INDEX

Chapter No.	TOPIC	Page No
	LIST OF FIGURES	VI-VII
	LIST OF TABLES	VIII
	ABSTRACT	IX
1	INTRODUCTION	1-3
1.1	What is this project about?	1
1.2	Why choose this project?	2
1.3	Usefulness to the society	2
1.4	Brief thesis on each chapter	2
3	LITERATURE SURVEY	4-14
4	BLOCK DIAGRAM HARDWARE COMPONENTS	15-16 17-62
4.1	ARDUINO UNO	17-22
4.1.1	Specifications of Arduino Uno	18
4.1.2	Features of Arduino Uno	19
4.1.3	Use of Arduino Uno in this project	20
4.1.4	Why Arduino?	20
4.1.5	Working Principle	20
4.1.6	Pin Diagram	20-21
4.1.7	Pin Description	22
4.2	WIFI IOT MODULE	22-29
4.2.1	Internet Of Things (IOT)	23
4.2.2	Description	24
4.2.3	Product Contents	24
4.2.4	Features of IOT Module ESP8266	24
4.2.5	Specifications of IOT Module ESP8266	25

4.2.6	Use of IOT Module ESP8266 in project	25
4.2.7	Why IOT Module ESP8266?	25-26
4.2.8	Working Principle	26
4.2.9	Pin Diagram	27
4.2.10	Connecting the Hardware to Our ESP8266	28
4.2.11	ESP8266-01 Boot Option	28
4.2.12	Interfacing Diagram Of Wifi IOT Module	29
4.3	Power Supply	30-33
4.3.1	Transformer	30
4.3.2	Rectifier	30
4.3.3	Bridge Rectifier	31-32
4.3.4	Voltage Regulators	32
4.3.5	Features	33
4.3.6	Working Principle	33
4.4	LIQUID CRYSTAL DISPLAY (LCD)	34-44
4.4.1	Specifications of LCD	35
4.4.2	Features of LCD	36
4.4.3	Pin Configuration	37-38
4.4.4	Pin Diagram	38
4.4.5	Working Principle Interface Diagram of LCD	39
4.4.6	Use of LCD in this project	40
4.4.7	Why LCD?	40-42
4.4.8	List of Command	43
4.4.9	Interfacing of LCD With Aduino	44
4.5	GSM (GLOBAL SYSTEM FOR MOBILE)	45-53
4.5.1	Features	46
4.5.2	Pin Configuration	47-49
4.5.3	Pin Diagram	49

4.5.4	Specifications and Characteristics for GSM	49-50
4.5.5	Use of GSM in Our Project	50
4.5.6	Why Only GSM?	50-51
4.5.7	Working Principle	51-52
4.5.8	Interfacing of GSM With Arduino	53
4.6	PH SENSORS	54-62
4.6.1	What Is PH	54
4.6.2	Why Monitor the pH of Water Pin Diagram	54-55
4.6.3	MEASUREMENT OVERVIEW Pin Description	55
4.6.4	Features	55
4.6.5	Specification Of PH	56
4.6.6	Use of PH Sensor in Our Project	57
4.6.7	Working Principle	57
4.6.8	Interface Diagram of PH With Arduino	57
4.7	Turbidity	58-62
4.7.1	What is Turbidity	58
4.7.2	Impact of Turbidity	58
4.7.3	Use Of Turbidity Sensor in Project	58
4.7.4	Why Only Turbidity Sensor	58-59
4.7.5	Specifications	59
4.7.6	Features	59
4.7.7	Measuring Turbidity	59
4.7.8	Working Principle	60-62
4.7.9	Interfacing Diagram of Turbidity Sensor with Aurdino	62

5	CIRCUIT DIAGRAM AND EXPLANATION	63-64
5.1	Circuit Diagram	63
5.2	Explanation	64
6	SOFTWARE SECTION	65-72
6.1	Arduino Integrated Development Environment	65-70
6.2	Flow Chart	71
6.2.1	Flow Chart Explanation	72
7	RESULTS	73-74
8	ADVANTAGES & APPLICATIONS	75
8.1	Advantages	75
8.2	Applications	75
9	CONCLUSION & FURTURE SCOPE	76
9.1	Conclusion	76
9.2	Future Scope	76
	APPENDICES APPENDIX-A:CODE APPENDIX-B:REFERENCES APPENDIX-C:BIOGRAPHY	77-83 77-81 82-83 83

LIST OF FIGURES

S.NO	FIGURE NAME	PAGE NO
Fig 1.1	Water pollution	1
Fig 1.2	water Testing	2
Fig 3.1	Block Diagram	15
Fig 4.1	Arduino UNO Atmega328p	17
Fig 4.2	Atmega 328P pin diagram	20
Fig 4.3	IOT Device Life Cycle	23
Fig 4.4	Front view of WIFI Module	26
Fig 4.5	Rear View of WIFI Module	26
Fig 4.6	Pin diagram of ESP8266	27
Fig 4.7	ESP8266 sending data to web page	28
Fig 4.8	Interfacing Diagram	29
Fig 4.9	Block Diagram Of Power Supply	30
Fig 4.10	Bridge Rectifier	31
Fig 4.11	Output Waveform Of DC	31
Fig 4.12	Regulator	32
Fig 4.13	Circuit Diagram Of Power Supply	33
Fig 4.14	LCD	34
Fig 4.15	Pin diagram of LCD	38
Fig 4.16	Working Principle of LCD	39
Fig 4.17	Layers of LCD	39
Fig 4.18	Interfacing Diagram	44
Fig 4.19	SIM 900A Pin Diagram	49
Fig 4.20	GSM Module	50
Fig 4.21	Interfacing diagram	53
Fig 4.22	PH Scale	54
Fig 4.23	PH Sensor	56
Fig 4.24	Interfacing Diagram	57
Fig 4.25	Turbidity	58

Fig 4.26	Internal diagram	60
Fig 4.27	TSD-10	60
Fig 4.28	circuit diagram	60
Fig 4.29	Working Principle	61
Fig 4.30	Reflection of light in water	61
Fig 4.31	Voltage VS Turbidity Graph	61
Fig 4.32	Turbidity sensor	62
Fig 4.33	SUK SEN 0189	62
Fig 4.34	Interfacing Diagram	62
Fig 5.1	Circuit Diagram	63
Fig 6.1	software setup	65
Fig 6.2	Screen shot	67
Fig 6.3	Flow chart	71
Fig 7.1	WIFI initialization	73
Fig 7.2	WIFI is connected to the device	73
Fig 7.3	Water status in TCP Client app	73
Fig 7.4	PH value	74
Fig 7.5	Turbidity value	74
Fig 7.6	Entire kit connection.	74

LIST OF TABLES

TABLE NO	TABLE NAME	PAGE NO
Table-1	Paper work of the authors	4
Table-2	Specifications of Arduino	18
Table-3	Features	19
Table-4	Pin Description of Arduino	22
Table-5	Pin diagram of wifi iot module	27
Table-6	ESP8266-01 BOOT OPTION	28
Table-7	Pin Description of LCD	37
Table-8	LCD Command Description	42
Table-9	Commands and Instructions for LCD	43
Table-10	Configuration of SIM 900A	47-49
Table-11	Specifications	56
Table-12	Specifications	59

ABSTRACT:
Now a days many people are suffering from dangerous diseases which are caused due to impure water. In
our project we are doing analysis for water quality monitoring system, it gives data about the quality of
water, on a web page. The quality of water is determined using various sensors like PH sensor and turbidity
sensor, connected to the Arduino family micro-controller. The Arduino software is written in embedded C
and GSM module is connected to the Arduino. The data will be transferred constantly from the remote
sensor organize through micro-controller and Wi-Fi. Wi-Fi module is used to send data to the web page via
internet which is connected to the micro-controller. The total data regarding the purity of water is displayed
in the web page and is analyzed in the form of graph, pie chart and values are given in the table. We transfer
this information to cloud and clients can get to this information through web page application, client from
anyplace can screen the data whenever.