讲义说明

由于时间仓促和编者水平有限,编写中难免出现错误或不当之处,希望家长及同学们能直言不讳地给我们提出宝贵的意见,以便今后修订升级.若有发现,非常期待家长和同学们将修改意见发送至顺为教育教研部邮箱 (jiaoyan@shunweijiaoyu.com)! 我们会定期评选出突出贡献者,并给予丰厚的奖励

目录

第七讲、一次函数存在性问题(三)	1
模块一、多动点等腰直角三角形存在性问题	1
模块二、多动点直角三角形存在性问题	11
笔记整理	16
课后练习	17
第八讲、 一次函数动点问题 (二)	21
模块一、重叠图形的面积与周长	21
模块二、一次函数的定值问题	26
笔记整理	35
课后练习	36
第九讲、一次函数与翻折问题	40
模块一、特殊角翻折问题	40
模块二、一般情况的翻折问题	43
笔记整理	54
课后练习	55
第十讲、含参不等式	60
模块一、不等式的性质与解含参不等式	60
知识集锦	60
模块二、不等式组解的情况	61
知识集锦	61
模块三、不等式的应用	64
笔记整理	65
课后练习	66
第十一讲、因式分解(一)	69
模块一、提公因式法	69
知识集锦	69
模块二、公式法	71
知识集锦	71
模块三、分组分解法	73
知识集锦	73
笔记整理	75
课后练习	76
第十二讲、因式分解(二)	79
模块一、十字相乘法	79
知识集锦	79
模块二、选主元	80
知识集锦	80
模块三、换元法	81
知识集锦	81
模块四、拆添项	83
知识集锦	83
	85

课后练习.......86

第七讲、一次函数存在性问题(三)

模块一、多动点等腰直角三角形存在性问题

【例1】

如图:在平面直角坐标系中,O 是坐标原点,点 A 的坐标为(4,0),点 B 的坐标为(0, b)(b>0),点 P 是直线 AB 上位于第二象限内的一个动点,过点 P 作 $PC\bot x$ 轴于点 C,记点 P 关于 Y 轴的对称点为 Q。

- (1) 当 b=3 时,
- ①求直线 AB 的表达式;
- ②若 QO=QA,求 P 点的坐标。
- (2) 设点 P 的横坐标为 a,是否同时存在 a、b,使得 $\triangle QAC$ 是等腰直角三角形?若存在,求出所有满足条件的 a、b 的值;若不存在,请说明理由。

1

【解答】解: (1) ①由 A(4,0) , B(0,3) ,

设直线 AB 解析式为 y = kx + b,

把 A 与 B 坐标代入得: $\begin{cases} 4k+b=0 \\ b=3 \end{cases}$,

解得: $k = -\frac{3}{4}$, b = 3,

则直线 AB 解析式为 $y = -\frac{3}{4}x + 3$;

2: QA = QO, OA = 4,

 $\therefore x_o = 2$,

::点P关于y轴的对称点为Q,

 $\therefore x_{\scriptscriptstyle P} = -2 ,$

代入直线 AP 解析式得 $-\frac{3}{4} \times (-2) + 3 = \frac{9}{2}$,

则 P 坐标得 $P(-2,\frac{9}{2})$;

(2) ①若∠QAC=90°, 如图1所示,

$$\therefore x_Q = 4 ,$$

$$\therefore a = x_P = -4,$$

$$\therefore AC = AQ = 8, \quad \exists P(-4,8),$$

:. 直线
$$AP$$
 解析式为 $y = -x + 4$,

$$\therefore a = -4$$
, $b = 4$;

则
$$AC = 4 - a = 4CO = -4a$$
,

$$\therefore a = -\frac{4}{3},$$

$$\therefore x_{P} = -\frac{4}{3}, \quad y_{P} = y_{q} = \frac{8}{3}, \quad \mathbb{H} P(-\frac{4}{3}, \frac{8}{3}),$$

:. 直线 AP 解析式为
$$y = -\frac{1}{2}x + 2$$
,

$$\therefore a = -\frac{4}{3}, \quad b = 2,$$

P 、 Q 重合于 (0,4) 时, ΔQCA 也是等腰直角三角形,此时 a=0 , b=4 ,舍去,

综上所示,
$$a=-4$$
, $b=4$ 或 $a=-\frac{4}{3}$, $b=2$.

【例2】

如图,已知直线 $y = \frac{3}{4}x + 3$ 与坐标轴交于 B, C 两点,点 A 是 x 轴正半轴上一点,并且 $S_{ABC} = 15$,点 F 是线段 AB 上一动点(不与端点重合),过点 F 作 FE // X 轴,交 BC 于 E 。

- (1) 求 AB 所在直线的解析式;
- (2) 若 $FD \perp x$ 轴于 D, 且点 D 的坐标为 (m, 0), 请用含 m 的代数式表示 DF 与 EF 的长;
- (3)在x 轴上是否存在一点P,使得 $\triangle PEF$ 为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由。

【解答】解:

(1) $\text{ \'et } y = \frac{3}{4}x + 3 \text{ \'et}$, $\diamondsuit x = 0 \text{ $\vec{0}$} \text{ $$

B(0,3), C(-4,0),

 $\therefore OB = 3, \quad OC = 4,$

 $:: S_{\Delta ABC} = 15$,

 $\therefore \frac{1}{2}AC \cdot OB = 15$,即 $\frac{1}{2}(OA + 4) \times 3 = 15$,解得OA = 6,

 $\therefore A(6,0)$,

设直线 AB 解析式为 y = kx + b,

$$\therefore \begin{cases} 6k+b=0 \\ b=3 \end{cases}, \quad \text{解得} \begin{cases} k=-\frac{1}{2} \\ b=3 \end{cases}$$

:. 直线 AB 解析式为 $y = -\frac{1}{2}x + 3$;

(2) $:: FD \perp x$ 轴,且D(m,0),

 $\therefore F$ 点横坐标为m,

在
$$y = -\frac{1}{2}x + 3$$
 中, 令 $x = m$, 可得 $y = -\frac{1}{2}m + 3$,

$$\therefore DF = -\frac{1}{2}m + 3,$$

:: EF / / x 轴,

 $\therefore E$ 点纵坐标为 $-\frac{1}{2}m+3$,

在
$$y = \frac{3}{4}x + 3$$
 中, 令 $y = -\frac{1}{2}m + 3$, 可得 $-\frac{1}{2}m + 3 = \frac{3}{4}x + 3$, 解得 $x = -\frac{2}{3}m$,

:: F 在线段 AB 上,

 $\therefore 0 < m < 6$

$$\therefore EF = m + \frac{2}{3}m = \frac{5}{3}m ;$$

(3) 假设存在满足条件的点P, 设其坐标为(t,0),

:: ΔPEF 为等腰直角三角形,

①当 ∠PFE = 90°时,则有 PF = EF,

由 (2) 可得
$$PF = -\frac{1}{2}t + 3$$
, $EF = \frac{5}{3}t$,

$$\therefore -\frac{1}{2}t + 3 = \frac{5}{3}t$$
, 解得 $t = \frac{18}{13}$,

:
$$P(\frac{18}{13}, 0)$$
;

②当 ∠*PEF* = 90° 时,则有 *PE* = *EF* ,

在
$$y = \frac{3}{4}x + 3$$
 中, 令 $x = t$ 可得 $y = \frac{3}{4}t + 3$,

$$\therefore PE = \frac{3}{4}t + 3,$$

在
$$y = -\frac{1}{2}x + 3$$
 中,令 $y = \frac{3}{4}t + 3$,可得 $\frac{3}{4}t + 3 = -\frac{1}{2}x + 3$,解得 $x = -\frac{3}{2}t$,

$$EF = -t + (-\frac{3}{2}t) = -\frac{5}{2}t$$

∴
$$\frac{3}{4}t + 3 = -\frac{5}{2}t$$
, 解得 $t = -\frac{12}{13}$,

$$\therefore P(-\frac{12}{13}, 0);$$

③当 $\angle EPF = 90$ °时,如图,过 $P \text{ 作 } PH \perp EF$ 于点H,则PH = HF = PD = EH = DF,

由 (2) 可知
$$DF = -\frac{1}{2}m + 3$$
, $EF = \frac{5}{3}m$,

$$\therefore -\frac{1}{2}m + 3 = \frac{1}{2} \times \frac{5}{3}m$$
, 解得 $m = \frac{9}{4}$,

:.
$$PD = DF = -\frac{1}{2} \times \frac{9}{4} + 3 = \frac{15}{8}$$
, $OD = \frac{9}{4}$,

$$\therefore OP = OD - PD = \frac{9}{4} - \frac{15}{8} = \frac{3}{8},$$

$$\therefore P(\frac{3}{8}, 0);$$

综上可知存在满足条件的点 P , 其坐标为 $(\frac{18}{13}, 0)$ 或 $(-\frac{12}{13}, 0)$ 或 $P(\frac{3}{8}, 0)$.

【例3】

(SDYZ 半期)如图,在平面直角坐标系中,点 A (12, 0),K (4, 0) 过点 A 的直线 y=kx - 4 交 y 轴 于点 N。过 K 点且垂直于 x 轴的直线与过 A 点的直线 y=2x+b 交于点 M。

- (1) 试判断△AMN 的形状, 并说明理由;
- (2) 将 AN 所在的直线 l 向上平移,平移后的直线 l 与 x 轴和 y 轴分别交于点 D、E。当直线 l 平移时(包括 l 与直线 AN 重合),在直线 MK 上是否存在点 P,使得 $\triangle PDE$ 是以 DE 为直角边的等腰直角三角形?若存在,直接写出所有满足条件的点 P 的坐标;若不存在,请说明理由。

【解答】解: (1) $\triangle AMN$ 的形状是等腰直角三角形,

理由是: :: y = kx - 4过点 A(12,0).

$$\therefore k = \frac{1}{3},$$

$$\therefore y = \frac{1}{3}x - 4,$$

 $\therefore N(0,-4)$,

把 A(12,0) 代入 y = 2x + b 得 b = -24,

:. 直线 AM 为 y = 2x - 24,

当x=4时,y=-16,

 $\therefore M(4,-16)$,

$$\therefore AM^2 = (12-4)^2 + 16^2 = 320,$$

$$AN^2 = 12^2 + 4^2 = 160,$$

$$MN^2 = 4^2 + (16 - 4)^2 = 160$$
,

$$AN^2 + MN^2 = 160 + 160 = 320 = AM^2$$
,

AN = MN.

- ∴ΔAMN 是等腰直角三角形.
- (2) 解:在直线MK上存在点P,使得 ΔPDE 是以DE为直角边的等腰直角三角形;

$$\because y = kx - 4$$
过点 $A(12,0)$.

$$\therefore k = \frac{1}{3},$$

$$\therefore$$
 直线 l 与 $y = \frac{1}{3}x - 4$ 平行,

:. 设直线
$$l$$
 的解析式为 $y = \frac{1}{3}x + b$.

则它与x轴的交点D(-3b,0),与y轴交点E(0,b).

- $\therefore OD = 3OE$.
- (I)以点E为直角顶点时,

①根据题意,点M(4,-16)符合要求,

②过P作PQ \bot y 轴,

图3

当 ΔPDE 为等腰直角三角形时,

有 Rt Δ ODE \cong Rt Δ QEP.

 $\therefore OE = PQ = 4 , \quad QE = OD .$

::在 RtΔODE 中, OD = 3OE ,

 $\therefore OD = 12$, QE = 12.

 $\therefore OQ = 8$.

:. 点 P 的坐标为(4,-8);

(II) 以点D为直角顶点,

图4

同理: 当p在第一象限时,得到P(4,6),如图,

当p在第四象限时,得到P(4,-3),

综上所得: 满足条件的P的坐标为(4,-16), (4,-8), (4,-3), (4,6).

【例4】

(YC 期末) 如图, 直线 y = kx + k 分别交 x 轴、y 轴于点 A、C, 直线 BC 过点 C 交 x 轴于 B, 且 $OA = \frac{1}{3}OC$, $\angle CBA = 45^\circ$,点 P 是直线 BC 上的一点。

- (1) 求直线 BC 的解析式;
- (2) 若动点 P 从 B 出发沿射线 BC 方向匀速运动,速度为 $\sqrt{2}$ 个单位长度/秒,连接 AP,设 $\triangle PAC$ 的面积为 S,点 P 的运动时间为 t 秒,求 S 与 t 之间的函数关系式,并写出 t 的取值范围。
- (3) 若点 Q 是直线 AC 上且位于第三象限上的一个动点,点 M 是 y 轴上一个动点,当点 B 、M 、Q 为 顶点的三角形为等腰直角三角形时,求点 Q 和点 M 的坐标。

【解答】解: (1) 直线 y = kx + k 分别交 x 轴、 y 轴于点 A , C ,则点 A(-1,0) ,

且
$$OA = \frac{1}{3}OC$$
,则点 $C(0,3)$,则 $k = 3$,

故直线 AC 的表达式为: y=3x+3,

- :: 点 C(0,3)、点 B(3,0) , 则直线 BC 的表达式为: y=-x+3;
- (2) 当点 P 在线段 BC 时,

过点P作 $PH \perp x$ 轴于点H,

$$\therefore \angle CBA = 45^{\circ}$$
, $PH = PB \sin 45^{\circ} = \sqrt{2}t \times \frac{\sqrt{2}}{2} = t$,

$$S = S_{\triangle ABC} - S_{\triangle ABP} = \frac{1}{2} \times BA \times (OC - PH) = \frac{1}{2} \times 4 \times (3 - t) = 6 - 2t$$
, $(0 \le t \le 3)$;

当点P在y轴右侧的射线BC上时,

同理可得:
$$S = S_{\triangle ABP} - S_{\triangle ABC} = 2t - 6$$
, $(t > 3)$;

故
$$S =$$
 $\begin{cases} 6 - 2t, (0 \le t \le 3) \\ 2t - 6, (t > 3) \end{cases}$;

(3) 设点M(0,m), 点Q(n,3n+3),

①如图 2 (左侧图),

当 $\angle BMQ = 90^{\circ}$ 时,(点M在x轴上方),

分别过点Q、P作y轴的平行线QG、BH, 过点M作x轴的平行线分别交GQ、BH于点G、H,

 $\therefore \angle GMQ + \angle MQG = 90^{\circ}, \quad \angle GMQ + \angle HMB = 90^{\circ},$

 $\therefore \angle HMB = \angle GQM$,

 $\angle MHB = \angle QGM = 90^{\circ}$, MB = MQ,

 $\therefore \Delta MHB \cong \Delta QGM(AAS)$,

 $\therefore GQ = MH$, BH = GM,

 $\mathbb{H}: m = -n, m-3n-3=3,$

解得: $m = \frac{3}{2}$, $n = -\frac{3}{2}$;

故点 $M(0,\frac{3}{2})$ 、点 $Q(-\frac{3}{2}, -\frac{3}{2})$;

同理当点M在x轴下方时,

3n+3-m=3且-m=-n,解得:m=n=0 (舍去);

②当 $\angle MQB = 90^{\circ}$ 时,

同理可得: -n = -3n - 3, 3n + 3 - m = 3 - n,

解得: m = -6, $n = -\frac{3}{2}$,

故点M(0,-6)、点 $Q(-\frac{3}{2}, -\frac{3}{2})$;

③当 $\angle QBM = 90^{\circ}$ 时,

同理可得: -3n-3=3, m=3-n

解得: m=5, n=-2,

点M(0,5)、点Q(-2,-3);

综上, $M(0,\frac{3}{2})$ 、 $Q(-\frac{3}{2},-\frac{3}{2})$ 或M(0,-6)、 $Q(-\frac{3}{2},-\frac{3}{2})$ 或M(0,5)点Q(-2,-3).

模块二、多动点直角三角形存在性问题

【例5】

如图,在平面直角坐标系中,点A的坐标为(3,0),B为直线 $y = \frac{\sqrt{3}}{3}x$ 上的一个动点,延长 $AB \cong C$,使得AB = BC,过点C作 $CD \perp x$ 轴于点D,交直线OB于点F,过点A作AE # OB,交直线CD于点E.

- (1) 求直线 AE 的解析式;
- (2) 在点 B 的运动过程中,线段 CF 的长是否发生改变?若不变,请求出线段 CF 的长;若改变,请说明理由;
- (3)连接 BE,在点 B 的运动过程中,是否存在点 E,使 $\triangle ABE$ 为直角三角形?若存在,直接写出点 E 的坐标;若不存在,请说明理由。

【解答】解: (1) :: AE //OB, 直线 OB 的解析式为 $y = \frac{\sqrt{3}}{3}x$,

∴可以假设直线 AE 的解析式为 $y = \frac{\sqrt{3}}{3}x + b$,

把 A(3,0) 代入得到 $b = -\sqrt{3}$,

- ∴直线 AE 的解析式为 $y = \frac{\sqrt{3}}{3}x \sqrt{3}$.
- (2) 在点B运动过程中,线段CF的长不发生变化.

过点A作 $AG \perp OA$,交OB于G.

:: 点 A(3,0),

:.点G的横坐标为3,

将
$$x = 3$$
代入 $y = \frac{\sqrt{3}}{3}x$, 得到 $y = \sqrt{3}$,

$$\therefore AG = \sqrt{3} ,$$

:: AG / /CD, B 为 AC 中点,

$$\therefore \angle AGB = \angle CFB$$
, $\angle BAG = \angle BCF$, $AB = BC$,

 $\therefore \Delta ABG \cong \Delta CBF ,$

$$\therefore CF = AG = \sqrt{3}.$$

(3) 存在.

由 AB = BC, BF / / AE 可知 BF 是 ΔAEC 的中位线,

$$\therefore AE = 2BF , \quad EF = CF = \sqrt{3} ,$$

①若 $BE \perp AE$,如图 1 中,则 $BE \perp BF$, $CF = EF = \sqrt{3}$

$$\therefore \angle BFE = 60^{\circ}$$
,

$$\therefore BF = EF \cdot \cos 60^\circ = \frac{\sqrt{3}}{2},$$

$$\therefore AE = \sqrt{3} ,$$

在 RtΔADE 中,
$$ED = \frac{\sqrt{3}}{2}$$
 , $AD = \frac{3}{2}$, 此时 $E(\frac{9}{2}$, $\frac{\sqrt{3}}{2})$.

②若
$$AB \perp BE$$
 ,如图 2 中, $CF = EF = \sqrt{3}$

易知
$$BF = \frac{1}{2}CE = \sqrt{3}$$
,

$$\therefore AE = 2\sqrt{3} ,$$

在 Rt \triangle ADE 中, $DE = \sqrt{3}$, AD = 3 , 此时 $E(6, \sqrt{3})$.

③若 $AB \perp AE$,如图 3 中, $CF = \sqrt{3}$, $\angle C = 30^{\circ}$,

易知
$$BF = \frac{\sqrt{3}}{2}$$
,

$$\therefore AE = \sqrt{3} ,$$

在 RtΔADE 中, $ED = \frac{\sqrt{3}}{2}$, $AD = \frac{3}{2}$, 此时 $E(\frac{3}{2}, -\frac{\sqrt{3}}{2})$,

综上所述,满足条件的点E坐标为 $(\frac{9}{2},\ \frac{\sqrt{3}}{2})$ 或 $(6,\sqrt{3})$ 或 $(\frac{3}{2},\ -\frac{\sqrt{3}}{2})$.

【例6】

如图, $\triangle OAB$ 的一边 OB 在 x 轴的正半轴上, 点 A 的坐标为(6, 8), OA = OB, 点 P 在线段 OB 上, 点 Q 在 y 轴的正半轴上, OP = 2OQ, 过点 Q 作 x 轴的平行线分别交 OA, AB 于点 E, F。

- (1) 求直线 AB 的解析式;
- (2)是否存在点 P,使 $\triangle PEF$ 为直角三角形?若存在,请直接写出点 P 的坐标;若不存在,请说明理中。

【解答】解: (1) :: A(6,8), :: $OA = \sqrt{6^2 + 8^2} = 10$,

 $\therefore OB = OA = 10$, $\Box B(10,0)$,

设直线 AB 解析式为 y = kx + b,

把 A 与 B 坐标代入得: $\begin{cases} 6k+b=8\\ 10k+b=0 \end{cases}$

解得: k = -2, b = 20.

则直线 AB 解析式为 y = -2x + 20,;

(2) 分三种情况考虑:

若 $\angle PEF = 90^{\circ}$,则有 $\frac{3}{4}t = 2t$,无解,不可能;

若 $\angle PFE = 90^{\circ}$,则有 $10 - \frac{t}{2} = 2t$,解得: t = 4,此时 OP = 8,即 P(8,0);

若 $\angle EPF = 90^{\circ}$, $P(\frac{200}{33}$, 0) .

综上, P的坐标为(8,0)或($\frac{200}{33}$, 0).

笔记整理

课后练习

1.

如图,已知直线 l_i : y=-x+8 与直线 l_2 : $y=\frac{5}{3}x$ 交于点 M,直线 l_1 与坐标轴分别交于 A,C 两点。

- (1) 分别求点 A 和点 M 的坐标;
- (2) 若点 P 是线段 OM 上的一动点(不与端点重合),过点 P 作 PB // x 轴交 CM 于点 B ,在 x 轴上是 否存在一点 H ,便得 $\triangle PBH$ 为等腰直角三角形,若存在,求出点 P 的坐标;若不存在,请说明理由;

- 【解答】(1) :直线 l_1 : y=-x+8 与坐标轴分别交于 A, C 两点,令 x=0, $\therefore y=8$, $\therefore A$ (0, 8),
 - :直线 l_1 : y=-x+8①与直线 l_2 : $y=\frac{5}{3}x$ ②交于点 M,直线 l_1 与坐标轴分别交于 A,C 两点,

联立①②解得 x=3, y=5, ∴M(3, 5);

- (2) ①设点 P (3a, 5a) (0<a<1),
- ∵PB//x 轴, 且点 B 在直线 y=-x+8 上,
- :.B (8-5a, 5a), :.PB=8-5a-3a=8-8a,

1、当点P是直角顶点时,如图2,

∴ △PBH 为等腰直角三角形, ∴PB=PH, 点 H (3a, 0), PH=5a,

:.8 - 8a=5a, :.
$$a = \frac{8}{13}$$
, :. $P\left(\frac{24}{13}, \frac{40}{13}\right)$,

||、当点B是直角顶点时,如图2,同|的方法得出点 $P\left(\frac{24}{13}, \frac{40}{13}\right)$,

Ⅲ、当点 H 是直角顶点时,如图 3,

过 H' '作 H' 'N ⊥ PB 于 N,

:.
$$H"N = PN = \frac{1}{2}PB$$
, :. $NH" = 5a = \frac{1}{2}(8-8a)$,

$$\therefore a = \frac{4}{9} \therefore P\left(\frac{4}{3}, \frac{20}{9}\right)$$

:.满足条件的点 P 的坐标为 $P\left(\frac{24}{13}, \frac{40}{13}\right)$ 或 $P\left(\frac{4}{3}, \frac{20}{9}\right)$;

2.

在平面直角坐标系 xOy 中,直线 l_1 : $y = \frac{1}{2}x + b$ 与 x 轴交于点 A,与 y 轴交于点 B,且点 C 的坐标为(4, -4)。

- (1) 点 A 的坐标为 , 点 B 的坐标为 ; (用含 b 的式子表示)
- (2) 当 b=4 时,如图所示。连接 AC, BC, 判断 $\triangle ABC$ 的形状,并证明你的结论;
- (3) 过点 C 作平行于 y 轴的直线 l_2 ,点 P 在直线 l_2 上.当 5 < b < 4 时,在直线 l_1 平移的过程中,若存在点 P 使得 $\triangle ABP$ 是以 AB 为直角边的等腰直角三角形,请直接写出所有满足条件的点 P 的坐标。

- 【解答】(1) 对于直线 $y = \frac{1}{2}x + b$, 令 x = 0, 得到 y = b, 令 y = 0, 得到 x = -2b,
 - A (-2b, 0), B (0, b)
 - (2) △ABC 是等腰直角三角形.

理由: ∵*b*=4,

A (-8, 0), B (0, 4), C (4, -4),

$$AB = \sqrt{8^2 + 4^2} = 4\sqrt{5}$$
, $BC = \sqrt{4^2 + 8^2} = 4\sqrt{5}$, $AC = \sqrt{12^2 + 4^2} = \sqrt{10}$, $AB = BC$,

:
$$AB^2 + BC^2 = (4\sqrt{5})^2 + (4\sqrt{5})^2 = 160$$
, $AC^2 = 160$,

- $\therefore AB^2 + BC^2 = AC^2, \quad \therefore \angle ABC = 90^\circ$
- $∴ \triangle ABC$ 是等腰直角三角形;
- (2) ①如图 2 中, 当 AB=AP, ∠BAP=90°, 设直线 ½交 x 轴于 N.
- ∵*OA*=2*OB*, 设 *OB*=*m*, 则 *OA*=2*m*,

由△AOB≌△PNA, 可得 AN=OB=m, PN=OA=2m,

$$\therefore ON=3m=4, \quad \therefore m=\frac{4}{3}, \quad \therefore PPM=\frac{8}{3}, \quad \therefore P\left(4, -\frac{8}{3}\right)$$

②如图 3 中, 当 *AB=AP'* , ∠*BAP'* =90° 时, 设 *OB=m*, *OA=2m*, 由△*AOB*≌△*P' NA*, 可得 *AN=OB=m*, *P' N=OA=2m*,

∴ ON=4=2m-m, ∴m=4, ∴P' N=8, ∴P' (4, 8), ③如图 3 中, 当 AB=PB, ∠ABP=90° 时, 同法可得 P (4, -12).

综上所述,满足条件的点P 坐标为 $\left(4, -\frac{8}{3}\right)$ 或 (4, 8) 或 (4, -12)。

3.

如图①,点 A'、B'的坐标分别为(4, 0)和(0, -8),将 $\triangle A'B'O$ 绕点 O 按逆时针方向旋 90°转后得 $\triangle ABO$,点 A'的对应点是 A,点 B'的对应点是点 B。

- (1) 写出 A、B 两点的坐标, 并求出直线 AB 的解析式;
- (2) 将 $\triangle ABO$ 沿着垂直于 x 轴的线段 CD 折叠(点 C 在 x 轴上,点 D 在线段 AB 上,点 D 不与 A、B 重合)如图②,使点 B 落在 x 轴上,点 B 的对应点为点 E,设点 C 的坐标为(x, 0),当 4 < x < 8 时,是否存在这样的点 C,使得 $\triangle ADE$ 为直角三角形?若存在,直接写出点 C 的坐标;若不存在,请说明理由。

【解答】(1) 由旋转得, OA=OA', OB=OB',

:: $\triangle A'$ 、B' 的坐标分别为 (4, 0) 和 (0, -8),

 $\therefore OA' = 4$, OB' = 8,

A (0, 4), B (8, 0),

设直线 AB 的解析式 y=kx+b,

$$\therefore \begin{cases} b=4 \\ 8k+b=0 \end{cases}, \quad \therefore \begin{cases} k=-\frac{1}{2} \\ b=4 \end{cases}$$

∴直线 AB 的解析式 $y = -\frac{1}{2}x + 4$,

(2) 存在, 点 C 坐标为 (5, 0)

由题
$$C(x, 0), D(x, -\frac{x}{2}+4)$$

$$BC = 8 - x$$
, $EC = 8 - x$, $OE = 2x - 8$

所以 E (2x-8, 0), 当 4<x<8 时, 只能 ∠AED=90°,

所以
$$k_{AE} \times k_{DE} = -1$$
,

所以
$$\frac{4}{8-2x} \times \frac{-\frac{1}{2}x+4}{8-x} = -1$$
, 解得 $x=5$

所以点C的坐标为(5,0)。

第八讲、 一次函数动点问题(二)

模块一、重叠图形的面积与周长

【例1】

(JX) 如图,将平行四边形 OABC 放置在平面直角坐标系 xOy 内,已知 AB 边所在直线的解析式为: y = -x + 4。

- (1) 点 C 的坐标是 (,)
- (2) 若将平行四边形 OABC 绕点 O 逆时针旋转 90° 得 OBDE, BD 交 OC 于点 P, 求 $\triangle OBP$ 的面积;
- (3) 在 (2) 的情形下,若再将四边形 OBDE 沿 y 轴正方向平移,设平移的距离为 x ($0 \le x \le 8$),与平行四边形 OABC 重叠部分面积为 S,试写出 S 关于 x 的函数关系式,并求出 S 的最大值。

【解答】解: (1) :: AB 边所在直线的解析为: y = -x + 4,

- :. 点 A 的坐标为: (4,0), 点 B 的坐标为: (0,4),
- :: 四边形 ABCD 是平行四边形,
- $\therefore BC = OA = 4, BC//OA,$
- :. 点 *C* 的坐标为: (-4,4);

故答案为: -4, 4;

- (2) 由旋转的性质,可得: OD = OB = 4,
- $\therefore \angle BOD = 90^{\circ}$,
- $\therefore \angle OBD = 45^{\circ}$,
- $\therefore OB = BC, \angle OBC = 90^{\circ},$
- $\therefore \angle BOC = 45^{\circ}$,
- $\therefore \angle OPB = 90^{\circ}, BP = OP,$

$$:: OB = 4$$
,

$$\therefore OP = BP = 2\sqrt{2} ,$$

$$\therefore S_{\Delta OBP} = \frac{1}{2}OP \bullet BP = 4 ;$$

(3) ①如图 1: 当0≤x<4时,

$$:: OF = GB = x,$$

$$\therefore S_{\Delta OFK} = \frac{1}{4} x^2 , \quad S_{\Delta HBG} = \frac{1}{2} x^2 .$$

$$\therefore S_{\Delta OPG} = \frac{1}{4}(x+4)^2,$$

$$\therefore S_{\text{五边形}KFBHP} = \frac{1}{4}(x+4)^2 - \frac{1}{4}x^2 - \frac{1}{2}x^2 = -\frac{1}{2}x^2 + 2x + 4 = -\frac{1}{2}(x-2)^2 + 6.$$

当
$$x = 2$$
时, $S_{max} = f$ (2) =6;

②当4≤*x*≤8时,

$$\therefore HB = FB = x - 4,$$

$$\therefore CH = 8 - x,$$

$$\therefore S_{\Delta CPH} = \frac{1}{4} (8 - x)^2.$$

$$\stackrel{\underline{\underline{}}}{\underline{\underline{}}} x = 4 \stackrel{\underline{\underline{}}}{\underline{\underline{}}} f$$
, $S_{max} = f$ (4) = 4.

∴当x=2时,S取得最大值为 6.

【例2】

- (1) 求 C 点坐标;
- (2) 当点 F 落在 y 轴上时,求相应的时间 t 的值;
- (3) 求m与t之间的关系式。【说明:不考虑直线t平移过程中"起点"与"终点"时的情况】

【解答】解: (1) 设直线 AB 的解析式为 y = kx + b 则有 $\begin{cases} b = 4\sqrt{3} \\ -4k + b = 0 \end{cases}$, 解得 $\begin{cases} k = \sqrt{3} \\ b = 4\sqrt{3} \end{cases}$,

:.直线 AB 的解析式为 $y = \sqrt{3}x + 4\sqrt{3}$,

由
$$\begin{cases} y = \sqrt{3}x + 4\sqrt{3} \\ y = -\sqrt{3}x \end{cases}$$
解得
$$\begin{cases} x = -2 \\ y = 2\sqrt{3} \end{cases}$$

∴点C坐标 $(-2, 2\sqrt{3})$.

(2) 如图 1 中,作 $FH \perp DE \mp H$. 设 $E(-t, \sqrt{3}t)$,则 $D(-t, -\sqrt{3}t + 4\sqrt{3})$,

$$\therefore DE = -2\sqrt{3}t + 4\sqrt{3} ,$$

·: ΔDFE 是等边三角形,

$$\therefore FH = \frac{\sqrt{3}}{2}DE = -3t + 6 ,$$

∴点F坐标 $(-4t+6, 2\sqrt{3}),$

当点F在y轴上时,-4t+6=0,

$$\therefore t = 1.5,$$

 $\therefore t = 1.5s$ 时,点F 在y 轴上.

(3) 如图 2中,

①当0<*t*<1.5时,重叠部分四边形 *DMNE* ,

$$m = 3(-2\sqrt{3}t + 4\sqrt{3}) - FM = -6\sqrt{3}t + 12\sqrt{3} - \frac{2\sqrt{3}}{3}(-4t + 6) = -\frac{10\sqrt{3}}{3}t + 8\sqrt{3}.$$

②当1.5 < t < 2时,重叠部分是 ΔDEF ,

$$m = 3(-2\sqrt{3}t + 4\sqrt{3}) = -6\sqrt{3}t + 12\sqrt{3}.$$

综上所述,
$$m = \begin{cases} -\frac{10\sqrt{3}}{3}t + 8\sqrt{3} & (0 < t \le 1.5) \\ -6\sqrt{3}t + 12\sqrt{3} & (1.5 < t < 2) \end{cases}$$
.

模块二、一次函数的定值问题

【例3】

(SW) 已知一次函数 y=2x-4 的图象与 x 轴、y 轴分别相交于点 A、B,点 P 在该函数的图象上,P 到 x 轴、y 轴的距离分别为 d_1 、 d_2 。

- (1) 当 P 为线段 AB 的中点时,求 d_1+d_2 的值;
- (2) 直接写出 d_1+d_2 的范围, 并求当 $d_1+d_2=3$ 时点 P 的坐标;
- (3) 若在线段 AB 上存在无数个 P 点,使 $d_1+ad_2=4$ (a 为常数),求 a 的值。

【解答】解: (1) 对于一次函数 y=2x-4,

A(2,0), B(0,-4),

:: *P* 为 *AB* 的中点,

 $\therefore P(1,-2)$,

则 $d_1 + d_2 = 3$;

(2) $(1) d_1 + d_2 \ge 2$;

②设P(m,2m-4),

 $d_1 + d_2 = |m| + |2m - 4|$

 $\stackrel{\text{def}}{=} 0 \leqslant m \leqslant 2 \text{ ps}, \quad d_1 + d_2 = m + 4 - 2m = 4 - m = 3,$

解得: m=1, 此时 $P_1(1,-2)$;

当m>2时, $d_1+d_2=m+2m-4=3$,

解得: $m = \frac{7}{3}$, 此时 $P_2(\frac{7}{3}, \frac{2}{3})$;

当m < 0时,不存在,

综上, P 的坐标为 (1,-2) 或 $(\frac{7}{3}, \frac{2}{3})$;

(3) 设P(m,2m-4),

 $\therefore d_1 = |2m - 4|, \quad d_2 = |m|,$

:: P 在线段 AB 上,

 $\therefore 0 \leqslant m \leqslant 2$,

 $\therefore d_1 = 4 - 2m , \quad d_2 = m ,$

 $\because d_1 + ad_2 = 4,$

 $\therefore 4 - 2m + am = 4$, $\mathbb{P}(a-2)m = 0$,

::有无数个点,即无数个解,

 $\therefore a-2=0$, $\square a=2$.

【例4】

(QYQ) 如图 1, 在平面直角坐标系中, A(a, 0), B(0, b), 且 $a \ b$ 满足 $b = \frac{\sqrt{a^2 - 4} + \sqrt{4 - a^2} + 16}{a + 2}$ 。

(1) 求直线 AB 的解析式;

(2) 若点 M 为直线 y=mx 在第一象限上一点,且 $\triangle ABM$ 是等腰直角三角形,求 m 的值;

(3)如图 3 过点 A 的直线 y=kx-2k 交 y 轴负半轴于点 P, N 点的横坐标为 -1, 过 N 点的直线 $y=\frac{k}{2}x-\frac{k}{2}$

交 AP 于点 M,给出两个结论:① $\frac{PM+PN}{NM}$ 的值是不变;② $\frac{PM-PN}{AM}$ 的值是不变,只有一个结论是正确,请你判断出正确的结论,并加以证明和求出其值。

【解答】解: (1) 要使 $b = \frac{\sqrt{a^2 - 4} + \sqrt{4 - a^2} + 16}{a + 2}$ 有意义,

必须 $a^2 - 4 \ge 0$, $4 - a^2 \ge 0$, $a + 2 \ne 0$,

 $\therefore a = 2$,

代入得: b=4,

A(2,0), B(0,4),

设直线 AB 的解析式是 y = kx + b,

代入得: $\begin{cases} 0 = 2k + b \\ 4 = b \end{cases}$

解得: k = -2, b = 4,

:. 函数解析式为: y = -2x + 4,

答: 直线 AB 的解析式是 y = -2x + 4.

(2) 如图 2, 分三种情况:

①如图 1, 当 $BM \perp BA$, 且 BM = BA时, 过M作 $MN \perp y$ 轴于 N,

 $:: BM \perp BA$, $MN \perp y$ 轴, $OB \perp OA$,

 $\therefore \angle MBA = \angle MNB = \angle BOA = 90^{\circ},$

 $\therefore \angle NBM + \angle NMB = 90^{\circ}, \quad \angle ABO + \angle NBM = 90^{\circ},$

 $\therefore \angle ABO = \angle NMB ,$

在 ΔBMN 和 ΔABO 中

$$\begin{cases} \angle MNB = \angle BOA \\ \angle NMB = \angle ABO \\ BM = AB \end{cases}$$

 $\therefore \Delta BMN \cong \Delta ABO(AAS),$

MN = OB = 4, BN = OA = 2,

 $\therefore ON = 2 + 4 = 6$,

:. M 的坐标为(4, 6),

代入 y = mx 得: $m = \frac{3}{2}$,

②如图 2

当 $AM \perp BA$,且 AM = BA 时,过 M 作 $MN \perp x$ 轴 于 N , $\Delta BOA \cong \Delta ANM(AAS)$, 同理求出 M 的坐标为 (6,2) , $m = \frac{1}{3}$,

③如图 4,

当 $AM \perp BM$,且 AM = BM 时,过 M 作 $MN \perp X$ 轴 于 N , $MH \perp Y$ 轴 于 H ,则 $\Delta BHM \cong \Delta AMN$,

 $\therefore MN = MH$,

设M(x,x)代入y=mx得: x=mx,

 $\therefore m = 1$,

答: m的值是 $\frac{3}{2}$ 或 $\frac{1}{3}$ 或1.

- (3)解:如图3,结论2是正确的且定值为2,
- 设NM与x轴的交点为H,过M作MG $\bot x$ 轴于G,过H作HD $\bot x$ 轴,HD 交MP 于D 点,连接ND,

由
$$y = \frac{k}{2}x - \frac{k}{2}$$
与 x 轴交于 H 点,

 $\therefore H(1,0)$,

由
$$y = \frac{k}{2}x - \frac{k}{2}$$
与 $y = kx - 2k$ 交于 M 点,

 $\therefore M(3,k)$,

 $\overline{\mathbb{m}} A(2,0)$,

- :: A 为 HG 的中点,
- $\therefore \triangle AMG \cong \triangle ADH(ASA) ,$

又因为N点的横坐标为-1,且在 $y = \frac{k}{2}x - \frac{k}{2}$ 上,

- ::可得N 的纵坐标为-k,同理P的纵坐标为-2k,
- :: ND 平行于 x 轴且 N 、 D 的横坐标分别为 -1 、 1
- :: N 与 D 关于 y 轴对称,
- $\therefore \triangle AMG \cong \triangle ADH \cong \triangle DPC \cong \triangle NPC$,
- $\therefore PN = PD = AD = AM,$

$$\therefore \frac{PM - PN}{AM} = 2.$$

【例5】

(TFXQ) 已知在平面直角坐标系中,直线 l 分别与 x 轴,y 轴交于 A,B 两点,其中,点 A 在 x 轴的负半轴上,点 B 在 y 轴的正半轴上,m 满足 $m^2 + 2m = -1$ 。

- (1) 如图 1, 若点 A 的坐标是 (2m-1, 0), 点 B 的坐标是 (0, 3-m), AD 平分 $\angle BAO$ 交 y 轴于 D; ①求直线 I 的函数表达式以及点 D 的坐标;
- ②点 C 是第二象限内一点,且 $\angle BCA = \angle BAC$,当 $AC \perp AD$ 时,求点 C 的坐标;
- (2) 如图 2, 点 E 在 x 轴的正半轴上,OA=OB=OE,P 为线段 AB 上一动点(不与端点重合), $OQ \perp OP$ 交 BE 于 Q, $OR \perp AQ$ 交 AB 于 R,当 P 点运动时, $\frac{PR}{QE}$ 的值是否发生变化?如果不变,求出其值;如果发生变化,请说明理由。

【解析】略

【例6】

(GXQ) 如图,在平面直角坐标系 xoy 中,直线 AP 交 x 轴于点 P (p, 0),交 y 轴于点 A (0, a),且 a、p 满足 $\sqrt{a+3}+(p+1)^2=0$ 。

- (1) 求直线 AP 的解析式;
- (2) 如图 1, 点 P 关于 y 轴的对称点为 Q, R (0, 2), 点 S 在直线 AQ 上, 且 SR=SA, 求直线 RS 的解析式和点 S 的坐标;
- (3) 如图 2, 点 B (-2, b) 为直线 AP 上一点,以 AB 为斜边作等腰直角三角形 ABC,点 C 在第一象限,D 为线段 OP 上一动点,连接 DC,以 DC 为直角边,点 D 为直角顶点作等腰直角三角形 DCE, $EF \perp x$ 轴,F 为垂足, $\frac{AO EF}{2DP}$ 的值是否为定值,若为定值,说明理由并求出其定值。

【解析】略

【例7】

(WHQ) 图 1, y=-x+6 与坐标轴交于 A、B 两点,点 C 在 x 轴负半轴上, $S_{\triangle OBC}=\frac{1}{3}S_{\triangle AOB}$ 。

- (1) 求直线 BC 的解析式;
- (2) 直线 EF: y=kx-k 交 AB 于 E 点,与 x 轴交于 D 点,交 BC 的延长线于点 F,且 $S_{\triangle BED}=S_{\triangle FBD}$,求 k 的值;
- (3)如图 2,M (2, 4),点 P 为 x 轴上一动点, $AH \perp PM$,垂足为 H 点.取 HG=HA,连 CG,当 P 点运动时, $\angle CGM$ 大小是否变化,并给予证明。

【解答】解: (1) : y = -x + 6 与坐标轴交于 A 、 B 两点,

- $\therefore A(6,0) , B(0,6) ,$
- $\therefore AO = BO = 6.$
- $:: S_{\triangle OBC} = \frac{1}{3} S_{\triangle AOB} ,$
- $\therefore AO = 3OC = 6,$
- $\therefore CO = 2$.
- $\therefore (-2,0)$.

设直线 BC 的解析式为 $y = kx + b(k \neq 0)$,

$$\therefore \begin{cases} b=6 \\ -2k+b=0 \end{cases}, \quad \text{解得} \begin{cases} k=3 \\ b=6 \end{cases}$$

:. 直线 BC 的解析式为 y = 3x + 6;

- $(2) :: S_{\Delta BED} = S_{\Delta FBD},$
- :. **D**为 **EF** 的中点.
- :: 直线的解析式为 y = kx k, 直线 BC 的解析式为 y = 3x + 6,

$$\therefore \begin{cases} y = kx - k \\ y = 3x + 6 \end{cases},$$

$$\therefore F(\frac{k+6}{k-3}, \frac{3k+18}{k-3}+6);$$

同理,::直线 AB 的解析式为 y = -x + 6,

$$\therefore \begin{cases} y = kx - k \\ y = -x + 6 \end{cases},$$

$$\therefore E(\frac{k+6}{k+1}, -\frac{k+6}{k+1}+6).$$

由中点坐标公式得,
$$\begin{cases} (\frac{k+6}{k-3} + \frac{k+6}{k+1}) \times \frac{1}{2} = x \\ (\frac{3k+18}{k-3} + 6 - \frac{k+6}{k+1} + 6) \times \frac{1}{2} = y = 0 \end{cases}$$
 解得 $k = \frac{3}{7}$, $x = 1$,

 $\therefore D(1,0)$, k 的值为 $\frac{3}{7}$.

(3) 不变化.

如图 2, 连接 CM, AM, AG,

$$C(-2,0)$$
, $M(2,4)$, $A(6,0)$,

$$AC^2 = (6+2)^2 = 64$$
, $CM^2 = (2+2)^2 + 4^2 = 32$, $AM^2 = (6-2)^2 + 4^2 = 32$,

 $:: \Delta ACM$ 是等腰直角三角形.

$$\therefore AH \perp PM$$
, $HG = HA$,

:: ΔAHG 是等腰直角三角形,

$$\therefore \triangle ACM \hookrightarrow \triangle AHG$$
,

$$\therefore \frac{AM}{AH} = \frac{AC}{AG}.$$

$$\therefore$$
 $\angle CAM = GAH = 45^{\circ}$

$$\therefore \angle CAG = MAH$$

$$\because \frac{AM}{AC} = \frac{AH}{AG} ,$$

$$\therefore \Delta MAH \hookrightarrow \Delta CAG$$
,

$$\therefore \angle GCA = \angle AMH$$
,

$$\therefore \angle CGM = \angle CAM = 45^{\circ}$$
.

笔记整理

课后练习

1.

(WHQ) 如图,已知直线 l_1 : y=x+2 与直线 l_2 : y=-kx+4 $(k\neq 0)$ 相交于点 F,直线 l_1 , l_2 分别交 x 轴 于点 E,G . 长方形 ABCD 的顶点 C,D 分别在 l_2 和 y 轴上,顶点 A,B 都在 x 轴上,且点 B 与点 E 重合,点 A 与点 B 重合,长方形 ABCD 的面积是 B 12。

- (1) 求 k 的值;
- (2) 求证: △EFG 是等腰直角三角形;
- (3) 若长方形 ABCD 从原地出发, 沿 x 轴正方向以每秒 1 个单位长度的速度平移, 设移动时间为 t 秒, 长方形 ABCD 与 $\triangle EFG$ 重叠部分的面积为 S。
- ①当 $0 \le t \le 1$ 时,求 S 的最大值;
- ②当 $1 < t \le 4$ 时,直接写出 S = t 之间的函数关系式(要求写出自变量 t 的取值范围)。

- 【解答】(1) ∵直线 l₁: y=x+2, ∴B (-2, 0), ∴AB=OB=2,
 - :长方形 ABCD 的面积是 12, ∴ $AB \times BC$ =12, ∴OD=6, ∴C (2, 6),
 - ∴直线 l_2 : y=-kx+4 ($k\neq 0$), ∴2k+4=6, ∴k=1;
 - (2) 如图 1. 记直线 l_1 与 v 轴的交点为 M. 直线 l_2 : 与 v 轴的交点为 N.
 - ご直线 l_1 : y=x+2 与直线 l_2 : y=-x+4 ($k\neq 0$), ∴M (0, 2), N (0, 4), G (4, 0)
 - \therefore OM=2=OE, ON=4=OG, \therefore \angle OEM=45°, \angle OGN=45°, \therefore \angle EFG=90°, EF=GF,
 - ∴ $\triangle EFG$ 是等腰直角三角形;

 - ①如图 2, 记长方形的边 BC, AD 与直线 I 的交点为 P, Q,

由运动知, BE=t,

 $\therefore BP=t$, AE=t+2, $\therefore AQ=BP=t+2$,

∴
$$S = S_{\text{\tiny \vec{R}RABPQ}} = \frac{1}{2}(t+t+2) \times 2 = 2t+2$$
, ∴ $3 t=1$ 时, $S_{\text{\tiny \vec{R}},t}=4$;

②当 $1 < t \le 3$ 时,如图 3,过点 F 作 $FH \perp x$ 轴于 H, $\therefore OH=1$, FH=3,

同①的方法得, BE=BI=t, AJ=AG=4-t, :.BH=EH-BE=3-t, AH=2-(3-t)=t-1,

$$: S = S_{\text{\#}\text{HBIFH}} + S_{\text{\#}\text{HAJFH}} = \frac{1}{2}(t+3) \times (3-t) + \frac{1}{2}(4-t+3) \times (t-1) = -t^2 + 4t + 1$$

当 3<t≤4 时,如图 4,

记长方形 ABCD 的边 BC, AD 与直线 L 的交点为 Q', P', 由运动知, BE=t,

:.BQ' = BG = 6 - t, AP' = AG = 6 - (t+2) = 4 - t,

:.
$$S = S_{\text{#FBABQ'P}}' = \frac{1}{2} (6 - t + 4 - t) \times 2 = -2t + 10$$
.

$$\mathbb{R}p: S = \begin{cases} -t^2 + 4t + 1(1 < t \le 3) \\ -2t + 10(3 < t \le 4) \end{cases}$$

2.

(JNQ) 如图 1,在平面直角坐标系中,点 A 坐标为 (-4,4),点 B 的坐标为 (4,0)。

(1) 求直线 AB 的解析式;

(2) 点 M 是坐标轴上的一个点,若 AB 为直角边构造直角三角形 $\triangle ABM$,请求出满足条件的所有点 M 的坐标;

(3)如图 2,以点 A 为直角顶点作 $\angle CAD$ =90°,射线 AC 交 x 轴的负半轴于点 C,射线 AD 交 y 轴的负半轴与点 D,当 $\angle CAD$ 绕点 A 旋转时,OC - OD 的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程)。

【解答】(1) 设直线 AB 的解析式为: y=kx+b ($k\neq 0$).

: 点
$$A$$
 (-4, 4), 点 B (0, 2) 在直线 AB 上, : $\begin{cases} -4k+b=4 \\ b=2 \end{cases}$, 解得 $\begin{cases} k=-\frac{1}{2}, \\ b=2 \end{cases}$

∴直线 AB 的解析式为: $y = -\frac{1}{2}x + 2$;

(2) : $\triangle ABM$ 是以 AB 为直角边的直角三角形, : 有 $\angle BAM$ =90° 或 $\angle ABM$ =90°,

①当∠BAM=90°时,如图1,

过A作AB的垂线,交x轴于点 M_1 ,交y轴于点 M_2 ,则可知 $\triangle AEM_1$ $\boldsymbol{\circ} \triangle BEA$,

 $\therefore \frac{M_1E}{AE} = \frac{AE}{BE}$, 由(1)可知 OE=OB=AE=4, $\therefore \frac{M_1E}{4} = \frac{4}{8}$,解得 $M_1E=2$, $\therefore OM_1=2+4=6$,

∴ M_1 (-6, 0), ∴AE//y 轴, ∴ $\frac{M_1E}{M_1O} = \frac{AE}{OM_2}$, $\text{pr}\frac{2}{6} = \frac{4}{OM_2}$, $\text{pr}(3) = \frac{4}{OM_2}$, $\text{$

 $\therefore M_2$ (0, 12);

②当 $\angle ABM$ =90°时,如图 2,过B作 AB的垂线,交y轴于点 M_3 ,设直线 AB 交y轴于点E,则由(1)可知E (0, 2), \therefore OE=2,OB=4,由题意可知 $\triangle BOE$ $\triangle M_3OB$, \therefore $\frac{OE}{OB} = \frac{OB}{OM_3}$,即 $\frac{2}{4} = \frac{4}{OM_3}$,解得 OM_3 =8,

 $\therefore M_3$ (0, -8),

综上可知点M的坐标为(-6, 0)或(0, 12)或(0, -8);

(3) 不变. 理由如下:

过点A分别作x轴、y轴的垂线, 垂足分别为G、H, 如图 3.

则 $\angle AGC = \angle AHD = 90^{\circ}$, 文: $\angle HOC = 90^{\circ}$, ∴ $\angle GAH = 90^{\circ}$, ∴ $\angle DAG + \angle DAH = 90^{\circ}$,

 \therefore $\angle CAD=90^{\circ}$, \therefore $\angle DAG+\angle CAG=90^{\circ}$, \therefore $\angle CAG=\angle DAH$.

A (-4, 4), A G=AH=AG=OH=4.

在
$$\triangle AGC$$
 和 $\triangle AHD$ 中
$$\begin{cases} \angle AGC = \angle AHD \\ AG = AH & \therefore \triangle AGC \cong \triangle AHD \text{ (ASA)}, & \therefore GC = HD. \\ \angle CAG = \angle DAH \end{cases}$$

∴ OC - OD= (OG+GC) - (HD - OH) = OG+OH=8. 故 OC - OD 的值不发生变化,值为 8.

3.

(WHQ 改) 如图 1,直线 AB: y=-x-b 分别与 x、y 轴交于 A (6, 0),B 两点,过点 B 的直线交 x 轴 负半轴于 C,且 OB: OC=3: 1。

- (1) 求直线 BC 的函数表达式;
- (2)如图 2, P 为 x 轴上 A 点右侧的一动点,以 P 为直角顶点,BP 为一腰在第一象限内作等腰直角三角形 $\triangle BPQ$,连接 QA 并延长交 y 轴于点 K,当 P 点运动时,K 点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由。

【解答】(1) 直线 AB: y=-x-b 分别与 x, y 轴交于 A (6, 0)、B 两点,

∴0=-6-b, ∴b=-6, ∴直线 AB 的解析式为: y=-x+6. ∴B (0, 6),

:. OB=6, :: OC=3: 1, :. $OC=\frac{1}{3}OB=2$, :. C(-2, 0),

设 BC 的解析式是 y=ax+c, \vdots $\begin{cases} 6=0 \cdot a+c \\ 0=-2a+c \end{cases}$, \vdots $\begin{cases} a=3 \\ c=6 \end{cases}$

∴直线 BC 的解析式是: y=3x+6;

(2) K点的位置不发生变化, K(0, -6).

如图 2, 过 Q 作 $QH \perp x$ 轴于 H, : $\triangle BPQ$ 是等腰直角三角形,

 $\therefore \angle BPQ = 90^{\circ} \text{ , } PB = PQ, \text{ } \because \angle BOA = \angle QHA = 90^{\circ} \text{ , } \therefore \angle BPO = \angle PQH,$

在 $\triangle BOP$ 与 $\triangle HPQ$ 中, $\begin{cases} \angle AOB = \angle QHA \\ \angle BPO = \angle PQH , : \triangle BOP \cong \triangle HPQ \text{ (AAS),} \end{cases}$

∴PH=BO, OP=QH, ∴PH+PO=BO+QH, ℙ OA+AH=BO+QH,

又∵OA=OB, ∴AH=QH, ∴△AHQ 是等腰直角三角形,

∴∠QAH=45°, ∴∠OAK=45°, ∴△AOK 为等腰直角三角形,

 $\therefore OK = OA = 6, \quad \therefore K \quad (0, -6);$

第九讲、一次函数与翻折问题

模块一、特殊角翻折问题

【例1】

1.已知,直线 $y = -\sqrt{3}x + 3$ 与 x 轴, y 轴分别交于点 A 与点 B, D 是 y 轴上的一点,若将三角形 DAB 沿 DA 折叠,点 B 刚好落在 x 轴上的点 C,求直线 CD 的解析式。

【解析】略

- 2.(YC) 在平面直角坐标系中,已知点 A(0, 2),点 $B \cup O$ 点开始,在 x 轴上沿 x 轴正半轴向右运动,以线段 AB 为一边作等边三角形 ABC 使点 C 在第一象限.当 B 在原点 O 处,让此时的 C 点位置为点 D。
- (1) 求点 D 坐标;
- (2) 求证:点 B 在运动过程中(B 不与 O 重合), $\angle ADC$ 的值始终为 90°;
- (3) 当 C 点关于 AB 的对称点 E 在坐标轴上时,请求出点 E 的坐标。

【解答】(1)解:如图所示,过点C作 $CE \perp y$ 轴于点E,

- :: A(0,2) , $\triangle ABC$ 为等边三角形,
- :. 当 B 运动到原点 O 处时, AB = OA = 2 = BC , $\angle CBA = 60^{\circ}$,
- $\therefore \angle OCE = 30^{\circ}$,

$$\therefore OE = \frac{1}{2}BC = 1$$
, $CE = \sqrt{2^2 - 1^2} = \sqrt{3}$,

$$\therefore C(\sqrt{3}, 1),$$

即点D坐标为($\sqrt{3}$, 1);

(2) 证明:如图所示,当点B在x轴上运动(B不与O重合)时,

·: ΔABC 和 ΔAOD 都是等边三角形,

$$\therefore \angle BAC = \angle OAD = 60^{\circ}$$
, $BA = CA$, $OA = DA$,

$$\therefore \angle BAO = \angle CAD$$
,

在 ΔABO 和 ΔACD 中,

$$\begin{cases} BA = CA \\ \angle BAO = \angle CAD , \\ OA = DA \end{cases}$$

 $\therefore \Delta ABO \cong \Delta ACD(SAS) ,$

$$\therefore \angle ADC = \angle AOB = 90^{\circ}$$
,

∴当点B在x轴上运动(B不与O重合), $\angle ADC$ 为定值;

(3) 分两种情况进行讨论:

①如图所示,当C点关于AB的对称点E在y轴上时,连接BE,则 $\Delta ABE \cong \Delta ABC$,

- .: **ΔΑΒΕ** 是等边三角形,
- $:: BO \perp AE$, A(0,2),
- $\therefore AO = EO = 2,$
- $\therefore E(0,-2)$;
- ②如图所示, 当 C 点关于 AB 的对称点 E 在 x 轴上时, 连接 AE, 则 $\Delta ABE \cong \Delta ABC$,

- .: **ΔABE** 是等边三角形,
- $BO \perp AO$, A(0,2),
- $\therefore AO = 2$, $\angle EAO = 30^{\circ}$,
- $\therefore OE = \frac{AO}{\sqrt{3}} = \frac{2}{\sqrt{3}} = \frac{2}{3}\sqrt{3} ,$
- $\therefore E(-\frac{2}{3}\sqrt{3}, 0).$

【例2】

如图,第一步:对折矩形纸片 ABCD,使 AD 与 BC 重合,得到折痕 EF,把纸片展开(如图①);第二步:再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B,得到折痕 BM,同时得到线段 BN(如图②),如图②所示建立平面直角坐标系,请解答以下问题:

- (I) 设直线 BM 的解析式为 y=kx, 求 k 的值;
- (Π) 若 MN 的延长线与矩形 ABCD 的边 BC 交于点 P, 设矩形的边 AB=2, BC=4, 求 P 点的坐标。

模块二、一般情况的翻折问题

【例3】

1. 如图所示,把矩形纸片 OABC 放入直角坐标系 xOy 中,使 $OA \times OC$ 分别落在 $x \times y$ 轴的正半轴上,

连接 AC,且 $AC = 4\sqrt{5}$, $\frac{OC}{OA} = \frac{1}{2}$ 。

- (1) 求 AC 所在直线的解析式;
- (2) 将纸片 OABC 折叠,使点 A 与点 C 重合(折痕为 EF),求折叠后纸片重叠部分的面积;
- (3) 求 EF 所在的直线的函数解析式。

【解答】解:

$$(1) :: \frac{OC}{OA} = \frac{1}{2},$$

∴可设OC = x, 则OA = 2x,

在Rt \triangle AOC中,由勾股定理可得 $OC^2 + OA^2 = AC^2$,

∴
$$x^2 + (2x)^2 = (4\sqrt{5})^2$$
, 解得 $x = 4(x = -4 \pm 3)$,

 $\therefore OC = 4, \quad OA = 8,$

 $\therefore A(8,0)$, C(0,4),

设直线 AC 解析式为 y = kx + b,

$$\therefore \begin{cases} 8k+b=0 \\ b=4 \end{cases}, \quad \text{if } \begin{cases} k=-\frac{1}{2}, \\ b=4 \end{cases}$$

∴直线 AC 解析式为 $y = -\frac{1}{2}x + 4$;

(2) 由折叠的性质可知 AE = CE,

设
$$AE = CE = y$$
, 则 $OE = 8 - y$,

在 Rt Δ OCE 中,由勾股定理可得 $OE^2 + OC^2 = CE^2$,

∴
$$(8-y)^2 + 4^2 = y^2$$
, 解得 $y = 5$,

$$\therefore AE = CE = 5,$$

$$\therefore \angle AEF = \angle CEF$$
, $\angle CFE = \angle AEF$,

$$\therefore \angle CFE = \angle CEF$$
,

$$\therefore CE = CF = 5,$$

$$\therefore S_{\Delta CEF} = \frac{1}{2}CF \bullet OC = \frac{1}{2} \times 5 \times 4 = 10,$$

即重叠部分的面积为10;

(3) 由 (2) 可知
$$OE = 3$$
, $CF = 5$,

$$E(3,0)$$
, $F(5,4)$,

设直线 EF 的解析式为 y = k'x + b',

$$\therefore \begin{cases} 3k' + b' = 0 \\ 5k' + b' = 4 \end{cases}, \quad \text{APA} \begin{cases} k' = 2 \\ b' = -6 \end{cases},$$

:. 直线 EF 的解析式为 y = 2x - 6.

2. 如图, ABCD 是一个矩形纸片, E 是 AB 上的一点, BE:EA=5: 3, $EC=15\sqrt{5}$, 把 $\triangle BCE$ 沿折痕 EC 向上翻折, 若点 B 恰好落在 AD 边上, 设这个点是 F, 以点 A 为原点, 以直线 AD 为 x 轴, 以直线 BA 为 y 轴, 求过点 F、点 C 的一次函数解析式。

44

【解答】解: 设BE = 5x, AE = 3x,

::矩形 ABCD,

 $\therefore \angle DAB = \angle B = \angle CDA = 90^{\circ}, \quad CD = 8x,$

由勾股定理得: $AF = \sqrt{EF^2 - AE^2} = 4x$,

 $:: \Delta BCE$ 沿折痕 EC 向上翻折,若点 B 恰好落在 AD 边 F 上,

 $\therefore EF = BE = 5x$, $\angle ABC = \angle EFC = 90^{\circ}$,

 $\therefore \angle AFE + \angle DFC = 90^{\circ}, \quad \angle DFC + \angle DCF = 90^{\circ},$

 $\therefore \angle AFE = \angle DCF$,

 $\therefore \triangle AFE \hookrightarrow \triangle DCF$,

$$\therefore \frac{AF}{DC} = \frac{AE}{DF} ,$$

$$\therefore \frac{4x}{8x} = \frac{3x}{DF},$$

 $\therefore DF = 6x,$

BC = AD = 6x + 4x = 10x,

由勾股定理得: $EC^2 = BE^2 + BC^2$,

 $(5x)^2 + (10x)^2 = (15\sqrt{5})^2$,

x = 3, 8x = 24, 4x = 12, 10x = 30,

F(12,0), C(30,-24),

设直线 CF 的解析式是 y = kx + b,代入得: $\begin{cases} 0 = 12k + b \\ -24 = 30k + b \end{cases}$

$$\therefore \begin{cases} k = -\frac{4}{3}, \\ b = 16 \end{cases}$$

$$\therefore y = -\frac{4}{3}x + 16.$$

故答案为: $y = -\frac{4}{3}x + 16$.

【例4】

(GXQ) 如图 1,在平面直角坐标系中,O 是坐标原点,矩形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6, OB=10,点 D 为 y 轴上一点,其坐标为 (0,2),点 P 从点 A 出发以每秒 2 个单位的速度 沿线段 AC-CB 的方向运动,当点 P 与点 B 重合时停止运动,运动时间为 t 秒。

- (1) 当点 P 经过点 C 时, 求直线 DP 的函数表达式;
- (2) ①求 $\triangle OPD$ 的面积 S 关于 t 的函数表达式;
 - ②如图 2, 把矩形沿着 OP 折叠, 点 B 的对应点 B 恰好落在 AC 边上, 求点 P 的坐标。
- (3) 点 P 在运动过程中是否存在使 $\triangle BDP$ 为等腰三角形? 若存在,求出点 P 的坐标;若不存在,说明理由。

【解答】解: (1): OA = 6, OB = 10, 四边形 OACB 为长方形,

C(6,10).

设此时直线 DP解析式为 y = kx + b,

把(0,2),C(6,10)分别代入,得

$$\begin{cases} b=2\\ 6k+b=10 \end{cases}$$

解得
$$\begin{cases} k = \frac{4}{3} \\ b = 2 \end{cases}$$

则此时直线 DP解析式为 $y = \frac{4}{3}x + 2$;

(2) ①当点P在线段AC上时,OD=2,高为6,S=6;

当点 P 在线段 BC 上时, OD = 2 , 高为 6+10-2t=16-2t , $S = \frac{1}{2} \times 2 \times (16-2t) = -2t+16$;

②设P(m,10),则PB = PB' = m,如图 2,

$$\therefore OB' = OB = 10$$
, $OA = 6$,

$$\therefore AB' = \sqrt{OB'^2 - OA^2} = 8,$$

$$B'C = 10 - 8 = 2$$
,

$$\therefore PC = 6 - m$$
,

∴
$$m^2 = 2^2 + (6 - m)^2$$
, 解得 $m = \frac{10}{3}$

则此时点 P 的坐标是 $(\frac{10}{3}, 10)$;

(3) 存在, 理由为:

若 ΔBDP 为等腰三角形,分三种情况考虑:如图 3,

①
$$\stackrel{\underline{}}{=} BD = BP_1 = OB - OD = 10 - 2 = 8$$
,

在 RtΔBCP₁ 中,
$$BP_1 = 8$$
, $BC = 6$,

根据勾股定理得:
$$CP_1 = \sqrt{8^2 - 6^2} = 2\sqrt{7}$$
,

$$AP_1 = 10 - 2\sqrt{7}$$
, $P_1(6,10 - 2\sqrt{7})$;

②当
$$BP_2 = DP_2$$
时,此时 P_2 (6,6);

③当
$$DB = DP_3 = 8$$
时,

在 Rt Δ DEP₃ 中, DE = 6 ,

根据勾股定理得: $P_3E = \sqrt{8^2 - 6^2} = 2\sqrt{7}$,

综上,满足题意的P坐标为(6,6)或 $(6,2\sqrt{7}+2)$ 或 $(6,10-2\sqrt{7})$.

【例5】

(CW) 将矩形 OABC 放在直角坐标系内,顶点 O 为原点,顶点 C,A 分别在 x 轴和 y 轴上,在 OA 边上选取适当的点 E,连接 CE,将 $\triangle EOC$ 沿 CE 折叠,如图所示;

- (1) 若矩形 OABC 的边长 OA=8, OC=10, 那么如图①,当点 O 落在 AB 边上的点 D 处时,点 E 的坐标为多少?如图②,当点 O 落在矩形 OABC 内部的点 D 处时,过点 E 作 EG//x 轴交 CD 于点 H,交 BC 于点 G,设 H (m,n),请用含 n 的代数式表示 m;
- (2) 如图③,将矩形 OABC 变为正方形,OC=10,当点 E 为 AO 中点时,点 O 落在正方形 OABC 内部的点 D 处,延长 CD 交 AB 于点 T,求此时 D 点的坐标。

【解答】解: (1) 由题意得,DE = OE,CD = OC = 10,

在 Rt Δ DBC 中, BC = OA = 8, CD = 10,

由勾股定理得,BD=6,

- $\therefore \angle A = \angle EDC = \angle B = 90^{\circ}$,
- $\therefore \Delta EAD \hookrightarrow \Delta DBC$,

$$\therefore \frac{AE}{DB} = \frac{DE}{CD}, \quad \mathbb{SI} \frac{AE}{6} = \frac{8 - AE}{10},$$

解得,AE = 3,则OE = 5,

E(0,5);

(2) 由题意得,DE = OE = n,EH = m,HG = 10 - m,

在 ΔEDH 和 ΔCGH 中,

$$\begin{cases} \angle D = \angle CGH \\ \angle DHE = \angle GHC \end{cases},$$

$$DE = GC$$

 $\therefore \Delta EDH \cong \Delta CGH$,

 $\therefore DH = HG = 10 - m,$

在 RtΔEDH 中, DE = n , EH = m , DH = 10 - m ,

由勾股定理得 $m^2 = n^2 + (10-m)^2$,

整理得
$$m = \frac{1}{20}n^2 + 5$$
;

(3) 如图 3, 连接 ET,

$$\therefore \frac{AE}{AO} = \frac{1}{2} \; , \quad \therefore AE = EO \; ,$$

在 ΔEAT 和 ΔEDT 中,

$$\begin{cases} EA = ED \\ ET = ET \end{cases}$$

 $\therefore Rt\Delta EDH \cong Rt\Delta CGH,$

 $\therefore TA = TD$,

在Rt Δ TBC中,CT = 10 + AT,BT = 10 - AT,BC = 10,

由勾股定理得, $(10+AT)^2 = (10-AT)^2 + 100$,

解得 $AT = \frac{5}{2}$,

如图 4,连接 CF,

同上可知, FB = FD = y,

在 RtΔEAF 中, $5^2 + (10 + y)^2 = (15 - y)^2$,

解得, y=2,

 $\angle EAF = \angle TDF = 90^{\circ}$, $\angle EFA = \angle TFD$,

 $\therefore \Delta EFA \sim \Delta TFD$,

$$\therefore \frac{EF}{TF} = \frac{AF}{DF}, \quad \mathbb{H} \frac{13}{TF} = \frac{12}{2},$$

解得,
$$TF = \frac{13}{6}$$
,

$$\therefore AT = AF + TF = \frac{85}{6},$$

综上所述,
$$AT = \frac{5}{2}$$
 或 $\frac{85}{6}$.

【例6】

1.(QYQ) 在三角形纸片 ABC 中,已知 $\angle ABC$ =90°,AB=9,BC=12.过点 A 作直线 l 平行于 BC,折叠三角形纸片 ABC,使直角顶点 B 落在直线 l 上的 T 处,折痕为 MN.当点 T 在直线 l 上移动时,折痕的端点 M、N 也随之移动.若限定端点 M、N 分别在 AB、BC 边上移动,则线段 AT 长度的最大值与最小值之和为_______(计算结果不取近似值)

【解答】解:如图所示: 当点M与点A重合时,AT取得最大值,

由轴对称可知, AT = AB = 9;

当点N与点C重合时,AT取得最小值,

过点C作 $CD \perp l$ 于点D,连结CT,则四边形ABCD为矩形,

 $\therefore CD = AB = 9$,

由轴对称可知,CT = BC = 12,

在Rt Δ CDT中,CD=9,CT=12,

则
$$DT = \sqrt{12^2 - 9^2} = \sqrt{63}$$
,

$$\therefore AT = AD - DT = 12 - \sqrt{63} ,$$

所以线段 AT 长度的最大值与最小值之和为: $9+12-\sqrt{63}=21-3\sqrt{7}$,

故答案为: 21-3√7.

2.(JJQ) 四边形 OABC 在图 1 中的直角坐标系中,且 OC 在 y 轴上,OA//BC,A、B 两点的坐标分别为 A(18,0),B(12,8),动点 P、Q 分别从 O、B 两点出发,点 P 以每秒 2 个单位的速度沿 OA 向终点 A 运动,点 Q 以每秒 1 个单位的速度沿 BC 向 C 运动,当点 P 停止运动时,点 Q 同时停止运动。动点 P C 运动时间为 D C 运动,

- 图1 图2 (1) 当 *t* 为何值时,四边形 *PABQ* 是平行四边形,请写出推理过程;
- (2) 如图 2, 线段 $OB \setminus PQ$ 相交于点 D, 过点 D 作 DE // OA, 交 AB 于点 E, 射线 QE 交 x 轴于点 F, PF = AO. 当 t 为何值时, $\triangle PQF$ 是等腰三角形?请写出推理过程;
- (3) 如图 3, 过 B 作 $BG \perp OA$ 于点 G, 过点 A 作 $AT \perp x$ 轴于点 A, 延长 CB 交 AT 于点 T。将点 G 折叠,折痕交边 AG、BG 于点 M、N,使得点 G 折叠后落在 AT 边上的点为 G',求 AG'的最大值和最小值。

【解答】解: (1) :: OA / /BC,

 $\therefore PA//BQ$,

当 PA = BQ 时,四边形 PABQ 是平行四边形, BQ = t , OP = 2t ,

:: A(18,0),

 $\therefore PA = 18 - 2t,$

 $\therefore t = 18 - 2t,$

解得: t = 6,

..当t为6时,四边形PABQ是平行四边形;

(2) 过Q作 $QH \perp OF$ 于H, 如图 1 所示:

分三种情况:

①当FP = FQ时,

$$\therefore PF = AO = 18,$$

$$\therefore FQ = 18$$
, $BQ = t$,

$$\therefore CQ = OH = 12 - t$$
,

$$\therefore PH = 12 - 3t,$$

$$\therefore FH = 3t + 6,$$

在 RtΔQHF中, 由勾股定理得: $OH^2 + FH^2 = FO^2$,

$$\therefore 8^2 + (3t+6)^2 = 18^2$$
,

解得:
$$t_1 = \frac{2\sqrt{65} - 6}{3}$$
, $t_2 = \frac{-2\sqrt{65} - 6}{3}$ (不合题意舍去);

② $\stackrel{\text{def}}{=} PF = PQ$ 时, PQ = PF = 18,

在 RtΔPQH中,由勾股定理得: $PQ^2 = PH^2 + QH^2$,

$$\therefore (12-3t)^2 + 8^2 = 18^2,$$

解得:
$$t_1 = \frac{12 + 2\sqrt{65}}{3}$$
 (不合题意舍去), $t_2 = \frac{12 - 2\sqrt{65}}{3}$ (不合题意舍去);

③当PQ = FQ时,PH = FH,

$$\therefore 12 - 3t = 6 + 3t$$
,

解得: t=1;

综上所述,当
$$t=1$$
或 $t=\frac{2\sqrt{65}-6}{3}$ 时, ΔPQF 是等腰三角形;

(3) 当折痕经过点 A 时,如图 2 所示:

AG = AG' = 6, 此时 AG' 为最大值;

当折痕经过点B,另一点在AG上时AG 最小,如图 3 所示:

此时,
$$BG = BG' = 8$$
,

 $\therefore BT = 6$,

∴在 $Rt \triangle BG'T$ 中, $TG' = \sqrt{BG'^2 - BT^2} = 2\sqrt{7}$,

 $\therefore AG' = 8 - 2\sqrt{7} ;$

综上所述: AG' 的最大值与最小值分别是 6, $8-2\sqrt{7}$.

0

P

笔记整理

课后练习

1. 如图,直线 $y = -\frac{4}{3}x + 8$ 与 x 轴、y 轴分别相交于点 A、B,设 M 是 OB 上一点,若将 $\triangle ABM$ 沿 AM 折叠,使点 B 恰好落在 x 轴上的点 B' 处。求:

- (1) 点 B'的坐标;
- (2) 直线 AM 所对应的函数关系式。

【解答】解: (1) $y = -\frac{4}{3}x + 8$, x = 0, y = 8, y = 0, y = 8, y = 0, y = 8,

 $A = \{0, 0\}, B = \{0, 8\}, A = \{0, 0\} = \{0, 0\}, A = \{0, 0\}, B = \{0,$

∵A B'=AB=10, ∴O B'=10-6=4, ∴B'的坐标为: (-4, 0).

(2) 设 OM=m, 则 B'M=BM=8-m, 在 $Rt\triangle OMB'$ 中, $m^2+4^2=(8-m)^2$,

解得: *m*=3, :.*M* 的坐标为: (0, 3),

设直线 AM 的解析式为 y=kx+b,则 $\begin{cases} 6k+b=0\\b=3\end{cases}$,解得: $\begin{cases} k=-\frac{1}{2}\\b=3\end{cases}$

故直线 AM 的解析式为: $y = -\frac{1}{2}x + 3$

2. 如图,一次函数的图象与 x 轴、y 轴分别相交于点 A、B,将 $\triangle AOB$ 沿直线 AB 翻折,得 $\triangle ACB$.若 $C\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$,则该一次函数的解析式为_____。

【解答】解: 连接 OC, 过点 C 作 $CD \perp x$ 轴于点 D,

 \therefore 将 $\triangle AOB$ 沿直线 AB 翻折,得 $\triangle ACB$, $C\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$,

:. AO=AC, $OD=\frac{3}{2}$, $DC=\frac{\sqrt{3}}{2}$, BO=BC,

则 $\frac{CD}{OD} = \frac{\sqrt{3}}{3}$, 故 $\angle COD = 30^{\circ}$, $\angle BOC = 60^{\circ}$,

∴ △BOC 是等边三角形,且∠CAD=60°,

则
$$\frac{CD}{AC} = \frac{\sqrt{3}}{2}$$
, 即 $AC = \frac{DC}{\frac{\sqrt{3}}{2}} = 1$, 故 A (1, 0),

$$\frac{CD}{CO} = \frac{\sqrt{3}}{\frac{2}{CO}} = \frac{1}{2}$$
, 则 $CO = \sqrt{3}$, 故 $BD = \sqrt{3}$, B 点坐标为: $(0, \sqrt{3})$

设直线 AB 的解析式为: y=kx+b,

则
$$\begin{cases} k+b=0 \\ b=\sqrt{3} \end{cases}, \quad 解得: \quad \begin{cases} k=-\sqrt{3} \\ b=\sqrt{3} \end{cases},$$

即直线 AB 的解析式为: $y = -\sqrt{3}x + \sqrt{3}$

故答案为: $y = -\sqrt{3}x + \sqrt{3}$

- 3. 如图,长方形 OABC 在平面直角坐标系 xOy 的第一象限内,点 A 在 x 轴正半轴上,点 C 在 y 轴的正半轴上,点 D、E 分别是 OC、BC 的中点, $\angle CDE$ =30°,点 E 的坐标为(2,a).
- (1) 求 a 的值及直线 DE 的表达式;
- (2) 现将长方形 OABC 沿 DE 折叠,使顶点 C 落在平面内的点 C 处,过点 C 作 y 轴的平行线分别交 x 轴和 BC 于点 F , G ,
- ①求 C'的坐标;
- ②若点 P 为直线 DE 上一动点,连接 PC',当 $\triangle PC'D$ 为等腰三角形时,求点 P 的坐标。

【说明:在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半】

- 【解答】解: (1) ∠CDE=30°, 点 E 的坐标为 (2, a).
 - $\therefore CE=2$, $CD=2\sqrt{3}$
 - ∵点D、E分别是OC、BC的中点,
 - $\therefore OC = 2CD = 4\sqrt{3}, \quad \therefore a = 4\sqrt{3}$

设直线 DE 的表达式为 y=kx+b, 把 $D(0, 2\sqrt{3})$, $E(2, 4\sqrt{3})$ 代入得, $y=\sqrt{3}x+2\sqrt{3}$

(2) ①: 将长方形 OABC 沿 DE 折叠,使顶点 C 落在平面内的点 C' 处,过点 C' 作 y 轴的

平行线分别交x轴和BC于点F, G

- $\therefore \angle CED = \angle C' \quad ED = 60^{\circ} \quad , \quad C' \quad E = CE = 2, \quad \therefore EG = 1, \quad C'G = \sqrt{3},$
- :. CG = CE + EG = 2 + 1 = 3, $C'F = OC C'G = 4\sqrt{3} \sqrt{3} = 3\sqrt{3}$, :. $C'(3, 3\sqrt{3})$ ② | 如图 1,

- 点 P 为 DE 的中点连接 C' P, $\therefore \triangle DC'$ E 是直角三角形, $\therefore DP = PC'$,
- ∴ $\triangle PC'$ D 为等腰三角形, ∴ $P(1, 3\sqrt{3})$,
- || 如图 2, DP=DC' 时,

 $\therefore DC' = DC = 2\sqrt{3} \quad \therefore DP = 2\sqrt{3} \therefore P(\sqrt{3}, 3 + 2\sqrt{3})$ Ⅲ如图 3, 当 DC'=PC'时,

 $:DC'=PC'=2\sqrt{3}$,且P点为C'G的延长线与DE的交点, $:P(3,5\sqrt{3})$ IV 如图 4,当DP=DC'时,

 $\therefore DC' = DC = 2\sqrt{3} , \quad \therefore DP = 2\sqrt{3} , \quad \therefore P\left(-\sqrt{3}, \quad 2\sqrt{3} - 3\right)$

综上所述: 当 $\triangle PC'$ D 为等腰三角形时, 点 P 的坐标为 $\left(1, 3\sqrt{3}\right), \left(\sqrt{3}, 3+2\sqrt{3}\right), \left(3 5\sqrt{3}\right)$ 或 $\left(-\sqrt{3}, 2\sqrt{3}-3\right)$ 。

4. 如图,在矩形纸片 ABCD 中,AB=3,BC=5,点 E、F 分别在线段 AB、BC 上,将 $\triangle BEF$ 沿 EF 折叠,点 B 落在 B'处.如图,当 B'在 AD 上时,B'在 AD 上可移动的最大距离为______;如图,当 B'在矩形 ABCD 内部时,AB'的最小值为_____。

【解答】解:如图 1,当点F与点C重合时,根据翻折对称性可得B' C=BC=5,

在 $Rt \triangle B'$ CD 中, B' $C^2=B'$ D^2+CD^2 ,

 $\mathbb{P} 5^2 = (5 - AB')^2 + 3^2$

解得 AB' =1,

如图 2, 当点 E 与点 A 重合时,根据翻折对称性可得 AB' = AB = 3, $\therefore 3 - 1 = 2$,

∴点B' 在AD边上可移动的最大距离为2;

如图 3, B' 在矩形 ABCD 内部时, AB' 的最小值,

由翻折的性质可得 B' C=BC=5,

由勾股定理得: $AC = \sqrt{AB^2 + BC^2} = \sqrt{3^2 + 5^2} = \sqrt{34}$

 $\therefore AB = AC - B'C = \sqrt{34} - 5$

故答案为: 2; √34-5.

第十讲、含参不等式

模块一、不等式的性质与解含参不等式

知识集锦

1.1. 不等式的性质

①基本性质1:不等式两边都加上(或减去)同一个数(或式子),不等号方向不变。

②基本性质 2: 不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

③基本性质 3: 不等式两边都乘以(或除以)同一个负数,不等号的方向改变

 $\exists a > b$, 且c > 0 , 则 ac > bc 或 $\frac{a}{c} > \frac{b}{c}$; $\exists a < b$, 且c > 0 , 则 ac < bc 或 $\frac{a}{c} < \frac{b}{c}$

 $\exists a > b$,且c < 0,则ac < bc 或 $\frac{a}{c} < \frac{b}{c}$; $\exists a < b$,且c < 0,则ac > bc 或 $\frac{a}{c} > \frac{b}{c}$

⑤基本性质 5: 传递性: 若a > b, b > c, 则a > c。

特别的, 在不等式的左右两端都乘以 0, 不等式变为等式。

1.2. 解与解集的区别:

- ①不等式的解: 使不等式成立的每一个未知数的值叫作不等式的解。
- ②不等式的解集:能使不等式成立的所有未知数的集合,叫作不等式的解集。一般不等式的解集是一个范围,在这个范围内的每一个值都是不等式的解。不等式的解集可以用数轴来表示。

1.3. 一元一次不等式的解法:

- (1) 五步法: 去分母, 去括号, 移项, 合并同类项, 系数化1
- (2) 在数轴上表示不等式的解集

不等式	图示
x > a	a
<i>x</i> ≥ <i>a</i>	a
x < a	a
<i>x</i> ≤ <i>a</i>	a

1.4 解含参不等式

对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax < b,

An A= ↓= \□
解集情况

a > 0 时	解集为 $x < \frac{b}{a}$.
a < 0 时	解集为 $x > \frac{b}{a}$.
a=0时	若 $b>0$,则解集为任意数; 若 $b \leq 0$,则这个不等式无解.

【例1】

- 1. 下列命题中, 正确的是()
- A. 若 a>b, 则 $ac^2>bc^2$ B. 若 a>b, c=d则 ac>bd
- C. 若 $ac^2 > bc^2$, 则 a > b D. 若 a > b, c < d 则 $\frac{a}{c} > \frac{b}{d}$

【答案】C

- 2. 使不等式 $x^2 < |x|$ 成立的 x 的取值范围是(
- $A \cdot x > 1$
- B : x < -1
- C : -1 < x < 1
- D. -1<x<0或0<x<1

【答案】D

【例2】

1. 已知(2a+1)x > 1的解集是 $x < \frac{1}{2a+1}$,则 a 的取值范围是_

【答案】 $a < -\frac{1}{2}$

2 . 若关于 x 的不等式(2a - b) x + 3a - 4b < 0 的解集是 $x > \frac{4}{9}$, 试求关于 x 的不等式(a - 4b) x + 2a - 3b<0 的解集。

【答案】
$$x < -\frac{1}{4}$$

3. $(k-1)x < a^2 + 1$ 对于任意 x 都成立,则参数 k 的值为_____。

【答案】 k=1

模块二、不等式组解的情况

知识集锦

2. 一元一次不等式组

2.1一元一次不等式组的解集:几个一元一次不等式解集的公共部分,叫作由它们所组成的一元一次 不等式组的解集, 当几个不等式的解集没有公共部分时, 称这个不等式组无解 (解集为空集)。

一元一次不等式组的一般步骤:

- ①求出这个不等式组中各个不等式的解集:
- ②利用数轴求出这些不等式的解集的公共部分,即求出这个不等式组的解集。

(4) 在数轴上表示不等式组的解集:

不等式	图示	解集
$\begin{cases} x > a \\ x > b \end{cases}$	\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	x > a (同大取大)
$\begin{cases} x < a \\ x < b \end{cases}$	■ b a	x <b (同小取小)</b
$\begin{cases} x < a \\ x > b \end{cases}$	>	<i>b</i> < <i>x</i> < <i>a</i> (大小交叉中间找)
$\begin{cases} x > a \\ x < b \end{cases}$	b a	无解 (大大小小无解了)

【例3】

1 . 已知不等式组 $\begin{cases} x+1 < 2a \\ x-b > 1 \end{cases}$ 的解集是 2 < x < 3,则关于 x 的方程 ax+b=0 的解为_____。

【答案】
$$x = -\frac{1}{2}$$

2 . 已知不等式组 $\begin{cases} x+1 < 2m \\ nx-n > 1 \end{cases}$ 的解集是 2 < x < 3,分解因式: $x^2 - 3x - 2mn =$ ______。

【答案】
$$(x-4)(x+1)$$

【例4】

1. 已知不等式组 $\begin{cases} x \le 1 \\ x \le m \end{cases}$ 的解集是 $x \le 1$,则 m 的取值范围是_____。

【答案】 m≥1

2. 已知不等式组 $\left\{ \frac{3x-4}{2} \ge 1 \right\}$ 的解集是 $x \ge 2$,则 a 的取值范围是_____。

【答案】 a ≤ 2

【答案】 2≤a<5

4 . (SW) 不等式组 $\begin{cases} \frac{2x+1}{3} - \frac{5x-3}{6} < 1 \\ |2x-1| \le 5 \end{cases}$ 的解集是关于 x 的一元一次不等式 ax > -1 解集的一部分,则 a 的

取值范围是_____。

【答案】
$$-\frac{1}{3} < a \le 1$$

【例5】

1 . 如果不等式组 $\begin{cases} x < a \\ x > 2 \end{cases}$ 无解,那么 a 的取值范围是_____。

【答案】 a≤2

x<2 2 . 已知关于 x 的不等式组 $\begin{cases} x<2\\ x>-1$ 无解,则 a 的取值范围是_____。 x<a

【答案】 a≤-1

3.若关于x的不等式组 $\begin{cases} 3a-x>0 \\ x+a-5x<2 \end{cases}$ 有解,则a的取值范围是____。

【答案】 $a > -\frac{2}{11}$

4 . 已知不等式组 $\begin{cases} 3x + a < 2(x+2) \\ -\frac{1}{3}x < \frac{5}{3}x + 2 \end{cases}$ 有解但没有整数解,则 a 的取值范围为_____。

【答案】 4≤a<5

【例6】

1. 已知关于x 的不等式组 $\begin{cases} x-m \geq 0 \\ 3-2x > 1 \end{cases}$ 只有 2 个整数解,则实数 m 的取值范围是______。

【答案】 -2 < m ≤ -1

2 .已知 a, b 为实数, 关于 x 的不等式组 $\begin{cases} 20x + a > 0 \\ 15x - b \le 0 \end{cases}$ 的整数解仅为 2, 3, 4, 则 ab 的最大值为 ______。

【答案】-120

3. 已知关于x 的不等式2x-a<0的最大正整数解为y,则y 的范围是

【答案】 18 < a ≤ 20

4. 不等式组 $\begin{cases} \frac{x+21}{2} > 3-x \\ x < m \end{cases}$ 的所有整数解的和为 - 7,求 m 的范围。

【答案】 -3< m≤-2

【例7】

- 1. 若 a+b=-4, 且 $a \ge 3b$, 则 ()
- A. $\frac{b}{a}$ 有最小值 $\frac{1}{3}$ B. $\frac{b}{a}$ 有最大值 7
- $C \cdot \frac{a}{b}$ 有最大值 3 $D \cdot \frac{a}{b}$ 有最小值 $-\frac{15}{8}$

【答案】 C

2 . (YC) 满足条件 $\begin{cases} x + 2y < \frac{x}{2} < 2x + y \\ x - 3y = 1 \end{cases}$ 的 x 的 取 值 范 围 是 ______。

【答案】 $\frac{2}{11} < x < \frac{4}{7}$

3. (*CW*) 已知 x、y、z 为三个非负实数满足,3x+2y+z=5, x+y-z=2,若 S=2x+y-z,则 S 的最大值与最小值和为_____。

【答案】5

模块三、不等式的应用

【例8】

(YC) 某汽车销售公司计划销售 A、B 两种型号的汽车共 80 辆,该公司所筹资金不少于 660 万元,但不超过 672 万元,且所筹资金全部用于购进新车,设 A 型汽车购进 x 辆,该公司销售 A、B 两种汽车获得利润 y(万元),两种汽车的成本和售价如表:

	A	В
成本(万元/辆)	6	12
售价(万元/辆)	9	16

- (1) 该公司对这两种汽车进货有哪几种方案?
- (2) 列出 y 关于 x 的函数关系式, 并通过函数的性质判断如何进货该公司获得利润最大?
- (3) 根据市场调查,每辆 B 型汽车售价不会改变,每辆 A 型汽车的售价将会提高 a 万元(a>0),且所进的两种汽车可全部售出,该公司又将如何进货获得利润最大?(注:利润=售价 成本)

【解析】略

笔记整理

课后练习

- 1. 是否存在数 a, 使关于 x 的不等式 a (x-1) <3a+x+2 的解为 x<-5?
- 【解答】解:不存在.

理由: 原不等式可化为 (a-1) x<4a+2,

 $\therefore x < -5$.

∴
$$\begin{cases} a-1>0 \\ \frac{4a+2}{a-1} = -5 \end{cases}$$
, 解得 $a>1$ 且 $a=\frac{1}{3}$, 不存在.

- :. 不存在数 a, 使关于 x 的不等式 a (x-1) <3a+x+2 的解为 x<-5.
- 2. 如果 0 < x < 1,则下列不等式成立的是(

 $A \cdot x < x^2 < \frac{1}{x}$ $B \cdot x^2 < x < \frac{1}{x}$ $C \cdot \frac{1}{x} < x < x^2$ $D \cdot \frac{1}{x} < x^2 < x$

【解答】解: ∵0<x<1,

 $\therefore 0 < x^2 < x$ (不等式两边同时乘以同一个大于 0 的数 x, 不等号方向不变); $0<1<\frac{1}{r}$ (不等式两边同时除以同一个大于 0 的数 x, 不等号方向不变);

 $x^2 < x < \frac{1}{r}$

- 3. 关于x 的不等式 $(2a b) x^+ (-a 5b) > 0$ 的解集为 $x < \frac{7}{3}$,则关于x 的不等式 (3b 5a) x < 17a + b的解集为
- 【解答】 \overline{M} : (2a-b) x+ (-a-5b) >0, (2a-b) x>a+5b,
 - :不等式的解集为 $x < \frac{7}{3}$
 - ∴可得 2a-b<0, $\frac{a+5b}{2a-b}=\frac{7}{3}$
 - ∴可求得 a=2b, b<0,

不等式 (3b-5a) x<17a+b 可化为: -7bx<35b.

解得 x < -5.

- 4. 已知不等式组 $\begin{cases} x-3a \le 2 \\ 3(x-4) > x-4 \end{cases}$ 的解集为 $4 < x \le 23$,则 a =_____。
- 【解答】解: $\begin{cases} x 3a \le 2 & \text{①} \\ 3(x 4) > x 4 & \text{②} \end{cases}$

解①得 $x \leq 3a+2$. 解②得 x > 4.

所以不等式组的解集为 $4 < x \le 3a + 2$,

而不等式组的解集为 4<x≤23,

所以 3a+2=23, 所以 a=7.

- 5 . 不等式组 $\begin{cases} x < 2a+1 \\ 2x-1 \le 5 \end{cases}$ 的解集是 x < 3,那么 a 的取值范围_____。 【解答】解: $\begin{cases} x < 2a+1 & 1 \\ 2x-1 \le 5 & 2 \end{cases}$

: 不等式组的解集是 $x \le 3$, : . 2a+1>3, 解得 a>1,

∴a 的取值范围 a>1.

- 6 .不等式组 $\left\{ \begin{array}{ll} -2x-4a \geq 0 \\ 3x+8 \geq 0 \end{array} \right.$ 无解,则 a 的取值范围是______,如果它有解,则 a 的取值范围是______。
- 【解答】解:解不等式 $2x 4a \ge 0$ 得: $x \le -2a$,

解不等式
$$3x+8 \ge 0$$
 得: $x \ge -\frac{8}{3}$,

: 不等式组无解,

∴
$$-2a < -\frac{8}{3}$$
, 解得: $a > \frac{4}{3}$

即若不等式组无解, a 的取值范围是 $a > \frac{4}{3}$,

: 不等式组有解,

∴
$$-2a \ge -\frac{8}{3}$$
, 解得: $a \le \frac{4}{3}$

即若不等式组有解, a 的取值范围是 $a \leq \frac{4}{3}$,

故答案为:
$$a > \frac{4}{3}$$
, $a \le \frac{4}{3}$.

- 7. 关于x 的不等式组 $\begin{cases} x-m>0 \\ 7-2x\geq 1 \end{cases}$ 的整数解和为 5,则m 的取值范围是_____。
- 【解答】解: $\begin{cases} x m > 0 & \text{①} \\ 7 2x \ge 1 & \text{②} \end{cases}$

由①解得: x>m, 由②解得: $x\leq 3$,

故不等式组的解集为 $m < x \le 3$,

由不等式组的整数解的和为5,得到整数解为3,2或3,2,1,0,-1.

则 m 的范围为 $1 \le m < 2$ 或 $-2 \le m < -1$.

8. 已知关于 x 的不等式组 $\begin{cases} x-n\geq 0 \\ x-m \leq 0 \end{cases}$ 的整数解仅为 1, 2, 3, 若 m, n 为整数,则代数式

【解答】解:不等式整理得: $\begin{cases} x \ge n \\ x < m \end{cases}$, 即 $n \le x < m$,

由不等式组的整数解仅有 1, 2, 3, 得到 m=4, n=1,

则原式=
$$1 - \frac{m-n}{m-2n} \cdot \frac{(m-2n)^2}{(m+n)(m-n)} = 1 - \frac{m-2n}{m+n} = \frac{m+n-m+2n}{m+n} = \frac{3n}{m+n}$$

当
$$m=4$$
, $n=1$ 时, 原式 $=\frac{3}{5}$.

9. 已知, x, y, z 为三个非负实数,且满足 $\begin{cases} 3x + 2y + z = 5 \\ 2x + y - 3z = 1 \end{cases}$,设 S = 3x + y - 7z,则 S 的最大值是()

$$A \cdot -\frac{1}{11}$$
 $B \cdot \frac{1}{11}$ $C \cdot -\frac{5}{7}$ $D \cdot -\frac{7}{5}$

【解答】解:
$$\begin{cases} 3x + 2y + z = 5 & \text{①} \\ 2x + y - 3z = 1 & \text{②} \end{cases}$$

②×2-①得
$$x-7z=-3$$
,所以 $x=7z-3$,
把 $x=7z-3$ 代入②得 $14z-6+y-3z=1$,所以 $y=-11z+7$,
所以 $S=3$ $(7z-3)+(-11z+7)-7z=3z-2$,
 $x \ge 0$ 日本 $3 < z < 7$

因为
$$\begin{cases} 7z - 3 \ge 0 \\ 7z - 3 \ge 0 \end{cases}$$
 ,所以 $\frac{3}{7} \le z \le \frac{7}{11}$

当
$$z = \frac{7}{11}$$
 时, S 有最大值,最大值为 $3 \times \frac{7}{11} - 2 = -\frac{1}{11}$ 。
故选: A

10. 某公司有 A 型产品 40 件,B 型产品 60 件,分配给甲、乙两个商店销售,其中 70 件给甲店,30 件给乙店,且都能卖完,两商店销售者两种产品每件的利润(元)如下表:

	A 型利润	B 型利润
甲店	200	170
乙店	160	150

- (1) 若公司要求总利润不低于 17560 元, 说明有多少种不同分配方案, 并将各种方案设计出来;
- (2) 为了促销,公司决定仅对甲店 A 型产品让利销售,每件让利 a 元,但让利后 A 型产品的每件利润仍高于甲店 B 型产品的每件利润,甲店的 B 型产品以及乙店的 A ,B 型产品的每件利润不变,问该公司又如何设计分配方案.使总利润达到最大?

【解答】解: (1) 由题意得, 甲店 B 型产品有 (70-x) 件, 乙店 A 型有 (40-x) 件, B 型有 (x-10) 件, 则利润 W=200x+170 (70-x)+160 (40-x)+150 (x-10)=20x+16800.

由
$$\begin{cases} x \ge 0 \\ 70 - x \ge 0 \\ 40 - x \ge 0 \end{cases}$$
 解得 $10 \le x \le 40$; $x - 10 \ge 0$

由 20x+16800≥17560.

解得 *x*≥38.

故 38≤x≤40, *x*=38, 39, 40.

则有三种不同的分配方案.

- ①x=38时, 甲店A型38件, B型32件, 乙店A型2件, B型28件;
- ②x=39 时, 甲店 A 型 39 件, B 型 31 件, C 店 A 型 1 件, B 型 29 件;
- ③x=40时, 甲店A型40件, B型30件, 乙店A型0件, B型30件;
- (2) 依题意: W= (200-a) x+170 (70-x) +160 (40-x) +150 (x-10) = (20-a) x+16800.
- ①当 0 < a < 20 时, x = 40, 即甲店 A 型 40 件, B 型 30 件, 乙店 A 型 0 件, B 型 30 件, 能使总利润达到最大.
 - ②当 a=20 时, $10 \le x \le 40$,符合题意的各种方案,使总利润都一样.
- ③当 20 < a < 30 时,x=10,即甲店 A 型 10 件,B 型 60 件,乙店 A 型 30 件,B 型 0 件,能使总利润达到最大。

第十一讲、因式分解(一)

模块一、提公因式法

知识集锦

一、因式分解的基本概念

1. 因式分解定义:

把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解 因式。

2. 因式分解与整式乘法互为逆变形

$$m(a+b+c) \xrightarrow{\underline{\text{8zth}}_{\text{All Med}}} ma + mb + mc$$

式中 m 可以代表单项式, 也可以代表多项式, 它是多项式中各项都含有的因式, 称为公因式。

3. 因式分解结果的要求:

因式分解结果的标准形式	常见典型错误或者不规范形式
符合定义,结果一定是乘积的形式	(x+1)(x+2)(x+3)+7
分解的因式一定是最简形式	(x+1)[2(x+3)-1]
既约整式,最后的因式的不能再次分解	$(x-1)(x^2-1)$
单项式因式写在多项式因式的前面	(x-1)x(x+1)
相同的因式写成幂的形式	x(x-1)(x+1)(x-1)
每个因式第一项系数一般不为负数	x(-x+1)(x+1)
每个因式第一项系数一般不为分数	$-x\left(\frac{1}{3}x+1\right)\left(\frac{2}{3}x+1\right)$
因式中不能含有分式	$x^2\left(x+\frac{1}{x}\right)$
因式中不能含有无理数	$(x+1)(x+\sqrt{2})(x-\sqrt{2})$

提取公因式法:

公因式指的是几个整式中都含有的因式为它们的公因式; 比如 2ma + 4mb + 6mc = 2m(a + 2b + 3c)

【例1】

下列由左到右的变形, 哪些是因式分解? 哪些不是? 请说明理由.

- (1) a(x+y)=ax+ay
- (2) $x^2 + 2xy + y 1 = x(x+2y) + (y+1)(y-1)$
- (3) $ax^2 9a = a(x+3)(x-3)$

(4)
$$x^2 + 2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2$$

 $(5) \quad 2a^3 = 2a \cdot a \cdot a$

【答案】(1) 是整式的乘法,故(1) 不是因式分解;

- (2) 没把一个多项式转化成几个既约整式的积的形式,故(2) 不是因式分解;
- (3) 一个多项式转化成几个整式积的形式, 故(3) 是因式分解;
- (4) 没把一个多项式转化成几个整式积的形式,故(4) 不是因式分解;
 - (5) 左边是单项式,故(5) 不是因式分解.

【例2】

- (1) 关于 x 的多项式 $3x^2 mx + n$ 因式分解的结果为 (3x+2)(x-1), 则 m 的值为_____, n 的值为_____,

【答案】(1) 1, -2 (2) 9 ,3

【例3】

- (1) 若(x+2)是多项式 $4x^2+5x+m$ 的一个因式,则m的值为_____。
- (2) 已知多项式 $2x^3 x^2 + m$ 有一个因式是 2x + 1,则 m 的值为______。
- (3) 已知 $x^4+mx^3+nx-16$ 有因式 (x-1) 和 (x-2),则 m 的值为_____,n 的值为 ______

【解析】(1)-6;

(2) 解法一: $2x^3 - x^2 + m = (2x+1)(x^2 + ax + b)$, 则: $2x^3 - x^2 + m = 2x^3 + (2a+1)x^2 + (a+2b)x + b$

比较系数得
$$\begin{cases} 2a+1=-1 \\ a+2b=0 \\ b=m \end{cases}$$
 解得
$$\begin{cases} a=-1 \\ b=\frac{1}{2} \\ m=\frac{1}{2} \end{cases}$$
 , : $m=\frac{1}{2}$

解法二: 设 $2x^3 - x^2 + m = A \cdot (2x + 1)$ (A 为整式)

由于上式为恒等式,为方便计算了取 $x=-\frac{1}{2}$,

$$2 \times \left(-\frac{1}{2}\right)^3 - \left(-\frac{1}{2}\right)^2 + m = 0$$
, $\& m = \frac{1}{2}$.

取 x=1, 得 1+m+n-16=0(1),

取 x=2, 得 16+8m+2n-16=0②,

由①、②解得 m=-5, n=20.

【例4】

分解因式:

(1)
$$12a^2x^3 + 6abx^2y - 15acx^2$$

(2)
$$2a^2b(x+y)^2(b+c)-6a^3b^3(x+y)(b+c)^2$$

(3)
$$(2x+y)^3 - (2x+y)^2 + (2x+y)$$

$$(4) \quad -3abx^4 + acx^3 - ax$$

(5)
$$(2x-3y)(3x-2y)+(2y-3x)(2x+3y)$$

(6)
$$3a^3b^2 - 6a^2b^3 + \frac{27}{4}ab$$

(7)
$$(p-q)^{2m+1} + (q-p)^{2m-1}$$

【答案】(1) 原式= $3ax^2(4ax + 2by - 5c)$

(3)
$$\[\[\] \mathcal{K} = (2x+y)(4x^2+4xy+y^2-2x-y+1) \]$$

(5)
$$\emptyset = -6y(3x-2y)$$

(7)
$$f(x) = (p-q)^{2m-1} (p-q+1)(p-q-1)$$

【例5】

(1)
$$5x^2y - 10xyz + 5xy$$

(2)
$$a(x-a)+b(a-x)-(x-a)$$

(3)
$$-2x(x+1)+a(x+1)+(x+1)$$

(4)
$$\frac{3}{2}b^{3n-1} + \frac{1}{6}b^{2n-1}$$
 (n 是正整数)

(5)
$$mn(m^2+n^2)-n^2(m^2+n^2)$$

(6)
$$6p(x-1)^3 - 8p^2(x-1)^2 - 2p(1-x)^2$$

【答案】(1) 原式=5xy(x-2z+1)

(2)
$$\emptyset \preceq = a(x-a)-b(x-a)-(x-a)=(x-a)(a-b-1)$$

(3)
$$\[\text{RL} = (x+1)(-2x+a+1) = -(x+1)(2x-a-1) \]$$

【例6】

(1) 已知
$$x - y = 2$$
, $xy = 5$, 求多项式 $4x^2y - 4xy^2$ 的值。

(2) 已知
$$x + y = 3$$
, $x^2 + y^2 - 3xy = 4$, 求 $x^3y + xy^3$ 的值。

【答案】(1)40;(2)7

模块二、公式法

知识集锦

公式法

常见几大公式:

平方差公式: $(a+b)(a-b)=a^2-b^2$;

立方和公式: $(a+b)(a^2-ab+b^2)=a^3+b^3$;

立方差公式: $(a-b)(a^2+ab+b^2)=a^3-b^3$;

完全平方公式: $(a+b)^2 = a^2 + 2ab + b^2$; $(a-b)^2 = a^2 - 2ab + b^2$;

三元完全平方公式: $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$

完全立方公式: $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$; $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$.

【例7】

(1)
$$9(m-n)^2-4(m+n)^2$$

(2)
$$75x^6y - 12x^2y^5$$

(3)
$$-(3a^2-5b^2)^2+(5a^2-3b^2)^2$$

(4)
$$9x^5 - 72x^2y^3$$

(5)
$$a^6 + b^6$$

(6)
$$a^6 - b^6$$

【解析】(1)

原式 =
$$[3(m-n)+2(m+n)][3(m-n)-2(m+n)]$$

= $(3m-3n+2m+2n)(3m-3n-2m-2n)$
= $(5m-n)(m-5n)$

(2)
$$\[\[\] \] \] = 3x^2y(25x^4 - 4y^4) = 3x^2y(5x^2 + 2y^2)(5x^2 - 2y^2) \]$$

(3)

原式=
$$(5a^2 - 3b^2 + 3a^2 - 5b^2)(5a^2 - 3b^2 - 3a^2 + 5b^2)$$

= $(8a^2 - 8b^2)(2a^2 + 2b^2) = 16(a+b)(a-b)(a^2 + b^2)$

(4)
$$\[\[\] \] = 9x^2(x^3 - 8y^3) = 9x^2(x - 2y)(x^2 + 2xy + 4y^2) \]$$

(6)

原式=
$$(a^3)^2 - (b^3)^2 = (a^3 + b^3)(a^3 - b^3)$$

= $(a+b)(a-b)(a^2 - ab + b^2)(a^2 + ab + b^2)$

另解:

原式 =
$$(a^2)^3 - (b^2)^3 = (a^2 - b^2)(a^4 + a^2b^2 + b^4)$$

= $(a+b)(a-b)(a^4 + 2a^2b^2 + b^4 - a^2b^2)$
= $(a+b)(a-b)(a^2 - ab + b^2)(a^2 + ab + b^2)$

【例8】

$$(1) 9x^2 - 24xy + 16y^2$$

$$(2) 8a-4a^2-4$$

(3)
$$4a^2 + 9b^2 + 9c^2 - 18bc - 12ca + 12ab$$

$$(4) 8x^3 - 36x^2y + 54xy^2 - 27y^3$$

【答案】(1) 原式= $(3x-4y)^2$

【例9】

(1)
$$16 - (3a + 2b)^2$$

(2)
$$a^4 - b^4$$

(3)
$$-81a^4b^4 + 16c^4$$

(4)
$$(3a^2-b^2)^2-(a^2-3b^2)^2$$

$$(5) 32a^3b^3 - 4b^9$$

(6)
$$x^2(a+b)^2 - 2xy(a^2-b^2) + y^2(a-b)^2$$

【答案】(1) 原式=
$$(4+3a+2b)(4-3a-2b)$$

(4)

原式 =
$$(3a^2 - b^2 + a^2 - 3b^2)(3a^2 - b^2 - a^2 + 3b^2)$$

= $(4a^2 - 4b^2)(2a^2 + 2b^2) = 8(a+b)(a-b)(a^2 + b^2)$

【例10】

已知a+b=5, ab=3, 求 $a^3b+2a^2b^2+ab^3$ 的值。

【答案】75

模块三、分组分解法

知识集锦

分组分解适用于四项或四项以上的多项式,分组后可以直接提公因式或者可以直接运用公式法。 分组分解步骤:①分组;②组内分解;③组间分解;

分组原则: ①以字母为导向; ②以公式为导向; ③以次数为导向; ④以系数为导向;

【例11】

(1)
$$ax - by - bx + ay$$

(2)
$$x^2 - 4xy + 4y^2 - 1$$

(3)
$$x^3 + x^2 - y^3 - y^2$$

(4)
$$x^3 - 2x^2 - x + 2 + x^5 - 2x^4$$

【答案】(1) 原式=
$$(ax-bx)+(ay-by)=x(a-b)+y(a-b)=(a-b)(x+y)$$

(2)
$$f(x) = (x-2y)^2 - 1 = (x-2y+1)(x-2y-1)$$

(4)
$$\emptyset$$
 \preceq = $x^2(x-2)-(x-2)+x^4(x-2)=(x-2)(x^4+x^2-1)$

【例12】

(1)
$$x^2 + ax^2 + x + ax - 1 - a$$

(2)
$$5x^3 - 15x^2 - x + 3$$

(3)
$$x(x-1)-y(y-1)$$

(4)
$$(a+b)^3 + (b+c)^3 + (c+a)^3 + a^3 + b^3 + c^3$$

【答案】(1) 原式=
$$x^2(1+a)+x(1+a)-(1+a)=(1+a)(x^2+x-1)$$

原式=
$$5x^3-15x^2-x+3=x(5x^2-1)-3(5x^2-1)=(5x^2-1)(x-3)$$

(3)
$$\Re \stackrel{\times}{\times} = x^2 - x - y^2 + y = (x^2 - y^2) - (x - y) = (x + y)(x - y) - (x - y)$$

$$= (x - y)(x + y - 1)$$
(4)
$$\Re \stackrel{\times}{\times} = \left[(a + b)^3 + c^3 \right] + \left[(b + c)^3 + a^3 \right] + \left[(c + a)^3 + b^3 \right]$$

$$= (a + b + c) \left[(a + b)^2 - c(a + b) + c^2 \right] + (a + b + c) \left[(b + c)^2 - a(b + c) + a^2 \right]$$

$$+ (a + b + c) \left[(c + a)^2 - b(c + a) + b^2 \right]$$

$$= (a + b + c) \left(a^2 + 2ab + b^2 - ac - bc + c^2 + b^2 + 2bc + c^2 - ab - ac + a^2 + c^2 + 2ac + a^2 - bc - ab + b^2 \right)$$

$$= (a + b + c) \left(3a^2 + 3b^2 + 3c^2 \right)$$

$$= 3(a + b + c) \left(a^2 + b^2 + c^2 \right)$$

【例13】

(1)
$$ac^2 + bd^2 - ad^2 - bc^2$$

(2)
$$2(x^2-3ab)+x(4a-3b)$$

(3)
$$x(x+1)+y(y-1)-2xy$$

(4)
$$x^{2n} + x^n - \frac{1}{9}y^{4m} + \frac{1}{4}$$

【答案】(1)

原式 =
$$a(c^2 - d^2) + b(d^2 - c^2) = a(c^2 - d^2) - b(c^2 - d^2)$$

= $(a - b)(c - d)(c + d)$

原式 =
$$2x^2 - 6ab + 4ax - 3bx = 2x(x+2a) - 3b(2a+x)$$

= $(x+2a)(2x-3b)$

原式=
$$x^2 + x + y^2 - y - 2xy = (x - y)^2 + (x - y) = (x - y)(x - y + 1)$$

原式 =
$$\left(x^n + \frac{1}{2}\right)^2 - \frac{1}{9}y^{4m} = \left(x^n + \frac{1}{2} + \frac{1}{3}y^{2m}\right)\left(x^n + \frac{1}{2} - \frac{1}{3}y^{2m}\right)$$

= $\frac{1}{36}\left(6x^n + 3 + 2y^{2m}\right)\left(6x^n + 3 - 2y^{2m}\right)$

笔记整理

课后练习

1.

下列从左到右的变形中, 哪些是因式分解? 哪些不是?

- (1) ax + bx + cx + m = (a + b + c) x + m
- (2) $mx^2 2mx + m = m(x-1)^2$
- (3) 4a-2a(b+c)=4a-2ab-2ac
- (4) (x-3)(x+3)=(x+3)(x-3)
- (5) $x^2 y^2 1 = (x + y)(x y) 1$
- (6) $(x-2)(x+2) = x^2 4$

【答案】(1) 不是;(2) 是;(3) 不是;(4) 不是;(5) 不是;(6) 不是 2.

- (1) 若关于x 的多项式 $x^2 px + q$ 能因式分解为: (x-2)(x-3), 则p= ; q= 。
- (2) 若关于x 的多项式 $3x^2 + mx + n$ 因式分解的结果为 3(x+2)(x-1), 求m、n 的值。

【答案】(1) 5,6

(2) 根据题意得: $3x^2+mx+n=3$ (x+2) (x-1) = $3x^2+3x-6$, 可得 m=3, n=-6.

3.

- (1) 如果 x 3 是多项式 $2x^2 11x + m$ 的一个因式,则 m 的值_____。
- (2) 若多项式 $x^2 mx + n$ (m、n 是常数) 分解因式后,有一个因式是 x 3,则 3m n 的值为

【答案】(1) 15 (2) 9

4.

(1) $a^2 - 4a + 4 - b^2$

(2) $6abc - 14a^2b^3 + 12a^3b$

(3) $-6a^3 + 15a^2 - 12a^4$

(4) $4x(a^2+x^2)-a^2-x^2$

(5) $5x^2y - 10xyz + 5xy$

- (6) $2(p-1)^2 4q(p-1)$
- (7) (5a-2b)(2m+3p)-(2a-7b)(2m+3p)
- (8) $2(x+y)+6(x+y)^2-4(x+y)^3$

【答案】(1) 原式= $(a-2)^2-b^2=(a-2+b)(a-2-b)$

- (2) $\[\text{\textit{G}} \vec{x} = 2ab \left(6a^2 + 3c 7ab^2 \right) \]$
- (4) $\[\text{£} = (a^2 + x^2)(4x 1) \]$
- (5) $\emptyset = 5xy(x-2z+1)$
- (6) $\[\text{$\mathbb{A}$} = 2(p-1)(p-2q-1) \]$
- (7) $\emptyset = (2m+3p)(3a+5b)$

(8)

原式 =
$$2(x+y)$$
 $[1+3(x+y)-2(x+y)^2]$
= $2(x+y)(1+3x+3y-2x^2-2y^2-4xy)$

5.

|x+y+1|+|xy-3|=0, 求代数式 x^3y+xy^3 的值。

【答案】-15

6.

$$(1) (x^2+4)^2 + 8x(x^2+4) + 16x^2$$
 (2) $4y^2 - (2z-x)^2$

(3)
$$x^8 - y^8$$
 (4) $16x^5 - x$

$$(5) \left(5x^2 + 2x - 3\right)^2 - \left(x^2 - 2x - 3\right)^2$$
 (6) $8a^3b^3c^3 - 1$

(7)
$$64x^6y^3 + y^{15}$$
 (8) $a^{n+2} + 8a^n + 16a^{n-2}$

【答案】(1) 原式=
$$(x^2+4+4x)^2=(x+2)^4$$

(2)
$$\[\text{原} \[\] \] = (2y + 2z - x)(2y - 2z + x) \]$$

(3)

原式 =
$$(x^4 - y^4)(x^4 + y^4) = (x^2 - y^2)(x^2 + y^2)(x^4 + y^4)$$

= $(x + y)(x - y)(x^2 + y^2)(x^4 + y^4)$

(7)
$$\Re = y^5 (64x^6 + y^{12}) = y^3 (4x^2 + y^4) (16x^4 - 4x^2y^4 + y^8)$$

7.

已知m+n=6, m-n=-4, 求代数式 $(m^2+n^2-25)^2-4m^2n^2$ 的值。

【答案】-99

8.

(1)
$$xy - x - y + 1$$
 (2) $1 + (b - a^2)x^2 - abx^3$

(3)
$$x(x-1)(x-2)-6$$

【答案】(1) 原式=
$$x(y-1)-(y-1)=(y-1)(x-1)$$

(2)

(3)
$$\[\text{ } \[\text{ } \] \] \] = (x-3)(x^2+2) - 3(x^2+2) = (x-3)(x^2+2)$$

9.

(1)
$$ax(y^3+b^3)+by(bx^2+a^2y)$$

(2)
$$x(x+z)-y(y+z)$$

(3)
$$ax-ay+bx+cy-cx-by$$

(4)
$$x^4 + x^3 + x^2 - 1$$

(5)
$$a(1-b+b^2)-1+b-b^2$$

(6)
$$4x(a^2+x^2)-a^2-x^2$$

(7)
$$abx^2 + bxy - axy - y^2$$

(8)
$$a^2b^3 - abc^2d + ab^2cd - c^3d^2$$

(9)
$$32ac^2 + 15cx^2 - 48ax^2 - 10c^3$$

(10)
$$2(x^2-3ab)+x(4a-3b)$$

$$(11) \quad x^3 + y^3 + x^2 + 2xy + y^2$$

【答案】(1)

原式 =
$$axy^3 + axb^3 + b^2x^2y + a^2by^2 = ay^2(xy + ab) + b^2x(xy + ab)$$

= $(xy + ab)(ay^2 + b^2x)$

(3)
$$\emptyset \preceq a(x-y)+b(x-y)-c(x-y)=(x-y)(a+b-c)$$

(4)
$$\emptyset$$
 $\lesssim (x+1)(x^3+x-1)$

(6)
$$\[\text{\mathfrak{R}} \preceq = \left(a^2 + x^2 \right) \left(4x - 1 \right) \]$$

(11)
$$\Re = (x+y)(x^2-xy+y^2)+(x+y)^2=(x+y)(x^2-xy+y^2+x+y)$$

第十二讲、因式分解(二)

模块一、十字相乘法

知识集锦

十字相乘适用范围: 二次三项式或类二次三项式;

十字相乘的法则:第一列相乘为二次项,第二列相乘为常数项,交叉相乘的积之和等于一次项,满足这三个条件后,第一行是第一个因式,第二行是第二个因式;

【例1】

分解因式

(1)
$$x^2 + 5x + 6$$

(2)
$$x^2 + 6x + 8$$

(3)
$$x^2 - 3x + 2$$

(4)
$$x^2 - 8x + 15$$

(5)
$$x^2 + x - 6$$

(6)
$$x^2 - 2x - 3$$

$$(7) -x^2 + 2x + 8$$

(8)
$$4+3x-x^2$$

【答案】(1) $x^2 + 5x + 6 = (x+2)(x+3)$

(2)
$$x^2 + 6x + 8 = (x+2)(x+4)$$

(3)
$$x^2 - 3x + 2 = (x-1)(x-2)$$

(4)
$$x^2 - 8x + 15 = (x-3)(x-5)$$

(5)
$$x^2 + x - 6 = (x+3)(x-2)$$

(6)
$$x^2 - 2x - 3 = (x - 3)(x + 1)$$

(7)
$$-x^2 + 2x + 8 = -(x^2 - 2x - 8) = -(x - 4)(x + 2)$$

(8)
$$4+3x-x^2=-(x^2-3x-4)=-(x-4)(x+1)$$

【例2】

(1)
$$3a^2 - 7a - 6$$

(2)
$$5x^2 + 12x - 9$$

(3)
$$-6x^2 - 11x + 7$$

(4)
$$32-12x-27x^2$$

【答案】(1) $3a^2 - 7a - 6 = (3a + 2)(a - 3)$

(2)
$$5x^2 + 12x - 9 = (x+3)(5x-3)$$

(3)
$$-6x^2 - 11x + 7 = -(6x^2 + 11x - 7) = -(2x - 1)(3x + 7)$$

(4)
$$32-12x-27x^2 = -(27x^2+12x-32) = -(3x+4)(9x-8)$$

【例3】

分解因式

(1)
$$x^2 + 7xy + 10y^2$$

(2)
$$x^2 - 10xy - 24y^2$$

(3)
$$2x^2 - xy - 3y^2$$

(4)
$$12x^2 + 4xy - y^2$$

【答案】(1)
$$x^2 + 7xy + 10y^2 = (x+2y)(x+5y)$$

(2)
$$x^2 - 10xy - 24y^2 = (x + 2y)(x - 12y)$$

(3)
$$2x^2 - xy - 3y^2 = (2x - 3y)(x + y)$$

(4)
$$12x^2 + 4xy - y^2 = (6x - y)(2x + y)$$

【例4】

分解因式

(1)
$$x^2 - (b+1)x + b$$

(2)
$$kx^2 + (2k-3)x + k - 3$$

(3)
$$bc+b+c+1$$

【答案】(1)
$$x^2-(b+1)x+b=(x-1)(x-b)$$

(2)
$$kx^2 + (2k-3)x + k - 3 = (x+1)(kx+k-3)$$

(3)
$$(b+1)(c+1)$$

模块二、选主元

知识集锦

在对含有多个字母的代数式进行因式分解时,可以选择其中的某一个字母为主元,把其他字母看做参数进行因式分解。

【例5】

分解因式:

(1)
$$1+a+b+c+ab+ac+bc+abc$$

(2)
$$a(6a+11b+4)+b(3b-1)-2$$

(3)
$$y(y+1)(x^2+1)+x(2y^2+2y+1)$$

【答案】(1)

原式 =
$$a + ab + ac + abc + 1 + b + c + bc$$

= $a(1+b+c+bc)+1+b+c+bc$
= $(a+1)(1+b+c+bc)$
= $(a+1)(b+1)(c+1)$

(2)

原式=
$$6a^2 + (11b+4)a+3b^2-b-2$$

= $(2a+3b+2)(3a+b-1)$

(3)

原式 =
$$y(y+1)x^2 + x(2y^2 + 2y + 1) + y(y+1)$$

= $(yx + y + 1)(yx + x + y)$

【例6】

分解因式:

(1)
$$a^2c - a^2b + ab^2 - b^2c + c^2b - ac^2$$

(2)
$$a^2b - ab^2 + a^2c - ac^2 - 3abc + b^2c + bc^2$$

【答案】(1)

原式 =
$$(c-b)a^2 + (b^2 - c^2)a + bc(c-b)$$

= $(c-b)[a^2 - (b+c)a + bc]$
= $(c-b)(a-b)(a-c)$

(2)

原式 =
$$(b+c)a^2 - (b^2 + c^2 + 3bc)a + (b^2c + bc^2)$$

= $(b+c)a^2 - (b^2 + c^2 + 3bc)a + bc(b+c)$
= $[a-(b+c)][(b+c)a-bc]$
= $(a-b-c)(ab+ac-bc)$

模块三、换元法

知识集锦

换元法:如果在多项式中某个数或者式子出现多次,那么可将这个数或者式子用一个字母代替,使多项式变得更简单,结构更加清晰,便于因式分解。

换元法常见形式: ①十字相乘换元法; ②知二推二换元法; ③糖葫芦换元法(形如(二次三项式)(二次三项式)+*a*的形式)

【例7】

(1)
$$(x+y)^2 - 4(x+y) - 12$$

(2)
$$(x^2 + 4x + 2)^2 + 3(x^2 + 4x + 2) + 2$$

(3)
$$(x^2+4x+8)^2+3x(x^2+4x+8)+2x^2$$

【答案】(1) (x+y+2)(x+y-6)

(2)
$$(x+1)(x+3)(x+2)^2$$

(3)
$$(x+2)(x+4)(x^2+5x+8)$$

【例8】

分解因式:

(1)
$$(x^2 + xy + y^2)^2 - 4xy(x^2 + y^2)$$

 (2) $xy(x+y) - 2xy - 3(x+y) + 6$

【解析】(1) 设
$$x^2 + y^2 = a$$
, $xy = b$, 则 原 式 = $(a+b)^2 - 4ab = (a-b)^2 = (x^2 + y^2 - xy)^2$

【例9】

分解因式:

(1)
$$(x^2+5x+2)(x^2+5x+3)-12$$
 (2) $(x^2-x-3)(x^2-x-5)-3$ 【解析】(1) 方法 1: 将 x^2+5x 看作一个整体,设 $x^2+5x=t$,则

原式=
$$(t+2)(t+3)-12=t^2+5t-6=(t-1)(t+6)=(x+2)(x+3)(x^2+5x-1)$$

方法 2: 将
$$x^2 + 5x + 2$$
看作一个整体,设 $x^2 + 5x + 2 = t$,则

原式=
$$t(t+1)-12=t^2+t-12=(t-3)(t+4)=(x+2)(x+3)(x^2+5x-1)$$

方法 3: 将 x^2+5x+3 看作一个整体,过程略.如果学生的能力到一定的程度,甚至连换元都不用,直接把 x^2+5x 看作一个整体,将原式展开,分组分解即可,则

原式 =
$$(x^2 + 5x)^2 + 5(x^2 + 5x) - 6$$

= $(x^2 + 5x - 1)(x^2 + 5x + 6)$
= $(x + 2)(x + 3)(x^2 + 5x - 1)$

原式 =
$$(y-1)(y+1)-3$$

= $(y-2)(y+2)$
= $(x^2-x-6)(x^2-x-2)$
= $(x+1)(x-2)(x+2)(x-3)$

原 式 =
$$y(y-2)-3 = y^2-2y-3 = (y+1)(y-3)$$

= $(x^2-x-3+1)(x^2-x-3-3)$
= $(x^2-x-2)(x^2-x-6)$
= $(x+1)(x-2)(x+2)(x-3)$

【例10】

分解因式:

(1)
$$(x+1)(x+3)(x+5)(x+7)+15$$
 (2) $(x^2+6x+8)(x^2+14x+48)+12$

(3)
$$16(6x-1)(2x-1)(3x+1)(x-1)+25$$

【解析】(1) 原式=
$$(x+1)(x+7)(x+3)(x+5)+15=(x^2+8x+7)(x^2+8x+15)+15$$

 $\Rightarrow x^2+8x+11=t$. 则

原式=
$$(t-4)(t+4)+15=(t-1)(t+1)$$

= $(x^2+8x+10)(x^2+8x+12)$

$$=(x+2)(x+6)(x^2+8x+10)$$

(2)

原 式 =
$$(x+2)(x+4)(x+6)(x+8)+12$$

= $(x^2+10x+16)(x^2+10x+24)+12$

$$\Rightarrow t = x^2 + 10x + 16$$

原式=
$$t(t+8)+12=(t+2)(t+6)=(x^2+10x+18)(x^2+10x+22)$$

(3)

原式=
$$(6x-1)(4x-2)(6x+2)(4x-4)+25$$

= $(24x^2-16x+2)(24x^2-16x-8)+25$
设 $24x^2-16x+2=t$, 原式= $t(t-10)+25=(t-5)^2=(24x^2-16x-3)^2$

模块四、拆添项

知识集锦

拆添项:一个多项式无法直接因式分解,可以通过拆或者添项的方式使其能够分解。 拆添项常见考法:①以公式为导向;②以系数为导向;

【例11】

(1)
$$x^4 + 4$$
 (2) $x^4 + \frac{1}{4}y^4$

(3)
$$x^4 - 3x^2 + 1$$
 (4) $x^4 - 23x^2 + 1$

$$(5)$$
 $x^8 + x^4 + 1$

【解析】(1)

$$x^{4} + 4 = x^{4} + 4x^{2} + 4 - 4x^{2} = (x^{4} + 4x^{2} + 4) - 4x^{2} = (x^{2} + 2)^{2} - (2x)^{2}$$

$$= (x^{2} + 2 + 2x)(x^{2} + 2 - 2x) = (x^{2} + 2x + 2)(x^{2} - 2x + 2)$$
(2)
$$x^{4} + \frac{1}{4}y^{4} = x^{4} + \frac{1}{4}y^{4} + x^{2}y^{2} - x^{2}y^{2} = \left(x^{2} + \frac{1}{2}y^{2}\right)^{2} - (xy)^{2}$$

$$= \frac{1}{4}(2x^{2} + 2xy + y^{2})(2x^{2} - 2xy + y^{2})$$
(3)
$$x^{4} - 3x^{2} + 1 = x^{4} - 2x^{2} + 1 - x^{2} = (x^{2} - 1)^{2} - x^{2} = (x^{2} - 1 - x)(x^{2} - 1 + x)$$
(4)
$$x^{4} - 23x^{2} + 1 = x^{4} + 2x^{2} + 1 - 25x^{2} = (x^{2} + 1)^{2} - (5x)^{2}$$

$$= (x^{2} + 1 + 5x)(x^{2} + 1 - 5x)$$
(5)
$$x^{8} + x^{4} + 1 = x^{8} + 2x^{4} + 1 - x^{4} = (x^{4} + 1 + x^{2})(x^{4} + 1 - x^{2})$$

$$= (x^{4} + 1 + 2x^{2} - x^{2})(x^{4} + 1 - x^{2})$$

$$= (x^{2} + 1 + x)(x^{2} + 1 - x)(x^{4} + 1 - x^{2})$$

【例12】

分解因式:

(1)
$$x^3 + 3x^2 - 4$$
 (2) $x^3 - 9x + 8$

(3)
$$a^3 - 4a + 3$$
 (4) $x^3 + 2x^2 - 6 - 5x$ [$\Re \pi$] (1) $\Re x = x^3 - 1 + 3x^2 - 3$ $= (x - 1)(x^2 + x + 1) + (x - 1)(3x + 3)$ $= (x - 1)(x + 2)^2$ (2) $x^3 - 9x + 8 = x^3 - 1 - 9x + 9 = (x - 1)(x^2 + x + 1) - 9(x - 1)$ $= (x - 1)(x^2 + x - 8)$ (3) $\Re x = (a^3 - a) - (3a - 3) = a(a + 1)(a - 1) - 3(a - 1) = (a - 1)(a^2 + a - 3)$ $\Re a^3 - 4a + 3 = a^3 - 1 - 4a + 4 = (a - 1)(a^2 + a + 1) - 4(a - 1) = (a - 1)(a^2 + a - 3)$ (4) $= x^3 + 2x^2 + x - 6 - 6x = x(x^2 + 2x + 1) - 6(x + 1) = (x + 1)(x - 2)(x + 3)$

笔记整理

课后练习

1.

(1)
$$x^2 - 5x + 6$$

(2)
$$-x+12-x^2$$

(3)
$$-x^2 + x + 2$$

(4)
$$4x-3-x^2$$

【答案】(1) (x-2)(x-3)

$$(2) -(x+4)(x-3)$$

$$(3) -(x+1)(x-2)$$

$$(4) -(x-1)(x-3)$$

2.

分解因式

(1)
$$3x^2 - 8x - 3$$

(2)
$$-12x^2 + 11x + 15$$

【答案】(1)
$$(3x+1)(x-3)$$

$$(2) -(4x+3)(3x-5)$$

3.

分解因式

(1)
$$6x^2 - 5xy - 4y^2$$

(2)
$$12x^2 - 25xy + 12y^2$$

【答案】(1) 原式=
$$(2x+y)(3x-4y)$$

4.

分解因式

(1)
$$(a-b)x^2 + 2ax + a + b$$

(2)
$$x^2 + (a+b+c)x + (a+b)c$$

【答案】(1)
$$(a-b)x^2 + 2ax + a + b = (x+1)(ax-bx+a+b)$$

(2)
$$x^2 + (a+b+c)x + (a+b)c = (x+a+b)(x+c)$$

5.

(1)
$$2a^2 - b^2 - ab + bc + 2ac$$

(2)
$$x^2 + 2(a+b)x - 3a^2 + 10ab - 3b^2$$

【答案】(1)
$$(2a+b)(a-b+c)$$

$$(2) (x-a+3b)(x+3a-b)$$

6.

分解因式

(1)
$$5+7(a+1)-6(a+1)^2$$

(2)
$$(a-2b)^2 - 8(a-2b) + 12$$

(3)
$$(x^2+4x+8)^2+4(x^2+4x+8)+3$$

【答案】(1)
$$(2-3a)(2a+3)$$

(2)
$$(a-2b-2)(a-2b-6)$$

(3)
$$(x^2+4x+9)(x^2+4x+11)$$

7.

(1)
$$(x^2 + x + 1)(x^2 + x + 2) - 12$$

(2)
$$(a-1)(a-2)(a-3)(a-4)-24$$

(3)
$$(x^2+3x+2)(3+8x+4x^2)-90$$

【答案】(1)
$$(x-1)(x+2)(x^2+x+5)$$

(2)
$$a(a-5)(a^2-5a+10)$$

$$(3) (x-1)(2x+7)(2x^2+5x+12)$$

8.

分解因式

(1)
$$x^4 + 64$$

(2)
$$x^4 - 47x^2 + 1$$

(3)
$$x^4 - 3x^2 + 1$$

【答案】(1)
$$(x^2+4x+8)(x^2-4x+8)$$

(2)
$$(x^2 + 7x + 1)(x^2 - 7x + 1)$$

(3)
$$(x^2-x-1)(x^2+x-1)$$

9.

分解因式

(1)
$$a^3 - 3a + 2$$

【答案】(1)
$$(a+2)(a-1)^2$$

(2)
$$(x^2+3)(x^2+x+1)$$

(2)
$$x^4 + x^3 + 4x^2 + 3x + 3$$