Statistics Review

Joshua Agterberg

Johns Hopkins University

Zoom

Outline

- Preliminaries
- Exact Parametric Methods
- 3 Large-Sample Parametric Methods
- 4 Linear Regression
- Machine Learning
- 6 Nonparametric and High-Dimensional Statistics

Figure: Source:

https://sarahmarley.com/2015/07/30/why-statistics-is-not-just-maths/

Outline

- Preliminaries
 - Samples and Population
 - Main Ideas

Samples and Population

- We have a population distribution f_0 and a model $\mathcal{F} = \{f : f \in \mathcal{F}\}$
- Goal: extract some information about f_0 from \mathcal{F} .
- Examples:
 - Population follows a $N(\mu_0, \sigma_0^2)$ distribution, and from the set $\mathcal{F} := \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$
 - Population exhibits some probability p_0 of having an attribute (e.g. having COVID-19), and consider $\mathcal{F} = Binomial(n, p), p > 0$.
 - Population follows some continuous distribution f_0 and we set $\mathcal{F} = \{$ all continuous distributions $\}$.

Samples and Population

- We have a population distribution f_0 and a model $\mathcal{F} = \{f : f \in \mathcal{F}\}$
- Goal: extract some information about f_0 from \mathcal{F} .
- Examples:
 - Population follows a $N(\mu_0, \sigma_0^2)$ distribution, and from the set $\mathcal{F} := \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$
 - Population exhibits some probability p_0 of having an attribute (e.g. having COVID-19), and consider $\mathcal{F} = Binomial(n, p), p > 0$.
 - Population follows some continuous distribution f_0 and we set $\mathcal{F} = \{$ all continuous distributions $\}$.

Samples and Population

- We have a population distribution f_0 and a model $\mathcal{F} = \{f : f \in \mathcal{F}\}$
- Goal: extract some information about f_0 from \mathcal{F} .
- Examples:
 - Population follows a $N(\mu_0, \sigma_0^2)$ distribution, and from the set $\mathcal{F} := \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$
 - Population exhibits some probability p₀ of having an attribute (e.g. having COVID-19), and consider
 F = Binomial(n, p), p > 0.
 - Population follows some continuous distribution f_0 and we set $\mathcal{F} = \{$ all continuous distributions $\}$.

Parametric Families

- If the family satisfies $\mathcal{F} := \{f_{\theta} : \theta \in \mathbb{R}^d\}$, then we say it is *parametric*
- Examples of parametric families:
 - Bernoulli: $X \sim Ber(p), P(X = 1) = p$
 - Binomial: $X \sim Bin(n, p), P(X = k) = \binom{n}{k} p^k (1 p)^{n-k},$ $Bin(n, p) = \sum_{i=1}^n Ber(p)$
 - Normal: $X \sim N(\mu, \sigma^2), f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $Bin(n, p) \approx N(np, npq), \frac{N(\mu, \sigma^2) - \mu}{2\sigma^2} = N(0, 1)$
 - Chi-square: $X \sim \chi^2_{\nu}, \, \chi^2_{\nu} = \sum_{i=1}^{\nu} N(0,1)^2$
 - t-distribution: $X \sim t_{\nu}$, $t_{\nu} = \frac{N(0,1)}{\sqrt{\chi_{\nu}^2/\nu}}$, $t_{\infty} = N(0,1)$, $t_{0} = Cauchy (undefined mean and variance)$
 - F-distribution $X \sim F_{n,m}, \, F_{n,m} = \frac{\chi_n^2/n}{\chi_m/m}, \, t_\nu^2 = F_{1,\nu}$
 - Others: Exponential, Poisson, Gamma, Beta, Negative Binomial, ...

Parametric Families

- If the family satisfies $\mathcal{F} := \{f_{\theta} : \theta \in \mathbb{R}^d\}$, then we say it is *parametric*
- Examples of parametric families:
 - Bernoulli: $X \sim Ber(p), P(X = 1) = p$
 - Binomial: $X \sim Bin(n, p), P(X = k) = \binom{n}{k} p^k (1 p)^{n-k},$ $Bin(n, p) = \sum_{i=1}^{n} Ber(p)$
 - Normal: $X \sim N(\mu, \sigma^2), f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $Bin(n, p) \approx N(np, npq), \frac{N(\mu, \sigma^2) - \mu}{\sigma} = N(0, 1)$
 - Chi-square: $X \sim \chi^2_{\nu}, \, \chi^2_{\nu} = \sum_{i=1}^{\nu} N(0,1)^2$
 - t-distribution: $X \sim t_{\nu}, \ t_{\nu} = \frac{N(0,1)}{\sqrt{\chi_{\nu}^2/\nu}}, \ t_{\infty} = N(0,1), \ t_{0} =$ Cauchy (undefined mean and variance)
 - F-distribution $X \sim F_{n,m}$, $F_{n,m} = \frac{\chi_n^2/n}{\chi_m/m}$, $t_\nu^2 = F_{1,\nu}$
 - Others: Exponential, Poisson, Gamma, Beta, Negative Binomial, ...

Figure: Source:

https://www.facebook.com/statsmemes/photos/a.306077739764526/975685

Nonparametric Families

- If the family \mathcal{F} is infinite-dimensional, we (typically) say it is nonparametric (Tsybakov, 2008)
- Semiparametric out-of-scope (Bickel et al., 1998)
- Examples of nonparametric families
 - $\mathcal{F} := \{f : \mathbb{E}_f | X|^2 < \infty\}$; i.e. the set of distributions with finite second moment
 - F := {f : f is a continuous density}
 - F := {f : f is infinitely differentiable}
 - $\mathcal{F} := \{f : f \text{ has the property that } \log f(tx + (1-t)y) \ge t \log f(x) + (1-t) \log f(y)$ (log-concave distributions see Samworth)
 - F := {f : f is has continuous derivatives up to order r}

Nonparametric Families

- If the family \mathcal{F} is infinite-dimensional, we (typically) say it is nonparametric (Tsybakov, 2008)
- Semiparametric out-of-scope (Bickel et al., 1998)
- Examples of nonparametric families
 - $\mathcal{F} := \{f : \mathbb{E}_f |X|^2 < \infty\}$; i.e. the set of distributions with finite second moment
 - $\mathcal{F} := \{f : f \text{ is a continuous density}\}$
 - $\mathcal{F} := \{f : f \text{ is infinitely differentiable}\}$
 - $\mathcal{F} := \{f : f \text{ has the property that } \log f(tx + (1 t)y) \ge t \log f(x) + (1 t) \log f(y)$ (log-concave distributions see Samworth)
 - F := {f : f is has continuous derivatives up to order r}

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

- We observe a sample $X_1, ..., X_n$ iid from f_0 .
- Assuming that there is a true parameter θ (e.g. the mean, the variance, etc.), can we use our data to study the true distribution? (Frequentist method). We can:
 - estimate θ ,
 - perform a hypothesis test,
 - or find a confidence interval about the true parameter.
- Always pay attention to assumptions! In many cases, assumptions do not hold, but they make our lives easier.
- If we know exact distributions, we can perform inference exactly
- Otherwise, we study asymptotics (van der Vaart, 2000)
- Often much easier to study asymptotic results than finite-sample results (Bickel and Doksum, 2007)

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

- Much of this material is covered in an introductory statistics course
- However some of it (e.g. R code, material at the end) may be new
- My hope is to leave you with a basic idea of both the mathematics and the philosophy of statistical inference, so that even new material is not difficult
- 553.630 covers statistical theory at the upper undergraduate/graduate level in primarily parametric settings with an emphasis on explicit calculations
- 553.730 covers statistical theory at the graduate level with an emphasis on proving results for parametric families

Outline

- Exact Parametric Methods
 - Estimation
 - One-Sample Testing
 - Two-Sample Testing

Exact Parametric Methods

In some cases, if we assume the population has a distribution, we can explicitly characterize the finite-sample distribution

Figure: Source: https://www.pinterest.com/pin/246853623302262497/

Estimation

- Data: $X_i \sim N(\mu, \sigma^2)$
- Estimator: $\hat{\mu} = \bar{X}$
- Distribution: $\frac{\bar{X}-\mu}{s/\sqrt{n}} \sim t_{n-1}$ ("proof": $\frac{\bar{X}-\mu}{s/\sqrt{n}} = \frac{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}}{\sqrt{s^2/\sigma^2}}$)
- C.I.: $\bar{X} \pm t_{n-1} (\alpha/2) \frac{s}{\sqrt{n}}$

We know the *exact* distribution when $X_i \sim N(\mu, \sigma^2)$.

Estimation

- Data: $X_i \sim N(\mu, \sigma^2)$
- Estimator: $\hat{\mu} = \bar{X}$
- Distribution: $\frac{\bar{X}-\mu}{s/\sqrt{n}} \sim t_{n-1}$ ("proof": $\frac{\bar{X}-\mu}{s/\sqrt{n}} = \frac{\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}}{\sqrt{s^2/\sigma^2}}$)
- C.I.: $\bar{X} \pm t_{n-1} (\alpha/2) \frac{s}{\sqrt{n}}$

We know the *exact* distribution when $X_i \sim N(\mu, \sigma^2)$.

- If $X_i \sim N(\mu, \sigma^2)$, we want to test whether the mean is equal to μ_0
- Form the hypotheses

$$H_0: \mu = \mu_0$$

 $H_A: \mu \neq \mu_0$

- Under the null $\mu = \mu_0$, the data $X_i \sim N(\mu_0, \sigma^2)$
- Form the test statistic $T = \frac{\bar{X} \mu_0}{s/\sqrt{n}}$, where s is the sample standard deviation
- Reject at level α if $|T| > t_{n-1}(\alpha/2)$

- If $X_i \sim N(\mu, \sigma^2)$, we want to test whether the mean is equal to μ_0
- Form the hypotheses

$$H_0: \mu = \mu_0$$

 $H_A: \mu \neq \mu_0$

- Under the null $\mu = \mu_0$, the data $X_i \sim N(\mu_0, \sigma^2)$
- Form the test statistic $T = \frac{\bar{X} \mu_0}{s/\sqrt{n}}$, where s is the sample standard deviation
- Reject at level α if $|T| > t_{n-1}(\alpha/2)$

- If $X_i \sim N(\mu, \sigma^2)$, we want to test whether the mean is equal to μ_0
- Form the hypotheses

$$H_0: \mu = \mu_0$$

 $H_A: \mu \neq \mu_0$

- Under the null $\mu = \mu_0$, the data $X_i \sim N(\mu_0, \sigma^2)$
- Form the test statistic $T = \frac{\bar{X} \mu_0}{s/\sqrt{n}}$, where s is the sample standard deviation
- Reject at level α if $|T| > t_{n-1}(\alpha/2)$

- If $X_i \sim N(\mu, \sigma^2)$, we want to test whether the mean is equal to μ_0
- Form the hypotheses

$$H_0: \mu = \mu_0$$

 $H_A: \mu \neq \mu_0$

- Under the null $\mu = \mu_0$, the data $X_i \sim N(\mu_0, \sigma^2)$
- Form the test statistic $T = \frac{\bar{X} \mu_0}{s/\sqrt{n}}$, where s is the sample standard deviation
- Reject at level α if $|T| > t_{n-1}(\alpha/2)$

Figure: Source: https://statisticsbyjim.com/hypothesis-testing/one-tailed-two-tailed-hypothesis-tests/

Two-Sample Testing

- $X_i \sim N(\mu_X, \sigma_X^2), Y_i \sim N(\mu_Y, \sigma_Y^2)$
- Want to test $\mu_X = \mu_Y$
- Form the hypothesis:

$$H_0: \mu_X = \mu_Y$$
$$H_A: \mu_X \neq \mu_Y$$

• Test statistic: $T=rac{ar{\chi}-ar{\gamma}}{\sqrt{rac{s_{D}^{2}}{n}+rac{s_{D}^{2}}{m}}}\sim t_{n-1},$ where

$$s_p^2 := \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$$

• Rejection region: $|T| > t_{n-1}(\alpha/2)$

Two-Sample Testing

- $X_i \sim N(\mu_X, \sigma_X^2), Y_i \sim N(\mu_Y, \sigma_Y^2)$
- Want to test $\mu_X = \mu_Y$
- Form the hypothesis:

$$H_0: \mu_X = \mu_Y$$

 $H_A: \mu_X \neq \mu_Y$

• Test statistic: $T=rac{ar{\chi}-ar{\gamma}}{\sqrt{rac{s_{D}^{2}}{n}+rac{s_{D}^{2}}{m}}}\sim t_{n-1},$ where

$$s_p^2 := \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$$

• Rejection region: $|T| > t_{n-1}(\alpha/2)$

Two-Sample Testing

- $X_i \sim N(\mu_X, \sigma_X^2), Y_i \sim N(\mu_Y, \sigma_Y^2)$
- Want to test $\mu_X = \mu_Y$
- Form the hypothesis:

$$H_0: \mu_X = \mu_Y$$

 $H_A: \mu_X \neq \mu_Y$

• Test statistic: $T=rac{ar{X}-ar{Y}}{\sqrt{rac{s_{p}^{2}}{n}+rac{s_{p}^{2}}{m}}}\sim t_{n-1},$ where

$$s_p^2 := \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$$

• Rejection region: $|T| > t_{n-1}(\alpha/2)$

Two-Sample Testing

- $X_i \sim N(\mu_X, \sigma_X^2), Y_i \sim N(\mu_Y, \sigma_Y^2)$
- Want to test $\mu_X = \mu_Y$
- Form the hypothesis:

$$H_0: \mu_X = \mu_Y$$

 $H_A: \mu_X \neq \mu_Y$

• Test statistic: $T=rac{ar{X}-ar{Y}}{\sqrt{rac{s_{D}^{2}}{n}+rac{s_{D}^{2}}{m}}}\sim t_{n-1},$ where

$$s_p^2 := \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$$

• Rejection region: $|T| > t_{n-1}(\alpha/2)$

Figure: Source: https://statisticsbyjim.com/hypothesis-testing/one-tailed-two-tailed-hypothesis-tests/

Know exact distribution of data

- Calculate its exact distribution under the null H_0 (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^2 , multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

- Know exact distribution of data
- Calculate its exact distribution under the null H_0 (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^2 , multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

- Know exact distribution of data
- Calculate its exact distribution under the null H_0 (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^2 , multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

- Know exact distribution of data
- Calculate its exact distribution under the null H_0 (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^2 , multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

- Know exact distribution of data
- Calculate its exact distribution under the null H_0 (both cases, we had normal data, and had to estimate σ)
- Test whether we would observe the value of the test statistic under the null hypothesis
- Could do for other parameters of interest (σ^2 , multivariate means, covariances)
- Duality between confidence interval and Hypothesis testing

Two-Sided One-Sample T-Test (t-dist. with df = 99, t = 2.8632, p = 0.005, alpha = 0.05)

Figure: Source: https://stats.stackexchange.com/questions/220434/hypothesis-testing-why-center-the-sampling-distribution-on-h0

Outline

- Large-Sample Parametric Methods
 - Central Limit Theorem
 - Estimation and Testing for Proportions
 - Estimation and Testing for More General Parametric Families

Large-Sample Concepts

- In many cases, we do not know exact distribution of the data
- Nevertheless, with enough samples, we can use the asymptotic results from probability theory, namely the Central Limit Theorem

Large-Sample Concepts

- In many cases, we do not know exact distribution of the data
- Nevertheless, with enough samples, we can use the asymptotic results from probability theory, namely the Central Limit Theorem

Central Limit Theorem

- $X_1, ..., X_n \sim F$ iid
- Define

$$S_n := \sum_{i=1}^n X_i$$

• Then as $n \to \infty$, we have that

$$\frac{S_n - n\mu}{\sigma/\sqrt{n}} \to N(0,1)$$

 Idea for inference: if we can write a test statistic in terms of iid summands, then we can use the CLT to perform hypothesis tests

Central Limit Theorem

- $X_1, ..., X_n \sim F$ iid
- Define

$$S_n := \sum_{i=1}^n X_i$$

• Then as $n \to \infty$, we have that

$$\frac{S_n - n\mu}{\sigma/\sqrt{n}} \to N(0,1)$$

 Idea for inference: if we can write a test statistic in terms of iid summands, then we can use the CLT to perform hypothesis tests

Central Limit Theorem

- $X_1, ..., X_n \sim F$ iid
- Define

$$S_n := \sum_{i=1}^n X_i$$

• Then as $n \to \infty$, we have that

$$\frac{S_n-n\mu}{\sigma/\sqrt{n}}\to N(0,1)$$

 Idea for inference: if we can write a test statistic in terms of iid summands, then we can use the CLT to perform hypothesis tests

Figure: Source: http://www.marketexpress.in/2016/11/central-limit-theorem-normal-distribution.html

Estimation of Proportions Using the CLT

- For testing proportions (presence or absence of a characteristic), for a fixed sample of size n the distribution is Binom(n, p), where $p = \mathbb{P}(X_i = 1) = \mathbb{P}(person i)$ has the characteristic)
- Want to either estimate p or perform Hypothesis test
- Example
 - H_0 : $\mathbb{P}(\text{drug X works}) = .8$
- Observation: for large n, by CLT

$$\frac{S_n - np}{\sigma/\sqrt{n}} \approx N(0, 1),$$

where
$$S_n = \sum_{i=1}^n X_i$$
.

Estimation of Proportions Using the CLT

- For testing proportions (presence or absence of a characteristic), for a fixed sample of size n the distribution is Binom(n, p), where $p = \mathbb{P}(X_i = 1) = \mathbb{P}(person i)$ has the characteristic)
- Want to either estimate p or perform Hypothesis test
- Example
 - H_0 : $\mathbb{P}(\text{drug X works}) = .8$
- Observation: for large n, by CLT

$$rac{S_n-np}{\sigma/\sqrt{n}}pprox N(0,1),$$

where
$$S_n = \sum_{i=1}^n X_i$$
.

Estimation of Proportions Using the CLT

- For testing proportions (presence or absence of a characteristic), for a fixed sample of size n the distribution is Binom(n, p), where $p = \mathbb{P}(X_i = 1) = \mathbb{P}(person i)$ has the characteristic)
- Want to either estimate p or perform Hypothesis test
- Example
 - H_0 : $\mathbb{P}(\text{drug X works}) = .8$
- Observation: for large n, by CLT

$$\frac{S_n - np}{\sigma/\sqrt{n}} \approx N(0, 1),$$

where
$$S_n = \sum_{i=1}^n X_i$$
.

Figure: Source: https://blogs.sas.com/content/iml/2012/03/14/the-normal-approximation-to-the-binomial-distribution-how-the-quantiles-compare.html

One-Sample Testing for Proportions using the CLT

- Hypothesis: $H_0: p = p_0$ vs. $H_A: p \neq p_0$
- Test statistics: $Z = \frac{\hat{p} p_0}{\sqrt{p_0(1 p_0)/n}} \sim N(0, 1)$
- Rejection region: $|Z| > z(\alpha/2)$

Two-Sample Testing for Proportions using the CLT

- Hypothesis: $H_0: p_X p_Y = D_0 \text{ vs. } H_A: p_X p_Y \neq D_0$
- Test statistics: $Z = \frac{\hat{p}_X \hat{p}_Y D_0}{\sqrt{\frac{\rho_X(1 \rho_X)}{n} + \frac{\rho_Y(1 \rho_Y)}{m}}} \sim N(0, 1)$
- Rejection region: $|Z| > z(\alpha/2)$

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0,1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0,1)^2 \approx \xi^2(1)$
 - F is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0,1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0,1)^2 \approx \xi^2(1)$
 - F is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0,1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0,1)^2 \approx \xi^2(1)$
 - F is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0, 1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0,1)^2 \approx \xi^2(1)$
 - F is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0,1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0,1)^2 \approx \xi^2(1)$
 - F is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

- Can perform tests for variance, goodness-of-fit, etc., using CLT
- Idea is if somehow can write test statistic $T \approx \frac{S_n n\mu}{s/\sqrt{n}}$, then it is approximately N(0, 1).
- Other distributions that arise from asymptotics:
 - ξ^2 distribution (e.g. $T^2 \approx N(0,1)^2 \approx \xi^2(1)$
 - F is a ratio of ξ^2 , so comes when analyzing variance
- See notes for more details on other tests
- Type I error: α , and Type II error = $\mathbb{P}(\text{error if } H_0 \text{ is false})$.

Consistency

- Suppose $X_1, ..., X_n$ are iid f_θ , for $\theta \in \Theta$
- Inference on θ is a bit more complicated than just applying the CLT
- Want an estimator $\hat{\theta}$ that uses the data such that $\hat{\theta}_n \to \theta$ in probability, where this means

$$\lim_{n o \infty} \mathbb{P}(|\hat{ heta} - heta| > arepsilon) = 0$$

for all $\varepsilon > 0$.

Consistency

- Suppose $X_1, ..., X_n$ are iid f_θ , for $\theta \in \Theta$
- Inference on θ is a bit more complicated than just applying the CLT
- Want an estimator $\hat{\theta}$ that uses the data such that $\hat{\theta}_n \to \theta$ in probability, where this means

$$\lim_{n \to \infty} \mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = 0$$

for all $\varepsilon > 0$.

Consistency

- Suppose $X_1, ..., X_n$ are iid f_θ , for $\theta \in \Theta$
- Inference on θ is a bit more complicated than just applying the CLT
- Want an estimator $\hat{\theta}$ that uses the data such that $\hat{\theta}_n \to \theta$ in probability, where this means

$$\lim_{n\to\infty} \mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = 0$$

for all $\varepsilon > 0$.

Figure: Source: https://www.facebook.com/StatisticalMemes/

Example: $X_1, ..., X_n \sim U(0, \theta), \theta > 0$.

Set $\hat{\theta} := \max_{1 \leq i \leq n} X_i$. Then

$$\mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbb{P}(\theta - \hat{\theta} < \varepsilon) = \mathbb{P}(\max_{1 \le i \le n} X_i < \theta - \varepsilon)$$
 (1)

$$= \mathbb{P}(X_1 < \theta - \varepsilon, ..., X_n < \theta - \varepsilon) \tag{2}$$

$$= \left(\mathbb{P}(X_1 < \theta - \varepsilon)\right)^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \tag{3}$$

Example: $X_1,...,X_n \sim U(0,\theta), \theta > 0.$

Set $\hat{\theta} := \max_{1 \leq i \leq n} X_i$. Then

$$\mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbb{P}(\theta - \hat{\theta} < \varepsilon) = \mathbb{P}(\max_{1 \le i \le n} X_i < \theta - \varepsilon)$$
 (1)

$$= \mathbb{P}(X_1 < \theta - \varepsilon, ..., X_n < \theta - \varepsilon) \tag{2}$$

$$= \left(\mathbb{P}(X_1 < \theta - \varepsilon)\right)^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \tag{3}$$

Example: $X_1, ..., X_n \sim U(0, \theta), \theta > 0.$

Set $\hat{\theta} := \max_{1 \leq i \leq n} X_i$. Then

$$\mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbb{P}(\theta - \hat{\theta} < \varepsilon) = \mathbb{P}(\max_{1 \le i \le n} X_i < \theta - \varepsilon)$$
 (1)

$$= \mathbb{P}(X_1 < \theta - \varepsilon, ..., X_n < \theta - \varepsilon) \tag{2}$$

$$= \left(\mathbb{P}(X_1 < \theta - \varepsilon)\right)^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \tag{3}$$

Example: $X_1, ..., X_n \sim U(0, \theta), \theta > 0.$

Set $\hat{\theta} := \max_{1 \leq i \leq n} X_i$. Then

$$\mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = \mathbb{P}(\theta - \hat{\theta} < \varepsilon) = \mathbb{P}(\max_{1 \le i \le n} X_i < \theta - \varepsilon)$$
 (1)

$$= \mathbb{P}(X_1 < \theta - \varepsilon, ..., X_n < \theta - \varepsilon) \tag{2}$$

$$= \left(\mathbb{P}(X_1 < \theta - \varepsilon)\right)^n = \left(\frac{\theta - \varepsilon}{\theta}\right)^n \tag{3}$$

Consistency Example

Hence, we see

$$\mathbb{P}|\hat{ heta} - heta| > arepsilon$$
) = $\left(rac{ heta - arepsilon}{ heta}
ight)^n$

which tends to zero for all $\varepsilon > 0$ since the term in the parentheses is less than 1.

- So for $X_1, ..., X_n \sim U(0, \theta)$, $\hat{\theta} = \max_i X_i$ is consistent for θ .
- But

$$\mathbb{E}(\hat{\theta}) = \frac{n}{n+1}\theta \qquad \text{(check!)}$$

which does not equal θ ! (it is biased)

Consistency Example

Hence, we see

$$\mathbb{P}|\hat{ heta} - heta| > arepsilon$$
) = $\left(rac{ heta - arepsilon}{ heta}
ight)^n$

which tends to zero for all $\varepsilon > 0$ since the term in the parentheses is less than 1.

- So for $X_1, ..., X_n \sim U(0, \theta)$, $\hat{\theta} = \max_i X_i$ is consistent for θ .
- But

$$\mathbb{E}(\hat{\theta}) = \frac{n}{n+1}\theta \qquad \text{(check!)}$$

which does not equal θ ! (it is biased)

Consistency Example

Hence, we see

$$\mathbb{P}|\hat{ heta} - heta| > arepsilon$$
) $= \left(rac{ heta - arepsilon}{ heta}
ight)^n$

which tends to zero for all $\varepsilon > 0$ since the term in the parentheses is less than 1.

- So for $X_1, ..., X_n \sim U(0, \theta)$, $\hat{\theta} = \max_i X_i$ is consistent for θ .
- But

$$\mathbb{E}(\hat{\theta}) = \frac{n}{n+1}\theta \qquad \text{(check!)}$$

which does not equal θ ! (it is biased)

Bias-Variance Tradeoff

- Define the bias: $\mathbb{E}(\hat{\theta}) \theta$. Say $\hat{\theta}$ is unbiased if bias = 0
- Define the Mean-Squared Error (MSE):

$$\mathbb{E}\left[(\hat{\theta} - \theta)^{2}\right] = \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta} + \mathbb{E}\hat{\theta} - \theta)^{2}\right]$$

$$= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^{2} + (\mathbb{E}\hat{\theta} - \theta)^{2} + 2((\hat{\theta} - \mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta} - \theta))\right]$$

$$= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^{2}\right] + (\mathbb{E}\hat{\theta} - \theta)^{2} + 2\mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta} - \theta)\right]$$

$$= \mathbb{E}\left[(\hat{\theta} - \mathbb{E}\hat{\theta})^{2}\right] + (\mathbb{E}\hat{\theta} - \theta)^{2}$$

$$= \text{Variance}(\hat{\theta}) + \text{Bias}^{2}$$

Bias-Variance Tradeoff

- Define the bias: $\mathbb{E}(\hat{\theta}) \theta$. Say $\hat{\theta}$ is *unbiased* if bias = 0
- Define the Mean-Squared Error (MSE):

$$\begin{split} \mathbb{E}\Big[(\hat{\theta}-\theta)^2\Big] &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta}+\mathbb{E}\hat{\theta}-\theta)^2\Big] \\ &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})^2 + (\mathbb{E}\hat{\theta}-\theta)^2 + 2((\hat{\theta}-\mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta}-\theta))\Big] \\ &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})^2\Big] + (\mathbb{E}\hat{\theta}-\theta)^2 + 2\mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta}-\theta)\Big] \\ &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})^2\Big] + (\mathbb{E}\hat{\theta}-\theta)^2 \\ &= \mathsf{Variance}(\hat{\theta}) + \mathsf{Bias}^2 \end{split}$$

Bias-Variance Tradeoff

- Define the bias: $\mathbb{E}(\hat{\theta}) \theta$. Say $\hat{\theta}$ is *unbiased* if bias = 0
- Define the Mean-Squared Error (MSE):

$$\begin{split} \mathbb{E}\Big[(\hat{\theta}-\theta)^2\Big] &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta}+\mathbb{E}\hat{\theta}-\theta)^2\Big] \\ &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})^2 + (\mathbb{E}\hat{\theta}-\theta)^2 + 2\big((\hat{\theta}-\mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta}-\theta)\big)\Big] \\ &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})^2\Big] + (\mathbb{E}\hat{\theta}-\theta)^2 + 2\mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})(\mathbb{E}\hat{\theta}-\theta)\Big] \\ &= \mathbb{E}\Big[(\hat{\theta}-\mathbb{E}\hat{\theta})^2\Big] + (\mathbb{E}\hat{\theta}-\theta)^2 \\ &= \mathsf{Variance}(\hat{\theta}) + \mathsf{Bias}^2 \end{split}$$

- For $X_1,...,X_n \sim U(0,\theta)$, we saw $\mathbb{E}\hat{\theta} = \frac{n}{n+1}]\theta$, which is biased
- The variance is $\frac{n}{(n+1)^2(n+2)}\theta^2$ (do this!)
- So the MSE is:

Variance + Bias² =
$$\frac{n}{(n+1)^2(n+2)}\theta^2 + \left(\frac{1}{n+1}\right)^2\theta^2$$

- For $X_1,...,X_n \sim U(0,\theta)$, we saw $\mathbb{E}\hat{\theta} = \frac{n}{n+1}]\theta$, which is biased
- The variance is $\frac{n}{(n+1)^2(n+2)}\theta^2$ (do this!)
- So the MSE is:

Variance + Bias² =
$$\frac{n}{(n+1)^2(n+2)}\theta^2 + \left(\frac{1}{n+1}\right)^2\theta^2$$

- For $X_1,...,X_n \sim U(0,\theta)$, we saw $\mathbb{E}\hat{\theta} = \frac{n}{n+1}]\theta$, which is biased
- The variance is $\frac{n}{(n+1)^2(n+2)}\theta^2$ (do this!)
- So the MSE is:

Variance + Bias² =
$$\frac{n}{(n+1)^2(n+2)}\theta^2 + \left(\frac{1}{n+1}\right)^2\theta^2$$

- For $X_1,...,X_n \sim U(0,\theta)$, we saw $\mathbb{E}\hat{\theta} = \frac{n}{n+1}]\theta$, which is biased
- The variance is $\frac{n}{(n+1)^2(n+2)}\theta^2$ (do this!)
- So the MSE is:

Variance + Bias² =
$$\frac{n}{(n+1)^2(n+2)}\theta^2 + \left(\frac{1}{n+1}\right)^2\theta^2$$

Method of Moments

The Method of Moments estimates the sample moments via

$$\hat{\mu}_k := \frac{1}{n} \sum_{i=1}^n X_i^k.$$

- Examples:
 - $X \sim Poi(\lambda)$: $\mu_1 = \lambda \Rightarrow \hat{\mu}_1 = \bar{X}$ and $\hat{\lambda} = \bar{X}$
 - $X \sim N(\mu, \sigma^2)$: $\mu_1 = \mu, \mu_2 = \mu^2 + \sigma^2 \Rightarrow \hat{\mu} = \bar{X}, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$ (biased)
 - $X \sim \Gamma(\alpha, \beta)$: $\mu_1 = \alpha/\beta$, $\mu_2 = \frac{\alpha(\alpha+1)}{\beta^2} \Rightarrow \hat{\beta} = \frac{\hat{\mu}_1}{\hat{\mu}_2 \hat{\mu}_1^2}$, $\alpha = \hat{\beta}\hat{\mu}_1$
 - $X \sim U(0, \theta)$: $\mu_1 = \theta \Rightarrow \hat{\theta} = 2\bar{X}$ (could make no sense)
- Pros: easy, consistent, asymptotically unbiased
- Cons: could make no sense, not efficient

Method of Moments

The Method of Moments estimates the sample moments via

$$\hat{\mu}_k := \frac{1}{n} \sum_{i=1}^n X_i^k.$$

- Examples:
 - $X \sim Poi(\lambda)$: $\mu_1 = \lambda \Rightarrow \hat{\mu}_1 = \bar{X}$ and $\hat{\lambda} = \bar{X}$
 - $X \sim N(\mu, \sigma^2)$: $\mu_1 = \mu, \mu_2 = \mu^2 + \sigma^2 \Rightarrow \hat{\mu} = \bar{X}, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$ (biased)
 - $X \sim \Gamma(\alpha, \beta) : \mu_1 = \alpha/\beta, \mu_2 = \frac{\alpha(\alpha+1)}{\beta^2} \Rightarrow \hat{\beta} = \frac{\hat{\mu}_1}{\hat{\mu}_2 \hat{\mu}_1^2}, \alpha = \hat{\beta}\hat{\mu}_1$
 - $X \sim U(0, \theta)$: $\mu_1 = \theta \Rightarrow \hat{\theta} = 2\bar{X}$ (could make no sense)
- Pros: easy, consistent, asymptotically unbiased
- Cons: could make no sense, not efficient

Maximum Likelihood

- $\hat{\theta} = \arg\max lik(\theta) = \arg\max \prod_{i=1}^{n} f(X_i|\theta)$
- $\hat{\theta} = \arg\max I(\theta) = \arg\max \sum_{i=1}^{n} \log f(X_i|\theta)$
- Example: $X \sim Poi(\lambda)$: $P(X = X) = \frac{\lambda^{X} e^{-\lambda}}{X!}$

$$I(\lambda) = \sum_{i=1}^{n} (X_i \log \lambda - \lambda - \log X!)$$
$$= \log \lambda \sum_{i=1}^{n} X_i - n\lambda - \sum_{i=1}^{n} \log X!$$
$$I'(\lambda) = \frac{1}{\lambda} \sum_{i=1}^{n} X_i - n = 0 \Rightarrow \hat{\lambda} = \bar{X}$$

Maximum Likelihood

- $\hat{\theta} = \arg\max lik(\theta) = \arg\max \prod_{i=1}^{n} f(X_i|\theta)$
- $\hat{\theta} = \arg\max I(\theta) = \arg\max \sum_{i=1}^{n} \log f(X_i|\theta)$
- Example: $X \sim Poi(\lambda)$: $P(X = X) = \frac{\lambda^{x}e^{-\lambda}}{X!}$

$$I(\lambda) = \sum_{i=1}^{n} (X_i \log \lambda - \lambda - \log X!)$$

$$= \log \lambda \sum_{i=1}^{n} X_i - n\lambda - \sum_{i=1}^{n} \log X!$$

$$I'(\lambda) = \frac{1}{\lambda} \sum_{i=1}^{n} X_i - n = 0 \Rightarrow \hat{\lambda} = \bar{X}$$

Properties of the MLE

Asymptotically unbiased

- Consistent (consistency is the least we can ask for!)
- Efficient, which means that it achieves the Cramer-Rao Lower Bound, or that

$$\sqrt{nI(\theta)}(\hat{\theta}_{MLE}-\theta) \rightarrow N(0,1),$$

and $I(\theta) := E\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right]^2$ (Fisher information)

Properties of the MLE

- Asymptotically unbiased
- Consistent (consistency is the least we can ask for!)
- Efficient, which means that it achieves the Cramer-Rao Lower Bound, or that

$$\sqrt{nI(\theta)}(\hat{\theta}_{MLE}-\theta) \rightarrow N(0,1),$$

and $I(\theta) := E\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right]^2$ (Fisher information)

Likelihood Ratio Test

- Hypothesis: $H_0: \mu = \mu_0$; $H_A: \mu = \mu_A$
- Test statistic: $\Lambda = \frac{f(X|H_0)}{f(X|H_A)}$ (ratio of likelihoods)
- Rejection region: small value of $\Lambda(X)$
- Most powerful for simple null vs. simple alternative
- Example: $N(\mu, \sigma)$ with σ known
 - $H_0: \mu = \mu_0; H_A: \mu = \mu_A$

 - Reject for small
 - $\sum_{i=1}^{n} (X_i \mu_A)^2 \sum_{i=1}^{n} (X_i \mu_0)^2 = 2n\bar{X}(\mu_0 \mu_A) + n\mu_A^2 n\mu_0^2.$
 - If $\mu_0 > \mu_A$, reject for small value of \bar{X} . If $\mu_0 < \mu_A$, reject for large value of \bar{X}

- Hypothesis: composite null vs. composite alternative
- Test statistic: $\Lambda = \frac{\max_{\theta \in H_0} f(X|\theta)}{\max_{\theta \in H_0 \cup H_A} f(X|\theta)} \Rightarrow -2 \log \Lambda \sim \chi^2_{\dim \Omega \dim \omega_0} \text{ as } n \to \infty$
- Rejection region: small value of Λ(X) or large value of -2 log Λ
- Example:
 - $H_0: \mu = \mu_0; H_A: \mu \neq \mu_0. \ \sigma^2$ is known

 - Reject when

$$-2\log\Lambda > \chi_1^2(\alpha) \Rightarrow \left(\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\right)^2 > \chi_1^2(\alpha) \Rightarrow \left|\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\right| > Z(\alpha/2)$$

- Hypothesis: composite null vs. composite alternative

$$\begin{array}{l} \bullet \ \ \text{Test statistic:} \\ \Lambda = \frac{\max_{\theta \in \mathcal{H}_0} f(X|\theta)}{\max_{\theta \in \mathcal{H}_0 \cup \mathcal{H}_A} f(X|\theta)} \Rightarrow -2\log \Lambda \sim \chi^2_{\dim \Omega - \dim \omega_0} \ \text{as} \ n \to \infty \end{array}$$

- Rejection region: small value of $\Lambda(X)$ or large value of
- Example:
 - $H_0: \mu = \mu_0: H_A: \mu \neq \mu_0, \sigma^2$ is known

 - Reject when

$$-2\log\Lambda > \chi_1^2(\alpha) \Rightarrow \left(\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right)^2 > \chi_1^2(\alpha) \Rightarrow \left|\frac{\bar{\chi}-\mu_0}{\sigma/\sqrt{n}}\right| > z(\alpha/2)$$

- Hypothesis: composite null vs. composite alternative

• Test statistic:
$$\Lambda = \frac{\max_{\theta \in \mathcal{H}_0} f(X|\theta)}{\max_{\theta \in \mathcal{H}_0 \cup \mathcal{H}_A} f(X|\theta)} \Rightarrow -2\log\Lambda \sim \chi^2_{\dim\Omega - \dim\omega_0} \text{ as } n \to \infty$$

- Rejection region: small value of $\Lambda(X)$ or large value of $-2 \log \Lambda$
- Example:

•
$$H_0: \mu = \mu_0; H_A: \mu \neq \mu_0. \ \sigma^2$$
 is known

Reject when

$$-2\log\Lambda > \chi_1^2(\alpha) \Rightarrow \left(\frac{\bar{\chi}_{-\mu_0}}{\sigma/\sqrt{n}}\right)^2 > \chi_1^2(\alpha) \Rightarrow \left|\frac{\bar{\chi}_{-\mu_0}}{\sigma/\sqrt{n}}\right| > Z(\alpha/2)$$

- Hypothesis: composite null vs. composite alternative

• Test statistic:
$$\Lambda = \frac{\max_{\theta \in \mathcal{H}_0} f(X|\theta)}{\max_{\theta \in \mathcal{H}_0 \cup \mathcal{H}_A} f(X|\theta)} \Rightarrow -2\log\Lambda \sim \chi^2_{\dim\Omega - \dim\omega_0} \text{ as } n \to \infty$$

- Rejection region: small value of $\Lambda(X)$ or large value of $-2 \log \Lambda$
- Example:
 - $H_0: \mu = \mu_0; H_A: \mu \neq \mu_0. \sigma^2$ is known
 - $\Lambda(X) = \frac{\exp[-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i \mu_0)^2]}{\exp[-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i \bar{X})^2]}$
 - Reject when

$$-2\log\Lambda > \chi_1^2(\alpha) \Rightarrow \left(\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\right)^2 > \chi_1^2(\alpha) \Rightarrow \left|\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\right| > Z(\alpha/2)$$

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

- When we know exact distributions, we can perform inference exactly, but these are often only in particular situations
- When we have a proportion, we can use the approximation to the normal distribution to perform large-sample tests
- When we assume a parametric family, we can use the MLE within that family and be assured that it is asymptotically normally distributed as well
- The MLE is almost always what we want to use
- For testing, if we can characterize the distribution under the null hypothesis, we can calculate p-values
- More details in my notes and in 553.630 and 553.730

Outline

- Linear Regression
 - Simple Linear Regression
 - Multiple Linear Regression
 - Variable Selection

Figure: Source:

https://makeameme.org/meme/when-you-advertise-f81897f53a

What is linear regression?

Figure: Source: https://en.wikipedia.org/wiki/Linear regression/media/File:Linear regression.svg

Model

- Write $y = \beta_1 x + \beta_0 + \varepsilon$
- Assume $\varepsilon \sim N(0, \sigma^2)$
- Want to estimate $\hat{\beta}_1$ and $\hat{\beta}_0$
- Closed form solution under this model:

$$\begin{split} \hat{\beta}_1 &= \frac{S_{xy}}{S_{xx}}, \qquad \hat{\beta}_0 = \bar{y} - b\bar{x}, \\ S_{xy} &= \sum (x_i - \bar{x})(y_i - \bar{y}), \qquad S_{xx} = \sum (x_i - \bar{x})^2 \end{split}$$

Model

- Write $y = \beta_1 x + \beta_0 + \varepsilon$
- Assume $\varepsilon \sim N(0, \sigma^2)$
- Want to estimate $\hat{\beta}_1$ and $\hat{\beta}_0$
- Closed form solution under this model:

$$\begin{split} \hat{\beta}_1 &= \frac{S_{xy}}{S_{xx}}, \qquad \hat{\beta}_0 = \bar{y} - b\bar{x}, \\ S_{xy} &= \sum (x_i - \bar{x})(y_i - \bar{y}), \qquad S_{xx} = \sum (x_i - \bar{x})^2 \end{split}$$

Model

- Write $y = \beta_1 x + \beta_0 + \varepsilon$
- Assume $\varepsilon \sim N(0, \sigma^2)$
- Want to estimate $\hat{\beta}_1$ and $\hat{\beta}_0$
- Closed form solution under this model:

$$\begin{split} \hat{\beta}_1 &= \frac{S_{xy}}{S_{xx}}, \qquad \hat{\beta}_0 = \bar{y} - b\bar{x}, \\ S_{xy} &= \sum (x_i - \bar{x})(y_i - \bar{y}), \qquad S_{xx} = \sum (x_i - \bar{x})^2 \end{split}$$

Hypothesis Testing

Can test whether $\beta_1 = 0$ since we have the exact distributions under this model:

$$\begin{split} &\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\sigma^{2}/S_{xx}}}\sim\textit{N}(0,1), &\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\textit{MSE}/S_{xx}}}\sim\textit{t}_{n-2}\\ &\frac{\hat{\beta}_{0}-\beta_{0}}{\sqrt{\sigma^{2}\,\overline{x^{2}}/S_{xx}}}\sim\textit{N}(0,1), &\frac{\hat{\beta}_{0}-\beta_{0}}{\sqrt{\textit{MSE}\,\overline{x^{2}}/S_{xx}}}\sim\textit{t}_{n-2}\\ &\frac{\hat{y}-(\beta_{0}+\beta_{1}x^{*})}{\sqrt{\textit{MSE}(\frac{1}{n}+\frac{(x^{*}-\bar{x})^{2}}{S_{xx}})}}\sim\textit{t}_{n-2} \end{split}$$

Multivariate Setting

- In practice, we observe many more variables than the univariate setting
- We might observe: Height, Weight, frequency of physical activity, etc.
- How do we do estimation in this setting?

Multivariate Setting

- In practice, we observe many more variables than the univariate setting
- We might observe: Height, Weight, frequency of physical activity, etc.
- How do we do estimation in this setting?

Multivariate Setting

- In practice, we observe many more variables than the univariate setting
- We might observe: Height, Weight, frequency of physical activity, etc.
- How do we do estimation in this setting?

Model

• $Y = \mathbf{X}\beta + \varepsilon$ where

$$Y \in \mathbb{R}^n, \mathbf{X} \in \mathbb{R}^{n \times d}, \beta \in \mathbb{R}^d$$

$$\mathbb{E}(\varepsilon) = 0, \mathbb{E}(\varepsilon \varepsilon^\top) = \sigma^2 I_d \qquad \text{Gauss-Markov Assumptions}$$

- By convention, we attach a column of all ones to the matrix
 X to account for intercept term
- Want to estimate $\beta \in \mathbb{R}^d$ given the observations **X** and the response variables Y

Model

• $Y = X\beta + \varepsilon$ where

$$Y \in \mathbb{R}^n, \mathbf{X} \in \mathbb{R}^{n \times d}, \beta \in \mathbb{R}^d$$

$$\mathbb{E}(\varepsilon) = 0, \mathbb{E}(\varepsilon \varepsilon^\top) = \sigma^2 I_d \qquad \text{Gauss-Markov Assumptions}$$

- By convention, we attach a column of all ones to the matrix
 X to account for intercept term
- Want to estimate $\beta \in \mathbb{R}^d$ given the observations **X** and the response variables Y

Model

• $Y = X\beta + \varepsilon$ where

$$Y \in \mathbb{R}^n, \mathbf{X} \in \mathbb{R}^{n \times d}, \beta \in \mathbb{R}^d$$

$$\mathbb{E}(\varepsilon) = 0, \mathbb{E}(\varepsilon \varepsilon^\top) = \sigma^2 I_d \qquad \text{Gauss-Markov Assumptions}$$

- By convention, we attach a column of all ones to the matrix
 X to account for intercept term
- Want to estimate $\beta \in \mathbb{R}^d$ given the observations **X** and the response variables Y

Estimator

$$\begin{split} \arg\min_{\beta\in\mathbb{R}^d} \|\mathbf{X}\beta - Y\|_2 &= \arg\min_{\beta\in\mathbb{R}^d} \frac{1}{2} \|\mathbf{X}\beta - Y\|_2^2 \\ &= \arg\min_{\beta\in\mathbb{R}^d} \frac{1}{2} \langle \mathbf{X}\beta - Y, \mathbf{X}\beta - Y \rangle \\ &= \arg\min_{\beta\in\mathbb{R}^d} \frac{1}{2} \langle \mathbf{X}\beta, \mathbf{X}\beta \rangle - \langle Y, \mathbf{X}\beta \rangle + \langle Y, Y \rangle \\ &= \arg\min_{\beta\in\mathbb{R}^d} \frac{1}{2} \langle \mathbf{X}\beta, \mathbf{X}\beta \rangle - \langle Y, \mathbf{X}\beta \rangle \end{split}$$

Estimator

Define $f: \mathbb{R}^d \to \mathbb{R}$ via $f(\beta) = \frac{1}{2} \langle \mathbf{X}\beta, \mathbf{X}\beta \rangle - \langle Y, \mathbf{X}\beta \rangle$.

We will take the derivative and set it equal to zero

$$\nabla f = \frac{d}{d\beta} \frac{1}{2} \beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta - \beta^{\top} \mathbf{X}^{\top} \mathbf{Y}$$

$$\implies \nabla f = \mathbf{X}^{\top} \mathbf{X} \beta - \mathbf{X}^{\top} \mathbf{Y}$$

$$\implies \hat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$$

provided $\mathbf{X}^{\top}\mathbf{X}$ is invertible, which happens as long as there is no *collinearity* (i.e. no column of \mathbf{X} is a linear combination of other columns)

Estimator

Define $f : \mathbb{R}^d \to \mathbb{R}$ via $f(\beta) = \frac{1}{2} \langle \mathbf{X}\beta, \mathbf{X}\beta \rangle - \langle Y, \mathbf{X}\beta \rangle$. We will take the derivative and set it equal to zero.

$$\nabla f = \frac{d}{d\beta} \frac{1}{2} \beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta - \beta^{\top} \mathbf{X}^{\top} \mathbf{Y}$$

$$\implies \nabla f = \mathbf{X}^{\top} \mathbf{X} \beta - \mathbf{X}^{\top} Y$$

$$\implies \hat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} Y$$

provided $\mathbf{X}^{\top}\mathbf{X}$ is invertible, which happens as long as there is no *collinearity* (i.e. no column of \mathbf{X} is a linear combination of other columns)

We have that

$$\mathbb{E}(\hat{\beta}) = \mathbb{E}\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}Y\right)$$

$$= \mathbb{E}\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}(\mathbf{X}\beta + \varepsilon)\right)$$

$$= \mathbb{E}\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}\beta + (\mathbf{X}^{\top}\mathbf{X})^{-1}\varepsilon\right)$$

$$= \beta + \mathbb{E}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}\varepsilon)$$

$$= \beta$$

so $\hat{\beta}$ is unbiased.

Hence, the covariance $\mathbb{E}\Big[(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\top}\Big]$ satisfies

$$\mathbb{E}\left[\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}Y - \beta\right)\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}Y - \beta\right)^{\top}\right]$$

$$= \mathbb{E}\left[\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}(\mathbf{X}\beta + \varepsilon) - \beta\right)\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}(\mathbf{X}\beta + \varepsilon) - \beta\right)^{\top}\right]$$

$$= \mathbb{E}\left[\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\varepsilon + \beta - \beta\right)\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\varepsilon + \beta - \beta\right)^{\top}\right]$$

$$= \mathbb{E}\left((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\varepsilon\varepsilon^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\right)$$

$$= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbb{E}\left(\varepsilon\varepsilon^{\top}\right)\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} = \sigma^{2}(\mathbf{X}^{\top}\mathbf{X})^{-1}.$$

Let $\tilde{\beta}$ be any other linear unbiased estimator, where linear means $\tilde{\beta}=\mathbf{H}Y$ for some $\mathbf{H}.$ Since $\tilde{\beta}$ is unbiased,

$$\beta = \mathbb{E}(\tilde{\beta}) = \mathbb{E}(\mathbf{H}Y) = \mathbf{H}\mathbb{E}(\mathbf{X}\beta + \varepsilon) = \mathbf{H}\mathbf{X}\beta \implies \mathbf{H}\mathbf{X} = I_{\mathbf{d}}.$$

We know that
$$\left[(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \right]\mathbf{X} = I_d$$
, so write

$$H:=(X^\top X)^{-1}X^\top+C,$$

for \mathbf{C} satisfying $\mathbf{C}\mathbf{X} = \mathbf{0}$.

Let $\tilde{\beta}$ be any other linear unbiased estimator, where linear means $\tilde{\beta} = \mathbf{H} Y$ for some \mathbf{H} . Since $\tilde{\beta}$ is unbiased,

$$\beta = \mathbb{E}(\tilde{\beta}) = \mathbb{E}(\mathbf{H}Y) = \mathbf{H}\mathbb{E}(\mathbf{X}\beta + \varepsilon) = \mathbf{H}\mathbf{X}\beta \implies \mathbf{H}\mathbf{X} = I_{\mathbf{d}}.$$

We know that $\left[(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top} \right]\mathbf{X} = \mathit{I}_{\mathit{d}},$ so write

$$\boldsymbol{H} := (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top} + \boldsymbol{C},$$

for \mathbf{C} satisfying $\mathbf{CX} = \mathbf{0}$.

Then since

$$Cov(Y) = Cov(X\beta + \varepsilon) = Cov(\varepsilon) = \sigma^2 I_d$$

we see

$$\begin{split} \operatorname{Cov}(\tilde{\beta}) &= \operatorname{Cov}(\mathbf{H}Y) = \operatorname{HCov}(Y) \mathbf{H}^\top = \sigma^2 \mathbf{H} \mathbf{H}^\top \\ &= \sigma^2 \bigg((\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top + \mathbf{C} \bigg) \bigg((\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top + \mathbf{C} \bigg)^\top \\ &= \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \\ &\quad + \mathbf{C} \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} + (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{C}^\top + \mathbf{C} \mathbf{C}^\top \\ &= \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1} + \sigma^2 \mathbf{C} \mathbf{C}^\top \end{split}$$

since $\mathbf{CX} = \mathbf{0}$.

- So we have shown for any other estimator $\tilde{\beta}$ that is a linear function of Y and is unbiased that its variance is the variance of $\hat{\beta}$ plus the matrix $\sigma^2 \mathbf{C} \mathbf{C}^{\top}$
- In particular, $\sigma^2 \mathbf{C} \mathbf{C}^{\top}$ is a positive semidefinite matrix, meaning the variance of $\tilde{\beta}$ exceeds that of $\hat{\beta}$ by a positive semidefinite matrix
- This is the Gauss-Markov Theorem.

- So we have shown for any other estimator $\tilde{\beta}$ that is a linear function of Y and is unbiased that its variance is the variance of $\hat{\beta}$ plus the matrix $\sigma^2 \mathbf{C} \mathbf{C}^{\top}$
- In particular, $\sigma^2 \mathbf{C} \mathbf{C}^{\top}$ is a positive semidefinite matrix, meaning the variance of $\tilde{\beta}$ exceeds that of $\hat{\beta}$ by a positive semidefinite matrix
- This is the Gauss-Markov Theorem.

- So we have shown for any other estimator $\tilde{\beta}$ that is a linear function of Y and is unbiased that its variance is the variance of $\hat{\beta}$ plus the matrix $\sigma^2 \mathbf{C} \mathbf{C}^{\top}$
- In particular, $\sigma^2 \mathbf{C} \mathbf{C}^{\top}$ is a positive semidefinite matrix, meaning the variance of $\tilde{\beta}$ exceeds that of $\hat{\beta}$ by a positive semidefinite matrix
- This is the Gauss-Markov Theorem.

#10yearchallenge

Figure: Source: https://medium.com/nybles/understanding-machine-learning-through-memes-4580b67527bf

- Some regression problems have a very large number of predictors d ≥ n, in which case classical results may not hold
- One way to eliminate this issue is to perform variable selection
- Classical techniques include
 - AIC
 - BIC
 - MSE
- AIC and BIC penalize for having too many variables a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

- Some regression problems have a very large number of predictors d ≥ n, in which case classical results may not hold
- One way to eliminate this issue is to perform variable selection
- Classical techniques include
 - AIC
 - BIC
 - MSE
- AIC and BIC penalize for having too many variables a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

- Some regression problems have a very large number of predictors d ≥ n, in which case classical results may not hold
- One way to eliminate this issue is to perform variable selection
- Classical techniques include
 - AIC
 - BIC
 - MSE
- AIC and BIC penalize for having too many variables a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

- Some regression problems have a very large number of predictors d ≥ n, in which case classical results may not hold
- One way to eliminate this issue is to perform variable selection
- Classical techniques include
 - AIC
 - BIC
 - MSE
- AIC and BIC penalize for having too many variables a variable has to help "enough"
- MSE is agnostic to model choice, but doesn't penalize for too many variables

Stepwise Regression

- **1** Initiate $V := \emptyset$
- 2 for each variable $v \notin V$:
 - **1** Run a model with all the variables in V and the variable v_i
 - 2 keep track of the AIC/BIC
- If ind the variable v^* that maximizes AIC, and set $V := V \cup v^*$.
- go back to step 2

- Instead of minimizing the objective $\|\mathbf{X}\beta Y\|_2^2$, one can add a *regularization term*
- Examples:
 - $\lambda \|\beta\|_1$ (Lasso)
 - $\lambda \|\beta\|_2$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

- Instead of minimizing the objective $\|\mathbf{X}\beta Y\|_2^2$, one can add a *regularization term*
- Examples:
 - $\lambda \|\beta\|_1$ (Lasso)
 - $\lambda \|\beta\|_2$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

- Instead of minimizing the objective $\|\mathbf{X}\beta Y\|_2^2$, one can add a *regularization term*
- Examples:
 - $\lambda \|\beta\|_1$ (Lasso)
 - $\lambda \|\beta\|_2$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

- Instead of minimizing the objective $\|\mathbf{X}\beta Y\|_2^2$, one can add a *regularization term*
- Examples:
 - $\lambda \|\beta\|_1$ (Lasso)
 - $\lambda \|\beta\|_2$ (Ridge)
- Intuitively, it penalizes for higher values of β
- Common in other Machine Learning problems

Outline

- Machine Learning
 - Supervised Learning
 - Unsupervised Learning

Figure: Source: https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Broadly speaking, there are two areas of machine learning
- Supervised learning:
 - Regression (continuous response)
 - Classification (categorical response variable)
- Unsupervised learning:
 - No specific response variable
 - Dimensionality Reduction
 - Clustering
 - Manifold Learning
- In either case, the resulting inference task may still be hypothesis testing, estimation, or prediction
- Textbooks often focus on estimation and prediction

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

- Machine Learning can be closer to engineering or closer to statistics
- I believe machine learning should be principled, but many just believe it should do well on real problems
- Linear regression is principled, and neural networks work on real problems
- Even still, we do not understand everything about linear regression!
- I am happy to discuss this more with anyone

Figure: Source: https://xkcd.com/1838/

- 553.630 (Introduction to Statistics) and 553.730 (Statistical Theory) cover parametric statistical theory
- 553.731 (Asymptotic Statistics) and 553.735 (Statistical Pattern Recognition) cover modern statistical theory for statistics, but mostly emphasize general statistical inference as opposed to studying algorithms
- 553.740 (Machine Learning I) and 553.741 (Machine Learning II) cover modern techniques and theory for machine learning including optimization

- 553.630 (Introduction to Statistics) and 553.730 (Statistical Theory) cover parametric statistical theory
- 553.731 (Asymptotic Statistics) and 553.735 (Statistical Pattern Recognition) cover modern statistical theory for statistics, but mostly emphasize general statistical inference as opposed to studying algorithms
- 553.740 (Machine Learning I) and 553.741 (Machine Learning II) cover modern techniques and theory for machine learning including optimization

- 553.630 (Introduction to Statistics) and 553.730 (Statistical Theory) cover parametric statistical theory
- 553.731 (Asymptotic Statistics) and 553.735 (Statistical Pattern Recognition) cover modern statistical theory for statistics, but mostly emphasize general statistical inference as opposed to studying algorithms
- 553.740 (Machine Learning I) and 553.741 (Machine Learning II) cover modern techniques and theory for machine learning including optimization

- 553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear Optimization II) cover optimization and constrained optimization (including gradient descent)
- 553.636 (Introduction to Data Science) covers practical implementation of Machine Learning Algorithms
- Other related courses: 553.792 (Matrix Analysis), 553.632 (Bayesian Statistics), 553.738 (High-dimensional Statistics) etc.

- 553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear Optimization II) cover optimization and constrained optimization (including gradient descent)
- 553.636 (Introduction to Data Science) covers practical implementation of Machine Learning Algorithms
- Other related courses: 553.792 (Matrix Analysis), 553.632 (Bayesian Statistics), 553.738 (High-dimensional Statistics) etc.

- 553.761 (Nonlinear Optimization I) and 553.762 (Nonlinear Optimization II) cover optimization and constrained optimization (including gradient descent)
- 553.636 (Introduction to Data Science) covers practical implementation of Machine Learning Algorithms
- Other related courses: 553.792 (Matrix Analysis), 553.632 (Bayesian Statistics), 553.738 (High-dimensional Statistics) etc.

Figure: Source: https://pythonhosted.org/PyQt-Fit/NonParam_tut.html

- Idea is we have covariates **X** (as in the linear regression case), and seek to discover $Y_i = f(X_i)$ for some function f
- Sometimes f is linear $(f(X_i) = X_i^{\top} \beta)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the *statistical* properties of \hat{f}
 - Machine Learning studies how to optimize the objective function for \hat{f}

- Idea is we have covariates **X** (as in the linear regression case), and seek to discover $Y_i = f(X_i)$ for some function f
- Sometimes f is linear $(f(X_i) = X_i^{\top}\beta)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the *statistical* properties of \hat{f}
 - Machine Learning studies how to optimize the objective function for \hat{f}

- Idea is we have covariates **X** (as in the linear regression case), and seek to discover $Y_i = f(X_i)$ for some function f
- Sometimes f is linear $(f(X_i) = X_i^{\top}\beta)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the statistical properties of f
 - Machine Learning studies how to optimize the objective function for \hat{f}

- Idea is we have covariates **X** (as in the linear regression case), and seek to discover $Y_i = f(X_i)$ for some function f
- Sometimes f is linear $(f(X_i) = X_i^{\top}\beta)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the statistical properties of f
 - Machine Learning studies how to optimize the objective function for \hat{t}

- Idea is we have covariates **X** (as in the linear regression case), and seek to discover $Y_i = f(X_i)$ for some function f
- Sometimes f is linear $(f(X_i) = X_i^{\top}\beta)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the *statistical* properties of \hat{f}
 - Machine Learning studies how to optimize the objective function for \hat{f}

- Idea is we have covariates **X** (as in the linear regression case), and seek to discover $Y_i = f(X_i)$ for some function f
- Sometimes f is linear $(f(X_i) = X_i^{\top}\beta)$
- Sometimes f is more involved (smooth, highly nonlinear, piecewise linear)
- Statistics worries about the statistical properties of an estimator of f; machine learning worries about how to actually do the estimation
- Example:
 - f is a smooth function, and we minimize some objective function to find our estimator \hat{f} (nonparametric)
 - Statistics studies the *statistical* properties of \hat{f}
 - Machine Learning studies how to optimize the objective function for \hat{f}

Typically study

$$\inf_{f\in\mathcal{F}_0}\sum_{i=1}^n\|f(X_i)-Y_i\|_{\eta}$$

for η some norm and $\mathcal F$ some (computable) function class

- Often want to minimize MSE ($\eta = 2$)
- Examples of ML algorithms to find f above:
 - Random Forests
 - Neural Networks
 - Linear Regression
 - Nonparametric Regression (splines and things)
 - More involved classes of functions

Typically study

$$\inf_{f\in\mathcal{F}_0}\sum_{i=1}^n\|f(X_i)-Y_i\|_{\eta}$$

for η some norm and $\mathcal F$ some (computable) function class

- Often want to minimize MSE ($\eta = 2$)
- Examples of ML algorithms to find *f* above:
 - Random Forests
 - Neural Networks
 - Linear Regression
 - Nonparametric Regression (splines and things)
 - More involved classes of functions

Typically study

$$\inf_{f\in\mathcal{F}_0}\sum_{i=1}^n\|f(X_i)-Y_i\|_{\eta}$$

for η some norm and $\mathcal F$ some (computable) function class

- Often want to minimize MSE ($\eta = 2$)
- Examples of ML algorithms to find f above:
 - Random Forests
 - Neural Networks
 - Linear Regression
 - Nonparametric Regression (splines and things)
 - More involved classes of functions

- Response variable $Y_i \in \{1, ..., K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
 - K-NN
 - Random Forests
 - Logistic Regression
 - Neural Networks
- Similar ideas to Regression

- Response variable $Y_i \in \{1, ..., K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
 - K-NN
 - Random Forests
 - Logistic Regression
 - Neural Networks
- Similar ideas to Regression

- Response variable $Y_i \in \{1, ..., K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
 - K-NN
 - Random Forests
 - Logistic Regression
 - Neural Networks
- Similar ideas to Regression

- Response variable $Y_i \in \{1, ..., K\}$ for some K
- Similar to above, only the norm to minimize is different
- Examples include
 - K-NN
 - Random Forests
 - Logistic Regression
 - Neural Networks
- Similar ideas to Regression

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

- Much of Machine Learning is concerned with the details of the implementation
- For example, one may use gradient descent to actually solve the optimization problem
- Other optimization methods exist (second-order methods, etc.)
- One can define a loss function and do some mathematics to figure out how to solve for the optimal \hat{f}
- Also works in more "exotic" situations
 - Matrix Completion
 - Subspace Clustering
 - Graph Clustering
 - Tensor Methods

Figure: Source:

https://www.datasciencecentral.com/profiles/blogs/alternatives-to-the-gradient-descent-algorithm

Machine learning behind the scenes

Figure: Source:

https://me.me/i/machine-learning-gradient-descent-machine-learning-machine-learning-behind-the-ea8fe9fc64054eda89232d7ffc9ba60e

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Want to uncover some hidden structure in the data
- Hidden structure could be:
 - Sparsity
 - Linearity
 - "Smooth" Nonlinearity
 - Clusters
- Algorithms proposed for different assumed structure in the data

- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction

- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction

- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction

- Principal Components Analysis assumes data are linear combination of underlying variables
- Lots of theory exists in fixed-dimension, high-dimension, and more
- Highly intuitive explanation in terms of covariances and singular value decompositions
- First component of PCA maximizes the variance along that direction

Suppose $\mathbb{E}(X) = 0$ and $\mathbb{E}(XX^{\top}) = \Sigma_0 + \sigma^2 I_d$, where Σ_0 is rank r < d. Then

$$\mathbb{E}(XX^{\top}) = \underbrace{\mathbf{U}\mathbf{D}\mathbf{U}^{\top}}_{\text{top } r \text{ eigenvectors}} + \underbrace{\mathbf{U}_{\perp}\mathbf{D}_{\perp}\mathbf{U}_{\perp}^{\top}}_{\text{bottom } d-r \text{ eigenvectors}}$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i X_i^{\top} = \underbrace{\hat{\mathbf{U}} \hat{\mathbf{D}} \hat{\mathbf{U}}^{\top}}_{\text{top } r \text{ eigenvectors}} + \underbrace{\hat{\mathbf{U}}_{\perp} \hat{\mathbf{D}}_{\perp} \hat{\mathbf{U}}_{\perp}^{\top}}_{\text{bottom } d - r \text{ eigenvectors}}$$

Idea is that when $d_r - d_{r+1}$ is sufficiently large then

$$\hat{\textbf{U}} \approx \textbf{U} \qquad \hat{\textbf{D}} \approx \textbf{D}.$$

Figure: Source: https://towardsdatascience.com/pca-is-not-feature-selection-3344fb764ae6

- Assume we observe $X_i \in \mathbb{R}^D$, where D is very large
- Idea is X_i are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^D$, where \mathcal{M} is of dimension d < D
- Example: X_i are from the unit sphere in \mathbb{R}^D , then \mathcal{M} is of dimension d = D 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

- Assume we observe $X_i \in \mathbb{R}^D$, where D is very large
- Idea is X_i are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^D$, where \mathcal{M} is of dimension d < D
- Example: X_i are from the unit sphere in \mathbb{R}^D , then \mathcal{M} is of dimension d = D 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

- Assume we observe $X_i \in \mathbb{R}^D$, where D is very large
- Idea is X_i are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^D$, where \mathcal{M} is of dimension d < D
- Example: X_i are from the unit sphere in \mathbb{R}^D , then \mathcal{M} is of dimension d = D 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

- Assume we observe $X_i \in \mathbb{R}^D$, where D is very large
- Idea is X_i are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^D$, where \mathcal{M} is of dimension d < D
- Example: X_i are from the unit sphere in \mathbb{R}^D , then \mathcal{M} is of dimension d = D 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

- Assume we observe $X_i \in \mathbb{R}^D$, where D is very large
- Idea is X_i are noisy observations of a manifold $\mathcal{M} \subset \mathbb{R}^D$, where \mathcal{M} is of dimension d < D
- Example: X_i are from the unit sphere in \mathbb{R}^D , then \mathcal{M} is of dimension d = D 1
- Manifold Learning seeks to uncover this manifold structure
- Lots of algorithms exist (see Wiki on nonlinear dimensionality reduction)

Figure: Source: https://www.semanticscholar.org/paper/Algorithms-for-manifold-learning-Cayton/100dcf6aa83ac559c83518c8a41676b1a3a55fc0/figure/0

Clustering

- Clustering assumes data come from a mixture and seeks to estimate the clusters
- Examples:
 - K-Means (uses only means)
 - Expectation Maximization Algorithm (Mixtures of Gaussians)
 - Spectral Clustering –clusters using eigenvectors of a matrix

Clustering

- Clustering assumes data come from a mixture and seeks to estimate the clusters
- Examples:
 - K-Means (uses only means)
 - Expectation Maximization Algorithm (Mixtures of Gaussians)
 - Spectral Clustering –clusters using eigenvectors of a matrix

Figure: Source:

https://www.geeksforgeeks.org/clustering-in-machine-learning/

Outline

- 6 Nonparametric and High-Dimensional Statistics
 - Nonparametric Statistics
 - High-Dimensional Statistics

- ullet Recall we had a family of distributions ${\cal F}$
- Parametric required that $\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d \}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

- ullet Recall we had a family of distributions ${\cal F}$
- Parametric required that $\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d \}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

- ullet Recall we had a family of distributions ${\cal F}$
- Parametric required that $\mathcal{F} = \{f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

- ullet Recall we had a family of distributions ${\cal F}$
- Parametric required that $\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d \}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

- ullet Recall we had a family of distributions ${\cal F}$
- Parametric required that $\mathcal{F} = \{ f_{\theta} : \theta \in \Theta \subset \mathbb{R}^d \}$
- Nonparametric Statistics makes no such assumption
- Estimation requires estimating the function f entirely (parametric it is easier, since we just need to estimate a parameter)
- Also nonparametric regression, classification, and hypothesis testing

High-Dimensional Issues

Let $X_1,...,X_n$ be iid such that $\mathbb{E}X = \mu \in \mathbb{R}^d$ with covariance $\sigma^2 I_d$.

$$\mathbb{P}\left(\|\bar{X} - \mu\| > \varepsilon\right) = \mathbb{P}\left(\|\bar{X} - \mu\|^2 > \varepsilon^2\right) \le \frac{\mathbb{E}\left(\sum_{j=1}^{d} \left[\bar{X}(j) - \mu(j)\right]^2\right)}{\varepsilon^2}$$
$$= \frac{d\mathbb{E}(\bar{X}(j) - \mu_j)^2}{\varepsilon^2} = \frac{d\sigma^2}{\varepsilon^2}$$

This shows that

$$\mathbb{P}\bigg(\|\bar{X} - \mu\| > \sigma\sqrt{nd}\bigg) \le \frac{1}{n}.$$

When d is very small with respect to n, then this is quite useful. But if $\sigma = 1$ and $d \approx n$, then this bound is uninformative!

High-Dimensional Issues

Let $X_1,...,X_n$ be iid such that $\mathbb{E}X = \mu \in \mathbb{R}^d$ with covariance $\sigma^2 I_d$.

$$\mathbb{P}\left(\|\bar{X} - \mu\| > \varepsilon\right) = \mathbb{P}\left(\|\bar{X} - \mu\|^2 > \varepsilon^2\right) \le \frac{\mathbb{E}\left(\sum_{j=1}^{d} \left[\bar{X}(j) - \mu(j)\right]^2\right)}{\varepsilon^2}$$
$$= \frac{d\mathbb{E}(\bar{X}(j) - \mu_j)^2}{\varepsilon^2} = \frac{d\sigma^2}{\varepsilon^2}$$

This shows that

$$\mathbb{P}\bigg(\|\bar{X} - \mu\| > \sigma\sqrt{nd}\bigg) \le \frac{1}{n}.$$

When *d* is very small with respect to *n*, then this is quite useful. But if $\sigma = 1$ and $d \approx n$, then this bound is uninformative!

High-Dimensional Issues

Let $X_1,...,X_n$ be iid such that $\mathbb{E}X = \mu \in \mathbb{R}^d$ with covariance $\sigma^2 I_d$.

$$\mathbb{P}\left(\|\bar{X} - \mu\| > \varepsilon\right) = \mathbb{P}\left(\|\bar{X} - \mu\|^2 > \varepsilon^2\right) \le \frac{\mathbb{E}\left(\sum_{j=1}^{d} \left[\bar{X}(j) - \mu(j)\right]^2\right)}{\varepsilon^2}$$
$$= \frac{d\mathbb{E}(\bar{X}(j) - \mu_j)^2}{\varepsilon^2} = \frac{d\sigma^2}{\varepsilon^2}$$

This shows that

$$\mathbb{P}\bigg(\|\bar{X} - \mu\| > \sigma\sqrt{nd}\bigg) \le \frac{1}{n}.$$

When d is very small with respect to n, then this is quite useful. But if $\sigma = 1$ and $d \approx n$, then this bound is uninformative!

High-Dimensional Statistics

- High-dimensional statistics can (loosely) be broken down into two areas:
 - Fixed dimension, fixed n results (Wainwright, 2019; Vershynin, 2018)
 - Asymptotics as $n, d \to \infty$ (Random Matrix Theory)
- The idea is we often observe data with many covariates, so either we study what happens with all the covariates or we study how to impose further structure
- Further structure includes sparsity, low-rank assumptions, manifold structure, etc.

High-Dimensional Statistics

- High-dimensional statistics can (loosely) be broken down into two areas:
 - Fixed dimension, fixed n results (Wainwright, 2019; Vershynin, 2018)
 - Asymptotics as $n, d \to \infty$ (Random Matrix Theory)
- The idea is we often observe data with many covariates, so either we study what happens with all the covariates or we study how to impose further structure
- Further structure includes sparsity, low-rank assumptions, manifold structure, etc.

High-Dimensional Statistics

- High-dimensional statistics can (loosely) be broken down into two areas:
 - Fixed dimension, fixed n results (Wainwright, 2019; Vershynin, 2018)
 - Asymptotics as $n, d \to \infty$ (Random Matrix Theory)
- The idea is we often observe data with many covariates, so either we study what happens with all the covariates or we study how to impose further structure
- Further structure includes sparsity, low-rank assumptions, manifold structure, etc.

Thank you!

I am available for questions and Zoom if you have further questions and would like to discuss statistics or anything!

References I

- P.J. Bickel and K.A. Doksum. *Mathematical Statistics: Basic Ideas and Selected Topics*. Number v. 1 in Mathematical Statistics: Basic Ideas and Selected Topics. Pearson Prentice Hall, 2007. ISBN 9780132306379.
- P.J. Bickel, C.A.J. Klaassen, Y. Ritov, and J.A. Wellner. *Efficient and Adaptive Estimation for Semiparametric Models*. Johns Hopkins series in the mathematical sciences. Springer New York, 1998. ISBN 9780387984735.
- A.B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer Series in Statistics. Springer New York, 2008. ISBN 9780387790527.
- A.W. van der Vaart. *Asymptotic Statistics*. Asymptotic Statistics. Cambridge University Press, 2000. ISBN 9780521784504.

References II

Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018. doi: 10.1017/9781108231596.

Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi: 10.1017/9781108627771.