Deep Learning, Autumn 2019

Homework 1. Matrix differentiation

Deadline (strict, no delay is allowed): 15 Sep. 2019, 23:59

Upload format: pdf file prepared using T_EX formulas or scan of hand-written papers (in one pdf file with proper ordering of pages).

Hereinafter we use the following notation:

- $\langle x, y \rangle$ Euclidean inner product;
- $||x|| = \langle x, x \rangle^{1/2} = (x^T x)^{1/2}$ Euclidean vector norm;
- $||A||_F = \langle A, A \rangle^{1/2} = \operatorname{tr}(A^T A)^{1/2}$ Frobenius matrix norm;
- $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \ge 0 \ \forall i\}, \ \mathbb{R}^n_{++} = \{x \in \mathbb{R}^n \mid x_i > 0 \ \forall i\};$
- $\mathbb{S}^n = \{ A \in \mathbb{R}^{n \times n} \mid A = A^T \};$
- $\mathbb{S}^n_+ = \{A \in \mathbb{S}^n \mid A \text{ is non-negative definite}\}, \, \mathbb{S}^n_{++} = \{A \in \mathbb{S}^n \mid A \text{ is positive definite}\}.$
- 1. For each of the following functions f find first and second derivatives:
 - (a) $f: E \to \mathbb{R}$, $f(t) = \det(A tI_n)$, where $A \in \mathbb{R}^{n \times n}$, $E = \{t \in \mathbb{R} : \det(A tI) \neq 0\}$.
 - (b) $f: \mathbb{R}_{++}^n \to \mathbb{R}, f(t) = \|(A + tI_n)^{-1}b\|, \text{ where } A \in \mathbb{S}_+^n, b \in \mathbb{R}^n.$
- 2. For each of the following functions f find gradient ∇f and Hessian $\nabla^2 f$:
 - (a) $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \frac{1}{2} ||xx^T A||_F^2$, where $A \in \mathbb{S}^n$;
 - (b) $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}, f(x) = \langle x, x \rangle^{\langle x, x \rangle};$
 - (c) $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||Ax b||^p$, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $p \ge 2$.
- 3. For each of the following functions f find all stationary points and indicate possible parameter values when they exist:
 - (a) $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \langle c, x \rangle + \frac{\sigma}{3} ||x||^3$, where $c \in \mathbb{R}^n$, $c \neq 0$, $\sigma > 0$;
 - (b) $f: E \to \mathbb{R}, f(x) = \langle a, x \rangle \ln(1 \langle b, x \rangle), \text{ where } a, b \in \mathbb{R}^n, \ a, b \neq 0, \ E = \{x \in \mathbb{R}^n \mid \langle b, x \rangle < 1\};$
 - (c) $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \langle c, x \rangle \exp(-\langle Ax, x \rangle)$, where $c \in \mathbb{R}^n$, $c \neq 0$, $A \in \mathbb{S}^n_{++}$;
 - (d) $f: \mathbb{S}_{++}^n \to \mathbb{R}$, $f(X) = \langle X^{-1}, I_n \rangle \langle A, X \rangle$, where $A \in \mathbb{S}^n$.
- 4. Suppose we have the following calculation graph:

Here $A \in \mathbb{R}^{n \times n}$ is some non-degenerate matrix, $b \in \mathbb{R}^n$ and x is a unique solution of the linear system Ax = b. L is some scalar loss function that somehow depends on x. The task is to backpropagate the gradient through this calculation graph, i.e. given $\nabla_x L$ find $\nabla_b L$ and $\nabla_A L$.