Chapter 7

Generating Functions

What is Generating Function?

Generating Function:

$$G(x) = \sum_{k=0}^{inf} ak x^k$$

What is Generating Function?

Generating Function: A companion trick to record bunch of numbers often probabilities

associated with some integers and counts.

Let's imagine a dice, it's a good looking dice but not perfect having the probabilit

Of a number.

Probability of number 1 is P1

Probability of number 1 is P2

Probability of number 1 is P3

Probability of number 1 is P4

Probability of number 1 is P5

Probability of number 1 is P6

Can you create the function which can contain all the information of these Probabilities?

So that we can calculate all the probability values.

Now, we need a way to isolate these values. The simplest way to do that by using a polynomial.

So,

$$G(x) = p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4 + p_5 x^5 + p_6 x^6$$

So,

$$G(x) = p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4 + p_5 x^5 + p_6 x^6$$

How can we get P1 from this function? Let's take first derivative

$$G'(x) = p_1 + 2p_2x + 3p_3x^2 + 4p_4x^3 + 5p_5x^4 + 6p_6x^5$$

$$G'(0) = p_1$$

$$G(x) = p_1 x + p_2 x^2 + p_3 x^3 + p_4 x^4 + p_5 x^5 + p_6 x^6$$

How can we get P1 from this function? Let's take first derivative

$$G'(x) = p_1 + 2p_2x + 3p_3x^2 + 4p_4x^3 + 5p_5x^4 + 6p_6x^5$$

How about P2? We will take another derivative.

$$G''(x) = 2p_2 + 3 \cdot 2p_3x + 4 \cdot 3p_4x^2 + 5 \cdot 4p_5x^3 + 6 \cdot 5p_6x^4$$

$$G''(0) = 2p_2$$

$$\frac{1}{2}G''(0) = p_2$$

What about Pk?

$$p_k \stackrel{?}{=} \left. \frac{1}{k!} \frac{d^k G(x)}{dx^k} \right|_{x=0}$$

Now Le'ts think again.

If x=1, what will happen to first derivative/

$$G'(x) = p_1 + 2p_2x + 3p_3x^2 + 4p_4x^3 + 5p_5x^4 + 6p_6x^5$$

$$G'(1) = p_1 + 2p_2 + 3p_3 + 4p_4 + 5p_5 + 6p_6$$

Another cool thing happens if we multiply our generating functions.

$$G^{(x) * G(x)}$$
 $G^{2}(x) = (p_{1}x + p_{2}x^{2} + \dots)(p_{1}x + p_{2}x^{2} + \dots)$ $G(x)$ $G(x)$

The lowest power of x will be 2 and the highest will be 12

So, do you see any patterns?

Let's imagine the number of dice is 2.

Now, think the probability having 2.

$$G^2(x) = \underbrace{(p_1x + p_2x^2 + \dots)(p_1x + p_2x^2 + \dots)}_{p_1p_1x^2}$$

$$p_1p_1x^2$$
 Probability of having 1 and 1

$$G^{2}(x) = (p_{1}x + p_{2}x^{2} + \dots)(p_{1}x + p_{2}x^{2} + \dots)$$

$$p_{1}p_{1}x^{2}$$

$$+(p_{1}p_{2} + p_{2}p_{1})x^{3}$$

$$+(p_{1}p_{3} + p_{2}p_{2} + p_{3}p_{1})x^{4}$$

$$+\dots$$

Is this a coincidence?

Let's see another case. To have 4 in total, you should have

- 1, 3
- 2, 2
- 3, 1

So total num of ways of having 4 = 3

$$G^{2}(x) = (p_{1}x + p_{2}x^{2} + \dots)(p_{1}x + p_{2}x^{2} + \dots)$$

$$p_{1}p_{1}x^{2}$$

$$+ (p_{1}p_{2} + p_{2}p_{1})x^{3}$$

$$+ (p_{1}p_{3} + p_{2}p_{2} + p_{3}p_{1})x^{4}$$

$$+ \dots$$
Cases to have a total of four

If we multiply G(x) with another G(x), then the resulting function will be another generating function.

So from Generating Functions, we can say

- Counting problem is so easy
- To study random graphs without arbitrary distribution

So, Let's go for another example

Now, we you want to choose 10 candies from this bunch of red, blu

And green candies.

Somehow, you want to have

Even number of red candies

$$(1+x^2+x^4+x^6+x^{10})$$

More than 6 blue candies

$$(x^7 + x^8 + x^9 + x^{10})$$

Less than 3 green candies

$$(1+x+x^2)$$

Now from this Generated function

You will find the coefficients of X^10

The number of coefficients will be

The ans of choosing 10 candies from

These bunch of candies.

$$(1+x^{2}+x^{4}+x^{6}+x^{10})$$

$$\times (x^{7}+x^{8}+x^{9}+x^{10})$$

$$\times (1+x+x^{2})$$

Problem no 1

A girl can choose two items from the basket containing 1 apple, 1 pear, 1 orange, 1 banana and 1 papaya. How many ways she can do this?

Let's see the solution:

(0 apple + 1 apple) (0 pear + 1 pear) (0 orange + 1 orange) and like so on......

$$(x^0 + x^1)(x^0 + x^1)(x^0 + x^1)(x^0 + x^1)(x^0 + x^1)$$

$$= (1 + x)^5$$

$$= 1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5$$

So, she wants to choose 2 items. Now look at the x^2 coefficient which is 10.

The ans is: 10.

Modifying Problem no 1

Suppose there are 2 apples (considered to be identical) instead of 1. Rest of all the items are same. Now how can the two items be chosen?

Solution:

17

 $=11 x^2$

Problem no 2

Suppose you go to a bakery just before it closes. Remaining there are 3 cheese, 2 cherry and 4 raspberry pastries left. How many ways can you choose exactly 7 pastries?

Solution:

$$(x^0 + x^1 + x^2 + x^3)(x^0 + x^1 + x^2)(x^0 + x^1 + x^2 + x^3 + x^4)$$

Cheese cherry raspberry

$$= 1 + 3x + 6x^2 + 9x^3 + 11x^4 + 11x^5 + 9x^6 + 6x^7 + 3x^8 + x^9$$

= 6 ways.

So, if we want to know the ways to choose of 5 pastries or 4 pastries. You can give ans from this simple one equation. Isn't it??

Modifying Problem no 2

What if the raspberry pastries come in box of 2 (that means in even numbers)? Other amounts of problem 2 remains same? Now how many ways to choose 7 pastries?

Solution:

$$(x^0 + x^1 + x^2 + x^3)(x^0 + x^1 + x^2)(x^0 + x^2 + x^4)$$

Cheese

cherry

raspberry

$$= 1 + 2x + 4x^2 + 5x^3 + 6x^4 + 6x^5 + 5x^6 + 4x^7 + 2x^8 + x^9$$

= 4 ways.

Thank You!!