Modellbasierter Entwurf

Name, Vorname	
Matrikelnummer	
Studiengang	
Unterschrift	Tag der Prüfung: 02. April 2020 "online"

Bitte beachten!

- 1. Prüfen Sie, ob Ihre Klausur vollständig ist. Sie muss aus den durchnummerierten Seiten von 1 bis 8 bestehen. Nehmen Sie die Klausur bitte nicht auseinander. Falls Sie ein unvollständiges Exemplar erhalten haben, lassen Sie sich bitte eine einwandfreie Klausur aushändigen.
- 2. Zum Bestehen der Klausur sind 50% der Punktzahl Summe der Punkte aus der Laborübung plus erreichte Punkte der Klausur erforderlich.
- 3. Die Bearbeitungszeit beträgt 90 Minuten.
- 4. Außer einfachen (nicht programmierbaren) Taschenrechnern sind keine Hilfsmittel zugelassen.
- 5. Das Betreiben von Mobiltelefonen und Computern ist im Prüfungsraum nicht erlaubt.
- 6. Schreiben Sie bitte gut leserlich und nicht mit Bleistift. Ihre Klausur wird ansonsten nicht gewertet. Lassen Sie einen Korrekturrand von mindestens 4 cm frei.
- 7. Mit der Unterschrift bestätigen Sie, dass Sie prüfungsfähig sind und zu Beginn der Klausur die vollständigen Unterlagen erhalten haben.

Anmerkung: Maximale Punktzahl= 120 Punkte, 100% = 100 Punkte

(Punkte/Note: 95/1,0; 90/1,3; 85/1,7; 80/2,0; 75/2,3; 70/2,7; 65/3,0; 60/3,3; 55/3,7; 50/4.0)

Aufgabe	1	2	3	4	Projekt	Summe		
erreichbare Punkte	20	30	30	15	25	120		
erreichte Punkte							Note:	

Ort und Datum: Unterschrift:

Aufgabe 1 Numerische Differentiation

 $\boxed{\frac{\texttt{Punkte}}{20}}$

Gegeben ist folgende Gleichung:

$$f(x) = \frac{2}{5} \cdot x^2 - \frac{2}{5}x^3$$

- a) Bestimmen Sie die erste und zweite Ableitung der Funktion f(x) analytisch. [5 Pkt.]
- b) Bestimmen Sie den Vorwärts-Differenzen-Quotienten erster Ordnung im Intervall I = [-2:2] im äquidistanten Abstand h = 0.5 (die Rechnungen sind auf drei Nachkommastellen durchzuführen). [5 Pkt.]
- c) Bestimmen Sie die Fehlergröße des Differenzen-Quotienten zur analytischen Lösung mit $\epsilon = \dot{f}(x) D_{f+,x_i}$. [5 Pkt.]
- d) Bestimmen Sie den symmetrischen Differenzen-Quotienten zweiter Ordnung D''_{f,x_i} im Intervall I = [-2:2] im äquidistanten Abstand von h = 0.5. [5 Pkt.]

Tragen Sie Ihre Ergebnisse in die gegebene Tabelle ein.

x	f(x)	D_{f+,x_i}	$\dot{f}(x)$	ϵ	$D_{f,x_i}^{"}$
-2 -1.5					
-1.5					
-1					
-0.5					
0					
0.5					
1					
1.5					
2					

a) Bestimmen Sie die erste Ableitung der Funktion analytisch. [5 Pkt.]

$$f(x) = \frac{2}{5} \cdot x^2 - \frac{2}{5} \cdot x^3$$

Die erste Ableitung berechnet sich zu:

$$\dot{f}(x) = \frac{4}{5} \cdot x - \frac{6}{5}x^2$$
$$= \frac{2}{5} \cdot \left(2 \cdot x - 3 \cdot x^2\right)$$

Die zweite Ableitung berechnet sich zu:

$$\ddot{f}(x) = \frac{4}{5} - \frac{12}{5} \cdot x$$
$$= \frac{4}{5} \cdot \left(1 - 3 \cdot x\right)$$

- b) Bestimmen Sie die Vorwärts-Differenzen-Quotienten erster Ordnung im Intervall I=[-2:2] im äquidistanten Abstand h=0.5 (Die Rechnungen sind auf drei Nachkommastellen durchzuführen). [5 Pkt.]
- c) Bestimmen Sie die Fehlergröße der Differenzen-Quotinenten zur analytischen Lösung. [5 Pkt.]
- d) Bestimmen Sie die symmetrischen Differenzen-Quotienten zweiter Ordnung im Intervall I = [-2:2] im äquidistanten Abstand h = 0.5. [5 Pkt.]

x	f(x)	D_{f+,x_i}	$\dot{f}(x)$	ϵ	$D_{f,x_i}^{"}$
-2	4,800	-5,100	-6,400	-1,300	
-1,5	2,250	-2,900	-3,900	-1,000	4,400
-1	0,800	-1,300	-2,000	-0,700	3,200
-0,5	0,150	-0,300	-0,700	-0,400	2,000
0	0,000	0,100	0,000	-0,100	0,800
0.5	0,050	-0,100	0,100	0,200	-0,400
1	0,000	-0,900	-0,400	0,500	-1,600
1,5	-0,450	-2,300	-1,500	0,800	-2,800
2	-1,600		-3,200		

Punkte

30

Aufgabe 2 2D-Faltung und numerische Differentiation

Gegeben ist der eindimensionle, symetrische Differenzenquotient 2. Ordnung

$$D_{f,x_i}'' = \frac{f(x_{i+h}) - 2 \cdot f(x_i) + f(x_{i-h})}{(x_{i+h} - x_i)^2}$$
$$= \frac{f(x_{i+h}) - 2 \cdot f(x_i) + f(x_{i-h})}{h^2}$$

a) Bestimmen Sie für den Differenzenquotient 2. Ordnung die horizontale als auch die vertikale Maske in Form von Matrizen zur Berechnung von $\underline{F}''_x, \underline{F}''_y$ bzw. $\underline{F}''_{x,y}$ für eine diskrete, zweidimensionale Matrize \underline{F}_{xy} . Annahme: h=1. [5 Pkt.]

$$\underline{D}_{x}^{"} = \frac{1}{\sum |d[m,n]|} \cdot (\dots \dots)$$

$$\underline{D}_{y}^{"} = \frac{1}{\sum |d[m,n]|} \cdot \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix}$$

$$D_{xy}^{"} = \frac{1}{\sum |\dots|} \cdot \begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

b) Bestimmen Sie die Gradienten in x- und y-Richtung mittels Faltung. [10 Pkt.] Gegeben ist folgende Matrize:

$$\underline{F}_{xy} = \begin{pmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \end{pmatrix}$$

$$\underline{F}_{x}^{"} = \begin{pmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \end{pmatrix} * \underbrace{\frac{1}{\cdots} \cdot (\cdots \cdots \cdots}_{D''} = \begin{pmatrix} \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}}_{D''}$$

$$\underline{F}_{y}^{"} = \begin{pmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \end{pmatrix} * \underbrace{\frac{1}{\dots} \cdot \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix}}_{\underline{D}_{y}^{"}} = \begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

c) Beweisen Sie, dass die Filtermaske $D_{xy}^{''}$ separierbar ist. Führen Sie jede Teilrechnung durch! [15. Pkt]

$$\text{Hinweis: }\underline{F}_{xy}^{''} = \underline{F}_{xy} * \underline{D}_{xy}^{''} = \left(\underline{F}_{xy} * \underline{D}_{x}^{''}\right) * \underline{D}_{y}^{''} = \left(\underline{F}_{xy} * \underline{D}_{y}^{''}\right) * \underline{D}_{x}^{''}$$

a)

$$D_x'' = \frac{f(x_{i+h}, y_j) - 2 \cdot f(x_i, y_j) + f(x_{i-h}, y_j)}{(x_{i+h} - x_i)^2}$$
$$= f(x_{i+1}, y_j) - 2 \cdot f(x_i, y_j) + f(x_{i-1}, y_j)$$
$$\text{mit } h = 1, x_{i+h} - x_i = 1$$

In Matrizenschreibweise: $\underline{\underline{D}}_{x}^{"} = \frac{1}{4} \cdot \begin{pmatrix} 1 & -2 & 1 \end{pmatrix}$

$$D_y'' = \frac{f(x_i, y_{j+h}) - 2 \cdot f(x_i, y_j) + f(x_i, y_{j-h})}{(y_{j+h} - y_j)^2}$$
$$= f(x_i, y_{j+1}) - 2 \cdot f(x_i, y_j) + f(x_i, y_{j-1})$$
$$\text{mit } h = 1, y_{j+h} - y_j = 1$$

In Matrizenschreibweise: $\underline{D}_y^{''} = \frac{1}{4} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$

$$\underline{D}_{x,y}^{"} = \underline{D}_{x}^{"} * \underline{D}_{y}^{"}$$

$$= \frac{1}{4} \cdot \begin{pmatrix} 1 & -2 & 1 \end{pmatrix} * \frac{1}{4} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$

b) Bestimmen Sie die Gradienten in x- und y-Richtung mittels Faltung. [10 Pkt.] Gegeben ist folgende Matrize:

$$\underline{F}(x_i, y_j) = \begin{pmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \end{pmatrix}$$

$$\underline{F}_{x}^{"} = \begin{pmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \end{pmatrix} * \underbrace{\frac{1}{4} \cdot \begin{pmatrix} 1 & -2 & 1 \end{pmatrix}}_{\underline{D}_{x}^{"}} = \underbrace{\frac{1}{4} \cdot \begin{pmatrix} 1 & 2 & 2 & 2 & -23 & 16 \\ 4 & 1 & 2 & 2 & -34 & 25 \end{pmatrix}}_{}$$

$$\underline{F}_{y}^{"} = \begin{pmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \end{pmatrix} * \underbrace{\frac{1}{4} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}}_{\underline{D}_{y}^{"}} = \underbrace{\frac{1}{4} \cdot \begin{pmatrix} 1 & 4 & 9 & 16 \\ 2 & 1 & -2 & -7 \\ -7 & -14 & -23 & -34 \\ 4 & 9 & 16 & 25 \end{pmatrix}}_{1}$$

c) Beweisen Sie, dass die Filtermaske $D_{xy}^{^{\prime\prime}}$ separierbar ist.

$$\underline{F}_{xy}^{"} = \begin{bmatrix} \begin{pmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \end{pmatrix} * \underbrace{\frac{1}{4} \cdot \begin{pmatrix} 1 & -2 & 1 \end{pmatrix}}_{\underline{D}_{x}^{"}} \end{bmatrix} * \underbrace{\frac{1}{4} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}}_{\underline{D}_{y}^{"}}$$

$$= \begin{bmatrix} \frac{1}{4} \cdot \begin{pmatrix} 1 & 2 & 2 & 2 & -23 & 16 \\ 4 & 1 & 2 & 2 & -34 & 25 \end{pmatrix} \end{bmatrix} * \underbrace{\frac{1}{4} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}}_{\underline{D}_{y}^{"}}$$

$$= \frac{1}{16} \cdot \begin{pmatrix} 1 & 2 & 2 & 2 & -23 & 16 \\ 2 & -3 & -2 & -2 & 12 & -7 \\ -7 & 0 & -2 & -2 & 45 & -34 \\ 4 & 1 & 2 & 2 & -34 & 25 \end{pmatrix}$$

$$\underline{F}_{xy}^{"} = \underline{F}_{xy} * \underline{D}_{xy}^{"}$$

$$= \begin{pmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \end{pmatrix} * \underbrace{\frac{1}{16} \cdot \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix}}$$

$$= \frac{1}{16} \cdot \begin{pmatrix} 1 & 2 & 2 & 2 & -23 & 16 \\ 2 & -3 & -2 & -2 & 12 & -7 \\ -7 & 0 & -2 & -2 & 45 & -34 \\ 4 & 1 & 2 & 2 & -34 & 25 \end{pmatrix}$$

Aufgabe 3 Numerische Integration

Punkte 30

Gegeben ist das Signal

$$f(t) = f_{g0} + \hat{f} \cdot \sin{(\omega t)},$$
 mit $f_{g0} = \frac{\sqrt{3}}{2}$ und $\hat{f} = 1$.

Aufgabenstellung:

a) Berechnen Sie analytisch den Gleichrichtwert der Funktion f(t). [15 Pkt.]

Definition:
$$\overline{|f|} = \frac{1}{T_0} \cdot \int_{t_0}^{t_0 + T_0} |f(t)| dt$$

Hinweis: Bestimmen Sie die Integrationsgrenzen!

 $\arcsin: [-1,1] \rightarrow [-\pi/2,\pi/2]$

b) Bestimmen Sie mittels numerischer Integration den Gleichrichtwert und berechnen Sie den Fehler. Verwenden Sie die Quadraturformel. [15 Pkt.]

t_n	$f(t_n)$	$\mid F_i \mid$	$\sum_{i=0}^{n-1} F_i$	t_n	$f(t_n)$	$\mid F_i \mid$	$\sum_{i=0}^{n-1} F_i$
0	$\frac{\sqrt{3}}{2} + 0,00000$	0,866025	0,866025	9	$\frac{\sqrt{3}}{2} - 0,38268$		
1	$\frac{\sqrt{3}}{2} + 0,38268$			10	$\frac{\sqrt{3}}{2} - 0,70711$		
2	$\frac{\sqrt{3}}{2} + 0,70711$			11	$\frac{\sqrt{3}}{2} - 0,92388$		
3	$\frac{\sqrt{3}}{2} + 0,92388$			12	$\frac{\sqrt{3}}{2} - 1,0000$		
4	$\frac{\sqrt{3}}{2} + 1,0000$			13	$\frac{\sqrt{3}}{2} - 0,92388$		
5	$\frac{\sqrt{3}}{2} + 0,92388$			14	$\frac{\sqrt{3}}{2} - 0,70711$		
6	$\frac{\sqrt{3}}{2} + 0,70711$			15	$\frac{\sqrt{3}}{2} - 0,38268$		
7	$\frac{\sqrt{3}}{2} + 0,38268$			16	$\frac{\sqrt{3}}{2} - 0,00000$		
8	$\frac{\sqrt{3}}{2} + 0,00000$						

a) Da $f_{g0} < \hat{f}$ gilt, sind die Nulldurchgänge des Signal $f(t) = f_{g0} + \hat{f} \cdot \sin(\omega t)$ gemäß der Abbildung verschoben. Es gilt also, die Integrationsgrenzen zu bestimmen. Für die Nulldurchgänge gilt:

$$f_{q0} + \hat{f} \cdot \sin(\omega \ t_0) = 0$$

Umstellen nach t_0 führt zu:

$$t_0 = \frac{1}{\omega} \cdot \arcsin\left(-\frac{f_{g0}}{\hat{f}}\right)$$

$$t_0 = \frac{1}{\omega} \cdot \arcsin(-\sqrt{3}/2)$$
$$= -\frac{T_0}{2 \cdot \pi} \cdot \frac{\pi}{3}$$
$$= -\frac{T_0}{6}$$

Da die arcsin-Funktion im Intervall von $\varphi=\left[-\pi/2,\pi/2\right]$ eingeschränkt ist, muss das analytische Ergebnis verschoben werden. Als Integrationsgrenzen ergeben sich:

$$t_1 = \frac{T_0}{2} + \frac{T_0}{6} = \frac{2}{3}T_0$$

$$t_2 = T_0 - \frac{T_0}{6} = \frac{5}{6}T_0$$

Probe:

$$f(t_1) = \frac{\sqrt{3}}{2} + 1 \cdot \sin\left(\frac{2\pi}{T_0} \frac{2T_0}{3}\right)$$
$$= \frac{\sqrt{3}}{2} + 1 \cdot \sin\left(\frac{4\pi}{3}\right)$$
$$= \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = 0$$
$$f(t_2) = \frac{\sqrt{3}}{2} + 1 \cdot \sin\left(\frac{2\pi}{T_0} \frac{5T_0}{6}\right)$$
$$= \frac{\sqrt{3}}{2} + 1 \cdot \sin\left(\frac{10\pi}{6}\right)$$
$$= \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = 0$$

Für den Gleichrichtwert gilt nun:

$$\overline{|f|} = \frac{1}{T_0} \cdot \int_{t_0}^{t_0 + T_0} |f(t)| dt$$

$$= \frac{1}{T_0} \cdot \left[\int_{t_0 = 0}^{t_1} f(t) dt - \int_{t_1}^{t_2} f(t) dt + \int_{t_2}^{t_3 = T_0} f(t) dt \right]$$

Das Minuszeichen für den Ausdruck $\int_{t_1}^{t_2} f(t) dt$ ergibt sich daraus, dass das Integral in diesem Abschnitt negativ wird, durch die Gleichrichtung (Betragsfunktion) aber die Teilwelle nach oben (positiv) geklappt wird. Es folgt:

$$\overline{|f|} = \frac{1}{T_0} \cdot \int_{t_0=0}^{t_2} \left[f_{g0} + \hat{f} \cdot \sin(\omega t) \right] dt$$
$$- \frac{1}{T_0} \cdot \int_{t_1}^{t_2} \left[f_{g0} + \hat{f} \cdot \sin(\omega t) \right] dt$$
$$+ \frac{1}{T_0} \cdot \int_{t_2}^{t_3} \left[f_{g0} + \hat{f} \cdot \sin(\omega t) \right] dt$$

Lösen der Integralgleichung führt zu:

$$\overline{|f|} = \frac{1}{T_0} \cdot \left[f_{g0} \cdot t - \frac{\hat{f}}{\omega} \cdot \cos(\omega \ t) \right]_{t_0}^{t_1}$$
$$- \frac{1}{T_0} \cdot \left[f_{g0} \cdot t - \frac{\hat{f}}{\omega} \cdot \cos(\omega \ t) \right]_{t_1}^{t_2}$$
$$+ \frac{1}{T_0} \cdot \left[f_{g0} \cdot t - \frac{\hat{f}}{\omega} \cdot \cos(\omega \ t) \right]_{t_2}^{t_3}$$

Daraus folgt:

$$|\overline{f}| = \frac{f_{g0}}{T_0} (t_1 - 0 - t_2 + t_1 + T_0 - t_2)$$

$$- \frac{\hat{f}}{2 \pi} \cdot \left[\cos \left(\frac{2 \pi \cdot t_1}{T_0} \right) - \cos \left(\frac{2 \pi \cdot 0}{T_0} \right) \right]$$

$$+ \frac{\hat{f}}{2 \pi} \cdot \left[\cos \left(\frac{2 \pi \cdot t_2}{T_0} \right) - \cos \left(\frac{2 \pi \cdot t_1}{T_0} \right) \right]$$

$$- \frac{\hat{f}}{2 \pi} \cdot \left[\cos \left(\frac{2 \pi \cdot T_0}{T_0} \right) - \cos \left(\frac{2 \pi \cdot t_2}{T_0} \right) \right]$$

$$\overline{|f|} = 2 \ f_{g0} \cdot \left[\frac{1}{2} + \frac{t_1 - t_2}{T_0} \right] + \frac{\hat{f}}{\pi} \cdot \left[\cos \frac{2 \ \pi \cdot t_2}{T_0} - \cos \frac{2 \ \pi \cdot t_1}{T_0} \right]$$

Einsetzen der Nullstellen führt zu:

$$t_1 = \frac{2}{3} T_0 \quad \text{und} \quad t_2 = \frac{5}{6} T_0$$

$$\overline{|u|} = 2 u_{0g} \cdot \left[\frac{1}{2} + \frac{\frac{2}{3} T_0 - \frac{5}{6} T_0}{T_0} \right] + \frac{\hat{u}_0}{\pi} \cdot \left[\cos \frac{2 \pi \cdot \frac{5}{6} T_0}{T_0} - \cos \frac{2 \pi \cdot \frac{2}{3} T_0}{T_0} \right]$$

$$= \sqrt{3} V \cdot \frac{2}{6} + \frac{1}{\pi} V \cdot \left(\frac{1}{2} + \frac{1}{2} \right)$$

$$= \left(\frac{1}{\sqrt{3}} + \frac{1}{\pi} \right) V$$

$$= 0,89566 V$$

b) Bestimmen Sie mittels numerischer Integration den Gleichrichtwert und berechnen Sie den Fehler. Verwenden Sie die Quadraturformel. [7,5 Pkt.]

t_n	$f(t_n)$	$\mid F_i \mid$	$\sum_{i=0}^{n-1} F_i$	t_n	$f(t_n)$	$\int F_i$	$\sum_{i=0}^{n-1} F_i$
0	$\frac{\sqrt{3}}{2} + 0,00000$	0,866025	0,866025	9	$\frac{\sqrt{3}}{2} - 0,38268$	0,483342	13,30491
1	$\frac{\sqrt{3}}{2} + 0,38268$	1,248709	2,11473	10	$\frac{\sqrt{3}}{2} - 0,70711$	0,158919	13,46383
2	$\frac{\sqrt{3}}{2} + 0,70711$	1,573132	3,68787	11	$\frac{\sqrt{3}}{2} - 0,92388$	0,057854	13,52168
3	$\frac{\sqrt{3}}{2} + 0,92388$	1,789905	5,47777	12	$\frac{\sqrt{3}}{2} - 1,0000$	0,133975	13,65566
4	$\frac{\sqrt{3}}{2} + 1,0000$	1,866025	7,34380	13	$\frac{\sqrt{3}}{2} - 0,92388$	0,057854	13,71351
5	$\frac{\sqrt{3}}{2} + 0,92388$	1,789905	9,13370	14	$\frac{\sqrt{3}}{2} - 0,70711$	0,158919	13,87243
6	$\frac{\sqrt{3}}{2} + 0,70711$	1,573132	10,70683	15	$\frac{\sqrt{3}}{2} - 0,38268$	0,483342	14,35577
7	$\frac{\sqrt{3}}{2} + 0,38268$	1,248709	11,95554	16	$\frac{\sqrt{3}}{2} - 0,00000$	0,866025	
8	$\frac{\sqrt{3}}{2} + 0,00000$	0,866025	12,82157				

$$F_n = I_n(f) = \int_a^b f(x) \, dx \approx (b - a) \cdot \sum_{i=0}^n \sigma_i \, f(x_i)$$

- -I(f): lineares Funktional der Quadraturformel
- $-x_0,\ldots,x_n\in[a,b]$: paarweise Stützstellen
- $-\ \sigma_0,\sigma_1,\ldots,\sigma_n\in\mathbb{R}$: reelle Gewichte

$$F_n = \sum_{i=0}^{15} F_i = 14,35577$$
$$\overline{|u|}_n = \frac{1}{N_0} \cdot \sum_{i=0}^{15} F_i = \frac{14,35577}{16} = 0,89724 V$$

$$\Delta \overline{|u|} = 0,89566 \ V - 0,89724 \ V = -1,5756 \ mV$$

Aufgabe 4 System und Zahlendarstellungen

Punkte 15

Gegeben ist folgendes Systemschaltbild:

Gesucht ist eine Realisierung für einen FPGA-Baustein. Die Busbreite vor und nach jeder arithmetischen Operation kann den Erfordernissen derart angepasst werden, damit kein Überlauf erfolgt.

Für die Variablen gelten folgende Zahlenformate:

 \underline{X} : uINT 9-Bit

 \underline{Y} : INT 10-Bit, 2er-Komplement

 \underline{Z} : UQ1.4

V: Konstante UQ0.2

Aufgabenstellung:

- a) Bestimmen Sie die mindest-erforderliche Busbreite für das gegebene Systemschaltbild vor und nach jeder arithmetischen Operation in Abhängigkeit der gültigen Zahlenformate. Geben Sie das dazugehörige, aus den arithmetischen Operationen resultierende Zahlenformat an. [10 Pkt.]
- b) Beweisen sie die Richtigkeit, indem Sie dem Systemschaltbild entsprechende Berechnungen auf Bit-Ebene und/oder gemäß dem Stellenwertsystem durchführen. Hinweis: Betrachten Sie die Zahlenextreme pro Variable. [5 Pkt]

a) Eine Bewertung erfolgt über den abbildbaren Zahlenraum je Variable:

$$\underline{X}$$
: uINT 9-Bit; $X \in \{0, \dots, 511\}_{10}$
 \underline{Y} : INT 10-Bit, 2er Komplement; $Y \in \{-512, \dots, 511\}_{10}$

 \underline{Z} : UQ1.4

 $V: {\it Konstante~UQ0.2}$

Für die Summe \underline{N}_1 gilt:

$$\begin{split} N_{1,a} &= \max\{X\} + \max\{Y\} = 511 + 511 = 1022 \ (\to 10\text{-Bit uINT}, \ 11\text{-Bit INT}) \\ N_{1,b} &= \max\{X\} + \min\{Y\} = 511 - 512 = -1 \ (\to 10\text{-Bit INT}) \\ N_{1,c} &= \max\{X\} + \min\{Y\} = 511 - 1 = 500 \ (\to 10\text{-Bit INT}) \\ N_{1,d} &= \max\{X\} + \{Y\} = 511 + 1 = 512 \ (\to 10\text{-Bit uINT}, \ 11\text{-Bit INT}) \\ N_{1,e} &= \{X\} + \max\{Y\} = 1 + 511 = 512 \ (\to 10\text{-Bit uINT}, \ 11\text{-Bit INT}) \end{split}$$

		-1024	512	256	128	64	32	16	∞	4	2	1	
	$d(c)_{11}$	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0	
<u>X</u>		0	0	1	1	1	1	1	1	1	1	1	$=511_{10}$
$\oplus \ \underline{Y}$		0	0	1	1	1	1	1	1	1	1	1	$=511_{10}$
N_1		0	1	1	1	1	1	1	1	1	1	0	$=1022_{10}$
<u>X</u>		0	0	1	1	1	1	1	1	1	1	1	$=511_{10}$
$\oplus \ \underline{Y}$		1	1	0	0	0	0	0	0	0	0	0	$=-512_{10}$
N_1		1	1	1	1	1	1	1	1	1	1	1	$=-1_{10}$
<u>X</u>		0	0	1	1	1	1	1	1	1	1	1	$=511_{10}$
$\oplus \underline{Y}$		1	1	1	1	1	1	1	1	1	1	1	$=-1_{10}$
N_1		0	0	1	1	1	1	1	1	1	1	0	$=500_{10}$

 $N_1: 11\text{-Bit INT}; \quad N_1 \in \{-1024, \dots, 1023\}_{10}$

Alternativer Beweis:

$$N_1=1\cdot 2^8+1\cdot 2^8$$

$$=2\cdot 2^8$$

$$=1\cdot 2^9 \quad \to \text{10-Bit f\"{u}r uINT, 11-Bit f\"{u}r INT}$$

		2048	1024	512	256	128	64	32	16	∞	4	2	1	1/2	1/4	1/8	1/16	
	$d(c)_{13}$		d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0	$.d_{-}$			d_{-4}	
N_1		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
\underline{PP}_0		•	•	•	•	•	•	•	•	•	•	•	•	0	0	0	0	• MSB
$\oplus \ \underline{PP}_1$		•	•	•	•	•	•	•	•	•	•	•	•	•	0	0	0	.•
$\oplus \ \underline{PP}_2$		•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	0	•
$\oplus \underline{PP}_3$		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•
$\oplus \ \underline{PP_4}$		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• - LSB
N_2		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

$$N_2 = 1023 + 1023/2 + 1023/4 + 1023/8 + 1023/16 = 1982, 1 \quad \text{(11-Bit uINT, 12-Bit INT)}$$

$$N_2 = -1024 - 512 - 256 - 128 - 64 = -1984 \quad \text{(11-Bit uINT, 12-Bit INT)}$$

		2048	1024	512	256	128	64	32	16	œ	4	2	1	1/2	1/4	1/8	1/16	
	$d(c)_{13}$	d_{11}	d_{10}	d_9	d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0	$.d_{-}$	$_{1} d_{-2}$	d_{-3}	d_{-4}	
N_1	1023	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	
\underline{PP}_0	1023	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1 - MSB
$\oplus \underline{PP}_1$	511,5	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	.1
\underline{PS}_{01}	1534,5	0	1	0	1	1	1	1	1	1	1	1	0	1	0	0	0	
$\oplus \underline{PP}_2$	255,75	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	1
\underline{PS}_{02}	1790,2	0	1	1	0	1	1	1	1	1	1	1	0	0	1	0	0	
$\oplus \underline{PP}_3$	127,875	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	1
\underline{PS}_{03}	1918,1	0	1	1	1	0	1	1	1	1	1	1	0	0	0	1	0	
$\oplus \underline{PP_4}$	63,9375	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
N_2	1981,1	0	1	1	1	1	0	1	1	1	1	1	0	0	0	0	1	

	$d(c)_{13}$	8402-d ₁₁	d_{10}	d_9	d_8	d_7	d_6	d_5	$\frac{9}{d_4}$	∞	d_2	a_1	d_0	$\frac{1}{2}$	$\frac{1}{4}$	d 2	p 1/16	
N_1	-1024	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
$ \frac{\underline{PP}_0}{\oplus \underline{PP}_1} $	-1024 -512	1 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	1 - MSB
$\frac{\oplus \underline{FF_1}}{\underline{PS_{01}}}$	-512	1 1	0	1	0	0	0	0	0	0	0	0	0	0 0	0	0	0	• 1
$\oplus \frac{PP_2}{P}$	-256	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1
<u>PS</u> ₀₂	-1792	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
$\frac{\oplus PP_3}{\blacksquare}$	-128	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1
$\frac{PS_{03}}{\oplus PP_4}$	-1920 -64	1 1	0	0	0 1	1	0 1	0	0	0	0	0	0	0	0	0	0	1
N_2	-1984	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	

$$N_2: Q12.4; X \in \{-2048, \dots, 2043, 9375\}_{10}$$

	d(c):0	p-2048	1024	212	d _o	158 158	do.	33	16	∞ do	4	co co	.⊣ do	1/2	d_{-2}	1/8 1/8	p 1/16	r 1/32	7 1/64	
N_2	<i>a</i> (<i>c</i>)13	•	•	•	•	•	•	•	•	•	•	•	•	.a_ •	•	•	•	<i>u</i> =5	<u>u=6</u>	—
$\frac{PP_0}{PP_1}$															•					

$$W = 2047, 9375/2 + 2047, 9375/4 = 1536$$
 (Q12.6)
 $W = -2048/2 - 2048/4 = -1536$ (Q12.6)

	$d(c)_{13}$	$\begin{vmatrix} 8 & 0.00 & 0$	d_{10}	d_9	d_8	d_7	d_{6}	d_5	$\frac{10}{6}$	∞ d_3	d_2	d_1	d_0	d	7 1 d-2	$\frac{\infty}{1}$	$\frac{1}{1}$	d_{-5}	d^{-6}
N_2	2047,9375	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
$\frac{PP_0}{PP_1}$	2047,9375/2 2047,9375/4	0 0	0	1 0	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1
$\frac{W}{}$	1536	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1

 $W: Q12.6; W \in \{-2048, \dots, 2047, 98438\}_{10}$

 $N_1: 11\text{-Bit INT}; \quad N_1 \in \{-1024, \dots, 1023\}_{10}$

 $N_2: Q12.4; \quad N_2 \in \{-2048, \dots, 2043, 9375\}_{10}$

 $W: \text{Q12.6}; \quad W \in \{-2048, \dots, 2047, 98438\}_{10}$

Modellbasierter Entwurf

Notizen: