M 622 HW, due Monday, April 21

- 1. Let p and q be prime numbers, and let $t(x) = x^p q$.
 - (a) Explain why t(x) is irreducible over \mathbb{Q} . ANSWER. It's Eisenstein at the prime q.
 - (b) Describe the roots of t(x) (they are contained in \mathbb{C}): **They are..** $\{q^{1/p}\psi^m: m=0,1,\ldots,p-1\}$, where $\psi=e^{2\pi i/p}$. Note that if p=2, $\psi=-1$.
 - (c) Describe the splitting K of t(x), and determine $[K:\mathbb{Q}]$. Description of K. Any extension field B that contains all the above roots, and is closed under multiplication and inverse, contains ψ . But now any extension B of \mathbb{Q} that contains $q^{1/p}$ and ψ contains all roots of t(x). Thus the least extension of \mathbb{Q} containing all the roots of t(x) is equal to $\mathbb{Q}(q^{1/p}, \psi)$.
 - Dimension of K over \mathbb{Q} : Since $q^{1/p}$ is a root of the degree-p irreducible t(x), $[\mathbb{Q}(q^{1/p}):\mathbb{Q}]=p$. Since ψ is a primitive p-th root of unity, as we have proven, ψ is a root of $\Phi_p(x)=x^{p-1}+x^{p-2}+x^2+x+1$, a \mathbb{Q} -irreducible, and $[\mathbb{Q}(\psi):\mathbb{Q}]=p-1$. Of course $\mathbb{Q}(\psi)$ is the splitting field of $\Phi_p(x)$.
 - Since $K = \mathbb{Q}(q^{1/p})(\psi)$, $[K : \mathbb{Q}] = [\mathbb{Q}(q^{1/p})(\psi) : \mathbb{Q}(\psi)][\mathbb{Q}(\psi) : \mathbb{Q}]$. Since ψ is a root of a degree p-1 polynomial over \mathbb{Q} , $p-1 \geq [\mathbb{Q}(q^{1/p})(\psi) : \mathbb{Q}(\psi)]$, so $(p-1)p \geq [K : \mathbb{Q}]$. But both p-1 and p divide $[K : \mathbb{Q}]$, so $[K : \mathbb{Q}] = p(p-1)$. Note that if p = 2, $[K : \mathbb{Q}] = 2$ (and $K = \mathbb{Q}(\sqrt{q})$).
 - (d) Let $G = Gal(K/\mathbb{Q})$. Use the appropriate part of the Sylow Theorem to explain why G has just one Sylow-p subgroup, which we'll call N. Use another part of the Sylow Theorem to explain why N is normal.
 - If p=2 G is the 2-element group, 2=p, and the statement above is obviously true. Suppose p>2. Since K/\mathbb{Q} is Galois, $|G|=[K:\mathbb{Q}]=p(p-1)$. By the Sylow Theorem, $n_p=1+ps$, some nonnegative integer s, and $n_p|p-1$ —these imply $n_p=1$. Thus, there is a unique Sylow-p subgroup N, a subgroup that must be normal—any conjugate hNh^{-1} has |N| elements, so $hNh^{-1}=N$.
 - (e) By the Fundamental Theorem of Galois Theory (FTGT), the fixed field J of N is a splitting field of some polynomial $a(x) \in \mathbb{Q}[x]$. Since |N| = p, use FTGT (be explicit about which part) to determine $[J:\mathbb{Q}]$, and then determine J explicitly and a(x) explicitly.
 - By FTGT, there is an order-reversing bijection ι from intermediate fields to subgroups of G, where $\iota(J) = Aut(K/J)$. Let $J = \iota^{-1}(N)$, the intermediate field associated with N. Another part of FTGT states that if H is a normal subgroup of G if and only if $\iota^{-1}(H)$ is Galois over the base field $\mathbb Q$ (in this case). FTGT also states that the map ι "preserves indices": if A is contained in B, and both A

and B are intermediate subfields, then $[B:A] = [\iota(A):\iota(B)]$. In this case, [G:N] = p(p-1)/p = p-1. Thus, $[J:\mathbb{Q}] = p-1$. The preservation of indices aspect of FTGT guarantees that there is a unique intermediate subfield of dimension p-1 over \mathbb{Q} , that unique field being J. As mentioned, $[\mathbb{Q}(\psi):\mathbb{Q}] = p-1$. Thus, $J = \mathbb{Q}(\psi)$. Also mentioned: J is the splitting field of $\Phi_p(x)$.

- (f) Use FTGT to explain why G can't be Abelian. (Here I erred. If p=2, G is the 2-element Abelian group.) Assume p>2. Since $Aut(\mathbb{Q}(q^{1/p})/\mathbb{Q})$ carries roots of t(x) to the same, $\mathbb{Q}(q^{1/p})$ contains only root of t(x), and $\sigma \in Aut(\mathbb{Q}(q^{1/p})/\mathbb{Q})$ is determined completely by $\sigma(q^{1/p})$, it follows that $Aut(\mathbb{Q}(q^{1/p})/\mathbb{Q})$ has one element, which means that $\mathbb{Q}(q^{1/p})$ is not Galois over \mathbb{Q} . Every subgroup of an Abelian group H is normal in H. But by FTGT, $\iota(\mathbb{Q}(q^{1/p}))$ is not normal in G. So G must not be Abelian.
- (g) Is G solvable? Explain—there are several ways to do so. Yes... K is formed by a series (of two) of radical extensions: $\mathbb{Q} \subset \mathbb{Q}(q^{1/p}) \subset \mathbb{Q}(q^{1/p})(\psi)$. Since this is the case, by the theorem of Galois, $Aut(K/\mathbb{Q}) = Gal(K/\mathbb{Q})$ is solvable.

Another way: Consider $\{e\} \leq N \leq G$. Since |N| = p, it is cyclic. By FTGT, $Aut(J/\mathbb{Q})$ is isomorphic to $Aut(K/\mathbb{Q})/Aut(K/J) = G/N$. But $Aut(J/\mathbb{Q})$ is isomorphic to U_5 , the multiplicative group of units of that Z_5 , a cyclic group. (Note: given $n \in \mathbb{N}$, it is not always true that $U_n \cong \mathbb{Q}(\psi_n)$ is cyclic, where ψ_n is a primitive n-th root of unity...on the other hand, if n is prime, then it is true that U_p is cyclic.) So $N/\{e\}$, G/N are both cyclic, which implies that G is solvable.

- 2. Suppose F is a field with $\mathbb{Q} \subseteq F \subseteq \mathbb{R}$, $t(x) \in F[x]$, and S is the splitting field of $t(x) \in F[x]$. Show that if [S:F] is odd, then $S \subset \mathbb{R}$.
 - Since t(x)i has coefficients in \mathbb{R} , its roots are closed under complex conjugation. Let $c: \mathbb{C} \to \mathbb{C}$ be the complex conjugation map—we showed $c \in Aut(\mathbb{C}/\mathbb{R})$; of course |c| = 2 there. Since $c(S) \subset S$, the restriction of c to S is an automorphism in Aut(S/F), and $c|_S$, has order one or two. Since S is Galois, |G| = [S:F]. By Lagrange, if its order is S, |G| is even. Since |G| is odd, the order of |G| is odd, so it's S, and all roots of S is generated by S and the roots of S is contained in S.
- 3. An old exercise from M622 states that if p is a prime number, then if α is a transposition of S_p and β is a p-cycle of S_p , then $S_p = \langle \alpha, \beta \rangle$. Prove that if $p(x) \in \mathbb{Q}[x]$ is a degree 5 irreducible polynomial having exactly two non-real roots, then the Galois group of p(x) is S_5 .
 - Let S be the splitting field of p(x). Since S/Q is Galois, [S:Q] = |G|, where G = Aut(S/Q). Moreover, G acts on the roots of t(x), and that

the field S is generated by \mathbb{Q} and the roots of t(x), implies that S acts faithfully on those roots. Thus, G can be embedded in S_5 via that action. Identify the five roots of p(x) with 1,2,3,4,5. Now we can view G as a subgroup of G, each element of $\sigma \in G$ permuting $\{1,2,3,4,5\}$, in the way σ permutes the roots of t(x).

That p(x) is irreducible of degree 5 means that if $\gamma \in S$ is a root of p(x), $5 = [\mathbb{Q}(\gamma) : \mathbb{Q}]$. By the Double Extension Lemma, 5|[S : Q] = |G|. By Cauchy's Theorem, there exists an element $\alpha \in G$ such that $|\alpha| = 5$. The only elements of S_5 of order 5 are its 5-cycles. So G contains a 5-cycle, say β .

Since $p(x) \in \mathbb{R}[x]$, its roots come in conjugate pairs, the restriction of c (complex conjugation) to S is in G. The two non-real roots of p(x) must be exchanged by c, while the other roots of p(x) (being real) are fixed by c. Thus the restriction of c to S is a transposition, say α . Since 5 is prime, $S_5 = <\alpha, \beta>$, and G must be S_5 .

(Not a part of the exercise, but worth commenting on: S_5 is a not solvable group. In fact it's only non-trivial proper normal subgroup is A_5 , the latter a non-Abelian simple group. So any composition series for S_5 contains A_5 — in fact, $\{e\} \leq A_5 \leq S_5$ is the only composition series for S_5 . But $A_5/\{e\}$ is not cyclic (not even Abelian); hence, S_5 is not solvable. As we proved in class, if the Galois group of a polynomial $t(x) \in \mathbb{Q}[x]$ is not solvable, then the roots of t(x)can't all be "extracted" using roots and basic algebraic operations, including inverse. So the roots of a polynomial p(x) satisfying the above hypotheses can't all be extracted using roots and basic operations.)