Differential- und Integralrechnung, Wintersemester 2024-2025

4. Vorlesung

Sei $(x_n)_{n \geq k}$ eine Zahlenfolge.

- $s_n = \sum_{i=k}^n x_i, n \ge k$, sind die Teilsummen der Folge $(x_n)_{n \ge k}$.
- Das geordnete Paar $((x_n)_{n\geq k}, (s_n)_{n\geq k})$ ist die zu der Folge $(x_n)_{n\geq k}$ gehörige Reihe und wird mit $\sum_{n\geq k} x_n$ bezeichnet.
- Falls die Folge $(s_n)_{n\geq k}$ den Grenzwert $s\in \mathbb{R}$ hat, so nennt man s die Summe der Reihe $\sum_{n\geq k} x_n$ und bezeichnet sie mit $\sum_{n=k}^{\infty} x_n$.
- Eine Reihe heißt konvergent, falls sie eine Summe $s \in \mathbb{R}$ hat.
- Eine Reihe, die nicht konvergent ist, nennt man divergent.

Beispiele

- 1) Die harmonische Reihe: $\sum_{n\geq 1} \frac{1}{n}$
- ▶ ist divergent, $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$.
- 2) Die verallgemeinerte harmonische Reihe: $\sum_{n\geq 1} \frac{1}{n^{\alpha}}, \ \alpha \in \mathbb{R}$
- ▶ für $\alpha > 1$ ist $\sum_{n \ge 1} \frac{1}{n^{\alpha}}$ konvergent;
- ▶ für $\alpha \le 1$ ist $\sum_{n>1} \frac{1}{n^{\alpha}}$ divergent, $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \infty$.

Beispiele

- 3) Die geometrische Reihe: $\sum_{n\geq 0}q^n,\ q\in\mathbb{R}^*$
- ▶ ist konvergent für $q \in (-1,1)$ mit Summe $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$;
- $lackbox{ für } q \in (-1,1), \ k \in \mathbb{N}, \ \mathrm{gilt } \sum_{n=k}^{\infty} q^n = \frac{q^k}{1-q};$
- ▶ ist divergent für $q \ge 1$, $\sum_{n=0}^{\infty} q^n = \infty$;
- ▶ ist divergent für $q \le -1$, hat keine Summe.

Beispiele

- 4) Die e-Reihe: $\sum_{n\geq 0} \frac{1}{n!}$
- ▶ ist konvergent, $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.
- 5) Teleskopreihen: $\sum_{n\geq k}(a_n-a_{n+1})$, bzw. $\sum_{n\geq k}(a_{n+1}-a_n)$, wobei
- $\exists \lim_{n\to\infty} a_n \in \overline{\mathbb{R}}$
- $\triangleright \sum_{\substack{n=k\\\infty}}^{\infty} (a_n a_{n+1}) = a_k \lim_{n\to\infty} a_n;$
- $\blacktriangleright \sum_{n=k} (a_{n+1} a_n) = \lim_{n \to \infty} a_n a_k.$

S1 (Rechenregeln für konvergente Reihen)

Sind $\sum_{n\geq 0} x_n$, $\sum_{n\geq 0} y_n$ konvergente Reihen und ist $t\in \mathbb{R}$, dann gelten

$$\sum_{n=0}^{\infty} x_n + \sum_{n=0}^{\infty} y_n = \sum_{n=0}^{\infty} (x_n + y_n), \quad \sum_{n=0}^{\infty} (tx_n) = t \sum_{n=0}^{\infty} x_n.$$

S2

Ist die Reihe $\sum_{n\geq 0} x_n$ konvergent, dann ist $\lim_{n\to\infty} x_n = 0$.

S3

Jede Reihe mit nichtnegativen Gliedern hat eine Summe.