Harjoitustyö Perustaso

Sisällysluettelo

Perustason työn toteutus	1
Luettavan tiedoston rakenne	2
Kirjoitettavan tiedoston rakenne	2
Tuloksista Excelillä tehtyjä esimerkkikuvaajia	2
Esimerkki syötetiedostosta	4
Esimerkkiajo 1	4
Esimerkki tulostiedostosta 1	5

Tee Python-ohjelma, joka lukee ilmatieteenlaitoksen tuntikohtaisia sademääriä sisältävän tekstitiedoston, analysoi tiedot ja tallentaa tulokset tulostiedostoon. Ensimmäisessä analyysissä ohjelma selvittää kunkin päivän sademäärän ja kategorisoi päivät sadekertymän perusteella 4 eri Toisessa analyysissä selvitetään viikonpäivittäiset sadekertymät. kategoriaan. Harjoitustvön lähtökohtana on Ilmatieteenlaitoksen data vuodelta 2016. Datasetti on muokattu kurssille sopivaan muotoon. Harjoitustyö palautetaan Moodlen Harjoitustyö-lehdelle, missä on selitetty myös CodeGrade tarkistaa ohjelman toiminnan ja sen kirjoittamien harjoitustyön arviointi. tekstitiedostojen sisällöt, jonka jälkeen assistentti tarkistaa ohjelman rakenteen. Ohjelman rakenteesta saa palautetta myös ASPA-ohjelmalla, ks. Moodlen ASPA-välilehti. Harjoitustyö on henkilökohtainen tehtävä, joten jokainen kirjoittaa itse oman ohjelmansa ja kaikki ohjelmaan vaikuttaneet henkilöt ja lähteet tulee mainita ohjelman alkukommenteissa.

Perustason työn toteutus

Perustason työn tulee noudattaa tyyliohjetta ottaen huomioon seuraavat tarkennukset:

- 1. Jaa harjoitustyö kahteen kooditiedostoon luennon 8 mukaisesti. Ohjelmassa on hyödynnettävä itse tehtyä aliohjelmakirjastoa HTPerusKirjasto.py, jossa on oltava kaikki valintarakenteesta kutsuttavat aliohjelmat. Pääohjelmatiedostossa on ohjelman pääohjelma ja Valikko-aliohjelma. Sekä pääohjelma- että kirjastotiedostoissa on oltava L07 ohjeiden mukaiset alkukommentit
- 2. Käytä luettavan ja kirjoitettavien tiedostojen nimien kysymiseen samaa aliohjelmaa
- 3. Sademäärää käsitellään desimaalilukuna ja aikaleimaa time-kirjaston avulla. Aikaleima tallennetaan olion jäsenmuuttujaksi
- 4. Pyöristysongelmien välttämiseksi kaikki laskenta tulee tehdä alkuperäisissä yksiköissä ja tulosten muotoilun yhteydessä keskiarvot pyöristetään yhden desimaalin tarkkuuteen
- 5. Kaikki vhdessä datatiedostossa olevat tiedot ovat samalta vuodelta
- 6. Valinnan 2 analyysi on kaksivaiheinen, ensin lasketaan päivittäiset sademäärät ja näitä tuloksia käytetään kategorisoimaan päivät neljään eri luokkaan Ilmatieteenlaitoksen sademääräluokituksen mukaisesti. Kategoriat ovat: (1) runsasta sadetta 4,5 mm tai enemmän (2) sadetta 1,0–4,4 mm (3) vähän sadetta 0,3–0,9 mm (4) poutaa alle 0,3 mm.
- 7. Valinnassa 4 tehtävässä analyysissä tulee hyödyntää time-kirjastoa viikonpäivän selvittämiseen. Tulosten kirjoittamista varten viikonpäivien nimet voi lisätä kiintoarvoina listaan, josta ne on

helppo poimia indeksin perusteella.

- 8. Ohjelmassa tulee olla käytössä yksi tai useampi oliolista. Kategoria- ja viikonpäiväanalyysin tulokset voi tallentaa kiinteän kokoisiin listoihin
- 9. Ohjelman toteutuksen tulee olla selkeä ja ohjelmakoodin on oltava ymmärrettävää, ylläpidettävää ja laajennettavaa.

Ohjelman toiminnot näkyvät parhaiten esimerkin valikosta, mutta käyttäjä voi valita tietojen lukemisen, analysoimisen, tulosten tallentamisen ja viikonpäivä-analyysin sekä ohjelman lopettamisen. Tiedoston lukemisen ja kirjoittamisen yhteydessä ko. tiedoston nimi kysytään käyttäjältä. Tiedoston lukeminen on käsitelty Kohdassa 2 ja kirjoittaminen Kohdassa 3.

Luettavan tiedoston rakenne

Luettavan tiedoston rakenne näkyy alla. Yksi rivi vastaa yhtä tuntia Helsingin Kumpulan mittauspisteellä. "Aikaleima"-sarake, joka sisältää päivämäärä- ja kellonaikatiedot formaatissa "YYYY.mm.dd HH:MM", noudattaa L08 läpikäytyjä periaatteita, "Aikavyöhyke"-sarake kertoo aikavyöhykkeen, josta ei tarvitse analyysissä välittää, vaan aikaleimaa käsitellään siinä kellonajassa, jossa se tiedostossa esiintyy. Viimeisenä "Sademäärä"-sarake sisältää aikaleimaa vastaavan tunnin sademäärän 0,1 millimetrin tarkkuudella. Alla on esitetty luettavan tiedoston rakenne käyttäen Moodlesta ja CodeGradesta nimellä kumpula_15.txt löytyvän tiedoston alkua ja laajempi kaikki tiedot sisältävä tiedosto on kumpula_2016.txt. Tiedosto on järjestetty "Aikaleima"-sarakkeen mukaan kronologiseen järjestykseen. Sademääriä ei ole vuoden jokaiselle päivälle eikä välttämättä edes jokaiselle kuukaudelle.

Kirjoitettavan tiedoston rakenne

Kirjoitettavien tiedostojen rakenne näkyy alla. **Valinnassa 3** kirjoitettavan tiedoston alussa ovat sadepäivien lukumäärät kategorioittain ja näiden alle listataan yhden tyhjän rivin jälkeen päiväkohtaiset sademäärät päivämäärän mukaan kronologisessa järjestyksessä eli samaan järjestykseen kuin ne ovat luettavassa tiedostossa.

Tuloksista Excelillä tehtyjä esimerkkikuvaajia

Alla Kuvassa 1 on koko vuoden tiedostolle tehdyn analyysin tuloksista piirretty Excel-kaavio, johon on korostettu yksittäisten päivien arvoja. Kuvassa 2 on kategorisointianalyysin tulokset, johon on jälkikäteen lisätty kategorian yhteyteen sulkuihin sademäärät, ja Kuvassa 3 on viikonpäiväanalyysin tulos samalle tiedostolle. CodeGrade tarkistaa vain tehdyn tiedoston sisällön, joten kuvaajien tekeminen jää oman mielenkiinnon ja harrastuksen varaan.

Mímir v1.0.1 Harjoitustyö

Esimerkki syötetiedostosta 'kumpula_15.txt':

```
Aikaleima (YYYY.mm.dd HH:MM); Aikavyöhyke; Sademäärä (mm)
2016.01.01 02:00;UTC+2;0
2016.01.04 00:00;UTC+2;0.1
2016.01.04 01:00;UTC+2;0.5
2016.01.18 05:00; UTC+2; 0.1
2016.01.18 06:00;UTC+2;0.5
2016.01.18 07:00;UTC+2;0.2
2016.01.18 08:00; UTC+2; 0.2
2016.01.18 09:00;UTC+2;0.2
2016.01.18 10:00;UTC+2;0.2
2016.01.18 11:00;UTC+2;0.2
2016.04.20 11:00;UTC+3;0.3
2016.04.20 12:00;UTC+3;0.4
2016.04.20 13:00;UTC+3;0.9
2016.04.20 14:00; UTC+3; 0
2016.04.20 15:00; UTC+3; 0.3
```

Esimerkkiajo 1

$Sy\"{o}tteet:$

```
1
kumpula_15.txt
2
3
perus_tulos_15.txt
4
perus_tulos_viikonpaivat_15.txt
0
```

Tuloste:

```
Valitse haluamasi toiminto:
1) Lue tiedosto
2) Analysoi
3) Kirjoita tiedosto
4) Analysoi viikonpäivittäiset sademäärät
0) Lopeta
Anna valintasi: 1
Anna luettavan tiedoston nimi: kumpula_15.txt
Tiedosto 'kumpula_15.txt' luettu.
Tiedostosta lisättiin 15 datariviä listaan.
Valitse haluamasi toiminto:
1) Lue tiedosto
2) Analysoi
3) Kirjoita tiedosto
4) Analysoi viikonpäivittäiset sademäärät
0) Lopeta
Anna valintasi: 2
Päivittäiset summat laskettu 4 päivälle.
Päivät kategorisoitu 4 kategoriaan.
```

```
Valitse haluamasi toiminto:
1) Lue tiedosto
2) Analysoi
3) Kirjoita tiedosto
4) Analysoi viikonpäivittäiset sademäärät
0) Lopeta
Anna valintasi: 3
Anna kirjoitettavan tiedoston nimi: perus_tulos_15.txt
Tiedosto 'perus_tulos_15.txt' kirjoitettu.
Valitse haluamasi toiminto:
1) Lue tiedosto
2) Analysoi
3) Kirjoita tiedosto
4) Analysoi viikonpäivittäiset sademäärät
0) Lopeta
Anna valintasi: 4
Anna kirjoitettavan tiedoston nimi: perus_tulos_viikonpaivat_15.txt
Tiedosto 'perus_tulos_viikonpaivat_15.txt' kirjoitettu.
Valitse haluamasi toiminto:
1) Lue tiedosto
2) Analysoi
3) Kirjoita tiedosto
4) Analysoi viikonpäivittäiset sademäärät
0) Lopeta
Anna valintasi: 0
Lopetetaan.
Kiitos ohjelman käytöstä.
```

Esimerkki tulostiedostosta 'perus_tulos_15.txt':

```
Kategoria; Päivien lukumäärä:
Kategoria 1;0
Kategoria 2;2
Kategoria 3;1
Kategoria 4;1

Kaikki päivittäiset sademäärät:
Pvm; mm
01.01.2016;0.0
04.01.2016;0.6
18.01.2016;1.6
20.04.2016;1.9
```

Esimerkki tulostiedostosta 'perus_tulos_viikonpaivat.txt':

```
Viikonpäivä;Sadekertymä
Maanantai;83.1
Tiistai;81.6
Keskiviikko;82.3
Torstai;154.2
Perjantai;70.5
Lauantai;126.4
Sunnuntai;95.6
```