

#### Engineering and Testing for EMC and Safety Compliance



Accredited under A2LA certificate # 2653.01

# Certification Application Report FCC Part 15.249 and RSS-210

Test Lab: Applicant: Rhein Tech Laboratories, Inc. Tel: 703-689-0368 Via One Networks LLC Tel: 212-219-2220 x203 360 Herndon Parkway Fax: 703-689-2056 525 Broadway, 5<sup>th</sup> Floor New York, NY 10012 **Suite 1400** www.rheintech.com Herndon, VA 20170 Contact: Denee Clark E-Mail: atcbinfo@rheintech.com FCC ID/IC XEZ-1000 / 8390A-1000 **Test Report Date** October 17, 2009 **Platform** Tri-band GSM Handset 2009194 **RTL Work Order Number** WP8 Model **RTL Quote Number** QRTL09-269A **American National** ANSI C63.4: Methods of Measurement of Radio-Noise Emissions from Low-**Standard Institute** Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz **FCC Classifications** DXT - Part 15 Low Power Transceiver, RX Verified Part 15.249: Operation within the bands 920-928 MHz, 2400-2483.5 MHz and **FCC Rule Part** 5725-5875 MHz, and 24.0-24.25 GHz. RSS-210: Low-power Licence-exempt Radiocommunication Devices (all **IC Rule Part** Frequency Bands): Category 1 Equipment Digital Interface Digital Interface was found to be compliant Information Frequency Range **Emission Output Power (W)** Frequency Tolerance (ppm) (MHz) Designator N/A 2402 - 2480N/A N/A

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report. No modifications were made to the equipment during testing in order to achieve compliance with these standards. Furthermore, there was no deviation from, additions to, or exclusions from, the applicable parts of FCC Part 2, FCC Part 15, ANSI C63.4, and Industry Canada RSS-210.

Signature: Date: October 17, 2009

Typed/Printed Name: Desmond A. Fraser Position: President

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and Via One Networks LLC. The test results relate only to the item(s) tested.

## **Table of Contents**

| 1 | Ge         | eneral Information                                                             | 5  |
|---|------------|--------------------------------------------------------------------------------|----|
|   | 1.1        | Scope                                                                          | 5  |
|   | 1.2        | Description of EUT                                                             | 5  |
|   | 1.3        | Test Facility                                                                  | 5  |
|   | 1.4        | Related Submittal(s)/Grant(s)                                                  | 5  |
|   | 1.5        | Modifications                                                                  | 5  |
| 2 | Te         | st Information                                                                 | 6  |
|   | 2.1        | Description of Test Modes                                                      | 6  |
|   | 2.2        | Exercising the EUT                                                             |    |
|   | 2.3        | Test Result Summary                                                            |    |
|   | 2.4        | Test System Details                                                            |    |
|   | 2.5        | Configuration of Tested System                                                 |    |
| 3 | Ra         | adiated Emissions - Fundamental – FCC §15.249 & IC RSS-210 §A2.9               |    |
|   | 3.1        | Radiated Fundamental Emissions Test Procedure                                  |    |
|   | 3.2        | Radiated Fundamental Emissions Test Data                                       | _  |
| 4 | Ra         | adiated Emissions – Harmonic/Spurious - FCC §15.209; §15.249(d); RSS-210 §A8.5 |    |
|   | 4.1        | Radiated Emissions Measurement Test Procedure                                  |    |
|   | 4.2        | Spurious Radiated Emissions Test Results                                       |    |
|   | 4.3        | Radiated Emissions Test Equipment                                              |    |
| 5 |            | adiated Emissions – Receive - FCC 15.209; IC RSS-Gen                           |    |
|   |            | Radiated Emissions Measurements                                                |    |
|   | 5.1        |                                                                                |    |
|   | 5.1<br>5.1 | - · · · · · · · · · · · · · · · · · · ·                                        |    |
|   | 5.1        |                                                                                |    |
| 6 |            | C Conducted Emissions - FCC Rules and Regulations Part 15 §15.207              |    |
| Ŭ |            | Site and Test Description                                                      |    |
|   |            | Test Limits                                                                    |    |
|   | 6.3        | Conducted Emissions Test Data                                                  |    |
| 7 |            | % Bandwidth - IC RSS-Gen                                                       |    |
| • |            | 99% Bandwidth Test Procedure                                                   |    |
|   |            | 99% Bandwidth Test Equipment                                                   |    |
|   | 7.3        | 99% Modulated Bandwidth Test Data                                              |    |
| 8 | Cc         |                                                                                | 20 |

Client: Via One Networks, LLC. Model #: WP8 Standards: FCC 15.249/RSS-210 ID's: XEZ-1000/8390A-1000 Report #: 2009194

# Figure Index

| Figure 2-1: | Configuration of System Under Test                           | 7  |
|-------------|--------------------------------------------------------------|----|
|             | Table Index                                                  |    |
| Table 2-1:  | Channels Tested for FHSS                                     | 6  |
| Table 2-1:  | Test Result Summary with FCC Rules and Regulations           |    |
| Table 2-3:  | Equipment Under Test                                         |    |
| Table 3-1:  | Radiated Fundamental Emissions                               |    |
| Table 4-1:  | Radiated Emissions Test Equipment                            |    |
| Table 5-1:  | Radiated Emissions Test Equipment                            |    |
| Table 5-2:  | Receiver Radiated Emissions Test Data                        |    |
| Table 6-1:  | Conducted Emissions Test Equipment                           |    |
| Table 6-2:  | Conducted Emissions Test Data - Neutral Side – Receive Mode  |    |
| Table 6-3:  | Conducted Emissions Test Data – Hot Side – Receive Mode      |    |
| Table 6-4:  | Conducted Emissions Test Data - Neutral Side - Transmit Mode | 14 |
| Table 6-5:  | Conducted Emissions Test Data – Hot Side – Transmit Mode     | 15 |
| Table 7-1:  | 99% Bandwidth Test Equipment                                 | 16 |
| Table 7-2:  | 99% Modulated Bandwidth                                      | 16 |
|             |                                                              |    |
|             | Plot Index                                                   |    |
| Plot 7-1:   | 99% Bandwidth - 2402 MHz                                     | 17 |
| Plot 7-2:   | 99% Bandwidth - 2441 MHz                                     | 18 |
| Plot 7-3:   | 99% Bandwidth - 2480 MHz                                     | 19 |

# **Appendix Index**

| Λ Λ .                      | FOO Deat 4 4007, 4 4040, 0 4004, 0 4000, 10 DOO Core, DE Francisco | 04 |
|----------------------------|--------------------------------------------------------------------|----|
| Appendix A:                | FCC Part 1.1307, 1.1310, 2.1091, 2.1093; IC RSS-Gen: RF Exposure   |    |
| Appendix B:<br>Appendix C: | Agency Authorization                                               |    |
| Appendix D:                | FCC Confidentiality Request Letter                                 |    |
| Appendix E:                | IC Letters IC Confidentiality Request Letter                       | 24 |
| Appendix F:                |                                                                    |    |
| Appendix G:                | Operational Description                                            |    |
| Appendix G. Appendix H:    | Block Diagram                                                      |    |
| Appendix I:                | User Manual                                                        |    |
| Appendix J:                | ID Label & Location                                                |    |
| Appendix K:                | Test Photographs                                                   |    |
| Appendix It:               | External Photographs                                               |    |
| Appendix M:                | Internal Photographs                                               |    |
|                            | Photograph Index                                                   |    |
| Photograph 1:              | ID Label Sample                                                    | 30 |
| Photograph 2:              | ID Label Location                                                  |    |
| Photograph 3:              | Radiated Emissions – Front View                                    | 32 |
| Photograph 4:              | AC Conducted Emissions – Front View                                |    |
| Photograph 5:              | AC Conducted Emissions – Rear View                                 |    |
| Photograph 6:              | Front                                                              |    |
| Photograph 7:              | Back                                                               | 36 |
| Photograph 8:              | Top                                                                | 37 |
| Photograph 9:              | Bottom                                                             |    |
| Photograph 10:             | Inside Battery Compartment                                         |    |
| Photograph 11:             | Battery                                                            |    |
| Photograph 12:             | Front of PCB                                                       | /1 |
| Photograph 13:             | Back of PCB                                                        |    |

### 1 General Information

### 1.1 Scope

Applicable Standards:

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5850 MHz, and 24.0-24.25 GHz.

IC RSS-210 Section A2.9: 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz.

All measurements contained in this application were conducted in accordance with the FCC Rules and Regulations CFR47 and Industry Canada RSS-210.

Note that the EUT is a composite device, and that data in this report pertains to the 2402 – 2480 MHz low power transceiver portion of the EUT. The data for the licensed PCS portion is contained in a separate report.

### 1.2 Description of EUT

| Equipment Under Test   | Cellular phone                               |
|------------------------|----------------------------------------------|
| Model                  | WP8 2400 MHz frequency hopping, tri-band GSM |
| Power Supply           | 3.7 VDC Li-lon battery                       |
| Modulation Type        | FHSS                                         |
| Frequency Range        | 2402–2480 MHz Frequency Hopping              |
| Antenna Connector Type | Internal                                     |
| Antenna Type           | Internal                                     |

### 1.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 2003).

### 1.4 Related Submittal(s)/Grant(s)

This is an original application for certification for Via One Networks, LLC. Model: WP8, FCC ID: XEZ-1000, IC: 8390A-1000.

#### 1.5 Modifications

No modifications were required for compliance.

### 2 Test Information

### 2.1 Description of Test Modes

In accordance with FCC 15.31(m), and because the EUT utilizes an operating band greater than 10 MHz, the following frequencies were tested.

Table 2-1: Channels Tested for FHSS

| Channel | Frequency |
|---------|-----------|
| Low     | 2402      |
| Middle  | 2441      |
| High    | 2480      |

# 2.2 Exercising the EUT

The EUT was provided with various test functions using internal engineer codes to enter channel selection and mode while testing: either a continuous transmit on a specific channel, normal hopping operation using a test set, or receive mode.

There were no deviations from the test standard(s) and/or methods. The test results reported relate only to the item tested.

### 2.3 Test Result Summary

Table 2-2: Test Result Summary with FCC Rules and Regulations

| Standard               | Test                                      | Pass/Fail<br>or N/A |
|------------------------|-------------------------------------------|---------------------|
| FCC 15.249(a)          | Radiated Emissions                        | Pass                |
| FCC 15.209;<br>RSS-Gen | Unintentional/Receiver Radiated Emissions | Pass                |
| FCC 15.207             | AC Line Conducted Emissions               | Pass                |
| RSS-Gen                | 99% Bandwidth                             | Pass                |

# 2.4 Test System Details

The test sample was received on June 17, 2009. The FCC identifiers for all applicable equipment, plus descriptions of all cables used in the tested system, are identified in the following tables.

Table 2-3: Equipment Under Test

| Part                             | Manufacturer            | Model | Serial Number   | FCC ID   | Cable<br>Description | RTL<br>Bar<br>Code |
|----------------------------------|-------------------------|-------|-----------------|----------|----------------------|--------------------|
| Tri-Band Cellular Portable Phone | Via One<br>Networks LLC | WP8   | 355781020019242 | XEZ-1000 | N/A                  | 18990              |
| Tri-Band Cellular Portable Phone | Via One<br>Networks LLC | WP8   | N/A             | XEZ-1000 | N/A                  | 19000              |
| Tri-Band Cellular Portable Phone | Via One<br>Networks LLC | WP8   | N/A             | XEZ-1000 | N/A                  | 19002              |
| 3.7V Li-ion<br>Battery           | Bleu                    | 466X  | XD0805504633    | N/A      | N/A                  | 18995              |
| 3.7V Li-ion<br>Battery           | BenQ                    | MNC30 | C10737XD004053  | N/A      | N/A                  | 19003              |
| 3.7V Li-ion<br>Battery           | BenQ                    | MNC30 | C10819XD002693  | N/A      | N/A                  | 19005              |

# 2.5 Configuration of Tested System



Figure 2-1: Configuration of System Under Test

## 3 Radiated Emissions - Fundamental - FCC §15.249 & IC RSS-210 §A2.9

### 3.1 Radiated Fundamental Emissions Test Procedure

Radiated emissions of the fundamentals were tested at three meters, and meet the average limit of 50 mV/m. Peak emissions were also investigated against the requirements of 15.35(b). The EUT was tested in all three orthogonal planes and the lowest, middle and highest frequencies were investigated and maximized; the worst case emissions are shown.

### 3.2 Radiated Fundamental Emissions Test Data

Table 3-1: Radiated Fundamental Emissions

| Frequency<br>(MHz) | Test<br>Detector | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dBm) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Result |
|--------------------|------------------|-------------------------------|---------------------------------------|-------------------------------|-------------------|----------------|--------|
| 2402               | Pk               | 87.9                          | -0.8                                  | 87.1                          | 114.0             | -26.9          | Pass   |
| 2402               | Av               | 51.7                          | -0.8                                  | 50.9                          | 94.0              | -43.1          | Pass   |
| 2441               | Pk               | 90.1                          | 0.4                                   | 90.5                          | 114.0             | -23.5          | Pass   |
| 2441               | Av               | 53.9                          | 0.4                                   | 54.3                          | 94.0              | -39.7          | Pass   |
| 2480               | Pk               | 90.3                          | -0.3                                  | 90.0                          | 114.0             | -24.0          | Pass   |
| 2480               | Av               | 54.1                          | -0.3                                  | 53.8                          | 94.0              | -40.2          | Pass   |

Note for peak measurements: RBW = VBW = 1 MHz, for average: RBW = 1MHz, VBW = 10 Hz

### 4 Radiated Emissions - Harmonic/Spurious - FCC §15.209; §15.249(d); RSS-210 §A8.5

As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector however, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any circumstances of modulation.

#### 4.1 Radiated Emissions Measurement Test Procedure

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one and three meter distances. This was done in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to ensure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three meter, open-field test site. The EUT was placed on a nonconductive turntable 0.8 meters above the ground plane. The spectrum was examined from 9 kHz to the 10<sup>th</sup> harmonic of the highest fundamental transmitter frequency.

At each frequency, the EUT was rotated 360° and positioned in three dimensions, and the antenna was raised and lowered from 1 to 4 meters in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations. For frequencies between 30 and 1000 MHz, the spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. For emissions above 1000 MHz, emissions were measured using a minimum resolution bandwidth of 1 MHz. No video filter less than 10 times the resolution bandwidth was used. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report. For the substitution measurements for the cellular and PCS bands, a substitution antenna replaced the EUT and an amplitude was achieved to match the initial analyzer level and was further corrected for comparison to the limit.

#### 4.2 Spurious Radiated Emissions Test Results

No spurious emissions were found which were within 20 dB of the limits; per FCC 15.31(o), no data is being reported.

# 4.3 Radiated Emissions Test Equipment

# Table 4-1: Radiated Emissions Test Equipment

| RTL<br>Asset # | Manufacturer               | Model                              | Part Type                               | Serial<br>Number   | Calibration<br>Due Date |
|----------------|----------------------------|------------------------------------|-----------------------------------------|--------------------|-------------------------|
| 901365         | MITEQ                      | JS4-<br>00102600-<br>41-5P         | Amplifier, 0.1-26 GHz,<br>30 dB gain    | N/A                | 3/4/10                  |
| 901215         | Hewlett<br>Packard         | 8596EM                             | Spectrum Analyzer<br>(9 kHz - 12.8 GHz) | 3826A00144         | 10/23/09                |
| 900878         | Rhein Tech<br>Laboratories | AM3-1197-<br>0005                  | 3 meter antenna mast, polarizing        | Outdoor<br>Range 1 | Not<br>Required         |
| 901426         | Insulated Wire Inc.        | KPS-1503-<br>3600-KPS              | RF cable, 30'                           | NA                 | 10/17/09                |
| 901516         | Insulated<br>Wire, Inc.    | KPS-1503-<br>2400-KPS-<br>09302008 | RF cable, 20'                           | NA                 | 10/17/09                |
| 901517         | Insulated Wire Inc.        | KPS-1503-<br>360-KPS-<br>09302008  | RF cable 36"                            | NA                 | 10/17/09                |
| 901242         | Rhein Tech<br>Laboratories | WRT-000-<br>0003                   | Wood rotating table                     | N/A                | Not<br>Required         |
| 900772         | EMCO                       | 3161-02                            | Horn Antenna (2 - 4 GHz)                | 9804-1044          | 6/14/10                 |
| 900321         | EMCO                       | 3161-03                            | Horn Antennas (4 - 8,2 GHz)             | 9508-1020          | 6/14/10                 |
| 900323         | EMCO                       | 3160-7                             | Horn Antennas<br>(8,2 - 12,4 GHz)       | 9605-1054          | 6/14/10                 |
| 900356         | EMCO                       | 3160-08                            | Horn Antenna<br>(12.4 - 18 GHz)         | 9607-1044          | 6/14/10                 |
| 900325         | EMCO                       | 3160-9                             | Horn Antennas<br>(18 - 26.5 GHz)        | 9605-1051          | 6/14/10                 |
| 901413         | Agilent<br>Technologies    | E4448A                             | Spectrum Analyzer                       | US44020346         | 7/31/09                 |

**Test Personnel:** 

Daniel W. Baltzell

**EMC Test Engineer** 

Signature

Daniel W. Bolgs

July 22, 2009 Date Of Test

10 of 42

#### 5 Radiated Emissions – Receive - FCC 15.209; IC RSS-Gen

### 5.1 Radiated Emissions Measurements

#### 5.1.1 Site and Test Description

Before final radiated emissions measurements were made on the OATS, the EUT was scanned indoors at both one and three meter distances. This was done in order to determine its emission spectrum signal. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emission measurements on the OATS, at each frequency, in order to ensure that maximum emission amplitudes were measured. Final radiated emissions measurements were made on the OATS at a distance of 3 meters. The EUT was placed on a non-conductive turntable. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the emissions maximum levels. Measurements were taken using both horizontal and vertical antenna polarization. The spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the quasi-peak detection mode. No video filter less than 10 times the resolution bandwidth was used. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

### 5.1.2 Field Strength Calculations

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FI(dB\mu V/m) = SAR(dB\mu V) + SCF(dB/m)$$
  
 $FI = Field Intensity$   
 $SAR = Spectrum Analyzer Reading$   
 $SCF = Site Correction Factor$ 

The Site Correction Factor (SCF) used in the above equation is determined empirically, and is expressed in the following equation:

$$SCF(dB/m) = -PG(dB) + AF(dB/m) + CL(dB)$$
  
 $SCF = Site Correction Factor$   
 $PG = Pre-Amplifier Gain$   
 $AF = Antenna Factor$   
 $CL = Cable Loss$ 

The field intensity in microvolts per meter can then be determined according to the following equation:

$$FI(\mu V/m) = 10^{FI(dB\mu V/m)/20}$$

For example, assume a signal frequency of 125 MHz has a received level measured as 49.3 dBuV. The total Site Correction Factor (antenna factor plus cable loss minus preamplifier gain) for 125 MHz is -11.5 dB/m. The actual radiated field strength is calculated as follows:

$$49.3dB\mu V - 11.5dB/m = 37.8dB\mu V/m$$
$$10^{37.8/20} = 10^{1.89} = 77.6\mu V/m$$

### 5.1.3 Test Limits

| FCC Class B Radiated Emissions Frequency (MHz)  At 3m (dBμV/m) |      |  |  |  |  |  |
|----------------------------------------------------------------|------|--|--|--|--|--|
|                                                                |      |  |  |  |  |  |
| 88-216                                                         | 43.5 |  |  |  |  |  |
| 216-960                                                        | 46.0 |  |  |  |  |  |
| >1000                                                          | 54   |  |  |  |  |  |

Table 5-1: Radiated Emissions Test Equipment

| RTL<br>Asset # | Manufacturer                     | Manufacturer Model Part Type |                                   | Serial<br>Number | Calibration<br>Due Date |
|----------------|----------------------------------|------------------------------|-----------------------------------|------------------|-------------------------|
| 900905         | Rhein Tech<br>Laboratories, Inc. | PR-1040                      | Amplifier                         | 900905           | 4/10/10                 |
| 900791         | Chase                            | Chase CBL6111B               |                                   | N/A              | 12/12/10                |
| 900930         | Hewlett Packard                  | 85662A                       | Spectrum Analyzer Display Section | 3144A20839       | 6/23/10                 |
| N/A            | Rhein Tech<br>Laboratories, Inc. | Automated<br>Emission Tester | Emissions testing software        | Rev. 14.0.2      | N/A                     |

### 5.1.4 Receiver Radiated Emissions Data

Table 5-2: Receiver Radiated Emissions Test Data

|                                | Temperature: 87°F Humidity: 55% |                              |                               |                          |                               |                                        |                               |                   |                |               |  |  |
|--------------------------------|---------------------------------|------------------------------|-------------------------------|--------------------------|-------------------------------|----------------------------------------|-------------------------------|-------------------|----------------|---------------|--|--|
| Emission<br>Frequency<br>(MHz) | Test<br>Detector                | Antenna<br>Polarity<br>(H/V) | Turntable<br>Azimuth<br>(deg) | Antenna<br>Height<br>(m) | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dB/m) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Pass/<br>Fail |  |  |
| 208.0                          | Qp                              | V                            | 0                             | 1.0                      | 41.5                          | -19.3                                  | 22.2                          | 43.5              | -21.3          | Pass          |  |  |
| 416.0                          | Qp                              | V                            | 0                             | 1.0                      | 24.4                          | -17.5                                  | 6.9                           | 46.0              | -39.1          | Pass          |  |  |
| 624.0                          | Qp                              | V                            | 0                             | 1.0                      | 22.8                          | -13.2                                  | 9.6                           | 46.0              | -36.4          | Pass          |  |  |
| 832.0                          | Qp                              | Η                            | 0                             | 1.0                      | 17.2                          | -10.4                                  | 6.8                           | 46.0              | -39.2          | Pass          |  |  |
| 1040.0                         | Av                              | V                            | 0                             | 1.0                      | 26.4                          | -2.0                                   | 24.4                          | 54.0              | -29.6          | Pass          |  |  |
| 1248.0                         | Av                              | V                            | 0                             | 1.0                      | 25.7                          | -0.1                                   | 25.6                          | 54.0              | -28.4          | Pass          |  |  |

Note: For average measurements >1000 MHz RBW = 1 MHz, VBW = 10 Hz

### **Test Personnel:**

| Daniel Baltzell | Daniel W. Bolger | July 20, 2009 |
|-----------------|------------------|---------------|
| Test Engineer   | Signature        | Date Of Test  |

### 6 AC Conducted Emissions - FCC Rules and Regulations Part 15 §15.207

### 6.1 Site and Test Description

The power line conducted emissions measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50-ohm/50 microhenry Line Impedance Stabilization Network (LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the AC line through an isolation transformer. The 50-ohm output of the EUT LISN was connected to the spectrum analyzer input through a Solar 100 kHz high-pass filter. The filter is used to prevent overload of the spectrum analyzer from noise below 100 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode if applicable).

The analyzer's 6 dB bandwidth was set to 9 kHz. Video filter less than 10 times the resolution bandwidth is not used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from 150 kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limits were measured and have been recorded.

#### 6.2 Test Limits

| Line-Conducted Emissions |            |          |  |  |  |
|--------------------------|------------|----------|--|--|--|
| Limit (dBμV)             |            |          |  |  |  |
| Frequency (MHz)          | Quasi-Peak | Average  |  |  |  |
| 0.15 to 0.50             | 66 to 56   | 56 to 46 |  |  |  |
| 0.50 to 5.00             | 56         | 46       |  |  |  |
| 5.00 to 30.00            | 60         | 50       |  |  |  |

Table 6-1: Conducted Emissions Test Equipment

| RTL<br>Asset # | Manufacturer      | Model       | Part Type                                     | Serial<br>Number | Calibration<br>Due Date |
|----------------|-------------------|-------------|-----------------------------------------------|------------------|-------------------------|
| 900913         | Hewlett Packard   | 85462A      | EMI Receiver RF Section,<br>(9 KHz - 6.5 GHz) | 3325A00159       | 6/15/10                 |
| 900914         | Hewlett Packard   | 85460A      | RF Filter Section,<br>(100 KHz - 6.5 GHz)     | 3330A00107       | 6/15/10                 |
| 901082         | AFJ International | LS16/110VAC | 16A LISN                                      | 16010020081      | 2/23/10                 |

### 6.3 Conducted Emissions Test Data

Table 6-2: Conducted Emissions Test Data - Neutral Side – Receive Mode

|                                | Temperature: 74°F Humidity: 30% |                               |                                      |                             |                       |                        |                       |                        |               |
|--------------------------------|---------------------------------|-------------------------------|--------------------------------------|-----------------------------|-----------------------|------------------------|-----------------------|------------------------|---------------|
| Emission<br>Frequency<br>(MHz) | Test<br>Detector                | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dB) | Emission<br>Level<br>(dBuV) | QP<br>Limit<br>(dBuV) | QP<br>Margin<br>(dBuV) | AV<br>Limit<br>(dBuV) | AV<br>Margin<br>(dBuV) | Pass/<br>Fail |
| 0.264                          | Pk                              | 49.5                          | 0.2                                  | 49.7                        | 61.3                  | -11.6                  | 51.3                  | -1.6                   | Pass          |
| 0.398                          | Pk                              | 39.1                          | 0.3                                  | 39.4                        | 57.9                  | -18.5                  | 47.9                  | -8.5                   | Pass          |
| 0.530                          | Qp                              | 43.4                          | 0.4                                  | 43.8                        | 56.0                  | -12.2                  | 46.0                  | -2.2                   | Pass          |
| 0.660                          | Qp                              | 42.3                          | 0.4                                  | 42.7                        | 56.0                  | -13.3                  | 46.0                  | -3.3                   | Pass          |
| 0.807                          | Pk                              | 43.6                          | 0.5                                  | 44.1                        | 56.0                  | -11.9                  | 46.0                  | -1.9                   | Pass          |
| 0.935                          | Pk                              | 42.2                          | 0.5                                  | 42.7                        | 56.0                  | -13.3                  | 46.0                  | -3.3                   | Pass          |

Table 6-3: Conducted Emissions Test Data – Hot Side – Receive Mode

|                                | Temperature: 74°F Humidity: 30% |                               |                                      |                             |                       |                        |                       |                        |               |
|--------------------------------|---------------------------------|-------------------------------|--------------------------------------|-----------------------------|-----------------------|------------------------|-----------------------|------------------------|---------------|
| Emission<br>Frequency<br>(MHz) | Test<br>Detector                | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dB) | Emission<br>Level<br>(dBuV) | QP<br>Limit<br>(dBuV) | QP<br>Margin<br>(dBuV) | AV<br>Limit<br>(dBuV) | AV<br>Margin<br>(dBuV) | Pass/<br>Fail |
| 0.264                          | Pk                              | 49.1                          | 0.2                                  | 49.3                        | 61.3                  | -12.0                  | 51.3                  | -2.0                   | Pass          |
| 0.400                          | Pk                              | 39.6                          | 0.3                                  | 39.9                        | 57.9                  | -18.0                  | 47.9                  | -8.0                   | Pass          |
| 0.533                          | Qp                              | 45.5                          | 0.4                                  | 45.9                        | 56.0                  | -10.1                  | 46.0                  | -0.1                   | Pass          |
| 0.533                          | Av                              | 39.4                          | 0.4                                  | 39.8                        | 56.0                  | -16.2                  | 46.0                  | -6.2                   | Pass          |
| 0.675                          | Qp                              | 38.1                          | 0.4                                  | 38.5                        | 56.0                  | -17.5                  | 46.0                  | -7.5                   | Pass          |
| 0.810                          | Pk                              | 41.8                          | 0.5                                  | 42.3                        | 56.0                  | -13.7                  | 46.0                  | -3.7                   | Pass          |
| 1.075                          | Pk                              | 41.6                          | 0.6                                  | 42.2                        | 56.0                  | -13.8                  | 46.0                  | -3.8                   | Pass          |

Table 6-4: Conducted Emissions Test Data - Neutral Side – Transmit Mode

|                                | Temperature: 74°F Humidity: 30% |                               |                                      |                             |                       |                        |                       |                        |               |
|--------------------------------|---------------------------------|-------------------------------|--------------------------------------|-----------------------------|-----------------------|------------------------|-----------------------|------------------------|---------------|
| Emission<br>Frequency<br>(MHz) | Test<br>Detector                | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dB) | Emission<br>Level<br>(dBuV) | QP<br>Limit<br>(dBuV) | QP<br>Margin<br>(dBuV) | AV<br>Limit<br>(dBuV) | AV<br>Margin<br>(dBuV) | Pass/<br>Fail |
| 0.249                          | Pk                              | 47.7                          | 0.2                                  | 47.9                        | 61.8                  | -13.9                  | 51.8                  | -3.9                   | Pass          |
| 0.362                          | Qp                              | 36.1                          | 0.3                                  | 36.4                        | 58.7                  | -22.3                  | 48.7                  | -12.3                  | Pass          |
| 0.406                          | Pk                              | 47.1                          | 0.3                                  | 47.4                        | 57.7                  | -10.3                  | 47.7                  | -0.3                   | Pass          |
| 0.518                          | Qp                              | 37.4                          | 0.3                                  | 37.7                        | 56.0                  | -18.3                  | 46.0                  | -8.3                   | Pass          |
| 0.597                          | Qp                              | 35.4                          | 0.4                                  | 35.8                        | 56.0                  | -20.2                  | 46.0                  | -10.2                  | Pass          |
| 1.481                          | Pk                              | 43.0                          | 0.8                                  | 43.8                        | 56.0                  | -12.2                  | 46.0                  | -2.2                   | Pass          |
| 3.320                          | Pk                              | 35.8                          | 1.3                                  | 37.1                        | 56.0                  | -18.9                  | 46.0                  | -8.9                   | Pass          |

Client: Via One Networks, LLC. Model #: WP8 Standards: FCC 15.249/RSS-210 ID's: XEZ-1000/8390A-1000 Report #: 2009194

Table 6-5: Conducted Emissions Test Data – Hot Side – Transmit Mode

|                                | Temperature: 74°F Humidity: 30% |                               |                                      |                             |                       |                        |                       |                        |               |
|--------------------------------|---------------------------------|-------------------------------|--------------------------------------|-----------------------------|-----------------------|------------------------|-----------------------|------------------------|---------------|
| Emission<br>Frequency<br>(MHz) | Test<br>Detector                | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dB) | Emission<br>Level<br>(dBuV) | QP<br>Limit<br>(dBuV) | QP<br>Margin<br>(dBuV) | AV<br>Limit<br>(dBuV) | AV<br>Margin<br>(dBuV) | Pass/<br>Fail |
| 0.260                          | Pk                              | 49.2                          | 0.2                                  | 49.4                        | 61.4                  | -12.0                  | 51.4                  | -2.0                   | Pass          |
| 0.405                          | Pk                              | 46.5                          | 0.3                                  | 46.8                        | 57.8                  | -11.0                  | 47.8                  | -1.0                   | Pass          |
| 0.521                          | Qp                              | 40.9                          | 0.3                                  | 41.2                        | 56.0                  | -14.8                  | 46.0                  | -4.8                   | Pass          |
| 0.535                          | Qp                              | 39.5                          | 0.4                                  | 39.9                        | 56.0                  | -16.1                  | 46.0                  | -6.1                   | Pass          |
| 0.945                          | Qp                              | 36.3                          | 0.5                                  | 36.8                        | 56.0                  | -19.2                  | 46.0                  | -9.2                   | Pass          |
| 3.320                          | Pk                              | 35.5                          | 1.3                                  | 36.8                        | 56.0                  | -19.2                  | 46.0                  | -9.2                   | Pass          |

### **Test Personnel:**

| Daniel W. Baltzell | Daniel W. Bolevil | July 20, 2009 |
|--------------------|-------------------|---------------|
| Test Engineer      | Signature         | Date of Tests |

### 7 99% Bandwidth - IC RSS-Gen

#### 7.1 99% Bandwidth Test Procedure

The minimum 99% bandwidths were measured using a 50 ohm spectrum analyzer. The carrier was adjusted on the analyzer so that it was displayed entirely on the spectrum analyzer. The sweep time was set to auto and allowed through several sweeps with the max hold function used in peak detector mode. The resolution bandwidth was set to 100 kHz, and the video bandwidth set at 300 kHz. The minimum 20 dB bandwidths were measured using the spectrum analyzer set to -20 dBc. The table below contains the bandwidth measurement results.

### 7.2 99% Bandwidth Test Equipment

Table 7-1: 99% Bandwidth Test Equipment

| RTL<br>Asset # | Manufacturer         | Model  | Part Type                | Serial Number | Calibration<br>Due Date |
|----------------|----------------------|--------|--------------------------|---------------|-------------------------|
| 901413         | Agilent Technologies | E4448A | Spectrum Analyzer        | US44020346    | 7/31/09                 |
| 900913         | Hewlett Packard      | 85462A | EMI Receiver             | 3325A00159    | 6/8/10                  |
| 900819         | Weinschel Corp       | 2      | 10 dB Attenuator;<br>5 W | BF0830        | 12/3/09                 |

### 7.3 99% Modulated Bandwidth Test Data

Table 7-2: 99% Modulated Bandwidth

### Minimum 99% Bandwidths

| Frequency (MHz) | 99% Bandwidth (kHz) |
|-----------------|---------------------|
| 2402            | 840                 |
| 2441            | 840                 |
| 2480            | 833                 |

Plot 7-1: 99% Bandwidth - 2402 MHz



Plot 7-2: 99% Bandwidth - 2441 MHz



Client: Via One Networks, LLC. Model #: WP8 Standards: FCC 15.249/RSS-210 ID's: XEZ-1000/8390A-1000 Report #: 2009194





**Test Personnel:** 

Daniel W. Baltzell
Test Engineer
Signature
Daniel W. Baltzell
July 8, 2009
Date Of Tests

Client: Via One Networks, LLC. Model #: WP8 Standards: FCC 15.249/RSS-210 ID's: XEZ-1000/8390A-1000 Report #: 2009194

### 8 Conclusion

The data in this measurement report shows that the Via One Networks, LLC Model: WP8, FCC ID: XEZ-1000, IC: 8390A-1000 complies with all the requirements of Parts 2, and 15 of the FCC Rules and Industry Canada RSS-210.