Summary: Lecture 5

Summary for the chapters X and X. [2]

Reduction

Examples of NP-problems:

- Travelling Salesman Problem
- SATISFIABLE
- REACHBILITY (in P)
- CIRCUIT VALUE (in P)

Figure 1: P and NP sets [1]

- reduction: a problem is at least as hard as another
- \bullet problem A is at least as hard as problem B if B reduces to A
- B reduces to A if there is a transformation R
 - R produces for every input x of B an equivalent input R(x) of A
 - the answer of input x on B and input R(x) on A have to be the same
- to solve B on input x, A can be solved instead with input R(x)

Reduction

Problem A is at least as hard as problem B if B reduces to A.

Transformation function:

- \bullet tranformation function R should not be too hard to compute
 - $\rightarrow R$ should be limited
- efficient reduction R: $\log n$ space bounded

Transformation function

A language L_1 is reducible to L_2 if there is a function R computable by a deterministic Turing Machine in space $O(\log n)$ and $x \in L_1 \Leftrightarrow R(x) \in L_2$.

R is called a reduction from L_1 to L_2 .

- A Turing Machine M that computes a reduction R halts for all inputs x after a polynomial number of steps.
 - there are $O(n \cdot c^{\log n})$ possible configurations for M on an input of length n
 - deterministic: no configuration can be repeated
 - computation of length at most $O(n^k)$

Reduction HAMILTONIAN PATH to SATISFIABLE

- instance: Graph G question: Is there a path in G that visits each node one?
- log space reduction from HP to S
- demonstrates HP not significantly harder that SAT
- write a logical formular that only becomes true when it is HP
- 4, 3, 1, 2 as path $x_{1,4} = T, x_{2,3} = T, x_{3,1} = T, x_{4,2} = T,$
- slide is not quite correct
- $(notx_{1,1}ornotx_{2,1})$ and $(notx_{1,1}ornotx_{3,1})$ and $(notx_{1,1}ornotx_{4,1})$ and $(notx_{2,1}ornotx_{4,1})$ and $(notx_{2,1}ornotx_{4,1})$ and $(notx_{3,1}ornotx_{4,1})$ and ... first index: step, second: node

TODO

Questions:

Boolean Circuits

TODO

Questions:

Reduction REACHABILITY PATH to CIRCUIT VALUE

TODO

Questions:

Further examples

TODO

Questions:

Closedness under Composition

TODO

Questions:

References

- $[1] \begin{tabular}{ll} Image source: P-NP sets. \verb|https://www.techno-science.net/actualite/np-conjecture-000-000-partie-denouee-N21607.html. \end{tabular}$
- [2] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.