Complex Numbers-Summary

1 Key Points - Fill in the Blanks:

Fill in the blanks in the key points below with a word, phrase, or mathematical expression. The unblanked versions are on the next page. Note that the size of the blank does not indicate the size of the missing word or phrase!

- 1. The **imaginary unit** j (or i) is defined to be a solution to the equation The other solution to this equation is
- 2. A **complex number** is any expression of the form a + bj where a and b are real numbers. This is called the form of the complex number; a is called the and b is called the
- 3. If z = a + bj, then the complex number \bar{z} is equal to and is called the of z.
- 4. We can represent the complex number a + bj by the point (a, b) in the
- 5. If z is a complex number, the non-negative real number |z| is called the of z and the angle arg(z) is called the of z. These are the of the point (a, b) in the Argand diagram.
- 6. If z = a + bj, then |z| = ... and $\tan(\arg(z)) = ...$
- 7. The abbreviation $cis(\theta)$ is shorthand for
- 8. We can write any complex number z in the form $r \operatorname{cis}(\theta)$, where $r = \ldots$ and $\theta = \ldots$ This is called the \ldots of z.
- 9. To multiply two complex numbers in polar form, we
- 10. De Moivre's Theorem states that if $z = r \operatorname{cis}(\theta)$, then
- 11. When using de Moivre's Theorem with $b \neq 1$ (e.g., to find roots of a complex number) we must always remember

2 Key Points to Remember

The statements from the previous page, with the blanks filled in.

- 1. The **imaginary unit** j (or i) is defined to be a solution to the equation $x^2 = -1$. The other solution to this equation is -j.
- 2. A **complex number** is any expression of the form a + bj where a and b are real numbers. This is called the *cartesian* form of the complex number; a is called the *real part* and b is called the *imaginary part*.
- 3. If z = a + bj, then the complex number \bar{z} is equal to a bj and is called the complex conjugate of z.
- 4. We can represent the complex number a + bj by the point (a, b) in the Argand diagram (or complex plane).
- 5. If z is a complex number, the non-negative real number |z| is called the *modulus* of z and the angle arg(z) is called the *argument* of z. These are the *polar* coordinates of the point (a, b) in the Argand diagram.
- 6. If z = a + bj, then $|z| = \sqrt{a^2 + b^2}$ and $\tan(\arg(z)) = \frac{b}{a}$.
- 7. The abbreviation $\operatorname{cis}(\theta)$ is shorthand for $\operatorname{cos}(\theta) + j \sin(\theta)$.
- 8. We can write any complex number z in the form $r \operatorname{cis}(\theta)$, where r = |z| and $\theta = \arg(z)$. This is called the *polar form* of z.
- 9. To multiply two complex numbers in polar form, we multiply the moduli and add the arguments.
- 10. **De Moivre's Theorem** states that if $z = r \operatorname{cis}(\theta)$, then $z^{a/b} = r^{a/b} \operatorname{cis}\left(\frac{a\theta}{b}\right)$.
- 11. When using de Moivre's Theorem with $b \neq 1$ (e.g., to find roots of a complex number) we must always remember to add multiples of 2π to the argument to get all the roots.

3 Revision Questions

- 1. Let z=1-j and w=4+3j. Compute $z+w,\,zw,\,\bar{z},\,\bar{w},\,\frac{z}{w}$ and z^2 .
- 2. Express 5 12j in polar form.
- 3. Express $14 \operatorname{cis}\left(\frac{-5\pi}{6}\right)$ in cartesian form.
- 4. Let $z = \frac{1}{2}(\sqrt{3} j)$. Compute z^{100} .
- 5. Find all cube roots of -2 + j.

4 Solutions

It is possible I've made a mistake or two in these, so if your answer is different from mine and after checking you can't find a mistake in your work, ask me about it!

1.

$$z + w = 5 + 2j$$

$$zw = 7 - j$$

$$\bar{z} = 1 + j$$

$$\bar{w} = 4 - 3j$$

$$\frac{z}{w} = \frac{(1 - j)(4 - 3j)}{4^2 + 3^2} = \frac{1}{25} - \frac{7}{25}j$$

$$z^2 = -2j$$

- 2. $|5 12j| = \sqrt{5^2 + 12^2} = \sqrt{169} = 13$; $\tan(\arg(5 12j)) = \frac{-12}{5}$ and we're in the bottom right quadrant, so $\arg(5 12j) = \tan^{-1}\left(\frac{-12}{5}\right) \approx -1.176$. So $5 12j = 13\operatorname{cis}(-1.176)$.
- 3. The real part is $14\cos\left(\frac{-5\pi}{6}\right)$; $\frac{-5\pi}{6}$ is in the bottom left quadrant, at an angle of $\frac{\pi}{6}$ below the negative real axis, so $\cos\left(\frac{-5\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$. So $\operatorname{Re}(14\operatorname{cis}\left(\frac{-5\pi}{6}\right) = -7\sqrt{3}$. The imaginary part is $14\sin\left(\frac{-5\pi}{6}\right) = 14\sin\left(\frac{\pi}{6}\right) = 7$ (again by considering the quadrants). So $14\operatorname{cis}\left(\frac{-5\pi}{6}\right) = -7\sqrt{3} + 7j$.
- 4. We use de Moivre's Theorem. First we put z into polar form; $|z| = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$, $\tan(\arg(z)) = \frac{-1}{\sqrt{3}}$, and z is in the bottom right quadrant, so $\arg(z) = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{-\pi}{6}$. So $z = \operatorname{cis}\left(\frac{-\pi}{6}\right)$. Then $z^{100} = \operatorname{cis}\left(\frac{-100\pi}{6}\right) = \operatorname{cis}\left(\frac{-50\pi}{3}\right)$. We have $2\pi = \frac{6\pi}{3}$, so $\frac{48\pi}{3} = 8 \times 2\pi$, so $\operatorname{cis}\left(\frac{-50\pi}{3}\right) = \operatorname{cis}\left(\frac{-2\pi}{3}\right)$. We can leave this as our final answer in polar form, or revert to cartesian form: $\frac{-1}{2} + \frac{\sqrt{3}}{2}j$.
- 5. Again, we use de Moivre's Theorem. $|-2+j| = \sqrt{4+1} = \sqrt{5}$, and $\tan(\arg(-2+j)) = \frac{1}{-2}$; we are in the top right quadrant, so $\arg(-2+j) = \pi + \tan^{-1}\left(\frac{-1}{2}\right) \approx 2.678$. So we have

$$-2 + j = \sqrt{5}\operatorname{cis}(2.678) = \sqrt{5}\operatorname{cis}(8.961) = \sqrt{5}\operatorname{cis}(15.244)$$

by adding 2π and 4π to the argument. Now, $\sqrt[3]{\sqrt{5}} = \sqrt[6]{5} \approx 1.308$ and dividing the three arguments by 3 gives 0.893, 2.987, and 5.081 respectively. So the

cube roots are:

 $1.308 \operatorname{cis}(0.893), \qquad 1.308 \operatorname{cis}(2.987), \qquad 1.308 \operatorname{cis}(5.081).$

We could convert these back to cartesian form if we wished.