Sławomir Kulesza

Technika cyfrowa Projektowanie automatów 100 synchronicznych

Wykład dla studentów III roku Informatyki

Automaty skończone

- Układy sekwencyjne nazywane są także automatami skończonymi (Finite State Machine – FSM). Istnieją dwa formalne modele FSM:
- Model Moore'a
 - Wyjście jest tylko funkcją stanu
 - Wyjście opisywane razem ze stanem.

- Model Mealy'ego
 - Wyjście jest funkcją wejścia i stanu
 - Wyjście opisywane nad strzałką przejścia.

Automat Mealy'ego

Funkcja wyjść: $Y^t = f(S^t, X^t)$

Automat Moore'a

Funkcja wyjść: $Y^t = f(S^t)$

Diagramy stanów a. Mealy'ego i Moore'a

 Diagram stanów a. Mealy'ego mapuje wejścia i stany wewn. na wyjścia

Tablice przejść i wyjść automatów Mealy'ego i Moore'a

Tablica stanów a. Moore'a

Present	Next	State	Output
State	x=0	x=1	
0	0	1	0
1	0	2	0
2	0	2	1

Tablica stanów a. Mealy'ego

Present	Next State	Output	
State	x=0 $x=1$	x=0 $x=1$	
0	0 1	0 0	
1	0 1	0 1	

Modele mieszane

 W rzeczywistych układach spotyka się mieszany opis automatów:

- Stan 00: Moore
- Stany 01, 10, 11: Mealy
- Uproszczony opis wyjścia

Stany równoważne układu

- Dwa stany układu są równoważne, gdy w odpowiedzi na dowolne słowo wejściowe generują identyczne słowo wyjściowe.
- Inaczej, dwa stany układu są równoważne, gdy pod wpływem tego samego wejścia generują identyczne wyjście i jednocześnie ich następny stan dla dowolnego wejścia jest taki sam.

Stany równoważne układu

Stany S3 i S2 są równoważne, bo:

- Generują identyczne wyjście dla tego samego wejścia
- Generują identyczny stan następny dla tego samego wejścia

Redukcja stanów równoważnych

- Stany S3 i S2 można zredukować
- Na nowym diagramie widać, że także stany S1 i S2 są równoważne

Analiza układów sekwencyjnych

- $\bullet \underline{\mathbf{Input}} : \mathbf{x(t)}$
- Output: y(t)
- State: (A(t), B(t))
- Jaka jest postać funkcji wyjścia?
- Jaka jest postać funkcji następnego stanu?

Analiza układów sekwencyjnych

Postaci funkcji przełączających:

- A(t+1) = A(t)x(t) + B(t)x(t)
- $B(t+1) = \overline{A}(t)x(t)$
- $y(t) = \overline{x}(t)(B(t) + A(t))$

Deskryptory układów sekwencyjnych Tablica przejść

•
$$A(t+1) = A(t) x(t) + B(t) x(t)$$

$$B(t+1) = \overline{A}(t) x(t)$$

$$\mathbf{y}(t) = \mathbf{x}(t) (\mathbf{B}(t) + \mathbf{A}(t))$$

Present State	Input	Next	State	Output
A(t) B(t)	x(t)	A(t+1)	B(t+1)	y(t)
0 0	0	0	0	0
0 0	1	0	1	0
0 1	0	0	0	1
0 1	1	1	1	0
1 0	0	0	0	1
1 0	1	1	0	0
1 1	0	0	0	1
1 1	1	1	0	0

Automaty skończone

- Układy sekwencyjne nazywane są także automatami skończonymi (Finite State Machine – FSM). Istnieją dwa formalne modele FSM:
- Model Moore'a
 - Wyjście jest tylko funkcją stanu
 - Wyjście opisywane razem ze stanem.

- Model Mealy'ego
 - Wyjście jest funkcją wejścia i stanu
 - Wyjście opisywane nad strzałką przejścia.

Efektywne algorytmy

Z twierdzenia Gödla wynika, że formalizmy matematyczne są niezupełne → istnieją twierdzenia, których nie można w ramach danego formalizmu dowieść → nie można zautomatyzować procesu dowodzenia matematycznego oraz procesu obliczeniowego → istnieją twierdzenia, których nie da się dowieść algorytmicznie.

Maszyna Turinga jest "testerem" algorytmów → algorytm wykonywany przez MT jest wykonywany w ogóle.

Automaty skończone są prostszymi wersjami MT, pozbawionymi nieskończonej pamięci. Nie mogą wykonywać np. nieskończonych rekurencji (mnożenie dwóch <u>dowolnych</u> liczb).

Automaty synchroniczne i asynchroniczne

Automat asynchroniczny nie posiada wejścia zegarowego (synchronizującego), stan wewnętrzny (i odpowiadające mu wyjście) zmienia się wraz ze zmianą sygnału wejściowego → Mealy

Automat synchroniczny posiada wejście zegarowe (synchronizujące) wyznaczające chwile, w których może się zmienić stan wewnętrzny. W pozostałym czasie automat jest niewrażliwy na zmiany stanu wejściowego → **Moore**

Każdy układ asynchroniczny można traktować jak synchroniczny z nieskończenie wysoką częstotliwością taktowania lub.

Ogólna struktura automatu

Blok wzbudzeń (synchroniczny/asynchroniczny)

Blok wejściowy (kombinacyjny, asynchroniczny)

Blok wyjściowy (kombinacyjny, asynchroniczny)

Automat Mealy'ego

Funkcja wyjść: $Y^t = f(S^t, X^t)$

Automat Moore'a

Funkcja wyjść: $Y^t = f(S^t)$

Mealy vs. Moore

Automaty Mealy'ego są prostsze

- Mniejsza liczba stanów, prostszy układ
- Szybsza reakcja na zmiany wejścia brak oczekiwania na sygnał zegara
- Asynchroniczne wyjścia i sprzężenia zwrotne niosą zagrożenia wyścigi krytyczne i niekrytyczne (races), niestabilność sygnałów wejściowych przenosi się na sygnał wyjściowy (feedthrough loops), czas ustalania się sygnałów (glitching)

Automaty Mealy'ego

Mealy vs. Moore

Automaty Moore'a są bezpieczniejsze

- Pewniejsze działanie
- Zmiana wyjścia zsynchronizowana z sygnałem zegarowym (z opóźnieniem 1 taktu)
- Wolniejsze działanie
- Przerwanie ścieżki sygnału od wejścia do wyjścia układu
- Zwykle bardziej rozbudowana część wyjściowa
- Większa liczba stanów i przerzutników

Automaty Moore'a

Mealy vs. Moore

Procedura projektowania automatów synchronicznych

- 1. Diagram stanów (graf przejść)
- 2. Minimalizacja liczby stanów wewnętrznych
- 3. Tablica przejść-wyjść
- 4. Kodowanie stanów wewnętrznych
- 5. Tablica wzbudzeń przerzutników
- 6. Funkcje wzbudzeń przerzutników
 - zminimalizuj układ korzystając z map Karnaugh
- 7. Funkcje wyjść
- 8. Schemat układu

Potencjalne problemy projektowania FSM

- Nadmiarowość kodowania stanów wewnętrznych
 niewłaściwa inicjalizacja
- 2. Nadmiarowość kodowania stanów wewnętrznych możliwe pętle w obrębie stanów nieużywanych
- 3. Nadmiarowość kodowania stanów wewnętrznych konieczność sprowadzenia do stanu właściwego
- 4. Jednoczesna zmiana co najmniej dwóch bitów stanu wewnętrznego wyścigi krytyczne i niekrytyczne (a. asynchroniczne).

Kodowanie stanów układu

- Każdemu z m-stanów układu należy przypisać unikalny identyfikator
- Min. długość identyfikatora n wynosi: $n = \text{ceil}(\log_2 m)$
- Wygodnie jest czasami opisywać stany słowami dłuższymi niż n-bitowe, pozostaje wówczas (2ⁿ-m)-stanów nieużywanych.

Kodowanie stanów FSM

Dla m-stanów wewnętrznych FSM i n-bitów kodu (m ≥ n ≥ log₂m) liczba możliwych kodów wynosi:

$$N_{K} = \frac{2^{n}!}{(2^{n} - m)!}$$

Ex.: n = 3, m = 4, $N_{\kappa} = 1680$

Przykłady kodowania stanów

- 1. Kodowanie proste (porządkowe): 000, 001, 010, 011, ...
- 2. Kodowanie w kodzie Graya: 000, 010, 011, 010, ...
- 3. Kodowanie losowe (random): 010, 111, 011, 101, ...
- 4. Kodowanie z pojedynczym gorącym bitem (one-hot):

0001, 0100, 0010, 0001

Kodowanie z pojedynczym gorącym bitem

1. n-stanów kodowanych przy pomocy nprzerzutników, np.:

> Porządkowe → 00, 01, 10, 11 One-hot → 0001, 0010, 0100, 1000

- 2. Łatwa kontrola poprawności działania bloku przerzutników
- 3. Skomplikowany diagram stanów → złożony układ
- 4. Rozbicie układu na 2 podukłady daje (n+m)przerzutników zamiast (n*m).

Kodowanie z pojedynczym gorącym bitem

- Zwykle układ działa szybciej. FSM z dużą liczbą silnie zakodowanych stanów spowalniają swoje działanie.
- Prostota projektu
- Prostota modyfikacji działania
- Łatwa kontrola działania
- Łatwe diagnozowanie usterek

Diagram stanów:

Tablica przejść-wyjść (Moore):

Q	X=0	X=1	Y
А	В	Н	000
В	С	Α	001
С	D	В	010
D	Е	С	011
E	F	D	100
F	G	Е	101
G	Н	F	110
Н	Α	G	111

Tablica przejść-wyjść (Mealy):

Q	Q ⁺		Y +	
	X=0	X=1	X=0	X=1
А	В	Н	001	111
В	С	Α	010	000
С	D	В	011	001
D	Е	С	100	010
Е	F	D	101	011
F	G	E	110	100
G	Н	F	111	101
Н	Α	G	000	110

Kodowanie stanów:

- 1. Kodowanie proste brak bloku wyjść, ale większa wrażliwość na zakłócenia stanów wewnętrznych
- 2. Kodowanie w kodzie Graya większa stabilność układu, ale dodatkowo logika wyjściowa
- 3. Kodowanie z pojedynczym 'gorącym bitem' (One-Hot Assignment) największa nadmiarowość, ale możliwość kontroli działania

Schemat układu (proste kodowanie stanów):

Schemat układu (one-hot):

Detektor sekwencji '1101'

- Przykład: detektor ciągu 1101
 - Zauważmy, że np. ciąg 1111101 zawiera 1101, zaś podciągiem jest np. "11".
- Zatem, detektor musi pamiętać wystąpienie dwóch jedynek przed nadejściem kolejnego znaku.
- Ponadto, ciąg 1101101 zawiera 1101 jako podciąg początkowy i końcowy nałożone na siebie, tj. 1101 lub 1101101.
- Wspólnym znakiem obu podciągów jest środkowa 1, 1101101.
- Ciąg 1101 musi być wykrywany za każdym razem, gdy pojawi się w ciągu wejściowym.

Detektor sekwencji '1101' – Mealy

Kompletna tabela stanów.

Present	Next State		Out	_
State	x=0	x=1	x=0	x=1
\mathbf{A}	\mathbf{A}	В	0	0
В	\mathbf{A}	C	0	0
C	D	C	0	0
D	\mathbf{A}	В	0	1

Jak wyglądałby diagram i tabela dla modelu Moore'a?

Detektor sekwencji '1101' - Moore "Moore is more"

Present	Next State	Output
State	x=0 $x=1$	y
A	A B	0
В	A C	0
C	D C	0
D	A E	0
E	A C	1

Stan	Stan kolejny		Wyjście	
bieżący	x=0	x=1	x=0	x=1
A	A	В	0	0
В	A	В	0	1

- Jakie są możliwości opisania stanów układu słowami binarnymi przy minimalnej liczbie bitów?
 - 2 sposoby: A = 0, B = 1 lub A = 1, B = 0

Stan	Stan kolejny	Wyjście	
bieżący	x=0 $x=1$	x=0 $x=1$	
A	A B	0 0	
В	A C	0 0	
C	D C	0 0	
D	A B	0 1	

- Ilość możliwych przypisań stanów:
 - 4! = 24
- Czy sposób przypisania wpływa na koszt układu?

Przypisanie porządkowe:

$$A = 0 0$$
, $B = 0 1$, $C = 1 0$, $D = 1 1$

Wynikowa tablica stanów:

Present	Next State		Next State Output	
State	$\mathbf{x} = 0 \mathbf{x} = 1$		$\mathbf{x} = 0$	x = 1
	0.0	0.1	0	
00	0 0	0 1	0	0
0 1	0.0	1 0	0	0
1 0	1 1	1 0	0	0
1 1	0.0	0 1	0	1

Przypisanie w kodzie Graya:

$$A = 0 0$$
, $B = 0 1$, $C = 1 1$, $D = 1 0$

Wynikowa tablica stanów:

Present	Next State		Output		
State	$\mathbf{x} = 0 \mathbf{x} = 1$				x = 1
0 0	0 0	0 1	0	0	
0 1	0.0	1 1	0	0	
1 1	1 0	1 1	0	0	
1 0	0.0	0 1	0	1	

Poszukiwanie równań wej/wyj przerzutników (przykład 2)

- Przypisanie porządkowe, przerzutniki D
- Mapy Karnaugha dla D₁, D₂ i Z:

Optymalizacja przypisania porządkowego (przykład 2)

Poszukiwanie równań wej/wyj przerzutników (przykład 2)

- Przypisanie w kodzie Graya, przerzutniki D
- Mapy Karnaugha dla D₁, D₂ i Z:

Optymalizacja przypisania w kodzie Graya (przykład 2)

Przypisanie "1 przerzutnik na stan" (One-Hot Assignment)

- Przykładowe przypisanie dla 4 stanów: $(Y_3, Y_2, Y_1, Y_0) = 0001, 0010, 0100, 1000.$
- W równaniach wystarczy wypisać tylko zmienną przyjmującą dla stanu wartość 1, np. $\frac{\sin 000}{Y_3}$ jest opisany przez Y_0 zamiast $\frac{\nabla_3}{Y_2}$ $\frac{\nabla_1}{Y_1}$ $\frac{\nabla_0}{Y_0}$ gdyż wszystkie kody z 0 lub co najmniej dwiema 1 posiadają wartości "don't care" w następnym stanie.
- Logika kombinacyjna może być prostsza, ale koszt przerzutników wyższy – końcowy koszt trudny do oszacowania.

Przypisanie "1 przerzutnik na stan" (One-Hot Assignment)

One-Hot Assignment:

$$A = 0001$$
, $B = 0010$, $C = 0100$, $D = 1000$

Wynikowa tablica stanów:

Present	Next State		Output	
State	$\mathbf{x} = 0 \ \mathbf{x} = 1$		$\mathbf{x} =$	$0 \mathbf{x} = 1$
0001	0001 0010		0	0
0010	0001	0100	0	0
0100	1000	0100	0	0
1000	0001	0010	0	1

Optymalizacja "1 przerzutnik na stan" (One-Hot Assignment)

Równania na podstawie położeń 1 w kolumnie następnego stanu tabeli stanów:

$$D_0 = \overline{X}(Y_0 + Y_1 + Y_3) \text{ or } X \overline{Y}_2$$

$$D_1 = X(Y_0 + Y_3)$$

$$D_2 = X(Y_1 + Y_2) \text{ or } X(\overline{Y_0 + Y_3})$$

$$D_3 = \overline{X} Y_2$$

$$Z = XY_3 \qquad \text{Gate Input Cost} = 15$$

 Pośredni koszt logiki kombinacyjnej plus koszt przerzutników.

Realizacja "1 przerzutnik na stan" (One-Hot Assignment)

Końcowa postać układu

Sekwencyjny akumulator modulo 3

- Cel: projekt 2-bitowego, sekwencyjnego akumulatora modulo 3
- Definicje:
 - Sumator modulo n sumator, który wynik przedstawia jako resztę z dzielenia modulo n
 - $(2+2) \mod 3 = 1$
 - Akumulator układ kumulujący słowa pojawiające się na wejściu przez dodanie bieżącej wartości wejścia do bieżącego wyniku na wyjściu; wyjście początkowo równe jest 0.
- Oznaczenie zmiennych: suma skumulowana (Y_1,Y_0) , wejście (X_1,X_0) , wyjście (Z_1,Z_0)

Sekwencyjny akumulator modulo 3 Diagram stanów - Moore

Sekwencyjny akumulator modulo 3 Tablica stanów

X_1X_0 Y_1Y_0	00	01	11	10	Z_1Z_0
	$Y_1(t+1), Y_0(t+1)$	$Y_1(t+1), Y_0(t+1)$	$Y_1(t+1), Y_0(t+1)$	$Y_1(t+1), Y_0(t+1)$	
A (00)	00	01	X	10	00
B (01)	01	10	X	00	01
- (11)	X	X	X	X	11
C (10)	10	00	X	01	10

- Przypisanie stanów: $(Y_1,Y_0) = (Z_1,Z_0)$
- Opisanie stanów w kodzie Graya

Sekwencyjny akumulator modulo 3 Równania wejściowe przerzutników D

Równania wejściowe przerzutników D:

$$\mathbf{D}_{1} = \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0} \mathbf{Y}_{1} \overline{\mathbf{Y}}_{0} + \overline{\mathbf{X}}_{1} \mathbf{X}_{0} \overline{\mathbf{Y}}_{1} \mathbf{Y}_{0} + \mathbf{X}_{1} \overline{\mathbf{X}}_{0} \overline{\mathbf{Y}}_{1} \overline{\mathbf{Y}}_{0} = \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0} \mathbf{Y}_{1} + \mathbf{X}_{0} \mathbf{Y}_{0} + \mathbf{X}_{1} \overline{\mathbf{Y}}_{1} \overline{\mathbf{Y}}_{0}$$

$$\mathbf{D}_{0} = \overline{\mathbf{X}}_{1}^{2} \overline{\mathbf{X}}_{0}^{2} \overline{\mathbf{Y}}_{1}^{2} \mathbf{Y}_{0}^{2} + \overline{\mathbf{X}}_{1}^{2} \mathbf{X}_{0}^{2} \overline{\mathbf{Y}}_{1}^{2} \overline{\mathbf{Y}}_{0}^{2} + \mathbf{X}_{1}^{2} \overline{\mathbf{X}}_{0}^{2} \overline{\mathbf{Y}}_{1}^{2} \mathbf{Y}_{0}^{2} = \overline{\mathbf{X}}_{1}^{2} \overline{\mathbf{X}}_{0}^{2} \mathbf{Y}_{0}^{2} + \mathbf{X}_{1}^{2} \mathbf{Y}_{0}^{2} + \mathbf{X}_{0}^{2} \overline{\mathbf{Y}}_{1}^{2} \overline{\mathbf{Y}}_{0}^{2}$$

Sekwencyjny akumulator modulo 3 Schemat układu

Automaty niepełne

Należy z ostrożnością projektować automaty, w których liczba stanów wewnętrznych jest mniejsza niż 2ⁿ, gdyż rodzą one problemy z właściwą inicjalizacją.

Licznik niepełny

Present State				Vext State B+	A+
<u>C</u>	<u>B</u>	~	×	DT	
Ū	0	Ō	0	1	0
0	0	1	_	_	_
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	_	_	_
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	_	_	_

Problem niewłaściwej inicjalizacji

Należy zadbać, aby układ nie zapętlił się lub nie wpadł w niedozwolone stany wewnętrzne przy niewłaściwej inicjalizacji.

Automaty samostartujące

Taki projekt zapewnia niewrażliwość na niewłaściwą inicjalizację, aczkolwiek może ograniczyć elastyczność minimalizacji.

Rozwiązanie alternatywne (niesamostartujące) – asynchroniczne ustawianie automatu w stanie początkowym.

Present State				lext tate		
	С	В	Α	Ċ+	B+	<u> A+</u>
•	0	0	0	0	1	
	0	0	1	1	1	0
	0	1	0	0	1	1
	0	1	1	1	0	1
	1	0	0	0	1	0
	1	0	1	1	1	0
	1	1	0	0	0	0
	1	1	1	1	0	0
				I		