

Compendium Geometry

Home → Coordinate Systems → 3D → Conversion of 3D Coordinate Systems

See also: Conversion between Polar and Cartesian Coordinates, Three-dimensional Cartesian Coordinate System, Cylindrical Coordinate System, Spherical

Search the VIAS Library | Index

Conversion between 3D Coordinate Systems

Conversion from cartesian to cylinrical coordinates:

<u>Cartesian</u> [x, y, z] <u>Cylindrical</u> [ρ , ϕ , z']

$$\rho = \sqrt{\chi^2 + y^2}$$

 $\varphi = \arctan(y/x)$ for x > 0

 $\phi = \pi/2$ for x = 0 and y > 0

 $\varphi = \pi + \arctan(y/x)$ for x < 0

 $\phi = 3\pi/2$ for x = 0 and y < 0

Conversion from cylindrical to cartesian coordinates:

Cylindrical [ρ, φ, z'] ____ Cartesian [x, y, z]

$$x = \rho \cdot \cos \phi$$

 $y = \rho \cdot \sin \varphi$

Conversion from spherical to cartesian coordinates:

Spherical [r, θ , ϕ] _____ Cartesian [x, y, z]

$$x = r_* \sin \theta_* \cos \phi$$

$$y = r_* \sin \theta_* \sin \phi$$

 $z = r \cdot \cos \theta$

Conversion from cartesian to spherical coordinates:

Cartesian [x, y, z] \longrightarrow Spherical [r, θ , ϕ]

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\cos \phi = \frac{x}{\sqrt{x^2 + y^2}} \qquad \sin \phi = \frac{y}{\sqrt{x^2 + y^2}} \qquad \tan \phi = \frac{y}{x}$$

$$\sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}$$

$$\tan \varphi = \frac{y}{x}$$

Last Update: 2011-01-11

$$\cos \theta = \frac{z}{r} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

Conversion from spherical to cylindrical coordinates:

Spherical [r, θ , ϕ] _____ Cylindrical [ρ , ϕ ', z']

$$\rho = r \cdot \sin \theta$$

$$\varphi' = \varphi$$

$$z' = r \cdot \cos \theta$$

Conversion from cylindrical to spherical coordinates:

Cylindrical $[\rho, \phi, z]$ Spherical $[r, \theta, \phi']$

$$r = \sqrt{\rho^2 + z^2}$$

$$\theta = \arctan(\rho/z)$$

$$\varphi' = \varphi$$

