## Recap - MO Construction Acyclic Conjugated Polyenes



When n is even – n/2 bonding and n/2 antibonding MOs exist When n is odd – (n-1)/2 bonding, 1 non-bonding and (n-1)/2 antibonding MOs exist

## **Butadiene MOs**



$$-- \Psi_4 = C_1 \varphi_1 - C_2 \varphi_2 + C_3 \varphi_3 - C_4 \varphi_4$$

The nodes are placed symmetrically



$$--$$
 Ψ<sub>3</sub> = c<sub>1</sub>φ<sub>1</sub> - c<sub>2</sub>φ<sub>2</sub> - c<sub>3</sub>φ<sub>3</sub> + c<sub>4</sub>φ<sub>4</sub>  
LUMO



$$Ψ_2 = c_1 φ_1 + c_2 φ_2 - c_3 φ_3 - c_4 φ_4$$
HOMO



$$\Psi_1 = c_1 \phi_1 + c_2 \phi_2 + c_3 \phi_3 + c_4 \phi_4$$

# Activity Draw the MOs for hexatriene

# A Small Activity

- Go to <u>www.menti.com</u>
  - Use code 2278 5484

Happy answering ©

## MOs of Hexatriene



Energy

# MOs – See any patterns?



# MOs of Larger Conjugated Polyenes

- The lowest energy orbital is always symmetric with respect to the principal mirror plane
- The energy of the MO increases as the no: of nodes increases

```
Eg. \psi_1 - 0 nodes \psi_2 - 1 node \psi_n - n-1 nodes Again: Remember to ignore the nodes of the AO
```

When you draw MOs place the nodes symmetrically

# Draw the MOs of Allyl Cation

# MOs of Allyl System



The nodes are placed symmetrically

# Summary: Acyclic Conjugated Systems



There are no nodal planes in the most stable bonding MO. With each higher MO, one additional nodal plane is added. The more nodes, the higher the orbital energy.

bonding

## Broad Classification: Organic Reactions

#### Polar Mechanism



#### Radical Mechanism



#### Concerted Reactions

All the bonding changes occur at the same time and in a single step – No intermediates involved!

# Significance of Orbital Energies

A process that takes one stable molecular configuration (or set of nuclei and occupied and unoccupied orbitals) to another stable molecular configuration *via* unstable configurations

#### **Transfer - electron rich to electron poor**

**Nucleophiles - Higher energy filled orbitals (Ready to donate electrons to suitable electrophiles)** 

e.g., NH<sub>3</sub> lone pair of electrons responsible for its nucleophilic nature is its nonbonding MO

**Electrophiles-** lower energy unfilled orbitals

e.g., empty nonbonding MO in BF<sub>3</sub> or CH<sub>3</sub><sup>+</sup>



## **Common HOMO-LUMO Combinations**

**HOMO** possibilities

**LUMO** possibilities

Filled

**Unfilled** 

σ

<del>ر</del>\*

π

π\*

**n** (non-bonding)

n (nonbonding)

## **Explanation of Reactions Through Molecular Orbitals**

#### S<sub>N</sub>1 Reaction – Attack from both sides of carbocation ok



### S<sub>N</sub>2 Reaction – backside attack only possible

$$HO^{-} + CH_{3} - Br$$
  $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO - CH_{3} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO^{-} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO^{-} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO^{-} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO^{-} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO^{-} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO^{-} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO^{-} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO^{-} + Br^{-}$ 
 $HO^{-} + CH_{3} - Br$   $\rightarrow$   $HO^{-} + Br^{-}$ 
 $HO^{-} + Br^{-}$ 

## Rotational Barrier in Ethane

Barrier of 3 kcal mol<sup>-1</sup> due to steric and electronic effects

Transition state is eclipsed



eclipsed:

filled orbitals repel



Most stable rotamer is staggered



