

Introduction of Binary Number System

- Important in computer systems because computers read
 & store data in binary number systems.
- Known as the base system 2. This system uses only 2 digits, namely 0 and 1.
- The data in a computer is represented as an electrical signal in the off and on state. Digit 1 represents on and digit 0 represents off.
- Each digit in a binary number has a specific place value. The place values for binary numbers are 1,2,4,8,16 and so on.

Introduction of Decimal Number System

- Always used in daily life.
- Known as the base 10 system because it has ten digit choices from 0 to 9.

Conversion of Binary Numbers to Decimal Numbers

 A binary number can be converted to a decimal number by multiplying the binary number by the place value of its digits and the binary number.

For example, table 1 show the conversion of the binary number **110011** to a decimal number.

Binary Numbers	1	1	0	0	1	1
Place Value	32	16	8	4	2	1
Digit Value	32	16	0	0	2	1
Decimal Number	32 + 16 + 0 + 0 + 2 + 1 = 51					

Table 1

Thus, the binary number 110011 is equal to 51 in decimal numbers.

Decimal Number Conversion

- Two methods are used to convert decimal numbers to binary numbers:
 - a. The method divides by 2 and uses the remainder.
 - b. Method of taking from the balance.

Divide Method By 2 & Use the Remainder

Steps of the method:

- 1. Divide a decimal number by 2.
- 2. Record the division result and the remainder.
- 3. The result of the first division is divided by 2 again. The division result is recorded.
- 4. The result of the division will be divided by 2 so that it cannot be further divided.
- 5. The value of a binary number is taken based on the remainder inversely.

Example of converting a decimal number 25 to a binary number using the method of dividing by 2 and using the remainder:

25	÷	2	=	12	Remainder	1	
12	÷	2	=	6	Remainder	0	
6	÷	2	=	3	Remainder	0	
3	÷	2	=	1	Remainder	1	
1	÷	2	=	0	Remainder	1	L

The balance written from bottom to top yields the binary number 11001.

Addition of Two Duplicate Numbers

 Five procedures are followed during the addition operation for two binary numbers.

Addition Operation	Addition Results
0 + 0	0
0 + 1	1
1 + 0	1
1 + 1	10
10 + 0	11

Addition of Two Duplicate Numbers

Example of sum calculator for two duplicate numbers
 101 and 111.

• The sum of the two binary numbers 101 and 111 is 1100.

Subtraction of Two Binary Numbers

• Five known procedures during a subtraction operation for two duplicate numbers.

Subtraction Operation	Subtraction Result
0 - 0	0
1 - 0	1
1 - 1	0
10 - 1	1
11 - 1	10

Subtraction of Two Binary Numbers

• Example of calculating the minus result for two binary numbers 1110 and 111.

• The result of the subtraction of the two binary numbers 1110 and 111 is 111.