DOCUMENTATION OF SPARQL QUERIES IN MLT-OWL

Technical Report, v1.0, June 2016.

Freddy Brasileiro^a, João Paulo A. Almeida^a, Victorio A. Carvalho^{a,b} and Giancarlo Guizzardi^a

^aOntology & Conceptual Modeling Research Group (NEMO), Federal University of Espírito Santo (UFES), Vitória, ES, Brazil.

^bResearch Group in Applied Informatics, Informatics Department, Federal Institute of Espírito Santo (IFES), Colatina, ES, Brazil.

freddybrasileiro@gmail.com, jpalmeida@ieee.org, victorio@ifes.edu.br, gguizzardi@inf.ufes.br

CONTENTS

1.	Derivation Rules	2
2.	Integrity Constraints	6
T TO		
LIS	ST OF TABLES	
Tab	ble 1. Derivation Rules Corresponding to Axiom A3 of MLT	2
Tab	ble 2. Derivation Rules Corresponding to Axiom A4 of MLT	2
Tab	ble 3. Derivation Rules Corresponding to Axiom A5 of MLT	2
Tab	ble 4. Derivation Rule Corresponding to Axiom D1 of MLT	3
Tab	ble 5. Derivation Rules Corresponding to Axiom D4 of MLT	3
Tab	ble 6. Derivation Rule Corresponding to Axiom D5 of MLT	3
Tab	ble 7. Derivation Rule Corresponding to Axiom D6 of MLT	3
Tab	ble 8. Derivation Rule Corresponding to Axiom D7 of MLT	4
Tab	ble 9. Derivation Rules Corresponding to Axiom D8 of MLT	4
	ble 10. Derivation Rules Corresponding to Theorem T7 of MLT	
Tab	ble 11. Derivation Rules Corresponding to Theorem T8 of MLT	4
Tab	ble 12. Derivation Rules Corresponding to Theorem T9 of MLT	5
Tab	ble 13. Derivation Rule Corresponding to Theorem T15 of MLT	5
Tab	ble 14. Derivation Rule Corresponding to Theorem T16 of MLT	5
Tab	ble 15. Derivation Rule Corresponding to Theorem T17 of MLT	5
Tab	ble 16. Integrity Constraint Corresponding to Axiom A1 of MLT	6
Tab	ble 17. Integrity Constraint Corresponding to Theorem T5 of MLT	6
Tab	ble 18. Integrity Constraint Corresponding to Theorem T6 of MLT	6
Tab	ble 19. Integrity Constraint Corresponding to Axiom T13 of MLT	6
	ble 20. Integrity Constraint Corresponding to Axiom T14 of MLT	
Tab	ble 21. Integrity Constraint Corresponding to Axiom T18 of MLT	7

1. DERIVATION RULES

The following tables describe the derivation rules for MLT-OWL. The queries are described in SPARQL, with a corresponding action, which is executed whenever the query returns non-empty results. The MLT axioms and theorems that motivate each derivation rules are indicated.

Table 1. Derivation Rules Corresponding to Axiom A3 of MLT

SPARQL query	Action
<pre>SELECT DISTINCT ?x WHERE { ?t rdf:type mlt:1stOrderClass . ?x rdf:type ?t .</pre>	For each returned ?x, add that ?x is an instance of <i>mlt:TokenIndividual</i>
<pre>SELECT DISTINCT ?t WHERE { ?x rdf:type ?t . ?x rdf:type mlt:TokenIndividual . filter(?t != mlt:TokenIndividual) . }</pre>	For each returned ?t, add that ?t is an instance of <i>mlt:1stOrderClass</i>

Table 2. Derivation Rules Corresponding to Axiom A4 of MLT

SPARQL query	Action
<pre>SELECT DISTINCT ?t1 WHERE { ?t rdf:type mlt:2ndOrderClass . ?t1 rdf:type ?t . }</pre>	For each returned ?t1, add that ?t1 is an instance of <i>mlt:1stOrderClass</i>
<pre>SELECT DISTINCT ?t WHERE { ?t1 rdf:type ?t . ?t1 rdf:type mlt:1stOrderClass . filter(?t != mlt:TokenIndividual) . }</pre>	For each returned ?t, add that ?t is an instance of <i>mlt:2ndOrderClass</i>

Table 3. Derivation Rules Corresponding to Axiom A5 of MLT

SPARQL query	Action
SELECT DISTINCT ?t1 WHERE {	For each returned ?t1, add that ?t1 is an instance of <i>mlt:2ndOrderClass</i>
SELECT DISTINCT ?t WHERE { ?t1 rdf:type ?t . ?t1 rdf:type mlt:2ndOrderClass . filter(?t != mlt:TokenIndividual) . }	For each returned ?t, add that ?t is an instance of <i>mlt:3rdOrderClass</i>

Table 4. Derivation Rule Corresponding to Axiom D1 of MLT

SPARQL query	Action
SELECT DISTINCT ?e ?t2 WHERE { ?t1 rdfs:subClassOf+ ?t2 . ?e rdf:type ?t1 }	For each pair ?e and ?t2, add that ?e is an instance of ?t2

Table 5. Derivation Rules Corresponding to Axiom D4 of MLT

SPARQL query	Action
SELECT DISTINCT ?t2 ?t3	
WHERE {	
<pre>?t1 mlt:isPowertypeOf ?t2 .</pre>	For each pair ?t2 and ?t3, add that
?t3 rdf:type ?t1 .	?t3 is a subclass of ?t2
<pre>?t1 rdf:type ?t1Type .</pre>	
<pre>filter(?t1Type != mlt:TokenIndividual) .</pre>	
}	
SELECT DISTINCT ?t1 ?t3	
WHERE {	
<pre>?t1 mlt:isPowertypeOf ?t2 .</pre>	For each pair?t1 and ?t3, add that
<pre>?t3 rdfs:subClassOf* ?t2 .</pre>	?t3 is an instance of ?t1
<pre>?t1 rdf:type ?t1Type .</pre>	sto is an instance of sti
<pre>filter(?t1Type != mlt:TokenIndividual) .</pre>	
}	

Table 6. Derivation Rule Corresponding to Axiom D5 of MLT

SPARQL query	Action
SELECT DISTINCT ?t2 ?t3	
WHERE {	
?t1 mlt:characterizes ?t2 .	For each pair?t2 and ?t3, add that
<pre>?t3 rdf:type ?t1 .</pre>	?t3 is a subclass of ?t2
<pre>?t1 rdf:type ?t1Type .</pre>	\$15 Is a subclass of \$12
<pre>filter(?t1Type != mlt:TokenIndividual) .</pre>	
}	

Table 7. Derivation Rule Corresponding to Axiom D6 of MLT

SPARQL query	Action
<pre>SELECT DISTINCT ?t1 ?t2 WHERE { ?t1 mlt:completelyCharacterizes ?t2 . }</pre>	For each pair of ?t1 and ?t2, add that [?t1, mlt:caracterizes, ?t2]

Table 8. Derivation Rule Corresponding to Axiom D7 of MLT

SPARQL query	Action
SELECT DISTINCT ?t1 ?t2 WHERE { ?t1 mlt:disjointlyCharacterizes ?t2 .	For each pair ?t1 and ?t2, add that
}	[?t1, mlt:caracterizes, ?t2]

Table 9. Derivation Rules Corresponding to Axiom D8 of MLT

SPARQL query	Action
<pre>SELECT DISTINCT ?t1 ?t2 WHERE { ?t1 mlt:partitions ?t2 . }</pre>	For each pair ?t1 and ?t2, add that [?t1, completelyCharacterizes, ?t2] [?t1, disjointlyCharacterizes, ?t2]
SELECT DISTINCT ?t1 ?t2 WHERE {	For each pair ?t1 and ?t2, add that [?t1, mlt:partitions, ?t2]
}	

Table 10. Derivation Rules Corresponding to Theorem T7 of MLT

SPARQL query	Action
SELECT DISTINCT ?t	
WHERE {	For each returned ?t, add that
<pre>?t rdf:type mlt:1stOrderClass .</pre>	?t is a subclass of mlt:TokenIndividual
}	
SELECT DISTINCT ?t	
WHERE {	For each returned ?t, add that
<pre>?t rdfs:subClassOf+ mlt:TokenIndividual.</pre>	?t is a subclass of <i>mlt:1stOrderClass</i>
}	

Table 11. Derivation Rules Corresponding to Theorem T8 of MLT

SPARQL query	Action
SELECT DISTINCT ?t	
WHERE {	For each returned ?t, add that
<pre>?t rdf:type mlt:2ndOrderClass .</pre>	?t is a subclass of <i>mlt:1stOrderClasss</i>
}	
SELECT DISTINCT ?t	
WHERE {	For each returned ?t, add that
<pre>?t rdfs:subClassOf+ mlt:1stOrderClass .</pre>	?t is a subclass of mlt:2ndOrderClass
}	

Table 12. Derivation Rules Corresponding to Theorem T9 of MLT

SPARQL query	Action
SELECT DISTINCT ?t	
WHERE {	For each returned ?t, add that
<pre>?t rdf:type mlt:3rdOrderClass .</pre>	?t is a subclass of mlt:2ndOrderClasss
}	
SELECT DISTINCT ?t	
WHERE {	For each returned ?t, add that
<pre>?t rdfs:subClassOf+ mlt:2ndOrderClass .</pre>	?t is a subclass of <i>mlt:3rdOrderClass</i>
}	

Table 13. Derivation Rule Corresponding to Theorem T15 of MLT

SPARQL query	Action
SELECT DISTINCT ?t3 ?t4	
WHERE {	
<pre>?t2 rdfs:subClassOf+ ?t1 .</pre>	For each pair of ?t3 and ?t4, add that
<pre>?t4 mlt:isPowertypeOf ?t2 .</pre>	?t4 is a subclass of ?t3
?t3 mlt:isPowertypeOf ?t1 .	
}	

Table 14. Derivation Rule Corresponding to Theorem T16 of MLT

SPARQL query	Action
SELECT DISTINCT ?t1 ?t3	
<pre>WHERE { ?t1 mlt:isSubordinateTo ?t2 . ?t2 mlt:characterizes ?t3 . }</pre>	For each pair of ?t1 and ?t3, add that [?t1, mlt:characterizes, ?t3]

Table 15. Derivation Rule Corresponding to Theorem T17 of MLT

SPARQL query	Action
SELECT DISTINCT ?t2 ?t3	
WHERE {	For each pair of ?t2 and ?t3, add that
<pre>?t2 mlt:isPowertypeOf ?t1 .</pre>	?t3 is a subclass of ?t2
?t3 mlt:characterizes ?t1 .	
}	

2. INTEGRITY CONSTRAINTS

The following tables describe integrity constraints for MLT-OWL, implemented as SPARQL queries. The MLT axioms and theorems that motivate each constraint are indicated. Violations of the MLT rules are detected whenever the query returns non-empty results.

Table 16. Integrity Constraint Corresponding to Axiom A1 of MLT

```
SPARQL query

SELECT DISTINCT *

WHERE {
    ?x rdf:type mlt:TokenIndividual .
    ?y rdf:type ?x .
}
```

Table 17. Integrity Constraint Corresponding to Theorem T5 of MLT

```
SPARQL query

SELECT DISTINCT *

WHERE {
    ?x rdf:type ?y .
    ?y rdf:type ?x .
}
```

Table 18. Integrity Constraint Corresponding to Theorem T6 of MLT

```
SPARQL query

SELECT DISTINCT *

WHERE {
    ?x rdf:type ?y .
    ?y rdf:type ?z .
    ?x rdf:type ?z .
}
```

Table 19. Integrity Constraint Corresponding to Axiom T13 of MLT

Table 20. Integrity Constraint Corresponding to Axiom T14 of MLT

```
SPARQL query

SELECT DISTINCT *

WHERE {
    ?p mlt:isPowertypeOf ?t .
    ?p mlt:isPowertypeOf ?t1 .
    FILTER (?t NOT IN (?t1)) .
}
```

Table 21. Integrity Constraint Corresponding to Axiom T18 of MLT

```
SPARQL query

SELECT DISTINCT *

WHERE {
    ?t1 mlt:partitions ?t3 .
    ?t2 mlt:partitions ?t3 .
    ?t1 mlt:properSpecializes ?t2 .
}
```