PROBLEMAS DE VALORES INICIALES (Primera parte)

ANÁLISIS NUMÉRICO/MÉTODOS MATEMÁTICOS Y NUMÉRICOS

(75.12/95.04/95.13)

CURSO TARELA

Ejemplo

Dada la ecuación diferencial ordinaria:

$$\begin{cases} y' = -y + t^2 + 2t - 2 \\ y(0) = 0 \end{cases}$$

Resolver el sistema en el intervalo [0, 2] por métodos numéricos (Euler explícito y Euler implícito). Utilizar pasos de cálculo 0,4; 0,2 y 0,1.

Solución analítica:

$$y(t) = 2e^{-t} + t^2 - 2.$$

Resolución

Discretizamos:

•Variable independiente:

$$t^{(n)} \to nh$$

•Ecuación diferencial:

$$y(t^{(n)}) = y^{(n)} \to u^{(n)}$$
$$y'(t^{(n)}) = y'^{(n)} \to \frac{u^{(n+1)} - u^{(n)}}{h}$$

■Condición inicial:

$$y(t^{(0)}) = y^{(0)} \rightarrow u^{(0)}$$

En particular: $u^{(0)} = 0$

$$y' = f(y(t), t)$$

$$u^{(n+1)} = u^{(n)} + h * f(u^{(n)}, t^{(n)})$$

En nuestro ejemplo:

$$u^{(n+1)} = u^{(n)} + h * \left[-u^{(n)} + (nh)^2 + 2nh - 2 \right]$$

Para h = 0,4:

$$u^{(0)} = 0$$

$$u^{(1)} = u^{(0)} + 0.4 * \left[-u^{(0)} + (0 * 0.4)^2 + 2 * 0 * 0.4 - 2 \right]$$

$$u^{(2)} = u^{(1)} + 0.4 * [-u^{(1)} + (1 * 0.4)^2 + 2 * 1 * 0.4 - 2]$$

$$u^{(3)} = u^{(2)} + 0.4 * [-u^{(2)} + (2 * 0.4)^2 + 2 * 2 * 0.4 - 2]$$

. . .

h	0,4				
n	$t^{(n)}$	$u^{(n)}$	$u^{(n+1)}$	$y(t^{(n+1)})$	ε
0	0	0	-0,8	-0,49935991	-0,30064009
1	0,4	-0,8	-0,896	-0,46134207	-0,43465793
2	0,8	-0,896	-0,4416	0,04238842	-0,48398842
3	1,2	-0,4416	0,47104	0,96379304	-0,49275304
4	1,6	0,47104	1,786624	2,27067057	-0,48404657
5	2	1,786624	3,4719744	3,94143591	-0,46946151

$$y' = f(y(t), t)$$

$$u^{(n+1)} = u^{(n)} + h * f(u^{(n+1)}, t^{(n+1)})$$

En nuestro ejemplo:

$$u^{(n+1)} = u^{(n)} + h * \left[-u^{(n+1)} + ((n+1)h)^2 + 2(n+1)h - 2 \right]$$

$$u^{(n+1)} = u^{(n)} + h * \left[-u^{(n+1)} + ((n+1)h)^2 + 2(n+1)h - 2 \right]$$

$$u^{(n+1)} = u^{(n)} + h * \left[\left((n+1)h \right)^2 + 2(n+1)h - 2 \right] - h * u^{(n+1)}$$

$$(h+1)u^{(n+1)} = u^{(n)} + h * \left[\left((n+1)h \right)^2 + 2(n+1)h - 2 \right]$$

$$u^{(n+1)} = \frac{u^{(n)} + h * \left[\left((n+1)h \right)^2 + 2(n+1)h - 2 \right]}{h+1}$$

h	0,4				
n	$t^{(n)}$	$u^{(n)}$	$u^{(n+1)}$	$y(t^{(n+1)})$	ε
0	0	0	-0,29714286	-0,49935991	0,20221705
1	0,4	-0,29714286	-0,14367347	-0,46134207	0,3176686
2	0,8	-0,14367347	0,42309038	0,04238842	0,38070196
3	1,2	0,42309038	1,37649313	0,96379304	0,41270009
4	1,6	1,37649313	2,69749509	2,27067057	0,42682452
5	2	2,69749509	4,37249649	3,94143591	0,43106059

Aplicamos perturbaciones a la forma discretizada de $y(t^n)$:

$$u^{(n)} = u^{(n)} + \delta u^{(n)}$$

$$u^{(n+1)} = u^{(n+1)} + \delta u^{(n+1)}$$

Reemplazamos en el método de discretización.

Para el método de Euler explícito:

$$u^{(n+1)} = u^{(n)} + h * \left[-u^{(n)} + (nh)^2 + 2nh - 2 \right]$$

$$u^{(n+1)} + \delta u^{(n+1)} = u^{(n)} + \delta u^{(n)} + h * \left[-(u^{(n)} + \delta u^{(n)}) + (nh)^2 + 2 * (nh) - 2 \right]$$

$$u^{(n+1)} + \delta u^{(n+1)} = u^{(n)} + h * \left[-u^{(n)} + (nh)^2 + 2nh - 2 \right] + \delta u^{(n)} - h * \delta u^{(n)}$$

$$\delta u^{(n+1)} = \delta u^{(n)} - h * \delta u^{(n)}$$

$$\frac{\delta u^{(n+1)}}{\delta u^{(n)}} = 1 - h = g^{(n)}$$
 Factor de amplificación

Para que el método sea estable:

$$\left|g^{(n)}\right| < 1$$

Por lo tanto:

$$|1 - h| < 1$$

Para el método de Euler implícito:

$$u^{(n+1)} = u^{(n)} + h * \left[-u^{(n+1)} + ((n+1)h)^2 + 2(n+1)h - 2 \right]$$

$$u^{(n+1)} + \delta u^{(n+1)} = u^{(n)} + \delta u^{(n)} + h * \left[-(u^{(n+1)} + \delta u^{(n+1)}) + ((n+1)h)^2 + 2(n+1)h - 2 \right]$$

$$u^{(n+1)} + \delta u^{(n+1)} = u^{(n)} + h * \left[-u^{(n+1)} + \left((n+1)h \right)^2 + 2(n+1)h - 2 \right] + \delta u^{(n)} - h * \delta u^{(n+1)}$$

$$\delta u^{(n+1)} = \delta u^{(n)} - h * \delta u^{(n+1)}$$

$$\frac{\delta u^{(n+1)}}{\delta u^{(n)}} = \frac{1}{1+h} = g^{(n)}$$

Para que el método sea estable:

$$\left|g^{(n)}\right| < 1$$

Por lo tanto:

$$\left|\frac{1}{1+h}\right| < 1$$

MÉTODO INCONDICIONALMENTE ESTABLE.