# Vorlesung Kognition 1: 6. Gedächtnis: Einführung

Klaus Oberauer

#### Lernziele heute

- Wissen, welche Formen von Gedächtnis unterschieden werden können
- Die Logik der doppelten Dissoziation verstehen
- Die Unterscheidung von Kurzzeit- und Langzeitgedächtnis kritisch diskutieren können
- Das Sternberg-Paradigma erklären können
- Verstehen, wie man aus Reaktionszeiten die Abfolge von Stufen der Informationsverarbeitung und die Dauer einzelner Stufen ermitteln kann

#### Das Standard-Modell

(Atkinson & Shiffrin, 1968)



#### Probleme mit dem Standard-Modell

- Einheitliches Langzeitgedächtnis?
- Einheitliches Kurzzeitgedächtnis?
- Unterscheidung KZG-LZG?
- Muss Information durch das KZG ins LZG?

#### Formen von Gedächtnis

#### Gedächtnis

Sensorisch Sehr kurz, grosse Kapazität

"Echo" unbeachteter Sprache Kurzzeit-/
Arbeitsgedächtnis
begrenzte Kapazität,
Info für Handlungssteuerung,
schnelle Erneuerung

verbal

Kurzzeitig Tel.

Nr. merken

räumlichvisuell

Anordnung von Objekten merken Langzeitgedächtnis
Langfristig,
theoretisch unbegrenzte Kapazität

explizit = deklarativ

implizit
= nicht deklarativ

episodisch

Erinnerung an Erlebtes

semantisch

Faktenwissen

prozedural

Bsp: Velofahren priming

Bessere Verfügbarkeit. Konditionierung

Bsp: Hund und Glocke

# Was bedeuten Unterscheidungen zwischen Gedachtnisformen?

#### **Starke Interpretation**

- Getrennte Systeme
  - unterscheidbare neuronale Basis
  - unterschiedlichePrinzipien
  - getrennteRepräsentationen
  - Unabhängigkeit

#### **Schwache Interpretation**

- Unterschiedliche Inhalte
  - verbal vs. visuell,
  - generell vs. spezifisch
- Unterschiedliche Prozesse
  - z.B., intentionaler vs. unintentionaler Zugriff

# Die Logik der doppelten Dissoziation

Variable A

Distraktoraufgabe

Variable B Amnesie



Leistung von System 1

Leistung von System 2 **KZG** 

LZG

## Zum Beispiel: Kurzzeit- vs. Langzeitgedächtnis

Bitte prägen Sie sich die folgenden Wörter gut ein!

Pferd Wolke Idee Kerze Pflaume

Heimat

Nase Papier Kind Rost Zeitung Kralle

Mond

Kugel Zwerg

### Serielle Positionskurve (freie Wiedergabe)

Primacy und Recency-Effekte



Primacy+Mitte: Abruf aus LZG - Recency: Abruf aus KZG 9

### Serielle Positionskurve (freie Wiedergabe)

Primacy und Recency-Effekte mit und ohne Distraktor-Aufgabe



Primacy+Mitte: Abruf aus LZG - Recency: Abruf aus KZG 10

#### **Amnesie**

Zum Beispiel Patient H.M.: Operative Entfernung von Hippocampus und umliegenden Hirnarealen

## Der Hippocampus



#### Blick von unten auf das Gehirn



vorne

hinten

#### **Amnesie**

Zum Beispiel Patient H.M.: Operative Entfernung von Hippocampus und umliegenden Hirnarealen

- → Normale Kurzzeit-Spanne
- → normaler *Recency*-Effekt bei freier Wiedergabe
- → Stark reduzierter *Primacy*-Effekt
- → Praktisch keine Erinnerung an Ereignisse nach 1 Minute Ablenkung

#### Primacy und Recency bei Amnesie

Carlesimo et al., 1996



### Zum Vergleich: Distraktor-Effekt



→ Doppelte Dissoziation

#### Aber:

### Langzeit-Recency-Effekt

(Baddeley & Hitch, 1977)

- Wo haben Sie an den letzten 20 Tagen Ihr Auto geparkt?
- Fussball: Welche Mannschaften haben in den letzten 20 Wochen gegeneinander gespielt?

### Das "continuous distractor" Paradigma

Wort wort wort wort wort wort wort Wiedergabe

→ Recency

Wort wort wort wort wort wort



Wiedergabe

→ Kein Recency

Wort Distraktor wort Distraktor wort Distraktor Wort Distraktor W.'g.

→ Recency

#### Zeitliche Distinktivität

(Glenberg & Swanson, 1986)

- Repräsentationen vergangener Ereignisse auf mentaler Zeitachse
- Distinktivität nimmt ab mit zeitlicher Distanz zur Gegenwart



### Distinktivität: Die "Verhältnisregel"

(Glenberg & Swanson, 1986)

#### P(Erinnerung) hängt ab von ISI / RI

- ISI = Inter-Stimulus-Intervall
- RI = Retentionsintervall

```
1/3 1/2 1/1

Wort wort wort Wiedergabe

ISI

RI
```

### Distinktivität: Die "Verhältnisregel"

(Glenberg & Swanson, 1986)

#### P(Erinnerung) hängt ab von ISI / RI

- ISI = Inter-Stimulus-Intervall
- RI = Retentionsintervall



### Distinktivität: Die "Verhältnisregel"

(Glenberg & Swanson, 1986)

#### P(Erinnerung) hängt ab von ISI / RI

- ISI = Inter-Stimulus-Intervall
- RI = Retentionsintervall



# Langzeit-Recency = Kurzzeit-Recency?

 Im "continuous distractor paradigm" haben amnestische Patienten Defizite im Recency-Bereich



### Schlussfolgerung

- Recency-Effect in freier Wiedergabe hat 2 Komponenten
  - Distinktivität im Langzeitgedächtnis
  - Zusätzliche Information im Kurzzeitgedächtnis

# Methoden der Kognitionspsychologie: Was wir aus Reaktionszeiten lernen können

- Die Dauer einzelner Schritte der Informationsverarbeitung
- Bedingung 1: Prozess A
- Bedingung 2: Prozess A+B
   Dauer Prozess B = RZ (2) RZ (1)

# Methoden der Kognitionspsychologie: Was wir aus Reaktionszeiten lernen können

- Beispiel: Addition von 5
- Bedingung 1: Zahl X lesen
  - Prozess A = {Wahrnehmung von X, Abruf der Zahl aus LZG, Aussprechen}
- Bedingung 2: Zahl X + 5 sagen
  - Prozess B = 5 zu X hinzuaddieren
- Dauer Addition = RZ(2) RZ(1)

# Beispiel: Suche im Kurzzeitgedächtnis: Sternberg-Paradigma

(Sternberg, 1966, 1969)

- 1. Speichere Memory Set: 5 2 8 9
- 2. Testreiz wird präsentiert: 3
- 3. Ist Testreiz im Memory Set? "nein"

"3" Reaktionszeit "nein"

# Suche im Kurzzeitgedächtnis: 3 Hypothesen

- 1. Parallele Suche
  - Vergleich mit allen Listenelementen gleichzeitig
- 2. Serielle Suche bis zur Identifikation
  - Vergleich nacheinander, bis Übereinstimmung gefunden ist
- 3. Erschöpfende (exhaustive) Suche
  - Vergleich nacheinander bis zum Ende der Liste

Welchen Einfluss hat die Listenlänge auf die Reaktionszeit?

### 3 vorhergesagte Datenmuster







- 1. Parallele Suche
- Serielle Suche bis zur Identifikation
- 3. Erschöpfende (*exhaustive*)
  Suche

# Warum Anstieg der RZ für "nein" bei paralleler Suche?

 Dauer jedes Vergleichs ist Zufallsvariable (Mittelwert + Streuung)



Memory set = 6Memory set = 3

### Typisches Ergebnis

(Sternberg, 1966, 1969)



# Suche im Kurzzeitgedächtnis: Theoretische Verarbeitungsstufen



Test für die Abfolge der Stufen: Manipulationen unterschiedlicher Stufen haben unabhängige (additive) Effekte

# Beispiel: Enkodierung und Vergleich (Sternberg, 1969)

Enkodierung: Sichtbarkeit des Testreizes



Vergleich: Grösse des memory set

# Beispiel: Enkodierung und Vergleich (Sternberg, 1969)



# Beispiel: Alter und Vergleich

(Anders et al., 1972)



### Schlussfolgerungen

- Enkodieren des Testreizes und Vergleich (Suche) sind (weitgehend) getrennte Stufen
- Suche im KZG ist seriell und exhaustiv

#### Leider ist es etwas komplizierter...

Reaktionszeit für JA-Antworten in Abhängigkeit von der seriellen Position des Items in der Liste



Serielle Position, vom Testreiz aus rückwärts gezähl

### Revidierte Schlussfolgerung

- Suche im KZG ist parallel, aber abhängig von serieller Position
- Woher kommt der Effekt der seriellen Position?



#### Literatur

- Empfohlene Literatur zur Vertiefung:
- Spada, H. (2006). Lehrbuch Allgemeine Psychologie. Heidelberg: Spektrum. – Kapitel 3 (3.1, 3.2.1, 3.2.2).
- Baddeley, A., Eysenck, M. W., Anderson, M. C. (2009).
   Memory. Hove: Psychology Press. Kapitel 2.
- Müsseler, J. & Prinz, W. (Hrsg.) (2002). Allgemeine Psychologie. Heidelberg: Spektrum. – Kapitel 3c (Abschnitte 1 und 2.1)
- Ranganath, C., & Blumenfeld, R. S. (2005). Doubts about double dissociation between short- and long-term memory. *Trends in Cognitive Sciences*, 9, 374-380.

#### Zitierte Literatur

- Anders, T. R., Fozard, J. L., & Lillyquist, T. D. (1972). Effects of age upon retrieval from short-term memory. Developmental Psychology, 6, 214-217.
- Baddeley, A. D., & Hitch, G. J. (1977). Recency reexamined. In S. Dornic (Ed.), *Attention & Performance* (Vol. VI, pp. 647-667). Hillsdale: Erlbaum.
- Carlesimo, G. A., Marfia, G. A., Loasses, A., & Caltagirone, C. (1996).
   Recency effect in anterograde amnesia: Evidence for distinct memory stores underlying enhanced retrieval of terminal items in immediate and delayed recall paradigms. *Neuropsychologia*, 34, 177–184.
- Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., & Usher, M. (2005). The demise of short-term memory revisited: empirical and computational investigation of recency effects. *Psychological Review, 112*, 3-42.
- Glenberg, A. M. & Swanson, N.G. (1986). A temporal distinctiveness theory of recency and modality effects. *Journal of Experimental Psychology: Learning, Memory, & Cognition, 12*, 3-15.
- Monsell, S. (1978). Recency, immediate recognition memory, and reaction time. *Cognitive Psychology, 10, 465-501.*
- Sternberg, S. (1966). High-speed scanning in human memory. *Science*, *153*, 652-654.
- Sternberg, S. (1969). Memory scanning: Mental processes revealed by reaction-time experiments. *American Scientist*, *57*, 421-457.