2024-2025 MAGIC 009 exam solutions

Adrian Miranda

January 6, 2025

1 Question 1

1. Let $f: X \to Y$ be a morphism in \mathbb{A} . We need to show that $X \mapsto \theta_{FX}$ varies naturally in f. Observe that by naturality of θ on Ff, the following diagram commutes in \mathbb{B} .

$$\begin{array}{ccc} PFX & \xrightarrow{PFf} PFY \\ \theta_{FX} \downarrow & & \downarrow \theta_{FY} \\ QFX & \xrightarrow{QFf} QFY \end{array}$$

But this is the desired naturality square for θF .

2. Let $f: X \to Y$ be a morphism in A. Naturality of $P.\phi$ follows from the following calculation.

$$P\phi_Y \circ PFf = P(\phi_Y \circ Ff)$$
 functoriality of P
= $P(Gf \circ \phi_X)$ naturality of ϕ on f
= $PGf \circ P\phi_X$ functoriality of P

3. Let $X \in \mathbb{A}$ and consider the following diagram in \mathbb{C} .

$$\begin{array}{ccc} PFX & \xrightarrow{P\phi_X} PGX \\ \theta_{FX} \downarrow & & \downarrow \theta_{GX} \\ QFX & \xrightarrow{Q\phi_X} QGX \end{array}$$

Observe that this diagram commutes by naturality of θ in the morphism $\phi_X : FX \to GX$. The proof is complete by also observing that the clockwise traversal of this diagram is the component of $(\theta.G) \circ (P.\phi)$ on X, and the anticlockwise traversal is the component of $(Q.\phi) \circ (\theta.F)$ on X.

4. We need to check that the assignments described in the question give a well-defined functor $[\mathbb{B}, \mathbb{C}] \times [\mathbb{A}, \mathbb{B}] \to [\mathbb{A}, \mathbb{C}]$. For the unit law, observe that when both ϕ and θ are identities, the pair (θ, ϕ) is assigned to a natural transformation whose components are given by the composite of two identity morphisms. This uses the fact that identity natural transformations have identity components and the unit laws for P and Q. The unit law follows since the composite of two identity morphisms is again an identity morphism. For the composition law, consider a composable pair in $[\mathbb{B}, \mathbb{C}] \times [\mathbb{A}, \mathbb{B}]$ as displayed below.

$$(P,F) \xrightarrow{(\theta,\phi)} (Q,G) \xrightarrow{(\chi,\psi)} (R,H)$$

1

The composition law follows from the following calculation.

$$\begin{split} ((\chi \circ \theta) * (\psi \circ \phi))_X &:= (\chi \circ \theta)_{HX} \circ P(\psi \circ \phi)_X & \text{definition of } * \\ &:= (\chi_{HX} \circ \theta_{HX}) \circ P(\psi \circ \phi)_X & \text{definition of } \chi \circ \theta \text{ and } \psi \circ \phi \\ &= (\chi_{HX} \circ \theta_{HX}) \circ P\psi_X \circ P\phi_X & \text{functoriality of } P \\ &= (\chi_{HX} \circ (\theta_{HX} \circ P\psi_X)) \circ P\phi_X & \text{associativity} \\ &= (\chi_{HX} \circ (Q\psi_X \circ \theta_{GX})) \circ P\phi_X & \text{naturality of } \theta \text{ on } \psi_X \\ &= (\chi_{HX} \circ Q\psi_X) \circ (\theta_{GX} \circ P\phi_X) & \text{associativity} \\ &:= (\chi * \psi)_X \circ (\theta * \phi)_X & \text{definition of } \chi * \psi \text{ and } \theta * \phi \\ &:= ((\chi * \psi) \circ (\theta * \phi))_X & \text{definition of } \alpha \circ \beta \text{ where } \alpha = \chi * \psi \text{ and } \beta = \theta * \phi \end{split}$$

2 Question 2

- 1. There are many examples but the simplest one (and the one briefly mentioned in lectures) is $\mathbf{1} \to \mathbb{I}$ where \mathbb{I} is the free-living isomorphism and $\mathbf{1}$ is the category with one object and one morphism.
- 2. First observe that by the following calculation, the equaliser diagram commutes.

$$es = srs$$

 $= s.1_B$
 $= s$
 $= 1_A.s$

Let $f: X \to A$ satisfy ef = f. We need to show that there is a unique morphism $u: X \to B$ satisfying su = f. For existence, take u:=rf and observe that su = f as per the following calculation.

$$su = srf$$
$$= ef$$
$$= f$$

For uniqueness, suppose $u': X \to B$ also satisfies su' = f. Then u' = u by the calculation displayed below.

$$u' = 1_B.u'$$

$$= rsu'$$

$$= rf$$

$$= u$$

Hence s is indeed the equaliser of 1_A and e.

- 3. Apply part (2) to \mathbb{C}^{op} , in which the idempotent e has splitting (s,r).
- 4. By parts (2) and (3) it suffices to show that if e is an idempotent with splitting (r, s) then Fe is an idempotent with splitting (Fr, Fs). Idempotence follows from the following calculation.

$$Fe \circ Fe = F(e \circ e)$$
 composition law for F
= Fe idempotence of e

But also $Fs \circ Fr = F(s \circ r) = Fe$, and finally

$$Fr \circ Fs = F(r \circ s)$$
 composition law for F

$$= F1_A \qquad (r,s) \text{ is a splitting of } e$$

$$= 1_{FA} \qquad \text{unit law for } F$$

This completes the proof.

3 Question 3

1. Functoriality follows from the uniqueness aspect of the universal property of products of the form $FX \times GX$ in \mathbb{B} . This is immediate for the unit law, while for the composition law it may be observed via the following commutative diagram, in which the composite of the dotted arrows is $(F \times G)(g) \circ (F \times G)(f)$.

$$FX \xleftarrow{\pi_{FX}} FX \times GX \xrightarrow{\pi_{GX}} GX$$

$$Ff \downarrow \qquad \qquad \downarrow Ff \times Gf \qquad \downarrow Gf$$

$$FY \xleftarrow{\pi_{FY}} FY \times GY \xrightarrow{\pi_{GY}} GY$$

$$\downarrow Fg \downarrow \qquad \qquad \downarrow Fg \times Gg \qquad \downarrow Gg$$

$$FZ \xleftarrow{\pi_{FZ}} FZ \times GZ \xrightarrow{\pi_{GZ}} GZ$$

2. The functor $F \times G$ of part (1) defines a product in $[\mathbb{A}, \mathbb{B}]$. Naturality of the projection maps is clear from the definition of $F \times G$ on morphisms. We need to verify the universal property. Let $P : \mathbb{A} \to \mathbb{B}$ be a functor and let $\phi : P \to F$ and $\psi : P \to G$ be natural transformations. By the universal property of $FX \times GX$ for each $X \in \mathbb{A}$, there is a unique morphism $u_X : PX \to FX \times GX$ in \mathbb{B} . It therefore suffices to check that the assignment $X \mapsto u_X$ is natural in X. This is verified by the universal property of $FX \times GX$, as per the following calculations. Note that we suppress mention of the associativity axiom for \mathbb{B} .

$$\begin{array}{ll} \pi_{FY} \circ u_Y \circ Pf = \phi_Y \circ Pf & \text{definition of } u_Y \\ = Ff \circ \phi_X & \text{naturality of } \phi \text{ on } f \\ = Ff \circ \pi_X \circ u_X & \text{definition of } u_X \\ = \pi_{FY} \circ (Ff \times Gf) \circ u_X & \text{definition of } Ff \times Gf \end{array}$$

$$\begin{array}{ll} \pi_{GY} \circ u_Y \circ Pf = \psi_Y \circ Pf & \text{definition of } u_Y \\ = Gf \circ \psi_X & \text{naturality of } \psi \text{ on } f \\ = Gf \circ \pi_X \circ u_X & \text{definition of } u_X \\ = \pi_{GY} \circ (Ff \times Gf) \circ u_X & \text{definition of } Ff \times Gf \end{array}$$

3. This means that the category \mathbb{B} has n-ary products. Specifically, for any family of objects $\{X_1,...,X_n\}$ in \mathbb{B} , there is an object $X_1 \times ... \times X_n \in \mathbb{B}$ and there are morphisms $\pi_i : X_1 \times ... \times X_n \to X_i$ for each $i \in \{1,...,n\}$. Moreover, these data satisfy the universal property that given any other object $P \in \mathbb{B}$ and morphisms $p_i : P \to X_i$ for $i \in \{1,...,n\}$ there is a unique morphism $u : P \to X_1 \times ... \times X_n$ satisfying $\pi_i \circ u = p_i$ for all $i \in \{1,...,n\}$.

4. The proof is by induction on n for $n \geq 2$, with base case n = 2 being true by the assumption that \mathbb{B} has binary products. For the induction hypothesis, suppose that \mathbb{B} has n-ary products $X_1 \times ... \times X_n$ for some $n \geq 2$ and all families of objects $X_1, ..., X_n$. Let X_{n+1} be an object in \mathbb{B} . Since \mathbb{B} has binary products, the product $(X_1 \times ... \times X_n) \times X_{n+1}$ also exists in \mathbb{B} . Let $\pi_{1,...,n} : (X_1 \times ... \times X_n) \times X_{n+1} \to X_1 \times ... \times X_n$ and $\pi_{n+1} : (X_1 \times ... \times X_n) \times X_{n+1} \to X_{n+1}$ denote the projection maps for the binary product.

We claim that $(X_1 \times ... \times X_n) \times X_{n+1}$ also forms an (n+1)-ary product with projection maps $\pi_i \circ \pi_{1,...,n} : (X_1 \times ... \times X_n) \times X_{n+1} \to X_i$ for $i \in \{1,...,n\}$ and $\pi_{n+1} : (X_1 \times ... \times X_n) \times X_{n+1} \to X_{n+1}$. We now check the universal property of an (n+1)-ary product. Let P be an object in $\mathbb B$ and for $i \in \{1,...,n+1\}$ let $p_i : P \to X_i$ be a morphism in $\mathbb B$. Since by the induction hypothesis $X_1 \times ... \times X_n$ is an n-ary product in $\mathbb B$, the maps $p_1,...,p_n$ induce a unique map $q:P \to X_1 \times ... \times X_n$ satisfying $\pi_i \circ q = p_i$ for all $i \in \{1,...,n\}$. But since $(X_1 \times ... \times X_n) \times X_{n+1}$ is a binary product, the pair of maps $(q:P \to X_1 \times ... \times X_n, p_{n+1}:P \to X_{n+1})$ induce a unique map $u:P \to (X_1 \times ... \times X_n) \times X_{n+1}$ satisfying $\pi_{n+1} \circ u = p_{n+1}$ and $\pi_{1,...,n} \circ u = q$. Thus by the definition of q the family of maps $p_1,...,p_{n+1}$ indeed induce a unique map $u:P \to (X_1 \times ... \times X_n) \times X_{n+1}$ which compose with each of the i-th projection maps to give p_i . This completes the proof.

4 Question 4

1. Let $Y, Z \in \mathbb{B}$ be objects and suppose that the product $Y \times Z$ exists in \mathbb{B} . Denote the product projections $\pi_Y : Y \times Z \to Y$ and $\pi_Z : Y \times Z \to Z$. We need to show that there is a bijective function $\mathbb{B}(X, Y \times Z) \to \mathbb{B}(X, Y) \times \mathbb{B}(X, Z)$. We claim that the function ϕ defined via $f \mapsto (\pi_Y \circ f, \pi_Z \circ f)$ is a bijection, with inverse ψ given by the function which sends a pair of morphisms $g: X \to Y$, $h: X \to Z$ to the morphism $g: X \to Y \times Z$ induced by the universal property of the product.

The fact that $\psi \circ \phi$ is the identity is verified by the calculations displayed below.

$$\psi(\phi(f)) = \psi(\pi_Y \circ f, \pi_Z \circ f)$$
 definition of ϕ
= f uniqueness aspect of the universal property of the product

The fact that $\phi \circ \psi$ is the identity is verified by the calculations displayed below.

$$\phi(\psi(g,h)) = (\pi_Y \circ \psi(g,h), \pi_Z \circ \psi(g,h))$$
 definition of ϕ
= (g,h) definition of ψ

- 2. Let $F: \mathbb{B}^{\mathrm{op}} \to \mathbf{Set}$ be a functor. Then for each $X \in \mathbb{B}$ there is a unique function $!_X: FX \to \mathbf{1}$. It suffices to show that the assignment $X \mapsto !_X$ gives rise to a natural transformation $!: F \to \Delta(\mathbf{1})$. But naturality is an equation for pairs of maps into $\mathbf{1}$ and hence follows from the fact that $\mathbf{1}$ is the terminal object in \mathbf{Set} .
- 3. The representable presheaf $\overline{G}(-,*):\overline{G}^{\mathrm{op}}\to\mathbf{Set}$ on \overline{G} assigns the unique object of \overline{G} to the underlying set G of the group (G,.,e), and it assigns each element $h\in G$, viewed as a morphism in \overline{G} , to the function $h.(-):G\to G$ given by multiplication on the left with h. The representable natural transformation $\overline{G}(-,g):\overline{G}(-,*)\to\overline{G}(-,*)$ has a single component corresponding to the unique object $*\in\overline{G}$. This component is a function $(-).g:G\to G$ which acts by multiplication with g on the right.
- 4. The Yoneda embedding $Y_{\overline{G}}: \overline{G} \to [\overline{G}^{\text{op}}, \mathbf{Set}]$ assigns * to the presheaf $\overline{G}(-,*)$, and assigns $g: * \to *$ to the representable natural transformation $\overline{G}(-,g): \overline{G}(-,*) \to \overline{G}(-,*)$. There are two requirements for $Y_{\overline{G}}$ to be well-defined as a functor. The first is that $\overline{G}(-,e): \overline{G}(-,*) \to \overline{G}(-,*)$ should be the identity natural transformation. This is to say that multiplication by e on the right acts as the identity on G, which is true by the right unit law for G. The other requirement is that $\overline{G}(-,h) \circ \overline{G}(-,g) = \overline{G}(-,h \circ g)$. This means that for an element $f \in G$, h.(g.f) = (h.g).f. This is true by the associativity law for G.

5. The Yoneda embedding $Y_{\overline{G}}$ being fully faithful is precisely to say that elements of G are in bijection with natural transformations of the form $\overline{\phi}:\overline{G}(-,*)\to\overline{G}(-,*)$. But these natural transformations are precisely functions $\phi:G\to G$ which satisfy $h.\phi(k)=\phi(h.k)$. Fully faithfulness of the Yoneda embedding says that the assignation of an element $g\in G$ to the function $G\to G$ which multiplies by g on the right is a bijection.