CIS501 – Lecture 15

Woon Wei Lee Fall 2013, 10:00-11:15pm, Sundays and Wednesdays

For today:

- Self-Organizing maps
- Unsupervised learning wrap-up
- Presentations
 - Azhar Ahmed
 - Khawla Masood Al Dhaheri

PCA (Cont'd)

i.e. The principle components are given by the *eigenvectors* of the covariance matrices

- For an *n*-dimensional dataset, there will be n such eigenvectors.
- Eigenvectors are mutually orthonormal
- Matrix of eigenvectors is hence a rotation matrix

Project upon a subset of these eigenvectors → dimensionality reduction

- The λ value → the eigenvalues of the covariance matrix
- Sorting these and plotting gives the singular spectrum (SS)

Figures (a) and (b):

- (a) SS corresponding to 20 dimensional white noise
- (b) SS for 3 dimensional white noise embedded in 20 dimensional space
- Note the noise "floor" in figure (b).

Linear vs Non-linear

Linear techniques like PCA project data onto *hyper-plane*

- Works well when data contains linear relationships
- (e.g. (A) → two dimensional case, relationship written:

$$y=mx+c$$
 (+noise)

• Alternative: nonlinear structure/data

- (B) is an example
- Linear projections → weird things can happen
- For e.g., if projected onto v, p₁
 and p₂ will look around the same

Solution:

Use nonlinear axes! (C)

Kohonen's self-organizing map

How can we create this nonlinear mapping?

- Use nonlinear mapping function → difficult!
- Create a virtual axis of points (on left)
- This is the principle of the "selforganizing-map" or SOM
 - Objective: learn nonlinear axis "z"
 - Unfold to form a traditional visualization surface

Strategy

- Embed a string of markers or nodes along the axes
- Optimize position of nodes so that each approximates position of nearby points
- Projection: points attached to closest node

SOM learning algorithm

Two main concepts:

- Perform clustering to fix location of each node
- Concept of a neighborhood so that topological relationships preserved

Algorithm:

- (1) Initialize position of the node
- (2) Cycle through the input vectors
- (3) Determine similarity between the input vector and each of the node
- (4) Identify the node that produces the smallest distance.
- (5) Update the position of *all* nodes as follows:

$$v^{(t+1)} = v^{(t)} + \eta^{(t)} \Theta^{(t)} (x^{(t)} - v^{(t)})$$

(6) Repeat from 2

(Cont'd)

Additional notes:

- The learning rate η^(t) and neighborhood function Θ^(t) are shown to be time dependent
- η[®] decreases monotonically as training progresses, while Θ[®] also reduces in size
- This allows the nodes to
 - First learn the overall topological structure of the data
 - Smaller values allow "fine-tuning" so that nodes match the data distribution
- SOMs can be built with any number of dimensions
- BUT typically 2, which is the most practical and useful
- Hence, the map in "Self-Organizing-Map"

Simple demonstration

Visualization example: map of 140 A.I. Documents

4 ° Citation		1 3 network		° 1		2 1 online		1 2 . search		1	6 2 library		
datab	ase	٥	o	o	a	٥	1	o.	a	a		•	•
1	Q	2	2	•	a	29 othe	ers 2	٥ -	3	a	Q	o	Q
		Machine learning					knowledge				J		
2	1	•	1,	٥	1,	٥	٥	o	o	a	1	٥	6
na	tural											"-	0)/51
						l	L					retri	eval
1	٥	1	o	٥	Q	4	a	4	a	a	1	o	1
	S						systems						
1	Q	o	o	o	2	a	a	a	a	1	٥	o	1
process													
2	٥	1	٥	٥	٥	٥	2	٥	2	٥	3	٥	٥
langı	uage												
۰	٥	٥	٥	٥	1	۵	1	۵	a	1	a	•	3
expert													
resea	rch	۰	o	٥	6	Q	٥	٥	1	a	a	Intelli	1
													y e nic
2	٥	3	o	3	Q	a	4	a	a	a	2	3	1

Visualization example: Brain Signals

(a) Class assignments

(b) ICs corresponding to the SOM lattice neurons

Unsupervised learning: Round-up

- Time was tight, but we covered two main concepts:
 - 1. Clustering:
 - Partitional clustering \rightarrow *k*-means and *k*-centroids
 - Hierarchical clustering → methods UPGMA and the "Saitou-Nei" method
 - 2. Visualization
 - Linear (PCA)
 - Non-linear (SOM)
- Compared to supervised algorithms, unsupervised algorithms tend to be exploratory
 - Descriptive in nature rather than prescriptive
 - Often richer probabilistic interpretations than supervised learning
 - (not possible to cover in this introductory course)

