Integrating survival functions

September 9, 2022

Survival functions

1

Survival functions

Question: What is the meaning of

$$\int_0^\infty S_X(x)\,dx = \int_0^\infty P(X>x)\,dx$$

1

Survival functions

Answer: If X is non-negative,

$$\int_0^\infty P(X > x) dx = \mathbb{E}[X] \quad !!!$$
Why?

2

We will use measure theory to make the relationship intuitive.

Review: General integration

Integrals of simple functions

Definition

Let h be simple, say $h = \sum_{i=1}^{r} y_i I_{A_i}$ where the A_i are disjoint sets in \mathcal{F} . Then

$$\int_{\Omega} h \ d\mu := \sum_{i=1}^{r} y_i \ \mu(A_i). \tag{1}$$

Note: The integral of a simple function exists whenever ∞ and $-\infty$ do not both appear in the sum.

Integrals of simple functions

Definition

Let h be simple, say $h = \sum_{i=1}^{r} y_i I_{A_i}$ where the A_i are disjoint sets in \mathcal{F} . Then

$$\int_{\Omega} h \ d\mu := \sum_{i=1}^{r} y_i \ \mu(A_i). \tag{1}$$

Note: The integral of a simple function exists whenever ∞ and $-\infty$ do not both appear in the sum.

Note: An example of when we'd want to use some μ other than Lebesgue measure will come up shortly!

Integrals of non-negative Borel measurable functions

Definition

If h is non-negative Borel measurable, we define

$$\int_{\Omega} h \ d\mu \ = \sup \left\{ \int_{\Omega} s \ d\mu \ : s \quad \text{simple,} \quad 0 \leq s \leq h \right\}$$

The integral of a non-negative Borel measurable function always exists (although it may take on the value $+\infty$).

Resolution

Different ways to measure "area under the curve"

Example 13.5.3. (Area under the curve can be obtained by either horizontal or vertical sections.) [Durrett, 2010, Exercise 1.7.2] Let $g \ge 0$ be a measurable function on a sigma-finite measure space $(\Omega, \mathcal{F}, \mu)$. Use the classical Fubini-Tonelli Theorem (Thm. 13.4.1) to conclude that

$$\int_\Omega g \ d\mu \ = (\mu \times \lambda)\{(x,y): 0 \leq y < g(x)\} = \int_0^\infty \mu(\{x:g(x)>y\}) \ dy$$

for some choice of measure λ .

Resolution

Taking g(x) = x and $\mu = P_X$ to be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we obtain

Figure 1: The expected value of a non-negative random variable equals the integral of its survival function. Note from the left that the expected value can be seen as the area under y = x if the x-axis is measured with P_X .