Lecture # 7.1 CHE331A

Mole balance equations for reactors

Rate law and its dependence on concentration and temperature

Rate law in terms of conversion (stoichiometric table) for constant and variable volume

Analysis of n-CSTRs in series and parallel and the manufacture of EG

Analysis of PFRs for gas-phase reactions with variable volume

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

Gas phase reactions are primarily carried out in PFRs

- ▶ In PFRs (Tubular Reactors) flow is turbulent, and there are NO radial gradients of T, P, velocity or conc
 → flow in reactor is like a plug
- ► Mole balance equation for PFR: $F_{A0} \frac{dX}{dV} = -r_A$
- ► Rate law for A \rightarrow products: $-r_A = kC_A^2$, then

$$\frac{dX}{dV} = \frac{k \cdot C_A^2}{F_{A0}}$$

For $\dot{v} = \dot{v}_0$ then $C_A = C_{A0}(1 - X)$, and after substituting

$$V = \frac{F_{A0}}{k. C_{A0}^2} \int_{0}^{A} \frac{dX}{(1 - X)^2}$$

Design equation for PFR in Damkohler number

$$V = \frac{F_{A0}}{k \cdot C_{A0}^2} \int_0^X \frac{dX}{(1 - X)^2} = \frac{\dot{v}_0}{k \cdot C_{A0}} \cdot \frac{X}{(1 - X)}$$

► Thus,
$$V = \frac{\dot{v}_0}{k.C_{A0}} \frac{X}{(1-X)}$$
 \rightarrow $\tau = \frac{V}{\dot{v}_0} = \frac{1}{k.C_{A0}} \frac{X}{(1-X)}$

► Then,
$$k.\tau.C_{A0} = D_{a2} = \frac{X}{(1-X)}$$

$$X = \frac{D_{a2}}{(1 + D_{a2})}$$

 $\triangleright D_{a2} \rightarrow \mathsf{Damkohler\ number\ for\ 2^{nd}\ order\ reaction}$

Considering change in \dot{v} with conversion has an effect on the concentration

- ▶ For gas-phase reactions under $T = T_0$, $P = P_0$, and $Z = Z_0$
 - o Then, $\dot{v} = f(X)$ (change in volumetric flow due to $\delta \neq 0$)
- $\dot{v} = \dot{v}_0(1 + \varepsilon X)$ and $F_A = F_{A0}(1 X)$

where,
$$\varepsilon = y_{A0}\delta$$
 and $\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$

► Then,
$$C_A = \frac{F_A}{\dot{v}} = \frac{F_{A0}(1-X)}{\dot{v}_0(1+\varepsilon.X)}$$
 and
$$C_A = C_{A0} \frac{(1-X)}{(1+\varepsilon.X)}$$

$$C_A = C_{A0} \frac{(1-X)}{(1+\varepsilon . X)}$$

Considering change in \dot{v} with conversion has an effect on the volume of the PFR

- ► With $C_A = C_{A0} \frac{(1-X)}{(1+\varepsilon X)}$ then $V = F_{A0} \int_0^X \frac{dX}{-r_A} = \frac{F_{A0}}{k \cdot C_{A0}^2} \int_0^X \frac{(1+\varepsilon X)^2 dX}{(1-X)^2}$
- $F_T = F_{T0} + \delta.F_{A0}.X \longrightarrow F_T F_{T0} = \delta.F_{A0}.X$
- ▶ Dividing by F_{T0} and $y_{A0} = \frac{F_{A0}}{F_{T0}}$ we have for X = 1 (complete conversion) $\varepsilon = \frac{F_T F_{T0}}{F_{T0}} = \frac{change\ in\ molar\ flowrate\ for\ complete\ conversion}{total\ number\ of\ moles\ fed\ to\ the\ reactor}$
- ► And

$$V = \frac{\dot{v}_0}{k \cdot C_{A0}} \left[2\varepsilon (1+\varepsilon) \ln(1-X) + \varepsilon^2 X + \frac{(1+\varepsilon)^2 \cdot X}{(1-X)} \right]$$

Change in V or v must be considered for proper design of reactor

- For $\varepsilon=0$; $\delta=0$ then $\dot{v}=\dot{v}_0(1+\varepsilon.X)=\dot{v}_0$ o no change in vol. flowrate $V=\frac{\dot{v}_0}{k.\,C_{A0}}\Big[2\varepsilon(1+\varepsilon)\ln(1-X)+\varepsilon^2X+\frac{(1+\varepsilon)^2.X}{(1-X)}\Big]$
- ▶ For ε < 0, δ < 0 then $\dot{v} = \dot{v}_0(1 + \varepsilon.X)$ will decrease with X
 - $_{\circ}$ Lower flowrate, higher residence time and higher conversion, relative to $\varepsilon=0$ are achieved
- ▶ For $\varepsilon > 0$, $\delta > 0$ then $\dot{v} = \dot{v}_0(1 + \varepsilon X)$ will increase with X
 - Higher flowrate, lower residence time and lower conversions achieved

