Minimum Spanning Tree

Minimum Spanning Trees (MST)

- A minimum spanning tree is a subgraph of an undirected weighted graph **G**, such that
- it is a tree (i.e., it is acyclic)
- it covers (spans) all the vertices V contains |V| 1 edges
- the total cost is the minimum among all possible spanning trees
- not necessarily unique

Algorithm for MST

- Kruskal algorithm
 - A MST can be grown from a forest of spanning trees by adding the smallest edge connecting two spanning trees.
- Prims Algorithm
 - -A MST can be grown from the current spanning tree by adding the nearest vertex and the edge connecting the nearest vertex to the MST.

Prim's Algorithm

- Prim's algorithm starts from an vertex called root vertex.
- At each step it finds an minimum edge until it spans all the vertex in V.

The execution of Prim's algorithm

V	а	b	С	d	е	f	g	h	i
Τ	1	0	0	0	0	0	0	0	0
Key	0		\	-	6		-	-	-
π	-1	1-/	-		9	-	1	k-^^	_

V	а	b	С	d	е	f	g	h	-
Т	1	0	0	0	0	0	0	0	0
Ke	0	4	-	* <u>-</u> ,,	1	7-	-	8	-
У		A						Ĭ	
π	-1	a		-		-		a	

Important: Update Key[v] only if T[v]==0

V	а	b	С	d	Ф	f	g	h	i
Τ	1	1	0	0	0	0	0	0	0
Ke	0	4	8			-	-	8	-
У								Ĭ	
π	1	a	b			1		a	

V	а	р	С	d	е	f	g	h	-
Τ	1	1	1	0	0	0	0	0	0
Ke	0	4	8	7	1	4	_	8	2
У								Ĭ	•
π	7	a	b	С		С		a	Ü

V	а	b	С	d	е	f	g	h	i
Т	1	1	1	0	0	0	0	0	1
Ke	0	4	8	7	/ -	4	6	7	2
У						•			
π	7	a	b	С		0	i	·	С

V	а	b	С	d	е	f	g	h	i
Τ	1	1	1	0	0	1	0	0	1
Ke	0	4	8	7	10	4	2	7	2
У							*	ř	
π	7	a	b	С	f	С	ł	i	С

V	а	b	С	d	е	f	g	h	Ξ.
Τ	1	7	1	0	0	1	1	0	1
Ke	0	4	8	7	10	4	2	1	2
У								•	
π	-1	a	b	С	f	С	f	g	С

V	а	b	С	d	е	f	g	h	i
Т	1	1	1	0	0	1	1	1	1
Ke	0	4	8	7	10	4	2	1	2
У				A				Ĭ	
π	1	a	b	c	f	С	f	On	С

V	a	b	С	d	е	f	g	h	
Т	1	1	1	1	0	1	1	1	1
Ke	0	4	8	7	9	4	2	1	2
У					+	7		Ĭ	
π	7	a	b	С	a	С	f	9	С

V	а	b	С	d	е	f	g	h	
Т	1	7	1	1	1	1	1	1	1
Ke	0	4	8	7	9	4	2	1	2
У									
π	1	a	b	С	d	С	f	g	С

Kruskal's Algorithm

- In this case there is no root.
- At each step minimum edge is added without forming a cycle until it spans all the vertexes in the list.

Initial Stage

