

深入Fast-Cubing及TopN

2016.4

史少锋

shaofeng@kyligence.io

Apache Kylin v1.5 New Features

- Plug-in Architecture
- New MR Cube Engine with fast cubing (1.5x faster)

- New HBase Storage with parallel scan (2x faster)
- Near real-time analysis (experimental)
- User defined aggregations
- Approximate Top-N Measure
- Excel / PowerBI / Zeppelin integration

Fast Cubing Algorithm

Cube - Balance Between Space and Time

(apex) cuboid OLAP Cube

Cuboid = one combination of dimensions Cube = all combination of dimensions (all cuboids)

- Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells
- 1. (9/15, milk, Urbana, Dairy_land) <time, item, location, supplier>
- 2. (9/15, milk, Urbana, *) <time, item, location>
- 3. (*, milk, Urbana, *) <item, location>
- 4. (*, milk, Chicago, *) <item, location>
- 5. (*, milk, *, *) <item>

Layered Cubing

Layered Cubing Summary

Pros

- Depends on MR to sort and aggregate -> Simple
- Low mapper CPU/Memory consumption -> Stable

Cons

- High network IO
- Job submission overhead
- Total duration is long

Fast (in-mem) Cubing

Inside Mapper

- 深度优先遍历
- 多路并发

Fast Cubing Summary

Pros

- Lesser network pressure
- Independent cubing algorithm that can be reused by Streaming, Spark.
- 30%-50% faster than layered cubing

Cons

- Code complexity
- High mapper CPU/Mem consumption
- May fail at reduce phase in extreme case

Make fast cubing faster

- Give more Mem to Mappers
 - By default Kylin requests 3Gb mem for mapper; Configure more if possible with "kylin.job.cubing.inmem.mrjob_conf_override"
- Balance between parallel computing and map side aggregation
 - By default Kylin request 1 mapper per 32 Mb source data;
 - If cube expansion is low, feed more data to a mapper can gain better overall performance;
 vice versa.
 - Customize "dfs.block.size" in kylin_hive_conf.xml

Which is the Best?

OR

Let Kylin Select!

Smartly detect before cubing

- Estimate the micro segment size of each mapper
- Estimate the size after reduce
- Get the key overlap ratio

Decide cubing algorithm

- High key overlap: by layer cubing
- Low key overlap: fast cubing
- Threshold is configurable with "kylin.cube.algorithm.auto.threshold"

Approximate Top-N Measure

20/80 Rule & Zipf Law

Long tail

UHC维度使得Cube膨胀率奇高,分析数据的难度增大

Long tail -> Ultra High Cardinality Dimension

Sample Top-N query

```
select dt, loc, item, sum(gmv)
from kylin_sales
where dt='2015-10-01' and loc='BJ'
group by dt, loc, item
order by sum(gmv) desc
limit 100
```


Cube without Top-N

- All "group by" column need be dimension;
- Need fetch all items before sorting and return top records;

DT	LOC	ITEM	Measure Sum(gmv)
2015-10-1	ВЈ	Item-A	300
2015-10-1	ВЈ	Item-B	400
2015-10-1	ВЈ	Item-C	100
2015-10-1	ВЈ	Item-D	200
2015-10-1	ВЈ	Item-E	50
2015-10-1	ВЈ		
2015-10-1	BJ	Item-XXXXXXXXX	200

Approximate Top-N Measure

- Define Top-N as a measure;
- Calculate Top records during cube build;
- Answer Top-N queries directly from pre-calculation.

Approximate Top-N Algorithm

SpaceSaving Top-N

 Ahmed Metwally, et al. "Efficient computation of frequent and top-k elements in data streams". Proceeding ICDT'05 Proceedings of the 10th international conference on Database Theory, 2005.

A parallel SpaceSaving

• Massimo Cafaro, et al. "A parallel space saving algorithm for frequent items and the Hurwitz zeta distribution". Proceeding arXiv: 1401.0702v12 [cs.DS] 19 Setp 2015.

Cube with Top-N

- Move High the cardinality column to Measure, together with metric.
- Records are ordered, tail records are truncated.

DT	LOC	Measure Top-N
2015-10-1	BJ	Item-1,10000
		Item-2,9000
		Item-5000,200
2015-10-1	SH	Item-1,10000
		Item-2,9000
		Item-5000,200

Top-N Merge

DT,LOC	TopN
2015-10-1,BJ	Item A, \$500 Item B, \$490 Item C, \$400
2015-10-1,SH	Item A, \$800 Item C, \$700 Item B, \$600

agg

DT	TopN
2015-10-1	Item A, \$1300 Item C, \$1100 Item B, \$1090

••••

Top-N Summary

Pros

- Saving Space, cube size can decrease 90%
- Avoid massive scan, query performance can improve more than 10 times

Cons

- Approximate calculation
- Error accumulates at high level aggregation
- Error ratio depends on data distribution, space allocated, aggregation level, etc.

About Kylin

- Contact:
 - Shaofeng Shi: shaofeng@kyligence.io
- Kylin Site:
 http://kylin.io
- Twitter/微博:

 ②ApacheKylin

