Neural Networks

Prof. Sharon McNicholas

STATS 780/CSE 780

1

STATS 780/CSE 780

Prof. Sharon McNicholas

Introduction

- As with many other topics covered in an hour or two during this course, there are whole courses and entire books devoted to neural networks.
- Like PPR, a neural network is a non-linear statistical model.
- Originally developed as a model of the brian.
- ullet A neural network is a two-stage model that can be used for regression or classification; again, we want to use ${f X}$ to predict Y.

The Idea

- Similar to Hastie et al. (2009)^a, we will consider classification using a neural network with one hidden layer (aka a single-layer perceptron).
- Suppose Y has K classes and take $\mathbf{X} = (X_1, \dots, X_p)'$.
- For our purposes, consider binary variables Y_1, \ldots, Y_K .
- Introduce hidden units Z_1, \ldots, Z_M , where each Z_m is a linear combination of X_1, \ldots, X_p .
- Here is a visual representation of a neural network from Hastie et al. (2009); note that bias can be added to each unit in the hidden and output layers.

3

STATS 780/CSE 780

Prof. Sharon McNicholas

Example of Neural Network

FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

^aHastie, T., Tibshirani, R. and Friedman, J. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction.* Second Edition. Springer: NY.

The Idea contd.

• Similar to Hastie et al. (2009), we can describe the neural network as follows:

$$Z_m = \sigma(\alpha_{0m} + \alpha'_m \mathbf{X}),$$

$$T_k = \beta_{0k} + \beta_k' \mathbf{Z},$$

$$f_k(\mathbf{X}) = g_k(\mathbf{T}),$$

for $m=1,\ldots,M$ and $k=1,\ldots,K$, where $\mathbf{Z}=(Z_1,\ldots,Z_M)'$ and $\mathbf{T}=(T_1,\ldots,T_K)'$.

- ullet The $lpha_{0m}$, $oldsymbol{lpha}_{m}$, eta_{0k} , and $oldsymbol{eta}_{k}$ are unknown parameters called weights.
- $\sigma()$ is a (non-linear) transformation known as the activation function.
- ullet $g_k(\mathbf{T})$ allows a transformation of \mathbf{T} and is called the output function.

5

STATS 780/CSE 780

Prof. Sharon McNicholas

Activation Function

• Suppose $\sigma()$ is the identity function, then we have

$$Z_m = \alpha_{0m} + \boldsymbol{\alpha}_m' \mathbf{X}$$

and so a linear model.

- For $\sigma()$ non-linear, a neural network can be viewed as a non-linear generalization of a linear model.
- The sigmoid function is a popular choice for $\sigma()$, i.e.,

$$\sigma(v) = \frac{1}{1 - e^{-v}}.$$

Sigmoid Function (from Hastie et al., 2009)

FIGURE 11.3. Plot of the sigmoid function $\sigma(v) = 1/(1 + \exp(-v))$ (red curve), commonly used in the hidden layer of a neural network. Included are $\sigma(sv)$ for $s = \frac{1}{2}$ (blue curve) and s = 10 (purple curve). The scale parameter s controls the activation rate, and we can see that large s amounts to a hard activation at v = 0. Note that $\sigma(s(v - v_0))$ shifts the activation threshold from 0 to v_0 .

STATS 780/CSE 780 Prof. Sharon McNicholas

Output Function

• For regression, $g_k(\mathbf{T})$ is usually chosen to be the identity function, i.e.,

$$g_k(\mathbf{T}) = T_k$$
.

• For classification, the softmax function is common:

$$g_k(\mathbf{T}) = \frac{e^{T_k}}{\sum_{h=1}^K e^{T_k}}.$$
 (1)

• For any T_k , (1) guarantees that $g_k(\mathbf{T}) > 0$, for all $k = 1, \dots, K$, and

$$\sum_{k=1}^{K} g_k(\mathbf{T}) = 1.$$

Relationship with PPR

- Consider a neural network with one hidden layer aka a single-layer perceptron.
- Looking at it from the viewpoint of a PPR, we can write

$$g_{m}(\boldsymbol{\omega}_{m}'\mathbf{X}) = \beta_{m}\sigma(\alpha_{0m} + \boldsymbol{\alpha}_{m}'\mathbf{X})$$
$$= \beta_{m}\sigma(\alpha_{0m} + \|\boldsymbol{\alpha}_{m}\|\boldsymbol{\omega}_{m}'\mathbf{X}).$$
(2)

- ullet Here, $oldsymbol{\omega}_m = oldsymbol{lpha}_m/\|oldsymbol{lpha}_m\|.$
- Another way to look at the relationship in (2) is

$$g_m(V_m) = \beta_m \sigma(\alpha_{0m} + \|\boldsymbol{\alpha}_m\|V_m).$$

9

STATS 780/CSE 780

Prof. Sharon McNicholas

Comments

- If there is no hidden layer, a (classification) neural network would be equivalent to multinomial logistic regression.
- There can be more than one hidden layer, which can be thought of as allowing a sort of hierarchy — aka a multi-layer perceptron.
- As Hastie et al. (2009, Sec. 11.5.3) explain, it is generally best to scale (standardize) the input (predictors).
- There is model fitting, and a lot of subtleties, to consider; extensive details are given (or referenced) in Hastie et al. (2009).

Comments contd.

• Like PPR, neural networks can work very well when prediction — and not modelling — is the goal.

- As Hastie et al. (2009) point out, neural networks (and PPR) generally work well in situations where there is high signal-to-noise ratio.
- In "competitions", neural networks are often amongst the best learning methods.
- Let's look at some neural network examples in R.