GRIP: THE SPARKS FOUNDATION

Data Science and Business Analytics

Task 1: prediction using supervised ML

In this task i will predict the percentage score of a student based on the number of hours studied. In this task, i have used two variables where the feature is the no. of hours studied and target value is the percentage score. This can be achieved with the help of Linear Regression.

importing required libraries

```
In [46]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
In [47]: # reading the data
data_link = "stud.csv"
data = pd.read_csv(data_link)
data.head(27)
```

Out[47]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

```
In [48]:
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 25 entries, 0 to 24
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
                     -----
          0
              Hours
                     25 non-null
                                     float64
              Scores 25 non-null
                                     int64
         dtypes: float64(1), int64(1)
         memory usage: 528.0 bytes
         data.describe()
In [49]:
```

Out[49]:		Hours	Scores
	count	25.000000	25.000000
	mean	5.012000	51.480000
	std	2.525094	25.286887
	min	1.100000	17.000000
	25%	2.700000	30.000000
	50%	4.800000	47.000000
	75 %	7.400000	75.000000
	max	9.200000	95.000000

```
In [12]: import matplotlib.pyplot as plt
%matplotlib inline
```

```
In [50]: data.plot(kind= 'scatter', x="Hours", y="Scores");
plt.show()
```



```
In [15]: data.corr(method= "pearson")
```

Out[15]:		Hours	Scores
	Hours	1.000000	0.976191
	Scores	0.976191	1.000000

```
In [51]: hours =data["Hours"]
    scores = data["Scores"]
```

In [52]: sns.displot(hours)

Out[52]: <seaborn.axisgrid.FacetGrid at 0x1d90b97ad90>

In [53]: sns.displot(scores)

Out[53]: <seaborn.axisgrid.FacetGrid at 0x1d90cfe88e0>

Linear Regression

```
In [58]:
         a= data.iloc[:,:-1].values
         b= data.iloc[:,1].values
In [76]:
         from sklearn.model_selection import train_test_split
         a_train,a_test,b_train,b_test= train_test_split(a,b, test_size=0.2, random_state=50)
In [60]:
         from sklearn.linear_model import LinearRegression
         reg= LinearRegression()
         reg.fit(a_train,b_train)
         LinearRegression()
Out[60]:
In [67]:
                              #coef_ and intercept_ are attributes of LinearRegression
         m= reg.coef_
         c= reg.intercept_
         line= m*a+c
         plt.scatter (a,b)
          plt.plot(a,line)
         plt.show()
```



```
In [68]: b_pred = reg.predict(a_test)
In [84]: actual_pred = pd.DataFrame({"target": b_test, "predicted":b_pred})
actual_pred
```

Out[84]:		target	predicted
	0	95	88.211394
	1	30	28.718453
	2	76	69.020122
	3	35	39.273652
	4	17	13.365436

```
In [85]: sns.set_style("whitegrid")
sns.displot(np.array(b_test - b_pred))
```

Out[85]: <seaborn.axisgrid.FacetGrid at 0x1d90e0ce9d0>

what would be the predicted score of a student if he/she studies for 9.25 hours/day?

```
In [90]: h = 9.25
s = reg.predict([[h]])
print("if a student studies {} hours a day then he/she will score {} % in exam".format
if a student studies 9.25 hours a day then he/she will score [91.56986604] % in exam
```