Homework-5

Question 1

The "dropouts" technique is controlled by a probability parameter p. In this question p is the probability the weight is **dropped**.

- **1.** What is the meaning of selecting p = 0?
- **2.** What is the meaning of selecting p = 1?
- **3.** Suppose p = 0.2, and the dropouts technique is applied to a layer with 100 weights. At the end of the training approximately how many weights do you expect to have 0 values?
- **4.** Suppose p = 0.2. If at the end of the training a certain weight value is 3.0, what should be the value of the same weight during testing?

Question 2

An SVM is trained with the following data:

i	1	2	3	4
$\overline{x_i}$	(0,0)	(0,1)	(1,0)	(1,1)
y_i	-1	1	1	1

Let $\alpha_1, \ldots, \alpha_4$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .) Using a linear kernel, what (dual) optimization problem needs to be solved in terms of the α_i in order to determine their values?

(The linear kernel is: $K(u, v) = u^T v$.)

Question 3

An SVM is trained with the following data:

i	1	2	3	4
x_i	(0,0)	(0,1)	(1,0)	(1,1)
y_i	-1	1	1	1

Let $\alpha_1, \ldots, \alpha_4$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .)

\mathbf{A}

Show that with linear kernel the (dual) optimization problem that needs to be solved in terms of the α_i is:

Maximize:
$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - \frac{1}{2} \left((\alpha_2 + \alpha_4)^2 + (\alpha_3 + \alpha_4)^2 \right)$$

subject to: $\alpha_1 \ge 0, \ \alpha_2 \ge 0, \ \alpha_3 \ge 0, \ \alpha_4 \ge 0, \ \alpha_1 = \alpha_2 + \alpha_3 + \alpha_4$

(The linear kernel is: $K(u, v) = u^T v$.)

В

The solution to the above optimization problem is: $\alpha_1 = 4$, $\alpha_2 = 2$, $\alpha_3 = 2$, $\alpha_4 = 0$.

a. What are the indexes of the support vectors? Circle them below.

Answer: 1 2 3 4

- **b.** What computation needs to be carried out to determine the classification of the point $x_5 = (-1,0)$ by this SVM.
- **c.** What computation needs to be carried out to determine the classification of the point $x_5 = (-1, 1)$ by this SVM.
- **d.** What computation needs to be carried out to determine the classification of the point $x_5 = (1,1)$ by this SVM.

Question 4

An SVM is trained with the following data:

i	1	2	3	4
\bar{x}_i	(0,0)	(0,1)	(1,0)	(1,1)
y_i	-1	1	1	-1

Let $\alpha_1, \ldots, \alpha_4$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .) Using a linear kernel, what (dual) optimization problem needs to be solved in terms of the α_i in order to determine their values? (The linear kernel is: $K(u, v) = u^T v$.)

Question 5

An SVM is trained with the following data:

i	1	2	3	4
x_i	(0,0)	(0,1)	(1,0)	(1,1)
y_i	-1	1	1	-1

Let $\alpha_1, \ldots, \alpha_4$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .)

Α

Show that with linear kernel the (dual) optimization problem that needs to be solved in terms of the α_i is:

Maximize:
$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - \frac{1}{2} \left((\alpha_2 - \alpha_4)^2 + (\alpha_3 - \alpha_4)^2 \right)$$

subject to: $\alpha_1 \ge 0, \ \alpha_2 \ge 0, \ \alpha_3 \ge 0, \ \alpha_4 \ge 0, \ \alpha_1 = \alpha_2 + \alpha_3 - \alpha_4$

(The linear kernel is: $K(u, v) = u^T v$.)

\mathbf{B}

Observe that $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = k$ satisfies the constraints for any $k \geq 0$, and that the function to be maximized in terms of k is 4k. Based on these observations, what is the solution to the above (dual) optimization problem?

Question 6

An SVM is trained with the following data:

i	1	2	3	4	5
$\overline{x_i}$	(0,0)	(1,0)	(2,0)	(3,0)	(0,1)
$\overline{y_i}$	-1	1	1	1	-1

Let $\alpha_1, \ldots, \alpha_5$ be the Lagrangian multipliers associated with this data. (α_i is associated with (x_i, y_i) .)

A

Using the linear kernel, what (dual) optimization problem needs to be solved in terms of the α_i in order to determine their values?

(The linear kernel is: $K(u, v) = u^T v$.)

Answer

\mathbf{B}

The solution to the optimization problem is:

$$\alpha_1 = 2$$
, $\alpha_2 = 2$, $\alpha_3 = 0$, $\alpha_4 = 0$, $\alpha_5 = 0$.

- **a.** Show the computation that needs to be carried out to determine the classification of the point x = (1,1) by this SVM.
- **b.** Show the computation that needs to be carried out to determine the classification of the point x = (0, -2) by this SVM.

\mathbf{C}

To obtain solution with soft margins using the l_1 norm (this is the one described in class), the term $C\sigma_i\zeta_i$ is added to the primal function. Using the value of C=10, repeat parts a,b of B.

a. Show the computation that needs to be carried out to determine the classification of the point x = (1,1) by this soft margins SVM.

