

Bioinformatics and Genome Analyses Course

Lecture 2 (Nov 13)

Stephan Pabinger @ait.ac.at

http://pabinger.site44.com

Recap

History

Gregor Mendel, Law of Heredity 1865 Johann Miescher, Purification of DNA 1866 1949 Sickle Cell Anemia Mutation 1953 Watson and Crick, Structure of DNA 1970 Recombinant DNA Technology 1977 **DNA** sequencing 1985 In Vitro Amplification of DNA (PCR) 2001 The Human Genome Project

Different sequencing technologies

SAM/BAM files Read duplicates

SPG ID:bon realis	inment a	round kno	wn indels	PN: Geno	Jankse	V515T	K	PP:0	atk ta	rget	interva	1 crea	tor VI	1:1.2-2	-gBacaf	24	CL	iava \$	ivm a
bam file -targetInte	vals Sis	tervals	file -know	en \$known	indel	s fil	e(s)	-LOD	0.4 -	odel	KNOWNS	OMLY -	compre	55 0	disable	bem i	ndexi	Lea	
BPG ID:ban count	covariat	es PN:Ge	nonetnaly	SISTK	PP:ba	rea	Ligna	ent a	round	known	indels	VN:1	.2-29-	gBacaf:	hd	CLITAY	m Sis	on ares	-121
recal data.csv -know	Sites Si	mown sit	es fileis	-1 THEO	41 13	17:31	4:5:6	. T. R.	9:10:1	1:12:	13:14:1	5:16:1	7:18:1	9:28:23	1:22:X:Y	MT .	CON F	Beading.	unfor
SPG ID:ban recal																		on args	
.csv -I sban file -o	sceral il	wated ha	m file .1	INFO .co	morece	0	disah	le ba	n inde	wina				,		,	,.		,
pp6 ID:ban calcu	ate ba	PM - 6 a	mrools	DD: ban	nacal i	brate	qual	itu s	cores		UNIO 1	12. (4	973.27	23. /	1 - campo	ole ca	Ind .	Erh sh	am fi
3PG ID:ban merge	March 1	card	DR Lbom	calculat	e ba	VM	1 53	61.1	nun fi		one -inc	Marga	deaft.	er ter	TABLITUE	ham fi	latel	OUTBU	Tatas
IPG ID:ban mark	implicate	e Mini	card	DD: han	o od	- 10	-1.53	0.1	myn S	100 00	700 - 100	Marks	unlica	ter in	INDIT	Sham f	ile f	HITEHIT-	Cmark
BPG ID:ban merge	1 SMID	card	DR: ham	mark dun	licate	- 44	1 53	(1.1	nun 6	100 00	ngs jui	Marga	Came (er inc	TARRETT-6	ban 71	latel	OUTSU	Tofae
BCD Sknown indel	filmin	- 64	164n 1000	mark dup	bi ac		11/64			(enfe	ga - jui	hannel			THE OIL - 9		(made)	111	- dec
9CO Sknown indel:																			
BCD Sknown sites	file(s)	- front	771 LD . 1000	ogenomes.	eul.ac	. UK/V	3/570	(Foch	ei cal	refer	rence/	probes	mappi	ng_rest	orces/A	L. wys	three.	bottlett	GG AC
SRR070823.24480225		11		0															
MIK 1090V 3MMMCNONNOM	163	11	69464		TOOM	- 5		6072	0 30	15	CCATOC				NM: i:				
	CONTRACTO	NUMBER	LUKLUHKKU	BEHJOHHED	779	1113	XIII	10 M	DIZ: D	10	190	215PP0	76923	AP1111	MH:1:	3 SM:	1:0	MA:T:0	XI:
90000000000000GI SRR070823,24480518		11	60464		100M				0 35						TGTTAAT				
D108F138F1F13C36KF6K																			
	ситейнти	DENLKCJI	TAKELIKMI.	THREE LEB	229	:1:3	X1:1	:6 M	D: Z: 10	16	1900	Z:SPRE	78323	AM:1:4	NM:1:	3 SM:	1:8	MQ:1:8	XI:
9000000000000000 588070823 24480225		11	60720												TAATTAC				
					100M				4										
GHMCK33336333333GHM56.	133300000	DEGENTHE	онососони	DITERCES	209	:1:9	X1:1	:0 M	D: Z: 10	10	199	Z:5PPU	70323	AM:1:0	NM:i:	3 SM:	1:0	PQ:1:0	XT:
9090909090909090																			
SRR070823.24480518	1107	11	60720		100M				4 -:						STAATTAC				
=EGJJF>7808AD00>888<	ID:@28@B/	UBBC>B;::	::E@0B0G;	5E5=A??@6	XX9	1119	X1:1	:0 M	D: Z: 16	10	RG:	Z:SPRE	78823	AM:1:0	NM:i:	a sm:	1:8	MQ:1:8	XT:
3000000000000000																			
SRR070531.23281260	99	11	61942		100M				5 19						MATATGTA				
JUNEAU TOMO HORSHIF (KM	ICHCMOSMI	GIGIIMOL	NIXMENNI	TUKOGHEA	>00	:1:8	X1:1	:1 M	D: Z: 10	10	805:	Z:SPRE	70531	AM: 1:0	NM:1:	a sm:	1:0	MQ:1:0	XT:
0000000000000000																			
SRR070531.23281260	147	11	62035	0	100M				2 -						MTAAGGA				
MCKJKJKKCJKKJMKJJJJM	PHLLLLD	CHMIDITI	ILILIFIER	OCHGJECG6	209	1118	X1:1	12 M	D: Z: 16	10	RG:	ZISPRE	78531	AM1119	NM:i:	8 SM:	1:0	M0:1:8	XT:
3000000000000000																			
SRR070823.17243685	99	11	62388		100M										птсство				
MSHMMKIMLKHHJEKKFFD	DEKDEID	CDGF?IE	CHIDEHOIGH	PRAFFECCO	200	:1:10	X1:1	:0 M	D: Z: 10	10	80:	Z:5880	70323	AM: 1:0	NM:1:	0 SM:	1:0	MO:1:0	XT:
00000000000000000																			
SRR070823.17243685	147	11	62452	0	100M			6238	8 -1	63	ATGTGT	TITITA	ATAGAC	TTTAATO	GTTCTCA	AGTGAT	GCATT	CATTTAG	TTTG

Recap

Python programs

fasta_extractor.py

sam_examiner.py

```
| Diagram | Prince |
```

Go to https://github.com/spabinger/BioinformaticsAndGenomeAnalyses2018

Coordinate systems

Coordinate system

■ 0 based → 0, 1, 2, ... 9 | 1 based → 1, 2, 3, ... 10

- BED 0 based
- GFF 1 based
- Ensembl uses a one-based coordinate system UCSC use a zero-based coordinate system

	1 based	0 based
Third element	3	2
First ten	1, 10	0, 10
Second ten	11, 20	10, 20
One base long at 10	10,10	9,10
Interval	end – start + 1	end – start
Five elements at 100	100, 104	99, 104

Coordinate system

chr1		Т		Α		С		G		Т		С		Α	
	Ĩ	Ì	Ĩ	[1			ĵ	Ī		1	1		I	Ĩ
1-based		1		2		3		 4		5		6		7	
0-based	0		1		2		3		4		5		6		7

	1-based	0-based
Indicate a single nucleotide	chr1:4-4 G	chr1:3-4 G
Indicate a range of nucleotides	chr1:2-4 ACG	chr1:1-4 ACG
Indicate a single nucleotide variant	chr1:5-5 T/A	chr1:4-5 T/A

							TTA								
chr1		Т		Α		С	1	G		Ŧ		C		Α	
		1	ľ	1	1	1	8	1		1	1	1	1	1	
1-based		1		2		3		4		5	ls	6		7	
0-based	0		1		2		3		4		5		6		7

	1-based	0-based
Indicate a deletion	chr1:5-5 T/-	chr1:4-5 T/-
Indicate an insertion	chr1:3-4 -/TTA	chr1:3-3 -/TTA

Conversion tool

convert_zero_one_based

- Python CLI
- convert between zero and one based coordinate systems
- Use: convert_zero_one_based --help

https://github.com/griffithlab/convert_zero_one_based

Genome reference

Genome reference

Reference genome is a "consensus" across all chromosomes of DNA pooled from multiple individuals

UCSC and Genome Reference Consortium (GRCh) hg18, hg19, hg38 ←→ GRCh36, GRCh37, GRCh38

Newest version (hg38) release on Dez 24th 2013

Download (e.g.)

- http://hgdownload-test.cse.ucsc.edu/goldenPath/hg38/bigZips/
- ftp://gsapubftp-anonymous@ftp.broadinstitute.org

	HG38 (UCSC)	GRCh38
Prefix	Chr	-
Mitochondrial	chrM	MT
Order	chrM, chr1, chr2,chrX, chrY	1,2,, X, Y, MT

Genome reference

Indexing

- Fai file (created by samtools faidx)
 contig, size, location, bases-per-line and for efficient random
- Dict file (created by Picard CreateSequenceDictionary)
 SAM style header describing the contents of the fasta file
- Different mapping programs

Important

- Choose one reference genome (well sorted, indexed) and stick to it
- Be sure that previous variant calls use same reference otherwise convert coordinates (lift-over)

FASTQ

FASTQ

Storing and defining sequences from next-generation sequencing technologies

```
Sequence ID GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTT

Sequence T

(separator) +

Quality scores !''*((((***+))%%%++)(%%%%).1***-
+*''))**55CCF>>>>>CCCCCCC65
```

Old format

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name
6	flowcell lane
73	tile number within the flowcell lane
941	'x'-coordinate of the cluster within the tile
1973	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

New format

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

EAS139	the unique instrument name
136	the run id
FC706VJ	the flowcell id
2	flowcell lane
2104	tile number within the flowcell lane
15343	'x'-coordinate of the cluster within the tile
197393	y'-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y	Y if the read is filtered, N otherwise
18	0 when none of the control bits are on, otherwise it is an even number
ATCACG	index sequence

Cleaning up FASTQ files

Before mapping make sure

- Non genomic sequences are removed (barcodes, ...)
- Adapter sequences are removed
- Clean contaminations (PRINSEQ, DeconSeq)
- Trim Ns
- Trim bad quality reads

Skip cleaning → less read mapping; if not randomly distributed some areas wont get enough coverage

Tools for FASTQ manipulation

- FASTQC http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ HTML output
- Fastx toolkit http://hannonlab.cshl.edu/fastx_toolkit/ Lots of tools, charts, trimming, clipping, filtering
- Cutadapt https://code.google.com/p/cutadapt/ Remove adapter sequences
- DeconSeq http://deconseq.sourceforge.net/
 User friendly interface, coverage plots, metagenomics datasets
- PRINSEQ: http://prinseq.sourceforge.net/ HTML output, trimming, filtering, contaminations
- Trimmomatic http://www.usadellab.org/cms/?page=trimmomatic Paird-end trimming
- Atropos https://github.com/jdidion/atropos Multi-threading, paired-end, bisulfite-seq, ...

• ...

www.fastq.bio

Sequence Length Distribution

Check for contamination

PRINSEQ

- Dinucleotide (e.g., TA, GC, ...) odds ratios
- Principal component analysis (PCA) to group metagenomes

Check for contamination

FastQ Screen

Screen against a set of sequence databases:

- genomes of all of the organisms you work on
- PhiX
- Vectors
- ...

Check for contamination

Kraken (https://ccb.jhu.edu/software/kraken/)

- Assigning taxonomic labels to short DNA sequences
- Detect metagenomics contaminations

Sequence classified as belonging to leaf of classification (highest-weighted RTL) path

Phred quality score

Characterize the quality of DNA sequences

$$q = -10\log_{10}(p)$$

p = error probability for the base

Phred quality score	Probability	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

Widely used tools

SAMtools

Utilities for manipulating SAM files

GATK

 Genome Analysis Toolkit - wide variety of tools, variant discovery and genotyping, quality assurance

Picard

Utilities for manipulating SAM files

SAM / BAM

Quality check of alignment

Based on SAM/BAM files

Detect biases in the sequencing and/or mapping

Metrics

- Coverage / nucleotide distribution
- Reads mapped outside of a target (e.g., Exome sequencing)
- Number of mapped reads (wrong reference genome?)
- Insert size statistics
- Mapping quality rule of thumb: Anything less than Q20 is not useful data

Tools

- Qualimap 2 http://qualimap.bioinfo.cipf.es/
- bamstats http://bamstats.sourceforge.net/

Read Group Tag (RG)

RG - Meta information

- ID: unique e.g., SRA number (Sequence read archive)
- PL: Sequencing platform
- PU: Platform unit (run name / flowcell-barcode-lane)
- LB: Library name
- PI: Insert size (Predicted mean insert size)
- SM: Sample (Individual)
- CN: Sequencing center

PICARD

java -jar picard/AddOrReplaceReadGroups.jar I=exampleWO_RG.bam O=
exampleW_RG.bam SORT_ORDER=coordinate RGID=superID RGLB=superLib
RGPL=illumina RGSM=superSample

Read Group Tag – why important?

- It refers to a set of reads that were generated from a single run of a sequencing instrument.
- When multiplexing is involved, then each subset of reads originating from a separate library run on that lane will constitute a separate read group.
- To see the read group information for a BAM file, use the following command:

```
samtools view -H sample.bam | grep '@RG'
```

- Check that your FASTQ files have appropriate RQ when performing demultiplexing
- Important to have a correct RG tag → required by bioinformatics analysis tools (GATK, ...)

Insert size

Insert size histogram

Qualimap 2

Read duplicates

Origin

- PCR amplification step in library preparation
 - Get DNA pieces (shatter / enrich DNA)
 - 2. Ligate adapters to both ends of the fragments
 - 3. PCR amplify the fragments with adapters
 - 4. Put fragments on heads or across flowcells
 - 5. Amplify fragments
 - 6. Sequence

Identification

Have the same starting position

Read duplicates

Problems/causes

- More steps during PCR amplification with little input material → more duplicates
 - This may result in duplicate DNA fragments in the final library
- Higher rates (~30%) arise when too little starting material is used
 → more amplification of the library is needed
- May result in false SNP calls (statistical model gets mixed up)

Read duplicates

FP variant call (bad)

Read duplicates - removal

- → Identify reads that map to the same location
- → Remove all but one

After marking duplicates

Read duplicates - removal

Attention!

Do not remove for

- Haloplex enrichment (nonrandom fragmentation method)
- PCR based enrichment

You would remove results

Base Quality Score Recalibration

- Various sources of systematic error
 over / under estimated base quality scores
- Quality score assigned to single base in isolation (assigned by the sequencing machines)
- Variant calling algorithms rely heavily on base quality scores

Solution → Correct base quality scores

Base Quality Score Recalibration

Apply machine learning to model these errors empirically and adjust the quality scores accordingly

- First the program builds a model of covariation based on the data
 - Reported quality score
 - Position in the read (cycle)
 - Preceding and current base sequence context (homopolymer, ...)
- and a set of known variants (1000g, dbSNP, large private cohort)
 - discount most of the real genetic variation

First pass: calculate new QS based on the model

Second pass: adjust the base quality scores

→ Visual inspection with before/after plots

Base Quality Score Recalibration

WES

For WES restrict to capture targets
 off-target sites are likely to have higher error rates

Organism with no known variants?

- Call variants -> apply stringent filter -> use these for recalibration
- Repeat previous steps

Articles about common next-generation sequencing problems

Working with SAM/BAM files

http://samtools.sourceforge.net

View

```
samtools view -h <file.bam>
samtools view <file.bam> chr2:20,100,000-20,200,000
samtools view -f 0x02 <file.bam> > <only_proper_paired.sam>
```


http://samtools.sourceforge.net

View

```
samtools view -h <file.bam>
samtools view <file.bam> chr2:20,100,000-20,200,000
samtools view -f 0x02 <file.bam> > <only_proper_paired.sam>
```


http://samtools.sourceforge.net

View

```
samtools view -h <file.bam>
samtools view <file.bam> chr2:20,100,000-20,200,000
samtools view -f 0x02 <file.bam> > <only_proper_paired.sam>
```

Sort

```
samtools sort -o <sorted.bam> <aln.bam>
```

Index

```
samtools index <sorted.bam>
(only for BAM)
```


Simple stats (reads mapped, reads paired, ...)

samtools flagstat <file.bam>

Stats for each chr/contig - reads mapped and unmapped

samtools idxstats <sorted.bam> (and indexed)

Convert BAM to SAM

samtools view -S -h -b <aln.bam> > <aln.sam>

Converting BAM to a sorted BAM file (without intermediate file)

samtools view -bSh <file.sam> | samtools sort -o
file sorted.bam -

http://davetang.org/wiki/tiki-index.php?page=SAMTools

Other tools

SAMBAMBA - "Multithreaded" SAMtools - https://github.com/lomereiter/sambamba

- view
- sort
- index
- merge
- flagstat
- markdup

elprep - https://github.com/exascience/elprep

- High-performance tool for preparing .sam / .bam / .cram files
- In-memory and multi-threaded application
- Requires lots of memory (WGS ~256GB)
- Replacement for SAMTOOLS & Picard

SAMBAMBA

"Multithreaded" SAMtools

- view
- sort
- index
- merge
- flagstat
- markdup

Binaries available

https://github.com/lomereiter/sambamba

elprep

- High-performance tool for preparing .sam / .bam / .cram files
- In-memory and multi-threaded application
- Requires lots of memory (WGS ~256GB)
- Replacement for SAMTOOLS & Picard

https://github.com/exascience/elprep

PICARD & iobio

PICARD

- JAVA based tool (http://picard.sourceforge.net/)
- BuildBamIndex, FastqToSam, MergeSamFiles, ...

bam.iobio.io

- Web-based (http://bam.iobio.io)
- Coverage overview
- Mapping overview

bam.iobio.io

an iobio project

Multiple mapping

Multiple mapping - MAPQ

Bowtie 1

- 255 for uniquely mapped reads (default)
- 0 for multiply mapped reads

Bowtie 2

- MAPQ filter of >=40 to get reads which had only 1 convincing alignment
- Lower filter to allow multi-mapped reads; secondary alignment with varying degrees of difference to the primary

BWA

- Phred scores as MAPQ values
- 0 if read maps to multiple positions

Genetic variations

Genetic variation

A regular diploid human cell contains 46 chromosomes (23 pairs)

- 22 pairs + sex chromosomes XX(female) XY(male)
- One set of chromosomes inherited from each parent

Germline

 Meiosis → four genetically unique haploid gametes that each contain a unique mixture of the genetic code of the maternal and paternal chromosomes of the cell

Somatic mutation

- Not inherited from parent
- Acquired from spontaneous mutations during DNA replication

Types of genetic variations

SNV / SNP

- A single nucleotide A, T, C or G in the genome differs between members of a population or chromosome pairs
- Originally defined as occurring at least in one individual of the population (these definitions may shift in time)
- SNV (single nucleotide variant) if observed very rarely
- SNP, SNV → may fall within
 - coding sequences of genes
 - non-coding regions of genes
 - intergenic regions

Types of genetic variations

INDEL

- Insertion / deletion of bases
- Coding regions of the genome produce a frameshift mutation (unless multiple of 3)
- There are approximately 190-280 frameshifting INDELs in each person.

 A map of human genome variation from population-scale sequencing. Nature 467 (7319)

Types of genetic variations

Structural variations (SV)

- Variation in structure of an organism's chromosome
- Insertions

Deletions

CNV

Inversions

Translocations

12.11.2018

Types of structural genetic variations

12.11.2018

Summary DNA Variants

Human genome

- Typical genome differs from the reference human genome at
 4.1 million to 5.0 million sites.
- ~99.9% of variants consist of SNVs and INDELs
- Structural variants affect more bases
 - 2,100 to 2,500 structural variants
 (~1,000 large deletions, ~160 copy-number variants, ~1100 insertions)
 - Affecting ~20 million bases of sequence

What kind of data do you have?

Genotyping

- Single samples
- Family → finding causing mutation of rare disease
- Time series

Somatic mutations

- Primary tumor tissue
- Blood samples

→ Different callers / strategies for respective samples

Somatic mutations

Somatic mutations

- Change in genetic structure **not** inherited from a parent
- Constantly happening in living organisms
- Can be used for detection of disease
- Detected by comparison to "normal" cells

Cancer

Used to characterize tumor cells

Variant Calling

Genotyping theory

- If there were no sequencing errors, identifying SNPs would be very easy: any time a read disagrees with the reference, it must be a variant!
- Sequencing instruments make mistakes
 - Quality of read decreases over the read length
- A single read differing from the reference is probably just an error, but it becomes more likely to be real as we see it multiple times

What are variant calls?

Find differences to a reference (hg19, GRCh38)

Naive variant calling

- Check all the reads that cover base chr11:1234567
- Add up the bases at chr11:1234567
- e.g. 15 A's, 4 G's
- Is this an A/G heterozygous site or four sequencing errors?

Actual variant callers

- Estimate likelihood of a variant site vs a sequencing error
- Sequencing error rate
- Quality scores

(Other) reasons for a mismatch

True SNP

OR

- Error generated in library preparation
- Base calling error
 - May be reduced by improved base calling methods, but cannot be eliminated
- Misalignment (mapping error)
 - Local realignment to improve mapping
- Error in reference genome sequence

Difficulties

https://wiki.uio.no/projects/clsi/images/8/80/VariantCallingCourse_sept2013_Part1.pdf

Difficulties

Base calling gets more difficult the longer the read gets
 I000 Genomes Data

http://www.biostat.jhsph.edu/~khansen/LecIntro1.pdf

More difficulties

- High depth low quality regions → likely due to copy number or other larger structural events
- Repetitive regions → artefactual variants
- Regions of low complexity (~ 2% of genome)
 polypurine (AG), AT-rich regions, simple tandem repeats

Linderman et al. Analytical validation of whole exome and whole genome sequencing for clinical applications. BMC Medical Genomics 2014, 7:20

Heng Li. Towards Better Understanding of Artifacts in Variant Calling from High-Coverage Samples. http://arxiv.org/pdf/1404.0929v1.pdf

Squares Not covered by sequence
 Triangles Heterozygote undercalls in sequence data relative to genotype data
 Circles Discordant SNV calls compared to genotypes

Undercall - (false negatives; true genotype is polymorphic yet the call is homozygous reference or 'missing') Bentley, et al. Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry, Nature

Ti/Tv ratio

Transition (Ti)

- purine <-> purine (A <-> G)
- pyrimidine <-> pyrimidine (C <-> T)

Transversion (Tv) purine <-> pyrimidine

Transition is more frequent than transversion

- Ti/Tv ~ 2.0 2.1 for genome wide
- Ti/Tv ~ 3.0 3.3 for exonic variations
- Ti/Tv = 2/4 = 0.5 = 2/4 = 0.5 for random, uniform sequencing sequencing error

Practicals – Day 2