

Advancing AI-Vision-enabled microplastic monitoring through novel YOLO model development and underwater 3-D Imaging

Natalie Zhu^{1, 2}, Md Abdul Baset Sarker², Dr. Abul Basar Baki², Dr. Masudul Imtiaz²

¹Brown University, ²Clarkson University

INTRODUCTION

- Microplastics (<5 mm) are a major environmental threat to human health and ecosystems
- The large portion of microplastics is derived from riverine systems, however this area is under-researched
- Furthermore, current microplastic detection methods are asynchronous and laboratory-based while technologies for accurate, real-time detection remain under-researched

Research Context:

Previously, the Imtiaz lab designed a two-dimensional camera system for underwater capture of microplastics, and trained and developed a You Only Look Once (YOLO) v5-based deep learning model to detect the presence and calculate the velocity of underwater microplastics.

GOALS AND EXPECTED RESULTS

Study Objectives

- 1) Upgrade software to receive data from 3D camera system to improve size and velocity calculation.
- 2) Train, implement, and assess YOLOv8-based deep learning model accuracy and precision for underwater microplastic detection.
- 3) Deploy YOLOv8 model on a small-sized single-board computer for real-time microplastic detection.

We expect improved accuracy in microplastic size and velocity calculations using 3D camera data, and a faster, higher-performing YOLO model for microplastic detection, especially smaller objects. Findings from this research may inform environmental monitoring and protection efforts against microplastic pollution.

METHODS

A. Experimental Setup & Data Collection

- Data collection was performed in the 12 by 0.45-meter wide, recirculating open channel flume in Clarkson University's water resources lab (Fig. 1)
- Data was collected at five water velocities: 10cm/s, 20cm/s, 30cm/s, 40cm/s, 50cm/s microplastics of size 1mm, 2.5mm, and 5mm were released at varying distances from 270-400mm away from the camera.

Fig 1. Schematic representation of experimental setup for data collection

METHODS (cont.)

- Image capture was performed by two two-dimensional cameras: the fixed-focus See3CAM_CU135 camera and the auto-focus See3CAM_160 camera (Fig. 2), and one three-dimensional camera: the Intel RealSense Depth Camera D435, which has a stereoscopic depth sensor
- All cameras were housed in a waterproof casing and attached to two LED lights to maximize visibility and quality of image capture

B. Image Acquisition and Training

- 2000 images were collected using the three-dimensional camera system.
- Next, images were annotated using the open-source software LabelImg, then separated into into train, test, and validation (80%,10%,10%) datasets
- These datasets were used to train the newly implemented YOLOv8-based model with a batch size of 16, learning rate of 0.01, and 200 epochs.

With the model trained, the next steps were to:

- Perform YOLOv8-based model inference on the 3D images obtained from the Intel RealSense camera.
- Implement software to extract RGB images and depth information from the Intel RealSense camera
- Integrate the YOLOv8-based detection algorithm with the DeepSORT tracking algorithm
- Using complete system, perform microplastic size and velocity calculations

Fig 4. Flowchart of developed methodology

RESULTS & DISCUSSION

Ultimately, the results demonstrate the ability of a YOLOv8-based system to more accurately detect small-sized microplastics, and a need for improved accuracy in microplastic velocity calculations.

• The current 2d-camera based system was inaccurate in its velocity calculations, with all median velocities showing greater values than the water velocities (Fig.5)

Fig 5. Variance in water velocity calculations based on two-dimensional camera system

- As it is not theoretically possible for microplastics to be moving at a greater horizontal velocity than the water flow, this demonstrates error in size and/or velocity calculations
- Hence, this highlights the need for a 3d-camera based system, which can integrate depth and therefore accurate size measurements into microplastic velocity calculations

Fig 6. Percentage detection by YOLOv5 vs. YOLOv8 models at a water velocity of 10cm/s

Fig 7. Percentage detection by YOLOv5 vs. YOLOv8 models at a water velocity of 20cm/s

- The new YOLOv8-based model detection system was able to produce promising results for detecting small-sized microplastics:
- At 20 cm/s, the YOLOv8-based model was slightly more accurate (4%) in detecting 3mm size microplastics, however it was 5% less accurate in doing so at 10cm/s
- Most notably, the YOLOv8-based model was significantly more accurate in detecting the smallest size microplastics (2.5mm), with 60% greater detection accuracy at 10cm/s, and 20x accuracy at 20cm/s.

CONCLUSION

Overall, our research findings displayed a need for more accurate microplastic velocity algorithms through the potential usage of 3D camera systems, and the potential of a YOLOv8-based deep learning model to detect smaller-sized microplastics with greater accuracy.

Future work and applications

- The newest YOLO model, YOLO-NAS, can be trained and implemented for potentially higher precision and accuracy in detection
- Continued exploration of the camera system design, such as other 3D cameras, lighting sources etc.
- Performing data collection and object detection in real-world riverine environment - addressing issues such as turbidity, complex background etc.
- This camera system and detection algorithm has applications to other areas in ecology, such as fish detection.

REFERENCES

- 1. Sarker, Md Abdul, et al. "Automatic Detection of Microplastics in the Aqueous Environment." 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), 2023, https://doi.org/10.1109/ccwc57344.2023.10099253.
- 2. Nelson, Joseph. "The Yolo Algorithm: A Guide to Yolo Models." Roboflow Blog, 25 May 2023, blog.roboflow.com/guide-to-yolo-models/.

ACKNOWLEDGEMENTS

- Thank you to the Partial Funding provided by REU SITE: Aquatic Science, Engineering, and Technology (ASET) REU at
- Clarkson University, NSF Award # 2244180 to Abul Baki (PI) and Phillip White-Cree(co-PI)
 Thank you to Baset Sarker for all your help in the lab, and to Professor Masudul Imtiaz for your encouragement and guidance throughout this project.