NASA TECHNICAL NOTE

12 JUL 1965

A STANCE OF THE STANCE OF THE

NASA IN D-2771 ...

45-0680

LOAN COPY: RET AFWL TECHNICAL KIRTLAND AFB,

CH LIBRARY KAFB, NM

COMPUTATION OF SUB-SATELLITE POINTS FROM ORBITAL ELEMENTS

by Richard H. Christ John F. Kennedy Space Center Cocoa Beach, Fla.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. JUNE 1965

NASA TN D-2771

TECH LIBRARY KAFB, NM

COMPUTATION OF SUB-SATELLITE POINTS

FROM ORBITAL ELEMENTS

By Richard H. Christ

John F. Kennedy Space Center Cocoa Beach, Fla.

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
SYMBOLS	1
COMPUTER PROGRAM EQUATIONS	2
Subprograms ELIN and EVERET	2
Subprogram AMIN	3
Subprogram EKEP	3
Subprogram PV0E	4
Subprogram GEODT	4
MATHEMATICAL FORMULATION	5
Interpolation for a(t), e(t), i(t), Ω (t), and ω (t)	5
Computation of M(t)	6
Solution of Kepler's Equation	8
Position Vector at t	9
Sub-satellite Points	10
COMPUTER PROGRAM OPERATING INSTRUCTIONS	11
Program Description	11
Program Input (From Cards)	11
Program Output	13

TABLE OF CONTENTS (Cont'd)

Sample Test Case	13
COMPUTER PROGRAM FLOW CHART	18
COMPUTER PROGRAM LISTING	23
REFERENCES	34

COMPUTATION OF SUB-SATELLITE POINTS FROM ORBITAL ELEMENTS

By Richard H. Christ John F. Kennedy Space Center

SUMMARY

This technical note presents the computer program used by the Computation Branch at the John F. Kennedy Space Center (KSC), NASA for computing predicted sub-satellite points of radiating satellites for launch interference purposes.

INTRODUCTION

Frequently, it is necessary to predict launch interference from radiating satellites. The predicted launch interference information is desired in the form of sub-satellite points and look angles. This technical note describes the method used by the Computation Branch of KSC for computing the sub-satellite points from Prediction Space Elements provided by the Goddard Space Flight Center (GSFC), NASA.

The orbital elements at the time of interest, t, are interpolated from the given ephemeris; the orbital elements at t are transformed to a position vector at t; and the sub-satel-lite points at t are computed. The output of the computer program may be then used for standard look angle computations.

Thanks are due to Mr. T. P. Gorman, Chief of the Advanced Orbital Programming Branch, GSFC for providing information on the prediction elements; and to Mr. W. N. Weston of GSFC who provided check data.

SYMBOLS

a	semimajor axis of orbit
e	eccentricity
i	inclination
Ω	right ascension of ascending node
w	argument of perigee
M	mean anomaly
E	eccentric anomaly
Р	period (anomalistic)
P P	period derivative
r	radius vector
x,y,z	geocentric, inertial, right-handed, orthogonal position components; z is co- incident with the polar axis and x is directed toward the vernal equinox
<u>i,j</u> ,k	unit vectors lying along the x,y,z coordinate axes, respectively
ê	eccentricity of reference spheroid

 Φ' geocentric latitude Φ λ geodetic latitude longitude h height above spheroid rotational rate of earth general term referring to orbital elements EL time of interest t t, ,t, ,t times of epochs 1, 2, and 3 respectively R.A. right ascension S.T. sidereal time reference time ^tR U.T. universal time C.U.L. canonical unit of length = 6378.165 km J.D.S. Julian Date for Space J.D.S. \triangleq J.D. - 2,436,099.5 days All times are expressed in terms of J.D.S. unless specified otherwise

COMPUTER PROGRAM EQUATIONS

The following are programmed digital computer equations:

Subprograms ELIN and EVERET

Interpolation for a(t), e(t), i(t), Ω (t), and ω (t) -

$$\begin{split} & \mathsf{EL_1} \, (\mathsf{t}) = \mathsf{a}(\mathsf{t}), \, \mathsf{EL_{11}} \ \, = \mathsf{a_1} \, , \, \mathsf{EL_{12}} \ \, = \mathsf{a_2} \, , \, \mathsf{EL_{13}} \ \, = \mathsf{a_3} \\ & \mathsf{EL_2} \, (\mathsf{t}) = \mathsf{e}(\mathsf{t}), \, \mathsf{EL_{21}} \ \, = \mathsf{e_1} \, , \, \mathsf{EL_{22}} \ \, = \mathsf{e_2} \, , \, \mathsf{EL_{23}} \ \, = \mathsf{e_3} \\ & \mathsf{EL_3} \, (\mathsf{t}) = \mathsf{i}(\mathsf{t}), \, \mathsf{EL_{31}} \ \, = \mathsf{i_1} \ \, \mathsf{EL_{32}} \ \, = \mathsf{i_2} \, , \, \mathsf{EL_{33}} \ \, = \mathsf{i_3} \\ & \mathsf{EL_4} \, (\mathsf{t}) = \Omega(\mathsf{t}), \, \mathsf{EL_{41}} \ \, = \Omega_1 \, , \, \mathsf{EL_{42}} \ \, = \Omega_2 \, , \, \mathsf{EL_{43}} \ \, = \Omega_3 \\ & \mathsf{EL_5} \, (\mathsf{t}) = \omega(\mathsf{t}), \, \mathsf{EL_{51}} \ \, = \omega_1 \, , \, \mathsf{EL_{52}} \ \, = \omega_2 \, , \, \mathsf{EL_{53}} \ \, = \omega_3 \end{split}$$

$$S = \frac{t - t_{a}}{W}$$

 $W = t_{a} - t_{a}$

$$R = 1 - S$$

$$\Delta_s^0 = EL^{is} - 3EL^{is} + EL^{ii}$$

$$EL_{i}(t) = R EL_{iz} + \frac{R (R^{z} - 1)}{3!} \Delta_{0}^{z} + S EL_{i1}$$

$$+ \frac{S (S^{z} - 1)}{3!} \Delta_{0}^{z}$$

where $i = 1, 2, \cdots, 6$.

Subprogram AMIN

Computation of M(t) -

$$C_1 = 518,400$$

$$C_{z} = 373.248$$

For the interval between t_i and t_{i+1}

$$M(t) = M_{i} + \frac{C_{1}}{P_{i}} (t - t_{i}) - C_{2} \frac{\dot{P}_{i}}{P_{i}^{2}} (t - t_{i})^{2}$$

Subprogram EKEP

Solution of Kepler's equation -

$$Z = \frac{e \text{ (t) sin M (t)}}{\sqrt{e^2 \text{ (t)} + 1 - 2e \text{ (t) cos M (t)}}}$$

$$E(t)_1 = M(t) + Z - \frac{1}{6}Z^4 \cot M(t)$$

$$E(t)_{i+1} = E(t)_{i} + \frac{M(t) + e(t) \sin E(t)_{i} - E(t)_{i}}{1 - e(t) \cos E(t)_{i}}$$

Continue iterating until $\left| E(t)_{i+1} - E(t)_i \right| < 0.2 \times 10^{-7} \text{ rad.}$

Subprogram PV0E

Components of position vector -

$$\begin{aligned} x\ (t) &= a\ (t)\ \Big\{ [\cos E\ (t)\ - e\ (t)]\ [\cos \omega\ (t)\ \cos \Omega\ (t) \\ &- \sin \omega\ (t)\ \sin \Omega\ (t)\ \cos i\ (t)\ \Big] \\ &+ \left[1\ - e^{2}\ (t)\right]^{\frac{1}{2}}\ \sin E\ (t)\ [\ - \sin \omega\ (t)\ \cos \Omega\ (t) \\ &- \cos \omega\ (t)\ \sin \Omega\ (t)\ \cos i\ (t)\ \Big] \Big\} \end{aligned}$$

$$y (t) = a (t) \left\{ \left[\cos E (t) - e (t) \right] \left[\cos \omega (t) \sin \Omega (t) \right. \right. \\ \left. + \sin \omega (t) \cos \Omega (t) \cos i (t) \right] \right. \\ \left. + \left[1 - e^{a} (t) \right]^{\frac{1}{2}} \sin E (t) \left[- \sin \omega (t) \sin \Omega (t) \right. \\ \left. + \cos \omega (t) \cos \Omega (t) \cos i (t) \right] \right\}$$

$$z (t) = a (t) \left\{ [\cos E (t) - e (t)] [\sin \omega (t) \sin i (t)] \right. \\ + \left. [1 - e^{a} (t)]^{\frac{1}{2}} \sin E (t) [\cos \omega (t) \sin i (t)] \right\}$$

Subprogram GEODT

Sub-satellite points -

R. A. (t) =
$$\tan^{-1} \frac{y(t)}{x(t)}$$

$$\Delta t_R = t - t_R$$

$$\lambda_0 = S. T. \text{ at } O^h U. T.$$

$$\lambda(t) = R. A. (t) - \lambda_0 - \hat{\omega} \Delta t_R$$

$$r(t) = \sqrt{x^2(t) + y^2(t) + z^2(t)}$$

MATHEMATICAL FORMULATION

Interpolation for a (t), e (t), i (t), Ω (t), and ω (t)

Consider the following difference table -

T	Χ	ΔΧ	∇ _s X	$\nabla_{3} \mathbf{X}$	Δ ⁴ X
T ₋₁ T ₀ T ₁	X ₋₁ X ₀ X ₁ X ₂	$ \begin{array}{c} \Delta_{-\frac{1}{2}} \\ \Delta_{+\frac{1}{2}} \\ \Delta_{+\frac{1}{2}} \end{array} $	Δ_s^{1} Δ_s^{0}	$\Delta^{3}_{-\frac{1}{2}}$ $\Delta^{3}_{+\frac{1}{2}}$ $\Delta^{3}_{+\frac{1}{2}}$	Δ^{4}_{-1} Δ^{4}_{0} Δ^{4}_{1} Δ^{4}_{2}

where

$$\Delta_{-\frac{1}{2}} \stackrel{\triangle}{=} X_0 - X_{-1}$$

$$\Delta^2_0 \stackrel{\triangle}{=} \Delta_{+\frac{1}{2}} - \Delta_{-\frac{1}{2}}$$

Everett's Second Central Difference formula is given as

$$X_{i} = RX_{0} + \frac{R(R^{2} - 1^{2})}{3!} \Delta_{0}^{2} + \frac{R(R^{2} - 1^{2})(R^{2} - 2^{2})}{5!} \Delta_{0}^{4}$$

$$+ SX_{1} + \frac{S(S^{2} - 1^{2})}{3!} \Delta_{1}^{2} + \frac{S(S^{2} - 1^{2})(S^{2} - 2^{2})}{5!} \Delta_{1}^{4}$$

$$S \stackrel{\triangle}{=} \frac{T_{i} - T_{0}}{W}, R = 1 - S,$$
(1)

where

and W is the time interval between entries in the table.

EL (t) = R EL₂ +
$$\frac{R(R^2 - 1)}{3!}$$
 $\Delta_0^2 + S EL_1 + \frac{S(S^2 - 1)}{3!}$ Δ_0^2 (2)

$$\Delta_0^2 = \Delta_{+\frac{1}{2}} - \Delta_{-\frac{1}{2}}$$

$$= X_1 - 2X_0 + X_{-1}$$

 $\Delta^2_0 = EL_3 - 2EL_2 + EL_1$

where

This scheme was compared with a second degree least squares fit and agreement to 0.5×10^{-4} degree was reached for $\Omega(t)$.

Computation of M (t)

The mean anomaly at t, M (t), assuming a constant period, P, is determined from Kepler's equation

$$M(t) = M_i + \frac{2\pi}{P}(t - t_i)$$
 (3)

Since \dot{P} is available as input, equation (3) may be expanded by Taylor's series

$$f(x) = f(a) + f'(a) (x - a) + \frac{1}{2!} f''(a) (x - a)^{2} + \cdots + \frac{1}{n!} f^{(n)}(a) (x - a)^{n}$$
(4)

$$f(x) = M(t)$$

$$f(a) = M_{i} + \frac{2\pi}{P_{i}}(t - t_{i})$$

$$= M_{i} + \frac{C_{1}}{P_{i}}(t - t_{i})$$
(5)

If $(t - t_i)$ is in days, and P_i in minutes;

$$C_1 = 57.2957795 \times 1440 \times 2 \pi = 518,400$$

$$f'(a) = \frac{2\pi}{P_i} - \frac{2\pi \dot{P}}{P_i \dot{z}} i (t - t_i)$$

$$f'(a) (x - a) = \frac{2\pi}{P_i} (t - t_i) - \frac{2\pi \dot{P}_i}{P_i^{2}} (t - t_i)^{2}$$

$$= \frac{C_1}{P_i} (t - t_i) - \frac{2C_2}{P_i \dot{z}} \dot{P}_i (t - t_i)^{2}$$
(6)

If $(t - t_i)$ is in days, P_i in minutes, \dot{P}_i in microdays per day;

$$C_{g} = \pi \times 57.2957795 \times (1440)^{9} \times 10^{-6}$$

= 373.248

Substitution of equations (5) and (6) into equation (4) yields the desired expression

$$M(t) = M_{i} + \frac{C_{1}}{P_{i}}(t - t_{i}) - C_{2} \frac{\dot{P}_{i}}{P_{i}^{2}}(t - t_{i})^{2}$$
 (7)

Equation (7) is the expression given in reference 1.

Solution of Kepler's Equation

The number of methods devised for the solution of Kepler's equation exceeds one hundred. The method presented below is an iterative scheme well suited for a high-speed digital computer.

$$M(t) = E(t) - e(t) \sin E(t)$$
 (8)

It is desired to solve equation (8) for E(t).

The Newton-Raphson formula is given as

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 (9)

Application of equation (9) to equation (8) gives

$$E(t)_{i+1} = E(t)_{i} + \frac{M(t) + e(t) \sin E(t)_{i} - E(t)_{i}}{1 - e(t) \cos E(t)_{i}}$$
(10)

Encke's first approximation is very good, seen as

$$E(t)_1 = M(t) Z - \frac{1}{6} Z^4 \cot M(t)$$

where

$$Z = \frac{e (t) \sin M (t)}{\sqrt{e^2 (t) + 1 - 2 e (t) \cos M (t)}}$$

Continue iterating equation (10) until

$$\left| E(t) \right|_{i+1} - E(t) \left| < 0.2 \times 10^{-7} \right|$$
 rad.

Position Vector at t

The following equations (11 - 15) are taken from reference 1.

$$\Omega_{\Omega}(t) = \cos \Omega(t) \underline{i} + \sin \Omega(t) \underline{j}$$
 (11)

$$\underline{\alpha} (t) = \cos i (t) \underline{k} + [\sin i (t)] [\underline{\Omega} (t) \times \underline{k}]$$
 (12)

$$\underline{p}(t) = \cos \omega(t) \underline{\Omega}(t) + [\sin \omega(t)]\underline{\alpha}(t) \times \underline{\Omega}(t)]$$
 (13)

$$q(t) = \alpha(t) \times p(t)$$
 (14)

$$\frac{r}{(t)} = a (t) \left\{ [\cos E (t) - e (t)] \underline{p} (t) + \sqrt{1 - e^{2} (t) \sin E (t) \underline{q} (t)} \right\}$$
 (15)

Performing the indicated operations in equations (11-14) and substituting in equation (15) gives the desired expression for \underline{r} (t) as

Sub-satellite Points

The method used to compute geocentric latitude, Φ' , and longitude, λ , is similar to that described in reference 2, as

$$\Phi'(t) = \tan^{-1} \frac{z(t)}{\sqrt{x^2(t) + y^2(t)}}$$
 (17)

R. A. (t) =
$$\tan^{-1} \frac{y(t)}{x(t)}$$
 (18)

$$\lambda_0 = S. T. at 0^h U. T.$$
 (19)

then

$$\lambda$$
 (t) = R. A. (t) - λ_0 - Δt_R

where

$$\Delta t_{R} = t - t_{R} \tag{20}$$

For the determination of geodetic latitude, Φ , the first two terms of the non-iterative scheme presented in reference 3 are used as

$$\Phi(t) = \Phi'(t) + a_{a}(t) \sin 2\Phi'(t) + a_{4}(t) \sin 4\Phi'(t)$$
 (21)

where

$$a_{2}(t) = \frac{1}{1024r(t)} \left[512 \, \hat{e}^{2} + 128 \, \hat{e}^{4} + 60 \, \hat{e}^{6} + 35 \, \hat{e}^{8} \right]$$

$$+ \frac{1}{32r^{2}(t)} \left[\hat{e}^{6} + \hat{e}^{8} \right] - \frac{3}{256r^{3}(t)} \left[4 \, \hat{e}^{6} + 3 \, \hat{e}^{8} \right],$$

$$a_{4}(t) = \frac{-1}{1024r(t)} \left[64 \, \hat{e}^{4} + 48 \, \hat{e}^{6} + 35 \, \hat{e}^{8} \right]$$

$$+ \frac{1}{16r^{2}(t)} \left[4 \, \hat{e}^{4} + 2 \, \hat{e}^{6} + \hat{e}^{8} \right]$$

$$+ \frac{15 \, \hat{e}^{8}}{256r^{3}(t)} - \frac{\hat{e}^{8}}{16r^{4}(t)},$$

and

$$r(t) = \sqrt{x^2(t) + y^2(t) + z^2(t)}$$
, in C. U. L.

Finally for height above spheroid, h

h (t) = r (t)
$$\frac{\sin \Phi'(t)}{\sin \Phi(t)} - \frac{1 - \hat{e}^2}{[1 - \hat{e}^2 \sin^2 \Phi(t)]^{\frac{1}{2}}}$$
 (22)

COMPUTER PROGRAM OPERATING INSTRUCTIONS

Program Description

Program Identification - SPOE 1 Computer - GE 235 Program Library - 111141 Type of Coding - FORTRAN II

Program Input (From Cards)

Card No.	Columns	Information	<u>Mode</u>	Remarks
1	34 - 45	Date	4A3	Information on cards;
2	27 - 50	Satellite ID	8 A 3	l and 2 for identifi- cation only
3	1 - 3 4 - 6 7 - 9 10 - 12 13 - 15 16 - 22 23 - 25 26 - 28 29 - 35 36 - 46	t _R (yr.) t _R (mo.) t _R (dy.) t _R (hr.) t _R (min.) t _R (sec.) S. T. (hr.) S. T. (min.) S. T. (sec.) t _R	13 13 13 13 13 F7.3 13 F7.3 F11.5	Reference Time S. T. at O ^h U. T. (Reference U. T.) Reference time in J. D. S.
	47 - 61	Δt	E15.9	Time increment desired in days

Program Input (From Cards) (Cont'd)

Card No.	Columns	Information	Mode	Remarks
4	1 - 15	ŵ	E15.9	Rotational rate of earth in radians per second
	16 - 30	ę́²	E15.9	(Eccentricity) ² of spheroid
5	1 - 11 12 - 22 23 - 33	t ₁ t ₂ t ₃	F11.5 F11.5 F11.5	Epoch times in J. D. S.
	34 - 44 45 - 55 56 - 66	P ₁ P ₂ P ₃	F11.5 F11.5 F11.5	Period in minutes
6	1 - 11 12 - 22 23 - 33	P. P. P. P. 3	F11.5 F11.5 F11.5	Period derivative in microdays per day
7	1 - 11 12 - 22 23 - 33	a ₁ a ₂ a ₃	F11.8 F11.8 F11.8	Semimajor axis of orbit in earth radii
	34 - 44 45 - 55 56 - 66	e ₁ e ₂ e ₃	F11.8 F11.8 F11.8	Eccentricity of orbit
8	1 - 11 12 - 22 23 - 33	i ₁ i ₂ i ₃	F11.6 F11.6 F11.6	Inclination in degrees
	34 - 44 45 - 55 56 - 66	$egin{array}{l} \Omega_{f 1} \ \Omega_{f 2} \ \Omega_{f 3} \end{array}$	F11.6 F11.6 F11.6	Right ascension of ascending node in degrees
9	1 - 11 12 - 22 23 - 33	ພ _າ ພ _ອ ພ _ອ	F11.6 F11.6 F11.6	Argument of perigee in degrees

Program Input (From Cards) (Cont'd)

Card No.	Columns	Information	Mode	Remarks
	34 - 44 45 - 55 56 - 66	M ₁ M ₂ M ₃	F11.6 F11.6 F11.6	Mean anomaly in degrees
10	1 - 3	CNTRL	F3.0	Output control card -1. print only 0. write tape only +1. print and write tape

Program Output

Option 1: Print only.

Option 2: Write tape only; output tape on plug 2, unit 1.
Option 3: Print and write tape; output tape on plug 2, unit 1.

Card 10 specifies output option. Output record is t, Φ (t), λ (t), and h (t). Input data are printed on all options.

Sample Test Case

Input. - The following listing is a computer printout of a sample input giving the Prediction Space Elements supplied by GSFC for program input:

A TANK MANAGEMENT OF THE PARTY			EC 28 1964		
			JEC 20 1904		
		SATELLIT	re <u>r</u>	ELAY 2	
64 12 01 00	00 00.000	04 39 30.64	1 2631.0000	00 •6000000	00E-02
729211590	E-04 .669342	2162E - 02			
2631.00000	2639.00000	2647.00000	0194.71578	0194•71538	0194.71497
-0000.03520-	-0000.03537-	-0000.035 <u>59</u>			· · · · · · · · · · · · · · · · · · ·
_1.74488160	1.74487910	1.74487650	0.23957545	0.23950386	0.23943548
046.326254	046.327234	046.328169	236.668682	227.838464	219.008515
172.065590	180.909426	189•755772	318.158721	016.916503	075.718748
+1•					

Output. - The following listing is a sample computer printout of sub-satellite points.

JOHN F. KENNEDY SPACE CENTER COMPUTATION BRANCH SUB-SATELLITE POINTS DEC 28 1964 SATELLITE RELAY 2

REFERENCE TIME

YR MO DY HR MM SS.SSS

CAL DAT UT2W 64 12 1 0 0 0.

S.T. AT 0 HR U.T.

HR MM SS.SSS
4 39 30.641

J.D.S. UT2W 2631.00000

PREDICTION SPACE ELEMENTS FROM GODDARD

EPOCH		T-ONE	T-TWO	T-THREE
J.D.S.	UT2W	2631.00000	2639.00000	2647.00000
PERIOD	MIN	194.71578	194.71538	194,71497
PERIOD DER	MD/D	-0.03520	-0.03537	-0.03559
ECCENTRICITY	,	0.23957545	0.23950386	0.23943548
INCLINATION	DEG	46.326254	46.327234	46.328169
RA ASC NODE	DEG	236.668682	227.838464	219.008515
ARG PERIGEE	DEG	172.065590	180.909426	189.755772
MEAN ANOMALY	DEG	318,158721	16.916503	75,718748
SEMIMAJ AXIS	ER	1.74488160	1.74487910	1_74487650

	HEIGHT (KM)	LON[DEG]	LAT[DEG]	TIME(J.D.S.)
_	3148.1	-78.84	43.78	2631.00000
	2532.7	-54.73	33.71	2631.00600
_ _	2155.0	-35.00	17.52	2631.01199
_	2110.4	-18.18	-1.62	2631.01799
	2412.3	-1.63	-20.03	2631.02399
	2981.5	16.99	-34.64	2631.02998
	3699.8	38.58	-43.59	2631.03598
	4462.9	61.06	-46.44	2631,04198
	5198.0	80.56	-44.44	2631.04797
	5859.1	95.45	-39.56	2631.0539/
	6418.9	106.40	-33.30	2631.0599/
	6861.8	114.65	-26.45	2631.06596
	7178.5	121.20	-19,36	2631.07196
	7364.3	126.71	-12.18	2631.07796
	7416.7	131.70	-4.92	2631.08395
	7335.2	136.54	2.43	2631.08995
	7120.8	141.62	9.91	2631.09595
	6776.5	147.36	17.52	2631.10194
	6307.9	154.36	25.24	2631.10794
_	5725.4	163.53	32.90	2631.11394
	5047.0	176.25	39.97	2631.11993
	4303.0	-165.69	45.18	2631.12593
	3544.0	-141.85	46.08	2631.13193
	2848.7	-116.26	40.08	2631.13792
	2325.9	-94.15	26.91	2631.14392
	2090.4	-76.07	8.92	2631.14992

TIME(J.D.S.	J LATIDEG)	LUN[DEG]	HEIGHT[KM]	
2631.1559	1 -10.33	-59.69	2206.7	
2631.1619	-27.33	-42.43	2642.9	
2631.1679	1 -39.51	-22.39	3294.0	
2631.1739	0 -45.62	0.10	4043.6	
2631.1799	0 -46.00	21.65	4801.2	
2631.1859	-42.43	39.07	5507.3	
2631.1918	9 -36.77	51.99	6125.2	
2631.1978	9 -30.16	61.56	6633.8	
2631.2038	-23.17	68.93	7020.6	
2631.2098	5 -16.03	74.93	7278.7	
2631.2158	-8.80	80.15	7404.5	
2631.2218	-1.51	85.92	7396.5	
2631.2278	7 5.89	89.92	7254•8	
2631.2338	13.43	95.24	6981.3	
2631.23987	21.10	101.48	6580.0	
2631.24586	28.82	109.33	6058.4	
2631.25186	36,30	119.92	5429.8	
2631.25788	42.72	134.87	4717 • 0	-
2631.26385	46.31	155.73	3958.5	
2631.26985	44.28	-178.90	3216.6	
2631.27585	34,85	-154.51	2584.3	
2631.28185	19.09	-134.45	2178.3	
2631.28784	0.06	-117.49	2098.9	
2631.29384	-18.56	-101.00	2369.2	
2631.29984	-33.61	-82.60	2917.3	
2631.30583	-43.09	-61.17	3626 • 1	

TIME[J.D.S.]	LAT[DEG]	LON(DEG)	HEIGHT [KM]	
2631.31183	-46.41	-38.56	4388.6	
2631.31783	-44.72	-18.66	5128.7	
2631.32382	-39.98	-3.39	5798.4	
2631.32982	-33.78	7.84	6369.0	
2631.33582	-26.94	16.27	6823.8	
2631.34181	-19.86	22.92	7153.2	
2631.34781	-12.67	28.5 ⁰	7351.9	
2631.35381	-5.41	33.51	7417.4	
2631.35980	1.93	38.34	7349.1	
2631.36580	9.38	43.39	7147.6	
2631.37180	16.98	49.16	6815.8	
2631.37779	24.68	55.93	6359.0	
2631.38379	32.34	64.87	5787.1	
2631.38979	39,47	77.22	5116.9	
2631.39578	44.88	94.76	4377.5	
2631.40178	46.24	118.15	3616.9	
2631.40778	40.89	143.77	2911.1	
2631.4137/	28,27	166.24	2366.0	
2631.41977	10.58	-175.43	2098.3	
2631.42577	-8.71	-159.01	2180.0	
2631.43176	-26.04	-141.89	2588.8	
2631.43776	- 38.72	-122.07	3224.2	
2631.44376	-45.35	-99.63	3968.7	
2631.44975	-46.14	-77.80	4728.6	
2631.45575	-42.80	-59.97	5441.5	-
2631.46175	-37.23	-46.70	6069.3	

COMPUTER PROGRAM FLOW CHART

COMPUTER PROGRAM LISTING

*	FORTRAN
C	SPOE1- COMPUTATION OF SUB-SATELLITE POINTS FROM ORBITAL ELEMENTS
С	PROGRAMMED BY RICHARD H. CHRIST
C	UTILIZES - FUNCTION AMIN
c	FUNCTION EKEP
C	SUBROUTINE ELIN
С	FUNCTION EVERET
С	SUBROUTINE PVOE
<u>.</u> C	SUBROUTINE GEODT
	DIMENSION EL(6,3),AL(5,3),Al(4),A2(8)
C	READ INPUT DATA
	READ 123+A1
	READ 124,A2
	READ 100, IYR, IMO, IDY, IHR, IMM, SS, ISHR, ISMM, SSS, RT, DELTAT
	READ 101, VE, ES
	READ 102,T1,T2,T3,P1,P2,P3
	READ 102,D1,D2,D3
	READ 103,((EL(I,J),J=1,3),I=1,2)
	READ 104,((EL(I,J),J=1,3),I=3,6)
	READ 129,CNTRL
C	PRINT INPUT DATA
	PRINT 105
	PRINT 121
	PRINT 122
	PRINT 127
	PRINT 123,A1
	PRINT_124,A2
	PRINT 125

PRINT	106		
PRINT	107	_	
PRINT	108,IYR,IMO,IDY,IHR,IMM,SS	, ISHR, ISMM, SSS	-
PRINT	120•RT		
PRINT	109		
PRINT	110		
PRINT	111,71,72,73		
PRINT	112,P1,P2,P3		
PRINT	113,01,02,03		
PRINT	114,(EL(2,J),J=1,3)	<u>-</u> .	
PRINT	115,(EL(3,J),J=1,3)		
PRINT	116,(EL(4,J),J=1,3)		
PRINT	117,(EL(5,J),J=1,3)		
PRINT	118,(EL(6,J),J=1,3)		
PRINT	119,(EL(1,J),J=1,3)		-
C FORMAT	STATEMENTS TO READ AND PR	INT INPUT	
100 FORMAT	(313,2(213,F7.3),F11.5,E1	5.9)	
101 FORMAT	(2E15.9)		
102 FORMAT	(6F <u>1</u> 1•5)		
103 FORMAT	(6F11.8)		
104 FORMAT	(6F11•6)		9
105 FORMAT	(1H1)		· .
106 FORMAT	(58HREFERENCE TIME	S.	T. AT O HR U
<u> </u>		· · · · · · · · · · · · · · · · · · ·	· -
107 FORMAT	(16X.38H YR MO DY HR MM S.	S.SSS HR MM SS.SSS)	
108 FORMAT	(16H CAL DAT UT2W ,513,	F7.3,3X,2I3,F7.3)	
109 FORMAT	(///38HPREDICTION SPACE E	LEMENTS FROM GODDARD)	<u>.</u> .
110 FORMAT	(/72HEPOCH	T-ONE	T-TWO

	1	•	T-THREE)			
	111	FORMAT	(/17HJ.D.S.	UT2W,4X,3(F11.5,1	LOX))	
	112	FORMAT	(/17HPERIOD	MIN,4X,3(F11.5,1	LOX))	
	113	FORMAT	(/17HPERIOD DER	MD/D,4X,3(F11.5,1	lox))	
	114	FORMAT	(/17HECCENTRICITY	,7X,3(F11.8,1	LOX))	
	115	FORMAT	(/17HINCLINATION	DEG,5X,3(F11.6,1	lox))	
	116	FORMAT	(/17HRA ASC NODE	DEG,5X,3(F11.6,1	LOXII	
	117	FORMAT	(/17HARG PERIGEE	DEG,5X,3(F11.6,1	LOXII	
	118	FORMAT	(/17HMEAN ANOMALY	DEG,5X,3(F11.6,1	LOX))	
	119	FORMAT	(/17HSEMIMAJ AXIS	ER,7X,3(F11.8,1	LOX))	
	120	FORMAT	(/16H J.D.S. UT	2W ,F11.5)		-
	121	FORMAT	(24X,28HJOHN F. KI	ENNEDY SPACE CENTE	ER)	
	122	FORMAT	(29X,18HCOMPUTATIO	ON BRANCH)		
	123	FORMAT	(33X,4(A3))			
	124	FORMAT	(26X,8(A3))			
	125	FORMAT	(////)			. ,
	127	FORMAT	(28X,20HSUB-SATEL	LITE POINTS)		
	129	FORMAT	(F3•0)			
C		FORMAT	STATEMENTS FOR OU	TPUT		
	126	FORMAT	(56HTIME(J.D.S.)	LAT(DEG)	LON(DEG)	HEIGHT (KM
	1	1))				-
	128	FORMAT	(/(F12.5,2(7XF7.2),6X,F10.1))		
C		COMPUT	E NO. OF TIMES			
		POINTS	=(T3-T1)/DELTAT			
		IF(CNT	RL) 500,510,510			
	510	WRITE	TAPE 7, POINTS, T3	, T1, DELTAT	_	
	500	CONTIN	UE			
c		CONVER	T INPUT DATA AND I	NITIALIZE		

RAD=57.2957795
CUL=6378.165
SHR=ISHR
SMM=ISMM
ST=(SHR+((SMM+SSS/60.)/60.))*15./RAD
PRINT 105
PRINT 126
DO 200 I=1,5
DO 200 J=1,3
200 AL(I,J)=EL(I,J)
T=T1
LL=POINTS
L=0
DO 900 N=1,LL
C COMPUTE ORBITAL ELEMENTS AT T
CALL ELIN(T,T1,T2,T3,AL,SAT,SET,SIT,COT,SOT)
AMT=AMINF(T,T1,T2,T3,EL(6,1),EL(6,2),EL(6,3),P1,P2,P3,D1,D2,D3)
C TEST MEAN ANOMALY TO SEE IF ZERO
IF(AMT) 5,950,5
5 AMT=AMT/RAD
······································
C COMPUTE ECCENTRIC ANOMALY AT T
ET=EKEPF(AMT,SET)
SIT=SIT/RAD
COT=COT/RAD
SOT=SOT/RAD
C COMPUTE INERTIAL COORDINATES AT T
CALL PVOE(SIT, SAT, SET, SOT, COT, ET, X, Y, Z)
DELTR=(T-RT)*86400.

	С	COMPUTE LAT., LON. AND H
		CALL GEODT(X,Y,Z,ST,DELTR,VE,ES,ELON,RHO,GLAT1,GLAT2,H,RA,GST)
		ELON=ELON*RAD
		GLAT1=GLAT1*RAD
		GLAT2=GLAT2*RAD
		RA=RA*RAD
		GST=GST*RAD
		H=H*CUL
	С	PRINT AND/OR WRITE OUTPUT
		IF(CNTRL)420,405,410
	405	WRITE TAPE 7,T,GLAT2,ELON,H
		T=T+DELTAT
		GO TO 900
	410	WRITE TAPE 7,T,GLAT2,ELON,H
	420	PRINT 128,T,GLAT2,ELON,H
		T=T+DELTAT
		L=L+2
		IF (L-50) 900,900,300
•	300	PRINT 105
		PRINT 126
		L = 0
	900	CONTINUE
	950	STOP
	-	END
	*	FORTRAN
	С	ELIN-SUBROUTINE TO INTERPOLATE FOR ECCEN., INCL.,LON.

C UTILIZES EVERET FUNCTION SUBPROGRAM SUBROUTINE ELIN(T,T1,T2,T3,AL,SAT,SET,SIT,COT,SOT) DIMENSION AL(5,3),ELT(5) DO 5 I=1,5	
DIMENSION AL(5,3),ELT(5)	
DO 5 I=1•5	
5 ELT(I)=EVERET(T,T1,T2,T3,AL(I,1),AL(I,2),AL(I,3))	
SAT=ELT(1)	
SET=ELT'2)	
SIT=ELT(3)	
COT=ELT(4)	
SOT=ELT(5)	
RETURN	
END	
* FORTRAN	
C EVERET-FUNCTION SUBPROGRAM TO INTERPOLATE FOR 1 VALUE	
C GIVEN 3 USING EVERETTS 2ND CENTRAL DIFFERENCE	_
C FORMULA	
FUNCTION EVERET(T,T1,T2,T3,X1,X2,X3)	
W=T2-T1	
S=(T-T2)/W	
R=1S	
D=X3-2.*X2+X1	_
XI=R*X2+R*(R*R-1.)*D/6.+S*X3+S*(S*S-1.)*D/6.	
EVERET=XI	
RETURN	
END	

*		FORTRAN
C		AMIN - FUNCTION SUBPROGRAM FOR
C		MEAN ANOMALY INTERPOLATION
c		
		FUNCTION AMIN(T,T1,T2,T3,AM1,AM2,AM3,P1,P2,P3,PDOT1,PDOT2,PDOT3)
		C1=518400•
		C2=373•248
		IF (T-T2) 10,20,30
	10	GO TO 80
	20	AMT=AM2
		GO TO 90
	30	IF (T-T3) 40,50,60
	40	GO TO 81
	50	AMT = AM3
		GO TO 90
	60	AMT=0.
		GO TO 90
	90	DELT=T-T1
		AMI = AM1
		PI=P1
		PDOTI=PDOT1
		*GO TO 82
	81	DELT=T-T2
		AMI = AM2
-		PI=P2
		PDOT I = PDOT 2

8	2 AMT=AMI+C1/PI*DELT-C2*PDOTI/(PI*PI)*DELT*DELT
	MODPI=AMT/360.
	FLMOD=MODPI
	AMT=AMT-FLMOD*360.
90	O AMIN=AMT
C	AMIN IS ZERO WHEN T IS GREATER THAN T3
	RETURN
	END
*	FORTRAN
C	EKEP-FUNCTION SUBPROGRAM TO SOLVE KEPLERS EQ. FOR AN ELLIPSE
	FUNCTION EKEP (AM, ECC)
	DIMENSION E(10)
	TOL=•00000002
	Z=ECC*SINF(AM)/SQRTF(ECC*ECC+12.*ECC*COSF(AM))
	COTAM=COSF(AM)/SINF(AM)
	E(1)=AM+Z-Z**4*COTAM/6.
	I = 1
	E(I+1)=E(I)+(AM+ECC*SINF(E(I))+E(I))/(1ECC*COSF(E(I)))
	DELTAE=ABSF(E(I+1)-E(I))
	IF(DELTAE-TOL) 30,30,20
20	I=I+1
	GO TO 10
30	EKEP= E(I+1)
	RETURN
	END

*	FORTRAN
С	PVOE-SUBROUTINE TO COMPUTE POSITION VECTOR FROM ORBITAL ELEMENTS
С	
	SUBROUTINE PVOE (SIT, SAT, SET, SOT, COT, ET, X, Y, Z)
	SISIT=SINF(SIT)
	COSIT=COSF(SIT)
	SISOT=SINF(SOT)
	COSOT=COSF(SOT)
	SICOT=SINF(COT)
	COCOT=COSF(COT'
	SIET=SINF(ET)
	COET=COSF(ET)
	A=COET-SET
	B=SQRTF(1SET*SET)*SIET
	X=SAT*(A*(COSOT*COCOT-SISOT*SICOT*COSIT)+B*(-SISOT*COCOT-COSOT*SIC
;	LOT*COSIT))
	Y=SAT*(A*(COSOT*SICOT+SISOT*COCOT*COSIT)+B*(COSOT*COCOT*COSIT-SISO
;	LT*SICOT))
	Z=SAT*(A*SISOT*SISIT+B*COSOT*SISIT)
	RETURN
*	FORTRAN
С	
С	GEODT- SUBROUTINE TO COMPUTE LAT., LON. AND HEIGHT
С	FROM INERTIAL X,Y,Z

			SUBROUTINE GEODT (X,Y,Z,ST,DT,VE,E2,ELON,RHO,GLAT1,GLAT2,H,RA,GST)
	<u>.</u>		PI=3.14159265
			TWOPI=6.28318531
	С	_	COMPUTE R.A. OF SATELLITE, 0-360
			RA=ARTNF(Y,X)
	<u>. </u>		IF(RA)5,10,10
	-	5	RA=TWOPI+RA
			GO TO 15
		10	RA=RA
		15	CONTINUE
	C		COMPUTE CORRECTION FOR ROTATION OF EARTH, 0-360
			RT=VE*DT
			IRT=RT/TWOPI
			FRT=IRT
······································			RT=RT-FRT*TWOPI
	C		COMPUTE LONGITUDE, +OR-180
			ELON=RA-ST-RT
			IF(ELON)70,40,90
		70	IF(ELON+PI)80,40,40
	-	80	ELON=ELON+TWOPI
			GO TO 40
		90	IF(ELON-PI)40,40,30
		30	ELON=ELON-TWOPI
		40	CONTINUE
	c		COMPUTE GEOCENTRIC LAT., +OR-90
			GLAT1=ATANF(Z/SQRTF(X*X+Y*Y))
	C		COMPUTE GEODETIC LAT.
			F4-F24F2

```
E6=E2*E4
      Ē8=E2*E6
      RHO=SQRTF(X*X+Y*Y+Z*Z)
      RH02=RH0*RH0
      RH03=RH0*RH02
      RH04=RH0*RH03
      A2=(512.*E2+128.*E4+60.*E6+35.*E8)/(1024.*RHO)
     1+(E6+E8)/(32.*RHO2)-3.*(4.*E6+3.*E8)/(256.*RHO3)
      A4=-(64.*E4+48.*E6+35.*E8)/(1024.*RHO)+(4.*E4+2.*E6+E8)/(16.*RHO2)
     1+(15.*E8)/(256.*RHO3)-E8/(16.*RHO4)
     GLAT2=GLAT1+A2*SINF(2.*GLAT1)+A4*SINF(4.*GLAT1)
C
     COMPUTE HEIGHT IN C.U.L.
      S2GLAT=SINF(GLAT2)*SINF(GLAT2)
      H=RHO*SINF(GLAT1)/SINF(GLAT2)~(1.-E2)/SQRTF(1.-E2*S2GLAT)
      RETURN
     END
```

REFERENCES

- 1. Siry, Joseph W: Goddard Orbit Information Systems. X-547-64-108, June 1964.
- 2. Christ, Richard H: Computation of Quick Look Orbital Parameters. NASA KSC SP-61-E, August 28, 1964.
- 3. Morrison, John and Pines, Samuel: The Reduction from Geocentric to Geodetic Coordinates. Astronomical Journal, Vol. 66, No. 1, February, 1961.

APPROVAL

NASA TN

COMPUTATION OF SUB-SATELLITE POINTS FROM ORBITAL ELEMENTS

ORIGINATOR:

R. H. Christ

Chief, Astrodynamics Analysis Unit

M. Christ

APPROVALS:

B. A. Corbett, Jr.

Chief, Analysis Section

B. G Griffin

Chief, Computation Branch

Dr. R. H. Bruns

Chief, Data Acquisition and Systems Analysis Division

DISTRIBUTION

National Aeronautics and Space Administration

Headquarters Washington 25, D.C.	(2)
Langley Research Center Langley Field Hampton, Virginia	(2)
Goddard Space Flight Center Greenbelt, Maryland	(2)
Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena 3, California	(2)
Flight Research Center Edwards, California	(2)
Lewis Research Center 21000 Brookpark Road Cleveland 35, Ohio	(2)
Ames Research Center Moffett Field, California	(2)
John F. Kennedy Space Center Cocoa Beach, Florida ED 33 MT 2523	(20)

7)22/85

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546