Fuzzing: the state of the art

Степанов Д.С.

Анализ программ

- Статический анализ
 - Model checking
 - Data flow analysis
 - Code inspections
- Динамический анализ
 - Debugging
 - Functional testing
 - Fuzzing
- Гибридные методы
 - Fuzzing
 - 0 ..

Что такое fuzzing?

"Program that generates a stream of random characters to be consumed by a target program", Barton Miller et al., 1988

Преимущества и недостатки

Плюсы:

- Легко развернуть
- Работает 24/7 (человек 5/8)
- Генерирует редкие кейсы
- Высокая точность
- Не нужны знания о целевой программе

Минусы:

- Низкая эффективность
- Низкая полнота (для некоторых видов фаззеров)

А где же он применяется?

Краткий ответ: везде

Схема Black-box Grey-box White-box Target program Monitor Bug manager Test cases Runtime info Bug filter Mutation based Test generator Initial seed • Generation based Real bugs

Taxonomy

Black-box:

 Работает только с I/О программы

White-box:

- Предложен Годфруа в 2007
- Dynamic symbolic execution + coverage-maximizing heuristic

Grey-box:

 Основан на использовании некоторых фич из white-box фаззинга

Минусы:

• Полнота

Минусы:

- Сложность реализации
- Плохо применим для больших проектов

Минусы:

 Попытка найти баланс между black-box и white-box методами

Пример black-box фаззинга

Пример grey-box фаззинга

Пример white-box фаззинга

```
fun getIthEl(a: Int, i: Int): Int {
    val list = listOf(1, 2, 3)
    return if (a == 1) {
        if (i > 0) {
            list[i]
        } else -1
    } else -1
}
```

```
@S %0 = new java/lang/Integer[3]
 @S %1 = java/lang/Integer.class.valueOf(1)
 @S*(\%0[0]) = \%1
 @S %2 = java/lang/Integer.class.valueOf(2)
 @S*(\%0[1]) = \%2
 @S %3 = java/lang/Integer.class.valueOf(3)
 @S *(\%0[2]) = \%3
 @S %4 = kotlin/collections/CollectionsKt.class.listOf(%0)
 @S %5 = arg$0 != 1
) -> (BEGIN
<OR> (
@P %5 = false
 @S \%6 = arg$1 <= 0
) -> (
 @P %6 = false
 @S \%7 = \%4.get(arg\$1)
 @S %8 = (%7 as java/lang/Number)
 @S %9 = %8.intValue()
 @S \%10 = \%9
). <OR> (
 @P %5 = false
 @S \%6 = arg$1 <= 0
) -> (
@P %6 = true
 @S \%10 = -1
), <OR> (
 @P %5 = true
 @S \%10 = -1
) END) -> (
 @S <retval> = %10
```

Пример white-box фаззинга

```
[DEBUG] - Args: [2, 3]
[DEBUG] - Collected trace: (
@S %0.1 = new java/lang/Integer[3]
@S %1.2 = java/lang/Integer.class.valueOf(1)
 @S *(%0.1[0]) = %1.2
@S %2.3 = java/lang/Integer.class.valueOf(2)
 @S *(%0.1[1]) = %2.3
                                                                                Solver
                                                                                                                getIthEI(1, 123)
 @S %3.4 = java/lang/Integer.class.valueOf(3)
 @S *(%0.1[2]) = %3.4
 @S %4.5 = kotlin/collections/CollectionsKt.class.listOf(%0.1)
@S %5.6 = arg$0 != 1
 @P %5.6 = true
@S %10.7 = -1
@S true = true
```

Важные вопросы

- Начальная выборка
- Генерация тестов
- Обработка runtime информации
- Постпроцессинг результатов
- Масштабируемость

Начальная выборка

- Случайное множество
- Hotset алгоритм
- ...
- Минимальное множество с наибольшим покрытием (AFL)

Dumb vs Smart fuzzers

- Мутационный подход
- Нет/почти нет информации о формате ввода
- Мутируются имеющиеся тестовые данные
- Мутации могут быть рандомными или использовать некоторые эвристики

- Генеративный подход
- Тестовые данные генерируются из описания формата (документация, грамматика и т. д.)

Dumb fuzzers mutations

- Bit-flipping
- Arithmetic mutations
- Block-based mutations

AFL

AFL mutations

Bit-flipping

```
fun Char.flip(): Char {
 val i = Random.nextInt(1, 6)
 val reslnBytes = this.toByte() xor i.toByte()
 return resInBytes.toChar()
fun main() {
 val a = "KSPT"
 val randomInd = Random.nextInt(0, a.length)
 val randomCh = a[randomInd]
 val newA = a.replace(randomCh, randomCh.flip())
 println(newA)
```

Результат:

KRPT KPPT KSPU KSPP KSPP KSPV JSPT JSPT KSTT KPPT

AFL mutations

Arithmetic mutations

```
fun main() {
    val a = "KSPT"
    val buffer = ByteBuffer.wrap(a.byteInputStream().readAllBytes())
    val smallInteger = Random.nextInt(0, 36)
    val newInt = if (Random.nextBoolean()) buffer.int + smallInteger else buffer.int - smallInteger
    val newBuffer = ByteBuffer.allocate(4)
    newBuffer.putInt(newInt)
    printIn(newBuffer.array().joinToString("") { "${it.toChar()}" })
}
```

Результат:

KSPo KSPL KSPh KSPT KSPY KSPV KSPP KSPE KSP\ KSPT

AFL mutations

Block-based mutations
 (вставка/удаление/замена)

Результат:

```
jKSPT
K|□aSPT
KSPV+ ¦ T
SP
KS
t-d₹
KS{PT
K
K/v⊠SPT
TKSPT
u□jKSPT
KSP+T
```

Coverage-based dumb fuzzing

Testcase selection:

- AFLFast
- Vuzzer
- AFLGo

AFL

Taint analysis-based dumb fuzzing

Примеры недоверенных источников данных:

- Файлы (mp3, pdf, ...)
- Протоколы (UDP, HTTP)
- USB
- Веб-камеры
- ...

Taint analysis-based dumb fuzzing

- Анализ помеченных данных используется для отслеживания влияния байтов на поток управления, чтобы выявить "ключевые".
- Бывает статическим и динамическим

Генеративные фаззеры

- Предопределенный формат тестовых данных
 - В Peach, PROTOS, Dharma спецификация задается пользователем.
 - Tavor работает со БНФ спецификацией
 - Nautilus грамматика
 - Заточенные под какую-то задачу (jsfunfuzz, TLS-Attacker)
- Выведенный формат тестовых данных
 - Skyfire выводит вероятностную контекстно-чувствительную грамматику по набору исходных тестов
 - IMF (фаззер API ядра) выводит модель по логам
 - Learn&Fuzz использует машинное обучение

Что насчёт white-box фаззеров?

- Также нужна "правильная" начальная тестовая выборка
- Имеет ряд проблем:
 - Path explosion
 - Imprecise symbolic execution
 - Восстановление сложных данных из результатов SMT-решателя
 - Memory modelling
 - 0 ...

Что лучше всего на практике?

- Для разных задач и возможностей разные подходы
- Иногда достаточно и black-box фаззера
- Наилучший показатель время/качество/возможность анализа показывает гибрид между grey- и white-box подходами (применяем white-box, чтобы направить grey-box туда, куда он изначально не мог добраться)

Обработка результатов

- Deduplication
 - Stack Backtrace Hashing
 - Coverage-based Deduplication (AFL)
 - Semantics-aware Deduplication
- Prioritization
 - Fuzzer taming problem
 - Taint analysis
- Test case minimization
 - AFL пытается удалить байты или превратить их в 0
 - Delta-debugging
 - CReduce
- Bug isolation
 - Slicing
 - Spectrum-based
 - Dynamic methods

Разнообразие фаззеров

		Misc.		PREPROCESS			SCHEDULE	INPUTGEN				INPUTEVAL		CONFUPDATE		
								1					1000,000			
Fuzzer	Feedback Gathering Granularity	Open-Sourced	Source Code Required	Support In-memory Fuzzing	Model Construction	Program Analysis	Seed Scheduling	Mutation	Model-based	Constraint-based	Taint Analysis	Crash Triage: Stack Hash	Crash Triage: Coverage	Evolutionary Seed Pool Update	Model Update	Seed Pool Culling
BFF [49]	•	1		i			_	•				· /				
CodeAlchemist [100]		1)	0		ı		4			1				
CLsmith [140] DELTA [134]	:	V							1			1				
DIFUZE [64]	- 3	1	1		0				1					-		
Digtool [168]	•)			1	•				I				
Doupé et al. [73]	•							_	1						•	
FOE [50] GLADE [30]	:	1					1		1			V				
IMF [99]	•	1		1	•		1	•	1			1				
jsfunfuzz [187]	•	1							1			. 1				
LangFuzz [105] Miller et al. [152]	:	1					l	•	1							
Peach [76]	:	1					ı		1			1.				
PULSAR [85]	·	1			•				1				9		•	
Radamsa [102]	•	V)			I .	•	4			l .				
Ruiter et al. [180] TLS-Attacker [195]	•	1							4						•	
zuff [103]	+0	1						•								
FLAX [182]	●+○		1	ĺ		1	1	•			V	1				
IoTFuzzer [54]	•+O	1			•	1		•	V							
SymFuzz [52] AFL [231]	•+O	1		1		*		•				·	1	1		./
AFLFast [37]	ŏ	1		1			V1					1	1	V		1
AFLGo [36]	3	1	1	1		1	V1	•					1	1		1
AssetFuzzer [131]	0		V			1										
AtomFuzzer [169] CalFuzzer [189]	0	1	1			1	ı									
classfuzz [59]	ó					-	✓	•								
CollAFL [83]	O †		V	1			V1	•					V	V		V
DeadlockFuzzer [116]	0	1	1			1	V1									
FairFuzz [136] go-fuzz [215]	0	1	1	1			1	9	-			_	1	1	•	1
Hawkeve [53]	o o		1	1		1	· ·	0				I	1	1		
honggfuzz [204]	0	1						•				. 1		1		
kAFL [184] LibFuzzer [7]	3	1	-	1				•					,	1		
MagicFuzzer [47]	3	1	1			1	ı *	•				1	٧	٧		
Nautilus [22]	0	1	1					1	~					~		
RaceFuzzer [190]	9	1	1			4						1				
RedQueen [23] Steelix [138]	0	V		1		1	J	0					1	1		1
Syzkaller [216]	0	1	1	l i			~	•	1				1	1		1
Angora [56]	0+0	1	1					•			V	1		V		
Cyberdyne [92] DigFuzz [239]	0+0	1		1			. 1	:		4			1	1		1
Driller [200]	0+0 0+0	1					· ·	•		1			1	1		1
QSYM [230]	0+0	V					V	•		1		1	1	V		1
T-Fuzz [170]	0+0	1		1		1	V1	•		1			1	1	- 1	1
VUzzer [176] BitFuzz [44]	0+0	V				4	I ✓			1	V			V	•	
BuzzFuzz [84]	0		1	1		1		•		1	1	1				
CAB-Fuzz [125]	0					1				1						
Chopper [210]	0	1	1			1				4		1				
Dewey et al. [70] Dowser [97]	0	1	1	1		1	1		1	1	1	1				
GRT [145]	0		1			1	· /		1		1	٠			0	
KLEE [46]	0	1	1)						1		1				
MoWF [172]	0				- 10				1	1						
MutaGen [123] Narada [181]	0	1	1		•	1		•				١				
SAGE [90]	0			1						1		1				
TaintScope [219]	0					1	· ·	•			1		1			

Заключение

- Фаззинг один из самых популярных методов автоматического тестирования программ
- По хорошему, фаззить необходимо все программы
- Самыми популярными фаззерами на данный момент являются
 - AFL grey-box dumb fuzzing
 - Sage white-box fuzzing
 - Microsoft Security Risk Detection porfolio
- Перспективные направления исследований:
 - Symbolic execution
 - Input grammars generation
 - Distributed applications

