3. Элементы X и Y образуют большое количество твердых при обычных условиях окрашенных соединений. Массовые доли элемента X в них приведены ниже в таблице.

соединение	A	В	C	D	E	F	G	Н
w(X), %	26,52	19,39	15,29	10,74	5,67	3,18	2,92	1,69

Известно, что все указанные соединения полностью растворяются как в горячем разбавленном водном растворе фосфорной кислоты, так и в горячем разбавленном водном растворе едкого натра, при этом во всех случаях, кроме соединения **E**, наблюдается выделение газа.

- 1) Определите вещества А-Н.
- 2) Приведите структурную формулу соединения С.
- Напишите уравнения реакций этих веществ с избытком горячей концентрированной фосфорной кислоты, с избытком охлажденного до -10 °C концентрированного раствора гидроксида натрия.
- 4) Предложите способ получения соединений А-Н из простых веществ.

№ 3

Источник: Н. Гринвуд, А. Эрншо «Химия элементов», Т.1, Раздел 4.4.3.

1) Посмотрим соотношения масс элемента \mathbf{X} , приходящихся на одну и ту же массу элемента \mathbf{Y} , например, на 10 г последнего.

Соединение	A	В	C	D	E	F	G	Н
m(X), г	3,61	2,41	1,80	1,20	0,60	0,33	0,30	0,17

Очевидно, что для соединений \mathbf{A} — \mathbf{E} эти массы соотносятся как 6:4:3:2:1 (или 3:2:1,5:1:0,5), что весьма схоже с последовательностью для бинарных соединений щелочных металлов с кислородом ($MO_3-MO_2-M_2O_2$ ($MO)-M_2O$). Эти соединения (кроме оксидов) выделяют газ (кислород) при взаимодействии с горячей водой. Тогда, предположив, что элемент \mathbf{X} — кислород, а соединение \mathbf{A} — озонид, получаем, что элемент \mathbf{Y} — пезий. Составы веществ:

соединение	A	В	C	D	E	F	G	Н
формула	CsO ₃	CsO ₂	Cs_2O_3	Cs_2O_2	Cs ₂ O	$Cs_{11}O_3$	Cs ₄ O	Cs ₃ O

- Предполагается, что «полуторный оксид»Сs₂O₃ на самом деле является динадпероксидомпероксидоми состоит из следующих ионов: [(Cs⁺)₄·(O−O)²₂·(O−O)²⁻].
- 3) Соответствующие реакции приведены ниже:

$$4C_5O_3 + 4H_3PO_4 = 4C_5H_2PO_4 + 5O_2 + 2H_2O$$

$$4C_8O_2 + 4H_3PO_4 = 4C_8H_2PO_4 + 3O_2 + 2H_2O_3$$

$$Cs_2O_3 + 2H_3PO_4 = 2CsH_2PO_4 + O_2 + H_2O$$

$$2C_{s_2}O_2 + 4H_3PO_4 = 4C_sH_2PO_4 + O_2 + 2H_2O$$

$$Cs_2O + 2H_3PO_4 = 2CsH_2PO_4 + H_2O$$

$$2Cs_{11}O_3 + 22H_3PO_4 = 22CsH_2PO_4 + 5H_2 + 6H_2O$$

$$C_{S4}O + 4H_3PO_4 = 4C_5H_2PO_4 + H_2 + H_2O$$

$$2Cs_3O + 6H_3PO_4 = 6CsH_2PO_4 + H_2 + 2H_2O$$

Реакции с концентрированным раствором гидроксида натрия на самом деле будут протекать с водой:

$$4CsO_3 + 2H_2O = 4CsHO_2 + 3O_2$$

$$4C_{5}O_{2} + 2H_{2}O = 4C_{5}HO_{2} + O_{2}$$

$$Cs_2O_3 + H_2O = 2CsHO_2$$

$$2C_{s_2}O_2 + 2H_2O = 4C_sOH + O_2$$

$$Cs_2O + H_2O = 2CsOH$$

$$2Cs_{11}O_3 + 16H_2O = 22CsOH + 5H_2$$

$$Cs_4O + 3H_2O = 4CsOH + H_2$$

$$2Cs_3O + 4H_2O = 6CsOH + H_2$$

- 4) Получение:
 - a) $Cs + O_2 = CsO_2$
 - b) Cs(избыток) + O₂(недостаток) = субоксиды
 - c) $N_2 + O_2 = 2NO$ (эл. разряд) $2Cs + 2NO = Cs_2O_2 + N_2$
 - d) $4CsO_2 = 2Cs_2O_3 + O_2$ (нагревание)
 - e) $2H_2 + O_2 = 2H_2O$

$$2Cs + 2H_2O = 2CsOH + H_2$$

$$2NO + O_2 = 2NO_2$$

$$CsOH + 2NO_2 = CsNO_2 + CsNO_3 + H_2O$$

$$C_{S}NO_{2} + 6C_{S} = 4C_{S_{2}}O + N_{2}$$

Рекомендации к оцениванию:

ставится 0.1 балла).

- 1. Определение элементов **X** и **Y** по 0.5 балла за элемент. $0.5 \times 2 = 1 \ балл$
- 2. Определение веществ А-Н по 0.25 балла за вещество.

0.25 × 8 = 2 балла 0.5 балла

 $0.25 \times 8 = 2$ балла

 $0.5 \times 5 = 2.5$ балла

- Приведено строение Cs₂O₃ 0.5 балла.
 Записаны уравнения 8 реакций с H₃PO₄ каждая по 0.25 балла (если в уравнении неверно расставлены коэффициенты, за него
- ставится 0.1 балла). 5. Записаны уравнения 8 реакций с CsOH — каждая по 0.25 балла (если в уравнении неверно расставлены коэффициенты, за него
- 6. Приведены 5 способов синтеза из простых веществ (кроме (1)) каждый по 0.5 балла (если в уравнении реакции или способе гделибо поставлены неверные коэффициенты, за него ставится 0.1 балла).

ИТОГО: 10 баллов