

顺舟智能 LoRa 模块使用说明书

SZ05LR-PRO-2

上海顺舟智能科技股份有限公司

www.shuncom.com

更新日期:2018-12-12

文档修订记录

版本	变化状态	日期	作者
V1.0	新增	2018-8-10	SHUNCOM
V1.1	增加点对点通讯模式	2018-12-12	SHUNCOM

前言

LoRa无线技术,是一种符合工业标准应用的无线数据通信技术。SZ05LR-PRO-2模块是顺舟智能自主设计研发的基于LoRa技术的无线通信模块。LoRa无线通信技术具有星形网络结构、通讯距离远、抗干扰能力强、组网灵活等优点,可实现多设备间的数据透明双向传输,非常适合应用于工业无线测控通信、无线传感器数据采集、智慧城市、智慧工业、智慧农业、智能家居、智能交通、智能电网、油田检测、环境检测等领域。

顺舟技术优势

顺舟成立之初,主要研发无线通信、组网核心领域,确保通信稳定可靠、扩展性好;在LoRa、ZigBee、2G/4G/NB-IOT等有丰富的应用经验;

顺舟业务优势

业务覆盖广:上海、深圳、西安办、北京分公司;

产品线丰富:智慧城市、智能工业、智慧园区、智能家居、智能照明等;

统一系统平台,结合全无线技术,打造万物互联;

项目分布广:项目遍及国内外。

顺舟定位

产品:打造极致化产品,符合客户及市场各种需求

服务:立志成为客户技术团队,服务于客户,合作共赢

目录

前言		3
1、概	述	5
1.1、	产品介绍	5
1.2、	产品特点	5
1.3、	产品参数	6
2、硬	件特性	8
2.1、	模块引脚说明	8
2.2、	模块应用原理图	. 10
2.3、	模块尺寸图	. 11
2.4、	模块实物图	. 11
3、功	能说明	. 12
3.1、	点对点模式	. 12
3.2、	LoRaWAN	. 13
3.3、	AT 指令	. 14
3.3.	1 AT 指令格式	. 14
3.3.	2 AT 指令使用说明	. 15
3.4、	固件升级	. 22
4、技	术支持	. 24

1、概述

1.1、产品介绍

SZ05LR-PRO-2 是顺舟智能研发的一款 LoRa 模块,模块采用 ASR 最新的 LoRa 芯片,结合 Cypress-PSoC4100S 的优良性能打造最小功耗的 LoRa 芯片模组。软件方面通过集成 Alios-Things,完成了节点-网关-Ali 云的通信过程。模块采用串行接口与用户设备进行数据,可以方便地为用户提供快速 LoRaWAN 网络接入和无线数据等业务。

SZ05LR-PRO-2 模块具有功耗低、传输距离远、抗干扰能力强,适用于多种应用场合:无线抄表、智慧城市、工业自动化、智能家居、油田检测、智慧农业等。

1.2、产品特点

- > 模块集成标准LoRaWan协议栈
- ▶ 模块支持Ali云通信
- ▶ 支持OTAA、 ABP入网
- ▶ 支持所有LoRa通道150-960MHz

➤ 发射功率: 20dBm(max)

➤ 超高接收灵敏度:-148dBm(@SF=12,BW=10.4kHz)

通信频点随机切换

> 入网自动扫描

▶ 支持串口波特率可调、输出功率可调以及多种射频速率

▶ 支持主从、点对点通信

▶ 外形尺寸小,方便用户集成

▶ 工业级应用设计,采用工业级芯片,适合工业级应用

1.3、产品参数

名称	参数	备注
工作电压	3.3 ~ 5V	
休眠电流	< 3uA	
发送功率	20dBm	
工作频段	150 ~ 960MHz	全频段可定制
数据速率	SF12~SF7	可设置
		用户可配置工作波特
串口波特率	2400 ~ 115200bps	率 ,配置波特率固定为
		38400bps
组网模式	OTAA/ABP	可配置
入网模式	同频/异频	可配置
数据模式	confirm/unconfirm	可配置
协议栈	支持 LoRaWAN、透传	

工作模式	ClassA/ClassB/ClassC	
接收灵敏度	-137dBm	SF12
工作电流	12mA	
网络拓扑	星型网	
二次谐波	-35±5dBm	
天线接口	Ipex 接口	
模块尺寸	17*22mm	
工作温度	-40-80°C	工业级
拓展功能	支持与 Ali 云通讯	

2、硬件特性

顺舟 SZ05LR 系列模块提供简易的接口方式、丰富的外围接口。

2.1、模块引脚说明

SZ05LR-PRO-2 模块引脚说明

序号	管脚名称	功能	备注
1	ADC_IN	ADC 采集/IO	
2	CFG	指令/透传模式的切换	低电平进入指令模式

			OTAA 入网模式:一秒钟闪一次,入
3	NET	运行灯	网成功后常亮(上电默认为常亮)
			ABP 入网模式:上电常亮
4	IO3	IO 唤醒	休眠模式下低电平唤醒
20	GND	地	负极
21	VCC	电源	正极
22	UART_RX	TTL电平	接用户 TX
23	UART_TX	TTL电平	接用户 RX
24	SWD_CLK	数据下载口	
25	I2C_SDA	I2C 的 SDA	
26	I2C_SCL	I2C 的 SCL	
27	SWD_DATA	数据下载口	
28	RESET	复位管脚	低电平有效

2.2、模块应用原理图

2.3、模块尺寸图

T=1.0MM

Units:MM

2.4、模块实物图

3、功能说明

3.1、点对点模式

LoRa 点对点模式是一种脱离 LoRa 网关的使用方式,即只使用 LoRa 模组就可以实现不同模组之间数据互传的模式。本模式也是顺舟 LoRa 模组的具有的私有协议模式。

本模式下的模组分为两种工作模式,一是主从模式,二是点对点模式。

第一种模式:将所有的 LoRa 模组在功能上划分为两类,一类是中心节点,另一类则是终端节点。本模式下的中心节点可以向所有同组终端节点发送数据,所有同组终端节点都可以往中心节点发送数据,但是所有终端节点之间的数据不能进行互传。即整个网络结构本质上还是一种星形网络拓扑;

在中心节点模式下,中心节点对单个终端节点发送数据时,要在有效数据的前面加上接收数据终端节点的4字节短地址。本模式下,终端节点对中心节点发送数据,可以直接发送,无须在有效数据前面携带额外短地址;

举例:

1)中心发送数据指点节点地址。例如:节点地址为0000005

丰站发送: 00 00 00 05 11 12 13 14 15

从站接收:11 12 13 14 15

2)节点发送数据到中心。例如:不用加地址

从站发送: 11 12 13 14 15

主站接收: 11 12 13 14 15

3)中心节点广播发送。例如:前面加 FFFFFFF

主站发送: FF FF FF FF 11 12 13 14 15

从站接收:11 12 13 14 15

第二种模式:将所有的 LoRa 模组在功能上都归为一类,即中心节点模式。在本模

式下,处于同组的所有节点之间的数据都可以互相传输,同时也可以通过一个节点向同组的所有的节点广播发送数据。在点对点模式下,节点之间互相传输的有效数据前面都要加上接收数据节点的4字节短地址。比如,A节点往B节点发送数据,那么A节点发送的数据前面需要携带B节点的4字节短地址。

所有模式下的 4 字节设备短地址必须唯一,不能有两个设备短地址相同的情况。同时同组下所有节中的两个密钥 APPSKEY 和 NWKSKEY 必须全部相同(注:APPSKEY 和 NWKSKEY 是两个密钥,可以不同)。

3.2. LoRaWAN

LoRaWAN是 LoRa 联盟为 LoRa 远距离通信网络设计的一套通讯协议和系统架构。在一个 LoRaWAN 的网络架构中包含了终端、基站、网络服务器(NS),应用服务器这四个部分。基站和终端之间采用了星形网络拓扑结构,由于 LoRa 具有的长距离特性,终端之间可以使用单跳传输。基站则对网络服务器和终端之间的 LoRaWAN 协议数据仅做转发处理,将 LoRaWAN 数据分别承载在了 LoRa 射频传输和 TCP/IP 上。

在 LoRaWAN 协议中,终端类型分为 ClassA、ClassB 和 ClassC 三类。

Class	介绍	下行时机	应用场景
Α	ClassA 的终端采用 ALOHA	必须等待终端上	垃圾桶监测、烟雾
	协议按需上报数据。在每次上行后都	报数据后才能对	报警器、气体监测
	会紧跟两个短暂的下行接收窗口,以	其下发数据。	 等
	此实现双向传输。这种操作是最省电		
	的。		
В	Class B 的终端,除了Class A	在终端固定接收	阀控、水气电表等
	的随机接收窗口,还会在指定时间打	窗口即可对其下	
	开接收窗口。为了让终端可以在指定	发数据,下发的延	
	时间打开接收窗口,终端需要从网关	时有所提高。	

	接收时间同步的信标。		
С	Class C 的终端基本是一直打	由于终端处于持	路灯控制等
	 开着接收窗口,只在发送时短暂关	续接收状态,可在	
	闭。Class C 的终端会比 Class A	任意时间对终端	
	和 Class B 更加耗电。	下发数据。	

LoRaWAN 系统架构中,根据实际需求从上述三种类型中确定要使用的终端类型后,在正式收发数据之前,终端必须先加网。LoRaWAN 协议中有两种加网方式:Over-the-Air Activation (空中激活方式 OTAA) Activation-by-Personalization (独立激活方式 ABP)。

一般商用的 LoRaWAN 网络普遍使用安全性较高的 OTAA 激活流程。此种方式需要三个参数值,分别是 DevEUI、AppEUI、AppKey 这三个参数。终端激活过程中需要发起加网 join 流程,发出加网指令,网络服务器(NS)在确认无误后会给终端下发加网回复,并分配网络地址 DevAddr(32 位 ID),双方利用加网过程中的相关信息以及AppKey,生成对应的会话密钥 NwksKey 和 AppsKey,用来对数据进行加密和校验。

ABP 激活流程则比较简单,直接配置 DevAddr、NwksKey、AppsKey 这三个参数,且这三个参数需要和基站上的参数保持一致。ABP 的激活流程中不再需要加网 join 流程。在本方式下,这个设备可以直接发送应用数据。

3.3、 AT 指令

3.3.1 AT 指令格式

用户可以通过串口发送 ASCII 字符串的方式发送对应的 AT 指令,命令格式主要有以下两种格式:

AT+X=? 查询命令,X为命令字,主要用于查询模块当前状态、设备信息如设备 DEVEUI、入网状态、固件版本等。

AT+X=P 设置命令, X 为命令字, P 为参数, 主要用于设置模块的参数, 如设备的串口波特率、IO 口输入输出状态、节点工作频段等。

+X:P 查询返回命令,X为命令字,P为查询返回参数,主要用于查询设备类型等。

3.3.2 AT 指令使用说明

SZ05LR-PRO-2 模组在 CFG 脚拉低后,进入 AT 指令配置模式。

1. 设置、查询发射功率+POWER

命令	可能返回额结果
设置命令:	ОК
AT+POWER= <pw></pw>	或者
(pw 取值: pw=022db	ERROR
pw=120db	
pw=218db	
pw=316db	
pw=414db	
pw=512db)	
查询命令:	+POWER: <pw></pw>
AT+POWER?	或者 ERROR

2. 设置、查询数据速率+DATARATE

命令	可能返回额结果
设置命令:	ОК
AT+DATARATE = <dr></dr>	或者
(dr 取值: dr=0SF12	ERROR
dr=1 SF11	
dr=2 SF10	
dr=3 SF09	
dr=4 SF08	
dr=5 SF07)	
查询命令:	+DATARATE: <dr></dr>
AT+DATARATE?	或者 ERROR

3. 设置、查询+DEVEUI

^ ^	——AKIC ——AT/——
叩之	

设置命令:	OK
AT+DEVEUI=68D9000500000204	或者
	ERROR
查询命令:	+DEVEUI: 68D9000500000204
AT+ DEVEUI?	或者
	ERROR

4. 设置、查询+APPEUI

命令	可能返回额结果
设置命令:	ОК
AT+APPEUI= 8888888800000001	或者
	ERROR
查询命令:	+ APPEUI: 888888800000001
AT+ APPEUI?	或者
	ERROR

5. 设置、查询+NWKKEY

命令	可能返回额结果
设置命令:	ОК
AT+NWKKEY=	或者
dd98929b92f09e2daf676d646d0f01	ERROR
76	
查询命令:	+ NWKKEY:
AT+ NWKKEY?	dd98929b92f09e2daf676d646d0f01
	76
	或者
	ERROR

6. 设置、查询透传模式+JOIN

命令	可能返回额结果
设置命令:	ОК
AT+ JOIN = 1,1,8,8	或者

(说明:发送指令后,退出AT指令配	ERROR
置模式,进入透传模式。)	
查询命令:	+ JOIN: 1,1,8,8
AT+ JOIN?	或者
	ERROR

7. 设置、查询设备模式+CLASS

命令	可能返回额结果
设置命令:	ОК
AT+ CLASS = <type></type>	或者
(type 取值: 0 CLASS A	ERROR
1 CLASS B	
2 CLASS C)	
查询命令:	+ CLASS: <type></type>
AT+ CLASS?	或者
	ERROR

8. 设置、查询调试模式+DEBUG

命令	可能返回额结果
设置命令:	ОК
AT+ DEBUG = 0 (or 1)	或者
	ERROR
查询命令:	+ DEBUG: 0 (or 1)
AT+ DEBUG?	或者
	ERROR

9. 设置、查询设备频段+FREQ

命令	可能返回额结果
设置命令:	ОК
AT+ FREQ = 1,8,471900000	或者
(说明: 1 设置使能,1使能,0	ERROR
不使能;8 设置通道数,有1~8个通	

道;471900000 中心频点。)	
查询命令:	+ CH[X]: <freq></freq>
AT+ FREQ?	(说明: X 通道数; freq 本通道
	频率。)
	或者
	ERROR

10. 设置、查询+DEVADDR

命令	可能返回额结果
设置命令:	ОК
AT+ DEVADDR = 00000001	或者
	ERROR
查询命令:	+ DEVADDR: 00000001
AT+ DEVADDR?	或者
	ERROR

11. 设置、查询+APPSKEY

命令	可能返回额结果
设置命令:	ОК
AT+APPSKEY=	或者
12345678901234567890123456789	ERROR
012	
查询命令:	+ APPSKEY:
AT+ APPSKEY?	123456789012345678901234567890
	12
	或者
	ERROR

12. 设置、查询+NWKSKEY

命令	可能返回额结果
设置命令:	ОК
AT+NWKSKEY=	或者

1234567890123456789012345678901	ERROR
2	
查询命令:	+NWKSKEY:
AT+ NWKSKEY?	1234567890123456789012345678901
	2
	或者
	ERROR

13. 设置、查询心跳包+CTIMER

命令	可能返回额结果
设置命令:	ОК
AT+ CTIMER = 0,1200	或者
(说明: 0 设置使能,1使能,0	ERROR
不使能;1200 心跳时间,十进制单位:	
秒。)	
查询命令:	+ CTIMER: 0,1200
AT+ CTIMER?	或者
	ERROR

14. 设置、查询入网模式+OTAA

命令	可能返回额结果
设置命令:	OK
AT+ OTAA = 0	或者
(说明:0 OTAA 模式 ;1 ABP	ERROR
模式。)	
查询命令:	+ OTAA: 0 (or 1)
AT+ OTAA?	或者
	ERROR

15. 设置、查询同、异频模式+BAND

命令	可能返回额结果
设置命令:	ОК

AT+ BAND = 0 (说明: 0 异频模式;1 同频	或者 ERROR
模式。)	
查询命令:	+ BAND: 0 (or 1)
AT+ BAND?	或者
	ERROR

16. 设置重启或升级设备+REBOOT

命令	可能返回额结果
设置命令:	ОК
AT+ REBOOT = 0 (or 7)	或者
(说明: 0 重启设备;7 串口	ERROR
升级模式。)	

17. 设置、查询串口波特率+ UARTBR

命令	可能返回额结果
设置命令:	ОК
AT+ UARTBR = 38400	或者
(说明:默认波特率为 38400。)	ERROR
查询命令:	+ UARTBR: 38400
AT+ UARTBR?	或者
	ERROR

18. 设置、查询+ CONFIRM

命令	可能返回额结果
设置命令:	ОК
AT+ CONFIRM = 0	或者
(说明: 0 CONFIRM;1	ERROR
UNCONFIRM。)	
查询命令:	+ CONFIRM: 0 (or 1)
AT+ CONFIRM?	或者
	ERROR

19. 设置、查询错峰时间+ DEVDELAY

命令	可能返回额结果
设置命令:	ОК
AT+ DEVDELAY = <data></data>	或者
(说明: data 默认 0, 立即发送	ERROR
无延时;错峰时间:[(Devaddr*	
data)%1200]秒。)	
查询命令:	+ DEVDELAY: <data></data>
AT+ DEVDELAY?	或者
	ERROR

20. 设置、查询 RX2 接收速率+ RX2DR

命令	可能返回额结果
设置命令:	ОК
AT+ RX2DR = <dr></dr>	或者
(dr 取值: dr=0SF12	ERROR
dr=1 SF11	
dr=2 SF10	
dr=3 SF09	
dr=4 SF08	
dr=5 SF07)	
查询命令:	+ RX2DR: <dr></dr>
AT+ RX2DR?	或者 ERROR

21. 设置、查询组播模式参数+ ADDMUTICAST

命令	可能返回额结果
设置命令:	ОК
AT+ADDMUTICAST=	或者
<devaddr>,<appskey>,<nwkskey< th=""><th>ERROR</th></nwkskey<></appskey></devaddr>	ERROR
>	

查询命令:	+ADDMUTICAST:
AT+ ADDMUTICAST?	<devaddr>,<appskey>,<nwkskey< td=""></nwkskey<></appskey></devaddr>
	>
	或者
	ERROR

22. 设置、查询设备模式+DEVTYPE

命令	可能返回额结果
设置命令:	ОК
AT+ DEVTYPE = 0 (or 1)	或者
(说明: 0 中心设备;1 节点	ERROR
设备。)	
查询命令:	+ DEVTYPE: 0 (or 1)
AT+ DEVTYPE?	或者
	ERROR

3.4、固件升级

模组支持 UART 串口进行程序升级,升级文件为 XXXXX.cyacd 格式。具体升级步骤如下:

- 1) 模组通过 CFG 引脚进入配置模式,输入 AT+REBOOT=7,使设备进入 bootloader;
- 2) 关闭 UART 串口连接;
- 3) 打开 Bootloader Host 程序;
- 4)选择升级文件,连接设备,然后点击下载按钮。

4、技术支持

如有任何技术及应用问题,请联系本公司技术人员

公司名称:上海顺舟智能科技股份有限公司—广域网事业部

地址: Add:上海浦东盛荣路 88 弄盛大源创谷 1 号楼 6F

电话: Tel: 021-33933988-78-68-58 转 6800

传真: Fax:021-33933918/28 转 6808

E-MAIL: 6800@shuncom.com

邮编: Post:201203