PRE1: APPLIED STATISTICS Hypothesis Testing

Marie-Anne Poursat

Al Master Université Paris-Saclay

October 6th 2022

Hypotheses

Statistical testing uses data to decide whether a statement ($= null \ hypothesis$) is true.

• EX1 : European regulations require that any presence of genetically modified organisms (GMOs) in food be labelled as soon as the level of GMOs exceeds the 0.9% threshold.

 \hookrightarrow Is the level of GMOs τ below the 0.9% threshold regulations? Data: 20 packets of cereals, $\hat{\tau}=0.91$ is the observed percentage of OGMs

$$H_0$$
: $\tau \le 0.9$ versus H_1 : $\tau > 0.9$

Is the observed difference a **real difference** likely to appear in the larger population? Or is it observed in the sample **by chance**?

Hypotheses

```
• EX2 : Is the coin toss fair?

Data : X = 18 heads out of 30 tosses

Model : X \sim Bin(30, p),

H_0 : p = 0.5 versus H_1 : p \neq 0.5
```

• EX3 : Is a given gene *differentially expressed* between two cell types (normal and tumor cells)?

```
Data : 2 Gaussian samples, \overline{x_1} - \overline{x_2} = 1.25, H_0: \mu_1 - \mu_2 = 0 versus H_1: \mu_1 - \mu_2 \neq 0
```

The first step in the testing procedure : find H_0 and H_1 H_0 and H_1 are written according to the model parameters.

- "H₀ is accepted" = not rejected! There is no evidence from the data that H₀ is wrong (but H₀ is not necessarily true)
- " H_0 is rejected in favor of H_1 " = H_1 explains the data significantly better than H_0 so we decide H_1
- A hypothesis can be simple or composite : a simple hypothesis specifies the value of the unknown parameters $H_0: p=0.5$ and $H_1: p\neq 0.5$, H_0 is simple and H_1 is composite, two-sided

 H_0 : $au \leq 0.9$ and H_1 : au > 0.9: H_0 and H_1 are composite, one-sided

2 types of errors

The decision to accept or reject H_0 is based on data observed from a random process

- \hookrightarrow the decision is random and may be incorrect
- 2 types of errors:
 - **1** to reject H_0 when it is true : Type I error
 - ② to retain H_0 when it is false : Type II error

It is not possible to ensure that the probabilities of making a Type I error and a Type II error are both arbitrarily small

- \hookrightarrow Classical testing paradigm : focus on the Type I error
 - the probability of a type I error is kept below α , the level of the test ($\alpha=0.05,\,0,01$)
 - the probability of a type II error is not controlled

Test statistics

The second step in the testing procedure : determine a test statistic T This is the quantity calculated from the data whose numerical value leads to acceptance or rejection of H_0 .

- EX1 : suppose that X_1, \ldots, X_{20} are i.i.d $\mathcal{N}(\tau, \sigma^2)$ A reasonable choice is to reject H_0 if $(\overline{X} 0.9) > c$. It is convenient to standardize the estimator and to define : $T = \frac{\overline{X} 0.9}{S/\sqrt{20}}.$ T is called the **test statistic** and c is a **critical value**.
- EX2 : $X \sim Bin(30, p)$. We reject H_0 if |X - 15| > c.

In some cases there are several possible choices for $\mathcal T$ (corresponding to different statistical tests); in more complicated cases, the choice of $\mathcal T$ is not straightforward.

Rejection regions

The third step in the testing procedure: determine the rejection region

The rejection region is the set of observed values of the test statistic that lead to reject H_0 .

- EX1 : $\mathcal{R} = \{(X_1, \dots, X_{20}) : T(X_1, \dots, X_{20}) > c\}$
- EX2 : $\mathcal{R} = \{(X : T(X) > c)\}$

Usually, the rejection region is of the form

$$\mathcal{R} = \{(X_1, \dots, X_n) : \ T(X_1, \dots, X_n) > c\}$$

 \hookrightarrow The value of *c* is determined by

P(reject
$$H_0$$
 when H_0 is true) = $P_{H_0}(T > c) = \alpha$

Example 1 (GMOs'rate)

EX1 :
$$X_1, \ldots, X_{20}$$
 i.i.d $\mathcal{N}(\tau, \sigma^2)$

- **1** $H_0: \tau \leq 0.9 \text{ and } H_1: \tau > 0.9$
- $T = \frac{\overline{X} 0.9}{S/\sqrt{20}}$
- reject H_0 if T > c

$$\mathrm{P}_{H_0}(T>c)=\mathrm{P}\left(rac{\overline{X}-0.9}{S/\sqrt{20}}>c
ight)=lpha$$

Thus, $c = t_{1-\alpha}(19)$ where $t_{1-\alpha}(19)$ is the quantile of the t-distribution with 19 degrees of freedom.

The test using the *t*-quantile is called the *one-sample t-test*.

- observed data : $\overline{X}^{obs} = 0.91$, $S^{obs} = .06$; $t_{.95}(19) = 1.73$ Then $T^{obs} = 0.745 < 1.73$.
- **①** Decision : we do not reject H_0 ; according to these data, there is no evidence that the product does not respect the european regulations.

P-values

Rather than specifying α and computing c, we calculate the P-value of the test

Definition: The P-value for a sample is defined as the smallest value of α for which the null hypothesis is rejected.

 \hookrightarrow To perform the test, find the p-value of the sample and then H_0 is rejected if we decide to use α larger than the p-value :

reject
$$H_0 \iff$$
 p-value $< \alpha$

Interpretation:

- ullet a small p-value is evidence against H_0
- ullet a large p-value shows that the data are consistent with H_0
- the p-value tells us whether the decision to reject or accept H_0 is close to α

Computation of p-values

Proposition

Suppose that the rejection region is of the form T>c. Then,

p-value =
$$P(T \ge T^{obs})$$

where T is the test statistic and T^{obs} is the observed numerical value of T on the data.

Statistical softwares calculate p-values.

Typically, the software output uses the evidence scale :

- p-value < .001 very strong evidence against H_0
- p-value < .01 strong evidence against H_0
- p-value < .1 weak evidence against H_0
- p-value > .1 little or no evidence against H_0

EX1 (GMOs'rate): p-value

p-value=
$$P(T \ge T^{obs})$$

Answer: $P(T \ge 0.745) = 0.23$ where T is a t(19) variable.

At level $\alpha = 0.05$ (or 0.01, or even 0.02), there is no evidence against H_0 : H_0 is not rejected (but we don't know the type II error).

Normal model : X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$

•
$$H_0$$
: $\mu = \mu_0$ H_1 : $\mu > \mu_0$

$$T = rac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$$
 (exact Student distribution)

$$\hookrightarrow$$
 p-value $= P(T \ge T^{obs}) = 1$ - stats.t.cdf(Tobs,df=n-1)

- ullet if $H_1: \mu < \mu_0, \ ext{p-value} = ext{P}ig(au \leq T^{obs} ig) = ext{stats.t.cdf(Tobs,df=n-1)}$
- if $H_1: \mu \neq \mu_0$, p-value $= \mathrm{P}(|T| \geq |T^{obs}|) = 2*(1- \text{ stats.t.cdf(Tobs,df=n-1)})$

Non-normal model
$$X_1, \ldots, X_n$$
 i.i.d. $\mu = E(X_i)$, $\sigma^2 = Var(X_i)$

• $H_0: \mu = \mu_0 \quad H_1: \mu > \mu_0$

$$T = rac{\overline{X} - \mu_0}{\widehat{\sigma}/\sqrt{n}} \sim \mathcal{N}(0,1)$$
 (approximate distribution via CLT)

$$\hookrightarrow$$
 p-value = $P(T \ge T^{obs}) = 1$ - stats.norm.cdf(Tobs)

- if $H_1: \mu
 eq \mu_0$, p-value $= \mathrm{P}(|T| \ge |T^{obs}|) = 2*(1- \text{ stats.norm.cdf(Tobs)})$
- if $H_1: \mu < \mu_0$, p-value = $\mathrm{P}(T \leq T^{obs}) = \mathtt{stats.norm.cdf}(\mathtt{Tobs})$

Testing for one parameter

 X_1, \ldots, X_n i.i.d. with distribution depending on θ , $\widehat{\theta}$ MLE, $\widehat{\text{s.e.}}$ estimated standard error of $\widehat{\theta}$

• H_0 : $\theta = \theta_0$ H_1 : $\theta > \theta_0$

$$T = \frac{\widehat{ heta} - heta_0}{\widehat{ ext{s.e.}}} \sim \mathcal{N}(0,1)$$
 (approximate distribution for the MLE)

$$\hookrightarrow$$
 p-value = $P(T \ge T^{obs}) = 1$ - stats.norm.cdf(Tobs)

- if $H_1: \theta \neq \theta_0$, p-value $= \mathrm{P}(|T| \geq |T^{obs}|) = 2*(1- \text{stats.norm.cdf(Tobs)})$
- if $H_1: \theta < \theta_0$, p-value = $\mathrm{P}(T \leq T^{obs}) = \mathtt{stats.norm.cdf}(\mathtt{Tobs})$

Duality CI-Tests

There is a relationship between the rejection regions of tests of level α and the $1-\alpha$ confidence intervals :

The test of H_0 : $\theta = \theta_0$ versus H_1 : $\theta \neq \theta_0$ with test statistic $T = \frac{\widehat{\theta} - \theta_0}{\widehat{s.e.}}$ and level α is the same test as the test that rejects H_0 if and only if $\theta_0 \notin [\widehat{\theta} - q_{1-\alpha/2}\widehat{s.e.}; \ \widehat{\theta} - q_{\alpha/2}\widehat{s.e.}]$

 q_{α} is the α -quantile of the distribution of T.

Testing $\theta = \theta_0$ is equivalent to checking whether θ_0 is in the confidence interval.

The testing procedure

- **①** Specify the model and the hypotheses H_0 and H_1
- 2 Find an appropriate test statistic T:
 - T is calculable (does not depend on unknown parameters)
 - the distribution of T under H_0 is known
- 3 Find the form of the rejection region (look at H_1 !)
- Calculate the p-value and make your decision
 - if you reject H_0 , the risk of an incorrect decision is less than α (type I error)
 - if you don't reject H_0 , the risk of an incorrect decision is usually unknown($type\ II\ error$)

The **power of the test** is defined as the probability of rejecting H_0 when H_1 is true = 1 - type II error.

The power depends on the actual value of the parameter under H_1 and is not calculable. In practice, choosing the test (of given level) that maximizes the power is difficult.