M2 AIC: Introduction au traitement d'images

Yohann Tendero*

Nom2: Nom3:
Étape 0): Aller sur la page http://perso.telecom-paristech.fr/~ytendero/https://perso.telecom-paristech.fr/ytendero/master_aic.html et télécharger le fichier TP_2.zip et éventuellement les slides du cours. Le TP devra être rendu pour le 5 Oct. Pour ce TP il faudra rendre le code.
Q1. Requantification : Soit I une image couleur quantifiée sur 8bits (e.g, "House.pgn") dont chaque canal couleur comporte 256 niveaux. Soit J une version re-quantifiée de I . Donner une formule pour calculer J (voir TP0.m ligne 38) l'image re-quantifiée issue de I en fonction du nombre de niveaux $N \leq 256$ (et de I):
$J=\dots$
${f Q2}.$ Empiriquement à partir de quelle valeur de N (nb de niveaux pour chaque canal couleur) commencez vous à percevoir une différence entre l'image originale et l'image re-quantifiée ?
Q3. Soit I une image en niveaux de gris ¹ définie sur la grille Ω et f la fonction affine telle que $\min_{\Omega} f(I) = 0$ et $\max_{\Omega} f(I) = 1$. Compléter les lignes 58-59 pour calculer $f(I)$.
Q4. On rappelle que une TFD-2D se calcule rapidement par la commande fft2 et que l'on peut centrer la fréquence nulle à l'aide de la commande fftshift. Afficher le module puis l'argument de la TFD-2D de quelques images. On pourra appliquer l'algorithme de la Q3 et/ou afficher $\log(\hat{u}(k) +1)$ à la place de $ \hat{u}(k) $. Qualitativement, remarquez vous des points communs entre images, des différences ? A quoi vous font penser les images des arguments ?
Q5. Contenu geometrique et module/phase. Faire l'expérience suivante: charger deux images I_1 et I_2 de meme taille et calculer \hat{I}_1 , \hat{I}_2 leurs TFD-2D. On va échanger les modules et les arguments des TFD de ces deux images et visualiser le résultat. Créer deux nouvelles images J_1 (resp. J_2) telle que le module de la TFD-2D de J_1 soit celui du module de la TFD-2D de I_1 et son argument celui de la TFD-2D de I_2 (resp module de la TFD-2D de I_2 et argument de la TFD-2D de I_1). (Vous pouvez utiliser la commande

Nom1:

^{*}yohann.tendero@telecom-paristech.fr $^{1}{\rm Pour}$ convertir une image couleur en niveaux de gris: mean(I,3).

Q6. Filtrage passe bas: filtre moyenneur. Pour simplifier, on suppose que I est une image en niveaux de gris définie sur $\Omega := \{1, \dots, N\} \times \{1, \dots, M\}$. Soit $N \leq \min(M, N)$ un entier (par exemple N = 4) et g le noyau de convolution défini sur Ω par $g(i,j) = \frac{1}{N^2}$ pour $(i,j) \in \{1, \dots N\}^2$ et g(i,j) = 0 pour $(i,j) \in \Omega \setminus \{1, \dots N\}^2$. Charger une image de votre choix et afficher $I *_{per} g$ pour quelques valeurs de N. Comment devient l'image quand N augmente ? Que se passe t-il pour les modules des TDF-2D ?

Q7. Ecrire une fonction ou un script qui effectue la translation (valeurs non necessairement entière) d'une image.