1

Rondom variable

age	weight	hight	_
Xı	X	X3	1 Y
1	_		
1-	-		

$$\chi \approx \gamma$$

Random variable

$$X = Coin(70SS)$$

$$X = T/H$$

Type of Random variable	Type	of	Random	variable
-------------------------	------	----	--------	----------

Descrite rundons Variable

Centinous Random varjuble

X= Gender = M/F/T

 $X_1 = Rain$ (Imm, 6.5mm)

X2 = Result (P/F) # Histogram

Dataset = [10,12,14,18,24,30,35,36,37,40,41,42 43,50,51]

Bin Bin Size Assume bin size = 5

=> NO 87 BM = 50 = 10

Pdf = Probability density function.

continues histogram

Pmf = Probability mass function

Sampling	methods
· · · · · · · · · · · · · · · · · · ·	
	Im mahabilita
Probability sumpling	non-probability
(1) Simple Random Somp	Donvenience Sande.
2 clustered samp.	② consicutive samp.
3 Systematic Sump.	3 du alo semple.
3 Stratified Rendom	9 Purposive Judgement
Samp	· · · · · · · · · · · · · · · · · · ·
	Sample. Sompling.
# Percentile and	(2 (1018 tile
, 120,000,0110 00.00	o (wolf) iC
1007.	
25% percentile	= Q;
50-1 percentile	= Q2 (medran
75-1 - 11-	= Q2 (Medan)
100 % -11-	= Q4
	· ' Y

Score	Rank
30	
33	2
43	3
53	4
56	<
67	ς 6
68 72	7 ->
72	8

find out where is the 2sth percentile is in the above list.

Rank at 25th percentile

$$= \frac{25}{100} \times 9$$

$$= 0.25 \times 9$$

when rounding up/down the closest value will be Rank.

so Rank is = 2

Pank 75./.

 $=\frac{75}{100}\times(n+1)$

= 075 × 9

= 6.75

Rank = 7

25-1. =
$$Q_1$$

50-1. = Q_2 | m-eelian
75-1. = Q_3
100-1 = Q_4

ICR (Inter Quartile Range)

4 5- Number summery

- 1 min
- 2 U1
- (8) meetian
- @ Q3
- (3) max

1, 2, 3, 4, 6, 8, 11, 14, 18, 19, 5, 21, 82, 95

1,2,3,4,5,6,8,11,14,18,19,21,8,2,95,140

To find outlies we use 5 numbers summely to display values in Box - whiskes plot

$$Q_1 = \frac{Q_1}{100} \times (n+1)$$

$$=\frac{25}{100}\times(15+1)$$

$$=\frac{25}{100}\times16=$$

$$Q_1 = 4$$

$$Q_3 = \frac{78}{100} \times 169$$

Upper limit =
$$12 + 1.5 \times 8$$

= 24

$$min = -8$$

$$max = 24$$

To	treat	outlies,	we	Can	use	median