2. Sprzężenie zwrotne

Wstęp

W niniejszym rozdziale opisano podstawowe elementy teorii sprzężenia zwrotnego. Wprowadzono klasyfikację sprzężeń zwrotnych oraz omówiono podstawowe pojęcia związane z opisem sygnałów i ich transmisją w analogowych układach elektronicznych. Szczegółowo omówiono wpływ sprzężenia zwrotnego na podstawowe parametry układu elektronicznego: wzmocnienie, impedancję wejściową i wyjściową, charakterystyki częstotliwościowe, zakłócenia i szumy oraz stabilność i liniowość.

Słowniczek

sprzężenie zwrotne – transmisja całego lub części sygnału wyjściowego w układzie elektronicznym i po zsumowaniu z sygnałem sterującym ponowne zadanie go na wejście układu

stopień sprzężenia zwrotnego lub współczynnik redukcji wzmocnienia – wyrażenie występujące w mianowniku transmitancji układu zamkniętego, jeden minus wzmocnienie pętli sprzężenia zwrotnego,

sygnał sprzężenia zwrotnego – sygnał wyjściowy czwórnika sprzężenia zwrotnego, który jest sumowany z sygnałem sterującym układ elektroniczny

transmitancja czwórnika sprzężenia zwrotnego – transmitancja widmowa układu liniowego, szczególny przypadek transmitancji operatorowej układu liniowego. Jest to stosunek sygnałów harmonicznych wyjściowego do wejściowego czwórnika sprzężenia zwrotnego zapisanych w postaci liczb zespolonych

transmitancja układu otwartego - transmitancja widmowa układu liniowego, szczególny przypadek transmitancji operatorowej układu liniowego. Jest to stosunek sygnałów harmonicznych wyjściowego do wejściowego układu elektronicznego (np. wzmacniacza) zapisanych w postaci liczb zespolonych

układ regulacji automatycznej – układ sterowania, w którym zastosowano sprzężenie zwrotne, układ zamknięty

układ zamknięty – układ ze sprzężeniem zwrotnym

wzmocnienie pętli sprzężenia zwrotnego – moduł iloczynu transmitancji widmowej układu otwartego i transmitancji widmowej czwórnika sprzężenia zwrotnego

Spis treści

- 2.1. Pojęcia podstawowe
- 2.2. Klasyfikacja sprzężeń zwrotnych
- 2.3 Wpływ ujemnego sprzężenia zwrotnego na właściwości wzmacniacza
- 2.4. Podsumowanie

2.1. Pojęcia podstawowe

Koncepcję sprzężenia zwrotnego, w latach trzydziestych dwudziestego wieku, opublikował H. S. Black i obecnie jest ono (sprzężenie zwrotne) powszechnie stosowne w analogowych układach elektronicznych. Termin *sprzężenie zwrotne* jest związany z teorią transmisji sygnałów i oznacza, że np. napięcie wyjściowe wzmacniacza akustycznego w odpowiedniej proporcji oraz w miarę potrzeby odpowiednio odfiltrowane ponownie jest kierowane do wejścia wzmacniacza i dodaje się lub odejmuje się od sygnału sterującego. Kiedy *sygnał sprzężenia zwrotnego* odejmuje się od sygnału sterującego wzmacniacz, występuje *sprzężenie zwrotne ujemne*. Jeżeli sygnały sterujący i sprzężenia zwrotnego dodają się, występuje *sprzężenie zwrotne dodatnie*.

Podobnie jak w *układach regulacji automatycznej* gdzie bloki są opisane transmitancją widmową tak i poszczególne fragmenty lub całe układy elektroniczne można traktować jak czwórniki i także można je opisać odpowiednią transmitancją widmową (rys. 2.1).

Rys. 2.1. Dowolny analogowy układu elektroniczny w postaci bloku układu regulacji automatycznej opisany odpowiednią transmitancją widmową

Łącząc odpowiednio bloki można zbudować układ, którego schemat przedstawiono na rys. 2.2. Układ składa się z dwóch czwórników o transmitancjach:

 $K(j\omega)$ – blok wzmacniacza,

 $\beta(j\omega)$ – blok sprzężenia zwrotnego.

Rys. 2.2. Układ ze sprzężeniem zwrotnym.

Ponieważ w ogólnym wypadku transmitancje widmowe obu czwórników zależą od częstotliwości dlatego są funkcjami zmiennych zespolonych. Transmitancję widmową $K(j\omega)$ wzmacniacza nazywa się *transmitancją układu otwartego*, transmitancję widmową $\beta(j\omega)$ transmitancją czwórnika sprzeżenia zwrotnego.

Przyjmując oznaczenia:

 $X(j\omega)$ – sygnał sterujący,

 $X_s(j\omega)$ – sygnał wyjściowy czwórnika sprzężenia zwrotnego,

 $X_i(j\omega)$ – sygnał wejściowy czwórnika wzmacniacza,

 $Y(j\omega)$ – sygnał wyjściowy wzmacniacza, który jest jednocześnie sygnałem wejściowym czwórnika sprzężenia zwrotnego, schemat przedstawiony na rysunku 2.2 można opisać równaniami:

$$K(j\omega) = \frac{Y(j\omega)}{X_{i}(j\omega)}$$
2.1

$$\beta(j\omega) = \frac{X_s(j\omega)}{Y(j\omega)}$$
2.2

Łatwo zauważyć, że dla sprzężenia zwrotnego ujemnego, kiedy chwilowe wartości sygnałów x(t) i $x_S(t)$ odejmują się można napisać:

$$X(j\omega) - X_s(j\omega) = X_i(j\omega),$$
 2.3

a dla sprzężenia zwrotnego dodatniego:

$$X(j\omega) + X_s(j\omega) = X_j(j\omega).$$
 2.4

Transmitancja układu ze sprzężeniem zwrotnym $K_z(j\omega)$, zwanego krótko *układem zamkniętym* (rys. 2.3), uwzględniając zależności 2.1, 2.2, oraz 2.3. lub 2.4, jest opisana zależnością:

$$K_{z}(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{K(j\omega)}{1 - K(j\omega) \cdot \beta(j\omega)}$$
2.5

Ponieważ najczęściej czwórnik sprzężenia zwrotnego spełnia zależność $\beta(j\omega) > 0$ (tzn, że czwórnik sprzężenia zwrotnego nie odwraca fazy sygnału), aby zrealizować ujemne sprzężenie zwrotne, czwórnik wzmacniacza powinien spełnić zależność $K(j\omega) < 0$ (układ odwraca fazę), a dla sprzężenia zwrotnego dodatniego $K(j\omega) > 0$ (układ nie odwraca fazę).

Rys. 2.3. Układ zamknięty

Iloczyn $|K(j\omega) \cdot \beta(j\omega)|$ jest nazywany wzmocnieniem pętli sprzężenia zwrotnego. Jeżeli wzmocnienie pętli jest duże mówi się, że w układzie zastosowano silne sprzężenie zwrotne. Dołączenie czwórnika sprzężenia zwrotnego zmienia wzmocnienie układu w stosunku do tego jakie było w układzie otwartym.

W zależności od warunku jaki spełnia mianownik wyrażenia 2.5 można wyróżnić trzy podstawowe skutki działania sprzężenia zwrotnego:

1.
$$|1 - K(j\omega) \cdot \beta(j\omega)| > 1 \Rightarrow |K_z(j\omega)| < |K(j\omega)|$$
 2.6

W układzie występuje ujemne sprzężenie zwrotne. Wzmocnienia w układzie zamkniętym zmniejsza się w stosunku do wzmocnienia jakie było w układzie otwartym.

2.
$$|1 - K(j\omega) \cdot \beta(j\omega)| > 1 \Rightarrow |K_z(j\omega)| > |K(j\omega)|$$
 2.7

W układzie występuje dodatnie sprzężenie zwrotne, które powoduje zwiększenie wzmocnienia w układzie zamkniętym w stosunku do wzmocnienia jakie było w układzie otwartym.

3.
$$|1 - K(j\omega) \cdot \beta(j\omega)| = 0 \Rightarrow |K_z(j\omega)| \to \infty$$
 2.8

Dodatnie sprzężenie zwrotne jest tak silne, że możliwa jest praca układu zamkniętego bez zewnętrznego sygnału sterującego. Z tej zależności wynikają warunki wzbudzenia drgań w generatorach przebiegów sinusoidalnych.

W układach elektronicznych wykorzystuje się wszystkie trzy wyżej wymienione warianty. Pierwszy jest stosowany we wzmacniaczach głównie w celu poprawy ich parametrów eksploatacyjnych. W przypadku układów ze wzmacniaczami operacyjnymi wzmocnieniem pętli sprzężenia zwrotnego jest bardzo duże. Oznacza to, że oddziaływanie pętli sprzężenia zwrotnego jest tak silne, że o właściwościach statycznych i dynamicznych układu zamkniętego decydują wyłącznie elementy z jakich jest zbudowana pętla sprzężenia zwrotnego. Do budowy tej pętli stosuje się elementy pasywne (np. kondensator i rezystory) o stabilnych parametrach nie wrażliwych np. na zmianę temperatury.

Drugi wariant jest powszechnie stosowany w układach przełączających, głównie w technice cyfrowej, w których pętla sprzężenia zwrotnego działa forsująco, powodując szybką zmianę stanu łączników elektronicznych. Umożliwia to uzyskanie sygnałów impulsowych o dużej stromości narastania i opadania.

Trzeci wariant występuje w układach generatorów drgań sinusoidalnych z pętlą dodatniego sprzężenia zwrotnego.

2.2. Klasyfikacja sprzężeń zwrotnych

Podstawowy podział sprzężeń zwrotnych to podział na *sprzężenie zwrotne dodatnie* i *sprzężenie zwrotne ujemne*. Tę cechę należy bezwzględnie podać, aby ocenić właściwości układu z punktu widzenia transmisji i przetwarzania sygnałów.

Ponad to sprzężenia zwrotne dzieli się:

- ze względu na sposób wprowadzenia sygnału sprzężenia zwrotnego na wejście wzmacniacza na *sprzężenie zwrotne szeregowe* i *sprzężenie zwrotne równoległe* (rys. 2.4.),
- ze względu na sposób próbkowania (pomiaru) sygnału sprzężenia zwrotnego na wyjściu wzmacniacza na sprzężenie zwrotne prądowe i sprzężenie zwrotne napięciowe (rys. 2.5),
- ze względu na kształt charakterystyki częstotliwościowej czwórnika sprzężenia zwrotnego na sprzężenie zwrotne selektywne i sprzężenie zwrotne liniowe (nieselektywne).

Rys. 2.4. Sprzężenie zwrotne: a) szeregowe, b) równoległe.

- ze względu na liczbę czwórników (stopni wzmacniających) w torze wzmacniacza na sprzężenie zwrotne jednostopniowe i sprzężenie zwrotne wielostopniowe,
- ze względu na rodzaj zastosowanych do budowy pętli sprzężenia zwrotnego elementów na sprzężenie zwrotne pasywne i sprzężenie zwrotne aktywne.

Rys. 2.5. Sprzężenie zwrotne: a) prądowe, b) napięciowe.

Pierwsze dwie cechy sprzężenia zwrotnego (równoległe czy szeregowe, prądowe czy napięciowe) należy bezwzględnie podać, jeżeli chcemy dokładnie określić, z punktu widzenia transmisji sygnałów, rodzaj zastosowanego w układzie sprzężenia zwrotnego i jednoznacznie opisać wpływ jego zastosowania na parametry układu.

Topologie idealnych czwórników stosowanych w pętli sprzężenia zwrotnego przedstawiono na rys. 2.6, a przykłady realizacji układów rzeczywistych na rys. 2.7.

Rys. 2.6. Topologie idealnych czwórników sprzężenia zwrotnego.

Rys. 2.7. Proste przykłady zastosowania ujemnego sprzężenia zwrotnego: a) sprzężenie napięciowerównoległe, b) sprzężenie prądowe-szeregowe.

W zależności od rodzaju zastosowanego sprzężenia zwrotnego poszczególne transmitancje widmowe $K(j\omega)$ i $\beta(j\omega)$ maja różną postać, stosownie do tego, jakie sygnały są rozważane na wejściu i na wyjściu układu.

Dla sprzężenia napięciowego-szeregowego

$$K(j\omega) = \frac{U(j\omega)}{U_{i}(j\omega)} = K_{u}(j\omega) \qquad \beta(j\omega) = \frac{U_{s}(j\omega)}{U(j\omega)} = \beta_{u}(j\omega)$$
 2.9

Dla sprzężenia napięciowego-równoległego

$$K(j\omega) = \frac{U(j\omega)}{I_{i}(j\omega)} = K_{ui}(j\omega) \qquad \beta(j\omega) = \frac{I_{s}(j\omega)}{U(j\omega)} = \beta_{iu}(j\omega)$$
 2.10

Dla sprzężenia prądowego-szeregowego

$$K(j\omega) = \frac{I(j\omega)}{U_{i}(j\omega)} = K_{iu}(j\omega) \qquad \beta(j\omega) = \frac{U_{s}(j\omega)}{I(j\omega)} = \beta_{ui}(j\omega) \qquad 2.11$$

Dla sprzężenia prądowego-równoległego

$$\mathsf{K}(\mathsf{j}\omega) = \frac{\mathsf{I}(\mathsf{j}\omega)}{\mathsf{I}_{\mathsf{i}}(\mathsf{j}\omega)} = \mathsf{K}_{\mathsf{i}}(\mathsf{j}\omega) \qquad \beta(\mathsf{j}\omega) = \frac{\mathsf{I}_{\mathsf{S}}(\mathsf{j}\omega)}{\mathsf{I}(\mathsf{j}\omega)} = \beta_{\mathsf{i}}(\mathsf{j}\omega) \qquad 2.12$$

Zależność 2.5. jest prawdziwa tylko dla tych transmitancji, które odpowiadają kombinacji sygnałów wejściowych i wyjściowych konkretnego rodzaju sprzężenia zwrotnego. Jeżeli np. sprzężenie jest prądowe-szeregowe to transmitancje widmowe $K(j\omega)$ i $K_z(j\omega)$ są transmitancjami prądowo-napięciowymi $K_{iu}(j\omega)$ i $K_{ziu}(j\omega)$ i nie można wnioskować na ich podstawie jakie są wzmocnienia napięciowe $K_u(j\omega)$ i $K_{zu}(j\omega)$ lub prądowe $K_i(j\omega)$ i $K_{zi}(j\omega)$.

2.3 Wpływ ujemnego sprzężenia zwrotnego na właściwości wzmacniacza

Wzmocnienie

W układzie z ujemnym sprzężeniem zwrotnym zawsze odpowiednie wzmocnienie układu zamkniętego $K_{zu}(j\omega),~K_{ziu}(j\omega),~K_{zu}(j\omega),~K_{zi}(j\omega)$ jest mniejsze od wzmocnienia w układzie otwartym $K_u(j\omega),~K_{iu}(j\omega),~K_{iu}(j\omega),~K_{i}(j\omega)$.

Impedancja wejściowa

Jeżeli zastosowane sprzężenie zwrotne jest szeregowe to impedancja wejściowa układu zamkniętego rośnie, jeśli równoległe zmniejsza się. Odpowiednie zmiany wynikają z połączenia impedancji wejściowej wzmacniacza i impedancji wyjściowej czwórnika sprzężenia zwrotnego. W przypadku sprzężenia szeregowego impedancje dodają się. Przy sprzężeniu równoległym są połączone równolegle.

Impedancja wyjściowa

Jeżeli zastosowane sprzężenie zwrotne jest prądowe to impedancja wyjściowa układu zamkniętego rośnie, a jeśli napięciowe zmniejsza się. W przypadku sprzężenia prądowego impedancja wyjściowa układu zamkniętego jest sumą impedancji wyjściowej wzmacniacza i wejściowej czwórnika sprzężenia zwrotnego. Przy sprzężeniu napięciowym obie impedancje są połączone równolegle.

W tabeli 2.1. przedstawiono wpływ ujemnego sprzężenia zwrotnego na parametry robocze wzmacniacza.

Tabela 2.1. Wpływ ujemnego sprzężenia zwrotnego na parametry robocze układów liniowych.

Parametr	Typ sprzężenia			
	napięciowe szeregowe	napięciowe równoległe	prądowe szeregowe	prądowe równoległe
Ku	maleje	bez zmian	maleje	bez zmian
Ki	bez zmian	maleje	bez zmian	maleje
Zwe	wzrasta	maleje	wzrasta	maleje
$\mathbf{Z}_{ ext{wy}}$	maleje	maleje	wzrasta	wzrasta

We wszystkich wariantach zmiany są proporcjonalne do współczynnika $k=|1-K(j\omega)\cdot\beta(j\omega)|$ zwanego stopniem sprzężenia zwrotnego lub współczynnikiem redukcji wzmocnienia.

Liniowość układu

Z zasady działania ujemnego sprzężenia zwrotnego wynika, że dzięki porównaniu sygnału sterującego wzmacniacz $X(j\omega)$ z próbką sygnału wyjściowego $X_s(j\omega)$ powstaje mały sygnał uchybu $X_i(j\omega)$ sterujący wejściem wzmacniacza, który jest tym mniejszy im większe wzmocnienie pętli sprzężenia zwrotnego. Zatem, jeżeli wzmacniacz bez sprzężenia zwrotnego

jest nieliniowy to w wyniku działania ujemnego sprzężenia zwrotnego w znacznym stopniu ograniczony zostaje zakres zmian sygnału $X_i(j\omega)$, i dzięki temu powstałe zniekształcenia sygnału wyjściowego będą częściowo skompensowane. Zatem w przypadku bardzo silnego sprzężenia zwrotnego linearyzacja charakterystyki przenoszenia układu będzie bardzo skuteczna. Działanie linearyzujące ujemnego sprzężenia zwrotnego w układzie wzmacniacza przedstawiono na rysunku 2.8.

Rys. 2.8. Linearyzujące działanie ujemnego sprzężenia zwrotnego w układzie wzmacniacza napięciowego. a) charakterystyka przejściowa układu bez sprzężenia, b) charakterystyka przejściowa układu ze sprzężeniem.

Zakłócenia i szumy

Na rys. 2.9 przedstawiono schemat blokowy układu ze sprzężeniem zwrotnym, w którym uwzględniono sygnały zakłócające.

Rys. 2.9. Schemat blokowy układu ze sprzężeniem zwrotnym z uwzględnieniem sygnałów zakłócających.

Sygnały zakłócające $X_{z1}(j\omega)$, w tym także szumy, które są zawarte w sygnale wejściowym dodają się do sygnału użytecznego $X(j\omega)$ i są identycznie jak ten sygnał wzmacniane. Zatem zastosowanie sprzężenia zwrotnego nie poprawi w tym wypadku stosunku sygnału do szumów. Co więcej, ponieważ obwód sprzężenia zwrotnego jest zbudowany z elementów (zwykle rezystorów), które z natury są źródłem dodatkowych szumów, wartość współczynnika szumów układu ze sprzężeniem zwrotnym będzie zazwyczaj większa niż w układzie otwartym. W praktyce w prawidłowo zrealizowanej pętli sprzężenia zwrotnego przyrost ten powinien być niewielki.

Jeżeli sygnały zakłóceń $X_{z2}(j\omega)$, $X_{z3}(j\omega)$, $X_{z4}(j\omega)$ są wprowadzane na wejścia dalszych stopni wzmacniacza układ ze sprzężeniem zwrotnym tłumi je tym bardziej im bliżej wyjścia

znajduje się ich źródło. Wynika to z analizy zależności opisującej sygnał wyjściowy w układzie z rys. 2.9.:

$$Y(j\omega) = \frac{[X(j\omega) + X_{z1}(j\omega) + X_{z2}(j\omega)] \cdot K_1(j\omega) \cdot K_2(j\omega)}{1 - \beta(j\omega) \cdot K_1(j\omega) \cdot K_2(j\omega)} + \frac{X_{z3}(j\omega) \cdot K_2(j\omega)}{1 - \beta(j\omega) \cdot K_1(j\omega) \cdot K_2(j\omega)} + \frac{X_{z4}(j\omega)}{1 - \beta(j\omega) \cdot K_2(j\omega)} + \frac{X_{z4}(j\omega)}{1 - \beta(j\omega)} + \frac{X_{z4}(j\omega)}{1 - \beta(j\omega)} + \frac{X_{z4}(j\omega)}{1 - \beta(j\omega)} + \frac{X_{z4}(j\omega)}{1 - \beta(j\omega)} + \frac{X_{z4}(j\omega)}{$$

Sygnał zakłócający $X_{z4}(j\omega)$ działający na stopień wyjściowy jest najbardziej tłumiony. Jest to szczególnie korzystne w układach wzmacniaczy mocy, w których stopnie końcowe zasila się z niestabilizowanego źródła napięcia stałego o dość dużej zawartości tętnień.

Charakterystyki częstotliwościowe

Wpływ sprzężenia zwrotnego na charakterystyki częstotliwościowe układu zamkniętego zależy od przebiegu tych charakterystyk w układzie bez sprzężenia. W najprostszym wypadku zakłada się, że wzmacniacz jest opisany transmitancją widmową układu dolnoprzepustowego pierwszego rzędu:

$$K(j\omega) = \frac{K_0}{1 + j\frac{\omega}{\omega_g}},$$
2.14

gdzie K_0 (K_0 < 0) wzmocnienie wzmacniacza dla niskich częstotliwości, a ω_g górna graniczna pulsacja wzmacniacza oraz transmitancja widmowa pętli sprzężenia zwrotnego nie zależy od częstotliwości i jest opisana zależnością:

$$\beta(j\omega) = \beta_0 \tag{2.15}$$

Transmitancja widmowa układu zamkniętego ma postać:

$$K_{z}(j\omega) = \frac{K_{z0}}{1 + j\frac{\omega}{\omega_{gz}}}$$
2.16

gdzie $K_{z0} = \frac{K_0}{1 - \beta_0 \cdot K_0}$ wzmocnienie układu w zakresie niskich częstotliwości,

a $\omega_{gz} = \omega_g (1 - \beta_0 \cdot K_0)$ górna graniczna pulsacja wzmacniacza objętego sprzężeniem zwrotnym.

Ujemne sprzężenie zwrotne powoduje zwiększenie górnej częstotliwości granicznej wzmacniacza proporcjonalnie do współczynnika redukcji wzmocnienia dla niskich częstotliwości. Iloczyn wzmocnienia $|K_0|$ i częstotliwości f_g nazywa się polem wzmocnienia (rys. 2.10) i jest dla układów o transmitancji widmowej opisanej zależnością 2.14 stała:

$$|K_0| \cdot f_g = |K_{z0}| \cdot f_{gz} = const$$

Rys. 2.10. Pole wzmocnienia wzmacniacza o charakterystyce układu dolnoprzepustowego pierwszego rzędu.

Do podobnych wniosków prowadzi analiza wzmacniacza, który jest opisany transmitancją widmową układu górnoprzepustowego pierwszego rzędu:

$$K(j\omega) = \frac{K_0}{1 + \frac{\omega_d}{j\omega}}$$
2.17

gdzie K_0 (K_0 < 0) wzmocnienie wzmacniacza dla wysokich częstotliwości, a ω_d dolna graniczna pulsacja wzmacniacza. Przyjmując, że transmitancja widmowa pętli sprzężenia zwrotnego nie zależy od częstotliwości, transmitancja widmowa układu zamkniętego ma postać:

$$K_{z}(j\omega) = \frac{K_{z0}}{1 + \frac{\omega_{dz}}{j\omega}}$$
2.18

gdzie $K_{z0} = \frac{K_0}{1 - \beta_0 \cdot K_0}$ wzmocnienie układu w zakresie wysokich częstotliwości,

a
$$\omega_{dz} = \frac{\omega_d}{1 - \beta_0 \cdot K_0}$$
 dolna graniczna pulsacja wzmacniacza objętego sprzężeniem zwrotnym.

W zakresie niskich częstotliwości pasmo przenoszenia rozszerza się proporcjonalnie do współczynnika redukcji wzmocnienia.

Stabilność

Wraz ze wzrostem liczby stopni wzmacniacza objętych pętlą sprzężenia zwrotnego może w pętli sprzężenia zwrotnego wystąpić tak duże przesunięcie fazy, że zmieni się charakter sprzężenia z ujemnego na dodatnie, a to w konsekwencji spowoduje generację drgań i uniemożliwi prawidłową pracę wzmacniacza.

2.4. Podsumowanie

Ujemne sprzężenie zwrotne powoduje w układzie elektronicznym:

- poprawę liniowości charakterystyki przenoszenia,
- poszerzenie pasma przenoszenia,
- modyfikację impedancji wejściowej i wyjściowej,
- zmniejszenie wrażliwość układu na zakłócenia, np. pochodzące z sieci zasilającej (przydźwięk),
- zmniejszenie wpływu zmian parametrów zasilania i elementów układu, głównie parametrów tranzystorów na wzmocnienie,
- stabilizację punkty pracy tranzystorów,
- zwiększenie stabilność pracy,

oraz umożliwia kształtowanie charakterystyki częstotliwościowej układu.

Bibliografia

- 1. Black H. S.: Stabilized feedback amplifiers. Electrical Engineering, Vol. 53, January 1934, s. 114-120.
- 2. Kaźmierkowski M. P., Matysik J. T.: Wprowadzenie do elektroniki i energoelektroniki, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005
- 3. Baranowski J., Nosal Z.: Układy elektroniczne cz. I. Układy analogowe liniowe, Wydawnictwa Naukowo-Techniczne, Warszawa 1998