Skriftlig eksamen i Matematik B. Sommeren 2014

Torsdag den 12. juni 2014

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog ikke lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

1. årsprøve 2014 S-1B ex

Skriftlig eksamen i Matematik B

Torsdag den 12. juni 2014

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi den symmetriske 3×3 matrix

$$A(s) = \begin{pmatrix} 1 & 0 & s \\ 0 & 1 & 0 \\ s & 0 & 1 \end{pmatrix},$$

og specielt skal vi se på matricen

$$A(3) = \left(\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{array}\right),$$

hvor s = 3.

- (1) Udregn determinanten for matricen A(3), og godtgør dernæst, at A(3) er regulær.
- (2) Bestem egenværdierne og egenrummene for matricen A(3).
- (3) Bestem en diagonalmatrix D og en ortogonal matrix Q, så

$$D = Q^{-1}A(3)Q.$$

- (4) Opskriv en forskrift for den kvadratiske form $K : \mathbf{R}^3 \to \mathbf{R}$, der er givet ved den symmetriske matrix A(3), og godtgør, at K er indefinit.
- (5) Udregn for ethvert $s \in \mathbf{R}$ de ledende hovedunderdeterminanter for matricen A(s). Bestem dernæst de $s \in \mathbf{R}$, så matricen A(s) er positiv definit.

Opgave 2. Vi betragter mængden

$$D = \{(x, y) \in \mathbf{R}^2 \mid x > 0 \land y > 0\}$$

og funktionen $f: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : f(x,y) = -2 \ln x + \ln y + x^2 - y.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in D$.

- (2) Bestem eventuelle stationære punkter for funktionen f.
- (3) Bestem Hessematricen H(x, y) for funktionen f i et vilkårligt punkt $(x, y) \in D$. Vis dernæst, at Hessematricen H(x, y) er indefinit overalt på definitionsmængden D.

For ethvert $\alpha > 0$ definerer vi funktionen $g_{\alpha} : \mathbf{R}_{+} \to \mathbf{R}$ ved udtrykket

$$\forall x > 0 : g_{\alpha}(x) = f(x, \alpha x).$$

- (4) Vis, at for ethvert $\alpha > 0$ er funktionen g_{α} strengt konveks på hele \mathbf{R}_{+} .
- (5) Vis, at for ethvert $\alpha > 0$ har funktionen g_{α} netop et stationært punkt $x^*(\alpha)$, og vis, at

$$x^*(\alpha) \to \infty$$
 for $\alpha \to \infty$.

Opgave 3. Vi betragter differentialligningen

(*)
$$\frac{dx}{dt} + \left(\frac{6t^5}{2+t^6}\right)x = \frac{\cos(t)}{2+t^6}.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Godtgør, at det for enhver maksimal løsning x = x(t) til (*) gælder, at

$$x(t) \to 0 \text{ for } t \to \pm \infty.$$

(3) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til differentialligningen (*), så betingelsen $\tilde{x}(0) = 2014$ er opfyldt.

(4) Udregn differentialkvotienten

$$\frac{dx}{dt}(0)$$

for en vilkårlig maksimal løsning x = x(t) til differentialligningen (*).

Opgave 4. Vi betragter den funktion $f : \mathbf{R}^2 \setminus \{(0,0)\}$, som er givet ved forskriften

$$\forall (x,y) \neq (0,0) : f(x,y) = \ln \left(\sqrt{x^2 + y^2} \right).$$

(1) Vis, at betingelsen

$$\forall (x, y) \neq (0, 0) \forall t > 0 : f(tx, ty) = \ln t + f(x, y)$$

er opfyldt.

- (2) Vis, at funktionen f er homotetisk, men ikke homogen.
- (3) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \neq (0, 0)$.

(4) Vis, at udsagnet

$$\forall (x,y) \neq (0,0) : \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) = 0$$

er sandt.

(Man siger så, at funktionen fer harmonisk på mængden $\mathbf{R}^2\backslash\{(0,0)\}.)$