Geometria e Algebra - MIS-Z

Quarto appello - Ottobre

14/10/2022

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) Il vettore $(1,2,3) \in \mathbb{R}^3$ è combinazione lineare dei vettori (1,-2,1) e (-2,4,-2).

 \square VERO

 \Box FALSO

(b) La funzione

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \to (x^2, y^2)$$

è un'applicazione lineare.

 \square VERO

☐ FALSO

- (c) Sia $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}$ un'applicazione lineare suriettiva. Allora $\dim(\ker(f)) = 3$.
 - \square VERO
 - \square FALSO

- (d) Siano $A, B \in \mathcal{M}_2(\mathbb{R})$ e sia O_2 la matrice nulla di $\mathcal{M}_2(\mathbb{R})$. Se $AB = O_2$, allora $A = O_2$ o $B = O_2$.
 - \Box VERO
 - \Box FALSO

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\left\{ \begin{array}{l} X + kY + Z = k \\ X + Y + Z = 2 \\ kX + Y + kZ = 2 \\ X + kY + (k-2)Z = 3 \end{array} \right.$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni

ESERCIZIO 3 [8 punti]. Sottospazi vettoriali.

(a) Enunciare il lemma di Steinitz.

(b) Dimostrare che se $\{v_1,\dots,v_n\}$ e $\{w_1,\dots,w_m\}$ sono due basi di uno spazio vettoriale V allora n=m.

(c) In \mathbb{R}^4 si consideri il sottospazio vettoriale

$$U = Span\{(0,1,-1,4), (-1,0,2,-2), (-1,1,1,2), (2,-3,-1,-8)\}.$$

Si determini una base e la dimensione di U.

(d) Al variare di k in \mathbb{R} , si consideri il sottospazio vettoriale di \mathbb{R}^4 $V_k=Span\{(1,k,0,-6),(-4,2,6,k+2)\}.$

Determinare, se esistono, i valori di k per cui $V_k = U$.

(e) Si completi la base di U trovata al punto (c) a una base di \mathbb{R}^4 .

ESERCIZIO 4 [7 punti]. Un endomorfismo di \mathbb{R}^3 .

Per $k \in \mathbb{R}$ si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3 (x, y, z) \mapsto (3x + y, 2kx - y, 4x + 8y + kz).$$

(a) Si determini, se esiste, un valore di k tale che $(3, -9, -40) \in \ker(f_k)$.

(b) Si determini, se esiste, un valore di k tale che $(-1,1,12) \notin \text{Im}(f_k)$.

(c) Per k=-2, si determini se f_{-2} è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

(d) Un endomorfismo di uno spazio vettoriale V si dice triangolabile se esiste una base di V rispetto alla quale la matrice rappresentativa dell'endomorfismo è triangolare superiore. Si mostri che f_{-2} è triangolabile.

ESERCIZIO 5 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche della retta r_1 di \mathbb{E}^3 passante per i punti A(1,1,0) e B(3,0,-1).

(b) Si consideri la retta r_2 descritta dalle equazioni cartesiane

$$r_2: \left\{ \begin{array}{l} X + Y - 1 = 0 \\ Y + Z - 3 = 0. \end{array} \right.$$

Determinare la posizione reciproca di r_1 e r_2 e, se possibile, determinare il piano π che le contiene entrambe.

(c) Sia $k \in \mathbb{R}.$ Si consideri il piano π_k definito dall'equazione cartesiana

$$\pi_k : k^2 X + (k+4)Y + kZ + k - 1 = 0.$$

Si determinino il/i valore/i di k tali che π_k sia parallelo al piano π trovato al punto (b) e per tale/i valore/i si calcoli la distanza tra i due piani.