TD 9: Processus markovien de sauts

Exercice 1:

Soit $(Z_n)_{n\geqslant 0}$ une chaîne de Markov sur E de probabilité de transition Q indépendante d'un processus de Poisson $(N_t)_{t\geqslant 0}$ de paramètre $\lambda>0$. On suppose que Q vérifie $\forall i\in E,\,Q(i,i)=0$, et on définit

$$\forall t \geqslant 0, \quad X_t = Z_{N_t}.$$

1. Montrer que $(X_t)_{t\geqslant 0}$ est un processus markovien de sauts de noyaux de transition $(P_t)_{t\geqslant 0}$ définis par

$$\forall t \geqslant 0, (i,j) \in E^2, \quad P_t(i,j) = e^{\lambda t(Q-I)}(i,j) = \sum_{n=0}^{+\infty} e^{-\lambda t} \frac{(\lambda t)^n Q^n(i,j)}{n!}.$$

2. Déterminer le générateur infinitésimal A du processus $(X_t)_{t\geq 0}$.

Corrigé:

1. La chaîne de Markov $(Z_n)_{n\geqslant 0}$ est à valeurs dans E donc il en est de même pour le processus $(X_t)_{t\geqslant 0}$. Le processus càdlàg $(X_t)_{t\geqslant 0}$ est un processus markovien de sauts de semi-groupe $(P_t)_{t\geqslant 0}$ si

$$\forall s, t \geqslant 0, \quad \forall y \in E, \quad \mathbf{P}[X_{t+s} = y \mid \sigma(X_r, r \leqslant s)] = P_t(X_s, y).$$

Cela revient à montrer que pour tout $k\geqslant 1$ et $0\leqslant r_0\leqslant r_1\leqslant \cdots\leqslant r_{k-1}=s$

$$\forall a_1, \dots, a_{k-1} \in E, \quad \forall x, y \in E, \quad \mathbf{P}[X_{t+s} = y \mid X_{r_0} = a_0, \dots, X_s = a_{k-1}] = P_t(x, y).$$

On pose $r_k = t + s$ et $a_k = y$. Par définition de $(X_t)_{t \ge 0}$ on a

$$\mathbf{P}\left[X_{r_0} = a_0, \dots, X_{r_k} = a_k\right] = \sum_{n_0, \dots, n_k} \mathbf{P}\left[N_{r_0} = n_0, \dots, N_{r_k} = n_0 + \dots + n_k, Z_{n_0} = a_0, Z_{n_0 + n_1} = a_1, \dots, Z_{n_0 + \dots + n_k} = a_k\right]$$

Par indépendance de Z et de N on a

$$\mathbf{P}\left[N_{r_0} = n_0, \dots, N_{r_k} = n_0 + \dots + n_k, Z_{n_0} = a_0, Z_{n_0 + n_1} = a_1, \dots, Z_{n_0 + \dots + n_k} = a_k\right]$$

$$= \mathbf{P}\left[N_{r_0} = n_0, \dots, N_{r_{k-1}} = n_0 + \dots + n_{k-1}\right] \mathbf{P}\left[N_{r_k} - N_{r_{k-1}} = n_k\right]$$

$$\times \mathbf{P}\left[Z_{n_0} = a_0, \dots, Z_{n_0 + \dots + n_{k-1}} = a_{k-1}\right] Q^{n_k}(a_{k-1}, a_k)$$

d'où

$$\mathbf{P}\left[X_{r_0} = a_0, \dots, X_{r_k} = a_k\right] = \mathbf{P}\left[X_{r_0} = a_0, \dots, X_{r_{k-1}} = a_{k-1}\right] \sum_{n_k} \mathbf{P}\left[N_{r_k} - N_{r_{k-1}} = n_k\right] Q^{n_k}(a_{k-1}, a_k).$$

Ainsi

$$\mathbf{P}\left[X_{r_k} = a_k \mid X_{r_0} = a_0, \dots, X_{r_{k-1}} = a_{k-1}\right] = \sum_n e^{-\lambda(r_k - r_{k-1})} \frac{(\lambda(r_k - r_{k-1}))^n}{n!} Q^n(a_{k-1}, a_k),$$

$$= P_{r_k - r_{k-1}}(a_{k-1}, a_r).$$

2. Par définition, le générateur infinitésimal A du PMS $(X_t)_{t\geq 0}$ est donné par

$$\forall i, j \in E, \quad A(i, j) = \begin{cases} \frac{1}{\mathbf{E}_i[T_1]} \mathbf{P}_i \left[X_{T_1} = j \right] & \text{si } i \neq j \\ -\frac{1}{\mathbf{E}_i[T_1]} & \text{si } i = j, \end{cases}$$

où T_1 est le premier instant de saut du PMS. Par définition de $(X_t)_{t\geqslant 0}$ les temps de sauts sont donnés par un processus de Poisson $(N_t)_{t\geqslant 0}$ de paramètre $\lambda>0$, donc pour tout $i\in E$, $\mathbf{E}_i[T_1]=\mathbf{E}[T]$ avec $T\sim \mathscr{E}(\lambda)$ i.e. $1/\mathbf{E}_i[T_1]=\lambda$. D'autre part on a $\mathbf{P}_i[X_{T_1}=j]=Q(i,j)$ et donc

$$\forall i, j \in E, \quad A(i, j) = \begin{cases} \lambda Q(i, j) & \text{si } i \neq j \\ -\lambda & \text{si } i = j, \end{cases}$$

Exercice 2:

Soit $(N_t)_{t\geqslant 0}$ un processus de Poisson de paramètre $\lambda>0$ et d'instants de sauts $(T_n)_{n\geqslant 1}$. On définit le processus $(X_t)_{t\geqslant 0}$ appelé processus du télégraphe par

$$\forall t \in [T_n, T_{n+1}], \quad X_t = 1 - X_{T_{n-1}}, \quad X_0 \sim \mathscr{B}(p),$$

où $p \in]0,1[$ et $T_0 = 0.$

1. Montrer que $(X_t)_{t\geqslant 0}$ est à valeurs dans $\{0,1\}$ et que

$$X_{t+s} - X_s = \begin{cases} 0 & \text{si } N_{t+s} - N_s = 0 \mod 2 \\ 1 - 2X_s & \text{si } N_{t+s} - N_s = 1 \mod 2 \end{cases} \quad \text{(nombre pair de sauts entre } s \text{ et } t + s \text{)}$$

2. Montrer que $(X_t)_{t\geqslant 0}$ est un processus markovien de sauts de noyaux de transition $(P_t)_{t\geqslant 0}$ définis par

$$P_t(0,1) = P_t(1,0) = e^{-\lambda t} \sum_{k \geqslant 0} \frac{(\lambda t)^{2k+1}}{(2k+1)!},$$

$$P_t(0,0) = P_t(1,1) = e^{-\lambda t} \sum_{k \ge 0} \frac{(\lambda t)^{2k}}{(2k)!}$$

3. Déterminer le générateur infinitésimal A du processus $(X_t)_{t \ge 0}$.

Corrigé:

- 1. Le processus $(X_t)_{t\geqslant 0}$ est càdlàg, constant par morceaux sur $[T_n,T_{n+1}[$ et pour tout $t\in [T_n,T_{n+1}[$, $X_t=X_{T_n}=1-X_{T_{n-1}}.$ La transformation f(u)=1-u envoie 0 en 1 et 1 en 0 donc le processus $(X_t)_{t\geqslant 0}$ est à valeurs dans $E=\{0,1\}$. Le processus alterne entre ces 2 valeurs à chaque saut du processus de Poisson. Si le nombre de sauts est pair entre 2 instants s et t+s alors l'accroissement du processus est nul, sinon l'accroissement (en valeur absolue) vaut 1.
- 2. Soit $\mathcal{G}_t = \sigma(X_s, s \leq t)$. Alors

$$\begin{split} \mathbf{P}\left[X_{t+s} = 1 \mid \mathscr{G}_{s}\right] &= \mathbf{E}\left[\mathbf{1}_{\{X_{t+s} = 1\}}\mathbf{1}_{\{X_{s} = 1\}} + \mathbf{1}_{\{X_{t+s} = 1\}}\mathbf{1}_{\{X_{s} = 0\}} \mid \mathscr{G}_{s}\right], \\ &= \mathbf{1}_{\{X_{s} = 1\}}\mathbf{E}\left[\mathbf{1}_{\{X_{t+s} - X_{s} = 0\}} \mid \mathscr{G}_{s}\right] + \mathbf{1}_{\{X_{s} = 0\}}\mathbf{E}\left[\mathbf{1}_{\{X_{t+s} - X_{s} = 1\}} \mid \mathscr{G}_{s}\right], \\ &= \mathbf{1}_{\{X_{s} = 1\}}\mathbf{E}\left[\mathbf{1}_{\{N_{t+s} - N_{s} = 0 \mod 2\}} \mid \mathscr{G}_{s}\right] + \mathbf{1}_{\{X_{s} = 0\}}\mathbf{E}\left[\mathbf{1}_{\{N_{t+s} - N_{s} = 1 \mod 2\}} \mid \mathscr{G}_{s}\right], \\ &= \mathbf{1}_{\{X_{s} = 1\}}\mathbf{P}\left[N_{t} \in 2\mathbf{N}\right] + \mathbf{1}_{\{X_{s} = 0\}}\mathbf{P}\left[N_{t} \in 2\mathbf{N} + 1\right]. \end{split}$$

On vient de montrer que $P_t(0,1) = \mathbf{P}[N_t \in 2\mathbf{N} + 1]$ et $P_t(1,1) = \mathbf{P}[N_t \in 2\mathbf{N}]$. De la même façon on prouve que $P_t(1,0) = P_t(0,1)$ et $P_t(0,0) = P_t(1,1)$.

3. L'espace d'états E est fini donc $(P_t)_{t\geqslant 0}$ et A vérifient les équations de Kolmogorov et du développement

$$P_t(0,1) = P_t(1,0) = \lambda t + o(t),$$

$$P_t(0,0) = P_t(1,1) = 1 - \lambda t + o(t)$$

on en déduit $A = \begin{pmatrix} -\lambda & \lambda \\ \lambda & -\lambda \end{pmatrix}$.

On peut aussi obtenir A immédiatement à partir de la définition $A(i,i) = -\lambda$ et utiliser $\sum_i A(i,j) = 0$.

Exercice 3:

Soit $(X_t)_{t\geqslant 0}$ un processus markovien de saut sur $E=\{1,2,3\}$ de loi initiale μ et de générateur

$$A = \left(\begin{array}{rrr} -2 & 1 & 1\\ 3 & -7 & 4\\ 0 & 0 & 0 \end{array}\right)$$

On note $(T_n)_{n\geqslant 1}$ les instants de sauts de $(X_t)_{t\geqslant 0}$ et $(S_n)_{n\geqslant 1}$ les durées entre les sauts $S_n=T_n-T_{n-1}$ (avec $T_0=0$).

- 1. Déterminer le noyau Q de la chaîne de Markov induite $(X_{T_n})_{n\geqslant 0}$ notée $(Y_n)_{n\geqslant 0}$.
- 2. Déterminer la loi de (S_1, \ldots, S_n) conditionnellement à (Y_0, \ldots, Y_{n-1}) .

3. Montrer qu'on peut représenter $(X_t)_{t\geqslant 0}$ de la façon suivante : soit $(\xi_n)_{n\geqslant 0}$ une μ -Q chaîne de Markov sur E et $(U_n)_{n\geqslant 1}$ une suite i.i.d. de loi exponentielle de paramètre 1, alors

$$X_t = \sum_{n=0}^{+\infty} \xi_n \mathbf{1}_{[V_n, V_{n+1}[}(t),$$

avec
$$V_n = \sum_{k=1}^n \frac{U_k}{\lambda(\xi_{k-1})}$$
 (avec la convention $1/0 = +\infty$).

4. Classer les états du processus $(X_t)_{t\geq 0}$.

Corrigé:

Cet exercice est l'application directe d'un théorème fondamental du cours.

1. Le noyau Q de la chaîne induite $(X_{T_n})_{n\geqslant 0}$ est défini par $Q(i,j)=\mathbf{P}_i\left[T_1=j\right]$ soit

$$\forall i \neq j \in E, \quad Q(i,j) = \mathbf{P}_i \left[X_{T_1} = j \right] = \begin{cases} \frac{A(i,j)}{-A(i,i)} & \text{si } A(i,i) \neq 0 \\ 0 & \text{si } A(i,i) = 0 \end{cases} \quad \text{et} \quad Q(i,i) = \begin{cases} 0 & \text{si } A(i,i) \neq 0 \\ 1 & \text{si } A(i,i) = 0 \end{cases}$$

Ainsi le noyau Q vérifie

$$Q = \left(\begin{array}{ccc} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{3}{7} & 0 & \frac{4}{7} \\ 0 & 0 & 1 \end{array}\right).$$

La suite $(X_{T_n})_{n\geqslant 0}$ est une μ -Q chaîne de Markov homogène sur E.

2. Soit $\lambda(i) = \frac{1}{\mathbf{E}_i[T_1]} = -A(i,i)$. Alors conditionnellement à une trajectoire $(Y_0 = y_0, \dots, Y_{n-1} = y_{n-1})$ les durées entre les sauts S_1, \dots, S_n sont des v.a. indépendantes de loi exponentielle de paramètres respectifs $\lambda(y_0), \dots, \lambda(y_{n-1})$.

On dit que la loi conditionnelle de S_k sachant Y_{k-1} est une loi exponentielle de paramètre $\lambda(Y_{k-1})$.

- 3. On pose $\xi_n = X_{T_n}$ et $U_n = \lambda(\xi_{n-1})(T_n T_{n-1})$.
- 4. Les états $\{1,2\}$ sont transients pour la chaîne de Markov induite donc pour le PMS $(X_t)_{t\geqslant 0}$ et l'état 3 est absorbant. Le paramètre de la loi exponentielle $\lambda(3)=0$ ce qui signifie que le PMS ne saute pas lorsqu'il est dans l'état 3.

Exercice 4:

Une bactérie se divise en deux bactéries identiques après un temps aléatoire de loi exponentielle de paramètre $\lambda > 0$, qui se divisent elles-mêmes de la même façon indépendamment les unes des autres, etc. Soit X_t le nombre de bactéries au temps t et on suppose $X_0 = 1$ et $\mu : \mathbf{R}_+ \mapsto \mathbf{R}_+$ définie par $\mu(t) = \mathbf{E}[X_t]$.

- 1. Prouver que $(X_t)_{t\geqslant 0}$ est un processus markovien de saut
- 2. Soit $T = \inf\{t \ge 0, X_t = 2\}$. Montrer que $\mathbf{E}[X_t] = \int_0^t \lambda e^{-\lambda s} \mathbf{E}[X_t \mid T = s] ds + e^{-\lambda t}$.
- 3. Pour tout $t \ge s$ exprimer $\mathbf{E}[X_t \mid T = s]$ en fonction de μ (utiliser la propriété de Markov forte).
- 4. Montrer que μ vérifie l'équation intégrale

$$\forall t \geqslant 0, \quad \mu(t) = \int_0^t 2\lambda e^{-\lambda s} \mu(t-s) ds + e^{-\lambda t}.$$

En déduire la valeur de $\mathbf{E}[X_t]$ pour tout $t \ge 0$.

5. On note ϕ_t la fonction génératrice des moments de X_t i.e. $\phi(t,z) = \mathbf{E}\left[z^{X_t}\right]$. On fixe $z \in \mathbf{R}$ et on note $\phi_z(t) = \phi(t,z)$. Montrer que

$$\forall t \geqslant 0, \quad \phi_z(t) = ze^{-\lambda t} + \int_0^t \lambda e^{-\lambda s} \phi_z(t-s)^2 ds$$

6. En déduire que $\phi'_z = \lambda \phi_z(\phi_z - 1)$ et calculer $\mathbf{P}[X_t = n]$ pour tout $n \ge 1$.

Corrigé:

1. La première division se fait à un temps $T_1 \sim \mathscr{E}(\lambda)$. A l'instant $T_1, X_{T_1} = 2$ il y a 2 bactéries. Chaque bactérie se divise en suivant la même loi $\mathscr{E}(\lambda)$ donc le prochain temps de division est le minimum de ces deux v.a. exponentielles. De même si il y a n bactéries alors le prochain temps de division est le minimum de n v.a. indépendantes de loi exponentielles de paramètre $\lambda > 0$. Donc $T_n = T_{n-1} + S_n$ avec $S_n = \min(R_1, \ldots, R_n) \sim \mathscr{E}(n\lambda)$. Lors d'une division le nombre de bactéries augmente de 1. La construction est donc la suivante :

- soit $y_n = 1 + n$ la suite déterministe (et donc chaîne de Markov)
- soit $T_n = T_{n-1} + S_n$ avec S_1, \ldots, S_n indépendantes de loi respectives $\mathscr{E}(n\lambda)$

$$\forall t \ge 0, \quad X_t = \sum_{n \ge 1} (1+n) \mathbf{1}_{[T_n, T_{n+1}[}(t))$$

2. Soit $T = T_1$. On remarque que $X_t \mathbf{1}_{\{t < T\}} = \mathbf{1}_{\{t < T\}}$ donc

$$\mathbf{E}[X_t] = \mathbf{E}[X_t \mathbf{1}_{\{t < T\}}] + \mathbf{E}[X_t \mathbf{1}_{\{t > T\}}]$$

$$= \mathbf{P}[T > t] + \mathbf{E}[\mathbf{1}_{\{t > T\}} \mathbf{E}[X_t \mid T]]$$

$$= e^{-\lambda t} + \int_0^t \psi(s) \lambda e^{-\lambda s} ds$$

avec $\psi(s) = \mathbf{E}[X_t \mid T = s].$

3. Par la propriété de Markov forte on a

$$\forall t \ge s, \quad \mathbf{E}[X_t \mid T = s] = \mathbf{E}_2[X_{t-s}] = 2\mu(t-s).$$

4. D'après 2. et 3. on a alors

$$\mu(t) = e^{-\lambda t} + \int_0^t 2\lambda e^{-\lambda s} \mu(t - s) ds,$$
$$= e^{-\lambda t} + \int_0^t 2\lambda e^{-\lambda(t - r)} \mu(r) dr,$$

d'où $\mu(t) = e^{\lambda t}$.

Exercice 5:

Soit $(X_t)_{t\geq 0}$ un processus markovien de saut sur **Z** de générateur A défini par $A(i,i+1)=\lambda q_i$ et $A(i,i-1)=\mu q_i$ avec $\lambda + \mu = 1$ et $A(i, i) = -q_i$ avec $q_i > 0$.

- 1. Déterminer le noyau de transition de la chaîne de Markov induite.
- 2. Supposons $\mu = 0$. Montrer que $(X_t)_{t \ge 0}$ n'explose pas si et seulement si $\sum_{i=1}^{+\infty} \frac{1}{q_i} = +\infty$.
- 3. Supposons $\mu \neq 0$. Montrer que $(X_t)_{t \geqslant 0}$ n'explose pas sous l'une des conditions suivantes :

 - $-\lambda = \mu$ $-\lambda > \mu \text{ et } \sum_{i=1}^{+\infty} \frac{1}{q_i}$ $-\lambda < \mu \text{ et } \sum_{i=1}^{+\infty} \frac{1}{q_{-i}}$

(en fait, ces conditions sont aussi nécessaires).

Corrigé:

- 1. Le noyau de transition Q sur \mathbf{Z} est donné par $Q(i,i+1)=\lambda$ et $Q(i,i-1)=\mu$ de sorte que $(X_{T_n})_{n\geqslant 0}$ est une marche aléatoire sur \mathbf{Z} avec probabilité λ d'aller vers la droite et probabilité μ d'aller vers la gauche.
- 2. Si $\mu = 0$ alors le PMS $(X_t)_{t \ge 0}$ est appelé processus de naissance. La chaîne de Markov induite est la suite déterministe qui croît de 1 et les lois inter-sauts S_1, \ldots, S_n sont des exponentielles indépendantes de paramètres q_i .

- Le temps d'explosion du PMS $(X_t)_{t\geqslant 0}$ est défini par $\zeta=\sup_n T_n=\sum_{n=1}^{+\infty}S_n$. si $\sum_n 1/q_n<+\infty$ alors par Beppo Levi $\mathbf{E}\left[\sum_n S_n\right]=\sum_{n=1}^{+\infty}1/q_n<+\infty$ et donc $\zeta=\sum_n S_n<+\infty$ p.s. donc le processus explose.
- si $\sum_{n} 1/q_n = +\infty$ alors par équivalence on a $\prod_{n} \frac{1}{1+1/q_n} = 0$ et par convergence monotone et indépendance $\mathbf{E}\left[e^{-\sum_{n}S_{n}}\right] = \prod_{n}\mathbf{E}\left[e^{-S_{n}}\right] = \prod_{n}\frac{1}{1+1/q_{n}} = 0$, ce qui implique $\sum_{n}S_{n} = +\infty$ p.s.

4