ધોરણ :11-12 સાયન્સ

(ગણિત – JEE Related MCQs)

श्रेशिंध - MCQ

VIDEO Lecture Of MCQ Just Click On Following MCQ for its Lecture...

નીચે ના Question પર ક્લિક કરવા થી તેનું લેક્ચર જોવા મળશે

(1) 3 × 3 શ્રેશિક A માટે 3A = A (a) 3 (b) 6 (c) 9 (d) 27 (a) સાંભ શ્રેશિક (b) હાર શ્રેશિક (c) વિકર્ણ શ્રેશિક (d) આ (a) સાંભ શ્રેશિક A માટે જો ATB અને BAT વ્યાખ્યાયિત હોય, તો B શ્રેશિક (d) આ (a) A = \begin{bmatrix} 0 & 0 & -1 \ 0 & -1 & 0 \ -1 & 0 & 0 \end{bmatrix} \] માટે સત્ય વિધાન છે. (a) A = (a) \begin{bmatrix} 1 & 3 \times 4 \times 1 & 4 \times 4 \times 1 & 4 \times 1	દેશ શ્રેણિક છે. $\times 4$ $az = a - 1 ન a = \dots$
(3) $A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ માટે સત્ય વિધાન છે. (a) A^{-1} નું અસ્તિત્વ નથી. (b) $A = (-1)I_3$ (c) $A^2 = I$ (d) $A = (-1)I_3$ (5) જો $A = (-1)I_3$ (6) સમીકરણ સંહતિ $ax + y + z = a - 1$, $x + ay + z = a - 1$ અને $x + y + a - 1$ હોય ત્યારે ઉકેલ મળે નહીં. (a) $A = (-1)I_3$ (b) $A = (-1)I_3$ (c) $A = (-1)I_3$ (d) $A = (-1)I_3$ (e) $A = (-1)I_3$ (f) સમીકરણ સંહતિ $ax + y + z = a - 1$, $ax + ay + z = a - 1$ અને $ax + y + a - 1$ હોય ત્યારે ઉકેલ મળે નહીં. (g) $A = (-1)I_3$ (g) $A = $	
(3) $A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ માટે સત્ય વિધાન છે. (a) A^{-1} નું અસ્તિત્વ નથી. (b) $A = (-1) I_3$ (c) $A^2 = I$ (d) A વિકર્ણ શ્રેષ્ટિક છે. (5) જો A એ 3×3 વિસંમિત શ્રેષ્ટિક હોય, તો $ A =$ (a) 1 (b) 0 (c) -1 (d) 3 (6) સમીકરણ સંહતિ $ax + y + z = a - 1$, $x + ay + z = a - 1$ અને $x + y + a - 1$ હોય ત્યારે ઉકેલ મળે નહીં. (a) 1 અથવા -2 (b) 3 (c) 4×4 (d) 3 (e) 4×3 (f) સમીકરણ સંહતિ $ax + y + z = a - 1$ અને $ax + y + a - 1$ હોય ત્યારે ઉકેલ મળે નહીં. (a) 1 અથવા -2 (b) 3 (c) 4×4 (d) 3	$x = a - 1 + a = \dots$
(a) A^{-1} નું અસ્તિત્વ નથી. (b) $A = (-1) I_3$ (c) $A^2 = I$ (d) A વિકર્ણ શ્રેણિક છે. (5) જો A એ 3×3 વિસંમિત શ્રેણિક હોય, તો $ A = \dots$ (a) I (b) I (c) I (d) I (e) I (e) I (f) I (f	$az = a - 1 + a = \dots$
(c) $A^2 = I$ (d) A વિકર્ણ શ્રેણિક છે. (5) જો A એ 3×3 વિસંમિત શ્રેણિક હોય, તો $ A =$ (6) સમીકરણ સંહતિ $ax + y + z = a - 1$, $x + ay + z = a - 1$ અને $x + y + a$ હોય ત્યારે ઉકેલ મળે નહીં. (a) 1 અથવા -2 (b) 3 (c) 2 (d) -1	
(5) જો A એ 3 × 3 વિસંમિત શ્રેણિક હોય, તો A = (a) 1 (b) 0 (c) -1 (d) 3 (b) 0 (c) -1 (d) 3 (c) 2 (d) -1	
(a) 1 (b) 0 (c) -1 (d) 3 હોય ત્યારે ઉકેલ મળે નહીં. (a) 1 અથવા -2 (b) 3 (c) 2 (d) -1	
(a) 1 અથવા –2 (b) 3 (c) 2 (d) –1	
(7) જો $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ અને $A^2 = \begin{bmatrix} x & y \\ c & d \end{bmatrix}$ તો $x = y = y = y$	
(a) $x = a^2 + b^2$, $y = a^2 - b^2$ (b) $x = 2ab$, $y = a^2 + b^2$ (c) $x = a^2 + b^2$, $y = ab$ (d) $x = a^2 + b^2$, $y = ab$ (e) $x = a^2 + b^2$, $y = ab$ (for $a = a^2 + b^2$, $b = ab$ (for $a = a^2 + b^2$, $b = ab$ (for $a = a^2 + b^2$, $b = ab$ (for $a = a^2 + b^2$) (for $a = a^$	x — β એ છે
(a) π નો ગુણિત (b) $\frac{\pi}{2}$ નો અયુગ્મ ગુણિત	
(c) 0 (d) π નો અયુગ્મ ગુણિત	
(9) $ \hat{\alpha} \begin{bmatrix} x & 0 \\ 1 & y \end{bmatrix} - \begin{bmatrix} 2 & -4 \\ -3 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 6 & 3 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} $, $\hat{\alpha} \hat{i} x = \dots, y = \dots$	=
(a) $x = 3$, $y = 2$ (b) $x = 3$, $y = -2$ (c) $x = -3$, $y = -2$ (d) $x = -3$, $y = 2$ (a) 5 (b) -5 (c) 2 (d) -2	
(11) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ લો $B = \dots$ જેથી $AB = BA$. (12) $A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$ અને $A^2 - kA - 51 = O$ લો $k = \dots$. (a) $\begin{bmatrix} x & x \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} x & x \\ 0 & 1 \end{bmatrix}$ (e) $\begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}$ (f) $\begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} x & x \\ 0 & 1 \end{bmatrix}$ (e) $\begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}$ (f) $\begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix}$	
(a) $\begin{bmatrix} x & x \\ y & 0 \end{bmatrix}$ (b) $\begin{bmatrix} x & y \\ 0 & x \end{bmatrix}$ (c) $\begin{bmatrix} x & y \\ 0 & y \end{bmatrix}$ (d) $\begin{bmatrix} x & x \\ 1 & x \end{bmatrix}$	
(13) $\Re \left[1 \ x \ 1\right] \begin{bmatrix} 1 \ 3 \ 2 \ 0 \ 5 \ 1 \ 1 \ x \end{bmatrix} = 0$, $\operatorname{cli} x = \dots$ $(14) \Re \operatorname{Res} A = \begin{bmatrix} 0 \ 2y \ z \ x \ y \ -z \ x \ y \ -z \ x \ -y \ z \end{bmatrix} + \operatorname{tr} \lambda \operatorname{cli} (x, y, z) = (\dots, \dots, \dots)$ $(a) \frac{-9 \pm \sqrt{35}}{2} \qquad (b) \frac{-7 \pm \sqrt{53}}{2} \qquad (c) \frac{-9 \pm \sqrt{53}}{2} \qquad (d) \frac{-7 \pm \sqrt{35}}{2}$ $(a) \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right) \qquad (b) \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{3}}\right) \qquad (c) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}\right) \qquad (d) \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right) \qquad (d) \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{3}}\right) \qquad (d) \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right) \qquad (d) \left(\frac$	(x, y, z > 0)
(13)% [1 x 1] $\begin{bmatrix} 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = 0$, dt $x =$ (14) \$\frac{1}{2}\$ If $x = 0$ and $x = 0$	$\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}$
$ (15) \stackrel{\wedge}{\otimes} A \begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}, \stackrel{\wedge}{\otimes} A = \dots $ $ (16) A = \begin{bmatrix} \cos \frac{2\pi}{3} & -\sin \frac{2\pi}{3} \\ \sin \frac{2\pi}{3} & \cos \frac{2\pi}{3} \end{bmatrix}, \stackrel{\wedge}{\otimes} A^3 = \dots $ $ (a) \begin{bmatrix} 2 & -1 & 1 \\ 0 & -3 & 4 \end{bmatrix} (b) \begin{bmatrix} 5 & -2 \\ 1 & 0 \end{bmatrix} (c) \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} (d) \begin{bmatrix} -1 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix} $ $ (a) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} (b) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (c) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} (d) \begin{bmatrix} 0 \\ 1 \end{bmatrix} $	
(a) $\begin{bmatrix} 2 & -1 & 1 \\ 0 & -3 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & -2 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}$ (2) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	0 1