Package 'MSRDT'

October 12, 2022

Type Package

Title Multi-State Reliability Demonstration Tests (MSRDT)

Version 0.1.0

Maintainer Suiyao Chen <csycsy12377@gmail.com>

Description This is a implementation of design methods for multi-

state reliability demonstration tests (MSRDT) with failure count data,

which is associated with the work from the published paper "Multi-state Reliability Demonstration Tests" by Suiyao Chen et al. (2017) <doi:10.1080/08982112.2017.1314493>.

It implements two types of MSRDT, multiple periods (MP) and multiple failure modes (MFM). For MP, two different scenarios with criteria on cumulative periods (Cum) or separate periods (Sep) are implemented respectively.

It also provides the implementation of conventional design method, namely binomial tests for failure count data.

Depends R (>= 3.3.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports gtools, stats, reshape2, dplyr, utils

Suggests tidyverse, knitr, rmarkdown

URL https://github.com/ericchen12377/MSRDT

BugReports https://github.com/ericchen12377/MSRDT/issues

VignetteBuilder knitr

NeedsCompilation no

Author Suiyao Chen [aut, cre]

Repository CRAN

Date/Publication 2020-06-02 10:00:02 UTC

2 bconsumerrisk

R topics documented:

	bconsumerrisk	2
	bcore	3
	bIndicator	4
	boptimal_n	4
	MFM_consumerrisk	5
	MFM_core	6
	MFM_Indicator	7
	MFM_optimal_n	8
	MPCum_consumerrisk	9
	MPCum_core	9
	MPCum_optimal_n	10
	MPSep_consumerrisk	11
	MPSep_core	12
	MPSep_optimal_n	
	MP_Indicator	13
	pi_MCSim_beta	14
	pi_MCSim_dirichlet	14
Index	1	16
hcon	sumerrisk Consumer's Risk for Rinomial RDT	—

Description

Define the consumer's risk function which gets the probability of passing the test when the lower level reliability requirement is not satisfied (for binomial RDT).

Usage

```
bconsumerrisk(n, c, pi, R)
```

Arguments

n	RD	OT samp	le size.	

c Maximum allowable failures.

pi Failure probability.

R Lower level reliability requirement.

Value

Probability of consumer's risk

bcore 3

See Also

bcore for getting the core probability of passting the test; boptimal_n for getting the optimal test sample size; bIndicator for getting the binary indicator;

```
Other Binomial RDT functions: bIndicator(), bcore(), boptimal_n()
```

Examples

```
pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
bconsumerrisk(n = 10, c = 2, pi = pi, R = 0.8);
```

bcore

Probability Core for Binomial RDT

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities (for binomial RDT).

Usage

```
bcore(n, c, pi)
```

Arguments

n RDT sample size.

c Maximum allowable failures.

pi Failure probability.

Value

Core probability of passing the test given specific failure probabilities.

See Also

boptimal_n for getting the optimal test sample size; bconsumerrisk for getting the consumer's risk; bIndicator for getting the binary indicator;

```
Other Binomial RDT functions: bIndicator(), bconsumerrisk(), boptimal_n()
```

```
bcore(n = 10, c = 2, pi = 0.2)
```

4 boptimal_n

bIndicator

Binary Indicator for Binomial RDT

Description

Define the binary indicator function to check whether the failure probability satisfies the lower level reliability requirement (for binomial RDT).

Usage

```
bIndicator(pi, R)
```

Arguments

pi Failure probability.

R Lower Level reliability requirement.

Value

```
0 - No; 1 - Yes.
```

See Also

bcore for getting the core probability of passting the test; boptimal_n for getting the optimal test sample size; bconsumerrisk for getting the consumer's risk;

Other Binomial RDT functions: bconsumerrisk(), bcore(), boptimal_n()

Examples

```
bIndicator(pi = 0.05, R = 0.9)
bIndicator(pi = 0.2, R = 0.9)
```

boptimal_n

Optimal Test Sample Size for Binomial RDT

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer's risk (for binomial RDT).

Usage

```
boptimal_n(c, pi, R, thres_CR)
```

MFM_consumerrisk 5

Arguments

pi Failure probability

R Lower level reliability requirement

thres_CR Threshold (acceptable level) of consumer's risk

Value

Minimum test sample size

See Also

bcore for getting the core probability of passting the test; bconsumerrisk for getting the consumer's risk; bIndicator for getting the binary indicator;

```
Other Binomial RDT functions: bIndicator(), bconsumerrisk(), bcore()
```

Examples

```
pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1)
boptimal_n(c = 2, pi = pi, R = 0.8, thres_CR = 0.05)
```

MFM_consumerrisk

Consumer's Risk for Multi-state RDT with Multiple Failure Modes (MFM)

Description

Define the consumer risk function which gets the probability of passing the test when the lower level reliability requirements are not satisfied under different failure modes (for Multi-state RDT, Multiple Failure Modes).

Usage

```
MFM_consumerrisk(n, cvec, pivec, Rvec)
```

Arguments

n	RDT sample size

cvec Maximum allowable failures for each separate period

pivec Failure probability for each seperate period

Rvec Lower level reliability requirements for each cumulative period from the begin-

ing of the test.

6 MFM_core

Value

Probability for consumer's risk

See Also

MFM_core for getting the core probability of passting the test; MFM_Indicator for getting the binary indicator; MFM_optimal_n for getting the optimal test sample size;

```
Other MSRDT for MFM functions: MFM_Indicator(), MFM_core(), MFM_optimal_n()
```

Examples

MFM_core

Probability Core for Multi-state RDT with Multiple Failure Modes (MFM)

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities under different failure modes (for Multi-state RDT, Multiple Failure Modes).

Usage

```
MFM_core(n, cvec, pivec)
```

Arguments

n RDT sample size

cvec Maximum allowable failures for each separate period

pivec Failure probability for each seperate period

Value

Core probability of passing the test given specific failure probabilities

See Also

MFM_consumerrisk for getting the consumer's risk; MFM_Indicator for getting the binary indicator; MFM_optimal_n for getting the optimal test sample size;

```
Other MSRDT for MFM functions: MFM_Indicator(), MFM_consumerrisk(), MFM_optimal_n()
```

MFM_Indicator 7

Examples

```
#' #Example for two failure modes
pi1 <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
pi2 <- pi_MCSim_beta(M = 1000, seed = 10, a = 2, b = 18)
MFM_core(n = 10, cvec = c(1, 1), pivec = c(pi1[1], pi2[1]));
#The function also works for more than two failure modes.
#However, the computation cost may increase.
#Example for three failure modes
MFM_core(n = 10, cvec = c(1, 1, 1), pivec = c(0.8, 0.9, 0.8));</pre>
```

MFM_Indicator

Binary Indicator for Multi-state RDT with Multiple Failure Modes (MFM)

Description

Define the binary indicator function to check whether the failure probability satisfies the lower level reliability requirements for each failure mode (for Multi-state RDT, Multiple Failure Models)

Usage

```
MFM_Indicator(pivec, Rvec)
```

Arguments

pivec Failure probability for each separate period.

Rvec Lower level reliability requirements for each cumulative period from the begin-

ing of the test.

Value

```
0 - No; 1 - Yes.
```

See Also

MFM_core for getting the core probability of passting the test; MFM_consumerrisk for getting the consumer's risk; MFM_optimal_n for getting the optimal test sample size;

```
Other MSRDT for MFM functions: MFM_consumerrisk(), MFM_core(), MFM_optimal_n()
```

```
MFM_Indicator(pivec = c(0.1, 0.2), Rvec = c(0.8, 0.6))
MFM_Indicator(pivec = c(0.1, 0.2, 0.1), Rvec = c(0.8, 0.6, 0.4))
MFM_Indicator(pivec = c(0.1, 0.4), Rvec = c(0.8, 0.7))
```

8 MFM_optimal_n

MFM_optimal_n Optimal Test Sample Size for Multi-state RDT with Multiple Failur Modes (MFM)	ıre
---	-----

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer's risk (for Multi-state RDT, Multiple Failure Modes).

Usage

```
MFM_optimal_n(cvec, pivec, Rvec, thres_CR)
```

Arguments

cvec	Maximum	allowable	failures	for each	separate period

pivec Failure probability for each seperate period

Rvec Lower level reliability requirements for each cumulative period from the begin-

ing of the test.

thres_CR Threshold (acceptable level) of consumer's risk

Value

Minimum test sample size

See Also

MFM_core for getting the core probability of passting the test; MFM_consumerrisk for getting the consumer's risk; MFM_Indicator for getting the binary indicator;

```
Other MSRDT for MFM functions: MFM_Indicator(), MFM_consumerrisk(), MFM_core()
```

```
pi1 <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1)
pi2 <- pi_MCSim_beta(M = 5000, seed = 10, a = 2, b = 18)
MFM_optimal_n(cvec = c(1, 1), pivec = cbind(pi1, pi2), Rvec = c(0.8, 0.7), thres_CR = 0.05)</pre>
```

MPCum_consumerrisk

MDC	
MPCum_consumerrisk	Consumer's Risk for Multi-state RDT with Multiple Periods and Cri-
	teria for Cumulative Periods

Description

Define the consumer risk function which gets the probability of passing the test when the lower level reliability requirements are not satisfied for any cumulative periods. The maximum allowable failures for each cumulative period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I)

Usage

```
MPCum_consumerrisk(n, cvec, pivec, Rvec)
```

Arguments

n	RDT sample size
cvec	Maximum allowable failures for each separate period
pivec	Failure probability for each seperate period
Rvec	Lower level reliability requirements for each cumulative period from the begin-

ing of the test.

Value

Probability for consumer's risk

Examples

```
pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1))
MPCum_consumerrisk(n = 10, cvec = c(1, 1), pivec = pi, Rvec = c(0.8, 0.7))
```

MPCum_core Probability Core for Multi-state RDT with Multiple Periods and Criteria for Cumulative Periods

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities. The maximum allowable failures for each cumulative period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I).

Usage

```
MPCum_core(n, cvec, pivec)
```

MPCum_optimal_n

Arguments

10

n RDT sample size

cvec Maximum allowable failures for each separate period

pivec Failure probability for each seperate period

Value

Core probability of passing the test given specific failure probabilities

Examples

```
#Example for two periods pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1)) MPCum_core(n = 10, cvec = c(1, 1), pivec = pi[1, ]); #The function also works for more than two periods, however, may increase the computation cost. #Example for three periods pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1, 1)) MPCum_core(n = 10, cvec = c(1, 1, 1), pivec = pi[1, ]);
```

MPCum_optimal_n

Optimal Test Sample Size for Multi-state RDT with Multiple Periods and Criteria for Cumulative Periods

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer's risk. The maximum allowable failures for each cumulative period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I)

Usage

```
MPCum_optimal_n(cvec, pivec, Rvec, thres_CR)
```

Arguments

cvec Maximum allowable failures for each separate period

pivec Failure probability for each seperate period

Rvec Lower level reliability requirements for each cumulative period from the begin-

ing of the test.

thres_CR Threshold (acceptable level) of consumer's risk

Value

Minimum test sample size

MPSep_consumerrisk 11

Examples

```
pi <- pi_MCSim_dirichlet(M = 5000, seed = 10, par = c(1, 1, 1))
MPCum_optimal_n(cvec = c(1,1), pivec = pi, Rvec = c(0.8, 0.7), thres_CR = 0.05)
```

MPSep_consumerrisk

Consumer's Risk for Multi-state RDT with Multiple Periods and Criteria for Separate Periods

Description

Define the consumer risk function hich gets the probability of passing the test when the lower level reliability requirements are not satisfied for any cumulative periods. The maximum allowable failures for each separate period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I)

Usage

```
MPSep_consumerrisk(n, cvec, pivec, Rvec)
```

Arguments

n RDT sample size

cvec Maximum allowable failures for each separate period

pivec Failure probability for each seperate period

Rvec Lower level reliability requirements for each cumulative period from the begin-

ing of the test.

Value

Probability for consumer's risk

```
pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1))
MPSep_consumerrisk(n = 10, cvec = c(1, 1), pi = pi, Rvec = c(0.8, 0.7))
```

12 MPSep_optimal_n

MPSep_core	Probability Core for Multi-state RDT with Multiple Periods and Criteria for Separate Periods

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities. The maximum allowable failures for each separate period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario II).

Usage

```
MPSep_core(n, cvec, pivec)
```

Arguments

n RDT sample size

cvec Maximum allowable failures for each separate period

pivec Failure probability for each seperate period

Value

Core probability of passing the test given specific failure probabilities

Examples

```
#Example for two periods
pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1))
MPSep_core(n = 10, cvec = c(1, 1), pivec = pi[1, ]);
#The function also works for more than two periods, however, may increase the computation cost.
#Example for three periods
pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1, 1))
MPSep_core(n = 10, cvec = c(1, 1, 1), pivec = pi[1, ]);</pre>
```

MPSep_optimal_n Optimal Test Sample Size for Multi-state RDT with Multiple Periods and Criteria for Separate Periods

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer's risk. The maximum allowable failures for each separate period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I)

MP_Indicator 13

Usage

```
MPSep_optimal_n(cvec, pivec, Rvec, thres_CR)
```

Arguments

cvec Maximum allowable failures for each separate period

pivec Failure probability for each seperate period

Rvec Lower level reliability requirements for each cumulative period from the begin-

ing of the test.

thres_CR Threshold (acceptable level) of consumer's risk

Value

Minimum test sample size

Examples

```
pi <- pi_MCSim_dirichlet(M = 5000, seed = 10, par = c(1, 1, 1))
MPSep_optimal_n(cvec = c(1, 1), pivec = pi, Rvec = c(0.8, 0.7), thres_CR = 0.05)
```

MP_Indicator

Binary Indicator for Multi-state RDT with Multiple Periods

Description

Define the binary indicator function to check whether the failure probability satisfies the lower level reliability requirements for each cumulative period (for Multi-state RDT, Multiple Periods)

Usage

```
MP_Indicator(pivec, Rvec)
```

Arguments

pivec Failure probability for each separate period.

Rvec Lower level reliability requirements for each cumulative period from the begin-

ing of the test.

Value

```
0 - No: 1 - Yes.
```

```
MP_Indicator(pivec = c(0.1, 0.2), Rvec = c(0.8, 0.6))
MP_Indicator(pivec = c(0.1, 0.2, 0.1), Rvec = c(0.8, 0.6, 0.4))
MP_Indicator(pivec = c(0.1, 0.3), Rvec = c(0.8, 0.7))
```

pi_MCSim_dirichlet

MCSim	

Beta Prior Simulation for Binomial RDT

Description

Define the simulation function to generate failure probability with Beta prior distributions as conjugate prior to binomial distributions (for binomial RDT).

Usage

```
pi_MCSim_beta(M, seed, a, b)
```

Arguments

М	Simulation sample size
seed	Random seed for random sample
а	Shape parameter 1 for beta distribution
b	Shape parameter 2 for beta distribution

Value

Vector of failure probability sample values

See Also

```
pi_MCSim_dirichlet
```

Other Prior distribution generation functions: pi_MCSim_dirichlet()

Examples

```
pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
```

pi_MCSim_dirichlet

Dirichlet Prior Simulation for Multi-state RDT

Description

Define the simulation function to generate failure probability with Dirichlet prior distributions as conjugate prior to multinomial distributions (for multi-state RDT).

Usage

```
pi_MCSim_dirichlet(M, seed, par)
```

pi_MCSim_dirichlet 15

Arguments

M Simulation sample size

seed Random seed for random sample
par Parameters for dirichlet distribution

Value

Vector of failure probability sample

See Also

```
pi_MCSim_beta
Other Prior distribution generation functions: pi_MCSim_beta()
```

```
pi \leftarrow pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1))
```

Index

```
* Binomial RDT functions
    bconsumerrisk, 2
    bcore, 3
    bIndicator, 4
    boptimal_n, 4
* MSRDT for MFM functions
    MFM_consumerrisk, 5
    MFM_core, 6
    MFM_Indicator, 7
    MFM_optimal_n, 8
* Prior distribution generation functions
    pi_MCSim_beta, 14
    pi_MCSim_dirichlet, 14
bconsumerrisk, 2, 3-5
bcore, 3, 3, 4, 5
bIndicator, 3, 4, 5
boptimal_n, 3, 4, 4
MFM_consumerrisk, 5, 6-8
MFM_core, 6, 6, 7, 8
MFM_Indicator, 6, 7, 8
MFM_optimal_n, 6, 7, 8
MP_Indicator, 13
MPCum_consumerrisk, 9
MPCum_core, 9
MPCum_optimal_n, 10
MPSep_consumerrisk, 11
MPSep_core, 12
MPSep_optimal_n, 12
pi_MCSim_beta, 14, 15
{\tt pi\_MCSim\_dirichlet}, {\it 14}, 14
```