

Practice 4 - Bandpass filters detailed instructions

Nikolay Nikolaev Nikolai Poliakov Roman Olekhnovich (nanikolaev@itmo.ru)
(polyakov_n_a@itmo.ru)
(r.o.olekhnovich@mail.ru)

https://forms.yandex.com/cloud/637a6d72eb614687d53f9b86/

https://clck.ru/32jqdb

1st deadline: 02.12.2022 23:59 (GMT +8)

Active Band Pass Filter

ITMO

Inverting Band Pass Filter Circuit

$$f_{C1} = \frac{1}{2\pi R_1 C_1}$$
$$f_{C2} = \frac{1}{2\pi R_2 C_2}$$

Active Band Pass Filter

Multiple Feedback Band Pass Active Filter

infinite-gain multiple-feedback (IGMF) band pass filter

the characteristics of the IGMF filter

$$f_r = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}}$$

$$Q = \frac{f_r}{BW_{-3dB}} = \frac{1}{2} \sqrt{\frac{R_2}{R_1}}$$

$$Max \ gain \sim -\frac{R_2}{2R_1} = 2Q^2$$

Active Band Pass Filter

Sallen-Key

the characteristics of the IGMF filter

$$\frac{U_{out}(p)}{U_{in}(p)} = \frac{KRC\omega_{0}p}{R^{2}C^{2}\omega_{0}^{2}p^{2} + RC(3 - K)\omega_{0}p + 1}$$

$$Max \ gain \sim K = 1 + \frac{R_{2}}{R_{3}}$$

$$C_1 = C_2 = C$$

$$C_1 = C_2 = C$$

 $R_1 = R_2 = \frac{1}{2}R_3$

Middle frequency of bandpass:

$$B = \omega_0(3 - K)$$

Frequency Transformation

Type of Transformation	Frequency transform						
The Lowpass to Highpass (LP-HP) Frequency Transformation	$s \Leftrightarrow \frac{1}{s}$ $H_{HP}(s) = H_{LP}\left(\frac{1}{s}\right)$						
The Lowpass to Bandpass (LP-BP) Frequency Transformation	$s \Leftrightarrow \frac{s^2 + \omega_0^2}{sBW}$ $H_{BP}(s) = H_{LP}\left(\frac{s^2 + \omega_0^2}{sBW}\right)$						
The Lowpass to Band-Reject (LP-BR) Frequency Transformation	$s \Leftrightarrow \frac{sBW}{s^2 + \omega_0^2}$ $H_{BR}(s) = H_{LP}\left(\frac{sBW}{s^2 + \omega_0^2}\right)$						

Typical values of Bandpass filter parameters

$$H_{BP2}(p) = \frac{K\frac{\omega_0}{Q}p}{p^2 + \frac{\omega_0}{Q}p + \omega_0^2} = \frac{K}{1 + Q(\frac{p}{\omega_0} + \frac{\omega_0}{p})} \qquad \omega_0 = \sqrt{\omega_{P1}\omega_{P2}}$$

$$Q = \omega_0 / B$$

$$B = \omega_{p2} - \omega_{p1}$$

$$B = \omega_{p2} - \omega_{p1}$$

$$Chebyshov$$
Reccel

$$\omega_0 = \sqrt{\omega_{P1}\omega_{P2}}$$

$$Q=\omega_0/B$$

$$B=\omega_{p2}-\omega_{p1}$$

n	i	a_i	b_i	$f_{\rm si}/f_{\rm g}$	Q_i	n	i	a_i	b_i	$f_{\rm gi}/f_{\rm g}$	Q_i	n	i	a_i	b_i	f_{gi}/f_{g}	Q_i
Butte	rworth					Cheb	yshev					Besse	el .				
1	1	1,0000	0,0000	1,000	35	1	1	1,0000	0,0000	1,000	-	1	1	1,0000	0,0000	1,000	-
2	1	1,4142	1,0000	1,000	0,71	2	1	1,0650	1,9305	1,000	1,30	2	1	1,3617	0,6180	1,000	0,58
3	1	1,0000	0,0000	1,000	-	3	1	3,3496	0,0000	0,299	-	3	1	0,7560	0,0000	1,323	-
	2	1,0000	1,0000	1,272	1,00		2	0,3559	1,1923	1,396	3,07		2	0,9996	0,4772	1,414	0,69
4	1	1,8478	1,0000	0,719	0,54	4	1	2,1853	5,5339	0,557	1,08	4	1	1,3397	0,4889	0,978	0,52
	2	0,7654	1,0000	1,390	1,31		2	0,1964	1,2009	1,410	5,58		2	0,7743	0,3890	1,797	0,81
5	1	1,0000	0,0000	1,000	-	5	1	5,6334	0,0000	0,178	-	5	1	0,6656	0,0000	1,502	_
	2	1,6180	1,0000	0.859	0.62		2	0,7620	2,6530	0,917	2,14		2	1,1402	0,4128	1,184	0,56
	3	0,6180	1,0000	1,448	1,62		3	0,1172	1,0686	1,500	8,82		3	0,6216	0,3245	2,138	0,92
6	1	1,9319	1,0000	0,676	0,52	6	1	3,2721	11,6773	0,379	1,04	6	1	1,2217	0,3887	1,063	0,51
	2	1,4142	1,0000	1,000	0,71		2	0,4077	1,9873	1,086	3,46		2	0,9686	0,3505	1,431	0,61
	3	0,5176	1,0000	1,479	1,93		3	0,0815	1,0861	1,489	12,78		3	0,5131	0,2756	2,447	1,02
7	1	1,0000	0,0000	1,000	-	7	1	7,9064	0,0000	0,126	_	7	1	0.5937	0.0000	1.684	_
	2	1,8019	1,0000	0,745	0,55		2	1,1159	4,8963	0,670	1,98		2	1,0944	0,3395	1,207	0,53
	3	1,2470	1,0000	1,117	0.80		3	0,2515	1,5944	1,222	5,02		3	0,8304	0,3011	1,695	0,66
	4	0,4450	1,0000	1,499	2,25		4	0,0582	1,0348	1,527	17,46		4	0,4332	0,2381	2,731	1,13
8	1	1,9616	1,0000	0,661	0,51	8	1	4,3583	20,2948	0,286	1,03	8	1	1,1112	0,3162	1,164	0,51
	2	1,6629	1,0000	0,829	0,60		2	0,5791	3,1808	0,855	3,08		2	0,9754	0,2979	1,381	0,56
	3	1,1111	1,0000	1,206	0,90		3	0,1765	1,4507	1,285	6,83		3	0,7202	0,2621	1,963	0,71
	4	0,3902	1,0000	1,512	2,56		4	0,0448	1,0478	1,517	22,87		4	0,3728	0,2087	2,992	1,23
9	1	1,0000	0,0000	1,000	-	9	1	10,1759	0,0000	0,098	-	9	1	0,5386	0,0000	1,857	_
	2	1,8794	1,0000	0,703	0,53		2	1,4585	7,8971	0,526	1,93		2	1,0244	0,2834	1,277	0,52
	3	1,5321	1,0000	0,917	0,65		3	0,3561	2,3651	1,001	4,32		3	0,8710	0,2636	1,574	0,59
	4	1,0000	1,0000	1,272	1,00		4	0,1294	1,3165	1,351	8,87		4	0,6320	0,2311	2,226	0,76
	5	0,3473	1,0000	1,521	2,88		5	0,0348	1,0210	1,537	29,00		5	0,3257	0,1854	3,237	1,32
10	1	1,9754	1,0000	0,655	0,51	10	1	5,4449	31,3788	0,230	1,03	10	1	1,0215	0.2650	1,264	0,50
	2	1,7820	1,0000	0,756	0,56		2	0,7414	4,7363	0,699	2,94		2	0,9393	0,2549	1,412	0,54
	3	1,4142	1,0000	1,000	0,71		3	0,2479	1,9952	1,094	5,70		3	0,7815	0,2351	1,780	0,62
	4	0,9080	1,0000	1,322	1,10		4	0,1008	1,2638	1,380	11,15		4	0,5604	0,2059	2,479	0,81
	5	0,3129	1,0000	1,527	3,20		5	0,0283	1,0304	1,530	35,85		5	0,2883	0,1665	3,466	1,42

Stage 1

ITMO

Model templates:

2021.11.02 - Practice - Bandpass filters.asc

2021.11.02 - Practice - Bandpass filters.plt

OPAMP_VXX.lib

Stage 2 - Delete all the schemes which doesn't correspond to your variant data

Stage 3 -Save a screenshot of your LTSPICE schematic

Specify your personal lib file according to your variant.	
Right-click to edit:	
	eters:
Transient analysis parameters:	*.tran 0 {10*1/f_test} {0*1/f_test} {1/f_test/200} ui
Time step parameters:	
Signal source voltage amplitude [V]:	
Step source voltage amplitude [V]:	.param V_step=0
Signal source voltage frequency [Hz]:	.param f_test=1k
AC sweep analysis parameters:	ac dec 100 0.1 1000000
Signal source voltage amplitude AC [V]:	
· · · · · · · · · · · · · · · · · · ·	rs for simulation:
R1 [Ω]:	.param R1=10k
R2[Q]:	
R3 [Ω]:	.param R3=10k
CI[F]:	.param C1=10n
C2[F]:	param C2=10n
C3[F]:	param C3=10n
Load resistance R_load [Ω]:	.param R_load =1000k
Power supply source voltage VPP+[V]:	.param Vpp_plus=12
Power supply source voltage VPP-[V]:	.param Vpp_minus=12
Step for R1 Tolerance	*.step param R1 list 9500 10000 10500
Step for R2 Tolerance	*.step param R2 list 9500 10000 10500
Step for R3 Tolerance	*.step param R3 list 9500 10000 10500
Step for C1 Tolerance	
Step for C2 Tolerance	step param C2 list 9500p 10000p 10500p
Stép for C3 Tolerance	step param C3 list 9500p 10000p 10500p
Step for R_load	*.step param R load list 0.01k 0.1k 10k 50k 100k
This.line is required to simulate ideal OpAMP:	

R1 [Ω]:

R2 [Ω]:

R3 [Ω]:

C1 [F]:

C2 [F]:

C3 [F]:

R1 [Ω]:

R2 [Ω]:

R3 [Ω]:

C1 [F]:

C2 [F]:

C3 [F]:

Define the bandwidth in <u>Hz</u> from simulation results of scheme with an <u>ideal</u> operational amplifier

Define the bandwidth in <u>Hz</u> from simulation results of scheme with a <u>real</u> operational

amplifier

Define f0 as a middle of bandwidth from simulation results of scheme with an <u>ideal</u> operational amplifier

Define f0 as a middle of bandwidth from simulation results of scheme with a <u>real</u> operational amplifier

Sallen-Key Band Pass Active Filter

$$B = f_0(3-K)$$
 [Hz]

$$C_1 = C_2 = C$$

$$R_1 = R_2 = \frac{1}{2}R_3 = R$$

$$R_3 = 2R$$

$$Max \ gain \ K = 1 + \frac{R_2}{R_3}$$

Middle frequency of bandpass:
$$\omega_0 = \frac{1}{RC}$$
 [rad/s]

Bandwidth:
$$B = \omega_0(3-K)$$
 [rad/s]

$$f_0 = \frac{1}{2\pi \cdot RC} \text{ [Hz]}$$

$$B = f_0(3 - K)$$
 [Hz]

Multiple Feedback Band Pass Active Filter

the characteristics of the IGMF filter

$$\frac{U_{out}(p)}{U_{in}(p)} = -\frac{\frac{R_2 R_3}{R_1 + R_3} C\omega_0 p}{\frac{R_1 R_2 R_3}{R_1 + R_3} C^2 \omega_0^2 p^2 + \frac{2R_1 R_3}{R_1 + R_3} C\omega_0 p + 1}$$

$$Max \ gain \approx -\frac{R_2}{2R_1} = 2Q^2$$

$$C_1 = C_2 = C$$

Middle frequency of bandpass:
$$\omega_0 = \frac{1}{C} \sqrt{\frac{R_1 + R_3}{R_1 R_2 R_3}}$$
 [rad/s]

$$f_0 = \frac{1}{2\pi \cdot C} \sqrt{\frac{R_1 + R_3}{R_1 R_2 R_3}}$$
 [Hz]

Bandwidth:
$$B = \frac{1}{\pi \cdot R_2 C}$$

Ideal OpAMP

Real OpAMP

BEFORE

$$Max \ gain \ K = 1 \ (always)$$

$$K_{\omega 0} = \frac{K}{3 - K} = 0.5 (-6dB)$$

AFTER

Max gain
$$K = 1 + \frac{R_2}{R_3} = 1,5$$
 (in the task)
$$K_{\omega 0} = \frac{K}{3 - K} = 1 \text{ (0 dB)}$$

https://forms.yandex.com/cloud/6379029df47e7378d18aa0c4/

https://clck.ru/32kU7G

1st deadline: 23.11.2022 15:15 (GMT +8)

Good news: all evaluations for C1/C2 are correct and the same for both cases

You may define the bandwidth at -9dB instead of -3dB or fix the scheme and makes new pictures with a new gain

AFTER

Max gain
$$K = 1 + \frac{R_2}{R_3} = 1,5$$
 (in the task)
$$K_{\omega 0} = \frac{K}{3 - K} = 1 \text{ (0 dB)}$$

