Синтаксический анализ, часть II Нисходящий LL(1) разбор

Кирилл Юхин

МФТИ, 17 октября 2018 года

Recap

- Грамматика $\langle N, \Sigma, P, S \rangle$
- Продукции (P)
 - ▶ Контекстно-зависимая: $(\Sigma \cup N)^*N(\Sigma \cup N)^* \to (\Sigma \cup N)^*$
 - ▶ Контекстно-свободная: $N \to (\Sigma \cup N)^*$
- Применение продукции $x \underset{G}{\Rightarrow} y \iff \exists u, v, p, q \in (\Sigma \cup N)^* : (x = upv) \land (p \rightarrow q \in P) \land (y = uq)$
- Нисходящий и восходящий разборы
- Сентенциальная форма последовательность символов (терминалов и нетерминалов), выводимых из начального символа.

Элемент множества
$$\left\{w\in (\Sigma\cup N)^*\mid S\overset{*}{\underset{G}{\Rightarrow}}w\right\}$$

ullet Язык, порождаемый грамматикой $L(G) = \left\{ w \in \Sigma^* \mid S \overset{*}{\underset{G}{\Rightarrow}} w
ight\}$

Алгоритм рекурсивного спуска

```
void A() {
  // Select A-production A \rightarrow X_1 X_2 \dots X_k
  for (i = 1; i \le k; ++i) {
     if (X_i - non terminal)
       X_i();
    else if (X_i \text{ equal to current token a})
       goto next input token;
     else
       report error;
```

Дерево вывода, сопоставления

- ullet $[r]X o \gamma$ продукция r отображает нетерминал X на строку γ

$$\frac{\overline{\epsilon : \epsilon} P_1}{\omega_1 : \gamma_1 \qquad \omega_2 : \gamma_2} P_2$$

$$\frac{\omega_1 : \gamma_1 \qquad \omega_2 : \gamma_2}{\omega_1 \omega_2 : \gamma_1 \gamma_2} P_2$$

$$\frac{\overline{a : a} P_3}{a : \overline{a} P_3}$$

$$[r]X \to \gamma$$

$$\frac{\omega : \gamma}{\omega : X} P_4(r)$$

Пример дерева вывода

Рекурсивный спуск

$$\frac{a\omega : a\gamma}{\omega : \gamma_2} R_1$$

$$\frac{a\omega : a\gamma}{\omega : \gamma_2} R_2$$

$$[r]X \to \beta$$

$$\frac{\omega : \beta\gamma}{\omega : X\gamma} R_3(r)$$

Пример рекурсивного спуска

```
id; id;
                id; : E;
                                   [ident]
         return id; return E;
         return id : S
                                   [return]
        ; return id ; : ; S
   num; return id; : num; S
                                   [number]
   num; return id; : E; S
  = num; return id; := E; S
id = num; return id; : id = E; S
id = num; return id; : S
                                   [assign]
```

Предиктивный анализатор

- Попытаемся построить синтаксический анализатор без откатов.
- Для каждого входного символа a и продукций $A \to \alpha_1 \dots \alpha_n$ мы должны однозначно указать какая из них порождает строку начинающуюся с a.
- Управляющие конструкции языков программирования как правило позволяют это сделать:

```
stmt 	o if expr then stmt else stmt
| while expr do stmt
| begin stmt_list end
```

Основные понятия LL(1)

- ullet first(eta,a) терминал a может первым в слове, выведенном из eta
- $null(\beta)$ из β можно вывести пустую строку

$$\frac{\text{first}(X, a)}{\text{first}(X, a)} F_{1} \qquad \frac{\text{first}(X, a)}{\text{first}(X\beta, a)} F_{2} \qquad \frac{\text{null}(X) \qquad \text{first}(\beta, a)}{\text{first}(X\beta, a)} F_{3}$$

$$\frac{[r]X \to \gamma}{\text{first}(\gamma, a)} F_{4}(r)$$

$$\frac{-null(\epsilon)}{null(\epsilon)} N_1 \qquad \frac{null(X) \quad null(\beta)}{null(X,\beta)} N_2 \qquad \frac{null(\gamma)}{null(X)} N_3(r)$$

- Можно представить план предиктивного синтаксического анализатора в виде диаграммы переходов.
- Для каждого нетерминала отдельная диаграмма переходов.
- Дуги двух типов:
 - Терминалы поглощение входного токена
 - Нетерминалы вызов процедуры нетерминала
- Построение:
 - Для каждого нетерминала строим начальное и конечное состояние
 - ② Для каждой продукции нетерминала $A \to A_1 \dots A_n$ строим путь из начального состояния в конечное через дуги $A_1 \dots A_n$

$$E: 0 \xrightarrow{T} 1 \xrightarrow{E'} 2$$

$$E': 3 \xrightarrow{+} 4 \xrightarrow{T} 5 \xrightarrow{E'} 6$$

$$T: (7) \xrightarrow{F} (8) \xrightarrow{T'} (9)$$

$$T': \begin{array}{c} 10 & * \\ \hline & 11 \\ \hline & \varepsilon \end{array} \begin{array}{c} T' \\ \hline & 13 \\ \hline \end{array}$$

$$F: \begin{array}{c} (14) & (15) & E \\ \hline & & (16) \\ \hline & & & \end{array}$$

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid id$$

$$E': 3 \xrightarrow{+} 4 \xrightarrow{T} 5 \xrightarrow{E'} 6$$

$$F: \begin{array}{c} (14) & (15) & E \\ \hline & & (16) \\ \hline & & & (17) \\ \hline \end{array}$$

$$\begin{split} E &\rightarrow TE' \\ E' &\rightarrow +TE' \mid \varepsilon \\ T &\rightarrow FT' \\ T' &\rightarrow *FT' \mid \varepsilon \\ F &\rightarrow (E) \mid \mathbf{id} \end{split}$$

$$E': 3 \xrightarrow{+} 4 \xrightarrow{T} 5 \xrightarrow{E'} 6$$

$$F: \begin{array}{c} (14) & (15) & E \\ \hline & & (16) \\ \hline & & & (17) \\ \hline \end{array}$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow (E) \mid id$$

$$E': 3 \xrightarrow{+} 4 \xrightarrow{T} 5 \xrightarrow{E'} 6$$

$$F: \begin{array}{c} (14) & (15) & E \\ \hline & & (16) \\ \hline & & & (17) \\ \hline \end{array}$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow (E) \mid id$$

$$E': 3 \xrightarrow{+} 4 \xrightarrow{T} 5 \xrightarrow{E'} 6$$

$$F: \begin{array}{c} (14) & (15) & E \\ \hline & & (16) \\ \hline & & & (17) \\ \hline \end{array}$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow (E) \mid id$$

$$E': 3 \xrightarrow{+} 4 \xrightarrow{T} 5 \xrightarrow{E'} 6$$

$$T': \underbrace{10} \xrightarrow{*} \underbrace{11} \xrightarrow{F} \underbrace{12} \xrightarrow{T'} \underbrace{13}$$

$$F: \begin{array}{c} (14) & (15) & E \\ \hline & & (16) \\ \hline & & & (17) \\ \hline \end{array}$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \varepsilon$$

$$F \rightarrow (E) \mid id$$

$$E': 3 \xrightarrow{+} 4 \xrightarrow{T} 5 \xrightarrow{E'} 6$$

$$T': \begin{array}{c} 10 & * \\ \hline & & \\ & \varepsilon \end{array} \begin{array}{c} T' \\ \hline & 13 \\ \hline \end{array}$$

$$F: \begin{array}{c} (14) & (15) & E \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$$

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \varepsilon$
 $F \rightarrow (E) \mid id$

Нерекурсивный предиктивный анализ

- Неявное использование стека (в рекурсивном случае) можно заменить на явное.
- Предсказание следующей продукции по текущему нетерминалу и входному символу реализуем в виде поиска в таблице разбора

Алгоритм

```
Установить указатель на ip на первый символ w$
repeat
   Обозначим Х - символ на вершине стека
   а - символ, на который указывает ір
   if X \in \{T,\$\} then
      if X = a then
          Снять со стека Х и переместить ір
      else
          Ошибка
      end if
   else
      if M[X, a] = X \rightarrow Y_1 \dots Y_k then
          Снять X со стека
          Поместить в стек Y_k \dots Y_1
      else
          Ошибка
      end if
   end if
until X = $
```

Пример таблицы

Нетерминал	Входной символ					
	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		E' o + TE'			E' oarepsilon	E' oarepsilon
T	T o FT'			T o FT'		
T'		T' oarepsilon	T' o *FT'		T' oarepsilon	T' oarepsilon
F	$ extcolor{F} ightarrow extcolor{id}$			$F \rightarrow (E)$		

Множества FIRST и FOLLOW

- FIRST Если α произвольная строка *символов* грамматики, то определим $FIRST(\alpha)$ как множество терминалов, с которых начинаются строки, выводимые из α
 - Если $\alpha \stackrel{*}{\to} \varepsilon$, то $\varepsilon \in FIRST(\alpha)$
- FOLLOW Определим множество FOLLOW(A) для нетерминала A, как множество терминалов a, которые могут располагаться непосредственно справа от A в некоторой сентенциальной форме¹.
 - $FOLLOW(A) = \{ a \in T \mid \exists \alpha, \beta : \exists S \stackrel{*}{\rightarrow} \alpha A a \beta \}$
 - Если A может оказаться крайним справа символом некоторой сентенциальной формы, то $\$ \in FOLLOW(A)$

 $^{^{1}}$ Сентенциальная форма — последовательность символов (терминалов и нетерминалов), выводимых из начального символа 1 2 2 3 3 3 3 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 5 4 5 4 5 5 4 5 5 5 5

Построение FIRST

- Если X терминал, то FIRST(X) = X.
- ullet Если имеется продукция X o arepsilon, добавим arepsilon к $\mathit{FIRST}(X)$.
- Если X нетерминал и имеется продукция $X \to Y_1 \dots Y_k$, то поместим a в FIRST(X), если для некоторого i $a \in FIRST(Y_i)$ и $\varepsilon \in \{FIRST(Y_1) \cup \dots \cup FIRST(Y_{i-1})\}$, т.е. $Y_1 \dots Y_{i-1} \stackrel{*}{\to} \varepsilon$.
- Если $\varepsilon \in \{Y_1 \cap \cdots \cap Y_k\}$, то добавляем ε в FIRST(X).

Построение FOLLOW

- Поместим \$ в FOLLOW(S), где S стартовый символ, а \$ маркер конца строки.
- Если имеется продукция $A \to \alpha B \beta$, то все элементы $FIRST(\beta)$, кроме ε , помещаются в множество FOLLOW(B).
- Если имеется продукция $A \to \alpha B$ или $A \to \alpha B \beta$, где $FIRST(\beta)$ содержит ε (т.е. $\beta \stackrel{*}{\to} \varepsilon$), то все элементы из множества FOLLOW(A), помещаются в множество FOLLOW(B).

Построение таблицы переходов

- Строим FIRST и FOLLOW
- ullet Для каждой продукции грамматики A olpha:
 - ▶ Для каждого терминала a из $FIRST(\alpha)$ добавляем $A \to \alpha$ в ячейку M[A,a].
 - ▶ Если $\varepsilon \in FIRST(\alpha)$, то для каждого терминала b из FOLLOW(A) добавим $A \to \alpha$ в ячейку M[A,b].
 - ▶ Если $\varepsilon \in FIRST(\alpha)$, а $\$ \in FOLLOW(A)$, добавим $A \to \alpha$ в ячейку $M[A,\].$
- Пустые ячейки делаем указывающими на ошибку.

LL(1) грамматики

- Построенная таблица может иметь несколько записей в одной ячейке.
 - Левая рекурсия
 - Неоднозначность
- Грамматика, таблица которой не имеет множественных записей называется LL(1)
 - L слева-направо
 - ▶ L левое порождение
 - 1 один символ для предсказания