La probabilità condizionata

Alice lancia un dado, vede il risultato ma non lo dice a Bob.

Bob stima la probabilità dell'evento A: "esce 6" utilizzando la definizione classica: $P(A) = \frac{\#\{6\}}{\#\{1,2,3,4,5,6\}} = \frac{1}{6}$. Consideriamo i seguenti casi:

- Alice, conoscendo il risultato, dice a Bob: "è uscito un numero dispari". La probabilità di A, sapendo che è uscito un numero dispari, cambia e diventa 0. Bob infatti capisce che "è uscito 6" è un evento impossibile.
- Alice, conoscendo il risultato, dice a Bob: "è uscito un numero pari". La probabilità di A, sapendo che è uscito un numero pari, cambia e diventa $\frac{1}{3}$. Bob infatti capisce che i casi possibili (che erano $\{1,2,3,4,5,6\}$) diventano $\{2,4,6\}$ (dato che è uscito un numero pari), quindi la probabilità che esca 6 diventa $\frac{\#\{6\}}{\#\{2,4,6\}} = \frac{1}{3}$.

Osservazione: dato un evento A, la probabilità che si verifichi A può cambiare se un altro evento B si è verificato. Questo perchè se si verifica B, lo spazio degli eventi possibili (spazio campionario) diventa B (prima era Ω). Inoltre, A si verifica se e solo se si verifica $A \cap B$ (l'evento A diventa $A \cap B$).

Esempio. Consideriamo il lancio di un dado e gli eventi A : "esce un numero minore di 3" e B : "esce un numero pari". Consideriamo la loro rappresentazione grafica.

Se B si verifica 1, 3 e 5 non fanno più parte dei casi possibili, quindi:

- L'insieme dei risultati possibili è {2,4,6};
- A si verifica se e solo se $A \cap B$ si verifica.

La probabilità diventa $\frac{\#(A \cap B)}{\#B} = \frac{\#\{2\}}{\#\{2,4,6\}} = \frac{1}{3}$.

Come riscrivere
$$\frac{\#(A\cap B)}{\#B}$$
 ?

Divido numeratore e denominatore per $\#\Omega$:

$$\frac{\#(A\cap B)}{\#B} = \frac{\frac{\#(A\cap B)}{\#\Omega}}{\frac{\#B}{\#\Omega}} = \frac{P(A\cap B)}{P(B)}.$$

Definizione (Probabilità condizionata). Siano A e B eventi e $(\Omega, \mathcal{P}(\Omega), P)$ uno spazio di probabilità. Si definisce probabilità condizionata dell'evento A dato B, e si indica con P(A|B), il rapporto tra $P(A \cap B)$ e P(B):

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Rappresentazione grafica della probabilità condizionata:

Graficamente le probabilità sono le aree delle figure che rappresentano gli eventi, quindi $P(\Omega) = 1$ (l'area del rettangolo è 1) e

$$P(A) = \frac{P(A)}{P(\Omega)}$$
 (l'area gialla fratto 1).

Se B si verifica $\Omega \to B$ e $A \to A \cap B$.

Questo vuol dire che

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 (area arancione fratto area rossa).

Esercizio 1. Lancio una moneta due volte. Voglio calcolare la probabilità che venga testa in entrabi i lanci, sapendo che

- (a) nel primo lancio è uscito TESTA;
- (b) esce testa in almeno un lancio.

Svolgimento. (a) Se A: "esce testa in entrambi i lanci" e B: "nel primo lancio è uscito TESTA", dobbiamo calcolare P(A|B).

$$\Omega = \{(T, T), (T, C), (C, T), (C, C)\};$$

$$A = \{(T, T)\};$$

$$B = \{(T, T), (T, C)\};$$

$$A \cap B = \{(T, T)\}.$$

Le probabilità da utilizzare per calcolare P(A|B) sono

$$P(A \cap B) = \frac{\#\{(T,T)\}}{\#\Omega} = \frac{1}{4} \quad e \quad P(B) = \frac{\#\{(T,T),(T,C)\}}{\#\Omega} = \frac{2}{4} = \frac{1}{2}.$$

Dunque,
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$
.

(b) Sia C l'evento "esce testa in almeno un lancio" ($C = \{(T,T), (T,C), (C,T)\}$), allora

$$P(A|C) = \frac{P(A \cap C)}{P(C)} = \frac{\frac{\#\{(T,T)\}}{\#\Omega}}{\frac{\#\{(T,T),(T,C),(C,T)\}}{\#\Omega}} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}.$$

Teorema (Teorema della probabilità composta). $Sia(\Omega, \mathcal{P}(\Omega), P)$ uno spazio di probabilità e siano A e B eventi. Si dimostra che

$$P(A \cap B) = P(A|B)P(B);$$

$$P(A \cap B) = P(B|A)P(A).$$

Dimostrazione. Dimostro che $P(A \cap B) = P(A|B)P(B)$.

Per la definizione di probabilità condizionata $P(A|B) = \frac{P(A \cap B)}{P(B)}$, cioè

$$\frac{P(A \cap B)}{P(B)} = P(A|B)$$
. Moltiplico entrambi i membri per $P(B)$:

$$\frac{P(A \cap B)}{P(B)} \mathbf{P}(B) = P(A|B) \mathbf{P}(B).$$

Semplifico P(B) al primo membro:

$$\frac{P(A \cap B)}{P(B)} P(B) = P(A|B)P(B).$$

Infine, ottengo $P(A \cap B) = P(A|B)P(B)$ come volevo dimostrare.

Analogamente si dimostra $P(A \cap B) = P(B|A)P(A)$.

Esercizio 2. Un'urna contiene 3 palline rosse e 2 blu. Qual è la probabilità che in una serie di estrazioni vengano estratte successivamente prima una pallina rossa e poi una blu.

Svolgimento. Considero gli eventi:

 R_1 :esce una pallina rossa alla prima estrazione;

 B_2 : esce una pallina blu alla seconda estrazione.

Dobbiamo calcolare $P(R_1 \cap B_2)$.

Per il teorema della probabilità composta: $P(R_1 \cap B_2) = P(B_2|R_1)P(R_1)$.

Calcolo $P(B_2|R_1)$. Se ho già estratto una pallina rossa allora l'urna contiene 2 palline blu (casi favorevoli) e due palline rosse, quindi $P(B_2|R_1) = \frac{2}{4} = \frac{1}{2}$.

Calcolo $P(R_1)$. Dato che alla prima estrazione ci sono 2 palline blu e 3 palline rosse (casi favorevoli), $P(R_1) = \frac{3}{5}$.

Infine,
$$P(R_1 \cap B_2) = P(B_2|R_1)P(R_1) = \frac{1}{2}\frac{3}{5} = \frac{3}{10}$$
.

Eventi indipendenti

Due eventi A e B sono indipendenti se e solo se il verificarsi di A non modifica la probabilità di B e viceversa.

Esempio. Gli eventi A : "domani piove" e B : "domani supero l'esame di analisi matematica" sono indipendenti.

Esempio. Tiro un dado e una moneta. Gli eventi A: "esce 6" e B: "esce testa" sono indipendenti.

Esempio. Tiro un dado. Gli eventi A: "esce 6" e B: "esce un numero pari" sono dipendenti. Nei primi esempi abbiamo osservato che se B si verifica allora la probabilità di A cambia.

Definizione. Due eventi A e B sono indipendenti se e solo se P(A|B) = P(A) e P(B|A) = P(B).

Teorema (Teorema del prodotto di eventi indipendenti). Gli eventi A e B sono indipendenti se e solo se $P(A \cap B) = P(A)P(B)$.

Dimostrazione. Supponiamo che A e B siano indipendenti e dimostriamo che $P(A \cap B) = P(A)P(B)$.

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ (dalla definizione di prob. condizionata);

P(A|B) = P(A) (perchè A e B sono indipendenti).

Dalle precedenti uguaglianze, $\frac{P(A \cap B)}{P(B)} = P(A)$. Moltiplico entrambi i membri per P(B):

$$\frac{P(A \cap B)}{P(B)} P(B) = P(A) P(B).$$

Semplifico P(B) al primo membro e ottengo $P(A \cap B) = P(A)P(B)$.

Supponiamo che $P(A \cap B) = P(A)P(B)$ e dimostriamo che A e B sono indipendenti (quindi P(A|B) = P(A)).

$$P(A \cap B) = P(A)P(B)$$
 (per ipotesi);

 $P(A \cap B) = P(A|B)P(B)$ (dal teorema della probabilità composta);

quindi P(A|B)P(B) = P(A)P(B). Divido entrambi i membri per P(B) e lo semplifico al primo membro, in modo da ottenere P(A|B) = P(A).

Esercizio (Probabilità e calcolo combinatorio)

Sette amici, 4 ragazzie e 3 ragazze, si recano al cinema e si siedono vicini, sulle poltrone di una stessa fila. Calcolare la probabilità che

- (a) I ragazzi sono tutti vicini tra loro;
- (b) le ragazze sono tutte vicine tra loro;
- (c) i ragazzi sono tutti vicini tra loro e le ragazze sono tutte vicine tra loro.

Svolgimento. (a) Se A è l'evento "I ragazzi sono tutti vicini tra loro", devo calcolare $P(A) = \frac{\#A}{\#\Omega}$. Chiamo M_1, M_2, M_3, M_4 i 4 ragazzi e F_1, F_2, F_3 le 3 ragazze, allora

$$\Omega = \{ M_1 M_2 M_3 M_4 F_1 F_2 F_3, \quad M_1 F_1 M_2 F_3 M_4 F_3 M_3, \dots \},$$

quindi $\#\Omega = 7!$ (permutazioni semplici di 7 oggetti). Calcoliamo #A. Ci sono 4 possibilità

• tutti i maschi a sinistra e tutte le femmine a destra, ad esempio $M_1M_2M_3M_4F_1F_2F_3$. In questo caso, tutte le possibilità si ottengono permutando in tutti i modi possibili $M_1M_2M_3M_4$ (4!), permutando in tutti i modi possibili $F_1F_2F_3(3!)$ e combinando tra loro le permutazioni dei due gruppi in tutti i modi possibili (4!3!); ad esempio combino la permutazione $M_4M_2M_3M_1$ con la permutazione $F_2F_1F_3$ per ottenere $M_4M_2M_3M_1F_2F_1F_3$.

- una femmina a sinistra tutti i maschi le altre due femmine a destra, ad esempio $F_1M_1M_2M_3M_4F_2F_3$. Ragionando come prima, tutte le possibilità sono 4!3!.
- due femmine a sinistra tutti i maschi una femmina a destra, ad esempio $F_1F_2M_1M_2M_3M_4F_3$. Ragionando come prima, tutte le possibilità sono 4!3!.
- tutte le femmine a sinistra tutti i maschi a destra, ad esempio $F_1F_2F_3M_1M_2M_3M_4$. Ragionando come prima, tutte le possibilità sono 4!3!.

$$Quindi \# A = 4!3! + 4!3! + 4!3! + 4!3! = 4 \cdot 4! \cdot 3! \ e \ P(A) = \frac{4 \cdot 4! \cdot 3!}{7!} = \frac{2}{35}.$$

- (b) Soluzione: $\frac{1}{7}$.
- (c) Analogamente al punto A, ho 2 possibilità:
 - tutti i maschi a sinistra e tutte le femmine a destra, ad esempio $M_1M_2M_3M_4F_1F_2F_3$. In questo caso ho 4!3! possibilità.
 - tutte le femmine a sinistra e tutti i maschi a destra, ad esempio $F_1F_2F_3M_1M_2M_3M_4$. In questo caso ho 4!3! possibilità.

 $P(tutti\ i\ maschi\ vicini\ e\ tutte\ le\ femmine\ vicine) = \frac{4!3!+4!3!}{7!} = \frac{2}{35}.$