CDW Tally Analysis: D05

Cody Flagg, Courtney Meier 8th January 2017

```
## Windows paths
# inpath <- "C:/Users/cflagq/Documents/GitHub/neonPlantSampling/cdw tally analysis/D07/"
# outpath <- inpath</pre>
## macOS inputs
inpath <- "~/Documents/workDocuments/gitRepositories/neonPlantSampling/cdw_tally_analysis/fulcrumData_2
domain <- "DO5"
outpath <- paste("~/Documents/workDocuments/gitRepositories/neonPlantSampling/cdw_tally_analysis/", dom
## import libraries
library(plyr)
library(dplyr)
library(ggplot2)
## import data
parent_cdw <- read.csv(paste(inpath, "tos_coarse_downed_wood_tally_prod.csv", sep=""), header=TRUE)</pre>
child_cdw <- read.csv(paste(inpath, "tos_coarse_downed_wood_tally_prod_per_plot_azimuth_log.csv", sep="")</pre>
## filter out parent fields that are unneeded
parent_cdw_fil <- dplyr::select(parent_cdw,</pre>
                             fulcrum_id, domainid, siteid, plotid_parent, tallydate, volumefactor, parti
## filter out child fields that are unneeded
child_cdw_fil <- dplyr::select(child_cdw,</pre>
                            fulcrum_parent_id, lidsazimuth, logdiameter, taxonid, decayclass, logid_inge
## join parent to child via parent::fulcrum_id to child::fulcrum_parent_id
cdw <- merge(x = parent_cdw_fil, y = child_cdw_fil, by.x = "fulcrum_id", by.y = "fulcrum_parent_id", al</pre>
## filter to the selected domain only
cdw <- dplyr::filter(cdw, domainid == domain)</pre>
## create diameter class factor
cdw$diameterClass <- ifelse(cdw$logdiameter >= 10, '>=10cm',
                             ifelse(cdw$logdiameter <5, "2-5cm", "5-10cm"))</pre>
## simplify decayclass to numeric value wrapped inside sapply(decayClassNum, "[[", 1) e.g. 'return firs'
cdw$decayClassNum <- sapply(stringr::str_split(cdw$decayclass, pattern = " "),"[[", 1)</pre>
## write file
write.csv(cdw, file = paste(outpath, paste0("merged_",domain,"_cdw_rawdata.csv", sep=""), sep = "/"))
```

1	, .1	1 C1 N	1: 4 (7)		, , 1T	1 4: A1 1	1 4: 41 1
siteid	taxonid	decayClassNum	diameterClass	counts	totalLogs	relativeAbundance	cumulative Abundance
STEI	2PLANT-H	3	>=10cm	11	185	5.95	31.90
STEI	THOC2	3	>=10cm	9	185	4.86	36.76
STEI	ACRU		$5\text{-}10\mathrm{cm}$	9	185	4.86	41.62
STEI	2PLANT-S	4	>=10cm	8	185	4.32	45.94
STEI	ACRU	2	>=10cm	7	185	3.78	49.72
STEI	2PLANT-H	4	>=10cm	7	185	3.78	53.50
STEI	2PLANT-H	2	>=10cm	5	185	2.70	56.20
STEI	2PLANT-H	5	>=10cm	5	185	2.70	58.90
STEI	THOC2	4	>=10cm	4	185	2.16	61.06
STEI	2PLANT-S	5	>=10cm	4	185	2.16	63.22
STEI	2PLANT-S	3	>=10cm	3	185	1.62	64.84
STEI	ACRU	3	>=10cm	3	185	1.62	66.46
STEI	POTR5	4	>=10cm	3	185	1.62	68.08
STEI	ACRU		2-5cm	3	185	1.62	69.70
STEI	2PLANT-S	2	>=10cm	2	185	1.08	70.78
STEI	ACER	2	>=10cm	2	185	1.08	71.86
STEI	ACSA3	2	>=10cm	2	185	1.08	72.94
STEI	ACSA3	3	>=10cm	2	185	1.08	74.02
STEI	ABBA	4	>=10cm	2	185	1.08	75.10
STEI	ACSA3	5	>=10cm	2	185	1.08	76.18
STEI	ABBA		2-5cm	2	185	1.08	77.26
STEI	ACSA3		2-5cm	2	185	1.08	78.34
STEI	2PLANT		$5\text{-}10\mathrm{cm}$	2	185	1.08	79.42
STEI	ABBA		5-10cm	2	185	1.08	80.50
STEI	ACER		$5\text{-}10\mathrm{cm}$	2	185	1.08	81.58
STEI	ACSA3		$5\text{-}10\mathrm{cm}$	2	185	1.08	82.66
STEI	FRNI		$5\text{-}10\mathrm{cm}$	2	185	1.08	83.74
STEI	2PLANT-H	1	>=10cm	1	185	0.54	84.28
STEI	ACRU	1	>=10cm	1	185	0.54	84.82
STEI	POTR5	1	>=10cm	1	185	0.54	85.36
STEI	FRPE	2	>=10cm	1	185	0.54	85.90
STEI	PICEA	2	>=10cm	1	185	0.54	86.44
STEI	PIMA	2	>=10cm	1	185	0.54	86.98
STEI	POGR	2	>=10cm	1	185	0.54	87.52
STEI	POTR5	2	>=10cm	1	185	0.54	88.06
STEI	TIAMC	2	>=10cm	1	185	0.54	88.60
STEI	ACER	3	>=10cm	1	185	0.54	89.14
STEI	BEPA	3	>=10cm	1	185	0.54	89.68
STEI	FRAXI	3	>=10cm	1	185	0.54	90.22
STEI	FRPE	3	>=10cm	1	185	0.54	90.76
STEI	POTR5	3	>=10cm	1	185	0.54	91.30
STEI	QURU	3	>=10cm	1	185	0.54	91.84
STEI	TIAM	3	>=10cm	1	185	0.54	92.38
STEI	2PLANT	4	>=10cm	1	185	0.54	92.92
STEI	ACER	4	>=10cm	1	185	0.54	93.46
STEI	ACRU	4	>=10cm	1	185	0.54	94.00
STEI	BEPA	4	>=10cm	1	185	0.54	94.54
STEI	BETUL	4	>=10cm	1	185	0.54	95.08
STEI	FRNI	4	>=10cm	1	185	0.54	95.62
STEI	ACER	5	>=10cm	1	185	0.54	96.16
STEI	BEPA	5	>=10cm	1	185	0.54	96.70
STEI	THOC2	5	>=10cm	1	185	0.54	97.24

siteid	taxonid	${\rm decayClassNum}$	${\it diameter Class}$	counts	totalLogs	${\bf relative Abundance}$	cumulative Abundance
STEI	2PLANT-S		2-5cm	1	185	0.54	97.78
STEI	TIAM		2-5cm	1	185	0.54	98.32
STEI	BEPA		$5\text{-}10\mathrm{cm}$	1	185	0.54	98.86
STEI	POPUL		$5\text{-}10\mathrm{cm}$	1	185	0.54	99.40
STEI	POTR5		5-10cm	1	185	0.54	99.94

Warning: Using size for a discrete variable is not advised.

\mathbf{Code}

```
## Windows paths
# inpath <- "C:/Users/cflagg/Documents/GitHub/neonPlantSampling/cdw_tally_analysis/D07/"
# outpath <- inpath
## macOS inputs
inpath <- "~/Documents/workDocuments/gitRepositories/neonPlantSampling/cdw_tally_analysis/fulcrumData_2
domain <- "D05"
outpath <- paste("~/Documents/workDocuments/gitRepositories/neonPlantSampling/cdw_tally_analysis/", dom
## import libraries
library(plyr)
library(dplyr)</pre>
```

```
library(ggplot2)
## import data
parent_cdw <- read.csv(paste(inpath, "tos_coarse_downed_wood_tally_prod.csv", sep=""), header=TRUE)</pre>
child_cdw <- read.csv(paste(inpath, "tos_coarse_downed_wood_tally_prod_per_plot_azimuth_log.csv", sep="")</pre>
## filter out parent fields that are unneeded
parent_cdw_fil <- dplyr::select(parent_cdw,</pre>
                             fulcrum_id, domainid, siteid, plotid_parent, tallydate, volumefactor, parti
## filter out child fields that are unneeded
child_cdw_fil <- dplyr::select(child_cdw,</pre>
                            fulcrum parent id, lidsazimuth, logdiameter, taxonid, decayclass, logid inge
## join parent to child via parent::fulcrum_id to child::fulcrum_parent_id
cdw <- merge(x = parent_cdw_fil, y = child_cdw_fil, by.x = "fulcrum_id", by.y = "fulcrum_parent_id", al</pre>
## filter to the selected domain only
cdw <- dplyr::filter(cdw, domainid == domain)</pre>
## create diameter class factor
cdw$diameterClass <- ifelse(cdw$logdiameter >= 10, '>=10cm',
                             ifelse(cdw$logdiameter <5, "2-5cm", "5-10cm"))</pre>
## simplify decayclass to numeric value wrapped inside sapply(decayClassNum, "[[", 1) e.g. 'return firs
cdw$decayClassNum <- sapply(stringr::str_split(cdw$decayclass, pattern = " "),"[[", 1)</pre>
## write file
write.csv(cdw, file = paste(outpath, paste0("merged ",domain," cdw rawdata.csv", sep=""), sep = "/"))
#names(cdw)
## table 1 -- count of taxonIDs, report top 10?
## order ascending output by totalTaxa length() will count length of a vector
## Filter out 'blank' transects where TTP = NO
cdw_fil <- dplyr::filter(cdw, targettaxapresent == "Y")</pre>
t1 <- ddply(cdw_fil, ~siteid+taxonid+decayClassNum+diameterClass, summarize, counts = length(taxonid))
# an alternative to ddply call, returns similar result but output column name is defaulted
# plyr::count(cdw, c("siteid", "taxonid", "decayClassNum", "diameterClass"))
## Sort rows by siteID then by descending number of counts
t1 <- dplyr::arrange(t1, siteid, desc(counts), diameterClass, decayClassNum, taxonid)
## Calculate relative abundances
t1$totalLogs <- nrow(cdw_fil)</pre>
t1$relativeAbundance <- round((t1$counts/t1$totalLogs)*100,2)</pre>
t1$cumulativeAbundance <- round(cumsum(t1$relativeAbundance),2)</pre>
## determine raw ranking by count of DST combo within siteid
t1 <- plyr::ddply(t1, ~siteid, mutate, DSTrank = as.numeric(paste(1:length(counts))), DSTcombo = paste0
t2 <- ddply(cdw, ~siteid+taxonid, summarize, counts = length(taxonid))
## Determine required sample size per DST combo, and cumulative sample size
```

```
t1$sampledDiskNum <- ifelse(t1$diameterClass == ">=10cm", 10,5)
t1$cumulativeDiskNum <- cumsum(t1$sampledDiskNum)

## species abundance/total abundance
ggplot(data = t1, aes(x = DSTrank, y = counts, color = taxonid, shape = diameterClass, size = decayClas</pre>
```