Table 1 Micro Consumption Regression on Simulated Data

 $\Delta \log \mathbf{c}_{t+1,i} = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \bar{a}_{t,i} + \epsilon_{t+1,i}.$

Model of				
Expectations	χ	η	α	$ar{R}^2$
Frictionless				
	0.033			0.001
	,	0.002 (-)		0.000
		()	-0.109 (-)	0.011
	0.034	0.002	-0.108	0.013
	(-)	(-)	(-)	
Sticky				
	0.022 (-)			0.001
	,	0.002 (-)		0.000
		()	-0.109 (-)	0.011
	0.023 (-)	0.001 (-)	-0.108 (-)	0.012

Notes: $\mathbb{E}_{t,i}$ is the expectation from the perspective of person i in period t; \bar{a} is a dummy variable indicating that agent i is in the top 99 percent of the normalized a distribution. Simulated sample size is large enough such that standard errors are effectively zero. Sample is restricted to households with positive income in period t. The notation "(—)" indicates that standard errors are close to zero, given the very large simulated sample size.

 Table 2
 Aggregate Consumption Dynamics in SOE Model

 $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var			OLS	$\frac{2^{\text{nd}} \text{ Stage}}{2^{\text{nd}} \text{ Stage}}$	KP p-val	
Independent Variables			or IV	\bar{R}^2	Hansen J p -val	
Frictionless : $\Delta \log \mathbf{C}_{t+1}$ (no measurement error)						
$\Delta \log \mathbf{C}_t$ Δ	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.394^{\bullet\bullet\bullet}$			OLS	0.156		
(0.062)						
$0.688^{\bullet \bullet}$			IV	0.049	0.206	
(0.281)					0.569	
	$0.466^{\bullet\bullet}$		IV	0.041	0.058	
	(0.192)				0.393	
		-7.10e-4	IV	0.031	0.000	
		(5.43e-4)			0.336	
0.459	0.261	0.60e-4	IV	0.049	0.522	
(0.405)	(0.337)	,			0.502	
Memo: For	instruments	$\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = C_t$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.$.047	
Sticky : Δl	$og \mathbf{C}_{t+1}$ (no	measureme	ent erroi	:)		
$\Delta \log \mathbf{C}_t$ Δ		A_t				
$0.876^{\bullet\bullet\bullet}$			OLS	0.768		
(0.033)						
$0.827^{\bullet\bullet\bullet}$			IV	0.394	0.000	
(0.044)					0.309	
	$0.871^{\bullet\bullet\bullet}$		IV	0.278	0.052	
	(0.159)				0.123	
		$-8.45e-4^{\bullet \bullet}$	• IV	0.091	0.000	
		(3.24e-4)			0.000	
$0.731^{\bullet\bullet\bullet}$	0.132	$0.62\mathrm{e}{-4}$	IV	0.394	0.310	
(0.073)	,	(2.03e-4)			0.359	
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.385$						

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, A_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 3 Aggregate Consumption Dynamics in HA-DSGE Model

 $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var			OLS	$\frac{2^{\text{nd}} \text{ Stage}}{2^{\text{nd}} \text{ Stage}}$	KP p-val		
Independent Variables			or IV	$ar{R}^2$	Hansen J p -val		
Frictionless	Frictionless : $\Delta \log \mathbf{C}_{t+1}$ (no measurement error)						
$\Delta \log \mathbf{C}_t$ Δ	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
$0.258^{\bullet\bullet\bullet}$			OLS	0.067			
(0.071)							
0.507			IV	0.024	0.287		
(0.335)					0.538		
	0.369		IV	0.019	0.102		
	(0.300)				0.437		
		-0.40e-4	IV	0.018	0.000		
		(0.92e-4)			0.419		
0.308	0.226	0.00e-4	IV	0.025	0.576		
(0.484)	(0.586)	(1.86e-4)			0.522		
Memo: For	instrument	s \mathbf{Z}_t , $\Delta \log \mathbf{C}$	$C_{t+1} = S_t$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.$	027		
Sticky : Δl	$\log \mathbf{C}_{t+1}$ (no	measureme	nt erroi	:)			
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t		•			
$0.845^{\bullet \bullet \bullet}$			OLS	0.715			
(0.038)							
$0.802^{\bullet\bullet\bullet}$			IV	0.361	0.000		
(0.049)					0.351		
	$0.917^{\bullet \bullet \bullet}$		IV	0.209	0.093		
	(0.217)				0.103		
		$-1.02e-4^{\bullet \bullet}$	IV	0.085	0.000		
		(0.45e-4)			0.000		
$0.735^{\bullet\bullet\bullet}$	0.114	0.13e-4	IV	0.361	0.407		
(0.085)	(0.173)	(0.41e-4)			0.443		
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.354$							

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments \mathbf{Z}_t = $\{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 4 Aggregate Consumption Dynamics in RA Model

 $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

$\Delta \log C_{t+1} = \zeta + \chi \Delta \log C_t + \eta \mathbb{E}_t [\Delta \log \mathbf{I}_{t+1}] + \alpha A_t + \epsilon_{t+1}$							
Expectations : Dep Var			OLS	2 nd Stage	KP p -val		
Independent Variables			or IV	$ar{R}^2$	Hansen J p -val		
Frictionles	Frictionless : $\Delta \log \mathbf{C}_{t+1}$ (no measurement error)						
	$\Delta \log \mathbf{Y}_{t+1}$	A_t		,			
0.017			OLS	0.003			
(0.078)							
0.421			IV	0.017	0.339		
(0.378)					0.569		
, ,	0.378		IV	0.018	0.077		
	(0.294)				0.453		
		-0.27e-4	IV	0.018	0.000		
		(1.04e-4)			0.472		
0.126	0.202	0.20e-4	IV	0.021	0.531		
(0.525)	(0.555)	(2.04e-4)			0.582		
Memo: Fo	or instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	020		
Sticky : \(\Delta \)	$\Delta \log \mathbf{C}_{t+1}$ (no	measureme	nt erroi	:)			
	$\Delta \log \mathbf{Y}_{t+1}$	A_t		,			
0.790		v	OLS	0.625			
(0.044)							
0.825	•		IV	0.306	0.000		
(0.069)					0.401		
, ,	$0.684^{\bullet \bullet \bullet}$		IV	0.195	0.068		
	(0.147)				0.106		
	, ,	-0.50e-4	IV	0.107	0.000		
		(0.41e-4)			0.003		
$0.725^{\bullet\bullet\bullet}$	0.078	0.15e-4	IV	0.305	0.275		
(0.112)	(0.142)	(0.40e-4)			0.431		
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1} = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.298$							

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, A_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

 Table 5
 Aggregate Consumption Dynamics in SOE Model

 $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$ Expectations: Dep Var 2nd Stage KP p-val OLS \bar{R}^2 Independent Variables or IV Hansen J p-val Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log \mathbf{C}_t^* \quad \Delta \log \mathbf{Y}_{t+1}$ A_t 0.350***OLS 0.122(0.006)0.988*** IV 0.0820.000(0.025)0.6850.666***IV0.070 0.000 (0.013)0.000-11.75e-4*** IV 0.0750.000(0.28e-4)0.0000.783*** 0.080*-1.37e-4IV 0.082 0.000 (0.101)(0.97e-4)(0.046)0.930 Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.082$; $\text{var}(\xi_t) = 5.99\text{e-}6$ Sticky : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log \mathbf{C}_t^* \quad \Delta \log \mathbf{Y}_{t+1}$ A_t 0.598*** OLS 0.358 (0.005)0.873*** IV0.3590.000 (0.008)0.000 0.954*** IV 0.317 0.000 (0.013)0.000 -12.30e-4*** IV 0.1640.000(0.19e-4)0.0000.785***-1.57e-4*** IV 0.0530.3610.000 (0.032)(0.30e-4)(0.022)0.332 Memo: For instruments \mathbf{Z}_{t} , $\Delta \log \mathbf{C}_{t+1}^{*} = \mathbf{Z}_{t}\zeta$, $\bar{R}^{2} = 0.361$; $var(\xi_{t}) = 5.99e-6$ Notes: Reported statistics are for single simulation of 20000 quarters. Stars indicate statistical significance the 90%, 95%, and 99%levels, respectively. Instruments \mathbf{Z}_t $\{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

 ${\bf Table~6}~~{\bf Aggregate~Consumption~Dynamics~in~HA-DSGE~Model}$

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$						
Expect	ations : Dep Var	r OLS	2 nd Stage	KP p-val		
Indepe	endent Variables	or IV	$ar{R}^2$	Hansen J p -val		
Frictionless	Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);					
$\Delta \log \mathbf{C}_t^*$		A_t	· ·	5577		
0.254^{***}		OLS	0.064			
(0.007)						
0.989***		IV	0.073	0.000		
(0.029)				0.159		
,	0.733***	IV	0.067	0.000		
	(0.016)			0.000		
	-1.	78e–4*** IV	0.074	0.000		
	(0.	04e-4)		0.089		
0.268	0.108^{**} $-1.$	07e–4*** IV	0.074	0.000		
(0.193)	(0.054) $(0.$	32e-4)		0.791		
Memo: For	instruments \mathbf{Z}_t ,	$\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_{t+1}^* = \mathbf{Z}_t^* = \mathbf{Z}_t^$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	74; $var(\xi_t) = 4.16e-6$		
	Sticky: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);					
		A_t	t c	30,7		
0.585^{***}	0 011	OLS	0.342			
(0.005)						
0.874***		IV	0.366	0.000		
(0.008)				0.000		
,	0.973***	IV	0.315	0.000		
	(0.014)			0.000		
	-1.	90e–4*** IV	0.216	0.000		
	(0.	02e-4)		0.000		
0.787^{***}	-0.006 $-0.$	37e-4*** IV	0.370	0.000		
(0.023)	(0.051) $(0.$	08e-4)		0.557		
Memo: For	instruments \mathbf{Z}_t ,	$\Delta \log \mathbf{C}_{t+1}^* = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.3$	70; $\operatorname{var}(\xi_t) = 4.16e-6$		
Notes:	*		for a single			
20000 quarters. Stars indicate statistical significance at the						
	90%, 95%, and 99% levels, respectively. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$					
$\{\Delta \log \mathbf{C}_{t-2},$	$\Delta \log \mathbf{C}_{t-3}, \Delta \log$	$1_{t-2}, \Delta \log 1_{t-3}$	$A_{t-2}, A_{t-3}, \Delta_{t}$	$8 \log \mathbf{U}_{t-2}, \Delta_8 \log \mathbf{I}_{t-2} \}.$		

 ${\bf Table~7}~~{\bf Aggregate~Consumption~Dynamics~in~RA~Model}$

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$						
Expectations : Dep Var		OLS	2 nd Stage	KP p -val		
Indep	Independent Variables		or IV	$ar{R}^2$	Hansen J p -val	
Frictionless	$: \Delta \log \mathbf{C}_{t+}^*$	1 (with mea	sureme	nt error $\mathbf{C}_t^* =$	$\mathbf{C}_t \times \xi_t$);	
$\Delta \log \mathbf{C}_t^*$		A_t				
0.056^{***}			OLS	0.003		
(0.008)						
1.000***			IV	0.073	0.000	
(0.034)					0.878	
	0.673***		IV	0.060	0.000	
	(0.015)				0.000	
		-1.64e-4**	* IV	0.072	0.000	
		(0.04e-4)			0.006	
1.622	-0.029	0.97e-4	IV	0.073	0.899	
(1.321)		(1.95e-4)			0.938	
Memo: For	instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = C_t$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	073; $var(\xi_t) = 3.33e-6$	
Sticky : $\Delta 1$	Sticky: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);					
	$\Delta \log \mathbf{Y}_{t+1}$	A_t			50)7	
0.567^{***}	0 - t+1		OLS	0.322		
(0.005)			00	3.3		
0.913***			IV	0.358	0.000	
(0.009)					0.000	
,	0.838***		IV	0.321	0.000	
	(0.011)				0.000	
	()	-1.66e-4**	* IV	0.253	0.000	
		(0.02e-4)			0.000	
0.798***	0.006	-0.30e-4**	* IV	0.361	0.000	
(0.025)	(0.029)	(0.04e-4)			0.320	
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.361$; $\operatorname{var}(\xi_t) = 3.33e-6$						
Notes:	Reported	statistics		for a sing		
20000 quarters. Stars indicate statistical significance at the						
	· · · · · · · · · · · · · · · · · · ·					
$\{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$						