Formelblad elektriska kretsar och fält EEM076

Edvin Alestig

$May\ 29,\ 2021$

Contents

1	Lagar Maxwells ekvationer						
2							
3							
4							
5	For	Formler					
	5.1	Kretsa	ar	5			
		5.1.1	I kondensatorer	5			
		5.1.2	I induktorer	5			
	5.2	Elektr	riska fält	6			
		5.2.1	Flytta laddningar	6			
		5.2.2	Dipoler	6			
		5.2.3	Elektriskt flöde (flux)	6			
		5.2.4	Elektrisk potential	7			
		5.2.5	Ström, konduktivitet & resitivitet	7			
		5.2.6	Magnetfält, generatorer, motorer och induktion	7			
		5.2.7	Elektromagnetiska vågor	8			
	5.3	Växels	ström	8			
		5.3.1	Grundläggande	8			
		5.3.2	Notation	8			
		5.3.3	Induktorer	9			
		5.3.4	Kondensatorer	9			
		5.3.5	Tids-/frekvensdomäner	9			
		0.0.0	1 ids-/ ii ca vensuomanei	•			

		5.3.6	Impedans			
		5.3.7	Resonans			
	5.4	Effekt	i växelström			
		5.4.1	Resistive load $(\theta = 0)$			
		5.4.2	Inductive load $(z = \omega L/90^{\circ})$			
		5.4.3	Capacitive load $(z = \frac{1}{\omega C}/-90^{\circ})$			
		5.4.4	Effekttyper			
		5.4.5	Power factor			
	5.5	Amplif	ier			
		5.5.1	Operational amplifier (op-amp)			
	5.6	Filters	and transfer functions			
		5.6.1	First-order lowpass filter			
		5.6.2	First-order highpass filter			
		5.6.3	Second-order lowpass filter			
		5.6.4	Second-order highpass filter			
		5.6.5	Cascaded filters			
		5.6.6	Stuff			
6	Ekv	Ekvivalenta kretsar 1				
	6.1	Serieko	oppling			
	6.2	Paralle	ellkoppling			
	6.3	Théver	nin equivalent circuit (behöver förbättras) 15			
	6.4	Norton	n equivalent circuit (behöver förbättras)			
	6.5	Source	transformation - Thévenin and Norton			
7	Verktyg och metoder					
	7.1	Kretsa	r			

1 Storheter och enheter

Storhet Enhet Effekt (P) Watt (W) Elektriskt flöde, flux (Φ_E) $(V \cdot m)$ Elektriskt fält (E) (N/C)Energi (W) Joule (J) Frekvens (f) Hertz (Hz) Impedans (Z) Ohm (Ω) Induktans (L) Henry (H) Kapacitans (C) Farad (F) $(\Omega \cdot m)^{-1}$ Konduktivitet (σ) Kraft (F) Newton (N) Laddning (Q) Coloumb (C) Magnetfält (B) Tesla (T) Magnetiskt flöde, flux (Φ_B) Weber (Wb) Potentiell energi (U) Joule (J) Resistans (R) Ohm (Ω) Resistivitet (ρ) $(\Omega \cdot m)$ Spänning (v) Volt (V) Ström (I) Ampere (A) Strömdensitet (J) (A/m^2) Vinkelhastighet (ω) (rad/s)

$\mathbf{2}$ Lagar

v = RIOhms lag $P = Iv = RI^2 = \frac{v^2}{R}$ Effektlagen $\sum v = 0$ i en loop Kirchhoffs spänningslag (KVL) Kirchhoffs strömlag (KCL) $\sum I_{in} = \sum I_{out}$ i en nod $\sum P = 0$ i en krets Energiprincipen $\vec{F}_{12} = k_e \frac{q_1 q_2}{r^2} \hat{r}_{12}$ Coloumbs lag $\vec{\Phi_E} = \oiint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$ Gauss lag

 $\vec{B} = \int d\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2}$ Biot-Savarts lag $\oint \vec{B} \cdot d\vec{s} = \mu_0 \cdot I_{enc}$ Amperes lag

 $\vec{\Phi_B} = \iint \vec{B} \cdot d\vec{A} = BA \cos \theta = BA \cos \omega t$ Faradays lag

 $\varepsilon = \Delta V = \oint \vec{E} \cdot d\vec{s} = -N \frac{d\Phi_B}{dt}$

 $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$ Lorentzkraft

3 Maxwells ekvationer

Faradays lag: $\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}$ Gauss lag (EF): $\Phi_E = \iint \vec{E} \cdot d\vec{A} = \frac{Q}{\mu_0}$

Gauss lag (MF): $\Phi_B = \oiint \vec{B} \cdot d\vec{A}$

Ampere-Maxwells lag: $\varepsilon = \oint \vec{B} \cdot d\vec{s} = \mu_0 (I + \varepsilon_0 \frac{d\Phi_E}{dt})$

Konstanter 4

 $k_e = \frac{1}{4\pi\varepsilon_0} = 8.99 \cdot 10^9 \frac{Nm^2}{C^2}$ $\varepsilon_0 = \frac{10^{-9}}{36\pi}$ Coloumbkonstanten

Elektrisk permittivitet i vakuum

 $e = 1.602 \cdot 10^{-19} \text{ C}$ Elementarladdningen

 $\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m (Tm/A)}$ Tomrummets permeabilitet

Ljusets hastighet i vakuum c = 299 792 458 m/s

5 Formler

5.1 Kretsar

$$I(t) = \frac{dq(t)}{dt}$$

$$Q(t) = \int_{t_0}^{t} I(t) \cdot dt + Q(t_0)$$

$$W = \int_{t_1}^{t_2} P(t) \cdot dt$$

5.1.1 I kondensatorer

$$Q = Cv$$

$$I = \frac{dQ}{dt} = C\frac{dv}{dt}$$

$$P = IV = Cv\frac{dv}{dt}$$

$$W = \int_{t_0}^t P(t) \cdot dt = \int_{t_0}^t Cv\frac{dv}{dt} = C\int_{v(t_0)}^{v(t)} v \cdot dv = \frac{C}{2}(v(t)^2 - v(t_0)^2)$$

$$W = \frac{Cv^2}{2}, v(t_0) = 0$$

$$v(t) = \frac{1}{C}\int_{t_0}^t I(t) \cdot dt + v(t_0)$$

$$C = \varepsilon_0 \frac{A}{d} = \frac{Q}{|Ed|}$$

$$U = \frac{1}{2}\varepsilon_0 E^2 A d = \frac{1}{2}CV^2 \text{ (Potentiell energi)}$$

5.1.2 I induktorer

$$v = L\frac{dI}{dt}$$

$$W = \frac{LI^2}{2}, I(t_0) = 0$$

$$I(t) = \frac{1}{L} \int_{t_0}^t v(t) \cdot dt + I(t_0)$$

$$P = IV = LI\frac{di}{dt}$$
 Self-inductance: $\varepsilon_L = -N\frac{d\Phi_B}{dt} = L\frac{dI}{dt}$

$$L = \frac{N\Phi_B}{I} = \frac{\mu_0 N^2 A}{l}$$
$$U = \frac{1}{2}LI^2$$

The power, or rate at which an external emf works to overcome self-induced emf and pass current:

$$P_L = \frac{dW_{ext}}{dt} = IL\frac{dI}{dt}$$

5.2 Elektriska fält

$$\begin{split} \vec{E} &= k_e \frac{q}{r^2} \hat{r}_{12} \\ \vec{F}_E &= q \vec{E} \\ \vec{E}_{total} &= \sum \vec{E}_i \text{ (diskreta laddningar)} \\ \vec{E}_{total} &= \int_{L1}^{L2} \vec{E}_l \cdot dl \text{ (kontinuerliga laddningar)} \end{split}$$

5.2.1 Flytta laddningar

$$W = \int_{R}^{\infty} \vec{F} \cdot d\vec{r} = \frac{-k_e q_1 q_2}{R} \text{ (utanför fält)}$$

$$W = -q E_0 r$$

5.2.2 Dipoler

$$\vec{P} = q\vec{d}$$

$$\vec{\tau} = \vec{p} \times \vec{E}$$

$$\tau = p \cdot E \cdot \sin \theta$$

$$U = Ep(\sin \theta_1 - \sin \theta_0)$$

5.2.3 Elektriskt flöde (flux)

$$\vec{\Phi} = \sum \vec{E}_i$$

$$\vec{\Phi} = \int_{L1}^{L2} \vec{E}_l \cdot d\vec{l}$$

$$\vec{\Phi} = \iint \vec{E} \hat{n} \cdot d\vec{A} = \iint \vec{E} \cdot d\vec{A} \cdot \cos \theta \text{ i två dimensioner}$$

5.2.4 Elektrisk potential

$$\frac{W}{q}=-\int_A^B \vec{E}\cdot d\vec{r}=-Ed=\Delta V$$

$$\vec{E}=-\frac{dV}{d\vec{r}}=-\nabla v=-grad(v) \text{ (typ flerdimensionell derivata)}$$

5.2.5 Ström, konduktivitet & resitivitet

$$I = \iint \vec{J} \cdot d\vec{A} = \frac{dQ}{A \cdot dt}$$

$$\vec{J} = \sigma \vec{E}$$

$$J = \sigma E = \sigma \frac{\Delta V}{l} = \frac{I}{A} \text{ (uniform field)}$$

$$\Delta V = \frac{l}{\sigma} J = \frac{l}{\sigma A} I = RI$$

$$\rho = \frac{1}{\sigma}$$

 $\rho = \rho_0 [1 + \alpha (T - T_0)]$ när det beror på temperatur

5.2.6 Magnetfält, generatorer, motorer och induktion

$$\begin{split} \vec{B} &= \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2} \implies B = \frac{\mu_0 I}{2\pi r} \text{ i en oändlig wire} \\ B &= \frac{\mu_0 N I}{l} = \mu_0 n I \text{ i en oändlig solenoid} \\ I &= \frac{|\varepsilon|}{R} = \frac{N B A \omega}{R} \sin \omega t \\ P &= \frac{(N B A \omega)^2}{R} \sin^2 \omega t \end{split}$$

Total work done by external source to increase current from 0 to I in a magnetic field/inductor:

$$W_{ext} = U_B = \int_0^I LI \cdot dI = \frac{1}{2}LI^2$$

5.2.7 Elektromagnetiska vågor

$$c = \lambda f = \frac{\omega}{k} = \frac{E}{B}$$

$$\vec{E} = E_y(x, t)\hat{j} = E_0 \cos(kx - \omega t)\hat{j}$$

$$\vec{B} = B_z(x, t(\hat{k} = B_0 \cos(kx - \omega t)\hat{k})$$

$$\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}$$

$$\frac{\partial E_y}{\partial x} = -kE_0 \sin(kx - \omega t)$$

$$\frac{\partial B_z}{\partial t} = \omega B_0 \sin(kx - \omega t)$$

5.3 Växelström

5.3.1 Grundläggande

$$v(t) = V_m \cos(\omega t + \theta)$$

$$\omega = 2\pi f$$

$$\sin(z) = \cos(z - 90^\circ)$$

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$

$$I_{rms} = \frac{I_m}{\sqrt{2}}$$

$$P_{avg} = V_{rms} \cdot I_{rms} = \frac{V_{rms}^2}{R} = I_{rms}^2 R$$

$$v(t) = V_m \cos(\omega t + \theta) \leftrightarrow V = V_m / \theta$$
Lagging: $I_m \cos(\omega t - \theta)$, leading: $I_m \cos(\omega t + \theta)$

5.3.2 Notation

$$z = x + jy = |z|(\cos\theta + j\sin\theta) = |z|/\underline{\theta} = |z|e^{j\theta}$$

$$z = r/\underline{\theta} \to z = r(\cos\theta + j \cdot \sin\theta)$$

$$z = x + jy \to z = \sqrt{x^2 + y^2}/\tan^{-1}\frac{y}{x}$$

$$(b/\underline{c})(d/\underline{e}) = bd/\underline{c} + \underline{e}$$

$$\frac{b/\underline{c}}{d/e} = \frac{b}{d}/\underline{c} - \underline{e}$$

5.3.3 Induktorer

$$V_L = V_m \underline{/\theta}$$

$$I_L = I_m / \theta - \frac{\pi}{2}$$

5.3.4 Kondensatorer

$$V_L = V_m \underline{/\theta}$$

$$I_L = I_m / \theta + \frac{\pi}{2}$$

5.3.5 Tids-/frekvensdomäner

Över en resistor:
$$v=Ri \leftrightarrow V=RI$$

Över en induktor: $v=L\frac{di}{dt} \leftrightarrow V=j\omega LI$
Över en kondensator: $v=\frac{1}{C}\int i\cdot dt \leftrightarrow V=\frac{1}{j\omega C}I$

5.3.6 Impedans

$$Z = \frac{V}{I} \Leftrightarrow V = IZ$$

$$Z_R = R, \quad Z_L = j\omega L = \omega L / \frac{\pi}{2}, \quad Z_C = \frac{1}{j\omega C} = \frac{1}{\omega C} / -\frac{\pi}{2}$$
 Reaktans = $Im(Z)$, Resistans = $Re(Z)$

5.3.7 Resonans

Resonans uppstår när reaktansen är noll.

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \to Im(Z) = 0$$

Kretsar i serie

Kvalitetsfaktor
$$Q_s=\frac{2\pi f_0L}{R}=\frac{1}{2\pi f_0CR}$$

$$Z_s=R\left[1+jQ_s\left(\frac{f}{f_0}-\frac{f_0}{f}\right)\right]$$

Kretsar i parallell

$$Q_{p} = 2\pi f_{0}CR$$

$$Z_{p} = \frac{R}{1 + iQ_{n}(f/f_{0} - f_{0}/f)}$$

5.4 Effekt i växelström

5.4.1 Resistive load $(\theta = 0)$

$$v(t) = V_m \cos(\omega t), \quad i(t) = I_m \cos(\omega t)$$

 $P(t) = V_m I_m \cos^2(\omega t)$
 $P_{avg} = \frac{V_m I_m}{2} = V_{rms} \cdot I_{rms}$

5.4.2 Inductive load $(z = \omega L/90^{\circ})$

$$v(t) = V_m \cos(\omega t), \quad i(t) = I_m \cos(\omega t - 90^\circ) = I_m \sin(\omega t)$$

$$P(t) = \frac{V_m I_m}{2} \sin 2\omega t$$

$$P_{avg} = 0$$

5.4.3 Capacitive load $(z = \frac{1}{\omega C}/-90^{\circ})$

$$v(t) = V_m \cos(\omega t), \quad i(t) = I_m \cos(\omega t + 90^\circ) = -I_m \sin(\omega t)$$

$$P(t) = -\frac{V_m I_m}{2} \sin(2\omega t)$$

$$P_{avg} = 0$$

5.4.4 Effekttyper

Real power:
$$P = V_{rms}I_{rms}\cos(\theta_v - \phi_i)$$

Reactive power: $Q = V_{rms}I_{rms}\sin(\theta_v - \phi_i)$ (enhet: VAR)
Complex power: $S = P + jQ = V_{rms}I_{rms}/\theta_v - \phi_i$ (enhet: VA)
Apparent power: $|S| = V_{rms}I_{rms}$ (enhet: VA)

5.4.5 Power factor

$$PF = \frac{P}{|S|} = \cos(\theta_v - \phi_i) \le 1$$

Power angle: $\theta_v - \phi_i$

5.5 Amplifier

Voltage gain:
$$A_v = \frac{V_o}{V_i}$$

Current gain: $A_i = \frac{i_o}{i_i} = A_v \frac{R_i}{R_L}$

5.5.1 Operational amplifier (op-amp)

Common mode signal: $V_{cm} = \frac{1}{2}(V_1 + V_2)$

Differential signal: $V_d = V_1 - V_2$

Basic Operational Amplifier Configurations

5.6 Filters and transfer functions

$$H(f) = \frac{V_{out}}{V_{in}}$$

5.6.1 First-order lowpass filter

$$H(f) = \frac{1}{1 + j(f/f_B)}$$

$$|H(f)| = \frac{1}{\sqrt{1 + (f/f_B)^2}}$$

$$f_B = \frac{1}{2\pi RC}$$

$$/H(f) = -tan^{-1} \left(\frac{f}{f_B}\right)$$

5.6.2 First-order highpass filter

$$H(f) = \frac{j(f/f_B)}{1 + j(f/f_B)}$$
$$|H(f)| = \frac{f/f_B}{\sqrt{1 + (f/f_B)^2}}$$
$$f_B = \frac{1}{2\pi RC}$$

$$\underline{/H(f)} = \frac{\pi}{2} - \tan^{-1} \left(\frac{f}{f_B}\right)$$
$$|H(f)|_{dB} = 20 \log_{10} \frac{f/f_B}{\sqrt{1 + (f/f_B)^2}}$$

5.6.3 Second-order lowpass filter

Disclaimer: Might be wrong, I don't know.

$$H(f) = \frac{-jQ_s(f_0/f)}{1 + jQ_s(f/f_0 - f_0/f)}$$

Se avsnitt Resonans.

5.6.4 Second-order highpass filter

 $Disclaimer:\ Might\ be\ wrong,\ I\ don't\ know.$

5.6.5 Cascaded filters

$$H(f) = \prod H_n(f)$$
$$|H(f)|_{dB} = \sum |H_n(f)|_{dB}$$

5.6.6 Stuff

Decibel dB =
$$20\log_{10}(|H(f)|)$$

Butterworth transfer function $H(f) = \frac{H_0}{\sqrt{1+\left(\frac{f}{f_B}\right)^{2n}}}$

 $f_B = \text{break frequency }, H_0 = H(0) = DC \text{ gain }$

6 Ekvivalenta kretsar

6.1 Seriekoppling

Resistans
$$R_{eq}=\sum R_n$$

Kapacitans $C_{eq}=(\sum C_n^{-1})^{-1}$ $(C_{eq}=\frac{C_1C_2}{C_1+C_2} \text{ vid endast 2 kondensatorer})$
Induktans $L_{eq}=\sum L_n$
Impedans $Z_{eq}=\sum Z_n$

Spänningsdelning

$$v_n = R_n I = \frac{R_n}{R_{eq}} \cdot v_{total}$$

6.2 Parallellkoppling

Resistans
$$R_{eq} = (\sum R_n^{-1})^{-1}$$
 $(R_{eq} = \frac{R_1 R_2}{R_1 + R_2} \text{ vid endast 2 resistorer})$
Kapacitans $C_{eq} = \sum C_n$
Induktans $L_{eq} = (\sum L_n^{-1})^{-1}$ $(L_{eq} = \frac{L_1 L_2}{L_1 + L_2} \text{ vid endast 2 induktorer})$
Impedans $Z_{eq} = (\sum Z_n^{-1})^{-1}$ $(Z_{eq} = \frac{Z_1 Z_2}{Z_1 + Z_2} \text{ vid endast 2 impedanser})$

Strömdelning $I_1 = \frac{R_2}{R_1 + R_2} \cdot I_{total} \quad I_2 = \frac{R_1}{R_1 + R_2} \cdot I_{total}$

6.3 Thévenin equivalent circuit (behöver förbättras)

- 1. Disconnect the load \mathcal{R}_L and replace with an open circuit.
- 2. Find the open circuit voltage V_{oc} .
- 3. Find the equivalent resistance R_{eq} of the network with all independent sources turned off. $(V = 0 \rightarrow \text{short circuit}, I = 0 \rightarrow \text{open circuit})$
- 4. $v_{th} = v_{oc}$ and $R_{th} = R_{eq}$.

6.4 Norton equivalent circuit (behöver förbättras)

- 1. Replace the load R_L with a short circuit.
- 2. Find the short circuit current I_{sc} .
- 3. Find the equivalent resistance R_{eq} of the network with all independent sources turned off. $(V=0 \rightarrow \text{short circuit}, I=0 \rightarrow \text{open circuit})$
- 4. $I_N = I_{sc}$ and $R_N = R_{eq}$.

6.5 Source transformation - Thévenin and Norton

 $R_{th} = R_N = R_{eq}$ and $v_{th} = I_N R_{eq}$

Genom att kombinera Thévenin och Norton kan man kraftigt förenkla en delkrets.

7 Verktyg och metoder

7.1 Kretsar

Node voltage analysis

Analysera spänningsskillnader gentemot en referensnod (jord eller den nod med flest kopplingar). Lös med ekvationssystem.

- 1. Välj en referensnod och sätt den till 0 V.
- 2. Sätt variabler för varje nod.
- 3. Applicera KCL på varje nod.
- 4. Räkna ut spänningen genom att räkna ut spänningsdifferensen mellan två noder.

Tips: Räkna I_{out} som positiv i varje resistor.

Supernod

Spänningskälla som ej är direkt kopplad till referensnoden kan göras om till en supernod. Nodens spänning är källans spänning och båda ändars kopplingar räknas som supernodens kopplingar.

Mesh current analysis

Analysera loopar i en krets (medsols). Applicera KVL på varje loop. Lös med ekvationssystem.

Supermesh

Strömkälla i kretsen. Kombinera loopar in i en större superloop. $I_{super} = I_1 - I_2$

Superposition

Går endast att applicera på linjära kretsar med flera ström- och/eller spänningskällor. Varje källa kan analyseras separat för att sedan läggas ihop.

- 1. Stäng av alla källor förutom en.
 - v = 0 blir en kortsluten krets.
 - I = 0 blir en öppen krets.

- Räkna ut källans kretspåverkan.
- 2. Lägg ihop alla källors påverkan.