1 Lorentz-invariant phase space

From Fermi's Golden Rule

$$\Gamma = 2\pi \left| \mathcal{M} \right|^2 R_n(E) \tag{1}$$

where R_n is the Lorentz-invariant phase space, similar to the density of states, or the number of possible states per energy interval per unit volume, dN/dE.

1.1 General case

The coordinate of a motion in phase space is given by a six-dimensional vector. In a universe with periodic boundary conditions, the elementary volume is $(2\pi)^3$.

Hence, the number of states available to one particle, using a Lorentz-invariant measure, is

$$N_{1} = \frac{\text{Total volume}}{\text{Elementary volume}}$$

$$= \frac{1}{(2\pi)^{3}} \int d^{3}\mathbf{x} \frac{d^{3}\mathbf{p}}{2E}$$

$$= \frac{V}{(2\pi)^{3}} \int \frac{d^{3}\mathbf{p}}{2E}$$
(2)

For n particles,

$$N_n = \frac{V^n}{(2\pi)^{3n}} \int \prod_{i=1}^{n-1} \frac{\mathrm{d}^3 \mathbf{p}_i}{2E_i}$$
 (3)

where the nth momentum is not integrated over due to conservation.

This constraint also be imposed with a Dirac delta function. Use the fact that

$$\int d\mathbf{p}_n \ \delta^{(3)} \left(\sum_{j=1}^n \mathbf{p}_j - \mathbf{p} \right) = \int d\mathbf{p}_n \ \delta^{(3)}(0) = 1$$
 (4)

to write

$$N_n = \frac{V^n}{(2\pi)^{3n}} \int \prod_{i=1}^n \frac{d^3 \mathbf{p}_i}{2E_i} \, \delta^{(3)} \left(\sum_{j=1}^n \mathbf{p}_j - \mathbf{p} \right)$$
 (5)

Now the density of states is defined

$$R_n(E) = \left. \frac{\mathrm{d}N_n}{\mathrm{d}E} \right|_{V=1} \tag{6}$$

so we have

$$R_n(E) = \frac{1}{(2\pi)^{3n}} \frac{d}{dE} \int \prod_{i=1}^n \frac{d^3 \mathbf{p}_i}{2E_i} \, \delta^{(3)} \left(\sum_{j=1}^n \mathbf{p}_j - \mathbf{p} \right)$$
 (7)

Energy is conserved through the statement

$$\int dE \, \delta\left(\sum_{k=1}^{n} E_k - E\right) = 1 \tag{8}$$

inserting this into the density of states

$$R_n(E) = \frac{1}{(2\pi)^{3n}} \int \prod_{i=1}^n \frac{\mathrm{d}^3 \mathbf{p}_i}{2E_i} \, \delta^{(3)} \left(\sum_{j=1}^n \mathbf{p}_j - \mathbf{p} \right) \, \delta \left(\sum_{k=1}^n E_k - E \right)$$
(9)

1.2 Two bodies

The expression $R_n(E)$ simplifies for n=2. For the centre-of-mass frame ($\mathbf{p}=$ 0), we have

$$R_{2}(E) = \frac{1}{(2\pi)^{6}} \int \frac{d^{3}\mathbf{p}_{1}}{2E_{1}} \int \frac{d^{3}\mathbf{p}_{2}}{2E_{2}} \delta^{(3)} \left(\mathbf{p}_{1} + \mathbf{p}_{2}\right) \delta\left(E_{1} + E_{2} - E\right)$$

$$= \frac{1}{(2\pi)^{6}} \int \frac{d^{3}\mathbf{p}_{1}}{4E_{1}E_{2}} \delta(E_{1} + E_{2} - E)$$

$$= \frac{4\pi}{(2\pi)^{6}} \int dp \, \frac{p^{2}}{4E_{1}E_{2}} \delta(E_{1} + E_{2} - E)$$
(10)

where the last step assumes no angular dependance on the momentum.

Now use $E_1 dE_1 = p dp$ so

$$R_2(E) = \frac{\pi}{(2\pi)^6} \int dE_1 \, \frac{p}{E_2} \, \delta(E_1 + E_2 - E)$$
 (11)

We can write E_2 in terms of E_1 :

$$E_2 = \sqrt{E_1^2 - m_1^2 + m_2^2} \tag{12}$$

Therefore

$$R_2(E) = \frac{\pi}{(2\pi)^6} \int dE_1 \, \frac{p}{E_2} \, \delta[f(E_1)] \tag{13}$$

where $f(E_1) = E_1 + \sqrt{E_1^2 - m_1^2 + m_2^2} - E$. Now use the fact that

$$\delta(f(x)) \left| \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x=0} = \delta(x) \tag{14}$$

and $f' = E/E_2$ to get the final result

$$R_2(E) = \frac{\pi}{(2\pi)^6} \int dE_1 \, \frac{p}{E} \, \delta(E_1)$$

$$R_2(E) = \frac{\pi}{(2\pi)^6} \, \frac{p}{E}$$
(15)