Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity

Arnab Roy¹

(joint work with Martin Albrecht², Lorenzo Grassi³, Christian Rechberger^{1,3} and Tyge Tiessen¹)

Technical University of Denmark¹

Royal Holloway, University of London²

TU Graz³

Background

In recent years significant progress in - MPC, FHE, ZK

 ${\sf Communication\ protocol\ (Theory \to Practice)}$

Many applications are being developed

Examples include

- Private set intersection, privacy preserving search
- Statistical computation on sensitive data
- Verifiable computation
- Cloud computation

Security of systems

Performance of symmetric-key algorithms can improve the efficiency of protocols

Motivation

Our focus: Verifiable computation based on **SNARK** [BSCG⁺13]

Recently developed application around SNARK - ZeroCash $[SCG^+14]$

Motivation: constriction of performance due to *private-key crypto*

Our focus: constriction due to Hash function

SNARK

x, Fy, short proof Verifier check F(x) = ywithout computing F arithmetic circuit C for F, witness - w for input x

Let $L_C = \{x \in \{0,1\}^n : \exists w \in \{0,1\}^h, C(x,w) = 0\}$ Prover knows w, keeps it secret

Prover

Rank-1 constraints

- An \mathbb{F} -arithmetic circuit $\mathcal{C}: \mathbb{F}^n \times \mathbb{F}^h o \mathbb{F}^\ell$
- The Arithmetic Circuit Satisfiability (ACS) of \mathcal{C} is given by relation $\mathcal{R} = \{(x, a) \in \mathbb{F}^n \times \mathbb{F}^h : \mathcal{C}(x, a) = 0\}$
- The circuit consists of bilinear gates only
- The SNARK algorithm generates the proof for satisfiability of a system of rank-1 quadratic constraints over the field F.
- The systems looks like

$$\langle A_i, w \rangle \cdot \langle B_i, w \rangle = \langle C_i, w \rangle$$

where $i=1,\ldots,N_c$ and $w\in\mathbb{F}^{N'}.$

 $N_c \rightarrow$ no. of constraints; $N' \rightarrow$ no. of variables.

Computational model

Cost of computation - (MULT, ADD); (AND, XOR)

Cost of single XOR (or ADD) is negligible $\it compared$ to single MULT/AND

Caution: Very large number of XORs (or ADDs) influences the cost

Similar cost model, less extreme: Masking (for side-channel attack resilient crypto)

General idea

- Linear/Affine functions, Mult with a constant (almost free)
- Non-linear functions (expensive)

Computation cost: symmetric-key primitives

The well-known primitives use operations over \mathbb{F}_2 or (and) \mathbb{F}_{2^n}

Example

- SHA-256 over \mathbb{F}_2 , $\mathbb{Z}_{2^{32}}$
- SHA-3 over \mathbb{F}_2
- AES over \mathbb{F}_{2^8}
- $\bullet \ \ \mathsf{PRINCE} \ \mathsf{over} \ \mathbb{F}_{2^4} \ \mathsf{and} \ \mathbb{F}_2$

MULT or AND - $x \cdot y$

Typical examples

- Linear: XOR, ADD, Rotation
- Non-linear: S-box, modular addition, bitwise AND

MPC/FHE/ZK friendly

Protocols usually require computations over \mathbb{F}_p

Symmetric-key computations: Embed the circuit in \mathbb{F}_p

- Operations over \mathbb{F}_2 are expressed over \mathbb{F}_p
- Operations over \mathbb{F}_{2^n} are expressed over \mathbb{F}_2 , then embedded in \mathbb{F}_p
- Example: XOR over \mathbb{F}_2 changes over \mathbb{F}_p

FHE friendly - Low circuit depth

MPC friendly - Low circuit depth and/or Low number of multiplications

SNARK friendly - Low number of multiplications

Recent results - FLIP [MJSC16] , LowMC [ARS+15], Legendre symbol based PRF [GRR+16]

SNARK friendly design

Mixing different fields is NOT useful

Embedding PRP/PRF circuit over \mathbb{F}_2 into \mathbb{F}_p has cost issues

Efficient design over \mathbb{F}_p ? **MiMC** family

Block cipher: MiMC-n/n, MiMC-2n/n

Hash function: MiMC-Hash (uses **sponge mode**)

An old design: KN cipher

- Knudsen-Nyberg cipher: Round function uses APN function over finite field
- 64-bit block cipher using Feistel mode of operation

- Broken with Interpolation Attack (algebraic)
- This way of design was abandoned

MiMC block-cipher: MiMC-n/n

Figure 1: MiMC in Even-Mansour mode

- Note: n = odd so that x^3 is a permutation
- Randomly chosen round constants (fixed)
- Round key
 - Single k in \mathbb{F}_{2^n}
 - $(k_1,k_2)\in \mathbb{F}_{2^n}^2$ on alternate rounds $(k_1
 eq k_2)$
- Number of rounds: $\frac{n}{\log 3}$ or $\frac{\log p}{\log 3}$
- ullet Same design strategy over \mathbb{F}_{2^n} and \mathbb{F}_p

MiMC-2n/n

Figure 2: MiMC in Feistel mode

Uses x^3 over \mathbb{F}_{2^n} with Feistel mode (No linear layer)

Number of rounds: $\frac{2n}{\log 3}$ or $\frac{2\log p}{\log 3}$

Round key and round constants: same as MiMC-n/n.

Hash function

Figure 3: Sponge mode

Sponge mode instantiated by MiMC permutation with a fixed key $\mbox{\sc MiMC}$

In the SNARK setting we use MiMC-n/n

It is possible to use MiMC-2n/n for large block size

Cryptanalysis

- Optimal differential property for x^3
- Simple differential attack is not possible for full rounds
- The degree of the polynomial P(x) representing the cipher has full degree over \mathbb{F}_{2^n}
- Interpolation attack requires $\approx 2^n 1$ plaintexts

Cryptanalysis

- Consider two polynomials $E(K,x_1)-y_1$ and $E(K,x_2)-y_2$ over $\mathbb{F}_q[K]$
- The GCD of these two polynomials is (K-k) where k is the unknown secret key
- GCD attack recovers the unknown key
- **Complexity** is $\mathcal{O}(d \log^2 d)$

Note: GCD attack assumes that adversary can compute the necessary polynomial(s)

Cryptanalysis

- Higher-order differential attack requires 2ⁿ plaintexts
- APN function provides security against linear attacks
- Invariant subfield attack: Poor choice of round constants allows this attack
- In this attack subsequent states following the input value belong to the same subfield
- Randomly chosen round constants thwart this attack
- Over \mathbf{F}_p this attack does not apply

MiMC in SNARK setting

- Each round can be expressed with

$$X + \underbrace{k_i + C_i}_{\alpha} + U = 0, U \cdot U = Y$$
$$Y \cdot U = Z$$

- The equations are combined to obtain

$$(X + \alpha)(X + \alpha + Y) = Y + Z$$

- These equations represent the rank-1 constraints
- Each round has **two** multiplications (for witness generation)

Experimental results

- We implemented a part of the SNARK algorithm to generate the circuit and witness
- Compared it with SHA-256 (libsnark implementation)
- SHA-256 takes \approx **73 ms** while MiMC takes \approx **7.8 ms**
- SHA-3 takes almost the same time as SHA-256
- Also compared with the LowMC and Keccak (SHA-3)

Comparison

	MiMC	LowMC		Keccak-[1600, 24]
		#r = 16	#r = 55	
		m = 196	m = 20	
total time	7.8ms	90.3ms	271.2ms	75.8ms
constraint generation	6.3ms	13.5ms	9.2ms	65.2ms
witness generation	1.5ms	76.8ms	262.0ms	10.6ms
# addition	646	8420888	28894643	422400
# multiplication	1293	9408	3300	38400
# rank-1 constraint	646	4704	2200	38400

MiMC and LowMC permutations have block size 1025 Our C++ implementation is available on https://github.com/byt3bit/mimc_snark.git

New Results

- Motivation: Construct secure hash function over smaller prime fields
- MiMC limitation: ≈ 1024 bit permutation can be constructed over 1024 bit prime or 512 bit prime fields
- We construct block cipher(s) using Generalized Unbalanced Feistel
- Use the cipher with fixed key in Sponge mode
- New construction shows significant improvement in performance over MiMC
- **Example**: Secure (as SHA-256) hash function over 128 bit prime field

Conclusion

New efficiency criteria \rightarrow Resurrection of an abandoned design strategy

MiMC also shows competitive performance in MPC setting when used as PRF ([GRR $^+$ 16])

Metric: Effect of large number XOR/ADD is clear from experimental results but *How to quantify* ?

Can we use polynomial instead of monomial?

Thank you!

Remarks

Monomial with exponent $2^t + 1$

Problem: Resulting polynomial becomes sparse \implies efficient attack

Monomial with exponent $2^t - 1$

Problem: Number of multiplication increases

References i

Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.

Ciphers for MPC and FHE.

In Elisabeth Oswald and Marc Fischlin, editors, *Advances in Cryptology - EUROCRYPT 2015*, volume 9056 of *Lecture Notes in Computer Science*, pages 430–454. Springer, 2015.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.

SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge, pages 90–108.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

References ii

Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart.

Mpc-friendly symmetric key primitives.

In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security*, CCS '16, pages 430–443, New York, NY, USA, 2016. ACM.

Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet.

Towards stream ciphers for efficient fhe with low-noise ciphertexts.

In Proceedings of the 35th Annual International Conference on Advances in Cryptology — EUROCRYPT 2016 - Volume

References iii

9665, pages 311-343, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.

Zerocash: Decentralized anonymous payments from bitcoin.

In 2014 IEEE Symposium on Security and Privacy, pages 459-474. May 2014.