STATS 2107 Statistical Modelling and Inference II

Workshop 4: Sampling distributions part 1

Matt Ryan

School of Mathematical Sciences, University of Adelaide

Semester 2 2022

What is a sampling distribution?

Suppose $Y_1, Y_2, ..., Y_n$ is a random sample, and T is a statistic on the Y_i . Then the distribution of T is called the *sampling distribution*.

The sample mean

For example, suppose each $Y_i \sim N(\mu, \sigma^2)$ and $T = \bar{Y}$. Then the sampling distribution is

$$ar{Y} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
.

What is meant by sampling distribution?

Does the practice match the theory?

In theory, if our data is normal, the sample mean is normal. Let's test this.

- 1. Consider samples of size 3, Y_1 , Y_2 , $Y_3 \sim N(5, 2^2)$.
- 2. Every time we take a sample, calculate the mean

$$\bar{Y} = \frac{1}{3} (Y_1 + Y_2 + Y_3) .$$

- 3. Generate 10, 100, and 1000 samples to look at the distribution.
- 4. Is it normal?

Some R code to do this

```
# Set up some parameters
N <- 10
mu <- 5
sig <- 2
n <- 3

# Get the samples and calculate the mean
norm_sample_3_10 <- N %>%
rerun(rnorm(n, mu, sig)) %>%
map_dbl(mean) #Hey look, a new function!
```

Histograms

Is this normal?

QQplot

What to do

- 1. Adapt the given code to produce the histograms for N = 10, 100, 1000.
- 2. Explore the distribution as you increase n.
- 3. Explore the distribution as you change μ and σ^2 .

The problem

Our distributional result relies on the fact that $Y_i \sim N(\mu, \sigma^2)$, although we know

$$E[\bar{Y}] = \mu$$

and

$$\operatorname{Var}(\bar{Y}) = \frac{\sigma^2}{n}$$
.

CLT to the rescue?

Let Y_1, Y_2, \ldots, Y_n be independent independent and identically distributed random variables with $\mathrm{E}[Y_i] = \mu$ and $\mathrm{Var}(Y_i) = \sigma^2 < \infty$. Define

$$U_n = \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}}$$
.

Then the distribution of U_n converges to the standard normal distribution function as $n \to \infty$.

The problem

The CLT only kicks in for large n, the worse the distribution, the larger the n needed.

Let's explore the sampling distribution of the sample mean for $Y_1, Y_2, \ldots, Y_n \sim \chi_5^2$. We will

- 1. Consider samples of size 3, Y_1 , Y_2 , $Y_3 \sim \chi_5^2$.
- 2. Every time we take a sample, calculate the mean

$$\bar{Y} = \frac{1}{3} (Y_1 + Y_2 + Y_3) .$$

- 3. Generate 10, 100, and 1000 samples to look at the distribution.
- 4. Is it normal? Expect to see N(5, 10/3).

Is the χ_5^2 normal?

Some R code to do this

```
# Set up some parameters
N <- 10
df <- 5
n <- 3

# Get the samples and calculate the mean
chi_sample_3_10 <- N %>%
    rerun(rchisq(n, df)) %>%
    map_dbl(mean)
```

Histograms

Is this normal?

QQplot

What to do

- 1. Explore the distribution of the sample mean as you increase the sample size n from the χ_5^2 . When does it start to become normal?
- 2. Look at the t_5 distribution. Explore the sampling distribution of the sample mean. When does it start to become normal?
- 3. If you had a dataset with no knowledge of its distribution, how might you explore the sampling distribution of the sample mean?