Midterm Q3

Bhagyarathi Raman

3/9/2022

```
library(AER)
## Loading required package: car
## Loading required package: carData
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date.as.Date.numeric
## Loading required package: sandwich
## Loading required package: survival
data("Affairs")
names(Affairs)
## [1] "affairs"
                       "gender"
                                        "age"
                                                        "yearsmarried"
## [5] "children"
                       "religiousness" "education"
                                                        "occupation"
## [9] "rating"
 3. Model Fitting and Residual plots
 a. Fit a linear model for affairs using all predictors. Call this model g. Show the coefficients and interpret the coefficient for childrenyes.
q=lm (affairs~gender+age+yearsmarried+children+education+religiousness+occupation+rating, data = Affairs)
summary(g)
##
## Call:
## lm(formula = affairs ~ gender + age + yearsmarried + children +
       education + religiousness + occupation + rating, data = Affairs)
##
## Residuals:
##
       Min
                1Q Median
                                30
## -5.0503 -1.7226 -0.7947 0.2101 12.7036
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
                  5.87201 1.13750 5.162 3.34e-07 ***
## (Intercept)
                  0.05409
                           0.30049 0.180
## gendermale
                                               0.8572
                 -0.05098
                             0.02262 -2.254
## age
                                                0.0246 *
                             0.04122 4.111 4.50e-05 ***
## yearsmarried 0.16947
                -0.14262
                             0.35020 -0.407
## childrenves
                                               0.6840
## education
                 -0.01375
                             0.06414 -0.214
                                                0.8303
                             0.11173 -4.275 2.23e-05 ***
## religiousness -0.47761
                                      1.180 0.2383
## occupation
                 0.10492
                             0.08888
## rating
                 -0.71188
                             0.12001 -5.932 5.09e-09 ***
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.095 on 592 degrees of freedom
Multiple R-squared: 0.1317, Adjusted R-squared: 0.12
F-statistic: 11.23 on 8 and 592 DF, p-value: 7.472e-15

##

```
##
     (Intercept)
                    gendermale
                                          age yearsmarried
                                                               childrenyes
##
      5.87201014
                    0.05408587
                                  -0.05097628
                                                 0.16947232
                                                               -0.14262446
##
       education religiousness
                                   occupation
                                                      rating
##
     -0.01374903
                    -0.47761363
                                   0.10491597
                                                 -0.71187692
```

```
# childrenyes -0.14262
#The childrenyes coefficient is negative. the affairs tend to decrease when their are more children.
```

b. Obtain and show plots of the g-residuals against the fitted values. Does this plot reveal any abnormal patterns, if so why?

```
library(ggplot2)
mod.g <- fortify(g)</pre>
p1 <- ggplot(mod.g) +
  aes(x=.fitted, y=.resid) +
  geom_point()
p2 <- ggplot(mod.g) +
  aes(x=gender, y=.resid) +
  geom_point()
p3 <- ggplot(mod.g) +
  aes(x=age, y=.resid) +
  geom_point()
p4 <- ggplot(mod.g) +
  aes(x=yearsmarried, y=.resid) +
  geom_point()
p5<-ggplot(mod.g)+
  aes(x=children,y=.resid)+
  geom_point()
p6<-ggplot(mod.g)+
  aes(x=education,y=.resid)+
  geom_point()
p7<-ggplot(mod.g)+
  aes(x=religiousness,y=.resid)+
  geom_point()
p8<-ggplot(mod.g)+
  aes(x=occupation,y=.resid)+
  geom point()
p9<-ggplot(mod.g)+
  aes(x=rating,y=.resid)+
  geom_point()
library(gridExtra)
grid.arrange(p1, p2, p3, p4,p5,p6,p7,p8,p9, nrow = 2)
```


The plot reveals that the error variance is not equal. # All the plots are not linear and has various outliers. c. Obtain and show the boxplots of the g-residuals versus gender and children. Does the plot reveal any patterns?

```
ggplot(mod.g)+
  aes(x=gender,.resid)+
  geom_boxplot()
```



```
ggplot(mod.g)+
  aes(x=children,.resid)+
  geom_boxplot()
```


#The boxplots size (width) are different, indicating variance error between gender.

- # The boxplot of the g-residuals with gender, the male shows outliers than female.
- # The boxplot size of the g-residuals with childrenno shows outliers than childrenyes and the boxplots with child renyes is bigger than the childrenno.

d. Using the g-residuals, obtain and show the Normal QQ-Plot. Does the plot indicate the residuals are normal or not normal? Explain your answer.

Affairs Data

The residuals are not normaly distributed, The qq plot is not straight and it is significantly deviating from the straight diagonal line. The p-value is also big.