Lecture 13 Deductive Synthesis

Nadia Polikarpova

Map of the module

Constraint-based synthesis

- How to solve constraints about infinitely many inputs? CEGIS
- How to encode semantics of looping / recursive programs?
 - Bounded reasoning
 - Unbounded / deductive reasoning

Deductive synthesis

How to derive programs from specifications?

Enumerative synthesis with deduction

How to use deductive reasoning to guide the search?

The big picture

programs that can be verified using invariant of a given form

Program verification is conservative

Not all correct programs can be verified

For synthesis, this is a feature!

Only need to explore verifiable programs

Caveats

- This can happen:
 - but if you want a verified program, there's no way around it
- We also need to search for the invariant

Deductive reasoning for synthesis

Main idea: Look for the proof to find the program

- The space of valid program derivations is smaller than the space of all programs
- The result is provably correct!

Applications:

- Constraint-based search: use loop invariants to encode the space of correct looping programs
- Enumerative search: prune unverifiable candidates early
- Deductive search: search in the space of provably correct transformations / decompositions

Deductive Synthesis

Deductive synthesis

The synthesis problem:

• Find x such that Q(a, x) whenever P(a)

Using semantic-preserving transformations, gradually rewrite the problem above into:

- Find T such that T whenever P(a)
- where T is a term that does not mention x

Toy example:

• "Find x such that x + x = 4a" \rightarrow "Find x such that 2x = 4a" \rightarrow "Find 2y such that 4y = 4a" \rightarrow "Find 2y such that y = a" \rightarrow "Find 2a such that x + x = 4a" \rightarrow "Find 2a such that x + x = 4a" \rightarrow "Find 2a such that x + x = 4a" \rightarrow "Find 2a such that a"

Deductive synthesis: challenges

Define a set of transformation rules that is sound

 A solution to the transformed problem is a solution to the original problem

... and complete

All programs we care about can be derived

In most cases, multiple rules apply to a problem

Need a search strategy!

Two approaches

Transformation rules

A set of inference rules for decomposing a synthesis problem into simpler problems

- Axioms (terminal rules) for solving elementary problems
- Rules have side conditions to prove

Depth- or best-first search in the space of derivations

[Manna, Waldinger'79] [Kneuss et al.'13]

Theorem proving

Extract the program from a constructive proof of $\exists x. \forall a. P(a) \Rightarrow Q(a, x)$

- Instead of inventing custom rules, reuse an existing theorem prover
- ... but augment its rules with term extraction
- Reuse the prover's search strategy!

[Green'69] [Manna, Waldinger'80]

Two approaches

Theorem proving

Extract the program from a constructive proof of $\exists x. \forall a. P(a) \Rightarrow Q(a, x)$

- Instead of inventing custom rules, reuse an existing theorem prover
- ... but augment its rules with term extraction
- Reuse the prover's search strategy!

[Green'69] [Manna, Waldinger'80]

Synthesis as theorem proving: intuition

```
Axioms: 1. head(x :: xs) = x 2. tail(x :: xs) = xs
Prove: \exists l. head(l) = 5 \land tail(l) = []
head(l) = 5 \land tail(l) = []
 • Unify first conjunct with 1, substituting l \to x :: xs, x \to 5
head(5::xs) = 5 \land tail(5::xs) = []
 • Unify second conjunct with 2, substituting x \to 5, xs \to []
head(5 :: []) = 5 \land tail(5 :: []) = []
```

[Manna, Waldinger'80]

Sequent:

assertions	goals	output
$A_i(a,x)$		
	$G_i(a,x)$	$t_i(a,x)$

Meaning: if $\bigwedge_i \forall x. A_i$ holds, then $\bigvee_i \exists x. G_i$ holds

ullet and the corresponding t_i is an acceptable solution

Synthesis as theorem proving

[Manna, Waldinger'80]

Synthesis problem: "Find x such that Q(a,x) whenever P(a)"

assertions goals output P(a) Q(a,x)

Apply inference rules to add new assertions and goals

• eventually arrive to (where t does not contain x)

Τ

Inference rules

Splitting

- Split assertion $A_1 \wedge A_2$ into two assertions A_1 and A_2
- Split a goal $G_1 \vee G_2$ into two goals G_1 and G_2

Transformation

- Given a rewrite rule $s \to t$, and assertion / goal $F[s\theta]$, add assertion / goal $F[t\theta]$
- Apply the unifying substitution θ to the output!

Inference rules

Resolution

- Intuition: given assertion P and goal G[Q], where $P\theta=Q\theta$, we can add goal $G[Q\theta\to T]$
- The real rules is a bit more general

Induction

• If A[n] conjunctin of all assumptions, G[n] is a goal, add assumption $\forall i < n. A[i] \Rightarrow G[i]$

Example: quotient and remainder

Specification:

$$div(i,j), rem(i,j) \Leftarrow \text{find } (q,r) \text{ s.t.}$$

$$i = q * j + r \land 0 \leq r < j$$
 where $0 \leq i \land 0 < j$

Additional hypotheses:

Transformation rules:

$$0 * v \rightarrow 0$$
 $0 + v \rightarrow v$ $v = v$
 $(u + 1) * v \rightarrow u * v + v$ $u \le v \lor v < u$

Example: base case

			outputs	
	assertions	goals	div(i,j)	rem(i,j)
	$1. \ 0 \le i \land 0 < j$			
		2. i = q * j + r	q	r
and-split 1	$3.0 \le i$ $4.0 < j$			
trans 2 $0 * v \rightarrow 0$ $[q \rightarrow 0, v \rightarrow j]$		$5. i = 0 + r \land 0 \le r < j$	0	r
trans 5 $0 + v \rightarrow v$ $[v \rightarrow r]$		$6. i = r \land 0 \le r < j$	0	r
resolve 6 & $v = v$ $[v \rightarrow i, r \rightarrow i]$		$7. \ 0 \le i \land i < j$	0	i
resolve 7 & 3 []		8. <i>i</i> < <i>j</i>	0	i

Example: step case

					outputs	
		assertic	ns	goals	div(i,j)	rem(i,j)
		$3.0 \le i$	4. 0 < <i>j</i>	2. i = q * j + r	q	r
trans 2 $(u + 1) * v \rightarrow u$ $[q \rightarrow q' + 1, u \rightarrow u]$				9. $i = q' * j + j + r \land 0 \le r < j$	q' + 1	r
	4,,)]			$10. i - j = q' * j + r \land 0 \le r < j$	q'+1	r
induction	$0 \le u \land u = div$	$0 < (i,j) \Rightarrow 0 < v \Rightarrow 0 < v + v + v $ $em(u,v) < v < v + v $	rem(<mark>u, v</mark>)			
resolve 10 a $ \begin{bmatrix} u \\ q' \\ $	$i - j, v \rightarrow$			12. $(i - j, j) < (i, j) \land$ $0 \le i - j \land 0 < j$	div(i-j,j)	+1 $rem(i-j,j)$
				13. $\neg (i < j)$		

Example: put them together

	assertions	goals	div(i,j) outputs $rem(i,j)$	
		8. <i>i</i> < <i>j</i>	0	i
		13. $\neg (i < j)$	div(i-j,j)+1	rem(i-j,j)
resolve 8 & 13 []		13. T	if $i < j$ then 0 else $div(i - j, j) + 1$	if $i < j$ then i else $rem(i - j, j)$

Two approaches

Modern approach: [Reynolds et al, CAV'15]

Theorem proving

Extract the program from a constructive proof of $\exists x. \forall a. P(a) \Rightarrow Q(a, x)$

- Instead of inventing custom rules, reuse an existing theorem prover
- ... but augment its rules with term extraction
- Reuse the prover's search strategy!

[Manna, Waldinger'80]

Two approaches

Transformation rules

A set of inference rules for decomposing a synthesis problem into simpler problems

- Axioms (terminal rules) for solving elementary problems
- Rules have side conditions to prove

Depth- or best-first search in the space of derivations

[Kneuss et al.'13]

The Leon synthesis framework

Deductive synthesis is good at figuring out high-level structure Inductive synthesis is good at generating straight-line fragments Idea: combine them!

- first decompose the synthesis problem using deductive rules
- then use inductive synthesizers as terminal rules

Synthesis problem

- c.f. deductive synthesis problem
 - Find x such that Q(a, x) whenever P(a)

Synthesis judgment

Instead of transforming synthesis problems directly, Leon transforms synthesis judgments:

Meaning

relation refinement

$$\Pi \wedge P \vDash \phi[\bar{x} \mapsto \bar{T}]$$

domain preservation

$$\Pi \wedge (\exists \bar{x}. \phi) \vDash P$$

Inference rules

one-point
$$\frac{x_0 \notin \mathrm{vars}(t) \quad \llbracket \bar{a} \langle \Pi \rhd \phi \llbracket x_0 \mapsto t \rrbracket \rangle \, \bar{x} \rrbracket \vdash \langle P, \bar{T} \rangle}{\llbracket \bar{a} \langle \Pi \rhd x_0 = t \land \phi \rangle \, x_0, \bar{x} \rrbracket}$$
 case-split
$$\frac{\llbracket \bar{a} \langle \Pi \rhd \phi_1 \rangle \, \bar{x} \rrbracket \vdash \langle P_1, \bar{T}_1 \rangle \quad \llbracket \bar{a} \langle \Pi \land \neg P_1 \rhd \phi_2 \rangle \, \bar{x} \rrbracket \vdash \langle P_2, \bar{T}_2 \rangle}{\llbracket \bar{a} \langle \Pi \rhd \phi_1 \lor \phi_2 \rangle \, \bar{x} \rrbracket}$$

list-rec
$$\Pi[l \mapsto h :: t] \Rightarrow \Pi[l \mapsto t] \qquad \llbracket \bar{a} \langle \Pi[l \mapsto \emptyset] \rhd \phi[l \mapsto \emptyset] \rangle x \rrbracket \vdash \langle \top, T_1 \rangle$$
$$\underline{\llbracket h, t, r, \bar{a} \langle \Pi[l \mapsto h :: t] \land \phi[l \mapsto t, x \mapsto r] \rhd \phi[l \mapsto h :: t] \rangle x \rrbracket \vdash \langle \top, T_2 \rangle}$$
$$\underline{\llbracket l, \bar{a} \langle \Pi \rhd \phi \rangle x \rrbracket}$$

Complex terminal rules

Symbolic Term Exploration

Essentially Sketch

$$\frac{\mathsf{STE}(\Pi, \phi) = \overline{T}}{\llbracket \overline{a} \langle \Pi \rhd \phi \rangle \, \overline{x} \rrbracket \, \vdash \, \langle \top, \overline{T} \rangle}$$

Condition Abduction

Essentially EUSolver

$$\frac{\mathrm{CA}(\Pi,\phi) = \overline{T}}{\llbracket \overline{a} \langle \Pi \rhd \phi \rangle \, \overline{x} \rrbracket \, \vdash \, \langle \top, \overline{T} \rangle}$$

Search for derivations: list deletion

Leon is...

A deductive synthesis framework

- with powerful terminal rules that use inductive synthesis
 - Symbolic Term Exploration
 - Condition Abduction
- cost-based search for derivations

A synthesis-aided language

- functional language + choose
- interaction model

Modern deductive synthesizers

Combine deductive synthesis with modern techniques

- automated reasoning
- inductive synthesis

Are still mostly interactive!

- search in the space of derivations is generally hard
- even a little user guidance goes a long way
- Examples: Fiat, Bellmania

```
Input: a high-level spec, e.g. a database query
       query NumOrders (author: string) : nat :=
         Count (For (o in Orders) (b in Books)
                Where (author = b!Author)
                Where (b!ISBN = o!ISBN)
                Return ())
Iteratively refined into efficient implementations via automated tactics
        meth NumOrders (p: rep , author: string) : nat :=
          let (books, orders) := p in
          ret (books, orders,
               fold left
               (\ count tup .
                 count + bcount orders (Some tup!ISBN, []))
                (bnd books (Some author, None, [])) 0)
```

Bellmania

[Itzhaky et al. '16]

Deriving parallel divide-andconquer implementations of dynamic programming algorithms

- start from a naive implementation
- at each step, the user picks a tactic to transform the program
- tool checks side-conditions
 - i.e. that the transformation produces an equivalent program
 - but has no idea where the whole thing is going

