Solid Modeling

Foley & Van Dam, Chapter 11.1 and Chapter 12

Solid Modeling

- Polygon Meshes
- Plane Equation and Normal Vectors
- Volume Representation
 - Sweep Volume
 - Spatial Occupancy Enumeration
 - Binary Space Partition Tree
 - Constructive Solid Geometry
 - Boundary Representation

Polygon Meshes

- A polygon mesh is a collection of polygons, along with a normal vector associated to each polygon vertex :
 - An edge connects two vertices
 - A polygon is a closed sequence of edges
 - An edge can be shared by two adjacent polygons
 - A vertex is shared by at least two edges
 - A normal vector pointing "outside" is associated with each polygon vertex

Polygon Meshes

Properties:

- Connectedness: A mesh is connected if there is an path of edges between any two vertices
- Simplicity: A mesh is simple if the mesh has no holes in it
- Planarity: A mesh is planar if every face of it is a planar polygon
- Convexity: The mesh is convex if the line connecting any two points in the mesh belongs to the mesh

Representing Polygon Meshes

Explicit (vertex list)

$$P_1 = (V_1, V_2, V_4)$$

 $P_2 = (V_2, V_3, V_4)$

Pointers to a vertex list

$$V=(V_1, V_2, V_3, V_4)$$

 $P_1=(1,2,4)$
 $P_2=(4,2,3)$

Pointers to an edge list

$$V=(V_{1},V_{2},V_{3},V_{4})$$

$$E1=(1,2,P_{1},\lambda) \ \lambda \text{ Represents null}$$

$$E2=(2,3,P_{2},\lambda)$$

$$E3=(3,4,P_{2},\lambda)$$

$$E4=(4,2,P_{1},P_{2})$$

$$E5=(4,1,P1,\lambda)$$

$$P1=(E_{1},E_{4},E_{5})$$

$$P2=(E_{2},E_{3},E_{4})$$

Representing Polygon Meshes

Explicit

Space effective for single polygons Not very informative

Pointers to Vertex List

Saves spaces for shared vertices

Easy to modify a single vertex

Difficult to find polygons sharing an edge

Multiple drawing and clipping of shared edges

Pointers to Edge List

Solves multiple drawing and clipping problem Still hard to find all edges sharing a vertex

Plane Equations

$$Ax + By + Cz + D = 0 \qquad or \qquad \begin{bmatrix} A & B & C & D \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = 0$$

- N=[A,B,C] is the plane normal (|N|=1)
- D= -P*N
- |D| is the plane distance from the origin.
- N points "outside", so:
 - •Ax+By+Cz+D<0 , (x,y,z) is "inside"
 - •Ax+By+Cz+D>0 , (x,y,z) is "outside"
- Three non collinear points V₁, V₂, V₃ are sufficient to find the coefficients
 A, B, C and D

Plane Equations

- Given V_1, V_2, V_3 , the plane normal (or the coefficients A, B and C) can be computed with the cross product: $S=(V_3-V_1)x(V_2-V_1)$ and N=S/|S|
- D can be found by plugging any point of the plane in the equation Ax+By+Cz+D=0

Plane Equations

Example:

Find the equation of the plane containing the points

$$V_1$$
=(2,1,2), V_2 =(3,2,1) and V_3 =(1,1,3)

First we compute the vectors

$$V_2-V_1 = (1,1,-1)$$
 and $V_3-V_1 = (-1,0,1)$

The A, B and C coefficients of the equation are given by

the cross product $S=(V_2-V_1)x(V_3-V_1)$

N = [A, B, C] = S/|S| = (1,0,1)/|(1,0,1)| =
$$\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$$

Finally we substitute V_1 in the equation to find D.

To simplify the computation, we use [A,B,C]=(1,0,1)

And the plane equation is x+z-4=0 The equation with the unitary normal is $\frac{1}{\sqrt{2}}(x+z-4)=0$

Volume Representation

- A collection of techniques to represent and define volumetric objects
- Desired properties:
 - Rich representation
 - Unambiguous
 - Unique representation
 - Accurate
 - Compact
 - Efficient
 - Possible to test validity

Volume Representation

- Volume Representation
 - Primitive Instancing
 - Sweep volumes
 - Spatial Occupancy (voxels, Octree, BSP)
 - Constructive Solid Geometry
- Boundary Rep.
 - Polyhedra
 - Free form

Primitive Instancing

- Define a family of parameterized objects
- The definition is procedural (a routine defines it)
- Not general, must be individually defined for each family of objects

Example: Wheels/Gears

Diameter = 10 Teeth = 16

Hole = 3

Diameter = 8

Teeth = 24

Hole = 5

Sweep Volume

- Sweep Volume: sweeping a 2D area along a trajectory creates a new 3D object
- Translational Sweep: 2D area swept along a linear trajectory normal to the 2D plane

 Tapered Sweep: scale area while sweeping

 Slanted Sweep: trajectory is not normal to the 2D plane

 Rotational Sweep: 2D area is rotated about an axis

 General Sweep: object swept along any trajectory and transformed along the sweep

Sweep Volume

Translational and rotational sweep volumes

Spatial Occupancy Enumeration

- Space is described as a regular array of cells (usually cubes). Each cell is called a Voxel
- A 3D object is represented as a list of filled voxels

Spatial Occupancy Enumeration

Pros:

- Easy to verify if a point (a voxel) is inside or outside an object
- Boolean operations are easy to apply

Cons:

- Memory costs are high
- Resolution is limited to size and shape of voxel

Quadtrees

- A Quadtree is a data structure enabling efficient storage of 2D data
- Completely full or empty regions are represented by one cell; recursive subdivision is used on the others

Octrees

- An Octree is a 3D generalization of a Quadtree
- Each node in an Octree has eight children rather than four
- Describes a recursive partitioning of a volume into cells that are completely full or empty

Binary Operations on Quad/Octrees

Notation: Internal Node Full **Empty** (Partially full) Leaf Node Leaf Node Recursion on descendents Union: Recursion on descendents Intersection: Complement: Recursion on descendents Recursion on descendents Difference:

Binary Operations on Quad/Octrees

Binary Space Partition Trees - BSP

- Each internal node represents a plane in 3D space
- Each node has 2 children pointers one for each side of the plane.
- A leaf node represents a homogeneous portion of space either "in" or "out".
- Easy to determine if a point is inside or outside an object (recurse down the BSP tree)

Constructive Solid Geometry

- Combine simple primitives using Boolean operations and represent as a binary tree.
- To generate the object the tree is processed in a depth-first pass.
- Cons: representation is not unique

Constructive Solid Geometry

An object defined by a binary CSG tree

- A closed 2D surface defines a 3D object
- At each point on the boundary there is an "in" and an "out" side
- Boundary representations can be defined in two ways:
 - Primitive based. A collection of primitives forming the boundary (polygons, for example)
 - Freeform based (splines, parametric surfaces, implicit forms)

- A polyhedron is a solid bounded by a set of polygons
- A polyhedron is constructed from:
 - Vertices V
 - Edges
 - Faces F
- Each edge must connect two vertices and be shared by exactly two faces
- At least three edges must meet at each vertex

- A simple polyhedron is one that can be deformed into a sphere (contains no holes)
- A simple polyhedron must satisfies Euler's formula:

 Euler's formula can be generalized to a polyhedron with holes and multiple components

Where:

$$V-E+F-H=2(C-G)$$

- H is the number of holes in the faces
- C is the number of separate components
- G is the number of pass-through holes (genus if C=1)
- V, E and F are respectively vertices, edges and faces

$$V - E + F - H = 2 (C - G)$$

$$24 - 36 + 15 - 3 = 2(1 - 1)$$