МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №8

по дисциплине «Машинное обучение»

Тема: Классификация (Линейный дискриминантный анализ, метод опорных векторов)

Студент гр. 6304	 Антонов С.А.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург

Цель работы:

Ознакомиться с методами классификации модуля Sklearn.

Ход работы:

Загрузка данных

1. На данном этапе был скачан и загружен датасет в датафрейм Pandas.

```
data = pd.read_csv('iris.data',header=None)
data.head()
```

	0	1	2	3	4
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Рисунок 1 Загруженный датасет

2. Были выведены данные и их метки, тексты меток были преобразованы к числам с помощью LabelEncoder:

```
X = data.iloc[:,:4].to_numpy()
labels = data.iloc[:,4].to_numpy()
le = preprocessing.LabelEncoder()
Y = le.fit transform(labels)
```

3. Выборка была разбита на обучающуюся и тестовую с помощью traint_test_split:

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.5)

Линейный дискриминантный анализ

- 1. Была проведена классификация данных методом LinaerDiscriminantAnalysis и выявлено 3 неправильно классифицированных наблюдения.
- 2. С помощью метода score была получена точность классификации, которая составляет 0.98%.
- 3. Были построены графики зависимости неправильно классифицированных на блюдений и точности классификации от размера тестовой выборки.

LinearDiscriminantAnalysis

Рисунок 2 Графики для метода LDA

4. Функция transform может применяться для уменьшения размерности данных. Результаты представлены на рисунке 3.

Рисунок 3 результаты transform

5. Работа классификатора была исследована при различных параметрах solver, shrinkage.

Рисунок 4 solver=svd, shrinkage=no

Рисунок 5 solver=lsqr, shrinkage=no

Рисунок 6 solver=lsqr, shrinkage=auto

Рисунок 7 solver=eigen, shrinkage=auto

6. Классу с номером 1 задана априорная вероятность классу 0.7, остальным классам заданы равные априорные вероятности.

Рисунок 8 Графики зависимости от размера тестового набора

Метод опорных векторов

1. Была проведена классификация SVM на тех же данных и выведено количество неправильно классифицированных наблюдений:

Wrong classified: 4

- 2. С помощью метода score была получена точность классификации, которая составляет 0.96%.
- 3. Атрибут support_ хранит индексы опорных векторов, support_vectors_ сами опорные вектора, n_support_ количество опорных векторов для каждого класса.
- 4. Построен график неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки.

Рисунок 9 График зависимости от размера тестовой выборки

- 5. Исследована работа метода опорных векторов при различных значениях параметров kernel, degree, max_iter.
 - a) Kernel тип ядра, который будет использоваться внутри алгоритма

kernel	Wrong classified	Score
linear	2	0.97
poly	6	0.95
rbf	4	0.96
sigmoid	54	0.38

b) Degree – степень полиномиальной функции ядра (при kernel = poly)

degree	Wrong classified	Score
1	5	0.96
2	6	0.96
3	6	0.97
4	5	0.98
5	3	0.98
6	3	0.98
7	3	0.98

с) Max iter ограничение на количество итераций.

Max_iter	Wrong classified	Score
1	9	0.96
2	8	0.98
3	5	0.97
4	3	0.97
5	1	0.97
6	3	0.97
7	3	0.97

- 6. Исследована работа методов:
 - a) NuSVC имеет параметр для управления количеством опорных векторов.

Рисунок 10 Графики зависимости от размера тестовой выборки NuSVC

b) LinearSVC – аналогичен SVC с kernel=linear, но лучше масштабируется.

Рисунок 11 Графики зависимости от размера тестовой выборки LinearSVC

Выводы:

В ходе выполнения лабораторной работы было произведено знакомство с классификацией методами GaussianNB, MultinominalNB, ComplementNB, BernoulliNB и DecisionTreeClassifier модуля Sklearn.