





# MDP-based Itinerary Recommendation using Geo-Tagged Social Media

Radhika Gaonkar, Maryam Tavakol, Ulf Brefeld

rgaonkar@cs.stonybrook.edu, {tavakol,brefeld}@leuphana.de

Den Bosch - Oct 24, 2018

## **Travel Itinerary**



#### **Motivation**

#### Challenges in trip planning:

- → Many decisions to be made at once while planning a trip:

  Duration of trip, costs, places to visit, food and many more!
- → The Web provides an overload of information
- → There is no one resource that exhaustively covers all the aspects of travel

Automatically gathering **personalized** trip related information from different sources

## **Problem Setting**

Recommend a sequence of POIs (Point of Interests) given individual user preferences

- A sequential problem
- An instance of constructive learning
- Based on previous visited POIs

# Data Acquisition

### **Data Acquisition**

- We turn a photo-sharing site (Flickr) into a useful resource for reconstructing a user's trip
- The photos include:
  - Geographical coordinate (small-fraction)
  - Timestamp of capturing the photo
  - Semantic data; tags and titles



## **Example**



7

### **Obtaining POIs**

- Photos with location coordinate (small subset)
- Photos without coordinate information
  - Inferring the POI from Latent Semantic Analysis (LSA) to compute the semantic similarity between the tags of the geotagged and non-geotagged photos

#### **POIs from Geo-coordinates**



## **Non-geotagged Photo**





## **Geotagged Photo**





## **POI from Text Similarity**



#### Resident vs. Tourist



## **Itinerary Inference**



## Learning the model

#### **Procedure**

Obtaining POIs

Learning MDP

Path
Recommendation

Personalization

## **Reinforcement Learning**

- A touristic trip is considered a sequential problem
- The photos provide implicit feedback on the user's preferences

A match for RL-based approaches

Encode the history of previous visits in a Markov model

#### **MDP Definition**

- **State**: a sequence of at most *k* places the user visited up to time *t*
- Actions: all POI categories present in the city
- Reward function: higher reward when the recommended action is taken by the user
- Transition function: probability of transition between two states after taking an action

Goal: maximize the sum of discounted reward

## **Learning the Model**

- Estimating the state-transition function & reward function using maximum-likelihood method
- Optimizing the MDP via Value Iteration algorithm, V(s)
- The state-action values, Q(s, a), are obtained from the learned value function
  - The Q-value gives a score for every place category

#### **Path Recommendation**



## Personalization

#### **Personalization Score**

- Duration-based
  - The amount of time a user spends on a specific category
  - Spends at least 2 hours in every museum
- Frequency-based
  - The frequency of visiting a certain category
  - Often eats at Italian restaurant

#### **Online Personalization**

- A POI is recommended based on both distance & personalized preference
- The place in the optimal category:

Weighted(distance + personalized score)

## **Evaluation**

#### **Evaluation**

- Photographs of Munich, London, Paris
- Leave-one-out cross-validation method
- Performance measures:
  - Partial path accuracy
  - Exact path accuracy
- Baselines:
  - Breadth first search (BFS), Dijkstra, Heuristic Search, A\*

## Partial Path Accuracy - Order of Markov Chain

| Path Length | 1     | 2     | 3     | 4     | 5     | 6     |
|-------------|-------|-------|-------|-------|-------|-------|
| 1st order   | 0.041 | 0.041 | 0.042 | 0.042 | 0.041 | 0.034 |
| 2nd order   | 0.098 | 0.090 | 0.096 | 0.106 | 0.100 | 0.103 |
| 3rd order   | 0.097 | 0.090 | 0.093 | 0.105 | 0.090 | 0.087 |
| 4th order   | 0.089 | 0.084 | 0.083 | 0.094 | 0.077 | 0.060 |
| 5th order   | 0.074 | 0.071 | 0.058 | 0.072 | 0.070 | 0.058 |

• Encoding more history into the state improves the performance

## **Comparing Personalization Techniques**



Duration-based outperforms frequency-based

#### **POI Recommendation vs. Baseline -- Munich**





#### **POI Recommendation vs. Baseline -- Paris**



#### Partial path accuracy



#### **POI Recommendation vs. Baseline -- London**



#### **Conclusion**

- An RL approach to recommend user itinerary:
  - Utilize freely available data from social media
  - Minimal manual intervention in data creation process
  - Computationally inexpensive
  - Outperforms standard path planning methods

#### **Question?**

## Thanks for your attention

Currently looking for Postdoc position

**Maryam Tavakol** 

tavakol@leuphana.de

http://ml3.leuphana.de/maryam.html