МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» Изучение режима адресации и формирования исполнительного адреса

Студент гр. 0383	 Девятериков И.С
Преподаватель	 Ефремов М.А

Санкт-Петербург 2021

Вариант № 8.

Цель работы.

Изучение режима адресации при помощи программы, которая тестирует режимы адресации. Научиться находить допущенные при реализации ошибки адресации.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы.

В ходе работы был создан файл lr2.asm. При трансляции masm были получены ошибки (Рис. 1). Листинг файла см. приложение.

```
:\ETU_CO~1\LABS\TOOLS>masm LR2.ASM
licrosoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.
Object filename [LR2.OBJ]:
Source listing [NUL.LST]: 1r2
Cross-reference [NUL.CRF]:
LR2.ASM(42): error A2052: Improper operand type
LR2.ASM(49): warning A4031: Operand types must match
LR2.ASM(53): warning A4031: Operand types must match
LR2.ASM(54): error A2055: Illegal register value
LR2.ASM(73): error A2046: Multiple base registers
LR2.ASM(74): error A2047: Multiple index registers
LR2.ASM(81): error A2006: Phase error between passes
 47842 + 461465 Bytes symbol space free
     2 Warning Errors
     5 Severe Errors
:\ETU_CO~1\LABS\TOOLS>_
```

Рис. 1

1) mov mem3,[bx]

LR2.ASM(42): error A2052: Improper operand type

Эта команда переводит информацию из сегмента памяти в другой, что невозможно. В данном случае необходимо перевести информацию из памяти в регистр, а затем уже в необходимый сегмент информацию перевести из регистра.

2) mov cx,vec2[di]

LR2.ASM(49): warning A4031: Operand types must match

Размер регистра ах составляет 2 байта, а элемента массива — 1 байт, в данном случае надо вместо регистра ах использовать, например ah или al.

3) mov cx,matr[bx][di]

LR2.ASM(53): warning A4031: Operand types must match

Как и в предыдущем случае ошибка вызвана несоответствием размеров элементов массива и используемых регистров.

4) mov ax,matr[bx*4][di]

LR2.ASM(54): error A2055: Illegal register value

Ошибка вызвана попыткой использовать операцию умножения (которая вызывается по средствам отдельной команды mul).

5) mov ax,matr[bp+bx]

LR2.ASM(73): error A2046: Multiple base registers

Ошибка вызвана попыткой использования нескольких базовых регистров одновременно.

6) mov ax,matr[bp+di+si]

LR2.ASM(74): error A2047: Multiple index registers

Ошибка вызвана попыткой использования нескольких базовых регистров одновременно.

Результат работы исправленного кода представлен в Табл. 1.

$$(AX) = 0000$$
 $(SI) = 0000$ $(CS) = 1A0A$ $(IP) = 0000$ Stack +0 0000 $(BX) = 0000$ $(DI) = 0000$ $(DS) = 19F5$ +2 0000 $(CX) = 00B0$ $(BP) = 0000$ $(ES) = 19F5$ $(HS) = 19F5$ +4 0000 $(DX) = 0000$ $(SP) = 0018$ $(SS) = 1A05$ $(FS) = 19F5$ +6 0000

Табл. 1

Адрес	Символический код	16-ричный	Содержимое регистров и ячеек памят			
Команды	команды	код команды	до выполнения	после выполнени		
0000	PUSH DS	1E	(DS) = 19F5	(DS) = 19F5		
			(SP) = 0018	(SP) = 0016		
			(IP) = 0000	(IP) = 0001		
			Stack +0 0000	Stack +0 19F5		
			+2 0000	+2 0000		
			+4 0000	+4 0000		
			+6 0000	+6 0000		
0001	SUB AX,AX	2BC0	(AX) = 0000	(AX) = 0000		
			(IP) = 0001	(IP) = 0003		

0003	PUSH AX	50	(AX) = 0000	(AX) = 0001
			(SP) = 0016	(SP) = 0014
			(IP) = 0003	(IP) = 0004
			Stack +0 19F5	Stack +0 0000
			+2 0000	+2 19F5
			+4 0000	+4 0000
			+6 0000	+6 0000
0004	MOV AX,1A07	B8071A	(AX) = 0000	(AX) = 1A07
			(IP) = 0004	(IP) = 0007
0007	MOV DS,AX	8ED8	(AX) = 1A07	(AX) = 1A07
			(DS) = 19F5	(DS) = 1A07
			(IP) = 0007	(IP) = 0009
0009	MOV AX,01F4	B8F401	(AX) = 1A07	(AX) = 01F4
			(IP) = 0009	(IP) = 000C
000C	MOV CX,AX	8BC8	(AX) = 01F4	(AX) = 01F4
			(CX) = 00B0	(CX) = 01F4
			(IP) = 000C	(IP) = 000E
000E	MOV BL,24	B324	(BX) = 0000	(BX) = 0024
			(IP) = 000E	(IP) = 0010
0010	MOV BH,CE	B7CE	(BX) = 0024	(BX) = CE24
			(IP) = 0010	(IP) = 0012
0012	MOV [0002],FFCE	C7060200CEFF	(IP) = 0012	(IP) = 0018
0018	MOV BX,0006	BB0600	(BX) = CE24	(BX) = 0006
			(IP) = 0018	(IP) = 001B
001B	MOV [0000],AX	A30000	(AX) = 01F4	(AX) = 01F4
			(IP) = 001B	(IP) = 001E
001E	MOV AL,[BX]	8A07	(AX) = 01F4	(AX) = 011C
			(BX) = 0006	(BX) = 0006
			(IP) = 001E	(IP) = 0020
0020	MOV AL,[BX+03]	8A4703	(AX) = 011C	(AX) = 0119
			(BX) = 0006	(BX) = 0006
			(IP) = 0020	(IP) = 0023
0023	MOV CX,[BX+03]	8B4703	(CX) = 01F4	(CX) = 1519
			(BX) = 0006	(BX) = 0006
			(IP) = 0023	(IP) = 0026
0026	MOV DI,0002	BF0200	(DI) = 0000	(DI) = 0002
			(IP) = 0026	(IP) = 0029

0029	MOV AL,[000E+DI]	8A850E00	(AX) = 0119	(AX) = 01EC
			(DI) = 0002	(DI) = 0002
			(IP) = 0029	(IP) = 002D
002D	MOV BX,0003	BB0300	(BX) = 0006	(BX) = 0003
			(IP) = 002D	(IP) = 0030
0030	MOV AL,[0016+BX+DI]	8A811600	(AX) = 01EC	(AX) = 01FB
			(BX) = 0003	(BX) = 0003
			(DI) = 0002	(DI) = 0002
			(IP) = 0030	(IP) = 0034
0034	MOV AX,1A07	B8071A	(AX) = 01FB	(AX) = 1A07
			(IP) = 0034	(IP) = 0037
0037	MOV ES,AX	8EC0	(AX) = 1A07	(AX) = 1A07
			(ES) = 19F5	(ES) = 1A07
			(IP) = 0037	(IP) = 0039
0039	MOV AX,ES:[BX]	268B07	(AX) = 1A07	(AX) = 00FF
			(BX) = 0003	(BX) = 0003
			(ES) = 1A07	(ES) = 1A07
			(IP) = 0039	(IP) = 003C
003C	MOV AX,0000	B80000	(AX) = 00FF	(AX) = 0000
			(IP) = 003C	(IP) = 003F
003F	MOV ES,AX	8EC0	(AX) = 0000	(AX) = 0000
			(ES) = 1A07	(ES) = 0000
			(IP) = 003F	(IP) = 0041
0041	PUSH DS	1E	(DS) = 1A07	(DS) = 1A07
			(SP) = 0014	(SP) = 0012
			(IP) = 0041	(IP) = 0042
			Stack +0 0000	Stack +0 1A07
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0042	POP ES	07	(ES) = 0000	(DS) = 1A07
			(SP) = 0012	(SP) = 0014
			(IP) = 0042	(IP) = 0043
			Stack +0 1A07	Stack +0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
			+6 0000	+6 0000

0043	MOV CX,ES:[BX-01]	268B4FFF	(BX) = 0003	(BX) = 0003
			(CX) = 1519	(CX) = FFCE
			(ES) = 1A07	(ES) = 1A07
			(IP) = 0043	(IP) = 0047
0047	XCHG AX,CX	91	(AX) = 0000	(AX) = FFCE
			(CX) = FFCE	(CX) = 0000
			(IP) = 0047	(IP) = 0048
0048	MOV DI,0002	BF0200	(DI) = 0002	(DI) = 0002
			(IP) = 0048	(IP) = 004B
004B	MOV ES:[BX+DI],AX	268901	(AX) = FFCE	(AX) = FFCE
			(BX) = 0003	(BX) = 0003
			(DI) = 0002	(DI) = 0002
			(ES) = 1A07	(ES) = 1A07
			(IP) = 004B	(IP) = 004E
004E	MOV BP,SP	8BEC	(BP) = 0000	(BP) = 0014
			(SP) = 0014	(SP) = 0014
			(IP) = 004E	(IP) = 0050
0050	PUSH [0000]	FF360000	(SP) = 0014	(SP) = 0012
			(IP) = 0050	(IP) = 0054
			Stack +0 0000	Stack +0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0054	PUSH [0002]	FF360200	(SP) = 0012	(SP) = 0010
			(IP) = 0054	(IP) = 0058
			Stack +0 01F4	Stack +0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	MOV BP,SP	8BEC	(BP) = 0014	(BP) = 0010
			(SP) = 0010	(SP) = 0010
			(IP) = 0058	(IP) = 005A
005A	MOV DX,[BP+02]	8B5602	(DX) = 0000	(DX) = 01F4
			(BP) = 0010	(BP) = 0010
			(IP) = 005A	(IP) = 005D

005D	RET Far 0002	CA0200	(SP) = 0010	(SP) = 0016
			(IP) = 005D	(IP) = FFCE
			Stack +0 FFCE	Stack +0 19F5
			+2 01F4	+2 0000
			+4 0000	+4 0000
			+6 19F5	+6 0000
FFCE	PUSH ES	06	(ES) = 1A07	(ES) = 1A07
			(SP) = 0016	(SP) = 0014
			(IP) = FFCE	(IP) = FFCF
			Stack +0 19F5	Stack +0 1A07
			+2 0000	+2 19F5
			+4 0000	+4 0000
			+6 0000	+6 0000
FFCF	POPF	9D	(SP) = 0014	(SP) = 0016
			(IP) = FFCF	(IP) = FFD0
			Stack +0 1A07	Stack +0 19F5
			+2 19F5	+2 0000
			+4 0000	+4 0000
			+6 0000	+6 0000
FFD0	ADD AX,C033	0533C0	(AX) = FFCE	(AX) = C001
			(IP) = FFD0	(IP) = FFD3
FFD3	JMP FFD8	EB03	(IP) = FFD3	(IP) = FFD8
FFD8	RET	C3	(SP) = 0016	(SP) = 0018
			(IP) = FFD8	(IP) = 19F5
			Stack +0 19F5	Stack +0 0000
			+2 0000	+2 0000
			+4 0000	+4 0000
			+6 0000	+6 0000
19F5	AND [BX+SI],AH	2020	(AX) = C001	(AX) = C001
			(BX) = 0003	(BX) = 0003
			(SI) = 0000	(SI) = 0000
			(IP) = 19F5	(IP) = 19F7
19F7	AND [BX+SI],AH	2020	(AX) = C001	(AX) = C001
			(BX) = 0003	(BX) = 0003
			(SI) = 0000	(SI) = 0000
			(IP) = 19F5	(IP) = 19F9

Выводы.

В ходе выполнения лабораторной работы были изучены различные ошибки, которые могут возникнуть при работе с адресацией. Был рассмотрен процесс взаимодействия с массивами, регистрами, режимами адресации.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

LR2.ASM

; Программа изучения режимов адресации процессора IntelX86

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 28,27,26,25,21,22,23,24

vec2 DB 20,30,-20,-30,40,50,-40,-50

matr DB -8,-7,3,4,-6,-5,1,2,-4,-3,7,8,-2,-1,5,6

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

```
push AX
mov AX,DATA
mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax,n1
mov cx,ax
mov bl,EOL
mov bh,n2
; Прямая адресация
mov mem2,n2
mov bx,OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al,[bx]
mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di,ind
mov al,vec2[di]
mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
mov cx,matr[bx][di]
mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
```

```
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
mov ax,matr[bp+bx]
mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```

LR2NEW.ASM

; Программа изучения режимов адресации процессора IntelX86

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 28,27,26,25,21,22,23,24

vec2 DB 20,30,-20,-30,40,50,-40,-50

matr DB -8,-7,3,4,-6,-5,1,2,-4,-3,7,8,-2,-1,5,6

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

push AX

mov AX,DATA

```
mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax,n1
mov cx,ax
mov bl,EOL
mov bh,n2
; Прямая адресация
mov mem2,n2
mov bx,OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al,[bx]
;mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx,3[bx]
; Индексная адресация
mov di,ind
mov al, vec2[di]
;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
;mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
```

```
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
;mov ax,matr[bp+bx]
;mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```

LR2.LST

Page 1-1

; Программа изучения режимов адресации

процессо

pa IntelX86

= 0024 EOL EQU '\$'

= 0002 ind EQU 2

= 01F4 n1 EQU 500

=-0032 n2 EQU -50

; Стек программы

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?)

????

]

0018 AStack ENDS

; Данные программы

0000 DATA SEGMENT

; Директивы описания данных

0000 0000 mem1 DW 0

0002 0000 mem2 DW 0

0004 0000 mem3 DW 0

0006 1C 1B 1A 19 15 16 vec1 DB 28,27,26,25,21,22,23,24

17 18

000E 14 1E EC E2 28 32 vec2 DB 20,30,-20,-30,40,50,-40,-50

D8 CE

0016 F8 F9 03 04 FA FB matr DB -8,-7,3,4,-6,-5,1,2,-4,-3,7,8,-2,-1,5,6

01 02 FC FD 07 08

FE FF 05 06

0026 DATA ENDS

; Код программы

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

0000 Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX,AX

0003 50 push AX

0004 B8 ---- R mov AX,DATA

0007 8E D8 mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА

УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

0009 B8 01F4 mov ax,n1

000C 8B C8 mov cx,ax

000E B3 24 mov bl,EOL

0010 B7 CE mov bh,n2

; Прямая адресация

0012 C7 06 0002 R FFCE mov mem2,n2

0018 BB 0006 R mov bx,OFFSET vec1

001B A3 0000 R mov mem1,ax

; Косвенная адресация

001E 8A 07 mov al,[bx]

mov mem3,[bx]

LR2.ASM(42): error A2052: Improper operand type

; Базированная адресация

0020 8A 47 03 0023 8B 4F 03 mov al,[bx]+3 mov cx,3[bx]

; Индексная адресация

Page 1-2

0026 BF 0002 mov di,ind

0029 8A 85 000E R mov al, vec2[di]

002D 8B 8D 000E R mov cx,vec2[di]

LR2.ASM(49): warning A4031: Operand types must match

; Адресация с базированием и индексированием

0031 BB 0003 mov bx,3

0034 8A 81 0016 R mov al,matr[bx][di]

0038 8B 89 0016 R mov cx,matr[bx][di]

LR2.ASM(53): warning A4031: Operand types must match

003C 8B 85 0022 R mov ax,matr[bx*4][di]

LR2.ASM(54): error A2055: Illegal register value

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С

УЧЕТОМ СЕГМЕНТОВ

; Переопределение сегмента

; ----- вариант 1

0040 B8 ---- R mov ax, SEG vec2

0043 8E C0 mov es, ax

0045 26: 8B 07 mov ax, es:[bx]

0048 B8 0000 mov ax, 0

; ----- вариант 2

004B 8E C0 mov es, ax

004D 1E push ds

004E 07 pop es

004F 26: 8B 4F FF mov cx, es:[bx-1]

0053 91 xchg cx,ax

; ----- вариант 3

0054 BF 0002 mov di,ind

0057 26: 89 01 mov es:[bx+di],ax

; ----- вариант 4

005A 8B EC mov bp,sp

005C 3E: 8B 86 0016 R mov ax,matr[bp+bx]

LR2.ASM(73): error A2046: Multiple base registers

0061 3E: 8B 83 0016 R mov ax,matr[bp+di+si]

LR2.ASM(74): error A2047: Multiple index registers

; Использование сегмента стека

0066 FF 36 0000 R push mem1

006A FF 36 0002 R push mem2

006E 8B EC mov bp,sp

0070 8B 56 02 mov dx,[bp]+2

0073 CA 0002 ret 2

0076 Main ENDP

LR2.ASM(81): error A2006: Phase error between passes

0076 CODE ENDS

END Main

Symbols-1

Segments and Groups:

	N a m e	Lengt	h	Align	ıComb	oine Class	
	ASTACK		0076	PARA	A	NONE	
	Symbols:						
	N a m e	Type	Value	e Attr			
	EOL	NUM	BER	0024			
	IND	NUM	BER	0002			
0076	MAIN		F PRO	OC	0000	CODE	Length =
0076	MATR		L WC	RD RD	0000 0002	DATA DATA DATA	
	N1		BER BER				

VEC1..... L BYTE 0006 DATA

VEC2..... L BYTE 000E DATA

@CPU TEXT 0101h

@FILENAME TEXT LR2

@VERSION TEXT 510

83 Source Lines

83 Total Lines

19 Symbols

47842 + 461465 Bytes symbol space free

2 Warning Errors

5 Severe Errors

LR2NEW.LST

Page 1-1

; Программа изучения режимов адресации

П	n	\sim t	T	٦,	\neg	\neg	$^{\circ}$
11	יע	IJΙ	76	=1	_'	_	U

pa IntelX86

= 0024 EOL EQU '\$'

= 0002 ind EQU 2

= 01F4 n1 EQU 500

=-0032 n2 EQU -50

; Стек программы

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?)

????

]

0018 AStack ENDS

; Данные программы

0000 DATA SEGMENT

; Директивы описания данных

0000 0000 mem1 DW 0

0002 0000 mem2 DW 0

0004 0000 mem3 DW 0

0006 1C 1B 1A 19 15 16 vec1 DB 28,27,26,25,21,22,23,24

17 18

000E 14 1E EC E2 28 32 vec2 DB 20,30,-20,-30,40,50,-40,-50

D8 CE

0016 F8 F9 03 04 FA FB matr DB -8,-7,3,4,-6,-5,1,2,-4,-3,7,8,-2,-1,5,6

01 02 FC FD 07 08

FE FF 05 06

0026 DATA ENDS

; Код программы

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

0000 Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX,AX

0003 50 push AX

0004 B8 ---- R mov AX,DATA

0007 8E D8 mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА

УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

0009 B8 01F4 mov ax,n1

000C 8B C8 mov cx,ax

000E B3 24 mov bl,EOL

0010 B7 CE mov bh,n2

; Прямая адресация

0012 C7 06 0002 R FFCE mov mem2,n2

0018 BB 0006 R mov bx,OFFSET vec1

001B A3 0000 R mov mem1,ax

; Косвенная адресация

001E 8A 07 mov al,[bx]

;mov mem3,[bx]

; Базированная адресация

0020 8A 47 03 mov al,[bx]+3

0023 8B 4F 03

mov cx,3[bx]

; Индексная адресация

Page 1-2

0026 BF 0002 mov di,ind

0029 8A 85 000E R mov al, vec2[di]

;mov cx,vec2[di]

; Адресация с базированием и индексированием

002D BB 0003 mov bx,3

0030 8A 81 0016 R mov al,matr[bx][di]

;mov cx,matr[bx][di]

;mov ax,matr[bx*4][di]

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С

УЧЕТОМ СЕГМЕНТОВ

; Переопределение сегмента

; ----- вариант 1

0034 B8 ---- R mov ax, SEG vec2

0037 8E C0 mov es, ax

0039 26: 8B 07 mov ax, es:[bx]

003C B8 0000 mov ax, 0

; ----- вариант 2

003F 8E C0 mov es, ax

0041 1E push ds

0042 07 pop es

0043 26: 8B 4F FF mov cx, es:[bx-1]

0047 91 xchg cx,ax

; ----- вариант 3

0048 BF 0002 mov di,ind

004B 26: 89 01 mov es:[bx+di],ax

; ----- вариант 4

004E 8B EC mov bp,sp

;mov ax,matr[bp+bx]

;mov ax,matr[bp+di+si]

; Использование сегмента стека

0050 FF 36 0000 R push mem1

0054 FF 36 0002 R push mem2

0058 8B EC mov bp,sp

005A 8B 56 02 mov dx,[bp]+2

005D CA 0002 ret 2

0060 Main ENDP

0060 CODE ENDS

END Main

Symbols-1

Segments and Groups:

	N a m e	Lengt	:h	Align	nComb	oine Class	
	ASTACK		0060	PARA	Λ	NONE	
	Symbols:						
	N a m e	Type	Value	e Attr			
	EOL	NUM	BER	0024			
	IND	NUM	BER	0002			
0060	MAIN		F PRO	OC	0000	CODE	Length =
	MATR		L BY	ΓЕ	0016	DATA	
	MEM1		L WC	RD	0000	DATA	
	MEM2		L WC	RD	0002	DATA	
	MEM3		L WC	RD	0004	DATA	
	N1	NUM	BER	01F4			
	N2	NUM	BER	-0032			

VEC1..... L BYTE 0006 DATA

VEC2..... L BYTE 000E DATA

@CPU TEXT 0101h

@FILENAME TEXT LR2NEW

@VERSION TEXT 510

83 Source Lines

83 Total Lines

19 Symbols

47814 + 461493 Bytes symbol space free

0 Warning Errors

0 Severe Errors