

Kalkulator

Bajtek wymyślił innowacyjną nową operację między dwoma liczbami: $a \otimes b = 2a + b$. Łączy się ona w lewo, czyli $a \otimes b \otimes c = (a \otimes b) \otimes c$.

Bajtek nie zna jeszcze dokładnych zastowań, ale chciałby już teraz mieć program, który policzy wynik dla dowolnego wyrażenia składającego się z dowolnie dużych nieujemnych liczb, nawiasów i jego operacji. Ponieważ C++ nie przewidział \otimes , na wejściu ten operator zostanie przedstawiony jako #.

Ponieważ wynik może być duży, a Bajtek nie lubi czytać dużych liczb, wystarczy mu wynik modulo $10^9 + 7$.

Wejście

Na jedynej linii wejścia jest poprawne wyrażenie, którego wynik interesuje Bajtka. Wszystkie spacje zawsze mogą być pominięte. Długość linii (licząc ze spacjami) nie przekroczy $2 \cdot 10^6$.

Przykłady

Wejście	Wyjście
1 # 1	3

Wyjaśnienie: $1 \otimes 1 = 2(1) + 1 = 3$

Wejście	Wyjście
1 # 1 # 1 # 1	15

Wyjaśnienie: $1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 = ((1 \otimes 1) \otimes 1) \otimes 1 = (3 \otimes 1) \otimes 1 = 7 \otimes 1 = 15$

Wejście	Wyjście
(1 # 1) # (1 # 1)	9

Wyjaśnienie: $(1 \otimes 1) \otimes (1 \otimes 1) = 3 \otimes 3 = 9$

Wejście	Wyjście
(((100)) # (200))	400

1/1 Kalkulator