Lec9 Note of Algebra

Xuxuayame

日期: 2024年10月12日

定义 1.33. 设 R 为整环, 称 $_{R}M$ 为**可除模**, 若 \forall $m \in M$, $0 \neq r \in R$, \exists $m' \in M$ s.t. rm' = m.

评论. M 可除 $\Rightarrow M/N$ 可除.

引理 1.29. R 整环.

- (1) $_RE$ 内射 \Rightarrow 可除.
- (2) R 为 PID, 则内射 ⇔ 可除.
- **证明.** (1) $m \in E$, $0 \neq r \in R$. 定义 $\phi_r : R \hookrightarrow R$, $a \mapsto ra$ 为单态射, 此外由 $\operatorname{Hom}_R(R,X) \simeq X$, 对 $m \in E$ 有 $\psi_m : R \to E$, $b \mapsto bm$. 于是

$$R \xrightarrow{\phi_r} R$$

$$\psi_m \downarrow \qquad \qquad \exists! \ \psi'$$

(2) $_RM$ 可除, $\forall I \triangleleft R$, $0 \neq Ra = I \hookrightarrow R$, 有 $f(a) \in M \Rightarrow \exists m' \in M$ s.t. f(a) = am', 于 是取 $\psi' \colon R \to M$, $1 \mapsto m'$ 得到 f 的延拓, 从而由 Baer 判别法得到 M 内射.

例 1.34. $0 \to_{\mathbb{Z}} \mathbb{Z} \to_{\mathbb{Z}} \mathbb{Q} \to \mathbb{Z}(\mathbb{Q}/\mathbb{Z}) \to 0$, \mathbb{Q}/\mathbb{Z} 为内射模.

1.4 张量积与平坦模

1.4.1 张量积

定义 1.34. 设有 $_RM,_RN,_RL$, 称如下映射

$$M \times N \xrightarrow{\theta} L,$$

 $(m,n) \mapsto \theta(m,n)$

是双线性的 (Bilinear), 若

- (1) $\theta(m_1 + m_2, n) = \theta(m_1, n) + \theta(m_2, n), \ \theta(rm, n) = r\theta(m, n).$
- (2) $\theta(m, n_1 + n_2) = \theta(m, n_1) + \theta(m, n_2), \ \theta(m, rn) = r\theta(m, n).$

定义 1.35. $_{R}M$, $_{R}N$ 的**张量积**是指 ($_{R}U$, φ), 这里 φ : $M \times N \to U$ 为双线性映射, 满足泛性质: 对 \forall $_{R}L$, 以及 \forall θ : $M \times N \to L$ 双线性, 有

$$M \times N \xrightarrow{\varphi} R$$

$$\downarrow \theta \downarrow \qquad \exists! \ h$$

$$E$$

我们如下构造 (U,φ) . 考虑集 $M\times N$, 以 $M\times N$ 为基构造自由 R-模:

$$R(M \times N) = \{ \text{有限和} \sum_{i} c_i(m_i, n_i) \mid c_i \in R, \ (m_i, n_i) \in M \times N \}.$$

我们取 K 为由子集

$$\begin{cases}
(m_1 + m_2, n) - (m_1, n) - (m_2, n) \\
(rm, n) - r(m, n) \\
(m, n_1 + n_2) - (m, n_1) - (m, n_2) \\
(m, rn) - r(m, n)
\end{cases} m, m_i \in M, n, n_i \in N, r \in R$$

生成的 $R(M \times N)$ 的 R-子模. 那么我们取

$$_{R}U = R(M \times N)/K, \ \overline{(m,n)} =: m \otimes n.$$

并今

$$\varphi \colon M \times N \to U, \ (m,n) \mapsto m \otimes n.$$

现在我们要验证 φ 是双线性的: 在 U 中,

$$(m_1 + m_2) \otimes n = \overline{(m_1 + m_2, n)}$$

$$= \overline{(m_1, n) + (m_2, n)}$$

$$= \overline{(m_1, n)} + \overline{(m_2, n)}$$

$$= m_1 \otimes n + m_2 \otimes n.$$

同理

$$r(m \otimes n) = (rm) \otimes n,$$

$$m \otimes (n_1 + n_2) = m \otimes n_1 + m \otimes n_2,$$

$$m \otimes (rn) = r(m \otimes n).$$

而泛性质的验证基于

$$M \times N \xrightarrow{\varphi} R(M \times N) \xrightarrow{\theta'} U$$
 \tilde{theta}由基在映射下的像确定

我们宣称 $\tilde{\theta}(K) = 0$, 因为 θ 双线性, 于是今 $\theta'(m \otimes n) = \theta(m, n)$ 即可.

评论·记 $U =: M \otimes_R N$, $\varphi : M \times N \to M \otimes_R N$, $(m,n) \mapsto m \otimes n$, 那么 $\{m \otimes n \mid m \in M, n \in N\}$ 生成 $M \otimes_R N$. 特别地由于 $m \otimes rn = rm \otimes n$, $\forall r \in R$, 所以 $0_M \otimes n = 0_R(0_M \otimes n) = 0_{M \otimes N}$.

例 1.35. 记 $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$. 宣称: $\mathbb{Z}_n \otimes_{\mathbb{Z}} \mathbb{Q} = 0$.

$$\overline{a} \otimes \frac{p}{q} = \overline{a} \otimes n \left(\frac{p}{nq}\right)$$

$$= (n\overline{a}) \otimes \frac{p}{nq}$$

$$= \overline{0} \otimes \frac{p}{nq}$$

$$= 0.$$

例 1.36. gcd(m,n) = 1, $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n = 0$.

例 1.37. $R \otimes_R M \simeq M$, 因为对 $\rho(r,m) = rm$ 双线性, 其延拓同态 $\tilde{\rho}$: $R \otimes_R M \to M$, $\tilde{\rho}(r \otimes m) = rm$, $\forall r \in R, m \in M$. 另取

$$M \xrightarrow{f} R \otimes_R M, \ m \mapsto 1 \otimes m.$$

则 f 保加法, 因为 $1 \otimes (m+m') = 1 \otimes m + 1 \otimes m'$.

f 保 R-作用, 因为 $f(rm) = 1 \otimes rm = (r1) \otimes m = r(1 \otimes m) = rf(m)$. 故 f 为模同态. 于是 $\tilde{\rho}f(m) = \tilde{\rho}(1 \otimes m) = 1m = m$. $f\tilde{\rho} \colon R \otimes M \to R \otimes M$, 只用 $f\tilde{\rho}(r \otimes m) = f(rm) = 1 \otimes rm = r \otimes m$.

命题 1.30. $M \otimes_R N \simeq N \otimes_R M$.

证明. 设 $\tau: M \times N \to N \times M, (m,n) \mapsto (n,m)$, 于是由泛性质:

$$\begin{array}{ccc} M\times N & \xrightarrow{\varphi} & M\otimes_R N \\ \downarrow^{\tau} & & \downarrow^{\varphi\circ\tau} & \downarrow^{\exists!} f \\ N\times M & \xrightarrow{\psi} & N\otimes_R M \end{array}$$

这里 $f(m \otimes n) = n \otimes m$. 同理对 τ^{-1} 也可以由类似的 g, 可以证明 f, g 互逆, 从而同构. \square

评论. $f: M \to M', g: N \to N', 则 \exists! M \otimes_R N \overset{f \otimes_R g}{\to} M' \otimes_R N', m \otimes n \mapsto f(m) \otimes g(n).$

证明. 取 θ : $M \times N \to M' \otimes N'$, $(m,n) \mapsto f(m) \otimes g(n)$ 使用泛性质确定唯一同态即可,记为 $f \otimes g$.

命题 1.31.

$$\left(\bigoplus_{i\in\Lambda}M_i\right)\otimes_R N\simeq\bigoplus_{i\in\Lambda}(M_i\otimes_R N).$$

证明. 我们考虑 $\{M_i \stackrel{\text{inc}_i}{\hookrightarrow} \bigoplus_{i \in \Lambda} M_i\}_{i \in \Lambda}$, 考虑 $\forall i$,

 $\operatorname{inc}_i \otimes_R \operatorname{Id}_N \colon M_i \otimes_R N \to \left(\bigoplus M_i\right) \otimes_R N, \ m_i \otimes n \mapsto \operatorname{inc}_i(m_i) \otimes n.$

那么我们宣称 $\{\operatorname{inc}_i \otimes_R \operatorname{Id}_N \mid i \in \Lambda\}$ 与 $(\bigoplus M_i) \otimes_R N$ 满足直和的泛性质:

$$M_i \otimes_R N \longleftrightarrow \left(\bigoplus_{i \in \Lambda} M_i\right) \otimes_R N$$

$$\forall f_i \downarrow \\ T
\downarrow^{K-1} \exists! h$$

这里 h 只需把 $(\cdots, m_i, \cdots) \otimes n$ 打到 $f_i(m_i \otimes n)$. 于是其与直和同构.

推论. $_RN$ 自由模, 基 $\{v_i \mid i \in I\}$, 则 $N \otimes_R M \simeq \bigoplus_{i \in I} M$.

证明.
$$N = \bigoplus_{i \in \Lambda} Rv_i$$
, 那么 $N \otimes_R M \simeq \bigoplus_{i \in I} (Rv_i \otimes_R M) \simeq \bigoplus_{i \in I} M$.

推论. $_{R}M,_{R}N$ 自由, 基分别为 $\{m_{i}\}_{i\in I},\{n_{j}\}_{j\in J}$, 则 $M\otimes_{R}N$ 自由, 且基为 $\{m_{i}\otimes n_{j}\mid (i,j)\in I\times J\}$.

证明.

$$M \otimes_R N = \left(\bigoplus_{i \in I} Rm_i\right) \otimes_R \left(\bigoplus_{j \in J} Rn_j\right)$$
$$= \bigoplus_{i \in I} \bigoplus_{j \in J} (Rm_i \otimes Rn_j).$$

命题 1.32.

$$(M \otimes_R N) \otimes_R L \xrightarrow{\sim} M \otimes_R (N \otimes_R L),$$

 $(m \otimes n) \otimes l \mapsto m \otimes (n \otimes l).$

记为 $M \otimes_R N \otimes_R L$.

4