1 Sets Convex sets Comments Set Convex hull: • conv C is the smallest convex set that contains C. • conv $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, \mathbf{0} \le \mathbf{0} \le \mathbf{1}, \mathbf{1}^{\mathsf{T}} \mathbf{0} = 1 \right\}$ • conv C is a finite set as long as C is also finite. • aff C is the smallest affine set that contains C. • aff $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, \mathbf{1}^\mathsf{T} \mathbf{\theta} = 1 \right\}$ \bullet aff C is always an infinite set. If aff C contains the origin, it is also a subspace. • Different from the convex set, θ_i is not restricted between 0 and 1 Conic hull: • A is the smallest convex conic that contains C. • $A = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i \ge 0 \text{ for } i = 1, \dots, k \right\}$ • Different from the convex and affine sets, θ_i does not need to sum up 1. ullet The ray is an infinite set that begins in ${\bf x}_0$ and extends infinitely in direction of ${\bf v}$. In other words, it has a beginning, but it has no end. • $\mathcal{R} = \{\mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0\}$ • The ray becomes a convex cone if $\mathbf{x}_0 = \mathbf{0}$. Hyperplane: • It is an infinite set $\mathbb{R}^{n-1} \subset \mathbb{R}^n$ that divides the space into two halfspaces. $\bullet \ \mathcal{H} = \left\{ \mathbf{x} \mid \mathbf{a}^\mathsf{T} \mathbf{x} = b \right\}$ • The inner product between \mathbf{a} and any vector in \mathcal{H} yields the constant value b. $\bullet \ \mathcal{H} = \left\{ \mathbf{x} \mid \mathbf{a}^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_0) = \mathbf{0} \right\}$ • $a^{\perp} = \{ \mathbf{v} \mid \mathbf{a}^{\mathsf{T}} \mathbf{v} = 0 \}$ is the infinite set of vectors perpendicular to \mathbf{a} . It passes through the origin. • $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$ • a^{\perp} is offset from the origin by \mathbf{x}_0 , which is any vector in \mathcal{H} . Halfspaces: • They are infinite sets of the parts divided by \mathcal{H} . $\bullet \ \mathcal{H}_{-} = \left\{ \mathbf{x} \mid \mathbf{a}^{\mathsf{T}} \mathbf{x} \leq b \right\}$ • $\mathcal{H}_+ = \{ \mathbf{x} \mid \mathbf{a}^\mathsf{T} \mathbf{x} \ge b \}$ Euclidean ball: • $B(\mathbf{x}_c, r)$ is a finite set as long as $r < \infty$. • $B(\mathbf{x}_c, r) = {\mathbf{x} \mid ||\mathbf{x} - \mathbf{x}_c|| \le r}$ • \mathbf{x}_c is the center of the ball. • $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{\mathsf{T}} (\mathbf{x} - \mathbf{x}_c) \le r^2 \}$ \bullet *r* is its radius. • $B(\mathbf{x}_c, r) = {\mathbf{x}_c + r ||\mathbf{u}|| \mid ||\mathbf{u}|| \le 1}$ Ellipsoid: \bullet $\ensuremath{\mathcal{E}}$ is a finite set as long as P is a finite matrix. • $\mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^\mathsf{T} \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$ • **P** is symmetric and positive definite, that is, $\mathbf{P} = \mathbf{P}^{\mathsf{T}} > \mathbf{0}$. It determines how far the ellipsoid extends in every direction from \mathbf{x}_c . • $\mathcal{E} = \{\mathbf{x}_c + \mathbf{P}^{1/2}\mathbf{u} \mid ||\mathbf{u}|| \le 1\}$ • \mathbf{x}_c is the center of the ellipsoid. • The lengths of the semi-axes are given by $\sqrt{\lambda_i}$. • When $\mathbf{P}^{1/2} \succeq \mathbf{0}$ but singular, we say that \mathcal{E} is a degenerated ellipsoid (degenerated ellipsoids are also convex). • Although it is named "Norm cone", it is a set, not a scalar. • $C = \{(x_1, x_2, \cdots, x_n, t) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, ||\mathbf{x}||_p \le t\} \subseteq \mathbb{R}^{n+1}$ • The cone norm increases the dimension of \mathbf{x} in 1. • For p=2, it is called the second-order cone, quadratic cone, Lorentz cone or ice-cream cone. Proper cone: $K \subset \mathbb{R}^n$ is a proper cone when it has the following properties • The proper cone K is used to define the generalized inequality (or partial ordering) in some set S. For the generalized inequality, one must define both the proper cone K and the set S. • K is a convex cone, i.e., $\alpha K \equiv K, \alpha > 0$. • $\mathbf{x} \leq \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in K \text{ for } \mathbf{x}, \mathbf{y} \in S \text{ (generalized inequality)}$ \bullet K is closed. • $\mathbf{x} < \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in \text{int } K \text{ for } \mathbf{x}, \mathbf{y} \in S \text{ (strict generalized inequality)}.$ \bullet K is solid. \bullet There are two cases where K and S are understood from context and the subscript K is • K is pointed, i.e., $-K \cap K = \{0\}$. ightharpoonup When $S=\mathbb{R}^n$ and $K=\mathbb{R}^n_+$ (the nonnegative orthant). In this case, $\mathbf{x} \leq \mathbf{y}$ means that \triangleright When $S = S^n$ and $K = S^n_+$ or $K = S^n_{++}$, where S^n denotes the set of symmetric $n \times n$ matrices, S_+^n is the space of the positive semidefinite matrices, and S_{++}^n is the space of the positive definite matrices. \mathcal{S}^n_+ is a proper cone in \mathcal{S}^n (??). In this case, the generalized inequality $Y \geq X$ means that Y - X is a positive semidefinite matrix belonging to the positive semidefinite cone \mathcal{S}_{+}^{n} in the subspace of symmetric matrices \mathcal{S}^{n} . It is usual to denote X > 0 and $X \ge 0$ to mean than X is a positive definite and semidefinite matrix, respectively, where $\mathbf{0} \in \mathbb{R}^{n \times n}$ is a zero matrix. • Another common usage is when $S = \mathbb{R}^n$ and $K = \{\mathbf{c} \in \mathbb{R}^n \mid c_1 + c_2t + \dots + c_nt^{n-1} \geq 0, \text{ for } 0 \leq t \leq 1\}$. In this case, $\mathbf{x} \leq_K \mathbf{y}$ means that $x_1 + x_2t + \dots + x_nt^{n-1} \leq y_1 + y_2t + \dots + y_nt^{n-1}$. • The generalized inequality has the following properties: ▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{u} \leq_K \mathbf{v}$, then $\mathbf{x} + \mathbf{u} \leq_k \mathbf{y} + \mathbf{v}$ (preserve under addition). ▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{z}$, then $\mathbf{x} \leq_K \mathbf{z}$ (transitivity). ▶ If $\mathbf{x} \leq_K \mathbf{y}$, then $\alpha \mathbf{x} \leq_K \mathbf{y}$ for $\alpha \geq 0$ (preserve under nonnegative scaling). \triangleright **x** \leq_K **x** (reflexivity). ▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{x}$, then $\mathbf{x} = \mathbf{y}$ (antisymmetric). $\blacktriangleright \text{ If } \mathbf{x}_i \leq_K \mathbf{y}_i, \text{ for } i=1,2,\ldots, \text{ and } \mathbf{x}_i \to \mathbf{x} \text{ and } \mathbf{y}_i \to \mathbf{y} \text{ as } i \to \infty, \text{ then } \mathbf{x} \leq_K \mathbf{y}.$ • It is called partial ordering because $\mathbf{x} \not\succeq_K \mathbf{y}$ and $\mathbf{y} \not\succeq_K \mathbf{x}$ for many $\mathbf{x}, \mathbf{y} \in S$. When it happens, we say that \mathbf{x} and \mathbf{y} are not comparable (this case does not happen in ordinary inequality, < and >). • $\mathbf{x} \in S$ is the *minimum* element of S with respect to the proper cone K if $\mathbf{x} \leq_K \mathbf{y}, \ \forall \ \mathbf{y} \in S$ (for maximum, $\mathbf{x} \succeq_K \mathbf{y}, \ \forall \ \mathbf{y} \in S$). It means that $S \subseteq \mathbf{x} + K$ (for the maximum, $S \subseteq \mathbf{x} - K$), where $\mathbf{x} + K$ denotes the set K shifted from the origin by \mathbf{x} . Note that any point in $K + \mathbf{x}$ is comparable with \mathbf{x} and is greater or equal to \mathbf{x} in the generalized inequality mean. The set S does not necessarily have a minimum (maximum), but the minimum (maximum) is unique if it does. • $\mathbf{x} \in S$ is the minimal element of S with respect to the proper cone K if $\mathbf{y} \leq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$ (for the maximal, $\mathbf{y} \succeq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$). It means that $(\mathbf{x} - K) \cap S = \{\mathbf{x}\}$ for minimal (for the maximal $(\mathbf{x} + K) \cap S = \{\mathbf{x}\}$), where $\mathbf{x} - K$ denotes the reflected set K shift by \mathbf{x} . Note that any point in $\mathbf{x} - K$ is comparable with \mathbf{x} and is less than or equal to \mathbf{x} in the generalized inequality mean. The set S can have many different minimal (maximal) elements. • When $K = \mathbb{R}_+$ and $S = \mathbb{R}$ (ordinary inequality), the minimal is equal to the minimum and the maximal is equal to the maximum. • When we say that a scalar-valued function $f:\mathbb{R}^n\to\mathbb{R}$ is nondecreasing, it means that whenever $\mathbf{u} \leq \mathbf{v}$, we have $\tilde{h}(\mathbf{u}) \leq \tilde{h}(\mathbf{v})$. Similar results hold for decreasing, increasing, and nonincreasing scalar functions. Subspace (cone set?) of the symmetric matrices: • The positive semidefinite cone is given by $S^n_+ = \{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} \succeq \mathbf{0} \} \subset S^n$. This is the proper cone used to define the generalized inequalities between matrices, e.g., $\mathbf{A} \leq \mathbf{B}$. • $S^n = \{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} = \mathbf{X}^\mathsf{T} \}$ • The positive definite cone is given by $S_{++}^n = \{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} > \mathbf{0} \} \subseteq S_+^n$. This is the proper cone used to define the generalized inequalities between matrices, e.g., $\mathbf{A} < \mathbf{B}$. Dual cone: • K^* is a cone, and it is convex even when the original cone K is nonconvex. $\bullet \ K^* = \left\{ \mathbf{y} \mid \mathbf{x}^\mathsf{T} \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \right\}$ • K^* has the following properties: \triangleright K^* is closed and convex. $ightharpoonup K_1 \subseteq K_2 \text{ implies } K_1^* \subseteq K_2^*.$ ▶ If K has a nonempty interior, then K^* is pointed. ▶ If the closure of K is pointed then K^* has a nonempty interior. $\triangleright K^{**}$ is the closure of the convex hull of K. Hence, if K is convex and closed, $K^{**} = K$. Polyhedra: • The polyhedron may or may not be an infinite set. • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_j^\mathsf{T} \mathbf{x} \le b_j, j = 1, \dots, m, \mathbf{a}_j^\mathsf{T} \mathbf{x} = d_j, j = 1, \dots, p \right\}$ \bullet Polyhedron is the result of the intersection of m halfspaces and p hyperplanes. • Subspaces, hyperplanes, lines, rays line segments, and halfspaces are all special cases of • $\mathcal{P} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}^\mathsf{T} \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^\mathsf{T}$ polyhedra. • The nonnegative orthant, $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n \mid x_i \leq 0 \text{ for } i = 1, \dots n\} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \succeq \mathbf{0}\}$, is a special polyhedron. Simplex: • Simplexes are a subfamily of the polyhedra set. • $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \left\{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid \mathbf{0} \leq \mathbf{0} \leq \mathbf{1}, \mathbf{1}^\mathsf{T} \mathbf{0} = 1\right\}$ • Also called k-dimensional Simplex in \mathbb{R}^n . • $S = \{\mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V}\mathbf{\theta}\}, \text{ where } \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}^{n \times k}$ • The set $\{\mathbf{v}_m\}_{m=0}^k$ is a affinely independent, which means $\{\mathbf{v}_1 - \mathbf{v}_0, \dots, \mathbf{v}_k - \mathbf{v}_0\}$ are linearly independent. • $S = \{\mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, \mathbf{1}^\mathsf{T} \mathbf{A}_1 \mathbf{x} \leq 1 + \mathbf{1}^\mathsf{T} \mathbf{A}_1 \mathbf{v}_0, \mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0 \}$ (Polyhedra form), where $\mathbf{A} = \mathbf{A}_1 \mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4 \mathbf{v}_4 \mathbf{v}_5 \mathbf{v}_5 \mathbf{v}_6 \mathbf{v}_6 \mathbf{v}_6 \mathbf{v}_7 \mathbf{v}_8 \mathbf{v}_9 \mathbf{$ • $\mathbf{V} \in \mathbb{R}^{n \times k}$ is a full-rank tall matrix, i.e., rank $(\mathbf{V}) = k$. All its column vectors are independent. Linear inequalities in xLinear equalities The matrix \mathbf{A} is its left pseudoinverse. and $\mathbf{AV} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ \mathbf{0}_{n-k \times n-k} \end{bmatrix}$ α -sublevel set: • If f is a convex (concave) function, then sublevel sets of f are convexes (concaves) for any $\alpha \in \mathbb{R}$. • $C_{\alpha} = \{ \mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \leq \alpha \}$ (regarding convexity), where $f : \mathbb{R}^n \to \mathbb{R}$ • The converse is not true: a function can have all its sublevel set convex and not be a convex • $C_{\alpha} = \{ \mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \geq \alpha \}$ (regarding concavity), where $f : \mathbb{R}^n \to \mathbb{R}$ • $C_{\alpha} \subseteq \text{dom}(f)$