TRCIDR3, ID Register 3

The TRCIDR3 characteristics are:

Purpose

Returns the base architecture of the trace unit.

Configuration

AArch64 System register TRCIDR3 bits [31:0] are architecturally mapped to External register TRCIDR3[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_SR is implemented. Otherwise, direct accesses to TRCIDR3 are undefined.

Attributes

TRCIDR3 is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57	56	55	54	53
NOOVERFLOW	/NUM	PROC	[2:0]	SYSSTALL	STALLCTL	SYNCPR	TRCERR	RES0	EXLEVEL_NS_EL2E	XLEVEL_NS
31	30	29	28	27	26	25	24	23	22	21

Bits [63:32]

Reserved, res0.

NOOVERFLOW, bit [31]

Indicates if overflow prevention is implemented.

NOOVERFLOW	Meaning
000	Overflow prevention is not implemented.
0b1	Overflow prevention is implemented.

If TRCIDR3.STALLCTL == 0 then this field is 0.

NUMPROC, bits [13:12, 30:28]

Indicates the number of PEs available for tracing.

NUMPROC	Meaning
0b00000	The trace unit can trace
	one PE.

This field reads as 0b00000.

The NUMPROC field is split as follows:

- NUMPROC[2:0] is TRCIDR3[30:28].
- NUMPROC[4:3] is TRCIDR3[13:12].

SYSSTALL, bit [27]

Indicates if stalling of the PE is permitted.

SYSSTALL	Meaning
0b0	Stalling of the PE is not permitted.
0b1	Stalling of the PE is permitted.

The value of this field might be dynamic and change based on system conditions.

If TRCIDR3.STALLCTL == 0 then this field is 0.

STALLCTL, bit [26]

Indicates if trace unit implements stalling of the PE.

STALLCTL	Meaning
0b0	Stalling of the PE is not implemented.
0b1	Stalling of the PE is implemented.

SYNCPR, bit [25]

Indicates if an implementation has a fixed synchronization period.

SYNCPR	Meaning
0b0	TRCSYNCPR is read/write so
	software can change the
	synchronization period.
0b1	TRCSYNCPR is read-only so
	the synchronization period is
	fixed.

This field reads as 0.

TRCERR, bit [24]

Indicates forced tracing of System Error exceptions is implemented.

TRCERR	Meaning
0b0	Forced tracing of System
	Error exceptions is not
	implemented.
0b1	Forced tracing of System
	Error exceptions is
	implemented.

This field reads as 1.

Bit [23]

Reserved, res0.

EXLEVEL_NS_EL2, bit [22]

Indicates if Non-secure EL2 is implemented.

EXLEVEL_NS_EL2	Meaning
0b0	Non-secure EL2 is
	not implemented.
0b1	Non-secure EL2 is
	implemented.

EXLEVEL_NS_EL1, bit [21]

Indicates if Non-secure EL1 is implemented.

EXLEVEL_NS_EL1	Meaning
0b0	Non-secure EL1 is
	not implemented.
0b1	Non-secure EL1 is
	implemented.

EXLEVEL_NS_ELO, bit [20]

Indicates if Non-secure EL0 is implemented.

EXLEVEL_NS_EL0	Meaning
0b0	Non-secure EL0 is not implemented.
0b1	Non-secure EL0 is implemented.

EXLEVEL_S_EL3, bit [19]

Indicates if EL3 is implemented.

EXLEVEL_S_EL3	Meaning
0b0	EL3 is not
	implemented.
0b1	EL3 is implemented.

EXLEVEL_S_EL2, bit [18]

Indicates if Secure EL2 is implemented.

EXLEVEL_S_EL2	Meaning
0b0	Secure EL2 is not
	implemented.
0b1	Secure EL2 is
	implemented.

EXLEVEL S EL1, bit [17]

Indicates if Secure EL1 is implemented.

EXLEVEL_S_EL1	Meaning
0b0	Secure EL1 is not
	implemented.
0b1	Secure EL1 is
	implemented.

EXLEVEL_S_ELO, bit [16]

Indicates if Secure EL0 is implemented.

EXLEVEL_S_EL0	Meaning
0b0	Secure EL0 is not
	implemented.
0b1	Secure EL0 is
	implemented.

Bits [15:14]

Reserved, res0.

CCITMIN, bits [11:0]

Indicates the minimum value that can be programmed in $\overline{\text{TRCCCTLR}}$. THRESHOLD.

If $\underline{\text{TRCIDR0}}$. TRCCCI == 1 then the minimum value of this field is 0×001 .

Accessing TRCIDR3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCIDR3

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b1011	0b111

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRCID == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = TRCIDR3;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = TRCIDR3;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
```

X[t, 64] = TRCIDR3;

AArch32 AArch64 Registers Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.