2.6 Ideálny plyn a jeho tlak

1. V uzavretej nádobe s objemom 2 litre sa nachádza 5×10^{23} molekúl plynu. Pri tejto teplote má každá molekula strednú kinetickú energiu 6.2×10^{-21} J. Vypočítaj tlak plynu v nádobe.

Zápis:
$$V = 2 l = 2 \times 10^{-3} m^3$$

$$N = 5 \times 10^{23}$$

 $E = 6.2 \times 10^{-21} \,\mathrm{J}$

Riešenie: $p = \frac{2}{3} \times \frac{N}{V} \times E$ $p = \frac{2}{3} \times \frac{5 \cdot 10^{23}}{2 \cdot 10^{-3}} \times 6.2 \times 10^{-21}$

2. Dve uzavreté nádoby A a B obsahujú rovnaký druh ideálneho plynu a majú rovnaký objem $0.01~{\rm m}^3$.

V nádobe A sa nachádza 2×10^{23} molekúl s priemernou kinetickou energiou 4.5×10^{-21} J. V nádobe B sa nachádza 1.5×10^{23} molekúl s priemernou kinetickou energiou 6×10^{-21} J. Vypočítaj:

- a) Tlak v každej nádobe.
- b) Ktorá nádoba má vyšší tlak? Vysvetli prečo (aj keď má menej molekúl).
- c) Ak by sa tieto plyny spojili do jednej nádoby (s objemom 2 V), aký by bol výsledný tlak?

Zápis:

$$V_A = V_B = 0.01 \text{ m}^3$$

 $N_A = 2 \times 10^{23}$
 $N_B = 1.5 \times 10^{23}$
 $E_A = 4.5 \times 10^{-21}$
 $E_B = 4.5 \times 10^{-21}$

a) Výpočet tlaku

p = 1033 kPa

Riešenie:

$$p_A = \frac{2}{3} \times \frac{N}{V} \times E$$

$$p_A = \frac{2}{3} \times \frac{2 \cdot 10^{23}}{0.01} \times 4.5 \cdot 10^{-21}$$

$$p_A = 6 \cdot 10^{-21} Pa$$

$$p_B = \frac{2}{3} \cdot \frac{N}{V} \cdot E$$

$$p_B = \frac{2}{3} \cdot \frac{2 \cdot 10^{23}}{0.01} \cdot 4.5 \cdot 10^{-21}$$

$$p_B = 6 \cdot 10^{-21} Pa$$

b) Porovnanie tlaku v nádobách:

Hoci nádoba A má viac molekúl, molekuly v nádobe B majú vyššiu energiu. Ich súčin N × E je rovnaký pre A a B, a preto je ich tlak rovnaký: $p_A = p_B = 6 \cdot 10^{-21}$ Pa

c) Spojenie plynov do 1 nádoby:

$$N = N_A + N_B = 3.5 \times 10^{23}$$

$$E_{celk} = N_A \times E_A + N_B \times E_B$$

 $E_{celk} = 1.8 \cdot 10^3 J$

$$E_{avg} = \frac{E_{celk}}{N} = \frac{1.8 \times 10^3}{3.5 \times 10^{23}}$$
$$E_{avg} = 5.14 \times 10^{-21} J$$

$$V = 0$$
, $01 \times 2 = 0.02^{-21}$ I

Výsledný tlak:

$$p = \frac{2}{3} \times \frac{N}{V} \times E_{avg}$$

$$p = \frac{2}{3} \times \frac{3.5 \cdot 10^{23}}{0.02} \times 5.14 \times 10^{-21}$$

$$p = 60 \text{ kPa}$$

- 3. Plynový balón má objem 1,2 m³ a obsahuje 3 × 10^{24} molekúl plynu. Pri východe slnka je stredná kinetická energia molekuly 4 × 10^{-21} J. Na obed slnko zvýši teplotu, čím sa kinetická energia molekúl zvýši o 25 %. Vypočítaj:
 - a) Tlak v balóne ráno. [p = 6 667 Pa]
 - b) Tlak v balóne na obed (za predpokladu, že sa objem nezmení). [p = 8 333 Pa]
 - c) O koľko percent sa zvýšil tlak? [25%]
- 4. V laboratóriu sa nachádza tlaková fľaša s objemom $5\times10^{-3}~\text{m}^3$, naplnená inertným plynom. Z merania sa zistilo, že tlak vo fľaši je 2.4×10^5 . Stredná kinetická energia jednej molekuly je 3.2×10^{-21} J. Urči približný počet molekúl v tejto fľaši. [N = 5.63×10^{23} molekúl]
- 5. Máme dve rovnaké oceľové fľaše rovnakého objemu $5\times 10^{-3}~\text{m}^3$, ktoré obsahujú ideálny plyn. Vo fľaši A sa nachádza 4×10^{24} molekúl plynu a stredná kinetická energia jednej molekuly je $2,5\times 10^{-21}$ J. Vo fľaši B je dvojnásobný počet molekúl, ale polovičná energia každej molekuly.
 - a) Ktorá fľaša má vyšší tlak? [Tlak je rovnaký]
 - b) Vypočítaj presne tlak v každej fľaši. [p = 1 330 kPa]