Санкт-Петербургский государственный университет

Математическое обеспечение и адмиистрирование информационных систем

Гусев Егор Игоревич Вычислительный практикум Отчет по заданию №13

Преподователь: Т.О. Евдокимова

Содержание

1.	Ссылка на код	3
2.	Постановка задачи	3
3.	Теория	3
4.	Численный эксперимент	4
	4.1. Описание	4
	4.2. Результаты	4

1. Ссылка на код

Код доступен по ссылке на github.

2. Постановка задачи

Необходимо реализовать метод Монте-Карло приближенного вычисления определенного интеграла.

3. Теория

Необходимо приближенно вычислить $\int_a^b g(x) dx$.

Классическая идея метода Монте-Карло состоит в том, что, если вписать исходную фигуру в прямоугольник и случайно "набросать" в этот прямоугольник точек, то отношение числа точек, попавших под кривую, к общему числу точек, равно отношению площади фигуры к площади прямоугольника. Однако существует трудность в генерации хорошо рандомных двумерных точек.

Пусть задана ξ - случайная величина, определенная на отрезке (a, b) с плотностью вероятности p(x).

Рассмотрим случайную величину

$$\eta = \frac{g(\xi)}{p_{\xi}(x)}$$

Тогда

$$E_{\eta} = \int_{a}^{b} p_{\eta(x)} dx = \int_{a}^{b} \frac{g(x)}{p_{\xi}(x)} p_{\xi}(x) dx = \int_{a}^{b} g(x) dx$$

Таким образом, имеем формулу для приближенного вычисления определенного интеграла:

$$\int_a^b g(x) dx \approx \frac{1}{N} \sum_{n=1}^N \frac{g(\xi_i)}{p_{\xi}(\xi_i)}$$

4. Численный эксперимент

4.1 Описание

В качестве функции рассматривается $g(x)=\sin(x)$ на интервале $(0;\frac{\pi}{2})$. Линейная плотность задаётся с помощью формулы приближения синуса Бхаскары I: $p_{\xi}(x)=16x\frac{\pi-x}{5\pi^2-4x(\pi-x)}$

4.2 Результаты

	N	Равномерная плотность	Линейная плотность	Абсолютная разность площадей
0	100.0	0.014537	0.000438	0.104646
1	1000.0	0.009760	0.000159	0.005686
2	10000.0	0.007739	0.000230	0.011279
3	100000.0	0.000328	0.000226	0.000188

Рис. 1: Результаты для различных N