(A) $\frac{1}{3}$ (B) $\frac{3}{4}$ (C) $\frac{3}{2}$ (D) $\frac{9}{4}$ (E) infinite (A) $5(1+x)^4$ (B) $\frac{x^4}{(x+1)^4}$ (C) $\frac{5x^4}{(x+1)^4}$ (D) $\frac{5x^4}{(x+1)^6}$ (E) $\frac{5x^4(2x+1)}{(x+1)^6}$ $\lim_{x \to 2} \frac{\sqrt{9x^4 + 1}}{4x^2 + 2}$ is (A) $\frac{1}{3}$ (B) $\frac{3}{4}$ (C) $\frac{3}{2}$ (D) $\frac{9}{4}$ (E) infinite ⁴ If $y = \cos 2x$, then $\frac{dy}{dx} =$ (B) $-\sin 2x$ (C) $\sin 2x$ (D) $2\sin 2x$ (E) $2\sin x$ (A) $-2\sin 2x$ (B)

5 If $y = \left(\frac{x}{x+1}\right)^5$, then $\frac{dy}{dx} = \frac{1}{2}$ (A) $5(1+x)^4$ (B) $\frac{x^4}{(x+1)^4}$ (C) $\frac{5x^4}{(x+1)^4}$ (D) $\frac{5x^4}{(x+1)^6}$ (E) $\frac{5x^4(2x+1)}{(x+1)^6}$ ⁶ If $y = \cos 2x$, then $\frac{dy}{dx} =$ (A) $-2\sin 2x$ (B) $-\sin 2x$ (C) $\sin 2x$ (D) $2\sin 2x$ (E) $2\sin x$ $7 \lim_{x \to \infty} \frac{\sqrt{9x^4 + 1}}{4x^2 + 3}$ is (A) $\frac{1}{3}$ (B) $\frac{3}{4}$ (C) $\frac{3}{2}$ (D) $\frac{9}{4}$ (E) infinite 8 If $y = \cos 2x$, then $\frac{dy}{dx} =$ (B) $-\sin 2x$ (C) $\sin 2x$ (D) $2\sin 2x$ (E) $2\sin x$ 9 If $y = \left(\frac{x}{x+1}\right)^5$, then $\frac{dy}{dx} =$ (A) $5(1+x)^4$ (B) $\frac{x^4}{(x+1)^4}$ (C) $\frac{5x^4}{(x+1)^4}$ (D) $\frac{5x^4}{(x+1)^6}$ (E) $\frac{5x^4(2x+1)}{(x+1)^6}$

 $\lim_{x \to \infty} \frac{\sqrt{9x^4 + 1}}{4x^2 + 3}$ is

(A) $5(1+x)^4$ (B) $\frac{x^4}{(x+1)^4}$ (C) $\frac{5x^4}{(x+1)^4}$ (D) $\frac{5x^4}{(x+1)^6}$ (E) $\frac{5x^4(2x+1)}{(x+1)^6}$ If $y = \left(\frac{x}{x+1}\right)^5$, then $\frac{dy}{dx} =$ (A) $5(1+x)^4$ (B) $\frac{x^4}{(x+1)^4}$ (C) $\frac{5x^4}{(x+1)^4}$ (D) $\frac{5x^4}{(x+1)^6}$ (E) $\frac{5x^4(2x+1)}{(x+1)^6}$ The slope of the line tangent to the graph of $y = \ln(1 - x)$ at x = -1 is (A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\ln 2$ ¹³ If $y = \cos 2x$, then $\frac{dy}{dx} =$ (B) $-\sin 2x$ (C) $\sin 2x$ (D) $2\sin 2x$ (E) $2\sin x$ $\lim_{x \to \infty} \frac{\sqrt{9x^4 + 1}}{4x^2 + 3}$ is (A) $\frac{1}{3}$ (B) $\frac{3}{4}$ (C) $\frac{3}{2}$ (D) $\frac{9}{4}$ (E) infinite

The slope of the line tangent to the graph of $y = \ln(1-x)$ at x = -1 is (A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\ln 2$ $\lim_{x \to \infty} \frac{\sqrt{9x^4 + 1}}{4x^2 + 3} \text{ is}$ (E) 1 (A) $\frac{1}{3}$ (B) $\frac{3}{4}$ (C) $\frac{3}{2}$ (D) $\frac{9}{4}$ (E) infinite ¹⁷ If $y = \cos 2x$, then $\frac{dy}{dx} =$ (C) $\sin 2x$ (B) $-\sin 2x$ (D) $2\sin 2x$ (E) $2\sin x$ 18 If $y = \left(\frac{x}{x+1}\right)^5$, then $\frac{dy}{dx} =$ (A) $5(1+x)^4$ (B) $\frac{x^4}{(x+1)^4}$ (C) $\frac{5x^4}{(x+1)^4}$ (D) $\frac{5x^4}{(x+1)^6}$ (E) $\frac{5x^4(2x+1)}{(x+1)^6}$

If $y = \left(\frac{x}{x+1}\right)^5$, then $\frac{dy}{dx} =$

The slope of the line tangent to the graph of $y = \ln(1 - x)$ at $x = -1$ is					
(A) -1	(B) $-\frac{1}{2}$	(C) $\frac{1}{2}$	(D) ln	2 (E) 1	
(A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\ln 2$ (E) 1 20 The slope of the line tangent to the graph of $y = \ln(1-x)$ at $x = -1$ is					
(A) -1	(B) $-\frac{1}{2}$	(C) $\frac{1}{2}$	(D) ln	2 (E) 1	
If $y = \left(\frac{x}{x+1}\right)^5$, then $\frac{dy}{dx} =$					
(A) $5(1+x)^4$	$(B) \ \frac{x^4}{(x+1)^4}$	(C) $\frac{5}{(x-1)^2}$	$\frac{x^4}{+1)^4} \qquad (D$	$\frac{5x^4}{(x+1)^6}$ (E)	$\frac{5x^4(2x+1)}{(x+1)^6}$
The slope of the line tangent to the graph of $y = \ln(1 - x)$ at $x = -1$ is					
(A) -1	(B) $-\frac{1}{2}$	(C) $\frac{1}{2}$	(D) ln	2 (E) 1	
23 The slope of the	he line tangent	to the graph	of $y = \ln(1$	-x) at $x = -1$ i	S
(A) -1	(B) $-\frac{1}{2}$	(C) $\frac{1}{2}$	(D) ln	2 (E) 1	
(A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\ln 2$ (E) 1 The slope of the line tangent to the graph of $y = \ln(1-x)$ at $x = -1$ is					
(A) -1	(B) $-\frac{1}{2}$	(C) $\frac{1}{2}$	(D) ln	2 (E) 1	
²⁵ If $y = \cos 2x$, then $\frac{dy}{dx} =$					
	(B) -sin 2	2x (C)	$\sin 2x$	(D) $2\sin 2x$	(E) $2\sin x$
$\lim_{x \to \infty} \frac{\sqrt{9x}}{4x^2}$	$\frac{4^{4}+1}{2^{2}+3}$ is				
(A) $\frac{1}{3}$	(B) $\frac{3}{4}$	(C) $\frac{3}{2}$	(D) $\frac{9}{4}$	(E) infinite	
(A) $\frac{1}{3}$ (B) $\frac{3}{4}$ (C) $\frac{3}{2}$ (D) $\frac{9}{4}$ (E) infinite $\lim_{x \to \infty} \frac{\sqrt{9x^4 + 1}}{4x^2 + 3}$ is					
(A) $\frac{1}{3}$		(C) $\frac{3}{2}$	(D) $\frac{9}{4}$	(E) infinite	
²⁸ If $y = \cos 2x$, then $\frac{dy}{dx} =$					
(A) $-2\sin 2x$	(B) -sin 2	2x (C)	$\sin 2x$	(D) $2\sin 2x$	(E) 2sin <i>x</i>