Math 1	91 3	Sample	e Mio	dterm	2B
Spr	ing	2023.	Wilk	ening	

Your Name:	
------------	--

1a. (4 points) Let $A = USV^T$ be a full SVD of an arbitrary $m \times n$ real matrix A. Show that the singular values $\sigma_i = S_{ii}$ do not depend on which orthogonal matrices U and V are used.

Assignment Project Exam Help https://tutorcs.com

1b. (4 points) Suppose Avan anticost real entries Prove that $||A||_2 = \sigma_1$, where σ_1 is the largest singular value of A and we recall the definition

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}.$$

2. (8 points) Compute the LDL^T factorization of $A = \begin{pmatrix} 3 & 3 & 1 \\ 3 & a & 2 \\ 1 & 2 & b \end{pmatrix}$, assuming it exists. Which values of a and b cause (i) A to be singular? (ii) A to be positive definite?

Assignment Project Exam Help

https://tutorcs.com

- 3. A real 3×3 matrix A, not necessarily symmetric, has eigenvalues 5, 3 and 0 with corresponding eigenvectors u, v and w, all unit vectors. Suppose z is a unit vector orthogonal to u and to v.
- (a) (3 points) Find any solution of Ax = b if b = 2u + 3v.
- (b) (5 points) Find the minimum norm least squares solution of Ax = b if b = 2u + 3v + 4z. (The answer will contain ww^T somewhere in the formula. Justify your answer.)

Assignment Project Exam Help

https://tutorcs.com

4. (8 points) Compute the polar decomposition A = Q|A| of

$$A = \begin{pmatrix} 9 & 6 & 6 \\ 6 & 0 & 12 \\ 6 & 6 & 0 \end{pmatrix} = \begin{pmatrix} 2/3 & 1/3 \\ 2/3 & -2/3 \\ 1/3 & 2/3 \end{pmatrix} \begin{pmatrix} 18 \\ 9 \end{pmatrix} \begin{pmatrix} 2/3 & 1/3 & 2/3 \\ 1/3 & 2/3 & -2/3 \end{pmatrix},$$

i.e., compute the matrix entries of the partial isometry Q with the same nullspace as A and the symmetric, positive semi-definite matrix |A|.

Assignment Project Exam Help

https://tutorcs.com

5. (8 points) Draw the tilted ellipse $(5/2)x^2 + 2xy + y^2 = 1$ and find the half-lengths of its major and minor axes from the eigenvalues of the corresponding matrix S for which $(5/2)x_1^2 + 2x_1x_2 + x_2^2 = x^T S x$.

Assignment Project Exam Help

https://tutorcs.com