Java

Python

<u>Syntax</u>

Syntax
int C] a = new int CS a = CO? *5

How to declare an array of size N?

int C] a = new int[N];

Passing array to functions

Quiz 1

First =
$$0$$

Last = $N-1$

Quiz 2

arr [0] =
$$5, -4, 8, 9, 10$$

Sum of 1^{st} and 5^{th} element
arr [0] + arr [4]

Q1.

Given N array elements, count no. of elements having atleast 1 element greater than itself.

$$a = \begin{bmatrix} -3 & -2 & 6 & 8 & 4 & 8 & 5 \end{bmatrix}$$

$$a = \begin{bmatrix} 2 & 3 & 10 & 7 & 3 & 2 & 10 & 8 \end{bmatrix}$$
 Quiz 3

Observations

- For every man element, there won't be any element greater than it.
- => For every other element, there will be atleast one element greater than it.
 - 1) Iterate & get the max value
 - 2) Herate & get the count of elements ! = max

Pseudocode

int countGreater(int arr[]) {

```
Integer. MIN_volve

max Vol = -00

float ("-inj")

for (i=0; i=n; i+n) &

max Vol = arr Ci2

N

Total iterations

= 2N

Any extre

space?

ctt.

No

3

return C

Time - O(N)

Space - O(I)
```

Given N array elements, check if there exists a pair (i, j) such that

$$arr[i] + arr[j] == k$$
 && $i! = j$

Note: i & j are index values , k is given sum

$$a = \begin{bmatrix} 3 & -2 & 1 & 4 & 3 & 6 & 8 \end{bmatrix}$$
 $k=10$
 $i=3$, $j=5$
 $4+6=10$
 $i=3$
 $Trul$

$$\alpha = \begin{bmatrix} 2 & 4 & -3 & 7 \end{bmatrix}$$
 $k = 5$
 $0 & 1 & 2 & 3$
No pair \Rightarrow folse

$$Q = \begin{bmatrix} 3 & 5 & 2 & 7 & 3 \end{bmatrix}$$
 $Quiz 4$
 $Quiz 4$

Idea 1

> Run a loop with i for all indices

> Run a verted loop with j over all
indices

Time -
$$O(N^2)$$

Space - $O(N)$

boolean checkSum(int arr[], int k) {

All pains:

Idea 2

}

boolean checkSum(int arr[], int k) {

Time -
$$O(N^2)$$

Space - $O(I)$

Given an array , reverse the entire array

Note : Array itself should change

Expected SC: O(1)

Pseudocode

Break till 10:15 PM

Given an array , and [S & E],
reverse the array from [S E], where S and E are indices.
Note: S <= E

$$a[3] = \begin{bmatrix} -3 & 4 & 2 & 8 & 7 & 9 & 6 & 2 & 10 \end{bmatrix}$$

$$0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8$$

$$S = [3 + 7]$$

 $a[7] = \begin{bmatrix} -3 & 4 & 2 & 2 & 6 & 9 & 7 & 8 & 10 \end{bmatrix}$

}

reversePart(int arr[], int s, int e) {

$$s=0$$
, $c=N-1$
 $s=0$, $c=N-1$
 $s=0$, $c=N-1$
 $s=0$

while $(i < j)$ {
 $s=0$
 $s=0$
 $i=i+1$
 $i=i+1$
 $i=i+1$

Quiz 6

Time - O(N)

Space - O(|)

Q5. Given an array of size N, rotate the array from last to first by k times.

Expected SC: O(1)

K>0

Example

$$avr[7] = \begin{bmatrix} 3 & -2 & 1 & 4 & 6 & 9 & 8 \end{bmatrix}$$
 $k=1:$
 $8 = 3 -2 = 1 = 4 = 6$
 $k=2:$
 $9 = 8 = 3 -2 = 1 = 4 = 6$
 $k=3:$

Example

K=4

- 1) Reverse enthre away, s=0, e= N-1
- 2) Reverse firt k elements, s=0, e=k-1
- 2) Reverde last N-k element, s=k e=N-1

```
rotateTimes(int arr[], int k) {

N = avv.length

veverse lart (avv, 0, n-1) \rightarrow N

veverse lart (avv, 0, k-1) \rightarrow k

veverse lart (avv, 0, k-1) \rightarrow N-k

veverse lart (avv
```

What if k > N?

N=5

ar[6]	= 0,	٩		Q ³		24	Kota		times
· K=0	٥		az			24	6	12	18
K= 1	as	٥	a,	az	Q ₃	م	7	13	19
k=2	વપ	as		٩٠		O ³	8	14	20
R=3		94					9	16	18
K=4	92	q ₃	94	as	٥	٩	10	16	
k = S	a,	92	٩٦	94	as	۵.	11	17	

k = k % N

rotateTimes(int arr[], int k) {

N = avv.length

R = k.v.N

veverse Part (avv, 0, N-1)

veverse Part (avv, 0, k-1)

veverse Part (avv, 0, k-1)

}

TC & SC remain same

Doubts

Thank You

Z

į	, , , , , , , , , , , , , , , , , , ,	Herations
1 2 3 :. N	17 37 19 37	3 2 1 3 3 1 3 3 1 3 3 1 3 1 3 1 3 1 3 1

Total 2

è	5	Herations
G	O → 1	0
1	1 -> 1	(
2	2-91	2
j	3-71	3
2 N	2 → 1	2~

Total =
$$1+2+3+$$
 ... 2^{N}

$$2^{N}(2^{N}+1)$$

$$2^{N}$$
Sum of = $\frac{N(1+1)}{2}$

$$4^{N} = \frac{2^{N}(2^{N}+1)}{2} + \frac{2^{N}}{2}$$

$$O(4^{N}) \leftarrow \frac{4^{N}}{2} + \frac{2^{N}}{2}$$

$$N+\frac{N}{2}+\frac{N}{4}+\frac{N}{4}+\frac{N}{16}+\frac{N}{16}$$

$$N=\frac{1}{2}$$

$$N(\frac{1-\frac{1}{2}}{2})$$

$$= 2N(\frac{2^{N}-1}{2})$$

$$= 2N(\frac{2^{N}-1}{2})$$

1 b==0 is a corner case

2	5	1terations	_
1 2 3 :: N		2 2 5	Total iterrollens = S+S+S+ N finnes = JXN

[5	1terations	
1		١	Total Hereshour
2		2	
<u>ડ</u>		3	= 1+2+3+4 N
;		í	= N(N+1)
N		N	2

Monday