Graph algorithms and applications

Pham Quang Dung and Do Phan Thuan

Hanoi, 2016

Outline

- Introduction
- @ Graph representations
- 3 Depth-First Search and Breadth-First Search
- 4 Topological sort
- Euler and Hamilton cycles
- 6 Minimum Spanning Tree algorithms
- Shortest Path algorithms

Introduction

- Many objects in our daily lives can be modelled by graphs
 - Internets, social networks (facebook), transportation networks, biological networks, etc.
- An graph G is a mathematical object consisting two finites sets, G = (V, E)
 - V is the set of vertices
 - *E* is the set of edges connecting these vertices
- Graphs have many types: directed, undirected, multigraphs, etc.

Definitions

- An undirected graph G = (V, E)
 - $V = (v_1, v_2, \dots, v_n)$ is the set of vertices or nodes
 - $E \subseteq V \times V$ is the set of edges (also called undirected edges). E is the set of unordered pair (u, v) such that $u \neq v \in V$
 - $(u, v) \in E$ iff $(v, u) \in E$

Definitions

- A directed graph G = (V, E)
 - $V = (v_1, v_2, \dots, v_n)$ is the set of vertices or nodes
 - $E \subseteq V \times V$ is the set of arcs (also called directed edges). E is the set of ordered pair (u, v) such that $u \neq v \in V$

Multigraphs

- An undirected (directed) multigraph is a graph having multiples edges (arcs), i.e., edges (arcs) having the same endpoints
- Two vertices may be connected by more than one edges (arcs)

Definitions

- Given a graph G = (V, E), for each $(u, v) \in E$, we say u and v are adjacent
- Given an undirected graph G = (V, E)
 - degree of a vertex v is the number of edges connecting it : $deg(v) = \sharp \{(u, v) \mid (u, v) \in E\}$
- Given a directed graph G = V, E)
 - An incoming arc of a vertex is an arc that enters it
 - An outgoing arc of a vertex is an arc that leaves it
 - indegree (outdegree) of a vertex v is the number of its incoming (outgoing) arcs

$$deg^{+}(v) = \sharp \{(v, u) \mid (v, u) \in E\}, deg^{-}(v) = \sharp \{(u, v) \mid (u, v) \in E\}$$

Definitions

Theorem

Given an undirected graph G = (V, E), we have

$$2 \times |E| = \sum_{v \in V} deg(v)$$

Theorem

Given a directed graph G = (V, E), we have

$$\sum_{v \in V} deg^+(v) = \sum_{v \in V} deg^-(v) = |E|$$

Definition - Paths, cycles

- Given a graph G = (V, E), a path from vertex u to vertex v in G is a sequence $\langle u = x_0, x_1, \dots, x_k = v \rangle$ in which $(x_i, x_{i+1}) \in E$, $\forall i = 0, 1, \dots, k-1$
 - *u* : starting point (node)
 - v : terminating point
 - k is the length of the path (i.e., number of its edges)
- A cycle is a path such that the starting and terminating nodes are the same
- A path (cycle) is called simple if it contains no repeated edges (arcs)
- A path (cycle) is called elementary if it contains no repeated nodes

Connectivity

- Given an undirected graph G = (V, E). G is called **connected** if for any pair (u, v) $(u, v \in V)$, there exists always a path from u to v in G
- Given a directed graph G = (V, E), G is called
 - weakly connected if the corresponding undirected graph of G (i.e., by removing orientation on its arcs) is connected
 - strongly connected if for any pair (u, v) $(u, v \in V)$, there exists always a path from u to v in G
- Given an undirected graph G = (V, E)
 - ullet an edge e is called **bridge** if removing e from G increases the number of connected components of G
 - a vertex v is called articulation point if removing it from G increases the number of connected components of G

Connectivity

Theorem

An undirected connected graph G can be oriented (each edge of G is oriented) to obtain a strongly connected graph iff each edge of G lies on at least one cycle

Special graphs

- Complete graphs K_n : undirected graph G = (V, E) in which |V| = n and $E = \{(u, v) \mid u, v \in V\}$
- Bipartie graphs $K_{n,m}$: undirected graph G = (V, E) in which $V = X \cup Y$, $X \cap Y = \emptyset$, |X| = n, |Y| = m, $(u, v) \in E \Rightarrow u \in X \land v \in Y$
- Planar graphs: can be drawn on a plane in such a way that edges intersect only at their common vertices

Planar graphs - Euler Polyhedron Formula

Theorem

Given a connected planar graph having n vertices, m edges. The number of regions divided by G is m - n + 2.

Planar graphs - Kuratowski's theorem

Definition

A **subdivision** of a graph G is a new graph obtained by replacing some edges by paths using new vertices, edges (each edge is replaced by a path)

Theorem

Kuratowski A graph G is planar iff it does not contain a subdivision of $K_{3,3}$ or K_5

Outline

- Introduction
- Graph representations
- 3 Depth-First Search and Breadth-First Search
- 4 Topological sort
- 5 Euler and Hamilton cycles
- 6 Minimum Spanning Tree algorithms
- Shortest Path algorithms

Graph representation

- Two standard ways to represent a graph G = (V, E)
 - Adjacency list
 - Appropriate with sparse graphs
 - $Adj[u] = \{v \mid (u,v) \in E\}, \forall u \in V$
 - Adjacency matrix
 - Appropriate with dense graphs
 - $A = (a_{ij})_{n \times n}$ such that (suppose $V = \{1, 2, \dots, n\}$)

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{if } (i,j) \in E, \\ 0 & ext{otherwise} \end{array}
ight.$$

Graph representation

• In some cases, we can use incidence matrix to represent a directed graph G = (V, E)

$$b_{ij} = \left\{ egin{array}{ll} -1 & ext{if edge } j ext{ leaves vertex } i, \ 1 & ext{if edge } j ext{ enters vertex } i, \ 0 & ext{otherwise} \end{array}
ight.$$

Outline

- Introduction
- @ Graph representations
- 3 Depth-First Search and Breadth-First Search
- 4 Topological sort
- Euler and Hamilton cycles
- 6 Minimum Spanning Tree algorithms
- Shortest Path algorithms

- The DFS initially explore a selected vertex (called source)
- ullet DFS explores edges out of the most recently discovered vertex v that still has unexplored edges leaving it
- Once all of edges of v have been explored, the search backtrack to explore edges leaving the vertex from which v as discovered
- The process continues until all vertices reachable from the original source have been discovered
- If any undiscovered vertices remain, then DFS selects one of them as new source and start searching from it

- Important information recorded during the DFS
 - u.d is the discovery time: time point when the vertex u is first discovered
 - *u.f* is the finishing time : time point when the search finishes examining adjacency list of the vertex *u*

Algorithm 1: DFS-VISIT(G, u)

```
t \leftarrow t + 1:
u.d \leftarrow t:
u.color \leftarrow \mathsf{GRAY}:
foreach v \in G.Adj[u] do
     if v.color=WHITE then
          v.p \leftarrow u;
         DFS-VISIT(G, v);
u.color \leftarrow \mathsf{BLACK};
t \leftarrow t + 1:
u.f \leftarrow t:
```

Algorithm 2: DFS(G) foreach $\mu \in G.V$ do

```
\begin{array}{c} \textit{u.color} \leftarrow \mathsf{WHITE};\\ \textit{u.p} \leftarrow \mathsf{NULL};\\ \textit{t} \leftarrow 0;\\ \textbf{foreach} \ \textit{u} \in \textit{G.V} \ \textbf{do}\\ & | \ \textbf{if} \ \textit{u.color} = \textit{WHITE} \ \textbf{then}\\ & | \ \mathsf{DFS-VISIT}(\textit{G},\textit{u}); \end{array}
```

For any two vertices u and v, exactly one of the following conditions holds:

- [u.d, u.f] and [v.d, v.f] are entirely disjoint, and neither u nor v is a descendant of the other in the DFS forest
- [u.d, u.f] is contained entirely within [v.d, v.f], and u is a descendant of v in the DFS forest
- [v.d, v.f] is contained entirely within [u.d, u.f], and v is a descendant of u in the DFS forest

Edges classification

- Tree edges : (u, v) is a tree edge if v was first discovered by exploring edge (u, v)
- Back edges : (u, v) is a back edge if v is an ancestor of u in the DFS tree
- Forward edges : (u, v) is a forward edge if u is an ancestor of v in the DFS tree
- Crossing edges: remaining edges of the given graph

Breadth-First Search (BFS)

- Given a graph G = (V, E) and a source vertex s, the distance of a vertex v is defined to be the length (number of edges) of the shortest path from s to v
- BFS explores systematically vertices that are reachable from s
 - Explores vertices of distance 1, then
 - Explores vertices of distance 2, then
 - Explores vertices of distance 3, then
 - ..

Breadth-First Search (BFS)

Algorithm 3: BFS(G, s)

Breadth-First Search (BFS)

Algorithm 4: BFS(*G*)

Applications of DFS, BFS

- BFS and DFS: Compute connected components of a given graph
- BFS: Find shortest path (the length of a path is defined to be the number of edges of the path)
- BFS : Check if a given graph is a bipartite graph
- BFS and DFS : Detect cycle of an undirected graph
- DFS : compute strongly connected components of a given directed graph
- DFS : compute bridges and articulation points of an undirected connected graph
- DFS: topological sort on a directed acyclic graph (DAG)

Compute Connected Components

- Given an undirected graph G = (V, E), we want to compute all connected components of G
- Applying DFS (or BFS) for a given source vertex u will find all vertices of the same connected component of u

Algorithm 5: COMPUTE-CC(G)

```
\begin{array}{l} \textbf{foreach} \ u \in G.V \ \textbf{do} \\ \  \  \, \bigsqcup \ u.color \leftarrow \mathsf{WHITE}; \\ \textbf{foreach} \ u \in G.V \ \textbf{do} \\ \  \  \, \bigsqcup \ u.color = \mathit{WHITE} \ \textbf{then} \\ \  \  \, \bigsqcup \ C \leftarrow \mathsf{new} \ \mathsf{set}; \\ \  \  \, \mathsf{DFS-CC}(G,u,C); \\ \  \  \, \mathsf{output}(C); \end{array}
```

Compute Connected Components

```
Algorithm 6: DFS-CC(G, u, C)

Insert(C, u);
u.color \leftarrow GRAY;
foreach v \in G.Adj[u] do

if v.color=WHITE then

DFS-CC(G, v, C);
```

Compute strongly connected components

Given a directed graph G = (V, E)

- **1** Call DFS(G) to compute finishing time for all vertices V
- **2** Compute the residual graph $G^T = (V, E^T)$ of $G : E^T = \{(u, v) \mid (v, u) \in E\}$
- **3** Call DFS(G^T), but in the main LOOP, consider the vertices of V in a decreasing order of finishing time computed in line 1
- Vertices of each tree in the DFS forest of line 3 form a strongly connected component of G

Check if a given graph is bipartite

- Call BFS from some vertex
- Color even-level vertices by "BLACK" and odd-level vertices by "WHITE"
- If there exists an edge such that both endpoints have the same color, then *G* is not bipartite

Topological sort

- Given a directed acyclic graph (dag) G = (V, E)
- Order the vertices of G such that if (u, v) is an arc of G then u appears before v in the ordering

Topological sort: using DFS

- Call DFS(G) to compute finishing time for all vertices
- Whenever each vertex is finished, insert it onto the front of a linked list L
- Return the linked list L

Topological sort : using queues

Algorithm 7: TOPO-SORT(G)

```
Compute in-degree d(v) of every vertex v of G;
Q \leftarrow \varnothing:
foreach v \in G.V do
    if d(v) = 0 then
     Enqueue(Q, v);
while Q \neq \emptyset do
    v \leftarrow \mathsf{Dequeue}(\mathsf{Q});
    output(v);
    foreach u \in G.Adj[v] do
        d(u) \leftarrow d(u) - 1;
        if d(u) = 0 then
            Enqueue(Q, u);
```

Outline

- Introduction
- @ Graph representations
- 3 Depth-First Search and Breadth-First Search
- 4 Topological sort
- 5 Euler and Hamilton cycles
- 6 Minimum Spanning Tree algorithms
- Shortest Path algorithms

Definition

- A simple cycle (path) that visits each edge of an undirected graph G = (V, E) exactly once is called **Eulerian cycle (path)** of G
- Graphs contain Eulerian cycles are called Eulerian graphs

Euler cycle is 1, 5, 3, 1, 7, 3, 4, 7, 2, 4, 6, 2, 1

Definition

- A simple cycle (path) that visits each node of an undirected graph G = (V, E) exactly once is called **Hamiltonian cycle (path)** of G
- Graphs contain Hamiltonian cycles are called Hamiltonian graphs

Hamilton cycle is 1, 2, 6, 4, 7, 3, 5, 1

Theorem

An undirected connected graph G = (V, E) is Eulerian iff each vertex of G has even degree

- *G* is connected and degree of each node is even. Hence, the degree of each node is greater or equal to 2
- \Rightarrow there exists a cycle $C = v_1, v_2, ..., v_k, v_1$ on G
- Remove all edges of C, we obtain a graph G' which is divided into connected components $G_1, ..., G_q$.
- Each G_i is connected and the degree of each node of G_i is even.
- \Rightarrow , there exists an euler cycle C_i on G_i
- ullet We construct the euler cycle of G as follows :
 - Start from v_1 , we traverse along the euler cycle of the connected component containing v_1 and terminate at v_1
 - Go to v_2 . If the connected component containing v_2 has not been visited, then we go along the euler cycle of this connected component from v_2 and terminate at v_2
 - Go to v_3 . If the connected component containing v_2 has not been visited, then we go along the euler cycle of this connected component from v_3 and terminate at v_3
 - ...
 - ullet Go back to v_1

Algorithm for finding Euler cycles

Algorithm 8: EULER-CYCLE(G)

```
Stack S \leftarrow \emptyset:
Stack CE \leftarrow \emptyset:
u \leftarrow \text{select a vertex of } G.V:
Push(S, u);
while S \neq \emptyset do
      x \leftarrow \mathsf{Top}(S):
      if G.Adi[x] \neq \emptyset then
             y \leftarrow \text{select a vertex of } G.Adj[x];
             Push(S, y);
             Remove (x, y) from G;
      else
         x \leftarrow \text{Pop}(S); Push(CE, x);
while CE \neq \emptyset do
      v \leftarrow \text{Pop}(CE);
      output(v);
```

Dirak Theorem

Theorem

(**Dirak 1952**) An undirected graph G = (V, E) in which the degree of each vertex is greater or equal to $\frac{|V|}{2}$ is Hamiltonian

Outline

- Introduction
- @ Graph representations
- 3 Depth-First Search and Breadth-First Search
- 4 Topological sort
- 5 Euler and Hamilton cycles
- 6 Minimum Spanning Tree algorithms
- Shortest Path algorithms

Tree and spanning trees

- A tree is an undirected connected graph containing no cycles
- A spanning tree of an undirected connected graph G = (V, E) is a tree T = (V, F) where $F \subseteq E$

a. Tree

b. Spanning tree (bold edges)

Trees

Theorem

Given an undirected graph T = (V, E). We have

- If T is a tree then T does not have any cycle and contains |V|-1 edges
- If T does not have any cycle and contains |V|-1 edges then T is connected
- ullet If T is connected and contains |V|-1 edges then each edge of T is a bridge
- If T is connected and each edge is a bridge then for each pair $u, v \in V$, there exists a unique path in T connected them
- If for each pair u, v ∈ V there exists a unique path in T connected them, then T contains no cycle and a cycle will be created if we add an edge connecting any pair of its nodes

Minimum Spanning Tree (MST)

- Given an undirected weighted graph G = (V, E), each edge $e \in E$ is associated with a weight w(e)
- The weight of a spanning tree T is defined to be

$$w(T) = \sum_{e \in E_T} w(e)$$

where E_T is the set of edges of T

• Find a spanning tree of *G* such that the total weights on edges is minimal

Theorem

For any graph G having distinct weights on edges, the MST $\mathcal T$ of G satisfies the following properties

- Cut property : For any cut (X, \overline{X}) of G, \mathcal{T} must contain shortest edges crossing the cut
- Cycle property: Let C be a cycle in G, T does not contain the longest edges in C

Kruskal algorithm

Algorithm 9: KRUSKAL(G = (V, E))

```
C \leftarrow \text{set of edges of } G:
E_{\tau} \leftarrow \emptyset:
V_{\tau} \leftarrow \emptyset:
while |V_T| < |V| do
      (u, v) \leftarrow a shortest edge of C;
      C \leftarrow C \setminus \{(u,v)\};
     if E_T \cup \{(u,v)\} does not introduce any cycle then
       | E_T \leftarrow E_T \cup \{(u, v)\}; 
 | V_T \leftarrow V_T \cup \{u, v\}; 
return (V_T, E_T);
```

Prim algorithm

Algorithm 10: PRIM(G = (V, E))

```
s \leftarrow \text{select a vertex of } V:
S \leftarrow V \setminus \{s\};
V_T \leftarrow \{s\};
E_{\mathcal{T}} \leftarrow \emptyset:
foreach v \in V do
       d(v) \leftarrow w(s, v);
       near(v) \leftarrow s;
while |V_T| < |V| do
        v \leftarrow \operatorname{argMin}_{u \in S} d(u);
        S \leftarrow S \setminus \{v\};
        V_{\mathcal{T}} \leftarrow V_{\mathcal{T}} \cup \{v\}:
        E_T \leftarrow E_T \cup \{(v, near(v))\};
        foreach u \in S do
                if d(u) > w(u, v) then
                  d(u) \leftarrow w(u, v);
near(u) \leftarrow v;
```

return (V_T, E_T) ;

Outline

- Introduction
- @ Graph representations
- 3 Depth-First Search and Breadth-First Search
- 4 Topological sort
- Euler and Hamilton cycles
- 6 Minimum Spanning Tree algorithms
- Shortest Path algorithms

Shortest path problem

- Given a graph G = (V, E), each edge e is associated with a weight w(e).
 - **Single-source shortest paths problem** Find the shortest paths from a given source node *s* to all other nodes of *G*
 - All-pairs shortest paths problem Find shortest paths between every pairs of vertices u, v in G

Bellman-Ford algorithms

Graph without negative cycles

Algorithm 11: Bellman-Ford(G = (V, E), s)

```
foreach v \in V do
    d(v) \leftarrow w(s, v);
 p(v) \leftarrow s;
d(s) \leftarrow 0;
foreach k = 1, \ldots, n-2 do
    foreach v \in V \setminus \{s\} do
         foreach \mu \in V do
             if d(v) > d(u) + w(u, v) then
         d(v) \leftarrow d(u) + w(u, v); 
 p(v) \leftarrow u;
```

Shortest path problem on directed acyclic graphs (DAG)

• Given a DAG G = (V, E) and a source node $s \in V$. Find shortest paths from s to all other nodes of G

Algorithm 12: ShortestPathAlgoDAG(G = (V, E), s)

Dijkstra algorithm

Graph without negative edge weights

Algorithm 13: Dijkstra(G = (V, E), s)

```
foreach x \in V do
      d(x) \leftarrow w(s,x);
     pred(x) \leftarrow s;
NonFixed \leftarrow V \ {s};
Fixed \leftarrow {s};
while NonFixed \neq \emptyset do
      (*get the vertex v of NonFixed such that d(v) is minimal*);
      v \leftarrow \operatorname{argMin}_{u \in NonFixed} d(u);
      NonFixed \leftarrow NonFixed \setminus \{v\};
      Fixed ← Fixed ∪ {v};
      foreach x \in NonFixed do
            if d(x) > d(v) + w(v, x) then
             d(x) \leftarrow d(v) + w(v, x);
pred(x) \leftarrow v;
```

All-pairs shortest path - Floyd-Warshall algorithm

Algorithm 14: Floyd-Warshall (G = (V, E))

```
foreach u \in V do
    foreach v \in V do
     d(u,v) \leftarrow w(u,v);
p(u,v) \leftarrow u;
foreach z \in V do
    foreach \mu \in V do
         foreach v \in V do
             if d(u, v) > d(u, z) + d(z, v) then
         d(u,v) \leftarrow d(u,z) + d(z,v);
 p(u,v) \leftarrow p(z,v);
```