第1回 1.1^n と n^{10} のどちらがより速く発散するか?

数列 $\{1.1^n\}$ も $\{n^{10}\}$ も,無限大に発散することには変わりない.それでは,どちらの方が速く発散するだろうか?概数を表に示す.

n	1	10	100	1000
1.1^{n}	1.1	2.5937424601	13780.6123398224	246993291800603000000000000000000000000000000000
n^{10}	1	10000000000	1000000000000000000000	100000000000000000000000000000000000000

言葉を用意する. 正の無限大に発散するような 2 つの数列 $\{a_n\}$, $\{b_n\}$ が $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ を満たすとき, $\{a_n\}$ は $\{b_n\}$ より速く発散する, といい,

n が十分に大きいとき, $a_n \ll b_n$

と表す. これは $\lim_{n \to \infty} \frac{b_n}{a_n} = \infty$ と同値である.

各種数列の発散速度

1より大きい実数 r と自然数 k に対して, $\lim_{n \to \infty} \frac{n^k}{r^n} = 0$, $\lim_{n \to \infty} \frac{r^n}{n!} = 0$ つまり,n が十分大きいとき, $n^k \ll r^n \ll n!$

これを表題に当てはめると、答えは意外にも $1.1^n \gg n^{10000}$ となる.

証明 $n \ge k+1$ のとき, $r^n = ((r-1)+1)^n = \sum_{j=1}^n {C_l(r-1)^l} > {_nC_{k+1}(r-1)^{k+1}}$ より,

$$\begin{split} \frac{n^k}{r^n} & \leq \frac{n^k}{n C_{k+1}(r-1)^{k+1}} \\ & = \frac{(k+1)k(k-1)\cdots 2\cdot 1}{\underbrace{n(n-1)\cdots (n-k)}_{k+1} \boxplus} \cdot \frac{n^k}{(r-1)^{k+1}} \\ & = \frac{(k+1)k(k-1)\cdots 2\cdot 1}{n(1-\frac{1}{n})\cdots (1-\frac{k}{n})} \cdot \frac{1}{(r-1)^{k+1}} \xrightarrow{n\to\infty} 0 \quad \therefore \quad \lim_{n\to\infty} \frac{n^k}{r^n} = 0 \end{split}$$

一方, $N \le r < N+1$ なる自然数 N をとすると, $n \ge N+1$ のとき,

第 2 回 \sqrt{x} と $\log x$ で,発散速度がより遅いのはどちらか?

無理関数 $y=\sqrt{x}$ も、対数関数 $y=\log x$ も、 $x\to\infty$ のとき、 $y\to\infty$ であることには変わりない。そしてその発散速度はいづれも y=x より遅いことは想像するに容易い。では、より遅いのはどちらだろうか?

各種関数の発散速度

正の実数 α に対して, $\lim_{x \to \infty} \frac{x^{\alpha}}{e^x} = 0$, $\lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0$ つまり,x が十分大きいとき, $\log x \ll x^{\alpha} \ll e^x$

証明 まず, $n-1 \le x < n$, $k-1 \le \alpha < k$ なる自然数 n,k をとれば,

 $x \to \infty$ のとき $n \to \infty$ となるので,

$$\frac{x^{\alpha}}{e^{x}} < \frac{n^{k}}{e^{n-1}} = \frac{n^{k}}{e^{n}} \cdot e \xrightarrow{x \to \infty} 0 \quad \therefore \quad \lim_{x \to \infty} \frac{x^{\alpha}}{e^{x}} = 0$$

さらに, $\log x = t$ とおくと, $x \to \infty$ のとき, $t \to \infty$ より,

$$\frac{\log x}{x^{\alpha}} = \frac{t}{(e^t)^{\alpha}} = \left(\frac{t^{\frac{1}{\alpha}}}{e^t}\right)^{\alpha} \xrightarrow{x \to \infty} 0^{\alpha} = 0 \quad \therefore \quad \lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0$$

証明の別のアプローチとして, 不等式

$$e^x > 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$
 (n は自然数)

を利用する方法も考えられる.

これで、表題の答えは $\sqrt{x}=x^{\frac{1}{2}}\gg \log x$ ということがわかった. 驚きなのは $\alpha=0.00001$ であっても $x^{0.00001}\gg \log x$ ということだ.対数関数が如何に遅いかがわかる.