

NHẬP MÔN MẠCH SỐ

CHƯƠNG 4: BÌA KARNAUGH

Nội dung

- Tổng quan
- Các dạng biểu diễn biểu thức logic
- Thiết kế một mạch số
- Bìa Karnaugh (bản đồ Karnaugh)

Tổng quan

Chương này sẽ học về:

- Phương pháp đánh giá ngõ ra của một mạch logic cho trước.
- Phương pháp thiết kế một mạch logic từ biểu thức đại số cho trước.
- Phương pháp thiết kế một mạch logic từ yêu cầu cho trước.
- Các phương pháp để đơn giản/tối ưu một mạch logic
 → giúp cho mạch thiết kế được tối ưu về diện tích, chi phí và tốc độ.

Nội dung

- Tổng quan
- Các dạng biểu diễn biểu thức logic
 - ☐ Khái niệm tích chuẩn, tổng chuẩn
 - □ Dạng chính tắc (Canonical form)
 - □ Dạng chuẩn (Standard form)
- Thiết kế một mạch số
- Bìa Karnaugh (bản đồ Karnaugh)

Khái niệm Tích chuẩn và Tổng chuẩn

- Tích chuẩn (minterm): m_i là các *số hạng tích* (AND) mà tất cả các biến xuất hiện ở dạng bình thường (nếu là 1) hoặc dạng bù (complement) (nếu là 0)
- <u>Tổng chuẩn (Maxterm)</u>: M_i là các *số hạng tổng* (OR) mà tất cả các biến xuất hiện ở dạng bình thường (nếu là 0) hoặc dạng bù (complement) (nếu là 1)

X	y	Z	Minterms	Maxterms
0	0	0	$m_0 = \overline{x} \overline{y} \overline{z}$	$M_0 = x + y + z$
0	0	1	$m_1 = \overline{x} \overline{y} z$	$M_1 = x + y + \overline{z}$
0	1	0	$m_2 = \overline{x} \ y \overline{z}$	$M_2 = x + \overline{y} + z$
0	1	1	$m_3 = \overline{x} y z$	$M_3 = x + \overline{y} + \overline{z}$
1	0	0	$m_4 = x \overline{y} \overline{z}$	$M_4 = \overline{x} + y + z$
1	0	1	$m_5 = x \overline{y} z$	$M_5 = \overline{x} + y + \overline{z}$
1	1	0	$m_6 = x y \overline{z}$	$M_6 = \overline{x} + \overline{y} + z$
1	1	1	$m_7 = x y z$	$M_7 = \overline{x} + \overline{y} + \overline{z}$

Dạng chính tắc 1: là dạng tổng của các tích chuẩn_1 (Minterms_1) (tích chuẩn_1 là tích chuẩn mà tại tổ hợp đó hàm Boolean có giá trị 1).

X	y	Z	Minterms	Maxterms	F	\overline{F}
0	0	0	$m_0 = \overline{x} \overline{y} \overline{z}$	$M_0 = x + y + z$	0	1
0	0	1	$m_1 = \overline{x} \ \overline{y} \ z$	$M_1 = x + y + \overline{z}$	1	0
0	1	0	$m_2 = \overline{x} \ y \overline{z}$	$M_2 = x + \overline{y} + z$	0	1
0	1	1	$m_3 = \overline{x} y z$	$M_3 = x + \overline{y} + \overline{z}$	1	0
1	0	0	$m_4 = x \overline{y} \overline{z}$	$M_4 = \overline{x} + y + z$	1	0
1	0	1	$m_5 = x \overline{y} z$	$M_5 = \overline{x} + y + \overline{z}$	0	1
1	1	0	$m_6 = x y \overline{z}$	$M_6 = \overline{x} + \overline{y} + z$	0	1
1	1	1	$m_7 = x y z$	$M_7 = \overline{x} + \overline{y} + \overline{z}$	0	1

$$F(x, y, z) = \overline{x} \overline{y} z + \overline{x} y z + x \overline{y} \overline{z} = m_1 + m_3 + m_4$$
$$= \sum$$

■ <u>Dạng chính tắc 2:</u> là dạng *tích của các tổng chuẩn_0 (Maxterms_0)* (*tổng chuẩn_0* là tổng chuẩn mà tại tổ hợp đó hàm Boolean có giá trị 0).

X	y	Z	Minterms	Maxterms	F	\overline{F}
0	0	0	$m_0 = \overline{x} \overline{y} \overline{z}$	$M_0 = x + y + z$	0	1
0	0	1	$m_1 = \overline{x} \overline{y} z$	$M_1 = x + y + \overline{z}$	1	0
0	1	0	$m_2 = \overline{x} \ y \overline{z}$	$M_2 = x + \overline{y} + z$	0	1
0	1	1	$m_3 = \overline{x} y z$	$M_3 = x + \overline{y} + \overline{z}$	1	0
1	0	0	$m_4 = x \overline{y} \overline{z}$	$M_4 = \overline{x} + y + z$	1	0
1	0	1	$m_5 = x \overline{y} z$	$M_5 = \overline{x} + y + \overline{z}$	0	1
1	1	0	$m_6 = x y \overline{z}$	$M_6 = \overline{x} + \overline{y} + z$	0	1
1	1	1	$m_7 = x y z$	$M_7 = \overline{x} + \overline{y} + \overline{z}$	0	1

$$F(x, y, z) = (x + y + z)(x + \overline{y} + z)(\overline{x} + y + \overline{z})(\overline{x} + \overline{y} + z)(\overline{x} + \overline{y} + \overline{z})$$

$$= M_0 M_2 M_5 M_6 M_7$$

$$= \prod$$

Tổng các tích chuẩn Sum of Minterms	Tích các tổng chuẩn Product of Maxterms
Σ	Π
Chỉ quan tâm hàng có giá trị 1	Chỉ quan tâm hàng có giá trị 0
$X = 0$: viết \overline{X}	X = 0: viết X
X = 1: viết X	$X = 1$: viết \overline{X}

■ Trường hợp tùy định (don't care)

\boldsymbol{A}	В	C	F
0	0	0	X
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	\boldsymbol{X}

☐ Hàm Boolean theo dạng chính tắc:

$$F(A, B, C) = \Sigma(2, 3, 5) + d(0, 7)$$
 (chính tắc 1)
= $\Pi(1, 4, 6) \cdot D(0, 7)$ (chính tắc 2)

Ví dụ

- Câu hỏi: Trong các biểu thức sau, biểu thức nào ở dạng chính tắc?
 - a. XYZ + X'Y'
 - b. X'YZ + XY'Z + XYZ'
 - \mathbf{c} . $\mathbf{X} + \mathbf{Y}\mathbf{Z}$
 - d. X + Y + Z
 - e. (X+Y)(Y+Z)
- Trả lời:

Dạng chuẩn (Standard Form)

- Dạng chính tắc có thể được đơn giản hoá để thành dạng chuẩn tương đương
 - Dổ dạng đơn giản hoá này, có thể có ít nhóm AND/OR và/hoặc các nhóm này có ít biến hơn
- Dạng tổng các tích SoP (Sum-of-Product)
- Dạng tích các tổng PoS (Product-of-Sum)

Có thể chuyển SoP về dạng chính tắc bằng cách AND thêm (x+x') và PoS về dạng chính tắc bằng cách OR thêm xx'

Ví dụ

■ Câu hỏi: Trong các biểu thức sau, biểu thức nào ở dạng chuẩn?

- a. XYZ + X'Y'
- b. X'YZ + XY'Z + XYZ'
- $\mathbf{c}. \mathbf{X} + \mathbf{Y}\mathbf{Z}$
- d. X + Y + Z
- e. (X+Y)(Y+Z)

Trả lời:

Nội dung

- Tổng quan
- Các dạng biểu diễn biểu thức logic
- Thiết kế một mạch số
- Bìa Karnaugh (bản đồ Karnaugh)

Thiết kế một mạch số

- Thiết kế một mạch logic số với
 - □3 ngõ vào
 - □1 ngõ ra
 - ☐ Kết quả ngõ ra bằng 1 khi có từ 2 ngõ vào trở lên có giá trị bằng 1

Bước 1: Xây dựng bảng sự thật/chân trị

	•		
A	В	C	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Bước 2: Chuyển bảng sự thật sang biểu thức logic

Bước 3: Đơn giản biểu thức logic qua biến đổi đại số nhằm làm giảm số cổng logic cần sử dụng (nhằm làm giảm chi phí thiết kế)

$$x = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

■ **Bước 4:** Vẽ sơ đồ mạch logic cho

$$x = BC + AC + AB$$

Chi phí thiết kế một mạch logic số

- Chi phí (cost) để tạo ra một mạch logic số liên quan đến:
 - Số cổng (gates) được sử dụng
 - ☐ Số đầu vào của mỗi cổng

Chi phí thiết kế một mạch logic số

Chi phí của một biểu thức Boolean B được biểu diễn dưới dạng tổng của các tích (Sum-of-Product) như sau:

$$C(B) = O(B) + \sum_{j=0}^{K-1} P_j(B)$$

Trong đó K là số các term (thành phần tích) trong biểu thức B

O(B): số các term trong biểu thức B

P_J(B): số các literal (biến) trong term thứ j của biểu thức B

$$O(B) = \begin{cases} m & \text{n\'eu } B \text{ c\'o } m \text{ term} \\ 0 & \text{n\'eu } B \text{ c\'o } 1 \text{ term} \end{cases}$$

$$P_{j}(B) = \begin{cases} m & \text{n\'eu term th\'e } j \text{ c\'ua } B \text{ c\'o } m \text{ literal} \\ 0 & \text{n\'eu term th\'e } j \text{ c\'ua } B \text{ c\'o } 1 \text{ literal} \end{cases}$$

Chi phí thiết kế một mạch logic số

Tính chi phí thiết kế mạch logic số của các biểu thức sau:

$$fl(w,x,y,z) = wxy'z + wxyz'$$

$$f2(w,x,y,z) = w' + x' + yz + y'z'$$

$$g1(XYZ) = XY + X'Z + YZ$$

$$g2(XYZ) = XY + X'Z$$

$$h1(a,b) = ab$$

$$h2(a,b) = b'$$

Hạn chế của việc rút gọn bằng biến đổi đại số

- Hai vấn đề của việc rút gọn biểu thức trong bước 3 dùng các phép biến đổi đại số nhằm giảm chi phí thiết kế:
 - ☐ Không có hệ thống
 - Rất khó để kiểm tra rằng giải pháp tìm ra đã là tối ưu hay chưa?
- Bìa Karnaugh sẽ khắc phục những nhược điểm này
- Tuy nhiên, bìa Karnaugh chỉ để giải quyết các hàm Boolean có không quá 5 biến

Tóm tắt nội dung chương học

- Qua Phần 1 Chương 4, sinh viên cần nắm những nội dung chính sau:
 - Các dạng biểu diễn một biểu thức logic
 - ☐ Quy trình thiết kế một mạch số
 - Dánh giá chi phí thiết kế của một mạch số

Thảo luận?

