Patent Claims

- 1. Radiometric measuring device for mounting at a container (3) fillable with a filling substance (1), comprising
- 5 a radioactive source (5), which, in operation, sends radioactive radiation through the container (3),
 - at least two detectors (D_i) ,
 - --which serve for registering radiation passing through the container (3) and for producing an electrical pulse rate (N_i) corresponding to the registered radiation,
 - offset generators (19), which superimpose on the pulse rate (N_i) of each detector (D_i) an offset (O_i) representing a status of such detector (D_i) , and
 - a collector line (21),

10

25

- 15 --to which each detector (D_i) feeds an output signal corresponding to the superimposing of its pulse rate (N_i) and its offset (O_i) ,
 - --which feeds to a superordinated unit (23) a sum signal corresponding to the superimposing of the output signals,
- 20 ---with the superordinated unit (23) deriving, on the basis of the sum signal, a measurement signal and/or a status of the measuring device.
 - 2. Radiometric measuring device for mounting at a container (3) fillable with a filling substance (1), comprising
 - a radioactive source (5), which, in operation, sends radioactive radiation through the container (3),
 - at least two detectors (Di),
- --which serve for registering radiation passing through the container (3) and for producing an electrical pulse rate (N_i) corresponding to the registered radiation,
 - offset generators (19), which superimpose on the pulse rate (N_i) of each detector (D_i) a detector-specific offset (O_{di}) ,
 - turn-off switches (33), which serve for suppressing

transmission of pulse rate (N_i) and offset (O_{di}) , when a detector (D_i) malfunctions,

- a collector line (21),

20

25

30

- --to which each properly working detector (D_i) feeds an output signal corresponding to the superimposing of its pulse rate (N_i) and its offset (O_{di}) , and
 - --which feeds to a superordinated unit (23) a sum signal corresponding to the superimposing of the output signals,
- ---with the superordinated unit (23) deriving, on the basis

 of the sum signal, a measurement signal and/or a status

 of the measuring device.
 - 3. Radiometric measuring device as claimed in claim 1 or 2, wherein
- 15 a series of detectors (D_i) is provided, and
 - the collector line (21) begins at a first detector of the series.
 - leads from there from one detector (D_i) to the detector (D_i+1) neighboring such, and from the last detector to the superordinated unit (23).
 - 4. Radiometric measuring device as claimed in claim 1 or 2, wherein each detector (D_i) comprises a scintillator (7) and a photomultiplier (9) appended thereto.

5. Radiometric measuring device as claimed in claim 4, wherein the offset-generators (19) send periodic reference light flashes through the scintillator (7) via a light conductor (49).

6.Radiometric measuring device as claimed in claim 3, wherein the superordinated unit (23) is integrated in the last detector of the series.

- 7. Method for measuring a physical variable with a radiometric measuring device as claimed in one of the preceding claims, wherein
- a desired value (O_{si}, O_{di}) for an offset is assigned to each detector, the offset generators (19) of the detectors (D_i) generate the desired value, when the detector is working properly, and the desired value is greater than the sum of the maximum expected pulse rates (N_i^{max}) for the detectors (D_i) , and wherein
- 10 the superordinated unit (23) determines a total count rate (G) on the basis of the sum signal,
 - forms the difference (D) between this total count rate (G) and a count rate corresponding to the sum of the desired values $(O_{si},\ O_{di})$ of the offsets,
- 15 recognizes, that an error is present, when the difference (D) is negative, and
 - in the case of positive difference (D), derives a measurement signal.
- 20 8.Method for measuring a physical variable as claimed in claim 7, wherein, in the case of a negative difference (D), it is determined on the basis of a mathematical method (e.g. difference), which of the detectors (D_i) is malfunctioning.

25

5

- 9. Radiometric measuring device for mounting at a container (3) fillable with a filling substance (1), comprising
- a radioactive source (5), which, during operation, sends radioactive radiation through the container (3),
- 30 first and second detectors (D₁, D₂),
 - --which serve for registering radiation passing through the container (3) and for producing an electric pulse rate (N_1 , N_2) corresponding to the registered radiation,
 - an offset-generator (19), which superimposes on the pulse

- rate (N_1) of the first detector (D_1) an offset (O_1) reflecting a status of the first detector (D_1) , and,
- integrated in the second detector (D_2) , a superordinated unit (23),
- 5 --with which the first detector (D_1) is connected via a connecting line (37),
 - ---via which the first detector (D_1) feeds an output signal corresponding to the superpositioning of the pulse rate (N_1) and the offset (O_1) ,
- 10 --to which the pulse rate (N_2) and a status of the second detector (D_2) are fed, and
 - --which, on the basis of the incoming signals, derives a measurement signal and/or a status of the measuring device.

15

25

- 10.Radiometric measuring device for mounting at a container (3) fillable with a filling substance (1), comprising
- a radioactive source (5), which, during operation, sends radioactive radiation through the container (3),
- 20 first and second detectors (D_1, D_2) ,
 - --which serve for registering radiation passing through the container (3) and for producing an electric pulse rate (N_1, N_2) corresponding to the registered radiation and for transmitting an output signal corresponding to the pulse rate (N_1, N_2) to a superordinated unit (23),
 - wherein the source (5) has a strength, in the case of which, for each detector $(D_1,\ D_2)$, always a minimum pulse rate (N_i^{min}) greater than zero is to be expected,
- wherein, in each detector (D_1, D_2) , a turn-off switch (45) is provided, which suppresses transmission of the output signal to the superordinated unit (23), when the detector (D_i) is malfunctioning, and
 - wherein the superordinated unit (23) derives a measurement signal and/or a status of the measuring device on the basis

of the output signals.