École Supérieure PRivée d'Ingénierie & de Technologies

AU: 2020-2021	Nom & Prénom:	
Session de rattrapage	CIN:	
Systèmes Multivariables	Classe:	3CEM-MÉCA
08/04/21	Salle :	
Enseignant : A. Mhamdi	Durée :	11/2 h

Ce document comporte 7 pages numérotées de 1/7 à 7/7. Dès qu'il vous est remis, assurez-vous qu'il est complet. Le sujet est constitué de 3 exercices qui peuvent être traités dans l'ordre de votre choix.

Les règles suivantes s'appliquent :

- Une feuille A4 recto-verso manuscrite est autorisée.
- **2 L'usage** de tout matériel électronique, sauf calculatrice, est strictement interdit.
- **8** La rigueur de la rédaction entrera pour une part importante dans la notation.

V	

Ne rien écrire dans ce tableau.

Exercice	Barème	Note
1	8	
2	7	
3	5	
Total	20	

Page 1/7

Exercice $N^{\underline{0}}$ 1 (8 points)

Déterminez la fonction de transfert pour chacune des représentations d'état suivantes :

(a) (2 points)

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & -6 \\ & \\ 1 & -5 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mathbf{u}(t) \tag{1}$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \tag{2}$$

C'est la forme observable. La fonction de transfert est donc :

$$G_1(s) = \frac{s+1}{s^2+5s+6}$$

*-----

(b) (2 points)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
 (3)

$$y(t) = \begin{bmatrix} 0 & 0 & -1 \end{bmatrix} x(t) + 0.5 u(t)$$
 (4)

C'est la forme commandable. La fonction de transfert s'écrit :

$$G_2(s) = 0.5 - \frac{s^2}{s^3 - s^2 + 1}$$

(c) (2 points)

$$\dot{x}(t) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} u(t)$$
 (5)

$$y(t) = \begin{bmatrix} 0 & -1 & 0.25 & 1 \end{bmatrix} x(t)$$
 (6)

C'est la forme modale. La fonction de transfert est alors :

$$G_3(s) = \frac{-1}{s-1} + \frac{0.25}{s^2} + \frac{1}{s+1}$$

(d) (2 points)

$$\dot{x}(t) = \begin{bmatrix} 1 & -1 \\ & & \\ -2 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) \tag{7}$$

$$y(t) = \begin{bmatrix} 1 & 1 \\ x(t) \end{bmatrix}$$
 (8)

*****-----

La fonction de transfert se calcule comme suit :

$$\mathcal{G}_{4}(s) = \underbrace{\begin{bmatrix} 1 & 1 \end{bmatrix}}_{C} s \mathbb{I}_{2} - \underbrace{\begin{bmatrix} 1 & -1 \\ -2 & -1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{B} \\
= \underbrace{\begin{bmatrix} 1 & 1 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} s+1 & -1 \\ -2 & s-1 \end{bmatrix}}_{S^{2}} \\
\mathcal{G}_{4}(s) = \underbrace{\frac{2s-3}{s^{2}-3}}_{S^{2}-3}$$

Exercice $N^{\underline{0}}$ 2 (7 points)

Soit la représentation d'état suivante :

$$\dot{x}(t) = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(t) \tag{9}$$

(a) (1 point) Étudiez la stabilité du système.

Le système est de $2^{\rm nd}$ ordre. On dénote par s_1 et s_2 ses deux pôles. Nous avons alors : $\det(A)=1=s_1s_2\to 0$ & $\operatorname{trace}(A)=-2=s_1+s_2 < 0$. Les deux racines sont à parties réelles négatives \to Ce système est stable.

(b) (1 point) Étudiez la commandabilité du système.

~------

La matrice de commandabilité est donnée par :

$$\xi(A, B) = \begin{bmatrix} B & AB \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$$

Rang de $\xi(A, B)$ est égal à $2 \rightarrow$ Ce système est complètement commandable.

(c) (2 points) Afin d'améliorer la dynamique de ce système, nous concevons une commande par retour d'état, en régime libre, de la forme :

$$u(t) = -Lx(t) \tag{10}$$

Calculez L afin de garantir une dynamique en boucle fermée caractérisée par la valeur propre double suivante : $\lambda_1 = \lambda_2 = -2$.

$$A - BL = A - B \underbrace{\begin{bmatrix} l_1 & l_2 \end{bmatrix}}_{L}$$

$$= \begin{bmatrix} -1 - l_1 & 1 - l_2 \\ -l_1 & -1 - l_2 \end{bmatrix}$$

$$\begin{cases} \operatorname{trace}(A - BL) = -2 - l_1 - l_2 = -4 \\ \det(A - BL) = 1 + 2l_1 + l_2 = 4 \end{cases} \begin{cases} l_1 = 1 \\ l_2 = 1 \end{cases}$$

(d) (1 point) Étudiez l'observabilité du système.

La matrice d'observabilité est donnée par :

$$O(A, C) = \begin{bmatrix} C \\ \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \\ -1 & 0 \end{bmatrix}$$

École Supérieure PRivée d'Ingénierie & de Technologies

AU: 2020-2021 Nom & Prénom:

Session de rattrapage CIN:

Systèmes Multivariables Classe: 3CEM-MÉCA___

08/04/21 Salle: Enseignant: A. Mhamdi Durée: 11/2 h

Rang de
$$O(A, C)$$
 est égal à $2 \rightarrow$ Système observable

(e) (2 points) L'état x n'est pas mesurable. Synthétisez un observateur de Luenberger qui permet de délivrer une valeur approchée \hat{x} de x, caractérisé par une dynamique double placée en -4.

Rappelons la définition de l'estimateur de Luenberger :

$$\dot{\hat{x}} = A\hat{x} + Bu(t) + K(y(t) - C\hat{x}(t))$$

$$= (A - KC)\hat{x} + Bu(t) + Ky(t)$$

La matrice d'état de cet observateur est :

$$A - KC = \begin{bmatrix} -1 & 1 & 1 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 - k_1 & 1 - k_1 \\ -k_2 & -1 - k_2 \end{bmatrix}$$

Finalement, nous obtenons:

$$\begin{cases} \operatorname{trace}(A - KC) &= -2 - k_1 - k_2 &= -8 \\ \det(A - KC) &= 1 + k_1 + 2k_2 &= 16 \end{cases} \rightarrow \begin{cases} k_1 &= -3 \\ k_2 &= 9 \end{cases}$$

Exercice Nº3

Un pendule inversé de masse m est fixé au bout d'une tige rigide de longueur l (sans masse) (masse m vers le haut, tiqe vers le bas). L'autre extrémité de la tige est fixée sur une table vibrante horizontalement. θ est l'angle fait avec la verticale.

On se propose de stabiliser cette structure (dans un plan) autour de son équilibre instable. La commande u est l'accélération horizontale z de la table inférieure, qui se déplace le long d'une droite et a pour abscisse z.

(5 points)

*****------

La dynamique est donnée par :

$$ml\theta^{(2)} = mg\sin(\theta) - m\cos(\theta)u(t)$$
 (11)

avec g dénote l'accélération de la pesanteur. On prend les variables d'état suivantes :

$$\begin{cases} x_1 &= \theta \\ x_2 &= \theta^{(1)} \end{cases}$$

(a) (1 point) Donnez l'expression de $\dot{x}_1 = \mathcal{F}_1(x_1, x_2, u)$

$$\dot{x}_1 = x_2$$

(b) (1 point) Donnez l'expression de $\dot{x}_2 = \mathcal{F}_2(x_1, x_2, u)$.

$$\dot{x}_2 = \frac{g}{l}\sin(x_1) - \frac{1}{l}\cos(x_1)u(t)$$

(c) (2 points) Linéarisez ce système autour de l'équilibre $\overline{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ et $\overline{u} = 0$

On cherche d'abord les dérivées partielles de \mathcal{F}_2 par rapport aux variables $x_1, x_2 \& u$:

$$\begin{cases} \frac{\partial \mathcal{F}_2}{\partial x_1} &= \frac{g}{l} \cos(x_1) + \frac{1}{l} \sin(x_1) u(t) \\ \frac{\partial \mathcal{F}_2}{\partial x_2} &= 0 \end{cases}$$

$$\frac{\partial \mathcal{F}_2}{\partial u} = -\frac{1}{l} \cos(x_1)$$

*****------

Autour du point de fonctionnement, ces quantités se réduisent à :

$$\begin{cases} \frac{\partial \mathcal{F}_2}{\partial x_1}|_{(\bar{x},\bar{u})} &= \frac{g}{l} \\ \frac{\partial \mathcal{F}_2}{\partial x_2}|_{(\bar{x},\bar{u})} &= 0 \\ \frac{\partial \mathcal{F}_2}{\partial u}|_{(\bar{x},\bar{u})} &= -\frac{1}{l} \end{cases}$$

La représentation d'état linéarisée est :

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 0 \\ -\frac{1}{l} \end{bmatrix}}_{B} u(t)$$

$$y(t) = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{C} x(t)$$

(d) (1 point) Peut-on ramener à zéro tout état non nul du système linéarisé? Justifiez votre réponse.

La matrice de commandabilité du système linéarisé est donnée par :

$$\xi(A, B) = \begin{bmatrix} B & AB \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -\frac{1}{I} \\ -\frac{1}{I} & 0 \end{bmatrix}$$

Rang de $\xi(A, B)$ est égal à $2 \to Ce$ système est complètement commandable. On peut ramener à zéro et en temps fini tout état initial de ce système linéarisé.