SOFTWARE ENGINEERING HW II

1. GOAL

I tried to fine-tune GPT-2 to write dialog, using a public dataset from Hugging Face (DailyDialog mirror, agentlans/li2017dailydialog, Parquet splits: train/validation/test). I converted each conversation into alternating lines (User: ... / Assistant: ...), skipped any system messages, tokenized with the GPT-2 tokenizer (max_length=128, truncation+padding), and reused the Lab-2 pipeline (DataCollatorForLanguageModeling(mlm=False) with Trainer).

2. SETUP

For setup, I fine-tuned GPT-2 on the Hugging Face DailyDialog mirror (agentlans/li2017dailydialog, Parquet splits) by converting each conversation to alternating User:/Assistant: lines (dropping system), tokenizing with the GPT-2 tokenizer to max_length=128 (truncation + padding) and setting pad_token = eos_token so pads don't contribute to loss; I reused the Lab-2 pipeline with

DataCollatorForLanguageModeling(mlm=False) and Trainer, training on 50% of the train split selected after a deterministic shuffle (seed=42). I trained for 3 epochs with batch size 8, learning rate of 5e-5, warmup=50 steps, weight_decay=0.01, logging every 50 steps and saving every 250 steps to ./dialog-gpt2-finetuned. For qualitative checks before/after training, I generated with nucleus sampling (top_p=0.95), temperature=0.9, repetition_penalty=1.2, and max_new_tokens=80.

3. RESULTS

For qualitative generations, I used two prompts before fine-tuning—"User: Hi there!\nAssistant:" and "User: What's your favorite programming language?\nAssistant:"

Training loss:

after fine-tuning—"User: Hello! How are you?\nAssistant:" and "User: What should I cook tonight?\nAssistant:".

4. REFLECTION

Q1. What worked well?

The pipeline mirrored Lab-2 cleanly: loading Parquet splits directly, mapping conversations to User/Assistant text, and training with DataCollatorForLanguageModeling(mlm=False) worked without loader-script issues. Loss decreased steadily, showing effective learning even on half the dataset.

Q2. Did the model learn the style?

Yes—after fine-tuning, the model reliably used the turn-taking structure and stayed closer to conversational topics than the baseline

Q3. Any interesting, funny, or weird results?

Some generations were quirky or incoherent (e.g., the unexpected "Assassination is very painful..." line), plus occasional role/punctuation drift like User; or mixed speaker tags, which is typical for small models with high-creativity sampling.

Q4. Would you change anything next time?

- 1. I'd train on the full train split and consider GPT-2-medium for capacity
- 2. evaluate with validation loss each epoch and enable early stopping
- 3. try **lower temperature** (≈0.7) and add **top_k** (e.g., 50) with a slightly higher **repetition_penalty** (≈1.3) for cleaner outputs
- 4. increase max_length or use dynamic padding to preserve longer contexts.