Maestría en Ciencias de la Computación

Asignatura: Metaheurísticas

Actividad No.3

Guía Clase Práctica No.1

Título: Solución de problemas mediante Ascensión de Colinas

Contenido:

- Métodos heurísticos de solución de problemas.
- Ascensión de Colinas.
- Ascensión de Colinas con mutación aleatoria

Objetivo: Modelar problemas clásicos de búsqueda mediante el uso de algoritmos de Ascensión de Colinas, para la solución de problemas de la profesión.

Qué Estudiar

Métodos heurísticos. Algoritmo de Ascensión de Colinas. Operadores. Ventajas y Desventajas. Aplicaciones.

Cómo Estudiar

- 1. Enuncie las ventajas y desventajas de la Ascensión de Colinas
- 2. Detalle el pseudocódigo del algoritmo Steepest-ascent hill-climbing (SAHC)
- 3. Detalle el pseudocódigo del algoritmo Next-ascent hill-climbing (NAHC)
- 4. Detalle el pseudocódigo del algoritmo *Random mutation hill-climbing* (RMHC)
- 5. Valore críticamente los resultados obtenidos por Forrest y Mitchell
- 6. Mencione aplicaciones de los algoritmos de Ascensión de Colinas
- 7. Realice la modelación matemática necesaria para la solución, mediante RMHC, de los problemas siguientes:
 - a. Problema de la mochila (*Knapsack problem*)
 - b. Problema del viajero vendedor (Travel Salesman Problem, TSP)
 - c. Obtención de mínimos de la función $f(x) = \sum_{i=1}^{D} x_i^2$, con $-10 \le x_i \le 10$.

Recuerde que la modelación matemática incluye: definición de los estados inicial y final, definición del test objetivo, y definición de las acciones posibles (operadores).

Por dónde Estudiar

- Russel & Norving (1995) Artificial Intelligence A Modern Approach. Capítulos 3 y 4. Pág. 55 121.
- Mitchell, M., Holland, J. H., & Forrest, S. (1993). Relative building-block fitness and the building block hypothesis. D. Whitley, Foundations of Genetic Algorithms, 2, 109-126. (Sección 5)
- o Materiales en red.