Matrix Fundamentals

Definition & Terms

A matrix is a rectangular array of numbers. An $m \times n$ matrix is that with m rows and n columns.

Each row of a matrix is called a row vector, and each column of a matrix is called a column vector.

Simple Matrix Arithmetics

Scalar Multiplication

For a real number c , and a matrix $\mathbf{A} = [a_{ij}]$,

$$c\mathbf{A} = [ca_{ij}] = [a_{ij}c] = \mathbf{A}c$$

Addition

For two matrix of the same size,

$$\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$$

Transpose

For a matrix ${f A}$,

$$\mathbf{A}^T = [a_{ij}]^T = [a_{ji}]$$

Matrix Multiplication

Definition:

For an m imes r matrix ${f A}$ and an r imes n matrix ${f B}$, we write ${f C} = {f A} {f B}$ if and only if

$$c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj} \tag{1}$$

Explanations:

The first explanation of (1) is that "the ijth entry of new matrix \mathbf{C} is the scalar product of the ith row vector of \mathbf{A} and the jth column vector of \mathbf{B} " (page 123 on our textbook). We can also connect this understanding with linear equation system by viewing each row of \mathbf{A} as a linear operator, each column of \mathbf{B} as an operand and each entry of \mathbf{C} as the corresponding result.

Another explanation is obtained from the fact that

$$egin{aligned} c_{ij} &= \sum_{k=1}^r a_{ik} b_{kj} \ \Longrightarrow c_{*j} &= \sum_{k=1}^r a_{*k} b_{kj} \end{aligned}$$

where c_{*j} and a_{*k} are the jth column of ${\bf C}$ and kth column of ${\bf A}$, respectively. This means that we can view each column of ${\bf A}$ as a basis and each column of ${\bf B}$ as a vector, whose basis were originally the standard basis; then, the corresponding column of ${\bf C}$ is the result of replacing the standard basis with the columns of ${\bf A}$. This explanation can be extremely helpful when considering the column space of ${\bf A}$, and it is also more intuitive when considering matrices as linear transformations.

Properties:

- ullet Non-commutativity. In general case, we cannot guarantee that ${f AB}={f BA}$.
- Associativity. $(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$. This can be intuitive under the basis replacing explanation.
- Distributivity. (A + B)C = AC + BC, and C(A + B) = CA + CB. This can be intuitive under the operator explanation.