Spatiotemporal modelling & automated in-situ sensors to monitor Harmful Algal Blooms(HABs)

Case Study-Lake Victoria

Presenter:

Name: OKELLO, JACOB OKOMO Reg. No: ENC222-0149/2017

GEGIS 3-Aug-21

Introduction

 Toxic Cyanobacteria-rich Harmful Algal Blooms (CyanoHABs), a phenomenon which turns water bodies dark blue-green due to eutrophication; potentially harming humans and animal, e.g., Unsightly nuisance, acute liver damage when ingested, irritation, massive fish deaths, etc.

- WHO

- Hence, quantifying the spatial distributions of CyanoHABs in L.
 Victoria is of great significance, which requires high spatiotemporal resolution monitoring. (Sitoki et al., 2012)
- There however exists that niche to support the space observations with a near-real time geointelligent in-situ monitoring and reporting system.

Problem statement

- The rapidly escalating demographics along L. Victoria riparian reserves has negatively impacted water quality through deposits of agricultural, industrial runoff and sewer refuse eutrophicating the said region. (Burkholder et al., 2006; MOH)
- Deterioration in water quality initiates ecosystem conflicts, poor economic growth, reduced tourism, poor water quality furthermore baring achievement of SDG 6 & 14- Clean Water and Sanitation.
- Coupling wide spread spatiotemporal monitoring, and automated in-situ sensors will play a big deal in return. This would inform the Govt. and the general public the affected zones, calling for immediate remedy actions.

Justification

Image Sources: Standard Media KE, KMFRI, allAfricawaters

General and specific objectives

- To detect, monitor and report the occurrence of Harmful Algal Blooms(HABs) and Cyanobacteria in Lake Victoria.
 - To monitor chlorophyl-a(chl-a) concentration from L8 OLI images.
 - To monitor Lake Surface Water Temperature(LSWT) from L8 TIRS images as another HAB indicator in L. Victoria.
 - To develop automated Internet of Things (IoT) in situ sensors, Applicable in near real-time to monitor and report geo-tagged Water quality data.

Study Area

6

Overall Methodology: Data and Materials

KiCAD

Free & Open source

TECHNOLOGY FOR DEVELOPMENT					
Data Type	Source	Role/Use			
Landsat 8 OLI	Google Earth Engine	Spatiotemporal HAB Monitoring			
(30m, 16 days)	(2015-2021)				
Landsat 8 TIR	Google Earth Engine	Lake Surface Water Temperature			
(100m, 16 days)	(2015-2021)	Monitoring(LSWT)			
Meteorological Data	Kenya Marine & Fisheries Research Institute-KMFRI (2015-2021)	Water Quality assessment			
Shapefiles	Geodatabase of Global Administrative areas- GADM	Delineate the Study area			
In-Situ Data	In-situ Sensors 2021 Onwards	Continued In-Situ Algal Monitoring			
Tool/Material	Role	Availability			
Google Earth Engine (GEE)	Geocomputation & Processing	Freely Available			
QGIS, R & Python	Further Analysis & Maps	Free			
Microcontroller & Sensors	In-Situ data Monitoring	Local Purchase			

Design the Schematics & basic Circuits

Overall methodology

Expected Results

- Chlorophyl-a Geographical Maps associating the occurrence of the Harmful Algal Blooms and Cyanobacteria.
- Lake Surface Water Temperature(LSWT) Maps associating the presence of HABs.
- Autonomous system that monitors and reports geo-tagged temperature data in near-real time from the *in-situ* sensors.

SAMPLE RESULTS: Time series Average of Chl-a conc. monthly 4-Km MODIS L3m

L8 2015: No Bloom Reported (cl-g map) Vs LSWT Map at Bloom Event.

Obtaining GPS Location, Air Temp and Relative Humidity from Sensors.


```
Places
                V2 VNC Viewer
                                                            192,168
                                                   [Use Neo 6M GPS I
                          NEO6M_Ublox
File Edit Tabs Help
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ nano neo6m.
pi@raspberrypi:~/192.168_micros/piStudios/NEO6M_Ublox S python neo6
 File "neo6m.py", line 14
SyntaxError: Non-ASCII character '\xe2' in file neo6m.py on line 14
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ nano neo6m.
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ y
bash: y: command not found
pi@raspberrypi:~/192.168_micros/piStudios/NEO6M_Ublox $ python neo6
Traceback (most recent call last):
 File "neo6m.py", line 10, in <module>
    ser = serial.Serial(port,baudrate=9600.timeout=0.5)
 File "/usr/lib/python2.7/dist-packages/serial/serialutil.py", line
    self.open()
 File "/usr/lib/python2.7/dist-packages/serial/serialposix.py", li
    raise SerialException(msg.errno, "could not open port {}: {}".f
serial.serialutil.SerialException: [Errno 2] could not open port ..
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ nano neo6m.
pi@raspberrypi:~/192.168 micros/piStudios/NEO6M Ublox $ python neo6
Latitude = -1.09458933333, Longitude=37.0182255
Latitude = -1.0946335, Longitude=37.0183605
Latitude = -1.09464316667, Longitude=37.0183326667
Latitude = -1.09464583333, Longitude=37.0183036667
Latitude = -1.094632, Longitude=37.0182801667
Latitude = -1.0946315, Longitude=37.0182573333
Latitude = -1.09462916667, Longitude=37.01823
Latitude = -1.09462816667, Longitude=37.0182126667
Latitude = -1.09462233333, Longitude=37.0181935
Latitude = -1.09462533333, Longitude=37.0181796667
Latitude = -1.09464133333, Longitude=37.0182055
Latitude = -1.09464066667, Longitude=37.0182258333
Latitude = -1.09463783333, Longitude=37.0182228333
Latitude = -1.09463516667, Longitude=37.0181965
Latitude = -1.0946295, Longitude=37.0181818333
Latitude = -1.09462133333, Longitude=37.018166
Latitude = -1.094606, Longitude=37.0181016667
Latitude = -1.09473016667, Longitude=37.0186191667
Latitude = -1.09473666667, Longitude=37.0186191667
latitude = -1.09473233333. Longitude=37.0186283333
```

```
pi@raspi-53
                              time sudo ./dht11 -r 10
  humidity: 44.0 |
                    temperature: 23.0
  humidity: 43.0 |
                    temperature: 23.0
  humidity: 44.0 | temperature: 23.0
  humidity: 44.0 |
                    temperature: 23.0
  humidity: 43.0 |
                    temperature: 23.0
  humidity: 43.0 | temperature: 23.0
  humidity: 43.0 |
                    temperature: 23.0
  humidity: 43.0 |
                    temperature: 23.0
9, humidity: 43.0 | temperature: 23.0
10, humidity: 43.0 | temperature: 23.0
        0m11.710s
real
```

SEGIS 13

Project Timeline

	June - July	August	Sep	Oct	Nov	Dec
Chl-a	Literature Rev (Restructure)	Data Acquisition Preliminary results	Chl-a spatiotemporal Maps			
LSWT	Literature Rev (Restructure)		LSWT spatiotemporal Maps			
IoT	Literature Rev. Acquire all sensors	Unit tests	Long F	•	Full Data Acquisition and Dissemination	

Thank you for your attention! Questions?

