Homework 3 Statistical methods in AI/ML

Instructor: Vibhav Gogate Vibhav.Gogate@utdallas.edu

Due date: March 18, in class

Problem 1: [20 points] **

$a \mid p(a)$	b	p(b)	e	p(e)		z	y	x	p(x y,z)
0 0.3	0	0.6	0	0.7		0	0	0	0.25
1 0.7	1	0.4	1	0.3		0	0	1	0.75
						0	1	0	0.60
	$y \mid x$	p(x y)	y)			0	1	1	0.40
	0 0	0.10)			1	0	0	0.10
	0 1	0.90)			1	0	1	0.90
	1 0	0.30)			1	1	0	0.20
	1 1	0.70)			1	1	1	0.80

Figure 3: Conditional probability tables

The question investigates the AND/OR search space of the network given in Figure 1 assuming that each variable is binary. The CPTs are given in Figure 3.

Figure 1:

The CPTs for G, H and D are identical to the 3-dimensional CPT in Figure 3 and the CPTs for H and F are identical to the 2-dimensional CPT in the same figure

- Find and present a pseudo tree of the network whose depth is minimal. Call it T_1 . Do the best you can.
- Generate an AND/OR search tree driven by T_1 assuming that each variable has at most two values.
- Annotate the arcs with appropriate weights
- What is the computational cost of computing the probability of evidence G = 0 and H = 1 in such a network if you use depth-first search over the AND/OR search tree. Demonstrate your computation.
- Can the AND/OR search tree be reduced to a smaller AND/OR search graph.
- Assume that the CPT P(x|y,z) is changed by making some entries deterministic as follows: the first two probabilities are changed to 1 and 0 respectively. Similarly, the last two probabilities are changed to 1 and 0 respectively. Show what would be the changes in the AND/OR search tree as a result.

Problem 2: Formula-based inference [20 points]

Read the first 3 sections of the paper "Vibhav Gogate and Pedro Domingos, Formula-Based Probabilistic Inference, In 26th Conference on Uncertainty in Artificial Intelligence (UAI), 2010." available on my publications page.

Recall that the partition function associated with a set of weighted formulas $\{(f_1, w_1), \ldots, (f_m, w_m)\}$ is given by:

$$Z = \sum_{\mathbf{X}} \prod_{i=1}^{m} \phi_{f_i}(\mathbf{x}) \tag{1}$$

where \mathbf{x} is an assignment of values to all variables, $\phi_{f_i}(\mathbf{x}) = w_i$ if \mathbf{x} satisfies f_i and 1 otherwise.

In class, we saw a possible way of encoding a Markov network into weighted logic. To recap, the encoding works as follows. Assume that all variables are binary. For each tuple $[L_1, \ldots, L_n, w]$ in each potential, where L_1, \ldots, L_k are literals, we added a formula (F, w) where $F = L_1 \wedge \ldots \wedge L_n$. Let us call it *Encoding 1*.

Consider an alternative encoding: For each tuple m $[L_1, \ldots, L_n, w]$ in each potential, where L_1, \ldots, L_k are literals, we add two formulas: $(\neg(L_1 \land \ldots \land L_k \Leftrightarrow A_m), 0)$ and (A_m, w) where A_m is a propositional variable associated with the tuple. We will refer to this encoding as *Encoding* 2.

Prove that Encoding 1 and Encoding 2 are equivalent in the sense that they have the same partition function.

Assume that you are using the Logical Decomposition and Conditioning for inference (see the slides). Which encoding (Encoding 1 or Encoding 2) do you think will yield a smaller search space?

Now, assume that you are using Formula Decomposition and conditioning for inference, namely we condition on formulas instead of variables. Which encoding do you think will yield a smaller search space?

Problem 3: Inference [10 points]*** Consider a chain Markov network $X_1 - X_2 - X_3 - \ldots - X_n$. Provide an optimal algorithm which calculates $\Pr(X_i, X_j)$ for all pairs $i \neq j$. Prove its optimality.

Problem 4: Iterative Join Graph Propagation [20 points] Assume you are given a 4×4 directed grid (Bayesian network) shown below:

- 1. Construct an arc-minimal join-graph whose maximal cluster size is 4. Explicitly show the variables and functions in each cluster. Label the arcs with the appropriate separators.
- 2. Show the schematic messages for one iteration of IJGP on your join graph.