General form of a EC

$$y^2 = x^3 + ax + b$$

where $4a^3 + 27b^2 \neq 0$

Characteristics of Elliptic Curve

Forms an abelian group

- Symmetric about the x-axis
- Point at Infinity acting as the identity element

(A1) Closure: If a and b belong to G, then $a \cdot b$ is also in G.

(A2) Associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all a, b, c in G.

(A3) Identity element: There is an element e in G such that $a \cdot e = e \cdot a = a$ for

all a in G.

(A4) Inverse element: For each a in G there is an element a' in G such that

 $a \cdot a' = a' \cdot a = e$.

(A5) Commutative: $a \cdot b = b \cdot a$ for all a, b in G.

Discrete Logarithm Problem (DLP)

- Let P and Q be two points on the elliptic curve
 - Such that Q = kP, where k is a scalar value
- DLP: Given P and Q, find k?
 - If k is very large, it becomes computationally infeasible
- The security of ECC depends on the difficulty of DLP
- Main operation in ECC is Point Multiplication

Point Multiplication

Point Multiplication is achieved by two basic curve operations:

- 1. Point Addition, L = J + K
- 2. Point Doubling, L = 2J

Example:

If
$$k = 23$$
; then, $kP = 23*P$
= $2(2(2(2P) + P) + P) + P$

Point Addition

Geometrical explanation:

Point Addition

Analytical explanation:

• Consider two distinct points J and K such that $J = (x_J, y_J)$ and $K = (x_K, y_K)$

• Let L = J + K where L = (x_L, y_L) , then

$$\mathbf{x}_{\mathsf{L}} = \mathsf{s}^2 - \mathsf{x}_{\mathsf{J}} - \mathsf{x}_{\mathsf{K}}$$

$$y_L = -y_J + s (x_J - x_L)$$

 $s = (y_J - y_K)/(x_J - x_K)$, s is slope of the line through J and K.

Point Doubling

Geometrical explanation:

Point Doubling

Analytical explanation

- Consider a point J such that $J = (x_j, y_j)$, where $y_j \neq 0$
- Let L = 2J where $L = (x_L, y_L)$, Then

$$x_{L} = s^{2} - 2x_{J}$$

 $y_{I} = -y_{I} + s(x_{I} - x_{I})$

 $s = (3x_J^2 + a) / (2y_J)$, s is the tangent at point J and a is one of the parameters chosen with the elliptic curve.

Finite Fields

- The Elliptic curve operations shown were on real numbers
 - Issue: operations are slow and inaccurate due to round-off errors
- To make operations more efficient and accurate, the curve is defined over two finite fields
 - 1. Prime field GF(p) and
 - 2. Binary field GF(₂^m)
- The field is chosen with finitely large number of points suited for cryptographic operations

EC on Prime field GF(p)

• Elliptic Curve equation:

$$y^2 \mod p = x^3 + ax + b \mod p$$

where $4a^3 + 27b^2 \mod p \neq 0$.

- Elements of finite fields are integers between 0 and p-1
- The prime number p is chosen such that there is finitely large number of points on the elliptic curve to make the cryptosystem secure.
- SEC (Standard for Efficient Cryptography) specifies curves with p ranging between 112-521 bits

EC on Binary field GF(2^m)

• Elliptic Curve equation:

$$y^2 + xy = x^3 + ax^2 + b$$
,
where **b** \neq **0**

- Here the elements of the finite field are integers of length at most m bits.
- In binary polynomial the coefficients can only be 0 or 1.
- The m is chosen such that there is finitely large number of points on the elliptic curve to make the cryptosystem secure.
- SEC specifies curves with m ranging between 113-571 bits

Global Public Elements

 $E_q(a, b)$ elliptic curve with parameters a, b, and q, where q is a prime or an integer of the form 2^m

G point on elliptic curve whose order is large value n

User A Key Generation

Select private $n_A < n$

Calculate public $P_A = n_A \times G$

User B Key Generation

Select private n_R $n_R < n$

Calculate public $P_R = n_R \times G$

Calculation of Secret Key by User A

 $K = n_A \times P_B$

Calculation of Secret Key by User B

 $K = n_B \times P_A$

Figure 10.7 ECC Diffie-Hellman Key Exchange

Elliptic Curve Encryption/Decryption

As with the key exchange system, an encryption/decryption system requires a point G and an elliptic group $E_q(a, b)$ as parameters. Each user A selects a private key n_A and generates a public key $P_A = n_A \times G$.

To encrypt and send a message P_m to B, A chooses a random positive integer k and produces the ciphertext C_m consisting of the pair of points:

$$C_m = \{kG, P_m + kP_B\}$$

Note that A has used B's public key P_B . To decrypt the ciphertext, B multiplies the first point in the pair by B's secret key and subtracts the result from the second point:

$$P_m + kP_B - n_B(kG) = P_m + k(n_BG) - n_B(kG) = P_m$$

Table 10.3 Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis

Symmetric Scheme (key size in bits)	ECC-Based Scheme (size of n in bits)	RSA/DSA (modulus size in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

Source: Certicom