Математика для Data Science. Математический анализ. Решения задач

Содержание

1.6	Множества	1
	Задача 1	1
1.7	Нow-to по доказательствам и функции	2
	Задача 1	2
	Задача 2	2
	Задача 3	

Замечание. Вот этим цветом отмечены ссылки на страницы внутри этого файла.

1.6 Множества

Задача 1

Нарисуйте диаграмму Эйлера для трёх множеств $A = \{1\}, B = \{1,2\}$ и $C = \{1,2,3\}$.

Подсказка. Множества образуют цепочку вложенных множеств (одно внутри другого).

Решение. Диаграмма Эйлера для множеств $A = \{1\}, B = \{1,2\}$ и $C = \{1,2,3\}$ будет выглядеть так:

Если заполнить её элементами, будет выглядеть вот так:

SuperSliv.Biz - Курсы, Тренинги, Семинары, Каждый день!

1.7 How-to по доказательствам и функции

Задача 1

В одном из предыдущих шагов мы выяснили, что:

- $\forall x \exists y : x + y = 0$,
- $\exists x \forall y : y + x = y$.

Убедитесь, что порядок кванторов в утверждении важен: поменяйте их местами в утверждениях выше и проверьте, останутся ли они истинными.

Подсказка. Доказать, что утверждение неверно, можно, предположив, что оно всё же верно и придя к противоречию.

Решение.

- Докажем, что поменять местами кванторы в первом утверждении нельзя. Допустим, утверждение $\exists y \ \forall x : x+y=0$ верно. Тогда y какое-то конкретное число, а в качестве x можно брать любые числа. Пусть $x_1 \neq x_2$ два произвольных различных числа. Тогда должно быть выполнено, что $x_1 + y = 0$ и что $x_2 + y = 0$. Но тогда, вычитая из первого равенства второе, мы получаем, что $x_1 = x_2$, чего не может быть, ведь мы взяли разные x_1 и x_2 .
- Теперь докажем, что во втором утверждении поменять местами кванторы можно. А именно, что $\forall y \; \exists x : y + x = y$ верно. Действительно, для всех y нам подойдёт всё то же значение x = 0. Обычно когда кванторы идут в порядке $\forall y \; \exists x$, то x зависит от y, а y нас получилось, что не зависит, потому что было выполнено более сильное утверждение $\exists x \forall y : y + x = y$.

Задача 2

Докажите, что $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Рекомендуем первым делом нарисовать диаграмму Эйлера-Венна, а потом приступать к строгому доказательству. В доказательстве можете ограничиться первой частью, то есть доказательством того, что $A\cap (B\cup C)\subset (A\cap B)\cup (A\cap C)$. Вторую часть мы попросим вас доказать чуть дальше, когда разберём метод от противного.

Подсказка. Задача делается аналогично разобранной на 7 шаге этого урока.

Решение. Сначала поэтапно нарисуем диаграмму Эйлера-Венна для левой части:

И для правой части:

SuperSliv.Biz - Курсы, Тренинги, Семинары, Каждый день!

Видим, что множества действительно совпадают.

Докажем, что $A\cap (B\cup C)\subset (A\cap B)\cup (A\cap C)$. То есть покажем, что если $x\in A\cap (B\cup C)$, то тогда и $x\in (A\cap B)\cup (A\cap C)$.

Итак, если $x \in A \cap (B \cup C)$, то $x \in A$ и $(x \in B)$ или $x \in C$). Значит, возможны два случая:

- 1. $x \in A$ и $x \in B$. Тогда $x \in A \cap B$.
- 2. $x \in A$ и $x \in C$. Тогда $x \in A \cap C$.

Хотя бы одно из условий $x \in A \cap B$ и $x \in A \cap C$ обязательно будет выполнено, значит, $x \in (A \cap B) \cup (A \cap C)$.

Задача 3

Вернёмся к равенству $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$. В одной из предыдущих задач мы попросили вас доказать, что $A\cap (B\cup C)\subset (A\cap B)\cup (A\cap C)$. В этой задаче докажите методом от противного, что $(A\cap B)\cup (A\cap C)\subset A\cap (B\cup C)$, завершая тем самым доказательство равенства.

Подсказка. Задача делается аналогично разобранной на седьмом шаге этого урока.

Решение. Мы хотим доказать, что если $x \in (A \cap B) \cup (A \cap C)$, то $x \in A \cap (B \cup C)$. Предположим противное: то есть, пусть $x \in (A \cap B) \cup (A \cap C)$ и при этом $x \notin A \cap (B \cup C)$.

Построим отрицание: $\neg(x \in A \cap (B \cup C)) = \neg(x \in A \text{ и } (x \in B \text{ или } x \in C)) = \neg(x \in A)$ или $\neg(x \in B \text{ или } x \in C) = x \notin A$ или $(x \notin B \text{ и } x \notin C)$. Итак, у нас возможны два случая:

- 1. $x \notin A$. Но тогда x не принадлежит ни $A \cap B$, ни $A \cap C$, а значит, не принадлежит $(A \cap B) \cup (A \cap C)$.
- 2. $x \notin B$ и $x \notin C$. Но тогда x не может принадлежать ни $A \cap B$, ни $A \cap C$, тогда $x \notin (A \cap B) \cup (A \cap C)$.

В обоих случаях мы получили, что не выполнено $x \in (A \cap B) \cup (A \cap C)$. То есть наше изначальное предположение было неверно. Другими словами, мы получили противоречие.