Package 'TF'

August 10, 2017

Type Package	
Title Technology Forecasting - Growth Curve	
Version 0.1	
Date 2016-10-28	
Author Nina Chaichi	
Maintainer Nina Chaichi <nina.chaichi@gmail.com></nina.chaichi@gmail.com>	
Description Forecast technological adoption curve including Bass Curve, Gompertz Curve, Pearl Curve	
License GPL-2	
Lazydata TRUE	
RoxygenNote 5.0.1	
Suggests knitr, rmarkdown	
VignetteBuilder knitr	
R topics documented:	
Bass_AC	2
Bass_AC_Plot	2
CATV	3
Gompertz_AC	3
Gompertz_AC_Plot	4
Gompertz_HC	5
Gompertz_HC_plot	5
PE	6
Pearl_AC Pearl AC Plot	7
Pearl_HC	8
Pearl_HC_plot	8
.	
Index	10

2 Bass_AC_Plot

Description

Analogous Bass Curve uses analogy to estimate Bass Curve parameters. In case that there is no data available for technology, parameters of similar cases can be used to forecast growth curve.

Usage

```
Bass_AC(p, q, m, t)
```

Arguments

p	is a number represents coefficient of innovation.
q	ia a number represents coefficient of immitation.
m	is a number represents maximum market size can be reached.
t	is an integer shows the growth periods.

Value

data frame (period, adoption rate, cumulative adoption)

Examples

```
## Not run:
Bass_AC(0.016, 0.304, 100000, 20)
## End(Not run)
```

Bass_AC_Plot

Analogous Bass Curve Plot

Description

Analogous Bass Curve Plot function plots Historical Bass Curve function results.

Usage

```
Bass_AC_Plot(p, q, m, t)
```

p	is a number represents coefficient of innovation.
q	ia a number represents coefficient of immitation.
m	is a number represents maximum market size can be reached.
t	is an integer shows the growth periods.

CATV 3

Value

plot of adoption rate and cumulative adoption

Examples

```
## Not run:
Bass_AC_Plot(0.016, 0.304, 100000, 20)
## End(Not run)
```

CATV

Growth of Cable TV Industriy

Description

This data shows the Cable TV adoption 1952-1989.

Usage

CATV

Format

dataframe with two variables:

```
year year
```

CATV Cable TV cumulative adoption

References

J. P. Martino, Technological forecasting for decision making. McGraw-Hill, Inc., 1993.

Gompertz_AC

Analogous Gompertz Curve

Description

Analogous Gompertz Curve uses analogy to determine curve coefficients (b & k).

Usage

```
Gompertz_AC(b, k, 1, t)
```

- b is a number represents curve coefficients.
- k is a number represents curve coefficients.
- is a number represents maximum growth can be reached.
- t is an integer shows the growth periods.

4 Gompertz_AC_Plot

Value

data frame (period, cumulative adoption)

Examples

```
## Not run:
Gompertz_AC(0.8, 0.2, 10000, 20)
## End(Not run)
```

Gompertz_AC_Plot

Analogous Gompertz Curve Plot

Description

Analogous Gompertz Curve Plot function plots Analogous Gompertz Curve.

Usage

```
Gompertz_AC_Plot(b, k, l, t)
```

Arguments

b	is a number represents curve coefficients.
k	is a number represents curve coefficients.
1	is a number represents maximum growth can be reached.
t	is an integer shows the growth periods.

Value

plot of cumulative adoption over certain period of time.

Examples

```
## Not run:
Gompertz_AC_Plot(0.8, 0.2, 10000, 20)
## End(Not run)
```

Gompertz_HC 5

Gompertz	_HC
----------	-----

Historical Gompertz Curve

Description

Historical Gomperz Curve function estimates the curve parameters (b & k) based on the historical data.

Usage

```
Gompertz_HC(x, 1, t)
```

Arguments

X	is data frame with two columns to estimates b & k parameters. First column con-
	tains the period and second column contains the associated cumulative adoption.

- is a number represents maximum growth can be reached.
- t is an integer shows the growth periods.

Value

data frame (period, best fitted cumulative adoption)

Examples

```
## Not run:
data("PE")
Gompertz_HC(PE, 2.81, 20)
## End(Not run)
```

Gompertz_HC_plot

Historical Gompertz Curve Plot

Description

Historical Gomperz Curve Plot function plots Historical Gomperz Curve function results.

Usage

```
Gompertz_HC_plot(x, 1, t)
```

X		is data frame with two columns to estimates b $\&\ k$ parameters. First column con-
		tains the period and second column contains the associated cumulative adoption.

- is a number represents maximum growth can be reached.
- t is an integer shows the growth periods.

6 Pearl_AC

Value

plot of best fitted cumulative adoption.

Examples

```
## Not run:
data("PE")
Gompertz_HC_plot(PE, 2.81, 250)
## End(Not run)
```

PΕ

Power-Generation Efficiency of Public Utilities

Description

This data shows the efficiency improvement 1920 - 1987.

Usage

PΕ

Format

dataframe with two variables:

year year

Kwhperc Kilowatt.hours per pound of coal

References

J. P. Martino, Technological forecasting for decision making. McGraw-Hill, Inc., 1993.

Pearl_AC

Analogous pearl Curve

Description

Analogous Pearl Curve uses analogy to determine curve coefficients (a & b) .

Usage

```
Pearl_AC(a, b, l, t)
```

- a is a number represents curve coefficients.
- b is a number represents curve coefficients.
- 1 is a number represents maximum growth can be reached.
- t is an integer shows the growth periods.

Pearl_AC_Plot 7

Value

data frame (period, cumulative adoption)

Examples

```
## Not run:
Pearl_AC(1.6, 0.8, 10000, 20)
## End(Not run)
```

Pearl_AC_Plot

Analogous pearl Curve Plot

Description

Analogous Pearl Curve Plot function plots Analogous Pearl Curve.

Usage

```
Pearl_AC_Plot(a, b, l, t)
```

Arguments

- a is a number represents curve coefficients.
- b is a number represents curve coefficients.
- is a number represents maximum growth can be reached.
- t is an integer shows the growth periods.

Value

plot of cumulative adoption over certain period of time.

Examples

```
## Not run:
Pearl_AC_Plot(1.6, 0.8, 10000, 20)
## End(Not run)
```

8 Pearl_HC_plot

Daa	∽າ	HC
геа	r_{\perp}	ПL.

Historical Pearl Curve

Description

Historical Pearl Curve function estimates the curve parameters (a & b) based on the historical data.

Usage

```
Pearl_HC(x, 1, t)
```

Arguments

- x is data frame with two columns to estimates b & k parameters. First column contains the period and second column contains the associated cumulative adoption.
- is a number represents maximum growth can be reached.
- t is an integer shows the growth periods.

Value

data frame (period, best fitted cumulative adoption)

Examples

```
## Not run:
data("CATV")
Pearl_HC(CATV,89024390,20)
## End(Not run)
```

Pearl_HC_plot

Historical Pearl Curve Plot

Description

Historical Pearl Curve Plot function plots Historical Pearl Curve growth function results.

Usage

```
Pearl_HC_plot(x, 1, t)
```

- x is data frame with two columns to estimates b & k parameters. First column contains the period and second column contains the associated cumulative adoption.
- is a number represents maximum growth can be reached.
- t is an integer shows the growth periods.

Pearl_HC_plot 9

Value

plot of best fitted cumulative adoption.

Examples

```
## Not run:
data("CATV")
Pearl_HC_plot(CATV,89024390,20)
## End(Not run)
```

Index

```
*Topic datasets
CATV, 3
PE, 6

Bass_AC, 2
Bass_AC_Plot, 2

CATV, 3

Gompertz_AC, 3
Gompertz_AC_Plot, 4
Gompertz_HC, 5
Gompertz_HC, 5
PE, 6
Pearl_AC, 6
Pearl_AC, 6
Pearl_AC_Plot, 7
Pearl_HC, 8
Pearl_HC_plot, 8
```