Finite state automata Data Structures and Algorithms for Comp (ISCL-BA-07) al Linguistics III

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2021/22

Finite-state automata (FSA)

- A finite-state machine is in one of a finite-number of states in a given time . The machine changes its state based on its input
- Every regular language is generated/recognized by an FSA
- · Every FSA generates/recognizes a regular language . Two flavors
- - Deterministic finite automata (DFA)
 Non-deterministic finite automata (NFA)
- Note: the NFA is a superset of DFA.

DFA: formal definition

Formally, a finite state automaton, M, is a tuple (Σ,Q,q_0,F,Δ) with

- Σ is the alphabet, a finite set of symbols
- O a finite set of states
- $q_0^{}$ is the start state, $q_0^{}\in Q$
- $F\,$ is the set of final states, $F\subseteq Q$
- $\boldsymbol{\Delta}^{}$ is a function that takes a state and a symbol in the alphabet, and returns another state $(\Delta : Q \times \Sigma \rightarrow Q)$

At any state and for any input, a DFA has a single well-defined action to take

Another note on DFA

error or sink state

- . Is this FSA deterministic?
- . To make all transitions well-defined
- we can add a sink (or error) state

 For brevity, we skip the explicit error state

In that case, when we reach a dead end, recognition fails

DFA: the transition table

transition table

marks the start state * marks the accepting state(s)

DFA recognition

- 1. Start at q₀
- 2. Process an input symbol, move
- accordingly Accept if in a final state at the end of the input

Input: b b a

Why study finite-state automata? Unlike some of the abstract mach es we discussed, finite-state automata are

- There are many applications

 Electronic circuit design

 Workflow management
- Games Pattern matching

- But more importantly >)

 Tokenization, stemming

 Morphological analysis

 Spell checking

 Shallow parsing/chunking

efficient models of computation

FSA as a graph

- · An FSA is a directed graph States are represented as node
- Transitions are labeled edges One of the states is the initial state
- Some states are accepting states

DFA: formal definition

- $\Sigma = \{a, b\}$
- $Q = \{q_0, q_1, q_2\}$ $q_0 = q_0$ F = {q₂}
- $\Delta = \{(q_0, a) \rightarrow q_2, (q_1, a) \rightarrow q_2,$

 - $(q_0, b) \rightarrow q_1,$ $(q_1, b) \rightarrow q_1)$

DFA: the transition table

- marks the start state * marks the accepting state(s)

DFA recognition

- 1. Start at q₀ 2. Process an input symbol, move
- accordingly
- Accept if in a final state at the end of the input

DFA recognition

- 1. Start at q₀ Process an input symbol, move
- accordingly Accept if in a final state at the end of the input

 Δ is a function from (Q, Σ) to P(Q), power set of Q $(\Delta : Q \times \Sigma \rightarrow P(Q))$

and backtrack on fai

Dealing with non-determinism

. Follow one of the links, sto

• Follow all options in parallel

NFA recognition

Input: a b a b

- 1. Start at qo
 - 2. Take the next input, mark all possible
 - 3. If an accepting state is marked at the end of the input, accept

NFA recognition

Input a b a b

- 1. Start at qo
- Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

NFA recognition

- 1. Start at qo 2. Take the next input, mark all possible
 - next states
 - of the input, accept

An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{\alpha,b\}$ where all sen tences end with $\alpha b.$

- 3. If an accepting state is marked at the end
- Note: the process is deterministic, and

One more complication: ε transitions

- An extension of NFA, c-NFA, allows moving without consuming an is symbol, indicated by an c-transition (sometimes called a λ-transition)
- . Any c-NFA can be converted to an NFA

e-transitions need attention

- . How does the (depth-first) NFA re work on this automaton?
- Can we do without ϵ transitions?

- ted by every NFA is recogn * The set of DEA is a subset of the set of NEA (a DEA is also an NEA) The same is true for c-NFA · All recognize/generate regular languages

- . NFA can automatically be converted to the equivalent DFA

NFA-DFA equivalence

Why do we use an NFA then?

NFA (or c-NFA) are often easier to construct
Intuitive for humans (cf. earlier exercise)
Some representations are easy to convert to NFA rather th. expressions NFA may require less men nory (fewer states)

A quick exercise - and a not-so-quick one

 Construct (draw) an NFA for the language over Σ = {α, b}, such that 4th symbol from the end is an a

- . FSA are efficient tools with many applicat
- . FSA have two flavors: DEA, NEA (or maybe three: c-NEA)
- DEA recognition is linear, recognition with NFA may require exponential time
 Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)
- · FSA determinization, minimization

Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Acknowledgments, credits, references

- Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata The Languages, and Computation. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. 1810: 9780201029888.

 Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing.
- Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. sase: 978-0-13-504196-3.

€ removal

- We start with finding the c-clr all states $- e\text{-closure}(q_0) = (q0)$ $- e\text{-closure}(q_1) = (q1, q2)$ $- e\text{-closure}(q_2) = (q2)$
 - Replace each arc to each s
 - arc(s) to all states in the c-closure of

© removal a (we then with the transition table	-0 - 1 -0 - 1 -0 - 1 -0 - 1 -0 - 1 -0 - 1 -0 - 1	c removal a/miles estates with the treatment table Transition table	ab ab b 1 ab ab ab a 3 a 3 a 3 a 3 a 3 a 3 a 3 a
	vi-		To the second se
			Washington 2010 At