Image Processing

Segmentation and Edge Detection

Yeong Jun Koh

Department of Computer Science & Engineering

Chungnam National University

Objectives

- Image segmentation
 - Recent segmentation
 - Semantic segmentation
 - Instance segmentation
 - Video object segmentation
 - Basic concept about image segmentation
 - Thresholding
- Edge detection
 - First-order derivative, Second-order derivative
 - Canny edge
 - Understanding the Hough Transform

Segmentation

Divide data into meaningful segments

Point clustering

Semantic segmentation

Image segmentation

Video object segmentation

Image Segmentation

- Segmentation method (before deep learning)
 - K-means clustering
 - Mean shift
 - Normalized-cut
 - Graph cut
 - Random-walk
 - Markov random field (MRF) optimization

Image Segmentation

Semantic segmentation

Video object segmentation

• Instance segmentation

Semantic Segmentation

- Label each pixel in the image with a category label
- Don't differentiate instances, only care about pixels

Instance Segmentation

- Three classic tasks related to objects in computer vision
 - Classification
 - Object Detection
 - Instance Segmentation

(a) classification

(b) detection

(c) segmentation

Instance Segmentation

- Three classic tasks related to objects in computer vision
 - Classification
 - Object Detection
 - Instance Segmentation

Video Object Segmentation

- Semi-supervised video object segmentation
 - Take user annotations for target object in the first frame

Track and segment the annotated objects in every consecutive frame

Annotated target object in the first frame

Image Segmentation

- Image segmentation
 - Divide an image into non-overlapping regions (objects) with similar information
- The classic approaches
 - Image thresholding

Thresholding

Single threshold

```
A pixel becomes \begin{cases} \text{white if its gray level is} > T, \\ \text{black if its gray level is} \le T. \end{cases}
```

```
>> r=imread('rice.tif');
>> imshow(r),figure,imshow(r>110)
```


Thresholding

• Single threshold

```
>> b=imread('bacteria.tif');
>> imshow(b),figure,imshow(b>100)
```


CRC Press

Thresholding

Shows the hidden aspects of an image

```
>> p=imread('paper1.tif');
>> imshow(p),figure,imshow(p>241)
```


Double Thresholding

a pixel becomes $\begin{cases} \text{white if its gray level is between } T_1 \text{ and } T_2, \\ \text{black if its gray level is otherwise.} \end{cases}$

```
>> [x,map]=imread('spine.tif');
>> s=ind2gray(x,map);
>> imshow(s),figure,imshow(s>115 & s<125</pre>
```


Simple Application using Thresholding

• Removing a background noise from text

```
>> r=rand(256)*128+127;
>> t=imread('text.tif');
>> tr=uint8(r.*double(not(t));
>> imshow(tr)
```


>> imshow(tr>100)

Cross-Correlation Used To Locate a Known Target in an Image

> Text Running in Another Direction

Simple Application using Thresholding

- Smoothing filter can be used before thresholding
 - Remove small objects and noise

a b c

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 × 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

How to predict appropriate threshold?

```
>> n=imread('nodules1.tif');
>> imshow(n);
>> n1=im2bw(n,0.35);
>> n2=im2bw(n,0.75);
>> figure,imshow(n1),figure,imshow(n2)
```


n: Original image

n1: Threshold too low

n2: Threshold too high

How to predict appropriate threshold?

- Watch out the histogram
 - The threshold can be between two dominant distributions

How to predict appropriate threshold?

- Watch out the histogram
 - The threshold can be between two dominant distributions

Otsu's Method

- Exhaustively search for the threshold that minimizes the intraclass variance (the variance within the class)
 - Minimize the intra-class (within-class) variance: a weighted sum of variances of the two classes

П

- Maximize the inter-class (between-class) variance
- Variance of bimodal signal
 - = Within-class variance + Between-class variance

 $m_1(k)$ or $m_2(k)$: mean at region 1 or region 2 $\sigma_1(k)$ or $\sigma_2(k)$: variance at region 1 or region 2

 $M \times N$ image with L intensity levels n_i : the number of pixels with intensity i

$$p_i = n_i / MN$$
 and $\sum_{i=0}^{L-1} p_i = 1$

Using threshold k, segment an image into two regions

$$C_1 \to [0, k], C_2 \to [k+1, L-1]$$

For each region, the following property holds.

$$\begin{split} q_1(k) &= \sum_{i=0}^k p(i) \\ m_1(k) &= \frac{\sum_{i=0}^k ip(i)}{\sum_{k=0}^k p(i)} = \frac{1}{q_1(k)} \sum_{i=0}^k ip(i) \\ \sum_{i=0}^k p(i) &= \frac{1}{q_1(k)} \sum_{i=0}^k ip(i) \\ \sigma_1^2(k) &= \frac{1}{q_1(k)} \sum_{i=0}^k [i - m_1(k)]^2 p(i) \\ &= \frac{1}{q_1(k)} \sum_{i=0}^k i^2 p_i - m_1^2(k) \\ \end{split} \qquad \begin{split} q_2(k) &= \sum_{i=k+1}^{L-1} p(i) \\ m_2(k) &= \frac{\sum_{i=k+1}^{L-1} ip(i) \\ \sum_{i=k+1}^{L-1} p(i) \\ \sigma_2^2(k) &= \frac{1}{q_2(k)} \sum_{i=k+1}^{L-1} [i - m_2(k)]^2 p(i) \\ &= \frac{1}{q_2(k)} \sum_{i=k+1}^{L-1} i^2 p(i) - m_2^2(k) \end{split}$$

For an entire image,

$$m_G = \sum_{i=0}^{L-1} i p(i), \qquad \sigma_G^2 = \sum_{i=0}^{L-1} [i - m_G]^2 p(i) \qquad \qquad q_1(k) + q_2(k) = 1 q_1(k) m_1(k) + q_2(k) m_2(k) = m_G$$

• Let's define the within-class variance as follows

$$\sigma_W^2(k) = q_1(k)\sigma_1^2(k) + q_2(k)\sigma_2^2(k)$$

 Then, we can simply seek the optimal threshold by minimizing the within-class variance

$$k_{opt} = \arg\min_{k} \sigma_{w}^{2}(k)$$

• We can also exploit the between-class variance $\sigma_B^2(k)$

$$k^* = \arg\max_k \sigma_B^2(k)$$

 Analyze relationship between the within-class variance and the between-class variance

After some algebra, the following equation is derived

$$\begin{split} \sigma_G^2 &= \sigma_W^2(k) + \sigma_B^2(k) \\ \sigma_W^2(k) &= q_1(k)\sigma_1^2(k) + q_2(k)\sigma_2^2(k) \\ \sigma_B^2(k) &= q_1(k)[m_1(k) - m_G]^2 + q_2(k)[m_2(k) - m_G]^2 \end{split}$$

Proof)

$$\begin{split} &\sigma_W^2(k) + \sigma_B^2(k) \\ &= \sum_{i=0}^k i^2 p(i) - q_1 m_1^2 + \sum_{i=k+1}^{L-1} i^2 p(i) - q_2 m_2^2 + q_1 (m_1^2 + m_G^2 - 2 m_1 m_G) + q_2 (m_2^2 + m_G^2 - 2 m_2 m_G) \\ &= \sum_{i=0}^{L-1} i^2 p(i) + q_1 m_G^2 - 2 q_1 m_1 m_G + q_2 m_G^2 - 2 q_2 m_2 m_G \qquad \longleftarrow \boxed{q_1 + q_2 = 1} \\ &= \sum_{i=0}^{L-1} i^2 p(i) + m_G^2 - 2 m_G (q_1 m_1 + q_2 m_2) = \sum_{i=0}^{L-1} i^2 p(i) + m_G^2 - 2 m_G^2 \qquad \boxed{q_1 m_1 + q_2 m_2 = m_G} \\ &= \sum_{i=0}^{L-1} i^2 p(i) - m_G^2 = \sigma_G^2 \end{split}$$

Maximizing the between-class variance

$$\sigma_B^2(k) = q_1(k)[m_1(k) - m_G]^2 + q_2(k)[m_2(k) - m_G]^2$$

= $q_1(k)q_2(k)[m_1(k) - m_2(k)]^2$

Proof)

$$q_{1}[m_{1}-m_{G}]^{2} + q_{2}[m_{2}-m_{G}]^{2}$$

$$= q_{1}[m_{1}-q_{1}m_{1}-q_{2}m_{2}]^{2} + q_{2}[m_{2}-q_{1}m_{1}-q_{2}m_{2}]^{2}$$

$$= q_{1}q_{2}^{2}(m_{1}-m_{2})^{2} + q_{2}q_{1}^{2}(m_{1}-m_{2})^{2}$$

$$= q_{1}q_{2}(m_{1}-m_{2})^{2}(q_{2}+q_{1}) = q_{1}q_{2}(m_{1}-m_{2})^{2}$$

Don't need to compute variance for each class

- Compute $\sigma_B^2(k) = q_1(k)q_2(k)[m_1(k) m_2(k)]^2$ recursively
 - Initialization $q_1(0) = p_0, m_1(0) = 0$
 - Iteratively compute the mean using moving average

$$\begin{aligned} q_1(k+1) &= q_1(k) + p(k+1) \\ m_1(k+1) &= \frac{q_1(k)m_1(k) + (k+1)p(k+1)}{q_1(k+1)} \\ m_2(k+1) &= \frac{(1-q_1(k))m_2(k) - kp(k)}{1-q_1(k+1)} \end{aligned}$$

Otsu's Method in MATLAB

```
>> tn=graythresh(n)
tn =
    0.5804
>> r=imread('rice.tif');
>> tr=graythresh(r)
tr =
    0.4902
>> b=imread('bacteria.tif');
>> tb=graythresh(b)
tb =
    0.3765
>> e=imread('eight.tif');
>> te=graythresh(e)
te =
    0.6490
```

```
>> imshow(im2bw(n,tn))
>> figure,imshow(im2bw(r,tr))
>> figure,imshow(im2bw(b,tb))
>> figure,imshow(im2bw(e,te))
```


Adaptive Thresholding

- Limitation of thresholding
 - The same threshold is used over an entire image

```
>> c=imread('circles.tif');
>> x=ones(256,1)*[1:256];
>> c2=double(c).*(x/2+50)+(1-double(c)).*x/2;
>> c3=uint8(255*mat2gray(c2));
```


(a) Circles image: c3

(b) Thresholding attempt: ct

Adaptive Thresholding

- Limitation of thresholding
 - The same threshold is used over an entire image

(a) The image as a function

(b) Thresholding attempt

Adaptive Thresholding

- Simple solution
 - Divide the image into a set of sub-images, and apply the threshold for each sub-image

(a) Cutting up the image

(b) Thresholding each part separately

Edge Detection

Edges

- Where the image values exhibit sharp variations
- Edges can be measured by
 - 1st order derivatives
 - Determine the gradients
 - 2nd order derivatives
 - Find zero crossings in 2nd derivatives using Laplacian

First-order Derivative Filters (1D)

 Sharp changes correspond to peaks of the firstderivative of the input signal

Image Gradient

• 2D gradient of an image:

$$\nabla I = (I_x, I_y) = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right)$$

• The gradient magnitude (edge strength):

$$\|\nabla I\| = \sqrt{I_x^2 + I_y^2}$$

The gradient direction:

$$\theta = \tan^{-1} \left(\frac{I_y}{I_x} \right)$$

Image Gradient

Horizontal change:

• Vertical change:

Discrete Approximation of Derivatives

• 1D derivative

$$\frac{df(x)}{dx} = \begin{cases}
\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} & : \text{forward} \\
\lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} & : \text{backward} \\
\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} & : \text{central}
\end{cases}$$

Discrete approximations

$$\frac{df(x)}{dx} \cong \begin{cases}
f(x+1) - f(x) & -1 & 1 \\
f(x) - f(x-1) & -1 & 1 \\
f(x+1) - f(x-1) & -1 & 0 & 1
\end{cases}$$
symmetric

Effects of Noises

Consider an 1-D signal

• Can you detect the edge?

Noise Suppression: Pre-smoothing

$$E(x, y) = D(x, y) * (S(x, y) * I(x, y))$$
$$= (D(x, y) * S(x, y)) * I(x, y)$$

Noise smoothing and edge detection

Prewitt edge detector:

Vertical mask

Vertical Edge Detection

Horizontal mask

Prewitt Edge Detector

Result of Prewitt operator (threshold = 100)

Sobel Edge Detector

- Sobel Masks:
 - Give more weight to the 4-neighbors

	$\frac{\partial}{\partial x}$	
-1	(0)	1
<u>-2</u>	0	2
-1	\bigcirc	1

	$\frac{\partial}{\partial y}$	
-1	(2)	-1
0	0	\bigcirc
1	2	1

Sobel Edge Detector

Result of Sobel operator (threshold = 100)

Gaussian Smoothing

Consider smoothing with Gaussian kernel

Derivative of Gaussian

- Note that $\frac{d}{dx}(G*I) = \left(\frac{d}{dx}G\right)*I$ and $G'(x) = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$ • This saves us one step $G(x) = e^{-\frac{x^2}{2\sigma^2}}$
 - Sigma = 50 $\frac{d}{dx}G$ Kernel o $\left(\frac{d}{dx}G\right)*I$ wonding with I

2D Gaussian Filters

Gaussian

$$G(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

derivative of Gaussian (DOG)

$$\nabla G(x,y) = (G_x, G_y)$$

Second-order derivative filters (1D)

 Peaks of the first-derivative of the input signal correspond to "zero-crossings" of the secondderivative.

Laplacian Operator

Laplacian Filtering output
$$L(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\begin{split} \nabla^2 f &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}, \\ \frac{\partial^2 f}{\partial x^2} &= f(x+1,y) + f(x-1,y) - 2f(x,y), \\ \frac{\partial^2 f}{\partial y^2} &= f(x,y+1) + f(x,y-1) - 2f(x,y), \\ \nabla^2 f &= f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y). \end{split}$$

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

Laplacian Operator

- $\nabla^2 I(x,y)$ is the sum of second-order derivatives
 - But taking derivatives increases noises
 - Very sensitive to noises
- It is always combined with a smoothing (Gaussian) operation

Laplacian of Gaussian (LOG)

• In 1D, consider
$$\frac{\partial^2}{\partial x^2}(G*I) = \left(\frac{\partial^2}{\partial x^2}G\right)*I$$

Edge is the zero-crossing of the bottom graph

Laplacian of Gaussian (LOG)

- $O(x,y) = \nabla^2(I(x,y) * G(x,y))$
 - Smoothing with a Gaussian filter
 - Finding zerocrossings with a Laplacian filter
- Using linearity:

$$- O(x, y) = \nabla^2 G(x, y) * I(x, y)$$

The combined filter is called LOG

$$G(x,y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$\nabla^2 G(x,y) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

$$= \left(\frac{x^2 + y^2}{\sigma^4} - \frac{2}{\sigma^2}\right) \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$= \left(\frac{r^2}{\sigma^4} - \frac{2}{\sigma^2}\right) \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

LOG Filter

Mexican hat operator (inverted LoG)

$$\sigma = 3$$

LOG Filter

LOG Filter

Original image

 $\sigma = 2.0$

 $\sigma = 4.0$

 $\sigma = 6.0$

Second-Order Edge Detectors

- The Marr-Hildreth Method
 - 1. Laplacian of Gaussian (LoG)

$$O(x,y) = \nabla^2 G(x,y) * I(x,y)$$

2. Finding zero-crossing points

$$G(x,y) = \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$\nabla^2 G(x,y) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

$$= \left(\frac{x^2 + y^2}{\sigma^4} - \frac{2}{\sigma^2}\right) \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$= \left(\frac{r^2}{\sigma^4} - \frac{2}{\sigma^2}\right) \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

The location where the signs of filtered values change, after applying the Laplacian using the second derivative

Second-Order Edge Detectors

Finding zero-crossing points

- Find the averages of the four quadrants
- If the max average is positive and the min average is negative, then the center point is detected

Second-Order Edge Detectors

- The Marr-Hildreth Method
 - 1. Apply the Gaussian filter for removing unnecessary noise.
 - 2. Apply the Laplacian filter
 - 3. Find the zero-crossing pixels

(a) Zeros crossings

(b) Using an LoG filter first

Figure 8.13: Edge detection using zero crossings

- Three criteria for edge detection
 - Low error rate of detection: finding all edges
 - Localization of edges: computing precise locations of edges
 - Single response: returning a single pixel for a single edge

Canny Edge Detection

- Image Filtering using Low-pass & High-pass filters
 - 1. Apply a low-pass filter, e.g. Gaussian filter G = I(x, y) * f(x, y)

$$f(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

2. Apply a high-pass filter, e.g. Sobel filter or 1D derivative of Gaussian filter

$$\nabla G = (G_x, G_y) = \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}\right)$$

s_x								
-1	0	1						
-2	0	2						
-1	0	1						

	s_y	
-1	-2	-1
0	0	0
1	2	1

3. Compute the magnitude and angle of ∇G

$$M(x,y) = \sqrt{{G_x}^2 + {G_y}^2} \qquad A(x,y) = tan^{-1} \left(\frac{G_y}{G_x}\right)$$

- Non-maximum suppression
 - We wish to mark points along the curve where the magnitude is biggest
 - We can do this by looking for the maximum along a slice normal to the curve (nonmaximum suppression)

- Non-maximum suppression
 - Key idea: Survive only pixels with a larger edge magnitude M(x,y) within a small window

$$M(x,y) = \sqrt{{G_x}^2 + {G_y}^2} \qquad A(x,y) = tan^{-1} \left(\frac{G_y}{G_x}\right)$$

- Procedure
- 1. Within a small window (e.g. 3×3 window) centered at (x, y), find neighbor pixels in direction A(x, y)
- 2. Compare the edge magnitudes M(x, y) of these two neighbor pixels

The edge direction at a pixel

- But, the image is a discrete signal
 - So, let's use an interpolation (linear interpolation or quantization (nearest neighbor)

FIGURE 9.26 Nonmaximum suppression in the Canny edge detector.

Double Thresholding

- Hysteresis thresholding (T_L, T_H)
- If $M(x,y) > T_H$, then (x,y) is an edge
- If $M(x,y) < T_L$, then (x,y) is **NOT** an edge
- If $T_L \leq M(x, y) \leq T_H$,
 - If the neighboring pixels of (x,y) is an edge, then (x,y) is an edge.
 - Otherwise, then (x, y) is **NOT** an edge.

Results

original image

Gradients

Nonmaximum suppression and thresholding

 Hough Transform is used for fitting lines, when a set of sparse points are given

- In edge detection, the resulting edge image may often consist of individual edge points
- Key idea: transform $(x, y) \rightarrow (a, b)$

FIGURE 9.31 A point in an image and its corresponding line in the transform.

Suppose we have five points

$$(1,0) \rightarrow b = -a$$

 $(1,1) \rightarrow b = -a + 1$
 $(2,1) \rightarrow b = -2a + 1$
 $(4,1) \rightarrow b = -4a + 1$
 $(3,2) \rightarrow b = -3a + 2$

$$(a,b) = (0,1)$$

 $(a,b) = (1,-1)$

- But, y = ax + b is not able to model a vertical line
 - \rightarrow Let's use different type of parameterization $(r, \theta)!$

$$\frac{y - rsin\theta}{x - rcos\theta} = \tan(90 + \theta) = -\frac{cos\theta}{sin\theta}$$

$$\Rightarrow$$
 $x\cos\theta + y\sin\theta = r$

- One problem still happens in case of handling continuous parameters (r, θ) on the discrete domain
 - Too many possible (r, θ)
 - Let's just use a few number of quantized (r, θ)
- If we discretize θ to use only four values: -45°,0°,45°,90°

(x, y)	$ 45^{\circ}$	0 °	45°	90 °
(2,0)	1.4	2	1.4	0
(1, 1)	0	1	1.4	1
(2, 1)	0.7	2	2.1	1
(1,3)	-1.4	1	2.8	3
(2,3)	-0.7	2	3.5	3
(4, 3)	0.7	4	4.9	3
(3, 4)	-0.7	3	4.9	4

 $x\cos\theta + y\sin\theta = r$

• The accumulator array contains how many times each value of (r, θ) appears in the table

	-1.4	-0.7	0	0.7	1	1.4	2	2.1	2.8	3	3.5	4	4.9
-45°	1	2	1	2		1							
0°					2		(3)			1		1	
45°						2		1	1		1		2
90°			1		2					(3))	2	

accumulate

(x, y)	-45°	0 °	45°	90 °
(2,0)	1.4	2	1.4	0
(1, 1)	0	1	1.4	1
(2, 1)	0.7	2	2.1	1
(1,3)	-1.4	1	2.8	3
(2,3)	-0.7	2	3.5	3
(4, 3)	0.7	4	4.9	3
(3, 4)	-0.7	3	4.9	4

FIGURE 9.36 Lines found by the Hough transform.

Implementing Hough Transform in MATLAB

• Discretizing θ with sample rate 1°

Implementing Hough Transform in MATLAB

- Calculating the r values
 - If im is a binary image

We can create a binary edge image by use of the edge function

Forming the accumulator array

```
>> rmax=max(r(find(r>0)));
>> acc=zeros(rmax+1,270);
```

Implementing Hough Transform in MATLAB

Updating the accumulator array

```
if ~isbw(image)
  edges=edge(image,'canny');
else
  edges=image;
end;
[x,y]=find(edges);
angles=[-90:180]*pi/180;
r=floor(x*cos(angles)+y*sin(angles));
rmax=max(r(find(r>0)));
acc=zeros(rmax+1,270);
for i=1:length(x),
 for j=1:270,
    if r(i,j) >= 0
    acc(r(i,j)+1,j)=acc(r(i,j)+1,j)+1;
    end;
  end:
end;
res=acc;
```

• If the set of points are given, we can plot the graph from the equation $x\cos\theta + y\sin\theta = r$

- Example : The Hough transform array
 - for a line with noises in the range [0, 0.05]->regular

- Example : The Hough transform array
 - for random points->irregular

