Question number	Scheme	Marks
9 (a)	$540 = 3x^2h \Rightarrow h = \frac{180}{x^2}$	3.51
		M1 M1
	$S = 2(3x^2 + 3xh + xh) = 6x^2 + 8xh$	1411
	$\Rightarrow S = 6x^{2} + 8x \times \frac{180}{x^{2}} = 6x^{2} + \frac{1440}{x} *$ $S = 6x^{2} + 1440x^{-1}$	depM1A1 [4]
(b)	$S = 6x^2 + 1440x^{-1}$	
	$\frac{dS}{dx} = 12x - 1440x^{-2}$	M1
	At min/max $\frac{dS}{dx} = 0$	
	$12x - 1440x^{-2} = 0 \Rightarrow x^3 = 120 \Rightarrow x = 4.93242$	M1A1
	$x \approx 4.93$ (3sf)	
	$\frac{d^2S}{dx^2} = 12 + \frac{2880}{x^3} \implies \text{Always positive for positive values of } x, \text{ hence}$	M1A1ft
	minimum	[5]
(c)	$S = 6 \times 4.93242^2 + \frac{1440}{4.93242} = 437.9185 \approx 438$	B1 [1]
	Tota	al 10 marks
(a)		
M1 M1	Rearrange the equation for volume to make h the subject Obtains an expression for S in terms of x and h .	
depM1	Dependent on previous M1. Use the equation to eliminate h to give an	1
A 1	expression for S in terms of x only.	
A1 (b)	Obtains the given expression for <i>S</i> .	
M1	Attempts to differentiates S wrt x with $x^n \to x^{n-1}$	
M1	Equate their derivative to zero and solve for x	
A1	Correct value of x, min 3 sf (Do not accept $\sqrt[3]{120}$)	
M1	Obtains a correct second derivative from their first derivative.	
	(If signs of $\frac{dS}{dx}$ on either side of their x are considered, numerical calc	ulations
A1 ft	must be shown.) Establish that the minimum has been obtained and give a conclusion.	No need to
	calculate the value of the second derivative. Follow through their x provided $x > 0$ and the second derivative is alg	ebraically
	correct or if signs of $\frac{dS}{dx}$ on either side of their x were considered these need to	
	be calculated and correct	
(c) B1	Correct value of <i>S</i> . Must be 3 sf	