1. Introduction

현재 터널 및 고속도로 등에서 운행 중인 차량에 대한 구간 단속은 대부분 **번호판** 인식 기반 카메라(ANPR) 시스템을 활용하고 있다. 이 방식은 설치 비용이 높고, 환경 요인(온도, 습도, 어둠 등)에 민감하다는 한계를 지닌다.

한편, UWB(Ultra-Wideband)는 시간 영역에서 폭이 좁은 펄스를 이용하는 무선통신기술을 의미하며, 수십 cm 이하의 거리 오차로 무선기기 간의 거리를 측정 가능한 장점이 있다. 본 연구는 UWB 기술을 터널 내 구간 단속 시스템에 적용하여, 환경 민감도, 높은 설치비용, 번호판 인식의 오류 문제를 해결 할 수 있다는 장점이 있다.

2. Environment

- (a) UWB Module: Decawave DWM 1000
- (b) 터널의 입구와 출구에 각각 Anchor 배치 (터널 길이: 5m/ 터널 높이: 1m)
- (c) 차량의 전방에 Tag 배치

3. Process Overview

4. Methods

DS-TWR (Double-Sided Two-Way Ranging)

Figure 2-5. DS-TWR Message Sequence and Timestamp Capture

$$ToF = \frac{Distance = ToF \times c}{(T_{round1} \cdot T_{round2}) - (T_{reply1} \cdot T_{reply2})} = \frac{(T_{round1} \cdot T_{round2}) - (T_{reply1} \cdot T_{reply2})}{(T_{round1} + T_{round2}) + (T_{reply1} + T_{reply2})}$$

DS-TWR(Double-Side Two-Way Raning)은 세 번의 메시지 교환을 통해 송수신 장치 간 시간 정보를 수집하고, **왕복 시간과 응답 지연을 보정하여** 전파시간(Time of Flight, ToF)을 계산함으로써 <mark>정밀한 거리 측정</mark>을 수행한다.

(c: 빛의 속도, 약 299,792,458m/s)

Kalman Filter (Noise Filtering)

$$K_k = \frac{P_k}{P_k + R}$$

$$\widehat{x}_k = \widehat{x}_{k-1} + K_k(z_k - \widehat{x}_{k-1})$$

$$P_k = (1 - K_k)P_k$$

 \widehat{x}_k : 현재 거리 추정값 z_k : 측정값 (DS-TWR 결과) P_k : 추정 오차 R: 측정 잡음 K_k : 칼만 이득

UWB 거리 측정값은 환경 노이즈, 반사 등으로 인해 불안정한 값을 가질 수있다. 이를 보정하기 위해 **1차원 칼만 필터**를 적용하여, **실시간으로 예측값과 측정값을 결합**하고, <mark>잡음을 줄인 거리 추정값을 생성하였다</mark>.

5. Results

측정 평균 속도 정확도 & 과속 여부

N o	실제 평 균 속도	측정 평 균 속도	오차율	과속 여 부 (기준 1.5 [m/s])
1	1.51 [m/s]	1.55 [m/s]	1.65 %	과속
2	1.84 [m/s]	1.78 [m/s]	3.26%	과속
3	1.85 [m/s]	1.78 [m/s]	3.78%	과속
4	1.58 [m/s]	1.65 [m/s]	4.43%	과속
5	0.77 [m/s]	0.75 [m/s]	2.67%	정상
6	0.66 [m/s]	0.68 [m/s]	3.33%	정상
7	0.83 [m/s]	0.85 [m/s]	2.40%	정상

제안된 시스템이 시간 흐름에 따른 속도 변화를 **안정적으로 추적** 함을 확인할 수 있다. 또한 그래프를 통해 **적은 오차율의 평균 속도 추정이 가능함**을 확인할 수 있다.

터널 출구 UWB Serial Monitor

터널 출구 UWB Serial Monitor를 통해 차량의 터널 통과 <mark>평균 속도 및 과속 여부를 실시간으로 확인할 수 있으며, 차량 번호</mark> 정보를 함께 수신함으로써, 정상주행 차량과 과속 차량을 명확히 구분할 수 있다.

6. Conclusion & Expected Effect

Conclusion

본 시스템은 UWB 기반 DS-TWR 거리 측정과 Kalman Filter를 겹합하여, 터널 내부나 비가시적 환경에서도 실시간 과속 감지가 가능하다.

기존 카메라 기반 번호판 인식 방식의 한계를 극복하며, <mark>설치 비용과 유지 관리</mark>효율성 면에서도 강점을 가진다.

항목	기존 카메라 방식	UWB
필요 인프라	번호판 인식+영상 분석	UWB 기반 실시간 속도 추정
설치 유지비	고가	저가
번호판 문제	환경 요인에 따른 오차 발생	차량 태그 기반 고정 ID로 신뢰성 확보
측정 방식	영상 후처리 기반 추정	실시간 TWR 기반 속도 계산

Expected Effect

[실용성/경제성]

- **저비용 고효율 대체 기술**로, 기존 레이더/카메라 방식 대비 장비, 설치, 유지 비 측면에서 비용 절감이 가능하다.

[기술적 진보]

- Kalman Filter 기반 예측 기능을 통해 짧은 거리에서도 고정밀 속도 측정이 가능하며, **환경 변화에도 강건한 데이터를 유지한다.**
- 향후 2차원 Kalman Filter와 결합하여 **차량 경로 예측, 사고 징후 판단 등 고 도화 된 분석이 가능하다**.

[사회 파급력]

- UWB 기반 속도 단속 기술은 <mark>사생활 침해 없이</mark> 차**량 단속이 가능하다는 점**에 서, 영상기반 감시 시스템의 대안이 될 수 있다.
- 시스템이 소형화 및 저전력화 된다면, **향후 교통 약자 보호 시스템 등 안전** 분야로 확대도 가능하다.