提纲

- 1 线搜索准则
- 2 线搜索算法
- ③ 收敛性分析
- 4 梯度下降法
- 5 Barzilar-Borwein 方法
- 6 应用举例

引言:无约束优化算法

$$\min_{x \in \mathbb{R}^n} f(x).$$

- 线搜索
 - ◆ 先确定搜索方向:梯度类算法、次梯度算法、牛顿算法、拟牛顿算法、次梯度算法、牛顿算法、拟牛顿算法等。
 - ② 按准则进行近似搜索.
- 信赖域
 - ① 主要针对f(x) 二阶可微的情形, 在一个给定的区域内使用二阶模型近似原问题.
 - ② 不断直接求解该二阶模型从而找到最优值点.

线搜索算法:盲人下山

- 求解f(x) 的最小值点如同盲人下山, 无法一眼望知谷底, 而是:
 - 首先确定下一步该向哪一方向行走.
 - 2 再确定沿着该方向行走多远后停下以便选取下一个下山方向.
- 线搜索类算法的数学表述:

$$x^{k+1} = x^k + \alpha_k d^k.$$

我们称 d^k 为迭代点 x^k 处的**搜索方向**, α_k 为相应的**步长**.这里要求 d^k 是一个**下降方向**, 即 $(d^k)^{\mathsf{T}}\nabla f(x^k) < 0$.

• 线搜索类算法的关键是如何选取一个好的方向 $d^k \in \mathbb{R}^n$ 以及合适的 步长 α_k .

α_{l} 的选取:精确线搜索算法

- 选取 d^k 的方法千差万别. 但选取 α_k 的方法却非常相似.
- 首先构造一元辅助函数

$$\phi(\alpha) = f(x^k + \alpha d^k),$$

其中 d^k 是给定的下降方向, $\alpha > 0$ 是该辅助函数的自变量.

- 线搜索的目标是选取合适的 α_{l} 使得 $\phi(\alpha_{l})$ 尽可能减小. 这要求:
 - $\mathbf{0}$ α_l 应该使得f 充分下降
 - ② 不应在寻找α 上花费过多的计算量
- 一个自然的想法是寻找αμ 使得

$$\alpha_k = \operatorname*{argmin}_{\alpha > 0} \phi(\alpha),$$

即 $lpha_{\iota}$ 为最佳步长. 这种线搜索算法被称为精确线搜索算法

● 选取α_k 通常需要很大计算量, 在实际应用中较少使用

5/60

α_k 的选取:非精确线搜索算法

- 不要求 α_k 是 $\phi(\alpha)$ 的最小值点, 仅要求 $\phi(\alpha_k)$ 满足某些不等式. 这种线搜索方法被称为**非精确线搜索算法**.
- 选取α_k 需要满足的要求被称为线搜索准则
- 线搜索准则的合适与否直接决定了算法的收敛性,若选取不合适的 线搜索准则将会导致算法无法收敛
- 例如, 若只要求选取的步长满足迭代点处函数值单调下降, 则函数值 $f(x^k)$ 的下降量可能不够充分, 导致算法无法收敛到极小值点

例子:不合适的线搜索准则导致无法收敛

考虑一维无约束优化问题

$$\min_{x} \quad f(x) = x^2,$$

迭代初始点 $x^0 = 1$. 由于问题是一维的,下降方向只有 $\{-1, +1\}$ 两种. 我们选取 $d^k = -\text{sign}(x^k)$,且只要求选取的步长满足迭代点处函数值单调下降,即 $f(x^k + \alpha_k d^k) < f(x^k)$. 考虑选取如下两种步长:

$$\alpha_{k,1} = \frac{1}{3^{k+1}}, \quad \alpha_{k,2} = 1 + \frac{2}{3^{k+1}},$$

通过简单计算可以得到

$$x_1^k = \frac{1}{2} \left(1 + \frac{1}{3^k} \right), \quad x_2^k = \frac{(-1)^k}{2} \left(1 + \frac{1}{3^k} \right).$$

显然, 序列 $\{f(x_1^k)\}$ 和序列 $\{f(x_2^k)\}$ 均单调下降, 但序列 $\{x_1^k\}$ 收敛的点不是极小值点, 序列 $\{x_2^k\}$ 则在原点左右振荡, 不存在极限

Armijo准则

定义 (Armijo 准则)

设 d^k 是点 x^k 处的下降方向, 若

$$f(x^k + \alpha d^k) \le f(x^k) + c_1 \alpha \nabla f(x^k)^{\mathrm{T}} d^k,$$

则称步长 α 满足**Armijo** 准则, 其中 $c_1 \in (0,1)$ 是一个常数.

Figure: Armijo 准则

Armijo准则:评注

- 引入Armijo 准则的目的是保证每一步迭代充分下降
- Armijo 准则有直观的几何含义, 它指的是点 $(\alpha,\phi(\alpha))$ 必须在直线

$$l(\alpha) = \phi(0) + c_1 \alpha \nabla f(x^k)^{\mathrm{T}} d^k$$

的下方, 上图中区间 $[0,\alpha_1]$ 中的点均满足Armijo 准则

- Armijo 准则需要配合其他准则以保证迭代的收敛性, 因为 $\alpha=0$ 显然满足Armijo准则, 此时迭代序列中的点固定不变

回退法:以Armijo准则为例

- 给定初值α̂, 回退法通过不断以指数方式缩小试探步长, 找到第一 个满足Armijo 准则的点
- 回退法选取

$$\alpha_k = \gamma^{j_0} \hat{\alpha},$$

其中

Algorithm 1 线搜索回退法

- 1: 选择初始步长 $\hat{\alpha}$, 参数 γ , $c \in (0,1)$. 初始化 $\alpha \leftarrow \hat{\alpha}$.
- 2: while $f(x^k + \alpha d^k) > f(x^k) + c\alpha \nabla f(x^k)^T d^k$ do
- 4: end while
- 5: 输出 $\alpha_k = \alpha$.

回退法:以Armijo准则为例

- \bullet 该算法被称为回退法是因为 α 的试验值是由大至小的, 它可以确保输出的 α_k 能尽量地大
- 算法1不会无限进行下去,因为 d^k 是一个下降方向,当 α 充分小时, Armijo 准则总是成立的
- 实际应用中我们通常也会给α设置一个下界,防止步长过小

Goldstein 准则

- 为了克服Armijo 准则的缺陷, 我们需要引入其他准则来保证每一步的 α^k 不会太小
- Armijo准则只要求点 $(\alpha, \phi(\alpha))$ 必须处在某直线下方, 我们也可使用相同的形式使得该点必须处在另一条直线的上方. 这就是Armijo-Goldstein 准则, 简称Goldstein 准则

定义 (Goldstein 准则)

设 d^k 是点 x^k 处的下降方向, 若

$$f(x^k + \alpha d^k) \le f(x^k) + c\alpha \nabla f(x^k)^{\mathrm{T}} d^k, \tag{1a}$$

$$f(x^k + \alpha d^k) \ge f(x^k) + (1 - c)\alpha \nabla f(x^k)^{\mathrm{T}} d^k, \tag{1b}$$

则称步长 α 满足**Goldstein 准则**, 其中 $c \in (0, \frac{1}{2})$.

Goldstein准则

Goldstein 准则有直观的几何含义, 它指的是点 $(\alpha,\phi(\alpha))$ 必须在两条直线

$$l_1(\alpha) = \phi(0) + c\alpha \nabla f(x^k)^{\mathrm{T}} d^k,$$

$$l_2(\alpha) = \phi(0) + (1 - c)\alpha \nabla f(x^k)^{\mathrm{T}} d^k$$

之间. 区间 $[\alpha_1,\alpha_2]$ 中的点均满足Goldstein 准则. 同时我们也注意到Goldstein 准则确实去掉了过小的 α .

Figure: Goldstein 准则

Wolfe准则

- Goldstein 准则能够使得函数值充分下降, 但是它可能避开了最优的函数值. 上页图中的一维函数 $\phi(\alpha)$ 的最小值点并不在满足Goldstein 准则的区间 $[\alpha_1,\alpha_2]$ 中
- 在Wolfe准则中, 第一个不等式即是Armijo 准则, 而第二个不等式则是Wolfe 准则的本质要求

定义 (Wolfe 准则)

设 d^k 是点 x^k 处的下降方向, 若

$$f(x^k + \alpha d^k) \le f(x^k) + c_1 \alpha \nabla f(x^k)^{\mathrm{T}} d^k, \tag{2a}$$

$$\nabla f(x^k + \alpha d^k)^{\mathrm{T}} d^k \ge c_2 \nabla f(x^k)^{\mathrm{T}} d^k, \tag{2b}$$

则称步长 α 满足**Wolfe** 准则, 其中 $c_1, c_2 \in (0,1)$ 为给定的常数且 $c_1 < c_2$.

Wolfe准则

- $\nabla f(x^k + \alpha d^k)^{\mathrm{T}} d^k$ 恰好就是 $\phi(\alpha)$ 的导数, Wolfe 准则实际要求 $\phi(\alpha)$ 在点 α 处切线的斜率不能小于 $\phi'(0)$ 的 c_2 倍
- $\phi(\alpha)$ 的极小值点 α^* 处有 $\phi'(\alpha^*) = \nabla f(x^k + \alpha^* d^k)^T d^k = 0$,因此 α^* 永远满足条件二. 而选择较小的 c_1 可使得 α^* 同时满足条件一,即Wolfe 准则在绝大多数情况下会包含线搜索子问题的精确解

Figure: Wolfe 准则

非单调线搜索准则

定义 (Grippo)

设 d^k 是点 x^k 处的下降方向, M>0 为给定的正整数. 以下不等式可作为一种线搜索准则:

$$f(x^k + \alpha d^k) \le \max_{0 \le j \le \min\{k, M\}} f(x^{k-j}) + c_1 \alpha \nabla f(x^k)^{\mathrm{T}} d^k,$$

其中 $c_1 \in (0,1)$ 为给定的常数.

- 该准则和Armijo 准则非常相似, 区别在于Armijo 准则要求下一次 迭代的函数值 $f(x^{k+1})$ 相对于本次迭代的函数值 $f(x^k)$ 有充分下降, 而该准则只需要下一步函数值相比前面至SM 步以内迭代的函数值有下降就可以了
- 这一准则的要求比Armijo 准则更宽, 它也不要求 $f(x^k)$ 的单调性

非单调线搜索准则

另一种非单调线搜索准则的定义更加宽泛.

定义 (Zhang, Hager)

设 d^k 是点 x^k 处的下降方向, M>0 为给定的正整数. 以下不等式可作为一种线搜索准则:

$$f(x^k + \alpha d^k) \le C^k + c_1 \alpha \nabla f(x^k)^{\mathrm{T}} d^k,$$

其中 C^k 满足递推式 $C^0=f(x^0), C^{k+1}=\frac{1}{Q^{k+1}}(\eta Q^k C^k+f(x^{k+1}))$,序列 $\{Q^k\}$ 满足 $Q^0=1, Q^{k+1}=\eta Q^k+1$,参数 $\eta, c_1\in (0,1)$.

- 变量 C^k 实际上是本次搜索准则的参照函数值, 即充分下降性质的 起始标准
- 下一步的标准 C^{k+1} 则是函数值 $f(x^{k+1})$ 和 C^k 的凸组合, 并非仅仅依赖于 $f(x^{k+1})$, 而凸组合的两个系数由参数 η 决定
- 当 $\eta = 0$ 时, 此准则就是Armijo 准则

提纲

- 1 线搜索准则
- ② 线搜索算法
- 3 收敛性分析
- 4 梯度下降法
- 5 Barzilar-Borwein 方法
- 6 应用举例

回退法的优缺点

- □ 只要修改一下算法的终止条件,回退法就可以被用在其他线搜索准则之上,它是最常用的线搜索算法之一.
- 然而, 回退法的缺点也很明显:
 - 它无法保证找到满足Wolfe 准则的步长, 即条件二不一定成立, 但对一些优化算法而言, 找到满足Wolfe 准则的步长是十分必要的
 - ② 回退法以指数的方式缩小步长, 因此对初值 $\hat{\alpha}$ 和参数 γ 的选取比较敏感, 当 γ 过大时每一步试探步长改变量很小, 此时回退法效率比较低, 当 γ 过小时回退法过于激进, 导致最终找到的步长太小, 错过了选取大步长的机会

基于多项式插值的线搜索算法

- 设初始步长 $\hat{\alpha}_0$ 已给定, 如果经过验证, $\hat{\alpha}_0$ 不满足Armijo 准则, 下一步就需要减小试探步长
- 基于 $\phi(0), \phi'(0), \phi(\hat{\alpha}_0)$ 这三个信息构造一个二次插值函数 $p_2(\alpha)$
- 寻找二次函数 $p_2(\alpha)$ 满足

$$p_2(0) = \phi(0), \quad p'_2(0) = \phi'(0), \quad p_2(\hat{\alpha}_0) = \phi(\hat{\alpha}_0).$$

由于二次函数只有三个参数,以上三个条件可以唯一决定 $p_2(\alpha)$

- $p_2(\alpha)$ 的最小值点恰好位于 $(0,\hat{\alpha}_0)$ 内
- 取 $p_2(\alpha)$ 的最小值点 $\hat{\alpha}_1$ 作为下一个试探点, 利用同样的方式不断递归下去直至找到满足Armijo 准则的点
- 基于插值的线搜索算法可以有效减少试探次数, 但仍然不能保证找到的步长满足Wolfe 准则

提纲

- 1 线搜索准则
- 2 线搜索算法
- ③ 收敛性分析
- 4 梯度下降法
- [5] Barzilar-Borwein 方法
- 6 应用举例

Zoutendijk定理

定理 (Zoutendijk定理)

考虑一般的迭代格式 $x^{k+1}=x^k+\alpha_kd^k$, 其中 d^k 是搜索方向, α_k 是步长, 且在迭代过程中 Wolfe 准则满足. 假设目标函数f 下有界、连续可微且梯度L-利普希茨连续, 即

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n,$$

那么

$$\sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x^k)\|^2 < +\infty,$$

其中 $\cos \theta_k$ 为负梯度 $-\nabla f(x^k)$ 和下降方向 d^k 夹角的余弦,即

$$\cos \theta_k = \frac{-\nabla f(x^k)^{\mathrm{T}} d^k}{\|\nabla f(x^k)\| \|d^k\|}.$$

这个不等式也被称为Zoutendijk条件.

Zoutendijk定理的证明

• 由Wolfe准则知 $\nabla f(x^{k+1})^{\mathrm{T}}d^k \geq c_2 f(x^k)^{\mathrm{T}}d^k$,故

$$\left(\nabla f(x^{k+1}) - \nabla f(x^k)\right)^{\mathrm{T}} d^k \ge (c_2 - 1) \nabla f(x^k)^{\mathrm{T}} d^k.$$

● 由柯西不等式和梯度L-利普希茨连续性质,

$$(\nabla f(x^{k+1}) - \nabla f(x^k))^{\mathrm{T}} d^k \le ||\nabla f(x^{k+1}) - \nabla f(x^k)|| ||d^k|| \le \alpha_k L ||d^k||^2.$$

• 结合上述两式可得

$$\alpha_k \ge \frac{c_2 - 1}{L} \frac{\nabla f(x^k)^{\mathrm{T}} d^k}{\|d^k\|^2}.$$

• 由Wolfe准则的条件一知 $f(x^{k+1}) \leq f(x^k) + c_1 \alpha_k \nabla f(x^k)^T d^k$, 注意到 $\nabla f(x^k)^T d^k < 0$, 将上式代入得

$$f(x^{k+1}) \le f(x^k) + c_1 \frac{c_2 - 1}{L} \frac{\left(\nabla f(x^k)^{\mathrm{T}} d^k\right)^2}{\|d^k\|^2}.$$

Zoutendijk定理的证明

• 根据 θ_k 的定义, 此不等式可等价表述为

$$f(x^{k+1}) \le f(x^k) + c_1 \frac{c_2 - 1}{L} \cos^2 \theta_k ||\nabla f(x^k)||^2.$$

• 再关于k 求和, 我们有

$$f(x^{k+1}) \le f(x^0) - c_1 \frac{1 - c_2}{L} \sum_{j=0}^k \cos^2 \theta_j ||\nabla f(x^j)||^2.$$

• 又因为函数f 是下有界的,且由 $0 < c_1 < c_2 < 1$ 可知 $c_1(1-c_2) > 0$, 因此当 $k \to \infty$ 时,

$$\sum_{j=0}^{\infty} \cos^2 \theta_j \|\nabla f(x^j)\|^2 < +\infty.$$

线搜索算法的收敛性

Zoutendijk 定理刻画了线搜索准则的性质, 配合下降方向 d^k 的选取方式 我们可以得到最基本的收敛性.

推论 (线搜索算法的收敛性)

对于迭代法 $x^{k+1} = x^k + \alpha_k d^k$, 设 θ_k 为每一步负梯度 $-\nabla f(x^k)$ 与下降方向 d^k 的夹角, 并假设对任意的k, 存在常数 $\gamma > 0$, 使得

$$\theta_k < \frac{\pi}{2} - \gamma,$$

则在Zoutendijk定理成立的条件下,有

$$\lim_{k \to \infty} \nabla f(x^k) = 0.$$

线搜索算法收敛性的证明

• 假设结论不成立, 即存在子列 $\{k_l\}$ 和正常数 $\delta > 0$, 使得

$$\|\nabla f(x^{k_l})\| \ge \delta, \quad l = 1, 2, \cdots.$$

• 根据 θ_k 的假设, 对任意的k,

$$\cos \theta_k > \sin \gamma > 0.$$

• 我们仅考虑Zoutendijk条件中第 k_l 项的和, 有

$$\sum_{k=0}^{\infty} \cos^2 \theta_k \|\nabla f(x^k)\|^2 \ge \sum_{l=1}^{\infty} \cos^2 \theta_{k_l} \|\nabla f(x^{k_l})\|^2$$
$$\ge \sum_{l=1}^{\infty} (\sin^2 \gamma) \cdot \delta^2 \to +\infty,$$

• 这显然和Zoutendijk定理矛盾. 因此必有

$$\lim_{k \to \infty} \nabla f(x^k) = 0.$$

收敛性分析:评注

- 线搜索算法收敛性建立在Zoutendijk 条件之上, 它的本质要求 是 $\theta_k < \frac{\pi}{2} \gamma$, 即每一步的下降方向 d^k 和负梯度方向不能趋于正交.
- 几何直观: 当下降方向 d^k 和梯度正交时, 根据泰勒展开的一阶近似, 目标函数值 $f(x^k)$ 几乎不发生改变. 因此我们要求 d^k 与梯度正交方向夹角有一致的下界.
- 不涉及算法收敛速度的分析, 因为算法收敛速度极大地取决于d^k的选取.

提纲

- 1 线搜索准则
- 2 线搜索算法
- 3 收敛性分析
- 4 梯度下降法
- ⑤ Barzilar-Borwein 方法
- 6 应用举例

梯度下降法

• 注意到 $\phi(\alpha) = f(x^k + \alpha d^k)$ 有泰勒展开

$$\phi(\alpha) = f(x^k) + \alpha \nabla f(x^k)^{\mathsf{T}} d^k + \mathcal{O}(\alpha^2 ||d^k||^2).$$

- 由柯西不等式, 当 α 足够小时取 $d^k = -\nabla f(x^k)$ 会使函数下降最快.
- 因此梯度法就是选取 $d^k = -\nabla f(x^k)$ 的算法, 它的迭代格式为

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k).$$

步长 α_k 的选取可依赖于线搜索算法, 也可直接选取固定的 α_k .

● 另一种理解方式:

$$x^{k+1} = \arg\min_{x} f(x^{k}) + \nabla f(x^{k})^{\top} (x - x^{k}) + \frac{1}{\alpha_{k}} ||x - x^{k}||_{2}^{2}$$
$$= \arg\min_{x} ||x - (x^{k} - \alpha_{k} \nabla f(x^{k}))||_{2}^{2}$$
$$= x^{k} - \alpha_{k} \nabla f(x^{k})$$

二次函数的梯度法

设二次函数 $f(x,y) = x^2 + 10y^2$, 初始点 (x^0,y^0) 取为(10,1), 取固定步长 $\alpha_k = 0.085$. 我们使用梯度法 $x^{k+1} = x^k - \alpha_k \nabla f(x^k)$ 进行15 次迭代.

Figure: 梯度法的前15 次迭代

二次函数的收敛定理

定理 (二次函数的收敛定理)

考虑正定二次函数

$$f(x) = \frac{1}{2}x^{\mathrm{T}}Ax - b^{\mathrm{T}}x,$$

其最优值点为 x^* . 若使用梯度法 $x^{k+1} = x^k - \alpha_k \nabla f(x^k)$ 并选取 α_k 为精确线搜索步长, 即

$$\alpha_k = \frac{\|\nabla f(x^k)\|^2}{\nabla f(x^k)^{\mathrm{T}} A \nabla f(x^k)},$$

则梯度法关于迭代点列 $\{x^k\}$ 是Q-线性收敛的,即

$$||x^{k+1} - x^*||_A^2 \le \left(\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}\right)^2 ||x^k - x^*||_A^2,$$

其中 λ_1 , λ_n 分别为A 的最大、最小特征值, $||x||_A \stackrel{\text{def}}{=\!=\!=} \sqrt{x^T A x}$ 为由正定矩阵A 诱导的范数.

二次函数的收敛定理

- 定理中线性收敛速度的常数和矩阵A 最大特征值与最小特征值之 比有关.
- 从等高线角度来看, 这个比例越大则f(x) 的等高线越扁平, 迭代路径折返频率会随之变高, 梯度法收敛也就越慢.
- 这个结果其实说明了梯度法的一个很重大的缺陷:当目标函数的 海瑟矩阵条件数较大时,它的收敛速度会非常缓慢.

梯度利普希茨连续

定义 (梯度利普希茨连续)

给定可微函数f,若存在L > 0,对任意的 $x, y \in \text{dom} f$ 有

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|,\tag{3}$$

则称f是梯度利普希茨连续的,相应利普希茨常数为L. 有时也简记为梯度L-利普希茨连续或L-光滑.

引理 (二次上界)

设可微函数f(x)的定义域 $dom f = \mathbb{R}^n$,且为梯度L-利普希茨连续的,则函数f(x)有二次上界:

$$f(y) \le f(x) + \nabla f(x)^{\mathrm{T}} (y - x) + \frac{L}{2} ||y - x||^2, \quad \forall x, y \in \text{dom} f.$$
 (4)

可以证明:

$$f(y) - f(x) - \nabla f(x)^{T}(y - x)$$

$$= \int_{0}^{1} (\nabla f(x + t(y - x)) - \nabla f(x))^{T}(y - x) dt$$

$$\leq \int_{0}^{1} ||\nabla f(x + t(y - x)) - \nabla f(x)|| ||y - x|| dt$$

$$\leq \int_{0}^{1} L||y - x||^{2} t dt = \frac{L}{2} ||y - x||^{2},$$

其中最后一行的不等式利用了梯度利普希茨连续的条件(3).整理可得(4)式成立.

34/60

梯度法在凸函数上的收敛性

考虑梯度法

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

假设:

- 设函数f(x) 为凸的梯度L-利普希茨连续函数
- 极小值 $f^* = f(x^*) = \inf_x f(x)$ 存在且可达.
- 如果步长 α_k 取为常数 α 且满足 $0 < \alpha < \frac{1}{L}$

结论:点列 $\{x^k\}$ 的函数值收敛到最优值,且在函数值的意义下收敛速度为 $\mathcal{O}\left(\frac{1}{k}\right)$.

如果函数f 还是m-强凸函数,则梯度法的收敛速度会进一步提升为Q-线性收敛.

证明

● 因为函数f 是利普希茨可微函数, 对任意的x, 根据二次上界引理,

$$f(x - \alpha \nabla f(x)) \le f(x) - \alpha \left(1 - \frac{L\alpha}{2}\right) \|\nabla f(x)\|^2.$$

• 记 $\tilde{x} = x - \alpha \nabla f(x)$ 并限制 $0 < \alpha < \frac{1}{L}$, 我们有

$$f(\tilde{x}) \leq f(x) - \frac{\alpha}{2} \|\nabla f(x)\|^{2}$$

$$\leq f^{*} + \nabla f(x)^{T} (x - x^{*}) - \frac{\alpha}{2} \|\nabla f(x)\|^{2}$$

$$= f^{*} + \frac{1}{2\alpha} (\|x - x^{*}\|^{2} - \|x - x^{*} - \alpha \nabla f(x)\|^{2})$$

$$= f^{*} + \frac{1}{2\alpha} (\|x - x^{*}\|^{2} - \|\tilde{x} - x^{*}\|^{2}),$$

其中第一个不等式是因为 $0 < \alpha < \frac{1}{L}$,第二个不等式为f 的凸性.

证明

• 在上式中取 $x = x^{i-1}, \tilde{x} = x^i$ 并将不等式对 $i = 1, 2, \dots, k$ 求和得到

$$\sum_{i=1}^{k} (f(x^{i}) - f^{*}) \leq \frac{1}{2\alpha} \sum_{i=1}^{k} (\|x^{i-1} - x^{*}\|^{2} - \|x^{i} - x^{*}\|^{2})$$

$$= \frac{1}{2\alpha} (\|x^{0} - x^{*}\|^{2} - \|x^{k} - x^{*}\|^{2})$$

$$\leq \frac{1}{2\alpha} \|x^{0} - x^{*}\|^{2}.$$

• 由于 $f(x^i)$ 是非增的, 所以

$$f(x^k) - f^* \le \frac{1}{k} \sum_{i=1}^k (f(x^i) - f^*) \le \frac{1}{2k\alpha} ||x^0 - x^*||^2.$$

Backtracking line search

initialize t_k at $\hat{t} > 0$ (for example, $\hat{t} = 1$); take $t_k := \beta t_k$ until

$$f(x - t_k \nabla f(x)) < f(x) - \alpha t_k ||\nabla f(x)||_2^2$$

 $0 < \beta < 1$; we will take $\alpha = 1/2$ (mostly to simplify proofs)

Analysis for backtracking line search

line search with $\alpha=1/2$ if f has a Lipschitz continuous gradient

selected step size satisfies $t_k \ge t_{\min} = \min\{\hat{t}, \beta/L\}$

Convergence analysis

• from page 37:

$$f(x^{(i)}) \leq f^* + \frac{1}{2t_i} \left(\|x^{(i-1)} - x^*\|_2^2 - \|x^{(i)} - x^*\|_2^2 \right)$$

$$\leq f^* + \frac{1}{2t_{\min}} \left(\|x^{(i-1)} - x^*\|_2^2 - \|x^{(i)} - x^*\|_2^2 \right)$$

add the upper bounds to get

$$f(x^{(k)}) - f^* \le \frac{1}{k} \sum_{i=1}^{k} (f(x^{(i)}) - f^*) \le \frac{1}{2kt_{\min}} ||x^{(0)} - x^*||_2^2$$

conclusion: same 1/k bound as with constant step size

凸函数性质

引理

设函数f(x) 是 \mathbb{R}^n 上的凸可微函数,则以下结论等价:

- f 的梯度为L-利普希茨连续的;
- ② 函数 $g(x) \stackrel{\text{def}}{=} \frac{L}{2}x^{T}x f(x)$ 是凸函数;
- ③ $\nabla f(x)$ 有**余强制性**, 即对任意的 $x, y \in \mathbb{R}^n$, 有

$$(\nabla f(x) - \nabla f(y))^{\mathrm{T}}(x - y) \ge \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^{2}.$$

 $(1) \Longrightarrow (2)$ 即证g(x) 的单调性. 对任意 $x, y \in \mathbb{R}^n$,

$$(\nabla g(x) - \nabla g(y))^{\mathrm{T}}(x - y) = L\|x - y\|^{2} - (\nabla f(x) - \nabla f(y))^{\mathrm{T}}(x - y)$$

$$\geq L\|x - y\|^{2} - \|x - y\|\|\nabla f(x) - \nabla f(y)\| \geq 0.$$

因此g(x) 为凸函数.

凸函数性质

引理 (梯度L-利普希茨函数的性质)

设可微函数f(x) 的定义域为 \mathbb{R}^n 且存在一个全局极小点 x^* , 若f(x) 为梯度L-利普希茨连续的. 则对任意的x 有

$$\frac{1}{2L} \|\nabla f(x)\|^2 \le f(x) - f(x^*).$$

- $(2) \implies (3)$
 - 构造辅助函数

$$f_x(z) = f(z) - \nabla f(x)^{\mathrm{T}} z,$$

$$f_y(z) = f(z) - \nabla f(y)^{\mathrm{T}} z,$$

容易验证 f_x 和 f_y 均为凸函数.

• $g_x(z) = \frac{L}{2} z^{\mathsf{T}} z - f_x(z)$ 关于z 是凸函数. 根据凸函数的性质, 我们有 $g_x(z_2) \ge g_x(z_1) + \nabla g_x(z_1)^{\mathsf{T}} (z_2 - z_1), \quad \forall z_1, z_2 \in \mathbb{R}^n.$

整理可推出 $f_x(z)$ 有二次上界, 且对应的系数也为L.

凸函数性质

• 注意到 $\nabla f_x(x)=0$, 这说明x 是 $f_x(z)$ 的最小值点. 由上页引理,

$$f_x(y) - f_x(x) = f(y) - f(x) - \nabla f(x)^{\mathrm{T}} (y - x)$$

$$\geq \frac{1}{2L} \|\nabla f_x(y)\|^2 = \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2.$$

• 同理, 对f_v(z) 进行类似的分析可得

$$f(x) - f(y) - \nabla f(y)^{\mathrm{T}}(x - y) \ge \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^{2}.$$

将以上两式不等号左右分别相加, 可得余强制性.

(3) ⇒ (1) 由余强制性和柯西不等式,

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2 \le (\nabla f(x) - \nabla f(y))^{\mathrm{T}} (x - y)$$

$$\le \|\nabla f(x) - \nabla f(y)\| \|x - y\|,$$

整理后即可得到f(x) 是梯度L-利普希茨连续的.

梯度法在强凸函数上的收敛性

定理 (梯度法在强凸函数上的收敛性)

设函数f(x) 为m-强凸的梯度L-利普希茨连续函数, $f(x^*)=\inf_x f(x)$ 存在且可达. 如果步长 α 满足 $0<\alpha<\frac{2}{m+L}$, 那么由梯度下降法迭代得到的点列 $\{x^k\}$ 收敛到 x^* , 且为Q-线性收敛.

• 首先根据f 强凸且 ∇f 利普希茨连续, 可得

$$g(x) = f(x) - \frac{m}{2}x^{\mathrm{T}}x$$

为凸函数且 $\frac{L-m}{2}x^Tx - g(x)$ 为凸函数.

• 由引理知函数g(x) 是梯度(L-m) -利普希茨连续的. 再次利用引理可得关于g(x) 的余强制性

$$(\nabla g(x) - \nabla g(y))^{\mathrm{T}}(x - y) \ge \frac{1}{L - m} \|\nabla g(x) - \nabla g(y)\|^{2}.$$

梯度法在强凸函数上的收敛性

• 代入g(x) 的表达式, 可得

$$(\nabla f(x) - \nabla f(y))^{\mathrm{T}}(x - y) \ge \frac{mL}{m+L} ||x - y||^2 + \frac{1}{m+L} ||\nabla f(x) - \nabla f(y)||^2.$$

• 再估计固定步长下梯度法的收敛速度. 设步长 $\alpha \in \left(0, \frac{2}{m+L}\right)$, 对 x^k, x^* 应用上式并注意到 $\nabla f(x^*) = 0$ 得

$$||x^{k+1} - x^*||_2^2 = ||x^k - \alpha \nabla f(x^k) - x^*||^2$$

$$= ||x^k - x^*||^2 - 2\alpha \nabla f(x^k)^{\mathrm{T}}(x^k - x^*) + \alpha^2 ||\nabla f(x^k)||^2$$

$$\leq \left(1 - \alpha \frac{2mL}{m+L}\right) ||x^k - x^*||^2 + \alpha \left(\alpha - \frac{2}{m+L}\right) ||\nabla f(x^k)||^2$$

$$\leq \left(1 - \alpha \frac{2mL}{m+L}\right) ||x^k - x^*||^2$$

$$\Rightarrow \|x^k - x^*\|^2 \le c^k \|x^0 - x^*\|^2, \quad c = 1 - \alpha \frac{2mL}{m+L} < 1.$$

45/60

函数值收敛

强凸函数假设下

- 迭代点列{xk}Q-线性收敛
- 如果取 $t = \frac{2}{m+L}$,则有 $c = \frac{(\gamma-1)^2}{(\gamma+1)}$ 且 $\gamma = L/m$

如果 $\mathbf{dom} f = \mathbf{R}^n \mathbf{1} f$ 有极小点 x^* ,则

$$\frac{1}{2L} \|\nabla f(x)\|_2^2 \le f(x) - f(x^*) \le \frac{L}{2} \|x - x^*\|_2^2 \quad \forall x$$

因此:

$$f(x^k) - f^* \le \frac{L}{2} ||x^k - x^*||_2^2 \le \frac{c^k L}{2} ||x^0 - x^*||_2^2$$

函数值的估计: 达到 $f(x^k) - f^* \le \epsilon$ 的迭代步数是 $O(\log(1/\epsilon))$

提纲

- 1 线搜索准则
- 2 线搜索算法
- 3 收敛性分析
- 4 梯度下降法
- Barzilar-Borwein 方法
- 6 应用举例

Barzilar-Borwein 方法

- Barzilar-Borwein (BB) 方法是一种特殊的梯度法, 经常比一般的梯度法有着更好的效果.
- BB 方法的下降方向仍是点 x^k 处的负梯度方向 $-\nabla f(x^k)$, 但步长 α_k 并不是直接由线搜索算法给出的.
- 考虑梯度下降法的格式:

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k) \Longleftrightarrow x^{k+1} = x^k - D^k \nabla f(x^k),$$

其中 $D^k = \alpha_k I$.

• BB 方法选取的 α_k 是如下两个最优问题之一的解:

$$\begin{aligned} & \min_{\alpha} & & \|\alpha y^{k-1} - s^{k-1}\|^2, \\ & \min_{\alpha} & & \|y^{k-1} - \alpha^{-1} s^{k-1}\|^2, \end{aligned}$$

其中引入记号 $s^{k-1} \stackrel{\text{def}}{=\!\!\!=} x^k - x^{k-1}$ 以及 $y^{k-1} \stackrel{\text{def}}{=\!\!\!=} \nabla f(x^k) - \nabla f(x^{k-1})$.

Barzilar-Borwein 方法

• 容易验证问题的解分别为

$$\alpha_{\mathrm{BB1}}^k \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \frac{(s^{k-1})^\mathrm{T} y^{k-1}}{(y^{k-1})^\mathrm{T} y^{k-1}} \ \not \stackrel{\mathrm{for}}{=\!\!\!=\!\!\!=} \alpha_{\mathrm{BB2}}^k \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \frac{(s^{k-1})^\mathrm{T} s^{k-1}}{(s^{k-1})^\mathrm{T} y^{k-1}},$$

• 因此可以得到BB 方法的两种迭代格式:

$$x^{k+1} = x^k - \alpha_{\mathrm{BB1}}^k \nabla f(x^k) \quad \text{fo} \quad x^{k+1} = x^k - \alpha_{\mathrm{BB2}}^k \nabla f(x^k).$$

- 计算两种BB 步长的任何一种仅仅需要函数相邻两步的梯度信息和 迭代点信息,不需要任何线搜索算法即可选取算法步长.
- BB方法计算出的步长可能过大或过小,因此我们还需要将步长做上界和下界的截断,即选取 $0 < \alpha_{M} < \alpha_{M}$ 使得

$$\alpha_m \leq \alpha_k \leq \alpha_M$$
.

BB方法本身是非单调方法,有时也配合非单调收敛准则使用以获得更好的实际效果.

非单调线搜索的BB方法

Algorithm 2 非单调线搜索的BB方法

- 1: 给定 x^0 , 选取初值 $\alpha > 0$, 整数 $M \ge 0$, $c_1, \beta, \varepsilon \in (0, 1)$, k = 0.
- 2: while $\|\nabla f(x^k)\| > \varepsilon$ do
- 3: while $f(x^k \alpha \nabla f(x^k)) \ge \max_{0 \le j \le \min(k,M)} f(x^{k-j}) c_1 \alpha \|\nabla f(x^k)\|^2$ do
- 5: end while
- 7: 根据BB步长公式之一计算 α , 并做截断使得 $\alpha \in [\alpha_m, \alpha_M]$.
- 8: $k \leftarrow k + 1$.
- 9: end while

二次函数的BB方法

- 设二次函数 $f(x,y) = x^2 + 10y^2$, 并使用BB 方法进行迭代, 初始点为(-10,-1).
- BB 方法的收敛速度较快, 在经历15次迭代后已经接近最优值点. 从等高线也可观察到BB 方法是非单调方法.
- 实际上, 对于正定二次函数, BB方法有R-线性收敛速度.

Figure: 梯度法与BB 方法的前15 次迭代

提纲

- 1 线搜索准则
- 2 线搜索算法
- 3 收敛性分析
- 4 梯度下降法
- 5 Barzilar-Borwein 方法
- 6 应用举例

$$\min f(x) = \frac{1}{2} ||Ax - b||^2 + \mu ||x||_1.$$

- LASSO 问题的目标函数f(x) 不光滑, 在某些点处无法求出梯度, 因此不能直接对原始问题使用梯度法求解
- 不光滑项为||x||₁,它实际上是x 各个分量绝对值的和,考虑如下一维光滑函数:

$$l_{\delta}(x) = \begin{cases} \frac{1}{2\delta}x^2, & |x| < \delta, \\ |x| - \frac{\delta}{2}, & \text{ \sharp i.e.} \end{cases}$$

• 上述定义实际上是Huber 损失函数的一种变形, 当 $\delta \to 0$ 时, 光滑函数 $l_{\delta}(x)$ 和绝对值函数|x| 会越来越接近.

光滑化LASSO 问题为

min
$$f_{\delta}(x) = \frac{1}{2} ||Ax - b||^2 + \mu L_{\delta}(x), \quad \sharp \, \Phi \quad L_{\delta}(x) = \sum_{i=1}^{n} l_{\delta}(x_i),$$

 δ 为给定的光滑化参数.

Figure: 当 δ 取不同值时 $l_{\delta}(x)$ 的图形

• $f_{\delta}(x)$ 的梯度为

$$\nabla f_{\delta}(x) = A^{\mathrm{T}}(Ax - b) + \mu \nabla L_{\delta}(x),$$

其中 $∇L_δ(x)$ 是逐个分量定义的:

$$(\nabla L_{\delta}(x))_{i} = \begin{cases} \operatorname{sign}(x_{i}), & |x_{i}| > \delta, \\ \frac{x_{i}}{\delta}, & |x_{i}| \leq \delta. \end{cases}$$

- $f_{\delta}(x)$ 的梯度是利普希茨连续的, 且相应常数为 $L = \|A^{\mathsf{T}}A\|_2 + \frac{\mu}{\delta}$.
- 根据梯度法在凸函数上的收敛性定理, 固定步长需不超过 $\frac{1}{L}$ 才能保证算法收敛, 如果 δ 过小, 那么我们需要选取充分小的步长 α_k 使得梯度法收敛.

Figure: 光滑化LASSO 问题求解迭代过程

Figure: 光滑化LASSO 问题求解结果

Tikhonov 正则化模型求解

● x 表示真实图像, 它是一个m×n 点阵, 用y 来表示带噪声图像

$$y = x + e$$
,

其中e 是高斯白噪声.

为了从有噪声的图像y中还原出原始图像x,利用Tikhonov正则化的思想可以建立如下模型:

$$\min_{x} f(x) = \frac{1}{2} ||x - y||_{F}^{2} + \lambda(||D_{1}x||_{F}^{2} + ||D_{2}x||_{F}^{2}),$$

其中 D_1x , D_2x 分别表示对x 在水平方向和竖直方向上做向前差分,

$$(D_1x)_{ij} = \frac{1}{h}(x_{i+1,j} - x_{ij}), \quad (D_2x)_{ij} = \frac{1}{h}(x_{i,j+1} - x_{ij}),$$

其中h 为给定的离散间隔.

Tikhonov 正则化模型求解

- Tikhonov 正则化模型由两项组成:
 - ① 第一项为保真项, 即要求真实图像x 和带噪声的图像y 不要相差太大, 这里使用F 范数的原因是我们假设噪声是高斯白噪声;
 - ② 第二项为Tikhonov 正则项, 它实际上是对x 本身的性质做出限制, 在这里的含义是希望原始图像x 各个部分的变化不要太剧烈(即水平和竖直方向上差分的平方和不要太大), 这种正则项会使得恢复出的x 有比较好的光滑性.
- 模型的目标函数是光滑的, 因此可以利用梯度法来求解:

$$\nabla f(x) = x - y - 2\lambda \Delta x,$$

其中 Δ 是图像x 的离散拉普拉斯算子, 即

$$(\Delta x)_{ij} = \frac{x_{i+1,j} + x_{i-1,j} + x_{i,j+1} + x_{i,j-1} - 4x_{ij}}{h^2},$$

• 因此梯度法的迭代格式为

$$x^{k+1} = x^k - t(I - 2\lambda \Delta)x^k + ty^k.$$

Tikhonov 正则化模型求解结果

Figure: Tikhonov 正则化模型求解结果