LAST NAME:	FIRST NAME:
SOLUTIONS	

1	/12	2	/12	3	/10	4	/10	5	/10
6	/12	7	/8	8	/12	9	/14	Т	/100

MATH 4362 (Spring 2018), Final Exam, (Zweck)

Instructions: This 2 hour 45 minute exam is worth 100 points. No books or notes! Show all work and give **complete explanations**. Don't spend too much time on any one problem.

Throughout this exam we define

$$\chi_{[a,b]}(x) = \begin{cases}
1 & \text{if } a \leq x \leq b, \\
0 & \text{otherwise.}
\end{cases}$$

- (1) [12 pts] True or false? Give brief explanations for your answers.
- (a) Suppose that u = u(t, x) solves

$$u_t + u_x = 0$$
 for $t > 0$ and $x \in \mathbb{R}$,
 $u(0, x) = \chi_{[-1,1]}(x)$ for $x \in \mathbb{R}$.

Then the function v(x) = u(1, x) is differentiable.

FAUSE

The initial condition is not continuous at $sc = \pm 1$ The solution to u + + u = 0 is u (t, x) = f(sc - t)where f(x) = u(0, x). So it is not differentiable

as a function of x, since its is not continuous.

(b) Suppose that u = u(t, x) solves

$$u_t = u_{xx}$$
 for $t > 0$ and $x \in \mathbb{R}$,
 $u(0, x) = \chi_{[-1,1]}(x)$ for $x \in \mathbb{R}$.

Then the function v(x) = u(1, x) is differentiable.

The heat equation has the property that
no metter has unamound the initial
condition is, the solution at any time to a
is infinitely differentiable as a function of x
So N is differentiable

TRUE

(c) Suppose that u = u(t, x) solves

where $u_{tt}=u_{xx}$ for t>0 and $x\in\mathbb{R},$ $u(0,x)=\chi_{[-1,1]}(x)$ for $x\in\mathbb{R},$ $u_t(0,x)=0$ for $x\in\mathbb{R}.$

Let w(t) = u(t, 2). Then there is a time T > 0 so that w(t) = 0 for all t < T.

By differential formula the solution is $\mu(t, s) = \frac{1}{2} \left[\chi_{F_{1,1}}(x-t) + \chi_{F_{1,1}}(x+t) \right] \\
\psi(t) = \frac{1}{2} \left[\chi_{F_{1,1}}(x-t) + \chi_{F_{1,1}}(x+t) \right] \\
= \frac{1}{2} \left[\chi_{F_{1,1}}(x-t) + \chi_{F_{2,-1}}(x+t) \right]$

So T= 1 works

TRUE

BIF IDEA
Waves propagate
information
(encoded in
initial conditions)
at finite speed.

(2) [12 pts] Let $f:[0,\pi]\to\mathbb{R}$ be defined by $f(x)=\frac{\pi}{2}-x$ for $x\in(0,\pi)$ and $f(\pi)=0$. Let \widetilde{f} be the 2π -periodic odd extension of f. Graph \widetilde{f} . Explain why the Fourier series of \widetilde{f} converges pointwise but not uniformly on \mathbb{R} . What is the value of the Fourier series of \widetilde{f} at (i) x=0 and (ii) $x=\frac{5\pi}{4}$?

 $(F_{S}.\hat{f}_{Q} = x_{-2}) = \hat{f}_{Q}(\hat{f}_{Q} + \hat{f}_{Q}) = \hat{f}_{Q}(\hat{f}_{Q} + \hat{f}_{Q}) = \hat{f}_{Q}(\hat{f}_{Q}) =$

(3) [10 pts] Solve for
$$u = u(t, x)$$
 on $t \ge 0$ and $x \in \mathbb{R}$: $F(t, x)$

$$u_{tt} = 4u_{xx} + \sin t,$$

$$u(0, x) = e^{-x^2}, = f(x)$$

$$u_{tt}(0, x) = 0.$$

$$u(t, x) = \frac{1}{2} \left[f(x - ct) + f(x + ct) \right]$$

$$= \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1}{4} \int_{-\infty}^{\infty} \frac{1}{2} \left[e^{-(x - ct)^2} - e^{-(x - ct)^2} \right] + \frac{1$$

$$S_0$$
 $u(t,x) = \frac{1}{2} \left[\frac{-(x-2t)^2}{e} - \frac{(x+2t)^2}{e} \right] + t - sin t$

(4) [10 pts] Prove that for each t > 0 the series,

$$u(t,x) = \sum_{k=0}^{\infty} e^{-k^2 t} \cos(kx),$$

converges uniformly for $x \in \mathbb{R}$. Hence show that u is continuous where t > 0. Hint: Fix $\epsilon > 0$. Prove that for all $t > \epsilon$ the series converges uniformly for $x \in \mathbb{R}$.

Fix 8 >0 lorge snough las et 2 to lorge enough /k $\frac{1}{|e^{-k^2t}|} = \frac{1}{|e^2|} = \frac{1}{|e^$ Since I at converges, by Weierstrass M-Test for each too uniformly on XER.

Attriconverges. uniformly on XER.

Since each term e cost x is continuins we conclude that bor eacht, utin is continuous.

(5) [10 pts] Suppose that u = u(t, x) solves

$$u_t = u_{xx},$$
 for $t > 0$ and $x \in \mathbb{R}$, $u(0, x) = \arctan(x)$.

Let $v(t,x) = u_t(t,x)$. Show that v solves

$$v_t=v_{xx}, \qquad \text{for } t>0 \text{ and } x\in\mathbb{R},$$

$$v(0,x)=\frac{-2x}{(1+x^2)^2}.$$

$$\alpha$$
 $\gamma = u + c$

$$\int_{0}^{\infty} V = ut = u_{xx}$$

$$\int_{0}^{\infty} V = ut = u_{xx} (0, x) = \frac{d^{2}}{dx^{2}} (arctan x)$$

$$=\frac{-2\pi}{(1+x^2)^2}$$

 $\frac{c.c.}{dt} = c(a) = 11 \times 2$

Sar = Sat

arctan x = t + (/

(xtt) = ton(t+c)

x, = tent + C)

C = ante x, -t,

Spince un constant vlong CCs

 $u(t_1, x_1) = u(t_1, x(t_1)) = u(0, x_1(0))$

=
$$f(x(0)) = f(tan(tareton(x_i) - t_i))$$

or utiv = f(ton (another (21 - +))

(7) [8 pts] Let $h(x,y) = \chi_{[-\pi/4,\pi/4]}(\theta)$ where $(x,y) = (\cos \theta, \sin \theta)$. Let u = u(x,y) solve Laplace's equation

$$\Delta u = 0$$
 in $x^2 + y^2 < 1$,
 $u = h$ on $x^2 + y^2 = 1$.

True or false? Give brief explanations for your answers. In the following, $u = u(r, \theta)$.

(a)
$$u(0,0) < u(1,0)$$

(b)
$$u(0,0) < u(1,\pi)$$

(c)
$$u(0.9, \pi) < u(0.9, 0)$$
.

Hint: The solution is given in polar coordinates by

$$u(r,\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} h(\phi) K(r,\theta-\phi) d\phi, \quad \text{where } K(r,\theta) = \frac{1-r^2}{1+r^2-2r\cos\theta}.$$

(a)
$$\mu(0,0) = \frac{1}{2\pi} \int_{-\pi/4}^{\pi} \frac{1}{1} d\theta = 0$$
 $\kappa(0,0) = 1$
 $= \frac{1}{2\pi} \int_{-\pi/4}^{\pi} \frac{1}{1} d\theta = 0$ $\mu(1,0) = h(0)$ by boundary Deck.

$$(0.9,0) = \frac{1}{2\pi} \int_{-\pi/4}^{\pi/4} K(0.9,-\phi) = \frac{1}{2\pi} \int_{-\pi/4}^{\pi/4} \frac{1-0.9^2}{1+0.9^2-1.8cm/4} d\phi$$

$$(0.9,\pi) = \frac{1}{2\pi} \int_{-\pi/4}^{\pi/4} K(0.9,\pi-\phi) = \frac{1}{2\pi} \int_{-\pi/4}^{\pi/4} \frac{1-0.9^2}{1+0.9^2+1.00m/4} d\phi$$

as
$$correct (H-\phi) = - correct$$
.

(a) Define what it means for $L: C_0^{\infty}(\mathbb{R}) \to \mathbb{R}$ to be a distribution. For each $\alpha \in C_0^{\infty}(\mathbb{R})$, $\mathcal{L}(u) \in \mathbb{R}$ and
Las Linear in that
L(c, u, 1 c, u2) = c, L(u,1+ c, L(u2)
∀c, c ∈ R +u, me (om)

(8) [12 pts] Let $C_0^{\infty}(\mathbb{R})$ be the space of infinitely differentiable functions, $u:\mathbb{R}\to\mathbb{R}$, with the property

that there exists an R > 0 so that u(x) = 0 for all |x| > R.

(b) Let $g: \mathbb{R} \to \mathbb{R}$ be a piecewise continuous function and $u \in C_0^{\infty}(\mathbb{R})$. Show that $L_g(u) = \int_{-\infty}^{\infty} g(x)u(x) dx$ is a distribution. Let $u \in C_0^{\infty}(\mathbb{R})$ And $\exists rh$:

We know $\exists k > 0: |uril = 0| \text{ for } |rl > \mathbb{R}.$ | Luci $|\leq H_2$ the Moo g PW ($\exists = 0: |uril = 0$

(c) Let $\xi \in \mathbb{R}$. Define the Dirac delta distribution, δ_{ξ} , at $x = \xi$, and show that δ_{ξ} is indeed a distribution.

= c, Lg(4,1 + C2 Lg(4)

$$\begin{aligned}
S_{\xi}(u) &= u(\xi) & \text{for } u \in C_{\delta}(k) \\
| S_{\xi}(u) &= |u(\xi)| < \infty & \text{S}_{\xi}(u) \in \mathbb{R} & \text{for } M \\
S_{\xi}(c, u, + c_{2} u_{2}) &= (c, u, + c_{3} u_{2})(\xi) \\
&= c, u_{\xi}(\xi) + (c, u_{3}(\xi)) \\
&= c, S_{\xi}(u, 1 + c_{3} u_{3}) = S_{\xi}(u, 1 + c_{3} u_{3})(\xi)
\end{aligned}$$

(d) Let σ_{ξ} be the piecewise continuous function defined by

$$\sigma_{\xi}(x) \ = \ \begin{cases} 0 & \text{if } x \leq \xi \\ 1 & \text{if } x > \xi. \end{cases}$$

Show that the derivative of the distribution $L_{\sigma_{\xi}}$ equals the Dirac distribution, δ_{ξ} .

$$(L_{o_{\xi}})'(u) = -L_{o_{\xi}}(u')$$

$$= -\int_{0}^{\infty} u' \otimes i d' \times i d$$

$$S_0$$
 $(L_{o_g})' = S_g$

Spen
$$u(t, x) = \frac{1}{2} + \sum_{n=0}^{\infty} \frac{2(-1)^n}{4(nn)} e^{-(2nn)^2 t} \cos(knn) t$$

(9) [14 prs] Find a Fourier series solution, $u = u(t, z)$, for $t > 0$ and $z \in [0, \pi]$, of

 $u(t, x) = 0$,

 $u(t, x) = 0$