# 14. 静电场中的导体

- 14.1 导体的静电平衡条件
- 14.2 静电平衡时导体上的电荷分布
- 14.3 有导体存在时静电场的分析与计算
- 14.4 唯一性定理
- 14.5 静电屏蔽
- 14.6 电像法

## 导体存在大量的可自由移动的电荷

conductor

绝缘体 无自由移动的电荷

也称 电介质 dielectric

半导体 介于上述两者之间 semiconductor

本章讨论金属导体与场的相互影响

# 14.1 导体的静电平衡条件 (electrostatic equilibrium of conductor)

1. 静电平衡状态

## 导体内部和表面无自由电荷的定向移动

## 静电平衡状态

2. 导体静电平衡的条件

$$E_{\bowtie}=0$$

$$\vec{E}_{\rm ar{k}m}$$
 上表面







#### > 一个推论

导体静电平衡时,导体各点电势相等,

即导体是等势体,表面是等势面。

 $\varphi = c$ 

证:在导体上任取两点a和b

$$\varphi_a - \varphi_b = \int_{(a)}^{(b)} \vec{E} \cdot d\vec{l} = 0$$

$$\varphi_a = \varphi_b$$

导体等势是导体场强分布特点的必然结果

静电平衡条件 的另一种表述



## 接地 (ground):

- > 取得与无限远相同的电势(通常取为零)。
  - > 提供电荷流动的通道 (导体上的电量可变)

例:有两个金属球A、B。设A带正电荷,B不带电。若它们从相隔无限远到相隔有限远,在这过程中它们会相互影响,电荷分布会发生变化。



这种过程非常 快,一种静电平 衡状态被坏 马上建立制 静电平衡状态.

静电平衡状态:导体内部和表面

无自由电荷定向移动的状态.



## 下面这些说法对不对?

1. B球上正电荷处 电势高,负电荷 处电势低。

不对!

2. B球上正电荷发出的电场线可以指向它的负电荷。

不对!

3. 两球再靠近,会不会A球左侧也出现负电荷?

不会!

- 例14.1 两个完全相同的导体球,皆带等量的正电荷 Q,现使两球互相接近,到一定程度时,则\_\_\_\_\_.
- (1)二球表面都将有正、负两种电荷分布;
- (2)二球中至少有一个表面上有正、负两种电荷分布;
- (3)无论接近到什么程度二球表面都不能有负电荷分布;
- (4)结果不能判断,要视电荷 Q 的大小而定.

用反证法. 设此相互接近的两导体球为 A 和 B 在达到静电平衡时, 都带有异号电 荷,则 A 球上正电荷所发电场线就有部分终 止于 B球的负电荷上 (如图 a), 因而 A 球上 正电荷处的电势  $U_{A+}$  就高于 B球上负电荷 处的电势  $U_{B-}$ , 即  $U_{A+} > U_{B-}$ . 可这样一来, 作为等势体的 B 球上的正电荷所发电场线, 不仅不可能终止于本身的负电荷上, 也不可 能终止于 A 球的负电荷上, 而只能终止于无 限远处. 因若有 B上发的电场线终止于 A 上,则有  $U_{B+} > U_{A-}$ ,于是会导致  $U_{A+} > U_{B-}$  $= U_{\text{B+}} > U_{\text{A-}}$ ,即出现了在静电平衡时导体球 A 不是等势体 ( $U_{A+} > U_{A-}$ )的荒谬结果. 这就 是说不可能有电场线终止于 A 球上, 也即导 体球 A 上只有正电荷不能有负电荷. 又由于 A. B两导体球完全相同, 且皆带等量正电 荷, 故同理也可用上述方法证明导体 B上也 只有正电荷而无负电荷.





## 14.2 静电平衡时导体上的电荷分布

- 一.导体静电平衡时净电荷分布在表面
  - 1.实心导体:  $\sigma$  可不为0, 但 $\rho$ <sub>内</sub>必为0。



#### 理由:

$$\rho_{\triangleright} = \varepsilon_0 \nabla \cdot \vec{E} = 0$$

## 2.导体壳: a)导体壳内无净电荷

 $\sigma_{h}$ 可不为零,但 $\sigma_{h}$ 和  $E_{h}$ 必为零。



理由:

在导体中包围空腔选取

高斯面S,则:

$$\oint_{S} \vec{E}_{\text{Bh}} \cdot \mathbf{d} \, \vec{s} = \mathbf{0} \implies$$

$$\oint_{S_{\bowtie}} \sigma_{\bowtie} \cdot \mathrm{d}s = 0$$

$$\oint_{S_{h}} \sigma_{h} \cdot ds = 0 \qquad \sigma_{h} \text{ 处处 为0?}$$

存在等量异号正负电荷?



不可能!

E线从正电荷到负电荷

→ 与导体静电平衡矛盾

 $\rightarrow$  只能 $\sigma_{\text{Pl}}$  处处为 $\mathbf{0}$ ,且腔内无 $\mathbf{E}$ 线  $\rightarrow$  只能 $\mathbf{E}_{\text{Pl}} = \mathbf{0}$ 。

腔内的场强分布与腔外电荷及其分布无关

## b)导体壳内有净电荷q:



 $\sigma_{\text{M}}$ 可不为0,但必有 $\sigma_{\text{M}} \neq 0$ ,

且 
$$q_{内表} = \oint_S \sigma_{内} ds = -q$$
 理由:

在导体中包围空腔做高斯面S,则:

$$\oint_{S} \vec{E} \cdot d\vec{s} = \frac{1}{\varepsilon_{0}} (q + q_{\text{bb}}) = 0$$

$$\therefore q_{\text{内表}} = -q$$

#### 二. 孤立带电导体表面电荷分布

一般情况较复杂; 孤立的带电导体, 实验给出电荷的定性分布:

在表面凸出的尖锐部分(曲率是正值且较大)电荷面密度较大,

在比较平坦部分(曲率较小)电荷面密度较小,在表面凹进部分带电面密度最小。



$$\frac{q_1}{4\pi \,\varepsilon_0 r_1} = \frac{q_2}{4\pi \,\varepsilon_0 r_2}$$

$$\frac{\sigma_1}{\sigma_2} = \frac{q_1}{4\pi r_1^2} : \frac{q_2}{4\pi r_2^2} = \frac{r_2}{r_1}$$

## 尖端放电(point discharge):

带电的尖端电场强,使附近的空气电离,因而产生放电。



#### 三.表面场强与面电荷密度的关系

设导体表面电荷面密度为  $\sigma(x, y, z)$ 

相应的电场强度为  $\vec{E}_{\pm}(x,y,z)$ 

设P是导体外紧靠导体表面的一点

$$\oint_{S} \vec{E} \cdot d\vec{S} = \int_{dS} \vec{E}_{\pm} \cdot d\vec{S} + \int_{(S-dS)} \vec{E} \cdot d\vec{S}$$

$$=E_{\pm}dS=\frac{\sigma dS}{\varepsilon_0}$$

$$E_{\frac{1}{2}} = \frac{\sigma}{\varepsilon_0}$$

$$\vec{E}_{\begin{subarray}{l} \vec{E}_{\begin{subarray}{l} \vec{E}_{\begin{sub$$



n: 外法线方向

思考  $\vec{E}_{\mathcal{R}}$ 是小柱体内电荷的贡献,还是空间全部电荷的贡献? 从推导中的哪一步可看出?

## 14.3 有导体存在时静电场的分析与计算

#### 原则:

1.静电平衡的条件

$$E_{\bowtie}=0$$

2.基本性质方程

$$\oint_{S} \vec{E} \cdot d\vec{s} = \frac{\sum_{i} q_{i}}{\varepsilon_{0}}$$

$$ec{E}_{rac{d}{\mathcal{E}}_{0}}=rac{\sigma}{\mathcal{E}_{0}}\hat{n}$$

$$\oint_{L} \vec{E} \cdot d\vec{l} = 0$$

$$\sum_{i} Q_{i} = const.$$

#### 4. 格林互易定理

由 
$$\int \rho \varphi' \, \mathrm{d}V = \int \rho' \varphi \, \mathrm{d}V$$
 可证:

在静电场中,有一组固定的n个导体系统,其电量分别为 $q_1, q_2, ..., q_n$ ,它们的电势分别为 $\varphi_1, \varphi_2, ..., \varphi_n$ ,当n个导体的电量变为 $q'_1, q'_2, ..., q'_n$ 时,它们的电势变为 $\varphi'_1, \varphi'_2, ..., \varphi'_n$ ,则必有

$$\sum_{i=1}^{n} q_i \varphi_i' = \sum_{i=1}^{n} q_i' \varphi_i$$

例14.2 一半径为R的金属球原来不带电,将它放在点电荷+q的电场中,球心O与点电荷的距离为r。 求金属球上感应电荷在球心处的电场强度以及金属球的电势。

解:

$$\vec{E}_{o} = \vec{E}' + \vec{E} = 0$$

$$\vec{E}' = -\vec{E} = -\frac{q}{4\pi \,\varepsilon_0 r^2} \left(-\hat{r}\right) = \frac{q}{4\pi \,\varepsilon_0 r^2} \hat{r}$$

≠为从球心O到点电荷位矢的单位矢量。

$$\varphi_O = \frac{q}{4\pi \,\varepsilon_0 r}$$

# 例14.3 一个金属球A,带电 $q_A$ ,同心金属球壳B,带电 $q_B$ ,试分析它们的电荷分布.

解:  $q_A$ 在A的表面上,  $q_B$ 也在B的表面上,



设 B 的内表面带电  $q_2$ , B 的外表面带电  $q_3$ , 作高斯面如图。

由静电平衡条件

$$q_2$$
=  $-q_A$   
由电荷守恒

$$q_3 = q_B - q_2 = q_B + q_A$$

讨论1: 你能否求出此电荷分布的静电场?

讨论2: 如果用导线 将A、B连接, 它们的电荷 如何分布?



答: A球与B球内表面的电中和, B球的外表面带电为 $q_R+q_A$ 

讨论3: 你能否求出此电荷分布的静电场?

## 例14.4 无限大的带电平面的场中

平行放置一无限大金属平板。

求: 金属板两面电荷面密度。

解: 设金属板面电荷密度  $\sigma_1$ ,  $\sigma_2$  由电量守恒

$$\sigma_{1} = -\sigma_{2} \quad (1)$$
导体体内任一点P,场强为零
$$\frac{\sigma_{0}}{2\varepsilon_{0}} + \frac{\sigma_{1}}{2\varepsilon_{0}} - \frac{\sigma_{2}}{2\varepsilon_{0}} = 0 \quad (2)$$



$$\sigma_1 = -\frac{1}{2}\sigma_0$$

$$\sigma_2 = \frac{1}{2}\sigma_0$$

## 讨论:空间静电场的分布如何?

 $\sigma_{1}$   $\sigma_{2}$  大金属平板B内的场强为零。



# $\frac{\sigma_0}{2} + \frac{\sigma_0}{2}$ I、II、III 区的场强为

$$E_{\mathsf{I}} = \sigma_0 / (2\varepsilon_0) \quad (向左)$$

 $\sigma_1$ 、 $\sigma_2$ 的作用抵消。

$$E_{\text{II}} = E_{\text{III}} = \sigma_0 / (2\epsilon_0)$$
(向右)

 $\sigma_1$ 、 $\sigma_2$ 的作用抵消。

# 如果将金属平板B接地



$$\sigma_2 = 0$$

## $\sigma_2=0$ 这时 $\sigma_1=?$ 仍利用静电平衡条件:

对 B 内部任意一点P,有



$$E_{\rm P}=0 \implies$$

$$E_P = \frac{\sigma_0}{2\varepsilon_0} + \frac{\sigma_1}{2\varepsilon_0} = 0$$

$$\Rightarrow \sigma_1 = -\sigma_0$$

## 这时 $E_{\rm I} = E_{\rm III} = 0$ , $E_{\rm II} = \sigma_0/\epsilon_0$ (向右)



讨论

将金属平板 B的 右侧接地 或左侧接地 有区别吗?

答:没有区别。

# 思考 如果导体板接地,下面结果哪个正确?



例14.5 两个接地的无限大平行导电平板A、B之间放置一个点电荷q, 点电荷q与平板B的距离为a,两平板相对面之间的距离为d。求两平板 上的感应电荷q<sub>A</sub>和q<sub>B</sub>。

 $q_A = -\frac{a}{d}q$ 

 $\mathbf{q}_{\mathbf{B}}$ ,  $q'_A$ ,  $q'_B = q'_A$ , q' = 0 $\phi_A=0$ ,  $\phi_R=0$ ,  $\phi=C$  $\varphi_A' = V$ ,  $\varphi_B' = 0$ ,  $\varphi' = \frac{a}{d}V$  $q_A V + q \frac{a}{d} V = 0$  $\sum q_i \varphi_i' = \sum q_i' \varphi_i$ 

