

Understanding Evolutionary Mutations of SARS-CoV-2

STAT1005 Group 4.2

- 01. Introduction
- 02. General view of mutation
- **03**. Object 1: Specific investigation of mutation
- **04**. Object 2: Comparison of mutation between time and location
- **05**. Object 3: Relationship between external factors and mutation
- **06**. Object 4: Prediction of mutation rate in China
- 07. Conclusion and Prospect

05

Object 4:

Relationship between death rate and mutation

Find the effect of mutation rate and death rate Data & Goals

Data Used

sequences with the information of location and time

Goals

Find the correlatio of mutation rate and death rate among countries

Find the effect of mutation rate and death rate

Methodology

Computation of mutation rate

Computation of mutation rate

	Virus Strain Name	Virus	s Strain ID	Sample Collection Date	Location		Nucleotides	Individual mutationrate (%x100000)
0	hCoV-19/Wuhan/IPBCAMS-WH- 05/2020	EPI_IS	SL_403928	2020-01-01	China, Wuhan	attaaaggtttatacc	ttcccaggtaacaaaccaaccaactttcga	3.344146
1	hCoV-19/Wuhan/IVDC-HB-04/2020		SL 402120	2020-01-01		attaaaggtttatacc	ttcccaggtaacaaaccaaccaactttcga	10.032438
2	hCoV-19/env/Wuhan/IVDC-HBF13- 21/2020	FPI	USA China		447 294	tcccaggtaacaaaccaaccaactttcga	20.064876	
3	hCoV-19/env/Wuhan/IVDC-HBF13- 20/2020		India	w	135		tcccaggtaacaaaccaacctttcga	26.753169
4	hCoV-19/Wuhan/WH03/2020	EPI	United Kingdom		133		caggtaacaaaccaaccaactttcga	26.753169
		Bangladesh		58				
1495	hCoV- 19/Bangladesh/CHRF_0029/2020	EPI	Name:	Location,	dtype:	int64	ccaggtaacaaaccaacctttcga	77968.765676
1496	hCoV- 19/India/InStem_NCBS_0038/2020	EPI_IS	SL_477239	2020-06-17	India	agacgtgtgctc	ttccgatcttaacaaaccaaccaactttcga	78142.661271
1497	hCoV-19/USA/MO-WUSTL032/2020	EPI_IS	SL_476021	2020-06-19	USA	atacc	ttcccaggtaacaaaccaaccaactttcga	78169.414440
1498	hCoV-19/USA/MO-WUSTL070/2020	EPI IS	SL 476018	2020-06-19	USA	acc	ttcccaggtaacaaaccaaccaactttcga	78206.200047

Combine data

Combined data of Bangladesh						
	1		↓			
	Individual mutationrate (%x100000)	Sample Collection Date	Death rate (%x100000)			
0	29900.010032	2020-04-28	5			
1	32177.373508	2020-05-02	9			
2	33207.370498	2020-05-03	3			
3	35819.148580	2020-05-06	5			
4	36364.244390	2020-05-07	23			
5	38210.213022	2020-05-10	25			
6	38297.160820	2020-05-10	25			
7	38333.946427	2020-05-10	25			
8	38487.777146	2020-05-10	25			
9	38524.562753	2020-05-10	25			

Types of correlation

Types of correlation

Increasing type

Globally analysis

All_combine

	Individual mutationrate (%	(100000) S	Sample Collection Date	Death rate (%x100000)
0	2990	0.010032	2020-04-28	5
1	3217	7.373508	2020-05-02	\$
2	3320	7.370498	2020-05-03	3
3	3581	9.148580	2020-05-06	: 4
4	3636	4.244390	2020-05-07	23
443	7598	2.342909	2020-06-13	70
444	7636	0.231415	2020-06-14	1
445	7816	9.414440	2020-06-19	50
446	7820	6.200047	2020-06-19	5
447	7824	6.329800	2020-06-19	5

Linear Regression

Linear Regression

OLS Regression Results								
Dep. Variable:	у	R-squared (uncenter		0.372				
Model:	OLS	Adj. R-squared (un		0.3/2				
Method:	Least Squares	F-statistic:		605.2				
Date:	Fri, 26 Nov 2021	Prob (F-statistic)	2.	2.63e-105				
Time:	14:52:43	Log-Likelihood:	-11840.					
No. Observations:	1022	AIC:	2.	2.368e+04				
Df Residuals:	1021	BIC:	BIC:					
Df Model:	1							
Covariance Type:	nonrobust							
				========	=======			
		err t		[0.025	0.975]			
Death rate (%x100000	77.7003 3	.159 24.600	0.000	71.502	83.898			
Omnibus:		Durbin-Watson:		0.078				
Prob(Omnibus):	0.000	Jarque-Bera (JB):		35.265				
Skew:	0.449	Prob(JB):	2.20e-08					
Kurtosis:	2.851	Cond. No.		1.00				

Notes

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Summary

Find the effect of mutation rate and death rate

Individual categorization: China USA UK

AS we can observe, these 3 countries has similar pattern of correlation between death rate and mutation rate. As the virus mutate, the death rate will reach to a peak then return to a lower level, which indicate that while the virus mutate, their fitness or harmfulness drop

Individual categorization: India Bangladesh

There are similar pattern between these 2 countries.

As they death rate keep rising while the virus in their countries mutate. It indicate that the viruses keep on mutating in a trend to obtain a higher fitness which is more harmful to human beings

More Models Application

Higher-order polynomial regression

