Universidad Nacional de San Agustín

Tópicos en Computación Gráfica

Final project proposal

MSc. Vicente Machaca Arceda

Content

Introduction Definitions

Proposal

Protein structure prediction Contact map Deep learning

Overview

Introduction Definitions

Proposal

Protein structure prediction Contact map Deep learning

Definitions

Proteomics is the large-scale study of proteins [1]

Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells. [1]

Figure: A representation of the 3D structure of the protein myoglobin.

Source: PDB.

Protein structure

Figure: Types of protein structures. Source: [2].

Protein structure SARS-CoV-2

Figure: Example of SARS-CoV-2 protein structure. Source: CEn .

Numbers

Protein structures are complex systems with several tens, hundreds and **thounsand** of residues (amino acids).

Only about 1% of the total number of sequenced proteins has experimentally determined. [3].

Protein structure prediction

Overview

Introduction

Definitions

Proposal

Protein structure prediction

Contact map

Deep learning

Protein structure prediction

DESTINI: A deep-learning approach to contact-driven protein structure prediction [4].

► Year: 2019

Authors: Gao, Mu and Zhou, Hongyi and Skolnick, Jeffrey

► Event: Journal of Scientific reports

Protein structure prediction

Overview

Introduction

Definitions

Proposal

Protein structure prediction

Contact map

Deep learning

Contact map 3D model from contact map

Figure: Contact map derive from 3D protein model. Source: [6].

Contact map 3D model from contact map

Reconstruct a 3D protein model from the contact map is challenging [6].

Methods are divided into ad initio and template-based [6].

Reconstruction of 3D Structures from Protein Contact Maps [7].

► Year: 2008

 Authors: Transactions on Computational Biology and Bioinformatics

► Event: BMC Bioinformatics

CONFOLD2: improved contact-driven ab initio protein structure modeling [8].

► Year: 2018

► Authors: Adhikari, Badri and Cheng, Jianlin

► Event: BMC Bioinformatics

Overview

Introduction

Proposal

Deep learning

Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints [9].

► Year: 2019

Authors: Greener, Joe G and Kandathil, Shaun M and Jones, David T

► Event: Nature communications

Repository: git

Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13) [10].

► Year: 2019

► Authors: Senior, Andrew W and Evans, ...

► Event: CASP13

References I

- [1] N. L. Anderson and N. G. Anderson, "Proteome and proteomics: new technologies, new concepts, and new words," *Electrophoresis*, vol. 19, no. 11, pp. 1853–1861, 1998.
- [2] P. J. Russell and K. Gordey, *IGenetics*. Benjamin Cummings San Francisco, 2002, no. QH430 R87.
- [3] H. Rangwala and G. Karypis, *Introduction to protein structure prediction: methods and algorithms*. John Wiley & Sons, 2011, vol. 18.
- [4] M. Gao, H. Zhou, and J. Skolnick, "Destini: A deep-learning approach to contact-driven protein structure prediction," *Scientific reports*, vol. 9, no. 1, pp. 1–13, 2019.
- [5] R. Ando and C. Batty, "A practical octree liquid simulator with adaptive surface resolution," *ACM Transactions on Graphics (TOG)*, vol. 39, no. 4, pp. 32–1, 2020.

References II

- [6] I. A. Emerson and A. Amala, "Protein contact maps: A binary depiction of protein 3d structures," *Physica A: Statistical Mechanics and its Applications*, vol. 465, pp. 782–791, 2017.
- [7] M. Vassura, L. Margara, P. Di Lena, F. Medri, P. Fariselli, and R. Casadio, "Reconstruction of 3d structures from protein contact maps," *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, vol. 5, no. 3, pp. 357–367, 2008.
- [8] B. Adhikari and J. Cheng, "Confold2: improved contact-driven ab initio protein structure modeling," *BMC bioinformatics*, vol. 19, no. 1, p. 22, 2018.
- [9] J. G. Greener, S. M. Kandathil, and D. T. Jones, "Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints," *Nature* communications, vol. 10, no. 1, pp. 1–13, 2019.

References III

[10] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. Nelson, A. Bridgland *et al.*, "Protein structure prediction using multiple deep neural networks in the 13th critical assessment of protein structure prediction (casp13)," *Proteins: Structure, Function, and Bioinformatics*, vol. 87, no. 12, pp. 1141–1148, 2019.

