

A model for the interaction between NF-kappa-B and ASPP2 suggests an I-kappa-B-like binding mechanism

Hadar Benyamini, Hadas Leonov, Shahar Rotem, Chen Katz, Isaiah T. Arkin, and Assaf Friedler¹*

ABSTRACT

We used computational methods to study the interaction between two key proteins in apoptosis regulation: the transcription factor NFκ-B (NFκB) and the proapoptotic protein ASPP2. The C-terminus of ASPP2 contains ankyrin repeats and SH3 domains (ASPP2_{ANK}-SH3) that mediate interactions with numerous apoptosis-related proteins, including the p65 subunit of NFκB (NFκB_{p65}). Using peptidebased methods, we have recently identified the interaction sites between NFkBp65 and ASPP2_{ANK-SH3} (Rotem et al., J Biol Chem 283, 18990-18999). Here we conducted a computational study of protein docking and molecular dynamics to obtain a structural model of the complex between the full length proteins and propose a mechanism for the interaction. We found that ASPP2_{ANK-SH3} binds two sites in NFkB_{p65}, at residues 236-253 and 293-313 that contain the nuclear localization signal (NLS). These sites also mediate the binding of NFKB to its natural inhibitor IkB, which also contains ankyrin repeats. Alignment of the ankyrin repeats of ASPP2_{ANK-SH3} and IkB revealed that both proteins share highly similar interfaces at their binding sites to NFkB. Protein docking of ASPP2_{ANK-SH3} and NFκB_{p65}, as well as molecular dynamics simulations of the proteins, provided structural models of the complex that are energetically similar to the NFkB-IkB determined structure. Our results show that ASPP2_{ANK-SH3} binds NFκB_{p65} in a similar manner to its natural inhibitor IkB, suggesting a possible novel role for ASPP2 as an NFκB inhibitor.

Proteins 2009; 77:602–611. © 2009 Wiley-Liss, Inc.

Key words: apoptosis; docking; molecular dynamics; peptides; ASPP2; NFkB; p53.

INTRODUCTION

Programmed cell death (apoptosis) is regulated by complex protein interaction networks. The proapoptotic protein ASPP2 is a 1128 amino acids (AA) protein that is emerging as a hub of apoptosis regulation. The C-terminal part of ASPP2 was first discovered as p53binding protein 2 (53BP2, ASPP2 AA 600-1128, Fig. 1¹). Another truncated form of ASPP2 was isolated as a Bcl-2 binding protein (Bbp, ASPP2 AA 123-1128, Fig. 1²). In 2001, the full length ASPP2 was identified as a protein that specifically stimulates p53-dependent apoptosis.³ The domain structure of ASPP2 includes an N-terminal ubiquitin-like domain, 4 followed by a predicted alpha helical domain and a proline-rich domain.⁵ The \sim 200 C-terminal residues of ASPP2 consist of four ankyrin repeats followed by an SH3 domain (ASPP2_{ANK-SH3}, Fig. 1⁶). ASPP2_{ANK-SH3} mediates the protein-protein interactions of ASPP2. It interacts with numerous proteins, most of which are involved in apoptosis regulation, including p53 and its family members,^{3,7} the antiapoptotic protein Bcl-2 family members,^{2,8} protein phosphatase 1,9 yes-associated protein, 10 hepatitis C virus core protein 11 and the p65 subunit of the transcription factor NFκB $(NF\kappa B_{p65}).^{12}$

NFkB is a transcription factor involved in apoptosis regulation. The larger NFkB family contains two sub-families: "Rel" and "NFkB." 13 Members of the two sub-families form homo- and hetero-dimers. The Rel proteins contain C-terminal transactivation domains (see Fig. 1). NFkB subfamily members have long C-terminal domains containing multiple copies of ankyrin repeats, which act to auto-inhibit these proteins. NFkB proteins are cleaved to form shorter proteins (p105 to p50 and p100 to p52), which bind DNA only when they form dimers with members of the Rel subfamily. The most abundant heterodimer is the p50/p65. The activity of NFkB is tightly regulated by an interaction with its natural inhibitor protein IkB. In most cells NFkB is in an inactive state, bound to IkB in the cytoplasm and its nuclear localization signal (NLS) is masked by IkB. Following a wide array of

Grant sponsors: Human Frontier Science Program Organization, Israel Cancer Association, Lady Davis Fellowship Trust.

*Correspondence to: Assaf Friedler, The Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel. E-mail: assaf@chem.ch.huji.ac.il Received 12 February 2009; Revised 7 April 2009; Accepted 27 April 2009 Published online 11 May 2009 in Wiley InterScience (www.interscience.wiley.com).

DOI: 10.1002/prot.22473

602 PROTEINS © 2009 WILEY-LISS, INC.

¹ The Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

² Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

Figure 1

Domain organization of ASPP2 and its variants, and of NFκB and IκB. A: ASPP2 is the full length protein containing 1128 AA. It has a ubiquitin-like domain, ⁴ a predicted α-helical domain, a proline-rich domain, and a C-terminal protein binding region. The C terminal part contains the ankyrin-repeats domain and the SH3 domain. B: The domain structures of the Rel and NFkB subfamilies of the NFkB transcription factors, and $I\kappa B.$ All NF $\!\kappa B$ proteins have a conserved DNA-binding/dimerization domain called the Rel homology domain (RHD), which also has sequences important for nuclear localization and IκB binding. The C-terminal halves of the Rel proteins have transcriptional activation domains (TAD). The C-terminal halves of the NFκB subfamily proteins have ankyrin repeats-containing inhibitory domains, which can be removed by proteasome-mediated proteolysis. Like the C-terminal domains of the NFkB proteins, the independent IκB proteins consist mainly of ankyrin repeats.

signals, including cytokines, infectious agents, and radiation-induced DNA double-strand breaks, 14 IkB is degraded, the NFkB NLS is exposed, and NFkB undergoes nuclear uptake and becomes an active transcription factor.¹³ IkB contains six ankyrin repeats and binds two sites in NFκB, termed here the "N site" and "C site" according to their position in NFκB_{p65} sequence. The N site encompasses NFκB_{p65} residues 235-245 (numbering by PDB:1nfi, 15 chain A); the C site encompasses NFκB_{p65} residues 290–313 and contains the nuclear localization signal (residues 301-304) that is masked by IκB. When aberrantly regulated, NFkB is constitutively active, a phenomenon observed in various malignancies including Hodgkin's and B-cell lymphomas, acute lymphoblastic leukemia, multiple myeloma, and breast, prostate, ovarian, lung, colon, and renal cell carcinoma (reviewed in Refs. 16 and 17).

The interaction between NFκB and ASPP2 was initially discovered using yeast two-hybrid system.¹² Cotransfection of 53BP2 with an NFκB_{p65} expression plasmid, or activation of NFκB, inhibited 53BP2-induced cell death. 12,18 Another ASPP family member, iASPP, was found to bind and inhibit NF κ B_{p65}. 19 However, the precise mechanism by which these interactions affect apoptosis is yet unclear. Moreover, there are no details regarding the ASPP - NFκB_{p65} interactions at the structural, molecular, and quantitative levels. We have recently used peptidebased methods to identify the ASPP2_{ANK-SH3} binding sites in NFκB_{p65}. 5 Examination of the surface suggested by these peptides reveals a similarity to the binding surface of $NF\kappa B_{p65}$ to its inhibitor, $I\kappa B$ (see Fig. 2). This similarity in the binding sites, together with the fact that both ASPP2_{ANK-SH3} and IκB contain ankyrin repeats, led us to test whether the two proteins bind NFκB_{p65} in a similar manner. We performed a computational study using protein docking and molecular dynamics to suggest a model for the complex of ASPP2_{ANK-SH3} and NFκB_{p65}. Our results show that NFκB_{p65} binds ASPP2_{ANK-SH3} and IκB in a similar manner, suggesting that ASPP2_{ANK-SH3} may act as an IκB-like NFκB inhibitor.

METHODS

PDB structures

For NFκB, we used the X-ray structures of p50 and p65, solved in complex with IkB at 2.7 Å resolution (PDB code: 1nfi, chains A,B)¹⁵; For IκB we used its structure from the same X-ray structure (PDB: 1nfi, chain F); For ASPP2_{ANK-SH3}, we used the p53 bound Xray structure solved at 2.2 Å resolution (PDB code: 1ycs).⁶ All figures were created using PyMol.²⁰

Hinge movement prediction

We submitted the structure of NFkB $_{\rm p65}$ for hinge prediction by the HingeProt 21 and ElNemo 22 algorithms. Hinge-Prot employs Elastic Network (EN) models, both Gaussian

Figure 2

Similarity in the ASPP2_{ANK-SH3} and IκB binding sites on NFκB_{p65}. A: Gray: NFκB_{p65}. Residues that bind IκB according to the crystal structure 15 are colored blue and depicted in sticks. **B**: Gray: NFκB_{p65}. Residues that bind ASPP2_{ANK-SH3} according to peptide array⁵ are colored blue and depicted in sticks. Stretches of residues from NFκB_{p65} that bind IkB are 238-245 and 294-314. According to our peptide array studies, the ASPP2 $_{\!\! ANK\text{-}SH3}$ -binding residues of NF $_{\!\! PB_{p65}}$ are 238–265 and 303–350 (⁵ the structure is determined only until residue 314).

Network Model (GNM) and Anisotropic Network models (ANM) (detailed in Ref. 21). Given an input protein chain, HingeProt identifies the rigid parts and the hinges connecting them, and the direction of the fluctuation of each residue in the slowest two modes. Elnemo webserver is also based on Elastic Network models. It computes the low frequency normal modes of a protein and performs an extensive analysis of the predicted motion.

Rigid docking

We used the PatchDock algorithm²³ to suggest a rigid docking model of NFκB_{p65} with ASPP2_{ANK-SH3}. Given two molecules, PatchDock computes the three-dimensional transformations of one of the molecules with respect to the other with the goal of maximizing surface shape complementarity while minimizing the number of steric clashes. For the NFkB-ASPP2_{ANK-SH3} interaction, one molecule partner was NFκB_{p65}, with ASPP2_{ANK-SH3} in an aligned orientation with IkB, such that the two C-terminal ankyrin repeats of the two proteins are aligned. The other protein partner was the segment of C-terminal residues (291–314) of NF κ B_{p65}, in the I κ B-bound conformation. Distance constraint between residues 290 and 291 of NFkB was introduced in order to keep the protein connected.

Refinement

For refinement and scoring of the PatchDock results we used the FireDock algorithm.²⁴ Given a set of transformations, FireDock refines and scores the candidate models according to an energy function. Each candidate is refined by optimization of side-chain conformations and rigid-body orientation. The side-chain flexibility is modeled by rotamers and the obtained combinatorial optimization problem is solved by integer linear programming.²⁵ Following rearrangement of the side-chains, the relative position of the docking partners is refined by Monte Carlo minimization of the scoring function. The refined candidates are ranked by an energy-based score. This score includes atomic contact energy,²⁶ softened van der Waals interactions, electrostatics, H-bonding, and additional estimations of the binding free energy.

MD simulations

The first two initial conformations comprised NFkB p50 and p65, and ASPP2_{ANK-SH3} with their structures as determined by X-ray crystallography. ASPP2_{ANK-SH3} was aligned to IkB: In the first conformation, ASPP2_{ANK-SH3} ankyrin repeats were aligned to the C-terminus of IkB (repeats 3-6). In the second conformation ASPP2_{ANK-SH3} ankyrin repeats were aligned to the N-terminus of IkB (repeats 1-4). The third starting conformation was generated using the aligned position of ASPP2_{ANK-SH3} as in the first conformation, but with a hinge movement of the 291–314 C-terminal tail of NFκB. The hinge movement was obtained using the HingeProt server on NFκB_{p65}. Three rigid parts were found in the molecule, from residues 20-187, 188-291, and 292-314. Residue 291 was picked as the hinge residue. A few models of the hinge rotations were examined, the transformation in which the C-terminal tail was the closest to the location of ASPP2_{ANK-SH3} was chosen. The HingeProt server returns the $C\alpha$ backbone atoms of the protein, thus we applied the hinge to the full atom model by performing a simple alignment between the two NFkB structures and rotation of the C-terminal tail according to the hinge that was predicted. The initial conformations are depicted in Figure 6.

MD Procedure

The simulations were conducted using version 3.3.1 of the GROMACS MD simulation package^{27,28} employing the GROMOS96 53a6 force-field.²⁹ The protein complex was composed from 6133 atoms in total. It was embedded in a box solvated in 33914 water molecules using the SPC model.³⁰ To neutralize the system at a physiological salt concentration of 0.1M, 99 Na⁺ and 67 Cl⁻ ions were added at random positions in the solvent. Thus, the entire system was composed of 107,565 atoms in total. Each system underwent energy-minimization (EM) relaxation with a tolerance of 200 KJ/mol * nm². Following the EM stage, the system was subjected to a positional restraints (PR) procedure for 500 ps in order to dynamically solvate the protein within the water. The protein atoms were restrained at this stage by a harmonic constraint with a force constant of k = 1000 KJ/mol * nm. Following the PR process, each of systems was subjected to a 13-ns MD simulation. As exemplified in Figure 8, the simulated complexes were very stable and reached equilibrium within a few nanoseconds, justifying the 13-ns duration. During the MD runs, the LINCS algorithm³¹ was used to constrain the bond length of hydrogen atoms, allowing for an integration time step of 2 fs. Constraining only hydrogen related bonds in a 2 fs time step was used since it is a common procedure in such calculations (see for example Ref. 32). The simulations were conducted in the NPT ensemble, with a constant temperature of 300 K and a pressure of 1 bar. The solvent and the protein were separately coupled to Berendsen temperature bath with a coupling constant of 0.1 ps, and an isotropic pressure bath³³ with a coupling constant of 0.5 ps. Van der Waals (VdW) interactions were treated by using a cutoff of 12 Å. Longrange electrostatic forces were treated by using the PME algorithm.³⁴

RESULTS

The ASPP2_{ANK-SH3}-binding sites in NF_KB_{p65} reveal similarity to the IxB binding site

We have recently discovered the ASPP2_{ANK-SH3} binding peptides from NFκB_{p65} using peptide array screening.⁵

Figure 3

Hinge motions in NFkB $_{p65}$. A: Hinge predictions for NFkB $_{p65}$ are based on the servers HingeProt 21 and Elnemo. 22 The structure of NFκB_{p65} is colored according to the separate rigid regions. Blue: residues 20-188; Red: residues 189-290; Green: residues 290-314. B: Structure alignment of DNA-bound NF κB_{p65} (PDB: 1vkx, colored red) and IκB-bound NFκB_{p65} (PDB: 1nfi, in grey). The movement is of the first two rigid parts (20-188 and 189-290) relative to each other.

The recombinant ASPP2_{ANK-SH3} protein bound NFκB_{p65} peptides with the following residue stretches (numbering according to PDB: 1nfi¹⁵): 21-40, 26-50, 303-329, 314-332, 330-355 and to a lesser extent 238-265 (see Fig. 2). Fluorescence anisotropy studies with the N- and C-terminal peptides showed that ASPP2_{ANK-SH3} bound NFκB_{p65} 303–332 with submicromolar affinity.⁵ A visual examination of the binding peptides location on the three-dimensional structure of NFκB_{p65} revealed a similarity between the binding surfaces of NFκB_{p65} to ASPP2 and to its inhibitor IkB (see Fig. 2). This, in addition to the fact that both ASPP2_{ANK-SH3} and IκB contain ankyrin repeats, raised the possibility that the two proteins bind NFκB_{p65} in a similar manner. For such a IkB-like interaction between ASPP2_{ANK-SH3} and NFκB to occur, two conditions are required: (i) IkB contains six ankyrin repeats, while ASPP2 contains only four. Thus, NFκB_{p65} should undergo a backbone motion to accommodate the shorter ASPP2_{ANK-SH3}; (ii) the suggested binding surfaces on ASPP2 should display similarity in their NFκB_{p65}-binding features to their homologous sites on IkB. We have tested whether these two conditions are fulfilled, as described below.

Backbone motion of NFKBp65

To check the possibility of backbone motion of NF κ B_{p65}, we submitted the structure of NF κ B_{p65} to two hinge detection servers, HingeProt²¹ and El-nemo.²² Both prediction algorithms results suggested two main

motions [Fig. 3(a)]: (i) between the first and the second domains of NFκB_{p65}, (AA 20-190 and 191-290, respectively) (ii) motion of the C-terminal helical tail starting after residue 290. Such movements may enable NFκB_{p65} to accommodate ASPP2_{ANK-SH3}. We also examined the solved structures of the protein in the PDB. The first predicted domain motion is observed upon DNA binding and may be seen for example by a superposition of the solved structures of the complexes of NFκB_{p65} with IκB (PDB: $1nfi^{15}$) and NF κ B_{p65} with DNA [PDB: 1vkx, 35 Fig. 3(b)]. This motion is observed in all DNA-bound NFκB structures.

Common surface-residue features between the NFkB-binding sites in IkB and ASPP2_{ANK-SH3}

We compared the structures and sequences of ASPP2_{ANK-SH3} and IκB, in particular the suggested (ASPP2_{ANK-SH3}) and known (IκB) binding sites to NFκB. ASPP2_{ANK-SH3} contains four repeats whereas IkB contains six repeats. However, only four repeats in IκB, the two N-terminal and two C-terminal repeats, contribute to the interaction with NFκB. We tested whether these sites have common features with the four ankyrin repeats of ASPP2_{ANK-SH3}, by aligning ASPP2_{ANK-SH3} and IKB and looking at the aligned known and suggested binding sites.

Figure 4

Similarity of the NFκB_{p65} binding sites in ASPP2_{ANK-SH3} and IκB. The suggested interaction sites of ASPP2 $_{ANK-SH3}$ with NF κB_{p65} are compared with the known binding sites of IκB. Hydrophobic residues are colored orange, positive in blue, and negative in red. A: IkB binding site to NFκB_{p65} N-site, according to the crystal structure. B: ASPP2_{ANK-SH3} putative binding site to NFκB_{p65} N-site. Both IκB and NFκB display corresponding positive, negative, and hydrophobic residues. C: ΙκΒ binding site to NFκB_{p65} C-site, according to the crystal structure. D: ASPP2_{ANK-SH3} suggested binding site to NFκB_{p65} C-site. Both IκB and ASPP2 display corresponding hydrophobic and negative residues (See text for residue details).

Figure 5

Structural models of the NFκB-ASPP2_{ANK-SH3} complex compared with the NFκB-IκB complex. The docking model and the final conformation of molecular dynamics simulation (third initial conformation) interactions are compared with the crystal structure of NFkB-IkB complex. In all cases, $NF\kappa B_{p65} \ is \ colored \ dark \ gray, \ I\kappa B/ASPP2_{ANK-SH3} \ are \ colored \ light \ gray. \ Representative \ binding \ residues, \ that \ are \ common \ to \ the \ NF\kappa B-I\kappa B$ complex and both structural models, are depicted in spheres and color coded. On NFkB, hydrophobic or aromatic residues are colored in yellow, positive in light blue, and negative in pink. On either IKB or ASPP2, hydrophobic or aromatic residues are in orange, positive in red and negative in blue. Horizontal view: A: The determined structure of the complex NFKB-IKB (PDB: 1nfi); B: Rigid docking model; C: Final model derived from molecular dynamics simulations of the putative NFκB- ASPP2_{ANK-SH3} complex. A vertical view of the figure: left: full length proteins; middle: zoom in on N-site interactions; right: zoom in on C-site interactions. The full list of interactions is detailed in Table II.

The N site refers to NFκB_{p65} residues 236–253; The C site refers to NF κB_{p65} residues 293–313. For testing the N-site, ASPP2_{ANK-SH3} ankyrin repeats were aligned to the C-terminus of IkB (repeats 3-6). For the C site, ASPP2_{ANK-SH3} ankyrin repeats were aligned to the N-terminus of IkB (repeats 1-4). The ankyrin repeats comprising both the N and C site share patterns of hydrophobic, aromatic, and electrostatic residues over the two binding patches, as seen in the determined protein structures (see Fig. 4). The N-site binding surface of NF κ B_{p65} interacts with the 5th and 6th ankyrin repeats of IκB. The corresponding surface on ASPP2_{ANK-SH3} is likely to be contributed by the 3rd and 4th ankyrin repeats. At this site, similar hydrophobic and charged residues are found [Fig. 4(a,b)]. Hydrophobic or aromatic residues of IκB at the N site are Leu256, Gly259, and Trp258. Corresponding hydrophobic or aromatic residues of ASPP2 are Met437, Gly440, and Tyr441. Charged residues of IkB at the N site are Arg218 and Asp226. The corresponding charged residues in ASPP2 are Lys433 and Glu436. The NF κ B_{p65} C-

terminal interaction site ("C-site") containing the NLS, interacts with the two N-terminal ankyrin repeats of IkB that mask the NLS, inhibiting NFkB nuclear uptake and trans-activation activity.¹⁵ Within the first and second repeats, IκB binds NFκB via two continuous sequences: residues 72-89 and 117-122. The similarity of features between IkB and ASPP2_{ANK-SH3} is observed in both stretches of residues: A cluster of hydrophobic residues and a pair of negatively charged residues are found in both proteins [Fig. 4(c,d)]. In the C site of IkB, hydrophobic or aromatic residues consist of Phe77, Leu80, Ala81, Ile83, Leu89, Ile120, and Leu117. In the suggested C site of ASPP2_{ANK-SH3}, Ala328, Leu329, Leu336, Phe340, Leu342, and Cys369 may contribute the corresponding hydrophobic and aromatic properties. The residue pair Glu85-Glu86 of IκB binds the NLS of NFκB_{p65}. Possible corresponding contribution may be given by ASPP2 residues Glu337 and Glu339. In summary, IkB and ASPP2_{ANK-SH3} have common binding properties and thus may bind in a similar manner to NFκB.

Table I Comparison of the Interacting Residue Pairs in the NFκB-IκB Complex and in the NFκB-ASPP2 Complex Models^a

NFκB	IκB (solved structure, ¹⁵)	ASPP2 (docking)	ASPP2 (MD)	Site ^b	Type ^c
R236		E436,E438,E439	E435,E436,E438	N	E
G237		M437	M437	N	Н
F239	G259	M437	M437	N	Н
A242	Y251,L256,M279	M427	W394	N	Н
D243	R218	K433	K433	N	E
H245		D426	D392,W394,D426	N	E
R246	E282		D426	N	E
R253	D226	E435,E436,E439	E436	N	E
D293	R143				
D294	R143				
R297		D333,E337			
R297		E337	E337	С	E
1298	I83,L110,L117,I120	L336,G338,A370	L336,C369,A370,G371	C	Н
K301	D73, D75	D333,E337,E339	D333,E337,E359	C	E
R302	E85, E86	E337,E339	E337,E339	C	E
R304	E72,D73	E337, E339	E333	С	E
Y306	H84			С	Α
F309	F77,L80,A81,H84,L89	G338,F340,I375	L330, L342	C	Н
l312	F77, L80	F340	L330, L342	C	Н
M313	F77	F340	L342	C	Н

^aThe table details the residue pairs that interact in the experimentally solved NFκB-IκB complex, 15 the selected rigid docking model and the stabilized conformation resulting from molecular dynamics simulations (third starting orientation). The table shows the residues from IkB or ASPP2_{ANK-SH3} that interact with residues from NFκB. The residue interactions of ASPP2 are derived from the structural models of ASPP2_{ANK-SH3}-NFκB obtained by rigid docking and MD simulations. Residue interactions that are common in the complex models and in the NFκB-IκB complex are bolded.

Rigid docking suggests a model for the NF_KB_{p65} - ASPP2_{ANK-SH3} complex, which is similar to the NFkB-lkB complex

We applied rigid docking²³ followed by model refinement²⁴ to construct a structural model for the complex between NF κB_{p65} and ASPP2_{ANK-SH3}. The 3rd ranked solution out of 68 generated solutions was in agreement with the experimental peptide binding data, that is,

Energy Assessment of the NFκB-ASPP2 Structural Models^a

FastContact ³⁷ Electrostatic (4r) Energy (kcal/mol)	PDB:1nfi ¹⁵	Docking	MD
	-47.96	-42.80	−50.2
Desolvation Free Energy (kcal/mol)	13.23	12.57	12.8
van der Waals (CHARMm19,	-2715	-2707	-2610
kcal/mol) CoilCheck ³⁶ Total Stabilizing Energy (kJ/mol)	PDB:1nfi ¹⁵	Docking	MD
	-352.73	-112.54	179.9
van der Waals Energy (kJ/mol) Energy per Residue (kJ/mol) No. of van der Waals Pairs No. Potential Favorable Electrostatic Interactions	185.86	-62.08	-180.9
	0.69	-0.22	-0.37
	2771	1480	4959
	71	35	64

^aThe docking model and the stabilized conformation resulting from molecular dynamics simulation (third starting orientation) were submitted for energy assessment by two algorithms: Coilcheck³⁶ and FastContact.³⁷ The values were compared with those of the interaction between NFkB and IkB, according to the crystal structure. The table shows that the energy assessment of the ASPP2_{ANK-SH3}-NFkB modeled structures is similar to the assessment of the experimentally determined complex of NFkB and IkB.

involves binding of NF κB_{p65} peptides 238–265 and 303– 313. This model suggested a structure that resembles many of the NFκB-IκB residue-residue interactions [Fig. 5(b), Table I]. In particular, the positively charged NLS residues 301, 302, and 304 are within interaction distance from ASPP2 residues Glu337 and Glu339, which correspond to IκB residues Glu85 and Glu86 that mask the NFκB_{p65} NLS. Assessment of the model using the Coilcheck³⁶ and FastContact³⁷ algorithms suggests that the model has a low energy, comparable with the energy assessment of the interaction between IκB (PDB: 1nfi, chain F) and NFκB (PDB: 1nfi, chain A). The results are summarized in Table II. The rigid docking, even when followed by refinement, is incapable of predicting protein motions in solution. Rather, it provides a low resolution, rough assessment of geometrically and chemically complementary surfaces. To assess the stability and behavior of the complex in solution we subjected the complex to molecular dynamics simula-

Molecular dynamics simulations of the putative ASPP2_{ANK-SH3}- NFkB complex, support an interaction that is similar to IkB

We used molecular dynamics simulations to assess the stability and dynamics of the interactions in the proposed ASPP2_{ANK-SH3}-NFκB complex. We tested whether an ASPP2_{ANK-SH3}-NFκB_{p65} complex will stay in contact or dissociate in solution and examined protein motion and interaction details during the simulation. Since

^bN site refers to residues 235–245 of NFκB. C site refers to residues 290–313 of NFκB.

^cInteraction type, E, electrostatic; H, hydrophobic; A, aromatic.

Figure 6 Molecular dynamics initial conformations with different positions of ASPP2_{ANK-SH3}. A-C: In grey, NFκB_{p65}, in blue, IκB. A: In red, ASPP2_{ANK-SH3} aligned to IkB. The C terminal repeats are aligned. B: In orange, ASPP2_{ANK-SH3} aligned to IkB. The N terminal repeats are aligned. C: In green, $\mbox{ASPP2}_{\mbox{\scriptsize ANK-SH3}}$ aligned to $\mbox{I}\kappa\mbox{\scriptsize B}.$ The C terminal repeats are aligned. NFkB $_{p65}$ C-terminal tail is slightly hinge-bent according to HingeProt 21 prediction.

ASPP2 has only four ankyrin repeats and IkB has six, we used three different initial structures for the MD simulations (see Fig. 6). In conformations 1 and 2, NF κ B_{p65} and p50 coordinates were taken from the solved structure in complex with IkB. The starting position of ASPP2_{ANK}-SH3 was based on a structural alignment to IκB: In the first orientation, the C termini of ASPP2_{ANK-SH3} and IκB ankyrin repeats are aligned [Fig. 6(a)]; in the second orientation, the N termini of ASPP2ANK-SH3 and IKB are aligned [Fig. 6(b)]. In the third conformation, the position of ASPP2 was the same as in the first conformation, but with an added hinge transformation on NFkBp65 as predicted by the HingeProt algorithm.²¹ Simulations were run for 13 ns and the system behavior in each case is described below. The interaction distance threshold

was 6 Å and 8 Å for hydrophobic and electrostatic interactions, respectively. We measured the distances of 17 residue pairs, 7 pairs from the N site and 10 pairs from the C site. These putative interactions were selected based on the similar positions of the binding residues in IκB and ASPP2_{ANK-SH3}. The examined residue pairs (first residue from NFκB_{p65}, second from ASPP2_{ANK-SH3}) for the N site were: G237-M437; F239-M437; R236-E436; R236-E439; D243-K433; H245-D426; R253-E436. For the C site, I298-L336; I298-A370; K301-D333; R302-E307; I312-L330; I312-L342; M313-L330, M313-L342; F309-L330; F309-L342.

In the first two conformations, where only one binding site was in interaction at the initial structure, observations were: (i) the system stayed stable throughout the simulation, that is, the two proteins remained in contact and each kept a stable structure that hardly changed during the simulation; (ii) the binding site that was in interaction in the initial conformation (N site in the first conformation and C site in the second conformation) remained in interaction during the simulation. The binding site that was not in interaction in the initial conformation (C site for the first conformation and N site for the second conformation) did not form an interaction during the simulation.

We suspected that the reason for not forming interactions in both binding sites in the first two simulations is that in each of the initial structures, one pair of binding site surfaces is too far in space to form interactions. It could be that the water provides masking of the partial charges on each site, so that each surface does not affect the other to create a local movement that will bring them closer together. Thus, we ran the third simulation, in which the starting conformation is the same as conformation 1, but in addition we applied a moderate hinge transformation on NFκB_{p65} as described in the Materials and Methods section and in Figure 6(c). This was done to decrease the distance between the predicted C-site surfaces of NFκB_{p65} and ASPP2. Still, the distances between predicted C-site residue pairs in the beginning of the simulation are large (average of 12.4 \pm 2 Å) but smaller than in conformation 1 (average of 18.1 \pm 3.6 Å). Here, despite that only the N-site started in contact in the initial structure as in conformation 1, the structures relax into a state where both binding sites got to be within interaction distance most of the simulation. Sixteen out of 17 predicted interactions are formed and maintained during the simulation. The exception was the residue pair I312-L342. Furthermore, the C-terminal helical tail is undergoing additional hinge bending motion. The process may be seen from a view of the initial and final coordinates of NFkB_{p65} in the simulation [Fig. 7(a)]. A representative distance plot during the simulation between residues R302 (NFκB_{p65}) and E337 (ASPP2) reflects this process [Fig. 7(b)]. The representative residue interactions are depicted in Figure 5(c).

Figure 7 Molecular dynamics of the NFκB-ASPP2_{ANK-SH3} complex. A: In cyan, initial conformation of NFκB in the simulation; in green, the final conformation of NFκB_{p65} in the simulation. B: The distance between NFκB NLS residue Arg302 and ASPP2 Glu337 during the simulation. Yaxis: distance in angstroms; Xaxis: time (ns). C-E: Snapshots of NFkBp65 and ASPP2ANK-SH3 during the simulation of the third conformation [Fig. 6(C)] at time 0 (C), after 6 ns (D) and at the end of simulation, 13 ns (E). NFkBp65 is colored red, ASPP2_{ANK-SH3} is colored gray.

Root Mean Square Deviation (RMSD) was used to examine the stability and the convergence of the proteins during the dynamics. All protein chains seem to converge after ~4 ns of simulation, and maintain a stable conformation from there and after (see Fig. 8). The main movement in NF κB_{p65} during simulation is of the C-terminal tail (residues 290-313), as may be seen from the comparison of RMSD of NFkBp65 with and without its C-terminal tail. Although NFκB_{p65} residues 20–290 had a rather low RMSD (4 Å), the full length chain NFκB_{p65} displays significant movement relative to the initial conformation, between 6 and 8 Å (black and red lines in Fig. 8, respectively). In addition, ASPP2_{ANK-SH3} and NFκB_{p50} chains maintain a stable and low RMSD throughout the simulation. 2 Å for the NFκB_{p50} chain and 4 Å for ASPP2_{ANK-SH3}.

It appears that the additional hinge bending motion has facilitated the formation of the C-site interactions through which ASPP2 may block the NFkB NLS in a similar manner to IkB. The final conformation was submitted to the energy assessment servers FastContact³⁷ and CoilCheck³⁶ (Table II). The final conformation is assessed as having low energy, comparable with the values of the complex NFκB-IκB.

Figure 8 Root mean square deviations (RMSD) of protein chains during MD simulation. The graph depicts the movement of the protein chains during the simulation of the third conformation. In green, NFkB chain p50, blue: ASPP2_{ANK-SH3}, black: NFκB_{p65} residues 20–290, red: NFκB_{p65}. The main contribution to chain movement of NFκB_{p65} comes from the C-terminal tail, residues 290-313.

DISCUSSION

In this study, we analyzed the interaction between ASPP2_{ANK-SH3} and NFκB_{p65}. Since the binding site of NFκB to ASPP2_{ANK-SH3} is similar to the binding site with its inhibitor IκB,⁵ we checked the possibility that ASPP2_{ANK-SH3} binds NFκB in a similar manner and thus may function as an NFκB inhibitor. Our results show that the NFκB-binding properties of ASPP2_{ANK-SH3} and IκB are similar, and that NFκB_{p65} is likely to undergo hinge movement that may facilitate ASPP2 binding. We also performed a rigid docking between the NFκB_{p65} Cterminal tail and the rest of the structure while in complex with ASPP2. The third ranked solution displays many of the interactions predicted by structure-based comparison to IkB. Last, we carried out molecular dynamics simulations of the putative NFκB-ASPP2_{ANK-SH3} complex in three starting orientations, of which one displayed a stable interaction in both predicted binding

NFkB binding by ASPP2ANK-SH3 and IkB is similar

The determined structures of NFκB in the PDB as well as flexibility prediction by two independent servers suggest backbone flexibility in NFκB_{p65}. As ASPP2 contains four ankyrin repeats while IkB contains six repeats, such flexibility may facilitate the predicted interaction between NFκB and ASPP2_{ANK-SH3} by enabling NFκB_{p65} to accommodate the shorter ASPP2_{ANK-SH3}. An examination of the binding properties of IkB and ASPP2 revealed that the proteins share similar patterns of binding properties at the N- and C- binding sites. At the N-site, a hydrophobic cluster, one positive and one negative residue; at the C-site, clusters of hydrophobic and negatively charged residues (see Fig. 4). The C site is in particular important as it contains the core of NFKB inhibition by IKB: binding of the positively charged nuclear localization signal (AA 301-304). Such binding by ASPP2 may serve as an alternative mechanism to inhibit NFkB and prevent its constitutive activation and therefore promote apoptotis in malignant cells.

The final conformation in the MD simulation and the docking solution, though not fully identical, have some common residue-residue interactions at the N and C sites. At the N sites, both models point at Lys433, Glu436, and Met437 from ASPP2_{ANK-SH3} as binding Asp243, Arg253, and Phe239 of NFκB_{p65}. At the C site, both models suggest interactions between the positively charged NFkB NLS and negatively charged residues in ASPP2_{ANK-SH3}, in particular residues Glu337 and Glu339 from ASPP2_{ANK-SH3}, with residues Lys301-Arg302 from NFκB_{p65} (Table II). These interactions are part of the inhibitory mechanism of NFkB by IkB and may be the mechanism for NFκB inhibition by ASPP2. In a similar study, Latzer et al.38 used associative memory Hamiltonian (AMH) to simulate the NLS-containing parts of NFkB p50 and p65, in the free and bound states with IκBα and IκBβ. We observed several similarities between the simulation of the NF κ B_{p65}-I κ B α interaction and our simulation of the NFκB_{p65}-ASPP2_{ANK-SH3} interaction: (i) In both cases, the NLS-containing polypeptide tends to be unstable but acquires a structure upon binding the protein ligand; (ii) In both cases, the NLS-containing polypeptide acquires a split-helical conformation; (iii) In both cases, the NLS location is at the bend and turn region of the polypeptide. This similarity supports our suggestion that ASPP2 may bind NFκB in a similar manner to its natural inhibitor, IκB.

Recently, we found that the proline-rich domain of ASPP2 (ASPP2_{Pro})binds ASPP2_{ANK-SH3}, and competes with the C-terminal peptide of NFκB_{p65} on ASPP2_{ANK}-SH3 binding.⁵ ASPP2_{Pro} bound three peptides of ASPP2_{ANK-SH3}, two in the SH3 domain and one in the ankyrin repeats domain. The binding peptide in the ankyrin repeats domain is at the N-terminal repeat, which according to our model binds the NLS-containing NFκB C-site. Binding this peptide by ASPP2_{Pro} may thus regulate the interaction between ASPP2_{ANK-SH3} and NF κ B_{p65}. It was also shown that NF κ B_{p65} can bind either the SH3 or the ankyrin repeats domain. 12 In the MD model final conformation, there are indeed contacts between the SH3 domain and NFκB_{p65}. We focused our analysis on the contacts that structurally correspond to the IκB-NFκB_{p65} interaction but our MD model is also in agreement with SH3 participation in the interaction.

ASPP2_{ANK-SH3} as a potential IkB-like NFkB inhibitor

NFkB is a highly important transcription factor and hence is heavily regulated in cells. Normally it is maintained in the cytoplasm due to binding IkB. When free upon inhibitor release, NFκB goes to the nucleus and up-regulates antiapoptotic genes. ASPP2 is known as a stimulator of p53-mediated apoptosis. ASPP2 also interacts with Bcl-2 antiapoptotic members^{2,8} and is likely to regulate Bcl-2-mediated apoptosis. Here we suggest a novel mechanism for the antiapoptotic function of ASPP2 by inhibiting NFκB. For example, NFκB up-regulates Bcl-X and other antiapoptotic proteins at the transcription level. Inhibiting NFKB by ASPP2 is thus a possible mechanism by which ASPP2 exerts its apoptotic activity.

ACKNOWLEDGMENTS

We thank Dr. Dina Schneidman-Duhovny for stimulating discussions and critical review of the manuscript.

REFERENCES

- Iwabuchi K, Bartel PL, Li B, Marraccino R, Fields S. Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci USA 1994;91:6098–6102.
- Naumovski L, Cleary ML. The p53-binding protein 53BP2 also interacts with Bcl2 and impedes cell cycle progression at G2/M. Mol Cell Biol 1996;16:3884–3892.
- Samuels-Lev Y, O'Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, Campargue I, Naumovski L, Crook T, Lu X. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 2001;8:781–794.
- Tidow H, Andreeva A, Rutherford TJ, Fersht AR. Solution structure of ASPP2 N-terminal domain (N-ASPP2) reveals a ubiquitin-like fold. J Mol Biol 2007;371:948–958.
- Rotem S, Katz C, Benyamini H, Lebendiker M, Veprintsev D, Rudiger S, Danieli T, Friedler A. The structure and interactions of the prolinerich domain of ASPP2. J Biol Chem 2008;283:18990–18999.
- Gorina S, Pavletich NP. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 1996;274:1001–1005.
- Robinson RA, Lu X, Jones EY, Siebold C. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Structure 2008;16:259–268.
- 8. Katz C, Benyamini H, Rotem S, Lebendiker M, Danieli T, Iosub A, Refaely H, Dines M, Bronner V, Bravman T, Shalev DE, Rudiger S, Friedler A. Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2. Proc Natl Acad Sci USA 2008;105:12277–12282.
- Helps NR, Barker HM, Elledge SJ, Cohen PT. Protein phosphatase 1 interacts with p53BP2, a protein which binds to the tumour suppressor p53. FEBS Lett 1995;377:295–300.
- Espanel X, Sudol M. Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. J Biol Chem 2001;276:14514–14523.
- 11. Cao Y, Hamada T, Matsui T, Date T, Iwabuchi K. Hepatitis C virus core protein interacts with p53-binding protein, 53BP2/Bbp/ASPP2, and inhibits p53-mediated apoptosis. Biochem Biophys Res Commun 2004;315:788–795.
- 12. Yang JP, Hori M, Takahashi N, Kawabe T, Kato H, Okamoto T. NF-kappaB subunit p65 binds to 53BP2 and inhibits cell death induced by 53BP2. Oncogene 1999;18:5177–5186.
- Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006;25:6680–6684.
- Hacker H, Karin M. Regulation and function of IKK and IKKrelated kinases. Sci STKE 2006;2006(357):re13.
- Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB complex. Cell 1998;95:749–758.
- Basseres DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 2006;25:6817–6830.
- Dutta J, Fan Y, Gupta N, Fan G, Gelinas C. Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 2006;25:6800–6816.
- Takahashi N, Kobayashi S, Kajino S, Imai K, Tomoda K, Shimizu S, Okamoto T. Inhibition of the 53BP2S-mediated apoptosis by nuclear factor kappaB and Bcl-2 family proteins. Genes Cells 2005;10:803–811.
- Yang JP, Hori M, Sanda T, Okamoto T. Identification of a novel inhibitor of nuclear factor-kappaB. Rel A-associated inhibitor J Biol Chem 1999;274:15662–15670.

- Delano WL. The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific LLC; 2002. Available at: http://www.pymol. org.
- 21. Emekli U, Schneidman-Duhovny D, Wolfson HJ, Nussinov R, Haliloglu T. HingeProt: automated prediction of hinges in protein structures. Proteins 2008;70:1219–1227. Available at: http://bioinfo3d.cs.tau.ac.il/HingeProt/index.html.
- 22. Suhre K, Sanejouand YH. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 2004;32(Web Server issue): W610-614. http://www.igs.cnrs-mrs.fr/elnemo/.
- 23. Duhovny D, Nussinov R, Wolfson HJ. Efficient unbound docking of rigid molecules. In: Guigo R, Gusfield D, editors. Rome, Italy: LNCS; 2002. pp 185–200.
- 24. Andrusier N, Nussinov R, Wolfson HJ. FireDock: fast interaction refinement in molecular docking. Proteins 2007;69:139–159.
- Kingsford CL, Chazelle B, Singh M. Solving and analyzing sidechain positioning problems using linear and integer programming. Bioinformatics 2005;21:1028–1036.
- Zhang C, Vasmatzis G, Cornette JL, DeLisi C. Determination of atomic desolvation energies from the structures of crystallized proteins. J Mol Biol 1997;267:707–726.
- Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. Gromacs: fast, flexible, and free. J Comput Chem 2005;26:1701–1718.
- Lindahl E, Hess B, Van Der Spoel D. Gromacs 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod 2001; 7:306–317.
- 29. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004;25:1656–1676.
- Berendsen HJC, Postma JPM, Van Gunsteren WF, Hermans J. Interaction models for water in relation to protein hydration. Nature 1969:224:175–177.
- Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comp Chem 1997; 18:1463–1472.
- Ivanov I, Tainer JA, McCammon JA. Unraveling the three-metal-ion catalytic mechanism of the DNA repair enzyme endonuclease IV. Proc Natl Acad Sci USA 2007;104:1465–1470.
- Berendsen HJC, Postma JPM, Gunsteren WFV, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984;81:3684–3690.
- Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103:8577–8593.
- 35. Chen FE, Huang DB, Chen YQ, Ghosh G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 1998;391:410–413.
- Alva V, Devi DP, Sowdhamini R. Coilcheck: an interactive server for the analysis of interface regions in coiled coils. Protein Pept Lett 2008;15:33–38.
- 37. Camacho CJ, Zhang C. FastContact: rapid estimate of contact and binding free energies. Bioinformatics 2005;21:2534–2536.
- Latzer J, Papoian GA, Prentiss MC, Komives EA, Wolynes PG. Induced fit, folding, and recognition of the NF-kappaB-nuclear localization signals by IkappaBalpha and IkappaBbeta. J Mol Biol 2007;367:262–274.