Содержание

Ι	1 семестр		2
	0.1 Классификация линейных уравнений 2 порядка		3
	0.2 Канонические формы уравнений с постоянными коэффициентами		3
1	Глава Уравнения гиперболического типа		3
_	1.1 Вывод уравнения колебаний струны		3
	1.2 Декомпозиция общей задачи		3
	1.3 Метод распространяющихся волн. Формула Даламбера		3
	1.4 Неоднородное уравнение		3
	1.5 Единственность и непрерывная зависимость		3
	1.6 Единственность решения 1 НКЗ		3
	1.7 Задачи на полупрямой		3
	1.8 Корректность краевых задач (задач матфизики). Пример Адамара		3
	1.9 Метод разделения переменных (Метод Фурье)		3
	1.10 Представление решения ОДУ		3
	1.11 Задача Гурса		3
_			
2	Глава Уравнения параболического типа		3
	2.1 Уравнение теплопроводности		3
	2.2 Неоднородное уравнение теплопроводности		3
	2.3 Принцип максимума		3
	2.4 Теорема единственности для задачи Коши		č
	2.5 Метод разделения переменных		3
3	Глава Уравнения эллиптического типа		9
J	3.1 Основные задачи		ر 0
	3.2 Фундаментальные решения уравнения Лапласа		9
	3.3 Формулы Грина		9
	0.0		٠
тт			
II	2 семестр		3
4	Краевая задача для уравнения Лапласа в круге		3
_	4.1 Уравнение Лапласа в полярных координатах и построение формального решения		4
	4.2 Краевая задача для уравнения Лапласа вне круга и её решение		6
	Tipudadi suga in puni puantimi vianuma and ripyra ii de pomenia () () () () () ()		
5	Общие свойства решения краевых задач для уравнений эллиптического типа в \mathbb{R}^3		7
	5.1 Уравнения Лапласа гармонических функций		7
	5.2 Интегральное представление функций		8
0	T7 1	-	
6	Классификация интегральных уравнений 1		LI
7	Физические примеры	1	11
8	Особенности постановок задач для уравнения Фредгольма	1	12
9	Некоторые сведения из функционального анализа	1	12
10	Собственные функции и собственные значения однородного уравнения Φ редгольма 2	рода 1	15
11	Численные методы решения интегральных уравнений	1	17
12	2 Определение собственных значений и собственных функций однородного уравнения Фредгольма 2 рода по методу Келлога 1		
13	Разложение по собственным функциям	1	19

14 Неоднородное уравнение Фредгольма II рода
14.1 Случай симметричного ядра
14.2 Случай малого λ
15 Преобразование Фурье
15.1 Преобразование Фурье абсолютно интегрируемых функций
15.2 Преобразование Фурье быстро убывающих функций
15.2.1 Быстро убывающие функции
15.2.2 Свойства быстро убывающих функций
15.2.3 Преобразование Фурье быстро убывающих функций
15.2.4 Свойства преобразования Фурье быстро убывающих функций
15.3 Применение преобразования Фурье к задаче колебания струны

Часть І

1 семестр

- 0.1 Классификация линейных уравнений 2 порядка
- 0.2 Канонические формы уравнений с постоянными коэффициентами
- 1 Глава Уравнения гиперболического типа
- 1.1 Вывод уравнения колебаний струны
- 1.2 Декомпозиция общей задачи
- 1.3 Метод распространяющихся волн. Формула Даламбера
- 1.4 Неоднородное уравнение
- 1.5 Единственность и непрерывная зависимость
- 1.6 Единственность решения 1 НКЗ
- 1.7 Задачи на полупрямой
- 1.8 Корректность краевых задач (задач матфизики). Пример Адамара
- 1.9 Метод разделения переменных (Метод Фурье)
- 1.10 Представление решения ОДУ
- 1.11 Задача Гурса
- 2 Глава Уравнения параболического типа
- 2.1 Уравнение теплопроводности
- 2.2 Неоднородное уравнение теплопроводности
- 2.3 Принцип максимума
- 2.4 Теорема единственности для задачи Коши
- 2.5 Метод разделения переменных
- 3 Глава Уравнения эллиптического типа
- 3.1 Основные задачи
- 3.2 Фундаментальные решения уравнения Лапласа
- 3.3 Формулы Грина

Часть II

2 семестр

4 Краевая задача для уравнения Лапласа в круге

Пусть $u=u(x,y),\,(x,y)\in R^2.$ $\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}$ - оператор Лапласа.

Иногда будем записывать $\Delta u = \Delta_{x,y} u$, подтверждая что дифференцирование ведется по переменным x, y.

Часто встречаются задачи, где уравнения вида $\Delta u=0$, то есть Δ - оператор Лапласа, либо $\Delta u=g(x,y)$ - уравнение Пуассона.

Такие уравнения могут возникать например из задач для параболических уравнений. Пусть u=u(x,y,t) - температура некоторой пластинки в момент времени t.

Функция температуры удовлетворяет уравнению (парабол):

$$\frac{\partial v}{\partial t} = a^2 \Delta v, \quad t > 0$$

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}, \quad (x,y) \in D$$
 (пластинка)

Если v = v(x, y, t) - решение уравнения, и мы ищем решения не зависящие явно от t, тогда полагая v(x, y, t) = u(x, y) получаем что $\Delta u = 0$.

В этом случае функция u(x,y) задает стационарное распределение температуры в пластинке D.

В общем случае конфигурация пластинки D может быть достаточно сложной, так же как и граница пластинки и может описываться сложными уравнениями.

Но в некоторых случаях, таких как D - внутренность или внешность круга или кольца, задача успешно решается путем перехода к полярным координатам и применения метода Φ урье.

4.1 Уравнение Лапласа в полярных координатах и построение формального решения

Область D: круг, внешность круга или кольцы

Само уравнение $\Delta u = 0$ "работает" внутри области D. На границе области задаются значения u(x,y) = h(x,y) (известно).

Переходим к полярным координатам:

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

В дальнейшем считаем что r>0. Система r,φ соответствует началу координат и будет рассматриваться особо. Пусть $u=u(r,\varphi)$. Тогда замена и переход к Δ в полярных координатах:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \cdot \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \omega^2} \tag{1}$$

Далее введем оговорки что $u = u(r, \varphi)$, угол φ меняется в диапазоне либо $[0; 2\pi]$ либо $[-\pi; \pi]$. Найдем формальное решение уравнения:

$$\Delta_{r,\omega} u = 0, \quad r > 0 \tag{2}$$

Формальное решение строим по методу Фурье полагая что $u(r,\varphi) = R(r) \cdot \Phi(\varphi)$, где $R \neq 0$, $\Phi \neq 0$ - искомые формы.

Подставим $u(r,\varphi) = R(r) \cdot \Phi(\varphi)$ в (2):

$$\frac{\Phi}{r}\frac{d}{dr}\left(r\frac{dR}{dr}\right)\cdot\Phi + \frac{1}{r^2}R\cdot\frac{d^2\Phi}{d\varphi^2} = 0, \quad r > 0$$
(3)

$$\frac{\frac{d}{dr}(r\frac{dR}{dr})}{\frac{R}{r}} = \frac{-\frac{d^2\Phi}{d\phi^2}}{\Phi} = \lambda, > 0, \lambda = const$$
(4)

Из (4) получаем два уравнения (*):

$$\frac{d^2\Phi}{d\omega^2} = -\lambda\Phi$$

$$r\frac{d}{dr}\left(r\frac{dR}{dr}\right) - \lambda R = 0, \quad r > 0$$

Нужно найти нетривиальное решение уравнений, с учетом параметра λ .

Заметим, что искомая функция $u(r,\varphi)$ по построению должна быть однозначной и определенной как функция u(x,y), это означает, что при повороте заданного угла φ на 2π должно получиться то же самое значение функции. То есть $u(r,\varphi)=u(r,\varphi+2\pi)$.

Функция $\Phi(\varphi)$ должна быть 2π периодичной

Имея в виду это дополнительное условие, решаем уравнения (*)

будет функция

$$\Phi_k(\varphi) = a_k \cos(\sqrt{\lambda_k} \cdot \varphi) + b_k \sin(\sqrt{\lambda_k} \cdot \varphi),$$

$$(r\frac{d}{dr} \left(r\frac{dR_k}{dr} \right) - \lambda_k R_k = 0, \quad r > 0)$$

$$\lambda_k = k^2, k = 0, 1, 2, \dots$$

При $\lambda_k = k^2, a_k, b_k - const$

$$\Phi_k(\varphi) = a_k \cos(k\varphi) + b_k \sin(k\varphi), \quad k = 0, 1, \dots$$
 (5)

Теперь фиксируем числа $\lambda_k=k^2$ и решаем уравнение $(*)_2$ Пусть $\mathbf{k}=0$

$$r \cdot \frac{d}{dr} (r \cdot \frac{dR_0}{dr}) = 0, \quad r > 0$$
$$r \cdot \frac{dR_0}{dr} = \widetilde{C_0}$$
$$dR_0 = \frac{\widetilde{C_0 dr}}{r}$$
$$R_0 = \widetilde{C_0} \ln r + \widetilde{C}, \quad \lambda_0 = 0$$

Пусть $k \neq 0$, тогда

$$r\frac{d}{dr}\left(r \cdot \frac{dR_k}{dr}\right) - \lambda_k R_k = 0$$

$$r\left(\frac{dR_k}{dr} + r \cdot \frac{d^2 R_k}{dr^2}\right) - \lambda_k R_k = 0$$

$$r\frac{dR_k}{dr^2} + r^2 \cdot \frac{d^2 R_k}{dr^2} - \lambda_k R_k = 0$$
(6)

Полагая, что $R_k(r) = r^{\mu}$, подставим в (6) и найдем μ

$$r^{2}\mu(\mu - 1)r^{\mu - 2} + r\mu r^{\mu - 1} - \mu_{k}r^{\mu} = 0$$
$$\mu^{2} = k^{2}, k = 1, 2, \dots;$$

$$\mu = \pm k$$

Значит,

$$R_k(r) = C_k r^k + d_k r^{-k}, \quad , c_k, d_k - const$$

Таким образом можно записать отдельные частные решения (при r > 0)

$$u_0(r,\varphi) = R_0(r)\Phi(\varphi) = (\widetilde{C_0}\ln r + \widetilde{C})a_0$$

$$u_k(r,\varphi) = (C_k r^k + d_k r^k)(a_k \cos(k\varphi) + b_k \sin(k\varphi))$$
(7)

Ясно, что любая конечная сумма $\sum_{k=0}^{n} u_k(r,\varphi)$ также является решением уравнения Лапласа $\Delta u=0$. Бесконечный ряд $\sum_{k=0}^{\infty}$ может удовлетворять уравнению Лапласа. при условии равномерной сходимости ряда и ряда его частных производных

Рассмотрим случай (проблему) начала координат при r=0. В случае когда D - круг, D содержит начало координат (x_0, y_0) в себе. Нужно определить решение в точке (0,0).

Будем считать, что функция u(x,y) непрерывна в окрестности (0,0). Тогда из частных решений исключим решения вида $\widetilde{C_0} \ln r$ и $d_k r^{-k}$, они неограниченно растут при $r \to 0$.

Окончательно получим

$$u_0(r,\varphi) = A_0 = constu_k(r,\varphi) = r^k (A_k \cos(k\varphi) + B_k \sin(k\varphi)), \quad k = 1, 2, 3...$$
(8)

Рассмотрим теперь частные решения вида $r^k \cos(k\varphi)$ и $r^k \sin(k\varphi)$ (8) (без учета констант A_k, B_k), их можно рассматривать как вещественные и мнимые части функции $u_k = r^k e^{ik\varphi} = r^k (\cos(k\varphi) + i\sin(k\varphi))$

C другой стороны $u_k = (x + iy)^k$.

Формально:

$$\frac{\partial^2 u_k}{\partial x^2} = k(k-1)(x+iy)^{k-2}$$

$$\frac{\partial^2 u_k}{\partial y^2} = k(k-1)(x+iy)^{k-2}i^2 = -k(k-1)(x+iy)^{k-2}$$

$$\Delta_{x,y}u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Таким образом $u_k(x,y) = (x+iy)^k$ - решение уравнения Лапласа $\Delta_{x,y}u = 0$.

Тогда в качестве частных решений в переменных (x,y) выберем $u_k^{(1)}(x,y) = Reu_k, u_k^{(2)}(x,y) = Imu_k$ Тогда общее решение

$$u(x,y) = \sum_{k=1} (A_k u_k^{(1)}(x,y) + B_k u_k^{(2)}(x,y))$$

4.2 Краевая задача для уравнения Лапласа вне круга и её решение

Пусть u(x,y) - некоторая функция

$$\omega = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 > a^2\}$$
 — внешняя область круга

$$S = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = a^2\} +$$
 Бесконечно удаленная точка — граница круга

Рассмотрим внешнюю задачу Дирихле для круга для уравнения Лапласа:

$$\begin{cases} \Delta_{x,y} u = 0, (x,y) \in D \\ u|_{S} = f(x,y), (x,y) \in S \end{cases}$$
 (9)

Задача (9), (10) в общем случае может иметь не единственное решение.

Например, рассмотрим $f(x,y) = f_0 = const$. Тогда $u_1(x,y) = f_0 = const$ является решением задачи (9), (10).

Также $u_2(x,y) = f_0 \cdot (1 + \ln\left(\frac{\sqrt{x^2 + y^2}}{a^2}\right))$ является решением задачи (9), (10).

Также является решением

$$\forall \alpha \in [0,1] \quad u(x,y) = \alpha u_1(x,y) + (1-\alpha)u_2(x,y)$$

Какое решение нужно найти? Функция u(x,y) должна быть непрерывна и иметь непрерывные частичные производные. Добавим условие ограниченности фукнции на бесконечности.

Определение 4.1. Будем говорить, что функция u(x, y) ограничена на бесконечности, если существует M = const > 0 и радиус $r_0 > 0$ такие, что $\forall (x,y): \quad x^2 + y^2 \geq r_0^2$ верно неравенство $|u(x,y)| \leq M$

Определение 4.2. Классическим решением задачи (9) будем называть функцию $u(x,y) \in C(D) \cap C(D \cup S)$ и ограниченную на бесконечности, уд. ур (9), и граничн. усл (10)

Применяя метод Фурье, получим общ. реш уравнения Лапласа в форме $u(r,\varphi)$ в котором участв. функции $\ln r, r^{-k}, r^k, k \ge 0$. С учетом того, что $u(x,y) = u(r,\varphi)$ должно быть классическим решением, частичные решения, включ. в себя функции $\ln r, r^k, k \ge 0$ не явл. огр. на бесконечности

Поэтому решение для задачи Лапласа вне круга будет иметь вид

$$u(r,\varphi) = \sum_{n=0}^{\infty} \frac{1}{r^n} (A_n \cos(n\varphi) + B_n \sin(n\varphi)), r \ge a, \varphi \in [-\pi, +\pi]$$

Обозначим

$$f_a(\varphi) = f(a\cos\varphi, a\sin\varphi)$$

и разложим в ряд Фурье, т.е.

$$f_a(\varphi) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} (\alpha_n \cos(n\varphi) + \beta_n \sin(n\varphi))$$

Тога на границе $u(a,\phi) = f_a(\phi), A_0 = \frac{\alpha_0}{2}, \frac{A_n}{a^n} = \alpha_n, B_n = a^n \beta_n$

Теорема 4.1. Пусть функция f(x,y), входящая в условие (10) такова, что

- 1. f(x,y) непрерывна на окружности $x^2 + y^2 = a^2$
- 2. $f_a(\varphi) = f(a\cos\varphi, a\sin\varphi)$ имеет кусочно непрерывную производную на отрезке $\varphi \in [-\pi, \pi]$

Тогда функция $u(x,y)=u(r,\varphi)$, заданная рядом

$$u(r,\varphi) = \sum_{n=1}^{\infty} \left(\frac{\alpha}{r}\right)^n (\alpha_n \cos(n\varphi) + \beta_n \sin(n\varphi)) + \alpha_0/2, r > a, \varphi \in [-\pi, \pi]$$

является классическим решением задачи (9), (10), где α_n, β_n известные коэф. разложения функции $f_a(\varphi)$ в ряд Фурье

5 Общие свойства решения краевых задач для уравнений эллиптического типа в \mathbb{R}^3

5.1 Уравнения Лапласа гармонических функций

Обозначения

$$M=M(x,y,z)\in\mathbb{R}^3$$
 — точка в \mathbb{R}^3

$$ho(M,M_0)=\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}$$
 — расстояние между точками

 $\{r, \varphi, \theta\}$ - полярные координаты (.)M относительно (.) M_0

$$\begin{cases} x - x_0 = r \cos \varphi \sin \theta \\ y - y_0 = r \sin \varphi \sin \theta \\ z - z_0 = r \cos \theta \end{cases}$$

$$r = \rho(M, M_0)$$

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$
 — оператор Лапласа

$$\Delta u = 0$$
 — уравнение Лапласа (11)

$$\Delta u = f(x, y, z)$$
 — уравнение Пуассона

$$u: \mathbb{R}^3 \to \mathbb{R}$$
 $u=u(x,y,z)$ (некоторая искомая функция)

Определение Функция u(x,y,z) называется гармонической в ограниченной области $D \subset \mathbb{R}^3$, если $u \in C^{(2)}(D)$ и $\Delta u = 0 \ \forall M \in D$.

Функция u(x,y,z) называется гармонической в неограниченной области $D \subset \mathbb{R}^3$, если $u \in C^{(2)}(D)$, $\Delta u = 0 \ \forall M \in D$ и, кроме того, $u(M) \to 0$ при $M \to \infty$, $M \in D$. (условие затухания на бесконечности)

Пример

Функция
$$u(M) = \frac{1}{r} = \frac{1}{\rho(M, M_0)} = \frac{1}{\sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}}$$

- гармоническая функция в \forall области D, которая отделена от M_0 т.е. D не содержит M_0 вместе с её окрестностью). Таким образом $u(M) = \frac{1}{r}$ фундаментальное решение уравнения Лапласа (11)

Заметим, что условие $u(M) \to 0$ при $M \to \infty, M \in D$ связано с единственностью решения внешней краевой задачи.

5.2 Интегральное представление функций

Будем считать, что область D - ограничена. Пусть D имеет кусочно-гладкую ориентированную поверхность S. \vec{n} - вектор внешней нормали к S: $\cos(\widehat{\vec{n},x}), \cos(\widehat{\vec{n},y}), \cos(\widehat{\vec{n},z})$ - направляющие косинусы, то есть $\vec{n} = |\vec{n}| \cdot \left\{ \cos(\widehat{\vec{n},x}); \cos(\widehat{\vec{n},y}); \cos(\widehat{\vec{n},z}) \right\}$

Рис. 1: Диаграмма поверхности S - ТУТ МОГЛА БЫ БЫТЬ ВАША РЕКЛАМА

Обозначим $\overline{D} = D \cup S$ - замыкание D.

Рассмотрим функцию $u, v \in C^{(2)}(D) \cap C^{(1)}(D)$.

Применим формулы Грина для функций u и v дифференцируемого оператора $Lu \equiv \Delta u$ (были в лекции 18 декабря 2023):

$$\iiint u \Delta v \, dx \, dy \, dz = \iint_{S} u \frac{\partial v}{\partial \vec{n}} \, dS - \iiint_{D} \nabla u \cdot \nabla v \, dx \, dy \, dz$$

$$\text{где } \nabla u = \text{grad } u = \left\{ \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z} \right\}$$

$$\Delta v = \text{grad}(\nabla v) = \left\{ \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}, \frac{\partial v}{\partial z} \right\}$$
(12)

$$\Delta u \cdot \Delta v = \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z} \cdot \frac{\partial v}{\partial z}$$

$$\iiint\limits_{D} (u\Delta v - v\Delta u) \, dx \, dy \, dz = \iint\limits_{S} \left(u \frac{\partial v}{\partial \vec{n}} - v \frac{\partial u}{\partial \vec{n}} \right) dS \tag{13}$$

Замечание Область D может быть ограничена несколькими замкнутыми поверхностями.

Рис. 2: Диаграмма поверхности S_1 и S_2 - ТУТ СНОВА МОГЛА БЫ БЫТЬ ВАША РЕКЛАМА

Формулы (12) И (13) применимы и в этом случае, причем поверхностные интегралы разбиваются на сумму интегралов по ограничивающим поверхностям. Здесь вектора нормалей всегда нужно брать внешними для каждой из поверхностей.

Лемма (об интегральном представлении функции)

Пусть $u \in C^{(2)}(D) \cap C^{(1)}(\overline{D}), r = \rho(M, M_0) = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}$

 $M_0 \in D$ - фиксированная точка, $M \in D$ - переменная точка. Тогда

$$u(M_0) = \frac{1}{4\pi} \iint\limits_{S} \left(\frac{1}{r} \cdot \frac{\Delta u}{\partial \vec{n}} - u \cdot \frac{\partial \frac{1}{r}}{\partial \vec{n}} \right) - \frac{1}{4\pi} \iint\limits_{D} \frac{\Delta u}{r} \, dx \, dy \, dz$$

где \vec{n} - внешняя нормаль к S, интеграл $\iiint \frac{\Delta u}{r} \, dx \, dy \, dz$ понимается в несобственном смысле.

 \square Рассмотрим функции $u=u(x,y,z)=u(M),\ v=v(M)=rac{1}{r}=rac{1}{
ho(M,M_0)}$

Применим к этим функциям формулы Грина (12) И (13). Функция v в точке M_0 имеет особенность, поэтому формулы Грина не применимы на всей области D.

Пусть B_{ρ} - шар в D с радиусом $\rho>0$ и центром в точке M_0

Пусть δ_{ρ} - поверхность шара B_{ρ} .

$$D_{\rho} = D \backslash \overline{B}_{\rho} \quad (\overline{B}_{\rho} = B_{\rho} \cup \delta_{\rho})$$

Рис. 3: Рисунок поясняющий обозначения в доказательстве - ТУТ МОГЛА БЫ БЫТЬ ВАША РЕКЛАМА

Применим (13) в области D_{ρ} . Учитывая, что $v = \frac{1}{r}$ - гармоническая функция.

$$\iiint\limits_{D_{\rho}} \left(0 - \frac{1}{r} \Delta u\right) dx \, dy \, dz = \iint\limits_{S} \left(u \frac{\partial \left(\frac{1}{r}\right)}{\partial \vec{n}} - \frac{1}{r} \frac{\partial u}{\partial \vec{n}} \right) dS + \iiint\limits_{\delta_{\rho}} \left(u \frac{\partial \frac{1}{r}}{\partial \vec{n_1}} - \frac{1}{r} \frac{\partial u}{\partial \vec{n_1}} \right) d\delta_{\rho}$$

, где $\vec{n_1}$ - внешняя нормаль к поверхности $\delta_{
ho},\,d\delta$ элемент поверхности $\delta_{
ho}.$

$$\iiint\limits_{D_{\varrho}} \frac{1}{r} \cdot \Delta u \, dx \, dy \, dz = \iint\limits_{S} \left(\frac{1}{r} \cdot \frac{\partial u}{\partial \vec{n}} - u \cdot \frac{\partial \frac{1}{r}}{\partial \vec{n}} \right) dS + \iint\limits_{\delta_{\varrho}} \left(\frac{1}{r} \cdot \frac{\partial u}{\partial \vec{n_1}} - u \cdot \frac{\partial \frac{1}{r}}{\partial \vec{n_1}} \right) d\delta \tag{14}$$

Пусть $\rho \to 0$. Покажем, что правая часть (14) имеет конечный предел при $\rho \to 0$. Тогда и её левая часть будет иметь конечный предел, то есть

$$\iiint\limits_{D} \frac{1}{r} \Delta u \, dx \, dy \, dz = \lim \rho \to 0 \iiint\limits_{D_{\rho}} \frac{1}{r} \Delta u \, dx \, dy \, dz$$

Изучим интеграл $I(\rho) = \iint_{s} \left(\frac{1}{r} \frac{\partial u}{\partial \vec{n_1}} - u \frac{\partial \frac{1}{r}}{\partial \vec{n_1}} \right) d\delta.$

Покажем, что $I(\rho) \to 4\pi u(M_0)$ при $\rho \to 0$. Заметим, что $\frac{1}{r}$ на поверхности δ_ρ . $\frac{1}{r}|_{\delta_\rho}=const$ при \forall фиксированной $\rho>0$. Нормаль направлена от поверхности δ_ρ по радиусу шара B_ρ к точке M_1 .

$$\frac{\partial \frac{1}{r}}{\partial \vec{n_1}}|_{\delta_\rho} = \left(\frac{\partial \frac{1}{r}}{\partial r} \cdot \frac{r}{\partial \vec{n_1}}\right)|_{\delta_\rho} = \left[-\frac{1}{r_2} \cdot (-1)\right]|_{\delta_\rho} = \frac{1}{\rho^2}$$

Рассмотрим $I_2(\rho)=\iint\limits_{\delta_\rho}u\frac{\partial\frac{1}{r}}{\partial\vec{n_1}}d\delta=\frac{1}{\rho^2}\iint\limits_{\delta_\rho}ud\delta=$ воспользуемся теоремой о среднем $=\frac{1}{\rho^2}u(m_\rho)\cdot\iint\limits_{\delta_\rho}\delta_\rho d\delta=$ $\frac{1}{\rho_2} \cdot u(M_{\rho}) \cdot 4\pi \rho^2 = 4\pi u(M_{\rho})$, где $\iint \delta_{\rho} d\delta$ - площадь сферы, $M_{\rho} \in \delta_{\rho}$ - некоторая точка, такая что $u \in C^{(2)}(D)$, то $u(M_{\rho}) \to u(M_0)$, при $\rho \to 0$.

Теперь рассмотрим $I_1(\rho)=\iint\limits_{\delta_p} \frac{1}{r} \frac{\partial u}{\partial \vec{n}} d\delta = \frac{1}{\rho} \iint\limits_{\delta_\rho} \frac{\partial \vec{n}}{\partial \vec{n_1}} d\delta$

Учитывая что $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$ непрерывны, имеем что $\exists k > 0$:

$$\left|\frac{\partial u}{\partial \vec{n_1}}\right| = \left|\frac{\partial u}{\partial x}\cos{(\vec{n_1},x)} + \frac{\partial u}{\partial y}\cos{(\vec{n_1},y)} + \frac{\partial u}{\partial z}\cos{(\vec{n_1},z)}\right| \le k$$

(непрерывна и ограничена на компакте).

Тогда

$$|I_1(\rho)| = \frac{1}{\rho} \left| \iint\limits_{\delta_\rho} \frac{\partial u}{\partial \vec{n_1}} d\delta \right| \le \frac{1}{\rho} \iint\limits_{\delta_\rho} \left| \frac{\partial u}{\partial \vec{n_1}} \right| d\delta \le \frac{1}{\rho} \iint\limits_{\delta_\rho} k d\delta = \frac{k}{\rho} \iint\limits_{\delta_\rho} \delta_\rho = k \cdot 4\pi \rho$$

Таким образом при $\rho \to 0$, $k \cdot 4\pi \rho \to 0 \Rightarrow I_1(\rho) \to 0$

В итоге

$$I(\rho) = I_1(\rho) \to 0 - I_2(\rho) \to -4\pi U(M_0)\rho \to 0$$

$$\iiint\limits_{D_{0}} \frac{\Delta u}{r} dx dy dz = \iint\limits_{S} \left(\frac{1}{r} \frac{\partial u}{\partial \vec{n}} - u \frac{\partial \left(\frac{1}{r} \right)}{\partial \vec{n}} \right) dS - I(\rho)$$

Таким образом в (14) при $\rho \to 0$

$$\iiint\limits_{D_{o}} \frac{\Delta u}{r} dx dy dz = \iint\limits_{S} \left(\frac{1}{r} \frac{\partial u}{\partial \vec{n}} - u \frac{\partial \left(\frac{1}{r} \right)}{\partial \vec{n}} \right) dS + 4\pi u(M_{0})$$

$$\Rightarrow u(M_0) = \left[\frac{1}{4\pi} \iiint\limits_{D} \frac{\Delta u}{r} dx dy dz - \frac{1}{4\pi} \iint\limits_{S} \left(\frac{1}{r} \frac{\partial u}{\partial \vec{n}} - u \frac{\partial \left(\frac{1}{r}\right)}{\partial \vec{n}}\right) dS\right]$$
(-1)?

Глава 2 Интегральные уравнения

6 Классификация интегральных уравнений

Интегральные уравнения называются интегральными уравнениями (ИУ) если содержат под знаком интеграла:

 $1. \ y(x)$ - искомая функция

$$y(x) = \int_{a}^{x} K(x,t)y(t)dt + f(x) - Вольтерра$$
 (15)

или

$$y(x) = \int\limits_{a}^{b} K(x,t)y(t)dt + f(x)$$
 - границы интегрирования фиксированы, уравнение Фредгольма (16)

2. Искомая функция y(x) в ИУ может входить только под знак интеграла (1 род) или и вне интеграла (2 род). Уравнение первого рода:

$$\int_{a}^{b} K(x,t)y(t)dt = f(x)$$
(17)

Или

$$\int_{a}^{b} K(x,t)y(t)dt = f(x)$$
(18)

Уравнения (15) и (16) - 2 род

3. Если $f(x) \equiv 0$, то уравнение (15) - (18) называются однородными. Иначе неоднородными Функция K(x,t) называется ядром интегрального уравнения.

7 Физические примеры

1. Задача определения потенциальной энергии поля, в котором частица совершает колебательные движения. Здесь известна зависимость периода колебаний частицы от ее энергии.

Пусть частица совершает колебательные движения в поле с потенциальной энергией U(x).

Причем U(x) - четная функция, монотонно возрастающая при x>0

8 Особенности постановок задач для уравнения Фредгольма

Запишем однородное интегральное уравнение Фредгольма с параметром λ ;

$$y(x)=\lambda\int_a^b k(x,t)y(t)dt, \lambda$$
 неизвестный параметр, выбирается так, чтобы однородное уравнение имело нетри

(19)

А отвечающие этим собств. значениям нетривиальные решения уравнения (19) называются собственными решениями или собственными значениями ядра.

Неоднородное интегральное уравнение Фредгольма 2 рода также записывается с параметром λ .

$$y(x) = \lambda \int_{a}^{b} y(t)dt + f(x)$$
(20)

Но здесь λ является заданной величиной.

Некоторые сведения из функционального анализа 9

Для решения интегрального уравнения 2 рода (фредгольма) с параметром λ , т.е. для нахождения с.значений нам необходим аппарат Ф. анализа.

Пространство:

- бесконечномерное
- вещественное
- нормированное (задана норма)
- метрическое (задана метрика расстояние)
- линейное евклидово (задано ск. произведение)

Определение 9.1. Линейное пространство называется евклидовым, если $\forall y, z \in H$ сопоставлено вещ. число, наз. скалярным произведением векторов y и z, обозначаемое (y,z)

- 1. $(y,z) = (z,y), \forall y,z \in H$
- 2. $(y, z_1 + z_2) = (y, z_1) + (y, z_2), \forall y, z, z_2 \in H$
- 3. $(\lambda y, z) = \lambda \cdot (y, z), \quad \forall y, z \in H, \forall \lambda \in \mathbb{R}$
- 4. $(y,y) \ge 0 \quad \forall y \in H \text{ npurem } (y,y) = 0 \Leftrightarrow y = 0.$

Рассмотрим беск. мерное линейное пр-во, элементами которого является заданное на сегменте [a,b] непрерывные функции и введем скалярное произведение

$$(y,z) = \int_{a}^{b} y(x) \cdot z(x) dx \tag{21}$$

нетрудно показать, что (21) удовлетворяет определению.

Построенное таким образом бесконечномерное евклидово пространство непрерывных на [a,b] функций будем обозначать h[a,b]

Норма в этом пространстве

$$||y|| = \sqrt{(y,y)}$$

Определение 9.2. Пусть $\forall y \in H$ поставим в соответствие элемент $z \in G$ (G может отл. от H) по некоторому правилу (закону). Тогда говорится, что в пространстве H задан оператор A

$$z = Ay$$

В дальнейшем будем рассматривать операторы, сопоставляющие элементы из пространства Н в само пространство

Определение 9.3. Оператор А называется линейным, если

1.
$$\forall y_1, y_2 \in M$$
 $A(y_1 + y_2) = Ay_1 + Ay_2$

2.
$$\forall y \in H \& \forall \lambda \in \mathbb{R} : A(\lambda y) = \lambda \cdot Ay$$

Пусть $y(x) \in h[a,b]$. Зададим функцию K(x,t), непрерывную по совокупности аргументов при $x \in [a,b]$, $t \in [a,b]$. Определим оператор A след. образом

$$z(x) = Ay = \int_a^b K(x,t)y(t)dt$$
- оператор Фредгольма (22)

Нетрудно показать, что он линейный.

Определение 9.4. Вектор $y \neq 0$ из \mathcal{H} является собственным вектором оператора A, если верно соотношение

$$Ay = \Lambda y, \quad \Lambda \in \mathbb{R}.$$
 (23)

Число Λ называется собственным значением оператора A, соответствующим собств. вектору y. Для оператора Фредгольма (22) соотношение (23) примет вид

$$\int_{a}^{b} k(x,t)y(t)dt = \Lambda y(x), \quad \Lambda \in \mathbb{R}.$$
 (24)

Сравним (24) и (15) при $\lambda = \frac{1}{\Lambda}$ будем интересоваться только $\Lambda \neq 0$

Определение 9.5. Нормой оператора А наз. неотриц число:

$$||A|| = \sup_{|y|=1} ||Ay||; \quad z = Ay, \quad y, z \in h[a, b].$$

Если ||A|| существует, то оператор A наз. ограниченным, иначе неограниченным.

Теорема 9.1. Если |K(x,t)| непрерывна по совокупности аргументов при $\{x,t\} \in [a,b]$, то оператор Фредгольма (22) будет ограниченным оператором в h[a,b].

Доказательство. Из (22):

$$z = Ay - \int_a^b K(x,t)y(t)dt$$

$$||Ay||^2 = ||z||^2 = (z,z) = \int_a^b z^2(x)dx = \int_a^b dx [\int_a^b K(x,t)y(t)dt]^2 =$$

используем неравенство Коши-Буняковского:

$$\int_{a}^{b} K(x,t)y(t)dt|^{2} \le \int_{a}^{b} K^{2}(x,t)dt \int_{a}^{b} y^{2}(t)dt = \int_{a}^{b} K^{2}(x,t)dt, ||y||^{2} = 1$$
$$||Ay||^{2} \le \int_{a}^{b} dx \int_{a}^{b} K^{2}(x,t)dt = const$$

Отсюда следует существование sup, т.е. ограниченность

Лемма 9.1. Для огр. лин. оператора $A\ u\ \forall y\in H\ имеет\ место\ неравенство$

$$||Ay|| \le ||A||||y||$$

Доказательство. Пусть $y \neq 0$. y/||y|| - единичный вектор и

$$||Ay/||y|||| \le ||A|| = \sup ||Ay/||y|||$$

$$\frac{1}{||y||}||Ay|| \leq ||A|| \implies ||Ay|| \leq ||A||||y||$$

Если y = 0 то очевидно.

Определение 9.6. Оператор А наз. непрерывным в точке у, если

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) \quad \forall z : ||y - z|| < \delta \implies ||Ay - Az|| < \varepsilon$$

Если оператор непрерывен в \forall точке $y \in \mathcal{H}$, то он наз. непрерывным в \mathcal{H} .

Теорема 9.2 (2). Ограниченный оператор явл. непрерывным.

Доказательство. Пусть задан $\varepsilon > 0$

$$||Ay - Az|| = ||A(y - z)|| \le ||A||||y - z|| \le \varepsilon$$

если только

$$||y-z|| < \frac{\varepsilon}{||A||} (\exists \delta = \varepsilon/||A||)$$

Теорема 9.3. Непрерывный оператор явл. ограниченным

Доказательство. От противного. Пусть A - непрерывный оператор, но не явл. ограниченным. Это значит, что существует такое $y_n: ||y_n|| = 1, ||Ay|| \le n$. Тогда

$$||A\frac{y_n}{n}|| = \frac{1}{n}||Ay_n|| > 1$$

и таким образом

$$||A\frac{y_n}{n} - A0|| > 1, ||\frac{y_n}{n} - || = \frac{1}{n}||y_n|| \to 0$$

что противоречит непрерывности

Определение 9.7. Последовательность $y_n \in H$ будем называть ограниченной, если существует не зависящая от n постоянная C такая, что $||y_n|| < C$.

Определение 9.8. Последовательность $y_n \in H$ будем называть компактной в H, если из любого бесконечного множества ее элементов можно выделить подпоследовательность, сходящуюся к некоторому элементу $y \in H$.

Определение 9.9. Оператор A называется вполне непрерывным в H, если, какая бы ни была ограниченная последовательность векторов y_n , соответствующая последовательность Ay_n является компактной в H.

Теорема 9.4. Вполне непрерывный оператор является ограниченным.

Доказательство. Будем рассуждать от противного. Пусть оператор A не является ограниченным. Тогда существует последовательность y_n такая, что $||y_n|| = 1, ||Ay_n|| \to \infty$. В силу полной непрерывности A из последовательности $z_n = Ay_n$ можно выделить сходящуюся подпоследовательность $z_{n_k} \to z$. С одной стороны, $||z_{n_k}|| = ||z|| = 1$, величина которой ограничена. С другой, $||z_{n_k}|| \to \infty$, поскольку z_{n_k} является подпоследовательностью последовательности Ay_n . Полученное противоречие доказывает теорему.

Следствие. Вполне непрерывный оператор является непрерывным.

Теорема 9.5. Если ядро K(x,t) непрерывно при $a \le x, t \le b$, то оператор Фредгольма (22) является вполне непрерывным.

Доказательство. Имеем

$$z_n = Ay_n = \int_a^b K(x, t)y_n(t) dt.$$

В силу неравенства Коши-Буняковского

$$|z_n(x)| \le \sqrt{\int_a^b K^2(x,t) dt} \cdot \sqrt{\int_a^b y_n^2(t) dt}.$$

Если $||y_n|| \le C$, то $|z_n| \le KC\sqrt{b-a}$, где

$$K = \sup_{a \le t \le b} |K(x, t)|.$$

(существует в силу непрерывности K(x,t)). Полученное неравенство означает, что последовательность $z_n(x)$ является равномерно ограниченной на [a,b]. Докажем, что эта последовательность является равностепенно непрерывной. Имеем

$$z_n(x_1) - z_n(x_2) = \int_a^b [K(x_1, t) - K(x_2, t)] y_n(t) dt$$

Следовательно,

$$|z_n(x_1) - z_n(x_2)| \le C \sqrt{\int_a^b [K(x_1, t) - K(x_2, t)]^2} dt < \varepsilon$$

при $|K(x_1,t)-K(x_2,t)|<rac{arepsilon}{C(b-a)}$

Последнее неравенство выполнено, в силу непрерывности K(x,t), при $|x_1-x_2|$ меньше некоторого $\delta(\epsilon)$. Тем самым равностепенная непрерывность последовательности доказана.

В силу теоремы Арцела из последовательности y_n можно выделить равномерно сходящуюся подпоследовательность $z_{n_k}(x)$, пределом которой является некоторая непрерывная на [a,b] функция z(x), т.е. z элемент пространства h[a,b]. Кроме того, известно, что если z_{n_k} сходится к z(x) равномерно, то сходится и в среднем, т.е.

$$\int_{a}^{b} \left[z_{n_k}(x) - z(x) \right]^2 dx \to 0,$$

или $||z_{n_k} - z|| \to 0$.

Таким образом, доказано существование элемента $z \in h[a,b]$ и существование сходящейся к нему подпоследовательности, как требует определение вполне непрерывного оператора. Теорема доказана.

Определение 9.10. Симметричным (или самосопряженным) оператором называется оператор A, удовлетворяющий условию

$$(Ay, z) = (y, Az) \quad \forall y \in H, \forall z \in H.$$

Теорема 9.6. Оператор Фредгольма является симметричным, если K(t,x) = K(x,t).

Доказательство. Действительно.

$$(y,Az) = \int_a^b y(x) \left[\int_a^b K(x,t)z(t)dt \right] dx = \int_a^b z(t) \left[\int_a^b K(x,t)y(x) dx \right] dt = \int_a^b z(t) \left[\int_a^b K(t,x)y(x) dx \right] dt = (z,Ay).$$

что и требовалось.

В теории собств значений и собств функций вполне непрерывного и симметричного оператора доказывается существование собств. векторов такого оператора и исследуются свойства собств значений и собств функций такого оператора

Будем применять результаты этой абстрактной теории к изучению собств решений и поиску собств значений уравнения Фредгольма

10 Собственные функции и собственные значения однородного уравнения Фредгольма 2 рода

$$y(x) = \lambda \int_{-b}^{b} K(x, t)y(t)dt$$
 (25)

Определение 10.1. Значение параметра $\lambda \neq 0$ и соотв. функция $y(x) \neq 0$, удовл. (25) называется собств знач и собственной функцией интегрального уравнения (или ядра K(x,t))

будем предполагать, что ядро K(x,t) при $x,t \in [a,b]$ удовл. условиям:

Ядро K(x,t) — вещественная функция

$$K(x,t) \neq 0$$

K(x,t) непрерывна по совокупности аргументов

$$K(x,t)$$
 симметричная, т.е. $K(x,t) = K(t,x)$ (26)

Основные теоремы без доказательств о собств значениях и функциях ур. Фредгольма

Теорема 10.1. 1. Собственные значения ядра K(x,t) - вещественные

2. Нахождение комплексных собственных функций ядра K(x,t) сводится к нахождению веществ. собств. функций ядра K(x,t)

Теорема 10.2. Если K(x,t) - непрерывная функция u не равна 0, то норма оператора Фредгольма отлична от нуля

Эти 2 теоремы и тот факт, что оператор Фредгольма вполне непрерывен и симметричен, позволяет применить к однородному уравнению Фредгольма 2 рода теорию собств. значений и собств. функций вполне непрерывного и симметричного оператора.

Запишем (25) в форме

$$y = \lambda A y \tag{27}$$

Где Ay - оператор Фредгольма.

Параметр $\lambda = \frac{1}{\Lambda}, \, \Lambda \neq 0$, соотв (27) совпадаеи с определением (23)

Собств. результаты абстр. теории для уравнения Фредгольма (однород. 2 рода) формулируем так.

Теорема 10.3. 1. Существует конечная или бесконечная последовательность ЛНЗ собственных функций и соотв. собственных значений ядра K(x,t)

2. Собств. функции, соответствующие различным собственным значениям, ортогональны и ранг каждого собственного значения конечен (макс количество отвечающих ему ЛНЗ собств функций)

Всю систему собств. функций можно ортонормировать так, что

$$(y_k, y_m) = \int_a^b y_k(x)y_m(x)dx = 0 (k \neq m), \quad \int_a^b y_k^2(x)dx = 1 = ||y_k||^2$$

 $здесь y_k, y_m$ - собств. функции ядра K(x,t)

3. $\forall L > 0 \exists$ конечное число собственных значений, удовлетв. условию $|\lambda| < L$. Если число собственных значений ядра бесконечно и их расположить по фозрастанию абсолютной величины, т.е.

$$|\lambda_1| \leq |\lambda_2| \leq \cdots \leq |\lambda_n| \leq \ldots$$

 $mo \lim_{n\to\infty} |\lambda_n| = \infty$

Теорема 10.4. Если $y_1(x)$ - собств. функция и λ_1 - собств. значение ядра K(x,t), то ядро

$$K^{(2)}(x,t) = K(x,t) = \frac{y_1(x)y_1(t)}{\lambda_1}$$

имеет те же собственные функции и собственные значения, что ее ядро K(x,t), кроме $y_1(x)$ и λ_1

Следствие. Если $y_1, \ldots, y_n(x)$ - собственные функции и $\lambda_1, \ldots, \lambda_n$ - соотв. собств. значения ядра K(X, t), то ядро

$$K^{(n+1)}(x,t) = K(x,t) - \sum_{i=1}^{n} \frac{y_i(x)y_i(t)}{\lambda_i}$$

имеет те же собств. функции и собств. значения, что и ядро K(x,t) за искл $y_1,\ldots,y_n;\,\lambda_1,\ldots,\lambda_n$ Далее будем считать, что система собственных функций приведена к ортонормированному виду.

11 Численные методы решения интегральных уравнений

12 Определение собственных значений и собственных функций однородного уравнения Фредгольма 2 рода по методу Келлога

Выше было доказано существование собственных функций ядра K(x,s), удовлетворяющих требованиям (3.2), но не указывался метод их конструктивного определения. Последний вопрос рассматривается в настоящем параграфе. Собственные функции и собственные значения ядра могут быть найдены, например, путем последовательных приближений по методу Келлога.

Рассмотрим интегральное уравнение (25), ядро K(x, s) уд. усл. (26)

$$y(x) = \lambda Ay = \lambda \int_{a}^{b} K(x, s)y(s) ds$$

Покажем, что собственные функции и собственные значения ядра K(x,s) могут быть найдены путем некоторого рекуррентного процесса. Перейдем к описанию этого процесса.

1. Выберем произвольную непрерывную функцию $y_0(x)$ такую, что $Ay_0 \neq 0$. Определим последовательность функций $y_n(x)$ для $n \geq 1$ из рекуррентного соотношения

$$y_n = Ay_{n-1}. (28)$$

Обозначим $||y_n|| = N_n$. Имеет место соотношение

$$N_n^2 = (y_p, y_q) \tag{29}$$

где p+q=2n. Действительно, пусть p=n+m, а q=n-m. Тогда в силу симметрии оператора A имеем

$$(y_p, y_q) = (A^m y_n, y_q) = (y_n, A^m y_n) = (y_n, y_n) = N_n^2.$$

Для нормированных функций $\varphi_n = \frac{y_n}{||y_n||} = \frac{y_n}{N_n}$ из (29) получаем

$$\varphi_n = \mu_n A \varphi_{n-1}, \quad \text{где} \quad \mu_n = \frac{N_{n-1}}{N_n}.$$
 (30)

2. Доказана сходимость последовательности μ_n . Из формулы $N_n^2=(y_{n-1},y_{n+1})$ в силу неравенства Коши-Буняковского получаем $N_n^2\leq N_{n-1}N_{n+1}$. Отсюда

$$\frac{N_{n-1}}{N_n} \ge \frac{N_n}{N_{n+1}}$$

или $\mu_n \geq \mu_{n+1} \geq 0$. Таким образом, последовательность μ_n монотонно невозрастающая и ограниченная снизу. Следовательно, существует предел $\lim_{n\to\infty}\mu_n=\mu\geq 0$.

Покажем, что $\mu \neq 0$. Для этого соотношение (29) умножим на y_n , проинтегрируем по x и воспользуемся неравенством Коши-Буняковского. Имеем

$$\begin{split} N_n^2 &= (y_n,y_n) = (y_n,Ay_{n-1}) = \int_a^b y_n(x) dx \left(\int_a^b K(x,s) y_{n-1}(s) \, ds \right) \leq \\ &\leq \sqrt{\int_a^b \int_a^b K^2(x,s) dx ds} \sqrt{\int_a^b y_n^2 dx \int_a^b y_{n-1}^2 ds} = C N_n N_{n-1}, \text{ где } C^2 = \int_a^b \int_a^b K^2(x,s) dx ds \end{split}$$

Отсюда $N_n \leq C N_{n-1}$ и $\mu_n = \frac{N_{n-1}}{N_n} \geq \frac{1}{C} > 0$. Предел $\mu = \lim_{n \to \infty} \lambda_n \geq \frac{1}{C} > 0$. Предельный переход при $n \to \infty$ даёт $\mu = \lim_{n \to \infty} \lambda_n \geq \frac{1}{C} > 0$.

- 3. Убедимся в том, что $_n \neq 0$, а следовательно, $y_n(x) \neq 0$ для любого n. Действительно, y_00 так, что $y_1 = Ay_0 \neq 0$. При этом будет выполнено $N_0 > 0$ и $N_1 > 0$. Из неравенства $N_0N_2 \geq N_1^2$ следует, что $N_2 > 0$. Аналогично получаем $N_3 \neq 0$ и т.д. Таким образом, все $N_n \neq 0$ для $n \geq 0$.
- 4. Докажем, что четные итерации φ_{2n} сходятся в среднем к некоторой функции $\bar{\varphi}(x)$, а нечетные φ_{2n+1} к $\overline{\bar{\varphi}}(x)$ Функции φ_n непрерывны и нормированы на единицу. Оператор A переводит такие функции в последовательности из двух равномерно ограниченных и равностепенно-непрерывных функций (9.5). Поскольку

 $A\varphi_{n-1}=rac{\varphi_n}{\mu_n}$, то последовательность $rac{\varphi_n}{\mu_n}$ состоит из равномерно ограниченных и равностепенно-непрерывных функций. По доказанному $rac{1}{\mu_n}\geqrac{1}{\mu_0}$. Отсюда следует, что последовательность φ_n также состоит из равномерно ограниченных и равностепенно-непрерывных функций.

Таким же свойством обладают в отдельности последовательности четных итераций φ_{2n} и нечетных φ_{2n+1} итераций.

По теореме Арцела существует подпоследовательность φ_m последовательности φ_{2n} равномерно сходящаяся к некоторой непрерывной функции $\overline{\varphi}(x)$. Из равномерной сходимости следует сходимость φ_m к $\overline{\varphi}$ в среднем.

Докажем, что вся последовательность φ_{2m} , а не только подпоследовательность φ_m , сходится к $\overline{\varphi}$ в среднем. Действительно, из сходимости φ_m следует, что для любого $\varepsilon>0$ можно указать номер $n_0(\epsilon)$ такой, что для любых функций φ_{m_1} и φ_{m_2} из последовательности φ_m с номерами $m_1, m_2 > n_0(\epsilon)$ будет выполнено: $J_{m_1,m_2} = \|\varphi_{m_1} - \varphi_{m_2}\| \le \epsilon$. Пусть для определенности $m_2 > m_1$. Убедимся, что для всех четных k и m, что $m_1 \le m \le k \le m_2$, выполнено неравенство $\|\varphi_m - \varphi_k\| \le \epsilon$. Этим будет доказана сходимость в среднем всей последовательности φ_{2n} . Действительно, рассмотрим выражение $J_{m,k} = \|\varphi_m - \varphi_n\|$. Учитывая, что $\|\varphi_m\| = \|\varphi_k\| = 1$, имеем

$$J_{m,k}^2 = 2 - 2(\varphi_m, \varphi_k)$$

или

$$2 - J_{m,k}^2 = 2(\varphi_m, \varphi_k) = 2\frac{(y_m, y_k)}{N_m N_k} = \frac{N_{\frac{m+k}{2}}^2}{N_m N_k}.$$
 (31)

Последнее равенство имеет место в силу (29). Заменяя в (31) k на k+2, получим

$$\frac{2 - J_{m,k+2}^2}{2 - J_{m,k}^2} = \frac{N_{\frac{m+k}{2}+1}}{N_{\frac{m+k}{2}}^2} \frac{N_m N_k}{N_{k+2} N_m} = \frac{N_{\frac{m+k}{2}+1}}{N_{\frac{m+k}{2}}^2} \cdot \cdot \frac{N_{k+1} N_k}{N_{k+2} N_{k+1}} = \frac{\mu_k \mu_{k+1}}{\mu_{\frac{m+k}{2}+1}^2} \le 1$$
(32)

так как $\mu_{\frac{n+k}{2}+1} \ge \mu_k \ge \mu_{k+1}$ при m < k. Заменяя в (31) на m-2, имеем

$$\frac{2 - J_{m-2,k}^2}{2 - J_{m,k}^2} = \frac{N_{\frac{m+k}{2}}^2 - 1}{N_{\frac{m+k}{2}}^2} \frac{N_m N_{m-1}}{N_{m-1} N_{m-2}} = \frac{\mu_{(m+k)/2}^2}{\mu_{m-1} \mu_{m-2}} \le 1$$
(33)

Из (32) и (33) получаем, что $J_{m,k+2} \geq I_{m,k}$, и $J_{m-2,k} \geq I_{m,k}$. Уменьшая индекс k по m_2 , будем иметь $\|\varphi_m - \varphi_k\| = J_{m,k} \leq J_{m_1,m_2} < \epsilon$. чтд

Аналогично устанавливается сходимость в среднем нечетной последовательности φ_{2n+1} к некоторой непрерывной функции $\overline{\overline{\varphi}}(x)$.

5. Покажем, что из равностепенной непрерывности и сходимости в среднем последовательности φ_{2n} следует ее равномерная сходимость к $\overline{\varphi}(x)$.

Рассмотрим разность $\omega_{mn} = \varphi_m(x) - \varphi_n(x)$ при четных m, n. В силу равностепенной непрерывности $\varphi_m(x)$ и $\varphi_n(x)$ для любого $\varepsilon \geq 0$, справедливо неравенство

$$|\omega_{mn}(x_1) - \omega_{mn}(x_2)| < \epsilon \quad \text{при} \quad |x_1 - x_2| < \delta(\epsilon). \tag{34}$$

для всех m, n. Кроме того,

$$\int_{a}^{b} \omega_{mn}^{2} dx = \int_{a}^{b} (\varphi_{m}(x) - \varphi_{n}(x))^{2} dx \le \epsilon.$$
(35)

при $m, n > n_0(\epsilon)$ в силу сходимости последовательности $\varphi_n(x)$ в среднем.

Докажем, что

$$|\omega_{mn}| < \epsilon \quad \text{при} \quad m, n > N(\epsilon).$$
 (36)

для всех $x \in [a, b]$. Отсюда следует справедливость утверждения настоящего пункта.

Выберем произвольное $\epsilon > 0$. Тогда для любого $x \in [a,b]$ найдется точка x_k , такое что $|x-x_k| < \delta(\epsilon/2)$ справедливо неравенство

$$|\omega mn(x) - \omega mn(x_k)| < \epsilon/2$$
 для всех $x \in [a, b].$ (37)

Покроем [a,b] конечным числом интервалов I_k , длина которых равна $\delta(\epsilon/2)$. Тогда можно утверждать, что для всех достаточно больших $m,n\geq N(\epsilon)$ в любом из I_k интервалов найдется точка $x_k\in I_k$, в которой

$$|\omega_{mn}(x_k)| < \epsilon/2. \tag{38}$$

Действительно, допустим противное. Тогда найдётся интервал I_k и такие сколь угодно большие номера m, что для всех $x \in I_k$ имеет место неравенство $|\omega_{mk}(x)| > \varepsilon/2$. Следовательно, для таких m,n имеет место неравенство

$$J_{mn} = \int_{a}^{b} \omega_{mn}^{2} dx \geqslant \int_{I_{k}} \omega_{mn}^{2} dx \geqslant \frac{\epsilon^{2}}{4} \delta(\epsilon/2), \tag{39}$$

противоречащее (35).

Из (37) и (38) следует, что для любого $x \in I_k$ выполняется

$$|\omega_{mk}(x)| \le |\omega_{mk}(x_k) - \omega_{m_k}(x)| + |\omega_{mn}(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \text{при} \quad m_k, n > N(\varepsilon),$$

т.е. доказано неравенство (36).

- 6. Итак, доказано, что $\varphi_{2n}\Rightarrow\overline{\varphi}$. Аналогично доказывается, что $\varphi_{2n+1}\Rightarrow$
- Совершая предельный переход в (30) по последовательности с четными и нечетными номерами, получаем

$$\overline{\varphi} = \mu A \overline{\overline{\varphi}}, \quad \overline{\overline{\varphi}} = \mu A \overline{\varphi}$$
 (40)

Отсюда $\overline{\varphi}=\mu^2A^2\bar{\varphi}$ или $(\mu A+1)(\mu A-1)\bar{\varphi}=0.$ Последнее равенство возможно в двух случаях:

(а) $(\mu A - 1)\bar{\varphi} = 0$, т.е. $\bar{\varphi} = \mu A\bar{\varphi}$. В этом случае μ является собственным значением уравнения (25), и из (40) следует, что $\overline{\varphi} =$

 φ ;

(b) $z=(\mu A-1)\bar{\varphi}\neq 0$. Тогда $(\mu A+1)z=0$, или $z=-\mu Az$. Следовательно, $(-\mu)$ является собственным значением уравнения (25). Из (40) следует тогда, что $z=\mu A\overline{\varphi}-\overline{\varphi}=\varphi-\overline{\varphi}$.

Таким образом, либо $\lambda = \mu, y = \overline{\varphi} =$

 φ , либо $\lambda=-\mu,=\overline{\overline{\varphi}}-\overline{\varphi}$ являются собственными значениями и собственными функциями в виде

13 Разложение по собственным функциям

14 Неоднородное уравнение Фредгольма II рода

14.1 Случай симметричного ядра

Недостающие главы можно взять в А. Б. Васильева, Н. А. Тихонов "ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ"

14.2 Случай малого λ

15 Преобразование Фурье

Р. К. Бельхеева "ПРЕОБРАЗОВАНИЕ ФУРЬЕ В ПРИМЕРАХ И ЗАДАЧАХ"Учебное пособие

15.1 Преобразование Фурье абсолютно интегрируемых функций

Определение 15.1. Преобразование, сопоставляющее кусочно-гладкой абсолютно интегрируемой функции f(x) новую функцию

$$\hat{f}(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ixy} dy,$$
 (41)

называется прямым преобразованием Фурье и обозначается через F_+ . При этом функция $\hat{f} = F_+[f]$ называется прямым преобразованием Фурье функции f.

Определение 15.2. Другое преобразование, сопоставляющее кусочно-гладкой абсолютно интегрируемой функции f(x) новую функцию

$$\check{f}(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+f} f(x)e^{ixy} \, dy,\tag{42}$$

называется обратным преобразованием Фурье и обозначается через F_- . При этом функция $\check{f}=F_-[f]$ называется обратным преобразованием Фурье функции f.

Для функций, у которых $\mathring{f} = f$ абсолютно интегрируемы, последовательное применение прямого, а затем обратного преобразования Фурье к кусочно-гладкой функции f не изменяет исходную функцию. Символами эти утверждения записываются короче

$$f = \hat{\check{f}} = \check{\check{f}}$$
 или $f = F_+[F_-[f]] = F_-[F_+[f]]$

и называются формулами обращения преобразования Фурье.

В силу формул обращения функции \hat{f} и \hat{f} в определенном смысле равноправны. Однако (даже для вещественнозначной функции f), вообще говоря, функции \hat{f} и \hat{f} являются комплекснозначными. Чтобы избежать такой асимметрии, при изучении преобразования Фурье мы будем изначально предполагать, что рассматриваемые функции f принимают комплексные значения.

Свойство 1

Докажите, что $\hat{f}(x) = \check{f}(-x)$ (это простое наблюдение позволяет во всех последующих задачах реально вычислять только прямое преобразование Фурье).

Решение. По определению запишем обратное преобразование Фурье в точке -x

$$\check{f}(-x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(y)e^{i(-x)y} \, dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(y)e^{-ixy} \, dy = \hat{f}(x).$$

Свойство 2

Докажите линейность прямого и обратного преобразований Фурье, т.е. установите, что для любых комплексных чисел a и b справедливы равенства

$$F_{+}[af + bg] = aF_{+}[f] + bF_{+}[g], \quad F_{-}[af + bg] = aF_{-}[f] + bF_{-}[g].$$

Решение. Запишем прямое и обратное преобразование Фурье для суммы af + bg

$$F_{\pm}[af + bg](x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} [af(y) + bg(y)]e^{\mp ixy} dy.$$

Пользуясь свойством линейности интеграла, перепишем последний интеграл в виде суммы интегралов

$$\frac{a}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(y) e^{\mp ixy} \, dy + \frac{b}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(y) e^{\mp ixy} \, dy = aF_{\pm}[f(x)] + bF_{\pm}[g(x)].$$

Свойство 3

Докажите, что формулы обращения справедливы для комплекснозначных функций.

Решение. Запишем формулы обращения для комплекснозначной функции f(x) = u(x) + iv(x), где u(x) и v(x) вещественнозначные функции,

$$f(x) = F_{+}[F_{-}[f(x)]] = F_{+}[u(x) + iv(x)].$$

В силу линейности прямого и обратного преобразований Фурье перепишем уравнение в виде

$$F_{+}[F_{-}[u(x)]] + iF_{+}[F_{-}[v(x)]] = u(x) + iv(x) = f(x).$$

Считая a вещественным числом, а $f:\mathbb{R}\to\mathbb{C}$ непрерывной абсолютно интегрируемой функцией, докажите следующие равенства.

Свойство 4

$$F_{+}[e^{iax}f(x)](y) = F_{+}[f(x)](y-a),$$

т.е. сдвиг по фазе у функции приводит к сдвигу по аргументу y ее преобразования Φ урье.

Решение. Запишем прямое преобразование Фурье для функции $e^{iax}f(x)$

$$F_{+}[e^{iax}f(x)](y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{iax}f(x)e^{-ixy} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ix(y-a)} dx = F_{+}[f(x)](y-a).$$

Следствием этого свойства являются следующие равенства:

$$F_{+}[f(x)\cos ax](y) = \frac{1}{2}[F_{+}[f(x)](y-a) + F_{+}[f(x)](y+a)],$$

$$F_{+}[f(x)\sin ax](y) = \frac{1}{2i}[F_{+}[f(x)](y-a) - F_{+}[f(x)](y+a)].$$

Свойство 5

$$F_{+}[f(x-a)](y) = e^{-iay}F_{+}[f(x)](y),$$

т.е. сдвиг по аргументу y функции приводит к сдвигу по фазе у ее преобразования Φ урье.

Решение. Найдем прямое преобразование Фурье для функции f(x-a)

$$F_{+}[f(x-a)](y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x-a)e^{-ixy} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(z)e^{-iy(z+a)} dz = e^{-iay} F_{+}[f(z)](y)$$

(выполнена подстановка x - a = z).

Свойство 6

Докажите, что если преобразованием Фурье функции f(x) является $\hat{f}(y)$, то преобразованием Фурье функции f(ax) служит $\frac{1}{|a|}\hat{f}\left(\frac{y}{a}\right)$, $a \neq 0$.

Решение. Преобразованием Фурье функции f(ax) будет

$$F_{+}[f(ax)](y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(ax)e^{-ixy} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(z)e^{-i\frac{yz}{a}} \frac{dz}{a} = \frac{1}{|a|} F_{+}[f(z)] \left(\frac{y}{a}\right)$$

(выполнена подстановка ax=z) при a>0; при a<0 надо переставить пределы интегрирования, что даст

$$-\frac{1}{a}F_{+}[f(z)]\left(\frac{y}{a}\right) = \frac{1}{|a|}F_{+}[f(z)]\left(\frac{y}{a}\right).$$

Найдите аналоги приведенных выше свойств для обратного преобразования Фурье.

Свойство 7

Пусть функции f и ее первая производная непрерывны и абсолютно интегрируемы на \mathbb{R} . Докажите равенство

$$F_{+}\left[\frac{df}{dx}\right](y) = (iy)F_{+}[f(x)](y).$$

Решение. Запишем прямое преобразование Фурье для функции f'

$$F_{+}[f'(x)](y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ixy} dx.$$

Так как f и f' непрерывны и абсолютно интегрируемы, то интеграл можно взять по частям

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ixy} \, dx = \frac{1}{\sqrt{2\pi}} \left[f(x)e^{-ixy} \right]_{-\infty}^{+\infty} \left| \int_{-\infty}^{+\infty} -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)(-iy)e^{-ixy} \, dx.$$

Покажем, что если функции f и f' абсолютно интегрируемы, то $f(x) \to 0$ при $x \to \pm \infty$. Так как

$$\left| \lim_{x \to \pm \infty} f(x) - f(0) \right| \le \left| \int_0^{\pm \infty} f'(x) \, dx \right| < \infty,$$

то f ограничена на бесконечности. Но так как f абсолютно интегрируема, то площадь под графиком функции ограничена, а это возможно только если $f(x) \to 0$ при $x \to \pm \infty$. Аналогично можно показать, что $f(x) \to 0$ при $x \to -\infty$. Так как $f(x) \to 0$ при $x \to \pm \infty$ и $|e^{-ixy}| = 1$, то внешнее интегральное слагаемое зануляется и

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-ixy} dx = \frac{1}{\sqrt{2\pi}} \left[f(x)e^{-ixy} \right]_{-\infty}^{+\infty} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-ixy} (-iy) dx = (iy)F_{+}[f(x)](y),$$

что доказывает требуемое утверждение.

Аналогично доказывается равенство

$$F_{-}\left[\frac{df}{dx}\right](y) = (-iy)F_{-}[f(x)](y).$$

Эти равенства означают, что преобразование Фурье переводит (с точностью до числового множителя) операцию дифференцирования в операцию умножения на независимую переменную. А в терминах операторов квантовой механики — унитарную эквивалентность оператора импульса и оператора координаты.

Свойство 8

Пусть функция f непрерывна на \mathbb{R} и, кроме того, функции f(x) и xf(x) абсолютно интегрируемы на \mathbb{R} . Докажите, что функции $F_+[f]$ и $F_-[f]$ дифференцируемы, причем

$$\frac{dF_{+}[f]}{du}(y) = -iF_{+}[xf(x)](y)$$

И

$$\frac{dF_{-}[f]}{dy}(y) = iF_{-}[xf(x)](y).$$

Эти равенства означают, что преобразование Фурье переводит (с точностью до числового множителя) операцию умножения на независимую переменную в операцию дифференцирования.

Решение. Докажем первое равенство. Продифференцируем по параметру интеграл

$$\frac{dF_{+}[f]}{dy}(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{d}{dy} \left[f(x)e^{-ixy} \right] dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (-ix)f(x)e^{-ixy} dx = -\frac{i}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} xf(x)e^{-ixy} dx = -iF_{+}[xf(x)](y).$$

Операция дифференцирования интеграла по параметру законна, так как $f(x)e^{-ixy}$ гладкая по y функция, а для функции

$$\frac{\partial}{\partial y} \left(f(x) e^{-ixy} \right)$$

существует интегрируемая на \mathbb{R} мажорирующая функция

$$\left| \frac{\partial}{\partial y} \left(f(x) e^{-ixy} \right) \right| = \left| -ixf(x) e^{-ixy} \right| = |xf(x)|.$$

Преобразование Фурье функции xf(x) также существует, потому что xf(x) абсолютно интегрируема на \mathbb{R} .

15.2 Преобразование Фурье быстро убывающих функций

15.2.1 Быстро убывающие функции

Определение 15.3. Мультииндексом α называется вектор $(\alpha_1, \dots, \alpha_n)$, все компоненты α_j которого — неотрицательные целые числа. При этом число n называют длиной мультииндекса α , а число $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n$ его весом. Для любой (достаточно гладкой) функции $f: \mathbb{R}^n \to \mathbb{C}$ её производную

$$\frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}}$$

кратко записывают как $D^{\alpha}f$.

Определение 15.4. Функцию $f: \mathbb{R}^n \to \mathbb{C}$ называют быстро убывающей, если 1) f бесконечно дифференцируема в \mathbb{R}^n и 2) для каждого мультииндекса α и каждого положительного числа p найдётся постоянная $K_{\alpha,p}$ такая, что

$$|D^{\alpha}f(x)| \leq rac{K_{\alpha,p}}{1+|x|^p} \quad \partial ext{\it as } ecex \, x \in \mathbb{R}^n.$$

 $3 decb \mid \cdot \mid o fo з начает длину вектора <math>x = (x_1, x_2, \dots, x_n),$

$$|x| = (x_1^2 + x_2^2 + \ldots + x_n^2)^{1/2}$$
.

Приведем еще одно **определение**. Функцию $f: \mathbb{R}^n \to \mathbb{C}$ называют *быстро убывающей*, если 1) f бесконечно дифференцируема в \mathbb{R}^n и 2) для любых мультииндексов α , β функция $x \to x^\beta D^\alpha f(x)$ ограничена в \mathbb{R}^n (т.е. найдется постоянная $C_{\alpha,\beta} < +\infty$ такая, что $|x^\beta D^\alpha f(x)| \le C_{\alpha,\beta}$ для всех $x \in \mathbb{R}^n$).

Эти два определения быстро убывающей функции эквивалентны.

15.2.2 Свойства быстро убывающих функций

- 1. Если f и g быстро убывающие функции, то для любых комплексных чисел a и b функция af + bg также является быстро убывающей.
- 2. Если f быстро убывающая функция, то для любого мультииндекса α функция $D^{\alpha}f$ также является быстро убывающей.
- 3. Если f быстро убывающая функция, то для любого мультииндекса α функция $x^{\alpha}f$ является быстро убывающей.
- 4. Произведение быстро убывающей функции на многочлен есть функция быстро убывающая.

Совокупность всех быстро убывающих функций, заданных в пространстве \mathbb{R}^n , образует векторное пространство по отношению обычных операций сложения функций и умножения их функций на число. Это пространство обозначают через $\mathcal{S}(\mathbb{R}^n)$.

15.2.3 Преобразование Фурье быстро убывающих функций

Определение 15.5. Быстро убывающей функции $f: \mathbb{R}^n \to \mathbb{C}$ сопоставим две новые функции

$$\hat{f} = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x)e^{-i\langle x,y\rangle} dx$$

u

$$\check{f} = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{i\langle x, y \rangle} dx,$$

где $(x,y) = \sum_{k=1}^{n} x_k y_k$ – скалярное произведение в \mathbb{R}^n . Преобразование, переводящее функцию f в функцию \hat{f} , называется прямым преобразованием Фурье и обозначается через F_+ . При этом саму функцию $\hat{f} = F_+[f]$ называют прямым преобразованием Фурье функции f.

Аналогично преобразование, переводящее f в \check{f} , называется обратным преобразованием Фурье и обозначается через F_- . При этом саму функцию $\check{f}=F_-[f]$ называют обратным преобразованием Фурье функции f.

Отметим, что интегралы, задающие прямое и обратное преобразования Фурье, являются сходящимися, поскольку модули экспонент с чисто мнимым показателем равны единице и для любого p>0 быстро убывающая функция f допускает оценку

$$|f(x)| \le \frac{C}{1 + |x|^p}$$

справедливую с некоторой постоянной $C < +\infty$ для всех $x \in \mathbb{R}^n$. Поэтому

$$|f(x)e^{\pm i\langle x,y\rangle}| = |f(x)| \cdot |e^{\pm i\langle x,y\rangle}| = |f(x)| \le \frac{C}{1 + |x|^p},$$

как известно из курса математического анализа, последняя функция интегрируема по всему пространству \mathbb{R}^n , если только p>n. Таким образом, теорема о прямом и обратном преобразовании Фурье, данное в настоящем параграфе, совпадает с определением, приведенным ранее.

15.2.4 Свойства преобразования Фурье быстро убывающих функций

1. Преобразование Фурье линейно, т. е. для любых $a,b\in\mathbb{C}$ и любых $f,g\in\mathcal{S}(\mathbb{R}^n)$ справедливы равенства

$$F_{+}[af(x) + bg(x)](y) = aF_{+}[f(x)](y) + bF_{+}[g(x)](y).$$

2. Для любого мультииндекса α и любой быстро убывающей функции f справедливы равенства

$$F_{+}[x^{\alpha}f(x)](y) = (\pm i)^{|\alpha|}D^{\alpha}F_{+}[f(x)](y).$$

3. Для любого мультииндекса α и любой быстро убывающей функции f справедливы равенства

$$F_{+}[D^{\alpha}f(x)](y) = (\pm iy)^{\alpha}F_{+}[f(x)](y).$$

4. Пусть A — невырожденная $n \times n$ -матрица, b — n-мерный вектор и $f: \mathbb{R}^n \to \mathbb{C}$ — быстро убывающая функция. Тогда

$$F_{+}[f(Ax+b)](y) = |\det A|^{-1}e^{\mp i\langle A^{-1}b,y\rangle}F_{+}[f(x)]((A^{-1})^{T}y).$$

Здесь A^{-1} обозначает матрицу, обратную к A, а $(A^{-1})^T$ – матрицу, сопряженную к A^{-1} , т.е. такую (единственным образом определенную) матрицу, что для любых векторов $u, v \in \mathbb{R}^n$ справедливо равенство

$$(A^{-1}u, v) = (u, (A^{-1})^T v).$$

5. Если $f:\mathbb{R}^n\to\mathbb{C}$ – быстро убывающая функция, а $x_0\in\mathbb{R}^n$, то

$$F_{+}[f(x-x_0)](y) = e^{\mp i\langle x_0, y\rangle} F_{+}[f(x)](y).$$

6. Если $f: \mathbb{R}^n \to \mathbb{C}$ – быстро убывающая функция, а a – отличное от нуля вещественное число, то

$$F_{+}[f(ax)](y) = \frac{1}{|a|^n} F_{+}[f(x)]\left(\frac{y}{a}\right).$$

Свойство 6 обычно называют правилом изменения масштаба.

7. Как прямое, так и обратное преобразования Фурье переводит пространство быстро убывающих функций в себя.

$$f \in S(\mathbb{R}^n) \implies F_{\pm}[f(x)] \in S(\mathbb{R}^n)$$

8. Для любой быстро убывающей функции $f: \mathbb{R}^{\ltimes} \to \mathbb{C}$ справедливы равенства

$$F_{+}[F_{-}[f]] = f$$

И

$$F_{-}[F_{+}[f]] = f$$

Пример

Проверьте, что функция $e^{-a|x|}, a > 0$, как и все ее производные, определенные при $x \neq 0$, убывает на бесконечности юыстрее любой степени переменной x, и тем не менее эта функция не является быстро убывающей.

Решение. Покажем, что для функции $e^{-a|x|}, a>0$, для всех $x\in\mathbb{R}^n\setminus\{0\}$ и любых $\alpha,\beta\in\mathbb{N}$ выполняется неравенство $|x^\alpha D^\beta e^{-a|x|}\le C_{\alpha,\beta}$ из определения быстро убывающей функции, т.е. она и любая ее производная убывают на бесконечности быстрее многочлена любой степени. Для этого вычислим следующие пределы на бесконечности

$$\lim_{x \to +\infty} x^{\alpha} D^{\beta} e^{-ax} = (-1)^{\beta} a^{\beta} \lim_{x \to +\infty} x^{\alpha} e^{-ax} = 0,$$

$$\lim_{x \to -\infty} x^{\alpha} D^{\beta} e^{ax} = a^{\beta} \lim_{x \to -\infty} x^{\alpha} e^{ax} = 0.$$

Здесь мы воспользовались известными из математического анализа пределами $\lim_{x\to+\infty}x^{\alpha}e^{-ax}=0$ и $\lim_{x\to-\infty}x^{\alpha}e^{ax}=0$

Покажем, что у функции $e^{-a|x|}, a>0$ в точке x=0 не существует производная. Для этого вычислим следующие пределы:

$$\lim_{x \to +0} De^{-ax} = -a \lim_{x \to +0} e^{-ax} = -a,$$

$$\lim_{x \to -0} De^{ax} = a \lim_{x \to -0} e^{ax} = a.$$

Следовательно, для функции не выполняется первое условие из определения быстро убывающей функции, и она не является быстро убывающей.

Пример

Докажите, что функция является бесконечно дифференцируемой на функцией, но не является быстро убывающей. Решение. Вычислим преобразование Фурье функции

$$F_{+}[e^{-a|x|}](y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-a|x|} e^{-ixy} dx.$$

Раскроем модуль и представим интеграл в уравнении в виде суммы двух интегралов

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-a|x|} e^{-ixy} dx = \frac{1}{\sqrt{2\pi}} \left[\int_{-\infty}^{0} e^{x(a-iy)} dx + \int_{0}^{+\infty} e^{x(-a-iy)} dx \right] =$$

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{e^{x(a-iy)}}{a - iy} \Big|_{x = -\infty}^{x = 0} + \frac{e^{-x(a+iy)}}{-(a+iy)} \Big|_{x = 0}^{x = \infty} \right] =$$

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{1}{a - iy} + \frac{1}{a - iy} \right] = \frac{2}{\sqrt{\pi}} \frac{a}{a^2 + y^2}.$$

Функция $F_+[e^{-a|x|}(y)=\frac{2}{\sqrt{\pi}}\frac{a}{a^2+y^2}$ бесконечно дифференцируема на $\mathbb R$. Покажем, что она не убывает на бесконечности быстрее любого многочлена. Придадим числам α , β следующие значения $\alpha=3,\beta=0$ и подставим их в выражение $|x^\alpha D^\beta F_+[e^{-a|x|}](y)|$. Получим

$$|x^{\alpha}D^{\beta}F_{+}[e^{-a|x|}](y)| = \frac{2}{\sqrt{\pi}} \frac{ay^{3}}{a^{2} + y^{2}};$$

эта функция ведет себя на бесконечности как функция $g(y) = ky, k \in \mathbb{R}$. Следовательно, она не является быстро убывающей.

15.3 Применение преобразования Фурье к задаче колебания струны

Найдите функцию $u:\mathbb{R}^2\to\mathbb{R}$, удовлетворяющую одномерному волновому уравнению

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{43}$$

и начальным условиям

$$u(0,x) = f(x), \quad \frac{\partial u}{\partial t}(0,x) = g(x). \tag{44}$$

Напоминание: u — дважды непрерывно дифференцируемая функция, характеризующая отклонение струны от положения равновесия, функция f(x) задает начальное положение струны, а функция g(x) — скорость струны в начальный момент. Если g(x) = 0, то эта модель описывает движение гитарной струны, а если $g(x) \neq 0$, то — движение скрипичной струны.

Решение. Будем считать, что функции f(x) и g(x) быстро убывающие (так как колебания малые, то движение локализовано в конечной области и вне этой области функции быстро зануляются). Решим эту задачу, применяя преобразование Фурье, по переменной x. Обозначим через v(t,y) преобразование Фурье u(t,x).

$$v(t,y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u(t,x)e^{-ixy}dx. \tag{45}$$

Найдем дифференциальное уравнение для v(t,y), используя то, что u(t,x) удовлетворяет волновому уравнению (43). Продифференцируем по параметру t интеграл (45) (обосновать дифференцируемость пока не можем, обоснуем после получения ответа)

$$\frac{\partial^2 v}{\partial t^2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial^2 u}{\partial t^2}(t, x) e^{-ixy} dx = \frac{a^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial^2 u}{\partial x^2}(t, x) e^{-ixy} dx.$$

Таким образом, от дифференцирования функции u(t,x) по параметру t мы перешли к дифференцированию функции u(t,x) по переменной x. Воспользовавшись свойством дифференцирования преобразования Фурье

$$F_{+}[D^{\alpha}f(x)](y) = (iy)^{|\alpha|}\mathcal{F}_{+}[f(x)](y),$$

получим ($\alpha = 2$)

$$\frac{a^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial^2 u}{\partial x^2}(t, x) e^{-ixy} dx = -a^2 y^2 v(t, y).$$

Следовательно, для преобразования Фурье v(t,y) искомой функции u(t,x) получается уравнение

$$\frac{\partial^2 v}{\partial t^2} + a^2 y^2 v(t, y) = 0, (46)$$

значительно более простое, чем уравнение (43). В этом уравнении мы считаем, что у — фиксированный параметр, тогда уравнение (46) — это обыкновенное дифференциальное уравнение второго порядка, в то время как уравнение (43) — это дифференциальное уравнение второго порядка в частных производных. Из равенства (44) при t=0 находим начальное условие для v(t,y):

$$v(0,y) = \widehat{u(0,x)}(y) = \widehat{f}(y), \tag{47}$$

$$v_t(0,y) = \widehat{u_t(0,x)}(y) = \widehat{g}(y). \tag{48}$$

Решение дифференциального уравнения ищем в виде

$$v(t,y) = A(y)\cos ayt + B(y)\sin ayt. \tag{49}$$

Определим функции A(y) и B(y) из условий (47) и (48)

$$v(0,y) = A(y) = \widehat{f}(y),$$

$$v_t(0,y) = ayB(y) = \widehat{g}(y).$$

Подставляя найденные функции A(y) и B(y) в равенство (49), получаем для преобразования Фурье искомой функции выражение

$$v(t,y) = \widehat{f}(y)\cos ayt + \frac{\widehat{g}(y)\sin ayt}{ay}.$$
 (50)

Чтобы найти u(t,x), применим к равенству (50) обратное преобразование Фурье по переменной y

$$u(t,x) = \check{v}(t,x) = F_{-}\left[\hat{f}(y)\cos ayt + \frac{\hat{g}(y)\sin ayt}{ay}\right](x).$$

Сначала найдем функцию $F_{-}\left[\hat{f}(y)\cos ayt\right](x)$. Используя следствия свойства преобразования Фурье, приведенные в 15.1 примере

$$F_{-}[f(x)\cos axt](y) = \frac{1}{2}[F_{-}[f(x)](y-at) + F_{-}[f(x)](y+at)]$$

и формулу обращения

$$F_{-}[F_{+}[f(x)]] = f(x),$$

имеем

$$F_{-}[\hat{f}(y)\cos ayt](x) =$$

$$= \frac{1}{2} \left(F_{-}[\hat{f}](x-at) + F_{-}[\hat{f}](x+at) \right) =$$

$$= \frac{1}{2} \left(f(x-at) + f(x+at) \right).$$

Теперь найдем функцию

$$F_{-}\left[\frac{\widehat{g}(y)\sin ayt}{ay}\right](x).$$

Введем новую функцию $G(y) = \int_0^y g(t)$, тогда g(y) = G'(y).

Преобразование Фурье примет вид

$$F_{-}\left[\frac{\hat{G}'(y)\sin ayt}{ay}\right](x).$$

Пользуясь свойством дифференцирования преобразование Фурье, имеем

$$F_{-}\left\lceil \frac{\widehat{G}'(y)\sin ayt}{ay}\right\rceil(x) = F_{-}\left\lceil \frac{\widehat{G}(y)iy\sin ayt}{ay}\right\rceil(x).$$

Используя следствия свойства преобразования Фурье, приведенные в 15.1

$$F_{-}[f(x)\sin axt](y) = \frac{1}{2i}[F_{-}[f(x)](y-at) - F_{-}[f(x)](y+at)],$$

перепишем преобразование Фурье в виде

$$F_{-}\left[\frac{\widehat{G}(y)iy\sin ayt}{ay}\right](t,x) = \frac{1}{2a}\left[G(x-at) - G(x+at)\right] =$$
$$= -\frac{1}{2a}\int_{x-at}^{x+at} g(z) dz$$

Собрав все вместе, получим

$$u(t,x) = \frac{1}{2} \left[f(x - at) + f(x + at) - \frac{1}{a} \int_{x - at}^{x + at} g(z) \, dz \right].$$

Обоснуем теперь дифференцируемость интеграла (23), зависящего от параметра: мы получили, что искомая функция u(t,x) выражается через заданные функции f(x) и g(x), для которых мы приняли, что они являются быстро убывающими. По свойствам быстро убывающих функций u(t,x) также является быстро убывающей функцией. Следовательно, операция дифференцирования была законной.