(a)	Determine the z transform of the signal: 10	
	$x(n) = n \ a^n \ u(n)$	
(1)	With a comment of	

- (b) Write steps of FFT algorithms.
- 3. (a) Write characteristics of LTI Systems. 5
 - (b) How will you reconstruct analog signals from digital signals? Explain in detail. 10
- 4. Illustrate the designing methods for FIR digital filters by using window techniques. 15
- 5. (a) Differentiate between band pass and band stop filters.
 - (b) Give design steps for digital IIR filters by using Butterworth techniques. 10
- 6. (a) Explain the effect of Finite register length in FIR filter design. 10
 - (b) Explain multirate signal processing. 5
- 7. Differentiate between parametric and nonparametric spectral estimation. How are these implemented? What are their applications? 15

May 20

B.Tech. (ENC) (Sixth Semester) Digital Signal Processing (ECC-04)

Time: 3 Hours]

[Maximum Marks: 75

Note: It is compulsory to answer all the questions (1.5 marks each) of Part A in short. Answer any four questions from Part B in detail. Different sub-parts of a question are to be attempted adjacent to each other.

Part A

١.	(a)	Define unit sample sequence.	1 =
			1.5
	(b)	Define unit step signal.	1.5
	(c)	Define Energy signals.	1.5
	(d)	What are non-linear systems?	1.5
	(e)	Define Causal Systems.	1.5
	(f)	Define Recursive Systems.	1.5
	(g)	What do you mean by convolution?	1.5
	(h)	Define initial value theorem.	1.5
	(i)	Define filter properties.	1.5
	(j)	Define Discrete Fourier Transforms.	1.5