第四章 触发器

- ❖ 4.1 基本触发器
 - 4.1.1 用与非门组成的基本触发器
 - 4.1.2 用或非门组成的基本触发器
 - 4.1.3 集成基本触发器
- ❖ 4.2 同步触发器
 - 4.2.1 同步RS触发器
 - 4.2.2 同步D触发器
- ❖ 4.3 边沿触发器
 - 4.3.1 边沿D触发器
 - 4.3.2 边沿JK触发器
 - 4.3.3 边沿触发器的功能分类、功能表示方法及转换

概述

- 一、基本要求
- 1. 有两个稳定的状态(0、1), 以表示存储内容;
- 2. 能够接收、保存和输出信号。
- 二、现态和次态
- 1. 现态: Q"触发器接收输入信号之前的状态。
- 2. 次态: Q^{n+1} 触发器接收输入信号之后的状态。
- 三、分类
- 1. 按电路结构和工作特点: 基本、同步、边沿。
- 2. 按逻辑功能分: RS、JK、D和 T(T')。
- 3. 其他: TTL和 CMOS, 分立和集成。

4.1 基本触发器

4.1.1 由与非门组成

一、电路及符号

$$\begin{cases} Q = 0 \\ \overline{Q} = 1 \end{cases} \quad 0 \stackrel{\bigstar}{\sim}$$

$$\begin{cases} Q = 1 \\ \overline{Q} = 0 \end{cases}$$
 1 $\stackrel{\text{$\delta$}}{=}$

二、工作原理

$$Q = SQ$$

$$Q = RQ$$

$$S = R = 1$$

$$Q = Q$$

$$Q = RQ$$
"保持"

$$\overline{S} = 1, \overline{R} = 0$$
 $\begin{cases} Q = 0 \\ \overline{Q} = 1 \end{cases}$ 0 \Leftrightarrow

"置 0"或"复位" (Reset)

$$\overline{S} = 0, \overline{R} = 1$$
 $\left\{ \begin{array}{l} Q = 1 \\ \overline{Q} = 0 \end{array} \right.$ 1 $\stackrel{\text{$\stackrel{\frown}{N}$}}{=}$

"置 1"或"置位"(Set)

$$\overline{S} = \overline{R} = 0$$
 Q 和 \overline{Q} 均为 $U_{\rm H}$

 \overline{R} 先撤消: \rightarrow 1态

 \bar{S} 先撤消: \rightarrow 0 态

信号同时撤消: 状态不定 (随机)

简化波形图

三、现态、次态、特性表和特性方程

1. 现态和次态

现态 Q^n :触发器接收输入信号之前的状态。

次态Qn+1: 触发器接收输入信号之后的新状态。

2. 特性表和特性方程

	М	_
477		AV
U		

经	1	JH	上,	W	丰
[B]	1	51	J	II	1

<u></u>				
R	S	Q^n	Q^{n+1}	K
0	0	0	0	0
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	_1
1	0	1	0	
1	1	0	不用	
1	1	1	不用	

n+1
· 保 程 1 置 0 不 元 千

特性方程
$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ RS = 0 \end{cases}$$
 约束条件

[例]

4.1.2 由或非门组成

一、电路及符号

二、工作原理

$$R = S = 0$$

$$R = 0, S = 1$$

$$R=1, S=0$$

$$R = S = 1$$

$$Q^{n+1} = Q^n, \overline{Q^{n+1}} = \overline{Q^n}$$

$$Q^{n+1} = 1, Q^{n+1} = 0$$

$$Q^{n+1} = 0, Q^{n+1} = 1$$

$$Q^{n+1}$$
、 $\overline{Q^{n+1}}$ 均为 U_{L}

若高电平同时撤消,则状态不定。

"保持"

"置 1"

"置 0"

"不允许"

三、特性表和特性方程

R S	Q^{n+1}	
0 0	Q^n	保持
0 1	1	置1
1 0	0	置 0
1 1	不用	不许

$$\begin{cases}
Q^{n+1} = S + \overline{RQ}^{n} \\
RS = 0 \text{ 约束条件}
\end{cases}$$

四、基本 RS 触发器主 要特点

- 1. 优点:结构简单,具有置 0、置 1、保持功能。
- 2. 问题:输入电平直接控制输出状态,使用不便,抗干扰能力差; R、S之间有约束。

4.1.3 集成基本触发器

TTL集成基本触发器

74279、74LS279

4.2 同步触发器

4.2.1 同步 RS 触发器

同步触发器: 触发器的工作状态不仅受输入端 (R、S) 控制,而且还受时钟脉冲(CP) 的控制。

CP (Clock Pulse): 等周期、等幅的脉冲串。

基本 RS 触发器: S — 直接置位端; (不受 CP 控制) R — 直接复位端。

同步触发器: 同步 RS 触发器 同步 D 触发器

一、电路组成及工作原理

1. 电路及逻辑符号

曾用符号

国标符号

2. 工作原理

当
$$CP = 0$$
 $\overline{S} = \overline{R} = 1$ $Q^{n+1} = Q^n$ 保持
当 $CP = 1$ $\overline{S \cdot CP} = \overline{S \cdot 1} = \overline{S}$ $\overline{R \cdot CP} = \overline{R \cdot 1} = \overline{R}$
与基本 RS 触发器功能相同

特性表:

CP	R	S	Q^n	Q n+1	注
0	×	×	×	Q ⁿ	保持
1	0	0	0	0	/IT 1-1-
1	0	0	1	1	保持
1	0	1	0	1	
1	0	1	1	1	置1
1	1	0	0	0	
1	1	0	1	0	置0
1	1	1	0	不用	不许
1	1	1	1	不用	小什

特性方程:

$$\begin{cases} Q^{n+1} = S + RQ^n \\ RS = 0 & 约束条件 \end{cases}$$

CP=1期间有效

二、主要特点

1. 时钟电平控制

CP=1期间接受输入信号;

CP = 0 期间输出保持不变。

(抗干扰能力有所增强)

2. RS 之间有约束

4.2.2 同步 D 触发器

一、电路组成及工作原理

$$S = D, R = \overline{D}$$

$$Q^{n+1} = S + \overline{RQ}^{n}$$

$$= D + DQ^{n} = D$$

(CP=1期间有效)

简化电路: 省掉反相器。

- 二、主要特点
 - 1. 时钟电平控制,无约束问题;
 - 2. CP = 1 时跟随。 $(Q^{n+1} = D)$ 下降沿到来时锁存 $(Q^{n+1} = Q^n)$

三、集成同步 D 触发器

&

74LS375

$$CP_{1, 2} \stackrel{Q}{\sim} \frac{1}{4} = \begin{bmatrix} 1D_0 & 1Q_0 \\ 1LE & 1Q_0 \\ 1D_1 & 1Q_1 \\ 1Q_1 & 1Q_1 \\ 1Q_1 & 1Q_2 \\ 2Q_0 & 2Q_0 \\ 2Q_0 & 2Q_0 \\ 2LE & 2Q_1 \\ 2Q_1 & 13 & Q_4 \\ 2Q_1 & 13 & Q_4 \end{bmatrix}$$

$$Q^{n+1} = S + \overline{R}Q^n = D + DQ^n = D$$

4.3 边沿触发器

4.3.1 边沿 D 触发器

- 电路组成及工作原理

2. 工作原理

(1)接收信号:

$$CP = 1$$

主触发器接收输入信号

$$Q_{\rm M}^{n+1} = D$$
 主触发器跟随D变化

(2) 输出信号:

$$CP = 0$$

主触发器保持不变;

从触发器由CP到来之前的 Q^n_M 确定。

即: $Q^{n+1} = D$ 下降沿时刻有效

3. 异步输入端的作用

D — 同步输入端 受时钟 *CP* 同步控制 **R**_D、**S**_D — 异步输入端 不受时钟 *CP* 控制

4. 波形

触发器的初始 0 状态可利用异步复位端接低电平实现

二、集成边沿D 触发器

TTL 边沿 D 触发器

ク。 。 ②

符号

SIDCI R

SIDCI R

D CP R

D CP R

D

7474 (双 D 触发器)

3. 主要特点

- ① CP的上升沿(正边沿)或下降沿(负边沿)触发;
- ② 抗干扰能力极强;
- ③ 只有置1、置0功能。

4.3.2 边沿 JK 触发器

一、电路组成及符号

二、工作原理

$$Q^{n+1} = D$$

$$= \overline{J} + Q^n + KQ^n$$

$$= (J + Q^n)(\overline{K} + \overline{Q}^n)$$
冗余项 $J\overline{Q}^n + \overline{K}Q^n$

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$
 CP 下降沿有效

二、集成边沿 JK 触发器

TTL 边沿 JK 触发器 74LS112 (双 JK 触发器)

- · CP 下降沿触发
- 异步复位端 \overline{R}_{D} 、异步置位端 \overline{S}_{D} 均为低电平有效
- 3. 主要特点
- ① CP 的上升沿或下降沿触发;
- ② 抗干扰能力极强,工作速度很高,在触发沿瞬间,接 $Q^{n+1} = JQ^n + \overline{K}Q^n$ 的规定更新状态;
- ③功能齐全(保持、置1、置0、翻转),使用方便。

4. 波形图

4.3.3 边沿触发器功能分类、功能表示方法及转换

- 一、边沿触发器功能分类
- 1. JK 型触发器

定义 在CP作用下,J、K取值不同时,具有保持、置0、置1、翻转功能的电路,都叫做JK型时钟触发器。

符号

特性表

功能	(
保持	2
置0	L
置1	

翻转

特性方程

$$Q^{n+1} = JQ^n + \overline{K}Q^n$$
 CP 下降沿时刻有效

2. D 型触发器

定义 在CP作用下,D 取值不同时, 具有置0、置1功能的电路,都叫做 D 型时钟触发器。

置 0

特性方程

$$Q^{n+1} = D$$

CP 上升沿 时刻有效

3. T型触发器

在CP作用下,当T=0时保持状态不变,T=1 时状态翻转的电路,叫T型时钟触发器。

T	<i>Q</i> ⁿ⁺¹	功能
0	Q ⁿ	保持
1	\overline{Q}^n	翻转

$$Q^{n+1} = TQ^{n} + \overline{T}Q^{n}$$

$$= T \oplus Q^{n}$$

$$CP$$
 下降沿时刻有效

4. T, 型触发器

每来一个CP就翻转一次的电路叫T'型时钟触发器.

Q ⁿ	Q n+1	功能
0	1	翻转
1	0	田切十寸

$$Q^{n+1} = Q^n$$

CP下降沿时刻有效

二、边沿触发器逻辑功能表示方法

特性表、卡诺图、特性方程、状态图和时序图。

1. 特性表、卡诺图、特性方程

(1) 特性表(真值表)

D	<i>Q n</i> +1	功能
0	0	置 0
1	1	置1

J	K	Q^n	Q n+1	功能
0	0	0	Q ⁿ	保持
0	1	0	0	置 0
1	0	0	1	置 1
1	1	0	\overline{Q}^n	翻转

(2) 卡诺图

D 触发器: 单变量的函数, 其卡诺图无意义。

$$JK$$
触发器: $Q^{n+1} = JQ^n + \overline{K}Q^n$

$$Q^{n+1}$$
 JK
 Q^{n}
 00
 01
 11
 1
 0
 0
 0
 1
 1
 1
 0
 0
 1

(3) 特性方程

$$D$$
触发器: $Q^{n+1} = D$

$$JK$$
触发器: $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

2. 状态图和时序图

(1) 状态图

D触发器: D=0

$$D = 0$$

$$D = 0$$

$$D = 0$$

 $J=\times$, K=1

D=1

JK触发器: J=0 $K=\times$ $K=\times$ J=1, $K=\times$

(2) 时序图

特点: 表述了*CP*对输入和触发器状态在时间上的对应 关系和控制或触发作用。

D 触发器:

CP 上升 沿触发

JK 触发器: CP

CP 下降 沿触发

- 三、边沿触发器逻辑功能表示方法间的转换
 - 1. 特性表→卡诺图、特性方程、状态图和时序图
- (1) 特性表→卡诺图、状态图

	J	K	Q^{n+1}	功能
	0	0	Q ⁿ	保持
Γ	0	1	0	置0
	1	0	1_	置1
	1	1	ℚ"	翻转

(2) 特性表→特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

向时序图的转换(略)

2. 状态图 → 特性表、卡诺图、特性方程和时序图

状态图→时序图

[例 4.3.1] 已知 *CP、J、K* 波形, 画输出波形。 假设初始状态为 0。

