A Comprehensive Introduction to Simplicial Sets From Foundations to Applications

Based on Work by Emily Riehl

December 9, 2024

Outline

- Introduction
- 2 Category Theory Prerequisites
- The Simplex Category
- 4 Simplicial Sets
- 5 Examples of Simplicial Sets
- 6 Kan Complexes and Quasi-Categories
- Applications
- 8 Further Reading

What Are Simplicial Sets?

- Simplicial sets generalize simplicial complexes.
- Provide a combinatorial framework for:
 - Algebraic topology
 - Higher category theory
- Key features:
 - Flexibility in modeling homotopy types
 - Strong categorical properties
 - Applications in modern mathematics

Historical Context

- Originated in algebraic topology (1940s-50s)
- Developed to model homotopy theory
- Key milestones:
 - Simplicial objects (Eilenberg-Zilber)
 - Kan complexes (1950s)
 - Quillen model categories (1960s)
 - Higher category theory (2000s)
- Modern applications in derived geometry and higher topos theory

Category Theory Basics

- ullet A category ${\mathcal C}$ consists of:
 - ullet Objects ob ${\mathcal C}$
 - ullet Morphisms mor ${\mathcal C}$
 - Composition $(f \circ g)$ and identities
- Functors: $F: \mathcal{C} \to \mathcal{D}$
- Natural transformations: $\alpha : F \Rightarrow G$

Yoneda Lemma

Theorem (Yoneda Lemma)

For any small category C, object $c \in C$, and functor $F : C^{op} \to \mathbf{Set}$:

$$Nat(\mathcal{C}(-,c),F)\cong Fc$$

Yoneda embedding:

$$y: \mathcal{C} \to \mathbf{Set}^{\mathcal{C}^{op}}, \quad c \mapsto \mathcal{C}(-,c)$$

- Full and faithful functor
- Foundation for simplicial sets

The Category Δ

Definition

 Δ is the category whose:

• Objects are finite, non-empty, totally ordered sets

$$[n] = \{0, 1, \dots, n\}$$

Morphisms are order-preserving maps

Structure of Δ

- Generating morphisms:
 - Coface maps $d_i: [n-1] \rightarrow [n]$
 - Codegeneracy maps $s_i:[n+1] \to [n]$
- Relations among morphisms:

$$d_{j}d_{i} = d_{i}d_{j-1}, \quad i < j$$

$$s_{j}s_{i} = s_{i}s_{j+1}, \quad i \leq j$$

$$s_{j}d_{i} = \begin{cases} 1 & i = j, j+1 \\ d_{i}s_{j-1} & i < j \\ d_{i-1}s_{j} & i > j+1 \end{cases}$$

Definition of Simplicial Sets

Definition

A simplicial set is a functor:

$$X:\Delta^{op}\to \mathbf{Set}$$

- Equivalent to:
 - Sets X_n for $n \ge 0$
 - Face maps $d_i: X_n \to X_{n-1}$
 - Degeneracy maps $s_i: X_n \to X_{n+1}$
 - \bullet Satisfying dual relations to Δ

Key Properties of Simplicial Sets

- X_n : Set of *n*-simplices
- Face maps d_i:

$$d_i(x)$$
 = remove the *i*-th vertex of x

Degeneracy maps s_i:

$$s_i(x) = \text{collapse edge between } i \text{ and } i+1$$

- Degenerate simplices: images of degeneracy maps
- Non-degenerate simplices: not degenerate

Standard Simplex Δ^n

Represented functor:

$$\Delta^n = \Delta(-, [n])$$

• *k*-simplices:

$$(\Delta^n)_k = \Delta([k], [n])$$

- Unique non-degenerate *n*-simplex: identity map
- Non-degenerate k-simplices: injective maps $[k] \rightarrow [n]$

Nerve of a Category

- For category C, the nerve NC:
 - $NC_0 = ob C$
 - $NC_1 = mor C$
 - $NC_2 = \{f, g \mid cod(f) = dom(g)\}$
- Face maps:
 - d_0, d_2 : drop outer arrows
 - d_1 : compose inner arrows
- Degeneracy maps: insert identity morphisms

Singular Complex

• For topological space Y, the singular complex SY:

$$(SY)_n = \mathsf{Top}(\Delta^n, Y)$$

- *n*-simplices are continuous maps from Δ^n to Y
- Face and degeneracy maps defined by precomposition

Kan Complexes

Definition

A Kan complex is a simplicial set X where every horn has a filler:

$$\Lambda^n_k o X$$
 extends to $\Delta^n o X$

- Models for homotopy types
- Example: Singular complex SY of a space Y

Quasi-Categories

Definition

A quasi-category is a simplicial set where every inner horn has a filler.

- Models for $(\infty, 1)$ -categories
- Example: Nerve of any ordinary category

Applications in Algebraic Topology

Singular homology:

$$H_n(X) = H_n(S_*X)$$

- Classifying spaces via nerve functor
- Homotopy theory: Kan complexes as models

Applications in Higher Category Theory

- \bullet $(\infty,1)$ -categories as quasi-categories
- Higher categorical limits and colimits
- Derived functors and higher topos theory

Recommended Texts

- Classical References:
 - May: "Simplicial Objects in Algebraic Topology"
 - Gabriel-Zisman: "Calculus of Fractions and Homotopy Theory"
- Modern Developments:
 - Lurie: "Higher Topos Theory"
 - Goerss-Jardine: "Simplicial Homotopy Theory"