LOGIQUE DES PRÉDICATS

Logique des prédicats

Un prédicat est un énoncé dont la valeur de vérité dépend d'un ou de plusieurs paramètres.

Exemple

Propositions:

Paul est présent

Claire est absente

Pierre est présent

Paul est inscrit en Math

Pierre n'est pas inscrit en Math

Claire est inscrite en Info

Prédicats:

P(x): x est présent

I(x,y): x est inscrit en y

```
P(Paul)
¬P(Claire)
P(Pierre)
I(Paul, Math)
¬I(Pierre, Math)
I(Claire, info)
```

Logique des prédicats

```
E(x): x \ est \ étudiant \ ; \ P(x): x \ est \ présent \ ; \ I(x,y): « x \ est inscrit en y »
```

Traduire

« Paul est un étudiant inscrit en math » :

 $E(Paul) \wedge I(Paul, Math)$

« Si Paul est présent alors il est inscrit en math » : $P(Paul) \rightarrow I(Paul, Math)$

« Paul n'est pas étudiant mais il est inscrit en math » : $\neg E(Paul) \land I(Paul, Math)$

QUANTIFICATEURS \(\forall \), \(\forall \)

Exemples

Il y a au moins un inscrit en math:

 $\exists x \ I(x, math)$

Il y a au moins un étudiant inscrit en math :

 $\exists x \; E(x) \land I(x, math)$

Tous sont inscrits en math:

 $\forall x \ I(x, math)$

Tous les étudiants sont inscrits en math :

 $\forall x E(x) \rightarrow I(x, math)$

QUANTIFICATEURS \(\forall \), \(\forall \)

 $\forall x P(x) \text{ vraie}$

si et seulement si toute valeur de x rend vraie P(x)

 $\exists x P(x) \text{ vraie}$

si et seulement s'il existe au moins une valeur de x pour laquelle le prédicat est vrai

Quantificateurs

 $E(x): x \ est \ étudiant \ ; \ P(x): x \ est \ présent \ ; \ I(x,y): « x \ est inscrit en y »$

Traduire

« Tous les étudiants sont présents » :

$$\forall x \; E(x) \to P(x)$$

« Il y a au moins un étudiant absent » :

$$\exists x E(x) \land \neg P(x)$$

« Tous les étudiants présents sont inscrits en math » :

$$\forall x (E(x) \land P(x)) \rightarrow I(x, math)$$

« Si un étudiant est présent alors il est inscrit en math » :

$$\forall x (E(x) \land P(x)) \rightarrow I(x, math)$$

Traduction du mot « un » dans une phrase

Jean est inscrit à un cours (au moins un cours)

$$\exists x \ I(Jean, x)$$

• Un étudiant est présent (au moins un étudiant...)

$$\exists x \ E(x) \land P(x)$$

Un étudiant est toujours inscrit à au moins un cours.

$$\forall x (E(x) \rightarrow \exists y I(x,y))$$

 Un étudiant inscrit en informatique est aussi inscrit en math.

```
\forall x \ (E(x) \land I(x, informatique)) \rightarrow I(x, math)
```

Ordre et quantificateur

Exemple

```
Prédicat A(x,y): « x aime y »,
```

 $\forall x \exists y \ A(x,y) : \text{`` Tout le monde aime quelqu'un ``}$

 $\exists y \ \forall x \ A(x,y) :$ « Il existe quelqu'un que tout le monde aime »

ATTENTION

 $\forall x \exists y P(x,y) \not\equiv \exists y \forall x P(x,y)$

Quantificateur et négation

• $\forall x P(x)$: « tout le monde est présent »

 La négation de « tout le monde est présent » est « il existe un absent »

$$\neg (\forall x P(x)) = \exists x \neg P(x)$$

$$\neg(\exists x P(x)) = \forall x \neg P(x)$$

Quantificateur et connecteur logique

Exemple

```
P(x): « x est une consonne »,
```

Q(x): « x est une voyelle »

$$\forall x (P(x) \lor Q(x))$$
:

«Toute lettre est une consonne ou une voyelle »

$$\forall x P(x) \lor \forall x Q(x)$$
:

«Toute lettre est une consonne » ou « toute lettre est une voyelle »

Quantificateur et connecteur logique

P(x): « x est une consonne »,

Q(x): « x est une voyelle »

 $\forall x (P(x) \lor Q(x))$:

«Toute lettre est une consonne ou une voyelle »

 $\forall x \ P(x) \lor \forall x \ Q(x)$:

«Toute lettre est une consonne » ou « toute lettre est une voyelle »

$$\exists x \, \big(P(x) \land Q(x) \big) :$$

«Il existe une lettre qui est à la fois une consonne et une voyelle »

$$\exists x \ P(x) \land \exists x \ Q(x)$$
:

«Il existe au moins une consonne et il existe au moins une voyelle »

Quantificateur et connecteur logique

Exemple

P(x): « x est une consonne »,

Q(x): « x est une voyelle »

$$\forall x (P(x) \lor Q(x))$$
:

«Toute lettre est une consonne ou une voyelle »

$$\forall x \ P(x) \lor \ \forall x \ Q(x)$$
:

«Toute lettre est une consonne » ou « toute lettre est une voyelle »

$$\exists x (P(x) \land Q(x))$$
:

«Il existe une lettre qui est à la fois une consonne et une voyelle »

$$\exists x \ P(x) \land \exists x \ Q(x)$$
:

«Il existe au moins une consonne et il existe au moins une voyelle »

$$\exists x \ (P(x) \lor Q(x)) \equiv \exists x \ P(x) \lor \exists x \ Q(x)$$

$$\forall x \ (P(x) \land Q(x)) \equiv \forall x \ P(x) \land \ \forall x \ Q(x)$$

ATTENTION

$$\forall x (P(x) \lor Q(x)) \not\equiv \forall x P(x) \lor \forall x Q(x)$$
$$\exists x (P(x) \land Q(x)) \not\equiv \exists x P(x) \land \exists x Q(x)$$