

POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT TO 1.5A
- OUTPUT VOLTAGES OF 5; 5.2; 6; 8; 8.5; 9; 12; 15; 18; 24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSITION SOA PROTECTION

DESCRIPTION

The L7800 series of three-terminal positive regulators is available in TO-220, TO-220FP, TO-3 and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

SCHEMATIC DIAGRAM

February 2003 1/29

ABSOLUTE MAXIMUM RATINGS

Symbol	Parar	Parameter ²		
VI	DC Input Voltage	for V _O = 5 to 18V	35	V
٧١		for V _O = 20, 24V	40	V
Io	Output Current	Internally Limited		
P _{tot}	Power Dissipation		Internally Limited	
T _{stg}	Storage Temperature Range		-65 to 150	°C
T _{op}	Operating Junction Temperature	for L7800	-55 to 150	°C
'op	Range	for L7800C	0 to 150	C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter	D ² PAK	TO-220	TO-220FP	TO-3	Unit
R _{thj-case}	Thermal Resistance Junction-case Max	3	5	5	4	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient Max	62.5	50	60	35	°C/W

SCHEMATIC DIAGRAM

CONNECTION DIAGRAM (top view)

ORDERING CODES

TYPE	TO-220	D ² PAK (*)	TO-220FP	ТО-3	OUTPUT VOLTAGE
L7805				L7805T	5 V
L7805C	L7805CV	L7805CD2T	L7805CP	L7805CT	5 V
L7852C	L7852CV	L7852CD2T	L7852CP	L7852CT	5.2 V
L7806				L7806T	6 V
L7806C	L7806CV	L7806CD2T	L7806CP	L7806CT	6 V
L7808				L7808T	8 V
L7808C	L7808CV	L7808CD2T	L7808CP	L7808CT	8 V
L7885C	L7885CV	L7885CD2T	L7885CP	L7885CT	8.5 V
L7809C	L7809CV	L7809CD2T	L7809CP	L7809CT	9 V
L7812				L7812T	12 V
L7812C	L7812CV	L7812CD2T	L7812CP	L7812CT	12 V
L7815				L7815T	15 V
L7815C	L7815CV	L7815CD2T	L7815CP	L7815CT	15 V
L7818				L7818T	18 V
L7818C	L7818CV	L7818CD2T	L7818CP	L7818CT	18 V
L7820				L7820T	20 V
L7820C	L7820CV	L7820CD2T	L7820CP	L7820CT	20 V
L7824				L7824T	24 V
L7824C	L7824CV	L7824CD2T	L7824CP	L7824CT	24 V

^(*) Available in Tape & Reel with the suffix "-TR".

APPLICATION CIRCUITS

TEST CIRCUITS

Figure 1 : DC Parameter

Figure 2: Load Regulation

Figure 3: Ripple Rejection

ELECTRICAL CHARACTERISTICS OF L7805 (refer to the test circuits, T_J = -55 to 150°C, V_I = 10V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	4.8	5	5.2	V
V _O	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 8 \text{ to 20 V}$	4.65	5	5.35	V
ΔV _O (*)	Line Regulation	$V_1 = 7 \text{ to } 25 \text{ V}$ $T_J = 25^{\circ}\text{C}$		3	50	mV
		$V_{I} = 8 \text{ to } 12 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		1	25	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			25	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 8 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		0.6		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 8 to 18 V f = 120Hz	68			dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2	2.5	V
R _O	Output Resistance	f = 1 KHz		17		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7806 (refer to the test circuits, T_J = -55 to 150°C, V_I = 11V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	5.75	6	6.25	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 9 \text{ to 21 V}$	5.65	6	6.35	V
ΔV _O (*)	Line Regulation	$V_{I} = 8 \text{ to } 25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			60	mV
		$V_{I} = 9 \text{ to } 13 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			30	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			30	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_{d}	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 9 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		0.7		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 9 to 19 V f = 120Hz	65			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7808 (refer to the test circuits, T_J = -55 to 150°C, V_I = 14V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	7.7	8	8.3	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 11.5 \text{ to } 23 \text{ V}$	7.6	8	8.4	V
ΔV _O (*)	Line Regulation	$V_I = 10.5 \text{ to } 25 \text{ V}$ $T_J = 25^{\circ}\text{C}$			80	mV
		$V_{I} = 11 \text{ to } 17 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			40	
$\Delta V_{O}(*)$	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			40	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_{d}	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 11.5 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 11.5 to 21.5 V f = 120Hz	62			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		16		mΩ
I _{sc}	Short Circuit Current	$V_{I} = 35 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7812 (refer to the test circuits, T_J = -55 to 150°C, V_I = 19V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	11.5	12	12.5	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 15.5 \text{ to 27 V}$	11.4	12	12.6	V
ΔV _O (*)	Line Regulation	V _I = 14.5 to 30 V			120	mV
		V _I = 16 to 22 V T _J = 25°C			60	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			60	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_{d}	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 15 to 30 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		1.5		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 15 to 25 V f = 120Hz	61			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		18		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7815 (refer to the test circuits, T_J = -55 to 150°C, V_I = 23V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	14.4	15	15.6	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 18.5 \text{ to 30 V}$	14.25	15	15.75	V
ΔV _O (*)	Line Regulation	V _I = 17.5 to 30 V T _J = 25°C			150	mV
		V _I = 20 to 26 V			75	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			150	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			75	
I _d	Quiescent Current	$T_J = 25$ °C			6	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 18.5 to 30 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		1.8		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 18.5 to 28.5 V f = 120Hz	60			dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2	2.5	V
R _O	Output Resistance	f = 1 KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	$T_J = 25$ °C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7818 (refer to the test circuits, T_J = -55 to 150°C, V_I = 26V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	17.3	18	18.7	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 22 \text{ to 33 V}$	17.1	18	18.9	V
ΔV _O (*)	Line Regulation	$V_{I} = 21 \text{ to } 33 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			180	mV
		V _I = 24 to 30 V			90	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			180	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			90	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_{d}	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 22 to 33 V			0.8	
$\Delta V_O/\Delta T$	Output Voltage Drift	I _O = 5 mA		2.3		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 22 to 32 V f = 120Hz	59			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		22		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7820 (refer to the test circuits, T_J = -55 to 150°C, V_I = 28V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	19.2	20	20.8	V
Vo	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 24$ to 35 V	19	20	21	V
ΔV _O (*)	Line Regulation	$V_I = 22.5 \text{ to } 35 \text{ V}$ $T_J = 25^{\circ}\text{C}$			200	mV
		$V_{I} = 26 \text{ to } 32 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			100	
ΔV _O (*)	Load Regulation	$I_O = 5$ mA to 1.5 A $T_J = 25$ °C			200	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			100	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_{d}	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 24 to 35 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		2.5		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 24 to 35 V f = 120Hz	58			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		24		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	А

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7824 (refer to the test circuits, T_J = -55 to 150°C, V_I = 33V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	23	24	25	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 28 \text{ to 38 V}$	22.8	24	25.2	V
ΔV _O (*)	Line Regulation	$V_{I} = 27 \text{ to } 38 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			240	mV
		$V_{I} = 30 \text{ to } 36 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			120	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			240	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			120	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_{d}	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 28 to 38 V			0.8	
$\Delta V_O/\Delta T$	Output Voltage Drift	I _O = 5 mA		3		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 28 to 38 V f = 120Hz	56			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		28		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7805C (refer to the test circuits, T_J = -55 to 150°C, V_I = 10V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	4.8	5	5.2	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 7 \text{ to 20 V}$	4.75	5	5.25	V
ΔV _O (*)	Line Regulation	$V_{I} = 7 \text{ to } 25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		3	100	mV
		$V_{I} = 8 \text{ to } 12 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		1	50	
ΔV _O (*)	Load Regulation	$I_O = 5$ mA to 1.5 A $T_J = 25$ °C			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			50	
I _d	Quiescent Current	$T_J = 25$ °C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 7 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1.1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		40		μV/V _O
SVR	Supply Voltage Rejection	V _I = 8 to 18 V f = 120Hz	62			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		17		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		А

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7852C (refer to the test circuits, T_J = -55 to 150°C, V_I = 10V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	5.0	5.2	5.4	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 8 \text{ to 20 V}$	4.95	5.2	5.45	V
ΔV _O (*)	Line Regulation	$V_{I} = 7 \text{ to } 25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		3	105	mV
		$V_{I} = 8 \text{ to } 12 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		1	52	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			105	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			52	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 7 to 25 V			1.3	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		42		μV/V _O
SVR	Supply Voltage Rejection	V _I = 8 to 18 V f = 120Hz	61			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		17		mΩ
I _{sc}	Short Circuit Current	$V_{I} = 35 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		0.75		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7806C (refer to the test circuits, T_J = -55 to 150°C, V_I = 11V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	5.75	6	6.25	V
V _O	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 8 \text{ to 21 V}$	5.7	6	6.3	V
ΔV _O (*)	Line Regulation	$V_1 = 8 \text{ to } 25 \text{ V}$ $T_J = 25^{\circ}\text{C}$			120	mV
		$V_{I} = 9 \text{ to } 13 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			60	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			120	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			60	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 8 to 25 V			1.3	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-0.8		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		45		μV/V _O
SVR	Supply Voltage Rejection	V _I = 9 to 19 V f = 120Hz	59			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.55		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7808C (refer to the test circuits, T_J = -55 to 150°C, V_I = 14V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	7.7	8	8.3	V
Vo	Output Voltage	$I_O = 5 \text{ mA to } 1 \text{ A}$ $P_O \le 15W$ $V_I = 10.5 \text{ to } 25 \text{ V}$	7.6	8	8.4	V
ΔV _O (*)	Line Regulation	$V_I = 10.5 \text{ to } 25 \text{ V}$ $T_J = 25^{\circ}\text{C}$			160	mV
		$V_{I} = 11 \text{ to } 17 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			80	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			160	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			80	
I _d	Quiescent Current	$T_J = 25$ °C			8	mA
ΔI_{d}	Quiescent Current Change	$I_O = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = 10.5 to 25 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-0.8		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		52		μV/V _O
SVR	Supply Voltage Rejection	V _I = 11.5 to 21.5 V f = 120Hz	56			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		16		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.45		Α
I _{scp}	Short Circuit Peak Current	$T_J = 25^{\circ}C$		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7885C (refer to the test circuits, T_J = -55 to 150°C, V_I = 14.5V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	8.2	8.5	8.8	V
Vo	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 11$ to 26 V	8.1	8.5	8.9	V
ΔV _O (*)	Line Regulation	$V_{I} = 11 \text{ to } 27 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			160	mV
		V _I = 11.5 to 17.5 V T _J = 25°C			80	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			160	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			80	
I _d	Quiescent Current	T _J = 25°C			8	mA
Δl_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 11 to 27 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-0.8		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		55		μV/V _O
SVR	Supply Voltage Rejection	V _I = 12 to 22 V f = 120Hz	56			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		16		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.45		Α
I _{scp}	Short Circuit Peak Current	$T_J = 25$ °C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7809C (refer to the test circuits, T_J = -55 to 150°C, V_I = 15V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	8.65	9	9.35	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 11.5 \text{ to 26 V}$	8.55	9	9.45	V
ΔV _O (*)	Line Regulation	$V_I = 11.5 \text{ to } 26 \text{ V}$ $T_J = 25^{\circ}\text{C}$			180	mV
		$V_I = 12 \text{ to } 18 \text{ V}$ $T_J = 25^{\circ}\text{C}$			90	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			180	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			90	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 11.5 to 26 V			1	1
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		70		μV/V _O
SVR	Supply Voltage Rejection	V _I = 12 to 23 V f = 120Hz	55			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		17		mΩ
I _{sc}	Short Circuit Current	$V_{I} = 35 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		0.40		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7812C (refer to the test circuits, T_J = -55 to 150°C, V_I = 19V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	11.5	12	12.5	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$	11.4	12	12.6	V
		$V_{I} = 14.5 \text{ to } 27 \text{ V}$				
$\Delta V_{O}(*)$	Line Regulation	$V_I = 14.5 \text{ to } 30 \text{ V}$ $T_J = 25^{\circ}\text{C}$			240	mV
		$V_{I} = 16 \text{ to } 22 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			120	
$\Delta V_{O}(*)$	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			240	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			120	
I _d	Quiescent Current	$T_J = 25$ °C			8	mA
ΔI_d	Quiescent Current Change	$I_O = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = 14.5 to 30 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		75		μV/V _O
SVR	Supply Voltage Rejection	$V_1 = 15 \text{ to } 25 \text{ V}$ $f = 120 \text{Hz}$	55			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		18		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.35		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		А

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7815C (refer to the test circuits, T_J = -55 to 150°C, V_I = 23V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	14.5	15	15.6	V
Vo	Output Voltage	I_O = 5 mA to 1 A $P_O \le 15W$ V_I = 17.5 to 30 V	14.25	15	15.75	V
ΔV _O (*)	Line Regulation	V _I = 17.5 to 30 V T _J = 25°C			300	mV
		V _I = 20 to 26 V T _J = 25°C			150	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			300	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			150	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_{d}	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 17.5 to 30 V			1	
$\Delta V_O/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		90		μV/V _O
SVR	Supply Voltage Rejection	V _I = 18.5 to 28.5 V f = 120Hz	54			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.23		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7818C (refer to the test circuits, T_J = -55 to 150°C, V_I = 26V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	17.3	18	18.7	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 21 \text{ to 33 V}$	17.1	18	18.9	V
ΔV _O (*)	Line Regulation	$V_I = 21 \text{ to } 33 \text{ V}$ $T_J = 25^{\circ}\text{C}$			360	mV
		V _I = 24 to 30 V			180	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			360	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			180	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 21 to 33 V			1	
$\Delta V_O/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		-1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		110		μV/V _O
SVR	Supply Voltage Rejection	V _I = 22 to 32 V f = 120Hz	53			dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2		V
R _O	Output Resistance	f = 1 KHz		22		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.20		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.1		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7820C (refer to the test circuits, T_J = -55 to 150°C, V_I = 28V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	19.2	20	20.8	V
Vo	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 23$ to 35 V	19	20	21	V
ΔV _O (*)	Line Regulation	$V_{I} = 22.5 \text{ to } 35 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			400	mV
		$V_{I} = 26 \text{ to } 32 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			200	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			400	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			200	
I _d	Quiescent Current	$T_J = 25$ °C			8	mA
ΔI_d	Quiescent Current Change	$I_O = 5 \text{ mA to } 1 \text{ A}$			0.5	mA
		V _I = 23 to 35 V			1	
$\Delta V_O/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		-1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		150		μV/V _O
SVR	Supply Voltage Rejection	V _I = 24 to 35 V f = 120Hz	52			dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2		V
R _O	Output Resistance	f = 1 KHz		24		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.18		Α
I _{scp}	Short Circuit Peak Current	$T_J = 25^{\circ}C$		2.1		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS OF L7824C (refer to the test circuits, T_J = -55 to 150°C, V_I = 33V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	23	24	25	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$	22.8	24	25.2	V
		V _I = 27 to 38 V				
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = 27 \text{ to } 38 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			480	mV
		$V_{I} = 30 \text{ to } 36 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			240	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			480	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			240	
I _d	Quiescent Current	$T_J = 25$ °C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 27 to 38 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		-1.5		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		170		μV/V _O
SVR	Supply Voltage Rejection	V _I = 28 to 38 V f = 120Hz	50			dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2		V
R _O	Output Resistance	f = 1 KHz		28		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.15		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.1		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Figure 4 : Dropout Voltage vs Junction Temperature

Figure 5 : Peak Output Current vs Input/output Differential Voltage

Figure 6 : Supply Voltage Rejection vs Frequency

Figure 7 : Output Voltage vs Junction Temperature

Figure 8 : Output Impedance vs Frequency

Figure 9 : Quiescent Current vs Junction Temperature

Figure 10: Load Transient Response

Figure 12: Quiescent Current vs Input Voltage

Figure 11: Line Transient Response

Figure 13: Fixed Output Regulator

- NOTE:
 1. To specify an output voltage, substitute voltage value for "XX".
 2. Although no output capacitor is need for stability, it does improve transient response.
 3. Required if regulator is locate an appreciable distance from power supply filter.

Figure 14: Current Regulator

Figure 15 : Circuit for Increasing Output Voltage

Figure 16: Adjustable Output Regulator (7 to 30V)

Figure 17: 0.5 to 10V Regulator

Figure 18: High Current Voltage Regulator

Figure 19: High Output Current with Short Circuit Protection

Figure 20 : Tracking Voltage Regulator

Figure 21 : Split Power Supply (± 15V - 1 A)

^{*} Against potential latch-up problems.

Figure 22 : Negative Output Voltage Circuit

Figure 23 : Switching Regulator

Figure 24 : High Input Voltage Circuit

Figure 25 : High Input Voltage Circuit

Figure 26 : High Output Voltage Regulator

Figure 27: High Input and Output Voltage

Figure 28 : Reducing Power Dissipation with Dropping Resistor

Figure 29: Remote Shutdown

Figure 30 : Power AM Modulator (unity voltage gain, $\rm I_{O} \le 0.5)$

NOTE: The circuit performs well up to 100 KHz.

Figure 31 : Adjustable Output Voltage with Temperature Compensation

NOTE: Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_O .

Figure 32 : Light Controllers $(V_{Omin} = V_{XX} + V_{BE})$

Figure 33 : Protection against Input Short-Circuit with High Capacitance Loads

Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 33) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

TO-3 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А		11.85			0.466	
В	0.96	1.05	1.10	0.037	0.041	0.043
С			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.5			1.555
V		30.10			1.185	

TO-220 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.70	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.50	0.045		0.059
F2	1.15		1.50	0.045		0.059
G	4.95		5.2	0.194		0.204
G1	2.4		2.7	0.094		0.106
Н	10.0		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
DIA.	3		3.2	0.118		0.126

D²PAK MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		0.409
E1		8.5			0.335	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.624
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.016	
V2	0°		8°	0°		8°

Tape & Reel D²PAK-P²PAK-D²PAK/A-P²PAK/A MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

