

PATENT
ATTY. DOCKET NO. REGEN1260-3

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Tsien et al. Art Unit: Unassigned
Application No.: Unassigned Examiner: Unassigned
Filed: January 25, 2002
Title: TANDEM FLUORESCENT PROTEIN CONSTRUCTS

Box PATENT APPLICATION
Commissioner for Patents
Washington, DC 20231

Sir:

PRELIMINARY AMENDMENT

In connection with the filing of the above-identified patent application, which is a Continuation of U.S. Serial No. 09/396,003, filed September 13, 1999, and prior to examination of the subject application, entry of the amendments and consideration of the following remarks respectfully are requested.

CERTIFICATION UNDER 37 CFR §1.10	
"EXPRESS MAIL" Mailing Label Number: EV 016 236 959 US	
Date of Deposit: January 25, 2002	
<p>I hereby certify that this correspondence is being deposited with the United States Postal Service as "Express Mail Post Office to Addressee" with sufficient postage on the date indicated above and is addressed to: Box PATENT APPLICATION, Commissioner for Patents, Washington, D.C. 20231.</p>	
<p><u>Aldon Griffis</u> <i>(Name of Person Mailing Paper)</i></p>	
 <i>(Signature)</i>	
January 25, 2002 <i>(Date)</i>	

I. AMENDMENTS

IN THE DRAWINGS

Please enter Substitute Figure 1B and Substitute Figure 2.

IN THE SPECIFICATION

Please delete the sentence at page 1, lines 3-4, and substitute therefor:

--This application is a continuation of U.S. Serial No. 09/396,003, filed September 13, 1999, which is a continuation of U.S. Serial No. 08/792,553, filed January 31, 1997 (now U.S. Patent No. 5,981,200), which is a continuation-in-part of U.S. Serial No. 08/594,575, filed January 31, 1996.--

IN THE CLAIMS

Please cancel claims 1 to 56.

Please add new claims 57 to 78 as follows:

--57. A tandem fluorescent protein construct, comprising a donor fluorescent protein moiety, an acceptor fluorescent protein moiety and a linker moiety that couples the donor and acceptor moieties and wherein the donor and acceptor moieties exhibit fluorescence resonance energy transfer ("FRET") when the donor moiety is excited by radiation, characterized in that the linker moiety comprises a protease cleavage recognition site, wherein cleavage of the linker by a protease results in a change in FRET between the donor and acceptor moieties,

and wherein the donor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Phe64Leu, Ser65Thr, Tyr66Trp, Asn146Ile, Met153Thr, Val163A and Asn212Lys, or
- b) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- c) Tyr66His and Tyr145Phe, or
- d) Tyr66Trp, Asn146Ile, Met153Thr, Val163Ala and Asn212Lys, or
- e) Ser72Ala, Tyr145Phe and Thr203Ile, or
- f) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr, and

the acceptor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- b) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr.

58. A tandem fluorescent protein construct, comprising a donor fluorescent protein moiety, an acceptor fluorescent protein moiety and a linker moiety that couples the donor and acceptor moieties and wherein the donor and acceptor moieties exhibit fluorescence resonance energy transfer (“FRET”) when the donor moiety is excited by radiation, characterized in that the linker moiety comprises a protease cleavage recognition site, wherein cleavage of the linker by a protease results in a change in FRET between the donor and acceptor moieties, and

wherein the donor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Tyr66His and Tyr145Phe, or
- b) Tyr66Trp, Asn146Ile, Met153Thr, Val163Ala and Ans212Lys, and

the acceptor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Ser65Cys or
- b) Ser65Thr.

59. The construct of claim 57 or 58, wherein the linker moiety comprises between 5 amino acids and 50 amino acids.

60. The construct of claim 57 or 58, wherein the donor moiety acceptor moiety and the linker moiety are fused in a single amino acid sequence.

61. The construct of claim 57 or 58, wherein the linker comprises a cleavage recognition site for trypsin, enterokinase, HIV-1 protease, prohormone convertase, interleukin-1b-converting enzyme, adenovirus endopeptidase, cytomegalovirus assemblin, leishmanolysin, b-Secretase for APP, thrombin, renin, angiotensin-converting enzyme, cathepsin D or a kininogenase.

62. A recombinant nucleic acid coding for expression of a tandem fluorescent protein construct, the construct, comprising a donor fluorescent protein moiety, an acceptor fluorescent protein moiety and a linker moiety that couples the donor and acceptor moieties and wherein the donor and acceptor moieties exhibit fluorescence resonance energy transfer ("FRET") when the donor moiety is excited by radiation, characterized in that the linker moiety comprises a protease cleavage recognition site, wherein cleavage of the linker by a protease results in a change in FRET between the donor and acceptor moieties,

and wherein the donor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- Phe64Leu, Ser65Thr, Tyr66Trp, Asn146Ile, Met153Thr, Val163A and Asn212Lys, or
- Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- Tyr66His and Tyr145Phe, or
- Tyr66Trp, Asn146Ile, Met153Thr, Val163Ala and Asn212Lys, or
- Ser72Ala, Tyr145Phe and Thr203Ile, or
- Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr, and

the acceptor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr.

63. A recombinant nucleic acid coding for expression of a tandem fluorescent protein construct, the construct comprising a donor fluorescent protein moiety, an acceptor fluorescent protein moiety and a linker moiety that couples the donor and acceptor moieties and wherein the donor and acceptor moieties exhibit fluorescence resonance energy transfer (“FRET”) when the donor moiety is excited by radiation, characterized in that the linker moiety comprises a protease cleavage recognition site, wherein cleavage of the linker by a protease results in a change in FRET between the donor and acceptor moieties, and

wherein the donor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Tyr66His and Tyr145Phe, or
- b) Tyr66Trp, Asn146Ile, Met153Thr, Val163Ala and Ans212Lys, and

the acceptor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Ser65Cys or
- b) Ser65Thr.

64. The nucleic acid of claim 62 or 63, wherein the linker moiety comprises between 5 amino acids and 50 amino acids.

65. A host cell transfected with an expression vector comprising an expression control sequence operatively linked to a sequence coding for the expression of a tandem fluorescent protein construct, the construct comprising a donor fluorescent protein moiety, an acceptor fluorescent protein moiety and a linker moiety that couples the donor and acceptor moieties and wherein the donor and acceptor moieties exhibit fluorescence resonance energy transfer (“FRET”) when the donor moiety is excited by radiation, characterized in that the linker moiety comprises a protease cleavage recognition site, wherein cleavage of the linker by a protease results in a change in FRET between the donor and acceptor moieties, and

wherein the donor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Phe64Leu, Ser65Thr, Tyr66Trp, Asn146Ile, Met153Thr, Val163A and Asn212Lys, or
- b) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- c) Tyr66His and Tyr145Phe, or
- d) Tyr66Trp, Asn146Ile, Met153Thr, Val163Ala and Asn212Lys, or
- e) Ser72Ala, Tyr145Phe and Thr203Ile, or
- f) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr, and

the acceptor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- b) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr.

66. A host cell transfected with an expression vector comprising an expression control sequence operatively linked to a sequence coding for the expression of a tandem fluorescent protein construct, the construct comprising a donor fluorescent protein moiety, an acceptor fluorescent protein moiety and a linker moiety that couples the donor and acceptor moieties and wherein the donor and acceptor moieties exhibit fluorescence resonance energy transfer (“FRET”) when the donor moiety is excited by radiation, characterized in that the linker moiety comprises a protease cleavage recognition site, wherein cleavage of the linker by a protease results in a change in FRET between the donor and acceptor moieties, and

wherein the donor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Tyr66His and Tyr145Phe, or
- b) Tyr66Trp, Asn146Ile, Met153Thr, Val163Ala and Ans212Lys, and

the acceptor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Ser65Cys or
- b) Ser65Thr.

67. The host cell of claim 65 or 66, further comprising a protease that is not naturally expressed by the host cell.
68. The host cell of claim 65 or 66, wherein the host cell is *E. coli*.
69. The host cell of claim 65 or 66, wherein the host cell is an eukaryotic cell.
70. The host cell of claim 65 or 66, wherein the host cell is a mammalian cell.
71. A method for measuring protease activity in a sample, comprising:
 - 1) contacting the sample with the tandem fluorescent protein construct of claim 57 or 58 that comprises a linker moiety comprising a cleavage recognition site specific for the protease;
 - 2) exciting the donor moiety by radiation; and
 - 3) measuring fluorescence resonance energy transfer between the donor and acceptor moieties at a first time and a second time after addition of the tandem fluorescent protein construct whereby a decrease in fluorescence resonance energy transfer upon incubation of the sample with the tandem fluorescent protein construct indicates protease activity.

72. A method of measuring protease activity in a cell, comprising the steps of:

- 1) providing a cell that expresses the tandem fluorescent protein construct, of claim 57 or 58 that comprises a linker moiety comprising a cleavage recognition site specific for the protease;
- 2) exciting the donor moiety by radiation; and
- 3) measuring the degree of fluorescence resonance energy transfer between the donor and acceptor moieties wherein cleavage of the construct by the protease results in less fluorescence resonance energy transfer which reflects protease activity.

73. The method of claim 72, wherein the step of providing a cell comprises; inducing a sudden increase in expression of the tandem fluorescent protein construct, and the step of measuring the degree of fluorescence resonance energy transfer comprises; determining the degree at a first and a second time after induction of tandem fluorescent protein construct expression and determining the difference between the first and second time, whereby less fluorescence resonance energy transfer reflects the presence of the protease.

74. A method for determining whether a compound alters the activity of a protease comprising the steps of:
contacting a sample containing a known amount of the protease with the compound and with the tandem fluorescent protein construct of claim 57 or 58;
exciting the donor moiety by radiation; and
determining the degree of fluorescence resonance energy transfer between the donor and acceptor moieties in the sample containing the compound, and comparing the degree of fluorescence resonance energy transfer between the donor and acceptor moieties in a sample not containing the compound, whereby a difference in the degree of fluorescence resonance energy transfer indicates that the compound alters the activity of the protease.

75. A method for determining whether a compound alters the activity of a protease in a cell, comprising the steps of:

- 1) providing first and second cells that express the tandem fluorescent protein construct of claims 57 or 58, wherein the linker moiety comprises a cleavage recognition amino acid sequence specific for the protease;
- 2) contacting the first cell with an amount of the compound;
- 3) contacting the second cell with a different amount of the compound, or a buffer control;
- 4) exciting the donor moiety in the first and second cell by radiation;
- 5) determining the degree of fluorescence resonance energy transfer in the first and second cells; and
- 6) comparing the degree of fluorescence resonance energy transfer in the first and second cells, whereby a difference in the degree of fluorescence resonance energy transfer indicates that the compound alters the activity of the protease.

76. A tandem fluorescent protein construct, comprising a donor fluorescent protein moiety, an acceptor fluorescent protein moiety and a linker moiety that couples the donor and acceptor moieties and wherein the donor and acceptor moieties exhibit fluorescence resonance energy transfer (“FRET”) when the donor moiety is excited by radiation, characterized in that the linker moiety comprises a protease cleavage recognition site, wherein cleavage of the linker by a protease results in a change in FRET between the donor and acceptor moieties, and wherein the donor or acceptor moieties comprises either,

an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising a mutation that reduces the hydrophobicity at positions A206, L221 or F223 and attenuates the intermolecular interactions between the donor or acceptor moieties,

or the donor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Phe64Leu, Ser65Thr, Tyr66Trp, Asn146Ile, Met153Thr, Val163A and Asn212Lys, or

- b) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- c) Tyr66His and Tyr145Phe, or
- d) Tyr66Trp, Asn146Ile, Met153Thr, Val163Ala and Asn212Lys, or
- e) Ser72Ala, Tyr145Phe and Thr203Ile, or
- f) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr,
or the acceptor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2)
comprising the amino acid substitutions,
 - a) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
 - b) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr.

77. A recombinant nucleic acid coding for expression of a tandem fluorescent protein construct, the construct comprising construct comprising a donor fluorescent protein moiety, an acceptor fluorescent protein moiety and a linker moiety that couples the donor and acceptor moieties and wherein the donor and acceptor moieties exhibit fluorescence resonance energy transfer (“FRET”) when the donor moiety is excited by radiation, characterized in that the linker moiety comprises a protease cleavage recognition site, wherein cleavage of the linker by a protease results in a change in FRET between the donor and acceptor moieties, and wherein the donor or acceptor moieties comprises either, an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising a mutation that reduces the hydrophobicity at positions A206, L221 or F223 and attenuates the intermolecular interactions between the donor or acceptor moieties,
or the donor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Phe64Leu, Ser65Thr, Tyr66Trp, Asn146Ile, Met153Thr, Val163A and Asn212Lys, or
- b) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- c) Tyr66His and Tyr145Phe, or
- d) Tyr66Trp, Asn146Ile, Met153Thr, Val163Ala and Asn212Lys, or
- e) Ser72Ala, Tyr145Phe and Thr203Ile, or
- f) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr,

or the acceptor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- b) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr.

78. A host cell transfected with an expression vector comprising an expression control sequence operatively linked to a sequence coding for the expression of a tandem fluorescent protein construct, the construct comprising construct comprising a donor fluorescent protein moiety, an acceptor fluorescent protein moiety and a linker moiety that couples the donor and acceptor moieties and wherein the donor and acceptor moieties exhibit fluorescence resonance energy transfer ("FRET") when the donor moiety is excited by radiation, characterized in that the linker moiety comprises a protease cleavage recognition site, wherein cleavage of the linker by a protease results in a change in FRET between the donor and acceptor moieties, and wherein the donor or acceptor moieties comprises either,

an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising a mutation that reduces the hydrophobicity at positions A206, L221 or F223 and attenuates the intermolecular interactions between the donor or acceptor moieties,

or the donor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Phe64Leu, Ser65Thr, Tyr66Trp, Asn146Ile, Met153Thr, Val163A and Asn212Lys, or
- b) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- c) Tyr66His and Tyr145Phe, or
- d) Tyr66Trp, Asn146Ile, Met153Thr, Val163Ala and Asn212Lys, or
- e) Ser72Ala, Tyr145Phe and Thr203Ile, or
- f) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr,

or the acceptor moiety comprises an *Aequorea* fluorescent protein (SEQ. ID. No. 2) comprising the amino acid substitutions,

- a) Ser65Gly, Val68Leu, Ser72Ala and Thr203Tyr, or
- b) Ser65Thr, Ser72Ala, Asn149Lys, Met153Thr and Ile167Thr.--

II. REMARKS

Formal Drawings are submitted herewith to replace those originally filed with the parent application. With respect to the Formal Drawings, Figures 1B and 2 have been amended to correct typographical errors. Figure 1B was amended such that the nucleotide position indicated as "717" at the end of the sequence was changed to "716" (see original Figure 1), which is the correct number of nucleotides shown (see, also, SEQ ID NO:1). Figure 2 was amended to correct a misspelling of the term "acid." Marked versions of original Figure 1 and of Formal Drawing Figures 1A and 2 showing the amendments are attached as Exhibit A.

The specification has been amended to update the continuing information. As such, the amendment merely addresses a formality and does not add new matter.

Applicants have cancelled claims 1 to 57 and added new claims 58 to 78. The new claims do not introduce new matter and fully supported by the specification as originally filed. Specific support for the new claims is summarized in the Table below.

Claim Number	Support in Specification
57	Claims 1, 2, 4, 5, Table 1 page 16
58	Claims 1, 2, 3, 4, 5, 9, Table 1 page 16
59	Claim 7
60	Claim 6
61	Claim 10
62	Claims 16, 17,18, Table 1, page 16, pages 31 to 33
63	Claims 16, 17,18, Table 1, page 16, pages 31 to 33
64	Claim 7
65	Claim 22
66	Claim 22

Claim Number	Support in Specification
67	Claim 23
68	Claim 24
69	Claim 25
70	Claim 26
71	Claims 27 to 35, pages 35 to 40
72	Claims 36 to 39, pages 35 to 40
73	Claim 40
74	Claim 42, 44
75	Claim 45
76	Page 19, lines 20 to 33, Page 20 lines 5 to 7, Page 16 Table 1, claims 1, 2, 4, 5,
77	Page 19, lines 20 to 33, Page 20 lines 5 to 7, Page 16 Table 1, claims 16, 17,18
78	Page 19, lines 20 to 33, Page 20 lines 5 to 7, Page 16 Table 1, claims 22 to 24

10052505-012509

In re Application of
Tsien et al.
Filed: January 25, 2002
Page 15

PATENT
Attorney Docket No. REGEN1260-3

In view of the foregoing, Applicants respectfully submit that the claims are ready for examination and are in condition for allowance. Please apply any charges not covered, or any credits, to Deposit Account 50-1355. The Examiner is invited to contact Applicants' undersigned representative if there are any questions relating to this application.

Respectfully submitted,

Lisa A. Haile, J.D., Ph.D.
Registration No. 38,347
Telephone: (858) 677-1456
Facsimile: (858) 677-1465

USPTO Customer Number 28213
GRAY CARY WARE & FREIDENRICH LLP
4365 Executive Drive, Suite 1100
San Diego, CA 92121-2133

(xi) SEQUENCE DESCRIPTION:

SEQ ID NO:1:	ATG AGT AAA GGA GAA GAA CTT TTC ACT CGA GTT GTC CCA ATT CTT GTT	48
SEQ ID NO:2:	Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val	
	1 5 10 15	
	GAA TTA CAT GGT GAT GTT AAT CGG CAC AAA TTT TCT GTC AGT GGA GAG	96
	Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu	
	20 25 30	
	GGT GAA GGT GAT GCA ACA TAC CGA AAA CTT ACC CTT AAA TTT ATT TGC	144
	Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys	
	35 40 45	
	ACT ACT CGA AAA CTA CCT GTT CCA TGG CGA ACA CTT GTC ACT ACT TTC	192
	Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe	
	50 .55 60	
	TCT TAT CGT GTT CAA TGC TTT TCA AGA TAC CGA CAT ATG AAA CGG	240
	Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg	
	65 70 75 80	
	CAT GAC TTT TTC AAG AGT CGC ATG CCC GAA GGT TAT GCA CAG GAA AGA	288
	His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg	
	85 90 95	
	ACT ATA TTT TTC AAA GAT GAC CGG AAC TAC AAG ACA CGT CCT GAA GTC	336
	Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val	
	100 105 110	
	AAG TTT GAA CGT GAT ACC CTT GTT AAT AGA ATC GAG TTA AAA CGT ATT	384
	Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile	
	115 120 125	
	GAT TTT AAA GAA GAT CGA AAC ATT CTT CGA CAC AAA TTG GAA TAC AAC	432
	Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn	
	130 135 140	
	TAT AAC TCA CAC AAT GCA TAC ATC ATG CGA GAC AAA CAA AAG AAT CGA	480
	Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly	
	145 150 155 160	
	ATC AAA GTT AAC TTC AAA ATT AGA CAC AAC ATT GAA GAT CGA AGC GTT	528
	Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val	
	165 170 175	
	CAA CTA CGA GAC CAT TAT CAA CAA AAT ACT CGA ATT CGC GAT CGC CCT	576
	Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro	
	180 185 190	
	GTC CTT TTA CGA GAC AAC CAT TAC CTG TCC ACA CAA TCT CGC CTT TCG	624
	Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser	
	195 200 205	
	AAA GAT CCC AAC GAA AAG AGA GAC CAC ATG GTC CTT CTT GAG TTT GTA	672
	Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val	
	210 215 220	
	ACA GCT CCT CGG ATT ACA CAT CGC ATG GAT GAA CTA TAC AAA TA	
	Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys	
	225 230 235	

717
716

FIGURE 1

2/10

GAT	TTT	AAA	GAA	GAT	GGA	AAC	ATT	CTT	GGA	CAC	AAA	TTG	GAA	TAC	AAC	432
Asp	Phe	Lys	Glu	Asp	Gly	Asn	Ile	Leu	Gly	His	Lys	Leu	Glu	Tyr	Asn	
130						135				140						
TAT	AAC	TCA	CAC	AAT	GTA	TAC	ATC	ATG	GCA	GAC	AAA	CAA	AAG	AAT	GGA	480
Tyr	Asn	Ser	His	Asn	Val	Tyr	Ile	Met	Ala	Asp	Lys	Gln	Lys	Asn	Gly	
145				150						155						160
ATC	AAA	GTT	AAC	TTC	AAA	ATT	AGA	CAC	AAC	ATT	GAA	GAT	GGA	AGC	GTT	528
Ile	Lys	Val	Asn	Phe	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	Gly	Ser	Val	
				165					170				175			
CAA	CTA	GCA	GAC	CAT	TAT	CAA	CAA	AAT	ACT	CCA	ATT	GGC	GAT	GGC	CCT	576
Gln	Leu	Ala	Asp	His	Tyr	Gln	Gln	Gln	Thr	Pro	Ile	Gly	Asp	Gly	Pro	
				180					185				190			
GTC	CTT	TTA	CCA	GAC	AAC	CAT	TAC	CTG	TCC	ACA	CAA	TCT	GCC	CTT	TCG	526
Val	Leu	Leu	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	Ala	Leu	Ser	
				195				200				205				
AAA	GAT	CCC	AAC	GAA	AAG	AGA	GAC	CAC	ATG	GTC	CTT	CAG	TTT	GTA		672
Lys	Asp	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	Val	Leu	Leu	Glu	Phe	Val	
210						215					220					
ACA	GCT	GCT	GGG	ATT	ACA	CAT	GGC	ATG	GAT	GAA	CTA	TAC	AAA	TA		717
Thr	Ala	Ala	Gly	Ile	Thr	His	Gly	Met	Asp	Glu	Leu	Tyr	Lys			716
				230						235						
225																

FIG. 1B

FIG. 2