```
In [ ]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        from sklearn.linear model import LinearRegression
        sns.set()
In [ ]: df = pd.read_csv("Auto.csv")
        #remove any non-numerical data (? values)
        df[df.columns[:-2]] = df[df.columns[:-2]].apply(pd.to_numeric, errors='coerce')
        df = df.dropna()
        df = df.reset_index(drop=True)
        QUESTION 1:
        a)
In [ ]: x = df['horsepower'].values.reshape(-1, 1)
        y = df['mpg'].values.reshape(-1, 1)
        reg = LinearRegression().fit(x, y)
        # print("Coeff of determination (R^2): {}".format(reg.score(x, y)))
        X = sm.add constant(x)
        model = sm.OLS(y,X).fit()
        print(model.summary())
        print("Predicted mpg with a horsepower of 95: {}".format(reg.predict([[95]])[0][0]))
```

OLS Regression Results

=======================================	:========	=======	=========		
Dep. Variable:		y R-s	quared:		0.606
Model:		OLS Adj	. R-squared:		0.605
Method:	Least Squ	iares F-s	tatistic:		599.7
Date:	Tue, 15 Nov	2022 Pro	b (F-statistic)	:	7.03e-81
Time:	18:4	0:06 Log	-Likelihood:		-1178.7
No. Observations:		392 AIC	•		2361.
Df Residuals:		390 BIC	•		2369.
Df Model:		1			
Covariance Type:	nonro	bust			
=======================================		=======	=========	=======	
CC	ef std err	t	P> t	[0.025	0.975]
const 39.93	359 0.71 7	55.660	0.000	38.525	41.347
x1 -0.1	0.006	-24.489	0.000	-0.171	-0.145
Omnibus:	 16	.432 Dur	======== bin-Watson:	=======	 0.920
Prob(Omnibus):	e	.000 Jar	que-Bera (JB):		17.305
Skew:	6		b(JB):		0.000175
Kurtosis:	3		d. No.		322.
===========					

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Predicted mpg with a horsepower of 95: 24.94061135257337

- i) As the coeff of determination (R^2) is relatively close to 1, there is a relationship between the predictor and the response. The p-value is also very small for the linear regression with mpg and horsepower
- ii) The relationship between the predictor and response is strong. The p value is small when performing a t-test, and the coefficient of determination is also .606, which indicates that almost 60.6% of the variability in mpg can be explained by horsepower.
- iii) The relationship between the predictor and response is negative. We can see this, as the coefficient of x1 (our predictor) is negative.
- iv) The predicted mpg with a horsepower of 95 is 24.94061135257337

b)

```
In [ ]: ypred = reg.predict(x)
    df.plot(x='horsepower', y='mpg', style='o')
    plt.title("horsepower vs mpg")
    plt.ylabel('mpg')
    plt.plot(x, ypred)
    plt.show()
```

horsepower vs mpg

2.

a)

```
In [ ]: axes = pd.plotting.scatter_matrix(df)
    for ax in axes.flatten():
        ax.xaxis.label.set_rotation(90)
        ax.yaxis.label.set_rotation(0)
        ax.yaxis.label.set_ha('right')
    plt.tight_layout()
    plt.gcf().subplots_adjust(wspace=0, hspace=0)
    plt.show()
```


b)

In []: corrM = df.corr() #no names
print(corrM)

	mpg	cylinders	displacement	horsepower	weight	\
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	
year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	
origin	0.565209	-0.568932	-0.614535	-0.455171	-0.585005	
	accelerat	ion yea	ar origin			
mpg	0.423	329 0.58054	1 0.565209			
cylinders	-0.504	683 -0.34564	7 -0.568932			
displacement	-0.543	800 -0.36985	55 -0.614535			
horsepower	-0.689	196 -0.41636	51 -0.455171			
weight	-0.416	839 -0.30912	20 -0.585005			
acceleration	1.000	000 0.29031	6 0.212746			
year	0.290	316 1.00000	00 0.181528			
origin	0.212	746 0.18152	28 1.000000			

C:\Users\Bernhard\AppData\Local\Temp\ipykernel_41592\2646264494.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versio n, it will default to False. Select only valid columns or specify the value of numeri c_only to silence this warning.

corrM = df.corr() #no names

c)

```
In [ ]: dfplot = df.drop(["mpg","name"], axis = 1)
       x = dfplot
       y = df['mpg'].values.reshape(-1, 1)
       reg = LinearRegression().fit(x, y)
       print("Coeff of determination (R^2): {}".format(reg.score(x, y)))
       X = sm.add constant(x)
       model = sm.OLS(y,X).fit()
       print(model.summary())
       Coeff of determination (R^2): 0.8214780764810599
                               OLS Regression Results
       ______
       Dep. Variable:
                                          R-squared:
                                                                      0.821
       Model:
                                    OLS Adj. R-squared:
                                                                      0.818
                            Least Squares F-statistic:
       Method:
                                                                      252.4
```

Date: Tue, 15 Nov 2022 Prob (F-statistic): 2.04e-139 Time: 18:40:08 Log-Likelihood: -1023.5 No. Observations: AIC: 392 2063. Df Residuals: BIC: 2095. 384 Df Model: 7

Covariance Type: nonrobust

=========	========		=======		========	========
	coef	std err	t	P> t	[0.025	0.975]
const	-17.2184	4.644	-3.707	0.000	-26.350	-8.087
cylinders	-0.4934	0.323	-1.526	0.128	-1.129	0.142
displacement	0.0199	0.008	2.647	0.008	0.005	0.035
horsepower	-0.0170	0.014	-1.230	0.220	-0.044	0.010
weight	-0.0065	0.001	-9.929	0.000	-0.008	-0.005
acceleration	0.0806	0.099	0.815	0.415	-0.114	0.275
year	0.7508	0.051	14.729	0.000	0.651	0.851
origin	1.4261	0.278	5.127	0.000	0.879	1.973
==========	:=======		=======		========	=======
Omnibus:		31.906	Durbin-	-Watson:		1.309
Prob(Omnibus):		0.000	Jarque-	Bera (JB):		53.100
Skew:		0.529	Prob(JE	3):		2.95e-12
Kurtosis:		4.460	Cond. N	lo.		8.59e+04
	.=======		=======	.=======		=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.59e+04. This might indicate that there are strong multicollinearity or other numerical problems.
- i) there is a strong relationship between the predictors and the response
- ii) weight, year, origin, and displacement seem to have statistically significant relationships to the response.
- iii) the coefficient for 'year' suggests that as the year increases, the mpg of the vehicle increases as well by a factor of .75 assuming that all other predictors are constant.

d)

```
In [ ]: # ypred = req.predict(x)
        # df.plot(x='horsepower', y='mpg', style='o')
        # plt.title("horsepower vs mpg")
        # plt.ylabel('mpg')
        # plt.plot(x, ypred)
        # plt.show()
        y_pred=reg.predict(x)
        resid = y-y_pred
        sm.graphics.influence_plot(model)
        plt.show()
        plt.plot(y_pred,resid,'o')
        plt.title('Residuals vs Predicted Values')
        plt.ylabel('Residual')
        plt.xlabel('Prediction')
        plt.show()
        # Input vs Error
        plt.plot(y,y_pred,'o')
        plt.plot(y,y)
        plt.title('Prediction vs True Value')
        plt.xlabel('True Value')
        plt.ylabel('Prediction')
        plt.show()
```


The error vs predicted values chart seems to have a slight curve, which means that the relationship of the data is non-linarly associated. We might use non-linear transformations of the predictors such as log(x). The error terms also show a non-constant variance, which could be solved by using a non-linear transformation. The Influence plot reveals no real outliers, but reveals a very high leverage data point, point 13 (starting count from 0). Observation 28 also has a relatively high leverage. We can assess that observations 320, 324, 28 and 13 are likely outliers in our data along with other observations with a studentized residual of 3 or more. Most of our observations have a leverage lesser than 0.075 with the exception of two observations: 28, and 13.

e1)

```
In [ ]: model_interaction = smf.ols(formula='mpg ~ weight + cylinders + weight:cylinders', dat
    summary = model_interaction.summary()
    print(summary.tables[1])

model_interaction = smf.ols(formula='mpg ~ horsepower + acceleration + horsepower:acce
    summary = model_interaction.summary()
    print(summary.tables[1])

model_interaction = smf.ols(formula='mpg ~ displacement + year + displacement:year', c
    summary = model_interaction.summary()
    print(summary.tables[1])

model_interaction = smf.ols(formula='mpg ~ horsepower + displacement + horsepower:disp
```

summary = model_interaction.summary() print(summary.tables[1])

, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L 1/										
	:=======		====	=====	====	=====		=====		=====	=====
	coef	std e	rr		t	P	'> t]	0.025	(0.975]
Intercept	65.3865	3.7	33	17	.514	6	0.000	5	8.046		72.727
weight	-0.0128	0.0			.418		0.000		0.016		-0.010
cylinders	-4.2098	0.7			.816		0.000		5.633		-2.787
weight:cylinders	0.0011	0.0			.226		0.000		0.001		0.002
=======================================									=====	=====	
==============	:=======	:======	====	=====	====	=====	:====	=====	=====	=====	======
=====											
		coef	st	d err		t	-	P> t		[0.02	5
0.975]			٥,					17 01		[0.02	
Intercept	33	3.5124		3.420		9.798	3	0.000)	26.78	8
40.237											
horsepower	6	0.0176		0.027		0.641	L	0.522		-0.03	6
0.072											
acceleration	6	.8003		0.212		3.777	7	0.000)	0.38	4
1.217											
horsepower:accelera	tion -0	0.0157		0.002		-7.838	3	0.000)	-0.02	а
-0.012											-
=============	=======	======	====		====	=====		=====	=====	=====	======
=====											
=============	=======		====		====	=====		=====	=====	=====	======
	coef	std	err		t		P> t		[0.025		0.975]
Intercept	-72.8784		368		8.709		0.000		89.330		-56.427
displacement	0.2523		041		5.216		0.000		0.173		0.332
year	1.4077		110		2.779		0.000		1.191		1.624
displacement:year	-0.0041	0.	001	-7	7.482		0.000		-0.005		-0.003
=======================================	=======		====		====	=====		=====	=====	=====	======
=======================================	=======		====		====	=====	=====	=====	=====	=====	======
=====											
		coef	st	d err		t	:	P> t		[0.02	5
0.975]											
Tubura 1		0544		1 500		24 ===		0 000		FO 05	1
Intercept	5.5	3.0511		1.526		34.765	•	0.000)	50.05	1
56.051	_										_
horsepower	-6	2343		0.020	-	11.960)	0.000)	-0.27	3
-0.196										_	_
<pre>displacement -0.085</pre>	-6	0.0980		0.007	-	14.674	ŀ	0.000)	-0.11	1
horsepower:displace	ment 6	0.0006	5.1	L9e-05		11.222	<u>)</u>	0.000)	0.00	9
0.001											
=======================================	=======		====		====	=====		=====	=====	=====	======
=====											

Interactions between weight and cylinders, and interactions between horsepower and acceleration seemed to be statistically significant (low p value). Interactions between displacement and year, and horsepower and displacement also seemed to be significant.

e2)

```
model interaction = smf.ols(formula='mpg ~ weight:cylinders', data = df).fit()
     summary = model interaction.summary()
     print(summary.tables[1])
     model interaction = smf.ols(formula='mpg ~ horsepower:acceleration', data = df).fit()
     summary = model_interaction.summary()
     print(summary.tables[1])
     model interaction = smf.ols(formula='mpg ~ displacement:weight', data = df).fit()
     summary = model interaction.summary()
     print(summary.tables[1])
     _____
                                   t
                    coef std err
                                        P>|t|
                                                [0.025
     -----
     Intercept
                 34.2948
                          0.464
                                73.906
                                        0.000
                                               33.382
                                                       35.207
                 -0.0006 2.28e-05
     weight:cylinders
                                -27.029
                                        0.000
                                                -0.001
     ______
     ______
                        coef
                             std err
                                             P>|t|
                                                    [0.025
     0.9751
                      47.7299 0.978 48.789
     Intercept
                                             0.000
                                                    45.807
     49.653
     horsepower:acceleration
                      -0.0157
                               0.001
                                    -25.612
                                             0.000
     ______
     ______
                      coef std err
                                     t
                                          P>|t|
                                                 [0.025
                                                         0.97
     Intercept
                    31.2634 0.388 80.588
                                          0.000
                                                  30.501
                                                         32.0
     0.000 -1.27e-05 -1.09e-
     ______
     There is a significance in the interaction between weight and cylinders, horsepower and
     acceleration, and displacement and weight.
     f)
In [ ]: #Log
     model = smf.ols(formula='mpg ~ cylinders + displacement + np.log(horsepower) + weight
     summary = model.summary()
     print("F value: {}".format(model.fvalue) )
     print(model.summary().tables[1])
```

```
#quadratic
model = smf.ols(formula='mpg ~ cylinders + displacement + np.power(horsepower, 2) + we
summary = model.summary()
print("F value: {}".format(model.fvalue) )
print(model.summary().tables[1])
F value: 286.8516549018523
______
===
                      coef
                            std err
                                          t
                                                P>|t|
                                                         [0.025
                                                                   0.9
75]
Intercept
                                                         22.075
                   42.9742
                             10.630
                                       4.043
                                                0.000
                                                                   63.
874
                              0.305
                                      -1.439
cylinders
                   -0.4384
                                                0.151
                                                         -1.037
                                                                    0.
161
displacement
                    0.0156
                              0.007
                                       2.231
                                                0.026
                                                          0.002
                                                                    0.
029
np.log(horsepower)
                  -10.4455
                              1.522
                                      -6.863
                                                0.000
                                                        -13.438
                                                                   -7.
453
weight
                   -0.0038
                              0.001
                                      -5.359
                                                0.000
                                                         -0.005
                                                                   -0.
002
np.log(acceleration)
                   -6.1583
                              1.645
                                      -3.744
                                                0.000
                                                         -9.392
                                                                   -2.
925
                    0.7050
                              0.048
                                      14.683
                                                0.000
                                                          0.611
                                                                    0.
year
799
                              0.258
                                       5.574
                                                0.000
origin
                    1.4379
                                                          0.931
                                                                    1.
945
______
F value: 256.6597155187827
______
                          coef
                                std err
                                                    P>|t|
                                                             [0.025
0.975]
Intercept
                       -20.3992
                                  4.117
                                          -4.955
                                                    0.000
                                                            -28.494
-12.304
cylinders
                       -0.2820
                                  0.327
                                          -0.862
                                                    0.389
                                                             -0.925
0.361
displacement
                        0.0106
                                  0.008
                                           1.355
                                                    0.176
                                                             -0.005
0.026
np.power(horsepower, 2)
                      8.48e-05
                               4.14e-05
                                           2.049
                                                    0.041
                                                           3.42e-06
0.000
weight
                       -0.0071
                                  0.001
                                          -12.208
                                                    0.000
                                                             -0.008
-0.006
np.power(acceleration, 2)
                        0.0080
                                  0.003
                                           3.194
                                                    0.002
                                                              0.003
0.013
year
                        0.7845
                                  0.050
                                          15,587
                                                    0.000
                                                              0.686
0.883
origin
                        1.1926
                                  0.280
                                           4.267
                                                    0.000
                                                              0.643
1.742
______
=======
```

I tried performing a log transformation, and a quadratic transformation on displacement and

horsepower, as they seemed to have a non-linear relationship to mpg in the scatterplot matrix. The previous F value for the linear regression is 256.

The log transformation yielded an F value of 305, which means that we can reject the null hypothesis that he coefficients are equal to zero. The log transformation on displacement increased the p value of the coefficient, and on horsepower significantly decreased the p value of the coefficient. All of the log terms were significant with a 0.05 significance level.

The quadratic transformation yielded an F value of 256, so we can reject the null hypothesis that the coefficients are equal to zero. The quadratic transformation on displacement, horsepower, and weight decreased the p value on the displacement coefficient, slightly increased the p value on the horsepower coefficient. All of the squared terms were significant with a 0.05 significance level.

3.

a)

```
In []: df = pd.read_csv("Carseats.csv")

#convert to 0 and 1

df['Urban'] = df['Urban'].eq('Yes').mul(1)

df['US'] = df['US'].eq('Yes').mul(1)

x = df[['Price', 'Urban', 'US']]

y = df['Sales'].values.reshape(-1, 1)

X = sm.add_constant(x)

model = sm.OLS(y,X).fit()

# model = smf.ols(formula='Sales ~ Price + Urban + US', data = df).fit()

# summary = model.summary()

print(model.summary())

print("RSE: {}".format(np.sqrt(model.scale)))
```

OLS Regression Results

=======================================			==========
Dep. Variable:	у	R-squared:	0.239
Model:	OLS	Adj. R-squared:	0.234
Method:	Least Squares	F-statistic:	41.52
Date:	Tue, 15 Nov 2022	<pre>Prob (F-statistic):</pre>	2.39e-23
Time:	18:40:09	Log-Likelihood:	-927.66
No. Observations:	400	AIC:	1863.
Df Residuals:	396	BIC:	1879.
Df Model:	3		

Dt Model: 3 Covariance Type: nonrobust

=========	========	:========	=========	========	=========	=======
	coef	std err	t	P> t	[0.025	0.975]
const Price	13.0435 -0.0545	0.651 0.005	20.036	0.000	11.764	14.323
Urban US	-0.0219 1.2006	0.272 0.259	-0.081 4.635	0.936 0.000	-0.556 0.691	0.512 1.710
Omnibus: Prob(Omnibus	======= s):		0,0 20.02.	======== :-Watson: :-Bera (JB):	=======	1.912 0.758
Skew: Kurtosis:	•		093 Prob(J 897 Cond.	•		0.684 628.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

RSE: 2.4724924402701642

b)

For each one unit increase in price, sales decrease by -0.0545 on average while US and Urban are constant. Sales are -0.0219 units lower for observations that are Urban while US and Price are constant, and 1.2006 units higher for observations that are US while Urban and Price are constant

c)

```
for non-urban, non-us: Sales = 13.0435 - 0.0545(Price)
for urban, non-us: Sales = 13.0435 - 0.0545(Price) - 0.0219 + e
for non-urban, us: Sales = 13.0435 - 0.0545(Price) + 1.2006 + e
for urban and us: Sales = 13.0435 - 0.0545(Price) - 0.0219 + 1.2006 + e
```

d)

we can reject the null hypothesis for predictors Price and US, as their p value is below our alpha of 0.05. We cannot reject the null hypothesis of Urban, as the p value is very high (above our alpha of 0.05).

e)

```
In [ ]: x = df[['Price', 'US']]
```

```
y = df['Sales'].values.reshape(-1, 1)
X = sm.add_constant(x)
model = sm.OLS(y,X).fit()

print(model.summary())
print("RSE: {}".format(np.sqrt(model.scale)))
```

OLS Regression Results

===========			
Dep. Variable:	у	R-squared:	0.239
Model:	OLS	Adj. R-squared:	0.235
Method:	Least Squares	F-statistic:	62.43
Date:	Tue, 15 Nov 2022	<pre>Prob (F-statistic):</pre>	2.66e-24
Time:	18:40:09	Log-Likelihood:	-927.66
No. Observations:	400	AIC:	1861.
Df Residuals:	397	BIC:	1873.
Df Model:	2		

Df Model: 2
Covariance Type: nonrobust

=========		========	=======	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
const Price	13.0308 -0.0545	0.631 0.005	20.652 -10.416	0.000	11.790 -0.065	14.271 -0.044
US ========	1.1996 	0.258 ======	4.641 ========	0.000 ======	0.692 ======	1.708
Omnibus:		6	.666 Dur	bin-Watson:		1.912
Prob(Omnibus)):	6	.717 Jar	que-Bera (JB	;):	0.749
Skew:		6	0.092 Pro	b(JB):		0.688
Kurtosis:		2	2.895 Con	d. No.		607.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

RSE: 2.469396800574444

f) The models in a and e likely fit the data okay, as they have a low R-squared value of around 0.24 for both. The RSE of both models are above 1, but relatively close to 1. The model in e has a slightly better RSE, and R squared value, so it fits the data a bit better than the model in a.

g)

95% confidence interval

coefficient	> 0.025	< 0.975
Price	-0.065	-0.044
US	0.692	1.708

h)

```
In [ ]: sm.graphics.influence_plot(model)
   plt.show()
```


There is evidence of both outliers and high leverage points in the model. We can see that observation 376 is possibly an outlier, because it has a high studentized residual. We can also see that some observations have very high leverage, such as observation 42, as they are far outside the normal amount of leverage for this model, which hovers around about 0.010.

4.

a)

```
In []: #we want to predict per capita crime rate.
    df = pd.read_csv("Boston.csv", index_col=0)
    y = df['crim'].values.reshape(-1, 1)
    all_x = df.drop(['crim'], axis=1)

univar_coefficients = []
    # y = df['Sales'].values.reshape(-1, 1)
    for col in all_x:
        x = df[col]
        X = sm.add_constant(x)
        model = sm.OLS(y,X).fit()
        plt.scatter(x, y)
        plt.xlabel(col)
        plt.ylabel('crim')
        plt.title('crim vs {}'.format(col))
```

```
plt.show()
print(model.summary().tables[1])
univar_coefficients.append(model.params[1])
```


=======	========	========		========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	4.4537	0.417	10.675	0.000	3.634	5.273
zn	-0.0739	0.016	-4.594	0.000	-0.106	-0.042

crim vs indus

========	========	========	========	========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	-2.0637	0.667	-3.093	0.002	-3.375	-0.753
indus	0.5098	0.051	9.991	0.000	0.410	0.610

crim vs chas

=======	========	========	========	========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	3.7444	0.396	9.453	0.000	2.966	4.523
chas	-1.8928	1.506	-1.257	0.209	-4.852	1.066

=======	=========	========		========		=======
	coef	std err	t	P> t	[0.025	0.975]
const	-13.7199	1.699	-8.073	0.000	-17.059	-10.381
nox	31.2485	2.999	10.419	0.000	25.356	37.141

=======		========		========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	20.4818	3.364	6.088	0.000	13.872	27.092
rm	-2.6841	0.532	-5.045	0.000	-3.729	-1.639

========	========	========		=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	-3.7779	0.944	-4.002	0.000	-5.633	-1.923
age	0.1078	0.013	8.463	0.000	0.083	0.133

dis	-1.5509	0.168	-9.213	0.000	-1.882	-1,220
const	9.4993	0.730	13.006	0.000	8.064	10.934
	coef	std err	t	P> t	[0.025	0.975]

========	========	========		========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	-2.2872	0.443	-5.157	0.000	-3.158	-1.416
rad	0.6179	0.034	17.998	0.000	0.550	0.685

rad

coef std err t P> t $[0.025 0.975]$ const -8.5284 0.816 -10.454 0.000 -10.131 -6.920 tax 0.0297 0.002 16.099 0.000 0.026 0.033
coef std err t P> t [0.025 0.975

crim vs ptratio

=======	========	========		========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	-17.6469	3.147	-5.607	0.000	-23.830	-11.464
ptratio	1.1520	0.169	6.801	0.000	0.819	1.485

crim vs Istat

=======	========	========		=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	-3.3305	0.694	-4.801	0.000	-4.694	-1.968
lstat	0.5488	0.048	11.491	0.000	0.455	0.643

crim vs medv

=========	=======	========	=======	=======	=======	=======
	coef	std err	t	P> t	[0.025	0.975]
const	11.7965	0.934	12.628	0.000	9.961	13.632
medv	-0.3632	0.038	-9.460	0.000	-0.439	-0.288

all predictors have a p value of < 0.05 except for 'chas' so we acn determine that there is a statistically significant association between the predictors and response except for in 'chas'.

b)

```
In [ ]: X = sm.add_constant(all_x)
model = sm.OLS(y,X).fit()

print(model.summary())
```

OLS Regression Results

			==========
Dep. Variable:	у	R-squared:	0.449
Model:	OLS	Adj. R-squared:	0.436
Method:	Least Squares	F-statistic:	33.52
Date:	Tue, 15 Nov 2022	<pre>Prob (F-statistic):</pre>	2.03e-56
Time:	18:40:11	Log-Likelihood:	-1655.4
No. Observations:	506	AIC:	3337.
Df Residuals:	493	BIC:	3392.
Df Model:	12		
Covariance Type:	nonrobust		

========						
	coef	std err	t	P> t	[0.025	0.975]
const	13.7784	7.082	1.946	0.052	-0.136	27.693
zn	0.0457	0.019	2.433	0.015	0.009	0.083
indus	-0.0584	0.084	-0.698	0.486	-0.223	0.106
chas	-0.8254	1.183	-0.697	0.486	-3.150	1.500
nox	-9.9576	5.290	-1.882	0.060	-20.351	0.436
rm	0.6289	0.607	1.036	0.301	-0.564	1.822
age	-0.0008	0.018	-0.047	0.962	-0.036	0.034
dis	-1.0122	0.282	-3.584	0.000	-1.567	-0.457
rad	0.6125	0.088	6.997	0.000	0.440	0.784
tax	-0.0038	0.005	-0.730	0.466	-0.014	0.006
ptratio	-0.3041	0.186	-1.632	0.103	-0.670	0.062
lstat	0.1388	0.076	1.833	0.067	-0.010	0.288
medv	-0.2201	0.060	-3.678	0.000	-0.338	-0.103
Omnibus:	=======	 663	======= .436	:======= oin-Watson:	========	 1.516
Prob(Omnibu	us):			que-Bera (JE	3):	80856.852
Skew:	•)(JB):	,	0.00
Kurtosis:				d. No.		1.24e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.
- [2] The condition number is large, 1.24e+04. This might indicate that there are strong multicollinearity or other numerical problems.

The r squared is relatively high, which means that the model is a relatively good fit for the data. We can reject the null hypothesis for zn, dis, rad, and medv, as their p values are below our alpha of 0.05.

c)

```
In []: multiple_reg = model.params[1:]
    data = pd.DataFrame(multiple_reg, columns = ['multiple'])
    data['univar'] = univar_coefficients
    plt.scatter(data['univar'], data['multiple'])
    plt.xlabel('simple')
    plt.ylabel('multiple')

for index, row in data.iterrows():
        plt.annotate(index, (row['univar'], row['multiple']))
```

plt.show()

The results showed that there is a difference for the simple and multiple regression coefficients. This is due to the fact that in the simple regression, the slope represents the average effect of the predictor, ignoring other factors. In a multiple regression, the slop represents the average effect of the predictor holding other factors constant.

d)

```
In []: #we want to predict per capita crime rate.
    df = pd.read_csv("Boston.csv", index_col=0)
    y = df['crim'].values.reshape(-1, 1)
    all_x = df.drop(['crim'], axis=1)

univar_coefficients = []
    # y = df['Sales'].values.reshape(-1, 1)
    for col in all_x:
        x = df[col]
        model = smf.ols(formula='crim ~ {} + np.power({}}, 2) + np.power({}}, 3)'.format(cc print(model.summary().tables[1])
```

	coef	std err	t	P> t	[0.025	0.975]
 Intercept	4.8461	0.433	11.192	0.000	3.995	5.697
zn	-0.3322	0.110	-3.025	0.003	-0.548	-0.116
np.power(zn, 2)	0.0065	0.004	1.679	0.094	-0.001	0.014
np.power(zn, 3) -3	.776e-05	3.14e-05 	-1.203	0.230	-9.94e-05 	2.39e-05
	=======	=======	========		========	
= 5]	coef	std err	t	P> t	[0.025	0.97
- Intercept 5	3.6626	1.574	2.327	0.020	0.570	6.7
indus 8	-1.9652	0.482	-4.077	0.000	-2.912	-1.0
o np.power(indus, 2) 9	0.2519	0.039	6.407	0.000	0.175	0.3
np.power(indus, 3) 5	-0.0070	0.001	-7.292	0.000	-0.009	-0.0
======================================	=======	=======	=======	=======	=======	
=========			======== t			 0.975
 Intercept	3.7444	0.397	9.444	0.000	2.965	4.52
chas	1.114e+14	2.71e+14	0.411	0.681	-4.21e+14	6.44e+1
np.power(chas, 2)	-5.61e+13	1.37e+14	-0.411	0.681	-3.24e+14	2.12e+1
np.power(chas, 3) ========	-5.532e+13	1.35e+14 =======	-0.411 =======	0.681 =====	-3.2e+14 =======	2.09e+1 =======
	coef	std err	======================================	P> t	 [0.025	 0.975]
 Intercept	233.0866	33.643	6.928	0.000	166.988	299.185
•					-1614.151	
np.power(nox, 2)	2248.5441	279.899	8.033	0.000	1698.626	2798.462
np.power(nox, 3) - 						
	=======	========	=======	=======	========	
	coef	std err 	t	P> t 	[0.025	0.975]
Intercept	112.6246	64.517	1.746	0.081	-14.132	239.382
rm						
np.power(rm, 2)						
np.power(rm, 3) =======						
					======== [0.025	
 Intercept	-2.5488	2.769	-0.920	0.358		2.892
age	0.2737	0.186	1.468	0.143	-0.093	0.640
np.power(age, 2)	-0.0072	0.004	-1.988	0.047	-0.014	-8.4e-05
np.power(age, 3)	5.745e-05	2.11e-05	2.724	0.007	1.6e-05	9.89e-0

			3			
	coef	std err	t	P> t	[0.025	0.975]
Intercept	30.0476	2.446	12.285	0.000	25.242	34.853
	-15.5544	1.736	-8.960	0.000	-18.965	-12.144
np.power(dis, 2)	2.4521	0.346	7.078	0.000	1.771	3.133
<pre>np.power(dis, 3)</pre>	-0.1186	0.020	-5.814	0.000	-0.159	-0.079
=======================================		=======	========	=======	========	======
	coef	std err	t	======= P> t	[0.025	0.975]
Intercept	-0.6055	2.050		0.768	-4.633	3.422
<pre>rad np.power(rad, 2)</pre>	0.5127	1.044 0.149	-0.506	0.623 0.613	-1.538 -0.367	2.563 0.217
	0.0032	0.005	0.703	0.482	-0.006	0.012
=======================================						
=======================================		=======	========	=======	========	======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	19.1836	11.796	1.626	0.105	-3.991	42.358
		0.096		0.110	-0.341	0.035
np.power(tax, 2)		0.000	1.488	0.137	-0.000	0.001
<pre>np.power(tax, 3) -</pre>	2.204e-07	1.89e-07	-1.167	0.244 -	5.91e-07	1.51e-07
=======================================		=======	========	=======	========	======
===	:=======	=======	========	=======	========	======
	coe	f std er	r t	P>ltl	[0.025	0.9
75]		. 500. 0.		. , [•]	[0.025	0.12
Totancont	477.184	0 156.79	5 3.043	0.002	169.129	785.
Intercept 239	4//.104	0 150.79	3.043	0.002	109.129	700.
ptratio	-82.360	5 27.64	4 -2.979	0.003	-136.673	-28.
048						
<pre>np.power(ptratio,</pre>	2) 4.635	3 1.60	8 2.882	0.004	1.475	7.
795	2) 0.004	0 000	1 2 742	0.006	-0.145	-0.
<pre>np.power(ptratio, 024</pre>	5) -0.064	0.03	1 -2.743	0.000	-0.143	-0.
===========		=======	========	=======	========	=======
===						
		=======	========		========	
=	6	-44	_	D. [4]	[0.025	0.07
5]	coef	sta err	τ	P> t	[0.025	0.97
~]						
-						
Intercept	1.2010	2.029	0.592	0.554	-2.785	5.18
7						
lstat	-0.4491	0.465	-0.966	0.335	-1.362	0.46
4 nn nowen(lstat 2)	0 0558	0 030	1 952	0 065	-0 003	0.11
<pre>np.power(lstat, 2) 5</pre>	8669.9	שכשים	1.032	0.065	-0.003	0.11
np.power(lstat, 3)	-0.0009	0.001	-1.517	0.130	-0.002	0.00
0						
	:=======	=======	========	=======	========	======
=						
=======================================	coef	std err			[0.025	
	COET	3 cu el l'	Ĺ	1/[4]	[0.023	0.9/3]

Intercept	53.1655	3.356	15.840	0.000	46.571	59.760
medv	-5.0948	0.434	-11.744	0.000	-5.947	-4.242
np.power(medv, 2)	0.1555	0.017	9.046	0.000	0.122	0.189
np.power(medv, 3)	-0.0015	0.000	-7.312	0.000	-0.002	-0.001

For zn, chas, rm, rad, tax, and Istat there was no statistical significance pointing to a non-linear association. For indus, nox, age, dis, ptratio, and medv there was a statistical significance pointing to a non-linear association.