Machine Learning

MA842

Course content

- Introduction to machine learning
- Decision Tree Learning
- Artificial Neural Networks
- Computational Learning Theory
- Instance-Based Learning
- Genetic Algorithms
- Analytical Learning
- Reinforcement Learning.

Machine Learning: Definition

• "A computer program is said to learn from experience E (without being explicitly programmed) with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

$$E * T = P$$

- Tom Mitchell

- Example: playing checkers.
- E = the experience of playing many games of checkers
- T = the task of playing checkers.
- P = the probability that the program will win the next game.

Application of ML

• Transportation System: Google maps provides the best route to reach the destination based on GPS location such that the congestion is minimum.

Task - Build map of current traffic

Experience - Learn the live scenario using GPS location, average velocity

- Virtual Personal Assistants: Collect and refine the information on the basis of our previous involvement with the personal assistant.
- **Product recommendations based on browsing history:** The shopping website or the app recommends some items that somehow matches with our taste.
- 3D printing of machine parts: The sensor integrated system learns to minimize the production of defective machine parts by learning from previous flaws.

https://www.youtube.com/watch?v=ahRcGObyEZo

Additional Examples

- Face detection in AI glasses for blind
- Handwriting recognition
- Autonomous vehicle
- Robot to clean the house
- Email filtering
- Weather prediction
- Medical diagnosis
- Stock market analysis

Source: https://semiengineering.com/deep-learning-spreads/

Where does ML stand?

Source: https://www.edureka.co/blog/ai-vs-machine-learning-vs-deep-learning/

Types of ML

- Supervised
 - Classification A product is defective or not
 - Regression Predict the price of a house
- Unsupervised
 - Association People that buy X also tend to buy Y
 - Clustering Grouping customers by purchasing behavior
- Reinforcement autonomous driving car

Source: https://en.wikipedia.org/wiki/Reinforcement_learning

Designing a learning system

- Choosing the training experience
 - Type of training experience : Direct / Indirect feedback (credit assignment problem)
 - Degree to which the learner controls the sequence of training examples.
 - Represent distribution of examples over which performance is measured.

- Choosing the target functions
 - Determine exactly what type of knowledge will be learned and how this will be used by performance program.
 - Target function V: Board → Real number
 - Define target value V(b) for an arbitrary board state b:

Final board state b	Value V(b)
Won	100
Lost	-100
Drawn	0

If b is not final state, V(b) = V(b'), where b' is best final board state

- Choosing the representation for target function
 - Linear function:

$$\hat{V}(b) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_6 x_6$$

Where:

 w_0 , w_1 , w_2 , w_3 , w_4 , w_5 , and w_6 - weights

 x_1 : Number of black pieces

 x_2 : Number of white pieces

 x_3 : Number of black king pieces

 x_4 : Number of white king pieces

 x_5 : Number of black pieces threatened by white

 x_6 : Number of white pieces threatened by black

In general, x_1 to x_n represents the features projected on n dimensional feature space

Choosing the function approximation algorithm

To learn \hat{V} we need set of training examples, $\langle b, V_{train}(b) \rangle$ Example: $\langle x_1 = 3, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0, x_6 = 0 \rangle$, +100 > **Aim:**

To derive such training examples and adjust the weight values to best fit these training examples $\{<b,V_{train}(b)>\}$

Rule for estimating the training values for any intermediate board state b $V_{train}(b) \leftarrow \hat{V}(successor(b))$

where \hat{V} is the learner's current approximation to V and $\hat{V}(successor(b))$ denotes the next board state following b

Adjusting the weights

• Define the best hypothesis or set of weights such that squared error E between training values and the values predicted by the hypothesis \hat{V} is minimum.

$$E \equiv \sum_{\langle b, V_{train}(b) \rangle \in training \ examples} (V_{train}(b) - \hat{V}(b))^2$$

One algorithm to incrementally refine the weights as new training examples become available is least mean square (LMS) training rule.

LMS Algorithm

Weight update rule

- For each training example $\langle b, V_{train}(b) \rangle$
 - Use the current weights to calculate $\hat{V}(b)$
 - For each weight w_i , update it as
 - $w_i \leftarrow w_i + \eta \left(V_{train}(b) \hat{V}(b)\right) x_i$

Where η is a constant that moderates the size of the weight update.

If $(V_{train}(b) - \hat{V}(b)) = 0$, no weights are changed

If $(V_{train}(b) - \hat{V}(b)) > 0$, each weight is increased in proportion to the value of its corresponding feature x_i

An example of LMS

Suppose we have a data set of 6 points as shown:

We find the best fitting line as follows.

We define the Mean Squared Error function. Let g(x) = mx + b represent a generic line. Its mean squared error in approximating the data is then

$$MSE = \frac{1}{6} \sum_{i=1}^{6} (y_i - g(x_i))^2 = \frac{1}{6} \sum_{i=1}^{6} (y_i - (mx_i + b))^2$$

Expanding this we have

$$\frac{1}{6} \sum_{i=1}^{6} \left(y_i^2 - 2x_i y_i m - 2y_i b + x_i^2 m^2 + 2x_i m b + b^2 \right)$$

This sum can be rewritten as

$$MSE = \frac{1}{6} \sum_{i=1}^{6} y_i^2 - \frac{1}{6} \sum_{i=1}^{6} 2x_i y_i m - \frac{1}{6} \sum_{i=1}^{6} 2y_i b + \frac{1}{6} \sum_{i=1}^{6} x_i^2 m^2 + \frac{1}{6} \sum_{i=1}^{6} 2x_i m b + \frac{1}{6} \sum_{i=1}^{6} b^2$$

$$=\frac{1}{6}\sum_{i=1}^{6}y_{i}^{2}-\left(\frac{1}{6}2\sum_{i=1}^{6}x_{i}y_{i}\right)m-\left(\frac{1}{6}2\sum_{i=1}^{6}y_{i}\right)b+\left(\frac{1}{6}\sum_{i=1}^{6}x_{i}^{2}\right)m^{2}+\left(\frac{1}{6}2\sum_{i=1}^{6}x_{i}\right)mb+b^{2}$$

We see that this is a function of our variables m and b, since x_i and y_i are simply numbers from our data set. Evaluating the sums in this last expression, we have

$$\sum_{i=1}^{6} x_i = 20.9, \sum_{i=1}^{6} y_i = 21.1, \sum_{i=1}^{6} x_i y_i = 88.49, \sum_{i=1}^{6} x_i^2 = 87.07, \sum_{i=1}^{6} y_i^2 = 90.05.$$

so the the mean squared function can be written

$$MSE(m,b) = 15.00833 - 29.49667m - 7.03333b + 14.51167m^2 + 6.96667mb + b^2$$

To find the minimal possible value of MSE we find the partial derivatives of MSE and set them equal to zero:

$$\frac{\partial MSE}{\partial m} = -29.49667 + 29.02333m + 6.96667b = 0$$

$$\frac{\partial MSE}{\partial b} = -7.03333 + 6.96667m + 2b = 0$$

This second equation can be rearranged to give

$$b = \frac{7.03333 - 6.96667m}{2} = 3.51667 - 3.48333m$$

Plugging this into the other equation we have

$$0 = -29.49667 + 29.02333m + 9.63333(3.51667 - 3.48333m) = 4.38057 - 4.53273m$$

so that

$$m = 0.96643$$

and

$$b = 3.51667 - 3.48333(0.96643) = 0.15028.$$

Thus, the best fitting line is

$$y = 0.96643x + 0.15028.$$

Another example for LMS

Suppose we want to predict the mileage of a car from its weight and age

_			
	Weight (x 100 lb)	Age (years)	Mileage
	x_1	X ₂	
	31.5	6	21
	36.2	2	25
	43.1	0	18
_	27.6	2	30

What we want: A function that can predict mileage using x_1 and x_2

Assumption: The output is a linear function of the inputs $Mileage = w_0 + w_1 x_1 + w_2 x_2$

Learning: Using the training data to find the *best* possible value of **w**

Prediction: Given the values for x_1 , x_2 for a new car, use the learned **w** to predict the Mileage for the new car

- Inputs are vectors: $\mathbf{x} \in \Re^d$
- Outputs are real numbers: $y \in \Re$
- We have a training set

D = {
$$(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_m, \mathbf{y}_m)$$
}

We want to approximate y as

$$y = f_w(x) = w_1 + w_2 x_2 + \cdots + w_n x_n$$

= $\mathbf{w}^T \mathbf{x}$

 \mathbf{w} is the learned weight vector in \Re^d

For simplicity, we will assume that x_1 is always 1.

That is $\mathbf{x} = [1 x_2 x_3 ... x_d]^T$

This lets makes notation easier

Question: How do we know which weight vector is the best one for a training set?

For an input (\mathbf{x}_i, y_i) in the training set, the **cost** of a mistake is

$$|y_i - \mathbf{w}^T \mathbf{x}_i|$$

Define the cost (or *loss*) for a particular weight vector **w** to be

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 \qquad \begin{array}{l} \text{Sum of squared} \\ \text{costs over the} \\ \text{training set} \end{array}$$

One strategy for learning: Find the w with least cost on this data

$$\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2$$

Learning: minimizing mean squared error

Predict using $y = w_1 + w_2 x_2$

The linear function is not our only choice. We could have tried to fit the data as another polynomial

One dimensional input

Two dimensional input Predict using $y = w_1 + w_2 x_2 + w_3 x_3$

Gradient Descent Algorithm - Example

Q: Minimize $y = f(x) = x^2 - 4x + 2$ subject to $-1 \le x \le 6$

- In this optimization problem, our objective is a convex function with $x \in \mathbb{R}$.
- Define $x_i \coloneqq x_i \Delta t \frac{\partial y}{\partial x}$ where Δt is timestamp (learning rate)

Impact of learning rate

Solve

Consider the data given in table below. Perform linear regression using gradient descent assuming learning rate is 0.01

Χ	Υ
No. of	No. of
'A'	'A'
grades	grades in
in I year	II year
1	1
2	3
4	3
3	2
5	5

- Final Design
 - Performance System
 - Critic
 - Generalizer
 - Experiment Generator

Design

Perspectives in Machine learning

Machine learning involves searching a very large space of possible hypothesis to determine the one that best fits the observed data and any prior knowledge held by the learner.

Various representations are:

- Linear functions
- Decision trees
- Artificial Neural networks

Issues in ML

- Amount of training data
- Missing and noisy feature values
- Appropriate feature selection
- Prior knowledge
- Strategy to choose next experience
- Learning rate
- Existence of algorithms to learn general target functions
- Overfitting and underfitting
- Bias variance effects

- Overfitting: A statistical model is said to be overfitted, when we train it with a lot of data. *That is, too much reliance on the training data.*
- **Underfitting:** A statistical model or a machine learning algorithm is said to have underfitting when it cannot capture the underlying trend of the data. *A failure to learn the relationships in the training data.*
- High Variance: model changes significantly based on training data.
- High Bias: assumptions about model lead to ignoring training data.
- Overfitting and underfitting cause poor **generalization** on the test set
- A validation set for model tuning can prevent under and overfitting

Effects of overfitting and underfitting

 Consider a two class category problem to visualize the effects of underfitting and overfitting

Avoiding overfitting issues

The commonly used methodologies are:

- **Cross- Validation:** A standard way to find out-of-sample prediction error is to use 5-fold cross validation.
- **Pruning:** Pruning is extensively used while building related models. It simply removes the nodes which add little predictive power for the problem in hand.
- **Regularization:** It introduces a cost term for bringing in more features with the objective function. Hence it tries to push the coefficients for many variables to zero and hence reduce cost term.

Exercise

Pick a machine learning task. Identify T,E and P. Propose a target function to be learned and a target representation. Discuss the tradeoffs considered in formulating this task.