

ASTCODA: Abstract Syntax Tree Convolutions Operating on Domain Attention

Liudmila Paskonova ⁽¹⁾, Lomonosov Moscow State University Supervised by Dr. Alexander Chernov ⁽²⁾

Background: Approaches to code segmentation have limitations

- require fixed segment annotations
- miss domain nuances
- limited to specific programming languages

Problem:

We want to extract features from unlabeled source code automatically.

Solution:

Features are sequences of consecutive tokens. We employ AST-based tokenizer and a CNN with attention to assess their importance. Our framework is **AST-based**, **self-contained**, **domain-aware** and **multi-language**.

Task Source Samples Domain Class lang. **Vulnerability FormAl** Correct/ **Entire** 336523 2 C detection dataset dataset **Vulnerable** Error Correct/ localization in Project 449950 **Partial** Problem 30 2 C++ student CodeNet Solution programming submissions

AST-based tokenization preserves the structure of the program code

- To construct AST we use Tree-Sitter
- AST-tokenization worked better than word-based approaches

Higher attention weights highlight more important features

 $RSDM(pred, gt) = 1 - \frac{distance(pred, gt)}{worst_distance(L, gt)}$ $distance(pred, gt) = \sum_{i \in \{0, \dots, K-1\}}^{M-1} |pred_i - gt_j|$

 $\tilde{\alpha}_i \geq$ threshold \implies feature i is more likely to correspond the predicted class

Embeddings of neighboring ASTtokens form syntax clusters

Our model finds logical errors

Code, data and pretrained models

https://github.com/Liudmila-Paskonova/ASTCODA