These are NOT notes. They are a <u>visual aid(20%)</u> for a <u>verbal explanation(80%)</u> .
Exis 10 kg of a material is @ 30°C and is a liquid. How much heat must be removed to turn it into a solid @ 5°C?
Cliquid 2.04 J/oc Threeze 10 C
Laure: 5900 5/kg Csolid = 2.5 /kg
1 - 59,533 joules
3
Q = MC DT = 10 (2,04)(10-30) = -408 J
(D) CP = ML = 10 (5900) = 759000
(3) Q=MC NT = 10 (7.5) (5-10) = -125
10TAC - 59533 J

These are NOT notes. They are a visual aid(20%) for a verbal explanation(80%). (4 $\left(\frac{L_1}{K_1}, \frac{L_2}{K_2}, \dots\right)$ $\left(\frac{L_1}{K_1}, \frac{L_2}{K_2}, \dots\right)$ Conservation of Energy & · Forces do work to transform andor transfer every. Amt. I work dare = the amt. of energy transformal transferred. I An ice cube is placed an a sunny sidevalk. It melts what force has done what work?? On microscopie scale => large #'s is particles.
Use statistics to describe behavior. Force mork > Temporture, Heat System THERMODYNAMICS "

Internol June by

Energy work done Heat Transferral

These are	NOT notes. They are a <u>visual aid(20%)</u> for a <u>verbal explanation(80%)</u> .
200	360 J 36000 joules Mast 0.01 Sec Social Mast
	0.01 set be drawn from hot reservoir.
	That is the BEST that can be done?
	Sadie Carnot (1796-1832)
	1824- "On The Motive Power of Fine" Modern Lefinita & WORK!
	Wica > James Watt > 5-7%
"Ca	rust "Ideal" lugne has a Maximum
	elstiens: Replace the O's w/ Kelun temps.
	Efficient = QH = QH = 1- QL
	Ecanot The (Ichit 30%)
- 1	
	hy use electric motors? (miteral of Heat Engroy)