Introduction to Communication Systems

Chapter 7

Digital Communication Techniques

Dr. Saeed Mahmud Ullah

Professor

EEE, DU

Text Book

- Principles of Electronic Communication
 Systems
 - L. E. Frenzel
 - 4th edition

Benefits of Digital Communication

- Noise Immunity
- Error Detection and Correction
- Compatibility with Time-Division Multiplexing
- Digital ICs
- Digital Signal Processing (DSP).

Figure 7-1 (a) Noise on a binary signal. (b) Clean binary signal after regeneration.

Parallel and Serial Transmission

Parallel

Transfer

Parallel data transmission.

Serial Transfer: Figure 7-3

Serial data transmission.

Serial-Parallel Conversion

Pulse Modulation

- *Pulse modulation* is the process of changing a binary pulse signal to represent the information to be transmitted.
- There are four basic forms of pulse modulation:
 - Pulse-amplitude modulation (PAM),
 - pulse-width modulation (PWM),
 - pulse-position modulation (PPM), and
 - pulse-code modulation (PCM).

PAM, PWM, PPM

- The PAM signal is a series of constant-width pulses whose amplitudes vary in accordance with the analog signal
- The PWM signal is binary in amplitude (has only two levels).
 The width or duration of the pulses varies according to the amplitude of the analog signal: At low analog voltages, the pulses are narrow; at the higher amplitudes, the pulses get wider.
- In PPM, the pulses change position according to the amplitude of the analog signal.

Pulse code modulation (PCM)

- PCM is a standardized method that is used in the telephone network to change an analog signal to a digital one for transmission through the digital telecommunications network.
- Three steps for PCM
 - Sampling
 - Quantization
 - Encoding
- Nyquist theorem:
 - If the sampling frequency f_s is higher than two times the highest frequency component of the analog signal, W, the original analog signal can ne completely described by these instantaneous samples alone; that is, $f_s > 2W$.

Figure 2.16 Natural samples, quantized samples, and pulse code modulation. (Reprinted with permission from Taub and Schilling, *Principles of Communications Systems*, McGraw-Hill Book Company, New York, 1971, Fig. 6.5-1, p. 205.)