

Reinforcement Learning: An Introduction

强化学习导论第二版疑问

作者: 吕昀琏

组织: UESTC

时间: March 24, 2020

目录

1	介绍		1
	1.1	强化学习	1
	1.2	例子	1
	1.3	强化学习的要素	1
	1.4	局限和范围	1
	1.5	拓展例子: 井字游戏	1
	1.6	总结	1
	1.7	强化学习的早期历史	1
第	一部	分 表格解决方法	2
2	多臂	赌博机	3
	2.1	k 臂赌博机问题	3
	2.2	动作值方法	3
	2.3	10 臂试验	3
	2.4	渐增实现	3
	2.5	非平稳问题	3
	2.6	乐观初始值	3
	2.7	置信上限动作选择	3
	2.8	梯度赌博机算法	3
	2.9	关联搜索(上下文赌博机)	3
	2.10	总结	3
3	有限	马尔可夫决策过程	4
	3.1	Agent-环境接口	4
	3.2	目标和奖励	4
	3.3	回报和 episode	4
	3.4	回合和连续任务的统一符号	4
	3.5	策略和值函数	4
	3.6	最优策略和最优值函数	4
	3.7	最优和近似	4
	3.8	台结	4

4	动态规划						
	4.1	策略评估					
	4.2	策略改进					
	4.3	策略迭代					
	4.4	值迭代					
	4.5	异步动态规划					
	4.6	广义策略迭代					
	4.7	动态规划效率					
	4.8	总结					
5	蒙特卡罗方法 6						
	5.1	蒙特卡洛预测 (6)					
	5.2	动作值的蒙特卡洛估计 (
	5.3	蒙特卡洛控制 6					
	5.4	无探索起点的蒙特卡洛控制 6					
	5.5	重要性采样的 off-policy 预测					
	5.6	新增实现					
	5.7	Off-policy 蒙特卡洛控制					
	5.8	* 折扣的重要性采样					
	5.9	*每决策的重要性采样 (
	5.10	总结					
6	时间	差分学习					
	6.1	TD 预测					
	6.2	TD 预测方法的优势					
	6.3	TD(0) 的最优性					
	6.4	Sarsa: on-policy TD 控制					
	6.5	Q-learning: off-policy TD 控制					
	6.6	期望 Sarsa					
	6.7	最大化偏差与 Double Learning					
	6.8	游戏、后期状态和其他特殊情况					
	6.9	总结					
7	n 步自举						
•	7.1	n 步 TD 预测					
	7.2	n步 Sarsa					
	7.3	n 步 off-policy 学习					
	7.4	* 控制变量的每决策方法					
	7.5	无重要性采样的 off-policy 学习: n 步树备份算法					

目录 — iii —

	7.6	*一种统一算法: $Q(\sigma)$
	7.7	总结
8	表格	法进行规划和学习 9
	8.1	模型和规划
	8.2	Dyna: 综合规划,行动和学习 9
	8.3	当模型错误时 9
	8.4	优先扫描
	8.5	期望与采样更新
	8.6	轨迹采样
	8.7	实时动态规划 9
	8.8	决策时规划
	8.9	启发式搜索
	8.10	展开算法
	8.11	蒙特卡洛树搜索 9
	8.12	本章总结
	8.13	第一部分总结: 维度 9

∞∞∞∞

第一章 介绍

- 1.1 强化学习
- 1.2 例子
- 1.3 强化学习的要素
- 1.4 局限和范围
- 1.5 拓展例子: 井字游戏
- 1.6 总结
- 1.7 强化学习的早期历史

第一部分 表格解决方法

第二章 多臂赌博机

- 2.1 k 臂赌博机问题
- 2.2 动作值方法
- 2.3 10 臂试验
- 2.4 渐增实现
- 2.5 非平稳问题

$$(1-\alpha)^n + \alpha \sum_{i=1}^n (1-\alpha)^{n-i}$$
 (2.1)

$$= (1 - \alpha)^{n} + \alpha \frac{1 - (1 - \alpha)^{n}}{1 - (1 - \alpha)}$$

$$= (1 - \alpha)^{n} + 1 - (1 - \alpha)^{n}$$
(2.2)
$$= (2.3)$$

$$= (1 - \alpha)^n + 1 - (1 - \alpha)^n \tag{2.3}$$

$$= 1 (2.4)$$

- 2.6 乐观初始值
- 2.7 置信上限动作选择
- 2.8 梯度赌博机算法
- 2.9 关联搜索(上下文赌博机)
- 2.10 总结

第三章 有限马尔可夫决策过程

- 3.1 Agent-环境接口
- 3.2 目标和奖励
- 3.3 回报和 episode
- 3.4 回合和连续任务的统一符号
- 3.5 策略和值函数
- 3.6 最优策略和最优值函数
- 3.7 最优和近似
- 3.8 总结

第四章 动态规划

- 4.1 策略评估
- 4.2 策略改进
- 4.3 策略迭代
- 4.4 值迭代
- 4.5 异步动态规划
- 4.6 广义策略迭代
- 4.7 动态规划效率
- 4.8 总结

第五章 蒙特卡罗方法

- 5.1 蒙特卡洛预测
- 5.2 动作值的蒙特卡洛估计
- 5.3 蒙特卡洛控制
- 5.4 无探索起点的蒙特卡洛控制
- 5.5 重要性采样的 off-policy 预测
- 5.6 渐增实现
- 5.7 Off-policy 蒙特卡洛控制
- 5.8 * 折扣的重要性采样
- 5.9 *每决策的重要性采样
- 5.10 总结

第六章 时间差分学习

- **6.1 TD** 预测
- 6.2 TD 预测方法的优势
- 6.3 TD(0) 的最优性
- 6.4 Sarsa: on-policy TD 控制
- 6.5 Q-learning: off-policy TD 控制
- 6.6 期望 Sarsa
- 6.7 最大化偏差与 Double Learning
- 6.8 游戏、后期状态和其他特殊情况
- 6.9 总结

第七章 n步自举

- 7.1 n 步 TD 预测
- 7.2 n 步 Sarsa
- 7.3 n步 off-policy 学习
- 7.4 * 控制变量的每决策方法
- 7.5 无重要性采样的 off-policy 学习: n 步树备份算法
- 7.6 * 一种统一算法: $Q(\sigma)$
- 7.7 总结

第八章 表格法进行规划和学习

- 8.1 模型和规划
- 8.2 Dyna:综合规划,行动和学习
- 8.3 当模型错误时
- 8.4 优先扫描
- 8.5 期望与采样更新
- 8.6 轨迹采样
- 8.7 实时动态规划
- 8.8 决策时规划
- 8.9 启发式搜索
- 8.10 展开算法
- 8.11 蒙特卡洛树搜索
- 8.12 本章总结
- 8.13 第一部分总结: 维度

第二部分 近似解决方法

第九章 基于近似的 on-policy 预测