This is a graded discussion: 50 points possible

due Feb 28, 2022 at 12:50pm

Since this is a group discussion, each group has its own conversation for this topic. Here are the ones you have access to:

- ODE Group 1
- ODE Group 2
- ODE Group 3

- 8 20
- 3 24
- 1 40

Math Concepts: Linear Differential Equations with Constant Coefficients

ToDo: Respond to each of the following.

1. The $\mathit{Wronskian}\ W(x)$ of a collection of functions $f_1(x),\ldots,f_n(x)$ is the determinant of

- A. Prove that f_1,\ldots,f_n being linearly dependent implies $W(x)\equiv 0$. Hint: Use the linearity of the derivative to show that the Wronskian matrix has rank less than n.
- B. Show that the functions $e^{\lambda x}$, $xe^{\lambda x}$, $x^2e^{\lambda x}$ are linearly independent by computing their Wronskian. Hint: What is the contrapositive of the statement shown in part A?
- C. Fix $b \in \mathbb{R}$. Show that the functions $\cos(bx)$ and $\sin(bx)$ are linearly independent by computing their Wronskian.
- 2. A smooth function f is analytic at x=a if it equals its Taylor series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$ in a neighborhood of a (i.e. this series has a nonzero radius of convergence in which it converges to the value of the function). Define $\mathcal{A}_a(\mathbb{R}) \subset \mathcal{C}^{\infty}(\mathbb{R})$ to be the subset of functions which are analytic at x=a.
 - A. Recall that $\mathcal{C}^{\infty}(\mathbb{R})$ has the structure of a real vector space. Prove that $\mathcal{A}_a(\mathbb{R})$ is a subspace. Hint: If f and g are analytic at x=a with radii of convergence R_1 and R_2 , what is the radius of convergence for f+g?
 - B. For smooth functions $f,g\in\mathcal{C}^{\infty}(\mathbb{R})$, prove the following generalization of the product

 d^n (e) n (n-k) n

rule by induction on
$$n$$
: $\frac{\tilde{a}}{dx^n}(f\cdot g)=\sum_{k=0}^n \binom{n}{k}f^{(n)}\cdot g^{(n)}\cdot g^{(n)}$. Note: I his looks remarkably similar to the binomial expansion formula.

- C. Suppose f and g are analytic at x=a with radii of convergence R_1 and R_2 , respectively. Prove that $f\cdot g$ is also analytic and equals the product $\left(\sum_{k=0}^{\infty}\frac{f^{(k)}(a)}{k!}(x-a)^k\right)\left(\sum_{\ell=0}^{\infty}\frac{g^{(\ell)}(a)}{\ell!}(x-a)^\ell\right) \text{ in its domain of analyticity.}$
- D. Explain why any polynomial p(x) with real coefficients can be viewed as an analytic function at any $a \in \mathbb{R}$.
- E. Prove for any $\lambda \in \mathbb{R}$ that $e^{\lambda x}$ is analytic at any $a \in \mathbb{R}$.
- F. Prove for any $b \in \mathbb{R} \setminus \{0\}$ that $\cos(bx)$ and $\sin(bx)$ are analytic at x = 0. Note: This works for any $a \in \mathbb{R}$, but the explicit expression is a little gross to write down.
- G. Use parts C, D, and E above to show for any $m\geq 0$ and any $\lambda\in\mathbb{R}$ that $x^me^{\lambda x}$ is analytic at any $a\in\mathbb{R}$.
- H. Use parts C, E, and F above to show for any $\lambda \in \mathbb{R}$ and any $b \in \mathbb{R} \setminus \{0\}$ that $e^{\lambda x} \cos(bx)$ and $e^{\lambda x} \sin(bx)$ are analytic at any $a \in \mathbb{R}$.
- 3. Consider the homogeneous linear differential equation with constant coefficients $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_2 y'' + a_1 y' + a_0 y = 0$ for $a_k \in \mathbb{R}$.
 - A. Show that the set of solutions to this differential equation forms a vector space. Hint: What structure must be present on the set of all possible solutions?
 - B. Assume f_0, f_1, \ldots, f_n are all solutions to the differential equation above. Show that their Wronskian is zero.
 - C. Use part B to prove that the differential equation above can have at most n linearly independent *analytic* solutions in a neighborhood of a. Hint: Assume n+1 solutions f_0, f_1, \ldots, f_n which are all analytic at x=a and prove that they have to be linearly dependent.
 - D. Use part C to give a bound on the possible dimension of the space of analytic solutions to this differential equation.
- 4. Find all *real* solutions to each of the following homogeneous linear differential equations in one-variable (with distinct eigenvalues). Show enough of your work that it is clear how you arrived at your answer. Note: Since the coefficients are real numbers, your solutions should be real-valued functions.

A.
$$y'-5y=0$$

B.
$$y'' - 3y' - 4y = 0$$

C.
$$y^{(4)} - y = 0$$

5. Find all *real* solutions to each of the following homogeneous linear differential equations in one-variable (with repeated eigenvalues). Show enough of your work that it is clear how you arrived at your answer. Note: Since the coefficients are real numbers, your solutions

סווטעוע אב ובמו-עמועבע ועווטנוטווס.

A.
$$y'' + 4y' + 4y = 0$$

B.
$$y^{(4)} - 4y^{(3)} + 6y^{(2)} - 4y^{(1)} + y^{(0)} = 0$$

C.
$$y^{(6)} + 2y^{(5)} + 2y^{(4)} = 0$$

6. Use your results from questions 2 and 3 to explain how you know that you have found all possible analytic solutions to the differential equations in questions 4 and 5.

ToDo: Review the RISE Model

(https://pasadena.instructure.com/courses/34818/files/4586595/download?wrap=1) (https://pasadena.instructure.com/courses/34818/files/4586595/download?download_frd=1) (click that link) for student discussion feedback.

ToDo: Respond to two of your classmates' posts following the RISE Model, make sure to include encouraging and helpful remarks in your responses. Please respond to a post that has not yet received feedback if possible.

ToDo: Edit your original post if needed and submit responses to your peer feedback.

Search entries or author	Unread	
<u>← Reply</u>		