Activation Function: SELU

ReLU

Rectified Linear Unit (ReLU)

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

ReLU - variant

Leaky ReLU

Parametric ReLU

α also learned by gradient descent

(1) Definition of scaled exponential linear units (SELUs)

```
In [3]: def selu(x):
    with ops.name_scope('elu') as scope:
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        return scale*tf.where(x>=0.0, x, alpha*tf.nn.elu(x))
https://github.com/bioinf-jku/SNNs
```

Exponential Linear Unit (ELU)

Scaled ELU (SELU)

 $\alpha = 1.6732632423543772848170429916717$ $\lambda = 1.0507009873554804934193349852946$

SELU

Positive and negative values

The whole ReLU family has this property except the original ReLU.

Saturation region

ELU also has this property

Slope larger than 1

Only SELU also has this property

SELU 自帶normalization

The inputs are i.i.d random variables with mean μ and variance σ^2 .=1

$$\mu_{z} = E[z]$$

$$= \sum_{k=1}^{K} E[a_{k}] w_{k} = \mu \sum_{k=1}^{K} w_{k} = \mu \cdot K\mu_{w}$$

$$= 0 = 0$$

希望最後output的a也是man=0, variance= 1

Do not have to be Gaussian

keras在default時sigmaw平方就是1/k 如果不符合這個設定的話,selu就沒有用了!

SELU 希望他output的mean是0,output是1

The inputs are i.i.d random variables with mean μ and variance σ^2 . =0

假設uw= 0, sigmaw平方=1/k $\mu_Z = 0 \qquad \mu_W = 0$ $\sigma_Z^2 = E[(z - \mu_Z)^2] = E[z^2]$ $= E[(a_1w_1 + a_2w_2 + \cdots)^2]$ k是hidden layer的寬度 $= \sum_{k=1}^{K} (w_k)^2 \sigma^2 = \sigma^2 \cdot K \sigma_W^2 = 1$ = 1 = 1

$$E[(a_k w_k)^2] = (w_k)^2 E[(a_k)^2] = (w_k)^2 \sigma^2$$

$$E[a_i a_j w_i w_j] = w_i w_j E[a_i] E[a_j] = 0$$

$$\vdots$$

$$\vdots$$

$$a_k$$

$$\vdots$$

$$Assume Gaussian$$

$$\mu = 0, \sigma = 1$$

$$z = a_1 w_1 + \Lambda + a_k w_k + \Lambda + a_K w_K$$

Demo

$$\frac{2(2x-y)(2x+y)2.911}{\left(\sqrt{2}\sqrt{x}\right)\left(\sqrt{\pi}\left(\frac{2x+y}{\sqrt{2}\sqrt{x}}\right)^{2}+2.911^{2}+\frac{(2.911-1)\sqrt{x}(2x+y)}{\sqrt{2}\sqrt{x}}\right)}\right)\sqrt{\pi}-0.0003=$$

$$(3x-y)+\left(\frac{\left(\sqrt{2}\sqrt{x}2.911\right)(x-y)(x+y)}{\left(\sqrt{\pi}(x+y)^{2}+2\cdot2.911^{2}x}+(2.911-1)(x+y)\sqrt{x}\right)\left(\sqrt{2}\sqrt{x}\right)}-\frac{2(2x-y)(2x+y)\left(\sqrt{2}\sqrt{x}2.911\right)}{\left(\sqrt{2}\sqrt{x}\right)\left(\sqrt{\pi}(2x+y)^{2}+2\cdot2.911^{2}x}+(2.911-1)(2x+y)\sqrt{\pi}\right)}\right)\sqrt{\pi}-0.0003=$$

$$(3x-y)+2.911\left(\frac{(x-y)(x+y)}{(2.911-1)(x+y)+\sqrt{(x+y)^{2}+\frac{2\cdot2.911^{2}x}{\pi}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(2x+y)+\sqrt{(2x+y)^{2}+\frac{2\cdot2.911^{2}x}{\pi}}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(x+y)+\sqrt{(\frac{2.911^{2}}{\pi}})^{2}+(x+y)^{2}+\frac{2\cdot2.911^{2}x}{\pi}}+\frac{2\cdot2.911^{2}y}{\pi}}}{(2.911-1)(2x+y)+\sqrt{(2x+y)^{2}+\frac{2\cdot2.911^{2}x}{\pi}}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(2x+y)+\sqrt{(2x+y)^{2}+\frac{2\cdot2.911^{2}x}{\pi}}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(x+y)+\sqrt{(2x+y)^{2}+\frac{2\cdot2.911^{2}x}{\pi}}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2\cdot911^{2}}{\pi}})^{2}}}-0.0003=$$

$$(3x-y)+2.911\left(\frac{(x-y)(x+y)}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2\cdot911^{2}}{\pi}})^{2}}}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2\cdot911^{2}}{\pi}})^{2}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2\cdot911^{2}}{\pi}})^{2}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2\cdot911^{2}}{\pi}})^{2}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2\cdot911^{2}}{\pi}})^{2}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2\cdot911^{2}}{\pi}})^{2}}}$$

93 頁的證明

Source of joke: https://zhuanlan.zhihu.co m/p/27336839

SELU is actually more general.

Following

(x-y)(x+y)

 $\left(\left((x+y)+\frac{2.9}{2}\right)\right)$

Andrej Karpathy @karpathy

maybe it's all generated by a char-rnn. I suspect we will never know.

2:54 AM - 10 Jun 2017

batch norm上下起伏會比較大,因為每次算出來的mean/variance會不一樣

FNN method comparison			ML method comparison		
Method	avg. rank diff.	<i>p</i> -value	Method	avg. rank diff.	p-value
SNN	-0.756		SNN	-6.7	
MSRAinit	-0.240*	2.7e-02	SVM	-6.4	5.8e-01
LayerNorm	-0.198*	1.5e-02	RandomForest	-5.9	2.1e-01
Highway	0.021*	1.9e-03	MSRAinit	-5.4*	4.5e-03
ResNet	0.273*	5.4e-04	LayerNorm	-5.3	7.1e-02
WeightNorm	0.397*	7.8e-07	Highway	-4.6*	1.7e-03
BatchNorm	0.504*	3.5e-06			

Demo