Introduction to HPC2N, Kebnekaise and HPC

Mirko Myllykoski, Birgitte Brydsö, Pedro Ojeda May, and others at HPC2N

Department of Computing Science and HPC2N Umeå University

21. January 2021

► High Performance Computing Center North (HPC2N) is a national center for Scientific and Parallel Computing

High Performance Computing Center North (HPC2N) is a national center for Scientific and Parallel Computing

▶ A part of Swedish National Infrastructure for Computing (SNIC)

Provides state-of-the-art resources and expertise:

Scalable and parallel HPC

- Scalable and parallel HPC
- ► Large-scale **storage facilities** (PFS-Lustre, SweStore, Tape)

- Scalable and parallel HPC
- Large-scale storage facilities (PFS-Lustre, SweStore, Tape)
- Grid and cloud computing (WLCG NT1, SNIC Cloud)

- Scalable and parallel HPC
- Large-scale storage facilities (PFS-Lustre, SweStore, Tape)
- **Grid and cloud** computing (WLCG NT1, SNIC Cloud)
- Support
 - Primary, advanced, dedicated
 - Application Experts (AEs)

- ► Scalable and parallel **HPC**
- ► Large-scale **storage facilities** (PFS-Lustre, SweStore, Tape)
- ► **Grid and cloud** computing (WLCG NT1, SNIC Cloud)
- Support
 - Primary, advanced, dedicated
 - Application Experts (AEs)
- International network for research and development

HPC2N (partners)

HPC2N has five **partners**:

- Luleå University of Technology
- Mid Sweden University
- Swedish Institute of Space Physics
- Swedish University of Agricultural Sciences (SLU)
- Umeå University

HPC2N (funding)

Funded by Swedish Research Council (VR), SNIC and various partners

HPC2N (funding)

Funded by Swedish Research Council (VR), SNIC and various partners

- Involved in several projects and collaborations
 - EGI, PRACE, EISCAT, eSSENCE, NOSEG, SNIC Science Cloud, ...

- User support (primary, advanced, dedicated)
 - Research group meetings @ UmU
 - ► Also the partner sites

- User support (primary, advanced, dedicated)
 - Research group meetings @ UmU
 - Also the partner sites
- User training and education program
 - ► 0.5 3 days; ready-to-run exercises
 - Introduction to HPC2N and Kebnekaise
 - Parallel programming and tools (e.g., OpenMP, MPI, debugging, performance analyzers, Matlab, R, MD simulation, Deep Learning, GPU, ...)

- User support (primary, advanced, dedicated)
 - Research group meetings @ UmU
 - Also the partner sites
- User training and education program
 - ► 0.5 3 days; ready-to-run exercises
 - Introduction to HPC2N and Kebnekaise
 - Parallel programming and tools (e.g., OpenMP, MPI, debugging, performance analyzers, Matlab, R, MD simulation, Deep Learning, GPU, ...)
- NGSSC / SeSE & university courses

- User support (primary, advanced, dedicated)
 - ► Research group meetings @ UmU
 - Also the partner sites
- User training and education program
 - ▶ 0.5 3 days; ready-to-run exercises
 - Introduction to HPC2N and Kebnekaise
 - Parallel programming and tools (e.g., OpenMP, MPI, debugging, performance analyzers, Matlab, R, MD simulation, Deep Learning, GPU, ...)
- NGSSC / SeSE & university courses
- Workshops and seminars

Management

- Paolo Bientinesi, new director
- ► Björn Torkelsson, deputy director
- Lena Hellman, administrator

Management

- Paolo Bientinesi, new director
- Björn Torkelsson, deputy director
- Lena Hellman, administrator

Application experts

- Jerry Eriksson
- Mirko Myllykoski
- Pedro Ojeda May

Management

- Paolo Bientinesi. new director
- Björn Torkelsson, deputy director
- Lena Hellman, administrator

Application experts

- Jerry Eriksson
- Mirko Myllykoski
- Pedro Ojeda May

Others

- Bo Kågström
- Mikael Rännar (WLCG coord)
- Anders Backman
- Kenneth Bodin
- Claude Lacoursière (Algoryx)

Management

- Paolo Bientinesi, new director
- Björn Torkelsson, deputy director
- Lena Hellman, administrator

Application experts

- Jerry Eriksson
- Mirko Myllykoski
- Pedro Ojeda May

Others

- Bo Kågström
- Mikael Rännar (WLCG coord)
- Anders Backman
- Kenneth Bodin
- Claude Lacoursière (Algoryx)

System and support

- Erik Andersson
- Birgitte Brydsö
- Niklas Edmundsson (Tape coord)
- Ingemar Fällman
- Magnus Jonsson
- Roger Oscarsson
- Åke Sandgren
- Mattias Wadenstein (NeIC, Tier1)
- Lars Viklund

► HPC2N provides advanced and dedicated support in the form of Application Experts (AEs):

¹https://www.snic.se/support/dedicated-user-support/

► HPC2N provides advanced and dedicated support in the form of Application Experts (AEs):

Jerry Eriksson Profiling, Machine learning (DNN), MPI, OpenMP, OpenACC

¹https://www.snic.se/support/dedicated-user-support/

► HPC2N provides advanced and dedicated support in the form of Application Experts (AEs):

Jerry Eriksson Profiling, Machine learning (DNN), OpenMP, OpenACC

Mirko Myllykoski General HPC, numerical linear algebra, GPUs

(CUDA, OpenCL, ...), task-based parallelism

¹https://www.snic.se/support/dedicated-user-support/

► HPC2N provides advanced and dedicated support in the form of **Application Experts (AEs)**:

Jerry Eriksson Profiling, Machine learning (DNN), MPI,

OpenMP, OpenACC

Mirko Myllykoski General HPC, numerical linear algebra, GPUs

(CUDA, OpenCL, ...), task-based parallelism

Pedro Ojeda May Molecular dynamics, Profiling, QM/MM,

NAMD, Amber, Gromacs, GAUSSIAN, R

¹https://www.snic.se/support/dedicated-user-support/

► HPC2N provides advanced and dedicated support in the form of **Application Experts (AEs)**:

Jerry Eriksson Profiling, Machine learning (DNN), MPI,

OpenMP, OpenACC

Mirko Myllykoski General HPC, numerical linear algebra, GPUs

(CUDA, OpenCL, ...), task-based parallelism

Pedro Ojeda May Molecular dynamics, Profiling, QM/MM,

NAMD, Amber, Gromacs, GAUSSIAN, R

Åke Sandgren General high level programming assistance,

VASP, Gromacs, Amber

¹https://www.snic.se/support/dedicated-user-support/

► HPC2N provides advanced and dedicated support in the form of **Application Experts (AEs)**:

Jerry Eriksson Profiling, Machine learning (DNN), MPI, OpenMP, OpenACC

Mirko Myllykoski General HPC, numerical linear algebra, GPUs

(CUDA, OpenCL, ...), task-based parallelism

Pedro Ojeda May Molecular dynamics, Profiling, QM/MM,

NAMD, Amber, Gromacs, GAUSSIAN, R

Åke Sandgren General high level programming assistance,

VASP, Gromacs, Amber

Contact through regular support or dedicated support form¹

► If you have a specific problem/question and/or need consultation (up to 100 h)

¹https://www.snic.se/support/dedicated-user-support/

HPC2N (users by discipline)

- Users from several scientific disciplines:
 - Biosciences and medicine
 - Chemistry
 - Computing science
 - Engineering
 - Materials science
 - Mathematics and statistics
 - Physics including space physics
 - Deep learning and artificial intelligence

HPC2N (users by discipline, largest users)

- Users from several scientific disciplines:
 - Biosciences and medicine
 - Chemistry
 - Computing science
 - Engineering
 - Materials science
 - Mathematics and statistics
 - Physics including space physics
 - Deep learning and artificial intelligence (several new projects)

HPC2N (medium users by university)

Projects with allocations at HPC2N: 2014-01-01 to 2016-05-30

HPC2N (large users by university)

Projects with allocations at HPC2N: 2014-01-01 to 2016-05-30

HPC2N (users by software)

Kebnekaise

► Latest supercomputer at HPC2N

Kebnekaise

- Latest supercomputer at HPC2N
- Named after a massif (contains some of Sweden's highest mountain peaks)

Kehnekaise

- Latest supercomputer at HPC2N
- ▶ Named after a massif (contains some of Sweden's highest mountain peaks)
- Kebnekaise was
 - delivered by Lenovo and
 - ▶ installed during the summer 2016

Kehnekaise

- Latest supercomputer at HPC2N
- ▶ Named after a massif (contains some of Sweden's highest mountain peaks)
- Kebnekaise was
 - delivered by Lenovo and
 - installed during the summer 2016
- Opened up for general availability on November 7, 2016

Kebnekaise

- Latest supercomputer at HPC2N
- Named after a massif (contains some of Sweden's highest mountain peaks)
- Kebnekaise was
 - delivered by Lenovo and
 - installed during the summer 2016
- Opened up for general availability on November 7, 2016
- ▶ In 2018, Kebnekaise was **extended** with
 - 52 Intel Xeon Gold 6132 (Skylake) nodes, as well as
 - 10 NVidian V100 (Volta) GPU nodes

Kebnekaise (compute nodes)

Name	#	Description
Compute	432	Intel Xeon E5-2690v4, 2 x 14 cores,
		128 GB, FDR Infiniband

Kebnekaise (compute nodes)

Name	#	Description
Compute	432	Intel Xeon E5-2690v4, 2 x 14 cores, 128 GB, FDR Infiniband
Compute-skylake	52	Intel Xeon Gold 6132, 2 x 14 cores, 192 GB, EDR Infiniband, AVX-512

Kebnekaise (compute nodes)

#	Description
432	Intel Xeon E5-2690v4, 2 x 14 cores,
	128 GB, FDR Infiniband
52	Intel Xeon Gold 6132, 2 x 14 cores,
	192 GB, EDR Infiniband, AVX-512
20	Intel Xeon E7-8860v4, 4 x 18 cores,
	3072 GB, EDR Infiniband
	432 52

Kebnekaise (compute nodes)

Name	#	Description
Compute	432	Intel Xeon E5-2690v4, 2 x 14 cores,
		128 GB, FDR Infiniband
Compute-skylake	52	Intel Xeon Gold 6132, 2 x 14 cores,
		192 GB, EDR Infiniband, AVX-512
Large Memory	20	Intel Xeon E7-8860v4, 4 x 18 cores ,
		3072 GB, EDR Infiniband
KNL	36	Intel Xeon Phi 7250 (Knight's Landing),
		68 cores, 192 GB, 16 GB MCDRAM,
		FDR Infiniband

Kebnekaise (GPU nodes)

Name	#	Description
	Intel Xeon E5-2690v4, 2 x 14 cores,	
2xGPU	32	128 GB, FDR Infiniband, 2 x NVidia K80
	4 x 2496 CUDA cores, 4 x 12 GB VRAM	

Kebnekaise (GPU nodes)

Name	#	Description
2×GPU 32		Intel Xeon E5-2690v4, 2 x 14 cores,
	20	128 GB, FDR Infiniband,
	32	2 x NVidia K80
		4 x 2496 CUDA cores, 4 x 12 GB VRAM
4×GPU 4		Intel Xeon E5-2690v4, 2 x 14 cores,
	4	128 GB, FDR Infiniband,
	4	4 x NVidia K80
		8×2496 CUDA cores, 8×12 GB VRAM

Kebnekaise (GPU nodes)

Name	#	Description
2xGPU		Intel Xeon E5-2690v4, 2 x 14 cores,
	32	128 GB, FDR Infiniband,
	32	2 x NVidia K80
		4×2496 CUDA cores, 4×12 GB VRAM
4xGPU		Intel Xeon E5-2690v4, 2 x 14 cores,
	4	128 GB, FDR Infiniband,
	4	4 x NVidia K80
		8×2496 CUDA cores, 8×12 GB VRAM
GPU-volta 1		Intel Xeon Gold 6132, 2 x 14 cores,
		192 GB, EDR Infiniband,
	10	2 x NVidia V100,
		2×5120 CUDA cores, 2×16 GB VRAM,
		2 x 640 Tensor cores

▶ 602 nodes in 15 racks

- ▶ 602 nodes in 15 racks
- ▶ 19288 cores (of which 2448 cores are KNL-cores)
 - ▶ 18840 available for users (the rest are for managing the cluster)

- 602 nodes in 15 racks
- ▶ **19288 cores** (of which 2448 cores are KNL-cores)
 - ▶ 18840 available for users (the rest are for managing the cluster)
- More than 136 TB memory

- 602 nodes in 15 racks
- ▶ **19288 cores** (of which 2448 cores are KNL-cores)
 - ▶ 18840 available for users (the rest are for managing the cluster)
- More than 136 TB memory
- ▶ 71 switches (Infiniband, Access and Managment networks)

- 602 nodes in 15 racks
- ▶ **19288 cores** (of which 2448 cores are KNL-cores)
 - ▶ 18840 available for users (the rest are for managing the cluster)
- More than 136 TB memory
- 71 switches (Infiniband, Access and Managment networks)
- 728 TFlops/s Peak performance (expansion not included)

- ▶ 602 nodes in 15 racks
- ▶ 19288 cores (of which 2448 cores are KNL-cores)
 - ▶ 18840 available for users (the rest are for managing the cluster)
- More than 136 TB memory
- > 71 switches (Infiniband, Access and Managment networks)
- ▶ 728 TFlops/s Peak performance (expansion not included)
- 629 TFlops/s Linpack (all parts, except expansion)
 - 86% of Peak performance

▶ Basically five types of storage are available at HPC2N:

- Basically five types of storage are available at HPC2N:
 - ► Home directory
 - ightharpoonup /home/X/Xyz, \$HOME, \sim
 - ▶ 25 GB, user owned

- Basically five types of storage are available at HPC2N:
 - ► Home directory
 - ightharpoonup /home/X/Xyz, \$HOME, \sim
 - 25 GB, user owned
 - Project storage
 - /proj/nobackup/abc
 - Shared among project members

- Basically five types of storage are available at HPC2N:
 - ► Home directory
 - ightharpoonup /home/X/Xyz, \$HOME, \sim
 - 25 GB, user owned
 - Project storage
 - /proj/nobackup/abc
 - Shared among project members
 - Parallel file system Deprecated!
 - /pfs/nobackup/home/X/Xyz, user owned

- Basically five types of storage are available at HPC2N:
 - Home directory
 - ightharpoonup /home/X/Xyz, \$HOME, \sim
 - 25 GB, user owned
 - Project storage
 - /proj/nobackup/abc
 - Shared among project members
 - Parallel file system Deprecated!
 - /pfs/nobackup/home/X/Xyz, user owned
 - ► Local scratch space
 - ▶ \$SNIC TMP
 - ► SSD (170GB), per job, per node, "volatile"

- Basically five types of storage are available at HPC2N:
 - ► Home directory
 - ightharpoonup /home/X/Xyz, \$HOME, \sim
 - 25 GB, user owned
 - ► Project storage
 - /proj/nobackup/abc
 - Shared among project members
 - Parallel file system Deprecated!
 - /pfs/nobackup/home/X/Xyz, user owned
 - ► Local scratch space
 - ▶ \$SNIC_TMP
 - ► SSD (170GB), per job, per node, "volatile"
 - SweStore disk based (dCache)
 - part of SNIC Storage, nationally accessible storage

- Basically five types of storage are available at HPC2N:
 - ► Home directory
 - ightharpoonup /home/X/Xyz, \$HOME, \sim
 - 25 GB, user owned
 - Project storage
 - /proj/nobackup/abc
 - Shared among project members
 - Parallel file system Deprecated!
 - /pfs/nobackup/home/X/Xyz, user owned
 - ► Local scratch space
 - ▶ \$SNIC_TMP
 - ► SSD (170GB), per job, per node, "volatile"
 - SweStore disk based (dCache)
 - part of SNIC Storage, nationally accessible storage
 - ► Tape Storage
 - Backup
 - Long term storage

In order to use Kebnekaise, you must be a member of a compute project

- In order to use Kebnekaise, you must be a member of a compute project
 - A compute project has a certain number of core hours allocated for it per month

- In order to use Kebnekaise, you must be a member of a compute project
 - A compute project has a certain number of core hours allocated for it per month
 - ► A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more

- In order to use Kebnekaise, you must be a member of a compute project
 - A compute project has a certain number of core hours allocated for it per month
 - ► A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more
 - Not a hard limit but projects that go over the allocation get lower priority

- In order to use Kebnekaise, you must be a member of a compute project
 - A compute project has a certain number of **core hours** allocated for it per month
 - ▶ A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more
 - Not a hard limit but projects that go over the allocation get lower priority
- ▶ A compute project contains a certain amount of storage
 - If more storage is required, you must be a member of a storage project

- In order to use Kebnekaise, you must be a member of a compute project
 - ► A compute project has a certain number of **core hours** allocated for it per month
 - ▶ A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more
 - Not a hard limit but projects that go over the allocation get lower priority
- ▶ A compute project contains a certain amount of storage
 - If more storage is required, you must be a member of a storage project
- Birgitte will cover more details

High Performance Computing (definition)

"High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one could get out of a typical desktop computer or workstation in order to solve large problems in science, engineering, or business." 2

²https://insidehpc.com/hpc-basic-training/what-is-hpc/

High Performance Computing (opening the definition)

- Aggregating computing power
 - ▶ 602 nodes in 15 racks totalling 19288 cores
 - ► Compared to 4 cores in a modern laptop

⁴200 billion (milliard)

³728 trillion (billion)

High Performance Computing (opening the definition)

- Aggregating computing power
 - ▶ 602 nodes in 15 racks totalling 19288 cores
 - Compared to 4 cores in a modern laptop
- Higher performance
 - ▶ 728 000 000 000 000 arithmetical operations per second³
 - Compared to 200 000 000 Flops in a modern laptop⁴

⁴200 billion (milliard)

³728 trillion (billion)

High Performance Computing (opening the definition)

- Aggregating computing power
 - ▶ 602 nodes in 15 racks totalling 19288 cores
 - Compared to 4 cores in a modern laptop
- Higher performance
 - ▶ 728 000 000 000 000 arithmetical operations per second³
 - ► Compared to 200 000 000 000 Flops in a modern laptop⁴
- Solve large problems
 - When does a problem become large enough for HPC?
 - ▶ Are there other reasons for using HPC resources?

⁴200 billion (milliard)

³728 trillion (billion)

High Performance Computing (large problems)

- A problem can be large for two main reasons:
 - 1. Execution time: The time required to form a solution to the problem is very long
 - 2. Memory / storage use: The solution of the problem requires a lot of memory and/or storage

High Performance Computing (large problems)

- A problem can be large for two main reasons:
 - 1. Execution time: The time required to form a solution to the problem is very long
 - 2. Memory / storage use: The solution of the problem requires a lot of memory and/or storage
- The former can be remedied by increasing the performance
 - ► More cores, more nodes, GPUs, ...

High Performance Computing (large problems)

- A problem can be large for two main reasons:
 - Execution time: The time required to form a solution to the problem is very long
 - 2. Memory / storage use: The solution of the problem requires a lot of memory and/or storage
- ► The former can be remedied by increasing the performance
 - ► More cores, more nodes, GPUs, ...
- The latter by adding more memory / storage
 - More memory per node (including large memory nodes), more nodes, . . .
 - Large storage solutions, . . .

High Performance Computing (what counts as HPC)

High Performance Computing (what counts as HPC)

High Performance Computing (what counts as HPC)

High Performance Computing (other reasons)

Specialized (expensive) hardware

- Specialized (expensive) hardware
 - ► GPUs, Nvidia Tesla V100 GPUs are optimized for Al

- Specialized (expensive) hardware
 - ► GPUs, **Nvidia Tesla V100 GPUs** are optimized for Al
 - Intel Xeon Phi

- Specialized (expensive) hardware
 - ► GPUs, Nvidia Tesla V100 GPUs are optimized for Al
 - Intel Xeon Phi
 - High-end CPUs (AVX-512 etc) and ECC memory

- Specialized (expensive) hardware
 - ► GPUs, **Nvidia Tesla V100 GPUs** are optimized for Al
 - Intel Xeon Phi
 - High-end CPUs (AVX-512 etc) and ECC memory
- Software
 - ► HPC2N holds **licenses** for several softwares
 - Software is pre-configured and ready-to-use

- Specialized (expensive) hardware
 - ► GPUs, **Nvidia Tesla V100 GPUs** are optimized for Al
 - ▶ Intel Xeon Phi
 - High-end CPUs (AVX-512 etc) and ECC memory
- Software
 - ► HPC2N holds **licenses** for several softwares
 - Software is pre-configured and ready-to-use
- Support and documentation

Two memory models are relevant for HPC:

- Two memory models are relevant for HPC:
 - Shared memory: Single memory space for all data.

- Everyone can access the same data
- Straightforward to use

- Two memory models are relevant for HPC:
 - ► Shared memory: Single memory space for all data.

- Everyone can access the same data
- Straightforward to use
- Distributed memory: Multiple distinct memory spaces.

- Everyone has direct access only to the local data
- Requires communication

The programming model changes when we aim for extra performance and/or memory:

- ▶ The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations

- ▶ The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, **OpenMP**
 - Multiple streams of operations

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc), . . .

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc), . . .
 - 3. Distributed memory: **MPI**, ...
 - Multiple streams of operations
 - ▶ Work distribution, coordination (synchronization, etc), ...

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc), . . .
 - 3. Distributed memory: MPI, ...
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc), . . .
 - Data distribution and communication

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - Work distribution, coordination (synchronization, etc), . . .
 - 3. Distributed memory: MPI, ...
 - Multiple streams of operations
 - ▶ Work distribution, coordination (synchronization, etc), ...
 - Data distribution and communication
- ► GPUs: CUDA, OpenCL, OpenACC, OpenMP, ...

- ► The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - ► Work distribution, coordination (synchronization, etc), ...
 - 3. Distributed memory: MPI, ...
 - Multiple streams of operations
 - ▶ Work distribution, coordination (synchronization, etc), ...
 - Data distribution and communication
- GPUs: CUDA, OpenCL, OpenACC, OpenMP, . . .
 - Many lightweight streams of operations

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - ▶ Work distribution, coordination (synchronization, etc), ...
 - 3. Distributed memory: MPI, ...
 - Multiple streams of operations
 - ▶ Work distribution, coordination (synchronization, etc), ...
 - Data distribution and communication
- GPUs: CUDA, OpenCL, OpenACC, OpenMP, . . .
 - Many lightweight streams of operations
 - Work distribution, coordination (synchronization, etc), ...

- The programming model changes when we aim for extra performance and/or memory:
 - 1. Single-core: Matlab, Python, C, Fortran, ...
 - Single stream of operations
 - 2. Multi-core: Vectorized Matlab, pthreads, OpenMP
 - Multiple streams of operations
 - ▶ Work distribution, coordination (synchronization, etc), ...
 - 3. Distributed memory: MPI, ...
 - Multiple streams of operations
 - ▶ Work distribution, coordination (synchronization, etc), ...
 - Data distribution and communication
- GPUs: CUDA, OpenCL, OpenACC, OpenMP, . . .
 - Many lightweight streams of operations
 - Work distribution, coordination (synchronization, etc), . . .
 - Data distribution across memory spaces and movement

► Complexity grows when we aim for extra performance and/or memory/storage:

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc.

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc.
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc.
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - ▶ Allocate correct number of cores, configure software to use correct number of cores, ...

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc.
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - ▶ Allocate correct number of cores, configure software to use correct number of cores, ...
 - 3. Distributed memory: ScaLAPACK, ...
 - Load correct toolchain etc

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc.
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - ▶ Allocate correct number of cores, configure software to use correct number of cores, ...
 - 3. Distributed memory: ScaLAPACK, ...
 - Load correct toolchain etc.
 - ▶ Allocate correct number of **nodes and cores**, configure software to use correct number of nodes and cores, ...

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - ▶ Allocate correct number of cores, configure software to use correct number of cores, . . .
 - 3. Distributed memory: ScaLAPACK, ...
 - Load correct toolchain etc
 - Allocate correct number of nodes and cores, configure software to use correct number of nodes and cores, . . .
 - Data distribution, storage, . . .

- Complexity grows when we aim for extra performance and/or memory/storage:
 - 1. Single-core: LAPACK, ...
 - Load correct toolchain etc
 - 2. Multi-core: LAPACK + parallel BLAS, ...
 - Load correct toolchain etc
 - ▶ Allocate correct number of cores, configure software to use correct number of cores, . . .
 - 3. Distributed memory: ScaLAPACK, ...
 - Load correct toolchain etc
 - Allocate correct number of nodes and cores, configure software to use correct number of nodes and cores, . . .
 - ▶ Data distribution, storage, . . .
- ► GPUs: MAGMA, TensorFlow, ...
 - Load correct toolchain etc
 - Allocate correct number of cores and GPUs, configure software to use correct number of cores and GPUs, . . .

End (questions?)

Questions?

