Minimum Cost Spanning Trees: Kruskal's Algorithm

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 12

- Weighted undirected graph,
 - $G = (V, E), W : E \to \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V

- Weighted undirected graph,
 - $G = (V, E), W : E \to \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

Example

■ Start with smallest edge, (1,3)

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Start with smallest edge, (1,3)
- Add next smallest edge, (2,4)

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Start with smallest edge, (1,3)
- Add next smallest edge, (2,4)
- Add next smallest edge, (0,1)

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Start with smallest edge, (1,3)
- Add next smallest edge, (2,4)
- Add next smallest edge, (0, 1)
- \blacksquare Can't add (0,3), forms a cycle

- Weighted undirected graph, $G = (V, E), W : E \rightarrow \mathbb{R}$
 - G assumed to be connected
- Find a minimum cost spanning tree
 - lacktriangle Tree connecting all vertices in V
- Strategy 2
 - Start with n components, each a single vertex
 - Process edges in ascending order of cost
 - Include edge if it does not create a cycle

- Start with smallest edge, (1,3)
- Add next smallest edge, (2, 4)
- Add next smallest edge, (0,1)
- Can't add (0,3), forms a cycle
- Add next smallest edge, (1, 2)

 $G = (V, E), W : E \rightarrow \mathbb{R}$

- $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight

- $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let *TE* ⊆ *E* be the set of tree edges already added to MCST

- \blacksquare $G = (V, E), W : E \to \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$

- \blacksquare $G = (V, E), W : E \to \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6),(1,2),(0,1),(4,5),(4,6),(0,2),(1,4),(2,3)\}$

Set
$$TE = \emptyset$$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

$$\{(5,6),(1,2),(0,1),(4,5),(4,6),(0,2),(1,4),(2,3)\}$$

Set
$$TE = \{(5,6)\}$$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Add
$$(1,2)$$

Set $TE = \{(5,6), (1,2)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Add
$$(0,1)$$

Set $TE = \{(5,6), (1,2), (0,1)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Add
$$(4,5)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - \blacksquare Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Skip
$$(4,6)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Skip
$$(0,2)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6), (1,2), (0,1), (4,5), (4,6), (0,2), (1,4), (2,3)\}$

Add
$$(1,4)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5), (1,4)\}$

- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Let $E = \{e_0, e_1, \dots, e_{m-1}\}$ be edges sorted in ascending order by weight
- Let TE ⊆ E be the set of tree edges already added to MCST
- Initially, $TE = \emptyset$
- Scan E from e_0 to e_{m-1}
 - If adding e_i to TE creates a loop, skip it
 - Otherwise, add e_i to TE

Sort
$$E$$
 as $\{(5,6),(1,2),(0,1),(4,5),(4,6),(0,2),(1,4),(2,3)\}$

Add
$$(2,3)$$

Set $TE = \{(5,6), (1,2), (0,1), (4,5), (1,4), (2,3)\}$

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include *e*

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Edges in TE partition vertices into connected components

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Edges in TE partition vertices into connected components
- Initially each vertex is a separate component

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Edges in TE partition vertices into connected components
- Initially each vertex is a separate component
- Adding e = (u, w) merges components of u and w

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Edges in TE partition vertices into connected components
- Initially each vertex is a separate component
- Adding e = (u, w) merges components of u and w
 - lacksquare If u and w are in the same component, e forms a cycle and is discarded

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Edges in TE partition vertices into connected components
- Initially each vertex is a separate component
- Adding e = (u, w) merges components of u and w
 - If u and w are in the same component, e forms a cycle and is discarded
 - Otherwise, let U be component of u, W be $V \setminus U$

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include *e*
- Edges in TE partition vertices into connected components
- Initially each vertex is a separate component
- Adding e = (u, w) merges components of u and w
 - lacksquare If u and w are in the same component, e forms a cycle and is discarded
 - Otherwise, let U be component of u, W be $V \setminus U$
 - U, W form a partition of V with $u \in U$ and $w \in W$

- Let V be partitioned into two non-empty sets U and $W = V \setminus U$
- Let e = (u, w) be the minimum cost edge with $u \in U$, $w \in W$
- Every MCST must include e
- Edges in TE partition vertices into connected components
- Initially each vertex is a separate component
- Adding e = (u, w) merges components of u and w
 - lacksquare If u and w are in the same component, e forms a cycle and is discarded
 - Otherwise, let U be component of u, W be $V \setminus U$
 - U, W form a partition of V with $u \in U$ and $w \in W$
 - Since we are scanning edges in ascending order of cost, e is minimum cost edge connecting U and W, so it must be part of any MCST

- Kruskal's algorithm builds an MCST bottom up
 - lacktriangle Start with n components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- If edge weights repeat, MCST is not unique

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- If edge weights repeat, MCST is not unique
- "Choose minimum cost edge" will allow choices
 - Consider a triangle on 3 vertices with all edges equal

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- If edge weights repeat, MCST is not unique
- "Choose minimum cost edge" will allow choices
 - Consider a triangle on 3 vertices with all edges equal
- Different choices lead to different spanning trees

- Kruskal's algorithm builds an MCST bottom up
 - Start with *n* components, each an isolated vertex
 - Scan edges in ascending order of cost
 - Whenever an edge merges disjoint components, add it to the MCST
- Correctness follows from Minimum Separator Lemma
- If edge weights repeat, MCST is not unique
- "Choose minimum cost edge" will allow choices
 - Consider a triangle on 3 vertices with all edges equal
- Different choices lead to different spanning trees
- In general, there may be a very large number of minimum cost spanning trees