MATHÉMATIQUES

Section: Mathématiques Session principale 2021

Exercice 1:

1/ a/ OABC est un rectangle de centre I donc IO = IC et comme

$$\left(\overrightarrow{OI}, \overrightarrow{OC}\right) = \frac{\pi}{2} - \frac{\pi}{6} [2\pi]$$
 ou encore $\left(\overrightarrow{OI}, \overrightarrow{OC}\right) = \frac{\pi}{3} [2\pi]$ alors IOC est équilatéral.

Ainsi IB = IO = OC et OD = OC alors $OD = OB \neq 0$, par suite il existe un unique déplacement f tel que f(O) = I et f(D) = B.

b/
$$\left(\overrightarrow{OD}, \overrightarrow{IB}\right) = \left(\frac{1}{2}\overrightarrow{OA}, \frac{1}{2}\overrightarrow{OB}\right) [2\pi] = \left(\overrightarrow{OA}, \overrightarrow{OB}\right) [2\pi] = \frac{\pi}{6} [2\pi].$$

Comme $\frac{\pi}{6} \neq 2k\pi$ donc f est une rotation d'angle $\frac{\pi}{6}$.

- c/ Le centre Ω de f est le point d'intersection des médiatrices de [OI] et [BD]. $med([OI]) \cap med([BD]) = {\Omega}$
- 2) a/ g est l'antidéplacement tel que g(O) = I et g(D) = B donc g soit une symétrie orthogonale soit une symétrie glissante et comme on a med([OI]) ≠ med([BD]) alors g est une symétrie glissante.
 - b/ g(O) = I g(B) = D donc l'axe de g est la droite des milieux des segments [OI] et [BD] qui est (IK).

On sait que l'axe de la symétrie glissante est globalement invariant c'est-àdire que g((JK)) = (JK).

 $Maintenant: E \!\in\! (OD) \ donc \ g(E) \in \! (IB) \ et \ E \!\in\! (JK) \ donc \ g(E) \in \! (JK)$

Il vient alors que $g(E) \in (IB) \cap (JK) = \{J\}$, par suite g(E) = J.

c/ $g = t_{\vec{u}} \circ S_{(JK)} = S_{(JK)} \circ t_{\vec{u}}$ et comme $E \in (JK)$ alors $g(E) = t_{\vec{u}}(E) = J$ et par suite $\vec{u} = \overrightarrow{EJ}$.

Conclusion: $g = t_{\overline{EJ}} oS_{(JK)} = S_{(JK)} ot_{\overline{EJ}}$.

- 3) a/ On a f^{-1} og est la composée d'un déplacement et un antidéplacement donc c'est un antidéplacement.
 - $f^{-1}og(O) = f^{-1} [g(O)] = f^{-1} [I] = O$ et $f^{-1}og(D) = f^{-1} [g(D)] = f^{-1} [B] = D$
 - $S_{(OA)}(O) = O$ et $S_{(OA)}(D) = D$ car $D \in (OA)$

Ainsi, f^{-1} og et $S_{(OA)}$ sont deux antidéplacements qui coïncident en deux points distincts O et D donc f^{-1} og = $S_{(OA)}$.

$$f^{-1}og = S_{(OA)} donc g^{-1}of = S_{(OA)} ou encore f = goS_{(OA)}$$
.

Par suite
$$f(E) = goS_{OA}(E) = g[S_{OA}(E)] = g(E) = J$$

b/ f(O)=I, f(E)=J et f conserve les distances alors OE=IJ et comme OJ=IJ alors OE=OJ

La rotation f de centre Ω envoie E sur J donc Ω E = Ω J

Les points O et Ω sont équidistants des extrémités du segment [EJ] donc (OO) = méd[EI] (OO) + (EI) et $K \in (EI)$ alors (OO) + (IK)

$$(O\Omega) = m\acute{e}d[EJ], (O\Omega) \perp (EJ) \text{ et } K \in (EJ) \text{ alors } (O\Omega) \perp (JK)$$

4)
$$a/Z_I = OI e^{i\frac{\pi}{6}} = OC e^{i\frac{\pi}{6}} = e^{i\frac{\pi}{6}}$$
.

b/
$$\sin \frac{\pi}{6} = \frac{AB}{OB}$$
 donc $OB = \frac{AB}{\sin \frac{\pi}{6}} = 2$ et par suite $Z_B = 2e^{i\frac{\pi}{6}}$

$$Z_{K} = \frac{Z_{B} + Z_{D}}{2} = \frac{2e^{i\frac{\pi}{6}} + 1}{2} \text{ et } Z_{J} = \frac{Z_{O} + Z_{I}}{2} = \frac{e^{i\frac{\pi}{6}}}{2} \text{ alors}$$

$$Z_{K} = \frac{e^{\frac{i\pi}{6}} + 1}{2} = \frac{e^{\frac{i\pi}{12} \left(e^{\frac{i\pi}{12}} + e^{-\frac{i\pi}{12}} \right)}}{2} = \frac{e^{\frac{i\pi}{12}} \times 2\cos\left(\frac{\pi}{12}\right)}{2} = \cos\left(\frac{\pi}{12}\right)e^{\frac{i\pi}{12}}$$

c/
$$\left(\overrightarrow{OD}, \overrightarrow{JK}\right) = \left(\overrightarrow{EO}, \overrightarrow{EJ}\right) \left[2\pi\right] = \frac{\pi - \frac{5\pi}{6}}{2} \left(2\pi\right) = \frac{\pi}{12} \left[2\pi\right]$$

5) a/ $S_{(OA)}(M) = N$ et $E \in (OA)$ alors EM = EN et

$$\left(\overrightarrow{EM}, \overrightarrow{EN}\right) = -2\left(\overrightarrow{OD}, \overrightarrow{JK}\right) \left[2\pi\right] = -\frac{\pi}{6} \left[2\pi\right]$$
 et par suite $r(M) = N$.

b/
$$S_{(OA)}(M) = N$$

f et r sont deux rotations d'angles opposés donc for est une translation.

De plus for (E) = f(E) = J donc for $= t_{EJ}$

$$f\left(N\right) = for\left(M\right) = t_{\overrightarrow{EJ}}\left(M\right) = t_{\overrightarrow{EJ}}\left(g^{-1}\left(P\right)\right) = t_{\overrightarrow{EJ}}\left(t_{\overrightarrow{JE}}oS_{\left(JK\right)}\left(P\right)\right) = S_{\left(JK\right)}\left(P\right) = P$$

Exercice 2:

1) a/ Pour n = 0, $21^0 = 1$ et $1 + 20 \times 0 = 1$ donc $21^0 = 1 + 20 \times 0 \pmod{100}$.

Soit $n \in IN$. Supposons que $21^n \equiv 1 + 20n \pmod{100}$ et montrons que

$$21^{n+1} \equiv 21 + 20n \pmod{100}$$
.

$$21^{n+1} \equiv 21 \times 21^n \pmod{100} \equiv 21 \times (1+20n) \pmod{100}$$

$$\equiv 21 + 20n + 100 \times 4n \pmod{100} \equiv 21 + 20n \pmod{100}$$

D'après le principe de récurrence, pour tout $n \in IN$, $21^n \equiv 1 + 20n \pmod{100}$.

b/ $2021 \equiv 21 \pmod{100}$ donc

$$2021^{2021} \equiv 21^{2021} \pmod{100} \equiv 1 + 20 \times 2021 \pmod{100} \equiv 21 \pmod{100}.$$

Donc les deux derniers chiffres du nombre 2021²⁰²¹ sont 2 pour les dizaines et 1 pour unité.

2) $E = \left\{ x, x \in \mathbb{Z} / \forall n \in IN, x^n \equiv 1 + n(x-1)(mod 100) \right\}$

Soit $n \in IN$, d'après 1) a/, $21^n \equiv 1 + 20n \pmod{100}$ ou encore

 $21^n \equiv 1 + n(21-1) \pmod{100}$ et ceci prouve que $21 \in E$.

3) a/Soit $x \in E$.

 $x^n \equiv 1 + n(x-1) \pmod{100}$ est vraie pour tout entier naturel n.

En particulier, pour n = 2; $x^2 \equiv 1 + 2(x-1) \pmod{100}$

$$sig \quad x^2 \equiv 2x - 1 \pmod{100}$$

sig
$$x^2 - 2x + 1 \equiv 0 \pmod{100}$$

$$sig (x-1)^2 \equiv 0 \pmod{100}$$

Reste modulo 10 de a	0	1	2	3	4	5	6	7	8	9
Reste modulo 10 de a ²	0	1	4	9	6	5	6	9	4	1

Le tableau de congruence précédent montre que $a^2 \equiv 0 \pmod{10}$ ssi $a \equiv 0 \pmod{10}$.

$$(x-1)^2 \equiv 0 \pmod{100}$$
 sig $(x-1)^2 = 10 \times 10 k (k \in \mathbb{Z})$ c'est à dire $(x-1)^2 \equiv 0 \pmod{10}$ donc $x-1 \equiv 0 \pmod{10}$ ou encore $x \equiv 1 \pmod{10}$.

Autrement:

On note r le reste modulo 10 de (x-1).

Si (x-1)n'est pas un multiple de 10 alors $r \in \{1,2,3,4,5,6,7,8,9\} = A$

Reste modulo 10 de x - 1	1	2	3	4	5	6	7	8	9
Reste modulo $10 \text{ de } (x - 1)^2$	1	4	9	6	5	6	9	4	1

Avec cette hypothèse $(x - 1)^2$ n'est pas un multiple de 10 par conséquent le chiffre des unités de $(x - 1)^2$ est non nul par la suite $(x - 1)^2$ n'est pas divisible par 100.

Conclusion: $x-1 \equiv 0 \pmod{10}$ ou encore $x \equiv 1 \pmod{10}$.

Ou bien:

Comme $(x-1)^2 \equiv 0 \pmod{100}$ alors chacun des entiers (naturels) premiers 2 et 5 divise $(x-1)^2$ par conséquent 2 divise |x-1| et 5 divise |x-1| De plus 2x5 = 10 alors 10 divise |x-1| (car $2 \land 5 = 1$)
Ainsi $x-1 \equiv 0 \pmod{10}$ ou encore $x \equiv 1 \pmod{10}$.

4) Soit $q \in Z$

Montrons, par récurrence, que :

Pour tout $n \in IN$, $(1+10q)^n \equiv (1+10nq) \pmod{100}$

• Pour
$$n = 0$$
, $(1+10q)^0 = 1 = 1+10 \times 0 \times q$ d'où $(1+10q)^0 = (1+10 \times 0 \times q) \pmod{100}$.

• Soit $n \in IN$. Supposons que $(1+10q)^n \equiv (1+10nq) \pmod{100}$ et montrons que $(1+10q)^{n+1} \equiv (1+10(n+1)q) \pmod{100}$ $(1+10q)^{n+1} = (1+10q)(1+10q)^n \equiv (1+10q)(1+10nq) \pmod{100}$ $\equiv 1+10q+10nq+100nq^2 \pmod{100}$. $\equiv 1+10(n+1)q \pmod{100}$

Conclusion: Pour tout $n \in IN$, $(1+10q)^n \equiv (1+10nq) \pmod{100}$

5) D'après 3) b/, Si $x \in E$ alors $x = 10q + 1 (q \in Z)$.

La réciproque est assurée par la question 4).

En effet:
$$x^n = (1+10q)^n \equiv (1+10nq) \pmod{100}$$

$$sig x^n \equiv (1+n(1+10q-1))(mod 100)$$

sig
$$x^n \equiv (1 + n(x-1)) \pmod{100}$$
.

Conclusion: $E = \{10q + 1, q \in Z\}$

Exercice 3:

1) a/ $\lim_{x\to 0^+} \varphi(x) = \lim_{x\to 0^+} \frac{1+\ln x}{x} = -\infty$ donc la droite x=0 est une asymptote à (ζ) . $\lim_{x\to +\infty} \varphi(x) = \lim_{x\to +\infty} \frac{1}{x} + \frac{\ln x}{x} = 0 \text{ donc la droite } y=0 \text{ est une asymptote à } (\zeta)$ au voisinage de $(+\infty)$.

b/ Pour tout
$$x \in]0, +\infty[, \phi'(x)] = \frac{\left(\frac{1}{x}\right)x - (1 + \ln x)}{x^2} = \frac{-\ln x}{x^2}.$$

c/

X	0 1 +∞
$\varphi'(x)$	+ • _
φ	$\frac{1}{-\infty}$

$$d/ \varphi(x) = 0 \text{ sig } x = \frac{1}{e}$$

$$\begin{split} 2/\quad a/\quad n \in IN^*. \ \phi_n\left(x\right) &= \frac{1 + \ln\left(x + n\right)}{x + n} \ ; x \in \left] - n, + \infty\right[\\ \quad &\text{Pour tout } \ x \in \left] - n, + \infty\right[, \phi_n\left(x\right) = \frac{1 + \ln\left(x + n\right)}{x + n} = \phi\left(x + n\right) \ \text{avec} \\ \quad &x + n \in \left] 0, + \infty\right[\ \text{donc} \ N\left(x, \phi_n\left(x\right)\right) \in \left(\zeta_n\right) \ \text{ssi} \ M\left(x + n, \phi\left(x + n\right)\right) \in \left(\zeta_n\right) \end{split}$$

et comme $\phi_n(x) = \phi(x+n)$ alors $\overrightarrow{MN} = -n$ i c'est-à-dire que (ζ_n) est l'image de (ζ) par la translation de vecteur -n i .

b/ (ζ_1) est l'image de (ζ) par la translation de vecteur $\stackrel{\rightarrow}{-i}$.

- 3) a/ $h_n(x) = \varphi_n(x) \varphi(x)$; $x \in]0,+\infty[$. Soit $x \ge 1$. $h_n(x) = \varphi_n(x) - \varphi(x) = \varphi(x+n) - \varphi(x)$ et comme $x+n > x \ge 1$ et que φ est strictement décroissante sur $]0,+\infty[$ alors $h_n(x) < 0$.
 - b/ Soit $x \in]0,1]$. $h_n'(x) = \varphi'(x+n) \varphi'(x) = \frac{\ln x}{x^2} \frac{\ln(x+n)}{(x+n)^2}$ Comme $x \in]0,1]$ et que x+n>1 alors $\ln x \le 0$ et $\ln(x+n)>0$ d'où $h_n'(x)<0$
 - c/ * Sur $[1,+\infty[$, $h_n(x) < 0$ donc l'équation $h_n(x) = 0$ n'admet aucune solution. * h_n est continue et strictement décroissante sur]0,1], donc elle réalise une bijection de]0,1] sur $h_n(]0,1]) = [h_n(1),+\infty[$ et comme $h_n(1) < 0$ (3)a/) alors l'équation $h_n(x) = 0$ admet une solution unique α_n dans]0,1].

Il reste à vérifier que $\frac{1}{e} < \alpha_n < 1$.

On a: $h_n(1) < 0$, il suffira alors de vérifier que $h_n(\frac{1}{e}) > 0$

$$h_n\left(\frac{1}{e}\right) = \phi_n\left(\frac{1}{e}\right) - \phi\left(\frac{1}{e}\right) = \phi_n\left(\frac{1}{e}\right) = \frac{1 + \ln\left(\frac{1}{e} + n\right)}{\frac{1}{e} + n} > 0 \text{ (car } \frac{1}{e} + n > 1)$$

 $4) \quad a / \quad \frac{1}{e} < \alpha_n < 1 \ et \ \frac{1}{e} < \alpha_{n+1} < 1 \ donc \ 1 + \frac{1}{e} < 1 + \alpha_{n+1} < 2 \ .$

Ainsi, $1 + \alpha_{n+1} > 1 + \frac{1}{e} > 1$ et comme $\alpha_n < 1$ alors $1 + \alpha_{n+1} > \alpha_n$ et par suite $n + 1 + \alpha_{n+1} > n + \alpha_n$.

$$\begin{array}{ll} b/& n+1+\alpha_{n+1}>n+\alpha_n>1 \ \text{et} \ \phi \ \text{est d\'ecroissante sur} \ \big[1,+\infty\big[\ \text{donc} \\ & \phi\big(n+1+\alpha_{n+1}\big)<\phi\big(n+\alpha_n\big) \quad \big(1\big) \\ & \text{Comme} \ \phi\big(x+n\big)=\phi_n\left(x\right) \ \text{alors} \ \phi\big(n+1+\alpha_{n+1}\big)=\phi_{n+1}\big(\alpha_{n+1}\big) \ \text{et} \\ & \phi\big(n+\alpha_n\big)=\phi_n\left(\alpha_n\big) \ \text{donc l'in\'egalit\'e} \ (1) \ \text{s'\'ecrit} : \ \phi_{n+1}\big(\alpha_{n+1}\big)<\phi_n\left(\alpha_n\big) \ (2) \\ & \text{D'autre part,} \ h_n\left(\alpha_n\big)=\phi_n\left(\alpha_n\right)-\phi\big(\alpha_n\big)=0 \ \text{alors} \ \phi_n\left(\alpha_n\big)=\phi(\alpha_n\big) \ \text{et aussi} \\ & \phi_{n+1}\big(\alpha_{n+1}\big)=\phi\big(\alpha_{n+1}\big) \ \text{et par suite l'in\'egal\'e} \ (2) \ \text{s'\'ecrit} : \ \phi\big(\alpha_{n+1}\big)<\phi\big(\alpha_n\big). \end{array}$$

c/ $\phi(\alpha_{n+1}) < \phi(\alpha_n)$, les termes de la suite (α_n) sont dans]0,1] et la fonction ϕ est strictement croissante sur cet intervalle donc $\alpha_{n+1} < \alpha_n$.

La suite (α_n) est ainsi décroissante et minorée par $\frac{1}{e}$ alors elle va converger vers une limite 1

$$\begin{split} d/ & \quad \frac{1}{e} < \alpha_n < 1 \text{ donc } -1 < \ln(\alpha_n) < 0 \text{ d'où } 0 < 1 + \ln(\alpha_n) < 1 \\ & \quad \text{Par suite } 0 < \phi(\alpha_n) < \frac{1}{n} \text{ et comme } \lim_{n \to +\infty} \frac{1}{n} = 0 \text{ alors } \lim_{n \to +\infty} \phi(\alpha_n) = 0. \\ & \quad \text{On pose } \beta_n = \phi(\alpha_n) \ . \end{split}$$

La fonction φ réalise une bijection de $\left]\frac{1}{e},1\right[$ sur $\left]0,1\right[$.

$$\lim_{n\to+\infty}\alpha_n=\lim_{n\to+\infty}\phi^{-1}\big(\beta_n\big)=\phi^{-1}\big(0\big)=\frac{1}{e}\,.$$

Autrement:

$$\left(\alpha_{n}\right)_{n\geq 1}$$
 est convergente alors $\lim_{n\to +\infty} \left(n+\alpha_{n}\right) = +\infty$

De plus
$$\lim_{x \to +\infty} \varphi(x) = 0$$
 alors $\lim_{n \to +\infty} \varphi(n + \alpha_n) = 0$

De l'égalité
$$\varphi(n + \alpha_n) = \varphi(\alpha_n)$$
 on déduit que $\lim_{n \to +\infty} \varphi(\alpha_n) = 0$

$$\lim_{n \to +\infty} \varphi(\alpha_n) = 0 \quad . \text{ Posons } \lim_{n \to +\infty} (\alpha_n) = L$$

Comme $L > \frac{1}{e}$ (car $\alpha_n > \frac{1}{e}$) alors φ est continue en L

D'où
$$\lim_{n \to +\infty} \varphi(\alpha_n) = \varphi(L) = 0$$
. Par suite $\varphi(L) = 0$ sig $L = \frac{1}{e}$

Exercice 4:

1) a/
$$F(x) = \int_{1}^{x} e^{-\sqrt{t}} dt$$
 et $H(x) = \frac{4}{e} - 2(1 + \sqrt{x})e^{-\sqrt{x}}$. $x \in [0, +\infty[$. $t \mapsto e^{-\sqrt{t}}$ est continue sur $[0, +\infty[$ et $1 \in [0, +\infty[$ donc F est dérivable sur $[0, +\infty[$ et $F'(x) = e^{-\sqrt{x}}$.

b/ La fonction H est dérivable sur $]0,+\infty[$ et on a :

$$H'(x) = -2 \left[\frac{1}{2\sqrt{x}} e^{-\sqrt{x}} - \frac{1}{2\sqrt{x}} (1 + \sqrt{x}) e^{-\sqrt{x}} \right] = e^{-\sqrt{x}}$$

F et H sont dérivables sur $]0,+\infty[$ et on a F'(x)=H'(x) et comme

$$F(1) = H(1) = 0$$
 alors $F(x) = H(x)$ pour tout $x \in]0, +\infty[$

c/ Les fonctions F et H coïncident sur $]0,+\infty[$ et sont continues à droite en zéro, donc on a : $F(0) = \lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} H(x) = H(0)$

2) **a**/
$$G(x) = \int_{1}^{x} \sqrt{t}e^{-\sqrt{t}} dt$$
; $x \in [0, +\infty[$.

Soit x > 0. G(x) =
$$\int_{1}^{x} \sqrt{t} e^{-\sqrt{t}} dt = \int_{1}^{x} \frac{t}{\sqrt{t}} e^{-\sqrt{t}} dt = 2 \int_{1}^{x} t \times \left(\frac{1}{2\sqrt{t}} e^{-\sqrt{t}} \right) dt$$

On pose: $U(t) = t \rightarrow U'(t) = 1$

$$V'(t) = \frac{1}{2\sqrt{t}}e^{-\sqrt{t}} \rightarrow V(t) = -e^{-\sqrt{t}}$$

$$G(x) = 2\left[-te^{-\sqrt{t}}\right]_{1}^{x} + 2\int_{1}^{x} e^{-\sqrt{t}} dt = 2\left(\frac{1}{e} - xe^{-\sqrt{x}}\right) + 2F(x) = \frac{2}{e} - 2xe^{-\sqrt{x}} + 2F(x)$$

b/
$$G(x) = \frac{2}{e} - 2xe^{-\sqrt{x}} + 2F(x)$$
 pour tout $x > 0$.

La fonction $x \mapsto \frac{2}{e} - 2xe^{-\sqrt{x}} + 2F(x)$ est continue sur $[0, +\infty[$

$$G(0) = \lim_{x \to 0^{+}} G(x) = \lim_{x \to 0^{+}} (\frac{2}{e} - 2xe^{\sqrt{x}} + 2F(x)) = \frac{2}{e} + 2F(0)$$

3) a/
$$f(x) = e^{-\sqrt{x}}$$
 et $g(x) = \sqrt{x}e^{-\sqrt{x}}$

Soit $\lambda \ge 1$.

$$\begin{split} \mathcal{A}_{I} &= \int_{0}^{1} \left(f\left(x\right) - g\left(x\right) \right) dx = \int_{0}^{1} e^{-\sqrt{x}} dx - \int_{0}^{1} \sqrt{x} e^{-\sqrt{x}} dx \\ &= -\int_{1}^{0} e^{-\sqrt{x}} dx + \int_{1}^{0} \sqrt{x} e^{-\sqrt{x}} dx \\ &= -F(0) + G(0) = \frac{2}{e} + F(0) = \frac{2}{e} + H(0) = \frac{2}{e} + \frac{4}{e} - 2 = \frac{6}{e} - 2 \end{split}$$

b/ Soit $\lambda > 1$.

$$\begin{split} \mathcal{A}_{\lambda} &= \int_{0}^{\lambda} \left| f\left(x\right) - g\left(x\right) \right| \, dx = \int_{0}^{1} \left(f\left(x\right) - g\left(x\right) \right) \, dx + \int_{1}^{\lambda} \left(g\left(x\right) - f\left(x\right) \right) \, dx \\ \mathcal{A}_{\lambda} &= \mathcal{A}_{1} + \int_{1}^{\lambda} \sqrt{x} e^{-\sqrt{x}} \, dx - \int_{1}^{\lambda} e^{-\sqrt{x}} \, dx = \mathcal{A}_{1} + G(\lambda) - F(\lambda). \end{split}$$

c/ D'après 2) a/ on a:

$$G(x) = \frac{2}{e} - 2xe^{-\sqrt{x}} + 2F(x) \text{ donc } G(x) - F(x) = \frac{2}{e} - 2xe^{-\sqrt{x}} + F(x)$$
(x > 0)

D'où
$$\lim_{\lambda \to +\infty} G(\lambda) - F(\lambda) = \lim_{\lambda \to +\infty} \frac{2}{e} - 2\lambda e^{-\sqrt{\lambda}} + F(\lambda)$$

$$Comme \lim_{\lambda \to +\infty} \lambda e^{-\sqrt{\lambda}} = 0 \ et \lim_{\lambda \to +\infty} F(\lambda) = \lim_{\lambda \to +\infty} H(\lambda) = \frac{4}{e} \ alors$$

$$\lim_{\lambda \to +\infty} G(\lambda) - F(\lambda) = \frac{6}{e} \text{ et par suite } \lim_{\lambda \to +\infty} \mathcal{A}_{\lambda} = \frac{12}{e} - 2$$

