National University of Computer and Emerging Sciences, Lahore Campus

Course: Advance Computer Architecture MS(Computer Science)
75 mins

75 mins 14-03-2017

Section: A Exam: Mid

Date:

Course Code: EE502 Semester: Spring 2017

Total Marks: 50
Weight 20
Page(s): 2

Question1: True/False Marks 5

- 1. Pipelining increases the latency of a single instruction. **True**
- 2. Machine cycle is determined by the time required for the fastest pipeline stage. False
- 3. A single memory port is accessed for instruction fetch and data read in the same clock cycle would be a data hazard. **False**
- 4. Ideal Speedup from pipelining is equal to the number of pipeline stages. **True**
- 5. Pipelined implementation increases the clock frequency of the processor over single-cycle implementation. **True**

Ouestion2: Marks 5

What is the difference between static and dynamic branch prediction? Explain at least one technique from both types of predictions.

In static technique, the prediction is done once before the execution of the program and prediction does not change during the execution of program. For example, for a specific branch the prediction could be 'not taken'. In the program, even if the prediction is wrong and branch was taken, the next time the predictor will again predict 'not taken'. It is useful but the benefit depends only on initial decision.

On the other hand in dynamic branch prediction, prediction is done at run time based on history. For example, in 1-bit predictor, if the last time branch was 'taken' then it will predict 'taken' whoever if the branch was 'not taken' then next time it will predict 'not taken'. There are better version like 2-bit predictor which change decision when two predictions are wrong.

		lw R1,20(F mul R3,R4 add R1, R1 sw R3, 20(,R1 1,4 R1) ving clock cycle t	imes for a 5-stage pipelined datapat		
		Without Fo	orwarding	With ALU-ALU forwarding only	With Full Forwarding (ALU-ALU and MEM-ALU)	
		400ps		500ps	600ps	
a.	What is the total execution time of the above code sequence when pipeline without forwarding is used? [5] Answer:12 x 400 Rough work: 4 stalls required. 2 between instruction 1 and 2 and 2 stalls between instruction 3 and 4.					
b.	for An	warding is u		of the above code sequence when p	ipeline with ALU-ALU	
	2 s	stalls require	d between instruc	etion 1 and 2.		

Marks 15

Question3:

c. What is the total execution time of the above code sequence when pipeline with full forwarding is used? [5]

Answer: _____9 x 600_____

Rough work:

a single stall required between instruction 1 and 2.

Question4: Marks 10

The table below describes the performance of two processors, the rAlpha and the c86 with a compiler for a common program.

		Compiler		
	GHz	Instructions	Average CPI	
rAlpha	3.4	7000	1.2	
c86	2.6	1500	2.2	

Which is the best compiler-machine combination that provides better performance?

TAIpha and the eye with
GHz Compiler Compiler
17 Iphn 9 1 + 10001 uctions A
c86 2.6 7000 Average CP1 1500 1.2
1000
Which is the best compiler-machine combination that provides better performance? THE TIMES = CPIXIC 707775 8 1 2
Time for Nice Ti
CRete = 2470.59×10
Exe time 2.2 vin
Exe time = 2.2 x 1500 = 1269. 23x 109
Poplar
= 4.05 x109
Performance, = 1 2470.59 x109 = 4.05 x109
Pa-1
Performance = 1 1269.23×109
Se c86 is better option asit performance is better

Question 5: Marks 15

Consider the following MIPS assembly code to be executed on a pipelined CPU with frequency of 1 GHz.

```
Loop: ld R2, 100 (R4)
addi R2, R2, 4
ld R3, 200 (R4)
addi R3, R3, 4
add R5, R2, R3
sw R5, 300 (R4)
addi R4, R4, 4
beq R4, R6, Loop
```

Your task is to do dynamic scheduling based on Tomasulo algorithms. There are:

- ➤ 2 LOAD/STORE Functional Units (LDU1, LDU2) with latency of 2 cycles
- ➤ 2 ALU/BR Function Units (ALU1, ALU2) with latency 1 cycle
- ➤ 2 RESERVATION STATIONS (RS1, RS2) for ALU/BR operation
- ➤ 2 Buffers for LOAD/STORE (LDST1, LDST2)

Moreover you have to identify:

- > Structural hazards for RS in ISSUE phase
- ➤ RAW hazards and Structural hazards for FUs in START EXECUTE phase

Assume static branch prediction (backward taken) is used.

- a) Show a single iteration of the loop using tomasulo
- b) If the clock frequency is 1GHz, what would be average CPI.

Exec Write ExecInstruction status: Start Issue Result Comp Instruction Loop: ld R2, 100 (R4) addi R2, R2, 4 ld R3, 200 (R4) addi R3, R3, 4 add R5, R2, R3 sw R5, 300 (R4) addi R4, R4, 4 beg R4, R6, Loop

Reservation Stations:			SI	S 2	RS	RS	
Time	Name	Busy	Ор	Vj	Vk	Qj	Qk
	RS1	No					
	RS2	No					

	Busy	Address
LDST1	No	
LDST2	No	

Register result status:

R0 R1 R3 R4 R5 R6 R7 ...