

BCI Meeting - June 7th 2023

HappyFeat: an interactive and efficient BCI framework for clinical applications

Arthur Desbois, Inria Paris, ARAMIS team, Paris Brain Institute (ICM)

What is "BCI"?

What is "BCI"?

Motor Imagery - Observations

Motor execution VS Rest

Motor imagery VS Rest

Spectral Power Decrease

Desynchronization effect (Pfurtscheller et al, 1999)

BCI in clinical settings - Feature selection

- Features of interest (FOI)
 - Selecting adequate FOIs is a crucial step for BCI performance.
 - After EEG signals acquisition, an analysis phase is needed to select best FOIs.
 - → Scientific softwares (i.e., MATLAB)
 - → Manual step, expertise needed
 - If this analysis phase is too long, a lot can change in the meantime:
 - EEG sensors impedances
 - Subject's brain behaviors
 - Subject's attention & motivation

→ Signal characteristics might be very different between Acq/Training phase and Online phase...

Paris **Brain**

BCI in clinical settings - Feature selection

The "analysis phase" involves many manipulations. An example:

- Setting up "feature extraction" scenarios in OpenViBE...
- Finding FOIs through visualization...
- Setting up & running training scenarios in OpenViBE...
- ... and maybe **going again** through those steps multiple times until "correct" features have been found, or to account for inter-run variability
- → Tedious, error-prone, hard to achieve in a limited time

HappyFeat - Main Concepts

Python-based framework for facilitating MI pipelines

Main focus:

making Feature Selection

+ Classif. Training phases easy & fast

Analyze your data, select your Features & train your classifier in less than 5 minutes!

HappyFeat - Main Concepts

Key feats & mechanisms:

- Clean, risk-free environment
 - → avoid unnecessary & error-prone manipulations.
- Trial-and-error oriented workflow
 - → all steps can be repeated quickly & as many times as needed
- Unified "dashboard" GUI
- OpenViBE used in the background, as a fast & efficient processing engine.
 - → no scenario edition/manipulation necessary: everything is automated!

Two main use cases:

- Make BCI pipelines smoother/easier to use and allow reproducibility of exps.
- Prospective works & comparison of alternative features of interest (connectivity, networks...)

HappyFeat - Main Concepts

Efficient processing pipelines

- Available features for classification: Spectral Power, Connectivity-based network metrics
- ... It's also possible to train the classifier using a fusion of both features.

Feature extraction

- Easy access to all experiment & signal processing parameters.
- Use pre-recorded signals or on-the-fly during acquisition phase.

Visual Analysis for feature selection

• R² maps, PSD comparison across trials, time/freq. ERD/ERS analysis, brain topography...

Classifier training

- Run as many training attempts as needed, using different features, in only a few clicks.
- Concatenate trials from multiple recorded sessions
- OpenViBE scenarios are updated and launched on-the-fly.
- Automatically generates/updates the "online classification" scenario.

HappyFeat - How?

1. MI Pipeline / "Feature type" selection

- Selecting btw. multiple "template" scenarios depending on the use case (power spectrum, connectivity type...)
- Edit basic/common parameters (acquisition, extraction, training...)

HappyFeat - How?

- 1. MI Pipeline / "Feature type" selection
- 2. Feature Extraction
- Select signal files, and extraction parameters (lengths and overlap of windows, FFT size...)
- Run the generated extraction OpenViBE scenario (in the background) for all selected signal files:
 - → Extract metadata (sampling freq, electrodes...)
 - → Cut the signal to regions of interest (MI trials & baseline portions), generate CSV file with only these chunks (for the training step)
 - → Apply a **signal processing** pipeline (PSD computation, connectivity measure...) to the signal chunks of interest, generate CSV files for future analysis
- Runs in an autonomous thread: You can do visualizations and training attempts for signals already processed in the meantime.

Paris **Brain**

HappyFeat - How?

- 1. MI Pipeline / "Feature type" selection
- 2. Feature Extraction
- 3. Analysis, Feature Selection
- Select one or multiple signals & load their spectral/connectivity data (CSV work files generated during "Feature Extraction")
- Use different **Visualization Tools** to help find & select features of interest (FOIs) for training
 - → Frequency/channel R² map
 - → PSD (or connect. metric) comparison btw. the 2 conditions (MI/REST) for a given electrode
 - → Time/frequency ERD/ERS analysis for each condition
 - \rightarrow R² mapped as a brain topography for a given frequency (or range)

Combine as many visualization windows as you need

A "Dual metric" pipeline allows to show (for ex.) R² maps for both Power Spectrum and Connectivity in parallel

HappyFeat - How?

- 1. MI Pipeline / "Feature type" selection
- 2. Feature Extraction
- 3. Analysis, Feature Selection
- 4. Classifier Training
- Set one or more **Features of Interest** (Electrode/Freq.)
- **Select file(s)** with which you want to train your classifier If > 1 file: their trials are automatically concatenated
- Run the Classifier Training scenario (Auto. generated in step 1 + auto. edited with FOIs)
 - → Classification ACCURACY + WEIGHTS

Disappointing results? ("My accuracy is 50% ⊗") Maybe try again with other features. It only takes a few seconds...

Satisfying results?! ("OMG 95%")

Good news! The "Online Classification" scenario has already been automatically been updated with:

- Classifier training weights
- Features of interest used for training

Training accuracy "score"

- + Classifier Weights
- + Online scenario updated

Full list of dependencies:

- Python 3.9
 - shutils>=0.1.0
 - mne>=0.23.0
 - numpy>=1.21.1
 - pandas>=1.3.1
 - PyQt5>=5.15.6

- statsmodels>=0.13.1
- scipy>=1.7.1
- spectrum>=0.8.0
- matplotlib>=3.4.2

• OpenViBE v3.5.0

Current limitations & future works

Current limitations

- Low flexibility regarding electrode schemes.
- Only one type of classification algo. proposed (LDA)

- (work in progress...)
- (work in progress...)

- Pipelines are "fixed":
 - trading OpenViBE's high level of flexibility...
 - + ...for a high comfort of pipeline settings customization
 - + & "trial-and-error" workflow
- Only three types of pipelines/feature types:
 - Power Spectrum Density
 - Connectivity (coherence & its variants)
 - Dual (mixing PSD & Connectivity)
- → In project (long term!) for more "prospective power": allow the user to choose btw. 1 and 3 feature-types & network metrics to mix as they see fit (MSC/node strength + Imag(Coh)/Laterality + ...)

Current limitations

- Every time a new feature type is selected, or extraction parameters are modified... all work files need recomputating from scratch.
 - → Necessity for a robust "work session" save/load mechanism

- In project: fully autonomous 100% Python version, without OpenViBE
 - No acquisition/online possibilities
 - Obviously slower... (no C++ optimizations!)
 - + More portable, all types of platforms supported (MacOS!)
 - + Other (more flexible) formats for I/O and work files (CSV, EDF...)

HappyFeat - Conclusion

- Already available online, work-in-progress version:
 - https://github.com/Inria-NERV/happyFeat
- To be continued...
 - More flexibility (pipeline options, mixing metrics...)
 - **More network metrics** (based on connectivity)
 - ... and associated visualization tools
 - More options for classification algorithms
 - Workspace/session manager to save/load session settings
 - Fully autonomous Python version, for cross-platform usage

Stay tuned!

BCI Motor Imagery with OpenViBE in X-Men: First Class

Thanks for your attention! Any questions?