Homework 1

Dan Kolbman

November 17, 2014

1 Finite Differencing in Curved Coordinates

2 Differentiation and Integration with Noise

$$f(x) = \sin(x)e^{\cos(x)} \tag{1}$$

$$f'(x) = (\cos(x) - \sin^2(x))e^{\cos(x)}$$
(2)

2.1 Differentiation using Stencils

Figure 1: RMS Error in 5 point stencil for the first derivative

2.2 Integration with Simpson's Rule

Figure 2: RMS Error in 5 point stencil for the second derivative

Figure 3: RMS Error using Simpson's Rule for varying numbers of points

3 Cepheid Lightcurve Integraiton

Figure 4: Magnitude converted to luminosity and interpolated with a cubic spline

Set Used	Simpson's Rule	Trapezoid Method
Data Only	6.0790	6.6789
Magnitude Spline	6.5974	6.5974
Luminosity Spline	6.6725	6.6725

Table 1: Luminosity-days evaluted for different methods of integration

4 Planck's Law

 ν was redefined to be dimensionless:

$$\hat{\nu} \equiv \frac{h\nu}{k_B T}$$

 $\hat{\nu}$ was transformed to $tan(\hat{\nu})$ over the range $(0,\pi/2)$ to evaluate the integral over infinity.

4.1 Total Number Density

$$\begin{split} n_{tot} &= \frac{8\pi}{c^3} \frac{k_B T}{h} \int_0^\infty \hat{\nu}^2 \frac{1}{e^{\hat{\nu}} - 1} d\hat{\nu} \\ &= \frac{8\pi}{c^3} \frac{k_B T}{h} \int_0^{\pi/2} \frac{tan(\hat{\nu})^2}{cos(\hat{\nu})} \frac{1}{e^{\hat{\nu}} - 1} d\hat{\nu} \\ &= 2.40406 \left(\frac{8\pi}{c^3} \frac{k_B T}{h} \right) \end{split}$$

4.2 Median Energy

$$median = \frac{1}{2} \frac{8\pi}{c^3} \frac{k_B T}{h} \int_0^\infty n_\nu \hat{\nu} d\hat{\nu}$$
$$= 1.31058 \left(\frac{8\pi}{c^3} \frac{k_B T}{h} \right)^2$$

4.3 Mean Energy

Using the frequency:

$$\bar{\nu} = 1.09030 \left(\frac{k_B T}{h} \right)$$

Using the wavelength:

$$\bar{\lambda} = 0.64494 \left(\frac{hc}{k_B T}\right)$$

The product should be c:

$$\left[0.64494\left(\frac{hc}{k_BT}\right)\right] \left[1.09030\left(\frac{k_BT}{h}\right)\right] = 0.70319c$$

Which it isn't (Error somewhere).

4.4 Standard Deviation

$$\sigma_{\nu} = 0.64756 \left(\frac{k_B T}{h} \right)$$

5 Romberg Integration

Function	$R_{3,3}$	Actual
$cos^2(x)$	1.0118	1.4546
xln(x+1)	0.2454	0.3243
$\int sin^2(x) - 2xsin(x)$	-1.060	1.3667
$(xln(x))^{-1}$	0.4082	0.5266

Table 2: Integral approximations using Romberg integration

6 Gaussian Quadrature

$$a = \frac{7}{15}$$

$$b = \frac{16}{15}$$

$$c = \frac{7}{15}$$

$$d = \frac{1}{15}$$

$$e = -\frac{1}{15}$$