📂 LPIC-2 / 📮 Examen 212 - Seguridad del Sistema

Este examen cubre la configuración de seguridad, incluyendo enrutamiento, firewalls, seguridad de servicios y detección de intrusiones.

212.1 Configurar un router

Teoría

Un router es un dispositivo de red que reenvía paquetes de datos entre diferentes redes IP. Un sistema Linux con múltiples interfaces de red conectadas a diferentes segmentos de red puede funcionar como un router habilitando la funcionalidad de reenvío de paquetes en el kernel.

Componentes Clave para Enrutamiento en Linux:

1. Reenvío de IP en el Kernel (IP Forwarding):

• Esta es la función básica que permite al kernel recibir paquetes en una interfaz y enviarlos por otra si el destino no es local.

Verificar Estado:

- cat /proc/sys/net/ipv4/ip_forward (muestra 0 para deshabilitado, 1 para habilitado).
- sysctl net.ipv4.ip_forward (muestra el mismo valor).
- Habilitar Temporalmente: sudo echo 1 > /proc/sys/net/ipv4/ip_forward. Se pierde al reiniciar.
- Habilitar Persistentemente: Añadir o asegurar que la línea
 net.ipv4.ip_forward = 1 (o net.ipv6.conf.all.forwarding =
 1 para IPv6) está presente en un archivo de configuración de sysctl (ej:
 /etc/sysctl.conf o un archivo .conf en /etc/sysctl.d/ Revisado en
 206.3). Aplicar cambios persistentes con sudo sysctl -p.

2. Tabla de Enrutamiento:

- El kernel mantiene una tabla de enrutamiento que contiene reglas para decidir el "siguiente salto" (next hop) de un paquete basándose en su dirección IP de destino.
- Ver Tabla: ip route show o route -n (ambos muestran la tabla principal).
- Ejemplo de Entradas:
 - Rutas a redes locales conectadas directamente (interfaz).
 - Ruta por defecto (default via <gateway> dev <interfaz>) para destinos desconocidos (generalmente apuntando al router principal de la red).
 - Rutas estáticas añadidas manualmente o por demonios de enrutamiento.

3. Enrutamiento Estático:

- Añadir rutas específicas manualmente a la tabla de enrutamiento.
- Añadir Ruta: sudo ip route add <red_destino>/<mascara> via <ip_siguiente_salto> [dev <interfaz>] (Revisado en 205.3).

24/1523 ADMINISTRACIÓN DE SISTEMAS OPERATIVOS LINUX – LPIC 2 - 202

- Eliminar Ruta: sudo ip route del <red_destino>/<mascara> (Revisado en 205.3).
- Las rutas estáticas añadidas manualmente se pierden al reiniciar a menos que se hagan persistentes a través de archivos de configuración de red o scripts de inicio.

4. Enrutamiento Dinámico:

- Los routers intercambian información de enrutamiento con otros routers utilizando protocolos de enrutamiento dinámico (RIP, OSPF, BGP) para aprender automáticamente sobre las redes y construir/actualizar sus tablas de enrutamiento.
- **Demonios de Enrutamiento:** Se necesita software en el espacio de usuario para implementar estos protocolos.
 - **Quagga:** Un demonio de enrutamiento popular y de código abierto que soporta varios protocolos.
 - **FRR (Free Range Routing):** El sucesor moderno y activo de Quagga, más potente.
- Paquetes (Diferencias): quagga o frr.
- **Configuración:** Se configuran a través de archivos específicos (ej: zebra.conf, ripd.conf, ospfd.conf en /etc/quagga/ o /etc/frr/) utilizando una interfaz de línea de comandos similar a los routers comerciales (VTY Virtual Terminal Interface). **La configuración de protocolos dinámicos es avanzada.**

5. Network Address Translation (NAT):

- Permite a dispositivos en una red privada (con IPs privadas) acceder a Internet (con IPs públicas) compartiendo una o más IPs públicas.
- Tipos Comunes:
 - **SNAT (Source NAT):** Modifica la dirección IP *origen* del paquete. Comúnmente usado como **Masquerading**, que es una forma de SNAT donde la IP origen saliente es la IP de la interfaz de salida del router, útil para IPs dinámicas. Permite a múltiples clientes internos compartir una IP pública para salir a Internet.
 - **DNAT (Destination NAT):** Modifica la dirección IP *destino* del paquete. Comúnmente usado para publicar servicios internos a Internet (ej: redirigir tráfico entrante al puerto 80 de la IP pública del router al puerto 80 de un servidor web en la red privada).
- Implementación: NAT se implementa usando las reglas de firewall (principalmente iptables o firewalld). Se usa la tabla nat.
 - Regla para MASQUERADE (con iptables): sudo iptables -t nat -A POSTROUTING -o <interfaz_salida_publica> -j MASQUERADE. Esto reescribe la IP origen de los paquetes que salen por la interfaz pública para que parezca que vienen del router.

24/1523 ADMINISTRACIÓN DE SISTEMAS OPERATIVOS LINUX – LPIC 2 - 202

- Configuración con firewalld: Se habilita el masquerading en la zona de la interfaz de salida a Internet (ej: Sudo firewall-cmd -zone=<zona_publica> --add-masquerade --permanent).
- **Configuración con ufw:** Requiere editar archivos de reglas personalizados.

6. Firewall:

- Un router Linux generalmente actúa también como firewall para controlar qué tráfico se permite o deniega entre las redes conectadas.
- Se configuran reglas en las cadenas INPUT (tráfico al propio router), OUTPUT (tráfico originado por el router) y FORWARD (tráfico que PASA A TRAVÉS del router entre interfaces). La cadena FORWARD es clave para controlar el tráfico enrutado.
- Herramientas: iptables, firewalld, ufw (Revisado en 212.2).

Consideraciones para Configurar un Router Linux:

- El sistema debe tener al menos dos interfaces de red, cada una configurada en una subred IP diferente.
- El reenvío de IP debe estar habilitado.
- Las tablas de enrutamiento deben tener las rutas correctas para llegar a las redes de destino.
- El firewall debe permitir el tráfico necesario y aplicar NAT si es requerido.
- Si se usa NAT, los clientes en la red privada deben usar la IP de la interfaz interna del router Linux como su puerta de enlace predeterminada.