PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-124840

(43)Date of publication of application: 26.04.2002

(51)Int.CI.

H03F 3/60 H03F 1/02 H03F 1/07 H03F 1/30 H03F 1/32 H03F 1/34 H03F 3/21 H03F 3/24 H03F 3/28 H03G 3/30

(21)Application number: 2000-314271

(22)Date of filing:

13.10.2000

(71)Applicant:

MITSUBISHI ELECTRIC CORP

(72)Inventor:

NAKAYAMA MASATOSHI

HORIGUCHI KENICHI IKEDA YUKIO

SAKAI YUJI

(54) DOHERTY AMPLIFIER

(57)Abstract:

PROBLEM TO BE SOLVED: To solve the problem that, in a conventional Doherty amplifier, as the bias conditions of two amplifiers are different, the output power from each amplifier at the output terminal is not effectively put together, and therefore the output power and efficiency are reduced. SOLUTION: A Doherty amplifier comprises: a carrier amplifier 3 which is biased in A class, AB class or B class; a 1/4 wavelength line 5; a peak amplifier 4 which is biased in B class or C class; a variable attenuator 7 for changing the gain; and a variable phase shifter 8 for changing the through phase amount.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-124840 ^V (P2002-124840A)

(43)公開日 平成14年4月26日(2002.4.26)

(51) Int.Cl. ⁷		觀別記号	FΙ		Ī	7] (
H03F	3/60		H03F	3/60		5 J O 6 7	
	1/02			1/02		5 J O 6 9	
	1/07			1/07		5 J O 9 O	
	1/30			1/30	Α	5 J O 9 1	
	1/32			1/32		5 J O 9 2	
		審査請求	未請求 請求	頁の数12 OL	(全 16 頁)	最終頁に続く	
(21)出願番号 特願2000-314271(P2000-314		特願2000-314271(P2000-314271)	(71) 出願人	000006013			
(22)出願日		平成12年10月13日(2000.10.13)			会社 I区丸の内二丁	目2番3号	
			(72)発明者		区丸の内二丁	目2番3号 三	
				菱電機株式会	社内		
			(72)発明者	堀口 健全			
				東京都千代田	区丸の内二丁	目2番3号 三	

最終頁に続く

(外1名)

(54) 【発明の名称】 ドハティ型増幅器

(57) 【要約】

【課題】 従来のドハティ型増幅器は、2つの増幅器のバイアス条件が異なるために、出力端における各増幅器からの出力電力の合成が有効に行なわれないので、出力電力ならびに効率が低下するという課題があった。

【解決手段】 ドハティ型増幅器において、A級、AB 級またはB級にバイアスされるキャリア増幅器 3 と、1 / 4 波長線路 5 と、B級またはC級にバイアスされるピーク増幅器 4 と、利得を変化される可変減衰器 7 と、通過位相量を変化される可変移相器 8 とを備える。

菱電機株式会社内

弁理士 田澤 博昭

(74)代理人 100066474

【特許請求の範囲】

【請求項1】 入力端子と、

該入力端子から延びる第1の経路に配置されてA級、A B級またはB級にバイアスされる第1の増幅器と、

前記第1の経路において前記第1の増幅器の出力側に配置される1/4+n/2波長線路(nは0または任意の自然数)と、

前記入力端子から延びる第2の経路に配置されてB級またはC級にバイアスされる第2の増幅器と、

前記第1の増幅器および前記第2の増幅器の出力側において前記第1の経路と前記第2の経路とが結合する部位に配置される出力端子と、

前記第1の経路を伝送される高周波信号または前記第2 の経路を伝送される高周波信号について通過位相量および利得のいずれか一方または両方を補正する補正手段と を備えることを特徴とするドハティ型増幅器。

【請求項2】 補正手段として、第1の増幅器または第2の増幅器の入力側に配置される可変減衰器および可変移相器を備えることを特徴とする請求項1記載のドハティ型増幅器。

【請求項3】 温度センサと、可変減衰器および可変移相器の制御に係る設定値を温度の関数として記憶した記憶手段と、前記温度センサにより測定された温度に基づいて前記記憶手段から可変減衰器および可変移相器の制御に係る設定値を読み出して可変減衰器および可変移相器を制御する制御手段とを備えることを特徴とする請求項2記載のドハティ型増幅器。

【請求項4】 補正手段として、第1の増幅器または第2の増幅器の入力側または出力側に配置される遅延回路を備えることを特徴とする請求項1記載のドハティ型増幅器。

【請求項5】 補正手段として、第1の増幅器または第2の増幅器の入力側または出力側に配置される周波数イコライザを備えることを特徴とする請求項1記載のドハティ型増幅器。

【請求項6】 補正手段として、第2の増幅器の入力電力と出力電力との関係であるAM-AM特性並びに第2の増幅器の入力電力と通過位相量との関係であるAM-PM特性を調整するAM-AM/PM調整器を備えることを特徴とする請求項1記載のドハティ型増幅器。

【請求項7】 入力端子と、

該入力端子から延びる第1の経路に配置されてA級、A B級またはB級にバイアスされる第1の増幅器と、

前記第1の経路において前記第1の増幅器の出力側に配置される1/4+n/2波長線路(nは0または任意の自然数)と、

前記入力端子から延びる第2の経路に配置されてB級またはC級にバイアスされる第2の増幅器と、

前記第1の経路において前記第1の増幅器の入力側に配置され、前記入力端子から入力されたベースパンド信号

を高周波信号に変換する第1の信号変換手段と、

前記第2の経路において前記第2の増幅器の入力側に配 置され、前記入力端子から入力されたベースパンド信号 を高周波信号に変換する第2の信号変換手段と、

前記第1の増幅器および前記第2の増幅器の出力側において前記第1の経路と前記第2の経路とが結合する部位に配置される出力端子と、

前記第1の経路を伝送されるベースパンド信号または前 記第2の経路を伝送されるベースパンド信号について通 過位相量および利得のいずれか一方または両方を補正す る補正手段とを備えることを特徴とするドハティ型増幅 器。

【請求項8】 第1の信号変換手段および第2の信号変換手段が、デジタル信号として与えられるベースバンド信号をアナログ高周波信号に変換することを特徴とする請求項7記載のドハティ型増幅器。

【請求項9】 補正手段として、第1の経路または第2の経路を伝送されるベースバンド信号の電力レベルを検出するレベル検出手段と、該レベル検出手段により検出された電力レベルに応じた制御データが記憶された記憶手段と、検出された電力レベルに応じてベースバンド信号の振幅および位相のいずれか一方または両方の制御を実施する制御手段と、該制御手段からの制御信号に応じてベースバンド信号の振幅および位相のいずれか一方または両方を変換する変換手段とを備えることを特徴とする請求項8記載のドハティ型増幅器。

【請求項10】 補正手段として、第1の経路または第 2の経路を伝送される髙周波信号の一部を取り出す分配 手段と、取り出された髙周波信号をデジタル信号として のベースバンド信号に変換する信号逆変換手段と、第1 の経路または第2の経路を伝送されるベースバンド信号 の電力レベルを検出するレベル検出手段と、該レベル検 出手段により検出された電力レベルに応じた制御データ 並びに第1の増幅器または第2の増幅器の特性に係るデ ータが記憶された記憶手段と、前記レベル検出手段によ り検出された電力レベルおよび前記信号逆変換手段から フィードバックされるベースバンド信号に基づいて前記 第1の経路または前記第2の経路を伝送されるベースバ ンド信号の振幅および位相のいずれか一方または両方を 制御する制御手段と、該制御手段からの制御信号に応じ てベースバンド信号の振幅および位相のいずれか一方ま たは両方を変換する変換手段とを備えることを特徴とす る請求項7記載のドハティ型増幅器。

【請求項11】 制御手段が、信号逆変換手段からフィードバックされるベースバンド信号と、記憶手段に記憶された第1の増幅器または第2の増幅器の特性に係るデータとを対照して、前記記憶手段に記憶された制御データを書き換えることを特徴とする請求項10記載のドハティ型増幅器。

【請求項12】 入力端子と、

該入力端子から延びる第1の経路に配置されてA級、A B級またはB級にパイアスされる第1の増幅器と、

前記第1の経路において前記第1の増幅器の出力側に配置される1/4+ n /2波長線路(n は0または任意の自然数)と、

前記入力端子から延びる第2の経路に配置されてB級またはC級にバイアスされる第2の増幅器と、

前記第1の増幅器および前記第2の増幅器の出力側において前記第1の経路と前記第2の経路とが結合する部位に配置される出力端子と、

前記第1の増幅器の入力側に配置される第1のアイソレ ータと、

前記第2の増幅器の入力側に配置される第2のアイソレータとを備えることを特徴とするドハティ型増幅器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、高周波帯域において変調波信号を増幅するための高出力増幅器に係り、特にバックオフが大きな動作状態においても効率の高い高出力増幅器を実現するドハティ型増幅器に関するものである。

[0002]

【従来の技術】VHF帯、UHF帯あるいはマイクロ波 帯等の高周波帯域においては、QPSK(Quadriphase P hase Shift Keying) 冷Q AM (Quadrature Amplitude Mo dulation)等の各種の変調方式を用いて通信が実施され ている。一般的に、これらの通信で使用される高周波信 号は変調波の周期に対応して振幅が時間的に変化する。 すなわち、高周波信号の包絡線が時間的に変化する。ま た、移動体通信基地局などにおいて複数の信号を同時に 増幅する場合にも、複数の信号に係る重畳信号は時間的 に変化する。図13は高周波信号の波形の一例を示す図 である。図13に示される高周波信号については、その 平均電力と比較して、包絡線の振幅が瞬時的に最大にな る状態における電力いわゆる瞬時的なピーク電力が大き くなっている。この平均電力とピーク電力との比をピー ク電力比あるいはクレストファクタと称する。近年の移 動体通信基地局などで使用される高周波信号について は、このピーク電力比の値が11dB以上にも及ぶこと がある。このようなピーク電力比の大きな高周波信号を 瞬時ピーク時にも飽和させずに増幅するためには、高出 力増幅器は実動作時の平均出力電力に比較して十分に大 きな飽和電力を有していなければならない。増幅器の飽 和電力が不十分であると、増幅器から出力される信号は 瞬時電力の大きな部分が切り取られた波形を有するよう になり、その結果として隣接するチャンネルへ漏洩する 妨害波が大きくなること、送信される信号が劣化するこ と、および伝送誤りが大きくなること等の弊害が生じ る。すなわち、増幅器は実動作時の平均出力電力と飽和 電力との差として与えられるバックオフが十分に大きな 状態で動作させる必要がある。

【0003】然るに、飽和電力が大きい状態と効率が良 い状態とを両立させることは困難である。一般的に、高 周波帯域の高出力増幅器では、要求される特性に応じて 増幅器の出力整合回路を調整して、FETなどの増幅素 子から見た出力側の負荷インピーダンスを最適化する。 例えば、効率を高くする負荷インピーダンス条件を選択 する場合もあれば、飽和電力を大きくする負荷インピー ダンス条件を選択する場合などがある。しかし、例えば "MMIC技術の基礎と応用(リアライズ社、高木、伊 藤著、特に155頁の図8.39(a)参照)"に記述さ れているように、一般的には効率を高くする負荷インピ ーダンス条件と飽和電力を大きくする負荷インピーダン ス条件とは一致しない。しかも、出力電力に応じて最大 効率を実現する負荷インピーダンスは変化する。図14 はFET等の増幅素子についての出力側負荷インピーダ ンスと飽和電力および効率との関係を示すスミスチャー トである。飽和電力および効率が等しい領域は、それぞ れスミスチャート上において等高線として示されてい る。一般的に、飽和電力を高くする負荷インピーダンス と効率を高くする負荷インピーダンスとは一致しない。 効率の高い負荷インピーダンス条件では、飽和電力が不 足して、結果的に変調波信号のピークが切り取られた波 形を有することになって良好な通信を実現することはで きない。一方、飽和電力が大きくなる負荷インピーダン ス条件では、変調波のピークが切り取られることは無く なるが、増幅器としての効率は低下してしまう。

【0004】以上の理由から明らかなように、飽和電力が大きく、かつ効率の良い増幅器を構成することは困難であった。言い換えれば、平均出力電力に比較して飽和電力が大きな状態すなわちバックオフが大きな状態では、一般的に増幅器の効率は大きく低下する。例えば単純なB級増幅器では飽和動作時には理論的な最大効率は78%であるが、バックオフ10dBでの動作時における最大理論効率は26%となる。このために、上記のようなピーク電力比の大きな信号を低歪みで増幅する必要のある基地局用高出力増幅器などの効率は低くなっていた。

【0005】上記のような増幅器の飽和電力および効率に係る問題を解決するために、マイクロ波ドハティ型増幅器(ドハティ型増幅器)が開発されている。図15は例えば特開平7-22852号公報に示された従来のマイクロ波ドハティ型増幅器の構成を示す図である。図15において、101は入力端子、102は出力端子、103は1/4波長線路、104はA級、AB級またはB級にバイアスされた増幅器として与えられるキャリア増幅器、105はB級またはB級よりも電流を絞った状態すなわちC級にバイアスされた増幅器として与えられるピーク増幅器、106は1/4波長線路、107は便宜的にR/2としたインピーダンス(Rは任意の値を取り

得る)を有する出力負荷である。

【0006】次に動作について説明する。入力端子101から入力された高周波信号を2つの経路に分配し、一方の経路では高周波信号をキャリア増幅器104に入力し、キャリア増幅器104からの出力信号を1/4波長線路106に入力する。また、他方の経路では1/4波長線路103を通過した後に高周波信号をピーク増幅器105に入力する。そして、2つの経路に分配されそれぞれ伝送された高周波信号を合成して、出力端子102から出力し出力負荷107に供給する。

【0007】瞬時入力電力が小さい場合には、キャリア増幅器104はA級、AB級またはB級にバイアスされており、入力信号の電力レベルに関わらず増幅動作を実施して出力信号を出力する。一方、ピーク増幅器105はB級またはC級にバイアスされており、瞬時入力電力が小さい場合には、オフ状態すなわち増幅動作を実施しないで出力信号も出力しない。また、ピーク増幅器105の直流消費電力も0あるいは十分に小さいので、マイクロ波ドハティ型増幅器全体としての効率も高い。

【0008】一方、瞬時入力電力が十分に大きい場合には、ピーク増幅器105がオン状態となって、ピーク増幅器105への入力信号を増幅し出力信号を発生する。この際、キャリア増幅器104の出力電力とピーク増幅器105の出力電力とを合成することで、結果的により大きな飽和電力を有する増幅器を構成することになる。

【0009】但し、マイクロ波ドハティ型増幅器は、単純にA級、AB級またはB級にバイアスされた増幅器とB級またはC級にバイアスされた増幅器とを組み合せたのみの回路として与えられるものではない。キャリア増幅器104の出力側に設けられた1/4波長線路106の機能に基づいてキャリア増幅器104の見かけの負荷インピーダンスを変化させることで、より一層の高効率化を実現している。

【0010】図16は入力信号の電力レベルが小さい場合のマイクロ波ドハティ型増幅器の動作状態を示す図である。ピーク増幅器105はオフ状態になっているために、その出力インピーダンスは理想的には無限大である。キャリア増幅器104の出力側に設けられている1/4波長線路106の特性インピーダンスZcはRであるために、出力負荷107がインピーダンス変換されてキャリア増幅器104の出力端から見た負荷インピーダンスは2Rとなる。負荷インピーダンスが2Rの場合には、キャリア増幅器104は飽和電力が小さいが効率が良好になるように設計されている。したがって、このような動作状態においてはキャリア増幅器104は最大の効率で動作する。

【0011】また、入力信号の電力レベルが大きい場合には、図15に示されるような動作状態が実現されて、キャリア増幅器104とピーク増幅器105とが互いに並列に接続されるとともに両方の増幅器が電力を出力す

るために、出力負荷107が接続された状態においてそれぞれの負荷が見る負荷インピーダンスは出力負荷107のインピーダンスの2倍のRとなる。キャリア増幅器104の出力側に設けられた1/4波長線路106の特性インピーダンスはRであるから、この線路によるインピーダンス変換は行なわれずに、キャリア増幅器104の出力端から見た負荷インピーダンスもRとなる。負荷インピーダンスがRの場合には、キャリア増幅器104 およびピーク増幅器105ともに飽和電力が大きくなるように設計されており、マイクロ波ドハティ型増幅器全体として大きな飽和電力を得ることができる。このような動作状態においては、マイクロ波ドハティ型増幅器は飽和電力に近い状態で動作するので効率も高い。

【0012】上記のようにマイクロ波ドハティ型増幅器 は、入力信号の電力が大きい場合にピーク増幅器105 が動作することでキャリア増幅器104とピーク増幅器 105との2つの出力電力が合成されて飽和電力が大き くなるという効果、並びに入力信号の電力が小さい場合 と大きい場合とでキャリア増幅器104の見かけの負荷 インピーダンスが変化して高効率に動作可能であるとい う効果を奏することで、バックオフが大きな状態におい ても高効率な動作を実現することができる。なお、上記 の回路構成においては、キャリア増幅器104の見かけ の負荷インピーダンスを変化させるために1/4波長線 路106が設けられているが、1/4波長線路106に 代えて1/4+n/2波長線路(nは任意の自然数)を 配置することでも同様の作用効果を得ることができる。 また、ピーク増幅器105の入力側に1/4波長線路1 03を配置するのに代えて、90度の位相差で高周波信 号を分配する90度分配器を用いることも可能である。

[0013]

【発明が解決しようとする課題】従来のドハティ型増幅器は以上のように構成されているので、入力信号の電力が大きい状態でキャリア増幅器とピーク増幅器とが同時に動作している場合でも、キャリア増幅器とピーク増幅器とのバイアス条件が互いに異なるために、一般的には2つの増幅器の通過位相量が必ずしも等しくはならない。また、2つの増幅器の利得についても、一般的に等しくはならない。したがって、2つの増幅器の通過位相量が等しくない場合には、出力端における各増幅器からの出力電力の合成が有効に行なわれないために、出力電力ならびに効率が低下するという課題があった。

【0014】また、図17はドハティ型増幅器に係る入力電力と出力電力との関係(AM-AM特性)を示す図である。キャリア増幅器とピーク増幅器とを組み合せて全体的に良好な効率、利得および歪み特性を実現するためには、図17に示されるピーク増幅器がオン状態となる電力レベルPon、およびピーク増幅器がオン状態となってからの入力電力の変化に対する出力電力の変化すなわちAM-AM特性を最適化する必要がある。然る

に、ピーク増幅器についてオン状態となる電力レベルPon、あるいはAM-AM特性が所望の値からずれると、キャリア増幅器と組み合せることで構成されるドハティ型増幅器全体の効率が低下したり、全体的な線形性が悪化するという課題があった。

【0015】また、主にC級増幅器として与えられるピーク増幅器は入力電力と出力電力との関係(AM-AM特性)に大きな非線形性を有しているのみではなく、入力電力と通過位相量との関係(AM-PM特性)も変化する。このために、入力電力の増加に伴ってピーク増幅器の通過位相量が変化して、出力端におけるキャリア増幅器からの出力電力とピーク増幅器からの出力電力との合成が有効に行なわれないために、出力電力ならびに効率が低下するという課題があった。

【0016】また、一般的に周囲温度の変化に応じて増幅器の特性は変化する。ドハティ型増幅器ではバイアス条件が大きく異なる2種類の増幅器を用いているために、同じバイアス条件の並列増幅器などと比較すると、温度変化による2つの増幅器間の特性差が現れ易くなっている。したがって、温度変化によりキャリア増幅器とピーク増幅器との間で通過位相量に差が生じて出力電力の合成が有効に行なわれないために、出力電力ならびに効率が低下するという課題があった。

【0017】さらに、ドハティ型増幅器では、通常の並列増幅器とは異なって、バイアス条件の異なる2つの増幅器が用いられるために、2つの増幅器のバランスが悪くなる。図18はドハティ型増幅器において形成されるループを示す図である。ドハティ型増幅器は、上記のように2つの増幅器のバランスが悪いとともに1/4波長線路を用いて回路の経路が長くなることに起因して、キャリア増幅器104が配置された経路とピーク増幅器105が配置された経路とを一巡するようなループにおいて不要なループ発振等の現象が生じ易くなるという課題があった。なお、通常の並列増幅器では2つの増幅器が同じ状態で動作しているのでバランスがよく、ループ発振の問題はマイクロ波ドハティ型増幅器ほど深刻なものとはならない。

【0018】この発明は上記のような課題を解決するためになされたもので、出力電力および効率の低下を防止するために、キャリア増幅器またはピーク増幅器の通過位相量を変更可能なドハティ型増幅器を得ることを目的とする。

【0019】また、この発明は、出力電力および効率の 低下を防止するために、温度変化に起因するキャリア増 幅器とピーク増幅器との間の通過位相量の差を補償する ことができるドハティ型増幅器を得ることを目的とす る。

【0020】さらに、この発明は、出力電力および効率 の低下を防止するために、ピーク増幅器のAM-AM特性およびAM-PM特性を変更可能なドハティ型増幅器 を得ることを目的とする。

【0021】さらに、この発明はループ発振を防止することができるドハティ型増幅器を得ることを目的とする。

[0022]

【課題を解決するための手段】この発明に係るドハティ型増幅器は、入力端子と、入力端子から延びる第1の経路に配置されてA級、AB級またはB級にバイアスされる第1の増幅器と、第1の経路において第1の増幅器の出力側に配置される1/4+n/2波長線路(nは0または任意の自然数)と、入力端子から延びる第2の経路に配置されてB級またはC級にバイアスされる第2の増幅器と、第1の増幅器および第2の増幅器の出力側において第1の経路と第2の経路とが結合する部位に配置される出力端子と、第1の経路を伝送される高周波信号または第2の経路を伝送される高周波信号または第2の経路を伝送される高周波信号について通過位相量および利得のいずれか一方または両方を補正する補正手段とを備えるようにしたものである。

【0023】この発明に係るドハティ型増幅器は、補正 手段として、第1の増幅器または第2の増幅器の入力側 に配置される可変減衰器および可変移相器を備えるよう にしたものである。

【0024】この発明に係るドハティ型増幅器は、温度センサと、可変減衰器および可変移相器の制御に係る設定値を温度の関数として記憶した記憶手段と、温度センサにより測定された温度に基づいて記憶手段から可変減衰器および可変移相器の制御に係る設定値を読み出して可変減衰器および可変移相器を制御する制御手段とを備えるようにしたものである。

【0025】この発明に係るドハティ型増幅器は、補正 手段として、第1の増幅器または第2の増幅器の入力側 または出力側に配置される遅延回路を備えるようにした ものである。

【0026】この発明に係るドハティ型増幅器は、補正 手段として、第1の増幅器または第2の増幅器の入力側 または出力側に配置される周波数イコライザを備えるよ うにしたものである。

【0027】この発明に係るドハティ型増幅器は、補正手段として、第2の増幅器の入力電力と出力電力との関係であるAM-AM特性並びに第2の増幅器の入力電力と通過位相量との関係であるAM-PM特性を調整するAM-AM/PM調整器を備えるようにしたものである。

【0028】この発明に係るドハティ型増幅器は、入力端子と、入力端子から延びる第1の経路に配置されてA級、AB級またはB級にバイアスされる第1の増幅器と、第1の経路において第1の増幅器の出力側に配置される1/4+n/2波長線路(nは0または任意の自然数)と、入力端子から延びる第2の経路に配置されてB級またはC級にバイアスされる第2の増幅器と、第1の

経路において第1の増幅器の入力側に配置され、入力端子から入力されたベースバンド信号を高周波信号に変換する第1の信号変換手段と、第2の経路において第2の増幅器の入力側に配置され、入力端子から入力されたベースバンド信号を高周波信号に変換する第2の信号変換手段と、第1の増幅器および第2の増幅器の出力側において第1の経路と第2の経路とが結合する部位に配置される出力端子と、第1の経路を伝送されるベースバンド信号について通過位相量および利得のいずれか一方または両方を補正する補正手段とを備えるようにしたものである。

【0029】この発明に係るドハティ型増幅器は、第1 の信号変換手段および第2の信号変換手段が、デジタル 信号として与えられるベースバンド信号をアナログ高周 波信号に変換するようにしたものである。

【0030】この発明に係るドハティ型増幅器は、補正手段として、第1の経路または第2の経路を伝送されるベースバンド信号の電力レベルを検出するレベル検出手段と、レベル検出手段により検出された電力レベルに応じた制御データが記憶された記憶手段と、検出された電力レベルに応じてベースバンド信号の振幅および位相のいずれか一方または両方の制御を実施する制御手段と、制御手段からの制御信号に応じてベースバンド信号の振幅および位相のいずれか一方または両方を変換する変換手段とを備えるようにしたものである。

【0031】この発明に係るドハティ型増幅器は、補正 手段として、第1の経路または第2の経路を伝送される 高周波信号の一部を取り出す分配手段と、取り出された 高周波信号をデジタル信号としてのベースバンド信号に 変換する信号逆変換手段と、第1の経路または第2の経 路を伝送されるベースバンド信号の電力レベルを検出す るレベル検出手段と、レベル検出手段により検出された 電力レベルに応じた制御データ並びに第1の増幅器また は第2の増幅器の特性に係るデータが記憶された記憶手 段と、レベル検出手段により検出された電力レベルおよ び信号逆変換手段からフィードバックされるベースバン ド信号に基づいて第1の経路または第2の経路を伝送さ れるベースバンド信号の振幅および位相のいずれか一方 または両方を制御する制御手段と、制御手段からの制御 信号に応じてベースパンド信号の振幅および位相のいず れか一方または両方を変換する変換手段とを備えるよう にしたものである。

【0032】この発明に係るドハティ型増幅器は、制御手段が、信号逆変換手段からフィードバックされるベースバンド信号と、記憶手段に記憶された第1の増幅器または第2の増幅器の特性に係るデータとを対照して、記憶手段に記憶された制御データを書き換えるようにしたものである。

【0033】この発明に係るドハティ型増幅器は、入力端子と、入力端子から延びる第1の経路に配置されてA

級、AB級またはB級にバイアスされる第1の増幅器と、第1の経路において第1の増幅器の出力側に配置される1/4+n/2波長線路(nは0または任意の自然数)と、入力端子から延びる第2の経路に配置されてB級またはC級にバイアスされる第2の増幅器と、第1の増幅器および第2の増幅器の出力側において第1の経路と第2の経路とが結合する部位に配置される出力端子と、第1の増幅器の入力側に配置される第1のアイソレータと、第2の増幅器の入力側に配置される第2のアイソレータとを備えるようにしたものである。

[0034]

【発明の実施の形態】以下、この発明の実施の一形態を 説明する。

実施の形態1. 図1はこの発明の実施の形態1によるマ イクロ波ドハティ型増幅器(ドハティ型増幅器)の構成 を示す図である。図1において、1は入力端子、2は出 力端子、3は入力端子1から延びる第1の経路に配置さ れてA級、AB級またはB級にバイアスされ瞬時電力の 大小に関わらず常に動作して入力信号を増幅する増幅器 として与えられるキャリア増幅器(第1の増幅器)、4 は入力端子1から延びる第2の経路に配置されてB級ま たはC級にバイアスされ瞬時電力が小さい場合には動作 せず瞬時電力が大きい場合にのみ動作して入力信号を増 幅する増幅器として与えられるピーク増幅器(第2の増 幅器)、5はキャリア増幅器3の出力側に配置される1 /4波長線路、6はピーク増幅器4の入力側に配置され る1/4波長線路、7はピーク増幅器4の入力側に配置 される可変減衰器、8はピーク増幅器4の入力側に配置 される可変移相器である。なお、可変減衰器7と可変移 相器8とから、第2の経路を伝送される高周波信号の通 過位相量および利得を補正する補正手段が構成される。

【0035】次に動作について説明する。キャリア増幅器3、ピーク増幅器4、1/4波長線路5および1/4波長線路6に係る動作については、従来の技術において説明した図15に示されるマイクロ波ドハティ型増幅器におけるキャリア増幅器104、ピーク増幅器105、1/4波長線路106および1/4波長線路103に係る動作と同様であるので、その説明を省略する。なお、従来のマイクロ波ドハティ型増幅器と同様に、キャリア増幅器3の見かけの負荷インピーダンスを変化させるために1/4波長線路5が設けられているが、1/4波長線路5に代えて1/4+n/2波長線路(nは0または任意の自然数)を配置することでも同様の作用効果を得ることができる。

【0036】また、既に述べたように、キャリア増幅器3とピーク増幅器4とは、バイアス条件が大きく異なるために、利得や通過位相量が異なる。したがって、この実施の形態1によるマイクロ波ドハティ型増幅器では、可変減衰器7および可変移相器8を調整して、キャリア増幅器3とピーク増幅器4との利得の差および通過位相

量の差を補償する。これにより、出力端におけるキャリ ア増幅器3の出力電力とピーク増幅器4の出力電力との 合成を良好に実施することが可能となる。

【0037】以上のように、この実施の形態1によれば、ピーク増幅器4の入力側に配置される可変減衰器7 およびピーク増幅器4の入力側に配置される可変移相器 8を備えるように構成したので、キャリア増幅器3とピーク増幅器4との利得の差および通過位相量の差を補償して、出力端におけるキャリア増幅器3の出力電力とピーク増幅器4の出力電力との合成を良好に実施することができるので、マイクロ波ドハティ型増幅器全体としての出力電力や効率を向上することができるという効果を奏する。

【0038】なお、可変減衰器 7 および可変移相器 8 をキャリア増幅器 3 の入力側に設ける構成としてもよく、ピーク増幅器 4 の入力側に設けた場合と同様の効果を奏する。また、図 2 はこの発明の実施の形態 1 によるマイクロ波ドハティ型増幅器の変形例の構成を示す図である。図 2 において、図 1 と同一符号は同一または相当部分を示すのでその説明を省略する。 9 は図 1 に示される 1 / 4 波長線路 6 に代えて、第 1 の経路に入力された高周波信号の位相に対して第 2 の経路に入力された高周波信号の位相を π / 4 遅らせるように高周波信号を 2 つの経路に分配する 9 0 度分配器である。このような構成を用いることによっても、図 1 に示されたマイクロ波ドハティ型増幅器と同様に動作して同様の効果を奏する。

【0039】実施の形態2.図3はこの発明の実施の形態2によるマイクロ波ドハティ型増幅器(ドハティ型増幅器)の構成を示す図である。図3において、図2と同一符号は同一または相当部分を示すのでその説明を省略する。10は温度センサ、11は可変減衰器7および可変移相器8の制御に係る設定値を温度の関数として記憶したROM(記憶手段)、12は温度センサ10により測定された温度に基づいてROM11から可変減衰器7および可変移相器8の制御に係る設定値を読み出して可変減衰器7および可変移相器8を適宜制御する制御回路(制御手段)である。

【0040】次に動作について説明する。温度センサ10により周囲温度を検出して、当該検出された温度に対応する可変減衰器7および可変移相器8の制御に係る設定値をROM11から読み出す。制御回路12は、ROM11から読み出された設定値に応じて可変減衰器7および可変移相器8を適宜制御する。なお、ROM11には、各温度においてキャリア増幅器3およびピーク増幅器4に係る利得の差および通過位相量の差を補償するように設定された可変減衰器7および可変移相器8に係る制御データが記憶されている。

【0041】既に述べたように、キャリア増幅器3とピーク増幅器4とはバイアス条件が大きく異なるために、 温度に対する特性変化の形態も異なる。例えば"トラン

ジスタ技術SPECIAL No. 1 特集 個別半導 体素子活用法のすべて"の130~131頁に記載また は131頁の図6に示されているように、FETのゲー ト電圧の違い (バイアス条件が違うことに相当する) に よって、相互コンダクタンスgm(一般に、gmは増幅 器の利得に比例する)の温度特性が大きく異なることが 示されている。ゲート電圧VGSがマイナス側に深い場 合、すなわちB級あるいはC級に近い条件では、温度が 上昇すると相互コンダクタンスgmが大きくなり増幅器 の利得も上昇する。一方、ゲート電圧がマイナス側に浅 い場合、すなわちAB級に近い条件では、温度が上昇す ると相互コンダクタンスgmが小さくなり増幅器の利得 は小さくなる。以上の例のように、バイアス条件の大き く異なる2つの増幅器を用いるドハティ型増幅器では、 2つの増幅器間で温度変化に伴って利得や通過位相量等 に差が発生し出力端での出力合成が良好に行なわれな い。したがって、この実施の形態2によるマイクロ波ド ハティ型増幅器では、周囲温度に応じて可変減衰器7お よび可変移相器8を適宜制御して、キャリア増幅器3と ピーク増幅器4との利得の差および通過位相量の差を補 償する。これにより、出力端におけるキャリア増幅器3 の出力電力とピーク増幅器4の出力電力との合成を良好 に実施することが可能となる。

【0042】以上のように、この実施の形態2によれ ば、温度センサ10と、可変減衰器7および可変移相器 8の制御に係る設定値を温度の関数として記憶したRO M11と、温度センサ10により測定された温度に基づ いてROM11から可変減衰器7および可変移相器8の 制御に係る設定値を読み出して可変減衰器7および可変 移相器8を制御する制御回路12とを備えるように構成 したので、周囲温度に応じて可変減衰器 7 および可変移 相器8を適宜制御してキャリア増幅器3とピーク増幅器 4との利得の差および通過位相量の差を補償して、出力 端におけるキャリア増幅器3の出力電力とピーク増幅器 4の出力電力との合成を良好に実施することができるの で、マイクロ波ドハティ型増幅器全体として周囲温度に 関わらず高い出力電力や効率を維持することができると いう効果を奏する。なお、ROMに記憶するデータにつ いては、例えばあらかじめ上記資料の131頁に示され た図6のような温度に対する増幅器の特性データを取得 し、温度変化に対する利得、位相量の差を打ち消すよう に可変減衰器7、可変移相器8に対する設定値を記憶す れば良い。

【0043】なお、可変減衰器7および可変移相器8をキャリア増幅器3の入力側に設け、周囲温度に応じて制御回路12により当該可変減衰器7および可変移相器8を制御する構成としてもよく、可変増幅器7および可変移相器8をピーク増幅器4の入力側に設けた場合と同様の効果を奏する。

【0044】実施の形態3. 図4はこの発明の実施の形

態3によるマイクロ波ドハティ型増幅器(ドハティ型増幅器)の構成を示す図である。図4において、図2と同一符号は同一または相当部分を示すのでその説明を省略する。13は伝送される高周波信号の周波数に応じて当該高周波信号の通過位相量すなわち遅延時間を調整可能とする遅延回路である。なお、遅延回路としては、同軸線路等の一般的な線路、あるいはバンドパスフィルタの遅延特性を利用する遅延フィルタなどを用いることができる。

【0045】次に動作について説明する。キャリア増幅器3とピーク増幅器4とはバイアス条件が大きく異なるために、周波数に応じて通過位相量すなわち遅延時間が異なる。したがって、この実施の形態3によるマイクロ波ドハティ型増幅器では、遅延回路13を設けて、キャリア増幅器3が配置された第1の経路を伝送される高周波信号とピーク増幅器4が配置された第2の経路を伝送される高周波信号とに係る遅延時間を一致させることで、キャリア増幅器3とピーク増幅器4との通過位相量の差を高周波信号の周波数に応じて補償して、出力端におけるキャリア増幅器3の出力電力とピーク増幅器4の出力電力との合成を広帯域にわたって良好に実施することが可能となる。

【0046】以上のように、この実施の形態3によれば、伝送される高周波信号の周波数に応じて当該高周波信号の遅延時間を調整可能とする遅延回路13を備えるように構成したので、第1の経路を伝送される高周波信号とに係る遅延時間を一致させてキャリア増幅器3とピーク増幅器4との通過位相量の差を補償し、出力端におけるキャリア増幅器3の出力電力とピーク増幅器4の出力電力との合成を広帯域にわたって良好に実施することができるから、広帯域にわたって高効率なマイクロ波ドハティ型増幅器を得ることができるという効果を奏する。

【0047】なお、キャリア増幅器3とピーク増幅器4とに係る遅延時間の大小に応じて、ピーク増幅器4の出力側に遅延回路13を設ける構成としてもよく、あるいはキャリア増幅器3の入力側または出力側に遅延回路13を設ける構成としてもよく、これらの場合にも上記と同様の効果を奏する。

【0048】また、キャリア増幅器3とピーク増幅器4とはバイアス条件が大きく異なるために、周波数に応じて利得が異なる。すなわち、キャリア増幅器3とピーク増幅器4とは、利得の周波数特性も大きく異なる。したがって、伝送される高周波信号の周波数に応じて当該高周波信号の利得を調整する周波数イコライザを遅延回路13に代えて設ける構成としてもよい。これにより、第1の経路を伝送される高周波信号と第2の経路を伝送される高周波信号と第2の経路を伝送される高周波信号と第2の経路を伝送される高周波信号と第2の経路を伝送される高周波信号と第2の経路を伝送される高周波信号とに係る利得の周波数特性を一致させることができて、広帯域にわたって良好な性能を実現することができる。勿論、遅延回路および周波数イコライザ

の両方を設ける構成としてもよい。

【0049】実施の形態4. 図5はこの発明の実施の形態4によるマイクロ波ドハティ型増幅器(ドハティ型増幅器)の構成を示す図である。図5において、図2と同一符号は同一または相当部分を示すのでその説明を省略する。14はピーク増幅器4の入力電力と出力電力との関係であるAM-AM特性並びにピーク増幅器4の入力電力と通過位相量との関係であるAM-PM特性を調整するAM-AM/PM調整器である。

【0050】一般的に、AM-AM/PM調整器14は非線形回路で構成することができる。図6はAM-AM/PM調整器の構成の一例を示す図である。図6において、15は入力端子、16は直流カット用のコンデンサ、17は直流バイアス電源、18はバイアス用抵抗、19はダイオード、20は出力端子である。この図6に示されるAM-AM/PM調整器は、"IEEE Transaction on Microwave Theoryand Techniques, vol.45, No.12, December 1997" の2431頁において開示され、増幅器の非線形性(歪み)を補償するためのリニアライザとして使用することを目的に構成されるダイオードを用いた非線形回路として紹介されているものである。一般的には、図6に示される回路に限らず、非線形特性を有する回路の回路定数などを所望の値に変更することで、AM-AM/PM調整器を構成することができる。

【0051】図7はAM-AM/PM調整器の構成の他 の例を示す図である。図7において、図2と同一符号は 同一または相当部分を示すのでその説明を省略する。2 1は可変減衰器、22は可変移相器、23はピーク増幅 器4が配置された第2の経路を伝送される高周波信号の 電力を一部取り出す分配器、24は分配された信号の瞬 時電力レベルを検出するレベル検出器、25は検出され た瞬時電力レベルに応じて可変減衰器21および可変移 相器22を制御する制御回路である。レベル検出器24 により検出される入力電力レベルに応じて、可変減衰器 21および可変移相器22を用いて第2の経路を伝送さ れる髙周波信号について予め記憶された減衰量および移 相量を生ずるように制御することで、AM-AM特性お よびAM-PM特性に係る調整を行なうことができる。 すなわち、可変減衰器21、可変移相器22、分配器2 3、レベル検出器24および制御回路25からAM-A M/PM調整器を構成することができる。

【0052】図8はAM-AM/PM調整器の構成の他の例を示す図である。図8において、図7と同一符号は同一または相当部分を示すのでその説明を省略する。26はレベル検出器24によって検出された瞬時電力レベルに応じてピーク増幅器4のバイアス条件を制御する制御回路である。ピーク増幅器4はバイアス条件に応じて利得や通過位相量が変化するので、レベル検出器24により検出される電力レベルに応じて、ピーク増幅器4のバイアス条件を適宜制御することで、ピーク増幅器4に

係るAM-AM特性およびAM-PM特性の調整を行なうことができる。すなわち、分配器23、レベル検出器24および制御回路26からAM-AM/PM調整器を構成することができる。

【0053】次に動作について説明する。ピーク増幅器 4は瞬時入力電力がある値以上の場合にオン状態となっ て出力電力を発生するが、マイクロ波ドハティ型増幅器 全体の高効率化および低歪み化を実現するためには、ピ ーク増幅器4が動作を開始する瞬時入力電力の値ならび に瞬時入力電力の変化に対する瞬時出力電力の変化に係 る特性いわゆるAM-AM特性を最適化する必要があ る。また、出力端におけるキャリア増幅器3の出力電力 とピーク増幅器4の出力電力との合成を良好に行なうた めには、ピーク増幅器4についての瞬時入力電力の変化 に対する通過位相量の変化に係る特性いわゆるAM-P M特性を最適化する必要がある。したがって、この実施 の形態4によるマイクロ波ドハティ型増幅器では、AM -AM/PM調整器を設けることで、ピーク増幅器4が 動作する電力レベルや瞬時入力電力の変化に対する瞬時 出力電力の変化および通過位相量の変化等に係る特性を 最適化することが可能となる。

【0054】以上のように、この実施の形態4によれば、ピーク増幅器4の入力電力と出力電力との関係であるAM-AM特性並びにピーク増幅器4の入力電力と通過位相量との関係であるAM-PM特性を調整するAM-AM/PM調整器14を備えるように構成したので、ピーク増幅器4のAM-AM特性およびAM-PM特性を最適化して、出力端におけるキャリア増幅器3の出力電力とピーク増幅器4の出力電力との合成を良好に実施してマイクロ波ドハティ型増幅器全体の高効率化ならびに低歪み化を実現することができるという効果を奏する。

【0055】なお、上記の実施の形態1、実施の形態3 および実施の形態4については、それぞれを個別に実施 することも可能であり、またこれら複数の実施の形態の 特徴部を適宜組み合せてマイクロ波ドハティ型増幅器を 構成することも可能である。

【0056】実施の形態5.実施の形態1から実施の形態4では、入力端子に高周波信号を入力するとともに当該高周波信号を2つの経路に分配してキャリア増幅器3とピーク増幅器4とにそれぞれ入力する構成としていたが、この実施の形態5は通信機のベースバンド部において信号を2つの経路に分配する構成を採ることを特徴とするものである。すなわち、入力されたベースバンド信号をベースバンド信号を処理対象とする回路部位においてキャリア増幅器3が配置される第1の経路とピーク増幅器4が配置される第2の経路との2つの経路に分配するものである。

【0057】図9はこの発明の実施の形態5によるマイクロ波ドハティ型増幅器(ドハティ型増幅器)の構成を

示す図である。図9において、図1と同一符号は同一または相当部分を示すのでその説明を省略する。31はベースバンド信号の入力端子、32はベースバンド信号を第1の経路と第2の経路とに分配するとともにベースバンド信号に対する処理を実施するベースバンド信号をあ、33は第1の経路を伝送されるベースバンド信号を周波数変換してそれぞれの経路において高周波信号として出力する周波数変換回路である。周波数変換回路33は、第1の経路に配置される第1の周波数変換用ミクサ34、第2の経路に配置される第2の周波数変換用ミクサ34、第2の経路に配置される第2の周波数変換用ミクサ35、周波数変換用ミクサ34,35に搬送周波数の信号を供給するローカル発振器36および90度移相器37を有して構成されている。

【0058】次に動作について説明する。入力端子31に入力されたベースバンド信号は、ベースバンド処理回路32において2つの経路に分配された後に、周波数変換回路33において高周波信号に周波数変換される。それぞれの経路において周波数変換された高周波信号は、キャリア増幅器3およびピーク増幅器4により増幅されて、出力端子2で合成されて出力される。

【0059】ベースバンド信号を処理対象とするベースバンド処理回路32において、ベースバンド信号を2つの経路に分配することにより、可変減衰器、可変移相器、遅延回路、AM-AM/PM調整器などの補正手段をベースバンド信号に係るより低い周波数帯域を対象として構成することが可能となる。このために、上記補正手段を実現する回路の構成に係る自由度が増加して、調整をより容易に実施することができる回路、精度の高い回路等を作成することが可能となる。すなわち、ベースバンド信号または第2の経路を伝送されるベースバンド信号または第2の経路を伝送されるベースバンド信号について通過移相量および利得のいずれかー方または両方を補正する補正手段について、調整の容易化並びに精度の向上を実現することが可能となる。

【0060】例えば、図10はベースバンド信号を処理対象としたAM-AM/PM調整器の構成を示す図である。図10に示された回路は、そのまま図9のベースバンド処理回路32として適用されるものである。図10において、41はベースバンド信号を2つの経路に分配する分配器、42は入力されたベースバンド信号の電力レベルを検出するレベル検出器(レベル検出手段)、43は電力レベルに応じた制御データが記憶されたROM(記憶手段)、44は電力レベルに応じてベースバンド信号の振幅および位相制御を実施する制御回路(制御手段)、45は制御回路44からの制御信号に応じてベースバンド信号の振幅および位相を変換するレベル・位相変換器(変換手段)、46は第1の経路に配置されてデジタル信号として与えられるベースバンド信号をアナログ信号に変換する第1のD/A変換器、47は第2の経

路に配置されてデジタル信号として与えられるベースバンド信号をアナログ信号に変換する第2のD/A変換器である。なお、第1のD/A変換器46と第1の周波数変換用ミクサ34とから第1の経路を伝送されるデジタル信号としてのベースバンド信号をアナログ高周波信号に変換する第1の信号変換手段が構成され、第2のD/A変換器47と第2の周波数変換用ミクサ35とから第2の経路を伝送されるデジタル信号としてのベースバンド信号をアナログ高周波信号に変換する第2の信号変換手段が構成される。

【0061】次に動作について説明する。制御回路44は、レベル検出器42により検出されデジタルデータとして与えられるベースバンド信号の電力レベルに応じてROM43から最適な制御データを読み出し、当該制御データに応じてレベル・位相変換器45を制御してベースバンド信号の振幅または位相を調整する。上記の工程は高周波信号よりも周波数の低いベースバンド信号に対して実施されるので、高周波回路において振幅、位相の調整を実施する場合と比較して調整の自由度も大きく、より精度の高い処理を可能とし、結果的にマイクロ波ドハティ型増幅器の効率を向上させる。

【0062】以上のように、この実施の形態5によれば、第1のD/A変換器46と第1の周波数変換用ミクサ34とから成り第1の経路を伝送されるデジタル信号としてのベースバンド信号をアナログ高周波信号に変換する第1の信号変換手段と、第2のD/A変換器47と第2の周波数変換用ミクサ35とから成り第2の経路を伝送されるデジタル信号としてのベースバンド信号をアナログ高周波信号に変換する第2の信号変換手段とを備えるように構成したので、第1の経路または第2の経路を伝送される信号に対する振幅、位相等に係る調整を高周波信号よりも周波数の低いベースバンド信号に対する振幅、位相等に係る調整を高周波信号よりも周波数の低いベースバンド信号にて実施することができるので、調整の自由度が大きくなってより精度の高い処理を可能とし、マイクロ波ドハティ型増幅器の効率を向上することができるという効果を奏する。

【0063】また、増幅器に係る調整動作をデジタル信号処理で実施することができるので、制御関連データを遠隔地に送信または遠隔地から受信することで、遠隔地からのマイクロ波ドハティ型増幅器のモニタや制御を可能にすることができるという効果を奏する。

【0064】さらに、入力されたベースバンド信号の電力レベルを検出するレベル検出器42と、電力レベルに応じた制御データが記憶されたROM43と、電力レベルに応じてベースバンド信号の振幅・位相制御を実施する制御回路44と、制御回路44からの制御信号に応じてベースパンド信号の振幅および位相を変換するレベル・位相変換器45とを備えるように構成したので、デジタル信号として与えられる電力レベルに係るデータに応じて最適な制御データをROM43から読み出して増幅

器に係る制御動作を実施することができるので、精度が 高い処理を実施できてマイクロ波ドハティ型増幅器の効 率を向上することができるという効果を奏する。

【0065】実施の形態6. 図11はこの発明の実施の 形態6によるマイクロ波ドハティ型増幅器(ドハティ型 増幅器)の構成を示す図である。この実施の形態6にお いても、実施の形態5と同様にベースパンド信号に対し て振幅、位相等に係る処理を実施する。 図11におい て、図9および図10と同一符号は同一または相当部分 を示すのでその説明を省略する。51は電力レベルに応 じた制御データ並びにピーク増幅器4に係るAM-AM 特性に関するデータが記憶されるRAM(記憶手段)、 52はピーク増幅器4の出力電力の一部を取り出す分配 器(分配手段)、53は周波数変換用ミクサ、54は周 波数変換用ミクサ53から出力されるアナログ信号とし てのベースバンド信号をデジタル変換して出力するA/ D変換器、55はレベル検出器42により検出された電 カレベルおよびA/D変換器54からフィードパックさ れるベースパンド信号に応じて、ピーク増幅器4が配置 される第2の経路を伝送されるベースパンド信号の振幅 ・位相制御を実施する制御回路(制御手段)である。な お、周波数変換用ミクサ53とA/D変換器54とか ら、分配器52から出力される高周波信号をデジタル信 号としてのベースバンド信号に変換する信号逆変換手段 が構成される。

【0066】次に動作について説明する。入力端子31 から入力されたベースバンド信号は、分配器41により キャリア増幅器3が配置された第1の経路とピーク増幅 器4が配置された第2の経路とに分配される。制御回路 55は、レベル検出器42により検出されたベースパン ド信号の電力レベルに応じてRAM51から対応する制 御データを読み出し、当該制御データに応じてレベル・ 位相変換器45を制御してベースバンド信号の振幅およ び位相を調整する。また、分配器52はピーク増幅器4 の出力信号の一部を取り出す。そして、当該取り出され た信号は、周波数変換用ミクサ53により周波数変換さ れてベースバンド信号として出力された後に、A/D変 換器54でデジタル変換されて制御回路55に入力され る。制御回路55は、RAM51に記憶された所望のA M-AM/PM特性とフィードバックされたベースパン ド信号とを対照して、レベル・位相変換器45に係る制 御を調整する。この際に、制御回路55は同時にRAM 51に書き込まれたデータを最適なデータに書き換え る。このようにフィードバック機能を備えることで、よ り精度の高い処理を可能とし、結果的にマイクロ波ドハ ティ型増幅器の効率を向上させる。

【0067】以上のように、この実施の形態6によれば、ピーク増幅器4から出力される高周波信号の一部を取り出す分配器52と、周波数変換用ミクサ53およびA/D変換器54から構成され取り出された高周波信号

をデジタル信号としてのベースパンド信号に変換する信 号逆変換手段と、第2の経路を伝送されるベースパンド 信号の電力レベルを検出するレベル検出器42と、検出 された電力レベルに応じた制御データ並びにピーク増幅 器4のAM-AM/PM特性に係るデータが記憶された RAM51と、レベル検出器42により検出された電力 レベルおよび信号逆変換手段からフィードバックされる ベースバンド信号に基づいて第2の経路を伝送されるべ ースバンド信号の振幅および位相を制御する制御回路5 5と、制御回路55からの制御信号に応じてベースバン ド信号の振幅および位相を変換するレベル・位相変換器 45とを備えるように構成したので、出力信号をデジタ ル変換して制御回路55にフィードバックすることがで きるので、RAM51に記憶されたピーク増幅器4のA M-AM/PM特性に係るデータとフィードバックされ た信号とを対照してレベル・位相変換器45に係る制御 を調整することが可能となり、より精度の高い処理を実 現することができてマイクロ波ドハティ型増幅器の効率 を向上することができるという効果を奏する。

【0068】また、制御回路55が、信号逆変換手段からフィードバックされるベースバンド信号と、RAM51に記憶されたピーク増幅器4のAM-AM/PM特性に係るデータとを対照して、RAM51に記憶された制御データを書き換えるように構成したので、実際に使用されるマイクロ波ドハティ型増幅器の特性に応じて制御データを設定することが可能となり、より精度の高い処理を実現することができてマイクロ波ドハティ型増幅器の効率を向上することができるという効果を奏する。

【0069】実施の形態7.図12はこの発明の実施の形態7によるマイクロ波ドハティ型増幅器(ドハティ型増幅器)の構成を示す図である。図12において、図2と同一符号は同一または相当部分を示すのでその説明を省略する。61はキャリア増幅器3の入力側に配置されるアイソレータ(第1のアイソレータ)、62はピーク増幅器4の入力側に配置されるアイソレータ(第2のアイソレータ)である。

【0070】次に動作について説明する。マイクロ波ドハティ型増幅器では、通常の並列増幅器と異なり、バイアス条件の異なる2つの増幅器を用いるために、2つの増幅器のバランスが悪い。さらに、1/4波長線路等を用いるために回路の経路が長くなることで、キャリア増幅器3が配置される経路とピーク増幅器4が配置される経路とを一巡するようなループにおいて不要なループ発振などの現象が発生しやすくなる。したがって、この実施の形態7によるマイクロ波ドハティ型増幅器では、キャリア増幅器3およびピーク増幅器4の入力側にアイソレータ61,62を設けることで、上記のループ発振を防止する。

【0071】以上のように、この実施の形態7によれば、キャリア増幅器3の入力側に配置されたアイソレー

タ61と、ピーク増幅器4の入力側に配置されたアイソレータ62とを備えるように構成したので、ループ発振を防止することができて、安定して動作するマイクロ波ドハティ型増幅器を得ることができるという効果を奏する。

[0072]

【発明の効果】以上のように、この発明によれば、入力 端子と、入力端子から延びる第1の経路に配置されてA 級、AB級またはB級にバイアスされる第1の増幅器 と、第1の経路において第1の増幅器の出力側に配置さ れる1/4+n/2波長線路(nは0または任意の自然 数)と、入力端子から延びる第2の経路に配置されてB 級またはC級にバイアスされる第2の増幅器と、第1の 増幅器および第2の増幅器の出力側において第1の経路 と第2の経路とが結合する部位に配置される出力端子 と、第1の経路を伝送される高周波信号または第2の経 路を伝送される高周波信号について通過位相量および利 得のいずれか一方または両方を補正する補正手段とを備 えるように構成したので、第1の増幅器と第2の増幅器 との利得の差および通過位相量の差のいずれか一方また は両方を補償して、出力端における第1の増幅器の出力 電力と第2の増幅器の出力電力との合成を良好に実施す ることができるので、ドハティ型増幅器全体としての出 力電力や効率を向上することができるという効果を奏す

【0073】この発明によれば、補正手段として、第1の増幅器または第2の増幅器の入力側に配置される可変減衰器および可変移相器を備え、さらに温度センサと、可変減衰器および可変移相器の制御に係る設定値を温度の関数として記憶した記憶手段と、温度センサにより測定された温度に基づいて記憶手段から可変減衰器および可変移相器の制御に係る設定値を読み出して可変減衰器および可変移相器を制御する制御手段とを備えるように構成したので、周囲温度に応じて可変減衰器および可変移相器を適宜制御して第1の増幅器と第2の増幅器との利得の差および通過位相量の差を補償して、出力端における第1の増幅器の出力電力と第2の増幅器の出力電力との合成を良好に実施することができるので、ドハティ型増幅器全体として周囲温度に関わらず高い出力電力や効率を維持することができるという効果を奏する。

【0074】この発明によれば、補正手段として、第1の増幅器または第2の増幅器の入力側または出力側に配置される遅延回路を備えるように構成したので、高周波信号の周波数に応じて第1の増幅器が配置された経路を伝送される高周波信号と第2の増幅器が配置された経路を伝送される高周波信号とに係る遅延時間を一致させることで第1の増幅器と第2の増幅器との通過位相量の差を補償し、出力端における第1の増幅器の出力電力と第2の増幅器の出力電力との合成を広帯域にわたって良好に実施することができるので、広帯域にわたって高効率

なドハティ型増幅器を得ることができるという効果を奏 する。

【0075】この発明によれば、補正手段として、第1の増幅器または第2の増幅器の入力側または出力側に配置される周波数イコライザを備えるように構成したので、第1の増幅器が配置された経路を伝送される高周波信号と第2の増幅器が配置された経路を伝送される高周波信号とに係る利得の周波数特性を一致させることができて、広帯域にわたって良好な性能を実現することができるという効果を奏する。

【0076】この発明によれば、補正手段として、第2の増幅器の入力電力と出力電力との関係であるAM-AM特性並びに第2の増幅器の入力電力と通過位相量との関係であるAM-PM特性を調整するAM-AM/PM調整器を備えるように構成したので、第2の増幅器のAM-AM特性およびAM-PM特性を最適化して、出力端における第1の増幅器の出力電力と第2の増幅器の出力電力との合成を実施してドハティ型増幅器全体の高効率化ならびに低歪み化を実現することができるという効果を奏する。

【0077】この発明によれば、入力端子と、入力端子 から延びる第1の経路に配置されてA級、AB級または B級にバイアスされる第1の増幅器と、第1の経路にお いて第1の増幅器の出力側に配置される1/4+n/2 波長線路(nは0または任意の自然数)と、入力端子か ら延びる第2の経路に配置されてB級またはC級にバイ アスされる第2の増幅器と、第1の経路において第1の 増幅器の入力側に配置され、入力端子から入力されたべ ースバンド信号を高周波信号に変換する第1の信号変換 手段と、第2の経路において第2の増幅器の入力側に配 置され、入力端子から入力されたベースバンド信号を高 周波信号に変換する第2の信号変換手段と、第1の増幅 器および第2の増幅器の出力側において第1の経路と第 2の経路とが結合する部位に配置される出力端子と、第 1の経路を伝送されるベースバンド信号または第2の経 路を伝送されるベースバンド信号について通過位相量お よび利得のいずれか一方または両方を補正する補正手段 とを備えるように構成したので、第1の経路または第2 の経路を伝送される信号に対する振幅、位相等に係る調 整を髙周波信号よりも周波数の低いベースバンド信号に 対して実施することができるので、調整の自由度が大き くなってより精度の高い処理を可能とし、ドハティ型増 幅器の効率を向上することができるという効果を奏す る。

【0078】この発明によれば、第1の信号変換手段および第2の信号変換手段がデジタル信号として与えられるベースバンド信号をアナログ高周波信号に変換するように構成したので、増幅器に係る制御動作をデジタル信号処理で実施することができるため、制御関連データを遠隔地に送信または遠隔地から受信することで、遠隔地

からのドハティ型増幅器のモニタや制御を可能にすることができるという効果を奏する。

【0079】この発明によれば、補正手段として、第1の経路または第2の経路を伝送されるベースバンド信号の電力レベルを検出するレベル検出手段と、レベル検出手段により検出された電力レベルに応じた制御データが記憶された記憶手段と、検出された電力レベルに応じてベースバンド信号の振幅および位相の制御を実施する制御手段と、制御手段からの制御信号に応じてベースバンド信号の振幅および位相を変換する変換手段とを備えるように構成したので、デジタル信号として与えられる電力レベルに係るデータに応じて最適な制御データを記憶手段から読み出して増幅器に係る制御動作を実施することができるので、精度の高い処理を実施してドハティ型増幅器の効率を向上することができるという効果を奏する

【0080】この発明によれば、補正手段として、第1 の経路または第2の経路を伝送される高周波信号の一部 を取り出す分配手段と、取り出された高周波信号をデジ タル信号としてのベースバンド信号に変換する信号逆変 換手段と、第1の経路または第2の経路を伝送されるべ ースバンド信号の電力レベルを検出するレベル検出手段 と、レベル検出手段により検出された電力レベルに応じ た制御データ並びに第1の増幅器または第2の増幅器の 特性に係るデータが記憶された記憶手段と、レベル検出 手段により検出された電力レベルおよび信号逆変換手段 からフィードバックされるベースバンド信号に基づいて 第1の経路または第2の経路を伝送されるベースバンド 信号の振幅および位相のいずれか一方または両方を制御 する制御手段と、制御手段からの制御信号に応じてベー スバンド信号の振幅および位相のいずれか一方または両 方を変換する変換手段とを備えるように構成したので、 出力信号をデジタル変換して制御手段にフィードバック することができるので、記憶手段に記憶された第1の増 幅器または第2の増幅器の特性に係るデータとフィード バックされるベースバンド信号とを対照して変換手段に 係る制御を調整することが可能となり、より精度の高い 処理を実現することができてドハティ型増幅器の効率を 向上することができるという効果を奏する。

【0081】この発明によれば、制御手段が、信号逆変換手段からフィードバックされるベースバンド信号と、記憶手段に記憶された第1の増幅器または第2の増幅器の特性に係るデータとを対照して、記憶手段に記憶された制御データを書き換えるように構成したので、実際に使用されるドハティ型増幅器の特性に応じた制御データを設定することが可能となり、より精度の高い処理を実現することができてドハティ型増幅器の効率を向上することができるという効果を奏する。

【0082】この発明によれば、入力端子と、入力端子から延びる第1の経路に配置されてA級、AB級または

B級にバイアスされる第1の増幅器と、第1の経路において第1の増幅器の出力側に配置される1/4+n/2 波長線路(nは0または任意の自然数)と、入力端子から延びる第2の経路に配置されてB級またはC級にバイアスされる第2の増幅器と、第1の増幅器および第2の増幅器の出力側において第1の経路と第2の経路とが結合する部位に配置される出力端子と、第1の増幅器の入力側に配置される第1のアイソレータと、第2の増幅器の入力側に配置される第2のアイソレータとを備えるように構成したので、ループ発振を防止することができて、安定して動作するドハティ型増幅器を得ることができるという効果を奏する。

【図面の簡単な説明】

【図1】 この発明の実施の形態1によるマイクロ波ド ハティ型増幅器の構成を示す図である。

【図2】 この発明の実施の形態1によるマイクロ波ド ハティ型増幅器の変形例の構成を示す図である。

【図3】 この発明の実施の形態2によるマイクロ波ド ハティ型増幅器の構成を示す図である。

【図4】 この発明の実施の形態3によるマイクロ波ドハティ型増幅器の構成を示す図である。

【図5】 この発明の実施の形態4によるマイクロ波ド ハティ型増幅器の構成を示す図である。

【図6】 AM-AM/PM調整器の構成の一例を示す 図である。

【図7】 AM-AM/PM調整器の構成の他の例を示す図である。

【図8】 AM-AM/PM調整器の構成の他の例を示す図である。

【図9】 この発明の実施の形態5によるマイクロ波ド ハティ型増幅器の構成を示す図である。

【図10】 ベースバンド信号を処理対象としたAM-AM/PM調整器の構成を示す図である。

【図11】 この発明の実施の形態6によるマイクロ波ドハティ型増幅器の構成を示す図である。

【図12】 この発明の実施の形態7によるマイクロ波ドハティ型増幅器の構成を示す図である。

【図13】 高周波信号の波形の一例を示す図である。

【図14】 FET等の増幅素子についての出力側負荷 インピーダンスと飽和電力および効率との関係を示すス ミスチャートである。

【図15】 従来のマイクロ波ドハティ型増幅器の構成を示す図である。

【図16】 入力信号の電力レベルが小さい場合のマイクロ波ドハティ型増幅器の動作状態を示す図である。

【図17】 ドハティ型増幅器に係るAM-AM特性を 示す図である。

【図18】 ドハティ型増幅器において形成されるループを示す図である。

【符号の説明】

1 入力端子、2 出力端子、3 キャリア増幅器 (第 1の増幅器)、4 ピーク増幅器(第2の増幅器)、 5, 6 1/4波長線路、7, 21 可変減衰器、8, 22 可変移相器、10 温度センサ、11 ROM (記憶手段)、12,44,55 制御回路(制御手 段)、13 遅延回路、14 AM-AM/PM調整 器、15 入力端子、16 直流カット用コンデンサ、 17 直流バイアス電源、18 バイアス用抵抗、19 ダイオード、20 出力端子、23 分配器、24 レベル検出器、25,26 制御回路、31 入力端 子、32 ベースバンド処理回路、33 周波数変換回 路、34、35、53 周波数変換用ミクサ、36 ロ ーカル発振器、37 90度移相器、41 分配器、4 2 レベル検出器 (レベル検出手段)、43 ROM (記憶手段)、45 レベル・位相変換器(変換手 段)、46,47 D/A変換器、51 RAM (記憶 手段)、52 分配器(分配手段)54 A/D変換 器、61 アイソレータ (第1のアイソレータ)、62 アイソレータ (第2のアイソレータ)。

【図1】

[図2]

フロントページの続き

(51) Int. Cl. H 0 3 F	7 離別記号 1/34 1/42 3/21 3/24 3/68 3/30		FI H03F H03G	1/34 1/42 3/21 3/24 3/68 3/30	テーマコード(参考) 5 J 1 O O B B
(72) 発明者	池田 幸夫 東京都千代田区丸の内二丁目2番3号	三	Fターム(参	考) 5J067	AA01 AA26 AA41 CA02 CA21 CA36 CA54 CA62 FA01 FA10
(72)発明者	菱電機株式会社内 酒井 雄二 東京都千代田区丸の内二丁目2番3号	=			FA19 HA09 HA19 HA25 HA29 HA32 HA43 KA00 KA15 KA16 KA23 KA32 KA34 KA68 KS01
	菱電機株式会社内			5J069	KS35 LS01 MA11 QS04 TA01 TA02 TA05 TA06 AA01 AA26 AA41 CA02 CA21 CA36 CA54 CA62 FA01 FA10
			·		FA19 HA09 HA19 HA25 HA29 HA32 HA43 KA00 KA15 KA16 KA23 KA32 KA34 KA68 KC04
				5J090	KC06 MA11 TA01 TA02 TA05 TA06 AA01 AA26 AA41 CA02 CA21
					CA36 CA54 CA62 CN04 DN02 FA01 FA10 FA19 FN06 GN01 GN06 HA09 HA19 HA25 HA29
				51091	HA32 HA43 KA00 KA15 KA16 KA23 KA32 KA34 KA68 MA11 TA01 TA02 TA05 TA06 AA01 AA26 AA41 CA02 CA21
				0,001	CA36 CA54 CA62 FA01 FA10 FA19 HA09 HA19 HA25 HA29 HA32 HA43 KA00 KA15 KA16
				5J0 9 2	KA23 KA32 KA34 KA68 MA11 TA01 TA02 TA05 TA06 AA01 AA26 AA41 CA02 CA21
					CA36 CA54 CA62 FA01 FA10 FA19 GR09 HA09 HA19 HA25 HA29 HA32 HA43 KA00 KA15
				5 J 100	KA16 KA23 KA32 KA34 KA68 MA11 TA01 TA02 TA05 TA06 JA01 KA05 LA00 LA11 QA01 QA02 SA01