Al/ML for prediction of biological properties of molecules

Module 4. The Ersilia Model Hub

Gemma Turon & Miquel Duran-Frigola Ersilia Open Source Initiative (<u>www.ersilia.io</u>) 18th - 27th of September, 2023

Our new models

- Predicts the % of growth of mycetoma when incubated with 25 uM of the compound
- Cut-off: 20% growth

Ersilia embeddings 5-fold cross validation (train-test split 20%)

HDAC1

- Predicts the inhibition of HDAC1 (pChEMBL)
- Cut-off: 7 (higher compounds)

Ersilia embeddings 5-fold cross validation (train-test split 20%)

- Predicts the inhibition of HDAC1 (pChEMBL)
- Cut-off: 8 (higher compounds)

ACE2-Spike interaction

- Predicts the inhibition of the ACE2-Spike interaction in SARS-CoV-2
- Cut-off: -1

Ersilia

We need to work on the under sampling strategy to correct the class imbalance found in our dataset (with only 46 actives and over 2000 molecules in total)

What to consider to continue using and developing these models

- Can we gather more data? Ideally, from our own or colleagues work?
- External validation of the models (labelled data from other sources, for example)
- Can we make subset models? (For example, for HDAC1)
- When making predictions, are our molecules already present in the training set?

How to run saved models locally

```
import pandas as pd
import joblib
# get your molecules of interest, for example from a .csv
df = pd.read_csv("mynewdata.csv")
smiles = df["SMILES"]
# load the model using joblib
model = joblib.load("mymodel.joblib")
my_preds = model.predict_proba(smiles)
```

Our goal: to provide ready-to-use AI models

Welcome to the Ersilia Model Hub!

https://ersilia.io/model-hub

Our models!

Model Information

Description

Ersilia

This model predicts the antimalarial potential of small molecules in vitro. We have collected the data available from the Open Source Malaria Series 4 molecules and used two cut-offs to define activity, 1 uM and 2.5 uM. The training has been done with the LazyQSAR package (Morgan Binary Classifier) and shows an AUROC >0.8 in a 5-fold cross-validation on 20% of the data held out as test. These models have been used to generate new series 4 candidates by Ersilia.

Identifiers

eos7yti | osm-series4

Results

Probability of killing P.falciparum in vitro (IC50 < 1uM and 2.5uM, respectively)

Antimalarial activity from OSM

Input molecules

Enter a list of molecules using SMILES notation and each molecule on a separate line

Run

Or upload a CSV file with a single column named SMILES

Drag and drop file here

Limit 200MB per file • CSV

Browse files

Run

Course recap

In this course, we have...

- Explained how can AI help the Drug Discovery process
- Played with AI model interpretation
- Learnt the basic steps to train an AI model
- Introduced the Python programming language
- Tried cloud-base computing systems

What would you like to discuss?

- Local set up of workstations
- How to use the Ersilia Model Hub
- How to learn more Python
- How to learn more about Al
- How to better use existing databases
- **—** ...?

Course evaluation

https://forms.gle/vflVlivSPjb1nUrqro6

