Unit 7 Predictive Parsing

Nguyen Thi Thu Huong Hanoi University of Technology

Top Down Parsing Methods

- Simplest method is a full-backup recursive descent parse
- Write recursive recognizers (subroutines) for each grammar rule
 - □ If rules succeeds perform some action (I.e., build a tree node, emit code, etc.)
 - If rule fails, return failure. Caller may try another choice or fail
 - On failure it "backs up" which might have problem if it needs to return a lexical symbol to the input stream

Problems

- Also remember left recursion problem
- Need to backtrack, suppose that you could always tell what production applied by looking at one (or more) tokens of lookahead – called predictive parsing
- Factoring

Summary of Recursive Descent

- Simple and general parsing strategy usually coupled with simple handcrafted lexer
 - □ Left-recursion must be eliminated first
 - □ ... but that can be done automatically
- Unpopular because of backtracking
 - □ Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

Elimination of Immediate Left Recursion

$$A \rightarrow A \alpha_1 \mid A \alpha_2 \mid ... A \alpha_m \mid \beta_1 \mid \beta_2 \mid \beta_n$$

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - □ By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - □ L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - □ k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production
- Can be specified via 2D tables
 - One dimension for current non-terminal to expand
 - □ One dimension for next token
 - □ A table entry contains one production

Predictive Parsing and Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T
T \rightarrow int | int * T | (E)
```

- Hard to predict because
 - □ For T two productions start with int
 - ☐ For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before use for predictive parsing

Left-Factoring Example

Consider the grammar

$$E \rightarrow T + E \mid T$$

T \rightarrow int | int * T | (E)

Factor out common prefixes of productions

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$
 $Y \rightarrow * T \mid \epsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

■ The LL(1) parsing table:

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	33
Т	int Y			(E)		
Υ		* T	3		3	33

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - \square "When current non-terminal is E and next input is int, use production E \rightarrow T X
 - □ This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - \square Y can be followed by + only in a derivation in which Y $\rightarrow \epsilon$

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
 - □ Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - □ For each non-terminal S
 - We look at the next token a
 - □ And chose the production shown at [S,a]
- We use a stack to keep track of pending nonterminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

```
initialize stack = <S $> and next repeat case stack of <X, rest> : if T[X,*next] = Y<sub>1</sub>...Y<sub>n</sub> then stack \leftarrow <Y<sub>1</sub>... Y<sub>n</sub> rest>; else error (); <t, rest> : if t == *next ++ then stack \leftarrow <rest>; else error (); until stack == < >
```


LL(1) Parsing Example

Stack	Input	<u>Action</u>	
E\$	int * int \$	ΤX	
T X \$	int * int \$	int Y	
int Y X \$	int * int \$	terminal	
YX\$	* int \$	* T	
* T X \$	* int \$	terminal	
T X \$	int \$	int Y	
int Y X \$	int \$	terminal	
YX\$	\$	3	
X \$	\$	3	
\$	\$	ACCEPT	

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

Constructing Parsing Tables (Cont.)

- If A $\rightarrow \alpha$, where in the line of A we place α ?
- In the column of t where t can start a string derived from α
 - $\square \alpha \rightarrow^* t \beta$
 - \square We say that $t \in First(\alpha)$
- In the column of t if α is ε and t can follow an A
 - $\square S \rightarrow^* \beta A t \delta$
 - \square We say $t \in Follow(A)$

Computing First Sets

Definition: First(X) = { t | X \rightarrow^* t α } \cup { ϵ | X \rightarrow^* ϵ }

Algorithm sketch (see book for details):

- 1. for all terminals t do $First(X) \leftarrow \{t\}$
- 2. for each production $X \to \varepsilon$ do First(X) $\leftarrow \{ \varepsilon \}$
- 3. if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$, $1 \le i \le n$ do
 - add First(α) to First(X)
- 4. for each $X \to A_1 \dots A_n$ s.t. $\varepsilon \in First(A_i)$, $1 \le i \le n$ do
 - add ε to First(X)
- 5. repeat steps 4 & 5 until no First set can be grown

First Sets. Example

Recall the grammar

$$E \rightarrow T X$$

 $T \rightarrow (E) | int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

First sets

First(T) = {int, (}
First(E) = {int, (}
First(X) = {+,
$$\varepsilon$$
 }
First(Y) = {*, ε }

Computing Follow Sets

Definition:

Follow(X) = { t | S
$$\rightarrow$$
* β X t δ }

- Intuition
 - □ If S is the start symbol then \$ ∈ Follow(S)
 - □ If $X \to A$ B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
 - \square Also if B $\rightarrow^* \varepsilon$ then Follow(X) \subseteq Follow(A)

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. Follow(S) \leftarrow { \$ }
- 2. For each production $A \rightarrow \alpha X \beta$
 - add First(β) { ϵ } to Follow(X)
- 3. For each $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$
 - add Follow(A) to Follow(X)
- repeat step(s) ____ until no Follow set grows

Follow Sets. Example

Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

Follow sets

```
Follow(+) = { int, ( } Follow(*) = { int, ( } Follow(()) = { int, ( } Follow(()) = { int, ( } Follow(()) = { ), $ } Follow(()) = { +, ), $ } Follow(()) = { +, ), $ } Follow(()) = { +, ), $ } Follow(()) = { *, +, ), $ }
```


Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - \square For each terminal $t \in First(\alpha)$ do
 - $T[A, t] = \alpha$
 - □ If $\varepsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - $T[A, t] = \alpha$
 - □ If ε ∈ First(α) and \$ ∈ Follow(A) do
 - $T[A, \$] = \alpha$

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - ☐ If G is ambiguous
 - ☐ If G is left recursive
 - □ If G is not left-factored
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables