у2020-4-3. Поток минимальной стоимости

А. Максимальный поток минимальной стоимости

5 секунд, 512 мегабайт

Задан ориентированный граф, каждое ребро которого обладает пропускной способностью и стоимостью. Найдите максимальный поток минимальной стоимости из вершины с номером 1 в вершину с номером n.

Входные данные

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100, 0 \le m \le 2000$). Следующие m строк содержат по четыре целых числа числа: номера вершин, которые соединяет соответствующее ребро графа, его пропускную способность и его стоимость. Пропускные способности и стоимости неотрицательны и не превосходят 10^3 .

Выходные данные

В выходной файл выведите одно число — цену максимального потока минимальной стоимости из вершины с номером 1 в вершину с номером n. Ответ не превышает $2^{63}-1$.

входные данные	
4 5	
1 2 1 2	
1 3 2 2	
3 2 1 1	
2 4 2 1	
3 4 2 3	
выходные данные	
12	

В. Задача о назначениях

2 секунды, 256 мегабайт

Дана целочисленная матрица C размера $n \times n$. Требуется выбрать n ячеек так, чтобы в каждой строке и каждом столбце была выбрана ровно одна ячейка, а сумма значений в выбранных ячейках была минимальна.

Входные данные

Первая строка входного файла содержит n ($2 \le n \le 300$). Каждая из последующих n строк содержит по n чисел: C_{ij} Все значения во входном файле неотрицательны и не превосходят 10^6 .

Выходные данные

В первую строку выходного файла выведите одно число — искомая минимизуруемая величина. Далее выведите n строк по два числа в каждой — номер строки и столбца клетки, участвующей в оптимальном назначении.

Пары чисел можно выводить в произвольном порядке.

входные	данные
3	
3 2 1	
1 3 2	
2 1 3	
выходны	е данные
з	е данные
	е данные
3	е данные

С. Камень, ножницы, бумага — 2

1 секунда, 512 мегабайт

Год назад Ростислав с Мирославом играли в камень, ножницы, бумагу на щелбаны. За каждый выигранный раунд победитель ставил один щелбан проигравшему. В случае ничьи щелбаны не ставились. Эта игра запомнилась Мирославу как самая худшая игра в его жизни: всю следующую неделю у него болел лоб.

Воспоминания нахлынули на Мирослава, когда он нашел бумажку с шестью числами — запись с той самой игры. Прошло много времени, и теперь Мирослав может спокойно подумать, почему он проиграл так много раз. Но, к сожалению, он не может посчитать точное количество своих поражений, так как он записал только то, что Ростислав показал камень r_1 раз, ножницы s_1 раз и бумагу p_1 раз, а сам Мирослав показал камень r_2 раз, ножницы s_2 раз и бумагу s_2 раз.

Помогите Мирославу узнать по этим данным, какое минимальное количество щелбанов он мог получить в той самой роковой игре.

Для справки, победитель этой игры определяется по следующим правилам:

- Камень побеждает ножницы («камень затупляет или ломает ножницы»);
- Ножницы побеждают бумагу («ножницы разрезают бумагу»);
- Бумага побеждает камень («бумага накрывает камень»).

Если игроки показали одинаковый знак, то засчитывается ничья.

Входные данные

В первой строке входных данных три целых числа r_1 , s_1 , p_1 . Во второй строке три целых числа r_2 , s_2 , p_2 .

Все числа неотрицательные и не превышают 10^8 , $r_1 + s_1 + p_1 = r_2 + s_2 + p_2$.

Выходные данные

Выходные данные должны содержать единственное число — минимальное количество щелбанов, которые мог получить Мирослав.

входные данные 3 0 0 0 3 0 выходные данные 3

D. Задача коммивояжеров

2 секунды, 256 мегабайт

Есть *п* городов. Между городами есть ориентированные дороги, у каждой дороги есть стоимость покупки разрешения на проезд. Мы хотим торговать во всех городах. У нас есть неограниченное кол-во коммивояжеров. Для каждого из них мы должны определить список городов, в которых они будут торговать. Каждый коммивояжер будет объезжать все города из своего списка по циклу (он может по пути заезжать в другие города, но не торговать там). Если два (или более) коммивояжеров будут ездить по одной дороге, то каждому из них мы должны купить разрешение на проезд. Если список у коммивояжера состоит только из одного города, то он либо должен регулярно выезжать из города (тоже по какому-то циклу), либо мы должны купить ему прописку (у каждого города есть цена прописки). Наконец, в любом городе должен торговать только один коммивояжер, иначе предприятием заинтересуется налоговая. Нужно минимизировать издержки.

Входные данные

В первой строке два числа n, m — количество городов и количество дорог ($1 \le n \le 256, 0 \le m \le n(n-1)$).

Во второй строке n чисел a_i — цена прописки для города номер i ($0 \le a_i \le 10^9$).

Затем в m строках описаны дороги. Описание дороги из города u в город v со стоимостью разрешения на проезд c выглядит как u v cost ($1 \le u$, $v \le n$, $u \ne v$, $0 \le c \le 10^9$). Гарантируется, что между любой парой городов не более 1 дороги в каждом из направлений.

Выходные данные

Выведите одно число — минимальную сумму издержек.

входные данные 3 3 30 25 30 1 2 3 2 3 5 3 1 10 выходные данные 18

Е. В поисках невест

2 секунды, 256 мегабайт

Однажды король Флатландии решил отправить k своих сыновей на поиски невест. Всем известно, что во Флатландии n городов, некоторые из которых соединены дорогами. Король живет в столице, которая имеет номер 1, а город с номером n знаменит своими невестами.

Итак, король повелел, чтобы каждый из его сыновей добрался по дорогам из города 1 в город n. Поскольку, несмотря на обилие невест в городе n, красивых среди них не так много, сыновья опасаются друг друга. Поэтому они хотят добраться до цели таким образом, чтобы никакие два сына не проходили по одной и той же дороге (даже в разное время). Так как король любит своих сыновей, он хочет, чтобы среднее время сына в пути до города назначения было минимально.

Входные данные

В первой строке входного файла находятся числа n, m и k — количество городов и дорог во Флатландии и сыновей короля, соответственно ($2 \le n \le 200$, $1 \le m \le 2000$, $1 \le k \le 100$). Следующие m строк содержат по три целых положительных числа каждая — города, которые соединяет соответствующая дорога и время, которое требуется для ее прохождения (время не превышает 10^6). По дороге можно перемещаться в любом из двух направлений, два города могут быть соединены несколькими дорогами.

Выходные данные

Если выполнить повеление короля невозможно, выведите на первой строке число -1. В противном случае выведите на первой строке минимальное возможное среднее время (с точностью 5 знаков после десятичной точки), которое требуется сыновьям, чтобы добраться до города назначения, не менее чем с пятью знаками после десятичной точки. В следующих k строках выведите пути сыновей, сначала число дорог в пути, и затем номера дорог в пути в том порядке, в котором их следует проходить. Дороги нумеруются, начиная с единицы, в том порядке, в котором они заданы во входном файле.

входные	данные		
5 8 2			
1 2 1			
1 3 1			
1 4 3			
2 5 5			
2 3 1			
3 5 1			
3 4 1			
5 4 1			
выходные	е данные		
3.00000			
2 2 6			
2 3 8			