Critérios para o estudo de séries numéricas

Primeiro Critério de Comparação

Sejam $(u_n)_n$ e $(v_n)_n$ sucessões de termos não negativos, tais que para um certo $p \in \mathbb{N}$, se tem $u_n \leq v_n$, $\forall n \geq p$. Se a série $\sum_{n \in \mathbb{N}} v_n$ converge então a série $\sum_{n \in \mathbb{N}} u_n$ também converge. Equivalentemente, se a série $\sum_{n \in \mathbb{N}} u_n$ diverge então a série $\sum_{n \in \mathbb{N}} v_n$ também é diverge.

Segundo Critério de Comparação

Sejam $(u_n)_n$ uma sucessão de termos não negativos e $(v_n)_n$ uma sucessão de termos positivos, tais que existe $\ell = \lim_n \frac{u_n}{v_n}$, sendo $\ell \in \mathbb{R}_0^+$ ou $\ell = +\infty$.

- Se $\ell \in \mathbb{R}^+$ então as séries $\sum_{n \in \mathbb{N}} u_n$ e $\sum_{n \in \mathbb{N}} v_n$ possuem a mesma natureza.
- Se $\ell=0$ e $\sum_{n\in\mathbb{N}}v_n$ converge então $\sum_{n\in\mathbb{N}}u_n$ também converge.

Equivalentemente, se $\ell=0$ e $\sum_{n\in\mathbb{N}}^{n\in\mathbb{N}}u_n$ diverge então $\sum_{n\in\mathbb{N}}v_n$ também diverge.

• Se $\ell = +\infty$ e $\sum_{n \in \mathbb{N}} v_n$ diverge então $\sum_{n \in \mathbb{N}} u_n$ também diverge.

Equivalentemente, se $\ell = +\infty$ e $\sum_{n \in \mathbb{N}} u_n$ converge então $\sum_{n \in \mathbb{N}} v_n$ também converge.

Critério da razão (de D'Alembert)

Seja $(u_n)_n$ uma sucessão de termos positivos tal que $\lim_n \frac{u_{n+1}}{u_n} = \ell$.

• Se $\ell < 1$ então a série $\sum_{n=1}^{\infty} u_n$ converge.

• Se $\ell > 1$ então a série $\sum_{n \in \mathbb{N}}^{n \in \mathbb{N}} u_n$ diverge.

• Se $\ell=1$ então nada se pode concluir sobre a natureza da série $\sum_{n\in\mathbb{N}}u_n$.

Critério da raíz (de Cauchy)

Seja $(u_n)_n$ uma sucessão de termos não negativos tal que $\lim_n \sqrt[n]{u_n} = \ell$.

• Se $\ell < 1$ então a série $\sum u_n$ converge.

• Se $\ell > 1$ então a série $\sum_{n \in \mathbb{N}}^{n \in \mathbb{N}} u_n$ diverge.

• Se $\ell=1$ então nada se pode concluir sobre a natureza da série $\sum_{n\in\mathbb{N}}u_n$.

Critério de Leibnitz (condição suficiente de convergência de séries alternadas)

Seja $(u_n)_n$ uma sucessão decrescente, pelo menos a partir de uma certa ordem, e tal que $\lim_n u_n = 0$. Então a série $\sum_{n \in \mathbb{N}} (-1)^{n+1} u_n$ é convergente.