HUGHES RESEARCH LABS MALIBU CALIF ULTRA LOW LOSS COATINGS OF KCL LASER WINDOWS.(U) MAR 78 D ZUCCARO AD-A058 524 F/6 11/3 F33615-76-C-5319 UNCLASSIFIED AFML-TR-78-20 NL OF AD A058524 END DATE FILMED

ADA 0 58524

LEVEL 2

AFML-TR-78-20

ULTRA LOW LOSS COATINGS OF KCI LASER WINDOWS

DDC FILE COPY.

DAVID ZUCCARO
HUGHES RESEARCH LABORATORIES
3011 MALIBU CANYON ROAD
MALIBU, CALIFORNIA 90265

MARCH 1978

F33615-76-C-5319 Final Report June 1976 to December 1977 DE COLLING COL

Approved for public release; distribution unlimited.

78 15 08 076

AIR FORCE MATERIALS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

MELVIN C. OHMER

Project Engineer

FOR THE COMMANDER

WILLIAM G. D. FREDERICK, Chief Laser & Optical Materials Branch Electromagnetic Materials Division Air Force Materials Laboratory

Melon C Ohmer

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFML/LPO __,W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/5 July 1978 - 225

EFFORE COMPLETING TITLE TOWNS TOWN TOWN THE ADDRESS OF MILE AND ADDRESS OF MILE THE TOWN TOWN THE TOWN TOWN THE TOWN TH	UNCLASSIFIED	Entered)	
TITE TOW SOUTH) LTRA LOW LOSS COATINGS OF KCL LASER 1 Jun 76 31 De TOWN TOWN TO THE TOWN TOWN THE T			READ INSTRUCTIONS BEFORE COMPLETING FOR
LTRA LOW LOSS COATINGS OF KCL LASER 1 Jun 76 31 De TRIPONT CONTINUE ON PERFORMANCE AND ADDRESS UN PERFORMANCE AND ADDRESS OF THE COMPANY OF CHARLES OF THE CONTINUE ON PERFORMANCE AND ADDRESS OF THE CONTINUE OF PROCESSOR OF THE CONTINUE OF PROCESSOR OF THE CONTINUE OF T		2. GOVT ACCESSION	1 RECIPIENT'S CATALOG NUMBER
LIRA LOW LOSS COATINGS OF KCL LASER AUTHORICO . Zuccaro . PROGRAM ELEMENT NUM F33615-76-C-5319 . PROGRAM ELEMENT PRO- MARCA & ORR UNIT PRO- MARCA & ORR		(9)	TYPE OF REPORT & PERSON CON
AUTHORICO Zuccato David Zuccato F33615-76-C-5319 F83615-76-C-5319 F83615-76-C-5		ACHD	1 1 - 7 700001 0 - 77
AUTHOR(s) Zuccato PERFORMING ARGANIZATION NAME AND ADDRESS Unghas Research Laboratories 011 Malibu Canyon Road alibu, California 90265 CONTROLLING OFFICE NAME AND ADDRESS ir Force Materials Laboratory (LPO) right-Patterson AF Base, Ohio 45433 MONITORING AGENCY NAME & ADDRESS: MONITORING AGENCY NAME & ADDRESS: MONITORING AGENCY NAME & ADDRESS: MONITORING AGENCY NAME & ADDRESS: MONITORING AGENCY NAME & ADDRESS: MONITORING AGENCY NAME & ADDRESS: MONITORING AGENCY NAME & ADDRESS: MONITORING OFFICE NAME & ADDRESS MONITORING OFFICE		LASER	
Taccaro Tac			PERFORMING ONG. REPORT NUM
PERFORMING MEGANIZATION, MAME AND ADDRESS UNDOES TO PROGRAM ELEMENT, PROJUCT OF THE WORLD'S AREA A WORK UNIT NUMBER OF PAGE 1317J 00-23 JO PROGRAM ELEMENT, PROJUCT OF THE WORLD'S CONTROLLING OFFICE NAME AND ADDRESS OF THE WORLD'S CONTROLLING OFFICE NAME ADDRESS OF THE WORLD'S CONTROLLING OFFICE NAME AND ADDRESS OF THE WORLD'S CONTROLLING OFFI THE WORLD'S CONTROLLING OF THE WORLD'S CONTROLLING	THOR(a)		8. CONTRACT OR GRANT NUMBER(S
USTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report) SUPPLEMENTARY NOTES WEY WORDS (Continue on reverse side if necessary and identify by block number) prical coatings, As2S3, As2Se3, KC1, NaF, T11, ZnSe materials, 9 mA R coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. prical absorption losses of 0.03 to 0.09% per surface were achieved en coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.	Zuccaro David Zu	ccaro/(15	F33615-76-C-5319
USTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report) SUPPLEMENTARY NOTES WEY WORDS (Continue on reverse side if necessary and identify by block number) prical coatings, As2S3, As2Se3, KC1, NaF, T11, ZnSe materials, 9 mA R coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. prical absorption losses of 0.03 to 0.09% per surface were achieved en coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.	PEOBMING ARGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT
ADSTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Supplementary notes KEY WORDS (Continue on reverse side if necessary and identify by block number) ptical coatings, As2S3, As2Se3, KC1, NaF, T11, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ADSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were actine to act he coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S3 1/KC1/T11. Deposition under UHV conditions was essential to ach low coating absorption under UHV conditions was essential to ach low coating absorption for the presence of apor of about 1 x 10 ⁻⁸ Torr.	hes Research Laboratories	6.	1 (3)
ir Force Materials Laboratory (LPO) right-Patterson AF Base, Ohio 45433 MONITORING AGENCY NAME & ADDRESS(I) different from Controlling Office) DISTRIBUTION STATEMENT (of this Reports) Provided for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) ptical coatings, As 2S 3, As 2Se 3, KC1, NaF, T1I, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, As 2Se3/KC1/As 2S 31/KC1/AIS 1. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As 2Se 3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.		(16)	317J-00-23
MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) pm AR coatings, As 2S 3, As 2Se 3, KC1, NaF, T1I, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side II necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, As 2S ₃ /KC1/As 2S ₃ , As 2Se ₃ /KC1/III. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As 2Se ₃ or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.	ONTROLLING OFFICE NAME AND ADDRESS		17 PEROPLIPATE
MONITORING AGENCY NAME & ADDRESSIII different from Controlling Office) DISTRIBUTION STATEMENT (of this Report) Proved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) SUPPLEMENTARY NOTES REY WORDS (Continue on reverse side if necessary and identify by block number) ptical coatings, As2S3, As2Se3, KC1, NaF, TII, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S1/KC1/TII. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As2Se3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.	Force Materials Laboratory	(LPO)	Mar 78
Unclassified The Declassification beautiful Distribution STATEMENT (of this Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) ptical coatings, As2S3, As2Se3, KC1, NaF, T11, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S 11/KC1/T11. Deposition under UHV conditions was essential to ach he low coating absorption. Films containing either As2Se3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.		' / / /	13 NUMBER OF PASES
DISTRIBUTION STATEMENT (of this Report) Proved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) ptical coatings, As2S3, As2Se3, KC1, NaF, T1I, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S1I/KC1/T1I. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As2Se3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.	ONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15 SECURITY CLASS. (of this report)
DISTRIBUTION STATEMENT (of this Report) Proved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) ptical coatings, As2S3, As2Se3, KC1, NaF, T1I, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S1I/KC1/T1I. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As2Se3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.			Unalagrified (/)
DISTRIBUTION STATEMENT (of this Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) ptical coatings, As2S3, As2Se3, KC1, NaF, T1I, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S 11/KC1/T11. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As2Se3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.			1.
DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by black number) ptical coatings, As2S3, As2Se3, KC1, NaF, T11, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by black number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S 11/KC1/T11. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As2Se3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.			SCHEDULE
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) ptical coatings, As2S3, As2Se3, KC1, NaF, T1I, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KC1, Surface finish HV deposition. ABSTRACT (Continue on reverse side if necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KC1 at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, As2S3/KC1/As2S3, As2Se3/KC1/As2S1I/KC1/T1I. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As2Se3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.	proved for public releases dis	stribution unlin	63600
ptical coatings, As ₂ S ₃ , As ₂ Se ₃ , KCl, NaF, TlI, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KCl, Surface finish HV deposition. ABSTRACT (Continue on reverse side II necessary and identity by block number) ow loss AR coatings were developed for polycrystalline KCl at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KCl/ZnSe, As ₂ S ₃ /KCl/As ₂ S ₃ , As ₂ Se ₃ /KCl/As ₂ S ₃ I/KCl/TlI. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As ₂ Se ₃ or Tl ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.	STRIBUTION STATEMENT (of the abstract entered	in Black 29, if different from	n Report;
ptical coatings, As ₂ S ₃ , As ₂ Se ₃ , KCl, NaF, TlI, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KCl, Surface finish HV deposition. **ABSTRACT (Continue on reverse side II necessary and identity by block number)** ow loss AR coatings were developed for polycrystalline KCl at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KCl/ZnSe, As ₂ S ₃ /KCl/As ₂ S ₃ . As ₂ Se ₃ /KCl/As ₂ S 1I/KCl/TlI. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As ₂ Se ₃ or Tl ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.	JPPLEMENTARY NOTES		
ptical coatings, As ₂ S ₃ , As ₂ Se ₃ , KCl, NaF, TlI, ZnSe materials, 9 m AR coatings, Laser damage, Polycrystalline KCl, Surface finish HV deposition. **ABSTRACT (Continue on reverse side II necessary and identity by block number)** ow loss AR coatings were developed for polycrystalline KCl at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KCl/ZnSe, As ₂ S ₃ /KCl/As ₂ S ₃ . As ₂ Se ₃ /KCl/As ₂ S 1I/KCl/TlI. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As ₂ Se ₃ or Tl ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.		ad identify by block number)	
m AR coatings, Laser damage, Polycrystalline KCl, Surface finish HV deposition. ABSTRACT (Continue on reverse side II necessary and identify by block number) ow loss AR coatings were developed for polycrystalline KCl at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KCl/ZnSe, As ₂ S ₃ /KCl/As ₂ S ₃ , As ₂ Se ₃ /KCl/As ₂ S 1I/KCl/TII. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As ₂ Se ₃ or Tl ignificantly higher absorption when deposited in the presence of apor of about 1 x 10 ⁻⁸ Torr.	- 1 WOILE (100 MINUS - 11 TO THE THE TO THE		7nSe materiale 9 27
ow loss AR coatings were developed for polycrystalline KCl at 9. ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KCl/ZnSe, $As_2S_3/KCl/As_2S_3$, $As_2S_3/KCl/As_2S_3$ II/KCl/T11. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As_2Se_3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10^{-8} Torr.	AR coatings, Laser damage, Po		
ptical absorption losses of 0.03 to 0.09% per surface were achie he coatings were ZnSe/KC1/ZnSe, $As_2S_3/KC1/As_2S_3$, $As_2S_3/KC1/As_2S_3$ and $As_2S_3/KC1/As_2S_3$ and $As_2S_3/KC1/As_2S_3$ are low coating absorption. Films containing either As_2Se_3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10^{-8} Torr.			
he coatings were ZnSe/KC1/ZnSe, $As_2S_3/KC1/As_2S_3$, $As_2Se_3/KC1/As_2S_3$			
1I/KC1/T1I. Deposition under UHV conditions was essential to ache low coating absorption. Films containing either As_2Se_3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10^{-8} Torr.			
he low coating absorption. Films containing either As_2Se_3 or T1 ignificantly higher absorption when deposited in the presence of apor of about 1 x 10^{-8} Torr.			
ignificantly higher absorption when deposited in the presence of apor of about 1 x 10^{-8} Torr.			
	gnificantly higher absorption		
	or of about 1 x 10 ⁻⁸ Torr.		
FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE INTO ACCUTE TO	FORM 1473 EDITION OF 1 NOV 65 IS OBSOL	ETE .	DIGI AGGIETED
UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (WATER)	JAN 73 147 9		
172 600 78 15 08		70	15 08

172 600

TABLE OF CONTENTS

SECTION		PAGI	3
	LIST	OF ILLUSTRATIONS 5	
I	INTR	RODUCTION	
II	APPA	ARATUS AND PROCEDURES	
	Α.	Preparation of the Substrate Surfaces	
	В.	Substrate Characterization 10	
	С.	Coating Deposition System	
	D.	Laser Calorimeter	
	E.	Preparation and Purification of Film Materials	
	F.	Laser Damage Threshold Tests 27	
III	DISC	SUSSION OF RESULTS	
	Α.	ZnSe/KC1/ZnSe Coating Results	
	В.	$As_2s_3/KC1/As_2s_3$ Coating Results 32	
	С.	$As_2Se_3/KC1/As_2Se_3$ Results	
	D.	As ₂ Se ₃ /NaF/As ₂ Se ₃ Results	
	Ε.	T1I/KC1/T1I Results 48	
	F.	Polycrystalline KCl Substrate Materials	
	G.	Comparison of 9.27 and 10.6 µm Absorption in KCl	
	н.	Recrystallization in Polycrystal- line KCl	
	1.	Effects of Etching on Surface Flatness	
	J.	Environmental Tests 61	

SECTION	P	AGE
	K. Laser Damage Test Results	61
	L. Environmental Consequences	63
	M. Index of Refraction	64
IV	SUMMARY	65
	REFERENCES	67
	APPENDIX A — Materials for 9.27 μm AR Coatings	69
	APPENDIX B — Summary of Surface Preparation Techniques	73

LIST OF ILLUSTRATIONS

FIGURE	PAG	E
1	Residue of polishing compound on surface of substrate 1288	
2	Cross sectional view of the UHV system	
3	Photograph of the UHV system used in this study	
4	View of the Knudsen type evaporation sources used in this study	
5	System for the optical monitoring of film thickness during deposition	
6	Photograph of laser calorimeter	
7	Optical train of the CO ₂ laser calorimeter	
8	Vacuum calorimeter	
9	Calorimeter mount for window samples 24	
10	Composite HRL As ₂ Se ₃ glasses	
11	Transmission spectra of 1272-2-1 which exhibits oxide related absorption at 9 µm	
12	Transmission spectra of 9-2-3-3	
13	Transmission spectra of 1282-4-3	
14	Transmission spectra of 9-12-5-4	
15	Transmission spectra of 9-11-6-2 which exhibits strong 9 µm absorption 41	
16		
16	Transmission spectra of 155-5-12- 24-10-2	
17	Transmission spectra of 9-10-7-1 which exhibits strong 13.6 μm	
	ancorner on 4)	

FIGURE		PAGE
18	Transmission spectra of 150-4-14-7-4 which exhibits 13.6 µm absorption	46
19	Transmission spectra of 174-5-30-9-1	47
20	Theoretical transmission spectra of design Tl	50
21	Theoretical transmission spectra of design T2	50
22	Transmission spectra of 1992-18-4	52
23	Transmission spectra of 8E9-16-2	54

The second second

SECTION I

MICRO M

INTRODUCTION

In the last few years, several low optical absorption 10.6 µm AR coatings for KCL have been developed at Hughes Research Laboratories (HRL) and at other laboratories. The objective of this program was the development of 9.27 µm AR coatings which have a film absorption loss of less than 0.01% and a reflection of less than 0.1% per surface. The achievement of the program objective will permit the development of a 9.27 µm AR coating for a 32.5 cm diameter polycrystalline KCL window.

Because previous studies had shown that coatings deposited under ultra-high vacuum (UHV) conditions had lower absorption losses than did coatings deposited in conventional vacuum systems, the present study was 'limited to UHV-deposited films. Mass spectrometer analysis had shown that impurities were evolved occasionally during the evaporation of film materials. As a consequence, residual gas analysis (RGA) was performed to ensure that impurities were not present in the system. Also, if impurities were located in the film materials, either they were removed by reactive atmosphere processing (RAP) or techniques were developed to prepare clean material.

Although previous experience indicated that the major emphasis should be placed initially on films using ZnSe, $\operatorname{As_2S_3}$, TlI, ThF₄, KCl, BaF₂, NaF, CeF₃, or SrF₂, a thorough literature search was made to determine the most promising film materials. The coatings that were studied included ZnSe, $\operatorname{As_2S_3}$, $\operatorname{As_2Se_3}$, and TlI with KCl or NaF.

Five types of 9.27 μm AR coatings, which had film absorption losses of 0.03 to 0.09%, were produced in this study. The 10.6 μm absorption losses were measured in some cases and found to be about half that at 9.27 μm .

In the program, a technique for substrate surface preparation was developed. It made possible the reproducible preparation of substrates that had low absorption, good flatness and parallelism, and freedom from surface contamination.

A UHV system was set up for the film deposition. A sample mounting system was developed that made possible the individual coating of both surfaces of the samples during a single run. We also developed efficient Knudsen-type sources for use in this program. The film thicknesses were accurately monitored on the sample surface by means of a transmitted light interferometer.

The coating absorption was determined with a vacuum calorimeter using a tunable ${\rm CO}_2$ laser as the power source. Most of the samples produced were submitted to AFML for focussed or broad beam testing (at 10.6 and 9.27 μ m) of the cw laser damage threshold.

SECTION II

APPARATUS AND PROCEDURES

In this section, we discuss the apparatus and procedures used in this program. Although commercially available equipment is described briefly, special components designed under this program are described in detail. The same is true of operating procedures.

A. PREPARATION OF THE SUBSTRATE SURFACES

At the start of this program, polycrystalline KCl substrates were individually hand-ground and polished. This process was both expensive and difficult to standardize. Not only did changes in personnel result in variations in the substrate absorption, but even a single operator's production showed variations. As a result, it was necessary to develop a method for machine polishing substrates in batches. In addition to being very efficient, the method consistently produced high quality optical surfaces with good flatness and with parallel faces.

The process consists of grinding and polishing a batch of seven substrates at a time. The first step is to hand grind the substrates on SiC paper to obtain samples of uniform thickness. It is important to bevel the edges because sharp edges on the sample can break off and produce severe scratches on the KCl surface. The detailed polishing procedure is outlined below.

- 1. The samples are attached to a glass mandrel with wax. They are ground on a cast iron lap using 20 μm loose grit abrasive with ethylene glycol as a vehicle. The grinding is continued until at least 0.1 mm is removed from the surface. This is done to ensure the removal of any deep damage caused by the hand grinding.
- The surfaces are cleaned with propanol to remove the abrasive. Then the samples are ground on a glass lap using 9 μm loose grit with ethylene glycol as a vehicle. Grinding proceeds until at least 0.05 mm is removed.

- 3. The surfaces are cleaned with propanol. Then the entire assembly is placed in concentrated HCl and etched for three minutes. The purpose of the etch is to remove all embedded polishing material and the damaged surface material. This step was found to be necessary because large particles of the grinding medium occasionally would be carried into the polishing step and produce severe scratches on the surface.
- 4. The substrates are polished on a Swiss Pitch lap with Linde A and propanediol for at least four hours. Following this the substrates are removed from the plate and ultrasonically cleaned in xylene.
- 5. The reverse side is ground and polished in the same manner.

 After the samples have been cleaned, they receive a very light
 buff on Polytex Supreme with Linde B and isopropyl alcohol.

After inspection of the surfaces, the samples are etched to stabilize the surfaces. They receive a 15 s etch in concentrated HCl and a 15 s rinse in isopropyl alcohol; then they are dried in an $\rm N_2$ gas stream. Prior to this program, the substrates were dried in hot Freon vapor. This practice was discontinued because the Freon occasionally left a residue and because thermal shock could crack the sample.

B. SUBSTRATE CHARACTERIZATION

Following the polishing of the KCl substrates, the samples are inspected under a low power microscope (20 to 50 X), with a polariscope and with oblique light in a light box. The purpose of this step is to locate any large flaws.

If there are no flaws, the sample is etched. Following this step, it is again inspected in a light box, where any residual material on the surface appears as a film. In the early part of the program (when the final polishing step consisted of a hand buff on flannel with Linde A), these films sometimes appeared on the surfaces of the KCl. Examination under a high powered microscope (about 500 X) revealed this film to be composed of grains of the polishing medium. An example of such a film is shown in Figure 1.

Residue has not been observed since the use of the mechanical polishing technique. It is quite probable that the ultrasonic bath with xylene used to remove the wax also removes the residual polishing compound.

Figure 1. Residue of polishing compound on surface of substrate 1288 (160X magnification).

About 40% of the surfaces are inspected with dark field illumination, which accentuates surface contaminants and phase contrast microscopy which exposes surface and sub-surface damage, such as that caused by the grinding and polishing.

The substrate's absorption is determined at 9.27 μm for all samples and also at 10.6 μm for selected samples. The substrates are stored in individual holders that are contained in a plastic box. They are kept in a vacuum desiccator except for the periods when they are in use.

C. COATING DEPOSITION SYSTEM

The optical films produced in this program were deposited in an all metal UHV system. The vacuum system consists of a stainless-steel chamber, 46 cm in diameter and 100 cm in height, a 400 1/s diode ion pump, a titanium sublimation pump, and LN $_2$ cooled zeolite sorption pumps. After evaluation under a 200°C bake-out for 36 hours, the system has a base pressure of 2 x 10 $^{-10}$ Torr. After the formation of deposits of film materials like As $_2$ S $_3$ and As $_2$ Se $_3$ on the interior walls, the base pressure, after bake-out, increases to about 2 x 10 $^{-9}$ Torr. A sectional view of the system is shown in Figure 2 and a photograph in Figure 3.

Figure 2. Cross sectional view of the UHV system.

Figure 3. Photograph of the UHV system used in this study.

The major film deposition components are a sample carousel, which holds four samples; a flipper to turn the samples over; a shutter to isolate the samples from the four evaporation sources; and the optical deposition thickness monitor.

The residual gases are analyzed by a quadrupole mass analyzer. A nude Bayard-Alpert ion gauge is used to measure the total pressure in the chamber. After bake-out, the partial pressure of water vapor is in the 10^{-11} Torr range. The system is designed to be oil free, and the residual gas analysis shows the only significant hydrocarbons to be CH₄ and C₂H₆. The partial pressure of these gases is less than that of the water vapor.

The 3.8 cm diameter KCl substrates are held in scainless-steel holders. These holders slip into a four position carousel. The carousel rotates to position the samples over the evaporation sources. Samples are coated one at a time. A flipper is used to turn over the samples so that both surfaces can be coated without having to expose the sample to the atmosphere. The carousel can be electrically heated to heat the samples if desired.

The initial evaporator design consisted of a directly heated tantalum sleeve 1 cm in diameter and 5 cm in length. The sleeve was closed at the base. Leads attached to the base and top both supported the unit and conducted the electrical heater current through the evaporator walls.

In the first three runs, there were six evaporation sources in the system. They contained ThF_4 , KCl, NaF, ZnSe, As_2S_3 , and As_2Se_3 , respectively. The plan was to use any specific evaporator to produce the desired film. This design was found to be impractical because the evaporation sources were too close together. Operation of one evaporator at high temperatures results in heating the material in other sources to a temperature sufficient to evaporate the high vapor pressure materials (i.e., As_2S_3 and As_2Se_3).

There was another problem in the use of this evaporator design.

The maximum temperature region was in the central portion of the unit due to the conduction losses through the leads at each end. This caused

problems in the evaporation of $\operatorname{As}_2\operatorname{S}_3$ and KCl. When heated, $\operatorname{As}_2\operatorname{S}_3$ forms a very viscous liquid. As the temperature is increased to achieve a reasonable evaporation rate, a vapor bubble forms in the center of the evaporator. It forces the cooler viscous $\operatorname{As}_2\operatorname{S}_3$ out of the top of the evaporator. This causes very rapid changes in the vapor flux and creates problems in film thickness control. The KCl is evaporated from the hotter central region. Gradually KCl condenses at the mouth of the evaporator until it is nearly sealed off.

Because of these problems, a new evaporation source was designed. The interior dimensions were unchanged. The wall thickness was adjusted to have the highest resistance at the top and thus the highest temperature at the top. This was accomplished by adding material to the lower wall and serrating the upper part to increase the resistance at the top. Also, the upper conductor was redesigned to reduce the conduction loss. A three-layer heat shield of 0.01 mm thick tantalum foil was used to reduce the heat losses and to prevent heating of nearby evaporators.

Liners of either SiO_2 or $\mathrm{Al}_2\mathrm{O}_3$, made in the shape of test tubes with 0.3 to 0.4 mm walls, were fabricated. These were used in the evaporators to contain the material. It was now possible to remove one sleeve and replace it with another without having to change the entire structure.

A new support structure was constructed that holds four evaporators. It is shown in Figure 4. The unit has proven dependable and versatile.

There is a single manually activated shutter located just below the sample. The shutter is used to control the vapor flux to the sample.

A key factor in the successful deposition of an AR coating is the accurate determination of the film thickness. In this program, this was accomplished by measurement of optical interference induced changes in light transmitted through the film. The method was selected because it is the most accurate one available.

Although many techniques have been developed to measure film thickness (e.g., Chopra lists more than 14 methods), only two (optical interference and quartz crystal) are in common usage for monitoring film

¹K.L. Chopra, Thin Film Phenomena, McGraw-Hill (1969).

Figure 4. View of the Knudsen type evaporation sources used in this study.

thickness during deposition. The other techniques are restricted as to the materials that can be detected, the sensitivity, the maximum film thickness, the cost of the equipment, or the response time. For these reasons, they have not been used extensively.

The quartz crystal monitor consists of an exposed quartz crystal that is electronically excited. As material is deposited on the crystal, the mass changes and thus the resonant frequency changes. The frequency change is proportional to the mass change (over a limited range) and thus to the film thickness provided the density of the deposited material is constant.

The major problem is that the measurement is not made on the optical substrate so that it is necessary to calibrate the difference in vapor flux to the substrate. The calibration is valid only if the distribution of material from the source remains constant from run to run. In general, this is impossible to achieve because the flux distribution varies as the level of material in the source varies. Another problem is that

the crystal resonance frequency is temperature dependent. As a result, temperature changes in the crystal caused by radiation from the evaporator make it possible to observe "negative" evaporation rates.

The optical method consists of detecting the changes produced by interference effects in the optical film in either the transmission or reflection of the optical monitor beam. The interference-induced maximum or minimum is greatest for the first order and decreases in magnitude with increasing film thickness. Depending on various factors (such as the monitoring wavelength, absorption of the film, scattering in the film, and sensitivity of the electronic circuit), there is a practical upper limit of film thickness that can be accurately measured. In the cases studied in this program, the upper limit was in the range of 2 to 5 μm of film thickness.

The most significant feature is that the thickness determination is made directly on the film that is being deposited. Thus, there is not the calibration problem that exists in the indirect method. Although, in special cases, it is possible to have an accuracy of a few Angstroms in measurement of the film, the accuracy in the present study was in the range of 50 to 100 Å. The choice of monitoring wavelength is of critical importance to the accurate deposition of multilayer AR films. For example, in the deposition of a three-layer AR coating of high, low, and high index of refraction materials on KC1, the first order change in transmission will be a minimum for the high index film and a maximum for the low index film. For best results, it is necessary to correlate the specific optical design and the monitor wavelength so that the first and second layers each terminate exactly on odd orders.

In the laboratory, we have a limited number of narrow band filters, which thus limits the choice of monitoring wavelength. The procedure is to search for a three-layer AR design that has film thicknesses that match to a specific monitor wavelength and produce specific interference patterns. In practice, it generally takes about 10 to 15 different AR designs to obtain a good match to one of the 15 monitor wavelengths.

There is another practical limit in the choice of the monitor wavelength. Although maximum accuracy is obtained by using the shortest wavelength and thus the maximum number of inflection points in the scan, the loss of signal after about 8 fringes restricts the choice. For 9.27 μm AR coatings, the best results were obtained when the monitoring was done in the 1 to 2 μm ranges.

The original apparatus consisted of a broad band light source, a chopper, the sample, a narrow pass band transmission filter, a detector, and the lock-in amplifier circuit shown in Figure 5. We observed that line voltage changes could produce intensity changes in the light source that could be mistaken for the interference effects. As a result, a 3% beam splitter and a detector were added in front of the chopper. This produced a reference signal representing the light source intensity. The detector signal is divided by the reference signal so as to make the output independent of the source variations. The system now has better than 1% stability.

D. LASER CALORIMETER

Film absorption is measured using a vacuum calorimeter with a tunable ${\rm CO}_2$ laser. The components are shown in Figure 6. The tunable ${\rm CO}_2$ laser will operate at 9.27, 10.6 $\mu{\rm m}$, and intermediate wavelengths. It has a 1.5 m optical cavity with 1.45 m of active medium. It has a square profile grating with a 6.75 $\mu{\rm m}$ period that was ion machined from gold overcoated germanium. The grating does not have a blaze angle and thus has wide angle tunability over the 9 to 11 $\mu{\rm m}$ range. The output coupler has a planoconvex configuration with a 4 m radius. It is ZnSe with an 85% reflector coating on the concave surface and a broad band AR coating (centered at 10 $\mu{\rm m}$) on the plane surface. As the grating is mounted outside the laser tube, the intercavity window also has a broad band AR coating. A 6 mm aperture at the output end limits some of the higher transverse modes. The resulting beam has a reasonably uniform intensity and a circularly shaped cross section.

Figure 5. System for the optical monitoring of film thickness during deposition.

The grating is cooled with gaseous N_2 and the laser is water cooled. The laser operated in a flowing mode with a premixed gas consisting of CO_2 (4 to 5%), N_2 (12.5 to 14.5%), and He (the balance). The wavelength stability of the laser using the N_2 -cooled grating is good and the mean output power is stable to $\pm 2\%$ over periods of several hours. The laser is tunable from 9.2 μ m to greater than 10.6 μ m with representative intensities given below.

Line	λ, μm	Power, W
R(18)	9.28	8.5
R(12)	9.31	8.0
P(14)	9.50	10.0
P(34)	9.67	7.5
R(28)	10.19	6.5
P(8)	10.47	4.5
P(18)	10.57	6.8
P(22)	10.60	10.0

6077

The layout of the laser system is shown in Figure 7. The calorimetry is performed in an aluminum vacuum chamber 15 cm in diameter and 17 cm in length. The chamber is evacuated to a pressure of about 5 mm with a mechanical vacuum pump. The ZnSe windows are broad-band AR coated to minimize reflections to the thermocouple. The sample is supported in a Teflon ring by three pointed Teflon pins. The thermocouple is fabricated from 0.13 mm diameter copper and constantan wires. It is supported on a Teflon pin and pressed against the edge of the sample. Dow Corning 346 thermal conductive grease is used to provide good thermal contact. This is shown in Figure 8 and Figure 9.

The samples are mounted in the calorimeter head. After evacuation, the sample is allowed to come to thermal equilibrium. The three slope method (cooling, heating, cooling) is used to determine the absorption. Three separate determinations are made on each sample to minimize the error in determining the heating and cooling slopes.

M12170

Figure 6. Photograph of laser calorimeter.

Figure 7. Optical train of the CO₂ laser calorimeter.

Whenever possible, the substrates and samples were analyzed at both 9.27 and 10.6 μm . To minimize any differences in absorption that could occur as a result of variations in the surface, the samples were mounted in the calorimeter, irradiated at one wavelength, and then irradiated at the other wavelength. Although the focal point was constant, there were variations in the irradiated area that resulted from variations in beam spot size, which were caused by mode differences.

E. PREPARATION AND PURIFICATION OF FILM MATERIALS

In addition to having UHV conditions during the film deposition, it is important to insure that there are no impurities present in the film materials that could affect the film properties. As an example of a very bad case, seen in another program, we observed the evolution of water, petroleum ether, and acetic acid during the evaporation of one batch of $\mathrm{As}_2\mathrm{S}_3$. The resulting films had high absorption. As a result, it was necessary to develop methods of preparation of pure materials and of purification of materials which were contaminated.

²Laser Window Materials and Optical Coating Science RADC-TR-77-286, August 1977, Interim Technical Report Contract F 19628-76-C-0309.

Figure 8. Vacuum calorimeter.

Figure 9. Calorimeter mount for window samples.

Some success was achieved in the preparation of some materials by direct reaction of the elemental forms. For example, in the preparation of either $\mathrm{As_2S_3}$ or $\mathrm{As_2Se_3}$, we used a three-chamber silica reactor. The materials were loaded into the end chamber, and then the unit was evacuated under a $120^{\circ}\mathrm{C}$ bake-out to remove any absorbed water. The next step was to seal off the system while it is under vacuum. The arsenic is very slowly distilled (in reality, sublimed) into the central chamber. If done carefully, a dark cob-web-like residue is left in the first chamber. This is sealed off and removed. The sulfur or selenium is now distilled into the center chamber and the second chamber is removed. The sealed vial is put in a furnace, allowed to react overnight, and then pulled from the furnace and air quenched.

There are several limitations to the process. It is difficult to obtain sulfur that is water free and arsenic and selenium that are free of oxides. Because of the similarity in vapor pressures, purification by vacuum distillation is not practical. The effect of this can be seen in the transmission spectra of four samples of As_2Se_3 which are presented in Figure 10. Samples HRL-1, HRL-2, and HRL-3 were prepared in the manner just described. The HRL-1 As_2Se_3 was used in all of the As_2Se_3 coatings described in this report. The HRL-2 was prepared using 99.99% pure arsenic that had a black surface, which indicated the presence of oxide. The HRL-2 has about 6 strong absorption bands that have been associated with oxide impurities. The same procedure was used to prepare HRL-3. In this case, the arsenic metal used had a metallic (shiny) surface and thus was free of oxide. This is reflected in the transmission spectra.

Because arsenic metal oxidizes immediately on exposure to the atmosphere, it is desirable to transfer the metal from the sealed ampoules to the reaction system under an inert atmosphere or in a vacuum.

³M. Maklad, et al., "Infrared Transmission in Chalcogenide Glasses," Third Conference on High Power Infrared Laser Window Materials, Nov. 12-14, 1973 AFCRL-TR-74-0085.

Figure 10. Composite HRL As₂Se₃ glasses: HRL-1, HRL-2, HRL-3, and HRL-4.

These facilities were not available, so in the production of HRL-4, the arsenic filled ampoules were cooled to LN₂ temperature and the transfer made in atmosphere. The low temperature reduced the oxidation of the arsenic to a minimum. This is seen in a comparison of the spectra of HRL-1, HRL-3, and HRL-4.

Purification of contaminated materials is possible if the reaction scheme is carefully selected so as to produce materials which are easily separated from the desired film material.

As an example, take the case where one has material which has the proper stoichiometry but is contaminated with oxides or water. It is possible to remove these by means of a chemical reaction. In the case of $\mathrm{As_2Se_3}$, this would involve passing the $\mathrm{As_2Se_3}$ vapor through graphite heated to 800 to $900^{\circ}\mathrm{C}$.

F. LASER DAMAGE THRESHOLD TESTS

Samples of three layer AR coatings and of single layer coatings were submitted for laser damage threshold tests under the direction of J. A. Detrio. Although the tests were not a direct part of this effort, the results are of interest in presenting a complete discussion of these coatings. As a consequence, the apparatus is described briefly here and the results are presented in Section III.

The focused laser damage measurements were performed using the apparatus described by J. A. Detrio. 4 The broad beam high power testing (with spot size of about 1 cm 2) was done at 10.6 and 9.28 μm with an Electro Aerodynamic Laser operating in a master-oscillator — power-amplifier configuration. The wavelength was varied by the use of a grating mounted in the Coherent Radiation Laboratories Model 41 laser oscillator. The samples were mounted just ahead of the focus of a 2 m radius mirror. The beam profile was not Gaussian, but every effort was made to maintain a constant beam profile between the two wavelengths. The power was measured with a total capture ballistic calorimeter and each irradiation was monitored with a fast response detector.

The power density reported for the broad beam damage thresholds is an average value obtained by attempting to weigh the power distribution by the area covered. When the EAL was driven to operate nominally at 9.28 μ m, the laser emission occurs predominantly from the R18 transition centered at near 9.28 μ m. Other lines at 9.26 and 9.27 μ m are also observed. The beam profile was obtained by examining burn patterns in

⁴J. A. Detrio, R. D. Petty, M. C. Ohmer, and O. F. Swenson, "Laser Induced Damage in Optical Materials," 1976, NBS Special Publication 462, pg. 283.

plexiglass. The burn patterns were made as a function of power and the full width at half maximum depth was measured on an optical comparator.

The beam profile can best be described as a central peak surrounded by a region of amplified edge diffraction. Every reasonable attempt was made to ensure that the beam profile was the same at 10.6 and 9.28 μ m. In spite of these efforts, the beam profiles, although superficially identical, were different at the two wavelengths, especially within the central hot spot. The average power density over the entire beam (central peak and surrounding area) is nearly equal with a total area of 1.5 cm². The central hot spot was 0.17 cm at 10.6 μ m and 0.06 cm² at 9.28 μ m.

The focused beam tests were performed at 10.6 μm with a Gaussian beam profile of 0.1 cm diameter. Both n-on-1 and 1-on-1 tests were made on a 4 by 4 array of test points spaced 3 mm apart. Some 3.5-cm-diameter samples were tested with a 9 point test array.

SECTION III

DISCUSSION OF RESULTS

AR coatings of ZnSe/KCl/ZnSe, $As_2S_3/KCl/As_2S_3$, $As_2Se_3/KCl/As_2Se_3$, $As_2Se_3/NaF/As_2Se_3$, and TlI/KCl/TlI were designed, developed, and analyzed in this program in that chronological order. Although the major effort was directed to the TlI coatings, we present the results in chronological order.

A. ZnSe/KC1/ZnSe COATING RESULTS

The ZnSe/KCl/ZnSe system was selected to be the first AR coating investigated in this program. Although it is not an ideal coating for KCl because of its sensitivity to stress cracking, 10.6 μm AR designs had been studied in detail in a previous program and thus this system is well understood. For this reason, it was decided to deposit 9.27 μm AR coatings of ZnSe/KCl/ZnSe to verify the operation of the new deposition system.

Three AR coating designs were developed. These are listed in Table 1. In three runs, a total of 12 samples were deposited. The results are presented in Table 2.

Table 1. ZnSe/KC1/ZnSe AR Coating Designs

	Filt	n Thickness,	μm	Theoretical
Design	ZnSe	KC1	ZnSe	Absorption, % per Surface
Z1	1.145	0.406	0.425	0.016
Z2	1.129	0.412	0.430	0.016
23	0.617	0.891	0.359	0.013

6077

Laser Window Surface Finishing and Coating Science RADC-77-40 Final Technical Report, January 1977, Contract No. F 19628-75-C-0135.

Table 2. Summary of ZnSe/KCl/ZnSe AR Coating Results

				9.2	9.27 µm Absorption	rption	
Sample No.	Substrate Dopant	Coating Design	Transmission Peak, µm	Substrate,	Sample, %	Coating, % per Surface	Remarks
1272-2-1	Eu	£Z	95.6	0.114	0.568	0.23	Open As ₂ S ₃ and
1277-2-2	Eu	23	9.24	0.172	0.235	0.031	As ₂ se ₃ sources
1274-2-3	Ξ	22	9.35	0.085	0.390	0.15	Systa , and site
1273-2-4	Eu	Z1	07.6	0.068	0.652	0.29	1.1521 1.1521 2.1521
1281-3-1	Eu	Z1	95.6	0.156	0.242	0.043	Covered As283 and
1280-3-2	Eu	21	9.51	0.085	0.292	0.10	As2se3 sources
9-2-3-3	Rb	21	9.43	0.187	0.444	0.13	
9-3-3-4	Rb	Z1	97.6	0.134	0.486	0.18	
9-5-4-1	Rb	Z1	9.39	0.133	0.394	0.13	Covered As283 and
9-15-4-2	Rb	21	9.30	0.20	0.440	0.12	AS25e3 sources small leak in Cu
1282-4-3	Eu	Z1	9.24	0.097	0.225	0.064	in H20 partial
1288-4-4	Eu	Z1	9.16	0.093	0.266	0.086	pressure of 2 x 10-9 Torr
1000							5077

Transmission spectra of three of the four samples produced in the first run exhibited a pronounced (2 to 3%) absorption at 9.0 μ m. A typical case, the transmission spectrum of sample 1272-2-1, is shown in Figure 11. In sample 12-7-2-2, No. 9.0 μ m absorption was observed.

Similar 9.0 μ m absorption dips were observed in other programs on studies of films containing either As_2S_3 or As_2Se_3 . After an analysis, it was determined that the source of the absorption was an arsenic oxide impurity in the films.

Figure 11. Transmission spectra of 1272-2-1 (ZnSe/KC1/ZnSe AR coating), which exhibits oxide related absorption at 9 μm .

In the present case, the evaporation system contained six closespaced evaporation sources. These had been loaded with ${\rm ThF}_4$, KCl, NaF, ${\rm ZnSe}$, ${\rm As}_2{\rm S}_3$, and ${\rm As}_2{\rm Se}_3$ before the first run. It is believed that the evaporation of ${\rm ZnSe}$ at $1100^{\rm O}{\rm C}$ caused the warming of the adjacent cell, which contained ${\rm As}_2{\rm S}_3$, manufactured by the Atomergic Chemical Corporation. This same material had been analyzed by mass spectrometry in another program (Contract F19628-76-C-0309) and found to evolve significant amounts of water vapor, petroleum ether, and acetic acid during the deposition of the ${\rm As}_2{\rm S}_3$.

Because it was not possible to remove these evaporators without extensive disturbance to the system, a metal cap was placed over the evaporators to minimize the amount of material that could be accidentally co-evaporated.

In the next two runs, there was no noticeable 9 μm absorption in samples 1281-3-1 through 9-15-4-2. A very small (less than 1/2%) 9.0 μm absorption may be present in samples 1282-4-3 and 1288-4-4. Representative examples are presented in Figures 12 and 13. The absence of 9 μm absorption is correlated to the lower sample and coating absorptions seen in these two runs.

The most significant feature is the correlation between the substrate dopant and the total absorption. This is shown in Table 3. Although similar situations were observed in other coatings, this represents the clearest case.

B. As₂S₃/KC1/As₂S₃ COATING RESULTS

The second kind of AR coating studied in this program was $\mathrm{As}_2\mathrm{S}_3/\mathrm{KCl/As}_2\mathrm{S}_3$. It was selected because the expansion coefficient of $\mathrm{As}_2\mathrm{S}_3$ (22.4 to 24.6 x 10^{-6} o K^{-1}) more nearly matches that of KCl (40 x 10^{-6} o K^{-1}) than does the ZnSe (7.8 x 10^{-6} o K^{-1}). Also, the optical absorption coefficient of $\mathrm{As}_2\mathrm{S}_3$ was observed to essentially the same as that of ZnSe at 10.6 $\mu\mathrm{m}$.

Figure 12. Transmission spectra of 9-2-3-3 (ZnSe/KC1/ZnSe AR coating).

Figure 13. Transmission spectra of 1282-4-3 (ZnSe/KC1/ZnSe AR coating).

Table 3. Comparison of Sample Absorption with Substrate Dopant

Sample Type	Total Absorption, cm-1	Sample Absorption, %	Coating Absorption, % per Surface
Europium doped KC1			
1281-3-1	0.00239	0.242	0.043
1280-3-2	0.00289	0.292	0.10
1282-4-3	0.00233	0.225	0.064
1288-4-4	0.00274	0.266	0.086
Rubidium doped KC1			
9-2-3-3	0.00446	0.444	0.13
9-3-3-4	0.00484	0.486	0.18
9-5-4-1	0.00382	0.394	0.13
9-15-4-2	0.00439	0.440	0.12

Difficulties in controlling the deposition rate of $\operatorname{As}_2\operatorname{S}_3$ resulted from the use of the old style evaporator which had the hottest region at the center of the evaporator. The molten $\operatorname{As}_2\operatorname{S}_3$ forms a viscous liquid. As we tried to attain a useful deposition rate, gas bubbles would form. These would either burst through the surface or expel a plug of $\operatorname{As}_2\operatorname{S}_3$ to the top of the evaporator. Both conditions produced a sudden and very rapid change in the deposition rate.

Because of these problems, only a single run was made. The results of single layer films and AR films are shown in Table 4. The transmission spectrum of sample 9-12-5-4 is shown in Figure 14.

C. As₂Se₃/KC1/As₂Se₃ RESULTS

The third system studied was that of $\mathrm{As_2Se_3/KC1/As_2Se_3}$. The expansion coefficient and absorption coefficient of $\mathrm{As_2Se_3}$ have essentially the same values as $\mathrm{As_2S_3}$. While the evaporation of $\mathrm{As_2Se_3}$ is much less sensitive to the problem of pressure bursts (as was observed in the $\mathrm{As_2S_3}$ case), the $\mathrm{As_2Se_3}$ is more sensitive to oxidation than is the $\mathrm{As_2S_3}$.

Table 4. $\mathrm{As}_2\mathrm{S}_3/\mathrm{KC1/As}_2\mathrm{S}_3$ Data

						ADSOL	Absorption Data					
					9.27 µш				10.6 иш			
Sample Number ^a	Sample Coating Number ^a Design	Sample Coating Transmission Substrate, Sample, Coating, % Coefficient, Coating, % Coefficient	Substrate,	Sample,	Coating, % per Surface	Absorption Coefficient,	Substrate,	Sample,	Coating, % per Surface	Absorption Coefficient, cm-1	Remarks	
9-12-5-4	AR	9.0	0,040	0.177	0.069		P	٩			0.488 um As ₂ S ₃ /1.144 um KCI/0.279 um As ₂ S ₃	
4-16-5-1	1.53	9.2	0.240	0.361	0.12	1.4	q	0.144	<0.14	<3.2	5.87 µm As ₂ S ₃	
8-4-5-2	0.53	9.75	0.188	0.325	0.14	6.2	q	P			2.06 um As ₂ S ₃	
3-1-5-3	0.53	9.75	0.081	0.270	0.19	8.4	Ф	Ф			2.06 µm As2S3	
All samp	All samples RB doped.	ped.										
bNot measured.	ured.											

Figure 14. Transmission spectra of 9-12-5-4 $(As_2S_3/KC1/As_2S_3$ AR coating)

The presence of oxide in the coating is manifest as a strong 9.0 μm absorption. Vasko reports that of the three forms of the arsenic oxide (cubic, monoclinic, and glassy), the glassy state is similar to the monoclinic and both have a strong 9 μm absorption band. 6

An example of this behavior was observed in the first set of $\mathrm{As}_2\mathrm{Se}_3/\mathrm{KCl/As}_2\mathrm{Se}_3$ coatings (see Tables 5 and 6). The run 6 samples (9-8-6-1, 9-11-6-2, 8-3-6-3, and 8-2-6-4) exhibited pronounced 9 µm absorption. The most pronounced case (about 4% absorption) is shown in Figure 15 (9-11-6-2). These coatings have a high 9.27 µm absorption (about 0.3% per surface) and a low 10.6 µm absorption (about 0.04% per surface). In contrast to the normal situation (base pressure of the system of 2 x 10^{-9} Torr and partial pressure of water in the low 10^{-11} Torr range), during run 6 the base pressure was 2 x 10^{-8} Torr and the partial pressure of water was in the high 10^{-9} Torr range. This was caused by a small leak in a copper wire seal. Also, the substrates were heated to about $80^{\circ}\mathrm{C}$ in this run, which may have enhanced the oxidation of the $\mathrm{As}_2\mathrm{Se}_3$.

The run is significant because it clearly demonstrates the need to monitor the residual gases at all times to ensure the deposition of the lowest absorption films. This can be seen in the data run 10 and the DARPA samples (Contract F19628-76-C-0309) which are included for comparison. These samples, produced under normal UHV conditions, achieved absorption losses in the 0.02%/surface range. An example of the transmission of one of these films is presented in Figure 16 (155-5-12-24-10-2).

Single layer coatings of $\mathrm{As_2Se_3}$ were deposited and analyzed. Absorption coefficients of about 1 and 0.5 cm $^{-1}$ were observed at 9.27 and 10.6 μm , respectively.

⁶A. Vaško, D. Ležal, and I. Srb, Journal of Non-Crystalline Solids, 4, 311-21 (1970).

Summary of $\mathrm{As}_2\mathrm{Se}_3/\mathrm{KCl/As}_2\mathrm{Se}_3$ AR and $\mathrm{As}_2\mathrm{Se}_3$ Single Layer Coating Data Table 5.

							Abso	Absorption Data				
						9.27 µm				10.6 иш		
Sample No.	Substrate	Coating	Transmission Peak, m	Substrate,	Sample,	Coating, % per Surface	Absorption Coefficient, cm-1	Substrate, Sample,	Sample, %	Coating, % per Surface	Absorption Coefficient,	Remarks
9-8-6-1	Rb	E1	10.44	0.064	0.77	0.35		(a)	0.108	<0.054		Run 6 small
9-11-6-2	Rb	E2	9.34	0.081	0.72	0.32		(a)	0.080	<0.040		wire seal -
8-3-6-3	Rb	E2	9.83	0.13	0.85	0.36		0.039	0.135	0.048		$P = 2 \times 10^{-8}$
8-2-6-4	Rb	E2	6.94	0.063	0.73	0.33		0.035	0.103	0.034		(nzo major gas present)
174-6-35-10-1	Rb	E2	8.42	(a)	05.0	<0.25		(a)	1.03	<0.51		
155-5-12-10-2	Rb	E3	10.55	0.080	0.26	0.000		0.065	0.099	0.017		
BF64-25-10-3	Undoped	F4	10.50	0.053	0.26	0.105		0.021	0.087	0.033		
BF64-26-10-4	Undoped	ES	10.50	0.050	0.29	0.12		0.022	0.104	0.041		
150-4-15-7-3	Rb	13	9.45	360.0	0.226	0.13	3.25	0.097	0.113	0.016	0.53	
155-5-13-8-4	Rb	13	9.62	0.075	0.164	0.000	2.30	0.073	0.052	<0.052	<1.60	
174-8-31-9-3	Rb	Y2,	9.62	0.107	0.219	0.056	2.72	0.023	090.0	0.019	1.08	
174-5-29-9-4	Rb	13	9.44	0.045	0.099	0.045	1.13	0.028	0.056	0.028	0.99	
164-5A-10-48-3	Rb	E1	9.36	0.137	0.211	0.037		(a)	0.059	<0.030		DARPA sample
164-5A-11-48-4	Rb	E1	6.67	0.111	0.148	0.019		(a)	0.045	<0.022		DARPA sample
129-1-49-1	Single crystal	E1	9.2	0.098	0.094	<0.047		0.026	0.079	0.026		DARPA sample
129-2-49-2	Single crystal	E1	8.6	0.071	0.148	0.039		0.021	0.156	0.068		DARPA sample
a not measured.												

Table 6. As₂Se₃/KCl/As₂Se₃ AR Coating Designs

	F	ilm Thickness, μπ	
Design	As ₃ Se ₃	KC1	As ₂ Se ₃
E1	0.556	0.742	0.352
E2	0.729	0.492	0.421
E3	0.881	0.504	0.488
E4	0.982	0.422	0.490
E5	1.007	0.406	0.487

Figure 15. Transmission spectra of 9-11-6-2 (As₂Se₃/KCl/As₂Se₃ AR coating), which exhibits strong 9 μ m absorption.

Figure 16. Transmission spectra of 155-5-12-24-10-2 (As₂Se₃/KC1/As₂Se₃ AR coating).

D. As₂Se₃/NaF/As₂Se₃ RESULTS

In addition to having low optical absorption and reflection losses, a good AR coating must resist the effects of humidity. Because the solubility of NaF is about 10% of the KCl value, it was used in the ${\rm As_2Se_3/NaF/As_2Se_3}$ AR coating study. A broadband AR coating centered at 9.27 $\mu {\rm m}$ was designed. The film thicknesses for run 7 samples were 0.418 $\mu {\rm m}$ of ${\rm As_2Se_3}$, 0.927 $\mu {\rm m}$ of NaF, and 0.297 $\mu {\rm m}$ of ${\rm As_2Se_3}$ as the last (outside) layer.

In the first attempt, we found that the NaF had reacted with the ${\rm SiO}_2$ liner that is used in the evaporator. This resulted in a very high film absorption (0.6 to 1.3% per surface rather than the theoretical value of 0.08% per surface), which is shown in Table 7. The high absorption is believed to be due to the incorporation of ${\rm SiF}_4$ into the film. The ${\rm SiF}_4$, which results from the reaction of NaF and ${\rm SiO}_2$, was identified by means of a mass spectrometer analysis. In addition, the transmission scan of sample 9-10-7-1 and the scan of 150-4-14-7-4 show a significant absorption at 13.6 μm . These are seen in Figures 17 and 18.

We tried to prevent this reaction by depositing a layer of pyrolytic carbon on the interior surface of the SiO_2 liner. Although the reaction with NaF was reduced considerably, the carbon was evaporated onto the sample and caused a very high absorption. It is believed that the NaF attacked the liner through pin holes in the pyrolytic carbon layer.

A palladium liner was fabricated and used to contain the NaF. Two coatings were deposited successfully in run 9. A new ${\rm As_2Se_3/NaF/As_2Se_3}$ coating design (0.641 μ m ${\rm As_2Se_3}$, 0.557 μ m NaF, 0.414 μ m ${\rm As_2Se_3}$) was used. Sample 174-5-30-9-1 (see Figure 19) had a 9.27 μ m absorption of 0.033% per surface and a transmission peak at 9.30 μ m. The second sample (174-8-33-9-2) had one of the NaF layers overrun to 0.86 μ m. As a result, the transmission peak shifted to 10.0 μ m. In sharp contrast to the previous cases, this coating had a lower 9.27 μ m absorption than its 10.6 μ m value. This is possibly due to the presence of the long wave cut-off in NaF.

Table 7. As₂Se₃/NaF/As₂Se₃ Data

					Absorpti	Absorption Data		
			6132	9.27 нт	(1) (1) (1) (1) (1) (1) (1) (1)		10.6 µm	
Sample No.	Substrate Dopant	Transmission, Peak, um	Substrate,	Sample,	Coating, % per Surface	Substrate,	Sample,	Coating, % per Surface
9-10-7-1	Rb	8.90	0.145	1.277	0.57	0.109	1.094	0.49
150-4-14-7-4	Rb	9.35	0.070	2.716	1.32	0.058	1.773	0.86
174-5-30-9-1	Rb	9.30	0.167	0.233	0.033	0.055	0.382	0.16
174-8-33-9-2	Rb	10.0	0.079	0.237	0.079	0.142	0.678	0.27
								6077

Figure 17. Transmission spectra of 9-10-7-1 (As₂Se₃/NaF/As₂Se₃ AR coating), which exhibits strong 13.6 μ m absorption.

Figure 18. Transmission spectra of 150-4-14-7-4 (As₂Se₃/NaF/As₂Se₃ AR coating), which exhibits 13.6 μ m absorption.

Figure 19. Transmission spectra of 174-5-30-9-1 (As₂Se₃/NaF/As₂Se₃ AR coating).

E. T11/KC1/T11 RESULTS

The last effort in the program was devoted to studying the T1I/KC1/ T1I AR coatings. The first step was the deposition of 1/2 λ and 1 λ coatings of T1I to establish the deposition parameters and the optical constants. The results are given in Table 8. It was difficult to monitor the 1 λ coatings because of the loss of signal in the optical monitor. This signal loss was found to be due to scattering in the T1I film. Scattering was also observed in the calorimeter measurements. The T1I films scattered strongly in the visible so that it was difficult to see through them.

Two AR coating designs were used in the study. Design T1 (0.853 μ m T1I, 0.599 μ m KC1, and 0.448 μ m T1I) was obtained from Dr. Mel Ohmer, the technical monitor. Design T2 (0.623 μ m T1I, 0.905 μ m KC1, and 0.358 μ m T1I) was developed at HRL. The two coatings have essentially the same theoretical absorption and transmission band (see Figures 20 and 21). All of the AR coating results are given in Table 9. A typical transmission spectra is shown in Figure 22. The deposition rate of T1I ranged from 500 to 1000 $^{\text{A}}$ /min. In all but one run, the KC1 deposition rate was in the range of 600 to 1200 $^{\text{A}}$ /min. The exception was run 16 in which the KC1 deposition rate was about 2100 $^{\text{A}}$ /min. Variations in the deposition rate did not affect the scattering in the films.

With the exception of the scattering problem, the TII films appeared to have properties similar to those of $\mathrm{As_2S_3}$ and $\mathrm{As_2Se_3}$. In the seven cases where the 10.6 μ m absorption was measured, the TII films had lower absorption at 10.6 μ m than at 9.27 μ m.

One run was made to determine the sensitivity of the T1I coatings to the vacuum environment. In run 16, the vacuum system (and thus the substrates) were not baked out. The total absorption of the sample and the coating absorption was significantly higher at both 9.27 and 10.6 μm (see Table 10). This difference was in fact greater than that observed in a comparison of UHV- and non-UHV-deposited coatings performed under the DARPA program. There was no absorption band in the transmission spectrum of these samples as occurred in the ${\rm As}_2{\rm Se}_3$ case. An example is shown in Figure 23.

Table 8. Tll Film Data

					9.27 µm A	9.27 µm Absorption Data		
Substrat Sample No. Dopant	Substrate Dopant	Coating Design	Coating Transmission, Substrate, Sample, Design Peak, Lm % %	Substrate,	Sample,	Coating, % per Surface	Absorption Coefficient, cm-1	
1280A-12-1	Eu	YK	9.17	0.15	0.31	0.16	8	1.93 µm coating
9-3A-12-2	8	17	9.31	0.11	89.0	0.57	1 4	3.91 µm coating
9-5A-12-3	Rb	17	10.14	0.10	89.0	0.58	1 4	4.26 µm coating
a _{Not measur}	aNot measured at 10.6 µm	<u> </u>			19000			

Figure 20. Theoretical transmission spectra of design T1.

Figure 21. Theoretical transmission spectra of design T2.

Table 9. TlI/KCl/TlI AR Coating Data

						Absorpti	on Data			
					9.27 µm			10.6 µm		
Sample No.	Substrate Dopant	Coating Design	Transmission Peak, µm	Substrate,	Sample,	Coating, % per Surface	Substrate,	Sample,	Coating, % per Surface	Remarks
8A6-12-4	Eu	τι	9.39	0.059	0.223	0.082	(a)	(a)		
9-16A-13-1	Rb	Tl	9.90	0.24	(a)		(a)	(a)		Shutter jammed - heavy deposit
169-5-6A-13-2	Rb	Tl	9.50	(a)	0.343	<0.17	(a)	(a)		Shutter leaking during deposition
8C4-13-3	Eu	T2	9.54	0.11	0.55	0.22	(a)	(a)		Shutter leaking during deposition
174-6-36A-13-4	Rb	Т2	9.52	0.056	0.269	0.107	(a)	0.113	<0.056	
8F5-14-1	Rb	TI	9.9	0.100	0.266	0.083	(a)	0.166	<0.083	
SE2-14-2	Rb	TI	9.5	0.061	0.181	0.060	(a)	(a)		
8E3-14-3	Rb	Т2	12.5	0.076	0.207	0.065	(a)	(a)		Over run T11 one side 1.048 µm instead of 0.358 µm
386-14-4	Rb	72	9.7	0.123	0.263	0.070	(a)	(a)		
1271B-15-1	Eu	T2	9.35	0.272	0.213	<0.106	0.13	(a)		
BH6-15-2	P.b	T2	9.43	0.084	0.251	0.084	(a)	(a)		
8D14-15-3	Rb	T2	9.66	0.067	0.292	0.112	0.036	0.161	0.063	
3D13-15-4	Rb	Т1	9.85	0.093	0.635	0.27	0.050	(a)		Small over run in KCl and Tl both sides
BD10-16-1	Rb	τι	9.66	0.064	0.725	0.33	(a)	(a)		Run 16 - system and sample
8E9-16-2	Rb	TI	9.5	0.115	0.761	0.32	(a)	0.292	<0.12	not baked out; fast deposition rate for KC1; spots of
8D5-16-3	Rb	T2	10.0	0.07	1.16	0.54	(a)	0.285	<0.14	surface
BD8-16-4	Rb	12	9.88	0.07	0.09	0.41	(a)	0.422	<0.21	
1993-17-1	Rb	T2	9.66	1.03	0.67	<0.33	(a)	(a)		Unusually high absorption in substrate
1989-17-2	Rb	Т2	9.57	0.072	0.304	0.116	(a)	(a)		
1994-17-3	Rb	Tl	9.22	0.060	0.204	0.072	(a)	0.111	<0.055	
169-2-08-17-4	Rb	TI	9.26	0.110	0.397	0.143	(a)	(a)		
1990-18-1	Rb	Tl	9.27	0.060	0.221	0.081	(a)	(a)		
1988-18-2	Яb	Ti	9.33	0.063	0.214	0.075	(a)	(a)		
1991-18-3	Rb	TI	9.29	0.068	0.245	0.088	(a)	(a)		
1992-18-4	Rb	T1	9.17	0.074	0.210	0.068	(a)	(a)		

Figure 22. Transmission spectra of 1992-18-4 (T1I/KC1/T1I AR coating).

Table 10.

	9.2	7 μm	10.6	μ m
00.000	Sample Absorption,	Coating Absorption, % per Surface	Sample Absorption, %	Coating Absorption, % per Surface
UHV samples	0.223	0.082		
	0.269	0.107	0.113	<0.056
	0.266	0.083	0.166	<0.083
	0.181	0.060		
	0.207	0.065		
	0.263	0.070		
	0.213	<0.106		
	0.251	0.084		
	0.292	0.112	0.161	0.063
	0.304	0.116		
	0.204	0.072	0.111	<0.055
	0.397	0.143		
	0.221	0.081		
	0.214	0.075		
100	0.245	0.088	p = 11	0009
	0.210	0.068		
	(0.248 ±0.052)	⟨0.087 ±0.023⟩	(0.138 ±0.030)	
Unbaked UHV	0.725	0.33		
samples	0.761	0.32	0.242	<0.12
	1.16	0.54	0.285	<0.14
	0.89	0.41	0.422	<0.21
	<0.88 ±0.20>	(0.40 ±0.10)	Ф.316 ±0.094>	
				6077

Figure 23. Transmission spectra of 8E9-16-2 (T1I/KC1/T1I AR coating).

The optical absorption of coatings produced from design T1 and T2 are essentially identical. Of the 16 successful UHV deposited samples, nine were of the T1 design and seven were of the T2 design. The mean value of the total absorption at 9.27 μm was 0.240 \pm 0.064% for the T1 samples and 0.257 \pm 0.037% for the T2 samples. The coating absorption at 9.27 μm was 0.084 \pm 0.024% per surface for the T1 samples and 0.092 \pm 0.022% per surface for the T2 samples. In each case the values lie within the standard deviations and thus must be considered indistinguishable.

There is a significant difference between these coatings produced under UHV conditions and similar coatings produced under conventional vacuum conditions. Design T1 is the same as design 5 described by Ohmer. 7 The mean value of the total absorption at 9.27 μ m of the five Ohmer samples of design 5 coating of T1I/KC1/T1I was 0.34 \pm .07%. This is significantly higher than the 0.24 \pm 0.064% value of the T1 samples.

F. POLYCRYSTALLINE KC1 SUBSTRATE MATERIALS

Three types of stabilized polycrystalline KCl were used in this study. The initial studies were conducted with KCl doped with 1.75 mol% rubidium* and with KCl doped with approximately 0.004 mil% europium. The most pronounced difference between these materials was in their microstructure. The rubidium stabilized material had a more uniform distribution of crystallite sizes. They ranged from about 5 by 5 μm to 10 by 30 μm in size. The surface of the KCl appeared to have lines or columns that repeated at about 200 to 300 μm . These lines consisted of areas that were mainly made of small crystallites. The area between the lines appeared to be composed of the large crystallites.

⁷M.C. Ohmer, "Thallium Iodide Coatings for Potassium Chloride for 9.27 microns," Report No. AFML-TR-77-157.

^{*}This material was purchased from the Ceramics Center of Honeywell, Inc. Golden Valley, Minn. 55422.

[†]This material was fabricated by the Honeywell Ceramics Center and furnished by the Air Force Materials Laboratory.

In the europium-doped KC1, the crystallite sizes had a much greater variation, ranging from 5 to $100~\mu m$ in width. This material also had banded areas which consisted of regions of small and regions of large crystallites. These bands were about 1 to 2 mm apart. These bands appeared to run through the sample.

Both materials had areas in which grain growth (reversion to single crystal) had occurred. The rubidium-doped material appeared to be more sensitive to recrystallization. In some samples that had been coated and repolished, we observed that, after about 8 to 12 months, the material was essentially reconverted to large macrocrystals (about 1 cm in size). Only small areas of polycrystalline material remained.

Midway in the study, a second type of 1.75% rubidium stabilized polycrystalline KCl was put into use. It was forged at HRL from KCl that had been RAP-grown (at HRL). This material differs from the Honeywell material in two respects: (1) the HRL material is forged to about 70% reduction, versus 55% for the Honeywell material; and (2) the HRL material is made from RAP-grown KCl, and the Honeywell material is not.

The increased forging appears to disrupt the crystal to a greater degree. This disruption is reflected by the absence of the repeating patterns of microcrystals that were observed in the other two materials. Also, macrocrystals form much less frequently. They are limited to small regions of the sample and are found in a few of the samples.

G. COMPARISON OF 9.27 AND 10.6 µm ABSORPTION IN KC1

Although this program was concerned with 9.27 μm coatings and a companion program (DARPA funded) was concerned with 2 to 10.6 μm coatings, we made every effort to measure the absorption of substrates used in these programs at both wavelengths whenever possible. A total of 72 substrates were characterized at both 9.27 and 10.6 μm . The most interesting feature is that in only three cases (4% of the total) was the 9.27 μm absorption lower than the 10.6 μm value.

Table 11 summarizes the mean value of the $9.27/10.6~\mu m$ absorption ratio for three types of polycrystalline KCl and for single crystal KCl.

Table 11. Comparison of 9.27/10.6 µm Absorption in KCl

		Polyci	Polycrystalline		
	Honeywell Rb Doped	Honeywell Eu Doped	HRL (RAP) Rb Doped	Combined Polycrystalline	Single Crystal (RAP Grown)
a houseled and color and co	Samples mea	Samples measured at 9.27 and 10.6 µm	7 and 10.6 µm		
No. of samples	11	8	19	38	34
Mean value of the 9.27/10.6 ratio	2.71 ±1.19	2.28 ±0.53	1.93 ±0.93	2.23 ±0.99	2.64 ±1.25
В	Average of all 9.27 and 10.6 µm measurements	9.27 and 10.6	у ит measureme	ents	
All 9.27 data No. of samples	38	20	27	85	37
Mean value of absorption $x = 10^3 \text{ (cm}^{-1}$)	1.54 ±0.91	1.39 ±0.72	1.00 ±0.46	1.33 ±0.78	0.79 ±0.54
All 10.6 data	16	11	30	57	39
Mean value of absorption x 10 ³ (cm ⁻¹)	1.03 ±1.20	0.86 ±0.56	0.61 ±0.40	0.78 ±0.75	0.33 ±0.19
					2209

In view of the magnitude of the deviation in the mean values, we concluded that the 9.27 μm value is about 2.5 times greater than the 10.6 μm value.

In addition to the paired measurements, we have included all of the absorption values obtained in these two programs. If we make the approximation that the average sample thickness and the distribution in thickness is the same in each group, it is possible to compare the values. The highest absorption was observed in the Honeywell 1.75% Rb-doped polycrystalline KCl, followed by the 0.004% Eu-doped KCl, and the HRL 1.75% doped polycrystalline KCl. The lowest values were obtained in the single crystal KCl. Similar results were observed in a comparison of the absorption in coated samples. Two conclusions can be drawn from this:

- The RAP-grown KCl has a lower absorption than does the normal KCl.
- The Honeywell 1.75% Rb-doped material has a higher absorption than does the 0.004% Eu-doped KCl or the HRL 1.75% Rb-doped KCl.

H. RECRYSTALLIZATION IN POLYCRYSTALLINE KC1

Polycrystalline KCl substrates that had been coated and tested in previous studies were supplied by AFML to HRL for use in the TlI coating study. The samples were polished to remove the coatings. After the coatings were removed, we observed internal cleavage or fracture planes in 7 of the 15 samples. The fractured samples were examined and were found to have reverted from polycrystalline to large macrocrystals over most of the sample. The fracture planes appeared to be located at the edges or within the macrocrystals.

An analysis of all the samples was made. We found all the rubidium-doped material had reverted to macrocrystalline, while the two europium-doped KCl remained fine grain polycrystalline. An analysis of the sample histories indicated that the samples with fracture planes were those that had been subjected to environmental tests. The data is summarized in Table 12.

Table 12. History of Doped Polycrystalline Samples

Honeywell No.	AFM No.	Dopant	Prior Tests	As Received Condition	Condition after Polishing	Extent of Macro- Crystal Growth
8A6	1392	Eu	odka dose s	ic neds estada	swarf each	All poly
8C4	1478	Eu				All poly
8B5	1481	Rb	a est assess	n elt betwi	Cleavage	
8B6	1393	Rb	Stational res	dele e ecue	cesa nant	All macro
8D15	2064	Rb	Adhesion		Cleavage	3/4 macro
8E2	2050	Rb	et uite 192	e istoriale en	So monthe	All macro
8E3	2051	Rb			atsach be	All macro
8E9	1844	Rb			ar periode () C var desagn	
8F2	2067	Rb	Abrasion, Adhesion	SPACE SHEET THE	Cleavage	i di sist
8F5	2055	Rb				
8G3	2069	Rb	Abrasion, dhesion	Internal haze	Internal cleavage	2/3 macro
8н1	2073	Rb	UV	358	Cleavage	2/3 macro
8Н2	2074	Rb	Adhesion		Cleavage	91gap3
8н6	2056	Rb			2/1	All macro
8Н7	2057	Rb	Laser damage		Laser damage spots	198 838

I. EFFECTS OF ETCHING ON SURFACE FLATNESS

Etching of mechanically polished KCl is essential to stabilize the surface (i.e., prevent fogging by atmospheric moisture) and to remove from the surface the damaged material that results from the polishing process. Studies have shown that the etch rate is highest at first and that it falls rapidly. The highest rate is associated with the solution of the maximum damage region of the KCl.

In this work, we limited the process to a 15 sec etch in concentrated HCl. This represents a minimum exposure that removed the major damaged material. A limited number of samples were re-etched, and the absorption measurements did not show any significant change. Microscopic examination of the surface after the 15 sec etch failed to show any pronounced faceting.

Surface flatness was measured before and after etching on six samples. The changes in flatness were less than 2λ . This is summarized in Table 13. The flatness was measured with a Davidson interferometer with 5770 Å light.

Table 13. Changes in Surface Flatness after a 15 s Etch

	Bef	ore	Af	ter
Sample	Side 1	Side 2	Side 1	Side 2
8B6	1/2λ	1/2λ	2λ	1λ
8E2	1/8λ	1/2λ	1λ	1-1/2λ
8E3	1/4λ	1/2λ	1λ	2λ
8F5	1/2λ	1/4λ	1λ	2λ
8н6	1/4λ	2λ	2λ	5λ

6077

J. ENVIRONMENTAL TESTS

Three samples of the T1I/KC1/T1I AR coating were subjected to environmental tests. The results are summarized in Table 14.

Table 14. Results of Environmental Tests

Sample	Abrasion Test (MIL-C-675A (20-Rub Eraser)	Adherence Test MIL-M-13508B (Scotch Tape)	Humidity Test MIL-C-675A (24 hours)
9-16A-13-1	Failed	Failed	Failed
8C4-13-3	Failed	Passed	Failed
169-5-6A-13-2	Failed	Passed	Failed

6077

K. LASER DAMAGE TEST RESULTS

The first coatings tested were ZnSe/KC1/ZnSe AR coatings. These films exhibit a tendency to craze after several months, which may be reflected in the damage results shown in Table 15. Included in this summary are some UHV and non-UHV samples produced under a DARPA program. These results were included for completeness.

Since the damage level is variable in the focused beam tests, we present the power level at which damage first was observed and the maximum power level at which there was at least 50% survival.

The largest group of samples tested were AR coatings of ${\rm As_2Se_3/KC1/As_2Se_3}$. The first group (9-8-6-1, 8-3-6-3, and 9-11-6-2) had a very high 9.27 µm absorption and a 9 µm absorption band, which indicated the presence of oxide impurity in the ${\rm As_2Se_3}$ films. This group had a low damage threshold. The second group (129-1-49-1, 129-2-49-2, 155-5-12-24-10-2, and 64-25-10-3), which had much lower 9.27 µm absorption, were undamaged at 10.6 µm and damaged at the maximum level at 9.27 µm. The third group (78-13, 70-3, and 78-5) were non-UHV samples that had significantly larger absorption at 9.27 and 10.6 µm. Two samples were damaged at low levels and one was undamaged at the maximum level. Two single

Table 15. Results of Laser Damage Studies

		Coating Absorption (% Per Surface)		Power Level, kW/cm ²				
Coating	Sample No.			Focused	10.6 µm	Broad Beam		
		9.27 µm 10.6	10.6 μm	6 μm Damage	Maximum No Damage	10.6 µm	9.27 µm	Remarks
As ₂ Se ₃ /KC1/As ₂ Se ₃	9-8-6-1	0.35	<0.054	32ª	108			Significant 9 µm absorption band
	8-3-6-3	0.36	0.048	49 ^a	108			Significant 9 µm absorption band
	9-11-6-2	0.32	<0.040				2.6	Significant 9 µm absorption band
	129-1-49-1	<0.047	0.026			>7.5		
	129-2-49-2	0.039	0.068				7.5	
	155-5-12-24-10-2	0.090	0.017			>7.5		
	64-25-10-3	0.105	0.033			>7.5		
	78-13	0.37	0.43		1001	5.3		Non-UHV maple- DARPA
	70-3	0.15	0.21				3.5	Non-UHV L DARPA
	78-5	0.20	0.14			>7.5		Non-UHV sample- DARPA
1 As ₂ Se ₃	150-4-15-7-3	0.13	0.016			>7.5		
	174-5-29-9-4	0.045	0.028				3.5	
As ₂ S ₃ /KC1/As ₂ S ₃	82-8	b	b	109	109			Non-UHV sample- DARPA-1 yr old
	63-11	0.23	0.072	>109	109	>7.5		Non-UHV sample- DARPA
1/2\(\lambda\) As2S3	152-3-46-2	b	0.25	>109	109			
	8-1-5-3	0.19	ь	>109	109		>7.5	
	8-4-5-2	0.14	b			>7.5		
As ₂ Se ₃ /NaF/As ₂ Se ₃	174-5-30-9-1	0.033	0.16			1.8		
	174-8-33-9-2	0.079	0.27				4.5	
ZnSe/KC1/ZnSe	1274-2-3	0.15	ь	14	109			
	1277-2-2	0.03	ь	32	109			
	9-15-4-2	<0.22	ь	32	109			
	109-RF4	b	0.30	30	78			2.5 cm diameter UHV sample - DARPA 8 months old
	109-RF5	ь	0.20	108	109			2.5 cm diameter UHV sample - DARPA 8 months old
	146-10	ь	0.26	42	86			2.5 cm diameter UHV sample - DARPA 8 months old
ZnSe/ThF ₄ /ZnSe	67-B3	ь	0.05	20	108			2.5 cm diameter UHV sample - DARPA
	129-8	b	0.04	20	108			1 yr old 2.5 cm diameter UHV sample - DARPA
	95-82	b	0.07	32	108			1 yr old 2.5 cm diameter UHV sample - DARPA 1 yr old
	67-A3	b	0.20	20	39			2.5 cm diameter UHV sample - DARPA 1 yr old
As ₂ Se ₃ /ThF ₄ /As ₂ Se ₃	82-6	ь	ь	45 ^a	109			Non-UHV sample -

^aFilms cleanly ablated - no substrate damage.

Not measured

layer films of $\mathrm{As}_2\mathrm{Se}_3$ were tested. One was undamaged at 10.6 $\mu\mathrm{m}$ and the other failed at 3.5 kW/cm² at 9.27 $\mu\mathrm{m}$. Although there are fewer $\mathrm{As}_2\mathrm{S}_3$ samples, these coatings exhibited a much higher damage resistance. Of three samples of AR coatings of $\mathrm{As}_2\mathrm{S}_3/\mathrm{KC1/As}_2\mathrm{S}_3$, No. 82-8 was damaged at only one point at the highest power level, No. 63-11 was undamaged in both the focused and broad beam 9.27 $\mu\mathrm{m}$ tests. The three samples of single-layer $\mathrm{As}_2\mathrm{S}_3$ films were undamaged at all tests.

The two samples of films containing NaF had high 10.6 µm absorption. These samples exhibited low damage threshold. In general, the films containing ZnSe exhibited a few sites that were damaged at low power level and a larger number of sites that could not be damaged at the highest power levels.

Although the number of samples and tests are not sufficient to establish precise values of laser damage threshold, it is possible to infer the following conclusions. The $\mathrm{As_2S_3}$, which is less sensitive than $\mathrm{As_2Se_3}$ to the vacuum environment during deposition, has the highest damage threshold (7.5 kW/cm² broad beam and 109. kW/cm² focused) of the materials tested. The $\mathrm{As_2Se_3}$ films that were deposited under UHV conditions and were oxide free also had a similar damage threshold.

L. ENVIRONMENTAL CONSEQUENCES

Some optical films used in this program (such as ThF_4 , ZnSe, As_2S_3 , PbF_2 , etc.) may have potential environmental hazards when these programs reach manufacturing scale-up and production; for example:

- 1. ThF₄ has some radioactivity (although it is a weak alpha emitter and does not pose a great hazard because of this radioactivity) and it is a heavy metal compound. Adequate precaution should be taken to prevent inhalation of ThF₄ particulate material. It is suggested that at a minimum of twice a year a radiation count should be taken over the operating environment where such films are produced to ensure good housekeeping and a safe radioactive environment.
- 2. Selenium and arsenic compounds are known to be toxic and provisions should be made in any manufacturing scale-up environment to have adequate ventilation and scrubbing facilities installed to prevent any selenium or arsenic vapor escaping into the local environment. At a minimum of twice a year, personnel should be examined for heavy metals ingestion.

M. INDEX OF REFRACTION

The refractive index of $\mathrm{As}_2\mathrm{S}_3$, $\mathrm{As}_2\mathrm{Se}_3$, and T1I were measured during this study. Single-layer coatings were deposited on KC1. A mask was used to obtain a sharp edge to the deposit. The film thickness was determined with a Carl Zeiss interference microscope. We attempted to use a Sloan Dektak, but found it to be insensitive and not reproducible. The maximum and minimum points in transmission were determined from transmission spectra taken in a Beckman IR-12 spectrophotometer. The refractive index at 9.24 μ m was determined to be 2.80 \pm 0.03 for $\mathrm{As}_2\mathrm{Se}_3$, 2.36 \pm 0.03 for $\mathrm{As}_2\mathrm{Se}_3$, and 2.38 \pm 0.03 for T1I at 9.27 μ m.

SECTION IV

SUMMARY

Five 9.27 μm AR coatings for polycrystalline KCl were developed in this study. These coatings achieved low optical absorption losses by deposition under UHV conditions. The three layer coatings of ZnSe/KCl/ZnSe, As₂S₃/KCl/As₂S₃, As₂Se₃/KCl/As₂Se₃, As₂Se₃/NaF/As₂Se₃, and T1I/KCl/T1I had absorption losses of 0.03 to 0.09% per surface. The results are summarized in Table 16. These values are significantly lower than the values obtained from coatings produced under conventional vacuum conditions.

AR coatings of ${\rm As_2S_3/KC1/As_2S_3}$ were undamaged by exposure to 10.6 μm cw laser radiation at power levels of 7.5 kW/cm² for the broad beam exposure and 109 kW/cm² for the focused beam. Similar ${\rm As_2Se_3/KC1/As_2Se_3}$ films deposited under UHV conditions exhibited similar behavior.

As in previous studies, the vacuum conditions present during the deposition were found to be critical to the coating absorption. Both $\mathrm{As}_2\mathrm{Se}_3$ and TII films had significantly higher absorption when the films were deposited in the presence of water vapor at about 1 x 10^{-8} Torr partial pressure than did films deposited under water vapor of less than 1 x 10^{-10} Torr partial pressure.

A polishing technique was developed to fabricate in a reproducible manner KCl surfaces that have low optical absorption and good flatness and parallelism. A 15 s etch in concentration HCl was found to be adequate to remove surface damage and stabilize the surface without decreasing the flatness by more than 2 λ .

A technique was developed for deposition of coatings on both suffaces of a KCl substrate during a single evacuation. Efficient evaporation sources were developed. A stabilized interferometric-optical technique for accurate monitoring of the film thickness during deposition was developed.

A mass spectrometer was used to analyze the gases present during film deposition to identify any impurities present in the film materials. Techniques for preparation of pure materials were developed. Also a RAP technique was used for cleaning impure materials.

Rubidium-doped polycrystalline KCl (produced by 55% reduction of the KCl ingot) was observed to revert to macrocrystalline material, while europium-doped polycrystalline KCl remained polycrystalline. Also the Rb-doped KCl had a higher absorption than did the Eu-doped KCl. The lowest absorption was observed in Rb-doped RAP-grown KCl forged to a 70% reduction.

Table 16. Summary of Lowest Values Coating Absorption at 9.27 μm

AR Coating Design	Theoretical Value, % Per Surface	Observed Value, % Per Surface
ZnSe/KC1/ZnSe	0.016	0.031
As ₂ S ₃ /KC1/As ₂ S ₃	0.024	0.069
As ₂ Se ₃ /KC1/As ₂ Se ₃	0.020	0.090 ^a
As ₂ Se ₃ /NaF/As ₂ Se ₃	0.019	0.033
T11/KC1/T11	0.024	0.060
^a Obtained a 0.019% value	in a DARPA sample.	

APPENDIX A

MATERIALS FOR 9.27 um AR COATINGS

A comprehensive literature search was conducted to establish a list of materials with the best potential for producing low-loss 9.27 μm AR coatings. One objective was to discover new materials that could be used. Another goal was to obtain a complete set of physical and optical parameters for the materials. The most important parameters include the bulk and thin-film absorption constant, the refractive index, the water solubility, and the linear expansion coefficient.

The first step was to compile the information available in the standard reference (Refs. 1-11). The search was extended to the Physical Abstracts for the period 1960 through 1 June 1976. The topics searched included light absorption, optical films, optical materials, and specific chemicals. Also a similar search was made of the EPIC Guide to the Literature, volumes 1, 2, and 3.

The search produced a list of 145 materials that had been cited in the literature. Of these, 102 (listed in Table A-1) were dropped from consideration either because there was insufficient information or because the material was not suitable for use in 9.27 µm coatings. The remaining 43 materials (listed in Table A-2) were considered in greater detail. A search was made in the Chemical Abstracts for citations about these specific compounds.

Nine materials were selected, and these are listed in Table A-3. Because of the limited amount of information about TlI, we have included KRS-5 in Table A-3. This material is a mixture of TlBr and TlI. It should provide a guide to the properties of TlI. The values presented in Table A-3 are the most recent ones obtained from the cited references and Ref. 12-13.

Table A-1

		Table A-1	
A1Sb	Ca0	PbSe	Se
A1N	Ce_2^{0}	PbS	Si ₃ N ₄
A1P	Ce ₂ S ₃	LiBr	Si ₂ 0 ₃
Sb ₂ S ₃	CsBr	LiC1	AgBr
As ₂ S ₅	CsC1	Lil	Ag ₂ S
As ₂ 0 ₃	CsI	Li ₂ 0	Ag ₂ S ₃
As ₂ Se ₅	$\operatorname{Cs}_2 \operatorname{O}_3$	MnO	Ag ₃ AsS ₃
As ₂ Te ₃	CoO	Hg0	NaBr
As ₂ Te ₅	CuBr	HgSe	NaI
A1As	CuC1	HgS	Na ₂ 0
BaBr ₂	Cu ₂ 0	НgТе	Sr0
Ba0	$\operatorname{Cr}_2^0_3$	MoO ₃	SrS
BaSe	Gd_2O_3	MoS ₂	Ta ₂ 0 ₅
BaS	Ga_2O_3	Ni O	Te
ВаТе	GeO ₂	KF	T1Br
Bi ₂ 0 ₃	GeTe	KI	T1C1
Bi ₂ Se ₃	Hf0 ₂	K ₂ 0	T1S ₂
Bi ₂ Te ₃	InSb	Pr ₂ 0 ₃	Sn0 ₂
B ₂ O ₃	InAs	RbBr	SnTe
BaTiO ₂	In ₂ 0 ₃	RbC1	TiO2
Cd ₃ As ₂	InP	RbF	WO ₃
CdC1 ₂	Fe ₂ ⁰ ₃	RbI	v ₂ 0 ₅
CdF ₂	LaF ₃	Rb ₂ 0	ZnBr ₂
Cd0	PbBr ₂	$\operatorname{Sm}_2^{0}_{3}$	Zn0
CaA1204	PbC1 ₂	Sc_2^{0}	ZnTe
CaCO ₃	Pb0	2 0	

Table A-2.

	Table A-2.	
A1203	GaAs	Si
Sb203	Ge	Si0
As ₂ Se ₃	GeS	AgC1
As ₂ S ₃	GeSe	NaC1
BaF ₂	HfF ₄	NaF
BiF ₃	PbF ₂	SrF ₂
CdSe	PbTe	SrTi0 ₃
CdS	LiF	T11
CdTe	MgF ₂	ThF ₄
CaF ₂	Mg0	YbF ₃
С	KBr	Y ₂ 0 ₃
CeF ₃	KC1	$Yttralox (Y_2O_3 + ThO_2)$
CeO ₂	KGaF ₄	ZnSe
CoF ₂	PrF ₃	ZnS
		Zr0 ₂

APFENDIX A REFERENCES

- C. S. Sahagian and C. A. Pitka, "Compendium on High Power IR Laser Window Materials," (LQ-10 Program), AFCRL-75-0170 (1972).
- S. K. Dickinson, "IR Laser Window Material Property Data for ZnSe, KCl, NaCl, CaF₂, S_rF₂, and BrF₂," AFCRL-TR-65-0318 (1975).
- 3. W. L. Wolfe, "Handbook of Military IR Technology," Office of Naval Research, Dept. of Navy (1965).
- 4. A. J. Moses, "Refractive Index of Optical Materials in the Infrared Region," Hughes Aircraft Co., Jan. 1970.
- 5. A. J. Moses, "Optical Materials Properties," <u>Handbook of Electronic Materials</u> (IFI Plenum, 1971).
- S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, "Optical Materials for IR Instrumentation," University of Michigan (1958). AD 217 367 and its supplement AD 255699.
- 7. J. A. Jamieson et al., <u>Infrared Physics and Engineering</u> (McGraw Hill, 1963).
- 8. P. W. Kruse, L. D. McGlaughlin, and R. B. McQuistan, Elements of Infrared Technology (John Wiley, 1962).
- 9. "Compendium of Laser Window Materials Properties," University of Dayton Research Inst., Contract F 29601-75-C-0031, AD 80339, Feb. 1976.
- M. Sparks, "Theoretical Studies of Materials for High Power Infrared Coatings," sixth Tech. Report, Contract DAHC 15-73-C-0127, 31 Dec. 1975.
- 11. Handbook of Chemistry and Physics, 54th. ed., CRC Press (1973).
- 12. H.Y.B. Mar and E. Bernal, J. Vac. Sci. Technol. 12, 919 (1975).
- 13. W. Heitmann and E. Ritter, Appl. Opt. 7, 307 (1968).

APPENDIX B

SUMMARY OF SURFACE PREPARATION TECHNIQUES

7208-16

SURFACE PREPARATION

- SUBSTRATES HANDGROUND ON SIC PAPER TO UNIFORM THICKNESS
- SAMPLES ATTACHED TO GLASS MANDREL WITH WAX
- GROUND ON A CAST IRON LAP WITH LOOSE GRIT 20 μm Al₂O₃ AND ETHYLENE GLYCOL TO REMOVE AT LEAST 0.1 MM OF KCI
- GROUND ON A GLASS LAP WITH LOOSE GRIT 9 μ m Al $_2$ O $_3$ AND ETHYLENE GLYCOL TO REMOVE AT LEAST 0.05 MM OF KCI
- ETCHED IN CONCENTRATED HCI FOR 3 MIN
- POLISHED ON A SWISS PITCH LAP WITH LINDE A AND PROPANEDIOL FOR AT LEAST 4 HOURS
- ULTRASONIC CLEANING IN XYLENE
- REVERSE SIDE FINISHED
- LIGHT BUFF ON POLYTEX SUPREME WITH LINDE B AND ISOPROPYL ALCOHOL
- ETCHED IN CONCENTRATED HCI FOR 15 SEC
- RINSED WITH ISOPROPYL ALCOHOL
- . DRIED IN A N2 GAS STREAM

