F21T1A2

- a) Formulieren Sie den Satz von Rouché.
- b) Zeigen Sie, dass die Gleichung $z + e^{-z} = 2021$ in der Halbebene $\{z \in \mathbb{C} : Re(z) > 0\}$ genau eine Lösung besitzt.
- c) Zeigen Sie, dass diese Lösung reell ist.

Zu a)

Sei $U \subseteq \mathbb{C}$ offen, $f: U \to \mathbb{C}$, $g: U \to \mathbb{C}$ holomorph, $\gamma: [a; b] \to U$ geschlossener, stückweiser C^1 -Weg in U und es gelte $|f(\gamma(t))| < |g(\gamma(t))|$ für alle $t \in [a; b]$.

Dann hat g keine Nullstelle auf Spur(γ) und in $\{z \in U \setminus Spur(\gamma) : n(\gamma; z) \neq 0\}$ (d.h. im Inneren von γ) haben g und f+g mit Vielfachheiten gezählt gleich viele Nullstellen.

Zub)

Die Lösungen von $z+e^{-z}=2021$ sind die Nullstellen von $h:\mathbb{C}\to\mathbb{C}$; $z\to z+e^{-z}-2021$.

Mit
$$f: \mathbb{C} \to \mathbb{C}$$
; $z \to e^{-z}$, $g: \mathbb{C} \to \mathbb{C}$; $z \to z - 2021$ und $\gamma = \gamma_1 \dotplus \gamma_2$ mit $\gamma_1: [-R; R] \to \mathbb{C}$; $t \to it$ und $\gamma_2: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to \mathbb{C}$; $t \to Re^{it}$ gilt:

$$\forall t \in [-R; R] \text{ gilt: } \left| g(\gamma_1(t)) \right| = |it - 2021| = \sqrt{t^2 + 2021^2} \ge 2021 > 1 = \left| e^{-it} \right| = \left| f(\gamma_1(t)) \right|.$$

Für
$$R \ge 2023$$
 und alle $t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ gilt $\left|g(\gamma_2(t))\right| = \left|Re^{it} - 2021\right| \ge |R - 2021| \ge 2 > 1 = e^{-Rcos(t)} = e^{Re(-Re^{it})} = \left|e^{-Re^{it}}\right| = \left|f(\gamma_2(t))\right|.$

Somit haben für jedes $R \ge 2023$ nach dem Satz von Rouché g und h = f+g in $H_R := \{z \in \mathbb{C} : Re(z) > 0; |z| < R\}$ mit Vielfachheit gezählt gleich viele Nullstellen. Da g nur eine einfache Nullstelle bei 2021 hat – und diese für $R \ge 2023$ in H_R liegt, hat h in jedem Halbkreis H_R , $R \ge 2023$, genau eine Nullstelle. Deshalb hat h auch in der Halbebene $\{z \in \mathbb{C} : Re(z) > 0\} = \bigcup_{R \ge 2023} H_R$ genau eine Nullstelle.

Zu c)

 $h|_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}$; $x \to x + e^{-x} - 2021$ ist stetig und reellwertig mit $h|_{\mathbb{R}}(0) = -2020 < 0$ und $h|_{\mathbb{R}}(2021) = e^{-2021} > 0$. Daher hat $h|_{\mathbb{R}}$ auf]0; 2021[mindestens eine Nullstelle laut Zwischenwertsatz.

Die laut (b) einzige Nullstelle von h in $\{z \in \mathbb{C}: Re(z) > 0\}$ liegt also in]0; 2021[und ist daher reell.