

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 December 2001 (20.12.2001)

PCT

(10) International Publication Number
WO 01/96584 A2

(51) International Patent Classification⁷: **C12N 15/82**

Luciemaga Street, Carlsbad, CA 92009 (US). **FEITELSON, Jerald, S.** [—/US]; 4387 Mistral Place, San Diego, CA 92130 (US). **EROSHKIN, Alexy, M.** [—/US]; 3803 Ruette San Rafael, San Diego, CA 92130 (US).

(21) International Application Number: PCT/US01/18911

(74) Agents: **LLOYD, Jeff** et al.; Saliwanchik, Lloyd & Saliwanchik, Suite A-1, 2421 N.W. 41st Street, Gainesville, FL 32606 (US).

(22) International Filing Date: 12 June 2001 (12.06.2001)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CII, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

(30) Priority Data:
60/210,917 12 June 2000 (12.06.2000) US

(71) Applicant (for all designated States except US): **AKKADIX CORPORATION** [US/US]; 4204 Sorrento Valley Blvd., Suite A, San Diego, CA 92121-1412 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **MUSHEGIAN, Aracady, R.** [—/US]; 3987 Santa Nella Place, San Diego, CA 92130 (US). **TAYLOR, Christopher, G.** [—/US]; 2910-A

[Continued on next page]

(54) Title: MATERIALS AND METHODS FOR THE CONTROL OF NEMATODES

WO 01/96584 A2

(57) Abstract: The subject invention provides novel methods and compositions for controlling nematodes. More specifically, the subject invention provides RNAi molecules, polynucleotide sequences, and methods of using these sequences in nematode control.

Published:

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DESCRIPTIONMATERIALS AND METHODS FOR THE CONTROL OF NEMATODESBackground of the Invention

[0001] Plant parasitic nematodes, such as root-knot nematodes (*Meloidogyne* species) and cyst nematodes (*Globodera* and *Heterodera*), attack nearly every food crop, and are among the world's most damaging agricultural pests. For example, root-knot nematodes parasitize more than 2,000 plant species from diverse plant families and represent a tremendous threat to crop production world-wide. These biotrophic pathogens have evolved highly specialized and complex feeding relationships with their hosts.

[0002] Nematodes cause millions of dollars of damage each year to turf grasses, ornamental plants, and food crops. Efforts to eliminate or minimize damage caused by nematodes in agricultural settings have typically involved the use of soil fumigation with materials such as chloropicrin, methyl bromide, and dazomet, which volatilize to spread the active ingredient throughout the soil. Such fumigation materials can be highly toxic and may create an environmental hazard. Various non-fumigant chemicals have also been used, but these too create serious environmental problems and can be highly toxic to humans.

[0003] Some research articles have been published concerning the effects of δ-endotoxins from *B. thuringiensis* species on the viability of nematodes. See, for example, Bottjer, Bone and Gill ([1985] *Experimental Parasitology* 60:239-244); Ignoffo and Dropkin (Ignoffo, C.M., Dropkin, V.H. [1977] *J. Kans. Entomol. Soc.* 50:394-398); and Ciordia, H. and W.E. Bizzell ([1961] *Jour. of Parasitology* 47:41 [abstract]). Several patents have issued describing the control of nematodes with *B.t.* See, for example, U.S. Patent Nos. 4,948,734; 5,093,120; 5,281,530; 5,426,049; 5,439,881; 5,236,843; 5,322,932; 5,151,363; 5,270,448; 5,350,577; 5,667,993; and 5,670,365. The development of resistance by insects to *B.t.* toxins is one obstacle to the successful use of such toxins.

[0004] The pesticidal activity of avermectins is well known. The avermectins are disaccharide derivatives of pentacyclic, 16-membered lactones. They can be divided into four major compounds: A_{1a}, A_{2a}, B_{1a}, and B_{2a}; and four minor compounds: A_{1b}, A_{2b}, B_{1b}, and B_{2b}. The isolation and purification of these compounds is also described in U.S. Patent No. 4,310,519, issued January 12, 1982. Avermectin B_{2a} is active against the root-knot nematode, *Meloidogyne incognita*. It is reported to be 10-30 times as potent as commercial contact nematicides when incorporated into soil at 0.16-0.25 kg/ha (Boyce Thompson Institute for Plant Research 58th Annual Report [1981]; Putter, I. *et al.* [1981] "Avermectins: Novel Insecticides, Acaracides, and Nematicides from a Soil Microorganism," *Experientia* 37:963-964). Avermectin B_{2a} is not toxic to tomatoes or cucumbers at rates of up to 10 kg/ha.

[0005] Fatty acids are a class of natural compounds which occur abundantly in nature and which have interesting and valuable biological activities. Tarjan and Cheo (Tarjan, A.C., P.C. Cheo [1956] "Nematocidal Value of Some Fatty Acids," Bulletin 332, Contribution 884, Agricultural Experiment Station, University of Rhode Island, Kingston, 41 pp.) report the activity of certain fatty acids against nematodes. In 1977 Sitaramaiah and Singh (Sitaramaiah, K., R.S. Singh [1977] *Indian J. Nematol.* 7:58-65) also examined the response of nematodes to fatty acids. The results of these tests with short chain acids were equivocal, showing nematode-inhibitory action in some instances and stimulatory activity in other instances. Phytotoxicity of these acids was observed at higher concentrations. The short chain fatty acids were also examined by Malik and Jairajpuri (Malik, Z., M.S. Jairajpuri [1977] *Nematol. medit.* 12:73-79), who observed nematode toxicity at high concentrations of the fatty acids.

[0006] Notwithstanding the foregoing (some of the limitations of and problems associated with these approaches are discussed above), there is a need for safe and effective alternatives for controlling nematodes.

[0007] One method for disrupting normal cellular processes is by the use double-stranded interfering RNA (RNAi), or RNA-mediated interference (RNAi). When RNAi corresponding to a sense and antisense sequence of a target mRNA is introduced into a cell, the targeted mRNA is degraded and protein translation of that message is stopped. Although not yet fully understood, the mechanism of this post-transcriptional gene

silencing appears to be at least partially due to the generation of small RNA molecules, about 21 - 25 nucleotides in length, that correspond to the sense and antisense pieces of the RNAi introduced into the cell (Bass, B. L. [2000] "Double-stranded RNA as a template for gene silencing" *Cell* 101:235-238).

[0008] The specificity of this gene silencing mechanism appears to be extremely high, blocking expression only of targeted genes, while leaving other genes unaffected. A recent example of the use of RNAi; to inhibit genetic function in plants used *Agrobacterium tumefaciens*-mediated transformation of *Arabidopsis thaliana* (Chuang, C.-F. and E. M. Meyerowitz [2000] "Specific and heritable genetic interference by double-stranded RNA in *Arabidopsis thaliana*" *Proc. Natl. Acad. Sci. USA* 97:4985-4990). Chuang *et al.* describe the construction of vectors delivering variable levels of RNAi targeted to each of four genes involved in floral development. Severity of abnormal flower development varied between transgenic lines. For one of the genes, AGAMOUS (AG), a strong correlation existed between declining accumulation of mRNA and increasingly severe phenotypes, suggesting that AG-specific endogenous mRNA is the target of RNAi.

Brief Summary of the Invention

[0009] The subject invention provides novel methods and compositions for controlling nematodes. More specifically, the subject invention provides polynucleotide sequences that encode nematode genes, RNAi that selectively targets mRNA transcripts of these essential nematode genes, and methods of using these sequences in nematode control strategies. Such sequences for use according to the subject invention are summarized in Appendix 1. RNAi molecules disclosed herein can be used to inhibit the expression of one or more of these genes in nematodes.

Brief Description of the Drawings

[00010] **Figure 1:** Modular Binary Construct System (MBCS): A series of six, 8-base cutter restriction enzyme sites has been placed between the left and right Ti borders of a previously created kan^R/tet^R binary plasmid.

[00011] **Figure 2:** An exemplary shuttle vector created for cloning of useful DNA fragments by containing the multi-cloning site (MCS) of a modified Bluescript plasmid flanked by 8-base restriction sites.

[00012] **Figure 3:** An exemplary shuttle vector with exemplary inserts.

[00013] **Figure 4:** A suggested RNAi binary vector with exemplary inserts.

[00014] **Figure 5:** Exemplary selectable markers for MBCS.

[00015] **Figure 6:** Exemplary scorable markers for MCBS.

[00016] **Figure 7:** Exemplary RNAi binary vector.

[00017] **Figure 8:** Exemplary RNAi shuttle vector.

Brief Description of the Sequences

[00018] Brief Description of the Sequences can be found in Appendix I.

Detailed Disclosure of the Invention

[00019] The subject invention provides novel methods and compositions for controlling nematodes. More specifically, the subject invention provides polynucleotide sequences and methods of using these sequences in nematode control strategies. A preferred method for controlling nematodes according to the subject invention provides materials and methods for controlling nematodes by using double-stranded interfering RNA (RNAi), or RNA-mediated interference (RNAi). The terms RNAi and RNAi are used interchangeably herein unless otherwise noted.

[00020] In one embodiment of the invention, RNAi molecules are provided which are useful in methods of killing nematodes and/or inhibiting their growth, development, parasitism or reproduction. RNAi molecules of the invention are also useful for the regulation of levels of specific mRNA in nematodes.

[00021] dsRNA (RNAi) typically comprises a polynucleotide sequence identical to a target gene (or fragment thereof) linked directly, or indirectly, to a polynucleotide

sequence complementary to the sequence of the target gene (or fragment thereof). The dsRNA may comprise a polynucleotide linker (stuffer) sequence of sufficient length to allow for the two polynucleotide sequences to fold over and hybridize to each other; however, a linker sequence is not necessary. The linker (stuffer) sequence is designed to separate the antisense and sense strands of RNAi significantly enough to limit the effects of steric hindrances and allow for the formation of dsRNA molecules.

[00022] RNA containing a nucleotide sequence identical to a fragment of the target gene is preferred for inhibition; however, RNA sequences with insertions, deletions, and point mutations relative to the target sequence can also be used for inhibition. Sequence identity may optimized by sequence comparison and alignment algorithms known in the art (see Gribskov and Devereux, *Sequence Analysis Primer*, Stockton Press, 1991, and references cited therein) and calculating the percent difference between the nucleotide sequences by, for example, the Smith-Waterman algorithm as implemented in the BESTFIT software program using default parameters (e.g., University of Wisconsin Genetic Computing Group). Alternatively, the duplex region of the RNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a fragment of the target gene transcript.

[00023] As disclosed herein, 100% sequence identity between the RNA and the target gene is not required to practice the present invention. Thus the invention has the advantage of being able to tolerate sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence.

[00024] RNA may be synthesized either *in vivo* or *in vitro*. Endogenous RNA polymerase of the cell may mediate transcription *in vivo*, or cloned RNA polymerase can be used for transcription *in vivo* or *in vitro*. For transcription from a transgene *in vivo* or an expression construct, a regulatory region (e.g., promoter, enhancer, silencer, splice donor and acceptor, polyadenylation) may be used to transcribe the RNA strand (or strands). Inhibition may be targeted by specific transcription in an organ, tissue, or cell type; stimulation of an environmental condition (e.g., infection, stress, temperature, chemical inducers); and/or engineering transcription at a developmental stage or age. The RNA strands may or may not be polyadenylated; the RNA strands may or may not be capable of being translated into a polypeptide by a cell's translational apparatus. RNA

may be chemically or enzymatically synthesized by manual or automated reactions. The RNA may be synthesized by a cellular RNA polymerase or a bacteriophage RNA polymerase (e.g., T3, T7, SP6). The use and production of an expression construct are known in the art (see, for example, WO 97/32016; U.S. Pat. Nos. 5,593,874; 5,698,425; 5,712,135; 5,789,214; and 5,804,693; and the references cited therein). If synthesized chemically or by *in vitro* enzymatic synthesis, the RNA may be purified prior to introduction into the cell. For example, RNA can be purified from a mixture by extraction with a solvent or resin, precipitation, electrophoresis, chromatography, or a combination thereof. Alternatively, the RNA may be used with no or a minimum of purification to avoid losses due to sample processing. The RNA may be dried for storage or dissolved in an aqueous solution. The solution may contain buffers or salts to promote annealing, and/or stabilization of the duplex strands.

[00025] Preferably and most conveniently, RNAi can be targeted to an entire polynucleotide sequence of a gene set forth herein. Preferred RNAi molecules of the instant invention are highly homologous or identical to the polynucleotides summarized in Appendix 1. The homology is preferably greater than 90% and is most preferably greater than 95%.

[00026] Fragments of genes can also be targeted. These fragments are typically in the approximate size range of about 20 nucleotides. Thus, targeted fragments are preferably at least about 15 nucleotides. In certain embodiments, the gene fragment targeted by the RNAi molecule is about 20-25 nucleotides in length. However, other size ranges can also be used. For example, using a *C. elegans* microinjection assay, RNAi "fragments" of about 60 nucleotides with between 95 and 100% identity (to a nematode gene) were determined to cause excellent inhibition.

[00027] Thus, RNAi molecules of the subject invention are not limited to those that are targeted to the full-length polynucleotide or gene. The nematode gene product can be inhibited with a RNAi molecule that is targeted to a portion or fragment of the exemplified polynucleotides; high homology (90-95%) or identity is also preferred, but not necessarily essential, for such applications.

[00028] The polynucleotide sequences identified in Appendix A and shown in the Sequence ID listing are from genes encoding nematode proteins having the functions

shown in Appendix 1. The genes exemplified herein are representative of particular classes of proteins which are preferred targets for disruption according to the subject invention. These classes of proteins include, for example, proteins involved in ribosome assembly; neurol transmitter receptors and ligands; electron transport proteins; metabolic pathway proteins; and protein and polynucleotide production, folding, and processing proteins.

[00029] Genetic regulatory sequences, such as promoters, enhancers, and terminators, can be used in genetic constructs to practice the subject invention. Such constructs themselves can also be used for nematode control. Various constructs can be used to achieve expression in specific plant tissues (by using root specific promoters, for example) and/or to target specific nematode tissues (by using targeting elements or adjacent targeting sequences, for example).

[00030] In a specific embodiment of the subject invention, plant cells, preferably root cells, are genetically modified to produce at least one RNAi that is designed to be taken up by nematodes during feeding to block expression (or the function of) of a target gene. As is known in the art, RNAi can target and reduce (and, in some cases, prevent) the translation of a specific gene product. RNAi can be used to reduce or prevent message translation in any tissue of the nematode because of its ability to cross tissue and cellular boundaries. Thus, RNAi that is contacted with a nematode by soaking, injection, or consumption of a food source will cross tissue and cellular boundaries. RNAi can also be used as an epigenetic factor to prevent the proliferation of subsequent generations of nematodes.

[00031] Nematode polynucleotide sequences disclosed herein demonstrate conserved nucleotide motifs among different nematode genera. Conserved nucleotide motifs strongly suggest that these sequences are associated with viability and/or parasitism and are functionally conserved and expressed in both *Meloidogyne incognita* (root-knot nematode) and *Globodera rostochiensis* and *Globdera pallids* (potato cyst nematodes). The use of these polynucleotides, and RNAi inhibitors thereof, is advantageous because such RNAi can be designed to have broad RNAi specificity and are thus useful for controlling a large number of plant parasitic nematodes *in planta*. Because the genes identified in this disclosure are associated with nematode survival

and/or parasitism, RNAi inhibition of these genes (arising from contacting nematodes with compositions comprising RNAi molecules) prevents and/or reduces parasitic nematode growth, development, and or parasitism.

[00032] Methods of the subject invention include the transformation of plant cells with genes or polynucleotides of the present invention, which can be used to produce nematode inhibitors or RNAi in the plants. In one embodiment, the transformed plant or plant tissue can express RNAi molecules encoded by the gene or polynucleotide sequence introduced into the plant. Other nematode inhibitors contemplated by the invention include antisense molecules specific to the polynucleotide sequences disclosed herein. The transformation of plants with genetic constructs disclosed herein can be accomplished using techniques well known to those skilled in the art and can involve modification of the gene(s) to optimize expression in the plant to be made resistant to nematode infection and infestation. Furthermore, it is known in the art that many tissues of the transgenic plants (such as the roots) can be targeted for transformation.

[00033] RNA-mediated interference (RNAi) of gene expression. Several aspects of root-knot nematode biology make classical genetic studies difficult with this organism. Since root-knot nematodes reproduce by obligatory mitotic parthenogenesis, the opportunity to perform genetic crosses is not available. Microinjection of RNAi can be used to manipulate gene expression in *C. elegans* (Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. [1998] "Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*" *Nature* 391:806- 811). Microinjecting (into adult nematodes) RNAi can turn off specific genes in progeny worms complementary to the coding region of the genes. Moreover, gene inhibition occurs in progeny when RNAi is injected into the body cavity of the adult, indicating the ability of the RNAi to cross cellular boundaries. This RNAi injection method provides a molecular genetic tool that allows for analysis of gene function in root-knot nematodes.

[00034] RNAi can be taken up by *C. elegans* by simply soaking the nematodes in a solution RNAi. This results in targeted inhibition of gene expression in the nematode (Maeda, I., Y. Kohara, M. Yamamoto and A. Sugimoto [1999] "RNAi screening with a non-redundant cDNA set" International Worm Meeting, Madison, WI, abstract 565). Nematodes fed *E. coli* expressing RNAi also demonstrate targeted and

heritable inhibition of gene expression (Sarkissian, M., H. Tabara and C. C. Mello [1999] "A mut-6 screen for RNAi deficient mutants" International Worm Meeting, Madison, WI, abstract 741; Timmons, L. and A. Fire [1998] "Specific interference by ingested dsRNA" *Nature* 395:854; WO 99/32619, hereby incorporated by reference in its entirety).

[00035] Accordingly, one aspect of the instant invention is directed to the control of nematodes comprising contacting nematodes with compositions comprising RNAi molecules specific to the nematode genes disclosed herein. The contacting step may include soaking the nematodes in a solution containing RNAi molecules, feeding nematodes RNAi molecules contained in microbes or plant cells upon which the nematode feeds, or injecting nematodes with RNAi. Nematodes can also be "contacted" and controlled by RNAi expressed in plant tissues that would be consumed, ingested, or frequented by nematodes.

[00036] The RNAi molecules provided to the nematodes may be specific to a single gene. A "cocktail" of RNAi molecules specific to various segments of a single gene can also be used. In addition, a "multigene cocktail" of RNAi molecules specific to two or more genes (or segments thereof) may be applied to the nematodes according to the subject invention.

[00037] In addition to RNAi uptake mediated by transgenic plants, nematodes can be directly transformed with RNAi constructs of cDNAs encoding secretory or other essential proteins to reduce expression of the corresponding gene. The transgenic animals can be assayed for inhibition of gene product using immunoassays or for reduced virulence on a host. Progeny of affected worms can also be assayed by similar methods.

[00038] Procedures that can be used for the preparation and injection of RNAi include those detailed by Fire *et al.*, (1998; <ftp://ciw1.ciwemb.edu>). Root-knot nematodes can be routinely monoxenically cultured on *Arabidopsis thaliana* roots growing on Gamborg's B-5/Gelrite® media. This nematode-host pathosystem is ideally suited for these microinjection experiments since limited root galling results in the parasitic stages (late J2 through adult females) developing outside of the root for easy accessibility for injecting. Another advantage is the parthenogenic reproduction of root-knot nematodes, which makes fertilization by males unnecessary for egg production. The RNAi can be injected into the body cavity of parasitic stages of root-knot nematodes

feeding on *A. thaliana* roots using microinjection. Control nematodes can be injected in parallel with only buffer or an unrelated RNAi. Injected nematodes can be monitored for egg production, and the eggs can be collected for the assays described below. Female root-knot nematodes will typically survive and lay more than 250 eggs following 1 μ l injection of buffer.

[00039] Alternatively, methods are available for microinjecting materials directly into the plant root cells upon which nematodes feed: giant cells or syncytial cells (Böckenhoff, A. and F.M.W. Grundler [1994] "Studies on the nutrient uptake by the beet cyst nematode *Heterodera schachtii* by *in situ* microinjection of fluorescent probes into the feeding structures in *Arabidopsis thaliana*" *Parasitology* 109:249-254). This provides an excellent test system to screen RNAi molecules for efficacy by directly inhibiting growth and development of the nematode feeding upon the microinjected plant cell, or by reducing fecundity and the ability of said nematode to generate pathogenic or viable progeny.

[00040] There are a number of strategies that can be followed to assay for RNAi gene interference. Inhibition of gene expression by RNAi inhibits the accumulation of the corresponding secretory protein in the esophageal gland cells of transgenic J2 hatched from the eggs produced by the injected nematodes. In the first assay, polyclonal antibodies to the target gene product can be used in immunolocalization studies (Hussey, R. S. [1989] "Monoclonal antibodies to secretory granules in esophageal glands of *Meloidogyne* species" *J. Nematol.* 21:392-398; Borgonie, G, E. van Driessche, C. D. Link, D. de Waele, and A. Coomans [1994] "Tissue treatment for whole mount internal lectin staining in the nematodes *Caenorhabditis elegans*, *Panagrolaimus superbus* and *Acrobeloides maximus*" *Histochemistry* 101:379-384) to monitor the synthesis of the target protein in the gland cells of progeny of the injected nematodes, or in any other nematode tissue that fails to express the essential targeted gene. Interference of endogenous gene activity by the RNAi eliminates binding of the antibodies to secretory granules in the glands, or any other target tissue, of the transgenic nematodes, and can be monitored by these *in situ* hybridization experiments. Control nematodes injected only with the injection buffer can be processed similar to the RNAi treated nematodes.

[00041] Another assay is designed to determine the effect of the RNAi on reducing the virulence of J2 progeny of the injected females. Egg masses from injected females can be transferred singly to *A. thaliana* plates to assess the ability of the transgenic J2 to infect roots. The J2 hatching from the eggs transferred to the plates can be monitored; after 25 days the number of galls with egg laying females can be recorded. The *A. thaliana* roots can also be stained with acid fuchsin to enumerate the number of nematodes in the roots. Egg masses from nematodes injected only with the injection buffer can be handled similarly and used as controls. The treatments can be replicated, and the root infection data can be analyzed statistically. These experiments can be used to assess the importance of the target genes in root-knot nematode's virulence or viability. By staining the J2 progeny of the injected females with the antibodies, it can be determined whether RNAi blocks expression of the targeted gene.

[00042] Additional uses of polynucleotides. The polynucleotide sequences exemplified herein can be used in a variety of ways. These polynucleotides can be used in assays for additional polynucleotides and additional homologous genes, and can be used in tracking the quantitative and temporal expression of parasitism genes in nematodes. These polynucleotides can be cloned into microbes for production and isolation of their gene products. Among the many uses of the isolated gene product is the development of additional inhibitors and modifiers. The protein products of the subject polynucleotides can also be used as diagnostic tools. For example, proteins encoded by the parasitism genes, as identified herein, can be used in large scale screenings for additional peptide inhibitors. The use of peptide phage display screening is one method that can be used in this regard. Thus, the subject invention also provides new biotechnological strategies for managing nematodes under sustainable agricultural conditions.

[00043] Antisense technologies can also be used for phytopathogenic nematode control. Antisense technology can be used to interfere with expression of the disclosed endogenous nematode genes. Antisense technology can also be used to alter the components of plants used as targets by the nematodes. For example, the transformation of a plant with the reverse complement of an endogenous gene encoded by a polynucleotide exemplified herein can result in strand co-suppression and gene silencing

or inhibition of a target involved in the nematode infection process. Thus, the subject invention includes transgenic plants (which are preferably made nematode-resistant in this manner, and other organisms including microbes and phages) comprising RNAi or antisense molecules specific to any of the polynucleotides identified herein.

[00044] Polynucleotide probes. DNA possesses a fundamental property called base complementarity. In nature, DNA ordinarily exists in the form of pairs of anti-parallel strands, the bases on each strand projecting from that strand toward the opposite strand. The base adenine (A) on one strand will always be opposed to the base thymine (T) on the other strand, and the base guanine (G) will be opposed to the base cytosine (C). The bases are held in apposition by their ability to hydrogen bond in this specific way. Though each individual bond is relatively weak, the net effect of many adjacent hydrogen bonded bases, together with base stacking effects, is a stable joining of the two complementary strands. These bonds can be broken by treatments such as high pH or high temperature, and these conditions result in the dissociation, or "denaturation," of the two strands. If the DNA is then placed in conditions which make hydrogen bonding of the bases thermodynamically favorable, the DNA strands will anneal, or "hybridize," and reform the original double-stranded DNA. If carried out under appropriate conditions, this hybridization can be highly specific. That is, only strands with a high degree of base complementarity will be able to form stable double-stranded structures. The relationship of the specificity of hybridization to reaction conditions is well known. Thus, hybridization may be used to test whether two pieces of DNA are complementary in their base sequences. It is this hybridization mechanism which facilitates the use of probes of the subject invention to readily detect and characterize DNA sequences of interest.

[00045] The specifically exemplified polynucleotides of the subject invention can themselves be used as probes. Additional polynucleotide sequences can be added to the ends of (or internally in) the exemplified polynucleotide sequences so that polynucleotides that are longer than the exemplified polynucleotides can also be used as probes. Thus, isolated polynucleotides comprising one or more of the exemplified sequences are within the scope of the subject invention. Polynucleotides that have less nucleotides than the exemplified polynucleotides can also be used and are contemplated within the scope of the present invention. For example, for some purposes, it might be

useful to use a conserved sequence from an exemplified polynucleotide wherein the conserved sequence comprises a portion of an exemplified sequence. Thus, polynucleotides of the subject invention can be used to find additional, homologous (wholly or partially) genes.

[00046] Probes of the subject invention may be composed of DNA, RNA, or PNA (peptide nucleic acid). The probe will normally have at least about 10 bases, more usually at least about 17 bases, and may have about 100 bases or more. Longer probes can readily be utilized, and such probes can be, for example, several kilobases in length. The probe sequence is designed to be at least substantially complementary to a portion of a gene encoding a protein of interest. The probe need not have perfect complementarity to the sequence to which it hybridizes. The probes may be labeled utilizing techniques that are well known to those skilled in this art.

[00047] One approach for the use of the subject invention as probes entails first identifying DNA segments that are homologous with the disclosed nucleotide sequences using, for example, Southern blot analysis of a gene bank. Thus, it is possible, without the aid of biological analysis, to know in advance the probable activity of many new polynucleotides, and of the individual gene products expressed by a given polynucleotide. Such an analysis provides a rapid method for identifying commercially valuable compositions.

[00048] One hybridization procedure useful according to the subject invention typically includes the initial steps of isolating the DNA sample of interest and purifying it chemically. Either lysed nematodes or total fractionated nucleic acid isolated from nematodes can be used. Cells can be treated using known techniques to liberate their DNA (and/or RNA). The DNA sample can be cut into pieces with an appropriate restriction enzyme. The pieces can be separated by size through electrophoresis in a gel, usually agarose or acrylamide. The pieces of interest can be transferred to an immobilizing membrane.

[00049] The particular hybridization technique is not essential to the subject invention. As improvements are made in hybridization techniques, they can be readily applied.

[00050] The probe and sample can then be combined in a hybridization buffer solution and held at an appropriate temperature until annealing occurs. Thereafter, the membrane is washed free of extraneous materials, leaving the sample and bound probe molecules typically detected and quantified by autoradiography and/or liquid scintillation counting. As is well known in the art, if the probe molecule and nucleic acid sample hybridize by forming a strong non-covalent bond between the two molecules, it can be reasonably assumed that the probe and sample are essentially identical or very similar. The probe's detectable label provides a means for determining in a known manner whether hybridization has occurred.

[00051] In the use of the nucleotide segments as probes, the particular probe is labeled with any suitable label known to those skilled in the art, including radioactive and non-radioactive labels. Typical radioactive labels include ^{32}P , ^{35}S , or the like. Non-radioactive labels include, for example, ligands such as biotin or thyroxine, as well as enzymes such as hydrolases or peroxidases, or the various chemiluminescers such as luciferin, or fluorescent compounds like fluorescein and its derivatives. In addition, the probes can be made inherently fluorescent as described in International Application No. WO 93/16094.

[00052] Various degrees of stringency of hybridization can be employed. The more stringent the conditions, the greater the complementarity that is required for duplex formation. Stringency can be controlled by temperature, probe concentration, probe length, ionic strength, time, and the like. Preferably, hybridization is conducted under moderate to high stringency conditions by techniques well known in the art, as described, for example, in Keller, G.H., M.M. Manak (1987) *DNA Probes*, Stockton Press, New York, NY., pp. 169-170.

[00053] As used herein "moderate to high stringency" conditions for hybridization refers to conditions that achieve the same, or about the same, degree of specificity of hybridization as the conditions "as described herein." Examples of moderate to high stringency conditions are provided herein. Specifically, hybridization of immobilized DNA on Southern blots with ^{32}P -labeled gene-specific probes was performed using standard methods (Maniatis *et al.*). In general, hybridization and subsequent washes were carried out under moderate to high stringency conditions that

allowed for detection of target sequences with homology to sequences exemplified herein. For double-stranded DNA gene probes, hybridization was carried out overnight at 20-25° C below the melting temperature (Tm) of the DNA hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. The melting temperature is described by the following formula from Beltz *et al.* (1983):

[00054] $T_m = 81.5^\circ\text{C} + 16.6 \cdot \log[\text{Na}^+] + 0.41(\%G+C) - 0.61(\%\text{formamide}) - 600/\text{length of duplex in base pairs.}$

Washes are typically carried out as follows:

- (1) Twice at room temperature for 15 minutes in 1X SSPE, 0.1% SDS (low stringency wash).
- (2) Once at $T_m - 20^\circ\text{C}$ for 15 minutes in 0.2X SSPE, 0.1% SDS (moderate stringency wash).

[00055] For oligonucleotide probes, hybridization was carried out overnight at 10-20°C below the melting temperature (Tm) of the hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. Tm for oligonucleotide probes was determined by the following formula from Suggs *et al.* (1981):

[00056] $T_m (\text{ }^\circ\text{C}) = 2(\text{number T/A base pairs}) + 4(\text{number G/C base pairs})$

[00057] Washes were typically carried out as follows:

- [00058] (1) Twice at room temperature for 15 minutes 1X SSPE, 0.1% SDS (low stringency wash).
- [00059] (2) Once at the hybridization temperature for 15 minutes in 1X SSPE, 0.1% SDS (moderate stringency wash).

[00060] In general, salt and/or temperature can be altered to change stringency. With a labeled DNA fragment of greater than about 70 or so bases in length, the following conditions can be used:

- | | |
|-----------|--------------------------------|
| Low: | 1 or 2X SSPE, room temperature |
| Low: | 1 or 2X SSPE, 42°C |
| Moderate: | 0.2X or 1X SSPE, 65°C |
| High: | 0.1X SSPE, 65°C. |

[00061] Duplex formation and stability depend on substantial complementarity between the two strands of a hybrid, and, as noted above, a certain degree of mismatch

can be tolerated. Therefore, polynucleotide sequences of the subject invention include mutations (both single and multiple), deletions, and insertions in the described sequences, and combinations thereof, wherein said mutations, insertions, and deletions permit formation of stable hybrids with a target polynucleotide of interest. Mutations, insertions, and deletions can be produced in a given polynucleotide sequence using standard methods known in the art. Other methods may become known in the future.

[00062] The mutational, insertional, and deletional variants of the polynucleotide sequences of the invention can be used in the same manner as the exemplified polynucleotide sequences so long as the variants have substantial sequence similarity with the original sequence. As used herein, substantial sequence similarity refers to the extent of nucleotide similarity that is sufficient to enable the variant polynucleotide to function in the same capacity as the original sequence. Preferably, this similarity is greater than 50%; more preferably, this similarity is greater than 75%; and most preferably, this similarity is greater than 90%. The degree of similarity needed for the variant to function in its intended capacity will depend upon the intended use of the sequence. It is well within the skill of a person trained in this art to make mutational, insertional, and deletional mutations that are designed to improve the function of the sequence or otherwise provide a methodological advantage.

[00063] PCR technology. Polymerase Chain Reaction (PCR) is a repetitive, enzymatic, primed synthesis of a nucleic acid sequence. This procedure is well known and commonly used by those skilled in this art (see U.S. Patent Nos. 4,683,195; 4,683,202; and 4,800,159; Saiki *et al.*, 1985). PCR is based on the enzymatic amplification of a DNA fragment of interest that is flanked by two oligonucleotide primers that hybridize to opposite strands of the target sequence. The primers are oriented with the 3' ends pointing towards each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences, and extension of the annealed primers with a DNA polymerase result in the amplification of the segment defined by the 5' ends of the PCR primers. Since the extension product of each primer can serve as a template for the other primer, each cycle essentially doubles the amount of DNA fragment produced in the previous cycle. This results in the exponential accumulation of the specific target fragment, up to several million-fold in a

few hours. By using a thermostable DNA polymerase such as *Taq* polymerase, which is isolated from the thermophilic bacterium *Thermus aquaticus*, the amplification process can be completely automated. Other enzymes that can be used are known to those skilled in the art.

[00064] The polynucleotide sequences of the subject invention (and portions thereof such as conserved regions and portions that serve to distinguish these sequences from previously-known sequences) can be used as, and/or used in the design of, primers for PCR amplification. In performing PCR amplification, a certain degree of mismatch can be tolerated between primer and template. Therefore, mutations, deletions, and insertions (especially additions of nucleotides to the 5' end) of the exemplified polynucleotides can be used in this manner. Mutations, insertions and deletions can be produced in a given primer by methods known to an ordinarily skilled artisan.

[00065] The polynucleotide sequences of the instant invention may be "operably linked" to regulatory sequences such as promoters and enhancers. Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is "operably linked" to DNA encoding a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is "operably linked" to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is "operably linked" to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

[00066] Polynucleotides and proteins. Polynucleotides of the subject invention can be defined according to several parameters. One characteristic is the biological activity of the protein products as identified herein. The proteins and genes of the subject invention can be further defined by their amino acid and nucleotide sequences. The sequences of the molecules can be defined in terms of homology to certain exemplified sequences as well as in terms of the ability to hybridize with, or be amplified by, certain

exemplified probes and primers. Additional primers and probes can readily be constructed by those skilled in the art such that alternate polynucleotide sequences encoding the same amino acid sequences can be used to identify and/or characterize additional genes. The proteins of the subject invention can also be identified based on their immunoreactivity with certain antibodies.

[00067] The polynucleotides and proteins of the subject invention include portions, fragments, variants, and mutants of the full-length sequences as well as fusions and chimerics, so long as the encoded protein retains the characteristic biological activity of the proteins identified herein. As used herein, the terms "variants" or "variations" of genes refer to nucleotide sequences that encode the same proteins or which encode equivalent proteins having equivalent biological activity. As used herein, the term "equivalent proteins" refers to proteins having the same or essentially the same biological activity as the exemplified proteins.

[00068] It will be apparent to a person skilled in this art that genes within the scope of the subject invention can be identified and obtained through several means. The specific genes exemplified herein may be obtained from root-knot nematodes. Genes, or portions or variants thereof, may also be artificially synthesized by, for example, a gene synthesizer.

[00069] Variations of genes may be readily constructed using standard techniques such as site-directed mutagenesis and other methods of making point mutations and by DNA shuffling, for example. In addition, gene and protein fragments can be made using commercially available exonucleases, endonucleases, and proteases according to standard procedures. For example, enzymes such as *Bal*31 can be used to systematically cut off nucleotides from the ends of genes. In addition, genes that encode fragments may be obtained using a variety of restriction enzymes. Proteases may be used to directly obtain active fragments of these proteins. Of course, molecular techniques for cloning polynucleotides and producing gene constructs of interest are also well known in the art. *In vitro* evaluation techniques, such as MAXYGEN's "Molecular Breeding" can also be applied to practice the subject invention.

[00070] Other molecular techniques can also be applied using the teachings provided herein. For example, antibodies raised against proteins encoded by

polynucleotides disclosed herein can be used to identify and isolate proteins from a mixture of proteins. Specifically, antibodies may be raised to the portions of the proteins that are conserved and most distinct from other proteins. These antibodies can then be used to specifically identify equivalent proteins by immunoprecipitation, enzyme linked immunosorbent assay (ELISA), or Western blotting. Antibodies to proteins encoded by polynucleotides disclosed herein, or to equivalent proteins, can readily be prepared using standard procedures known in the art. The genes that encode these proteins can be obtained from various organisms.

[00071] Because of the redundancy of the genetic code, a variety of different DNA sequences can encode the amino acid sequences encoded by the polynucleotide sequences disclosed herein. It is well within the skill of a person trained in the art to create these alternative DNA sequences encoding proteins having the same, or essentially the same, amino acid sequence. These variant DNA sequences are within the scope of the subject invention. As used herein, reference to "essentially the same" sequence refers to sequences that have amino acid substitutions, deletions, additions, or insertions that do not materially affect biological activity. Fragments retaining the characteristic biological activity are also included in this definition.

[00072] A further method for identifying genes and polynucleotides (and the proteins encoded thereby) of the subject invention is through the use of oligonucleotide probes. Probes provide a rapid method for identifying genes of the subject invention. The nucleotide segments that are used as probes according to the invention can be synthesized using a DNA synthesizer and standard procedures.

[00073] The subject invention comprises variant or equivalent proteins (and nucleotide sequences coding for equivalent proteins or for inhibitors of the genes encoding such proteins) having the same or similar biological activity of inhibitors or proteins encoded by the exemplified polynucleotides. Equivalent proteins will have amino acid similarity with an exemplified protein (or peptide). The amino acid and/or nucleotide identity will typically be greater than 60%. Preferably, the identity will be greater than 75%. More preferably, the identity will be greater than 80%, and even more preferably greater than 90%. Most preferably, the identity will be greater than 95%. RNAi molecules will also have corresponding identities in these preferred ranges. These

identities are as determined using standard alignment techniques for determining amino acid and/or nucleotide identity. The identity/similarity will be highest in critical regions of the protein or gene including those regions that account for biological activity or that are involved in the determination of three-dimensional configuration that is ultimately responsible for the biological activity. In this regard, certain amino acid substitutions are acceptable and can be expected if these substitutions are in regions which are not critical to activity or are conservative amino acid substitutions which do not affect the three-dimensional configuration of the molecule. For example, amino acids may be placed in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. Below is a list of examples of amino acids belonging to various classes

Class of Amino Acid	Examples of Amino Acids
Nonpolar	Ala, Val, Leu, Ile, Pro, Met, Phe, Trp
Uncharged Polar	Gly, Ser, Thr, Cys, Tyr, Asn, Gln
Acidic	Asp, Glu
Basic	Lys, Arg, His

[00074] In some instances, non-conservative substitutions can also be made. The critical factor is that these substitutions must not detract from the ability to manage nematode-caused diseases.

[00075] An "isolated" or "substantially pure" nucleic acid molecule or polynucleotide is a polynucleotide that is substantially separated from other polynucleotide sequences which naturally accompany a nucleic acid molecule. The term embraces a polynucleotide sequence which was removed from its naturally occurring environment by the hand of man. This includes recombinant or cloned DNA isolates,

chemically synthesized analogues and analogues biologically synthesized by heterologous systems. An "isolated" or "purified" protein, likewise, is a protein removed from its naturally occurring environment.

[00076] Recombinant hosts. The genes, antisense, and RNAi polynucleotides within the scope of the present invention can be introduced into a wide variety of microbial or plant hosts. Plant cells can be transformed (made recombinant) in this manner. Microbes, for example, can also be used in the application of RNAi molecules of the subject invention in view of the fact that microbes are a food source for nematodes

[00077] There are many methods for introducing a heterologous gene or polynucleotide into a host cell or cells under conditions that allow for stable maintenance and expression of the gene or polynucleotide. These methods are well known to those skilled in the art. Synthetic genes, such as, for example, those genes modified to enhance expression in a heterologous host (such as by preferred codon usage or by the use of adjoining, downstream, or upstream enhancers) that are functionally equivalent to the genes (and which encode equivalent proteins) can also be used to transform hosts. Methods for the production of synthetic genes are known in the art.

[00078] Where the gene or polynucleotide of interest is introduced via a suitable vector into a microbial host, and said host is applied to the environment in a living state, certain host microbes are preferred. Certain microorganism hosts are known to occupy the phytosphere, phylloplane, phyllosphere, rhizosphere, and/or rhizoplane of one or more crops of interest. These microorganisms can be selected so as to be capable of successfully competing in the particular environment (crop and other habitats) with the wild-type microorganisms, provide for stable maintenance and expression of the gene expressing a polypeptide of interest, and, desirably, provide for improved protection of the protein/peptide from environmental degradation and inactivation.

[00079] A large number of microorganisms is known to inhabit the phylloplane (the surface of the plant leaves) and/or the rhizosphere (the soil surrounding plant roots) of a wide variety of important crops. These microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., genera *Pseudomonas*, *Erwinia*, *Serratia*, *Klebsiella*, *Xanthomonas*, *Streptomyces*, *Rhizobium*, *Rhodopseudomonas*, *Methylophilus*, *Agrobacterium*, *Acetobacter*, *Lactobacillus*,

Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes; fungi, particularly yeast, e.g., genera Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of particular interest are the pigmented microorganisms.

[00080] Methods of the subject invention also include the transformation of plants or plant tissue with genes which encode the RNAi molecules of the present invention. In one embodiment, the transformed plant or plant tissue expresses antisense RNA and/or RNAi. Transformation of cells can be made by those skilled in the art using standard techniques. Materials necessary for these transformations are disclosed herein or are otherwise readily available to the skilled artisan.

[00081] Additional methods and formulations for control of pests. Control of nematode pests using the RNAi molecules of the instant invention can be accomplished by a variety of additional methods that would be apparent to those skilled in the art having the benefit of the subject disclosure. A "cocktail" of two or more RNAi molecules can be used to disrupt one or more of the genes identified herein. The "cocktail" of RNAi molecules may be specific to segments of a single gene or the entire gene. A "multigene cocktail" of RNAi molecules specific to two or more genes (or segments thereof) is also encompassed by the instant invention. In another embodiment of the instant invention, the disclosed RNAi molecules, cocktails, and/or multigene cocktails thereof, may be used in conjunction with other known nematode control agents and methodologies. Such cocktails can be used to combat the development of resistance by nematodes to a certain inhibitor or inhibitors.

[00082] Compositions of the subject invention which comprise RNAi molecules and carriers can be applied, themselves, directly or indirectly, to locations frequented by, or expected to be frequented by, nematodes. Microbial hosts which were transformed with polynucleotides that encode RNAi molecules, express said RNAi molecules, and which colonize roots (*e.g.*, *Pseudomonas, Bacillus*, and other genera) can be applied to the sites of the pest, where they will proliferate and be ingested. The result is control of the pest. Thus, methods of the subject invention include, for example, the application of recombinant microbes to the pests (or their locations). The recombinant microbes may also be transformed with more than one RNAi molecule thereby delivering a "cocktail" of RNAi molecules to the nematode pests. A carrier may be any substance suitable for

delivering the RNAi molecules to the nematode. Acceptable carriers are well known in the art and also are commercially available. For example, such acceptable carriers are described in E.W. Martin's *Remington's Pharmaceutical Science*, Mack Publishing Company, Easton, PA.

[00083] All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety to the extent they are not inconsistent with the explicit teachings of this specification.

[00084] Following are examples that illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

Example 1—Production of Hairy Roots for RNAi Testing

[00085] A hairy root assay system was developed for testing the anti-nematode activity of RNAi molecules.

[00086] *Agrobacterium rhizogenes*: Several *Agrobacterium rhizogenes* strains produce hairy roots on a variety of plant species. *A. rhizogenes* strains, A4, 15834, 8196 and LBA4404 demonstrate hairy root development on tomato and sugar beet, with A4 being the most efficient. The *A. rhizogenes* strain K599 demonstrated very efficient formation on transgenic soybean hairy roots and was also effective on sugar beet and *Arabidopsis*. However, stain K599 failed to produce hairy roots on tomato tissues possibly due to hyper-virulence.

[00087] Hairy root production: Transgenic hairy roots were identified by stable GUS expression in tomato, sugar beet, soybean and *Arabidopsis*. The construct pAKK1401 (pNOS / NPT-II / tNOS // pSU / GUS / tNOS) was used to produce hairy roots when transformed into *A. rhizogenes* strains A4 or K599. Transgenic roots were identified by GUS expression.

Example 2 — Protocol for Electro-competent *Agrobacterium* and Electroporation

[00088] Electro-competent Agrobacterium Protocol:

- [00089] 1. Grow *Agrobacterium* overnight in 5 mls LB + antibiotics at 30°C on shaker (for *Agrobacterium rhizogenes* strain K599 no antibiotics are needed).
- [00090] 2. Use the 5 mls of overnight culture to inoculate 500 mls LB + antibiotics at 30°C on shaker. Grow overnight.
- [00091] 3. Add liquid culture in eight 50 ml polypropylene orange cap tubes.
- [00092] 4. Centrifuge 10 min., 4000 rpm, 4°C.
- [00093] 5. Resuspend cells in each tube with 20 mls 10% glycerol (on ice)
- [00094] 6. Centrifuge 10 min., 4000 rpm, 4°C.
- [00095] 7. Resuspend cells in each tube with 10 mls 10% glycerol (on ice).
- [00096] 8. Centrifuge 10 min., 4000 rpm , 4°C.
- [00097] 9. Resuspend cells in each tube with 2 mls 10% glycerol (on ice).
- [00098] 10. Aliquot 50 µl into cold Eppendorf tube and place onto dry ice.
- [00099] 11. Store electro-competent cells at -80°C. These cells can be used for up to two years.

[000100] Electroporations:

- [000101] 1. Add 1 µl to 5 µl of DNA (resuspended in H₂O and not TE or other buffer) to 50 µl of *Agrobacterium* electrocompetent cells and mix.
- [000102] 2. Transfer 20 µl of DNA/*Agrobacterium* mix to cuvette.
- [000103] 3. Electroporate:
25µF, 400 Ω resistance, 2.5 volts (0.2cm cuvette) or 1.8 volts (0.1cm cuvette for BioRad electroporator. 330 µF, 4000 kΩ, low w, fast charge rate for BRL Electroporator.
- [000104] 4. Add 1ml of LB and transfer to Eppendorf tube.
- [000105] 5. Shake at 30°C for 2 hours.
- [000106] 6. Centrifuge down cells (2 min. 14 krpm).
- [000107] 7. Plate all onto LB + antibiotics (most *Agrobacterium* strains are naturally streptomycin resistant).

Example 3 – Protocol for Production of Transgenic Hairy Roots on Soybean

[000108] Seed Sterilization. Rinse the soybean seed with 70% ETOH for 2-5 min. Remove and add 20% Clorox and shake for 20-25 min. Rinse 3X with sterile water. Plate the seed, 5 seed per plate, onto $\frac{1}{2}$ MSB5 + 2% sucrose + 0.2% gel (referred to as $\frac{1}{2}$ MSB5). Place seed into chamber at 25C, 16/8 photoperiod for 5-7 day (depending on genotype) germination period. After 1 week seedlings can be placed into cold room for longer storage if necessary (not to exceed 2 weeks).

[000109] Agrobacterium Preparation. For Agrobacterium rhizogenes strain K599, take a small sample from frozen glycerol into 25-50 ml of NZYM media with 50 mg/L kanamycin in a 125-250 ml Erlenmyer flask. Place onto shaker at 28-30 °C for 16 - 20 hours. Pour sample into centrifuge tube and centrifuge the bacterium at 4000 rpm for 10 min. Pour off supernatant and re-suspend the pellet with an equal volume of liquid $\frac{1}{2}$ MSB5 + 200 μ M acetosyringone. Use pipette to re-suspend the pellet and homogenize the sample (remove all clumps). To determine O.D., prepare a 1:10 dilution by putting 900 μ l $\frac{1}{2}$ MSB5 into cuvette and add 100 μ l of bacterial sample. Determine the O.D.₆₆₀ and calculate the volume needed to adjust (dilute) OD to approximately 0.2 for inoculation. Check final O.D.

[000110] Explant Preparation and inoculation. Place a sterile filter paper onto plates of 1/2 MSB5. Cut soybean cotyledons just above the shoot apex and place onto plate. Lightly scar the cotyledon's abaxial surface (flat side, upper surface that reaches toward sun) with a scalpel blade. Cut each cotyledon transversely into 2-3 pieces (no smaller than 1 cm). Add approximately 10 ml of prepared bacterial solution to each plate and allow cotyledons to incubate for 1 hr. Remove the bacteria using a vacuum aspirator fitted with sterile pipette tip, ensure that there is no standing liquid. Orient all explants with abaxial surface up and wrap plates for a 3 day co-culture, 25°C in light (16/8 photoperiod).

[000111] Hairy root selection and maintenance. After 3 day co-culture, wash explants with liquid $\frac{1}{2}$ MSB5 + 500 mg/L carbenicillin. Transfer the explants abaxial side up to selection media, $\frac{1}{2}$ MSB5 supplemented with 500 mg/L carbenicillin and 200 mg/L kanamycin. Roots should develop in approximately 2-3 weeks. The roots will form primarily from the cut vascular bundles with other roots developing from the small cuts on cotyledon surface. Remove roots (>1cm in length) and place onto replica media with

transfers to fresh media every 2 weeks to prevent *Agrobacterium* overgrowth. After 6-8 weeks on selection the roots can be moved to media without kanamycin, however carbenicillin must remain in media for several months for continued suppression of *Agrobacterium*. At this stage roots can be used for testing RNAi for nematode control. Sterilized nematodes can be added and observed for RNAi affects.

Example 4 – Testing of RNAi for Plant Parasitic Nematode Control.

[000112] Various types of nematodes can be used in appropriate bioassays. For example, *Caenorhabditis elegans*, a bacterial feeding nematode, and plant parasitic nematodes can be used for bioassay purposes. Examples of plant parasitic nematodes include a migratory endo-parasite, *Pratylenchus scribneri* (lesion), and two sedentary endo-parasites, *Meloidogyne javanica* (root-knot) and *Heterodera schachtii* (cyst).

[000113] *C. elegans*: RNAi vectors can be tested through expression of the RNAi in *E. coli*. *C. elegans* are fed *E. coli* and assayed for their growth by measuring growth of nematodes, production of eggs and viability of offspring. Another approach is to inject dsRNA directly into living nematodes. Finally, soaking nematodes in a solution of *in vitro*-prepared RNAi can quickly establish efficacy of treatment.

[000114] *P. scribneri*: The *P. scribneri* *in vitro* feeding assay uses a corn root exudate (CRE) as a feeding stimulus and both the red dye Amaranth or potassium, arsenate as feeding indicators. Feeding is confirmed after seven days by the presence of red stained intestinal cells in live worms exposed to the Amaranth or death of worms exposed to arsenate. This bioassay is used to test soluble toxins or RNAi. *P. scribneri* has also been cultured on wild type roots of corn, rice and *Arabidopsis*, and on *A. rhizogenes*-induced hairy roots of sugar beet and tomato. *P. scribneri* is very valuable in evaluating transgenic hairy roots because of the non-specific feeding of these worms.

[000115] *M. javanica*: Nematode eggs are sterilized using bleach and are used to inoculate hairy roots expressing RNAi. Nematodes are assessed for their growth by measuring knots, egg masses or production of viable eggs. An alternative approach is to microinject dsRNA directly into root feeding sites or into living female nematodes.

[000116] *H. schachtii*: Cultures of this nematode were maintained on sugar beets. Nematodes eggs are sterilized using bleach and used to inoculate hairy roots

expressing RNAi. Nematodes can be assessed for their growth by measuring knots, egg masses or production of viable eggs.

Example 5 – Plant Expression Vectors for RNAi

[000117] Modular Binary Construct System (MBCS): An important aspect of the subject disclosure is the Modular Binary Construct System. The MBCS eases the burden of construct development by creating modular pieces of DNA that can be easily added, removed, or replaced with the use of low frequency cutting restriction enzymes (8-base cutters). These constructs are useful for delivery of a variety of genes to plant cells and is not limited to the delivery of RNAi genes. To develop this system, a series of six, 8-base cutter restriction enzyme sites was placed between the left and right Ti borders of a previously created kan^R/tet^R binary plasmid (Figure 1). The production of both kan^R and tet^R MCBS aids the testing of constructs using different strains of *Agrobacterium rhizogenes* in different plant species. In addition to the MBCS, a series of shuttle vectors were created that aid in the cloning of useful DNA fragments by containing the multi-cloning site (MCS) of a modified Bluescript plasmid flanked by 8-base restriction sites (Figure 2). With six 8-base cutter sites, each site is, preferably, reserved for a particular function (Figures 3 and 4). Because of the close proximity of the *Pme* I and *Sgf*I sites to the left and right border of the binary vector, these sites are, preferably, reserved for gene tagging and enhancer trap experiments. The *Not* I site is, preferably, reserved for plant selectable markers (Figure 5). The *Pac* I site is reserved, preferably, for Plant Scorable Markers (Figure 6). The *Asc* I site is, preferably, reserved for RNAi experiments (Figures 7 and 8), while the *Sbf*I site is, preferably, reserved for anti-nematode proteins. The restriction sites that are denoted in the Figures are, preferably, reserved for the denoted insertions; however, the MCBS binary and shuttle vectors do not require the restriction sites to contain these suggested inserts.

[000118] Plant Selectable Markers for MBCS: To further develop the MBCS, a series of plant selectable markers were added to the MBCS (Figure 5). Plant selectable markers that were added to the MBCS include: pNOS/NPT-II/tNOS (kan^R), pNOS/Bar/tNOS (basta^R for dicots), pUBI/Intron-Bar/tNOS (basta^R for monocots), and pUBI/Intron-PMI/tNOS (mannitol isomerase^R).

[000119] Reporter Genes for MBCS: Four exemplary reporter genes are used in the MBCS are provided in Figure 6 and Appendix 2. GUS, a nuclear localized GUS, GEP, and the anthocyanin transcriptional activator *papIC* genes into the MBCS.

[000120] Promoters for MBCS: We cloned several useful constitutive and nematode-inducible promoters (Figures 6, 7 and Appendix 2). Constitutive promoters include the SuperUbiquitin promoter from pine (pSU) and two promoter regions from the Strawberry Banding Vein virus (pSBV₁ and pSBV₂). Seven nematode-inducible promoters from *Arabidopsis* were also been cloned.

[000121] The following Scorable marker clones have been constructed and placed in the MBCS, NPT-II binary vector (pNOS/NPT-II/tNOS):

Intron/GUS/tNos	Intron/NLS-GUS/tNOS	Intron/GFP/tNOS
pSU/Intron/GUS/tNOS	pSU/Intron/NLS-GUS/tNOS	pSU/Intron/GFP/tNOS
pSBV ₁ /Intron/GUS/tNOS	pSBV ₁ /Intron/NLS-GUS/tNOS	pSBV ₁ /Intron/GFP/tNOS
pSBV ₂ /Intron/GUS/tNOS	pSBV ₂ /Intron/NLS-GUS/tNOS	pSBV ₂ /Intron/GFP/tNOS
pKT/Intron/GFP/tNOS		
pKA/Intron/GFP/tNOS		

Example 6 – Control of Plant parasitic nematodes using RNAi in planta

[000122] Production of RNAi Vector. The RNAi shuttle vector to be used is adapted from the Modular Binary Construct System (MBCS - See Example 5). RNAi shuttle vectors preferably comprise a promoter, intron, antisense RNAi, stuffer fragment, sense RNAi, and terminator (See Figures 7 and 8 and Appendix 2 for more details). The plant promoter can be constitutive, tissue-specific or nematode-inducible. The intron is necessary to eliminate expression in *Agrobacterium*.

[000123] The anti-sense and sense RNAi molecules comprise nematode-specific sequences and are disclosed herein. These genes are associated with pathogenesis, growth, or other cellular function in nematodes. An exemplary group of RNAi sequences for use in plant/nematode control may be based upon:

[000124] 1. Genes specific for nematode esophageal gland cells.

[000125] 2. Genes specific for plant parasitic nematodes but not other free living nematodes.

- [000126] 3. Genes common to all plant parasitic nematodes.
- [000127] 4. Genes common to all nematodes (nematode-specific).
- [000128] 5. Genes specific for important tissues or cell types.
- [000129] 6. Genes from large gene families.
- [000130] 7. Genes involved in nematode signal transduction or other cellular pathways.

[000131] Appropriate RNAi constructs allow for the formation of dsRNA molecules (the sense and antisense strands join to form the dsRNA). The terminator sequence adds a poly-A tail for transcriptional termination. The RNAi shuttle vector can then be subcloned into the MBCS and transformed into *Agrobacterium rhizogenes*.

[000132] Plant Transformation with RNAi Vectors. An exemplary transformation system for generating hairy roots using *Agrobacterium rhizogenes* is provided below. The RNAi vector once introduced into the MBCS can subsequently (as a binary vector) be transformed in *A. rhizogenes* using, for example, the electroporation protocol of Example 2. Once the *A. rhizogenes* is confirmed to contain the plasmid, it is then used in generating hairy roots (See Example 3). Using this protocol transgenic hairy roots expressing RNAi are isolated, cultured and tested.

[000133] Testing of RNAi Vector for Nematode or Plant Pathogen Resistance. RNAi expressing hairy roots can be inoculated with sterilized nematodes. Infested hairy roots can be observed and the effect on nematodes determined. An alternative approach involves the microinjection of RNAi directly into root feeding sites (giant-cells for root-knot nematode, and syncytia for cyst nematodes) or into living female nematodes.

Example 7 – Insertion of Genes Into Plants

[000134] One aspect of the subject invention is the transformation of plants with genes encoding proteins of the present invention. Transformation of plants as described herein can be used to improve the resistance of these plants to attack by the target pest.

[000135] Genes, polynucleotides, and/or RNAi molecules as disclosed or suggested herein can be inserted into plant cells using a variety of techniques which are

well known in the art. For example, a large number of cloning vectors, for example, pBR322, pUC series, M13mp series, pACYC184, pMON, etc., are available for preparation for the insertion of foreign genes into higher plants via injection, biolistics (microparticle bombardment), *Agrobacterium tumefaciens*, or *Agrobacterium rhizogenes*-mediated transformation, or electroporation as well as other possible methods. Once the inserted DNA has been integrated into the genome, the genetically modified-cell(s) can be screened via a vector carried-selectable marker that confers on the transformed plant cells resistance to a biocide or an antibiotic, such as kanamycin, G418, bleomycin, hygromycin, chloramphenicol, or bialophos, *inter alia*. The transformed cell will be regenerated into a morphologically normal plant. The transgene(s) in the transgenic plant is relatively stable and can be inherited by progeny plants.

[000136] If a transformation event involves a germ line cell, then the inserted DNA and corresponding phenotypic trait(s) will be transmitted to progeny plants. Such plants can be grown in the normal manner and crossed with plants that have the same transformed hereditary factors or other hereditary factors. The resulting hybrid individuals have the corresponding phenotypic properties.

[000137] It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.

We claim:

1. An RNAi molecule, optionally comprising a linker, wherein at least one strand of said RNAi is encoded by a DNA sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 139.
2. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 1.
3. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 2.
4. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 3.
5. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 4.
6. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 5.
7. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 6.
8. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 7.
9. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 8.
10. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 9.

32

11. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 10.

12. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 11.

13. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 12.

14. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 13.

15. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 14.

16. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 15.

17. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 16.

18. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 17.

19. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 18.

20. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 19.

21. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 20.

33

22. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
21.

23. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
22.

24. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
23.

25. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
24.

26. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
25.

27. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
26.

28. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
27.

29. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
28.

30. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
29.

31. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
30.

32. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
31.

34

33. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
32.

34. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
33.

35. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
34.

36. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
35.

37. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
36.

38. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
37.

39. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
38.

40. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
39.

41. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
40.

42. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
41.

43. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
42.

- 35
44. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
43.
45. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
44.
46. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
45.
47. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
46.
48. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
47.
49. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
48.
50. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
49.
51. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
50.
52. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
51.
53. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
52.
54. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO:
53.

36

55. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 54.

56. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 55.

57. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 56.

58. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 57.

59. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 58.

60. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 59.

61. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 60.

62. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 61.

63. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 62.

64. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 63.

65. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 64.

66. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 65.

67. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 66.

68. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 67.

69. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 68.

70. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 69.

71. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 70.

72. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 71.

73. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 72.

74. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 73.

75. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 74.

76. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 75.

77. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 76.
78. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 77.
79. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 78.
80. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 79.
81. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 80.
82. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 81.
83. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 82.
84. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 83.
85. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 84.
86. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 85.
87. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 86.

88. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 87.
89. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 88.
90. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 89.
91. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 90.
92. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 91.
93. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 92.
94. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 93.
95. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 94.
96. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 95.
97. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 96.
98. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 97.

40

99. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 98.

100. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 99.

101. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 100.

102. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 101.

103. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 102.

104. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 103.

105. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 104.

106. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 105.

107. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 106.

108. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 107.

109. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 108.

110. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 109.

111. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 110.

112. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 111.

113. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 112.

114. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 113.

115. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 114.

116. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 115.

117. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 116.

118. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 117.

119. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 118.

120. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 119.

121. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 120.

122. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 121.

123. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 122.

124. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 123.

125. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 124.

126. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 125.

127. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 126.

128. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 127.

129. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 128.

130. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 129.

131. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 130.

132. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 131.

133. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 132.

134. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 133.

135. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 134.

136. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 135.

137. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 136.

138. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 137.

139. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 138.

140. An RNAi molecule according to claim 1, wherein said DNA sequence is SEQ ID NO: 139.

141. A transgenic plant or transgenic plant tissue comprising an RNAi molecule according to any of the preceding claims.

142. A method of disrupting cellular processes in a nematode comprising the steps of:
- (a) providing a composition comprising a compound according to any of the preceding claims; and
 - (b) contacting a nematode with said composition.

143. An isolated promoter comprising the following nucleotide sequence:

aacagcccaagataaacagaaaagtcaaagggtttcgaaa
gaccacttgtgactaaggatcattcatccataattatctggtagca
cagactcatgataactgcgaggaacacaagttcttacagtcattc
aaagacactttctttacggtttattgaaggagccgaccgcagaat
atgtcagagaagctttcactgtgggttaatttcattaatctatcca
ggtaaaaacctcaaggagatctctttccaaaagaccccttacag
ggcaatcaaaaaactacagaaccagatgtttagtgtcacagatgac
caatctacctgagaatcacgagttaccccttagagtggaaaatgat
gacatccttattccataccactggatttaggttaggactatccatgg
aaaaattccatggacaagtcatataagaagaccgcaacagtgcagt
atctccagagataactgcactcagacctaaggataaaaggatgac
tataatcagtgtactaagatcttcgcagattcaaagaagaagcttaa
ctatgcgtatgacaagataattctaataagcaattattcagaattaa
tcaaggagaaaagaattataactcttcagaatatgaagccccgttt
acaagtggccagcttagctatcactgaaaagacagcaagacaatggtg
tctcgatgcaccagaaccacatcttgcagcagatgtgaagcagcca
gagtggtccacaagacgcactcagaaaaggcatcttaccgcacaca
qaaaaagacaaccacagctcatccaaacatgttagactgtcgttat
gcgtcggtgaagataagactgaccccaggccagcactaaagaagaa
ataatgcaagtggcttagctccacttttagcttataattatgttt
cattattattctctgtttgtctcttatataaagagcttgcatttt
catttgaaggcagaggcgaacacacacacagaacccctccctgcttaca
aaccatgtattgttagctaaacccctttaggag .

45
144. An isolated promoter comprising the following nucleotide sequence:

tggtggggacaatggatccggctcgcttagcaacaaggctg
aaaaagattaaacagaaaacctgtatcattagcgttgaccaccacc
aaaacctcctgagccaccaaagcctccagagcctgaaaaaccaaagc
ctccaccacccatgtatgcacccatgtatgcacccatgtatgc
tgcaacagtgtatgtgtctgttactacctatgaaaagtggaaag
cggctgcaccattttgagtcatatatgcgttaccatgccttcat
gttaagtccgtatccataactaattcatcatgttctcatgt
ttttgtttatccatcaaatatgaatctctgttgc
ctccccctgttataattatgcgttgc
atgttcatgctaaagaaaataaaagttcaaattaaaacaccaaatt
tgattaaattccatcaaatatgcgttgc
ctgaacagagcttaggaagtccttgc
ttgggtcgtagcacttttaggcccattaaacttcatgc
attatgcacaaacaagaaatgagacatatggaaacattagggttctt
cagaaaaaaatagaaaaagcaggacaactaaacaaaaattcagaa
acaagaggcaagtggacgaccacggcgtaaagatcaacatgtggat
gtgcattgc
gtctttcttatgttgc
ctttttataggatagtaaaaaatatgatttatgttgc
cattttgagttaaaacctaacttatagtaagcatttgc
tttcctatacgacatctatcaacatgac
gatgaaactactttaagttagtaaaacctaagcaattaaaatttgc
ttaaatttagtagttgttgc
aaatcaaaaacagttatcgt
gtttcaacacatgattgc
cataacaatcatcactcgtaat
aaagggttatgatttccaactgc
cacacgtatgc
ttgggagagatcataatttattagggttgc
cgtaaaatgaaaatttgc
ctagttatcttttatataacaatt
tttatacacatcatccaat
caggatagagccaataagat
atgtgctaatt
atgctgagc
gattcaattttaatt
catgaaact
tgcttcttcttgc
ctcaga
tactgtgc
actcacagtc
ttcttccagt.

46

145. An isolated promoter comprising the following nucleotide sequence:

.agcaaagcaagaacaccagagaagaagaaaagcactacaga
aaaaaatgtgagcttaagcgctccaacaacacttctctggagtc
taaggatgctgcaaaaagcctggtggtgagacttccgcataatttc
caagcatggtttattttgttagcacacaaactatctgaccctcga
cttggatttcttcgcagttgtccaactacattgaaacggatatg
caggcaacatggatcatgaggtggccatctcgtaagattaacaaag
tgaacaggtcactaaggaaaatacagacggtactggactcggtccaa
ggtgtagaaggaggactaaagttcgactcagcaactggcgaattcat
tgcagttagacctttattcaagaaattgataccaaaagggtctgt
cgtcttgcataatgatgcacatgcaagaagaactcaggaggatatg
cctgacgatacttcattcaagctccaggaagctaattctgtcgacaa
tgccatttaagttagaggaggatacaaccatgaatcaagcaagaccag
gtaagaacttctctatccataaaccatagatggagcgtttagaatct
taatccatttcagtttgcaggatcattcatggaggtaatgcta
gtggtcagccatggcgttggatggccaaagagtctggcttgaatggc
agtgaaggaataaagagcggttgcaacttaagctctgtggaaatttc
agatggaatggatccaacaatccgatgcagtggcagtattgttgaac
ctaaccatccatgtcatgcagcatatcagattcatcaaattggctca
ggcgagttctgcgtggaaagctcatctacttccatggaaagattggaa
ccaaatgagaacccacaacagtaatagcagcggagacttggatcaacaa
cgctgatcgtaaaggccagttatagagaagacactgtacgttcaag
ttcgagccatcagttgggtgtcctcagctctacaaagaagttggaaa
acgtttaaactgcaggacgggtcggtttagctgaagtacttggatg
atgaagaagaatgggtgatgctggttacagattctgatctccaagaa
tgtttggagatattacatggtatggaaaacactcggtgaagttct
cgttcgtgattgtctggccctctaggttagttctggcgttgaatg
gttatcttggaaacaggcttatgacgtcgtaagacatagacacacaca
gttatgtattcccagtgaaagaatgttggatattctctagatatta
gtatgcttataataggcatgaaggagaagacaattttggatag
ggagttcagcagaaaatgtatatgttttgcgtttatatgaatcag
agaataaaaagttggatgttatatctacgttgctaatgttgcac
tcaccatcttcataataagaaaagagaacacttttagttatccctg
tgatgcagaatcgtattttgttatctccattcctgtggaaacc
aacaatcaactaaatttcggttaattggttgggtttaaagtcaa
cgaggacttgcatttttagttgggtttggcctataattgtgttcatca
ttgggtttttcccccttatcagttaaacgtccatatccatatctt
ttcttttttaacggcaaagttcatatccatatcttatgatgtgcct
aaaagagggagaagatgcgaagacagaatttcataatttggaaagggt
tcgatatcgatattggaaaacgaatcaaggtcaaaaaactcagtcta
atagttgaaatttaaaaattttattatcaatccgattgggttcgt
tttgcattttgcgttctatcatcaaaaccatcgggttgggtcct
aaagataattataatattcaccacaccagtgttaaacacatata
acaacactaaatgttgcataaaacaaagaga.

47

146. An isolated promoter comprising the following nucleotide sequence:

·aattggcactttcttgctgggttccaaaagaaaacgaaat
caatatgtcaacaagaagagctccagaagcagtcatttctaaaaat
cttaatctaacaacagctcaagaagaaaaattccatagcttagaga
gaacacaaagtacaagacgacgtaggtttgcataccatcatcaga
aatggcttaagccgaactgagttttgcataccatcatcaga
aaagtctccaagacggtagtcggatgttagatcgctcaagtaatttt
tggtttggcttcacgtttcagtcgtcccattgattcagtt
gggctttcattatctctaaaggcccaatttcatttaggttagtt
atttgatcattatcctactataaaaggcttcgccttcgagaaaattt
agggttctgtctgcactcaggttgcctcaacgac
tgcttcacttcttagcttgattttcttcgttatatgtataactg
tacattagattattctgtttctcgagttctgcataagatttgat
tctttttttgtgtcttgcgtttcaggatcagatcttagt
aaattgagacaagctaaaaatgaggtacttgcacgcacatctttacatt
caactgttaatttagagaacaataacgtctctgaatcgtgattcagaga
cgtattgttctgtcatatgcaataagtttaatttagagaacaata
cgtctctgaatcgtgattgttttggatgtgcgttattgatagctt
tatgatgttaatagtctaggattgacacgaaagttgttctgcagttt
gcataaaatgctttactaaggcctctaaatttggatgacaaatcta
aatcttgcctcataaaaatttaggtgtattaagataagatttttgc
tatggtagtgcataatgtgggttgcattgttgcagggttgcataatg
ttgtgttattttgttttagttaatttgcattactcttttgc
tgggttaatacagtaagcttcagagtggccgtcgtaagccatc
actactatcacaggaaatccgaggcaaagaaaacgtaacttgcga
gactattgagctccagatcggtctgaagaactatgaccctaaaaagg
acaacgcttcagtgatctgtcaagttaccacatccccgtcct
aaaatgaagatctgcattgtcgagatgcccacatgttgcatttttgc
gatatatctttcatggaaatttgcattttgtgcatttttgc
ataatggtttgcattttcatggatgttgcattttgcatttttgc
tgatgttgcattttcatggatgttgcattttgcattttgcatttttgc
tttggcattttcatggatgttgcattttgcattttgcatttttgc
tgcttatttcatggatgttgcattttgcattttgcattttgcatttttgc
gaaaacatggatgttgcattttgcattttgcattttgcattttgc
actcgtaagaagcttgcattttgcattttgcattttgcattttgc
agtctgtcattaaagcagattcctcgatgttgcattttgcattttgc
aaggcaggcaagttctggctacagctaatattccattgttgcattttgc
acatccgtttgcattttgcattttgcattttgcattttgcattttgc
caatgtctttgcattttgcattttgcattttgcattttgcattttgc
ggaaaattcccaactctgtgagccaccaggaatcctggagtcaaa
ggtgaatgaaacaaaggcaacagtgaagtccagctgaagaaggttc
tgtgcattttgcattttgcattttgcattttgcattttgcattttgc

147. An isolated promoter comprising the following nucleotide sequence:

tggcaaactgagatataagaggaaagggtatTTcatcaa
atTTTTTTTatTTTTTGAATGAATGCAAAATTATTCAA
aaaaaaaacTGGGCTACATCAAGTACTTCATTCTGAGTTTGA
aatCTAAAGACAACAAAAGACTTTACAATTAAATAAAAAAATA
AAATACTTATCACTCTAACGAAATTGTTGATTAATAACGTATCT
CTTGGTAAAACAGCGTTTATTGACGAAATTGTTATAATGAATA
AATGATAATAGAAAACTAGTGTGGTACGTAAACCTCTCATTTGGC
AAAATAACGGTTATGTATCATGAGTATTGCATACGACAGCGTGCTTA
AATAGTGTGCTTCAGGAGAAAATATAACCAAGTTATTGCTGAAA
TTACCACGCAAATCTGAGGTTGCAATGGCAAATAAAAACCAATGT
CATTTCTTAATGTATTAGGTCAATTAAATAATTGTACACTTT
TTCACCTGTAAGCGTTCCAAGTGTAGAATGGATAACTAGAAGGGC
AAAGGTATAATATAAGCGAACTCACTTTGCCAAGTGATT
CACTTCTTACATTGCTGATATAGTTACCCAAAAGTGTATATAT
TCCCTTATACAAATTGTTCTATTCTGGATTATAAGGGAAATAAGAA
AAAAGAAAAGAGAGATATAATAACTTTATAAAGTGTGTTA
GATTCTAATTGTAACGAAAAGTTCAAAGTGAAGAAAACGAAAA
AGTTTTCTGTTGTTATCTATAGCCAAGAAAGTTCTCAGA
TTTACAAGAAGTTAACTGAGAAAACAAAAAAACTTATGAAGCA
TGAAAGACTAATTACGAGGTGATTAATTGAGACAAATTAAACAT
CGAATTAAAAGTAACATTGGAGGGTTATATGTTATATGTGACA
TGATAAGTCCGATTCTGACTAATGTATATCTGGAATCTAACATGGA
AGAATAGAGAACGAGCAGGCCAAGGTCAACTTGCCAGACACGAAT
CAACAGATTGTGAATGAGACCAATCAATGTCATAAACCGGTTGGG
TTAAACCGGCAAGTCATCCTGGCTCAATTCCATTGTTATTCTT
CATGCAAGACCCCTGTATACACCAAGACTCCCATTACAATATTCT
TTCGATCACGAGCTACTTCAATGTGTTACCTCTTCGTC
TCTTGTGTTGTTGGTAAAGCCTAGTCGAGATGTGTCGGTATATATA
GGCATAACATACAAATGCGACAAAATAAGTATATTATTGTTAA
TTTCTATATTCCATTCTATATGCAATGGCTGGATTGTTGACCAAAA
CCCTAATTCAAGAATAGAATCCAAAAGATGGATCAAAGAATATAAT
CTAATGGGCTGACCACATTTCGATTAAATTGCAATAGTTAATT
CTTTCCTACTTTATGCCGAGAAAATTGTAATTAGTAAGACAAA
GAAATACAGATATAAGATGGTCGTAGAAAACCGAGTAGAGGAATTCT
TTTCGTCGGATAAGTGGAAATATTAAAGAGAATGGCTTTACTCT
TACAGTGGAAATGGAAATAGTAGCCATTATAATTCTACAGATT
TATATATGCAATTGTTGTTAAGCTAAATAACGTTAACGATT
TTCAAAAAAATTACAAGTTCTAGAGACTCTTAACGTCGGCAATT
TATATTCTACTTTACATGACACTTCAGGAAAAGAAAACCTACTCA
CTAGCAGATCATTAAATTCTTTCTTTGTTGAATGAACCTTAG
TTGTGGTTTTATTGTTGTTAGCTAGAAAACCTCAGTGTGTTTCC
GCCAATGGTAGTGCTTGTGATGATGGTCGG.

148. An isolated promoter comprising the following nucleotide sequence:

caatcaaggtaacgaaggaggatcagcgaaaggatgggcta
tattttggagttttccctgcgtgttaagttaatgccttgatcttcca
tgcggacatataactgaagaataaactcaactcattgtgttctggtg
tgtttcttctgtatcagattcctcggtcatctgcactttctgt
gggggctttatttataaaaacaagagtagagcgtgtggtaatcttcat
atcttctacaattccacttccattctctaatttattctcacgtga
tatacacacactcaatcaactgatgtactcgatggatgcagcgtgg
actgatgcattgccggggatgtcacttctatcgggcttactagaaac
tgcgtatttacaagaaaactcaaaaggattccatttatgcaaaatc
taagagaaagctcaactgtggtcttggttacaatttatggatctctc
aagagacaaatgctatgtaagctaattgatttggtcttgataaaaca
ggtagtggaaagtggacaagactcaagaactgaagacatcaaca
atgcctttgccaatgaagtctcatgggaccgcttccgcatttc
actcaagcgacaacaacacagagaccaagtgaagaacatattggtg
gatctaattttgtcaagtgcctcacaagaggtactgttcaagccat
ggtagtggcacgcttgcattctgcgatttctggatttgcttgcatt
tttattttctaccttctagaaaagaggtcaaaaaggtaatagcttca
cgtgagaatgtgtttcaccagattcatgtctatgatagaaaaag
acaaagcaaacaagagttcttcttgcttaggtacaagaacaaga
gtatcgttataaaagtcaacaaagattgaaacatattttgtcaagg
agtggtagaatcttccactcttgccttctactaagacaa
aaaaaagacttggactttgtctaagggtttgtggatattattaacca
agtccctttgcaaaaagtaatattgttttgcattctcttttag
aatttagtttaatcttaggcttataattggttattacttcttgaaa
atgatctgttattcttattcatacttggttacctcgctttatctt
acttctacaaaaggattatcagtgaaaggtagttagtcttactctcacc
ttccgaaaataaaacaaaatatcgataactcttagatcaaaccaag
tgattaaaacatccctattccctacgattctgatcttgagatatt
atcatgttaagatctaaattgacaagaaaactgattttcttca
gtagaaaaataattactattgtgatcatgattgtcgaccgtaaga
ggtagtttagttactctccatcttgcattttgaagaagtcaaaaaag
gaaattatataatcaaattaaacatcaatattgaacacatatactgtat
ggttttatgttttagaaaattccaatatttatattcccttagggaaa
agaagcttattcttcaattttatgttagtgcgtttttatggat
aaaaatataaaagtctaaatattaaaaactcagttgcattttgcatt
cctcccaagtctccaaagtcaattttatgttagttaattaaacca
aaaagtttatttagtcaaacttagcatgcaatgcgtggtaccaacc
caagcatttagtctttttaatcttcttccatcaataggat
aatttttaatttgcatttccctgtattttatgttagttaatttt
tttagctaataccactccgtttcttatttccatcaatcactcacc
taaatacgttcttcttccctttatcatcactcacc
tcttctcatttccat.

50

149. An isolated promoter comprising the following nucleotide sequence:

atgttgtgagtgaaggagaagaagagggaaacaaaggatt
tatttttagcgagttttgtgtgacgcgggtttgtctgtttcaa
tggtgacgaaacgagtgagagagtgctgttattaaaagaaaaccct
aattaagtcaagacccgcgggtataaaaatagtcaaaaagttaggaaa
acgcgtgtgtgagtgagacagagacagcccattgttgcattatggg
cttataagcgagacgtgttaattggcctttatggcgaaa
acaaaagaaaacgtcgccctgagagatctgaactctcgccggcagagcc
catgtacttagcaggcacacgcctaaccactcgccaaagcgactt
gttgctatgagtttagacaaaatcattaaaattctctattatgatttc
tcatagtgtgtgttatattgtgatctactaaaattcttgcatt
tattactttatgtgttatattgttatattgttatattgttat
aactttattattactcaaaatttatcagattactgattttatatt
gttcctttggtatatagacgtactatagtttagaaaaaccataa
gattcctttatattcatagatgttatattgttatattgttat
tggagaagaaaataagttccacgaggaggactctttttttggta
agacgaggaggaggactttgggtatccagtcttacgttagacat
cgacccttacatttgccttcttatcaacatggcaggtaaaa
atcttcattcaaccgaaccaaccaaggctcttcccaataatattca
agcaccatccttggaaactcatacatactacagtctacactctt
catttcttcaacgctcaacttaacaaatgatatactgttagttgc
aattatatgtttatttagtgtttcacatcaaattctggttgata
ttttagtactatttcggaaacatctcaatgtccgcataatacaatc
gtctatcatatataatccgtacgtgttattttatagatagaataa
tatggcgtatcttataatataacatataatagaatctgttagattat
tttattttatatttatatcgatataatcgatataatcgatataat
gtttgttatatgataccatatttagttacttaaaaaaagttaa
gcgataatataatataatcaactttataacaaaaaagtataacac
atggtaaagaaaaataaaaaatgaagacatgggtgacacgaaaatgg
cactaaatatacatatataatagatagctacaatatccatataca
cacttttaattgactaatacataacttacacacttttaattga
ctaattcataacttttatcattgtcaacatgcaattcatattcc
gttgaactatttattttgtttttaaaagaaggcgttgcgttatagaa
aataaaaatatgattccaaatgacgttagagcaaaaaaaaaaag
gttgcgtgtgtgttttttttttttttttttttttttttttttttttt
aagtaatataactgcctctaatttctcgcttctaccgaagaatc
tctccactcttgccttgcggaaacccctaaaccagaagcaccagat
ttttcaactttttcccgagaacaatagaaaaccctaaacttgc
tcttagggtt
tcattttggaaagcttacccaccagcggaaaaattataacttccatcg
attcctggttctctctcgctctctgcattgtgttatccatcg
gactgatcctcactgtcacctctgtt .

51

150. An isolated promoter comprising the following nucleotide sequence:

52

151. A transgenic plant or transgenic plant tissue comprising an isolated promoter according to any of claims 143 through 150.

54
APPENDIX 1

SEQ ID NO:	INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTIDE / GENE
1, 2, 3	2293133	glyceraldehyde-3-phosphate-dehydrogenase
4, 5, 6, 7	7143495	Histone H4
8 & 9	7143515	ATP dependent RNA helicase, mRNA sequence
10, 11, 12, 13	7143527	nematode specific
14 & 15	7143602	protein serine-threonine phosphatase 1, catalytic subunit
16 & 17	7143612	40S ribosomal protein S4
18	7143666	cytochrome p450
19, 20, 21, 22	7143675	Neuroendocrine protein 7B2
23, 24, 25	7143839	nematode specific
26	7143863	40S ribosomal protein S17
27 & 28	7144016	vacuolar ATP synthase subunit G
29	7144025	malate dehydrogenase
30 & 31	7144060	J2 pcDNAII Globodera rostochiensis cDNA similar to Bystin, mRNA sequence
32 & 33	7144225	similar to arginine kinase
34	7144354	pyrroline-5-carboxylate reductase

SEQ ID NO:	APPENDIX 1 (cont.) INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E / GENE
35, 36, 37, 38	C10	ribosomal protein L18a
39, 40, 41, 42, 43	C118	ribosomal protein S11
44 & 45	C122	ribosomal protein L16/L10E
46 & 47	C127	FMRFamide-related neuropeptide precursor
48	C129	ADP-ribosylation factor 1
49	C130	ribosomal protein L11
50	C137	nematode specific; conserved in <i>C.elegans</i>
51 & 52	C138	ribosomal protein L7
53	C145	ADP/ATP translocase
54 & 55	C148	troponin
56 & 57	C154	calponin
58	C16	translation elongation factor EF1A
59 & 60	C18	40S ribosomal protein S16
61	C27	ubiquitin
62 & 63	C46	nematode specific
64, 65, 66	C48	ribosomal protein S3AE
67	C59	40S ribosomal protein S5/S7

SEQ ID NO:	APPENDIX 1 (cont.) INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E / GENE
68	C8	glyceraldehyde 3-phosphate dehydrogenase
69 & 70	C82	60S ribosomal protein 130/L7E
71	C90	glyceraldehyde 3-phosphate dehydrogenase
72	C135	nematode specific
73& 74	C206	predicted troponin
75	C227	cytochrome P450
76	C238	vacuolar ATP synthase subunit G
77	C246	40S ribosomal protein S4
78	C308	FMRFamide-like neuropeptide precursor
79	C342	ubiquitin
80 & 81	C344	nematode specific; conserved in <i>C.elegans</i>
82, 83, 84, 85	C370	40S ribosomal protein S5/S7
86	C426	nematode specific
87	C458	histone H4
88 & 89	C481	ribosomal protein L30E
90 & 91	C556	nematode specific; conserved in <i>C.elegans</i>

SEQ ID NO:	APPENDIX 1 (cont.)	FUNCTION OF POLYNUCLEOTIDE / GENE
INTERNAL IDENTIFIER		
92	C628	ribosomal protein S17E
93 & 94	C665	malate dehydrogenase
95 & 96	C669	malate dehydrogenase
97	C694	ribosomal protein S3AE
98 & 99	C709	ADP/ATP translocase
100 & 101	C714	ADP-ribosylation factor 1
102	C721	calponin
103 & 104	C726	ribosomal protein L11
105	C736	nematode specific
106 & 107	C773	troponin
108	C834	nematode specific
109	C860	bystin
110 & 111	C863	troponin
112 & 113	C883	translation elongation factor eEF-1A
116	C888	40S ribosomal protein S16
117	C898	glyceraldehyde 3-phosphate dehydrogenase
118 & 119	C935	peptidyl-glycine alpha-amidating monooxygenase
120 & 121	C937	calponin
122 & 123	C942	peptidyl-glycine alpha-amidating monooxygenase

SEQ ID NO:	APPENDIX 1 (cont.) INTERNAL IDENTIFIER	FUNCTION OF POLYNUCLEOTID E / GENE
124	C954	arginine kinase
125, 126, 127	C969	calponin
128 & 129	7235653	ribosomal protein L18A
130	8005381	neuroendocrine protein
131	7235496	pyrroline-5-carboxylate reductase
132 & 133	7275710	protein phosphatase pp1-beta catalytic subunit
134	7923685	nematode specific
135	7641370	40S ribosomal protein S11
136 & 137	7923404	nematode specific
138	7797811	ATP-dependent RNA helicase
139	7143613	predicted phospholipase D

Appendix 2:

Exemplary genes used for RNAi vectors.

Promoters:

Constitutive:

Super Ubiquitin from Pine

CCCGGGAAAAACCCCT CACAAATACATA AAAAAAATTCTT TATTTAATTATC AAAACTCTCCACT ACCTT
 TCCCACCAACCGTTA CAATCCTGAAATG TTGGAAAAAAACT AACTACATTGAT ATAAAAAAAACCTA CATTA
 CTTCCTAAATCATAT CAAAATTGTATA AATATATCCACT CAAAGGAGTCTA GAAGATCCACTT GGACA
 AATTGCCCATAGTTG GAAAGATGTTCA CCAAGTCACAA GATTATCAATG GAAAATCCATC TACCA
 AACTTACTTCAAGA AAATCCAAGGAT TATAGAGTAAAAA AATCTATGTATT ATTAAGTCAAAAA AGAAA
 ACCAAAGTGAACAAA TATTGATGTACA AGTTTGAGAGGA TAAGACATTGGA ATCGTCTAACCA GGAGG
 CGGAGGAATTCCTTA GACAGTTAAAG TGGCCGAATCC CGGTAAAAAAAGG TTAAAATTTTT TGTTAG
 AGGGAGTGTGAAT CATGTTTTTAT GATGGAATAGA TTCAGCACCATC AAAAACATTCA GACAC
 CTAAAATTTGAGT TTAACAAAAATA ACTTGGATCTAC AAAATCCGTAT CGGATTTCTCT AAATA
 TAATCAGAATTTCA TAACCTTCAG CAACTCCTCCCC TAACCGTAAAC TTTTCCCTACTTC ACCGT
 TAATTACATTCCTTA AGAGTAGATAAA GAAATAAAGTAA ATAAAAGTATTAC ACAAAACCAACAA TTAT
 TTCTTTATTTACTT AAAAAACAAAAAGTTTATTATT TTACTTAAATGG CATAATGACATA TCGGA
 GATCCCTCGAACGAG AATCTTITATCT CCCTGGTTTTGT ATTAAAGTAA TTATTTGTGGGG TCCAC
 GCGGAGTTGGAATCC TACAGACGCGCT TTACATACGTCT CGAGAACGCGTGA CGGATGTGCGAC CGGAT
 GACCTGTATAACCC ACCGACACAGCC AGCGCACAGTAT ACACGTGTCAATTCTTAITGGAA AATGT
 CGTGTATCCCCGC TGGTACGCAACC ACCGATGGTGCAGGTCGTT GTCGTGTGCGT AGCGG
 GAGAAGGGTCTCATC CAACGCTATTAA ATACTGCCITC ACCGCTTACTT CTCATTTCTCTTGC
 GTTGTATAATCAGTG CGATATTCTCAG AGAGCTTTCAT TCAACCCGGG

Strawberry Banding Vein Virus 1

aagcttttcaactgtgggtaatttcatatatctatccagggtaaaaaccccaaggaga
 tctctttccaaagacacctacaggcaatcaaaaactacagaaccagatccc
 ttagtgtcacagagttagaccaatctacactgagaatcacgagtacccctttagtgg
 aaaatgatgacatcattccataaccactggatttaggtaggactatccaatggaa
 aaattccatggacaagtcatataagaagaccgcaacagtcgagtatccatccagaga
 taactgcactcagactaaaaggataaaagcagtatataatcagtgtactaagatct
 tcgcagattcaaagaagaagctt

Strawberry Banding Vein Virus 2

Gtttaaacacagcccaagataaacagaaaaagtcaaagggtgtcgaaagaccacttgt
 gactaaggatcattcatccataattatctggtagcacagactcatgataactgcga
 ggaacacacaagttttacagtgcattcaagacactttctttacgggttcatgaa
 aggagccgacccagaatatgtcagagaagctttcactgtgggtaatttcatatat
 ctatccagggtaaaaaccccaaggagatctctttccaaaagaccccttacaggcc
 aatcaaaaactacagaaccagatggtagtgcacagagttagacccatctacactg
 aatcacgagtaccccttagatggaaaatgatgacatcattccataaccactg
 gatttaggtaggactatccatggaaaaattccatggacaagtcatataagaagac
 cgcacacgatcgagtatcttcagagataactgcactcagacccataaaggataaa
 agtatataatcagtgtactaagatcttcgcagattcaaagaagaagcttaactatgc
 ttagtgcacagataattctaataagcaattttagatccatgaaattaatcaaggaga
 aataactcttccagaatatgaaaggcccgcttacaagtggccagcttagtactactg
 aaagacagcaagacaatgggtctcgatgcaccagaaccacatcttgcagcagatg
 tgaagcagccagagtggccacaagacgcactcagaaaaggcatcttaccgcac
 agaaaaaagacaccacacatgttagactgtcggtatgcgtcgct
 gaagataagactgaccccaggccagcactaaagaagaataatgcaagtggtcctag
 ctccacttttagttataataattatgtttcatttattattctctgtctttgtcttat
 ataaagagcttgatatttcatgttagggcagaggcgaacacacacacagaacccccc
 tgcttacaaaccatgtattgtactaaacccctttaggaggatatc

Nematode Inducible:

Trypsin Inhibitor from *Arabidopsis* (clone#6598343)

ccccggggagcaaaggcaagaacaccagagaagaagaaaagactacagagaaaaatgtg
agcttaagcgcttccaacaacacttctctggagacttccgcatttccaagcatgggattttctgcagttgtccaaactacattgaaac
aactatctgaccctcgacttgattttctgcagttgtccaaactacattgaaac
ggatatgcaggcaacatgggatcatgaggtggccatctcgtaagattaacaaagtga
acaggtcactaaggaaaatacagacggtaactggactcggtccaagggttagaaggag
gactaaagttcgactcagcaactggcaattcattgcagttagacctttattcaag
aaattgataccaaaagggtctgttgtctttgataatgatgcacatgcaagaagaa
gtcaggaggatgcctgacgatacttcattcaagctccaggaaagctaaatctgtcg
acaatgccattaagtttagaggaggatacaaccatgaatcaagcaagaccaggtaaga
acttcttatccataaaccatagatggagcgttagaatcttaatccatttcagtt
tttgaggatcattcatggaggttaatgctagtggcagccatgggcttggatggcc
aaagagtctggcttgaatggcagtgaaggaataaagagcgttgcacttaagctct
gtggaaatttcagatggaatggatccaacaatccgatgcagttggcagtattttgaa
cctaaccatccatgtcatgcagcatatcagattcatcaaattggctcaggcgcagtt
ctgcgttgaagctcatctacttccatggaaagatttggaaaccatgagaaccacaaac
agtaatagcagcagagtggatcaacaacgcgtatcgtaaaggccagttatagagaa
gacactgtacgttcaagttcgagccatcagttgggtgtcctcagctctacaaagaa
gttggaaaacgtttaaactgcaggacgggtcgatcagctgaagttacttgcgtat
gaagaagaatgggtatgtgtttcagattctgatcttcaagaatgtttggagat
ttacatggatggaaaactcggtgaagttctcgatcgatgttttttttttttttttt
ctaggttagttctggcagtaatgttatcttggaaacaggcattatgcgtcgtaag
acatagacacacacagatgttatcccagttgttgcagtttttttttttttttttt
tattgtatgtttataaataggcatgaaggagaagacaatttttttttttttttt
tcagcagaaaatgtatgttttttttttttttttttttttttttttttttttttt
tgcgttatctacgttgcataatgttgcacccatcatttttttttttttttttttt
agaacacttttagttatccctgtgtcagaatcgtatttttttttttttttttttt
cctgtggaaaccaacaaagtcaactaaatttgcgtttaatttttttttttttttt
aacgaggacttgatt
tttccccccttatcgttaacgtccatatccatatcttttttttttttttttttt
agttcatatccatatcttgcataatgtgtgcctaaaagagggagaagatgcgaagacagaa
ttttcatattggaaagggttgcataatgcataattggaaacgaatcaaggtcaaaaaaa
ctcagtcataatgttgcataatgttgcataatgcataattggaaacgaatcaaggtcaaaaaaa
ttgttatgggttcggttctatcatcaaaaccaatcggttgcctaaagataatta
taaatattcacaacaccagggttaacacacatatacaacaaacctaagtttagataaa
caaagagacccggg

**Arabidopsis Transmembrane Protein from Arabidopsis
(clone#6468048)**

61

**Diaminopimelate Decarboxylase from *Arabidopsis*
(clone#4159709)**

ccccgggtggcaactgagatataagagggaagggtgatttcatgcaaattttttt
tattttttttgaatgaatgcaaaatttattcaaaaaaaaaacctggctacatc
aagtacttcatttctgagtttgaaaaatctaaagacaacaaaagactttacaatt
taataaaaaataataaaaactttatcactctcaacgaaatttgtgatttaataa
cgatctcttgtaaaacagcgtttattgacgaaatttgttataaatgaataaaaat
gataatagaaaacttagtgtgtacgtaaaatacctctcatttgccaaaataacggtt
tgtatcatgagtattgcatacgacagcgtgcttaatagtgtgcttcaggagaaaa
tatataccaagttattgtgaaattaccacgcaaatctgaggttgcgatggcaaaa
taaaaaaccatgtcattcctaattgttattaaaggctattaaataaaaattgtacac
tttttcacctgtaagcgttccaaagtgtagaatggataactagaagggtcaaagg
ataatattaataagcgaactcacttttgccttcaagtgttacttcttacatttgc
ttgatatagttacccaaaagtgtatatatattcccttatacaatttgttctattttct
ggattataaggggaataagaaaaaaaagaaaaagagagagtatataataactttata
aagtgtatgttagattctaattgttaacgaaaagtcaagtgtaaagaaaaacgaaa
aagttttctgtttgtttatctatagccaaaggttctcagattacaaga
agttaactgagaaaaacaaaaaaaaacttatgaaagcatgaaagactaattaacgag
gtgattaatttgagacaaattaaacatcgaattaaaggtaacatttgaggggitta
tatgttatatatgtgacatgataagtcgattcatgactaatgttatattctggaatct
aacatgaaagaatagagaacgaagcagagccaaaggtaacttgcgcagacacaatca
acagattgtgaatgagaccaaattcaatggtcataaaccggttgggtaaaccggca
agtcatccttggtcaattccattcgatttcttcatgcaagaccctctgataca
ccaaagactcccattaaqatattcttcgatcacgagctacttatttcaatgtgt
tacctcttcgtgactttgtgtgtggtaaaggctagtcgagatgtgtcggtat
atatacgatatacatatacaaattgcgacaaaataagtatattatattgttaatttct
atattccatttctatatgcattggctgggattttgacccaaaccctaattcaagaat
agaatccaaaagatggatcaaagaatataatctaattggctgaccacatttccga
ttaattcgcatagttaatattcttccactactttatgcgcagaaatttgcatt
aagtaagacaaagaaatacagatataagatggctgtagaaaaccagtagaggaattc
attttcgtggataagtggatattaaagagaatggctttactcttacagtgg
gaaatggatagtagccattataatttcatcagattctatataatgcattttgt
taagctaaaataatacgtttaagcatttcaaaaaatttacaagttctagagac
tctttaacgtcgcaatttatttactttacatgacactttcaggaaaagaaaa
ctatactcacttagcagatcattaaatttcttttcttttgcatttttgcac
tgtggtttttattttgttagctgtagaaaacttcagttttttccgccaattggtag

62

tgctttgatgatggtccggccccggg

Peroxidase from Arabidopsis (clone#4006885)

Mitochondrial Uncoupler from Arabidopsis
(clone#4220510)

63

Stress protein from Arabidopsis (clone#6598614)

Pectinacetylesterase from *Arabidopsis*

(clone#6671954)

ccccgggtggtgaaaaatggatccggctcgcttagcaacaaggctaaaaagatta

FIG. 1

FIG. 2

FIG. 3

FIG. 4

Selectable Markers

pNOS / NPT-II / tNOS

pSU / Bar / tNOS

pSU/ Intron / Bar / tNOS

pUBQ3 / Intron / PMI / tNOS

FIG. 5

Scorable Markers

¹ Construct useful for promoter analysis.

² Construct useful for high constitutive expression of genes of interest.

FIG. 6

FIG. 7

* RNAi vector adapted from MBCS Shuttle vectors
pAKK1413 and/or pAKK1414 (Figure 2).

FIG. 8

AKK110P1
SEQUENCE LISTING

<110> Mushegian, Arcady R.
Taylor, Christopher G.
Feitelson, Gerald S.
Eroshkin, Alexey M.

<120> Materials and Methods for RNAi Control of Nematodes

<130> AKK-110P

<140>
<141>

<160> 139

<170> PatentIn Ver. 2.1

<210> 1
<211> 165
<212> DNA
<213> Globodera rostochiensis

<400> 1
gtttgagatt attgactttg catatttcca accaagttca tttgaccaat attttcctgc 60
taaacatagc aaaaatgtg aaaccgaagg tcggcattaa tggctttgga cgcattggc 120
gcttggcggtt gcgcgctgct gttgagaagg acaccgttca ggtgg 165

<210> 2
<211> 342
<212> DNA
<213> Globodera rostochiensis

<400> 2
cgactacatg gtatacatgt tcaactacga ctcgaccat ggccgcttca atggcaaaat 60
ttcgacaagg gcccggcaatt tggtcgttga gaaagagggg aaggccacgc acaccatcaa 120
ggtgttcaac ctcaaggacc cggccgagat caaatgggtt gaggtgggccc cggaaatatgt 180
gatcgagtcc accgggggtgt tcactaccat tgagaaggct tcggcacact tgaagggggg 240
cgccaagaag gtggtcatct ctgctccgtc cgctgatgca ccgatgtacg tggatggcgt 300
caacgaggac aaatatgacc cggccaaagga caacgtgatt ag 342

<210> 3
<211> 205
<212> DNA
<213> Globodera rostochiensis

<400> 3
gaagccggcc tcattggacg ccatcaaggc ggccgtgaag aaggctgccg aagggaaattt 60
gaaggccatt ttgggttaca cagaggacca ggtgggttcc acggactttc ttggagacag 120
tcgctcgtcg atttcgtacg ctggggcggtt catctcgatgg aacccgcact ttgtcaagtt 180
ggtcagctgg tacgacaatg aattt 205

<210> 4
<211> 167
<212> DNA
<213> Globodera rostochiensis

<400> 4
ttaaacgtt tattcacacg cacggagaaa tgaggattac ctaatttgat tgagtctttc 60
tcgtccatgtt gtcaattgtg gcccataaga gggccgttgc ggttagttt ttgggttcc 120
ttctcccttgc tggctcaacc accgaagccg tacagcgtcc ggccttg 167

<210> 5

AKK110P1

<211> 41
 <212> DNA
 <213> Globodera rostochiensis

<400> 5
 catggccgtc acggtcttgc gcttcgcgtg ttcgcagttat g 41

<210> 6
 <211> 79
 <212> DNA
 <213> Globodera rostochiensis

<400> 6
 gtttcccagg aaaactttca gcacggaacg agtctccctcg taaatgaggc cagagatgcg 60
 cttaacgcct ccacgacgg 79

<210> 7
 <211> 168
 <212> DNA
 <213> Globodera rostochiensis

<400> 7
 cggcttggtg atgcccctgga tgtttatcccc caagactttt cggtggcgtt ttgcgcctcc 60
 ctttccgagt ccttttccgc cctttccgcg tccggacatt ttgttgttaa atcagaagag 120
 cacagagagt aggagaaaata ggaaattttg cctcgtgccg aacgtgcc 168

<210> 8
 <211> 330
 <212> DNA
 <213> Globodera rostochiensis

<400> 8
 gacagtctcc gttctggta tgggtcacac ggcgcgaacctt gctttccaaa tttctaagga 60
 atacgagcga ttccaccaagt acatgcccgg agtgaagggtt tccgtattct tcggagggtt 120
 gcccataaaag aaagacgaag aggtattggc taagaacacg ccgcacattt tcgtcggAAC 180
 gcccggacgt cttttggcct taggacgcac tggacatctg aagctgaaag gcgtcaaattc 240
 ctttgtctg gacgaatgcg acaaaatgtat tggagatgcc gacatgcgcc acgacgtgca 300
 ggaatcttc aaaatgacgc ctcaggagaa 330

<210> 9
 <211> 136
 <212> DNA
 <213> Globodera rostochiensis

<400> 9
 actttgccgc gggagctgcg cgtcttctgc aaaaagttca tgcaggaacc aatggaggta 60
 tacgtcgacg acgaggctaa gcttacgctt cacggctcc aacaatacta cgtagactg 120
 aaggaaaaatg agaaga 136

<210> 10
 <211> 141
 <212> DNA
 <213> Globodera rostochiensis

<400> 10
 tattaaaata aaatacaaac aataatataa tggctgtttt ttctgtcatg tttcaagttt 60
 ttgttgttca tcactttctt cagcagcgac aatacggcca atccggtgaa agggccaaag 120
 tcaatagctc gctcggtacc t 141

<210> 11
 <211> 141
 <212> DNA

AKK110P1

<213> Globodera rostochiensis

<400> 11
 acccaggcac tctgttcatc ttccggcatcg cttttggca atgtcaacaa cactttgctg 60
 gccatTTTGT ttctacagca cacgcacacc gtcgtctta cagcgttac ctcgccaaaa 120
 aagttagccgt atttgcgaaa t 141

<210> 12
 <211> 37
 <212> DNA
 <213> Globodera rostochiensis

<400> 12
 gcgttgggtg caagctgtac acaaggtcgc ccggttt

37

<210> 13
 <211> 161
 <212> DNA
 <213> Globodera rostochiensis

<400> 13
 ggcgttcca tcgcccgcac cacaAAAAGT cccatcgctt catatcgtag cgcaaattgt 60
 ctgggtgca aatggcaaa cggccaaaat aatggtgaa gccgtacaca accgccaccg 120
 ccacagcgcc aacccccacac caaatgcgaa atttatcgaa a 161

<210> 14
 <211> 306
 <212> DNA
 <213> Globodera rostochiensis

<400> 14
 gaattcgttt gaggtataaa taaaataataa atggcagcca acgaatcgct aaatgtggac 60
 agtttgatca ctcgattgtt agaagttcgg ggttgttagac cggaaaaac agtgc当地 120
 gacgaatctg agatacgac tttgtgcattt aaaaacacgtg aaattttgt gtcgc当地 180
 atctgttgg agctcgaggc acctttaaaa atttgtgtt acatttcacgg acaatataat 240
 gatcttctga gattgttcga atatggtggg tttccaccgg aagcgaacta tctatTTCTT 300
 ggggac 306

<210> 15
 <211> 261
 <212> DNA
 <213> Globodera rostochiensis

<400> 15
 gcaaaagcctt gagacgattt gtttgctgct tgcttacaag attaaatatc ctgaaaattt 60
 ttttcttctt cgtggcaatc acgaatgtgc ttcaatcaat cggatttacg gatTTATGA 120
 tgaatgcaaa cggaggTTCC tcaatcaagt tgtggaaagac cttcaactgac tgcttcaact 180
 gtctgccaat tgccgcttta atcgacgaaa agatctttt ctgcccacggg ggctgtctcc 240
 tgatttgctta aacatggcag c 261

<210> 16
 <211> 151
 <212> DNA
 <213> Globodera rostochiensis

<400> 16
 gaattctttt agtgcattca gcgtttaatt ttttcgtatt ataataagca tggctcgccg 60
 acccaaaaag catttgaagc gacttgcagc acccaaaaaa tggatgttgg acaaatttggg 120
 tggcgTTTTT gcccacgtc cattgtgcgg a 151

<210> 17
 <211> 306

AKK110P1

<212> DNA

<213> Globodera rostochiensis

<400> 17

tcaagtacgc	gcagtcgtac	aacgaagcgc	gcatgatctg	caaacadcg	ctgatcaagg	60
tggacggcaa	agtgcgcacc	gagatgcgt	tcccgtgcgg	aataatggat	gtgatctcga	120
ttgagaagac	aaacgaaaacg	tttgcgtctgg	tgtacgtatgt	gaaggggccgt	tttgtcatcc	180
atcgaaattca	aaagctggag	ggccagtaca	agctgtcaaa	agtgaagaag	caggccgtcg	240
gggacaagca	ggtccccctac	attgtcacac	atgacgcgcg	caccattcgc	taccggaccg	300
ctcatc						306

<210> 18

<211> 528

<212> DNA

<213> Globodera rostochiensis

<400> 18

gaattcgcac	aacgaattga	agacttatgc	ggcagaaaaa	ggacttttg	caaagtgtga	60
ggagcaagca	gacgcac	cggttggct	ttgttcgtcc	attgggttgg	agcatcgccc	120
gttcttaccg	tatacacaacg	ctgtataaaa	tgaaacaatt	cgatttagtca	atttgatccc	180
gttcaatctt	agccatttgg	cgcttgaaga	tatgcaatita	ggcaatittt	tttgtgaagcg	240
tgggacatcca	attgttaccgc	aggtcagcag	tgttctgttc	gacgaaaaac	tgtatccgga	300
gcccgatcgg	tttttgcgg	aacgcattct	ggacgtatgg	ggccgtttga	agaaaagcga	360
cgaacttatt	gcatttgggg	ttggaaaag	gcaatgtgcc	ggcgaagctt	tggcccgaat	420
gacactttt	ctgtttggcg	ctaatttctt	tctgcctac	aaagttctcc	cgtccgatcc	480
actaatcct	ccaagcctga	aaaagttggc	ggattatctg	tttacaca		528

<210> 19

<211> 335

<212> DNA

<213> Globodera rostochiensis

<400> 19

gaattctttg	agaaagcgga	aattcgffff	tggctataaa	atgattctgt	ggccacat	60
tttgggtatg	gctttggaca	ttgcgttcgg	tggcaccaat	caaattggaa	ttgatcagtc	120
ggcggcgatg	ttcccccact	cccagttcat	cgatttgatt	tcgcgcgaca	tcgaatctt	180
ctccggccca	ttgggcgttg	gccataaaatt	tatgagcggc	ggtgcccgtg	agggcgtcca	240
acagcttaggc	cccgaggggc	ccttgagca	gcccacacag	gtgaagatg	acaatgttct	300
ccccgcgtat	tgcgagcctc	caaattccctg	tccgaa			335

<210> 20

<211> 52

<212> DNA

<213> Globodera rostochiensis

<400> 20

ggacggctgc acggaacagt tcgagaacac tgccgagttt tcgcgcagct ac 52

<210> 21

<211> 190

<212> DNA

<213> Globodera rostochiensis

<400> 21

gcttgtgtga	ccaggaggcac	atgttaact	gtccgtcgaa	gaacaaccgc	gaggagtagc	60
agcaggatct	ggagcaattt	ctggccaaaca	acggactgca	caaattcaatg	attgccaaga	120
aattccatct	cacgcgggac	gaggagccgc	gccgtcgaaa	acgctttgt	cggccggctt	180
cgcccaaccg						190

<210> 22

<211> 52

<212> DNA

<213> Globodera rostochiensis

AKK110P1

<400> 22
 ccgctacaac ccctacacctgg agggcgcccc gctgaagtca gtggccaaaa ag 52

<210> 23
 <211> 54
 <212> DNA
 <213> Globodera rostochiensis

<400> 23
 gaattccgac tctcaagggtg gaccacgccc caaccaacag caattgtcag ctgc 54

<210> 24
 <211> 77
 <212> DNA
 <213> Globodera rostochiensis

<400> 24
 ccgcacatgt cgaggcctcc atctttggc actggtcac accttccgcc tactgcta 60
 aacagaccgg aacagca 77

<210> 25
 <211> 439
 <212> DNA
 <213> Globodera rostochiensis

<400> 25
 gtcaatcaaa aacgcccact tcgattccctc agctgatgg cagtaatgcg ctaaaggca 60
 tccattccgt ctcttctaca tcagcaacac aatcacattc cacgcccagt ttatgacac 120
 acaacgtgca gcagcaacat gttgtggtc aacaacagca gcaacaacag aatttccaac 180
 aaccggccgc cctatcgta actcacagcc accaacaaca aaaacaacca ccacaagcgt 240
 cacagtcgtat gttgtcaatg aaaagtggca atgttgcgt tggttgtccg caacaatcgc 300
 agcagcacca ctaccaacag cggacactga cgccactgaa gcacacatcc gcatccctcc 360
 cgtccgatcg cttcgtcatac accaaaacca acagggtgct tccactcccg tcgcagcaag 420
 gcccacggc cactgatga 439

<210> 26
 <211> 539
 <212> DNA
 <213> Globodera rostochiensis

<400> 26
 gaattcgttt gagacacatc caattaatta atagttattt ttggcaatgg gacgagttcg 60
 aacaaaaact gtgaagaagg cgtcgccgt cattatttag aagtattaca ccaaattggg 120
 cctcgacttt cacaccaaca agcgcatttg cgaggagggt gccattatcc caagcaaacg 180
 gatgcggAAC cgaattgcgg gatttatcac acatctgtg aagcgcattg agctgggccc 240
 tgcgtggc atttccatca aatttcggg ggaggagcgc gagcgtcgcg acaattacat 300
 gcccggaaatc tcttacctgg atgcgcggaa tcaccagatg atcagcaccg accaagagac 360
 gaagatatg gcggaaatttgc tggggctagg cctcaacttg gaagtggaaag ggcctttgac 420
 gagttggcgcc gctggcgccg gacgtcggtt agtcaggaca attggcatta ttgttgaaaa 480
 atcatcgatg ttttgcgtt atttggatga taatgcgtg ataaattttt ttgtattt 539

<210> 27
 <211> 179
 <212> DNA
 <213> Globodera rostochiensis

<400> 27
 gaattcnaca gtttctgtga gtaatggcat ntcacactgc cggcatccaa cagttgctt 60
 cggccggaaaa gctgtcgccg gaaaagatta atgatgcccgaagcgaaaa gcacagcgac 120
 ttaagcaggc caaacaagaa gcccaggcgg agatcgcgca gtatcgnccag gagagggag 179

AKK110P1

<210> 28
 <211> 133
 <212> DNA
 <213> Globodera rostochiensis

<400> 28
 gcaaaaattat ttgggcacgc gcgacgcacat cgagcagcaa ataaagcgcg agacagaaga 60
 gtcgctggag gcaatgaatc gcaatgtcgc ggcgaacaaa cagcaggta ttgtacgtct 120
 gctcagttt gtg 133

<210> 29
 <211> 482
 <212> DNA
 <213> Globodera rostochiensis

<400> 29
 gaattcgtga aatcaaaagc ttttttaatt tatTTTACACA aaaaatggtt ccaccaccaa 60
 ttcgcgtgtt ggtcaactgggt gcccgtggac aaattggcta ttcactgggtt ctgcaaatcg 120
 caaaaaggcga tttgtttggc aaagatcagc caattgttct cgttctccctc gacattccac 180
 cgtatggccga agtactctt ggtgtccatt ttgaatttgat ggactgtgcg ttggcaaac 240
 ttgcgggtgt ggaggcgtgt accacggaaag agcaggccctt caaggacatt gactacgctt 300
 ttcttgtcgg agcgatgccc cgaagagagg gaatggaaacg aaaggacattt ttggcggcaa 360
 atgtcaaaat tttcaagtcc caaggcgaag cattggcccg cttttccaag cccgtncgtc 420
 aaaggttctcg tggtgggcaaa cccggccaac acgaacgcgt acatttgcgc aaaatatgcc 480
 gg 482

<210> 30
 <211> 605
 <212> DNA
 <213> Globodera rostochiensis

<400> 30
 gaattcaaaag tgccgaaagc gttcaaaata attccggcaa tggcaaattt ggaacaaattt 60
 cttagaccta cttccccca aaaatggagt tcagcggcga tgTTTCAAGC aactcgtgtt 120
 ttttctgcca cccgcacacc gtcacaatgc caaagggttca acactttgggt gctgttgc 180
 cgactccgtg atagatttgc cggatcacaag aagctaaact ttcattttgtt tcagtgc 240
 tttaaagcaa ttgtcaagcc ggccggattt tttaagggca ttatTTGCG tctttcaaa 300
 tctggcactt gcactctccg tgaagccatc atctttgggt ctgcctgcg aaagatttca 360
 ataccgcaac tccacgccc tgcagcaatg ctcagcatag caaaaatggaa ctactcggc 420
 gccatttctt ttatcctacg tgTTTCTGTT gaaaaaaattt acacacttcc ttccgagca 480
 ttagacggcc tcgttttca ttttttttggaa atgcgcgtcac atcaggcga gctgccatgt 540
 atttggcacc agacactgtt ggctttgtc gagcgttacg caaaagacat aagtgcagaa 600
 cagag 605

<210> 31
 <211> 112
 <212> DNA
 <213> Globodera rostochiensis

<400> 31
 ccattccat catcaaatta ccccgattta ctgcggcttt tgccggcgc cgagtcgagg 60
 aatgaggaaa gtgaagcaaat ttttttttggaa atgcgcgtcac atcaggcga gctgccatgt 112

<210> 32
 <211> 105
 <212> DNA
 <213> Globodera rostochiensis

<400> 32
 gaattcgTTT gagcattttat ttgacaaaat ctgaataat ggccgtacca aaagaagtta 60
 ttgacaaaat cgaggcgggt tacaagaagc ttcaggaagc gtctn 105

<210> 33

AKK110P1

<211> 425
<212> DNA
<213> Globodera rostochiensis

<400> 33
aagaagtacc tcaccaagga agtcgtcgat gcctgcaagg ataagcgcac caagcttgg 60
gcgaccttg tggatgttat ccagtccggc gttgccaact tggacagcgg agttgggtt 120
tacgctcgt acgctgaggc ttacacctt ttcaagccgt tggtcgacc gatcatcaac 180
gactaccatg gtggcttgg tccggcggc aagcagccgg caactgaccc ttgtgacggc 240
aaaacgcana tgctgaccgg atctcgacc cggggggaaa atttatcaat ttgcacacgc 300
gttcgttgcg gccgtttct ttaaggata cccggttcaa cccgtgctt acnaaaggan 360
aactacntt ggagatggaa aacnaaggc naggccgtt ttctaaccatt ttñaagggn 420
atcct 425

<210> 34
<211> 581
<212> DNA
<213> Globodera rostochiensis

<400> 34
gaattcggtt gagcgaagag ttttgtggtt gacaccgggtt tatggacttt tagcccggtga 60
tccttgacgg tccaaagccg cggtcagttc cgtgcccgtt tttttaaaag aggccggagag 120
tttgacgggc attccaagca gccaataaac caccaaaaacc aaatacccccc ccccaatcga 180
tccccccctt ccaattcctc cgcattattc gcattatcaa ttctaatcag cacaaccact 240
gcattcattcc tttcccgacc atacgatgt aagtgaact ttgaaaattt gcttcatcgg 300
agccggaaag atggcccaag cattggcaag aggacttata aattcggggc gataccggc 360
agagaatttg atggcgagtt gtccaaagac ggacgagct ttactggagc aatgcaaaaa 420
attggaaatc ggaacgacgc acgacaacac ttgggtcgcg cgagagaacg acgtcatcgt 480
attggcggtc aagccgtatgc acatcagca agtgcacgtcg gaaatcgcac ccaattccg 540
gagggAACAT ttgcttattt cattgatttag gaattacact t 581

<210> 35
<211> 102
<212> DNA
<213> Globodera rostochiensis

<400> 35
gaattcggtt gagaattttt ctatataaa ttgacgttta atcagcagcc ataagcaatg 60
cccatcaaag catccggaga aacattaagg aagtttattt tc 102

<210> 36
<211> 34
<212> DNA
<213> Globodera rostochiensis

<400> 36
tgcaaatgtat gcaaacccca cgttcacaa gatg 34

<210> 37
<211> 100
<212> DNA
<213> Globodera rostochiensis

<400> 37
tcatgttgc gccaaatctc gcttctggta ctttacgagc atgctgcgtc gagttaagaa 60
aacacacggg gagatcggtt cgtgtcaaga ggtttcgag 100

<210> 38
<211> 176
<212> DNA
<213> Globodera rostochiensis

<400> 38

AKK110P1

tgaagaacct	cgaaatttgg	ctccgttacg	attctcgta	tggacaccac	aatatgtacc	60
gcgagtatcg	ctgatgttac	cgaggccggt	gccgtgaccc	aatgctatcg	cgacatggc	120
gctcgtaacc	gcgctcaggc	ggatcgaatt	caaatacatca	aagtgcAAC	ctcaag	176
<210>	39					
<211>	155					
<212>	DNA					
<213>	Globodera rostochiensis					
<400>	39					
gaattccaag	tttgaggtat	tgttgttat	acgatttctt	acaatgaca	gaacaaactg	60
agcgcgcgtt	ccaaaaacaa	ccgatcgtt	ttctgaacga	caagttcaga	acgcaaggga	120
ttggaaagaa	ggcatccaac	aaggaccgtt	actgg			155
<210>	40					
<211>	35					
<212>	DNA					
<213>	Globodera rostochiensis					
<400>	40					
tcctcgcgag	gctattgagg	gcataatatat	cgaca			35
<210>	41					
<211>	70					
<212>	DNA					
<213>	Globodera rostochiensis					
<400>	41					
tggaaatgtg	tccatccgcg	gtcgcattct	cactgggtg	gtgatcaaaa	acaaaatgca	60
gcggacgatt						70
<210>	42					
<211>	85					
<212>	DNA					
<213>	Globodera rostochiensis					
<400>	42					
tcgtaccaaa	atatcgtcgc	tatgagaaac	gccacaaaaa	catgtccgtc	cactgttcgc	60
cgtgttccg	agatgtctct	ctcgg				85
<210>	43					
<211>	193					
<212>	DNA					
<213>	Globodera rostochiensis					
<400>	43					
agttcggttc	aatgtgctca	aggtgatcaa	agcatcgggc	tcgaagaaag	cgttcgacaa	60
attctgagtc	ggccaaggcca	accgcgaacg	gtcattttgtt	atggttccta	attgttgcgt	120
ttttcaattt	atttgtgtta	aatgactgaa	tttatgatca	acggtatact	agtattctc	180
tggaaaagct	cga					193
<210>	44					
<211>	219					
<212>	DNA					
<213>	Globodera rostochiensis					
<400>	44					
gaattcattt	agatttgttt	tgaagctaga	aatctttattt	ttgggagtca	acgacaaatgg	60
gaagacgtcc	ggcgcggtgt	tatcgctata	ttaagaacaa	gccgtatccg	aagtgcgcgt	120
tttgcgcgg	tgtacccgac	ccaaaaattt	gcatttttga	tttgggtaga	aagcgccca	180
cgttgacga	attcccatgc	tgcgtgcata	tgatatcg			219

AKK110P1

<210> 45
<211> 489
<212> DNA
<213> Globodera rostochiensis

<400> 45
tccgaggcgc ttgaggctgc gcgaatttgt gcgaacaaat atatggtaa gaattgcgga 60
aaggacgggt ttcataatgcg cgtagaatac catccatacc atgttaattcg catcaacaaa 120
atgttgcct ggcgtggcgc ggaccgtctg cagactggga tgcgtggcgc gttcgaaag 180
cctcaggac tcgtggcgcg tgtcagcatc ggtgatatgc tgatgtcagt gcgtattcgt 240
gaccaacacc aagctcacgc attggaggcg ttccgtcggg ctaaattcaa gttccctgg 300
cgtaataca tcgtcttgcc ccccaactgg ggcttcacca aattcgatcg cgaggtatac 360
gagaaatacc gcaaggagggg ccgtgttatac cctgacgggt tgcatgtcaa gttactcaag 420
caacacggac ccgctgaagg agtggctcaa gaaccccatt taatcttctg tttgtcttgt 480
gactcttgg 489

<210> 46
<211> 101
<212> DNA
<213> Globodera rostochiensis

<400> 46
gaattccccg gctcgagccg ggttgacgat gtcctccccc acctcccttc actgcgttcc 60
gtcctccccc agccggaaat tgttcctgtg gctgttgcg g 101

<210> 47
<211> 485
<212> DNA
<213> Globodera rostochiensis

<400> 47
tccaccaaag tccattcgct gtcgccagtc catttattcc aaaaaaagat gattccgtcg 60
tcgttcccgat gacgtcggtt ggccaaccgt tgcccccgtc accgctttca ctggtgccaa 120
acccgcccgtt ttattttgtg ttcccgaaaa acttgcgtt ggagcggccc ttgcacgagc 180
aaaacgacgg ctccgaggag gaattagccg aagaagcgat gggaaacgaag gcaagagagg 240
cgcaaacgtt cgtccgattc ggcaaaaggg cgcaaacatt tgcgtggcgc gaaagcgtg 300
cacaacatt tgcgtccctc ggaagggaca cgcaaaaggca attcgatggg aaaatgcaaa 360
gtgaacagca acagaaaaag gcttaaagca aacggcggcg acttttctt taatgaatgc 420
gcgcaccaccg catgacaatt ctgtgtgtg atgtgttgcg atttttatga tcggtaaatg 480
taaca 485

<210> 48
<211> 651
<212> DNA
<213> Globodera rostochiensis

<400> 48
atctgttcaa gggactgttc ggcaagaagg aaatgcgcatt tctgtatggtt gggttggacg 60
ctgctggaaa gacgaccatt ctgtacaagt taaagctcg cgaaattgtc accaccatcc 120
caacaattgg cttcaacgtg gaaaccgtcg aatacagaaaa catctcggtt actgtttggg 180
acgtgggtgg tcaagacaaa attcgccac tttggaggca ctacttccag aacacgcaag 240
gactgatctt cgtcggtggc agcaacgatc gcgagcgtgt gggcgaggcg cgtgaagagt 300
tgatgcaat gctggcgagg gacgaggatc gcgacgcgtt gttgtgttgcg ttcgctaaca 360
aacaggattt gccgaatgcg atgaacgcgg ccgaactgac agacagactt ggactgcaca 420
acttgcggaa ccgcaattgg tacatccagg ccacctgcgc gacttcgggc gacggactct 480
acgaggggact ggactggctg agcaaccagc tcaagaacag aggctaagct gggttgggt 540
ctgttgcact tgcccgccga attgtatgcg attgaattta titgtgttgcg tgcgcgcgca 600
gctctttgtt gggacgtccg attaattttt ataattttt tattccgtgtt t 651

<210> 49
<211> 660
<212> DNA
<213> Globodera rostochiensis

AKK110P1

<400> 49

```

gaattcccaa gtttgagatc aattcagttt cacttagaca aaaatgccgc cgaaattcga 60
cccactgag atcaaaaatcg tgtacctgcg ttgcgtcggt ggtgaaattg gtgcaacatc 120
tgcacttgc ccaaaagggtg gcccacttgg attgtcgccc aaaaaaattg gtgaagacat 180
tgcgaaggcc acacaggact ggaagggtct taaggttacc tgcaagctga caattcagaa 240
tcgtgtcgcc aagatcgacg ttgtcccatc ggccgcctct ctgatcatca aagagtgcg 300
cgaacctccg cgagaccgca aaaaagtcaa aaacgtgaag cacaatggca acctgaccat 360
cgagcaagtg atcaacattt cgcgtcagat ggcgcctcg tcaatcgac ggaagttgca 420
ggcacccgtg aaggaaattt tggaaaccgc ccagtcggtt ggctgcacca tcgatggaca 480
acatccgcac gacattgtgg acgcgtatcg agggggagac atcgaaatac ccgaggaaata 540
aagaaaggac ggcgcctccg attttgtgg gacggacatt gggaaatttga ggtgaatgag 600
ttgccaattt cattcattca tcaattgttg ttattgtng tacggataaa ttgttaattt 660

```

<210> 50

<211> 625

<212> DNA

<213> Globodera rostochiensis

<400> 50

```

gtgcggaaac agacgctcga ggagggttagc cgtctgcagc ggacgagctc cttgttggac 60
gtggcaatcc gggacggcggt ccccttacccc ccactgcctc ctacaaaaccg atcccccgaa 120
tacatgaaca tgctgaccgg ctccttctcc gtgccaattt tccgcattt ctcgggcgcc 180
atcgaccgtt acagaccctc gttggccgtg tacacttaca acacttacca cgggtacttc 240
ccctaccgca actaccgcgg ctacacccgt gcbaatgtt actgggtacga ccgataactat 300
tacttctcgc cgctgtacaa acgaagcatg ttccccaccc gcttcaaaca ttgtgactat 360
aaagcgaacc cgcactattt gcactacccg cacacctttt gggactatcc ctaccaggc 420
aaatggttcg actacgacaa ccctcccaat taccggccct actacaacca tcgccttaac 480
ggatatgtcc gcgcgtatca ctaccggtcc catgcgttgg cccacccgtt caattacccg 540
gaaggaaatgg tcaggaaacg ggtctgacaa atcgaacttgc tccaaatttga cgtggtccgc 600
attcgaaaga agacgaaaaaa agctt 625

```

<210> 51

<211> 402

<212> DNA

<213> Globodera rostochiensis

<400> 51

```

gaattccaaag tttgagcaac attttggaaaa tgaccgaagc caaaaaactt cccgagggtgc 60
cgaaactttt gctcaagcga cgcaaaatca gagctgcgcgaa agggccgca aaagcaaaaga 120
acaaatttag ttcttatcaa aaagcacggc ccaagaagggt gggaaatcttcc aaaagagccg 180
agcgtatttt ggtggagttac cgtcagaacg aacgcctaattt gcttgcgtt gaaacgtgaat 240
cgaagaaatgtt cggcaattttat tatgtgcccgg aagagcccaaa actgcctttt gtggtccgaa 300
tcaaaggcat caataagattt catccgcgtc ctcgcgaaggat tctgcagttt ctccgccttgc 360
gtcagatcaa caacggcgtt ttctttaaggat tgaacaaggc ga 402

```

<210> 52

<211> 433

<212> DNA

<213> Globodera rostochiensis

<400> 52

```

ccgaccggta catcgcttgg ggttatccga gtcagaagat catccgtcag ttggtctaca 60
aacgcgggta cgccaaaggag aaggacacgc gcattccaaat aacggataac aacattgttgc 120
agcgcagttt gggcaaggat gacgttggattt gtgtggagga tatgatccat cagatttggaa 180
ccgggtcgac cgcacttcaa acagggttggc aacttccat ggccttcaa gctgagcaac 240
ccgggtggcg ggttcaaggaa gaagtccaaat cactttgtg gaggaggcg attatggaaa 300
ccgcgaggac caaatcaaca aatttattggaa aagaatggtc taatggaggaa gaagcggana 360
aagaaaggaa attgnngcgt ttttctgttgc ttgtttgtac gataaattgt taactccaaa 420
aaaaaaaaaaa aaa 433

```

<210> 53

<211> 768

<212> DNA

AKK110P1

<213> Globodera rostochiensis

<400> 53

gaattcgttt	gaggtcaaacc	tttatttagcg	tatTTaaaca	tgtccgaagg	aggagcggaa	60
aagagttagca	gcgggtccaa	gggggggttt	gatgtcaaga	aatttgcgt	cgatcttcgc	120
tccgggtgt	ctgcggccgc	tgtctccaaa	actgttgg	ctcccatgt	acgtgtcaaa	180
ctcttgtgc	aggtgcaga	tgcTCCGCT	cacatcactg	ccgacaaacg	ctacaaaggc	240
attattgcg	tgcttgcgg	tgtgcggaaa	gagcaggct	ttctgtact	gtggcgtggg	300
aacttggcca	acgttatccg	ttatTTccc	actcaagcgc	tgaacttcgc	tttcaaaagac	360
acctacaaac	gcatctttac	ggagggactg	gacaaaaaca	agcagttctg	gtcgttctc	420
gtcatgaatt	tggcctctgg	aggtgcggcc	ggcgccacgt	cgctgacctt	tgtttatccg	480
ctgggacttt	gcccgtacgc	gtttggcccg	tcgatgtccg	aaaagctgt	tcccgcgagt	540
tcaacggttt	ggcccactgc	atcgcaaaaa	tcttcaagtc	ggacggtccc	atcggtctt	600
accgcggctt	cttcgtctcc	gtccagggca	tcatcatta	ccgcggccgc	tactttggat	660
gctttgacac	cgcgaagatg	atTTTcgcgc	cggatggca	gcagatgaat	ttcttcctca	720
catggccat	cgctcagggtc	gtcaccgtgt	cgtccgggt	ccttcct		768

<210> 54

<211> 338

<212> DNA

<213> Globodera rostochiensis

<400> 54

gaattccagc	agattaattt	gaatggctga	gaacatcgaa	gagattctt	ccgaaatcg	60
cggctccaa	attgaggagt	atcaacgtt	tttcgacatg	ttcgaccgcg	gaaagaatgg	120
ttacattatg	gccacccaaa	ttggacaaat	tatgaacgcg	atggagcagg	actttgacga	180
aaagaccctc	cgaaaatttga	tccgcaagtt	cgacgcggac	ggttccggca	aactggagtt	240
cgacgagttc	tgcgcgttgg	tgtacacgg	ggccaacact	gtggacaagg	acactctgc	300
aaaggagctg	aaggaggcat	tccgactt	tgacaagg			338

<210> 55

<211> 267

<212> DNA

<213> Globodera rostochiensis

<400> 55

gaaattgcgc	ccgatctcag	cgacaaggat	ttggaggcgg	cggtcgacga	aattgacgag	60
gacggcagcg	ggaagatcga	attcgaggag	ttctgggagt	tgatggcggg	cgaaaccgac	120
tgagaaaaga	gcaaatcgat	ccaaatccaa	acggaccgt	cccatttcac	ctccatccgt	180
ccgtcgatt	attatattt	ccagtggaat	tttcccattt	aaattcggt	aaagtaaaat	240
aatttgacga	aaaaaaaaaa	aaaaaaaaaa				267

<210> 56

<211> 597

<212> DNA

<213> Globodera rostochiensis

<400> 56

gaattcgctg	gacacttcgc	atccggagta	cagccacgag	cagagcatcg	accagaccag	60
catccccctac	cagatgggtt	cgaacaagta	cgcctcgac	aagggcata	ccggctttgg	120
acagccccgt	ttggagggtc	ttgacccgtc	catctcgat	cagaaccgc	agtgcgaagg	180
aatggttcgt	ctacagtccg	gtaccaaccg	gttcgcctcc	caggcggca	tgaccggctt	240
ccgcacaccc	aggaacacca	cctatgaggc	ggaggcaggc	gagctccct	acgaggacat	300
gaagaagtgc	gaggcgtatc	tcccgtccca	ggccgggttg	aacaaggcgc	actcgacaaa	360
gttgcgtacc	aacttcggca	cggccgttta	caccacacc	aaggctaaag	tggagaattt	420
ggcggaaattt	ccggaggaca	ttttgcgtaa	aggacacggc	gaggcgtcgc	tgcgtccgg	480
taccaacccg	ttcgcgtccc	agaagggtt	cgtgcgttc	ggtaccggac	tgacgtgt	540
ccgtgagggg	gtgaacgtga	acgtgcgtcc	gggcgactt	gagccgcttc	cgaggaa	597

<210> 57

<211> 80

<212> DNA

<213> Globodera rostochiensis

AKK110P1

<400> 57
 ggcattgtgc gtctgcaagc cggtaacgaac aagttcgact cgccagaagg catgaccctt 60
 ttcggtaggg gccccgtcg 80

<210> 58
 <211> 513
 <212> DNA
 <213> Globodera rostochiensis

<400> 58
 gaattcgcaca caccgctcac atcgcgtgca aattcgccga acttaaagag aagggtggacc 60
 gncggctctgg caagaaagtt gaggacaacc cgaagtgcgt gaagactggc gacgcccggaa 120
 ttgtcgaact gattccgacc aaggcgatgg gtgtggggc attactgac tacgcacccgc 180
 tcggccgttt tgctgttcgc gacatgaggc anactgttgc cgtggccgcg atcaaatcag 240
 tggagaagac ggaaggcggt ggcaaaatgtga ccaaggccgc gcagaaggtc ggcgcgactg 300
 gtggccggaa gaagacatga ccaagggggg gggcggttcc ctaaggggcca accgtcgacg 360
 aaaatgcgac caacctcttg tttatcggtt tcttatttcg ttccttccac ccgtctcttat 420
 ccatattgtc gttgcgttgg ataatgtttt atttttgtt attgtcctgg ttggaaaata 480
 aatttggta attaaaaaaa aactcggtcc gaa 513

<210> 59
 <211> 393
 <212> DNA
 <213> Globodera rostochiensis

<400> 59
 gaattcggttt gagcgaaaaaa aacatactat acaatggcaa caactgagaa gcctcaggtg 60
 gttcaacagc cctgtcgagg ctggccga aagaagacag caacagccgt tgcgtttgca 120
 aaaagggggca agggcttgcgat caaggctcaat gggcgccctt tggactacat gcagccggag 180
 attctgcgca ttaagctcca ggagccattt ctcattgtt ggaaggacaa atttgaggga 240
 atcgacatac gaatccgcgt caaggcggt ggacacattt cgcaaattta tgcaattcgc 300
 caagcactgg ccaaggcact ggtcgcttcc taccagaaga atgtcgacga gcagagcaaa 360
 aaggaaactga aggagcaattt tggtcggttac gac 393

<210> 60
 <211> 154
 <212> DNA
 <213> Globodera rostochiensis

<400> 60
 cacgagccaa agaaattcgg tggacccggg agctcgcgct cgctaccaga atcgtaaccgt 60
 taagaaataa tttttagat caaatgtttt gatgatgatc cttgtttttt ttgttgataa 120
 aaaaaatttaaaaaaaaaa ccggccgatac tgac 154

<210> 61
 <211> 666
 <212> DNA
 <213> Globodera rostochiensis

<400> 61
 gtattccaag tttgagcgat cagagttctt caatctatta tcaactgttt tccatcaacc 60
 aactgtcatc atgcaaaatc tcgtcaagac gctcaccggc aagaccatca ctctcgagg 120
 cgaggcttagc gataccatcg agaacgtgaa agccaaatgc caggacaagg agggcattcc 180
 gcctgtatcg cagcgctgca tcttcggccgg aaaaacgctt gaagacggac gcaccttggc 240
 cgactacaac atccagaagg agtccactct ccatctcggt ctgcgtctcc gtggccgaaat 300
 gcaaattttc gtcaagacgc tcacccggcaa gaccatcaact ttggagggtcg aggccagcga 360
 caccatcgag aacgtgaagg ccaagatcca ggacaaggag ggcattccgc ctgatcagca 420
 gcgtctgatc ttcggccggaa aacagctcgaa agacggggcgc actctggccg actacaacat 480
 ccagaaggag tccactctcc atctcggtt gctgtttcggt ggaggagaga actgaatcgc 540
 gggctgtatgg aaagatgacg aatatgtatgtt ctattcgatg acttgcgttctt ttgcataataa 600
 ttgattgtgttccattttgtc ggtcatcaaa tctttatgac cccctcattt ggcattggaa 660
 gataaa 666

AKK110P1

<210> 62
<211> 213
<212> DNA

<213> Globodera rostochiensis

<400> 62
gaattcgttt gagaaaacttt ttcaaccatt cattcaaatg tctcatcaag tgacacgggc 60
agcaactcaac cacggggacgc gtgtacttag cgtgttggag aagtcaagt tggctcgctg 120
gtttgaggag acacattcgt tcgcgcagaat ggctcgaaga taccgggcag aatttggtat 180
ggaaccaccg cagttggacc aagtgaagaa gtt 213

<210> 63
<211> 488
<212> DNA

<213> Globodera rostochiensis

<400> 63
agcacccggct caatccctaa tggcacaacg acggcattct ccggcatagg agacggagtc 60
ggcttggag aacaacagcc aattcccgctc gtaagcgatg cggactgga tgcgaaagaa 120
cagctgagaa tggccagaat gtgagccgga ggacctgaag atttatgaac gaaattttcc 180
agtgaagtgg accaacgcgc ttcgacttta tctgcttgc gtaaagtgtt tagaatccgc 240
ttccaattca aaggcttgc attccccaaat ttttattttt ggcggaaaaa tttcttagga 300
taagctgttgc taattttttt atttgtttt tctttctttt atctccgcct cgaagtgcga 360
agtgttcctt ttggcccgtt ccctttgtt ttgaatgtt ttccattccc atcccctcac 420
tttctcatat ttgtgacatt cagctgcatt gttcgactcc cattttaaag ttgagtgaaa 480
tgcatttg 488

<210> 64
<211> 249
<212> DNA

<213> Globodera rostochiensis

<400> 64
wccrgakbng aacahcdkdg vhwatnvcbn gschvbwagc rntcsvddb wgnhnsswtg 60
gkgdyrbwnt msnwrmanrg artsstsgaa ttcccaagtt tgagagtaaa tattatttagc 120
taaaaatggc agtcggaaag aataagagaa tgggcaaaaa gggagccaag aagaaggctg 180
tcgatccgtt cacacgc当地 gaatggtagc acatcaaagc gccggcgatg ttcacacatc 240
gaaatssts 249

<210> 65
<211> 362
<212> DNA

<213> Globodera rostochiensis

<400> 65
wcbrcrhdby ytsgcrsnck tbdsbhctsy gcdwkmtnvk hscngdckty nykkkbmr 60
ntmsnwrman rgartsstsg tcaaccgtac tcaggaaacg cgcatccgtc ggcactttct 120
aaaaggccgc gtttacgaag tgtactggg tgacccaaac agcactgacg ccgactttcg 180
aaagttccgc ctgatctgtg aagaggtaaa gggcaagtt tgccgtacca actttcacgg 240
aatgtcggttc actcgggaca aacttgtcctc tattgtcaag aagtggcaca cgctcatgaa 300
ggcgaatgtg gcagtgaaga ctaccgacgg tttcatgttc cgactctttt gtatcggtss 360
ts 362

<210> 66
<211> 128
<212> DNA

<213> Globodera rostochiensis

<400> 66
aatcaaatta agaagacgag ctatgcaaaa gcctctcagg tgcggatgtat tcgtgccaaa 60
atggtggaga tcatgcagaa agaggtctct tccggcgatc ttgaangaaa gtagtcaaca 120
agcctgtat 128

AKK110P1

<210> 67
<211> 502
<212> DNA
<213> *Globodera rostochiensis*

<400> 67
gaattccatt aaaaaactaa acgaacaaat ctaaagatgg ccaccgaagt ggaggaaaat 60
gttcctacgg ttgacccatg ggggtctgtg gaggaaatgg gtggtaaga gtcgatgcag 120
ttggtcagcc ttgacgttac cgaggtcaaa ctgttcgaa aatggtccc taacgatgtg 180
gaagtgtccg acatttcgt tttgtgattaa attgcggtaa aggaaaaggc ggccaaatat 240
ctgccgcaca gcgcggccg ttaccaacag aagcgcttc gcaaggccac ctgtccggtg 300
gtggAACGGT tttttttgtc aatgatgtat cacggggcga acaacggaaa gaaactaatg 360
gcgggtgcga ttgtgaaaca ccccttcgag atcatcacct gctaccggag agaaccagg 420
ccaagtgttg gtcaatgtt tgataaacag tgggccccnc gaagattnca cacgtatcgg 480
acgtgcgggc actgttcgtc ga 502

<210> 68
<211> 519
<212> DNA
<213> *Meloidogyne incognita*

<400> 68
gcaaactttt atcaaataaa aaatttatat ttgccaaaca aatttatgaa taaaatttca 60
ttaatcatta aaactacatt taaaatatac ttttttagaga atgtcgtcta aaatatttctt 120
ttctccctt tatgcacatca tctaaccaga cttggaagca atatggctaa tcaagtcaac 180
aatacggcag gaatacccaa actcggtatc ataccagcta accaatttaa caaaatgcgg 240
gttggaaacc ataagaggct cggcgtcga aatagacaa tgagtgtcgc caagaaagtc 300
ggtagaaaca accttgcctt cagtatatcc aagaatccct ttaagcttcc cttccgaagc 360
agtcttaattt gcattcttaa tagcctcctt cttttgtcgc ttctccaaac gagcagtc 420
atcaacaacg aaaacgtttt ggcgtcggca cacgaaaagc cattttcggt aagcttccca 480
tccaattcat ggattgaccc ttccaaacagc ctttgacgc 519

<210> 69
<211> 218
<212> DNA
<213> *Meloidogyne incognita*

<400> 69
ttgattcttt attagtggac aatgacggaa gaccagaaga agttgcccgt ggtgcctgag 60
actgttttga agcgaaggaa agttagggct gctcagcgtg cttctctact caagaataaa 120
ttggagaata ttaagaaggc taaggttaaa acgcaaggta tctttaaacg tgctgagcaa 180
tacttgattt catatcgacg taagcaaaag caagagtt 218

<210> 70
<211> 293
<212> DNA
<213> *Meloidogyne incognita*

<400> 70
taagaaagca gggaaattttt atgtcccaga tgaacctaaa cttgttttg ttgtgcgtat 60
taagggaaatc aacaagggtt atttaaattt gctataaagt ttaggatggg ttttagacaat 120
tcttcctttt taatgttttc taacttttc aaaaaaggtt tgatttatc acccattaat 180
ctacaaattt tttaaattt cagatccatc ctcgtccctg aaaagttctt caactttcc 240
gcttgcgtca aatcaacaat ggagtttca ttaaattgaa taaagctaca atc 293

<210> 71
<211> 422
<212> DNA
<213> *Meloidogyne incognita*

<400> 71
aatgcattt agactgcttc ggaaggaaag cttaaaggga ttcttggata tactgaggac 60
caggttgtttt ctaccgactt tcttggcgcac actcatttgc ctatttcga cgccgaggcg 120
taagtttga ttttctaaga ttatattaa ctttttaat ttttcgtct tatgggtctc 180

<210> 72
<211> 374
<212> DNA
<213> *Meloidogyne incognita*

<400> 72	atctgagcat	aaggaaactt	ggcctaagc	tatagagcag	accgattatg	tggcaccgac	60
	tgagccagt	aaactggact	tcaacgttcc	gcttatttagt	gattgggctg	ctgcttctga	120
	gtggcctcaa	gaagaggaag	ctcaggttgc	acctactgca	ccaattggtc	agccacagcc	180
	tcaacagcag	caaactcaac	aaggaggtga	tggaaactct	ggtactagtg	gatggtgaag	240
	ggcaggaaaa	ttgatagaaa	gagaattat	tatggaaataa	atgtaatcaa	tgttgtgtc	300
	tgttatttt	gttacatata	caacaagttt	tatTTTgttG	tttatttaat	aaaAGttgtt	360
	aattaaaaaa	aaaa					374

<210> 73
<211> 120
<212> DNA
<213> *Meloidoqyne incognita*

<400> 73
tttttttttt tttttcttca tcaatatttt gaagtgaaga accagaagta gttgcattcg 60
aqctttcaaa ttttgaaaaa tgattactct tttaaacaqa qtcactqat qqatctactq 120

<210> 74
<211> 369
<212> DNA
<213> *Meloidoqyne incognita*

```

<400> 74
gtctaaccaa tctagagcta ttccggttcgt ctgtctgtt attatttagat gttgattgaa 60
cagcactagt ctctgatgta gttttcttca attcatttt taagtatgt agaggaagtt 120
tagaattctg attgctatcg tcttctttct cttcttttaa tggcttttc aatttatctt 180
cttccctttc ttgtccattc ttttcttcatt tctttcaaa aggctcagga aattttaatt 240
cagaccgcct ccttttaact gctgtatcta aagaaaaccc tctaggcaac gtcccagttc 300
cactcaaatt caattttgtt aaatttttgc cagatctaag tccttcttcc ttttgaacga 360
attqaactq                                         369

```

<210> 75
<211> 529
<212> DNA
<213> *Meloidoagyne incognita*

<210> 76
<211> 449
<212> DNA
<213> *Meloidogyne incognita*

AKK110P1

<400> 76
 atttttttt tttgaataaa agacttttt ttattaaaat ggcttcgcaa actgcaggaa 60
 ttcaacaatt actgtcagca gaaaagcgtg ctgcagaaaa gattaatgag gcacgtaaaa 120
 gaaaggcaca acgacttaaa caagcaaaac aggaagcgcg agctgaaatt gacaaatata 180
 gagaggaacg tgaaaaacgt tttaaagagt ttgaacataa ttacctcgcc gctagagatg 240
 atattgctgc acaaataaaag cgtaaaactg atgagacgt taatgaaatg actcgttagt 300
 ttgctgctaa taaacacgac gtaattgttc gtctacttca acttgtctgt gacattcg 360
 cagaactgca tcacaattt caacttcaac ttaagcttaa tgaaaagcct gcctaatttg 420
 tagttgattt attataaaaa tgaaattga 449

<210> 77
 <211> 643
 <212> DNA
 <213> Meloidogyne incognita

<400> 77
 atttatattt gaacaaataaa tttaacaaaa aagtatggct cgaggaccgg aagaagcattt 60
 gaagcgttt gccgctccaa agaattggat gttggacaaa ttgggtggag ttttgcggcc 120
 acgtccccatg tgcgggcctc acaagcttcg tgaatcgctt cctcttattt tgtttcttcg 180
 taatcgtcta aaatatgcac aatcttataa tgaagctagg atgatttgca aacaacgtct 240
 cattaaagtt gatggcaagg tgcgtacaga aatgcgcctt ccagctggat ttatggatgt 300
 gtttccatt gagaaaaactg gcgaagtctt tcgtcttcgc tatgtatgtca aaggacgttt 360
 cattactcat cgcatacaaa aggaagaagg tcagcttaaa ttgtgcagg tagtaaagca 420
 agcgattggg cccaaacaag ttcccttatg tgttactcat gatgcccgtt ctattcgctt 480
 tccggatcca cacatcaagg ttgacgacac tggtgcgttt gatataaaca ctggaaaggt 540
 tacagatcac attagatttg attctggtaa tgttgtatg attactggtg gtcacaacat 600
 gggacgtgtt ggtattgggtt gacatcggtt acgccaccct ggt 643

<210> 78
 <211> 584
 <212> DNA
 <213> Meloidogyne incognita

<400> 78
 atttcctcta aaaatgaatt taaaagaaca acaaataatat ttaaatattt aattattattt 60
 ttttattttt gctgtcagta gtttttgac aactaaggaa agtgaagttaa aacaacgaga 120
 aaataataaa ttggaaataata ataaaaatga aatttggagg caaaaagagc aattaattcg 180
 agatttggatt gcctccttaa cacgtaaaag gcaatattca cgagattggc aacaatcaca 240
 acagcaacaa aatttcattt acagtttgg cccttccccca cattattcc cctcttcagg 300
 cattgaatgg ccccaacaac aacaaaaaat attttggaa gaaggggaag tagaagaacc 360
 ttttagggaa aatgagaagg aaaaaagagc acaaactttt gttcgtttcg gaaagagagc 420
 acaaacattt gttcggtttt gaaaaagggg acagactttt gttcgattttt ggagagattc 480
 aaaacatcaa cataacttgt cagatcagaa gcagttaaaa actgacaaaac aataaaaatg 540
 atgaattattt taaaattttt ttaatgatc ttttaattaa aattt 584

<210> 79
 <211> 556
 <212> DNA
 <213> Meloidogyne incognita

<400> 79
 atcaagcatt aaatatgcag atttttgtaa agactctcac cgaaaaaaact attactctcg 60
 aggttgaggc ttctgtatcc attgagaatg ttaaggcaaa aattcaagat aaagagggtt 120
 tcccgccctga tcaacagcgt ttgatcttgc ctggtaagca acttgaagat ggacgaacct 180
 tggctgattaacatccaa aaggagtctt cacttcactt agtttacgt ctgcgtgggt 240
 gaaagggtca cgggttcatgg tgcgtgtcg gaaagggtcg tgctcaaact cctaagggtcg 300
 aaaagcagga acataagaaa aagaagcgcg gccgtctt ccgtcgattt caatataacc 360
 gtcgcctcac caatgttgcg acttctgggg cgggacgcgg tcgtggccct aactccaacg 420
 ctgcataaga gaatgggtcg atcttgcgtt atgtatgggtt atataatcaa ttaatacat 480
 tcgactntat gaagttttgcgtt gttattcaag ataaaatctt ttgtgaaaaaaaaccaag 540
 tttgagatca gttactt 556

<210> 80

AKK110P1

<211> 424

<212> DNA

<213> Meloidogyne incognita

<400> 80

aacattgttt	taattaaaat	ttacccctcc	tgttagcaatg	acatcagaca	gacttggccc	60
agttagttcca	gatttgacag	cccaagagac	caacagactt	gaacgaacta	gttcttttgt	120
cgtttggca	attcgggatg	gagttccata	tccacctagg	cctgcaatta	ataatgttcc	180
tccatcacctg	aatatgttga	ctcgaaacgtt	ttctgttacca	aatgttataatc	agtacacggg	240
tgcaataggt	ccttatcgac	cagcaaattcc	tggttataatc	tattatagct	ataaatgtcta	300
ttttccgtat	agaaattattc	gaggctacac	actgacgat	gcttactgtt	acgaccgtta	360
tttattatcc	tcgccaatat	acaaacggtc	aatgttccca	attagattcc	ggcattctga	420
						424

<210> 81

<211> 89

<212> DNA

<213> Meloidogyne incognita

<400> 81

attatccaca	cacctatgg	agctaccctt	accaaggaaa	atggtacgac	tatgacaatc	60
						89
caacanatta	ccgccccattc	tttgaccca				

<210> 82

<211> 168

<212> DNA

<213> Meloidogyne incognita

<400> 82

tttttttttt	taaaatttat	tcattaacaa	atgaccctaa	cagataaaac	ttaacagtca	60
aaagacaaca	taatttccaa	cttttcaat	attatccctt	ttaacggttt	gattttgcaa	120
ctcgctccaa	ttcgtccttc	ttcttgatag	catatgaatt	gctcgaac		168

<210> 83

<211> 67

<212> DNA

<213> Meloidogyne incognita

<400> 83

aattccatcag	ccagacattc	agcaattgtt	ttgatattac	ggaaagaagc	ttcacgagac	60
ccagtagc						67

<210> 84

<211> 42

<212> DNA

<213> Meloidogyne incognita

<400> 84

taacacgacg	aagaggcgaa	acatcaacag	cctgacgacg	aa		42
------------	------------	------------	------------	----	--	----

<210> 85

<211> 429

<212> DNA

<213> Meloidogyne incognita

<400> 85

tatacgagta	gaatcctccc	gtggcctcc	attaataaca	gcgcacaacaa	gtatgtaac	60
tggattctct	ccagtcaaaa	tatgtataat	ttcaaaagcg	tgcttcacaa	tccgaacagc	120
catcaacttt	ttaccattgt	tacgtccatg	catcatcatc	gaacaaacca	aacgttcaac	180
aatcggacaa	tgagccttc	gaaaacgtt	gatttgatat	cgaccagcac	tgtgcggcaa	240
atatttggcc	gatttgcctt	taacagcaat	ataatccact	aaagaagcat	cattaacttc	300
gatatcgctt	aaagaccatt	taccaaacaa	ttaatttca	ggaaaatcaa	ttgttagtcat	360
ttgcataatcc	ccttgcac	caggaacatc	agttgcgcc	caattatcat	cagcgggtaa	420

AKK110P1

429

accatctcc

<210> 86

<211> 435

<212> DNA

<213> Meloidogyne incognita

<400> 86

tttgagttt	taaaaagtac	atactattta	attttaaca	aattattttg	atcaatttaa	60
aattttctt	tcatcattt	ttaatttaaa	aaacattta	acaattaca	agaacaacaa	120
acataattgt	tcctttta	ttataaaatt	taaagtttaa	taagtttaa	aacattctcg	180
actggagtag	gtgtacttag	tgttttagaa	aaggcaaaat	tagtttgg	gtttgaagag	240
acaattctt	ttgcacaagt	agcgagaaga	tatcgagcag	aatttggaaat	ggaaccccca	300
cataggatt	tagttaaaaa	attacatcaa	cgtttctca	atactggttc	tgtttctaata	360
ggaataactg	aacatttga	agttaatcca	acaatggaaa	catcgacatc	ctcaacagag	420
ggtagcag	atccg					435

<210> 87

<211> 501

<212> DNA

<213> Meloidogyne incognita

<400> 87

gtttttttt	ttttttttt	aacaaaatat	cgagtctta	taagacaaaa	ataaaagaca	60
aaagcaattt	agtttatca	ataaaattaa	aaatagtc当地	tgtctcgaaa	cactcattag	120
atttgtggcc	ctaaagaggg	ccgttgggt	ttggttgtt	tacttcagct	gccttccacc	180
aattgttcct	tagccaccaa	atccgtaaag	agtagtc当地	tggcgaaa	acgcataagac	240
gacgtccatg	gctgtgaccg	tctttcttct	ggcgtgtacg	caataagtta	ccgcgtcgcg	300
gatcacattt	tcaaggaaga	ctttcagaaac	acctcgagtc	tcctcgtaaa	tgagccccga	360
aatacgttt	actccaccac	gacgtgccaa	tcgcccggatt	gccgggttgg	tgataccctt	420
gatgatatca	cgcagactt	tccggggcg	cttagcgccct	cccttccaa	gtcccttcc	480
gcctttact	cgtccggacata	t				501

<210> 88

<211> 270

<212> DNA

<213> Meloidogyne incognita

<400> 88

ggaagtgtgt	ttaagataaa	tggatgatta	gaaataaaaa	tgaattgatt	aaaaattacg	60
ttagaataat	aatggatata	ataaaaataa	attggatgt	ttaataaaaa	aaaaaaagag	120
agaactagtc	tcgagtttt	ttttttttt	tttttaanaa	ttaacaattt	atctcattt	180
cctttccat	gaaaattaac	aaaagacga	caacttaatc	ccataattaa	catcattttt	240
aagttcagt	cggcatgctt	cgaataatgt				270

<210> 89

<211> 286

<212> DNA

<213> Meloidogyne incognita

<400> 89

caagcggttc	ccaaactcaat	gttggccaa	tgataactcgt	gaacaccagt	tctcgccaaac	60
atagaatagt	actcaatctc	actgcgtcta	aggcttggag	tattattcga	aataataaca	120
agtttagcct	ttccagaacg	aagagtcttc	aacgtcttgt	tgttagccaa	acaataactt	180
cccgatttgg	taaccatggc	gagacgagca	ttgatatttt	ctgtggactt	tttctgtttt	240
ccaacaacca	ttgtaacgca	aaattaaaaat	ctcttttta	acaat		286

<210> 90

<211> 391

<212> DNA

<213> Meloidogyne incognita

<400> 90

AKK110P1

agatatgaca	tcagacagac	ttggcccagt	agttccagat	ttgaccagcc	aagagaccaa	60
tagacttga	cgaacttagt	cttgggttga	tttagcaatt	cggatggag	ttccatatcc	120
tcctaggcct	gcaattaaca	atgttccctcc	atacctgaat	atgttgactc	gaacattttc	180
tgtaccaa	at gtaaatcagt	acacgggtgc	aataggftct	tatcgaccag	taaatcctgt	240
ctatacttat	tatagctata	aatgctattt	tccgtataga	aactatcgag	gctacacatt	300
gacggatgct	tattggtagc	accgttatta	ttattttcg	cctatataca	aacggtcaat	360
gtttccaatt	agattccggc	actctgacta	c			391

<210> 91

<211> 131

<212> DNA

<213> Meloidogyne incognita

<400> 91

attatccaca	cacctatttg	agctaccctt	accaagggaaa	atggtatgac	tatgataatc	60
caacaattt	ccgcccgttc	ttcgaccac	gcatcagcgc	atcattttca	agaccttatg	120
attacacatc	a					131

<210> 92

<211> 571

<212> DNA

<213> Meloidogyne incognita

<400> 92

ttgttgcgac	aacaaaaaaaa	ttttatttat	tttttaacaa	cagaaaaata	tacttttaa	60
tttttaatat	tttccatga	ttcaacagcc	atactttct	cattttata	cttcttaaac	120
cctcaaaaaa	ttcattttt	gacgaccagc	agcagggtgt	tgctgctgtt	gttgaccacc	180
accccccgtc	gcttgacctt	gctgttgctg	tcccttcacg	tcaacaggca	aattgagttg	240
caaataatca	accatctct	tagtcttgc	atcaacacta	atagttgat	gttgagaagc	300
atcaagatag	gaaacttcg	gaaaccaatt	atcacgacgc	tcacgcctt	cttcttgcaa	360
ttaatagaa	attccacgaa	caggtcttt	ttcgatacgc	ttcatcaat	gggtaataaa	420
accagcaatt	tgattacgca	tccgtttgc	aggaataaca	gcaatttcct	cacaatttcg	480
tttggtcaca	tgaaaatcat	aagtcaagcg	tgtataatat	ttgtcaataa	taacacgaga	540
tgcttcttg	acagtttga	gagaaccgat	t			571

<210> 93

<211> 671

<212> DNA

<213> Meloidogyne incognita

<400> 93

tttgagaatt	taacttttct	aacccaaaact	tttatttttg	tctttgtgt	ctactcaagt	60
accaatacgc	gtgctggta	ctggagcagc	tggtcagatt	ggttattctt	tggttattca	120
aattgcaaag	ggtgatgtt	ttggaaagga	aacgcccatt	gttctggtaa	tgttggatat	180
tcctccaaatg	gccgaagtgc	ttaaaggagt	ggaacttgaa	ctttacgatt	gtgccttgc	240
gaatcttata	gctgtcgagc	cagtcacgac	tgaagaggca	gcgttcaaag	acattgatta	300
tgctttctt	gttggtgcaa	tgcctcgaaa	ggaaggaatg	gaacgaaagg	atttacttgc	360
tgctaattgt	aaaatattta	aatcgcaagg	attggctcta	gcaaaatatt	caaagccaac	420
tgtttaagggt	ctgggtgtt	gaaatccagc	aaatacaat	gctttattt	gtgcaaaata	480
cgcagcagat	aaaattccag	caaagaatgt	cagcgctatg	actcgcttg	accataaccg	540
tgcaatttgc	caaatacgct	ctcggtgtgg	ggttactgt	ggatctgtga	agaaagtat	600
aatttggga	aatcattcaa	gtacccattt	tcctgtatgtt	aaacatgta	aagtaattaa	660
agggtggcagc	g					671

<210> 94

<211> 289

<212> DNA

<213> Meloidogyne incognita

<400> 94

ggctgtaaat	gatgtgccgt	ggatacagaa	tgaatttatt	tcgaccgtcc	aaaagcgccg	60
agctgttatt	atcgaaaaac	gcaaaactgtc	cagcgcaatg	tcggcagcaa	aggcggcatg	120
tgatcacatt	catgattggc	actttggAAC	aaaagatggc	gattgggttt	ctatggccgt	180
tccttccgat	ggttcttatg	gaattccgg	aggttactgt	ttctcatttc	caattacaat	240

AKK110P1

tatgcanaa acgcgtgact ggaaaattgt acaaagatta gaactcgat 289

<210> 95
<211> 262
<212> DNA
<213> Meloidogyne incognita

<400> 95
aatttaactt ttctaaccaa aacttttattt tttgtcttg atgtctactc aagtaccgat 60
acgcgtgctg gttactggag cagctggtca gattggttat tcttgggta ttcaaattgc 120
aaaggggagat gtttccggga aaaaaacgcc catcggttcg gtaatgttgg atattcctcc 180
aatggccgaa gtgcttaaag gagtggaaact tgaactttac gattgtgcct tggcaaatct 240
tatacgctgc gagccagtc cg 262

<210> 96
<211> 323
<212> DNA
<213> Meloidogyne incognita

<400> 96
aagacattga ctatgcttt cttgttggtg caatgcctcg aaaagaagga atggaacgaa 60
aggatttact tgctgtaat gtaaaaatat ttaaatcgca aggactggct ctagcgaat 120
attcaaagcc aactgttaag gttctgggtt ttggaaatcc agcagataca aatgctttt 180
tttgtcAAA atatgcagca gaaaaaattt cgcacaaagaa tttcagcgt atgactcg 240
ttgaccataa ccgtgcaattt gcccaaatag ctgctcggtt tggtgggtac tggtgggtcg 300
tcaagatagt tataatgtgg gga 323

<210> 97
<211> 717
<212> DNA
<213> Meloidogyne incognita

<400> 97
aatattttta acaaacgatg taacagaaaa acaaagttt tttaaacaaat tttcttgaac 60
cttattttttt ttcaaaaacat ttttttattt aaattttaaac ctctcttcat ttctcttaaa 120
caacttcctg aactggaggt tcataagcat ctggacgact ttcaataact tctccacttg 180
ctgttagttt agcaacttgt ccaccac ccacccatc ctctccatgc atatccaaaa 240
gttttccaag ttcaattttt ggtttttca aaatttttac ttttgcata taaacgtctt 300
gaagtggata gaaataagaa caagactttt caatgtctt tccaaatagaa tcaggaatta 360
atttgctgac aacttcttta agatcgcattt aagaaaccc gcgtatgat atctcaacca 420
tccttagcag aatttgacgc acttgagacg attttgcata actagtctt ttcaacttggt 480
ttggagcttt ctttgcgttca agtcaatcaga acaatcgaag caaaataacca tcagttgtt 540
tgacagcaac atttgcttca attaaagttt gccactttt gacaatagaa caaagctgt 600
ctcgagtaaa agtcatttca tggaaatttg tcaaacaac tttgccttga acctcttcac 660
aaataagtgcg aaatttgcga aagttagtctt cgggttttgc cagatcacca agagaaa 717

<210> 98
<211> 758
<212> DNA
<213> Meloidogyne incognita

<400> 98
gacaagttta accttgcgtt accttatcta tattcttgc taaaataattc taacaaattt 60
taacaacaaa caaaaatggg cgagcaagac aaaaagaaaag ctggcggcgg cgatgggtgc 120
aaaaagaagg atggcttcga tgccaaaaag tttgcgttgc atttggcttc tggaggact 180
gccgctgcgg ttctcaagac ggctgtggcg cctattgaac gtgtcaagtt gttgtacag 240
gttcaagacg ctttcagca catcgctgcc gataaaccgtc ataaaggaaat aattgtatgt 300
cttggctgt tgcccaaaa acaggaggatc cttgcgttgc ggcgtggtaa tttggcttaac 360
gtgatccgtt actttccaaac gcaagcttc aactttgcgt tcaaggacac ttacaaggagg 420
atcttcatgg aagggtgttca caagaacaaa cagtttgcgc aattttttt gatgtatgt 480
tttatgagca aaaatttctt tgggtggat agacctaaca gttgaagagt atcttgccct 540
ctgtgatacg tatacaacac tctcttcaat tggagattca atgttgcgt gaggatgt 600
tagtaatcct ctgttacaat cacttaacaa ctcaatcaat tccaatgccttgc tggctcagaa 660
ttataactcc tcaacaattt gcccggactt aaaaactactt ttcaacatgc tacagctact 720

AKK110P1

tcaaaaatcga aacagattgt tttaaacgtt tgaaattt	758
<210> 99	
<211> 154	
<212> DNA	
<213> Meloidogyne incognita	
<400> 99	
ttgagttcgt tggcacattt gttgtgtac aaaacaaaaa ttattggaa cgggtttcag 60	
tgcctattct cgcaggatata tggcacttca cacattgtt ccaataacaa cgttaccgtt 120	
tataatcaaa ctgttcctca aagtatgcc catt	154
<210> 100	
<211> 125	
<212> DNA	
<213> Meloidogyne incognita	
<400> 100	
ttcagaatac tcaaggctt atattcggtt ttgatagtaa cgacaaagag cgtattgtt 60	
aagctcgtga ggaattgtatc cgtatgtt ctaagacga acttcgcgt tctgtactcc 120	
tcgtta	125
<210> 101	
<211> 219	
<212> DNA	
<213> Meloidogyne incognita	
<400> 101	
cttggcgaat gctatgaacg ctgctgaact tacagacaaa cttggacttc acacgctgag 60	
aaatcgtaac tggtatatcc aggtacttg tgccacttca ggagatgggt tttatgtt 120	
tttgactgg ttgagtaacc aattgtt aattgtt aattgtt aattgtt aattgtt aattgtt 180	
agagggaaa gaggagaggta taattttta aggaaaaaaa	219
<210> 102	
<211> 473	
<212> DNA	
<213> Meloidogyne incognita	
<400> 102	
gttttttttt tttttttta aattccaagt ttttttccaa atgagagaat agggagaatg 60	
atggggaaa aaataggagc aagccaaaaa gccaaaaaaa aattttttt ttaaatgatt 120	
tttgtaaatg tgtgaaaagg tgtgtgtcaa ttgttagagtc aaatgtcggt gccttccttc 180	
cactaaaatt tctctttctc ttctttctc ttctaaaatt cttccaaatgt cttccaaatgt cgatccaaacg 240	
aaatttcagc ctccctcttga tatttcaact cccaaatacg cttccaaatgt ttgcctttaa 300	
cgtcacgagg agtaccaaat ccagtcatca acttttgaga gtctccctta ttccaaacccgg 360	
cctggatgg aattatcggt tctgacttct tcataatccat atatggaaatg tcggcagact 420	
ccgcctcgta ttttgtgttc cttggcggtt caaaacctgt catggccgct tgc	473
<210> 103	
<211> 114	
<212> DNA	
<213> Meloidogyne incognita	
<400> 103	
ttggaccgtt aggattgtcg ccaagaaaa ttggagaaga cattgcaag gcaacacaag 60	
actggaaagg cttaaaggatc acttgcaaat tgactatcca aaaccgaatt gcc	114
<210> 104	
<211> 255	
<212> DNA	
<213> Meloidogyne incognita	

AKK110P1

<400> 104
 ccgccttcg aattgtgaag gaattgaagg aacctcaccg agaccgaaa aaagtcaaac 60
 acgtaaaaca cagtggaaat ttgacgatcg agcaaaattt caacattgca cggcaaatgc 120
 gacctcggtc aatggcggaa aaaattggaa gggactgtt agggaaattct tggcactgca 180
 caatctgtt ggtgtactgt tgatggacaa catccacatg atattgttga tgcaatccga 240
 agtggggaaaa ttgaa 255

<210> 105
 <211> 571
 <212> DNA
 <213> Meloidogyne incognita

<400> 105
 tttttttttt tttttttttt tgtcaacaat aaatttactc agaaaaatca tttacaattt 60
 taacacacat ttttaattcc ttaatactcc aaaaaacttc tcttctttat tccctcttat 120
 tctcccaatt catttaaagt ttcagtttg tgcggcgcca atgacgacgt tttgcattat 180
 agcgatatacg actgcccatttccattcgaa cccattgcgg cagcggcgtga ttttgcatttag 240
 cagccttagc cagcgtgcgc ttgataataa acgttttgtg tgcagccatt aaattgttga 300
 ctttatccaa aattgtttt ttgaaggcaa taaacaattttaatttttct gctcaacaag 360
 tccatagcag ctcatctgtt caacaatctc cctcatgcgc ctcaatctcc agcgcttcct 420
 cttatgaatg tcaaaaaacag cagcaacaac ccccaagcaga accttgttga ccttctttgg 480
 aagtccatca atctggtcat tcaacaacaa cccttccatc tccatgtntt ttattacccc 540
 ctccctcttc ttatcatcct ataaatcatc g 571

<210> 106
 <211> 235
 <212> DNA
 <213> Meloidogyne incognita

<400> 106
 tgctttatcc tcaattcttc aaccaaaaat taaatctcc cttatTTTaa ttacaattcc 60
 aatttttagca gcattagcccc caactactttt agctgctaattt aaaaattgtttt atgaggatgg 120
 agatagtgtat ggacttgata tggctaaaag tatttttaat tgaataaaagg aaaaagaagc 180
 attttaaaga aaatttagatg gaaatgctga agaaagaaaa aaatttattta tttttt 235

<210> 107
 <211> 702
 <212> DNA
 <213> Meloidogyne incognita

<400> 107
 ttttttcaaa aaataattcg aattttgttc tttttttttt tgctacaaat aaaattttaaa 60
 ttgtaaaaaa aaaaaaaaaaa aaaaaaaaaac tcgagaagaa atccttgcgg aaattgacgg 120
 ctctcaaattt gaggagtatc aacgtttttt cgtatgtttt gaccgtggaa agaatggcta 180
 tattatggct actcaaaatttgggttattttaat gatgtctatg gaacaagattt ttgatgaaaaa 240
 aactcttcgg aaattaatcc gaaaattcga cgcagacggc agcggcaaaa tcgaattcga 300
 cgaattctgc gctttggat acactgtggc gaataactgtt gacaaggaca ctttgcggaa 360
 agaatttgaga gaagcttttc gtcttttga caaagaggc aatggitaca tctctcgatcc 420
 aacactcaa ggattacttc acgaaatcgc cccagacccctt agcgtataaag acttggatgc 480
 cgcgttagac gagatcgacg aagacggaaag cggaaaaattt gaatttgaag aattttggaa 540
 gttatggct ggagagacttggatggatattttttaatggactt gactagaaaa ttgactaaaa 600
 tattttggca ttaaatttttggatggccaaaaaatttgccttcttgagaat ttttattttt 660
 aacgtctaaa taatgtatataa aatggatataa aaaaaaaaaaa aa 702

<210> 108
 <211> 423
 <212> DNA
 <213> Meloidogyne incognita

<400> 108
 aaaattttaaa taaaagacaa acaataaaat ataaattttaaa taaaataat taaaataaaac 60
 acacaaaataa actctccaaa cataattttt ttaaattttttaat aacattttt gtcccatttg 120
 agaaagaaaa tgccaaagga gatgaaagaaac ttgttgaaga aaaaagttca aaaatatacaa 180
 ctccctccattt tgcgtcaca ttttcttca ttatccattt ttttttttttgccttggatgc tcagtaactg 240

AKK110P1
 ccccaattgt tggtagtc catggagaga aagacttc cccattcgaa aatgttgaac 300
 caaattggtc aaattgtgc ttgttgtgac ctgcaggta gttagaaaca gaacgaaata 360
 aattatgagg ttgttgtgt tcctgacgtt ttgtattgtc tgaggatcac 420
 caa 423

<210> 109
 <211> 994
 <212> DNA
 <213> Meloidogyne incognita

<400> 109
 ttttattttt tatttgaaaa taatcatcac attataatta atggaaaaaa gacaaaaaat 60
 tagaacagg tgcggcgtc ttgtcacaac ccctggacct cticataaaac aaattgaaag 120
 gtcaaaacta gccaaggcga aattcaagcc tttaaaacgt tcaagagaag agcaaaaaga 180
 tgaattgaa cttgtcgatc catcgtaaa gggcaaaattt attattaaag caaacaaaaa 240
 attggaaaaa gatgttgcgt tcaatgagga tggagaatct gataattctg aagaaattga 300
 agaagaagaa gaagacggca atgaaaggat ggatgttgcgtt caatttagtat caaaacattt 360
 ggaagatata gatgaactaa aatttggatga tggcgttggaa aatgtgcgaa agataataac 420
 gaaattcaga taaaataaac aaagaaaagt gttataataa agctgagttt gccgatatcg 480
 accaaaaat ttgtgatctt ttacagaaa ttggtcaagt tttaaagaaa tatagaagtg 540
 gacgtattcc caaagcttt aaagtatttc caactttgt tgattgggag aaaattatcg 600
 aattaactcg cccagatgtat tggcggcag ctgcaatgtt acatgttacc aaaatattt 660
 cttcaactgc taccctactt caatgccccaa ggttttataa ttgtattttt ttgcccacgt 720
 ttgcagatga tatttgcggaa ttaaaaattt acattttccat atgtatcaat gcttatttaa 780
 agcattgttc aaaccagctg catttttcaa aggaatctt ttggcgtttt gcaaatcgaa 840
 caattttctt cttcgagaag ctgttgcgttct tgcttctatg cttcgtaaaag cctccatccc 900
 tcaattacac gcggccgcag cattgttgcgttct ttttcttgcgttct tttagaatataa cttcttcaag 960
 ggcttatatac cttcaagcat tgatagaaaaa gaat 994

<210> 110
 <211> 476
 <212> DNA
 <213> Meloidogyne incognita

<400> 110
 tttaaacact taaaatacc ttcaaattta tttagaacc tttttgccat taaaaaaaaat 60
 tttatcgaa aaaaatggct gagaatataag aagaaatctc tgccgaaattt gacggcttc 120
 aaattgagga gtatcaacgt ttcttcgata tggccactca aattttggta attatgaatg tggccactca 180
 tggccactca aattttggta attatgaatg ctatggaaaca agatttgtt gaaaaaaactc 240
 ttcaaaattt aatccgaaaa ttgcacgcag acggcagccg caaaatcgaa ttgcacgaat 300
 tctgcgcctt ggtatacact gtggcgaata ctgtagataa ggacactttt cgaaaagaat 360
 tgagagaagc ttttcgtctc ttgcacaagg agggtatgg ttacatctct cgtccaaacac 420
 tcaaaggatt actccacgaa atcgcggccag acctcagcga taaagacttg gatgcc 476

<210> 111
 <211> 189
 <212> DNA
 <213> Meloidogyne incognita

<400> 111
 cgaagacgga agcgaaaaaa ttgaatttga agaattttgg gaattaatgg ctggagagac 60
 tgattgaaat tttaatttga gatgaataaa aaattaacta aaatattttt ccataaaaattt 120
 ttggaaaatgtt ccaaaaatttgc ctttttttgc aatttttattt tttaacgtctt aaataatgaa 180
 taaatggat 189

<210> 112
 <211> 164
 <212> DNA
 <213> Meloidogyne incognita

<400> 112
 ttgagggaaat ttaattttttt aaacaaatat aataattacc aaacaacaaa aaagaatccc 60
 aaaacacaaca tttttaatc aaatgacaga catatatttg caataacgt gtgtggattt 120
 tctttttttt taaataatttta acatcttaag cctgcttattt ctcc 164

AKK110P1

<210> 113
<211> 539
<212> DNA
<213> Meloidogyne incognita

<400> 113
cagcttctg cgccaggattt gtaacacccc caccagcttc gacccctcg acggccttga 60
taacaccaac agccacagt tgacgcgtg caccgaacggc gaagcgtcca agaggagcgt 120
agttagtaaa agcctcaaca cacatggct tggttggaat taatgcaca ataccagcat 180
ctccagtctt caaaggctt ggattgtctt caaccttctt tccagttcga cggtcgacct 240
tctcttaag ctccagcaac ttgcagcaaa tggtagcgt gtgacagtca agaacaggcg 300
tgttagccgc agcaatctgc ccaggatgt tcatacatagat aacctgagca gtgaatttgct 360
tggctccctt tgctgggtca ttcatagat cagaagtgc tgaaccacgt cggatgtcct 420
tgacagagat gttcttaacg ttaaaatccaa cattgtcttc aggaacagct tcagggagag 480
actcggtgt catctcaaca gatttaactt cagtagaaat tccttcagga gcaaaggtt 539

<210> 114
<211> 314
<212> DNA
<213> Meloidogyne incognita

<400> 114
gttttaattt ttagaaaatg tctacagaaa cagaaaagga tttagaacgt tgggaggatg 60
tccgtcgatt tactgagatt ggttcttcta aatttgccca tcccgctttt gttccaagcc 120
cggagaatct taaaagagta agaaatgtc cagttttgt tggtaggtctt ggtgggctt 180
gatgtgaaat tttgaaaaat ttggcccttat caggatttca aaatattgaa gttattgata 240
tggacacaat tgaccttca aatctcaaca gacagttttt gtttcgtgaa cacgatgtt 300
gcttatacaa agca 314

<210> 115
<211> 200
<212> DNA
<213> Meloidogyne incognita

<400> 115
ttcgaagacg tggtaaagga tggcgcttta ctgcacataa ttgtaaaata caagataaaag 60
gacttgactt ttatggccaa ttttcaatttta taattttgtgg actagattct attgatgtc 120
gaagatggtt aaacgccaca gtgtgttctt tggtcgattt tgacgaagaa aacaagccac 180
ggccaggcac aattatttcca 200

<210> 116
<211> 471
<212> DNA
<213> Meloidogyne incognita

<400> 116
tttggtcgaa aaaagactgc tactgctgtg gcatttcca aaaaggaaaa aggattaatc 60
aaggcgaatg gccgtccctt agaatttttgc caacctgaaa ttctcgat taagctacaa 120
gaggcattgt tgattgtagg aaaggacaaa ttgctggaa tggatattcg catccgtgtc 180
aaagggtgtg gtcatgttgc acaaattttat gcaattcgac agtcaatttgc taaagtttgc 240
gtggcctattt accagaaaaa cgtggatgag caaagcaaga aagaatttggaa ggtcaactt 300
gttgcattatg atcgtatattt gcttggcc gatccgagac gtcacgagcc aaagaattttt 360
ggaggacctg gtgctcgatc tcgttattcag aaatcttac gttttaaaggat atgaaattat 420
aaaattgtgtt gttacgaaattt aatttttgc ttgttggat aaatntgaat 471

<210> 117
<211> 593
<212> DNA
<213> Meloidogyne incognita

<400> 117
gaattcaaaa aatattaaaa ttgtttaata taatttctaa aatgaagcca aagggttgaa 60

AKK110P1

ttaacggatt	tggacgtatt	ggacgtcttg	ccctgcgtgc	agcggtcgag	aaggatactg	120
tccaagtgt	ggctgtcaat	gaccgcgtca	ttgatcttga	ctatatggtc	tatatgttta	180
actatgattc	caccacacga	cgctttaaag	gaaagattca	agcaagcaat	ggaaatttgg	240
tagttgagaa	ggagggaaag	tctactcata	ctatcaaagt	tttcaacttc	aaagaacctg	300
aaaagattga	ctgggcaggt	tctggtgctg	attttgttat	tgagtcgact	ggagtttta	360
ctactaccga	gaaagcttct	gctcacttga	agggcggagc	caagaaagtg	gttatctccg	420
ctccatctgc	tgatgctcca	atgtttgtgg	ttgggtttaa	tgaggacaaa	tatgatcctt	480
ccaagcatca	tatcatttagt	aatgcttcct	gcactactaa	ttgtcttgct	cctcttgcg	540
aggttataaa	tgacgagttt	ggcataattg	aaagttgaat	gactactgga	cac	593

<210> 118

<211> 576

<212> DNA

<213> Meloidogyne incognita

<400> 118

gaattccgag	ttttttttt	ttttttttaa	aacaaaaatt	aaaagattta	tcgccatcct	60
ttgccagcca	tttgcggcc	attttttgt	gcacaataaa	ttttttgtta	atttttgggg	120
tgagggggaa	gtaaaatgaa	agaagggaga	gagatatgaa	ttggaggttt	ttttgttaaa	180
ataaaatttt	ttttcttcaa	aattcttccc	gtttctgagc	ttttcgtct	tttttcaatt	240
ttcgtttgc	gaaataactaa	actttacaat	ttggtttagt	tctatttgc	aaacataaaat	300
atctccatta	tcgctgattt	caagggcatg	ggcggtttcg	agaccctttg	caaagctatt	360
agcccttcct	gtgttcatat	ccattacgaa	aacttggat	tctaatttgc	tgccttgatc	420
ttgattggtg	acgcccacga	ggaagtgttc	tttctctcg	atagcaaaga	ctcgcccaat	480
attttcagcc	tttgtgaaga	aagtgcctgt	ggggacgtaa	gcacgtctat	gttggtgttg	540
agcgcccttct	aatccagcag	aaaagcattt	aatacgt			576

<210> 119

<211> 559

<212> DNA

<213> Meloidogyne incognita

<400> 119

acgcagagta	agttgagatc	ttcaataagg	gttagagagt	gtggtacgag	gaattctcca	60
tttttgggt	tttcaacttgc	gtcaggcttc	ccaaatttgc	tgagcaattt	cccatccctg	120
tcaaaacttca	tttattcgct	atttacgtaa	ccatctgcca	cgaaaaactc	tcctgtactg	180
gcaatagcaa	cgtctgttag	tttcaaaaa	tgtttgcatt	ctgtccccgg	aacaagcttt	240
tcgccccaaac	tcataattaa	ttttaaatcc	ttgtcaagtt	tgtggacttg	atgacttcca	300
acgtcagtaa	cccaacttatt	gccgtggca	tcgattttt	gtccatgagg	catgtaaaac	360
atgcttttc	cgtatttttc	caagactgccc	cctgattttc	tgtctataac	agcaattttt	420
gtgtttgaaa	tgatgcccag	ggatctgtt	aggtggttgt	tctcatcaaa	cgaaaatca	480
tcccaaactc	tgtcagatcg	gtggaaaaga	acaagtgcat	tcaatggatc	caatgcaata	540
cccgagctt	gccccatata					559

<210> 120

<211> 366

<212> DNA

<213> Meloidogyne incognita

<400> 120

ttaagaattt	ttttaaaaat	taaaacttgg	actagatttt	aataaaatgt	cagctccacg	60
tagtgttgc	agcgggtttt	gtgtctgtgt	tatgaataag	caagcaagta	aatacaatga	120
agttgaagga	gaactccctc	ttaattggat	taagaaatgt	acaggcgaaa	atattgttat	180
aaacggaaact	agggaaaattt	ttgtgaaaca	attgaaatgt	ggaactctgc	tctgcaattt	240
tgctaaacaaa	attgtgccaa	attcaatcac	aaaggcacag	gcaaaaaccga	acagcacatt	300
ccaatatatgt	agcaatttgg	agctgttctt	aacattttatt	tcaagccaag	gagtccctag	360
ggagga						366

<210> 121

<211> 661

<212> DNA

<213> Meloidogyne incognita

<400> 121

AKK110P1

ttagttgaat	ctcgtgacct	ctactctgtt	tgtatgacat	taaattctct	tggccgcatt	60
ttggaacgtc	aaggaaaaaaac	tcatccagag	caggttaagt	cgtcagaaaat	tcttaatttg	120
ggtactggag	accaagtgcg	ccttcgtgtt	taaagatggg	aaattgaaag	aattttgggt	180
aaacataaata	aaaagacattt	ttatggcaat	aaaaaaaaatgt	aaaaaaagct	tgtctttaa	240
atattttggc	aaaacatttt	acttgcacaa	aattttaaaa	taaattttatg	aagattgttc	300
cgtcaacttc	atcatttcg	atcgacctt	gttgggttct	aagttcggtg	gccaaagaaa	360
ggatatgtaa	aattgaatta	tgaataaaaa	taaatcactc	aatcagagggc	attgttagtc	420
tctcaactcc	tcctcttac	ccattggcta	accagctta	aggatttttt	ccataaggtc	480
aagggtgtacg	taaatcgaat	accgactgtg	gtatcttaat	ttttccatga	aattctccaa	540
aaaaaaaaaa	tttttttat	ttttttcca	taatgtatc	tatatttttt	gcttttaatc	600
ttttttggct	atcaggctt	aaaatagtaa	ataacttat	attaatattt	tatttcctt	660
						661
a						

<210> 122
<211> 173
<212> DNA
<213> Meloidogyne incognita

<400> 122
ggagagtttt tcgtggcaga tggttactgt aatagtcgaa taatgaagtt tgacaaggat 60
ggaaattgc tcagtcaatt tgggaagcct gactccagtg aaacacccaa aaatggagaa 120
ttccttgtac cacactctct aaccctcatt gaagatctca acttactttg tgt 173

<210> 123
<211> 584
<212> DNA
<213> Meloidogyne incognita

<400> 123
cgcattcaat gcttttctgc tggatttagaa ggcgctcaac accaacatag acgtgcttac 60
gtccccacag gcactttctt cacaaggct gaaaatattt ggcgagtctt tgctatccga 120
gagaagaacac acttcctcgt cgccgtcacc aatcaagatc agggcagtca attagaatcc 180
caagtttcg taatggatataa gaacacagga agggctaata gcttgcataa gggctctagaa 240
aacgcccattt cccttgcattt cagcgataat ggagatattt atgtttcaca aatagaaccc 300
aaccacattt taaaattttt tagttcgaca aacgaaaattt gaaaaaaa aaaaaaaagc 360
tcagaaacgg gaagaattttt caagaaaaaa tttttttacc aaacaaaaaa cctccaattc 420
atatcttc tttttttcat tttttttcc ctttctcccc aaaaatttaca aaaaattttt 480
ttgtgcacaa aaaaatggc gggggggcga atggctggc aaaggatggc gataaatctt 540
ttaatttttggc aaaaaaaaaaa aaagaattcg aattatatgg ccta 584

<210> 124
<211> 650
<212> DNA
<213> Meloidogyne incognita

<400> 124
gtttaagaca attaaaacgt ttatttctta caatcaaaac aaatatggct gttcctcccg 60
atgttatcga gaagatcgag gctgggtaca aaaagttca ggaggcaccg gagtgcaagt 120
ctctctcaa gaagtacttc acgaaggaag ttatggacca gtgtaaaggg ctcaaaaacta 180
agcttggtgc gaacctgtt gatgtgatcc actctggagt tgcgaatctc gatagcggtg 240
ttgggtttta tgcgcctgtat gctgagtctt acactcttt caaaccgctt tttgaccgg 300
ttatttcggg ttaccacaaat ggatttggac ctgaccagaa gcagccgcaa actgacttgg 360
gtgagggaaa gactcagctt ttgcctgatc tggatccctga gggtaaattt atcaactcga 420
ctcggttcg atgtggggct tcttttcagg gatatccgtt caatccgtgc ttgactaaag 480
agaattatac gggaaatgcat gacaaagttt aagggtttt tgagcagctt aagtctgtat 540
ctgagcttgg tggcacctt tatcccttgg agggaaatgac caaagaggtt caaactcaat 600
tgatcaaggaa tcacttcctc ttcaaaagaag gagaccgctt tttgcaagct 650

<210> 125
<211> 1013
<212> DNA
<213> Meloidogyne incognita

<400> 125

AKK110P1

tttttttttt	tttgcgtttt	ctaatttttg	tggcaatata	ttaatattat	tttaatttat	60
taaattttct	tctttatattt	ttaaaaaattt	atttcttaaa	tttattcttc	tcctcttcgt	120
gttttgaatc	aaataatcaa	attttaattt	attnaaacag	ctacacgagg	cctcagccct	180
ccccgttgc	ttcaaatgg	tcggcacgg	tggcgatgt	aatttttattt	tttaggtata	240
tttggtgaga	aaatattttt	aaaggtata	atgtcctttt	ggacaattaa	aaaaaaactc	300
gaggagagag	tgaatatttt	tacaaattat	ttgaagagca	gccagcctat	tgttatcaac	360
aaaaaaacctt	caaaatgcca	gaaaatgatt	atgtgagga	ggaggcgcca	aacgcccacga	420
tggaaacaaa	ggtagctca	ggtggacagc	caaaacgctg	ttgaaaaatg	gacattatcc	480
cagctgcgcc	agactgtgg	tataattcca	tcccaggccg	gttggacaaa	gggagactcc	540
caaaagtgtt	tgaccaattt	tggtaactcca	cgtaacacaa	caacccaaat	tcgtgctgaa	600
tgccttgctg	atgtgcctga	agaaatttgc	cttaaaagtc	acgtgtaagt	acgcctccaa	660
tccggacta	accgtttgc	ttcgcagaag	ggaatgggt	gatttggta	tggacgtgac	720
ttatgcagag	aaggagtgtt	tgtgagtcaa	gaccaggcg	atttataagcc	cctcccaagaa	780
gagataatcc	gtgcttagcga	tggaaatttgg	cgtctccat	ccgttaccaa	caaattcgac	840
tcccaaaagg	gaatggtcag	cttcggtaca	aaccgacgcg	aaactacaag	aatgaaagac	900
accaaacatc	cggaatataaa	ccacgaagtt	aacattgacc	aaagcgaat	tcctttgcaa	960
tctggtacaa	acaatttcgc	atcccaaaag	ggaatgacca	gcttcgggtac	aaa	1013

<210> 126

<211> 80

<212> DNA

<213> Meloidogyne incognita

<400> 126

tggtggacac tgctcaccca gaatacagtc acgaaaggcg catcgatcaa acgagcattc 60
cttacccaaat gggatcaaat 80

<210> 127

<211> 585

<212> DNA

<213> Meloidogyne incognita

<400> 127

agggaaatgac ttgcgtttga cagccacgtt gggaggtgtc tgacccgagc attagctacc 60
agaaccgtaa atcacaagga atggtccgtc tccaatccgg aacaaaccgg gtcgcctcgc 120
aaggccgtat gacagggtt ggaatccaa ggaacacaaac atacgaggcg gagtctggcg 180
aacttccata cgaagatata gagaagttag aacagataat tccatcccg gccgggttgg 240
ataagggaga ctctcaaaag ttgatgactg gatttggta tcctcggtac gttaaaggca 300
aacatttggaa gcgttattttt gagggttggat acccagagga ggctgaaatt tcgttggatc 360
gactttaaag gaattttaga agagaagaaa gaaaagagaa attttagtgg aggaaggcaa 420
cgacatttga ctctacaatt gacacacacc ttttccatcaca ttacaaaat acattaaaaaa 480
aaaatttttt ttggctttt ggcttgctcc tattttttcc ccccatcatt ctccctattc 540
tctcatttgg atgcaaaactg gaattttaaa aaaaaaaaaaaa aaaaa 585

<210> 128

<211> 287

<212> DNA

<213> Meloidogyne incognita

<400> 128

catctggaga aacgttgagg caatacatcg ttattggccg taaaacttcct acagagaatg 60
agccaaatcc aaaactttac aaaatgcata tttttgcacg taatcatgtt gttgcttaat 120
cgcgtttctg gtactttact agtatgttgc gtcgtgttaa gaagactaac ggagagattg 180
tttcgtgtca ggagggtttt gaaaagaaga taggctctgt aaagaattat ggaatttggc 240
ttcgttatga ctctcgaacc ggtcatcaca acatgtaccg tgaatac 287

<210> 129

<211> 175

<212> DNA

<213> Meloidogyne incognita

<400> 129

gctgtcactc aggcttatacg cgacatgggt gctcgtcatc gtgctcaagc cgatcgaatc 60
caaataatca aggttcaacc gatcaaggct gccgattgca aacgtactgg agttaaacag 120

AKK110P1

ttccacaact cttcaatcaa gtttccttg ccgcacatcg tgaatgacaa acgtc	175
---	-----

<210> 130
<211> 599
<212> DNA
<213> Meloidogyne incognita

acttttgtt ataatcacat ttgcattact ttccgtccat ccttcttga gacagaattt 60
aaaggttcac ctcttaagta aggattgtag cggctgtatg attgatgttgc cttttgttgg 120
ggagcaatag aacgcttgc tcgccgaggc tcctcagccc tagtaacgtg aaatttctt 180
gcaatcatcg atttgttag tccattttg gctaagacct gttctaaatgc ttgttcatat 240
tgttcagaat tgcttttga ttgacagttt aacatgttgc cttggtcaca aaggcattgc 300
tgattggcct ggtagctacg cgagaaatcg gcgggttat caaactccctc caaacatcca 360
tctcgactgg agtatccac agggcaggga ttggagggt cacaatatgc tggcaaaaca 420
ttgtcactct taatctcttgc gcggtgtgaa aattcagatt ctgatggag ttgttggct 480
ccttcaccgg cacccctgt cataaaatttata tgtccaaacg caatggggcc ggaagcactt 540
tcaatgtcac gagaaatcaa gtcgattat tgcataatgc gaaatataagg ctccccaga 599

<210> 131
<211> 466
<212> DNA
<213> Meloidogyne incognita

gaagatttggaa tttattggcg ctggaaagat ggcacaggca ttggccagag gactaataaa 60
ttctggacgt tatttttcac aaaatttgc ggctagtgtc cctaagactg atgtctctt 120
attggaggat tgcaagaggc ttgggagttt tacagcacat gataatgcac aagttgctcg 180
tgaaaatgtt gtgggttta tagcaggtaa accaactatt gtgtctaaatg ttgcttcgga 240
aattgcacca gccatccgccc gagatcatgt acttatttttct atagcattgg gcatcaccat 300
acgttacattt gaggatgtat tgacttcaga atcccgatgtt gttcgttggaa tgccagatc 360
tcctgttaggt ggttagggca ggctgtgc gccatataatc attggatca gcattgtcag 420
gataggtgat gcccagatgttcaagatct tctgataacg ctgggg 466

<210> 132
<211> 266
<212> DNA
<213> Meloidogyne incognita

atgaaattcg agttctttgc atcaaggccc gtgaaatttt tcttcgcaa cctatttgc 60
tggaaatttggaa agccgcgtt aagatttgc gcgatattca cggtaataac aacgaccctt 120
tgcgtttttt tgaatatggaa ggtttccgc ctgaagcgaa ttattttttt ttgggttattt 180
atgtggatag aggaaagcag agcttggaga cgatttgc gctgttggcc tacaagatca 240
aatcccccgaa aaattctttt tgctga 266

<210> 133
<211> 308
<212> DNA
<213> Meloidogyne incognita

tctatcaacc gaatatatgg attttacgtt gaatgcaaac gcagattttc tataaaattt 60
tggaaaacat ttactgattt cttcaattgtt ctgccaatttgc ctgtgtatgc cgatgagaaa 120
atattttgtt gccatggagg tttgtcacca gatttgcaga atatggagca aattcgaaga 180
attatgcac ccacggatgtt gccagataca ggtcttcctt gcgacccctt atggtctgat 240
ccagaccaag atgtccaagg attggggagaa aatgatcgat gggtctctt cacttttggaa 300
ccagatgtt 308

<210> 134
<211> 335
<212> DNA
<213> Meloidogyne incognita

AKK110P1

<400> 134
taaattttagt ttcttttctt ccacatctttt ttatgtttt aaagagtgtg ccaaaaacaaa 60
tggccgccccg tgatggaga agcaggcaaa attatttaca agaacattca attcctcaac 120
tttttgaggg ttaatgact ggacttatata acaatcaacc aatcgatctt attcaatttt 180
tggagaatgc aatagctaaa ctgcggaaaa atccgtatct tccattaaag tgggataactt 240
ttataagtgt ttcgcctcaa caacagcaac aacaacagac gagaatgaat actggagaaa 300
atgcagttc ttataaaacaa agcaactcta tcgaa 335

<210> 135
<211> 506
<212> DNA
<213> Meloidogyne incognita

<400> 135
ttttttttttt tttaaaaatc aacagattta ttcaagtgcc tcgggcaaat aacaacaaac 60
atccacaaac ataatattat tgaactttt ctttttaaaa cttatcaaag gccttcttg 120
ttcctgagac tttgatcacc ttcaaaaacat taaaacgaac agtttactc aaaggccgc 180
attcaccgat cgtgacaata tcaccaatag agatatcagc gaaacatggc gaacagtgaa 240
cggaatgtt tttgtgacgt ttctcgatc gacgatattt cggaacaaag tgcaaataat 300
cacggcaat gacaatttgt cgctgcattt tgttcttgat aacaacacca gtcaaaaatac 360
ggccacgaat taaaacattt ccagtgaaag gacactttt gtcaatataa ttgccttcga 420
tagcctcgcg tggagttta aatccataacc caacattttt ccaataacga tccttatttt 480
tcggctnttt gccaatccct tcgcgc 506

<210> 136
<211> 230
<212> DNA
<213> Meloidogyne incognita

<400> 136
aattcctcaa actctgcctt ggctgtcctt ctcaaaaacga caccctcgct ttattatcac 60
ctccagtcaa ctacgaaaat tcttgcgag atcaaggagg taattcgaca ttatggattc 120
ttttgttgg ttttaattgt ttatttttgc tactaatttt ccttctaattt gccccttacc 180
tccgttgcg catttttggc tccggccccctt acaaaaaccca gttccgtcg 230

<210> 137
<211> 216
<212> DNA
<213> Meloidogyne incognita

<400> 137
acaataacac aacaacaaaa tcattgttta ccccaaatat ccaaaaagttc tcctccaact 60
tcactcgctg tttgtaccaa ctctactagc tgtaatttgc ccttagctgt gccgtaattt 120
tctagtgaat cggaagaaag tgatgaacaa caaaagacgg gggaatggac aaatctaaca 180
ttattaattt tttattctca tgattgtaaa ttgcatt 216

<210> 138
<211> 395
<212> DNA
<213> Meloidogyne incognita

<400> 138
atgcattcctt gaagcaattt tgggtatgga cattgtatgc caagcaagt ctggtatggg 60
gaagacagct gtatttgcgt tggcaacact ccaacaattt actccagttt acggggacgg 120
ctctgttctt gttatgtgtc acactcgca acttgcattt caaatttcaa aggaatata 180
aagatttagc aaatatatgc ccggaaactaa ggtttcggtt ttctttgggt gtatggcgat 240
caagaaggac gaggagactt tggctaaagaa cactccgcac atttttttttgc gcaactccagg 300
gcgtctcgctg gcgttgggac gtacaggaca attgaagctg aaaaacatca aattcttcgt 360
tttagacgaa tgtgacaaaa tgattgggaa cgctg 395

<210> 139
<211> 591

AKK110P1

<212> DNA

<213> Meloidogyne incognita

<400> 139

gaattcggcg	ttgtctcggt	gtccacgctc	aatttcaccg	aaatttttgg	ggcaggcgtc	60
ctccacacca	aactctgggt	cattgacaac	cggcactttt	atctgggttc	agcaaacatg	120
gactggcagt	cacttactga	agtcaggaa	atgggtctta	tgctgttcaa	ctgctcctgt	180
ttggcgtggg	aactgagcaa	aatatttgcg	atttactggc	ggattggaca	gaatcacaat	240
cgcttgcccg	ctgtttggcc	agtttattta	caatcaaaat	tcaacgctca	acacccaatg	300
gaaattcatt	ttggacacctga	gccctcgcac	acgtacattt	cgcactcgcc	tgagaagttg	360
aacccaaagg	gcagagaaca	cgacccttcg	gccatatgt	catgcatggg	aaaagccaac	420
gaatttgttc	gaattcgggt	aatggattat	attcctgcaa	caatttacat	gccgaatgtt	480
aacaacatat	attggccatc	gatcgatgac	gcgataagaa	cggcagctta	tcgggggtgtg	540
aaagttgacc	tttgggtgagt	ctgtggcccc	atttgaatga	acgagcgatt	t	591