Лабораторная работа №4.8 Резонанс напряжений Мещеряков Всеволод, Б02-001, 13.10.2021

Введение

Цель работы заключается в изучении последовательной цепи переменного тока и наблюдении резонанса напряжений. Для этого используются регулировочный автотрансформатор, катушка индуктивности с выдвижным сердечником, магазин емкостей, резисторы, амперметр, три вольтметра, ваттметр, осциллограф, универсальный мост.

Теоретическая справка: импеданс

Параметры основных элементов цепи задаются их импедансами, то есть некоторыми комплексными числами. Такая условность носит название метода "комплексных амплитуд". Поймем, в чем заключается выгода такого приёма.

Рассмотрим стандартный RLC-контур, подключенный к источнику внешней ЭДС, изменяющейся по гармоническому закону: $\varepsilon = \varepsilon_0 \cos \Omega t$. Обозначим разность потенциалов на конденсаторе U_c , ток, идущий в контуре, I. Сумма падений напряжения на элементах цепи равна ЭДС самоиндукции плюс ЭДС источника:

$$RI + U_c = -L\frac{dI}{dt} + \mathcal{E}_0 \cos \Omega t. \tag{1}$$

Пусть на конденсаторе заряд q, учтем зависимость от времени $q=\int Idt$:

$$L\frac{dI}{dt} + RI + \frac{1}{C} \int Idt = \varepsilon_0 \cos \Omega t.$$
 (2)

Решением линейного этого ДУ состоит из общего однородного решения и какого либо частного решения уравнения с учетом правой части. Для поиска этого решения используется метод комплексной амплитуды: пусть некоторая комплексная функция является решением линейного

ДУ с вещественными коэффициентами и комплексной правой частью; тогда вещественная часть этой функции является решением этого же уравнения, в правой части которого стоит вещественная часть прежнего выражения, а мнимая часть – решением уравнения с мнимой частью. Исходя из сказанного, запишем уравнение (2) в комплексной форме:

$$L\frac{d\hat{I}}{dt} + R\hat{I} + \frac{\int \hat{I}dt}{C} = \hat{\varepsilon_0}e^{i\Omega t}.$$
 (3)

Здесь $\hat{\varepsilon_0}$ – комплексная амплитуда внешнего напряжения: $\hat{\varepsilon_0} = \varepsilon_0 e^{i\varphi}$. Если начальная фаза равна нулю, то $\hat{\varepsilon_0} = \varepsilon_0$. Правая часть (2) является вещественной частью правой части (3). Будем искать решение (3) в том же виде, что и ЭДС. Тогда получим:

$$\hat{I}_0[R + i(\Omega L - \frac{1}{\Omega C})] = \varepsilon_0. \tag{4}$$

Величина, стоящая в квадратных скобках, называется импедансом – это характеристика контура, не зависящая ни от токов, ни от напряжений. Выражение (4) является обобщением законом Ома для переменных токов. Действительная часть импеданса называется активным сопротивлением контура, а мнимая – реактивным сопротивлением контура или реактансом. Так импеданс индуктивности равен $i\Omega L$, емкости $\frac{1}{i\Omega L}$, сопротивления R.

Вернемся к началу выкладок и скажем, что фаза ЭДС не равна нулю:

$$\varepsilon = \varepsilon_0 \cos \Omega t + \varphi. \tag{5}$$

Решаем аналогичные уравнения, обозначаем импеданс Z:

$$\hat{\varepsilon_0} = Z\hat{I_0}.\tag{6}$$

Тогда получаем окончательно:

$$I = \frac{\varepsilon_0}{|Z|} \cos(\Omega t + \varphi - \psi), \tag{7}$$

где
$$\psi = arctg \frac{\Omega L - \frac{1}{\Omega C}}{R}$$
.

 $M\Phi TH$, 2021

То есть получили, что ток отстаёт от напряжения по фазе на величину ψ , определяемую отношением мнимой и действительной частью импеданса.

Теоретическая справка: измерения

Рассмотрим электрическую цепь, состоящую из резистора R и катушки индуктивности L с импедансом $Z_L = r_L + i\Omega L$, последовательно подключенных ко внешнему источнику, ЭДС которого меняется по синусоидальному закону с частотой Ω – рисунок 1.

Источник питания

Рис. 1 — Схема экспериментальной установки для изучения закона Ома в цепи переменного тока

Обозначим через U_R напряжение на резисторе, U_L – на катушке, U_{R+L} – суммарное напряжение на катушке и на резисторе. Для них справедливы комплексные выражения:

$$\hat{U}_R = \hat{I}R, \ \hat{U}_L = \hat{I}(r_L + i\Omega L), \ \hat{U}_{R+L} = \hat{I}(R + r_L + i\Omega L).$$
 (8)

Переходя к модулям и фазам токов, получаем:

$$U_R = I \cdot R \qquad tg\psi_1 = 0$$

$$U_L = I\sqrt{r^2_L + (\Omega L)^2} \qquad tg\psi_2 = \frac{\Omega L}{r_L}$$

$$U_{R+L} = I\sqrt{(R+r_L)^2 + (\Omega L)^2} \qquad tg\psi_3 = \frac{\Omega L}{R+r_L}$$

Рассчитаем среднюю мощность переменного тока, выделяемую в катушке:

$$\bar{P} = \frac{1}{T} \int_0^T U(t)I(t)dt = I^2 r_L.$$
 (9)

Активное сопротивление катушки r_L можем измерить, если включим катушку в последовательный контур с известными R и C – рисунок 2. В контуре, настроенном в резонанс на частоту Ω внешнего источника (собственная частота контура и внешняя совпадают: $\omega_0 = \Omega$), реактивные сопротивления индуктивности совпадают:

$$\omega_0 L = \frac{1}{\omega_0 C}.\tag{10}$$

Тогда, определив каким либо образом добротность контура Q, можно рассчитать полное сопротивление контура R_{\sum} в резонансе, поскольку:

$$Q = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}.$$
 (11)

Рис. 2 — Схема установки для наблюдения резонанса напряжений

Ход работы

Подготовим к работе установку, собранную по схеме рисунка 1. Перемещая сердечник катушки малыми шагами по 0.2 мм снимем зависимость тока I, напряжений U_R , U_L , U_{R+L} и мощности P_L от координаты сердечника x. Результаты отразим в таблице 1. Учтем и погрешности: класс точности используемых приборов – 0.5. То есть погрешность – 0.5% от предела измерений.

x, mm	I, дел	σ_I , дел	U_R , дел	σ_{U_R} , дел	U_{R+L} , дел	$\sigma_{U_{R+L}}$, дел	U_L , дел	σ_{U_L} , дел	P_L , дел	σ_{P_L} , дел
5,00	29	0,01	63	1	118	1	89	1	52	0,125
7,00	34	0,01	73	1	116	1	79	1	47	0,125
9,00	36	0,01	80	1	114	1	71	1	43	0,125
11,00	38	0,01	83	1	113	1	64	1	40	0,125
13,00	39	0,01	87	1	112	1	59	1	38	0,125
15,00	40	0,01	89	1	111	1	55	1	36	0,125
17,00	41	0,01	90	1	110	1	52	1	34	0,125
19,00	41	0,01	91	1	110	1	49	1	33	0,125
21,00	42	0,01	92	1	109	1	46	1	31	0,125

Таблица 1 — Результаты измерений до пересчёта, значения указаны в делениях приборов

Пересчитаем деления в соответствующие единицы измерения. Амперметр выставлен на максимальный ток 2.5 A, имеет 100 делений – тогда 1 деление – это 0,025 A. Вольтметры выставлены на максимальное напряжение 150 B, имеют 150 делений – тогда 1 деление – это 1 B. Ваттметр, согласно документации, показывает 1 Вт на деление. Результаты укажем в таблице 2.

x, mm	I, A	σ_I, A	U_R, B	σ_{U_R} , B	U_{R+L} , B	$\sigma_{U_{R+L}}$, B	U_L, B	σ_{U_L}, B	P_L , BT	$\sigma_{P_L}, \operatorname{Bt}$
5	0,73	0,03	63	1	118	1	89	1	13	0,03
7	0,85	0,03	73	1	116	1	79	1	12	0,03
9	0,90	0,03	80	1	114	1	71	1	11	0,03
11	0,95	0,03	83	1	113	1	64	1	10	0,03
13	0,98	0,03	87	1	112	1	59	1	10	0,03
15	1,00	0,03	89	1	111	1	55	1	9	0,03
17	1,03	0,03	90	1	110	1	52	1	9	0,03
19	1,03	0,03	91	1	110	1	49	1	8	0,03
21	1,05	0,03	92	1	109	1	46	1	8	0,03

Таблица 2 — Результаты измерений после пересчёта, значения указаны в соответствующих единицах измерения

 $M\Phi TH$, 2021 5

По формуле для U_L из (8) и формуле (9) рассчитаем r_L и L для каждого x. Оценим погрешности: $\sigma_x = 0.5$ мм, σ_{r_L} как косвенное измерение через погрешности P и I. Результаты отразим в таблицах 3 и 4, по ним построим графики на рисунках 3 и 4.

Оценка погрешностей в этой работе несет условный характер, так как провода и клеммы вносят неоценимый вклад. Для реактивного сопротивления удалось провести оценку, но для индуктивности адекватной оценки провести не удалось.

x, mm	σ_x , mm	r_l, O_{M}	σ_{r_l}, O_{M}
5	0,5	$12,\!37$	2,13
7	0,5	8,13	1,20
9	0,5	6,64	0,92
11	0,5	5,54	0,73
13	0,5	5,00	0,64
15	0,5	4,50	0,56
17	0,5	4,05	0,49
19	0,5	3,93	0,48
21	0,5	3,51	0,42

Таблица 3 — Точки для графика зависимости $r_L(x)$

x, mm	σ_x , mm	$L, \Gamma_{ m H}$
5	0,5	0,39
7	0,5	0,29
9	0,5	$0,\!25$
11	0,5	0,21
13	0,5	0,19
15	0,5	0,17
17	0,5	0,16
19	0,5	0,15
21	0,5	0,14

Таблица 4 — Точки для графика зависимости L(x)

 $M\Phi TH$, 2021

Рис. 3 — График зависимости $r_L(x)$

Рис. 4 — График зависимости L(x)

 $M\Phi$ ТИ, 2021

Теперь построим векторную диаграмму (Рис. 5) напряжений. Напряжение на резисторе совпадает по фазе с током, поэтому U_R лежит на векторе I. Векторное равенство напряжений $U_{L+R} = U_L + U_R$ позволяет построить треугольник по трем сторонам. Сделаем две насечки: первую – радиусом, равным модулю вектора U_{R+L} , из начала вектора U_R (см. схему на Рис. 1); вторую – радиусом, равным модулю вектора U_L , из конца вектора U_R . Точка на пересечении насечек определяет положение векторов U_{L+R} и U_L на диаграмме. Разложим U_L по осям координат. Проекция U_L на ось I равна $U_{L,\text{акт}}$, проекция на перпендикулярную ось – $U_{L,\text{реакт}}$.

Будем брать значения при $x=21\,\mathrm{mm}$: $U_{L+R}=109\,\mathrm{B}$, $U_L=46\,\mathrm{B}$, $U_R=92\,\mathrm{B}$. Тогда запишем теорему косинусов для получившегося треугольника напряжений, из нее получим значение угла $\beta=81^\circ$, которое оказывается близким к рассчетному 83° .

Рис. 5 — Векторная диаграмма

Воспользуемся методом трех вольтметров для вычисления мощности, выделяющейся на катушке при среднем положении сердечника. Записав теорему косинусов, получим: $P_L = U_L I \cos \beta = 8.4 \, \mathrm{Bt}$, что оказывается близким к измеренным 10 Вт (см. Таблица 2, строка для 13 мм).

Теперь подключим катушку к установке, схема которой изображена на рисунке 2. Будем менять ёмкости и искать такое положение сердечника, чтобы катушка входила в резонанс с сетью. Критерием для нас будет являться картина, которую мы видим на экране осциллографа – в резонансе кривые "слипляются" (см. Рис. 6).

Рис. 6 — Кривые на осциллографе сошлись в одну – наступил резонанс

 $M\Phi$ ТИ, 2021