UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ZOBRAZOVANIE VIACROZMERNÝCH FUNKCIÍ NA GPU

DIPLOMOVÁ PRÁCA

2025

BC. ADRIÁN KOCIFAJ

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ZOBRAZOVANIE VIACROZMERNÝCH FUNKCIÍ NA GPU

DIPLOMOVÁ PRÁCA

Študijný program: Aplikovaná informatika

Študijný odbor: Informatika

Školiace pracovisko: Katedra aplikovanej informatiky

Školiteľ: Mgr. Andrej Mihálik, PhD.

Bratislava, 2025 Bc. Adrián Kocifaj

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Adrián Kocifaj

Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor:informatikaTyp záverečnej práce:diplomováJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Zobrazovanie viacrozmerných funkcií na GPU.

Multidimensional data rendering.

Anotácia: Nie je jednoduché zobraziť objekty v priestore s dimenziou viac ako 3. Keď však

uvážime pevný 3D objekt, tak okrem rozmerov v 3D priestore, vykazuje jeho vzhľad aj ďalšie atribúty ako je napríklad farba alebo priehľadnosť. S použitím volumetrického zobrazovania by sa takto dal priestor rozšíriť za hranicu 3D.

Ciel': Vytvorit' rozhranie na vizualizáciu viacrozmerného priestoru pomocou

volumetrického zobrazovania.

Literatúra: Alan Norton, Generation and Display of Geometric Fractals in 3-D, ACM

SIGGRAPH Computer Graphics, vol. 16, no. 3, pp. 61–67, 1982.

Vedúci: Mgr. Andrej Mihálik, PhD.

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 04.11.2024

Dátum schválenia: 08.11.2024 prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent	vedúci práce

Poďakovanie: Text.

Abstrakt

Nie je jednoduché zobraziť viacrozmerné objekty, pretože ľudské vnímanie je obmedzené na priestorové videnie. Táto práca sa zaoberá vizualizáciou viacrozmerných funkcií do priestoru, pre vyššie dimenzie funkcií využíva iné vlastnosti, ako sú farba a priehľadnosť. V práci sa zaoberáme vizualizáciou volumetrických dát rôznymi technikami, ich výpočtová zložitosť a pridané dimenzie vyžadujú použitie paralelizmu grafických kariet. Navrhli a implementovali sme interaktívny softvérový systém, ktorý umožňuje toto zobrazenie v reálnom čase. Systém poskytuje používateľovi možnosť skúmať viacrozmerné funkcie, analyzovať ich štruktúru a správanie.

Kľúčové slová: viacrozmerné funkcie, vizualizácia dát, volumetrické zobrazovanie

Abstract

It is not easy to display multidimensional objects because human perception is limited to spatial vision. This work deals with the visualization of multidimensional functions into space, for higher dimensions, it uses other properties such as color and transparency. In this thesis we deal with the visualization of volumetric data using different techniques, their computational complexity and added dimensions require the use of graphics card parallelism. We have designed and implemented an interactive software system that enables this visualization in real time. The system provides the user with the ability to explore multidimensional functions, analyzing their structure and behavior.

Keywords: multidimensional functions, data visualization, volumetric rendering

Obsah

Ú	vod		1
1	Výc	chodiská	9
	1.1	Volumetrické zobrazovanie	3
	1.2	Iné techniky zobrazovania	9
	1.3	Zobrazenie vyšších dimenzií	3
		1.3.1 Farba	3
		1.3.2 Priehľadnosť	3
	1.4	Zobrazovací kanál	9
	1.5	Scéna	Ş
	1.6	Kamera	ç
	1.7	Osvetlenie	Ş
	1.8	Existujúce riešenia	3
2 I	Náv	vrh	
	2.1	Výber technológie	1
		2.1.1 Knižnice	Ę
	2.2	Vytvorenie a konfigurácia projektu	
	2.3	Architektúra aplikácie	
		2.3.1 Diagramy	Ę
	2.4	Používateľské rozhranie	1
		2.4.1 Spracovanie používateľského vstupu	Ę
	2.5	Manipulácia s dátami	5
3	Imp	olementácia	7
	3.1	Pohyb v scéne	7
	3.2	Používateľské rozhranie	7
		3.2.1 Vstupy	7
		3.2.2 Nastavenia	7
		3.2.3 Dizajn	7
	3 3	Ukladanie obrázkov	-

	3.4	Optimalizácie	7
		3.4.1 Pamäť	7
		3.4.2 Výpočty	7
4	Výs	sledky	9
	4.1	Testovacie scénare	9
	4.2	Merania	9
	4.3	Porovnanie zobrazovacích techník	9
	4.4	Vizuálne výsledky	9
5	Dis	kusia	11
	5.1	Výzvy a obmedzenia	11
	5.2	Rozšírenia a budúce vylepšenia	11
	5.3	Využitia aplikácie	11
Zá	iver		13
Pı	ríloh	a A	17

Zoznam obrázkov

Zoznam tabuliek

$\mathbf{\acute{U}vod}$

Text.

 \dot{V} vod

Východiská

- 1.1 Volumetrické zobrazovanie
- 1.2 Iné techniky zobrazovania
- 1.3 Zobrazenie vyšších dimenzií
- 1.3.1 Farba
- 1.3.2 Priehľadnosť
- 1.4 Zobrazovací kanál
- 1.5 Scéna
- 1.6 Kamera
- 1.7 Osvetlenie
- 1.8 Existujúce riešenia

Návrh

- 2.1 Výber technológie
- 2.1.1 Knižnice
- 2.2 Vytvorenie a konfigurácia projektu
- 2.3 Architektúra aplikácie
- 2.3.1 Diagramy
- 2.4 Používateľské rozhranie
- 2.4.1 Spracovanie používateľského vstupu
- 2.5 Manipulácia s dátami

Implementácia

- 3.1 Pohyb v scéne
- 3.2 Používateľské rozhranie
- 3.2.1 Vstupy
- 3.2.2 Nastavenia
- 3.2.3 Dizajn
- 3.3 Ukladanie obrázkov
- 3.4 Optimalizácie
- 3.4.1 Pamäť
- 3.4.2 Výpočty

Výsledky

- 4.1 Testovacie scénare
- 4.2 Merania
- 4.3 Porovnanie zobrazovacích techník
- 4.4 Vizuálne výsledky

Diskusia

- 5.1 Výzvy a obmedzenia
- 5.2 Rozšírenia a budúce vylepšenia
- 5.3 Využitia aplikácie

Záver

Text.

14 Záver

Literatúra

16 LITERATÚRA

Príloha A: obsah elektronickej prílohy

V elektronickej prílohe priloženej k práci sa nachádza zdrojový kód programu a súbory s výsledkami experimentov.

Zdrojový kód je zverejnený aj na stránke

https://github.com/kocifajadrian/master-thesis.