Graph Representations

Concept Challenge: Procedure

- Pause Try to solve the problem yourself
- Discuss with other learners (if you can)
- Watch the UC San Diego learners video
- Answer the question again
- Confirm your understanding with our explanation

A. | V |

B. |E|

C. | V | + | E |

D. $|V|^2$

E. | E| 2

Warmup Question

A. | V |

B. |E|

C. | V | + | E |

D. $|V|^2$

E. $|E|^2$

A. | V |

B. |E|

C. | V | + | E |

D. $|V|^2$

A. |V|

B. |E|

<u>C</u>. |V|+|E|

 $D) |V|^2$

$$D | V |^2$$

What would change if undirected?

6

How much storage is required to represent a graph as a matrix? (Big-O, Tightest Bound)

A. | V |

B. |E|

<u>C</u>. |V|+|E|

 $D) |V|^2$

E. $|E|^2$

What would change if undirected?

Half is redundant, but still $O(|V|^2)$

D.
$$IVI^2$$

D.
$$IVI^2$$

$$0 \rightarrow \{3\}$$

$$1 \rightarrow \{2\}$$

$$2 \rightarrow \{0\}$$

$$3 \rightarrow \{4\}$$

$$5 \rightarrow \{4\}$$

$$6 \rightarrow \{4, 5\}$$

D.
$$|V|^2$$

 $0 \rightarrow \{3\}$

 $1 \rightarrow \{2\}$

 $2 \rightarrow \{0\}$

 $3 \rightarrow \{4\}$

4 → { null }

 $5 \rightarrow \{4\}$

 $6 \rightarrow \{4, 5\}$

How much storage is required to represent a graph as an **adjacency list**? (Big-O, Tightest Bound)

A. | V |

B. |E|

C. | V | + | E |

D. $|V|^2$

D.
$$IVI^2$$

O(|V|)

 $1 \rightarrow \{2\}$

 $2 \rightarrow \{0\}$

 $3 \rightarrow \{4\}$

4 → { null }

 $5 \rightarrow \{4\}$

 $6 \rightarrow \{4, 5\}$

D.
$$|V|^2$$

D.
$$|V|^2$$

A. |V|

B. | E |

C.) | V | + | E |

 $\mathsf{D}. \ | \mathsf{V} |^2$

A. |V|

B. |E|

C) | V | + | E |

 $D. |V|^2$

E. |E|²

Much more efficient for sparse graphs!

A. |V|

B. | E |

C) | V | + | E |

 $D. |V|^2$

E. | E| 2

For dense graphs with lots of edges, |E| will be as large as |V|²