Landau–Kolmogorov inequality revisited

A. Shadrin

DAMTP, University of Cambridge, UK

1 Introduction

The Landau-Kolmogorov problem consists of finding the upper bound M_k for the norm of intermediate derivative $||f^{(k)}||$, when the bounds $||f|| \le M_0$ and $||f^{(n)}|| \le M_n$, for the norms of the function and of its higher derivative, are given.

Here, we consider the case of a finite interval when $f \in W_{\infty}^{n}[-1,1]$ and all the norms are the max-norms, $\|\cdot\| = \|\cdot\|_{L_{\infty}[-1,1]}$. Precisely, given $n, k \in \mathbb{N}$ and $\sigma \geq 0$, we define the functional class

$$W_{\infty}^{n}(\sigma) := \{ f : f \in W_{\infty}^{n}[-1, 1], \ \|f\| \le 1, \ \|f^{(n)}\| \le \sigma \}$$

and consider the problem of finding the values

$$m_k(x,\sigma) := \sup_{f \in W_{\infty}^n(\sigma)} |f^{(k)}(x)|, \quad x \in [-1,1],$$

 $M_k(\sigma) := \sup_{f \in W_{\infty}^n(\sigma)} ||f^{(k)}|| = \sup_{x \in [-1,1]} m_k(x,\sigma).$

Our interest to that particular case is motivated by the fact that there are good chances to add this case to a short list of Landau–Kolmogorov inequalities where a *complete* solution exists, i.e., a solution that covers *all* values of $n, k \in \mathbb{N}$ (and, for a finite interval, *all* values of $\sigma > 0$). The main guideline in finding out how good these chances are is the following conjecture.

Conjecture 1.1 (Karlin [4]) For all $n, k \in \mathbb{N}$ and all $\sigma > 0$,

$$m_k(1,\sigma) = \sup_{x \in [-1,1]} m_k(x,\sigma).$$
 (1.1)

If (1.1) is true for particular set $\{n, k, \sigma\}$, then the function $f \in W_{\infty}^n(\sigma)$ that provides extremum $M_k(\sigma)$ to the value $||f^{(k)}||$ over $W_{\infty}^n(\sigma)$ is the same as the solution to the pointwise problem at the end-point of the interval. The latter solution is however known to be a certain Chebyshev or Zolotarev spline $Z_n(\cdot, \sigma)$ (which is just a polynomial for small σ), and thus we have a characterization of the extremal function.

Corollary 1.2 If equality (1.1) is valid for particular $\{n, k, \sigma\}$, then for that set of parameters we have

$$M_k(\sigma) = ||Z_n^{(k)}(\cdot, \sigma)|| = Z_n^{(k)}(1, \sigma).$$
 (1.2)

So far, Karlin's conjecture has been proved for small n with all σ , and for all n with particular σ , namely in the following cases:

$$n=2,$$
 all σ Chui-Smith [1] $(\sigma \leq \sigma_n)$, Landau [5] $(\sigma > \sigma_n)$; $n=3,$ all σ , Sato [8], Zvyagintsev-Lepin [12]; $n=4,$ all σ , Zvyagintsev [11] $(\sigma \leq \sigma_n)$, Naidenov [7] $(\sigma > \sigma_n)$; $n \in \mathbb{N}, \quad \sigma = \sigma_n,$ Eriksson [3].

Here

$$\sigma_n := ||T_n^{(n)}|| = 2^{n-1}n!,$$

where T_n is the Chebyshev polynomial of degree n on the interval [-1,1].

The value $\sigma = \sigma_n$ serves as a borderline between two types of the extremal Zolotarev functions $Z_n(\cdot,\sigma)$: if $\sigma \leq \sigma_n$, then Z_n is a polynomial of degree n, while for $\sigma > \sigma_n$ it is a perfect spline of degree n with r knots. There are further borderlines $\sigma_{n,r}$ (with $\sigma_{n,1} := \sigma_n$) which indicate that the spline $Z_n(\cdot,\sigma)$ has exactly r knots if $\sigma_{n,r} < \sigma \leq \sigma_{n,r+1}$, but that distinction is hardly of any use, since for n > 3 there are no reasonable estimates for perfect splines even with one knot. In this respect, we may apply more or less developed polynomial tools to tackle the problem for $\sigma \leq \sigma_n$, and then may try to use polynomial estimates in the spline case, when $\sigma > \sigma_n$.

In this paper, we prove Karlin's conjecture in several further subcases.

1) The first result closes the "polynomial" case and proves that, for $\sigma \leq \sigma_n$, the extremum value of the k-th derivative of $f \in W^n_{\infty}(\sigma)$ is provided by the corresponding Zolotarev polynomial.

Theorem 1.3 If

$$n \in \mathbb{N}, \qquad 1 \le k \le n - 1, \qquad 0 \le \sigma \le \sigma_n,$$
 (1.3)

then Karlin's conjecture (1.1)-(1.2) is true.

2) For the "spline" case, we managed to advance only up to the second derivative.

Theorem 1.4 If

$$n \in \mathbb{N}, \qquad k = 1, 2, \qquad \sigma_n < \sigma < \infty,$$

then Karlin's conjecture (1.1)-(1.2) is true.

The further advance depends mostly on improving the lower bound for the exact constant $C_{n,k}$ in Landau-Kolmogorov inequality on the half-line:

$$||f^{(k)}||_{\mathbb{R}_+} \le C_{n,k} ||f||_{\mathbb{R}_+}^{1-k/n} ||f^{(n)}||_{\mathbb{R}_+}^{k/n}$$

The existing lower bounds for $C_{n,k}$, which are due to Stechkin, are not very satisfactory for general n and k > 2.

3) However, for small n, these bounds can be improved, thus leading to one more extension.

Theorem 1.5 If

$$n = 5, 6$$
 $1 \le k \le n - 2,$
 $n = 7, 8, 9$ $1 \le k \le n - 3,$ $\sigma_n < \sigma < \infty,$ (1.4)
 $n = 10, 11$ $1 \le k \le 6,$

then Karlin's conjecture (1.1)-(1.2) is true.

In all the cases, the proof is based on comparing the upper bound for the local extrema of the function $m_k(\cdot, \sigma)$ with the lower bound for the value $m_k(1, \sigma)$. The technique we use is not working for the value k = n - 1, what explains restriction in (1.4). In (1.3), i.e., for $0 \le \sigma < \sigma_n$, we managed to cover the case k = n - 1 by different means.

The upper bounds are given in terms of Zolotarev polynomials and these estimates may be viewed as a generalization to higher derivatives of Markov-type results of Schur [9] and Erdős-Szegő [2]. These bounds demonstrate once again, if we borrow the words of Shoenberg said about cubic splines, "the brave behaviour of Zolotarev polynomials under difficult circumstances".

2 Main ingredients of the proof

Karlin's conjecture states that the function $m_k(\cdot, \sigma)$ (which is a positive even function) reaches its maximal value at the end-points of the interval [-1, 1]. To establish this fact it is sufficient to check that, at any point x_0 inside the interval (-1, 1) where $m_k(\cdot, \sigma)$ takes its local maximum, we have

$$m_k(x_0,\sigma) < m_k(1,\sigma)$$
.

If f is the function from $W_{\infty}^{n}(\sigma)$ that attains a locally maximal value $m_{k}(x_{0},\sigma)$, then clearly

$$m_k(x_0, \sigma) = |f^{(k)}(x_0)|, \qquad f^{(k+1)}(x_0) = 0,$$

and it makes sense to introduce the following quantity:

$$m_k^*(x_0, \sigma) := \sup\{|f^{(k)}(x_0)| : f \in W_\infty^n(\sigma), f^{(k+1)}(x_0) = 0\}, \quad x_0 \in [-1, 1].$$

The next statement follows immediately.

Claim 2.1 If, for a given $n, k \in \mathbb{N}$ and $\sigma > 0$, we have

$$\sup_{x_0 \in [-1,1]} m_k^*(x_0, \sigma) \le m_k(1, \sigma), \qquad (2.1)$$

then Karlin's conjecture is true.

In order to verify inequality (2.1), we split it into two parts

$$m_k^*(x_0, \sigma) \le A(n, k, \sigma), \qquad A(n, k, \sigma) \le m_k(1, \sigma),$$
 (2.2)

and then check whether $A \leq B$. So, we need two different estimates:

- a) a good lower bound for the end-point value $m_k(1,\sigma) = \sup\{|f^{(k)}(1)| : f \in W_{\infty}^n(\sigma)\},$
- b) a good upper bound for $|f^{(k)}(x_0)|$, where f is from $W_{\infty}^n(\sigma)$ and satisfies $f^{(k+1)}(x_0) = 0$. Actually, if $x = x_0$ stays sufficiently far away from the end-points $x = \pm 1$, then a reasonable upper bound for $|f^{(k)}(x_0)|$ can be established irrespectively of whether $f^{(k+1)}(x_0)$ vanishes or not. Therefore, for the upper bounds for $|f^{(k)}(x)|$, we will consider two cases

$$b_1$$
) $m_k^*(x,\sigma) \le A_{n,k}^*(\sigma)$, $\omega_k < |x_0| \le 1$, b_2) $m_k(x,\sigma) \le A_{n,k}(\sigma)$, $|x| \le \omega_k < 1$,

with an appropriately chosen value ω_k .

We will distinguish between the cases $\sigma \leq \sigma_n$ and $\sigma > \sigma_n$.

- 1) The case $\sigma \leq \sigma_n$.
- 1a) Lower estimates for $m_k(1, \sigma)$. Clearly, $m_k(1, \sigma)$ is monotoniously increasing with σ , therefore, we have the trivial estimate

$$m_k(1,\sigma) \ge m_k(1,\sigma_0) = T_{n-1}^{(k)}(1)$$
.

However, this estimate is too rough when $k = \mathcal{O}(n)$, so we will use a finer one.

Proposition 2.2 We have

$$m_k(1,\sigma) \ge B_{n,k}(\sigma) := \left(1 - \frac{\sigma}{\sigma_n}\right) T_{n-1}^{(k)}(1) + \frac{\sigma}{\sigma_n} T_n^{(k)}(1), \qquad 0 \le \sigma \le \sigma_n.$$
 (2.3)

Proof. Let us show that $m_k(x, \sigma)$ as a function of σ is concave. For any $x \in [-1, 1]$, and for any $\sigma' < \sigma''$, let f_1 and f_2 be the functions such that

$$m_k(x, \sigma^{(i)}) = f_i^{(k)}(x), \qquad f_i \in W_{\infty}^n(\sigma^{(i)}), \qquad i = 1, 2.$$

It is clear that, for any $\sigma \in [\sigma', \sigma'']$, with t such that $\sigma = (1 - t)\sigma' + t\sigma''$, the function $f := (1 - t)f_1 + tf_2$ belongs to $W_{\infty}^n(\sigma)$, hence we have

$$m_k(x,\sigma) \ge f^{(k)}(x) = (1-t)f_1^{(k)}(x) + tf_2^{(k)}(x) = (1-t)m_k(x,\sigma') + tm_k(x,\sigma'').$$

In particular, with $\sigma_0 := T_{n-1}^{(n)} = 0$ and $\sigma_n = T_n^{(n)}$, we have

$$m_k(1,\sigma) \ge \left(1 - \frac{\sigma}{\sigma_n}\right) m_k(1,\sigma_0) + \frac{\sigma}{\sigma_n} m_k(1,\sigma_n),$$

But $m_k(1, \sigma_0) = T_{n-1}^{(k)}(1)$ and $m_k(1, \sigma_n) = T_n^{(k)}(1)$, hence the result.

1b₁) Upper estimate for $m_k^*(x_0, \sigma)$. We will use a comparison lemma of the kind similar to the one that was used by Matorin [6] in (actually) proving that $m_k(1, \sigma_n) \leq T_n^{(k)}(1)$.

Lemma 2.3 Let $p \in \mathcal{P}_n[-1,1]$ be a polynomial that satisfies the following conditions:

1)
$$p^{(k+1)}(x_0) = 0$$
, 2) p has an n -alternance on $[-1, 1]$, 3) $||p^{(n)}|| \ge \sigma$. (2.4)

Then, for any $f \in W_{\infty}^{n}[-1,1]$ and for any $x_0 \in [-1,1]$ such that

1')
$$f^{(k+1)}(x_0) = 0$$
, 2') $||f|| \le 1$, 3') $||f^{(n)}|| \le \sigma$,

we have

$$|f^{(k)}(x_0)| \le |p^{(k)}(x_0)|.$$

Proof. Assume the contrary, i.e., that $f^{(k)}(x_0) = p^{(k)}(x_0)/\gamma$ with some γ such that $|\gamma| < 1$. Then the function $g := \gamma f$ satisfies

$$2''$$
) $||g|| < 1$, $3''$) $||g^{(n)}|| < \sigma$,

and moreover

1")
$$g^{(k)}(x_0) = p^{(k)}(x_0), g^{(k+1)}(x_0) = p^{(k+1)}(x_0) = 0.$$

Consider the difference h = p - g. By the *n*-alternation property (2) of p, since ||g|| < 1, the function h has at least n - 1 distinct zeros on [-1, 1], hence $H := h^{(k-1)}$ has at least n - k distinct zeros strictly inside (-1, 1), and by (1''), we also have $H'(x_0) = H''(x_0) = 0$. It follows that $H' = h^{(k)}$ has at least n - k + 1 zeros on [-1, 1] counting multiplicities, therefore

 $h^{(n)}$ has at least one sign change on [-1,1].

On the other hand, by (3) and (3") we have $|g^{(n)}(x)| < \sigma$ and $|p^{(n)}(x)| \equiv \text{const} \geq \sigma$, hence $|h^{(n)}(x)| = |p^{(n)}(x) - g^{(n)}(x)| > 0$ for all $x \in [-1, 1]$, a contradiction.

Corollary 2.4 We have

$$m_k^*(x_0, \sigma) \le |p^{(k)}(x_0)|$$
 (2.5)

where p is any polynomial of degree n that satisfies conditions (1)-(3) in (2.4).

Let $\{Z_n(\cdot,\theta)\}$ be the family of the Zolotarev polynomials parametrized with respect to the value of its highest derivative $\theta:=Z_n^{(n)}(\cdot,\theta)$ (see Sect. 3 for details). Given x_0 , our choice for p in (2.5) is the dilated Zolotarev polynomial $Z_n(\cdot,\theta_{x_0})$ such that $Z_n^{(k+1)}(x_0,\theta_{x_0})=0$. An advantage of choosing such a p is that, for $x_0 \in [\omega_k,1]$, the value of $p^{(k)}(x_0)$ can be further bounded in terms of the single Zolotarev polynomial $Z_n(\cdot,\theta_k)$ such that

$$Z_n^{(k+1)}(1,\theta_k) = 0.$$

Namely, as we show in Sects. 3-4,

$$\sup_{x \in [\omega_k, 1]} m_k^*(x_0, \sigma) \le \max\{1, \frac{\sigma}{\theta_k}\}^{k/n} \max\{T_n^{(k)}(\omega_k), Z_n^{(k)}(1, \theta_k)\}$$

In Sects. 5-6, we provide the estimates for the values appeared here on the right-hand side and, thus, arrive at the following statement.

Proposition 2.5 We have

$$\sup_{x \in [\omega_k, 1]} m_k^*(x_0, \sigma) \le A_{n,k}^*(\sigma) := \begin{cases} T_{n-1}^{(k)}(1), & 0 \le \frac{\sigma}{\sigma_n} \le \eta_k; \\ \lambda_k T_n^{(k)}(1) \left(\frac{1}{\eta_k} \frac{\sigma}{\sigma_n}\right)^{k/n}, & \eta_k \le \frac{\sigma}{\sigma_n} \le 1. \end{cases}$$
(2.6)

where

$$\lambda_k = \frac{1}{k+1} \frac{n-1}{n-1+k}, \qquad \eta_k = \frac{n-(k+1)}{2(2n-(k+1))}.$$

1b₂) Upper estimate for $m_k(x, \sigma)$. We use a technique based on the Lagrange interpolation. Let $\ell_{\Delta} \in \mathcal{P}_{n-1}$ be the polynomial of degree n-1 that interpolates $f \in W_{\infty}^n(\sigma)$ on a mesh $\Delta = (t_i)_{i=1}^n$. From the identity $f^{(k)}(x) = \ell_{\Delta}^{(k)}(x) + (f^{(k)}(x) - \ell_{\Delta}^{(k)}(x))$ it follows that

$$|f^{(k)}(x)| \le \Lambda_k(x) ||f|| + \Omega_k(x) ||f^{(n)}||,$$

where

$$\Lambda_k(x) = \sup_{\|p\|_{\Delta} = 1} |p^{(k)}(x)|, \qquad \Omega_k(x) = \sup_{\|f^{(n)}\| = 1} |f^{(k)}(x) - \ell_{\Delta}^{(k)}(x)|,$$

whence

$$\sup_{x \in [0,\omega_k]} m_k(x,\sigma) \le \sup_{x \in [0,\omega_k]} \Lambda_k(x) + \sup_{x \in [0,\omega_k]} \Omega_k(x)\sigma.$$

In Sect. 7, we prove that calculation of the suprema on the right-hand side is reduced to computing the largest local maxima of two specific polynomials and that leads to the following estimate.

Proposition 2.6 We have

$$\sup_{x \in [0,\omega_k]} m_k(x,\sigma) \le A_{n,k}(\sigma) := \frac{3}{2k+1} T_{n-1}^{(k)}(1) + \frac{2}{2k+1} \frac{2(k+1)}{n+k} T_n^{(k)}(1) \frac{\sigma}{\sigma_n}.$$
 (2.7)

The latter estimate is not particularly good for k = 1 and k = 2, so for such k we also use another one

$$\sup_{x \in [0,\omega_k]} m_k(x,\sigma_n) \le \left(\frac{1}{1-\sin\frac{k+1}{2n}}\right)^k \frac{1}{2k+1} T_n^{(k)}(1). \tag{2.8}$$

1c) Final step. The constants in estimates (2.3), (2.6) and (2.7) are easy to compare (they are simple functions of $t = \sigma/\sigma_n$) and, in Sect. 8, we prove that if $n \in \mathbb{N}$, $1 \le k \le n-2$ and $0 \le \sigma \le \sigma_n$, then

$$\max (A_{n,k}(\sigma), A_{n,k}^*(\sigma)) \le B_{n,k}(\sigma),$$

and that implies

$$m_k(1,\sigma) = \sup_{x \in [-1,1]} m_k(x,\sigma), \qquad 0 \le \sigma \le \sigma_n, \qquad 1 \le k \le n-2.$$

2) The case $\sigma > \sigma_n$.

For that case, it is more convenient to reformulate the original problem. Namely, instead of considering functions from the class

$$W_{\infty}^{n}(\sigma) := \{ f : f \in W_{\infty}^{n}[-1, 1], \|f\|_{[-1, 1]} \le 1, \|f^{(n)}\|_{[-1, 1]} \le \sigma \}, \qquad \sigma_{n} < \sigma < \infty,$$

i.e., functions on a fixed interval $I_1 = [-1,1]$ with increasing norms $||f^{(n)}||_{[-1,1]} \leq \sigma$, we will consider functions from the class

$$W_{\infty}^{n}(I_{s}) := \{ f : f \in W_{\infty}^{n}[-s, 1], \|f\|_{[-s, 1]} \le 1, \|f^{(n)}\|_{[-s, 1]} \le \sigma_{n} \}, \qquad 2 < |I_{s}| < \infty, \tag{2.9}$$

i.e., functions with a fixed norm $||f^{(n)}||_{[-s,1]} = \sigma_n$ on the intervals $I_s := [-s,1]$ of increasing length $|I_s| > |I_1| = 2$. The pointwise Landau-Kolmogorov problem consists then of finding the value

$$m_k(x, I_s) := \sup_{f \in W_{\infty}^n(I_s)} |f^{(k)}(x)|,$$

and Karlin's conjecture states that $m_k(x, I_s)$ is maximal at x = 1.

2a) Lower estimate for $m_k(1, I_s)$. Denote by $B_{n,k}^+$ the best constant in the Landau-Kolmogorov inequality on the half-line for the normalized functions:

$$B_{n,k}^{+} := \sup\{|f^{(k)}(1)| : ||f||_{[-\infty,1]} \le 1, ||f^{(n)}||_{[-\infty,1]} \le \sigma_n\}.$$

$$= \sup\{||f^{(k)}||_{[-\infty,1]} : ||f||_{[-\infty,1]} \le 1, ||f^{(n)}||_{[-\infty,1]} \le \sigma_n\}$$
(2.10)

Proposition 2.7 For all $|I_s| > |I_1| = 2$ we have

$$m_k(1, I_s) \ge B_{n,k}^+$$
 (2.11)

Proof. Clearly, with n and σ_n fixed, the spaces defined in (2.9) are embedded into each other, namely $W^n_{\infty}(I_s) \supset W^n_{\infty}(I_t)$ for s < t, therefore for the suprema $m_k(1, I_s) := \sup |f^{(k)}(1)|$ over those spaces, we have the inequalities

$$m_k(1, I_s) \ge m_k(1, I_t), \quad s < t.$$

Letting $t = -\infty$, we obtain (2.11).

2b). Upper estimates for $m_k(x, I_s)$ and $m_k^*(x_0, I_s)$. Similar arguments show that the upper bounds for $m_k(x, I_s)$ and $m_k^*(x, I_s)$ are majorized by those of $m_k(x, I_1)$ and $m_k^*(x, I_1)$, respectively. Namely, moving the interval I = [a, b] of length |I| = 2 inside any I_s , we see that $W_{\infty}^n(I_s) \subset W_{\infty}^n(I)$, hence

$$\sup_{x \in [\omega_k, 1]} m_k^*(x, I_s) \leq \sup_{x \in [\omega_k, 1]} m_k^*(x, I_1)$$

$$\sup_{x \in [s_0, \omega_k]} m_k(x, I_s) \leq \sup_{x \in [0, \omega_k]} m_k(x, I_1).$$

where s_0 is the middle of the interval [-s, 1]. The right-hand sides are equivalent to the values $m_k^{(*)}(x, \sigma_n)$ and for those we have the upper estimates (2.6)-(2.7).

Proposition 2.8 For all $|I_s| > |I_1| = 2$ we have

$$\sup_{x \in [\omega_k, 1]} m_k^*(x, I_s) \leq A_{n,k}^*(\sigma_n), \qquad (2.12)$$

$$\sup_{x \in [s_0, \omega_k]} m_k(x, I_s) \leq A_{n,k}(\sigma_n). \tag{2.13}$$

2c) Final step. In Sect. 11 we prove that the constants in (2.11)-(2.13) satisfy the inequality

$$\max (A_{n,k}(\sigma_n), A_{n,k}^*(\sigma_n)) \le B_{n,k}^+, \qquad k = 1, 2$$

and that proves that

$$m_k(1, I_s) = \sup_{x \in [-s, 1]} m_k(x, I_s), \qquad |I_s| \ge 2,$$

or, equivalently,

$$m_k(1,\sigma) = \sup_{x \in [-1,1]} m_k(x,\sigma), \qquad \sigma_n < \sigma < \infty.$$

3 Zolotarev polynomials

Here, we remind some facts about Zolotarev polynomials taking some extracts from our survey [10, p.240-242]. Note that we use a slightly different parametrization for Z_n .

Definition 3.1 A polynomial $Z_n \in \mathcal{P}_n$ is called Zolotarev polynomial if it has at least n equioscillations on [-1, 1], i.e. if there exist n points

$$-1 \le \tau_1 < \tau_2 < \dots < \tau_{n-1} < \tau_n \le 1$$

such that

$$(-1)^{n-i}Z_n(\tau_i) = ||Z_n|| = 1.$$

There are many Zolotarev polynomials, for example the Chebyshev polynomials T_n and T_{n-1} of degree n and n-1, with n+1 and n equioscillation points, respectively. One needs one parameter more to get uniqueness. We will use parametrization through the value of the n-th derivative of Z_n :

$$||Z_n^{(n)}|| = \theta \iff Z_n(x) := Z_n(x,\theta) := \frac{\theta}{n!}x^n + \sum_{i=0}^{n-1} a_i(\theta)x^i.$$

By Chebyshev's result, $||p^{(n)}|| \le ||T_n^{(n)}|| ||p||$, so the range of the parameter is

$$-\sigma_n \le \theta \le \sigma_n, \qquad \sigma_n = ||T_n^{(n)}|| = 2^{n-1} n!.$$

As θ traverses the interval $[-\sigma_n, \sigma_n]$, Zolotarev polynomials go through the following transformations:

$$-T_n(x) \to -T_n(ax+b) \to Z_n(x,\theta) \to T_{n-1}(x) \to Z_n(x,\theta) \to T_n(cx+d) \to T_n(x)$$
.

Zolotarev polynomials subdivide into 3 groups depending on the stucture of the set $\mathcal{A} := (\tau_i)$ of their alternation points.

- 1) \mathcal{A} contains n+1 points: then Z_n is the Chebyshev polynomial T_n .
- 2) \mathcal{A} contains n points but only one of the endpoints: then Z_n is a stretched Chebyshev polynomial $T_n(ax+b)$, |a|<1.
- 3) \mathcal{A} contains n points including both endpoints: then Z_n is called a proper Zolotarev polynomial and it is either of degree n, or the Chebyshev polynomial T_{n-1} of degree n-1.

For a proper Zolotarev polynomial Z_n , besides the interior alternation points $(\tau_i)_{i=2}^{n-1}$, there is a point $\beta = \beta(\theta)$ outside [-1,1] where its first derivative vanishes.

V. Markov proved that zeros of $Z'_n(\cdot,\theta)$ are monotonically increasing functions of $\theta \in [-\sigma_n,\sigma_n]$, with β going through the infinity as θ passes the zero. It follows that, for any θ_1,θ_2 , zeros of $Z'_n(\cdot,\theta_1)$ and $Z'_n(\cdot,\theta_2)$ interlace with each other, hence by the Markov interlacing property the same is true for their derivatives of any order. In particular, the following lemma is true.

Lemma 3.2 Let $(\alpha_i)_{i=1}^{M-1}$ be the zeros of $T_{n-1}^{(m)}$ in increasing order, and, for any given θ , let $(\tau_i)_{i=1}^M$ be the zeros of $Z_n^{(m)}(\cdot,\theta)$. Then, (α_i) and (τ_i) interlace, i.e.,

$$\tau_1 < \alpha_1 < \tau_2 < \alpha_2 < \tau_3 < \dots < \alpha_{M-1} < \tau_M$$

Another consequence of the interlacing property is the following observation.

Lemma 3.3 Let ω_k be the rightmost zero of $T_n^{(k+1)}$, and let $Z_n(\cdot, \theta_k)$ be the Zolotarev polynomials whose (k+1)st derivative vanishes at x=1, i.e.,

$$T_n^{(k+1)}(\omega_k) = 0, \qquad Z_n^{(k+1)}(1, \theta_k) = 0.$$

Further, for a given $x_0 \in (\omega_k, 1)$, let $Z_n(\cdot, \theta_{x_0})$ be the Zolotarev polynomial such that

$$Z_n^{(k+1)}(x_0, \theta_{x_0}) = 0, \qquad x_0 \in [\omega_k, 1].$$

Then

$$|\theta_k| < |\theta_{x_0}| < \sigma_n .$$

Proof. According to our parametrization, we have $-T_n(x) = Z_n(x, -\sigma_n)$, and as θ increases from $-\sigma_n$ to -0, the rightmost zero of $Z_n^{(k+1)}(\cdot, \theta)$ increases from ω_k to $+\infty$, passing through the value 1 for some $\theta := \theta_k$. Therefore

$$\omega_k < x_0 < 1 \iff -\sigma_n < \theta_{x_0} < \theta_k.$$

2) Here we give some upper estimates for the values $T_n^{(k)}(\omega_k)$ relative to the value $T_n^{(k)}(1)$. The estimates for $T_n^{(k)}(\omega_k)$ has been given on several occasions, we summarize what we need in the following statement.

Lemma 3.4 Let $\omega_k := \omega_{n,k}$ be the rightmost zero of $T_n^{(k+1)}$. Then

1)
$$|T_n^{(k)}(\omega_k)| \le \frac{1}{2k+1} T_n^{(k)}(1), \quad n \in \mathbb{N}, \quad 1 \le k \le n-1;$$

2) $|T_n'(\omega_1)| \le \frac{1}{4} T_n'(1), \quad n \ge 5;$
3) $|T_n''(\omega_2)| \le \frac{8}{55} T_n''(1), \quad n \ge 10.$ (3.1)

Proof. The first inequality was proved by Eriksson [3] who actually derived a stronger estimate:

$$|T_n^{(k)}(\omega_k)| \le \frac{F_k(\omega_k)}{2k+1} T_n^{(k)}(1),$$

where

$$F_k(x) := \frac{2(1+x)^2}{(2k+5)x+2} \le 1, \quad x \in [0,1].$$

The second inequality is due to Erdös–Szegő [2, p.464]. To derive the third one, we note that the function $F_k(\cdot)$ has the single minimum at $x_* = \frac{2k+1}{2k+5} = \frac{5}{9}$, therefore, if $x_* < \omega_2 < 1$, then

$$F_2(\omega_2) < F_2(1) = \frac{8}{11}.$$
 (3.2)

But ω_2 is the largest zero of the third derivative of T_n , therefore it is greater than the third largest zero of T'_n , i.e., $\omega_2 > \cos \frac{3\pi}{n}$, so (3.2) is valid if $\cos \frac{3\pi}{n} \ge \frac{5}{9}$, and the latter holds for $n \ge 10$.

Corollary 3.5 We have

$$\max_{x \in [0, \omega_{k-1}]} |T_n^{(k)}(x)| \le \frac{1}{2k+1} T_n^{(k)}(1)$$
(3.3)

Proof. The values of local maxima of $|T_n^{(k)}(\xi_i)|$ increase with $|\xi_i|$, and since $\omega_k = \max_i |\xi_i|$, we have

$$\max_{x \in [0,\omega_k]} |T_n^{(k)}(x)| \le |T_n^{(k)}(\omega_k)| \le \frac{1}{2k+1} T_n^{(k)}(1)$$

On the interval $[\omega_k, \omega_{k-1}]$ the value $|T_n^{(k)}(x)|$ decreases monotonically from the rightmost maximum $T_n^{(k)}(\omega_k)$ to the rightmost zero $T_n^{(k)}(\omega_{k-1}) = 0$, hence the inequality for such x.

4 A generalization of Erdős–Szegó result

By Q_n we denote the unit ball in the space \mathcal{P}_n , i.e., the set of polynomials $p \in \mathcal{P}_n$ such that $||p|| \leq 1$. According to the well-known Markov inequality

$$\sup_{p \in \mathcal{Q}_n} |p'(x)| \le n^2, \quad x \in [-1, 1],$$

and equality is attained at x = 1 for $p = T_n$.

In 1913, Schur [9] considered the problem of finding the maximum of $|p'(x_0)|$ under additional assumption that $p''(x_0) = 0$. Let $\mathcal{Q}_n^k(x_0)$ be the unit ball of polynomials such that $p^{(k+1)}(x_0) = 0$. Shur proved that

$$\sup_{p \in \mathcal{Q}_n^1(x_0)} |p'(x_0)| < \frac{1}{2} n^2.$$
 (4.1)

Moreover, he showed that if λ_n is the least constant in front of n^2 , then, for $\lambda_{\infty} := \limsup_{n \to \infty} \lambda_n$, we have

$$0.217 \cdots \leq \lambda_{\infty} \leq 0.465 \cdots$$
.

In 1942, Erdős and Szegő [2] refined Shur's result by showing that the limit $\lambda_{\infty} = \lim_{n \to \infty} \lambda_n$ exists and it is equal to

$$\lambda_{\infty} = \kappa^{-2} (1 - E/K)^2 = 0.3124 \cdots \tag{4.2}$$

where E, K are the complete elliptic integrals associated with the modulus κ . (They did not improve the uniform bound (4.1) though.)

They also showed that, for any $x_0 \in [-1, 1]$, the supremum of $|p'(x_0)|$ is attained when p is a Zolotarev polynomial $Z_n(\cdot, \theta)$, and that the maximum over x_0 is attained at $x_0 = 1$ for $n \ge 4$, and at $x_0 = 0$ for n = 3.

In this section, we generalize these results to the derivatives of order $k \geq 2$.

Denote by

$$\mu_k(x) := \max_{p \in \mathcal{O}_n} |p^{(k)}(x)|, \qquad x \in [-1, 1],$$

the best constant in the pointwise Markov inequality, and by

$$\mu_k^*(x_0) := \max_{p \in \mathcal{Q}_k^k(x_0)} |p^{(k)}(x_0)| \qquad x_0 \in [-1, 1],$$

the best constant in the pointwise Schur-type inequality. It is clear that

$$\mu_k^*(x_0) \le \mu_k(x_0), \qquad x_0 \in [-1, 1],$$

and that equality occurs only if $\mu'_k(x_0) = 0$, i.e. if x_0 is a point of local extremum (maximum or minimum) of the function $\mu_k(\cdot)$ inside (-1,1).

The next two lemmas are straightfroward extensions of the arguments given in [2, pp.461-462], from k = 1 to $k \ge 2$.

Lemma 4.1 For any θ , if $Z_n^{(k+1)}(x_0,\theta)=0$, then

$$\mu_k^*(x_0) = Z_n^{(k)}(x_0, \theta). \tag{4.3}$$

Conversely, for any $x_0 \in [-1,1]$, with some $\theta = \theta_{x_0}$ there is a polynomial $Z_n(\cdot,\theta)$ such that (4.3) is true.

Lemma 4.2 Let x_0 be a point such that

$$\mu_k^*(x_0) < \mu_k(x_0)$$
 and $x_0 \neq \pm 1$.

Then, for small $\delta > 0$, there is a point $x_1 \in [x_0 - \delta, x_0 + \delta]$, such that

$$\mu_k^*(x_0) < \mu_k^*(x_1) \,.$$

Proof. Let $\mu_k^*(x_0) = Z_n^{(k)}(x_0)$, where $Z_n^{(k+1)}(x_0) = 0$ and let $p \in \mathcal{Q}_n$ be the polynomial such that

$$p^{(k)}(x_0) > Z_n^{(k)}(x_0) > 0$$
.

Then the polynomial $q = (1 - \epsilon)Z_n + \epsilon p$ satisfies

$$||q|| \le 1, \qquad q^{(k)}(x_0) > Z_n^{(k)}(x_0) = \mu_k^*(x_0),$$

and, for small ϵ , its k-th derivative has a local maximum in the neighbourhood of x_0 (because $Z_n^{(k)}$ has). Let x_1 be the point of that maximum, i.e., $q^{(k+1)}(x_1) = 0$. Then $q^{(k)}(x_1) > q^{(k)}(x_0)$, and respectively

$$\mu_k^*(x_0) < q^{(k)}(x_0) < q^{(k)}(x_1) \le \mu_k^*(x_1),$$

the latter inequality by definition of $\mu_k^*(\cdot)$.

Corollary 4.3 Let η be a point of local maximum of the function $\mu_k^*(\cdot)$. Then

$$\mu_k^*(\eta) = \mu_k(\eta).$$

Theorem 4.4 Let $Z_n(x, \theta_k)$ be the Zolotarev polynomial such that

$$Z_n^{(k+1)}(1,\theta_k) = 0.$$

Then

$$\max_{x_0 \in [-1,1]} \mu_k^*(x_0) = \max\left\{ |T_n^{(k)}(\omega_k)|, |Z_n^{(k)}(1,\theta_k)| \right\}.$$

Proof. Let η_i be the points of local maxima of $\mu_k^*(\cdot)$ inside the interval (-1,1). Then

$$\max_{x_0 \in [-1,1]} \mu_k^*(x_0) = \max \{ \mu_k^*(\eta_i), \mu_k^*(1) \}$$

The corollary shows that, inside (-1,1), the local maxima of $\mu_k^*(\cdot)$ coincide with the extrema (maxima or minima) of $\mu_k(\cdot)$. On the other hand, V. Markov proved that the local maxima of $\mu_k(\cdot)$ coincide with those of $|T_n^{(k)}|$. Hence

$$\max_{x_0 \in [-1,1]} \mu_k^*(x_0) = \max\{|T_n^{(k)}(\xi_i)|, \mu_k^*(1)\}, \text{ where } T_n^{(k+1)}(\xi_i) = 0.$$

Further, it is known that the local maxima of $|T_n^{(k)}|$ are increasing as $|\xi_i|$ increases, i.e,

$$\max_{i} |T_n^{(k)}(\xi_i)| = |T_n^{(k)}(\omega_k)|,$$

where ω_k is the rightmost zero of $T_n^{(k+1)}$. Finally, by Lemma 4.1,

$$\mu_k^*(1) = |Z_n^{(k)}(1, \theta_k)|,$$

and that completes the proof.

Theorem 4.5 Let $Z_n(x, \theta_k)$ be the Zolotarev polynomial such that

$$Z_n^{(k+1)}(1,\theta_k) = 0.$$

Then

$$\max_{x_0 \in [\omega_k, 1]} m_k^*(x_0, \sigma) \le \max\{1, \frac{\sigma}{\theta_k}\}^{k/n} \max\{|T_n^{(k)}(\omega_k)|, |Z_n^{(k)}(1, \theta_k)|\}.$$

Proof. According to Corollary 2.4,

$$m_k^*(x_0, \sigma) \le |p^{(k)}(x_0)|,$$

where p is any polynomial of degree n such that

1)
$$p^{(k+1)}(x_0) = 0$$
, 2) p has an n -alternance in $[-1, 1]$, 3) $||p^{(n)}|| \ge \sigma$.

We take p as a dilated Zolotarev polynomial $Z_n(\cdot, \theta_{x_0})$ such that $Z_n^{(k+1)}(x_0, \theta_{x_0}) = 0$. The latter satisfies conditions (1)-(2), and its highest derivative has the value θ_{x_0} . So, if $\theta_{x_0} \geq \sigma$, then condition (3) is fulfilled with $p = Z_n(\cdot, \theta_{x_0})$, but if $\theta_{x_0} < \sigma$, then we have to scale Z_n to ensure (3). So we set

$$p(x) := Z_n(x_0 + \gamma_0^{1/n}(x - x_0), \theta_{x_0}), \qquad \gamma_0 := \max\{1, \frac{\sigma}{\theta_{x_0}}\},$$

whence

$$m_k^*(x_0, \sigma) \le p^{(k)}(x_0) = \max\{1, (\frac{\sigma}{\theta_{x_0}})^{k/n}\} Z_n^{(k)}(x_0, \theta_{x_0}).$$

Finally,

$$\omega_k \le x_0 \le 1 \quad \Rightarrow \quad \begin{cases} 1) \quad |Z_n^{(k)}(x_0, \theta_{x_0})| \le \max\{T_n^{(k)}(\omega_k), Z_n^{(k)}(1, \theta_k)\}, \\ 2) \quad |\theta_k| \le |\theta_{x_0}| \le \sigma_n, \end{cases}$$

where the first inequality us due to Theorem 4.4, and the second one is due to Lemma 3.3.

5 Upper estimates for $Z_n^{(k)}(1, \theta_k)$ and generalization of Schur inequality

Recall that by Markov's inequality

$$\sup_{\|p^{(k)}\| \le 1} |p^{(k)}(x)| \le |T_n^{(k)}(1), \qquad x \in [-1, 1],$$

so we will give some upper estimates for the constant λ_k such that

$$Z_n^{(k)}(1,\theta_k) \le \lambda_k T_n^{(k)}(1)$$

We will get those estimates using the following lemma.

Lemma 5.1 Let $p \in \mathcal{P}_n$ be any polynomial that satisfies the following conditions:

1)
$$p^{(k+1)}(1) = 0$$
, 1) p has an n -alternance on $[-1,1]$. (5.1)

If $Z_n^{(k+1)}(1, \theta_k) = 0$, then

$$|Z_n^{(k)}(1,\theta_k)| \le |p^{(k)}(1)|. \tag{5.2}$$

Proof. The proof is parallel to the proof of Lemma 2.3, since Z_n satisfies $||Z_n|| \le 1$. Assuming the contrary to (5.2), we derive that the *n*-th derivative of $h := p - \gamma Z_n$ should change its sign which is impossible as h is a polynomial of degree n

2a) We will construct several p that satisfy (5.1) using alternation properties of T_n and T_{n-1} . We start with the simplest one.

Lemma 5.2 We have

$$|Z_n^{(k)}(1,\theta_k)| \le \frac{1}{k+1} T_n^{(k)}(1). \tag{5.3}$$

Proof. Take

$$p(x) = T_n(x) - cq(x),$$
 $q(x) := (x-1)T'_n(x),$ $p^{(k+1)}(1) := 0,$

so that p has an n-alternance on $[-\cos\frac{\pi}{n},1]$ for any c, and where the last equality defines particular $c:=\frac{T_n^{(k+1)}(1)}{q^{(k+1)}(1)}$. Then

$$p^{(k)}(1) = T_n^{(k)}(1) - cq^{(k)}(1) = \left(1 - \frac{T_n^{(k+1)}(1)}{q^{(k+1)}(1)} \frac{q^{(k)}(1)}{T_n^{(k)}(1)}\right) T_n^{(k)}(1),$$

and since $q^{(m)}(1) = mT_n^{(m)}(1)$, it follows that

$$p^{(k)}(1) = \left(1 - \frac{k}{k+1}\right) T_n^{(k)}(1) = \frac{1}{k+1} T_n^{(k)}(1).$$

2b) The next lemma improves the previous estimate for $k = \mathcal{O}(n)$.

Lemma 5.3 We have

$$|Z_n^{(k)}(1,\theta_k)| \leq T_{n-1}^{(k)}(1), \tag{5.4}$$

$$|Z_n^{(k)}(1,\theta_k)| \leq \frac{1}{k+1} \frac{n-1}{n-1+k} T_n^{(k)}(1). \tag{5.5}$$

Proof. Take

$$p(x) = T_{n-1}(x) - cq(x), q(x) := (x^2 - 1)T'_{n-1}(x), p^{(k+1)}(1) := 0.$$

Then

$$p^{(k)}(1) = T_{n-1}^{(k)}(1) - cq^{(k)}(1) = \left(1 - \frac{T_{n-1}^{(k+1)}(1)}{q^{(k+1)}(1)} \frac{q^{(k)}(1)}{T_{n-1}^{(k)}(1)}\right) T_{n-1}^{(k)}(1) =: \widehat{\lambda}_{n,k} T_{n-1}^{(k)}(1).$$

Since $q'(x) = (x^2 - 1)T''_{n-1}(x) + 2xT'_{n-1}(x) = xT'_{n-1}(x) + (n-1)^2T_{n-1}(x)$, we have

$$q^{(m)}(1) = T_{n-1}^{(m)}(1) + ((n-1)^2 + (m-1))T_{n-1}^{(m-1)}(1),$$

and using

$$T_n^{(k+1)}(1) = \frac{n^2 - k^2}{2k+1} T_n^{(k)}(1), \qquad T_n^{(k-1)}(1) = \frac{2k-1}{n^2 - (k-1)^2} T_n^{(k)}(1),$$

we obtain, after some simplifications,

$$\widehat{\lambda}_{n,k} = 1 - \frac{k}{k+1} \frac{(n-1)^2 - k^2}{2(n-1)^2 + (k+1)} \frac{2(n-1)^2 + (k-1)}{(n-1)^2 - (k-1)^2}$$

$$= \frac{1}{k+1} + \frac{k}{k+1} \frac{4k(n-1)^2 + (k-1)}{((n-1)^2 - (k-1)^2)(2(n-1)^2 + (k+1))}$$

$$\leq \frac{1}{k+1} + \frac{k}{k+1} \frac{1}{n-k} \leq 1$$

and that proves the first inequality (5.4). Using

$$T_{n-1}^{(k)}(1) = \gamma T_n^{(k)}(1), \qquad \gamma = \frac{n-1}{n} \frac{n-k}{n-1+k},$$

we obtain

$$\lambda_{n,k} = \widehat{\lambda}_{n,k} \gamma \le \frac{1}{k+1} \frac{n}{n-k} \gamma = \frac{1}{k+1} \frac{n-1}{n-1+k}$$

and that proves (5.5).

2c) In the next lemma, we get further improvements for k=1 and k=2.

Lemma 5.4 We have

$$Z'_n(1,\theta_1) \le \frac{1}{3} T'_n(1), \qquad Z''_n(1,\theta_2) \le \frac{3}{\pi^2} \frac{\pi^2 - 6}{15 - \pi^2} < 0.23 T''_n(1).$$
 (5.6)

Proof. Set $\xi := \cos \frac{\pi}{n}$, and let

$$r(x) = T_n(x) - cq(x),$$
 $q(x) := (x+1)T'_n(x),$ $r^{(k+1)}(\xi) := 0.$

The polynomial r has an n-alternance on $[-1,\xi]$, so that, after finding $r^{(k)}(\xi)$ we will transform it to the polynomial $p(x) := r\left(-1 + (x+1)\frac{1+\xi}{2}\right)$, which has an n-alternance on [-1,1] and satisfies

$$p^{(k)}(1) = \left(\frac{1+\xi}{2}\right)^k r^{(k)}(\xi).$$

Let us find $r^{(k)}(\xi)$. We have

$$r^{(k)}(\xi) = T_n^{(k)}(\xi) - cq^{(k)}(\xi) = T_n^{(k)}(\xi) - \frac{q^{(k)}(\xi)}{q^{(k+1)}(\xi)} T_n^{(k+1)}(\xi) ,$$

where

$$q^{(m)}(\xi) = (1+\xi)T_n^{(m+1)}(\xi) + mT_n^{(m)}(\xi),$$

so that setting $a_k := T_n^{(k)}(\xi)$, we obtain

$$r^{(k)}(\xi) = a_k - \frac{(1+\xi)a_{k+1} + ka_k}{(1+\xi)a_{k+2} + (k+1)a_{k+1}} a_{k+1}.$$

Further, we have

$$a_0 = T_n(\xi) = -1,$$
 $a_1 = T'_n(\xi) = 0,$

and, for $k \geq 2$, the values a_k can be computed from the recurrence relation

$$(\xi^2 - 1)a_{k+2} + (2k+1)\xi a_{k+1} = (n^2 - k^2)a_k$$
.

In particular, we find

$$a_2 = \frac{n^2}{1 - \xi^2}$$
, $a_3 = \frac{3\xi}{1 - \xi^2} a_2$, $a_4 = \frac{5\xi}{1 - \xi^2} a_3 - \frac{n^2 - 2^2}{1 - \xi^2} a_2$.

For k = 1, this gives

$$r'(\xi) = -\frac{(1+\xi)a_2}{(1+\xi)a_3 + 2a_2}a_2 = -\frac{n^2}{2+\xi} \quad \Rightarrow \quad |p'(\xi)| = \frac{1+\xi}{2(2+\xi)}T_n'(1) < \frac{1}{3}T_n'(1).$$

For k = 2, we obtain

$$r''(\xi) = a_2 - \frac{(1+\xi)a_3 + 2a_2}{(1+\xi)a_4 + 3a_3} a_3 \quad \Rightarrow \quad p''(1) = c(n,\xi)T_n''(1) \,,$$

where

$$c(n,\xi) = \left(\frac{1+\xi}{2}\right)^2 \left(\frac{6\xi+3\xi^2}{(2\xi^2+9\xi+4)-n^2(1-\xi^2)}-1\right) \frac{1}{1-\xi^2} \frac{3}{n^2-1} \,.$$

One can show that $c(n,\xi) = c(n,\cos\frac{\pi}{n})$ is increasing with n to its limit value given in (5.6).

Remark 5.5 We checked two other possibilities to construct p.

1) The option

$$p(x) = T_n(x) - cq(x),$$
 $q(x) := (x+1)T'_n(x),$ $p^{(k+1)}(1) := 0,$

results in

$$|p^{(k)}(1)| = \frac{1}{2k+1} \frac{4n^2 - 1}{(2n^2 + (k+1))} T_n^{(k)}(1),$$

which is slightly worse than (5.3).

2) The option

$$p(x) = \frac{x - \gamma}{1 - \gamma} T_{n-1}(x), \qquad p^{(k+1)}(1) := 0,$$

is very poor for small k, and for large $k = \mathcal{O}(n)$ it is slightly worse than (5.5).

6 Lower bound for $Z_n^{(n)}(\cdot, \theta_k)$

Lemma 6.1 Let $Z_n(x, \theta_k)$ be a Zolotarev polynomial such that

$$Z_n^{(k+1)}(-1, \theta_k) = 0.$$

Then

$$\theta_k := ||Z_n^{(n)}|| \ge \eta_{n,k} \sigma_n, \qquad \eta_{n,k} := \frac{n - (k+1)}{2(2n - (k+1))}.$$

Proof. Set m = k+1 and M = n-m, and denote by $(\tau_i)_{i=1}^M$ the zeros of $Z_n^{(m)}$ in increasing order:

$$-1 = \tau_1 < \tau_1 < \dots < \tau_M < 1.$$

Then

$$Z_n^{(m)}(x) = A(x+1)(x-\tau_2)\cdots(x-\tau_M),$$

where

$$A = \frac{Z_n^{(m)}(1)}{2(1-\tau_2)\cdots(1-\tau_M)} =: \frac{1}{2}\frac{A_1}{A_2},$$

and respectively

$$||Z_n^{(n)}|| = A M! = \frac{M!}{2} \frac{A_1}{A_2}.$$
 (6.1)

Let us find lower bounds for the constants A_1 and $1/A_2$.

1) Let $(\alpha_i)_{i=1}^{M-1}$ be the zeros of $T_{n-1}^{(m)}$ in increasing order. They interlace with zeros of $Z_n^{(m)}$, i.e.

$$-1 = \tau_1 < \alpha_1 < \tau_2 < \alpha_2 < \tau_3 < \dots < \alpha_{M-1} < \tau_M < 1,$$

therefore

$$\frac{1}{A_2} := \frac{1}{(1 - \tau_2) \cdots (1 - \tau_M)} > \frac{1}{(1 - \alpha_1) \cdots (1 - \alpha_{M-1})}$$

On the other hand,

$$T_{n-1}^{(m)}(x) = \frac{\|T_{n-1}^{(n-1)}\|}{(M-1)!}(x-\alpha_1)\cdots(x-\alpha_{M-1}) \quad \Rightarrow \quad T_{n-1}^{(m)}(1) = \frac{\|T_{n-1}^{(n-1)}\|}{(M-1)!}(1-\alpha_1)\cdots(1-\alpha_{M-1}),$$

and respectively

$$\frac{1}{A_2} > \frac{1}{(1-\alpha_1)\cdots(1-\alpha_{M-1})} = \frac{1}{(M-1)!} \frac{\|T_{n-1}^{(n-1)}\|}{T_{n-1}^{(m)}(1)}.$$
 (6.2)

2) The lower bound for A_1 is provided by

$$A_1 := Z_n^{(m)}(1, \theta_k) \ge T_{n-1}^{(m)}(1) \frac{\sigma_n - \theta_k}{\sigma_n} + T_n^{(m)}(1) \frac{\theta_k}{\sigma_n} = \frac{T_{n-1}^{(m)}(1)}{\sigma_n} \left((\sigma_n - \theta_k) + \frac{T_n^{(m)}(1)}{T_{n-1}^{(m)}(1)} \theta_k \right). \tag{6.3}$$

3) Combining estimates (6.1)-(6.3), we obtain

$$\theta_k \ge \frac{n-m}{2} \frac{\|T_{n-1}^{(n-1)}\|}{\sigma_n} \left((\sigma_n - \theta_k) + \frac{T_n^{(m)}(1)}{T_{n-1}^{(m)}(1)} \theta_k \right).$$

From the relations

$$\frac{\|T_{n-1}^{(n-1)}\|}{\sigma_n} := \frac{\|T_{n-1}^{(n-1)}\|}{\|T_n^{(n)}\|} = \frac{1}{2n}, \qquad \frac{T_n^{(m)}(1)}{T_{n-1}^{(m)}(1)} = \frac{n}{n-1} \frac{n-1+m}{n-m} > \frac{n+m}{n-m},$$

it follows that

$$\theta_k > \frac{n-m}{4n} \left(\sigma_n - \theta_k + \frac{n+m}{n-m} \theta_k \right) = \frac{n-m}{4n} \left(\sigma_n + \frac{2m}{n-m} \theta_k \right).$$

So, $(1 - \frac{m}{2n})\theta_k \ge \frac{n-m}{4n}\sigma_n$, and finally

$$\theta_k > \frac{n-m}{2(2n-m)} \sigma_n, \qquad m = k+1.$$

Proposition 6.2 We have

$$\sup_{x \in [\omega_k, 1]} m_k^*(x_0, \sigma) \le A_{n,k}^*(\sigma) := \begin{cases} T_{n-1}^{(k)}(1), & 0 \le \frac{\sigma}{\sigma_n} \le \eta_k; \\ \lambda_k T_n^{(k)}(1) \left(\frac{1}{\eta_k} \frac{\sigma}{\sigma_n}\right)^{k/n}, & \eta_k \le \frac{\sigma}{\sigma_n} \le 1. \end{cases}$$
(6.4)

where

$$\lambda_k = \frac{1}{k+1} \frac{n-1}{n-1+k}, \qquad \eta_k = \frac{n-(k+1)}{2(2n-(k+1))}.$$

7 Upper estimates for $m_k(x)$ for $x \in [0, \omega_k]$

Lemma 7.1 We have

$$m_k(x) \le \frac{3}{2k+1} T_{n-1}^{(k)}(1) + \frac{2}{2k+1} \frac{2(k+1)}{n+k} T_n^{(k)}(1) \frac{\sigma}{\sigma_n}.$$

Proof. For $f \in W_{\infty}^n(\sigma)$, let $l \in \mathcal{P}_n$ be the Lagrange polynomial of degree n that interpolates f at the points of local extrema of T_{n-1} on the interval [-1, 1], i.e.

$$l(x) = f(x),$$
 $(x^2 - 1)T'_{n-1}(x) = 0.$

Then

$$f^{(k)}(x) = l^{(k)}(x) + (f^{(k)}(x) - l^{(k)}(x)) \le D_k(x) ||f|| + \Omega_k(x) ||f^{(n)}||,$$

where

$$D_k(x) := \sup_{\|p_{n-1}\|_* = 1} |p_{n-1}^{(k)}(x)|, \qquad \Omega_k(x) := \sup_{\|f^{(n)}\| = 1} |f^{(k)}(x) - l^{(k)}(x)|.$$

1) For the first constant, we have the estimate

$$D_k(x) \le \max\{U(x), V(x)\},$$

where $U(x) := |T_{n-1}^{(k)}(x)|$ and

$$V(x) := \left| \frac{1}{k} (x^2 - 1) T_{n-1}^{(k+1)}(x) + x T_{n-1}^{(k)}(x) \right|$$

$$\leq \frac{k-1}{k} |T_{n-1}^{(k)}(x)| + \frac{(n-1)^2 - (k-1)^2}{k} |T_{n-1}^{(k-1)}(x)|.$$

We have

$$\begin{split} U(x) & \leq \frac{1}{2k+1} T_{n-1}^{(k)}(1) \,, \\ V(x) & \leq \frac{k-1}{k} \frac{1}{2k+1} T_{n-1}^{(k)}(1) + \frac{(n-1)^2 - (k-1)^2}{k} \frac{1}{2k-1} T_{n-1}^{(k-1)}(1) \\ & = \left(\frac{k-1}{k} \frac{1}{2k+1} + \frac{1}{k}\right) T_{n-1}^{(k)}(1) \\ & = \frac{3}{2k+1} T_{n-1}^{(k)}(1) \,. \end{split}$$

2) For the second constant, we have

$$\Omega_k(x) \leq \max \left| \frac{1}{n!} \omega^{(k)}(x) \right|.$$

where $\omega(x) = c(x^2 - 1)T'_{n-1}(x)$, with its leading coefficient equal to one, i.e., $c = \frac{1}{2^{n-2}} \frac{1}{n-1}$. Set

$$q(x) := (x^2 - 1)T'_{n-1}(x).$$

Then

$$\Omega_k(x) \le \frac{1}{2^{n-2}} \frac{1}{n!} \frac{1}{n-1} \max |q^{(k)}(x)| = \frac{2}{\sigma_n} \frac{1}{n-1} \max |q^{(k)}(x)|.$$

Since $q'(x) = (n-1)^2 T_{n-1}(x) + x T'_{n-1}(x)$, we have

$$\begin{split} q^{(k)}(x) &= ((n-1)^2 + (k-1))T_{n-1}^{(k-1)}(x) + xT_{n-1}^{(k)}(x) \\ &\leq \frac{(n-1)^2 + (k-1)}{2k-1}T_{n-1}^{(k-1)}(1) + \frac{1}{2k+1}T_{n-1}^{(k)}(1) \\ &= \left(\frac{(n-1)^2 + (k-1)}{(n-1)^2 - (k-1)^2} + \frac{1}{2k+1}\right)T_{n-1}^{(k)}(1) = \frac{c_{n,k}}{2k+1}T_n^{(k)}(1)\,, \end{split}$$

where

$$c_{n,k} = \frac{2(k+1)(n-1)^2 + (k+2)(k-1)}{(n-1+k)(n-1+(k-1))} \frac{n-1}{n} \le 2(k+1) \frac{n-1}{n-1+k} \frac{n-1}{n} \le 2(k+1) \frac{n-1}{n+k}.$$

Thus

$$\Omega_k(x) \le \frac{2}{2k+1} \frac{2(k+1)}{n+k} \frac{1}{\sigma_n} T_n^{(k)}(1).$$

Corollary 7.2 We have

$$m_k(x, \sigma_n) \le \frac{3}{2k+1} T_n^{(k)}(1), \quad k \ge 2.$$

Proof. We have

$$m_k(x, \sigma_n) \le \alpha_{n,k} T_n^{(k)}(1),$$

where

$$\alpha_{n,k} = \frac{3}{2k+1} \frac{n-1}{n} \frac{n-k}{n-1+k} + \frac{2}{2k+1} \frac{2(k+1)}{n+k} \le \frac{3}{2k+1} \frac{n-k}{n+k} + \frac{2}{2k+1} \frac{2(k+1)}{n+k}$$
$$= \frac{3}{2k+1} \frac{3n+k+4}{3n+3k} \le \frac{3}{2k+1}.$$

Lemma 7.3 We have

$$\max_{x \in [0,\omega_k]} m_k(x,\sigma_n) \le \frac{1}{(1-\delta_k/2)^k} T_n^{(k)}(\omega_k),$$

where δ_k is the maximal distance between two consecutive zeros of $T_n^{(k+1)}$.

Proof. We will use the following estimate. Let $f \in W_{\infty}^{n}(\sigma_{n})$, i.e., $||f|| \leq 1$ and $||f^{(n)}|| \leq ||T_{n}^{(n)}||$. Then

$$T_n^{(k+1)}(\xi_i) = 0 \quad \Rightarrow \quad |f^{(k)}(\xi_i)| \le |T_n^{(k)}(\xi_i)| \le T_n^{(k)}(\omega_k).$$

Let (ξ_i) be the zeros of $T_n^{(k+1)}$, and let $\delta_k = \max_i |\xi_i - \xi_{i+1}|$. Set

$$\widehat{T}_n(x) = T_n(\gamma x), \qquad \gamma = \frac{1}{(1 - \delta_k/2)} > 1.$$

Then

$$\widehat{T}_n^{(k+1)}(\xi) = 0 \quad \Rightarrow \quad |f^{(k)}(\xi)| \leq |\widehat{T}_n^{(k)}(\xi)| \leq \gamma^k T_n^{(k)}(\omega_k) \, .$$

Corollary 7.4 We have

$$\max_{x \in [0,\omega_k]} m_k(x,\sigma_n) \le \left(\frac{1}{1 - \sin\frac{\pi(k+1)}{2n}}\right)^k T_n^{(k)}(\omega_k).$$

Proof. Since $(\cos \frac{\pi i}{n})$ are zeros of T'_n , the zeros ξ_i of $T^{(k+1)}_n$ are located in the intervals $\cos \frac{\pi (i+k)}{n} < \xi_i < \cos \frac{\pi i}{n}$, and for the distance between two consecutive ξ_i we have

$$\delta_k = \max_i |\xi_i - \xi_{i+1}| \le \max_i \left| \cos \frac{\pi i}{n} - \cos \frac{\pi (i + (k+1))}{n} \right| \le 2 \sin \frac{\pi (k+1)}{2n}.$$

Corollary 7.5 We have

$$\max_{x \in [0,\omega_1]} m_1(x,\sigma_n) \le \frac{1}{2} T_n'(1). \tag{7.1}$$

Proof. a) For n = 4, we have

$$T_4(x) = 8x^4 - 8x^2 + 1,$$
 $T'_4(x) = 16(2x^3 - x),$ $T''_4(x) = 16(6x^2 - 1),$

so that

$$\omega_1 = 1/\sqrt{6}, \quad \delta_1/2 = 1/\sqrt{6}, \quad T_4'(\omega_1) = 32/3\sqrt{6} = 2/3\sqrt{6}T_n'(1),$$

hence

$$\alpha_4 = \frac{1}{1 - 1/\sqrt{6}} \frac{2}{3\sqrt{6}} < 0.46 \le 0.5$$
.

b) For n = 5, we have

$$T_t(x) = 16x^5 - 20x^3 + x,$$
 $T_5'(x) = 5(16x^4 - 12x^2 + 1),$ $T_5''(x) = 40x(8x^3 - 3),$

so that

$$\omega_1 = \sqrt{\frac{3}{8}}, \qquad \delta_1/2 = \frac{1}{2}\sqrt{\frac{3}{8}}, \qquad T_5'(\omega_1) = \frac{25}{4} = \frac{1}{4}T_5'(1),$$

and

$$\alpha_5 = \frac{1}{1 - \frac{1}{2}\sqrt{\frac{3}{8}}} \frac{1}{4} < 0.361 \le 1/2.$$

c) For $n \geq 6$, we have $T'_n(\omega_1) \leq \frac{1}{4}T'_n(1)$, hence

$$\alpha_n \le \frac{1}{1 - \sin\frac{\pi}{n}} \frac{1}{4} \le 1/2.$$

8 Proof of Theorem 1.3, the case $k \le n-2$

Theorem 8.1 We have

$$\max_{x_0 \in [\omega_k, 1]} m_k^*(x_0, \sigma) \le m_k(1, \sigma), \qquad 0 \le \sigma \le \sigma_n.$$

Proof. 1) The case $\sigma \leq \theta_k$. By Lemma 5.3, we have

$$m_k^*(x_0, \sigma) \le T_{n-1}^{(k)}(1)$$
,

while

$$m_k(1,\sigma) > m_k(1,\sigma_0) = T_{n-1}^{(k)}(1).$$

2) The case $\sigma > \theta_k$. In this case

$$m_k^*(x_0, \sigma) \le \frac{1}{k+1} \frac{n-1}{n-1+k} \left(\frac{\sigma}{\theta_k}\right)^{k/n} T_n^{(k)}(1) = \gamma \left(\frac{t}{\alpha}\right)^{k/n} T_n^{(k)}(1),$$

and

$$m_k(1,\sigma) > (1-t)T_{n-1}^{(k)}(1) + tT_n^{(k)}(1) = (\beta(1-t) + t)T_n^{(k)}(1),$$

where

$$\alpha := \frac{n - (k + 1)}{2(2n - (k + 1))}, \qquad \beta := \frac{T_{n - 1}^{(k)}(1)}{T_n^{(k)}(1)} = \frac{n - 1}{n} \frac{n - k}{n - 1 + k}, \qquad t := \sigma/\sigma_n.$$

So, we need to prove that

$$f(t) := \gamma \left(\frac{t}{\alpha}\right)^{k/n} \le \beta(1-t) + t =: g(t), \qquad t \in [\alpha, 1].$$

The function f is concave, therefore it is bounded from above by its tangent ℓ at $t=2\alpha$, i.e.

$$f(t) \le \ell(t) = \gamma 2^{k/n} \left(1 + \frac{k}{n} \frac{t - 2\alpha}{2\alpha} \right).$$

So, we are done, once we prove that

$$\ell(t) \le g(t) \quad \text{on}[\alpha, 1].$$

Both functions are straight lines, so we need to check this inequality only at the end-points.

1) At $t = \alpha$, we have

$$\ell(\alpha) = \gamma 2^{k/n} \left(1 - \frac{k}{2n} \right) \le \gamma \left(1 + \frac{k}{n} \right) \,, \qquad g(\alpha) \ge g(0) = \beta \,.$$

So, we need the inequality

$$\gamma \frac{n+k}{n} \leq \beta \quad \Leftrightarrow \quad \frac{1}{k+1} \frac{n-1}{n-1+k} \frac{n+k}{n} \leq \frac{n-1}{n} \frac{n-k}{n-1+k} \quad \Leftrightarrow \quad \frac{n+k}{k+1} \leq n-k \,,$$

amd the latter is valid for $k \leq n-2$.

2) At t = 1, we have g(1) = 1, while

$$\ell(1) = \gamma 2^{k/n} \left(1 + \frac{k}{n} \frac{1 - 2\alpha}{2\alpha} \right) = \frac{1}{k+1} \frac{n-1}{n-1+k} 2^{k/n} \left(1 + \frac{k}{n} \frac{n}{(n-(k+1))} \right).$$

Expression in the parenthesis is less than 1 + k, so

$$\ell(1) \le 2^{k/n} \frac{n-1}{n-1+k} \le \frac{n+k}{n} \frac{n-1}{n-1+k} < 1.$$

Theorem 8.2 We have

$$\max_{x \in [0,\omega_k]} m_k(x,\sigma) \le m_k(1,\sigma), \qquad 0 \le \sigma \le \sigma_n.$$

Proof. 1) For $k \geq 2$, we use the estimates

$$m_k(x,\sigma) \le \frac{3}{2k+1} T_{n-1}^{(k)}(1) + \frac{2}{2k+1} \frac{2(k+1)}{n+k} t T_n^{(k)}(1) =: \ell_1(t).$$

and

$$m_k(1,\sigma) \ge (1-t)T_{n-1}^{(k)}(1) + tT_n^{(k)}(1) =: \ell_2(t),$$

To prove that $\ell_1(t) \leq \ell_2(t)$ it is sufficient to compare their values at the end-points:

$$\ell_1(0) = \frac{3}{2k+1} T_{n-1}^{(k)}(1) \le T_{n-1}^{(k)}(1) = \ell_2(0) ,$$

$$\ell_1(1) \le \frac{5}{2k+1} T_n^{(k)}(1) \le T_n^{(k)}(1) = \ell_2(1) .$$

2) For k = 1, we use the following estimates:

$$m_k(1,\sigma) \ge m_k(1,\sigma_0) = T'_{n-1}(1) = \frac{(n-1)^2}{n^2} T'_n(1) \ge \frac{9}{16} T'_n(1),$$

and

$$m_k(x,\sigma) \le m_k(x,\sigma_n) \le \frac{1}{2} T'_n(1)$$
.

9 Proof of Theorem 1.3: the case k = n - 1

Here we cover the case k = n - 1 for $0 \le \sigma \le \sigma_n$.

Theorem 9.1 We have

$$m_{n-1}(x,\sigma) \le m_{n-1}(1,\sigma) = Z_n^{(n-1)}(1,\sigma), \qquad 0 \le \sigma \le \sigma_n.$$

Proof. For $f \in W_{\infty}^n(\sigma)$, let $l \in \mathcal{P}_{n-1}$ be the Lagrange polynomial of degree n-1 that interpolates f at the points of local extrema of $Z_n(\cdot, \sigma)$ on the interval [-1, 1], i.e.

$$l(\tau_i, \sigma) = f(\tau_i), \quad -1 = \tau_0 < \tau_1 < \dots < \tau_{n-2} < \tau_{n-1} = 1.$$

Then

$$f^{(n-1)}(x) = l^{(n-1)}(x,\sigma) + (f^{(n-1)}(x) - l^{(n-1)}(x,\sigma)) \le D_{n-1}(x,\sigma) ||f|| + \Omega_{n-1}(x,\sigma) ||f^{(n)}||,$$

where

$$D_{n-1}(x,\sigma) := \sup_{\|p_{n-1}\|_* = 1} |p_{n-1}^{(n-1)}(x)|, \qquad \Omega_{n-1}(x,\sigma) := \sup_{\|f^{(n)}\| = 1} |f^{(n-1)}(x) - l^{(n-1)}(x,\sigma)|.$$

Therefore,

$$m_{n-1}(x,\sigma) \le D_{n-1}(x,\sigma) + \Omega_{n-1}(x,\sigma)\sigma. \tag{9.1}$$

1) It is known that the extremum value $D_{n-1}(x,\sigma)$ (which is a constant, since $p^{(n-1)} \equiv \text{const}$) is attained by the polynomial $p \in \mathcal{P}_{n-1}$ such that

$$p(\tau_i, \sigma) = (-1)^i, \qquad i = 0, \dots, n-1.$$
 (9.2)

It is easy to see that, with

$$\omega(x,\sigma) := \prod (x - \tau_i),$$

we have

$$p(x) = Z_n(x, \sigma) - \frac{\sigma}{n!}\omega(x, \sigma).$$

Indeed, (9.2) is clearly fulfilled, and p is of degree n-1 because the leading coefficients of both polynomials on the right-hand side are equal to $\sigma/n!$. Therefore

$$D_{n-1}(x,\sigma) = p^{(n-1)}(1,\sigma) = Z_n^{(n-1)}(1,\sigma) - \frac{\sigma}{n!}\omega^{(n-1)}(1,\sigma) > 0.$$
(9.3)

2) For $\Omega_{n-1}(x,\sigma)$ we show below that

$$\Omega_{n-1}(x,\sigma) \le \Omega_{n-1}(1,\sigma) = \frac{1}{n!} \omega^{(n-1)}(1,\sigma).$$
(9.4)

Thus, from (9.1)-(9.4), we obtain

$$m_{n-1}(x,\sigma) \le |Z_n^{(n-1)}(1,\sigma) - \frac{\sigma}{n!}\omega^{(n-1)}(1,\sigma)| + |\frac{\sigma}{n!}\omega^{(n-1)}(1,\sigma)| = Z_n^{(n-1)}(1,\sigma),$$

and theorem is proved.

Lemma 9.2 We have

$$\Omega_{n-1}(x,\sigma) \le \Omega_{n-1}(1,\sigma) = \frac{1}{n!}\omega^{(n-1)}(1,\sigma).$$
(9.5)

Proof. For $\Omega_{n-1}(x,\sigma)$ we have the convex majorant

$$\Omega_{n-1}(x,\sigma) \le \Omega_{n-1}^*(x,\sigma) = \frac{1}{n} \sum_{i=0}^{n-1} |x - \tau_i(\sigma)|,$$

so that

$$\Omega_{n-1}(x,\sigma) \le \max\{\Omega_{n-1}^*(0,\sigma), \Omega_{n-1}^*(1,\sigma)\}\$$

We note that

$$\Omega_{n-1}^*(1,\sigma) = 1 - \frac{1}{n} \sum_{i=1}^{n} \tau_i(\sigma) = \frac{1}{n!} |\omega^{(n-1)}(1,\sigma)| = \Omega_{n-1}(1,\sigma),$$

so we need to prove that

$$c_1(\sigma) := \frac{1}{n} \sum_{i=1}^n |\tau_i(\sigma)| \le 1 - \frac{1}{n} \sum_{i=1}^n \tau_i(\sigma) =: c_2(\sigma).$$

For large n, this inequality is self-evident because the alternation points $\tau_i(\sigma)$ are spread sufficiently uniform in the interval [-1,1], therefore $c_1(\sigma) < 1$ while $c_2 \to 1$. But we need it for all $n \ge 2$.

We will use the monotonicity property of $\tau_i(\sigma)$ as functions of σ . We have

$$\tau_i(\sigma_0) \le \tau_i(\sigma) \le \tau_i(\sigma_n). \tag{9.6}$$

Here, $\tau_i(\sigma_0)$ are zeros of $(x^2-1)T'_{n-1}(x)$ and $\tau_i(\sigma_n)$ are zeros of $(x-1)T'_n(x)$, therefore

$$\cos\frac{\pi((n-i))}{n-1} \le \tau_i(\sigma) \le \cos\frac{\pi(n-i)}{n}, \quad i = 1, \dots, n-1, \qquad \tau_n(\sigma) = 1.$$

It follows that

$$c_2(\sigma) = 1 - \frac{1}{n} \sum \tau_i(\sigma) \ge 1 - \frac{1}{n} \sum \tau_i(\sigma_n) = 1 - \frac{1}{n}.$$

On the other hand, with $m = \lfloor \frac{n}{2} \rfloor$,

$$\sum |\tau_i(\sigma)| \le \sum_{i=1}^m |\tau_i(\sigma_0)| + \sum_{i=m+1}^n |\tau_i(\sigma_n)| = \sum_{i=0}^{m-1} \cos \frac{\pi i}{n-1} + \sum_{i=0}^{m-1} \cos \frac{\pi i}{n} \le 1 + \frac{1}{\sin \frac{\pi}{2n}},$$

where we used the inequality

$$\sum_{i=0}^{m-1}\cos ix = \frac{1}{2} + \left(\frac{1}{2} + \sum_{i=1}^{m-1}\cos ix\right) = \frac{1}{2} + \frac{\sin(m - \frac{1}{2})x}{2\sin\frac{1}{2}x} \leq \frac{1}{2} + \frac{1}{2\sin\frac{\pi}{2n}}, \qquad x \in \left\{\frac{\pi}{n}, \frac{\pi}{n-1}\right\}.$$

a) For $n \geq 6$ we have

$$c_1(\sigma) \le \frac{1}{n} + \frac{1}{n \sin \frac{\pi}{2n}} \le \frac{1}{6} + \frac{1}{6 \sin \frac{\pi}{12}} = 0.81 < \frac{5}{6} < 1 - \frac{1}{n} \le c_2(\sigma)$$
.

b) For n=5,

$$c_1(\sigma) \le \frac{1}{5} \left(1 + \cos \frac{\pi}{4} + 1 + \cos \frac{\pi}{5} + \cos \frac{2\pi}{5} \right) = 0.76 < \frac{4}{5} = \Omega_{n-1}(1, \sigma).$$

c) For n = 3 and n = 4, we cannot obtain the inequality $c_1(\sigma) \le c_2(\sigma)$ through the estimates (9.6). In these cases we split the interval $[\sigma_0, \sigma_n]$ into two parts:

1)
$$\tau_i(\sigma_0) \le \tau_i(\sigma) \le \tau_i(\widehat{\sigma}_n)$$
, $\sigma \in [\sigma_0, \widehat{\sigma}_n]$; 2) $\sigma \in [\widehat{\sigma}_n, \sigma_n]$,

where the second interval conatins σ such that $Z_n(\cdot, \sigma)$ are the Chebyshev polynomials stretched from the interval $[-\cos\frac{\pi}{n}, 1]$ to a slightly larger interval $[-\cos\phi, 1]$ up to [-1, 1], i.e.

$$Z_n(x,\sigma) = T_n(1 + s(x-1)), \qquad s \in [s_n, 1], \qquad s_n := \frac{1 + \cos\frac{\pi}{n}}{2} = \cos^2\frac{\pi}{2n}.$$

The alternation points of such Z_n are given by

$$\tau_i(\sigma) = (1+t)\cos\frac{(n-i)\pi}{n} - t, \qquad t \in [0, t_n], \qquad t_n = \tan^2\frac{\pi}{2n}.$$

 c_1) Consider first the case $\sigma \in [0, \widehat{\sigma}_n]$.

For n=2,

$$\tau_1(\sigma) = -1, \quad \tau_2(\sigma) = 1.$$

For n = 3, we have

$$\tau_1(\sigma) = -1, \quad 0 \le \tau_2(\sigma) \le \frac{1}{3}, \qquad \tau_3(\sigma) = 1,$$

so that

$$c_1(\sigma) = \frac{1}{3} \sum_{i=1}^{3} |\tau_i(\sigma)| \le \frac{7}{9}, \qquad c_2(\sigma) \ge 1 - \frac{1}{3} \sum \tau_i(\widehat{\sigma}_n) = \frac{8}{9}.$$

For n=4,

$$\tau_1(\sigma) = -1, \quad -\frac{1}{2} \le \tau_2(\sigma) \le -(3 - 2\sqrt{2}), \qquad \frac{1}{2} \le \tau_3(\sigma) \le 4\sqrt{2} - 5, \qquad \tau_4(\sigma) = 1,$$

so that

$$c_1(\sigma) \le \frac{1}{4} \sum_{i=1}^4 |\tau_i(\sigma)| > 0.78, \qquad \Omega_{n-1}(1,\sigma) \ge 1 - \frac{1}{4} \sum_{i=1}^4 \tau_i(\widehat{\sigma}_n) = 0.87.$$

 c_2) In the case $\sigma \in [\widehat{\sigma}_n, \sigma]$, we have

$$\tau_i(\widehat{\sigma}) = (1+t)\cos\frac{(n-i)\pi}{n} - t, \qquad t \in [0, \tan^2\frac{\pi}{2n}],$$

and, for n=2,

$$c_1(\sigma) = \frac{1}{2} \sum_{i=1}^4 |\tau_i(\sigma)| = \frac{1+t}{2}, \qquad c_2(\sigma) = 1 - \frac{1}{2} \sum_{i=1}^4 \tau_i(\sigma) = \frac{1+t}{2},$$

while for n=3,

$$c_1(\sigma) = \frac{1}{3} \sum_{i=1}^{3} |\tau_i(\sigma)| = \frac{2+t}{3}, \qquad c_2(\sigma) = 1 - \frac{1}{3} \sum \tau_i(\sigma) = \frac{2+2t}{3},$$

whereas for n=4,

$$c_1(\sigma) = \frac{1}{4} \sum_{i=1}^4 |\tau_i(\sigma)| = \frac{\sqrt{2}+1}{4} (1+t), \qquad c_2(\sigma) = 1 - \frac{1}{4} \sum_{i=1}^4 \tau_i(\sigma) = \frac{3+3t}{4}.$$

10 Lower bounds for $B_{n,k}$

In Lemma 2.11, we proved that

$$m_k(1, I_s) \geq B_{n,k}$$
,

where $B_{n,k}$ is the best constant in the Landau-Kolmogorov inequality on the half-line subject to normalization as given below:

$$B_{n,k} = \sup\{|f^{(k)}(1)|: ||f||_{[-\infty,1]} = ||T_n||, ||f^{(n)}||_{[-\infty,1]} = ||T_n^{(n)}||\}.$$

So, any lower bound for $B_{n,k}$ serves as a lower bound for $m_k(1, I_s)$.

If g is an arbitrary function from $W_{\infty}^{n}[-\infty,1]$, then its linear transfromation

$$f(x) := \frac{\|T_n\|}{\|g\|} g\left(x \cdot \left(\frac{\|g\|}{\|T_n\|} \frac{\|T_n^{(n)}\|}{\|g^{(n)}\|}\right)^{1/n}\right)$$

is a properly normalized function, and

$$B_{n,k} \ge \sup_{f} |f^{(k)}(1)| = \sup_{g} \frac{|g^{(k)}(1)|}{\|g\|^{1-k/n} \|g^{(n)}\|^{k/n}} \|T_n\|^{1-k/n} \|T_n^{(n)}\|^{k/n} =: \gamma_{n,k} T_n^{(k)}(1),$$

where

$$\gamma_{n,k} = C_{n,k}/T_{n,k}, \qquad C_{n,k} := \sup \frac{|g^{(k)}(1)|}{\|g\|^{1-k/n} \|g^{(n)}\|^{k/n}}, \qquad T_{n,k} := \frac{|T_n^{(k)}(1)|}{\|T_n\|^{1-k/n} \|T_n^{(n)}\|^{k/n}}.$$

The constant $C_{n,k}$ is the best constant in the LK-inequality on the half-line in the homogeneous form

$$|g^{(k)}(1)| \le C_{n,k} ||g||^{1-k/n} ||g^{(n)}||^{k/n}$$
.

Stechkin proved that

$$C_{n,k} \ge \frac{k!}{(2k)!} \left(\frac{(2n)!}{n!}\right)^{k/n}$$
 and $C_{n,k} \ge \frac{(2n!)^{1-k/n}}{(n-k)!}$,

whichever is preferrable. He also showed that

$$a\left(\frac{n}{p}\right)^p \le C_{n,k} \le T_{n,k} \le A\left(\frac{2n}{p}\right)^p, \qquad p = \min(k, n-k).$$

Lemma 10.1 We have

$$B_{n,k} \ge \gamma_{n,k} T_n^{(k)}(1),$$

where

$$\gamma_{n,k} \ge (2/e)^{2k}$$

Proof. We have

$$C_{n,k} = \frac{k!}{(2k)!} \left(\frac{(2n)!}{n!}\right)^{k/n}, \qquad T_{n,k} = \frac{2^k k!}{(2k)!} \frac{n^2 (n^2 - 1^2) \cdots (n^2 - (k-1)^2)}{(2^{n-1} n!)^{k/n}}$$

so that

$$\gamma_{n,k} \ge C_{n,k}/T_{n,k} = \frac{2^{-k/n}}{n^2(n^2 - 1^2) \cdots (n^2 - (k-1)^2)} (2n)!^{k/n}$$

$$> \frac{n^{2k}}{n^2(n^2 - 1^2) \cdots (n^2 - (k-1)^2)} (2/e)^{2k} > (2/e)^{2k} ,$$
(10.1)

where we used

$$(2n)!^{k/n} > \left(\sqrt{4\pi n}(2n/e)^{2n}\right)^{k/n} > 2^{k/n}n^{2k}(2/e)^{2k}$$
.

Lemma 10.2 For $n \le 15$, and $1 \le k \le n-1$, we have

$$C_{n,k} > \frac{T_{n+m}^{(k)}(1)}{T_{n+m}^{(n)}(1)^{k/n}},$$

where

$$m = 1, \quad 3 \le n \le 6, \qquad m = 2, \quad 7 \le n \le 10, \qquad m = 3, \quad 11 \le n \le 14.$$

Proof. For $x \in [-1, 1]$, consider the function

$$g(x) := g_{n,m}(x) := \phi(x)T_{n+m}(x), \qquad \phi(x) = c_n \int_{-1}^{x} (1-t^2)^n dt, \quad \phi(1) = 1,$$

where the last equality defines the constant c_n . We extend it to the half-line $[-\infty, 1]$ by setting $g_{n,m}(x) = 0$ for x < -1. Then

$$g \in W_{\infty}^{n}[-\infty, 1], \qquad g^{(k)}(1) = T_{n+m}^{(k)}(1), \quad k = 1, \dots, n,$$

and

$$C_{n,k} \ge \frac{|g^{(k)}(1)|}{\|g\|^{1-k/n} \|g^{(n)}\|^{k/n}} = \frac{|g^{(k)}(1)|}{\|g^{(n)}\|_{[-1,1]}^{k/n}}.$$

So, we are done once we prove that $||g^{(n)}||_{[-1,1]} = g^{(n)}(1)$. The latter is proved numerically: the graph of the function $g^{(n)} = g_{n,m}^{(n)}$ (provided by MAPLE) shows that, on [-1,1], for the values n and m given above, it attains its maximum at x = 1.

Corollary 10.3 We have

$$m_k(1, I_s) > \gamma_{n,k} T_n^{(k)}(1)$$

where

$$\gamma_{n,k} = \frac{T_{n+m}^{(k)}(1)}{T_n^{(k)}(1)} \left(\frac{T_n^{(n)}(1)}{T_{n+m}^{(n)}(1)}\right)^{k/n}.$$
(10.3)

11 Proof of Theorem 1.4

1) For k = 1, we have the inequality

$$m_1(1, I_s) \ge B_{n,1} = \gamma_{n,1} T_n'(1),$$

where, by (10.1)-(10.2),

$$\gamma_{n,1} = \frac{2^{-1/n}}{n^2} (2n)!^{1/n} > (2/e)^2 > 0.541, \qquad \gamma_{3,1} > 0.79.$$

We proved in (7.1) that

$$m_1(x, \sigma_n) \le \frac{1}{2} T'_n(1), \qquad x \in [0, \omega_1],$$

and we also have

$$m_1^*(x, \sigma_n) \le \alpha_{n,1} T_n'(1), \qquad x \in [\omega_1, 1],$$

where

$$\alpha_{n,1} = \frac{1}{3} \left(\frac{2(2n-2)}{n-2} \right)^{1/n} \le \alpha_{4,1} = \frac{1}{3} 6^{1/4} < 0.522, \quad n \ge 4, \qquad \alpha_{3,1} = 2/3.$$

2) For k = 2, we have

$$m_2(1, I_s) \ge B_{n,2} \ge \gamma_{n,2} T_n''(1),$$

where

$$\gamma_{n,2} = \frac{2^{-2/n}}{n^2(n^2 - 1)} (2n)!^{2/n} > (2/e)^4 > 0.293.$$

For the upper bounds, we have

$$m_2^*(x, \sigma_n) \le \alpha_{n,2} T_n''(1), \qquad \alpha_{n,2} = 0.23 \left(\frac{2(2n-3)}{(n-3)}\right)^{2/n}$$

and

$$m_2(x,\sigma_n) \le \beta_{n,2} T_n''(1) ,$$

where

$$\beta_{n,2} = \frac{1}{5} \frac{8}{11} \frac{1}{(1 - \sin \frac{3\pi}{2n})^2} < 0.28, \quad n \ge 16, \qquad \beta_{n,2} = \frac{3}{5}, \quad n < 16.$$

We put all the values in the table.

	n = 4	$5 \le n \le 15$	$n \ge 16$
$\alpha_{n,2}$	0.72	≤ 0.50	≤ 0.277
$\beta_{n,2}$	-	≤ 0.60	≤ 0.288
$\gamma_{n,2}$	0.79	≥ 0.63	≥ 0.293

12 Proof of Theorem 1.5

The values of $\gamma_{n,k}$ in (10.3):

k/n	4	5	6	7	8	9	10	11	12	13	14	15
1	0.87	0.87	0.87	0.82	0.82	0.82	0.82	0.79	0.79	0.79	0.80	0.80
2	0.79	0.77	0.77	0.67	0.67	0.68	0.68	0.63	0.63	0.64	0.64	0.65
3		0.72	0.70	0.57	0.57	0.57	0.57	0.50	0.51	0.51	0.52	0.52
4			0.66	0.51	0.49	0.49	0.49	0.41	0.41	0.42	0.42	0.43
5				0.50	0.45	0.43	0.43	0.34	0.34	0.34	0.35	0.35
6					0.46	0.41	0.39	0.30	0.29	0.29	0.29	0.29
7						0.43	0.38	0.27	0.26	0.25	0.25	0.25
8							0.41	0.27	0.25	0.23	0.22	0.22
9								0.31	0.25	0.22	0.21	0.20
10									0.29	0.23	0.20	0.19
11										0.28	0.22	0.19
12											0.27	0.20
13												0.26

The values of

$$\alpha_{n,k} = \frac{1}{k+1} \frac{n-1}{n-1+k} \left(\frac{2(2n-(k+1))}{n-(k+1)} \right)^{k/n}$$

	• • • • • • • • • • • • • • • • • • • •											
k/n	4	5	6	7	8	9	10	11	12	13	14	15
1	0.58	0.55	0.54	0.53	0.53	0.52	0.52	0.52	0.51	0.51	0.51	0.51
2	0.63	0.48	0.43	0.40	0.39	0.38	0.37	0.36	0.36	0.36	0.35	0.35
3		0.63	0.44	0.37	0.34	0.32	0.30	0.30	0.29	0.28	0.28	0.28
4			0.64	0.42	0.34	0.30	0.28	0.26	0.25	0.24	0.24	0.23
5				0.65	0.40	0.32	0.28	0.25	0.24	0.22	0.22	0.21
6					0.67	0.40	0.31	0.26	0.24	0.22	0.21	0.20
7						0.68	0.40	0.30	0.25	0.22	0.20	0.19
8							0.69	0.39	0.29	0.24	0.21	0.19
9								0.70	0.39	0.29	0.24	0.21
10									0.71	0.39	0.29	0.23
11										0.72	0.39	0.28
12											0.73	0.39
13												0.74

It is readily seen that, for the values of $k \setminus n$ above and on the shadowed cells, we have

$$\alpha_{n,k} \leq \gamma_{n,k}$$
.

References

- [1] C. K. Chui, P. W. Smith, A note on Landau's problem for bounded intervals, Amer. Math. Monthly 82 (1975), no. 9, 927–929.
- [2] P. Erdös, G. Szegő, On a problem of I. Schur, Ann. of Math. (2) 43, (1942). 451–470.
- [3] B.-O. Eriksson, Some best constants in the Landau inequality on a finite interval, J. Approx. Theory 94 (1998), no. 3, 420–454.
- [4] S. Karlin, Oscillatory perfect splines and related extremal problems, *in*: Studies in spline functions and approximation theory, pp. 371–460. Academic Press, New York, 1976.
- [5] E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen, Proc. London Math. Soc. 13 (1913), 43-39.
- [6] A. P. Matorin, On inequalities between the maxima of the absolute values of a function and its derivatives on a half-line, Ukrain. Mat. Zh. 7 (1955), 262–266 = Amer. Math. Soc. Transl. (2) 8 (1958), 13–17.
- [7] N. Naidenov, On an extremal problem of Kolmogorov type for functions from $W^4_{\infty}([a,b])$, East J. Approx. 9 (2003), no. 1, 117–135.
- [8] M. Sato, The Landau inequality for bounded intervals with $f^{(3)}$ finite, J. Approx. Theory 34 (1982), no. 2, 159–166.
- [9] I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall, Math. Z. 4 (1919), no. 3-4, 271–287.
- [10] A. Shadrin, Twelve proofs of the Markov inequality, *in*: Approximation theory: a volume dedicated to Borislav Bojanov, 233–298, Prof. M. Drinov Acad. Publ. House, Sofia, 2004.
- [11] A. I. Zvyagintsev, Kolmogorov's inequalities for n=4, Latv. Mat. Ezhegodnik 26 (1982), 165–175, 282 (in Russian).
- [12] A. I. Zvyagintsev, A. Ya. Lepin, Kolmogorov's inequalities between the upper bounds of derivatives of functions for n = 3, Latv. Mat. Ezhegodnik 26 (1982), 176–181 (in Russian).