Manay Vora

mkvora2@illinois.edu | +1(217)-205-7972

EDUCATION ____

University of Illinois Urbana-Champaign

Champaign, IL

M.Sc. in Aerospace Engineering - Thesis Track, GPA: 3.83/4.0

Aug 2022 - May 2024 (expected)

· Advisor: Prof. Melkior Ornik

• Relevant Coursework: MDPs and Reinforcement Learning, Optimization in Aerospace Systems

Indian Institute of Technology Bombay (IIT Bombay)

Mumbai, IN

B. Tech (with honors) in Aerospace Engineering, Minor in Systems and Controls

Jul 2018 - Aug 2022

• Ranked 4^{th} out of 60 students in the department of aerospace engineering

• Recipient of Chanakya Research Fellowship awarded for research on autopilot design for delivery drone

SELECTED WORK EXPERIENCE _

Research Assistant | Advisor: Prof. Melkior Ornik | LEADCAT Group, UIUC

Aug 2022 - Present

- Solving the problem of multi-agent optimization of large state space factored POMDPs via reinforcement learning
- Implemented a **POMCP** solver in **Julia** to find optimal maintenance and inspecion policy for multiple buildings
- Developed a **budget distribution** algorithm to decouple the buildings into independent POMDPs and make the optimal policy computationally feasible and efficient
- Developing a **transfer learning** algorithm to extrapolate the optimal policy of a single building to multiple buildings and aid in computationally efficient solution through faster reinforcement learning in the larger state space

Reinforcement Learning for Lunar Lander | Course Project

Aug 2022 - Dec 2022

- Compared performance of **DQN**, **SARSA**, **Q-Learning and Monte Carlo** algorithms on a spacecraft to aid in optimal landing on the surface of the moon
- Visualised the performance of all algorithms on the spacecraft by creating animations using the Python Gym Environment
- Obtained the final trajectory of spacecraft, from the animations, under different algorithms using object tracking in **OpenCV**

Lie Algebra Based Neural ODE | Advisor: Prof. Pratik Chaudhari | GRASP Lab, UPenn

Apr 2021 - Feb 2022

- Implemented Hamiltonian-based Neural ODE on pendulum and quadrotor to understand its structure and working
- Worked on incorporating Lie Algebra in Neural ODE architecture to increase dynamics prediction accuracy
- Achieved validation error under 5% on CIFAR-10 dataset via design and implementation of a 16x4 Wide ResNet
- Executed RRT-star algorithm on Dubins' Car with 2 nearest neighbor search heuristics to understand Lie Algebra

Control of Agile Tethered Drone Attached to Moving Vehicle | Bachelor's Thesis

Jan 2021 - May 2022

- Developed a ROS controller package and merged with PixHawk to achieve trajectory tracking with less than 3% error
- Created a novel Gazebo model of a quadrotor UAV tethered to a fixed support via a flexible tether
- Developed a Gazebo **control force plugin** using C++ to apply external force to the system for dynamics simulation

Autopilot Design for Delivery Drone | *Advisor: Prof. Arnab Maity*

Jul 2020 - Jan 2022

- Conceptualised a novel **Hamiltonian Neural ODE** network based adaptive controller to maintain system performance in the presence of dynamic uncertainties like payload imbalance, motor failure and distrubances
- Designed an e-modification based adaptive controller and achieved an accuracy of 98%
- Formulated the dynamics and performed stability analysis of a drone carrying unbalanced grasped payload
- Compared the performance of various flight control techniques like PID, Dynamic Inversion and Backstepping

TECHNICAL SKILLS

Languages Python, Julia, C++, C, MATLAB

Tools & Frameworks ROS, Pytorch, Apache MXNet, Numpy, SciPy, sklearn, Gym, OpenCV, Pandas, Compyle,

Gazebo, Simulink, LATEX, Mayavi, git

TEACHING EXPERIENCE ____

Teaching Assistant | Guide: Prof. Arnab Maity | Control Theory

Jul 2021 - Dec 2021

- Worked in a **team of 6** students to help the professor in smooth day-to-day conduction of the course
- Responsible for curation of a comprehensive compendium of the course for 80+ students in the department