STAT R note

Wenxiao Yang *

 $^*\mbox{Department}$ of Mathematics, University of Illinois at Urbana-Champaign

2021

目录

1	Basi	ic E	Ś
	1.1	q-value of χ_n^2	5
	1.2	读取数据 txt (galton)	5
	1.3	读取数据 csv (bikeshares)	ó
	1.4	查看数据维度 (bikeshares)	5
	1.5	数据中删除列 (bikeshares)	5
	1.6	数据"列"处理: 赋值,条件选中 (galton)	5
	1.7	查看数据类型 (bikeshare) 6	3
	1.8	data.frame	3
		1.8.1 修改列名	3
		1.8.2 data.frame 列拼接 cbind() (bikeshares)	3
		1.8.3 data.frame 行拼接 rbind() (bikeshares)	7
		1.8.4 data.frame 抽样	7
	1.9	集体求均值	7
	1.10	numeric	3
		1.10.1 numeric(k): 生成 k 个 0 的 numeric	3
		1.10.2 numeric 数值修改	3
	1.11	matrix	3
		1.11.1 data.frame 转成 matrix	3
		1.11.2 修改列名 8	3
		1.11.3 去掉矩阵列/行的名字 8	3
		1.11.4 自己创建 matrix	
		1.11.5 Transpose of matrix 转置矩阵	
		1.11.6 Multiplication of matrix 矩阵乘法	
		1.11.7 $\text{ fit } Ax = b$: solve(A.b)	

		1.11.8 矩阵行列式: det()	9
		1.11.9 生成对角阵: diag(1,2,3,4)	0
		1.11.10 提取对角线上的元素: diag()	0
		1.11.11 特征值和特征向量: eigen()	0
		1.11.12 逆矩阵 solve(A)	0
		1.11.13列或行的函数处理 $apply(A,1/2,func)$	1
2	Sim	nple Linear Regression 1	1
	2.1	拟合 slr (galton)	1
	2.2	Summary 中提取 R-square (galton)	2
	2.3	Summary 中提取 coefficients (galton)	2
	2.4	回归中提取 degrees of freedom (galton)	2
	2.5	Hypothesis test	2
		2.5.1 p-value of t-test (galton)	2
		2.5.2 Critical value of $\alpha=0.05$ in $t(n)$	2
		2.5.3 ANOVA(F-test) (HW1)	2
		2.5.4 p-value of F-test (HW1)	3
		2.5.5 Critical value of $\alpha = 0.05$ in $F(p,n)$	3
	2.6	Confidence interval 置信区间 (HW1)	3
	2.7	Prediction	3
		2.7.1 模型带入数据 (galton)	3
		2.7.2 Confidence interval (HW1) $\hat{\beta}_0 + \hat{\beta}_1 x^* \pm T_{n-2}(\alpha/2) \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}}} \dots \dots \dots 1$	4
		2.7.3 Prediction interval (HW1) $\hat{\beta}_0 + \hat{\beta}_1 x^* \pm T_{n-2}(\alpha/2)\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}}}$	4
3	Mu	ltiple Linear Regression 1	4
	3.1	拟合 mlr (bikeshares)	4
	3.2	Update regression, add or delete predictor	5
	3.3	回归中提取 residuals, fitted values (bikeshare)	5
	3.4	Summary 中提取 F-test statitic	5
		3.4.1 得到 RSS: $\sum_{i=1}^{n} r_i^2$	5
	3.5	Correlation matrix (bikeshares) $cor()$	
	3.6	Plot all pairs of variables	6
	3.7	Partial F -Tests (bikeshare)	6
	3.8	Permutation Tests (bikeshares)	7
	3.9	Confidence/Prediction Interval	8
		3.9.1 Estimators' Confidence Interval	8
		3.9.2 Estimators' Confidence regions	8
		3.9.3 Confidence Interval for new observation	9
		3.9.4 Prediction Interval for new observation	0

	3.10	Unusual Observation	20
		3.10.1 Leverage Points	20
		3.10.2 Half-norm Plot	20
		3.10.3 Standardized Residuals, Studentized Residuals, $rstandard(), rstudent() $	21
		3.10.4 Outliers	21
	3.11	High influential points	22
	3.12	Diagnostics	23
		3.12.1 Checking Homoskedasticity Graph	23
		3.12.2 Breusch-Pagan Test	24
		3.12.3 Checking Normality Graph	24
		3.12.4 Shapiro test	25
		3.12.5 Kolmogorov-Smirnov test	25
		3.12.6 Checking Serial Dependence: Durbin Watson test	25
		3.12.7 Checking the Linearity Assumption with Partial Regression Plots	26
		3.12.8 Box Cox Transformations	26
		3.12.9 Summary of Diagnostic Plots	28
	3.13	Collinearity	29
		3.13.1 Standardized each colum of X	29
		3.13.2 Condition number of the $\mathbf{X}^T\mathbf{X}$ matrix	30
		3.13.3 Variance Inflation Factor (VIF)	30
		3.13.4 Pairwise correlations and partial F-tests	30
4	Time	ne Series	31
4		First Order Autoregressive Model	
	4.1	First Order Autoregressive Model	91
5	Poly	ynomials Regression	32
	5.1	Orthogonal Polynomials	32
	5.2	B-Splines Basis	32
	5.3	Natural Cubic Splines	33
6	Cata	egorical ANOVA	33
U	6.1	Effect tests	
	6.2	ANOVA Type III	
	0.2		
7	Vari	iation Selection	3 4
	7.1	Leap and Bounds method	
	7.2	Searching algorithm based on AIC and BIC	34
8	Shri	inkage Methods	35
	8.1	PCR, PCA	35

9	One	e/Two Way ANOVA	36
	9.1	Pairwise comparisons	36
10	Exp	perimental Designs	37
	10.1	Paired t-test	37
	10.2		37
11	画图		37
	11.1	2×2 的画布	37
	11.2	plot 点图,接上节 (bikeshares)	37
	11.3	ggplot	37
		11.3.1 Plot the regression line along with the connected "point-wise" confidence inter-	
		vals (galton)	38
		11.3.2 给颜色取名,竖直的线,坐标 label	38

1 Basic

1.1 q-value of χ_n^2

```
1 qchisq(0.95, n)
```

1.2 读取数据 txt (galton)

```
galton <- read.table("Galton.txt", header=TRUE)
```

1.3 读取数据 csv (bikeshares)

```
bikeshares <- read.csv("BikeShares.csv", header=TRUE)

#分隔符为";"

whitewines.data<-read.csv("whitewines.csv", sep=";", header = TRUE)
```

1.4 查看数据维度 (bikeshares)

```
dim(bikeshares)
## [1] 17414 10
```

1.5 数据中删除列 (bikeshares)

```
# We remove columns 1, 7, 8, 9, 10:
bikeshares.reg = bikeshares [, c(-1, -7, -8, -9, -10)] #—i 即删除 i 列
head (bikeshares.reg)
##
     cnt t1 t2
                  hum wind_speed
## 1 182 3.0 2.0
                  93.0
                                6.0
## 2 138 3.0 2.5
                                5.0
                  93.0
## 3 134 2.5 2.5
                   96.5
                                0.0
## 4
     72 2.0 2.0 100.0
                                0.0
## 5
      47 \ 2.0 \ 0.0
                   93.0
                                6.5
## 6
      46 \ 2.0 \ 2.0
                   93.0
                                4.0
```

1.6 数据"列"处理: 赋值,条件选中 (galton)

```
# Define the Adjusted Height Variable (according to Galton)
  galton $AH <- galton $Height
  galton $AH[galton $Gender="F"] <- galton $Height[galton $Gender="F"] * 1.08
  head (galton)
  ##
        Family Father Mother Gender Height Kids
                                                        AH
                                                               MP
                                                  4\  \  \, 73.200\  \  \, 75.43
  ## 1
                  78.5
                          67.0
                                    Μ
                                         73.2
  ## 2
             1
                  78.5
                          67.0
                                     \mathbf{F}
                                         69.2
                                                  4 74.736 75.43
                                                  4 74.520 75.43
  ## 3
             1
                  78.5
                          67.0
                                    F
                                         69.0
             1
                                    \mathbf{F}
                                                  4\  \  \, 74.520\  \  \, 75.43
  ## 4
                  78.5
                          67.0
                                         69.0
  ## 5
              2
                                                  4 73.500 73.66
                  75.5
                          66.5
                                    \mathbf{M}
                                         73.5
11
  ## 6
                  75.5
                          66.5
                                    M
                                         72.5
                                                  4 72.500 73.66
```

1.7 查看数据类型 (bikeshare)

```
class(numeric(n.iter))
## [1] "numeric"
class(bikeshares.reg)
## [1] "data.frame"
```

1.8 data.frame

1.8.1 修改列名

```
\frac{1}{\text{names}(myCR)} = c("t1","hum");
```

1.8.2 data.frame 列拼接 cbind() (bikeshares)

```
bikeshare.mlr1\fitted[1:5]
## 1
                        3
                                             5
\#\# 158.12967 152.85747 42.50091 -77.95731 126.47427
bikeshare.mlr1$residuals[1:5]
                                   4
## 1
                        3
## 23.87033 -14.85747 91.49909 149.95731 -79.47427
cbind (bikeshare.mlr1$fitted [1:5], bikeshare.mlr1$residuals [1:5])
##
           [,1]
                     [,2]
## 1 158.12967
                 23.87033
```

1.8.3 data.frame 行拼接 rbind() (bikeshares)

```
rbind(bikeshare.mlr1$fitted[1:5], bikeshare.mlr1$residuals[1:5])

## 1 2 3 4 5

## [1,] 158.12967 152.85747 42.50091 -77.95731 126.47427

## [2,] 23.87033 -14.85747 91.49909 149.95731 -79.47427
```

1.8.4 data.frame 抽样

```
head (bikeshares.reg)
          cnt t1 t2 hum
  ###
                              wind_speed
  ## 1
          182 3.0 2.0 93.0
                             6.0
  ## 2
         138 3.0 2.5 93.0
                             5.0
  ## 3
         134 \ 2.5 \ 2.5 \ 96.5
                             0.0
  ## 4
          72 2.0 2.0 100.0
                            0.0
  ## 5
          47 2.0 0.0 93.0
                             6.5
          46 2.0 2.0 93.0
                             4.0
  ## 6
  bikeshares.reg[sample(5), c(3,4)] #前五行 (第3,4列) 中随机抽样
          t2 hum
  ##
  ## 2
         2.5 93.0
11
  ## 5
          0.0 93.0
  ## 3
          2.5 96.5
          2.0 93.0
  ## 1
  ## 4
          2.0 100.0
15
```

1.9 集体求均值

```
apply (bikeshares.reg,2,mean)

## cnt t1 t2 hum wind_speed

## 1143.10164 12.46809 11.52084 72.32495 15.91306
```

1.10 numeric

1.10.1 numeric(k): 生成 k 个 0 的 numeric

```
numeric(5)

## [1] 0 0 0 0 0

class(numeric(5))

## [1] "numeric"
```

1.10.2 numeric 数值修改

1.11 matrix

1.11.1 data.frame 转成 matrix

```
_{1} M=data.matrix(X)
```

1.11.2 修改列名

```
colnames(x)=c("t1", "t2", "hum")
```

1.11.3 去掉矩阵列/行的名字

```
rownames (A)<-NULL
colnames (A)<-NULL
```

1.11.4 自己创建 matrix

```
A=matrix(1:12,nrow=3,ncol=4)
A

## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
```

```
    5
    ## [2,]
    2
    5
    8
    11

    6
    ## [3,]
    3
    6
    9
    12
```

1.11.5 Transpose of matrix 转置矩阵

```
t (A)
##
           [,1] [,2] [,3]
                   2
## [1,]
             1
## [2,]
             4
                  5
                        6
                  8
## [3,]
             7
                        9
## [4,]
            10
                 11
                       12
```

1.11.6 Multiplication of matrix 矩阵乘法

```
A%*%t (A)

## [,1] [,2] [,3]

## [1,] 166 188 210

## [2,] 188 214 240

## [3,] 210 240 270
```

1.11.7 $\Re Ax = b$: solve(A,b)

Solve ax = b

1.11.8 矩阵行列式: det()

```
\det\left(\mathbf{A}
ight)
```

1.11.9 生成对角阵: diag(1,2,3,4)

1.11.10 提取对角线上的元素: diag()

```
diag (A)
## [1] 1 455 67 123
```

1.11.11 特征值和特征向量: eigen()

```
eigen (A)

## eigen () decomposition

## $values

## [1] 962.54862 -533.15335 195.96895 20.63578

## 
## $vectors

## [,1] [,2] [,3] [,4]

## [1,] -0.18050353 -0.31476395 0.7098847 0.5218457

## [2,] -0.65689212 -0.36245740 -0.6561850 -0.5428550

## [3,] -0.73165231 0.87683413 0.2141936 0.6319310

## [4,] -0.02441547 -0.02664961 0.1400217 -0.1834356
```

1.11.12 逆矩阵 solve(A)

```
solve (A)

## [,1] [,2] [,3] [,4]

## [1,] 0.015470466 -0.0038533021 0.0023771584 -0.07425607

## [2,] -0.016656510 0.0038972675 -0.0011449021 0.08054712
```

```
5 ## [3,] 0.019498924 -0.0018420827 0.0012737127 -0.10163107
6 ## [4,] -0.004665816 0.0005780095 -0.0004038514 0.03208420
```

1.11.13 列或行的函数处理 apply(A, 1/2, func)

```
      apply(A,1,mean) #1表示对行求均值

      apply(A,2,mean) #2表示对列求均值

      apply(x,2,sd)

      apply(x,2,var)
```

2 Simple Linear Regression

2.1 拟合 slr (galton)

```
# Simple Linear Regression
  slr.fit \leftarrow lm(AH \sim MP, data=galton)
  summary(slr.fit)
3
  ##
  ## Call:
  ## lm(formula = AH \sim MP, data = galton)
  ##
  ## Residuals:
                   1Q Median
          Min
                                    3Q
                                            Max
  ## -9.4947 -1.4779 0.0995
                               1.5175
                                         9.1262
10
  ##
11
  ## Coefficients:
12
                  Estimate Std. Error t value Pr(>|t|)
13
  ## (Intercept) 18.76698
                               2.84062
                                          6.607 \quad 6.74e - 11 ***
14
  ## MP
                   0.72906
                               0.04102
                                         17.772 < 2e-16 ***
15
  ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 01 ' ' 1
17
  ##
18
  ## Residual standard error: 2.233 on 896 degrees of freedom
19
  ## Multiple R-squared: 0.2606, Adjusted R-squared: 02598
  ## F-statistic: 315.9 on 1 and 896 DF, p-value: < 2.2e-16
```

2.2 Summary 中提取 R-square (galton)

```
summary(slr.fit)$r.square
```

2.3 Summary 中提取 coefficients (galton)

```
galton.coef = summary(slr.fit)$coef
galton.coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.7669821 2.84062068 6.606648 6.735528e-11
## MP 0.7290562 0.04102226 17.772211 9.224505e-61
galton.coef[2,1]
galton.coef[2,3] ## 提取t-test
```

2.4 回归中提取 degrees of freedom (galton)

```
slr.fit$df
2 ## [1] 896
```

2.5 Hypothesis test

2.5.1 p-value of t-test (galton)

```
# pt(t-statistics, df)
# $H_0:\beta_1=0$, 由于检验0对称, 我们需要乘2
2*pt(-galton.coef[2,1]/galton.coef[2,2], 896)
## [1] 9.224505e-61
```

2.5.2 Critical value of $\alpha = 0.05$ in t(n)

2.5.3 ANOVA(F-test) (HW1)

```
grade.anova=anova(slr.fit)
  grade.anova
  ## Analysis of Variance Table
  ##
  ## Response: final
                      SumSq
                             MeanSq F value Pr(>F)
  ##
                   Df
                                      423.19 < 2.2e-16 ***
                               69812
  ## QuizAverage
                   1
                       69812
  ## Residuals
                  380
                       62687
                                 165
  ## ----
  ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
10
11
  grade.anova[1,4]
                     ## 提取F- value from ANOVA Table
12
```

2.5.4 p-value of F-test (HW1)

2.5.5 Critical value of $\alpha = 0.05$ in F(p,n)

```
qf(.05, p, n, lower.tail = FALSE)
```

2.6 Confidence interval 置信区间 (HW1)

```
confint (slr.fit, 'QuizAverage', level=0.9)

### 5 % 95 %

##QuizAverage 0.7880018 0.9253306
```

2.7 Prediction

2.7.1 模型带入数据 (galton)

```
predict(slr.fit, newdata=data.frame(MP=70))

### 1

## 69.80092
```

2.7.2 Confidence interval (HW1) $\hat{\beta}_0 + \hat{\beta}_1 x^* \pm T_{n-2} (\alpha/2) \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{rr}}}$

```
predict(slr.fit ,newdata = data.frame(QuizAverage=85),
interval = 'confidence', level=0.9)
### fit lwr upr
### 1 76.7638 75.44682 78.08077
```

2.7.3 Prediction interval (HW1) $\hat{\beta}_0 + \hat{\beta}_1 x^* \pm T_{n-2}(\alpha/2)\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}}}$

```
predict(slr.fit, newdata = data.frame(QuizAverage=85),
interval = 'prediction', level=0.9)
### fit lwr upr
### 1 76.7638 55.54486 97.98273
```

3 Multiple Linear Regression

3.1 拟合 mlr (bikeshares)

```
bikeshare.mlr1 = lm(cnt \sim t1 + t2 + hum + wind\_speed,
                                                       data=bikeshares.reg )
2
   summary(bikeshare.mlr1)
   ##
   ## Call:
   \# \operatorname{lm}(\operatorname{formula} = \operatorname{cnt} \sim \operatorname{t1} + \operatorname{t2} + \operatorname{hum} + \operatorname{wind\_speed})
                                                       data = bikeshares.reg)
   ##
   ## Residuals:
            Min
                        1Q Median
                                             3Q
                                                     Max
10
   \#\# -1970.1
                 -602.7
                            -252.7
                                         332.6
                                                  6007.4
   ##
12
   ## Coefficients:
13
                        Estimate Std. Error t value Pr(>|t|)
14
   ## (Intercept) 2582.5618
                                       64.7237
                                                  39.901 < 2e-16 ***
                                                  7.027 \ 2.19e-12 ***
   ## t1
                         66.1963
                                         9.4206
16
  ## t2
                        -18.2313
                                         7.7565
                                                   -2.350 \ 0.018762 *
17
   ## hum
                        -27.5645
                                         0.5865 - 46.999 < 2e-16 ***
  ## wind_speed
                        -3.8435
                                         0.9899 \quad -3.883 \quad 0.000104 \quad ***
```

3.2 Update regression, add or delete predictor

```
rat.lm_body = update(rat.lm, ~ liver+dose)
rat.lm_body = lm(Y~liver+dose, data = rat)
# 两者等价
```

3.3 回归中提取 residuals, fitted values (bikeshare)

```
bikeshare.mlr1$res
bikeshare.mlr$residuals
bikeshare.mlr$fitted.values
```

3.4 Summary 中提取 F-test statitic

```
summary(bikeshare.mlr1)$fstat

## value numdf dendf

## 1499.07 4.00 17409.00

summary(bikeshare.mlr1)$fstat[1]

## 1499.07
```

3.4.1 得到 RSS: $\sum_{i=1}^{n} r_i^2$

```
sum(bikeshare.mlr1$res^2) #方法1
deviance(bikeshare.mlr1) #方法2
```

3.5 Correlation matrix (bikeshares) cor()

```
cor(bikeshares.reg[,-1]) #这里[,-1] 是不想算第一列
## t1 t2 hum wind_speed
```

```
## t1
                  1.0000000
                              0.98834422 -0.4477810
                                                      0.14547097
3
  ## t2
                  0.9883442
                              1.000000000 -0.4034951
                                                       0.08840854
  ## hum
                 -0.4477810
                            -0.40349514
                                           1.0000000
                                                      -0.28778917
5
  ## wind_speed
                  0.1454710
                              0.08840854 - 0.2877892
                                                       1.00000000
6
```

```
round(cor(seatpos), dig=2)
# 打印出来的数据保留两位小数
```

3.6 Plot all pairs of variables

```
pairs(rat)
```


图 1:

3.7 Partial F-Tests (bikeshare)

```
bikeshare.mlr.full = lm(cnt ~ t1 + t2+ hum + wind_speed,

data=bikeshares.reg ) #先回归full model

bikeshare.mlr.reduced = lm(cnt ~ hum + wind_speed,

data=bikeshares.reg ) #回归reduced model

anova(bikeshare.mlr.reduced, bikeshare.mlr.full)

#do the partial F-test by "anova(.)"
```

```
## Analysis of Variance Table
   ##
  ## Model 1: cnt ~ hum + wind_speed
   ## Model 2: cnt \sim t1 + t2 + hum + wind\_speed
10
         Res. Df
                         RSS Df Sum of Sq
                                                    F
   ##
                                                          Pr(>F)
11
          17411 \quad 1.6103 \, e{+}10
   ## 1
          17409 \ 1.5250 \, e + 10 \ 2 \ 853010396 \ 486.88 < 2.2 \, e - 16 ***
13
  ##
14
                         0 '*** ' 0.001 '** ' 0.01 '* ' 0.05 '. ' 0.1 ' ' 1
   ## Signif. codes:
```

Sum of Square 853010396 是 $RSS_0 - RSS_\alpha = 1.6103e + 10 - 1.5250e + 10 = 853010396$ 我们也可以按照公式算:

```
rss.full = sum(bikeshare.mlr.full$res^2)

# You can also compute it with

# deviance(bikeshare.mlr.full)

rss.reduced = sum(bikeshare.mlr.reduced$res^2)

# deviance(bikeshare.mlr.reduced)

Fstat = (rss.reduced - rss.full)/2/(rss.full/17409)

Fstat

## [1] 486.8763

1-pf(Fstat, 2, 17409)

## [1] 0
```

3.8 Permutation Tests (bikeshares)

```
\left\{ \begin{array}{l} H_0: bike shares \sim humidity + wind speed \\ \\ H_\alpha: bike shares \sim Real Temp + Feels Like Temp + humidity + wind speed \\ \end{array} \right.
```

If RealTemp and FeelsLikeTemp are insignificant (Under H_0), the F-statistic of regression model will not be affected by switching the orders of these two data. Then new F-statistic will be equal(or less) to the old. i.e. High new F-statistic is more extreme than H_0 . So lower p-value will support H_{α} : RealTemp and FeelsLikeTemp are significant.

```
n.iter = 2000;
fstats = numeric(n.iter);
for(i in 1:n.iter){
   newbikes = bikeshares.reg;
   newbikes[, c(3,4)] = bikeshares.reg[sample(17414), c(3,4)];
```

3.9 Confidence/Prediction Interval

3.9.1 Estimators' Confidence Interval

```
confint (bikeshare.mlr)
  ##
                         2.5 \%
                                    97.5 \%
2
 ## (Intercept) 2543.679114 2766.669772
 ## t1
                    41.516598
                                 47.099480
 ## hum
                   -28.984942
                                -26.739780
  ## wind_speed
                    -4.941603
                                -1.262794
  confint (bikeshare.mlr, 't1', level=0.99)
            0.5 \%
                    99.5 %
8
  ## t1 40.63932 47.97676
```

3.9.2 Estimators' Confidence regions

```
library(ellipse)
  library (ggplot2)
  CR95 = ellipse (bikeshare.mlr, c(2,3))
  CR99 = ellipse(bikeshare.mlr, c(2,3), level=0.99)
  CR998 = ellipse (bikeshare.mlr, c(2,3), level=0.998)
  # Plot Confidence Regions for column 2,3
  dim (CR95)
  ## [1] 100
  head (CR95)
  ###
                  t1
                           hum
10
  \#\# [1,] 47.25426 -26.67754
11
  ## [2,] 47.13012 -26.63239
12
  ## [3,] 46.99462 -26.59219
^{14} [## [4,] 46.84830 -26.55710]
```

```
myCR = rbind(CR95, CR99, CR998);
  # 行连接
  myCR = data.frame(myCR);
3
  names(myCR) = c("t1","hum");
4
  myCR[, 'level'] = as.factor(c(rep(0.95, dim(CR95)[1]),
                                 rep (0.99, dim (CR99)[1]),
6
                                 rep(0.998, dim(CR998)[1])));
  #添加列'level',给各行根据精度赋值
  ggplot(data=myCR, aes(x=t1, y=hum, colour=level)) +
10
    geom\_path(aes(linetype=level), size=1.5) +
11
    geom_point(x=coef(bikeshare.mlr)[2], y=coef(bikeshare.mlr)[3]
12
     , shape=3, size=3, colour='red') +
13
    geom_point(x=0, y=0, shape=1, size=3, colour='red')
14
```


图 2:

3.9.3 Confidence Interval for new observation

```
x=data.frame(t(meanvalue))
predict.lm(bikeshare.mlr,x,interval="confidence",level=0.95)
### fit lwr upr
### 1 1143.102 1129.198 1157.006
```

3.9.4 Prediction Interval for new observation

```
predict.lm(bikeshare.mlr,x,interval="prediction",level=0.95)

### fit lwr upr

### 1 1143.102 -691.7461 2977.949
```

3.10 Unusual Observation

3.10.1 Leverage Points

```
lev=influence(bikeshare.mlr)$hat

# H matrix 的对角上的所有元素

newlev = lev[lev>2*p/n]

# 找出所有high leverage points

bikeshares.reg[lev > 2*p/n,]

# 筛选出 bikeshares 中high leverage points的项
```

3.10.2 Half-norm Plot

Designed to identify unusually large values and assess positive data.

Plot the data against the positive normal quantiles. Specifically,

1. Sort the data:

$$x_{[1]} \le \dots \le x_{[n]}.$$

2. Compute the quantiles:

$$u_i = \Phi^{-1}(\frac{n+i}{2n+1})$$

3. Plot $x_{[i]}$ against u_i .

```
library(faraway)
halfnorm(newlev, 6, labs=as.character(1:length(newlev)),
ylab="Leverages")
# 6是nlab, 即给几个点标注
```


图 3:

$\textbf{3.10.3} \quad \textbf{Standardized Residuals, } \textit{Studentized Residuals, } \textit{rstandard}(), \, \textit{rstudent}()$

```
rstandard (model)
rstudent (model)
```

3.10.4 Outliers

```
# Compute Studentized Residuals
  jack=rstudent(bikeshare.mlr);
  # The critical value WITH Bonferroni correction is
  qt(.05/(2*n), n-p-1)
  ## [1] -4.681361
  # The critical value WITHOUT Bonferroni correction is
  qt(.05/2, n-p-1)
  ## [1] -1.9601
  # Sort the residuals indescending order to find outliers (if any)
  sort(abs(jack), decreasing=TRUE)[1:10]
10
          4462
                   5130
                            5139
                                      4471
                                               15888
                                                         5140
  ##
11
  \#\# 6.408782 5.665958 5.499140 5.317999 4.807279 4.787554
         15217
                  15385
                           16727
                                     14905
  ##
```

```
14 ## 4.746059 4.738005 4.661289 4.522918
```

As we can see here, we have 8 outliers, i.e. the values that are higher (in absolute value) of the critical T distribution value with Bonferroni correction (|-4.681361|). These are observations: #4462, #5130, #5139, #4471, #15888, #5140, #15217, #15385.

3.11 High influential points

```
# Compute Cook's Distance
cook = cooks.distance(bikeshare.mlr)
# Extract max Cook's Distance
max(cook)
## [1] 0.005641587
which.max(cook)
## 4471
# Prepare a Half Normal Plot of Cook's distances
halfnorm(cook, 6, labs=as.character(1:length(cook)),
ylab="Cook's_distances")
```


图 4:

3.12 Diagnostics

3.12.1 Checking Homoskedasticity Graph

```
plot(bikeshare.mlr, which=1)
```


图 5:

Which is same as

plot (bikeshare.mlr\$fitted.values, bikeshare.mlr\$residuals)

图 6:

3.12.2 Breusch-Pagan Test

```
library(lmtest)
bptest(bikeshare.mlr)

##

## studentized Breusch-Pagan test

##

## data: bikeshare.mlr

## BP = 133.29, df = 3, p-value < 2.2e-16</pre>
```

We can also perform the BP test by hand:

```
tmp.fit = lm(bikeshare.mlr$res^2 ~ t1 + hum + wind_speed,
data=bikeshares.reg)
summary(tmp.fit)$r.sq*dim(bikeshares.reg)[1]
```

3.12.3 Checking Normality Graph

QQ-Plot

```
plot (bikeshare.mlr, which=2)
```


图 7:

Histogram

```
hist (bikeshare.mlr$residuals)
```

Histogram of bikeshare.mlr\$residuals

图 8:

3.12.4 Shapiro test

```
shapiro.test(residuals(bikeshare.mlr))
```

3.12.5 Kolmogorov-Smirnov test

```
ks.test(residuals(bikeshare.mlr), y=pnorm)

##

One—sample Kolmogorov—Smirnov test

##

##

but data: residuals(bikeshare.mlr)

## D = 0.63627, p—value < 2.2e—16

## alternative hypothesis: two—sided
```

The p-value is low, which implies that the normality assumption is not satisfied either.

3.12.6 Checking Serial Dependence: Durbin Watson test

```
library (lmtest)
dwtest (lm. sales)
```

```
## Durbin-Watson test

## data: lm.sales

## DW = 0.73473, p-value = 0.0001748

## alternative hypothesis: true autocorrelation is greater than 0
```

3.12.7 Checking the Linearity Assumption with Partial Regression Plots

Test t1

```
bikeshare.mlr = lm(cnt ~ hum + wind_speed, data=bikeshares.reg)
bikeshare.mlr.t1 = lm(t1 ~ hum + wind_speed, data=bikeshares.reg)
plot(bikeshare.mlr.t1$residuals, bikeshare.mlr$residuals)
```


图 9:

3.12.8 Box Cox Transformations

First we need to make sure each $y_i > 0$:

```
min(bikeshares.reg$cnt) # this is the min value in the y's

## [1] 0

which(bikeshares.reg$cnt==0)

# this is the location of the min value

## [1] 2016
```

```
bikeshares.reg$cnt[2016]=0.01

# we replace the min with a small positive value

min(bikeshares.reg$cnt)

# we checke whether the 0 value was replaced

# by the small positive number

## [1] 0.01
```

Now, we are ready to apply the *boxcox* function:

```
bikes.transformation = boxcox(bikeshare.mlr, lambda=seq(-2, 2, length=400))
```

which also same as

```
boxcox(bikeshare.mlr, plotit=T) # plotit=T is the default setting
```


改变范围

Find the λ that maximizes the Log-likelihood.

```
names (bikes.transformation)
```


图 11:

```
## [1] "x" "y"

bikes.transformation$x[1:10]

## [1] -2.000000 -1.989975 -1.979950 -1.969925 -1.959900 -1.949875 -1.939850

## [8] -1.929825 -1.919799 -1.909774

bikes.transformation$y[1:10]

## [1] -372422.1 -370582.3 -368742.9 -366904.0 -365065.6 -363227.6 -361390.0

## [8] -359553.0 -357716.4 -355880.2

bikes.transformation$x[bikes.transformation$y == max(bikes.transformation$y] # lambda.hat

## [1] 0.2656642
```

 $\hat{\lambda} = 0.2656642$

Construct a Confidence Interval for λ as follows:

$$\{\lambda: L(\lambda) > L(\hat{\lambda}) - \frac{1}{2}\chi_1^2(1-\alpha)\}\$$

```
tmp=bikes.transformationx[bikes.transformationy> max(bikes.transformationy) - qchisq(0.95, 1)/2]; range(tmp) # 95% CI. Read Chapter 9 in the Faraway textbook for details. ## [1] 0.2556391 0.2756892
```

3.12.9 Summary of Diagnostic Plots

```
fit=lm(Y~., data=rat)
par(mfrow=c(2,2))
```

3 plot(fit)

图 12:

3.13 Collinearity

```
library(faraway)

# 提取数据 seatpos

data(seatpos)

ttach(seatpos)

# Fit the FULL model

position.full=lm(hipcenter ~ ., seatpos)

x = model.matrix(position.full)[,-1]

# remove the column that corresponds to the intercept
```

3.13.1 Standardized each colum of X

```
x = model.matrix(position.full)[,-1] #去除第一列(即intercept)
  x = x - matrix(apply(x,2, mean), 38,8, byrow=TRUE)
  x = x / matrix(apply(x, 2, sd), 38.8, byrow=TRUE)
  apply(x,2,mean)
                 Age
                             Weight
                                            HtShoes
                                                                 Ht
                                                                            $eated
      -2.193512e-17
                       2.810252e-16
                                      9.566280e - 16
                                                      1.941574e - 16 - 1.073010e - 15
  ##
                 Arm
                              Thigh
  ##
                      8.909895e - 17 - 9.114182e - 17
  \#\# -1.070022e-16
  apply(x,2,var)
              Weight HtShoes
                                           Seated
          Age
                                      \mathrm{Ht}
                                                       Arm
                                                              Thigh
10
                                                                         Leg
                                       1
                                                                  1
                                                1
                                                         1
                                                                           1
  ##
11
```

3.13.2 Condition number of the X^TX matrix

```
e = eigen(t(x) %*% x) # compute the eigenvalues
sqrt(e$val[1]/e$val[8])
## [1] 59.7662
```

The condition number is 59.77, larger than 30, so we conclude that collinearity is present.

3.13.3 Variance Inflation Factor (VIF)

```
# Variance Inflation Factor (VIF)
round(vif(x), dig=2)
       Age
             Weight HtShoes
                                        Seated
##
                                   Ht
                                                    Arm
                                                           Thigh
                                                                      Leg
                      307.43
                               333.14
                                          8.95
                                                            2.76
       2.00
               3.65
                                                   4.50
                                                                     6.69
sqrt (307.43)
```

```
^{2} ## [1] 17.53368

Note that the se for the coef associated with HtShoes is 17.5 times larger than it would have been
```

3.13.4 Pairwise correlations and partial F-tests

without collinearity.

```
cor(Seated+Thigh, Ht)

## [1] 0.9389819

cor(Seated+Leg, Ht)
```

```
## [1] 0.965607

cor(Seated+Arm, Ht)

## [1] 0.9465523
```

```
position.red1 = lm(hipcenter ~ Age + Weight + Ht + Seated, data=seatpos)
1
  position.red2 = lm(hipcenter \sim Ht, data=seatpos)
  anova (position.red2, position.red1)
 ## Analysis of Variance Table
 ##
  ## Model 1: hipcenter ~ Ht
  ## Model 2: hipcenter ~ Age + Weight + Ht + Seated
       Res. Df
                RSS Df Sum of Sq
                                       F Pr(>F)
  ## 1
           36 47616
           33 44774
                           2841.6 0.6981 0.5599
  ## 2
                      3
```

Based on the F-test provided in the ANOVA table, we conclude that the reduced model with Ht as the only variable is better than the model that includes Age, Weight, Ht and Seated.

4 Time Series

4.1 First Order Autoregressive Model

```
library (nlme)
1
  lm.sales.cor = gls(company_sales~industry_sales,
  correlation = corAR1(form= ~ index), data=sales)
  summary(lm.sales.cor)
      Generalized least squares fit by REML
6
        Model: company_sales ~ industry_sales
  ##
  ##
        Data: sales
              AIC
  ##
                         BIC
                               logLik
  ##
        -31.74311 -28.18162 19.87156
10
11
  ## Correlation Structure: AR(1)
       Formula: ~index
13
      Parameter estimate(s):
  ##
14
  ## Phi
15
  ##
        1
  ##
17
```

```
## Coefficients:
  ##
                           Value Std. Error t-value p-value
  ## (Intercept)
                      -0.3189197 \ 2041.6945 \ -0.00016
20
  ## industry_sales
                       0.1684878
                                     0.0051 \ 33.06272
21
  ##
  ##
      Correlation:
23
                      (Intr)
  ##
24
  ## industry_sales 0
25
  ## Standardized residuals:
                Min
                                 Q1
                                                               Q3
  ##
                                               Med
28
  ##
                Max
      -9.036061e-05 -4.156415e-05 -3.013053e-06
                                                    8.080346e-05
      1.091922e-04
  ##
30
  ##
31
  ## Residual standard error: 2041.694
  ## Degrees of freedom: 20 total; 18 residual
```

5 Polynomials Regression

5.1 Orthogonal Polynomials

```
poly(.)
```

5.2 B-Splines Basis

```
bs(x, df, knots, degree=3, intercept=FALSE)

# x是数据

# df是输出的design matrix的columns数, 和真正的df无关

# intercept=FALSE, df=真df-1

# intercept=TRUE, df=真df

# knots=k, 代表k是那个唯一的knot, 所以knot数是1, 无论k多大

new.knots= c(1/6, 3/6, 5/6)

bs(x, knots=new.knots, intercept=TRUE)

bs(x, knots=quantile(x, c(1/3,2/3)), intercept=TRUE)
```

5.3 Natural Cubic Splines

```
ns(x, df, knots, Boundary.knots, degree=3, intercept=FALSE)
# knots只表示interior knots, 还有俩boundary knots。
# 所以 真df=#knots+2
# 其他一样
ns(x, knots=new.knots, Boundary.knots=c(0,1), intercept=TRUE)
```

6 Categorical ANOVA

6.1 Effect tests

When the levels of the categorical variable are in text (instead of number), R assigns 0 and 1 in alphabetical order: 0 first and 1 second.

```
quest.full=lm(rate~lot.size*color,quest.data)
    anova (quest. full)
2
    ##Analysis of Variance Table
3
    ##Response: rate
                      Df Sum Sq Mean Sq F value Pr(>F)
    ##lot.size
                       1 43.226
                                 43.226
                                         7.1024 \ 0.01765 *
    ##color
                       1 20.052
                                          3.2947 \quad 0.08955
                                 20.052
    ##lot.size:color
                                         0.0272 \ 0.87111
                      1 \quad 0.166
                                  0.166
    ##Residuals
                      15 91.293
                                  6.086
10
    ##Signif. codes:
                       0
                         0.01
                                                    ' * ' 0.05
                                                                      0.1
```

第一行 intercept only vs. intercept+lot.size

第二行 intercept+lot.size vs. intercept+lot.size+color

第三行 intercept+lot.size+color vs. intercept+lot.size+color+lot.size*color

6.2 ANOVA Type III

This type tests for the presence of an effect given that both the other effects are in the model.

```
## Anova Table (Type III tests)

## Response: 1/time

## Sum Sq Df F value Pr(>F)

## (Intercept) 15.0605 1 66.5967 1.298e-09 ***

## treat 2.1340 3 3.1455 0.03723 *

## poison 11.7375 2 25.9514 1.225e-07 ***

## treat:poison 1.9800 6 1.4592 0.22073

## Residuals 7.9151 35

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

图 13:

7 Variation Selection

7.1 Leap and Bounds method

Use function *regsubsets* from library leaps to evaluate different scores for sub-sets of models up to size p (including the intercept).

```
library(leaps)
Hitters.leaps=regsubsets(Salary~.,data=data.reg,nvmax=16)
rs=summary(Hitters.leaps)
rs$adjr2
rs$which[which.max(rs$adjr2),]
rs$cp
rs$bic
n=dim(data.reg)[1]
m=2:17
Aic=n*log(rs$rss/n)+2*m
```

7.2 Searching algorithm based on AIC and BIC

Use function step from the stats library to apply searching algorithms based on the AIC (default) or BIC criteria (k = log(n)). The option direction=both uses the Stepwise searching algorithm. You can also use the options: direction = forward and direction = backward.

```
step(full.model, direction="both")
step(full.model, direction="both", k=log(n))
We can also use direction=forward and direction=backward
```

8 Shrinkage Methods

8.1 PCR, PCA

Function proomp can be used to calculate the PCs and extract the λ 's squared-roots (sdev) and eigenvectors (rotation) of the variance-covariance matrix:

```
data(meatspec,package="faraway")
trainmeat<-meatspec[1:172,]
testmeat<-meatspec[173:215,]
mod1<-lm(fat~.,trainmeat)
meatpca<-prcomp(trainmeat[,-101])
round(meatpca$sdev,3)[1:50]</pre>
## [1] 5.055 0.511 0.282 0.168 0.038 0.025 0.014 0.011 0.005 0.003 0.002 0.002
## [13] 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## [25] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## [37] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## [49] 0.000 0.000
```

图 14:

The pcr function (principal component regression) from the pls package has useful features for prediction and cross-validation. We can easily calculate the RMSE for the training set and the testing set.

```
library(pls)
modper<-per(fat ~ ., data=trainmeat, ncomp=50)

#summary(modper)

#RMSE with 4 PCAs
rmse(predict(modper, ncom=4), trainmeat fat)

## [1] 4.064745
rmse(predict(modper, testmeat, ncomp=4), testmeat fat)

## [1] 4.533982</pre>
```

You can use the function RMSEP instead, to select the number of PC's that minimize the 10-fold Cross-Validation error. The resulting Cross-Validation error is < 2.5

```
set.seed(123)

# Minimize RMSE using function RMSEP

pcrmse<-RMSEP(modper, newdata=testmeat)

plot(pcrmse)
```


图 15:

9 One/Two Way ANOVA

9.1 Pairwise comparisons

Construct 90% family confidence intervals for all pairwise comparisons of classroom environments.

图 16:

10 Experimental Designs

10.1 Paired t-test

```
t.test(shoes$A—shoes$B)
```

10.2

We use the drop1 function instead of anova, because of the lack of orthogonality due to the incompleteness of the design.

```
lmodbibd \leftarrow lm(gain \sim block + treat, rabbit)
1
     drop1(lmodbibd, test="F")
2
     ## Single term deletions
3
     ##
4
    ## Model:
     ## gain ~ block + treat
                                           AIC F value
                Df Sum of Sq
                                  RSS
                                                            Pr(>F)
     ## <none>
                               150.77
                                        78.437
8
     ## block
                 9
                       595.74 746.51 108.426
                                                 6.5854 \ 0.0007602 ***
     ## treat
                       158.73 309.50
                                       90.013
                                                 3.1583 0.0381655 *
                 5
10
     ## ----
11
     ## Signif. codes:
                          0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1
^{12}
```

11 画图

11.1 2×2 的画布

```
par (mfrow=c(2,2))
```

11.2 plot 点图,接上节 (bikeshares)

```
par(mfrow=c(2,2))

# Plot of t1 vs. cnt

plot(bikeshares.reg$t1, bikeshares.reg$cnt, xlab="Real

Temperature_in_C", ylab="New_Bike_Shares")

# Plot of t2 vs. cnt

plot(bikeshares.reg$t2, bikeshares.reg$cnt, xlab="_Feels
```

```
Like_Temperature_in_C", ylab="New_Bike_Shares")

# Plot of t1 vs. t2

plot(bikeshares.reg$t1, bikeshares.reg$t2, xlab="_Feels

Like_Temperature_in_C", ylab="Real_Temperature_in_C")

# Plot of hum vs. t1

plot(bikeshares.reg$hum, bikeshares.reg$t1, xlab="Humidity",

ylab="Real_Temperature_in_C")
```


11.3 ggplot

```
library (ggplot2)
```

11.3.1 Plot the regression line along with the connected "point-wise" confidence intervals (galton)

```
library (ggplot2)
```

```
ggplot(galton, aes(MP,AH)) + geom_point() + geom_smooth(method=lm)
```


图 18:

11.3.2 给颜色取名,竖直的线,坐标 label

```
# Form the data frame for plotting
1
  ggplot(data=NULL, aes(x=0.56)) +
2
    geom_line(aes(y=myCI[,1], colour="LSfit"), size=1) +
3
    geom_line(aes(y=myCI[,2], colour="90%_CI"), size=1) +
4
    geom_line(aes(y=myCI[,3], colour="90\%_CI"), size=1) +
5
    geom_line(aes(y=myPI[,2], colour="90\%_PI"), size=1, linetype=2)+
6
    geom_line(aes(y=myPI[,3], colour="90\%_PI"), size=1, linetype=2)+
7
     scale_colour_manual("", values=c("LSfit" = "black",
8
                                   "90%_CI" = "blue",
                                   "90% PI"="red"))+
10
     xlab("wind_speed") +ylab("bike_shares")+
11
    geom_vline(xintercept = mean(bikeshares.reg$wind_speed),
12
     colour="purple", size=1, linetype=3)
13
```


图 19: