Análise de Redes Sociais de Golfinhos e Atletas de Karatê

Rodrigo José Zonzin 1

¹Departamento de Computação – Universidade Federal de São João del Rei (UFSJ) São João del Rei, Brasil

1. Introdução

2. Caracterização de Redes Reais

O primeiro passo para análise das redes consistiu na obtenção de métricas descritivas dos grafos. Dessa maneira, a rede social de Golfinhos apresentou número de nós n=62, número de arestas m=159, densidade D=0.0841 e coeficiente médio de clustering $\hat{c}=0.2590$. Além disso, a rede apresenta distância média de $\hat{a}=3.3569$. Por outro lado, a rede social de lutadores de Karatê apresentou n=34, m=78, densidade D=0.1390, coeficiente médio de clustering $\hat{c}=0.5706$ e distância média $\hat{a}=2.4082$

Além disso, a figura 1 resume a distribuição de algumas medidas de centralidade das redes em análise.

	closeness	betweenness	eigencentrality	degree		closeness	hetweenness	eigencentrality	de
count	62.000000	62.000000	62.000000	62.000000	count	34.000000	34.000000	34.000000	34.00
mean	0.307240	0.039283	0.090777	5.129032	mean	0.426480	0.044006	0.146411	4.58
std	0.052027	0.050965	0.089542	2.955871	std	0.072092	0.093935	0.090649	3.87
min	0.178363	0.000000	0.000537	1.000000	min	0.284483	0.000000	0.023635	1.00
25%	0.261567	0.003083	0.018322	3.000000	25%	0.371840	0.000000	0.080673	2.00
50%	0.316062	0.021630	0.047450	5.000000	50%	0.383721	0.002566	0.102041	3.00
75%	0.338889	0.056086	0.158907	7.000000	75%	0.480168	0.031853	0.186967	5.00
max	0.417808	0.248237	0.315781	12.000000	max	0.568966	0.437635	0.373371	17.00
(a) Golfinhos			(b) Karatê						

Figure 1. Métricas descritivas

A Figura 2 apresenta o plot das redes. Os vértices estão discriminados, conforme a centralidade por autovetor (Eigencentrality), por cor e tamanho.

Além disso, a imagem a seguir apresenta a função de densidade de probabilidade e o histograma dos graus das rede, respectivamente. Por completude da análise, apresenta-se também a distribuição *Log-Log* dos graus (Figura 4).

Figure 2. Redes em estudo

Figure 3. PDF e Histograma

3. Redes Erdos-Renyi

Com o auxílio da biblioteca Networkx, obteve-se 9 redes Erdos-Renyi $G_{n,p}$ com n=1000 e p variando em 0.1 no intervalo [0.1,0.9].

Figure 4. Distribuição Log-Log

A figura 5 apresenta as medidas de Grau Médio, Clustering Médio, Densidade e Distância Média em função de p.

	Grau Médio	Clustering Medio	Densidade	Distancia Media
0.1	99.972	0.100089	0.100072	1.899964
0.2	199.076	0.199226	0.199275	1.800725
0.3	299.184	0.299428	0.299483	1.700517
0.4	399.802	0.400068	0.400202	1.599798
0.5	499.102	0.499552	0.499602	1.500398
0.6	600.424	0.601053	0.601025	1.398975
0.7	700.162	0.700850	0.700863	1.299137
8.0	799.058	0.799874	0.799858	1.200142
0.9	899.282	0.900182	0.900182	1.099818

Figure 5. Métricas vs p

Pode-se observar que a Densidade corresponde fielmente ao valor de p. Esse fato está em linha com a proposta do modelo $G_{n,p}$, que define a probabilidade de ocorrência das arestas. Para p=0, nenhuma arestas é formada e o grafo apresentará Densidade=0. De forma oposta, se p=1, cada vértice está ligado a todos os demais, apresentando o número máximo de arestas possíveis $\frac{n(n-1)}{2}$ e, consequentemente, Desnidade=1.

De forma similar, o Clustering médio coincide com o valor de p. Sabe-se que o Clustering médio \hat{C} é dado por:

$$\hat{C} = \frac{1}{n} \sum_{i}^{n} c_i$$

como c_i é constante $\forall i$, tem-se

$$\hat{C} = \frac{1}{n}(nc_i)$$

$$\hat{C} = c_i$$

sabe-se que $c_i = p$ (a quantidade de arestas que cada vértice se liga é igual para todos os vértices e é dada por p)

$$\hat{C} = p$$

Os valores das métricas em função de p indica que a Distância Média tem correlação negativa com p ($\rho=-1$). De fato, sabe-se que a distância média é dada por

$$I = \frac{\log(n)}{\log(< k >)} = \frac{\log(n)}{\log(2m/n)}$$

Como $m \propto p$, quanto maior for p, menor será a distância média.

A figura 6 apresenta o plot da rede com o tamanho dos vértices proporcionais à centralidade por grau. Pode-se observar que a centralidade dos graus cresce uniformemente à medida que p cresce.

Figure 6. Plot das redes para diferentes p

References