

ANÁLISIS DEL RETO

Tomás Sierra Sanchez, 202221567, t.sierras@uniandes.edu.co

Juan Francisco Rodríguez, 202214603, jf.rodriguezc1@uniandes.edu.co

Carlos Peña, 202222516, c.penaa@uniandes.edu.co

Requerimiento 1

Descripción

Este requerimiento se encarga de listar la actividad económica con mayor saldo a pagar para todos los años disponibles. Y las retorna en una tabla.

Entrada	Control: El catálogo de datos completo
Salidas	Lista de la actividad económica con el mayor saldo por cada año
Implementado (Sí/No)	Si. Tomás Sierra

Análisis de complejidad

Pasos	Complejidad
Declarar variables auxiliares	O(1)
Recorrer por todos los años disponibles	O(a)
Recorrer cada elemento para guardar el año mayor	O(n)
TOTAL	O(n) + O(a)

Pruebas Realizadas

Procesadores	Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz	
Memoria RAM	8 GB	
Sistema Operativo	Windows 11 Single Language	

Entrada	Tiempo (ms)
small	15.35

5 pct	20.32
5 pct 10 pct	21.38
20 pct	37.41
30 pct	48.65
50 pct	74.96
20 pct 30 pct 50 pct 80 pct large	117.01
large	145.62

Muestra	Salida	Tiempo (ms)
small		15.35
5 pct		20.32
10 pct		21.38
20 pct		37.41
30 pct		48.65
50 pct	Lista de la actividad	74.96
80 pct	económica con el mayor saldo	117.01
large	por cada año	145.62

Gráficas

Tiempo (ms) vs. Entrada (%)

Análisis

Se puede observar que en la práctica la implementación tiene una complejidad O(n), esto se puede deber a que aunque se recorren todos los años en nuestro caso esos siempre se mantienen constantes sin importar el tamaño de datos ya que las muestras van desde 2012 hasta 2021 por lo que la complejidad del primer for se mantiene constante y se vuelve un comportamiento lineal.

Requerimiento 2

Descripción

Este requerimiento se encarga de listar la actividad económica con mayor total saldo a favor para todos los años disponibles. Y los retorna en una tabla con cada año.

Entrada	Control: El catálogo de datos completo
Salidas	Lista de la actividad económica con el mayor saldo por cada año
Implementado (Sí/No)	Si. Tomás Sierra

Análisis de complejidad

Pasos	Complejidad
Declarar variables auxiliares	O(1)
Recorrer por todos los años disponibles	O(a)
Recorrer cada elemento para guardar el año mayor	O(n)
TOTAL	O(n) + O(a)

Pruebas Realizadas

Procesadores	Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz	
Memoria RAM	8 GB	
Sistema Operativo	Windows 11 Single Language	

Entrada	Tiempo (ms)
small	18.73
5 pct	19.29
10 pct	23.38
20 pct	37.76

30 pct	52.28
50 pct	92.58
80 pct	128.1
large	169.49

Muestra	Salida	Tiempo (ms)
small		18.73
5 pct		19.29
10 pct		23.38
20 pct		37.76
30 pct		52.28
50 pct	Lista de la actividad	92.58
80 pct	económica con el mayor saldo	128.10
large	por cada año	169.49

Gráficas

Tiempo (ms) vs. Entrada (%)

Análisis

Se puede observar que en la práctica la implementación tiene una complejidad O(n), esto muy similar al requerimiento 1 se puede deber a que aunque se recorren todos los años en nuestro caso esos siempre se mantienen constantes sin importar el tamaño de datos ya que las muestras van desde 2012 hasta 2021 por lo que la complejidad del primer for se mantiene constante.

Requerimiento 3

Descripción

Este requerimiento se encarga de encontrar el subsector económico con las menores retenciones para cada año

Entrada	Catálogo con todos los datos
Salidas	Una tabla general del sub sector económico que más retenciones
	tuvo en el año.
	Una tabla por cada año donde se ve las actividades que más y
	menos aportaron a dichas retenciones
Implementado (Sí/No)	Sí, Tomás Sierra

Análisis de complejidad

Pasos	Complejidad
Procesar la lista completa para conseguir las sublistas	O(n)
de años y llamar la función procesar año. Luego	
retornar lista de tuplas	
Procesar la sub lista de cada año para devolver la	O(a)
información requerida. Retornar tuplas	
Procesar la lista de tuplas para imprimir	O(t)
TOTAL	O(n) + O(a) + O(t)

Pruebas Realizadas

Procesadores	Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz
Memoria RAM	8 GB
Sistema Operativo	Windows 11 Single Language

Entrada Tiempo (ms)			
	Entrada	Tiempo (ms)	

small	46.3
5 pct	58.49
10 pct	64.03
20 pct	141.16
30 pct	138.38
50 pct	264.04
80 pct	406.77
20 pct 30 pct 50 pct 80 pct large	481.97

Muestra	Salida	Tiempo (ms)
small		26.43
5 pct	Una tabla general del sub sector económico que más retenciones tuvo en el año. Una tabla por cada año donde se ve las actividades que más y menos aportaron a dichas retenciones	34.66
10 pct		30.18
20 pct		53.76
30 pct		79.94
50 pct		97.47
80 pct		152.32
large		178.51

Gráficas

Tiempo (ms) vs. Entrada (%)

Análisis

Se puede observar que la curva se apega a un comportamiento lineal más que todo, esto pienso que se debe a que como tanto a como t son en realidad sublistas de la original. La complejidad temporal va a estar dada por n que es el número de datos que ingresan a la función.

Requerimiento 4

Descripción

Este requerimiento se encarga de encontrar el subsector económico con los mayores costos y gastos de nómina para todos los años disponibles

Entrada	Data_structs: Es el catálogo de datos completo	
Salidas	Una tabla general del subsector económico con los mayores costos	
	y gastos de nómina del año.	
	Una tabla por cada año donde se ve las actividades que más y	
	menos aportaron a dichos costos y gastos de nómina.	
Implementado (Sí/No)	Si, Juan Francisco Rodríguez Contreras	

Análisis de complejidad

Pasos	Complejidad
Procesar el catálogo de datos completos para	O(n)
conseguir las sublistas de cada año.	
Procesar la sublista de cada año para devolver la	O(a)
información requerida y retornar tuplas con tabla	
general del subsector económico con los mayores	
costos, una tabla por cada año donde se ve las	
actividades que más y menos aportaron a dichos	
costos y gastos de nómina y gastos de nómina tuvo en	
el año y los títulos de cada información para	
proyectarlos en el view.	
Procesar la lista de tuplas para imprimir en el view.	O(t)
TOTAL	O(n) + O(a) + O(t)

Pruebas Realizadas

Procesadores	1,8 GHz Intel Core i5 de dos núcleos
--------------	--------------------------------------

Memoria RAM	8 GB 1600 MHz DDR3
Sistema Operativo	MacOS Catalina Versión 10.15.7

Muestra	Salida	Tiempo (ms)
small		55.2
5 pct		137.4
10 pct	El subsector económico que tuvo los mayores costos y gastos de nómina para cada año disponible en los datos cargados.	182.93
20 pct		222.78
30 pct		271.18
50 pct		323.96
80 pct		359.02
large		398.89

Gráficas

Tiempo (ms) vs Muestra (%)

Análisis

Viendo el resultado que nos arroja la gráfica se puede notar una tendencia lineal la cual es el fruto de que a la hora de resolver el requerimiento se utilizó una complejidad en casi todo momento de O(n) al estar creando sublistas de una lista principal.

Requerimiento 5

Descripción

Este requerimiento se encarga de listar el subsector económico con los mayores descuentos tributarios para todos los años disponibles.

Entrada	Control: El catálogo de datos completo	
Salidas	Lista del subsector económico con los mayores descuentos	
	tributarios para todos los años disponibles. En este, las tres	
	actividades económicas que menos aportaron y las tres actividades	
	económicas que más aportaron al descuento tributario en cada año.	
Implementado (Sí/No)	Si, Carlos Peña	

Análisis de complejidad

Pasos	Complejidad
Agrupar datos (Por sector, subsector económico, y las	O(n*2g)
actividades que aportaron 'Descuentos tributarios' a	
dicho sector con su respectivo subsector). Recorre	
todos los datos, luego recorre todos los datos en la	
lista agrupada "g". (Primero se itera sobre todos los	
datos de la lista original, después se itera dos veces	
sobre la lista nueva para comprobar si el año, el sector	
y subsector económico ya se encuentran listados.)	
Ordena para cada uno de los elementos en la lista de	O(g * [s log(s) +a log(a)])
los subsectores "s" descendentemente por su 'El total	
de descuentos tributarios del subsector económico'.	
Adicionalmente ordena para cada uno de los	
elementos de la lista de actividades "a", para el primer	
elemento de de cada lista ordenada "s" de	
subsectores, las actividades ascendentemente por su	
'Total descuentos tributarios'. (Primero se itera sobre	
todos los datos de la lista filtrada, luego se ordena con	
quicksort dos veces, primero para los subsectores	
económicos, posteriormente se ordena para las	
actividades en el subsector que más descuentos	
totales tiene.)	
TOTAL	O(n*2g) + O(g * [s log(s) + a log(a)])

Pruebas Realizadas

Procesadores	1,8 GHz Intel Core i5 de dos núcleos
Memoria RAM	8 GB 1600 MHz DDR3
Sistema Operativo	Mac OS Monterrey Versión 12.6.3

Muestra	Salida	Tiempo (ms)
small		60.38
5 pct		99.64
10 pct		111.92
20 pct		120.22
30 pct		123.5
50 pct	Los subsectores económicos	135.8
80 pct	con los mayores descuentos	145.22
large	tributarios disponibles.	153.56

Gráficas

Tiempo (ms) contra Muestra (%)

Análisis

Se puede observar que en la práctica el requerimiento tiene una complejidad aproximada O(n log(n)). Esto se debe a que la complejidad que más aporta al tiempo es el ordenamiento de los datos. Pues filtrarlos y agruparlos no requiere de tantos recursos como ordenarlos en este caso.

Requerimiento 6

Descripción

Este requerimiento se encarga de listar la actividad económica con el mayor total de ingresos netos (Total ingresos netos) para cada sector económico en un año específico.

Entrada	Control: El catálogo de datos completo, anio: Año a analizar	
Salidas	Lista de la actividad económica con el mayor total de ingresos netos	
	(Total ingresos netos) para cada sector económico en un año	
	específico ordenada de menor a mayor por el código del	
	sector económico.	
Implementado (Sí/No)	Si, Carlos Peña	

Análisis de complejidad

Pasos	Complejidad
Recorrer todos los datos y filtrar para obtener solo los	O(n)
datos para el año deseado.	
Agrupar datos filtrados (Por sector, subsector	O(f*2g)
económico, y las actividades que aportaron 'Total	
ingresos netos' a dicho subsector). Recorre todos los	
datos en la lista filtrada "f", luego recorre todos los	
datos en la lista agrupada "g" 2 veces para comprobar	
si el sector y el subsector ya se encuentran.	
Ordenar la lista ascendentemente por el código del	O(g log(g))
sector económico. Recorre todos los datos en la lista	
agrupada "g".	
Ordena descendentemente cada uno de los	O(g * (s log(s) + 2a log(a)))
elementos de la lista de subsectores "s" en la lista	
agrupada ordenada "g", descendentemente por su	
'Total ingresos netos del subsector económico'. Adicionalmente ordena para cada uno de los	
elementos de la lista de actividades "a", para el primer	
y último elemento para cada lista ordenada "s" de	
subsectores, las actividades descendentemente por su	
'Total ingreso neto' atribuido al subsector.	
TOTAL	$O(n) + O(f*2g) + O(g \log(g)) + O(g * [s \log(s)]$
	+ 2a log(a)])

Pruebas Realizadas

Procesadores	1,8 GHz Intel Core i5 de dos núcleos
Memoria RAM	8 GB 1600 MHz DDR3
Sistema Operativo	Mac OS Monterrey Versión 12.6.3

Muestra	Salida	Tiempo (ms)
small		85.64
5 pct		136.7
10 pct		198.07
20 pct	La actividad económica de	213.59
30 pct	cada uno de los sectores	238.94
50 pct	económicos que tuvieron los	302.94
80 pct	mayores ingresos netos en el	283.19
large	año 2021	318.15

Gráficas

Tiempo (ms) contra Muestra (%)

Análisis

Se puede observar que en la práctica el requerimiento tiene una complejidad aproximada O(n log(n)). Esto se debe a que la complejidad que más aporta al tiempo es el ordenamiento de los datos. Pues filtrarlos y agruparlos no requiere de tantos recursos como ordenarlos en este caso.

Requerimiento 7

Descripción

Este requerimiento se encarga de listar las actividades económicas que tuvieron los menores valores totales de costos y gastos (Total costos y gastos), para un periodo de tiempo específico.

Entrada	Control: El catálogo de datos completo, n: El número (N) de actividades económicas a identificar, bi: Año de inicio, bs: Año de fin
Salidas	Lista del año, sector económico y su subsector económico con el menor totales de costos y gastos, organizado descendentemente en años y ascendentemente en totales de costos y gastos por año.
Implementado (Sí/No)	Si, Carlos Peña

Análisis de complejidad

Pasos	Complejidad
Recorrer todos los datos y filtrar para obtener solo los datos para el periodo en años deseado.	O(n)
Ordenar la lista filtrada "f" ascendentemente por 'Total costos y gastos'	O(f log(f))
Segundo filtro que obtiene el número de elementos "N" a identificar de la lista "f" y los guarda en una lista "t".	O(N)
Ordena la lista filtrada "t" de manera estable por años descendentemente.	O(t)
TOTAL	$O(n) + O(f \log(f)) + O(N) + O(t)$

Pruebas Realizadas

Las pruebas realizadas fueron realizadas en una máquina con las siguientes especificaciones. Los datos de entrada fueron el catálogo guardados como un Arraylist y el algoritmo de ordenamiento usado fue Quick Sort.

Procesadores	1,8 GHz Intel Core i5 de dos núcleos
Memoria RAM	8 GB 1600 MHz DDR3
Sistema Operativo	Mac OS Monterrey Versión 12.6.3

Tablas de datos

Muestra	Salida	Tiempo (ms)
small		26.43
5 pct	Las 10 actividades	34.66
10 pct	económicas con menores	30.18

costos y gastos totales para el

20 pct	periodo comprendido entre	53.76
30 pct	2014 y 2021.	79.94
50 pct		97.47
80 pct		152.32
large		178.51

Gráficas

Tiempo (ms) contra Muestra (%)

Análisis

Se puede observar que en la práctica el requerimiento tiene una complejidad aproximada O(n). Esto se debe a que la complejidad que más aporta al tiempo es el filtrado de datos. Pues ordenarlos no requiere de tantos recursos como filtrarlos en este caso.

Requerimiento 8

Descripción

Este requerimiento se encarga de listar el Top (N) de actividades económicas de cada subsector económico con los mayores totales de impuestos a cargo para un periodo de tiempo

Entrada	Control: El catálogo de datos completo, n: El número (N) de actividades económicas a identificar, bi: Año de inicio, bs: Año de fin
Salidas	Lista de sector económico y su subsector económico que más aportó 'Total de impuestos a cargo para el subsector', adicionalmente las N actividades económicas que más aportaron a este subsector.
Implementado (Sí/No)	Si, Carlos Peña

Análisis de complejidad

- manoro de comprejudad	
Pasos	Complejidad
Recorrer todos los datos y filtrar para obtener solo los	O(n)
datos para el periodo en años deseado.	
Agrupar datos filtrados (Por sector y subsector	O(f*g)
económico, y las actividades que aportaron a dicho	
subsector). Recorre todos los datos en la lista filtrada	
"f", luego recorre todos los datos en la lista agrupada "g".	
Ordenar la lista alfabéticamente por el nombre del	O(g log(g))
subsector Recorre todos los datos en la lista agrupada	
"g".	
Ordena para cada uno de los elementos de la lista de	O(g * a log(a))
actividades "a" en la lista agrupada ordenada "g", las	
actividades descendentemente por su 'Total Impuesto	
a cargo' atribuido al subsector.	
TOTAL	$O(n) + O(f^*g) + O(g \log(g)) + O(g * a \log(a))$

Pruebas Realizadas

Las pruebas realizadas fueron realizadas en una máquina con las siguientes especificaciones. Los datos de entrada fueron el catálogo guardados como un Arraylist y el algoritmo de ordenamiento usado fue Quick Sort.

Procesadores	1,8 GHz Intel Core i5 de dos núcleos
Memoria RAM	8 GB 1600 MHz DDR3
Sistema Operativo	Mac OS Monterrey Versión 12.6.3

Tablas de datos

Muestra	Salida	Tiempo (ms)
small	Las 5 actividades económicas que aportaron el mayor impuesto a cargo, de cada	133.07
5 pct		189.72
10 pct		235.35
20 pct		269.04

subsector, para el periodo

30 pct	comprendido entre 2014 y	322.85
50 pct	2021.	341.79
80 pct		327.46
large		381.11

Gráficas

Tiempo (ms) contra Muestra (%)

Análisis

Se puede observar que en la práctica el requerimiento tiene una complejidad aproximada O(n log(n)). Esto se debe a que la complejidad que más aporta al tiempo es el ordenamiento de los datos. Pues filtrarlos y agruparlos no requiere de tantos recursos como ordenarlos en este caso.

Carga de datos

Descripción

Este requerimiento se encarga de cargar los datos y asignarles un ID único en la base de datos.

Pruebas Realizadas, Tablas de datos y Gráficas.

Procesadores	Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz
Memoria RAM	8 GB
Sistema Operativo	Windows 11 Single Language

Tabla 1. Especificaciones de la máquina para ejecutar las pruebas de rendimiento.

Algoritmos (ms) vs. Tamaño Muestra (%) M1 (AL)

Gráfica 1. Tiempo de ejecución de algoritmos de ordenamiento contra tamaño de muestra en % para Arraylist.

Algoritmos (ms) vs. Tamaño Muestra (%) M1 (SL)

Gráfica 2. Tiempo de ejecución de algoritmos de ordenamiento contra tamaño de muestra en % para Arraylist.

Para ver las tablas de datos sugerimos visitar el siguiente vinculo e ir a la pestaña Lab5-M1 https://docs.google.com/spreadsheets/d/1U1a-tytwRgBI05hb0W4QZb5vzWjm11AkofJY145OtUs/edit?usp=sharing.

Análisis de complejidad sobre algoritmos de ordenamiento y carga de datos.

Los algoritmos se comportan acorde a lo establecido teóricamente ya que para los casos cuando el algoritmo tiene una complejidad teórica de O(n^2) las gráficas mostraron una correlación muy precisa con ese comportamiento cuadrático. Dadas las limitaciones para regresiones en la herramienta en que las llevamos a cabo, no pudimos realizar una regresión de acorde a lo teórico en los algoritmos Quick, Merge y Shell sort. A pesar de esto podemos evidenciar que el comportamiento visual es de acorde a lo teórico. Durante la toma de datos no se vio alguna diferencia entre los resultados obtenidos al ejecutar las pruebas en diferentes máquinas. Esto debido a que las máquinas que tenían un menor poder de procesamiento se demoran más tiempo en general en procesar los datos. Sin embargo, esto no significaba que el comportamiento era diferente, la variación se generaba en el tiempo de ejecución, mas no en como se comportaba del mismo. De las gráficas mostradas anteriormente (Gráfica 1 y Gráfica 2) podemos ver que teniendo en cuenta el tiempo de ejecución, la mejor estructura de datos es el ARRAY LIST ya que este fue el que menos tiempo se demoró sin importar el algoritmo de ordenamiento o la máquina. Adicionalmente, el algoritmo de ordenamiento preferido para el reto varió entre Mergesort (cuando era necesario un algoritmo estable que mantuviera el orden de entrada para datos iguales) y Quicksort en casos en que el uso eficiente de la memoria de la máquina prevalecía. Esto debido al análisis obtenido de la carga de datos, en la cual presenciamos una diferencia abismal entre los algoritmos de ordenamiento iterativos y los recursivos (exceptuando a Shellsort).