

Web security

HTTPS and the Lock Icon

Goals for this lecture

Brief overview of HTTPS:

- How the SSL/TLS protocol works (very briefly)
- How to use HTTPS

Integrating HTTPS into the browser

Lots of user interface problems to watch for

Threat Model: Network Attacker

Network Attacker:

- Controls network infrastructure: Routers, DNS
- Eavesdrops, injects, blocks, and modifies packets

Examples:

- Wireless network at Internet Café
- Internet access at hotels (untrusted ISP)

SSL/TLS overview

Public-key encryption:

Bob generates (SK_{Bob}, PK_{Bob})

Alice: using PK_{Bob} encrypts messages and only Bob can decrypt

Certificates

How does Alice (browser) obtain PK_{Bob}?

Bob uses Cert for an extended period (e.g. one year)

Certificates: example

Important fields:

Certificates on the web

Subject's CommonName can be:

- An explicit name, e.g. cs.stanford.edu , or
- A wildcard cert, e.g. *.stanford.edu or cs*.stanford.edu

matching rules:

```
"*" must occur in leftmost component, does not match "."

example: *.a.com matches x.a.com but not y.x.a.com
```

(as in RFC 2818: "HTTPS over TLS")

Certificate Authorities

Browsers accept certificates from a large number of CAs

Top level CAs ≈ 60

Intermediate CAs ≈ 1200

-	
Entrust.net CAuthority (2048)	Jul 24, 2029 7:15:12 AM
Entrust.net Sification Authority	May 25, 2019 9:39:40 AM
ePKI Root Certification Authority	Dec 19, 2034 6:31:27 PM
Equifax Securtificate Authority	Aug 22, 2018 9:41:51 AM
Equifax Secure eBusiness CA-1	Jun 20, 2020 9:00:00 PM
Equifax Secure eBusiness CA-2	Jun 23, 2019 5:14:45 AM
Equifax Secul eBusiness CA-1	Jun 20, 2020 9:00:00 PM
Federal Common Policy CA	Dec 1, 2030 8:45:27 AM
FNMT Clase 2 CA	Mar 18, 2019 8:26:19 AM
😇 GeoTrust Global CA	May 20, 2022 9:00:00 PM
GeoTrust Priification Authority	Jul 16, 2036 4:59:59 PM
👸 Global Chambersign Root	Sep 30, 2037 9:14:18 AM

Brief overview of SSL/TLS

Most common: server authentication only

Integrating SSL/TLS with HTTP: HTTPS

Two complications

Web proxies

solution: browser sends

CONNECT domain-name

before client-hello

Virtual hosting:

two sites hosted at same IP address.

solution in TLS 1.1: SNI (June 2003)

client hello extension: server name=cnn.com

implemented since FF2 and IE7 (vista)

Why is HTTPS not used for all web traffic?

Crypto slows down web servers (but not by much if done right)

- Some ad-networks still do not support HTTPS
 - Reduced revenue for publishers

Incompatible with virtual hosting (older browsers)
 March 2017: IE6 ≈ 1-5% in china (ie6countdown.com)

Aug 2014: Google boosts ranking of sites supporting HTTPS

HTTPS in the Browser

The lock icon: SSL indicator

<u>Intended goal</u>:

- Provide user with identity of page origin
- Indicate to user that page contents were not viewed or modified by a network attacker

In reality: many problems (next few slides)

When is the (basic) lock icon displayed

All elements on the page fetched using HTTPS

Extension Subject Alternative Name (2.5.29.17) Critical NO DNS Name *.google.com DNS Name *.android.com DNS Name *.appengine.google.com DNS Name *.google.com DNS Name *.google.ca DNS Name *.google.ca DNS Name *.google.co.in DNS Name *.google.co.ip DNS Name *.google.co.uk DNS Name *.google.com.ar DNS Name *.google.com.au

For all elements:

- HTTPS cert issued by a CA trusted by browser
- HTTPS cert is valid (e.g. not expired)
- Domain in URL matches:

CommonName or SubjectAlternativeName in cert

The lock UI: Extended Validation Certs

Harder to obtain than regular certs

- requires human at CA to approve cert request
- no wildcard certs (e.g. *.stanford.edu)

Helps block "semantic attacks": www.bankofthevvest.com

note: HTTPS-EV and HTTPS are in the same origin

A general UI attack: picture-in-picture

Trained users are more likely to fall victim to this [JSTB'07]

HTTPS and login pages: incorrect usage

Users often land on login page over HTTP:

- Type HTTP URL into address bar
- Google links to HTTP page

<form method="post"

Wachovia - Personal Finance and Business Financial Services - Mozilla Firefox

http://www.wachovia.com/

Edit View History Bookmarks Tools Help

(old site)

1

HTTPS and login pages: guidelines

General guideline:

Response to

http://login.site.com

should be

Location: https://login.site.com

(redirect)

Should be the response to every HTTP request ...

Problems with HTTPS and the Lock Icon

Problems with HTTPS and the Lock Icon

- 1. Upgrade from HTTP to HTTPS
- 2. Forged certs
- 3. Mixed content: HTTP and HTTPS on the same page
- 4. Does HTTPS hide web traffic?
 - Problems: traffic analysis, compression attacks

1. HTTP \Rightarrow HTTPS upgrade

Common use pattern:

- browse site over HTTP; move to HTTPS for checkout
- connect to bank over HTTP; move to HTTPS for login

SSL_strip attack: prevent the upgrade [Moxie'08]


```
<a href=https://...> \longrightarrow <a href=http://...> Location: https://... \longrightarrow Location: http://... (redirect) <form action=https://...>
```

Tricks and Details

Tricks: drop-in a clever fav icon (older browsers)

⇒ fav icon no longer presented in address bar

Number of users who detected HTTP downgrade: 0

Defense: Strict Transport Security (HSTS)

Strict-Transport-Security: max-age=63072000; includeSubDomains

(ignored if not over HTTPS)

Header tells browser to always connect over HTTPS

Subsequent visits must be over HTTPS (self signed certs result in an error)

- Browser refuses to connect over HTTP or if site presents an invalid cert
- Requires that <u>entire</u> site be served over <u>valid</u> HTTPS

HSTS flag deleted when user "clears private data": security vs. privacy

Preloaded HSTS list

https://hstspreload.org/

novnol com
paypal.com
Check status and eligibility

Strict-Transport-Security: max-age=63072000; includeSubDomains; preload

Preload list hard-coded in Chrome source code. Examples: Google, Paypal, Twitter, Simple, Linode, Stripe, Lastpass, ...

CSP: upgrade-insecure-requests

The problem: many pages use

Makes it difficult to migrate a section of a site to HTTPS

Solution: gradual transition using CSP

Content-Security-Policy: upgrade-insecure-requests

```
<img src="http://site.com/img">
<img src="http://othersite.com/img">
<img src="https://site.com/img">
<img src="https://othersite.com/img">
<img src="https://othersite.com/img">
<a href="http://site.com/img">
<a href="http://othersite.com/img">
<a href="http://othersite.com/img">
<a href="http://othersite.com/img">
<a href="http://othersite.com/img">
<a href="http://othersite.com/img"></a>
<a href="http://othersite.com/img"></a>
<a href="http://othersite.com/img"></a>
```

Always use protocol relative URLs

2. Certificates: wrong issuance

- 2011: Comodo and DigiNotar CAs hacked, issue certs for Gmail, Yahoo! Mail, ...
- 2013: TurkTrust issued cert. for gmail.com (discovered by pinning)
- 2014: **Indian NIC** (intermediate CA trusted by the root CA **IndiaCCA**) issue certs for Google and Yahoo! domains
 - Result: (1) India CCA revoked NIC's intermediate certificate
 - (2) Chrome restricts India CCA root to only seven Indian domains
- 2015: **MCS** (intermediate CA cert issued by **CNNIC**) issues certs for Google domains Result: current CNNIC root no longer recognized by Chrome
- ⇒ enables eavesdropping w/o a warning on user's session

Man in the middle attack using rogue cert

Attacker proxies data between user and bank. Sees all traffic and can modify data at will.

What to do?

(many good ideas)

- 1. Dynamic HTTP public-key pinning (RFC 7469)
 - Let a site declare CAs that can sign its cert (similar to HSTS)
 - on subsequent HTTPS, browser rejects certs issued by other CAs
 - TOFU: Trust on First Use

- 2. Certificate Transparency: [LL'12]
 - idea: CA's must advertise a log of <u>all</u> certs. they issued
 - Browser will only use a cert if it is published on log server
 - Efficient implementation using Merkle hash trees
 - Companies can scan logs to look for invalid issuance

HPKP example (HTTP header from server)

```
Public-Key-Pins[-Report-only]: max-age=2592000;
    pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
    pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
    report-uri="https://example.net/pkp-report"
```

Note: not currently supported by IE, Edge, and Safari

Max-age: 2,592,000 seconds is the most common max-age value used (30 days)

Examine browser's pinning DB: chrome://net-internals/#hsts

3. Mixed Content: HTTP and HTTPS

Page loads over HTTPS, but contains content over HTTP

⇒ Active network attacker can hijack session by modifying script en-route to browser

IE7:

Old Chrome:

A https://www.google.com/calendar/

https://badssl.com

(Chrome 58, 2017)

Mixed script: <script src="http://mixed-script.badssl.com/nonsecure.js"></script>

Secure https://mixed-script.badssl.com

(script is blocked, click to load)

Mixed image:

https://mixed.badssl.com

Image loaded, but no HTTPS indicator

4. Peeking through SSL: traffic analysis

- Network traffic reveals length of HTTPS packets
 - TLS supports up to 256 bytes of padding

AJAX-rich pages have lots and lots of interactions with the server

These interactions expose specific internal state of the page

Chen, Wang, Wang, Zhang, 2010

Peeking through SSL: an example [CWWZ'10]

Vulnerabilities in an online tax application

No easy fix. Can also be used to ID Tor traffic

THE END