

2023年春季 不确定度计算练习题

物理实验教学中心 2023-2

表1: 置信系数 <i>C</i>					
三角 均匀 正态					
$\sqrt{6}$	$\sqrt{3}$	3			

表2:包含因子表(<mark>练习5</mark>)					
分布类型	P	0. 68	0. 90	0. 95	0. 99
三角分布		1. 06	1. 67	1. 90	2. 20
均匀分布	k_P	1. 18	1. 56	1. 65	1. 71
正态分布		1. 00	1. 65	1. 96	2. 58

$$u_P = t_P U_A$$

	表3: t_P 因子表								
t n 3 4 5 6 7 8 9 10 ∞									
0. 68	1. 32	1. 20	1. 14	1. 11	1. 09	1. 08	1. 07	1. 06	1. 00
0. 90	2. 92	2. 35	2. 13	2. 02	1. 94	1. 86	1. 83	1. 76	1. 65
0. 95	4. 30	3. 18	2. 78	2. 57	2. 46	2. 37	2. 31	2. 26	1. 96
0. 99	9. 93	5. 84	4. 60	4. 03	3. 71	3. 50	3. 36	3. 25	2. 58

	表4: 常见不确定度传递公式			
函数表达式	传递公式			
W = kX	U(W) = kU(X)			
$W = \ln X$	U(W) = U(X)/X			
$W = \sin X$	$U(W) = \cos x U(X)$			
$W = X \pm Y$	$U(W) = \sqrt{U^2(X) + U^2(Y)}$			
$W = X \cdot Y$	$U(W)/\overline{W} = \sqrt{[U(X)/\overline{X}]^2 + [U(Y)/\overline{Y}]^2}$			
W = X/Y	$U(W)/\overline{W} = \sqrt{[U(X)/\overline{X}]^2 + [U(Y)/\overline{Y}]^2}$			
$W = \sqrt{X}$	$U(W)/\overline{w} = U(X)/(2\overline{X})$			
$W = X^m Y^n / z^q$	$U(W)/\bar{w} = \sqrt{[m U(X)/\bar{X}]^2 + [n U(Y)/\bar{Y}]^2 + [q U(Z)/\bar{Z}]^2}$			

练习1. 用钢尺测量正方体边长 L 一次。

不确定度来源分析表

来源	评价方法	值	分布类型
仪器允差	B类	$u_1 \approx 1 mm$ (约为最小刻度)	查仪器说明书
测量者估读	B类	$u_2 \approx \frac{1}{3} mm$	问测量者

练习1的数据处理

最佳近似(most approximated)
$$\bar{a} = 0.93 \ cm$$

不确定度

$$u_1 = \Delta = 0.1 cm$$

$$u_2 \approx \Delta/3 = 0.03 cm$$

$$u = \sqrt{u_1^2 + u_2^2} \approx \Delta$$

注意:由于通常情况下估读引起的不确定度远小于仪器允差,故数值上可以忽略不记,但运算过程中要体现(考试中)。

练习2. 用游标卡尺测量正方体边长L一次。

最小刻度: $\Delta = 0.02 mm$

来源	评价 方法	值	分布类型
仪器允差	B类	$u_1 \approx 0.02 \ mm$	查仪器说明书
仪器示数的离散特征	B类	$u_2 = 0.01 mm$	均匀分布

练习2的数据处理

最佳近似(most approximated)
$$\bar{a} = 9.26 \, mm$$

不确定度

$$u_1 = \Delta = 0.02 \ mm$$

 $u_2 = 0.01 \ mm$
 $u = \sqrt{u_1^2 + 0 * u_2^2} = u_1$

注意:通常情况下未考虑游标卡尺示数的离散特征引起的不确定度(考试中)。

练习3. 用钢尺测量正方体边长L的B类标

准不确定度

最小刻度: $\Delta = 1 mm$

不确定度来源分析表

来源	评价方法	值	分布类型
仪器允差	B类	$u_1 \approx 1 mm$ (约为最小刻度)	查仪器说明书
测量者估读	B类	$u_2 \approx \frac{1}{3} mm$	问测量者

$$u_B = \sqrt{\left(\frac{u_1}{C_1}\right)^2 + \left(\frac{u_2}{C_2}\right)^2} \approx \sqrt{\left(\frac{\Delta}{\sqrt{6}}\right)^2 + \left(\frac{u_2}{\sqrt{6}}\right)^2}$$

练习4. 用游标卡尺测量正方体边长L的B

类标准不确定度

最小刻度:

$$\Delta$$
= 0.02 mm

不确定度来源分析表

来源	评价 方法	值	分布类型
仪器允差	B类	$u_1 \approx 0.02 \ mm$	查仪器说明书
仪器示数的离散特征	B类	$u_2 = 0.01 mm$	均匀分布

$$u_B=rac{u_1}{C_1}pproxrac{\Delta}{\sqrt{3}}$$
 注意:通常情况下未考虑游标 卡尺示数的离散特征引起的不确定度(考试中)。

三角概率密度分布曲线下的总面积为1。 $\pm u_P$ 虚线所夹面积为 $P = 1 - \left(\frac{\Delta - u_P}{\Delta}\right)^2$ 。 因此, $k_P = \frac{U_P}{U_R} = \sqrt{6} \left(1 - \sqrt{1 - P}\right)$ 。

均匀概率密度分布曲线下的总面积为1。 $\pm u_P$ 虚线所夹面积为 $P = \frac{u_P}{\Delta}$ 。 因此, $k_P = \frac{u_P}{u_R} = \sqrt{3}P$ 。

表2:包含因子表(<mark>练习5</mark>)					
分布类型	P	0. 68	0. 90	0. 95	0. 99
三角分布		1. 06	1. 67	1. 90	2. 20
均匀分布	k_P	1. 18	1. 56	1. 65	1. 71
正态分布		1. 00	1. 65	1. 96	2. 58

练习6. 用钢尺测量正方体边长L。共测量了10次,数据见下表,求测量结果的平均值和标准差。

正方体边长测量数据表				
序号	L (cm)	序号	L (cm)	
1	0.93	6	0.94	
2	0.93	7	0.92	
3	0.95	8	0.93	
4	0.92	9	0.94	
5	0.93	10	0.92	

$$\bar{L} = \sum_{i=1}^{i=10} \frac{L_i}{10} = 0.931 \ cm, \sigma = \sqrt{\sum_{i=1}^{i=10} \frac{(L_i - \bar{L})^2}{9}} \approx 0.00994 \ cm$$

练习7. 用钢尺测量正方体边长L。共测量了10次,数据见下表。如果再测量10次,这10次的平均值可能分布在哪个区间,概率是多少?

正方体边长测量数据表				
序号	<i>L</i> (<i>cm</i>)	序号	L (cm)	
1	0.93	6	0.94	
2	0.93	7	0.92	
3	0.95	8	0.93	
4	0.92	9	0.94	
5	0.93	10	0.92	

$$ar{L} = \sum_{i=1}^{i=10} rac{L_i}{10} = 0.931 \ cm,$$
 $\sigma = \sqrt{\sum_{i=1}^{i=10} rac{(L_i - ar{L})^2}{9}} pprox 0.00994 \ cm$
 $\sigma' = rac{\sigma}{\sqrt{10}} pprox 0.00314 \ cm,$
 $P pprox 0.68$, (A类标准不确定度)

提示:对随机变量进行M*n次测量,数据的标准差为 σ 。尔后,将这些数据随机地分成M组,然后计算每组的平均值,最后统计这些平均值的标准差 σ' 。统计规律表明: $\sigma' = \sigma/\sqrt{n}$ 。

练习8. 用钢尺测量正方体边长L。共测量了10次,数据见下表。已知钢尺的允差为1 mm,满足正态分布)。给出测量结果的科学表述(P=0.95)。

正方体边长测量数据表				
序号	<i>L</i> (<i>cm</i>)	序号	L (cm)	
1	0.93	6	0.94	
2	0.93	7	0.92	
3	0.95	8	0.93	
4	0.92	9	0.94	
5	0.93	10	0.92	

练习8的数据处理

来源	评价方法	值	分布类型	c/k/t
仪器允差	B类	$u_1 = 1 mm$	正态分布 (查仪器说明书获悉)	$c_1 = 3 k_{0.95} = 1.96$
测量者估 读	B类	$u_2 \approx 1/3 \ mm$	三角分布 (见仁见智)	$c_2 = \sqrt{6} \\ k'_{0.95} = 1.90$
多次测量	A类	u_A	正态分布	$t_{0.95} = 2.26$

$$\overline{L} = \sum_{i=1}^{i=10} \frac{L_i}{10} = 0.931 \ cm, \sigma = \sqrt{\sum_{i=1}^{i=10} \frac{(L_i - \overline{L})^2}{9}} \approx 0.00994 \ cm$$

$$u_A = \frac{\sigma}{\sqrt{10}} \approx 0.00314 \ cm$$

$$u_{0.95} = \sqrt{(t_{0.95}u_A)^2 + \left(k_{0.95}\frac{u_1}{C_1}\right)^2 + \left(k'_{0.95}\frac{u_2}{C_2}\right)^2} \approx 0.0706 cm$$

$$L = \bar{L} \pm u_{0.95} = (0.931 \pm 0.071) cm, P = 0.95$$

练习9. 用钢尺测量正方体的边长L。共测量了10次,数据见下表。已知钢尺的允差为1mm,满足正态分布)。 给出正方体表面积S的科学表述(P=0.95)。

正方体边长测量数据表				
序号	<i>L</i> (<i>cm</i>)	序号	L (cm)	
1	0.93	6	0.94	
2	0.93	7	0.92	
3	0.95	8	0.93	
4	0.92	9	0.94	
5	0.93	10	0.92	

$$S = 6L^{2}$$

$$\bar{S} = 6\bar{L}^{2} \approx 0.866761 \ cm^{2}$$

$$u(S) = 2\frac{u(L)}{\bar{L}}\bar{S}$$

$$= 2 \times \frac{0.0706}{0.931} \times 0.866761$$

$$\approx 0.1314572 \ cm^{2}$$

$$S = \bar{S} \pm u(S) = (0.87 \pm 0.13) \ cm^{2},$$

$$P = 0.95$$

练习10. 用钢尺测量正方体的边长L。共测量了10次,数据见下表。已知钢尺的允差为1mm,满足正态分布),正方体密度为 $(7.90\pm0.08)g/cm^3$ 。给出正方体表质量m的科学表述(P=0.95)。

正方体边长测量数据表				
序号	<i>L</i> (<i>cm</i>)	序号	<i>L</i> (<i>cm</i>)	
1	0.93	6	0.94	
2	0.93	7	0.92	
3	0.95	8	0.93	
4	0.92	9	0.94	
5	0.93	10	0.92	

$$m = \rho L^{3}$$

$$\bar{m} = \bar{\rho}\bar{L}^{3} \approx 6.375 g$$

$$u(m) = \bar{m} \sqrt{\left(\frac{u(\rho)}{\bar{\rho}}\right)^{2} + \left(3\frac{u(L)}{\bar{L}}\right)^{2}}$$

$$\approx 1.452 g$$

$$m = \bar{m} \pm u(m) = (6.4 \pm 1.4) g,$$

$$P = 0.95$$

练习11. 完成下表

重力加速度测量结果表(单位: m/s²)				
平均值	不确定度	置信概率	完整表达	
9. 78861	0. 01338	0. 95	$g = (9.789 \pm 0.013) \frac{m}{s^2}, P = 0.95$	
9. 78861	0. 00138	0. 95	$g = (9.7886 \pm 0.0014) \frac{m}{s^2}, P = 0.95$	
9. 78865	0. 00135	0. 95	$g = (9.7886 \pm 0.0014) \frac{m}{s^2}, P = 0.95$	
9. 78865	0. 00145	0. 95	$g = (9.7886 \pm 0.0014) \frac{m}{s^2}, P = 0.95$	

- a. 不确定度保留2位有效数字;
- b. 平均值和不确定度的小数点最后一位对齐;
- c. 四舍六入五凑偶。