Memento CmathLuaTFX

 $\label{lem:com/cdevalland/cmathluatex} https://github.com/cdevalland/cmathluatex christophe.devalland@ac-rouen.fr \\ 2014-2016$

- Raccourcis TeXworks

Le confort d'utilisation de Cmath LuaTeX sera optimale avec l'excellent éditeur TeXworks. Son apparence est rudimentaire mais il est d'une efficacité redoutable une fois qu'on a pris le temps de le personnaliser. Les combinaisons de touches disponibles dans TeXworks sont :

Touches	Action
F9	Compose la formule tapée juste avant le curseur avec la fonction \$\\$.
	Action réversible en retapant F9.
Maj+F9	Compose la formule tapée juste avant le curseur avec la fonction $\[\}\]$.
	Action réversible.
Alt+F9	Compose la formule tapée juste avant le curseur avec la fonction .
	Action réversible.
Ctrl+F9	Traduit en LaTeX la formule tapée juste avant le curseur, en mode texte.
Ctrl+Maj+F9	Traduit en LaTeX la formule tapée juste avant le curseur, en mode hors-texte.
Ctrl+*	Affiche le symbole \times
Ctrl+/	Affiche le symbole ÷
Ctrl+=	Affiche le symbole environ égal
Ctrl+R	Affiche le symbole √

Pour configurer TeXworks, voir là: https://github.com/cdevalland/cmathluatex/wiki/Configuration-TeXworks.

- Les symboles

Les symboles suivants sont obtenus en tapant : suivi du raccourci correspondant. Je n'indique pas les lettres grecques dans ce tableau ; elles sont toutes disponibles. Par exemple : de donne δ . On obtient la version majuscule en tapant le raccourci en majuscule. Δ est obtenu avec :DE.

Raccourci	Symbole	Raccourci	Symbole	Raccourci	Symbole	Raccourci	Symbole
:in	∞	:11	ℓ	:pm	±	:dr	∂
:vi	Ø	:ex	3	:qs	\forall	:e	e
:i	i	:d	d	:K	\mathbb{K}	: N	\mathbb{N}
:Z	${\mathbb Z}$: Q	\mathbb{Q}	:R	\mathbb{R}	:C	\mathbb{C}
:Ne	\mathbb{N}^*	:Z	\mathbb{Z}^*	:Qe	\mathbb{Q}^*	:Re	\mathbb{R}^*
:Ce	\mathbb{C}^*	:Rm	\mathbb{R}^-	:Rp	\mathbb{R}^+	:Rme	\mathbb{R}^*
:Rpe	\mathbb{R}_+^*	:oij	$(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$:ouv	$(O;\overrightarrow{u},\overrightarrow{v})$:oijk	$(O; \vec{\imath}, \vec{\jmath}, \vec{k})$

Les symboles suivants sont des opérateurs binaires, ils doivent être utilisés entre deux arguments.

Expression	Affichage	Expression	Affichage	Expression	Affichage	Expression	Affichage
a:enb	$a \approx b$	a:apb	$a \in b$	a:asb	$a \mapsto b$	a->b	$a \rightarrow b$
a:unb	$a \cup b$	a:itb	$a \cap b$	a:rob	$a \circ b$	a:eqb	$a \sim b$
a:cob	$a \equiv b$	a:ppb	$a \lor b$	a:pgb	$a \wedge b$	a:veb	$a \wedge b$
a:peb	$a \perp b$	a:sdb	$a\oplus b$	a:npb	$a \notin b$	a:imb	$a \Rightarrow b$
a:evb	$a \Leftrightarrow b$	a:rcb	$a \Leftarrow b$	a:icb	$a \subset b$	a:nib	$a \not\subset b$

- Les fonctions : syntaxes et exemples

Les arguments notés entre crochets sont facultatifs.

La colonne de gauche contient ce que l'on tape au clavier. La colonne de droite est le résultat de la compilation avec Lualate Xaprès avoir composition par \[\Cmath{}\]. Avec TeXworks, cette opération est réalisée par l'appui sur Maj+F9.

Reconnaissance des fonctions usuelles	
f(x)=x*lnx+1	$f\left(x\right) = x\ln x + 1$

La division : n/d, division en ligne : n//d ou n÷d	
(x+2)/x	$\frac{x+2}{x}$
1/(3/4)+1/2=11/2/3	$\frac{1}{\frac{3}{4}} + \frac{1}{2} = \frac{\frac{11}{2}}{3}$
1+1/(1+1/(1+))	$1 + \frac{1}{1 + \frac{1}{1 + \dots}}$
:e^(:i:pi//4)	$\mathrm{e}^{\mathrm{i}\pi/4}$
3÷2 La multiplication implicite, invisible : a*b, visible : a*b ou a**b ou ab	$3 \div 2$
1/2x,√3x,2lnx/x	$\frac{1}{2x}, \sqrt{3x}, \frac{2\ln x}{x}$
1/2*x,√3×x,2lnx/x	$\frac{1}{2}x, \sqrt{3} \times x, 2 \cdot \frac{\ln x}{x}$
Gestion des parenthèses inutiles	2 %
$\sqrt{(x+1)}, \sqrt{(x+1)x}, (1+n)/3$	$\sqrt{x+1}, \sqrt{(x+1)x}, \frac{1+n}{3}$
Les racines : rac([n,]exp) ou √([n,]exp)	
$\sqrt{x}, \sqrt{3}, x$	$\sqrt{x}, \sqrt[3]{x}$
Valeur absolue, module : abs(exp) abs(z)	z
Norme: nor(exp)	~
nor(vec(AB))	$\ \overrightarrow{AB}\ $
Barre: bar(exp)	
bar(A:unB)=bar(A):itbar(B) Tilde: til(exp)	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
<pre>til(P:roQ)=til(P):rotil(Q) Angle: ang(exp)</pre>	$\widetilde{P\circ Q}=\widetilde{P}\circ\widetilde{Q}$
ang((vec(u),vec(v)))	$\widehat{(\overrightarrow{u},\overrightarrow{v})}$
La puissance : a^b	(' '
:e^(1+1/n),(1/2)^n	$e^{1+\frac{1}{n}}, \left(\frac{1}{2}\right)^n$
10^-5,(10^n)^p=10^(n**p)	$10^{-5}, (10^n)^p = 10^{n \times p}$
x^(2^3) Les indices: a_b	x^{2^3}
x_1=(1+√5)/2	$x_1 = \frac{1 + \sqrt{5}}{2}$
$a=(y_{M_2}-y_{M_1})/(x_{M_2}-x_{M_1})$	$a = \frac{y_{M_2} - y_{M_1}}{x_{M_2} - x_{M_1}}$
P_1*(X)	$P_{1}\left(X\right)$
Les intervalles	
[0,1/2],]-:in,0]	$\left[0,\frac{1}{2}\right],\left]-\infty,0\right]$
[[1,n]]	$\llbracket 1, n rbracket$

Forcer le mode textstyle ou displaystyle : ts(exp), ds(exp)				
ts(x_1=(1+ $\sqrt{5}$)/2)	$x_1 = \frac{1+\sqrt{5}}{2}$			
US(X_1=(1.VO)/2)	<u> </u>			
$ds(x_1=(1+\sqrt{5})/2)$	$x_1 = \frac{1 + \sqrt{5}}{2}$			
Polices caligraphique: cal(exp), script: scr(exp), Zapf Chancery				
cal(M)_n*(:R),scr(C)_f,pzc(E)	$\mathcal{M}_{n}\left(\mathbb{R} ight),\mathcal{C}_{f},\mathcal{E}$			
Texte: "texte"				
p="nombre de cas favorables"/"nombre de cas possibles"	$p = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$			
Système: sys(expr1[,expr2[,expr3[])				
$sys(u_0=1,u_(n+1)=\sqrt{(u_n+3)})$	$\begin{cases} u_0 = 1\\ u_{n+1} = \sqrt{u_n + 3} \end{cases}$			
f(x)=sys(2x+1*" si "*x>=0,x^2*" si "*x<0)	$f(x) = \begin{cases} 2x + 1 & \text{si } x \geqslant 0 \\ x^2 & \text{si } x < 0 \end{cases}$			
Accolade: acc(exp), inférieure: aci(exp), supérieure: acs(exp),	=			
$S=acc(x:ask*x^2,k:ap:R)$	$S = \left\{ x \mapsto kx^2, k \in \mathbb{R} \right\}$			
1+acs(2×3,6)	$1+\overbrace{2\times3}^{\circ}$			
1+aci(2×3,6)	$1+2\times3$			
	6			
<pre>acd(P" est vrai",Q" est vrai"):im(P" et "Q)" est vrai"</pre>	$\left. \begin{array}{c} P \text{ est vrai} \\ Q \text{ est vrai} \end{array} \right\} \Rightarrow \left(P \text{ et } Q \right) \text{ est vrai}$			
Vecteur: vec(exp), vecteur colonne: vec(x1,x2[,x3[])				
vec(u)*vec(1,2,3)	$\vec{u} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$			
vec(AB)+vec(BA)=vec(0)	$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{0}$			
Intégrale simple : int([inf],[sup],fonction[,variable])				
int(0,1,:e^2x,x)=[1/2*:e^2x]_0^1	$\int_0^1 e^{2x} dx = \left[\frac{1}{2} e^{2x} \right]_0^1$			
int([:pi,2:pi],,sinx,x)	$\int_{[\pi,2\pi]} \sin x \mathrm{d}x$			
int(,,lnx)=x*lnx-x+k,k:ap:R	$\int \ln x = x \ln x - x + k, k \in \mathbb{R}$			
Intégrales double : iint([inf],[sup],fonction[,variable1,var	J			
<pre>iint(cal(D),,f(x,y),x,y)</pre>	$\iint_{\mathbb{R}} f(x,y) \mathrm{d}x \mathrm{d}y$			
Intégrales triple : iiint([inf],[sup],fonction[,variable1,variable2,variable3])				
iiint(cal(V),,f(x,y,z),x,y,z) $\iiint_{\mathcal{V}} f(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z$				
Écrire autour : aut(exp,a,b,c,d)				
aut(M,1,2,3,4)	$rac{3}{4}\overline{M}_1^2$			
Somme: som([inf],[sup],exp)	-			
som(i=1,+:in,1/2^n)	$\sum_{i=1}^{+\infty} \frac{1}{2^n}$			

Produit: pro([inf],[sup],exp)	
pro(,,(1+1/i))	$\prod \left(1+\frac{1}{i}\right)$
Union: uni([inf],[sup],exp)	
uni(1<=k<=n,,A_k)	$\bigcup_{1\leqslant k\leqslant n}A_k$
<pre>Intersection : ite([inf],[sup],exp)</pre>	
ite(i=0,+:in,(]1-a_i,1+b_i[))	$\bigcap_{i=0}^{+\infty} (]1 - a_i, 1 + b_i[)$
Limite: lim(exp1[,exp2],fonction)	
$\lim(x->2,\ln(x-2))=-:$ in	$\lim_{x \to 2} \ln\left(x - 2\right) = -\infty$
$\lim(x->\sqrt{2},x<\sqrt{2},1/(x^2-2))=+:in$	$\lim_{\substack{x \to \sqrt{2} \\ x < \sqrt{2}}} \frac{1}{x^2 - 2} = +\infty$
Sup: sup(exp1,exp2), idem pour inf, max, min	
inf(x:ap[a,b],f(x))	$\inf_{x \in [a,b]} f\left(x\right)$
Souligner: sou(exp)	
sou(AB)	<u>AB</u>
Biffer: bif(exp)	
(bif(2)×3)/(bif(2)×7)	$\frac{\cancel{2}\times 3}{\cancel{2}\times 7}$
Matrice: mat(nombre de colonnes,a,b,c,)	(1 0)
mat(2,1,2,3,4)	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
Déterminant : det(nombre de colonnes,a,b,c,)	
det(2,1,2,3,4)	$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$
Crochet: cro(nombre de colonnes,a,b,c,)	
cro(2,1,2,3,4)	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
Équivalent à : equ(fonction1, point, fonction2)	·
equ(sinx,0,x)	$\sin x \sim x$
Tendre vers: ten(fonction1, point, fonction2)	
ten(lnx,+:in,+:in)	$\ln x \xrightarrow[+\infty]{} +\infty$
Dérivée physicienne : der(fonction, variable, ordre)	
der(f,t,3)	$rac{\mathrm{d}^3 f}{\mathrm{d}t^3}$
Dérivée partielle : derp(fonction, variables)	
<pre>derp(f,xxyzz)</pre>	$\frac{\partial^5 f}{\partial x^2 \partial y \partial z^2}$
Petit o: pto(point,fonction), grand o: pto(point,fonction)	
x=pto(+:in,x^2)	$x = o_{+\infty} \left(x^2 \right)$
f=gro(0,x)	$f = O_0\left(x\right)$

Restreint à : res(fonction, ensemble)	
res(f,:Rp)	$f_{ \mathbb{R}^+}$
Suite: sui(nom[,indice])	
sui(u)	$(u_n)_{n\in\mathbb{N}}$
sui(u,k)	$(u_k)_{k\in\mathbb{N}}$
sui(u,p>=0)	$(u_p)_{p\geqslant 0}$
Série : ser(nom[,indice])	
ser(u)	$\sum u_n$
ser(u,k)	$\sum u_k$
ser(u,p>=0)	$\sum \left(u_p\right)_{p\geqslant 0}$

Pour les symboles LATEXqui ne sont pas fournis par CmathLuaTEX, il suffit de les ajouter dans une expression CmathLuaTEXen doublant le backslash. Par exemple :

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix}$$

- Calculs formels

Pour effectuer des calculs formels dans LuaL 4 TeX ou construire des tableaux de valeurs ou de variations automatiquement, consulter https://github.com/cdevalland/cmathluatex/wiki/Présentation-de-CmathLuaTeX.