第八章 解线性方程组的迭代法

- 大稀疏方程组适用迭代法
- ▶ 常用迭代法
- ▶ 迭代法收敛性
- ▶ 误差估计
- 收敛速率

大稀疏方程组

- ▶ 线性方程组Ax = b
 - 。大稀疏矩阵:非零元素极少
 - 。大稀疏方程组:非零系数极少
 - 微分方程离散化
 - 结构分析
 - 网络排名
- 大稀疏方程组更适用迭代法求解
 - 。直接法:用有限步计算得到准确解
 - 。 迭代法: 给出一个近似解序列

迭代法

线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

- 迭代法
 - 。 给出一个近似解序列: $x^{(k+1)} = Bx^{(k)} + g$, $k = 0,1,2,\cdots$ (一阶线性定常迭代法)
 - 收敛性: $\lim_{k\to\infty} x^{(k)} = x^*$, 其中 x^* 为方程的解 误差估计: $||x^{(k)} x^*||$

 - 收敛速率: $||x^{(k+1)} x^*|| = r||x^{(k)} x^*||$

Jacob i 迭代法算例

- ▶ 用Jacobi迭代法解线性方程组
- ▶ 例1.方程组

$$\begin{cases} 10x_1 - x_2 - 2x_3 = 7.2 \\ -x_1 + 10x_2 - 2x_3 = 8.3 \\ -x_1 - x_2 + 5x_3 = 4.2 \end{cases}$$

化成

$$x_1 = 0.1x_2 + 0.2x_3 + 0.72$$

 $x_2 = 0.1x_1 + 0.2x_3 + 0.83$
 $x_3 = 0.2x_1 + 0.2x_2 + 0.84$

任取初始近似 $x^{(0)}$,对k = 0,1,2,...计算

$$x_1^{(k+1)} = 0.1x_2^{(k)} + 0.2x_3^{(k)} + 0.72$$

$$x_2^{(k+1)} = 0.1x_1^{(k)} + 0.2x_3^{(k)} + 0.83$$

$$x_3^{(k+1)} = 0.2x_1^{(k)} + 0.2x_2^{(k)} + 0.84$$

直至 $||x^{(k+1)} - x^k|| \le \varepsilon$,预定的精度,例如 5×10^{-5}

Jacobi迭代法算例

) 计算结果

k	x_1^k	x_2^k	χ_3^k
0	0	0	0
1	0.720000000000	0.830000000000	0.840000000000
2	0.971000000000	1.070000000000	1.150000000000
3	1.057000000000	1.157100000000	1.248200000000
4	1.085350000000	1.185340000000	1.282820000000
5	1.095098000000	1.195099000000	1.294138000000
6	1.098337500000	1.198337400000	1.298039400000
7	1.099441620000	1.199441630000	1.299334980000
8	1.099811159000	1.199811158000	1.299776650000
9	1.099936445800	1.199936445900	1.299924463400
10	1.099978537270	1.199978537260	1.299974578340
11	1.099992769394	1.199992769395	1.299991414906

Jacobi迭代法

- ▶ 线性方程组(1) *Ax* = *b*
- ▶ 化成(2) x = Bx + g

从第一个方程解出 x_1 ,第二个方程解出 x_2 ,…,得

$$x_1 = b_{12}x_2 + b_{13}x_3 + \dots + b_{1n}x_n + g_1$$

$$x_2 = b_{21}x_1 + b_{23}x_3 + \dots + b_{2n}x_n + g_2$$

... ...

$$x_n = b_{n1}x_1 + b_{n2}x_2 + \dots + b_{n,n-1}x_{n-1} + g_n$$

选代

任取初始近似 $x^{(0)}$,对k = 0,1,2,... 计算

$$x_1^{(k+1)} = b_{12}x_2^{(k)} + b_{13}x_3^{(k)} + \dots + b_{1n}x_n^{(k)} + g_1$$

$$x_2^{(k+1)} = b_{21}x_1^{(k)} + b_{23}x_3^{(k)} + \dots + b_{2n}x_n^{(k)} + g_2$$

... ...

$$x_n^{(k+1)} = b_{n1}x_1^{(k)} + b_{n2}x_2^{(k)} + \dots + b_{n,n-1}x_{n-1}^{(k)} + g_n$$

直至 $||x^{(k+1)} - x^k|| \le \varepsilon$,预定的精度.

Jacobi迭代法矩阵关系

 $B = -\begin{bmatrix} 0 & \frac{a_{12}}{a_{11}} & \frac{a_{13}}{a_{11}} & \cdots \\ \frac{a_{21}}{a_{22}} & 0 & \frac{a_{23}}{a_{22}} & \cdots \\ \frac{a_{31}}{a_{33}} & \frac{a_{32}}{a_{33}} & 0 & \cdots \\ \frac{a_{n1}}{a_{nn}} & \frac{a_{n2}}{a_{nn}} & \frac{a_{n3}}{a_{nn}} & \cdots \end{bmatrix}$ 线性方程组 (1) Ax = b a_{22} 化成 $\frac{a_{3n}}{a_{33}}$ (2) x = Bx + g**选代** $x^{k+1} = Bx^{(k)} + g$

Gauss-Seidel 迭代法算例

- ▶ 用G-S迭代法解线性方程组
- ▶ 例2方程组

$$10x_1 - x_2 - 2x_3 = 7.2$$

$$-x_1 + 10x_2 - 2x_3 = 8.3$$

$$-x_1 - x_2 + 5x_3 = 4.2$$

化成

$$x_1 = 0.1x_2 + 0.2x_3 + 0.72$$

 $x_2 = 0.1x_1 + 0.2x_3 + 0.83$
 $x_3 = 0.2x_1 + 0.2x_2 + 0.84$

任取初始近似 $x^{(0)}$, 对k = 0,1,2,...计算

$$x_1^{(k+1)} = 0.1x_2^{(k)} + 0.2x_3^{(k)} + 0.72$$

$$x_2^{(k+1)} = 0.1x_1^{(k+1)} + 0.2x_3^{(k)} + 0.83$$

$$x_3^{(k+1)} = 0.2x_1^{(k+1)} + 0.2x_2^{(k+1)} + 0.84$$

直至 $||x^{(k+1)} - x^k|| \le \varepsilon$, 预定的精度, 例如 5×10^{-5} .

Gauss-Seidel迭代法算例

计算结果

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$
0	0	0	0
1	0.720000000000000	0.902000000000000	1.16440000000000
2	1.04308000000000	1.16718800000000	1.28205360000000
3	1.09312952000000	1.19572367200000	1.29777063840000
4	1.09912649488000	1.19946677716800	1.29971865440960
5	1.09989040859872	1.19993277174179	1.29996463606810
6	1.09998620438780	1.19999154765240	1.29999555040804
7	1.09999826484685	1.19999893656629	1.29999944028263

Gauss-Seidel迭代法

》线性方程组(1) Ax = b化成(2) x = Bx + g从第一个方程解出 x_1 , 第二个方程解出 x_2 , …, 得 $x_1 = b_{12}x_2 + b_{13}x_3 + \dots + b_{1n}x_n + g_1$ $x_2 = b_{21}x_1 + b_{23}x_3 + \dots + b_{2n}x_n + g_2$ …… $x_n = b_{n1}x_1 + b_{n2}x_2 + \dots + b_{n,n-1}x_{n-1} + g_n$

▶ 迭代

任取初始近似
$$x^{(0)}$$
, 对 $k = 0,1,2,...$ 计算
$$x_1^{(k+1)} = b_{12}x_2^{(k)} + b_{13}x_3^{(k)} + \cdots + b_{1n}x_n^{(k)} + g_1$$
$$x_2^{(k+1)} = b_{21}x_1^{(k+1)} + b_{23}x_3^{(k)} + \cdots + b_{2n}x_n^{(k)} + g_2$$
$$......$$
$$x_n^{(k+1)} = b_{n1}x_1^{(k+1)} + b_{n2}x_2^{(k+1)} + \cdots + b_{n,n-1}x_{n-1}^{(k+1)} + g_n$$
直至 $||x^{(k+1)} - x^k|| \le \varepsilon$, 预定的精度.

G-S迭代法矩阵关系

- 线性方程组
 - (1) Ax = b
- 化成 (2) x = Bx + g, B = L + U
- **)** 迭代

$$x^{(k+1)} = Lx^{(k+1)} + Ux^{(k)} + g$$

$$x^{(k+1)} = (I - L)^{-1}Ux^{(k)} + (I - L)^{-1}g$$

▶ 迭代矩阵: $B_1 = (I - L)^{-1}U$

SOR迭代法

- ▶ 线性方程组(1) Ax = b
- ▶ 化成(2) x = Bx + g (同Jacobi法, G-S法)
- ▶ 迭代(这是G-S法改进与推广. $\omega = 1$ 即G-S法)

任取初始近似
$$x^{(0)}$$
,对 $k = 0,1,2,...$ 计算

$$x_1^{(k+1)} = (1 - \omega)x_1^{(k)} + \omega \left(b_{12}x_2^{(k)} + b_{13}x_3^{(k)} + \dots + b_{1n}x_n^{(k)} + g_1\right)$$

$$x_2^{(k+1)} = (1 - \omega)x_2^{(k)} + \omega \left(b_{21}x_1^{(k+1)} + b_{23}x_3^{(k)} + \dots + b_{1n}x_n^{(k)} + g_2\right)$$

.

$$x_n^{(k+1)} = (1 - \omega)x_n^{(k)} + \omega \left(b_{n_1} x_1^{(k+1)} + b_{n_2} x_2^{(k+1)} + \dots + b_{n'n-1} x_{n-1}^{(k+1)} + g_n \right)$$

直至 $||x^{(k+1)} - x^k|| \le \varepsilon$,预定的精度.(ω , 参数,0 < ω < 2)

矩阵表示
$$x^{(k+1)} = (1 - \omega)x^{(k)} + \omega(Lx^{(k+1)} + Ux^{(k)} + g)$$

- **)** 迭代矩阵: $B_{\omega} = (I \omega L)^{-1}(1 \omega)I + \omega U$
- SOR (successive over-relaxation)

SOR迭代法算例

- ▶ 用G-S迭代法解线性方程组
- ▶ 例3方程组

$$10x_1 - x_2 - 2x_3 = 7.2$$

$$-x_1 + 10x_2 - 2x_3 = 8.3$$

$$-x_1 - x_2 + 5x_3 = 4.2$$

化成

$$x_1 = 0.1x_2 + 0.2x_3 + 0.72$$

 $x_2 = 0.1x_1 + 0.2x_3 + 0.83$
 $x_3 = 0.2x_1 + 0.2x_2 + 0.84$

任取初始近似 $x^{(0)}$, 对k = 0,1,2,...计算

$$x_1^{(k+1)} = (1-\omega)x_1^{(k)} + \omega \left(0.1x_2^{(k)} + 0.2x_3^{(k)} + 0.72\right)$$

$$x_2^{(k+1)} = (1-\omega)x_2^{(k)} + \omega \left(0.1x_1^{(k)} + 0.2x_3^{(k)} + 0.83\right)$$

$$x_3^{(k+1)} = (1-\omega)x_3^{(k)} + \omega \left(0.2x_1^{(k+1)} + 0.2x_2^{(k+1)} + 0.84\right)$$
直至 $||x^{(k+1)} - x^k|| \le \varepsilon$, 预定的精度, 例如5 × 10 - 5.

SOR迭代法算例

计算结果

k	$x_1^{(k)}$	$x_2^{(k)}$	$\chi_3^{(k)}$
0	0	0	0
1	0.756000000000000	0.950880000000000	1.240444800000000
2	1.078535808000000	1.197695667840000	1.297986369926400
3	1.100408392407744	1.199735235495357	1.300130843363331
4	1.099979257212925	1.200038537338889	1.299997194687714
5	1.100004494444357	1.199997955934133	1.300000654845097
6	1.099999698168336	1.200000208028439	1.299999947559068

迭代矩阵

- ▶ 一阶线性定常迭代
 - 两次近似有关系 $x^{(k+1)} = Mx^{(k)} + f$
 - · 称M为迭代矩阵
 - · Jacob i 迭代法
 - $x^{(k+1)} = Bx^{(k)} + g$
 - 迭代矩阵B = L + U
 - 。 Gauss-Seidel 迭代法
 - $x^{(k+1)} = (I-L)^{-1}Ux^{(k)} + (I-L)^{-1}g$
 - 迭代矩阵 $B_1 = (I L)^{-1}U$
 - 。SOR迭代法
 - $x^{(k+1)} = (I \omega L)^{-1} \left(((1 \omega)I + \omega U)x^{(k)} + \omega g \right)$
 - 迭代矩阵 $B_{\omega} = (I \omega L)^{-1} ((1 \omega)I + \omega U)$

迭代收敛性

- ▶ 收敛充要条件
 - 。对任何初值 $x^{(0)}$, 迭代格式 $x^{(k+1)} = Mx^{(k)} + f$ 确定的序列 $\{x^{(k)}\}$ 收敛並且极限与初值无关的充分必要条件是迭代矩阵的谱半径小于1, 即 $\rho(M) < 1$.
 - 。三个算例皆收敛
 - $\rho(B) = 0.337 \dots$
 - $\rho(B_1) = 0.125 \dots$
 - $\rho(B_{\omega}) = 0.086 \dots$

收敛性判定

- 计算迭代矩阵特征值并确定谱半径
 - 例1.
 - −0. 1
 - 0. 33722813232690
 - -0. 23722813232690
 - 例2
 - 0
 - 0. 12579720807237
 - -0. 03179720807237
 - 例3
 - · -0. 086···
 - 0. 020···± 0. 032···i

$$\det(\lambda I - B) = \begin{vmatrix} \lambda & -0.1 & -0.2 \\ -0.1 & \lambda & -0.2 \\ -0.2 & -0.2 & \lambda \end{vmatrix}$$

$$= \lambda^{3} - 0.09\lambda - 0.008$$

$$= (\lambda + 0.1)(\lambda^{2} - 0.1\lambda - 0.08)$$

$$\det(\lambda I - B_{1}) = \det(\lambda I - (I - L)^{-1}U)$$

$$= \det(\lambda (I - L) - U)$$

$$= \begin{vmatrix} \lambda & -0.1 & -0.2 \\ -0.1\lambda & \lambda & -0.2 \\ -0.2\lambda & -0.2\lambda & \lambda \end{vmatrix}$$

$$= \lambda(\lambda^{2} - 0.094\lambda - 0.004)$$

$$\det(\lambda I - B_{\omega})$$
= \det((\lambda + 1 - \omega)I - \lambda \omega L + \omega U)
= \lambda^3 + 0.0461445\lambda^2 - 0.00281175\lambda + 0.000125

误差估计

- ▶定理
- ▶ 如果迭代格式 $x_{k+1} = Mx_k + f$ 的迭代矩阵的范数 ||M|| = q < 1, 则迭代收敛, 並且有误差估计:

$$||x_k - x^*|| \le \frac{q}{1 - q} ||x_k - x_{k-1}|| \le \frac{q^k}{1 - q} ||x_1 - x_0||$$

常用前一不等式估计当前近似的误差

对角占优阵

- 严格对角优势矩阵
 - 。可逆
 - 。 Jacob i 法收敛
 - 。G-S法收敛

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, i = 1, 2, \dots, n$$

- 不可约对角优势阵
 - 。可逆
 - 。 Jacob i 法收敛
 - SOR法 $(0 < \omega \le 1)$ 收敛

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|, i = 1, 2, \cdots, n$$

至少有一 i 严格大于.
并且不存在排列阵 P ,
 $PAP^T = \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \end{bmatrix}$

SOR收敛性

- ▶ 松弛法收敛的必要条件是0 < ω < 2</p>
- > 若A是实对称矩阵或Hermite矩阵, 对角元为正, 则当 $0 < \omega < 2$ 时松弛法收敛的充分必要条件是A正定