Particle spectrograph

Wave operator and propagator

				r ₇₅)	$\frac{(1+2t_3)}{(r_5)t_3}$		4 <i>t</i> 3 '5) <i>t</i> 3
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$	0	$\frac{6k^2(r_1+r_5)+4t_3}{(1+2k^2)^2(r_1+r_5)t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_5)}$	$\frac{3k^2(r_1+r_5)+2t_3}{(k+2k^3)^2(r_1+r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5\right)}$	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_5)}$	0	$-\frac{2i}{k(1+2k^2)(r_1+r_5)}$
$\tau_1^{\#1}_+ _{\alpha\beta}$	0	0 0		0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}\ \tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	$\frac{1}{k^2 (2 r_1 + r_5)}$	0	0	0	0	0	0
	$+_{\alpha \beta}$	$+^{\alpha\beta}$	$^{\dagger}{}^{\alpha eta}$	$^{-1}$	$\bar{z} + \bar{z}$	$-1+\alpha$	-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄-̄

	$\omega_1^{\#1}_{+\alpha\beta}$	$\omega_{1}^{\#2}{}_{lphaeta}$)	$f_{1}^{\#1}_{\alpha\beta}$	$\omega_{1^{-}}^{\#1}{}_{\alpha}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	$f_{1}^{\#2}$
$\omega_1^{\#1} +^{lphaeta}$	$k^2 (2 r_1 + r_5)$	0	0	0	0	0	0
$\omega_1^{\#_2} +^{lphaeta}$	0	0	0	0	0	0	0
$_{1}^{r\#1} \dagger^{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1} +^{lpha}$	0	0	0	$k^2 (r_1 + r_5) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_{1}^{\#2} +^{lpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$f_{1}^{\#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$\epsilon_{1}^{\#2} +^{\alpha}$	0	0	0	2 i k t 3 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

Quadratic (free) action
S== S
$\iiint (\frac{1}{3} (-2t_3 \ \omega^{\kappa}_{\alpha} \ \omega^{\kappa}_{i \ \kappa} + 3 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 3 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + 4t_3 \ \omega^{\kappa}_{\alpha \ \kappa} \ \partial_i f^{\alpha\prime} - 4t_3 \ \omega^{\kappa}_{i \ \kappa}$
$\partial' f^{\alpha}_{\ \alpha} + 2t_3\partial_i f^{\kappa}_{\ \kappa}\partial' f^{\alpha}_{\ \alpha} - 4r_1\partial_{\beta}\omega_{\alpha i\theta}\partial^{\theta}\omega^{\alpha\beta i} + 2r_1\partial_{\beta}\omega_{\alpha \theta i}\partial^{\theta}\omega^{\alpha\beta i} -$
$8r_1\partial_\beta\omega_{,\theta\alpha}\partial^\theta\omega^{\alpha\beta'} - 2r_1\partial_\prime\omega_{\alpha\beta\theta}\partial^\theta\omega^{\alpha\beta'} + 2r_1\partial_\theta\omega_{\alpha\beta'}\partial^\theta\omega^{\alpha\beta'} +$
$2r_{1}\partial_{\theta}\omega_{\alpha\beta}\partial^{\theta}\omega^{\alpha\beta\prime} + 3r_{5}\partial_{\prime}\omega_{\theta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$2t_3\partial_i f^{\alpha i}\partial_k f_{\alpha}^{k} - 4t_3\partial^i f^{\alpha}_{\alpha}\partial_k f_{\mu}^{k} - 3r_5\partial_\alpha \omega^{\alpha i\theta}\partial_k \omega_{\mu}^{k} + 6r_5\partial^\theta \omega^{\alpha i}_{\alpha}\partial_k \omega_{\mu}^{k} +$
$3r_5\partial_{lpha}\omega^{lpha_!}\partial_{\kappa}\omega^{_{eta}'}$, $6r_5\partial^{ heta}\omega^{lpha_!}\partial_{\kappa}\omega^{_{eta}}))[t,\kappa,y,z]dzdyd\kappa dt$

auge generators	Multiplicities	1	1	1	3	3	3	3	5	5	25
Source constraints/gauge generators	SO(3) irreps	$\sigma_{0}^{#1} == 0$	$\tau_0^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2 \bar{l} k \sigma_1^{\#2}{}^{\alpha} == 0$	$t_{1}^{\#1}{}^{\alpha} == 0$	$t_1^{\#1}{}^{\alpha\beta} == 0$	$\sigma_{1+}^{\#2}\alpha\beta==0$	$\tau_{2+}^{\#1\alpha\beta} == 0$	$\sigma_{2^+}^{\#1\alpha\beta} == 0$	Total constraints:

 $\tau_{0}^{\#2} + \sigma_{0}^{\#1}$

0

0

0

0

 $\tau_{2^+}^{\#1}\dagger^{\alpha\beta}$

 $\sigma_{2}^{\#1} \dagger^{\alpha\beta\chi}$

 $-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

 $\frac{2k^2}{(1+2k^2)^2t_3}$

0

0

 $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

0

 $au_{0^{+}}^{\#2}$ †

$\omega_2^{\#1}$	0	0	C		
	$\omega_{2}^{\#1} + ^{lphaeta}$	$f_{2+}^{\#1} + \alpha \beta$	$\int_{1}^{2} 1 + \alpha \beta \chi$	- 53	
$\omega_{0}^{\#1}$	0	0	0	0	
$f_{0}^{#2}$	0	0	0	0	
$f_{0}^{\#1}$	$-\bar{\imath} \sqrt{2} \ kt_3$	$2 k^2 t_3$	0	0	
$\omega_{0^+}^{\#1}$	t_3	$i\sqrt{2}kt_3$	0	0	

 $\sigma_{2^{+}\alpha\beta}^{\#1}\ \tau_{2^{+}\alpha\beta}^{\#1}\ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

0

0

 $\omega_{2^{-}}^{\#1}{}_{\alpha\beta\chi}$

0

0

0

0

0

 $\frac{1}{k^2 r_1}$

0

0

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$