, 0)$, so bezeichnet man die Menge $g := \{(x_1, x_2) \in \mathbb{R}^2 | a_1x_1 + a_2x_2 = b\}$ als Gerade.

Satz 1.2. Zu jeder Geraden gibt es $c_1, c_2, d_1, d_2 \in \mathbb{R}$, sodass die Gerade in der Form

$$\{(c_1, c_2) + t(d_1, d_2) : t \in \mathbb{R}\}$$

geschrieben werden kann. Weiterhin ist obige Menge im Fall $(d_1, d_2) \neq (0, 0)$ immer eine Gerade

Bemerkung 1.3. Der Parameterform für Geraden und Ebenen ist in der Vorlesung bewiesen.

Aufgabe 1. Beweisen Sie folgende Aussage: Gegeben seien zwei Punkte $p, q \in \mathbb{R}^2$ mit $p \neq q$. Dann gibt es genau eine Gerade $g \subseteq \mathbb{R}^2$ mit $p \in g$ und $q \in g$. Diese ist gegeben durch $g_{p,q} = \{x \in \mathbb{R}^2 | x_1(q_2 - p_2) - x_2(q_1 - p_1) = p_1q_2 - p_2q_1\}$.

Beweis. Wir nutzen Def. 1.1. Weil p und q in der Gerade sind, können wir zwei Gleichungen schreiben...

$$a_1 p_1 + a_2 p_2 = b$$
$$a_1 q_1 + a_2 q_2 = b$$

Dann gilt

$$a_1p_1 + a_2p_2 = a_1q_1 + a_2q_2$$

 $a_1(p_1 - q_1) = a_2(q_2 - p_2)$

Daraus folgt die Lösungsmenge

$$a_1 = t$$

$$a_2 = t \frac{p_1 - q_1}{q_2 - p_2}$$

$$b = p_1 t + p_2 \frac{p_1 - q_1}{q_2 - p_2} t$$

Es ist klar, dass die gegebene Gerade eine Lösung zu die Gleichung ist, mit $t=q_2-p_2$. Was passiert mit andere t? Sei $t=q_2-p_2$ und $t'\in\mathbb{R}$. Vergleich dann die Gleichungen

$$x_1t + x_2t \frac{p_1 - q_1}{q_2 - p_2} = p_1t + p_2 \frac{p_1 - q_1}{q_2 - p_2}t$$
$$x_1t' + x_2t' \frac{p_1 - q_1}{q_2 - p_2} = p_1t' + p_2 \frac{p_1 - q_1}{q_2 - p_2}t'$$

Es ist klar, dass die zweite Gleichung nur die erste Gleichung durch t^\prime/t multipliziert ist. Deshalb habe die zwei Gleichungen die gleiche Lösungsmengen, dann sind die Gerade, die durch die Gleichungen definiert werden, auch gleich.

Wenn $q_1 = q_2$ dürfen wir die Lösungemenge nicht so schreiben. Aber wir können den Beweis wiederholen, aber mit a_2 als das freie Parameter. Es darf nicht, dass $(q_1 - p_1, q_2 - p_2) = (0, 0)$, weil $\vec{\mathbf{q}} \neq \vec{\mathbf{0}}$

Aufgabe 2. In Beispiel 1.2.8 wurde der Schnitt von zwei Ebenen bestimmt. Er hatte eine ganz bestimmte Form, die wir für den Kontext dieser Aufgabe als Gerade bezeichnen wollen, formal:

Ist $(v_1, v_2, v_3) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$ und $(p_1, p_2, p_3) \in \mathbb{R}^3$ beliebig, dann ist die Menge

$$\{(p_1 + t \cdot v_1, p_2 + t \cdot v_2, p_3 + t \cdot v_3) | t \in \mathbb{R}\}$$

eine Gerade.

- (a) Finden Sie zwei Ebenen, deren Schnitt die Gerade $g = \{(1+3t, 2+t, 3+2t)|t \in \mathbb{R}\}$ ist. Erläutern Sie, wie Sie die Ebenen bestimmt haben und beweisen Sie anschließend, dass Ihr Ergebnis korrekt ist.
- (b) Ist der Schnitt von zwei Ebenen immer eine Gerade? Wenn ja, begründen Sie das, wenn nein, geben Sie ein Gegenbeispiel an.
- (c) Zeigen Sie: Für den Schnitt einer Geraden g mit einer Ebene E gilt genau einer der folgenden drei Fälle:
 - $g \cap E = \emptyset$
 - $|g \cap E| = 1$
 - $g \cap E = g$

Geben Sie für jeden der Fälle auch ein Geraden-Ebenen-Paar an, dessen Schnitt genau die angegebene Form hat.

Beweis. (a) Wir suchen zwei Ebenen, also 6 Vektoren $\vec{\mathbf{p}}_1, \vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2, \vec{\mathbf{p}}_2, \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in \mathbb{R}^3$, die zwei Ebenen durch

$$E_1 = { \vec{\mathbf{p}}_1 + t_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 | t_1, t_2 \in \mathbb{R} }$$

$$E_2 = { \vec{\mathbf{p}}_2 + t_1' \vec{\mathbf{v}}_1 + t_2' \vec{\mathbf{v}}_2 | t_1', t_2' \in \mathbb{R} }$$

definieren. Einfachste wäre, wenn $p_1 = p_2 \in g$. Sei dann $p_1 = p_2 = (1, 2, 3)^T$. Wenn $\vec{\mathbf{u}}_1 = \vec{\mathbf{v}}_1 = (3, 1, 2)^T$, ist es auch klar, dass der Schnitt g entschließt $(t_2 = t_2' = 0)$. Dann mussen wir $\vec{\mathbf{u}}_2, \vec{\mathbf{v}}_2$ finden, für die gelten,

$$(t,t_2') \neq (0,0) \implies t_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 \neq t_1' \underbrace{\vec{\mathbf{u}}_1}_{\vec{\mathbf{u}}_1 = \vec{\mathbf{v}}_1} + t_2' \vec{\mathbf{v}}_2 \forall t_1, t_1' \in \mathbb{R},$$

also

$$\xi_1 \vec{\mathbf{u}}_1 \neq t_2' \vec{\mathbf{v}}_2 - t_2 \vec{\mathbf{u}}_2 \qquad (t_2, t_2') \neq (0, 0), \forall \xi_1 \in \mathbb{R}.$$

Das bedeutet

$$\xi_1 = 0 : \vec{\mathbf{v}}_2 \neq k\vec{\mathbf{u}}_2 \qquad \forall k \in \mathbb{R}$$

$$\xi_1 \neq 0 : \vec{\mathbf{u}}_1 \notin \operatorname{span}(\vec{\mathbf{v}}_2, \vec{\mathbf{u}}_2)$$

Bemerkung 1.4. Wir können uns einfach für solchen $\vec{\mathbf{v}}_2$, $\vec{\mathbf{u}}_2$ entscheiden. Wir brauchen nur

$$\langle \vec{\mathbf{u}}_2, \vec{\mathbf{v}}_2 \rangle = \langle \vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2 \rangle = \langle \vec{\mathbf{u}}_1, \vec{\mathbf{v}}_2 \rangle = 0.$$

Aber weil das innere Produkt nicht in der Vorlesung nicht diskutiert worden ist, mussen wir es nicht systematisch finden.

Bemerkung 1.5. Eigentlich braucht man keine spezielle Grunde, um $\vec{\mathbf{u}}_2$ und $\vec{\mathbf{v}}_2$ zu finden. Wenn man irgindeine normalisierte Vektoren aus einer Gleichverteilung auf \mathbb{R}^3 nimmt, ist die Wahrscheinlichkeit, dass die eine Lösung sind, 1.

Daher entscheide ich mich ganz zufällig für zwei Vektoren...

$$\vec{\mathbf{v}}_2 = (1, 0, 0)^T$$

 $\vec{\mathbf{u}}_2 = (0, 1, 0)^T$

Der Schnitt von der Ebenen kann berechnet werden...

$$\vec{\mathbf{p}} + t_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 = \vec{\mathbf{p}} + t_1' \vec{\mathbf{v}}_1 + t_2' \vec{\mathbf{v}}_2,$$

 $\xi_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 = t_2' \vec{\mathbf{v}}_2.$

Also

$$\xi_1 \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + t_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = t_2' \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

oder

$$\begin{pmatrix} 3 & 0 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ t_2 \\ t_2' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Bemerkung 1.6. Hier ist es noch einmal klar, dass die einzige Lösung $\xi_1 = t_2 = t_2' = 0$ ist, weil $\det(\ldots) \neq 0$. Aber wir mussen noch eine langere Beweis schreiben...

$$\begin{pmatrix} 3 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & 0 & -2 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

also die einzige Lösung ist $\xi_1=t_2=t_2'=0 \implies t_2=t_2'=0, t_1=t_2'=0$ $t_2 \implies E_1 \cap E_2 = g$

(b) Nein.

$$E_{1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + u_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + u_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad u_{1}, u_{2} \in \mathbb{R},$$

$$E_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + u_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + u_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad u_1, u_2 \in \mathbb{R}.$$

Dann ist $E_1 \cap E_2 = \emptyset$

(c)

Satz 1.7. Sei $\vec{\mathbf{a}}, \vec{\mathbf{b}} \in \mathbb{R}^n, n \in \mathbb{N}$. Dann gibt es genau eine Gerade g, wofür gilt $\vec{\mathbf{a}} \in g$, $\vec{\mathbf{b}} \in g$. Es kann als

$$\vec{\mathbf{a}} + t(\vec{\mathbf{b}} - \vec{\mathbf{a}}), t \in \mathbb{R}$$

geschrieben werden.

Beweis. Es ist klar, dass

$$\vec{\mathbf{a}} \in g$$
 $(t=0)$
 $\vec{\mathbf{b}} \in g$ $(t=1)$

$$\vec{\mathbf{b}} \in g \qquad (t=1)$$

Sei dann eine andere Gerade g', wofür gilt $\vec{\mathbf{a}} \in g'$ und $\vec{\mathbf{b}} \in g'$. g' kann als

$$\vec{\mathbf{u}} + t\vec{\mathbf{v}}, t \in \mathbb{R}$$

geschrieben werden, wobei $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n$. Es existiert $t_1, t_2 \in \mathbb{R}$, sodass

$$\vec{\mathbf{u}} + t_1 \vec{\mathbf{v}} = \vec{\mathbf{a}}$$

$$\vec{\mathbf{u}} + t_2 \vec{\mathbf{v}} = \vec{\mathbf{b}}$$

Es gilt dann

$$\vec{\mathbf{u}} = \vec{\mathbf{a}} - t_1 \vec{\mathbf{v}}$$
$$\vec{\mathbf{a}} - t_1 \vec{\mathbf{v}} + t_2 \vec{\mathbf{v}} = \vec{\mathbf{b}}$$
$$\vec{\mathbf{v}} = \frac{1}{t_2 - t_1} (\vec{\mathbf{b}} - \vec{\mathbf{a}}) \qquad t_1 \neq t_2 \text{ weil } \vec{\mathbf{a}} \neq \vec{\mathbf{b}}$$

Es gilt dann für g':

$$\begin{split} g' &= \{\vec{\mathbf{u}} + t\vec{\mathbf{v}}|t \in \mathbb{R}\} \\ &= \left\{\vec{\mathbf{a}} - \frac{t_1}{t_2 - t_1}(\vec{\mathbf{b}} - \vec{\mathbf{a}}) + \frac{t}{t_2 - t_1}(\vec{\mathbf{b}} - \vec{\mathbf{a}})|t \in \mathbb{R}\right\} \\ &= \left\{\vec{\mathbf{a}} + \left(\frac{t}{t_2 - t_1} - \frac{t_1}{t_2 - t_1}\right)\left(\vec{\mathbf{b}} - \vec{\mathbf{a}}\right)|t \in \mathbb{R}\right\} \end{split}$$

Wenn man $t' = \frac{t}{t_2 - t_1} - \frac{t_1}{t_2 - t_1}$ definiert, ist es dann klar, dass g' = g

Es ist klar, dass maximal eines der Fälle gelten kann. Wir nehmen an, dass die erste zwei Fälle nicht gelten. Dann gilt

$$|g \cap E| \ge 2$$
.

Es gibt dann mindestens zwei Punkte in $g \cap E$. Es ist auch klar, dass die Verbindungsgerade zwische die beide Punkte g ist (Pr. 1)

Satz 1.8. Sei $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in E$. Dann ist die Verbindungsgerade zwischen $\vec{\mathbf{v}}_1$ und $\vec{\mathbf{v}}_2$ auch in E.

Beweis. Sei

$$E = \{ \vec{\mathbf{p}}_1 + t_1 \vec{\mathbf{u}} + t_2 \vec{\mathbf{v}} | t_1, t_2 \in \mathbb{R} \}.$$

Es wird angenommen, dass a_1, a_2, b_1, b_2 existiert, sodass

$$\vec{\mathbf{v}}_1 = \vec{\mathbf{p}} + a_1 \vec{\mathbf{u}} + a_2 \vec{\mathbf{v}}$$
$$\vec{\mathbf{v}}_2 = \vec{\mathbf{p}} + b_1 \vec{\mathbf{u}} + b_2 \vec{\mathbf{v}}$$

Dann ist

$$\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1 = (b_1 - a_1)\vec{\mathbf{u}} + (b_2 - a_2)\vec{\mathbf{v}},$$

also

$$\vec{\mathbf{v}}_1 + t(\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1) = \vec{\mathbf{p}} + a_1 \vec{\mathbf{u}} + a_2 \vec{\mathbf{v}} + t \left[(b_1 - a_1) \vec{\mathbf{u}} + (b_2 - a_2) \vec{\mathbf{v}} \right]$$
$$= \vec{\mathbf{p}} + \left[a_1 + t(b_1 - a_1) \right] \vec{\mathbf{u}} + \left[a_2 + t(b_2 - a_2) \right] \vec{\mathbf{v}} \in E$$

Deshalb ist $g \subseteq g \cap E$. Weil $g \cap E \subseteq g$, ist $g = g \cap E$

1.2 Blatt 2

Aufgabe 3. Gegeben sei die Relation $\sim \subseteq (\mathbb{R}^2 \{0\}) \times (\mathbb{R}^2 \{0\})$ mit $x \sim y$ genau dann, wenn es eine Gerade $L \subseteq \mathbb{R}^2$ gibt, die 0, x und y enthält.

- (a) Bestimmen Sie alle $y \in \mathbb{R}^2 \setminus \{(0,0)\}$ mit $(0,1) \sim y$ bzw. $(1,0) \sim y$ und skizzieren Sie die beiden Mengen in einem geeigneten Koordinatensystem.
- (b) Begründen Sie, dass \sim eine Äquivalenzrelation ist.
- (c) Bleibt \sim auch dann eine Äquivalenz relation, wenn man sie als Relation in \mathbb{R}^2 betrachtet?

Beweis. (a) Eine Gerade hat den Form

$$\{(x_1, x_2) \in \mathbb{R}^2 | a_1 x_1 + a_2 x_2 = b \}.$$

Weil (0,0) in der Gerade ist, gilt b=0. Für die zwei Fälle:

- (i) (0,1) ist in der Gerade. Es gilt dann $a_2 = 0, a_1 \in \mathbb{R}$. Die Gleichung der Gerade ist dann $x_1 = 0$, oder alle Punkte des Forms $(0, y), y \in \mathbb{R}$.
- (ii) (1,0) ist in der Gerade. Es gilt dann $a_1 = 0, a_2 \in \mathbb{R}$. Die Gerade enthält ähnlich alle Punkte des Forms $(x,0), x \in \mathbb{R}$.

(b) (i) $x \sim x$ (Reflexivität)

Es gibt immer eine Gerade zwischen 0 und x. Eine solche Gerade enthält x per Definition.

(ii) $x \sim y \iff y \sim x$ (Symmetrie) Es gibt eine Gerade, die 0, x und y enthält. Deswegen gilt die beide Richtung der Implikationen. 1.2. BLATT 2

(iii) $x \sim y$ und $y \sim z \implies x \sim z$ (Transitivität) Es gibt eine Gerade zwischen 0, x und y, und eine Gerade zwischen 0, y und z. Weil die beide Geraden zwischen y geht, sind die Geraden gleich, und enthält x und z, daher $x \sim z$.

(c) Nein. $(1,0) \sim (0,0), (0,1) \sim (0,0),$ aber $(1,0) \sim (0,1)$ stimmt nicht.

Aufgabe 4. Es sei $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $(x_1, x_2, x_3) \to (x_1, x_2)$, s die Spiegelung in \mathbb{R}^2 , $T: \mathbb{R}^2 \to \mathbb{R}^2$ die Translation um (1,0) und $em: \mathbb{R}^2 \to \mathbb{R}^3$ die Einbettung.

- (a) Bilden Sie die Verkettungen $f \circ em, em \circ f, s \circ f, T \circ s, s \circ T$ und $em \circ s$. Geben Sie dabei jeweils Argumentmenge, Zielmenge und Zuordnungsvorschrift an.
- (b) Untersuchen Sie die Funktionen aus der vorherigen Teilaufgabe auf Surjektivität, Injektivität bzw. Bijektivität.
- (c) Sei $F = em \circ T \circ s \circ f$. Bestimmen und skizzieren Sie das Bild bzw. Urbild von $[0,1] \times [-1,1] \times [0,2]$ unter F.

Beweis. (a) (i) $f \circ em$

Argumentmenge: \mathbb{R}^2

Zielmenge: \mathbb{R}^2

Zuordnungsvorschrift: $(x_1, x_2) \rightarrow (x_1, x_2) = \mathrm{Id}_{\mathbb{R}^2}$

(ii) $em \cdot f$

Argumentmenge + Zielmenge: \mathbb{R}^3

Zuordnungsvorschrift: $(x_1, x_2, x_3) \rightarrow (x_1, x_2, 0)$

(iii) $s \cdot f$

Argumentmenge: \mathbb{R}^3

Zielmenge: \mathbb{R}^2

Zuordnungsvorschrift: $(x_1, x_2, x_3) \rightarrow (x_2, x_1)$

(iv) $em \circ s$

Argumentmenge: \mathbb{R}^2

Zielmenge: \mathbb{R}^3

Zuordnungsvorschrift: $(x_1, x_2) \rightarrow (x_2, x_1, 0)$

(b) (i) $f \circ em$

Surjektive, injektiv und auch bijektiv

(ii) $em \circ f$

Injektiv, aber nicht surjektiv (und deswegen nicht Bijektiv)

(iii) $s \circ f$

Surjektive, aber nicht injektiv

(iv) $em \circ s$ Injektiv, aber nicht surjektiv

(c)

Aufgabe 5. Es sei M eine beliebige, nichtleere Menge und $f: M \to M$ eine Abbildung. Wir definieren induktiv $f^0 := id$ und für $k \in \mathbb{N} f^k := f \circ f^{k-1}$.

- (a) Zeigen Sie: $f^{k+l} = f^k \circ f^l$ für alle $k, l \in \mathbb{N}_0$
- (b) Zeigen Sie: Gibt es $k_0 \in \mathbb{N} \cup \{0\}$ und $l \in \mathbb{N}$ mit $f^{k_0+l} = f^{k_0}$, dann gilt $f^{k+l} = f^k$ für alle $k \in \mathbb{N}_0$ mit $k \geq k_0$.
- (c) Geben Sie eine Funktion $f:\{1,2,3,4,5\} \to \{1,2,3,4,5\}$ an, für die $f^1 \neq f^3$, aber $f^{k+2} = f^k$ für alle $k \geq 2$ gilt. Begründen Sie, dass Ihre Funktion diese Eigenschaft hat.
- Beweis. (a) Wir beweisen es per Induktion auf k. Für k=1 gilt es per Definition (es wird in der Frage gegeben). Jetzt nehme an, dass es für ein beliebige $k \in \mathbb{N}$ gilt.

Es gilt dann:

$$\begin{split} f^{(k+1)+l} &= f \circ f^{k+l} \\ &= f \circ f^k \circ f^l \\ &= (f \circ f^k) \circ f^l \\ &= f^{k+1} \circ f^l \end{split}$$

Deswegen gilt es auch für k+1, und daher für alle $k \in \mathbb{N}$.

(b) Sei $k = k_0 + k'$. Es gilt

$$f^{k+l} = f^{k_0 + k' + l} = f^{k_0} = f^{k_0 + k'} = f^k.$$

1.3. BLATT 3

(c) Sei f definiert durch

$$f(1) = 1$$

 $f(2) = 1$
 $f(3) = 2$
 $f(4) = 1$
 $f(5) = 4$

Es gilt dann

X	$f^1(x)$	$f^2(x)$	$f^3(x)$	$f^4(x)$	$f^5(x)$
1	1	1	1	1	1
2	1	1	1	1	1
3	2	1	1	1	1
4	1	1	1	1	1
5	4	1	1	1	1

$$f^1 \neq f^3$$
, weil $f^1(3) \neq f^3(3)$. Aber $f^k(x) = 1 \forall k \in \{1, 2, 3, 4, 5\}, k \geq 2$. Daher ist $f^{k+2} = f^k, k \geq 2$.

Aufgabe 6. Es seien M,N Mengen, m,n natürliche Zahlen und die Abbildungen $f:M\to\{1,2,3,\ldots,m\},g:N\to\{1,2,3,\ldots,n\}$ bijektiv. Finden Sie eine natürliche Zahl k und eine bijektive Abbildung $F:M\times N\to\{1,2,3,\ldots,k\}.$

Beweis. k = nm, und

$$F(a,b) = a + (b-1)m$$
.

Das ist bijektiv. Sei $x \in \{1, 2, ..., nm\}$. Es existiert eindeutige Zahlen $p, q \in \mathbb{N}$, so dass

$$x = pm + q, q < m.$$

Falls q=0, sei b=p, a=m. Sonst definiert man b=p+1, a=m. Per Definition ist $a\in\{1,2,3,\ldots,m\}$. Außerdem ist $1\leq b\leq n$, weil $p\leq k/m=n$ (n teilt k=mn).

1.3 Blatt 3

Aufgabe 7. Entscheiden Sie zu jedem der folgenden Objekte, welche der Bezeichnungen aus Definition 2.3.3 darauf zutreffen

- (a) $(\mathbb{R}, *, -2)$, wobei $* : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ durch a * b := a + b + 2 definiert ist.
- (b) $(\mathbb{R},\cdot,1)$

(c)
$$(\mathbb{Z}/7\mathbb{Z}, -, 0)$$
, wobei $\overline{a} - \overline{b} := \overline{a} + (-\overline{b})$

(d)
$$(\mathbb{Z}\setminus\{0\}, *, 4)$$
 mit $*: \mathbb{Z}\setminus\{0\}\times\mathbb{Z}\setminus\{0\}\to\mathbb{Q}, (a, b)\to ab^{-1}$

Beweis. (a) Eine abelsche Gruppe. Es ist assoziativ:

$$a * (b * c) = a + (b + c + 2) + 2$$

= $(a + b + 2) + c + 2$
= $(a * b) * c$

Es gilt auch (-2)*x=(-2)+x+2=x und auch x*(-2)=x für alle x, also e=-2 ist ein neutrales Element. Für jeder x gibt es auch $y=-(x+4)\in\mathbb{R}$, damit

$$y * x = -(x + 4) + x + 2 = -2 = e$$
.

- (b) Kommutatives Monoid. Per Definition ist 1 das neutrale Element, und für jeder $0 \neq x \in \mathbb{R}$ gibt es $1/x \in \mathbb{R}$, und x(1/x) = 1. Aber es existiert keine $x \in \mathbb{R}$, so dass x0 = 1.
- (c) Magma. Es gilt

$$\overline{a} - (\overline{b} - \overline{c}) = \overline{a} + \left[-(\overline{b} - \overline{c}) \right]$$

$$= \overline{a} + (-\overline{b}) + \overline{c}$$

$$(\overline{a} - \overline{b}) - \overline{c} = \overline{a} + (-\overline{b}) + (-\overline{c})$$

$$\neq \overline{a} - (\overline{b} - \overline{c})$$

Deswegen ist - nicht assoziativ.

(d) Nichts. * ist keine Verknüpfung.

Aufgabe 8. Es sei (M, \cdot) ein Magma, (H, \bullet) eine Halbgruppe und $\alpha: H \to M$ eine surjektive Abbildung, die die Bedingung $\alpha (a \bullet b) = \alpha(a) \cdot \alpha(b)$ für alle $a, b \in H$ erfüllt.

Zeigen Sie

- (a) Dann ist auch M eine Halbgruppe.
- (b) Ist H ein Monoid mit neutralem Element e, dann ist M ein Monoid mit neutralem Element $\alpha(e)$.
- (c) Ist (H, \bullet, e) sogar eine Gruppe, dann ist $(M, \cdot, \alpha(e))$ eine Gruppe.

1.3. BLATT 3

15

Beweis. (a) Sei $\beta, \gamma, \delta \in M$. Weil α surjektiv ist, gilt $\beta = \alpha(a), \gamma = \alpha(b), \delta = \alpha(c), a, b, c \in H$. Es gilt

$$\begin{split} \beta \cdot (\gamma \cdot \delta) &= \alpha(a) \cdot (\alpha(b) \cdot \alpha(c)) \\ &= \alpha(a) \cdot (\alpha(b \circledcirc c)) \\ &= \alpha \ (a \circledcirc (b \circledcirc c)) \\ &= \alpha \ ((a \circledcirc b) \circledcirc c) \\ &= \alpha \ (a \circledcirc b) \cdot \alpha(c) \\ &= (\alpha(a) \cdot \alpha(b)) \cdot \alpha(c) \\ &= (\beta \cdot \gamma) \cdot \delta \end{split}$$

(b) Sei $\beta \in M$. Noch einmal haben wir $\beta = \alpha(b), b \in H$. Es gilt

$$\beta \cdot \alpha(e) = \alpha(b) \cdot \alpha(e)$$

$$= \alpha(b \odot e)$$

$$= \alpha(b)$$

$$= \beta$$

und ähnlich auch für $\alpha(e) \cdot \beta = \beta$.

(c) Wir müssen nur zeigen, dass es ein Inverse gibt. Sei $M\ni\beta=\alpha(a), a\in H.$ Weil H eine Gruppe ist, existiert $a^{-1}\in H$, so dass $a\circledcirc a^{-1}=e.$ Es gilt

$$\beta \cdot \alpha \left(a^{-1} \right) = \alpha(a) \cdot \alpha \left(a^{-1} \right)$$
$$= \alpha \left(a \bullet a^{-1} \right)$$
$$= \alpha(e)$$

Aufgabe 9. Wir wollen die folgende Verknüpfungstabelle so vervollständigen, dass $(\{\partial, \eta, L\}, \bullet, \eta)$ zu einer Gruppe wird.

•	∂	η	L
∂			
η			
\overline{L}			

- (a) Begründen Sie, dass es nur höchstens eine solche Verknüpfungstafel geben kann.
- (b) Füllen Sie die Tafel so, dass eine Gruppe entsteht und begründen Sie, dass Sie die Verknüpfungs-tafel einer Gruppe gefunden haben.

Beweis. Notation: Ich schreibe ab statt $a \odot b$, für $a, b \in \{\partial, \eta, L\}$. Weil η das neutrale Element ist, muss die Verknüpfungstabelle so aussehen:

•	∂	η	L
∂		∂	
η	∂	η	L
\overline{L}		L	

Wir brauchen Bedingungen, die mögliche Gruppe einzuschränken.

Lemma 1.9. Sei G eine Gruppe, $x, y, z \in G$, und

$$zx = zy$$
.

Es gilt dann x = y

Beweis.

$$x = z^{-1}zx = z^{-1}zy = y.$$

Korollar 1.10. In jeder Zeile und Spalte kommt jedes Element nur einmal vor.

Leider ist es noch nicht genug, die Verknüpfungstabelle einzuschränken. Wir fangen deswegen an, und nehme an, dass $\partial^2 = L$ ist. Wir betrachten die erste Spalte und Zeile, und kommen zu die Schlussfolgerung, dass $\partial L = L \partial = \eta$.

•	∂	η	L
∂	η	∂	
η	∂	η	
\overline{L}	L	L	

Hier gibt es ein Problem: $L\partial=L$, und auch $L\eta=L$. Daraus folgt $\partial=\eta$, ein Widerspruch. Wir nehmen jetzt an, $\partial^2=L$. Man kann die Verknüpfungstabelle ausfüllen.

•	∂	η	L
∂	L	∂	η
η	∂	η	L
L	η	L	∂

1.3. BLATT 3

Das ist die einzige Lösung (es gibt keine Möglichkeiten mehr). Die Gruppe ist $\cong C_3$. Man kann beachten, dass $\partial^2 = L, L^2 = \partial$. Per Definition ist es abgeschlossen. Es gilt auch

$$\partial^{-1} = \partial^2 = L$$
$$L^{-1} = L^2 = \partial$$

Jetzt beweisen wir Assoziativität. Wir betrachten

$$a(bc) \stackrel{?}{=} (ab)c, \qquad a, b, c \in \{\partial, \eta, L\}.$$

Im Fall, worin a,b oder c das neutrale Element η ist, folgt die Gleichung. Im Fall, worin nichts η ist, können wir $L=\partial^2$ einsetzen. Jetzt ist die Gleichung

$$\partial^{x} (\partial^{y} \partial^{z}) = (\partial^{x} \partial^{y}) \partial^{z}, \qquad x, y, z \in \{1, 2\},$$

was immer gilt, weil die beide Seite gleich ∂^{x+y+z} sind. Deswegen ist \bullet assoziativ.

Aufgabe 10. Wir definieren die drei Abbildungen $c_1, c_2, c_3 : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ durch die Abbildungsvorschriften

$$c_1(1) = 2$$
 $c_1(2) = 1$ $c_1(3) = 4$ $c_1(4) = 3$
 $c_2(1) = 3$ $c_2(2) = 4$ $c_2(3) = 1$ $c_2(4) = 2$
 $c_3(1) = 4$ $c_3(2) = 3$ $c_3(3) = 2$ $c_3(4) = 1$

Zeigen Sie: $U := \{ id, c_1, c_2, c_3 \}$ ist eine Untergruppe von $S(\{1, 2, 3, 4\})$.

Beweis. Die folgende Aussagen können durch direkte Verkettung bewiesen werden:

$$c_1 \circ c_2 = c_3$$

$$c_2 \circ c_3 = c_1$$

$$c_3 \circ c_1 = c_2$$

$$c_1 \circ c_1 = id$$

$$c_2 \circ c_2 = id$$

$$c_3 \circ c_3 = id$$

Deswegen ist jede Elemente invertierbar. Es folgt daraus auch, dass U abgeschlossen ist. id ist natürlich das neutrale Element.

Aufgabe 11. Es sei

 $\mathcal{L} := \{ f : \mathbb{R} \to \mathbb{R} | \text{ ex existieren } a, b \in \mathbb{R}, a \neq 0, \text{ sodass für alle } x \in \mathbb{R} f(x) = ax + b \}.$

(a) Zeigen Sie: (\mathcal{L}, \circ, id) ist eine Gruppe, aber nicht abelsch.

(b) Wir definieren die Relation $\sim \subseteq \mathcal{L} \times \mathcal{L}$ durch die Festlegung $f \sim g$ genau dann, wenn f(x) - f(0) = g(x) - g(0) für alle $x \in \mathbb{R}$ gilt. Zeigen Sie, dass dies eine Äquivalenzrelation ist und bestimmen Sie die Menge aller Äquivalenzklassen von \sim .

Beweis. (a) Sei $f, g \in \mathcal{L}, f = ax + b, g = cx + d, a \neq 0 \neq c$. Es gilt

$$(f \circ g)(x) = a(cx+d) + b$$
$$= acx + ad + b$$

Weil $a \neq 0 \neq 0$, gilt $ac \neq 0$. Deswegen gilt, für

$$h: \mathbb{R} \to \mathbb{R}, h(x) = acx + ad + b$$

 $h \in \mathcal{L}$. $(\mathcal{L}, \circ, \mathrm{id})$ ist dann unter \circ abgeschlossen. Die Verkettung von Abbildungen ist immer assoziativ. Sei jetzt $e \in \mathcal{L}$, e(x) = 1x + 0 = x. Es gilt dann

$$e \circ f = f \circ e = f$$
,

also e ist ein neutrales Element. Sei $f^{-1}: \mathbb{R} \to \mathbb{R}, \ f^{-1}(x) = \frac{1}{a}x - \frac{b}{a}$. Weil $a \neq 0$, sind 1/a und b/a wohldefiniert, und $1/a \neq 0$. Es gilt

$$(f \circ f^{-1})(x) = a\left(\frac{x}{a} - \frac{b}{a}\right) + b$$

$$= x - b + b$$

$$= x$$

$$(f^{-1} \circ f) = \frac{1}{a}(ax + b) - \frac{b}{a}$$

$$= x + \frac{b}{a} - \frac{b}{a}$$

$$= x$$

Deswegen gilt $f \circ f^{-1} = e = f^{-1} \circ f$, also f^{-1} ist die Inverse von f. \mathcal{L} ist dann eine Gruppe.

(b) (i) (Reflexivität) Es gilt

$$f(x) - f(0) = f(x) - f(0)$$

für alle $x \in \mathbb{R}$.

(ii) (Symmetrie) Falls gilt

$$f(x) - f(0) = g(x) - g(0)$$

für alle $x \in \mathbb{R}$, gilt auch

$$g(x) - g(0) - f(x) - f(0), x \in \mathbb{R}.$$

1.4. BLATT 4 19

(iii) (Transitivität) Sei $f, g, h \in \mathcal{L}$, für die gilt

$$f \sim g \iff f(x) - f(0) = g(x) - g(0), x \in \mathbb{R}$$

 $g \sim h \iff g(x) - g(0) = h(x) - h(0), x \in \mathbb{R}$

Es gilt, von die Transitivät der $=\subseteq \mathbb{R} \to \mathbb{R}$, dass

$$f(x) - f(0) = h(x) - h(0), x \in \mathbb{R},$$

also $f \sim h$

Ich vermute, dass die Äquivalenzklasse sind $f, g \in \mathcal{L}, f(x) = ax + b, g(x) = cx + d, a \neq 0 \neq c$, so dass

$$f \sim g \iff a = c.$$

Wir beweisen es: f(0) = b, g(0) = d, und daher f(x) - f(0) - ax, g(x) - g(0) = cx. Falls

$$ax = cx \forall x \in \mathbb{R},$$

muss a = c. Für $a \neq c$ gilt es, dass es mindestens ein Punkt $x_0 \in \mathbb{R}$ gibt, worauf $ax_0 \neq cx_0$. Deswegen sind die Äquivalenzklassen, für $f, g \in \mathcal{L}, f = ax + b, g = cx + d$

$$f \sim q \iff a = c.$$

1.4 Blatt 4

Aufgabe 12. Direktes Produkt

(a) Zeigen Sie: Sind $(G, *, e_G)$ und (H, \star, e_H) Gruppen, dann ist auch $G \times H$ mit der Verknüpfung

$$\odot (G \times H) \times (G \times H) \to G \times H, \qquad (g_1, h_1) \odot (g_2, h_2) := (g_1 * g_2, h_1 \star h_2)$$

und dem neutralen Element (e_G, e_H) eine Gruppe. Diese Gruppe nennt man auch das direktes Produkt von G und H.

- (b) Zeigen Sie: Sind $(R, +, \cdot)$ und $(S, \star, *)$ Ringe, dann ist auch $R \times S$ mit den Verknüpfung \oplus und \odot , definiert durch $(r_1, s_1) \oplus (r_2, s_2) := (r_1 + r_2, s_1 \star s_2)$ bzw. $(r_1, s_1) \odot (r_2, s_2) := (r_1 \cdot r_2, s_1 \star s_2)$ ein Ring.
- (c) Beweisen oder widerlegen Sie: Ist $(K, +, \cdot)$ ein Körper, dann ist auch $K \times K$ mit den Verknüpfungen wie in (b) ein Körper.

Beweis. (a) (i) (Assoziativität)

$$(g_1, h_1) \odot ((g_2, h_2) \odot (g_3, h_3)) = (g_1, h_1) \odot (g_2 * g_3, h_2 * h_3)$$

$$= (g_1 * (g_2 * g_3), h_1 * (h_2 * h_3))$$

$$= ((g_1 * g_2) * g_3, (h_1 * h_2) * h_3)$$

$$= (g_1 * g_2, h_1 * h_2) \odot (g_3, h_3)$$

$$= ((g_1, h_1) \odot (h_1, h_2)) \odot (g_3, h_3)$$

(ii) (Neutrales Element)

$$(g_1, h_1) \odot (e_G, e_H) = (g_1, h_1) = (e_G, e_H) \odot (g_1, h_1).$$

(iii) (Existenz des Inverses) Sei $(g_1, h_1) \in G \times H$. Weil G und H gruppe sind, gibt es elemente $g_1^{-1} \in G, h_1^{-1} \in H$, sodass $g_1 * g_1^{-1} = e_G = g_1^{-1} * g_1$ und $h_1 \star h_1^{-1} = e_H = h_1^{-1} \star h_1$. Es gilt

$$(g_1, h_1) \odot (g_1^{-1}, h_1^{-1}) = (g_1 * g_1^{-1}, h_1 \star h_1^{-1}) = (e_G, e_H),$$

und ähnlich auch $(g_1^{-1}, h_1^{-1}) \odot (g_1, h_1) = (e_G, e_H)$

Schluss: $(G \times H, \odot, (e_G, e_H))$ ist eine Gruppe.

- (b) (i) $(R \times S, \oplus, (0_R, 0_S))$ ist eine abelsche Gruppe. Folgt aus (a).
 - (ii) ⊕ ist assoziativ: Beweis läuft ähnlich zu (a), die Behauptung folgt aus die Assoziativität von · und *.
 - (iii) Distributivgesetz:

$$(r_{1}, s_{1}) \odot ((r_{2}, s_{2}) \oplus (r_{3}, s_{3})) = (r_{1}, s_{1}) \odot (r_{2} + r_{3}, s_{2} \star s_{3})$$

$$= (r_{1} \cdot (r_{2} + r_{3}), s_{1} * (s_{2} \star s_{3}))$$

$$= (r_{1} \cdot r_{2} + r_{1} \cdot r_{3}, s_{1} * s_{2} \star s_{1} * s_{3})$$

$$= (r_{1} \cdot r_{2}, s_{1} * s_{2}) \oplus (r_{1} \cdot r_{3}, s_{1} * s_{3})$$

$$= [(r_{1}, s_{1}) \odot (r_{2}, s_{2})] \oplus [(r_{1}, s_{1}) \odot (r_{3}, s_{3})]$$

(c) Falsch. Sei $x, y \in K$ beliebige Elemente von K. Es ist klar, dass (0,0) das Nullelement ist, weil

$$(x,y) \oplus (0,0) = (x+0,y+0) = (x,y).$$

Sei jetzt $x \neq 0 \neq y$. Es gilt

$$(x,0)\odot(0,y)=(x\cdot 0,0\cdot y)=(0,0),$$

also es gibt Nullteiler.

Aufgabe 13. Zeigen Sie: In einem Ring $(R, +, \cdot)$ gilt genau dann die Kürzungsregel

Falls $a \in R \setminus \{0\}$ und $x, y \in R$ beliebig sind, dann gilt $a \cdot x = a \cdot y \implies x = y$

wenn R nullteilerfrei ist.

1.4. BLATT 4 21

Beweis. 1. R hat Nullteiler \implies die Kürzungsregel gilt nicht.

Per Ausnahme gibt es $x \in R \setminus \{0\}$ mit Nullteiler $a \in R \setminus \{0\}$, also $a \cdot x = 0$. Es gilt auch, dass $a \cdot 0 = 0$, daher

$$a \cdot x = a \cdot 0 = 0$$
.

Aber $x \neq 0$, und die Kürzungsregel gilt nicht.

2. R nullteilerfrei \implies Kürzungsregel gilt.

Seien $a \in R \setminus \{0\}$ und $x, y \in R$ beliebig und

$$a \cdot x = a \cdot y$$

$$a \cdot x + [-(a \cdot y)] = a \cdot y + [-(a \cdot y)]$$

$$0 = a \cdot x - a \cdot y$$

$$= a \cdot (x - y)$$

Daraus folgt, dass entweder a = 0 oder x - y = 0. Weil wir schon ausgenommen haben, dass $a \neq 0$, gilt x - y = 0, oder x = y.

Aufgabe 14. (Verknüpfungsverträglich) Es seien $(G, \cdot, e_G), (H, *, e_H)$ Gruppen und $\alpha : G \to H$ ein Gruppenhomomorphismus. Zeigen Sie

- (a) $U = \{u \in G | \alpha(u) = e_H\}$ ist eine Untergruppe von G.
- (b) $\alpha(G)$ ist eine Untergruppe von H.
- (c) Durch $a \sim b \iff ab^{-1}$ wird eine eine verknüpfungsverträgliche Äquivalenzrelation auf G definiert.

Beweis. (a) (i) Neutrales Element.

 $\alpha(e_G) = e_H$, weil, für alle $x \in G$ gilt

$$\alpha(x) = \alpha(x \cdot e_G) = \alpha(x) * \alpha(e_G).$$

(ii) U ist abgeschlossen.

Sei $x, y \in U$, also $\alpha(x) = e_H = \alpha(y)$. Es gilt

$$\alpha(x \cdot y) = \alpha(x) * \alpha(y) = e_H * e_H = e_H$$

also $x \cdot y \in U$.

(iii) Existenz des Inverses

Sei
$$x \in U$$
, und $x \cdot x^{-1} = e_G$. Es gilt

$$e_H = \alpha(e_G) = \alpha(x \cdot x^{-1}) = \alpha(x) * \alpha(x^{-1}) = e_H * \alpha(x^{-1}) = \alpha(x^{-1}),$$

also $x^{-1} \in U$.

- (b) (a) Neutrales Element $\alpha(e_G) = e_H$, der Beweis ist schon in (a) geschrieben.
 - (b) $\alpha(G)$ ist abgeschlossen. Sei $\alpha(G) \ni y_1 = \alpha(x_1)$ bzw. $\alpha(G) \ni y_2 = \alpha(x_2)$, für $x_1, x_2 \in G$. Es gilt

$$y_1 * y_2 = \alpha(x_1) * \alpha(x_2) = \alpha(x_1 \cdot x_2) \in \alpha(G).$$

(c) Existenz des Inverses

Sei $\alpha(G) \ni y = \alpha(x)$. Sei auch $x^{-1} \in G$, sodass $x \cdot x^{-1} = e_G = x^{-1} \cdot x$. Es gilt

$$y * \alpha(x^{-1}) = \alpha(x) * \alpha(x^{-1}) = \alpha(x \cdot x^{-1}) = \alpha(e_G) = e_H,$$
also $\exists \alpha(x^{-1}) \in \alpha(G)$, für die gilt $y * \alpha(x^{-1}) = e_H = \alpha(x^{-1}) * y$.

- (c) In (i) (iii) beweisen wir, dass es eine Äquivalenzrelation ist. Dann beweisen wir, dass sie verknüpfungsverträglich ist. Sei im Beweis $x,y,z,w\in G$ beliebige Elemente.
 - (i) (Reflexivität) $x \sim x$, weil $x \cdot x^{-1} = e_G \in U$.
 - (ii) (Symmetrie) Sei $x \sim y$, also $xy^{-1} \in U$. Es gilt dann, $(xy^{-1})^{-1} = yx^{-1}$. Weil U eine Gruppe ist, gilt $(xy^{-1})^{-1} \in U$, also $yx^{-1} \in U$. Daraus folgt $y \sim x$.
 - (iii) (Transitivität) Sei $x \sim y$ und $y \sim z$, also $x \cdot y^{-1} \in U$ und $y \cdot z^{-1} \in U$. Es folgt

$$x \cdot z^{-1} = \underbrace{x \cdot y^{-1}}_{\in U} \cdot \underbrace{y \cdot z^{-1}}_{\in U} \in U,$$

also $x \sim z$.

(iv) Sei $x \sim y$ und $z \sim w$, also $x \cdot y^{-1} \in U$ und $z \cdot w^{-1} \in U$. Wir möchten zeigen, dass $x \cdot z \sim y \cdot w$, also

$$x \cdot z \cdot (y \cdot w)^{-1} = x \cdot z \cdot w^{-1} \cdot y^{-1} \in U.$$

Es gilt

$$\alpha(x \cdot z \cdot w^{-1} \cdot y^{-1}) = \alpha(x) * \alpha(z \cdot w^{-1}) * \alpha(y^{-1})$$

$$= \alpha(x) * e_H * \alpha(y^{-1})$$

$$= \alpha(x \cdot y^{-1})$$

$$= e_H$$

also
$$x \cdot z \sim y \cdot w$$
.

Aufgabe 15. (Rechnen in verschiedenen Ringen)

1.4. BLATT 4 23

(a) Bestimmen Sie das inverse Element von $\overline{6}$ in $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/7\mathbb{Z}$ bzw. $\mathbb{Z}/35\mathbb{Z}$ oder weisen Sie nach, dass es nicht existiert.

- (b) Bestimmen Sie die Charakteristik von $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ bzw. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$, wobei die beiden Teile des Produktes als Ringe interpretiert werden und die Verknüpfung wie in 12(b) definiert wird.
- (c) Bestimmen Sie alle $z \in \mathbb{C}$, die die Gleichung $z^2 + 2$ erfüllen.
- (d) Berechnen Sie $(7+i)(6-i)^{-1}$ und geben Sie das Ergebnis ale komplexe Zahl gemäß Definition 2.4.14 an.
- (e) Bestimmen Sie die Einerstelle von 27¹⁰¹.

Beweis. (a) (i) $(\mathbb{Z}/4\mathbb{Z})$ $\overline{6} = \overline{2}$, und es gibt kein inverse Element.

$$\begin{aligned} \overline{2} \cdot \overline{0} &= \overline{0} \\ \overline{2} \cdot \overline{1} &= \overline{2} \\ \overline{2} \cdot \overline{2} &= \overline{4} &= \overline{0} \\ \overline{2} \cdot \overline{3} &= \overline{6} &= \overline{2} \end{aligned}$$

- (ii) $(\mathbb{Z}/5\mathbb{Z})$ $\overline{6} = \overline{1}$. Daher ist $\overline{6} = \overline{6}^{-1}$.
- (iii) $(\mathbb{Z}/7\mathbb{Z}) \ \overline{6} \cdot \overline{6} = \overline{36} = \overline{1}.$
- (iv) $(\mathbb{Z}/35\mathbb{Z}) \ \overline{6} \cdot \overline{6} = \overline{36} = \overline{1}.$
- (b) Im Allgemein ist die Charakteristik von $\mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$ das kleinste gemeinsame Vielfaches von a und b. Es gilt $n \cdot 1_{\mathbb{Z}/a\mathbb{Z}} = 1_{\mathbb{Z}/a\mathbb{Z}}$, und auch $n \cdot 1_{\mathbb{Z}/b\mathbb{Z}} = 1_{\mathbb{Z}/b\mathbb{Z}}$. Für $\mathbb{N} \ni n < kgV(a,b)$ kann die beides gleichzeitig per Definition nicht gelten. Die Antworten folgen:
 - (i) $(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})$) 15
 - (ii) $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z})$ 6
- (c) $z^2+2=0, z^2=-2$. Wir haben $|z|^2=|2|,$ und $|z|=\sqrt{2}.$ Daraus folgt:

$$z = \pm \sqrt{2}i.$$

(d)

$$\frac{7+i}{6-i} = \frac{(7+i)(6+i)}{(6-i)(6+i)}$$
$$= \frac{42+13i-1}{36+1}$$
$$= \frac{41+13i}{37}$$
$$= \left(\frac{41}{37}, \frac{13}{37}\right)$$

(e)
$$27^{101} = (3^3)^{101} = 3^{303}$$
. Sei a die Einerstells von 3^{303} . Es gilt $3^{303} \equiv a \pmod{10}$.

Wir berechnen

$$3^{1} = 3 \equiv 3 \pmod{10}$$

 $3^{2} = 9 \equiv 9 \pmod{10}$
 $3^{3} = 27 \equiv 7 \pmod{10}$
 $3^{4} \equiv 1 \pmod{10}$
 $3^{5} \equiv 3 \pmod{10}$

Daraus folgt

$$3^{303} = 3^{4 \times 75 + 3}$$

 $\equiv 3^{3} \pmod{10}$
 $\equiv 7 \pmod{10}$

also die Einerstelle von 27^{101} ist 7.

Aufgabe 16. Wir können analog zur Konstruktion komplexer Zahlen vorgehen, um aus $\mathbb{Z}/n\mathbb{Z}$ größere Ringe zu konstruieren, d.h. für festes $n \in N$ definieren wir auf $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ die Addition \oplus bzw. Multiplikation \odot durch

$$(a_1,b_2) \oplus (a_2,b_2) := (a_1 + a_2, b_1 + b_2)$$

bzw.

$$(a_1, b_1) \odot (a_2, b_2) := (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1)$$

für alle $(a_1, b_2), (a_2, b_2) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Entscheiden Sie, für welche $n \in \{2,3,4\}$ mit dieser Konstruktion ein Körper entsteht.

Beweis. (n=2) Es ist kein Körper, weil es nicht nullteilerfrei ist.

$$(\overline{1},\overline{1})\odot(\overline{1},\overline{1})=(\overline{0},\overline{2})=(\overline{0},\overline{0}).$$

(n=3) Es ist ein Körper. Wir wissen, weil 3 ein Primzahl ist, dass $\mathbb{Z}/3\mathbb{Z}$ ein Körper ist. Wir vermuten, dass das inverse Element

$$(a,b)^{-1} = \left(a\left(a^2 + b^2\right)^{-1}, -b\left(a^2 + b^2\right)^{-1}\right),$$

was wohldefiniert ist, weil $\mathbb{Z}/3\mathbb{Z}$ ein Körper ist. Wir wissen (und werde benutzen), dass multiplikation in der ganzen Zahlen kommutativ ist. Es folgt

$$(a,b) \odot (a,b)^{-1} = \left(a^2 \left(a^2 + b^2\right)^{-1} - b^2 \left(a^2 + b^2\right)^{-1}, 0\right)$$
$$= \left(\left(a^2 + b^2\right) \left(a^2 + b^2\right)^{-1}, 1\right)$$
$$= (1,0),$$

1.4. BLATT 4 25

was das neutrale Element ist (beweis gleich wie der Beweis bzgl. \mathbb{C}). (n=4) Es ist noch einmal kein Körper, weil es nicht nullteilerfrei ist.

$$(\overline{2},\overline{2})\odot(\overline{2},\overline{2})=(\overline{0},\overline{4}+\overline{4})=(\overline{0},\overline{0}).$$

Lineare Algebra 2

2.1 Blatt 1 (30/33)

Aufgabe 17. (a) Bestimmen Sie alle komplexwertigen Lösungen der Gleichung

$$x^2 = u + iv$$
.

in Abhängigkeit von $u, v \in \mathbb{R}$

(b) Führen Sie das Nullstellenproblem

$$ax^2 + bx + c = 0.$$

mit $a \in \mathbb{C} \setminus 0, b \in \mathbb{C}, c \in \mathbb{C}$ auf den Fall in (a) zurück. Geben Sie weiterhin eine geschlossene Darstelling aller Lösungen für den Fall a = 1 an.

Hat alles geklappt, sollte bei Ihnen speziell für den Fall a=1 und $\mathrm{Im}(b)=\mathrm{Im}(c)=0$ die entsprechende Mitternachtsformel dastehen.

Beweis. (a)
$$|x^2| = |x|^2 = |u + iv| = \sqrt{u^2 + v^2}$$

Daraus folgt:

$$|x| = (u^2 + v^2)^{1/4},$$

$$x = (u^2 + v^2)^{1/4} e^{i\theta}.$$

Setze es in $x^2=u+iv$ ein und löse die Gleichungen für θ . Sei $\varphi=\mathrm{atan}_2(u,v)$ Dann ist:

$$\theta = \frac{\varphi}{2} \text{ oder } \theta = \frac{\varphi + 2\pi}{2}.$$

(b)
$$ax^{2} + bx + c = 0 \implies x^{2} + \frac{b}{a}x + \frac{c}{a} = 0,$$

d.h.

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = \left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$
$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$
$$x = -\frac{b}{2a} \pm p$$

wobei p die Lösung zu $p^2 = \frac{b^2}{4a^2} - \frac{c}{a}$ ist. Im Fall a=1 und Im(b) = Im(c) = 0, daraus folgt:

$$x = -\frac{b}{2} \pm \frac{1}{2}\sqrt{b^2 - 4c}.$$

Aufgabe 18. Finden Sie für die Polynome $p, d \in \mathbb{C}[x]$ jeweils solche $q, r \in \mathbb{C}[x]$ mit $\deg(r) < \deg(d)$, dass p = qd + r gilt.

(a)
$$p = x^7 + x^5 + x^3 + 1, d = x^2 + x + 1$$

(b)
$$p = x^5 + (3-i)x^3 - x^2 + (1-3i)x + 1 + i, d = x^2 + i$$

(c) Wie sehen s, r aus, wenn man in (a) und (b) jeweils die Rollen von p und d vertauscht? D.h. bestimmen Sie $s, r \in \mathbb{C}[x]$ mit $\deg r < \deg p$, sodass d = sp + r gilt.

Beweis. (a)
$$x^{5} - x^{4} + x^{3}$$

$$x^{2} + x + 1) \underbrace{ x^{7} + x^{5} + x^{3} + 1}_{-x^{7} - x^{6} - x^{5}}$$

$$- x^{6}$$

$$\underline{ x^{6} + x^{5} + x^{4} }_{-x^{5} + x^{4} + x^{3} }$$

$$\underline{ x^{5} + x^{4} + x^{3} }_{-x^{5} - x^{4} - x^{3} }$$

$$1$$

Daher

$$q = x^5 - x^4 + x^3, r = 1.$$

(b)
$$q = x^3 + (3-2i)x - x, r = -(1+6i)x + (1+2i)$$

(c)
$$r = d, s = 0$$

Aufgabe 19. Seien

$$A = \begin{pmatrix} 1 & 2 & 1 & 5 \\ 2 & 1 & -1 & 4 \\ 1 & 0 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} -38 \\ -46 \\ -18 \end{pmatrix}, c = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

gegeben.

29

- (a) Bestimmen Sie Im(A) und ker(A)
- (b) Bestimmen Sie Lös(A, b) und Lös(A, c).

Beweis. (a)

$$\begin{pmatrix} 1 & 2 & 1 & 5 \\ 2 & 1 & -1 & 4 \\ 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & -3 & -3 & -6 \\ 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{R_3 - R_1} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & -3 & -3 & -6 \\ 0 & -2 & -2 & -4 \end{pmatrix} \xrightarrow{R_2 \times -\frac{1}{3}} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 - 2R_2} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 - 2R_2} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Daraus folgt

$$\operatorname{im}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}.$$

Sei dann $(x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$. Wenn $(x_1, x_2, x_3, x_4)^T \in \ker(A)$, gilt

$$t_3 := x_3$$

 $t_4 := x_4$
 $x_1 = x_3 - x_4 = t_3 - t_4$
 $x_2 = -x_3 - 2x_4 = -t_3 - 2t_4$

Daraus folgt:

$$\ker(A) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \right\}$$

(b)

$$\begin{pmatrix} 1 & 2 & 1 & 5 & | & -38 \\ 2 & 1 & -1 & 4 & | & -46 \\ 1 & 0 & -1 & 1 & | & -18 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 1 & 5 & | & -38 \\ 0 & -3 & -3 & -6 & | & 30 \\ 0 & -3 & -3 & -6 & | & 30 \\ 0 & -2 & -2 & -4 & | & 20 \end{pmatrix} \xrightarrow{R_2 \times -\frac{1}{3}} \begin{pmatrix} 1 & 2 & 1 & 5 & | & -38 \\ 0 & 1 & 1 & 2 & | & -10 \\ 0 & -2 & -2 & -4 & | & 20 \end{pmatrix} \xrightarrow{R_3 + 2R_2} \begin{pmatrix} 1 & 2 & 1 & 5 & | & -38 \\ 0 & 1 & 1 & 2 & | & -10 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 - 2R_2} \begin{pmatrix} 1 & 0 & -1 & 1 & | & -18 \\ 0 & 1 & 1 & 2 & | & -10 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$x_1 - x_3 + x_4 = -18$$
$$x_2 + x_3 + 2x_4 = -10$$

Deswegen ist $L\ddot{o}s(A, b)$

$$\begin{pmatrix} -18 + x_3 - x_4 \\ -10 - x_3 - 2x_4 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -18 \\ -10 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

(c)

$$\begin{pmatrix}
1 & 2 & 1 & 5 & 0 \\
2 & 1 & -1 & 4 & 0 \\
1 & 0 & -1 & 1 & 1
\end{pmatrix}
\xrightarrow{R_2 - 2R_1}
\begin{pmatrix}
1 & 2 & 1 & 5 & 0 \\
0 & -3 & -3 & -6 & 0 \\
1 & 0 & -1 & 1 & 1
\end{pmatrix}
\xrightarrow{R_3 - R_1}
\begin{pmatrix}
1 & 2 & 1 \\
0 & -3 & -3 \\
0 & -2 & -2
\end{pmatrix}$$

$$\xrightarrow{R_2 \times -\frac{1}{3}}
\begin{pmatrix}
1 & 2 & 1 & 5 & 0 \\
0 & 1 & 1 & 2 & 0 \\
0 & -2 & -2 & -4 & 1
\end{pmatrix}
\xrightarrow{R_3 + 2R_2}
\begin{pmatrix}
1 & 2 & 1 & 5 & 0 \\
0 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_1 - 2R_2}
\begin{pmatrix}
1 & 0 & -6 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Es gibt keine Lösungen, weil $0 \neq 1$, also Lös $(A, c) = \emptyset$

Aufgabe 20. Gegeben seien die \mathbb{R} -Vektorräume V mit Basis $B_V = \{v_1, v_2, v_3\}$ und Basis $B_W = \{w_1, w_2, w_3\}$. Wir definieren einen linearen Operator $T: V \to W$ wie folgt:

$$T(v_1) = w_1 + w_3$$
 $T(v_2) = w_1 + w_2, T(v_3) = -w_1 - w_2 - w_3.$

(a) $w_1, w_2, w_3 \in \text{span} \{T(v_1), T(v_2), T(v_3)\}, \text{ weil}$

$$w_1 = T(v_1) + T(v_2) + T(v_3)$$

$$w_2 = (-1) (T(v_3) + T(v_1))$$

$$w_3 = (-1) (T(v_2) + T(v_3))$$

Daraus folgt:

$$W = \mathrm{span}(w_1, w_2, w_3) = \mathrm{span}(T(v_1), T(v_2), T(v_3)).$$

Daraus folgt:

$$im(T) = \mathbb{R}^3, \quad \ker(T) = \{0\}.$$

(b)

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}.$$

(c)
$$B_W^* = \{w_1 + w_3, w_1 + w_2, -w_1 - w_2 - w_3\}.$$

(d)
$$B_V^* = \{v_1 + v_2 + v_3, -(v_1 + v_3), -(v_2 + v_3)\}.$$

2.2. BLATT 2 31

2.2 Blatt 2

Aufgabe 21. Es seien die Punkte x_0, x_1, \ldots, x_n mit $x_i \in \mathbb{R}$ gegeben. Wir definieren den Operator

$$\Phi: \mathbb{R}_{\leq n}[x] \to \mathbb{R}^{n+1}, p \to y, \text{ mit } p(x_i) = y_i, i = 0, \dots, n$$

wobei wir mit $\mathbb{R}_{\leq n}[x]$ den Raum der Polynome mit reellen Koeffizienten vom Grad höchsten n bezeichnen und p(x) die Auswertung des Polynoms p im Punkt x beschreibt.

- (a) Zeigen Sie: Sind die Punkte x_i paarweise verschieden, so ist die Abbildung Φ wohldefiniert und isomorph. (Eine Konsequenz hieraus ist die eindeutige Lösbarkeit der Polynominterpolation.)
- (b) Was passiert, wenn Sie nicht fordern, dass die x_i paarweise verschieden sind? Kann Φ im Allgemeinen noch injektiv (surjektiv) sein?

Beweis. (a) Injektiv: Nehme an, dass es zwei unterschiedliche Polynome p_1, p_2 gibt, mit $p_1(x_i) = p_2(x_i) \forall i = 0, \dots, n$. Dann ist $p(x) := p_1(x) - p_2(x)$ auch ein Polynom, mit $p(x_i) := 0 \forall i \in \{0, \dots, n\}$. Weil $\deg(p) \leq n$ ist, folgt daraus, dass $\forall x, p(x) = 0, p_1(x) = p_2(x)$. Das ist ein Widerspruch.

Surjektive: Sei $(y_0, \ldots, y_n) \in \mathbb{R}^{n+1}$. Dann ist

$$p(x) = (x - y_0)(x - y_1) \dots (x - y_n)$$

auch ein Polynom mit $\Phi(p) = (y_0, \dots, y_n)$.

Linearität: Sei $p_1(x), p_2(x) \in \mathbb{R}_{\leq n}[x], a \in \mathbb{R}$. Sei auch $p(x) = p_1(x) + p_2(x)$. Es gilt dann

$$p(x_i) = p_1(x_i) + p_2(x_i), i = 0, \dots, n$$

und daher

$$\Phi(p) = \Phi(p_1 + p_2) = \Phi(p_1) + \Phi(p_2).$$

Es gilt auch, für $p(x) := ap_1(x)$, dass

$$p(x_i) = ap_1(x_i), i = 0, \dots, n,$$

und daher

$$\Phi(p) = \Phi(ap_1) = a\Phi(p_1).$$

(b) Nein. Sei, zum Beispiel, n = 1, $x_0 = x_1 = 0$. Dann gilt

$$\Phi(x) = (0,0)^T$$

$$\Phi(x^2) = (0,0)^T$$

Aber die zwei Polynome sind ungleich.

Aufgabe 22. (a) Es sei eine Matrix $A \in \mathbb{K}^{n \times n}$ gegeben. Wir bilden die erweiterte Matrix

$$B = (A|1_n)$$

mit 1_n die Einheitsmatrix in \mathbb{R}^n . Zeigen Sie: A ist genau dann invertierbar, wenn A durch elementare Zeilenumformung in die Einheitsmatrix überführt werden kann. Verfizieren Sie weiterhin: Werden die dafür benötigten Zeilenumformungen auf ganz B angewendet, so ergibt sich im hinteren Teil, wo zu Beginn die Einheitsmatrix stand, genau A^{-1} .

(b) Es sei nun

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -2 \\ 3 & 0 & 1 & 2 \end{pmatrix}.$$

Bestimmen Sie A^{-1} .

Beweis. (a) Definiert $(x,y), x \in \mathbb{K}^n, y \in \mathbb{K}^m$ durch $\mathbb{K}^{n+m} \ni (x,y) = (x_1, \ldots, x_n, y_1, \ldots, y_n)$. Eine solche erweiterte Matrix bedeutet eine Gleichungssystem durch

$$B(x, -y) = Ax - 1_n y = 0,$$

wobei $x, y \in \mathbb{K}^n$. Für jeder $x \in \mathbb{K}^n$ gibt es $y \in \mathbb{K}^n$, so dass B(x, -y) = 0. Nehme an, dass wir durch elementare Zeilenumformung

$$B = (A|1_n) \to (1_n, A') := B'$$

kann. Die Gleichungssystem ist dann x = A'y. Dadurch können wir für jeder $y \in \mathbb{K}^n$ eine $A'y = x \in \mathbb{K}^n$ rechnen, für die gilt, dass Ax = y. Das heißt, dass $A' = A^{-1}$.

(b)

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 2 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 1 & 0 \\
3 & 0 & 1 & 2 & 0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_4 - 3R_1}
\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 2 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & -3 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_2 \times -1}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -3 & 0 & 0 & 1 \\
0 & 0 & 0 & -2 & 0 & 0 & 1 & 0
\end{pmatrix}
\xrightarrow{R_3 \leftrightarrow R_4}
\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -3 & 0 & 0 & 1 \\
0 & 0 & 0 & -2 & 0 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & -3 & 0 & 0 & 1 \\
0 & 0 & 0 & -2 & 0 & 0 & 1 & 0
\end{pmatrix}
\xrightarrow{R_2 - R_4}
\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -6 & -1 & -1 & 2 \\
0 & 0 & 1 & -1 & -3 & 0 & 0 & 1 \\
0 & 0 & 0 & -2 & 0 & 0 & 1 & 0
\end{pmatrix}
\xrightarrow{R_2 - R_4}$$

2.2. BLATT 2 33

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & -1 & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} & 0 \end{pmatrix} \xrightarrow{R_1 - R_4} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} & 0 \end{pmatrix} \xrightarrow{R_3 + R_4} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} & 0 \end{pmatrix}$$

Aufgabe 23. Es seien die Vektorräume V, W über \mathbb{K} gegeben mit $\dim(V) = n$ und $\dim(W) = m$. Wir betrachten eine lineare Abbildung

$$T: V \to W, v \to T(v)$$

Seien B_V und B_W Basen von V, bzw. W. Wir nehmen an T ist nicht die konstante Nullabbildung. Beweisen Sie:

- (a) Der Kern von $B_W[T]_{B_V}$ ist entweder trivial (d.h. nur die 0) oder hängt nur von der Wahl von B_V ab, aber nicht von B_W .
- (b) Das Bild von $B_W[T]_{B_V}$ ist entweder der ganze \mathbb{K}^m oder hängt nur von der Wahl von B_W ab, aber nicht von B_V .
- (c) Der Rang von $B_W[T]_{B_V}$ ist unabhängig von B_W und B_V .

Beweis. Nach Korollar 5.43 gilt, für $A, A' \subseteq V$ und $B, B' \subseteq W$ Basen der Vektorräume V und W über \mathbb{K} , und $\Phi \in \operatorname{Hom}(V, W)$.

$$_{B'}[\Phi]_{A'} = {}_{B'}[\mathrm{id}_W]_B \cdot {}_B[\Phi]_A \cdot {}_A[\mathrm{id}_V]_{A'}.$$

Lemma 2.1. Jeder Basiswechsel für sowohl B_V als auch B_W kann als zwei Basiswechseln interpretiert werden, wobei eine Basiswechsel nur B_V verändert, und die andere nur B_W .

Beweis.

$${}_{B'}\left[\Phi\right]_{A'} = {}_{B'}[\mathrm{id}_W]_B \cdot {}_B[\Phi]_A \cdot {}_A[\mathrm{id}_V]_{A'} = {}_{B'}[\mathrm{id}_W]_B \left({}_B[\mathrm{id}_W]_B \cdot {}_B[\Phi]_A \cdot {}_A[\mathrm{id}_V]_{A'}\right) {}_A[\mathrm{id}_V]_A.$$

(In den Klammern gibt es zuerst ein Basiswechsel in V, dann ein Basiswechsel in W). Ein ähnliche Argument zeigt, dass wir zuerst ein Basiswechseln in W betrachten kann.

Korollar 2.2. In die Aufgabe muss man nur das Fall betrachten, in dem entweder B_V oder B_W sich verändert.

(a) Nehme an, $\ker(B_W[T]_{B_V}) \neq 0$. Die zwei Fälle

(i) Nur B_W sich verändert.

Sei
$$v \in \mathbb{K}^n$$
, ${}_B[\Phi]_A v = 0$. Es gilt

$$B'[\Phi]_A = B'[\mathrm{id}_W]_B[\Phi]_{AA}[\mathrm{id}_V]_A v = B'[\mathrm{id}_W]_{BB}[\Phi]_A v = B'[\mathrm{id}_W]_B(0) = 0.$$

Sei jetzt $_B[\Phi]_A v \neq 0$. Solange wir zeigen, dass

$$_{B'}[\mathrm{id}_W]_B u \neq 0$$

für $\mathbb{K}^m \ni u \neq 0$, sind wir fertig. Aber $B'[\mathrm{id}_W]_B u = 0$, nur wenn $u = 0v_1 + 0v_2 + \cdots + 0v_n, v_i \in B' = 0$ wegen der linear Unabhängigkeit.

(ii) Nur B_V sich verändert. Es stimmt leider nicht, dass $\ker(B_W[T]_{B_V})$ von B_V abhängig sein muss. Sei zum Beispiel B_K ein Basis für $\ker(B_W[T]_{B_V})$, und B_V und B_V' Basen von V, für die gilt $B_K \subset B_V, B_K \subset B_V'$. Jetzt ist der Kern einen invarianten Unterraum von B unter $B_V'[T]_{B_V}$, also der Kern verändert sich nicht, wenn der Basis sich verändert.

Wenn der Kern kein invarianter Unterraum ist, gilt es natürlich, das der Kern sich durch das Basiswechsel verändert.

- (b) Nehme an, dass im $(B_W[T]_{B_V}) \neq \mathbb{K}^m$. Wir betrachten noch einmal die zwei Fälle
 - (i) Nur B_V sich verändert. Weil $B_V[\mathrm{id}]_{B_V'}:V\to V$ bijektiv ist, gilt

$$\begin{split} \operatorname{im}\left(B_{W}[T]_{B'_{V}}\right) &= \left\{B_{W}[T]_{B'_{V}}v|v \in \mathbb{K}^{m}\right\} = \left\{B_{W}[T]_{B_{V}B_{V}}[\operatorname{id}]_{B'_{V}}v|v \in \mathbb{K}^{m}\right\} \\ &= \left\{B_{W}[T]_{B_{V}}v|v \in \mathbb{K}^{m}\right\} = \operatorname{im}\left(B_{W}[T]_{B'_{V}}\right) \end{split}$$

(ii) B_W sich verändert. Jetzt gilt

$$B'_W[T]_{B_V} = B'_W[\mathrm{id}]_{B_W B_W}[T]_{B_V}.$$

Leider ist es noch falsch, dass das Bild von B_W abhängig sein muss wegen eines ähnliches Arguments zu das Kern.

(c) Weil das Bild von B_V unabhängig ist, ist der Rang auch von B_V unabhängig.

Weil $B'_{W}[id]_{B_{W}}$ bijektiv als Abbildung $\mathbb{K}^{m} \to \mathbb{K}^{m}$ ist, ist es auch bijektive für alle Teilmengen $U \subseteq \mathbb{K}^{m}$. Das Bild vor und nach dem Basiswechsel sind dann isomorph. Deswegen ist der Rang von B_{W} unabhängig.

2.2. BLATT 2 35

(a) Wir definieren die lineare Abbildung T $(x) = A \cdot x$ mit A gegeben wie in 2(b). Wir definieren die Basen

$$B_1 := \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} \right\}, \qquad B_2 := \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Berechnen Sie

$$_{B_2}[T]_{B_1}.$$

(b) Wir schauen nochmal auf Aufgabe 1. Es seien die paarweise verschiedene Punkte x_0, x_1, \ldots, x_n gegeben und die Abbildung Φ wie zuvor. Gegeben sei die kanonische Basis

$$B := \{e_1, e_2, \dots, e_n\}$$

vom \mathbb{R}^n sowie die Basen

$$B_M := \{1, x, x^2, \dots, x^n\}$$

und

$$B_l := \{l_0(x), l_1(x), l_2(x), \dots, l_n(x)\}, \quad \text{mit} \quad l_i(x) := \prod_{i \neq j=0}^n \frac{x - x_j}{x_i - x_j}.$$

Bestimmen Sie

$$_{B}[\Phi]_{B_{M}}, \quad \text{und} \quad _{B}[\Phi]_{B_{l}}.$$

Ausgehend von den entstandenen Matrizen: Stellen Sie eine Vermutung, welche Basis für große n bevorzugt wird.

Beweis. Wir berechnen

$$_{B_2}[\mathrm{id}]_{B_1}.$$

Es gilt

$$\begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} = \begin{pmatrix}
1 \\ 1 \\ 0 \\ 0
\end{pmatrix} - \begin{pmatrix}
0 \\ 1 \\ 1 \\ 0
\end{pmatrix} + \begin{pmatrix}
0 \\ 0 \\ 1 \\ 1
\end{pmatrix} - \begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ -1 \\ 1 \\ -1
\end{pmatrix} = -\begin{pmatrix}
0 \\ 1 \\ 1 \\ 0
\end{pmatrix} + 2\begin{pmatrix}
0 \\ 0 \\ 1 \\ 1
\end{pmatrix} - 3\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\ 0 \\ 0 \\ 1
\end{pmatrix}$$

Daraus folgt:

$$_{B_2}[\mathrm{id}]_{B_1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & -2 \\ 1 & 2 & 0 & 3 \\ -1 & -3 & 1 & -3 \end{pmatrix}.$$

Wir berechnen $\{B_2[id]_{B_1}\}^{-1}$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
-1 & -1 & 0 & -2 & | & 0 & 1 & 0 & 0 \\
1 & 2 & 0 & 3 & | & 0 & 0 & 1 & 0 \\
-1 & -3 & 1 & -3 & | & 0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_2 + R_1}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & -2 & | & 1 & 1 & 0 & 0 \\
1 & 2 & 0 & 3 & | & 0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_3 - R_1}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & -2 & | & 1 & 1 & 0 & 0 \\
1 & 2 & 0 & 3 & | & 0 & 0 & 1 & 0 \\
0 & -3 & 1 & -3 & | & 1 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_3 - R_1}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & -2 & | & 1 & 1 & 0 & 0 \\
0 & 2 & 0 & 3 & | & -1 & 0 & 1 & 0 \\
0 & 2 & 0 & 3 & | & -1 & 0 & 1 & 0 \\
0 & 2 & 0 & 3 & | & -1 & -1 & 0 & 0 \\
0 & 2 & 0 & 3 & | & -1 & 0 & 1 & 0 \\
0 & 2 & 0 & 3 & | & -1 & -1 & 0 & 0 \\
0 & -3 & 1 & -3 & | & 1 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_3 - 2R_2}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & | & 1 & 2 & 1 & 0 \\
0 & -3 & 1 & -3 & | & 1 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_4 \leftrightarrow R_3}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 3 & | & -2 & -3 & 0 & 1 \\
0 & 0 & 1 & 3 & | & -2 & -3 & 0 & 1 \\
0 & 0 & 0 & -1 & | & 1 & 2 & 1 & 0
\end{pmatrix}
\xrightarrow{R_3 + 3R_4}
\xrightarrow{R_3 + 3R_4}$$

2.3. BLATT 3 37

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & | & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & -1 & | & 1 & 2 & 1 & 0
\end{pmatrix}
\xrightarrow{R_2 + 2R_4}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 1 & 3 & 2 & 0 \\
0 & 0 & 1 & 0 & | & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & -1 & | & 1 & 2 & 1 & 0
\end{pmatrix}
\xrightarrow{R_4 \times -1}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 1 & 3 & 2 & 0 \\
0 & 0 & 1 & 0 & | & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & 1 & | & -1 & -2 & -1 & 0
\end{pmatrix}$$

also

$$_{B_1}[\mathrm{id}]_{B_2} = \{_{B_2}[\mathrm{id}]_{B_1}\}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 2 & 0 \\ 1 & 3 & 3 & 1 \\ -1 & -2 & -1 & 0 \end{pmatrix}.$$

Es gilt dann

$$B_{1}[id]_{B_{2}}A_{B_{2}}[id]_{B_{1}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & -2 \\ 1 & 2 & 0 & 3 \\ -1 & -3 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -2 \\ 3 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 2 & 0 \\ 1 & 3 & 3 & 1 \\ -1 & -2 & -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -2 & -1 & 0 \\ -5 & 1 & -5 & -4 \\ 8 & 1 & 10 & 7 \\ -7 & 0 & -12 & -9 \end{pmatrix}$$

Sei $p_k(x) = x^k \in B_M$. Es folgt, dass $\Phi(p_k(x)) = \{x_1^k, x_2^k, \dots, x_n^k\}$. Deswegen gilt

$${}_{B}[\Phi]_{B_{M}} = \begin{pmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{n} \\ 1 & x_{3} & x_{3}^{2} & \dots & x_{3}^{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n} \end{pmatrix}.$$

Betrachten Sie dann $l_k(x)$. Weil $(x - x_i)$ für $i \neq k$ vorkommt, gilt $l_k(x_i) = 0 \forall i \neq k$. Für i = k gilt $l_k(x_k) = \prod_{i \neq j=0}^n \frac{x_k - x_j}{x_k - x_j} = 1$. Es gilt daher

$$_{B}[\Phi]_{B_{l}} = I_{n} = \operatorname{diag}_{n}(1, 1, \dots, 1).$$

Ich vermute, dass B_l für große n bevorzugt wird...

2.3 Blatt 3

Aufgabe 25. (a) Berechnen Sie alle möglichen Matrixprodukte der folgenden Matrizen. Was muss jeweils für die Dimensionen erfüllt

38

sein?

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 5 \\ 1 & 8 & 7 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ 0 \\ 8 \\ -7 \end{pmatrix}$$
$$D = \begin{pmatrix} -1 & 2 & 0 & 8 \end{pmatrix}, E = \begin{pmatrix} 1 & 4 \\ 0 & 5 \\ 6 & 8 \end{pmatrix}, F = \begin{pmatrix} -1 & 2 & 0 \end{pmatrix}.$$

(b) Eine Blockmatrix ist eine Matrix von der Form

$$A = \begin{pmatrix} A_1 & A_3 \\ A_2 & A_4 \end{pmatrix}$$

mit Matrizen $A_1\in\mathbb{K}^{n\times m},A_2\in\mathbb{K}^{n'\times m},A_3\in\mathbb{K}^{n\times m'},A_4\in\mathbb{K}^{n'\times m'}.$ Sei weiterhin

$$B = \begin{pmatrix} B_1 & B_3 \\ B_2 & B_4 \end{pmatrix}$$

mit ebenso Einträgen aus \mathbb{K} . Wer nun meint, die Multiplikation von A und B sei so simpel wie

$$A \cdot B = \begin{pmatrix} A_1 B_1 + A_3 B_2 & A_1 B_3 + A_3 B_4 \\ A_2 B_1 + A_4 B_2 & A_2 B_3 + A_4 B_4 \end{pmatrix}$$

hat tatsächlich recht. Beweisen Sie diese Formel und geben Sie gleichzeitig die B_i 's für die benötigten Matrizenräume an, sodass die Rechnung wohldefiniert ist.

Beweis. (a) Für A eine $n \times m$ Matrize, und B eine $p \times q$ Matrize, ist AB wohldefiniert, nur wenn m=p

2.3. BLATT 3 39

Die Matrizprodukte sind

$$AB = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 5 & 3 & -5 & -3 \\ 6 & 8 & -6 & -8 \end{pmatrix}$$

$$AE = \begin{pmatrix} 13 & 15 \\ 30 & 55 \\ 43 & 100 \end{pmatrix}$$

$$FA = \begin{pmatrix} -1 & 7 & 8 \end{pmatrix}$$

$$BC = \begin{pmatrix} 7 \\ -7 \\ -7 \end{pmatrix}$$

$$CD = \begin{pmatrix} -1 & 2 & 0 & 8 \\ 0 & 0 & 0 & 0 \\ -8 & 16 & 0 & 64 \\ -7 & 14 & 0 & 56 \end{pmatrix}$$

$$DC = \begin{pmatrix} 55 \end{pmatrix}$$

$$CF = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 0 & 0 \\ -8 & 16 & 0 \\ -7 & 14 & 0 \end{pmatrix}$$

$$FE = \begin{pmatrix} -1 & 6 \end{pmatrix}$$

(b) Wir brauchen $B_1 \in \mathbb{K}^{m \times p}, B_2 \in \mathbb{K}^{m' \times p}, B_3 \in \mathbb{K}^{m \times q}, B_4 \in \mathbb{K}^{m' \times q}$ für $p, q \in \mathbb{N}$. Wir bezeichnen, für $v_1 \in \mathbb{K}^a, v_2 \in \mathbb{K}^b$, das Vektor $(v_1, v_2) \in \mathbb{K}^{a+b}$. Sei jetzt $v_1 \in \mathbb{K}^p, v_2 \in \mathbb{K}^q$.

$$AB(v_{1}, v_{2}) = A \begin{pmatrix} B_{1} & B_{3} \\ B_{2} & B_{3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$

$$\in \mathbb{K}^{m}$$

$$= A \begin{pmatrix} B_{1}v_{1} + B_{3}v_{2} \\ B_{2}v_{1} + B_{4}v_{2} \end{pmatrix}$$

$$= \begin{pmatrix} A_{1} & A_{3} \\ A_{2} & A_{4} \end{pmatrix} \begin{pmatrix} B_{1}v_{1} + B_{3}v_{2} \\ B_{2}v_{1} + B_{4}v_{2} \end{pmatrix}$$

$$= \begin{pmatrix} A_{1}(B_{1}v_{1} + B_{3}v_{2}) + A_{3}(B_{2}v_{1} + B_{4}v_{2}) \\ A_{2}(B_{1}v_{1} + B_{3}v_{2}) + A_{4}(B_{2}v_{1} + B_{4}v_{2}) \end{pmatrix}$$

$$= \begin{pmatrix} A_{1}B_{1} + A_{3}B_{2} & A_{1}B_{3} + A_{3}B_{4} \\ A_{2}B_{1} + A_{4}B_{2} & A_{2}B_{3} + A_{4}B_{4} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} \qquad \Box$$

Aufgabe 26. Es seien V und W Vektorräume über K, nicht notwendigerweise endlich-dimensional und

$$\Phi: V \to W$$

eine lineare Abbildung. Beweisen Sie:

- (a) Die duale Abbildung Φ^* ist injektiv genau dann, wenn Φ surjektiv ist. Hinweis: Die Richtung \implies beweisen Sie am einfachsten als eine Kontraposition.
- (b) Die duale Abbildung Φ^* ist surjektiv genau dann, wenn Φ injektiv ist. Hinweis: Die Rückrichtung lässt sich am einfachsten direkt beweisen. Nutzen Sie in dem Fall die Injektivität von Φ aus, um für ein beliebiges $v^* \in V^*$ eine lineare Abbildung im Bild von Φ^* zu konstruieren, die die gleichen Werde wie Abbildung v^* liefert.
- (c) Im Falle der Invertierbarkeit gilt

$$(\Phi^{-1})^* = (\Phi^*)^{-1}$$
.

Beweis. (a) Sei Φ surjektiv, und $w_1^*, w_2^* \in W^*$. Es gilt $\Phi w_1^* = w_1^* \circ \Phi$, $\Phi w_2^* = w_2^* \circ \Phi$. Die zwei Abbildungen $w_1^* \circ \Phi$ und $w_2^* \circ \Phi$ sind unterschiedliche, solange es mindestens ein $v \in V$ gibt, sodass $(w_1^* \circ \Phi)(v) \neq (w_2^* \circ \Phi)(v)$. Wir haben aber ausgenommen, dass $w_1^* \neq w_2^*$. Das bedeutet, dass es $w \in W$ gibt, so dass $w_1^*(w) \neq w_2^*(w)$. Weil Φ surjektiv ist, ist $w = \Phi(v)$ für eine v. Dann ist $(w_1^* \circ \Phi)(v) \neq (w_2^* \circ \Phi)(v)$, also Φ^* ist injektiv.

Jetzt nehmen wir an, dass Φ nicht surjektiv ist, also es gibt ein Unterraum $U \subseteq W$, sodass $U \setminus \{0\} \cap \operatorname{im}(\Phi) = \emptyset$. Dann können wir zwei lineare Abbildungen w_1^* und w_2^* definieren, die auf $\operatorname{im}(\Phi)$ gleich sind, aber auf U ungleich sind. Es gillt $\Phi^*(w_1) = \Phi^*(w_2)$, aber $w_1 \neq w_2$, also Φ^* ist nicht injektiv.

(b) Zuerst beweisen wir: Φ nicht injektiv $\Longrightarrow \Phi^*$ nicht surjektiv. Sei $v_1, v_2 \in V, v_1 \neq v_2$ und $\Phi(v_1) = \Phi(v_2) = w$. Es gibt eine lineare Abbildung $v^* \in V^*$, so dass $v^*(v_1) \neq v^*(v_2)$. Sei aber $w^* \in W^*$. Es gilt $(\Phi^* w^*)(v) = (w^* \circ \Phi)(v)$. Dann ist

$$\Phi^* w^* (v_1) = \Phi^* (w) = \Phi^* w^* (v_2),$$

also $\Phi^*(w^*) \neq v^*$ für alle $w^* \in W^*$. Es folgt: Φ^* ist nicht surjektiv. Jetzt beweisen wir Φ injektiv $\Longrightarrow \Phi^*$ surjektiv. Sei $v^* \in V^*$. Wir definieren eine Abbildung (momentan nicht unbedingt linear) so: Für alle $w \in \operatorname{im}(\Phi)$, also $w = \Phi(v)$, ist $w^*(w) = v^*(v)$. Für $w \notin \operatorname{im}(\Phi)$ ist $w^*(w) = 0$.

Es ist klar, dass $w^* \circ \Phi = v^*$. Wir müssen nur zeigen, dass w^* linear ist, also $w^* \in W^*$.

(1) Sei $w \in W$, $a \in \mathbb{K}$. Falls $w \notin \operatorname{im}(\Phi)$, ist auch $aw \notin \operatorname{im}(\Phi)$. Es gilt daher

$$w^*(aw) = aw^*(w) = 0.$$

2.3. BLATT 3 41

Falls $w \in \operatorname{im}(\Phi)$, also $w = \Phi v$ für ein $v \in V$, gilt auch $aw = \Phi(av)$, und

$$w^*(aw) = v^*(av) = av^*(v) = aw^*(w).$$

Daraus folgt: $w^* \in W^*$, und $\Phi^*(w^*) = v^*$.

(c) In den letzten Teilaufgaben haben wir bewiesen, dass wenn Φ bijektiv ist, ist Φ^* auch bijektiv. Die Rückrichtung stimmt auch. Wir müssen nur Gleichheit zeigen.

Vereinfachung

Wir müssen nur zeigen, per Definition eine Inverseabbildung, dass

$$\Phi^* \circ \left(\Phi^{-1}\right)^* = \mathrm{id}_{V^*}.$$

(Wir müssen nicht zeigen, dass $(\Phi^{-1})^* \circ \Phi^* = \mathrm{id}_W$, weil die beide Abbildungen bijektiv sind.)

Es gilt, für $v^* \in V^*$, $(\Phi^{-1})^* (v^*) = v^* \circ \Phi^{-1}$. Daraus folgt

$$(\Phi^* \circ (\Phi^{-1})^*) (v^*) = \Phi^* (v^* \circ \Phi^{-1})$$

$$= v^* \circ \Phi^{-1} \circ \Phi$$

$$= v^*$$

Aufgabe 27. (Darstellung eines Unterraums)

- (a) Es sei $A \in \mathbb{K}^{n \times m}$. Beweisen Sie: Das Gleichungssystem Ax = b hat genau dann eine Lösung in $x \in \mathbb{K}^m$, wenn für alle $y \in \mathbb{K}^m$ aus $A^Ty = 0$ folgt $b^Ty = 0$.
- (b) Es sei

$$U = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \right\} \subset \mathbb{R}^4.$$

(c) Verwenden Sie (a) um eine Matrix B zu konstruieren, sodass gilt

$$U = \ker(B)$$
.

Beweis. (a) Sei x eine Lösung, Ax = b, und $y \in \mathbb{K}^m$ beliebig, sodass $A^Ty = 0$. Es gilt dann:

$$x^T A^T y = b^T y = 0.$$

(b) Wir machen eine Basisergänzung:

$$\mathbb{R}^4 = \operatorname{span} \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \right\}.$$

Sei

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 \end{pmatrix}.$$

Wir brauchen $B \in \mathbb{R}^{4 \times 4}$, sodass

$$BA = \begin{pmatrix} 0 & 0 & w_{1,1} & w_{2,1} \\ 0 & 0 & w_{1,2} & w_{2,2} \\ 0 & 0 & w_{1,3} & w_{2,3} \\ 0 & 0 & w_{1,4} & w_{2,4} \end{pmatrix} := C,$$

wobei $(w_{1,1},w_{1,2},w_{1,3},w_{1,4})^T$ und $(w_{2,1},w_{2,2},w_{2,3},w_{2,4})^T$ linear unabhängig sind, also $B=CA^{-1}$. Weil

$$A^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & -\frac{1}{2} \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix},$$

Wir nehmen außerdem

$$C = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

also

$$B = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

2.4 Blatt 4

 $\mathbf{Aufgabe}$ 28. Wir definieren mit S_n die Menge der bijektiven Abbildungen

$$\sigma: \{1,\ldots,n\} \to \{1,\ldots,n\}.$$

Dann ist bekannterweise (S, \circ) mit

$$\sigma_2 \circ \sigma_1(i) = \sigma_2(\sigma_1(i))$$

2.4. BLATT 4 43

eine Gruppe. Wir führen für gewöhnlich eine Abbildungstabelle

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

mit i_1, \ldots, i_n paarweise verschieden, um zu signalisieren $\sigma(k) = i_k$ für $k = 1, \ldots, n$.

(a) Eine übliche Darstellung bei Elementen aus S_n ist die Zyklenschreibweise. Ein Zyklus der Länge k mit $k \leq n$ hat die Form

$$\sigma = (i_1, i_2, \dots, i_k)$$

und signalisiert $i_1 \to i_2, i_2 \to i_3$, usw. $i_k \to i_1$ under σ . Ist die Zahl i_j nicht im Zyklus vertreten, so wird sie unter σ auf sich selbst abgebildet. Speziell für k=1 erhalten wir die Identität und schreiben

$$\sigma = (1)$$
.

Geben Sie an, wie viele unterschiedliche Abbildungen σ durch ein Zyklus der Länge k realisiert werden können! Kann jedes Element in S_3 (S_4) als ein Zyklus geschriebeb werden?

(b) Wir definieren die Menge der (Permutations-)Matrizen

$$P_n := \{ P \in \mathbb{K}^{n \times n} : P = (e_{i_1}, \dots, e_{i_n}, \text{ mit } i \leq i_k \leq n \text{ und alle } i_k \text{ paarweise verschieden} \},$$

mit e_i der *i*-te Einheitsvektor. Verifizieren Sie: (P_n, \cdot) ist mit der herkömmlichen Matrixmultiplikation eine Gruppe! Bestimmen Sie weiterhin einen bijektiven Gruppenmorphismus

$$\Phi: (S_n, \circ) \to (P_n, \cdot),$$

sodass gilt

$$\Phi(\sigma)e_i = s_i \iff \sigma(i) = j.$$

Beweisen Sie, dass sich jedes P aus P_n schreiben lässt als

$$P = \prod_{k=1}^{n-1} V_{i_k j_k},$$

mit V_{ij} definiert wie in Lemma 5.56.

Beweis. (a) Es gibt n! Möglichkeiten für eine Folge $(i_1i_2...i_k)$, aber wir können die zyklisch permutieren und σ verändert sich nicht. Deswegen gibt es n!/n = (n-1)! unterschiedliche Abbildungen, die durch ein Zyklus der Länge k realisiert werden können.

Ja, jedes Element in S_3 kann als ein Zyklus geschrieben werden. Das können wir explizit machen:

Weil wir 6 Elemente haben, und $|S_3| = 3! = 6$, haben wir alle Elemente.

Das stimmt aber nicht für S_4 . Sei

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}.$$

Falls es als Zyklus geschreiben werden kann, muss das Zyklus den Länge 4 haben, weil $\sigma(i) \neq i$ für alle i. Wir fangen obdA mit 1 an. Dann ist das Zyklus (12...). Aber weil $\sigma(2) = 1$, hört das Zyklus auf, und $\cdots = \emptyset$. Dann ist das Zyklus nicht mit Länge 4.

(b) Sei $A, B \in P_n$ beliebige Elemente von P_n ,

$$A = (e_{i_1}, e_{i_2}, \dots, e_{i_n})$$

 $B = (e_{j_1}, e_{j_2}, \dots, e_{j_n})$

(i) G ist abgeschlossen: Wir betrachten ABe_k für k beliebig.

$$ABe_k = Ae_{j_k} = e_{i_{j_k}},$$

also

$$AB = (e_{i_{j_1}}, e_{i_{j_2}}, \dots, e_{i_{j_n}}) \in P_n.$$

Das i_{j_k} paarweise verscheiden sind folgt daraus, dass j_k alle paarweise verscheiden sind.

(ii) Neutrales element: Wir wissen aus der linearen Algebra, dass

$$1_n = (e_1, e_2, \dots, e_n) \in P_n$$

das neutrales Element ist.

- (iii) Assoziativität: Wir wissen auch, dass Matrizmultiplikation assoziativ ist.
- (iv) Existenz des Inverses: Sei jetzt p_k , sodass $i_{p_k} = k$.

Bemerkung

Man kann $i, p: \{1, \ldots, n\} \to \{1, \ldots, n\}$ interpretieren. Dann ist i eine bijektive Abbildung, und das Existenz einer inversen Abbildung p folgt daraus. Deswegen ist unsere Entscheidung immer möglich.

Wir betrachten $A(e_{p_1}, e_{p_2}, \dots, e_{p_n})$, und dafür die Wirkung der Abbildung auf einem beliebigen Basiselement e_k :

$$A(e_{p_1}, e_{p_2}, \dots, e_{p_n})e_k = Ae_{p_k} = e_{i_{p_k}} = e_k.$$

2.4. BLATT 4 45

(c) Sei i eine bijektive Abbildung $\{1, \ldots, n\} \to \{1, \ldots, n\}$. Wir schreiben i_k oder i(k) als das Bild von k. Wir vermuten, dass die gewünschte Homomorphismus

$$\Phi: i \to (e_{i_1}, e_{i_2}, \dots e_{i_n})$$

ist.

- (i) $\Phi(\sigma)e_j = e_{\sigma_j}$, also $\Phi(\sigma)e_i = s_j \iff \sigma(i) = j$.
- (ii) Injektiv: Sei $\sigma, \sigma' \in S_n$, $\sigma \neq \sigma'$, insbesondere gilt $\sigma(i) \neq \sigma'(i)$. Es gilt dann

$$\Phi(\cdot) \xrightarrow{\sigma} (e_{\sigma_1}, \dots, e_{\sigma_i}, \dots, e_{\sigma_n})$$

$$(e_{\sigma'_1}, \dots, e_{\sigma'_i}, \dots, e_{\sigma_n})$$

$$\neq$$

also $\Phi(\sigma) \neq \Phi(\sigma')$.

- (iii) Surjektiv: Sei $M = (e_{i_1}, e_{i_2}, \dots, e_{i_n})$. Wie im letzten Teilaufgabe können wir eine Abbildung $i(k) = i_k$ definieren, und $\Phi(i) = M$.
- (iv) Homomorphismusgesetz: Es ist zu zeigen, für $i, j \in S_n$ und

$$M_1 = (e_{i_1}, e_{i_2}, \dots, e_{i_n}) = \Phi(i)$$

 $M_2 = (e_{i_1}, e_{i_2}, \dots, e_{i_n}) = \Phi(j),$

dass

$$\Phi(i \circ j)(e_k) = M_1 M_2 e_k$$

für alle k gilt. Per Definition ist

$$\Phi(i \circ j)e_k = e_{i(j(k))} = e_{i_{j_k}}.$$

Es gilt auch

$$M_1 M_2 e_k = M_1 e_{j(k)} = e_{i(j(k))} = e_{i_{j_k}}.$$

Aufgabe 29. Gegeben sei die Permutation

$$S_9 \ni \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 3 & 9 & 7 & 6 & 8 & 1 & 5 \end{pmatrix}.$$

- (a) Stellen sie σ als Produkt von Transpositionen dar.
- (b) Berechnen Sie das Signum von σ .

CHAPTER THREE

Analysis 2

Ich habe die Übungen für Analysis 2 mit Lukas Then gemacht.

3.1 Blatt 1 (17.5/21)

Aufgabe 30. Berechnen Sie Ableitungen der folgenden Funktionen:

(a)
$$f(x) = \frac{\arctan \sin x^2}{e^{1-x}}$$
 für $x \in \mathbb{R}$

(b)
$$g(x) = x^{(x^x)} \text{ für } x > 0$$

(a)
$$f(x) = e^{x-1} \arctan \sin x^2.$$

$$f'(x) = e^{x-1} \frac{d}{dx} \arctan \sin x^2 + \left(\arctan \sin x^2\right) \frac{d}{dx} e^{x-1}$$

$$= \frac{e^{x-1}}{1 + \sin^2 x^2} \frac{d}{dx} \sin x^2 + \left(\arctan \sin x^2\right) e^{x-1} \frac{d}{dx} (x-1)$$

$$= \frac{e^{x-1}}{1 + \sin^2 x^2} (\cos x^2) (2x) + (\arctan \sin x^2) e^{x-1}$$

$$= \frac{2x \cos x^2 e^{x-1}}{1 + \sin^2 x^2} + (\arctan \sin x^2) e^{x-1}$$

(b)

$$g(x) = x^{(x^x)}$$

$$\ln g(x) = x^x \ln x$$

Lemma 3.1.

$$h(x) := x^x$$

$$h'(x) = x^x (1 + \ln x)$$

Beweis.

$$ln h(x) = x ln x.$$

$$\frac{\mathrm{d}}{\mathrm{d}x} |\ln h(x)| = \frac{\mathrm{d}}{\mathrm{d}x} (x \ln x)$$

$$\frac{h'(x)}{h(x)} = \ln x + 1$$

$$h'(x) = h(x) (1 + \ln x)$$

$$= x^{x} (1 + \ln x)$$

Man kann auch $x^x = e^{x \ln x} \text{ verwenden}$ und Kettenregeln benutzen.

Dann gilt

$$\frac{\mathrm{d}}{\mathrm{d}x} \ln g(x) = \frac{\mathrm{d}}{\mathrm{d}x} (x^x \ln x)$$

$$\frac{g'(x)}{g(x)} = \frac{1}{x} x^x + (\ln x) \frac{\mathrm{d}}{\mathrm{d}x} (x^x)$$

$$= \frac{x^x}{x} + (\ln x) x^x (1 + \ln x)$$

$$g'(x) = g(x) x^x \left[\frac{1}{x} + \ln x + \ln^2 x \right]$$

$$= x^{x^x + x} \left[\frac{1}{x} + \ln x + \ln^2 x \right]$$

$$= x^{x^x + x - 1} \left[1 + x \ln x + x \ln^2 x \right]$$

Aufgabe 31. Untersuchen Sie, für welche Argumente des Definitionsbereiches die folgenden Funktionen differenzierbar sind:

(a)
$$f(x) = |x|, x \in \mathbb{R}$$

(b)
$$g(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

(c)
$$h(z) = \overline{z}, z \in \mathbb{C}$$

(a) Für $x_0 \neq 0$ gibt es eine Umgebung auf x_0 , worin |x| = x oder |x| = -x. Dann ist die Ableitung von |x| gleich mit die Ableitung von entweder x oder -x, also $f'(x_0)$ existiert für $x_0 \neq 0$.

Für
$$x_0 = 0$$
 gilt $|0| = 0$, und auch

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{x}{x} = 1$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

Weil die beide ungleich sind, existiert die Grenzwert und daher auch die Ableitung nicht.

(b) Sei $x_0 \neq 0$ und $y_0 = x_0^2$. Dann für $0 < \epsilon < y_0$ existiert keine $\delta > 0$, sodass $|x - x_0| < \delta \implies |g(x) - g(x_0)| < \epsilon$.

Beweis: Es gibt zwei Fälle:

- (i) $x_0 \in \mathbb{Q}$. Dann in jeder offenen Ball $(x_0 \delta, x_0 + \delta)$ gibt es ein Zahl $x \in \mathbb{R} \setminus \mathbb{Q}$, also $|g(x) g(x_0)| = g(x_0) = y_0 > \epsilon$
- (ii) Sei $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Dann in jeder offenen Ball $(x_0 \delta, x_0 + \delta)$ gibt es ein Zahl $x \in \mathbb{Q}$, also $|g(x) g(x_0)| = g(x) > y_0 > \epsilon$

Sei $x_0 = 0$. Dann gilt $g(x_0) = 0$, und auch:

(i) $x \in \mathbb{Q}$, also

$$\frac{g(x) - g(0)}{x - 0} = \frac{x^2}{x}$$
$$= x$$

(ii) oder $x \notin \mathbb{Q}$, also

$$g(x) - g(0) = 0 - 0 = 0 \implies \frac{g(x) - g(0)}{x - 0} = 0.$$

Deshalb ist

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = 0.$$

(c) Zu berechnen:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\overline{z} - \overline{z_0}}{z - z_0} = \lim_{z \to z_0} \frac{\overline{z} - z_0}{z - z_0}.$$

Sei $z=z_0+x, x\in\mathbb{R}$. Dann, falls die Grenzwert existiert, ist es gleich

$$\lim_{z \to z_0} \frac{\overline{z - z_0}}{z - z_0} = \lim_{x \to 0} \frac{\overline{z_0 + x - z_0}}{z_0 + x - z_0}$$

$$= \lim_{x \to 0} \frac{\overline{x}}{x}$$

$$= \lim_{x \to 0} \frac{x}{x}$$

$$= 1$$

Sei jetzt $z = z_0 + ix, x \in \mathbb{R}$. Falls die Grenzwert existiert ist es gleich

$$\lim_{z \to z_0} \frac{\overline{z - z_0}}{z - z_0} = \lim_{x \to 0} \frac{\overline{z_0 + ix - z_0}}{\overline{z_0 + ix - z_0}}$$

$$= \lim_{x \to 0} \frac{\overline{ix}}{\overline{ix}}$$

$$= \lim_{x \to 0} \frac{-ix}{ix}$$

$$= -1$$

Weil das Grenzwert, wenn durch zwei Richtungen berechnet wurde, ungleich ist, existiert das Grenzwert nicht (für alle $z \in \mathbb{C}$)

Aufgabe 32. Man zeige, dass die Gleichung

$$x = \cos\left(\frac{\pi x}{2}\right)$$

auf [0, 1] genau eine Lösung besitzt.

Sei $f(x) = x - \cos\left(\frac{\pi x}{2}\right)$. Dann ist die Gleichung gleich f(x) = 0. f(x) ist auf [0,1] stetig, und auf (0,1) differenzierbar.

$$f(0) = 0 - 1 = -1$$

 $f(1) = 1 - 0 = 1$

Wegen des Zwischenwertsatzes gibt es mindestens eine Lösung zu der Gleichung f(x) = 0. Dann

$$f'(x) = 1 + \frac{\pi}{2}\sin\left(\frac{\pi x}{2}\right) > 0 \text{ für } x \in [0, 1].$$

f is dann monoton wachsend, und es gibt maximal eine Lösung zu f(x) = 0.

Deswegen besitzt die Gleichung genau eine Lösung.

Aufgabe 33. Bestimmen Sie die folgenden Grenzwerte:

- (a) $\lim_{k\to\infty} k \ln \frac{k-1}{k}$
- (b) $\lim_{x\to\infty} \frac{x^{\ln x}}{e^x}$

(a)
$$k \ln \frac{k-1}{k} = \frac{\ln(k-1) - \ln k}{1/k}.$$

Weil $\ln x$ und 1/x auf $x \in (0, \infty)$ differenzierbar sind, kann man den Satz von L'Hopital verwenden:

$$\frac{d}{dk} \left[\ln(k-1) - \ln k \right] = \frac{1}{k-1} - \frac{1}{k} = \frac{1}{k(k-1)}$$

$$\frac{d}{dk} \frac{1}{k} = -\frac{1}{k^2}$$

Dann gilt

$$\lim_{k \to \infty} \frac{\frac{1}{k(k-1)}}{-\frac{1}{k^2}} = \lim_{k \to \infty} \left(-\frac{k}{k-1} \right)$$
$$= \lim_{k \to \infty} \left(-\frac{1}{1 - \frac{1}{k}} \right)$$
$$= -1$$

51

Weil das Grenzwert auf $\mathbb{R} \cup \{\pm \infty\}$ existiert, ist

$$\lim_{k \to \infty} k \ln \left(\frac{k-1}{k} \right) = -1.$$

(b)
$$\frac{x^{\ln x}}{e^x} = \frac{\left(e^{\ln x}\right)^{\ln x}}{e^x} = \frac{e^{\ln^2 x}}{e^x} = e^{\ln^2 x - x} = e^{x\left(\frac{\ln^2 x}{x} - 1\right)}.$$

Lemma 3.2.

$$\lim_{x \to \infty} \frac{\ln^p x}{x^q} = 0, \qquad p, q > 0.$$

Beweis.

$$\lim_{x \to \infty} \frac{\ln^p x}{x^q} = \left(\lim_{x \to \infty} \frac{\ln x}{x^{p/q}}\right)^q$$

$$= \left(\lim_{x \to \infty} \frac{1}{x(x^{p/q})}\right)^q$$
L'Hopital
$$= 0^q = 0$$

Korollar 3.3.

$$\lim_{x \to \infty} \left[x \left(\frac{\ln^2 x}{x} - 1 \right) \right] = -\infty.$$

Deswegen ist

$$\lim_{x \to \infty} \frac{x^{\ln x}}{e^x} = \lim_{x \to \infty} e^{x\left(\frac{\ln^2 x}{x} - 1\right)} = 0.$$

Aufgabe 34. Überprüfen Sie die Funktion $f:[-1,+\infty)\to\mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x^2 + 1 & -1 \le x < 1\\ \frac{8}{\pi} \arctan \frac{1}{x} & x \ge 1 \end{cases}$$

auf lokale und globale Extrema.

Es gilt

$$f'(x) = \begin{cases} 2x & -1 < x < 1\\ \frac{8}{\pi} \frac{1}{1 + \frac{1}{x^2}} \left(-\frac{1}{x^2} \right) & x > 1 \end{cases}.$$

Es ist klar, dass x=0 eine Lösung zu f'(x)=0 ist. Weil f''(0)=2>0, ist es ein lokales Minimum. Es gibt auch $a,b\in\mathbb{R},a<1< b$, wofür gilt

$$f'(x) > 0 x \in (a, 1)$$

$$f'(x) < 0 x \in (1, b)$$

Falls $f(1) \ge \lim_{x\to 1^-} f(x)$, ist f(1) ein lokales Maximum (sogar wenn f nicht auf 1 stetig ist). Weil

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{2} + 1) = 2$$

und

$$f(1) = \frac{8}{\pi} \arctan 1 = \frac{8}{\pi} \frac{\pi}{4} = 2$$

ist f(1) ein lokales Maximum. Weil f(x) < 2 für x > 1 kann kein Punkt x > 1 ein globales Maximum sein. Es gilt auch, dass

$$f(-1) = (-1)^2 + 1 = 2.$$

Außer $x \in \{-1, 0, 1\}$ gibt es keine Möglichkeiten für ein globales Maximum. Daher sind die globale Maxima auf $x \in \{-1, 1\}$

Für $x \in [1,1)$ gilt $f(x) \ge 1$. Dennoch ist

$$\lim_{x \to \infty} \frac{8}{\pi} \arctan\left(\frac{1}{x}\right) = 0.$$

Deswegen gibt es keine globales Maximum auf \mathbb{R} . Wenn man $f(\infty)$ definiert durch $f(\infty) = \lim_{x \to \infty} f(x)$, ist $f(\infty)$ das globale Maximum.

Tipfehler - Maximum sollte Minimum sein.

3.2 Blatt 2

Aufgabe 35. Es seien $f,g:D\to\mathbb{R}$ n-mal differenzierbare Funktionen für $n\in\mathbb{N}\setminus 0$ und $D\subset\mathbb{K}$ offen. Zeigen Sie, dass $f\cdot g$ ebenfalls n-mal differenzierbar ist und weiterhin

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} f^{(k)}(x)g^{(n-k)}(x)$$

für jedes $x \in D$ gilt.

Beweis. Wir zeigen es per Induktion, für n=1 ist es das Produktregel. Nehme jetzt an, dass f,g (n+1)- mal differenzierbar Funktionen sind und

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} f^{(k)}(x)g^{(n-k)}(x)$$

gilt (weil alle (n+1)-mal differenzierbar Funktionen sind auch n-mal differenzierbar). Dann ist $(f \cdot g)^{(n)}(x)$ differenzierbar, weil die rechte Seite eine Linearkombination von Produkte aus (zumindest) einmal differen-

3.2. BLATT 2 53

zierbar Funktionen. Es gilt auch,

$$(f \cdot g)^{(n)}(x) = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k+1)}(x) g^{(n-k)}(x) + f^{(k)}(x) g^{(n-k+1)}(x) \right) \qquad n = 1 \text{ Fall}$$

$$= \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)}(x) g^{(n-k)}(x) + \sum_{k=0}^{n} f^{(k)}(x) g^{(n-k+1)}(x)$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} f^{(k)}(x) g^{(n-k+1)}(x) + \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k+1)}(x)$$

$$= \sum_{k=0}^{n+1} \binom{n}{k} f^{(k)} g^{(n-k)}(x)$$

Aufgabe 36. i) Betrachten Sie die Funktionenfolge $f_n: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f_n(x) = \frac{1}{n}\sqrt{n^2x^2 + 1}.$$

Beweisen Sie, dass $(f_n), n \in \mathbb{N}$ gegen eine zu bestimmende Grenzfunktion $f : \mathbb{R} \to \mathbb{R}$ gleichmäßig konvergiert, diese jedoch nicht differenzierbar auf \mathbb{R} ist. Warum ist das kein Widerspruch zu Proposition 5.5.2?

ii) Untersuchen Sie

$$f(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^3}, x \in \mathbb{R}.$$

auf Differenzierbarkeit.

Beweis. i)

$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}.$$

Es ist klar, dass $f_n(x)$ konvergiert gegen $\sqrt{x^2}=|x|$. Sei dann $r(x)=\sqrt{x^2+\frac{1}{n^2}}-|x|$. Für x>0 gilt

$$r(x) = \sqrt{x^2 + \frac{1}{n^2}} - x$$

$$r'(x) = \frac{x}{\sqrt{x^2 + \frac{1}{n^2}}} - 1$$

$$\leq \frac{x}{\sqrt{x^2}} - 1$$

$$= 0$$

Deswegen ist r(x) monoton fallend auf $(0, \infty)$. Ähnlich beweist man, dass r(x) monoton wachsend auf $(-\infty, 0)$ ist. Deswegen ist x = 0 ein globales Maximum, und $r(x) \le r(0) = \frac{1}{n}$. Daher konvergiert (f_n) gleichmäßig.

Man berechnet:

$$f'_n(x) = \frac{x}{\sqrt{x^2 + \frac{1}{n^2}}}.$$

Die Folge der Ableitungen konvergiert gegen $\frac{x}{\sqrt{x^2}} = \text{sgn}(x)$, falls $x \neq 0$, und 0, falls x = 0. Es konvergiert aber nicht lokal gleichmäßig in eine Umgebung U auf 0.

Sei $1 > \epsilon > 0$ gegeben, und nehme an, dass existiere $N \in \mathbb{N}$, für die gilt,

$$|f_n(x)' - g(x)| \le \epsilon$$
 $n > N, x \in U$,

wobei

$$f'(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ 0 & x = 0 \end{cases}$$

Nehme eine solche Abbildung $f_n'(x)$. Weil f_n' stetig ist, und $f_n'(0) = 0$, gibt es eine Umgebung $0 \in V$, in der gilt, dass $|f_n'(x) - f_n'(0)| = f_n'(x) \le 1 - \epsilon$, $x \in V$. Sei dann $0 \ne x \in V$, und $|1 - f_n'(x)| > \epsilon$, also die Folge f_n' konvergiert nicht lokal gleichmäßig.

Man kann auch beachten, dass $f'_n(x)$ stetig für alle $n \in \mathbb{N}$ und $x \in \mathbb{R}$ ist. Wenn die Folge lokal gleichmäßig in eine Umgebung auf 0 konvergiert, wäre das Grenzwert auch stetig. Weil das Grenzwert nicht stetig ist, kann die Folge nicht lokal gleichmäßig konvergieren.

Deswegen ist es kein Widerspruch zu den Korollar, weil die Voraussetzungen nicht erfüllt sind.

ii) Es gilt $\left|\frac{\cos(nx)}{n^3}\right| \leq \frac{1}{n^3}$. Daher konvergiert die Reihe gleichmäßig (Weierstraßsches Majorantenkriterium).

Jetzt ist
$$\frac{d}{dx} \frac{\cos(nx)}{n^3} = -\frac{\sqrt{\sin(nx)}}{n^3}$$
. Weil $\left| \frac{\sin(nx)}{n^2} \right| \le \frac{1}{n^2}$, konvergiert

 $\sum_{n=1}^{\infty} \left| \frac{\sin(nx)}{n^2} \right|$ gleichmäßig. Deswegen ist f differenzierbar, mit Ableitung

$$f'(x) = \sum_{n=1}^{\infty} \left[-\frac{\sin(nx)}{n^2} \right].$$

Aufgabe 37. Zeigen Sie, dass die Funktion

$$f: [-1, 1] \to \mathbb{R}$$
 $f(x) = \max\{x, 0\}$

gleichmäßig durch Polynome approximiert werden kann.

3.2. BLATT 2 55

Beweis. Wir wissen schon, dass es $q_n(x)$ existiert, $q_n(x)$ Polynome, und $q_n(x) \to |x|$ gleichmäßig. Es gilt auch

$$f(x) = \frac{|x|}{2} + \frac{x}{2}.$$

Daher konvergiert gleichmäßig

$$\frac{q_n(x)}{2} + \frac{x}{2} \to f(x).$$

- **Aufgabe 38.** i) Es seien $f:(a,b)\to(c,d)$ und $g:(c,d)\to R$ n-mal differenzierbare Funktionen mit $n\in\mathbb{N}_0$. Zeigen Sie, dass auch $g\circ f$ n-mal differenzierbar ist.
 - ii) Zeigen Sie, dass $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} \exp\left(-\frac{1}{x^2}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

eine unendlich oft differenzierbare Funktion definiert ist. Bestimmen Sie zudem $f^{(n)}(0)$ für alle $n \in \mathbb{N}$

Beweis. i)

Satz 3.4. Die Ableitung von ein Produkt $f_1(x) f_2(x) \dots f_n(x)$ ist

$$\sum_{i=1}^n f_1(x) f_2(x) \dots \frac{\mathrm{d} f_i(x)}{\mathrm{d} x} \dots f_n(x).$$

Beweis. Wir beweisen es per Indukion. Für n=2 ist es das Produktregel. Jetzt nehme an, dass es für eine $n \in \mathbb{N}$ richtig ist, und

$$\frac{d}{dx} (f_1(x)f_2(x) \dots f_{n+1}(x)) = \frac{d}{dx} (f_1(x)f_2(x) \dots f_n(x)) f_{n+1}(x)
+ (f_1(x)f_2(x) \dots f_n(x)) \frac{df_{n+1}}{dx}
= \left(\sum_{i=1}^n f_1(x)f_2(x) \dots \frac{df_i(x)}{dx} \dots f_n(x) \right)
+ (f_1(x)f_2(x) \dots f_n(x)) f'_n(x)
= \sum_{i=1}^{n+1} f_1(x)f_2(x) \dots \frac{df_i(x)}{dx} \dots f_{n+1}(x)$$

Korollar 3.5. Alle Monome von differenzierbare Funktionen sind differenzierbar, und die Ableitung ist noch eine lineare Kombination von Monome.

Korollar 3.6. Sei f k- mal differenzierbar. Dann alle Monome von

$$f'(x), f''(x), \dots, f^{(n-1)}(x)$$

sind differenzierbar.

Satz 3.7. $\frac{d^k}{dx^k}(f \circ g)$ ist ein Monom von Ableitungen von f und g (höchstens die k-ste Ableitung), sofern f und g, n-mal differenzierbar sind.

Beweis. Für k = 1 gilt

$$\frac{\mathrm{d}}{\mathrm{d}x}(f \circ g)(x) = f'(g(x))g'(x).$$

Nehme an, dass es für ein $k \in \mathbb{N}, k < n$ gilt. Dann per Korollar 3.5 gilt es auch für k+1. Per Induktion ist die Verkettung dann n-mal differenzierbar,

ii)

Lemma 3.8.

$$\lim_{x \to \infty} \frac{(\ln x)^p}{x^k} = 0, k > 0.$$

Beweis. Wir beweisen es per Induktion auf p. Für p=1 verwenden wir den Satz von L'Hopital

$$\lim_{x \to \infty} \frac{\ln x}{x^k} = \lim_{x \to \infty} \frac{1}{kx^{k-1}(k)} = \lim_{x \to \infty} \frac{1}{kx^k} = 0.$$

Jetzt nehme an, dass es für p gilt. Wir zeigen, dass es für $p \to p+1$ auch gilt.

$$\lim_{x \to \infty} \frac{(\ln x)^{p+1}}{x^k} = \lim_{x \to \infty} \frac{(p+1)(\ln x)^p}{kx^{k-1}(x)} = \frac{p+1}{k} \lim_{\xi \to \infty} \frac{(\ln x)^p}{x^k} = 0.$$

Lemma 3.9.

$$\lim_{x \to \infty} x^p e^{-kx} = 0, k > 0.$$

Beweis. Nimm $x = e^{\xi}$. Dann gilt

$$\lim_{x \to \infty} x^{-k} (\ln x)^p = \lim_{x \to \infty} e^{-k\xi} \xi^p = 0.$$

Die Ableitungen $f^{(n)}(x), x \neq 0$ haben den Form $p_n(\frac{1}{x}) \exp(\frac{1}{x^2})$, wobei $p_n(x)$ eine Polynome ist.

Proposition 1. $f^{(n)}(0) = 0$

3.2. BLATT 2 57

Beweis. Wir beweisen es per Induktion. $f^{(0)}(0) = 0$ per Definition.

$$f^{(n)}(0) = \lim_{x \to 0} \frac{f^{(n-1)}(x) - f^{(n-1)}(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{1}{x} \left(f^{(n-1)}(x) \right)$$

$$= \lim_{x \to 0} \frac{1}{x} p_{n-1} \left(\frac{1}{x} \right) e^{-\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} x p_n(x) e^{-x}$$

$$= 0$$

Deswegen ist f überall (inkl. 0) differenzierbar, mit alle Ableitungen $f^{(n)}(0) = 0$

Aufgabe 39. Es seien $K_1, K_2 \subset \mathbb{K}$ nichtleere, kompakte Mengen und die Folgen stetiger Funktionen $f_n: K_1 \to K_2$ sowie $g_n: K_2 \to K$ seien gleichmäßig konvergent gegen $f: K_1 \to K_2$ bzw. $f: K_2 \to K$. Beweisen Sie, dass auch

$$q_n \circ f_n \to q \circ f$$

gleichmäßig auf K_1 gilt.

Beweis. Sei $\epsilon > 0$ gegeben. Dann per Definition existiert $n_2 \in \mathbb{N}$, sodass

$$|g_n(x) - g(x)| < \frac{\epsilon}{2}, x \in K_2, n \ge n_2$$
 (3.1)

Weil g stetig und auf eine kompakte Menge definiert ist, ist g gleichmäßig stetig, und es existiert $\delta > 0$, für die gilt

$$|g(a) - g(b)| < \frac{\epsilon}{2}, \qquad |a - b| < \delta \tag{3.2}$$

Es gibt auch $n_1 \in \mathbb{N}$, $|f_n(x) - f(x)| < \delta, x \in K_1, n \ge n_1$. Für $n > n_1$ gilt daher auch

$$|g(f_n(x)) - g(f(x))| < \frac{\epsilon}{2}, n > n_1, x \in K_1$$
 (3.3)

Sei $N = \max(n_1, n_2)$. Für $n \ge N$ gilt Eq. (3.1) und Eq. (3.3) auch, weil $N \ge n_1$ und $N \ge n_2$. Dann für $n \ge N$ gilt.

$$|g(f(x)) - g_n(f_n(x))| = |g(f(x)) - g(f_n(x)) + g(f_n(x)) - g_n(f_n(x))|$$

$$\leq \underbrace{|g(f(x)) - g(f_n(x))|}_{<\epsilon/2 (3.3)} + \underbrace{|g(f_n(x)) - g_n(f_n(x))|}_{<\epsilon/2 (3.1)}$$

Also $g_n \circ f_n \to g \circ f$ gleichmäßig.

3.3 Blatt 3

Aufgabe 40. (a) Benutzen Sie Proposition 5.6.9, um zu zeigen, dass

$$g(x) = \sin(x)\cosh(x), \qquad x \in \mathbb{R}$$

durch die zugehörige Taylorreihe im Punkt $x_0 = 0$ mit Konvergenzradius $R = +\infty$ dargestellt wird.

(b) Zeigen Sie, dass $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} \exp\left(-\frac{1}{x^2}\right) & x \neq 0\\ 0 & \text{sonst} \end{cases}$$

nicht durch ihre Taylorreihe um x = 0 dargestellt wird. Warum ist dies kein Widerspruch zu Proposition 5.6.9?

Beweis. (a)

$$\begin{split} g(x) &= \sin(x) \cosh(x) \\ &= \left(\frac{e^{ix} - e^{-ix}}{2i}\right) \left(\frac{e^x + e^{-x}}{2}\right) \\ &= \frac{1}{4i} \left(e^{(i+1)x} + e^{(i-1)x} - e^{(1-i)x} - e^{-(i+1)x}\right) \\ &= \frac{i}{4} \left[e^{-(i+1)x} + e^{(1-i)x} - e^{(i+1)x} - e^{(i-1)x}\right] \\ g^{(n)}(x) &= \frac{i}{4} \left[\left[-(i+1)\right]^n e^{-(i+1)x} + (1-i)^n e^{(1-i)x} \\ &- (1+i)^n e^{(i+1)x} - (i-1)^n e^{(i-1)x}\right] \\ |g^{(n)}(x)| &\leq \frac{1}{4} (\sqrt{2})^n \left[\left|e^{-(i+1)x}\right| + \left|e^{(1-i)x}\right| + \left|e^{(i+1)x}\right| + \left|e^{(i-1)x}\right|\right] \end{split}$$

Die Bedingungen sind jetzt erfüllt: Sei $B_r(0)^{cl}$ ein abgeschlossenes Ball für beliebige r > 0. Sei außerdem

$$c = \sup_{x \in B_r(0)^{cl}} \frac{1}{4} \left[\left| e^{-(i+1)x} \right| + \left| e^{(1-i)x} \right| + \left| e^{(i+1)x} \right| + \left| e^{(i-1)x} \right| \right]$$

$$\alpha = \sqrt{2}$$

Es gilt $c \neq \infty$, weil die Abbildung in den Klammern stetig ist, und ist daher auf eine eingeschränkte Menge auch eingeschränkt. Es folgt:

$$||g^{(n)}||_{B_r(0)^{cl}} \le c\alpha^n \tag{5.6.23}$$

Also die formale Taylorreihe hat einen Konvergenzradius R > r und konvergiert gegen auf $B_r(0)^{cl}$ gegen g. Weil das für alle r > 0 gilt, konvergiert die Taylorreihe gegen f für alle $x \in \mathbb{R}$, und die Konvergenzradius $R = +\infty$.

3.3. BLATT 3 59

(b) Es ist klar, dass es nicht durch ihre Taylorreihe dargestellt wird. Die Taylorreihe ist $0 + 0x + 0x^2 + \cdots = 0$, aber $f(x) \neq 0$ für $x \neq 0$. Wir berechnen jetzt $f^{(n)}(a)$. Es gilt

$$f(a) = \exp(-1/a^2)$$

$$f'(x) = \frac{2}{x^2} \exp(-1/x^2)$$

$$f''(x) = \left[\frac{4}{x^6} - \frac{6}{x^4}\right] \exp(-1/x^2)$$

$$f'''(x) = \left[\frac{8}{x^9} - \frac{36}{x^7} + \frac{24}{x^5}\right] \exp(-1/x^2)$$

Aber das Supremum ist nicht nur durch die Koeffizienten beeinflusst, sondern auch das Maximumpunkt...

Also

Aufgabe 41. Es sei $f: \mathbb{R}_0^+ \to \mathbb{R}$ definiert durch $f(x) = \sqrt[3]{x}$. Geben Sie das Taylorpolynom P_2 von f mit Entwicklungspunkt $x_0 = 1$ an und schätzen Sie den maximalen Fehler von $|f(x) - P_2(x)|$ auf dem Intervall $\left[\frac{1}{2}, \frac{3}{2}\right]$ ab.

Beweis. Es gilt $f(x) = x^{1/3}$, und daher

$$f^{(n)}(x) = \left[\prod_{i=0}^{n-1} \left(\frac{1}{3} - i\right)\right] x^{\frac{1}{3} - n},$$

also

$$f^{(n)}(1) = \prod_{i=1}^{n-1} \left(\frac{1}{3} - i\right).$$

Es gilt daher

$$P_2(x) = 1 + \frac{1}{3}(x-1) - \frac{1}{9}(x-1)^2.$$

Wir wissen schon

$$|R_{n,x_0}(f)(h)| \le \sup_{t \in [0,1]} |f^{(n)}(x_0 + th) - f^{(n)}(x_0)| \frac{|h|^n}{(n-1)!}$$
 (5.6.20)

Hier ist n = 2, und $|h| \leq \frac{1}{2}$.

Vereinfachung

(Nur in diesem Problem, falsch im Allgemein) Der maximale Fehler ist gleich $\sup_{t\in[-1,1]}\left|f^{(n)}(x_0+th)-f^{(n)}(x_0)\right|\frac{|h|^n}{(n-1)!}$, wobei $h=\frac{1}{2}, n=2$, und $x_0=1$.

Beweis. Wir betrachten zuerst $R_{n,x_0}(f)(\xi)$ für $0\leq \xi\leq h$. Es gilt

Beweis. Wir betrachten zuerst
$$R_{n,x_0}(f)(\xi)$$
 für $0 \le \xi \le h$. Es gilt
$$\sup_{\xi \in [0,h]} R_{n,x_0}(f)(\xi) \le \sup_{\xi \in [0,h]} \left[\sup_{t \in [0,1]} \left| f^{(n)}(x_0 + t\xi) - f^{(n)}(x_0) \right| \frac{|\xi|^n}{(n-1)!} \right]$$
$$= \sup_{\xi \in [0,h]} \left[\sup_{t \in [0,1]} \left| f^{(n)}(x_0 + t\xi) - f^{(n)}(x_0) \right| \frac{|h|^n}{(n-1)!} \right]$$
$$= \sup_{t \in [0,1]} \left| f^{(n)}(x_0 + th) - f^{(n)}(x_0) \right| \frac{|h|^n}{(n-1)!}$$

Ähnlich gilt auch

$$\sup_{\xi \in [-h,0]} R_{n,x_0}(f)(\xi) = \sup_{t \in [-1,0]} \left| f^{(n)}(x_0 + th) - f^{(n)}(x_0) \right| \frac{|h|^n}{(n-1)!}.$$

Weil wir den maximalen Fehler auf dem ganzen Intervall schätzen möchten, ist die gewünschte Antwort daher

$$\sup_{\xi \in [-h,h]} R_{n,x_0}(f)(\xi) = \sup_{t \in [-1,1]} \left| f^{(n)}(x_0 + th) - f^{(n)}(x_0) \right| \frac{|h|^n}{(n-1)!}. \quad \Box$$

3.3. BLATT 3 61

Wir betrachten deswegen

$$\sup_{t \in [-1,1]} \left| f^{(n)}(x_0 + th) - f^{(n)}(x_0) \right|
= \sup_{t \in [-1,1]} \left| \left[\prod_{i=0}^{n-1} \left(\frac{1}{3} - i \right) \right] (x_0 + th)^{\frac{1}{3} - n} - \left[\prod_{i=0}^{n-1} \left(\frac{1}{3} - i \right) \right] \right|
= \left| \prod_{i=0}^{n-1} \left(\frac{1}{3} - i \right) \right| \sup_{t \in [-1,1]} \left| \left(1 + \frac{t}{2} \right)^{-5/3} - 1 \right|
= \left| \prod_{i=0}^{n-1} \left(\frac{1}{3} - i \right) \right| \left| \left(1 - \frac{1}{2} \right)^{-5/3} - 1 \right|
= \left| \prod_{i=0}^{n-1} \left(\frac{1}{3} - i \right) \right| (2^{5/3} - 1)$$

Also der maximale Fehler ist

$$\underbrace{\frac{1}{4}}_{|0.5|^2} \left| \prod_{i=0}^{n-1} \left(\frac{1}{3} - i \right) \right| \left(2^{5/3} - 1 \right) = \frac{1}{18} \left(2^{5/3} - 1 \right). \quad \Box$$

Aufgabe 42. Bestimmen Sie die Taylorpolynome vom Grad 30 der folgenden Funktionen in x_0 .

(a)
$$f(x) = x^3 - 3x^2 + 3x + 2$$
 im Punkt $x_0 = 2$.

(b)
$$g(x) = \sin^2(\pi x)$$
 in $x_0 = 3$.

(c)
$$h(x) = \sin^{-1}(x)$$
 in $x_0 = 0$.

Beweis. (a)

$$f(2) = 2^{3} - 3(2)^{2} + 3(2) + 2 = 4$$

$$f'(x) = 3x^{2} - 6x + 3$$

$$f'(2) = 3$$

$$f''(x) = 6x - 6$$

$$f''(2) = 6$$

$$f'''(x) = 6 = f(2)$$

$$f''''(x) = 0$$

Das Taylorpolynom ist dann

$$4 + 3(x - 2) + 3(x - 2)^{2} + (x - 2)^{3}$$
.

(b)
$$g(x) = \sin^2(\pi x) = \frac{1}{2} (1 - \cos(2\pi x))$$

$$g(3) = 0$$

$$g'(x) = \pi \sin(2\pi x)$$

$$g^{(n)}(x) = (-1)^{\lfloor (n-1)/2 \rfloor} \frac{(2\pi)^n}{2} \begin{cases} \sin(2\pi x) & n \text{ ungerade} \\ \cos(2\pi x) & n \text{ gerade} \end{cases} \quad n \ge 1$$

$$g^{(n)}(3) = (-1)^{\lfloor (n-1)/2 \rfloor} \frac{(2\pi)^n}{2} \begin{cases} 0 & n \text{ ungerade} \\ 1 & n \text{ gerade} \end{cases} \quad n \ge 1$$

Das Taylorpolynom vom Grad 30 ist

$$\sum_{n=1}^{15} \left[(-1)^{\lfloor (2n-1)/2 \rfloor} \frac{(2\pi)^{2n}}{2(2n)!} (x-3)^{2n} \right].$$

(c)

$$h(x) = \sin^{-1} x$$

$$h(0) = 0$$

$$h'(x) = \frac{1}{\sqrt{1 - x^2}} = (1 - x^2)^{-1/2}$$

$$h'(0) = 1$$

Sei $p(x) = \frac{1}{\sqrt{1-x^2}}$. Wir wissen, dass die Taylorreihe von $(1+x)^{\alpha}$

$$\sum_{n=0}^{\infty} \binom{\alpha}{n} x^n \tag{5.6.41}$$

ist, wobei $\binom{\alpha}{n} = \frac{1}{n!} [\alpha(\alpha - 1) \dots (\alpha - n + 1)]$. Die Taylorreihe von $\frac{1}{\sqrt{1-x^2}}$ folgt:

$$T_0\left(\frac{1}{\sqrt{1-x^2}}\right)(x) = \sum_{n=0}^{\infty} {\binom{-1/2}{n}} (-x^2)^n$$

$$= \sum_{n=0}^{\infty} {\binom{-1/2}{n}} (-1)^n (x^{2n})$$

$$= \sum_{n=0}^{\infty} b_n x_n \qquad b_n = 0, \text{ n ungerade}$$

Es gilt daher, für die Koeffizienten der Taylorreihe von $\sin^{-1}(x)$

$$T_0(\sin^{-1}(x))(x) = \sum_{n=0}^{\infty} a_n x^n,$$

dass $a_n = b_{n-1}/n$, für $n \ge 1$. Es ist dann

$$T_0(\sin^{-1}(x))(x) = \sum_{n=0}^{14} \frac{1}{2n+1} \binom{-1/2}{n} (-1)^n (x^{2n+1}). \qquad \Box$$

3.3. BLATT 3 63

Aufgabe 43. Bestimmen Sie die Ober- und Untersummen von exp : $[0,1] \to \mathbb{R}$ für die markierten Zerlegungen (J_n,Ξ_n) mit der Auswahl $\Xi_n = \left\{0,\frac{1}{n},\frac{1}{n},\ldots,\frac{n-1}{n},1\right\}$ für $n \in \mathbb{N}$. Zeigen Sie anschließend, dass die zugehörigen Ober- und Untersummen gegen denselben Wert konvergieren.

Beweis.

Wir werden später die folgende Lemma brauchen:

Lemma 3.10.

$$\lim_{n \to \infty} n \left(1 - e^{-1/n} \right) = 1.$$

Beweis.

$$\lim_{n \to \infty} n \left(1 - e^{-1/n} \right) = \lim_{n \to \infty} \frac{1 - e^{-1/n}}{1/n}$$

$$= \lim_{x \to 0^+} \frac{1 - e^{-x}}{x} \qquad x = 1/n$$

$$= \lim_{x \to 0^+} \frac{e^{-x}}{1} \qquad \text{L'Hopital}$$

$$= 1 \qquad \Box$$

(a)

$$\mathfrak{O}_{\Xi_n}(f) = \sum_{k=0}^{n-1} \left(\frac{1}{n} \exp\left(\frac{k+1}{n}\right) \right)$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} \exp\left(\frac{k+1}{n}\right)$$

$$= \frac{1}{n} \frac{(e-1)e^{1/n}}{e^{1/n} - 1}$$

$$= \frac{1}{n} \frac{e-1}{1 - e^{-1/n}}$$

Es folgt daraus

$$\lim_{n \to \infty} \mathfrak{D}_{\Xi_n}(f) = \lim_{n \to \infty} \frac{e - 1}{n \left(1 - e^{-1/n}\right)} = e - 1.$$

(b)

$$\mathfrak{U}_{\Xi_n}(f) = \sum_{k=0}^{n-1} \left(\frac{1}{n} \exp\left(\frac{k}{n}\right) \right)$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} \exp\left(\frac{k}{n}\right)$$

$$= \frac{1}{n} \frac{e-1}{e^{1/n} - 1}$$

$$= \frac{1}{n} \frac{e-1}{e^{1/n} (1 - e^{-1/n})}$$

Daraus folgt:

$$\lim_{n \to \infty} \mathfrak{U}_{\Xi_n}(f) = \lim_{n \to \infty} \frac{e - 1}{n(e^{1/n} (1 - e^{-1/n}))} = e - 1.$$

3.4 Blatt 4

Aufgabe 44. In dieser Aufgabe beweisen wir, dass die Verknüpfung zweier Riemann-integrierbarer Funktionen i.A. nicht Riemann-integrierbar ist. Dazu gehen wir wie folgt vor:

(a) Es sei $q: \mathbb{N} \to \mathbb{Q} \cap [0,1]$ eine Abzählung von $\mathbb{Q} \cap [0,1]$, d.h. eine bijektive Abbildung von \mathbb{N} nach $\mathbb{Q} \cap [0,1]$. Weiterhin sei

$$f(x) = \begin{cases} 0 & x \in [0,1] \backslash \mathbb{Q}, \\ \frac{1}{n} & x = q_n. \end{cases}$$

Zeigen Sie, dass f Riemann-integrierbar ist.

(b) Weiterhin sei

$$g(x) = \begin{cases} 0 & x \in [0,1] \setminus \left\{ \frac{1}{n} | n \in \mathbb{N} \right\}, \\ 1 & x = \frac{1}{n} \text{ für ein } n \in \mathbb{N}. \end{cases}$$

Zeigen Sie, dass g Riemann-integrierbar ist, die Verknüpfung $g \circ f$ mit der Funktion f jedoch nicht.

Beweis. (a) Wir definieren rekursiv eine Menge

Aufgabe 45. Es sei $f:[a,b]\to\mathbb{R}$ Riemann-integrierbar auf dem echten Intervall [a,b] mit

$$\int_{a}^{b} f(x) \, \mathrm{d}x > 0.$$

Zeigen Sie, dass es ein echtes Intervall $J \subset [a, b]$ gibt, auf dem f strikt positiv ist, d.h. mit f(x) > 0 für alle $x \in J$.

Hinweis: Eine Möglichkeit ist, die Charakterisierung der Darboux-Integrierbarkeit zu benutzen und Untersummen zu betrachten.

3.4. BLATT 4 65

Beweis. Wir beweisen es per Widerspruch. Nehme an, dass in jedem Intervall es mindestens ein Punkt x_0 gibt, für die $f(x_0) \leq 0$. Insbesondere gilt das für alle abgeschlossen Intervalle $[c,d] \subseteq [a,b]$.

Sei jetzt \mathcal{J} eine beliebige Zerlegung von [a, b], $\mathcal{J} = \{t_0, t_1, \dots, t_N\}$, mit die übliche Voraussetzung $t_0 < t_1 < t_2 < \dots < t_N$. Es gilt

$$\mathcal{U}_{\mathcal{J}} = \sum_{i=1}^{N} \inf \left(f|_{[t_{i-1}, t_i]} \right) (t_i - t_{i-1})$$

$$\leq \sum_{i=1}^{N} (0)(t_i - t_{i-1})$$

$$= 0$$

Weil \mathcal{J} beliebig war, gilt das für alle Zerlegungen, und

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le 0,$$

also

$$\int_a^b f(x) \, \mathrm{d}x \le 0,$$

ein Widerspruch.

Aufgabe 46. Beweisen oder widerlegen Sie die folgenden Aussagen:

- (a) Ist $f:[a,b] \to \mathbb{R}$ eine Funktion und |f| integrierbar auf [a,b], so ist es auch f.
- (b) Ist $f:[a,b] \to \mathbb{R}$ integrierbar und $f(x) \ge \delta$ für alle $x \in [a,b]$ und ein $\delta > 0$, so ist auch $\frac{1}{f}$ über [a,b] integrierbar.
- (c) Sind $f, g: [a, b] \to \mathbb{R}$ integrierbar, so gilt

$$\int_a^b (f \cdot g)(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b g(x) \, \mathrm{d}x.$$

Beweis. (a) Falsch. Sei $f:[0,1]\to\mathbb{R}$

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q} \end{cases}.$$

Dann ist |f| = 1 integrierbar (Proposition 6.1.6). Wir müssen jetzt nur beweisen, dass f nicht integrierbar ist. Sei $\mathcal{J} = \{0 = t_0, t_1, \dots, t_N = 1\}$. Es gibt, für alle Intervalle $[a, b] \subseteq [0, 1]$, zwei Punkte

$$\mathbb{Q}\ni x_0\in [a,b] \qquad \qquad \text{dichtheit von } \mathbb{Q}$$

$$\mathbb{R}\backslash\mathbb{Q}\ni x_1\in [a,b] \qquad \qquad \mathbb{Q} \text{ ist nur abz\"{a}hlbar}$$

Also gilt

$$\sup (f|_{[a,b]}) = 1$$
$$\inf (f|_{[a,b]}) = -1$$

Daraus folgt, für jede Zerlegung \mathcal{J} von [0,1], dass

$$\mathcal{O}_{\mathcal{J}}(f) = 1$$
 $\mathcal{U}_{\mathcal{J}}(f) = -1$

also f ist nicht auf [0,1] integrierbar.

(b) Wahr.

Bemerkung

Sei $f:[a,b] \to \mathbb{R}, f \ge \delta$ für ein $\delta > 0$. Es gilt dann

$$\frac{1}{\inf(f)} = \sup\left(\frac{1}{f}\right)$$
$$\frac{1}{\sup(f)} = \inf\left(\frac{1}{f}\right)$$

wegen der Monotonie von $x \to 1/x$.

Wir haben auch

Korollar

(Korollar aus Proposition 6.2.3(vi)) $f : [a, b] \to \mathbb{R}$ ist genau dann integrierbar, wenn es zu jedem $\epsilon > 0$ eine Zerlegung $\mathcal{J} = \{a = t_0, t_1, \dots, t_N\}$ von I gibt, sodass

$$\sum_{i=1}^{N} \left[\sup \left(f|_{[a,b]} \right) - \inf \left(f_{[a,b]} \right) \right] (t_i - t_{i-1}) < \epsilon.$$

Wir arbeiten mit dem Korollar. Sei $\mathcal{J} = \{a = t_0, t_1, \dots, t_N\}$ eine

3.4. BLATT 4 67

Zerlegung von [a, b]. Es gilt

$$\sum_{i=1}^{N} \left[\sup \left(\frac{1}{f} \Big|_{[t_{i-1},t_i]} \right) - \inf \left(\frac{1}{f} \Big|_{[t_{i-1},t_i]} \right) \right] (t_i - t_{i-1})$$

$$= \sum_{i=1}^{N} \left[\frac{1}{\inf \left(f \Big|_{[t_{i-1},t_i]} \right)} - \frac{1}{\sup \left(f \Big|_{[t_{i-1},t_i]} \right)} \right] (t_i - t_{i-1})$$

$$= \sum_{i=1}^{N} \left[\frac{\sup \left(f \Big|_{[t_{i-1},t_i]} \right) - \inf \left(f \Big|_{[t_{i-1},t_i]} \right)}{\sup \left(f \Big|_{[t_{i-1},t_i]} \right)} \right] (t_i - t_{i-1})$$

$$\leq \frac{1}{\delta^2} \sum_{i=1}^{N} \left[\sup \left(f \Big|_{[t_{i-1},t_i]} \right) - \inf \left(f \Big|_{[t_{i-1},t_i]} \right) \right] (t_i - t_{i-1})$$

Per Hypothese gibt es eine Zerlegung \mathcal{J} von [a, b], für die gilt

$$\sum_{i=1}^{N} \left[\sup \left(f|_{[t_{i-1},t_i]} \right) - \inf \left(f|_{[t_{i-1},t_i]} \right) \right] < \epsilon \delta^2.$$

Dies ist genau die gewünschte Zerlegung

(c) Falsch. Sei f und g Treppefunktionen, $f, g : [0, 1] \to \mathbb{R}$:

$$f(x) = \begin{cases} 1 & 0 \le x \le 0.5 \\ 0 & \text{sonst.} \end{cases}$$
$$g(x) = \begin{cases} 1 & 0.5 < x \le 1 \\ 0 & \text{sonst.} \end{cases}$$

Es gilt $(f \cdot g)(x) = 0$, und daher $\int_0^1 (f \cdot g)(x) dx = 0$. Jetzt sei $\mathcal{J} = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$. Es gilt

$$\mathcal{U}_{\mathcal{J}}(f) \ge \sup \left(f |_{\left[\frac{1}{4}, \frac{1}{2}\right]} \right) \left(\frac{1}{2} - \frac{1}{4} \right)$$

$$= 1(1/4) = 1/4$$

$$\mathcal{U}_{\mathcal{J}}(g) \ge \sup \left(g |_{\left[\frac{1}{2}, \frac{3}{4}\right]} \right) \left(\frac{3}{4} - \frac{1}{2} \right)$$

$$= 1(1/4) = 1/4$$

Also $\int_0^1 f(x) dx > \frac{1}{4} > 0$, und gleich für $\int_0^1 g(x) dx$. Daher ist

$$\int_{0}^{1} (f \cdot g)(x) \, \mathrm{d}x = 0 \neq \int_{0}^{1} f(x) \, \mathrm{d}x \cdot \int_{0}^{1} g(x) \, \mathrm{d}x. \quad \Box$$

Aufgabe 47. (Wanderdüne) Man gebe eine Folge von nicht-negativen Funktionen $f_n:[0,1]\to\mathbb{R}$ an, sodass

- $\lim_{n\to\infty} \int_0^1 f_n(x) \, \mathrm{d}x = 0$,
- $f_n \not\to 0$ für jedes $x \in [0, 1]$.

 $Beweis.\ \mathrm{Sei}$

$$g_{a,b}(x) = \begin{cases} \sin\left(\pi \frac{x-a}{b-a}\right) & x \in [a,b] \cap [0,1] \\ 0 & \text{sonst.} \end{cases}$$

Es gilt

$$\int_0^1 g_{a,b}(x) dx \le \int_a^b g_{a,b}(x) dx$$

$$= \int_a^b \sin\left(\pi \frac{x-a}{b-a}\right) dx$$

$$= \frac{2(b-a)}{\pi}$$

CHAPTER FOUR

Vertiefung Analysis

Ich habe die Übungen für Vertiefung Analysis mit Lucas Wollman gemacht.

4.1 Blatt 1 (18/21)

Aufgabe 48. Seien X, Y nichtleere Mengen, $f: X \to Y$ eine Abbildung und \mathcal{A}, \mathcal{S} σ -Algebren über X sowie B eine σ -Algebra über Y. Beweisen oder widerlegen Sie:

- (a) $A \cup S$ ist eine σ -Algebra über X.
- (b) $A \cap S$ ist eine σ -Algebra über X.
- (c) $A \setminus S$ ist eine σ -Algebra über X.
- (d) $f^{-1}(\mathcal{B}) = \{f^{-1}(B) \subseteq X | B \in \mathcal{B}\}$ ist eine σ -Algebra über X.
- (e) $f(A) = \{ f(A) \subseteq Y | A \in A \}$ ist eine σ -Algebra über Y.

Beweis. (a) Falsch. Sei

$$X = \{a, b, c\}$$

$$\mathcal{A} = \{\varnothing, \{a, b\}, \{c\}, X\}$$

$$\mathcal{S} = \{\varnothing, \{a\}, \{b, c\}, X\}$$

Dann ist

$$A \cup S = \{\emptyset, \{a\}, \{a,b\}, \{c\}, \{b,c\}, X\}.$$

keine σ -Algebra, weil

$$\{a,b\} \cap \{b,c\} = \{b\} \not\in \mathcal{A} \cup \mathcal{S}.$$

(b) Richtig.

$$(1) \ X \in \mathcal{A}, X \in \mathcal{S} \implies X \in \mathcal{A} \cap \mathcal{S}$$

- (2) Sei $A \in \mathcal{A} \cap \mathcal{S}$. Dann $A \in \mathcal{A}$ und $A \in \mathcal{S}$. Daraus folgt: $A^c \in \mathcal{A}$ und $A^c \in \mathcal{S}$. Deswegen ist $A^c \in \mathcal{A} \cap \mathcal{S}$.
- (3) Sei $(A_i), A_i \in \mathcal{A} \cap \mathcal{S}$. Dann gilt:

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$$

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{S}$$

Daraus folgt

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{A} \cap \mathcal{S}.$$

- (c) Falsch. $X \in \mathcal{A}, X \in \mathcal{S} \implies X \notin \mathcal{A} \backslash \mathcal{S}$
- (d) Richtig.
 - (1) $f^{-1}(Y) = X \in f^{-1}\mathcal{B}$
 - (2) Sei $A = f^{-1}(B)$

$$X - A = f^{-1}(\underbrace{Y - B}_{\in \mathcal{B}}) \in f^{-1}(\mathcal{B}).$$

(3) Es folgt aus

$$\bigcup_{j\in\mathbb{N}} f^{-1}(B_j) = f^{-1}\left(\bigcup_{j\in\mathbb{N}} B_j\right).$$

(e) Falsch. Sei $a \in Y$ und f die konstante Abbildung $f(x) = a \forall x \in X$. Dann gilt

$$f(\mathcal{A}) = \{\varnothing, \{a\}\}\$$

was keine σ -Algebra ist, solange $Y \neq \{a\}$.

Aufgabe 49. (a) Sei $X := \mathbb{Q}$ und $\mathcal{A}_{\sigma}(M)$ die von $M := \{(a, b] \cap Q | a, b \in \mathbb{Q}, a < b\}$ erzeugte σ -Algebra. Zeigen Sie, dass $\mathcal{A}_{\sigma}(M) = \mathcal{P}(\mathbb{Q})$ gilt.

(b) Seien X,Y nichtleere Mengen und $f:X\to Y$ eine Abbildung. Zeigen Sie: Für $\mathcal{M}\subseteq\mathcal{P}(Y)$ gilt

$$f^{-1}(A_{\sigma}(\mathcal{M})) = \mathcal{A}_{\sigma}(f^{-1}(\mathcal{M})).$$

Das Urbild von $\mathcal M$ ist hierbei analog zum Urbild einer σ -Algebra definiert durch

$$f^{-1}(\mathcal{M}) := \left\{ f^{-1}(B) \subseteq X | B \in \mathcal{M} \right\}.$$

71

Beweis. (a) $\{q\} \in \mathcal{A}_{\sigma}(\mathcal{M}) \forall q \in \mathbb{Q}$, weil

$$\{q\} = \bigcap_{n=1}^{\infty} \left(q - \frac{1}{n}, q\right] \in \mathcal{A}_{\sigma}(M).$$

Weil \mathbb{Q} abzählbar ist, sind alle Teilmenge $A \in \mathcal{P}(\mathbb{Q})$ abzählbar, daher

Es sollte den Schnitt mit
$$\mathbb{Q}$$
 geben, also $\left(q-\frac{1}{n},q\right]\cap\mathbb{Q}$ statt $\left(q-\frac{1}{n},q\right]$

$$\mathcal{P}(\mathbb{Q}) \subseteq \mathcal{A}_{\sigma}(\{\{q\} \mid q \in \mathbb{Q}\}) \subseteq \mathcal{A}_{\sigma}(M)$$

Es ist klar, dass

$$\mathcal{A}_{\sigma}(M) \subseteq \mathcal{P}(\mathbb{Q}).$$

(b) Sei $P = \{A | A \text{ ist eine } \sigma\text{-Algebra}, \mathcal{M} \subseteq A\}$. Per Definition ist $\mathcal{A}_{\sigma}(\mathcal{M}) = \bigcap_{A \in P} A$. Dann ist es zu beweisen:

$$f^{-1}\left(\bigcap_{\mathcal{A}\in P}\mathcal{A}\right)=\bigcap_{\mathcal{A}\in P}f^{-1}(\mathcal{A})\stackrel{?}{=}\mathcal{A}_{\sigma}\left(f^{-1}\left(\mathcal{M}\right)\right).$$

Jeder σ -Algebra $f^{-1}(\mathcal{A})$ enthält $f^{-1}(\mathcal{M})$. Daraus folgt, dass

$$\mathcal{A}_{\sigma}\left(f^{-1}\left(\mathcal{M}\right)\right)\subseteq\bigcap_{\mathcal{A}\in\mathcal{P}}f^{-1}(\mathcal{A}).$$

Jetzt betrachten wir

$$\mathcal{M}' := f_* \left(\mathcal{A}_\sigma \left(f^{-1}(\mathcal{M}) \right) \right).$$

Es ist schon in der Vorlesung bewiesen, dass \mathcal{M}' eine σ -Algebra ist, die \mathcal{M} und daher auch $\mathcal{A}_{\sigma}(\mathcal{M})$ enthält. Weil $f^{-1}(\mathcal{M}')$ eine σ -Algebra ist, ist $f^{-1}(\mathcal{M}') = \mathcal{A}_{\sigma}(f^{-1}(\mathcal{M}))$. Daraus folgt:

$$f^{-1}\left(\mathcal{A}_{\sigma}\left(\mathcal{M}\right)\right)\subseteq f^{-1}\left(\mathcal{M}'\right)=\mathcal{A}_{\sigma}\left(f^{-1}\left(\mathcal{M}\right)\right).$$

Aufgabe 50. Wir betrachten \mathbb{R}^n mit der Standardmetrik, also ausgestattet mit der Euklidischen Norm $\|\cdot\|$. Für re>0 und $x\in\mathbb{R}^n$ sei $B_r(x):=\{y\in\mathbb{R}^n|\|x-y\|< r\}$. Definiere außerdem $B_\mathbb{Q}:=\{B_r(q)\subseteq\mathbb{R}^n|\mathbb{Q}\ni r>0, q\in\mathbb{Q}^n\}$ und $B_\mathbb{R}:=\{B_r(x)\subseteq\mathbb{R}^n|r>0, x\in\mathbb{R}^n\}$

(a) Zeigen Sie: Für jeder offene Menge $A \subseteq \mathbb{R}^n$ gilt $A = \bigcup_{B_r(q) \in M} B_r(q)$ mit

$$M := \{B_r(q) \in B_{\mathbb{Q}} | B_r(q) \subseteq A\}.$$

(b) Folgern Sie nun $\mathcal{A}_{\sigma}(B_{\mathbb{Q}}) = \mathcal{A}_{\sigma}(B_{\mathbb{R}}) = \mathcal{B}^n$

Beweis. (a) Es genügt zu beweisen, dass jeder offene Ball eine Vereinigung von \mathbb{Q} -Bälle sind.

$$f^{-1}\left(\bigcap_{A\in P}\mathcal{A}\right)=\bigcap_{A\in P}f^{-1}(\mathcal{A})$$

stimmt nicht. Es gilt zu sagen, weil $\mathcal{M} \subseteq \mathcal{A}_{\sigma}(\mathcal{M})$, gilt auch

$$f^{-1}(\mathcal{M}) \subseteq f^{-1} \left(\mathcal{A}_{\sigma} \left(\mathcal{M} \right) \right)$$
$$\mathcal{A}_{\sigma}(f^{-1}(\mathcal{M})) \subseteq \mathcal{A}_{\sigma} \left(f^{-1} \left(\mathcal{A}_{\sigma} \left(\mathcal{M} \right) \right) \right)$$

Sei $B_p(x), p \in \mathbb{R}, x \in \mathbb{R}^n$ eine offene Ball. Sei auch $(a_i), a_i \in \mathbb{Q}^n$ eine Folge, für die gilt

$$||x - a_i|| < r \forall i$$
$$\lim_{i \to \infty} a_i = x$$

Sei dann

$$M_i = B_{r-\|x-a_i\|}(a_i) \in B_{\mathbb{Q}}.$$

Es ist klar, dass jeder $M_i \subseteq B_r(x)$ ist. Wir beweisen auch, dass $\bigcup_{i=1}^{\infty} M_i = B_r(x)$.

Sei $y \in B_r(x)$. Es gilt $||y - x|| = r_0 < r$. Sei $\xi = r - r_0$. Weil $\lim_{n \to \infty} a_n = x$, gibt es ein Zahl a_k , wofür gilt

$$||a_k - x|| < \frac{\xi}{2}.$$

(Eigentlich existiert unendlich viel, aber die brauchen wir nicht). Es gilt dann

$$||y - a_k|| \le ||y - x|| + ||x - a_k|| \le r_0 + \frac{\xi}{2} < r - \frac{\xi}{2} < r - ||x - a_i||,$$

also $y \in B_{r-\|x-a_k\|}(a_k)$. Jetzt ist die Ergebnis klar: Weil jeder offene Menge eine Vereinigung von offene Bälle ist, gilt

$$A = \bigcup B_p(x) = \bigcup \bigcup B_r(q),$$

wobei $p \in \mathbb{R}, x \in \mathbb{R}^n$ und $r \in \mathbb{Q}, q \in \mathbb{Q}^n$

(b) $\mathcal{A}_{\sigma}(B_{\mathbb{R}}) = \mathcal{B}^n$ per Definition.

Aus
$$B_{\mathbb{O}} \subseteq B_{\mathbb{R}}$$
 folgt $\mathcal{A}_{\sigma}(B_{\mathbb{O}}) \subseteq \mathcal{A}_{\sigma}(B_{\mathbb{R}})$

Aus (a) folgt, dass

$$B_{\mathbb{R}} \subseteq \mathcal{A}_{\sigma}(B_{\mathbb{O}})$$
.

Dann

$$\mathcal{A}_{\sigma}\left(B_{\mathbb{R}}\right) \subseteq \mathcal{A}_{\sigma}\left(\mathcal{A}_{\sigma}\left(B_{\mathbb{Q}}\right)\right) = \mathcal{A}_{\sigma}\left(B_{\mathbb{Q}}\right).$$

Deswegen

$$\mathcal{A}_{\sigma}(B_{\mathbb{Q}}) = \mathcal{A}_{\sigma}(B_{\mathbb{R}}) = \mathcal{B}^{n}.$$

Aufgabe 51. Sei X eine Menge, \mathcal{A} eine σ -Algebra über X und $\mu: A \to [0, \infty]$ eine Mengenfunktion.

- (a) Sei μ σ -subadditiv, $B \in \mathcal{A}$ und definiere $\mu_B : \mathcal{A} \to [0, \infty], \mu_B(A) := \mu(A \cap B)$. Zeigen Sie, dass μ_B wohldefiniert und eine σ -subadditive Mengenfunktion ist.
- (b) μ erfülle die beiden Eigenschaften

Leider ist der Beweis hier falsch, weil es sein kann, dass $r - \|x - a_i\| \notin \mathbb{Q}$. Man muss eine durch $r - \|x - a_i\|$ beschränkte Folge betrachten.

73

- (1) $\mu(A \cup B) = \mu(A) + \mu(B)$ für alle $A, B \in \mathcal{A}$ mit $A \cap B = \emptyset$.
- (2) $\lim_{n\to\infty} \mu(A_n) = \mu(\bigcup_{n=1}^{\infty} A_n)$ für alle $(A_n) \subseteq A$ mit $A_1 \subseteq A_2 \subseteq \dots$

Zeigen Sie, dass μ σ -additiv ist.

Beweis. (a) Weil $B \in \mathcal{A}$, ist $B \cap A \in \mathcal{A} \forall A \in \mathcal{A}$. μ_B ist daher wohldefiniert.

Sei $(A_j), A_j \in \mathcal{A}, \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$. Sei auch $B_j = A_j \cap B \in \mathcal{A}$. Dann gilt

$$\mu_B\left(\bigcup_{j=1}^{\infty} A_j\right) = \mu\left(B \cap \bigcup_{j=1}^{\infty} A_j\right) = \mu\left(\bigcup_{j=1}^{\infty} B_j\right) \le \sum_{j=1}^{\infty} \mu(B_j) = \sum_{j=1}^{\infty} \mu_B(A_j)$$

(b) Sei $(A_j), A_j \in \mathcal{A}$ paarweise disjunkter Menge. Dann definiere $B_j = \bigcup_{i=1}^{j} A_j$. Für k endlich ist es klar,

$$\mu(B_k) = \sum_{i=1}^k A_i.$$

Weil $B_i \subseteq B_{i+1}$, (2) gilt auch:

$$\lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \sum_{i=1}^n A_i = \sum_{i=1}^\infty A_i = \mu\left(\bigcup_{n=1}^\infty B_n\right) = \mu\left(\bigcup_{n=1}^\infty A_n\right).$$

4.2 Blatt 2 (16.5/20)

Aufgabe 52. (Maß über $\mathcal{P}(\mathbb{N})$) Für $\lambda \in \mathbb{R}$ definiere

$$\mu_{\lambda}: \mathcal{P}(\mathbb{N}) \to \overline{\mathbb{R}}, \mu_{\lambda}(A) := \sum_{k \in A} \exp(\lambda) \frac{\lambda^k}{k!}.$$

Bestimmen Sie jeweils alle $\lambda \in \mathbb{R}$, für die

- (a) $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_{\lambda})$ ein Maßraum ist.
- (b) μ_{λ} ein endliches Maß ist.
- (c) μ_{λ} ein Wahrscheinlichkeitsmaß ist.

Beweis. (a) μ_{λ} ist auf jedem Fall für endliche Teilmengen von \mathbb{N} wohldefiniert. Weil $\sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$ konvergiert (absolut) für alle $\lambda \in \mathbb{R}$, konvergiert absolut alle Teilfolge.

 μ_{λ} ist auch trivialerweise additiv, weil es eine Summe ist.

(b) Das passt für $\lambda \in \mathbb{R}$, weil

$$\sum_{k=1}^{\infty} \exp(\lambda) \frac{\lambda^k}{k!} = \exp(\lambda) (\exp(\lambda) - 1) < \infty.$$

(c) Wir brauchen

$$\exp(\lambda) (\exp(\lambda) - 1) = 1.$$

oder

$$\exp(\lambda) = \frac{1}{2}(1 \pm \sqrt{5}).$$

Weil $\exp(\lambda), \lambda \in \mathbb{R}$ immer positiv ist, gibt es nur eine reelle Lösung:

$$\lambda = \ln \left[\frac{1}{2} \left(1 + \sqrt{5} \right) \right].$$

Aufgabe 53. (vollständiger Maßraum) Sei X eine nichtleere Menge, (X, \mathcal{A}, μ) ein Maßraum und $B \in \mathcal{A}$. Definiere $\mu_B : \mathcal{A} \to [0, \infty], \, \mu_B(A) := \mu(A \cap B)$.

- (a) Zeigen Sie, dass μ_B ein Maß über \mathcal{A} ist.
- (b) Beweisen oder widerlegen Sie: Ist (X, \mathcal{A}, μ_B) ein vollständiger Maßraum, dann auch (X, \mathcal{A}, μ) .
- (c) Beweisen oder widerlegen Sie: Ist (X, \mathcal{A}, μ) ein vollständiger Maßraum, dann auch (X, \mathcal{A}, μ_B) .

Beweis. (a) In der Übungsblatt 1. haben wir schon bewiesen, dass es wohldefiniert und eine Mengenfunktion ist.

Sei dann $(A_j), A_j \in \mathcal{A}$ eine Folge disjunkte Menge. Es gilt

$$\mu_{B}\left(\bigcup_{i\in\mathbb{N}}A_{i}\right) = \mu\left(B\cap\bigcup_{i\in\mathbb{N}}A_{i}\right)$$

$$= \mu\left(\bigcup_{i\in\mathbb{N}}(B\cap A_{i})\right) = \sum_{i\in\mathbb{N}}\mu(B\cap A_{i}) = \sum_{i\in\mathbb{N}}\mu_{B}(A_{i})$$

$$\sigma\text{-additivität von }\mu$$

 μ_B ist dann σ -additiv, und daher Maß.

(b) Ja. Sei $\mu(A) = 0$. Weil $A \cap B \subseteq A$ ist, gilt auch $\mu_B(A) = 0$. Weil (X, \mathcal{A}, μ_B) vollständig ist, ist jede Teilmenge $\mathcal{A} \ni A' \subseteq A$. (X, \mathcal{A}, μ) ist dann vollständig.

75

(c) Nein. Sei $X = \{a, b, c\}$, $B = \{a\}$, $A = \{\emptyset, \{a\}, \{b, c\}\}$. Sei auch $\mu(\{b, c\}) \neq 0$, $\mu(X) \neq 0$, $\mu(\{a\}) \neq 0$. Sei außerdem $\mu_B(A) = \mu(\{a\} \cap A\}$ Dann ist (X, A, μ) vollständig (es gibt keine Nullmengen), aber $\mu_B(\{b, c\}) = \mu(\{a\} \cap \{b, c\}) = \mu(\emptyset) = 0$. Deswegen ist $\{b, c\}$ eine Nullmenge in (X, A, μ_B) , aber $\{b\} \subseteq \{b, c\} \notin A$. Das ist keine σ -Algebra, weil $x \notin \mathcal{A}$.

Aufgabe 54. (a) Seien $K_1, K_2 \subseteq \mathcal{P}(\mathbb{R}^n)$ mit $\emptyset \in K_i$ für i = 1, 2 und $\nu_i : K_i \to [0, \infty]$ mit $\nu_i(\emptyset) = 0$ für i = 1, 2. Bezeichne nun mit μ_i^* die analog zu Satz 1.37 von ν_i induzierten äußeren Maße. Es existiere ein $\alpha > 0$, so dass

$$\forall I_1 \in K_1 \exists I_2 \in K_2 : I_1 \subseteq I_2 \text{ und } \alpha \nu_2(I_2) \le \nu_1(I_1).$$

Zeigen Sie: Für alle $A \subseteq \mathbb{R}^n$ gilt $\alpha \mu_2^*(A) \leq \mu_1^*(A)$.

(b) Vervollständigen Sie den Beweis zu Satz 1.55: Zeigen Sie, dass

$$\lambda_a^*(A) \leq \lambda_l^*(A) \leq \lambda_n^*(A)$$
 und $\lambda_a^*(A) \leq \lambda_r^*(A) \leq \lambda_n^*(A)$

für alle $A \subseteq \mathbb{R}^n$ gilt.

Beweis. (a) Für alle $\epsilon > 0$ gibt es eine Überdeckung $(A_{1,j}), A_{1,j} \in K_1$, für die gilt

$$\bigcup_{k=1}^{\infty} A_{1,k} \supseteq A$$

$$\sum_{k=1}^{\infty} \nu_1(A_{1,k}) \le \mu_1^*(A) + \epsilon$$

Es gibt auch per Hypothese eine Folge $(A_{2,k}), A_{2,k} \in K_2, A_{2,k} \supseteq A_{1,k}, \alpha \nu_2(A_{2,k}) \leq \nu_2(A_{1,k})$. Dann gilt

$$\bigcup_{k=1}^{\infty} A_{2,k} \supseteq A$$

$$\sum_{k=1}^{\infty} \alpha \nu_2(A_{2,k}) \le \sum_{k=1}^{\infty} \nu_1(A_{2,k}) < \mu_1^*(A) + \epsilon$$

Weil das für alle ϵ gilt, ist $\alpha \mu_2^*(A) \leq \mu_1^*(A)$

(b) Es existiert, für jede Elemente $(a,b) = J \in \mathbb{J}(n)$, ein Element $[a,b) \in \mathbb{J}_l(n) \supseteq (a,b)$, und es gilt $\operatorname{vol}_n([a,b)) \leq \operatorname{vol}_n((a,b))$. Für jede Elemente $[a,b) \in \mathbb{J}_l$ existiert auch $\overline{\mathbb{J}}(n) \ni [a,b] \supseteq [a,b)$, für die gilt $\operatorname{vol}_n([a,b]) \leq \operatorname{vol}_n([a,b))$. Daraus folgt die Behauptung:

$$\lambda_a^*(A) \le \lambda_l^*(A) \le \lambda_n^*(A)$$
 für alle $A \subseteq \mathbb{R}^n$.

Ähnlich folgt die andere Teil. Man muss nur (a, b] statt [a, b) einsetzen, und alle Aussagen bleiben richtig.

Aufgabe 55. Zeigen Sie folgende Aussagen über das äußere Lebesgue-Maß:

- (a) Es gilt $\lambda_n^*(A) = 0$ für alle abzählbaren Mengen $A \subseteq \mathbb{R}^n$.
- (b) Seien $A, B \subseteq \mathbb{R}^n$ mit $\lambda_n^*(B) = 0$. Dann gilt $\lambda_n^*(A \cup B) = \lambda_n^*(A)$.
- (c) Es ist $\lambda_1^*([0,1]\backslash \mathbb{Q}) = 1$.
- (d) Es ist $\lambda_2^* (\mathbb{R} \times \{0\}) = 0$

Beweis. (a) Sei $A = \{x_1, x_2, \dots\}$. Sei auch

$$M_{\epsilon} = \left\{ \left(x_i - \frac{\epsilon}{2^{i+1}}, x_i + \frac{\epsilon}{2^{i+1}} \right) | i \in \mathbb{N} \right\}.$$

Für jede $\epsilon > 0$ ist M_{ϵ} eine Überdeckung von A. Es gilt auch:

$$\sum_{B \in M_{\epsilon}} \operatorname{vol}_{n}(B) = \sum_{i=1}^{\infty} \operatorname{vol}_{n} \left(\left(x_{i} - \frac{\epsilon}{2^{i+1}}, x_{i} + \frac{\epsilon}{2^{i+1}} \right) \right)$$

$$= \sum_{i=1}^{\infty} \frac{\epsilon}{2^{i}}$$

$$= \epsilon$$

Weil dann $\lambda_n^*(A) \le \epsilon \forall \epsilon > 0$, ist $\lambda_n^*(A) = 0$.

(b) Weil äußere Maße σ -subadditiv sind, gilt

$$\lambda_n^*(A \cup B) \le \lambda_n^*(A) + \lambda_n^*(B) = \lambda_n^*(A).$$

Weil $A \subseteq A \cup B$, gilt $\lambda_n^*(A) \le \lambda_n^*(A \cup B)$. Daraus folgt:

$$\lambda_n^*(A \cup B) = \lambda_n^*(A).$$

- (c) Weil $\{[0,1]\}$ eine Überdeckung von $[0,1]\setminus\mathbb{Q}$ ist, ist $\lambda_1^*([0,1]\setminus\mathbb{Q}) \leq 1$. Wegen subadditivität gilt $\lambda_1^*([0,1]) = 1 \leq \lambda_1^*([0,1]) + \lambda_1^*(\mathbb{Q} \cap [0,1]) \leq \lambda_1^*([0,1]) + \lambda_1^*(\mathbb{Q})$. Weil \mathbb{Q} abzählbar ist, gilt $\lambda_1^*(\mathbb{Q}) = 0$ und daraus folgt $1 \leq \lambda_1^*([0,1])$. Daher gilt $\lambda_1^*([0,1]) = 1$
- (d) Sei für jeder $\epsilon > 0$ M_{ϵ} die Überdeckung.

$$M_{\epsilon}=\left\{\left(\frac{n}{2}-1,\frac{n}{2}\right)\times\left(-\frac{\epsilon}{2^{n}},\frac{\epsilon}{2^{n}}\right)|n\in\mathbb{N}\right\}\bigcup\left\{\left(-\frac{n}{2},-\frac{n}{2}+1\right)\times\left(-\frac{\epsilon}{2^{n}},\frac{\epsilon}{2^{n}}\right)|n\in\mathbb{N}\right\}$$

Es gilt $\sum_{A \in M_{\epsilon}} \operatorname{vol}_2(A) = 2\epsilon$. Weil M_{ϵ} für alle $\epsilon > 0$ eine Überdeckung von $\mathbb{R} \times \{0\}$ ist, gilt $\lambda_2^* (\mathbb{R} \times \{0\}) = 0$.

4.3. BLATT 3 77

4.3 Blatt 3

Aufgabe 56. Sei λ_n^* das äußere Lebesgue-Maß und $A \subseteq \mathbb{R}^n$. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- (a) A ist λ_n^* messbar.
- (b) Es gilt $\lambda_n^* (A \cap Q) + \lambda_n^* (A^c \cap Q) = \lambda_n^* (Q)$ für alle $Q \in \mathbb{J}(n)$.

Beweis.

Definition 4.1. Sei μ^* ein äußeres Maß auf X. Eine Menge $A \subseteq X$ heißt μ^* -messbar, falls gilt

$$\mu^*(D) = \mu^*(A \cap D) + \mu^*(A^c \cap D) \qquad \forall D \subseteq X.$$

Weil alle Teilmengen $I \in \mathbb{J}(n)$ solche Teilmengen $D \subseteq X$ sind, gilt natürlich (a) \Longrightarrow (b). Jetzt bleibt (b) \Longrightarrow (a) zu zeigen. Es gibt, für jede $\epsilon > 0$, eine abzählbare Überdeckung $M = \{Q_i, i \in \mathbb{N}\} \subseteq \mathbb{J}$ aus offene Intervale von D, für die gilt $\sum_{i=1}^{\infty} \lambda_n^*(Q_i) = \lambda_n^*(D) + \epsilon$. Für jede $Q_i \in M$ gilt

$$\lambda_n^* (A \cap Q_i) + \lambda_n^* (A^c \cap Q_i) = \lambda_n^* (Q_i).$$

Außerdem gilt

$$\sum_{i=1}^{\infty} \lambda_n^* (A \cap Q_i) + \sum_{i=1}^{\infty} \lambda_n^* (A^c \cap Q_i) = \sum_{i=1}^{\infty} \lambda_n^* (Q_i) = \lambda_n^* (D) + \epsilon.$$

Weil $A \cap Q_i$ bzw. $A^c \cap Q_i$ eine abzählbare Überdeckung von A bzw. A^c ist, gilt für $Q = \bigcup_{i=1}^{\infty} Q_i$:

$$\lambda_n^*(A \cap D) \le \lambda_n^*(A \cap Q) \le \sum_{i=1}^{\infty} \lambda_n^*(A \cap Q_i),$$

und ähnlich

$$\lambda_n^*(A^c \cap D) \le \lambda_n^*(A^c \cap Q) \le \sum_{i=1}^{\infty} \lambda_n^*(A^C \cap Q_i).$$

Daraus folgt

$$\lambda_n^*(A \cap D) + \lambda_n^*(A^c \cap D) \le \sum_{i=1}^{\infty} \lambda_n^*(A \cap Q_i) + \sum_{i=1}^{\infty} \lambda_n^*(A^c \cap Q_i)$$
$$= \sum_{i=1}^{\infty} \lambda_n^*(Q_i) \le \lambda_n^*(D) + \epsilon$$

Weil $\epsilon >$ beliebig war, ist

$$\lambda_n^*(A \cap D) + \lambda_n^*(A^c \cap D) \le \lambda_n^*(D).$$

Aufgabe 57. Sei (X, \mathcal{A}, ν) ein Maßraum und μ^* das von (\mathcal{A}, ν) induzierte äußere Maß auf X, d.h. in Satz 1.37 ist $K = \mathcal{A}$ und $\nu = \nu$. Nach Satz 1.59 induziert μ^* ein Maß $\mu := \mu^* | A(\mu^*)$ auf der σ -Algebra $\mathcal{A}(\mu^*)$.

- (a) Zeigen Sie, dass μ eine sogenannte Erweiterung von ν ist, also dass
 - (1) $\mathcal{A} \subseteq \mathcal{A}(\mu^*)$ und
 - (2) $\mu(A) = \nu(A)$ für alle $A \in \mathcal{A}$ gilt.
- (b) Gilt sogar $\mu = \nu$, also $\mathcal{A} = \mathcal{A}(\mu^*)$?
- Beweis. (a) Wir beweisen zuerst $\mu(A) = \nu(A)$ für alle $A \in \mathcal{A}$. Es genugt zu beweisen, dass $\nu(A) = \mu^*(A)$. Es ist klar, dass $\{A\}$ eine abzählbare Überdeckung von A ist, und daher $\mu^*(A) \leq \nu(A)$. Wir betrachten dann eine abzählbare Überdeckung $(Q_i), Q_i \in \mathcal{A}, \bigcup_{i=1}^{\infty} Q_i \supseteq A$. $\mu^*(A)$ ist die Infinum von solchen Folgen von Mengen. Es gilt wegen der Monotonie von μ^* und der σ -Additivität von ν : $\sum_{i=1}^{\infty} \nu(Q_i) \geq \nu(A)$. Daraus folgt

$$\mu(A) = \nu(A)$$
 für alle $A \in \mathcal{A}$.

Jetzt beweisen wir (1). Sei $A \in \mathcal{A}$. Wir müssen zeigen, das für alle $D \subseteq X$, gilt

$$\mu^*(A \cap D) + \mu^*(A^c \cap D) = \mu^*(D).$$

Sei $(Q_i), Q_i \in \mathcal{A}$ eine abzählbare Überdeckung von D, für die gilt $\sum_{i=1}^{\infty} \nu(Q_i) \leq \mu^*(D) + \epsilon, \epsilon > 0$ beliebig. Betrachten Sie

$$\mu^*(A \cap Q_i) + \mu^*(A^c \cap Q_i).$$

Weil sowohl A als auch Q_i in \mathcal{A} sind, gilt

$$\mu^*(A \cap Q_i) + \mu^*(A^c \cap Q_i) = \mu^*(Q_i).$$

Daraus folgt

$$\mu^*(A \cap D) + \mu^*(A^c \cap D) \le \mu^*(A \cap Q) + \mu^*(A^c \cap Q)$$

$$\le \sum_{i=1}^{\infty} (\mu^*(A \cap Q_i) + \mu^*(A^c \cap Q_i))$$

$$= \sum_{i=1}^{\infty} \mu^*(Q_i) \le \mu^*(D) + \epsilon$$

Weil $\epsilon > 0$ beliebig war, gilt

$$\mu^*(A \cap D) + \mu^*(A^c \cap D) < \mu^*(D),$$

also A ist messbar.

(b) Nein. Sei zum Beispiel $\mathcal{A} = \mathcal{A}_{\sigma}(\mathbb{J}(n))$, und $\nu : \mathcal{A} \to [0, \infty]$ das eingeschränkte Lebesgue-Maß. Dann ist $\mu^* = \lambda_n^*$, und daher μ das Lebesgue-Maß. Es gilt aber

$$\{q\} \not\in \mathcal{A}_{\sigma}\left(\mathbb{J}(n)\right), \qquad q \in \mathbb{R},$$

obwohl jede Punktmenge λ_n^* messbar ist.

4.4. BLATT 4 79

4.4 Blatt 4

Aufgabe 58. (a) Seien $(X, \mathcal{A}), (Y, \mathcal{B})$ messbare Räume, $C \in A \otimes B$ und $a \in X$. Zeigen Sie, dass

$$\{y \in Y | (a, y) \in C\} \in \mathcal{B}.$$

- (b) Sei $K \subseteq \mathbb{R}^m$ kompakt und $N \subseteq \mathbb{R}^n$ eine λ_n -Nullmenge. Zeigen Sie, dass dann $M \times N$ eine λ_{m+n} -Nullmenge ist.
- (c) Sei $M \subseteq \mathbb{R}^m$ eine λ_m -Nullmenge und $N \subseteq \mathbb{R}^n$ eine λ_n -Nullmenge. Zeigen Sie, dass dann $M \times N$ eine λ_{m+n} -Nullmenge ist.
- (d) Zeigen Sie Bemerkung 1.71, also dass $\mathcal{L}(m) \otimes \mathcal{L}(n) \subsetneq \mathcal{L}(m+n)$. Hinweis: Sie dürfen hierfür annehmen, dass $B \notin \mathcal{L}(n)$ tatsächlich existiert.
- Beweis. (a) Wir wissen, dass C eine abzählbare Vereinigung von Mengen $A_i \times B_i, \ A_i \in \mathcal{A}, \ B_i \in \mathcal{B}.$

Aufgabe 59. Sei $A \in \mathcal{L}(n)$. Beweisen oder widerlegen Sie:

(a) Es gilt

$$\lambda_n(A) = \inf \{ \lambda_n(K) | K \supseteq A, K \text{ kompakt} \}.$$

(b) Es gilt

$$\lambda_n(A) = \sup \{\lambda_n(O) | O \subseteq A, O \text{ offen} \}.$$

Beweis. (a) Falsch. Betrachten Sie $A=\mathbb{Q}$. Weil \mathbb{Q} nicht beschränkt ist, gibt es keine kompakte Mengen K mit $K\supseteq A$. Deswegen ist

$$0 = \lambda_n(\mathbb{Q}) \neq \inf \{\lambda_n(K) | K \supseteq A, K \text{ kompakt}\} = \infty.$$

Bemerkung

Erinnern Sie sich daran, dass wir $\inf(\emptyset) = \infty$ definieren. Sonst kann man $\lambda_n(\mathbb{R})$ betrachten.

(b) Wahr.

Einfürung in die Algebra

5.1 Blatt 1

Aufgabe 60. Sei $G := 2\mathbb{N}^* := \{2n|n \in \mathbb{N}^*\}$ die Menge der positiven geraden Zahlen. Wir nennen $a \in G$ zerlegbar, falls sich a als Produkt zweier Elemente aus G schreiben lässt. Ansonsten nennen wir a unzerlegbar. Beispielsweise sind 4 zerlegbar und 6 unzerlegbar. Zeigen Sie:

- (a) G ist multiplikativ abgeschlossen.
- (b) Jedes $a \in G$ lässt sich als Produkt unzerlegbarer Elemente aus G schreiben.
- (c) Selbst wenn man die Reihenfolge der Faktoren nicht berücksichtigt, so ist die Zerlegung nach (b) im Allgemeinen nicht eindeutig.

Beweis. (a) $2n \times 2n' = 4nn' = 2(nn')$

(b) Wir beweisen es per Induktion. Nehme an, dass jede Elemente 2n, n < k entweder unzerlegbar ist, oder als Produkt unzerlegbare Elemente aus G geschrieben werden kann. Für 2(1) = 2 ist es klar 2 ist unzerlegbar.

Sei
$$M_k \subseteq G = \{m \in G | \exists n \in G, mn = 2k\}$$

Entweder ist $M = \emptyset$, also k ist unzerlegbar, oder es existiert $m, n \in G, mn = 2k$. Weil m und n ein Produkt unzerlegbarer Elemente aus G sind, ist 2k auch ein Produkt unzerlegbarer Elemente.

(c) Gegenbeispiel:

$$G \ni 1020 = 30 \times 34 = 102 \times 10.$$

Aufgabe 61. In dieser Aufgabe stellen wir den Euklidischen Algorithmus zur Berechung des größten gemeinsamen Teilers vor. Seien hierzu zwei

natürliche Zahlen $a, b \in \mathbb{N}$ mit $b \neq 0$ vorgelegt. Wir setzen $r_0 := a, r_1 := b$ und rekursiv für alle $i \in \mathbb{N}^*$ mit $r_i \neq 0$.

 $r_{i+1} := \text{Rest von } r_{i-1} \text{ bei der Division durch } r_i$

(a) Zeigen Sie, dass es ein $n \ge 2$ mit $r_n = 0$ gibt.

Da die Rekursionsformel für i=n nicht mehr anwendbar ist, bricht die Folge (r_i) der Reste beim Index n ab. Daher gibt es nur genau einen Index $n \ge 2$ mit $r_n = 0$. Beweisen Sie nun:

- (b) Für alle $i \in \{1, 2, 3, ..., n\}$ gilt $ggT(a, b) = ggT(r_{i-1}, r_i)$.
- (c) Es ist $ggT(a,b) = r_{n-1}$.
- (d) Berechnen Sie ggT(210,45) mit Hilfe des Euklidschen Algorithmus.

$$r_{i-1} = qr_i + r_{i+1}$$
 $0 \le r_{i+1} < r_i$

per Definition. Weil $r_{i-1} < r_i$, ist die Folge monoton fallend. Da es endlich viele natürliche Zahlen k < b gibt, muss $r_n = 0$.

(b) Wir beweisen:

Beweis. (a)

$$qqT(r_{i-1}, r_i) = qqT(r_i, r_{i+1}).$$

Die gewünschte Ergebnisse folgt daraus per Induktion.

Es gilt $r_{i-1} - qr_i = r_{i+1}$. Dann folgt: $ggT(r_{i-1}, r_i)$ teilt r_{i-1} und r_i und daher auch $r_{i-1} - qr_i$. Deshalb ist $ggT(r_{i-1}, r_i)$ auch einen Teiler von $r_{i+1} \implies ggT(r_{i-1}, r_i) \le ggT(r_i, r_{i+1})$.

Weil $r_{i-1} = qr_i + r_{i+1}$, ist $ggT(r_i, r_{i+1})$ einen Teiler von r_i und r_{i+1} und daher auch von $qr_i + r_{i+1}$. Deshalb ist es auch einen Teiler von r_{i-1} , und $ggT(r_i, r_{i+1}) \leq ggT(r_{i-1}, r_i)$

(c) Es gilt

$$r_{n-2} = qr_{n-1} + \gamma_n$$

also r_{n-1} teilt r_{n-2} . Daraus folgt

$$ggT(r_{n-1}, r_{n-2}) = r_{n-1} = ggT(a, b).$$

(d)

$$210 = 4 \times 45 + 30$$
$$45 = 1 \times 30 + 15$$
$$30 = 2 \times 15 + 0$$
$$15$$
$$0$$
$$ggT(210, 45) = 15.$$

_ _ .

5.1. BLATT 1 83

Aufgabe 62. (Bonus Problem) Wir wissen von dem Lemma von Bezout, dass für jeder $x, y \in \mathbb{N}$ es $a, b \in \mathbb{Z}$ gibt, so dass

$$ax + by = ggT(x, y).$$

Zum Beispiel ist $-210 + 5 \times 45 = 15$. Kann man von das Euklidische Algorithmus die Zahlen a, b rechnen?

Beweis. Wir berechnen zuerst eine andere Beispiel

$$427 = 1 \times 264 + 163$$

$$264 = 1 \times 163 + 101$$

$$163 = 1 \times 101 + 62$$

$$101 = 1 \times 62 + 39$$

$$62 = 1 \times 39 + 23$$

$$39 = 1 \times 23 + 16$$

$$23 = 1 \times 16 + 7$$

$$16 = 2 \times 7 + 2$$

$$7 = 3 \times 2 + 1$$

$$2 = 1 \times 2 + 0$$

Wir kehren zurück:

$$7-1 = 3 \times 2$$

$$3 \times 16 = 6 \times 7 + 3 \times 2$$

$$= 6 \times 7 + (7-1)$$

$$= 7 \times 7 - 1$$

$$6 \times 16 = 14 \times 7 - 1$$

$$6 \times 16 + 1 = 14 \times 7$$

$$14 \times 23 = 14 \times 16 + 14 \times 7$$

$$= 14 \times 16 + (6 \times 16 + 1)$$

$$= 20 \times 16 + 1$$

In der letzte Gleichung bleibt ggT(427, 264) (1). Wir setzen immer wieder ein, bis zu wir eine Gleichung des Forms 427a + 264b = 1 haben

Aufgabe 63. Sei $k \in \mathbb{N}$ gegeben. Für welche Zahlen $\mathbb{N} \ni a, b < k$ braucht das Euklidische Algorithismus die meiste Schritte?

Beweis. Wir möchten, dass die Folge $r_n \to 0$ nicht so schnell.

$$13 = 1 \times 8 + 5$$

$$8 = 1 \times 5 + 3$$

$$5 = 1 \times 3 + 2$$

$$3 = 1 \times 2 + 1$$

$$2 = 1 \times 2 + 0$$

$$1$$

$$0$$

ist die Fibonacci Folge.

Aufgabe 64. Seien p und q zwei ungerade und aufeinanderfolgende Primzahlen, so dass also zwischen p und q keine weiteren Primzahlen existieren. Zeigen Sie, dass p+q ein Produkt von mindestens drei (nicht notwendig verschiedenen) Primzahlen ist.

Beweis. Sei obdA p < q. Weil p und q ungerade sind, ist p + q gerade, also $p + q = 2k, k \in \mathbb{N}$. Nehme an, dass p + q ein Produkt von zwei Primzahlen ist, also $k \in \mathbb{P}$. Dann gilt

$$p < k < q, \qquad k \in \mathbb{P},$$

ein Widerspruch. Deshalb ist $k \notin \mathbb{P}$ und k ist ein Produkt von mindestens zwei Primzahlen, also p+q ist ein Produkt von mindestens drei Primzahlen.

Aufgabe 65. Seien $n \in \mathbb{N}^*$ und $a \in \mathbb{Z}$. Zeigen Sie, dass es genau dann ein $x \in \mathbb{Z}$ mit $ax \equiv 1 \pmod{n}$ gibt, wenn gqT(a, n) = 1 gilt.

Beweis. $ax \equiv 1 \pmod{n} \iff ax - 1 = kn, k \in \mathbb{Z}$, also ax - kn = 1. Weil ggT(a, n) = 1, gibt es so zwei Zahlen a, -k, so dass ax - kn = 1 (Lemma von Bezout)

5.2 Blatt 2

Aufgabe 66. Sei G eine Gruppe mit neutralem Element 1. Für jedes Element $g \in G$ gelte $g^2 = 1$. Zeigen Sie, dass G dann abelsch ist.

Beweis.

Lemma 5.1. Sei $a, b \in G$. Dann gilt $(ab)^{-1} = b^{-1}a^{-1}$.

Beweis.

$$abb^{-1}a^{-1} = a(bb^{-1})a^{-1} = aa^{-1} = 1.$$

Es gilt, für jede $g \in G$, dass $g = g^{-1}$, weil gg = 1 (per Definition). Deswegen gilt

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba.$$

5.2. BLATT 2 85

Aufgabe 67. Sei K ein endlicher Körper mit $q \in \mathbb{N}^*$ Elementen.

(a) Zeigen Sie, dass es genau $\prod_{k=0}^{n-1} (q^n - q^k)$ geordnete Basen des K-Vektorraums K^n gibt. Unter einer geordneten Basis des K-Vektorraums K^n verstehen wir hierbei ein n-Tupel (b_1, \ldots, b_n) linear unabhängiger Vektoren $b_1, \ldots, b_n \in K^n$.

- (b) Nutzen Sie Teilaufgabe (a), um nachzuweisen, dass die Gruppe $GL_n(K)$ aus Beispiel 2.4 (d) die Ordnung $\prod_{k=0}^{n-1} (q^n q^k)$ besitzt.
- Beweis. (a) Wir versuchen, ein p-Tupel lineare unabhängig Vektoren zu finden. Ich zeige, dass es genau $\prod_{k=0}^{p-1} (q^n q^k)$ solche Vektoren gibt. Für p = n ist das natürlich die gewünschte Behauptung.

Für p=1 müssen wir n Elemente aus K finden. Es gibt q^n Möglichkeiten dafür. Jedoch ist $(0,0,\ldots,0)$ verboten. Deswegen gibt es genau q^n-1 Vektoren, die nicht $(0,0,\ldots,0)$ sind.

Jetzt nehmen wir an, dass es genau $\prod_{k=0}^{p-1} \left(q^n - q^k\right)$ Tupel von p lineare unabhängig Vektoren gibt (wenn man die Reihenfolge berücksichtig), für eine beliebige p < n. Sei v_1, v_2, \ldots, v_p ein solches p-Tupel. Wir möchten eine andere Vektor v_{p+1} finden, die lineare unabhängig von v_1, v_2, \ldots, v_p ist. Das bedeutet:

$$v_{p+1} \neq a_1 v_1 + a_2 v_2 + \dots + a_p v_p$$

für **alle** $a_1, a_2, \ldots, a_p \in K$. Es gibt p^q Kombinationen für (a_1, a_2, \ldots, a_p) . Weil v_1, v_2, \ldots, v_p linear unabhängig sind, gilt für jede $(a_1, a_2, \ldots, a_p) \neq (a'_1, a'_2, \ldots, a'_p)$ auch $a_1v_1 + \cdots + a_pv_p \neq a'_1v_1 + \cdots + a'_pv_p \cdots + a'_pv_p$. Deswegen gibt es für jede v_1, v_2, \ldots, v_p genau $q^n - q^p$ Möglichkeiten für v_{p+1} .

Es gibt daher

$$\prod_{k=0}^{p-1} \left(q^n - q^k \right)$$

 $p\text{-}\mathrm{Tuple}$ von linear unabhängig Vektoren. Für p=nist die Behauptung bewiesen.

(b) Sei v_1, v_2, \ldots, v_n ein Basis von K^n , und T eine lineare Abbildung $T: K^n \to K^n$. Wenn man $T(v_1), T(v_2), \ldots, T(v_n)$ weiß, ist T eindeutig. T is invertierbar genau wenn $T(v_1), T(v_2), \ldots, T(v_n)$ linear unabhängig sind. Es gibt dadurch eine bijektive Funktion

 $f:GL_n(K) \to \{(v_1,v_2,\ldots,v_n) \in K^{n \times n} | v_1,\ldots,v_n \text{ sind linear unabhängig} \}$.

Aber wir wissen, dass es genau $\prod_{k=0}^{n-1} (q^n - q^k)$ solche $(v_1, v_2, \dots, v_n) \in K^{n \times n}$ gibt. Daraus folgt:

$$|GL_n(K)| = \prod_{k=0}^{n-1} (q^n - q^k).$$

Aufgabe 68. Wir betrachten die komplexen (2×2) -Matrizen

$$E:=\begin{pmatrix}1&0\\0&1\end{pmatrix} \qquad I:=\begin{pmatrix}i&0\\0&-i\end{pmatrix} \qquad J:=\begin{pmatrix}0&1\\-1&0\end{pmatrix} \qquad K:=\begin{pmatrix}0&i\\i&0\end{pmatrix}.$$

Zeigen Sie, dass die Menge $Q_8 := \{\pm E, \pm I, \pm J, \pm K\}$ zusammen mit der Matrixmultiplikation eine nicht-abelsche Gruppe der Ordnung 8 bildet. Man nennt Q_8 auch die *Quaternionengruppe* der Ordnung 8.

Hinweis: Ein paar konkrete Matrixmultiplikationen werden Sie bei dieser Aufgabe ausrechnen müssen. Versuchen Sie, deren Anzahl gering zu halten und möglichst viel aus Ihren bereits durchgeführten Rechnungen zu schließen.

Beweis. Wir zeigen zuerst, dass Q_8 under · abgeschlossen ist. Wir wissen von der Linearen Algebra, dass EM = M für alle Matrizen M. Das heißt, dass E ein neutrales Element ist. Wir wissen auch, dass (-E)M = -M. Ich betrachte einige wichtige Matrixmultiplikationen:

$$I^2 = J^2 = K^2 = -E.$$

Daraus folgt, dass $x^{-1} = -x$, für $Q_8 \ni x \neq \pm E$. Für x = -E ist $x^{-1} = x$. Jede $x \in G$ ist daher invertierbar. Es gilt auch

$$IJ = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = K$$

$$JK = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} = I$$

$$KI = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = J$$

Von daraus folgt, dass Q_8 under Matrixmultiplikation abgeschlossen ist. Deswegen ist Q_8 eine Gruppe. Es ist nicht abelsche. Sei $a, b \in \{\pm I, \pm J, \pm K\}$, $a \neq \pm b$, und daher $ab \in \{\pm I, \pm J, \pm K\}$

$$ab = -(ab)^{-1} = -b^{-1}a^{-1} = -(-b)(-a) = -ba.$$

 $\bf Aufgabe~69.$ Sei Geine Gruppe der Ordnung 4. Zeigen Sie, dass Gabelsch ist.

Beweis. Sei $G=\{1,a,b,c\}$. Nehme an, dass G nicht abelsch ist. ObdA können wir annehmen, dass $ab\neq ba$. Wir betrachten dann drei Fälle:

1. ab = a oder ab = b (obdA nehme an, ab = a).

Es gilt dann

$$(ba)b = b(ab) = ba.$$

Daraus folgt b = 1, ein Widerspruch.

5.2. BLATT 2 87

2. ab = 1. Es folgt aus die eindeutigkeit des Inverses, dass ba = 1, auch ein Widerspruch.

3. ab = c. Erinnern Sie sich daran, dass $ba \neq 1$, sonst gibt es ein Widerspruch wie im vorherigen Fall. Es gilt auch $ba \neq c$, weil $ab \neq ba$. Nehme obdA an, dass ba = a. Es gilt dann

$$bab = ab = bc$$
.

Es gilt auch

$$bc = bab = b^2c.$$

Deswegen ist b = 1, noch ein Widerspruch.

Aufgabe 70. Wie viele Gruppe der Ordnung 1/2/3/4 gibt es?

Beweis. Ordnung:

- (a) 1: $G = \{1\}$
- (b) 2: $G = \{1, a\}, a^2 = 1$
- (c) 3: $G = \{1, a, b\}$

Jede element muss invertierbar sind, und 1 kann nicht die Inverse sein. Wir betrachten a^{-1} :

(i) $a^{-1} = a$. Es gilt $b^{-1} = b$, sonst ist $b^{-1} = a \implies a^{-1} = b$. Es gilt dann entweder ab = a oder ab = b. Sei ab = a. Es gilt

$$b = (aa)b = aab = aa = 1,$$

ein Widerspruch. Das Fall ist leider unmöglich.

(ii) Es gilt ab = 1, daher auch ba = 1. Dann muss es gelten, $a^2 = b$, $b^2 = a$. Das Fall ist möglich.

Es gibt nur eine Gruppe der Ordnung 3.

(d) 4: Wir haben schon bewiesen, dass es abelsch sein muss. Wir zeichnen die Tabelle

Es muss symmetrisch sein. Weil alle Elemente in alle Zeilen und Spalten vorkommen muss, gilt entweder

5.3 Blatt 3

Aufgabe 71. Wir ändern die Gruppendefinition aus Definition 2.3 ab, indem wir für eine Menge G mit einer zweistelligen Verknüpfung \cdot und einem Element $e \in G$ fordern:

- (a) Es gilt $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ für alle $a, b, c \in G$.
- (b) Es gilt $a \cdot e = a$ für alle $a \in G$.
- (c') Zu jedem $a \in G$ gibt es ein Element $b \in G$ mit $b \cdot a = e$

Ist dann G stets eine Gruppe?

Beweis. Nein. Sei $x \cdot y = x$. Es ist assoziativ, weil $x \cdot (y \cdot z) = x = (x \cdot y) \cdot z$. Es gilt auch $x \cdot e = x \ \forall x$. Außerdem gilt $e \cdot x = e \ \forall x \in G$. Aber es gilt für alle $e \neq x \in G$, dass $x \cdot y = x \neq e \ \forall y \in G$. G ist dann keine Gruppe. \Box

Aufgabe 72. Sei $n \in N$ mit $n \geq 3$ fixiert. Wir setzen $\alpha := \exp(2\pi i/n) \in \mathbb{C}$ und definieren die folgenden zwei Abbildungen:

$$s: \mathbb{C} \to \mathbb{C}, \qquad z \to \overline{z}$$
 sowie $r: \mathbb{C} \to \mathbb{C}, z \to \alpha z.$

Das neutrale Element der Gruppe $\operatorname{Sym}(\mathbb{C})$ bezeichnen wir mit e und mit \cdot die Verkettung von Funktionen.

- (a) Zeigen Sie, dass $s^2 = e$ und $r \cdot s \cdot r = s$ gelten.
- (b) Zeigen Sie, dass für $k \in \mathbb{N}$ genau dann $r^k = e$ gilt, wenn n|k ist.
- (c) Zeigen Sie, dass r und s Elemente der symmetrischen Gruppe $\mathrm{Sym}(\mathbb{C})$ sind.
- (d) Zeigen Sie, dass $s \cdot r^k = r^{-k} \cdot s$ für alle $k \in \mathbb{N}$ gilt.
- (e) Zeigen Sie, dass zu jedem $k \in \mathbb{N}$ ein $t \in \mathbb{N}$ mit $r^{-k} = r^t$ existiert.
- (f) Beschreiben Sie das Abbildungsverhalten von r und s geometrisch.
- (g) Folgern Sie aus (a)–(e), dass $\{r^x \cdot s^y | x, y \in \mathbb{Z}\} = \{r^a \cdot s^b | 0 \le a < n \text{ und } 0 \le b < 2\}$ gilt.
- (h) Zeigen Sie, dass $D_n := \{r^a \cdot s^b | 0 \le a < n \text{ und } 0 \le b < 2\}$ eine Gruppe ist.
- (i) Beweisen Sie, dass $|D_n| = 2n$ gilt.
- (j) Zeigen Sie, dass D_n nicht abelsch ist.

5.3. BLATT 3 89

Beweis. (a) $s^2 = e$ folgt aus $\overline{\overline{z}} = z$. Es gilt

$$(r \cdot s \cdot r)(z) = (r \cdot s) \left(\exp(2\pi i/n)z \right)$$

$$= r \left(\exp(-2\pi i/n)\overline{z} \right)$$

$$= \exp(2\pi i/n) \exp(-2\pi i/n)\overline{z}$$

$$= \overline{z}$$

Also $r \cdot s \cdot r = s$.

- (b) Wir wissen, $r^k(z) = \exp(2\pi i k/n)z$. $r^k = e$ genau dann, wen $\exp(2\pi i k/n) = 1$, also n|k.
- (c) Sie sind bijektiv. Wir schreiben einfach die Umkehrfunktion.

$$s^{-1} = s$$
 (a)
$$f(x) = \exp(-2\pi i/n)x$$

$$r \circ f = e = f \circ r$$

(d)

$$(s \cdot r^{k})(z) = s \left(\exp\left(2\pi i k/n\right) z\right)$$

$$= \exp\left(-2\pi i k/n\right) \overline{z}$$

$$(r^{-k} \cdot s)(z) = \left(r^{-k}\right) (\overline{z})$$

$$= \exp\left(-2\pi i k/n\right) \overline{z}$$

$$= (s \cdot r^{k})(z)$$

(e) Sei $t=-k+pn, p\in\mathbb{N}$, für p hinreichend groß, damit t>0 und daher $p\in\mathbb{N}$. Es gilt

$$s^{t} = s^{-k+pn} = s^{-k}s^{pn} = s^{-k}(s^{n})^{p} = s^{-k}.$$

(f)

(g) Sei $y = 2n + b, b \in \mathbb{N}$. Dann ist

$$s^y = s^{2n+b} = s^{2n} \cdot s^b = e \cdot s^b = s^b.$$

(h) (i) D_n ist abgeschlossen

$$r^{a} \cdot s^{b} \cdot r^{a'} \cdot s^{b'} = r^{a} \cdot r^{-a'} \cdot s^{b} \cdot s^{b'}$$

$$= r^{a-a'} s^{b+b'}$$

$$\in D_{n}$$
(g)

- (ii) D_n ist assoziativ wegen der Assoziati
tivät von Funktionverkettung.
- (iii) Neutrales Element $a = 0, b = 0, r^0 \cdot s^0 = e \in D_n.$
- (iv) Inverses Element

$$s^{-b} \cdot r^{-a} \cdot r^a \cdot s^b = s^{-b} \cdot (r^{-a} \cdot r^a) \cdot s^b = s^{-b} \cdot s^b = e.$$

Außerdem gilt

$$s^{-b} \cdot r^{-a} = r^a \cdot s^{-b}$$
 (d)
= $r^a \cdot s^c$, $0 \le c < 2$ (a)

- (i) Es gibt genau n Möglichkeiten für a, und 2 Möglichkeiten für b. Daraus folgt $|D_n| = 2n$.
- (j) Wir haben $s\cdot r^k=r^{-k}\cdot s$ (d), und müssen nur k finden, sodass $r^k\neq r^{-k}.$ k=1 ist ein Gegenbeispiel.

Theoretische Mechanik

6.1 Blatt 1

Aufgabe 73. Betrachten Sie den harmonischen Oszillator in einer Dimension, d. h. das Anfangswertproblem

$$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = F(x(t)) = -kx(t)$$
$$x(t_0) = x_0 \in \mathbb{R}$$
$$\frac{\mathrm{d}x}{\mathrm{d}t} = v_0 \in \mathbb{R}$$

- 1. Zeigen Sie, daß wenn eine komplexwertige Funktion $z: I \to \mathbb{C}$ mit $t_0 \in I \subseteq \mathbb{R}$ die Differentialgleichung (1a) löst, ihr Realteil $x(t) = \operatorname{Re} z(t)$ zur Lösung des reellen Anfangswertproblems (1) benutzt werden kann.
- 2. Was ist die allgemeinste Form der rechten Seite der Differentialgleichung (1a), für die der Realteil einer komplexen Lösung selbst eine Lösung ist? Geben Sie Gegenbeispiele an.
- 3. Machen Sie den üblichen Exponentialansatz für lineare Differentialgleichungen mit konstanten Koeffizienten...

Beweis. 1. Sei $x(t) = x_r(t) + ix_i(t), x_r, x_i : I \to \mathbb{R}$.

Dann gilt

$$m\left(\frac{\mathrm{d}^2 x_r}{\mathrm{d}t^2} + i\frac{\mathrm{d}^2 x_i}{\mathrm{d}t^2}\right) = -k(x_r + ix_i).$$

Weil das eine Gleichung von zwei komplexe Zahlen ist, gilt auch

$$m\frac{\mathrm{d}^2 x_r}{\mathrm{d}t^2} = -kx_r.$$

2. Das passt für alle reelle lineare Kombinationen der Ableitungen von x(t).

$$\sum_{i=0}^{n} a_i \frac{\mathrm{d}^i x}{\mathrm{d}t^i} = 0, \qquad a_i \in \mathbb{R}.$$

Gegenbeispiele

(i) Irgendeine $a_i \notin \mathbb{R}$

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -ikx(t), \qquad k \in \mathbb{R}.$$

Hier ist es klar, dass keine Abbildung $x: \mathbb{R} \to \mathbb{R}$ eine Lösung sein kann, weil die linke Seite reelle wird, aber die rechte Seite nicht reelle wird.

Daraus folgt: Das Realteil der Lösung ist kein Lösung.

(ii) Nichtlineare Gleichung, z.B.

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -k\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2.$$

3.

$$x(t) = \alpha e^{\lambda t}$$
$$\ddot{x}(t) = \lambda^2 \alpha e^{\lambda t}$$

Dann

$$m \cancel{e} \lambda^2 e^{\cancel{\lambda} \ell} = -k \cancel{e} e^{\cancel{\lambda} \ell}$$

$$\lambda^2 = -\frac{k}{m}$$

$$\lambda = \pm i \sqrt{\frac{k}{m}} = \pm i \omega \qquad \omega := \sqrt{\frac{k}{m}}$$

Daraus folgt, für $z_1(t)$:

$$z_{1}(0) = \alpha_{1,+} + \alpha_{1,-} = x_{0}$$

$$z'_{1}(0) = -i\omega\alpha_{1,+} + i\omega\alpha_{1,-} = v_{0}$$

$$-\alpha_{1,+} + \alpha_{1,-} = -\frac{iv_{0}}{\omega}$$

$$2\alpha_{1,-} = x_{0} - \frac{iv_{0}}{\omega}$$

$$2\alpha_{1,+} = x_{0} + \frac{iv_{0}}{\omega}$$

$$z_{1}(t) = \frac{1}{2} \left[\left(x_{0} + \frac{iv_{0}}{\omega} \right) e^{-i\omega t} + \left(x_{0} - \frac{iv_{0}}{\omega} \right) e^{i\omega t} \right]$$

Daraus folgt die andere Formen der Lösungen:

6.1. BLATT 1 93

(i)
$$x_2(t)$$

$$\frac{1}{2} \left[\left(x_0 + \frac{iv_0}{\omega} \right) e^{-i\omega t} + \left(x_0 - \frac{iv_0}{\omega} \right) e^{i\omega t} \right]$$

$$= \operatorname{Re} \left[\left(x_0 + \frac{iv_0}{\omega} \right) e^{-i\omega t} \right]$$

$$= \operatorname{Re} \left[\left(x_0 + \frac{iv_0}{\omega} \right) (\cos(\omega t) - i\sin(\omega t)) \right]$$

$$= \operatorname{Re} \left[x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t + i(\dots) \right]$$

$$= x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t$$

(ii) $x_3(t)$ (R-Formula)

$$x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t = \alpha_3 \sin(\omega t + \delta_3)$$
$$\alpha_3 = \sqrt{x_0^2 + \left(\frac{v_0}{\omega}\right)^2}$$
$$\delta_3 = \arctan \frac{v_0}{x_0 \omega}$$

(iii)
$$x_4(t)$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x.$$

Daraus folgt:

$$\alpha_4 = \alpha_3 \qquad \delta_4 = \delta_3 + \frac{\pi}{2}.$$

Aufgabe 74. Betrachten Sie den gedämpften und getriebenen harmonischen Oszillator in einer Dimension mit dem Anfangswertproblem

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = F(x(t), \dot{x}(t), t) = -kx(t) - 2m\gamma \frac{\mathrm{d}x}{\mathrm{d}t} + F_{ext}(t)$$
$$x(0) = x_0 \in \mathbb{R}$$
$$\frac{\mathrm{d}x}{\mathrm{d}t} = v_0 \in \mathbb{R}$$

1. Lösen sie das Anfangswertproblem zunächst für verschwindende äußere Kraft $F_{ext}\equiv 0$. Machen Sie dazu wieder den üblichen Exponentialansatz

$$x(t) = \alpha e^{\lambda t}$$

und behandeln Sie auch den Fall $\gamma^2=k/m$

2. Lösen sie das Anfangswertproblem für eine harmonische äußere Kraft $F_{ext}(t) = F_0 sin(\omega_0 t)$ indem Sie zur soeben gefundenen Lösung der

homogenen Differentialgleichung noch eine Partikularlösung mit dem Ansatz vom Typ der rechten Seite " $x(t) = Asin(\omega_0 t) + Bcos(\omega_0 t)$ " addieren. Auch hier empfiehlt es sich, Kraft und Ansatz zu komplexifizieren:

$$F_{ext}(t) = F_0 \sin(\omega_0 t) \to F_0 e^{-i\omega_0 t}$$
$$x(t) = A \sin(\omega_0 t) \to A e^{-i\omega_0 t}$$

3. Zeigen Sie anhand der Lösungen, daß die Energie

$$E(t) = \frac{m}{2} \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \frac{k}{2}x^2(t)$$

für verschwindende Dämpfung $\gamma=0$ und äußere Kraft $F_{ext}\equiv 0$ erhalten ist und diskutieren Sie die Zeitabhängigkeit von E(t) als Funktion von γ im allgemeinen Fall. Berücksichtigen Sie insbesondere eine harmonische äußere Kraft $F_{ext}(t)=F_0\sin(\omega_0 t)$.

Beweis. 1.

$$x(t) = \alpha e^{\lambda t}$$
$$\dot{x}(t) = \alpha \lambda e^{\lambda t}$$
$$\ddot{x}(t) = \alpha \lambda^2 e^{\lambda t}$$

Daraus folgt

$$m\lambda^{2}\alpha e^{\lambda t} = -k\alpha e^{\lambda t} - 2m\gamma\lambda\alpha e^{\lambda t}$$
$$0 = m\lambda^{2} + 2m\gamma\lambda + k$$
$$\lambda = -\gamma \pm \sqrt{\gamma^{2} - \frac{k}{m}}$$

Falls $\gamma^2 \neq \frac{k}{m}$:

$$x(t) = e^{-\gamma t} \left[A e^{\sqrt{\gamma^2 - \frac{k}{m}}t} + B e^{-\sqrt{\gamma^2 - \frac{k}{m}}t} \right],$$

$$x'(t) = -\gamma e^{-\gamma t} \left[A e^{\sqrt{\gamma^2 - \frac{k}{m}}t} + B e^{-\sqrt{\gamma^2 - \frac{k}{m}}t} \right]$$

$$+ e^{-\gamma t} \left[A \sqrt{\gamma^2 - \frac{k}{m}} e^{\sqrt{\gamma^2 - \frac{k}{m}}t} - B \sqrt{\gamma^2 - \frac{k}{m}} e^{-\sqrt{\gamma^2 - \frac{k}{m}}t} \right]$$

und

$$x(0) = A + B = x_0$$

$$x'(0) = \sqrt{\gamma^2 - \frac{k}{m}} (A - B) = v_0$$

$$2A = x_0 + \frac{v_0}{\sqrt{\gamma^2 - \frac{k}{m}}}$$

$$2B = x_0 - \frac{v_0}{\sqrt{\gamma^2 - \frac{k}{m}}}$$

6.1. BLATT 1

Es ist zu beachten, dass es möglich ist, dass $\gamma^2 < \frac{k}{m}$. In diesem Fall ist $\sqrt{\gamma^2 - \frac{k}{m}} = i\sqrt{\frac{k}{m} - \gamma^2}$, aber der Form der Lösung bleibt.

95

Für $\gamma^2 = \frac{k}{m}$ ist die Lösung

$$x(t) = Ae^{-\gamma t} + Bte^{-\gamma t}.$$

Es gilt

$$x'(t) = -\gamma A e^{-\gamma t} + B e^{-\gamma t} - B t \gamma e^{-\gamma t}.$$

Dann

$$x(0) = A = x_0$$

$$x'(0) = -\gamma A + B = v_0$$

$$B = v_0 + \gamma x_0$$

$$x(t) = x_0 e^{-\gamma t} + (v_0 + \gamma x_0) t e^{-\gamma t}$$

2. Wir suchen eine Partikularlösung für die Gleichung

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + 2m\gamma\frac{\mathrm{d}x}{\mathrm{d}t} + kx = F_0e^{-i\omega_0t}$$

mit dem Form

$$x(t) = Ae^{-i\omega_0 t}.$$

Es gilt

$$x'(t) = -i\omega_0 A e^{-i\omega_0 t}$$

$$x''(t) = -\omega_0^2 A e^{-i\omega_0 t}$$

Dann ist

$$-\omega_0^2 A m e^{-i\omega_0 t} - 2m\gamma i\omega_0 A e^{-i\omega_0 t} + Ak e^{-i\omega_0 t} = F_0 e^{-i\omega_0 t},$$

$$A = \frac{F_0}{-m\omega_0^2 - 2m\gamma i\omega_0 + k}.$$

3. für verschwindende Dämpfung $\gamma=0$ und äußere Kraft $F_{\rm ext}\equiv 0$ ist die Lösung

$$x(t) = x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t, \qquad \omega = \sqrt{k/m}.$$

Wir berechnen

$$\dot{x} = -x_0 \omega \sin \omega t + v_0 \cos \omega t.$$

Dann gilt

$$\frac{m}{2} \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 = \frac{m}{2} \left(-x_0 \omega \sin \omega t + v_0 \cos \omega t\right)^2$$

$$= \frac{m}{2} \left(x_0^2 \omega^2 \sin^2 \omega t - 2x_0 v_0 \omega \sin \omega t \cos \omega t + v_0^2 \cos^2 \omega t\right)$$

$$= \frac{m}{2\omega^2} \left(x_0^2 \sin^2 \omega t - \frac{2x_0 v_0}{\omega} \sin \omega t \cos \omega t + \frac{v_0^2}{\omega^2} \cos^2 \omega t\right)$$

$$= \frac{k}{2} \left(x_0^2 (1 - \cos^2 \omega t) - \frac{2x_0 v_0}{\omega} \sin \omega t \cos \omega t + \frac{v_0^2}{\omega^2} (1 - \sin^2 \omega t)\right)$$

Aus

$$\frac{k}{2}x(t)^2 = \frac{k}{2}\left(x_0^2\cos^2\omega t + \frac{2x_0v_0}{\omega}\sin\omega t\cos\omega t \frac{v_0^2}{\omega^2}\sin^2\omega t\right)$$

folgt

$$E(t) = \frac{k}{2} \left(x_0^2 (1 - \cos^2 \omega t) - \frac{2x_0 v_0}{\omega} \sin \omega t \cos \omega t + \frac{v_0^2}{\omega^2} \left(1 - \sin^2 \omega t \right) \right)$$
$$+ \frac{k}{2} \left(x_0^2 \cos^2 \omega t + \frac{2x_0 v_0}{\omega} \sin \omega t \cos \omega t \frac{v_0^2}{\omega^2} \sin^2 \omega t \right)$$
$$= \frac{k}{2} x_0^2 + \frac{k v_0^2}{2\omega^2},$$

was nicht abhängig von t ist.

Wir untersuchen jetzt die Energie für eine harmonische äußere Kraft. Wenn die Dämpfung $\neq 0$ ist, ist

$$\lim_{t \to \infty} (x_h(t) + x_p(t)) = \lim_{t \to \infty} x_p(t)$$

Daher muss man nur die Energie der Partikularlösung berechnen:

$$x(t) = \frac{F_0}{-m\omega_0^2 - 2m\gamma i\omega_0 + k} e^{-i\omega_0 t}$$
$$\dot{x}(t) = -\frac{iF_0\omega_0}{-m\omega_0^2 - 2m\gamma i\omega_0 + k} e^{-i\omega_0 t}$$

Wenn $\gamma = 0$, kann $x(t) \to \infty$, wenn

$$-m\omega_0^2 + k = 0 \qquad \text{(Resonanz)}.$$

Das bedeutet $E(t) \to \infty$ auch.

6.2 Blatt 2

Aufgabe 75. Betrachten Sie die folgenden Familien von Kraftfeldern auf geeigneten Definitionsbereichen $D_{\eta}^{(n)} \subseteq \mathbb{R}^3$

$$F_{\eta}^{(1)}: D_{\eta}^{(1)} \ni \vec{\mathbf{x}} \to r^{\eta} \cdot \vec{\mathbf{x}} \in \mathbb{R}^{3}$$

$$F_{\eta}^{(2)}: D_{\eta}^{(2)} \ni \vec{\mathbf{x}} \to r_{12}^{\eta} \cdot (x_{1}\vec{\mathbf{e}}_{1} - x_{2}\vec{\mathbf{e}}_{2}) \in \mathbb{R}^{3}$$

$$F_{\eta}^{(3)}: D_{\eta}^{(3)} \ni \vec{\mathbf{x}} \to r_{12}^{\eta} \cdot (x_{2}\vec{\mathbf{e}}_{1} - x_{1}\vec{\mathbf{e}}_{2}) \in \mathbb{R}^{3}$$

$$F_{\eta}^{(4)}: D_{\eta}^{(3)} \ni \vec{\mathbf{x}} \to r_{12}^{\eta} \cdot (x_{2}\vec{\mathbf{e}}_{1} + x_{1}\vec{\mathbf{e}}_{2}) \in \mathbb{R}^{3}$$

Eigentlich ist $\vec{\mathbf{x}}$ als $\vec{\mathbf{x}} = (x, y, z)^T$ definiert. Deswegen sind alle meine Antworten nicht die erwartete Antwort.

wobei $r_{12} = \sqrt{x_1^2 + x_2^2}$ und $r = \sqrt{x_1^2 + x_2^2 + x_3^3}$ Skizzieren Sie die Felder $\vec{\mathbf{F}}_{\eta}^{(n)}$ als Vektorpfeile in der von den Einheitsvektoren $\vec{\mathbf{e}}_1$ und $\vec{\mathbf{e}}_2$ aufgespannten Ebene (hier genügt es, zwischen den Fällen $\eta > -1$, $\eta = -1$ und $\eta < -1$ zu unterscheiden).

Bestimmen Sie, abhängig von der Potenz $\eta \in \mathbb{R}$,

- 1. den maximalen Definitionsbereich $D_{\eta}^{(n)}$,
- 2. die maximale Bereiche $C_{\eta}^{(n)} \subseteq D_{\eta}^{(n)}$, auf denen $F_{\eta}^{(n)}$ konservativ ist,
- 3. eine Potentialfunktion $V_{\eta}^{(n)}: C_{\eta}^{(n)} \to \mathbb{R}$ mit $F_{\eta}^{(n)} = -\nabla V_{\eta}^{(n)}$, sofern sie existiert,
- 4. das Kurvenintegral

$$I_{\eta}^{(n)}(R) = \int_{\gamma_R} d\vec{\xi} \cdot \vec{\mathbf{F}}_{\eta}^{(n)}(\vec{\xi})$$

über den gegen den Uhrzeigersinn umlaufenen Kreis γ_R mit Radius R und Mittelpunkt $\vec{\bf 0}$ in der von $\vec{\bf e}_1$ und $\vec{\bf e}_2$ aufgespannten Ebene

Beweis. 1. Maximalen Definitionsbereich (für alle $\vec{\mathbf{F}}_{\eta}^{(n)}$): Wenn $\eta \leq -1, \mathbb{R}^3 \setminus \{(0,0,0)\}$, sonst \mathbb{R}^3 .

- 2. maximale Bereiche, auf denen $\vec{\mathbf{F}}_{\eta}^{(n)}$ konservativ ist. $n = \dots$
 - (1) Falls $\eta = 0, D_{\eta}^{(1)}$, sonst z = 0
 - (2) Falls $\eta = 0, D_{\eta}^{(2)}$, sonst \varnothing

Erwartete Antwort ist einfach $D_n^{(1)}$.

Figure 6.2: Vektorpfeile für $\vec{\mathbf{F}}_{\eta}^{(2)}$

Figure 6.3: Vektorpfeile für $\vec{\mathbf{F}}_{\eta}^{(3)}$

Figure 6.4: Vektorpfeile für $\vec{\mathbf{F}}_{\eta}^{(4)}$

- (3) Falls $\eta = -2, D_{\eta}^{(3)}$, sonst \varnothing .
- (4) Falls $\eta = 0, D_{\eta}^{(4)}$, sonst \varnothing .
- 3. Potentialfunktion, für $n = \dots$
 - (1) Auf z = 0 Ebene:

$$\eta = -2$$
: $V = -\frac{1}{2} \ln{(x^2 + y^2)}$, sonst $V = -\frac{1}{n+2} r^{\eta+2}$

Wenn n = 0 kann eine Potentialfunktion für alle $\vec{\mathbf{r}} \in \mathbb{R}^3$ definiert werden: $V(x, y, z) = -\frac{1}{2}(x^2 + y^2)$

- (2) Nur für $\eta = 0$, $V = \frac{1}{2}(x^2 y^2)$.
- (3) Für $\eta = -2$, $V = -\tan^{-1}\left(\frac{x}{y}\right)$.
- (4) Für $\eta = 0, V = -xy$.
- 4. Kurvenintegral, für $n = \dots$
 - (1) Weil $\nabla \times F_{\eta}^{(1)} = 0$ auf die $\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2$ Ebene, ist das Kurvenintegral stets 0
 - (2) Gleich für $\eta = 0$. Sonst sei $x_1 = \cos \theta$, $x_2 = \sin \theta$, $dx_1 = -\sin \theta d\theta$, $dx_2 = \cos \theta d\theta$

$$R^{\eta} \int_{\gamma_R} x_1 \, dx_1 - x_2 \, dx_2 = R^{\eta} \int_0^{2\pi} \left(-\cos\theta \sin\theta \, d\theta - \cos\theta \sin\theta \, d\theta \right)$$
$$= R^{\eta} \int_0^{2\pi} \left(-2\sin\theta \cos\theta \right) d\theta$$
$$= 0$$

(3) Sei $x_1 = \cos \theta$, $x_2 = \sin \theta$, $dx_1 = -\sin \theta d\theta$, $dx_2 = \cos \theta d\theta$

$$R^{\eta} \int_{\gamma_R} x_2 \, dx_1 - x_1 \, dx_2 = R^{\eta} \int_0^{2\pi} \left(-\sin^2 \theta \, d\theta - \cos^2 \theta \, d\theta \right)$$
$$= -R^{\eta} \int_0^{2\pi} d\theta$$
$$= -2\pi R^{\eta}$$

Beachten Sie, dass es für $\eta = -2$ ungleich 0 ist, weil $\nabla \times \vec{\mathbf{F}}_{\eta}^{(3)}$ auf (0,0) nicht definiert ist.

(4) Für $\eta = 0$ ist die Kurvenintegral stets 0. Sonst sei $x_1 = \cos \theta$, $x_2 = \sin \theta$, $dx_1 = -\sin \theta d\theta$, $dx_2 = \cos \theta d\theta$ und

$$R^{\eta} \int_{\gamma_R} x_2 \, \mathrm{d}x_1 + x_1 \, \mathrm{d}x_2 = R^{\eta} \int_0^{2\pi} \left(-\sin^2 \theta + \cos^2 \theta \right) \, \mathrm{d}\theta$$
$$= R^{\eta} \int_0^{2\pi} \cos(2\theta) \, \mathrm{d}\theta$$
$$= 0 \qquad \Box$$

Aufgabe 76. Zwischen zwei Kreisringen mit Radius R, die bei $x = -x_0$ und $x = x_0$ zentriert in der yz-Ebene liegen, sei eine Seifenhaut gespannt (s. Skizze). Aufgrund der Oberflächenspannung wird sich die Seifenhaut so ausbilden, dass die entsprechende Oberfläche minimal ist.

Die erwartete Antwort ist einfach $V = -\frac{1}{\eta+2}r^{\eta+2}$

In zylindrische Koordinaten ist es $V = -\varphi$

1. Das gesamte Problem ist rotationssymmetrisch um die x-Achse. Zeigen Sie, dass die Fläche der Rotationsfigur um die x-Achse für die Funktion $y:[-x_0,x_0]\to\mathbb{R}$ zwischen den Kreisringen durch

$$F(y) = \int_{-x_0}^{x_0} 2\pi y(x) \sqrt{1 + y'(x)^2} \, \mathrm{d}x$$

mit $y' = \frac{dy}{dx}$ gegeben ist.

2. Benutzen Sie nun die in der Vorlesung kennengelernte Methode der Variationsrechnung, um die Minimalfläche zu finden, die von der Seifenhaut gebildet wird. Gesucht ist also die Funktion y, die F(y) minimiert. (Hinweis: Zeigen Sie, dass die Euler-Lagrange-Gleichung für dieses Problem als

$$\frac{1}{y'}\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{y}{\sqrt{1+y'^2}}\right) = 0$$

geschrieben werden kann.)

Beweis. 1.

6.2. BLATT 2 101

$$dV = 2\pi y(x)\sqrt{1 + y'(x)^2} dx$$

2.

Satz 6.1. Im Allgemein, für $\frac{\partial L}{\partial t} = 0$, gilt

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) = 0.$$

Beweis. Erinnern Sie sich daran, dass

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{a}} = \frac{\partial L}{\partial a} \tag{6.1}$$

Es gilt

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \dot{q} - L \right) &= \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} \right) \dot{q} + \frac{\partial L}{\partial \dot{q}} \ddot{q} - \frac{\partial L}{\partial \dot{q}} \dot{q} - \frac{\partial L}{\partial q} \dot{q} + \frac{\partial L}{\partial t} \\ &= \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} \right) \dot{q} - \frac{\partial L}{\partial q} \dot{q} \\ &= \left(\frac{\partial L}{\partial q} \right) \dot{q} - \frac{\partial L}{\partial q} \dot{q} = 0 \end{split}$$

Sei jetzt $L(y(x),y'(x),x)=y(x)\sqrt{1+y'(x)^2}$. Es folgt $\frac{\partial L}{\partial x}=0$. Daraus folgt

$$\frac{\partial L}{\partial y'}y' - L = \left(\frac{y(x)y'(x)}{\sqrt{1 + y'(x)^2}}\right)y' - y(x)\sqrt{1 + y'(x)^2}$$

$$= \left(\frac{yy'^2}{\sqrt{1 + y'^2}}\right) - \frac{y(1 + y'^2)}{\sqrt{1 + y'^2}}$$

$$= \frac{-y}{\sqrt{1 + y'^2}}$$

Es gilt dann, dass

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{\sqrt{1 + y'^2}} \right) = 0.$$

Daraus folgt:

$$\alpha y = \sqrt{1 + y'^2}$$

$$\alpha^2 y^2 = 1 + y'^2$$

$$y' = \pm \sqrt{\alpha^2 y^2 - 1} + \text{wenn } x > 0$$

$$\int dx = \int \frac{dy}{\sqrt{\alpha^2 y^2 - 1}}$$

$$x = \frac{1}{\alpha} \cosh^{-1}(\alpha y) - \beta$$

$$y = \frac{1}{\alpha} \cosh(\alpha (x + \beta))$$

Die Randbedingungen ergeben:

$$\alpha R = \cosh(\alpha(x_0 + \beta)) = \cosh(\alpha(-x_0 + \beta))$$

Daraus folgt $\beta=0$. Leider ist die Gleichung für α unlösbar. Die Lösung zu die Gleichung ist

$$y(x) = \frac{1}{\alpha} \cosh(\alpha x)$$

$$\alpha R = \cosh(\alpha x)$$

6.3 Blatt 3

Aufgabe 77. Die Differentialgleichung für den harmonischen Oszillator in zwei Dimensionen lautet:

$$\ddot{\vec{\mathbf{x}}}(t) + \omega^2 \vec{\mathbf{x}} = 0 \qquad \text{mit } \omega = \sqrt{\frac{k}{m}}.$$

Entwickeln Sie den Ortsvektor x(t) und seine zeitlichen Ableitungen in der Polarkoordinatenbasis $\{\hat{\mathbf{e}}_r, \hat{\mathbf{e}}_\phi\}$ und überzeugen Sie sich, dass die so aus (1) folgenden Differentialgleichungen den Bewegungsgleichungen entsprechen, die Sie wie in der Vorlesung mittels der Euler-Lagrange-Gleichung

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_i} - \frac{\partial}{\partial q_i}\right)L(q(t), \dot{q}(t), t) = 0$$

direkt aus der Lagrangefunktion in Polarkoordinaten $q_i = r, \phi$ erhalten.

6.3. BLATT 3

Beweis.

$$\vec{\mathbf{x}} = \begin{pmatrix} r\cos\phi\\ r\sin\phi \end{pmatrix}$$

$$\dot{\vec{\mathbf{x}}} = \dot{r}\begin{pmatrix} \cos\phi\\ \sin\phi \end{pmatrix} + r\dot{\phi}\begin{pmatrix} -\sin\phi\\ \cos\phi \end{pmatrix}$$

$$\ddot{\vec{\mathbf{x}}} = \ddot{r}\begin{pmatrix} \cos\phi\\ \sin\phi \end{pmatrix} + (2\dot{r}\dot{\phi} + r\ddot{\phi})\begin{pmatrix} -\sin\phi\\ \cos\phi \end{pmatrix} + r\dot{\phi}^2\begin{pmatrix} -\cos\phi\\ -\sin\phi \end{pmatrix}$$

$$= (\ddot{r} - r\dot{\phi}^2)\begin{pmatrix} \cos\phi\\ \sin\phi \end{pmatrix} + \left(2\dot{r}\dot{\phi} + r\ddot{\phi}\right)\begin{pmatrix} -\sin\phi\\ \cos\phi \end{pmatrix}$$

Weil $(\cos \phi, \sin \phi)^T$ und $(\sin \phi, \cos \phi)^T$ linear unabhängig (sogar orthogonal) sind, kann die Gleichung $\ddot{\vec{x}} + \omega^2 \vec{x}(t)$ als

$$\ddot{r} - r\dot{\phi}^2 + \omega^2 r = 0$$
$$2\dot{r}\dot{\phi} + r\ddot{\phi} = 0$$

Man schreibt auch direkt die Lagrangefunktion:

$$L = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\phi}^2\right) - \frac{1}{2}m\omega^2r^2.$$

Die Euler-Lagrange-Gleichungen sind

$$r : m\ddot{r} - mr\dot{\phi}^2 + m\omega^2 r = 0$$

$$\ddot{r} - r\dot{\phi}^2 + \omega^2 r = 0$$

$$\phi : \frac{\mathrm{d}}{\mathrm{d}t} \left(r^2 \dot{\phi} \right) = 0$$

$$2r\dot{r}\dot{\phi} + r^2 \ddot{\phi} = 0$$

$$2\dot{r}\dot{\phi} + r\ddot{\phi} = 0.$$

Aufgabe 78. Eine Punktmasse m rotiere reibungslos auf einer Tischplatte. Über einen gespannten Faden der Länge l (l = r + s) sei sie durch ein Loch in der Platte mit einer anderen Masse M verbunden (s. Skizze). Wie bewegt sich M unter dem Einfluss der Schwerkraft?

- 1. Formulieren Sie die Zwangsbedingungen.
- 2. Stellen Sie die Lagrange-Funktion in den generalisierten Koordinaten s und φ auf und ermitteln Sie daraus die Bewegungsgleichungen. Zeigen Sie, dass $\frac{\partial L}{\partial \dot{\varphi}} = \mathrm{const} \equiv C$ gilt.
- 3. Verwenden Sie das Ergebnis aus Teilaufgabe 2, um die φ -Abhängigkeit in der Differentialgleichung für s zu eliminieren. Betrachten Sie nun den Gleichgewichtsfall s(t) = const und finden Sie einen Ausdruck für die resultierende Rotationsgeschwindigkeit $\dot{\varphi}(t) = \text{const} \equiv \omega_0$ der Masse m. Ausgehend vom Gleichgewichtsfall, unter welchen Bedingungen rutscht die Masse M nach oben, wann nach unten?

4. Diskutieren Sie das Ergebnis für die Anfangsbedingung $\dot{\varphi}(t_0) = 0$.

Beweis. 1. $\frac{dl}{dt} = 0$.

2.

$$L = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\varphi}^2\right) + Mg(l-r).$$

Weil $\frac{\partial L}{\partial \varphi} = 0$, gilt aus der Euler-Lagrange-Gleichungen $\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{\varphi}} = 0$, also $\frac{\partial L}{\partial \dot{\varphi}} = \mathrm{const} \equiv C$.

3. Weil
$$\frac{\partial L}{\partial \dot{\varphi}} = mr^2 \dot{\varphi} \equiv C$$
, gilt

Aufgabe 79. Eine einmal gefaltete Schnur mit Gesamtlänge l und konstanter Masse pro Länge ρ bewegt sich auf der x-Achse. Die Endpunkte der Schnur seien mit $x_1(t)$ und $x_2(t)$ bezeichnet. Die Stelle, an der die Schnur gefaltet ist, sei mit y(t) bezeichnet.

- 1. Geben Sie die Zwangsbedingungen des Systems an.
- 2. Geben Sie eine Langrangefunktion des Systems an.

Betrachten Sie für die kinetische Energie T die Endpunkte x_1 und x_2 , deren "Masse" durch die integrierte Masse des Schnurstücks zwischen x_1 und y bzw. x_2 und y gegeben ist.

3. Die Lagrangefunktion kann in den Relativ- und Schwerpunktskoordinaten

$$\xi = x_1 - x_2 \text{ und } X = \frac{1}{2l} [(x_1 - y)(x_1 + y) + (x_2 - y)(x_2 + y)]$$

zu

$$L = \frac{M}{2}\dot{X}^2 + \frac{\mu}{2}\dot{\xi}^2$$

umgeschrieben werden, wobei M und μ Funktionen von X und ξ sind. Bestimmen Sie M und μ durch den Vergleich der Lagrangefunktionen in Koordinaten (x_1, x_2) und (X, ξ) .

Beweis. 1.
$$l = x_2(t) - y(t) + x_1(t) - y(t) = x_1(t) + x_2(t) - 2y(t)$$

2. Wir betrachten eine Koordinate $0 \le \xi \le l$, die ab x_1 anfängt und steigt monoton, bis die andere Seite. Die Position eine kleine Masselemente ist:

$$x(\xi) = y + |\xi - (x_2 - y)|.$$

6.3. BLATT 3

Daraus folgt

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \dot{y} + \frac{\mathrm{d}}{\mathrm{d}t} |\xi - (x_2 - y)|$$
$$= \dot{y} + \mathrm{sgn}(\xi - (x_2 - y)) \left(\frac{\mathrm{d}y}{\mathrm{d}t} - \frac{\mathrm{d}x_2}{\mathrm{d}t}\right)$$

Wir integrieren die Geschwindigkeit, um die kinetische Energie zu bekommen:

$$\frac{1}{2}\rho \int_0^l \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 \mathrm{d}\xi = \frac{1}{2}\rho \left[\int_0^{x_2 - y} (\dot{y} - (\dot{y} - \dot{x}_2))^2 \,\mathrm{d}\xi + \int_{x_2 - y}^l (\dot{y} + (\dot{y} - \dot{x}_2))^2 \,\mathrm{d}\xi \right]
= \frac{1}{2}\rho \left[(x_2 - y)\dot{x}_2^2 + (l - x_2 + y)(2\dot{y} - \dot{x}_2)^2 \right]$$