Eine Woche, ein Beispiel 11.21 Intersection on arithmetic surface.

Here K: number field Ok: intergral ring

 \mathcal{X} arithmetic surface over $\mathcal{O}_{\mathbf{k}}$ (9 > 1)Definition of arisurface?

Ref: EXPLICIT ARAKELOV GEOMETRY by R.S. de Jong

(divisor

For corresponds to the "Weil divisor" of

Xo: = \(\mathbb{X} \times \mathbb{Spec O_K} \) \(\mathbb{Spec K} \

I believe. Xo is irreducible

1) principal divisor div (f) e Div (£) fek(£)

(f) fin = normal divisor = \(\subseteq \mu(f) \cdot C

where No normalized discrete val on K(X) defined by C.

(f) in f = divisor at inf place $f = \sum_{\sigma} \mathcal{V}_{\sigma}(f) \cdot F_{\sigma}$ where $\mathcal{N}_{\sigma}(f) = -\int_{\mathcal{N}_{\sigma}} \log |f|_{\sigma} \cdot \mathcal{N}_{\sigma}$ us canonical measure $\mathcal{N}_{\rho}(f) = -\log |f|_{\sigma}(\rho)$

3 Intersection

normal: (D_1, D_2) fin = $\sum_{b} (D_1, D_2)_b \log \# k(b)$ other cases: $(S, F-\sigma') = \deg(S|_{X_{\sigma'}})$ $(S, S')_{\sigma} = -\log G_{\sigma}(S|_{X_{\sigma'}}, S'|_{X_{\sigma'}})$ G_{σ} Green's fet on X_{σ}

	F _{x′}	٤,	F _o ,
F _x	normal	normal	O
\$	1	normal -log (d:.)	deg (slx)
Fb	1	-	0