République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2022 Session Complémentaire Epreuve de MATHEMATIQUES

Série : Sciences Naturelles (Classes Expérimentales) Coefficients : 6 Durée : 4h

Exercice 1 (3 points)

Durant la période des examens, une association de parents d'élèves met à la disposition de ses adhérents, deux lignes téléphoniques. On considère les évènements suivants :

 $L_1:$ « la première ligne est occupée» ; $L_2:$ « la deuxième ligne est occupée» .

Des statistiques ont montré que $p(L_1) = 0.4$, $p(L_2) = 0.2$ et $p_{L_1}(L_1) = 0.8$.

Pour chacune des questions de cet exercice, une seule des trois réponses proposées est correcte.

N°	Question	Réponse A	Réponse B	Réponse C	
1	La probabilité $p(\overline{L_1})$ est	0,2	0,6	0,8	0.5 pt
2	La probabilité $p(L_1 \cap L_2)$ est	0,12	0,16	0,24	0.5 pt
3	La probabilité $p_{L_1}(L_2)$ est	0,4	0,6	08	0.5 pt

Lorsque les lignes sont occupées, on a la possibilité de laisser un message vocal. On suppose que la durée T de ces messages, exprimée en secondes, est une variable aléatoire qui suit une loi uniforme sur l'intervalle [0;60]

4	La probabilité p(T≥25) est	$\frac{7}{12}$	$\frac{15}{12}$	$\frac{25}{12}$	0.5 pt
5	La probabilité p(T<10) est	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{5}{6}$	0.5 pt
6	La probabilité $p_{T \ge 10}(T \le 25)$ est	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{7}{10}$	0.5 pt

Recopier sur la feuille de réponse et compléter le tableau ci-contre en choisissant la bonne réponse.

Aucune justification n'est demandée.

Question n°	1	2	3	4	5	6
Réponse						

Exercice 2 (5 points)

On considère le polynôme P défini pour tout nombre complexe z par :

$$P(z) = z^3 - (5+4i)z^2 + (1+16i)z + 3 - 12i.$$

1.a) Vérifier que $(4-2i)^2 = 12-16i$

b) Calculer P(1) et déterminer les nombres complexes a et b tels que $\forall z \in \mathbb{C}$,

$$P(z) = (z-1)(z^2 + az + b)$$

c) Résoudre, dans \mathbb{C} , l'équation P(z) = 0.

 2° Le plan complexe est rapporté à un repère orthonormé $(0; \vec{u}, \vec{v})$.

a) Placer les points A, B et C d'affixes respectives : $z_A = 1$, $z_B = 3i$ et $z_C = 4 + i$ 0,75pt

b) Déterminer l'affixe du point D tel que ABDC soit un parallélogramme. 0,5pt

3° Pour tout nombre complexe $z \neq 4+i$, on pose $f(z) = \frac{z-3i}{z-4-i}$.

a) Calculer f(1), puis en déduire la nature du triangle ABC. 0,5pt

b) Déterminer et construire l'ensemble Γ_1 de points M du plan d'affixe z tel que |f(z)|=1

c) Déterminer et construire l'ensemble Γ_2 de points M du plan d'affixe z tel que f(z) soit imaginaire pur.

d) Montrer que le point A appartient aux ensembles Γ_1 et Γ_2 .

0,5pt

0,5pt

0,5pt

Exercice 3 (6 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = (x-1)e^x + x$. On note Γ sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

- 1° Soit h la fonction définie sur \mathbb{R} par $h(x) = xe^x + 1$.
- a) Montrer que $\lim_{x\to-\infty} h(x) = 1$ et que $\lim_{x\to+\infty} h(x) = +\infty$.
- b) Calculer h'(x) puis dresser le tableau de variation de h. 1 pt
- c) Montrer que h(x) est positive pour tout réel x.
- 2.a) Calculer $\lim_{x \to +\infty} f(x)$ et vérifier que $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement. 0,75pt
- b) Montrer que $\lim_{x\to -\infty} f(x) = -\infty$ et que la droite (Δ) d'équation y=x est une asymptote oblique à Γ .
- c) Etudier la position relative entre (Δ) et Γ
- 3.a) Montrer que $f'(x) = h(x), \forall x \in \mathbb{R}$ 0,5pt
- b) Dresser le tableau de variation de f. 0,5pt
- c) Construire (Δ) et Γ dans le repère $(0, \vec{i}, \vec{j})$.

Exercice 4 (6 points)

Soit f la fonction définie sur]0;+ ∞ [par f(x)= $\frac{x+1+\ln x}{x}$, et soit (C) sa courbe représentative dans un repère orthonormé(O; \vec{i} , \vec{j}).

- 1.a) Montrer que $\lim_{x\to 0^+} f(x) = -\infty$ puis interpréter graphiquement le résultat.
- b) Montrer que $\lim_{x\to +\infty} f(x) = 1$ et déduire que la courbe (C) admet une asymptote (D) à préciser.
- 2.a) Montrer que f'(x) = $-\frac{\ln x}{x^2}$. 0,5 pt
- b) Dresser le tableau de variation de f. 0,5pt
- c) Montrer que l'équation f(x) = 0 admet, dans $]0; +\infty[$, une unique solution x_0 et que $0,27 < x_0 < 0,28$.
- 3° Soit g la restriction de f sur l'intervalle I = [0;1].
- a) Montrer que g est une bijection de I sur un intervalle J que l'on déterminera.
- b) Dresser le tableau de variation de g⁻¹.
- 4.a) Construire (D), (C) et (C'), où (C') est la courbe représentative de g^{-1} .
- b) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation E_m : $(m-1)x = 1 + \ln x$.
- 5.a) Montrer que $\int_1^e \frac{\ln x}{x} dx = \frac{1}{2}.$
- b) En déduire l'aire A du domaine plan délimité par la courbe (C), l'axe des abscisses et les droites d'équations respectives x = 1 et x = e.

Fin.

1 pt

0,5pt

0,5pt

0,25pt

0,5pt