Bachelorabeit Untersuchung von Datenreduktionsregeln beim Kontenüberdeckungsproblem

Benedikt Lüken-Winkels

6. Februar 2018

Inhaltsverzeichnis

1	Ein	eitung	2	
2	Kno	tenüberdeckungsproblem	2	
3	Graphreduktion			
	3.1	Parametrisierte Algorithmen	2	
	3.2	Einfache Reduktionsregeln	2	
		3.2.1 Grad 0, Grad 1	2	
	3.3	Buss	3	
	3.4	Nemhauser/Trotter	3	
		3.4.1 Theorie	3	
		3.4.2 Implementierung/Umsetzung	3	
		3.4.3 Ergebnisse	3	
	3.5	Kronenregel	3	
		3.5.1 Theorie	3	
		3.5.2 Implementierung/Umsetzung	3	
		3.5.3 Ergebnisse	3	
4	Analyse			
	4.1	Vergleich	3	

Zusammenfassung

Was ist Vertex Cover und warum sollte man es reduzieren; Es gibt verschiedene Algorithmen, die in Polinomialzeit einen Problemkern erstellen.

1 Einleitung

• Einfluss von Reduktionsregeln auf die Problemgröße

2 Knotenüberdeckungsproblem

- Woher kommt die Komplexität?
- Was macht eine schwere Instanz aus?
- Wie sieht eine schwere Instanz aus?
- Wo findet das Knotenüberdeckungsproblem Anwendung?

3 Graphreduktion

- Effekt von Graphreduktionsalgorithmen auf die Problemkomplexität
- Bewertungskriterien für einen GRalgorithmus
 - Laufzeit (Parametrisierung)
 - Erwartete Reduktion/Wie oft wird die Regel angewandt
 - Ressourcenverbrauch
 - Wie gut ist das Ergebnis im Vergleich zu anderen Algorithmen?
- Wie funktionieren die GRA in Kombination?
- Wie sehen Graphen aus, auf die keine Regel anwendbar ist?
- Wie sehen Graphen aus, auf die genau eine Regel anwendbar ist?
- Welche Regeln werden untersucht?

3.1 Parametrisierte Algorithmen

Kleiner Exkurs

- Wie funktioniert Parametrisierung?
- Vorteile von FPA

3.2 Einfache Reduktionsregeln

3.2.1 Grad 0, Grad 1

Selbsterlklärend

- 3.3 Buss
- 3.4 Nemhauser/Trotter
- 3.4.1 Theorie
- ${\bf 3.4.2} \quad {\bf Implementierung/Umsetzung}$
- 3.4.3 Ergebnisse
- 3.5 Kronenregel
- 3.5.1 Theorie
- ${\bf 3.5.2} \quad {\bf Implementierung/Umsetzung}$
 - Das Ergebnis wird besser, wenn für das beim Erstellen des greedy Matchings zunächst hochgradige Knoten, beziehungsweise Kanten eine Kante e mit Endpunkten a und b mit Grad(a) > 2 und Grad(b) > 2 betrachtet werden. -> Tabelle mit Werten Einfügen (Ergebnis der Kronenregel)

3.5.3 Ergebnisse

Relevant, wie das Matching geformt wird.

- 4 Analyse
- 4.1 Vergleich