Química 2º Bach

Rodrigo Alcaraz de la Osa

Teorias ácido-dase

Teoría de Arrhenius

Propuesta por el sueco Svante Arrhenius en 1884, constituye la primera definición moderna de ácidos y bases en términos moleculares:

Ácido Sustancia que se disocia en agua formando cationes hidrógeno (H⁺). *Base* Sustancia que se disocia en agua formando aniones hidróxido (OH⁻).

Teoría de Brønsted-Lowry

Propuesta en 1923 independientemente por el danés Johannes Nicolaus Brønsted y el inglés Martin Lowry, se basa en la idea de pares de ácido-base conjugados. Cuando un ácido, HA, reacciona con una base, B, el ácido forma su base conjugada, A⁻, y la base forma su ácido conjugado, HB⁺, mediante el intercambio de un protón (catión H⁺):

$$HA + B \longrightarrow A^- + HB^+$$

Ácido Sustancia capaz de ceder protones (H⁺) a una base: HA + H₂O \Longrightarrow A⁻ + H₃O⁺. Base Sustancia capaz de aceptar protones (H⁺) de un ácido: B + H₂O \Longrightarrow HB⁺ + OH⁻.

Esta teoría se considera una GENERALIZACIÓN de la teoría de ARRHENIUS.

Fuerza relativa de los ácidos y bases

En función de cuan ionizado/a o disociado/a se encuentre un ácido o una base, distinguimos entre ácidos/bases f uertes y débiles, términos que describen la facilidad para conducir la electricidad (gracias a la mayor o menor presencia de iones en la disolución).

Grado de ionización

También llamado GRADO DE DISOCIACIÓN, α, se define como el cociente entre la cantidad de ácido/base ionizado/a y la cantidad de ácido/base inicial:

$$\alpha = \frac{\text{cantidad de ácido/base ionizado/a}}{\text{cantidad de ácido/base inicial}}$$

Suele expresarse en tanto por ciento (%).

Ácidos y bases fuertes Totalmente ionizados/as ($\alpha \approx 1$). Conducen bien la electricidad.

- Ácidos: $HClO_4$, HI(ac), HBr(ac), HCl(ac), H_2SO_4 (1^a ionización) y HNO_3 .
- Bases: Hidróxidos de metales alcalinos y alcalinotérreos.

Ácidos y bases débiles Parcialmente ionizados/as: $\alpha < 1$. Conducen mal la electricidad.

- Ácidos: HF(ac), H₂S(ac), H₂CO₃, H₂SO₃, H₃PO₄, HNO₂ y ácidos orgánicos, como el CH₃COOH.
- Bases: NH₃ (o NH₄OH) y bases orgánicas nitrogenadas, como aminas.

Constante de disociación

Es una medida de la FUERZA de un ÁCIDO/BASE en disolución:

	ÁCIDO	BASE
EQUILIBRIO	$HA + H_2O \implies A^- + H_3O^+$	$B + H_2O \Longrightarrow HB^+ + OH^-$
CONSTANTE	$K_{\rm a} = \frac{[{\rm A}^{-}][{\rm H}_{3}{\rm O}^{+}]}{[{\rm HA}]}$	$K_{\rm b} = \frac{[{\rm HB}^+][{\rm OH}^-]}{[{\rm B}]}$
COLOGARITMO	$pK_a = -\log K_a$	$pK_b = -\log K_b$

Equilibrio iónico del agua

El **agua** es una sustancia **anfiprótica** (puede tanto donar como aceptar un protón H^+), lo que le permite actuar tanto como ácido o como base (**anfoterismo**). El **equilibrio iónico del agua** hace referencia a la reacción química en la que dos moléculas de agua reaccionan para producir un ion **oxonio** (H_3O^+) y un ion **hidróxido** (OH^-):

$$H_2O + H_2O \Longrightarrow H_3O^+ + OH^-$$

La constante de equilibrio, denominada **producto iónico del agua**, y denotada por $K_{\rm w}$, puede aproximarse por el producto:

$$K_{\rm w} = [{\rm H_3O^+}][{\rm OH^-}]$$

A 25 °C:

$$[H_3O^+] = [OH^-] = 1 \times 10^{-7} \text{ M} \implies K_w = 1 \times 10^{-14}$$

Relación entre $K_{\rm a}$ y $K_{\rm b}$

Dado un ácido, HA, y su base conjugada, A⁻, podemos multiplicar K_a y K_b :

$$K_{\rm a} \cdot K_{\rm b} = \frac{[{\rm A}^-][{\rm H}_3{\rm O}^+]}{[{\rm HA}]} \cdot \frac{[{\rm HA}][{\rm OH}^-]}{[{\rm A}^-]} = [{\rm H}_3{\rm O}^+][{\rm OH}^-] = K_{\rm w},$$

por lo que (suponiendo T = 25 °C):

$$K_{\rm a} \cdot K_{\rm b} = K_{\rm w} = 1 \times 10^{-14}$$

 $pK_{\rm a} + pK_{\rm b} = pK_{\rm w} = 14$

Concepto de pH

Se define el pH como el cologaritmo de la concentración de iones oxonio, H_3O^+ :

$$pH = -\log [H_3O^+]$$

Análogamente se define el pOH en función de la concentración de iones hidróxido, OH-:

$$pOH = -\log[OH^{-}]$$

A partir de la expresión del **producto iónico del agua**, K_w , tomando **logaritmos**:

$$[H_3O^+][OH^-] = K_w$$

 $log[H_3O^+] + log[OH^-] = log K_w$
 $-pH - pOH = -14$
 $pH + pOH = 14$

Traducida y adaptada de https://www.coursehero.com/sg/cell-biology/ph-and-the-ph-scale/.

Volumetrias de neutralización ácido-base

Una valoración/titulación ácido-base es un método de análisis químico cuantitativo para determinar la concentración de un ácido o base (*analito*), neutralizándolo exactamente con una disolución estándar de base o ácido de concentración conocida (valorante).

Traducida y adaptada de https:
//www.coursehero.com/sg/general-chemistry/
quantitative-analysis-of-acids-and-bases/.

Curva de valoración/titulación de 25 mL de ácido acético 0.1 м con hidróxido de sodio 0.1 м.

NEUTRALIZACIÓN: ÁCIDO + BASE IRREVERSIBLE SAL + AGUA

ANALITO FUERTE ÁCIDO DÉBIL BASE DÉBIL

PH (EQUIVALENCIA) 7 > 7 < 7

INDICADOR (vira en medio) NEUTRO BÁSICO ÁCIDO

Indicadores ácido-base

Un **indicador** de pH es un compuesto químico *halocrómico* (cambia de color —*vira*— ante cambios de pH) que se añade en pequeñas cantidades a una disolución para poder determinar visualmente su pH (acidez o basicidad). El cambio de color se denomina **viraje**.

Tornasol

Mezcla soluble en agua de diferentes colorantes extraídos de LÍQUENES. Absorbido en papel de filtro constituye uno de los indicadores de pH más antiguos utilizados (~ 1300).

Naranja de metilo (C₁₄H₁₄N₃NaO₃S)

Colorante azoderivado que vira de rojo a naranja-amarillo en MEDIO ÁCIDO:

Fenolftaleína (C₂₀H₁₄O₄)

Indicador de pH incoloro en medio ácido que vira a rosa en MEDIO BÁSICO:

$$pH < 8.3 \implies 8.3 < pH < 10$$

Indicador universal

MEZCLA DE INDICADORES (azul de timol, rojo de metilo, azul de bromotimol y fenolftaleína) que presenta cambios suaves de color en una amplia gama de valores de pH.

rango de pH	< 3	3–6	7	8–11	> 11
MEDIO	ácido fuerte	ácido débil	neutro	base débil	base fuerte
COLOR	rojo	naranja/amarillo	verde	azul	violeta

Química 2º Bach

Rodrigo Alcaraz de la Osa

l'oroisis de sales

Cuando una sal se disuelve en agua, se disocia en sus **iones**. Si estos iones son capaces de reaccionar con las moléculas de agua y formar ácidos o bases conjugados, decimos que se produce una reacción de **hidrólisis**.

Traducida y adaptada de https://www.coursehero.com/sg/general-chemistry/solutions-are-in-equilibrium/.

En lo que sigue, suponemos siempre CANTIDADES ESTEQUIOMÉTRICAS:

Sales de ácido fuerte y base fuerte

Cuando los iones en los que se disocia una sal provienen de ácidos/bases fuertes, no reaccionan con agua (hidrolizan), pues tienden a estar completamente ionizados:

$$KNO_3(s) \xrightarrow{H_2O} K^+(ac) + NO_3^-(ac)$$
 $K^+ + 2H_2O \xrightarrow{\#} KOH + H_3O^+ NO_3^- + H_2O \xrightarrow{\#} HNO_3 + OH^-$

La disolución resultante es neutra (pH = 7).

Sales de ácido débil y base fuerte

En este caso el ion proveniente del ácido débil sí se hidroliza:

$$CH_3COONa(s) \xrightarrow{H_2O} Na^+(ac) + CH_3COO^-(ac)$$
 $Na^+ + 2H_2O \xrightarrow{W} NaOH + H_3O^+ CH_3COO^- + H_2O \xrightarrow{K_b} CH_3COOH + OH^-$

La disolución resultante es Básica (pH > 7).

Sales de ácido fuerte y base débil

En este caso el ion proveniente de la base débil sí se hidroliza:

$$NH_4Cl(s) \xrightarrow{H_2O} NH_4^+(ac) + Cl^-(ac)$$

$$NH_4^+ + H_2O \xrightarrow{K_a} NH_3 + H_3O^+ Cl^- + H_2O \xrightarrow{\#} HCl + OH^-$$

La disolución resultante es ácida (pH < 7).

Sales de ácido débil y base débil

En este caso ambos iones se hidrolizan:

$$NH_4CN(s) \xrightarrow{H_2O} NH_4^+(ac) + CN^-(ac)$$

$$NH_4^+ + H_2O \xrightarrow{K_a} NH_3 + H_3O^+ CN^- + H_2O \xrightarrow{K_b} HCN + OH^-$$

 $K_a > K_b \Rightarrow$ La disolución resultante es ácida (pH < 7).

 $K_{\rm a} = K_{\rm b} \Rightarrow {\rm Ladisoluci\'on}$ resultante es Neutra (pH = 7).

 $K_{\rm b} > K_{\rm a} \Rightarrow {\rm Ladisolución}$ resultante es Básica (pH > 7).

Disoluciones reguladoras

También llamadas **disoluciones amortiguadoras** o **tampón**, son disoluciones acuosas que consisten en una mezcla de un ácido o base débil y su conjugado correspondiente. Mantienen el pH de una disolución prácticamente invariable frente a pequeñas adiciones de ácido o base a la misma gracias a la neutralización del exceso de iones H₃O⁺ o OH⁻.

Tampón ácido débil + sal de su base conjugada

$$HA + H_2O \longrightarrow A^- + H_3O^+$$

Suponiendo que las concentraciones en el equilibrio son aproximadamente iguales a las concentraciones iniciales, a partir de la expresión de la constante de acidez K_a :

$$K_{\rm a} = \frac{[{\rm A}^-][{\rm H}_3{\rm O}^+]}{[{\rm HA}]},$$

podemos despejar la concentración de iones oxonio, H₃O⁺:

$$[H_3O^+] = K_a \cdot \frac{[HA]}{[A^-]}$$

Tomando logaritmos y cambiando de signo:

$$-\log [H_3O^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$$

$$pH = pK_a - \log \frac{[HA]}{[A^-]}$$

$$pH = pK_a + \log \frac{[base\ conjugada]}{[ácido]}$$

expresión que se conoce como ECUACIÓN DE HENDERSON-HASSELBALCH.

Tampón base débil + sal de su ácido conjugado

$$B + H_2O \Longrightarrow HB^+ + OH^-$$

Asumiendo de nuevo que las concentraciones en el equilibrio son aproximadamente iguales a las concentraciones iniciales, a partir de la expresión de la constante de basicidad $K_{\rm b}$:

$$K_{\rm b} = \frac{[{\rm HB}^+][{\rm OH}^-]}{[{\rm Bl}]},$$

podemos despejar la concentración de iones hidróxido, OH-:

$$[OH^{-}] = K_{b} \cdot \frac{[B]}{[HB^{+}]}$$

Tomando logaritmos y cambiando de signo llegamos a otra forma de la ECUACIÓN DE HENDERSON-HASSELBALCH:

$$pOH = pK_b + log \frac{[ácido conjugado]}{[base]}$$

Importancia biológica del pH

 $Tamp\'on\ H_2CO_3/HCO_3^-$ Regula el pH de la SANGRE \to pH = 7.40 ± 0.05:

$$CO_2 + H_2O \Longrightarrow H_2CO_3 \Longrightarrow HCO_3^- + H^+$$

Tampón $H_2PO_4^-/HPO_4^{2-}$ Regula el pH en el INTERIOR de las CÉLULAS \rightarrow pH ≈ 6.86 :

$$H_2PO_4^- \longrightarrow HPO_4^{2-} + H^+$$

Acidos y bases relevantes

A nivel industrial

Ácido sulfúrico (H_2SO_4) El compuesto químico más producido del mundo, obtenido a base de hidratar SO_3 concentrado previamente del SO_2 . Su principal uso es para crear ácido fosfórico que a su vez se emplea en FERTILIZANTES.

$$H_2SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$$
 (ácido fuerte)
 $HSO_4^- + H_2O \Longrightarrow SO_4^{2-} + H_3O^+$ (ácido DÉBIL)

Ácido nítrico (HNO3) Empleado en la producción de abonos, explosivos y colorantes:

$$HNO_3 + H_2O \longrightarrow NO_3^- + H_3O^+$$
 (ácido fuerte)

A nivel de consumo

Ácido acético (CH_3COOH) Presente en el vinagre, aunque principalmente usado en la fabricación de fibras textiles.

$$CH_3COOH + H_2O \Longrightarrow CH_3COO^- + H_3O^+$$
 (ácido DÉBIL)

Amoniaco (NH3) Empleado principalmente en la producción de FERTILIZANTES.

$$NH_3 + H_2O \implies NH_4^+ + OH^-$$
 (base Débil)

Hidróxido de sodio (NaOH) Empleado sobre todo en la fabricación de papel, tejidos y agentes de limpieza.

NaOH
$$\longrightarrow$$
 Na⁺ + OH⁻ (base fuerte)

Problemas medioambientales

Lluvia ácida Causada por la emisión de óxidos de Azufre y nitrógeno, que, en contacto con el agua, forman ácido sulfúrico y ácido nítrico, entre otros:

Óxidos de azufre (SOx)	Óxidos de nitrógeno (NOx)			
$SO_2 + H_2O \longrightarrow H_2SO_3$ $SO_3 + H_2O \longrightarrow H_2SO_4$	$3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{HNO}_3 + \text{NO}$			

Se considera lluvia ácida si pH < 5.5. Sus principales EFECTOS son:

- Acidificación de aguas (ríos/lagos) y suelos.
- Deterioro del patrimonio histórico (ataca rocas calizas, a base de CaCO₃).

Algunas soluciones serían:

- Sustituir combustibles fósiles por energías renovables.
- Uso de catalizadores en vehículos.
- Adición de un compuesto alcalino en ríos y/o lagos para neutralizar su acidez.
- Tratamiento de monumentos con recubrimientos adecuados, como el $Ba(OH)_2$, que reaccionan con el ácido sulfúrico formando $BaSO_4$, evitando la erosión.

Esmog Proveniente de la contracción de *SMOKE* y *FOG*, se refiere a una contaminación atmosférica debida sobre todo a ÓXIDOS DE NITRÓGENO (NOx), AZUFRE (SOx), OZONO (O₃), humo y otras partículas. Se considera un problema derivado de la industrialización moderna, aunque es más común en ciudades con climas cálidos, secos y mucho tráfico.

EFECTOS:

• La presencia de ozono y óxidos de nitrógeno y azufre causa problemas respiratorios, especialmente en ancianos y niños/as.

Algunas de las soluciones propuestas son:

- Reducir las emisiones de óxidos de nitrógeno y de compuestos orgánicos volátiles.
- Reducir la contaminación.