

Universidade de Brasília

LISTA 5 DE EXERCÍCIOS

INSTRUÇÕES:

Resolva manualmente os problemas a seguir. Quando necessário, use uma calculadora ou escreva um programa no MATLAB para realizar os cálculos. Não utilize funções residentes do MATLAB para realizar o ajuste de curvas e interpolação.

PROBLEMA 1:

Ano	1850	1900	1950	1980	2000
População (Bilhões)	1,3	1,6	3	4,4	6

Os dados a acima fornecem a população aproximada do mundo em anos selecionados de 1850 até 2000. Assuma que o crescimento da população possa ser modelado por uma função exponencial $p = be^{mx}$, onde x é o ano e p é a população em bilhões. Linearize essa função e use a regressão linear por mínimos quadrados para determinar as constantes b e m para as quais a função fornece o melhor ajuste ara os dados. Use essa equação para estimar a população em 1970.

PROBLEMA 2:

Distância de frenagem (m)	20	35	80	110	150
Velocidade (km/h)	20	30	40	50	60

Os dados a seguir referem-se à distância necessária para um veículo parar versus a velocidade na qual ele começa a frenagem. (a) Calcule a taxa de variação da distância de frenagem a uma velocidade de 60 km/h usando

- (i) a fórmula de diferença regressiva com dois pontos, e
- (ii) a fórmula de diferença regressiva com três pontos

PROBLEMA 3:

Avalie a integral 53,3904 $\int_0^{10} (1 - e^{-0.1855x})$ usando a quadratura de Gauss de terceira ordem (com dois pontos)

PROBLEMA 4:

Considere a EDO de primeira ordem a seguir: $\frac{dy}{dx} = x - y$ de x = 0 a x = 1.5 com y(0) = 1

- a) Resolva a equação manualmente usando o método explícito de Euler com h = 0,5.
- b) Resolva a equação manualmente usando o método de Euler modificado com h = 0,5.
- c) Resolva a equação manualmente usando o método de Runge-Kutta de quarta ordem clássico com h = 0.5.

A solução analítica da EDO é: y = x + 2e - x - 1. Em cada letra, calcule o erro existente entre a solução exata e a solução numérica nos pontos em que a solução numérica é determinada.