Aprendizado de Máquina - 2023.02

Escolher um dataset do kaggle e avaliar os atributos usando medidas de posição e dispersão gerando histogramas e boxplot

Aluno: Diego Vasconcelos Schardosim de Matos

DRE: 120098723

Dataset escolhido

Selecionei o dataset Heart Disease Classification Dataset pois se encaixa bem aos requesitos do trabalho e também me chamou atenção pois um de seus usos seria aplicações voltadas a saúde pública

```
In [28]:
          import numpy as np
          import pandas as pd
          from matplotlib import pyplot as plt
In [29]:
          df = pd.read csv("Heart Attack.csv")
In [30]:
         df.head()
Out[30]:
                  gender impluse pressurehight pressurelow
                                                              glucose
                                                                       kcm troponin
                                                                                         class
                                                                160.0
          0
              64
                        1
                               66
                                            160
                                                          83
                                                                       1.80
                                                                                0.012 negative
              21
                               94
                                             98
                                                                296.0
                                                                       6.75
                                                                                1.060
                                                                                       positive
                                                          46
              55
                        1
                               64
                                            160
                                                          77
                                                                270.0
                                                                                0.003 negative
          2
                                                                       1.99
           3
              64
                               70
                                             120
                                                          55
                                                                270.0
                                                                      13.87
                                                                                0.122
                                                                                       positive
              55
                        1
                               64
                                            112
                                                          65
                                                                300.0
                                                                       1.08
                                                                                0.003 negative
In [31]:
          df.shape
Out[31]: (1319, 9)
In [32]: df.duplicated().sum()
Out[32]: 0
In [33]: df.isnull().any()
```

```
Out[33]: age
                          False
         gender
                          False
         impluse
                          False
         pressurehight
                          False
         pressurelow
                          False
         glucose
                          False
         kcm
                          False
                          False
         troponin
         class
                          False
         dtype: bool
```

Este é um bom dataset pois além de possuir colunas bem explicativas categorizadas em 2 classes distintas, não possui instâncias duplicadas ou nulas.

```
In [34]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1319 entries, 0 to 1318
        Data columns (total 9 columns):
         #
            Column
                        Non-Null Count Dtype
        ---
            -----
                         -----
         0
            age
                         1319 non-null int64
            gender
         1
                         1319 non-null int64
         genuer
2 impluse
                          1319 non-null int64
         3 pressurehight 1319 non-null int64
         4 pressurelow
                          1319 non-null int64
            glucose
                          1319 non-null float64
         5
                          1319 non-null float64
         6
            kcm
         7
                         1319 non-null
                                        float64
            troponin
            class
                          1319 non-null
                                        object
         8
```

memory usage: 92.9+ KB

dtypes: float64(3), int64(5), object(1)

In [35]: df.describe()

Out[35]:		age	gender	impluse	pressurehight	pressurelow	glucose	
	count	1319.000000	1319.000000	1319.000000	1319.000000	1319.000000	1319.000000	1319.00
	mean	56.191812	0.659591	78.336619	127.170584	72.269143	146.634344	15.27
	std	13.647315	0.474027	51.630270	26.122720	14.033924	74.923045	46.32
	min	14.000000	0.000000	20.000000	42.000000	38.000000	35.000000	0.32
	25%	47.000000	0.000000	64.000000	110.000000	62.000000	98.000000	1.65
	50%	58.000000	1.000000	74.000000	124.000000	72.000000	116.000000	2.85
	75%	65.000000	1.000000	85.000000	143.000000	81.000000	169.500000	5.80
	max	103.000000	1.000000	1111.000000	223.000000	154.000000	541.000000	300.00

In [36]: df['age'].plot.hist()

Out[36]: <Axes: ylabel='Frequency'>


```
In [37]: df['age'].plot.box()
```

Out[37]: <Axes: >


```
In [38]: df['impluse'].plot()
```

Out[38]: <Axes: >

In [39]: df['pressurehight'].plot.hist()

Out[39]: <Axes: ylabel='Frequency'>

In [40]: df['pressurehight'].plot.box()

Out[40]: <Axes: >

In [41]: df['pressurelow'].plot.hist()

Out[41]: <Axes: ylabel='Frequency'>

In [42]: df['pressurelow'].plot.box()

Out[42]: <Axes: >

In [43]: df['glucose'].plot.hist()

Out[43]: <Axes: ylabel='Frequency'>


```
In [44]: df['glucose'].plot.box()
```

Out[44]: <Axes: >

In [62]: df['class'].value_counts().plot.hist()

Out[62]: <Axes: ylabel='Frequency'>

Conclusão

Existem bastante outliers nos campos de glucose e pressão sanguínea sendo necessário testar com diferentes modelos para saber o impacto em remover essas instancias. Mas

no geral deve ser possível gerar um bom modelo classificador.

OBS: Não conseguir "girar" o último gráfico, mas a ideia seria termos uma noção da distribuição das classes.