Agents that Search Together: Adversarial Search

Russell and Norvig: Chapter 5

CSE 240: Winter 2023

Lecture 6

Announcements

- Quiz 1 opens today after 11:25am
 - Due Friday at 5pm.
 - Open book, open note
 - 30 minutes
 - Time added for DRC.
- If you are using your late day, the assignment is due today at 5pm.
- Assignment 2 is posted.

Agenda

- Solving alpha-beta pruning example
- Handling resource limits
 - Alpha-beta pruning (last lecture)
 - Heuristic minimax algorithm
- Game agents in stochastic environments
- Break
- Quiz Review and Q/A

Alpha-Beta Pruning

- General configuration
 - We're computing the MIN-VALUE at n
 - We're looping over n's children
 - n's value estimate is dropping
 - a is the best value that MAX can get at any choice point along the current path
 - If n becomes worse than α, MAX will avoid it, so can stop considering n's other children
 - Define β similarly for MIN

MAX
MIN

ii

MAX

MIN

Alpha Beta Implementation

α: MAX's best option on path to root β: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
def min-value(state , \alpha, \beta):
    initialize v = +\infty
    for each successor of state:
        v = \min(v, value(successor, \alpha, \beta))
        if v \le \alpha return v
        \beta = \min(\beta, v)
    return v
```

Alpha-Beta Practice 1

Alpha-Beta Practice 2

Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - $\alpha \beta$ reaches about depth 8- decent chess program
- Guarantee of optimal play is gone.
- More plies make a BIG difference
- Use iterative deepening for the algorithm.

Depth Matters

- Evaluation functions are always imperfect.
- The deeper in the tree the evaluation is buried, the less the quality of the evaluation function matters.
- An important example of the tradeoff between complexity of features and complexity of computation

Heuristic Minimax

$\begin{aligned} \boldsymbol{H_{MINIMAX}}(\boldsymbol{s}, \boldsymbol{d}) \\ &= \begin{cases} & EVAL(s, MAX) & if \ CUTOFF_TEST(s, d) \\ & \max_{a \in ACTIONS(s)} H_{MINIMAX}(RESULT(s, a), d + 1) & PLAYER(s) = MAX \\ & \min_{a \in ACTIONS(s)} H_{MINIMAX}(RESULT(s, a), d + 1) & PLAYER(s) = MIN \end{cases} \end{aligned}$

Evaluation Functions

Evaluation Functions

- For terminal states it should order them in the same way as the true utility function
- For non-terminal states, it should be strongly correlated with the actual chance of winning.
- It must not need high computational cost.
- Use features for calculating the evaluation function, such as king safety, good pawn structure, etc.

Evaluation Functions

- Evaluation functions score non-terminals in depth-limited search
- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features: $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$
- e.g. $f_1(s)$ = (num white queens num black queens, etc.

5 minute break

Quiz Review

Quiz Outline

- 7 questions, 30 minutes (+ DRC)
- Questions
 - Definition of rationality
 - Time and space complexity
 - Alpha beta definitions
 - Search trees
 - Heuristics
 - Minimax
 - Alpha beta pruning

Rationality

- Rationality means doing the right thing.
- Philosophers -> mind is in some ways like a machine and it operates based on the encoded knowledge.
- Mathematicians -> provided tools to use logical statements for reasoning and decision making.
- Economics -> formalized the problem of decision making using maximization of expected outcome.

Rational Agent

What is rational at any given time depends on four things:

- 1. The performance measure (agent function) that defines the criterion of success
- 2. The agent's prior knowledge of the environment
- 3. The actions that the agent can perform
- 4. The agent's percept sequence to date.

Definition

For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure given the evidence provided by the percept sequence and whatever built-in knowledge the agent has,

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

- 1. Do a DFS which only searches for paths of length 1 or less.
- 2. If "1" failed, do a DFS which only searches paths of length 2 or less./
- 3. If "2" failed, do a DFS which only searches paths of length 3 or less.and so on.

Algorithm		Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$O(b^{m+1})$	O(bm)
BFS		Y	N*	$O(b^{s+1})$	$O(b^s)$
ID		Υ	N*	$O(b^{s+1})$	O(bs)

Alpha-Beta Pruning

- General configuration
 - We're computing the MIN-VALUE at n
 - We're looping over n's children
 - n's value estimate is dropping
 - a is the best value that MAX can get at any choice point along the current path
 - If n becomes worse than α, MAX will avoid it, so can stop considering n's other children
 - Define β similarly for MIN

MAX
MIN

MAX

MAX

MIN

Another Search Tree

- Search:
 - Expand out possible plans
 - Maintain a fringe of unexpanded plans
 - Try to expand as few tree nodes as possible

Admissible Heuristics

• A heuristic *h* is admissible (optimistic) if:

$$h(n) \leq h^*(n)$$

- where $h^*(n)$ is the true cost to a nearest goal
- Example:

Coming up with admissible heuristics is most of what's involved in using A* in practice.

Nice Video: https://www.youtube.com/watch?v=xBXHtz4Gbdo

Alpha-Beta Example

Recap

- Game theory
 - Adversarial games
 - Minimax algorithm and alpha-beta pruning
- Next week
 - Stochastic games
 - Expectimax search algorithm