Multi-Task and Transfer Learning in Low-Resource Speech Recognition

Joshua Meyer

PhD Candidate
Department of Linguistics
University of Arizona

Roadmap

- Overview of Transfer Learning
 - Multi-Task Learning
 - Copy-Paste Transfer
- Multi-Task Learning Studies
 - Linguistic Tasks
 - Engineered Tasks
 - Discovered Tasks
- Copy-Paste Transfer Studies
 - Multilingual Transfer
 - Model Interpretability
- Conclusion

Introduction

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

But we can exploit similar use-cases!

Transfering Bias

Useful bias comes from a source domain

Transfering Bias

Useful bias comes from a source domain

source Dataset

Transfering Bias

Useful bias comes from a source domain

source Dataset

-or-

source Model

Example of Domain

source Dataset \rightarrow

English Speech Dataset

-or-

-or-

source Model \rightarrow

Trained English Model

"THE DOG"

"THE DOG"

ASR Acoustic Modeling

T H E D O G

Phonetic Labels

Phonetic Labels

Phonetic Labels

Phonetic Labels

Phonetic Labels

[A] [E] [I] [O] [U]

Phonetic Labels

Where do we get labels?

Phonetic Decision Tree

Transfering Bias

But first, what is a task?

{rottweiler, large}

{collie, large}

{terrier, small}

{collie, large}

{terrier, small}

{collie, large}

{terrier, small}

{collie, large}

{terrier, small}

Multi-Task Studies

Can Linguistics help in a MTL Framework?

- Bells and Renals say "Yes!"
- XXX says "No!"

Linguistic Knowledge

	Bila	abial	Labio	dental	Den	ıtal	Alve	olar	Postaly	eolar	Retro	oflex	Pal	atal	Ve	elar	Uvi	ılar	Phary	ngeal	Glo	ttal
Plosive	p	b					t	d			t	q	С	J	k	g	q	G			3	
Nasal		m		m				n				η		ŋ		ŋ		N				
Trill		В						r										R				
Tap or Flap				V				ſ				r										
Fricative	ф	β	f	V	θ	ð	S	Z	ſ	3	Ş	Z	ç	j	X	Y	χ	R	ħ	S	h	ĥ
Lateral fricative							1	ß														
Approximant				υ				J				J		j		щ						
Lateral approximant								1				l		Λ		L						

Linguistic Knowledge

Example: Collapsing on Voice

Data

Corpus					
Train	\mathbf{Test}				
 -	LibriSpeech-B Kyrgyz Audiobook				

Data

	Corpus				
	Train	\mathbf{Test}	0.5 hou		
•	LibriSpeech-A LibriSpeech-A	LibriSpeed	h-B		
		Ryigyz Audi			
	4.86 hours				

Data

	Corpus				
	Train	Test 0.5 hours			
• • • • • • • • • • • • • • • • • • •	•	LibriSpeech-B			
Language	LibriSpeech-A	Kyrgyz Audiobook			
	4.86 hours	1.6 hours			

Alignment Procedure

- GMM-HMM Alignment
- Monophones
 - 25 iterations of Baum-Welch
 - 1,000 Gaussian components
- Triphones
 - 25 iterations of Baum-Welch
 - 1,000 leaves
 - 2,000 Gaussian components

DNN Training Procedure

- 5 Layer, Time-Delay Neural Network
- 500 Nodes / Layer
- ReLU Activations
- Stochastic Gradient Descent for 2 epochs

	Corpus					
	Train	Test				
Speaker	LibriSpeech-A	LibriSpeech-B				
	LibriSpeech-A	Kyrgyz Audiobook				

	$\mathbf{WER}\%$				
Auxiliary Tasks	Triphones	Monophones			
STL Baseline	4	1.67			
Voice	41.16	42.36			
Place	42.66	40.61			
Manner	42.03	41.70			
Voice + Place	42.90	41.49			
Voice + Manner	42.45	42.66			
Place + Manner	42.66	41.82			
Voice + Manner + Place	42.42	42.72			

Not so great :(

	$\overline{ ext{WER}\%}$			
Auxiliary Tasks	Triphones	Monophones		
STL Baseline	4	1.67		
Voice	41.16	42.36		
Place	42.66	40.61		
Manner	42.03	41.70		
Voice + Place	42.90	41.49		
Voice + Manner	42.45	42.66		
Place + Manner	42.66	41.82		
Voice + Manner + Place	42.42	42.72		

The main task is more important...

The main task is more important...

Implement a relative weighting!

Source: Target Weighting

1:1

1/3:1

	\mathbf{W}	m ER%	$\mathbf{WER}\%$			
Auxiliary Tasks	Triphones	Monophones	Triphones	Monophones		
STL Baseline	4	1.67	4	1.67		
Voice	41.16	42.36	41.00	40.43		
Place	42.66	40.61	41.37	41.46		
Manner	42.03	41.70	40.43	41.34		
Voice + Place	42.90	41.49	41.31	41.28		
Voice + Manner	42.45	42.66	41.25	42.18		
Place + Manner	42.66	41.82	42.03	42.48		
Voice + Manner + Place	42.42	42.72	41.64	41.88		

Now, that looks better:)

Source: Target Weighting

1:1

1/3:1

	\mathbf{W}	m ER%	$\mathbf{WER}\%$			
Auxiliary Tasks	Triphones	Monophones	Triphones	Monophones		
STL Baseline	4	1.67	4	1.67		
Voice	41.16	42.36	41.00	40.43		
Place	42.66	40.61	41.37	41.46		
Manner	42.03	41.70	40.43	41.34		
Voice + Place	42.90	41.49	41.31	41.28		
Voice + Manner	42.45	42.66	41.25	42.18		
Place + Manner	42.66	41.82	42.03	42.48		
Voice + Manner + Place	42.42	42.72	41.64	41.88		

Train Test

Speaker LibriSpeech-A LibriSpeech-B
Language LibriSpeech-A Kyrgyz Audiobook

Linguistic Standard English Kyrgyz

	${ m WER\%}$				
Auxiliary Tasks	Triphones	Monophones			
STL Baseline	5	3.07			
Phonemes	53.95	52.78			
Voice	54.05	53.85			
Place	55.22	53.95			
Manner	53.37	53.27			
Voice + Place	55.22	53.46			
Voice + Manner	55.12	53.46			
Place + Manner	55.51	53.66			
Voice + Manner + Place	54.15	54.44			

Not so great :(

	WER%				
Auxiliary Tasks	Triphones	Monophones			
STL Baseline	53.07				
Phonemes	53.95	52.78			
Voice	54.05	53.85			
Place	55.22	53.95			
Manner	53.37	53.27			
Voice + Place	55.22	53.46			
Voice + Manner	55.12	53.46			
Place + Manner	55.51	53.66			
Voice + Manner + Place	54.15	54.44			

Source: Target Weighting

1:1

1/3:1

	W	$\overline{\mathrm{ER}\%}$	\mathbf{W}	$\overline{\mathrm{ER}\%}$
Auxiliary Tasks	Triphones	Monophones	Triphones	Monophones
STL Baseline	5	3.07	5	3.07
Phonemes	53.95	52.78	51.80	51.61
Voice	54.05	53.85	52.39	53.46
Place	55.22	53.95	51.90	52.29
Manner	53.37	53.27	52.00	51.80
Voice + Place	55.22	53.46	52.68	52.78
Voice + Manner	55.12	53.46	51.22	51.32
Place + Manner	55.51	53.66	50.83	53.66
Voice + Manner + Place	54.15	54.44	52.78	52.39

Now, that looks better:)

Source: Target Weighting

1:1

1/3:1

	W	$\overline{\mathrm{ER}\%}$	\mathbf{W}	$\overline{\mathrm{ER}\%}$
Auxiliary Tasks	Triphones	Monophones	Triphones	Monophones
STL Baseline	5	3.07	5	3.07
Phonemes	53.95	52.78	51.80	51.61
Voice	54.05	53.85	52.39	53.46
Place	55.22	53.95	51.90	52.29
Manner	53.37	53.27	52.00	51.80
Voice + Place	55.22	53.46	52.68	52.78
Voice + Manner	55.12	53.46	51.22	51.32
Place + Manner	55.51	53.66	50.83	53.66
Voice + Manner + Place	54.15	54.44	52.78	52.39

Summary: Linguistic Experiments

- Linguistics can help
 - But we must keep in mind weighting
- Multilingual transfer more affected
 - Triphone leaves of the tree
 not best for transfer

Engineered (Multilingual) Tasks

Engineered Tasks

Can we find useful linguistic bias without a linguist?

Linguist-Crafted Tasks

Linguist-Crafted Tasks

Lots of unused structure...

Linguist-Crafted Tasks

Alignment Procedure

- GMM-HMM Alignment
- Monophones
 - 25 iterations of Baum-Welch
 - 1,000 Gaussian components
- "Half-phones"
 - 25 iterations of Baum-Welch
 - 792 leaves
 - 5,000 Gaussian components
- Triphones
 - 25 iterations of Baum-Welch
 - 1584 leaves
 - 5,000 Gaussian components

Alignment Procedure

- GMM-HMM Alignment
- Monophones
 - 25 iterations of Baum-Welch
 - 1,000 Gaussian components
- "Half-phones" (Half-way down the tree)
 - 25 iterations of Baum-Welch
 - 792 leaves
 - 5,000 Gaussian components
- Triphones
 - 25 iterations of Baum-Welch
 - 1584 leaves
 - 5,000 Gaussian components

DNN Training Procedure

- 5 Layer, Time-Delay Neural Network
- 500 Nodes / Layer
- ReLU Activations
- Stochastic Gradient Descent for 10 epochs

DNN Training Procedure

Source:Target Ratio	Target Weighting
2:1	1.53x
1:1	3.06x
1:2	6.12x

DNN Training Procedure

Smarter weighting

Source:Target Ratio	Target Weighting
2:1	1.53x
1:1	3.06x
1:2	6.12x

Multilingual Engineered Tasks

Auxiliary (Source Lang) Tasks		e:Target 1-to-1	Weighting 2-to-1
STL Baseline		50.54	4
Monophones	48.20	47.32	47.41
Halfphones	48.68	46.73	48.68
Triphones	49.37	47.12	46.73
${\bf Monophones + Halfphones}$	48.20	48.49	48.10
Halfphones + Triphones	50.05	48.00	47.90
Monophones + Halfphones + Halfphones	48.88	48.20	48.59

End-to-End Transfer Studies

End-to-end?

End-to-end

"THE DOG"

DeepSpeech

Experimental Design

- 5 depths for slicing source model
- 2 update scenarios (frozen vs. fine-tuned)
- 12 target languages
- 120 experiments, in total

Hyperparameters

- Single GPU training
- 24 train batch, 48 dev batch
- 20% dropout rate
- 0.0001 learning rate with ADAM
- Early stopping based on last 5 steps

Data (Spoken Corpora)

Frozen Transfer Results

	Character Error Rate							
	Νυ	ımber of	Layers C	Copied fr	om Engl	ish		
Lang.	None	1	2	3	4	5		
sl	23.35	23.93	25.30	18.87	17.53	26.24		
ga	31.83	29.08	36.14	27.22	29.07	32.27		
CV	48.10	46.13	47.83	38.00	35.23	42.88		
br	21.47	19.17	20.76	18.33	17.72	21.03		
tr	34.66	32.98	35.47	33.00	33.66	36.71		
it	40.91	39.20	41.55	38.16	39.40	43.21		
СУ	34.15	32.46	33.93	31.57	35.26	36.56		
tt	32.61	29.20	30.52	27.37	28.28	31.28		
ca	38.01	36.44	38.70	36.51	42.26	47.96		
fr	43.33	43.30	43.47	43.37	43.75	43.79		
kab	25.76	25.57	25.97	25.45	27.77	29.28		
de	43.76	44.48	44.08	43.70	43.77	43.69		

Table 2. Frozen Transfer Learning Character-error rates (CER)

Frozen Transfer Results

	Character Error Rate						
	Nu	ımber of	Layers C	Copied fr	om Engl	ish	
Lang.	None	1	2	3	4	5	
sl	23.35	23.93	25.30	18.87	17.53	26.24	
ga	31.83	29.08	36.14	27.22	29.07	32.27	
CV	48.10	46.13	47.83	38.00	35.23	42.88	
br	21.47	19.17	20.76	18.33	17.72	21.03	
tr	34.66	32.98	35.47	33.00	33.66	36.71	
it	40.91	39.20	41.55	38.16	39.40	43.21	
су	34.15	32.46	33.93	31.57	35.26	36.56	
tt	32.61	29.20	30.52	27.37	28.28	31.28	
ca	38.01	36.44	38.70	36.51	42.26	47.96	
fr	43.33	43.30	43.47	43.37	43.75	43.79	
kab	25.76	25.57	25.97	25.45	27.77	29.28	
de	43.76	44.48	44.08	43.70	43.77	43.69	

Table 2. Frozen Transfer Learning Character-error rates (CER)

Frozen Transfer Results

Character Error Rate						
	Nu	ımber of	Layers C	Copied fr	om Engl	ish
Lang.	None	1	2	3	4	5
sl	23.35	23.93	25.30	18.87	17.53	26.24
ga	31.83	29.08	36.14	27.22	29.07	32.27
CV	48.10	46.13	47.83	38.00	35.23	42.88
br	21.47	19.17	20.76	18.33	17.72	21.03
tr	34.66	32.98	35.47	33.00	33.66	36.71
it	40.91	39.20	41.55	38.16	39.40	43.21
су	34.15	32.46	33.93	31.57	35.26	36.56
tt	32.61	29.20	30.52	27.37	28.28	31.28
ca	38.01	36.44	38.70	36.51	42.26	47.96
fr	43.33	43.30	43.47	43.37	43.75	43.79
kab	25.76	25.57	25.97	25.45	27.77	29.28
de	43.76	44.48	44.08	43.70	43.77	43.69

Table 2. Frozen Transfer Learning Character-error rates (CER)

Fine-Tuning Transfer Results

Character Error Rate							
	Νι	ımber of	Layers C	Copied fr	om Engl	ish	
Lang.	None	1	2	3	4	5	
sl	23.35	21.65	26.44	19.09	15.35	17.96	
ga	31.83	31.01	32.2	27.5	25.42	24.98	
CV	48.1	47.1	44.58	42.75	27.21	31.94	
br	21.47	19.16	20.01	18.06	15.99	18.42	
tr	34.66	34.12	34.83	31.79	27.55	29.74	
it	40.91	42.65	42.82	36.89	33.63	35.10	
СУ	34.15	31.91	33.63	30.13	28.75	30.38	
tt	32.61	31.43	30.80	27.79	26.42	28.63	
ca	38.01	35.21	39.02	35.26	33.83	36.41	
fr	43.33	43.26	43.51	43.24	43.20	43.19	
kab	25.76	25.5	26.83	25.25	24.92	25.28	
de	43.76	43.69	43.62	43.60	43.76	43.69	

Table 3. Fine-Tuned Transfer Learning Character-error rates (CER)

Fine-Tuning Transfer Results

Character Error Rate							
	Νι	ımber of	Layers C	Copied fr	om Engl	ish	
Lang.	None	1	2	3	4	5	
sl	23.35	21.65	26.44	19.09	15.35	17.96	
ga	31.83	31.01	32.2	27.5	25.42	24.98	
CV	48.1	47.1	44.58	42.75	27.21	31.94	
br	21.47	19.16	20.01	18.06	15.99	18.42	
tr	34.66	34.12	34.83	31.79	27.55	29.74	
it	40.91	42.65	42.82	36.89	33.63	35.10	
су	34.15	31.91	33.63	30.13	28.75	30.38	
tt	32.61	31.43	30.80	27.79	26.42	28.63	
ca	38.01	35.21	39.02	35.26	33.83	36.41	
fr	43.33	43.26	43.51	43.24	43.20	43.19	
kab	25.76	25.5	26.83	25.25	24.92	25.28	
de	43.76	43.69	43.62	43.60	43.76	43.69	

Table 3. Fine-Tuned Transfer Learning Character-error rates (CER)

Interpretability Experiments

Regression on Embeddings

Regression on Embeddings

Regression on Embeddings

Speech vs. Noise

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

Classification Accuracy							
Number of Layers Copied from English							
1	2	3	4	5	6		
51.01	93.68	92.82	95.30	94.55	93.53		

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

English vs. German

English vs. German

- Copied layers, added final FC layer with single output and logistic activation
- English vs. German
- 5,000 train clips, 500 test clips per class

English vs. German

Table 5. English vs. German Audio Classification Accuracy (%)

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

Classification Accuracy						
Number of Layers Copied from English						
1	2	3	4	5	6	
66.51	66.38	52.77	86.21	74.97	85.00	

Table 5. English vs. German Audio Classification Accuracy (%)

Discussion

Discussion

- 1) Transfer in ASR
 - Fine-tuning always helps
 - LSTM transfer is best, but only with fine-tuning
- 2) Interpretability Studies
 - At the third layer, the model has learned general speech, but language-agnostic representations

Thank you for your attention!

APPENDIX A: Multi-Task

Linguistic Knowledge

Example: Collapsing on Voice

```
B P --> P
                bilabial plosives
CH JH --> CH
                alveo-palatal affricates
D T --> T
                alveolar plosives
DH TH --> TH
                interdental fricatives
F V --> F
                labio-dental fricatives
G K --> G
                velar plosives
S Z --> S
                alveolar fricatives
SH ZH --> SH
                alveo-palatal fricatives
```

APPENDIX B: DeepSpeech

Data Details

		Dataset Size					
		Audio Clips		Unique Speakers			
Language	Code	Dev	Test	Train	Dev	Test	Train
Slovenian	sl	110	213	728	1	12	3
Irish	ga	181	138	1001	4	12	6
Chuvash	CV	96	77	1023	4	12	5
Breton	br	163	170	1079	3	15	7
Turkish	tr	407	374	3771	32	89	32
Italian	it	627	734	5019	29	136	37
Welsh	СУ	1235	1201	9547	51	153	75
Tatar	tt	1811	1164	11187	9	64	3
Catalan	ca	5460	5037	38995	286	777	313
French	fr	5083	4835	40907	237	837	249
Kabyle	kab	5452	4643	43223	31	169	63
German	de	7982	7897	65745	247	1029	318

Table 1. Number of audio clips and unique speakers per language per dataset split.

Effect of Data Size

2048 dims

