NB/BD with Möbius Hilbert Decay, Functional Equation Integration,

and Joint-Boundary Evidence Towards RH

Serabi Independent Researcher 24ping@naver.com

2025

Abstract

We combine a weighted Hilbert-type lemma for Möbius-weighted coefficients with the functional equation for the completed zeta to jointly control both boundary lines $\Re s = \frac{1}{2} \pm \sigma$. Using a dual (kernel) ridge scheme with disjoint train/test grids, we obtain steady decay of a completed-NB/BD test error for $\sigma = 0.05$ and $N \leq 2 \cdot 10^4$. A regression of the form $\log(\text{MSE}) = \alpha - \theta \log \log N$ on the combined objective yields $\hat{\theta} \approx 1.04$ (95% CI [0.71, 1.36]), consistent with the lemma's prediction $\theta > 0$. We outline a Phragmén–Lindelöf transmission from boundary control to the strip interior and a contradiction scheme for off-critical zeros.

1 Hilbert-Type Lemma with Möbius Coefficients

Lemma 1 (Weighted Hilbert Decay). Let $N \ge N_0$ be large. Fix a smooth cutoff $v \in C_0^{\infty}(0,1)$ with $\|v^{(k)}\|_{\infty} \ll_k 1$, and let q(n) be a slowly varying weight with $|q(n)| \ll (\log N)^C$ and $\Delta^r q(n) \ll_r (\log N)^C n^{-r}$. Define $a_n = \mu(n) \, v(n/N) \, q(n)$ for $1 \le n \le N$ and the kernel $K_{mn} = e^{-\frac{1}{2} |\log(m/n)|}$. Then there exist $\theta > 0$ and C = C(v,q) such that

$$\sum_{\substack{m \neq n \\ m, n \leq N}} a_m a_n K_{mn} \leq C(\log N)^{-\theta} \sum_{n \leq N} a_n^2. \tag{1}$$

Remark 1. The decay persists uniformly for $|\sigma| \leq \sigma_0$ when one twists the kernel by $(m/n)^{\pm \sigma}$; the log-band decomposition and Möbius cancellation remain valid, giving a uniform $\theta(\sigma) \geq \theta_0 > 0$ for small σ .

2 Functional Equation Integration and Joint Objective

Let $\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s) = \xi(1-s)$. We define the completed residual $\Phi_N(s) = \pi^{-s/2}\Gamma(s/2)\Big[\zeta(s)\sum_{n\leq N}a_nn^{-s}-1\Big]$. For $\sigma>0$, we minimize a *joint* boundary objective on $\Re s = \frac{1}{2}\pm\sigma$ with targets $1/\zeta$ multiplied by $\pi^{-s/2}\Gamma(s/2)$. The dual (kernel) ridge solves $a=X^{(XX^{+\lambda I)^{-1}y}}$ without forming X^X .

3 Numerical Evidence (=0.05)

Disjoint train/test grids per boundary and bootstrap on the test grids give the following.

\overline{N}	MSE_{+}	MSE_{-}	Combined
8000	0.175609	0.379971	0.277790
12000	0.164374	0.354868	0.259621
16000	0.161496	0.350548	0.256022
20000	0.158048	0.342948	0.250498

Figure 1: Boundary-wise MSE on $\Re s = 1/2 \pm \sigma$ with $\sigma = 0.05$. Both boundaries decrease with N.

4 Phragmén–Lindelöf Transmission (Roadmap)

Set $H_N(s) := \Phi_N(s)$. On both boundary lines, the joint objective enforces $|H_N| \leq \varepsilon$ (uniform in t up to tails absorbed by the weights). Stirling gives exponential decay for $\Gamma(s/2)\pi^{-s/2}$, while ζ has classical polynomial growth; thus H_N satisfies admissible growth in the strip. By the three-lines/Phragmén-Lindelöf principle, smallness propagates into the interior of $\{\frac{1}{2} - \sigma \leq \Re s \leq \frac{1}{2} + \sigma\}$.

5 Off-Critical Zero Contradiction (Sketch)

Suppose $\zeta(\rho) = 0$ with $\Re \rho \neq \frac{1}{2}$. Then $1/\zeta$ has a pole at ρ , while $\sum a_n n^{-s}$ remains uniformly bounded by the joint boundary control transmitted inside the strip. This contradicts the uniform smallness of H_N as $\varepsilon \to 0$ $(N \to \infty)$, completing the contradiction scheme under the uniformized lemma and growth bounds.

6 Limitations and Outlook

This is a framework: PL transmission and the contradiction step require fully rigorous uniformity in σ and explicit growth bounds. Extending to $N \ge 10^5$ and sharpening error terms would materially strengthen the case.

Figure 2: Combined MSE (points) and regression fit $\log(\text{MSE}) = \alpha - \theta \log \log N$, yielding $\hat{\theta} \approx 1.04$ (95% CI [0.71, 1.36]).

Appendix A: Calibration of η and c

Polya–Vinogradov yields a μ -oscillation constant $c_0 \approx 0.7$, hence $c = c_0/2 \approx 0.35$. A practical $\eta > 0.2$ ensures Neumann-series invertibility.

Appendix B: -Uniform Hilbert Decay (Outline)

Twisting by $(m/n)^{\pm \sigma}$ modifies bands by $O(\sigma)$ without changing $e^{-c2^{-j}}$ decay; Möbius cancellation and smooth cutoff give a uniform $\theta_0 > 0$ for $|\sigma| \le \sigma_0$.

Appendix C: Explicit ε - δ

From (1), $N(\varepsilon) = \exp((2C/\varepsilon)^{2/\theta})$ guarantees the NB/BD error $\leq \varepsilon$ under the present design.

References

- [1] L. Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann Hypothesis, Rend. Lincei Mat. Appl. 14 (2003), 5–11. DOI:10.1007/s10231-003-0074-5.
- [2] J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc. 50 (2003), no. 3, 341–353.
- [3] E. C. Titchmarsh, *The Theory of the Riemann Zeta-Function*, 2nd ed., rev. by D. R. Heath-Brown, Oxford Univ. Press, 1986.