Bayesian Modelling – Problem Sheet 4

Please hand in your solutions for Problems 3-6 by 6pm on Wednesday 20/03/2019

Problem 1

In this problem we prove a result which allows to control the denominator of the posterior distribution. This result plays an important role in Bayesian asymptotic theory.

Let $\{\tilde{f}(\cdot|\theta), \theta \in \Theta\}$ be a family of p.d.f. on \mathcal{X}_1 , $\delta > 0$ and C > 0 be some constants, and let $\pi(\theta)$ be some p.d.f. on Θ . Let

$$B_{\delta} = \left\{ \theta \in \Theta : KL(\theta_0 | \theta) \le \delta^2, \mathbb{E}_{\theta_0} \left[\left(\log \frac{\tilde{f}(X_1 | \theta)}{\tilde{f}(X_1 | \theta_0)} \right)^2 \right] \le \delta^2 \right\}$$
 (1)

and, for $n \in \mathbb{N}$, let

$$D_{n,\delta,C} = \left\{ x^{(n)} \in \mathcal{X}_1^n : \int_{\Theta} \prod_{i=1}^n \frac{\tilde{f}(x_i|\theta)}{\tilde{f}(x_i|\theta_0)} \pi(\theta) d\theta \le \pi(B_\delta) e^{-(1+C)n\delta^2} \right\}.$$
 (2)

The goal of this problem is to show that

$$\mathbb{P}_{\theta_0}(D_{n,\delta,C}) \le \frac{1}{C^2 n \delta^2}, \quad \forall n \ge 1.$$
 (3)

- 1. Assume first that $\pi(B_{\delta}) = 1$.
 - a) Show that, for all $n \geq 1$,

$$\mathbb{P}_{\theta_0}(D_{n,\delta,C})$$

$$\leq \mathbb{P}_{\theta_0} \left(\left| \frac{1}{n} \sum_{i=1}^n \int_{B_{\delta}} \log \frac{\tilde{f}(X_i | \theta)}{\tilde{f}(X_i | \theta_0)} \pi(\theta) d\theta - \mathbb{E}_{\theta_0} \left[\int_{B_{\delta}} \log \frac{\tilde{f}(X_1 | \theta)}{\tilde{f}(X_1 | \theta_0)} \pi(\theta) d\theta \right] \right| \geq C\delta^2 \right).$$

Hint: Use Fubini's theorem and Jensen's inequality.

b) Show that, for all $n \geq 1$,

$$\mathbb{E}_{\theta_0} \left[\left(\int_{B_{\delta}} \log \frac{\tilde{f}(X_1 | \theta)}{\tilde{f}(X_1 | \theta_0)} \pi(\theta) d\theta \right)^2 \right] \leq \delta^2.$$

Hint: Use Fubini's theorem and Jensen's inequality.

- c) Using the results in parts 1.a) and 1.b), show that (3) holds.
- 2. Using the results in part 1, show that (3) also holds when $\pi(B_{\delta}) < 1$.

Problem 2

Let $(X_k)_{k\geq 1}$ be a sequence of i.i.d. random variables such that $X_1 \sim \tilde{f}(x_1|\theta_0)$ for some $\theta_0 \in \Theta \subset \mathbb{R}^d$ and where $\{\tilde{f}(\cdot|\theta), \theta \in \Theta\}$ is a parametric model for a single observation. Let $\pi(\theta)$ be the prior distribution for θ and, for $n \geq 1$, let $\pi(\theta|X^{(n)}) \propto \pi(\theta) \prod_{k=1}^n \tilde{f}(X_k|\theta)$ be the posterior distribution based on the observation $X^{(n)} := (X_1, \dots, X_n)$.

In this question we assume that the following conditions hold:

- (C_1) $\pi(\theta)$ is continuous and strictly positive on the set $(\theta_0 \delta_\pi, \theta_0 + \delta_\pi)$ for some $\delta_\pi > 0$.
- (C_2) For every sequence $M_n \to +\infty$ there exists a sequence of tests $(\phi_n)_{n\geq 1}$ such that $\mathbb{E}_{\theta_0}[\phi_n(X^{(n)})] \to 0$ and such that, for some constants $\epsilon > 0$ and D > 0, and for n large enough,

$$\mathbb{E}_{\theta}[1 - \phi_n(X^{(n)})] < e^{-D(\|\theta - \theta_0\|^2 \wedge \epsilon^2)}$$

for all θ such that $\|\theta - \theta_0\| \ge M_n / \sqrt{n}$.

(C₃) There exist constants $\delta > 0$ and $c_{\star} > 0$ such that, for all θ such that $\|\theta - \theta_{\star}\| \leq \delta$,

$$KL(\theta_0|\theta) \le c_\star^2 \|\theta - \theta_0\|^2, \quad \mathbb{E}_{\theta_0} \left[\left(\log \frac{\tilde{f}(X_1|\theta)}{\tilde{f}(X_1|\theta_0)} \right)^2 \right] \le c_\star^2 \|\theta - \theta_0\|^2.$$

Let $(M_n)_{n\geq 1}$ be an arbitrary sequence in $\mathbb{R}_{>0}$ such that $\lim_{n\to +\infty} M_n = +\infty$ and $\lim_{n\to +\infty} M_n n^{-1/2} = 0$. The goal of this problem is to show that, under (C_1) - (C_3) ,

$$\pi(\{\theta: \|\theta - \theta_0\| \ge M_n n^{-1/2}\} | X^{(n)}) \to 0, \text{ in } \mathbb{P}_{\theta_0}\text{-probability},$$
 (4)

i.e. that $\pi(\theta|X^{(n)})$ converges to θ_0 at rate $n^{-1/2}$.

1. We first show that

$$\lim_{n \to +\infty} \sup_{\theta \to +\infty} \mathbb{E}_{\theta_0} \left[\pi \left(\{ \theta : \epsilon_n \le \|\theta - \theta_0\| < \epsilon \} | X^{(n)} \right) \right] = 0$$
 (5)

where $\epsilon > 0$ is as in (C_2) and where $\epsilon_n = M_n n^{-1/2}$.

Let $M = \sqrt{D/4}$, with D as in (C_2) , and $\delta_n = M\epsilon_n$.

a) Using the result of Problem 1 show that

$$\lim_{n \to +\infty} \sup_{n \to +\infty} \mathbb{E}_{\theta_0} \left[\pi \left(\{ \theta : \epsilon_n \le \|\theta - \theta_0\| < \epsilon \} | X^{(n)} \right) \right] \\
\le \lim_{n \to +\infty} \sup_{n \to +\infty} \mathbb{E}_{\theta_0} \left[\mathbb{1}_{D_{n,\delta_n,1}^c} (X^{(n)}) (1 - \phi_n(X^{(n)})) \pi \left(\{ \theta : \epsilon_n \le \|\theta - \theta_0\| < \epsilon \} | X^{(n)} \right) \right]$$

where for every $\delta > 0$ the set $D_{n,\delta,1}$ is defined in (2) (with C = 1).

b) Let J be the smallest integer such that $(J+1)\epsilon_n > \epsilon$ and let

$$\Theta_{n,j} = \left\{ \theta : j\epsilon_n \le |\theta - \theta_0| \le \min\left((j+1)\epsilon_n, \epsilon\right) \right\}, \quad j = 1, \dots, J.$$

Show that, for n large enough,

$$\mathbb{E}_{\theta_0} \left[\mathbb{1}_{D_{n,\delta_n,1}^c} (X^{(n)}) (1 - \phi_n(X^{(n)})) \pi \left(\Theta_{n,j} | X^{(n)} \right) \right]$$

$$\leq e^{2M^2 M_n^2 - Dj^2 M_n^2} \frac{\pi(\Theta_{n,j})}{\pi(B_{\delta_n})}, \quad \forall j \in \{1, \dots, J\}$$

where for every $\delta > 0$ the set B_{δ} is defined in (1).

- c) Show that, under (C_1) and (C_3) , there exists a constant $\underline{L} > 0$ such that, for n large enough, $\pi(B_{\delta_n}) \geq \underline{L} \, \delta_n^d$.
- d) Show that, under (C_1) , there exists a constant $\bar{L} > 0$ such that, for n large enough, $\pi(\Theta_{n,j}) \leq \bar{L}\epsilon_n^d$ for all $j \in \{1, \ldots, J\}$.

Hint: Remark that, in (C2), $\epsilon > 0$ can be taken arbitrarily small.

e) Using the results in parts 1.b)-1.d), and recalling that $M = \sqrt{D/4}$, show that there exists a constant $\bar{C} > 0$ such that, for n large enough,

$$\mathbb{E}_{\theta_0} \left[\mathbb{1}_{D_{n,\delta_n,1}^c}(X^{(n)}) (1 - \phi_n(X^{(n)})) \pi \left(\{\theta : \epsilon_n \le \|\theta - \theta_0\| < \epsilon \} | X^{(n)} \right) \right] \le \bar{C} e^{-\frac{1}{2}DM_n^2}$$

and deduce that (5) holds.

2. We now show that

$$\lim_{n \to +\infty} \sup_{\theta \to +\infty} \mathbb{E}_{\theta_0} \left[\pi \left(\{ \theta : \| \theta - \theta_0 \| \ge \epsilon \} | X^{(n)} \right) \right] = 0 \tag{6}$$

where we recall that $\epsilon > 0$ is as in (C_2) .

Let
$$\tilde{M} = \sqrt{d/2}$$
 and $\gamma_n = \tilde{M} \sqrt{\log(n)/n}$

a) Show that, for n large enough,

$$\mathbb{E}_{\theta_0} \left[\mathbb{1}_{D_{n,\gamma_n,1}^c} (X^{(n)}) (1 - \phi_n(X^{(n)})) \pi \left(\{ \theta : \|\theta - \theta_0\| \ge \epsilon \} | X^{(n)} \right) \right]$$

$$\le \frac{e^{-\log(n)2\tilde{M}^2 + \frac{d}{2}\log(n)}}{L\tilde{M}^d} (\log(n))^{-d/2}$$

with $\underline{L} > 0$ is as in part 1.c). Recall that for every $\delta > 0$ the set $D_{n,\delta,1}$ is defined in (2) (with C = 1).

Hint: Use similar computations as in part 1.b).

- b) Using the result in part 2.a) and similar computations as in part 1.a), show (6).
- 3. Using (5) and (6), show (4).

Problem 3

• (Markov's inequality) Let X be a real valued random variable, $p \ge 1$ be such that $\mathbb{E}[|X|^p] < +\infty$ and $\epsilon > 0$. Show that

$$\mathbb{P}(|X| \ge \epsilon) \le \frac{\mathbb{E}[|X|^p]}{\epsilon^p}.$$

- (Law of large numbers) Let $(Z_k)_{k\geq 1}$ be a sequence of i.i.d. real-valued random variables such that $\mathbb{E}[Z_1^4] < +\infty$.
 - 1. Assume first that $\mathbb{E}[Z_1] = 0$.
 - a) Show that $\mathbb{E}\left[\left(\sum_{k=1}^n Z_k\right)^4\right] = n\mathbb{E}[Z_1^4] + 3n(n-1)\mathbb{E}[Z_1^2]^2$.
 - b) Using the result of part 1.a), show that

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} Z_k = 0, \text{ almost surely.}$$

2. Using the result of part 1.b), show that

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} Z_k = \mathbb{E}[Z_1], \quad \text{almost surely.}$$
 (7)

Remark: Recall that for (7) to hold it is enough that $\mathbb{E}[|Z_1|] < +\infty$. The assumption $\mathbb{E}[Z_1^4] < +\infty$ is only made to (greatly) simplify the proof.

Problem 4

Let $(X_k)_{k\geq 1}$ be a sequence of i.i.d. random variables such that $X_1 \sim \tilde{f}(x_1|\theta_0)$ for some $\theta_0 \in \Theta := \mathbb{R}^d$ and where $\{\tilde{f}(\cdot|\theta), \theta \in \Theta\}$ is a parametric model for a single observation. Let $\pi(\theta)$ be the prior distribution for θ and, for $n \geq 1$, let $\pi(\theta|X^{(n)}) \propto \pi(\theta) \prod_{k=1}^n \tilde{f}(X_k|\theta)$ be the posterior distribution based on the observation $X^{(n)} := (X_1, \dots, X_n)$.

The goal of this problem is to prove a weaker version of Schwartz's theorem, establishing that

$$\pi(\{\theta: \|\theta - \theta_0\| \ge \epsilon\} | X^{(n)}) \to 0 \quad \text{in } \mathbb{P}_{\theta_0} - \text{probability}, \quad \forall \epsilon > 0.$$
 (8)

To this aim, we assume that Condition (A2) given in Theorem 6.1 of the lecture notes and Condition (C3) of Problem 2 hold.

1. Using the result of Problem 1 show that, for every $\delta > 0$ and $\epsilon > 0$,

$$\limsup_{n \to +\infty} \mathbb{E}_{\theta_0} \left[\pi \left(\{ \theta : \| \theta - \theta_0 \| \ge \epsilon \} | X^{(n)} \right) \right]
\leq \limsup_{n \to +\infty} \mathbb{E}_{\theta_0} \left[\mathbb{1}_{D_{n,\delta,1}^c}(X^{(n)}) (1 - \phi_n(X^{(n)})) \pi \left(\{ \theta : \| \theta - \theta_0 \| \ge \epsilon \} | X^{(n)} \right) \right]$$

where the set $D_{n,\delta,1}$ is defined in (2) (with C=1) and where ϕ_n is as in Condition (A2) of Theorem 6.1.

2. Show that, for every $\delta > 0$, $\epsilon > 0$ and $n \geq 1$, we have

$$\mathbb{E}_{\theta_0} \left[\mathbb{1}_{D_{n,\delta,1}^c}(X^{(n)}) (1 - \phi_n(X^{(n)})) \pi \left(\{ \theta : \|\theta - \theta_0\| \ge \epsilon \} | X^{(n)} \right) \right] \le \frac{e^{2n\delta^2}}{\pi(B_\delta)} e^{-nD_2}$$

with $D_2 > 0$ as in Condition (A2) of Theorem 6.1 and where the set B_{δ} is defined in (1).

3. Remark that under Condition (C3) of Problem 2, for very $\gamma > 0$ sufficiently small we have

$$\{\theta: \|\theta - \theta_0\| < \gamma/c_{\star}\} \subset B_{\gamma}$$

with c_{\star} as in (C3). Use this result to provide a simple sufficient condition on the prior distribution $\pi(\theta)$ which ensures that, for every $\delta > 0$, there exists a constant $c_{\delta} > 0$ such that $\pi(B_{\delta}) \geq c_{\delta}$.

4. Assuming that $\pi(\theta)$ satisfies the condition of part 3, and using the results in parts 1-2, show that

$$\lim_{n \to +\infty} \sup_{\theta \to +\infty} \mathbb{E}_{\theta_0} \left[\pi \left(\{ \theta : \|\theta - \theta_0\| \ge \epsilon \} | X^{(n)} \right) \right] = 0, \quad \forall \epsilon > 0.$$

5. Using the result in part 4, show (8).

Problem 5

Let $(X_k)_{k\geq 1}$ be a sequence of i.i.d. $\mathcal{N}_1(\theta_0, 1)$ random variables, with $\theta_0 \in \Theta := \mathbb{R}$, and for every $\theta \in \Theta$ let $\tilde{f}(\cdot|\theta)$ be the p.d.f. of the $\mathcal{N}_1(\theta, 1)$ distribution, with $\theta \in \Theta$.

In this problem we show that $(X_k)_{k\geq 1}$ and $\{\tilde{f}(\cdot|\theta), \theta \in \Theta\}$ verify Condition (A2) given in Theorem 6.1 of the lecture notes as well as Conditions (C2) and (C3) of Problem 2, and thus that the posterior distribution $\pi(\theta|X^{(n)})$ is both consistent (in the sense of Definition 6.1) and converges to θ_0 at rate $n^{-1/2}$ (provided that $\pi(\theta)$ has positive mass around θ_0).

- 1. We first show that Condition (A2) of Theorem 6.1 holds.
 - a) Show that,

$$\frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^2/2} dt \le \frac{e^{-x^2/2}}{x\sqrt{2\pi}}, \quad \forall x > 0.$$

b) Let $\epsilon > 0$, $n \in \mathbb{N}$ and $\psi_n(X^{(n)}) = \mathbb{1}(|\bar{X}_n - \theta_0| \ge \epsilon/2)$ where $\bar{X}_n = n^{-1} \sum_{k=1}^n X_k$. Using the result in part 1.a) show that

$$\mathbb{E}_{\theta_0}[\psi_n(X^{(n)})] \le \frac{4e^{-n\epsilon^2/8}}{\sqrt{n}\epsilon\sqrt{2\pi}}, \quad \mathbb{E}_{\theta}[1 - \psi_n(X^{(n)})] \le \frac{4e^{-n|\theta - \theta_0|^2/8}}{\sqrt{n}|\theta - \theta_0|\sqrt{2\pi}}$$

for all θ such that $|\theta - \theta_0| \ge \epsilon$.

Hint: For this question it may be useful to recall that $|x-y| \ge |x-z| - |z-y|$ for any real numbers x, y, z

- c) Using the results in part 1.b), show that Condition (A2) of Theorem 6.1 holds.
- 2. Using the results in part 1.b), show that Condition (C2) of Problem 2 holds.
- 3. We now show that Condition (C3) of Problem 2 holds.
 - a) Show that, for any $(\theta, \tilde{\theta}) \in \mathbb{R}^2$, we have

$$KL(\tilde{\theta}|\theta) = \frac{(\theta - \tilde{\theta})^2}{2}.$$

b) Show that

$$\mathbb{E}_{\tilde{\theta}} \left[\left(\log \frac{\tilde{f}(X_1 | \tilde{\theta})}{\tilde{f}(X_1 | \theta)} \right)^2 \right] = \frac{(\theta - \tilde{\theta})^2}{4} \left((\theta + \tilde{\theta})^2 + 4(1 + \tilde{\theta}^2) - 4\tilde{\theta}(\theta + \tilde{\theta}) \right).$$

c) Using the results in part 3.a)-3.b), show that Condition (C3) of Problem 2 holds.

Problem 6

Let X_1, \ldots, X_n be n random variables that we model as independent $\mathcal{N}_1(\theta, 1)$ random variables, with $\theta \in \Theta := \mathbb{R}$. We assign to θ the $\mathcal{N}_1(\mu_0, \sigma_0^2)$ distribution as prior distribution, so that the posterior distribution $\pi(\theta|X^{(n)})$ is given by

$$\pi(\theta|X^{(n)}) = \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp\left(-\frac{(\theta-\mu_n)^2}{2\sigma_n^2}\right), \quad \theta \in \Theta$$

where

$$\mu_n = \frac{1}{1 + n\sigma_0^2} \mu_0 + \frac{\sigma_0^2}{1 + n\sigma_0^2} \sum_{k=1}^n X_k, \qquad \sigma_n^2 = \frac{\sigma_0^2}{1 + n\sigma_0^2}.$$

The maximum likelihood estimator of θ is given by $\hat{\theta}_n = \frac{1}{n} \sum_{k=1}^n X_k$.

- 1. Give the Highest Posterior Density (HPD) region at level $(1-\alpha)$, with $\alpha \in (0,1)$.
- 2. We first assume that the model is well-specified, i.e. that X_1, \ldots, X_n are independent and identically distributed random variables such that $X_1 \sim \mathcal{N}_1(\theta_0, 1)$ for some $\theta_0 \in \Theta$.
 - a) Let $S_n = \sqrt{n}(\theta \hat{\theta}_n)$ and $\pi^*(s|X^{(n)})$ be the probability density function of the posterior distribution of S_n given $X^{(n)}$.

Show that, for every $s \in \mathbb{R}$,

$$\lim_{n \to +\infty} \pi^*(s|X^{(n)}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{s^2}{2}} \quad \mathbb{P}_{\theta_0} - \text{almost surely.}$$
 (9)

Remark that, by Scheffé's lemma, (9) implies that, as $n \to +\infty$, we have $\sqrt{n}(\theta - \hat{\theta}_n)|X^{(n)} \stackrel{\text{dist.}}{\Longrightarrow} \mathcal{N}_1(0,1)$, \mathbb{P}_{θ_0} -almost surely.

- b) Give the confidence interval at level 1α centred at $\hat{\theta}_n$.
- c) Use these results to compare, as $n \to +\infty$, the credible interval at level $1-\alpha$ computed in part 1 and the confidence interval at level $1-\alpha$ computed in part 2.b).
- 3. We now assume that the model is misspecified. More precisely, we assume that X_1, \ldots, X_n are independent and identically distributed random variables such that $X_1 \sim t_6(\theta_0, 1)$ for a $\theta_0 \in \Theta$. Here, $t_6(\theta_0, 1)$ denotes the Student-t distribution with location parameter θ_0 , scale parameter 1 and 6 degrees of freedom. Note that $\mathbb{E}_0[X_1] = \theta_0$ while $\operatorname{Var}_0(X_1) = 1.5$ where, as in the lecture notes, the subscript 0 refers to the true distribution of the observations
 - a) Using the result in part 2.a) deduce that, as $n \to +\infty$, we have $\sqrt{n}(\theta \hat{\theta}_n)|X^{(n)} \stackrel{\text{dist}}{\Longrightarrow} \mathcal{N}_1(0,1)$, \mathbb{P}_0 -almost surely.
 - b) Show that, as $n \to +\infty$, we have $\sqrt{n}(\hat{\theta}_n \theta_0) \stackrel{\text{dist.}}{\Longrightarrow} \mathcal{N}_1(0, 1.5)$ and give the confidence interval at level 1α centred at $\hat{\theta}_n$.
 - c) Use these results to compare, as $n \to +\infty$, the credible interval at level 1α computed in part 1. and the confidence interval at level 1α computed in part 3.c).
- 4. What do you conclude about the frequentist properties of credible intervals?