2. Suppose that X is Gaussian with mean 4 and variance 1. Explicitly compute $\mathbb{E}[X^3]$ (hint: perhaps you might want to write out the binomial expansion of $(a+b)^3$)

let
$$Y = X - X$$
,
 $\Rightarrow Z(Y) = Z(X) - X$
 $Var(Y) = Var(X) \rightarrow Yar(0(1))$

$$\Rightarrow \mathcal{E}(X^{3}) = \mathcal{E}[(Y+Y)^{3}]$$

$$= \mathcal{E}[Y^{3}+|Y'^{2}+|Y'|^{2}+|Y|^{2}]$$

$$= \mathcal{E}[Y^{3}] + |Y|^{2} + |Y|^{2} + |Y|^{2} + |Y|^{2}$$

$$= \mathcal{E}[Y^{3}] + |Y|^{2} + |Y|^{2}$$

$$= \mathcal{E}[X^{2k}] = \frac{(2k)!}{2^{k}k!} \quad \text{and} \quad \mathbb{E}[X^{2k+1}] = 0$$

$$= \mathcal{E}[X^{2k}] + |Y|^{2} + |Y|^{2}$$

$$= \mathcal{E}[Y^{3}] + |Y|^{2}$$

 \varnothing Validation via Monte - Carlo. : μ , σ = 4, 1 # mean and standard deviation μ s = [] τ for i in range(1000): τ = np.random.normal(μ , σ , 10000)

μs.append(X3.mean())
μs = np.array(μs)
print(μs.mean())
executed in 452ms. finished 14:52:03 2023-01-26

executed in 452ms, finished 14:52:03 2023-0

76.04779568847707

3. If η is a standard Gaussian random variable, compute

$$\mathbb{E}\left[\exp\left[2+3\eta\right]\right]$$

$$\int_{Z} (exp(x+3y)) = Z(e^{x}e^{3y})$$

$$= e^{x}Z(exp(3y))$$

$$= e^{x}Mx(3)$$

$$= e^{x}e^{6.5}$$

$$= e^{6.5} = 665.14163...$$

& Validation via Monte - Carlo

664.2383962895137

4. Let η be a standard Gaussian random variable. Compute $\mathbb{P}\{\eta \leq 3\}$ in terms of erf.

$$P(\eta \in 3) = 1 - P(\eta > 3),$$

$$P(\eta > 3) = \frac{1}{2}(|\eta| > 3)$$

$$= \frac{1}{2}[1 - ert(\%)]$$

$$= \frac{1}{2}[1 - ert(\%)]$$

$$= \frac{1}{2}[1 + ert(\%)]$$

$$= \frac{1}{2}[1 + ert(\%)]$$

$$= 0.998650(0),$$

& Validation via Gaussian CDZ

norm.cdf(3)

executed in 4ms, finished 15:22:01 2023-01-26

0.9986501019683699