

=> fil reg
FILE 'REGISTRY' ENTERED AT 15:48:46 ON 19 NOV 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 18 NOV 2008 HIGHEST RN 1073232-10-6
DICTIONARY FILE UPDATES: 18 NOV 2008 HIGHEST RN 1073232-10-6

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH July 5, 2008.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=> d que stat 191
L88 STR

VAR G1=N/O/S
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
RSPEC I
NUMBER OF NODES IS 5

STEREO ATTRIBUTES: NONE
L89 SCR 2043 OR 2127
L91 25372 SEA FILE=REGISTRY SSS FUL L88 NOT L89

100.0% PROCESSED 399421 ITERATIONS 25372 ANSWERS
SEARCH TIME: 00.00.02

=> d his nofile

(FILE 'HOME' ENTERED AT 09:20:34 ON 19 NOV 2008)

FILE 'HCAPLUS' ENTERED AT 09:20:47 ON 19 NOV 2008
E US20040185347/PN

November 19, 2008

10/658,272

2

L1 1 SEA ABB=ON PLU=ON US20040185347/PN
 SEL RN

FILE 'REGISTRY' ENTERED AT 09:21:06 ON 19 NOV 2008
L2 54 SEA ABB=ON PLU=ON (463-79-6/BI OR 10377-51-2/BI OR
 105-58-8/BI OR 108-32-7/BI OR 108-88-3/BI OR 117-80-6/BI
 OR 1192-62-7/BI OR 1193-79-9/BI OR 126-33-0/BI OR
 127-63-9/BI OR 131651-65-5/BI OR 13243-65-7/BI OR
 1330-20-7/BI OR 14024-11-4/BI OR 14283-07-9/BI OR
 162684-16-4/BI OR 16851-82-4/BI OR 18424-17-4/BI OR
 1889-59-4/BI OR 21324-40-3/BI OR 271-89-6/BI OR 27359-10-
 0/BI OR 28122-14-7/BI OR 28452-93-9/BI OR 29935-35-1/BI
 OR 33454-82-9/BI OR 35363-40-7/BI OR 3680-02-2/BI OR
 37220-89-6/BI OR 39300-70-4/BI OR 4265-27-4/BI OR
 4437-85-8/BI OR 462-06-6/BI OR 524-42-5/BI OR 5535-43-3/B
 I OR 5535-48-8/BI OR 56525-42-9/BI OR 616-38-6/BI OR
 620-32-6/BI OR 623-53-0/BI OR 623-96-1/BI OR 625-86-5/BI
 OR 67-71-0/BI OR 693-98-1/BI OR 71-43-2/BI OR 7439-93-2/B
 I OR 7447-41-8/BI OR 7474-83-1/BI OR 77-77-0/BI OR
 7791-03-9/BI OR 80-05-7/BI OR 90076-65-6/BI OR 95-15-8/BI
 OR 96-49-1/BI)
 D COST
 D SAV
 ACT WEI27201/A

L3 STR

L4 45072 SEA SSS FUL L3

L5 1 SEA ABB=ON PLU=ON L2 AND L4
 D SCA

FILE 'HCAPLUS' ENTERED AT 09:23:10 ON 19 NOV 2008
L6 QUE ABB=ON PLU=ON ELECTROLYTE
L7 299 SEA ABB=ON PLU=ON L4(L)L6
L8 QUE ABB=ON PLU=ON (LI OR LITHIUM) (2A) SALT
L9 13 SEA ABB=ON PLU=ON L7 AND L8
L10 QUE ABB=ON PLU=ON LI OR LITHIUM
L11 QUE ABB=ON PLU=ON WEIGHT OR WT# OR MASS##
L12 48 SEA ABB=ON PLU=ON L7 AND L11
L13 QUE ABB=ON PLU=ON 0(W)(01 OR 02 OR 03 OR 04 OR 05 OR 1
 OR 10 OR 2 OR 20 OR 5 OR 50)
L14 15 SEA ABB=ON PLU=ON L12 AND L13
 D KWIC 1-2
L15 QUE ABB=ON PLU=ON 1 OR 2 OR 3 OR 5 OR 10 OR 12 OR 15
 RO 20
L16 15 SEA ABB=ON PLU=ON L14 AND L15
 D KWIC 1-2
L17 QUE ABB=ON PLU=ON L15(5A)L11
L18 13 SEA ABB=ON PLU=ON L16 AND L17
L19 2559243 SEA ABB=ON PLU=ON L13(3A)L15
L20 12 SEA ABB=ON PLU=ON L18 AND L19
 D KWIC 1-2
L21 QUE ABB=ON PLU=ON (ADDITIVE? OR ADJUVANT? OR AUXILIAR?
 OR MODIF? OR AGENT? OR ELECTROLYTE) (S)L11
L22 7 SEA ABB=ON PLU=ON L20 AND L21
 D KWIC 1-2
L23 16316 SEA ABB=ON PLU=ON L5
L24 5 SEA ABB=ON PLU=ON L23 AND L9
L25 1 SEA ABB=ON PLU=ON L22 AND L24
 D SCA

November 19, 2008

10/658,272

3

D KWIC
L26 5 SEA ABB=ON PLU=ON L24 OR L25
L27 6 SEA ABB=ON PLU=ON L22 NOT L26

FILE 'REGISTRY' ENTERED AT 10:18:59 ON 19 NOV 2008
L28 1 SEA ABB=ON PLU=ON 4265-27-4/RN
D SCA
L29 1 SEA ABB=ON PLU=ON L2 AND L28
D SCA
D RSD
L30 128811 SEA ABB=ON PLU=ON 333.200.32/RID AND C>8 NOT PMS/CI
NOT (P OR SI OR M OR X)/ELS
L31 49612 SEA ABB=ON PLU=ON 333.246.11/RID AND C>8 NOT PMS/CI
NOT (P OR SI OR M OR X)/ELS
L32 1 SEA ABB=ON PLU=ON 120-72-9/RN
D SCA
D RSD
L33 577123 SEA ABB=ON PLU=ON 333.151.57/RID AND C>8 NOT PMS/CI
NOT (P OR SI OR M OR X)/ELS

L34 3 SEA ABB=ON PLU=ON L30(L)L6
L35 56 SEA ABB=ON PLU=ON L28
L36 1 SEA ABB=ON PLU=ON L34 AND L35
L37 1 SEA ABB=ON PLU=ON L35 AND L6
L38 3 SEA ABB=ON PLU=ON L36 OR L34
L39 11604 SEA ABB=ON PLU=ON L31
L40 23 SEA ABB=ON PLU=ON L39 AND L6
L41 1 SEA ABB=ON PLU=ON L31(L)L6
D SCA
D HITSTR
L42 2 SEA ABB=ON PLU=ON L40 AND L10
L43 6 SEA ABB=ON PLU=ON L40 AND L13
L44 1 SEA ABB=ON PLU=ON L43 AND L17
D KWIC
L45 QUE ABB=ON PLU=ON BATTERY
L46 0 SEA ABB=ON PLU=ON L40 AND L45
L47 7 SEA ABB=ON PLU=ON L40 AND L11
D KWIC 1-2
D KWIC 3-7
L48 QUE ABB=ON PLU=ON ELECTRO?/SC,SX
L49 3 SEA ABB=ON PLU=ON L40 AND L48
L50 8 SEA ABB=ON PLU=ON L38 OR L41 OR L42 OR L49
D SCA
L51 7 SEA ABB=ON PLU=ON L50 NOT 28/SC,SX
D HITSTR
D HITSTR L49

FILE 'REGISTRY' ENTERED AT 11:13:28 ON 19 NOV 2008
L52 577123 SEA ABB=ON PLU=ON L33 OR L33
D RN 250000 L52
L53 287124 SEA RAN=(,622795-71-5) ABB=ON PLU=ON L33 OR L33
L54 289999 SEA ABB=ON PLU=ON L52 NOT L53

FILE 'HCAPLUS' ENTERED AT 11:16:50 ON 19 NOV 2008
L55 268046 SEA ABB=ON PLU=ON L53
L56 21187 SEA ABB=ON PLU=ON L54
L57 1158 SEA ABB=ON PLU=ON (L55 OR L56) AND L6
L58 265 SEA ABB=ON PLU=ON L53(L)L6
L59 2 SEA ABB=ON PLU=ON L54(L)L6
D HITSTR

November 19, 2008

10/658,272

4

L60 2 SEA ABB=ON PLU=ON (L58 OR L59) AND L10
L61 1 SEA ABB=ON PLU=ON (L58 OR L59) AND L45
L62 21 SEA ABB=ON PLU=ON (L58 OR L59) AND L11
L63 4 SEA ABB=ON PLU=ON L62 AND L19
D KWIC
L64 5 SEA ABB=ON PLU=ON L62 AND L17
D SCA
L65 4 SEA ABB=ON PLU=ON (L59 OR L60 OR L61)
L66 5 SEA ABB=ON PLU=ON L64 NOT L65

L67 13987 SEA ABB=ON PLU=ON L30
L68 16 SEA ABB=ON PLU=ON L67 AND L6
L69 2 SEA ABB=ON PLU=ON L68 AND L10
L70 2 SEA ABB=ON PLU=ON L68 AND L45
L71 1 SEA ABB=ON PLU=ON L68 AND L11
D SCA
D KWIC
L72 5 SEA ABB=ON PLU=ON L68 AND L48
D SCA
L73 4 SEA ABB=ON PLU=ON L72 NOT (27 OR 28)/SC,SX
L74 5 SEA ABB=ON PLU=ON (L69 OR L70 OR L71) OR L73
L75 2 SEA ABB=ON PLU=ON L74 NOT L38

FILE 'LREGISTRY' ENTERED AT 15:06:28 ON 19 NOV 2008

L76 STR
L77 18 SEA SSS SAM L76
E C3H4NO/MF
L78 0 SEA ABB=ON PLU=ON C3H4NO/MF

FILE 'REGISTRY' ENTERED AT 15:09:02 ON 19 NOV 2008

L79 59 SEA ABB=ON PLU=ON C3H4NO/MF
D SCA

FILE 'STNGUIDE' ENTERED AT 15:10:11 ON 19 NOV 2008

L80 0 SEA ABB=ON PLU=ON L79 AND OXAZOLE, 2,3-DIHYDRO-,

FILE 'REGISTRY' ENTERED AT 15:12:48 ON 19 NOV 2008

L81 1 SEA ABB=ON PLU=ON L79 AND OXAZOLE, 2,3-DIHYDRO-,
D SCA
L82 1 SEA ABB=ON PLU=ON L79 AND 2-OXAZOLYL, 2,3-DIHYDRO-
D SCA
L83 2 SEA ABB=ON PLU=ON (L81 OR L82)
L84 1 SEA ABB=ON PLU=ON 693-98-1/RN
D SCA
L85 1 SEA ABB=ON PLU=ON 16851-82-4/RN
D SCA
D IDE

FILE 'HCAPLUS' ENTERED AT 15:30:51 ON 19 NOV 2008

L86 3231 SEA ABB=ON PLU=ON L84
L87 135 SEA ABB=ON PLU=ON L85

FILE 'LREGISTRY' ENTERED AT 15:33:54 ON 19 NOV 2008

L88 STR

FILE 'REGISTRY' ENTERED AT 15:35:31 ON 19 NOV 2008

L89 SCR 2043 OR 2127
L90 50 SEA SSS SAM L88 NOT L89
L91 25372 SEA SSS FUL L88 NOT L89

SAV TEMP L91 WEI2726/A

FILE 'HCAPLUS' ENTERED AT 15:40:00 ON 19 NOV 2008

L92	28130	SEA ABB=ON	PLU=ON	L91
L93	223	SEA ABB=ON	PLU=ON	L91(L)L6
L94	490	SEA ABB=ON	PLU=ON	L92 AND L6
L95	13	SEA ABB=ON	PLU=ON	L84 AND L93
L96	62	SEA ABB=ON	PLU=ON	(L93 OR L94 OR L95) AND L19
L97	7	SEA ABB=ON	PLU=ON	L96 AND L17
L98	3	SEA ABB=ON	PLU=ON	L97 AND ELECTRO?/SC,SX
L99	65	SEA ABB=ON	PLU=ON	L93 AND L10
L100	51	SEA ABB=ON	PLU=ON	L93 AND L45
L101	15	SEA ABB=ON	PLU=ON	L93 AND L8
L102	35	SEA ABB=ON	PLU=ON	L99 AND L100
L103	13	SEA ABB=ON	PLU=ON	L101 AND L102
L104	1	SEA ABB=ON	PLU=ON	L95 AND L103
L105	11	SEA ABB=ON	PLU=ON	L95 NOT (L98 OR L103)
L106	135	SEA ABB=ON	PLU=ON	L85
L107	3	SEA ABB=ON	PLU=ON	L106 AND L6

=> fil hcap

FILE 'HCAPLUS' ENTERED AT 15:48:52 ON 19 NOV 2008

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 19 Nov 2008 VOL 149 ISS 21
 FILE LAST UPDATED: 18 Nov 2008 (20081118/ED)

HCAplus now includes complete International Patent Classification (IPC) reclassification data for the third quarter of 2008.

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d ibib abs hitstr hitind 198 1-3

L98	ANSWER 1 OF 3	HCAPLUS	COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER:	2006:168213	HCAPLUS	<u>Full-text</u>
DOCUMENT NUMBER:	144:236259		
TITLE:	Proton-conducting film-like membranes and polymer electrolyte fuel cells		
INVENTOR(S):	Uno, Keiichi		
PATENT ASSIGNEE(S):	Japan		
SOURCE:	Jpn. Kokai Tokkyo Koho, 10 pp.		

CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2006054156	A	20060223	JP 2004-260305	200408 11
PRIORITY APPLN. INFO.:			JP 2004-260305	200408 11

AB Film-like membranes, obtained by supported polymerization of compns., consisting of (I) 1-60 weight% macromol. compds. and 40-99 weight% of (II) monomers containing polymerizable functional groups and proton donating groups, (III) low mol.-weight compds. having proton donating groups, and/or (IV) organic amines, where [(III) + (IV)]/(II) is 0.1-20, is claimed. Polymer electrolyte fuel cells including the membranes are also claimed. The membranes are free of degradation in their mech. strength on wetting, decrease in their proton conductivity at high- and low-temperature, and methanol crossover.
 IT 693-98-1, 2-Methylimidazole
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (high strength proton-conducting polymer films for polymer electrolyte fuel cells)
 RN 693-98-1 HCPLUS
 CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38
 ST polymer electrolyte fuel cell proton conductor membrane;
 PEFC proton conductor membrane film strength
 IT Polysulfones, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (UDEL; high strength proton-conducting polymer films for polymer electrolyte fuel cells)
 IT Fluoropolymers, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (high strength proton-conducting polymer films for polymer electrolyte fuel cells)
 IT Polyimides, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (polyamide-; high strength proton-conducting polymer films for polymer electrolyte fuel cells)

IT Polysulfones, uses
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(polyether-, Radel A; high strength proton-conducting polymer films for polymer electrolyte fuel cells)

IT Polysulfones, uses
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(polyether-; high strength proton-conducting polymer films for polymer electrolyte fuel cells)

IT Polyamides, uses
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(polyimide-; high strength proton-conducting polymer films for polymer electrolyte fuel cells)

IT Fuel cells
(polymer electrolyte; high strength proton-conducting polymer films for polymer electrolyte fuel cells)

IT Ionic conductors
(polymeric, proton; high strength proton-conducting polymer films for polymer electrolyte fuel cells)

IT Polyethers, uses
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(polysulfone-, Radel A; high strength proton-conducting polymer films for polymer electrolyte fuel cells)

IT Polyethers, uses
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(polysulfone-; high strength proton-conducting polymer films for polymer electrolyte fuel cells)

IT Polyesters, uses
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(support film; high strength proton-conducting polymer films for polymer electrolyte fuel cells)

IT 693-98-1, 2-Methylimidazole 24937-79-9, KF 1700
27119-07-9 28210-41-5, p-Styrenesulfonic acid homopolymer
29727-06-8, Imidazolium trifluoromethanesulfonate 512813-38-6
869728-20-1 876656-01-8 876665-90-6, Vylomax MT 5050HR11NN
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(high strength proton-conducting polymer films for polymer electrolyte fuel cells)

L98 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 1999:529311 HCAPLUS Full-text
DOCUMENT NUMBER: 131:150684
TITLE: Electrolyte and tin-silver
electroplating process
INVENTOR(S): Toben, Michael P.; Marcktell, Daniel C.; Brown,
Neil D.; Doyle, Colleen A.
PATENT ASSIGNEE(S): Learonal, Inc., USA
SOURCE: PCT Int. Appl., 21 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

November 19, 2008

10/658,272

8

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
WO 9941433	A1	19990819	WO 1999-US3056	199902 11
W: JP				
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
US 6210556	B1	20010403	US 1999-246310	199902 08
EP 1062383	A1	20001227	EP 1999-906970	199902 11
R: DE, FR, GB, IT, NL				
JP 2004510046	T	20040402	JP 2000-531608	199902 11
PRIORITY APPLN. INFO.:			US 1998-74481P	P 199802 12
			US 1999-246310	A 199902 08
			WO 1999-US3056	W 199902 11

AB The invention relates to an electrolyte for depositing tin-rich tin-silver alloys upon a substrate. This electrolyte includes a basis solution containing a solution soluble tin and silver compds.; a tin chelating agent of a polyhydroxy compound in an amount sufficient to complex tin ions provided by the tin compound; and a silver chelating agent of a heterocyclic compound in an amount sufficient to complex silver ions provided by the silver compound. Preferably, the tin and silver compds. are present in relative amts. to enable deposits containing about 85 to 99 % by weight tin and about 0.5 to 15 % by weight silver to be obtained.

IT 288-32-4, Imidazole, properties

RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)

(electroplating tin-silver alloy in solution containing)

RN 288-32-4 HCPLUS

CN 1H-Imidazole (CA INDEX NAME)

IC ICM C25D003-60
 CC 72-8 (Electrochemistry)
 Section cross-reference(s): 56
 ST electrolyte tin silver alloy electroplating
 IT Electrodeposition

(electrolyte and tin-silver electroplating process)

IT Chelating agents
 (for tin and silver, use in electrolyte for tin-silver electroplating)

IT Electrolytes
 (for tin-silver electroplating process)

IT Temperature
 pH
 (of electrolyte for electroplating tin-silver alloy)

IT Complexation
 (of tin and silver in electrolyte for tin-silver electroplating process)

IT Electrodeposits
 (tin rich tin-silver alloys, electrolyte for electroplating)

IT 11144-61-9 235413-93-1, Silver 0.5-15, tin 85-100
 RL: FMU (Formation, unclassified); PEP (Physical, engineering or chemical process); PRP (Properties); FORM (Formation, nonpreparative); PROC (Process)
 (electrolyte and tin-silver electroplating process)

IT 77-71-4, Dimethylhydantoin 87-99-0, Xylitol 123-56-8, Succinimide 288-32-4, Imidazole, properties 461-72-3, Hydantoin 868-18-8, Sodium tartrate, properties 2386-52-9, Silver methanesulfonate 7488-55-3, Stannous sulfate 7761-88-8, Silver nitrate, properties 7772-99-8, Stannous chloride, properties 11105-10-5, Triton QS 15 39423-51-3, Jeffamine t-403 60940-69-4 95860-13-2, Tin methanesulfonate
 RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)
 (electroplating tin-silver alloy in solution containing)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L98 ANSWER 3 OF 3 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1994:710438 HCPLUS Full-text
 DOCUMENT NUMBER: 121:310438
 ORIGINAL REFERENCE NO.: 121:56649a,56652a
 TITLE: Bright acid tin plating bath and brightener for bright acid tin plating baths
 INVENTOR(S): Szelag, Petr; Zaruba, Jiri; Zarubova, Helena
 PATENT ASSIGNEE(S): Czech.
 SOURCE: Czech., 6 pp.
 CODEN: CZXXA9
 DOCUMENT TYPE: Patent
 LANGUAGE: Czech
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	
CS 277257	B6	19921216	CS 1990-5064	199010 18
PRIORITY APPLN. INFO.:			CS 1990-5064	199010 18

OTHER SOURCE(S):
GI

MARPAT 121:310438

AB The claimed bath contains 20-50 mL/L of the title brightener. The brightener contains (a) 15-60 weight % nonionic surfactants of the types of ethoxylated alkylphenols, polyethylene glycol with an average mol. weight 300-600, and polyethylene glycol-polypropylene glycol block copolymer with an average mol. weight 1500-2000 in the polypropylene glycol part and containing 30-50 weight % of the polyethylene glycol part, with 0.25 weight % as the min. amount of 1 type of this surfactant in the mixture; (b) 3-15 weight % of an amphoteric surfactant derived from imidazole, with the general formula I, where R=C8-18 alkyl; R1=H, CH2COOM, CH2CH2COOM; R2= COOM, CH2COOM, CHOCH2SO3M; A=OH-, (1/2)SO42-; and M=H+, Na+, K+; (c) 0.1-5 weight % hydroquinone or pyrocatechol or their mixture; (d) 0.2-8 weight % benzalacetone or o-chlorobenzaldehyde or their mixture; (e) 0.01-1 weight % acrylic acid; (f) 1-4 weight % H2SO4; and (g) demineralized water or C1-3 alcs. or a mixture of water with these alcs. being the difference to 100 weight %. The synergic effect of the organic and inorg. components extends the useful life of the bath by 30-50 %. Cl- impurities \leq 700 mg/L are tolerated.

IT 288-32-4D, Imidazole, derivs.

RL: USES (Uses)

(in brightener for acid tin plating baths)

RN 288-32-4 HCPLUS

CN 1H-Imidazole (CA INDEX NAME)

IC ICM C25D003-30

CC 72-8 (Electrochemistry)

Section cross-reference(s): 46

IT Electrolytes

(brightener for acid tin plating)

IT 79-10-7, Acrylic acid, uses 79-39-0, Methacrylic acid amide

89-98-5, o-Chlorobenzaldehyde 108-95-2D, Phenol, alkyl,

ethoxylated 120-80-9, Pyrocatechol, uses 122-57-6, Benzalacetone 123-31-9, Hydroquinone, uses 288-32-4D, Imidazole, derivs.

7311-34-4, 3,5-Dimethoxybenzaldehyde 7664-93-9, Sulfuric acid,

uses 9016-45-9, Ethoxylated nonylphenol 9036-19-5, Ethoxylated octylphenol 25322-68-3, Polyethylene glycol 106392-12-5,

Ethylene glycol-propylene glycol block copolymer

RL: USES (Uses)

(in brightener for acid tin plating baths)

=> d ibib abs hitstr hitind 1105 1-11

L105 ANSWER 1 OF 11 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2008:319011 HCAPLUS Full-text
 DOCUMENT NUMBER: 148:311482
 TITLE: Fuel cell with enzyme-immobilized electrode and
 buffer-containing electrolyte and electronic
 apparatus
 INVENTOR(S): Nakagawa, Takaaki; Sakai, Hideki; Sugiyama,
 Hiroyoshi
 PATENT ASSIGNEE(S): Sony Corp., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 33pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 2008060067	A	20080313	JP 2007-155973	200706 13
PRIORITY APPLN. INFO.:			JP 2006-212889	A 200608 04

AB The fuel cell has an electrolyte held between a cathode and an anode with an enzyme immobilized on one or both of the electrodes, and contains a buffer substance containing an imidazole ring-containing compound. The electronic apparatus is equipped with the above fuel cell. Alternatively, the fuel cell is equipped with the electrolyte containing 2-aminoethanol, triethanolamine, TES, and/or BES. The fuel cell provides high buffer efficiency at high power output operation.

IT 288-32-4, Imidazole, uses 693-98-1,

2-Methylimidazole

RL: MOA (Modifier or additive use); USES (Uses)

(imidazole compound in buffer-containing electrolyte for fuel
 cell with enzyme-immobilized electrode and electronic apparatus)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (CA INDEX NAME)

RN 693-98-1 HCAPLUS

CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 76
 IT 71-00-1, Histidine, uses 288-32-4, Imidazole, uses
 616-47-7, 1-Methylimidazole 693-98-1, 2-Methylimidazole
 822-36-6, 4-Methylimidazole
 RL: MOA (Modifier or additive use); USES (Uses)
 (imidazole compound in buffer-containing electrolyte for fuel
 cell with enzyme-immobilized electrode and electronic apparatus)

L105 ANSWER 2 OF 11 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2007:1333492 HCAPLUS Full-text
 DOCUMENT NUMBER: 147:541996
 TITLE: Porous metal organic framework and electrolyte
 based on pyrroles and pyridinones
 INVENTOR(S): Richter, Ingo; Schubert, Markus; Mueller, Ulrich
 PATENT ASSIGNEE(S): BASF Aktiengesellschaft, Germany
 SOURCE: PCT Int. Appl., 42pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	---	-----	-----	-----
WO 2007131955	A1	20071122	WO 2007-EP54568	200705 11
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW	RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			
PRIORITY APPLN. INFO.:			EP 2006-114001	A 200605 16

OTHER SOURCE(S): CASREACT 147:541996

AB The invention relates to a process for preparing a porous metal organic framework (e.g., Zn) containing at least one organic compound coordinated to at least one metal ion, which comprises the step of oxidation of at least one anode containing metal corresponding to the at least one metal ion in a reaction medium in the presence of the at least one organic compound, where the at least one organic compound is a monocyclic, bicyclic or polycyclic ring system which is derived at least from one of the heterocycles selected from the group consisting of pyrrole, alpha-pyridone and gamma-pyridone and has at least two ring nitrogens, where the ring system is unsubstituted or has one or more substituents selected independently from the group consisting of halogen, C1-6-alkyl, Ph, NH₂, NH(C1-6-alkyl), N(C1-6-alkyl)₂, OH, Ophenyl and OC1-6-alkyl, where the substituents C1-6-alkyl and Ph are unsubstituted or have one

or more substituents selected independently from the group consisting of halogen, NH₂, NH(C₁-6-alkyl), N(C₁-6-alkyl)₂, OH, Ophenyl and OC₁-6-alkyl.
IT 693-98-1 1072-62-4, 2-Ethylimidazole
RL: RCT (Reactant); RACT (Reactant or reagent)
(porous metalorg. framework and electrolyte based on pyrroles and pyridinones)
RN 693-98-1 HCAPLUS
CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

RN 1072-62-4 HCAPLUS
CN 1H-Imidazole, 2-ethyl- (CA INDEX NAME)

CC 29-9 (Organometallic and Organometalloidal Compounds)
Section cross-reference(s): 72
IT 51-17-2, Benzimidazole 61-82-5, 3-Amino-1,2,4-triazole 288-88-0,
1H-1,2,4-Triazole 512-42-5, Sodium methylsulfate 557-01-7,
2-Hydroxypyrimidine 693-98-1 1072-62-4,
2-Ethylimidazole 1455-77-2, 3,5-Diamino-1,2,4-triazole
4562-27-0, 4-Hydroxypyrimidine 13106-24-6,
Methyltributylammoniummethyl sulfate
RL: RCT (Reactant); RACT (Reactant or reagent)
(porous metalorg. framework and electrolyte based on pyrroles and pyridinones)
REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR
THIS RECORD. ALL CITATIONS AVAILABLE IN
THE RE FORMAT

L105 ANSWER 3 OF 11 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2006:1293606 HCAPLUS [Full-text](#)
DOCUMENT NUMBER: 147:388905
TITLE: Multi-functional zwitterionic compounds as
additives for lithium battery electrolytes
AUTHOR(S): Nguyen, Dinh Quan; Hwang, Jungmin; Lee, Je
Seung; Kim, Honggon; Lee, Hyunjoo; Cheong,
Minserk; Lee, Bora; Kim, Hoon Sik
CORPORATE SOURCE: Department of Chemistry, Kyung Hee University,
Seoul, Dongdaemoon-gu, 130-701, S. Korea
SOURCE: Electrochemistry Communications (2006), Volume
Date 2007, 9(1), 109-114
CODEN: ECCMF9; ISSN: 1388-2481
PUBLISHER: Elsevier B.V.
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Multi-functional zwitterionic compds. having both ester and sulfonate groups
were synthesized and their electrochem. properties were studied. The effect

of added zwitterionic compds. on the cycling performance of the cell containing 1 M LiPF₆ in EC, DMC, and EMC (1/1/1 by volume) was also examined. The cell capacity was not varied much at 1/5 C up to 50 cycles with the addition of either 2.25% N-methylpyrrolidinium-N-(Pr sulfonate) (MePyS) or N-methylpiperidinium-N-(Pr sulfonate) (MePipS) as an additive, but dropped significantly at higher C rate of 1 C. Such a sharp decrease of the performance at higher C rate was not observed when MePyS or MePipS was replaced by N-(2-acetoxyethyl) pyrrolidinium-N-(Pr sulfonate) (EsPyS) or N-(2-acetoxyethyl) piperidinium-N-(Pr sulfonate) (EsPipS), implying the pos. role of the ester functional group. FTIR study clearly demonstrates that ester-containing zwitterionic compds. are able to interact with Li⁺ ions through both sulfonate and ester functional groups.

IT 950676-42-3P 950676-43-4P

RL: PRP (Properties); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(multi-functional zwitterionic compds. as additives for lithium battery electrolytes)

RN 950676-42-3 HCPLUS

CN 1H-Imidazolium, 3-[2-(acetyloxy)ethyl]-1-(3-sulfopropyl)-, inner salt (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

RN 950676-43-4 HCPLUS

CN 1H-Imidazolium, 3-[2-(acetyloxy)ethyl]-2-methyl-1-(3-sulfopropyl)-, inner salt (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

IT 288-32-4, Imidazole, reactions 693-98-1,

2-Methylimidazole

RL: RCT (Reactant); RACT (Reactant or reagent)

(multi-functional zwitterionic compds. as additives for lithium battery electrolytes)

RN 288-32-4 HCPLUS

CN 1H-Imidazole (CA INDEX NAME)

RN 693-98-1 HCAPLUS
 CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 27, 28, 46
 IT 160788-56-7P 876610-32-1P 950676-40-1P 950676-41-2P
 950676-42-3P 950676-43-4P 950676-44-5P
 RL: PRP (Properties); SPN (Synthetic preparation); TEM (Technical or
 engineered material use); PREP (Preparation); USES (Uses)
 (multi-functional zwitterionic compds. as additives for lithium
 battery electrolytes)
 IT 68-12-2, Dimethyl formamide, reactions 75-36-5, Acetyl chloride
 96-34-4, Methyl chloroacetate 288-32-4, Imidazole,
 reactions 693-98-1, 2-Methylimidazole 1120-71-4,
 1,3-Propanesultone 1310-73-2, Sodium hydroxide, reactions
 2955-88-6, 1-(2-Hydroxyethyl)pyrrolidine 7646-69-7, Sodium hydride
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (multi-functional zwitterionic compds. as additives for lithium
 battery electrolytes)

REFERENCE COUNT: 24 THERE ARE 24 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L105 ANSWER 4 OF 11 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2006:1027137 HCAPLUS Full-text
 DOCUMENT NUMBER: 146:29953
 TITLE: About the choice of the protogenic group in
 polymer electrolyte membranes: Ab initio
 modelling of sulfonic acid, phosphonic acid, and
 imidazole functionalized alkanes
 AUTHOR(S): Paddison, Stephen J.; Kreuer, Klaus-Dieter;
 Maier, Joachim
 CORPORATE SOURCE: Department of Chemistry and Materials Science,
 University of Alabama in Huntsville, Huntsville,
 AL, 35899, USA
 SOURCE: Physical Chemistry Chemical Physics (2006),
 8(39), 4530-4542
 CODEN: PPCPFQ; ISSN: 1463-9076
 PUBLISHER: Royal Society of Chemistry
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB The use of sulfonic acid, phosphonic acid, or imidazole as the protogenic
 group in polymer electrolyte membranes for fuel cells operating at
 intermediate temperature ($T > 100^\circ$) and very low humidity conditions was
 examined by comparing specific mol. properties obtained with 1st principles-
 based electronic structure calcns. Potential energy profiles determined at the
 B3LYP/6-311G** level for rotation of imidazole, phosphonic acid and sulfonic
 acid functional groups on saturated heptyl chains revealed that the torsional
 barriers are 3.9, 10.0, and 15.9 kJ/mol, resp.; indicating that the imidazole
 is the most labile when tethered to an alkyl chain. Min. energy conformations
 (B3LYP/6-311G**) of Me dimers of each of the acids indicated that the binding
 of the pairs of the acids is greatest in the phosphonic acids and lowest for

the imidazoles. Comparison of the ZPE corrected total energies of the Me acid dimers with corresponding pairs consisting of the conjugate acid and conjugate base revealed that the energy penalty in transferring the p (from acid to acid) was greatest for imidazole (120.1 kJ/mol) and least for the phosphonic acid (37.2 kJ/mol). This result agrees with measured p conductivities of acid-functionalized heptyl compds. under dry conditions and further supports the observation that phosphonic acid possesses the best amphoteric character, critical in achieving p conductivity when no solvent (i.e. H₂O) is present. BSSE corrected binding energies were computed for the Me acids with a single H₂O mol. and indicated that while the magnitude of the interaction of the sulfonic and phosphonic acids with H₂O are similar (47.3 and 44.4 kJ/mol, resp.), the binding is much weaker to the imidazole (28.8 kJ/mol). The oxo-acids will probably retain H₂O better under very low humidity conditions and the dynamics of H bonding of the 1st hydration H₂O mols. will be more constrained with -SO₃H and -PO₃H₂ than with imidazole.

IT 693-98-1, 2-Methyl imidazole 30346-87-3, Methyl imidazole 75202-33-4

RL: PRP (Properties)

(choice of protogenic group in polymer electrolyte membranes for fuel cells: ab initio modeling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes)

RN 693-98-1 HCPLUS

CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

RN 30346-87-3 HCPLUS

CN 1H-Imidazole, methyl- (CA INDEX NAME)

D1-Me

RN 75202-33-4 HCPLUS

CN 1H-Imidazole, 2-methyl-, ion(1-) (CA INDEX NAME)

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 22, 65

IT 75-75-2, Methyl sulfonic acid 693-98-1, 2-Methyl imidazole
993-13-5, Methyl phosphonic acid 16053-58-0 26428-16-0
30346-87-3, Methyl imidazole 39863-50-8 75202-33-4
114550-92-4 260799-11-9

RL: PRP (Properties)

(choice of protogenic group in polymer electrolyte
membranes for fuel cells: ab initio modeling of sulfonic acid,
phosphonic acid, and imidazole functionalized alkanes)

REFERENCE COUNT: 78 THERE ARE 78 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L105 ANSWER 5 OF 11 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2005:822804 HCAPLUS Full-text
DOCUMENT NUMBER: 143:196912
TITLE: Proton-conducting electrolyte material for fuel
cell
INVENTOR(S): Saito, Toshiya; Hase, Kohei
PATENT ASSIGNEE(S): Toyota Motor Corp., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2005222890	A	20050818	JP 2004-32103	200402 09
CA 2527705	A1	20050818	CA 2005-2527705	200501 18
WO 2005076398	A1	20050818	WO 2005-JP817	200501 18
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
CN 1788380	A	20060614	CN 2005-80000403	200501 18
CN 100377406	C	20080326		
EP 1715541	A1	20061025	EP 2005-704028	200501 18
R: DE, FR, GB, IT				
US 20060177716	A1	20060810	US 2005-560787	200512 14
PRIORITY APPLN. INFO.:			JP 2004-32103	A
				200402 09

WO 2005-JP817
W
200501
18

AB The claimed electrolyte material consists of (a) Bronsted acid and (b) base having an unshared electron pair, where the base has ≥ 1 of group satisfying nos. of constituent atoms other than H ≤ 3 . The base may be selected from derivs. of imidazole, pyrazole, triazole, pyridine, pyrazine, pyrimidine, and pyridazine. The material provides high proton conductivity under humidification-free condition.

IT 693-98-1, 2-Methylimidazole

RL: TEM (Technical or engineered material use); USES (Uses)
(proton-conducting electrolyte material containing Bronsted acid and unshared electron pair-containing base for fuel cell)

RN 693-98-1 HCPLUS

CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

IC ICM H01M008-02

ICS H01M008-10

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT 51-17-2, Benzimidazole 75-75-2, Methanesulfonic acid 103-74-2,
2-(2-Hydroxyethyl)pyridine 104-15-4, p-Toluenesulfonic acid, uses
288-13-1D, Pyrazole, derivs. 288-88-0D, 1H-1,2,4-Triazole, derivs.
289-80-5D, Pyridazine, derivs. 289-95-2D, Pyrimidine, derivs.
290-37-9D, Pyrazine, derivs. 616-47-7, 1-Methylimidazole
693-98-1, 2-Methylimidazole

RL: TEM (Technical or engineered material use); USES (Uses)
(proton-conducting electrolyte material containing Bronsted acid and unshared electron pair-containing base for fuel cell)

L105 ANSWER 6 OF 11 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2005:546330 HCPLUS Full-text

DOCUMENT NUMBER: 143:81095

TITLE: Imidazolium solid polymer electrolytes and fuel cells

INVENTOR(S): Fujibayashi, Nobuki

PATENT ASSIGNEE(S): Samsung SDI Co., Ltd., S. Korea

SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----

JP 2005166598	A	20050623	JP 2003-407443	200312 05
KR 2005054814	A	20050610	KR 2004-73363	

PRIORITY APPLN. INFO.:

JP 2003-407443

A

200409

14

200312

05

OTHER SOURCE(S):

MARPAT 143:81095

GI

AB The title electrolytes providing high ionic conductivity in 100-300° in relative humidity below 50% comprise a polymer, amine derivative cations, and anions. The amine derivative cations include 2-imidazolium derivs. (I: R₁ = C1+ alkyl), pyridinium derivs., 1,2,3-imidazolium (II: R₂₋₄ = H, C1+ alkyl, but not simultaneously H), pyridinium derivs. (III: R₅ = C1+ alkyl), and/or quaternary ammonium derivs. (IV: R₆₋₉ = C1+ alkyl). The anions may include AlCl₄⁻, Al₃C₁₈⁻, Al₂C₁₇⁻, PF₆⁻, BF₄⁻, CF₃SO₃⁻, (CF₃SO₂)₂N⁻, and/or (CF₃SO₂)₃C⁻. The polymer may include polytetrafluoroethylene, polyether ether ketone, polybenzimidazole, polybenzoxazole, and/or polybenzothiazole. The electrolyte composition gives sufficient proton conductivity and makes the fuel cells operable in sufficient output power in 100-300° in relative humidity below 50%.

IT 288-32-4, Imidazole, uses 693-98-1,
2-Methylimidazole

RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(solid polymer electrolyte composition, for fuel cells;
imidazolium solid polymer electrolytes and fuel cells)

RN 288-32-4 HCPLUS

CN 1H-Imidazole (CA INDEX NAME)

RN 693-98-1 HCPLUS

CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

IC ICM H01M008-02

ICS H01B001-06; H01M008-10

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 28
 IT 288-32-4, Imidazole, uses 693-98-1,
 2-Methylimidazole 9002-84-0D, Polytetrafluoroethylene, reformed
 with sulfonic acid derivs. 82113-65-3 145022-44-2,
 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate 551952-12-6
 RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
 (solid polymer electrolyte composition, for fuel cells;
 imidazolium solid polymer electrolytes and fuel cells)

L105 ANSWER 7 OF 11 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2004:470646 HCPLUS Full-text
 DOCUMENT NUMBER: 141:26115
 TITLE: Ionic compounds showing high carrier ion mobility, their electrolytes, and electrochemical devices containing the electrolytes
 INVENTOR(S): Ono, Hiroyuki; Yoshizawa, Masahiro
 PATENT ASSIGNEE(S): Yuasa Corporation, Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2004161615	A	20040610	JP 2002-288857	200210 01
PRIORITY APPLN. INFO.:			JP 2002-278237	A 200209 24

OTHER SOURCE(S): MARPAT 141:26115
 GI

AB The compds. comprise organic ions comprising pos. partial structures and neg. partial structures, and showing total pos. or neg. charges, and carrier ions having charges opposite to those of the organic ions. Preferably, the compds. are alkali metal imidazolium disulfonates I (R₁, R₂ = H, Me; M⁺ = alkali metal ion; n, m = 3-18). The electrochem. devices, preferably Li batteries, suppress polarization.
 IT 288-32-4, Imidazole, reactions 693-98-1,
 2-Methylimidazole
 RL: RCT (Reactant); RACT (Reactant or reagent)

November 19, 2008

10/658,272

21

(ionic compds. showing high carrier ion mobility as electrolytes for electrochem. devices suppressing polarization)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (CA INDEX NAME)

RN 693-98-1 HCAPLUS

CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

IC ICM C07D233-60

ICS H01B001-06; H01G009-00; H01G009-025; H01M010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 28, 72, 76

IT 288-32-4, Imidazole, reactions 693-98-1,

2-Methylimidazole 822-36-6, 4-Methylimidazole 1120-71-4,

1,3-Propanesultone

RL: RCT (Reactant); RACT (Reactant or reagent)

(ionic compds. showing high carrier ion mobility as electrolytes for electrochem. devices suppressing polarization)

L105 ANSWER 8 OF 11 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:40449 HCAPLUS Full-text

DOCUMENT NUMBER: 138:109584

TITLE: Electrolyte raw material kit, electrolyte composition, and sensitized photoelectrochemical cell

INVENTOR(S): Murai, Shinji; Mikoshiba, Satoru; Kakuno, Hiroyasu; Hayase, Shuji

PATENT ASSIGNEE(S): Toshiba Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 20 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----

JP 2003017147	A	20030117	JP 2001-199649	200106 29
---------------	---	----------	----------------	--------------

PRIORITY APPLN. INFO.:	JP 2001-199649	200106
------------------------	----------------	--------

AB The kit is a 2 component kit, including a I containing electrolyte and a Si compound having OH or hydrolyzable groups attached to the Si atom. The electrolyte composition is a mixture of the I containing electrolyte and the Si compound. The photoelectrochem. cell has the electrolyte between a pigment sensitized n-semiconductor electrode and a counter electrode.

IT 693-98-1, 2-Methylimidazole

RL: DEV (Device component use); USES (Uses)
(bicomponent electrolyte kits containing iodine and silicon compds. for photoelectrochem. cells)

RN 693-98-1 HCPLUS

CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

IC ICM H01M014-00

ICS H01L031-04

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

IT 77-58-7 96-48-0, γ -Butyrolactone 96-49-1, Ethylene carbonate 107-12-0, Propionitrile 126-33-0, Sulfolane 693-98-1, 2-Methylimidazole 3089-06-3 7553-56-2, Iodine, uses 7681-11-0, Potassium iodide, uses 25068-38-6, Bisphenol A epoxy resin 77396-40-8, Sat 30 143314-16-3 486459-39-6 486459-40-9 486459-41-0 486459-42-1 486459-43-2 486459-44-3
RL: DEV (Device component use); USES (Uses)
(bicomponent electrolyte kits containing iodine and silicon compds. for photoelectrochem. cells)

L105 ANSWER 9 OF 11 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1989:157705 HCPLUS Full-text

DOCUMENT NUMBER: 110:157705

ORIGINAL REFERENCE NO.: 110:26061a,26064a

TITLE: Primary batteries having copper anodes

INVENTOR(S): Sawa, Natsuo

PATENT ASSIGNEE(S): Shikoku Chemicals Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 2 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	

JP 63261680	A	19881028	JP 1987-95737	198704
				17
PRIORITY APPLN. INFO.:			JP 1987-95737	198704
				17

OTHER SOURCE(S): MARPAT 110:157705

GI

- AB The title batteries have an electrolyte containing ≥ 1 of 1-unsubstituted imidazole I (R1 = H, alkyl; R2 = H, Me). Thus, a paste of Ni hydroxide, carbon powder, and Me cellulose; and a C bar were inserted in the center hole of a cylindrical Cu anode with a separator in between, and the assembly was impregnated with an aqueous 1N 2-methylimidazole electrolyte to form a primary battery having a .apprx.0.5-V voltage at 25°, which showed no electrolyte leakage.
- IT 288-32-4, Imidazole, uses and miscellaneous 693-98-1
 , 2-Methylimidazole
 RL: USES (Uses)
 (electrolyte, for primary copper batteries)
- RN 288-32-4 HCPLUS
- CN 1H-Imidazole (CA INDEX NAME)

- RN 693-98-1 HCPLUS
- CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

- IC ICM H01M006-04
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
- IT 288-32-4, Imidazole, uses and miscellaneous 693-98-1
 , 2-Methylimidazole
 RL: USES (Uses)
 (electrolyte, for primary copper batteries)

L105 ANSWER 10 OF 11 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1989:143597 HCPLUS Full-text
 DOCUMENT NUMBER: 110:143597
 ORIGINAL REFERENCE NO.: 110:23559a,23562a
 TITLE: Heat-sensitive batteries
 INVENTOR(S): Sawa, Natsuo
 PATENT ASSIGNEE(S): Shikoku Chemicals Corp., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 3 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent

LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 63237362	A	19881003	JP 1987-73857	198703 26
PRIORITY APPLN. INFO.:			JP 1987-73857	198703 26

OTHER SOURCE(S): MARPAT 110:143597
 GI

AB Batteries contain a meltable solid material containing imidazole deriv(s). I (R = H, alkyl, PhCH₂, tolyl; R1 = H, Me, PhCH₂) between their Zn anode and cathode, and the material is melted by external heating and form molten electrolyte to activate the batteries. These batteries are useful as sensors of overheating, fire, and etc. Thus, a battery having a Pt cathode indise a cylindrical Zn anode and a filter-paper separator containing impregnated solidified 2-undecylimidazole produced 0.15 V voltage when its temperature reached 75° by external heating.

IT 693-98-1, 2-Methylimidazole 16731-68-3,
 2-Undecylimidazole
 RL: PRP (Properties)
 (electrolyte, for heat-sensitive batteries, in alarm devices)

RN 693-98-1 HCPLUS
 CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

RN 16731-68-3 HCPLUS
 CN 1H-Imidazole, 2-undecyl- (CA INDEX NAME)

IC ICM H01M006-30
 ICS H01M006-36
 CC 72-10 (Electrochemistry)
 Section cross-reference(s): 69
 IT 693-98-1, 2-Methylimidazole 16731-68-3,
 2-Undecylimidazole
 RL: PRP (Properties)
 (electrolyte, for heat-sensitive batteries, in alarm
 devices)

L105 ANSWER 11 OF 11 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1989:118364 HCAPLUS Full-text
 DOCUMENT NUMBER: 110:118364
 ORIGINAL REFERENCE NO.: 110:19487a,19490a
 TITLE: Primary manganese dioxide-zinc batteries
 INVENTOR(S): Sawa, Natsuo
 PATENT ASSIGNEE(S): Shikoku Chemicals Corp., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 2 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
-----	-----	-----	-----	-----
JP 63248071	A	19881014	JP 1987-82558	198704 02
PRIORITY APPLN. INFO.:			JP 1987-82558	198704 02

OTHER SOURCE(S): MARPAT 110:118364
 GI

AB The title batteries have an electrolyte containing essentially ≥ 1 of imidazoles I (R1 = H, alkyl; R2 = H, Me) with the 1-position unsubstituted. Addition of the imidazole suppresses corrosion of the batteries, and prevents electrolyte leakage. A Zn-MnO₂ battery using an aqueous 1 N 2-methylimidazole solution as electrolyte had a voltage of 1.25 V at 25°.
 IT 288-33-4, Imidazole, uses and miscellaneous 693-98-1, 2-Methylimidazole
 RL: USES (Uses)
 (electrolyte, for primary zinc-manganese dioxide batteries)
 RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (CA INDEX NAME)

RN 693-98-1 HCAPLUS
 CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

IC ICM H01M006-06
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 IT 288-32-4, Imidazole, uses and miscellaneous 693-98-1
 , 2-Methylimidazole
 RL: USES (Uses)
 (electrolyte, for primary zinc-manganese dioxide batteries)

=> d ibib abs hitstr hitind 1103 1-13

L103 ANSWER 1 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2008:1113375 HCAPLUS Full-text
 DOCUMENT NUMBER: 149:429128
 TITLE: Aqueous electrolyte with good high-temperature storage characteristics for lithium secondary batteries
 INVENTOR(S): Kim, Bo Hyeon; Choi, Jong Hyeok; Yoo, Gwang Ho;
 Yoo, Ji Sang; Shin, Yeong Jun
 PATENT ASSIGNEE(S): LG Chem, Ltd., S. Korea
 SOURCE: Repub. Korean Kongkae Taeho Kongbo, 9pp.
 CODEN: KRXXA7
 DOCUMENT TYPE: Patent
 LANGUAGE: Korean
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
KR 2008081749	A	20080910	KR 2007-22191	200703 06
JP 2008218384	A	20080918	JP 2007-206620	200708 08
PRIORITY APPLN. INFO.:			KR 2007-22191	A 200703 06

AB This aqueous electrolyte contains a Li salt and organic solvent. The electrolyte also contains 1-ethyl-2,3-dimethylimidazolium cation with the anion a halogen, ClO₄⁻, B10C110⁻, PF₆⁻, CF₃SO₃⁻, CF₃CO₂⁻, AsF₆⁻, SbF₆⁻, AlCl₄⁻, MeSO₃⁻, CF₃SO₃⁻, C₂F₅SO₂⁻, (CF₃SO₂)(C₄F₉SO₂)⁻, CF₃SO₂⁻, and low-level aliphatic carboxylic acid group. The electrolyte has good high-temperature storage characteristics, so the electrolyte can be used in Li secondary batteries at high temperature and used for elec. automobiles.

IT 131097-15-9D, halogenide

RL: TEM (Technical or engineered material use); USES (Uses)
(aqueous electrolyte with good high-temperature storage
characteristics for lithium secondary batteries
)

RN 131097-15-9 HCAPLUS

CN 1H-Imidazolium, 3-ethyl-1,2-dimethyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 28

ST aq electrolyte lithium secondary battery

IT Battery electrolytes

(aqueous electrolyte with good high-temperature storage characteristics for
lithium secondary batteries)

IT Secondary batteries

(lithium; aqueous electrolyte with good high-temperature storage
characteristics for lithium secondary batteries
)

IT 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate
623-53-0, Ethyl methyl carbonate 872-36-6, Vinylene carbonate
12016-91-0, Cobalt lithium manganese oxide (CoLi₂Mn₃O₈)
12019-01-1, Copper lithium manganese oxide (CuLi₂Mn₃O₈)
12031-75-3, Lithium manganese nickel oxide (Li₂Mn₃NiO₈)
12031-76-4, Lithium manganese zinc oxide (Li₂Mn₃ZnO₈)
12031-92-4, Lithium manganese oxide (Li₄Mn₅O₁₂)
12057-17-9, Lithium manganese oxide (LiMn₂O₄)
12162-79-7, Lithium manganese oxide (LiMnO₂) 21324-40-3,
Lithium hexafluorophosphate (LiPF₆) 106389-48-4, Iron
lithium manganese oxide (FeLi₂Mn₃O₈) 131097-15-9D,
halogenide 152417-34-0, Lithium manganese oxide
(LiMn₂O₃) 160749-19-9 174899-72-0 174899-97-9 292140-86-4
475975-26-9, Lithium manganese oxide (LiMnO₃)

916730-11-5 1065032-26-9 1065032-30-5 1065032-36-1

1065032-41-8 1065032-42-9 1065032-43-0

RL: TEM (Technical or engineered material use); USES (Uses)

(aqueous electrolyte with good high-temperature storage
characteristics for lithium secondary batteries
)

L103 ANSWER 2 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2007:432085 HCAPLUS Full-text

DOCUMENT NUMBER: 146:444850

TITLE: Easy-handling lithium salts

bearing oligoether groups, their manufacture, and secondary lithium batteries using them as electrolytes
INVENTOR(S): Fujinami, Tatsuo; Matsui, Masaki
PATENT ASSIGNEE(S): Toyota Motor Corp., Japan; Shizuoka University
SOURCE: Jpn. Kokai Tokkyo Koho, 17pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2007099705	A	20070419	JP 2005-292929	200510 05
PRIORITY APPLN. INFO.:		JP 2005-292929 200510 05		

OTHER SOURCE(S): MARPAT 146:444850
AB The salts LiM(OY)_n(Nc)_{4-n} [M = Group IIIA element; Y = oligoether group; Nc = groups bearing heterocycles with N bonded to M and forming π -bond with other ring members, e.g., pyrrole, imidazole; n = 1-3] are manufactured by treatment of LiMH₄ (M = same as above) with HOY (Y = same as above), and treatment of the resulting LiM(OY)_nH_{4-n} (n = same as above) with HNc (Nc = same as above). The salts, which are low-viscosity ionic liquid, show high ionic conductivity
IT 288-32-4, Imidazole, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
 (manufacture of aluminate-structure lithium salt
 ionic liqs. bearing oligoether groups as electrolytes
 for secondary lithium batteries)
RN 288-32-4 HCAPLUS
CN 1H-Imidazole (CA INDEX NAME)

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 27, 38
ST lithium oligoether pyrrole aluminate ionic liq; viscosity
 low lithium oligoether imidazole aluminate;
 battery electrolyte lithium oligoether heterocycle
 aluminate
IT Secondary batteries
 (lithium; manufacture of aluminate-structure lithium
 salt ionic liqs. bearing oligoether groups as
 electrolytes for secondary lithium batteries)
IT Battery electrolytes
 Ionic conductors
 Ionic liquids
 Polymer electrolytes
 (manufacture of aluminate-structure lithium salt

- ionic liqs. bearing oligoether groups as electrolytes for secondary lithium batteries)
- IT 934491-75-5P 934491-76-6P 934491-77-7P 934491-78-8P
 934491-79-9P 934491-80-2P
 RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (manufacture of aluminate-structure lithium salt
 ionic liqs. bearing oligoether groups as electrolytes for secondary lithium batteries)
- IT 109-97-7, Pyrrole 112-35-6, Triethylene glycol monomethyl ether 288-32-4, Imidazole, reactions 625-84-3,
 2,5-Dimethylpyrrole 16853-85-3, Lithium aluminum hydride
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (manufacture of aluminate-structure lithium salt
 ionic liqs. bearing oligoether groups as electrolytes for secondary lithium batteries)
- IT 9004-74-4, Polyethylene glycol monomethyl ether
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (oligomeric; manufacture of aluminate-structure lithium salt ionic liqs. bearing oligoether groups as electrolytes for secondary lithium batteries)

L103 ANSWER 3 OF 13 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2006:977382 HCPLUS Full-text
 DOCUMENT NUMBER: 145:360086
 TITLE: Nonaqueous electrolytes for lithium ion batteries
 INVENTOR(S): Chen, Zonghai; Amine, Khalil
 PATENT ASSIGNEE(S): The University of Chicago, USA
 SOURCE: U.S. Pat. Appl. Publ., 20pp.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20060210883	A1	20060921	US 2006-373054	200603 10
WO 2006101779	A2	20060928	WO 2006-US8664	200603 10
WO 2006101779	A3	20070322		

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA,
 CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
 GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM,
 KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG,
 MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
 RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT,
 TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
 RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
 IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR,
 BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
 TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
 ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM

PRIORITY APPLN. INFO.: US 2005-662056P P
 200503

OTHER SOURCE(S): MARPAT 145:360086

AB The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochem. devices employing the electrolyte and methods of making the electrolyte.

IT 288-32-4, Imidazole, uses 288-32-4D, Imidazole, aryloxy compound 29383-23-1, Vinylimidazole
897381-41-8

RL: MOA (Modifier or additive use); USES (Uses)
(nonaq. electrolytes for lithium ion batteries)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (CA INDEX NAME)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (CA INDEX NAME)

RN 29383-23-1 HCAPLUS

CN 1H-Imidazole, ethenyl- (CA INDEX NAME)

D1—CH=CH₂

RN 897381-41-8 HCAPLUS

CN 1H-Imidazole, ethenylmethoxy- (9CI) (CA INDEX NAME)

D1—O—Me

D1—CH=CH₂

INCL 429326000; 429329000; 429200000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST lithium secondary battery nonaq electrolyte

IT Lewis acids

RL: MOA (Modifier or additive use); USES (Uses)
(anion receptor; nonaq. electrolytes for lithium ion batteries)

IT Solvents

(aprotic, polar; nonaq. electrolytes for lithium ion batteries)

IT Cyclophosphazenes

RL: MOA (Modifier or additive use); USES (Uses)
(aryloxy compound; nonaq. electrolytes for lithium ion batteries)

IT Secondary batteries

(lithium; nonaq. electrolytes for lithium ion batteries)

IT Battery electrolytes

(nonaq. electrolytes for lithium ion batteries
)

IT 60-29-7, Diethyl ether, uses 79-20-9, Methyl acetate 96-48-0,

γ -Butyrolactone 96-49-1, Ethylene carbonate 105-58-8,

Diethyl carbonate 108-32-7, Propylene carbonate 109-60-4, Propyl

acetate 126-33-0, Sulfolane 141-78-6, Ethyl acetate, uses

616-38-6, Dimethyl carbonate 623-53-0, Ethyl methyl carbonate

7439-93-2D, Lithium, salt 39457-42-6,

Lithium manganese oxide 346417-97-8, Cobalt

lithium manganese nickel oxide (Co0.33LiMn0.33Ni0.33O2)

RL: DEV (Device component use); USES (Uses)
(nonaq. electrolytes for lithium ion batteries
)

IT 78-19-3, 3,9-Divinyl-2,4,8,10-tetraoxaspiro[5,5]undecane 84-15-1,

o-Terphenyl 84-15-1D, o-Terphenyl, aryloxy compound 86-74-8D,

Carbazole, aryloxy compound 88-12-0, 1-Vinylpyrrolidin-2-one, uses

91-19-0, Quinoxaline 91-20-3, Naphthalene, uses 91-22-5,

Quinoline, uses 91-22-5D, Quinoline, aryloxy compound 92-52-4,

Biphenyl, uses 96-49-1D, Ethylene carbonate, diaryloxy compound

96-54-8, n-Methylpyrrole 101-84-8, Diphenyl ether 101-84-8D,

Diphenyl ether, diaryloxy compound 102-09-0, Diphenyl carbonate

102-09-0D, Phenyl carbonate, aryloxy compound 102-09-0D, Phenyl

carbonate, diaryloxy compound 102-71-6, Triethanolamine, uses

106-92-3, Allylglycidyl ether 106-99-0, Butadiene, uses

108-32-7D, Propylene carbonate, diaryloxy compound 109-93-3, Divinyl

ether 109-97-7D, Pyrrole, aryloxy compound 109-99-9D, Thf, aryloxy

compound 110-00-9D, Furan, diaryloxy compound 110-86-1, Pyridine,

uses 110-89-4, Piperidine, uses 110-89-4D, Piperidine, aryloxy

compound 111-34-2, Butyl vinyl ether 119-65-3, Isoquinoline

120-72-9, Indole, uses 120-92-3D, Cyclopentanone, aryloxy compound

140-67-0, 4-Allylanisole 142-96-1D, Butyl ether, aryloxy compound
176-53-4D, Ethylene silicate, aryloxy compound 176-53-4D, Ethylene
silicate, diaryloxy compound 287-23-0D, Cyclobutane, aryloxy compound
288-32-4, Imidazole, uses 288-32-4D, Imidazole,
aryloxy compound 289-80-5, Pyridazine 289-80-5D, Pyridazine,
aryloxy compound 289-95-2, Pyrimidine 290-37-9, Pyrazine
290-37-9D, Pyrazine, aryloxy compound 291-37-2D,
Cyclotriphosphazene, diaryloxy compound 503-30-0D, Oxetane, aryloxy
compound 614-99-3D, Ethyl-2-furoate, aryloxy compound 856-46-2,
Tris(4-fluorophenyl) borate 930-22-3 1072-53-3D, Ethylene
sulfate, aryloxy compound 1072-53-3D, Ethylene sulfate, diaryloxy
compound 1072-60-2, 2-Vinyltetrahydrofuran 1095-03-0, Triphenyl
borate 1109-15-5, Tris(pentafluorophenyl)borane 1118-58-7
1337-81-1 1917-10-8, Vinyl-2-furoate 3741-38-6D, Ethylene
sulfite, aryloxy compound 3741-38-6D, Ethylene sulfite, diaryloxy
compound 3893-03-6, 4-Methoxy-o-terphenyl 4177-16-6, Vinyl
pyrazine 4245-37-8, Vinyl methacrylate 4370-23-4,
1-Vinyl-piperidin-2-one 4427-96-7, Vinyl ethylene carbonate
5009-27-8D, Cyclopropanone, 2-aryl derivative 5009-27-8D,
Cyclopropanone, 2-aryloxy derivative 5009-27-8D, Cyclopropanone,
aryloxy compound 6622-92-0, 2,4-Dimethyl-6-hydroxy-pyrimidine
6919-80-8, Tris(1,1,1,3,3,3-hexafluoropropan-2-yl) borate
7570-02-7, Divinyl carbonate 7791-03-9 10411-26-4D, Butyl
carbonate, diaryloxy compound 11099-06-2D, Ethyl silicate, diaryloxy
compound 12789-45-6, MEthyl phosphate 12789-45-6D, Methyl
phosphate, diaryloxy compound 13537-32-1D, Fluorophosphoric acid,
alkyl derivative, lithium salt 14265-44-2D,
Phosphate, aryloxy compound 14283-07-9, Lithium
tetrafluoroborate 14861-06-4, Vinyl crotonate 15896-04-5
16410-02-9, 1-Vinylaziridin-2-one 18358-13-9D, Methacrylate,
aryloxy compound 19024-82-9, Phosphoric acid, trivinyl ester
21324-40-3, Lithium hexafluorophosphate 21994-23-0
23462-75-1, Dihydropyran-3-one 23542-71-4 24213-83-0, Pyrazine,
2,5-divinyl 29383-23-1, Vinylimidazole 29935-35-1,
Lithium hexafluoroarsenate 30676-86-9, Piperidine, vinyl
30851-79-7 31094-36-7, Quinoline, vinyl 32766-52-2,
Tris(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl) borate
32893-16-6, Methyl vinyl carbonate 33454-82-9, Lithium
triflate 33879-62-8, 2-Vinyloxetane 34721-16-9D, Furoate,
2-aryloxy compound 34721-16-9D, Furoate, 2-diaryloxy derivative
35143-18-1 36885-49-1, Vinyl phosphate 37203-76-2, Ethyl
phosphate 38888-98-1, Diphenylethane 41824-21-9D, Crotonate,
aryloxy compound 41824-21-9D, Crotonate, diaryloxy compound
44414-27-9 44866-76-4 50337-14-9, 3-Vinylcyclopentanone
51222-11-8 53627-36-4, β -Vinyl- γ -butyrolactone
55849-58-6 61548-40-1, Anisole, allyl 65967-52-4 66166-61-8,
3-Vinylcyclobutanone 66281-01-4 66281-16-1 66956-76-1
72607-84-2, 2,4-Divinyl-1,3-dioxane 75454-86-3 77208-21-0
90076-65-6 104531-81-9 117823-03-7 121712-01-4,
1-Vinylazetidin-2-one 125812-49-9 132404-42-3 132843-44-8
139669-84-4 146355-12-6, Tris(pentafluorophenyl)borate
210834-28-9, Tris(1,1,1,3,3,3-hexafluoro-2-phenylpropan-2-yl) borate
210834-35-8, Tris(2,4-difluorophenyl) borate 210834-37-0,
Tris(2,3,5,6-tetrafluorophenyl) borate 210834-40-5,
Tris(3-(trifluoromethyl)phenyl) borate 210834-42-7,
Tris(3,5-bis(trifluoromethyl)phenyl) borate 244761-29-3,
Lithium bisoxalatoborate 247229-51-2 365458-32-8,
2-(2,4-Difluorophenyl)-4-fluoro-1,3,2-benzodioxaborole 365458-33-9
365458-34-0 365458-35-1 365458-36-2 365458-37-3 365458-38-4
365458-39-5 365458-40-8 402564-35-6,

2-(3-Trifluoromethylphenyl)-4-fluoro-1,3,2-benzodioxaborole
 409071-16-5 557084-91-0 678966-16-0 856785-12-1 866947-06-0
 891828-02-7 891828-03-8 891828-04-9 891828-05-0 891828-06-1
 891831-48-4 897028-09-0 897028-10-3 897028-11-4 897028-12-5,
 2-Amino-4-vinylcyclobutanone 897028-13-6 897028-14-7
 897028-15-8 897028-16-9 897028-17-0 897028-18-1 897028-19-2
 897028-20-5 897028-22-7 897028-23-8 897028-24-9 897028-25-0
 897028-26-1 897028-27-2 897028-28-3 897028-28-3D, diaryloxy
 compound 897381-31-6 897381-32-7 897381-34-9 897381-36-1
 897381-37-2 897381-38-3 897381-41-8 897381-42-9
 897381-44-1 897381-45-2 897381-46-3 897381-47-4 908587-13-3
 908587-22-4 908599-70-2 908599-71-3 908599-72-4 908599-74-6
 910038-86-7 910038-87-8 910038-88-9 910041-64-4D, aryloxy
 compound 910041-65-5D, diaryloxy compound

RL: MOA (Modifier or additive use); USES (Uses)

(nonaq. electrolytes for lithium ion
 batteries)

IT 7789-24-4, Lithium fluoride, processes

RL: REM (Removal or disposal); PROC (Process)

(nonaq. electrolytes for lithium ion batteries
)

L103 ANSWER 4 OF 13 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:301494 HCPLUS Full-text

DOCUMENT NUMBER: 144:334258

TITLE: Nonaqueous electrolyte battery

INVENTOR(S): Kishi, Takashi; Kuboki, Takashi; Saruwatari,
 Hidesato; Takami, Norio

PATENT ASSIGNEE(S): Kabushiki Kaisha Toshiba, Japan

SOURCE: U.S. Pat. Appl. Publ., 12 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20060068282	A1	20060330	US 2005-179585	200507 13
JP 2006092974	A	20060406	JP 2004-278280	200409 24
CN 1753233	A	20060329	CN 2005-10107516	200509 23
KR 2006051575	A	20060519	KR 2005-88670	200509 23
KR 837450	B1	20080612	JP 2004-278280	A 200409 24
PRIORITY APPLN. INFO.:				

AB A nonaq. electrolyte battery that contains a molten salt electrolyte and has the enhanced output performances and cycle performances can be provided. The electrolyte has a molar ratio of lithium salt to molten salt of from 0.3 to

0.5, and the nonaq. electrolyte battery has a pos. electrode having a discharge capacity of 1.05 or more times that of a neg. electrode thereof.

IT 65039-03-4, 1-Ethyl-3-methyl-imidazolium 80432-06-0

, 1-Methyl-3-propyl-imidazolium 80432-08-2,

1-Butyl-3-methylimidazolium 94530-91-3 131097-15-9

, 1-Ethyl-2,3-dimethylimidazolium

RL: DEV (Device component use); USES (Uses)

(nonaq. electrolyte battery)

RN 65039-03-4 HCAPLUS

CN 1H-Imidazolium, 3-ethyl-1-methyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

RN 80432-06-0 HCAPLUS

CN 1H-Imidazolium, 1-methyl-3-propyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

RN 80432-08-2 HCAPLUS

CN 1H-Imidazolium, 3-butyl-1-methyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

RN 94530-91-3 HCAPLUS

CN 1H-Imidazolium, 1-methyl-3-(1-methylethyl)- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE
RN 131097-15-9 HCPLUS
CN 1H-Imidazolium, 3-ethyl-1,2-dimethyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE
INCL 429188000; 429231100; 429231500; 429221000; 429199000
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ST battery molten salt electrolyte
IT Quaternary ammonium compounds, uses
RL: DEV (Device component use); USES (Uses)
(aromatic; nonaq. electrolyte battery)
IT Salts, uses
RL: DEV (Device component use); USES (Uses)
(molten; nonaq. electrolyte battery)
IT Battery electrolytes
Secondary batteries
(nonaq. electrolyte battery)
IT Carbonaceous materials (technological products)
Polyesters, uses
Polyolefins
RL: DEV (Device component use); USES (Uses)
(nonaq. electrolyte battery)
IT 1332-29-2, Tin oxide 7439-93-2, Lithium, uses
7439-93-2D, Lithium, salt 11104-61-3, Cobalt
oxide 11126-12-8, Iron sulfide 12190-79-3, Cobalt
lithium oxide (CoLiO₂) 12798-95-7 14283-07-9,
Lithium tetrafluoroborate 14874-70-5, Tetrafluoroborate
16919-18-9, Hexafluorophosphate 17523-59-0, Piperidinium
21324-40-3, Lithium hexafluorophosphate 25038-59-9, uses
33454-82-9, Lithium triflate 37181-39-8, Triflate
39300-70-4, Lithium nickel oxide 39302-37-9,
Lithium titanate 39457-42-6, Lithium manganese
oxide 44629-17-6 45187-15-3, Perfluorobutanesulfonate
52627-24-4, Cobalt lithium oxide 55526-39-1,
Pyrrolidinium 65039-03-4, 1-Ethyl-3-methyl-imidazolium
80432-06-0, 1-MEthyl-3-propyl-imidazolium 80432-08-2
, 1-Butyl-3-methylimidazolium 90076-65-6, Lithium
bis(trifluoromethanesulfonyl)imide 94530-91-3 98837-98-0
129318-46-3 131097-15-9, 1-Ethyl-2,3-dimethyimidazolium
132843-44-8, Lithium bis(pentafluoroethanesulfonyl)amide
143314-16-3, 1-Ethyl-3-methyimidazolium tetrafluoroborate
174899-73-1 174899-82-2, 1-Ethyl-3-methyimidazolium
bis(trifluoromethanesulfonyl)amide 195199-57-6, Lithium
dicyanamide 230627-60-8 365460-36-2 390358-97-1 390750-60-4
390750-62-6 429679-87-8 658693-67-5, lithium titanium
oxide (Li1.3Ti1.7O4)
RL: DEV (Device component use); USES (Uses)
(nonaq. electrolyte battery)

November 19, 2008

10/658,272

36

ACCESSION NUMBER: 2005:1239360 HCAPLUS Full-text
 DOCUMENT NUMBER: 144:8990
 TITLE: Polymer electrolyte secondary lithium batteries with long cycle life and good stability at high temperature
 INVENTOR(S): Wada, Yoshihiko; Miura, Katsuhito; Matsui, Shohei; Tabuchi, Masato
 PATENT ASSIGNEE(S): Daiso Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 15 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2005327566	A	20051124	JP 2004-143916	200405 13
PRIORITY APPLN. INFO.:			JP 2004-143916	200405 13

AB The batteries have crosslinked polymer electrolyte compns. consisting of (a) multi-component copolymer polyethers with Mw 104-107, (b) aprotic organic solvents, (c) low-mol.-weight S compds. and/or N compds. as additives, and (d) Li salts as electrolytes. In the batteries, side reactions between electrodes and electrolytes are prevented by the additives c.
 IT 288-32-40, Imidazole, derivs.
 RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)
 (thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)
 RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (CA INDEX NAME)

IC ICM H01M010-40
 ICS C08G065-321; C08K003-00; C08K005-00; C08L071-00; H01M006-18
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST polymer electrolyte lithium battery thermally stable; polyoxyalkylene lithium complex battery electrolyte sulfur nitrogen; secondary battery polymer electrolyte sulfite oxazole
 IT Polyoxalkylenes, uses
 RL: DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
 (acrylic, lithium complexes, electrolytes; thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)
 IT Polyoxalkylenes, uses

RL: DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
(lithium complexes, electrolytes; thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT Secondary batteries
(lithium; thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT Sulfonic acids, uses
RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)
(salts; thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT Lactones
RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)
(sultones; thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT Battery electrolytes
Polymer electrolytes
(thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT Sulfates, uses
Sulfites
Sulfones
Sulfoxides
RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)
(thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT 815574-41-5DP, lithium complexes 815574-42-6DP, lithium complexes
RL: DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
(crosslinked, electrolytes; thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT 96-48-0, γ -Butyrolactone 96-49-1, Ethylene carbonate 108-32-7, Propylene carbonate
RL: DEV (Device component use); USES (Uses)
(electrolyte solvents; thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT 14283-07-9, Lithium tetrafluoroborate 132843-44-8, Lithium bis(perfluoroethylsulfonyl)imide
RL: DEV (Device component use); USES (Uses)
(electrolytes containing polyoxyalkylenes; thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT 7439-93-2DP, Lithium, complexes with glycidyl (meth)acrylate-ethylene oxide copolymers 26282-59-7DP, lithium complexes
RL: DEV (Device component use); IMF (Industrial manufacture); PREP (Preparation); USES (Uses)
(electrolytes; thermally stable secondary lithium batteries containing sulfur and/or nitrogen compds. in polymer electrolytes)

IT 120-72-9D, Indole, derivs. 288-14-2D, Isoxazole, derivs.
 288-32-4D, Imidazole, derivs. 288-42-6, Oxazole
 289-80-5D, Pyridazine, derivs. 289-95-2D, Pyrimidine, derivs.
 290-37-9D, Pyrazine, derivs. 352-93-2, Diethyl sulfide 597-35-3,
 Diethyl sulfone 617-92-5, 1-Ethylpyrrole 1600-44-8,
 Tetramethylene sulfoxide 1633-83-6, 1,4-Butanesultone 3741-38-6,
 Glycol sulfite 7189-69-7, 1,1'-Sulfonyldimidazole 12654-97-6D,
 Triazine, derivs. 74124-79-1, N,N'-Disuccinimidyl carbonate
 RL: DEV (Device component use); MOA (Modifier or additive use); USES
 (Uses)
 (thermally stable secondary lithium batteries
 containing sulfur and/or nitrogen compds. in polymer
 electrolytes)

L103 ANSWER 6 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:871280 HCAPLUS Full-text

DOCUMENT NUMBER: 141:368313

TITLE: Nonaqueous electrolyte battery

INVENTOR(S): Takami, Norio; Saruwatari, Hidesato; Inagaki, Hirotaka

PATENT ASSIGNEE(S): Toshiba Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 24 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
-----	-----	-----	-----	-----
JP 2004296108	A	20041021	JP 2003-83133	200303 25
JP 2007141860	A	20070607	JP 2007-11823	200701 22
PRIORITY APPLN. INFO.:			JP 2003-83133	A3 200303 25

AB The battery has a cathode, an anode, and a nonaq. room temperature molten salt electrolyte containing Li⁺; where the cathode and/or anode contains metal oxide particles containing Al₂O₃, ZrO₂, and/or SiO₂ particles, having average primary particle diameter 1-100 nm. Another structure of the battery has a cathode, an anode, and a room temperature molten salt electrolyte containing Li⁺ and B[(OCO)₂]²⁻. The molten salt preferably contains a tetravalent organic ammonium ion.

IT 65039-03-4

RL: DEV (Device component use); USES (Uses)

(room temperature molten electrolytes for batteries

using alumina or zirconia or silica containing metal oxide electrode active mass)

RN 65039-03-4 HCAPLUS

CN 1H-Imidazolium, 3-ethyl-1-methyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

IC ICM H01M004-62

ICS H01M004-02; H01M004-06; H01M006-16; H01M010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST nonaq battery metal oxide electrode alumina zirconia

silica; lithium salt molten salt

electrolyte battery

IT Battery electrodes

Particle size

(particle size of alumina or zirconia or silica containing metal oxide electrode active mass for nonaq. batteries)

IT 1313-13-9, Manganese dioxide, uses 12031-95-7, Lithium

titanium oxide (Li₄Ti₅O₁₂) 12190-79-3, Cobalt lithium

oxide (CoLiO₂) 15365-14-7, Iron lithium phosphate

(FeLiPO₄)

RL: DEV (Device component use); USES (Uses)

(particle size of alumina or zirconia or silica containing metal oxide electrode active mass for nonaq. batteries)

IT 1314-23-4, Zirconia, uses 1344-28-1, Alumina, uses 7631-86-9, Silica, uses

RL: MOA (Modifier or additive use); USES (Uses)

(particle size of alumina or zirconia or silica containing metal oxide electrode active mass for nonaq. batteries)

IT 14874-70-5 17341-24-1, uses 37181-39-8,

Trifluoromethanesulfonate ion 65039-03-4 98837-98-0

125579-65-9

RL: DEV (Device component use); USES (Uses)

(room temperature molten electrolytes for batteries using alumina or zirconia or silica containing metal oxide electrode active mass)

L103 ANSWER 7 OF 13 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:753254 HCPLUS [Full-text](#)

DOCUMENT NUMBER: 141:228183

TITLE: A nonaqueous electrolyte for lithium secondary battery

INVENTOR(S): Kim, Jin-Hee; Kim, Jin-Sung; Hwang, Sang-Moon; Paik, Meen-Seon; Kim, Hak-Soo

PATENT ASSIGNEE(S): Samsung SDI Co., Ltd., S. Korea; Cheil Industries Inc.

SOURCE: Eur. Pat. Appl., 33 pp.
CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	
EP 1458048	A1	20040915	EP 2003-90262	200308

			21
R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK		
KR 2004080775	A	20040920	KR 2003-15749 200303 13
JP 2005108439	A	20050421	JP 2003-183239 200306 26
CN 1531134	A	20040922	CN 2003-155332 200308 27
US 20040185347	A1	20040923	US 2003-658272 200309 10
PRIORITY APPLN. INFO.:			KR 2003-15749 A 200303 13

OTHER SOURCE(S): MARPAT 141:228183

AB An electrolyte for a lithium secondary battery includes lithium salts, a nonaq. organic solvent, and additive compds. The additive compds. added to the electrolyte of the present invention decompose earlier than the organic solvent to form a conductive polymer layer on the surface of a pos. electrode, and prevent decomposition of the organic solvent. Accordingly, the electrolyte inhibits gas generation caused by decomposition of the organic solvent at initial charging, and thus reduces an increase of internal pressure and swelling during high temperature storage, and also improves safety of the battery during overcharge.

IT 693-98-1, 2-Methylimidazole
 RL: MOA (Modifier or additive use); USES (Uses)
 (nonaq. electrolyte for lithium secondary
 battery)

RN 693-98-1 HCAPLUS

CN 1H-Imidazole, 2-methyl- (CA INDEX NAME)

IC ICM H01M010-40
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST nonaq electrolyte lithium secondary battery;
 safety nonaq electrolyte lithium secondary battery
 IT Secondary batteries
 (lithium; nonaq. electrolyte for lithium
 secondary battery)
 IT Battery electrolytes
 Conducting polymers
 Safety
 Swelling, physical
 (nonaq. electrolyte for lithium secondary
 battery)
 IT Aromatic hydrocarbons, uses
 Esters, uses
 Ethers, uses

Ketones, uses
 RL: DEV (Device component use); USES (Uses)
 (nonaq. electrolyte for lithium secondary
 battery)

IT Lithium alloy, base
 RL: DEV (Device component use); USES (Uses)
 (nonaq. electrolyte for lithium secondary
 battery)

IT 67-71-0, Methylsulfone 71-43-2, Benzene, uses 77-77-0,
 Vinylsulfone 96-49-1, Ethylene carbonate 105-58-8, Diethyl
 carbonate 108-32-7, Propylene carbonate 108-88-3, Toluene, uses
 126-33-0, Tetramethylene sulfone 127-63-9, Phenylsulfone
 462-06-6, Fluorobenzene 463-79-6D, Carbonic acid, chain ester
 463-79-6D, Carbonic acid, cyclic ester 463-79-6D, Carbonic acid,
 ester 616-38-6, Dimethyl carbonate 620-32-6, Benzylsulfone
 623-53-0, Methyl ethyl carbonate 623-96-1, Dipropyl carbonate
 1330-20-7, Xylene, uses 1889-59-4, Ethylvinylsulfone 3680-02-2,
 Methylvinylsulfone 4437-85-8, Butylene carbonate 5535-43-3,
 m-ChloroPhenyl vinyl sulfone 5535-48-8, Phenylvinylsulfone
 7439-93-2, Lithium, uses 7447-41-8, Lithium
 chloride (LiCl), uses 7791-03-9, Lithium perchlorate
 10377-51-2, Lithium iodide 14024-11-4, Aluminum
 lithium chloride AlLiCl₄ 14283-07-9, Lithium
 tetrafluoroborate 18424-17-4, Lithium
 hexafluoroantimonate 21324-40-3, Lithium
 hexafluorophosphate 27359-10-0, Trifluorotoluene 28122-14-7,
 p-FluoroPhenyl vinyl sulfone 28452-93-9, Butadiene sulfone
 29935-35-1, Lithium hexafluoroarsenate 33454-82-9,
 Lithium triflate 35363-40-7, Ethyl propyl carbonate, uses
 37220-89-6, Aluminum lithium oxide 39300-70-4,
 Lithium nickel oxide 56525-42-9, Methyl propyl carbonate,
 uses 90076-65-6 131651-65-5, Lithium
 nonafluorobutanesulfonate 162684-16-4, lithium manganese
 nickel oxide
 RL: DEV (Device component use); USES (Uses)
 (nonaq. electrolyte for lithium secondary
 battery)

IT 80-05-7, Bisphenol A, uses 95-15-8, Thianaphthene 117-80-6,
 2,3-Dichloro-1,4-naphthoquinone 271-89-6, 2,3-Benzofuran
 524-42-5, 1,2-Naphthoquinone 625-86-5, 2,5-Dimethylfuran
 693-98-1, 2-Methylimidazole 1192-62-7, 2-Acetyl furan
 1193-79-9, 2-Acetyl-5-methylfuran 4265-27-4, 2-Butylbenzofuran
 7474-83-1, 3-Bromo-1,2-naphthoquinone 13243-65-7,
 2,3-Dibromo-1,4-naphthoquinone 16851-82-4,
 1-(Phenylsulfonyl)pyrrole
 RL: MOA (Modifier or additive use); USES (Uses)
 (nonaq. electrolyte for lithium secondary
 battery)

REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L103 ANSWER 8 OF 13 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2004:39666 HCPLUS Full-text
 DOCUMENT NUMBER: 140:79836
 TITLE: Electrolyte of lithium-sulfur
 batteries
 INVENTOR(S): Kim, Seok; Jung, Yongju; Kim, Jan-Dee
 PATENT ASSIGNEE(S): Samsung SDI Co., Ltd, S. Korea
 SOURCE: U.S. Pat. Appl. Publ., 15 pp.

DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20040009393	A1	20040115	US 2003-617230	200307 11
KR 2004006429	A	20040124	KR 2002-40707	200207 12
JP 2005108438	A	20050421	JP 2003-183188	200306 26
CN 1487620	A	20040407	CN 2003-154619	200307 12
PRIORITY APPLN. INFO.:			KR 2002-40707	A 200207 12

- AB An electrolyte for use in a lithium-sulfur battery includes salts having imide anions. The electrolyte may further include salts having organic cations. When lithium-sulfur batteries include salts having imide anions as electrolytes, the sulfur utilization is increased, and cycle life characteristics and discharge characteristics such as discharge capacity and average discharge voltage are improved.
- IT 65039-03-4D, 1-Ethyl-3-methylimidazolium, compound
 80432-08-2, 1-Butyl-3-methylimidazolium 157310-70-8D
 , 1H-Imidazolium, 1,2-dimethyl-3-propyl-, compound
 RL: DEV (Device component use); USES (Uses)
 (electrolyte of lithium-sulfur batteries)
- RN 65039-03-4 HCAPLUS
- CN 1H-Imidazolium, 3-ethyl-1-methyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

RN 80432-08-2 HCAPLUS
 CN 1H-Imidazolium, 3-butyl-1-methyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

RN 157310-70-8 HCPLUS

CN 1H-Imidazolium, 1,2-dimethyl-3-propyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

IC ICM H01M010-40

ICS H01M004-58

INCL 429188000; 429330000; 429218100; 429340000; 429341000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST electrolyte lithium sulfur battery

IT Polyoxalkylenes, uses

RL: MOA (Modifier or additive use); USES (Uses)
(alkylated, binder; electrolyte of lithium-sulfur batteries)

IT Fluoropolymers, uses

Polyoxalkylenes, uses

RL: MOA (Modifier or additive use); USES (Uses)
(binder; electrolyte of lithium-sulfur batteries)

IT Polyoxalkylenes, uses

RL: MOA (Modifier or additive use); USES (Uses)
(crosslinked, binder; electrolyte of lithium-sulfur batteries)

IT Ethers, uses

RL: DEV (Device component use); USES (Uses)
(cyclic, bicyclic; electrolyte of lithium-sulfur batteries)

IT Battery electrolytes

(electrolyte of lithium-sulfur batteries)

IT Aromatic compounds

Esters, uses

Heterocyclic compounds

Imides

Ketones, uses

Lactones

Sulfates, uses

Sulfites

Sulfoxides

RL: DEV (Device component use); USES (Uses)
(electrolyte of lithium-sulfur batteries)

IT Group IIIA elements

RL: MOA (Modifier or additive use); USES (Uses)

- (electrolyte of lithium-sulfur batteries)
- IT Group IVA elements
 - RL: MOA (Modifier or additive use); USES (Uses)
 - (electrolyte of lithium-sulfur batteries)
- IT Transition metals, uses
 - RL: MOA (Modifier or additive use); USES (Uses)
 - (electrolyte of lithium-sulfur batteries)
- IT Secondary batteries
 - (lithium; electrolyte of lithium-sulfur batteries)
- IT Heterocyclic compounds
 - RL: MOA (Modifier or additive use); USES (Uses)
 - (nitrogen, Li protecting compound; electrolyte of lithium-sulfur batteries)
- IT Heterocyclic compounds
 - RL: MOA (Modifier or additive use); USES (Uses)
 - (oxygen, Li protecting compound; electrolyte of lithium-sulfur batteries)
- IT Ethers, uses
 - RL: MOA (Modifier or additive use); USES (Uses)
 - (saturated, Li protecting compound; electrolyte of lithium-sulfur batteries)
- IT Heterocyclic compounds
 - RL: MOA (Modifier or additive use); USES (Uses)
 - (sulfur, Li protecting compound; electrolyte of lithium-sulfur batteries)
- IT Ethers, uses
 - RL: MOA (Modifier or additive use); USES (Uses)
 - (unsatd., Li protecting compound; electrolyte of lithium-sulfur batteries)
- IT Lithium alloy, base
 - RL: DEV (Device component use); USES (Uses)
 - (electrolyte of lithium-sulfur batteries)
- IT 9002-84-0, Ptfe 9002-86-2, Polyvinyl chloride 9002-89-5, Polyvinyl alcohol 9003-19-4, Polyvinyl ether 9003-20-7, Polyvinyl acetate 9003-32-1, Polyethyl acrylate 9003-39-8, Polyvinyl pyrrolidone 9003-47-8, Polyvinylpyridine 9003-53-6, Polystyrene 9011-14-7, Pmma 9011-17-0, Hexafluoropropylene-vinylidene fluoride copolymer 24937-79-9, Polyvinylidene fluoride 25014-41-9, Polyacrylonitrile 25322-68-3, Peo 25322-68-3D, Peo, alkylated 25322-68-3D, Peo, crosslinked
 - RL: MOA (Modifier or additive use); USES (Uses)
 - (binder; electrolyte of lithium-sulfur batteries)
- IT 110-71-4 463-79-6D, Carbonic acid, acyclic compound 463-79-6D, Carbonic acid, bicyclic salt 646-06-0, Dioxolane 7439-93-2, Lithium, uses 14797-73-0, Perchlorate 14874-70-5, Tetrafluoroborate 16919-18-9, Hexafluorophosphate 16969-45-2D, Pyridinium, compound 16973-45-8, Hexafluoroarsenate 17009-90-4D, Imidazolium, compound 17009-91-5D, Pyrazolium, compound 17009-93-7D, Pyrazinium, compound 17009-95-9D, Pyrimidinium, compound 17009-97-1D, Pyridazinium, compound 28589-79-9D, Thiazolium, compound 37181-39-8, Trifluoromethylsulfonate 64001-57-6D, Oxazolium, compound 65039-03-4D, 1-Ethyl-3-methylimidazolium, compound 74432-42-1, Lithium polysulfide 80432-08-2, 1-Butyl-3-methylimidazolium 82113-65-3, Bis(trifluoromethylsulfonyl)imide 90076-65-6 129318-46-3, Bis(perfluoroethylsulfonyl)imide 132273-39-3 132843-44-8 157310-70-8D, 1H-Imidazolium, 1,2-dimethyl-3-propyl-, compound

174501-64-5, 1-Butyl-3-methylimidazolium hexafluorophosphate
216299-76-2

RL: DEV (Device component use); USES (Uses)
(electrolyte of lithium-sulfur batteries)

IT 7429-90-5, Aluminum, uses 7439-88-5, Iridium, uses 7439-89-6,
Iron, uses 7439-92-1, Lead, uses 7439-96-5, Manganese, uses
7439-97-6, Mercury, uses 7439-98-7, Molybdenum, uses 7440-02-0,
Nickel, uses 7440-03-1, Niobium, uses 7440-04-2, Osmium, uses
7440-05-3, Palladium, uses 7440-06-4, Platinum, uses 7440-15-5,
Rhenium, uses 7440-16-6, Rhodium, uses 7440-18-8, Ruthenium,
uses 7440-20-2, Scandium, uses 7440-21-3, Silicon, uses
7440-22-4, Silver, uses 7440-25-7, Tantalum, uses 7440-26-8,
Technetium, uses 7440-28-0, Thallium, uses 7440-31-5, Tin, uses
7440-32-6, Titanium, uses 7440-33-7, Tungsten, uses 7440-43-9,
Cadmium, uses 7440-47-3, Chromium, uses 7440-48-4, Cobalt, uses
7440-50-8, Copper, uses 7440-55-3, Gallium, uses 7440-56-4,
Germanium, uses 7440-57-5, Gold, uses 7440-62-2, Vanadium, uses
7440-65-5, Yttrium, uses 7440-66-6, Zinc, uses 7440-67-7,
Zirconium, uses 7440-74-6, Indium, uses

RL: MOA (Modifier or additive use); USES (Uses)
(electrolyte of lithium-sulfur batteries)

L103 ANSWER 9 OF 13 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:417542 HCPLUS Full-text

DOCUMENT NUMBER: 139:9292

TITLE: Lithium battery comprising

at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy

INVENTOR(S): Martinet, Sebastien; Le Cras, Frederic

PATENT ASSIGNEE(S): Commissariat a l'Energie Atomique, Fr.

SOURCE: Fr. Demande, 30 pp.

CODEN: FRXXBL

DOCUMENT TYPE: Patent

LANGUAGE: French

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
FR 2832859	A1	20030530	FR 2001-15377	200111 28
FR 2832859	B1	20040109		
WO 2003047021	A2	20030605	WO 2002-FR4066	200211 27
WO 2003047021	A3	20040930		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,				

TG				
AU 2002365474	A1	20030610	AU 2002-365474	
				200211
				27
EP 1493202	A2	20050105	EP 2002-803836	
				200211
				27
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK				
CN 1596483	A	20050316	CN 2002-823538	
				200211
				27
JP 2005539347	T	20051222	JP 2003-548334	
				200211
				27
US 20050069768	A1	20050331	US 2004-495733	
				200405
				14
US 7326493	B2	20080205		
PRIORITY APPLN. INFO.:			FR 2001-15377	A
				200111
				28
			WO 2002-FR4066	W
				200211
				27

AB A lithium electrochem. generator (i.e., battery) contains two peripheral electrodes (one pos. and one neg.) that contact active material beds, each of which, in turn, contacts a separator. Between the two separators is at least one bipolar electrode sandwiched between active neg. and active pos. bed materials. The elec. conducting substrates are aluminum or an aluminum alloy. A suitable neg. active material is Li₄Ti₅O₁₂; suitable pos. active materials are transition metal phosphates, orthosilicates, and oxides, as well as carbon or non-metal salts (especially phosphates such as Li(Fe,Mn)PO₄ or LiCoPO₄ and oxides such as LiAl_xNi_{1-x}O₂ (x = 0-0.25)). The separators can also contain an ionic liquid (i.e., imidazolium, dialkylimidazolium, alkylpyridinium, and dialkylpyridinium chloroaluminate and alkylchloroaluminate salts) that includes a dissolved lithium salt.

IT 288-32-4D, 1H-Imidazole, alkyl derivs., salts
 RL: DEV (Device component use); NUU (Other use, unclassified); USES
 (Uses)

(battery electrolytes containing; lithium
 battery comprising at least a bipolar electrode with
 conducting substrates of aluminum or aluminum alloy)

RN 288-32-4 HCPLUS

CN 1H-Imidazole (CA INDEX NAME)

IC ICM H01M010-38

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST lithium battery bipolar electrode; aluminum
 alloy lithium battery bipolar electrode

IT Pyridinium compounds

- RL: DEV (Device component use); NUU (Other use, unclassified); USES (Uses)
(battery electrolytes containing; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT Battery electrodes
(bipolar; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT Ionic liquids
(electrolytes; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT Onium compounds
RL: DEV (Device component use); NUU (Other use, unclassified); USES (Uses)
(imidazolium compds., battery electrolytes containing; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT Battery electrolytes
(ionic liqs.; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT Secondary battery separators
(lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT Aluminum alloy, base
RL: DEV (Device component use); USES (Uses)
(elec. conducting substrates; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT 110-86-1D, Pyridine, alkyl derivs., salts 288-32-4D,
1H-Imidazole, alkyl derivs., salts
RL: DEV (Device component use); NUU (Other use, unclassified); USES (Uses)
(battery electrolytes containing; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT 13824-63-0, Cobalt lithium phosphate (CoLiPO₄)
19414-36-9, Iron lithium manganese phosphate ((Fe,Mn) Li(PO₄))
532934-10-4, Aluminum lithium nickel oxide (Al_{0.25}LiNi_{0.75}O₂)
RL: DEV (Device component use); USES (Uses)
(bipolar electrode; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT 7429-90-5, Aluminum, uses
RL: DEV (Device component use); USES (Uses)
(elec. conducting substrates; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT 532934-12-6, Lithium nitride oxide phosphide (Li₃N_{0.3}O_{2.5}P)
RL: DEV (Device component use); USES (Uses)
(lithium cation conductor; lithium battery comprising at least a bipolar electrode with conducting substrates of aluminum or aluminum alloy)
- IT 12031-95-7, Lithium titanium oxide (Li₄Ti₅O₁₂)

RL: DEV (Device component use); USES (Uses)
 (neg. active material; lithium battery
 comprising at least a bipolar electrode with conducting
 substrates of aluminum or aluminum alloy)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN
 THE RE FORMAT

L103 ANSWER 10 OF 13 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2003:276685 HCPLUS Full-text
 DOCUMENT NUMBER: 138:274125
 TITLE: Batteries using molten salt
 electrolyte
 INVENTOR(S): Guidotti, Ronald A.
 PATENT ASSIGNEE(S): Sandia Corporation, USA
 SOURCE: U.S., 10 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	
US 6544691	B1	20030408	US 2000-689238	200010 11
PRIORITY APPLN. INFO.:			US 2000-689238	200010 11

- AB An electrolyte system suitable for a molten salt electrolyte battery is disclosed where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methyimidazolium salt with a melting temperature between approx. room temperature and approx. 250°. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.
- IT 65039-03-4D, 1-Ethyl-3-methylimidazolium, salt
 RL: DEV (Device component use); USES (Uses)
 (batteries using molten salt electrolyte)
- RN 65039-03-4 HCPLUS
- CN 1H-Imidazolium, 3-ethyl-1-methyl- (CA INDEX NAME)

ONE OR MORE TAUTOMERIC DOUBLE BONDS NOT DISPLAYED IN THE STRUCTURE

IC ICM H01M006-04

INCL 429344000; 429307000; 429321000; 429338000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 56

ST battery molten salt electrolyte

IT Battery electrolytes
Temperature sensors
(batteries using molten salt electrolyte)

IT Imides
RL: DEV (Device component use); USES (Uses)
(lithium; batteries using molten salt
electrolyte)

IT Nitrates, uses
RL: DEV (Device component use); USES (Uses)
(molten; batteries using molten salt electrolyte)

IT Wells
(oil/gas; batteries using molten salt electrolyte)

IT Primary batteries
(thermal; batteries using molten salt electrolyte)

IT Calcium alloy, base
Magnesium alloy, base
Zinc alloy, base
RL: DEV (Device component use); USES (Uses)
(batteries using molten salt electrolyte)

IT 67-71-0, Dimethyl sulfone 96-49-1, Ethylene carbonate 108-32-7,
Propylene carbonate 599-66-6, Di-p-tolylsulfone 1313-13-9,
Manganese dioxide, uses 1314-62-1, Vanadia, uses 7439-93-2,
Lithium, uses 7757-79-1, Potassium nitrate, uses
7784-01-2, Silver chromate 7789-18-6, Cesium nitrate 7790-69-4,
Lithium nitrate 7791-03-9, Lithium perchlorate
12018-01-8, Chromium dioxide 12031-65-1, Lithium nickel
oxide linio₂ 12190-79-3, Cobalt lithium oxide colio₂
12615-39-3 12798-95-7 21324-40-3, Lithium
hexafluorophosphate 29935-35-1, Lithium
hexafluoroarsenate 33454-82-9, Lithium triflate
39457-42-6, Lithium manganese oxide 51177-06-1, Chromium
lithium oxide 65039-03-40,
1-Ethyl-3-methylimidazolium, salt 65777-94-8 68848-64-6
78498-45-0 89353-20-8 135573-53-4, Cobalt lithium
nickel oxide Co0-1LiNi0-1O₂ 143314-16-3,
1-Ethyl-3-methylimidazolium tetrafluoroborate 145022-44-2,
1-Ethyl-3-methylimidazolium triflate 145022-45-3, 1H-Imidazolium,
1-ethyl-3-methyl-, methanesulfonate 503313-85-7
RL: DEV (Device component use); USES (Uses)
(batteries using molten salt electrolyte)

IT 7782-42-5, Graphite, uses
RL: MOA (Modifier or additive use); USES (Uses)
(batteries using molten salt electrolyte)

IT 7440-02-0, Nickel, uses 7440-50-8, Copper, uses 12597-68-1,
Stainless steel, uses
RL: DEV (Device component use); USES (Uses)
(molten Li immobilized with; batteries using
molten salt electrolyte)

REFERENCE COUNT: 23 THERE ARE 23 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L103 ANSWER 11 OF 13 HCAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2002:750513 HCAPLUS Full-text
DOCUMENT NUMBER: 137:265681
TITLE: Polymer electrolytes for lithium
-polymer-batteries
INVENTOR(S): Naarmann, Herbert; Kruger, Franz Josef
PATENT ASSIGNEE(S): Dilo Trading A.-G., Switz.
SOURCE: Ger. Offen., 4 pp.

CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 10112613	A1	20021002	DE 2001-10112613	200103 14
DE 10112613	B4	20070412	DE 2001-10112613	200103 14
PRIORITY APPLN. INFO.:				

AB Such polymer systems are usually referred to as polymer gels and they consist of polymers and conducting salts, appropriate aprotic solvents, and optionally also additives which serve as structure-improvers or as effect materials. Homo and/or copolymers which have no p-active groups, but which may be cross-linked, can serve in polymer electrolytes. Also suitable are polymers with a mol. weight from 10 000 to 3 000 000 and polymer types, polyolefins, polystyrene, polydiene, polyethers and/or polyheterocycles, homo and/or copolymers and mixts. of these. Conducting salts include Li salts such as LiBF₄, LiPF₆, LiClO₄, Li-oxalato borate, Li-trifluoromethanesulfones. The solvents are aprotic systems, preferably liqs. with high b.ps. like Et carbonate, Pr carbonate and others. Additives are organic or inorg. structure improvers, cross-linked polymers or SiO₂, zeolites or titanates, ferrites and others.

IT 29383-23-1, Vinylimidazole
 RL: TEM (Technical or engineered material use); USES (Uses)
 (polymer electrolytes for lithium-polymer-batteries)

RN 29383-23-1 HCAPLUS
 CN 1H-Imidazole, ethenyl- (CA INDEX NAME)

D1—CH=CH₂

IC ICM H01M010-40
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38
 ST polymer electrolyte lithium battery aprotic solvent conducting salt additive
 IT Fluoro rubber
 RL: TEM (Technical or engineered material use); USES (Uses)
 (PVDF-HFP-II 012; polymer electrolytes for lithium-polymer-batteries)
 IT Styrene-butadiene rubber, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (block polymers, dioxolanone derivative; polymer electrolytes for lithium-polymer-batteries)
 IT Electric conductivity

(characteristic of polymer electrolyte for lithium-polymer-batteries)

IT Primary batteries
 (lithium; polymer electrolytes for lithium-polymer-batteries)

IT Polymer electrolytes
 (polymer electrolytes for lithium-polymer-batteries)

IT 117197-37-2
 RL: TEM (Technical or engineered material use); USES (Uses)
 (Luvicross; polymer electrolytes for lithium-polymer-batteries)

IT 7791-03-9, Lithium perchlorate (LiClO₄) 14283-07-9
 21324-40-3, Lithium hexafluorophosphate (LiPF₆)
 90076-65-6 244761-29-3
 RL: TEM (Technical or engineered material use); USES (Uses)
 (conducting salt in polymer electrolytes)

IT 79-10-7D, Acrylic acid, Me derivative, esters with C4 to C12 alc.
 88-12-0, uses 98-83-9, α -Methylstyrene, uses 100-42-5,
 Styrene, uses 2235-00-9, Vinylcaprolactam 29383-23-1,
 Vinylimidazole
 RL: TEM (Technical or engineered material use); USES (Uses)
 (polymer electrolytes for lithium-polymer-batteries)

IT 106107-54-4
 RL: TEM (Technical or engineered material use); USES (Uses)
 (styrene-butadiene rubber, block polymers, dioxolanone derivative; polymer electrolytes for lithium-polymer-batteries)

REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L103 ANSWER 12 OF 13 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2001:531955 HCPLUS [Full-text](#)
 DOCUMENT NUMBER: 135:124958
 TITLE: Polymerizing molten salt monomer, electrolyte composition, and electrochemical cell
 INVENTOR(S): Ono, Michio; Sen, Masakazu
 PATENT ASSIGNEE(S): Fuji Photo Film Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 32 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001199961	A	20010724	JP 2000-13048	200001 21
US 20010026890	A1	20011004	US 2001-765368	200101 22
US 6750352	B2	20040615	JP 2000-13048	A 200001 21
PRIORITY APPLN. INFO.:				

OTHER SOURCE(S): MARPAT 135:124958

AB The title monomer is represented as Q[Y1(CH₂CH₂O)_nY2]_mX [Q = N-containing aromatic heterocyclic group for forming a cation; Y1 = divalent bond; Y2 = (substituted) alkyl; n = 2-20 integer; m = ≥2 integer; X = anion; ≥1 of Y2 contains a polymerizing group; Q or Y2 may be linked to give a dimer or a tetramer]. The title electrolyte composition contains a polymer obtained by polymerizing the monomer. An electrochem. cell containing the electrolyte composition is also claimed. Preferably, the cell contains a charge-transfer layer containing the electrolyte composition and a photosensitive layer containing a dye-sensitized semiconductor. The electrolyte composition has high charge-transfer property, photoelec. conversion efficiency, durability, and ion conductivity and is especially suitable for a secondary nonaq. battery and a solar cell.

IT 288-32-4, Imidazole, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of; in preparation of polymerizing molten salt monomer for polymer electrolyte composition)

RN 288-32-4 HCPLUS

CN 1H-Imidazole (CA INDEX NAME)

IC ICM C07D213-30

ICS C07D233-60; C07D233-64; C08F299-00; C08K003-16; C08L055-00;
H01B001-06; H01B001-12; H01L031-04; H01M010-40; H01M014-00

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 35, 38, 76

ST polymg pyridinium molten salt monomer electrolyte compn electrochem
cell; imidazolium polymg molten salt monomer electrolyte compn
photoelectrochem cell; nonaq battery pyridinium polymer
electrolyte compn; solar cell pyridinium polymer electrolyte compn

IT Secondary batteries

(lithium; polymerizing molten salt monomer for
polymer electrolyte composition in electrochem. cell)

IT Battery electrolytes

Photoelectrochemical cells

Polymer electrolytes

Solar cells

(polymerizing molten salt monomer for polymer electrolyte composition in
electrochem. cell)

IT 98-59-9, p-Toluenesulfonyl chloride 112-60-7, Tetraethylene glycol
288-32-4, Imidazole, reactions 814-68-6, 2-Propenoyl

chloride 2615-15-8, Hexaethylene glycol 3304-70-9 4296-15-5,
2-Methoxy ethyl iodide 14104-20-2, Silver tetrafluoroborate

52808-36-3 52995-76-3 90076-65-6, Lithium

bis(trifluoromethylsulfonyl)amide 113694-55-6 143127-81-5

RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction of; in preparation of polymerizing molten salt monomer for
polymer electrolyte composition)

ORIGINAL REFERENCE NO.: 117:16303a,16306a
 TITLE: Secondary batteries with polymer electrodes
 INVENTOR(S): Yoshinaga, Noryuki; Fujimoto, Masahisa;
 Furukawa, Sanehiro
 PATENT ASSIGNEE(S): Sanyo Denki K. K., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 04104477	A	19920406	JP 1990-222005	199008 22
JP 3108082	B2	20001113		
PRIORITY APPLN. INFO.:			JP 1990-222005	199008 22

AB In batteries use conducting polymer anodes and/or cathodes and N-containing compds. as electrolyte solvents. The compds. are selected from pyrrolidone, pyrrolidine, pyrroline, pyrazole, pyrazolidine, imidazole, triazole, tetrazole, and their derivs. These batteries have high capacity d.
 IT 288-32-4, Imidazole, uses
 RL: USES (Uses)
 (electrolyte solvent, for batteries with
 polymer electrodes)
 RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (CA INDEX NAME)

IC ICM H01M010-40
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST polymer battery electrolyte solvent; nitrogen compd
 solvent battery electrolyte
 IT Battery electrolytes
 (lithium salts, nitrogen-containing compds. as
 solvents for)
 IT Batteries, secondary
 (polymer, nitrogen-containing compds. as solvents for)
 IT 25233-30-1, Polyaniline 25233-34-5, Polythiophene 30604-81-0,
 Polypyrrole
 RL: USES (Uses)
 (electrodes, batteries with, nitrogen-containing compds. as
 electrolyte solvents for)
 IT 123-75-1, Pyrrolidone, uses 288-13-1, Pyrazole 288-32-4,
 Imidazole, uses 288-94-8, 1H-Tetrazole 504-70-1, Pyrazolidine
 616-45-5, Pyrrolidone 638-31-3, 2-Pyrroline 872-50-4,
 N-Methyl-2-pyrrolidone, uses 28350-87-0, Pyrroline 37306-44-8,

Triazole

RL: USES (Uses)

(electrolyte solvent, for batteries with
polymer electrodes)

=> => d ibib abs hitstr hitind 1107 1-3

L107 ANSWER 1 OF 3 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2006:745637 HCPLUS Full-text
 DOCUMENT NUMBER: 145:296106
 TITLE: Nonaqueous electrolyte solution and
secondary battery containing the solution
 INVENTOR(S): Kim, Hak Su; Kim, Jong Seop; Park, Myeong Guk;
Yang, Ho Seok
 PATENT ASSIGNEE(S): Cheil Industries Inc., S. Korea
 SOURCE: Repub. Korean Kongkae Taeho Kongbo, No pp. given
 CODEN: KRXXA7
 DOCUMENT TYPE: Patent
 LANGUAGE: Korean
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	

KR 2004061572	A	20040707	KR 2002-87845	200212 31
PRIORITY APPLN. INFO.:			KR 2002-87845	200212 31

AB A nonaq. electrolyte solution and a secondary battery containing the electrolyte solution are provided to reduce the generation of gas at a high temperature (85°) remarkably, thereby preventing the swelling due to the generation of gas of a battery and improving the capacity storage at a high temperature. The electrolyte solution has a Li salt dissolved in a carbonate-based organic solvent mixture; and 0.1-10 weight parts of a 1-phenylsulfonyl pyrrole derivative or 1-phenylsulfonyl thiophene derivative.

IT 16851-82-4D, 1-Phenylsulfonyl pyrrole, derivs.

RL: MOA (Modifier or additive use); USES (Uses)

(electrolyte solns. containing phenylsulfonyl pyrrole
derivs. or phenylsulfonyl thiophene derivs. for secondary
batteries)

RN 16851-82-4 HCPLUS

CN 1H-Pyrrole, 1-(phenylsulfonyl)- (CA INDEX NAME)

IC ICM H01M010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST secondary battery electrolyte phenyl sulfonyl pyrrole

- thiophene deriv
 IT Battery electrolytes
 (electrolyte solns. containing phenylsulfonyl pyrrole
 derivs. or phenylsulfonyl thiophene derivs. for secondary
 batteries)
 IT 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate
 108-32-7, Propylene carbonate 616-38-6, Dimethyl carbonate
 623-53-0, Ethyl methyl carbonate 21324-40-3, Lithium
 hexafluorophosphate 56525-42-9, Methyl propyl carbonate, uses
 RL: DEV (Device component use); USES (Uses)
 (electrolyte solns. containing phenylsulfonyl pyrrole
 derivs. or phenylsulfonyl thiophene derivs. for secondary
 batteries)
 IT 16851-82-4D, 1-Phenylsulfonyl pyrrole, derivs.
 22407-40-5D, derivs.
 RL: MOA (Modifier or additive use); USES (Uses)
 (electrolyte solns. containing phenylsulfonyl pyrrole
 derivs. or phenylsulfonyl thiophene derivs. for secondary
 batteries)

L107 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2004:753254 HCAPLUS Full-text
 DOCUMENT NUMBER: 141:228183
 TITLE: A nonaqueous electrolyte for lithium
 secondary battery
 INVENTOR(S): Kim, Jin-Hee; Kim, Jin-Sung; Hwang, Sang-Moon;
 Paik, Meen-Seon; Kim, Hak-Soo
 PATENT ASSIGNEE(S): Samsung SDI Co., Ltd., S. Korea; Cheil
 Industries Inc.
 SOURCE: Eur. Pat. Appl., 33 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1458048	A1	20040915	EP 2003-90262	200308 21
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
KR 2004080775	A	20040920	KR 2003-15749	200303 13
JP 2005108439	A	20050421	JP 2003-183239	200306 26
CN 1531134	A	20040922	CN 2003-155332	200308 27
US 20040185347	A1	20040923	US 2003-658272	200309 10
PRIORITY APPLN. INFO.:			KR 2003-15749	A
				200303 13

OTHER SOURCE(S): MARPAT 141:228183

AB An electrolyte for a lithium secondary battery includes lithium salts, a nonaq. organic solvent, and additive compds. The additive compds. added to the electrolyte of the present invention decompose earlier than the organic solvent to form a conductive polymer layer on the surface of a pos. electrode, and prevent decomposition of the organic solvent. Accordingly, the electrolyte inhibits gas generation caused by decomposition of the organic solvent at initial charging, and thus reduces an increase of internal pressure and swelling during high temperature storage, and also improves safety of the battery during overcharge.

IT 16851-82-4, 1-(Phenylsulfonyl)pyrrole

RL: MOA (Modifier or additive use); USES (Uses)
(nonaq. electrolyte for lithium secondary battery)

RN 16851-82-4 HCAPLUS

CN 1H-Pyrrole, 1-(phenylsulfonyl)- (CA INDEX NAME)

IC ICM H01M010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST nonaq electrolyte lithium secondary battery; safety nonaq
electrolyte lithium secondary battery

IT Secondary batteries

(lithium; nonaq. electrolyte for lithium secondary
battery)

IT Battery electrolytes

Conducting polymers

Safety

Swelling, physical

(nonaq. electrolyte for lithium secondary battery)

IT Aromatic hydrocarbons, uses

Esters, uses

Ethers, uses

Ketones, uses

RL: DEV (Device component use); USES (Uses)

(nonaq. electrolyte for lithium secondary battery)

IT Lithium alloy, base

RL: DEV (Device component use); USES (Uses)

(nonaq. electrolyte for lithium secondary battery)

IT 67-71-0, Methylsulfone 71-43-2, Benzene, uses 77-77-0,
Vinylsulfone 96-49-1, Ethylene carbonate 105-58-8, Diethyl
carbonate 108-32-7, Propylene carbonate 108-88-3, Toluene, uses
126-33-0, Tetramethylene sulfone 127-63-9, Phenylsulfone
462-06-6, Fluorobenzene 463-79-6D, Carbonic acid, chain ester
463-79-6D, Carbonic acid, cyclic ester 463-79-6D, Carbonic acid,
ester 616-38-6, Dimethyl carbonate 620-32-6, Benzylsulfone
623-53-0, Methyl ethyl carbonate 623-96-1, Dipropyl carbonate
1330-20-7, Xylene, uses 1889-59-4, Ethylvinylsulfone 3680-02-2,
Methylvinylsulfone 4437-85-8, Butylene carbonate 5535-43-3,
m-ChloroPhenyl vinyl sulfone 5535-48-8, Phenylvinylsulfone
7439-93-2, Lithium, uses 7447-41-8, Lithium chloride (LiCl), uses
7791-03-9, Lithium perchlorate 10377-51-2, Lithium iodide

14024-11-4, Aluminum lithium chloride AlLiCl₄ 14283-07-9, Lithium tetrafluoroborate 18424-17-4, Lithium hexafluoroantimonate 21324-40-3, Lithium hexafluorophosphate 27359-10-0, Trifluorotoluene 28122-14-7, p-FluoroPhenyl vinyl sulfone 28452-93-9, Butadiene sulfone 29935-35-1, Lithium hexafluoroarsenate 33454-82-9, Lithium triflate 35363-40-7, Ethyl propyl carbonate, uses 37220-89-6, Aluminum lithium oxide 39300-70-4, Lithium nickel oxide 56525-42-9, Methyl propyl carbonate, uses 90076-65-6 131651-65-5, Lithium nonafluorobutanesulfonate 162684-16-4, Lithium manganese nickel oxide

RL: DEV (Device component use); USES (Uses)

(nonaq. electrolyte for lithium secondary battery)

IT 80-05-7, Bisphenol A, uses 95-15-8, Thianaphthene 117-80-6, 2,3-Dichloro-1,4-naphthoquinone 271-89-6, 2,3-Benzofuran 524-42-5, 1,2-Naphthoquinone 625-86-5, 2,5-Dimethylfuran 693-98-1, 2-Methyimidazole 1192-62-7, 2-Acetyl furan 1193-79-9, 2-Acetyl-5-methylfuran 4265-27-4, 2-Butylbenzofuran 7474-83-1, 3-Bromo-1,2-naphthoquinone 13243-65-7, 2,3-Dibromo-1,4-naphthoquinone 16851-82-4, 1-(Phenylsulfonyl)pyrrole

RL: MOA (Modifier or additive use); USES (Uses)

(nonaq. electrolyte for lithium secondary battery)

REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L107 ANSWER 3 OF 3 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1999:55451 HCPLUS Full-text

DOCUMENT NUMBER: 130:202087

TITLE: Synthesis and electrochemistry of acid pyrrole derivatives

AUTHOR(S): Millan B, E. J.; Bartlett, P. N.; Grossel, M. C.

CORPORATE SOURCE: Universidad de Los Andes, Facultad de Ciencias, Departamento de Quimica, Grupo de Electroquimica, Merida, 5101, Venez.

SOURCE: Memorias - Encuentro Nacional de Electroquimica, 10th, Caracas, Apr. 23-25, 1997 (1998), Meeting Date 1997, 167-178. Editor(s): Suarez S., Ivan J.; Scharifker, Benjamin; Mostany, Jorge. Universidad Simon Bolivar, Departamento de Quimica: Caracas, Venez.

CODEN: 67FTA3

DOCUMENT TYPE: Conference

LANGUAGE: Spanish

AB The synthesis, growth and properties of β -carboxylic acids of pyrrole in acetonitrile solns. was studied. The synthesis of these derivs. was carried out by Friedel-Crafts reaction followed by reduction of ket-acids. These monomers were electropolymerized by cyclic voltammetry and by pulsed applied potential in LiClO₄ solns. as supporting electrolyte. The effect of the length of alkyl chain in pyrrole derivs. on redox potential of obtained polymer films was studied, and oxidation potential dependence on pH in usual solvents was evaluated. It was shown that the oxidation potential displaces to the pos. value with increase of the alkyl chain length.

IT 16851-82-4, N-Phenylsulfonylpyrrole

RL: PRP (Properties); RCT (Reactant); RACT (Reactant or reagent)
(use in synthesis of acid pyrrole derivs.)

RN 16851-82-4 HCPLUS

CN 1H-Pyrrole, 1-(phenylsulfonyl)- (CA INDEX NAME)

CC 72-2 (Electrochemistry)

Section cross-reference(s): 22, 27

IT 7446-70-0, Aluminum trichloride, properties 7647-01-0,

Hydrochloric acid, properties 16851-82-4,

N-Phenylsulfonylpyrrole 16940-66-2

RL: PRP (Properties); RCT (Reactant); RACT (Reactant or reagent)

(use in synthesis of acid pyrrole derivs.)

REFERENCE COUNT: 18 THERE ARE 18 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

=>