Höhere Mathematik I

G. Herzog, C. Schmoeger

Wintersemester 2016/17

Karlsruher Institut für Technologie

Inhaltsverzeichnis

1	Reelle Zahlen	3
2	Folgen und Konvergenz	13
3	Unendliche Reihen	31
4	Potenzreihen	43
5	q-adische Entwicklung	47
St	Stichwortverzeichnis	

1 Reelle Zahlen

Grundmenge der Analysis is die Menge \mathbb{R} , die Menge der **reellen Zahlen**. Diese führen wir **axiomatisch** ein, d.h. wir nehmen \mathbb{R} als gegeben an und **fordern** in den folgenden 15 **Axiomen** Eigenschaften von \mathbb{R} aus denen sich alle weiteren Rechenregeln herleiten lassen.

Körperaxiome: in \mathbb{R} seien zwei Verknüpfungen "+" und "·" gegeben, die jedem Paar $a, b \in \mathbb{R}$ genau ein $a+b \in \mathbb{R}$ und genau ein $ab \coloneqq a \cdot b \in \mathbb{R}$ zuordnen. Dabei soll gelten:

(A1)
$$\forall a, b, c \in \mathbb{R}$$
 $a + (b + c) = (a + b) + c$ (Assoziativgesetz)

$$(A5) \ \forall a, b, c \in \mathbb{R} \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$(A2) \ \exists 0 \in \mathbb{R} \ \text{mit} \ \forall a \in \mathbb{R} \ a + 0 = a \ (\text{Null})$$

(A6)
$$\exists 1 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} \ a \cdot 1 = a \text{ und } 1 \neq 0 \text{ (Eins)}$$

$$(A3) \ \forall a \in \mathbb{R} \ \exists -a \in \mathbb{R} \ a + (-a) = 0$$

$$(A7) \ \forall a \in \mathbb{R} \setminus \{0\} \ \exists a^{-1} \in \mathbb{R} \ a \cdot a^{-1} = 1$$

(A4)
$$\forall a, b \in \mathbb{R} \ a + b = b + a \ (\text{Kommutativgesetz})$$

(A8)
$$\forall a, b \in \mathbb{R} \ a \cdot b = b \cdot a \ (\text{Kommutativgesetz})$$

(A9)
$$\forall a, b, c \in \mathbb{R} \ a \cdot (b+c) = a \cdot b + a \cdot c \ (Distributivgesetz)$$

Schreibweisen: für $a, b \in \mathbb{R}$: a - b := a + (-b) und für $b \neq 0$: $\frac{a}{b} := a \cdot b^{-1}$.

Alle bekannten Regeln der Grundrechnungsarten lassen sich aus (A1) - (A9) herleiten. Diese Regeln seien von nun an bekannt.

Beispiele:

a) Beh.: $\exists_1 0 \in \mathbb{R} \text{ mit } \forall a \in \mathbb{R} \ a + 0 = a$

Beweis. Sei
$$\tilde{0} \in \mathbb{R}$$
 mit $\forall a \in \mathbb{R}$ $a + \tilde{0} = a$. Mit $a = 0$ folgt: $0 + \tilde{0} = 0$. Mit $a = \tilde{0}$ in (A2) folgt: $\tilde{0} + 0 = \tilde{0}$. Dann $0 = 0 + \tilde{0} \stackrel{(A4)}{=} \tilde{0} + 0 = \tilde{0}$

b) Beh.: $\forall a \in \mathbb{R} \ a \cdot 0 = 0$

Beweis. Sei
$$a \in \mathbb{R}$$
 und $b := a \cdot 0$. Dann: $b \stackrel{(A2)}{=} a(0+0) \stackrel{(A9)}{=} a \cdot 0 + a \cdot 0 = b + b$. $0 \stackrel{(A3)}{=} b + (-b) = (b+b) + (-b) \stackrel{(A1)}{=} b + (b+(-b)) = b + 0 \stackrel{(A2)}{=} b$

Anordnungsaxiome: in \mathbb{R} ist eine Relation " \leq " gegeben.

Dabei sollen gelten:

- (A10) für $a, b \in \mathbb{R}$ gilt $a \leq b$ oder $b \leq a$
- (A11) aus $a \le b$ und $b \le a$ folgt a = b
- (A12) aus $a \le b$ und $b \le c$ folgt $a \le c$
- (A13) aus $a \leq b$ folgt $\forall c \in \mathbb{R} \ a + c \leq b + c$
- (A14) aus $a \le b$ und $0 \le c$ folgt $ac \le bc$

Schreibweisen: $b \ge a \iff a \le b$; $a < b \iff a \le b$ und $a \ne b$; $b > 0 \iff a < b$

Aus (A1) - (A14) lassen sich alle Regeln für Ungleichungen herleiten. Diese Regeln seien von nun an bekannt.

Beispiele (ohne Beweis):

- a) aus a < b und 0 < c folgt ac < bc
- b) aus $a \leq b$ und $c \leq 0$ folgt $ac \geq bc$
- c) aus $a \le b$ und $c \le d$ folgt $a + c \ge b + d$

Intervalle: Seien $a, b \in \mathbb{R}$ und a < b

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$
 (abgeschlossenes Intervall)

$$(a,b) \coloneqq \{x \in \mathbb{R} : a < x < b\}$$
 (offenes Intervall)

$$(a, b] := \{x \in \mathbb{R} : a < x \le b\}$$
 (halboffenes Intervall)

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$$
 (halboffenes Intervall)

$$[a,\infty) \coloneqq \{x \in \mathbb{R} : x \ge a\}, (a,\infty) \coloneqq \{x \in \mathbb{R} : x > a\}$$

$$(-\infty, a] := \{x \in \mathbb{R} : x \le a\}, (-\infty, a) := \{x \in \mathbb{R} : x < a\}$$

 $(-\infty, \infty) := \mathbb{R}$

Der Betrag

Für $a \in \mathbb{R}$ heißt $|a| := \begin{cases} a, & \text{falls } a \ge 0 \\ -a, & \text{falls } a < 0 \end{cases}$ der Betrag von a.

Beispiele: |1| = 1, |-7| = -(-7) = 7.

Es ist |-a| = |a| und |a-b| = |b-a|

Regeln:

- a) $|a| \ge 0$
- b) $|a| = 0 \iff a = 0$
- c) |ab| = |a||b|
- $d) \pm a \le |a|$
- e) $|a+b| \le |a| + |b|$ (Dreiecksungleichung)
- f) $||a| |b|| \le |a b|$

Beweis.

- a) d) leichte Übung.
- e) Fall 1: $a + b \ge 0$. Dann: $|a + b| = a + b \le_{d} |a| + |b|$. Fall 2: a + b < 0. Dann: $|a + b| = -(a + b) = -a + (-b) \le_{d} |a| + |b|$.

f)
$$c := |a| - |b|$$
; $|a| = |a - b + b| \le_{d}$ $|a - b| + |b|$
 $\Rightarrow c = |a| - |b| \le |a - b|$. Analog: $-c = |b| - |a| \le |b - a| = |a - b|$
Also: $\pm c \le |a - b|$.

Definition: Sei $\emptyset \neq M \subseteq \mathbb{R}$.

- a) M heißt nach oben beschränkt $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ x \leq \gamma$ In diesem Fall heißt γ eine obere Schranke (OS)
- b) Ist γ eine obere Schranke von M und gilt $\gamma \leq \delta$ für jede weitere obere Schranke δ von M, so heißt γ das **Supremum** von M (kleinste obere Schranke von M)
- c) M heißt nach unten beschränkt $\iff \exists \gamma \in \mathbb{R} \ \forall x \in M \ \gamma \leq x$ In diesem Fall heißt γ eine untere Schranke (US)
- d) Ist γ eine untere Schranke von M und gilt $\gamma \geq \delta$ für jede weitere untere Schranke δ von M, so heißt γ das **Infimum** von M (größte untere Schranke von M)

Bez.: in dem Fall: $\gamma = \sup M$ bzw. $\gamma = \inf M$.

Aus (A11) folgt: ist sup M bzw. inf M vorhanden, so ist sup M bzw. inf M eindeutig bestimmt.

Ist sup M bzw. inf M vorhanden und gilt sup $M \in M$ bzw. inf $M \in M$, so heißt sup M das Maximum bzw. inf M das Minimum von M und wird mit max M bzw. min M bezeichnet.

Beispiele:

- a) M = (1, 2). sup $M = 2 \notin M$, inf $M = 1 \notin M$. M hat kein Maximum und kein Minimum.
- b) M = (1, 2]. $\sup M = 2 \in M$, $\max M = 2$
- c) $M = (3, \infty)$. M ist nicht nach oben beschränkt, $3 = \inf M \notin M$.

d) $M = (-\infty, 0]$. M ist nach unten unbeschränkt, $0 = \sup M = \max M$.

Vollständigkeitsaxiom:

(A15) Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach oben beschränkt, so ist sup M vorhanden.

Satz 1.1: Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach unten beschränkt, so ist inf M vorhanden.

Definition: Sei $\emptyset \neq M \subseteq \mathbb{R}$. M heißt beschränkt $\iff M$ ist nach oben und nach unten beschränkt ($\iff \exists c \geq 0 \ \forall x \in M \ |x| \leq c \iff \exists c \geq 0 \ \forall x \in M \ -c \leq x \leq c$)

Satz 1.2: Es sei $\emptyset \neq B \subseteq A \subseteq \mathbb{R}$

- a) Ist A bechränkt $\Rightarrow \inf A \leq \sup A$
- b) Ist A nach oben bzw. unten beschränkt $\Rightarrow B$ ist nach oben beschränkt und $\sup B \leq \sup A$ bzw. nach unten beschränkt und $\inf B \geq \inf A$
- c) A sei nach oben bzw. unten beschränkt und γ eine obere bzw. untere Schranke von A. Dann

$$\gamma = \sup A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x > \gamma - \varepsilon$$
 bzw.

$$\gamma = \inf A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x < \gamma + \varepsilon$$

Beweis.

a)
$$A \neq \emptyset \Rightarrow \exists x \in \mathbb{R} : x \in A$$
. Dann $\inf A \leq x, x \leq \sup A$ (A12) $\Rightarrow \inf A \leq \sup A$

b) Sei $x \in B$. Dann: $x \in A$, also $x \le \sup A$. B ist also nach oben beschränkt und $\sup A$ ist eine obere Schranke von B

$$\Rightarrow \sup B \le \sup A$$

Analog der Fall für A nach unten beschränkt.

c) " \Rightarrow " Sei $\gamma = \sup A$ und $\varepsilon > 0$. Dann: $\gamma - \varepsilon < \varepsilon$. $\gamma - \varepsilon$ ist also keine obere Schranke von A. Also: $\exists x \in A : x > \gamma - \varepsilon$ " \Leftarrow " Sei $\tilde{\gamma} \leq \gamma$. Annahme: $\gamma \neq \tilde{\gamma}$. Dann $\tilde{\gamma} < \gamma$, also $\varepsilon := \gamma - \tilde{\gamma} > 0$. \xrightarrow{Vor} : $\exists x \in A : x > \gamma - \varepsilon = \gamma - (\gamma - \tilde{\gamma}) = \tilde{\gamma}$. Widerspruch zu $x \leq \tilde{\gamma}$.

Natürliche Zahlen

Definition:

a) $A \subseteq \mathbb{R}$ heißt eine Induktionsmenge (IM)

$$\iff \begin{cases} 1. & 1 \in A; \\ 2. & \text{aus } x \in A \text{ folgt stets } x + 1 \in A \end{cases}$$

Beispiele: $\mathbb{R}, [1, \infty), \{1\} \cup [2, \infty)$ sind Induktionsmengen

b) $\mathbb{N} := \{x \in \mathbb{R} : x \text{ gehört zu } \mathbf{jeder} \text{ IM } \} = \text{Durchschnitt aller IMn}$ Also: $\mathbb{N} \subseteq A$ für jede Induktionsmenge A.

Satz 1.3:

- a) N ist eine Induktionsmenge
- b) \mathbb{N} ist nicht nach oben beschränkt
- c) Ist $x \in \mathbb{R}$, so ex. ein $n \in \mathbb{N} : N > x$

Von nun an sei $\mathbb{N} = \{1, 2, 3, \dots\}$ bekannt.

Proposition 1.4 (Prinzip der vollständigen Induktion): Ist $A \subseteq \mathbb{N}$ und A eine Induktionsmenge, so ist A = N.

Beweis.
$$A \subseteq \mathbb{N}$$
 (nach Vor.) und $\mathbb{N} \subset A$ (nach Def.), also $A = \mathbb{N}$

Beweisverfahren durch vollständige Induktion

A(n) sei eine Aussage, die für jedes $n \in \mathbb{N}$ definiert ist. Für A(n) gelte:

 $\begin{cases} (I) & A(1) \text{ ist wahr;} \\ (II) & \text{ist } n \in \mathbb{N} \text{ und } A(n) \text{ wahr, so ist auch A(n + 1) wahr;} \end{cases}$

Dann ist A(n) wahr für **jedes** $n \in \mathbb{N}!$

Beweis. Sei $A := \{n \in \mathbb{N} : A(n) \text{ ist wahr } \}$. Dann:

 $A \subseteq \mathbb{N}$ und, wg. (I), (II), A ist eine Induktionsmenge $\stackrel{1.4}{\Longrightarrow} A = \mathbb{N}$

Beispiel: Beh.: $\underbrace{1+2+\ldots+n=\frac{n(n+1)}{2}}_{A(n)}, \ \forall n \in \mathbb{N}$

induktiv. I.A.: $1 = \frac{1(1+1)}{2} \checkmark$, A(1) ist also wahr.

I.V.: Für ein $n \in \mathbb{N}$ gelte $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$

I.S.: $n \curvearrowright n+1$:

$$1 + 2 + \ldots + n + (n+1) \stackrel{I.V.}{=} \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)\left(\frac{n}{2} + 1\right)$$
$$= \frac{(n+1)(n+2)}{2}$$

 $\Rightarrow A(n+1)$ ist wahr.

Definition:

- a) $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$
- b) $\mathbb{Z} := \mathbb{N}_0 \cup \{ -n : n \in \mathbb{N} \}$ (ganze Zahlen)
- c) $\mathbb{Q} := \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \}$ (rationale Zahlen)

Satz 1.5: Sind $x, y \in \mathbb{R}$ und $x < y \Rightarrow \exists r \in \mathbb{Q}$:

Beweis. i. d. Übungen.

Einige Definitionen und Formeln

- a) Für $a \in \mathbb{R}$, $n \in \mathbb{N}$: $a^n \coloneqq \underbrace{a \cdot \ldots \cdot a}_{n \text{ Faktoren}}$, $a^0 \coloneqq 1$ und ist $a \neq 0$: $a^{-n} \coloneqq \frac{1}{a^n}$ Es gelten die bekannten Rechenregeln.
- b) Für $n \in \mathbb{N} : n! := 1 \cdot 2 \cdot \dots \cdot n, 0! := 1$ (Fakultäten)
- c) Binomialkoeffizienten: für $n \in \mathbb{N}_0, k \in \mathbb{N}_0$ und $k \leq n$:

$$\binom{n}{k} \coloneqq \frac{n!}{k!(n-k)!}$$

z.B. $\binom{n}{0} = 1 = \binom{n}{n}$. Es gilt (nachrechnen!):

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \quad \text{für } 1 \le k \le n$$

d) Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$a^{n+1} - b^{n+1} = (a - b) \left(a^n + a^{n-1}b + a^{n-2}b^2 + \dots + ab^{n-1} + b^n \right)$$
$$= (a - b) \sum_{k=0}^{n} a^{n-k}b^k$$

- e) Binomischer Satz: $a, b \in \mathbb{R} \ \forall n \in \mathbb{N} : (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ Beweis. i. d. Übungen.
- f) Bernoullische Ungleichung: Sei $x \in \mathbb{R}$ und $x \ge -1$. Dann:

$$(1+x)^n \ge 1 + nx$$

 $\begin{array}{l} induktiv. \ \text{I.A.:} \ n=1\text{:}\ 1+x\geq 1+x\\ \text{I.V.:} \ \text{F\"{u}r ein} \ n\in\mathbb{N} \ \text{gelte} \ (1+x)^n\geq 1+nx \end{array}$

I.S.: $n \curvearrowright n+1$: $\stackrel{I.V.}{\Longrightarrow} (1+x)^n \ge 1 + nx$ und da $1+x \ge 0$:

$$(1+x)^{n+1} \ge (1+nx)(1+x)$$

$$= 1 + nx + x + \underbrace{nx^{n}}_{\ge 0}$$

$$\ge 1 + nx + x$$

$$= 1 + (n+1)x$$

Hilfssatz (HS): Für $x, y \ge 0$ und $n \in \mathbb{N}$ gilt: $x \le y \iff x^n \le y^n$

Beweis. i. d. Übungen. □

Satz 1.6: Sei $a \ge 0$ und $n \in \mathbb{N}$. Dann gibt es genau ein $x \ge 0$ mit: $x^n = a$. Dieses x heißt **n-te Wurzel aus a**; Bez.: $x = \sqrt[n]{a}$. $(\sqrt[n]{a} = \sqrt[n]{a})$

Beweis. Existenz: später in §7.

Eindeutigkeit: seien $x, y \ge 0$ und $x^n = a = y^n$. $\stackrel{HS}{\Longrightarrow} x = y$

Bemerkungen:

- a) $\sqrt{2} \notin \mathbb{Q}$ (s. Schule)
- b) Für $a \ge 0$ ist $\sqrt[n]{a} \ge 0$. Bsp.: $\sqrt{4} = 2$, $\sqrt{4} \ne -2$. Die Gleichung $x^2 = 4$ hat zwei Lösungen: $x = \pm \sqrt{4} = \pm 2$.
- c) $\sqrt{x^2}|x| \ \forall x \in \mathbb{R}$

Rationale Exponenten

a) Sei zunächste a>0 und $r\in\mathbb{Q}, r>0$. Dann ex. $m,n\in\mathbb{N}: r=\frac{m}{n}$. Wir wollen definieren:

$$a^r \coloneqq (\sqrt[n]{a})^m \quad (*)$$

Problem: gilt auch noch $r = \frac{p}{q}$ mit $p, q \in \mathbb{N}$, gilt dann $(\sqrt[p]{a})^m = (\sqrt[q]{a})^p$? Antwort: ja (d.h. obige Def. (*) ist sinnvoll).

Beweis. $x \coloneqq (\sqrt[n]{a})^m$, $y \coloneqq (\sqrt[q]{a})^p$, dann: $x, y \ge 0$ und mq = np, also

$$x^{q} = (\sqrt[n]{a})^{mq} = (\sqrt[n]{a})^{np} = ((\sqrt[n]{a})^{m})^{p} = a^{p}$$
$$= ((\sqrt[q]{a})^{q})^{p} = ((\sqrt[q]{a})^{p})^{q} = y^{q}$$

$$\stackrel{HS}{\Longrightarrow} x = y.$$

b) Sei $a>0, r\in\mathbb{Q}$ und r<0. $a^r\coloneqq\frac{1}{a^{-r}}.$ Es gelten die bekannten Rechenregeln:

$$(a^r a^s = a^{r+s}, (a^r)^s = a^{rs}, \dots)$$

2 Folgen und Konvergenz

Definition: Es sei X eine Menge, $X \neq \emptyset$. Eine Funktion $a: \mathbb{N} \to X$ heißt eine **Folge in X**. Ist $X = \mathbb{R}$, so heißt a eine **reelle Folge**.

Schreibweisen: a_n statt a(n) (n-tes Folgenglied) (a_n) oder $(a_n)_{n=1}^{\infty}$ oder (a_1, a_2, \dots) statt a

Beispiele:

- a) $a_n := \frac{1}{n} \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, \frac{1}{2}, \frac{1}{3}, \dots)$
- b) $a_{2n} := 0, a_{2n-1} := 1 \ (n \in \mathbb{N}), \text{ also } (a_n) = (1, 0, 1, 0, \dots)$

Bemerkung: Ist $p \in \mathbb{Z}$ und $a: \{p, p+1, \dots\} \to X$ eine Funktion, so spricht man ebenfalls von einer Folge in X. Bez.: $(a_n)_{n=p}^{\infty}$. Meist p=0 oder p=1.

Definition: Sei X eine Menge, $X \neq \emptyset$.

- a) X heißt abzählbar $\iff \exists$ Folge (a_n) in $X: X = \{a_1, a_2, a_3, \dots\}$
- b) X heißt **überabzählbar** \iff X ist nicht abzählbar

Beispiele:

- a) Ist X endlich, so ist X abzählbar.
- b) \mathbb{N} ist abzählbar, denn $\mathbb{N} = \{a_1, a_2, a_3, \dots\}$ mit $a_n := n \ (n \in \mathbb{N})$
- c) \mathbb{Z} ist abzählbar, denn $\mathbb{Z} = \{a_1, a_2, a_3, \dots\}$ mit $a_1 \coloneqq 0, a_2 \coloneqq 1, a_3 \coloneqq -1, a_4 \coloneqq 2, a_5 \coloneqq -2, \dots$ also

$$a_{2n} := n, \quad a_{2n+1} := -n \quad (n \in \mathbb{N})$$

d) Q ist abzählbar!

Durchnummerieren in Pfeilrichtung liefert

$$\{x \in \mathbb{Q} : x > 0\} = \{a_1, a_2, a_3, \dots\}$$
$$b_1 \coloneqq 0, b_{2n} \coloneqq a_n, b_{2n+1} \coloneqq -a_n \ (n \in \mathbb{N}). \text{ Dann:}$$
$$\mathbb{Q} = \{b_1, b_2, b_3, \dots\}$$

e) \mathbb{R} ist überabzählbar (Beweis in §5).

Vereinbarung: Solange nichts anderes gesagt wird, seien alle vorkommenden Folgen stets Folgen in \mathbb{R} .

Die folgenden Sätze und Definitionen formulieren wir nur für Folgen der Form $(a_n)_{n=1}^{\infty}$. Sie gelten sinngemäß für Folgen der Form $(a_n)_{n=p}^{\infty}$ $(p \in \mathbb{Z})$.

Definition: Sei (a_n) eine Folge und $M := \{a_1, a_2, \dots\}$.

a) (a_n) heißt **nach oben beschränkt** $\iff M$ ist nach oben beschränkt. I.d. Fall: $\sup_{n\in\mathbb{N}} a_n \coloneqq \sup_{n=1}^{\infty} a_n \coloneqq \sup M$.

- b) (a_n) heißt **nach unten beschränkt** $\iff M$ ist nach unten beschränkt. I.d. Fall: $\inf_{n\in\mathbb{N}} a_n := \inf_{n=1}^{\infty} a_n := \inf M$.
- c) (a_n) heißt **beschränkt** $\iff M$ ist beschränkt

$$\iff \exists c \ge 0 : |a_n| \le c \ \forall n \in \mathbb{N}$$

Definition: Sei A(n) eine für jedes $n \in \mathbb{N}$ definierte Aussage. A(n) gilt **für fast alle** (ffa) $n \in \mathbb{N} \iff \exists n_0 \in \mathbb{N} : A(n)$ ist wahr $\forall n \geq n_0$

Definition: Sei $a \in \mathbb{R}$ und $\varepsilon > 0$

$$U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$$

heißt ε -Umgebung von a.

Definition: Eine Folge (a_n) heißt konvergent

$$\iff \exists a \in \mathbb{R} : \begin{cases} \text{zu jedem } \varepsilon > 0 \text{ ex. } n_0 = n_0(\varepsilon) \in \mathbb{N} : \\ |a_n - a| < \varepsilon \ \forall n \ge n_0 \end{cases}$$

I. d. Fall heißt a Grenzwert (GW) oder Limes von (a_n) und man schreibt

$$a_n \to a \ (n \to \infty) \ \text{oder} \ a_n \to a \ \text{oder} \ \lim_{n \to \infty} a_n = a$$

Ist (a_n) nicht konvergent, so heißt (a_n) divergent. Beachte:

$$\begin{split} a_n \to a \ (n \to \infty) &\iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : a_n \in U_\varepsilon(a) \ \forall n \ge n_0 \\ &\iff \forall \varepsilon > 0 \ \text{gilt:} \ a_n \in U_\varepsilon(a) \ \text{ffa} \ n \in \mathbb{N} \\ &\iff \forall \varepsilon > 0 \ \text{gilt:} \ a_n \notin U_\varepsilon(a) \ \text{für h\"ochstens endlich viele} \ n \in \mathbb{N} \end{split}$$

Satz 2.1: (a_n) sei konvergent und $a = \lim a_n$

- a) Gilt auch noch $a_n \to b$, so ist a = b
- b) (a_n) ist beschränkt

Beweis.

a) Annahme $a \neq b$. Dann ist $\varepsilon := \frac{|a-b|}{2} > 0$.

$$\exists n_0 \in \mathbb{N} : |a_{n_0} - a| < \varepsilon \quad \forall n \ge n_0 \text{ und } \exists n_1 \in \mathbb{N} : |a_n - b| < \varepsilon \quad \forall n \ge n_1$$

$$N := \max\{n_0, n_1\}. \text{ Dann:}$$

$$2\varepsilon = |a - b| = |a - a_N + a_N - b| \le |a_N - a| + |a_N - b| < 2\varepsilon$$

Widerspruch! Also a = b

b) Zu $\varepsilon = 1 \; \exists n_0 \in \mathbb{N} : |a_n - a| < 1 \; \forall n \geq n_0$. Dann:

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| \le 1 + |a| \quad \forall n \ge n_0$$

$$c := \max\{1 + |a|, |a_1|, \dots, |a_{n_0-1}|\}$$
. Dann: $|a_n| \le \varepsilon \ \forall n \ge 1$.

Beispiele:

a) Sei $c \in \mathbb{R}$ und $a_n := c \ \forall n \in \mathbb{N}$. Dann:

$$|a_n - c| = 0 \quad \forall n \in \mathbb{N}$$

Also: $a_n \to c$.

b) $a_n := \frac{1}{n} \ (n \in \mathbb{N})$. Beh: $a_n \to 0 \ (n \to \infty)$.

Beweis. Sei
$$\varepsilon > 0$$
: $|a_n - 0| = |a_n| = \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$

$$\xrightarrow{1.3 \ c} \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon}$$

Für
$$n \ge n_0$$
 ist $n > \frac{1}{\varepsilon}$, also $\frac{1}{n} < \varepsilon$. Somit $|a_n - 0| < \varepsilon \ \forall n \ge n_0$

c) $a_n := (-1)^n$. Es ist $|a_n| = 1 \ \forall n \in \mathbb{N}$, (a_n) ist also beschränkt. Behauptung: (a_n) ist divergent.

Beweis. $\forall n \in \mathbb{N} : |a_n - a_{n+1}| = |(-1)^n - (-1)^{n+1}| = |(-1)^n| (1 - (-1)) = 2.$

Annahme: (a_n) konvergiert. Definiere $a := \lim a_n$, dann

$$\exists n_0 \in \mathbb{N}: |a_n - a| < \frac{1}{2} \quad \forall n \ge n_0$$

Für $n \ge n_0$ gilt dann aber:

$$2 = |a_n - a_{n+1}| = |a_n - a + a - a_{n+1}| \le |a_n - a| + |a_{n+1} - a| < \frac{1}{2} + \frac{1}{2} = 1$$
Widerspruch!

- d) $a_n := n \ (n \in \mathbb{N}). \ (a_n)$ ist nicht beschränkt $\stackrel{2.1 \ b)}{\Longrightarrow} (a_n)$ ist divergent.
- e) $a_n := \frac{1}{\sqrt{n}} (n \in \mathbb{N})$. Beh.: $a_n \to 0$

Beweis. Sei $\varepsilon > 0$.

$$|a_n - 0| = \frac{1}{\sqrt{n}} < \varepsilon \iff \sqrt{n} > \frac{1}{n} \iff n > \frac{1}{\varepsilon^2}$$

$$\xrightarrow{1.3 \ c)} \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon^2}. \text{ Ist } n \ge n_0 \Rightarrow n > \frac{1}{\varepsilon^2} \Rightarrow \frac{1}{\sqrt{n}} < \varepsilon \Rightarrow |a_n - 0| < \varepsilon$$

f)
$$a_n := \sqrt{n+1} - \sqrt{n}$$
.

Beweis.

$$a_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}}$$

 $\Rightarrow |a_n - 0| \le \frac{1}{\sqrt{n}} \ \forall n \in \mathbb{N}$. Sei $\varepsilon > 0$, nach Beispiel e) folgt:

$$\exists n_0 \in \mathbb{N}: \ \frac{1}{\sqrt{n}} < \varepsilon \quad \forall n \ge n_0 \Rightarrow |a_n - 0| < \varepsilon \quad \forall n \ge n_0$$

Also
$$a_n \to 0$$
.

Definition: (a_n) und (b_n) seien Folgen und $\alpha \in \mathbb{R}$

$$(a_n) \pm (b_n) := (a_n \pm b_n); \ \alpha(a_n) := (\alpha a_n); \ (a_n)(b_n) := (a_n b_n)$$

Gilt $b_n \neq 0 \ \forall n \geq m$, so ist die Folge $\left(\frac{a_n}{b_n}\right)_{n=m}^{\infty}$ definiert.

Satz 2.2: $(a_n), (b_n), (c_n)$ und (α_n) seien Folge und $a, b, \alpha \in \mathbb{R}$

- a) $a_n \to a \iff |a_n a| \to 0$
- b) Gilt $|a_n a| \le \alpha_n$ ffa $n \in \mathbb{N}$ und $\alpha_n \to 0$, so gilt $a_n \to a$
- c) Es gelte $a_n \to a$ und $b_n \to b$. Dann:
 - (i) $|a_n| \rightarrow |a|$
 - (ii) $a_n + b_n \rightarrow a + b$
 - (iii) $\alpha a_n \to \alpha a$
 - (iv) $a_n b_n \to ab$
 - (v) ist $a \neq 0$, so ex. ein $m \in \mathbb{N}$:

$$a_n \neq 0 \ \forall n \geq m$$
 und für die Folge $\left(\frac{1}{a_n}\right)_{n=m}^{\infty}$ gilt: $\frac{1}{a_n} \to \frac{1}{a}$

- d) Es gelte $a_n \to a$, $b_n \to b$ und $a_n \le b_n$ ffa $n \in \mathbb{N} \Rightarrow a \le b$
- e) Es gelte $a_n \to a$, $b_n \to a$ und $a_n \le c_n \le b_n$ ffa $n \in \mathbb{N}$. Dann $c_n \to a$.

Beispiele:

- a) Sei $p \in \mathbb{N}$ und $a_n := \frac{1}{n^p}$. Es ist $n \le n^p \ \forall n \in \mathbb{N}$. Dann: $0 \le a_n \le \frac{1}{n} \ \forall n \in \mathbb{N} \xrightarrow{2.2 \ e} a_n \to 0$, also $\frac{1}{n^p} \to 0$.
- b) $a_n := \frac{5n^2 + 3n + 1}{4n^2 n + 2} = \frac{5 + \frac{3}{n} + \frac{1}{n^2}}{4 \frac{1}{n} + \frac{2}{n^2}} \xrightarrow{2.2} \frac{5}{4}$

von 2.2.

a) folgt aus der Definition der Konvergenz

b)
$$\exists m \in \mathbb{N} : |a_n - a| \le \alpha_m \ \forall n \ge m$$
. Sei $\varepsilon > 0$

$$\exists n_1 \in \mathbb{N} : \alpha_n < \varepsilon \ \forall n \ge n_1.$$

 $n_0 \coloneqq \max\{m, n_1\}$. Für $n \ge n_0$: $|a_n - a| \le \alpha_n < \varepsilon$

c) (i)
$$||a_n| - |a|| \le 1 ||a_n - a|| \forall n \in \mathbb{N} \stackrel{b}{\underset{a}{\Longrightarrow}} ||a_n|| \to |a||$$

(ii) Sei
$$\varepsilon > 0$$
. $\exists n_1, n_2 \in \mathbb{N}$; $|a_n - a| < \frac{\varepsilon}{2} \ \forall n \ge n_1$, $|b_n - b| < \frac{\varepsilon}{2} \ \forall n \ge n_2$
 $n_0 := \max\{n_1, n_2\}$. Für $n \ge n_0$:

$$|a_n + b_n - (a+b)| = |a_n - a + b_n - b| \le |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(iii) Übung

(iv)
$$c_k := |a_n b_n - ab|$$
. z. z.: $c_n \to 0$

$$c_n = |a_n b_n - a_n b + a_n b - ab| = |an(b_n - b) + (a_n - a)b|$$

$$\leq |a_n||b_n - b| + |b||a_n - a|$$

$$\xrightarrow{2.1 \ b)} \exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N} \text{ und } c \geq |b|. \text{ Dann:}$$

$$c_n \le c(|b_n - b| + |a_n - a|) =: \alpha_n \xrightarrow[c)(ii),c)(iii)} \alpha_n \to 0$$

Also: $|c_n - 0| = c_n \le \alpha_n \ \forall n \in \mathbb{N} \ \text{und} \ \alpha_n \to 0 \stackrel{b)}{\Rightarrow} c_n \to 0.$

(v)
$$\varepsilon := \frac{|a|}{2}$$
; aus (i): $|a_n| \to |a| \Rightarrow \exists n \in N$:

$$|a_n| \in U_{\varepsilon}(|a|) = (|a| - \varepsilon, |a| + \varepsilon) = (\frac{|a|}{2}, \frac{3}{2}|a|) \quad \forall n \ge m$$

$$\Rightarrow |a_n| > \frac{|a|}{2} > 0 \ \forall n \ge m \Rightarrow a_n \ne 0 \ \forall n \ge m.$$

Für $n \ge m$:

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \frac{|a_n - a|}{|a_n||a|} \le \frac{2|a_n - a|}{|a|^2} =: \alpha_n$$

$$\alpha_n \to 0 \stackrel{b)}{\Rightarrow} \frac{1}{a_n} \to \frac{1}{a}$$
.

d) Annahme
$$b < a, \varepsilon := \frac{a-b}{2} > 0$$

$$U_{\varepsilon}(b) \qquad U_{\varepsilon}(a)$$

$$b \qquad x \qquad y \qquad a$$
Dann: $x < y \ \forall x \in U_{\varepsilon}(b) \ \forall y \in U_{\varepsilon}(a)$.

$$\exists n_0 \in \mathbb{N} : b_n \in U_{\varepsilon}(b) \ \forall n \ge n_0$$
$$\exists m \in \mathbb{N} : a_n \le b_n \ \forall n \ge m$$

 $m_0 := \max\{n_0, m\}$. Für $n \ge m_0$: $a_n \le b_n < b + \varepsilon$, also $a_n \notin U_{\varepsilon}(a)$. Widerspruch!

e) $\exists m \in \mathbb{N} : a_n \leq c_n \leq b_n \ \forall n \geq m$. Sei $\varepsilon > 0$. $\exists n_1, n_2 \in \mathbb{N}$:

$$a - \varepsilon < a_n < a + \varepsilon \ \forall n \ge n_1$$

 $a - \varepsilon < b_n < a + \varepsilon \ \forall n \ge n_2$

 $n_0 := \max\{n_1, n_2, m\}$. Für $n \ge n_0$:

$$a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$$

Also: $|a_n - a| < \varepsilon \forall n \ge n_0$.

Definition:

- a) (a_n) heißt monoton wachsend $\iff a_{n+1} \ge a_n \ \forall n \in \mathbb{N}.$
- b) (a_n) heißt streng monoton wachsend $\iff a_{n+1} > a_n \ \forall n \in \mathbb{N}$.
- c) Entsprechend definiert man **monoton fallend** und **streng monoton fallend**.
- d) (a_n) heißt **monoton** \iff (a_n) n ist monoton wachsend oder monoton fallend.

Proposition 2.3 (Monotoniekriterium):

a) (a_n) sei monoton wachsend und nach oben beschränkt. Dann ist (a_n) konvergent und

$$\lim_{n \to \infty} a_n = \sup_{n=1}^{\infty} a_n$$

b) (a_n) sei monoton fallend und nach unten beschränkt. Dann ist (a_n) konvergent und

$$\lim_{n\to\infty} a_n = \inf_{n=1}^{\infty} a_n$$

Beweis. $a := \sup_{n=1}^{\infty} a_n$. Sei $\varepsilon > 0$. Dann ist $a - \varepsilon$ keine obere Schranke von $\{a_1, a_2, \cdots\}$, also existiert ein $n_0 \in \mathbb{N} : a_{n_0} > a - \varepsilon$. Für $n \geq n_0$:

$$a - \varepsilon < a_{n_0} \le a_n \le a \le a + \varepsilon$$

also
$$|a_n - a| \le \varepsilon \ \forall n \ge n_0$$
.

Beispiel: $a_1 := \sqrt[3]{6}, \ a_{n+1} := \sqrt[3]{6 + a_n} \ (n \ge 2).$

$$a_1 = \sqrt[3]{6} < \sqrt[3]{8} = 2;$$

$$a_2 = \sqrt[3]{6+a_1} < \sqrt[3]{6+2} = 2;$$

$$a_2 = \sqrt[3]{6 + a_1} < \sqrt[3]{6} = a_1;$$

Behauptung: $0 < a_n < 2$ und $a_{n+1} > a_n \ \forall n \in \mathbb{N}$

induktiv.

I.A.: s.o.

I.V.: Sei $n \in \mathbb{N}$ und $0 < a_n < 2$ und $a_{n+1} > a_n$. $n \curvearrowright n+1$: $a_{n+1} = \sqrt[3]{6+a_n} >_{I.V.}$

$$a_{n+1} = \sqrt[3]{6 + a_n} <_{I.V.} \sqrt[3]{6 + 2} = 2;$$
 $a_{n+2} = \sqrt[3]{6 + a_{n+1}} >_{I.V.} \sqrt[3]{6 + a_n} = a_{n+1}$

Also: (a_n) ist nach oben beschränkt und monoton wachsend.

 $\stackrel{2.3}{\Longrightarrow} (a_n)$ ist konvergent. $a := \lim a_n, \ a_n \ge 0 \ \forall n \stackrel{2.2}{\Longrightarrow} a \ge 0$. Es ist

$$a_{n+1}^3 = 6 + a_n \quad \forall n \in \mathbb{N}$$

$$\stackrel{2.2}{\Rightarrow} a^3 = 6 + a \Rightarrow 0 = a^3 - a + 6 = (a - 2)(\underbrace{a^2 - 2a + 3}_{\geq 3})$$

$$\Rightarrow a = 2.$$

Wichtige Beispiele:

Vorbemerkung: Seien $x, y \ge 0$ und $p \in \mathbb{N}$: es ist (s. §1)

$$x^{p} - y^{p} = (x - y) \sum_{k=0}^{p-1} x^{p-1-k} y^{k}$$

$$\Rightarrow |x^p - y^p| = |x - y| \sum_{k=0}^{p-1} x^{p-1-k} y^k \ge y^{p-1} |x - y|$$

Beispiel 2.4: Sei $a_n \geq 0 \ \forall n \in \mathbb{N}, \ a_n \to a (\geq 0) \ \text{und} \ p \in \mathbb{N}$. Dann $\sqrt[p]{a_n} \to \sqrt[p]{a}$

Beweis.

Fall 1: a = 0. Sei $\varepsilon > 0$, $\exists n_0 \in \mathbb{N} : |a_n| < \varepsilon^p \ \forall n \ge n_0$

$$\Rightarrow |\sqrt[p]{a_n} = \sqrt[p]{|a_n|} < \varepsilon \ \forall n \ge n_0$$

Also $\sqrt[p]{a_n} \to 0$.

Fall 2: $a \neq 0$.

$$|a_{n} - a| = |(\underbrace{\sqrt[p]{a_{n}}})^{p} - |\underbrace{\sqrt[p]{a}}|^{p}| = |x^{p} - y^{p}|$$

$$\geq_{s.o.} \underbrace{y^{p-1}}_{:=c} |x - y| = c|\sqrt[p]{a_{n}} - \sqrt[p]{a}|, \quad c > 0$$

$$\Rightarrow |\sqrt[p]{a_n} - \sqrt[p]{a}| \le \frac{1}{c}|a_n - a| =: \alpha_n. \ \alpha_n \to 0 \Rightarrow \sqrt[p]{a_n} \to \sqrt[p]{a}$$

Beispiel 2.5: Für $x \in \mathbb{R}$ gilt (x^n) ist konvergent $\iff x \in (-1,1]$, i. d. Fall:

$$\lim_{n \to \infty} x^n = \begin{cases} 1, & \text{falls } x = 1\\ 0, & \text{falls } x \in (-1, 1) \end{cases}$$

Beweis.

Fall 1: x = 0. Dann $x^k \to 0$. Fall 2: x = 1. Dann $x^k \to 1$.

Fall 3: x = -1. Dann $(x^k) = ((-1)^k)$, ist divergent.

Fall 4: |x| > 1. $\exists \delta > 0$: $|x| = 1 + \delta \Rightarrow |x^k| = |x|^k = (1 + \delta)^k \ge 1 + n\delta \ge n\delta$ \Rightarrow ist nicht beschränkt $\stackrel{2.1}{\Rightarrow} (x^k)$ ist divergent. Fall 5: $0 < |x| < 1 \Rightarrow \frac{1}{|x|} > 1 \Rightarrow \exists \eta > 0$: $\frac{1}{|x|} = 1 + \eta$.

$$\Rightarrow \left|\frac{1}{x^n}\right| = \left(\frac{1}{|x|}\right)^n = (1+\eta)^n \ge 1 + n\eta \ge n\eta$$

$$\Rightarrow |x^n| \le \frac{1}{n} \cdot \frac{1}{n} \Rightarrow x^n \to 0.$$

Beispiel 2.6: Sei $x \in \mathbb{R}$ und $s_n := 1 + x + x^n + \dots + x^n = \sum_{k=0}^n x^k$

Fall 1: x = 1. Dann: $x_n = n + 1$, (s_n) ist also divergent.

Fall 2: $x \neq 1 \Rightarrow s_n = \frac{1 - x^{n+1}}{1 - x}$. Aus 2.5:

$$(s_n)$$
 konvergent \iff $|x| < 1$

i.d. Fall: $\lim s_n = \frac{1}{1-x}$

Beispiel 2.7: Behauptung: $\sqrt[n]{n} \to 1$.

Beweis. Es ist $\sqrt[n]{n} \ge 1 \ \forall n \in \mathbb{N}$, also $a_n := \sqrt[n]{n} - 1 \ge 0 \ \forall n \in \mathbb{N}$. Z. z.: $a_n \to 0$. Für $n \ge 2$:

$$n = \left(\sqrt[n]{n}\right)^n = (a_n + 1)^n \stackrel{\S 1}{=} \sum_{k=0}^n \binom{n}{k} a_n^k \ge \binom{n}{2} a_n^2 = \frac{n(n-1)}{2} a_n^2$$

$$\Rightarrow \frac{n-1}{2} a_n^2 \le 1. \text{ Also } \xrightarrow[a_n \ge 0]{} 0 \le a_n \le \frac{\sqrt{2}}{\sqrt{n-1}} (n \ge 2). \Rightarrow a_n \to 0.$$

Beispiel 2.8: Sei c > 0. Beh.: $\sqrt[n]{c} \to 1$.

Beweis. Fall 1: $c \ge 1$. $\exists m \in \mathbb{N} : 1 \le c \le m$

$$\Rightarrow 1 \le c \le n \ \forall n \ge m \Rightarrow 1 \le \sqrt[n]{c} \le \sqrt[n]{n} \ \forall n \ge m \Rightarrow \text{Beh.}$$

Fall 2:
$$0 < c < 1 \Rightarrow \frac{1}{c} > 1 \Rightarrow \sqrt[n]{c} = \frac{1}{\sqrt[n]{\frac{1}{c}}} \xrightarrow{Fall1} 1(n \to \infty) \Rightarrow \text{Beh.}$$

Beispiel 2.9: $a_n := \left(1 + \frac{1}{n}\right)^n$; $b_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!}$ Beh.: (a_n) und (b_n) sind konvergent und $\lim a_n = \lim b_n$

Beweis. I. d. gr. Übungen wird gezeigt: $2 \le a_n < a_{n+1} < 3 \ \forall n \in \mathbb{N}$

$$\stackrel{2.3}{\Longrightarrow} (a_n)$$
 konvergiert, $a := \lim a_n$

Es ist $b_n > 0$ und $b_{n+1} = b_n + \frac{1}{(n+1)!} > b_n$. (b_n) ist also monoton wachsend. Für n > 3:

$$b_{n} = 1 + 1 + \frac{1}{2} + \underbrace{\frac{1}{2 \cdot 2}}_{<\left(\frac{1}{2}\right)^{2}} + \underbrace{\frac{1}{2 \cdot 3 \cdot 4}}_{<\left(\frac{1}{2}\right)^{3}} + \dots + \underbrace{\frac{1}{2 \cdot \dots \cdot n}}_{<\left(\frac{1}{2}\right)^{n-1}}$$

$$< 1 + \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^{2} + \dots + \left(\frac{1}{2}\right)^{n-1}\right) = 1 + \frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}}$$

$$< 1 + \frac{1}{1 - \frac{1}{2}} = 3 \quad \forall n \in \mathbb{N}$$

 $\stackrel{2.3}{\Longrightarrow}(b_n)$ konvergiert. $b := \lim b_n$. Für $n \ge 2$:

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} \stackrel{\S 1}{=} \sum_{k=0}^{n} n \binom{n}{k} \frac{1}{n^{k}}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n!}{(n-k)!} \frac{1}{n^{k}} = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \frac{n(n-1) \cdot \dots \cdot (n-(k-1))}{n \cdot n \cdot \dots \cdot n}$$

$$= 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} \underbrace{\left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)}_{<1}$$

$$\leq 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} = b_{n}$$

Also $a_n \leq b_n \ \forall n \geq 2$. Z. z.: $\Rightarrow a \leq b\hat{A}$ Sei $j \in \mathbb{N}, j \geq 2$ (zunächst fest). Für $n \in \mathbb{N}, n \geq j$:

$$a_n \stackrel{s.o.}{=} 1 + 1 + \sum_{k=2}^n \frac{1}{k!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n})$$

$$\geq 1 + 1 + \sum_{k=2}^j \frac{1}{k!} \underbrace{(1 - \frac{1}{n})}_{\to 1} \underbrace{(1 - \frac{2}{n})}_{\to 1} \cdot \dots \cdot \underbrace{(1 - \frac{k-1}{n})}_{\to 1}$$

$$\to 1 + 1 + 1 \sum_{k=2}^j \frac{1}{k!} = b_j \quad (n \to \infty)$$

Also $a \ge b_j \ \forall j \ge 2 \xrightarrow{j \to \infty} a \ge b$.

Definition:

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \ (= \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!})$$

heißt Eulersche Zahl. Übung: 2 < e < 3. $e \approx 2,718...$

Definition: Sei (a_n) eine Folge und $(n_1, n_2, n_3, ...)$ eine Folge in \mathbb{N} mit $n_1 < n_2 < n_3 < ...$ Für $k \in \mathbb{N}$ setze

$$b_k \coloneqq a_{n_k}$$

also $b_1 = a_{n_1}, b_2 = a_{n_2}, \ldots$ Dann heißt $(b_k) = (a_{n_k})$ eine **Teilfolge** (TF) von (a_n) .

Beispiele:

- a) $(a_2, a_4, a_6, ...)$ ist eine Teilfolge von (a_n) ; hier: $n_k = 2k$
- b) $(a_1, a_4, a_9, ...)$ ist eine Teilfolge von (a_n) ; hier: $n_k = k^2$
- c) $(a_2, a_6, a_4, a_{10}, a_8, a_{14}, ...)$ ist keine Teilfolge von (a_n) .

Definition: (a_n) sei eine Folge und $\alpha \in \mathbb{R}$. α heißt ein **Häufungswert** (HW) von (a_n)

$$\iff$$
 \exists Teilfolge (a_{n_k}) von $(a_n): a_{n_k} \to \alpha \ (k \to \infty)$

 $H(a_n) := \{ \alpha \in \mathbb{R} : \alpha \text{ ist ein Häufungswert von } (a_n) \}.$

Satz 2.10: $\alpha \in \mathbb{R}$ ist ein Häufungswert von (a_n)

$$\iff \forall \epsilon > 0 : a_{n_{\epsilon}} \in U_{\epsilon}(\alpha) \quad (*)$$

für unendlich viele $n \in \mathbb{N}$.

Beweis.

" \Rightarrow " Sei (a_{n_k}) eine Teilfolge mit $a_{n_k} \to \infty$. Sei $\epsilon > 0 \exists k_0 \in \mathbb{N} : a_{n_k} \in U_{\epsilon}(\alpha)$ für $k \geq k_0 \Rightarrow (*)$

" \Leftarrow " $\exists n_1 \in \mathbb{N} : a_{n_1} \in U_1(\alpha)$. $\exists n_2 \in \mathbb{N} : a_{n_2} \in U_{\frac{1}{2}}(\alpha) \text{ und } n_2 > n_1$. $\exists n_3 \in \mathbb{N} : a_{n_3} \in U_{\frac{1}{3}}(\alpha) \text{ und } n_3 > n_2$. Etc. ... Man erhält eine Teilfolge (a_{n_k}) von (a_n) mit

$$a_{n_k} \in U_{\frac{1}{k}}(\alpha) \ \forall k \in \mathbb{N}, \text{ also } |a_{n_k} - \alpha| < \frac{1}{k} \ \forall k$$

Somit:
$$a_{n_k} \to \alpha$$
.

Beispiele:

- a) $a_n = (-1)^n$, $a_{2k} = 1 \to 1$, $a_{2k+1} \to -1$, also $1, -1 \in H(a_n)$. Sei $\alpha \in \mathbb{R}$, $\alpha \neq 1$, $\alpha \neq -1$ Wähle $\epsilon > 0$ so, dass $1, -1 \notin U_{\epsilon}(\alpha)$. Dann $a_n \in U_{\epsilon}(\alpha)$ für kein $n \in \mathbb{N}$ $\stackrel{2.10}{\Longrightarrow} \alpha \notin H(a_n)$. Fazit: $H(a_n) = \{1, -1\}$.
- b) $a_n = n$. Ist $\alpha \in \mathbb{R}$ und $\epsilon > 0$, so gilt: $a_n \in U_{\epsilon}(\alpha)$ für höchstens endlich viele n, also $\alpha \notin H(a_n)$. Fazit: $H(a_n) = \emptyset$.
- c) \mathbb{Q} ist abzählbar. Sei (a_n) eine Folge mit $Q = \{a_1, a_2, a_3, \dots\}$. Sei $\alpha \in \mathbb{R}$ und $\epsilon > 0 \stackrel{1.5}{\Longrightarrow} U_{\epsilon}(\alpha) = (\alpha \epsilon, \alpha + \epsilon)$ enthält unendlich viele verschiedene rationale Zahlen $\stackrel{2.10}{\Longrightarrow} \alpha \in H(a_n)$. Fazit: $H(a_n) = \mathbb{R}$.

Folgerung: Ist $x \in \mathbb{R}$, so existieren Folgen (r_m) in $\mathbb{Q}: r_n \to \alpha$.

Satz 2.11: (a_n) sei konvergent, $a := \lim a_n$ und (a_{n_k}) eine Teilfolge von (a_n) . Dann:

$$a_{n_k} \to a(k \to \infty)$$

Insbesondere: $H(a_n) = \{\lim a_n\}$

Beweis. Sei $\epsilon > 0$. Dann: $an \in U_{\epsilon}(a)$ ffa $n \in \mathbb{N}$, also auch $a_{n_k} \in U_{\epsilon}(a)$ ffa $k \in \mathbb{N}$. Somit: $a_{n_k} \to \alpha$.

Definition: Sei (a_n) eine Folge.

- a) $m \in \mathbb{N}$. m heißt **niedrig** (für (a_n)) $\iff a_n \ge a_m \ \forall n \ge m$
- b) $m \in \mathbb{N}$ heißt nicht niedrig $\iff \exists n \geq m : a_n < a_m \Rightarrow n > m : a_n < a_m$

Hilfssatz: (a_n) sei eine Folge. Dann enthält (a_n) eine monotone Teilfolge.

Beweis.

Fall 1: es existieren höchstens endlich viele niedrige Indizes. Also existiert $n_1 \in \mathbb{N}$: jedes $n \geq n_1$ ist nicht niedrig.

 n_1 nicht niedrig $\Rightarrow \exists n_2 > n_1 : a_{n_2} < a_{n_1}$

 n_2 nicht niedrig $\Rightarrow \exists n_3 > n_2 : a_{n_3} < a_{n_2}$

Etc...

Wir erhalten so eine streng monoton fallende Teilfolge (a_{n_k}) .

Fall 2: es existieren unendlich viele niedrige Indizes n_1, n_2, \ldots , etwa $n_1 < n_2 < \ldots$

 n_1 ist niedrig und $n_2 > n_1 \rightarrow a_{n_2} \ge a_{n_1}$

 n_2 nicht niedrig $\Rightarrow \exists n_3 > n_2 : a_{n_3} \geq a_{n_2}$

Etc...

Wir erhalten so eine monoton wachsende Teilfolge (a_{n_k}) .

Satz 2.12 (Bolzano-Weierstraß):

 (a_n) sei beschränkt, dann: $H(a_n) \neq \emptyset$. (a_n) enthält also eine konvergente Teilfolge

Beweis. $\exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N}. \xrightarrow{Hilfssatz} (a_n)$ enthält eine monotone Teilfolge (a_{n_k}) . Dann: $|a_{n_k}| \leq c \forall k \in \mathbb{N}$

 (a_{n_k}) ist also beschränkt $\stackrel{2.3}{\Longrightarrow} (a_{n_k})$ ist konvergent. Also $\lim_{k\to\infty} a_{n_k} \in H(a_n)$. \square

Satz 2.13:
$$(a_n)$$
 sei beschränkt $\left(\stackrel{2.12}{\Longrightarrow} H(a_n) \neq \emptyset \right)$

- a) $H(a_n)$ ist beschränkt
- b) $\sup H(a_n)$, $\inf H(a_n) \in H(a_n)$; es existieren also

$$\max H(a_n), \min H(a_n)$$

Definition: Ist (a_n) beschränkt, so nennen wir

- a) $\limsup_{n\to\infty} a_n := \limsup a_n := \overline{\lim} a_n := \max H(a_n)$ heißt Limes superior oder oberer Limes von (a_n) .
- b) $\liminf_{n\to\infty} a_n := \liminf a_n := \underline{\lim} a_n := \min H(a_n)$ heißt **Limes inferior** oder **unterer Limes** von (a_n) .

Beweis.

a) $\exists c \geq 0 : |a_n| \leq c \ \forall n \in \mathbb{N}$. Sei $\alpha \in H(a_n)$. Es existiert eine Teilfolge (a_{n_k}) mit $a_{n_k} \to \alpha \ (k \to \infty)$. Es ist

$$|a_{n_k}| \le c \quad \forall k, \text{ also } -c \le a_{n_k} \le c \quad \forall k$$

 $\Rightarrow -c \leq \alpha \leq c$. Also $|\alpha| \leq c \ \forall \alpha \in H(a_n)$.

b) ohne Beweis.

Satz 2.14: (a_n) sei beschränkt.

- a) $\liminf a_n \le \alpha \le \limsup a_n \ \forall \alpha \in H(a_n)$
- b) Ist (a_n) konvergent $\Rightarrow \limsup a_n = \liminf a_n = \lim a_n$
- c) $\limsup (\alpha a_n) = \alpha \limsup a_n \ \forall \alpha \ge 0$
- d) $\limsup(-a_n) = -\liminf a_n$

Beweis. a) klar, b) folgt aus 2.11, c) und d) Übung.

Motivation: (a_n) sei konvergent und $\lim a_n =: a$. Sei $\epsilon > 0$,

$$\exists n_0 \in \mathbb{N} : |a_n - a| < \frac{\epsilon}{2} \quad \forall n \ge n_0$$

Für $n, m \ge n_0$:

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

D.h.: (a_n) hat die folgende Eigenschaft:

$$\forall \epsilon > 0 \exists n_0 = n_0(\epsilon) \in \mathbb{N} : |a_n - a_m| < \epsilon \quad \forall n, m \ge n_0$$
 (c)

 $(\iff \forall \epsilon > 0 \ \exists n_0 = n_0(\epsilon) \in \mathbb{N} : |a_n - a_{n+k}| < \epsilon \ \forall n \geq n_0 \ \forall k \in \mathbb{N})$

Definition: Eine Folge (a_n) heißt eine **Cauchyfolge** (CF)

$$\iff$$
 (a_n) hat die Eigenschaft (c)

Konvergente Folgen sind also Cauchy-Folgen!

Proposition 2.15 (Cauchykriterium):

 (a_n) ist konvergent \iff (a_n) ist eine Cauchyfolge

Beweis. " \Rightarrow " s.o. " \Leftarrow " ohne Beweis

Beispiel: $a_1 := 1, a_{n+1} := \frac{1}{1+a_n}$ $(n \in \mathbb{N})$. Mit Induktion folgt:

- 1) $0 < a_n \le 1 \ (n \in \mathbb{N})$ Damit:
- $2) \ a_n \ge \frac{1}{2} \ (n \in \mathbb{N})$

Für $n \geq 2, k \in \mathbb{N}$ gilt daher:

$$|a_{n+k} - a_n| = \left| \frac{1}{1 + a_{n+k-1}} - \frac{1}{1 - a_{n-1}} \right| = \frac{|a_{n-1} - a_{n+k-1}|}{(1 + a_{n+k-1})(1 + a_{n-1})}$$

$$\leq \frac{1}{(1 + \frac{1}{2})^2} |a_{n+k-1} a_{n-1}| = \frac{4}{9} |a_{n+k-1} - a_{n-1}|$$

$$\leq \left(\frac{4}{9}\right)^2 |a_{n-k-2} - a_{n-2}| \leq \dots \leq \left(\frac{4}{9}\right)^{n-1} |a_{k+1} - a_1|$$

$$\leq \left(\frac{4}{9}\right)^{n-1} (|a_{k+1}| + |a_1|) \leq 2 \left(\frac{4}{9}\right)^{n-1}$$

 $\exists n_0 \in \mathbb{N} \setminus \{1\}: 2\left(\frac{4}{9}\right)^{n-1} < \epsilon \ (n \ge n_0). \text{ Damit: } |a_{n+k} - a_n| < \epsilon \ (n \ge n_0, k \in \mathbb{N}).$ Also ist (a_n) Cauchyfolge. $a := \lim_{n \to \infty} a_n$. Klar: $a \ge \frac{1}{2}$ und $a = \frac{1}{1+a}$. Also $a^2 + a - 1 = 0 \iff a = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}$. Wegen $a \ge \frac{1}{2}$ folgt $a = \frac{\sqrt{5}-1}{2}$.

3 Unendliche Reihen

Definition: (a_n) sei eine Folge;

- a) $s_n := a_1 + a_2 + \dots a_n$ $(n \in \mathbb{N})$ (also $a_1 = a_1, a_2 = a_1 + a_2, \dots$). (s_n) heißt (unendliche) Reihe und wird mit $\sum_{n=1}^{\infty} a_n$ bezeichnet. Weitere Bezeichnungen: $a_1 + a_2 + a_3 + \dots$
- b) s_n heißt **n-te Teilsumme** von $\sum_{n=1}^{\infty} a_n$.
- c) $\sum_{n=1}^{\infty} a_n$ heißt konvergent bzw. divergent \iff (s_n) ist konvergent bzw. divergent.
- d) Ist $\sum_{n=1}^{\infty} a_n$ konvergent, so heißt $\lim s_n$ der Reiehenwert und wird ebenfalls mit $\sum_{n=1}^{\infty} a_n$ bezeichnet (schlecht, aber so üblich)

Bemerkung: Ist $p \in \mathbb{Z}$ und $(a_n)_{n=p}^{\infty}$ eine Folge, so definiert man entsprechend

$$s_n = a_p + a_{p+1} + \ldots + a_n \quad (n \ge p)$$

und $\sum_{n=p}^{\infty} a_n$ (meist: p=1 oder p=0)

Die folgenden Sätze und Definitionen formulieren wir nun für Reihen der Form $\sum_{n=1}^{\infty} a_n$. Diese Sätze und Definitionen gelten entsprechend für Reihen der Form $\sum_{n=p}^{\infty} a_n \ (p \in \mathbb{Z})$

Beispiele:

- a) Sei $x \in \mathbb{R}$. $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots$ heißt **geometrische Reihe**. $s_m = 1 + x + \dots x^m \stackrel{2.6}{\Longrightarrow} (s_n)$ konvergiert $\iff |x| < 1$ und $\lim s_n = \frac{1}{1-x}$ für |x| < 1. Also: $\sum_{n=0}^{\infty} x^n$ konvergent $\iff |x| < 1$ und $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ für |x| < 1.
- b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}; a_n) \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$ $\Rightarrow s_n = a_1 + \dots + a_n$ $= (1 \frac{1}{2}) + (\frac{1}{2} \frac{1}{3}) + \dots + (\frac{1}{n-1} \frac{1}{n}) + (\frac{1}{n} \frac{1}{n+1})$ $= 1 \frac{1}{n+1} \to 1$

Also $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ konvergent und $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

- c) $\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots$; $s_n = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} \stackrel{2.9}{\Longrightarrow} s_n \to e$. Also: $\sum_{n=0}^{\infty} \frac{1}{n!}$ konvergiert und $\sum_{n=1}^{\infty} \frac{1}{n!} = e$.
- d) Die **harmonischen Reihe** $\sum_{n=1}^{\infty} \frac{1}{n}$. Dann ist $s_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$, $s_{2n} = 1 + \frac{1}{2} + \dots + \frac{1}{n+1} + \frac{1}{n+1} + \dots + \frac{1}{2n} = s_n + \underbrace{\frac{1}{n+1} + \frac{1}{n+2}}_{\geq \frac{1}{2n}} + \underbrace{\frac{1}{n+2} + \dots + \frac{1}{2n}}_{\geq \frac{1}{2n}} \geq s_n + \frac{1}{2}$

Annahme (s_n) ist konvergent. $s := \lim s_n \xrightarrow{\frac{2.11}{satz:2.11}} s_{2n} \to s \Rightarrow s \geq s + \frac{1}{2} \to 0 \geq \frac{1}{2}$. Widerspruch! Also: $\sum_{n=1}^{\infty} \frac{1}{n}$ ist divergent!

Satz 3.1: (a_n) sei eine Foge und $s_n = a_1 + \ldots + a_n$.

- a) Monotoniekriterium: Sind alle $a_n \ge 0$ und ist (s_n) beschränkt, so ist $\sum_{n=1}^{\infty} a_n$ konvergent.
- b) Cauchykriterium: $\sum a_n$ konvergiert $\iff \forall \epsilon > 0 \exists n_0 = n_0(\epsilon) \in \mathbb{N}$:

$$\left| \sum_{k=n+1}^{m} a_k \right| < \epsilon \ \forall m > n \ge n_0$$

- c) Ist $\sum_{n=1}^{\infty} a_n$ konvergent $\Rightarrow a_n \to 0$.
- d) $\sum_{n=1}^{\infty} a_n$ sei konvergent. Dann ist für jedes $\nu \in \mathbb{N}$ die Reihe $\sum_{n=\nu+1}^{\infty} a_n$ konvergent und für $r_{\nu} \coloneqq \sum_{n=\nu+1}^{\infty} a_n$ gilt: $r_{\nu} \to 0$.

Beweis.

- a) $s_{n+1} = a_1 + \ldots + a_n + a_{n+1} = s_n + a_{n+1} \ge s_n$. (s_n) ist also wachsend und beschränkt $\stackrel{??}{\Rightarrow}$ (s_n) konvergent.
- b) Für $m > n : |s_m s_n| = |a_1 + \ldots + a_n + a_{n+1} + \ldots + a_m (a_1 + \ldots + a_n)| = |a_{n+1} + \ldots + a_m| = |\sum_{k=n+1}^m a_k|$. Behauptung folgt aus 2.15.
- c) $s_{n+1} s_n = a_{n+1}$. Ist (s_n) konvergent, so folgt $a_{n+1} \to 0$
- d) ohne Beweis!

Bemerkung: Ist (a_n) eine Folge und gilt $a_n \not\to 0$, so ist $\sum a_n$ divergent!

Satz 3.2: Die Reihen $\sum a_n$ und $\sum b_n$ seien konvergent und es seien $\alpha, \beta \in \mathbb{R}$. Dann konvergiert

$$\sum (\alpha a_n + \beta b_n)$$

und $\sum (\alpha a_n + \beta b_n) = \alpha \sum a_n + \beta \sum b_n$

Proposition 3.3 (Leibnitzkriterium): Sei (b_n) eine Folge mit:

$$b_n \geq 0 \ \forall n \in \mathbb{N}, (b_n)$$
 ist monoton fallend und $b_n \to 0$

Dann ist $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ konvergent-.

Beispiel: Aus 3.3 folgt:

Die alternierende harmonische Reihe $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ ist konvergent.

von 3.3. $a_n := (-1)^{n+1}b_n$, $s_n := a_1 + \ldots + a_n$. $s_{2n+2} = s_{2n} + a_{2n+1} + a_{2n+2} = s_{2n} + \underbrace{b_{2n+1} - b_{2n+2}}_{>0} \ge s_{2n}$. (s_{2n}) ist also monoton fallend. Es gilt:

$$\forall n \in \mathbb{N} : s_{2n} = s_{2n-1} - a_{2n} = s_{2n-1} - b_{2n} \le s_{2n-1} \tag{*}$$

Also:

$$s_2 \le s_4 \le \ldots \le s_{2n} \le s_{2n-1} \le \ldots \le s_3 \le s_1$$

 (s_{2n}) und (s_{2n+1}) sind also beschränkt $\stackrel{2.3}{\Longrightarrow}$ (s_{2n}) und (s_{2n+1}) sind konvergent. $s := \lim s_{2n} \stackrel{(*)}{\Longrightarrow} s = \lim s_{2n+1}$.

Sei $\epsilon > 0$:

$$\begin{cases} s_{2n} \in U_{\epsilon}(s) \text{ ffa } n \in \mathbb{N} \\ s_{2n-1} \in U_{\epsilon}(s) \text{ ffa } n \in \mathbb{N} \end{cases} \Rightarrow s_n \in U_{\epsilon}(s) \text{ ffa } n \in \mathbb{N}$$

Also: $s_n \to s$.

Definition: $\sum a_n$ heißt **absolut konvergent** $\iff \sum |a_n|$ ist konvergent.

Beispiel: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ ist konvergent, aber nicht absolut konvergent.

Satz 3.4: $\sum a_n$ sei absolut konvergent. Dann:

- a) $\sum a_n$ ist konvergent
- b) $\left|\sum_{n=1}^{\infty} a_n\right| \leq \sum_{n=1}^{\infty} |a_n| \ (\triangle$ -Ungleichung für Reihen)

Beweis.

a) Seien $m, n \in \mathbb{N}, m > n$

$$\left| \sum_{k=n+1}^{m} a_k \right| \le \sum_{k=n+1}^{m} |a_k| \tag{*}$$

Sei $\epsilon > 0$, Voraussetzung nach 3.1 b) $\Rightarrow \exists n_0 \in \mathbb{N} : \tau_{m,n} < \epsilon \text{ für } m > n > n_0 \xrightarrow{(*)} \sigma_{m,n} < \epsilon \text{ für } m > n \geq n_0 \xrightarrow{3.1 \text{ b}} \sum a_n \text{ konvergiert}$

b) Sei $s_k := a_1 + \ldots + a_k$, $s := \lim s_n$, $\sigma_k := |a_1| + \ldots + |a_k|$ und $\sigma = \lim \sigma_n$. Dann: $|s_n| \to |s|$ und

$$|s| \le \sigma \quad \forall n$$

 $\Rightarrow |s| \leq \sigma \Rightarrow \triangle$ -Ungleichung

Satz 3.5:

- a) **Majorantenkriterium**: Gilt $|a_n| \leq b_n$ ffa $n \in \mathbb{N}$ und ist $\sum b_n$ konvergent, so ist $\sum a_n$ absolut konvergent.
- b) **Minorantenkriterium**: Gilt $a_n \ge b_n \ge 0$ ffa $n \in \mathbb{N}$ und ist $\sum b_n$ divergent, so ist $\sum a_n$ divergent.

Beweis.

a) $\exists j \in \mathbb{N}: |a_n| \leq b_n \ \forall n \geq j$. Sei $m > n \geq j$, dann

$$\underbrace{\sum_{k=n+1}^{m} |a_n|}_{=:\sigma_{m,n}} \leq \underbrace{\sum_{k=n+1}^{m} b_k}_{=:\tau_{m,n}}$$

Sei $\epsilon > 0$ Voraussetzung nach 3.1 b) $\Rightarrow \exists n_0 \in \mathbb{N} : n_0 \geq j$ und $\tau_{m,n} < \epsilon$ für $m > n \geq n_0$. Dann: $\sigma_{m,n} < \epsilon$ für $m > n \geq n_0 \xrightarrow{3.1 \ b} \sum |a_n|$ konvergiert.

b) Annahme: $\sum a_n$ konvergent $\stackrel{a)}{\Rightarrow} \sum b_n$ konvergent, Widerspruch.

Beispiele:

a) $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$, $\forall n \in \mathbb{N}$:

$$a_n = \frac{1}{(n+1)^2} = |a_n| = \frac{1}{n^2 + 2n + 1} \le \frac{1}{n^2 + 2n} \le \frac{1}{n(n+1)} =: b_n$$

Bekannt: $\sum b_n$ konvergiert $\stackrel{3.5\ a)}{\Longrightarrow} \sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ konvergiert

- b) Aus Beispiel a): $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ist konvergent.
- c) Sei $\alpha > 0$ und $\alpha \in \mathbb{Q}$: Betrachte: $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$. Fall 1: $\alpha \in (0, 1]$.

$$\forall n \in \mathbb{N}: \ \frac{1}{n^{\alpha}} \ge \frac{1}{n} \ge 0 \xrightarrow{3.5 \ b)} \sum \frac{1}{n^{\alpha}}$$

Fall 2: $\alpha \geq 2$:

$$\forall n \in \mathbb{N}: \ 0 \leq \frac{1}{n^{\alpha}} \frac{1}{n^2} \xrightarrow{3.5 \ a} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ konvergent}$$

Fall 3: $\alpha \in (1,2)$: vgl. Übungsblatt, $\sum \frac{1}{n^{\alpha}}$ konvergent.

Fazit: Ist $\alpha > 0$ und $\alpha \in \mathbb{Q}$, so gilt $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ konvergiert $\Leftrightarrow \alpha > 1$

d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2+2}{n^3+1}; |a_n| = \frac{n+2}{n^3+1} \le \frac{n+2}{n^3} \le \frac{2n}{n^3} = \frac{2n}{n^2} =: b_n. \text{ Für } n \ge 2 \sum b_n \text{ konvergient} \xrightarrow{3.5 \ a)} \sum a_n \text{ konvergient absolut}$$

e)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$$
; $a_n = |a_n| = \frac{\sqrt{n}}{n+1} \ge \frac{\sqrt{n}}{2n} = \frac{1}{2} \cdot \frac{1}{\sqrt{n}} = \underbrace{\frac{1}{2} \cdot \frac{1}{n^{\frac{1}{2}}}}_{>0} =: b_n$.

$$\sum b_n$$
 divergiert $\stackrel{3.5 \ b)}{\Longrightarrow} \sum a_n$ divergiert

Bemerkung: Ist später später (in §7) die allgemeine Potenz a^x ($a > 0, x \in \mathbb{R}$) eingeführt, so zeigt man analog:

Für
$$\alpha > 0$$
 gilt: $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ konvergiert $\iff \alpha > 1$

Hilfssatz: (c_n) sei beschränkt

- a) Ist $\alpha := \limsup c_n$ und $x > \alpha$, so gilt: $c_n < x$ ffa n
- b) Ist $\alpha := \liminf c_n$ und $x < \alpha$, so gilt: $c_n > x$ ffa n
- c) Ist $c_n \ge 0 \ \forall n \in \mathbb{N}$ und $\limsup c_n = 0$, so gilt $c_n \to 0$

Beweis.

- b) Sei $\epsilon > 0$. $x := \epsilon \stackrel{a)}{\Rightarrow} -\epsilon < 0 \le c_n < \epsilon$ ffa $n \in \mathbb{N}$, also $c_n \in U_{\epsilon}(0)$ ffa n.
- a) Annahme: $c_n \geq x$ für unendlich viele n, etwa für n_1, n_2, n_3, \ldots mit $n_1 < n_2 < n_3 < \ldots$, Die Teilfolge (c_{n_k}) ist beschränkt $\stackrel{2.11}{\Longrightarrow} (c_{n_k})$ enthält eine konvergente Teilfolge $(c_{n_{k_j}})$. $\beta \coloneqq \lim_{j \to \infty} c_{n_{k_j}}$. Es ist $c_{n_{k_j}} \geq x \ \forall j \Rightarrow \beta \geq x > \alpha$; $(c_{n_{k_j}})$ ist eine Teilfolge von $(c_n) \Rightarrow \beta \in H(a_n) \Rightarrow \beta \leq \alpha$, Widerspruch.

Proposition 3.6 (Wurzelkriterium (WK)): Sei (a_n) eine Folge, $c_n := \sqrt[n]{|a_n|}$.

- a) Ist (c_n) unbeschränkt, so ist $\sum_{n=1}^{\infty} a_n$ divergent.
- b) Sei $(c_n \text{ beschränkt und } \alpha := \limsup_{n \to \infty} c_n$
 - (i) Ist $\alpha < 1$, so ist $\sum a_n$ absolut konvergent.

(ii) Ist $\alpha > 1$, so ist $\sum a_n$ divergent

Im Falle $\alpha = 1$ ist keine allgemeine Aussage möglich.

Beweis.

- a) (c_n) unbeschränkt $\Rightarrow c_n \ge 1$ für unendlich viele $n \Rightarrow |a_n| \ge 1$ für unendlich viele $n \Rightarrow a_n \to 0 \xrightarrow{3.1 \ c}$ Beh.
- b) (i) Sei $\alpha < 1$, sei $x \in (\alpha, 1) \xrightarrow{Hilfssatz} c_n \le x$ ffa $n \Rightarrow |a_n| \le x^n$ ffa n. $\sum x^n$ konvergiert $\xrightarrow{3.5 \ a)} \sum a_n$ konvergiert absolut
 - (ii) Sei $\alpha > 1$, wähle $\epsilon > 0$ so, dass $\alpha \epsilon > 1$. Es gilt $c_n U_{\epsilon}(\alpha)$ für unendlich viele n. Dann: $c_n > \alpha \epsilon > 1$ für unendlich viele n. Wie bei a): $\sum a_n$ divergiert

Beispiele:

a) $a_n := \frac{1}{n}$; $c_n = \sqrt[n]{|a_n|} = \frac{1}{\sqrt[n]{n}} \to 1$, also $\alpha = 1$ und $\sum a_n$ divergiert.

b) $a_n := \frac{1}{n^2}$; $c_n = \sqrt[n]{|a_n|} = \frac{1}{(\sqrt[n]{n})^2} \to 1$, also $\alpha = 1$ und $\sum a_n$ konvergiert.

c) Sei $x \in \mathbb{R}$ und $a_n := \begin{cases} \frac{1}{2^n}, & \text{falls } n = 2k \\ nx^n, & \text{falls } n = 2k - 1 \end{cases}$ Frage: Wann ist $\sum a_n$ (abs.) konvergent? Es ist

$$c_n = \sqrt[n]{|a_n|} = \begin{cases} \frac{1}{2}, & \text{falls } n = 2k\\ \sqrt[n]{n}|x|, & \text{falls } n = 2k - 1 \end{cases}$$

 (c_n) ist also beschränkt, $H(c_n) = \{\frac{1}{2}, |x|\}.$

Fall 1: |x| < 1. Dann: $\alpha = \limsup c_n < 1$, also ist $\sum a_n$ absolut konvergent.

Fall 2: |x| > 1. Dann: $\alpha = \limsup c_n < 1$, also ist $\sum a_n$ divergent.

Fall 3: |x| = 1. Dann: $\alpha = \limsup c_n = 1$. Es ist $|a_n| = n$ falls n = 2k - 1. Also: $a_n \not\to 0$. $\sum a_n$ ist also divergent.

Proposition 3.7 (Quotientenkriterium (QK)): Es sei $a_n \neq 0 \ \forall n \in \mathbb{N}$ und $c_n := \left| \frac{a_{n+1}}{a_n} \right| \ (n \in \mathbb{N}).$

- a) Ist $c_n \geq 1$ ffa $n \in \mathbb{N}$, so ist $\sum a_n$ divergent
- b) Sei (c_n) beschränkt, $\alpha := \limsup c_n$ und $\beta := \liminf c_n$
 - (i) Ist $\alpha < 1$, so ist $\sum a_n$ absolut konvergent
 - (ii) Ist $\beta > 1$, so ist $\sum a_n$ divergent.

Folgerung 3.8: (a_n) und (c_n) seien wie in 3.7, (c_n) sei konvergent und $\alpha := \lim c_n$.

$$\sum a_n \text{ ist } \begin{cases} \text{absolut konv.,} & \text{falls } \alpha < 1 \\ \text{divergent,} & \text{falls } \alpha > 1 \end{cases}$$

Im Falle $\alpha = 1$ ist keine allg. Aussage möglich.

Beispiele:

a)
$$a_n = \frac{1}{n}$$
, $\left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} \to 1$, $\sum a_n$ divergient

b)
$$a_n = \frac{1}{n^2}, \left| \frac{a_{n+1}}{a_n} \right| = \frac{n^2}{(n+1)^2} \to 1, \sum a_n \text{ konvergient}$$

Proposition 3.9 (Die Exponentialreihe): Für $x \in \mathbb{R}$ betrachte die Reihe

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Frage: für welche $x \in \mathbb{R}$ konvergiert die Reihe (absolut). Klar, die Reihe konvergiert für x = 0. Sei $x \neq q$ und $a_n := \frac{x^n}{n!}$.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \to 0 \quad (n \to \infty)$$

Aus 3.8 folgt:

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 konv. absolut für jedes $x \in \mathbb{R}$

Damit ist auf \mathbb{R} eine Funktion $E \colon \mathbb{R} \to \mathbb{R}$ definiert:

$$E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 Exponential funktion

Es ist E(0) = 1, $E(1) \stackrel{\S 2}{=} e$.

Später zeigen wir: $E(r) = e^r$ für $r \in \mathbb{Q}$. Desweiteren definieren wir später $e^x := E(X)$ für $x \in \mathbb{R} \setminus \mathbb{Q}$. Dann: $e^x = E(x)$ $(x \in \mathbb{R})$

Definition: Sei (a_n) eine Folge und $\varphi \colon \mathbb{N} \to \mathbb{N}$ eine Bijektion. Setze $b_n \coloneqq a_{\varphi(n)}$ $(n \in \mathbb{N})$. also

$$b_1 = a_{\varphi(1)}, b_2 = a_{\varphi(2)}, \dots$$

Dann heißt (b_n) eine **Umordnung** von (a_n) .

Beispiel: $(a_2, a_4, a_1a_3, a_6, a_8, a_5, a_7, \dots)$ ist eine Umordnung von (a_n) .

Satz 3.10: (b_n) sei eine Umordnung von (a_n) .

- a) Ist (a_n) konvergent, so ist (b_n) konvergent und $\lim b_n = \lim a_n$.
- b) Ist $\sum a_n$ absolut konvergent, so ist $\sum b_n$ absolut konvergent und $\sum a_n = \sum b_n$

Beweis. a) $a := \lim a_n$; Sei $\epsilon > 0$. $\exists n_0 \in \mathbb{N} : |a_n - a| < \epsilon \ \forall n \ge n_0$. Dann: $|a_{\varphi(n)} - a| < \epsilon \text{ ffa } n \in \mathbb{N}$.

b) ohne Beweis.

Bemerkung (ohne Beweis): $\sum a_n$ sei konvergent, aber nicht absolut konvergent.

a) Ist $s \in \mathbb{R}$, so existiert eine Umordnung $\sum b_n$ von $\sum a_n$ mit: $\sum b_n$ ist konvergent und $\sum b_n = s$.

b) Es existiert eine Umordnung $\sum c_n$ von $\sum a_n$ mit: $\sum c_n$ ist divergent.

Definition: Gegeben seien die Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$. Setze für $n \in \mathbb{N}$:

$$c_n := \sum_{k=0}^{\infty} a_k b_{n-k}$$
, also:
 $c_n = a_0 b_n + a_1 b_{n-1} + \ldots + a_n b_0$

Die Reihe $\sum_{n=0}^{\infty} c_n$ heißt das Cauchyprodukt (CP) von $\sum a_n$ und $\sum b_n$.

Satz 3.11 (ohne Beweis): $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ seien absolut konvergent. Für ihr Cauchyprodukt $\sum_{n=0}^{\infty} c_n$ gilt dann:

$$\sum_{n=0}^{\infty} c_n \text{ ist absolut konvergent und } \sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$$

Beispiel: Sei $x \in \mathbb{R}$ und |x| < 1.

Bekannt: $\sum_{n=0}^{\infty} x^n$ konvergiert absolut und $\sum_{k=0}^{\infty} x^n = \frac{1}{1-x}$. Also

$$\frac{1}{(1-x)^2} = \left(\sum_{n=0}^{\infty} x^n\right) \left(\sum_{n=0}^{\infty} x^n\right) \stackrel{3.11}{=} \sum_{n=0}^{\infty} c_n$$

mit $c_n = \sum_{k=0}^n x^k x^{n-k} = (n+1)x^n$. Also:

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n \quad (|x| < 1)$$

z.B.: $(x = \frac{1}{2}) : 4 = \sum_{n=0}^{\infty} \frac{(n+1)}{2^n}$. Weiter:

$$\frac{x}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^{n+1} = \sum_{n=1}^{\infty} nx^n$$

z.B.:
$$(x = \frac{1}{2})$$
: $2 = \sum_{n=1}^{\infty} \frac{n}{2^n}$, also $1 = \sum_{n=1}^{\infty} \frac{n}{2^{n+1}}$

Proposition 3.12: $E(X) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R})$

a)
$$E(0) = 1, E(1) = e$$

b)
$$E(x+y) = E(x)E(y) \ \forall x, y \in \mathbb{R}$$

c)
$$E(x_1 + \ldots + x_m) = E(x_1) \cdot \ldots \cdot E(x_m) \ \forall x_1, \ldots, x_m \in \mathbb{R}$$

d)
$$E(x) > 1 \ \forall x > 0; E(X) > 0 \ \forall x \in \mathbb{R}; E(-x) = E(x)^{-1} \ \forall x \in \mathbb{R}$$

e)
$$E(rx) = E(x)^r \ \forall x \in \mathbb{R}, \forall r \in \mathbb{Q}$$

f)
$$E(r) = e^r \ \forall r \in \mathbb{Q}$$

g) E ist auf \mathbb{R} streng monoton wachsend, d.h. aus x < y folgt stets E(x) < E(y)

Beweis. a) klar.

b)
$$E(x)E(y) = (\sum_{n=0}^{\infty} \frac{x^n}{n!})(\sum_{n=0}^{\infty} \frac{y^n}{n!}) \stackrel{3.11}{=} \sum_{n=0}^{\infty} c_n$$
, wobei

$$c_n = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} \underbrace{\frac{n!}{k!(n-k)!}} x^k y^{n-k} \stackrel{\S 1}{=} \frac{1}{n!} (x+y)^n$$

Also:
$$E(x)E(y) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = E(x+y)$$

c) folgt aus b)

d) Für
$$x > 0$$
: $E(x) = 1 + \underbrace{x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots}_{>0} > 1$

$$1 = E(x + (-x)) \stackrel{b)}{=} E(x)E(-x) \ \forall x \in \mathbb{R}; \text{ Insb.: } E(x) > 0 \ (x < 0) \text{ und } E(-x) = E(x)^{-1}.$$

e) Sei $x \in \mathbb{R}$. Für $n \in \mathbb{N}$:

$$E(nx) = E(x + \ldots + x) \stackrel{c)}{=} E(x)^n$$

$$E(x) = (En(\frac{x}{n}) = E(\frac{x}{n})^n$$
, also $E(\frac{1}{n}x) = E(x)^{\frac{1}{n}}$.

Für $m, n \in \mathbb{N}$: $E(\frac{m}{n}x) = E(m\frac{x}{n}) = E(\frac{x}{n})^m = (E(x)^{\frac{1}{n}})^m = E(x)^{\frac{m}{b}}$ Also $E(rx) = E(x)^r \ \forall r \in \mathbb{Q} \ \text{mit} \ r > 0$. Sei $r \in Q \ \text{und} \ r < 0$. Dann: -r > 0, also

$$\underbrace{E(-rx)}_{\stackrel{d)}{=} \frac{1}{E(rx)}} = e(x)^{-r} = \frac{1}{E(x)^r}$$

Also $E(rx) = E(x)^r$

- f) folgt aus d) mit x = 1.
- g) Sei $x < y \Rightarrow y x > 0 \stackrel{d)}{\Rightarrow} E(y x) > 1$

$$\Rightarrow 1 < E(y - x) \stackrel{b)}{=} E(y)E(-x) \stackrel{d)}{=} \frac{E(y)}{E(x)} \stackrel{d)}{\Rightarrow} E(x) < E(y)$$

4 Potenzreihen

Definition: $(a_n)_{n=0}^{\infty}$ sei eine Folge in \mathbb{R} und $x_0 \in \mathbb{R}$. Eine Reihe der Form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

heißt **Potenzreihe** (PR).

Frage: für welche $x \in \mathbb{R}$ konvergiert die Potenzreihe (absolut)? Klar: die Potenzreihe konvergiert absolut für $x = x_0$.

Beispiele:

- a) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Hier: $a_n = \frac{1}{n!}, x_0 = 0$. Bekannt: die Potenzreihe konvergiert absolut in jeden $x \in \mathbb{R}$.
- b) $\sum_{n=0}^{\infty} (x-x_0)^n$. Hier: $a_n=1$. Setze $q:=x-x_0$. Bekannt: $\sum_{n=0}^{\infty} q^n$ konvergiert absolut $\iff |q|<1$. D.g. die Potenzreihe konvergiert absolut $\iff |x-x_0|<1$
- c) $\sum_{n=0}^{\infty} n^n (x x_0)^n$. Hier: $a_n = n^n$. Sei $x \neq x_0$ und $b_n := n^n (x x_0)^n$; $\sqrt[n]{|b_n|} = n|x x_0| \xrightarrow{x \neq x_0} \left(\sqrt[n]{|b_n|}\right)$ ist unbeschränkt $\stackrel{3.6}{\Longrightarrow} \sum n^n (x x_0)^n$ ist divergent.

Also: $\sum_{n=0}^{\infty} n^n (x-x_0)^n$ konvergiert nur für $x=x_0$.

Definition: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ sei eine Potenzreihe. Setze

$$\rho \coloneqq \begin{cases} \infty, & \text{falls } \left(\sqrt[n]{|b_n|}\right) \text{ unbeschränkt;} \\ \limsup \sqrt[n]{|b_n|}, & \text{falls } \left(\sqrt[n]{|b_n|}\right) \text{ beschränkt} \end{cases}$$

und

$$r := \begin{cases} 0, & \text{falls } \rho = \infty \\ \infty, & \text{falls } \rho = 0 \\ \frac{1}{\rho}, & \text{falls } \rho \in (0, \infty) \end{cases}$$

(kurz: " $r = \frac{1}{\rho}$ "). r heißt der Konvergenzradius (KR) der Potenzreihe.

Satz 4.1: $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ sei eine Potenzreihe und ρ und r seien wie oben.

- a) Ist r=0, so konvergiert die Potenzreihe nur für $x=x_0$.
- b) Ist $r = \infty$, so konvergiert die Potenzreihe absolut für jedes $x \in \mathbb{R}$.
- c) Ist $r \in (0, \infty)$, so konvergiert die Potenzreihe absolut für $x \in \mathbb{R}$ mit $|x x_0| < r$, sie divergiert für $x \in \mathbb{R}$ mit $|x x_0| > r$. Für $x = x_0 \pm r$ ist keine allg. Aussage möglich.

Beweis. Für $x \in \mathbb{R}$ sei $b_n := a_n(x - x_0)^n \ (n \in \mathbb{N}_0)$. Damit: $\sqrt[n]{|b_n(x)|} = \sqrt[n]{|a_n|}|x - x_0|$

- a) Sei $x \neq x_0$. $r = 0 \iff \rho = 0 \iff \left(\sqrt[n]{|b_n(x)|}\right)$ unbeschränkt $\stackrel{3.6}{\Longrightarrow} \sum b_n(x)$ divergiert.
- b) $r = \infty \iff \rho = 0 \iff \limsup \sqrt[n]{|b_n(x)|} = 0 \ \forall x \in \mathbb{R} \stackrel{3.6}{\Longrightarrow} \text{Beh.}$
- c) $\limsup \sqrt[b]{|b_n(x)|} = \limsup \sqrt[n]{|a_n|}|x x_0| = \rho|x x_0| = \frac{1}{r}|x x_0| < 1$ $\iff |x - x| < r$

Analog für |x - x| > r. Behauptung folgt aus 3.6.

Folgerung: $\lim_{n\to\infty} \frac{1}{\sqrt[n]{n!}} = 0$

Beweis. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ hat den Konvergenzradius $r = \infty$; $a_n = \frac{1}{n!} \stackrel{4.1}{\Longrightarrow} \rho = 0$, also $\limsup \sqrt[n]{|a_n|} = 0$ Hilfssatz vor $3.6 \Rightarrow \lim \sqrt[n]{|a_n|} = 0$.

Beispiele:

- a) $\sum_{n=0}^{\infty} x^n$; $a_n = 1$ $(n \in \mathbb{N}_0)$, $x_0 = 1$; $\rho = 1, r = 1$. Die Potenzreihe konvergiert für |x| < absolut; sie divergiert für |x| > 1. |x| = 1: die Potenzreihe divergiert.
- b) $\sum_{n=1}^{\infty} \frac{x^n}{n}$, $a_0 = 0$, $a_n = \frac{1}{n}$ $(n \ge 1)$, $x_0 = 0$; $\sqrt[n]{|a_n|} = \frac{1}{\sqrt[n]{n}} \to 1 \Rightarrow \rho = 1 \Rightarrow r = 1$. Die Potenzreihe konvergiert absolut für |x| < 1 und sie divergiert für |x| > 1. x = 1: $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert; x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ konvergiert.

c) $\sum \frac{x^n}{n^2}$; $a_0 = 0$, $a_n = \frac{1}{n^2}$ $(n \ge 1)$, $x_0 = 0$; $\sqrt[n]{|a_n|} \to 1 \Rightarrow \rho = 1 \Rightarrow r = 1$. Die Potenzreihe konvergiert absolut für |x| < 1, sie divergiert für |x| > 1. x = 1: $\sum \frac{1}{n^2}$ konvergiert absolut; x = -1: $\sum \frac{(-1)^n}{n^2}$ konvergiert absolut.

Proposition 4.2 (Cosinus): Betrachte die Reihe

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

hier: $x_0 = 0, a_{2n+1} = 0, a_{2n} = \frac{(-1)^n}{(2n)!}$ $(n \in \mathbb{N})$. Mit $\sqrt[n]{|a_n|} \le \frac{1}{\sqrt[n]{n!}}$ folgt

$$\sqrt[2n]{|a_{2n}|} = \frac{1}{\sqrt[2n]{(2n)!}} \to 0$$
 Folgerung nach 4.1

Also $H(\sqrt[n]{|a_n|}) = \{0\}$. Also: $\limsup \sqrt[n]{|a_n|} = 0 \stackrel{4.1}{\Longrightarrow}$ obige Potenzreihe hat den Konvergenzradius $r = \infty$, konvergiert also absolut in jedem $x \in \mathbb{R}$

Cosinus:
$$\begin{cases} \cos \colon \mathbb{R} \to \mathbb{R} \\ \cos x \coloneqq \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \end{cases}$$

Proposition 4.3 (Sinus): Ähnlich wie bei 4.2 sieht man: die Potenzreihe

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

konvergiert absolut für jedes $x \in \mathbb{R}$.

Sinus:
$$\begin{cases} \sin \colon \mathbb{R} \to \mathbb{R} \\ \sin x := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \end{cases}$$

Klar: $\sin 0 = 0$, $\cos 0 = 1$, $\sin(-x) = -\sin(x)$, $\cos(-x) = \cos(x) \forall x \in \mathbb{R}$.

Ähnlich wie in 3.12 zeigt man (mit Cauchyprodukt) die **Additiostheoreme** $\forall x, y \in \mathbb{R}$:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

Für $x \in \mathbb{R}$:

$$1 = \cos(0) = \cos(x + (-x)) = \cos x \cos(-x) - \sin x \sin(-x) = \cos^2 x + \sin^2 x$$

Für alle $x \in \mathbb{R}$ ist $\cos^2 x \le \cos^2 x + \sin^2 x = 1$, also $|\cos x| \le 1$ und $\sin^2 x \le \cos^2 x + \sin^2 x = 1$, also $|\sin x| \le 1$.

Satz 4.4: Es ist $a_n \neq 0$ ffa $n \in \mathbb{N}$, die Folge $\left(\left|\frac{a_n}{a_{n+1}}\right|\right)$ sei konvergent und $L := \lim \left|\frac{a_n}{a_{n+1}}\right|$. Dann hat die Potenzreihe $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ den Konvergenzradius L.

Beweis. Sei $x \in \mathbb{R}$, $x \neq x_0$ und $b_n := a_n(x - x_0)^n$. Dann:

$$\left| \frac{b_{n+1}}{b_n} \right| = \left| \frac{a_{n+1}}{a_n} \right| |x - x_0| \tag{*}$$

Fall 1: L = 0. $|x - x_0| > 0 \Rightarrow \frac{|a_n|}{|a_{n+1}|} \le |x - x_0|$ ffa n

$$\stackrel{(*)}{\Longrightarrow} \left| \frac{b_{n+1}}{b_n} \right| \ge \text{ ffa } n \stackrel{3.7}{\Longrightarrow} \sum b_n \text{ divergient}$$

Die Potenzreihe konvergiert also nur für $x=x_0$, also r=0=L.

Fall 2:
$$L > 0$$
. $\Longrightarrow \lim \left| \frac{b_{n+1}}{b_n} \right| = \frac{1}{L} |x - x_0|$

$$\stackrel{3.8}{\Longrightarrow} \begin{cases} \text{Die Potenzreihe konv. absolut für } |x-x_0| < L \\ \text{Die Potenzreihe divergiert für } |x-x_0| > L \end{cases}$$

$$\stackrel{4.1}{\Longrightarrow} r = L.$$

5 q-adische Entwicklung

Stichwortverzeichnis

abzählbar, 13	Intervalle, 4
Additions theoreme, 45	leavenment 15 21
Axiome	konvergent, 15, 31
Anordnungs-, 4	absolut, 33
Körper-, 3	Konvergenzkriterium
Vollständigkeits-, 7	Reihen
Damaulliacha Haglaichung 0	Leibnitz, 33
Bernoullische Ungleichung, 9	Majoranten, 34
beschränkt, 7	Minoranten, 34
Folge, 14	Quotienten, 37
Menge, 6	Wurzel, 36
Betrag, 5	Konvergenzradius, 43
Binomialkoeffizient, 9	Limes, 15
Binomischer Satz, 9	Limes inferior, 28
Cauchyfolge, 29	Limes superior, 28
Cauchykriterium, 30, 32	
Cauchyprodukt, 39	monoton, 20
Cosinus, 45	fallend, 20
	streng fallend, 20
divergent, 15, 31	streng wachsend, 20
Eulersche Zahl, 25	wachsend, 20
Exponential funktion, 38	Monotoniekriterium, 20, 32
Exponential reihe, 38	Natürliche Zahlen, 8
Exponentianeme, 30	niedrig, 27
für fast alle, 15	medrig, 27
Fakultäten, 9	oberer Limes, 28
Folge, 13	D () 1 (0)
reelle, 13	Potenzreihe, 43
7.11 0	rationale Zahlen, 9
ganze Zahlen, 9	Reihe
Grenzwert, 15	alternierende harmonische Reihe,
Induktionsmenge, 8	33
Infimum, 6	geometrische, 31
,	,

harmonische, 31 unendliche, 31 Reihenwert, 31

Satz

Bolzano-Weierstraß, 28

Schranke, 6 Sinus, 45

Supremum, 6

Teilfolge, 25

Teilsumme, 31

überabzählbar, 13

Umgebung, 15

Umordnung, 39

unterer Limes, 28

vollständige Induktion, 8

Wurzel, 11