Exercício: mostre que existe uma única função $h:\mathbb{R}\to\mathbb{R}$ tal que $h'(x)=\cos(x^2-x)$ e h(0)=1.

Resolução:

Seja g uma função real tal que $g'(x) = \cos(x^2 - x)$ e g(0) = 1, definamos f(x) = g(x) - h(x).

$$f'(x) = g'(x) - h'(x) = 0$$
, logo, pelo TVI, f é constante.

$$f(0) = g(0) - h(0) = 1 - 1 = 0$$

Sendo
$$f(x) = 0, g(x) = h(x).$$

Documento compilado em Thursday $13^{\rm th}$ March, 2025, 20:47, UTC +0.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Comunicar erro: "a.vandre.g@gmail.com".