Nets in Banach Space

Yuguang XIAO

T.E.R.

M1 Mathématiques et applications Sorbonne Université

Encadrant : Alexandros Eskenazis IMJ-PRJ, Sorbonne Université

May 22, 2025

Table of Contents

- Gromov's question
- 2 Theorem 1
- 3 Theorem 2
- 4 Conclusion

Definition

Definition (Separated net)

If a, b > 0, an (a, b)-net or (a, b)-separated net in a normed space $(X, \|\cdot\|)$ is a subset $\mathcal{N} \subset X$ which is:

- a-separated, i.e. for every $u \neq v \in \mathcal{N}$, we have $||u v|| \geq a$;
- *b-dense*, i.e. for every $x \in X$ there exists $u \in \mathcal{N}$ such that $||x u|| \le b$.

For example, the grid $\mathbb{Z}^2 \subset \mathbb{R}^n$ is a $(1, \frac{\sqrt{n}}{2})$ -net.

Definition

Definition (Bi-Lipschitz mapping)

A map $\phi: \mathbb{R}^n \to \mathbb{R}^n$ is *bi-Lipschitz* if there is a constant K such that

$$\frac{1}{K} < \frac{\|\phi(x) - \phi(x')\|}{\|x - x'\|} < K$$

for $x \neq x'$, where $\|\cdot\|$ is the Euclidean norm.

Definition

Definition (Bi-Lipschitz equivalent subsets)

Two subsets \mathcal{N}_1 , \mathcal{N}_2 of a normed space $(X, \|\cdot\|)$ are bi-Lipschitz equivalent if there exists a bi-Lipschitz and bijective map from \mathcal{N}_1 to \mathcal{N}_2 .

Gromov's question

Gromov's question

Is it true that any two nets in the same Euclidean space \mathbb{R}^n are **bi-Lipschitz equivalent**, for $n \geq 2$?

A Negative Answer:

 A counter-example found independently by Burago-Kleiner and McMullen in 1998.

Follow-up Question

Follow-up Question

What about in the infinite-dimensional Banach space?

A Positive Answer:

• Shown by Lindenstrauss, Matoušková, and Preiss in 2000

Burago-Kleiner, McMullen 1998

Theorem 1 (Burago-Kleiner, McMullen 1998)

There exists an (a, b)-net in \mathbb{R}^2 which is not bi-Lipschitz equivalent to \mathbb{Z}^2 .

Construction of a separated net (Sketch for k = 3)

- Define an affine map $\phi_k : [0,1]^2 \to S_k$, and set $\rho_k = \frac{1}{\rho \circ \phi_k^{-1}}$ on S_k .
- $n_{ki} = \lfloor \sqrt{\int_{T_{ki}} \rho_k \, d\mathcal{L}} \rfloor$.

Equivalent Theorem

Equivalent Theorem

Let $\rho:[0,1]^2\to[1,1+c]$ be a measurable function which is not the Jacobian of any bi-Lipschitz map $\varphi:[0,1]^2\to\mathbb{R}^2$ with

$$\mathsf{Jac}(f) := \mathsf{det}(Df) = \rho$$
 a.e.

If and only if there exists an (a, b)-net in \mathbb{R}^2 which is not bi-Lipschitz equivalent to \mathbb{Z}^2 .

Sketch of Proof : \Longrightarrow

Suppose exist g bi-lipschitz homeomorphism from $\mathcal N$ to $\mathbb Z^2$

• Define rescaled maps f_k from $\mathcal{N}_k := \mathcal{N} \cap \mathcal{S}_k \subset [0,1]^2$ to \mathbb{R}^2 .

$$f_k(x) = \frac{1}{l_k} \left(g \circ \phi_k(x) - g \circ \phi_k(\star_k) \right)$$

where \star_k is some point $\in \mathcal{N}_k$

- By proof of Arzelà-Ascoli (diagonal argument), extract a uniformly convergent subsequence $f_k \to f$.
- Measure pushforward implies: $Jac(f) = \rho$ a.e.

Sketch of Proof : ←

Shown by McMullen

Counter-example

Lemma

For every $\lambda>1$ and L>1, there exists $\mu>1$ with the following property:

Let $x,y\in\mathbb{R}^2$, and let U be an open neighborhood of the segment [x,y]. Then there exist a function f from U to $\{1,\lambda\}$, a finite set of disjoint segments $I_j=[x_j,y_j]\subset U$ and $\varepsilon>0$, such that if $\varphi:U\to\mathbb{R}^2$ is a Lipschitz homeomorphism with Lipschitz constants of φ and φ^{-1} bounded by L, and

$$\mathcal{L}(\{u \in U : Jac(\varphi)(u) \neq f(u)\}) < \varepsilon,$$

then there exists a j such that

$$\frac{|\varphi(x_j) - \varphi(y_j)|}{\|x_j - y_j\|} \ge \mu \cdot \frac{|\varphi(x) - \varphi(y)|}{\|x - y\|}.$$

- Define f = 1 on even-indexed S_i , and $f = \lambda$ on odd-indexed S_i .
- for each $1 \le i \le N, 0 \le k < M$ and $0 \le l \le M$

$$z_{k,l}(i) = \left(\frac{i-1}{N} + \frac{k}{MN}, \frac{l}{MN}\right)$$

- $\varphi: U \to \mathbb{R}^2$ be a L-bi-Lipschitz homeomorphism :
 - $\varphi(x) = (0,0)$ and $\varphi(y) = (a,0)$ where x = (0,0) and y = (1,0)

Figure: Grid structure in R for N = 10; blue points denote $z_{k,l}(i)$

- $w_{k,l}(i) = \varphi(z_{k,l}(i)) \varphi(z_k(i+1))$
- w = (a/N, 0)
- there exist i, for each k and I, $||w_{k,l}(i) w|| < \eta a/N$

definition

Definition (Haussdorff distance)

The Hausdorff distance between X and Y is defined as

$$d_H(X,Y) := \max \left\{ \sup_{x \in X} d(x,Y), \sup_{y \in Y} d(X,y) \right\},$$

where

$$d(a,B) := \inf_{b \in B} d(a,b)$$

Figure: Components of the calculation of the Hausdorff distance between the green curve \boldsymbol{X} and the blue curve \boldsymbol{Y}

- $d_H(\varphi(S_i) + w, \varphi(S_{i+1})) \leq \eta a/N + L/(MN)$
- By Area of σ -neighborhood bounded:

$$|\mathcal{L}(\varphi(S_i) + w) - \mathcal{L}(\varphi(S_{i+1}) + w)| < \frac{\lambda - 1}{2N^2}$$

By definition of Area:

$$|\mathcal{L}(\varphi(S_i) + w) - \mathcal{L}(\varphi(S_{i+1}) + w)| \ge \frac{\lambda - 1}{N^2} - 2\varepsilon L^2$$

• Contradiction of $\varepsilon \Longrightarrow$ lemma

- Step 1:
 - Apply lemma : exist g_1 on U_L , $\{I_{1,j}\}$ and ε_1
 - Choose $U_{1,j}$ containing $I_{1,j}$ such that $\mathcal{L}(\cup_j U_{1,j}) < \varepsilon_1/2$
- Step 2:
 - Apply lemma: exist $g_{1,j}$ on $U_{1,j}$, $\{I_{1,j,k}\}$ and $\varepsilon_{1,j}$

•

$$g_2 = egin{cases} g_1 & \textit{on } U_L \setminus \cup_j U_{1,j} \ g_{1,j} & \textit{on } U_{1,j} \end{cases}$$

• Choose $U_{1,j,k}$ containing $I_{1,j,k}$ such that $\mathcal{L}(\cup_{j,k} U_{1,j,k}) < \min_j \varepsilon_{1,j}/2$

- Suppose $\varphi: U_L \to \mathbb{R}^2$ is bi-Lipschitz with $J(\varphi) = f_L$ a.e.
- Then in each iteration, φ must stretch at least one segment [u, v] by a factor $\geq \mu^n/L$.
- After k steps, this accumulates to a stretch $\geq \mu^k/L > L$, contradicting the L-Lipschitz condition.

Conclusion: No such bi-Lipschitz φ exists.

Lindenstrauss, Matoušková, Preiss 2000

Theorem 2 (Lindenstrauss, Matoušková, Preiss 2000)

Let E be an infinite-dimensional Banach space. Then any two nets in E are bi-lipschitz equivalent.

• Any net in E has the same cardinality equal to density character of X.

Lemma

Let X be a metric space, and let \mathcal{N}_1 and \mathcal{N}_2 be two nets in X. Let $T:\mathcal{N}_1\to\mathcal{N}_2$ be a bijective map, such that $\sup\{d(x,Tx):x\in\mathcal{N}_1\}<\infty$. Then T is a bi-Lipschitz equivalence between the two nets.

- Choose a **maximal 5b-separated** set of points $\{y_{\alpha}\}$, and use it to partition the space E into a series of "small blocks" C_{α} with $C_{\alpha} = \{x \in E: ||x y_{\alpha}|| \leq 5b\}$ where $diam(C_{\alpha}) \leq 10b$
- $Card(C_{\alpha} \cap \mathcal{N}_1) = Card(C_{\alpha} \cap \mathcal{N}_2)^*$

* the equality is not true in finite-dimensional space

Conclusion

- Burago-Kleiner, McMullen 1998
- Lindenstrauss, Matoušková, Preiss 2000

Thank you for your attention!

Question?