

Europäisches Patentamt European Patent Office Office européen des brevets

11 Publication number:

0 582 176 A1

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 93111964.8

(51) Int. Cl.5: **H03D 7/12**

2 Date of filing: 27.07.93

Priority: 06.08.92 US 926599

43 Date of publication of application: 09.02.94 Bulletin 94/06

Designated Contracting States:
DE FR GB NL

Applicant: NATIONAL SEMICONDUCTOR CORPORATION 2900 Semiconductor Drive P.O. Box 58090 Santa Clara California 95051-8090(US)

Inventor: Bien, E. David 1035 Aster Avenue, No.1186 Sunnyvale, CA 94086(US)

Representative: Sparing - Röhl - Henseler Patentanwälte
Postfach 14 04 43
D-40074 Düsseldorf (DE)

(24) Even order term mixer.

An even order term mixer for mixing two ac input signals includes two bipolar junction transistors (each having a base-emitter junction forward bias threshold voltage V_T) with mutually connected collectors and cross-coupled bases and emitters. Each transistor receives a dc emitter bias current I_E and both transistors each receive two single-ended ac input signals V_1 (= $|V_1| \cdot \cos[2\pi f_1 t]$) and V_2 (= $|V_2| \cdot \cos[2\pi f_2 t]$). Each transistor mixes its two ac input signals V_1 , V_2 and produces a collector current representing the result thereof. The two collector currents sum at the interconnected collectors and produce across a resistor R_C also connected thereto an ac output voltage V_0 having even order terms and virtually no odd order terms of the mixing products (e.g. sum of and difference between the frequencies) of the two ac input signals.

The present invention relates to analog signal mixers, and in particular, to analog signal mixers in which the harmonic content of the output signal is limited.

An important component used in virtually all wireless transmission and reception systems is an analog signal mixer. A mixer is variously used to modulate, demodulate and frequency-translate signals. A mixer can be used to up-convert a signal, i.e. translate a signal's frequency up, with or without modulation, and also to down-convert i.e. translate a signal's frequency down, with or without demodulation.

Referring to Figure 1, a common conventional mixer configuration is that of a multiplier mixer, which can be realized in a number of different ways. A multiplier mixer typically receives a local oscillator ("LO") signal V_1 and a radio frequency ("RF") signal V_2 , and multiplies them to produce an output signal V_0 . The magnitude and frequency of the output signal V_0 are dependent upon the respective magnitudes and frequencies of the input signals V_1 and V_2 . This dependence can be represented as follows:

$$V_{0} = |V_{1}| \cdot \cos(2\pi f_{1}t) \cdot |V_{2}| \cos(2\pi f_{2}t)$$

$$= |V_{1}| |V_{2}| \cdot \{\cos[2\pi (f_{1}-f_{2})t] + \cos[2\pi (f_{1}+f_{2})t]\}$$

where: $\begin{array}{rcl} V_{O} & = & \text{output signal voltage} \\ |V_{1}| & = & \text{magnitude of carrier signal voltage} \\ |f_{1}| & = & \text{frequency of carrier signal in Hertz} \\ |V_{2}| & = & \text{magnitude of modulating signal voltage} \\ |f_{2}| & = & \text{frequency of modulating signal in Hertz} \\ |f_{2}| & = & \text{time in seconds} \\ |f_{2}| & = & \text{time in seconds} \\ |f_{3}| & = &$

= cosine function of "x"

Referring to Figure 2, one conventional mixer design is that of a Gilbert multiplier, sometimes referred to as a quad mixer. This type of mixer receives a dc bias voltage V_{CC} via two resistors R_C and a dc bias current I_{EE} , as shown. The LO signal V_1 is applied differentially to parallel differential amplifiers, each comprising two matched transistors. The RF signal V_2 is applied differentially to another differential amplifier, also comprising two matched transistors as shown. The output signal V_0 , taken across the outputs of the parallel differential amplifiers, as shown, is a function of the two input signals V_1 and V_2 , as follows:

 $V_0 = I_{EE}R_C \cdot \tanh[V_1/(2V_T)] \cdot \tanh[V_2/(2V_T)]$

where:

40

45

V_O = output signal voltage

I_{EE} = emitters' dc supply current in amperesR_C = collectors' output resistor in ohms

 $V_1 = |V_1| \cdot \cos(2\pi f_1 t)$

V_T = transistor base-emitter junction forward bias threshold voltage (≈ 25 millivolts)

 $V_2 = |V_2| \cdot \cos(2\pi f_2 t)$

tanh[x] = hyperbolic tangent function of "x"

Advantages of a Gilbert multiplier mixer included conversion gain, direct multiplication of the input signals and good compatibility with monolithic silicon integration techniques. However, disadvantages include "noisy" operation, distortion at signal levels above $2V_T$ (unless degeneration is used) and poor operation under low voltage conditions, e.g. with V_{CC} below three volts.

Referring to Figure 3, another conventional mixer design uses the non-linear device characteristics of a semiconductor such as a bipolar junction transistor ("BJT"). A BJT in a common emitter configuration with collector V_{CC} and base V_{BB} bias voltages, receives its LO signal V_1 and RF signal V_2 , summed together, at its base. Due to the inherent non-linearity of the transistor's operating characteristics, the output voltage V_0 is a function of the input signals V_1 and V_2 , as follows:

$$V_{0} = V_{CC} - I_{C}R_{C}$$

$$= V_{CC} - R_{C}I_{S}e^{X}$$

$$= V_{CC} - R_{C}I_{S} \cdot \begin{bmatrix} 1 + X + \frac{X^{2}}{2!} + \frac{X^{3}}{3!} + \dots \end{bmatrix}$$

$$= K_{0} + K_{1}(V_{1}+V_{2}) + K_{2}(V_{1}+V_{2})^{2} + K_{3}(V_{1}+V_{2})^{3} + \dots$$

where:

V_{CC} = dc supply voltage (to collector)
 I_C = collector current in amperes
 I_S = BJT saturation current in amperes

X =

15

20

30

40

45

50

55

5

$$\frac{V_{BB} + V_1 + V_2}{V_T}$$

 V_{BB} = dc supply voltage (to base) K_{C} = scalar constant, where $C \in \{0,1,2,...\}$ n! = (n)(n-1)(n-2)...(1), where $n \in \{1,2,3,...\}$

Advantages of a "non-linear device" mixer include conversion gain, simplicity of design and good performance with respect to noise. However, a major disadvantage is the generation of undesired frequency terms, or harmonics, namely signal energy at frequency multiples of the mixing products of the input signals (e.g. signal energy at frequency multiples of the input signal frequencies, as well as combinations of multiples of, sums of and differences between the input signal frequencies).

Referring to Figure 4, another conventional mixer design is a diode ring mixer. A ring of four diodes (or sometimes eight diodes) are connected in a bridge configuration to the center-tapped secondary windings of two transformers, as shown. The LO signal V_1 and RF signal V_2 are applied to the primary windings of the transformers, and the output signal V_0 is taken from the center tap of one of the transformers, as shown. Similar to the non-linear device mixer discussed above, the output signal V_0 is dependent upon the two input signals V_1 and V_2 .

Advantages of a diode ring mixer include good performance with respect to noise, and a wide frequency range of use (e.g. up to many gigahertz). However, disadvantages include the need for a high-level LO signal V₁ and the need for transformers (or hybrid couplers) which thereby renders this design poorly suited to monolithic silicon integration techniques.

Accordingly, it would be desirable to have an improved mixer design which combines more of the advantages with fewer of the disadvantages of the foregoing conventional mixer designs. The present invention as broadly defined in claims 1 and 13 addresses this object.

A mixer in accordance with the present invention receives and mixes ac input signals to provide an ac output signal which includes even and odd order terms of the mixing products of the input signals. The output signal energy at each of the even order terms is greater than the output signal energy at adjacent ones of the odd order terms. A first mixing element receives and mixes the ac input signals to provide a first ac mixed signal. A second mixing element receives and mixes the ac input signals to provide a second ac mixed signal. A combining element coupled to the first and second mixing elements receives and combines the first and second ac mixed signals to provide an ac output signal. The ac output signal includes even and odd order terms of mixing products of the ac input signals, wherein each of the even order terms is greater in magnitude than adjacent ones of the odd order terms.

In a preferred embodiment of the present invention, each of the first and second mixing elements includes a transistor with two input ports and an output port. One input port receives one of the ac input signals, and the other input port receives another ac input signal via a coupling impedance. The two output ports provide the first and second ac mixed signals to a substantially non-reactive impedance (e.g. resistor) for combining therein to provide the ac output signal.

In an alternative preferred embodiment of the present invention, each of the first and second mixing elements includes two mutually coupled transistors, each of which has an input port and one of which has an output port. One input port receives one of the ac input signals, the other input port receives another ac input signal, and the output port produces one of the ac mixed signals. The combining element includes a

resistor which receives and combines the ac mixed signals to produce the ac output signal.

A mixer having a circuit topology in accordance with a preferred embodiment of the present invention advantageously has input signal ports having input impedances which closely approximate the typical characteristic impedances of most video, radio frequency ("RF") and microwave systems, and therefore interfaces well with typical, standard video, RF and microwave circuits, equipment and instruments.

These and other features and advantages of the present invention will be understood upon consideration of the following detailed description of the invention and the accompanying drawings.

Figure 1 illustrates a conventional functional block diagram for a multiplier mixer.

Figure 2 is a schematic diagram of a conventional Gilbert multiplier mixer circuit.

Figure 3 is a schematic diagram of a conventional non-linear device mixer circuit.

Figure 4 is a schematic diagram of a conventional diode ring mixer circuit.

Figure 5 is a block diagram of an ac circuit model of a mixer in accordance with the present invention.

Figure 6 illustrates the terminal configurations for transistors which can be used in a mixer in accordance with the present invention.

Figure 7 illustrates a general ac signal model of a transistor.

Figure 8 illustrates the circuit model of Figure 5 using the transistor model of Figure 7.

Figure 9 is a schematic diagram of a preferred embodiment of a mixer in accordance with the present invention.

Figure 10 is a schematic diagram for the ac signal model of the mixer of Figure 9.

Figure 11 is a schematic diagram of an alternative preferred embodiment of a mixer in accordance with the present invention.

Figure 12 is a schematic diagram of another alternative preferred embodiment of a mixer in accordance with the present invention.

Figure 13 illustrates the frequency content of the output signal of a mixer in accordance with the present invention.

Figure 14A illustrates a circuit model used in computing the input impedance of a common emitter amplifier.

Figure 14B illustrates a circuit model used in computing the input impedance of a common base amplifier.

Figure 14C illustrates a circuit model used in computing the input impedance of a portion of a mixer in accordance with the present invention.

Referring to Figure 5, a mixer in accordance with the present invention can be modeled as shown. Two transistors Q_A and Q_B each receive two ac input signals from two ac signal sources V_1 and V_2 . The transistors Q_A and Q_B mix their respective ac input signals and produce two ac mixed signals which are combined in a load, or output, impedance Z_0 to provide an output voltage V_0 .

Referring to Figure 6, the transistors Q_A and Q_B can selectively be of several types: bipolar junction transistors ("BJTs"); metal oxide semiconductor field-effect transistors ("MOSFETs"); junction field-effect transistors ("MESFETs"); or Schottky Barrier Gate field-effect transistors ("MESFETs"); with their terminal connections as shown. However, regardless of which transistor type is used, each transistor can be modeled as shown in Figure 7. In accordance with this model, each transistor has an input impedance Z_I across which an input voltage V_I is applied, and an output current generator producing an output current I_O which is a function of the input voltage V_I , i.e. $I_O = f(V_I)$. For the foregoing transistor types, this relationship between the output current I_O and the input voltage V_I can be expressed as follows:

```
\begin{array}{lll} \text{BJT:} & I_{\text{O}} = I_{\text{S}} \cdot \exp[V_{\text{I}}/V_{\text{TB}}] \\ \text{MOSFET:} & I_{\text{O}} = B(W/L)(V_{\text{I}} \cdot V_{\text{TM}})^2 \\ \text{JFET:} & I_{\text{O}} = I_{\text{DSM}}(1 \cdot V_{\text{I}}/V_{\text{PM}})^2 \\ \text{Where:} & \\ \end{array}
```

Is = BJT saturation current in amperes

I_{DSS} = JFET drain-to-source current with gate shorted to source
I_{DSM} = MESFET drain-to-source current with gate shorted to source

V_{TB} = BJT thermal voltage (≈ 25 millivolts at 25 °C)

V_{TM} = MOSFET threshold voltage
 V_{TJ} = JFET pinch-off voltage
 V_{PM} = MESFET pinch-off voltage
 B = MOSFET conduction constant

≈ µC_{0x}W/(2L)

μ = MOSFET channel mobility

10

15

20

25

30

45

50

C_{OX} = MOSFET gate oxide capacitance (farads) W = MOSFET channel width in microns

L = MOSFET channel length in microns

Referring to Figure 8, using the generalized transistor model of Figure 7 in the mixer model of Figure 5, a general expression for the output voltage V₀ can be found as follows:

$$V_0 = -Z_0[f(V_A) + f(V_B)]$$

$$= -Z_0[f(V_1-V_2) + f(V_2-V_1)]$$

Expanding $f(V_A) + f(V_B)$:

15
$$f(V_A) = a_0 + a_1 V_A + a_2 V_A^2 + a_3 V_A^3 + a_4 V_A^4 ...$$

 $f(V_B) = b_0 + b_1 V_B + b_2 V_B^2 + b_3 V_B^3 + b_4 V_B^4 ...$

where:

10

20

25

30

a₀ = "0th" scalar coefficient

b₀ = "0th" scalar coefficient

a_m = "mth" scalar coefficient

 b_m = "mth" scalar coefficient

 $m \in \{1, 2, 3, 4, ...\}$

Accordingly:

$$V_{0} = -Z_{0} \bullet \begin{bmatrix} a_{0} + a_{1}(V_{1}-V_{2}) + a_{2}(V_{1}-V_{2})^{2} \\ + a_{3}(V_{1}-V_{2})^{3} + a_{4}(V_{1}-V_{2})^{4} + \dots \\ + b_{0} + b_{1}(V_{2}-V_{1}) + b_{2}(V_{2}-V_{1})^{2} \\ + b_{3}(V_{2}-V_{1})^{3} + b_{4}(V_{2}-V_{1})^{4} + \dots \end{bmatrix}$$

$$= -Z_0 \bullet \begin{bmatrix} a_0 + a_1(V_1 - V_2) + a_2(V_1 - V_2)^2 \\ + a_3(V_1 - V_2)^3 + a_4(V_1 - V_2)^4 + \dots \\ + b_0 - b_1(V_1 - V_2) + b_2(V_1 - V_2)^2 \\ - b_3(V_1 - V_2)^3 + b_4(V_1 - V_2)^4 + \dots \end{bmatrix}$$

$$= -Z_0 \bullet \left[\begin{array}{c} (a_0 + b_0) + (a_1 - b_1) (V_1 - V_2) \\ + (a_2 + b_2) (V_1 - V_2)^2 + (a_3 - b_3) (V_1 - V_2)^3 \\ + (a_4 + b_4) (V_1 - V_2)^4 + \dots \end{array} \right]$$

Assuming $a_n \approx b_n$, where $n \in \{0, 1, 2, ...\}$:

$$V_0 \approx -Z_0[2a_0 + 2a_2(V_1-V_2)^2 + 2a_4(V_1-V_2)^4 + ...]$$

Hence, from the foregoing it can be seen that while a dc term and the even-order terms, e.g. the even harmonics, of the mixing products of the input signals remain, the odd-order terms of the mixing products of the input signals are virtually eliminated. However, even if it cannot be assumed that $a_n \approx b_n$, the odd order

50

terms will nonetheless be substantially suppressed relative to the even order terms since their scalar coefficients will be substantially less, i.e. $|a_n-b_n| \ll |a_n+b_n|$.

From the foregoing it can be further seen that if the two input signals have the same fundamental frequency, then a mixer in accordance with the present invention can be used as frequency doubler. In other words, since virtually only the even order terms of the mixing products of the input signals are produced and the second-order term is significant in magnitude compared to the fourth-order and higher terms, then with equal-frequency inputs, the present mixer can function well as a frequency doubler.

Referring to Figure 9, a preferred embodiment of a mixer in accordance with the present invention includes two BJTs 102 (" Q_1 "), 104 (" Q_2 "), with mutually coupled collectors connected to a resistor 106 (" R_C ") The emitter of the first transistor Q_1 is coupled to the base of the second transistor Q_2 via a serial impedance 114 consisting of a resistor 114R (" R_{E1} ") and capacitor 114C (" C_{E1} "). The emitter of the second transistor Q_2 is coupled to the base of the first transistor Q_1 via a serial impedance 116 consisting of a resistor 116R (" R_{E2} ") and capacitor 116C (" R_{E2} "). The transistors R_1 and R_2 are biased at their collectors by a dc voltage source 108 via their shared collector resistor R_2 , and at their respective emitters by dc current sources 110, 112. The transistors R_1 and R_2 are matched to each other, as are the passive components, i.e. resistors R_{E1} and R_{E2} , and capacitors R_1 and R_2 . The dc current sources 110, 112 provide equal emitter bias currents R_1 to the transistors R_1 and R_2 . The capacitors R_1 and R_2 provide dc isolation between the base and emitter circuits of the transistors R_1 and R_2 . Represented values for the dc bias voltage R_1 and currents R_2 and for the passive components R_1 , R_2 , R_2 , R_3 , R_4 , R_4 , R_5 , R_6 , R

One ac input signal V_1 is applied, via a resistor 118 ["R₁"] (e.g. the internal, or source, resistance of the first ac signal source 122), to the base of the first transistor Q_1 and to the emitter of the second transistor Q_2 via the serial coupling impedance 116. A second ac input signal V_2 is applied, via a resistor 120 ["R₂"] (e.g. the internal, or source, resistance of the second ac signal source 124), to the base of the second transistor Q_2 and to the emitter of the first transistor Q_1 via the serial impedance 114. With the dc bias signals V_{CC} and I_E , and the ac input signals V_1 and V_2 applied as shown, collector currents I_{C1} and I_{C2} for the transistors Q_1 and Q_2 , respectively, are generated. These collector currents I_{C1} and I_{C2} are produced from the mixing of currents within transistors Q_1 and Q_2 , respectively, which are induced from the applications of input signals V_1 and V_2 . These collector currents I_{C1} and I_{C2} combine in the collector resistor I_{C2} . The resulting ac signal voltage produced across the collector resistor I_{C2} constitutes the output signal V_2 .

Referring to Figure 10, wherein the ac signal model for the mixer circuit 100 of Figure 9 is shown, and in accordance with the foregoing discussion, the ac output signal V_0 is generated substantially in accordance with the following:

$$V_{0} = -R_{c} \cdot (I_{C1} + I_{C2})$$

$$= -R_{c}I_{S} \cdot \{exp[(V_{BEO} + V_{1} - V_{2}) / V_{T}] + exp[(V_{BEO} - V_{1} + V_{2}) / V_{T}]\}$$

$$= -R_{c}I_{S} \cdot exp[V_{BEO} / V_{T}] \cdot \{exp[(V_{1} - V_{2}) / V_{T}] + exp[(V_{2} - V_{1}) / V_{T}]\}$$

$$= -R_{c}I_{S} \cdot exp[V_{BEO} / V_{T}] \cdot 2cosh[(V_{1} - V_{2}) / V_{T}]$$

$$= -R_{c}I_{S} \cdot exp[V_{BEO} / V_{T}] \cdot 2cosh[(V_{1} - V_{2}) / V_{T}]$$

$$= -2I_{E}R_{c} \cdot \left[1 + \frac{(V_{1} - V_{2})^{2} + \frac{(V_{1} - V_{2})^{4} + \frac{(V_{1} - V_{2})^{6} + \cdots}{6! \cdot V_{T}^{6}} + \cdots}\right]$$

$$\approx -2I_{E}R_{c} \cdot cosh[(V_{1} - V_{2}) / V_{T}]$$

55 where:

20

30

35

 R_C = collector resistor value in ohms I_{C1} = Q1 collector current in amperes I_{C2} = Q2 collector current in amperes

Is = BJT saturation current in amperes ΙĘ = emitter current in amperes VBEO = base-emitter dc junction voltage V۱ = carrier ("LO") signal voltage $= |V_2| \cdot \cos(2\pi f_1 t)$ 5 = modulating ("RF") signal voltage $= |V_2| \cdot \cos(2\pi f_2 t)$ ٧_T = transistor base-emitter junction forward bias threshold voltage (= 25 millivolts at 25 °C) f₁ = frequency of carrier signal = frequency of modulating signal 10 f_2 = time in seconds t exp[x] cosh[x] = hyperbolic cosine function of "x"

From the foregoing it can be seen that the frequency spectrum of the output signal V_0 includes even order terms and substantially suppressed odd order terms of the mixing products of the input signals V_1 and V_2 . (The even order terms include $Af_1 + Bf_2$, $Bf_1 + Af_2$, $|Af_1 - Bf_2|$ and $|Bf_1 - Af_2|$, and the odd order terms include $Cf_1 + Df_2$, $Df_1 + Cf_2$, $|Cf_1 - Df_2|$ and $|Df_1 - Cf_2|$, where $(A + B) \in \{2,4,6,...\}$ and $(C + D) \in \{1,3,5,...\}$.) Further, it should be appreciated that this limited frequency content in the output signal V_0 has been achieved without the need for discrete reactive components, such as capacitors or inductors, or tuned elements, such as transmission line elements (e.g. open or shorted stubs), which are typically used to perform filtering functions (e.g. highpass, lowpass, bandpass or bandstop).

-- 4

0.32

110.4

.

.....

1 3 1

A mixer in accordance with the present invention has several additional advantages, such as good noise performance, low distortion and the ability to operate at low quiescent currents and with a low dc bias voltage (e.g. three volts and below). Further, a mixer in accordance with the present invention provides conversion gain and has a design structure well suited to monolithic silicon integration techniques, particularly since only one type of active device (e.g. NPN BJT) is needed. One drawback of the mixer of Figure 9 is a relatively low isolation between the two input signals V_1 and V_2 .

Exemplary comparisons of several operating characteristics between a mixer in accordance with the present invention and a conventional Gilbert multiplier mixer are shown below in Table 1:

TABLE 1

COMPARISON OF CONVENTIONAL MIXERS WITH EVEN ORDER TERM MIXER

Para- Type meter	Gilbert Mult. Vcc = 5V, Zo = 50 Ohms	Gilbert Mult. Vcc = 3V, Zo = 200 Ohms	Even Order Vcc = 3V Zo = 200 Ohms	Unit
Noise Figure	17	9.4	5	dВ
Conversion Gain	1.8	0.9	2.4	dВ
Output Level ("PldB")	0.29	0.63	0.53	Vpp
Supply Current	8.1	6.3	5	mA
LO-to-RF Rejection	≈ 30	≈ 30	≈ 6 [°]	dВ

Referring to Figure 11, an alternative preferred embodiment of a mixer in accordance with the present invention includes active and passive components interconnected substantially as discussed above and shown in Figure 9, with the addition of some passive elements 226 ("R_{B1}"), 232 ("C_{B1}"), 228 ("R_{B2}"), 234 ("C_{B2}") in the base circuits of the transistors 202 ("Q₁"), 204 ("Q₂"), and a dc base biasing voltage V_{BB}, as

15

30

35

40

45

50

shown.

The second dc voltage source 230 applies a dc bias voltage V_{BB} via base resistors R_{B1} and R_{B2} to the bases of the transistors Q_1 and Q_2 . The first ac input signal V_1 , via the series resistor 218 (" R_1 "), is coupled to the base of the first transistor Q_1 via a series coupling capacitor 232 (" C_{B1} "). The second ac input signal V_2 , via the series resistor 220 (" R_2 "), is coupled to the base of the second transistor Q_2 via a series coupling capacitor 234 (" C_{B2} ").

Referring to Figure 12, another alternative preferred embodiment of a mixer in accordance with the present invention includes two NPN BJTs 302 (" Q_1 "), 304 (" Q_2 "), two PNP BJTs 342 (" Q_3 "), 344 (" Q_4 ") and a collector resistor 306 (" R_C "), connected substantially as shown. A dc voltage source 308 applies a dc bias voltage V_{CC} , via the resistor R_C , to the collectors of transistors Q_1 and Q_2 . The base and emitter of transistor Q_1 are coupled to the emitter of transistor Q_3 and base of transistor Q_4 , respectively. The base and emitter of transistors Q_2 are coupled to the emitter of transistor Q_4 and base of transistor Q_3 , respectively. The collectors of transistors Q_3 and Q_4 are grounded. The dc current sources 346, 348 apply equal dc bias currents I_B to the nodes which couple the base and emitter of transistors Q_1 and Q_3 , and the base and emitter of transistors Q_2 and Q_4 , respectively.

The first ac input signal V_1 (e.g. LO) is applied to the base of transistor Q_3 and emitter of transistor Q_2 . The second ac input signal V_2 (e.g. RF) is applied to the base of transistor Q_4 and emitter of transistor Q_1 . In accordance with the foregoing discussion regarding the mixer circuits of Figures 9 and 11, collector currents I_{C1} and I_{C2} are produced, which in turn combine in resistor R_C and produce the output signal voltage V_O substantially in accordance with the following:

 $V_O \approx -2KI_BR_C \cdot cosh[(V_1 - V_2)/V_T]$

```
where:
        V_{\mathsf{O}}
                      = output signal (volts)
25
                      = base bias current (amperes)
        lB
                     c = collectors' output resistor (ohms)
        R
                      = carrier ("LO") signal (volts)
                      = |V_1| \cdot \cos(2\pi f_1 t)
                      = modulating ("RF") signal (volts)
        V_2
30
                      = |V_2| \cdot \cos(2\pi f_2 t)
        Vτ
                      = transistor base-emitter junction forward bias threshold voltage (≈ 25 millivolts at 25 °C)
        f<sub>1</sub>
                      = frequency of carrier signal (Hz)
                      = frequency of modulating signal (Hz)
        f2
        t
                      = time (seconds)
35
                      = constant relating collector currents
        K
                      = I_{SN}/I_{SP}
                     \approx (I_{CN}/I_{CP}) \cdot \exp[(V_{BEP}-V_{BEN})/V_T]

    NPN BJT saturation current (amperes)

        I_{SN}
                      = PNP BJT saturation current (amperes)
40
        ISP
                      = NPN BJT collector current (amperes)
        ICN
                      = PNP BJT collector current (amperes)
        1<sub>CP</sub>
                      = PNP BJT base-emitter voltage
        V_{BEP}
        V_{BEN}
                      = NPN BJT base-emitter voltage
45
        exp[x]
                      = hyperbolic cosine function of "x"
        cosh[x]
```

Referring to Figure 13, an exemplary frequency spectrum of the output signal V_0 is illustrated. In accordance with the foregoing discussion, the V_0 frequency spectrum includes even order terms and suppressed odd order terms (e.g. <-40dB) of the mixing products of the input signals V_1 and V_2 . (The even order terms include $Af_1 + Bf_2$, $Bf_1 + Af_2$, $Af_1 - Bf_2$ and $Af_1 - Af_2$, and the odd order terms include $Af_1 + Bf_2$, where $Af_1 - Bf_2$ and $Af_2 - Bf_1 - Af_2$, and $Af_3 - Bf_2 - Bf_1 - Af_2$, where $Af_3 - Bf_1 - Af_2$ and $Af_3 - Bf_2 - Bf_1 - Af_2$.

The exemplary output signal V₀ frequency spectrum of Figure 13 was computed in accordance with the discussion above for the preferred embodiment of Figures 9 and 10 as follows:

$$V_{0} = -2I_{E}R_{c} \cdot \cosh[(V_{1}-V_{2})/V_{T}]$$

$$= (0.5) \cdot \cosh\left[\frac{0.03162 \cdot \cos(2\pi f_{1}t) - 0.01 \cdot \cos(2\pi f_{2}t)}{0.0259}\right]$$

where:

, 5

10

0.03162 = -20 dBm in a 50-ohm system 0.01 = -30 dBm in a 50-ohm system f_1 = 1 gigahertz = 1x10⁹ Hz f_2 = 900 megahertz = 900x10⁶ Hz

The relative amplitudes for the even order terms (in decibels ["dB"] relative to the second order term $|f_1-f_2|$) shown in Figure 13 are listed below in Table 2. (The odd order terms are at least 40 dB down from the second order term $|f_1-f_2|$.)

TABLE 2

20

25

30

40

Term Order Amplitude (dB) If1-f21 2 0 2|f1-f2| 4 -31.22 -14.7 $2f_2$ 2 0 $|f_1 + f_2|$ 2 $2f_1$ +3.6 4 -24.9 3f1-f2 4 -31.2 $2|f_1 + f_2|$ 4 -24.9 $3f_1 + f_2$ 4f1 -26.9

A mixer having a circuit topology in accordance with the foregoing preferred embodiments of the present invention advantageously has input signal ports with input impedances which closely approximate the typical characteristic impedances of most video, RF and microwave signal systems. Accordingly, such a mixer interfaces well with typical, standard video, RF and microwave circuits, equipment and instruments. This can be better understood while referring to Figures 14A-14C during the following discussion.

A typical BJT exhibits a base terminal impedance of several hundred ohms when operated in a common emitter configuration with a few milliamperes of collector bias current. This impedance is too high for efficient power transfer into the base terminal in typical 50-ohm or 75-ohm video, RF or microwave signal systems.

Referring to Figure 14A, a common circuit model used when analyzing the input impedance of a common emitter amplifier is illustrated. Based upon this model, the input impedance Z_{in} can be computed as follows:

$$Z_{in} = \beta(r_e + Z_e) = \beta(V_T/I_c + Z_e)$$

where:

β = common emitter current gain

 $= f(\omega) = f(2\pi f)$

r_e = intrinsic emitter resistance

Z_e = emitter circuit impedance

V_T = base-emitter junction forward bias threshold voltage

I_C = collector current

Assuming that $\beta = 50$, $V_T = 0.0259$ volts, $I_C = 2$ mA and $Z_e = 0$ (typical exemplary operating conditions),

55

$$Z_{in} = \beta (V_{I}/I_{c} + Z_{e}) = 50(0.0259/0.002 + 0)$$

 $\approx 648 \text{ ohms}$

5

20

25

As can be seen from the foregoing, the input impedance for a common emitter amplifier operating under typical conditions is much higher than 50 ohms, and therefore provides a poor match for a 50-ohm signal source. At higher frequencies, the transistor current gain β [which is a function of frequency, i.e. $\beta = f(\omega) = f(2\pi f)$] decreases and acquires a phase lag. Accordingly, although the input impedance may therefore be reduced at higher frequencies, the current phase lag introduced by β causes the input of the amplifier to appear capacitive. This causes the amplifier to continue to present a poor match to a 50-ohm signal source.

On the other hand, when operated in a common base configuration with a few milliamperes of collector bias current, a typical BJT exhibits an emitter terminal impedance on the order of a few ohms. This impedance is too low for efficient power transfer from a 50- or 75-ohm signal source.

Referring to Figure 14B, a common circuit model used when analyzing the input impedance of a common base amplifier is illustrated. Based upon this model, the input impedance Z_{in} can be computed as follows:

 $Z_{in} = (1/g_m + Z_b/\beta) = (V_T/I_c + Z_b/\beta)$

where:

g_m = transistor transconductance

Z_b = base circuit impedance

Assuming that $V_T = 0.0259$ volts, $I_C = 2$ mA, $Z_b = 0$ and $\beta = 50$ (typical exemplary operating conditions), then:

 $Z_{in} = (V_T/I_c + Z_b/\beta) = (0.0259/0.002 + 0/50)$ $\approx 12.9 \text{ ohms}$

35

From the foregoing it can be seen that the input impedance for a common base amplifier operating under typical conditions is much lower than 50 ohms, and is therefore also a poor match for a 50-ohm signal source. Quite often the input impedance rises at higher frequencies due to combined effects of decreasing transistor current gain β (as noted above) and the presence of a parasitic ohmic base resistance. Because of the phase lag associated with β (as also noted above), the rising input impedance appears inductive. Thus, the input impedance continues to present a poor match to a 50-ohm signal source.

However, for a mixer topology in accordance with the present invention, when operated at a few milliamperes of bias current, the input terminal impedance is quite close to the typical characteristic impedances of most video, RF and microwave signal systems.

Referring to Figure 14C, the input impedance of a mixer in accordance with a preferred embodiment of the present invention (e.g. as shown in Figure 9) can be computed as follows:

50

45

$$Z_{in} = \frac{V_{in}}{I_{in}} = \frac{V_{1}}{i_{b} + i_{e}}$$

$$= \frac{V_{1}}{\frac{V_{1}}{\beta (r_{e} + Z_{s})} + \frac{V_{1}}{(r_{e} + Z_{s})}}$$

$$= \frac{r_{e} + Z_{s}}{1 + 1/\beta}$$

$$= \frac{V_{T}/I_{c} + Z_{s}}{1 + 1/\beta}$$

$$= \frac{V_{T}/I_{c} + Z_{s}}{1 + 1/\beta}$$

Assuming that $V_T = 0.0259$ volts, $I_C = 2$ mA, $Z_s = 50$ and $\beta = 50$ (typical exemplary operating conditions), 20 then:

$$Z_{in} = \frac{V_T/I_c + Z_s}{1 + 1/\beta}$$

$$= \frac{0.0259/0.002 + 50}{1 + 1/50}$$

≈ 61.7 ohms

From the foregoing it can be seen that the input impedance of a mixer in accordance with the present invention is close to the typical 50-ohm impedance of a signal source that is driving the other input. Hence, with both inputs driven by such sources, the input impedance of either input becomes approximately 62 ohms. This represents a standing wave ratio ("SWR") of 1.23:1 in a 50-ohm system. Hence, both signal sources are reasonably well matched.

This match is maintained at moderately high frequencies for two reasons. First, inductive impedance effects observed due to an increase in the intrinsic emitter resistance re are reduced, since to affect the input impedance, re must increase relative to the summation of it and the source impedance (i.e. re + Zs) rather than just r_e , as for the common base amplifier. Second, a decrease in the transistor current gain β has only a small effect on the input impedance and also partially cancels an increase in re due to frequency-dependent β decreasing at higher frequencies.

Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such a specific embodiments.

Claims

1. A signal mixer for receiving and mixing first and second ac input signals, and for providing an ac output signal with even order terms and substantially suppressed odd order terms of the mixing products of said first and second input signals, said signal mixer comprising:

first mixer means for receiving and mixing first and second ac input signals to provide a first ac

5

25

30

35

45

mixed signal;

5

15

20

25

30

40

45

50

second mixer means coupled to said first mixer means for receiving and mixing said first and second ac input signals to provide a second ac mixed signal; and

combiner means coupled to said first and second mixer means for receiving and combining said first and second ac mixed signals to provide an ac output signal, wherein said ac output signal includes a first plurality of even order terms and a second plurality of odd order terms of mixing products of said first and second ac input signals, and further wherein each of said first plurality of even order terms is greater in magnitude than adjacent ones of said second plurality of odd order terms.

- 10 2. A signal mixer as recited in Claim 1, wherein said first mixer means comprises:
 - a first serial impedance; and
 - a first transistor which includes a first terminal for receiving at least part of said first ac input signal, a second terminal coupled to said first serial impedance for receiving said second ac input signal, and a third terminal for providing said first ac mixed signal.
 - 3. A signal mixer as recited in Claim 2, wherein said second mixer means comprises:
 - a second serial impedance; and
 - a second transistor which includes a fourth terminal for receiving at least part of said second ac input signal, a fifth terminal coupled to said second serial impedance for receiving said first ac input signal, and a sixth terminal for providing said second ac mixed signal.
 - 4. A signal mixer as recited in Claim 1, wherein said first mixer means comprises:
 - a first transistor including a first terminal, a second terminal for receiving said second ac input signal, and a third terminal for providing said first ac mixed signal; and
 - a second transistor including a fourth terminal for receiving said first ac input signal, a fifth terminal coupled to said first terminal of said first transistors and a sixth terminal.
 - 5. A signal mixer as recited in Claim 4, wherein said second mixer means comprises:
 - a third transistor including a seventh terminal, an eighth terminal for receiving said first ac input signal, and a ninth terminal for providing said second ac mixed signal; and
 - a fourth transistor including a tenth terminal for receiving said second ac input signal, an eleventh terminal coupled to said seventh terminal of said third transistor, and a twelfth terminal.
- 6. A signal mixer as recited in Claim 1, wherein said combiner means comprises a resistor, said first and second ac mixed signals comprise first and second ac electrical currents, respectively, and said ac output signal comprises an ac voltage.
 - 7. A signal mixer for receiving and mixing first and second ac input signals, and for providing an ac output signal with even order terms and substantially suppressed odd order terms of the mixing products of said first and second input signals, said signal mixer comprising:
 - a first transistor circuit which includes a first input circuit for receiving a first ac input signal, a second input circuit for receiving a first dc signal and at least part of a second ac input signal, and a first output for providing a first ac mixed signal;
 - a second transistor circuit which includes a third input circuit for receiving said second ac input signal, a fourth input circuit for receiving a second dc signal and at least part of said first ac input signal, and a second output for providing a second ac mixed signal, wherein said second transistor output is coupled to said first transistor output; and
 - a resistor coupled to said first and second transistor circuit outputs to receive said first and second ac mixed signals and to provide an ac output signal, wherein said ac output signal includes a first plurality of even order terms and a second plurality of odd order terms of mixing products of said first and second ac input signals, and further wherein each of said first plurality of even order terms is greater in magnitude than adjacent ones of said second plurality of odd order terms.
- 8. A signal mixer as recited in Claim 7, wherein said second input circuit comprises a first transistor terminal and a first coupling impedance connected thereto for coupling said received at least part of said second ac input signal to said first transistor terminal.

- 9. A signal mixer as recited in Claim 8, wherein said fourth input circuit comprises a second transistor terminal and a second coupling impedance connected thereto for coupling said received at least part of said first ac input signal to said second transistor terminal.
- 10. A signal mixer as recited in Claim 7, wherein said first and second transistor circuits comprise first and second bipolar junction transistors, respectively, with each having a base-emitter junction forward bias threshold voltage associated therewith, and further wherein said ac output signal is provided approximately in accordance with:

10 $V_0 \approx -2IR \cdot \cosh[(V_1 - V_2)/V_T]$

where:

V_O = voltage value of said ac output signal

= current value of each of said first and second dc signals

R = resistance value of said resistor

V₁ = voltage value of said first ac input signal V₂ = voltage value of said second ac input signal

V_T = value of said base-emitter junction forward bias threshold voltage

 $cosh[(V_1-V_2)/V_T]$ = hyperbolic cosine of $(V_1-V_2)/V_T$.

20

25

30

35

40

45

50

15

- 11. A signal mixer for receiving and mixing first and second ac input signals, and for providing an ac output signal with even order terms and substantially suppressed odd order terms of the mixing products of said first and second input signals, said signal mixer comprising:
 - a first transistor which includes a first terminal for receiving a first dc signal, a second terminal for receiving a first ac input signal, and a third terminal for providing a first ac mixed signal;
 - a second transistor which includes a fourth terminal for receiving a second dc signal, a fifth terminal for receiving a second ac input signal, and a sixth terminal for providing a second ac mixed signal, wherein said sixth terminal of said second transistor is coupled to said third terminal of said first transistor;
 - a third transistor which includes a seventh terminal coupled to said fifth terminal of said second transistor, an eighth terminal coupled to said first terminal of said first transistor, and a ninth terminal;
 - a fourth transistor which includes a tenth terminal coupled to said second terminal of said first transistor, an eleventh terminal coupled to said fourth terminal of said second transistor, and a twelfth terminal; and
 - a resistor coupled to said third and sixth terminals of said first and second transistors, respectively, to receive said first and second ac mixed signals and to provide an ac output signal, wherein said ac output signal includes a first plurality of even order terms and a second plurality of odd order terms of mixing products of said first and second ac input signals, and further wherein each of said first plurality of even order terms is greater in magnitude than adjacent ones of said second plurality of odd order terms.
- 12. A signal mixer as recited in Claim 11, wherein said first, second, third and fourth transistors comprise first, second, third and fourth bipolar junction transistors, respectively, with each having associated therewith a base-emitter junction forward bias threshold voltage, and wherein each one of said first and second bipolar junction transistors has associated therewith a first base-emitter voltage, a base current and a first collector current, and further wherein each one of said third and fourth bipolar junction transistors has associated therewith a second base-emitter voltage and a second collector current, and still further wherein said ac output signal is provided approximately in accordance with:

 $V_0 \approx -2I_BR_C(I_{CN}/I_{CP}) \cdot exp[(V_{BEP}-V_{BEN})/V_T] \cdot cosh[(V_1-V_2)/V_T]$

where:

V₀ = voltage value of said ac output signal

I_B = value of said base current

R_C = resistance value of said resistor

 V_1 = voltage value of said first ac input signal V_2 = voltage value of said first ac input signal

V_T = value of said base-emitter junction forward bias threshold voltage

I _{CN}	= value of said first collector current
I _{CP}	= value of said second collector current
V_{BEP}	= value of said second base-emitter voltage
V _{BEN}	= value of said first base-emitter voltage
$exp[(V_{BEP}-V_{BEN})/V_T]$	= exponential function of (V _{BEP} -V _{BEN})/V _T
$cosh[(V_1-V_2)/V_T]$	= hyperbolic cosine function of $[(V_1-V_2)/V_T]$

13. A signal mixing method for receiving and mixing first and second ac input signals, and for providing an ac output signal with even order terms and substantially suppressed odd order terms of the mixing products of said first and second input signals, said signal mixing method comprising the steps of:

receiving first and second ac input signals;

mixing said first and second ac input signals to provide a first ac mixed signal;

mixing said first and second ac input signals to provide a second ac mixed signal; and

combining said first and second ac mixed signals to provide an ac output signal, wherein said ac output signal includes a first plurality of even order terms and a second plurality of odd order terms of mixing products of said first and second ac input signals, and further wherein each of said first plurality of even order terms is greater in magnitude than adjacent ones of said second plurality of odd order terms.

20 14. A signal mixing method as recited in Claim 13, wherein said step of mixing said first and second ac input signals to provide a first ac mixed signal comprises:

inputting at least part of said first ac input signal to a first terminal of a first transistor;

inputting said second ac input signal to a first serial impedance coupled to a second terminal of said first transistor; and

outputting said first ac mixed signal from a third terminal of said first transistor.

15. A signal mixing method as recited in Claim 14, wherein said step of mixing said first and second ac input signals to provide a second ac mixed signal comprises:

inputting at least part of said second ac input signal to a fourth terminal of a second transistor;

inputting said first ac input signal to a second serial impedance coupled to a fifth terminal of said second transistor; and

outputting said second ac mixed signal from a sixth terminal of said second transistor.

16. A signal mixing method as recited in Claim 13, wherein said step of mixing said first and second ac input signals to provide a first ac mixed signal comprises:

inputting said second ac input signal to a second terminal of a first transistor;

inputting said first ac input signal to a fourth terminal of a second transistor;

coupling a first intermediate signal from a fifth terminal of said second transistor to a first terminal of said first transistor; and

outputting said first ac mixed signal from a third terminal of said first transistor.

17. A signal mixing method as recited in Claim 16, wherein said step of mixing said first and second ac input signals to provide a second ac mixed signal comprises:

inputting said first ac input signal to an eighth terminal of a third transistor;

inputting said second ac input signal to a tenth terminal of a fourth transistor;

coupling a second intermediate signal from an eleventh terminal of said fourth transistor to a seventh terminal of said third transistor; and

outputting said second ac mixed signal from a ninth terminal of said third transistor.

18. A signal mixing method as recited in Claim 13, wherein said step of combining said first and second ac mixed signals to provide an ac output signal comprises:

providing said first and second ac mixed signals as first and second ac electrical currents, respectively;

combining said first and second ac electrical currents in a resistor; and providing said ac output signal as an ac voltage across said resistor.

19. A signal mixing method for mixing first and second ac input signals, and for providing an ac output signal with even order terms and substantially suppressed odd order terms of the mixing products of

5

10

15

25

30

35

40

45

50

said first and second input signals, said signal mixing method comprising the steps of:

inputting a first ac input signal to a first input circuit of a first transistor circuit;

inputting a first dc signal and at least part of a second ac input signal to a second input circuit of said first transistor circuit;

outputting a first ac mixed signal from a first output of said first transistor circuit;

inputting said second ac input signal to a third input circuit of a second transistor circuit;

inputting a second dc signal and at least part of said first ac input signal to a fourth input circuit of said second transistor circuit;

outputting a second ac mixed signal from a second output of said second transistor circuit;

inputting said first and second ac mixed signals to a resistor; and

outputting an ac output signal which includes a first plurality of even order terms and a second plurality of odd order terms of mixing products of said first and second ac input signals, and further wherein each of said first plurality of even order terms is greater in magnitude than adjacent ones of said second plurality of odd order terms.

15

5

10

20. A signal mixing method as recited in Claim 19, wherein said step of inputting a first dc signal and at least part of a second ac input signal to a second input circuit of said first transistor circuit comprises inputting said at least part of said second ac input signal to a first coupling impedance which comprises a portion of said first transistor circuit.

20

21. A signal mixing method as recited in Claim 20, wherein said step of inputting a second dc signal and at least part of said first ac input signal to a fourth input circuit of said second transistor circuit comprises inputting said at least part of said first ac input signal to a second coupling impedance which comprises a portion of said second transistor circuit.

25

22. A signal mixing method as recited in Claim 19, wherein said first and second transistor circuits comprise first and second bipolar junction transistors, respectively, with each having a base-emitter junction forward bias threshold voltage associated therewith, and further wherein said step of outputting an ac output signal comprises outputting said ac output signal approximately in accordance with:

dc signals

30

35

40

45

50

55

$$V_0 \approx -2IR \cdot cosh[(V_1 - V_2)/V_T]$$

where:

Vo	=	voltage value of said ac output signal
1	=	current value of each of said first and second
R	=	resistance value of said resistor

 V_1 = voltage value of said first ac input signal V_2 = voltage value of said second ac input signal

 V_T = value of said base-emitter junction forward bias threshold voltage

 $cosh[(V_1-V_2)/V_T]$ = hyperbolic cosine of $(V_1-V_2)/V_T$.

23. A signal mixing method for mixing first and second ac input signals, and for providing an ac output signal with even order terms and substantially suppressed odd order terms of the mixing products of said first and second input signals, said signal mixer comprising:

inputting a first dc signal to a node connecting a first terminal of a first transistor and an eighth terminal of a third transistor;

inputting a first ac input signal to a second terminal of said first transistor and to a tenth terminal of a fourth transistor;

outputting a first ac mixed signal from a third terminal of said first transistor;

inputting a second dc signal to a node connecting a fourth terminal of a second transistor and an eleventh terminal of said fourth transistor;

inputting a second ac input signal to a fifth terminal of said second transistor and to a seventh terminal of said third transistor;

outputting a second ac mixed signal from a sixth terminal of said second transistor;

inputting said first and second ac mixed signals to a resistor; and

outputting an ac output signal which includes a first plurality of even order terms and a second plurality of odd order terms of mixing products of said first and second ac input signals, and further wherein each of said first plurality of even order terms is greater in magnitude than adjacent ones of

said second plurality of odd order terms.

24. A signal mixing method as recited in Claim 23, wherein said first, second, third and fourth transistors comprise first, second, third and fourth bipolar junction transistors, respectively, with each having associated therewith a base-emitter junction forward bias threshold voltage, and wherein each one of said first and second bipolar junction transistors has associated therewith a first base-emitter voltage, a base current and a first collector current, and further wherein each one of said third and fourth bipolar junction transistors has associated therewith a second base-emitter voltage and a second collector current, and still further wherein said step of outputting an ac output signal comprises outputting said ac output signal approximately in accordance with:

 $V_O \approx -2I_BR_C(I_{CN}/I_{CP}) \cdot exp[(V_{BEP}-V_{BEN})/V_T] \cdot cosh[(V_1-V_2)/V_T]$

	where:	
15	Vo	= voltage value of said ac output signal
	l _B	= value of said base current
	R_{c}	= resistance value of said resistor
	V_1	= voltage value of said first ac input signal
	V_2	= voltage value of said first ac input signal
20	V _T	= value of said base-emitter junction forward bias threshold voltage
	I _{CN}	value of said first collector current
	I _{CP}	= value of said second collector current
	V_{BEP}	= value of said second base-emitter voltage
	V _{BEN}	value of said first base-emitter voltage
25	$exp\{(V_{BEP}-V_{BEN})/V_{T}]$	= exponential function of (V _{BEP} -V _{BEN})/V _T
	$cosh[(V_1-V_2)/V_T]$	= hyperbolic cosine function of [(V ₁ -V ₂)/V _T]

(PRIOR ART)
FIG. 4

FIG. 7

22

FIG. 14A

FIG. 14B

Į,

ŧ,

EUROPEAN SEARCH REPORT

Application Number EP 93 11 1964

Category	Citation of document with indica	RED TO BE RELEVAN' tion, where appropriate,	Relevant	CLASSIFICATION OF TH
X	of relevant passage PROCEEDINGS OF THE INS	es	to claim	APPLICATION (Int.Cl.5) H03D7/12
	ELECTRICAL ENGINEERS vol. 117, no. 11, Nov STEVENAGE GB pages 2105 - 2108 SURANA AND GARDINER: ' transistor mixer'	ember 1970 ,	13-16	HU3D//12
Y	* the whole document *		7-9, 19-21	
Y	EP-A-0 416 889 (LSI LO * page 2, line 41 - pa	•	7-9, 19 - 21	
	figure 3 *	ge 3, line 3/;	Ül 🔻	
				TECHNICAL FIELDS SEARCHED (Int.Cl.5)
				H03D
9				
		,		
İ				
	The present search report has been de	1		
	THE HAGUE	Date of completion of the search 11 November 1993	PEE	Examiner TERS, M
X : parti Y : parti docu	CATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another ment of the same category nological background	T: theory or principle E: earlier patent doct after the filing dat D: document cited in L: document cited	underlying the iment, but publi te the application	invention ished on, or

BNSDOCID: <EP__0582176A1_I_>

This Page Blank (uspto)