THE SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF MATHEMATICS

MA215 Probability Theory

Exercise Sheet 13

Set: Tuesday 13th December, 2016; Hand in: Tuesday 20th December 2016 by 5pm.

- 1. Suppose X is an absolutely continuous random variable with probability density function (pdf) f(x). For any real value $-\infty < t < +\infty$, define a real-valued function, denoted by $M_X(t)$, as $M_X(t) = E(e^{tX})$. Further assume that $M_X(t)$ is well-defined for any t where $-\infty < t < +\infty$.
 - (a) Write down the integration form of $M_X(t)$.
 - (b) If X is a non-negative (absolutely continuous) random variable, show that $M_X(t)$ is a non-decreasing function of t.
 - (c) If X is a non-negative (absolutely continuous) random variable, show that if t < 0 then $0 \le M_X(t) \le 1$ and $M_X(0) = 1$.
 - (d) If Y = aX + b where X is a random variable, and a and b are two constants. Show that $M_Y(t) = e^{bt} M_X(at)$.
 - (e) Suppose X and Y are two independent absolutely continuous random variables. Let Z = X + Y. Show that $M_Z(t) = M_X(t)M_Y(t)$.
 - (f) Suppose X is a discrete random variable taking values of non-negative integers (for example, Poisson random variable) with probability mass function p_k . Write down the form of $M_X(t)$ and prove, again, the above properties for $M_X(t)$.

2. Find the MGF of

- (a) the Uniform [0, 1] distribution;
- (b) the discrete random variable X with P(X = 4) = 1;
- (c) the continuous random variable Y with probability density function f(y) = 2y for $0 \le y \le 1$, density zero elsewhere.
- 3. Find the MGF of the Binomial random variable Bin(n, p).
- 4. Find the MGF of a Geometric random variable with parameter p, and then applying the properties of MGFs to find the MGF of the Negative Binomial random variable with parameter p and r where r is a positive integer.
- 5. Suppose the random variable X obeys the uniform distribution over interval [a, b]. Find $M_X(t)$.
- 6. Suppose X is a Poisson random variable with parameter λ . Find $M_X(t)$.
- 7. Suppose X is a normally distributed random variable with parameters μ and σ^2 . Find $M_X(t)$. (Hint: First consider the standard normal and then apply the properties of MGFs.)
- 8. Find the MGF of the general $\Gamma(\lambda, \alpha)$ distribution, where $\alpha > 0$ may NOT be a positive integer.
- 9. Suppose that the MGF of a random variable X is given by $M_X(t) = e^{3(e^t 1)}$. What is P(x = 0)? Also, find E(X) and Var(X). (Hint: You do not need to do any detailed calculations. Just find what the random variable X is, and then use the known results to answer this question.)