2N3903 is a Preferred Device

General Purpose Transistors

NPN Silicon

Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	I _C	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	200	°C/W	
Thermal Resistance, Junction–to–Case	$R_{\theta JC}$	83.3	°C/W	

1. Indicates Data in addition to JEDEC Requirements.

http://onsemi.com

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERIS	TICS					
Collector - Emitter Br	reakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}$, $I_B = 0$	0)	$V_{(BR)CEO}$	40	_	Vdc
Collector – Base Brea	akdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)		V _{(BR)CBO}	60	_	Vdc
Emitter-Base Break	down Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	6.0	_	Vdc
Base Cutoff Current	(V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{BL}	_	50	nAdc
Collector Cutoff Curr	ent (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{CEX}	_	50	nAdc
ON CHARACTERIST	rics				II.	1
DC Current Gain (No ($I_C = 0.1 \text{ mAdc}$, V_C) ($I_C = 1.0 \text{ mAdc}$, V_C) ($I_C = 10 \text{ mAdc}$, V_C) ($I_C = 50 \text{ mAdc}$, V_C) ($I_C = 100 \text{ mAdc}$, V_C)	DE = 1.0 Vdc) DE = 1.0 Vdc) E = 1.0 Vdc) E = 1.0 Vdc)	2N3903 2N3904 2N3903 2N3904 2N3903 2N3904 2N3903 2N3904 2N3903	h _{FE}	20 40 35 70 50 100 30 60	- - - 150 300 - -	-
Collector – Emitter Sa (I _C = 10 mAdc, I _B : (I _C = 50 mAdc, I _B :		2N3904	V _{CE(sat)}	30 - -	0.2 0.3	Vdc
Base – Emitter Satura ($I_C = 10 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$), $I_B = 10 \text{ mAdc}$			V _{BE(sat)}	0.65 -	0.85 0.95	Vdc
SMALL-SIGNAL CH	ARACTERISTICS					
Current – Gain – Ban ($I_C = 10 \text{ mAdc}, V_C$	dwidth Product E = 20 Vdc, f = 100 MHz	2N3903 2N3904	f⊤	250 300	- -	MHz
Output Capacitance	(V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	4.0	pF
Input Capacitance (\	/ _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10 ⁻⁴
Small–Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		2N3903 2N3904	h _{fe}	50 100	200 400	-
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)			h _{oe}	1.0	40	μmhos
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz)		2N3903 2N3904	NF		6.0 5.0	dB
SWITCHING CHARA	CTERISTICS					
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,		t _d	-	35	ns
Rise Time	$I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$		t _r	-	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	2N3903 2N3904	t _s	-	175 200	ns
Fall Time			t _f	_	50	ns

^{2.} Pulse Test: Pulse Width \leq 300 $\mu s;$ Duty Cycle \leq 2%.

ORDERING INFORMATION

Device	Package	Shipping [†]
2N3903	TO-92	5,000 Units / Box
2N3903RLRM	TO-92	2,000 / Ammo Pack
2N3904	TO-92	5,000 Units / Box
2N3904G	TO-92 (Pb-Free)	5,000 Units / Box
2N3904RLRA	TO-92	2,000 / Tape & Reel
2N3904RLRAG	TO-92 (Pb-Free)	2,000 / Tape & Reel
2N3904RLRE	TO-92	2,000 / Tape & Reel
2N3904RLRM	TO-92	2,000 / Ammo Pack
2N3904RLRMG	TO-92 (Pb-Free)	2,000 / Ammo Pack
2N3904RLRP	TO-92	2,000 / Ammo Pack
2N3904RLRPG	TO-92 (Pb-Free)	2,000 / Ammo Pack
2N3904RL1	TO-92	2,000 / Tape & Reel
2N3904ZL1	TO-92	2,000 / Ammo Pack

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*} Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

Figure 3. Capacitance

Figure 4. Charge Data

Figure 5. Turn-On Time

Figure 6. Rise Time

Figure 7. Storage Time

Figure 8. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth} = 1.0 \text{ Hz})$

Figure 9.

Figure 10.

h PARAMETERS

Figure 11. Current Gain

Figure 12. Output Admittance

Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

Figure 16. Collector Saturation Region

Figure 17. "ON" Voltages

Figure 18. Temperature Coefficients

PACKAGE DIMENSIONS

TO-92 **TO-226AA** CASE 29-11 **ISSUE AL**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
V	0 135		3 43	

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

STYLE 14:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free LISA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.