Akdeniz Üniversitesi Fen Fakültesi - Fizik Bölümü FİZ319 Kuantum Fiziği Ders Notları

Doç. Dr. Mesut Karakoç December 14, 2018

4	4.1	Boyutlu Potansiyeller Basamak Potansiyeli	3
\mathbf{L}^{i}	ist	of Figures	
\mathbf{L}^{i}	$rac{1}{ ext{ist}}$	Basamak potansiyeli	}

If all this damned quantum jumps were really to stay, I should be sorry I ever got involved with quantum theory.

—Erwin Schrödinger [1]

4 Bir Boyutlu Potansiyeller

Üç boyutlu bir evrende yaşıyor olmamıza rağmen, bir çok fiziksel olayı (hareketi) bir boyutlu olarak tanımlamak mümkündür. Bu nedenle bu bölümde klasik fiziğin açıklayamadığı fakat kuantum fiziğiyle çalışabildiğimiz bazı bir boyutlu sistemleri inceleyeceğiz.

4.1 Basamak Potansiyeli

Figure 1: Basamak potansiyeli.

Basamak potansiyeli için bir örnek yukarıdaki şekildeki gibi olur. Şekilden anlaşılacağı üzere basamak potansiyeli; birbirinden farklı sabit potansiyellere sahip iki bölge içeren bir durumdur. Bir boyutlu hali için matematiksel ifadesi aşağıdaki gibidir.

$$V(x) = \begin{cases} 0 & \Leftarrow x < 0 \\ V_0 & \Leftarrow x \geqslant 0 \end{cases} \tag{1}$$

Bu potansiyeli zamandan bağımsız Schrödinger denklemi ile çalışabiliriz. Öncelikle Schrödinger denklemini yazılışı daha kolay olan,

$$-\frac{\hbar^2}{2m}\frac{d^2u(x)}{dx^2} + V(x)u(x) = Eu(x)$$
 (2)

formuna dönüştürebiliriz.

$$\frac{d^2u(x)}{dx^2} + \frac{2m}{\hbar^2} [E - V(x)]u(x) = 0$$
 (3)

Basamak potansiyelinin değerinin sıfır olduğu bölge için

$$\frac{2m}{\hbar^2}E = k^2 \tag{4}$$

tanımını ve sıfırdan farklı olduğu bölge için

$$\frac{2m}{\hbar^2} \left(E - V_0 \right) = q^2 \tag{5}$$

tanımını yapabiliriz. x < 0 ve V(x) = 0 bölgesi için çözüm

$$u_1(x) \equiv u(x) = Ae^{ikx} + Be^{-ikx} \tag{6}$$

olarak yazılabilir. Burada Ae^{ikx} , $x=-\infty$ 'deki bir kaynaktan gelen serbest düzlem dalga olarak düşünülebilir, Be^{-ikx} ise x=0 noktasında ortam değişikliğinden dolayı yansıyan dalga olarak düşünülebilir. Bu bölgedeki toplam olasılık akısı,

$$j_1 \equiv j = \frac{\hbar}{2im} \left(u^* \frac{du}{dx} - \frac{du^*}{dx} u \right) \\
 = \frac{\hbar}{2im} \left[\left(A^* e^{-ikx} + B^* e^{ikx} \right) \left(ikAe^{ikx} - ikBe^{-ik} \right) - \left(-ikA^* e^{-ikx} + ikB^* e^{ik} \right) \left(Ae^{ikx} + Be^{-ikx} \right) \right] \\
 = \frac{\hbar k}{m} \left(|A|^2 - |B|^2 \right)
 \tag{7}$$

olur. x > 0 ve $V(x) = V_0$ için ise,

$$u_2(x) \equiv u(x) = Ce^{iqx} \tag{8}$$

çözümü elde edilir. Sadece Ce^{iqx} kısmı vardır, çünkü bu bölge $x=+\infty$ 'a kadar uzanmaktadır ve potansiyel sabittir bu yüzden, yansıyan dalga söz konusu değildir. Sadece +x yönünde ilerleyen olasılık dalgası vardır. Bu olasılık dalgası için olasılık akısı,

$$j_2 \equiv j = \frac{\hbar q}{m} |C|^2 \tag{9}$$

bulunur. Her iki bölgedeki olasılık akıları $(j_1 = j_2)$ birbirine eşit olmalıdır. Eğer,

$$\frac{\partial}{\partial t}P(x,t) + \frac{\partial}{\partial x}j(x,t) = 0 \tag{10}$$

olduğu hatırlanırsa ve kısmi değişkenlere ayrılabilir dalga fonksiyonu ile çalıştığımızdan $P(x,t) = \psi(x,t)\psi^*(x,t) = u(x)u^*(x)$ olacağına göre,

$$\frac{\partial}{\partial t}P(x,t) = \frac{\partial}{\partial t}|u(x)|^2 = 0 \tag{11}$$

elde edilir. Buradan,

$$\frac{\partial}{\partial x}j(x,t) = 0 \tag{12}$$

sonucuna ulaşırız. x=0 civarında $x=\pm\varepsilon\to 0$ aralığında yukarıdaki ifadenin integrali,

$$\int_{-\varepsilon}^{\varepsilon} dx \frac{\partial}{\partial x} j(x, t) = j(\varepsilon, t) - j(-\varepsilon, t) = 0$$
(13)

sonucunu verir. Böylece $j_1 = j_2$ olması gerektiği ortaya çıkar. Her iki bölgedeki olasılık akıları da x'ten bağımsız olduklarından sınırda eşitlerse bütün tanımlı uzay boyunca birbirlerine eşit olmalıdırlar,

$$\frac{\hbar k}{m} \left(|A|^2 - |B|^2 \right) = \frac{\hbar q}{m} |C|^2 \tag{14}$$

yukarıdaki eşitlikle bu sonuç ifade edilmiş olur. Dalga fonksiyonlarının x=0'daki sürekliliğinden ise,

$$u_1(0) = u_2(0) \tag{15}$$

$$A + B = C \tag{16}$$

elde edilir. Basamak potansiyeli x=0'da süreksiz olmasına rağmen, sistemin dalga fonksiyonu u(x) süreklidir, dalga fonksiyonun türevinin de x=0'da sürekli olacağı aşağıda verilen matematik süreçle gösterilmiş olur.

$$\left(\frac{du}{dx}\right)_{+\varepsilon} - \left(\frac{du}{dx}\right)_{-\varepsilon} = \int_{-\varepsilon}^{+\varepsilon} dx \frac{dx}{dx} \frac{du}{dx}
= \int_{-\varepsilon}^{+\varepsilon} dx \frac{2m}{\hbar^2} [V(x) - E] u(x) = 0$$
(17)

Burada ε sonsuz küçük bir pozitif reel sayıdır. x=0'ın $-\varepsilon$ ve $+\varepsilon$ civarında dalga fonksiyonlarının türevlerinin farkı yukarıdaki eşitliğin sol tarafındaki gibidir ve bu farkın integral formuda eşitliğin sağ tarafındaki gibidir. Eşitliğin sol tarafı Schrödinger denkleminden faydalanılarak V(X), E ve u(x)'i içerecek şekilde yeniden yazılabilir. Bu problemde V(x) ve E birer sabit sayı olduklarından, $\pm \varepsilon \to \infty$ olduğundan ve böylece u(x)'in sürekliliği gerçekleştiğinden bu integralin cevabı sıfır olacaktır. Böylece bu tür problemler için dalga fonksiyonlarının türevlerinin de sürekli oldukları kabul edilebilir.

Yeri geldiğinden ve daha sonra kullanılacağı için şimdiden belirtmek gerekir ki, bu süreklilik $\lambda\delta(x-a)$ benzeri Dirac-delta fonksiyonu içeren potansiyeller için geçerli değildir. Böyle potansiyeller için süreklilik aşağıdaki gibi bir süreksizlik halin alır.

$$\left(\frac{du}{dx}\right)_{a+\varepsilon} - \left(\frac{du}{dx}\right)_{a-\varepsilon} = \frac{2m}{\hbar^2} \int_{a-\varepsilon}^{a+\varepsilon} dx \lambda \delta(x-a) u(x)
= \frac{2m}{\hbar^2} \lambda u(a)$$
(18)

Bu problemde türevlerinin sürekliliği sağlandığına göre; türevlerinin sürekliliğinden,

$$\frac{d}{dx}u_1(x)\Big|_{x=0-} = \frac{d}{dx}u_2(x)\Big|_{x=0+}$$
 (19)

$$ik(A - B) = iqC (20)$$

elde edilir. Böylece, akının korunumunda, dalga fonksiyonları ve türevlerinin sürekliliğinden,

$$\frac{\hbar k}{m} \left(|A|^2 - |B|^2 \right) = \frac{\hbar q}{m} |C|^2 \tag{21}$$

$$A + B = C (22)$$

$$ik(A - B) = iqC (23)$$

eşitlikleri elde edilmiş olur. Bu tür problemleri çalışılırken, klasik bir dalga sisteminin davranışına benzer olarak yansıma ve geçme olasılıklarından bahsetmek mümkündür. Bu olasılıklarla ilişklili olarak, genellikle geçme ve yansıma katsayıları

$$R = \frac{|j_{\text{yansiyan}}|}{|j_{\text{gelen}}|} \tag{24}$$

$$T = \frac{|j_{\text{geçen}}|}{|j_{\text{gelen}}|} \tag{25}$$

şeklinde tanımlanırlar. R ve T'yi hesaplamadan önce olasılık akısı üzerinde biraz daha bilgilerimizi genişletmeliyiz: olasılık akısını üç boyutlu durum için yazacak olursak,

$$\vec{j} = \frac{\hbar}{2mi} \left[\Psi^*(\vec{r}, t) \vec{\nabla} \Psi(\vec{r}, t) - \Psi(\vec{r}, t) \vec{\nabla} \Psi^*(\vec{r}, t) \right]$$
 (26)

bir vektör davranışına sahip olduğu açıkca görülür. Basamak potansiyeli probleminde, j_1 aslında,

$$\vec{j}_1 = \vec{j}_{\text{gelen}} + \vec{j}_{\text{vansivan}} \tag{27}$$

olarak yazılabilir. j_2 ise,

$$\vec{j}_2 = \vec{j}_{\text{geçen}} \tag{28}$$

olarak yazılabilir. Akının korunumu ise,

$$\vec{j}_{\text{gelen}} + \vec{j}_{\text{yansiyan}} = \vec{j}_{\text{geçen}} \tag{29}$$

olmasını gerektirir. Tekrar basamak potansiyeli çalıştığımız bir boyutlu duruma döner ve vektör notasyonunu bırakırsak ve yönleri sadece + ve — işaretleriyle temsil edersek,

$$j_{\text{gelen}} = \frac{\hbar}{2mi} \left[u_g^* \frac{d}{dx} u_g - u_g (\frac{d}{dx} u_g)^* \right]$$
(30)

olur. Burada $u_g = Ae^{ikx}$ 'tir. Böylece gelen akı,

$$j_{\text{gelen}} = \frac{\hbar k}{m} |A|^2 \tag{31}$$

olur.

$$R = \frac{k-q}{k+q}$$

$$T = \frac{2k}{k+q} \tag{32}$$

$$\frac{\hbar k}{m}|R|^2 = \frac{\hbar k}{m} \left(\frac{k-q}{k+q}\right)^2$$

$$\frac{\hbar q}{m}|T|^2 = \frac{\hbar k}{m} \frac{4kq}{(k+q)^2}$$
(33)

$$u(x) = Te^{-|q|x} (34)$$

$$|R|^2 = \left(\frac{k-i|q|}{k+i|q|}\right) \left(\frac{k-i|q|}{k+i|q|}\right)^* = 1 \tag{35}$$

$$T = \frac{2k}{k+i|q|} \tag{36}$$

4.2 Sonlu Potansiyel Kuyusu

Kaynaklar

 $[1] \ \ Zbigniew \ Ficek. \ \ \textit{Quantum Physics for Beginners}.$