Finite State Automatons

Dhruva Sambrani

January 27, 2020

Finite State Automaton

 $M = (Q, \Sigma, \delta, q0, f)$ There is a set of states Q which M manipulates by δ over Σ and the string is accepted if it lies in $f \subset Q$, starting from q0.

$$q0 \in Q, f \subset Q$$

M always reads the entire input.

Accepting a string

Given a string, $S=c0,\!c1...cn,\,M$ accepts S iff $\exists~r0,\,r1,\,...~rn+1\in Q,\,st~1.~r0=q0~2.~ri~+~1=\delta(ri,\,ci)~3.~rn+1\in f$

A language is recognized by M, iff $L = \{s \mid M \text{ accepts } s\}$.

Example

1. Define a Finite State Automaton that recognizes the language $L=101, \Sigma=\{0,1\}$. Look at Fig 1 for implementation.

Side note

FSAs can be implemented in more than one ways. Is there a minimal implementation?

2. Define a Finite State Automaton that recognizes the language L = {s | s has equal 0s and 1s}, $\Sigma = \{0,1\}$

Pigeonhole Principle

$$r0 \rightarrow r1 \rightarrow ... \rightarrow ri \rightarrow ... \rightarrow rn$$

Continued in next class...

Figure 1: FSA