Convolution

Multi-channels input and multi-filters layer

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Contents

- Multi-channels input
- Multi-filters layer

ConvolutionMulti-channels input

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

Input image or feature map: multiple channels

		1	3	1	0
	2	2	0	1	0
3	1	0	1	0	0
1	1	2	0	1	1
1	2	2	1	1	
0	1	0	2		•

Input: 3 channels

Input image or feature map: multiple channels

		1	3	1	0
	2	2	0	1	0
3	1	0	1	0	0
1	1	2	0	1	1
1	2	2	1	1	
0	1	0	2		'

3	1	0	1
1	1	2	0
1	2	2	1
0	1	0	2

Channel 1 (RED)

2	2	0	1
1	1	1	0
1	0	0	1
1	1	0	1

Channel 2 (GREEN)

1	3	1	0
1	1	2	0
2	1	0	0
2	0	0	1

Channel 3 (BLUE)

Input: 3 channels

Input image or feature map: multiple channels

3	1	0	1
1	1	2	0
1	2	2	1
0	1	0	2

Channel 1 (RED)

2	2	0	1
1	1	1	0
1	0	0	1
1	1	0	1

Channel 2 (GREEN)

Channel 3 (BLUE)

Input: 3 channels

Kernel: 3 channels

Input image or feature map: multiple channels

(RED)

Input: 3 channels

Kernel: 3 channels

Channel 1

Channel 1 (RED)

2	2	0	1
1	1	1	0
1	0	0	1
1	1	0	1

Channel 2 (GREEN)

Channel 2 (GREEN)

Channel 3 (BLUE)

Channel 3 (BLUE)

1

Rotate kernel 180°

1

Flatten the rotated kernel to a vector

After flattening:

2

Padding the input

3	1	0	1
1	1	2	0
1	2	2	1
0	1	0	2

Channel 1 (RED)

2	2	0	1
1	1	1	0
1	0	0	1
1	1	0	1

Channel 2 (GREEN)

1	3	1	0
1	1	2	0
2	1	0	0
2	0	0	1

Channel 3 (BLUE)

(No padding)

2

Allocate the output buffer

3	1	0	1
1	1	2	0
1	2	2	1
0	1	0	2

Channel 1 (RED)

2	2	0	1
1	1	1	0
1	0	0	1
1	1	0	1

Channel 2 (GREEN)

Channel 3 (BLUE)

input:
$$i_1 = i_2 = 4$$

kernel: $k_1 = k_2 = 3$

padding: $p_1 = p_2 = 0$

strides: $s_1 = s_2 = 1$

$$i_1 - k_1 + 1 = 2$$
 $i_2 - k_2 + 1 = 2$
Output

3	1	0	1
1	1	2	0
1	2	2	1
0	1	0	2

2	2	0	1
1	1	1	0
1	0	0	1
1	1	0	1

1	3	1	0
1	1	2	0
2	1	0	0
2	0	0	1

Starting the cross-correlation process

Final result

Convolution Multi-filters layer

Dr. Thanh-Sach LE LTSACH@hcmut.edu.vn

GVLab: Graphics and Vision Laboratory

Faculty of Computer Science and Engineering, HCMUT

- A Input: a feature map of D channels
- Convolution layer in Deep learning frameworks:
 - Consists of multiple filters:
 - * Each the filters' kernel has D channels (#channels of the input)
 - *All the filters' kernel are the same size, e.g., 3x3
- How the convolution layer computed?

Input feature map (D = 3 channels)

