INTERPOLASI NEWTON

Pendahuluan

INTERPOLASI digunakan untuk memperkirakan nilai (tengah) di antara titik-titik dari satu himpunan yang sudah diketahui.

Pendahuluan

X	у			
1.0	1.00			
1.1	1.21			
1.2	1.44			
1.3	1.69			
1.4	1.96			
1.5	2.25			

$$y = f(1.45) \dots ???$$

Dengan mengasumsikan f(x) adalah **fungsi linier**, maka f(1.45) diperoleh dari titik tengah f(1.4) dan f(1.5), sehingga diperoleh:

$$f(1.45) = \frac{f(1.4) + f(1.5)}{2} = \frac{1.96 + 2.25}{2} = 2.0325$$

Cara ini disebut, INTERPOLASI LINIER

Interpolasi Linier

Interpolasi linier adalah bentuk interpolasi yang paling sederhana, yaitu dengan menghubungkan dua titik data dengan garis lurus.

Dengan memakai segitiga sebangun,

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

Rumus Interpolasi Linier

Contoh Interpolasi Linier

Data berikut ini menunjukkan hubungan kecepatan dan jarak yang dibutuhkan untuk menghentikan kendaraan.

Kecepatan (mil/jam)	10	20	30	40	50	60	70
Jarak henti (feet)	12	21	46	65	90	111	148

Perkirakan dengan interpolasi linier jarak henti yang dibutuhkan bagi sebuah kendaraan yang melaju dengan kecepatan 45 mil/jam

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

Interpolasi Kuadrat

- Seringkali interpolasi linier tidak memuaskan karena kebanyakan fungsi yang diinterpolasikan tidak linier.
- Pendekatan lain yang dapat digunakan adalah anggapan bahwa fungsi-fungsi tersebut berperilaku sebagi FUNGSI KUADRAT.
- Misalnya, tiga titik berdekatan x_0 , x_1 dan x_2 , maka nilai f(x) dapat didekati dengan:

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

Rumus Interpolasi Kuadrat

Dengan
$$b_0 = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Contoh Interpolasi Kuadrat

Kecepatan (mil/jam)	10	20	30	40	50	60	70
Jarak henti (feet)	12	21	46	65	90	111	148

Perkirakan dengan interpolasi kuadrat jarak henti yang dibutuhkan bagi sebuah kendaraan yang melaju dengan kecepatan 45 mil/jam

$$b_0 = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

Interpolasi Polinomial Newton

Rumus Interpolasi Polinomial Newton:

$$f_n(x) = b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Di mana

$$b_{0} = f(x_{0})$$

$$b_{1} = f[x_{1}, x_{0}]$$

$$b_{2} = f[x_{2}, x_{1}, x_{0}]$$

$$\vdots$$

$$b_{n} = f[x_{n}, x_{n-1}, ..., x_{0}]$$

Bila ditinjau dari:

Fungsi diferensi terbagi hingga orde pertama:

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

Fungsi diferensi terbagi hingga orde kedua:

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{[x_i - x_k]}$$

Interpolasi Polinomial Newton

Secara grafis dapat dilihat

:	i x _i f	f(x,)	Orde					
		f(x _i)	Pertama	Kedua	Ketiga			
0	x_0	$b_0 = f(x_0)$						
			$b_1 = f[x_1, x_0]$					
1	X ₁	f(x ₁)		$b_2 = f[x_2, x_1, x_0]$				
			$f[x_2,x_1]$		$b_3 = f[x_3, x_2, x_1, x_0]$			
2	X ₂	f(x ₂)		$f[x_3, x_2, x_1]$				
			$f[x_3,x_2]$					
3	X ₃	f(x ₃)						

Latihan 1 Interpolasi Newton

Kecepatan (mil/jam)	10	20	30	40	50	60	70
Jarak henti (feet)	12	21	46	65	90	111	148

Perkirakan dengan interpolasi Newton jarak henti yang dibutuhkan bagi sebuah kendaraan yang melaju dengan kecepatan 45 mil/jam! Gunakan empat data terakhir.

Contoh Interpolasi Newton

i	V	f(x)		Orde	
I	X _i	f(x _i)	Pertama	Kedua	Ketiga
0	40	$b_0 = 65$			
			$b_1 = 2.5$		
1	50	90		$b_2 = -0.02$	
			2.1		$b_3 = 0.0033$
2	60	111		0.08	
			3.7		
3	70	148			

Latihan 2 - Interpolasi Newton

Tentukan nilai dari f(0.9) berdasar dari nilai f(0.5) = 0.479, f(1) = 0.841 dan f(2) = 0.909

	i X: f		Orde			
I	Xi	f(x _i)	Pertama	Kedua		
0	0.5	$b_0 = 0.479$				
			$b_1 = 0.724$			
1	1	0.841		$b_2 = -0.437$		
			0.068			
2	2	0.909				

Latihan 3 - Interpolasi Newton

Tentukan nilai dari Sin(0.3) berdasar dari nilai Sin(-0.5) = 0.521, Sin(0) = 0 dan Sin(1) = 1.175

	; * */*		Or	de
	X _i	f(x _i)	Pertama	Kedua
0	-0.5	$b_0 = 0.521$		
			$b_1 = 1.042$	
1	0	0		$b_2 = 0.133$
			1.175	
2	1	1.175		

Tugas bab 10 metode numerik

 Silahkan dikerjakan latihan 1, 2 dan 3, tulis tangan dikumpulkan max besok jumat 26/11/21 pukul 16.00 wib, via email dg judul MetnumTi3p10-NIM

Terima Kasih