PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2003342684 A

(43) Date of publication of application: 03.12.03

(51) Int. CI

C22C 38/00 C21D 9/46

C22C 38/14

C22C 38/58

(21) Application number: 2002149166

(22) Date of filing: 23.05.02

(71) Applicant:

NIPPON STEEL CORP

(72) Inventor:

OKAMOTO TSUTOMU OKADA HIROYUKI ASO TOSHIMITSU TANIGUCHI YUICHI

(54) HIGH-STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN PRESS FORMABILITY AND BLANKING WORKABILITY AND ITS PRODUCTION METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a high-strength hot rolled steel sheet excellent in press formability and blanking workability and its production method.

SOLUTION: This high-strength hot rolled steel sheet comprises 0.01-0.15% C, 0.01-2.0% Si, 0.5-3.0% Mn, 0.03%³P, 0.009%³S, 0.010%³N, 0.002-0.70% Al,

0.03-0.40% Ti, and the balance being Fe and unavoidable impurities. In the steel sheet, the content of unfixed carbon (C-Ti/4+N/1.17) is less than 0.0150%, and the content of remaining unprecipitated carbon represented by (ATS-TS)/7,400 [wherein TS is the strength (N/mm²) before rolling; and ATS is the strength (N/mm²) after aging treatment at 600°C for 1 hr] is at least 0.0050%. In the production method for the steel sheet, hot rolling is conducted under strict control of rolling conditions.

COPYRIGHT: (C)2004,JPO

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2003-342684 (P2003-342684A)

(43)公開日 平成15年12月3日(2003.12.3)

(51) Int.Cl. ⁷	識別記号	F I デーマコート*(参考)
C 2 2 C 38/00	3 0 1	C 2 2 C 38/00 3 0 1 W 4 K 0 3 7
C21D 9/46	301	C 2 1 D 9/46 T
C2 2 C 38/14		C 2 2 C 38/14
38/58		38/58
		審査請求 未請求 請求項の数6 OL (全 7 頁)
(21)出願番号	特願2002-149166(P2002-149166)	(71)出願人 000006655 新日本製鐵株式会社
(22)出願日	平成14年5月23日(2002.5.23)	東京都千代田区大手町2丁目6番3号
(22) MRH H	1 1 2 7 3 2 2 1 (2 3 2 3 2)	(72)発明者 岡本 力
		愛知県東海市東海町 5 - 3 新日本製鐵株
		式会社名古屋製鐵所内
		(72)発明者 岡田 浩幸
		爱知県東海市東海町5-3 新日本製鐵株
		式会社名古屋製鐵所内
		(74)代理人 100078101
		弁理士 綿貫 達雄 (外2名)
		最終頁に続く

(54) 【発明の名称】 プレス成形性と打抜き加工性に優れた高強度熱延鋼板及びその製造方法

(57)【要約】

【課題】プレス成形性と打抜き加工性に優れた高強度熱 延鋼板及びその製造方法を提供する。

【解決手段】 C:0.01~0.15%、Si:0.01 ~2.0 %、M n:0.5~3.0 %, P \leq 0.03%, S \leq 0.009 %, N \leq 0.010 %、AI:0.002~0.70%、Ti:0.03 ~0.40%を含有し、 残部鉄及び不可避的不純物からなる高強度熱延鋼板であ って、非固定炭素(C-Ti/4+N/1.17) を0.0150%未満とし たうえ、下式で求められる未析出炭素を0.0050%以上残 留させた高強度熱延鋼板、及び圧延条件を厳密に制御し て熱間圧延する高強度熱延鋼板の製造方法。なお、式中 TSは圧延ままの強度(N/mm²) であり、 ATSは600℃に1 hr加熱した時効処理後の強度(N/mm²) である。 未析出炭素=(ATS-TS)/7400

【特許請求の範囲】

4...

【請求項1】 質量%で、C:0.01~0.15%、Si:0.01~2.0 %、Mn:0.5~3.0%、P ≤0.03%、S ≤0.009 %、N ≤0.010 %、AI:0.002~0.70%、Ti:0.03 ~0.40%を 含有し、残部鉄及び不可避的不純物からなる高強度熱延鋼板であって、下記(1) 式で計算される非固定炭素を0.0150%未満としたうえ、(2) 式で求められる未析出炭素を0.0050%以上残留させたことを特徴とするプレス成形性と打抜き加工性に優れた高強度熱延鋼板。なお、式中TSは高強度熱延鋼板の圧延ままの強度(N/mm²) であり、ATSは高強度熱延鋼板に600℃に1hr加熱する時効処理を施した時の強度(N/mm²) である。

非固定炭素= C-Ti/4+N/1.17 · · · · (1)

未析出炭素=(ATS-TS)/7400 · · · · (2)

【請求項2】 高強度熱延鋼板がNbを0.01~0.10%含有 し、固定炭素が下記(3) 式で計算される請求項1に記載 のプレス成形性と打抜き加工性に優れた高強度熱延鋼 板。

非固定炭素= C-Ti/4+N/1.17-Nb/7.75 · · · · (3)

【請求項3】 Ca:0.0005 ~0.0100%及びREM:0.0005~0.0100%の何れか一方、又は双方を含有する請求項1又は2に記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板。

【請求項4】 Mo: $0.01\sim0.5$ %、 $V:0.01\sim0.2$ %、Zr: $0.01\sim0.2$ %、 $Cr:0.01\sim2.0$ %、 $Cu:0.2\sim2.0$ %、 $Ni:0.1\sim1.5$ %のうちの一種又は2種以上を含有する請求項 $1\sim3$ の何れかに記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板。

【請求項5】 鋼組織が、フェライトを主体とするフェライト・ベイナイト組織であって、強度が $780N/mm^2$ 以上である請求項 $1\sim 4$ の何れかに記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板。

【請求項 6 】 請求項 $1\sim 5$ の何れかに記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板を製造するに際し、前記組成の鋼を、熱延仕上げ温度をAr3 変態点 ~ 950 \mathbb{C} として熱間圧延し、引き続き $20\mathbb{C}$ /sec以上の冷却速度で $650\sim 800$ \mathbb{C} まで冷却したうえ、 $2\sim 15$ 秒空冷し、さらに、 $20\mathbb{C}$ /sec以上の冷却速度で $350\sim 600$ \mathbb{C} に冷却して巻き取ることを特徴とするプレス成形性と打抜き加工性に優れた高強度熱延鋼板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、主としてプレス加工される自動車足廻り部品等を対象とし、1.0 ~6.0mm程度の板厚で、良好な穴拡げ性を有し、打抜き加工において亀裂が発生することのないプレス成形性と打抜き加工性に優れた高強度熱延鋼板及びその製造方法に関するものである。

[0002]

【従来の技術】自動車などに使用される高強度熱延鋼板 50 Zr: 0.01~0.2 %、Cr: 0.01~2.0 %、Cu:0.2~2.0

にはプレス成形性に優れていることが要求されるが、これらの特性を向上させる手段として、例えば鋼組織を、フェライト・マルテンサイト組織、ベイナイト主体組織、フェライト主体組織、或いはフェライト・ベイナイト組織とする方法や、鋼中のSを低減し、Ca、REMにより硫化物の形態を制御する方法などがある。

【0003】更に特許第3233743号公報には、C に対するTiの量を規定して穴拡げ性を改善する方法が開示されている。このようにTi添加によりプレス成形性を 10 改善することはできるが、Ti添加の高強度熱延鋼板をプランク形状に切断(打抜き加工)を行う際、端面の荒れが発生し易く、この荒れが板厚に対して垂直方向の割れへと進展することも多い。従って、今日の自動車におけるような更なる部品の軽量化、形状の複雑化に十分対応できるだけの特性を備えていなかった。このため従来の高強度熱延鋼板は、足廻り部品等のように高いプレス成形性と打抜き加工性とが要求される用途に対して十分満足できるものではなかった。

[0004]

【発明が解決しようとする課題】本発明は上記した従来の問題点を解決するためになされたものであって、高強度化に伴うプレス成形性及び打抜き加工性の劣化を防ぎ、プレス成形性と打抜き加工性に優れた高強度熱延鋼板及びその製造方法を提供するためになされたものである。

[0005]

30

【課題を解決するための手段】上記の課題を解決するためになされた本発明のプレス成形性と打抜き加工性に優れた高強度熱延鋼板は、質量%で、C:0.01~0.15%、Si:0.01~2.0%、Mn:0.5~3.0%、P \leq 0.03%、S \leq 0.009%、N \leq 0.010%、AI:0.002~0.70%、Ti:0.03~0.40%を含有し、残部鉄及び不可避的不純物からなる高強度熱延鋼板であって、下記(1)式で計算される非固定炭素を0.0150%未満としたうえ、(2)式で求められる未析出炭素を0.0050%以上残留させたことを特徴とするものである。なお、式中TSは高強度熱延鋼板の圧延ままの強度(N/mm²)であり、ATSは高強度熱延鋼板に600℃に1hr加熱する時効処理を施した後の強度(N/mm²)である。

40 非固定炭素= C-Ti/4+N/1.17 · · · · (1)

未析出炭素=(ATS-TS)/7400 · · · (2)

【0006】なお、上記した高強度熱延鋼板において、高強度熱延鋼板がNbを0.01~0.10%含有し、非固定炭素が下記(3)式で計算されるものとすることができる。非固定炭素 = C-Ti/4+N/1.17-Nb/7.75 ···(3)また、上記したような高強度熱延鋼板において、高強度熱延鋼板が、Ca:0.0005~0.0100%及びREM:0.0005~0.0100%の何れか一方、又は双方を含有するものとすることができ、また、Mo: 0.01~0.5 %、V:0.01~0.2 %、7r: 0.01~0.2 %、Cr: 0.01~2.0 %、Cu:0.2~2.0

%、Ni:0.1~1.5 %のうちの一種又は2種以上を含有す _ ることができるし、高強度熱延鋼板は、鋼組織が、フェ ライトを主体とするフェライト・ベイナイト組織よりな り、強度を780N/mm²以上とするのが望ましい。

- 【0007】また、本発明のプレス成形性と打抜き加工 性に優れた高強度熱延鋼板の製造方法は、上記したよう なプレス成形性と打抜き加工性に優れた高強度熱延鋼板 を製造するに際し、前記組成の鋼を、熱延仕上げ温度を Ar3 変態点~950 ℃として熱間圧延し、引き続き20℃/s ec以上の冷却速度で650 ~800 ℃まで冷却したうえ、2 ~15秒空冷し、さらに、20℃/sec以上の冷却速度で350 ~600 ℃に冷却して巻き取ることを特徴とするものであ る。

[0008]

Salar Salar

【発明の実施の形態】本発明者らは上記課題を解決する ために鋭意研究した結果、TiやNbによって固定されない 計算上の非固定炭素を0.0150%未満としたうえに、熱間 圧延により製造した高強度熱延鋼板に0.0050%以上の炭 素を固溶状態の未析出炭素として残して、この未析出炭 素により粒界を強化することによって、プレス成形性を 20 良好に保持したまま打抜き加工性を改善できることを知 見し、上記課題を解決したものである。

【0009】本発明において高強度熱延鋼板中のC は 0.01 ~0.15%とする。 Cは炭化物を析出して強度を確 保するに必要な元素であって0.01%未満では所望の強度 を確保することが困難になる。一方、0.15%を超えると 延性の低下が大きくなって打抜き加工性が劣ることにな るからである。

【0010】Siは脱酸剤として有益な元素であり、また 有害な炭化物の生成を抑え組織をフェライト主体で残部 ベイナイトの複合組織とするに重要であって、さらにSi の添加により強度を高めてプレス成形性、延性を良好な ものとすることができる。このような作用を得るために は0.01%以上の添加が必要である。しかし、添加量が増 加すると化成処理性が低下するほか点溶接性も劣化する ため2.0 %を上限とする。なお、Siの範囲を0.9 ~1.2 %とするのがプレス成形性と延性を効果的に兼ね備えた ものとすることができて望ましい。

【0011】Mnは強度の確保に必要な元素であり、この ためには0.5 %以上の添加を必要とする。しかし、3.0 %を超えて多量に添加するとミクロ偏析、マクロ偏析が 起こりやすくなり、プレス成形性を劣化させる。なお、 Mnを1.0 ~1.5 %添加するのが高い強度を確保してプレ ス成形性を良好なものとすることができるので望まし

【0012】P はフェライトに固溶してその延性を低下 させるので、その含有量は0.03%以下とする。また、S はMnS を形成して破壊の起点として作用し著しくプレス 成形性、打抜き加工性を低下させるので0.00%以下とす る。また、NはTiと窒化物を形成してCと結合できるTi50ここで、Moは鋼の焼入れ性を高めて熱延鋼板を高強度化

の量を減少させ、強度確保が困難となるので、0.010% 以下とする。

【0013】AIは脱酸剤として有効であり、またSiと同 様に組織をフェライト主体で残部ベイナイトの複合組織 とするに有効な元素であるが、脱酸剤として用いる場合 には0.002 %以上の添加を必要とする。一方、0.70%を 超えると鋼の清浄性が低下することになる。従って、Al の範囲は0.002 ~0.70%とする。

【0014】Tiは結晶粒を微細化するとともに微細なTi 10 C を析出させて強度を確保するに有効な元素である。こ の目的のためには0.03~0.40%添加することが必要であ る。Tiが0.03%未満では強度を確保することが困難であ り、Tiが0.40%を超えるとTi系炭化物が多量発生しすぎ て延性が低下し、更に打抜き加工性が劣化するからであ

【0015】NbはTiと同様に結晶粒を微細化するととも に、NbC などの微細な炭化物を析出させて強度を確保す るに有益な元素である。このためにはNbを 0.01 ~0.10 %添加するのが望ましい。Nbが0.01%未満では強度を十 分高めることができず、Nbが0.10%を超えると析出物が 多量生成しすぎて延性が低下し打抜き加工性が劣化する からである。

【0016】本発明においては、下記(1)式で計算され る非固定炭素の量を0.0150%未満とする必要がある。 非固定炭素= C-Ti/4+N/1.17 上記式中の右辺は C-12/48×(Ti-48N/14) を簡略化した ものであって、Tiと結合しない計算上の非固定炭素の量 である。この計算上の非固定炭素が0.0150%以上である 場合には非固定炭素が多量に鋼中に残ることになって、 熱間圧延によりフェライト・ベイナイト組織を有する熱 延鋼板を製造した場合にベイナイトの硬度が高くなり、 このベイナイトとフェライトとの界面より亀裂が発生し 易くなってプレス成形性、特に穴拡げ性を劣化させるこ とになる。従って、非固定炭素の量は0.0150%未満とす る必要がある。なお、鋼がNbを含有する場合にはC はTi のみならずNbとも炭化物を形成することとなるので、非 固定炭素は下記(3) 式で計算するものとする。

非固定炭素=C-Ti/4+N/1.17-Nb/7.75 · · · · (3)

【0017】また、Ca、REM(希土類元素) は硫化物系介 在物の形態を制御しプレス成形性の向上に有効な元素で 40 ある。この形態制御効果を有効ならしめるためにはCa、 REMの何れか一方、又は双方を0.0005%以上の添加する のが望ましい。一方、多量の添加は硫化物系介在物の粗 大化を招き、清浄度を悪化させて打抜き加工性を低下さ せるので、上限を0.0100%とするのが望ましい。

【0018】本発明においては、合金元素として、Mo: 0.01~0.5 %, V:0.01~0.2 %, Zr: 0.01~0.2 %, C r: 0.01~2.0 %、Cu:0.2~2.0 %、Ni:0.1~1.5 %の うちの一種又は2種以上を鋼に添加することができる。 (4)

10

30

40

するのに有効な元素であって、この効果を発揮するため _ には 0.01 %以上の添加を必要とする。しかし、0.5 % を超えて添加しても効果は飽和するうえ、Moは高価な元 素であるので製造コストが高騰する。従って、Moの量は - 0.01~0.5 %とするのが望ましい。

【0019】Crも焼入れ性向上元素であって、この効果 を発揮するためには0.01%以上の添加を必要とする。し かし、2.0 %越えて添加しても効果は飽和するのみなら ずコスト高を招くので、Cr量は0.01~2.0 %とするのが 望ましい。

【0020】また、Niも焼入れ性向上元素であって、こ の効果を発揮するためには0.1 %以上の添加を必要とす る。しかし、1.5 %超添加しても効果は飽和するのみな らずコスト高を招くので、Niの範囲は0.1 ~1.5 %とす るのが望ましい。

【0021】CuもNiと同様に鋼の焼入れ性を高めて熱延 鋼板を高強度化するのに有効であるが、この効果を発揮 するためには0.2 %以上の添加を必要とする。しかし、 2.0%を越えて添加しても効果は飽和するのみならず、 熱間延性を低下させて表面疵の発生が顕著になる。従っ て、Cuの範囲は0.2~2.0%とするのが望ましい。

【0022】V はNbと同じく微細な炭化物を析出して熱 延鋼板の強度を高めるに有効であって、この効果を発揮 するためには0.01%以上の添加を必要とする。しかし、 0.2%を越えて添加しても効果は飽和するので、V の範 囲は0.01~0.2 %とするのが望ましい。

【0023】また、ZrはTiと同じく微細な炭化物を析出 して熱延鋼板の強度を高めるに有効であって、この効果 を発揮するためには0.01%以上の添加を必要とする。し かし、0.2%を越えて添加しても効果は飽和するので、 Zrの範囲は0.01~0.2 %とするのが望ましい。

【0024】優れたプレス成形性と打抜き加工性とを兼 ね備えた高強度熱延鋼板を得るには、Ti或いはNbと結合 していない固溶状態の未析出炭素が0.0050%以上残留す るように圧延条件を精密に制御して圧延する必要があ る。未析出炭素が0.0050%未満では高強度熱延鋼板中に 残留する固溶炭素量が少なくなって、結晶粒界を十分強 化することができず、鋼板を打ち抜いた時に、鋼板が2 枚の層状に剥離されるような不具合が発生し易くなる。 従って、高強度熱延鋼板を打抜き加工性に優れたものと するには、未析出炭素は0.0050%以上確保する必要があ る。なお、未析出炭素の量が0.0150%を超えるとフェラ イトの強化が不十分となってプレス成形性が劣化するこ とになるので、未析出炭素の量は0.0150%以下とするの が望ましい。

【0025】上記した未析出炭素は下記(2) 式を用いて 求める。

未析出炭素=(ATS-TS)/7400 · · · (2)

なお、式中TSは高強度熱延鋼板の圧延ままの強度(N/mm 2) であり、 ATSは高強度熱延鋼板に時効処理を施した

後の強度(N/mm²) である。即ち、高強度熱延鋼板の圧 延ままの強度TSを求める一方、圧延ままの高強度熱延鋼 板に、例えば600℃で1hr 加熱する時効処理を行う。こ の時効処理によってTi或いはNbと未だ結合していなかっ た未析出炭素が析出して強度を高める。従って、高強度 熱延鋼板の時効処理後の強度ATS を求めて、ATS からTS を引き算することにより、未析出炭素が析出したことに よる強度の増加分を計算することができるので、これを 一定の係数で割ることによって未析出炭素の量を求める ことができる。なお、上記した時効処理は過時効を起こ すことなく未析出炭素を十分析出させることのできる条 件であればよく、例えば550~600℃に30min~1.5hr加熱 してもよく、従って、本発明は時効処理の条件によって 何ら限定されるものではない。

【0026】また、高強度熱延鋼板における鋼組織はフ ェライトが80%以上のフェライト・ベイナイト組織とす るのが望ましい。鋼組織をフェライトが80%以上のフェ ライト・ベイナイト組織とすることにより良好な穴拡げ 性と延性を有する高強度熱延鋼板を得ることができる。 ベイナイトの量を20%以下とするのは、ベイナイトの量 がこれより多くなると延性の低下が大きくなるからであ

【0027】以上のような高強度熱延鋼板を熱間圧延に より製造するに際して、仕上げ圧延終了温度は、Ara変 態点以上とする。仕上げ圧延終了温度が、Ara変態点未 満とした時には、フェライトの過剰な生成を抑えること ができずプレス成形性が劣化する。また、TiC 乃至はNb C などの炭化物の析出が多くなって未析出炭素を0.0050 %以上確保することが難しくなる。しかし、仕上げ圧延 終了温度が950 ℃を超えて高くなると組織の粗大化によ る強度及び延性の低下を招くことになる。従って、仕上 げ圧延終了温度はAr3変態点~ 950℃とする必要があ

【0028】また、圧延終了直後に鋼板を急速冷却する ことは高いプレス成形性を得るために重要なことであっ て、その冷却速度は20℃/sec以上を必要とする。冷却速 度が20℃/sec未満では炭化物の析出が促進されて未析出 炭素を0.0050%以上確保することが難しくなるからであ

【0029】鋼板の急速冷却を一旦停止して空冷を施す ことはフェライトを析出してその占有率を増加させ、延 性を向上させるために必要なことである。しかしなが ら、空冷開始温度が 650℃未満ではプレス成形性に有害 なパーライトが早期より発生する。一方、空冷開始温度 が 800℃を超える場合にはフェライトの生成が遅く空冷 の効果が得にくいばかりでなく、炭化物の析出が進んで 未析出炭素を0.0050%以上確保することが難しくなる。 従って、空冷開始温度は 650~800 ℃とする。また、空 冷時間が2 秒未満ではフェライトを十分生成させること 50 はできない。一方、空冷時間が15秒を超えると炭化物の

析出が進んで未析出炭素を0.0050%以上確保することが 難しくなるばかりでなく、その後の冷却速度、巻取温度 の制御に負荷がかかることとなる。従って、空冷時間は 2~15秒とする。

「 【0030】空冷後は再度鋼板を急速に冷却するが、その冷却速度はやはり20℃/sec以上を必要とする。20℃/sec未満では有害なパーライトが生成し易くなるからである。そして、この急冷の停止温度、即ち巻取温度は350~600℃とする。巻取温度が350℃未満では穴拡げ性に有害な硬質のマルテンサイトが発生するためであり、一方、600℃を超えるとプレス成形に有害なパーライト、セメンタイトが生成し易くなるからである。

【0031】以上のような化学成分と圧延条件の組み合*

*わせにより、強度が780N/mm²以上であってプレス成形性と打抜き加工性に優れた高強度熱延鋼板を製造することができる。なお、本発明の高強度熱延鋼板の表面に表面処理(例えば亜鉛メッキ等)が施されていても本発明の効果を有し、本発明の技術的範囲に属するものである。

[0032]

る。そして、この急冷の停止温度、即ち巻取温度は350 【実施例】表 1 に示す化学成分組成を有する鋼を転炉溶 ~600 $\mathbb C$ とする。巻取温度が350 $\mathbb C$ 未満では穴拡げ性に 有害な硬質のマルテンサイトが発生するためであり、- 10 に示す圧延条件にて圧延、冷却し、板厚2.6 ~3.2mm の 高強度熱延鋼板を製造した。

[0033]

【表1】

	. <u>Т</u> .о) т		. , /24//	化学				110				非固定炭素量
1 49	С	Si	Mn	P	S	N	Al	Nb	Ti	Ca	その他	96
Ā	0.02	0.9	1.4	0.006	0.001	0.003	0.031	_	0.140	-		-0.012
B	0.03	1.1	1.4	0.007	0.001	0.003	0.030	0.025	0.125	0.0025	-	-0.002
c	0.04	0.9	1.5	0.006	0.001	0.003	0.034	_	0.150	0.0030	-	0.005
10	0.035	1.1	2.8	0.007	0.001	0.003	0.041	_	0.110	-	_	0.010
E	0.04	1.5	0.7	0.007	0.001	0.002	0.045	0.035	0.165	-		-0.004
F	0.015	1.0	2.0	0.006	0.001	0.003	0.035		0.040	0.003	_	0.008
G	0.05	1.8	1.6	0.008	0.001	0.002	0.005	0.030	0.140	-	_	0.013
H	0.04	0.10	1.4	0.007	0.001	0.003	0.450	0.030	0.140	0.0025		0.004
 ''	0.04	0.01	1.4	0.007	0.001	0.003	0.650	0.030	0.140	0.0025	-	0.004
j	0.078	1.3	1.8	0.006	0.001	0.002	0.033	0.042	0.240	_	-	0.014
K	0.12	1.0	1.4	0.008	0.001	0.002	0.034	0.095	0.380	-	-	0.014
1	0.03	1.1	1.B	0.007	0.001	0.002	0.030	0.025	0.125	0.0025	-	-0.003
М	0.03	1.0	2.4	0.006	0.001	0.002	0.041	-	0.130	0.0025	-	-0.001
N	0.03	1.3	0.5	0.006	0.001	0.003	0.035	0.030	0.120	0.0025	_	0.001
0	0.058	1.8	1.0	0.006	0.001	0.002	0.030	_	0.165			0.013
P	0.04	1.8	1.7	0.006	0.001	0.003	0.042	0.030	0.120	-	-	0.009
Q	0.038	0.01	0.8	0.006	0.001	0.003	0.500	0.030	0.140	0.0025	-	0.002
R	0.05	0.01	2.4	0.006	0.001	0.002	0.350		0.180	0.0025	1	0.007
s	0.075	1.3	2.4	0.006	0.001	0.003	0.030	0.040	0.240		-	0.012
Ť	0.075	1.3	1.4	0.006	0.001	0.003	0.030	0.040	0.240		-	0.012
ΙŪ	0.03	0.5	1.4	0.007	0.001	0.002	0.030	0.025	0.100	<u> </u>	REM:0.002	0.003
ΙV	0.03	1.1	1.8	0.007	0.001	0.005	0.030	0.030	0.125	•	Mo:0.3	-0.001
w	0.03	0.5	1.4	0.007	0.001	0.003	0.030	0.025	0.120	-	Cr:0.5,V:0.1	-0.001
X	0.03	1,1	1.4	0.007	0.001	0.003	0.030	0.025	0.130	1	Cu:0.2,Ni:0.1	-0.003
Y	0.03	1.1	1.8	0.007	0.001	0.002	0.030	0.025	0.125	-	Zr:0.02	-0.003
Ż	0.04	1.1	1.4	0.007	0.001	0.003	0.030	0.025	0.100		V:0.2	0.014
a	0.05	1.4	4.0	0.008	0.001	0.002	0.032	-	0.135	0.0025		0.013
b	0.18	1.0	1.4	0.008	0.001	0.003	0.032	0.200	0.600	-	-	0.007
Ĉ	0.03	1.1	2.0	0.006	0.010	0.002	0.030	-	0.100	-	-	0.007
d	0.04	1.1	1.4	0.007	0.001	0.003	0.030	-	0.080		_	0.023

[0034]

【表2】

試験	銅	仕上 温度	冷却 速度	空冷開始 温度	空冷 時間	巻取 温度	鋼の	тѕ	ATS	未析出 炭素	伸び	穴広げ 値	打抜き 試験	備考
Nσ.		ဘီ	°C/sec	_°C	88C	ပ္	組織	N/mm ²	N/mm ²	96	96	96	判定	
	A	925	75	700	3	500	F+B	764	845	0.0110	21	85	0	実施例
2	Α	920	73	700	3	430	F+B	744	840	0.0130	20	87	0	実施例
3	В	910	53	750	5	520	F+B	808	867	0.0080	20	78	0	実施例
4	В	905	52	750	5	400	F+B	788	877	0.0120	20	81	0	実施例
5	В	915	63	725	4	550	F+B	828	887	0.0080	21	75	O	実施例
6	В	925	35	820	3	520	F P	823	845	0.0030	20	76	×	比較例
7	В	915	80	675	20	520	F+B	790	797	0.0010	19	81	×	比較例
8	С	925	83	675	3	500	F#	798_	887	0.0120	20	79	0	実施例
9	C	925	67	725	4	500	F+B	806	880	0.0100	21	78	0	実施例
	D	910	53	750	5	520	÷	855	915	0.0080	20	71	0	実施例
11	E	930	77	700	3	500	F+B	891	973	0.0110	18	66	0	実施例
12	F	910	70	700	2	510	F+B	642	723	0.0110	22	103	0	実施例
13	G	920	57	750	5	490	F+B	946	1012	0.0090	18	58	0	実施例
14	Н	925	50	775	8	510	F+8	785	844	0.0080	20	81	0	実施例
15	H	925	68	720	4	420	F#B	740	829	0.0120	21	88	0	実施例
18	I	930	77	700	3	520	F+B	784	858	0.0100	20	82	0	実施例
17	J	930	85	678	3	500	F+B	1152	1241	0.0120	14	35	0	実施例
18	۲	930	60	750	6	400	F+B	980	1061	0.0110	18	53	0	実施例
19	J	925	75	700	20	520	F+B	950	957	0.0010	17	57	×	比較例
20	K	930	85	675	3	500	F+B	1488	1577	0.0120	10	30	0	実施例
21	K	925	58	750	8	550	F+B	1506	1558	0.0070	10	35	0	実施例
22	K	930	52	775	5	630	F+B	1600	1607	0.0001	9	30	×	比較例

F:フュライト、B:ベイナイト

[0035]	【表3】

	4-	胜上	冷却	空冷開始	空冷	巻取	467.4			未折出	45.00	大広げ	打抜き	Although.
試験	鋼	温度	速度	温度	時間	温度	鋼の	TS	ATS	炭素	伸び	値	試験	備考
No.		ိုင	%/Sec	°C	88C	_ °C	組織	N/mm ²	N/mm ²	96	96	96	判定	
23	L	920	73	700	3	520	F+B	861	935	0.0100	20	70	0	実施例
24	L	925	58	750	6	430	F+B	841	922	0.0110	20	73	0	実施例
25	M	925	75	700	4	500	B	858	939	0.0110	20	71	0	実施例
26	M	925	58	750	5	450	₽	845	926	0.0110	19	73	0	実施例
27	N	910	70	700	3	510	₽	748	829	0.0110	22	87	0	実施例
28	0	925	67	725	3	490	F#B	965	1039	0.0100	19	55	0	実施例
29	P	930	85	675	3	510	#	897	988	0.0120	18	65	0	実施例
30	D	925	67	725	3	500	F+B	728	802	0.0100	21	90	0	実施例
31	R	900	58	725	4	510	₽	893	967	0.0100	18	66	0	実施例
32	R	910	78	675	3	4	F#B	864	968	0.0140	19	70	Q	実施例
33	S	930	68	725	3	490	F	1189	1263	0.0100	15	35	0	実施例
34	S	930	85	675	3	460	ŧ P	1150	1246	0.0130	15	35	0	実施例
35	7	930	70	720	3	510	₽	1097	1171	0.0100	15	43	0	実施例
36	1	930	50	780	10	440	#	970	1037	0.0090	17	54	Q	実施例
37	U	890	63	700	4	510	F+B	736	817	0.0110	21	89	0	実施例
38	<	910	70	700	3	490	F+B	837	918	0.0110	19	74	O	実施例
39	W	920	83	670	3_	510	F+B_	764	853	0.0120	20	85	0	実施例
40	X	910	78	675	3	510	F+B	822	910	0.0119	20	76	0	実施例
41	Υ	920	57	750	6	500	F+B	861	928	0.0090	20	70	0	実施例
42	Z	890	70	680	3	520	F+B	768	849	0.0110	19	84	0	実施例
43	a	925	75	700	4	500	F+B	1049	1130	0.0110	8	51	0	比較例
44	ь	935	78	700	4	510	F+B	1600	1681	0.0110	6	15	0	比較例
45	С	920	73	700	3	490	F+B	774	856	0.0110	18	10	0	比較例
46	ď	920	73	700	3	550	F#	671	753	0.0110	15	20	0	比較例

F:フェライト、B:ヘイナイト

【0036】このようにして得られた熱延鋼板につい て、組織観察、JIS5号試験片による圧延まま材の引 張試験、600 ℃、1 時間加熱した時効処理材の引張り試 験、プレス成形性を評価するための穴拡げ試験、及び打 抜き試験を行なった。鋼組織はナイタールで腐食後、光 学顕微鏡にて観察した。穴拡げ試験は初期穴径 (d 0:1 Omm) の打抜き穴を60°円錐ポンチにて押し拡げ、クラ ックが板厚を貫通した時点での穴径 (d)から穴拡げ値 $(\lambda 値) = (d-d0)/d0 \times 100$ を求めて評価した。打抜 き試験においては、12mmøのポンチを用いて、クリアラ ンス20%の条件で各3個の打抜きを行い(全長113mm)、 破断面において板厚方向と垂直に発生する割れの長さを 50 験No.6、7、19、22のものは、熱間圧延におけ

測定した。このうち2mm を超える割れの長さを合計した 40 時、全円周に対して40%を超えるものを×、これ以下の ものを○と判定した。これらの結果を表2、表3に併せ て示す。

【0037】表1に示す鋼のうち、鋼aはMnが本発明の 範囲より高く、鋼bはC、Nb、Tiが本発明の範囲より高 く、鋼cはSが本発明の範囲より高く、鋼dは非固定炭 素量が本発明の範囲より高いものであって、これら以外 の鋼は全て本発明の範囲内の化学成分組成と非固定炭素 を有するものである。

【0038】表2、表3に示した試験結果において、試

る空冷開始温度、空冷時間、巻取温度の何れかが本発明 、の範囲を外れており、未析出炭素が0.0050%未満と少な いために、打抜き加工性が不良であった。また、鋼a、 b、cを圧延した試験No. 43、44、45のもの - は、上記したように化学成分が本発明の範囲を外れてい るために、伸び、穴拡げ値の何れか、又は双方が低いも のとなった。また、鋼 d を圧延した試験No. 46のも のは、非固定炭素量が本発明の範囲より高く、ベイナイ トの硬度が高くなって穴拡げ値が低いものであった。上 記した以外の試験No. 1~5、8~18、20~2 1、23~42のものは、化学成分、非固溶炭素量、熱 間圧延条件の何れもが本発明の範囲内であって、鋼は80 %以上のフェライトとベイナイトとからなるフェライト ・ベイナイト組織であって、未析出炭素も0.0050%以上 残留されていた。この結果、これらの高強度熱延鋼板 は、十分高い強度と伸びを有し、良好な穴拡げ性と打抜 き加工性とを兼ね添えたものであることが確認された。 [0039]

【発明の効果】以上に詳述したように、本発明の高強度 熱延鋼板は、C:0.01~0.15%、Si:0.01~2.0%、Mn: 0.5~3.0%、 $P \le 0.03$ %、 $S \le 0.009$ %、 $N \le 0.010$ %、AI:0.002~0.70%、Ti:0.03~0.40%を含有し、残 部鉄及び不可避的不純物からなる高強度熱延鋼板であって、非固定炭素を0.0150%未満とすることによりプレス 成形性を向上させることができ、さらに、未析出炭素を0.0050%以上残留させることにより結晶粒界を強化して 打抜き加工性を向上させることができる。また、上記した高強度熱延鋼板がNbを0.01~0.10%含有し、非固定炭素を0.0150%未満としたうえ、未析出炭素を0.0050%以上残留させることによっても、優れたプレス成形性と打

抜き加工性を兼ね備えたものとすることができる。ま た、上記したような高強度熱延鋼板が、Ca:0.0005 ~0. 0100%及びREM: 0.0005~0.0100%の何れか一方、又は双 方を含有することによって硫化物の形態を制御してプレ ス成形性と打抜き加工性とを向上させることができる。 また、高強度熱延鋼板が、Mo: 0.01~0.5 %、V:0.01~ 0.2 %、Zr: 0.01~0.2 %、Cr: 0.01~2.0 %、Cu:0.2 ~2.0 %、Ni:0.1~1.5 %のうちの一種又は2種以上を 含有することによっても、鋼組織及び炭化物の析出量を 10 最適にしてプレス成形性と打抜き加工性に優れた高強度 熱延鋼板を得ることができる。また、鋼組織を、フェラ イトを主体とするフェライト・ベイナイト組織とするこ とにより、強度が780N/mm²以上であるプレス成形性と 打抜き加工性に優れた高強度熱延鋼板を得ることができ る。従って、本発明の高強度熱延鋼板は、車体の軽量 化、部品の一体成形化、加工工程の合理化が可能であっ て、燃費の向上、製造コストの低減を図ることができ る。また、本発明の高強度熱延鋼板の製造方法は、上記 したような高強度熱延鋼板を製造するに際し、前記組成 の鋼を、熱延仕上げ温度をAr3変態点~950 ℃として熱 20 間圧延し、引き続き20℃/sec以上の冷却速度で650~80 0 ℃まで冷却したうえ、2 ~15秒空冷し、さらに、20℃ /sec以上の冷却速度で350 ~600 ℃に冷却して巻き取る ことによって、未析出炭素を0.0050%以上残留させて過 剰な炭化物の析出を抑え、且つ鋼組織を最適なフェライ ト・ベイナイト組織とすることができる。従って、本発 明の高強度熱延鋼板の製造方法は、プレス成形性と打抜 き加工性に優れた高強度熱延鋼板を経済的に提供するこ とができるものとして工業的価値大なものである。

フロントページの続き

(72) 発明者 麻生 敏光

愛知県東海市東海町5-3 新日本製鐵株

式会社名古屋製鐵所内

(72)発明者 谷口 裕一

愛知県東海市東海町5-3 新日本製鐵株

式会社名古屋製鐵所内

Fターム(参考) 4K037 EA01 EA05 EA06 EA09 EA11

EA13 EA15 EA16 EA17 EA18

EA19 EA20 EA23 EA25 EA27

EA28 EA31 EA32 EA35 EA36

. FC00 FD03 FD04 FD05 FE01

FE02

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox