

Galois 理论 - 笔记

作者: 若水

邮箱: ethanmxzhou@163.com 主页: helloethanzhou.github.io

时间: July 18, 2024

Après cela, il y aura, j'espère, des gens qui trouveront leur profit à déchiffrer tout ce gâchis.

— Evariste Galois

目录

	Galois 扩张	1
	Galois 对应	
1.2	Artin 引理	3
1.3	Dedekind 无关性引理	4
1.4	有限 Galois 扩张	4
第二章	Galois 理论基本定理	5
附录 A	群论	6
附录 B	环论	7
附录 C		8
C.1	基本概念	8

第一章 Galois 扩张

1.1 Galois 对应

定义 1.1.1 (域扩张)

对于域 k = K, 称 K/k 为域扩张, 如果存在同态映射 $\varphi: k \to K$ 。

定义 1.1.2 (中间域)

对于域扩张 $k \subset F \subset K$, 称 F 为 K/k 的中间域。

定义 1.1.3 (自同构群)

定义域 K 的自同构群为

$$\operatorname{Aut}(K) = \{ 同构映射\varphi : K \to K \}$$

定义 **1.1.4** (*k*-自同构群)

定义域扩张 K/k 的 k-自同构群为

$$Aut_k(K) = { 同构映射φ: K → K | φ(x) = x, ∀x ∈ k }$$

证明 我们来证明 $Aut_k(K)$ 关于映射的复合构成群。

对于封闭性, 任取 $\varphi, \psi \in \operatorname{Aut}_k(K)$, 由于 $\varphi, \psi : K \to K$ 为同构映射, 那么 $\varphi \circ \psi : K \to K$ 为同构映射。由于 $\varphi|_k = \psi|_k = \mathbbm{1}_k$, 那么 $(\varphi \circ \psi)_k = \mathbbm{1}_k$, 进而 $\varphi \circ \psi \in \operatorname{Aut}_k(K)$ 。

对于单位元,显然 $\mathbb{1}_K \in \operatorname{Aut}_k(K)$,且对于任意 $\varphi \in \operatorname{Aut}_k(K)$,成立

$$\varphi \circ \mathbb{1}_K = \mathbb{1}_K \circ \varphi = \varphi$$

因此 $\mathbb{1}_K$ 为 $\mathrm{Aut}_k(K)$ 的单位元。

对于逆元, 任取 $\varphi \in \operatorname{Aut}_k(K)$, 显然 $\varphi^{-1}: K \to K$ 成立

$$\varphi \circ \varphi^{-1} = \varphi^{-1} \circ \varphi = \mathbb{1}_K$$

因此 φ^{-1} 为 φ 的逆元。

对于交换律, 这对映射的复合显然是成立的。

综上所述, $Aut_k(K)$ 关于映射的复合构成群。

定义 1.1.5 (不动域)

对于域扩张 K/k, 定义子群 $G < Aut_k(K)$ 的不动域为

$$Inv_K(G) = \{x \in K \mid \varphi(x) = x, \forall \varphi \in G\}$$

证明 我们来证明 $Inv_K(G)$ 构成域。

显然 $\mathrm{Aut}_k(K)$ 对加法和乘法封闭, 这是因为 $\varphi(x+y) = \varphi(x) + \varphi(y)$ 且 $\varphi(xy) = \varphi(x)\varphi(y)$ 。

显然 K 的加法单位元 0 和乘法单位元 1 分别为 $Inv_K(G)$ 的加法单位元和乘法单位元, 这是因为 $0,1 \in k$ 。

对于任意 $x \in K$,显然 x 在 K 中的加法逆元 -x 和乘法逆元 x^{-1} (此时要求 $x \neq 0$) 分别为 x 在 $Inv_K(G)$ 中的加法逆元和乘法逆元,这是因为对于 $\varphi \in G$, $\varphi(-x) = -x$ 且 $\varphi(x^{-1}) = \varphi(x)^{-1}$ 。

显然 $\mathrm{Aut}_k(K)$ 对于加法和乘法满足交换律和结合律以及分配律,这是因为 K 对于加法和乘法满足交换律和结合律以及分配律。

综上所述, $Inv_K(G)$ 构成域。

定义 1.1.6 (Galois 对应)

称域扩张 K/k 的 Galois 对应为

证明 任取 K/k 的中间域 F,对于任意 $\sigma \in \operatorname{Aut}_F(K)$,那么 $\sigma : K \to K$ 为同构映射,且 $\sigma|_F = \mathbb{1}_F$ 。由于 $k \subset F$,因此 $\sigma|_k = \mathbb{1}_k$,于是 $\sigma \in \operatorname{Aut}_k(K)$,进而 $\operatorname{Aut}_F(K) \subset \operatorname{Aut}_k(K)$ 。由 k-自同构群的定义1.1.4, $\operatorname{Aut}_F(K)$ 构成群,进而 $\operatorname{Aut}_F(K)$ 为 $\operatorname{Aut}_k(K)$ 的子群。

任取 $\operatorname{Aut}_k(K)$ 的子群 G,由不动域的定义1.1.5, $\operatorname{Aut}_F(K)$ 构成 K 的子域。而由 k-自同构群的定义1.1.4, $k \subset \operatorname{Aut}_F(K)$,进而 $\operatorname{Aut}_F(K)$ 构成 K/k 的中间域。

定义 1.1.7 (Galois 群)

定义域扩张 K/k 关于中间域 F 的 Galois 群为

$$Gal(K/F) = Aut_F(K)$$

注 为了方便,对于域扩张 K/k 的 Galois 对应,引入记号

引理 1.1.8

对于域扩张 K/k, Galois 对应 Gal: $\mathscr{F} \to \mathscr{G}$ 与 Inv: $\mathscr{G} \to \mathscr{F}$ 为反序映射, 换言之——

- 1. 对于 $F_1, F_2 \in \mathcal{F}$, 如果 $F_1 \subset F_2$, 那么 $Gal(F_1) \supset Gal(F_2)$ 。
- 2. 对于 $G_1, G_2 \in \mathcal{G}$,如果 $G_1 \subset G_2$,那么 $Inv(G_1) \supset Inv(G_2)$ 。

证明 对于 1, 任取 $F_1, F_2 \in \mathscr{F}$, 使其成立 $F_1 \subset F_2$ 。任取 $\varphi \in \operatorname{Gal}(F_2)$,那么 $\varphi : K \to K$ 为同构映射,且 $\varphi|_{F_2} = \mathbb{1}_{F_2}$,因此 $\varphi|_{F_1} = \mathbb{1}_{F_1}$,进而 $\varphi \in \operatorname{Gal}(F_1)$ 。由 φ 的任意性, $\operatorname{Gal}(F_1) \supset \operatorname{Gal}(F_2)$ 。

对于 2, 任取 $G_1, G_2 \in \mathcal{G}$, 使其成立 $G_1 \subset G_2$ 。任取 $x \in \text{Inv}(G_2)$,那么对于任意 $\varphi \in G_2$,成立 $\varphi(x) = x$,因此对于任意 $\varphi \in G_1$,成立 $\varphi(x) = x$,进而 $x \in \text{Inv}(G_1)$ 。由 x 的任意性, $\text{Inv}(G_1) \supset \text{Inv}(G_2)$ 。

引理 1.1.9

对于域扩张 K/k 的 Galois 对应 Gal: $\mathscr{F} \to \mathscr{G}$ 与 Inv: $\mathscr{G} \to \mathscr{F}$, 如果 $F \in \mathscr{F}$ 且 $G \in \mathscr{G}$, 那么

$$F \subset \operatorname{Inv}(\operatorname{Gal}(F)), \qquad G \subset \operatorname{Gal}(\operatorname{Inv}(G))$$

证明 对于左式,由于

$$x \in F \implies (x \in K)$$
且(∀同构映射 $\varphi : K \to K \quad (\varphi|_F = \mathbb{1}_F \implies \varphi(x) = x))$
 $\iff (x \in K)$ 且(∀ $\varphi \in Gal(F), \varphi(x) = x)$
 $\iff x \in Inv(Gal(F))$

那么 $F \subset Inv(Gal(F))$ 。

对于右式, 由于

那么 $G \subset Gal(Inv(G))$ 。

引理 1.1.10

对于域扩张 K/k 的 Galois 对应 Gal: $\mathscr{F} \to \mathscr{G}$ 与 Inv: $\mathscr{G} \to \mathscr{F}$, 成立

$$Gal \circ Inv \circ Gal = Gal$$
, $Inv \circ Gal \circ Inv = Inv$

证明 对于左式,任取 $F \in \mathscr{F}$,则 $Gal(F) \in \mathscr{G}$ 。一方面,由引理1.1.9, $Gal(F) \subset Gal(Inv(Gal(F)))$,即 $Gal(F) \subset (Gal \circ Inv \circ Gal)(F)$ 。另一方面,由引理1.1.9, $F \subset Inv(Gal(F))$ 。又由引理1.1.8, $GalF \supset Gal(Inv(Gal(F)))$,即 $GalF \supset (Gal \circ Inv \circ Gal)(F)$ 。综合两方面, $GalF = (Gal \circ Inv \circ Gal)(F)$ 。由 F 的任意性, $Gal \circ Inv \circ Gal = Gal$ 。对于右式,任取 $G \in \mathscr{G}$,则 $Inv(G) \in \mathscr{F}$ 。一方面,由引理1.1.9, $Inv(G) \subset Inv(Gal(Inv(G)))$,即 $Inv(G) \subset (Inv \circ Gal \circ Inv)(G)$ 。另一方面,由引理1.1.9, $G \subset Gal(Inv(F))$ 。又由引理1.1.8, $InvG \supset Inv(Gal(Inv(F)))$,即 $Inv(G) \supset (Inv \circ Gal \circ Inv)(G)$ 。综合两方面, $Inv(G) = (Inv \circ Gal \circ Inv)(G)$ 。由 G 的任意性, $Inv \circ Gal \circ Inv = Inv$ 。

1.2 Artin 引理

引理 1.2.1 (Artin 引理)

对于域 K, 如果 $G < \operatorname{Aut}(K)$ 且 $|G| < \infty$, 那么

$$[K : Inv(G)] \leq |G|$$

证明 设 |G| = n, 若要证明 $[K : \text{Inv}(G)] \le n$, 只需证明 K 中任意 n + 1 个元素 u_1, \dots, u_{n+1} 必然 Inv(G)-线性相关。记 $G = \{\varphi_1, \dots, \varphi_n\}$,其中 $\varphi_1 = \mathbb{1}_K$ 。考虑 K 上的齐次线性方程

$$\begin{pmatrix} \varphi_1(u_1) & \cdots & \varphi_1(u_{n+1}) \\ \vdots & \ddots & \vdots \\ \varphi_n(u_1) & \cdots & \varphi_n(u_{n+1}) \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

由齐次线性方程解的判定,该齐次线性方程存在非零解,取其中非零分量数最少的非零解为 (a_1, \dots, a_{n+1}) 。必要时调换诸 u_k 与 x_k 的下标,使得 $a_1 \neq 0$;进而,不妨 $a_1 = 1$ 。

断言:诸 $a_k \in Inv(G)$ 。从而由线性方程的第一行

$$a_1u_1 + \cdots + a_{n+1}u_{n+1} = 0$$

可知 u_1, \dots, u_{n+1} 为 Inv(G)-线性相关的。

如果此断言不成立,不妨 $a_2 \notin \text{Inv}(G)$,则存在 $\varphi_t \in G$,使得成立 $\varphi_t(a_2) \neq a_2$ 。将 φ_t 作用于线性方程,可得

$$\begin{pmatrix} (\varphi_t \circ \varphi_1)(u_1) & \cdots & (\varphi_t \circ \varphi_1)(u_{n+1}) \\ \vdots & \ddots & \vdots \\ (\varphi_t \circ \varphi_n)(u_1) & \cdots & (\varphi_t \circ \varphi_n)(u_{n+1}) \end{pmatrix} \begin{pmatrix} \varphi_t(x_1) \\ \vdots \\ \varphi_t(x_{n+1}) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

由于 G 为群且诸 $\varphi_k: K \to K$ 为同构映射,因此 $\varphi_t \circ \varphi_1, ..., \varphi_t \circ \varphi_n$ 为 $\varphi_1, ..., \varphi_n$ 的置换,从而 $(\varphi_t(a_1) = 1, \varphi_t(a_2), ..., \varphi_t(a_{n+1}))$ 亦为齐次线性方程的解。而 $(1, ..., a_{n+1})$ 为齐次线性方程的解,因此

$$(0, a_2 - \varphi_t(a_2), \dots, a_{n+1} - \varphi_t(a_{n+1}))$$

亦为齐次线性方程的解。由 $\varphi_t(a_2) \neq a_2$,此为非零解,且其非零分量数比 $(1, ..., a_{n+1})$ 的非零分量数要少,这与 $(1, ..., a_{n+1})$ 的取法矛盾!

1.3 Dedekind 无关性引理

定义 **1.3.1** (*K*-线性特征标)

对于群 G 与域 K, 称群同态映射 $\chi: G \to K^{\times}$ 为 G 的 K-线性特征标。

引理 1.3.2 (Dedekind 无关性引理)

如果 χ_1, \dots, χ_n 为群 G 的 互异 K-线性特征标, 那么 χ_1, \dots, χ_n 在域 K 上线性无关; 换言之, 若存在 $c_1, \dots, c_n \in K$, 使得成立 $\sum_{i=1}^n c_i i\chi_i = 0$, 那么 $c_1 = \dots = c_n = 0$ 。

证明

命题 1.3.3

如果 K/k 为有限扩张, 那么 $|Gal(K/k)| \le [K:k]$ 。

证明

1.4 有限 Galois 扩张

定义 1.4.1 (Galois 扩张)

称域扩张 K/k 为 Galois 扩张,如果 K/k 为可分且正规的域扩张。

定理 1.4.2 (有限 Galois 扩张)

如下命题等价。

- 1. K/k 为有限、可分、正规的域扩张。
- 2. 存在 k 上的可分多项式 f(x), 使得 K 为 f(x) 在 k 上的分裂域。
- 3. K/k 为有限扩张, 且 |Gal(K/k)| = [K:k]。
- 4. Gal(K/k) 为有限群,且 $Inv_K(Gal(K/k)) = k$ 。

 \Diamond

第二章 Galois 理论基本定理

定义 2.0.1 (共轭子群)

称群 G 的子群 H 与 H' 互为共轭子群,如果存在 $g \in G$,使得成立 $H' = gHg^{-1}$ 。

定义 2.0.2 (共轭中间域)

称域扩张 K/k 的中间域 F 与 F' 互为共轭中间域, 如果存在 $\varphi \in \operatorname{Gal}(K/k)$, 使得成立 $F' = \varphi(F)$ 。

定理 2.0.3 (Galois 理论基本定理)

如果域扩张 K/k 为有限 Galois 扩张,那么成立如下命题。

1. Galois 对应 Gal: \mathscr{F} → \mathscr{G} 与 Inv: \mathscr{G} → \mathscr{F} 为互逆且反序的映射,换言之——

$$Inv \circ Gal = \mathbb{1}_{\mathscr{F}}, \qquad Gal \circ Inv = \mathbb{1}_{\mathscr{G}}$$

- 2. $\operatorname{Gal}(K/k)$ 的子群 G 与 G' 互为共轭子群 \iff K/k 的中间域 $\operatorname{Inv}_K(G)$ 与 $\operatorname{Inv}_K(G')$ 互为共轭中间 域
- 3. K/k 的中间域 F 与 F' 互为共轭中间域 \iff $\mathrm{Gal}(K/k)$ 的子群 $\mathrm{Gal}(K/F)$ 与 $\mathrm{Gal}(K/F')$ 互为共轭 子群
- 4. Gal(K/k) 的子群 G 为正规子群 \iff $Inv_K(G)/k$ 为正规扩张,此时 $Gal(Inv_K(G)/k) \cong Gal(K/k)/G$
- 5. 对于域扩张 K/k 的中间域 F, K/F 为正规扩张 \iff Gal(K/F) 为 Gal(K/k) 的正规子群。

ო

附录 A 群论

附录 B 环论

附录 C 域论

C.1 基本概念

定义 C.1.1 (域)

称代数系统 $(F,+,\cdot)$ 为域,如果加法运算 $+:F\times F\to F$ 和乘法运算 $\cdot:F\times F\to F$ 成立如下命题。

1. 加法单位元:

$$\exists 0 \in F, \forall x \in F, \quad 0 + x = x + 0 = x$$

2. 乘法单位元:

$$\exists 1 \in F \backslash \{0\}, \forall x \in F, \quad 1x = x1 = x$$

3. 加法逆元:

$$\forall x \in F, \exists -x \in F, \quad x + (-x) = (-x) + x = 0$$

4. 乘法逆元:

$$\forall x \in F \setminus \{0\}, \exists x^{-1} \in F, \quad xx^{-1} = x^{-1}x = 1$$

5. 加法交换律:

$$\forall x,y \in F, \quad x+y=y+x$$

6. 乘法交换律:

$$\forall x, y \in F, \quad xy = yx$$

7. 加法结合律:

$$\forall x, y, z \in F, \quad (x+y) + z = x + (y+z)$$

8. 乘法结合律:

$$\forall x, y, z \in F, \quad (xy)z = x(yz)$$

9. 分配律:

$$\forall x, y, z \in F$$
, $(x+y)z = xz + yz$
 $\forall x, y, z \in F$, $x(y+z) = xy + xz$

定义 C.1.2 (同态映射)

对于域 F 与 K, 称映射 $\varphi: F \to K$ 为同态映射, 如果对于任意 $x, y \in F$, 成立

$$\varphi(x+y) = \varphi(x) + \varphi(y), \qquad \varphi(xy) = \varphi(x)\varphi(y)$$