§5. Кривые и области на комплексной плоскости

п.1 Непрерывные кривые и области на комплексной плоскости

<u>Опр.1</u> Пусть $z(t):[a,b]\longrightarrow \mathbb{C}$, функция zinC[a,b]. Отображение z(t) непрерывная кривая, параметрическая переменная $t\in [a,b]$. Точка z(a),z(b) - начало и конец кривой. Если z(a)=z(b), то кривая называется замкнутой (контур).

 $\gamma:x=x(t),y=y(t),t\in[a,b]\iff z=z(t)\equiv x(t)+iy(t),t\in[a,b].\ (\gamma\subset\mathbb{C}$ непрерывная кривая $\mathbb{C})$

Опр.2 Кривая γ называется простой, если $\forall t_1,t_2\in[a,b](t_1\neq t_2\implies z(t_1)\neq z(t_2))$ Замкнутая кривая γ (контур) называется простой замкнутой кривой, если $\forall t_1,t_2\in(a,b)(t_1\neq t_2\implies z(t_1)\neq z(t_2))$

Опр.3 Кривая γ : $z=z(t), t\in [a,b]$ является объединением кривых γ_1,\ldots,γ_n ($\gamma=igcup_{k=1}^n\gamma_k$), если \exists разбиение $\tau=\{a=t_0< t_1<\ldots< t_n=b\}$ отрезок [a,b]:

 $orall k=\overline{1,n}\gamma_k:z=z(t),t\in [t_{k-1},t_k].$

Представление $\gamma = \bigcup_{k=1}^n \gamma_k$ - разбиение кривой γ

! $\gamma^-: z = z(-t+a+b), t \in [a,b]$ - противоположно ориентированная кривая z(b) - начало, z(a) - конец.

<u>Лемма 1</u> (О разбиении кривой)

Пусть $\gamma\subset\mathbb{C}$ - непрерывная кривая: $\gamma\subset U_{j\in J}V_j$, где V_j - открытое, J - множество индексов. Тогда \exists разбиение кривой γ

$$\gamma = igcup_{k=1}^n \gamma_k \ orall k = \overline{1,n} \ \exists j_k \subset J \ \gamma_k \subset V_j k.$$

 Δ :

По условию γ : $z=z(t), t\in [a,b]; z(t)=z(t)+i\cdot y(t)$ - параметризация γ $\gamma\subset \bigcup_{j\in J}V_j \implies \forall t\in [a,b]\exists j(t)\in J: z(t)\in V_{j(t)}.$

В силу непрерывности $z(t)\exists U(t)\subset \mathbb{R}: z(U(t)\cap [a,b])\subset V_{j(t)}$. $T. \kappa.\ \$[a,b]\subset igcup_{t\in [a,b]}U(t)$

$$z(t)\exists U(t)\subset \mathbb{R}: z(U(t)\cap [a,b])\subset V_{j(t)}$$
/

то по Лемме о числе Лебега $\exists d>0: \forall [t',t'']\subset [a,b]$

$$(t''-t' < d \implies [t',t''] \subset U(t_0)) \implies z([t',t'']) \subset V_{j(t_0)}.$$

Пусть разбиение $au = \{a = t_0 < t_1 < \ldots < t_n = b\}, diam au < d.$

Рассмотрим дуги $\gamma_k:z=z(t),t\in[t_{k-1},t_k]; \forall k=\overline{1,n}\exists j_k\in J:z([t_{k-1},t_k])\subset V_{j_k}$, поэтому $\gamma=igcup_{k=1}^n\gamma_k\subsetigcup_{k=1}^nV_{j_k},\gamma_k\subset V_{j_k}$

<u>Опр.4</u> $D\subset\mathbb{C}$ называется линейно-связным, если $\forall z_0,z_1\in D\exists$ непрерывная кривая $\gamma\subset D$ с началом в точка z_0 и концом в точке z_1 .

Открытое линейно-связное множество $D\subset\mathbb{C}$ называется областью.

Лемма 2

Пусть $D \subset \mathbb{C}, D$ область. Тогда $\forall z_0, z_1 \in D \ z_0 \neq z_1 \exists$ ломаная с конечным числом вершин (звеньев) целиком лежат в D, с началом в z_0 и концом в z_1 .

 Δ :

Пусть
$$z_0,z_1\in D$$
 $z_0\neq z_1$ D - линейное связное $\implies \exists \gamma:z=z(t)\in D,t\in [a,b],$ $z(a)=z_0,\,z(b)=z_1$ Т.к. D - открытое, то $\forall c\in [a,b]$ $z(c)\in D$ вместе с некоторой окрестностью (кругом) V_C . По Л.1 о разбиении кривой, т.к. $\gamma\subset \bigcup_{c\in [a,b]}V_C,$ \exists разбиение $\tau=\{a=t_0<\ldots< t_n=b\}$ отрезка $[a,b]$ и набор кругов V_{C_1},\ldots,V_{C_n} $\forall k=\overline{1,n}$

 $z([t_{k-1},t_k])\subset V_{C_k} \Longrightarrow \mathbb{C}\supset [z(t_{k-1}),z(t_k)]\subset V_{C_k}\subset D \Longrightarrow$ ломаная с вершинами $z(t_0),z(t_1),\ldots,z(t_n)$ лежит в D, является искомой.

<u>Опр.5</u> Кривая γ : z(t)=x(t)+iy(t) называется гладкой, если $x(t),y(t)\in C^1[a,b]$ и $\dot{x}^2+\dot{y}^2\neq 0$. Кусочно-гладкая кривая может быть разбита на конечное число гладких кусков.

Глава 2. Дифференцируемость функций комплексного переменного. Условия Коши-Римана. Голоморфная функция. Геометрический смысл производной.

§1. Определение производной и дифференциала функции комплексного переменного. Свойства операции дифференцирования.

Опр.1 Пусть $f:U(z_0)\longrightarrow \mathbb{C}, z_0\in \mathbb{C}, \forall z\in U(z_0)$ $\Delta f=f(z)-f(z_0), \Delta z=z-z_0.$ Если $\exists \lim_{\Delta z\to 0} \frac{\Delta f}{\Delta z}\in \mathbb{C}$, то он называется комплексной производной функции f в точке z_0 , обозначается $f'(z_0)$

f называется дифференцируемой в точке z_0 ($\mathbb C$ - дифференцируемой), если $\exists C\in \mathbb C orall z\in U(z_0)$

$$egin{aligned} \Delta f(z_0;\Delta z) &\equiv f(z_0+\Delta z) - f(z_0) = C \cdot \Delta z + o(|\Delta z|). \ (1) \ &\iff rac{\Delta d}{\Delta z} = C + o(1) \implies C = f'(z_0) \ \lim_{\Delta z o 0} rac{o(|\Delta z|)}{|\Delta z|} = 0 \end{aligned}$$

Пример: Пусть $nin\mathbb{N},z\in\mathbb{C},f(z)=z^n$. Тогда $f'(z)=(z^n)'=\lim_{t o z}rac{t^n-z^n}{t-z}=\lim_{t o z}(t^{n-1}+z\cdot t^{n-2}+\ldots+z^{n-1})=n\cdot z^{n-1}$

Свойства дифференцируемых функций:

1. Пусть f и g определены в U(x) и дифференцируемы в точке z. Тогда

$$\exists (f(z)+g(z))'=f'(z)+g'(z),\ \exists (f(z)\cdot g(z))'=f'(z)g(z)+f(z)g'(z)$$
 и если $g
eq 0$ в $U(z)$, то $\exists (f(z)g(z))'=rac{f'(z)g(z)-g'(z)f(z)}{g^2(z)}$

2. Дифференцируемость сложной фнкции (суперпозиции)

Пусть f дифференцируема в точке z, а g дифференцируема в точке f(z). Тогда $(g\circ f)'(z)\equiv (g(f(z)))'=g'(f(z))\cdot f'(z)$

3. Дифференцируемость обратной функции

Пусть $f:U(z_0)\longrightarrow f(U)$ f - взаимно однозначно и взаимно непрерывно, т.е. $f\in C(U), f^{-1}\in C(V), V=f(U)$ $w_0=f(z_0)\in V$ - окружность w_0 . $f^{-1}\equiv g:V\longrightarrow U$ $\forall w\in V\longrightarrow z=g(w):z\in U\land f(z)=w.$ Если функция f дифференцируема в точке z_0 и $f'(z_0)\neq 0$, то функция g дифференцируема в точке w_0 и $g'(w_0)=\frac{1}{f'(z_0)},\, z_0=g(w_0)$

 Δ :

$$orall w\in V\setminus\{w_0\}$$
 рассмотрим $z=g(w)\implies z\in U\setminus\{z_0\}$ $rac{g(w)-g(w_0)}{w-w_0}=rac{z-z_0}{f(z)-f(z_0)}.$ Т.к. $w=f(z)$ взаимно однозначное $U\leftrightarrow V$ и вызаимно непрерывное, то $(w\to w_0)\iff (z\to z_0)$

$$\implies g'(w_0) = \lim_{w o w_0} rac{g(w) - g(w_0)}{w - w_0} = \lim_{z o z_0} rac{z - z_0}{f(z) - f(z_0)} = rac{1}{f'(z_0)}$$

Условия Коши-Римана

Пусть f определена в окрестности точки $z_0=x_0+iy_0,\,u(x,y)=Ref(z),\,v(x,y)=Imf(z),\,$ $\Delta x=x-x_0,\,\Delta y=y-y_0,\,\Delta u=u(x,y)-u(x_0,y_0),\,\Delta v=v(x,y)-v(x_0,y_0)$ u,v - дифференцируемы в точке (x_0,y_0) по определению означает $\exists A_i,B_i\in\mathbb{R},\,i=1,2$ $\Delta u=A_1\Delta x+B_1\Delta y+\alpha_1\wedge\Delta v=A_2\Delta x+B_2\Delta y+\alpha_2,\,$ где $\alpha_j=o_j(\rho),\,$ т.е. $\lim_{\rho\to 0}\frac{\alpha_j}{\rho}=0,\,$ $j=1,2\implies A_1=\frac{\partial u}{\partial x},B_1=\frac{\partial u}{\partial y},A_2=\frac{\partial v}{\partial x},B_2=\frac{\partial v}{\partial y}$ в точке $(x_0,y_0)\leftrightarrow z_0.$

$$!\
ho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \equiv |\Delta z|\ !\ o(
ho) = o(|\Delta z|).$$

T1

Пусть f определена в $U(z_0)$.

 $(f\ \mathbb{C}$ -дифференцируема в точке $z_0)\iff ((u,v$ дифференцируемы в точке (x_0,y_0) как функции 2-ух переменных) \wedge $(\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ в точке $(x_0,y_0))$

 Δ :

$$\Longrightarrow$$
 пусть $f(z)$ дифференцируема в точке z_0 , т.е. $\exists c \in \mathbb{C}: \Delta f = c \cdot \Delta z + o(|\Delta z|)$ $\Delta f \equiv \Delta u + i\Delta v, \ \Delta z \equiv \Delta x + i\Delta y, \ c = c_1 + ic_2, \ o(|\Delta z|) = o_1(|\Delta z|) + io_2(|\Delta z|).$ Тогда $\Delta f = \Delta u + i\Delta v = (c_1 + ic_2)(\Delta x + i\Delta y) + o_1(|\Delta z|) + io_2(|\Delta z|) \Longrightarrow$ $(2) \ \Delta u = c_1 \cdot \Delta x - c_2 \cdot \Delta y + o_1(|\Delta z|) + i \cdot o_2(|\Delta z|) \wedge$

$$egin{aligned} \wedge \ \Delta v &= c_2 \cdot \Delta x + c_1 \cdot \Delta y + o_2(|\Delta z|) \ ! \ i &= 1, 2 \, rac{o_i(|\Delta z|)}{|\Delta z|}
ightarrow 0, \Delta z
ightarrow 0 \iff rac{o(|\Delta z|)}{|\Delta z|}
ightarrow 0, \Delta z
ightarrow 0 \end{aligned}$$

To be continued...