Principal Component Analysis Lecture 13 Termeh Shafe

Dimensionality Reduction

Principal Component Analysis

- does not drop variables
- creates new variables to describe the information in our data, so called **principal components**

What is PCA? which is the direction where the variation the largest?

What happens when a matrix hits a vector?

The vector transforms into a new vector

- it strays from its path
 it may get scaled: stretched (longer) or squished (shorter)

Eigendecomposition

For a given square matrix A, there are special vectors which refuse to stray from their path

Eigendecomposition

For a given square matrix A, there are special vectors which refuse to stray from their path

These vectors are called eigenvectors

For a given square matrix A, there are special vectors which refuse to stray from their path

These vectors are called eigenvectors

Formally, $Ax = \lambda x$

where λ are the eigenvalues determining the scale, but directions remains the same (x)

Several properties of matrices can be analyzed based on their eigenvalues.

Eigendecomposition

The eigenvectors of a square matrix \boldsymbol{A} having distinct eigenvalues are linearly independent.

The eigenvectors of a square symmetric matrix are orthogonal.

The eigenvectors of a square symmetric matrix can thus form a convenient basis.

$$Cov(\mathbf{x}) = \begin{bmatrix} Var(x_1) & Cov(x_1, x_2) & Cov(x_1, x_3) & \cdots & Cov(x_1, x_n) \\ Cov(x_2, x_1) & Var(x_2) & Cov(x_2, x_3) & \cdots & Cov(x_2, x_n) \\ Cov(x_3, x_1) & Cov(x_3, x_2) & Var(x_3) & \cdots & Cov(x_3, x_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ Cov(x_n, x_1) & Cov(x_n, x_2) & Cov(x_n, x_3) & \cdots & Var(x_n) \end{bmatrix}$$

Eigendecomposition

'stretch' and 'squish' direction? (eigenvectors) how much? (eigenvalues)

Eigendecomposition

$$\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$Ax = \lambda x$$

to find the eigenvalues λ we can solve the so called **characteristic polynomial**

$$|A - \lambda I| = 0 \quad \text{where } \lambda I = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$
$$\begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$|A - \lambda I| = (1 - \lambda)(1 - \lambda) - (0.5)(0.5)$$

$$=\lambda^2-2\lambda+0.75$$

solve the roots to get eigenvalues: $(\lambda - 1.5)(\lambda - 0.5) \implies \lambda = [1.5, 0.5]$

$$\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$Ax = \lambda x$$

plug eigenvalues back and get eigenvectors (direction)

$$\lambda = [1.5, 0.5] \longrightarrow \begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}$$

Example

in PCA we perform eigendecomposition on the covariance matrix of the data

$$Cov(\mathbf{x}) = \begin{bmatrix} 1 & -0.69 \\ -0.69 & 1 \end{bmatrix}$$

Example

in PCA we perform eigendecomposition on the covariance matrix of the data

$$Cov(\mathbf{x}) = \begin{bmatrix} 1 & -0.69 \\ -0.69 & 1 \end{bmatrix}$$

Example: Loadings Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 Income 0.314 0.145 -0.676 -0.347 -0.241 0.494 0.018 Education 0.237 0.444 -0.401 0.240 0.622 -0.357 0.103 0.057 Age 0.484 -0.135 -0.004 -0.212 -0.175 -0.487 -0.657 -0.052 Residence Employ 0.459 -0.304 0.122 -0.017 -0.014 -0.023 0.368 0.739 Savings 0.404 0.219 0.366 0.436 0.143 0.568 -0.348 -0.017 -0.067 -0.585 -0.078 -0.281 0.681 0.245 -0.196 -0.075 Credit cards -0.123 -0.452 -0.468 0.703 -0.195 -0.022 -0.158 0.058

Example: USA Arrests (ISLR)

- For each state in the US:
- number of arrests per 100 000 residents for Assault, Murder and Rape.
- Included is also the percent of the population in each state living in urban areas
- PC score vectors have length n = 50
- PC loading vectors have length p=4
- PCA performed after standardizing each variable

Example: USA Arrests Biplot

PC

High loadings for Murder (0.536), Assault (0.583), and Rape (0.543): Rape

 These three variables contribute strongly and approximately equally to PC1.

 PC1 could represent a general "crime severity" axis, as it captures patterns where these types of crimes tend to vary together.

UrbanPop (0.279) has a smaller contribution:

 Population density has less influence on PC1 compared to the crime-related variables.

PC2

High loading for UrbanPop (0.873):

- PC2 is primarily influenced by UrbanPop.
- $\circ\,$ This suggests PC2 captures variation in population density that is independent of crime severity.

Negative contributions from Murder (-0.418) and Assault (-0.188):

 Murder and Assault negatively influence PC2, indicating areas with high UrbanPop might have slightly lower relative crime rates.

0.5358995

Principal Components Regression (PCR)

- 1. Use PCA to find principal components among the covariates
- Use these principal components as independent variables in a LS regression to get a vector of coefficient estimates
- 3. Transform this vector back to the scale of the actual covariates, using the selected PCA loadings
- 4. The final PCR estimator will have same dimension equal to the total number of covariates

Single Value Decomposition

PCA can also be done using SVD on the data matrix instead

Hands-On Examples: PCR and PCA

perform PCA on penguin body features

source: @allison horst https://github.com/allisonhorst/nengu

