(g) the Boltzmann constant;
$$k = \frac{R}{N_A}$$

(h) $pV = NkT$; $\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT$

(h)
$$pV = NkT; \frac{1}{2}m\overline{c^2} = \frac{3}{2}kT$$

Learners will also be expected to know the derivation of the equation $\frac{1}{2}mc^2 = \frac{3}{2}kT$ from $pV = \frac{1}{3}Nmc^2$ and pV = NkT.

0:00:00

- (6) M Define and calculate the Boltzmann constant
- (7) S Describe the relationship mean KE of particles and absolute temperature
- (8) C Derive and apply the equation for mean kinetic energy

Lesson 7. The Boltzmann constant

STARTER:Estimate by measurement and calculation for this classroom, the number of

- a) moles of gas
- b) particles of gas

Kilo 10³ Remember what atmospheric pressure is in Pa

Mega 10⁶

Giga 109 What factors do not affect the number of particles in this room? why?

- (6) M Define and calculate the Boltzmann constant
- (7) S Describe the relationship mean KE of particles and absolute temperature
- (8) C Derive and apply the equation for mean kinetic energy

The Boltzmann constant

The Boltzmann constant is used to relate the mean KE of particles to the gas temperature

R - the molar gas constant is in terms of many particles measured in moles.

K- is a gas constant in terms of a single particle.

 $k = \frac{R}{N_A}$ $R = \int mol^{-1}k^{-1}$

What is the value of k? 1.33×10^{-23}

What is the unit? JK

NA = Moles

How could the equation of state of an ideal gas be re-written to include k rather that R?

PV = NRT PV = MRT

pV=NkT

 (6) M - Define and calculate the Boltzmann constant (7) S - Describe the relationship mean KE of particles and absolute temperature (8) C - Derive and apply the equation for mean kinetic energy 		
Finding the speed of a particle.		
Assume the temperature of this room is 15C. and at this	_	
temperature the particles have the SAME mean KE.		
Find the r.m.s speed of these particles showing all your steps:		
a) Helium atom - Mass- 6.64x 10 ⁻²⁷		
b) Ex: Oxygen molecule Molar Mass - 32gmol ⁻¹		
Extension: Describe and explain how this speed changes if the	ne	
thermodynamic temperature doubles.		
Key point		
point		

(6) M - Define a	nd calculate the Boltzmann constant
(8) C - Derive ar	the relationship mean KE of particles and absolute temperature and apply the equation for mean kinetic energy
	0:00:00
	0 7 7 7
Act	ivity: Complete summary questions p299
Kilo	
Mega	10 ⁶ Lowe: p158- 160. Ex18.3 -18.4
Giga	10 ⁹
Key	
point	

(7) S - D	efine and calculate the Boltzmann constant escribe the relationship mean KE of particles and absolute temperature erive and apply the equation for mean kinetic energy
	Plenary 0:00:00
	19 Air consists of molecules of oxygen (molar mass = 32 gmol ⁻¹) and nitrogen (molar mass = 28 gmol ⁻¹). Calculate the mean translational KE of these molecules in air at 20 °C. Use your answer to estimate a typical speed for each type of molecule. Hint The mean kinetic energy of the oxygen or the nitrogen molecules is the same.
	Show that the change in the internal energy of one mole of an ideal gas per unit change in temperature is always a constant. What is this constant? Answer
_19	Mean KE = 6.1×10^{-21} J; O ₂ : $480 \mathrm{m s^{-1}}$; N ₂ : $510 \mathrm{m s^{-1}}$
20	Internal energy = $E = N_A \times (\frac{3}{2}kT)$; $\frac{\Delta E}{\Delta T} = \frac{3}{2}(N_A k) = \frac{3}{2}R$