Deep Q-learning

Подготовил:

Пугачев Александр, 151

Reinforcement learning

Reinforcement learning

- > Агент: платформа, отражающая мяч
- Состояние: пиксельное изображение состояния игры
- Действие: игровое управление (влево, вправо)
- Награда: увеличение/уменьшение счета игры

Как переформулировать математически?

Марковский процесс принятия решений

Определяется как: (S, A, R, P, γ)

- S множество возможных состояний
- А множество возможных действий
- R множество вознаграждений
- Р распределение вероятностей перехода в новое состояние
- γ discount factor

Марковский процесс принятия решений

- Первый шаг: t=0 , среда принимает состояние ${\it S}_0$
- Пока не достигли терминального состояния:
 - Агент выбирает действие a_t
 - Среда генерирует награду $r_t \sim R(\cdot|s_t,a_t)$
 - Среда генерирует новое состояние $s_{t+1} \sim \mathbb{P}(\cdot|s_t,a_t)$
 - Агент получает награду r_t и следующее состояние s_{t+1}

Оптимальная стратегия

Стратегия π – функция из S в A, определяющая какое действие принимать в каждой ситуации

Цель: найти оптимальную стратегию π^* , максимизирующую: $\sum_{t>0} \gamma^t r_t$

Оптимальная стратегия π^* :

$$\pi^* = \arg\max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi \right]$$

V – function & Q – function

Траектория: $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$

Насколько хорошим является текущее состояние?

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, \pi\right]$$

Насколько хорошей является пара состояние-действие?

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]$$

Уравнение Беллмана

$$Q^*(s, a) = \max_{\pi} \mathbb{E} \left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$

 Q^* удовлетворяет уравнению Беллмана:

$$Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Value iteration algorithm

Используем уравнение Беллмана в качестве итерации:

$$Q_{i+1}(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q_i(s', a') | s, a \right]$$

$$Q_i \to Q^*$$

В чем проблема?

Нам необходимо вычислять Q(s,a) для каждой пары состояние-действие

Какое решение?

Использовать аппроксиматор Q(s,a)

Например, нейросеть!

Нахождение оптимальной стратегии

Используем аппроксимирующую функцию

$$Q(s,a, heta)pprox Q^*(s,a)$$
 параметры - веса

Нахождение оптимальной стратегии

Хотим найти функцию, удовлетворяющую уравнению Беллмана:

$$Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Forward pass:

Функция потерь:
$$L_i(\theta_i) = \mathbb{E}_{s,a}\left[(y_i - Q(s,a;\theta_i))^2\right]$$
 $y_i = \mathbb{E}_s'\left[r + \gamma \max_{a'} Q(s',a';\theta_{i-1})|s,a\right]$

Backward pass:

$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s,a,s'} \left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i) \right) \nabla_{\theta_i} Q(s, a; \theta_i) \right]$$

Пример

- > Агент: платформа, отражающая мяч
- Состояние: пиксельное изображение состояния игры
- Действие: игровое управление (влево, вправо)
- Награда: увеличение/уменьшение счета игры

Алгоритм

 $Q(s,a;\theta)$:

FC - 2 (Q-values)

FC - 256

32 фильтра 4х4

16 фильтров 8х8

Последний полносвязный слой имеет выход длины 2, соответствующий:

 $Q(s_t, a_1)$

 $Q(s_t, a_2)$

St: 4 картинки 84х84

Experience Replay

- Обучение на последовательных изображениях проблематично:
 - Изображения коррелируют
- Решение: использование Experience Replay:
 - Создадим таблицу replay memory размера N , состоящую из переходов (s_t,a_t,r_t,s_{t+1})
 - Обучаем Q-сеть на случайном наборе переходов из replay memory

Deep Q-learning & Experience Replay

- ►Инициализируем replay memory D, и веса Q-сети
- > Для каждого эпизода:
 - ightharpoonup Инициализируем состояние S_1
 - > Пока не достигли терминального состояния:
 - ightharpoonup Выбираем $a_t = \max Q^*(s_t, a; \theta)$
 - \blacktriangleright Совершаем действие a_t , получаем награду r_t и новое состояние s_{t+1}
 - ightharpoonup Сохраняем переход (s_t, a_t, r_t, s_{t+1})
 - ightharpoonup Генерируем случайно переход (s_i, a_i, r_i, s_{i+1}) из D
 - $\triangleright y_j = r_j + \gamma \max_{a'} Q(s_{j+1}, a'; \theta)$
 - \blacktriangleright Совершаем шаг градиентного спуска: $\left((y_j-Q(s_j,a_j;\theta)\right)^2$

Сравнение с аналогами

Atari Breakout

	SARSA	Contingency	Human	DQN
Average total reward	5.2	6	31	168

Сравнение с аналогами

	B. Rider	Breakout	Enduro	Pong	Seaquest	S. Invaders
SARSA	996	5.2	129	-19	665	271
Contingency	1743	6	159	-17	723	268
Human	7456	31	368	-3	28010	3690
DQN	4092	168	470	20	1705	581

Источники

- https://youtu.be/lvoHnicueoE
- https://youtu.be/V1eYniJoRnk
- https://arxiv.org/pdf/1312.5602.pdf
- https://habrahabr.ru/post/279729/

