Example

♦ Consider a system with four tasks

$$> T_1 = (4,1)$$

$$T_2 = (5, 1.8)$$

$$> T_3 = (20, 1)$$

$$> T_4 = (20, 2)$$

♦ Possible schedule:

◆ Table starts out with:

$$\rightarrow$$
 (0, T₁), (1, T₃), (2, T₂), (3.8, I), (4, T₁), ...

Refinement: Frames

- ♦ We divide hyperperiods into frames
 - > Timing is enforced only at frame boundaries
 - Each task is executed as a function call and must fit within a single frame
 - > Multiple tasks may be executed in a frame
 - > Frame size is f
 - > Number of frames per hyperperiod is F = H/f

Frame Size Constraints

1. Tasks must fit into frames

- > So, $f \ge C_i$ for all tasks
- Justification: Non-preemptive tasks should finish executing within a single frame

2. f must evenly divide H

- > Equivalently, f must evenly divide P_i for some task i
- Justification: Keep table size small

More Frame Size Constraints

- 3. There should be a complete frame between the release and deadline of every task
 - Justification: Want to detect missed deadlines by the time the deadline arrives

Therefore: 2f – gcd (P_i, f) ≤ D_i for each task i

Example Revisited

- **♦** Consider a system with four tasks
 - \rightarrow T₁ = (4,1), T₂ = (5, 1.8), T₃ = (20, 1), T₄ = (20, 2)
 - \rightarrow H = Icm (4,5,20) = 20
- **♦** By Constraint 1: f ≥ 2
- **♦** By Constraint 2: f might be 1, 2, 4, 5, 10, or 20
- **♦** By Constraint 3: only 2 works

Task Slices

- ♦ What if frame size constraints cannot be met?
 - \rightarrow Example: T = { (4, 1), (5, 2, 7), (20, 5) }
 - By Constraint 1: f ≥ 5
 - By Constraint 3: f ≤ 4
- ◆ Solution: "slice" a task into smaller sub-tasks
 - > So (20, 5) becomes (20, 1), (20, 3), and (20, 1)
 - > Now f = 4 works
- ♦ What is involved in slicing?

Design Decision Summary

- **♦** Three decisions:
 - Choose frame size
 - Partition tasks into slices
 - > Place slices into frames
- ◆ In general these decisions are not independent

Cyclic Executive Pseudocode

```
// L is the stored schedule
current time t = 0;
current frame k = 0;
do forever
  accept clock interrupt;
  currentBlock = L(k);
  t++;
  k = t \mod F;
  if last task not completed, take appropriate action;
  execute slices in currentBlock;
  sleep until next clock interrupt;
```