实验报告 EXPERIMENT REPORT

目录

一 项目简介	1
二 论文内容	1
1. 基本介绍	1
2. 所作改进	1
3. 数学模型	3
4. 结果比对	5
三 项目实践	6
1. 运行环境	6
2. 项目结构	7
3. 参数介绍	7
1) 数据加载参数	7
2) bert 相关参数(仅 V1)	8
3) 模型参数	8
4) 训练参数	10
4. 模型	10
1) 模型结构	10
2) 模型训练	13
3) 模型保存	14
4) 模型加载	15
5) 模型预测	16
5. 运行结果	18
四 总结反思	20
成员分工	20
实验感想	20

一 项目简介

本小组对 ACL2020 中来自复旦大学邱锡鹏老师团队的 FLAT: Chinese NER Using Flat-Lattice Transformer 进行论文复现,具体实现过程参考了官方开源代码 Flat-Lattice-Transformer。接下来报告将大致从两部分来介绍本项目的内容,分别是对论文的理解和项目运行过程记录。

与项目相关性较强的论文一共三篇,放在相关论文文件夹中,语料及训练集较大,上传受限,所以存放在百度云盘,后附链接;开源项目代码也已打包,放在项目代码文件夹中,后附 GitHub 链接。

语料及训练集百度云链接

链接: https://pan.baidu.com/s/1iJDo_iQnlcrMjxXXbPK-3Q

提取码: p55m

开源项目 Flat-Lattice-Transformer

链接: https://github.com/LeeSureman/Flat-Lattice-Transformer

注: 若用 Jupyter Notebook 在浏览器中打开运行,直接运行 Run. ipynb 文件, V0 版本运行,进入 V0 文件,运行 Run_V0. ipynb 文件,V1 版本运行,进入 V1 文件,运行 Run_V1. ipynb 文件。用其他编译器运行可直接运行 preprocess. py 文件,以及 flat_main. py 文件,完整运行步骤见 README. MD 文件。

二 论文内容

1. 基本介绍

本文在Lattice LSTM(ACL 2018)的基础上做出了这两方面的改进:

第一,作者提出了一种将 Lattice 图结构无损转换为扁平的 Flat 结构的方法,并将 LSTM 替换为了更先进的 Transformer Encoder,该方法不仅弥补了 Lattice LSTM 无法并行计算(batchsize=1)的缺陷,而且更好地建模了序列的长期依赖关系:

第二,作者提出了一种针对 Flat 结构的相对位置编码机制,使得字符与词汇得到了更充分更直接的信息交互,在基于词典的中文 NER (Named Entity Recognition, 命名实体识别)模型中取得了 SOTA。

2. 所作改进

由于中文词汇的稀疏性和模糊性,基于字符的序列标注模型往往比基于词汇的序列标注模型表现更好,但在基于字符的模型中引入分词信息往往能够带来性能的提升,尤其是对于 NER 任务来说,词汇能够提供丰富的实体边界信息。 Lattice LSTM 首次提出使用 Lattice 结构在 NER 任务中融入词汇信息。

汉字格结构已被证实是一种有效的中文命名实体识别方法,格子结构被证明对利用词信息和避免分词的错误传播有很大的好处。我们可以将一个句子与一个词典进行匹配,得到其中的潜词。格是一个有向无环图,其中每个节点都是一个字符或一个潜在的字。格包括句子中的一系列字符和可能的单词。它们不是按顺序排列的,单词的第一个字符和最后一个字符决定了它的位置。汉字格中的一些词可能对 NER 很重要。如图(a)所示,一个句子的 Lattice 结构是一个有向无环图,每个节点是一个字或者一个词,"人和药店(Renhe Pharmacy)"可以用来区分地理实体"重庆(Chongqing)"和"重 庆人(Chongqing People)"。

在 Lattice LSTM 中,使用一个额外的词元对可能的词进行编码,并使用注意机制在每个位置融合可变数量的节点,如图 (b) 所示。LR-CNN 使用 CNN 对不同窗口大小的潜在单词进行编码。但该方法存在一定局限性,由于 Lattice 结构的动态性,Lattice LSTM 无法在 GPU 上并行训练;且 RNN 和 CNN 难以建模长距离的依赖关系,在 Lattice LSTM 中的字符只能获取前向信息,没有和词汇进行足够充分的全局交互。

(b) Lattice LSTM.

从 Transformer 的 position representation 得到启发,作者给每一个 token/span(字、词)增加了两个位置编码,分别表示该 span 在 sentence 中开始 (head)和结束(tail)的位置,对于字来说,head position 和 tail position 是相同的。通过对注意力打分函数的简单改进,使得 Transformer 结构在 NER 任务上性能大幅提升,如图 (c)所示。从这样的标签序列中可以无损地重建 Lattice 结构。同时,扁平的结构允许使用 Transformer Encoder,其中的 self-attention 机制允许任何字符和词汇进行直接的交互。

(c) Flat-Lattice Transformer.

3. 数学模型

Muiti-head self-attention

有了位置编码,容易想到可以像原始 Transformer 那样将字向量直接和两个位置向量相加,然后参与后续的 self-attention:

$$egin{aligned} \operatorname{Attn}(\mathbf{A}, \mathbf{V}) &= \operatorname{softmax}(\mathbf{A}) \mathbf{V}; \ \mathbf{A}_{ij} &= \left(rac{\mathbf{Q}_i \mathbf{K}_j^\intercal}{\sqrt{d_{ ext{head}}}}
ight); \ \left[\mathbf{Q}, \mathbf{K}, \mathbf{V}
ight] &= E_x \left[\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v
ight] \end{aligned}$$

不过这样做肯定不算是有效编码了位置信息,这也是原始 Transformer 在 NER 任务上的性能比不过 BiLSTM 的原因之一。有效的位置编码一直是改进 Transformer 的重要方向,针对本文提出的 Flat 结构,作者借鉴并优化了 Transformer-XL (ACL 2019)中的相对位置编码方法,有效地刻画了 span 之间的 相对位置信息。

Relative Position Encoding of Spans

Figure 2: The overall architecture of FLAT.

span 是字符和词汇的总称,span 之间存在三种关系:交叉、包含、分离,然而作者没有直接编码这些位置关系,而是将其表示为一个稠密向量。作者用 head[i]和 tail[i] 表示 span 的头尾位置坐标,并从四个不同的角度来计算 x_i 和 x_i 的距离:

$$egin{aligned} d_{ij}^{(hh)} &= head[i] - head[j] \ d_{ij}^{(ht)} &= head[i] - tail[j] \ d_{ij}^{(th)} &= tail[i] - head[j] \ d_{ii}^{(tt)} &= tail[i] - tail[j] \end{aligned}$$

如图 2 所示,这会得到四个相对距离矩阵: $d^{(hh)}$, $d^{(ht)}$, $d^{(th)}$, $d^{(tt)}$,其中 $d^{(hh)}_{ij}$ 表示 x_i 的开始位置和 x_j 的开始位置的距离。然后将这四个距离拼接后作一个 非线性变换,得到 x_i 和 x_i 的位置编码向量 R_{ij} :

$$R_{ij} = ext{ReLU}(W_r(\mathbf{p}_{d_{ij}^{(hh)}} \oplus \mathbf{p}_{d_{ij}^{(th)}} \oplus \mathbf{p}_{d_{ij}^{(ht)}} \oplus \mathbf{p}_{d_{ij}^{(tt)}}))$$

其中 P_d 是 Transfor在此处键入公式。mer 采用的绝对位置编码:

$$\mathbf{p}_{d}^{(2k)} = \sin\!\left(d/10000^{2k/d_{model}}
ight) \ \mathbf{p}_{d}^{(2k+1)} = \cos\!\left(d/10000^{2k/d_{model}}
ight)$$

这样,每一个 span 都可以与任意 span 进行充分且直接的交互,然后作者采用了 Transformer-XL (ACL 2019)中提出的基于相对位置编码的 self-attention:

$$egin{aligned} \mathbf{A}_{i,j}^* &= \mathbf{W}_q^\intercal \mathbf{E}_{x_i}^\intercal \mathbf{E}_{x_j} \mathbf{W}_{k,E} + \mathbf{W}_q^\intercal \mathbf{E}_{x_i}^\intercal \mathbf{R}_{ij} \mathbf{W}_{k,R} \ &+ \mathbf{u}^\intercal \mathbf{E}_{x_j} \mathbf{W}_{k,E} + \mathbf{v}^\intercal \mathbf{R}_{ij} \mathbf{W}_{k,R} \end{aligned}$$

可以直观地将前两项分别看作是两个 span 之间的内容交互和位置交互,后两项为全局内容和位置 bias,在 Transformer-XL 中R是根据绝对位置编码直接计算得出的,而这里的R经过了非线性变换的处理。最后,用A*替换式(1)中的A,取出字的编码表示,将其送入 CRF 层进行解码得到预测的标签序列。

4. 结果比对

下图给出了论文的实验结果,从图中可以看出,引入词汇信息的方法,都相较于 baseline 模型 biLSTM+CRF 有较大提升。可见引入词汇信息可以有效提升中文 NER 性能。采用相同词表(词向量)时,FLAT 好于其他词汇增强方法;FLAT 如果 mask 字符与词汇间的 attention,性能下降明显,这表明 FLAT 有利于捕捉长距离依赖。且 FLAT 结合 BERT 效果会更佳。

	Lexicon	Ontonotes	MSRA	Resume	Weibo
BiLSTM	-	71.81	91.87	94.41	56.75
TENER	-	72.82	93.01	95.25	58.39
Lattice LSTM	YJ	73.88	93.18	94.46	58.79
CNNR	YJ	74.45	93.71	95.11	59.92
LGN	YJ	74.85	93.63	95.41	60.15
PLT	YJ	74.60	93.26	95.40	59.92
FLAT	YJ	76.45	94.12	95.45	60.32
$FLAT_{msm}$	YJ	73.39	93.11	95.03	57.98
$FLAT_{\mathrm{mld}}$	YJ	75.35	93.83	95.28	59.63
CGN	LS	74.79	93.47	94.12*	63.09
FLAT	LS	75.70	94.35	94.93	63.42

	Lexicon	Ontonotes	MSRA	Resume	Weibo
BERT	-	80.14	94.95	95.53	68.20
BERT+FLAT	YJ	81.82	96.09	95.86	68.55

在推断速度方面,FLAT 论文也与其他方法进行了对比,FLAT 仅仅采用 1 层 Transformer, 在指标领先的同时、推断速度也明显优于其他方法。

Figure 3: Inference-speed of different models, compared with lattice LSTM . denotes non-batch-parallel version, and indicates the model is run in 16 batch size parallelly. For model LR-CNN, we do not get its batch-parallel version.

三 项目实践

1. 运行环境

Python: 3.7.3 PyTorch: 1.2.0 FastNLP: 0.5.0 Numpy: 1.16.4

FastNLP 是作者团队自己做的一个 NLP 工具包,和本项目较贴合,使用流畅, FLAT 的代码中很多类都已定义在 FastNLP 中。与本项目匹配的是 0.5.0 的版本, 建议安装这个版本,严格按照作者的指导,否则会遇到运行问题,需要重装。

2. 项目结构

1需要的词向量文件和数据集如下

文件	默认值	解释
yangjie_rich_pretrain_unigram_path	'./gigaword_chn.all.a2b.uni.ite50.vec'	单字符的预训练vec编码
yangjie_rich_pretrain_bigram_path	'./gigaword_chn.all.a2b.bi.ite50.vec'	双字符的预训练vec编码
yangjie_rich_pretrain_word_path	'./ctb.50d.vec'	词语的预训练vec编码
yangjie_rich_pretrain_char_and_word_path	'./yangjie_word_char_mix.txt'	词语和字符混合的编码, 由prepocess生成
msra_ner_cn_path	'./MSRANER'	msra数据集位置

2项目结构

3. 参数介绍

项目中出现了大量的可调参数,且多数参数并未必给出含义的介绍,阅读代码时很影响流畅性,代码能够找到这些参数,并推断出参数的含义如下总结。

1) 数据加载参数

参数	解释	默认值
dataset	数据集名称	'msra'
bigram_min_freq	bigram编码时考虑的最小词频	1
char_min_freq	单个汉字编码时考虑的最小词频	1
word_min_freq	词语编码时考虑的最小词频	1
lattice_min_freq	添加lattice编码时考虑的最小词频	1
train_clip	是否将训练集裁剪到200以下	False
only_train_min_freq	仅对train中的词语使用min_freq筛选	True
only_lexicon_in_train	只加载在trian中出现过的词汇	False
number_normalized	0:不norm;1:char;2:char&bi3:char&bi&lattice	0
load_dataset_seed	随机种子	100

2) bert 相关参数(仅 V1)

bert 相关的参数只有在 V1 版本中才会用到。

参数	解释	默认值
use_bert	是否使用bert编码	1
only_bert	是否只使用bert编码	0
fix_bert_epoch	多少轮之后开始训练bert	20
after_bert	如果只使用bert, bert之后的层	mlp

3) 模型参数

参数	解释	默认值
ff	feed-forward中间层的节点个数	3,修正为hidden * ff
hidden	SE位置编码和三角函数编码共用的编码维度	会修正为head_dim * head
layer	Transformer中Encoder_Layer的数量	1
head	multi-head-attn中head的个数	8
head_dim	multi-head-attn中每个head的编码维度	20
scaled	multi-head-attn中是否对attn标准化 (attn_raw/sqrt(per_head_size))	False
attn_ff	是否在self-attn layer最后加一个linear层	False
ff_activate	feed-forward中的激活函数	'relu'
use_bigram	是否使用双字符编码	1
use_abs_pos	是否使用绝对位置编码	False
use_rel_pos	是否使用相对位置编码	True
rel_pos_shared	是否共享相对位置,无效参数	True
add_pos	是否在transformer_layer中通过concat加入位置信息,无效参数	False
learn_pos	绝对和相对位置编码中编码是否可学习(是否计算梯度)	False
pos_norm	是否对位置编码进行norm(pe/pe_sum)	False
rel_pos_init	相对位置编码初始化编码方向, 0: 左向右; 1: 右向左。 无效参数	1,但是实际调用的类中 写死为0
four_pos_shared	4个位置编码是不是共享权重	True
four_pos_fusion	4个位置编码融合方法'ff', 'attn', 'gate', 'ff_two', 'ff_linear'	ff_two
four_pos_fusion_shared	要不要共享4个位置融合之后形成的pos	True
k_proj	attn中是否将key经过linear层	False
q_proj	attn中是否将query经过linear层	True
v_proj	attn中是否将value经过linear层	True
r_proj	attn中是否将相对位置编码经过linear层	True
embed_dropout	embedding中的dropout	0.5
ff_dropout	ff层中的dropout	0.15
ff_dropout_2	第二个ff层中的dropout	0.15
attn_dropout	attention中的dropout	0

4) 训练参数

训练参数的默认值列出来后,如下。

```
epoch = 10
batch = 1
optim = 'sgd'  # sgd/adam
lr = 1e-3
warmup = 0.1
embed_lr_rate = 1
momentum = 0.9
update_every = 1
init = 'uniform'  # 'norm/uniform'
self_supervised = False
weight_decay = 0
norm_embed = True
norm_lattice_embed = True
test_batch = batch // 2
```

4. 模型

1) 模型结构

模型分为 V0 和 V1 两个版本。主要区别在于是否使用 Bert,所调用的类的 名称也有所不同,但 main 脚本的流程没有太大的区别,都是按照如下的过程进行的:

首先加载数据,创建 fastNLP 中 Dataset 类型的数据集,可以通过 Dataset['train']的方式去索引训练集、验证集和测试集。然后每一个数据集中,又包含如下字段。

字段名	含义
char	原文本,以字为分割
target	标签
bigram	两两连续分割的字符

equip lexicon 是给数据集添加 lattice 的过程,即在词库内匹配词汇,然后放在原来的 token embedding 之后。

接下来将读入数据的长度,向 dataset 添加 seq_len 的字段,再对所有的 embedding 进行 normalization。

上述准备工作完成后,就会建立模型,建立哪一种模型会根据用户输入的 args 进行判断。针对不同模型,图示见后。

V0 版本的模型结构如下:

V1 版本的模型结构如下:

2) 模型训练

以 MSRA 数据集为例,训练只需要在项目目录下执行

python flat_main.py --dataset msra

就可以根据训练参数去传参。

对遇到的问题进行总结:

1 import 报错

无法 import _get_file_name_base_on_postfix 函数。 这个错误很明显,函数名以下短线开头,不能被 import。只需要把这个函数复 制到报错的脚本 load data.py 中就可以解决。

2 ncoding_type 不对

在代码里改一下就好了,例如 MSRA 数据集,改成 bioes, CLUE 数据集,改成 bio。

3 缺少数据类型 'chain'

这个来自于\JetBrains\PyCharm\python_stubs-1902731831\itertools.py 这个脚本,把这个脚本复制到项目根路径,然后 import 它。在报错的脚本中添加:

from itertools import chain

4 Bert 相关的问题

如果是用的 V1 版本代码,可以设置使用 Bert 编码,如果使用 0.5.5 的 FastNLP 则会遇到若干问题,问题和解决方法如下。

BertModel 的名称不对:

这是因为 FastNLP 中这个类的名字变了,原本是_WordBertModel,改成了_BertWordModel,直接复制这个类,更改名字,放入 fastNLP_Module_v1.py 里边就可以了。然后会报缺少 bert tokenizer,也是直接把 fastNLP 里边的\modules\tokenizer\bert_tokenizer.py 里边相关的代码复制到fastNLP_Module_v1.py 就可以解决。

5 tqdm 引发的报错

如果是在 jupyter 中执行训练,可能会由于 tqdm 版本的问题引发报错,遇到这种情况只需要把训练参数中的 use tqdm 给关掉就可以了。

3) 模型保存

模型在训练的时候,利用了 fastNLP 中的一个名为 Trainer 的类,通过查看这个类的代码可以发现,这个类是已写保存方法。

只需在 flat_main.py 中,将生成 Trainer 的位置加一个参数 save_path。

修改了之后,在保存时仍然报错,所以又对 Trainer 的 save 和 load 方法进行修改。修改后的代码如下:

```
def _save_model(self, model, model_name):
   if self.save_path is not None:
       model_path = os.path.join(self.save_path, model_name)
       if not os.path.exists(self.save path):
           os.makedirs(self.save_path, exist_ok=True)
       if _model_contains_inner_module(model):
           model = model.module
       torch.save(model.state dict(), model path) # 只改了这一行
def save model(self, model, model name):
   if self.save_path is not None:
       model_path = os.path.join(self.save_path, model_name)
       model.load_state_dict(torch.load(model_path))
   elif hasattr(self, " best model states"):
       model.load_state_dict(self._best_model_states)
   else:
       return False
   return True
```

这样改好了之后,执行 flat_main.py 脚本进行训练之后,就会在 save_path 路径下保存一个模型权重文件。

4) 模型加载

模型加载很简单,只需要在 flat_main.py 中,实例化 model 之后,load 之前保存的权重文件。

```
model_path = '/msra/best_Lattice_Transformer_SeqLabel_f_2021-03-03-
14-55-31-899501'
   states = torch.load(model_path).state_dict()
   model.load_state_dict(states)
```

5) 模型预测

作者并没有给出如何预测,但是在 fastNLP 中实际上是定义了用于预测的类的,名为 predictor,去看一下代码的话,这个类其实写的很简单,但是很实用。使用方法如下:

```
from fastNLP.core.predictor import Predictor
predictor = Predictor(model) # 这里的 model 是加载权重之后的 model

test_label_list =
predictor.predict(datasets['test'][:1])['pred'][0] # 预测结果
test_raw_char = datasets['test'][:1]['raw_chars'][0] # 原始文字
```

上面代码中的 test_label_list 就在 test 上预测出来的 label, label 对应的 BIO 可以通过以下代码查看:

```
for d in vocabs['label']:
    print(d)
```

这里写了一个简单的方法把 label 转换成实体 (仅适用于 MSRA 数据集),如下所示:

```
def recognize(label_list, raw_chars):
    """

根据模型预测的 label_list, 找出其中的实体
    label_lsit: array
    raw_chars: list of raw_char
    return: entity_list: list of tuple(ent_text, ent_type)
    -----
    ver: 20210303
    by: changhongyu
    """

if len(label_list.shape) == 2:
        label_list = label_list[0]
    elif len(label_list) > 2:
        raise ValueError('please check the shape of input')
```

```
assert len(label_list.shape) == 1
assert len(label_list) == len(raw_chars)
# 其实没有必要写这个
# 但是为了将来可能适应 bio 的标注模式还是把它放在这里了
starting_per = False
starting_loc = False
starting org = False
ent_type = None
ent text = ''
entity_list = []
for i, label in enumerate(label list):
   if label in [0, 1, 2]:
       ent text = ''
       ent_type = None
       continue
   # begin
   elif label == 10:
       ent_type = 'PER'
       starting_per = True
       ent_text += raw_chars[i]
   elif label == 4:
       ent type = 'LOC'
       starting_loc = True
       ent_text += raw_chars[i]
   elif label == 6:
       ent_type = 'ORG'
       starting_org = True
       ent_text += raw_chars[i]
   # inside
   elif label == 9:
       if starting_per:
           ent_text += raw_chars[i]
   elif label == 8:
       if starting loc:
           ent_text += raw_chars[i]
   elif label == 3:
       if starting_org:
           ent_text += raw_chars[i]
   # end
   elif label == 11:
       if starting_per:
```

```
ent_text += raw_chars[i]
                  starting_per = False
          elif label == 5:
              if starting loc:
                  ent_text += raw_chars[i]
                  starting_loc = False
          elif label == 7:
              if starting_org:
                  ent_text += raw_chars[i]
                  starting_org = False
          elif label == 13:
              ent_type = 'PER'
              ent_text = raw_chars[i]
          elif label == 12:
              ent_type = 'LOC'
              ent_text = raw_chars[i]
          elif label == 14:
              ent_type = 'PER'
              ent_text = raw_chars[i]
          else:
              ent text = ''
              ent_type = None
              continue
          if not (starting per or starting loc or starting org) and
len(ent_text):
              # 判断实体已经结束,并且提取到的实体有内容
              entity_list.append((ent_text, ent_type))
       return entity list
   recognize(test_label_list, test_raw_char)
   # Out:
   # [('中共中央', 'ORG'),
   # ('中国致公党', 'ORG'),
   # ('中国致公党', 'ORG'),
   # ('中国共产党中央委员会', 'ORG'),
   # ('致公党', 'ORG')]
```

5. 运行结果

VO 版本的运行结果

```
msg:_
train_clip:True
device:0
debug:0
gpumm:False
see_convergence:False
see_param:False
test_batch:5
seed:11242019
test_train:False
number_normalized:0
lexicon_name:yj
update_every:1
use_pytorch_dropout:0
char_min_freq:1
bigram_min_freq:1
lattice_min_freq:1
only_train_min_freq:True
only_lexicon_in_train:False
word_min_freq:1
epoch:100
batch:10
optim:sgd
lr:0.001
embed_lr_rate:1
self_supervised:False
weight_decay:0
norm_embed:True
norm_lattice_embed:True
warmup: 0.1
use_bert:None
model:transformer
lattice:1
use_bigram:1
hidden:-1
ff:3
layer:1
head:8
head_dim:20
scaled:False
ff_activate:relu
k_proj:False
q_proj:True
v_proj:True
r_proj:True
attn_ff:False
use_abs_pos:False
use_rel_pos:True
rel_pos_shared:True
add_pos:False
learn_pos:False
pos_norm:False
rel_pos_init:1
four_pos_shared:True
four_pos_fusion:ff_two
four_pos_fusion_shared:True
pre:
post:an
```

status: train

embed dropout before pos:False embed_dropout:0.5 gaz_dropout: 0.5 output_dropout:0.3 pre_dropout:0.5 post_dropout:0.3 ff_dropout:0.15 ff dropout 2:0, 15 attn_dropout:0 embed_dropout_pos:0 abs_pos_fusion_func:nonlinear_add dataset:weibo train:1350 dev:270 test:270 1806_vocab:19
(0: ''Abd', 1: '<unk', 2: '0', 3: 'I-PER.NOM', 4: 'I-PER.NAM', 5: 'B-PER.NOM', 6: 'B-PER.NAM', 7: 'I-ORG.NAM', 8: 'I-GPE.NAM', 9: 'B-GPE.NAM', 10: 'B-ORG.NAM', 11: 'I-LOC.NAM', 12: 'I-LOC.NOM', 13: 'I-ORG.NOM', 14: 'B-LOC.NAM', 15: 'B-LOC.NOM', 16: 'B-ORG.NOM', 17: 'B-GPE.NOM', 18: 'I-GPE.NOM')

PE.NOM', 18: 'I-GPE.NOM')
</pre> Found 3294 out of 3391 words in the pre-training embedding.

preprocess 的导出文件

-0.000298 -0.005966 0.02625 -0.002675 -0.00761 0.009508 0.008759 -0.002190 -0.000452 0.001018 -0.007275 -0.008014 0.009109 0.000126 -0.005 -0.00684 -0.06153 0.03394 0.009403 0.002662 -unknown- 0.069940 -0.098932 -0.172170 0.283078 -0.304548 0.313139 -0.000668 -0.140205 -0.181840 0.084596 0.372791 0.038989 -0.243783 0.1973 -0.295537 -0.250903 0.237119 0.125302 -0.605193 0.151445 0.217743 0.244482 -0.311849 -0.228482 0.107655 -0.123164 -0.056465 -0.107158 -0.099 -0.117119 -0.093809 0.130082 -0.210286 0.105046 -0.4393604 -0.500740 0.187914 0.002487 0.044111 0.144122 -0.381626 0.152143 -0.129330 -0.2686 0.182741 0.517381 0.013076 -0.070040 -0.221347 -0.305415

政府 0.610552 0.063488 -0.582808 0.373008 -0.342396 -0.162646 0.065471 -0.241984 0.059793 0.125729 -0.048453 0.044753 -0.237387 -0.300867 -0.456573 -0.427725 0.097450 -0.121185 -0.266561 0.139089 -0.013589 -0.101017 -0.276110 0.160472 0.068943 -0.102355 -0.490885 0.211651 -0.06

四 总结反思

成员分工

赵睿: 实验报告撰写 论文搜集分析

马昌盛: 代码调试和运行 论文分析

严志涵: 实验报告撰写 资料收集整理

实验感想

经过这次项目我们获益匪浅,收获良多。

关于团队的优点,首先就是团队意识,在开始项目前对彼此的能力进行一定 的了解,根据自己搜集的资料交流想法,也能更好地明确分工,效率也会随之提 高。在这次项目中大家的发挥都非常不错,成员之间也能互相学习,互相给人的 感觉也很可靠。

关于团队的不足,我们这次时间安排的不是很合理,导致我们任务完成有些 粗糙,这也可能是我们第一次合作,能力有限导致的。最开始的定题也花去了不 少时间。

就做项目的经验而言,我们经过讨论,一个项目首先是要有好的想法,然后才是方案设计,不要一股脑地直接就上手码代码。在实施中,不要为了学习某种方法,而去应用它; 也不要因为不熟悉,就直接舍弃某种方案,网上参考别人用过的,学习学习都能大概掌握,还能加经验值,做项目也是一个学习的过程。实施过程中遇到问题,也不能直接规避,贪图一时方便后面可能越来越复杂,最后直接掉坑里,项目的实施要以全局考虑。好的编译习惯很重要,编写代码的过程中,一串代码的往往需要反复的测试,执行,才能完善,在编译报错的情况下,又需要反复的去检查。而也有可能在编译通过之后,执行后的结果并不是想要的结果。这就可能是代码中出了其他的错误,又需要反复的检查与改动。所以,这要求我们在编写代码的过程中要更加的细心。

这次项目了解了一些课上没有学过的知识,再确定选题的过程中也对 NLP 的应用方面有了一定的了解,既增长了见识,又锻炼了能力,对小组合作的模式也更加适应。