Linear Regression

Joe

Morning Objectives

- 1. Fit Non-linear relationships using OLS
- 2. Introduce multiple linear-regression
- 3. Understand the implicit assumptions of linear regression, troubleshoot when these go wrong

Our First Foray Into ML

A casual definition of Machine Learning might be having a computer program do something that is not explicitly instructed by a person. We focus on predictive analytics and statistical learning, which can be roughly categorized as follows

Our First Foray Into ML

Introduction & Review From Yesterday

Questions

- Using Linear Regression, we aspire to answer a series of questions:
 - Does any relationship exist between our target and feature variables?
 - If a relationship does exist, how strong is the relationship?
 - How accurately can we measure this relationship?
 - Are the relationships linear? What type of non-linear relationships should we be able to illustrate?

All models are wrong, but some are useful.

— George Е.Р. Вох —

AZ QUOTES

Yesterday, we introduced several features of OLS, what can you tell me about:

- 1. How we find the line of best fit?
- 2. The metrics we use to assess our fit?
- 3. How we evaluate the parameters of our model?

Ordinary Least Squares

- Simple linear regression
 assumes that a response
 variable (Y) has a simple
 relationship w.r.t. a feature (X)
 - Bo and Bo are unknown
 - s is the error term, which is assumed to be i.i.d., and normally distributed
- Our model creates predictions (y-hat) based on estimated parameters (B_{0&1}-hat)

Data

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Model

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Model Assumptions

- Recall that our assumption about the world is that the variance in the response variable is attributable to two factors
 - 1. The <u>linear</u> relationship between the feature and response variable
 - 2. Variance is either attributed to other response variables, or noise that cannot be accounted for in our data

Model Assumptions

- The assumptions about the model are cooked into the model
 - Q: How do we find the line of best fit?
- The response feature is our prediction plus residuals
- We assert that the MSE divided by the D.O.F. is constant, for all ranges of the feature space and is normally distributed

Fitted/Predicted value \hat{Y}_i Residual Variance $Y_i = \hat{\beta}_0 + x_i \hat{\beta}_1 + \hat{\epsilon}_i, \quad \hat{\sigma}^2 = \frac{\sum_{i=1}^n \hat{\epsilon}_i^2}{n-p-1} \quad (p = \#of \ coefficients)$

$$\hat{\sigma}_1 + \hat{\epsilon}_i, \quad \hat{\sigma}_1^2 = \frac{2n-1}{n-p-1} \quad (p = \#ot \; coefficients)$$

Model Accuracy

Residual Sum of Squares

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

R-Squared, or "Proportion of Variance Explained"

$$R^2 = rac{ ext{TSS} - ext{RSS}}{ ext{TSS}} = 1 - rac{ ext{RSS}}{ ext{TSS}}$$
 where $ext{TSS} = \sum_{i=1}^n (y_i - \bar{y})^2$

Q: What are R² drawbacks?

Troubleshooting Linear Regression

See Notebook

Morning Objectives

- 1. Introduce multiple linear-regression
- 2. Understand the implicit assumptions of linear regression, troubleshoot when these go wrong