

Trabalho Prático do Grau A – Algoritmos e Programação: Fundamentos

Simulação de Propagação Viral em uma População

Fonte da Imagem: Freepik

Individual ou grupos de até 3 participantes

DATA DE ENTREGA: até **30/04/2025**, via Moodle

Instruções para envio do trabalho:

Apenas 1 integrante do grupo deve enviar o link para o repositório do projeto na atividade aberta no Moodle até as 23h59min do dia 30/04/2025. O diretório do projeto deve conter:

- O código fonte do trabalho, desenvolvido em C/C++.
- Um arquivo **LEIAME.md** com o nome completo dos integrantes do grupo e instruções de uso do programa. Você pode se basear <u>neste template</u> para escrever o README.

Introdução

Durante uma epidemia, a propagação de um vírus depende da taxa de contágio, da vacinação, da imunidade da população e do comportamento coletivo. Mesmo vacinas eficazes não garantem proteção total. Este trabalho propõe simular a propagação de um vírus em uma população ao longo do tempo, permitindo observar o impacto da vacinação (com eficácia parcial), do comportamento social e de eventos aleatórios sobre a evolução da infecção.

Objetivo

O objetivo deste trabalho é exercitar os conceitos estudados até o momento, como entrada e saída de dados, expressões matemáticas, comandos de seleção (if-else) e comandos de repetição (while, for). Para isso, os estudantes devem desenvolver um programa em C que simule a propagação de um vírus em uma população, considerando taxa de contágio, percentual da população vacinada, eficácia da vacina, e eventos aleatórios que alteram a taxa de transmissão. O código deve ser desenvolvido em C/C++, utilizando o conteúdo trabalhado em aula, e deve estar corretamente indentado e comentado.

Descrição do Problema

- 1. **Menu Inicial:** o programa começa exibindo um menu com as seguintes opções:
 - 1 Nova Simulação

2 - Sair do Programa

O usuário deve escolher a opção desejada. A opção 1 inicia uma nova simulação, enquanto a opção 2 encerra o programa.

- 2. Entrada de Dados: se o usuário escolher a opção 1, o programa solicita as seguintes informações:
 - População total: (int > 0)
 - Número de pessoas inicialmente infectadas: (int > 0)
 - Taxa de contágio: (0 a 100%)
 - Porcentagem da população vacinada: (0 a 100%)
 - Efetividade da vacina: (0 a 100%) representa a chance de uma pessoa vacinada não ser infectada
 - Número de dias da simulação
- 3. **Simulação do Crescimento:** O programa deve manter o controle do número total de pessoas infectadas, começando com o valor informado como infectados iniciais. No primeiro dia, o total de infectados é igual ao valor de entrada. A cada novo dia, este valor é atualizado somando os novos infectados daquele dia.

O número estimado de novos infectados pode ser calculado com a seguinte fórmula:

$$novos_infectados = \left[infectados \times \left(\frac{taxa_contagio}{100} \right) \right]$$

Esse valor representa a estimativa bruta de quantas novas pessoas poderiam ser infectadas no dia.

No entanto, o número real de novos infectados não pode ultrapassar o total de pessoas suscetíveis, ou seja, aquelas que ainda não foram infectadas nem estão totalmente protegidas pela vacina. Calcula-se da seguinte forma:

$$suscetive is = nao_vacinados_saudave is + vacinados_saudave is \times \left(1 - \frac{efetividade}{100}\right)$$

O número final de novos infectados deve ser limitado ao número de suscetíveis:

4. Condições Ambientais (eventos aleatórios): <u>antes</u> de calcular população em cada ciclo, o programa verifica se algum evento ocorre. A condição é determinada aleatoriamente e aplicada com base nas seguintes probabilidades e impacta a taxa de contágio:

Evento	Probabilidade	Efeito na taxa de contágio
Aglomeração	15%	25%
Isolamento voluntário	10%	-20%
Mídia gera alerta	5%	-30%
Mutação mais contagiosa	5%	50%

Esses eventos afetam diretamente a taxa de contágio do dia, aumentando ou diminuindo sua intensidade. A cada dia, sorteia-se um número aleatório de 1 a 100. O evento correspondente (se houver) altera a taxa de contágio.

5. **Loop de Simulação:** o loop de simulação continua até atingir o número total de ciclos definidos pelo usuário. A simulação **pode terminar antes** se todos os suscetíveis forem infectados. Neste caso, deve-se sinalizar a situação através de uma mensagem.

- 6. **Exibição de Resultados:** ao final, o programa exibe:
 - Número total de infectados
 - População vacinada
 - Quantos vacinados foram infectados mesmo assim
 - População saudável (nunca foi infectada)

Exemplo de Saída do Programa:

População: 1000 Infectados iniciais: 10 Taxa de contágio: 15% População vacinada: 300 Efetividade da vacina: 85%

Dias simulados: 5

Dia 1: 10 infectados

Dia 2: 11 infectados (+1)

Dia 3: 14 infectados (+3) (evento: Mutação mais contagiosa!)

Dia 4: 19 infectados (+5) Dia 5: 27 infectados (+8)

Total infectados: 27 População vacinada: 300 Vacinados infectados: 2 População saudável: 971

Tabela de doenças para testes (valores aproximados)

Doença	Taxa de Contágio (%)	Eficácia da Vacina (%)	Comentário
COVID-19 (2020, sem vacina)	25%	0%	Simulação inicial da pandemia
COVID-19 (com vacina mRNA)	25%	90%	Alta eficácia, mas não total
Sarampo	90%	97%	Extremamente contagiosa
Gripe comum	10%	60%	Varia por cepa e ano
Varíola	30%	95%	Erradicada, mas interessante testar

Referências

https://www.gov.br/saude/pt-br/vacinacao

BOM TRABALHO!

E lembre-se: problemas grandes podem ser resolvidos quebrando-os em problemas menores!!!