Assignment week 3 _ Aiuti Francesca

23/10/19

question 1: Heat loss through a composite wall.

A 3m high and 5 m vide wall consists of long 32 cm and 22 cm cross section horizontal bricks (K=0,72 W/m°C), separated by 3 cm. thick plaster layers (K=0,22 W/m°C

there are also 2 cm thick plaster layers on each side of the brick and a 3 cm thick rigid fram (k=0,026 w/m°C) on the

inner side of the wall. The indoor and the outdoor temperatures are 20°C and -10°C, and the convection heat transfer coefficients on the inner and the outer sites are by = 10 W/m2.00 aind b2= 40

W/m2.°C, respectively. Assuming one-dimensional heat transfer and disreparding radiation determine the nate of heat transfer through the wall. $R_{1} conv. = 1$ $h_{1} \cdot A_{1} - tim. = 10 \text{ W} \cdot (0,015 + 10)$ $0,22 + 0,015) \text{ M} \cdot 100$ $0,22 + 0,015) \text{ M} \cdot 100$ -foam - plaster ha Too2 brick h1 to01

Kfoam · A1-dim. 0,026 W . (0,015 74,615°C +6,22+0,015)pr.1pr ~ W R planter.up = R planter, down = Lpup or down = 0,32m Kp. Ap. up ordoun (1-dim) = 0,32m 0,015m.1m

96,9400

1 Rtotal-parallel Replaster up + 1 Rbrick + 1 Replaster down 2 1 96.91°C + +1 2,02°C + 1 96,94°C/W = 0,516 W/°C

i.e., Rtotal-parallel= $\frac{1}{0.516 \text{ W}^{\circ}\text{C}} \approx 1.94 \,^{\circ}\text{C/W}$ Replaster. left= Replaster. right = $\frac{\text{Lp.lk or Rt}}{\text{Kp} \cdot \text{Ap.lk or Rk}(1-\text{dim.})} = \frac{0.02 \text{m}}{0.022 \text{ W} \cdot (0.015 + \text{m}^{\circ}\text{C})}$ $\frac{1}{0.022 + 0.015 \text{ m}^{\circ}\text{C}} = 0.363 \,^{\circ}\text{C}$ Reconv.= $\frac{1}{0.022 + 0.015} = \frac{1}{0.022 + 0.015} = \frac{1}$

R2conr. = $\frac{1}{h_2 \cdot A_1 - \text{dim.}} = \frac{1}{40 \frac{W}{m^2 c}} \cdot (0,015 + 0,22 + 0,015) m \cdot 1 m^2 w$

Rwall, total (1-dim) = R1 com. + R10 ant Rplaster. left + Rtotal-parallel the plaster. ight + R2 com. 20,4°C/W + 4,615°C/W +0,363°C/W + 1,94°C/W + 0,363°C/W + 0,1°C/W=7,781°C/W

The heat transfer rate is: $0 = \frac{1}{1 - 100} \approx \frac{20^{\circ}\text{C} - (-10)^{\circ}\text{C}}{\text{Rnall, total}} \approx \frac{20^{\circ}\text{C} - (-10)^{\circ}\text{C}}{7,761^{\circ}\text{C}} \approx 3,86\text{W}$ Rwall total (thickness of the brick = 16 mm) & 6,81 °C W

in this condition, the heat transfer rate is:

Q'= t1-to . 20°C-(-10°C) 24,41W

Fivall, total (thickness of the brick=16mm) 6,61°C

W

- inside a composite wall doesn't significantly increase the themal resistance of the whole wall, and the heart transfer rate doesn't significantly decrease.
- Question 2: A mood frame nall that is built around 36/90 mm mood study with a center-to-center distance of 400 mm. the 90 mm wall board and the outside with 13 mm polywood and 13 mm/200 mm wood bevel lapped siding. The insulated cavity constitutes 45% of the heat transmission area, while the study plates and sills constitute 21%. The headers constitute 4% of the area, and they can be treated as study. Find the Ruits valuer.

	Wood	Insulation
Outsideair	0,03	0,03
wood bevel (13.200 mm)		0,14
(13 mm)	0,11	0,11
Uzethane Ripid Foam 90mi		0,98.90/25=3,528
Wood Study (90mm)	0,63	/
Gypsum Board (13mm)	0,079	0,079
Inside surface	0,12	0,12