Welcome to

Programming Massively Parallel Processors (PMPP)

Prof. Dr.-Ing. Michael Goesele
Dr. Stefan Guthe
Dominik Wodniok

Graphics, Capture and Massively Parallel Computing (GCC)
TU Darmstadt

(Preliminary) Course Schedule

you are here

	12.10.2015	Introduction to PMPP
	13.10.2015	Lecture CUDA Programming 1
•	19.10.2015	Lecture CUDA Programming 2
	20.10.2015	Lecture CUDA Programming 3
	26.10.2015	Introduction Final Projects, Exercise 1 assigned
	27.10.2015	Questions and Answers (Q&A)
	2.11.2015	Lecture, Final Projects assigned, Ex. 1 due, Ex. 2 assigned
	3.11.2015	Questions and Answers (Q&A)
	9.11.2015	Lecture, Exercise 2 due
	10.11.2015	Lecture
	16.11.2015	Questions and Answers (Q&A)
	17.11.2015	Questions and Answers (Q&A)
	23.11.2015	1 st Status Presentation Final Projects
	24.11.2015	1st Status Presentation Final Projects (continued)
	30.11.2015	
	1.12.2015	Prof. DrIng. Michael Goesel

Today's Topics

- review of CUDA and GPU features
- shared memory introduction
- more about the programming model
- extension of simple matrix multiplication example to incorporate shared memory

Review: CUDA Programming Model

- the GPU (graphics processing unit) is viewed as a compute device that
 - is a coprocessor to the CPU or host
 - has its own DRAM (device memory)
 - runs many threads in parallel
- data-parallel portions of an application are executed on the device as kernels running in parallel on many threads
- differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - multi-core CPU needs only a few

Review: Blocks and Grids of Threads

- thread batching
- a kernel is executed as a grid of thread blocks
 - all threads share data memory space (global memory)
- a thread block is a batch of threads that can cooperate
 - synchronizing their execution
 - efficiently sharing data through shared memory
- two threads from two different blocks cannot cooperate

Review: Different Memory Types

- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only* per-grid texture memory
- The host can
 - R/W global memory
 - R/W constant memory
 - R/W texture memory

^{*} Can use surface memory for R/W access

Review: Different Memory Types

- long latency access
 - hundreds of clock cycles
 - L1+L2 cache on Kepler architecture (Tesla)
- global memory
 - main means of communicating R/W data between host and device
 - contents visible to all threads
- texture and constant memories
 - constants initialized by host
 - contents visible to all threads

Review: Simple Matrix Multiplication

- one block of threads compute matrix P
 - one element of P per thread
- each thread
 - loads a row of matrix M
 - loads a column of matrix N
 - perform one multiply and addition per pair of M and N elements
 - compute to off-chip memory access ratio close to 1:1 (not very high)
- size of matrix limited by the number of threads allowed in a thread block

Review: CUDA Function Declarations

- function pointer to __device__ functions are supported for compute capability 2.x and higher
- for functions executed on the device:
 - recursion only on cards with compute capability 2.x and higher
 - no static variable declarations inside the function
 - no variable number of arguments

GK110 Architecture

GK110 Thread Computing Pipeline

- Each SMX consists of 192 CUDA cores
 - FP Unit IEEE 754-2008
 - INT Unit
- 32 Load/Store Units
- 32 Special Function Units
 - sin, cosine, reciprocal, and square root in HW
- 64 Dynamic Parallelism Units

A Set of SIMT Multiprocessors

- each SMX is a set of CUDA cores with a Single Instruction Multiple Thread (SIMT) architecture
 - shared instruction unit
 - same program counter per set of 32 threads (warp)
 - thread divergence handled in HW

Memory Architecture (Simplified)

- local, global, constant, and texture spaces are regions of device memory
- each multiprocessor has:
 - a set of 32-bit registers per processor (two registers are combined for double values)
 - on-chip shared memory where the shared memory space resides
 - read-only constant cache to speed up access to the constant memory space
 - read-only texture cache to speed up access to the texture memory space

What is the GPU Good at?

- GPU is good at data-parallel processing with high single precision floating point arithmetic intensity
 - the same computation executed on many data elements in parallel – low control flow overhead
 - many calculations per memory access
 - newer generations also have strong double precision capabilities
- high floating-point arithmetic intensity and many data elements mean that memory access latency can be hidden with calculations instead of big data caches
- still need to avoid bandwidth saturation!

Review: Execution Model

- each thread block of a grid is executed by one streaming multiprocessor
 - shared memory space resides in the on-chip shared memory
- a streaming multiprocessor can execute multiple blocks concurrently
 - shared memory and registers are partitioned among the threads of all concurrent blocks
 - decreasing shared memory usage (per block) and register usage (per thread) increases number of blocks that can run concurrently
- each thread block is split into warps
 - each gets executed by one streaming multiprocessor (SM)

Threads, Warps, Blocks

- there are (up to) 32 threads in a warp
 - only less than 32 when there are fewer than 32 total threads
- there are (up to) 32 warps in a block
- each block (and thus, each warp) executes on a single multiprocessor
- K20X has 14 multiprocessors
- at least 14 blocks required to "fill" the device
 - more is better to hide latencies, ...
 - if resources (registers, thread space, shared memory) allow, more than 1 block can occupy each multiprocessor
- actual numbers may vary, see
 https://developer.nvidia.com/cuda-gpus

More Terminology Review

- device = GPU = set of multiprocessors
- multiprocessor = set of processors & shared memory
- kernel = GPU program
- grid = array of thread blocks that execute a kernel
- thread block = group of SIMT threads that execute a kernel and can communicate via shared memory

Memory	Location	Cached	Access	Who
Local	Off-chip	Yes (GF100 and newer)	Read/write	One thread
Shared	On-chip	N/A – resident	Read/write	All threads in a block
Global	Off-chip	Yes (GF100 and newer)	Read/write	All threads + host
Constant	Off-chip	Yes	Read	All threads + host
Texture	Off-chip	Yes	Read	All threads + host

Access Times

- register, shared memory
 - On-chip, single cycle
- local memory, global memory
 - DRAM, cached
 - slow when cache-miss (400 800 cycles)
 - single cycle when cache hit
- constant memory, texture memory
 - DRAM, cached, 1...10s...100s of cycles
 - depending on cache locality

Common Programming Pattern

- local and global memory reside in device memory (DRAM)
 - much slower access than shared memory
- a profitable way of performing computation on the device is to block data to take advantage of fast shared memory
 - partition data into subsets that fit into shared memory
 - handle each data subset with one thread block

Common Programming Pattern

- general approach
- load a data subset from global memory to shared memory
 - using multiple threads to exploit memory-level parallelism
- perform the computation on the subset from shared memory
 - each thread can efficiently multi-pass over any data element
- copying results from shared memory to global memory

Application Programming Interface

- the API is an extension to the C programming language consisting of:
- language extensions
 - to target portions of the code for execution on the device
- runtime library split into
 - a common component providing built-in vector types and a subset of the C runtime library in both host and device codes
 - a host component to control and access one or more devices from the host
 - a device component providing device-specific functions

Language Extensions: Variable Type Qualifiers

	Memory	Scope	Lifetime
device int GlobalVar;	global	grid	application
shared int SharedVar;	shared	block	block
constant int ConstantVar;	constant	grid	application

- automatic variables without any qualifier reside in a register
 - Warning: array with random access pattern resides in local memory

Caveat: Shared Memory and Volatile

- compiler may re-use read results from shared memory unless a __syncthread() is executed
- if other threads modified the shared memory location, this will not be visible unless variable is marked volatile (or you sync the threads):
 volatile shared int foo;

```
// myArray is an array of non-zero integers
// located in global or shared memory
__global__ void MyKernel(int *result)
{
   int tid = threadIdx.x;
   int ref1 = myArray[tid];
   myArray[tid + 1] = 2;
   int ref2 = myArray[tid]; ! Will not work as expected result[tid] = ref1 * ref2;
```

Variable Type Restrictions

- pointers can point to memory allocated or declared in global or shared memory
 - allocated in the host and passed to the kernel
 __global___ void KernelFunc(float *ptr)
 - obtained as the address of a global variable
 float *ptr = &GlobalVar;
 - obtained as the address of a shared variable
 float *ptr = &SharedVar;

Language Extensions: Built-in Variables

- dim3 gridDim;
 - dimensions of the grid in blocks (gridDim.z unused on older hardware)
- dim3 blockDim;
 - dimensions of the block in threads
- dim3 blockIdx;
 - block index within the grid
- dim3 threadIdx;
 - thread index within the block

Application Programming Interface

- the API is an extension to the C programming language consisting of:
- language extensions
 - to target portions of the code for execution on the device
- runtime library split into
 - a common component providing built-in vector types and a subset of the C runtime library in both host and device codes
 - a host component to control and access one or more devices from the host
 - a device component providing device-specific functions

Common Runtime Component (CRC) Built-in Vector Types

- [u]char[1..4]
- [u]short[1..4]
- [u]int[1..4]
- [u]long[1..4]
- float[1..4]
- double2 (only available on devices with compute capability >=1.3)
 - structures accessed with x, y, z, w fields
 uint4 param;
 int y = param.y;
- dim3
 - based on uint3
 - used to specify dimensions

CRC: Mathematical Functions

- pow, sqrt, cbrt, hypot
- exp, exp2, expm1
- log, log2, log10, log1p
- sin, cos, tan, asin, acos, atan, atan2
- sinh, cosh, tanh, asinh, acosh, atanh
- ceil, floor, trunc, round
- •
- when executed on the host, a given function uses the C runtime implementation if available
- these functions are only supported for scalar types, not vector types

Application Programming Interface

- the API is an extension to the C programming language consisting of:
- language extensions
 - to target portions of the code for execution on the device
- runtime library split into
 - a common component providing built-in vector types and a subset of the C runtime library in both host and device codes
 - a host component to control and access one or more devices from the host
 - a device component providing device-specific functions

Host Runtime Component (HRC)

- provides functions to deal with:
 - device management (including multi-device systems)
 - memory management
 - error handling
- initialized the first time a runtime function is called
- a host thread can invoke device code on only one device at a time
 - multiple host threads required to efficiently run on multiple devices

HRC: Memory Management

- device memory allocation
 - cudaMalloc(), cudaFree()
- memory copy from host to device, device to host, device to device and host to host
 - cudaMemcpy(), cudaMemcpy2D(),
 cudaMemcpyToSymbol(), cudaMemcpyFromSymbol(),
 ...
- memory addressing
 - cudaGetSymbolAddress()

Application Programming Interface

- the API is an extension to the C programming language consisting of:
- language extensions
 - to target portions of the code for execution on the device
- runtime library split into
 - a common component providing built-in vector types and a subset of the C runtime library in both host and device codes
 - a host component to control and access one or more devices from the host
 - a device component providing device-specific functions

Device Runtime Component (DRC): Mathematical Functions

- some mathematical functions such as sin(x) have a less accurate, but faster device-only version (e.g. __sin(x))
 - pow
 - log, log2, log10
 - exp
 - sin, __cos, __tan
- can also be enforced via compiler switch -use_fast_math
 - Better to explicitly use the functions above though due to general precision loss when using fast math

DRC: Synchronization Function

- void __syncthreads();
- synchronizes all threads in a block
- once all threads have reached this point, execution resumes normally
 - warning: all non-terminated threads must reach this point
 - device emulation mode provides error message
- used to avoid RAW/WAR/WAW hazards when accessing shared or global memory
- allowed in conditional constructs only if the conditional is uniform across the entire thread block
 - otherwise not reached by all threads

DRC: Memory Fence

- void __threadfence();
- memory fence for access to global and shared memory
- guaranties modification to be visible for all threads
 - Programming Guide B.5 Memory Fence Functions
- used to avoid RAW/WAR/WAW hazards
- volatile variable
- enforce memory read instruction
 - Rarely needed
 - Programming Guide for further details

Compiling, Linking, ...

- some general information on workflow
- assumes familiarity with basic C/C++ compilation and linking

Compilation

- any source file containing CUDA language extensions must be compiled with nvcc
- nvcc is a compiler driver
 - works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...
- nvcc can output:
 - either C code
 - must be compiled with the rest of the application using another tool
 - or object code directly

Linking

- any executable with CUDA code requires two dynamic libraries:
 - the CUDA runtime library cudart
 - the CUDA core library cuda
 - later versions of CUDA support static libraries

Back to Matrix Multiplication ...

- second look on the problem
- higher performance using shared memory implementation to decrease access to global memory

Recall Step 4: Device-Side Kernel Function


```
for (int k = 0; k < M.width; ++k) {
                                           Ν
  float Melement =
    M.elements[ty * M.pitch + k];
  float Nelement =
    N.elements[k * N.pitch + tx];
  Pvalue += Melement * Nelement;
// Write the matrix
                                           P
// to device memory;
// each thread writes
// one element
P.elements[ty * P.pitch
                                             tx
  + tx] = Pvalue;
                               WIDTH
                                                 WIDTH
```

How about performance on K20X?

- all threads access global memory for their input matrix elements
 - two memory accesses (8 bytes) per floating point fused multiplyadd
 - 8B/s of memory bandwidth/2FLOPS
 - 250 GB/s limits the code at 62.5 GFLOPS
- need to drastically cut down memory accesses to get closer to the peak 3.95 TFLOPS

Idea: Use Shared Memory to Reuse Data from Global Memory

- each input element is read by WIDTH threads.
- if we load each element into shared memory and have several threads use the local version, we can drastically reduce the memory bandwidth
 - tiled algorithms

Tiled Multiply Using Thread Blocks

M

WIDTH

- one block computes one square sub-matrix P_{sub} of size **BLOCK_SIZE**
- one thread computes one element of P_{sub}
- assume that the dimensions of M and N are multiples of **BLOCK_SIZE** and square shape

bx

Shared Memory Usage

- At BLOCK_SIZE 16 each multiprocessor has up to 48KB shared memory and allows 16 active blocks on GK110
 - each thread block uses 2*256*4B = 2KB of shared memory
 - can have up to 24 thread blocks actively executing due to shared memory
 - clamped to 16 because of block limit
 - for BLOCK_SIZE = 16, this allows up to 16*512 = 8K pending loads
- the next BLOCK_SIZE 32 leads to 2*32*32*4B= 8KB shared memory usage per thread block, allowing up to 6 thread blocks active at the same time

Numbers are different for different shared memory configurations

First-order Size Considerations

- each thread block should have a minimum size of 192 threads (usually)
 - BLOCK_SIZE of 16 gives 16*16 = 256 threads
- we need at least 14 thread blocks (on K20X)
 - 1024*1024 P matrix gives 64*64 = 4096 thread blocks
- each thread block performs
 - 2*256 = 512 float loads from global memory
 - for 256 * 16 = 4096 fused mul/add operations.
 - memory bandwidth is a less limiting factor
 - Still only at about 1000 GFLOPS

First-order Size Considerations

- each thread block should have a minimum size of 192 threads (usually)
 - BLOCK_SIZE of 32 gives 32*32 = 1024 threads
- we need at least 14 thread blocks (on K20X)
 - 1024*1024 P matrix gives 32*32 = 1024 thread blocks
- each thread block performs
 - 2*1024 = 2048 float loads from global memory
 - for 1024 * 32 = 32768 fused mul/add operations.
 - memory bandwidth even less limiting factor
 - Still only 2 TFLOPS of the theoretical 3.95 TFLOPS

Kernel Execution Configuration

- for very large N and M dimensions, one will need to add another level of blocking and execute the second-level blocks sequentially
 - see assignment

CUDA Code – Kernel Overview


```
// Block index
int bx = blockIdx.x; int by = blockIdx.y;
// Thread index
int tx = threadIdx.x; int ty = threadIdx.y;
// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;
// Loop over all the sub-matrices of M and N
  required to compute the block sub-matrix
for (int m = 0; m < M.width/BLOCK SIZE; ++m) {</pre>
   // code from the next few slides
};
```

Tiled Multiply Using Thread Blocks

- one block computes one square sub-matrix P_{sub} of size BLOCK_SIZE
- one thread computes one element of P_{sub}
- assume that the dimensions of M and N are multiples of BLOCK_SIZE and square shape

Load Data to Shared Memory


```
// Get a pointer to the current sub-matrix Msub of M
Matrix Msub = GetSubMatrix(M, m, by);
// Get a pointer to the current sub-matrix Nsub of N
Matrix Nsub = GetSubMatrix(N, bx, m);
  shared float Ms[BLOCK SIZE][BLOCK SIZE];
 shared float Ns[BLOCK SIZE][BLOCK SIZE];
// each thread loads one element of the sub-matrix
Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);
// each thread loads one element of the sub-matrix
Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);
```

Tiled Multiply Using Thread Blocks

bsize-1

- one block computes one square sub-matrix P_{sub} of size BLOCK_SIZE
- one thread computes one element of P_{sub}
- assume that the dimensions of M and N are multiples of BLOCK_SIZE and square shape

Compute Result


```
// Synchronize to make sure the sub-matrices are
// loaded before starting the computation
 syncthreads();
// each thread computes one element of the block sub-
                                        This may cause issues
   matrix
                                         with bank conflicts but
for (int k = 0; k < BLOCK SIZE; ++k)
                                        more about this tomorrow.
    Pvalue += Ms[ty][k] * Ns[k][tx];
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration
  syncthreads();
```

CUDA Code - Save Result


```
// Get a pointer to the block sub-matrix of P
Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element
SetMatrixElement(Psub, tx, ty, Pvalue);
```

Assignment

- read Chapters 3 (selected parts),
 4+5 of the CUDA Programming Guide (Version 7.5)
 - available online at NVIDIA's web site and via the course web page
- read Paper
 - Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU

