Отчет по домашней работе 3

ЗАДАНИЕ 1.1 Пусть у нас есть слово a^nabb^n . Разобьем это слово на xyz, так как $|xy| \leq n$, то y имеет вид a^c . Тогда возьмем k=2, тогда наше слово будет иметь вид $a^{n+c}abb^n$. Так как у нас можность u и v должна совпадать, то заметим, что по середине не стоит ab в полученном слове. Значит, слово не принадлежит нашему языку. Тогда исходя из леммы о накачке такой язык будет являть нерегулярным.

ЗАДАНИЕ 1.2 Возьмем слово вида $a^nc^{2n}e^{n-1}$, Разобьем это слово на xyz, так как $|xy| \le n$, то y имеет вид a^b . Тогда возьмем k=2, тогда наше слово будет иметь вид $a^{n+b}c^{2n}e^{n-1}$. Заметим, что если слово входит в наш язык, то $n+b+n-1+1=2n \to b=0$, но y не должно быть пустым. Тогда исходя из леммы о накачке такой язык будет являть нерегулярным.

Задание 1.3 Рассмотрим множество, которое состоит из таких p, где p – простое и p+2 тоже простое. Если множество бесконечно, то наш алфавит можно описать регулярным выражением вида "a+". Если наше множество конечно, то возьмем p_{max} . Мы хотим, чтобы $n \leq p_{max}$, тогда у нас должно быть a от 1 до p_{max} . В регулярном выражении тогда это будет записываться как $a1, p_{max}$. Тогда в любом случае мы можем построить регулярное выражение, следовательно, наш язык регулярный.

ЗАДАНИЕ 2.1 Тесты описаны в файле main.cpp. Реализация парсера в файлах parser.cpp. Тесты для проверки работы парсера закомментированы. Проверяют работу каждого отдельного оператора, а так же их совместную работу.

Рассмотрим различие время работы на примере регулярного выражения: a*(d|c) и строки "aaaaaaaaad".

Время работы без оптимизации: 461.785 ms

Время работы с оптимизацией: 1.70363 ms. Происходит это из-за того, что каждый раз, когда мы матчим по звездочке, наша регулярка разрастается в экспоненциальном размере, таким образом при увеличении количество a время работы сильно ухудшается.

Регулярное выражение a * d*, строка aaaaaaaaddddd

Время работы без оптимизации: Не вычисляется даже за несколько секунд

Время работы с оптимизацией: 3.06496 ms.

Время работы такое большое, так как на каждой звездочке наша регулярка увеличивается

в два раза.

Исправление

ЗАДАНИЕ 1.2 Возьмем слово вида $a^nc^{2n+1}e^n$, Разобьем это слово на xyz, так как $|xy| \le n$, то y имеет вид a^b . Тогда возьмем k=2, тогда наше слово будет иметь вид $a^{n+b}c^{2n+1}e^n$. Заметим, что если слово входит в наш язык, то $n+b+n+1=2n+1 \to b=0$, но y не должно быть пустым. Тогда исходя из леммы о накачке такой язык будет являть нерегулярным.

^{*}Изменила n-1 вхождений е до n, теперь подходит для любого n^*