Finance Quantitative

TP: Options sur Actions et Indices

Patrick Hénaff

Version: 07 févr. 2024

1 Smile Interpolation with the Vanna-Volga pricing model.

Given the implied volatility at three strikes, we will use the Vanna-Volga pricing method to interpolate the volatility curve. Assume r = 0, b = 0, T = 1, Spot = 100. The Black-Scholes volatility for three strikes is given below.

Strike	80.00	100.0	120.000
Volatility	0.32	0.3	0.315

1.1 Getting started

- Using the Rmetrics library (fOptions), verify that you know how to compute the price and the "greeks" of a vanilla option.
- Identify or write a robust function to compute the implied volatility, given the price of a vanilla option.

1.2 Calculation steps

- 1.2.1 Write a robust function to calculate the implied volatility, given a strike.
- 1.2.2 Write functions to compute the risk indicators needed for the Vanna-Volga method.

You may use analytical expressions or a finite difference method.

- 1.2.3 Compute vectors of vega, vanna, volga for the three hedge instruments
- 1.2.4 Compute the risk indicators for a call option struck at 90.
- 1.2.5 Compute the Vanna-Volga price adjustment and the corresponding implied volatility.
- 1.2.6 Wrap the above logic in a function in order to

Interpolate/extrapolate the vol curve from K = 70 to K = 130 and plot the result.

2 Pricing a digital call

Recall that a digital call with strike K pays one euro if $S_T \geq K$, and nothing otherwise.

The volatility curve is given in the previous question. The objective is to price a digital call, maturity T = 1, struck at K = 105, using the same Vanna-Volga method as in the previous question.

2.1 Data

```
T <- 1

Spot <- 100

r <- 0

b <- 0

# Vol ATM

sigma <- .30

# strike

Strike <- 105
```

- 2.1.1 Write a function to compute the price of a digital call analytically.
- 2.1.2 Using the same reference instruments as in the previous question, compute the VV risk indicators of the hedge and of the digital call.
- 2.1.3 Compute the VV price correction for the digital call

3 Valorisation d'une option "chooser"

Une option "chooser" de maturité t_2 et strike K donne le droit au détenteur de choisir si l'option est un call ou un put, à un moment t_1 de la vie de l'option préalablement défini. A ce moment là, l'option "chooser" vaut $\max(C(K, t_2), P(K, t_2))$, où $C(K, t_2)$ ($P(K, t_2)$) est la valeur en t_1 d'un call (put) de strike K de maturité t_2 .

On se propose de valoriser cette options de deux manières: à l'aide d'un arbre trinomial d'une part, et d'autre part par une formule analytique.

3.1 Valorisation dans un arbre trinomial

On construira un modèle trinomial par agrégation de deux pas d'un modèle binomial de type Jarrow-Rudd.

On rappelle les paramètres du modèle binomial de Jarrow-Rudd, qui est charactérisé par des probabilités de transition p=q=1/2: $u=e^{\mu\Delta t+\sigma\sqrt{\Delta t}},\ d=e^{\mu\Delta t-\sigma\sqrt{\Delta t}}$.

avec
$$\mu = (r - d) - \frac{1}{2}\sigma^2$$
.

- 3.1.1 Calculer les paramètres d'un arbre trinomial constitué par l'agrégation de deux pas de temps d'un arbre binomial de Jarrow-Rudd.
- 3.1.2 Construire un arbre de 200 pas, maturité 1 an pour le processus log-normal

$$dS_t = rdt + \sigma dW$$

avec les paramètres suivants:

S_0	1e+02
σ	2e-01
r	2e-02

Déterminez une manière parcimonieuse de représenter cet arbre, adaptée à la résolution de la question suivante.

Vérifiez la construction de l'arbre en valorisant des instruments simples et en les comparant à des valeurs analytiques.

- 3.1.3 Valoriser l'option "chooser" dans l'arbre trinomial
- 3.2 Montrer que l'option "chooser" peut être répliquée par un portefeuille statique, et calculer sa valeur analytiquement. Comparer vos deux estimations.