Introdução ao Python

5. Aprendizado de Máquina

Rodrigo Barbosa de Santis

Sumário

- Introdução
- Fluxo de trabalho
- Métodos de análise exploratória
- Variáveis numéricas x categóricas
- Visualização univariada
- Visualização bivariada
- Visualização multivariada
- Conclusão
- Exercícios

Contextualização

 Nos primórdios do estudo da inteligência artificial, pesquisadores trabalhavam construindo enormes tabelas, enumerando todas os possíveis cenários das condições observadas, e atribuindo ações (saídas) para o sistema.

IF				THEN	
Y_1	X_2	Y_2	Y_3	DoS (initial: final)	Incident_ Status
low	low	low	low	(0.50: 0.97)	False
low	low	low	low	(0.50: 0.98)	True
low	low	high	low	(0.50: 0.49)	False
low	low	high	low	(0.50: 0.50)	True
low	low	high	high	(0.50: 0.45)	False
low	low	high	high	(0.50: 0.50)	True

• Este tipo de abordagem ainda existe, porém evoluiu para o que conhecemos como sistemas de inferência fuzzy.

Introdução

- Já o aprendizado de máquina estuda de algoritmos e modelos estatísticos usados para executar tarefas específicas sem usar instruções explícitas, baseando-se em padrões e inferência.
- Os modelos de aprendizado de máquina não precisam ser explicitamente programados para realizar a tarefa de classificação ou regressão, como os sistemas de inferência tradicionais precisavam.

Introdução

Atualmente, a área de aprendizado de máquina é dividida da seguinte forma:

Introdução

- Atualmente, a área de aprendizado de máquina é dividida da seguinte forma:
 - Aprendizado supervisionado: usado para prever uma variável do nosso interesse – classificação para variáveis discretas; regressão para variáveis contínuas. Esta variável precisa estar rotulada, o que em alguns casos é um trabalho oneroso: ex. banco de dados de imagem.
 - Aprendizado não-supervisionado: não temos uma variável que queremos prever, estamos apenas explorando e agrupando nossos dados a partir de métricas de distância.
 - Aprendizado semi-supervisionado: temos rótulo apenas para parte de nossos dados, usamos clusterização para rotular os dados restantes.
 Utilizado para facilitar o processo de colocação de rótulos em conjuntos de dados muito grandes.

Aprendizado Supervisionado

Top 10 Algoritmos

- Regressão Linear
- Regressão Logística
- K-Vizinhos mais Próximos (KNN)
- Support Vector Machine (SVM)
- Decision Tree (CART ou C4.5)
- Comitês
 - Gradient Boosting (GBoost / XGBoost / LightGBM) e Random Forest
- Redes Neurais
 - Multi-layer Perceptron (MLP)
 - Extreme Learning Machine (ELM)
 - Convolutional Neural Networks (CNN) e Recurrent Neural Networks (RNN)

Aprendizado Não-Supervisionado

 Também conhecido como clusterização ou agrupamento, não existem rótulos ou variável a ser prevista. O modelo busca manter as amostras com menor distâncias em N* grupos pré-definidos.

Na maioria dos métodos, N é um valor a ser definido pelo usuário.

Semi-Supervisionado

