Math 341: Homework 9

Daniel Ko

Spring 2020

§1 A

Let W be a finite-dimensional subspace of an inner product space V

a. Prove that $V = W \oplus W^{\perp}$

Proof.

i. $W \cap W^{\perp} = \{0\}$

Let $v \in W \cap W^{\perp}$. This means that $\langle v, v \rangle = 0$. This implies that v = 0 by Theorem 6.1.

ii. $W + W^{\perp} = V$

Theorem 6.6. states that for any $v \in V$, there exist unique vectors $u \in W$ and $z \in W^{\perp}$ such that v = u + z.

Therefore, $V = W \oplus W^{\perp}$.

b. Prove that there exists a projection T on W along W^{\perp} that satisfies $N(T) = W^{\perp}$.

Proof. From (a), we know that $V = W \oplus W^{\perp}$, so this means that there is a projection T on W along W^{\perp} such that whenever $x = x_1 + x_2$ where $x_1 \in W$ and $x_2 \in W^{\perp}$, $T(x) = x_1$.

Let $n \in N(T)$. We can express n as $n = x_1 + x_2$ where $x_1 \in W$ and $x_2 \in W^{\perp}$ such that T(n) = 0. This implies that $x_1 = 0$ so $n = x_2 \in W^{\perp}$. Thus, $N(T) \subseteq W^{\perp}$.

Let $n \in W^{\perp}$. We can express n as $n = x_1 + x_2 = 0 + x_2$ where $x_1 \in W$ and $x_2 \in W^{\perp}$. It is clear that T(n) = 0, so $n \in N(T)$. Thus, $W^{\perp} \subseteq N(T)$.

c. Prove that $||T(x)|| \le ||x||$ for all $x \in V$.

Proof. Let $x \in V$. We can express x as $x = x_1 + x_2$ where $x_1 \in W$ and $x_2 \in W^{\perp}$.

Notice that $||T(x)|| = ||x_1||$. Additionally, $||x|| = ||x_1 + x_2|| \le ||x_1|| + ||x_2||$ by Theorem 6.2. Combining these two equations together, we get $||T(x)|| \le ||x||$, as desired.

§2 B

Let $T: V \to W$ be a linear transformation, where V and W are finite dimensional inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ respectively. Prove the following results

a. There is a unique adjoint T^* of T, and T^* is linear.

Proof. Suppose we have two unique adjoints, T^* and U^* . Then, $\langle T(x), y \rangle_2 = \langle x, T^*(y) \rangle_1$ and $\langle T(x), y \rangle_2 = \langle x, U^*(y) \rangle_1$ Thus, $\langle x, T^*(y) \rangle_1 = \langle x, U^*(y) \rangle_1$ and it follows that $T^* = U^*$ by Theorem 6.1. Hence, the adjoint must be unique.

We prove that T^* is linear. Let $y_1, y_2 \in W$, $x \in V$, and $c \in F$. Then,

$$\langle x, T^*(cy_1 + y_2) \rangle_1 = \langle T(x), cy_1 + y_2 \rangle_2$$

$$= \langle T(x), cy_1 \rangle_2 + \langle T(x), y_2 \rangle_2$$

$$= c \langle T(x), y_1 \rangle_2 + \langle T(x), y_2 \rangle_2$$

$$= c \langle x, T^*(y_1) \rangle_1 + \langle x, T^*(y_2) \rangle_1$$

as desired.

b. If β and γ are orthonormal bases for V and W, respectively, then $[\mathbf{T}^*]^{\beta}_{\gamma} = \left([\mathbf{T}]^{\gamma}_{\beta} \right)^*$

Proof. Let $\beta = \{v_1, \dots, v_n\}$, $\gamma = \{w_1, \dots, w_m\}$, $A = [T^*]^{\beta}_{\gamma}$, $B = [T]^{\beta}_{\gamma}$. Since $T^*(w_j) \in V = span(\beta) \Rightarrow T^*(w_j) = \sum_{i=1}^n \langle T^*(w_j), v_i \rangle_1 v_i$ by Corollary 1 of Theorem 6.3. Then using the corollary of Theorem 6.5, this implies that $A_{ij} = ([T^*]^{\beta}_{\gamma})_{ij} = \langle T^*(w_j), v_i \rangle_1$. Similiarily, $T(v_j) \in W = span(\gamma) \Rightarrow T(v_j) = \sum_{i=1}^n \langle T(v_j), w_i \rangle_2 w_i$ and $B_{ij} = \langle T(v_j), w_i \rangle_2$. It follows that

$$(B_{ij})^* = \overline{B_{ji}}$$

$$= \overline{\langle T(v_i), w_j \rangle_2}$$

$$= \langle w_j, T(v_i) \rangle_2$$

$$= \langle T^*(w_j), v_i \rangle_1$$

$$= A_{ii}$$

Therfore,
$$[\mathbf{T}^*]^{\beta}_{\gamma} = \left([\mathbf{T}]^{\gamma}_{\beta}\right)^*$$
.

c. $rank(T^*) = rank(T)$

Proof. We know that

$$dim(V) = dim(N(T)) + dim(R(T))$$

by the rank nullity theorem. By Theorem 6.7, we know that since N(T) is a subspace of V,

$$dim(V) = dim(N(T)) + dim(N(T)^{\perp})$$

Hence,

$$dim(R(T)) = dim(N(T)^{\perp})$$

We claim that $N(T) = R(T^*)^{\perp}$. Suppose $x \in N(T)$. Let $y \in V$. Then,

$$T(x) = 0 = \langle 0, y \rangle = \langle T(x), y \rangle = \langle x, T^*(y) \rangle$$

By definition, $x \in N(T)^{\perp}$, so $N(T) \subseteq R(T^*)^{\perp}$.

Suppose $x \in R(T^*)^{\perp}$. Then for all $y \in V$,

$$0 = \langle x, T^*(y) \rangle = \langle T(x), y \rangle$$

This means that T(x) = 0, hence $x \in N(T)$. So $R(T^*)^{\perp} \subseteq N(T)$

Thus, $N(T) = R(T^*)^{\perp}$. It directly follows that $N(T)^{\perp} = (R(T^*)^{\perp})^{\perp} = R(T^*)$. Therefore,

$$dim(R(T)) = dim(N(T)^{\perp})$$
$$= dim(R(T^*))$$
$$rank(T) = rank(T^*)$$

d. $\langle T^*(x), y \rangle_1 = \langle x, T(y) \rangle_2$ for all $x \in W$ and $y \in V$ *Proof.*

$$\langle T^*(x), y \rangle_1 = \overline{\langle y, T^*(x) \rangle_1}$$
$$= \overline{\langle T(y), x \rangle_2}$$
$$= \langle x, T(y) \rangle_2$$

as desired.

e. For all $x \in V$, $T^*T(x) = 0$ if and only if T(x) = 0

Proof.

i.
$$T^*T(x) = 0 \Rightarrow T(x) = 0$$

This means that $\forall x \in V$,

$$0 = \langle x, T^*T(x) \rangle_1$$

= $\langle T(x), T(x) \rangle_2$

Therefore, T(x) = 0

ii.
$$T(x) = 0 \Rightarrow T^*T(x) = 0$$

$$T^*T(x) = T^*(0) = 0$$

as desired.

Therefore, $T^*T(x) = 0$ if and only if T(x) = 0.

§3 C

a. Show that the equation $(A^*A)x_0 = A^*y$ of Theorem 6.12 takes the form of the normal equations:

$$\left(\sum_{i=1}^m t_i^2\right) c + \left(\sum_{i=1}^m t_i\right) d = \sum_{i=1}^m t_i y_i$$

and

$$\left(\sum_{i=1}^{m} t_i\right) c + md = \sum_{i=1}^{m} y_i$$

Proof. Suppose

$$A = \begin{bmatrix} t_1 & 1 \\ t_2 & 1 \\ \vdots & \vdots \\ t_n & 1 \end{bmatrix}$$

Then,

$$A^* = \begin{bmatrix} t_1 & t_2 & \cdots & t_n \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

and

$$A^*A = \begin{bmatrix} \sum_{i=1}^{m} (t_i)^2 & \sum_{i=1}^{m} t_i \\ \sum_{i=1}^{m} t_i & m \end{bmatrix}$$

Hence.

$$A^*Ax_0 = A^*y$$

$$\begin{bmatrix} \sum_{i=1}^m (t_i)^2 & \sum_{i=1}^m t_i \\ \sum_{i=1}^m t_i & m \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} t_1 & t_2 & \cdots & t_m \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\left(\sum_{i=1}^{m} t_i^2\right) c + \left(\sum_{i=1}^{m} t_i\right) d = \sum_{i=1}^{m} t_i y_i$$

and

$$\left(\sum_{i=1}^{m} t_i\right) c + md = \sum_{i=1}^{m} y_i$$

as desired.

b. Use the second normal equation of (a) to show that the least squares line must pass through the center of mass, (\bar{t}, \bar{y}) , where

$$\bar{t} = \frac{1}{m} \sum_{i=1}^{m} t_i$$
 and $\bar{y} = \frac{1}{m} \sum_{i=1}^{m} y_i$

Proof. Consider what happens when we divide the following equation by m.

$$\left(\sum_{i=1}^{m} t_i\right) c + md = \sum_{i=1}^{m} y_i$$

$$\frac{1}{m} \left(\sum_{i=1}^{m} t_i\right) c + d = \frac{1}{m} \sum_{i=1}^{m} y_i$$

$$\bar{t}c + d = \bar{y}$$

as desired.

§4 D

An nxn real matrix A is said to be a Gramian matrix if there exists a real (square) matrix B such that $A = B^t B$. Prove that A is a Gramian matrix if and only if A is symmetric and all of its eigenvalues are nonnegative. Hint: Apply Theorem 6.17 to $T = L_A$ to obtain an orthonormal basis $\{v_1, v_2, \cdots, v_n\}$ of eigenvectors with the associated eigenvalues $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$. Define the linear operator U by $U(v_i) = \sqrt{\lambda_i} v_i$.

Proof.

i. A is a Gramian matrix \Rightarrow A is symmetric and all of its eigenvalues are nonnegative. Since A is a Gramian matrix, there exists a real (square) matrix B such that $A = B^t B$. This implies that A is symmetric

$$A^{t} = (B^{t}B)^{t}$$
$$= B^{t}B$$
$$= A$$

as desired.

Suppose λ is an eigenvalue of A with a normal/unit eigenvector of x, i.e. $Ax = \lambda x$. It follows that

$$\lambda = \lambda \langle x, x \rangle$$

$$= \langle Ax, x \rangle$$

$$= \langle B^t Bx, x \rangle$$

$$= \langle Bx, Bx \rangle$$

$$\geq 0$$

because $Bx \neq 0$ and Theorem 6.1.

Therefore, A is symmetric and all of its eigenvalues are nonnegative.

ii. A is symmetric and all of its eigenvalues are nonnegative $\Rightarrow A$ is a Gramian matrix

Since A is symmetric it follows that A and $T=L_A$ must be self-adjoint because A is a real matrix, by definition. By Theorem 6.17, there exists an orthonormal basis $\{v_1,v_2,\cdots,v_n\}$ of eigenvectors with the associated eigenvalues $\{\lambda_1,\lambda_2,\cdots,\lambda_n\}$. By Theorem 6.16., T is normal and there exists an digaonal matrix $[T]_{\beta}$ such that the ith digaonal entries are λ_i . Suppose we construct a digaonal matrix C such that its ith digaonal entries are $\sqrt{\lambda_i}$, i.e. $C^2=[T]_{\beta}$. This will still be a real matrix because the eigenvalues are nonnegative. Let α be the standard orded basis. Hence,

$$A = [I]^{\alpha}_{\beta}[T]_{\beta}[I]^{\beta}_{\alpha} = [I]^{\alpha}_{\beta}C^{2}[I]^{\beta}_{\alpha}$$

Since β is orthonormal, $([I]^{\alpha}_{\beta})^t[I]^{\alpha}_{\beta} = [I]$. Thus, $([I]^{\alpha}_{\beta})^t = ([I]^{\alpha}_{\beta})^{-1} = ([I]^{\beta}_{\alpha})$. We can fix B to be $C[I]^{\beta}_{\alpha}$ such that

$$A = [I]^{\alpha}_{\beta} C^{2} [I]^{\beta}_{\alpha}$$
$$= [I]^{\alpha}_{\beta} CC [I]^{\beta}_{\alpha}$$
$$= B^{t} B$$

as desired. Therefore, A is a Gramian matrix.

§5 E

Let T and U be self-adjoint linear operators on an n-dimensional inner product space V, and let $A = [T]_{\beta}$, where β is an orthonormal basis for V. Prove the following results.

- a. T is positive definite [semidefinite] if and only if all of its eigenvalues are positive [nonnegative]. *Proof.*
 - i. T is positive definite \Rightarrow all of its eigenvalues are positive By definition of positive definite, $\langle T(x), x \rangle > 0$ for all $x \neq 0$. Let λ be a eigenvalue of

T with v being its corresponding orthonormal eigenvector. Consider,

$$\lambda = \lambda \langle v, v \rangle$$

$$= \langle \lambda v, v \rangle$$

$$= \langle T(v), v \rangle$$

$$> 0$$

as desired.

ii. All of T's eigenvalues are positive \Rightarrow T is positive definite

By Theorem 6.17, we know that there exists an orthonormal basis $\beta = \{v_1, \dots, v_n\}$ for V consisting of eigenvectors of T. Let $x \in V$. We can express x in terms of β ,

$$x = \sum_{i=1}^{n} c_i v_i$$

Now consider the following inner product,

$$\langle T(x), x \rangle = \langle T(\sum_{i=1}^{n} c_i v_i), \sum_{i=1}^{n} c_i v_i \rangle$$

$$= \langle \sum_{i=1}^{n} c_i \lambda_i v_i, \sum_{i=1}^{n} c_i v_i \rangle$$

$$= \sum_{i=1}^{n} |c_i|^2 \lambda_i \langle v_i, v_i \rangle$$

$$= \sum_{i=1}^{n} |c_i|^2 \lambda_i$$

$$> 0$$

as desired.

Without loss of generality, the above statements hold for the semidefinite case. Therefore, T is positive definite [semidefinite] if and only if all of its eigenvalues are positive [nonnegative].

- b. T is positive definite if and only if $\sum_{i,j} A_{ij} a_j \overline{a_i} > 0$ for all nonzero n-tuples (a_1, \dots, a_n) *Proof.*
 - i. T is positive definite $\Rightarrow \sum_{i,j} A_{ij} a_j \overline{a_i} > 0$ for all nonzero n-tuples (a_1, \dots, a_n) Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis for V. Let $a = (a_1, \dots, a_n)$ be a nonzero n-tuple. We can define $x = \sum_{i=0}^n a_i v_i \in V$. It follows that by corollary of Theorem 6.5

and the definition of positive definite,

$$\langle T(x), x \rangle = \langle T(\sum_{j=0}^{n} a_j v_j), \sum_{i=0}^{n} a_i v_i \rangle$$

$$= \sum_{j=0}^{n} a_j \langle T(v_j), \sum_{i=0}^{n} a_i v_i \rangle$$

$$= \sum_{i,j=0}^{n} a_j \overline{a_i} \langle T(v_j), v_i \rangle$$

$$= \sum_{i,j=0}^{n} A_{ij} \overline{a_i} a_j$$

$$> 0$$

as desired.

ii. $\sum_{i,j} A_{ij} a_j \overline{a_i} > 0$ for all nonzero n-tuples $(a_1, \dots, a_n) \Rightarrow T$ is positive definite Let $x = \sum_{i=0}^n a_i v_i \in V$. It follows from corollary of Theorem 6.5,

$$\sum_{i,j}^{n} A_{ij} a_{j} \overline{a_{i}} = \sum_{i,j}^{n} a_{j} \overline{a_{i}} \langle T(v_{j}), v_{i} \rangle$$

$$= \langle T(\sum_{j}^{n} a_{j} v_{j}), \sum_{i}^{n} a_{i} v_{i} \rangle$$

$$= \langle T(x), x \rangle$$

$$> 0$$

as desired.

Therefore, T is positive definite if and only if $\sum_{i,j} A_{ij} a_j \overline{a_i} > 0$ for all nonzero n-tuples (a_1, \dots, a_n)

c. T is positive semidefinite if and only if $A = B^*B$ for some square matrix B.

Proof.

- i. T is positive semidefinite $\Rightarrow A = B^*B$ for some square matrix B.
 - Since T is a self adjoint operator, there exists an orthonormal basis $\gamma = \{v_1, \dots, v_n\}$ for V consisting of eigenvectors of T by Theorem 6.17. We also know from (a) that all of the corresponding eigenvalues are positive. Additionally, since T is a self adjoint operator we know that $A = P^*DP$ where D is diagonal. It follows that on the diagonals on D are positive. Let's define a matrix $E_{ii} = \sqrt{D_{ii}}$, i.e. $E^2 = D$. Then we have $A = (P^*E)(EP)$ where we can fix B = EP and we know that $B^* = (EP)^* = P * E^* = P^*E$ because E is a self-adjoint matrix. Therefore, $A = B^*B$.
- ii. $A = B^*B$ for some square matrix $B \Rightarrow T$ is positive semidefinite.

Consider $v \in V$ and the following inner product,

$$\langle L_{A}(v), v \rangle = \langle Av, v \rangle$$

$$= \langle B^{*}Bv, v \rangle$$

$$= B^{*}\langle Bv, v \rangle$$

$$= \langle Bv, Bv \rangle$$

$$\geq 0$$

Since $A = [T]_{\beta}$, T is positive semidefinite.

d. If T and U are positive semidefinite operators such that $T^2 = U^2$ then T = U.

Proof. Since T is a self adjoint operator, there exists an orthonormal basis $\gamma = \{v_1, \dots, v_n\}$ for V consisting of eigenvectors of T by Theorem 6.17. We also know from (a) that all of the corresponding eigenvalues are nonnegative. Then, $T^2(v_i) = \lambda^2 v_i = U^2(v_i)$. It follows that

$$0 = U^{2}v_{i} - \lambda^{2}v_{i}$$

$$= (U^{2} - \lambda^{2}I)v_{i}$$

$$= (U + \lambda I)(U - \lambda I)v_{i}$$

This means that $(U - \lambda I)v_i = 0$ because eigenvalues are nonnegative for T. Thus

$$(U - \lambda I)v_i = 0$$

$$U(v_i) = \lambda v_i$$

$$= T(v_i)$$

Therefore, T = U.

e. If T and U are positive definite operators such that TU = UT then TU is positive definite.

Proof. Since T and U are positive definite operators, TU is self adjoint because

$$(TU)^* = U^*T^* = UT = TU$$

Let $Q^2 = T$ such that Q is positive definite. We know that $Q^2U = QQU = QUQ$ because of part (d).

$$\langle TU(x), x \rangle = \langle Q^2U(x), x \rangle$$

$$= \langle QUQ(x), x \rangle$$

$$= \langle UQ(x), Q(x) \rangle$$

$$> 0$$

Therefore, *TU* is positive definite.

f. T is positive definite [semidefinite] if and only if A is positive definite [semidefinite]. Because of (f), results analogous to items (a) through (d) hold for matrices as well as operators.

Proof. Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis for V. Let $a = (a_1, \dots, a_n)$ be a nonzero n-tuple. We can define $x = \sum_{i=0}^n a_i v_i \in V$. It follows that by corollary of Theorem

6.5 and the definition of positive definite,

$$\langle T(x), x \rangle = \langle T(\sum_{j=0}^{n} a_j v_j), \sum_{i=0}^{n} a_i v_i \rangle$$

$$= \sum_{j=0}^{n} a_j \langle T(v_j), \sum_{i=0}^{n} a_i v_i \rangle$$

$$= \sum_{i,j=0}^{n} a_j \overline{a_i} \langle T(v_j), v_i \rangle$$

$$= \sum_{i,j=0}^{n} A_{ij} \overline{a_i} a_j$$

$$= \langle Ax, x \rangle$$

as desired.

§6 F

Let T and U be positive definite operators on an inner product space V. Prove the following results.

a. T + U is positive definite

Proof. By definition, $\langle T(x), x \rangle > 0$, $\langle U(x), x \rangle > 0$ for all $x \neq 0$

$$\langle (T+U)(x), x \rangle = \langle T(x) + U(x), x \rangle$$
$$= \langle T(x), x \rangle + \langle U(x), x \rangle$$
$$> 0$$

Therefore, T + U is positive definite.

b. If c > 0, then cT is positive definite.

Proof. By definition, $\langle T(x), x \rangle > 0$. It follows that

$$\langle cT(x), x \rangle = c \langle T(x), x \rangle$$

> 0

Therefore, if c > 0, then cT is positive definite.

c. T^{-1} is positive definite.

Proof. Let $y = T^{-1}(x)$. We know that $T^* = T$ because T is self adjoint.

$$\langle T^{-1}(x), x \rangle = \langle y, T(y) \rangle$$

$$= \langle T^*(y), y \rangle$$

$$= \langle T(y), y \rangle$$

$$> 0$$

§7 G

Prove that if T is a unitary operator on a finite-dimensional inner product space V, then T has a unitary square root; that is, there exists a unitary operator U such that $T = U^2$.

Proof. By Theorem 6.18, there exists an orthonormal basis $\beta = \{v_1, \dots, v_n\}$ consisting of eigenvectors of T with corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$ of absolute value 1. It follows by Theorem 5.1 that

$$[T]_{\beta} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

We can fix $[U]_{\beta}$ as $\sqrt{[T]_{\beta}}$

$$[U]_{\beta} = \begin{bmatrix} \sqrt{\lambda_1} & 0 \\ & \ddots & \\ 0 & \sqrt{\lambda_n} \end{bmatrix}$$

U is a unitary operator by Theorem 6.18 because.

$$|\sqrt{\lambda_i}| = \sqrt{|\lambda_i|} = \sqrt{1} = 1$$

Therefore, there exists a unitary operator U such that $T=U^2$.

§8 H

Let A and B be $n \times n$ matrices that are unitarily equivalent.

a. Prove that $tr(A^*A) = tr(B^*B)$

Proof. By definition, there exists a unitary matrix P such that $A = P^*BP$. It follows that

$$tr(A^*A) = tr((P^*BP)^*(P^*BP))$$

= $tr(P^*B^*PP^*BP)$
= $tr((P^*B^*)(BP))$
= $tr((BP)(P^*B^*))$
= $tr(BB^*)$
= $tr(B^*B)$

as desired. \Box

b. Use (a) to prove that

$$\sum_{i,j=1}^{n} |A_{ij}|^{2} = \sum_{i,j=1}^{n} |B_{ij}|^{2}$$

Proof. Notice that

$$\sum_{i,j=1}^{n} |A_{ij}|^{2} = \sum_{i,j=1}^{n} |A_{ij}|^{2}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \overline{A_{ij}} A_{ij}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} (A^{*})_{ji} A_{ij}$$

$$= \sum_{i=1}^{n} (A^{*}A)_{ii}$$

$$= tr(A^{*}A)$$

Without loss of generality,

$$\sum_{i,j=1}^{n} \left| B_{ij} \right|^2 = tr(B^*B)$$

Therefore, by (a)

$$\sum_{i,j=1}^{n} |A_{ij}|^{2} = \sum_{i,j=1}^{n} |B_{ij}|^{2}$$

c. Use (b) to show that the matrices

$$A = \begin{bmatrix} 1 & 2 \\ 2 & i \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} i & 4 \\ 1 & 1 \end{bmatrix}$$

are not unitarily equivalent.

Proof. Consider,

$$\sum_{i,j=1}^{n} |A_{ij}|^2 = |1|^2 + |2|^2 + |2|^2 + |i|^2$$
$$= 10$$

and

$$\sum_{i,j=1}^{n} |B_{ij}|^2 = |i|^2 + |4|^2 + |1|^2 + |1|^2$$
= 19

Therefore, A and B are not unitarily equivalent.