

Reference

- Chapter 3, Sutton and Barto,
- https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf

Markov processes

- 1. A machine is inspected at the end of each day, and rated as excellent, good, fair, or inoperable. If a machine is E on day t, is found to be in G, F, or I on day t+1 50%, 30%, and 20% of the time respectively. A machine found to be in state G on day t, is found to be in G, F, and I on day t+1 30%, 40%, 30% of the times, respectively. A machine found to be in state F on day is found to be in F and I, 50% and 50% of the time respectively. A machine in I, is inoperable after.
 - a. Represent the system as a Markov chain.
 - b. Define the random variable, and stochastic process for this system.
 - c. Write the state space, and transition probability matrix.
 - d. What is average life of machine? How to calculate analytically and through simulation?

Markov processes

- A machine is inspected at the end of each day, and rated as excellent, good, fair, or inoperable. If a machine is E on day t, is found to be in G, F, or I on day t+1 50%, 30%, and 20% of the time respectively. A machine found to be in state G on day t, is found to be in G, F, and I on day t+1 30%, 40%, 30% of the times, respectively. A machine found to be in state F on day is found to be in F and I, 50% and 50% of the time respectively. A machine in I, is inoperable after.
 - a. Represent the system as a Markov chain.
 - b. Define the random variable, and stochastic process for this system.
 - c. Write the state space, and transition probability matrix.
- d. What is average life of machine? How to calculate analytically and through simulation?
- Let X_t be the state of the system at time t
- $\{X_t\}_{t=0}^{\infty}$ is a stochastic process defined by the n-tuple $\{\Omega, P\}$
 - Ω is the state space; $\Omega = \{E, G, F, I\}$

$$- P = \begin{bmatrix} 0 & 0.5 & 0.3 & 0.2 \\ 0 & 0.3 & 0.4 & 0.3 \\ 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- $\Pr\{X_t = i | X_{t-1}, X_{t-2}, \dots, X_0\} = \Pr\{X_t = i | X_{t-1}\}\$. Thus $\{X_t\}_{t=0}^{\infty}$ is Markov chain.
- Average life of machine assuming a new machine starts in E, is the first passage time from E to I
 - $m_{ij} = 1 + \sum_{k \neq j} p_{ik} m_{kj}$; solve for m_{EI} as system of linear equations

Markov processes

- 1. A machine is inspected at the end of each day, and rated as excellent, good, fair, or inoperable. If a machine is E on day t, is found to be in G, F, or I on day t+1 50%, 30%, and 20% of the time respectively. A machine found to be in state G on day t, is found to be in G, F, and I on day t+1 30%, 40%, 30% of the times, respectively. A machine found to be in state F on day is found to be in F and I, 50% and 50% of the time respectively. A machine in I, is inoperable after.
 - a. Represent the system as a Markov chain.
 - b. Define the random variable, and stochastic process for this system.
 - c. Write the state space, and transition probability matrix.
 - d. What is average life of machine? How to calculate analytically and through simulation?
- 2. Same as #1, except that when machine is in I it is replaced the next day. Also, based on the condition of the system, there is a certain cost due to defective items created by the machine. G and F are associated with a cost of \$1000 and \$3000 respectively. New machines cost \$6000. What is the average cost to the system?

$$P = \begin{bmatrix} 0 & 0.5 & 0.3 & 0.2 \\ 0 & 0.3 & 0.4 & 0.3 \\ 0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \end{bmatrix}; c = [0,\$1000,\$3000,\$6000]$$

Average cost of maintaining the system = πc^T ; π is the steady state vector; c^T is the transpose of the cost vector;

Markov decision process

- 1. A machine is inspected at the end of each day, and rated as excellent, good, fair, or inoperable.
- 2. Every day the operator can choose from 3 possible actions: A{do noting, maintain, replace}
- What is optimal policy?

	Е	G	F	I
E	0	0.5	0.3	0.2
G	0.	0.3	0.4	0.3
F	0	0	05	0.5
T	0	0	0	1

Cost : if do nothing

TPM: if do nothing

Cost . II do notning					
	Ε	G	F	I	
	0	1000	3000	\infty	

TPIVI: If maintain				
	Е	G	F	I
E	0.3	0.2	0.3	0.2
G	0.1	0.2	0.4	0.3
F	0	0.4	0.5	0.1
Ι	0	0	0	1

TDM . if maintain

Cost : if maintain				
	Ε	G	F	I
	2000	3000	4000	\infty

	Е	G	F	I
Е	1	0	0	0
G	1	0	0	0
F	1	0	0	0
Ι	1	0	0	0

Cost: if replace

TPM: if replace

E	G	F	I
6000	6000	6000	6000

Let X_t be the state of the system at time t

Value of policy $\rho = \pi_0 c_0^T$

- Let D_t be the decision at time t
- Let bt be the decision at time t
 - $\{X_t, D_t\}_{t=0}^{\infty}$ is a Markov decision process defined by the n-tuple $\{\Omega, A, P_a, R_a\}$ - Ω is the state space; $\Omega = \{E, G, F, I\}$
 - A is the action space $(A = \{do \ nothing \ (d), maintain(m), replace(r)\})$ each element in A denoted by a
 - P_a is the TPM corresponding to an action 'a' R_a is the immediate reward matrix corresponding to an action 'a'
 - R_a is the infinediate reward matrix corresponding to an action u
- A policy (ρ) is a vector of size $|\Omega|$, referring to the action to be taken in corresponding state e.g., $\rho = [d, d, m, r]$ implies take action d if system is state E, d if system is state G, m if system is state F, and r if system is state I
- Every policy has a value, which can be interpreted as follows. Suppose $\rho = [d, d, m, r]$
- $P_{\rho=[d,d,m,r]} = \begin{bmatrix} use \ row \ correps on ding \ to \ P_d \\ use \ row \ correps on ding \ to \ P_m \\ use \ row \ correps on ding \ to \ P_r \end{bmatrix}; \text{ similarly create cost vector } c_{\rho=[d,d,m,r]}$
- To find optimal policy find the policy with the least cost (or maximum reward)
 - Solution methods: exhaustively enumeration (In above example number of policies = 3^4)
 - Other efficient approaches: dynamic programming (model-based); reinforcement learning (model-free)

Rewriting into MDP terminologies

$P_{do-nothing} =$					
	Е	G	F	I	
Е	0	0.5	0.3	0.2	
G	0.	0.3	0.4	0.3	
F	0	0	05	0.5	
I	0	0	0	1	

* maintain					
	E	G	F	I	
Е	0.3	0.2	0.3	0.2	
G	0.1	0.2	0.4	0.3	
F	0	0.4	0.5	0.1	
I	0	0	0	1	

$P_{replace} =$					
	Е	G	F	I	
Е	1	0	0	0	
G	1	0	0	0	
F	1	0	0	0	
I	1	0	0	0	

Immediate reward (r(i, a)): reward of taking action a when system is in state i; notice, values have been changed to negative values as we are now calling the cost components as 'reward'

$$r(., a = do_nothing)$$
:

Ε	G	F	I
-0	-1000	-3000	\infty

$$r(.,a = maintain)$$
:

E	G	F	I
-2000	-3000	-4000	\infty

$$r(.,a=replace)$$
:

Ε	G	F	I
-6000	-6000	-6000	-6000

0

G

F

 ∞

 ∞

 ∞

 ∞

-1000 -3000

-1000 -3000

-1000 -3000

-1000 -3000

0

Ε

F

G

Rewriting into MDP terminologies															
	P_{α}	lo-nothi	$_{ing} =$				P		$P_{replace} =$						
	E	G	F	I			Ε	G	F	I			E	G	F
E	0	0.5	0.3	0.2		E	0.3	0.2	0.3	0.2		E	1	0	0
G	0.	0.3	0.4	0.3		G	0.1	0.2	0.4	0.3		G	1	0	0
F	0	0	05	0.5		F	0	0.4	0.5	0.1		F	1	0	0

Immediate reward (r(i, a)): reward of taking action a when system is in state i; notice, values have been changed

0

0

F

 ∞

 ∞

 ∞

 ∞

0

F

0

0

0

0

F

-6000 -6000 -6000 -6000

-6000 -6000 -6000 -6000

-6000 -6000 -6000 -6000

-6000 -6000 -6000 -6000

0

0

0

0

0

G

to negative values as we are now calling the cost components as 'reward'

to negative values as we are now calling the cost components as 'reward'
$$r(., a = do_nothing)$$
: $r(., a = maintain)$: $r(., a = replace)$:

C	C	r(.,a	= mair	ntain):		r(., a = replace):									
	Е	G	F	I		Ε	G	F	I			F	G	F	

	r(.,a =	= do_n):	r(., a = maintain):						r(., a = replace):					
	E	G	F	I		Е	G	F	I			Е	G	F	

Е	G	F	I		Е	G	F	I		F	G	F	ī
-0	-1000	-3000	∞		-2000	-3000	-4000	∞		-6000	-6000	-6000	-600

		G	Γ	1		E	G	Γ	1		F	G	F	I
	-0	-1000	-3000	∞		-2000	-3000	-4000	∞		-6000	-6000	-6000	-60
		_ , , ,									0000	0000	0000	00

$$-0$$
 -1000 -3000 ∞ -2000 -3000 -4000 ∞ -6000

G

-2000 -3000 -4000

-2000 -3000 -4000

-2000 -3000 -4000

-2000 -3000 -4000

- Let X_t be the state of the system at time t
- Let D_t be the decision at time t
- $\{X_t, D_t\}|_{t=0}^{\infty}$ is a Markov decision process defined by the 4-tuple $\{\Omega, A, P_a, r_a\}$
 - Ω is the state space; $\Omega = \{E, G, F, I\}$
 - A is the action space $(A = \{do \ nothing \ (d), maintain(m), replace(r)\})$ each element in A denoted by a
 - P_a is the TPM corresponding to an action 'a'
- A policy (ρ) is a vector of size $|\Omega|$, referring to the action to be taken in corresponding state e.g., $\rho = [d, d, m, r]$ implies take action d if system is state E, d if system is state G, m if system is state F, and r if system is state I
- Every policy has a value, which can be interpreted as follows. Suppose $\rho = [d, d, m, r]$

$$P_{\rho=[d,d,m,r]} = \begin{bmatrix} use \ row \ corresponding \ to \ P_d \\ use \ row \ corresponding \ to \ P_d \\ use \ row \ corresponding \ to \ P_m \\ use \ row \ corresponding \ to \ P_r \end{bmatrix}; similarly \ create \ cost \ vector \ c_{\rho=[d,d,m,r]}$$

$$Value \ of \ policy \ \rho = \pi_o c_0^T$$

- To find optimal policy find the policy with the least cost (or maximum reward)
 - Solution methods: exhaustively enumeration (In above example number of policies = 34)
 - Other efficient approaches: dynamic programming (model-based); reinforcement learning (model-free)

Problem

- University campus: People can belong to one of three disease stages susceptible, infected, recovered.
- On any given decision-making step, the university needs to decide what action to take, test once a week, test every 3 day, test every day.
- Formulate this as a MDP

- Let X_t be the state of the epidemic at time t
- Let D_t be the decision at time t
- $\{X_t, D_t\}|_{t=0}^{\infty}$ is a Markov decision process defined by the 4-tuple $\{\Omega, A, P_a, R_a\}$
- Ω is the state space;
 - we have a multivariate state [S, I, E], if there are 1000 people in a population, 700 are S(susceptible), 200 are I(infected), and 100 are E(recovered), then the state of the system is [700,200,100]
 - $-\Omega = \{[S, I, E]\}; S + I + E = N;$
- A is the action space
 - $A = \{weekly, twice a week, daily\}\}$
- P_a is the TPM
 - An element p(i, a, j) = probability of transitioning to state j when system is in state i and action a is taken
- In addition cost of testing (action), there is an additional cost associated with the state it transitions to, so we have a reward matrix R_a
 - An element r(i, a, j) = immediate reward of taking action a when system is in state i and transitioning to state j

General anatomy of MDP formulation

- Let X_t be the state of the system at time t
- Let D_t be the decision at time t
- $\{X_t, D_t\}|_{t=0}^{\infty}$ is a Markov decision process defined by the n-tuple $\{\Omega, A, P_a, R_a\}$
- Ω is the state space;
- A is the action space
- P_a is the TPM
 - An element p(i, a, j) = probability of transitioning to state j when system is in state i and action a is taken
- R_a is the TRM
 - An element r(i, a, j) = immediate reward of taking action a when system is in state i and transitioning to state j

Inventory problem

- A factory determines, at the end of each week, whether to order inventory or not (yes/no decision) based on the inventory at the time. If the decision is yes, it orders upto K.
 - Demand ~Poisson(8000 per week)
 - Maximum inventory capacity = 50000 (K)
 - Maximum backorder capacity = 300 (B)
 - No inventory cost
 - Fixed shipping and ordering cost
 - Product varies by number of orders
- Formulate as MDP

UMassAmherst

The Commonwealth's Flagship Campus