The more an input is used, the lower the Marginal Product of that input

The firm buys more capital

MRP_K PK

The firm hires more labor

MRPL

MRP_K PK

Marginal Product of capital drops

Marginal Product of

labor drops

MRP_{K} MRP_{L} PK

As long as the revenue per dollar spent

on capital is larger, the firm will increase the use of capital, the MP_k drops and

the $\dot{M}RP_k$ drops until:

The more an input is used, the lower the Marginal Product of that input

As long as the revenue per dollar spent

MRP_L drops until:

on labor is larger, the firm will increase

the use of labor, the MP_L drops and the

Marginal Revenue Product of capital drops

Marginal Revenue Product of labor drops

MRP_{K} MRP_{L} PK

The more an input is used, the lower the Marginal Product of that input

The firm buys more capital

Marginal Product of capital drops

Marginal **Revenue** Product of capital drops

As long as the revenue per dollar spent on capital is **larger**, the firm will increase the use of capital, the MP_k drops and the MRP_k drops until:

$$\frac{MRP_{K}}{P_{K}} = \frac{MRP_{L}}{P_{L}}$$

The firm hires more labor

Marginal Product of labor drops

Marginal **Revenue** Product of **labor** drops

As long as the revenue per dollar spent on labor is larger, the firm will increase the use of labor, the MP_L drops and the MRP_L drops until:

$$\frac{MRP_{K}}{P_{K}} = \frac{MRP_{L}}{P_{L}}$$