

TEAM VWXYJ
Yunsheng Bai
Vivi Chuang
Junheng Hao
Sherly Sun

# Table of Contents

- Introduction
- Strategy Analysis
- Implementation
  - Similarity Based
  - Neural Network
- Results

#### Introduction

- Predict taxi trip destination (Porto, Portugal)
- Based on initial partial trajectories
- Motivation
  - o Mobile Dispatch System
  - Easy to see where the taxi has been
  - Hard to know where the taxi is heading to
- Features
  - o TRIP\_ID
  - ORIGIN\_CALL (phone number)
  - o ORIGIN\_STAND
  - o TAXI\_ID
  - START\_TIMESTAMP
  - DAYTYPE (weekday, holiday, weekend)
  - COORDINATES sequence (every 15s)





- (1) Some trips tend to stop for a long time in middle.
  - Count the number of waiting instance
  - Statistics: 65.49%: 30s, 15.87%: 45s, 1.13%: 60s
- (2) Last 1-2 minutes is more important than the previous part of the trip when predicting.

#### Insights from data visualization

- (3) Nearest taxi stand from a trip's start point also provides hint for its destination.
  - Destination counting for each nearest stand





#### Data Preprocessing:

- (1) Divide the area covered by the training set into grids to bin different locations. (Grid resolution: 100m)
- (2) In one training example, if the taxi does not move more than 1 meter within 45 seconds, we ignore the previous trajectory.
- (3) Calculate the nearest taxi stand from starting point of the journey
- (4) For testing set, cut the journey and only keep the last 90 seconds features.

#### General Model:

For every test case, use geometric median of top K related trips as final prediction.

#### Related trips mean:

- (1) Trips start from same taxi stand
- (2) Trips set out from within -t +t hour (time within day) (hyperparameter)

#### General Model:

Ranking function to calculate distance between journey:

```
[P1,....,Pn]
Train
                                              dis(train, test) = dis(P_1, Q_1) + \lambda dis(P_2, Q_2) + \dots + \lambda^{n-1} dis(P_n, Q_n)
Test
          [Q1,....,Qn]
Train
          [P1,....,Pn]
Test
          [Q1,....,Qn]
                [Q1,....,Qn]
```

Slide the test data window, and use the smallest one as final distance between train and test.

#### Parameter tuning result on validation set:



Lambda variation with fix t and k



t variation with fix lambda and k



k variation with fix lambda and t

Final parameter setting

$$k = 200, t = 2, lambda = 1.4$$

#### Final performance

| Submission and Description                                               | Private Score | Public Score | Use for Final Score |
|--------------------------------------------------------------------------|---------------|--------------|---------------------|
| result-onlt-dis-weight-2.csv 2 days ago by Sherly add submission details | 2.27896       | 2.65733      |                     |

# **Neural Network Approach**



# **Neural Network Approach**



# **Current results (updated on Dec 4)**

| Model                    | Cost on Kaggle Private |
|--------------------------|------------------------|
| Similarity-based         | 2.27896                |
| NN-no embeddings         | 2.40713                |
| NN<br>(our best results) | 1.84468                |
| Winning method           | 1.87                   |

#### References

- [1] De Brébisson, Alexandre, et al. "Artificial neural networks applied to taxi destination prediction." arXiv preprint arXiv:1508.00021(2015)
- [2] Hoang Thanh Lam, et al. "(Blue) Taxi Destination and Trip Time Prediction from Partial Trajectories" arXiv preprint arXiv:1509.05257(2015) https://arxiv.org/pdf/1509.05257.pdf
- [3] ECML/PKDD 15 Taxi Trip Time Prediction (II): 1st Place Solution write-up
- [4] Kaggle discussion board: https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/discussion

# The End

Thank you for listening:)

# Q & A

# Backup slides: Training process

Model design mostly counts for final results.



# Backup slides: Metavalue Embedding

Table 1: Metadata values and associated embedding size.

| Metadata                | Number of possible values | Embedding size |
|-------------------------|---------------------------|----------------|
| Client ID               | 57106                     | 10             |
| Taxi ID                 | 448                       | 10             |
| Stand ID                | 64                        | 10             |
| Quarter hour of the day | 96                        | 10             |
| Day of the week         | 7                         | 10             |
| Week of the year        | 52                        | 10             |

The evaluation metric for this competition is the **Mean Haversine Distance**. The **Haversine Distance** is commonly used in navigation. It measures distances between two points on a sphere based on their latitude and longitude.

The Harvesine Distance between the two locations can be computed as follows

$$a = \sin^2\left(\frac{\phi_2 - \phi_1}{2}\right) + \cos\left(\phi_1\right)\cos\left(\phi_2\right)\sin^2\left(\frac{\lambda_2 - \lambda_1}{2}\right)$$
$$d = 2 \cdot r \cdot atan\left(\sqrt{\frac{a}{1 - a}}\right)$$

where  $\phi$  is the latitude,  $\lambda$  is the longitude,

d is the distance between two points, and r is the sphere's radius,