

BANK MARKETING DATA ANALYSIS

PRESENTED BY:

VITALY SUKHININ

CHACK PU PATRICK TONG

KEXIN ZHU

OLUWATOSIN THOMAS

AGENDA

Objective of the project

Methodology

Data Exploration

Data preparation

Machine Learning Implementation

Compare and Conculde

INTRODUCTION

- This Project aims at predictive analytics in financial marketing.
- Analyzing the data of a Portuguese bank's marketing campaigns
- Forecast client engagement with term deposit subscriptions
- To determine the effectiveness of the campaign's success to other shareholders

OBJECTIVE OF THE PROJECT

- Analyze direct marketing campaigns
- Develop a predictive model
- Data cleaning
- Data preprocessing
- Machine learning modeling
- Evaluation

METHODOLOGY

DATA GATHERING & DATA ELPORATION

DATA ENCODING

DATA VISUALIZATION

IMPLEMENT MACHINE LEARNING

DATA CLEANING

COMPARE AND CONCLUDE

DATA CLEANING: 'UNKNOWN' VALUE

```
In [3]:
         raw_data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 29271 entries, 0 to 29270
       Data columns (total 15 columns):
                         Non-Null Count
                                         Dtype
            Column
                         29271 non-null
                                         int64
        0
            age
                                         object
            iob
                         29271 non-null
            marital
                         29271 non-null
                                         object
                         29271 non-null
            education
                                         object
            housing
                         29271 non-null
                                         object
                         29271 non-null
            loan
                                         object
                         29271 non-null
                                         object
            contact
            month
                         29271 non-null
                                         object
            day_of_week
                         29271 non-null
                                         object
            duration
                         29271 non-null
                                         int64
            campaign
                         29271 non-null
                                         int64
                         29271 non-null
                                         int64
            pdays
                         29271 non-null
                                         object
            poutcome
            nr.employed
                         29271 non-null
                                        float64
            Subscribed
                         29271 non-null object
       dtypes: float64(1), Into4(4), object(10)
       memory usage: 3.3+ MB
```

```
In [4]:
         # covert unknown Data to np.Nan
         raw_data = raw_data.replace('unknown',np.nan)
         raw_data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 29271 entries, 0 to 29270
       Data columns (total 15 columns):
            Column
                         Non-Null Count
                                         Dtype
                         29271 non-null
                                         int64
            age
                         29011 non-null
            iob
                                         obiect
                         29220 non-null
            marital
                                         object
            education
                         28044 non-null
                                         object
                         28558 non-null
            housing
                                        object
            loan
                         28558 non-null object
                         29271 non-null
            contact
                                        object
                         29271 non-null object
            month
            day of week
                         29271 non-null object
            duration
                         29271 non-null
                                        int64
            campaign
                         29271 non-null
                                         int64
                         29271 non-null
        11
            pdays
                                        int64
                         29271 non-null object
            poutcome
            nr.employed
                         29271 non-null float64
            Subscribed
                         29271 non-null object
       dtypes: float64(1), into4(4), object(10)
       memory usage: 3.3+ MB
```

DATA CLEANING: 'UNKNOWN' VALUE

```
In [5]:
         # Check Empty Data
          raw_data["job"].unique()
         raw_data.isna().sum()
Out[5]:
         age
                          260
         job
         marital
                           51
         education
                         1227
                          713
         housing
         loan
                          713
         contact
         month
         day_of_week
         duration
         campaign
         pdays
         poutcome
         nr.employed
         Subscribed
         dtype: int64
```

```
#Check no of unknown
raw_data = raw_data.dropna(subset=["job","marital","education","housing","loan"])
raw_data.isna().sum()
```


DATA CLEANING: OUTLINERS

DATA PREPARATION: STANDARDIZATION

	age	duration	campaign	nr.employed	р
0	-0.836502	1.776431	-0.846475	-2.881411	
1	-0.410540	-0.456802	-0.846475	0.762704	
2	-1.049483	0.047646	2.290485	0.762704	
3	0.015422	-0.582914	-0.846475	0.762704	
4	0.121913	-0.057448	-0.846475	-0.506352	

DATA PREPARATION: ENCODING

Encoding strategy

Identify Data Type and separate

- Ordinary Data
- Nominal Data

Encoding with following

- ONE HOT ENCODING
- ORDINAL ENCODING

In [22]:	from skle oneHotEnd oneHotEnd cat_nomin	earn.prepoder = 0 coder.fi nal_1hot al_1hot =	nal data to processing : OneHotEncode t(cat_nominate oneHotEncode) = oneHotEncode	<pre>import OneH er() al) coder.trans</pre>	otEncoder form(cat_n	ominal)		HotEncoder.g	get_feature_	_names_out())
Out[22]:	mo	nth_apr	month_aug	month_dec	month_jul	month_jun	month_mar	month_may	month_nov	month_oct	mo
	0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	
	1	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	
	2	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	4	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	

DATA PREPARATION: ENCODING

After separately processing numerical and categorical features, the data was recombined into a single dataframe.

In [24]:		<pre># Concat all the standardize data and encoded data x_train = pd.concat([df_int_std,df_ordinal_endcoded,df_nominal_1hot],axis = 1)</pre>											
In [25]:	n [25]: x_train.head()												
Out[25]:		age	duration	campaign	nr.employed	pdays	education	month_apr	month_aug	month_dec	month_jul		
	0	-0.521317	1.900333	-0.563989	0.627573	0.103854	4.0	0.0	0.0	0.0	1.0		
	1	1.171907	-0.055572	-0.563989	-0.398550	0.103854	2.0	0.0	0.0	0.0	0.0		
	2	0.748601	0.858402	-0.235533	0.627573	0.103854	3.0	0.0	0.0	0.0	0.0		
	3	0.960254	0.054105	0.092922	-5.197265	-9.650522	5.0	0.0	0.0	0.0	0.0		
	4	-1.897060	-0.373635	-0.235533	-3.573723	0.103854	4.0	0.0	0.0	0.0	0.0		

LEARNING METHODS

Logistic Regression

Random Forest Classification

MACHINE LEARNING IMPLEMENTATION

Prepare Testset for prediction on trained machine learning Model

```
In [28]:
    test_data_ordinal = ordinal_Encoder.transform(x_test[ordinal_column])
    test_data_nominal = oneHotEncoder.transform(x_test[nominal_column])
    test_data_int = std_scaler.transform(x_test[int_column])
    test_data_result = YoneHotEncoder.transform(pd.DataFrame(y_test))

In [29]:
    df_test_nominal_1hot = pd.DataFrame(test_data_nominal.toarray(), columns=oneHotEncoder.get_feature_names_out())
    df_test_ordinal_endcoded = pd.DataFrame(test_data_ordinal,columns= cat_ordinal.columns)
    df_test_data_int = pd.DataFrame(test_data_int, columns= std_scaler.get_feature_names_out())

In [30]:
    #Concat_all_Transformed_Data
    x_test = pd.concat([df_test_data_int,df_test_ordinal_endcoded,df_test_nominal_1hot],axis = 1)
```

MACHINE LEARNING IMPLEMENTATION

```
In [30]:
          #Concat all Transformed Data
          x_test = pd.concat([df_test_data_int,df_test_ordinal_endcoded,df_test_nominal_1hot],axis = 1)
          x_test.head()
Out[30]:
                                                          pdays education month_apr month_aug month_dec month_jul ... mari
                        duration campaign nr.employed
                       0.090664
                                  1.406743
                                                                                  0.0
                                                                                                        0.0
                                                                                                                   1.0 ...
              1.171907
                                              0.627573 0.103854
                                                                       3.0
                                                                                             0.0
         1 -0.415490 0.072384 -0.563989
                                              0.627573 0.103854
                                                                                  0.0
                                                                                                                   1.0 ...
                                                                       4.0
                                                                                                                   0.0 ...
          2 -0.415490 2.565707
                                -0.563989
                                             -2.940348 0.103854
                                                                       5.0
                                                                                  1.0
                                                                                             0.0
                                                                                                        0.0
         3 -0.203837 -0.761160
                                 1.078288
                                                                                                                   0.0 ...
                                              0.627573 0.103854
                                                                       2.0
                                                                                  0.0
                                                                                             0.0
                                                                                                        0.0
             0.748601 -0.614924 -0.563989
                                             -2.940348 0.103854
                                                                       6.0
                                                                                  1.0
                                                                                             0.0
                                                                                                        0.0
                                                                                                                   0.0 ...
```

Comparing training and test set

In [31]:	#Compare to train Data x_train.head()												
Out[31]:		age	duration	campaign	nr.employed	pdays	education	month_apr	month_aug	month_dec	month_jul		mar
	0	-0.521317	1.900333	-0.563989	0.627573	0.103854	4.0	0.0	0.0	0.0	1.0		
	1	1.171907	-0.055572	-0.563989	-0.398550	0.103854	2.0	0.0	0.0	0.0	0.0		
	2	0.748601	0.858402	-0.235533	0.627573	0.103854	3.0	0.0	0.0	0.0	0.0		
	3	0.960254	0.054105	0.092922	-5.197265	-9.650522	5.0	0.0	0.0	0.0	0.0		
	4	-1.897060	-0.373635	-0.235533	-3.573723	0.103854	4.0	0.0	0.0	0.0	0.0		

MACHINE LEARNING IMPLEMENTATION: PREDICTIONS

Random Forest Classification

Logistic Regression

MACHINE LEARNING IMPLEMENTATION: EVALUATION

Random Forest Classification

	precision	recall	f1-score	support
no yes	0.97 0.86	0.99 0.71	0.98 0.78	9709 1163
accuracy macro avg weighted avg	0.91 0.96	0.85 0.96	0.96 0.88 0.96	10872 10872 10872

Logistic Regression

	precision	recall	f1-score	support	
no yes	0.98 0.75	0.97 0.85	0.97 0.79	9709 1163	
accuracy macro avg weighted avg	0.86 0.96	0.91 0.95	0.95 0.88 0.95	10872 10872 10872	

MACHINE LEARNING IMPLEMENTATION: EVALUATION

MACHINE LEARNING IMPLEMENTATION: EVALUATION

- Both Model has a high accuracy with around 96%
- Random Forest has a higher fl score on 'no'
- Logistic Regression has a higher f1 score on 'yes'
- Slightly higher AUC on the Logistic Regression
- Logistics Regression is a better model approach

CONCLUSION

- the imbalance in subscription outcomes, significant features influencing subscription
- The logistic Model has a higher F1 score and AUC which Suggest to be a higher accuracy model
- The project allow compare the effectiveness of the campaign with other campaign in comping future.

THANK YOU