Mind the Cost of Telemetry Data Analysis

Alessandra Fais¹, Gianni Antichi², Stefano Giordano¹, Giuseppe Lettieri¹, Gregorio Procissi¹

¹ Università di Pisa, Italy | ² Queen Mary University of London, United Kingdom

Introduction

- Stream processing engines efficiently process continuous amounts (streams) of information
- Network operators need efficient ways to analyze fine-grained telemetry data
 - In production datacenter networks, hundreds of thousands of switches produce up to millions of reports per second!

GOAL: What's the best streaming engine for network traffic analysis?

A Qualitative Comparison

	Flink	Spark	Storm	WindFlow
Batching	×	mandatory	×	✓
Chaining	\checkmark	×	×	\checkmark
Ordering	×	btw batches	×	✓
Windows	✓	✓	×	\checkmark
Event time	✓	partial	×	✓
Distributed	✓	✓	✓	×

Findings

- Systems designed for generic data processing over distributed platforms perform poorly with network data
 - Overheads not compensated by the computational burden of the application itself

- WindFlow shows better performance figures
 - More than 2x in most cases than Spark Streaming
 - Around 10x of Flink and Storm
- WindFlow performance scales with n. physical cores
- Other solutions immediately saturate

Resource utilization scenarios

- Physical cores only → number of cores ≤ 8
- Hyperthreading → 8 < number of cores ≤ 16

Promising research directions

Design of a networking domain specific streaming engine

Lightweight communication mechanisms

Support for computation distribution over a cluster w/o compromising performance!

Specifically built for network traffic analysis

Network data analysis traits: sustained input rate + moderate comp. burden

