Memformer

A Memory Guided Transformer for Time Series Forecasting

Yunyao Cheng, Chenjuan Guo, Bin Yang, Haomin Yu, Kai Zhao, Christian S. Jensen

February 2025

Proceedings of the VLDB Endowment, Volume 18, Issue 2

Presented by Andreas Gottschalk Krath

1. Introduction

2. Methodology

Instance normalization

- Normalize within historical horizon only
- Mitigates the issue of internal covariate shift
- Allows model to effectively grasp the intricate temporal dynamics inherent in time series

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where

H is the historical horizon

 μ is the mean

 σ is the variance

c ensures numerical stability

Instance normalization

- Normalize within historical horizon only
- Mitigates the issue of internal covariate shift
- Allows model to effectively grasp the intricate temporal dynamics inherent in time series

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where H is the historical horizon

II is the mistorical noriz

 μ is the mean

 σ is the variance

c ensures numerical stability

poral dynamics inherent in time series. Instance normalization is defined as $\mathbf{H'} = (\mathbf{H} - \mu)/\sqrt{(\sigma^2 + \text{constant})}$, where $\mathbf{H'}$ denotes the preprocessed feature, μ and σ denote the mean and variance of the sample, respectively, and "constant" is a small positive real number included to ensure numerical stability.

Instance normalization

- Normalize within historical horizon only
- Mitigates the issue of internal covariate shift
- Allows model to effectively grasp the intricate temporal dynamics inherent in time series

$$H'=(H-\mu)/\sqrt{(\sigma^2+c)},$$
 where H is the historical horizon μ is the mean σ is the variance c ensures numerical stability

poral dynamics inherent in time series. Instance normalization is defined as $\mathbf{H'} = (\mathbf{H} - \mu)/\sqrt{(\sigma^2 + \text{constant})}$, where $\mathbf{H'}$ denotes the preprocessed feature, μ and σ denote the mean and variance of the sample, respectively, and "constant" is a small positive real number included to ensure numerical stability.

- Mistake in variance?
 - \bullet σ is conventional notation for standard deviation
 - σ^2 is conventional notation for variance

- Explored code to find answer
- data_provider/data_loader.py
 - Only place anything related to loading data happens
 - Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom, Dataset_Pred

- Explored code to find answer
- data_provider/data_loader.py
 - Only place anything related to loading data happens
 - Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom, Dataset_Pred

```
from sklearn.preprocessing import StandardScaler
class ...:
    def __read_data__(self):
        self.scalar = StandardScaler()
        self.scaler.fit(train_data.values)
        data = self.scaler.transform(df_data.values)
```

- Explored code to find answer
- data_provider/data_loader.py
 - Only place anything related to loading data happens
 - Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom, Dataset_Pred

```
from sklearn.preprocessing import StandardScaler
class ...:
    def __read_data__(self):
        self.scalar = StandardScaler()
        self.scaler.fit(train_data.values)
        data = self.scaler.transform(df_data.values)
```

- They fit on training data
- Normalize entire dataset with μ and σ from training data

What are they actually doing?

Preprocessing

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where

H is the historical horizon

$$\mu$$
 is the mean

$$\sigma$$
 is the variance

$$c$$
 ensures numerical stability

StandardScaler

$$z = (x - \mu)/\sigma$$
, where

x is the sample

$$\mu$$
 is the mean

$$\sigma$$
 is the standard deviation

What are they actually doing?

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where

$$H$$
 is the historical horizon μ is the mean

$$\sigma$$
 is the variance c ensures numerical stability

• We know that
$$\sqrt{\sigma^2} = \sigma$$

StandardScaler

$$z = (x - \mu)/\sigma$$
, where

$$x$$
 is the sample

$$\mu$$
 is the mean

$$\sigma$$
 is the standard deviation

What are they actually doing?

$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}$$
, where

$$\mu$$
 is the mean

$$\sigma$$
 is the variance

$$c$$
 ensures numerical stability

H is the historical horizon

- We know that $\sqrt{\sigma^2} = \sigma$
- Essentially same formula, except constant

StandardScaler

$$z = (x - \mu)/\sigma$$
, where

$$x$$
 is the sample

$$\mu$$
 is the mean

$$\sigma$$
 is the standard deviation

What are they actually doing?

Preprocessing StandardScaler
$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}, \text{ where}$$
 $z = (x - \mu)/\sigma, \text{ where}$ $z = (x - \mu)/\sigma,$

- We know that $\sqrt{\sigma^2} = \sigma$
- Essentially same formula, except constant
- Fit on training data, normalize entire dataset \rightarrow global normalization

What are they actually doing?

Preprocessing StandardScaler
$$H' = (H - \mu)/\sqrt{(\sigma^2 + c)}, \text{ where } z = (x - \mu)/\sigma, \text{ where } z$$

StandardScaler

- We know that $\sqrt{\sigma^2} = \sigma$ • Essentially same formula, except constant
- Fit on training data, normalize entire dataset \rightarrow global normalization
- None of the stated benefits of instance normalization
 - Mitigate internal covariate shift
 - Grasp intricate temporal dynamics in TS

Architecture

Upper part \rightarrow dynamic correlation

Lower part \rightarrow normalized data

Output \rightarrow enriched input features

Normalized Data

- Normalized as described earlier
 - Not what the paper actually states

Normalized Data

- Normalized as described earlier
 - Not what the paper actually states

Patches

- H' is split into p patches
- Stride S
- Size T
- If $S \geq T$ patches are disjoint
- If S < T patches overlap
 - Common elements for adjacent patches

AME

- Provides local memory embedding
 - ► These are learnable parameters
- Consistant local memory for patch P_i
- Matrix product of $E_i \otimes E_i^T$
 - Similarity matrix for variables in P_i

AME

- Provides local memory embedding
 - ► These are learnable parameters
- Consistant local memory for patch P_i
- Matrix product of $E_i \otimes E_i^T$
 - Similarity matrix for variables in P_i

ReLU + Softmax

- ReLU eliminates negative values
 - Removes negative correlations
- Softmax scales into influence scores

AME

- Provides local memory embedding
 - ► These are learnable parameters
- Consistant local memory for patch P_i
- Matrix product of $E_i \otimes E_i^T$
 - Similarity matrix for variables in P_i

ReLU + Softmax

- ReLU eliminates negative values
 - Removes negative correlations
- Softmax scales into influence scores

Graph

- Translates influence scores into graph
- Captures connection between variables
 - Dynamic correlations

Diffusion Convolution

- Normalized data is adjusted based on connections in graph
- Numeric values "diffuse" into neighbours
 - Not only immediate neighbours
- Spatially relates data based on connections

Gated Recurrent Unit

- Forwards information from P_i to P_{i+1}
- Temporally relates data in a sequence

Output

- Enriched input features
- Spatial → dynamic correlations
- Temporal \rightarrow GRU

3. Results