a) Calcular el producto cartesiano $\prod_{i=1}^3 A_i$ donde $A_1 = \{a,b\}, \ A_2 = \{x,y,z\}$ y $A_3 = \{Pepe\}$ es fácil. $\prod_{i=1}^3 A_i = \{(a,x,Pepe), \ (a,y,Pepe), \ (a,z,Pepe), \ (b,x,Pepe), \ (b,y,Pepe), \ (b,z,Pepe)\}$. Pero cada uno de estos elementos del producto es una función, dicho de otro modo, el producto calcula todas las funciones cuyo dominio es el conjunto I de índices y codominio la unión de los A_i 's, por ejemplo, la tupla (a,x,Pepe) representa a la función f_1 tal que $f_1(1) = a, f_1(2) = x$ y $f_1(3) = Pepe$. El producto cartesiano es el conjunto que contiene exactamente estas seis funciones, que podemos describir formalmente como conjuntos de pares ordenados:

```
\begin{split} f_1 &= \{(1,a), (2,x), (3,Pepe)\} \\ f_2 &= \{(1,a), (2,y), (3,Pepe)\} \\ f_3 &= \{(1,a), (2,z), (3,Pepe)\} \\ f_4 &= \{(1,b), (2,x), (3,Pepe)\} \\ f_5 &= \{(1,b), (2,y), (3,Pepe)\} \\ f_6 &= \{(1,b), (2,z), (3,Pepe)\} \end{split}
```