

WO 01/77334

PCT/FR01/01103

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
18 octobre 2001 (18.10.2001)

PCT

(10) Numéro de publication internationale
WO 01/77334 A2

(51) Classification internationale des brevets⁷ :
C12N 15/31, 15/62, 15/74, 5/10, C07K 14/315, 16/12,
19/00, C12N 1/20, 1/21, C12Q 1/68, G01N 33/53, A23C
9/12, 19/032, C12N 15/31, 15/62, 11/00, C07K 14/315,
16/12, C12Q 1/68, C12P 1/04, G01N 33/53, G06F 19/00,
A01K 67/027, A23C 9/12, 19/032

EHRLICH, Stanislav Dusko [FR/FR]; 38, rue de Campo
Formio, F-75013 Paris (FR).

(74) Mandataires : MARTIN, Jean-Jacques etc.; Cabinet
Regimbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17
(FR).

(21) Numéro de la demande internationale :
PCT/FR01/01103

(81) États désignés (*national*) : AE, AG, AI., AM, AT, AU, AZ,
BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) Date de dépôt international : 11 avril 2001 (11.04.2001)

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
00/04630 11 avril 2000 (11.04.2000) FR

(84) États désignés (*regional*) : brevet ARIPO (GII, GM, KE,
LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CI, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Déposant (*pour tous les États désignés sauf US*) :
INSTITUT NATIONAL DE LA RECHERCHE
AGRONOMIQUE [FR/FR]; 145, rue de l'Université,
F-75007 Paris (FR).

Publiée :

- sans rapport de recherche internationale, sera republiée dès réception de ce rapport
- avec la partie réservée au listage des séquences de la description publiée séparément sous forme électronique et disponible sur demande auprès du Bureau international

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(72) Inventeurs; et
(75) Inventeurs/Déposants (*pour US seulement*) : BOLOTINE, Alexandre [RU/FR]; 5, rue du Maréchal Galliéni,
F-54000 Nancy (FR). SOROKINE, Alexei [RU/FR]; 8,
Résidence des Quinquenches, F-91190 Gif-sur-Yvette (FR).
RENAULT, Pierre [FR/FR]; 9, rue Magellan, Résidence
les Arcades, F-78180 Montigny le Bretonneux (FR).

(54) Title: LACTOCOCCUS LACTIS GENOME, POLYPEPTIDES AND USES

(54) Titre : GENOME DE LACTOCOCCUS LACTIS, POLYPEPTIDES ET UTILISATIONS

(57) Abstract: The invention concerns the genome sequence and nucleotide sequences of *Lactococcus lactis* IL1403. The invention also concerns polypeptides of said organism, in particular cell envelope polypeptides, polypeptides involved in different metabolism cycles, resistance to phages or stress, or still secreted polypeptides. The invention further concerns the use of said sequences, and different tools for identifying *L. lactis* or associated species. Finally the invention concerns *L. lactis* strains modified so as to increase their industrial properties.

(57) Abrégé : La présente invention concerne la séquence génomique et des séquences nucléotidiques de *Lactococcus lactis* IL1403. L'invention a également pour objet les polypeptides de cet organisme, en particulier les polypeptides d'enveloppe cellulaire, ou impliqués dans les différents cycles de métabolisme, la résistance aux phages ou au stress, ou encore sécrétés. L'invention concerne aussi les utilisations des séquences décrites, ainsi que différents outils permettant l'identification de *L. lactis* ou espèces associées. L'invention concerne aussi des souches de *L. lactis* modifiées afin d'en augmenter les capacités industrielles.

WO 01/77334 A2

BEST AVAILABLE COPY

**GENOME DE LACTOCOCCUS LACTIS, POLYPEPTIDES
ET UTILISATIONS**

5 La présente invention a pour objet la séquence génomique et des séquences nucléotidiques codant pour des polypeptides de *Lactococcus lactis* IL1403. Les polypeptides décrits dans la présente invention sont, de façon non limitative, des polypeptides d'enveloppe cellulaire, des polypeptides impliqués dans les différents cycles du métabolisme de *Lactococcus lactis* ou dans les 10 processus de réplication et de sensibilité ou de résistance aux phages, ou sécrétés.

15 L'invention concerne également l'utilisation de la séquence génomique et/ou des séquences nucléotidiques et/ou polypeptidiques décrites dans la présente invention pour l'analyse de l'expression de gènes, et l'identification de gènes homologues chez des espèces proches de *Lactococcus lactis*.

19 L'invention concerne également différents outils qui permettent d'identifier la présence de *Lactococcus lactis* ou d'espèces avoisinantes dans des échantillons biologiques.

20 Par ailleurs, l'invention concerne également des souches de *Lactococcus lactis* ou d'espèces proches de *Lactococcus lactis*, modifiées par mutagenèse et/ou introduction de gènes spécifiques de *L. lactis*, afin d'augmenter les propriétés industrielles desdites souches.

25 *Lactococcus lactis* est une bactérie gram positive à bas GC%, catalase négative, asporogène et anaérobie facultative. Elle est membre du groupe des Streptococceae auquel appartient aussi entre autre les bactéries des genres *Enterococcus*, *Streptococcus*, *Leuconostoc*, *Pediococcus*. De nombreuses souches de ces genres sont utilisées dans l'industrie alimentaire, mais aussi dans des fabrications spécialisées. *Lactococcus* est l'une des bactéries les mieux caractérisées de ce groupe, tant au niveau métabolique que génétique. Ces bactéries produisent

principalement du lactate à partir des sucres lors des fermentation alimentaires et sont donc couramment nommées "bactéries lactiques". Les bactéries lactiques sont en général non pathogènes et sont ajoutées comme ferment pour la production d'aliments fermentés. En particulier, *L. lactis* est utilisé comme ferment pour la 5 production de fromages, de beurre et de nombreux autres produits laitiers. Les souches de *L. lactis* sont en général capables de pousser rapidement dans le lait. Cette propriété est conférée entre autre par leur capacité à utiliser le lactose comme source de sucre et les protéines du lait comme source d'acides aminés. Ces gènes sont portés par des plasmides dont la perte provoque un chute de la vitesse de 10 croissance des souches dans le lait.

15 L'importance de *L. lactis* pour l'industrie a suscité de nombreuses études en particulier durant ces 15 dernières années. Cela a conduit à la construction de nombreux outils d'étude et de modification génétique pour cette bactérie. Ces études ont aussi permis d'accumuler de nombreuses connaissances sur sa génétique et sa physiologie. La plupart de ces études furent conduites sur deux groupes de souches dont les représentants de laboratoire les plus connus sont les souches IL1403 et MG1363. Ces deux souches sont génétiquement représentatives des deux principales sous espèces utilisées dans l'industrie, *L. lactis* subsp. *lactis* et subsp. *cremoris*.

20 Une étude décrivant la variabilité génétique au sein de l'espèce *L. lactis* a été publiée (Tailliez *et al*, System. Appl. Microbiol., 21: 530-538, 1998). Elle révèle que les souches industrielles peuvent être réparties en 3 groupes. La souche IL1403 (déposée à la CNCM sous le numéro I-2438) dont la séquence est un objet de la présente invention appartient au groupe de souches le plus représenté.

25

De nombreuses études ont été réalisées pour comprendre le métabolisme et la physiologie des lactocoques dans le but d'améliorer leur utilisation dans l'industrie et de développer de nouvelles applications. Ces études ont permis, entre autre de développer des applications permettant l'accélération de l'affinage, la production

d'arôme ou la résistance aux phages. Il a été aussi mis au point des procédés biotechnologiques permettant de produire avantageusement des produits tel la L-alanine.

La recherche actuelle cherche donc à maîtriser et améliorer les 5 performances des bactéries lactiques pour optimiser les transformations agroalimentaires, en particulier la fabrication des yaourts et des fromages.

A titre d'exemple, le goût de noisette du beurre, le goût frais des fromages blancs est apporté par le diacétyle, molécule produite par les bactéries lactiques. Or, l'addition de diacétyle est interdite en France. Il serait par 10 conséquent intéressant d'utiliser des souches naturellement ou artificiellement surproductrices de diacétyle pour obtenir des produits ayant un goût plus typé.

Les bactéries lactiques sécrètent des enzymes et autres protéines qui contribuent aux qualités organoleptiques (texture et arôme) des fromages. La connaissance des mécanismes facilitant la sécrétion devrait permettre 15 d'accélérer l'affinage ou de faire produire par les bactéries des molécules intéressantes : enzymes digestives, antigènes pour la fabrication de vaccins...

On estime que 10% de la fabrication fromagère est perdue ou fortement déclassée du fait de l'attaque par des phages. Si on comprenait les raisons de la résistance de certaines bactéries, on pourrait améliorer la survie des 20 ferment utilisés par l'industrie.

L'ensemble des études menées sur *L. lactis* a conduit à la publication de 420 séquences dans GenBank correspondant à 1317 peptides traduits. Ces séquences sont largement redondantes par le fait que de nombreux gènes ont été séquencés plusieurs fois dans des souches différentes. De plus, de nombreuses séquences 25 correspondent à une information plasmidique. Il en découle que ces séquences correspondent à environ 500 gènes chromosomiques chez *L. lactis*, ce qui représente entre un cinquième et un quart du génome.

Un certain nombre d'approches a été utilisé pour identifier des gènes de *L. lactis*. Une première approche consiste à isoler dans un premier temps des mutants

affectés dans une fonction, et de rechercher par la suite des fragments d'ADN qui permettent de restaurer cette fonction (Renault, P et al. 1989. Product of the *Lactococcus lactis* gene required for malolactic fermentation is homologous to a family of positive regulators. *J. Bacteriol.*, no. 171 : 3108-14). Une deuxième approche est de complémenter des mutants d'autres bactéries comme *E. coli* ou *B. subtilis* pour un gène de fonction connue (Bardowski, J., S. D. Ehrlich, and A. Chopin. 1992. Tryptophan biosynthesis genes in *Lactococcus lactis* subsp. *lactis*. *J. Bacteriol.* 174: 6563-70.). Une troisième approche est de rechercher des mutants obtenus par insertion de transposons ou de plasmides portant des courtes séquences homologues, ce qui permet ensuite de caractériser le ou les gènes inactivés en clonant des fragments adjacents (Rallu, F., A. Gruss, and E. Maguin. 1996. *Lactococcus lactis* and stress. *Antonie Van Leeuwenhoek* 70, no. 2-4: 243-51). Des approches génomiques permettent aussi de définir des segments de gènes qui sont conservés dans différents organismes, et d'en déduire des amorces dont l'utilisation en PCR permet d'amplifier et d'isoler un fragment d'un gène connu par ailleurs (Duwat, P., S. D. Ehrlich, and A. Gruss. 1995. The recA gene of *Lactococcus lactis*: characterization and involvement in oxidative and thermal stress. *Molecular Microbiology* 17: 1121-31). Différentes variantes de ces techniques existent et peuvent être utilisées avantageusement.

20 L'étude de *Lactococcus lactis* demande de nouvelles approches, en particulier génétiques, afin d'améliorer la compréhension des différentes voies métaboliques de cet organisme.

Ainsi, c'est un objet de la présente invention que de divulguer la séquence complète du génome de *Lactococcus lactis* IL1403 ainsi que de tous les gènes contenus dans cedit génome.

25 En effet, la connaissance du génome de cet organisme permet de mieux définir les interactions entre les différents gènes, les différentes protéines, et par là-même, les différentes voies métaboliques. En effet, et contrairement à la divulgation de séquences isolées, la séquence génomique complète d'un organisme forme un tout, permettant d'obtenir immédiatement toutes les

informations nécessaires à cet organisme pour croître et fonctionner.

La présente invention concerne donc une séquence nucléotidique de *Lactococcus lactis* caractérisée en ce qu'elle correspond à SEQ ID N° 1.

- La présente invention concerne également une séquence nucléotidique de *Lactococcus lactis* caractérisée en ce qu'elle est choisie parmi :
- 5 a) une séquence nucléotidique comportant au moins 80 %, 85 %, 90 %, 95 % ou 98 % d'identité avec SEQ ID N° 1 ;
 - b) une séquence nucléotidique hybride dans des conditions de forte stringence avec SEQ ID N° 1 ;
 - 10 c) une séquence nucléotidique complémentaire de SEQ ID N° 1 ou complémentaire d'une séquence nucléotidique telle que définie en a), ou b), ou une séquence nucléotidique de l'ARN correspondant ;
 - d) une séquence nucléotidique de fragment représentatif de SEQ ID N° 1, ou de fragment représentatif d'une séquence nucléotidique telle que définie en a), b) ou c);
 - 15 e) une séquence nucléotidique comprenant une séquence telle que définie en a), b), c) ou d) ; et
 - f) une séquence nucléotidique modifiée d'une séquence nucléotidique telle que définie en a), b), c), d) ou e).

De façon plus particulière, la présente invention a également pour objet les séquences nucléotidiques caractérisées en ce qu'elles sont issues de SEQ ID N° 1 et en ce qu'elles codent pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323.

25 De plus, les séquences nucléotidiques caractérisées en ce qu'elles comprennent une séquence nucléotidique choisie parmi :

- a) une séquence nucléotidique codant pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323;
- b) une séquence nucléotidique comportant au moins 80 %, 85 %, 90 %,

95 % ou 98 % d'identité avec une séquence nucléotidique codant pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323 ;

- 5 c) une séquence nucléotidique s'hybridant dans des conditions de forte stringence avec une séquence nucléotidique codant pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323 ;
- 10 d) une séquence nucléotidique complémentaire ou d'ARN correspondant à une séquence telle que définie en a), b) ou c) ;
- 15 e) une séquence nucléotidique de fragment représentatif d'une séquence telle que définie en a), b), c) ou d) ; et
- 20 f) une séquence nucléotidique modifiée d'une séquence telle que définie en a), b), c), d) ou e),

sont également des objets de l'invention.

15 Par acide nucléique, séquence nucléique ou d'acide nucléique, polynucléotide, oligonucléotide, séquence de polynucléotide, séquence nucléotidique, termes qui seront employés indifféremment dans la présente description, on entend désigner un enchaînement précis de nucléotides, modifiés ou non, permettant de définir un fragment ou une région d'un acide nucléique, comportant ou non des nucléotides non naturels, et pouvant correspondre aussi bien à un ADN double brin, un ADN simple brin que des produits de transcription desdits ADNs. Ainsi, les séquences nucléiques selon l'invention englobent également les PNA (Peptid Nucleic Acid), ou analogues.

20 Il doit être compris que la présente invention ne concerne pas les séquences nucléotidiques dans leur environnement chromosomique naturel, c'est-à-dire à l'état naturel. Il s'agit de séquences qui ont été isolées et/ou purifiées, c'est-à-dire qu'elles ont été prélevées directement ou indirectement, par exemple par copie, leur environnement ayant été au moins partiellement modifié. On entend ainsi également désigner les acides nucléiques obtenus par synthèse chimique.

Par « pourcentage d'identité » entre deux séquences d'acides nucléiques ou d'acides aminés au sens de la présente invention, on entend désigner un pourcentage de nucléotides ou de résidus d'acides aminés identiques entre les deux séquences à comparer, obtenu après le meilleur alignement, ce pourcentage étant purement statistique et les différences entre les deux séquences étant réparties au hasard et sur toute leur longueur. On entend désigner par "meilleur alignement" ou "alignement optimal", l'alignement pour lequel le pourcentage d'identité déterminé comme ci-après est le plus élevé. Les comparaisons de séquences entre deux séquences d'acides nucléiques ou d'acides aminés sont traditionnellement réalisées en comparant ces séquences après les avoir alignées de manière optimale, ladite comparaison étant réalisée par segment ou par « fenêtre de comparaison » pour identifier et comparer les régions locales de similarité de séquence. L'alignement optimal des séquences pour la comparaison peut être réalisé, outre manuellement, au moyen de l'algorithme d'homologie locale de Smith et Waterman (1981, Ad. App. 5 Math. 2 : 482), au moyen de l'algorithme d'homologie locale de Needleman et Wunsch (1970, J. Mol. Biol. 48 : 443), au moyen de la méthode de recherche de similarité de Pearson et Lipman (1988, Proc. Natl. Acad. Sci. USA 85 : 2444), au moyen de logiciels informatiques utilisant ces algorithmes (GAP, BESTFIT, BLAST P, BLAST N, FASTA et TFASTA dans le Wisconsin Genetics Software 10 Package, Genetics Computer Group, 575 Science Dr., Madison, WI). Afin d'obtenir l'alignement optimal, on utilise de préférence le programme BLAST, avec la matrice BLOSUM 62. On peut également utiliser les matrices PAM ou PAM250.

Le pourcentage d'identité entre deux séquences d'acides nucléiques ou d'acides aminés est déterminé en comparant ces deux séquences alignées de manière optimale dans laquelle la séquence d'acides nucléiques ou d'acides aminés à comparer peut comprendre des additions ou des délétions par rapport à la séquence 15 de référence pour un alignement optimal entre ces deux séquences. Le pourcentage d'identité est calculé en déterminant le nombre de positions identiques pour lesquelles le nucléotide ou le résidu d'acide aminé est identique entre les deux 20 25

de référence pour un alignement optimal entre ces deux séquences. Le pourcentage d'identité est calculé en déterminant le nombre de positions identiques pour lesquelles le nucléotide ou le résidu d'acide aminé est identique entre les deux

séquences, en divisant ce nombre de positions identiques par le nombre total de positions comparées et en multipliant le résultat obtenu par 100 pour obtenir le pourcentage d'identité entre ces deux séquences.

Par séquences nucléiques présentant un pourcentage d'identité d'au moins 5 80 %, de préférence 85 % ou 90 %, de façon plus préférée 95 % voire 98 %, après alignement optimal avec une séquence de référence, on entend désigner les séquences nucléiques présentant, par rapport à la séquence nucléique de référence, certaines modifications comme en particulier une délétion, une troncation, un allongement, une fusion chimérique et/ou une substitution, notamment ponctuelle, et 10 dont la séquence nucléique présente au moins 80 %, de préférence 85 %, 90 %, 95 % ou 98 %, d'identité après alignement optimal avec la séquence nucléique de référence. Il s'agit de préférence de séquences dont les séquences complémentaires sont susceptibles de s'hybrider spécifiquement avec les séquences de référence. De préférence, les conditions d'hybridation spécifiques ou de forte stringence seront 15 telles qu'elles assurent au moins 80 %, de préférence 85 %, 90 %, 95 % ou 98 % d'identité après alignement optimal entre l'une des deux séquences et la séquence complémentaire de l'autre.

Une hybridation dans des conditions de forte stringence signifie que les conditions de température et de force ionique sont choisies de telle manière qu'elles 20 permettent le maintien de l'hybridation entre deux fragments d'ADN complémentaires. A titre illustratif, des conditions de forte stringence de l'étape d'hybridation aux fins de définir les fragments polynucléotidiques décrits ci-dessus, sont avantageusement les suivantes.

L'hybridation ADN-ADN ou ADN-ARN est réalisée en deux étapes : (1) 25 préhybridation à 42°C pendant 3 heures en tampon phosphate (20 mM, pH 7,5) contenant 5 x SSC (1 x SSC correspond à une solution 0,15 M NaCl + 0,015 M citrate de sodium), 50 % de formamide, 7 % de sodium dodécyl sulfate (SDS), 10 x Denhardt's, 5 % de dextran sulfate et 1 % d'ADN de sperme de saumon ; (2) hybridation proprement dite pendant 20 heures à une température dépendant de la

taille de la sonde (i.e. : 42°C, pour une sonde de taille > 100 nucléotides) suivie de 2 lavages de 20 minutes à 20°C en 2 x SSC + 2 % SDS, 1 lavage de 20 minutes à 20°C en 0,1 x SSC + 0,1 % SDS. Le dernier lavage est pratiqué en 0,1 x SSC + 0,1 % SDS pendant 30 minutes à 60°C pour une sonde de taille > 100 nucléotides.

5 Les conditions d'hybridation de forte stringence décrites ci-dessus pour un polynucléotide de taille définie, peuvent être adaptées par l'homme du métier pour des oligonucléotides de taille plus grande ou plus petite, selon l'enseignement de Sambrook et al., (1989, Molecular cloning : a laboratory manual. 2nd Ed. Cold Spring Harbor).

10 De plus, par fragment représentatif de séquences selon l'invention, on entend désigner tout fragment nucléotidique présentant au moins 15 nucléotides, de préférence au moins 30, 75, 150, 300 et 450 nucléotides consécutifs de la séquence dont il est issu.

15 Par fragment représentatif, on entend en particulier une séquence nucléique codant pour un fragment biologiquement actif d'un polypeptide, tel que défini plus loin.

Par fragment représentatif, on entend également les séquences intergéniques, et en particulier les séquences nucléotidiques portant les signaux de régulation (promoteurs, terminateurs, voire enhancers...).

20 Parmi lesdits fragments représentatifs, on préfère ceux ayant des séquences nucléotidiques correspondant à des cadres ouverts de lecture, dénommés séquences ORFs (ORF pour « Open Reading Frame »), compris en général entre un codon d'initiation et un codon stop, ou entre deux codons stop, et codant pour des polypeptides, de préférence d'au moins 100 acides aminés,

25 tel que par exemple, sans s'y limiter, les séquences ORFs qui seront décrites par la suite.

La numérotation des séquences nucléotidiques ORFs qui sera utilisée par la suite dans la présente description correspond à la numérotation des séquences d'acides aminés des protéines codées par lesdites ORFs.

Ainsi, les séquences nucléotidiques ORF2, ORF3..., ORF2322 et ORF2323 codent respectivement pour les protéines de séquences d'acides aminés SEQ ID N° 2, SEQ ID N° 3..., SEQ ID N° 2322 et SEQ ID N° 2323 figurant dans la liste de séquences de la présente invention. Les séquences nucléotidiques détaillées des séquences ORF2, ORF3..., ORF2322 et ORF2323 sont déterminées par leur position respective sur la séquence génomique SEQ ID N° 1. Le tableau I fournit les coordonnées des différentes ORFs par rapport à la séquence nucléotidique SEQ ID N° 1, en donnant le nucléotide de départ, le nucléotide de fin d'ORF, ainsi que le nucléotide estimé pour lequel la protéine débute.

Ainsi, ORF N° 2 s'étend du nucléotide 349 au nucléotide 1722, la protéine SEQ ID N° 2 s'étendant quant à elle du nucléotide 358 au nucléotide 1722. De même, ORF N° 6 s'étend du nucléotide 10283 au nucléotide 10846, la protéine débutant au nucléotide 10837, car elle est située sur le brin complémentaire. Ainsi, à la lecture du Tableau I, on voit bien que ORF N° 6 est la séquence complémentaire s'étendant entre les nucléotides 10283 et 10846, extrémités comprises, de la séquence SEQ ID N° 1.

Les fragments représentatifs selon l'invention peuvent être obtenus par exemple par amplification spécifique telle que la PCR ou après digestion par des enzymes de restriction appropriés de séquences nucléotidiques selon l'invention, cette méthode étant décrite en particulier dans l'ouvrage de Sambrook et al.. Lesdits fragments représentatifs peuvent également être obtenus par synthèse chimique lors que leur taille n'est pas trop importante, selon des méthodes bien connues de l'homme du métier.

Parmi les séquences contenant des séquences de l'invention, ou des fragments représentatifs, on entend également les séquences qui sont naturellement encadrées par des séquences qui présentent au moins 80 %, 85 %, 90 %, 95 % ou 98 % d'identité avec les séquences selon l'invention.

Par séquence nucléotidique modifiée, on entend toute séquence

nucléotidique obtenue par mutagénèse selon des techniques bien connues de l'homme du métier, et comportant des modifications par rapport aux séquences normales, par exemple des mutations dans les séquences régulatrices et/ou promotrices de l'expression du polypeptide, notamment conduisant à une 5 modification du taux d'expression ou de l'activité dudit polypeptide.

Par séquence nucléotidique modifiée, on entend également toute séquence nucléotidique codant pour un polypeptide modifié tel que définit ci-après.

Les fragments représentatifs selon l'invention peuvent également être 10 des sondes ou amorces, qui peuvent être utilisées dans des procédés de détection, d'identification, de dosage ou d'amplification de séquences nucléiques.

Une sonde ou amorce se définit, au sens de l'invention, comme étant un fragment d'acides nucléiques simple brin ou un fragment double brin dénaturé 15 comprenant par exemple de 12 bases à quelques kb, notamment de 15 à quelques centaines de bases, de préférence de 15 à 50 ou 100 bases, et possédant une spécificité d'hybridation dans des conditions déterminées pour former un complexe d'hybridation avec un acide nucléique cible.

Les sondes et amorces selon l'invention peuvent être marquées directement 20 ou indirectement par un composé radioactif ou non radioactif par des méthodes bien connues de l'homme du métier, afin d'obtenir un signal détectable et/ou quantifiable.

Les séquences de polynucléotides selon l'invention non marquées peuvent être utilisées directement comme sonde ou amorce.

Les séquences sont généralement marquées pour obtenir des séquences 25 utilisables pour de nombreuses applications. Le marquage des amorces ou des sondes selon l'invention est réalisé par des éléments radioactifs ou par des molécules non radioactives.

Parmi les isotopes radioactifs utilisés, on peut citer le ^{32}P , le ^{33}P , le ^{35}S , le ^3H ou le ^{125}I . Les entités non radioactives sont sélectionnées parmi les ligands tels la

biotine, l'avidine, la streptavidine, la dioxygénine, les haptènes, les colorants, les agents luminescents tels que les agents radioluminescents, chémoluminescents, bioluminescents, fluorescents, phosphorescents.

Les polynucléotides selon l'invention peuvent ainsi être utilisés comme amorce et/ou sonde dans des procédés mettant en œuvre notamment la technique de PCR (amplification en chaîne par polymérase) (Rolfs et al., 1991, Berlin : Springer-Verlag). Cette technique nécessite le choix de paires d'amorces oligonucléotidiques encadrant le fragment qui doit être amplifié. On peut, par exemple, se référer à la technique décrite dans le brevet américain U.S. N° 4,683,202. Les fragments amplifiés peuvent être identifiés, par exemple après une électrophorèse en gel d'agarose ou de polyacrylamide, ou après une technique chromatographique comme la filtration sur gel ou la chromatographie échangeuse d'ions, puis séquencés. La spécificité de l'amplification peut être contrôlée en utilisant comme amorce les séquences nucléotidiques de polynucléotides de l'invention comme matrice, des plasmides contenant ces séquences ou encore les produits d'amplification dérivés. Les fragments nucléotidiques amplifiés peuvent être utilisés comme réactifs dans des réactions d'hybridation afin de mettre en évidence la présence, dans un échantillon biologique, d'un acide nucléique cible de séquence complémentaire à celle desdits fragments nucléotidiques amplifiés.

20 L'invention vise également les acides nucléiques susceptibles d'être obtenus par amplification à l'aide d'amorces selon l'invention.

D'autres techniques d'amplification de l'acide nucléique cible peuvent être avantageusement employées comme alternative à la PCR (PCR-like) à l'aide de couple d'amorces de séquences nucléotidiques selon l'invention. Par PCR-like on entend désigner toutes les méthodes mettant en œuvre des reproductions directes ou indirectes des séquences d'acides nucléiques, ou bien dans lesquelles les systèmes de marquage ont été amplifiés, ces techniques sont bien entendu connues, en général il s'agit de l'amplification de l'ADN par une polymérase ; lorsque l'échantillon d'origine est un ARN il convient préalablement d'effectuer une transcription reverse.

Il existe actuellement de très nombreux procédés permettant cette amplification, comme par exemple la technique SDA (Strand Displacement Amplification) ou technique d'amplification à déplacement de brin (Walker et al., 1992, Nucleic Acids Res. 20 : 1691), la technique TAS (Transcription-based Amplification System) décrite par Kwok et al. (1989, Proc. Natl. Acad. Sci. USA, 86, 1173), la technique 3SR (Self-Sustained Sequence Replication) décrite par Guatelli et al. (1990, Proc. Natl. Acad. Sci. USA 87: 1874), la technique NASBA (Nucleic Acid Sequence Based Amplification) décrite par Kievitis et al. (1991, J. Virol. Methods, 35, 273), la technique TMA (Transcription Mediated Amplification), la technique LCR (Ligase Chain Reaction) décrite par Landegren et al. (1988, Science 241, 1077), la technique de RCR (Repair Chain Reaction) décrite par Segev (1992, Kessler C. Springer Verlag, Berlin, New-York, 197-205), la technique CPR (Cycling Probe Reaction) décrite par Duck et al. (1990, Biotechniques, 9, 142), la technique d'amplification à la Q-béta-réplique décrite par Miele et al. (1983, J. Mol. Biol., 171, 281). Certaines de ces techniques ont depuis été perfectionnées.

Dans le cas où le polynucléotide cible à détecter est un ARNm, on utilise avantageusement, préalablement à la mise en oeuvre d'une réaction d'amplification à l'aide des amorces selon l'invention ou à la mise en œuvre d'un procédé de détection à l'aide des sondes de l'invention, une enzyme de type transcriptase inverse afin d'obtenir un ADNc à partir de l'ARNm contenu dans l'échantillon biologique. L'ADNc obtenu servira alors de cible pour les amorces ou les sondes mises en oeuvre dans le procédé d'amplification ou de détection selon l'invention.

La technique d'hybridation de sondes peut être réalisée de manières diverses (Matthews et al., 1988, Anal. Biochem., 169, 1-25). La méthode la plus générale consiste à immobiliser l'acide nucléique extrait des cellules de différents tissus ou de cellules en culture sur un support (tels que la nitrocellulose, le nylon, le polystyrène) et à incuber, dans des conditions bien définies, l'acide nucléique cible immobilisé avec la sonde. Après l'hybridation, l'excès de sonde est éliminé et les molécules hybrides formées sont détectées par la méthode appropriée (mesure de la

radioactivité, de la fluorescence ou de l'activité enzymatique liée à la sonde).

Selon un autre mode de mise en œuvre des sondes nucléiques selon l'invention, ces dernières peuvent être utilisées comme sondes de capture. Dans ce cas, une sonde, dite « sonde de capture », est immobilisée sur un support et sert à

- 5 capturer par hybridation spécifique l'acide nucléique cible obtenu à partir de l'échantillon biologique à tester et l'acide nucléique cible est ensuite détecté grâce à une seconde sonde, dite « sonde de détection », marquée par un élément facilement détectable.

Parmi les fragments d'acides nucléiques intéressants, il faut ainsi citer en
10 particulier les oligonucléotides anti-sens, c'est-à-dire dont la structure assure, par hybridation avec la séquence cible, une inhibition de l'expression du produit correspondant. Il faut également citer les oligonucléotides sens qui, par interaction avec des protéines impliquées dans la régulation de l'expression du produit correspondant, induiront soit une inhibition, soit une activation de cette expression.

15 De façon préférée, les sondes ou amorces selon l'invention sont immobilisées sur un support, de manière covalente ou non covalente. En particulier, le support peut être une puce à ADN ou un filtre à haute densité, également objets de la présente invention.

On entend désigner par puce à ADN ou filtre haute densité, un support
20 sur lequel sont fixées des séquences d'ADN, chacune d'entre elles pouvant être repérée par sa localisation géographique. Ces puces ou filtres diffèrent principalement par leur taille, le matériau du support, et éventuellement le nombre de séquences d'ADN qui y sont fixées.

On peut fixer les sondes ou amorces selon la première invention sur des
25 supports solides, en particulier les puces à ADN, par différents procédés de fabrication. En particulier, on peut effectuer une synthèse *in situ* par adressage photochimique ou par jet d'encre. D'autres techniques consistent à effectuer une synthèse *ex situ* et à fixer les sondes sur le support de la puce à ADN par adressage mécanique, électronique ou par jet d'encre. Ces différents procédés

sont bien connus de l'homme du métier.

Une séquence nucléotidique (sonde ou amorce) selon l'invention permet donc la détection et/ou l'amplification de séquences nucléiques spécifiques. En particulier, la détection de cesdites séquences est facilitée lorsque la sonde est fixée sur une puce à ADN, ou à un filtre haute densité.

L'utilisation de puces à ADN ou de filtres à haute densité permet en effet de déterminer l'expression de gènes dans un organisme présentant une séquence génomique proche de *L. lactis* IL1403.

La séquence génomique de *L. lactis* IL1403, complétée par l'identification de tous les gènes de cet organisme, telle que présentée dans la présente invention, sert de base à la construction de ces puces à ADN ou filtre.

La préparation de ces filtres ou puces consiste à synthétiser des oligonucléotides, correspondant aux extrémités 5' et 3' des gènes. Ces oligonucléotides sont choisis en utilisant la séquence génomique et ses annotations divulguées par la présente invention. La température d'appariement des ces oligonucléotides aux places correspondantes sur l'ADN doit être approximativement la même pour chaque oligonucleotide. Ceci permet de préparer des fragments d'ADN correspondants à chaque gène par l'utilisation de condition de PCR appropriées dans un environnement hautement automatisée. Les fragments amplifiés sont ensuite immobilisés sur des filtres ou des supports en verre, silicium ou polymères synthétiques et ces milieux sont utilisés pour l'hybridation.

La disponibilité de tels filtres et/ou puces et de la séquence génomique correspondante annotée permet d'étudier l'expression de grands ensembles, voire de la totalité des gènes dans les micro-organismes associés à *Lactococcus lactis*, en préparant les ADN complémentaires, et en les hybridant à l'ADN ou aux oligonucléotides immobilisés sur les filtres ou les puces. Egalement, les filtres et/ou les puces permettent d'étudier la variabilité des souches ou des espèces, en préparant l'ADN de ces organismes et en les hybridant à l'ADN ou aux oligonucléotides immobilisés sur les filtres ou les puces.

Les différences entre les séquences génomiques des différentes souches ou espèces peuvent grandement affecter l'intensité de l'hybridation et, par conséquent, perturber l'interprétation des résultats. Il peut donc être nécessaire d'avoir la séquence précise des gènes de la souche que l'on souhaite étudier. La méthode de détection des gènes décrite plus loin en détail, impliquant la détermination de la séquence de fragments aléatoires d'un génome, et les organisant d'après la séquence du génome complet de *Lactococcus lactis* IL1403 divulgué dans la présente invention, peut être très utile.

L'utilisation des filtres à haute densité et/ou des puces permet ainsi d'obtenir des connaissances nouvelles sur la régulation des gènes dans les organismes d'importance industrielle, et en particulier les bactéries lactiques propagées dans diverses conditions. Elle permet aussi une identification rapide des différences entre les génomes des souches utilisées dans de multiples applications industrielles.

En outre, une puce à ADN ou un filtre peut être un outil extrêmement intéressant pour la détermination, la détection et/ou l'identification d'un microorganisme. Ainsi, on préfère également les puces à ADN selon l'invention qui contiennent en outre au moins une séquence nucléotidique d'un microorganisme autre de *Lactococcus lactis*, immobilisée sur le support de ladite puce. De préférence, le microorganisme choisi l'est parmi les microorganismes associés à *Lactococcus lactis*, les bactéries du genre *Lactococcus*, ou les variants de *Lactococcus lactis*. Par bactérie associée à *Lactococcus lactis*, on entend, comme ceci a déjà été défini plus haut, les bactéries membres du groupe des *Streptocoques*.

Une puce à ADN ou un filtre selon l'invention est un élément très utile de certains kits ou nécessaires pour la détection et/ou l'identification de microorganismes, en particulier les bactéries appartenant à l'espèce *Lactococcus lactis* ou les microorganismes associés, également objets de l'invention.

Par ailleurs, les puces à ADN ou les filtres selon l'invention, contenant

des sondes ou amorces spécifiques de *Lactococcus lactis*, sont des éléments très avantageux de kits ou nécessaires pour la détection et/ou la quantification de l'expression de gènes de *Lactococcus lactis* (ou de microorganismes associés).

En effet, le contrôle de l'expression des gènes est un point critique pour 5 optimiser la croissance et le rendement d'une souche, soit en permettant l'expression d'un ou plusieurs gènes nouveaux, soit en modifiant l'expression de gènes déjà présents dans la cellule. La présente invention fournit l'ensemble des séquences naturellement actives chez *L. lactis* permettant l'expression des gènes. Elle permet ainsi la détermination de l'ensemble des séquences exprimées chez *L. lactis*. Elle 10 fournit également un outil permettant de repérer les gènes dont l'expression suit un schéma donné. Pour réaliser cela, l'ADN de tout ou partie des gènes de *L. lactis* peut être amplifié grâce à des amorces selon l'invention, puis fixé à un support comme par exemple le verre ou le nylon ou une puce à ADN, afin de construire un outil permettant de suivre le profil d'expression de ces gènes. Cet outil, constitué de 15 ce support contenant les séquences codantes sert de matrice d'hybridation à un mélange de molécules marquées reflétant les ARN messagers exprimés dans la cellule (en particulier les sondes marquées selon l'invention). En répétant cette expérience à différents instants et en combinant l'ensemble de ces données par un traitement approprié, on obtient alors les profils d'expression de l'ensemble de ces 20 gènes. La connaissance des séquences qui suivent un schéma de régulation donnée peut aussi être mise à profit pour rechercher de manière dirigée, par exemple par homologie, d'autres séquences suivant globalement, mais de manière légèrement différente le même schéma de régulation. En complément, il est possible d'isoler chaque séquence de contrôle présente en amont des segments servant de sondes et 25 d'en suivre l'activité à l'aide de moyen approprié comme un gène rapporteur (luciférase, β -galactosidase, GFP). Ces séquences isolées peuvent ensuite être modifiées et assemblées par ingénierie métabolique avec des séquences d'intérêt en vue de leur expression optimale.

La présente invention donne la liste de nombreux gènes codant pour des

protéines régulant la transcription des gènes de *L. lactis* (Tableau II). Modifier la structure ou l'intégrité de ces gènes pourra permettre de modifier l'expression des gènes cibles contrôlés par des promoteurs cibles de ces régulateurs. Les indications données par le Tableau II permettent de plus à l'homme du métier de choisir le ou les régulateurs pertinents pour l'application recherchée ainsi que leur cible, ce qui permet l'optimisation de l'expression de gènes d'intérêt. Par exemple l'inactivation du gène *kdgR* augmente la transcription des gènes de la voie d'Entner Dodouhoff, codés par les gènes qui lui sont contigus, et transcrits dans le sens opposé (ORF 1674 et 1675). L'utilisation des outils précédemment décrits tels les puces à ADN, permet aussi de repérer l'ensemble des gènes dont la régulation est modifiée par cette inactivation. Il est ainsi possible de sélectionner un ensemble de séquence de contrôle répondant, à des nuances près, à un même type de régulation. Ces séquences peuvent être alors utilisées pour contrôler l'expression de gènes d'intérêt.

L'invention concerne également les polypeptides codés par une séquence nucléotidique selon l'invention, de préférence, par un fragment représentatif de la séquence SEQ ID N° 1 et correspondant à une séquence ORF. En particulier, les polypeptides de *Lactococcus lactis* caractérisés en ce qu'ils sont choisis parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323 sont objet de l'invention.

L'invention comprend également les polypeptides caractérisés en ce qu'ils comprennent un polypeptide choisi parmi :

- a) un polypeptide selon l'invention ;
- b) un polypeptide présentant au moins 80 % de préférence 85 %, 90 %, 95 % et 98 % d'identité avec un polypeptide selon l'invention ;
- c) un fragment d'au moins 5 acides aminés d'un polypeptide selon l'invention, ou tel que défini en b) ;
- d) un fragment biologiquement actif d'un polypeptide selon l'invention, ou tel que défini en b) ou c) ; et
- e) un polypeptide modifié d'un polypeptide selon l'invention, ou tel que défini en b), c) ou d).

Les séquences nucléotidiques codant pour les polypeptides décrits précédemment sont également objet de l'invention.

Dans la présente description, les termes polypeptides, séquences polypeptidiques, peptides et protéines sont interchangeables.

5 Il doit être compris que l'invention ne concerne pas les polypeptides sous forme naturelle, c'est-à-dire qu'ils ne sont pas pris dans leur environnement naturel mais qu'ils ont pu être isolés ou obtenus par purification à partir de sources naturelles, ou bien obtenus par recombinaison génétique, ou par synthèse chimique, et qu'ils peuvent alors comporter des acides aminés non naturels comme cela sera décrit plus loin.

10 Par polypeptide présentant un certain pourcentage d'identité avec un autre, que l'on désignera également par polypeptide homologue, on entend désigner les polypeptides présentant par rapport aux polypeptides naturels, certaines modifications, en particulier une délétion, addition ou substitution d'au moins un acide aminé, une troncation, un allongement, une solution chimérique et/ou une mutation, ou les polypeptides présentant des modifications post-traductionnelles. Parmi les polypeptides homologues, on préfère ceux dont la séquence d'acides aminés présentent au moins 80 %, de préférence 85 %, 90 %, 95 % et 98 % d'homologie avec les séquences d'acides aminés des polypeptides 15 selon l'invention. Dans le cas d'une substitution, un ou plusieurs acide(s) aminé(s) consécutif(s) ou non consécutif(s) sont remplacés par des acides aminés « équivalents ». L'expression « acides aminés équivalents » vise ici à désigner tout acide aminé susceptible d'être substitué à l'un des acides aminés de la structure de base sans cependant modifier essentiellement les activités 20 biologiques des peptides correspondant et telles qu'elles seront définies par la suite.

25 Ces acides aminés équivalents peuvent être déterminés soit en s'appuyant sur leur homologie de structure avec les acides aminés auxquels ils se substituent, soit sur des résultats d'essais comparatifs d'activité biologique

entre les différents polypeptides susceptibles d'être effectués.

A titre d'exemple, on mentionne les possibilités de substitution susceptibles d'être effectuées sans qu'il résulte en une modification approfondie de l'activité biologique du polypeptide modifié correspondant. On peut 5 remplacer ainsi la leucine par la valine ou l'isoleucine, l'acide aspartique par l'acide glutamine, la glutamine par l'asparagine, l'arginine par la lysine, etc... les substitutions inverses étant naturellement envisageables dans les mêmes conditions.

Les polypeptides homologues correspondent également aux 10 polypeptides codés par les séquences nucléotidiques homologues ou identiques, telles que définies précédemment et comprennent ainsi dans la présente définition des polypeptides mutés ou correspondant à des variations inter ou intra espèces, pouvant exister chez *Lactococcus*, et qui correspondent notamment à des troncatures, substitutions, délétions et/ou additions, d'au 15 moins un résidu d'acides aminés.

Il est entendu que l'on calcule le pourcentage d'identité entre deux polypeptides de la même façon qu'entre deux séquences d'acides nucléiques. Ainsi, le pourcentage d'identité entre deux polypeptides est calculé après 20 alignement optimal de ces deux séquences, sur une fenêtre d'homologie maximale. Pour définir ladite fenêtre d'homologie maximale, on peut utiliser les mêmes algorithmes que pour les séquences d'acide nucléique.

Par fragment biologiquement actif d'un polypeptide selon l'invention, on entend désigner en particulier un fragment de polypeptide, tel que défini ci-après, présentant au moins une des caractéristiques biologiques des polypeptides 25 selon l'invention, notamment en ce qu'il est capable d'exercer de manière générale une activité même partielle, tel que par exemple :

- une activité enzymatique (métabolique) ou une activité pouvant être impliquée dans la biosynthèse ou la biodégradation de composés organiques ou inorganiques ;

- une activité structurelle (enveloppe cellulaire, molécule chaperonne, ribosome) ;
 - une activité de transport (d'énergie, d'ion) ; ou dans la sécrétion de protéine ;
- 5 - une activité dans le processus de réPLICATION, amplification, préparation, transcription, traduction ou maturation, notamment de l'ADN, de l'ARN ou des protéines.

Par fragment de polypeptides selon l'invention, on entend désigner un polypeptide comportant au minimum 5 acides aminés, de préférence 10, 15, 25, 10 50, 100 et 150 acides aminés.

Les fragments de polypeptides peuvent correspondre à des fragments isolés ou purifiés naturellement présents dans les souches de *Lactococcus*, ou à des fragments qui peuvent être obtenus par clivage dudit polypeptide par une enzyme protéolitique telle que la trypsine ou la chymotrypsine ou la collagénase, 15 par un réactif chimique (bromure de cyanogène, CNBr) ou en plaçant ledit polypeptide dans un environnement très acide (par exemple à pH = 2,5). Des fragments polypeptidiques peuvent également être préparés par synthèse chimique, à partir d'hôtes transformés par un vecteur d'expression selon l'invention qui contiennent un acide nucléique permettant l'expression dudit 20 fragment, et placé sous le contrôle des éléments de régulation et/ou d'expression appropriés.

Par « polypeptide modifié » d'un polypeptide selon l'invention, on entend désigner un polypeptide obtenu par recombinaison génétique ou par synthèse chimique comme décrit plus loin, qui présente au moins une modification par rapport à la séquence normale. Ces modifications peuvent être notamment portées sur des acides aminés nécessaires pour la spécificité ou l'efficacité de l'activité, ou à l'origine de la conformation structurale, de la charge, ou de l'hydrophobicité du polypeptide selon l'invention. On peut ainsi créer des polypeptides d'activité équivalente, augmentée ou diminuée, ou de

spécificité équivalente, plus étroite ou plus large. Parmi les polypeptides modifiés, il faut citer les polypeptides dans lesquels jusqu'à cinq acides aminés peuvent être modifiés, tronqués à l'extrémité N ou C-terminale, ou bien délétés, ou ajoutés.

5 Comme cela est indiqué, les modifications d'un polypeptide ont pour objectif notamment :

- de permettre sa mise en œuvre dans des procédés de biosynthèse ou de biodégradation de composés organiques ou inorganiques,
- de permettre sa mise en œuvre dans des procédés de réPLICATION, d'amplification, de réparation et règle de transcription, de traduction, ou de maturation notamment de l'ADN, l'ARN, ou de protéines,
- de permettre sa sécrétion améliorée,
- de modifier sa solubilité, l'efficacité ou la spécificité de son activité, ou encore de faciliter sa purification.

10 La synthèse chimique présente également l'avantage de pouvoir utiliser des acides aminés non naturels ou des liaisons non peptidiques. Ainsi, il peut être intéressant d'utiliser des acides aminés non naturels, par exemple sous forme D, ou des analogues d'acides aminés, notamment des formes souffrées.

15 La présente invention fournit toutes les séquences nucléotidiques et polypeptidiques du génome de *Lactococcus lactis* IL1403. Par ailleurs, il est un objet de la présente invention que de divulguer les fonctions de ces gènes et protéines (Tableau II).

20 Ainsi, à chaque cadre ouvert de lecture présenté dans le Tableau I est assigné un descriptif sur son rôle (Tableau II). Les gènes ont ensuite été classés en catégories selon une classification adaptée des gènes de *E. coli* (Riley, Functions of the gene products of *Escherichia coli*, *Microbiology Reviews* 57: 862, 1993). Cela permet à l'homme du métier de repérer les gènes utilisés dans une fonction métabolique donnée, puis d'isoler ce ou ces gènes dans des buts d'application en relation avec sa problématique, en y incluant des applications

industrielles directes (modification des souches) ou indirectes (outil de diagnostique et ses applications). Les gènes décrits dans l'invention ont été isolés sur des fragments d'ADN grâce à des amorces déduites de la séquence de *L. lactis* IL1403. Le Tableau III donne les noms des gènes correspondants aux ORF, ainsi que les protéines correspondantes d'autres organismes après comparaison avec la banque de données Swiss prot.

Les enzymes de biosynthèses d'acides aminés

Dans cette partie sont groupés les cadres ouverts de lecture correspondant aux protéines impliquées dans les réactions catalytiques des voies du métabolisme primaire, intermédiaire, secondaire, la fabrication de molécules complexes ou plus simples. Les voies identifiées ont été déterminées d'après les connaissances relatives aux besoins nutritionnels de ces bactéries et leurs possibilités métaboliques. L'ensemble des gènes impliqués dans les voies de biosynthèse des acides aminés est divulgué. Certaines de ces voies ont été identifiées auparavant tel que les voies de biosynthèse de l'histidine, du tryptophane, des acides aminés branchés ainsi que quelques gènes impliqués dans différentes autres voies.

La synthèse de vitamines

La synthèse de vitamines peut avoir un intérêt certain pour une bactérie alimentaire comme *L. lactis*. Cette bactérie est capable de synthétiser naturellement un certain nombre de vitamines, et la connaissance des gènes menant à leur synthèse permet à l'homme du métier d'optimiser l'expression de ces gènes ou de les modifier en vue d'augmenter la production de ces vitamines. Les bactéries ainsi modifiées peuvent être utilisées soit dans des procédés de fabrication de concentré de vitamines, soit directement dans l'alimentation afin d'obtenir un produit enrichi en vitamine. Comme il est indiqué au Tableau II, les gènes nécessaires à la synthèse de quatre cofacteurs, l'acide folique, la ménaquinone, la riboflavine et la thiorédoxine ont été identifiés.

Les gènes à activité peptidolytique

Les gènes codant pour des enzymes protéolytiques ont été systématiquement recherchés. Un certains nombre d'entre eux avaient déjà été 5 caractérisés et leur fonction décrite tel *pepN*, *pepC*, *pepF*, *pepO*, *pepA*, *pepP*, *pepV*, *pepX* *clpP* and *clpY* et d'autres étaient encore inconnus du public tels *pepQ*, *pepM*, *pepDA1*, *pepDA2*, *ycjE*, *htrA*. Ces enzymes ont un rôle crucial dans la nutrition azotée des bactéries lactiques et participent à la dégradation des peptides dans les produits fermentés, en particulier les fromages. Cet enzyme participe aussi à d'autres 10 processus cellulaires comme la dégradation de protéines permettant le renouvellement des protéines ou même de protéines hétérologues limitant ainsi leur production. D'autres protéines participent à la formation de la paroi comme *vanY* ou à des processus plus généraux comme la dégradation de protéines entrant dans divers processus cellulaires pour *piI36*, *yudC*, *yudD* *yufB* and *yufD*.

15

Les gènes de la glycolyse

Les enzymes impliqués dans la glycolyse ont été plus particulièrement étudiés. Les gènes impliqués dans la glycolyse ont été détectés dans différentes parties du chromosome de la souche IL1403. Ce sont *enoA* (633 kb) et *enoB* 20 (274 kb) codant pour l'énolase, *pgk* (242 kb) codant pour la phosphoglycérate kinase, *pgm* (332 kb) codant pour la phosphoglycérate mutase, *pgmB* (442 kb) codant pour la betta-phosphoglycomutase, *gapA* (554 kb) et *gapB* (2315 kb) codant pour la glycéraldéhyde 3-phosphate déhydrogénase, *tpiA* (1148 kb) codant pour la trioséphosphate isomérase, *pyk* (1370 kb) codant pour la 25 pyruvate kinase, *fbaA* (1963 kb) codant pour la fructose-bisphosphate aldolase, *pgiA* (2228 kb) codant pour la glucose-6-phosphate isomérase. En synthétisant des oligonucléotides homologues aux séquences de contigs proches des zones où ces gènes ont été détectés dans IL1403, et en effectuant des amplifications de type LR PCR sur l'ADN chromosomal de MG1363, des produits

d'amplification contenant les gènes de la glycolyse ont été obtenus. Ces gènes représentent l'ensemble complet des gènes de la glycolyse ayant pu être trouvés chez *L. lactis*. Cette méthode peut être appliquées aux autres souches de *L. Lactis* pour la détection des gènes de la glycolyse dans l'environnement 5 génétique le plus adéquat pour l'industrie. La modification des ces gènes par mutagénèse a permis la construction de nouvelles souches dites « food-grade », qui ont de nombreuses applications dans l'industrie alimentaire et l'agriculture.

En particulier, il a montré qu'il existait 2 copies des gènes *gap* codant pour la glyceraldehyde 3 phosphate déhydrogénase et *eno* codant pour l'énoïlase. Il a été 10 aussi montré que le gène *gap* précédemment isolé n'était pas exprimé de manière significative lors de croissances dans différents milieux, et ne codait donc pas pour le gène réellement impliqué dans la glycolyse. Une analyse détaillée de la séquence montre que le second gène *gap* identifié possède des propriétés qui suggèrent fortement qu'il s'agit du gène réellement actif lors de la glycolyse. Premièrement, 15 son biais de codon est très fort et semblable aux autres gènes de la glycolyse tels ceux de l'opéron *lac*, *pgi*, *fdp* et *tpi*. Deuxièmement, il possède une séquence de régulation (boîte CRE) en amont de la boîte -35 de son promoteur, permettant son activation lors de l'assimilation du sucre rapide. Enfin, il a été démontré expérimentalement que ce gène était fortement exprimé lors de croissance 20 exponentielle, et qu'il était indispensable à la croissance cellulaire (son inactivation est létale). Le gène *gap* de la glycolyse a été isolé sur un plasmide de *E. coli* (pGEM) et son expression dans *E. coli* restaure la croissance de mutants *gap* dans les milieux appropriés. Ce gène pourrait donc être utilisé pour augmenter l'activité 25 GAPDH dans des souches où cette activité est limitante pour la vitesse d'acidification. Une telle construction mènera à l'obtention d'une souche acidifiant plus vite le lait, une propriété recherchée dans certains procédés industriels. Un travail comparable peut être réalisé sur les autres enzymes de cette voie.

Les voies d'assimilation secondaire des sucres

L. lactis est capable d'utiliser un grand nombre de carbohydrates (de manière non limitative: L-arabinose, ribose, D-xylose, galactose, glucose, fructose, mannose, mannitol, N-acetyl glucosamine, amygdaline, arbutine, esculine, salicine, cellobiose, 5 maltose, lactose, melibiose, saccharose, trehalose, raffinose, amidon, gentiobiose, gluconate). Les gènes impliqués dans l'entrée de ces sucres et leur transformation pour rejoindre une des étapes de la glycolyse sont présentés au Tableau II. Pour illustrer, deux gènes impliqués dans la voie des pentoses phosphates ont été identifiés : la transkétolase (*YqgF*) et la phosphokétolase (*YpdE*). Un fragment interne a été utilisé pour inactiver l'un ou l'autre de ces gènes dans la souche de *L. lactis* NCDO2118. Les mutants ainsi obtenus sont affectés dans le métabolisme des 10 sucres et accusent des retards de croissance, en particulier en présence de xylose pour la souche *ypdE*. L'activité de ces gènes peut également être amplifiée en plaçant l'un ou l'autre de ces gènes sous contrôle d'un promoteur régulé différemment. Un travail similaire avec les autres gènes de ces voies permettra de construire des souches de *L. lactis* avec des capacités fermentaires nouvelles. En particulier, la modification additionnelle de l'expression des gènes codant (i) pour la glucose 6-phosphate déhydrogénase (*zwf*), la gluconate déshydrogénase (*gnd*), la ribulose phosphate isomérase (*rpiA*) ou pour (ii) des gènes de la voie d'Entner-Dodouhoff (*kdg*, *uxu* et *yqhA* présent en amont de la transkétolase) et la gluconate phosphate déshydrogénase devrait permettre de produire des souches de *L. lactis* 15 hétérofermentaires vraies à partir de sucre métabolisé en glucose 6-phosphate.

20

25

Les gènes impliqués dans la formation et la régulation de l'ensemble des produits de fermentation

Les produits de fermentation sont ce qu'il y a de plus important pour la formation de l'arôme du fromage par *Lactococcus lactis*. Dans les conditions habituellement appliquées pour la production fromagère, 95 % du sucre utilisé est converti en acide lactique. D'autres produits importants pour la fermentation sont

l'éthanol, le fumarate et l'acétate. Une petite partie, habituellement moins de 1 %, du pyruvate produit durant la glycolyse est convertie en alpha-acétolactate, qui est distribué entre les acides aminés branchés et les produits de la branche de formation des acétoïnes : diacétyle, acétoïne ou 2,3-butanediol. L'interaction de ces gènes et leur régulation sont importantes pour la formation de l'ensemble des produits de fermentation. La présente invention fournit les outils pour détecter tous les gènes chromosomiques des bactéries du genre lactococci, impliquées dans la formation de produits de fermentation. Ces produits sont importants pour l'arôme du produit fromager final. Plusieurs gènes ont déjà été détectés auparavant. Ceux-ci incluent la lactate déhydrogénase, la pyruvate formate lyase, α -acétolactate synthase, α -acétolactate décarboxylase. De nouveaux gènes potentiels impliqués dans cette voie, sont fournis par cette invention, détectés durant l'annotation. Ce sont d'autres putatives alpha-acétolactate décarboxylase (*aldC* gene), diacétyle réductase (*butB*), acétoïne réductase (*butA*), pyruvate déhydrogénase (*pdhABCD*), acétate kinase (*acdA1*, *acdA2*), alcool déhydrogénase (*adhA*, *adhE*). En manipulant ces gènes par des méthodes de génie génétique ou de génétique, l'homme du métier peut influencer l'arôme du produit final fromager de la façon désirée. D'autres enzymes, qui peuvent être utilisées pour changer l'ensemble des produits de fermentation, sont les NADH oxidases. Ces gènes sont codés par *ndhA*, *yieA*, *yieB*, *yphA*, *ydjE*, *yhid*, *yrfB*, *nox*. La présente invention fournit les outils pour détecter ces gènes dans les différentes souches de *L. lactis* et pour créer des bactéries « food-grade » capables de produire ces métabolites importants pour les arômes comme le diacétyle.

Les gènes liés à l'activité des bactériophages

Les bactériophages constituent l'un des problèmes majeurs de l'industrie laitière. Ils sont à l'origine de perturbations importantes de les fermentations et par ce biais, de pertes économiques. De nombreux efforts ont été consacrés au développement de méthodes permettant de contrôler leur développement au cours des procédés de fabrication fromagère. On peut

envisager en particulier de cloner sur un plasmide ou dans le chromosome de souches à utilisation industrielle, des gènes bactériens et/ou de bactériophages dont les produits limitent le développement de phages infectants. On peut également développer des systèmes artificiels de résistance mimant les mécanismes naturels dits d'infection abortive, dans lesquels les cellules infectées meurent sans multiplier les phages. Dans ce but, un gène toxique pour la bactérie, placé sous le contrôle d'un promoteur de phage dont l'expression est induite après infection par un phage similaire est cloné sur un plasmide (Djordjevic, G. M., and Klaenhammer, T. R. (1997) Bacteriophage-triggered defense systems : phage adaptation and design improvements. *Appl Environ Microbiol* 63 :4370-4376 ; Walker, S. A., and Klaenhammer, T. R. (1998) Molecular characterization of a phage-inducible middle promoter and its transcriptional activator from the lactococcal bacteriophage Φ31. *J Bacteriol* 180 : 921-931) ou sur le chromosome bactérien. La présente invention, décrit les gènes de la souche IL1403 et de six prophages identifiés sur son chromosome. Cinq de ces prophages ont été identifiés expérimentalement par induction de leur cycle de croissance lytique après exposition à un agent endommageant l'ADN (Ultra-Violets ou Mitomycine C). La présente invention apporte donc la possibilité d'identifier des gènes de bactérie ou de phage répondant à l'une ou l'autre des propriétés citées ci-dessus. A savoir : des gènes qui perturbent le développement d'un phage infectant, des gènes toxiques pour la bactérie, des circuits de régulation induits après infection par un phage.

Il est à noter que les signaux de transcription et traduction des phages ainsi que leurs circuits de régulation peuvent aussi être utilisés pour développer des systèmes d'expression conditionnelle (WO95/31563) ou de surexpression (O'Sullivan, D. J., Walker, S. A., West, G., and Klaenhammer, T. R. (1996) Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. *Biotechnology* 14 : 82-87) de protéines d'intérêt. La présente invention peut donc aussi être utilisée dans ce

but.

Les gènes impliqués dans les systèmes de régulation correspondent aux ORF 38, 41, 448, 452, 518, 1461 et 1472.

5 Les gènes de réponse au stress

Les lactocoques sont soumis à de nombreux changements environnementaux dans les procédés industriels on peut citer parmi d'autres, des changements de température (chaleur, froid), d'osmolarité (salinité, activité en eau), de pH, d'oxygénéation, de conditions redox etc. Une survie optimale de *L. lactis* à ces changements environnementaux, parfois brusques, est recherchée afin d'améliorer la reproductibilité et le rendement des procédés de fabrication et d'utilisation de ces fermentations lactiques. Les lactocoques possèdent des réponses inductibles aux stress notamment aux UV, à la chaleur, au froid, au NaCl, à la présence d'H₂O₂, à la carence en sucre, à la bile, à l'acidité. Il faut noter que certains résultats (Kim *et al.*, 1999, FEMS Microbiol Lett., 171, 57) soulignent des différences dans les capacités de résistance et d'adaptation aux stress de 2 sous-espèces de lactocoques : *L. lactis* ssp. *lactis* et *L. lactis* ssp. *cremoris*. Des études protéomiques montrent qu'un certain nombre de protéines sont induites dans plusieurs conditions de stress. Cependant, les protéines impliquées dans la résistance à un ou plusieurs stress ont été, à ce jour rarement identifiées en particulier du fait de l'absence de l'invention qui limitait les possibilités d'identification des spots protéiques. Il est important de souligner néanmoins, que certaines conditions de stress semblent modifier l'expression d'enzymes métaboliques notamment impliqués dans la glycolyse. D'autres études biochimiques, moins globales, corrèlent l'augmentation de certaines activités enzymatiques à une meilleure survie et/ou à l'adaptation des lactocoques à certains stress. Ainsi, la H⁺-ATPase, la désimination de l'arginine, le transport du citrate dans la sous espèce *diacetylactis*, le transport de solutés compatibles, les NADH-peroxidase et NADH-oxidase sont probablement

impliquées dans des mécanismes d'adaptation aux stress et pour certains, dans la survie en fin de fermentation.

Des études génétiques (recherche de gènes conservés ou mutagenèse) ont permis la caractérisation de certains gènes impliqués dans les résistances aux stress.

5 Ceux-ci restent néanmoins peu nombreux et le lien avec les études biochimiques a rarement été établi. Parmi les gènes identifiés on peut notamment citer :

- stress oxydatif : *recA*, *fpg*, *sodA*, *nox*, *pox* (NADH peroxidase), *fhpA* et *fhpB*,

10 - stress mutagène : *recA*, *polA*, *hexB*, *deoB*, *gerC*, *dltD*, *arcD*, *bglA*, *gidA*, *hgrP*, *metB*, *proA* et sept orf non identifiées par recherche d'homologie avec les banques de données,

- stress thermique, dénaturation protéique : *recA*, *groES*, *groEL*, *dnaK*, *dnaJ*, *ftsH*, *grpE*, *hrcA*, *ctsR*, *clpP*, *clpB*, *clpE*, *htrA*,

- stress froid : *cspABCDE*,

15 - stress osmotique : *busA*, *gadBCR*,

- stress acide : *gadBCR*, *clpP*, *groES*, *groEL*, *dnaK*.

De plus, deux études génétiques (Duwat *et al.*, 1999, Mol Microbiol., 31, 845 ; Rallu *et al.*, 2000, Mol Microbiol., 35, 517 ; FR27 53201) ont permis d'isoler des mutants plus résistants que la souche initiale (MG1363) à une ou plusieurs conditions de stress et suggèrent fortement que des pools intracellulaires notamment de composés puriques et de phosphate constituent des détecteurs intracellulaires de stress.

25 La séquence annotée de *L. lactis* IL1403 apporte une base moléculaire pour l'étude systématique des réponses aux stress des lactocoques. Les gènes détectés pendant l'annotation du génome de IL1403 sont fournis dans les Tableaux II et III de la présente demande. La méthode de détection des gènes équivalents dans d'autres bactéries proches de *L. lactis* IL1403 est fournie dans la présente invention et permet d'exploiter les résultats obtenus durant l'étude

des réponses aux stress d'autres souches de *L. lactis*. En effet, les réponses aux stress ont préférentiellement été étudiées avec *L. lactis* MG1363 qui contrairement à IL1403 ne contient pas de prophage inductible en condition de stress.

5

Les gènes des protéines sécrétées ou dont l'activité est liée à la sécrétion des protéines

L. lactis est capable de sécréter un certain nombre de protéines dans le milieu extérieur et à la surface de la cellule. Cette capacité peut être mise à profit pour sécréter des molécules d'intérêt comme des enzymes d'intérêt technologique ou des molécules d'intérêt médical ou pharmaceutique. L'invention présente permet d'isoler rapidement différents signaux d'exportation de *L. lactis* afin de tester celui ou ceux qui donnent les meilleurs résultats avec le gène d'intérêt à exporter. La liste des protéines et des gènes susceptibles de fournir de tels signaux est fournie Tableau II. Ces protéines ont été extraites par une méthode informatique avec le logiciel PSORT (Nakai & Horton, PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization, *Trends Biochem Sci*, 24: 34-6, 1999). D'autres méthodes pourraient être employées pour compléter ce tableau en utilisant une partie des données de l'invention, comme la liste des protéines potentiellement traduites chez *L. lactis* ou directement la séquence nucléotidique traduite dans toutes les phases.

De plus, l'outil fourni dans l'invention donne toutes les informations de base sur les gènes qui peuvent limiter certaines étapes de la sécrétion. Une liste de ces gènes est présentée Tableau IV. Par exemple, l'intégralité du gène codant pour une lipoprotéine qui permet d'accélérer le repliement correct des protéines sécrétées a été isolé grâce aux enseignements de l'invention. Des homologues de cette protéine ont été caractérisés précédemment chez d'autre organismes comme *B. subtilis*. Cependant, il peut exister plusieurs gènes de ce type dans un organisme, ce qui complique la tache de l'expérimentateur confronté soit à une recherche exhaustive

de toutes les protéines homologues afin de réaliser le choix le plus judicieux, soit à développer une expérimentation lourde afin d'isoler le facteur pertinent dans son procédé. La présente invention permet donc à l'homme du métier de choisir en fonction de son expertise le ou les gènes nécessaires à l'accomplissement de son travail. Dans le cas de *L. lactis*, il a été possible d'isoler le gène codant pour l'homologue vrai de *prsA* de *B. subtilis* et de l'exprimer plus fortement dans des cellules surproduisant un enzyme d'intérêt industriel à partir du gène *lip* de *Staphylococcus hyicus*. En condition normale, une grande partie de la lipase est dégradée par limitation de la protéine type *prsA*. Sa surproduction préserve la lipase de toute dégradation de cet enzyme lors ou après son exportation.

Les gènes impliqués dans la compétence des transformations génétiques

La compétence génétique naturelle est la capacité des bactéries à transporter de l'ADN étranger dans la cellule, le processer et à l'intégrer dans le chromosome ou à établir des éléments à réplication autonome. Les gènes, qui permettent à la bactérie de développer cette capacité, sont divisés en ce qu'on appelle des gènes précoces, qui sont des gènes de régulation, et en gènes tardifs, représentant le système de compétence lui-même. L'étude des séquences des gènes tardifs de compétence montre qu'ils sont fortement similaires dans les différentes bactéries AT- riches gram positifs, comme *B. subtilis* ou *Streptococci*. Une grande différence existe dans les mécanismes moléculaires qui régulent le développement de ce processus dans Streptococci et Bacilli. Dans *B. subtilis*, le régulateur ComK existe, qui assemble les signaux des étapes précoces du développement de compétence. Un pendant fonctionnel de ce régulateur a été trouvé chez Streptococci. Il code pour le facteur sigma de l'ARN polymérase. Les conditions de compétence naturelle ne sont pas connues pour l'espèce *L. lactis*. Cependant, des recherches d'homologies dans le génome de *L. lactis* révèlent 4 opérons (*comE*, *comF*, *comC* et *comG*) contenant 8 gènes ayant une forte similarité avec les gènes tardifs de

compétence de *B. subtilis* en *S. pneumoniae*. Comme *L. lactis* semble pouvoir posséder un ensemble complet des gènes tardifs de compétence, il peut acquérir une compétence naturelle. Une manière de découvrir les conditions pour acquérir la compétence peut être l'étude de la régulation des gènes tardifs. Le 5 gène, correspondant au régulateur de la compétence, *ywcA*, existe aussi dans *L.lactis* IL1403. La surproduction de cette protéine dans *L. lactis* permettra l'induction des gènes tardifs de compétence dans ces cellules. La présente invention fournit la manière de détecter le système complet des gènes de compétence dans les plusieurs souches de *L. lactis* différentes de d'IL1403. La 10 connaissance des structures des régions de régulation dans ces bactéries et des régulateurs correspondants donnera la possibilité d'induire la compétence dans ces souches. Cette méthode peut être utilisée pour les souches ne pouvant pas être manipulées par les autres méthodes de génie génétique.

D'une manière préférée, l'invention est relative à une séquence 15 nucléotidique selon l'invention, caractérisées en ce qu'elle pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la biosynthèse des acides aminés et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1507 1508 1511 1512 1513 1514 1515 796 1178 1179 1275 1881 1251 1252 1254 1255 1257 1258 1259 1260 1261 20 683 1238 1240 1241 1243 1245 1246 1247 1248 1249 860 797, de préférence 500 120 1291 1690 1793 1794 1795 1796 1803 1807 1808 166 361 755 1292 1293 1323 1609 1668 1670 1972 1973 2159 2285 128 129 575 812 813 814 815 1324 1325 1656 1657 1935 2257 75 551 613 615 616 617 1904 et un de leurs fragments représentatifs.

25 De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la biosynthèse des cofacteurs, groupes prosthétiques et transporteurs et en ce qu'elle est choisie parmi les séquences suivantes : ORF 1169 1383 398 1405, de

préférence 871 953 1172 1173 1174 1176 1353 1354 610 1157 1615 187 743
744 745 746 747 875 584 585 1362 1487 1011 1012 1013 1014 1123 1145
1871 862 958 1692 1695 497 1130 1300 1301 1302 1526 1120 et un de leurs
fragments représentatifs.

5 De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide d'enveloppe cellulaire de *Lactococcus lactis* ou un de ses fragments, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 328 329 2288 2320 1296, de préférence 326 327
10 631 978 1105 1193 1481 2025 2185 280 320 348 350 351 395 552 554 560
885 886 968 1181 1321 1406 1637 1638 1857 1934 1960 2096 2164 2283
2287 153 206 207 212 213 217 218 219 220 221 222 223 224 693 695 697
754 894 930 936 937 939 940 942 944 945 973 1297 1298 1299 1304 1380
1499 1500 1618 1845 2218 2279 2280 et un de leurs fragments représentatifs.

15 De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la machinerie cellulaire, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 20 22 681 1898 1920 1921 402
20 403 972 417 1015 2134 1779 2206, de préférence 100 818 828 902 914 990
991 1267 1384 1636 1704 2207 508 126 119 562 959 1664 2161 2315 1107
1108 1265 1823 1824 1859 2084 2120 2176 2177 2178 2179 et un de leurs
fragments représentatifs.

25 De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme intermédiaire central, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 728 155, de préférence 434 1024 1162 1376 1537 1621 291 716 1289 1538 1539 1728

1729 1732 2005 1663 215 586 712 713 714 715 et un de leurs fragments représentatifs.

- De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme énergétique, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1785 2042 59 1329 1814 1815 1816 1817 1818 1819 1820 994 995 677 918 1205 1262 2211 284 345 439 570 656 682 1152 1372 1373 1374 634 1552 1553 1554 2034 2035 2036 2037 2038 2039 684, de préférence 76 136 151 186 242 273 276 342 347 400 643 768 801 843 844 1281 1348 1572 1574 1583 1596 1601 1604 1746 1784 1925 2100 2182 2307 290 502 548 742 751 816 845 846 974 1327 1343 1747 1751 1971 1985 2088 2089 2090 2092 2093 254 256 257 1127 1283 1379 431 609 620 719 720 732 1756 2167 1674 1675 915 916 1125 1142 1207 1290 1707 1858 1864 2068 2069 265 253 385 967 1146 1792 1962 2224 2303 1673 1723 1979 2277 2290 61 62 63 64 26 181 426 440 711 784 834 976 1326 1504 1532 1533 1534 1543 1546 1549 1550 1676 1679 1680 1687 1721 1730 1731 2079 2241 2242 685 1212 1213 1214 1215 1216 et un de leurs fragments représentatifs.
- De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme des acides gras et des phospholipides et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 65 72 118 390 413 414 415 576 577 675 786 787 788 789 790 791 792 793 794 795 859 1284 1834 1837 1955 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le

métabolisme des nucléotides, des purines, des pyrimidines ou nucléosides et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 2066 1531 1556 1557 1558 1569 1573 1575 1576 1578 501
1386 1387 1404 1586 1599 21 281 282 947 949 1969 2133 200, de préférence
5 182 506 992 993 1159 1177 311 1112 1754 226 1164 1563 1564 1568 1689
2007 407 1086 1087 1388 1649 1650 295 605 645 829 854 1165 1482 1483
1485 1708 1908 1950 202 204 205 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions de régulation, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1263 1331 1559 2041 2316 405
10 406 908 909 1022 1478 1641 1725 1696 1726 890 1555 1506 7, de préférence
6 8 110 131 137 154 167 243 245 261 324 335 421 424 429 445 541 565 622
15 674 771 832 847 877 905 929 946 982 1084 1151 1186 1197 1233 1294 1310
1349 1490 1494 1521 1524 1566 1624 1639 1652 1654 1717 1745 1753 1766
1830 1831 1846 1852 1853 1928 1956 2001 2032 2043 2059 2095 2216 2243
2258 2262 2270 2291 2296 2306 1020 1477 1642 1724 1752 1797 1798 740
1545 1688 2200 2205 24 340 383 386 1274 1345 1603 1927 543 435 1480
20 1498 1681 804 975 1211 1336 117 603 723 757 785 926 1344 1517 1527 1585
2172 227 229 360 770 1171 1333 1635 2071 2299 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de réPLICATION, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 4 5 2 3 362 363 563 600 663 664
25 665 2030 2180 2198 2265 2281, de préférence 573 644 806 856 872 873 1089
1360 1361 1869 101 102 240 349 401 408 428 507 513 542 572 657 761 766

767 857 878 898 923 997 1000 1002 1025 1088 1129 1138 1139 1140 1266
1270 1693 1791 1883 1948 2098 2247 2251 2263 2264 2267 2301 et un de
leurs fragments représentatifs.

- De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de transcription, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1237 1332 564, de préférence 817 960 1906 2314 14 619 646 648 709 779 1314 1367 1368 1607
- 5 1612 1623 1850 1851 2124 2160 2222 2297 359 419 1613 et un de leurs fragments représentatifs.

- De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de traduction, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1239 313 396 706 858 1778 1854
- 10 1861 1929 2105 571 1776 97 98 680 2127 782 783 2128, de préférence 68 382 394 807 831 1113 1114 1763 1775 1879 1902 1914 1964 1983 1984 2020 2022 2094 2109 2183 2229 260 303 624 1606 1697 2027 2028 2045 2047
- 15 2192 374 911 1600 2062 107 135 198 246 292 301 302 748 760 781 805 853 892 906 1097 1099 1307 1308 1617 1644 1790 1893 1894 1937 2056 2057 2123 2125 2126 2135 2136 2137 2138 2139 2140 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2162 2209 2246 2248 2310 2311 2318 2319 13 132 158 168 169 171 496 638 705 852 1144 1923
- 20 25 1944 358 607 707 989 1126 1895 1912 2065 2208 2317 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le

processus de transport et de liaison des protéines, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1256 1787 330 550 699 717 1330 1496 1497 1810 1888 1889 1890 1891 1892 2091 1771 566 919 1551 2040 2104 635 676 1970 121 122 437 81 82 726 927 2221, de 5 préférence 11 74 104 262 263 269 270 271 285 286 287 318 319 333 334 544 545 579 580 672 673 729 855 881 888 889 917 983 984 1080 1121 1122 1203 1311 1312 1366 1567 1602 1667 1800 1801 1825 1826 1844 1926 2051 2052 2074 2157 2260 2261 2313 2321 70 115 331 352 353 354 355 356 357 364 365 375 574 698 824 863 864 955 956 957 1128 1182 1183 1184 1185 1750 10 1811 1847 1848 1873 2087 2107 2250 52 308 309 310 1767 1768 1769 1770 1772 208 209 259 430 933 934 1282 1369 1370 1371 1530 1540 1541 1542 1548 1671 1678 1683 1684 1685 1686 1733 1734 1735 2239 99 193 194 316 336 337 338 339 341 392 587 636 691 848 849 869 932 1194 1195 1295 1341 1355 1356 1357 1407 1528 1640 1655 2058 2169 2170 2171 2305 896 1166 15 1651 23 25 180 422 423 425 630 833 977 1149 1150 1505 1757 1758 1759 127 130 160 244 314 389 621 679 721 722 1389 1561 1584 1682 2220 2292 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans l'adaptation aux conditions atypiques, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 174 540 568 654 686 970 1570, de préférence 69 173 195 312 346 418 653 912 971 1102 1170 1414 2085 et un de leurs fragments représentatifs.

25 De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments dans la sensibilité aux médicaments et analogues, et en ce qu'elle comprend une séquence

nucléotidique choisie parmi les séquences suivantes : ORF 1244, de préférence 1860 2249 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un 5 polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions relatives aux phages et prophages, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 448 449 452 455 465 471 493 494 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1046 1051 1075 1076 1077 1420 1422 10 1423 1424 1425 1426 1448 1450 1455 1456 1458 1465 1466 1467 1468 1470 1720, de préférence 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 446 447 450 451 453 454 456 457 458 459 460 461 462 463 464 466 467 468 469 470 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 514 515 516 517 518 519 520 521 522 523 15 524 525 526 527 528 529 531 532 533 534 1042 1043 1044 1045 1047 1048 1049 1050 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1200 1217 1416 1417 1418 1419 1421 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1449 1451 1452 20 1453 1454 1457 1459 1460 1461 1462 1463 1464 1469 1471 1472 1473 1474 1475 1647 1998 2003 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un 25 polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions relatives aux transposons et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 53 54 55 56 90 91 93 94 141 142 143 144 145 146 378 379 380 381 649 650 651 652 662 670 737 738 837 838 839 841 842 1224 1225 1231 1232 1236 1286 1287 1591 1741 1742 2082 2083 2129 2130 2131 2132 2201 2202 2203 2204, de préférence

614 694 718 950 1268 1342 1400 1560 1749 1936 1961 1986 1992 2060 2118
2191 2240 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide spécifique de *Lactococcus lactis* ou un de ses fragments, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 416 1727 1822 87 88 279 332 569 671 700 701 727 840 850
884 891 900 1204 1242 1277 1382 1592 1605 1718 1719 1762 1777 1780
1907 1917 1918 1919 1930 1938 1939 1940 2102 2106 2174 2210 1250 1328
10 2199 666 948 1381 1990, de préférence 591 618 710 835 1153 1910 1931
1953 2031 17 18 50 57 58 60 78 79 80 84 92 113 114 116 124 125 133 134
139 140 148 149 150 157 159 161 162 170 172 175 176 179 183 184 185 188
189 196 197 214 230 231 232 233 234 235 236 238 247 255 258 264 266 267
268 274 277 283 288 289 293 294 298 299 300 315 317 321 323 325 343 344
15 366 367 369 370 371 372 373 376 377 384 387 388 399 404 409 410 411 420
433 436 438 443 444 498 499 503 510 512 546 549 553 555 556 557 558 582
583 588 589 592 594 597 599 611 625 637 655 678 688 703 704 708 725 730
735 741 749 756 759 762 763 764 765 769 774 780 798 799 800 803 809 810
811 819 827 830 861 865 880 882 883 899 913 920 924 951 963 964 965 986
20 987 999 1001 1004 1016 1019 1023 1078 1079 1090 1091 1094 1098 1100
1103 1104 1106 1109 1110 1115 1116 1117 1119 1124 1131 1137 1141 1147
1148 1155 1156 1160 1161 1168 1175 1187 1188 1201 1202 1208 1209 1223
1276 1278 1280 1303 1313 1315 1316 1318 1319 1322 1340 1352 1358 1359
1363 1391 1392 1393 1408 1409 1411 1412 1476 1486 1489 1491 1492 1493
25 1501 1518 1519 1520 1522 1523 1525 1529 1544 1547 1565 1577 1579 1581
1595 1597 1614 1619 1620 1622 1648 1658 1661 1662 1666 1669 1677 1694
1699 1701 1702 1709 1710 1711 1712 1722 1748 1760 1761 1764 1765 1773
1774 1781 1782 1786 1788 1789 1802 1805 1809 1827 1828 1829 1832 1833
1838 1839 1840 1842 1843 1849 1855 1856 1863 1865 1866 1867 1868 1872

1874 1875 1876 1885 1886 1887 1900 1901 1903 1915 1916 1924 1933 1941
1946 1951 1952 1954 1958 1959 1963 1966 1967 1968 1976 1977 1978 1981
1982 2004 2006 2008 2011 2014 2015 2016 2017 2018 2019 2026 2029 2033
2044 2049 2050 2054 2061 2063 2070 2080 2081 2101 2108 2110 2115 2158
5 2163 2165 2168 2173 2175 2184 2186 2190 2193 2194 2197 2217 2219 2226
2227 2232 2235 2238 2245 2253 2254 2259 2272 2275 2278 2282 2284 2286
2289 2294 2295 2298 2302 2304 2308 2312 2322 2323 16 66 67 73 77 108
109 111 112 252 391 432 505 509 511 559 581 593 598 604 612 640 642 647
702 733 734 736 739 750 752 758 776 777 778 802 820 826 874 876 897 901
10 910 922 952 954 961 979 980 981 996 1017 1093 1111 1118 1135 1196 1199
1273 1320 1377 1413 1562 1610 1705 1783 1804 1884 1897 1909 1922 2117
2293 9 10 12 15 19 51 71 83 85 86 89 95 96 103 105 106 123 138 147 152
156 163 164 165 177 178 190 191 192 199 201 203 210 211 216 225 228 237
239 241 248 249 250 251 272 275 278 296 297 304 305 306 307 322 368 393
15 397 412 427 441 442 495 504 530 535 536 537 538 539 547 561 567 578 590
595 596 601 602 606 608 623 626 627 628 629 632 633 639 641 658 659 660
661 667 668 669 687 689 690 692 696 724 731 753 772 773 775 808 821 822
823 825 836 851 866 867 868 870 879 887 893 895 903 904 907 921 925 928
931 935 938 941 943 962 966 969 985 988 998 1003 1005 1006 1007 1008
20 1009 1010 1018 1021 1081 1082 1083 1085 1092 1095 1096 1101 1132 1133
1134 1136 1143 1154 1158 1163 1167 1180 1189 1190 1191 1192 1198 1206
1210 1218 1219 1220 1221 1222 1226 1227 1228 1229 1230 1234 1235 1253
1264 1269 1271 1272 1279 1285 1288 1305 1306 1309 1317 1334 1335 1337
1338 1339 1346 1347 1350 1351 1364 1365 1375 1378 1385 1390 1394 1395
25 1396 1397 1398 1399 1401 1402 1403 1410 1415 1479 1484 1488 1495 1502
1503 1509 1510 1516 1535 1536 1571 1580 1582 1587 1588 1589 1590 1593
1594 1598 1608 1611 1616 1625 1626 1627 1628 1629 1630 1631 1632 1633
1634 1643 1645 1646 1653 1659 1660 1665 1672 1691 1698 1700 1703 1706
1713 1714 1715 1716 1736 1737 1738 1739 1740 1743 1744 1755 1799 1806

1812 1813 1821 1835 1836 1841 1862 1870 1877 1878 1880 1882 1896 1899
1905 1911 1913 1932 1942 1943 1945 1947 1949 1957 1965 1974 1975 1980
1987 1988 1989 1991 1993 1994 1995 1996 1997 1999 2000 2002 2009 2010
2012 2013 2021 2023 2024 2046 2048 2053 2055 2064 2067 2072 2073 2075
5 2076 2077 2078 2086 2097 2099 2103 2111 2112 2113 2114 2116 2119 2121
2122 2141 2166 2181 2187 2188 2189 2195 2196 2212 2213 2214 2215 2223
2225 2228 2230 2231 2233 2234 2236 2237 2244 2252 2255 2256 2266 2268
2269 2271 2273 2274 et un de leurs fragments représentatifs.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la biosynthèse des acides aminés, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1507 1508 1511 1512 1513 1514 1515 796 1178 1179 1275 1881 1251 1252 1254 1255 1257 1258 1259 1260 1261 683 1238 1240 1241 1243 1245 1246 1247 1248 1249 860 797, de préférence 500 120 1291 1690 1793 1794 1795 1796 1803 1807 1808 166 361 755 1292 1293 1323 1609 1668 1670 1972 1973 2159 2285 128 129 575 812 813 814 815 1324 1325 1656 1657 1935 2257 75 551 613 615 616 617 1904 et un de leurs fragments.

20 Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la biosynthèse des cofacteurs, groupes prosthétiques et transporteurs, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1169 1383 398 25 1405, de préférence 871 953 1172 1173 1174 1176 1353 1354 610 1157 1615 187 743 744 745 746 747 875 584 585 1362 1487 1011 1012 1013 1014 1123 1145 1871 862 958 1692 1695 497 1130 1300 1301 1302 1526 1120 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un

polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide d'enveloppe cellulaire de *Lactococcus lactis* ou un de ses fragments, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 328 329 2288 2320 1296, de préférence 326 327 631 978 1105 1193 1481 2025
5 2185 280 320 348 350 351 395 552 554 560 885 886 968 1181 1321 1406
1637 1638 1857 1934 1960 2096 2164 2283 2287 153 206 207 212 213 217
218 219 220 221 222 223 224 693 695 697 754 894 930 936 937 939 940 942
944 945 973 1297 1298 1299 1304 1380 1499 1500 1618 1845 2218 2279
2280 et un de leurs fragments.

10 Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la machinerie cellulaire, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 20 22 681 1898 1920 1921 402 403 972 417 1015 2134 1779
15 2206, de préférence 100 818 828 902 914 990 991 1267 1384 1636 1704 2207
508 126 119 562 959 1664 2161 2315 1107 1108 1265 1823 1824 1859 2084
2120 2176 2177 2178 2179 et un de leurs fragments.

20 Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme intermédiaire central, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 728 155, de préférence 434 1024 1162 1376
1537 1621 291 716 1289 1538 1539 1728 1729 1732 2005 1663 215 586 712
713 714 715 et un de leurs fragments.

25 Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme énergétique, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1785 2042 59 1329 1814 1815 1816 1817 1818 1819

1820 994 995 677 918 1205 1262 2211 284 345 439 570 656 682 1152 1372
1373 1374 634 1552 1553 1554 2034 2035 2036 2037 2038 2039 684, de
préférence 76 136 151 186 242 273 276 342 347 400 643 768 801 843 844
1281 1348 1572 1574 1583 1596 1601 1604 1746 1784 1925 2100 2182 2307
5 290 502 548 742 751 816 845 846 974 1327 1343 1747 1751 1971 1985 2088
2089 2090 2092 2093 254 256 257 1127 1283 1379 431 609 620 719 720 732
1756 2167 1674 1675 915 916 1125 1142 1207 1290 1707 1858 1864 2068
2069 265 253 385 967 1146 1792 1962 2224 2303 1673 1723 1979 2277 2290
61 62 63 64 26 181 426 440 711 784 834 976 1326 1504 1532 1533 1534
10 1543 1546 1549 1550 1676 1679 1680 1687 1721 1730 1731 2079 2241 2242
685 1212 1213 1214 1215 1216 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme des acides gras et des phospholipides, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 65 72 118 390 413 414 415 576 577 675 786 787 788 789 790 791 792 793 794 795 859 1284 1834 1837 1955 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme des nucléotides, des purines, des pyrimidines ou nucléosides, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 2066 1531 1556 1557 1558 1569 1573 1575 1576 1578 501 1386 1387 1404 1586 1599 21 281 282 947 949 1969 2133 200, de préférence 182 506 992 993 1159 1177 311 1112 1754 226 1164 1563 1564 1568 1689 2007 407 1086 1087 1388 1649 1650 295 605 645 829 854 1165 1482 1483 1485 1708 1908 1950 202 204 205 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un

polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions de régulation, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1263 1331 1559 2041 2316 405 406 908 909 1022 1478

5 1641 1725 1696 1726 890 1555 1506 7, de préférence 6 8 110 131 137 154
167 243 245 261 324 335 421 424 429 445 541 565 622 674 771 832 847 877
905 929 946 982 1084 1151 1186 1197 1233 1294 1310 1349 1490 1494 1521
1524 1566 1624 1639 1652 1654 1717 1745 1753 1766 1830 1831 1846 1852
1853 1928 1956 2001 2032 2043 2059 2095 2216 2243 2258 2262 2270 2291
10 2296 2306 1020 1477 1642 1724 1752 1797 1798 740 1545 1688 2200 2205
24 340 383 386 1274 1345 1603 1927 543 435 1480 1498 1681 804 975 1211
1336 117 603 723 757 785 926 1344 1517 1527 1585 2172 227 229 360 770
1171 1333 1635 2071 2299 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de réPLICATION, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 4 5 2 3 362 363 563 600 663 664 665 2030 2180 2198
2265 2281, de préférence 573 644 806 856 872 873 1089 1360 1361 1869 101
20 102 240 349 401 408 428 507 513 542 572 657 761 766 767 857 878 898 923
997 1000 1002 1025 1088 1129 1138 1139 1140 1266 1270 1693 1791 1883
1948 2098 2247 2251 2263 2264 2267 2301 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de transcription, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1237 1332 564, de préférence 817 960 1906 2314 14
619 646 648 709 779 1314 1367 1368 1607 1612 1623 1850 1851 2124 2160
2222 2297 359 419 1613 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de traduction, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1239 313 396 706 858 1778 1854 1861 1929 2105 571 1776 97 98 680 2127 782 783 2128, de préférence 68 382 394 807 831 1113 1114 1763 1775 1879 1902 1914 1964 1983 1984 2020 2022 2094 2109 2183 2229 260 303 624 1606 1697 2027 2028 2045 2047 2192 374 911 1600 2062 107 135 198 246 292 301 302 748 760 781 805 853 892 906 1097 1099 1307 1308 1617 1644 1790 1893 1894 1937 2056 2057 2123 2125 2126 2135 2136 2137 2138 2139 2140 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2162 2209 2246 2248 2310 2311 2318 2319 13 132 158 168 169 171 496 638 705 852 1144 1923 1944 358 607 707 989 1126 1895 1912 2065 2208 2317 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de transport et de liaison des protéines, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1256 1787 330 550 699 717 1330 1496 1497 1810 1888 1889 1890 1891 1892 2091 1771 566 919 1551 2040 2104 635 676 1970 121 122 437 81 82 726 927 2221, de préférence 11 74 104 262 263 269 270 271 285 286 287 318 319 333 334 544 545 579 580 672 673 729 855 881 888 889 917 983 984 1080 1121 1122 1203 1311 1312 1366 1567 1602 1667 1800 1801 1825 1826 1844 1926 2051 2052 2074 2157 2260 2261 2313 2321 70 115 331 352 353 354 355 356 357 364 365 375 574 698 824 863 864 955 956 957 1128 1182 1183 1184 1185 1750 1811 1847 1848 1873 2087 2107 2250 52 308 309 310 1767 1768 1769 1770 1772 208 209 259 430 933 934 1282 1369 1370 1371 1530 1540 1541 1542 1548 1671 1678 1683 1684 1685 1686 1733 1734 1735 2239 99 193 194 316 336 337 338

339 341 392 587 636 691 848 849 869 932 1194 1195 1295 1341 1355 1356
1357 1407 1528 1640 1655 2058 2169 2170 2171 2305 896 1166 1651 23 25
180 422 423 425 630 833 977 1149 1150 1505 1757 1758 1759 127 130 160
244 314 389 621 679 721 722 1389 1561 1584 1682 2220 2292 et un de leurs
fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans l'adaptation aux conditions atypiques, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 174 540 568 654 686 970 1570, de préférence 69 173 195 312 346 418 653 912 971 1102 1170 1414 2085 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments dans la sensibilité aux médicaments et analogues, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1244, de préférence 1860 2249 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions relatives aux phages et prophages, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 448 449 452 455 465 471 493 494 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1046 1051 1075 1076 1077 1420 1422 1423 1424 1425 1426 1448 1450 1455
20 1456 1458 1465 1466 1467 1468 1470 1720, de préférence 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 446 447 450 451 453 454
25 456 457 458 459 460 461 462 463 464 466 467 468 469 470 472 473 474 475

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 514
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 531 532 533

534 1042 1043 1044 1045 1047 1048 1049 1050 1052 1053 1054 1055 1056
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
1071 1072 1073 1074 1200 1217 1416 1417 1418 1419 1421 1427 1428 1429
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
5 1444 1445 1446 1447 1449 1451 1452 1453 1454 1457 1459 1460 1461 1462
1463 1464 1469 1471 1472 1473 1474 1475 1647 1998 2003 et un de leurs
fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de
10 *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions relatives aux transposons, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 53 54 55 56 90 91 93 94 141 142 143 144 145 146 378 379 380 381 649 650 651 652 662 670 737 738 837 838 839 841 842 1224 1225 1231 1232 1236 1286 1287 1591 1741 1742 2082 2083 2129 2130 2131
15 2132 2201 2202 2203 2204, de préférence 614 694 718 950 1268 1342 1400 1560 1749 1936 1961 1986 1992 2060 2118 2191 2240 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide
20 spécifique de *Lactococcus lactis* ou un de ses fragments, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 416 1727 1822 87 88 279 332 569 671 700 701 727 840 850 884 891 900 1204 1242 1277 1382 1592 1605 1718 1719 1762 1777 1780 1907 1917 1918 1919 1930 1938 1939 1940 2102 2106 2174 2210 1250 1328 2199 666 948 1381 1990, de préférence
25 591 618 710 835 1153 1910 1931 1953 2031 17 18 50 57 58 60 78 79 80 84 92 113 114 116 124 125 133 134 139 140 148 149 150 157 159 161 162 170 172 175 176 179 183 184 185 188 189 196 197 214 230 231 232 233 234 235
236 238 247 255 258 264 266 267 268 274 277 283 288 289 293 294 298 299
300 315 317 321 323 325 343 344 366 367 369 370 371 372 373 376 377 384

387 388 399 404 409 410 411 420 433 436 438 443 444 498 499 503 510 512
546 549 553 555 556 557 558 582 583 588 589 592 594 597 599 611 625 637
655 678 688 703 704 708 725 730 735 741 749 756 759 762 763 764 765 769
774 780 798 799 800 803 809 810 811 819 827 830 861 865 880 882 883 899
5 913 920 924 951 963 964 965 986 987 999 1001 1004 1016 1019 1023 1078
1079 1090 1091 1094 1098 1100 1103 1104 1106 1109 1110 1115 1116 1117
1119 1124 1131 1137 1141 1147 1148 1155 1156 1160 1161 1168 1175 1187
1188 1201 1202 1208 1209 1223 1276 1278 1280 1303 1313 1315 1316 1318
1319 1322 1340 1352 1358 1359 1363 1391 1392 1393 1408 1409 1411 1412
10 1476 1486 1489 1491 1492 1493 1501 1518 1519 1520 1522 1523 1525 1529
1544 1547 1565 1577 1579 1581 1595 1597 1614 1619 1620 1622 1648 1658
1661 1662 1666 1669 1677 1694 1699 1701 1702 1709 1710 1711 1712 1722
1748 1760 1761 1764 1765 1773 1774 1781 1782 1786 1788 1789 1802 1805
1809 1827 1828 1829 1832 1833 1838 1839 1840 1842 1843 1849 1855 1856
15 1863 1865 1866 1867 1868 1872 1874 1875 1876 1885 1886 1887 1900 1901
1903 1915 1916 1924 1933 1941 1946 1951 1952 1954 1958 1959 1963 1966
1967 1968 1976 1977 1978 1981 1982 2004 2006 2008 2011 2014 2015 2016
2017 2018 2019 2026 2029 2033 2044 2049 2050 2054 2061 2063 2070 2080
2081 2101 2108 2110 2115 2158 2163 2165 2168 2173 2175 2184 2186 2190
20 2193 2194 2197 2217 2219 2226 2227 2232 2235 2238 2245 2253 2254 2259
2272 2275 2278 2282 2284 2286 2289 2294 2295 2298 2302 2304 2308 2312
2322 2323 16 66 67 73 77 108 109 111 112 252 391 432 505 509 511 559 581
593 598 604 612 640 642 647 702 733 734 736 739 750 752 758 776 777 778
802 820 826 874 876 897 901 910 922 952 954 961 979 980 981 996 1017
25 1093 1111 1118 1135 1196 1199 1273 1320 1377 1413 1562 1610 1705 1783
1804 1884 1897 1909 1922 2117 2293 9 10 12 15 19 51 71 83 85 86 89 95 96
103 105 106 123 138 147 152 156 163 164 165 177 178 190 191 192 199 201

203 210 211 216 225 228 237 239 241 248 249 250 251 272 275 278 296 297
304 305 306 307 322 368 393 397 412 427 441 442 495 504 530 535 536 537

538 539 547 561 567 578 590 595 596 601 602 606 608 623 626 627 628 629
632 633 639 641 658 659 660 661 667 668 669 687 689 690 692 696 724 731
753 772 773 775 808 821 822 823 825 836 851 866 867 868 870 879 887 893
895 903 904 907 921 925 928 931 935 938 941 943 962 966 969 985 988 998
5 1003 1005 1006 1007 1008 1009 1010 1018 1021 1081 1082 1083 1085 1092
1095 1096 1101 1132 1133 1134 1136 1143 1154 1158 1163 1167 1180 1189
1190 1191 1192 1198 1206 1210 1218 1219 1220 1221 1222 1226 1227 1228
1229 1230 1234 1235 1253 1264 1269 1271 1272 1279 1285 1288 1305 1306
1309 1317 1334 1335 1337 1338 1339 1346 1347 1350 1351 1364 1365 1375
10 1378 1385 1390 1394 1395 1396 1397 1398 1399 1401 1402 1403 1410 1415
1479 1484 1488 1495 1502 1503 1509 1510 1516 1535 1536 1571 1580 1582
1587 1588 1589 1590 1593 1594 1598 1608 1611 1616 1625 1626 1627 1628
1629 1630 1631 1632 1633 1634 1643 1645 1646 1653 1659 1660 1665 1672
1691 1698 1700 1703 1706 1713 1714 1715 1716 1736 1737 1738 1739 1740
15 1743 1744 1755 1799 1806 1812 1813 1821 1835 1836 1841 1862 1870 1877
1878 1880 1882 1896 1899 1905 1911 1913 1932 1942 1943 1945 1947 1949
1957 1965 1974 1975 1980 1987 1988 1989 1991 1993 1994 1995 1996 1997
1999 2000 2002 2009 2010 2012 2013 2021 2023 2024 2046 2048 2053 2055
2064 2067 2072 2073 2075 2076 2077 2078 2086 2097 2099 2103 2111 2112
20 2113 2114 2116 2119 2121 2122 2141 2166 2181 2187 2188 2189 2195 2196
2212 2213 2214 2215 2223 2225 2228 2230 2231 2233 2234 2236 2237 2244
2252 2255 2256 2266 2268 2269 2271 2273 2274 et un de leurs fragments.

Il est important de noter toutefois qu'un organisme vivant est un tout et doit être pris comme tel. Ainsi, afin de pouvoir se développer et d'exhiber ses propriétés, tout organisme a besoin d'interactions entre les différentes voies métaboliques. Ainsi, la classification énoncée ci-dessus ne doit pas être considérée comme limitative, un gène pouvant être impliqué dans deux voies métaboliques distinctes.

La présente invention a également pour objet les séquences

nucléotidiques et/ou de polypeptides selon l'invention, caractérisées en ce que lesdites séquences sont enregistrées sur un support d'enregistrement dont la forme et la nature facilitent la lecture, l'analyse et/ou l'exploitation de ladite ou desdites séquence(s). Ces supports peuvent également contenir d'autres informations extraites de la présente invention, notamment les analogies avec des séquences déjà connues, comme mentionné dans le Tableau III et/ou des informations concernant les séquences nucléotidiques et/ou de polypeptides d'autres microorganismes afin de faciliter l'analyse comparative et l'exploitation des résultats obtenus.

5 Parmi cesdits supports d'enregistrement, on préfère en particulier les supports lisibles par un ordinateur, tels les supports magnétiques, optiques, électriques ou hybrides, en particulier les disquettes informatiques, les CD-ROM, les serveurs informatiques. De tels supports d'enregistrement sont également objet de l'invention.

10 Les supports d'enregistrement selon l'invention, avec les informations apportées, sont très utiles pour le choix d'amorces ou de sondes nucléotidiques pour la détermination de gènes dans *Lactococcus lactis* ou souches proches de cet organisme. De même, l'utilisation de ces supports pour l'étude du polymorphisme génétique de souche proche de *Lactococcus lactis*, en particulier par la détermination des régions de colinéarité, est très utile dans la mesure où ces supports fournissent non seulement la séquence nucléotidique du génome de *Lactococcus lactis* IL1403, mais également l'organisation génomique dans ladite séquence. Ainsi, les utilisations de supports d'enregistrement selon l'invention sont également des objets de l'invention.

15 20 25 Un procédé d'étude du polymorphisme génétique entre les souches proches de *Lactococcus lactis*, par détermination des régions de colinéarité, peut comprendre les étapes de

-
- fragmentation de l'ADN chromosomal de ladite autre souche (sonication, digestion),

- séquence des fragments d'ADN,
- analyse d'homologie avec le génome de *Lactococcus lactis* IL 1043 (SEQ ID N° 1).

5 Ce procédé qui comprend une étape d'analyse d'homologie avec le génome de *Lactococcus lactis* IL1403, en particulier grâce à l'aide d'un support d'enregistrement, est également l'objet de l'invention.

L'analyse d'homologie entre différentes séquences s'effectue en effet avantageusement à l'aide de logiciels de comparaisons de séquences, tels le logiciel Blast, ou les logiciels de la trousse GCG, décrits précédemment.

10 L'invention vise également les vecteurs de clonage et/ou d'expression, qui contiennent une séquence nucléotidique selon l'invention. On préfère en particulier, les séquences nucléotidiques codant pour des polypeptides impliqués dans la machinerie cellulaire, en particulier la sécrétion, le métabolisme intermédiaire central, en particulier la production de sucre, le métabolisme 15 énergétique, les processus de synthèse des acides aminés, de transcription et de traduction, de synthèse de polypeptides, ou les séquences nucléiques impliquées dans les fonctions relatives aux phages et prophages.

Les vecteurs selon l'invention sont avantageusement utilisés pour la génération de souches bactériennes qui présentent des propriétés de 20 fermentation améliorée et/ou une stabilité accrue. En particulier, on recherche les souches bactériennes, de préférence de *Lactococcus lactis*, qui présentent une résistance accrue aux phages, ou des capacités de sécrétion améliorées.

Les vecteurs selon l'invention comportent de préférence des éléments qui permettent l'expression et/ou la sécrétion des séquences nucléotidiques dans 25 une cellule hôte déterminée.

Le vecteur doit alors comporter un promoteur, des signaux d'initiation et de terminaison de la traduction, ainsi que des régions appropriées de régulation de la transcription. Il doit pouvoir être maintenu de façon stable dans la cellule hôte et peut éventuellement posséder des signaux particuliers qui

spécifient la sécrétion de la protéine traduite. Ces différents éléments sont choisis et optimisés par l'homme du métier en fonction de l'hôte cellulaire utilisé. A cet effet, les séquences nucléotidiques selon l'invention peuvent être insérées dans des vecteurs à réPLICATION autonome au sein de l'hôte choisi, ou 5 être des vecteurs intégratifs de l'hôte choisi.

De tels vecteurs sont préparés par des méthodes couramment utilisées par l'homme du métier, et les clones résultant peuvent être introduits dans un hôte approprié par des méthodes standards, telle que la lipofection, l'électroporation, le choc thermique, ou des méthodes chimiques.

10 Les vecteurs selon l'invention sont par exemple des vecteurs d'origine plasmidique ou virale. Ils sont utiles pour transformer des cellules hôtes afin de cloner ou d'exprimer les séquences nucléotidiques selon l'invention.

L'invention comprend également les cellules hôtes transformées par un vecteur selon l'invention.

15 L'hôte cellulaire peut être choisi parmi des systèmes procaryotes ou eucaryotes, par exemple les cellules bactériennes mais également les cellules de levure ou les cellules animales, en particulier les cellules de mammifères. On peut également utiliser des cellules d'insectes ou des cellules de plantes. Les cellules hôtes préférées selon l'invention sont en particulier les cellules procaryotes, de préférence les bactéries appartenant au genre *Lactococcus*, à l'espèce *Lactococcus lactis*, ou les microorganismes associés à l'espèce *Lactococcus lactis*. L'invention concerne également les animaux et végétaux, excepté l'homme, qui comprennent une cellule transformée selon l'invention. Les cellules transformées selon l'invention sont utilisables dans des procédés de 20 préparation de polypeptides recombinants selon l'invention. Les procédés de préparation d'un polypeptide selon l'invention sous forme recombinante, caractérisés en ce qu'ils mettent en œuvre un vecteur et/ou une cellule 25 transformée par un vecteur selon l'invention sont eux-mêmes compris dans la présente invention. De préférence, on cultive une cellule transformée par un

vecteur selon l'invention dans des conditions qui permettent l'expression dudit polypeptide et on récupère ledit peptide recombinant. Les cellules hôtes selon l'invention peuvent également être utilisées pour la préparation de compositions alimentaires, qui sont elles-mêmes objet de la présente invention.

5 Ainsi qu'il a été dit, l'hôte cellulaire peut être choisi parmi des systèmes procaryotes ou eucaryotes. En particulier, il est possible d'identifier des séquences nucléotidiques selon l'invention, facilitant la sécrétion dans un tel système procaryote ou eucaryote. Un vecteur selon l'invention portant une telle séquence peut donc être avantageusement utilisé pour la production de protéines recombinantes, destinées à être sécrétées. En effet, la purification de ces protéines recombinantes d'intérêt sera facilité par le fait qu'elles sont présentent dans le surnageant de la culture cellulaire plutôt qu'à l'intérieur des cellules hôtes.

15 On peut également préparer les polypeptides selon l'invention par synthèse chimique. Un tel procédé de préparation est également un objet de l'invention. L'homme du métier connaît les procédés de synthèse chimique, par exemple les techniques mettant en œuvre des phases solides (voir notamment Steward et al., 1984, Solid phase peptides synthesis, Pierce Chem. Company, Rockford, 111, 2ème éd., (1984)) ou des techniques utilisant des phases solides 20 partielles, par condensation de fragments ou par une synthèse en solution classique. Les polypeptides obtenus par synthèse chimique et pouvant comporter des acides aminés non naturels correspondant sont également compris dans l'invention.

25 L'invention comprend également les polypeptides hybrides qui comprennent au moins la séquence d'un polypeptide selon l'invention, et la séquence d'un polypeptide susceptible d'induire une réponse immunitaire chez l'homme ou l'animal. L'invention comprend également les séquences nucléotidiques qui codent pour de tels polypeptides hybrides, ou les vecteurs qui contiennent ces séquences nucléotidiques. Ce couplage entre un polypeptide

selon l'invention et un polypeptide immunogène, peut être effectué par voie chimique, ou par voie biologique. Ainsi, selon l'invention, il est possible d'introduire un ou plusieurs élément(s) de liaison, notamment des acides aminés pour faciliter les réactions de couplage entre le polypeptide selon l'invention, et
5 le polypeptide immunostimulateur, le couplage covalent de l'antigène immunostimulateur pouvant être réalisé à l'extrémité N ou C-terminale du polypeptide selon l'invention. Les réactifs bifonctionnels permettant ce couplage sont déterminés en fonction de l'extrémité choisie pour réaliser ce couplage, et les techniques de couplage sont bien connues de l'homme du métier.

10 Les conjugués issus d'un couplage de peptides peuvent également préparés par recombinaison génétique. Le peptide hybride (conjugué) peut en effet être produit par des techniques d'ADN recombinant, par insertion ou addition à la séquence d'ADN codant pour le polypeptide selon l'invention, d'une séquence codant pour le ou les peptide(s) antigène(s), immunogène(s) ou
15 haptène(s). Ces techniques de préparation de peptides hybrides par recombinaison génétique sont bien connues de l'homme du métier (voir par exemple Makrides, 1996, Microbiological Reviews 60,512-538).

De préférence, ledit polypeptide immunitaire est choisi dans le groupe des peptides contenant les anatoxines, notamment le toxoïde diphtérique ou le
20 toxoïde tétanique, les protéines dérivées du Streptocoque (comme la protéine de liaison à la séralbumine humaine), les protéines membranaires OMPA et les complexes de protéines de membranes externes, les vésicules de membranes externes ou les protéines de chocs thermiques.

Les séquences nucléotidiques et vecteurs, codant pour un polypeptide
25 hybride selon l'invention sont également objet de l'invention.

Les polypeptides hybrides selon l'invention sont très utiles pour obtenir
des anticorps monoclonaux ou polyclonaux, capables de reconnaître
spécifiquement les polypeptides selon l'invention. En effet, un polypeptide
hybride selon l'invention permet la potentiation de la réponse immunitaire,

contre le polypeptide selon l'invention couplé à la molécule immunogène. De tels anticorps monoclonaux ou polyclonaux, leurs fragments, ou les anticorps chimériques, reconnaissant les polypeptides selon l'invention, sont également objets de l'invention.

5 Les anticorps monoclonaux spécifiques peuvent être obtenus selon la méthode classique de culture d'hybridome décrite par Köhler et Milstein (1975, *Nature* 256, 495).

10 Les anticorps selon l'invention sont par exemple des anticorps chimériques, des anticorps humanisés, des fragments Fab, ou F(ab')². Il peut également se présenter sous forme d'immunoconjugué ou d'anticorps marqué afin d'obtenir un signal détectable et/ou quantifiable.

15 Ainsi, les anticorps selon l'invention peuvent être employés dans un procédé pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un microorganisme associé dans un échantillon biologique, caractérisé en ce qu'il comprend les étapes suivantes :

- a) mise en contact de l'échantillon biologique avec un anticorps selon l'invention ;
- b) mise en évidence du complexe antigène-anticorps éventuellement formé.

20 Les anticorps selon la présente invention sont également utilisables afin de détecter une expression d'un gène de *Lactococcus lactis* ou de microorganismes associés. En effet, la présence du produit d'expression d'un gène reconnu par un anticorps spécifique dudit produit expression peut être détectée par la présence d'un complexe antigène-anticorps formé après la mise en contact de la souche de *Lactococcus lactis* ou du microorganisme associé avec un anticorps selon l'invention. La souche bactérienne utilisée peut avoir été « préparée », c'est-à-dire centrifugée, lysée, placée dans un réactif approprié pour la constitution du milieu propice à la réaction immunologique. En particulier, on préfère un procédé de détection de l'expression dans le gène,

correspondant à un Western blot, pouvant être effectué après une électrophorèse sur gel de polyacrylamide d'un lysat de la souche bactérienne, en présence ou en l'absence de conditions réductrices (SDS-PAGE). Après migration et séparation des protéines sur le gel de polyacrylamide, on transfère 5 lesdites protéines sur une membrane appropriée (par exemple en nylon) et on détecte la présence de la protéine ou du polypeptide d'intérêt, par mise en contact de ladite membrane avec un anticorps selon l'invention.

Ainsi, la présente invention comprend également les kits ou nécessaires pour la mise en œuvre d'un procédé tel que décrit (de détection de l'expression 10 d'un gène de *Lactococcus lactis* ou d'un microorganisme associé, ou pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou un microorganisme associé), comprenant les éléments suivants :

- 15 a) un anticorps polyclonal ou monoclonal selon l'invention ;
- b) éventuellement, les réactifs pour la constitution du milieu propice à la réaction immunologique ;
- c) éventuellement, les réactifs permettant la mise en évidence des complexes antigène-anticorps produits par la réaction immunologique.

Les polypeptides et les anticorps selon l'invention peuvent avantageusement être immobilisés sur un support, notamment une puce à 20 protéines. Une telle puce à protéines est un objet de l'invention, et peut également contenir au moins un polypeptide d'un microorganisme autre que *Lactococcus lactis* ou un anticorps dirigé contre un composé d'un microorganisme autre que *Lactococcus lactis*.

Les puces à protéines ou filtres à haute densité contenant des protéines 25 selon l'invention peuvent être construits de la même manière que les puces à ADN selon l'invention. En pratique, on peut effectuer la synthèse des polypeptides fixés directement sur la puce à protéines, ou effectuer une synthèse *ex situ* suivie d'une étape de fixation du polypeptide synthétisé sur ladite puce. Cette dernière méthode est préférable, lorsque l'on désire fixer des protéines de

taille importante sur le support, qui sont avantageusement préparées par génie génétique. Toutefois, si l'on ne désire fixer que des peptides sur le support de ladite puce, il peut être plus intéressant de procéder à la synthèse desdits peptides directement *in situ*.

5 Les puces à protéines selon l'invention peuvent être avantageusement utilisées dans des kits ou nécessaires pour la détection et/ou l'identification de bactéries associées à l'espèce *Lactococcus lactis* ou à un microorganisme, ou de façon plus générale dans des kits ou nécessaires pour la détection et/ou l'identification de microorganismes. Lorsque l'on fixe les polypeptides selon 10 l'invention sur les puces à ADN, on recherche la présence d'anticorps dans les échantillons testés, la fixation d'un anticorps selon l'invention sur le support de la puce à protéines permettant l'identification de la protéine dont ledit anticorps est spécifique.

15 De préférence, on fixe un anticorps selon l'invention sur le support de la puce à protéines, et on détecte la présence de l'antigène correspondant, spécifique de *Lactococcus lactis* ou d'un microorganisme associé.

Une puce à protéines ci-dessus décrite peut être utilisée pour la détection de produits de gènes, pour établir un profil d'expression desdits gènes, en complément d'une puce à ADN selon l'invention.

20 Les puces à protéines selon l'invention sont également extrêmement utiles pour les expériences de protéomique, qui étudie les interactions entre les différentes protéines d'un microorganisme donné. De façon simplifiée, on fixe des peptides représentatifs des différentes protéines d'un organisme sur un support. Puis, on met ledit support en contact avec des protéines marquées, et 25 après une étape optionnelle de rinçage, on détecte des interactions entre lesdites protéines marquées et les peptides fixés sur la puce à protéines.

Ainsi, les puces à protéines comprenant une séquence polypeptidique selon l'invention ou un anticorps selon l'invention sont objet de l'invention, ainsi que les kits ou nécessaires les contenant.

La présente invention couvre également un procédé de détection et/ou d'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un microorganisme associé dans un échantillon biologique, qui met en œuvre une séquence nucléotidique selon l'invention.

Il doit être entendu que le terme échantillon biologique concerne dans la présente invention les échantillons prélevés à partir d'un organisme vivant (en particulier sang, tissus, organes ou autres prélevés à partir d'un mammifère) ou un échantillon contenant du matériel biologique, c'est-à-dire de l'ADN. Un tel échantillon biologique englobe donc les compositions alimentaires contenant des bactéries (par exemple les fromages, les produits laitiers), mais également des compositions alimentaires contenant des levures (bières, pains) ou autres.

Le procédé de détection et/ou d'identification mettant en œuvre les séquences nucléotidiques selon l'invention peut être de diverse nature.

On préfère un procédé comportant les étapes suivantes :

- 15 a) éventuellement, isolement de l'ADN à partir de l'échantillon biologique à analyser, ou obtention d'un ADNc à partir de l'ARN de l'échantillon biologique ;
- b) amplification spécifique de l'ADN de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé à l'aide d'au moins une amorce selon l'invention ;
- c) mise en évidence des produits d'amplification.

Ce procédé est basé sur l'amplification spécifique de l'ADN, en particulier par une réaction d'amplification en chaîne.

On préfère également un procédé comprenant les étapes suivantes :

- 25 a) mise en contact d'une sonde nucléotidique selon l'invention avec un échantillon biologique, l'acide nucléique contenu dans l'échantillon biologique ayant, le cas échéant, préalablement été rendu accessible à l'hybridation, dans des conditions permettant l'hybridation de la sonde à l'acide nucléique d'une bactérie

appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé ;

- b) mise en évidence de l'hybride éventuellement formé entre la sonde nucléotidique et l'ADN de l'échantillon biologique.

5 Un tel procédé ne doit pas être limité à la détection de la présence de l'ADN contenu dans l'échantillon biologique attesté, il peut être également mis en œuvre pour détecter l'ARN contenu dans ledit échantillon. Ce procédé englobe en particulier les Southern et Northern blot.

10 Un autre procédé préféré selon l'invention comprend les étapes suivantes :

- a) mise en contact d'une sonde nucléotidique immobilisée sur un support selon l'invention avec un échantillon biologique, l'acide nucléique de l'échantillon, ayant, le cas échéant, été préalablement rendu accessible à l'hybridation, dans des conditions permettant l'hybridation de la sonde à l'acide nucléique d'une bactérie appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé ;
- b) mise en contact de l'hybride formé entre la sonde nucléotidique immobilisée sur un support et l'acide nucléique contenu dans l'échantillon biologique, le cas échéant après élimination de l'ADN de l'échantillon biologique n'ayant pas hybridé avec la sonde, avec une sonde nucléotidique marquée selon l'invention ;
- c) mise en évidence du nouvel hybride formé à l'étape b).

25 Ce procédé est avantageusement utilisé avec une puce à ADN selon l'invention, l'acide nucléique recherché s'hybridant avec une sonde présente à la surface de ladite puce, et étant détecté par l'utilisation d'une sonde marquée. Ce procédé est avantageusement mis en œuvre en combinant une étape préalable d'amplification de l'ADN ou de l'ADN complémentaire obtenu éventuellement par transcription inverse, à l'aide d'amorces selon l'invention.

Ainsi, la présente invention englobe également les kits ou nécessaires pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- 5 a) une sonde nucléotidique selon l'invention ;
- b) éventuellement, les réactifs nécessaires à la mise en œuvre d'une réaction d'hybridation ;
- c) éventuellement, au moins une amorce selon l'invention ainsi que les réactifs nécessaires à une réaction d'amplification de l'ADN.

10 De même, la présente invention englobe également les kits ou nécessaires pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- 15 a) une sonde nucléotidique, dite sonde de capture, selon l'invention;
- b) une sonde oligonucléotidique, dite sonde de révélation, selon l'invention ;
- c) éventuellement, au moins une amorce selon l'invention ainsi que les réactifs nécessaires à une réaction d'amplification de l'ADN.

20 Enfin, les kits ou nécessaires pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- 25 a) au moins une amorce selon l'invention ;
- b) éventuellement, les réactifs nécessaires pour effectuer une réaction d'amplification d'ADN ;
- c) éventuellement, un composant permettant de vérifier la séquence du fragment amplifié, plus particulièrement une sonde oligonucléotidique selon l'invention.

sont également objets de la présente invention.

De préférence, lesdites amorces et/ou sondes et/ou polypeptides et/ou

anticorps selon la présente invention utilisés dans les procédés et/ou kits ou nécessaires selon la présente invention sont choisis parmi les amorces et/ou sondes et/ou polypeptides et/ou anticorps spécifiques de l'espèce *Lactococcus lactis*. De manière préférée, ces éléments sont choisis parmi les séquences nucléotidiques codant pour une protéine sécrétée, parmi les polypeptides sécrétés, ou parmi les anticorps dirigés contre des polypeptides sécrétés de *Lactococcus lactis*.

La présente invention a également pour objet les souches de *Lactococcus lactis* et/ou de microorganismes associés contenant une ou plusieurs mutation(s) dans une séquence nucléotidique selon l'invention, en particulier une séquence ORF, ou leurs éléments régulateurs (en particulier promoteurs).

On préfère, selon la présente invention, les souches de *Lactococcus lactis* présentant une ou plusieurs mutation(s) dans les séquences nucléotidiques codant pour des polypeptides impliqués dans la machine cellulaire, en particulier la sécrétion, le métabolisme intermédiaire central, en particulier la production de sucres, le métabolisme énergétique, les processus de synthèse des acides aminés, de transcription et de traduction, de synthèse des polypeptides, ou dans la résistance et/ou l'adaptation au stress ou les séquences nucléiques impliquées dans les fonctions relatives aux phages et prophages.

Lesdites mutations peuvent mener à une inactivation du gène, ou en particulier lorsqu'elles sont situées dans les éléments régulateurs dudit gène, à une surexpression de celui-ci.

Ainsi, on recherche en particulier des souches de *Lactococcus lactis* présentant une résistance accrue à l'infection et/ou la propagation des phages, sur-exprimant ou sous-exprimant (en particulier n'exprimant plus du tout) un polypeptide selon l'invention, impliquées dans les fonctions relatives aux phages et prophages. Une souche de *Lactococcus lactis* qui présente une résistance accrue à l'infection et/ou la propagation des phages, contenant un gène toxique sous le contrôle d'un agent régulateur de l'expression des gènes codant pour les

fonctions relatives aux phages et prophages, est également un objet de l'invention.

De telles souches de *Lactococcus lactis* modifiées sont très utiles pour augmenter la biosynthèse ou la biodégradation de composés d'intérêt. En particulier, on recherche une amélioration de la biosynthèse du diacétyle, lorsque l'on désire fabriquer du beurre ou du fromage blanc. Il peut également être intéressant d'améliorer la biodégradation des sucres en particulier les lactoses, présents dans les compositions alimentaires dans lesquelles on rajoute les souches selon l'invention.

On peut également utiliser un polypeptide selon l'invention, une cellule transformée selon l'invention, et/ou un animal selon l'invention dans un procédé de biosynthèse ou de biodégradation d'un composé d'intérêt, lui-même également objet de la présente invention.

Enfin, une méthode de diagnostic de la présence de phages dans les levains lactiques et dans les produits laitiers, par l'étude de la présence de l'acide nucléique qui code pour un polypeptide impliqué dans les fonctions relatives aux phages et prophages, est également un objet de l'invention.

20 MATERIELS ET METHODES

1. Le séquençage du génome *L.lactis* IL1403.

La stratégie de séquençage du génome de *L. lactis* IL1403 comportait deux étapes principales. Premièrement, la séquence diagnostique a été établie, avec une redondance de séquençage de seulement 2. Deuxièmement, la qualité de la séquence a été améliorée par séquençage de matrices aléatoires jusqu'à obtenir une redondance de 6. Toute partie du génome qui n'a été séquencé que sur un brin a été re-séquencé, en utilisant des matrices générées par PCR à longue distance (Long Range ou LR PCR), afin d'obtenir un taux d'erreur

inférieur à 0,01% (moins d'une erreur pour 10.000 bases).

La stratégie de séquençage avec une faible redondance, du génome de *L. lactis*, est présentée dans le Tableau 2. Cette stratégie est un compromis entre une approche de séquençage direct et une approche de séquençage au hasard.

5 L'objectif étant de réduire le temps et l'effort nécessaire pour obtenir l'organisation du génome et connaître les gènes qui le compose. Dans un premier temps, un nombre limité de clones choisis au hasard est séquencé, ainsi le taux d'accumulation de nouvelles séquences reste approximativement constant. Cette condition s'arrête quand le génome a été couvert à peu près une fois.

10 Dans un second temps, des clones choisis au hasard, et portant un grand insert, sont séquencés par « primer walking ». On peut garder alors une redondance faible en choisissant les oligonucléotides correspondant aux extrémités des contigs prolongés, pour l'étape suivante de « primer walking ». Cette étape est poursuivie jusqu'à ce que l'obtention d'une nouvelle séquence soit supérieure à l'obtention d'1 nouvelle base pour 3 bases séquencées. L'étape finale du séquençage s'achève par l'utilisation d'une autre méthode directe, qui est appelée « multiplex long accurate PCR » (MLA PCR) (Sorokin *et al*, 1996, A new approach using multiplex long accurate PCR and yeast artificial chromosomes for bacterial chromosome mapping and sequencing, Genome Res, 6: 448-53). Celle-ci implique le mélange d'un grand nombre d'oligonucléotides correspondant aux extrémités des contigs. Un produit sera obtenu chaque fois que la distance entre 2 sites sur le génome, correspondant aux extrémités de deux contigs, est inférieure à la taille maximale pouvant être synthétisée par LR PCR. Pour la taille du génome de *L. lactis*, la probabilité d'obtenir ce type de produit est entre 0,5 et 1, si 20 oligonucléotides sont mélangés (au moins la moitié des réactions de PCR contenant 20 oligonucléotides choisis au hasard, donneront un produit d'amplification). Les données statistiques de l'application de cette stratégie pour le séquençage de *L. lactis* sont présentées dans le tableau

20

25

3. Une banque contenant 2854 clones avec des inserts d'une taille comprise

entre 1 et 2 Kb, a été construite en utilisant les vecteurs pBluescript II KS+ (Stratagène) ou pSGMU2 (Errington J, 1986, A general method for fusion of the Escherichia coli lacZ gene to chromosomal genes in *Bacillus subtilis*, J Gen Microbiol, 132 :2953-66). 2625 clones ont été séquencés avec l'oligonucléotide direct (M13-21) et 2168 avec l'oligonucléotide réverse (M13RP1), avec un taux de séquences réussies d'environ 90 %. Après l'obtention d'environ 2100 kb de séquences, 2357 oligonucléotides ont été synthétisés pour fermer les espaces entre les séquences directes et réverses. Un total d'environ 3,3 Mb de séquences a ainsi été obtenu.

Le vecteur λ -FIXII (Stratagène) a été utilisé pour construire une banque de grands inserts. Le chromosome de *L. lactis* a été partiellement digéré avec *Sau3A*, fractionné par centrifugation en gradient de sucrose, traité avec la Klenow polymérase en présence de dGTP et de dATP, et ligaturé avec le vecteur λ -FIXII lui-même digéré par *Xba*I et traité avec la Klenow polymérase en présence de dCTP et de dTTP. 262 phages ont été choisis au hasard et les extrémités des inserts ont été séquencées avec l'oligonucléotide T7 (Stratagène). Parmis ces 262 phages séquencés, 122 phages ayant permis d'obtenir une séquence unique avec l'oligonucléotide T7, ont alors été séquencés avec l'oligonucléotide T3 (Stratagène). Environ 250 kb de séquences ont ainsi été obtenues de cette façon.

La MLA PCR a été utilisée pour obtenir des produits pour de nouvelles séquences. L'étape critique de la méthode a été de déterminer quels mélanges de 2 oligonucléotides donnaient un produit utilisable pour le séquençage. Le protocole développé précédemment et qui requérait deux étapes pour l'identification (Sorokin et al, 1996, A new approach using multiplex long accurate PCR and yeast artificial chromosomes for bacterial chromosome mapping and sequencing, Genome Res, 6: 448-53), a été modifié ici de façon à ce qu'une seule étape soit requise. Au total, 1641 réactions de séquençage sur des produits de tailles variant entre 1 et 20 kb ont été obtenues, et environ 0,77 Mb de séquences ont été lues. Cette étape a permis de

finir l'assemblage complet du chromosome, donnant un contig de 2,34 Mb. La redondance totale est proche de 2. Pour vérifier que l'assemblage est correct, les Inventeurs ont effectué des amplifications de type LR PCR sur le génome entier, en utilisant 266 oligonucléotides, séparés par des distances prédites entre 10 et 20 kb.

5 Les produits espérés ont été obtenus, indiquant que l'assemblage est correct.

Pour améliorer la qualité de la séquence finale, et ainsi faciliter l'étape suivante d'annotation, une autre banque de plasmides contenant des petits inserts (1-2 kb) du génome de *L. lactis* IL1403, a été construite et les inserts obtenus séquencés avec les oligonucléotides directs (M13-21) et réversés (M13RP1). Au total 7665 plasmides ont été séquencés avec succès, ce qui a permis d'obtenir 15310 gels lus, contenant 9671085 caractères. Ces séquences couvrent 93 % de la séquence contiguë obtenue lors de l'étape de séquençage basse-redondance, et sont distribuées dans 358 groupes le long de la séquence contiguë. 978 oligonucléotides ont alors été synthétisés pour séquencer les 10 produits de LR PCR générés en utilisant la séquence connue d'IL1403. La base de données de la séquence finale contient 26036 gels lus, contenant 14842630 caractères. La taille moyenne des gels lus est donc de 570 bases. La longueur de 15 la séquence génomique d'IL1403 est de 2365589 bases, la redondance de la séquence finale est 6,27.

20

2. L'annotation du génome d'IL1403

2.1. Prédiction des gènes codant pour les protéines dans *L. lactis* IL1403.

Les fenêtres ouvertes de lecture prédites ont d'abord été identifiées en 25 utilisant TGA, TAA et TAG comme codons stops et en utilisant le code génétique bactérien standard. La région codante pouvant coder pour une protéine a été considérée comme ayant une taille de plus de 60 acides aminés. Les séquences homologues à l'extrémité 3' de l'ARNr 16S de *L.lactis* (3' UCUUUCCUCCA...5') en amont des codons potentiels d'initiation, qui sont

ATG, GTG, ou TTG, ont été systématiquement recherchées pour assurer la fonctionnalité du gène putatif trouvé. Plusieurs gènes dans *L. lactis* IL1403 ont ainsi été trouvés, ils ont été appelés ARNm « leaderless » et démarrent au codon ATG de l'extrémité 5'. Ceci est applicable en particulier aux gènes impliqués 5 dans le processus de transformation génétique. Ceci peut expliquer que *L. lactis* est protégé de cette façon de l'expression de gènes occasionnels due à une mutation ou à une insertion d'une séquence ayant une activité promotrice.

Les protéines prédictes sont ensuite systématiquement testées au niveau 10 de leur homologie avec les protéines connues contenues dans les bases de données. Finalement, ceci a révélé 2323 gènes avec ou sans fonctions assignées, présentés dans le tableau 1. Les gènes sont classés selon un schéma de classification proposé par M. Riley (Riley M, 1993, Functions of the gene products of *Escherichia coli*, *Microbiol Rev*, 57 : 862-952). Plusieurs catégories de gènes de *L. lactis* IL1403 sont décrites ci-dessous.

15 **2.2 Les éléments IS et les prophages chez *L. lactis* IL1403.**

Trois éléments IS étaient déjà connus dans le génome de *L. lactis* IL1403, désignés IS981, IS982 et IS1076. Leur nombre de copies (respectivement dix, une et sept) et leur localisation approximative sont rapportés. Les données de séquençage des Inventeurs révèlent que dans toutes 20 les localisations chromosomiques où IS1076 a été cartographié, la séquence nucléotidique identique à IS904 est présente. Le dernier nom est gardé sur la carte. Un autre élément, appelé IS1077, était présent dans chacun de ces sept sites. Quinze copies d'un élément, qui n'avait pas été décrit précédemment pour l'espèce *Lactococcus* et appelé IS983, ont été détectées dans le génome de 25 IL1403. L'élément le plus proche relativement d'une autre bactérie lactique, qui est IS1070, a été découvert dans le plasmide pNZ63 de *Leuconostoc lactis* NZ6009.

Pour identifier les prophages potentiels présents dans le chromosome, les Inventeurs ont utilisé la recherche d'homologies dans les bases de données

contenant des séquences protéiques de phages connus. La base de données est composée de 1219 séquences protéiques, comprenant l'ensemble complet des 50 protéines putatives dérivées de la séquence du phage tempéré rlt de *L. lactis* (Van Sinderen, D., Karsens, H., Kok, J., Terpstra, P., Ruiters, M.H., Venema, G., & Nauta, A., 1996, Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage rlt, *Mol Microbiol* 19: 1343-1355). Une distribution des homologies non redondantes lancées sur le génome de *L. lactis* a été générée. Cette distribution indique la présence de trois régions, autour de 470, 1060 et 1430 Kb, qui contiennent les prophages identifiés précédemment par des tests biologiques. Deux sites, autour de 45 et 2020 Kb, indiquent un quatrième et un cinquième prophages.

2.3. Le biais GC, l'origine de réPLICATION et le terminus.

Pour prédire les sites de l'origine de la réPLICATION et le terminus, les Inventeurs ont utilisé les biais GC et AT dans des schémas similaires (Lobry, J.R., 1996, Asymmetric substitution patterns in the two DNA strands of bacteria, *Mol Biol Evol*, 13: 660-665). Les distributions des valeurs (C-G)/(C+G) et (A-T)/(A+T) le long de la région chromosomique montre une transition bien franche entre les valeurs positives et négatives, et indique la présence de l'origine de réPLICATION dans le voisinage de gène *dnaA*. Cette région contient quatre boîtes DnaA, qui indiquent aussi la présence de l'origine de réPLICATION. Les Inventeurs ont choisi le point de départ de la présentation circulaire du génome de *L. lactis* au milieu du site *HindIII* près de l'origine de réPLICATION et la carte est orientée de façon avec la direction de transcription des gènes *dnaA* et *dnaN*.

Les biais GC et AT indiquent aussi la localisation du terminus de réPLICATION. La transition entre les valeurs positives et négatives se produit près de la position 1260 K. Ceci est en corrélation avec la localisation du terminus de réPLICATION basée sur l'orientation des gènes potentiels de transcription et la distribution des sites chi le long du génome.

3 Description des catégories de gènes**3.1. Biosynthèses d'acides aminés de vitamines et de nucléotides.**

Les analyses des Inventeurs ont montré que *L. lactis* a un potentiel génétique pour synthétiser les 20 acides aminés standards et au moins 4 co-facteurs (l'acide folique, la ménaquinone, la riboflavine et la thiorédoxine). Cependant, cette bactérie est délicate d'un point de vue nutritionnel et nécessite de nombreux métabolites qu'il faut ajouter au milieu synthétique (Jensen & Hammer, 1993, Minimal requirements for exponential growth of *lactococcus lactis*, *Appl Env Microbiol*, 59:4363-4366). Le problème des exigences nutritionnelles délicates des souches *L. lactis* a récemment été abordé par l'application de la technique de simple omission (Cocaign-Bousquet, M., Garrigues, C., Novak, L., Lindley, N.D., & Loubiere, P., 1995, Rational development of a simple synthetic medium for the sustained growth of *Lactococcus lactis*, *J Appl Bacteriol*, 79: 108-116) et des approches génétiques. Il a également été montré que l'auxotrophie de IL1403, utilisée comme une souche laitière, pour l'histidine et les acides aminés à chaîne ramifiée est due à des mutations récemment acquises. La mise à disposition du complément complet des gènes biosynthétiques présents dans *L. lactis* fournira de nombreux éléments pour la compréhension et l'utilisation efficace du métabolisme biosynthétique dans ces bactéries.

Les Inventeurs ont détecté 60 gènes impliqués dans la biosynthèse et la préservation des nucléotides et nucléosides. La plupart des gènes pour la biosynthèse des purines sont regroupés près de l'opéron *purDEK*, qui a été récemment caractérisé. Une copie de IS983 a été détectée entre l'opéron *purDEK* et d'autres gènes de la biosynthèse des purines.

3.2. Métabolisme énergétique et transporteurs.

Le potentiel génétique de *L. lactis* à croître sur différentes sources carbonées peut être estimé à partir de la présence des gènes de biodégradation et des transporteurs adéquats. IL1403 a des gènes qui peuvent être utilisés pour la

croissance sur différentes sources de carbone : le glucose (les gènes de glycolyse), le fructose (positions 1519 et 2230 kb, fructokinase and glucoso-6P-isomérase, *scrK* et *pgi4*), la N-acétyl glucosamine (1032 kb, gène codant pour la glucosamine-fructoso-6P aminotransférase, *glnS*), le xylose (1550 kb, opéron *xyl*), le ribose 5 (1685 kb, opéron *rbs*), le mannose (779 kb, mannose-6P isomérase, *pni*), le gluconate (608, 2254 et 2254 kb, 6P gluconate déshydrogénases et gluconate kinase, *gnd*, *gnzZ* and *gnzK*), maltose (692, 700 et 1526 kb, maltodextrine glucosidases and 4- α -glucanotransférase, *malQ*), le lactose (2041 kb, β -galactosidase, *lacZ*), le galactose (2045 kb, opéron *gal*), le mannitol (33 kb, 10 mannitol-1P 5-déshydrogénase, *mtID*), les différents β -glucosides (186, 419, 830, 1490 et 1520 kb, glucosidases, 6P β -glucosidases, *bglS*, *bglA*, *yidC*, *bglH*, *dexB*). L'opéron catabolique du glucuronate ou du galacturonate (1670 kb, opéron *uxu-kdg*) peut être utilisé pour l'utilisation des produits de dégradation de la pectine comme une source supplémentaire d'énergie et de carbone. Les composants des 15 systèmes de transports dépendant de l'enzyme II sucre-spécifique du phosphoénolpyruvate ont été trouvés pour le mannitol (30 kb, *mtlAF*), le sucrose ou le tréhalose (435 kb, *yedF*), le fructose (984, *fru4*), le mannose (1748 kb, opéron *ptn*) et des β -glucosides (175, 416, 830, 1144 et 1489 kb, *celB*, opéron *ptc*, *yidB*, *yleDE*, *pibA*). L'analyse de la séquence du chromosome de IL1403 a révélé que les gènes codant 20 pour la voie PTS-dépendante de l'utilisation du lactose étaient absents dans cette souche. Le chromosome contient cependant un autre système pour l'utilisation du lactose dépendant du transport par le produit du gène *lacS*, codant pour un symporteur H⁺ ou un anti-porteur galactose-lactose. L'analyse des Inventeurs a détecté 19 gènes impliqués dans la glycolyse, complétant la description de ce 25 système et a révélé un second gène de déshydrogénase glyceraldéhyde-phosphate. Ceci a également confirmé l'absence d'un cycle complet de l'acide citrique. Un gène impliqué dans la gluconéogenèse a été identifié ; il s'agit du gène codant pour la fructose 1,6 bisphosphatase. Aucun gène codant pour la phosphoénolpyruvate carboxykinase ou la phosphoénolpyruvate synthétase n'a été trouvé.

Les importeurs et exporteurs de différents métabolites sont largement représentés dans les bactéries par les transporteurs ABC. Les importeurs sont impliqués dans le transport vers l'intérieur de la cellule de différents sucres ainsi que d'oligosaccharides, oligopeptides et acides aminés, anions et cations. Les exporteurs sont impliqués dans l'excrétion des métabolites dangereux pour la cellule et sont donc souvent impliqués dans la résistance de la cellule à différents antibiotiques ou autres drogues. L'inventaire complet de tels transporteurs a été réalisé à partir du séquençage complet de plusieurs microorganismes, y compris de levures telles que *Saccharomyces cerevisiae*, *Escherichia coli* et *Bacillus subtilis*.

Dans *L. lactis* plusieurs systèmes codant pour les transporteurs ABC ont été caractérisés. L'un d'entre eux, *oppDFBCA*, code pour un transporteur d'oligopeptides et semble être important pour la croissance dans un milieu contenant des oligopeptides. Le système codé par l'opéron *lcnCD* est impliqué dans la sécrétion et la maturation de lactococcine A et est important dans le développement de la résistance à cet antibiotique. Il a été montré que le gène *lmrA*, impliqué dans la résistance multi-drogues, est capable de complémenter le gène humain MDR1, responsable de la résistance à la chimiothérapie dans plusieurs formes de cancers. Il a été montré que les gènes *busAA* et *busAB* responsables du transport de la bétaïne sont importants pour la résistance aux chocs osmotiques. L'inventaire complet des transporteur ABC dans le chromosome de *L. lactis* IL1403 est présenté dans le Tableau ABC. La présente invention fournit les moyens pour détecter les gènes correspondants dans différentes souches de *L. lactis* et apparentés de façon étroite aux Streptocoques. Dans ces derniers, les transporteurs correspondants peuvent être impliqués dans le développement de la pathogénicité.

25 3.4. Enveloppe cellulaire.

I. l'analyse des Inventeurs a révélé 81 gènes impliqués dans les fonctions de l'enveloppe cellulaire, y compris 10 protéines de membrane, 28 gènes de la biosynthèse des peptidoglycanes et muréine succulus et 43 gènes de la biosynthèse des polysaccharides de surface.

3.5. Machinerie cellulaire.

Parmi les gènes impliqués dans le fonctionnement de la machinerie cellulaire, listés dans le Tableau 1, les plus importants pour les applications portentielles sont ceux impliqués dans la sécrétion protéique et le développement de la compétence génétique. La liste complète des gènes détectés pertinents est présentée dans le Tableau 1. Leur présentation est détaillée en partie ci-dessus. L'exemple correspondant d'isolement de tels gènes par la mise en œuvre de la présente invention est fourni ci-après.

3.6. Fonctions de régulation.

10 L'analyse a révélé 126 gènes potentiellement impliqués dans la régulation, qui représentent à peu près 5,6 % du nombre total des ORFs identifiés.

3.7. RéPLICATION, TRANSCRIPTION ET TRADUCTION.

15 65, 27 et 128 gènes ont été attribués aux catégories fonctionnelles de réPLICATION, transcription et traduction respectivement. Il apparaît que le système de réPLICATION de *L. lactis* est très similaire à celui de *B. subtilis*. La contrepartie des gènes de *dnaB* et *dnaD*, essentiels pour la réPLICATION de l'ADN chez *B. subtilis* et non présents dans les bactéries gram négatives, ont été détECTÉS. Deux gènes d'ADN-polymérase III de chaîne α, l'un correspondant à *polC* et un autre à *dnaE* de *B. subtilis*, ont également été détECTÉS chez *L. lactis*. *E. coli* possède seulement ce dernier gène. La machinerie transcriptionnelle et traductionnelle ne semble pas présenter de différence remarquable avec celle de *B. subtilis*. Il semble que *B. subtilis*, avec ses outils génétiques bien développés, puisse être un organisme hôte convenable pour étudier la régULATION des gènes dans les systèmes de *L. lactis*.

20 25

EXEMPLES

1. Détection des régions de longue colinéarité et établissement de l'organisation correspondante des gènes dans la souche *L. lactis*

MG1363 étroitement apparentée à *L. lactis* IL1403.

Comme base pour la détection de gènes chez une bactérie qui est proche de *L. lactis* IL1403, la présente invention propose le séquençage d'un nombre limité de fragments d'ADN pris au hasard. Leur nombre doit être défini de façon à permettre une densité suffisamment élevée de distribution de leur site d'homologie par rapport au génome de *L. lactis* IL1403. Dans cet exemple, pour la souche *L. lactis* MG1363, il y a 513 séquences qui ont en moyenne un site sur chaque 5 kb. Les séquences des fragments d'ADN correspondant à 2 sites les plus proches du gène d'intérêt sur le génome de IL1403 sont utilisées pour choisir les oligonucléotides pour l'amplification par PCR de la zone correspondante à partir du génome de MG1363. Dans les régions des génomes considérées comme colinéaires, le fragment amplifié devra contenir le gène d'intérêt de MG1363, du fait de la colinéarité des génomes.

L'ADN chromosomique de la souche MG1363 est digéré par l'enzyme de restriction *Aba*I ou par sonication randomisée. Après séparation dans un gel d'agarose à 0,8 %, une fraction contenant des fragments ayant une taille de 500 bp à 1 kb est isolée. Cet ADN est ligaturé au plasmide pSGMU2, digéré par *Sma*I et déphosphorylé par la phosphatase alkaline de *E. coli*. La déphosphorylation du vecteur d'ADN était nécessaire pour empêcher une auto-ligature et ainsi augmenter le nombre de colonies qui portent l'ADN chromosomique de MG1363 inséré dans le vecteur. L'ADN ligaturé a été transformé dans des cellules TG1 de *E. coli*, qui ont été rendues compétentes par un traitement avec une solution de CaCl₂ à 50 mM. Les cellules ont été étalées sur un milieu d'agar, qui contenait 50 µg/ml d'ampicilline, 20 µg/ml de X-gal et 20 µg/ml d'IPTG. Les colonies blanches ont été prises pour le séquençage des inserts par des amorces sens (M13-21) et reverses (M13RP1). 665 plasmides au total ont été séquencés et ils ont donné 882 gels lus contenant 258919 caractères. Ces séquences ont été réparties dans 539 groupes de liaison, chacun correspondant à une unique séquence de l'ADN génomique de MG1363 avec une taille moyenne de 348 bp et une longueur totale de 185292 bp.

L'analyse de l'homologie avec le génome de *L. lactis* IL1403 a été réalisée en utilisant les algorithmes de FASTA et de BLASTx. Les résultats de cette analyse ont été utilisés pour détecter les zones de forte homologie entre les deux génomes et pour détecter les régions de colinéarité potentielle dans les organisations de génome.

- 5 L'estimation d'un niveau d'homologie statistiquement significatif a été donné par le calcul de la distribution des contigs (tags ou étiquettes) séquencés avec un pourcentage donné d'homologie par rapport au génome de la souche IL1403. Le niveau d'homologie entre les différentes parties des génomes de MG1363 et IL1403 qui peuvent être considérées comme des contreparties est compris entre 65 et
10 100 %, avec un nombre maximum de régions homologues proche de 85 %.

240 oligonucléotides (SEQ ID N° 2324 à 2563) ont été synthétisés et utilisés dans des réactions de Long Range PCR, dans le but de confirmer la colinéarité des régions détectées. Les zones correspondant aux zones de colinéarité peuvent être facilement amplifiées par LR PCR en utilisant les oligonucléotides
15 correspondants comme amores. L'organisation des gènes dans ces zones de colinéarité est conservée dans ces deux souches. Ce fait peut donc être utilisé pour amplifier les gènes désirés à partir d'autres souches de Lactocoques et les utiliser pour des manipulations génétiques. Certains systèmes génétiques particuliers, amplifiés à partir de la souche MG1363 par utilisation de l'information génomique
20 pour IL1403 et l'approche décrite dans cet exemple, sont décrits dans les exemples 2 et 3.

La présente invention fournit donc les séquences pour le génome de *L. lactis* MG1363, qui permet la détection d'un gène quelconque existant dans les deux souches : IL1403 et MG1363. Puisque l'homologie et la colinéarité des deux
25 génomes sont estimées à 65 %, il y a 65 % de tous les gènes listés dans les Tableaux I et II, représentant une annotation fonctionnelle du génome de IL1403.

L'invention concerne une méthode pour l'estimation de la colinéarité entre l'organisation chromosomique de deux génomes. Les parties de deux génomes sont colinéaires si les régions homologues sont situées à égale distance dans les deux

génomes. Ceci signifie en premier lieu que dans les régions colinéaires pour deux génomes donnés, l'organisation des gènes est conservée. Ceci signifie en second lieu que les oligonucléotides homologues des régions colinéaires devraient donner, par amplification PCR, des fragments de taille similaire pour les deux génomes. Ainsi, 5 pour les régions colinéaires, la similarité de l'amplification PCR devrait indiquer la similarité de l'organisation des gènes. Dans les parties des génomes considérées comme colinéaires, estimées par amplification PCR, les fragments amplifiés devraient contenir des gènes similaires pour les deux génomes, du fait de la colinéarité des génomes.

La présente invention fournit donc les moyens de déterminer les séquences du génome de *L. lactis* MG1363 et permet la détection d'un gène quelconque qui existe dans les deux souches : IL1403 et MG1363. L'homologie des deux génomes est estimée à 85 %. Les Inventeurs ont estimé que les régions de non-colinéarité, qui sont une partie du génome et dont la densité de distribution de tags séquencés inférieure à celle attendue à partir d'une distribution randomisée, est d'environ 800 kb. Ces régions ne peuvent pas être amplifiées par PCR utilisant la méthode basée sur l'estimation de la colinéarité entre les deux génomes, fournis par la présente invention. D'autres régions peuvent être amplifiées en utilisant cette méthode. Ainsi, en utilisant cette méthode, 65 % de tous les gènes *L. lactis* peuvent être détectés 10 dans une autre souche de *L. lactis* que IL1403. Ceci signifie également que la préparation de tous les fragments représentatifs à partir de l'ADN de la souche IL1403, ou à partir d'une quelconque autre souche d'intérêt, en utilisant les méthodes décrites ci-dessus, donnera au minimum 65 % de tous les gènes d'une quelconque souche de *L. lactis*. Cet ensemble représentatif de fragments peut être 15 utilisé pour détecter des différences entre les génomes entiers de souches de *L. lactis* ou pour étudier l'expression de gènes par hybridation à de l'ARN extrait. Cette détection de 65 % des gènes ou de leur expression dans *L. lactis* est également 20 basée sur la séquence génomique de IL1403 présentée à la Figure 1, sur l'annotation fonctionnelle de ce génome fournie au Tableau 1 et sur la méthode de la détection 25

de gènes selon la présente invention.

2. Détection des gènes impliqués dans la biosynthèse de l'arginine dans la souche *L. lactis* MG1363.

Un opéron codant pour cinq gènes nécessaires à la biosynthèse de l'arginine a été détecté aux environs de 805 kb du génome de *L. lactis* IL1403. Bien que le séquençage généré à partir de l'ADN génomique de *L. lactis* MG1363 n'a pas révélé un tag séquencé homologue à un quelconque gène de la biosynthèse de l'arginine, on peut s'attendre à ce que de tels gènes soient localisés dans le génome de MG1363 dans la région à partir de 800 à 850 kb, qui est colinéaire entre les deux souches. Les Inventeurs ont choisi deux tags séquencés, les plus proches de la zone, qui doivent contenir des gènes de la biosynthèse de l'arginine dans le génome de MG1363. Il s'agit de contigs séquencés qui ont révélé une homologie avec les gènes *yhhD* et *yibC*. En synthétisant les homologues oligonucléotides des séquences à partir de ces deux contigs, ma86 (SEQ ID N° 2564) et ma87 (SEQ ID N° 2565), et en réalisant une amplification par LR PCR sur l'ADN chromosomique de MG1363, un produit d'amplification d'une taille de 19 kb, ou proche de cela, contenant des gènes de la biosynthèse de l'arginine était attendu. L'amplification a donné lieu à un fragment de la taille de 19 kb. Le séquençage des extrémités de ce fragment a montré que le fragment correspondait effectivement à la zone attendue et que les gènes de la biosynthèse de l'arginine étaient contenus dans cette zone du génome de MG1363. Cette méthode peut être appliquée à d'autres souches de *L. lactis* pour détecter les gènes de l'arginine dans la plupart des environnements génétiques recherchés. Les gènes *argG* et *argH*, codant pour la synthase arginosuccinate et la lyase respectivement, peuvent également être détectés de la même façon. Ils ont été détectés dans le génome de la souche IL1403 proche de 130 kb. Des manipulations génétiques avec ces gènes peuvent être mises en œuvre pour augmenter ou diminuer le niveau de production de l'arginine, ce qui a de nombreuses applications dans l'industrie alimentaire, l'agriculture ou la médecine.

3. Détection des gènes de la déshydrogénase pyruvate dans la souche de *L. lactis* MG1363.

La déshydrogénase pyruvate est l'une des enzymes importantes dans la régulation des flux du métabolisme du pyruvate dans les microorganismes. En manipulant les niveaux d'activité de cette enzyme dans la cellule, il est possible de faire passer une bactérie de fermentation homolactique en fermentation acide mixte et ainsi influencer les rendements les différents produits de fermentation, ce qui peut influencer la saveur du produit final alimentaire. Un opéron codant pour quatre gènes nécessaires à la biosynthèse de la déshydrogénase pyruvate a été détecté aux environs de 60 kb dans le génome de *L. lactis* IL1403. Le séquençage généré à partir de l'ADN génomique de *L. lactis* MG1363 a révélé un contig, homologue du gène *pdhD*, codant pour une sous-unité de la déshydrogénase pyruvate. Un autre tag séquencé qui peut être utilisé pour amplifier ces gènes a été détecté comme homologue du gène *yakG* dans le génome annoté de IL1403. Par synthèse des oligonucléotides homologues aux séquences à partir de ces deux contigs, ma08 (SEQ ID N° 2566) et ma09 (SEQ ID N° 2567), et par la mise en œuvre d'une amplification par LR PCR sur l'ADN chromosomique de MG1363, un produit d'amplification de la taille de 15 kb, ou proche de cela, contenant les gènes de la biosynthèse de la déshydrogénase pyruvate était attendu. L'amplification a effectivement donné un fragment de la taille de 15 kb. Le séquençage des extrémités de ce fragment a montré que ce fragment correspondait bien à la zone attendue et que les gènes de la biosynthèse de la déshydrogénase pyruvate étaient contenus dans cette zone du génome de MG1363. Cette méthode peut être appliquée à d'autres souches de *L. lactis* pour la détection des gènes de la déshydrogénase de pyruvate dans les environnements génétiques les plus recherchés. D'autres gènes également impliqués dans la glycolyse ont été détectés dans différentes parties du chromosome de la souche IL1403. Il s'agit de *enoA* (633 kb) et *enoB* (274 kb), tous deux codant pour une énolase, de *pgk* (242 kb) codant pour une phosphoglycératekinase, de *pgm*

(332 kb) codant pour une phosphoglycérate mutase, de *pgmB* (442 kb) codant pour une betta-phosphoglycomutase, de *gapA* (554 kb) et de *gapB* (2315 kb) les deux codant pour une déshydrogénase de glycéraldéhyde 3-phosphate, de *tpiA* (1148 kb) codant pour une isomérase triosephosphate, de *pyk* (1370 kb) codant pour une pyruvate kinase, de *fbaA* (1963 kb) codant pour une aldolase fructose-bisphosphate, de *pgiA* (2228 kb) codant pour une glucose-6-phosphate isomérase. Par la synthèse des oligonucléotides homologues des séquences à partir des contigs proches des zones où ces gènes étaient détectés dans IL1403, et la mise en œuvre d'une amplification par LR PCR sur l'ADN chromosomal de MG1363, un produit 5 d'amplification contenant les gènes de la glycolyse était attendu. Ces gènes représentent l'ensemble complet des gènes de la glycolyse et peuvent être trouvés 10 dans *Lactococcus lactis*.

Cette méthode peut être appliquée à d'autres souches de *L. lactis* pour la détection des gènes de la glycolyse dans la plupart des environnements génétiques 15 recherchés. La modification de ces gènes par mutagénèse pourrait donner lieu à la construction de nouvelles souches de niveau alimentaire qui auraient de nombreuses applications dans l'industrie alimentaire et l'agriculture.

4. Isolement et surproduction d'une chaperone extracytoplasmique

Les protéines sécrétées sont souvent dégradées au cours ou après leur 20 sécrétion par des protéases présentes à la surface des cellules. Cette dégradation est souvent d'autant plus importante que la protéine sécrétée est d'origine étrangère, et ceci probablement parce que leur repliement est soit trop lent, soit mal synchronisé avec la synthèse et/ou la sécrétion. L'expression amplifiée de 25 certains enzymes dont le rôle est de faciliter leur repliement permet parfois de protéger ces protéines de cette dégradation. Dans l'exemple suivant, les Inventeurs ont isolé la séquence complète d'un gène dont le meilleur homologue dans les bases de donnée est *prsA* de *B. subtilis* et dont l'activité semble être celle d'aider les protéines sécrétées à mieux se replier.

Deux amores PCR (SEQ ID N° 2568 et SEQ ID N° 2569) ont été déduites de la séquence de *L. lactis* IL1403 et ont permis d'amplifier le gène correspondant à *prsA* chez *L. lactis*. Ce gène a été cloné dans le vecteur pGEMT (Promega) et sa séquence vérifiée. Le plasmide obtenu a ensuite été fusionné au site *NcoI* au plasmide pNZ8037 contenant le promoteur de l'opéron nisine de *L. lactis*. La partie pGEMT de cet hybride a ensuite été déletée par coupure *PstI* et recircularisation avec la T4-ligase. Ce plasmide a ensuite été transformé dans la souche NZ9000, un dérivé de *L. lactis* subsp. *cremoris* MG1363 contenant le système permettant d'induire le promoteur placé en amont du gène homologue de *prsA* de *L. lactis*.

Cette souche a ensuite été testée pour la production de la lipase de *Staphylococcus hyicus* qui est dégradée en plusieurs formes tronquées lors de sa sécrétion chez *L. lactis* (Drouault et al. 2000, Appl Environ Microbiol., 66, 588). Dans cette souche, aucune forme dégradée de la lipase n'a pu être visualisée montrant que la production sur plasmide de l'homologue de *prsA* de *L. lactis* IL1403 permet d'éviter l'accumulation de forme dégradée d'un enzyme hétérologue sécrété par une souche de *L. lactis* subsp. *cremoris*

5. Contrôle du métabolisme des sucres

La majeure partie du galactose métabolisé par *L. lactis* et en général les bactéries lactiques est transformé dans la voie de la glycolyse via la voie de Leloir. En effet, du fait du métabolisme fermentaire des bactéries lactiques, ces réactions sont plus actives que celles ayant trait à la synthèse de sucres nucléotides, précurseur du glycogène, d'acide lipotechoïque et d'exopolysaccharides. Une des étapes limitant la synthèse d'EPS, en particulier chez *Streptococcus thermophilus*, bactéries du yaourt, est la réaction glucose-6-phosphate vers le glucose 1-phosphate par la phosphoglucomutase (α PGM). Son amplification est donc souhaitable pour permettre d'augmenter la production des EPS.

Le gène codant pour α PGM, *pgm*, a été caractérisé pour en obtenir une

surexpression. Aucun gène α PGM de bactérie gram positive, et en particulier de bactérie lactique, n'avait été encore caractérisé génétiquement. Les Inventeurs ont donc recherché des séquences potentielles codant pour de tels gènes chez *L. lactis* sur la base de motifs court du site actif des protéines de cette famille comprenant des phosphoglucomutases, des phosphomannomutases, des phosphoNacetylglucosamine-mutases et des gènes de fonction inconnue dont *mrsA* de *E. coli* (Swissprot p31120). Les Inventeurs ont ensuite réalisé des alignements multiples des protéines homologues aux gènes homologues chez *L. lactis* et défini pour chacun des régions conservées afin de faire la synthèse d'oligonucléotides dégénérés permettant d'amplifier les régions correspondantes du génome de différente bactéries comme par exemple *Streptococcus thermophilus*. Une PCR dégénérée a été réalisée avec ces oligonucléotides SEQ ID N° 2570 et SEQ ID N° 2571 sur l'ADN total d'une souche de *Streptococcus thermophilus*. Il ont permis d'amplifier un fragment de 1.2 kb dont la séquence a montré qu'il contenait un gène homologue à celui de *L. lactis*.

Le reste du gène a ensuite été obtenu par PCR inverse (Ochman et al., 1990, Biotechnology, 8, 759). L'ADN chromosomique est digérée avec des enzymes de restriction puis les produits de coupure sont circularisés par ligation avec la ligase puis amplifiés par PCR "Long Range" en utilisant des primers complémentaires au brin opposé. Les bandes obtenues sont extraites du gel et séquencées. La taille du gène *pgm* de *Streptococcus thermophilus* est de 1350 pb. Les Inventeurs ont montré par la suite que ce gène correspond bien à l' α -PGM de *S. thermophilus* bien qu'il ait été isolé à partir de séquence supposée être codante pour les mannomutases.

Pour montrer que ce gène codait pour l' α -PGM, les Inventeurs ont adopté une stratégie d'inactivation par insertion d'un vecteur dans le gène par recombinaison homologue. Dans un premier temps, des plasmides dont la réplication est thermosensible contenant des fragments internes au gène *pgm* (Biswas et al., 1993, J Bacteriol., 175, 3628) ont été construits. Une souche de *Streptococcus*

thermophilus contenant le plasmide pG+host contenant l'insert interne à *pgm* a été mise à pousser à 42°C sur boîtes M17 lactose contenant l'erythromycine pour détecter les événements d'intégration. L'ADN chromosomique préparée à partir d'une souches ainsi obtenue a été digérée par *Kpn*I puis analysé par Southern en utilisant une sonde PCR couvrant le gène *pgm*. La bande correspondant à l'hybridation avec le gène *pgm* du chromosome est transformée en deux bandes correspondant à l'intégration du vecteur dans le gène *pgm*. Ce plasmide est donc bien intégré par recombinaison homologue. Il est attendu qu'une souche contenant une mutation dans le gène *pgm* pousse normalement sur milieu contenant du glucose et du galactose mais pas sur milieu contenant du galactose ou glucose seul.

Le clone obtenu après intégration ne pousse pas sur glucose ou galactose seul, mais normalement en lactose ou sur un mélange glucose et galactose. Ceci montre que le métabolisme du glucose et du galactose a bien été découpé dans cette souche et que le gène dont l'activité a été affectée est bien *pgm*. Le travail réalisé dans la présente invention permet de montrer que le gène inactivé code bien pour l'enzyme connectant la voie des EPS et la glycolyse. Il code donc probablement pour l' α -PGM dont la séquence n'était pas encore caractérisée expérimentalement chez les bactéries lactiques. Ces expériences montrent aussi que l'on peut, en s'appuyant sur les séquences du génome de *L. lactis*, isoler des gènes d'autres bactéries et notamment des *Streptococcus*.

6. Résistance au stress

L'annotation de IL1403 par comparaison avec d'autres bactéries telles que *B. subtilis* ou *E. coli*, permet d'identifier les gènes codant pour des activités répertoriées comme importantes en conditions de stress à la suite d'études biochimiques. Ainsi, l'invention permet l'identification de protéines mises en évidence par analyse protéomique quelle que soit la souche de *L. lactis* étudiée. Par exemple, la comparaison de certaines séquences N-terminales rapportées par Kilstrup *et al.* (1997, Appl Environ Microbiol., 63, 1826, souche MG1363)

et Frees et Ingmer (1999, Mol Microbiol., 31, 79, souche MG1363) avec les orfs détectées dans la séquence de IL1403 permet de confirmer les fonctions assignées ou d'en attribuer. Ce type d'analyse devrait permettre d'identifier des gènes appartenant aux différents régulons de stress. Il deviendra possible de 5 rechercher des séquences régulatrices communes entre les gènes d'un régulon puis dans l'ensemble de la séquence génomique afin d'en identifier tous les éléments. Les gènes codant pour la H⁺-ATPase ou la désimination de l'arginine dont les activités augmentent en condition de stress, sont désormais identifiés 10 chez IL1403. On peut envisager de les modifier pour renforcer ou réduire la résistance des souches aux conditions acides.

Cette annotation comparée permet aussi de bénéficier des connaissances acquises chez d'autres micro-organismes sur les réponses aux stress. En exemple, il peut être mentionné l'identification chez IL1403 d'un homologue du gène *pexB* de *B. subtilis* aussi appelé *dps* chez *B. subtilis* et *E. coli*. Ce gène a chez ces deux bactéries un rôle majeur dans la protection contre 15 des dommages oxydatifs de l'ADN. Il est extrêmement probable, au vu de sa conservation, qu'il remplisse la même fonction chez *L. lactis* et soit important pour la survie au stress oxydatif et en phase stationnaire. Cette annotation révèle aussi des gènes de métabolisme du glycogène, de polyphosphate et de 20 tréhalose dont il est bien établi qu'ils ont des rôles importants dans la survie en condition de phase stationnaire et de carence. Mais l'annotation révèle aussi des différences majeures entre IL1403 et *B. subtilis* : le facteur sigma-B contrôle chez *B. subtilis* une centaine de gènes de stress, la séquence de IL1403 ne 25 révèle aucun homologue de ce facteur sigma.

25 L'identification des régulateurs de stress doit donc reposer sur d'autres voies que la stricte comparaison. Là encore, la séquence permet d'envisager plusieurs solutions d'une part, elle révèle un certains nombre de régulateurs dont on peut désormais déterminer l'implication dans les phénomènes de résistance aux stress, d'autre part, elle permet le développement d'outils

(notamment des puces à ADN) qui faciliteront cette étude. L'identification des régulateurs est très importante pour le développement d'applications puisque la modification d'un seul gène (le régulateur) affectera l'expression de l'ensemble des gènes appartenant à 1 régulon de stress.

5 La présente invention permet d'identifier les réseaux de gènes de résistance aux stress de *L. lactis*, leur régulateurs et leurs interactions. Des applications potentielles sont i) de trouver des marqueurs de stress pertinents, ii) de modifier ces gènes et/ou leur expression pour changer la capacité de résistance/sensibilité aux stress des Lactocoques et iii) de complémenter de 10 façon pertinente l'absence de certains systèmes chez les Lactocoques éventuellement en implémentant de nouvelles fonctions.

15 Enfin, cette invention constitue un outil de diagnostic i) des stress réellement perçus par les Lactocoques au cours d'un procédé donné, ii) du potentiel de résistance/sensibilité d'une nouvelle souche et de son adéquation à un procédé, iii) pour choisir entre l'utilisation d'OGM ou de mutants naturels ou chimiques plus résistants aux stress et le cas échéant, identifier et contrôler la(es) mutation(s).

7. Cycle des phages

20 L'analyse de la séquence du chromosome de la souche IL1403 a permis d'identifier 6 prophages et de caractériser les régions du génome dans lesquelles ils sont insérés. Au total, 256 *orfs* ont été identifiées, ainsi que les régions putatives de régulation de leur expression. Sur les 256 protéines codées par ces *orfs*, 186 sont homologues à des protéines de bactériophages ou de 25 bactéries présentes dans les banques de données, mais 70 sont nouvelles, sans homologie avec des protéines déjà décrites. De plus, l'analyse des Inventeurs a permis d'établir que certaines protéines ont une structure modulaire. Ceci implique que ces protéines, bien qu'homologues sur une partie de leur longueur à des protéines déjà décrites, puissent néanmoins présenter des spécificités

d'action différentes. C'est le cas en particulier des protéines d'initiation de la réPLICATION de l'ADN (Orf16, Orf15 et Orf14 respectivement pour les phages bIL285, bIL286 et bIL309) qui, bien qu'ayant des domaines homologues, reconnaissent vraisemblablement des origines de réPLICATION différentes sur 5 l'ADN.

L'analyse de la séquence du chromosome de la souche IL1403 a permis d'identifier des gènes codant pour des protéines impliquées dans des étapes clé de la multiplication des phages telles que la régulation du choix entre cycle lytique et cycle tempéré, la réPLICATION de l'ADN, la recombinaison, la 10 morphogenèse et la lyse cellulaire. En perturbant l'expression ou la fonction de certaines de ces protéines, il serait possible de développer des systèmes de résistance aux phages. Deux stratégies seraient utilisables :

- 1) le développement de phages infectants pourrait être gravement perturbé en changeant la concentration de l'une ou plusieurs des 15 ces protéines ; ceci pourrait être fait en surproduisant, ou au contraire en titrant ces protéines et/ou leurs régulateurs ;
- 2) les systèmes de contrôle temporel d'expression des gènes de phages pourraient être utilisés ; en plaçant des gènes toxiques sous le contrôle de tels systèmes d'expression, il serait possible de développer des «systèmes suicides» dans lesquels l'infection par un 20 phage entraînerait la mort des cellules infectées avant qu'elles ne puissent libérer de nouveaux phages.

La présente invention a également permis de mieux décrire la variété des génomes existant parmi les phages du groupe P335. Cette connaissance 25 pourrait être utilisée pour développer de meilleurs systèmes de diagnostic des phages présents dans les levains lactiques et les produits laitiers.

8. Expression des gènes et milieu d'identification des souches.

L'une des applications directes de l'information découlant de la séquence

génomique est la construction de filtres à haute densité ou de puces, qui peuvent être utilisés pour étudier l'expression des gènes de la cellule entière ou pour comparer des génomes de souches différentes. La base pour la construction d'une telle expression de gènes et les milieux d'identification de souches est la séquence 5 génomique et son annotation. Ainsi, l'information nécessaire pour la construction de filtres à haute densité et de puces pour *L. lactis* IL1403 est la séquence génomique (SEQ ID N° 1) et son annotation présentée dans le Tableau II. La préparation de tels filtres ou puces consiste à synthétiser des oligonucléotides qui correspondent aux parties terminales 5' et 3' des gènes. Ces oligonucléotides sont sélectionnés en 10 utilisant la séquence génomique et son annotation telle que fournie par la présente invention. La température d'annelage des oligonucléotides aux endroits correspondants sur l'ADN doit être approximativement la même pour chaque nucléotide. Ceci permet de préparer les fragments correspondants d'ADN pour chaque gène en utilisant des conditions standards de PCR dans des expérimentations 15 par PCR automatisée à haut débit. Les fragments amplifiés sont ensuite immobilisés sur les filtres ou des supports de verre et ces milieux sont utilisés pour l'hybridation.

La disponibilité de tels filtres et la séquence annotée correspondante permet d'étudier l'expression de l'ensemble des gènes dans le microorganisme en préparant l'ADNc correspondant et en l'hybridant à de l'ADN immobilisé sur le 20 filtre. L'hybridation de l'ADN immobilisé sur le filtre avec l'ADN total de différentes souches permet également d'étudier la divergence de l'organisation génomique chez différentes souches.

Les différences des séquences de gènes chez différentes souches peuvent largement influencer l'intensité de l'hybridation et ainsi influencer la précision de 25 l'interprétation des données. Il est donc nécessaire d'avoir exactement l'ADN de la souche qui est étudiée pour l'immobiliser sur le filtre. Dans ce but, la méthode de la détection des gènes telle que fournie par la présente invention est utile. La procédure consiste dans ce cas à amplifier l'ADN de la souche d'intérêt en utilisant l'information sur la cartographie des régions colinéaires et la méthode de détection

des gènes conformément à l'invention.

L'utilisation de l'expression des gènes et le milieu d'identification de la souche fournira un ensemble de nouvelles connaissances sur la régulation des gènes des souches de *L. lactis* présentant un intérêt industriel et dans différentes conditions

5 de croissance. Ceci permettra également l'identification rapide des différences génomiques dans les souches utilisées pour des applications industrielles multiples.

La souche de *Lactococcus lactis* IL 1403 a été déposée le 7 avril 2000 à la Collection National de Cultures de Microorganismes, Institut Pasteur, 25 rue du Dr Roux, 75724 PARIS Cedex 15, France, selon les provisions du traité de Budapest, et a été enregistrée sous le numéro d'ordre I-2438.

TABLEAU I Coordonnées des ORF par rapport à SEQ ID N° 1

ORF	Début	Fin	Début de protéine
2	349	1722	358
3	1873	3021	1882
4	3109	6426	3130
5	6407	10030	6422
6	10283	10846	10837
7	11116	12231	11119
8	12334	12666	12346
9	12912	13265	12924
10	13272	15269	13281
11	15262	15906	15274
12	16101	16577	16110
13	16595	17161	16598
14	17165	20647	17165
15	20795	21277	20810
16	21336	21665	21351
17	21634	22068	21697
18	22059	22391	22071
19	22496	23878	22532
20	23839	25146	23878
21	25115	25678	25130
22	25869	27971	25887
23	28996	30860	29041
24	30901	32856	30922
25	32907	33335	32907
26	33416	34630	33476
27	35519	35863	35839
28	35867	36301	36274
29	36274	36774	36714
30	36850	37494	37428
31	37667	39307	39292
32	39306	40100	40097
33	40104	40460	40430
34	40611	40871	40862
35	40862	41110	41098
36	41144	41452	41422
37	41422	41691	41670
38	41670	42191	42188
39	42195	42449	42386
40	42465	43220	43202
41	43680	44072	43689
42	44085	44636	44085
43	44747	44977	44750
44	45035	45244	45053
45	45351	45638	45399
46	45702	45998	45777
47	47364	47582	47370
48	47979	48290	47988
49	48477	49724	48543
50	50174	50626	50180

51	50682	50945	50706
52	51032	52489	52411
53	52494	53024	52656
54	53122	53841	53161
55	53903	54799	54661
56	54760	55125	55047
57	55129	55407	55389
58	55587	56117	55599
59	56488	57756	56584
60	57825	58610	57858
61	58974	60413	60389
62	60586	62205	62181
63	62177	63172	63154
64	63160	64308	64281
65	64373	65440	65371
66	65574	66419	66416
67	66500	67222	67147
68	67267	68382	68289
69	68758	69225	68791
70	69353	70699	69389
71	70747	71109	70762
72	71174	72184	72165
73	72272	73102	73081
74	73210	74904	74844
75	75975	77303	77252
76	77482	78327	78312
77	78683	79177	78713
78	79507	80154	79537
79	80190	81374	80208
80	81205	81975	81388
81	82519	84720	82576
82	84720	86156	84738
83	86605	87069	86620
84	87099	87764	87111
85	87873	88160	88151
86	88164	88397	88397
87	88634	88867	88652
88	89117	89824	89117
89	90238	90702	90253
90	91055	91960	91891
91	91906	92178	92163
92	92203	92820	92805
93	93034	93939	93870
94	93885	94157	94142
95	94196	94618	94253
96	94844	95149	95143
97	95882	96040	96028
98	96061	96459	96231
99	96595	98373	96595
100	98432	99229	99214
101	99272	100549	100528
102	100575	101078	101060
103	101209	101676	101212
104	101706	103259	101709

105	103321	103674	103393
106	103661	104200	103715
107	104221	105171	104221
108	105256	106023	105274
109	106031	107008	106055
110	107191	109431	107212
111	109453	110394	110385
112	110564	111028	110576
113	111003	112016	111024
114	111950	112642	112022
115	112776	114191	112785
116	114325	114981	114343
117	115025	115594	115513
118	115551	116228	116192
119	116273	118960	116366
120	119068	120126	119092
121	120335	120643	120380
122	120628	122373	120649
123	122461	122802	122491
124	122849	123184	123145
125	123536	124489	124468
126	124677	125027	124677
127	125116	126312	125152
128	126739	127947	126754
129	127960	129357	127981
130	129379	130611	130572
131	130713	131339	130767
132	131443	131844	131494
133	131778	132650	131844
134	132712	133653	132742
135	133770	133919	133788
136	134097	135038	134130
137	135065	135427	135110
138	135555	135785	135561
139	135900	136508	135966
140	136652	137241	136564
141	137335	137700	137413
142	137661	138557	137799
143	138554	139171	138617
144	139066	139986	139171
145	140048	140944	140806
146	140905	141342	141192
147	141485	141760	141497
148	141748	142191	141835
149	142332	142667	142347
150	142704	143261	143252
151	143350	144186	144132
152	144155	144406	144397
153	144410	145204	145192
154	145301	146846	145304
155	145934	147879	147876
156	146006	148371	148323
157	148777	154743	148795
158	155378	156532	156523

yu

159	156673	157404	156715
160	157471	158673	158649
161	158833	159324	159267
162	159399	160190	159402
163	160331	160564	160358
164	160555	160815	160579
165	160936	162594	161014
166	162603	163877	162666
167	164024	164818	164033
168	165312	165632	165330
169	165620	167092	165635
170	167096	167698	167099
171	167702	169171	167708
172	169389	170894	169398
173	170982	172349	172319
174	172504	172731	172698
175	172780	173346	172816
176	173327	174028	173339
177	174059	174559	174131
178	174944	176002	174953
179	176314	177429	176338
180	177518	179011	177530
181	179656	181101	179668
182	181165	181617	181168
183	181855	183213	181873
184	183213	183983	183231
185	184156	185274	184180
186	185514	186131	185523
187	186255	187262	186285
188	187447	188361	187459
189	188389	189090	189072
190	189094	189405	189270
191	189323	189616	189535
192	189819	190070	190016
193	190006	192159	192132
194	192237	192737	192692
195	192993	193454	193029
196	193590	195257	195194
197	195254	195640	195619
198	195895	196101	196086
199	196213	196878	196222
200	197038	197940	197074
201	197958	198278	197991
202	198320	198940	198350
203	198937	199194	198943
204	199218	200285	199239
205	200317	201273	200377
206	201386	202615	201410
207	202596	203564	202608
208	203422	204354	203548
209	204339	205550	204357
210	205522	205863	205546
211	205878	206897	205908
212	206904	207887	206916

213	207891	209666	207900
214	209636	211213	209672
215	211282	212028	211306
216	211983	212396	212028
217	212332	213321	212383
218	213321	214748	213324
219	214733	215884	214748
220	215881	216720	215887
221	216650	217711	216713
222	217692	218570	217716
223	218597	219823	218600
224	219813	220262	219837
225	220394	220993	220903
226	221261	222763	221285
227	222897	224114	222972
228	224294	224677	224321
229	224722	226005	224848
230	226051	226385	226060
231	226397	227011	226415
232	226995	227594	227007
233	227643	228065	227643
234	228201	228590	228234
235	228693	229424	228693
236	229474	230643	229477
237	230660	231139	230717
238	231277	232011	231298
239	232069	232719	232081
240	232650	233375	232719
241	233414	233908	233719
242	234089	234322	234322
243	234457	235014	234472
244	235131	236591	236588
245	236745	237137	236778
246	237220	237399	237226
247	237570	240017	237609
248	240032	240628	240032
249	240750	240974	240750
250	240926	241249	240926
251	241253	241702	241256
252	241776	242603	241794
253	242781	243989	242796
254	244060	245052	244108
255	245059	245658	245619
256	245674	246687	245740
257	246691	247275	246700
258	247254	247643	247275
259	247647	248369	247656
260	248414	249886	249790
261	249932	250612	249968
262	250632	251444	250701
263	251432	252583	251444
264	252681	253850	252684
265	254016	255962	254043
266	256203	257474	257471

267	257603	258436	257612
258	258579	258998	258588
269	259130	261004	259172
270	261001	261696	261004
271	261675	262877	261696
272	262950	263627	262977
273	263679	264773	264749
274	265024	265530	265497
275	265702	266172	265711
276	266228	267082	266240
277	267221	267760	267248
278	267867	268427	267882
279	268358	268708	268427
280	268753	270108	270069
281	270395	272653	270413
282	272604	273266	272670
283	273381	273953	273884
284	274119	275441	274176
285	275713	276573	275743
286	276750	277625	276762
287	277622	278425	277628
288	278365	279060	278452
289	279261	280040	279273
290	280171	281331	280180
291	281447	282571	281456
292	283755	284366	283758
293	284496	286631	284496
294	286671	287171	286731
295	287447	288502	287447
296	288540	288791	288755
297	288795	289229	289205
298	289412	291142	291091
299	291267	291527	291494
300	291801	292526	291804
301	292408	293049	292483
302	293045	293624	293057
303	293494	294567	293530
304	294546	294767	294570
305	294967	295197	295101
306	295204	296019	295989
307	296211	297335	296289
308	297409	298194	297457
309	298198	299007	298198
310	298998	299831	299025
311	299792	301396	299840
312	301693	302205	301726
313	302354	304918	302381
314	304963	306255	306153
315	306483	306986	306959
316	306959	308254	308233
317	308497	308856	308509
318	309156	310889	309171
319	310893	312887	310896
320	313061	314329	313067

321	314357	314593	314378
322	314626	314982	314979
323	315006	315566	315551
324	315665	316198	316138
325	316205	316792	316777
326	317437	318336	317479
327	318468	319340	318483
328	319445	320317	319460
329	320327	321196	320339
330	321282	322406	321303
331	322394	323101	322409
332	323140	323697	323152
333	323770	325503	323809
334	325496	326317	325499
335	326402	326773	326483
336	326685	327476	326700
337	327469	328419	327472
338	328379	329359	328424
339	329396	330385	329447
340	330438	331352	330450
341	331416	332606	332594
342	332610	333548	333425
343	333540	333911	333567
344	333925	334329	333940
345	334422	335207	334509
346	335345	335944	335384
347	335948	337540	336014
348	337676	339871	337709
349	340010	340606	340013
350	340684	341772	340726
351	341760	343169	341850
352	343306	344991	343342
353	345261	346937	345303
354	347003	347926	347018
355	347930	348973	347945
356	348970	350025	348979
357	350025	350963	350025
358	351198	352766	351198
359	353030	354673	353033
360	355017	355955	355047
361	356037	357644	356055
362	357829	358656	357841
363	358810	359973	358813
364	359992	361371	361362
365	361434	362828	362810
366	362945	363334	362957
367	363300	363635	363312
368	363838	364383	363868
369	364454	365047	365044
370	365240	365902	365261
371	366075	366749	366114
372	366607	367548	366739
373	367548	368429	367551
374	368477	369313	369304

375	369603	371045	369615
376	371109	371972	371163
377	371936	372949	371975
378	373041	373421	373134
379	373382	374278	373520
380	374275	374892	374338
381	374787	375707	374892
382	375787	377289	377268
383	377470	378336	378285
384	378377	379441	378449
385	379660	380619	380601
386	380898	381728	381716
387	381859	382842	381871
388	383104	384351	383134
389	384508	385968	384568
390	386099	386734	386132
391	386831	387265	386834
392	387307	389427	389346
393	389440	389916	389907
394	390034	391365	391290
395	391423	393837	391435
396	393901	395031	394965
397	395059	395349	395161
398	395340	395708	395394
399	395743	396420	395797
400	396571	397923	396586
401	398004	398402	398016
402	398507	398806	398525
403	398885	400522	398897
404	400574	401449	401383
405	401557	403005	402996
406	402992	403726	403690
407	403838	404500	403868
408	404603	405493	404636
409	405524	406327	405548
410	406320	406646	406323
411	406607	407521	406616
412	407604	407795	407792
413	407858	408817	408787
414	409081	410046	409093
415	410006	411022	410036
416	411075	412118	411078
417	412219	412896	412279
418	413142	415499	413148
419	415795	417141	415804
420	417145	417729	417148
421	417885	418631	417888
422	418864	419199	418876
423	419284	419634	419287
424	419713	420456	419728
425	420839	422071	420905
426	422108	423589	422156
427	423779	424156	423878
428	424494	426482	424521

429	426620	427663	426638
430	427856	429016	427883
431	429312	432896	429327
432	433178	434080	433205
433	434004	435028	434073
434	435059	436432	435077
435	436514	437230	437227
436	437329	437820	437338
437	437897	439522	437960
438	439584	441899	439593
439	442024	442710	442048
440	442775	443623	443578
441	443642	444343	443651
442	444258	444485	444288
443	444533	444997	444575
444	444994	445512	444997
445	445607	447001	445619
446	447239	448378	448369
447	448495	449103	449070
448	449157	449993	449990
449	450174	450386	450207
450	450382	450651	450421
451	450712	450909	450763
452	451007	451411	451007
453	451411	452178	451426
454	452182	452520	452194
455	452702	452908	452738
456	453010	453813	453010
457	453810	454589	453816
458	454793	455593	454928
459	455597	456487	455615
460	456500	457048	456575
461	457286	457657	457298
462	457851	458057	457854
463	458029	458322	458053
464	458280	458873	458322
465	458849	459289	458873
466	459277	459579	459292
467	459558	459740	459579
468	459929	460111	459932
469	460263	460478	460296
470	460537	460797	460743
471	460920	461246	460956
472	461360	461602	461360
473	461632	462036	461650
474	461999	462436	462041
475	462403	462585	462436
476	462765	463184	462765
477	463284	463925	463359
478	464012	464494	464045
479	464482	466308	464497
480	466469	467557	466481
481	467515	468144	467560
482	468128	469447	468137

483	469458	469763	469461
484	469753	470085	469753
485	470061	470567	470085
486	470489	470959	470567
487	470952	471566	470964
488	471554	471970	471629
489	472128	475979	472143
490	475976	477517	475985
491	477505	481842	477520
492	481853	482188	481865
493	482094	482462	482178
494	482444	483241	482465
495	483352	483555	483552
496	484205	484984	484226
497	484981	485805	485020
498	485845	486345	485857
499	486329	486868	486329
500	486872	488005	486872
501	488243	489847	488243
502	489971	490899	489989
503	490937	491842	491806
504	492455	492934	492931
505	492918	493376	493337
506	493472	494137	494122
507	494566	497781	494602
508	497818	498543	498468
509	498574	499503	498649
510	499493	500356	499493
511	500341	501564	500356
512	501568	502230	501577
513	502308	502610	502338
514	502726	503934	503871
515	503998	504510	504486
516	504543	504854	504836
517	504886	505494	505470
518	505485	505886	505850
519	506108	506332	506144
520	506336	506608	506351
521	506722	506961	506770
522	506954	507391	506969
523	507330	507665	507429
524	507656	507916	507665
525	507913	508107	507916
526	508097	508420	508097
527	508416	509006	508431
528	509002	510441	509002
529	510551	511177	510596
530	511342	511539	511357
531	511512	512174	511569
532	512186	512773	512186
533	512992	513318	512992
534	513368	513739	513422
535	514069	514350	514338
536	514410	514673	514455

77

537	514731	515330	514845
538	515293	515862	515299
539	516169	516363	516184
540	517081	517311	517114
541	517858	518373	518352
542	518472	519005	518499
543	519001	519579	519022
544	519667	520482	519676
545	520428	521204	520482
546	521243	521725	521270
547	521722	522099	521725
548	522213	523358	522216
549	523462	524343	523468
550	524406	526087	526052
551	526266	527213	527195
552	527401	528495	527413
553	528540	529169	529169
554	529173	531254	531164
555	531235	531906	531873
556	531927	532475	531954
557	532575	533021	532638
558	533101	533394	533116
559	533357	534139	533375
560	534233	535513	534233
561	535480	535707	535516
562	535840	537147	535857
563	543983	545920	544010
564	545976	547340	546000
565	547413	548198	547458
566	548336	549730	548432
567	550007	550351	550016
568	550378	552648	550405
569	553076	553603	553543
570	553623	554726	553716
571	554875	555561	555507
572	555592	556113	555661
573	556106	558202	556127
574	558332	559207	558401
575	559207	560340	559225
576	560414	560869	560866
577	561121	561891	561142
578	562141	562560	562156
579	562632	563269	562632
580	563244	564170	563253
581	564301	565281	565221
582	565438	566214	566193
583	566291	566908	566878
584	566898	567434	567431
585	567427	568122	568119
586	568268	568465	568450
587	568636	570972	568648
588	570976	571428	570988
589	571538	572467	571538
590	572690	573304	572714

591	573454	573984	573505
592	574061	574504	574106
593	574508	576304	574511
594	576223	577074	576304
595	577206	577583	577224
596	577685	578071	577706
597	578288	578584	578303
598	578893	579615	579588
599	579749	580153	580126
600	580089	581561	581552
601	582011	582571	582541
602	582782	583348	582842
603	583407	583877	583835
604	583888	584346	583936
605	584858	585442	584876
606	585459	585941	585501
607	585938	587032	585962
608	587032	587559	587035
609	587586	588377	587730
610	588459	589295	588486
611	589302	589793	589332
612	589769	590710	589901
613	590913	592187	590943
614	592342	592950	592351
615	593062	594174	593080
616	594174	595367	594174
617	595352	596041	595394
618	596166	596567	596456
619	596767	597534	596779
620	597685	598137	598095
621	598277	599830	599779
622	599930	600292	599993
623	600252	600617	600267
624	600871	601755	600904
625	601766	602680	601790
626	602817	603272	603260
627	603395	604126	603398
628	604140	604433	604161
629	604524	604715	604542
630	604810	605748	604822
631	605764	606597	605815
632	606756	607184	606768
633	607214	607777	607217
634	607883	609328	607913
635	609446	611521	609512
636	611737	613761	611749
637	614178	614858	614196
638	614999	615880	614999
639	615951	616631	615966
640	616793	617698	616805
641	618028	618333	618076
642	618673	619614	618694
643	619502	620308	619610
644	620355	622703	620478

yy

645	622721	623338	622784
646	623500	624117	623557
647	624215	625906	624257
648	625936	626439	625972
649	626564	627460	627322
650	627421	627798	627708
651	627785	628705	628465
652	628600	629202	629154
653	629327	629806	629354
654	629781	632246	629799
655	632372	632938	632384
656	633072	634424	633126
657	634500	635447	634512
658	635714	636487	635723
659	637009	637215	637078
660	637522	637713	637534
661	637732	638904	637738
662	639668	640513	640474
663	640765	643764	640780
664	643795	645351	643807
665	645333	646571	645351
666	646662	647774	646698
667	647900	648205	647939
668	648456	648707	648543
669	648958	649743	648976
670	650160	651065	650996
671	651011	651283	651175
672	652013	652708	652681
673	652687	653781	653757
674	653772	654350	654338
675	654529	656082	656049
676	656258	657154	656294
677	657391	659778	657418
678	659913	660569	659913
679	660554	661789	660575
680	661753	661932	661789
681	662162	663535	662276
682	663635	667054	663644
683	667169	668503	667181
684	668461	671046	668503
685	671058	672305	671070
686	672377	673006	672973
687	673143	673697	673194
688	673836	674255	673860
689	674643	675665	675608
690	675659	675862	675853
691	676090	678900	676147
692	679334	680419	679391
693	680382	681488	680427
694	681557	682519	681575
695	682504	683364	682537
696	683355	683638	683394
697	683603	684643	683636
698	684928	685386	685386

699	685390	686304	686295
700	686535	686849	686849
701	686807	687121	687118
702	687317	688165	687395
703	688161	688736	688206
704	688711	689334	688717
705	689436	690329	689448
706	690403	691488	690433
707	691569	692177	691623
708	692276	692725	692276
709	692667	693689	692721
710	693900	694382	693909
711	694386	695909	694443
712	695956	697152	696013
713	697112	698281	697145
714	698328	699809	698361
715	699865	702300	699901
716	702393	704192	702393
717	704418	705911	704421
718	706677	707639	706695
719	707707	709182	707710
720	709182	710177	709185
721	710460	712373	710529
722	712333	714066	712348
723	714351	715235	714363
724	715246	715749	715264
725	715770	716450	715779
726	716513	718306	716555
727	718331	718954	718939
728	719013	719681	719654
729	719872	721902	721863
730	721974	722204	722189
731	722279	723058	722399
732	723096	724106	724079
733	724232	726363	724247
734	725464	726231	725482
735	726219	727157	726222
736	727161	727625	727161
737	728133	729038	728969
738	728984	729256	729241
739	729460	730281	729487
740	730306	731364	730327
741	731371	731796	731784
742	731784	732887	732884
743	732884	734239	734143
744	734366	735214	735205
745	735595	736437	736407
746	736400	738106	738079
747	738136	739347	739347
748	739664	740263	739685
749	740267	741550	740273
750	741526	742491	741571
751	742701	743684	743669
752	743858	745246	743861

753	745336	745680	745339
754	745718	747250	745742
755	747294	748649	748643
756	748876	749781	749739
757	749732	750232	750205
758	750312	750998	750333
759	761041	763056	761095
760	763029	763505	763056
761	763514	764878	763514
762	765019	765330	765076
763	765375	766172	765402
764	766281	766946	766296
765	767002	767511	767068
766	767887	769074	767902
767	769044	769955	769077
768	769933	770676	769951
769	770676	771293	770781
770	771379	772710	771403
771	772819	773628	772819
772	774111	776763	774114
773	776749	779629	777788
774	779688	779989	779694
775	779799	771701	770979
776	771781	772494	772476
777	772498	772917	772899
778	773130	773642	773172
779	773792	774955	773810
780	775115	775447	775124
781	775429	775755	775453
782	775767	778610	775779
783	778874	779239	778883
784	779388	780365	779421
785	780784	781224	780787
786	781188	782201	781227
787	782335	782589	782371
788	782660	783795	782872
789	783881	784612	783884
790	784644	785882	784656
791	785886	786356	785892
792	786486	786917	786486
793	787239	788678	787314
794	788752	789630	788767
795	789605	790405	789626
796	790498	791676	790537
797	791885	792811	791894
798	793010	793279	793043
799	793270	793713	793339
800	793697	794032	793727
801	794029	795672	794032
802	795699	795953	795702
803	795996	796379	796032
804	796552	797292	797292
805	797389	797970	797949
806	798035	799090	799036

102

807	799014	801056	799071
808	801157	801501	801265
809	801509	802249	801521
810	802590	803162	802593
811	803251	803898	803269
812	804011	805060	804041
813	805030	806262	805075
814	806266	807408	806278
815	807330	808256	807408
816	808263	809285	808287
817	809446	810153	809461
818	810134	812917	810146
819	812921	813667	812936
820	813906	816077	813912
821	816126	816578	816171
822	816585	817787	816609
823	817760	818545	817787
824	818601	819947	819938
825	820449	822539	820452
826	822666	823475	822669
827	823479	824036	823488
828	824092	825477	824101
829	825593	826627	825656
830	826700	827371	826703
831	827430	829931	827445
832	830164	830952	830200
833	831273	832784	831369
834	832791	834230	832872
835	834473	835285	834485
836	835445	835807	835448
837	835896	836792	836654
838	836753	837130	837040
839	837117	838037	837932
840	837932	838555	838486
841	838489	838848	838561
842	838809	839705	838947
843	839836	841167	839911
844	841314	843314	841314
845	843431	844099	843431
846	844062	844982	844122
847	845088	845558	845106
848	845562	845774	845577
849	845945	848122	845963
850	848316	850991	850964
851	851038	851865	851820
852	852009	853223	852072
853	853395	854660	853437
854	854778	855527	854814
855	855647	856369	855659
856	856395	858470	856467
857	858592	859797	858637
858	859842	861281	859866
859	861330	861743	861387
860	861788	862891	861791

861	862989	863435	863010
862	863573	864880	863576
863	864982	865923	865009
864	865920	867422	865923
865	867648	869594	867687
866	869598	870119	869724
867	870123	870719	870129
868	870716	871168	870719
869	871224	873317	873308
870	873509	876697	873509
871	876827	877711	876830
872	877863	879131	877881
873	879107	879370	879134
874	879522	880676	879522
875	880704	881615	880761
876	881686	882501	881773
877	882495	882944	882501
878	883062	884759	883095
879	884881	885108	884881
880	885482	886051	885488
881	886140	886670	886152
882	886693	887631	886696
883	887806	888804	887854
884	888944	889342	888965
885	889324	891630	889342
886	891689	892684	891698
887	892818	893162	892887
888	893232	894815	893298
889	895005	895580	895101
890	895702	896613	895741
891	896850	897527	896856
892	897638	898012	897638
893	898290	898817	898311
894	898786	900138	898813
895	900343	900900	900367
896	901066	901830	901102
897	902337	902783	902361
898	902878	903252	902908
899	903330	903902	903860
900	903985	906420	904024
901	906600	906938	906609
902	907743	908987	907791
903	908991	909362	909021
904	909257	909571	909275
905	909623	910315	909635
906	910409	910687	910421
907	910832	911482	910856
908	911479	912477	911482
909	912487	913134	912508
910	913196	914011	913208
911	914108	914704	914117
912	914646	915137	914709
913	915128	915739	915137
914	915950	917203	915962

915	917389	918498	917389
916	918515	919285	918527
917	919808	921346	919808
918	921727	923385	921766
919	923403	924677	923403
920	924971	925906	924977
921	925978	927078	925990
922	927063	927779	927135
923	927926	929887	927935
924	930394	931131	930397
925	931271	931918	931316
926	932046	932531	932070
927	932494	934068	932527
928	934068	934787	934071
929	935539	935877	935545
930	935970	936893	935988
931	936911	937201	936920
932	937186	937689	937270
933	937689	939086	937689
934	938999	939895	939089
935	939899	941359	939920
936	941334	944231	941343
937	944235	944798	944247
938	944794	946422	944794
939	946431	948890	946470
940	948894	949670	948942
941	949712	950830	949844
942	950827	951288	950851
943	951310	951756	951328
944	951723	952964	951780
945	952846	954069	952957
946	954065	955000	954083
947	955168	956421	955189
948	956468	956746	956480
949	956802	957521	956820
950	957624	958586	957642
951	958706	959188	958745
952	959215	959598	959275
953	959748	961421	959757
954	961509	962123	961533
955	962252	963106	962264
956	963299	964261	963377
957	964255	965025	964276
958	965431	966375	965452
959	966505	966765	966520
960	967010	969469	967019
961	969473	970075	969491
962	970140	971213	970158
963	971245	972261	972183
964	972316	972597	972337
965	972714	974051	972717
966	974091	974630	974154
967	974650	975393	974701
968	975390	976136	975393

969	976123	976554	976153
970	976661	977818	976778
971	977818	978387	977851
972	978448	980283	978463
973	980483	982258	980498
974	982262	983464	982328
975	983547	984287	983589
976	984365	985288	984374
977	985273	987192	985288
978	987258	988724	987282
979	988792	989691	988807
980	989670	990671	989691
981	990706	991692	990778
982	991742	992329	992296
983	992434	993327	992452
984	993272	994960	993341
985	995096	995473	995105
986	995560	996411	995620
987	996448	996996	996975
988	997317	998156	998045
989	998144	999256	998162
990	999571	1000275	999586
991	1000202	1001203	1000271
992	1001311	1002288	1002285
993	1002638	1004815	1004803
994	1004942	1005376	1005361
995	1005366	1005644	1005539
996	1005758	1006438	1006396
997	1006671	1008602	1006671
998	1008792	1009013	1008810
999	1008971	1009345	1009013
1000	1009335	1010171	1009341
1001	1010117	1010617	1010171
1002	1010892	1013366	1010895
1003	1013398	1014318	1014300
1004	1014497	1017793	1014515
1005	1017673	1018386	1017796
1006	1018370	1018942	1018394
1007	1019052	1019717	1019058
1008	1019764	1020378	1019770
1009	1020375	1021052	1020378
1010	1021056	1021493	1021071
1011	1022028	1023113	1022028
1012	1023107	1023763	1023116
1013	1023751	1024968	1023775
1014	1024972	1025460	1024999
1015	1025563	1026015	1025566
1016	1026028	1026981	1026079
1017	1027119	1027571	1027131
1018	1027705	1029312	1027714
1019	1029330	1030292	1029339
1020	1030403	1031104	1030421
1021	1031094	1031639	1031127
1022	1031643	1032968	1031646

1023	1032972	1033631	1032978
1024	1033797	1035629	1033815
1025	1035733	1036440	1035763
1026	1036645	1037775	1037766
1027	1037892	1038443	1038434
1028	1038494	1038937	1038928
1029	1038928	1039488	1039467
1030	1039635	1039850	1039635
1031	1039866	1040630	1039890
1032	1040634	1040978	1040646
1033	1041313	1041633	1041585
1034	1041664	1041900	1041688
1035	1042019	1042534	1042019
1036	1042543	1043166	1042546
1037	1043166	1043618	1043169
1038	1043731	1044525	1043761
1039	1044501	1045250	1044528
1040	1045211	1045636	1045250
1041	1045624	1045833	1045642
1042	1046177	1046443	1046180
1043	1046628	1047203	1046637
1044	1047575	1047868	1047599
1045	1047826	1048419	1047868
1046	1048395	1048835	1048419
1047	1048823	1049335	1048841
1048	1049256	1049672	1049328
1049	1050309	1050605	1050309
1050	1050728	1051015	1050988
1051	1051115	1051441	1051151
1052	1051522	1051920	1051522
1053	1052025	1052483	1052034
1054	1052578	1052943	1052578
1055	1052918	1054705	1052930
1056	1054599	1055924	1054722
1057	1055939	1056535	1055942
1058	1056510	1057700	1056510
1059	1057749	1058612	1057758
1060	1058596	1058886	1058608
1061	1058855	1059190	1058876
1062	1059168	1059551	1059183
1063	1059518	1059865	1059551
1064	1059862	1060491	1059886
1065	1060495	1060860	1060504
1066	1060854	1061063	1060890
1067	1061077	1063338	1061080
1068	1063342	1064088	1063342
1069	1063980	1066769	1064088
1070	1066773	1068383	1066785
1071	1068355	1069206	1068379
1072	1069247	1069672	1069268
1073	1069614	1069997	1069662
1074	1069987	1070226	1070002
1075	1070243	1070476	1070255
1076	1070480	1070776	1070492

107

1077	1070758	1071555	1070779
1078	1072173	1072718	1072709
1079	1072925	1073323	1072934
1080	1073480	1075408	1073504
1081	1075558	1076397	1075600
1082	1076360	1076764	1076402
1083	1077258	1077608	1077581
1084	1077622	1078497	1077643
1085	1078699	1079475	1078747
1086	1080652	1081326	1080700
1087	1081430	1082752	1081430
1088	1083120	1083827	1083162
1089	1083840	1084505	1083852
1090	1084498	1085190	1084501
1091	1085178	1085960	1085190
1092	1086005	1086418	1086357
1093	1086492	1087343	1087304
1094	1087354	1088739	1088712
1095	1088878	1089285	1088881
1096	1089242	1090453	1089281
1097	1090611	1090937	1090626
1098	1090934	1091275	1090943
1099	1091217	1091561	1091280
1100	1091810	1092781	1091840
1101	1092738	1093025	1092798
1102	1093127	1094095	1093130
1103	1094099	1094632	1094156
1104	1094775	1095272	1094787
1105	1095253	1095711	1095259
1106	1095722	1096303	1095728
1107	1096343	1097026	1096990
1108	1096990	1098315	1098309
1109	1098336	1098992	1098366
1110	1099117	1099623	1099129
1111	1099662	1100690	1099674
1112	1100782	1101552	1100803
1113	1101801	1102790	1101840
1114	1102769	1104811	1102793
1115	1104922	1105164	1104925
1116	1105354	1106586	1105378
1117	1106615	1107214	1107199
1118	1107709	1109208	1107724
1119	1109208	1109693	1109208
1120	1109745	1110578	1109757
1121	1110673	1111407	1110709
1122	1111404	11114091	1111404
1123	1114173	1114955	1114955
1124	1114959	1116380	1116305
1125	1116404	1117078	1116416
1126	1117338	1119188	1117368
1127	1119255	1119890	1119258
1128	1120022	1121530	1120067
1129	1121746	1124265	1121779
1130	1124349	1125434	1124352

1131	1125438	1126298	1125438
1132	1126347	1127849	1126413
1133	1127831	1128145	1127867
1134	1128144	1129409	1128168
1135	1129525	1132296	1129534
1136	1132277	1132912	1132286
1137	1132863	1133639	1133636
1138	1133784	1136066	1133793
1139	1136041	1136553	1136089
1140	1136581	1137171	1136602
1141	1137210	1137707	1137252
1142	1137872	1139380	1137875
1143	1139518	1140243	1139554
1144	1140363	1141373	1140387
1145	1141392	1142306	1141407
1146	1142401	1143375	1142407
1147	1143534	1144595	1143537
1148	1144576	1145481	1144591
1149	1145480	1146880	1145519
1150	1146884	1147468	1146884
1151	1147533	1148381	1147533
1152	1148470	1149270	1148515
1153	1149406	1150404	1149436
1154	1150447	1151040	1150456
1155	1151243	1152592	1151258
1156	1152547	1153101	1152577
1157	1153284	1154420	1153284
1158	1154467	1155282	1154470
1159	1155286	1155828	1155388
1160	1155904	1156425	1155928
1161	1156275	1156652	1156275
1162	1156687	1157475	1156705
1163	1157563	1158195	1157581
1164	1158427	1159443	1158457
1165	1159637	1160308	1159718
1166	1160333	1161661	1160360
1167	1161696	1162145	1162106
1168	1162229	1162804	1162735
1169	1163113	1163637	1163134
1170	1163815	1165116	1163884
1171	1165086	1165700	1165116
1172	1165730	1166104	1165757
1173	1166121	1167233	1166187
1174	1167203	1168303	1167233
1175	1168297	1168803	1168309
1176	1168807	1170105	1168825
1177	1170211	1170873	1170238
1178	1171041	1172336	1171053
1179	1172299	1173231	1172344
1180	1173470	1174084	1173488
1181	1174121	1175026	1174130
1182	1175597	1176964	1175681
1183	1176964	1177749	1176964
1184	1177733	1178551	1177754

1185	1178569	1179666	1178602
1186	1180029	1180901	1180044
1187	1180982	1183258	1181003
1188	1183486	1184355	1183495
1189	1184172	1184741	1184370
1190	1184752	1185153	1184767
1191	1185119	1185679	1185119
1192	1186273	1186665	1186321
1193	1187114	1188592	1187174
1194	1189123	1190235	1189138
1195	1190239	1191657	1190368
1196	1191725	1192420	1192318
1197	1192538	1193395	1192577
1198	1193658	1193927	1193685
1199	1194110	1195504	1194125
1200	1195508	1197148	1195544
1201	1197141	1197770	1197153
1202	1197830	1198042	1197839
1203	1198046	1199008	1198070
1204	1199024	1200292	1199039
1205	1200447	1202111	1200450
1206	1202318	1202545	1202488
1207	1203465	1204616	1203477
1208	1204667	1204903	1204679
1209	1204858	1205079	1204912
1210	1205083	1205424	1205164
1211	1205757	1206707	1206683
1212	1206732	1207802	1206765
1213	1207708	1208082	1207795
1214	1208069	1208998	1208087
1215	1208973	1210526	1208991
1216	1210523	1211915	1210586
1217	1212051	1212992	1212051
1218	1213086	1213406	1213089
1219	1213267	1213524	1213381
1220	1213517	1213969	1213517
1221	1214150	1214341	1214150
1222	1214736	1214945	1214909
1223	1215140	1216081	1215140
1224	1216212	1217117	1217048
1225	1217063	1217335	1217320
1226	1217306	1219597	1217351
1227	1219624	1219968	1219654
1228	1219947	1220495	1219968
1229	1220492	1221139	1220495
1230	1221010	1221597	1221037
1231	1221622	1221894	1221637
1232	1221840	1222745	1221909
1233	1222887	1223216	1222887
1234	1223197	1224267	1223254
1235	1224246	1224758	1224246
1236	1224752	1226008	1224836
1237	1226198	1228198	1226204
1238	1228585	1229751	1228672

110

1239	1229846	1230724	1229867
1240	1230687	1231259	1230720
1241	1231326	1232621	1231329
1242	1232618	1233461	1232675
1243	1233449	1234060	1233461
1244	1234051	1234845	1234060
1245	1234854	1235492	1234887
1246	1235496	1236212	1235496
1247	1236100	1236981	1236205
1248	1236969	1237616	1236981
1249	1237620	1238426	1237620
1250	1238446	1239411	1239402
1251	1239665	1241341	1239827
1252	1241350	1242315	1241356
1253	1242356	1242829	1242775
1254	1242855	1244258	1242879
1255	1244269	1244853	1244281
1256	1244807	1245646	1244816
1257	1245768	1247480	1245771
1258	1247509	1249218	1247599
1259	1249211	1249687	1249214
1260	1249706	1250755	1249736
1261	1250814	1252061	1250814
1262	1252126	1252887	1252180
1263	1252901	1253308	1252931
1264	1253334	1253555	1253457
1265	1253552	1254301	1253570
1266	1254553	1256694	1254565
1267	1256673	1258109	1256769
1268	1258160	1259260	1259227
1269	1259523	1259729	1259729
1270	1259822	1260634	1260634
1271	1260585	1260815	1260728
1272	1261097	1261276	1261276
1273	1261598	1263334	1261619
1274	1263333	1264313	1263405
1275	1264589	1265533	1265515
1276	1265557	1265760	1265733
1277	1265894	1266454	1266442
1278	1266466	1266660	1266651
1279	1266664	1267233	1267221
1280	1267259	1267513	1267498
1281	1267983	1268831	1267992
1282	1269310	1270053	1270044
1283	1270098	1271942	1271924
1284	1271964	1273523	1273457
1285	1273829	1275313	1275292
1286	1275419	1276324	1276255
1287	1276270	1276542	1276527
1288	1276586	1277209	1277206
1289	1277425	1278915	1277443
1290	1278988	1280229	1280136
1291	1280373	1281395	1281392
1292	1281759	1282625	1282607

111

1293	1282600	1284888	1284876
1294	1285025	1285684	1285675
1295	1285772	1288519	1288501
1296	1288987	1290294	1290270
1297	1290263	1290520	1290499
1298	1290545	1291771	1291765
1299	1291768	1293288	1293264
1300	1293613	1294263	1294257
1301	1294250	1295110	1295050
1302	1295067	1295828	1295816
1303	1296104	1298575	1298575
1304	1298568	1299719	1299653
1305	1300170	1300532	1300170
1306	1300508	1300864	1300508
1307	1300982	1301356	1301344
1308	1301417	1301944	1301929
1309	1302154	1302354	1302339
1310	1302358	1303134	1303113
1311	1303237	1305078	1305060
1312	1305047	1306876	1306861
1313	1307013	1307795	1307750
1314	1307982	1308762	1308752
1315	1308688	1309266	1309182
1316	1309247	1309975	1309972
1317	1310005	1310757	1310742
1318	1310699	1311169	1311157
1319	1311191	1311712	1311691
1320	1311742	1312344	1312344
1321	1312348	1313187	1313160
1322	1313318	1313641	1313554
1323	1313709	1314968	1314965
1324	1315085	1316542	1316521
1325	1316524	1320999	1320981
1326	1321141	1321758	1321150
1327	1321797	1322837	1322816
1328	1322890	1323720	1322977
1329	1323839	1325263	1325236
1330	1325259	1326776	1326767
1331	1326914	1327795	1327741
1332	1328297	1329085	1329070
1333	1329209	1330093	1330054
1334	1330281	1330838	1330823
1335	1330918	1331700	1331664
1336	1331830	1332600	1331842
1337	1332596	1332949	1332596
1338	1332873	1333979	1333029
1339	1334050	1334628	1334574
1340	1334652	1336664	1336610
1341	1336913	1337920	1337914
1342	1337970	1338932	1337988
1343	1338898	1340298	1340268
1344	1340400	1340870	1340403
1345	1340918	1341742	1340924
1346	1341789	1342574	1342559

1347	1342669	1342893	1342863
1348	1343075	1343896	1343087
1349	1343883	1344887	1343916
1350	1344952	1345572	1345039
1351	1345634	1345990	1345954
1352	1346016	1346420	1346390
1353	1346576	1348474	1348459
1354	1348467	1349063	1349045
1355	1349216	1350172	1350154
1356	1350150	1350992	1350992
1357	1351003	1351737	1351713
1358	1351958	1352398	1351988
1359	1352485	1352736	1352715
1360	1352846	1356004	1355983
1361	1355989	1357188	1357158
1362	1357313	1358314	1358248
1363	1358451	1358924	1358867
1364	1359622	1361811	1361796
1365	1362146	1362586	1362586
1366	1362855	1364513	1362894
1367	1364517	1364954	1364556
1368	1364958	1365368	1365018
1369	1365537	1367066	1365549
1370	1367062	1368153	1367062
1371	1368135	1369103	1368153
1372	1369227	1370219	1370201
1373	1370322	1371854	1371827
1374	1371918	1372937	1372937
1375	1373042	1373317	1373314
1376	1373326	1374558	1374471
1377	1374647	1375855	1375822
1378	1375970	1376632	1376593
1379	1376746	1377807	1376785
1380	1377848	1378792	1377854
1381	1378857	1379270	1378866
1382	1379267	1379797	1379270
1383	1379768	1380747	1379791
1384	1380726	1381460	1380747
1385	1381696	1381965	1381944
1386	1381949	1382677	1382659
1387	1382812	1383816	1383744
1388	1383820	1384656	1384605
1389	1385075	1386475	1386436
1390	1386747	1388021	1386855
1391	1388175	1389320	1388184
1392	1389242	1390102	1389320
1393	1390138	1390716	1390692
1394	1391013	1391369	1391336
1395	1391308	1392174	1392174
1396	1392255	1393076	1393064
1397	1393042	1393476	1393383
1398	1393433	1394488	1394434
1399	1394449	1395615	1395546
1400	1395679	1396641	1395697

1401	1396607	1397155	1397011
1402	1397065	1397499	1397496
1403	1397512	1398090	1398090
1404	1398290	1401553	1401481
1405	1401796	1402293	1402236
1406	1402440	1403075	1402449
1407	1403123	1405768	1405756
1408	1406017	1406757	1406739
1409	1406960	1407544	1407526
1410	1407670	1408488	1408482
1411	1408957	1409532	1408993
1412	1409722	1410486	1409731
1413	1411008	1411472	1411433
1414	1411747	1412175	1412145
1415	1412210	1412440	1412261
1416	1414115	1414651	1414642
1417	1414777	1415061	1414831
1418	1415367	1415555	1415534
1419	1415808	1416011	1415811
1420	1416051	1416854	1416827
1421	1416830	1417192	1417126
1422	1417155	1418735	1418714
1423	1418729	1418962	1418950
1424	1418973	1421405	1421402
1425	1421383	1421595	1421553
1426	1421556	1422677	1422674
1427	1422693	1424492	1424477
1428	1424480	1426021	1426012
1429	1426018	1430949	1430937
1430	1431004	1431222	1431222
1431	1431165	1431593	1431581
1432	1431729	1432349	1432319
1433	1432353	1432748	1432745
1434	1432745	1433278	1433248
1435	1433253	1433633	1433600
1436	1433578	1433898	1433898
1437	1433917	1435176	1435140
1438	1435155	1435859	1435859
1439	1435905	1437080	1437080
1440	1437080	1437286	1437286
1441	1437258	1439249	1439228
1442	1439218	1439703	1439688
1443	1439820	1440341	1440332
1444	1440337	1440654	1440639
1445	1440790	1441209	1441209
1446	1441290	1441679	1441646
1447	1442110	1442304	1442301
1448	1442463	1442816	1442795
1449	1442820	1443164	1443161
1450	1443168	1443608	1443684
1451	1443584	1443877	1443868
1452	1443868	1444530	1444521
1453	1444496	1444855	1444852
1454	1444864	1445388	1445370

1455	1445388	1445966	1445957
1456	1445950	1446138	1446126
1457	1446151	1446441	1446438
1458	1446553	1446897	1446789
1459	1446785	1447315	1447276
1460	1447276	1447647	1447647
1461	1447801	1448691	1448682
1462	1448695	1449534	1449531
1463	1449662	1450099	1450084
1464	1450080	1450838	1450835
1465	1450847	1451281	1451239
1466	1451357	1451593	1451569
1467	1451624	1451944	1451672
1468	1451947	1452150	1452138
1469	1452284	1452583	1452571
1470	1452587	1453351	1453294
1471	1453311	1453604	1453547
1472	1453683	1454231	1453713
1473	1454235	1454828	1454244
1474	1454836	1455744	1454896
1475	1455861	1456946	1455870
1476	1457657	1458031	1457989
1477	1458098	1458880	1458173
1478	1458822	1460423	1458873
1479	1460427	1460963	1460427
1480	1460977	1461693	1461681
1481	1461876	1462976	1462925
1482	1463187	1463582	1463576
1483	1463566	1464237	1464225
1484	1464241	1464441	1464426
1485	1464431	1465735	1465720
1486	1465754	1466461	1466353
1487	1466478	1467458	1466541
1488	1467531	1467998	1467959
1489	1468016	1468975	1468957
1490	1469255	1469572	1469554
1491	1469638	1470207	1470177
1492	1470162	1471184	1471166
1493	1471188	1471541	1471478
1494	1471741	1472316	1471753
1495	1472370	1472549	1472537
1496	1472732	1474450	1474450
1497	1474450	1475685	1475673
1498	1475888	1476505	1476505
1499	1476724	1478349	1478346
1500	1478373	1479917	1479890
1501	1479933	1483229	1483202
1502	1483352	1484353	1484296
1503	1484515	1488852	1488837
1504	1489449	1490894	1490882
1505	1490933	1492903	1492840
1506	1492985	1493815	1493791
1507	1493959	1494738	1494717
1508	1494717	1495991	1495922

1509	1495952	1496305	1496263
1510	1496309	1496536	1496515
1511	1496511	1497581	1497563
1512	1497556	1498356	1498347
1513	1498397	1499422	1499422
1514	1499394	1499996	1499987
1515	1500115	1501491	1501482
1516	1501943	1502317	1502299
1517	1502317	1503387	1503384
1518	1503501	1504244	1504241
1519	1504320	1505012	1504997
1520	1505000	1505698	1505686
1521	1505768	1506195	1505812
1522	1506338	1506688	1506344
1523	1506863	1507771	1506887
1524	1507818	1508288	1508249
1525	1508263	1509054	1508278
1526	1509166	1510974	1510962
1527	1511215	1511664	1511631
1528	1511780	1512715	1511813
1529	1512784	1514199	1512823
1530	1514249	1516066	1515991
1531	1516223	1517845	1517761
1532	1517973	1518854	1518845
1533	1518951	1519865	1519829
1534	1519869	1521305	1521293
1535	1521326	1521952	1521931
1536	1522049	1523191	1523074
1537	1523179	1524834	1524816
1538	1524883	1526445	1526427
1539	1526423	1527478	1527397
1540	1527478	1528995	1528926
1541	1529032	1529952	1529949
1542	1530008	1530949	1530937
1543	1530937	1533639	1533633
1544	1533671	1534981	1534963
1545	1535061	1536236	1535202
1546	1536227	1538386	1536236
1547	1538485	1540980	1540950
1548	1541111	1542421	1542409
1549	1542581	1543192	1543180
1550	1543241	1544941	1544917
1551	1544945	1546531	1546414
1552	1546483	1547496	1547484
1553	1547490	1549052	1548992
1554	1549056	1550390	1550372
1555	1550471	1551457	1550477
1556	1551584	1552702	1552630
1557	1552741	1553277	1553223
1558	1553259	1554521	1554497
1559	1554766	1555473	1554850
1560	1555570	1556532	1555588
1561	1556639	1558045	1556660
1562	1558095	1558829	1558784

1563	1558964	1560598	1560517
1564	1560696	1561253	1561235
1565	1561375	1562409	1562409
1566	1562483	1563067	1562540
1567	1563124	1564719	1564710
1568	1564880	1565452	1565425
1569	1666456	1566490	1566469
1570	1566661	1569270	1569261
1571	1569441	1570832	1569495
1572	1570871	1571500	1571491
1573	1571604	1573112	1573100
1574	1573218	1574078	1574060
1575	1574175	1576400	1576391
1576	1576614	1577285	1577282
1577	1577285	1577596	1577545
1578	1577604	1578353	1578311
1579	1578458	1578871	1578856
1580	1578875	1579177	1579165
1581	1579187	1579510	1579492
1582	1579531	1579953	1579896
1583	1579914	1580693	1580663
1584	1580890	1582278	1582260
1585	1582260	1582757	1582703
1586	1582813	1583712	1583649
1587	1583748	1584200	1584197
1588	1584197	1584661	1584661
1589	1584495	1584854	1584830
1590	1584830	1585408	1585399
1591	1585852	1586757	1586688
1592	1586703	1586975	1586960
1593	1587000	1587341	1587314
1594	1587268	1587915	1587912
1595	1587919	1590387	1590348
1596	1590531	1591619	1591574
1597	1591689	1592000	1591955
1598	1592018	1592740	1592722
1599	1592842	1593804	1593774
1600	1593897	1594463	1593915
1601	1594479	1595489	1595450
1602	1595668	1597554	1597536
1603	1597667	1598652	1598637
1604	1598738	1599853	1599811
1605	1599917	1600489	1600459
1606	1600577	1601998	1601998
1607	1602117	1603373	1603349
1608	1603533	1604081	1604066
1609	1604118	1604927	1604897
1610	1605001	1605909	1605843
1611	1605864	1606283	1605253
1612	1606382	1607173	1607134
1613	1607130	1607660	1607642
1614	1607817	1608650	1608641
1615	1608785	1609777	1609726
1616	1609991	1610230	1610227

1617	1610326	1610700	1610595
1618	1610687	1611955	1611916
1619	1611999	1613192	1613135
1620	1613441	1614595	1613444
1621	1614662	1615414	1615366
1622	1615521	1616516	1616480
1623	1616768	1617811	1616777
1624	1617894	1618283	1618202
1625	1618287	1619081	1619063
1626	1619085	1619468	1619456
1627	1619582	1624549	1624528
1628	1624568	1625335	1625320
1629	1625361	1626143	1626116
1630	1626157	1626810	1626585
1631	1626976	1627836	1627818
1632	1627882	1628094	1627974
1633	1628779	1629405	1628791
1634	1629425	1629619	1629592
1635	1629623	1630945	1630933
1636	1631086	1632261	1632261
1637	1632265	1633392	1633335
1638	1633548	1634900	1634897
1639	1635391	1635795	1635729
1640	1635864	1637114	1637102
1641	1637288	1638784	1638760
1642	1638771	1639508	1639460
1643	1639619	1640149	1640146
1644	1640280	1640609	1640522
1645	1640681	1641157	1641109
1646	1641227	1641622	1641586
1647	1642074	1642640	1642592
1648	1642665	1643507	1643498
1649	1644120	1645223	1645190
1650	1645256	1646218	1646185
1651	1646372	1647670	1647661
1652	1647759	1648301	1648277
1653	1648541	1649308	1649236
1654	1649323	1649628	1649332
1655	1649579	1650532	1649621
1656	1650621	1651907	1651859
1657	1651880	1652689	1652689
1658	1652822	1654318	1654291
1659	1654294	1654584	1654530
1660	1654660	1654986	1654983
1661	1654973	1655737	1655677
1662	1655838	1656422	1655850
1663	1656486	1657046	1656507
1664	1657079	1658635	1658632
1665	1658714	1661947	1661929
1666	1661981	1663714	1663690
1667	1664025	1664708	1664040
1668	1664754	1665653	1665644
1669	1665988	1666440	1666440
1670	1666454	1667542	1667527

110

1671	1667625	1668551	1668485
1672	1668860	1669123	1669111
1673	1669209	1671200	1671182
1674	1671416	1672105	1672054
1675	1672060	1673010	1673007
1676	1673007	1674431	1674422
1677	1674422	1675330	1675312
1678	1675375	1676913	1676898
1679	1677087	1678172	1678160
1680	1678402	1680078	1680033
1681	1680106	1680882	1680202
1682	1680934	1682490	1682361
1683	1682565	1683560	1683536
1684	1683551	1684537	1684489
1685	1684495	1685988	1685970
1686	1685992	1686408	1686387
1687	1686412	1687356	1687311
1688	1687325	1688317	1688305
1689	1688442	1689815	1689734
1690	1689934	1690629	1690611
1691	1690877	1691152	1691077
1692	1691324	1691677	1691635
1693	1691735	1694074	1694062
1694	1694110	1694712	1694667
1695	1694830	1695810	1695792
1696	1695933	1696934	1696928
1697	1697101	1698228	1697143
1698	1698363	1700459	1700366
1699	1700517	1701671	1701668
1700	1701742	1701942	1701903
1701	1702305	1702721	1702688
1702	1702745	1703752	1703746
1703	1703756	1704274	1704241
1704	1704241	1706580	1706529
1705	1706679	1707473	1706745
1706	1707524	1707919	1707913
1707	1708051	1709046	1709028
1708	1709248	1709946	1709865
1709	1710136	1711140	1710163
1710	1711413	1712009	1712009
1711	1712607	1713623	1712667
1712	1713654	1715225	1715189
1713	1715361	1715606	1715591
1714	1715616	1715897	1715882
1715	1715915	1716565	1716553
1716	1716553	1716906	1716855
1717	1717010	1717864	1717840
1718	1717879	1718223	1718142
1719	1718190	1718792	1718633
1720	1718716	1721421	1721418
1721	1721680	1723158	1723110
1722	1723236	1723499	1723499
1723	1723619	1725385	1725358
1724	1725509	1726918	1726876

1725	1726972	1727652	1727646
1726	1727818	1728807	1728789
1727	1728945	1731212	1731197
1728	1731223	1732869	1732857
1729	1732903	1734549	1734474
1730	1734467	1735135	1735075
1731	1735099	1736733	1736721
1732	1736931	1738724	1738682
1733	1739023	1740279	1739050
1734	1740291	1741709	1740354
1735	1741713	1742570	1741716
1736	1742694	1743725	1742733
1737	1743719	1744675	1743734
1738	1744665	1745234	1744680
1739	1745273	1745818	1745806
1740	1746403	1747095	1746412
1741	1747153	1748058	1747989
1742	1748004	1748276	1748261
1743	1748610	1749275	1748664
1744	1749158	1750030	1749158
1745	1750097	1750426	1750127
1746	1750509	1751693	1750521
1747	1752011	1752961	1752955
1748	1752983	1754098	1754080
1749	1754207	1755169	1754225
1750	1755135	1756547	1756532
1751	1756551	1757624	1757570
1752	1757807	1758826	1758790
1753	1758961	1760370	1760361
1754	1760442	1761110	1761101
1755	1761186	1761713	1761701
1756	1761670	1761948	1761748
1757	1762179	1763207	1762221
1758	1763274	1764098	1763289
1759	1764117	1765040	1764120
1760	1765164	1765565	1765185
1761	1765596	1766312	1766288
1762	1766432	1766806	1766438
1763	1767166	1768461	1767193
1764	1768653	1769624	1768653
1765	1769628	1770215	1769649
1766	1770316	1770984	1770966
1767	1771132	1771893	1771890
1768	1772059	1772898	1772865
1769	1772902	1773795	1773792
1770	1773795	1774721	1774715
1771	1774839	1775690	1775687
1772	1776037	1776945	1776930
1773	1777211	1777684	1777675
1774	1777710	1778288	1778282
1775	1778372	1780999	1780987
1776	1781256	1782212	1782179
1777	1782336	1783037	1783016
1778	1783022	1784839	1784824

140

1779	1784890	1785879	1785876
1780	1785953	1787071	1787035
1781	1787200	1788072	1788045
1782	1788240	1789673	1789658
1783	1789965	1790798	1789965
1784	1790973	1791749	1790982
1785	1791753	1793231	1791762
1786	1793231	1793917	1793237
1787	1793998	1794726	1794708
1788	1794824	1795780	1795735
1789	1795895	1796434	1796404
1790	1796674	1796967	1796737
1791	1797067	1799574	1799568
1792	1799568	1800233	1800158
1793	1800164	1801006	1801000
1794	1801005	1801493	1801490
1795	1801517	1802815	1802806
1796	1802930	1804033	1803991
1797	1803997	1804887	1804869
1798	1804859	1805536	1805527
1799	1805533	1806606	1806594
1800	1806778	1808778	1808778
1801	1808774	1809559	1809550
1802	1809742	1810158	1810098
1803	1810220	1811398	1811383
1804	1811417	1812025	1812010
1805	1812018	1812638	1812614
1806	1812729	1813673	1813649
1807	1813763	1814875	1814830
1808	1814830	1815702	1815687
1809	1815858	1816529	1816511
1810	1816817	1819033	1816892
1811	1819037	1819792	1819052
1812	1819907	1821844	1821823
1813	1821848	1822516	1822486
1814	1822605	1823084	1823027
1815	1823215	1824648	1824621
1816	1824757	1825626	1825623
1817	1825642	1827165	1827141
1818	1827331	1827864	1827855
1819	1827860	1828366	1828363
1820	1828381	1829112	1829031
1821	1829140	1829394	1829200
1822	1829538	1830392	1830311
1823	1830599	1832809	1832806
1824	1832790	1833479	1833434
1825	1833497	1834864	1834855
1826	1834855	1835823	1835784
1827	1835892	1836311	1836287
1828	1836394	1837014	1836954
1829	1837130	1838317	1838305
1830	1838689	1839363	1839342
1831	1839703	1840683	1840671
1832	1840680	1841270	1841246

1833	1841391	1842629	1841391
1834	1842595	1843767	1842622
1835	1843752	1844114	1843755
1836	1844068	1844382	1844092
1837	1844343	1845125	1844382
1838	1845151	1845993	1845151
1839	1846140	1847570	1847549
1840	1847786	1848256	1848148
1841	1848360	1848884	1848839
1842	1848844	1850076	1850058
1843	1850061	1851341	1851314
1844	1851455	1852273	1852222
1845	1852400	1853740	1853728
1846	1853734	1854447	1854432
1847	1854565	1855326	1855296
1848	1855299	1856036	1855982
1849	1856133	1857047	1857038
1850	1857186	1860851	1860779
1851	1860918	1864517	1864505
1852	1864774	1865418	1865379
1853	1865552	1866283	1865612
1854	1866390	1868279	1866399
1855	1868339	1868641	1868641
1856	1868713	1870392	1870383
1857	1870578	1872041	1870593
1858	1872407	1873474	1873426
1859	1873577	1875397	1873622
1860	1875439	1877223	1877175
1861	1877245	1878492	1878483
1862	1878515	1879312	1879309
1863	1879312	1880262	1880253
1864	1880460	1881269	1881251
1865	1881460	1882827	1882806
1866	1882930	1884051	1884042
1867	1884176	1884631	1884191
1868	1884715	1885302	1885293
1869	1885627	1888446	1888446
1870	1888528	1889196	1889163
1871	1889160	1889753	1889232
1872	1889726	1890064	1889753
1873	1890084	1891520	1891430
1874	1891916	1892854	1892830
1875	1892865	1893500	1893497
1876	1893497	1893865	1893841
1877	1893869	1894324	1894297
1878	1894490	1895047	1894511
1879	1895091	1896443	1896431
1880	1896482	1896790	1896790
1881	1896790	1897986	1897968
1882	1897968	1898420	1898408
1883	1898546	1900927	1900927
1884	1901126	1901581	1901147
1885	1901641	1902951	1902930
1886	1903073	1904092	1904071

1887	1904146	1904913	1904889
1888	1905095	1906924	1906894
1889	1907002	1907892	1907883
1890	1907896	1908891	1908852
1891	1908836	1909795	1909792
1892	1909792	1910826	1910805
1893	1911034	1911402	1911390
1894	1911555	1911773	1911762
1895	1911884	1912459	1912375
1896	1912973	1913530	1912985
1897	1913547	1914248	1914248
1898	1914421	1916298	1916295
1899	1916671	1917279	1917243
1900	1917379	1917828	1917744
1901	1917863	1918312	1918261
1902	1918257	1919612	1919600
1903	1919616	1920209	1920206
1904	1920223	1920825	1920819
1905	1920929	1921717	1921696
1906	1921908	1924250	1924226
1907	1924513	1925694	1925655
1908	1925978	1926982	1926020
1909	1927110	1927550	1927538
1910	1927769	1928902	1927769
1911	1928887	1929270	1928929
1912	1929367	1930581	1930551
1913	1930740	1930973	1930794
1914	1931212	1934034	1934007
1915	1934326	1935252	1935249
1916	1935309	1936109	1936097
1917	1936097	1936387	1936369
1918	1936372	1936974	1936959
1919	1936996	1937673	1937670
1920	1937677	1938957	1938927
1921	1938961	1940346	1940328
1922	1940492	1941448	1941358
1923	1941474	1942211	1942199
1924	1942348	1943499	1943466
1925	1943597	1944457	1944439
1926	1944454	1945788	1945779
1927	1945948	1946823	1946823
1928	1946842	1947252	1947243
1929	1947328	1948722	1948635
1930	1948767	1949375	1949357
1931	1949418	1950194	1950194
1932	1950131	1950424	1950406
1933	1950402	1951007	1950983
1934	1951091	1952609	1952464
1935	1952632	1953477	1952692
1936	1953558	1954520	1954502
1937	1954642	1954992	1954908
1938	1955093	1956976	1956973
1939	1956976	1957758	1957638
1940	1957833	1959119	1959104

123

1941	1959306	1959818	1959809
1942	1960032	1960616	1960589
1943	1960620	1960871	1960859
1944	1961037	1961999	1961993
1945	1961993	1962520	1962496
1946	1962423	1962953	1962941
1947	1962957	1963361	1963328
1948	1963390	1965726	1965726
1949	1965868	1966221	1966218
1950	1966401	1967051	1967015
1951	1967166	1968767	1968758
1952	1968992	1969732	1969702
1953	1969981	1971228	1971177
1954	1971506	1971814	1971775
1955	1971775	1972722	1972695
1956	1972903	1973697	1972948
1957	1973810	1974274	1974271
1958	1974303	1974506	1974503
1959	1974568	1975701	1975680
1960	1975897	1977399	1977321
1961	1977930	1978892	1978874
1962	1979405	1980319	1980298
1963	1986367	1987029	1987023
1964	1987133	1989085	1989070
1965	1989617	1989988	1989931
1966	1989992	1990597	1990555
1967	1990601	1991287	1991251
1968	1991360	1991995	1991965
1969	1992110	1992817	1992742
1970	1992971	1994116	1994107
1971	1994165	1995364	1995325
1972	1995575	1996675	1996660
1973	1996694	1997659	1997656
1974	1997809	1998369	1998366
1975	1998378	1999106	1999091
1976	1999583	2000317	2000287
1977	2000604	2001623	2001545
1978	2001795	2003105	2003096
1979	2003191	2003865	2003838
1980	2003900	2004187	2004154
1981	2004386	2005345	2005306
1982	2005369	2006442	2006370
1983	2006660	2009056	2009050
1984	2009090	2010142	2010127
1985	2010305	2011111	2010581
1986	2011408	2012370	2011426
1987	2013688	2014629	2014605
1988	2014620	2014922	2014913
1989	2015105	2015368	2015281
1990	2015476	2015709	2015703
1991	2015849	2016412	2016352
1992	2016933	2017895	2016951
1993	2017989	2018372	2018348
1994	2018368	2018961	2018937

1995	2019102	2019317	2019305
1996	2019327	2019542	2019506
1997	2019878	2020291	2020189
1998	2020105	2021589	2021571
1999	2021585	2021866	2021851
2000	2022666	2023199	2023178
2001	2023296	2023541	2023499
2002	2023615	2024352	2023648
2003	2024370	2025632	2024436
2004	2025827	2026375	2025839
2005	2026536	2028020	2026545
2006	2028028	2028702	2028043
2007	2028751	2030079	2030040
2008	2030316	2030936	2030933
2009	2031523	2032002	2031987
2010	2032056	2032733	2032730
2011	2032824	2033336	2033324
2012	2033407	2033658	2033655
2013	2033754	2034086	2034074
2014	2034226	2035176	2034235
2015	2035219	2035752	2035234
2016	2035844	2036884	2035883
2017	2037256	2038203	2038137
2018	2038290	2039162	2039135
2019	2039264	2040169	2040103
2020	2040173	2041963	2041942
2021	2042006	2042269	2042251
2022	2042400	2043755	2043689
2023	2044005	2045162	2045162
2024	2045409	2046074	2045981
2025	2046244	2046849	2046813
2026	2046857	2047759	2047750
2027	2047965	2049269	2049194
2028	2049238	2050536	2050491
2029	2050710	2051078	2050719
2030	2051075	2052154	2051081
2031	2052247	2052639	2052612
2032	2052537	2053064	2052690
2033	2053083	2054105	2054024
2034	2054150	2055154	2055127
2035	2055182	2058190	2058169
2036	2058184	2058690	2058642
2037	2058847	2060340	2060325
2038	2060502	2061710	2061698
2039	2061728	2062756	2062744
2040	2062877	2064273	2064261
2041	2064543	2065301	2065274
2042	2065361	2066263	2065403
2043	2066478	2067632	2067614
2044	2067604	2068611	2068578
2045	2068779	2070071	2070068
2046	2070327	2070515	2070491
2047	2070631	2071590	2071551
2048	2071766	2072050	2071772

123

2049	2072079	2072906	2072897
2050	2073003	2073638	2073015
2051	2073684	2074715	2074700
2052	2074696	2075475	2075463
2053	2075485	2077344	2077335
2054	2077530	2077964	2077566
2055	2077968	2078198	2077980
2056	2078639	2079388	2079325
2057	2079624	2080058	2080046
2058	2080268	2082145	2080271
2059	2082167	2082877	2082212
2060	2083045	2084007	2083063
2061	2084034	2084249	2084240
2062	2084279	2084863	2084794
2063	2084972	2085871	2085826
2064	2085875	2086396	2086330
2065	2086426	2087013	2086980
2066	2087195	2087920	2087908
2067	2087996	2088574	2088445
2068	2088582	2089808	2089766
2069	2089926	2091143	2091110
2070	2091308	2092258	2092243
2071	2092682	2094523	2094520
2072	2094702	2095172	2095157
2073	2095176	2095997	2095946
2074	2096286	2096909	2096909
2075	2096913	2098892	2098892
2076	2098899	2099237	2099222
2077	2099525	2100274	2100250
2078	2100434	2100661	2100443
2079	2100665	2101666	2100698
2080	2101660	2102055	2101672
2081	2102144	2102617	2102587
2082	2102728	2103633	2103564
2083	2103579	2103851	2103836
2084	2103975	2104643	2103981
2085	2104600	2105706	2105688
2086	2105770	2106270	2106258
2087	2106340	2107830	2107830
2088	2108025	2109191	2109152
2089	2109419	2110369	2110360
2090	2110395	2111360	2111336
2091	2111459	2112964	2112928
2092	2113062	2114141	2114123
2093	2114310	2115584	2115539
2094	2115844	2117535	2117535
2095	2117579	2118058	2117603
2096	2118247	2119662	2119617
2097	2119781	2120398	2120371
2098	2120590	2123712	2123691
2099	2123948	2128297	2128297
2100	2128723	2130459	2130423
2101	2130623	2131609	2131606
2102	2131682	2132473	2132458

2103	2132785	2133594	2132812
2104	2133643	2134512	2134509
2105	2134648	2136969	2134681
2106	2136965	2137681	2136974
2107	2137822	2138673	2137834
2108	2138767	2139927	2139897
2109	2140198	2141730	2141648
2110	2141813	2142409	2142340
2111	2142442	2143392	2143362
2112	2143567	2144082	2143591
2113	2144180	2144503	2144500
2114	2144490	2144855	2144834
2115	2144824	2145198	2145183
2116	2145306	2145941	2145932
2117	2146000	2147181	2147082
2118	2147276	2148238	2148220
2119	2148375	2149076	2148393
2120	2149126	2150499	2150484
2121	2150649	2150873	2150873
2122	2151175	2151381	2151339
2123	2151691	2152083	2152068
2124	2152090	2153037	2153025
2125	2153076	2153468	2153456
2126	2153480	2153848	2153842
2127	2153863	2154033	2153976
2128	2154033	2154287	2154248
2129	2154614	2155510	2155372
2130	2155471	2155830	2155758
2131	2155834	2156754	2156649
2132	2156649	2157251	2157203
2133	2157283	2158014	2157927
2134	2158070	2159395	2159386
2135	2159467	2160006	2159907
2136	2160185	2160427	2160361
2137	2160375	2160884	2160878
2138	2160900	2161322	2161244
2139	2161463	2162008	2161996
2140	2162216	2162659	2162611
2141	2162830	2163453	2163411
2142	2163565	2163747	2163747
2143	2163769	2164332	2164308
2144	2164331	2164687	2164633
2145	2164770	2165147	2165135
2146	2165161	2165418	2165418
2147	2165442	2165654	2165648
2148	2165651	2166064	2166061
2149	2166068	2166730	2166718
2150	2166734	2167090	2167078
2151	2167097	2167456	2167372
2152	2167535	2168374	2168362
2153	2168381	2168686	2168671
2154	2168674	2169306	2169297
2155	2169326	2169964	2169946
2156	2169968	2170288	2170273

2157	2170532	2170951	2170586
2158	2170997	2172319	2172196
2159	2172283	2173887	2173770
2160	2173875	2174459	2174429
2161	2174630	2174830	2174821
2162	2174935	2175108	2175081
2163	2175125	2176954	2176939
2164	2177044	2179293	2179272
2165	2179584	2180249	2180216
2166	2180236	2180676	2180664
2167	2180781	2181167	2181155
2168	2181348	2182223	2181360
2169	2182268	2183086	2183074
2170	2183070	2183813	2183804
2171	2183984	2184853	2184823
2172	2184823	2185281	2185257
2173	2185341	2185697	2185622
2174	2185664	2186119	2186047
2175	2186073	2186369	2186366
2176	2186341	2186805	2186769
2177	2186732	2187187	2187112
2178	2187129	2188217	2188199
2179	2188096	2189037	2189031
2180	2189154	2194151	2194127
2181	2194243	2194788	2194776
2182	2194785	2196125	2196113
2183	2196132	2198048	2197979
2184	2198052	2199347	2199335
2185	2199357	2200181	2200157
2186	2200160	2200897	2200891
2187	2201266	2201619	2201595
2188	2201693	2202301	2202145
2189	2202163	2202405	2202387
2190	2202409	2202942	2202909
2191	2202927	2203889	2203871
2192	2204329	2205564	2204341
2193	2205648	2206688	2205693
2194	2206784	2208154	2206817
2195	2208262	2208486	2208265
2196	2208601	2209632	2208631
2197	2209679	2210491	2210428
2198	2210778	2213441	2213408
2199	2213613	2214452	2213646
2200	2214440	2214862	2214455
2201	2214948	2215844	2215706
2202	2215805	2216164	2216092
2203	2216168	2217088	2216983
2204	2216983	2217585	2217537
2205	2217567	2218109	2217579
2206	2223531	2224034	2223956
2207	2224280	2226010	2226007
2208	2226196	2227233	2227221
2209	2227346	2228179	2228110
2210	2228409	2229491	2228469

2211	2229703	2232435	2229727
2212	2232779	2233288	2233273
2213	2233263	2233469	2233469
2214	2233469	2234317	2234293
2215	2234289	2236460	2236409
2216	2236515	2237384	2237369
2217	2237493	2238518	2238518
2218	2238508	2239056	2239002
2219	2239053	2239706	2239616
2220	2239763	2241001	2240980
2221	2241067	2242308	2242290
2222	2242451	2242969	2242478
2223	2242984	2244099	2242996
2224	2244201	2245580	2245511
2225	2245870	2246391	2245888
2226	2246431	2247291	2247273
2227	2247434	2247775	2247500
2228	2247825	2248220	2247891
2229	2248270	2250945	2250909
2230	2251168	2251860	2251821
2231	2252101	2252364	2252346
2232	2252388	2252729	2252729
2233	2252733	2253263	2253239
2234	2253397	2254110	2254101
2235	2254436	2255977	2255974
2236	2256206	2259145	2258983
2237	2259055	2259558	2259525
2238	2259778	2260620	2259811
2239	2265994	2267475	2267406
2240	2267579	2268541	2268523
2241	2268575	2270131	2270131
2242	2270255	2271187	2271160
2243	2271500	2272366	2271521
2244	2272392	2272712	2272407
2245	2272792	2273571	2273562
2246	2273765	2274052	2274007
2247	2274184	2274717	2274681
2248	2274714	2275094	2275004
2249	2275199	2276059	2276050
2250	2276506	2278035	2276518
2251	2278076	2279752	2279731
2252	2279783	2280439	2280421
2253	2280456	2280971	2280941
2254	2281001	2281294	2281025
2255	2281389	2281838	2281832
2256	2281996	2282247	2282050
2257	2282312	2283652	2283649
2258	2283714	2284097	2284079
2259	2284180	2284626	2284614
2260	2285030	2285668	2285644
2261	2285644	2286825	2286825
2262	2287405	2288322	2288286
2263	2288426	2289478	2289397
2264	2289553	2290155	2290143

2265	2290259	2292382	2292343
2266	2292358	2293068	2293050
2267	2293168	2295696	2295687
2268	2295884	2296261	2296228
2269	2296389	2296589	2296484
2270	2296600	2296905	2296905
2271	2296870	2297982	2297032
2272	2298171	2299103	2299049
2273	2299094	2299450	2299411
2274	2299659	2300054	2300033
2275	2300036	2300911	2300884
2276	2301049	2301246	2301070
2277	2301293	2302828	2301320
2278	2303026	2303631	2303550
2279	2303662	2305137	2303692
2280	2305198	2306664	2306646
2281	2307234	2308406	2308370
2282	2308553	2309227	2309227
2283	2309220	2309957	2309939
2284	2309974	2311215	2311197
2285	2311212	2313092	2313086
2286	2313212	2314591	2314579
2287	2314686	2315213	2315210
2288	2315303	2316217	2316175
2289	2316423	2316905	2316468
2290	2316939	2317634	2317610
2291	2317697	2318380	2318380
2292	2318466	2319722	2319683
2293	2319749	2320198	2320183
2294	2320206	2320421	2320406
2295	2320669	2324985	2324976
2296	2325355	2325996	2325385
2297	2326081	2326932	2326899
2298	2326905	2327630	2327624
2299	2327716	2329113	2327749
2300	2329170	2329916	2329913
2301	2329916	2332012	2331913
2302	2332054	2332413	2332395
2303	2332469	2333506	2333476
2304	2333759	2334343	2334277
2305	2334375	2337095	2334405
2306	2337143	2337691	2337613
2307	2337729	2338808	2337792
2308	2339123	2339815	2339285
2309	2339803	2340294	2339842
2310	2346318	2346731	2346707
2311	2346730	2347203	2347173
2312	2347498	2348610	2347540
2313	2348592	2349290	2348622
2314	2349429	2350313	2349438
2315	2350301	2350951	2350328
2316	2351007	2351819	2351819
2317	2352173	2354308	2354299
2318	2354567	2355037	2355031

WO 01/77334

PCT/FR01/01103

LJU

2319	2355053	2355496	2355463
2320	2355722	2357095	2355791
2321	2357175	2358092	2358059
2322	2358188	2358775	2358775
2323	2358909	2359853	2359847

TABLEAU III. Classification des protéines de L.lactis (SEQ IDs) en groupes fonctionnels

BIOSYNTHESE DES ACIDES AMINES

	Général
SEQ ID:	500
	Famille acides aminés Aromatiques
SEQ IDs:	120 1291 1507 1508 1511 1512 1513 1514 1515 1690
SEQ IDs:	1793 1794 1795 1796 1803 1807 1808
	Famille Aspartate
SEQ IDs:	166 361 755 796 1178 1179 1275 1292 1293 1323
SEQ IDs:	1609 1668 1670 1881 1972 1973 2159 2285
	Famille Chaîne ramifiée
SEQ IDs:	1251 1252 1254 1255 1257 1258 1259 1260 1261
	Famille Glutamate
SEQ IDs:	128 129 575 683 812 813 814 815 1324 1325
SEQ IDs:	1656 1657 1935 2257
	Famille Histidine
SEQ IDs:	1238 1240 1241 1243 1245 1246 1247 1248 1249
	Famille Pyruvate
SEQ IDs:	860
	Famille Sérine
SEQ IDs:	75 551 613 615 616 617 797 1904

BIOSYNTHESE de COFACTEURS, GROUPES PROSTHETIQUES, et TRANSPORTEURS

	acide folique
SEQ IDs:	871 953 1169 1172 1173 1174 1176 1353 1354
	Hème et porphyrine
SEQ IDs:	610 1157 1615
	Ménaquinone et ubiquinone
SEQ IDs:	187 743 744 745 746 747 875 1383
	Pantothénate
SEQ IDs:	584 585 1362 1487
	Riboflavine et cobalamine
SEQ IDs:	1011 1012 1013 1014 1123 1145 1871
	Thiorédoxine, glutarédoxine, et glutathione
SEQ IDs:	398 862 958 1405 1692 1695
	Thiamine
SEQ IDs:	497 1130 1300 1301 1302 1526
	Nucléotides Pyridine
SEQ IDs:	1120

ENVELOPPE CELLULAIRE

Membranes, lipoprotéines, et porines

SEQ IDs: 326 327 328 329 631 978 1105 1193 1481 2025
 SEQ IDs: 2185

Muréine sacculus et peptidoglycane

SEQ IDs: 280 320 348 350 351 395 552 554 560 885
 SEQ IDs: 886 968 1181 1321 1406 1637 1638 1857 1934 1960
 SEQ IDs: 2096 2164 2283 2287 2288 2320

Polysaccharides de Surface, lipopolysaccharides et antigènes

SEQ IDs: 153 206 207 212 213 217 218 219 220 221
 SEQ IDs: 222 223 224 693 695 697 754 894 930 936
 SEQ IDs: 937 939 940 942 944 945 973 1296 1297 1298
 SEQ IDs: 1299 1304 1380 1499 1500 1618 1845 2218 2279 2280

MACHINERIE CELLULAIRE

Division cellulaire

SEQ IDs: 20 22 100 681 818 828 902 914 990 991
 SEQ IDs: 1267 1384 1636 1704 1898 1920 1921 2207

Mort cellulaire

SEQ IDs: 508

Chaperones

SEQ IDs: 126 402 403 972

Détoxification

SEQ IDs: 417

Sécrétion des Protéines et peptides

SEQ IDs: 119 562 959 1015 1664 2134 2161 2315

Transformation

SEQ IDs: 1107 1108 1265 1779 1823 1824 1859 2084 2120 2176
 SEQ IDs: 2177 2178 2179 2206

METABOLISME INTERMEDIAIRE CENTRAL

Sucres aminés

SEQ IDs: 434 1024 1162 1376 1537 1621

Degradiation des polysaccharides

SEQ IDs: 291 716 1289 1538 1539 1728 1729 1732 2005

Composés phosphorés

SEQ IDs: 728

Biosynthèse de la Polyamine

SEQ IDs: 1663

Autres

SEQ IDs: 155 215 586 712 713 714 715

100

METABOLISME ENERGETIQUE

Aérobique

SEQ IDs: 76 136 151 186 242 273 276 342 347 400
 SEQ IDs: 643 768 801 843 844 1281 1348 1572 1574 1583
 SEQ IDs: 1596 1601 1604 1746 1784 1785 1925 2042 2100 2182
 SEQ IDs: 2307

Acides aminés et amines

SEQ IDs: 59 290 502 548 742 751 816 845 846 974
 SEQ IDs: 1327 1329 1343 1747 1751 1971 1985 2088 2089 2090
 SEQ IDs: 2092 2093

Anaérobique

SEQ IDs: 254 256 257 1127 1283 1379

Interconversion force motrice ATP-proton

SEQ IDs: 1814 1815 1816 1817 1818 1819 1820

Transport d'Electron

SEQ IDs: 431 609 620 719 720 732 994 995 1756 2167

Entrer-Doudoroff

SEQ IDs: 1674 1675

Fermentation

SEQ IDs: 677 915 916 918 1125 1142 1205 1207 1262 1290
 SEQ IDs: 1707 1858 1864 2068 2069 2211

Gluconéogenèse

SEQ IDs: 265

Glycolyse

SEQ IDs: 253 284 345 385 439 570 656 682 967 1146
 SEQ IDs: 1152 1372 1373 1374 1792 1962 2224 2303

Voie Pentose phosphate

SEQ IDs: 634 1673 1723 1979 2277 2290

Pyruvate déhydrogénase

SEQ IDs: 61 62 63 64

Sucres

SEQ IDs: 26 181 426 440 711 784 834 976 1326 1504
 SEQ IDs: 1532 1533 1534 1543 1546 1549 1550 1552 1553 1554
 SEQ IDs: 1676 1679 1680 1687 1721 1730 1731 2034 2035 2036
 SEQ IDs: 2037 2038 2039 2079 2241 2242

Cycle TCA

SEQ IDs: 684 685 1212 1213 1214 1215 1216

—METABOLISME DES ACIDES GRAS ET PHOSPHOLIPIDES—

Général

SEQ IDs: 65 72 118 390 413 414 415 576 577 675
 SEQ IDs: 786 787 788 789 790 791 792 793 794 795
 SEQ IDs: 859 1284 1834 1837 1955

PURINES, PYRIMIDINES, NUCLEOSIDES ET NUCLEOTIDES

SEQ IDs: métabolisme 2'-deoxyribonucleotide
 182 506 992 993 1159 1177
 SEQ IDs: Interconversions Nucléotide et nucléoside
 311 1112 1754 2066
 SEQ IDs: Biosynthèse des ribonucléotides Purine
 226 1164 1531 1556 1557 1558 1563 1564 1568 1569
 SEQ IDs: 1573 1575 1576 1578 1689 2007
 SEQ IDs: biosynthèse des ribonucléotides Pyrimidine
 407 501 1086 1087 1386 1387 1388 1404 1586 1599
 SEQ IDs: 1649 1650
 SEQ IDs: Récupération des nucléosides et nucléotides
 21 281 282 295 605 645 829 854 947 949
 SEQ IDs: 1165 1482 1483 1485 1708 1908 1950 1969 2133
 SEQ IDs: biosynthèse Sucre-nucléotide et interconversions
 200 202 204 205

FONCTIONS DE REGULATION

Général
 SEQ IDs: 6 8 110 131 137 154 167 243 245 261
 SEQ IDs: 324 335 421 424 429 445 541 565 622 674
 SEQ IDs: 771 832 847 877 905 929 946 982 1084 1151
 SEQ IDs: 1186 1197 1233 1263 1294 1310 1331 1349 1490 1494
 SEQ IDs: 1521 1524 1559 1566 1624 1639 1652 1654 1717 1745
 SEQ IDs: 1753 1766 1830 1831 1846 1852 1853 1928 1956 2001
 SEQ IDs: 2032 2041 2043 2059 2095 2216 2243 2258 2262 2270
 SEQ IDs: 2291 2296 2306 2316
 Systèmes deux-composants
 SEQ IDs: 405 406 908 909 1020 1022 1477 1478 1641 1642
 SEQ IDs: 1724 1725 1752 1797 1798
 SEQ IDs: Régulateurs de la famille LacI
 740 1545 1688 1696 1726 2200 2205
 SEQ IDs: Régulateurs de la famille LysR
 24 340 383 386 890 1274 1345 1603 1927
 SEQ IDs: Régulateurs de la famille AraC
 543 1555
 SEQ IDs: Régulateurs de la famille GntR
 435 1480 1498 1681
 SEQ IDs: Régulateurs de la famille DeoR
 804 975 1211 1336
 SEQ IDs: Régulateurs de la famille MarR
 117 603 723 757 785 926 1344 1517 1527 1585
 SEQ IDs: 2172
 SEQ IDs: Régulateurs de la famille BglG
 1506

Protéines liant le GTP
SEO IDs: 7 227 229 360 770 1171 1333 1635 2071 2299

REPLICATION

Dégradation de l'ACN

SEQ IDs:	4	5	573	644	806	856	872	873	1089	1360
SEQ IDs:	1361	1869								

RéPLICATION, RESTRICTION, MODIFICATION, RECOMBINATION,
ET RÉPARATION DE L'ADN

SEQ IDs:	2	3	101	102	240	349	362	363	401	408
SEQ IDs:	428	507	513	542	563	572	600	657	663	664
SEQ IDs:	665	761	766	767	857	878	898	923	997	1000
SEQ IDs:	1002	1025	1088	1129	1138	1139	1140	1266	1270	1693
SEQ IDs:	1791	1883	1948	2030	2098	2180	2198	2247	2251	2263
SEQ IDs:	2264	2265	2267	2281	2301					

TRANSCRIPTION

Dégradation de l'ARN

Synthèse, modification de l'ARN, et transcription de
l'ADN

SEQ IDs:	14	564	619	646	648	709	779	1314	1367	1368
SEO IDs:	1607	1612	1623	1850	1851	2124	2160	2222	2297	

Maturation moléculaire de l'ARN

TRADUCTION

synthétases d'ARNT amino acyl

SEQ IDs:	68	382	394	807	831	1113	1114	1239	1763	1775
SEQ IDs:	1879	1902	1914	1964	1983	1984	2020	2022	2094	2109
SEQ IDs:	2183	2229								

Dégradation des protéines, peptides, et glycopeptides
SEQ IDs: 260 303 313 396 624 706 858 1606 1697 1778
SEO IDs: 1854 1861 1929 2027 2028 2045 2047 2105 2192

Modification des protéines

Modification de l'ARNt
SEQ IDs: 13 132 158 168 169 171 496 638 705 852

SEQ IDs: 1144 1923 1944

Facteurs de traduction
 SEQ IDs: 358 607 707 782 783 989 1126 1895 1912 2065
 SEQ IDs: 2128 2208 2317

TRANSPORT ET LIAISON DES PROTEINES

Général

SEQ IDs:	11	74	104	262	263	269	270	271	285	286
SEQ IDs:	287	318	319	333	334	544	545	579	580	672
SEQ IDs:	673	729	855	881	888	889	917	983	984	1080
SEQ IDs:	1121	1122	1203	1256	1311	1312	1366	1567	1602	1667
SEQ IDs:	1787	1800	1801	1825	1826	1844	1926	2051	2052	2074
SEQ IDs:	2157	2260	2261	2313	2321					

Acides aminés, peptides et amines

SEQ IDs:	70	115	330	331	352	353	354	355	356	357
SEQ IDs:	364	365	375	550	574	698	699	717	824	863
SEQ IDs:	864	955	956	957	1128	1182	1183	1184	1185	1330
SEQ IDs:	1496	1497	1750	1810	1811	1847	1848	1873	1888	1889
SEQ IDs:	1890	1891	1892	2087	2091	2107	2250			

Anions

SEQ IDs:	52	308	309	310	1767	1768	1769	1770	1771	1772
----------	----	-----	-----	-----	------	------	------	------	------	------

Hydrates de Carbone, alcools organiques et acides

SEQ IDs:	208	209	259	430	566	919	933	934	1282	1369
SEQ IDs:	1370	1371	1530	1540	1541	1542	1548	1551	1671	1678
SEQ IDs:	1683	1684	1685	1686	1733	1734	1735	2040	2104	2239

Cations

SEQ IDs:	99	193	194	316	336	337	338	339	341	392
SEQ IDs:	587	635	636	676	691	848	849	869	932	1194
SEQ IDs:	1195	1295	1341	1355	1356	1357	1407	1528	1640	1655
SEQ IDs:	1970	2058	2169	2170	2171	2305				

Nucléosides, purines et pyrimidines

SEQ IDs:	896	1166	1651							
----------	-----	------	------	--	--	--	--	--	--	--

Système PTS

SEQ IDs:	23	25	121	122	180	422	423	425	437	630
SEQ IDs:	833	977	1149	1150	1505	1757	1758	1759		

Résistance Multidrogue

SEQ IDs:	81	82	127	130	160	244	314	389	621	679
SEQ IDs:	721	722	726	927	1389	1561	1584	1682	2220	2221
SEQ IDs:	2292									

AUTRES CATEGORIES

Adaptations aux conditions atypiques

SEQ IDs:	69	173	174	195	312	346	418	540	568	653
SEQ IDs:	654	686	912	970	971	1102	1170	1414	1570	2085

Sensibilité aux médicaments et analogues

SEQ IDs: 1244 1860 2249

Fonctions relatives aux phages et prophages

SEQ IDs:	27	28	29	30	31	32	33	34	35	36
SEQ IDs:	37	38	39	40	41	42	43	44	45	46
SEQ IDs:	47	48	49	446	447	448	449	450	451	452
SEQ IDs:	453	454	455	456	457	458	459	460	461	462
SEQ IDs:	463	464	465	466	467	468	469	470	471	472
SEQ IDs:	473	474	475	476	477	478	479	480	481	482
SEQ IDs:	483	484	485	486	487	488	489	490	491	492
SEQ IDs:	493	494	514	515	516	517	518	519	520	521
SEQ IDs:	522	523	524	525	526	527	528	529	531	532
SEQ IDs:	533	534	1026	1027	1028	1029	1030	1031	1032	1033
SEQ IDs:	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043
SEQ IDs:	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053
SEQ IDs:	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063
SEQ IDs:	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073
SEQ IDs:	1074	1075	1076	1077	1200	1217	1416	1417	1418	1419
SEQ IDs:	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429
SEQ IDs:	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439
SEQ IDs:	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449
SEQ IDs:	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459
SEQ IDs:	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469
SEQ IDs:	1470	1471	1472	1473	1474	1475	1647	1720	1998	2003

Fonctions relatives aux Transposons

SEQ IDs:	53	54	55	56	90	91	93	94	141	142
SEQ IDs:	143	144	145	146	378	379	380	381	614	649
SEQ IDs:	650	651	652	662	670	694	718	737	738	837
SEQ IDs:	838	839	841	842	950	1224	1225	1231	1232	1236
SEQ IDs:	1268	1286	1287	1342	1400	1560	1591	1741	1742	1749
SEQ IDs:	1936	1961	1986	1992	2060	2082	2083	2118	2129	2130
SEQ IDs:	2131	2132	2191	2201	2202	2203	2204	2240		

Autres

SEQ IDs:	416	591	618	710	835	1153	1727	1822	1910	1931
SEQ IDs:	1953	2031								

HYPOTHETIQUES

Général

SEQ IDs:	17	18	50	57	58	60	78	79	80	84
SEQ IDs:	87	88	92	113	114	116	124	125	133	134
SEQ IDs:	139	140	148	149	150	157	159	161	162	170
SEQ IDs:	172	175	176	179	183	184	185	188	189	196
SEQ IDs:	197	214	230	231	232	233	234	235	236	238
SEQ IDs:	247	255	258	264	266	267	268	274	277	279
SEQ IDs:	283	288	289	293	294	298	299	300	315	317
SEQ IDs:	321	323	325	332	343	344	366	367	369	370
SEQ IDs:	371	372	373	376	377	384	387	388	399	404
SEQ IDs:	409	410	411	420	433	436	438	443	444	498
SEQ IDs:	499	503	510	512	516	549	553	555	556	557
SEQ IDs:	558	569	582	583	588	589	592	594	597	599
SEQ IDs:	611	625	637	655	671	678	688	700	701	703
SEQ IDs:	704	708	725	727	730	735	741	749	756	759
SEQ IDs:	762	763	764	765	769	774	780	798	799	800
SEQ IDs:	803	809	810	811	819	827	830	840	850	861
SEQ IDs:	865	880	882	883	884	891	899	900	913	920
SEQ IDs:	924	951	963	964	965	986	987	999	1001	1004

SEQ IDs:	1016	1019	1023	1078	1079	1090	1091	1094	1098	1100
SEQ IDs:	1103	1104	1106	1109	1110	1115	1116	1117	1119	1124
SEQ IDs:	1131	1137	1141	1147	1148	1155	1156	1160	1161	1168
SEQ IDs:	1175	1187	1188	1201	1202	1204	1208	1209	1223	1242
SEQ IDs:	1276	1277	1278	1280	1303	1313	1315	1316	1318	1319
SEQ IDs:	1322	1340	1352	1358	1359	1363	1382	1391	1392	1393
SEQ IDs:	1408	1409	1411	1412	1476	1486	1489	1491	1492	1493
SEQ IDs:	1501	1518	1519	1520	1522	1523	1525	1529	1544	1547
SEQ IDs:	1565	1577	1579	1581	1592	1595	1597	1605	1614	1619
SEQ IDs:	1620	1622	1648	1658	1661	1662	1666	1669	1677	1694
SEQ IDs:	1699	1701	1702	1709	1710	1711	1712	1718	1719	1722
SEQ IDs:	1748	1760	1761	1762	1764	1765	1773	1774	1777	1780
SEQ IDs:	1781	1782	1786	1788	1789	1802	1805	1809	1827	1828
SEQ IDs:	1829	1832	1833	1838	1839	1840	1842	1843	1849	1855
SEQ IDs:	1856	1863	1865	1866	1867	1868	1872	1874	1875	1876
SEQ IDs:	1885	1886	1887	1900	1901	1903	1907	1915	1916	1917
SEQ IDs:	1918	1919	1924	1930	1933	1938	1939	1940	1941	1946
SEQ IDs:	1951	1952	1954	1958	1959	1963	1966	1967	1968	1976
SEQ IDs:	1977	1978	1981	1982	2004	2006	2008	2011	2014	2015
SEQ IDs:	2016	2017	2018	2019	2026	2029	2033	2044	2049	2050
SEQ IDs:	2054	2061	2063	2070	2080	2081	2101	2102	2106	2108
SEQ IDs:	2110	2115	2158	2163	2165	2168	2173	2174	2175	2184
SEQ IDs:	218G	2190	2193	2194	2197	2210	2217	2219	2226	2227
SEQ IDs:	2232	2235	2238	2245	2253	2254	2259	2272	2275	2278
SEQ IDs:	2282	2284	2286	2289	2294	2295	2298	2302	2304	2308
SEQ IDs:	2312	2322	2323							

Conservées

SEQ IDs:	16	66	67	73	77	108	109	111	112	252
SEQ IDs:	391	432	505	509	511	559	581	593	598	604
SEQ IDs:	612	640	642	647	702	733	734	736	739	750
SEQ IDs:	752	758	776	777	778	802	820	826	874	876
SEQ IDs:	897	901	910	922	952	954	961	979	980	981
SEQ IDs:	996	1017	1093	1111	1118	1135	1196	1199	1250	1273
SEQ IDs:	1320	1328	1377	1413	1562	1610	1705	1783	1804	1884
SEQ IDs:	1897	1909	1922	2117	2199	2293				

INCONNUES**Général**

SEQ IDs:	9	10	12	15	19	51	71	83	85	86
SEQ IDs:	89	95	96	103	105	106	123	138	147	152
SEQ IDs:	156	163	164	165	177	178	190	191	192	199
SEQ IDs:	201	203	210	211	216	225	228	237	239	241
SEQ IDs:	248	249	250	251	272	275	278	296	297	304
SEQ IDs:	305	306	307	322	368	393	397	412	427	441
SEQ IDs:	442	495	504	530	535	536	537	538	539	547
SEQ IDs:	561	567	578	590	595	596	601	602	606	608
SEQ IDs:	623	626	627	628	629	632	633	639	641	658
SEQ IDs:	659	660	661	666	667	668	669	687	689	690
SEQ IDs:	692	696	724	731	753	772	773	775	808	821
SEQ IDs:	822	823	825	836	851	866	867	868	870	879
SEQ IDs:	887	893	895	903	904	907	921	925	928	931
SEQ IDs:	935	938	941	943	948	962	966	969	985	988
SEQ IDs:	998	1003	1005	1006	1007	1008	1009	1010	1018	1021
SEQ IDs:	1081	1082	1083	1085	1092	1095	1096	1101	1132	1133
SEQ IDs:	1134	1136	1143	1154	1158	1163	1167	1180	1189	1190
SEQ IDs:	1191	1192	1198	1206	1210	1218	1219	1220	1221	1222
SEQ IDs:	1226	1227	1228	1229	1230	1234	1235	1253	1264	1269
SEQ IDs:	1271	1272	1279	1285	1288	1305	1306	1309	1317	1334

SEQ IDs:	1335	1337	1338	1339	1346	1347	1350	1351	1364	1365
SEQ IDs:	1375	1378	1381	1385	1390	1394	1395	1396	1397	1398
SEQ IDs:	1399	1401	1402	1403	1410	1415	1479	1484	1488	1495
SEQ IDs:	1502	1503	1509	1510	1516	1535	1536	1571	1580	1582
SEQ IDs:	1587	1588	1589	1590	1593	1594	1598	1608	1611	1616
SEQ IDs:	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634
SEQ IDs:	1643	1645	1646	1653	1659	1660	1665	1672	1691	1698
SEQ IDs:	1700	1703	1706	1713	1714	1715	1716	1736	1737	1738
SEQ IDs:	1739	1740	1743	1744	1755	1799	1806	1812	1813	1821
SEQ IDs:	1835	1836	1841	1862	1870	1877	1878	1880	1882	1896
SEQ IDs:	1899	1905	1911	1913	1932	1942	1943	1945	1947	1949
SEQ IDs:	1957	1965	1974	1975	1980	1987	1988	1989	1990	1991
SEQ IDs:	1993	1994	1995	1996	1997	1999	2000	2002	2009	2010
SEQ IDs:	2012	2013	2021	2023	2024	2046	2048	2053	2055	2064
SEQ IDs:	2067	2072	2073	2075	2076	2077	2078	2086	2097	2099
SEQ IDs:	2103	2111	2112	2113	2114	2116	2119	2121	2122	2141
SEQ IDs:	2166	2181	2187	2188	2189	2195	2196	2212	2213	2214
SEQ IDs:	2215	2223	2225	2228	2230	2231	2233	2234	2236	2237
SEQ IDs:	2244	2252	2255	2256	2266	2268	2269	2271	2273	2274

TABLEAU III. Homologies des protéines de *L.lactis* IL1403 avec des protéines connues

SEQID	Nom	Identité	Numéro d'accession	Meilleur homologue
2	dnaA	95%	O54375	dnaa; <i>Lactococcus lactis</i>
3	dnaN	97%	O54376	dna polymerase iii, beta chain; <i>Lactococcus lactis</i>
4	rexB	87%	O54377	exonuclease rexB; <i>Lactococcus lactis</i>
5	rexA	88%	O54378	exonuclease rexA; <i>Lactococcus lactis</i>
6	yabA	68%	O54379	hypothetical 21.4 kd protein; <i>Lactococcus lactis</i>
7	yyaL	99%	O54380	putative gtp binding protein; <i>Lactococcus lactis</i>
8	yabB	39%	Q46240	nanh gene & orf1,2,3 & 4; <i>Clostridium perfringens</i>
9	yabC			putative
10	yabD			putative
11	yabE	36%	Q9ZHB1	hypothetical 24.0 kd protein; <i>Streptococcus pneumoniae</i>
12	yabF	31%	Q47838	copa, copy and copz genes; <i>Enterococcus hirae</i>
13	pth	52%	O85235	hypothetical 19.6 kd protein; <i>Lactobacillus sake</i>
14	mfd	47%	P37474	transcription-repair coupling factor; <i>Bacillus subtilis</i>
15	yacI			putative
16	yacB	62%	P37557	hypothetical 9.7 kd protein in mfd-divic intergenic region; <i>Bacillus subtilis</i>
17	yacC	30%	P37471	cell division protein divic; <i>Bacillus subtilis</i>
18	yacD			putative
19	yacG	21%	O87489	beta-lactamase cef-1 precursor; <i>Pseudomonas aeruginosa</i> , and <i>Escherichia coli</i>
20	mesJ	99%	Q48646	partial orf; <i>Lactococcus lactis</i>
21	hpt	87%	Q02522	hypoxanthine-guanine phosphoribosyltransferase; <i>Lactococcus lactis</i>
22	ftsH	92%	P46469	cell division protein ftsH homolog; <i>Lactococcus lactis</i>
23	mtfA	49%	P50852	pts system, mannitol-specific iibc component (ec 2.7.1.6. <i>Bacillus stearothermophilus</i>)
24	mtfR	36%	Q02425	hypothetical protein in mtf 5' region; <i>Streptococcus mutans</i>
25	mtfF	71%	Q02420	pts system, mannitol-specific iia component (eiii-mt. <i>Streptococcus mutans</i>)
26	mtfD	61%	Q02418	mannitol-1-phosphate 5-dehydrogenase; <i>Streptococcus mutans</i>
27	ps101			putative
28	ps102	49%	O53060	hypothetical 16.9 kd protein; <i>Lactococcus lactis</i>
29	ps103	45%	O03926	<i>Lactobacillus</i> bacteriophage phigle complete genomic dna; <i>Bacteriophage phigle</i>
30	ps104			putative
31	ps105	45%	Q9XJC9	putative primase; <i>Streptococcus thermophilus</i> bacteriophage dt1
32	ps106	25%	Q38605	orf1; <i>Streptococcus thermophilus</i> bacteriophage sfil8, and <i>streptococcus thermophilus</i> bacteriophage sfil9
33	ps107			putative
34	ps108			putative
35	ps109			putative
36	ps110			putative
37	ps111			putative
38	ps112	25%	P33537	probable dna polymerase; <i>Neurospora crassa</i>

39	ps113			putative
40	ps114	27%	O34449	yogd protein; <i>Bacillus subtilis</i>
41	ps115	31%	AAF12710	repressor protein; <i>Bacteriophage tpw22</i>
42	ps116	37%	AAF12709	hypothetical 21.8 kd protein; <i>Bacteriophage tpw22</i>
43	ps117			putative
44	ps118			putative
45	ps119			putative
46	ps120			putative
47	ps121			putative
48	ps122	33%	Q00561	<i>lactococcin a</i> immunity protein; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
49	ps123	27%	Q38159	integrase; <i>Bacteriophage t2</i>
50	yafE	34%	BAA77903	hypothetical 15.5 kd protein in dinp-zrfh intergenic region; ; <i>Escherichia coli</i>
51	yafF			putative
52	yafB	25%	P40877	hypothetical 58.4 kd protein in pth-prsa intergenic region; <i>Escherichia coli</i>
53	yafG	100%	O32786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
54	tra1077A	96%	O32787	transposase; <i>Lactococcus lactis</i>
55	tra904A	99%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
56	yafI	100%	Q18713	dna for the transposon-like element on the lactose plasmid; <i>Lactococcus lactis</i>
57	yafJ			putative
58	yafC	34%	CAB62759	putative acetyltransferase; <i>Streptomyces coelicolor</i>
59	araT	97%	AAF06954	aromatic amino acid aminotransferase; <i>Lactococcus lactis</i>
60	yafD	29%	P42095	hypothetical 29.3 kd protein in bex-dnag/dnae intergenic region; <i>Bacillus subtilis</i>
61	pdhD	50%	P11959	dihydrolipoamide dehydrogenase; <i>Bacillus stearothermophilus</i>
62	pdhC	39%	P11961	dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex; <i>Bacillus stearothermophilus</i>
63	pdhB	58%	P21874	pyruvate dehydrogenase el component, beta subunit; <i>Bacillus stearothermophilus</i>
64	pdhA	51%	P21881	pyruvate dehydrogenase el component, alpha subunit; <i>Bacillus subtilis</i>
65	lplL	38%	O07608	hypothetical 38.0 kd protein; <i>Bacillus subtilis</i>
66	yagA	34%	O07592	hypothetical 27.5 kd protein; <i>Bacillus subtilis</i>
67	yagB	32%	P54168	hypothetical 23.1 kd protein in bsaa-ilvd intergenic region; <i>Bacillus subtilis</i>
68	trpS	66%	Q46127	tryptophanyl-trna synthetase; <i>Clostridium longisporum</i>
69	osmC	49%	P23929	osmotically inducible protein c; <i>Escherichia coli</i>
70	yagE	24%	O26646	cationic amino acid transporter related protein; <i>Methanobacterium thermoautotrophicum</i>
71	yahC			putative
72	plsX	42%	P71018	fatty acid/phospholipid synthesis protein plsx homolog; <i>Bacillus subtilis</i>
73	yahA	30%	P75792	hypothetical protein-1; <i>Escherichia coli</i>
74	yahG	61%	O31716	ykpa protein; <i>Bacillus subtilis</i>
75	cysD	55%	Q9WZY4	o-acetylhomoserine sulfhydrylase; <i>Thermotoga maritima</i>
76	yahI	33%	Q9ZKW1	putative; <i>Helicobacter pylori</i> j99
77	yahB	32%	O26984	conserved protein; <i>Methanobacterium thermoautotrophicum</i>
78	yahD	32%	O34842	yolf; <i>Bacillus subtilis</i>

79	yaiA	32%	Q34689	ykca protein; <i>Bacillus subtilis</i>
80	yaiB	43%	Q005220	hypothetical protein ywrf; <i>Bacillus subtilis</i>
81	lcnC	89%	Q00564	lactococcin a transport atp-binding protein lcnc; <i>Lactococcus lactis</i>
82	lcnD	93%	Q00565	lactococcin a secretion protein lcnD; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i> putative
83	yaiE			abortive infection proteins genes, complete cds;
84	yaiF	37%	Q48724	<i>Lactococcus lactis</i> putative
85	yaiI			putative
86	yaiJ			putative
87	yaiG	92%	Q00565	lactococcin a secretion protein lcnD; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
88	yaiH	76%	Q48724	abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i> putative
89	yajA			insertion sequence is981; <i>Lactococcus lactis</i>
90	tra981A	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
91	yajE	100%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i> abortive infection proteins genes, complete cds;
92	yajF	28%	Q48724	<i>Lactococcus lactis</i>
93	tra981B	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
94	yajG	97%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i> putative
95	yajB			putative
96	yajH			putative
97	rpmGB	100%	O34102	50s ribosomal protein 133; <i>Lactococcus lactis</i>
98	rpmF	100%	O34101	50s ribosomal protein 132; <i>Lactococcus lactis</i>
99	cada	36%	CAB53131	putative cation-transporting atpase; <i>Streptomyces coelicolor</i>
100	parA	50%	O06671	spspoj; <i>Streptococcus pneumoniae</i>
101	cshA	59%	O34528	yrvn protein; <i>Bacillus subtilis</i>
102	ybaH	44%	CAB51273	putative acetyltransferase; <i>Streptomyces coelicolor</i> putative
103	ybaA			yfmm protein; <i>Bacillus subtilis</i>
104	ybaB	58%	O34512	putative
105	ybaC			putative
106	ybaD			putative
107	prmA	44%	BAA82791	orf35 protein; <i>Listeria monocytogenes</i>
108	ybaF	42%	P54461	hypothetical 28.8 kd protein in dnaj-rpsu intergenic region; <i>Bacillus subtilis</i>
109	ybaG	37%	P94361	homologous to swissprot:yade_ecoli; <i>Bacillus subtilis</i>
110	relA	67%	Q54089	putative gtp pyrophosphokinase; <i>Streptococcus equisimilis</i>
111	ybaI	37%	Q45539	csbb protein; <i>Bacillus subtilis</i>
112	ybbA	71%	Q54088	dexb, abc, lrp, skc, rel genes and orf1; <i>Streptococcus equisimilis</i> putative
113	ybbB			conserved hypothetical protein; <i>Thermotoga maritima</i>
114	ybbC	27%	Q9WZA8	hypothetical 49.7 kd protein; <i>Bacillus subtilis</i>
115	ctrA	29%	O07576	hypothetical 21.9 kd protein; <i>Bacillus subtilis</i>
116	ybbE	35%	O07584	yvna; <i>Bacillus subtilis</i>
117	rmaD	26%	O34692	nadh dehydrogenase; <i>Bacillus stearothermophilus</i>
118	acpD	42%	Q9X4K2	preprotein-translocase-seca-subunit; <i>Bacillus subtilis</i>
119	secA	56%	P28366	phospho-2-dehydro-3-deoxyheptonate aldolase, trp-sensitive (3-deoxy-d-arabino-he. <i>Erwinia herbicola</i>
120	aroF	41%	O54459	histidine containing protein; <i>Lactococcus lactis</i>
121	ptsH	96%	Q9ZAD9	phosphoenolpyruvate-protein phosphotransferase;
122	ptsI	96%	Q9zad8	<i>Lactococcus lactis</i>

123	ybcC			putative
124	ybcG	38%	Q9XAI3	hypothetical 11.7 kd protein; <i>Streptomyces coelicolor</i>
125	ybcH	27%	CAB49187	hypothetical 2-acetyl-1-alkylglycerophosphocholine esterase; <i>Pyrococcus abyssi</i>
126	sugE	46%	P30743	suge protein; <i>Escherichia coli</i>
127	blt	40%	P39843	multidrug resistance protein 2; <i>Bacillus subtilis</i>
128	argG	64%	O34347	argininosuccinate synthase; <i>Bacillus subtilis</i>
129	argH	59%	O34858	arginine succinate lyase; <i>Bacillus subtilis</i>
130	pmrB	43%	BAA35851	probable integral membrane protein; <i>Escherichia coli</i>
131	ybdA	35%	P03039	tetracycline repressor protein class c; <i>Escherichia coli</i>
132	rnpA	48%	BAA82683	rnpA protein; <i>Bacillus sp</i>
133	ybdC	40%	O32298	spoilij protein; <i>Bacillus subtilis</i>
134	ybdD	31%	Q9X1H1	jag protein, putative; <i>Thermotoga maritima</i>
135	rpmH	77%	P45647	50s ribosomal protein L34; <i>Coxiella burnetii</i>
136	ybdE	36%	P42972	hypothetical oxidoreductase in pbpc-lrpc intergenic region; <i>Bacillus subtilis</i>
137	ybdG	35%	O28481	hypothetical transcriptional regulator af1793; <i>Archaeoglobus fulgidus</i> putative
138	ybdH			
139	ybdI	31%	Q48724	abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i>
140	ybdJ	33%	Q48724	abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i>
141	ybdK	100%	Q48710	span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i>
142	tra904B	100%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
143	ybdL	99%	O32786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
144	tra1077B	97%	O32787	transposase; <i>Lactococcus lactis</i>
145	tra904C	100%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
146	ybeG	100%	Q48710	span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i> putative
147	ybeA			
148	ybeB	53%	O34634	hypothetical 15.2 kd protein in udk-alas intergenic region; <i>Bacillus subtilis</i>
149	ybeC	46%	O34828	yrzb protein; <i>Bacillus subtilis</i>
150	ybeH	17%	AAF10767	hypothetical 23.9 kd protein; <i>Deinococcus radiodurans</i>
151	cbr	28%	P48758	carbonyl reductase [nadph]; <i>Mus musculus</i> putative
152	ybeI			
153	ybeE	32%	CAB53277	putative oxidoreductase; <i>Streptomyces coelicolor</i>
154	ybeD	43%	O67157	transcriptional regulator; <i>Aquifex aeolicus</i>
155	glgB	47%	P30924	1,4-alpha-glucan branching enzyme; <i>Solanum tuberosum</i> putative
156	ybeM			
157	ybeF	21%	Q9X3M7	fibronectin-binding protein i; <i>Streptococcus pyogenes</i>
158	tgt	71%	O32053	queuine tRNA-ribosyltransferase; <i>Bacillus subtilis</i>
159	ybfA	29%	Q06073	hypothetical 25.7 kd protein in cytochrome p450meg gene 5'region; <i>Bacillus megaterium</i>
160	ybfD	30%	P94577	hypothetical 43.1 kd protein; <i>Bacillus subtilis</i>
161	ybfE	47%	Q45065	ynt; <i>Bacillus subtilis</i>
162	ybfB	25%	O33735	streptodornase; <i>Streptococcus pyogenes</i> putative
163	ybfC			
164	ybgA			putative

165	ybgB			putative
166	aspC	63%	P71348	probable aminotransferase hi0286; <i>Haemophilus influenzae</i>
167	cody	48%	E39779	cody protein; <i>Bacillus subtilis</i>
168	gatC	45%	O06492	glutamyl-tRNA amidotransferase subunit c; <i>Bacillus subtilis</i>
169	gatA	58%	O06491	glutamyl-tRNA amidotransferase subunit a; <i>Bacillus subtilis</i>
170	ybgD	43%	Q9ZHC2	mutt; <i>Streptococcus pneumoniae</i>
171	gatB	62%	O45486	pet112-like protein; <i>Bacillus subtilis</i>
172	ybgE	28%	AAF09821	6-aminohexanoate-cyclic-dimer hydrolase; <i>Deinococcus radiodurans</i>
173	dinF	34%	O33729	dinf protein; <i>Streptococcus pneumoniae</i>
174	cspE	98%	Q9ZAG9	cold shock protein e; <i>Lactococcus lactis</i>
175	ybhA	41%	O66124	hypothetical protein; <i>Streptococcus mutans</i>
176	ybhB	32%	O59166	19aa long hypothetical protein; <i>Pyrococcus horikoshii</i>
177	ybhC			putative
178	ybhD			putative
179	ybhE	40%	O50983	outer surface protein, putative; <i>Borrelia burgdorferi</i>
180	celB	30%	P17334	pts system, cellobiose-specific iic component; <i>Escherichia coli</i>
181	bglS	59%	P42403	probable beta-glucosidase; <i>Bacillus subtilis</i>
182	dut	52%	Q38106	dutpase; <i>Bacteriophage rlt</i>
183	ybiB	33%	O32133	yund protein; <i>Bacillus subtilis</i>
184	ybiC	53%	O32127	yutd protein; <i>Bacillus subtilis</i>
185	ybiD	54%	O34617	hypothetical 41.6 kd protein in fmt-spovm intergenic region; <i>Bacillus subtilis</i>
186	ybiE	32%	Q50261	this orf is homologous to nitroreductase from <i>enterobacter cloacae</i> ; <i>Phytoplasma sp</i>
187	preA	30%	P31114	probable heptaprenyl diphosphate synthase component ii; <i>Bacillus subtilis</i>
188	ybiG	21%	P39582	probable 1,4-dihydroxy-2-naphthoate octaprenyltransferase; <i>Bacillus subtilis</i>
189	ybiH	46%	P71468	plni; <i>Lactobacillus plantarum</i>
190	ybiI			putative
191	ybiJ			putative
192	ybiK			putative
193	feoB	36%	O27414	ferrous iron transport protein b; <i>Methanobacterium thermoautotrophicum</i>
194	feoA	42%	O27415	hypothetical 8.2 kd protein; <i>Methanobacterium thermoautotrophicum</i>
195	ybjA	65%	Q9XB39	csr14 protein; <i>Enterococcus faecalis</i>
196	ybjJ	43%	O34751	ylov protein; <i>Bacillus subtilis</i>
197	ybjK	41%	O34318	ylou protein; <i>Bacillus subtilis</i>
198	rpmB	56%	P37807	50s ribosomal protein 128; <i>Bacillus subtilis</i>
199	ybjB			putative
200	rmlA	90%	O54574	glucose-1-phosphate thymidyl transferase; <i>Streptococcus pneumoniae</i>
201	ybjD			putative
202	cpsM	88%	P97005	dtdp-4-keto-6-deoxyglucose-3,5-epimerase; <i>Streptococcus pneumoniae</i>
203	ybjF			putative
204	rmlB	75%	AAC78676	dtdp-glucose-4,6-dehydratase cps19an; <i>Streptococcus pneumoniae</i>
205	rmlC	72%	AAC78677	dtdp-1-rhamnose synthase cps19ao; <i>Streptococcus pneumoniae</i>
206	rgpA	54%	O82873	rgpac protein; <i>Streptococcus mutans</i>
207	rgpB	53%	O82874	rhamnosyltransferase; <i>Streptococcus mutans</i>
208	rgpC	46%	O82875	abc-transporter; <i>Streptococcus mutans</i>

209	rgpD	70%	082876	abc-transporter; <i>Streptococcus mutans</i>
210	ycaF			putative
211	ycaG			putative
212	rgpE	34%	006035	epsg protein; <i>Lactococcus lactis</i>
213	rgpF	52%	082878	rgpfc protein; <i>Streptococcus mutans</i>
214	ycbA	23%	005375	unnamed protein product; <i>Actinobacillus actinomycetemcomitans</i>
215	ycbB	52%	088085	putative glycosyl transferase; <i>Enterococcus faecalis</i>
216	ycbC			putative
217	ycbD	40%	CAB49227	udp-glucose 4-epimerase; <i>Pyrococcus abyssi</i>
218	ycbK	18%	032273	tuab protein; <i>Bacillus subtilis</i>
219	ycbF	25%	Q08918	chromosome xvi reading frame orf ypl175w; <i>Saccharomyces cerevisiae</i>
220	ycbG	32%	Q9X4D4	licdI; <i>Streptococcus pneumoniae</i>
221	ycbH	34%	085000	galactosyl transferase; <i>Streptococcus pneumoniae</i>
222	ycbI	30%	Q57022	putative glycosyl transferase hi0868; <i>Haemophilus influenzae</i>
223	ycbJ	30%	P37965	glycerophosphoryl diester phosphodiesterase; <i>Bacillus subtilis</i>
224	tagD1	55%	005155	tagd; <i>Staphylococcus aureus</i>
225	yccB	40%	066077	putative extracellular protein exp3 precursor; <i>Lactococcus lactis</i>
226	guaB	83%	P50099	inosine-5'-monophosphate dehydrogenase; <i>Streptococcus pyogenes</i>
227	yqeL	51%	P54453	hypothetical 41.0 kd protein in nucb-arod intergenic region; <i>Bacillus subtilis</i>
228	yccE			putative
229	hf1X	54%	P94478	ynba; <i>Bacillus subtilis</i>
230	yccF	44%	P54454	hypothetical 10.8 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
231	yccG	34%	P54455	hypothetical 22.2 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
232	yccH	37%	P54456	hypothetical 21.3 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
233	yccI	29%	P16691	phno protein; <i>Escherichia coli</i>
234	yccJ	41%	P54457	hypothetical 13.3 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
235	yccK	40%	P54458	hypothetical 28.3 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
236	yccL	41%	Q58361	hypothetical protein mj0951; <i>Methanococcus jannaschii</i>
237	ycdA			putative
238	ycdB	94%	P76351	hypothetical 25.9 kd protein in amn-cbl intergenic region; <i>Escherichia coli</i>
239	ycdC			putative
240	ung	54%	Q9XDS8	uracil dna glycosylase; <i>Streptococcus agalactiae</i>
241	ycdE			putative
242	ycdG			putative
243	ycdF	36%	CAB58281	putative tetr family transcriptional regulator; <i>Streptomyces coelicolor</i>
244	ycdH	27%	032182	ysp protein; <i>Bacillus subtilis</i>
245	ycdI	38%	P44617	hypothetical transcriptional regulator hi0293; <i>Haemophilus influenzae</i>
246	rpsU	83%	BAA82793	30s ribosomal protein s21; <i>Listeria monocytogenes</i>
247	ycdJ			putative
248	yceA			putative
249	yceB			putative

250	yceC			putative
251	yceD			putative
252	yceE	29%	Q9WZB9	conserved hypothetical protein; <i>Thermotoga maritima</i>
253	pgk	57%	Q9Z5C4	phosphoglycerate kinase; <i>Staphylococcus aureus</i>
254	dhaK	37%	Q04059	putative 3,4-dihydroxy-2-butanone kinase; <i>Lycopersicon esculentum</i>
255	yceG	41%	O53054	hypothetical transcriptional regulator in inlc 3' region; <i>Listeria ivanovii</i>
256	dhaL	41%	P76015	hypothetical 24.0 kDa protein; <i>Escherichia coli</i>
257	dhaM	37%	P76014	orf o246#1; <i>Escherichia coli</i>
258	yceJ	32%	AAF12590	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
259	glpF1	47%	P52281	glycerol uptake facilitator protein; <i>Streptococcus pneumoniae</i>
260	pepDA	55%	Q48558	dipeptidase; <i>Lactobacillus helveticus</i>
261	ycfA	45%	O08306	30S ribosomal protein s21; <i>Nocardiooides simplex</i>
262	ycfB	39%	O29256	abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
263	ycfC	36%	O33188	hypothetical 24.4 kd protein; <i>Mycobacterium tuberculosis</i>
264	ycfD	44%	P39587	hypothetical 44.4 kd protein in epr-galk intergenic region; <i>Bacillus subtilis</i>
265	fbp	52%	Q45597	function unknown; <i>Bacillus subtilis</i>
266	ycfF	50%	O30505	ytfp; <i>Bacillus subtilis</i>
267	ycfG	43%	P96051	hypothetical 29.9 kd protein in fold-pbp2b intergenic region; <i>Streptococcus thermophilus</i>
268	ycfH	48%	Q10845	hypothetical 18.2 kd protein cy39.05c; <i>Mycobacterium tuberculosis</i>
269	ycfI	34%	Q11046	hypothetical abc transporter atp-binding protein rv1273c; <i>Mycobacterium tuberculosis</i>
270	ycgA	26%	Q9WYC4	abc transporter, atp-binding protein; <i>Thermotoga maritima</i>
271	ycgB	50%	Q11047	hypothetical abc transporter atp-binding protein cy50.10; <i>Mycobacterium tuberculosis</i>
272	ycgC	30%	Q9ZL99	putative; <i>Helicobacter pylori</i> j99
273	ycgD	43%	P46853	hypothetical oxidoreductase in gntr-ggt intergenic region; <i>Escherichia coli</i>
274	ycgE	47%	AAF11932	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
275	ycgF			putative
276	ycgG	49%	P22045	probable reductase; <i>Leishmania major</i>
277	ycgH	31%	Q9ZF59	nicotinamidase/pyrazinamidase; <i>Mycobacterium smegmatis</i>
278	ycgI	25%	O53298	hypothetical 45.8 kd protein; <i>Mycobacterium tuberculosis</i>
279	ycgJ	90%	Q48604	hypothetical 11.3 kd protein; <i>Lactococcus lactis</i>
280	acmA	65%	Q48603	n-acetylmuramidase precursor; <i>Lactococcus lactis</i>
281	nrdD	95%	Q9ZAX6	anaerobic ribonucleotide reductase; <i>Lactococcus lactis</i>
282	nrdG	87%	Q9ZAX5	anaerobic ribonucleotide reductase activator protein; <i>Lactococcus lactis</i>
283	ychC	45%	Q9ZAX4	hypothetical 7.3 kd protein; <i>Lactococcus lactis</i>
284	enoB	91%	O52191	enolase; <i>Streptococcus thermophilus</i>
285	ychD	57%	O87533	abc transporter atp-binding protein; <i>Streptococcus pyogenes</i>
286	ychE	53%	P70970	hypothetical 30.6 kd protein; <i>Bacillus subtilis</i>
287	ychF	44%	P70972	ybaF protein; <i>Bacillus subtilis</i>
288	ychG			putative

289	ychH	43%	Q9X1K7	2,3,4,5-tetrahydropyridine-2-carboxylate n-succinyltransferase-related protein; Thermotoga maritima
290	yciA	44%	O34916	ykur protein; Bacillus subtilis
291	xynD	40%	P04339	chitooligosaccharide deacetylase; Rhizobium leguminosarum
292	rpsD	66%	P21466	30s ribosomal protein s4; Bacillus subtilis
293	yciC	44%	Q51152	hypothetical 83.1 kd protein in region e; Neisseria meningitidis
294	yciD	42%	P96628	ydck protein; Bacillus subtilis
295	add	31%	Q9X7T2	putative adenosine deaminase; Streptomyces coelicolor
296	yciF			putative
297	yciG			putative
298	yciH	60%	Q45493	hypothetical 61.5 kd protein in adec-pdha intergenic region; Bacillus subtilis
299	ycjA	32%	O31718	ykzg protein; Bacillus subtilis
300	ycjB	32%	O05516	h. influenzae hypothetical protein; Bacillus subtilis
301	ycjC	36%	O05517	h. influenzae; Bacillus subtilis
302	ycjD	37%	O05517	h. influenzae; Bacillus subtilis
303	gcp	54%	O05518	hypothetical 36.8 kd protein in phob-groes intergenic region; Bacillus subtilis
304	ycjF			putative
305	ycjG			putative
306	ycjH			putative
307	ycjI			putative
308	phnC	40%	O69063	atpase component htxd; Pseudomonas stutzeri
309	phnB	33%	O69053	ptxc; Pseudomonas stutzeri
310	phnE	37%	O69053	ptxc; Pseudomonas stutzeri
311	ycjM	26%	P44764	2',3'-cyclic-nucleotide 2'-phosphodiesterase precursor; Haemophilus influenzae
312	tpx	40%	P80864	probable thiol peroxidase; Bacillus subtilis
313	pepN	96%	P37897	aminopeptidase n; Lactococcus lactis
314	napC	49%	O32603	napc protein; Enterococcus hirae
315	napB	39%	O32602	napb protein; Enterococcus hirae
316	ydaE	43%	P46348	hypothetical 31.8 kd protein in gabp-guaa intergenic region; Bacillus subtilis
317	ydaF	36%	P39044	30s ribosomal protein s14 homolog; Bacillus sphaericus
318	ydaG	38%	Q9WYC3	abc transporter, atp-binding protein; Thermotoga maritima
319	ydbA	58%	Q9ZIC7	abc transporter homolog z; Listeria monocytogenes
320	murA1	55%	P19670	probable udp-n-acetylglucosamine 1-carboxyvinyltransferase; Bacillus subtilis
321	ydbC	46%	O83371	hypothetical protein tp0352; Treponema pallidum
322	ydbD			putative
323	ydbE	34%	O57898	162aa long hypothetical protein; Pyrococcus horikoshii
324	ydbF	37%	P36922	ebsc protein; Enterococcus faecalis
325	ydbH	34%	O32074	yuaj protein; Bacillus subtilis
326	plpA	56%	CAB59827	hypothetical 32.0 kd protein; Lactococcus lactis
327	plpB	61%	CAB59827	hypothetical 32.0 kd protein; Lactococcus lactis
328	plpC	89%	CAB59825	hypothetical 31.6 kd protein; Lactococcus lactis
329	plpD	94%	CAB59827	hypothetical 32.0 kd protein; Lactococcus lactis

330	ydcB	95%	CAB59828	hypothetical 41.0 kd protein; <i>Lactococcus lactis</i>
331	ydcC	65%	CAB59829	hypothetical 24.8 kd protein; <i>Lactococcus lactis</i>
332	ydcD	90%	CAB59830	hypothetical 19.4 kd protein; <i>Lactococcus lactis</i>
333	ydcE	37%	O59479	284aa long hypothetical cobalt transport atp-binding protein; <i>Pyrococcus horikoshii</i>
334	ydcF	24%	Q50292	hypothetical protein mg181 homolog; <i>Mycoplasma pneumoniae</i>
335	ydcG	50%	Q57720	hypothetical transcriptional regulator mj0272; <i>Methanococcus jannaschii</i>
336	fhuC	43%	Q9X665	fhua; <i>Staphylococcus aureus</i>
337	fhuB	25%	P49936	ferrichrome transport permease protein fhub; <i>Bacillus subtilis</i>
338	fhuG	32%	P49937	ferrichrome transport permease protein fhug; <i>Bacillus subtilis</i>
339	fhuD	32%	P54941	probable abc transporter binding protein in idh-deor intergenic region precursor; <i>Bacillus subtilis</i>
340	fhuR	31%	CAB36982	cpsy protein; <i>Streptococcus agalactiae</i>
341	yddA	45%	O34367	ytbd; <i>Bacillus subtilis</i>
342	yddB	54%	O32210	yvgn protein; <i>Bacillus subtilis</i>
343	yddC	61%	O34533	hypothetical 14.5 kd protein in gapb-mutm intergenic region; <i>Bacillus subtilis</i>
344	yddD	50%	P45871	hypothetical 14.8 kd protein in tdk-prfa intergenic region; <i>Bacillus subtilis</i>
345	pmg	86%	Q9X952	phosphoglyceromutase; <i>Streptococcus pneumoniae</i>
346	aphC	70%	P80239	alkyl hydroperoxide reductase c22 protein; <i>Bacillus subtilis</i>
347	ahpF	61%	P42974	nadh dehydrogenase; <i>Bacillus subtilis</i>
348	pbp2B	45%	P10524	penicillin-binding protein 2b; <i>Streptococcus pneumoniae</i>
349	recM	78%	Q9ZHC4	recm; <i>Streptococcus pneumoniae</i>
350	ddl	63%	O54631	d-alanine-d-alanine ligase; <i>Streptococcus pneumoniae</i>
351	murF	59%	Q9ZHC3	d-alanine-d-alanine adding enzyme; <i>Streptococcus pneumoniae</i>
352	optS	42%	Q9Z692	hyaluronate-associated protein precursor; <i>Streptococcus equi</i>
353	optA	45%	Q9Z692	hyaluronate-associated protein precursor; <i>Streptococcus equi</i>
354	optB	41%	O31598	oligopeptide abc transporter; <i>Bacillus subtilis</i>
355	optC	39%	P94895	transport system permease homolog; <i>Listeria monocytogenes</i>
356	optD	62%	P24136	oligopeptide transport atp-binding protein oppd; <i>Bacillus subtilis</i>
357	optF	57%	O31599	oligopeptide abc transporter; <i>Bacillus subtilis</i>
358	prfC	57%	O86490	peptide chain release factor 3; <i>Staphylococcus aureus</i>
359	rheA	59%	Q9Z6C9	autoaggregation-mediated protein; <i>Lactobacillus reuteri</i>
360	eraL	77%	Q9XDG9	gtpase era; <i>Streptococcus pneumoniae</i>
361	asnB	38%	Q61024	asparagine synthetase; <i>Mus musculus</i>
362	mutM	89%	P42371	formamidopyrimidine-dna glycosylase; <i>Lactococcus lactis</i>
363	recA	93%	Q01840	reca protein; <i>Lactococcus lactis</i>
364	ydgB	39%	P96704	hypothetical transport protein in expz-dinb intergenic region; <i>Bacillus subtilis</i>
365	ydgC	40%	O06005	amino acid permease aapa; <i>Bacillus subtilis</i>
366	ydgD	25%	O34412	ylbf protein; <i>Bacillus subtilis</i>
367	ydgE			putative

368	ydgG				putative
369	ydgF	29%	Q31609	yjbk protein; <i>Bacillus subtilis</i>	
370	ydgH	32%	O34535	yoat; <i>Bacillus subtilis</i>	
371	ydgI	53%	O31611	yjbm protein; <i>Bacillus subtilis</i>	
372	ydgJ	43%	O31612	yjbn protein; <i>Bacillus subtilis</i>	
373	ydgK	42%	O31613	hypothetical 31.5 kd protein in meca-tena intergenic region; <i>Bacillus subtilis</i>	
374	ppiA	39%	O74942	peptidyl prolyl cis/trans isomerase; <i>Schizosaccharomyces pombe</i>	
375	lysQ	47%	P25737	lysine-specific permease; <i>Escherichia coli</i>	
376	ydhB	31%	P31465	hypothetical 20.4 kd protein in tnab-bglb intergenic region; <i>Escherichia coli</i>	
377	ydhC	30%	O83774	thiamine biosynthesis lipoprotein apbe precursor; <i>Treponema pallidum</i>	
378	ydhD	100%	Q48713	dna for the transposon-like element on the lactose plasmid; <i>Lactococcus lactis</i>	
379	tra904D	99%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>	
380	ydhE	99%	O32786	hypothetical 21.3 kd protein; <i>Lactococcus</i> <i>lactis</i>	
381	tral077C	98%	O32787	transposase; <i>Lactococcus lactis</i>	
382	lysS	65%	P37477	lysyl-trna synthetase; <i>Bacillus subtilis</i>	
383	rlrG	29%	O67145	transcriptional regulator; <i>Aquifex aeolicus</i>	
384	ydhF	27%	P33019	hypothetical 36.9 kd protein in lysp-nfo intergenic region; <i>Escherichia coli</i>	
385	ldhB	53%	P13714	l-lactate dehydrogenase; <i>Bacillus subtilis</i>	
386	rlrD	29%	O67145	transcriptional regulator; <i>Aquifex aeolicus</i>	
387	ydiA	23%	Q58172	hypothetical protein mj0762; <i>Methanococcus</i> <i>jannaschii</i>	
388	ydiB	49%	O34595	probable thiamine biosynthesis protein thii; <i>Bacillus subtilis</i>	
389	ydiC	27%	Q00538	methylenomycin a resistance protein; <i>Bacillus</i> <i>subtilis</i>	
390	ydiD	39%	Q9X4K2	nadh dehydrogenase; <i>Bacillus stearothermophilus</i>	
391	ydiE	56%	O31790	ymad protein; <i>Bacillus subtilis</i>	
392	ydiF	29%	P32703	putative na/h exchanger yjce; <i>Escherichia coli</i>	
393	ydiG			putative	
394	tyrS	53%	P22326	tyrosyl-trna synthetase 1; <i>Bacillus subtilis</i>	
395	pbplB	48%	O70038	penicillin-binding protein 1b; <i>Streptococcus</i> <i>pneumoniae</i>	
396	pepA	93%	Q48677	glutamyl-aminopeptidase; <i>Lactococcus lactis</i>	
397	ydjB			putative	
398	trxH	95%	Q48676	pepa gene; <i>Lactococcus lactis</i>	
399	ydjD	45%	O34943	ytpr; <i>Bacillus subtilis</i>	
400	noxE	51%	O83891	nadh oxidase; <i>Treponema pallidum</i>	
401	ssbA	49%	Q9XJE5	putative single stranded binding protein; Bacteriophage tuc2009	
402	groES	84%	P37283	10 kd chaperonin; <i>Lactococcus lactis</i>	
403	groEL	94%	P37282	60 kd chaperonin; <i>Lactococcus lactis</i>	
404	yeaA	50%	Q45611	function unknown; <i>Bacillus subtilis</i>	
405	kinC	88%	O07384	histidine kinase; <i>Lactococcus lactis</i>	
406	lrrC	87%	O86269	arca protein; <i>Lactococcus lactis</i>	
407	yeaB	49%	P37537	thymidylate kinase; <i>Bacillus subtilis</i>	
408	holB	34%	O67707	dna polymerase iii gamma subunit; <i>Aquifex</i> <i>aeolicus</i>	
409	yeaC	37%	P37541	hypothetical 31.2 kd protein in xpac-abrb intergenic region; <i>Bacillus subtilis</i>	
410	yeaD	29%	P37542	hypothetical 14.1 kd protein in xpac-abrb intergenic region; <i>Bacillus subtilis</i>	
411	yeaE	48%	P37544	hypothetical 33.0 kd protein in xpac-abrb intergenic region; <i>Bacillus subtilis</i>	
412	yeaF			putative	

150

413	yeaG	32%	O59291	335aa long hypothetical protein; <i>Pyrococcus horikoshii</i>
414	yeaH	28%	P32377	diphosphomevalonate decarboxylase; <i>Saccharomyces cerevisiae</i>
415	yebA	26%	O27995	mevalonate kinase; <i>Archaeoglobus fulgidus</i>
416	yebB	84%	Q48601	hypothetical 15.1 kd protein; <i>Lactococcus lactis</i>
417	sodA	92%	P50911	superoxide dismutase [mn]; <i>Lactococcus lactis</i>
418	cstA	47%	P95095	carbon starvation protein a homolog; <i>Mycobacterium tuberculosis</i>
419	rheB	48%	P54475	probable rna helicase in ccca-soda intergenic region; <i>Bacillus subtilis</i>
420	yebE	32%	O07474	gdmh; <i>Staphylococcus gallinarum</i>
421	yebF	29%	Q9XOV5	transcriptional regulator, rpir family; <i>Thermotoga maritima</i>
422	ptcB	52%	P46318	pts system, cellobiose-specific iib component; <i>Bacillus subtilis</i>
423	ptcA	43%	P46319	pts system, cellobiose-specific iia component (eiii-c. <i>Bacillus subtilis</i>)
424	yecA	25%	Q92B19	hypothetical 27.6 kd protein; <i>Lactococcus lactis</i>
425	ptcC	34%	P39584	hypothetical 47.6 kd protein in epr-galk intergenic region; <i>Bacillus subtilis</i>
426	bglA	63%	P42973	6-phospho-beta-glucosidase; <i>Bacillus subtilis</i> putative
427	yecD			
428	ligA	52%	O31498	yerq protein; <i>Bacillus subtilis</i>
429	yecE	50%	O31502	yerq protein; <i>Bacillus subtilis</i>
430	msmK	73%	Q00752	multiple sugar-binding transport atp-binding protein msmk; <i>Streptococcus mutans</i>
431	nifJ	55%	Q9X716	pyruvate ferredoxin oxidoreductase; <i>Clostridium pasteurianum</i>
432	yedA	48%	P47351	hypothetical protein mg105; <i>Mycoplasma genitalium</i>
433	yedB	28%	Q9ZAI5	hypothetical 34.6 kd protein; <i>Staphylococcus aureus</i>
434	femD	59%	O34824	ybbt protein; <i>Bacillus subtilis</i>
435	rgrA	40%	P39796	trehalose operon transcriptional repressor; <i>Bacillus subtilis</i>
436	yedE	43%	P12655	pts system, sucrose-specific iiabc component (e. <i>Streptococcus mutans</i>)
437	yedF	90%	Q9ZAG2	hypothetical 35.3 kd protein; <i>Lactococcus lactis</i>
438	yeeA	99%	Q9ZAG0	hypothetical 87.3 kd protein; <i>Lactococcus lactis</i>
439	pgmB	99%	P71447	beta-phosphoglucomutase; <i>Lactococcus lactis</i>
440	yeeB	27%	P26223	endo-1,4-beta-xylanase b; <i>Butyrivibrio fibrisolvens</i> putative
441	yeeC			putative
442	yeeD			putative
443	yeeE	43%	O05515	hypothetical 17.9 kd protein in phob-groes intergenic region; <i>Bacillus subtilis</i>
444	yeeF	31%	Q9WZ46	conserved hypothetical protein; <i>Thermotoga maritima</i>
445	yeeG	27%	P96499	<u>putative transcriptional regulator; <i>Bacillus subtilis</i></u>
446	pi101	39%	Q38325	integrase; <i>Lactococcus lactis</i> phage bk5-t
447	pi102	66%	Q38183	orf 3; <i>Bacteriophage tp901-1</i>
448	pi103	97%	Q38089	repressor protein; <i>Bacteriophage rlt</i>
449	pi104	94%	Q38328	cro repressor protein; <i>Lactococcus lactis</i> phage bk5-t putative
450	pi105			

151

451	pil06				putative
452	pil07	100%	Q38090	integrase, repressor protein , dutpase, holin and lysin genes, complete cds; Bacteriophage rlt	
453	pil08	40%	P44189	hypothetical protein hi1418; Haemophilus influenzae	
454	pil09	75%	Q38092	orf6; Bacteriophage rlt	
455	pil10	96%	Q38094	orf8; Bacteriophage rlt	
456	pil11	45%	CAB53838	putative recombinase; Bacteriophage a118	
457	pil12			putative	
458	pil13	52%	Q9XJE6	putative replisome organiser protein; Bacteriophage tuc2009	
459	pil14	36%	O03914	zinc finger protein; Bacteriophage phigle	
460	pil15			putative	
461	pil16	43%	Q9XJF1	hypothetical 22.4 kd protein; Bacteriophage tuc2009	
462	pil17			putative	
463	pil18			putative	
464	pil19	72%	Q9XJF3	hypothetical 14.3 kd protein; Bacteriophage tuc2009	
465	pil20	97%	Q38106	dutpase; Bacteriophage rlt	
466	pil21			putative	
467	pil22			putative	
468	pil23			putative	
469	pil24			putative	
470	pil25			putative	
471	pil26	85%	O53058	hypothetical 11.0 kd protein; Lactococcus lactis	
472	pil27	41%	O34051	orf20; Streptococcus thermophilus	
473	pil28	32%	O53058	hypothetical 11.0 kd protein; Lactococcus lactis	
474	pil29	40%	Q05277	gene 64 protein; Mycobacteriophage 15	
475	pil30			putative	
476	pil31	68%	O53060	hypothetical 16.9 kd protein; Lactococcus lactis	
477	pil32			putative	
478	pil33	45%	Q9XJ95	hypothetical 17.4 kd protein; Streptococcus thermophilus bacteriophage dt1	
479	pil34	37%	Q9XJ75	orf623 gp; Streptococcus thermophilus bacteriophage sfi21	
480	pil35	31%	CAB52519	hypothetical 43.3 kd protein; Lactobacillus bacteriophage phi adh	
481	pil36	36%	Q9ZXF7	orf26; Bacteriophage phi-105	
482	pil37	24%	O80046	capsid protein; Bacteriophage phi pvl	
483	pil38			putative	
484	pil39	33%	O64288	hypothetical 13.5 kd protein; Streptococcus thermophilus bacteriophage sfil9	
485	pil40	42%	Q38219	orfa; Bacteriophage l10	
486	pil41	31%	Q38220	orfi; Bacteriophage l10	
487	pil42	46%	O36159	small major structural protein; Streptococcus phage phi7201	
488	pil43			putative	
489	pil44	40%	P45931	hypothetical 171.0 kd protein in spoiiic-cwla intergenic region; Bacillus subtilis	
490	pil45	38%	Q38318	orf'410; Lactococcus lactis phage bk5-t	
491	pil46	51%	Q38319	orf1904; Lactococcus lactis phage bk5-t	
492	pil47			putative	
493	pil48	98%	Q38322	orf95; Lactococcus lactis phage bk5-t	
494	pil49	97%	Q38323	orf259; Lactococcus lactis phage bk5-t	
495	yeiD			putative	
496	truA	43%	Q9Z9J0	truA protein; Bacillus sp	

152

497	thiD2	37%	O23128	probable thiamin biosynthetic enzyme; <i>Arabidopsis thaliana</i>
498	yeiE	33%	P20298	hypothetical protein in gapdh 3'region; <i>Pyrococcus woesei</i>
499	yeiF	44%	P39157	hypothetical 19.4 kd protein in spoIir-glyc intergenic region; <i>Bacillus subtilis</i>
500	yeiG	35%	Q59569	aspartate aminotransferase; <i>Methanobacterium</i> <i>thermoformicicum</i>
501	pyrG	94%	O87761	ctp synthetase; <i>Lactococcus lactis</i>
502	hicD	38%	P14295	l-2-hydroxyisocaproate dehydrogenase; <i>Lactobacillus confusus</i>
503	yejC	36%	O86314	hypothetical 20.4 kd protein; <i>Mycobacterium</i> <i>tuberculosis</i>
504	yejD	27%	G1017854	nucleoside 2-deoxyribosyltransferase=ntd product {ec 2.4.2.6}; <i>Escherichia coli</i>
505	yejE	29%	O06986	hypothetical 21.1 kd protein; <i>Bacillus subtilis</i>
506	dgk	62%	Q59484	bifunctional deoxy-adenosine/guanosine kinase subunit 2 [includes: deoxyguanosine kinase ; deoxyadenosine kinase]; <i>Lactobacillus</i> <i>acidophilus</i>
507	dnaE	33%	O34623	dna polymerase iii, alpha chain; <i>Bacillus</i> <i>subtilis</i>
508	hly	38%	P54176	hemolysin iii; <i>Bacillus cereus</i>
509	yejH	39%	Q53667	hypothetical 21.2 kd protein; <i>Staphylococcus</i> <i>aureus</i>
510	yejI	44%	P96043	hypothetical 31.7 kd protein; <i>Streptococcus</i> <i>thermophilus</i>
511	yejJ	31%	O82840	beta-n-acetylglucosaminidase precursor; <i>Streptomyces thermophilicaceus</i>
512	yfaA	34%	P54179	hypothetical 21.1 kd protein in ilva 3'region; <i>Bacillus subtilis</i>
513	hslA	78%	Q9XB20	histone-like dna-binding protein; <i>Streptococcus</i> <i>gordonii</i>
514	ps201	33%	O54477	integrase; <i>Staphylococcus aureus</i>
515	ps202			putative
516	ps203			putative
517	ps204	36%	AAF12709	hypothetical 21.8 kd protein; <i>Bacteriophage</i> <i>tpw22</i>
518	ps205	53%	AAF12710	repressor protein; <i>Bacteriophage tpw22</i>
519	ps206	40%	CAB52490	hypothetical 7.4 kd protein; <i>Lactobacillus</i> <i>bacteriophage phi adh</i>
520	ps207	50%	Q54879	excisionase; <i>Streptococcus pneumoniae</i>
521	ps208			putative
522	ps209			putative
523	ps210			putative
524	ps211			putative
525	ps212			putative
526	ps213			putative
527	ps214			putative
528	ps215	32%	O54471	orf11; <i>Staphylococcus aureus</i>
529	ps216			putative
530	yfbB			putative
531	ps218			putative
532	ps219	37%	Q9ZXB1	gp35; <i>Bacteriophage phi-c31</i>
533	ps220			putative
534	ps221			putative
535	yfbG			putative
536	yfbH			putative
537	yfbI			putative
538	yfbJ			putative
539	yfbK			putative

155

540	cspD	93%	Q9ZAH0	cold shock protein d; <i>Lactococcus lactis</i>
541	yfbM	29%	O32075	yuai protein; <i>Bacillus subtilis</i>
542	ogt	48%	Q9ZBT7	putative methylated-dna-protein-cysteine methyltransferase; <i>Streptomyces coelicolor</i>
543	adaA	42%	P19219	methylphosphotriester-dna alkyltransferase; <i>Bacillus subtilis</i>
544	yfcA	37%	P08720	nodulation atp-binding protein i; <i>Rhizobium leguminosarum</i>
545	yfcB			putative
546	yfcC	27%	Q9WWI2	alginate biosynthesis regulatory protein; <i>Pseudomonas syringae</i>
547	yfcD			putative
548	yfcE	53%	P31672	nifs protein homolog; <i>Lactobacillus delbrueckii</i>
549	yfcF	38%	O06969	hypothetical 51.0 kd protein; <i>Bacillus subtilis</i>
550	yfcG	93%	CAB61245	lipoprotein precursor; <i>Lactococcus lactis</i>
551	cysM	66%	BAA88310	o-acetylservine lyase; <i>Streptococcus suis</i>
552	yfcH	35%	P37710	autolysin; <i>Enterococcus faecalis</i>
553	yfcI	45%	P54501	hypothetical 23.2 kd protein in soda-comga intergenic region; <i>Bacillus subtilis</i>
554	ponA	53%	Q00573	penicillin-binding protein 1a; <i>Streptococcus oralis</i>
555	yfdA	72%	Q00579	hypothetical 23.1 kd protein in pona 5'region; <i>Streptococcus oralis</i>
556	yfdB	40%	P50838	hypothetical 21.1 kd protein in cotd-kdud intergenic region; <i>Bacillus subtilis</i>
557	yfdC	57%	O31602	yjbd protein; <i>Bacillus subtilis</i>
558	yfdD	44%	Q45497	hypothetical 10.5 kd protein; <i>Bacillus subtilis</i>
559	yfdE	37%	Q45499	extragenic suppressor protein suhb homolog; <i>Bacillus subtilis</i>
560	murA2	55%	P70965	udp-n-acetylglucosamine 1-carboxyvinyltransferase; <i>Bacillus subtilis</i>
561	yfdG			putative
562	tig	63%	O85730	ropA; <i>Streptococcus pyogenes</i>
563	dnaG	96%	Q04505	dna primase; <i>Lactococcus lactis</i>
564	rpoD	96%	Q04506	rna polymerase sigma factor rpod; <i>Lactococcus lactis</i>
565	yfeA	35%	Q9ZB19	hypothetical 27.6 kd protein; <i>Lactococcus lactis</i>
566	glpT	91%	Q48705	hexose phosphate transport; <i>Lactococcus lactis</i>
567	yffA			putative
568	clpE	94%	AAD01782	clpe; <i>Lactococcus lactis</i>
569	yffB	96%	Q48660	hypothetical 17.4 kd protein in clpa-gap intergenic region; <i>Lactococcus lactis</i>
570	gapA	97%	P52987	glyceraldehyde 3-phosphate dehydrogenase; <i>Lactococcus lactis</i>
571	def	99%	Q48661	orf211; <i>Lactococcus lactis</i>
572	yffD	45%	Q9ZJZ8	putative dgtp pyrophosphohydrolase; <i>Helicobacter pylori</i> j99
573	uvrB	80%	Q54986	excinuclease abc subunit b; <i>Streptococcus pneumoniae</i>
574	gltS	39%	P54535	probable amino-acid abc transporter binding protein in bmrU-ansR intergenic region precursor; <i>Bacillus subtilis</i>
575	argE	25%	Q9ZEY0	succinyl-diaminopimelate desuccinylase; <i>Listeria monocytogenes</i>
576	fabZ1	48%	P94584	similar to hydroxymyristoyl- dehydratase; <i>Bacillus subtilis</i>
577	fabI	44%	O31621	yjbw protein; <i>Bacillus subtilis</i>
578	yfgC	31%	AAD45617	laca; <i>Lactococcus lactis</i>
579	yfgE	36%	AAD45618	lacf; <i>Lactococcus lactis</i>
580	yfgF	28%	AAD45621	lacg; <i>Lactococcus lactis</i>

581	yfgG	39%	AAF03934	membrane protein homolog; <i>Listeria monocytogenes</i>
582	yfgH	25%	Q9Z2M7	phosphomannomutase; <i>Mus musculus</i>
583	yfgL	30%	Q44655	membrane protein; <i>Bacillus acidopullulyticus</i>
584	dfpA	64%	Q54433	dna/pantothenate metabolism flavoprotein homolog; <i>Streptococcus mutans</i>
585	dfpB	28%	O27284	pantothenate metabolism flavoprotein; <i>Methanobacterium thermoautotrophicum</i>
586	xylH	35%	Q9Z1I54	4-oxalocrotonate isomerase; <i>Pseudomonas stutzeri</i>
587	yfgQ	35%	Q9Z4W5	putative integral membrane atpase; <i>Streptomyces coelicolor</i>
588	yfhA	39%	P09163	hypothetical 16.4 kd protein in rrfe-metA intergenic region; <i>Escherichia coli</i>
589	yfhB	35%	O07859	putative membrane protein; <i>Staphylococcus epidermidis</i>
590	yfhC			putative
591	crtK	33%	AAF01195	tspo; <i>Rhizobium meliloti</i>
592	yfhF	28%	O41106	a624r protein; <i>Paramecium bursaria chlorella virus 1</i>
593	yfhG	30%	AAF09965	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
594	yfhH	30%	O53731	hypothetical 28.3 kd protein; <i>Mycobacterium tuberculosis</i>
595	yfhI			putative
596	yfhJ			putative
597	yfhK	34%	P94425	hypothetical 10.9 kd protein in phrc-gdh intergenic region; <i>Bacillus subtilis</i>
598	yfhL	30%	CAB49143	hypothetical 23.5 kd protein; <i>Pyrococcus abyssi</i>
599	yfiA	75%	O87254	hypothetical 11.0 kd protein; <i>Lactococcus lactis</i>
600	umuC	89%	O87253	conserved hypothetical protein, orfu; <i>Lactococcus lactis</i>
601	yfiC	32%	P13018	streptothricin acetyltransferase; <i>Escherichia coli</i>
602	yfiD	20%	O02244	unc-54 protein; <i>Caenorhabditis elegans</i>
603	yfiB	45%	O34777	ykma; <i>Bacillus subtilis</i>
604	yfiE	37%	O34762	ykla; <i>Bacillus subtilis</i>
605	yfiG	78%	P47848	thymidine kinase; <i>Streptococcus gordonii</i> challis
606	yfiH			putative
607	prfA	56%	P45872	peptide chain release factor 1; <i>Bacillus subtilis</i>
608	yfiI			putative
609	yfiJ	40%	P39605	hypothetical 28.3 kd protein in qoxd-vpr intergenic region; <i>Bacillus subtilis</i>
610	hemK	37%	P45873	hemk protein homolog; <i>Bacillus subtilis</i>
611	yfil	29%	O32248	yvbk protein; <i>Bacillus subtilis</i>
612	yfjA	36%	O73972	340aa long hypothetical protein; <i>Pyrococcus horikoshii</i>
613	glyA	61%	P39148	serine hydroxymethyltransferase; <i>Bacillus subtilis</i>
614	yfjB	39%	AAF13613	pox2-08; <i>Bacillus anthracis</i>
615	serC	50%	AAD47359	3-phosphoserine aminotransferase; <i>Pseudomonas stutzeri</i>
616	serA	35%	AAD51415	3-phosphoglycerate dehydrogenase; <i>Homo sapiens</i>
617	serB	46%	CAB50876	putative phosphoserine phosphatase; <i>Streptomyces coelicolor</i>
618	yfjC	47%	O35031	putative acylphosphatase; <i>Bacillus subtilis</i>
619	yfjD	42%	P94538	hypothetical 26.9 kd protein; <i>Bacillus subtilis</i>
620	yfjE	43%	O34589	probable flavodoxin 2; <i>Bacillus subtilis</i>
621	yfjF	31%	CAB61606	putative export protein; <i>Streptomyces coelicolor</i>

100

622	yfjG	36%	050423	transcriptional regulator; <i>Mycobacterium tuberculosis</i>
623	yfjH			putative
624	pepM	51%	088076	methionine aminopeptidase a; <i>Enterococcus faecalis</i>
625	ygaB	35%	088169	orfde2; <i>Enterococcus faecalis</i>
626	ygaC	27%	AAD54224	mesh; <i>Leuconostoc mesenteroides</i>
627	ygaD			putative
628	ygaE			putative
629	ygaF			putative
630	ptsK	65%	Q9ZA56	putative hpr kinase; <i>Streptococcus mutans</i>
631	lgt	65%	P72482	prolipoprotein diacylglycerol transferase; <i>Streptococcus mutans</i>
632	ygaI	44%	Q9ZA55	hypothetical 14.4 kd protein; <i>Streptococcus mutans</i>
633	ygaJ	76%	P96788	hypothetical 20.6 kd protein; <i>Lactococcus lactis</i>
634	gnd	98%	P96789	6-phosphogluconate dehydrogenase; <i>Lactococcus lactis</i>
635	kup1	80%	P96790	potassium transporter homolog; <i>Lactococcus lactis</i>
636	kup2	31%	P76748	from bases 3920310 to 3930455 of the complete genome; <i>Escherichia coli</i>
637	ygbB	30%	P54478	hypothetical 32.5 kd protein in ccca-soda intergenic region; <i>Bacillus subtilis</i>
638	miaA	45%	O31795	tRNA delta-isopentenylpyrophosphate transferase; <i>Bacillus subtilis</i>
639	ygbD			putative
640	ygbE	44%	AAF03497	t22n4.8 protein; <i>Arabidopsis thaliana</i>
641	ygbF			putative
642	ygbG	50%	P54548	hypothetical 34.0 kd protein in glnq-ansr intergenic region; <i>Bacillus subtilis</i>
643	ygcA	33%	P54554	hypothetical oxidoreductase in ansr-bmrU intergenic region; <i>Bacillus subtilis</i>
644	recJ	36%	O32044	yrve protein; <i>Bacillus subtilis</i>
645	apt	67%	O34443	adenine phosphoribosyltransferase; <i>Bacillus subtilis</i>
646	rpoE	36%	P12464	dna-directed rna polymerase delta subunit; <i>Bacillus subtilis</i>
647	ygcC	36%	O34758	yrvL protein; <i>Bacillus subtilis</i>
648	greA	58%	P80240	transcription elongation factor greA; <i>Bacillus subtilis</i>
649	tra904E	100%	CAA55220	isl069 gene; <i>Lactococcus lactis</i>
650	ygcD	100%	Q48713	dna for the transposon-like element on the lactose plasmid; <i>Lactococcus lactis</i>
651	tra1077D	98%	O32787	transposase; <i>Lactococcus lactis</i>
652	ygcE	100%	O32786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
653	ctsR	46%	Q48757	clpc atpase; <i>Listeria monocytogenes</i>
654	clpC	90%	Q9ZIL9	clpc; <i>Lactococcus lactis</i>
655	ygdA	51%	P28368	hypothetical 22.0 kd protein in flit-seca intergenic region; <i>Bacillus subtilis</i>
656	enoA	87%	Q9XDS7	enolase; <i>Streptococcus intermedius</i>
657	xerD	29%	O26979	integrase-recombinase protein; <i>Methanobacterium thermoautotrophicum</i>
658	ygdC			putative
659	ygdD			putative
660	ygdF			putative
661	ygdE			putative
662	tra982	92%	087349	putative transposase; <i>Lactococcus lactis</i>
663	hsdR	98%	068167	hsdr; <i>Lactococcus lactis</i>

130

664	hsdM	100%	068168	hsdm; <i>Lactococcus lactis</i>
665	hsdS	100%	068169	hsds; <i>Lactococcus lactis</i>
666	ygeA	90%	068170	is982 transposase homolog; <i>Lactococcus lactis</i>
667	ygeB			putative
668	ygeC			putative
669	ygeD	27%	Q9YVT6	orf msy156 hypothetical protein; <i>Melanoplus sanguinipes entomopoxvirus</i>
670	tra981C	86%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
671	ygfF	96%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
672	ygfA	39%	Q9WZG4	abc transporter, atp-binding protein; <i>Thermotoga maritima</i>
673	ygfB	23%	AAF12525	hypothetical 37.1 kd protein; <i>Deinococcus radiodurans</i>
674	ygfC	30%	P96701	ydgc protein; <i>Bacillus subtilis</i>
675	fadD	25%	P29212	long-chain-fatty-acid--coa ligase; <i>Escherichia coli</i>
676	ygfE	96%	Q32796	orf a protein; <i>Lactococcus lactis</i>
677	pfl	100%	Q32797	formate acetyltransferase; <i>Lactococcus lactis</i>
678	yggA	43%	Q34932	hypothetical 22.0 kd protein in gapb-mutm intergenic region; <i>Bacillus subtilis</i>
679	pmrA	48%	Q9ZEX9	multi-drug resistance efflux pump; <i>Streptococcus pneumoniae</i>
680	rpmGA	100%	P27167	50s ribosomal protein l33; <i>Lactococcus lactis</i>
681	ftsW1	95%	P27174	hypothetical protein in rpmg 3'region; <i>Lactococcus lactis</i>
682	pycA	96%	AAF09095	pyruvate carboxylase; <i>Lactococcus lactis</i>
683	gltA	90%	AAF09126	citrate synthase; <i>Lactococcus lactis</i>
684	citB	86%	AAF09127	aconitate hydratase; <i>Lactococcus lactis</i>
685	icd	56%	Q06893	isocitrate dehydrogenase; <i>Bacillus israeli</i>
686	clpP	92%	Q9ZAB0	protease; <i>Lactococcus lactis</i>
687	yghB			putative
688	yghC	54%	Q31602	yjbd protein; <i>Bacillus subtilis</i>
689	yghD			putative
690	yghE			putative
691	yghF	39%	Q34431	ylob protein; <i>Bacillus subtilis</i>
692	yghG			putative
693	icaA	38%	Q54066	icaa; <i>Staphylococcus epidermidis</i>
694	tra983A	50%	Q87534	putative transposase; <i>Streptococcus pyogenes</i>
695	icaB	32%	Q54067	icab; <i>Staphylococcus epidermidis</i>
696	ygiC			putative
697	icaC	35%	Q53971	fibronectin binding protein; <i>Streptococcus dysgalactiae</i>
698	ygiE	38%	P54104	branched-chain amino acid transport system carrier protein; <i>Lactobacillus delbrueckii</i>
699	brnQ	99%	Q69437	homologous to branched chain amino acid transporters of liv-ii class; <i>Lactococcus lactis</i>
700	ygiG	94%	Q69438	yjdj-like protein; <i>Lactococcus lactis</i>
701	ygiH	96%	Q69439	yjdi-like protein; <i>Lactococcus lactis</i>
702	ygiI	42%	P37545	hypothetical 29.2 kd protein in mets-ksga intergenic region; <i>Bacillus subtilis</i>
703	ygiJ	40%	Q47838	copa, copy and copz genes; <i>Enterococcus hirae</i>
704	ygiK	12%	P37547	hypothetical 20.7 kd protein in mets-ksga intergenic region; <i>Bacillus subtilis</i>
705	ksgA	52%	P37468	dimethyladenosine transferase (s-adenosylmethionine-6-n', n'-adenosyl (high level kasugamycin re. <i>Bacillus subtilis</i>
706	pepP	91%	Q08316	aminopeptidase p; <i>Lactococcus lactis</i>
707	efp	40%	P49778	elongation factor p; <i>Bacillus subtilis</i>
708	yjjB	39%	P54519	hypothetical 14.7 kd protein in accc-fold intergenic region; <i>Bacillus subtilis</i>

151

709	nusB	45%	P54520	n utilization substance protein b homolog; Bacillus subtilis
710	yggD	58%	O22198	putative 4-alpha-glucanotransferase; Arabidopsis thaliana
711	malQ	40%	O22198	putative 4-alpha-glucanotransferase; Arabidopsis thaliana
712	glgC	51%	O08326	glucose-1-phosphate adenylyltransferase; Bacillus stearothermophilus
713	glgD	29%	O08327	glycogen biosynthesis protein glgd; Bacillus stearothermophilus
714	glgA	46%	P39125	glycogen synthase; Bacillus subtilis
715	glgP	50%	P39123	glycogen phosphorylase; Bacillus subtilis
716	amyX	34%	P36905	T amylopullulanase precursor [includes: alpha-amylase ; pullulanase (1,4-alpha-d-glucan...)
717	dtpT	90%	P36574	di-/tripeptide transporter; Lactococcus lactis
718	tra983B	50%	O87534	putative transposase; Streptococcus pyogenes
719	cydA	46%	P94364	cytochrome d ubiquinol oxidase subunit i; Bacillus subtilis
720	cydB	36%	Q9ZBY6	putative cytochrome oxidase subunit ii; Streptomyces coelicolor
721	cydC	45%	P94366	transport atp-binding protein cydc; Bacillus subtilis
722	cydD	41%	P94367	transport atp-binding protein cydd; Bacillus subtilis
723	rmaB	35%	O50574	hypothetical 16.1 kda transcriptional regulator; Bacillus firmus putative
724	yhbE			
725	yhbF	22%	O35264	R platelet-activating factor acetylhydrolase ib beta subunit (pl...)
726	lmrA	88%	P97046	multidrug resistance protein lmrA; Lactococcus lactis
727	yhbH	90%	Q48631	hypothetical 13.6 kd protein; Lactococcus lactis
728	apl	83%	Q48630	alkaline phosphatase like protein; Lactococcus lactis
729	yhcA	38%	Q9ZAX8	abc transporter atp binding subunit; Streptococcus mutans
730	yhcC	41%	Q58627	hypothetical protein mj1230; Methanococcus jannaschii putative
731	yhcB			
732	gor	45%	Q9Z3U5	w7. alginate lyase; Pseudomonas sp
733	yhcE	41%	P42319	hypothetical 38.3 kd protein in pept-katb intergenic region; Bacillus subtilis
734	yhcG	43%	O07607	hypothetical 26.5 kd protein; Bacillus subtilis
735	yhcH	25%	O54390	serine/threonine protein phosphatase 1; Microcystis aeruginosa
736	yhcI	49%	P21335	hypothetical 17.8 kd protein in sers-dnah intergenic region; Bacillus subtilis
737	tra981D	92%	Q48668	insertion sequence is981; Lactococcus lactis
738	yhcJ	100%	Q48667	insertion sequence is981; Lactococcus lactis
739	yhcK	26%	O59645	alpha-glucosidase; Sulfolobus solfataricus
740	rliC	28%	Q56201	maltose operon transcriptional repressor; Staphylococcus xylosus
741	yhdA	45%	P14205	coma operon protein 2; Bacillus subtilis
742	yhdB	34%	O34514	ytd; Bacillus subtilis
743	menE	35%	O34837	osb-coa synthase; Bacillus subtilis
744	menB	76%	O34567	dihydroxynaphthoate synthase; Bacillus subtilis
745	menX	34%	O34312	ytxm; Bacillus subtilis
746	menD	40%	P23970	B menaquinone biosynthesis protein mend [includes: 2-succinyl-6-hydroxy- 2,4-

				cyclohexadiene-1-carboxylate synthase ; 2-oxoglutarate decarboxylase (ec...)
747	menF	35%	P74053	isochorismate synthase; <i>Synechocystis</i> sp
748	yhdC	31%	P94482	ynad; <i>Bacillus subtilis</i>
749	yheA	35%	O34921	ytoi; <i>Bacillus subtilis</i>
750	yheB	48%	O34600	ytqi; <i>Bacillus subtilis</i>
751	ansB	38%	AAF11899	l-asparaginase; <i>Deinococcus radiodurans</i>
752	yheD	32%	Q45494	hypothetical 28.9 kd protein; <i>Bacillus subtilis</i>
753	yheE			putative
754	floL	33%	O32076	hypothetical 56.0 kd protein in glgb-gbsb intergenic region; <i>Bacillus subtilis</i>
755	thrA	50%	P94417	probable aspartokinase; <i>Bacillus subtilis</i>
756	yheG	33%	O53410	hypothetical 29.3 kd protein; <i>Mycobacterium tuberculosis</i>
757	xmaA	33%	P96708	ydjg protein; <i>Bacillus subtilis</i>
758	yhfA	30%	Q9X0Y1	beta-phosphoglucomutase, putative; <i>Thermotoga maritima</i>
759	yhfB	31%	P37484	hypothetical 74.3 kd protein in rpli-cotf intergenic region; <i>Bacillus subtilis</i>
760	rplI	44%	P02417	50s ribosomal protein 19; <i>Bacillus stearothermophilus</i>
761	dnaC	52%	P37469	replicative dna helicase; <i>Bacillus subtilis</i>
762	yhfC			putative
763	yhfD	33%	O34935	ytmp; <i>Bacillus subtilis</i>
764	yhfE	54%	O34522	ytmq; <i>Bacillus subtilis</i>
765	yhfF	51%	P33661	hypothetical 15.2 kd protein in sigg 3'region; <i>Clostridium acetobutylicum</i>
766	dnaB	20%	P07908	replication initiation and membrane attachment protein; <i>Bacillus subtilis</i>
767	dnaI	37%	P06567	primosomal protein dnai; <i>Bacillus subtilis</i>
768	yhgA	33%	P94424	hypothetical 27.9 kd protein in phrc-gdh intergenic region; <i>Bacillus subtilis</i>
769	yhgB	31%	O06733	yisx protein; <i>Bacillus subtilis</i>
770	yphL	65%	P50743	hypothetical 48.8 kd gtp-binding protein in cmk-gpsa intergenic region; <i>Bacillus subtilis</i>
771	yhgC	27%	O30416	positive regulator gadr; <i>Lactococcus lactis</i>
772	yhgD	20%	P28968	glycoprotein x precursor; <i>Equine herpesvirus type 1</i>
773	yhgE	27%	Q48707	dna for orf1 and orf2; <i>Lactobacillus leichmannii</i>
774	yhhA	34%	O68213	putative fimbria-associated protein; <i>Actinomyces naesiundii</i>
775	yhhB			putative
776	yhhC	29%	P39590	hypothetical 25.8 kd protein in epr-galk intergenic region; <i>Bacillus subtilis</i>
777	yhhD	50%	O59465	109aa long hypothetical protein; <i>Pyrococcus horikoshii</i>
778	yhhE	36%	P32726	hypothetical 17.6 kd protein in nusa 5'region; <i>Bacillus subtilis</i>
779	nusA	50%	O31756	nusa protein; <i>Bacillus subtilis</i>
780	yhhG	47%	P32728	hypothetical 10.4 kd protein in nusa-infβ intergenic region; <i>Bacillus subtilis</i>
781	yhhH	51%	P55768	probable ribosomal protein in infβ 5'region; <i>Enterococcus faecium</i>
782	infB	79%	Q9X764	initiation factor 2; <i>Lactococcus lactis</i>
783	rbfA	86%	Q9X765	ribosome binding factor a; <i>Lactococcus lactis</i>
784	pmi	65%	Q59935	mannose-6-phosphate isomerase; <i>Streptococcus mutans</i>
785	yhiA	34%	P70993	hypothetical 15.9 kd protein; <i>Bacillus subtilis</i>
786	fabH	45%	O67185	3-oxoacyl-[acyl-carrier-protein] synthase iii; <i>Aquifex aeolicus</i>

787	acpA	47%	P80643	acyl carrier protein; <i>Bacillus subtilis</i>
788	fabD	46%	O34463	malonyl coa-acyl carrier protein transacylase; <i>Bacillus subtilis</i>
789	fabG1	47%	P51831	3-oxoacyl-[acyl-carrier protein] reductase; <i>Bacillus subtilis</i>
790	fabF	43%	O34340	yjay protein; <i>Bacillus subtilis</i>
791	accB	50%	Q06881	biotin carboxyl carrier protein of acetyl-coa carboxylase; <i>Anabaena sp</i>
792	fabZ2	58%	P94584	similar to hydroxymyristoyl- dehydratase; <i>Bacillus subtilis</i>
793	accC	57%	P49787	biotin carboxylase (a subunit of acetyl-coa carboxylase; <i>Bacillus subtilis</i>
794	accD	57%	O34571	acetyl-coa carboxylase subunit; <i>Bacillus subtilis</i>
795	accA	54%	O34847	acetyl-coenzyme a carboxylase carboxyl transferase subunit alpha; <i>Bacillus subtilis</i>
796	metB2	100%	AAF14693	cystathione beta-lyase metc; <i>Lactococcus lactis</i>
797	cysK	89%	AAF14694	o-acetylserine sulfhydrylase cysk; <i>Lactococcus lactis</i>
798	yhjA	32%	O16527	ce-lea; <i>Caenorhabditis elegans</i>
799	yhjB	42%	P54510	hypothetical 14.6 kd protein in gcvt-spoiiiaa intergenic region; <i>Bacillus subtilis</i>
800	yhjC	41%	P54510	hypothetical 14.6 kd protein in gcvt-spoiiiaa intergenic region; <i>Bacillus subtilis</i>
801	noxC	36%	O29847	nadh oxidase; <i>Archaeoglobus fulgidus</i>
802	yhjE	48%	BAA8GG32	hypothetical 9.9 kd protein; <i>Staphylococcus aureus</i>
803	yhjF	51%	O32175	yusi protein; <i>Bacillus subtilis</i>
804	rdrA	38%	P76034	hypothetical transcriptional regulator in osmb-rnb intergenic region; <i>Escherichia coli</i>
805	yhjG	32%	P05332	hypothetical p20 protein; <i>Bacillus licheniformis</i>
806	exoA	61%	P21998	exodeoxyribonuclease; <i>Streptococcus pneumoniae</i>
807	metS	61%	P37465	methionyl-trna synthetase; <i>Bacillus subtilis</i> putative
808	yiaA			
809	yiaB	36%	Q9X248	3-oxoacyl- reductase; <i>Thermotoga maritima</i>
810	yiaC	31%	O05109	cara & orf8 partial cds, argc,j,b,d,f & orf7 citrulline biosynthetic operon; <i>Lactobacillus plantarum</i>
811	yiaD	42%	P71037	hypothetical 23.2 kd protein; <i>Bacillus subtilis</i>
812	argC	41%	O08318	n-acetyl-gamma-glutamyl-phosphate reductase; <i>Lactobacillus plantarum</i>
813	argJ	48%	Q9ZJ14	ornithine acetyltransferase; <i>Bacillus amyloliquefaciens</i>
814	argD	42%	O66442	acetylornithine aminotransferase; <i>Aquifex aeolicus</i>
815	argB	40%	O28988	acetylglutamate kinase; <i>Archaeoglobus fulgidus</i>
816	argF	62%	O53089	ornithine transcarbamoylase; <i>Lactobacillus sake</i>
817	rnc	45%	O31734	ribonuclease iii; <i>Bacillus subtilis</i>
818	smc	32%	O31735	chromosome segregation smc protein homolg; <i>Bacillus subtilis</i>
819	yibB	49%	O31735	chromosome segregation smc protein homolg; <i>Bacillus subtilis</i>
820	yibC	39%	O06487	yfni; <i>Bacillus subtilis</i>
821	yibD			putative
822	yibE			putative
823	yibF			putative
824	yibG	40%	O32257	yvbw protein; <i>Bacillus subtilis</i>
825	yicA			putative

LOU

826	yicB	35%	P09997	hypothetical 29.7 kd protein in ibpa-gyrb intergenic region; Escherichia coli
827	yicC	32%	Q9WX02	putative membrane protein; Streptomyces coelicolor
828	ftsY	55%	P51835	cell division protein ftsy homolog; Bacillus subtilis
829	prsA	66%	Q48793	tms and prs genes, partial cds; Listeria monocytogenes
830	yicE	32%	Q87552	leucine-rich protein transcriptional regulator; Bacillus firmus
831	leuS	67%	P36430	leucyl-tRNA synthetase; Bacillus subtilis
832	yidA	26%	Q9X0V5	transcriptional regulator, rpir family; Thermotoga maritima
833	yidB	25%	P39584	hypothetical 47.6 kd protein in epr-galk intergenic region; Bacillus subtilis
834	yidC	39%	P42973	6-phospho-beta-glucosidase; Bacillus subtilis
835	cpo	33%	CAB60045	citr protein; Weissella paramesenteroides putative
836	yidE			
837	tra904F	100%	CAA55220	is1069 gene; Lactococcus lactis
838	yidF	98%	Q48710	span gene encoding nisin and insertion sequence is904; Lactococcus lactis
839	tra1077E	98%	O32787	transposase; Lactococcus lactis
840	yidG	99%	O32786	hypothetical 21.3 kd protein; Lactococcus lactis
841	yidH	100%	Q48710	span gene encoding nisin and insertion sequence is904; Lactococcus lactis
842	tra904G	99%	CAA55220	is1069 gene; Lactococcus lactis
843	noxA	33%	O05267	hypothetical 44.9 kd protein; Bacillus subtilis
844	noxB	33%	P32340	rotenone-insensitive nadh-ubiquinone oxidoreductase precursor; Saccharomyces cerevisiae
845	sdhB	47%	O34635	probable l-serine dehydratase, beta chain; Bacillus subtilis
846	sdhA	55%	O34607	probable l-serine dehydratase, alpha chain; Bacillus subtilis
847	copR	40%	Q47839	copab atpases metal-fist type repressor; Enterococcus hirae
848	yieF	45%	AAC33905	mera, mercuric ion reductase; Escherichia coli
849	copA	45%	P32113	copper/potassium-transporting atpase a; Enterococcus hirae
850	yieH	91%	O66090	transmembrane protein tmp5; Lactococcus lactis putative
851	yifA			
852	trmU	64%	O35020	probable tRNA -methyltransferase; Bacillus subtilis
853	rpsA	49%	P50889	40s ribosomal protein s1; Leuconostoc lactis
854	udp	35%	O83990	uridine phosphorylase; Treponema pallidum
855	yifD	29%	Q9ZJT8	nicotinamide mononucleotide transporter; Helicobacter pylori j99
856	uvrC	50%	Q9ZEH3	excinuclease abc, subunit c; Staphylococcus aureus
857	mutY	43%	O31584	yfhq protein; Bacillus subtilis
858	pepV	96%	O07121	dipeptidase; Lactococcus lactis
859	acpS	54%	O07122	hypothetical 8.0 kd protein; Lactobacillus plantarum
860	dal	97%	CAB56755	alanine racemase; Lactococcus lactis
861	yigC	50%	O31602	yjbd protein; Bacillus subtilis
862	gshR	30%	O54279	orf454 protein; Staphylococcus sciuri
863	choQ	60%	Q9XBN6	choline transporter; Streptococcus pneumoniae
864	choS	42%	Q9XBN5	choline transporter; Streptococcus pneumoniae
865	yigE	16%	AAB82017	microfilarial sheath protein shp3; Litomosoides sigmodontis

866	yigF			putative
867	yihA			putative
868	yihB			putative
869	yihC	46%	P05425	copper/potassium-transporting atpase b; <i>Enterococcus hirae</i>
870	yihD	21%	O80179	putative minor tail protein; <i>Streptococcus thermophilus</i> bacteriophage sfill
871	foldD	65%	P96050	fold bifunctional protein [includes: methylenetetrahydrofolate dehydrogenase ; methenyltetrahydrofolate cyclohydrolase]; <i>Streptococcus thermophilus</i>
872	xseA	37%	P54521	putative exodeoxyribonuclease large subunit; <i>Bacillus subtilis</i>
873	xseB	38%	Q9ZDH8	exodeoxyribonuclease small subunit; <i>Rickettsia prowazekii</i>
874	yihF	47%	P44507	hypothetical protein hi0091; <i>Haemophilus influenzae</i>
875	ispA	49%	O66126	geranyltranstransferase; <i>Micrococcus luteus</i>
876	yiiB	59%	P19672	hypothetical 29.7 kd protein in fold-ahrc intergenic region; <i>Bacillus subtilis</i>
877	ahrC	38%	O86130	arginine repressor; <i>Bacillus licheniformis</i>
878	recN	40%	P17894	dna repair protein recn; <i>Bacillus subtilis</i>
879	yiiD			putative
880	yiiE	33%	O27534	hypothetical 21.2 kd protein; <i>Methanobacterium thermoautotrophicum</i>
881	yiiF	35%	Q56116	<i>Streptococcus thermophilus</i>
882	yiiG	35%	Q9ZI22	membrans protein; <i>Streptococcus salivarius</i>
883	yiiH	71%	AAC95454	ylhc; <i>Streptococcus pneumoniae</i>
884	yiiI	85%	O66083	putative transmembrane protein tmp2; <i>Lactococcus lactis</i>
885	pbpX	41%	P14677	penicillin-binding protein 2x; <i>Streptococcus pneumoniae</i>
886	mraY	50%	Q9zha5	phospho-n-acetylmuramoyl-pentapeptide-transferase; <i>Streptococcus pneumoniae</i>
887	yijB			putative
888	yijC	29%	P94412	homologue of hypothetical protein in a rapamycin synthesis gene cluster of streptomyces hygroscopicus; <i>Bacillus subtilis</i>
889	yijD	48%	P94411	homologue of hypothetical protein in a rapamycin synthesis gene cluster of streptomyces hygroscopicus; <i>Bacillus subtilis</i>
890	mleR	93%	P16400	malolactic fermentation system transcriptional activator; <i>Lactococcus lactis</i>
891	yijE	85%	Q48663	positive regulator gene; <i>Lactococcus lactis</i>
892	rplS	77%	O34031	50s ribosomal protein l19; <i>Streptococcus thermophilus</i>
893	yijF			putative
894	yijG	33%	P75905	hypothetical 50.8 kd protein in phoh-csgg intergenic region; <i>Escherichia coli</i>
895	yijH			putative
896	pnuC	26%	O25877	nicotinamide mononucleotide transporter; <i>Helicobacter pylori</i>
897	yjaB	35%	Q57951	hypothetical protein mj0531; <i>Methanococcus jannaschii</i>
898	hslB	45%	Q9XB21	histone-like dna-binding protein; <i>Streptococcus mutans</i>
899	yjaD	36%	CAB55667	putative tetr-family transcriptional regulator; <i>Streptomyces coelicolor</i>
900	yjaE	82%	O66092	transmembrane protein tmp7; <i>Lactococcus lactis</i>
901	yjaF	79%	O33663	dna for sigma 42 protein, dtdp-4-keto-1-rhamnose reductase, complete cds; <i>Streptococcus mutans</i>

102

902	ftsW2	45%	P27174	hypothetical protein in rpmg 3'region; Lactococcus lactis
903	yjaH			putative
904	yjaI			putative
905	yjaJ	38%	Q56038	epsa; Streptococcus thermophilus
906	rpsN2	63%	O31587	yhza protein; Bacillus subtilis
907	yjbB			putative
908	kinD	92%	O07385	histidine kinase; Lactococcus lactis
909	lrrD	57%	CAB54571	response regulator; Streptococcus pneumoniae
910	yjbC	41%	P21878	hypothetical protein in pdha 5'region; Bacillus stearothermophilus
911	ppiB	41%	P87051	probable peptidyl-prolyl cis-trans isomerase . c57a10.03; Schizosaccharomyces pombe
912	yjbE	37%	CAB49760	translation initiation factor aif-2, subun it . alpha; Pyrococcus abyssi
913	yjbF	26%	O07559	hypothetical 23.3 kd protein; Bacillus subtilis
914	rodA	28%	P39604	hypothetical 43.3 kd protein in qoxd-vpr intergenic region; Bacillus subtilis
915	butB	42%	O34788	dehydrogenase; Bacillus subtilis
916	butA	67%	O02715	acetoin reductase; Bos taurus
917	yjcA	26%	Q9ZE86	abc transporter atp-binding protein; Rickettsia prowazekii
918	mleS	95%	Q48662	malolactic enzyme; Lactococcus lactis
919	mleP	92%	O07032	citrate-sodium symport; Lactococcus lactis
920	yjcD	32%	Q9ZF46	hypothetical 32.6 kd protein; Bacillus megaterium putative
921	yjcE			
922	yjcF	46%	Q57064	unidentified; Streptococcus pneumoniae
923	gyrB	78%	Q59957	dna gyrase; Streptococcus pneumoniae
924	yjdA	35%	P44074	hypothetical protein hi0912; Haemophilus influenzae putative
925	yjdB			
926	yjdD	37%	P25150	hypothetical transcriptional regulator in gspa- tyrz intergenic region; Bacillus subtilis
927	yjdE	33%	P94422	homologue of multidrug resistance protein b, emrb, of e. coli; Bacillus subtilis putative
928	yjdF			
929	tagR	38%	O06027	epsr protein; Lactococcus lactis
930	tagL	49%	CAB52231	epsl protein; Streptococcus thermophilus putative
931	yjdI			
932	yjdJ	26%	Q58752	putative potassium channel protein mj1357; Methanococcus jannaschii
933	tagH	48%	P42954	teichoic acid translocation atp-binding protein tagh; Bacillus subtilis
934	tagG	30%	P42953	teichoic acid translocation permease protein tagg; Bacillus subtilis putative
935	yjeA			
936	tagZ	33%	O06035	epsg protein; Lactococcus lactis
937	tagY	31%	AAD56434	tagf; Staphylococcus epidermidis putative
938	yjeD			
939	tagX	30%	AAD56434	tagf; Staphylococcus epidermidis
940	yjeF	30%	P26398	putative colanic acid biosynthesis glycosyl transferase wcal; Salmonella typhimurium putative
941	yjeG			
942	tagD2	50%	O67380	glycerol-3-phosphate cytidyltransferase; Aquifex aeolicus putative
943	yjfB			
944	tagF	41%	AAD56434	tagf; Staphylococcus epidermidis
945	tagB	28%	P27621	teichoic acid biosynthesis protein b precursor; Bacillus subtilis
946	yjfE	34%	Q9X485	hypothetical 33.8 kd protein; Lactococcus lactis

947	deoB	97%	O32808	phosphopentomutase; <i>Lactococcus lactis</i>
948	yjfG	91%	O32809	hypothetical 10.3 kd protein; <i>Lactococcus lactis</i>
949	deoD	93%	O32810	purine nucleoside phosphorylase; <i>Lactococcus lactis</i>
950	tra983C	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
951	yjfI	39%	O86782	hypothetical 19.8 kd protein; <i>Streptomyces coelicolor</i>
952	yjfJ	48%	Q9X8J2	hypothetical 11.3 kd protein; <i>Streptomyces coelicolor</i>
953	fhs	65%	Q59925	formate--tetrahydrofolate ligase; <i>Streptococcus mutans</i>
954	yjgB	44%	Q9X7Z4	putative secreted protein; <i>Streptomyces coelicolor</i>
955	yjgC	29%	P54952	probable amino-acid abc transporter binding protein in idh-deor intergenic region precursor; <i>Bacillus subtilis</i>
956	yjgD	40%	P54953	probable amino-acid abc transporter permease protein in idh-deor intergenic region; <i>Bacillus subtilis</i>
957	yjgE	55%	O34900	putative amino acid transporter; <i>Bacillus subtilis</i>
958	trxB1	58%	O32823	thioredoxin reductase; <i>Listeria monocytogenes</i>
959	secG	32%	O32233	probable protein-export membrane protein secG; <i>Bacillus subtilis</i>
960	vacB	43%	O32231	yvaj protein; <i>Bacillus subtilis</i>
961	yjgF	48%	P94573	hypothetical 21.1 kd protein; <i>Bacillus subtilis</i>
962	yjhA			putative
963	yjhB	23%	P39582	probable 1,4-dihydroxy-2-naphthoate octaprenyltransferase; <i>Bacillus subtilis</i>
964	yjhC	48%	Q58953	hypothetical protein mj1558; <i>Methanococcus jannaschii</i>
965	yjhD	59%	Q59059	hypothetical protein mj1665; <i>Methanococcus jannaschii</i>
966	yjhE			putative
967	yjhF	34%	P96121	phosphoglycerate mutase; <i>Treponema pallidum</i>
968	dacB	64%	Q9ZAT6	putative d,d-carboxypeptidase; <i>Streptococcus mutans</i>
969	yjhH			putative
970	hrcA	97%	P42370	heat-inducible transcription repressor hrca; <i>Lactococcus lactis</i>
971	grpE	81%	Q9X4R3	heat shock protein grpE; <i>Streptococcus pneumoniae</i>
972	dnaK	87%	P42368	dnak protein; <i>Lactococcus lactis</i>
973	mycA	61%	Q54525	67 kDa myosin-crossreactive streptococcal antigen; <i>Streptococcus pyogenes</i>
974	yjiB	44%	O34980	putative hippurate hydrolase; <i>Bacillus subtilis</i>
975	lacR	42%	O31713	transcriptional regulator; <i>Bacillus subtilis</i>
976	lacC	47%	O31714	fructose-1-phosphate kinase; <i>Bacillus subtilis</i>
977	fruA	43%	P71012	phosphotransferase system fructose-specific enzyme iibc component; <i>Bacillus subtilis</i>
978	clsA	47%	P71040	hypothetical 55.8 kd protein in spoIIq-mta intergenic region; <i>Bacillus subtilis</i>
979	yjiE	54%	O06973	hypothetical 33.9 kd protein in crh-trxb intergenic region; <i>Bacillus subtilis</i>
980	yjiF	42%	O06974	hypothetical 34.7 kd protein in crh-trxb intergenic region; <i>Bacillus subtilis</i>
981	yjjA	42%	O06975	hypothetical 36.3 kd protein; <i>Bacillus subtilis</i>
982	yjjB	31%	P96222	hypothetical 23.7 kd protein; <i>Mycobacterium tuberculosis</i>
983	yjjC	54%	Q9Z9N6	yhaq; <i>Bacillus sp</i>
984	yjjD	26%	Q9Z9N5	tnrB3protein; <i>Bacillus sp</i>

985	yjjE			putative
986	yjjF	59%	AAF04741	hypothetical 18.7 kd protein; <i>Listeria monocytogenes</i>
987	yjjG	60%	P71081	hypothetical 12.2 kd protein; <i>Bacillus subtilis</i>
988	yjjH	25%	CAB48940	hypothetical 28.0 kd protein; <i>Pyrococcus abyssi</i>
989	prfB	52%	P28367	peptide chain release factor 2; <i>Bacillus subtilis</i>
990	ftsE	63%	O34814	cell division atp-binding protein; <i>Bacillus subtilis</i>
991	ftsX	38%	O34876	cell division protein; <i>Bacillus subtilis</i>
992	nrdF	47%	O69274	ribonucleotide reductase subunit r2f; <i>Corynebacterium ammoniagenes</i>
993	nrdE	51%	Q9XD63	ribonucleotide reductase alpha-chain; <i>Corynebacterium glutamicum</i>
994	ndrI	93%	Q48709	ndrI protein; <i>Lactococcus lactis</i>
995	ndrH	98%	Q48708	glutaredoxin-like protein ndrh; <i>Lactococcus lactis</i>
996	ykaC	58%	Q9X972	hypothetical 17.9 kd protein; <i>Streptococcus gordonii</i>
997	parE	79%	Q59961	topoisomerase iv subunit b; <i>Streptococcus pneumoniae</i>
998	ykaE			putative
999	ykaF	37%	CAB60666	hypothetical 25.4 kd protein; <i>Bradyrhizobium japonicum</i>
1000	dnaQ	42%	Q9zhf6	dna polymerase iii, alpha chain polc-type; <i>Thermotoga maritima</i>
1001	ykbA	39%	P52077	elaa protein; <i>Escherichia coli</i>
1002	parC	71%	Q9X5Y7	parc; <i>Streptococcus mitis</i>
1003	ykbB	23%	Q9WW83	hypothetical 34.5 kd protein; <i>Lactococcus lactis</i>
1004	ykbC	23%	P40889	hypothetical 197.6 kd protein in fsp2 5'region; <i>Saccharomyces cerevisiae</i>
1005	ykbD			putative
1006	ykbE			putative
1007	ykbF			putative
1008	ykcA			putative
1009	ykcB			putative
1010	ykcC			putative
1011	ribG	45%	P50853	riboflavin-specific deaminase; <i>Actinobacillus pleuropneumoniae</i>
1012	ribB	58%	P50854	riboflavin synthase alpha chain; <i>Actinobacillus pleuropneumoniae</i>
1013	ribA	60%	P50855	riboflavin biosynthesis protein riba [includes: gtp cyclohydrolase ii ; 3,4-dihydroxy-2-butanone 4-ph. <i>Actinobacillus pleuropneumoniae</i>
1014	ribH	67%	P50856	6,7-dimethyl-8-ribityllumazine synthase (riboflavin synthase beta. <i>Actinobacillus pleuropneumoniae</i>
1015	lspA	78%	Q48729	signal peptidase type ii; <i>Lactococcus lactis</i>
1016	ykcD	59%	Q45480	hypothetical 33.7 kd protein in lsp-pyrr intergenic region; <i>Bacillus subtilis</i>
1017	ykcE	47%	P73185	hypothetical 16.0 kd protein; <i>Synechocystis sp</i>
1018	ykcF			putative
1019	ykcG	50%	O34755	hypothetical 38.5 kd protein in tnra-sspd intergenic region; <i>Bacillus subtilis</i>
1020	lrrE	41%	O34903	ykog; <i>Bacillus subtilis</i>
1021	ykdA			putative
1022	kinE	73%	O07386	histidine kinase; <i>Lactococcus lactis</i>
1023	ykbd	66%	O07387	histidine kinase; <i>Lactococcus lactis</i>
1024	glmS	59%	P39754	B glucosamine--fructose-6-phosphate aminotransferase [isomerizing] (l-glutamine...

100

1025	radC	40%	Q02170	dna repair protein radc homolog; <i>Bacillus subtilis</i>
1026	pi201	99%	Q38325	integrase; <i>Lactococcus lactis</i> phage bk5-t
1027	pi202	91%	Q38183	orf 3; Bacteriophage tp901-1
1028	pi203	95%	Q38182	orf2; Bacteriophage tp901-1
1029	pi204	98%	Q48503	hypothetical 20.8 kd protein; Bacteriophage tp901-1
1030	pi205	100%	Q48504	hypothetical 8.3 kd protein; Bacteriophage tp901-1
1031	pi206	100%	Q48505	hypothetical 28.3 kd protein; Bacteriophage tp901-1
1032	pi207	100%	Q38331	orf111; <i>Lactococcus lactis</i> phage bk5-t
1033	pi208	98%	Q9XJE0	hypothetical 9.9 kd protein; Bacteriophage tuc2009
1034	pi209	100%	Q38272	orf71; <i>Lactococcus</i> bacteriophage
1035	pi210	100%	Q9XJE3	hypothetical 20.1 kd protein; Bacteriophage tuc2009
1036	pi211	94%	Q9XJE4	putative topoisomerase i; Bacteriophage tuc2009
1037	pi212	87%	Q9XJE5	putative single stranded binding protein; Bacteriophage tuc2009
1038	pi213	94%	Q9XJE6	putative replisome organiser protein; Bacteriophage tuc2009
1039	pi214	99%	Q9XJE7	hypothetical 27.2 kd protein; Bacteriophage tuc2009
1040	pi215	88%	Q9XJE9	hypothetical 15.8 kd protein; Bacteriophage tuc2009
1041	pi216	93%	Q38101	orf15; Bacteriophage rlt putative
1042	pi217			
1043	pi218	71%	Q9XJF1	hypothetical 22.4 kd protein; Bacteriophage tuc2009 putative
1044	pi219			
1045	pi220	72%	Q9XJF3	hypothetical 14.3 kd protein; Bacteriophage tuc2009
1046	pi221	99%	Q38106	dutpase; Bacteriophage rlt putative
1047	pi222			
1048	pi223			
1049	pi224			
1050	pi225			
1051	pi226	84%	Q53058	hypothetical 11.0 kd protein; <i>Lactococcus lactis</i> putative
1052	pi227			
1053	pi228	31%	Q9XJD9	hypothetical 21.5 kd protein; <i>Streptococcus thermophilus</i> bacteriophage dt1 putative
1054	pi229			
1055	pi230	22%	Q9XJT6	putative terminase; Bacteriophage d3 putative
1056	pi231			
1057	pi232	30%	Q9ZXF7	orf26; Bacteriophage phi-105
1058	pi233	31%	P25386	intracellular protein transport protein usol; <i>Saccharomyces cerevisiae</i> putative
1059	pi234			
1060	pi235			
1061	pi236			
1062	pi237			
1063	pi238			
1064	pi239	24%	Q9ZXE9	orf34; Bacteriophage phi-105 putative
1065	pi240			
1066	pi241			
1067	pi242	22%	P26812	hypothetical protein in mcp 3' region; <i>Lactococcus lactis</i> bacteriophage f4-1
1068	pi243	26%	CAB52531	hypothetical 28.9 kd protein; <i>Lactobacillus</i> bacteriophage phi adh

100

1069	pi244	41%	O51277	conserved hypothetical protein; <i>Borrelia burgdorferi</i>
1070	pi245			putative
1071	pi246			putative
1072	pi247			putative
1073	pi248			putative
1074	pi249			putative
1075	pi250	95%	Q38321	orf75; <i>Lactococcus lactis</i> phage bk5-t
1076	pi251	91%	Q38322	orf95; <i>Lactococcus lactis</i> phage bk5-t
1077	pi252	98%	Q38323	orf259; <i>Lactococcus lactis</i> phage bk5-t
1078	ykhD	48%	O05521	hypothetical 24.1 kd protein ydih; <i>Bacillus subtilis</i>
1079	ykhE	45%	O31602	yjbd protein; <i>Bacillus subtilis</i>
1080	ykhF	51%	O05519	hypothetical abc transporter atp-binding protein ydif; <i>Bacillus subtilis</i>
1081	ykhG			putative
1082	ykhH			putative
1083	ykhJ			putative
1084	ykhI	27%	O30416	positive regulator gadr; <i>Lactococcus lactis</i>
1085	ykhK			putative
1086	pyrE	72%	Q9ZHA6	orotate phosphoribosyltransferase pyre; <i>Streptococcus pneumoniae</i>
1087	pyrC	42%	O66990	dihydroorotase; <i>Aquifex aeolicus</i>
1088	dnaD	41%	P95775	orf2 protein; <i>Streptococcus mutans</i>
1089	nth	49%	P39788	probable endonuclease iii (dna-; <i>Bacillus subtilis</i>)
1090	ykiC	49%	P95776	orf3 protein; <i>Streptococcus mutans</i>
1091	ykiD	46%	P95777	orf4 protein; <i>Streptococcus mutans</i>
1092	ykiE	23%	Q9X563	hypothetical 14.2 kd protein; <i>Enterococcus faecium</i>
1093	ykiF	41%	P09997	hypothetical 29.7 kd protein in ibpa-gyrb intergenic region; <i>Escherichia coli</i>
1094	ykiG	51%	P39651	hypothetical 51.0 kd protein in pta 3' region; <i>Bacillus subtilis</i>
1095	ykiH			putative
1096	ykiI			putative
1097	rplU	67%	P26908	50s ribosomal protein l21; <i>Bacillus subtilis</i>
1098	ykjA	35%	P26942	hypothetical 12.3 kd protein in rplu-rpma intergenic region; <i>Bacillus subtilis</i>
1099	rpma	74%	Q44312	ribosomal protein l27; <i>Arthrobacter sp</i>
1100	ykjB	41%	AAD46619	nramp protein mnth2; <i>Pseudomonas aeruginosa</i>
1101	ykjC			putative
1102	phoL	62%	P46343	phoh-like protein; <i>Bacillus subtilis</i>
1103	ykjE	40%	P46351	hypothetical 45.4 kd protein in thiaminase i 5' region; <i>Bacillus subtilis</i>
1104	ykjF	61%	O51806	diacyglycerol kinase; <i>Streptococcus mutans</i>
1105	dgkA	68%	Q05888	diacylglycerol kinase; <i>Streptococcus mutans</i>
1106	ykjH	30%	Q45226	signal peptidase sips; <i>Bradyrhizobium japonicum</i>
1107	comFC	36%	P39147	comf operon protein 3; <i>Bacillus subtilis</i>
1108	comFA	36%	P39145	comf operon protein 1; <i>Bacillus subtilis</i>
1109	ykjI	46%	P32437	hypothetical 24.8 kd protein in degs-tago intergenic region; <i>Bacillus subtilis</i>
1110	ykjJ	41%	CAB61225	vayz protein; <i>Bacillus circulans</i>
1111	ykjK	39%	O06378	hypothetical 39.3 kd protein; <i>Mycobacterium tuberculosis</i>
1112	nucA	30%	Q9X6T9	5'-nucleotidase nuca precursor; <i>Haemophilus influenzae</i>
1113	glySa	71%	P54380	glycyl-tRNA synthetase alpha chain; <i>Bacillus subtilis</i>
1114	glySb	41%	P54381	glycyl-tRNA synthetase beta chain; <i>Bacillus subtilis</i>

1115	ylaC	32%	O31818	ynzc protein; <i>Bacillus subtilis</i>
1116	ylaD	30%	Q9Z9W7	transposase protein; <i>Bacillus sp</i>
1117	ylaE	45%	P54455	hypothetical 22.2 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
1118	ylaF	61%	O32090	yuek protein; <i>Bacillus subtilis</i>
1119	ylaG	30%	P46854	hypothetical 18.8 kd protein in gntR-ggt intergenic region; <i>Escherichia coli</i>
1120	nadE	65%	P18843	nh-dependent nad synthetase; <i>Escherichia coli</i>
1121	ylbA	53%	O28456	abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
1122	ylbB	24%	O28455	hypothetical 89.0 kd protein; <i>Archaeoglobus fulgidus</i>
1123	cobQ	43%	Q9ZGG8	cobyric acid synthase cobq; <i>Heliobacillus mobilis</i>
1124	ylbD	33%	Q9ZGG7	udp-n-acetyl muramyl tripeptide synthetase murc; <i>Heliobacillus mobilis</i>
1125	aldC	35%	P95676	alpha-acetolactate decarboxylase; <i>Lactococcus lactis</i>
1126	lepA	74%	P37949	gtp-binding protein lepa; <i>Bacillus subtilis</i>
1127	ylbE	36%	O07609	hypothetical 22.8 kd protein; <i>Bacillus subtilis</i>
1128	yclA	53%	BAA35634	hypothetical 52.1 kd protein in ebgc-uxaa intergenic region; ; <i>Escherichia coli</i>
1129	gyrA	71%	CAA06715	dna gyrase subunit a; <i>Streptococcus pneumoniae</i>
1130	apbE	30%	Q9X1N9	conserved hypothetical protein; <i>Thermotoga maritima</i>
1131	yclC	40%	P94587	mbl, flh[o,p], rapd, ywp[b,c,d,e,f,g,h,i,j] and ywqa genes; <i>Bacillus subtilis</i>
1132	yclD			putative
1133	yclE			putative
1134	yclF			putative
1135	yclG	28%	P94974	hypothetical 128.2 kd protein; <i>Mycobacterium tuberculosis</i>
1136	yldA			putative
1137	yldB	30%	O06251	hypothetical 26.8 kd protein; <i>Mycobacterium tuberculosis</i>
1138	pcrA	53%	P56255	atp-dependent helicase pcrA; <i>Bacillus stearothermophilus</i>
1139	mutX	32%	P41354	mutator mutt protein; <i>Streptococcus pneumoniae</i>
1140	tag	46%	Q9X6Y6	putative dna-3-methyladenine glycosydase i; <i>Bifidobacterium longum</i>
1141	yldC	66%	O32784	hypothetical 16.9 kd protein; <i>Lactococcus lactis</i>
1142	frdC	43%	Q9X969	fumarate reductase flavocytochrome c3; <i>Shewanella frigidimarina</i>
1143	yldE			putative
1144	truB	73%	O32785	hypothetical 19.7 kd protein; <i>Lactococcus lactis</i>
1145	ribC	48%	O34127	macrolide-efflux protein; <i>Streptococcus agalactiae</i>
1146	ldhX	35%	P94885	l-lactate dehydrogenase; <i>Lactococcus lactis</i>
1147	yleB	29%	O50983	outer surface protein, putative; <i>Borrelia burgdorferi</i>
1148	yleC	52%	O31420	ybbi protein; <i>Bacillus subtilis</i>
1149	yleD	42%	Q45579	ybbf; <i>Bacillus subtilis</i>
1150	yleE	52%	P40739	pts system, beta-glucosides-specific iiabc component (ec. <i>Bacillus subtilis</i>)
1151	yleF	31%	Q45581	hypothetical 33.3 kd protein; <i>Bacillus subtilis</i>
1152	tpiA	99%	P50918	triosephosphate isomerase; <i>Lactococcus lactis</i>
1153	yleG	29%	P12256	penicillin acylase; <i>Bacillus sphaericus</i>
1154	ylfA			putative
1155	ylfB	28%	BAA35232	orf_id:o166#5; <i>Escherichia coli</i>

1156	ylfC	47%	P77174	hypothetical 23.9 kd protein in csta-dsbg intergenic region; <i>Escherichia coli</i>
1157	hemN	45%	CAB61616	hemN protein; <i>Bacillus subtilis</i>
1158	ylfD	25%	P34020	autolytic lysozyme; <i>Clostridium acetobutylicum</i>
1159	ylfE	50%	CAB49495	dcmp deaminase, putative; <i>Pyrococcus abyssi</i>
1160	ylfF	25%	Q42714	oleoyl-acyl carrier protein thioesterase precursor (<i>s</i> -acyl fatty acid synthase thioeste. <i>Carthamus tinctorius</i>
1161	ylfG	28%	004792	acyl-acp thioesterase; <i>Garcinia mangostana</i>
1162	ylfH	45%	032125	yutf protein; <i>Bacillus subtilis</i> putative
1163	ylfI			
1164	guaC	74%	005269	hypothetical 35.8 kd protein; <i>Bacillus subtilis</i>
1165	xpt	68%	CAA13587	xanthine phosphoribosyltransferase; <i>Streptococcus pneumoniae</i>
1166	pbuX	48%	P42086	xanthine permease; <i>Bacillus subtilis</i> putative
1167	ylgB			
1168	ylgC	57%	P32813	hypothetical 18.2 kd protein in glda 3'region; <i>Bacillus stearothermophilus</i>
1169	dfrA	92%	Q59487	dihydrofolate reductase; <i>Lactococcus lactis</i>
1170	clpX	64%	P50866	atp-dependent clp protease atp-binding subunit clpx; <i>Bacillus subtilis</i>
1171	ysxL	66%	P38424	hypothetical gtp-binding protein in lona-hema intergenic region; <i>Bacillus subtilis</i>
1172	folB	32%	AAF09757	dihydronopterin aldolase; <i>Deinococcus radiodurans</i>
1173	folE	48%	AAF09628	gtp cyclohydrolase i; <i>Deinococcus radiodurans</i>
1174	folP	36%	067448	dihydropteroate synthase; <i>Aquifex aeolicus</i> putative
1175	ylgG			
1176	folC	41%	Q05865	folylpolyglutamate synthase; <i>Bacillus subtilis</i>
1177	ylhA	76%	Q9ZB43	hypothetical 24.8 kd protein; <i>Streptococcus pyogenes</i>
1178	hom	91%	P52985	homoserine dehydrogenase; <i>Lactococcus lactis</i>
1179	thrB	78%	P52991	homoserine kinase; <i>Lactococcus lactis</i> putative
1180	ylhB			
1181	murB	39%	AAD53934	udp-n-acetylenolpyruvoylglucosamine reductase; <i>Zymomonas mobilis</i>
1182	potA	46%	O51587	spermidine/putrescine abc transporter, atp-binding protein; <i>Borrelia burgdorferi</i>
1183	potB	32%	O85819	potb; <i>Actinobacillus actinomycetemcomitans</i>
1184	potC	38%	O51585	spermidine/putrescine abc transporter, permease protein; <i>Borrelia burgdorferi</i>
1185	potD	43%	P23861	spermidine/putrescine-binding periplasmic protein precursor; <i>Escherichia coli</i>
1186	yliA	28%	P49330	rgg protein; <i>Streptococcus gordoni</i> challis
1187	yliB	24%	O58549	459aa long hypothetical methyltransferase; <i>Pyrococcus horikoshii</i>
1188	yliC	25%	CAB49999	multidrug resistance protein; <i>Pyrococcus abyssi</i>
1189	yliD	31%	Q9WYH7	permease, putative; <i>Thermotoga maritima</i>
1190	yliE			putative
1191	yliF			putative
1192	yliG			putative
1193	clsB	41%	P71040	hypothetical 55.8 kd protein in spoIIq-mta intergenic region; <i>Bacillus subtilis</i>
1194	yliI	33%	008365	probable cation-transporting atpase e; <i>Mycobacterium tuberculosis</i>
1195	yljA	33%	Q9Z4W5	putative integral membrane atpase; <i>Streptomyces coelicolor</i>
1196	yljB	47%	O51589	conserved hypothetical protein; <i>Borrelia burgdorferi</i>
1197	yljC	32%	P26833	hypothetical 31.2 kd protein in nagh 5'region; <i>Clostridium perfringens</i>

1198	yljD				putative
1199	yljE	43%	Q31503	yefa protein; <i>Bacillus subtilis</i>	
1200	yljF	52%	Q55555	orf1; <i>Synechocystis sp</i>	
1201	yljG	77%	Q32813	<i>lactococcus lactis</i> orfa and orfb genes, partial cds; <i>Lactococcus lactis</i>	
1202	yljH	60%	Q32814	<i>lactococcus lactis</i> orfa and orfb genes, partial cds; <i>Lactococcus lactis</i>	
1203	yljI	79%	Q32814	<i>lactococcus lactis</i> orfa and orfb genes, partial cds; <i>Lactococcus lactis</i>	
1204	yljJ	96%	Q48633	alpha-acetolactate synthase; <i>Lactococcus lactis</i>	
1205	als	97%	Q48634	alpha-acetolactate synthase; <i>Lactococcus lactis</i>	
1206	ymaB			putative	
1207	mae	62%	CAB60039	putative malic enzyme; <i>Weissella</i> <i>paramesenteroides</i>	
1208	ymaE	35%	Q48797	malate permease; <i>Oenococcus oeni</i>	
1209	ymaF	49%	CAA57770	malate permease; <i>Oenococcus oeni</i>	
1210	ymaG			putative	
1211	cliR	41%	Q86289	regulatory protein; <i>Leuconostoc mesenteroides</i>	
1212	citC	48%	CAB60040	putative citrate lyase ligase; <i>Weissella</i> <i>parmesenteroides</i>	
1213	citD	60%	CAB60041	putative gamma subunit of citrate lyase; <i>Weissella parmesenteroides</i>	
1214	citE	67%	Q53078	citrate lyase beta chain; <i>Leuconostoc</i> <i>mesenteroides</i>	
1215	citF	80%	CAB60043	putative alfa subunit of citrate lyase; <i>Weissella parmesenteroides</i>	
1216	citG	46%	Q53080	citg protein; <i>Leuconostoc mesenteroides</i>	
1217	ymbA	29%	Q54877	integrase; <i>Streptococcus pneumoniae</i>	
1218	ymbC			putative	
1219	ymbD			putative	
1220	ymbE	26%	Q05949	dna polymerase i; <i>Rickettsia prowazekii</i>	
1221	ymbF			putative	
1222	ymbG			putative	
1223	ymbH	23%	Q58437	hypothetical protein nj1031; <i>Methanococcus</i> <i>jannaschii</i>	
1224	tra981E	91%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>	
1225	ymlI	98%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>	
1226	ymlJ	32%	Q32802	x42; <i>Lactococcus lactis</i>	
1227	ymlK			putative	
1228	ymcA			putative	
1229	ymcB	21%	Q9X336	pxol-66; <i>Bacillus anthracis</i>	
1230	ymcC			putative	
1231	ymcD	98%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>	
1232	tra981F	91%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>	
1233	ymcE	44%	Q06027	epsr protein; <i>Lactococcus lactis</i>	
1234	ymcF	30%	P32653	muramidase-released protein precursor; <i>Streptococcus suis</i>	
1235	ymcG	31%	Q9XAS7	r5 protein precursor; <i>Streptococcus agalactiae</i>	
1236	tra905	96%	P35881	transposase for insertion sequence element is905; <i>Lactococcus lactis</i>	
1237	ymcH	93%	Q02146	hypothetical protein in hisc 5'region; <i>Lactococcus lactis</i>	
1238	hisC	98%	Q02135	histidinol-phosphate aminotransferase; <i>Lactococcus lactis</i>	
1239	hisX	91%	Q02147	hypothetical 38.0 kd protein in hisc-hisg intergenic region; <i>Lactococcus lactis</i>	
1240	hisG	98%	Q02129	atp phosphoribosyltransferase; <i>Lactococcus</i> <i>lactis</i>	
1241	hisD	93%	Q02136	histidinol dehydrogenase; <i>Lactococcus lactis</i>	
1242	ymdA	87%	Q02148	hypothetical 30.7 kd protein in hisd-hisb intergenic region; <i>Lactococcus lactis</i>	

170

1243	hisB	98%	Q02134	imidazoleglycerol-phosphate dehydratase; <i>Lactococcus lactis</i>
1244	ymdC	99%	Q02149	probable aminoglycoside 3'-phosphotransferase; <i>Lactococcus lactis</i>
1245	hisH	98%	Q02132	amidotransferase hish; <i>Lactococcus lactis</i>
1246	hisA	96%	Q02131	phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase; <i>Lactococcus lactis</i>
1247	hisF	89%	Q02133	hisf protein; <i>Lactococcus lactis</i>
1248	hisI	99%	Q02130	histidine biosynthesis bifunctional protein hisie [includes: phosphoribosyl-amp cyclohydrolase ; phosphori. <i>Lactococcus lactis</i>
1249	hisK	95%	Q02150	hypothetical 31.3 kd protein in hisic 3'region; <i>Lactococcus lactis</i>
1250	ymdE	99%	Q34131	hypothetical 36.8 kd protein; <i>Lactococcus lactis</i>
1251	leuA	93%	Q02141	2-isopropylmalate synthase; <i>Lactococcus lactis</i>
1252	leuB	99%	Q02143	3-isopropylmalate dehydrogenase; <i>Lactococcus lactis</i>
1253	ymeA			putative
1254	leuC	93%	Q02142	3-isopropylmalate dehydratase large subunit; <i>Lactococcus lactis</i>
1255	leuD	100%	Q02144	3-isopropylmalate dehydratase small subunit; <i>Lactococcus lactis</i>
1256	ymeB	86%	Q02151	hypothetical abc transporter atp-binding protein in leud 3'region; <i>Lactococcus lactis</i>
1257	ilvD	95%	Q02139	dihydroxy-acid dehydratase; <i>Lactococcus lactis</i>
1258	ilvB	92%	Q02137	acetolactate synthase large subunit; <i>Lactococcus lactis</i>
1259	ilvN	98%	Q02140	acetolactate synthase small subunit; <i>Lactococcus lactis</i>
1260	ilvC	96%	Q02138	ketol-acid reductoisomerase (alpha-keto-beta-hydroxylacil reductiso. <i>Lactococcus lactis</i>
1261	ilvA	96%	Q34132	ilva; <i>Lactococcus lactis</i>
1262	aldB	100%	P95676	alpha-acetolactate decarboxylase; <i>Lactococcus lactis</i>
1263	aldR	99%	Q34133	putative regulator aldr; <i>Lactococcus lactis</i>
1264	ymfB			putative
1265	dprA	43%	P39813	smf protein; <i>Bacillus subtilis</i>
1266	topA	62%	P39814	dna topoisomerase i; <i>Bacillus subtilis</i>
1267	gidC	65%	P39815	gid protein; <i>Bacillus subtilis</i>
1268	ymfD	70%	Q69155	hypothetical 41.6 kd protein; <i>Streptococcus mutans</i>
1269	ymfE			putative
1270	ymgA	46%	Q69155	hypothetical 41.6 kd protein; <i>Streptococcus mutans</i>
1271	ymgB			putative
1272	ymgD			putative
1273	ymgC	30%	Q005316	hypothetical 62.6 kd protein; <i>Mycobacterium tuberculosis</i>
1274	rlrA	30%	Q68014	adpl. lysis-type transcriptional activator; <i>Acinetobacter sp</i>
1275	ceo	94%	P15244	n5-ornithine synthase (n5--l-ornithine:nadp; <i>Lactococcus lactis</i>
1276	ymgF	62%	Q48607	putative 37-kda protein; <i>Lactococcus lactis</i>
1277	ymgG	92%	Q48606	putative 20-kda protein; <i>Lactococcus lactis</i>
1278	ymgH	43%	Q48605	putative 6-kda protein; <i>Lactococcus lactis</i>
1279	ymgI			putative
1280	ymgJ	49%	P96594	ydas protein; <i>Bacillus subtilis</i>
1281	ymgK	53%	Q9XBS1	2,5-diketo-d-gluconate reductase; <i>Zymomonas mobilis</i>

1282	glpF2	55%	P52281	glycerol uptake facilitator protein; <i>Streptococcus pneumoniae</i>
1283	glpD	53%	O87017	alpha-glycerophosphate oxidase; <i>Streptococcus pneumoniae</i>
1284	glpK	74%	O34154	glycerol kinase; <i>Enterococcus faecalis</i>
1285	ymhA			putative
1286	tra981G	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
1287	ymhB	96%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
1288	ymhC			putative
1289	amyL	47%	O31193	alpha amylase; <i>Bacillus stearothermophilus</i>
1290	lctO	45%	Q44467	lactate oxidase; <i>Aerocccus viridans</i>
1291	aroH	41%	O54459	phospho-2-dehydro-3-deoxyheptonate aldolase, trp-sensitive [3-deoxy-d-arabino-he. <i>Erwinia herbicola</i>
1292	metF	37%	O67422	5,10-methylenetetrahydrofolate reductase; <i>Aquifex aeolicus</i>
1293	metE	45%	Q42699	Catharanthus roseus 5- methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase (...)
1294	ymiA	44%	O33330	transcriptional repressor; <i>Mycobacterium tuberculosis</i>
1295	mgtA	49%	P39168	mg transport atpase, p-type 1; <i>Escherichia coli</i>
1296	dltD	90%	O32815	d-alanine carrier homolog dltD; <i>Lactococcus lactis</i>
1297	dltC	41%	AAF09203	dltC; <i>Lactobacillus rhamnosus</i>
1298	dltB	48%	CAB51920	integral membrane protein; <i>Listeria monocytogenes</i>
1299	dltA	41%	AAF09201	dltA; <i>Lactobacillus rhamnosus</i>
1300	thiE	37%	P39594	thiamine-phosphate pyrophosphorylase; <i>Bacillus subtilis</i>
1301	thiD1	43%	P44697	phosphomethylpyrimidine kinase; <i>Haemophilus influenzae</i>
1302	thiM	34%	Q57233	hydroxyethylthiazole kinase; <i>Haemophilus influenzae</i>
1303	ymjE	25%	Q54066	icaa; <i>Staphylococcus epidermidis</i>
1304	epsK	50%	P97003	udp-n-acetylglucosamine-2-epimerase; <i>Streptococcus pneumoniae</i>
1305	ymhG			putative
1306	ymhH			putative
1307	rplL	50%	P02394	50s ribosomal protein 17/112; <i>Bacillus subtilis</i>
1308	rplJ	61%	P42923	50s ribosomal protein 110; <i>Bacillus subtilis</i>
1309	ynaA			putative
1310	ynaB	34%	P45902	hypothetical transcriptional regulator in spoIIIC-cwla intergenic region; <i>Bacillus subtilis</i>
1311	ynaC	36%	O07549	hypothetical 76.3 kd protein; <i>Bacillus subtilis</i>
1312	ynaD	40%	P77265	multidrug resistance-like atp-binding protein mdla; <i>Escherichia coli</i>
1313	ynaE	24%	P50726	hypothetical 20.5 kd protein in sera-fer intergenic region; <i>Bacillus subtilis</i>
1314	rsuB	55%	P35159	ribosomal large subunit pseudouridine synthase b; <i>Bacillus subtilis</i>
1315	ynaG	42%	AAF11414	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
1316	ynaH	37%	P35154	hypothetical 29.6 kd protein in ribF-dacB intergenic region; <i>Bacillus subtilis</i>
1317	ynbA			putative
1318	ynbB	28%	O31698	ykul protein; <i>Bacillus subtilis</i>
1319	ynbC	33%	P94559	hypothetical 19.2 kd protein in rph-ilvB intergenic region; <i>Bacillus subtilis</i>
1320	ynbD	50%	P94558	hypothetical 21.9 kd protein; <i>Bacillus subtilis</i>

1321	murI	50%	O31338	glutamate racemase; <i>Bacillus cereus</i>
1322	ynbE	37%	P45708	hypothetical 8.3 kd protein in ttk-ccda intergenic region; <i>Bacillus subtilis</i>
1323	lysA	39%	P31851	taba protein; <i>Pseudomonas syringae</i>
1324	gltD	47%	Q51584	small subunit of nadh-dependent glutamate synthase; <i>Plectonema boryanum</i>
1325	gltB	48%	P39812	glutamate synthase [naciph] large chain; <i>Bacillus subtilis</i>
1326	yncA	44%	P40892	putative acetyltransferase in hxt11-hxt8 intergenic region; <i>Saccharomyces cerevisiae</i>
1327	bcaT	69%	P54689	branched-chain amino acid aminotransferase; <i>Haemophilus influenzae</i>
1328	yncB	94%	O30419	hypothetical protein in gadB 3'region; <i>Lactococcus lactis</i>
1329	gadB	97%	O30418	glutamate decarboxylase; <i>Lactococcus lactis</i>
1330	gadC	90%	O30417	amino acid antiporter gadc; <i>Lactococcus lactis</i>
1331	gadR	94%	O30416	positive regulator gadr; <i>Lactococcus lactis</i>
1332	rnhB	88%	O30415	ribonuclease hii; <i>Lactococcus lactis</i>
1333	ylqL	46%	O31743	ylqf protein; <i>Bacillus subtilis</i>
1334	yndA			putative
1335	yndB	28%	AAF10898	carboxymethylenebutenolidase-related protein; <i>Deinococcus radiodurans</i>
1336	rdrB	41%	P94591	similar to phosphotransferase system regulator; <i>Bacillus subtilis</i>
1337	yndC			putative
1338	yndD			putative
1339	yndE			putative
1340	yndF	34%	P25146	internalin a precursor; <i>Listeria monocytogenes</i>
1341	yndG	57%	O05703	adca protein; <i>Streptococcus pneumoniae</i>
1342	tra983D	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
1343	ipd	42%	P71323	indolepyruvate decarboxylase; <i>Erwinia herbicola</i>
1344	rmaF	32%	P31078	petp protein; <i>Rhodobacter capsulatus</i>
1345	rlrC	27%	P73862	rubisco operon transcriptional regulator; <i>Synechocystis sp</i>
1346	yneB	34%	AAF10396	lipase, putative; <i>Deinococcus radiodurans</i>
1347	yneC			putative
1348	yneD	38%	Q9ZKW1	putative; <i>Helicobacter pylori j99</i>
1349	yneE	38%	Q06861	possible virulence-regulating 38 kd protein; <i>Mycobacterium tuberculosis</i>
1350	yneF			putative
1351	yneG	36%	AAD51848	as4. arsd; <i>Sinorhizobium sp</i>
1352	yneH	29%	O31602	yjbd protein; <i>Bacillus subtilis</i>
1353	pabB	38%	Q9ZV26	similar to streptomyces papa; <i>Arabidopsis thaliana</i>
1354	pabA	50%	P06193	para-aminobenzoate synthase glutamine amidotransferase component ii; <i>Salmonella typhimurium</i>
1355	mtsA	74%	Q53891	scba; <i>Streptococcus cristatus</i>
1356	mtsC	59%	P42361	29 kd membrane protein in psaa 5'region; <i>Streptococcus gordonii</i> challis
1357	mtsB	61%	O68832	putative atp-binding protein; <i>Streptococcus pneumoniae</i>
1358	ynfC	29%	O86747	hypothetical 14.8 kd protein; <i>Streptomyces coelicolor</i>
1359	ynfD	38%	O50571	hypothetical 10.1 kda protein; <i>Bacillus firmus</i>
1360	sbcC	22%	O67124	hypothetical 115.9 kd protein; <i>Aquifex aeolicus</i>
1361	sbcD	34%	O83634	exonuclease, putative; <i>Treponema pallidum</i>
1362	panE	31%	CAB49673	probable 2-dehydropantoate 2-reductase; <i>Pyrococcus abyssi</i>
1363	ynfG	44%	O31602	yjbd protein; <i>Bacillus subtilis</i>

1364	ynfH	28%	Q9X6M3	proline/threonine-rich protein; <i>Salmonella typhi</i> putative
1365	yngA	59%	P95752	fibronectin-binding protein-like protein a; <i>Streptococcus gordonii</i>
1366	yngB	59%	P95752	rrna -methyltransferase; <i>Escherichia coli</i>
1367	yngC	46%	P36999	rrna -methyltransferase; <i>Escherichia coli</i>
1368	yngD	27%	P36999	hypothetical 56.3 kd protein; <i>Bacillus subtilis</i>
1369	yngE	62%	O05253	hypothetical 36.8 kd protein; <i>Bacillus subtilis</i>
1370	yngF	34%	O05254	hypothetical 33.7 kd protein; <i>Bacillus subtilis</i>
1371	yngG	47%	O05255	l-lactate dehydrogenase; <i>Lactococcus lactis</i>
1372	ldh	96%	P94885	pyruvate kinase; <i>Lactococcus lactis</i>
1373	pyk	98%	Q07637	6-phosphofructokinase; <i>Lactococcus lactis</i>
1374	pfk	90%	Q07636	putative
1375	ynhA			n-acetylglucosamine-6-phosphate deacetylase; <i>Vibrio furnissii</i>
1376	nagA	36%	P96166	hypothetical 43.8 kd protein in xpac-abrb intergenic region; <i>Bacillus subtilis</i>
1377	ynhC	54%	P37535	xpac protein; <i>Bacillus subtilis</i>
1378	ynhD	18%	P37467	glycerol-3-phosphate dehydrogenase [nad+] (nad; <i>Bacillus subtilis</i>)
1379	gpdA	51%	P46919	utp-glucose-1-phosphate uridylyltransferase; <i>Streptococcus pneumoniae</i>
1380	hasC	73%	O86882	export element bll; <i>Lactococcus lactis</i>
1381	ynhH	77%	Q08009	gerca; <i>Lactococcus lactis</i>
1382	ynhI	76%	O32817	gercc; <i>Lactococcus lactis</i>
1383	ispB	96%	O32818	glucose inhibited division protein b; <i>Bacillus subtilis</i>
1384	gidB	55%	P25813	putative
1385	yniC			orotidine 5'-phosphate decarboxylase; <i>Lactococcus lactis</i>
1386	pyrF	97%	P50924	dihydroorotate dehydrogenase b; <i>Lactococcus lactis</i>
1387	pyrDb	88%	P54322	hypothetical 27.6 kd protein in pyrab-pyrd intergenic region; <i>Bacillus caldolyticus</i>
1388	pyrZ	41%	P46536	orfB, orfC and hsp18 gene; <i>Clostridium selenite</i>
1389	yniG	31%	CAB61253	hypothetical 44.9 kd protein; <i>Enterococcus faecalis</i>
1390	yniH	68%	CAA76860	hypothetical 43.3 kd protein; <i>Enterococcus faecalis</i>
1391	yniI	51%	O86211	hypothetical 29.4 kd protein; <i>Enterococcus faecalis</i>
1392	yniJ	33%	O86210	similar to a. <i>faecalis</i> poly depolymerase; <i>Caenorhabditis elegans</i>
1393	ynjA	58%	BAA35957	putative
1394	ynjB			pxol-66; <i>Bacillus anthracis</i>
1395	ynjC	23%	Q9X336	f55b11.3 protein; <i>Caenorhabditis elegans</i>
1396	ynjD	22%	O17893	putative
1397	ynjE			putative
1398	ynjF			putative
1399	ynjG	22%	Q22579	carbamoylphosphate synthetase; <i>Lactococcus lactis</i>
1400	tra983E	50%	O87534	glutathione peroxidase; <i>Lactococcus pyogenes</i>
1401	ynjH			putative
1402	ynjI			putative
1403	ynjJ	20%	O94317	serine-rich protein; <i>Schizosaccharomyces pombe</i>
1404	carB	93%	O32771	hypothetical 24.9 kd protein; <i>Rickettsia prowazekii</i>

1409	yoaF	30%	O06531	hypothetical 21.2 kd protein; Lactobacillus fermentum putative
1410	yoaG			
1411	yoaH	33%	O27534	hypothetical 21.2 kd protein; Methanobacterium thermoautotrophicum
1412	yoaI	27%	P17419	possible fimbrial assembly protein fimc; Bacteroides nodosus
1413	yobA	34%	Q57951	hypothetical protein mj0531; Methanococcus jannaschii
1414	arsC	58%	P45947	putative arsenate reductase; Bacillus subtilis putative
1415	yobC			
1416	pi301	41%	Q38326	orf258; Lactococcus lactis phage bk5-t putative
1417	pi302			
1418	pi303			
1419	pi304			
1420	pi305	97%	Q38323	orf259; Lactococcus lactis phage bk5-t
1421	pi306	65%	Q38322	orf95; Lactococcus lactis phage bk5-t
1422	pi307	83%	Q38133	orf47; Bacteriophage rlt
1423	pi308	97%	Q38321	orf75; Lactococcus lactis phage bk5-t
1424	pi309	78%	Q38319	orf1904; Lactococcus lactis phage bk5-t
1425	pi310	78%	O80183	gp57; Streptococcus thermophilus bacteriophage sfi11
1426	pi311	78%	O80182	gp373; Streptococcus thermophilus bacteriophage sfi11
1427	pi312	52%	Q38319	orf1904; Lactococcus lactis phage bk5-t
1428	pi313	38%	Q38318	orf'410; Lactococcus lactis phage bk5-t
1429	pi314	34%	O03937	minor capsid protein; Bacteriophage phigle putative
1430	pi315			
1431	pi316			
1432	pi317	48%	O64291	hypothetical 21.8 kd protein; Streptococcus thermophilus bacteriophage sfi19
1433	pi318	36%	Q38220	orfi; Bacteriophage l10
1434	pi319	36%	Q38219	orfa; Bacteriophage l10
1435	pi320	29%	Q9XJA3	putative head-tail joining protein; Streptococcus thermophilus bacteriophage dt1
1436	pi321	32%	O64276	hypothetical 11.8 kd protein; Streptococcus thermophilus bacteriophage sfi21
1437	pi322	60%	Q9XJV7	orf397 gp; Streptococcus thermophilus bacteriophage sfi19
1438	pi323	49%	Q9XJA0	putative scaffolding protein; Streptococcus thermophilus bacteriophage dt1
1439	pi324	52%	Q9XJ81	orf384 gp; Streptococcus thermophilus bacteriophage sfi21
1440	pi325	46%	Q9XJ98	putative head-tail joining protein; Streptococcus thermophilus bacteriophage dt1
1441	pi326	62%	Q9XJW0	orf623 gp; Streptococcus thermophilus bacteriophage sfi19
1442	pi327	44%	Q9XJ95	hypothetical 17.4 kd protein; Streptococcus thermophilus bacteriophage dt1
1443	pi328	42%	CAB52516	hypothetical 20.6 kd protein; Lactobacillus bacteriophage phi adh
1444	pi329			putative
1445	pi330	69%	O53060	hypothetical 16.9 kd protein; Lactococcus lactis
1446	pi331			putative
1447	pi332			putative
1448	pi333	86%	O21897	hypothetical 12.7 kd protein; Bacteriophage sk1
1449	pi334	46%	Q38107	orf21; Bacteriophage rlt
1450	pi335	97%	Q38106	dutpase; Bacteriophage rlt putative
1451	pi336			
1452	pi337	37%	Q38105	orf19; Bacteriophage rlt

1453	pi338	46%	Q38444	orf2; Bacteriophage t5
1454	pi339	25%	Q90767	atrial-specific myosin heavy-chain; Gallus gallus
1455	pi340	80%	Q9XJF1	hypothetical 22.4 kd protein; Bacteriophage tuc2009
1456	pi341	93%	Q38103	orf17; Bacteriophage rlt, and bacteriophage tuc2009 putative
1457	pi342			
1458	pi343	88%	Q38102	orf16; Bacteriophage rlt
1459	pi344	70%	Q38101	orf15; Bacteriophage rlt putative
1460	pi345			
1461	pi346	37%	O03914	zinc finger protein; Bacteriophage phigle
1462	pi347	35%	Q9XJE6	putative replisome organiser protein; Bacteriophage tuc2009
1463	pi348	66%	Q9XJE5	putative single stranded binding protein; Bacteriophage tuc2009
1464	pi349	31%	AAF10011	hypothetical 23.0 kd protein; Deinococcus radiodurans
1465	pi350	78%	O48508	hypothetical 14.7 kd protein; Bacteriophage tp901-1
1466	pi351	100%	Q38272	orf71; Lactococcus bacteriophage
1467	pi352	98%	Q9XJE0	hypothetical 9.9 kd protein; Bacteriophage tuc2009
1468	pi353	95%	Q38333	orf113; Lactococcus lactis phage bk5-t putative
1469	pi354			
1470	pi355	95%	O48505	hypothetical 28.3 kd protein; Bacteriophage tp901-1
1471	pi356	59%	O64369	hypothetical 9.2 kd protein; Lactobacillus casei bacteriophage a2
1472	pi357	56%	O64370	repressor; Lactobacillus casei bacteriophage a2
1473	pi358	37%	AAF12709	hypothetical 21.8 kd protein; Bacteriophage tpw22
1474	pi359	33%	O21991	orf203 protein; Streptococcus thermophilus bacteriophage sfi.21
1475	pi360	54%	Q38159	integrase; Bacteriophage t2
1476	yofM	71%	P96468	ylxm; Streptococcus mutans
1477	lrrB	37%	Q9ZI97	putative response regulator; Lactobacillus sake
1478	kinB	87%	O07383	histidine kinase; Lactococcus lactis putative
1479	yogA			
1480	rgrB	34%	O34817	yvoa; Bacillus subtilis
1481	bmpA	48%	O05252	hypothetical lipoprotein yufn precursor; Bacillus subtilis
1482	cdd	55%	CAB51906	cytidine deaminase; Bacillus psychrophilus
1483	deoC	61%	P39121	deoxyribose-phosphate aldolase; Bacillus subtilis putative
1484	yogE			
1485	pdp	55%	P77836	pyrimidine-nucleoside phosphorylase; Bacillus stearothermophilus
1486	yogG	44%	Q53753	hypothetical 22.7 kd protein; Staphylococcus aureus
1487	coaA	43%	P44793	pantothenate kinase; Haemophilus influenzae putative
1488	yogI			
1489	yogJ	30%	O85699	hypothetical 35.5 kd protein; Streptomyces lividans
1490	yogL	51%	O06027	epsr protein; Lactococcus lactis
1491	yogM	48%	P77174	hypothetical 23.9 kd protein in cstα-dsbg intergenic region; Escherichia coli
1492	yohA	27%	BAA35232	orf_id:o166#5; Escherichia coli
1493	yohB	30%	BAA35232	orf_id:o166#5; Escherichia coli
1494	yohC	24%	O67157	transcriptional regulator; Aquifex aeolicus putative
1495	yohD			

110

1496	busAB	90%	AAF04259	glycine-betaaine binding permease protein; Lactococcus lactis
1497	busAA	96%	AAF04258	busaa; Lactococcus lactis
1498	busR	36%	P13669	fatty acyl responsive regulator; Escherichia coli
1499	yohH	27%	Q56916	trsd; Yersinia enterocolitica
1500	yohJ	28%	Q9WZ90	lipopolysaccharide biosynthesis protein, putative; Thermotoga maritima
1501	yoiA	20%	O96133	hypothetical 237.7 kd protein; Plasmodium falciparum
1502	yoiB	40%	Q9X4V4	cps2j; Streptococcus suis
1503	yoiC	27%	Q02290	xylanase b; Neocallimastix patriciarum
1504	bglH	64%	O86291	beta-glucosidase; Lactobacillus plantarum
1505	ptbA	49%	Q46129	pts-dependent enzyme ii; Clostridium longisporum
1506	bglR	98%	Q48639	bglr; Lactococcus lactis
1507	trpA	94%	Q01997	tryptophan synthase alpha chain; Lactococcus lactis
1508	trpB	100%	Q01998	tryptophan synthase beta chain; Lactococcus lactis
1509	yojB	39%	AAF10375	acetyltransferase, putative; Deinococcus radiodurans
1510	yojC			putative
1511	trpF	100%	Q02002	n-antranilate isomerase; Lactococcus lactis
1512	trpC	100%	Q01999	indole-3-glycerol phosphate synthase; Lactococcus lactis
1513	trpD	100%	Q02000	anthranilate phosphoribosyltransferase; Lactococcus lactis
1514	trpG	99%	Q02003	anthranilate synthase component ii; Lactococcus lactis
1515	trpE	95%	Q02001	anthranilate synthase component i; Lactococcus lactis
1516	ypaA	70%	Q02009	hypothetical 13.3 kd protein in trpe 5' region; Lactococcus lactis
1517	rmaC	53%	P96707	putative nadh nitroreductase ydgi; Bacillus subtilis
1518	ypaC	29%	O87832	methyltransferase; Streptomyces antibioticus
1519	ypaD	31%	AAF13747	hypothetical 24.5 kd protein; Zymomonas mobilis
1520	ypaE	31%	AAF13747	hypothetical 24.5 kd protein; Zymomonas mobilis
1521	fur	35%	AAF00079	ferric uptake regulator homolog; Staphylococcus aureus
1522	ypaG	37%	P54940	hypothetical 13.0 kd protein in idh-deor intergenic region precursor; Bacillus subtilis
1523	ypaH	32%	P96661	hypothetical 35.3 kd protein in cspc-nap intergenic region; Bacillus subtilis
1524	rmeB	36%	P44558	hypothetical transcriptional regulator hi0186; Haemophilus influenzae
1525	ypaI	35%	O54197	clavulanate-9-aldehyde reductase; Streptomyces clavuligerus
1526	dxs	35%	P26242	probable 1-deoxyxylulose-5-phosphate synthase; Rhodobacter capsulatus
1527	rmaE	30%	O85850	marr family regulator; Sphingomonas aromaticivorans
1528	ypbB	26%	AAF12002	transport protein, putative; Deinococcus radiodurans
1529	ypbC	23%	CAB50319	dinf related; Pyrococcus abyssi
1530	ypbD	23%	P70939	orf protein; Bacteroides ovatus
1531	guaA	94%	Q9Z6H4	gmp synthase; Lactococcus lactis
1532	scrK	61%	CAB09691	fructokinase; Lactococcus lactis
1533	ypbG	29%	O51771	xylose operon regulatory protein; Borrelia burgdorferi

1534	ypcA	50%	O05508	c. thermocellum beta-glucosidase; Bacillus subtilis putative
1535	ypcB			
1536	ypcC	32%	Q9XBW4	immunoreactive 92 kda antigen pg21; Porphyromonas gingivalis
1537	ypcD	38%	Q9ZB22	endo-beta-n-acetylglucosaminidase; Arthrobacter protophormiae
1538	dexB	55%	O84995	alpha, 1-6-glucosidase; Streptococcus pneumoniae
1539	lnbA	28%	Q9Z4I7	lacto-n-biosidase precursor; Streptomyces sp
1540	ypcG	27%	Q9WYP9	sugar abc transporter, periplasmic sugar-binding protein, putative; Thermotoga maritima
1541	ypcH	41%	Q44421	sugar-binding transport protein; Anaerocellum thermophilum
1542	ypdA	44%	Q44420	sugar-binding transport protein; Anaerocellum thermophilum
1543	ypdB	26%	BAA35398	hypothetical protein in hrsa 3'region; ; Escherichia coli
1544	ypdC	42%	CAB52976	hypothetical 47.8 kd protein; Streptomyces coelicolor
1545	rliB	31%	Q45831	transcription regulatory protein rega; Clostridium acetobutylicum
1546	ypdD	33%	AAD51075	immunoreactive 89kd antigen pg87; Porphyromonas gingivalis
1547	ypdE	41%	P74690	hypothetical 92.4 kd protein; Synechocystis sp
1548	xylT	60%	O52733	d-xylose-proton symporter; Lactobacillus brevis
1549	xyaX	26%	P77862	galactoside o-acetyltransferase; Escherichia coli
1550	xynB	51%	O52575	xylosidase/arabinosidase; Selenomonas ruminantium
1551	xynT	97%	AAD20246	xyloside transporter; Lactococcus lactis
1552	xylM	99%	Q9X4I7	mutarotase; Lactococcus lactis
1553	xylB	95%	Q9X4I9	xylulokinase; Lactococcus lactis
1554	xylA	93%	Q9X4I6	xylose isomerase; Lactococcus lactis
1555	xylR	94%	AAD20248	xylose regulatory protein; Lactococcus lactis
1556	purK	100%	Q9ZF42	purk protein; Lactococcus lactis
1557	purE	91%	Q9ZF43	pure protein; Lactococcus lactis
1558	purD	99%	Q9ZF44	purd protein; Lactococcus lactis
1559	ypfD	90%	Q9ZF45	hypothetical 14.0 kd protein; Lactococcus lactis
1560	tra983F	50%	O87534	putative transposase; Streptococcus pyogenes
1561	ypfE	26%	O35018	lmrb; Bacillus subtilis
1562	ypfF	32%	O06480	yfnb; Bacillus subtilis
1563	purH	56%	P12048	B bifunctional purine biosynthesis protein purh [includes: phosphoribosylaminoimidazolecarboxamide formyltransferase ; imp cyclohydrolase (ec 3... hypoxanthine-guanine phosphoribosyltransferase; Bacillus firmus
1564	hprt	59%	P94303	similar to dihydroflavonol-4-reductase; Caenorhabditis elegans putative
1565	ypgB	29%	Q19391	abc transporter; Lactobacillus helveticus
1566	ypgC	28%	Q48569	phosphoribosylglycinamide formyltransferase homolog; Streptococcus pyogenes
1567	ypgD	47%	AAF08602	phosphoribosylformylglycinamide cyclo-ligase; Lactococcus lactis
1568	purN			clpb chaperone homolog; Lactococcus lactis putative putative
1569	purM	90%	O68186	phosphoribosylpyrophosphate amidotransferase; Lactococcus lactis
1570	clpB	94%	O68185	
1571	ypgH			
1572	yphA			
1573	purF	94%	Q9ZB05	

1 / 0

1574	yphC	41%	CAB53269	putative oxidoreductase; <i>Streptomyces coelicolor</i>
1575	purL	94%	Q9ZB06	phosphoribosylformylglycinamide synthetase ii; <i>Lactococcus lactis</i>
1576	purQ	95%	Q9ZB07	phosphoribosylformylglycinamide synthetase i; <i>Lactococcus lactis</i>
1577	yphF	71%	Q9ZB08	hypothetical 9.9 kd protein; <i>Lactococcus lactis</i>
1578	purC	92%	AAD12623	phosphoribosylaminoimidazolesuccinocarboxamide synthetase; <i>Lactococcus lactis</i>
1579	yphH	41%	Q9X0A3	hypothetical 15.1 kd protein; <i>Thermotoga maritima</i>
1580	yphI			putative
1581	yphJ	37%	Q9XD79	2065. 4-carboxymuconolactone decarboxylase/3-oxoadipate enol-lactone hydrolase; <i>Streptomyces</i> sp
1582	yphK			putative
1583	ypiA	73%	P25145	hypothetical oxidoreductase in inla 5'region; <i>Listeria monocytogenes</i>
1584	ypiB	31%	CAB61253	orfB, orfC and hsp18 gene; <i>Oenococcus oeni</i>
1585	ypiC	35%	P97247	hypothetical 17.1 kd protein; <i>Bacillus subtilis</i>
1586	thyA	96%	P19368	thymidylate synthase; <i>Lactococcus lactis</i>
1587	ypiE			putative
1588	ypiF			putative
1589	ypiG			putative
1590	ypiH			putative
1591	tra981H	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
1592	ypiI	100%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
1593	ypiJ			putative
1594	ypiK			putative
1595	ypiL	18%	O39307	positional counterpart of hsv-1 gene us5; Equine herpesvirus 4
1596	ypjA	40%	D34179	dehydrogenase; <i>Halobacterium volcanii</i>
1597	ypjB			putative
1598	ypjC			putative
1599	pyrDa	92%	P54321	dihydroorotate dehydrogenase a; <i>Lactococcus lactis</i>
1600	ypjE	54%	P54154	putative peptide methionine sulfoxide reductase (peptide met; <i>Bacillus subtilis</i>
1601	ypjF	28%	CAB61731	putative oxidoreductase; ; <i>Streptomyces coelicolor</i>
1602	ypjG	41%	Q06476	yfmr; <i>Bacillus subtilis</i>
1603	rlrE	51%	CAB36982	cpsy protein; <i>Streptococcus agalactiae</i>
1604	ypjH	32%	BAA35229	hypothetical protein in csta 3'region; ; <i>Escherichia coli</i>
1605	ypjI	80%	Q48644	cremoris partial putative open reading frame; <i>Lactococcus lactis</i>
1606	pepDB	53%	Q48558	dipeptidase; <i>Lactobacillus helveticus</i>
1607	papL	39%	P42977	poly polymerase; <i>Bacillus subtilis</i>
1608	yqaB	29%	AAF10345	hypothetical 18.1 kd protein; <i>Deinococcus radiodurans</i>
1609	dapB	50%	P42976	dihydrodipicolinate reductase; <i>Bacillus subtilis</i>
1610	yqaC	33%	P32436	degV protein; <i>Bacillus subtilis</i>
1611	yqaD			putative
1612	trmD	57%	O31741	tRNA -methyltransferase; <i>Bacillus subtilis</i>
1613	rimM	46%	O31740	probable 16S rRNA processing protein rimM; <i>Bacillus subtilis</i>
1614	yqaG	30%	O28521	lysophospholipase; <i>Archaeoglobus fulgidus</i>
1615	hemH	37%	P43413	ferrochelatase; <i>Yersinia enterocolitica</i>
1616	yqbA			putative
1617	rpsP	65%	P21474	30S ribosomal protein s16; <i>Bacillus subtilis</i>

1618	mvaA	38%	O28538	3-hydroxy-3-methylglutaryl-coenzyme a reductase; Archaeoglobus fulgidus
1619	yqbC	47%	AAF11511	acetyl-coa acetyltransferase; Deinococcus radiodurans
1620	yqbD	55%	Q9ZB67	similar to condensing-enzymes; Staphylococcus carnosus
1621	nagB	49%	O31458	hypothetical 27.3 kd protein in gltp-cwlj intergenic region; Bacillus subtilis
1622	yqbF	26%	P54567	hypothetical 34.6 kd protein in glnq-ansr intergenic region; Bacillus subtilis
1623	queA	63%	O32054	s-adenosylmethionine:tRNA ribosyltransferase-isomerase; Bacillus subtilis
1624	yqbH	55%	O06027	epsr protein; Lactococcus lactis
1625	yqbI			putative
1626	yqbJ	29%	Q9X336	pxol-66; Bacillus anthracis
1627	yqbK	21%	O76602	h02f09.3 protein; Caenorhabditis elegans
1628	yqcA	36%	Q54942	orf iota; Streptococcus pyogenes
1629	yqcB			putative
1630	yqcC			putative
1631	yqcD			putative
1632	yqcE			putative
1633	yqcF			putative
1634	yqcG			putative
1635	obgL	59%	P20964	spooB-associated gtp-binding protein; Bacillus subtilis
1636	ftsQ	30%	P16655	division initiation protein; Bacillus subtilis
1637	murG	50%	O07109	undecaprenyl-pp-n-acetylmuramic acid-pentapeptide n-acetylglucosamine transferase; Enterococcus faecalis
1638	murD	58%	Q9ZHB0	d-glutamic acid adding enzyme murD; Streptococcus pneumoniae
1639	glnB	57%	O30794	nitrogen regulatory protein p-ii; Nostoc punctiforme
1640	amtB	38%	O26759	putative ammonium transporter mth663; Methanobacterium thermoautotrophicum
1641	kinA	87%	O07382	histidine kinase llkina; Lactococcus lactis
1642	lrrA	61%	O87527	csrr; Streptococcus pyogenes
1643	yqdA	28%	O34445	ylbn protein; Bacillus subtilis
1644	rpmE	67%	Q9ZH28	ribosomal protein l31; Listeria monocytogenes
1645	yqeA			putative
1646	yqeB			putative
1647	yqeC	68%	Q38326	orf258; Lactococcus lactis phage bk5-t
1648	yqeD	36%	O34870	ykue protein; Bacillus subtilis
1649	pyrAA	66%	P77885	L glutaminase of carbamoyl-phosphate synthase (carbamoyl-phosphate synthase (carbamoyl-phosphate synthetase (gluta...
1650	pyrB	55%	P77883	aspartate carbamoyltransferase; Lactobacillus plantarum
1651	pyrP	51%	O52708	putative uracil permease; Enterococcus faecalis
1652	pyrR	60%	O52707	attenuation regulatory protein; Enterococcus faecalis
1653	yqeH			putative
1654	rarA	26%	Q55940	transcriptional repressor smtb homolog; Synechocystis sp
1655	yqeI	29%	O07004	cation transport protein yrdc; Bacillus subtilis
1656	proA	66%	P96489	gamma-glutamyl phosphate reductase; Streptococcus thermophilus
1657	proB	54%	P96488	glutamate 5-kinase; Streptococcus thermophilus
1658	yqfA	32%	CAB49904	hypothetical 52.3 kd protein; Pyrococcus abyssi
1659	yqfB			putative

1660	yqfC			putative
1661	yqfD	25%	025889	hypothetical protein hp1331; <i>Helicobacter pylori</i>
1662	yqfE	34%	CAB61933	putative reductase; <i>Streptomyces coelicolor</i>
1663	yqfF	48%	P37354	spermidine N1-acetyltransferase; <i>Escherichia coli</i>
1664	ffh	65%	Q54431	signal recognition particle protein; <i>Streptococcus mutans</i>
1665	yqfG	29%	Q68831	surface antigen bspa; <i>Bacteroides forsythus</i>
1666	yggA	37%	Q45493	hypothetical 61.5 kd protein in adec-pdha intergenic region; <i>Bacillus subtilis</i>
1667	yggG	53%	P26606	hypothetical 23.2 kd protein in slp-hdeb intergenic region; <i>Escherichia coli</i>
1668	dapA	47%	Q04796	dihydrodipicolinate synthase; <i>Bacillus subtilis</i>
1669	yggC	34%	AAF10361	mutt/nudix family protein; <i>Deinococcus radiodurans</i>
1670	asd	69%	P10539	aspartate-semialdehyde dehydrogenase; <i>Streptococcus mutans</i>
1671	yggE	49%	P22094	hypothetical 30.9 kd protein in pepX 5' region. <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
1672	yggF			putative
1673	tkt	55%	P45694	transketolase; <i>Bacillus subtilis</i>
1674	kdgA	42%	Q9WXS1	2-dehydro-3-deoxyphosphogluconate aldolase/4-hydroxy-2-oxoglutarate aldolase; <i>Thermotoga maritima</i>
1675	kdgK	45%	P50845	2-dehydro-3-deoxygluconokinase; <i>Bacillus subtilis</i>
1676	uxaC	47%	P42607	uronate isomerase; <i>Escherichia coli</i>
1677	yqhA	40%	P73504	hypothetical 33.0 kd protein; <i>Synechocystis sp</i>
1678	uxuT	22%	AAD20246	xyloside transporter; <i>Lactococcus lactis</i>
1679	uxuA	57%	Q9WXS4	d-mannonate hydrolase; <i>Thermotoga maritima</i>
1680	uxuB	49%	Q9WXS3	d-mannonate oxidoreductase, putative; <i>Thermotoga maritima</i>
1681	kdgR	36%	Q9ZFL9	regulatory protein; <i>Bacillus stearothermophilus</i>
1682	yqiA	22%	Q54806	integral membrane protein; <i>Streptomyces pristinaespiralis</i>
1683	rbsB	44%	P36949	d-ribose-binding protein precursor; <i>Bacillus subtilis</i>
1684	rbsC	53%	P96731	membrane transport protein; <i>Bacillus subtilis</i>
1685	rbsA	59%	P96732	atp-binding transport protein; <i>Bacillus subtilis</i>
1686	rbsD	56%	P36946	high affinity ribose transport protein rbsd; <i>Bacillus subtilis</i>
1687	rbsK	46%	P36945	ribokinase; <i>Bacillus subtilis</i>
1688	rbsR	41%	P36944	ribose operon repressor; <i>Bacillus subtilis</i>
1689	purB	74%	P12047	adenylosuccinate lyase; <i>Bacillus subtilis</i>
1690	aroD	36%	P35146	3-dehydroquinate dehydratase; <i>Bacillus subtilis</i>
1691	yqjA			putative
1692	trxA	59%	CAB40815	thioredoxin; <i>Listeria monocytogenes</i>
1693	mutS	41%	P94545	mutS2 protein; <i>Bacillus subtilis</i>
1694	yqjB	30%	P94543	hypothetical 19.5 kd protein; <i>Bacillus subtilis</i>
1695	trxB2	39%	O05268	thioredoxine reductase; <i>Bacillus subtilis</i>
1696	ccpA	98%	Q9ZFC9	catabolite control protein; <i>Lactococcus lactis</i>
1697	pepQ	53%	O30666	pepq; <i>Streptococcus mutans</i>
1698	yqjD	25%	Q23915	protein kinase; <i>Dictyostelium discoideum</i>
1699	yqjE	48%	P50840	hypothetical 43.5 kd protein in coto-d-kdud intergenic region precursor; <i>Bacillus subtilis</i>
1700	yraA			putative
1701	yraB	32%	P50839	hypothetical 11.6 kd protein in coto-d-kdud intergenic region; <i>Bacillus subtilis</i>
1702	yraC	36%	O54085	hypothetical 39.7 kd protein; <i>Streptococcus agalactiae</i>

1703	yraD			putative
1704	ftsK	44%	P21458	stage iii sporulation protein e; <i>Bacillus subtilis</i>
1705	yraE	30%	Q45494	hypothetical 28.9 kd protein; <i>Bacillus subtilis</i>
1706	yraF			putative
1707	pta	62%	P39646	probable phosphate acetyltransferase; <i>Bacillus subtilis</i>
1708	udk	57%	O32033	uridine kinase; <i>Bacillus subtilis</i>
1709	yrbA	34%	P42599	hypothetical 36.2 kd protein in ebgc-uxaa intergenic region; <i>Escherichia coli</i>
1710	yrbB	46%	P19385	lysozyme; Bacteriophage cp-7
1711	yrbC	20%	P39582	probable 1,4-dihydroxy-2-naphthoate octaprenyltransferase; <i>Bacillus subtilis</i>
1712	yrbD	28%	P73745	hypothetical 48.4 kd protein; <i>Synechocystis sp</i>
1713	yrbE			putative
1714	yrbF			putative
1715	yrbG			putative
1716	yrbH			putative
1717	yrbI	37%	O30416	positive regulator gadR; <i>Lactococcus lactis</i>
1718	yrbJ	97%	P49016	probable menaquinone biosynthesis methyltransferase; <i>Lactococcus lactis</i>
1719	yrbK	84%	P49016	probable menaquinone biosynthesis methyltransferase; <i>Lactococcus lactis</i>
1720	pip	92%	P49022	phage infection protein; <i>Lactococcus lactis</i>
1721	ycrA	58%	P24240	6-phospho-beta-glucosidase ascB; <i>Escherichia coli</i>
1722	ycrB	55%	Q9X1H3	conserved hypothetical protein; <i>Thermotoga maritima</i>
1723	tktB	34%	O67036	hypothetical 69.9 kd protein; <i>Aquifex aeolicus</i>
1724	kinF	42%	CAB54565	histidine kinase; <i>Streptococcus pneumoniae</i>
1725	lrrF	99%	Q9ZI77	putative response regulator; <i>Lactococcus lactis</i>
1726	rliA	95%	Q9ZI78	hypothetical 36.2 kd protein; <i>Lactococcus lactis</i>
1727	mapA	91%	Q9ZI79	hypothetical 68.4 kd protein; <i>Lactococcus lactis</i>
1728	agl	42%	P94451	exo-alpha-1, 4-glucosidase; <i>Bacillus stearothermophilus</i>
1729	amyY	38%	P20845	alpha-amylase precursor; <i>Bacillus megaterium</i>
1730	maa	40%	P77862	galactoside o-acetyltransferase; <i>Escherichia coli</i>
1731	malA	64%	O84995	alpha, 1-6-glucosidase; <i>Streptococcus pneumoniae</i>
1732	dexC	49%	P38940	neopullulanase; <i>Bacillus stearothermophilus</i>
1733	malE	27%	Q07009	hypothetical 45.5 kd protein; <i>Bacillus subtilis</i>
1734	malF	34%	Q48396	cym a,b,c,d,e,f,g,h,i,j genes; <i>Klebsiella oxytoca</i>
1735	malG	38%	Q48397	cym a,b,c,d,e,f,g,h,i,j genes; <i>Klebsiella oxytoca</i>
1736	yreA			putative
1737	yreB			putative
1738	yreC			putative
1739	yreD	26%	P77262	hypothetical 23.0 kd protein in intf-eah intergenic region; <i>Escherichia coli</i>
1740	yreE			putative
1741	tra98II	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
1742	yrdA	100%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
1743	yrdB			putative
1744	yreF	27%	Q9XAS7	r5 protein precursor; <i>Streptococcus agalactiae</i>
1745	yrfA	36%	O31245	orf1 protein; <i>Agrobacterium radiobacter</i>
1746	yrfB	40%	P54524	probable nadh-dependent flavin oxidoreductase yqig; <i>Bacillus subtilis</i>
1747	arcC3	54%	O53090	carbamate kinase; <i>Lactobacillus sake</i>

1748	yrfC	49%	AAD47622	bg33r. hypothetical 41.0 kd protein; <i>Pseudomonas</i> sp
1749	tra983G	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
1750	yrfD	19%	BAA84897	orf62 protein; <i>Escherichia coli</i>
1751	otcA	45%	O58457	317aa long hypothetical ornithine carbamoyltransferase; <i>Pyrococcus horikoshii</i>
1752	lrrH	45%	O87395	two-component response regulator orra; <i>Anabaena</i> sp
1753	yrfE	31%	Q47828	psr; <i>Enterococcus hirae</i>
1754	cmk	50%	O05386	cytidylylate kinase-like protein; <i>Bacillus cereus</i> putative
1755	yrgA			
1756	fer	36%	P29604	ferredoxin; <i>Thermococcus litoralis</i>
1757	ptnAB	74%	AAD46485	mannose-specific phosphotransferase system component iiab; <i>Streptococcus salivarius</i>
1758	ptnC	46%	AAD46486	mannose-specific phosphotransferase system component iic; <i>Streptococcus salivarius</i>
1759	ptnD	70%	AAD46487	mannose-specific phosphotransferase system component iid; <i>Streptococcus salivarius</i>
1760	yrgE	43%	AAD46488	hypothetical 13.7 kd protein; <i>Streptococcus salivarius</i>
1761	yrgF	28%	O51049	conserved hypothetical integral membrane protein; <i>Borrelia burgdorferi</i>
1762	yrgG	85%	Q48643	cremoris putative partial open reading frame; <i>Lactococcus lactis</i>
1763	serS	60%	P37464	seryl-tRNA synthetase; <i>Bacillus subtilis</i>
1764	yrgH	38%	O35046	yocd; <i>Bacillus subtilis</i>
1765	yrgI	26%	P36942	probable phosphoglycerate mutase 2; <i>Escherichia coli</i>
1766	phoU	35%	Q9X4T4	phou; <i>Streptococcus pneumoniae</i>
1767	pstA	63%	Q58418	probable phosphate transport atp-binding protein pstb; <i>Methanococcus jannaschii</i>
1768	pstB	58%	P46341	hypothetical abc transporter atp-binding protein in soda-comga intergenic region; <i>Bacillus subtilis</i>
1769	pstC	51%	P46340	probable abc transporter permease protein in soda-comga intergenic region; <i>Bacillus subtilis</i>
1770	pstD	47%	P46339	probable abc transporter permease protein in soda-comga intergenic region; <i>Bacillus subtilis</i>
1771	pstE	97%	O66079	lipoprotein nlp1 precursor; <i>Lactococcus lactis</i>
1772	pstF	56%	O66079	lipoprotein nlp1 precursor; <i>Lactococcus lactis</i>
1773	yrhG	70%	O85201	vacb homolog; <i>Streptococcus pneumoniae</i>
1774	yrhH	29%	O80443	f16m14.11 protein; <i>Arabidopsis thaliana</i>
1775	alaS	51%	O34526	alanyl-tRNA synthetase; <i>Bacillus subtilis</i>
1776	pmpA	84%	O66088	lipoprotein nlp4 precursor; <i>Lactococcus lactis</i>
1777	yriA	88%	P94877	methyltransferase; <i>Lactococcus lactis</i>
1778	pepF	96%	P54124	oligoendopeptidase f, plasmid; <i>Lactococcus lactis</i>
1779	coiA	74%	P94875	transcription factor; <i>Lactococcus lactis</i>
1780	yriB	82%	P94874	orf, genes homologous to vsf-1 and pepf2 and gene encoding protein homologous to methyltransferase; <i>Lactococcus lactis</i>
1781	yriC	41%	Q9ZB16	hypothetical 34.5 kd protein; <i>Lactococcus lactis</i>
1782	yriD	38%	AAFT2I90	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
1783	yrjA	31%	P70947	hypothetical 30.6 kd protein; <i>Bacillus subtilis</i>
1784	yrjB	57%	O07020	hypothetical 26.4 kd protein; <i>Bacillus subtilis</i>
1785	yrjC	97%	O69147	putative iron-binding protein; <i>Lactococcus lactis</i>
1786	yrjD	77%	O69148	hypothetical 25.1 kd protein; <i>Lactococcus lactis</i>

1787	yrjE	93%	069149	putative membrane spanning protein; <i>Lactococcus lactis</i>
1788	yrjF	28%	P39074	bmr protein; <i>Bacillus subtilis</i>
1789	yrjG	31%	067622	hypothetical 64.3 kd protein; <i>Aquifex aeolicus</i>
1790	rpsT	40%	BAA01302	ribosomal protein s20; <i>Escherichia coli</i>
1791	recD	40%	O34481	yrrc protein; <i>Bacillus subtilis</i>
1792	yrjI	28%	Q9X194	phosphoglycerate mutase; <i>Thermotoga maritima</i>
1793	pheA	86%	P43909	prephenate dehydratase; <i>Lactococcus lactis</i>
1794	aroK	85%	P43906	shikimate kinase; <i>Lactococcus lactis</i>
1795	aroA	89%	P43905	3-phosphoshikimate 1-carboxyvinyltransferase (epsp synthas. <i>Lactococcus lactis</i>)
1796	tyrA	77%	P43901	prephenate dehydrogenase; <i>Lactococcus lactis</i>
1797	kinG	41%	CAB54567	histidine kinase; <i>Streptococcus pneumoniae</i>
1798	lrrG	45%	CAB54566	response regulator; <i>Streptococcus pneumoniae</i>
1799	ysaA			putative
1800	ysaB	20%	P42424	hypothetical 70.5 kd protein in idh 3'region; <i>Bacillus subtilis</i>
1801	ysaC	49%	P42423	hypothetical abc transporter atp-binding protein in idh 3'region; <i>Bacillus subtilis</i>
1802	ysaD	37%	P54940	hypothetical 13.0 kd protein in idh-deor intergenic region precursor; <i>Bacillus subtilis</i>
1803	aroC	58%	P31104	chorismate synthase; <i>Bacillus subtilis</i>
1804	ysbA	32%	Q57064	unidentified; <i>Streptococcus pneumoniae</i>
1805	ysbB	32%	Q45498	hypothetical 24.6 kd protein; <i>Bacillus subtilis</i>
1806	ysbC	33%	AAF10690	hypothetical 16.7 kd protein; <i>Deinococcus radiodurans</i>
1807	aroB	42%	P73997	3-dehydroquinate synthase; <i>Synechocystis sp</i>
1808	aroE	37%	CAB49372	shikimate 5-dehydrogenase; <i>Pyrococcus abyssi</i>
1809	ysbD	42%	069601	hypothetical 24.3 kd protein; <i>Mycobacterium leprae</i>
1810	glnP	98%	AAF16724	putative integral membrane protein; <i>Lactococcus lactis</i>
1811	glnQ	62%	029577	glutamine abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
1812	yscA	21%	076602	h02f09.3 protein; <i>Caenorhabditis elegans</i>
1813	yscB			putative
1814	atpE	80%	AAF02208	h+-atpase cytoplasmic f1-part epsilon-subunit; <i>Lactococcus lactis</i>
1815	atpD	91%	AAF02210	h+-atpase cytoplasmic f1-part beta-subunit; <i>Lactococcus lactis</i>
1816	atpG	89%	AAF02207	h+-atpase cytoplasmic f1-part gamma-subunit; <i>Lactococcus lactis</i>
1817	atpA	97%	AAF02206	h+-atpase cytoplasmic f1-part alpha-subunit; <i>Lactococcus lactis</i>
1818	atpH	92%	AAF02205	h+-atpase cytoplasmic f1-part delta-subunit; <i>Lactococcus lactis</i>
1819	atpF	99%	AAF02204	h+-atpase f0-part b-subunit; <i>Lactococcus lactis</i>
1820	atpB	94%	AAF02203	h+-atpase f0-part a-subunit; <i>Lactococcus lactis</i>
1821	yscD			putative
1822	yscE	94%	AAF02201	lipase; <i>Lactococcus lactis</i>
1823	comEC	40%	085198	competence protein; <i>Streptococcus pneumoniae</i>
1824	comEA	41%	P39694	come operon protein 1; <i>Bacillus subtilis</i>
1825	ysdA	25%	Q48856	hypothetical 46.8 kd protein; <i>Lactobacillus sake</i>
1826	ysdB	43%	087564	nata; <i>Bacillus firmus</i>
1827	ysdC			putative
1828	ysdD	30%	068850	hypothetical 19.3 kd protein; <i>Vibrio cholerae</i>
1829	ysdE	23%	Q57898	hypothetical protein mj0456; <i>Methanococcus jannaschii</i>
1830	tenA	37%	P25052	transcriptional activator tena; <i>Bacillus subtilis</i>

1831	birA1	31%	030162	biotin operon repressor/biotin--[acetyl coa carboxylase] ligase; <i>Archaeoglobus fulgidus</i>
1832	yseA	30%	057898	hypothetical protein ph0159; <i>Pyrococcus horikoshii</i>
1833	yseB	27%	007619	hypothetical 52.9 kd protein; <i>Bacillus subtilis</i>
1834	fadA	35%	P44873	acetyl-coa acetyltransferase; <i>Haemophilus influenzae</i>
1835	yseC			putative
1836	yseD			putative
1837	fabG2	40%	067610	3-oxoacyl-[acyl-carrier protein] reductase; <i>Aquifex aeolicus</i>
1838	yseE	37%	Q9WZQ7	conserved hypothetical protein; <i>Thermotoga maritima</i>
1839	yseF	65%	032162	yuru protein; <i>Bacillus subtilis</i>
1840	yseG	52%	032163	yurv protein; <i>Bacillus subtilis</i>
1841	yseH			putative
1842	yseI	58%	032164	yurw protein; <i>Bacillus subtilis</i>
1843	ysfA	39%	032165	yurx protein; <i>Bacillus subtilis</i>
1844	ysfB	73%	P80866	vegetative protein 296; <i>Bacillus subtilis</i>
1845	ysfC	57%	Q9XDW8	rgpg; <i>Streptococcus mutans</i>
1846	ysfD	27%	Q9XDW9	negative regulator of genetic competence; <i>Streptococcus mutans</i>
1847	gltQ	60%	029577	glutamine abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
1848	gltP	42%	Q9WZ61	amino acid abc transporter, permease protein; <i>Thermotoga maritima</i>
1849	ysfG	28%	034799	ytlr; <i>Bacillus subtilis</i>
1850	rpoC	70%	Q9Z9M1	rpoC protein; <i>Bacillus sp</i>
1851	rpoB	69%	CAB56706	dna-dependent rna polymerase subunit beta; <i>Listeria monocytogenes</i>
1852	codZ	26%	P39779	cody protein; <i>Bacillus subtilis</i>
1853	ysgA	48%	006027	epsr protein; <i>Lactococcus lactis</i>
1854	pepO	99%	Q09145	neutral endopeptidase; <i>Lactococcus lactis</i>
1855	ysgB	39%	Q50855	putative methylguanine-dna methyltransferase; <i>Myxococcus xanthus</i>
1856	ysgC	31%	034674	ytgp; <i>Bacillus subtilis</i>
1857	murE	28%	067631	udp-murac-tripeptide synthetase; <i>Aquifex aeolicus</i>
1858	adhA	63%	P20368	alcohol dehydrogenase i; <i>Zymomonas mobilis</i>
1859	recO	49%	034748	recq homolog; <i>Bacillus subtilis</i>
1860	yshA	53%	Q9ZJ11	yjem; <i>Salmonella typhimurium</i>
1861	pepT	94%	P42020	peptidase t; <i>Lactococcus lactis</i>
1862	yshB	43%	068580	hypothetical 11.4 kd protein; <i>Streptococcus mutans</i>
1863	yshC	70%	P95765	intragenic coaggregation-relevant adhesin; <i>Streptococcus gordonii</i>
1864	pflA	67%	068575	pyruvate formate-lyase activating enzyme; <i>Streptococcus mutans</i>
1865	ysiA	55%	068574	putative hemolysin; <i>Streptococcus mutans</i>
1866	ysiB	43%	068573	putative permease; <i>Streptococcus mutans</i>
1867	ysiC	36%	Q9X244	conserved hypothetical protein; <i>Thermotoga maritima</i>
1868	ysiD	54%	086222	hypothetical 25.1 kd protein; <i>Haemophilus influenzae rd</i>
1869	uvrA	63%	034863	excinuclease abc subunit a; <i>Bacillus subtilis</i>
1870	ysiE	24%	Q12263	serine/threonine-protein kinase gin4; <i>Saccharomyces cerevisiae</i>
1871	cobC	33%	P77109	putative cobalamin synthesis protein; <i>Escherichia coli</i>
1872	ysiG	52%	Q51440	d-lactate dehydrogenase; <i>Pediococcus acidilactici</i>

1873	ysjA	35%	O32257	yvbw protein; <i>Bacillus subtilis</i>
1874	ysjB	28%	BAA35876	mvim protein; <i>Escherichia coli</i>
1875	ysjC	35%	O34664	ylos protein; <i>Bacillus subtilis</i>
1876	ysjD	47%	Q05247	gene 37 protein; <i>Mycobacteriophage 15</i> putative
1877	ysjE			putative
1878	ysjF			putative
1879	asnS	57%	P39772	asparaginyl-trna synthetase; <i>Bacillus subtilis</i>
1880	ysjG			putative
1881	aspB	87%	AAF12702	aspartate aminotransferase; <i>Lactococcus lactis</i>
1882	ysjH			putative
1883	dinG	31%	O66684	atp-dependent helicase; <i>Aquifex aeolicus</i>
1884	ytaA	33%	Q57951	hypothetical protein mj0531; <i>Methanococcus jannaschii</i>
1885	ytaB	41%	Q005241	hypothetical 49.5 kd protein in tgl-pgi intergenic region; <i>Bacillus subtilis</i>
1886	ytaC	43%	P12256	penicillin acylase; <i>Bacillus sphaericus</i>
1887	ytaD	27%	Q9X7W7	hypothetical 31.4 kd protein; <i>Streptomyces coelicolor</i>
1888	oppA	87%	Q07741	oligopeptide-binding protein oppa precursor; <i>Lactococcus lactis</i>
1889	oppC	94%	Q07743	oligopeptide transport system permease protein oppC; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
1890	oppB	95%	P50989	oligopeptide transport system permease protein oppB; <i>Lactococcus lactis</i>
1891	oppF	99%	Q07734	oligopeptide transport atp-binding protein oppf; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
1892	oppD	99%	P50980	oligopeptide transport atp-binding protein oppd; <i>Lactococcus lactis</i>
1893	rplT	54%	P55873	50s ribosomal protein 120; <i>Bacillus subtilis</i>
1894	rpmI	64%	P55874	50s ribosomal protein 135; <i>Bacillus subtilis</i>
1895	infC	55%	O53084	translation initiation factor if-3; <i>Listeria monocytogenes</i>
1896	ytbA			putative
1897	ytbB	28%	O06480	yfnb; <i>Bacillus subtilis</i>
1898	gidA	96%	O32806	glucose inhibited division protein a; <i>Lactococcus lactis</i>
1899	ytbC			putative
1900	ytbD	49%	O06665	putative dna binding protein; <i>Streptococcus gordonii</i>
1901	ytbE	54%	O31418	yazc protein; <i>Bacillus subtilis</i>
1902	cysS	47%	Q06752	cysteinyl-trna synthetase; <i>Bacillus subtilis</i>
1903	ytcA			putative
1904	cysE	50%	Q06750	serine acetyltransferase; <i>Bacillus subtilis</i>
1905	ytcB			putative
1906	pnpA	60%	P50849	polyribonucleotide nucleotidyltransferase; <i>Bacillus subtilis</i>
1907	ytcC	78%	O30413	hypothetical 31.2 kd protein; <i>Lactococcus lactis</i>
1908	prsB	51%	O33924	prpp synthetase; <i>Corynebacterium ammoniagenes</i>
1909	ytcD	32%	O26984	conserved protein; <i>Methanobacterium thermoautotrophicum</i>
1910	nifS	45%	O34599	yrvo protein; <i>Bacillus subtilis</i>
1911	ytcE			putative
1912	tuf	78%	P33170	elongation factor tu; <i>Streptococcus oralis</i>
1913	ytdA			putative
1914	ileS	62%	Q9ZHB3	isoleucine-trna synthetase; <i>Streptococcus pneumoniae</i>
1915	ytdB	36%	Q9ZHB4	cell division protein diviva; <i>Streptococcus pneumoniae</i>
1916	ytdC	35%	Q9ZHB5	ylmh; <i>Streptococcus pneumoniae</i>
1917	ytdD	81%	Q9ZAI8	hypothetical 10.9 kd protein; <i>Lactococcus lactis</i>

1918	ytdE	85%	Q9ZAI9	hypothetical 21.9 kd protein; <i>Lactococcus lactis</i>
1919	ytdF	92%	Q9ZAJ0	hypothetical 25.5 kd protein; <i>Lactococcus lactis</i>
1920	ftsZ	83%	Q9ZAJ1	cell division protein ftsz; <i>Lactococcus lactis</i>
1921	ftsA	92%	Q9ZAJ2	cell division protein ftsa; <i>Lactococcus lactis</i>
1922	yteA	33%	P70945	hypothetical 31.3 kd protein; <i>Bacillus subtilis</i>
1923	trmH	45%	Q06753	hypothetical trna/rRNA methyltransferase yaco; <i>Bacillus subtilis</i>
1924	yteB	32%	Q32159	hypothetical 39.4 kd oxidoreductase in hom-mrga intergenic region; <i>Bacillus subtilis</i>
1925	yteC	41%	P22045	probable reductase; <i>Leishmania major</i>
1926	yteD	26%	Q69986	transmembrane efflux protein; <i>Streptomyces coelicolor</i>
1927	rlrB	26%	Q66882	transcriptional regulator; <i>Aquifex aeolicus</i>
1928	rmeA	37%	Q06008	mercuric resistance operon regulatory protein; <i>Bacillus subtilis</i>
1929	pepC	95%	Q04723	aminopeptidase c; <i>Lactococcus lactis</i>
1930	yteE	87%	Q04731	hypothetical protein in pepc 5' region; <i>Lactococcus lactis</i>
1931	pfs	38%	P24247	mta/sah nucleosidase [includes: 5'-methylthioadenosine nucleosidase; s-adenosylhomocysteine nucleosidase]; <i>Escherichia coli</i>
1932	ytfA			putative
1933	ytfB	49%	P54570	hypothetical 21.0 kd protein in glnq-ansr intergenic region; <i>Bacillus subtilis</i>
1934	glmU	54%	P14192	UDP-N-acetylglucosamine pyrophosphorylase; <i>Bacillus subtilis</i>
1935	proC	37%	Q04708	pyrroline-5-carboxylate reductase; <i>Pisum sativum</i>
1936	tra983H	50%	Q87534	putative transposase; <i>Streptococcus pyogenes</i>
1937	rpsO	61%	P05766	30S ribosomal protein s15; <i>Bacillus stearothermophilus</i>
1938	ytfC	86%	Q9ZEK3	hypothetical 41.6 kd protein; <i>Lactococcus lactis</i>
1939	ytfD	93%	Q9ZEK4	pppl protein; <i>Lactococcus lactis</i>
1940	sunL	92%	Q9ZEK5	sunL protein; <i>Lactococcus lactis</i>
1941	ytgH	74%	Q48606	putative 20-kDa protein; <i>Lactococcus lactis</i>
1942	ytgA			putative
1943	ytgB	52%	P96594	ydas protein; <i>Bacillus subtilis</i>
1944	fmt	46%	P94463	methionyl-tRNA formyltransferase; <i>Bacillus subtilis</i>
1945	yteG	42%	Q9X7R8	hypothetical 17.7 kd protein; <i>Streptomyces coelicolor</i>
1946	ytgC	31%	Q58549	ADP-ribose pyrophosphatase; <i>Methanococcus jannaschii</i>
1947	ytgD			putative
1948	priA	47%	P94461	primosomal protein n'; <i>Bacillus subtilis</i>
1949	ytgE	43%	Q35011	ylh protein; <i>Bacillus subtilis</i>
1950	gmk	60%	Q34328	ylod protein; <i>Bacillus subtilis</i>
1951	ytgF	54%	Q31774	ymda protein; <i>Bacillus subtilis</i>
1952	ytgG	39%	P31470	hypothetical 23.3 kd protein in tnab-bglb intergenic region; <i>Escherichia coli</i>
1953	metK	65%	P50307	s-adenosylmethionine synthetase; <i>Staphylococcus aureus</i>
1954	ythD	43%	Q9ZKG8	cyclopocyclopropane fatty acid synthase; <i>Helicobacter pylori</i> j99
1955	cfa	43%	Q25171	cyclopropane fatty acid synthase; <i>Helicobacter pylori</i>
1956	birA2	33%	Q27938	biotin acetyl-coA carboxylase ligase / biotin operon repressor bifunctional protein; <i>Methanobacterium thermoautotrophicum</i>
1957	ythA	38%	Q9X0P0	conserved hypothetical protein; <i>Thermotoga maritima</i>

1958	ythB	46%	Q9X0P0	conserved hypothetical protein; <i>Thermotoga maritima</i>
1959	ythC	23%	Q34628	<i>yvlb</i> ; <i>Bacillus subtilis</i>
1960	acmB	42%	Q52362	n-acetylmuramidase precursor; <i>Lactococcus lactis</i>
1961	tra983I	50%	Q87534	putative transposase; <i>Streptococcus pyogenes</i>
1962	fbaA	74%	Q65944	fructose-bisphosphate aldolase; <i>Streptococcus pneumoniae</i>
1963	ytIA	32%	P37027	hypothetical 22.1 kd protein in heml-pfs intergenic region; <i>Escherichia coli</i>
1964	thrS	59%	P18255	threonyl-tRNA synthetase 1; <i>Bacillus subtilis</i>
1965	ytjA			putative
1966	ytjB	25%	P96593	hypothetical 45.7 kd protein in mutt-gsib intergenic region; <i>Bacillus subtilis</i>
1967	ytjC	36%	AAD46617	nramp manganese transport protein mnth; <i>Escherichia coli</i>
1968	ytjD	34%	P37261	hypothetical 21.1 kd protein in fusl-agp1 intergenic region; <i>Saccharomyces cerevisiae</i>
1969	upp	99%	P50926	uracil phosphoribosyltransferase; <i>Lactococcus lactis</i>
1970	nah	88%	Q48731	na/h antiporter homolog; <i>Lactococcus lactis</i>
1971	ytjE	37%	Q08432	putative aminotransferase b; <i>Bacillus subtilis</i>
1972	metB1	50%	Q31631	yjci protein; <i>Bacillus subtilis</i>
1973	metA	53%	Q9WZY3	homoserine O-succinyltransferase; <i>Thermotoga maritima</i>
1974	ytjF			putative
1975	ytjG	26%	Q9WY71	conserved hypothetical protein; <i>Thermotoga maritima</i>
1976	ytjH	37%	P42096	lacX protein, chromosomal; <i>Lactococcus lactis</i>
1977	yuaA	38%	Q53606	cmp-binding-factor 1; <i>Staphylococcus aureus</i>
1978	yuaB	23%	Q9Z6S7	yign family hypothetical protein; <i>Chlamydia pneumoniae</i>
1979	rpe	55%	P51012	ribulose-phosphate 3-epimerase; <i>Rhodobacter capsulatus</i>
1980	yuaC			putative
1981	yuaD	45%	Q34530	yloQ protein; <i>Bacillus subtilis</i>
1982	yuaE	61%	Q66078	putative extracellular protein exp1 precursor; <i>Lactococcus lactis</i>
1983	pheT	44%	P17922	phenylalanyl-tRNA synthetase beta chain; <i>Bacillus subtilis</i>
1984	pheS	60%	P17921	phenylalanyl-tRNA synthetase alpha chain; <i>Bacillus subtilis</i>
1985	pdc	78%	P94900	p-coumaric acid decarboxylase; <i>Lactobacillus plantarum</i>
1986	tra983J	50%	Q87534	putative transposase; <i>Streptococcus pyogenes</i>
1987	yubA	25%	P71160	intb, rega, gepa, gepb, and gepc genes; <i>Bacteroides nodosus</i>
1988	yubB			putative
1989	yubK			putative
1990	yubD	92%	AAF12712	hypothetical 9.1 kd protein; <i>Bacteriophage tpw22</i>
1991	yubE	35%	P39909	spermine/spermidine acetyltransferase; <i>Bacillus subtilis</i>
1992	tra983K	50%	Q87534	putative transposase; <i>Streptococcus pyogenes</i>
1993	yubF	32%	P53352	inner centromere protein; <i>Gallus gallus</i>
1994	yubG	27%	CAB49281	chromosome segregation protein; <i>Pyrococcus abyssi</i>
1995	yubH			putative
1996	yubI			putative
1997	yubJ			putative
1998	yucA	49%	Q00370	hypothetical 26.8 kd protein; <i>Bacteriophage 50</i>

1999	yucB			putative
2000	yucC	30%	P45197	hypothetical protein hil412; <i>Haemophilus influenzae</i>
2001	yucD			putative
2002	yucE	30%	P03035	repressor protein c2; Bacteriophage p22, and bacteriophage p21
2003	int5	26%	P97010	integrase; Bacteriophage t12
2004	yucF	38%	P94443	yfio; <i>Bacillus subtilis</i>
2005	chiA	49%	Q9WXD3	chitinase cl; <i>Serratia marcescens</i>
2006	yucG	46%	083009	cbp21 precursor; <i>Serratia marcescens</i>
2007	purA	67%	P29726	adenylosuccinate synthetase; <i>Bacillus subtilis</i>
2008	yudA	30%	P95773	cadb; <i>Staphylococcus lugdunensis</i>
2009	yudB			putative
2010	yudC			putative
2011	yudD	30%	Q45146	insertion sequence is1168 and nimb gene for 5'-nitroimidazole antibiotic resistance protein; <i>Bacteroides fragilis</i>
2012	yudE			putative
2013	yudF			putative
2014	yudG	57%	Q9ZB45	hypothetical 30.1 kd protein; <i>Streptococcus pyogenes</i>
2015	yudH	40%	P45862	hypothetical 19.6 kd protein in acda 5'region; <i>Bacillus subtilis</i>
2016	yudI	59%	P37567	hypothetical 37.1 kd protein in folk-lyss intergenic region; <i>Bacillus subtilis</i>
2017	yudJ	43%	P42978	hypothetical 23.6 kd protein in qcrc-dapb intergenic region; <i>Bacillus subtilis</i>
2018	yudK	43%	P42978	hypothetical 23.6 kd protein in qcrc-dapb intergenic region; <i>Bacillus subtilis</i>
2019	yudL	39%	Q48842	gene cluster; <i>Lactobacillus sake</i>
2020	aspS	53%	032038	aspartyl-trna synthetase; <i>Bacillus subtilis</i>
2021	yueA	42%	CAB49889	hit-like protein; <i>Pyrococcus abyssi</i>
2022	hisS	63%	P30053	histidyl-trna synthetase; <i>Streptococcus equisimilis</i>
2023	yueB	23%	030416	positive regulator gadr; <i>Lactococcus lactis</i>
2024	yueC			putative
2025	pgsA	58%	087532	phosphatidylglycerophosphate synthase; <i>Streptococcus pyogenes</i>
2026	yueD	35%	P94510	hypothetical 34.7 kd protein; <i>Bacillus subtilis</i>
2027	yueE	43%	031766	ymfh protein; <i>Bacillus subtilis</i>
2028	yueF	36%	087529	hypothetical 48.2 kd protein; <i>Streptococcus pyogenes</i>
2029	yufA	71%	Q48692	dna for orf121 and recf genes; <i>Lactococcus lactis</i>
2030	recF	99%	P50925	recf protein; <i>Lactococcus lactis</i>
2031	pcaC	40%	026336	gamma-carboxymuconolactone decarboxylase; <i>Methanobacterium thermoautotrophicum</i>
2032	yufB	42%	AAF11850	transcriptional regulator, merr family; <i>Deinococcus radiodurans</i>
2033	yufC	69%	Q9ZB16	hypothetical 34.5 kd protein; <i>Lactococcus lactis</i>
2034	galE	99%	087524	udp-galactose-4-epimerase; <i>Lactococcus lactis</i>
2035	lacZ	98%	087523	beta-galactosidase; <i>Lactococcus lactis</i>
2036	thgA	99%	AAC63019	putative galactoside-o-acetyltransferase; <i>Lactococcus lactis</i>
2037	galT	99%	087522	galactose-1-phosphate uridylyltransferase; <i>Lactococcus lactis</i>
2038	galK	93%	AAD11510	galactokinase; <i>Lactococcus lactis</i>
2039	galM	99%	Q9ZB17	aldose 1-epimerase; <i>Lactococcus lactis</i>
2040	lacS	91%	Q9ZB18	lactose permease; <i>Lactococcus lactis</i>

189

2041	yugA	94%	Q9ZB19	hypothetical 27.6 kd protein; <i>Lactococcus lactis</i>
2042	yugB	93%	Q9ZB20	hypothetical 37.6 kd protein; <i>Lactococcus lactis</i>
2043	nadR	28%	P27278	transcriptional regulator nadr; <i>Escherichia coli</i>
2044	yugC	32%	Q9X4A4	hypothetical 35.4 kd protein; <i>Staphylococcus aureus</i>
2045	yugD	48%	O32034	yrro protein; <i>Bacillus subtilis</i>
2046	yuhA			putative
2047	yuhB	32%	O32035	yrrn protein; <i>Bacillus subtilis</i>
2048	yuhC			putative
2049	yuhD	36%	P42313	hypothetical 31.5 kd protein in katb 3' region; <i>Bacillus subtilis</i>
2050	yuhE	32%	Q9Y321	cgi-32 protein; <i>Homo sapiens</i>
2051	ecsB	26%	P55340	protein ecsb; <i>Bacillus subtilis</i>
2052	ecsA	60%	P55339	abc-type transporter atp-binding protein ecsa; <i>Bacillus subtilis</i>
2053	yuhH	25%	O07592	hypothetical 27.5 kd protein; <i>Bacillus subtilis</i>
2054	yuhI	54%	O07513	hit protein; <i>Bacillus subtilis</i>
2055	yuhJ			putative
2056	rplA	58%	Q06797	50s ribosomal protein l1; <i>Bacillus subtilis</i>
2057	rplK	80%	P36254	50s ribosomal protein l11; <i>Staphylococcus carnosus</i>
2058	yuiA	38%	Q60048	probable cadmium-transporting atpase; <i>Listeria monocytogenes</i>
2059	rcfA	49%	CAB53581	fnr-like protein; <i>Lactococcus lactis</i>
2060	tra983L	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
2061	yuiB	41%	O31864	yoze protein; <i>Bacillus subtilis</i>
2062	yuiF	52%	P54154	putative peptide methionine sulfoxide reductase (peptide met; <i>Bacillus subtilis</i>
2063	yuiC	35%	O06747	yitl protein; <i>Bacillus subtilis</i>
2064	yuiD			putative
2065	frr	53%	P81101	ribosome recycling factor; <i>Bacillus subtilis</i>
2066	pyrH	94%	Q9Z5K8	ump-kinase; <i>Lactococcus lactis</i>
2067	yuiE			putative
2068	ackA2	53%	P37877	acetate kinase; <i>Bacillus subtilis</i>
2069	ackA1	50%	P37877	acetate kinase; <i>Bacillus subtilis</i>
2070	yujA	32%	P37876	hypothetical 37.4 kd protein in acka-sspa intergenic region; <i>Bacillus subtilis</i>
2071	typA	70%	O07631	gtp-binding protein typa/bipa homolog; <i>Bacillus subtilis</i>
2072	yujB			putative
2073	yujC			putative
2074	yujD	54%	Q9ZHB1	hypothetical 24.0 kd protein; <i>Streptococcus pneumoniae</i>
2075	yujE	23%	Q9ZHB2	hypothetical 55.9 kd protein; <i>Streptococcus pneumoniae</i>
2076	yujF			putative
2077	yujG	24%	Q9X474	entr; <i>Enterococcus faecium</i>
2078	yvaA	35%	O31391	orf1 protein; <i>Bacillus megaterium</i>
2079	glk	43%	O31392	glucose kinase; <i>Bacillus megaterium</i>
2080	yvaB	35%	P54510	hypothetical 14.6 kd protein in gcvt-spoiiiaa intergenic region; <i>Bacillus subtilis</i>
2081	yvaC	48%	O85254	hypothetical 19.3 kd protein; <i>Streptococcus pneumoniae</i>
2082	tra981J	92%	O48668	insertion sequence is981; <i>Lactococcus lactis</i>
2083	yuiI	100%	O48667	insertion sequence is981; <i>Lactococcus lactis</i>
2084	comC	26%	P15378	type 4 prepilin-like protein specific leader peptidase; <i>Bacillus subtilis</i>

190

2085	dinP	42%	Q47155	dna-damage-inducible protein p; Escherichia coli
2086	yvaD	24%	060155	putative prolyl-trna synthetase; Schizosaccharomyces pombe
2087	arcD2	62%	032816	arginine/ornithine antiporter homolog arcD; Lactococcus lactis
2088	arcT	52%	053091	orfT; Lactobacillus sake
2089	arcC2	50%	053090	carbamate kinase; Lactobacillus sake
2090	arcC1	51%	053090	carbamate kinase; Lactobacillus sake
2091	arcD1	86%	032816	arginine/ornithine antiporter homolog arcD; Lactococcus lactis
2092	arcB	72%	053089	ornithine transcarbamoylase; Lactobacillus sake
2093	arcA	60%	053088	arginine deiminase; Lactobacillus sake
2094	argS	37%	074781	putative arginyl-trna synthetase, cytoplasmic; Schizosaccharomyces pombe
2095	argR	37%	Q54870	probable arginine repressor; Streptococcus pneumoniae
2096	murC	56%	P40778	udp-n-acetylmuramate--alanine ligase; Bacillus subtilis
2097	yvcA			putative
2098	yvcB	38%	P94295	orf1 and snf2 gene; Bacillus cereus
2099	yvcC	28%	Q9ZV10	retrotransposon-like protein; Arabidopsis thaliana
2100	poxL	43%	P37063	pyruvate oxidase; Lactobacillus plantarum
2101	yvdA	27%	CAB61729	possible secreted esterase; Streptomyces coelicolor
2102	yvdB	94%	068177	cyp1; Lactococcus lactis
2103	yvdC	31%	Q47774	orf8; Enterococcus faecalis
2104	yvdD	92%	P22094	hypothetical 30.9 kd protein in pepX 5'region. Lactococcus lactis , and lactococcus lactis
2105	pepXP	89%	P22093	xaa-pro dipeptidyl-peptidase (x-p. Lactococcus lactis)
2106	yvdE	90%	P22347	hypothetical 18.7 kd protein in pepX 3'region; Lactococcus lactis
2107	yvdF	29%	P54952	probable amino-acid abc transporter binding protein in idh-deor intergenic region precursor; Bacillus subtilis
2108	yvdG	48%	P77212	probable pyridine nucleotide-disulfide oxidoreductase in eaeH-beta intergenic region; Escherichia coli
2109	gltX	56%	086083	glutamyl-trna synthetase; Lactobacillus delbrueckii
2110	yveA	32%	028131	isochorismatase; Archaeoglobus fulgidus
2111	yveB			putative
2112	yveC	27%	CAB57420	putative arylalkylamine n-acetyltransferase; Schizosaccharomyces pombe
2113	yveD			putative
2114	yveE			putative
2115	yveF	38%	087247	conserved hypothetical protein; Lactococcus lactis
2116	yveG			putative
2117	yveH	43%	AAFI0688	conserved hypothetical protein; Deinococcus radiodurans
2118	tra983M	50%	087534	putative transposase; Streptococcus pyogenes
2119	yveI			putative
2120	radA	58%	086063	rada homolog; Listeria monocytogenes
2121	yvfA	36%	067432	cation transporting atpase; Aquifex aeolicus
2122	yvfB			putative
2123	rplQ	72%	P20277	50s ribosomal protein l17; Bacillus subtilis
2124	rpoA	58%	BAA75298	rpoA protein; Bacillus sp
2125	rpsK	73%	P04969	30s ribosomal protein s11; Bacillus subtilis

2126	rpsM	70%	P20282	30s ribosomal protein s13; <i>Bacillus subtilis</i>
2127	rpmJ	100%	P27146	50s ribosomal protein l36; <i>Lactococcus lactis</i>
2128	infA	100%	P27149	translation initiation factor if-1; <i>Lactococcus lactis</i>
2129	tra904H	99%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
2130	yvfD	98%	Q48710	span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i>
2131	tra1077F	98%	O32787	transposase; <i>Lactococcus lactis</i>
2132	yvfC	99%	O32786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
2133	adk	98%	P27143	adenylate kinase; <i>Lactococcus lactis</i>
2134	secY	96%	P27148	preprotein translocase secY subunit; <i>Lactococcus lactis</i>
2135	rplO	58%	O06445	50s ribosomal protein l15; <i>Staphylococcus aureus</i>
2136	rpmD	62%	O06444	50s ribosomal protein l30; <i>Staphylococcus aureus</i>
2137	rpsE	58%	Q9Z9J7	rpse protein; <i>Bacillus sp</i>
2138	rplR	49%	P46899	50s ribosomal protein l18; <i>Bacillus subtilis</i>
2139	rplF	63%	P02391	50s ribosomal protein l6; <i>Bacillus stearothermophilus</i>
2140	rpsH	71%	P12879	30s ribosomal protein s8; <i>Bacillus subtilis</i> putative
2141	yvgA			
2142	rpsN	81%	P54798	30s ribosomal protein s14; <i>Bacillus stearothermophilus</i>
2143	rplE	80%	P08895	50s ribosomal protein l5; <i>Bacillus stearothermophilus</i>
2144	rplX	75%	Q9WW6	rpl24; <i>Streptococcus pneumoniae</i>
2145	rplN	74%	Q9WV22	rpl14; <i>Streptococcus pneumoniae</i>
2146	rpsQ	88%	Q9WW03	rps17; <i>Streptococcus pneumoniae</i>
2147	rpmC	69%	Q9WW8	rpl29; <i>Streptococcus pneumoniae</i>
2148	rplP	89%	Q9X5K1	rpl16; <i>Streptococcus pneumoniae</i>
2149	rpsC	87%	Q9WW37	rps3; <i>Streptococcus pneumoniae</i>
2150	rplV	84%	Q9WVU5	rpl22; <i>Streptococcus pneumoniae</i>
2151	rpsS	90%	Q9WW12	rps19; <i>Streptococcus pneumoniae</i>
2152	rplB	76%	P42919	50s ribosomal protein l2; <i>Bacillus subtilis</i>
2153	rplW	54%	P04454	50s ribosomal protein l23; <i>Bacillus stearothermophilus</i>
2154	rplD	61%	P42921	50s ribosomal protein l4; <i>Bacillus subtilis</i>
2155	rplC	69%	Q9Z9L4	rplc protein; <i>Bacillus sp</i>
2156	rpsJ	86%	P48853	30s ribosomal protein s10; <i>Streptococcus mutans</i>
2157	mscL	44%	P94585	large-conductance mechanosensitive channel; <i>Bacillus subtilis</i>
2158	yvhA	27%	Q58119	hypothetical protein mj0709; <i>Methanococcus jannaschii</i>
2159	thrC	38%	Q42598	threonine synthase; <i>Schizosaccharomyces pombe</i>
2160	nusG	49%	Q06795	transcription antitermination protein nusg; <i>Bacillus subtilis</i> putative
2161	secE			
2162	rpmGC	57%	P51415	50s ribosomal protein l33; <i>Mycoplasma capricolum</i>
2163	yvhB	29%	O05402	hypothetical 72.2 kd protein; <i>Bacillus subtilis</i>
2164	ppb2A	50%	O70039	penicillin-binding protein 2a; <i>Streptococcus pneumoniae</i>
2165	yviA	33%	O32050	yrbg protein; <i>Bacillus subtilis</i> putative
2166	yviB			
2167	yviC	39%	Q46604	fmn-binding protein; <i>Desulfovibrio vulgaris</i>
2168	yviD	37%	P54604	hypothetical 33.7 kd protein in cspb-glpp intergenic region; <i>Bacillus subtilis</i>
2169	zitP	57%	O33704	adcb protein; <i>Streptococcus pneumoniae</i>
2170	zitQ	65%	O87862	adcc protein; <i>Streptococcus pneumoniae</i>

2171	zitS	43%	034966	ycdh; <i>Bacillus subtilis</i>
2172	zitR	48%	033703	adcr protein; <i>Streptococcus pneumoniae</i>
2173	yviH	57%	086274	hypothetical 9.1 kd protein; <i>Lactococcus lactis</i>
2174	yviI	76%	086275	orf150 protein; <i>Lactococcus lactis</i>
2175	yviJ	52%	086276	hypothetical 14.8 kd protein; <i>Lactococcus lactis</i>
2176	comGD	31%	085196	competence protein; <i>Streptococcus pneumoniae</i>
2177	comGC	74%	086277	orf125 protein; <i>Lactococcus lactis</i>
2178	comGB	70%	086278	orf348 protein; <i>Lactococcus lactis</i>
2179	comGA	76%	086279	orf248 protein; <i>Lactococcus lactis</i>
2180	polC	98%	086280	dna polymerase iii alpha chain-like protein; <i>Lactococcus lactis</i> putative
2181	yvja			
2182	noxD	33%	P37061	nadh oxidase; <i>Enterococcus faecalis</i>
2183	proS	50%	031755	prolyl-trna synthetase; <i>Bacillus subtilis</i>
2184	yvjb	52%	AAD47948	eep; <i>Enterococcus faecalis</i>
2185	cdsA	37%	Q9ZML7	cdp-diacylglycerol synthase; <i>Helicobacter pylori</i> j99
2186	ywaA	49%	031751	undecaprenyl pyrophosphate synthetase; <i>Bacillus subtilis</i>
2187	ywaB	50%	Q47777	orf11; <i>Enterococcus faecalis</i>
2188	ywaC	40%	Q9XBL3	dna alkylation repair enzyme; <i>Bacillus cereus</i>
2189	ywaD	45%	Q9XBL3	dna alkylation repair enzyme; <i>Bacillus cereus</i>
2190	ywaE	54%	Q45601	yyda protein; <i>Bacillus subtilis</i>
2191	tra983N	50%	087534	putative transposase; <i>Streptococcus pyogenes</i>
2192	htrA	58%	006670	putative serine protease; <i>Streptococcus pneumoniae</i>
2193	ywaF	26%	006452	dnag, rpod, cpoa genes and orf3 and orf5; <i>Streptococcus pneumoniae</i>
2194	ywaG	55%	006453	dnag, rpod, cpoa genes and orf3 and orf5; <i>Streptococcus pneumoniae</i> putative
2195	ywaH			
2196	ywaI	23%	Q26223	rhoptry protein; <i>Plasmodium berghei yoelii</i>
2197	ywbA	46%	P37543	hypothetical 28.3 kd protein in xpac-abrb intergenic region; <i>Bacillus subtilis</i>
2198	polA	93%	032801	dna polymerase i; <i>Lactococcus lactis</i>
2199	ywbB	90%	032800	dna polymerase i; <i>Lactococcus lactis</i>
2200	rliD	43%	P37517	hypothetical transcriptional regulator in tetl-exoa intergenic region; <i>Bacillus subtilis</i>
2201	tra904I	100%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
2202	yvjF	98%	Q48710	span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i>
2203	tra1077G	98%	032787	transposase; <i>Lactococcus lactis</i>
2204	ywbC	99%	032786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
2205	ywbD	27%	P37517	hypothetical transcriptional regulator in tetl-exoa intergenic region; <i>Bacillus subtilis</i>
2206	ywcA	76%	Q48591	n of 16s rrna gene; <i>Lactococcus lactis</i>
2207	ezrA	21%	034894	ytwp; <i>Bacillus subtilis</i>
2208	tsf	39%	Q9ZJ71	elongation factor ts; <i>Helicobacter pylori</i> j99
2209	rpsB	71%	P49668	30s ribosomal protein s2; <i>Pediococcus acidilactici</i>
2210	ywcC	100%	086271	orfB protein; <i>Lactococcus lactis</i>
2211	adhE	98%	086272	alcohol-acetaldehyde dehydrogenase; <i>Lactococcus lactis</i>
2212	ywdA	23%	CAB49813	hypothetical 22.1 kd protein; <i>Pyrococcus abyssi</i> putative
2213	ywdB			
2214	ywdC	26%	058557	552aa long hypothetical nitrite reductase; <i>Pyrococcus horikoshii</i>
2215	ywdD	29%	P07782	coenzyme pqq synthesis protein e; <i>Acinetobacter calcoaceticus</i>
2216	ywdE	30%	P49330	rgg protein; <i>Streptococcus gordoni</i> challis

2217	ywdF	34%	O34470	ylbl protein; <i>Bacillus subtilis</i>
2218	kdtB	39%	Q9WZK0	lipopolysaccharide core biosynthesis protein kdtb; <i>Thermotoga maritima</i>
2219	ywdG	49%	O34331	ylbh protein; <i>Bacillus subtilis</i>
2220	yweA	35%	Q48658	lmrp integral membrane protein; <i>Lactococcus lactis</i>
2221	lmrP	91%	Q48658	lmrp integral membrane protein; <i>Lactococcus lactis</i>
2222	sigX	30%	O07627	putative rna polymerase sigma factor ylac; <i>Bacillus subtilis</i>
2223	yweB			putative
2224	pgiA	79%	Q9X670	glucose-6-phosphate isomerase; <i>Streptococcus mutans</i>
2225	yweC	32%	O29764	conserved hypothetical protein; <i>Archaeoglobus fulgidus</i>
2226	yweD	36%	P39315	hypothetical 29.7 kd protein in rpli-cpdb intergenic region; <i>Escherichia coli</i>
2227	yweE	53%	P70885	orf108; <i>Butyrivibrio fibrisolvens</i>
2228	yweF			putative
2229	valS	60%	Q05873	valyl-trna synthetase; <i>Bacillus subtilis</i>
2230	ywfA			putative
2231	ywfB			putative
2232	ywfC	40%	P32699	hypothetical 13.5 kd protein in apha-uvra intergenic region; <i>Escherichia coli</i>
2233	ywfD			putative
2234	ywfE	30%	CAB57644	hypothetical 25.3 kd protein; <i>Sulfolobus solfataricus</i>
2235	ywfF	43%	O31545	yfjo protein; <i>Bacillus subtilis</i>
2236	ywfG	27%	Q15333	hr44 protein; <i>Homo sapiens</i>
2237	ywfH	36%	CAB61244	secreted protein precursor; <i>Lactococcus lactis</i>
2238	ywgA	31%	O31575	yfhg protein; <i>Bacillus subtilis</i>
2239	gntP	50%	P46832	gluconate permease; <i>Bacillus licheniformis</i>
2240	tra9830	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
2241	gntK	48%	P12011	gluconokinase; <i>Bacillus subtilis</i>
2242	gntZ	56%	P54448	hypothetical 32.8 kd protein in nucb-arod intergenic region; <i>Bacillus subtilis</i>
2243	gntR	29%	Q9WYG1	transcriptional regulator, rpir family; <i>Thermotoga maritima</i>
2244	ywhA			putative
2245	ywhB	31%	O34870	ykue protein; <i>Bacillus subtilis</i>
2246	rpsR	70%	P10806	30s ribosomal protein s18; <i>Bacillus stearothermophilus</i>
2247	ssbD	65%	Q9XJE5	putative single stranded binding protein; <i>Bacteriophage tuc2009</i>
2248	rpsF	59%	P21468	30s ribosomal protein s6; <i>Bacillus subtilis</i>
2249	bacA	39%	AAD50462	baca; <i>Cytophaga johnsoniae</i>
2250	lysP	45%	P25737	lysine-specific permease; <i>Escherichia coli</i>
2251	dnaH	50%	Q9WZF2	dna polymerase iii, gamma and tau subunit; <i>Thermotoga maritima</i>
2252	ywiA	33%	O05841	hypothetical 51.3 kd protein; <i>Mycobacterium tuberculosis</i>
2253	ywiB	43%	P36088	hypothetical 19.7 kd protein in lhs1-nup100 intergenic region; <i>Saccharomyces cerevisiae</i>
2254	ywiC	31%	P39912	B aroa protein [includes: phospho-2-dehydro-3-deoxyheptonate aldolase (3-deoxy-d-arabino-heptulosonate...]
2255	ywiD			putative
2256	ywiE			putative
2257	glnA	66%	P95692	glutamine synthetase type 1; <i>Streptococcus agalactiae</i>
2258	glnR	45%	P37582	regulatory protein glnR; <i>Bacillus subtilis</i>

2259	ywiF	45%	O35016	yfkj protein; <i>Bacillus subtilis</i>
2260	ywiG	29%	Q9WZM4	abc transporter, atp-binding protein; <i>Thermotoga maritima</i> putative
2261	ywiH			
2262	ywiI	23%	O30416	positive regulator gadr; <i>Lactococcus lactis</i>
2263	ruvB	63%	O32055	holliday junction dna helicase ruvb; <i>Bacillus subtilis</i>
2264	ruvA	42%	O84509	holliday junction helicase; <i>Chlamydia trachomatis</i>
2265	hexB	86%	O32819	mismatch repair protein homolog; <i>Lactococcus lactis</i>
2266	ywjA	30%	Q17113	80 kda protein; <i>Babesia bovis</i>
2267	hexA	64%	P10564	dna mismatch repair protein hexa; <i>Streptococcus pneumoniae</i>
2268	ywjB	24%	O31779	ymca protein; <i>Bacillus subtilis</i> putative
2269	ywjC			
2270	ywjD	43%	O34647	transcription regulator; <i>Bacillus subtilis</i> putative
2271	ywjE			
2272	ywjF	52%	O34948	hypothetical 30.7 kd protein in mcpc-kina intergenic region; <i>Bacillus subtilis</i> putative
2273	ywjG			
2274	ywjH			
2275	yxaA	25%	O28711	conserved hypothetical protein; <i>Archaeoglobus fulgidus</i> putative
2276	yxaB			
2277	zwf	49%	P54547	glucose-6-phosphate 1-dehydrogenase; <i>Bacillus subtilis</i>
2278	yxaC	38%	P54452	hypothetical 20.1 kd protein in nucb-arod intergenic region; <i>Bacillus subtilis</i>
2279	pspA	40%	O05166	pcpa; <i>Streptococcus pneumoniae</i>
2280	pspB	40%	O05166	pcpa; <i>Streptococcus pneumoniae</i>
2281	dnaJ	86%	P35514	dnaj protein; <i>Lactococcus lactis</i> putative
2282	yxaF			
2283	racD	53%	P29079	aspartate racemase; <i>Streptococcus thermophilus</i> putative
2284	yxBA			
2285	asnH	40%	O34902	asparagine synthase; <i>Bacillus subtilis</i>
2286	usp45	63%	P22865	secreted 45 kd protein precursor; <i>Lactococcus lactis</i>
2287	mreD	25%	Q01467	rod shape-determining protein mred; <i>Bacillus subtilis</i>
2288	mreC	95%	Q99223	beta-lactamase precursor; <i>Lactococcus lactis</i>
2289	yxBC	40%	P46351	hypothetical 45.4 kd protein in thiaminase i 5'region; <i>Bacillus subtilis</i>
2290	rpiA	45%	P72012	probable ribose 5-phosphate isomerase; <i>Methanobacterium thermoautotrophicum</i>
2291	rcfB	27%	O86128	fnr protein; <i>Bacillus licheniformis</i>
2292	yxBD	23%	P94577	hypothetical 43.1 kd protein; <i>Bacillus subtilis</i>
2293	yxBE	33%	O27074	conserved protein; <i>Methanobacterium thermoautotrophicum</i> putative
2294	yxBF			
2295	yxCA	29%	P11568	activator of -2-hydroxyglutaryl-coa dehydratase; <i>Acidaminococcus fermentans</i>
2296	yxCB	27%	CAB55667	putative tetr-family transcriptional regulator; <i>Streptomyces coelicolor</i>
2297	rsuA	42%	Q9WYA2	16s pseudouridylate synthase; <i>Thermotoga maritima</i> putative
2298	yxCD			
2299	thdF	66%	CAB61255	thiophene degradation protein f; <i>Streptococcus agalactiae</i> putative
2300	yxCE			

2301	recG	66%	Q54900	atp-dependent dna helicase recg; <i>Streptococcus pneumoniae</i>
2302	yxdA	44%	P16680	phna protein; <i>Escherichia coli</i>
2303	gapB	78%	P50467	glyceraldehyde 3-phosphate dehydrogenase; <i>Streptococcus pyogenes</i>
2304	yxdb	24%	O15738	zipa; <i>Dictyostelium discoideum</i>
2305	yxdC	37%	P37278	cation-transporting atpase pacl; <i>Synechococcus sp</i>
2306	yxdD			putative
2307	yxdE	34%	AAF12130	oxidoreductase, short-chain dehydrogenase/reductase family; <i>Deinococcus radiodurans</i>
2308	yxdF	30%	Q48724	abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i>
2309	yxdG			putative
2310	rpsI	70%	P21470	30s ribosomal protein s9; <i>Bacillus subtilis</i>
2311	rplM	63%	Q00990	50s ribosomal protein l13; <i>Staphylococcus carnosus</i>
2312	yxeA	29%	AAF12525	hypothetical 37.1 kd protein; <i>Deinococcus radiodurans</i>
2313	yxeB	40%	O28803	abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
2314	rnhA	55%	O07874	ribonuclease hii; <i>Streptococcus pneumoniae</i>
2315	sipL	53%	CAA13401	signal peptidase 1; <i>Streptococcus pneumoniae</i>
2316	purR	100%	O53065	purr; <i>Lactococcus lactis</i>
2317	fusA	73%	P80868	elongation factor g; <i>Bacillus subtilis</i>
2318	rpsG	72%	Q9Z9L8	rpsg protein; <i>Bacillus sp</i>
2319	rpsL	89%	P30891	30s ribosomal protein s12; <i>Streptococcus pneumoniae</i>
2320	dacA	84%	O66081	extracellular protein exp2 precursor; <i>Lactococcus lactis</i>
2321	yxfA	55%	Q54615	putative multiple membrane domain protein; <i>Streptococcus pyogenes</i>
2322	yxfB	37%	O34614	ytqb; <i>Bacillus subtilis</i>
2323	yxfc	59%	O35008	ytqa; <i>Bacillus subtilis</i>

Tableau IV. Gènes impliqués dans les phénomènes de sécrétion

ORF	Nom du gène
9	yabC
19	yacG
109	ybaG
116	ybbE
192	ybiK
210	ycaF
225	yccB
266	ycfF
326	plpA
327	plpB
422	ptcB
433	yedB
445	yeeG
506	dgk
515	ps202
552	yfcH
554	ponA
561	yfdG
578	yfgC
595	yfhI
611	yfiL
627	ygaD
633	ygaJ
638	miaA
667	ygeB
696	ygiC
754	floL
801	noxC
843	noxA
865	yigE
879	yiiD
931	yjdl
944	tagF
954	yjgB
985	yjjE
1007	ykbF
1085	ykhK
1132	ylcD
1133	ylcE
1142	frdC
1177	ylhA
1206	ymaB
1208	ymaE
1228	ymcA
1234	ymcF
1309	ynaA
1335	yndB
1395	ynjC
1396	ynjD
1399	ynjG

1402	ynjl
1403	ynjJ
1416	pi301
1444	pi329
1454	pi339
1495	yohD
1522	ypaG
1626	yqbJ
1627	yqbK
1628	yqcA
1629	yqcB
1631	yqcD
1638	murD
1647	yqeC
1648	yqeD
1710	yrbB
1736	yreA
1802	ysaD
1870	ysiE
1978	yuaB
1980	yuaC
2005	chiA
2024	yueC
2033	yufC
2073	yujC
2076	yujF
2175	yviJ
2176	comGD
2207	ezrA
2217	ywdF
2272	ywjF
2279	pspA
2280	pspB

REVENDICATIONS

1. Séquence nucléotidique de *Lactococcus lactis* caractérisée en ce qu'elle correspond à SEQ ID N° 1.
5
2. Séquence nucléotidique de *Lactococcus lactis*, caractérisée en ce qu'elle est choisie parmi :
 - a) une séquence nucléotidique comportant au moins 80 % d'identité avec SEQ ID N° 1 ;
10
 - b) une séquence nucléotidique hybride dans des conditions de forte stringence avec SEQ ID N° 1 ;
 - c) une séquence nucléotidique complémentaire de SEQ ID N° 1 ou complémentaire d'une séquence nucléotidique telle que définie en a), ou b), ou une séquence nucléotidique de l'ARN correspondant ;
15
 - d) une séquence nucléotidique de fragment représentatif de SEQ ID N° 1, ou de fragment représentatif d'une séquence nucléotidique telle que définie en a), b) ou c);
 - e) une séquence nucléotidique comprenant une séquence telle que définie en a), b), c) ou d) ; et
20
 - f) une séquence nucléotidique modifiée d'une séquence nucléotidique telle que définie en a), b), c), d) ou e).
- 25 3. Séquence nucléotidique selon la revendication 2, caractérisée en ce qu'elle code pour une séquence choisie issue de SEQ ID N° 1 et en ce qu'elle code pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323.

-
4. Séquence nucléotidique caractérisée en ce qu'elle comprend une séquence nucléotidique choisie parmi :
- une séquence nucléotidique selon la revendication 3 ;
 - une séquence nucléotidique comportant au moins 80 % d'identité avec une séquence nucléotidique selon la revendication 3 ;
 - une séquence nucléotidique s'hybridant dans des conditions de forte stringence avec une séquence nucléotidique selon la revendication 3 ;
 - une séquence nucléotidique complémentaire ou d'ARN correspondant à une séquence telle que définie en a), b) ou c) ;
 - une séquence nucléotidique de fragment représentatif d'une séquence telle que définie en a), b), c) ou d) ; et
 - une séquence nucléotidique modifiée d'une séquence telle que définie en a), b), c), d) ou e).
- 15
5. Polypeptide codé par une séquence nucléotidique selon l'une des revendications 2 à 4.
6. Polypeptide selon la revendication 5, caractérisé en ce qu'il est choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323.
- 20
7. Polypeptide caractérisé en ce qu'il comprend un polypeptide choisi parmi :
- un polypeptide selon l'une des revendications 5 et 6 ;
 - un polypeptide présentant au moins 80 % d'identité avec un polypeptide selon l'une des revendications 5 et 6 ;
 - un fragment d'au moins 5 acides aminés d'un polypeptide selon l'une des revendications 5 et 6, ou tel que défini en b) ;
 - un fragment biologiquement actif d'un polypeptide selon l'une des revendications 5 et 6, ou tel que défini en b) ou c) ; et
- 25

- e) un polypeptide modifié d'un polypeptide selon l'une des revendications 5 et 6 ou tel que défini en b), c) ou d).
8. Séquence nucléotidique codant pour un polypeptide selon la
5 revendication 7.
9. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8,
caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus*
lactis impliqué dans la biosynthèse des acides aminés ou l'un de ses
10 fragments.
10. Séquence nucléotidique selon l'une des revendications 2 à 4 et 8,
caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus*
lactis impliqué dans la biosynthèse des cofacteurs, groupes prosthétiques
15 et transporteurs ou l'un de ses fragments.
11. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8,
caractérisée en ce qu'elle code pour un polypeptide d'enveloppe
cellulaire de *Lactococcus lactis* ou l'un de ses fragments.
20
12. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8,
caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus*
lactis impliqué dans la machinerie cellulaire ou l'un de ses fragments.
- 25 13. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8,
caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus*
lactis impliqué dans le métabolisme intermédiaire central ou l'un de ses
fragments.

14. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme énergétique ou l'un de ses fragments.

5

15. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme des acides gras et des phospholipides ou l'un de ses fragments.

10

16. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme des nucléotides, des purines, des pyrimidines ou nucléosides ou l'un de ses fragments.

15

17. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans les fonctions de régulation ou l'un de ses fragments.

20

18. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le processus de réPLICATION ou l'un de ses fragment.

25

19. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le processus de transcription ou l'un de ses fragments.

-
20. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le processus de traduction ou l'un de ses fragments.
- 5 21. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le processus de transport et de liaison des protéines ou l'un de ses fragments.
- 10 22. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans l'adaptation aux conditions atypiques ou l'un de ses fragments.
- 15 23. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans la sensibilité aux médicaments et analogues ou l'un de ses fragments.
- 20 24. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans les fonctions relatives aux phages et prophages ou l'un de ses fragments.
- 25 25. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans les fonctions relatives aux transposons ou l'un de ses fragments.

26. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide spécifique de *Lactococcus lactis* ou l'un de ses fragments.
- 5 27. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans la biosynthèse des acides aminés ou l'un de ses fragments.
- 10 28. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans la biosynthèse des cofacteurs, groupes prosthétiques et transporteurs ou l'un de ses fragment.
- 15 29. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide d'enveloppe cellulaire de *Lactococcus lactis* ou l'un de ses fragments.
- 20 30. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans la machinerie cellulaire ou l'un de ses fragments.
- 25 31. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme intermédiaire central ou l'un de ses fragements.
32. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme énergétique ou l'un de ses fragments.

-
33. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme des acides gras et des phospholipides ou l'un de ses fragments.
- 5
34. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme des nucléotides, des purines, des pyrimidines ou nucléosides ou l'un de ses fragments.
- 10
35. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans les fonctions de régulation ou l'un de ses fragments.
- 15
36. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le processus de réplication ou l'un de ses fragments.
- 20
37. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le processus de transcription ou l'un de ses fragments.
- 25
38. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le processus de traduction ou l'un de ses fragments.
39. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le processus de transport et de liaison des protéines ou l'un de ses fragments.

40. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans l'adaptation aux conditions atypiques ou l'un de ses fragments.
- 5
41. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans la sensibilité aux médicaments et analogues ou l'un de ses fragments.
- 10 42. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans les fonctions relatives aux phages et prophages ou l'un de ses fragments.
- 15 43. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans les fonctions relatives aux transposons ou l'un de ses fragments.
- 20 44. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide spécifique de *Lactococcus lactis* ou l'un de ses fragments.
45. Procédé pour estimer la colinéarité entre les génomes de *Lactococcus lactis* IL 1403 et d'une autre souche de *Lactococcus lactis*, caractérisé en ce qu'il comprend les étapes :
- 25 - de fragmentation de l'ADN chromosomal de ladite autre souche (sonication, digestion),
- de séquence des fragments d'ADN,
- d'analyse d'homologie avec le génome de *Lactococcus lactis* IL 1043 (SEQ ID N° 1) en comparant avec un support d'enregistrement

dont la forme et la nature facilitent la lecture, l'analyse et/ou l'exploitation d'une séquence enregistrée sur ledit support, sur lequel est enregistré au moins une séquence nucléotidique selon l'une des revendications 1 à 4, 8 à 26 et/ou une séquence de polypeptide selon
5 l'une des revendications 5 à 7 et 27 à 44.

46. Séquence nucléotidique utilisable comme amorce ou comme sonde, caractérisée en ce que ladite séquence est choisie parmi les séquences nucléotidiques selon l'une des revendications 2 à 4, et, 8 à 26.
10
47. Séquence nucléotidique selon la revendication 46, caractérisée en ce qu'elle est marquée par un composé radioactif ou par un composé non radioactif.
15
48. Séquence nucléotidique selon l'une des revendications 46 et 47, caractérisée en ce qu'elle est immobilisée sur un support, de manière covalente ou non-covalente.
20
49. Séquence nucléotidique selon l'une des revendications 47 à 48, caractérisée en ce qu'elle est immobilisée sur un support tel qu'un filtre à haute densité ou une puce à ADN.
25
50. Séquence nucléotidique selon l'une des revendications 47 à 49 pour la détection et/ou l'amplification de séquences nucléiques.
51. Puce à ADN ou filtre, caractérisée en ce qu'elle contient au moins une séquence nucléotidique selon la revendication 49.
30
52. Puce à ADN ou filtre selon la revendication 51, caractérisée en ce qu'elle contient en outre au moins une séquence nucléotidique d'un micro-organisme autre que *Lactococcus lactis*, immobilisée sur le support de ladite puce.

53. Puce à ADN ou filtre selon la revendication 52, caractérisée en ce que le micro-organisme autre est choisi parmi un micro-organisme associé à *Lactococcus lactis*, une bactérie du genre *Lactococcus*, et un variant de *Lactococcus lactis*.
- 5
54. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend une puce à ADN ou un filtre selon la revendication 51.
- 10
55. Kit ou nécessaire pour la détection et/ou l'identification d'un micro-organisme, caractérisé en ce qu'il comprend une puce à ADN ou un filtre selon l'une des revendications 52 et 53.
- 15 56. Kit ou nécessaire pour la détection et/ou la quantification de l'expression d'au moins un gène de *Lactococcus lactis*, caractérisé en ce qu'il comprend une puce à ADN ou un filtre selon l'une des revendications 51 à 53.
- 20 57. Vecteur de clonage, et/ou d'expression, caractérisé en ce qu'il contient une séquence nucléotidique selon l'une des revendications 2 à 4 et 8 à 26.
58. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 13.
- 25 59. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 14.

60. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 9, 19 ou 20.
- 5 61. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 24.
- 10 62. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 12, en particulier codant pour une protéine impliquée dans les mécanismes de sécrétion.
- 15 63. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique codant pour une protéine impliquée dans la résistance et/ou l'adaptation au stress.
- 20 64. Utilisation d'un vecteur selon l'une des revendications 57 à 63 pour la génération d'une souche bactérienne présentant des propriétés de fermentation améliorées, et/ou une stabilité accrue.
65. Cellule hôte, caractérisée en ce qu'elle est transformée par un vecteur selon l'une des revendications 57 à 63.
- 25 66. Cellule hôte selon la revendication 65, caractérisée en ce qu'il s'agit d'une bactérie appartenant au genre *Lactococcus*.
67. Cellule hôte selon la revendication 66, caractérisée en ce qu'il s'agit d'une bactérie appartenant à l'espèce *Lactococcus lactis*.

68. Cellule hôte selon la revendication 65, caractérisée en ce qu'il s'agit d'un micro-organisme associé à l'espèce *Lactococcus lactis*.
69. Composition alimentaire comprenant une cellule transformée selon l'une des revendications 65 à 68.
- 5
70. Végétal ou animal, excepté l'Homme, comprenant une cellule transformée selon l'une des revendications 65 à 68.
- 10 71. Procédé de préparation d'un polypeptide, caractérisé en ce que l'on cultive une cellule transformée par un vecteur selon la revendication 57 dans des conditions permettant l'expression dudit polypeptide et que l'on récupère ledit polypeptide recombinant.
- 15 72. Polypeptide recombinant susceptible d'être obtenu par un procédé selon la revendication 71.
73. Procédé de préparation d'un polypeptide synthétique selon l'une des revendications 5 à 7, 27 à 44, caractérisé en ce que l'on effectue une synthèse chimique dudit polypeptide.
- 20
74. Polypeptide hybride, caractérisé en ce qu'il comprend au moins la séquence d'un polypeptide selon l'une des revendications 5 à 7, 27 à 44 et 72, et une séquence d'un polypeptide susceptible d'induire une réponse immunitaire chez l'homme ou l'animal.
- 25
75. Séquence nucléotidique codant pour un polypeptide hybride selon la revendication 74.

- - -
76. Vecteur caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 75.
77. Anticorps monoclonal ou polyclonal, ses fragments, ou anticorps chimérique, caractérisé en ce qu'il est capable de reconnaître spécifiquement un polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 ou 74.
78. Anticorps selon la revendication 77, caractérisé en ce qu'il s'agit d'un anticorps marqué.
79. Procédé pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un microorganisme associé dans un échantillon biologique, caractérisé en ce qu'il comprend les étapes suivantes :
- mise en contact de l'échantillon biologique avec un anticorps selon l'une des revendications 77 et 78;
 - mise en évidence du complexe antigène-anticorps éventuellement formé.
80. Procédé pour la détection de l'expression d'un gène de *Lactococcus lactis* caractérisé en ce que l'on met en contact une souche de *Lactococcus lactis*, avec un anticorps selon la revendication 77 ou 78 et que l'on détecte le complexe antigène/anticorps éventuellement formé.
81. Kit ou nécessaire pour la mise en œuvre d'un procédé selon la revendication 79 ou 80, caractérisé en ce qu'il comprend les éléments suivants :
- un anticorps polyclonal ou monoclonal selon l'une des

- ***
- revendications 77 et 78;
- b) éventuellement, les réactifs pour la constitution du milieu propice à la réaction immunologique ;
- c) éventuellement, les réactifs permettant la mise en évidence des complexes antigène-anticorps produits par la réaction immunologique.
- 5
82. Polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 et 74, ou anticorps selon l'une des revendications 77 et 78, caractérisé en ce qu'il est immobilisé sur un support, notamment une puce à protéine.
- 10
83. Puce à protéine, caractérisée en ce qu'elle contient au moins un polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 et 74, ou au moins un anticorps selon l'une des revendications 77 et 78, immobilisé sur le support de ladite puce.
- 15
84. Puce à protéine selon la revendication 83, caractérisée en ce qu'elle contient en outre au moins un polypeptide de micro-organisme autre que *Lactococcus lactis* ou au moins un anticorps dirigé contre un composé de micro-organisme autre que *Lactococcus lactis*, immobilisé sur le support de ladite puce.
- 20
85. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend une puce à protéine selon l'une des revendications 83 et 84.
- 25
-
86. Kit ou nécessaire pour la détection et/ou l'identification d'un micro-organisme, caractérisé en ce qu'il comprend une puce à protéine selon la

revendication 84.

87. Procédé de détection et/ou d'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé dans un échantillon biologique, caractérisé en ce qu'il met en œuvre une séquence nucléotidique selon l'une des revendications 1 à 4, 8 à 26, 46 à 50 et 75.
- 5
88. Procédé selon la revendication 87, caractérisé en ce qu'il comporte les étapes suivantes :
- 10
- a) éventuellement, isolement de l'ADN à partir de l'échantillon biologique à analyser, ou obtention d'un ADNc à partir de l'ARN de l'échantillon biologique ;
 - b) amplification spécifique de l'ADN de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé à l'aide d'au moins une amorce selon l'une des revendications 46 à 50 ;
 - c) mise en évidence des produits d'amplification.
- 15
89. Procédé selon la revendication 87, caractérisé en ce qu'il comprend les étapes suivantes :
- 20
- a) mise en contact d'une sonde nucléotidique selon l'une des revendications 46 à 50, avec un échantillon biologique, l'acide nucléique contenu dans l'échantillon biologique ayant, le cas échéant, préalablement été rendu accessible à l'hybridation, dans des conditions permettant l'hybridation de la sonde à l'acide nucléique d'une bactérie appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé ;
 - b) mise en évidence de l'hybride éventuellement formé entre la sonde nucléotidique et l'acide nucléique de l'échantillon biologique.
- 25

90. Procédé selon la revendication 87, caractérisé en ce qu'il comprend les étapes suivantes :
- mise en contact d'une sonde nucléotidique immobilisée sur un support selon la revendication 48 avec un échantillon biologique, l'acide nucléique de l'échantillon ayant, le cas échéant, été préalablement rendu accessible à l'hybridation, dans des conditions permettant l'hybridation de la sonde à l'acide nucléique d'une bactérie appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé ;
 - mise en contact de l'hybride formé entre la sonde nucléotidique immobilisée sur un support et l'acide nucléique contenu dans l'échantillon biologique, le cas échéant après élimination de l'acide nucléique de l'échantillon biologique n'ayant pas hybridé avec la sonde, avec une sonde nucléotidique marquée selon la revendication 47 ;
 - mise en évidence du nouvel hybride formé à l'étape b).
91. Procédé selon la revendication 90, caractérisé en ce que, préalablement à l'étape a), l'ADN de l'échantillon biologique ou l'ADNc obtenu éventuellement par transcription inverse de l'ARN de l'échantillon, est amplifié à l'aide d'au moins une amorce selon l'une des revendications 46 à 50.
92. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :
- une sonde nucléotidique selon l'une des revendications 46 à 50,
 - éventuellement, les réactifs nécessaires à la mise en œuvre d'une

réaction d'hybridation ;

- c) éventuellement, au moins une amorce selon l'une des revendications 46 à 50 ainsi que les réactifs nécessaires à une réaction d'amplification de l'ADN.

5

93. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- a) une sonde nucléotidique, dite sonde de capture, selon la revendication 48 ;
10 b) une sonde oligonucléotidique, dite sonde de révélation, selon la revendication 47;
c) éventuellement, au moins une amorce selon l'une des revendications 46 à 50 ainsi que les réactifs nécessaires à une réaction
15 d'amplification de l'ADN.

94. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- a) au moins une amorce selon l'une des revendications 46 à 50;
20 b) éventuellement, les réactifs nécessaires pour effectuer une réaction d'amplification d'ADN ;
c) éventuellement, un composant permettant de vérifier la séquence du fragment amplifié, plus particulièrement une sonde oligonucléotidique selon l'une des revendications 46 à 50.
25

95. Procédé selon les revendications 87 à 91 ou kit ou nécessaire selon les revendications 92 à 94 pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis*, caractérisé en ce que ladite

- - -

amorce et/ou ladite sonde sont choisies parmi les séquences nucléotidiques selon l'une des revendications 2 à 4, 8 à 26, 46 à 50 et 75 spécifiques de l'espèce *Lactococcus lactis*, en ce que lesdits polypeptides sont choisis parmi les polypeptides selon l'une des revendications 5 à 7, 27 à 44 et 72 et 5 74 spécifiques de l'espèce *Lactococcus lactis* et en ce que lesdits anticorps sont choisis parmi les anticorps selon l'une des revendications 77 et 78 dirigés contre les polypeptides choisis parmi les polypeptides selon l'une des revendications 5 à 7, 27 à 44, 72 et 74 spécifiques de l'espèce *Lactococcus lactis*.

10

96. Procédé ou kit ou nécessaire selon la revendication 95, caractérisé en ce que ladite amorce et/ou ladite sonde sont choisies parmi les séquences nucléotidiques codant pour une protéine sécrétée, en ce que lesdits polypeptides sont choisis parmi les polypeptides sécrétés et en ce que lesdits anticorps sont choisis parmi les anticorps selon l'une des revendications 77 et 15 78 dirigés contre des polypeptides sécrétés de *Lactococcus lactis*.

15

97. Souche de *Lactococcus lactis*, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon l'une des revendications 2 à 4 ou 8 à 26.

20

98. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 13.

25

99. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 14.
-

100. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 9, 19 ou 20.
- 5 101. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 24.
102. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 12, en particulier codant pour une protéine impliquée dans les mécanismes de sécrétion.
- 10 103. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique codant pour une protéine impliquée dans la résistance et/ou l'adaptation au stress.
- 15 104. Souche de *Lactococcus lactis* selon l'une des revendications 97 à 103, caractérisée en ce que la mutation mène à une inactivation du gène.
- 20 105. Souche de *Lactococcus lactis* selon l'une des revendications 97 à 103, caractérisée en ce que la mutation mène à une surexpression du gène.
- 25 106. Souche de *Lactococcus lactis* présentant une résistance accrue à l'infection et/ou la propagation des phages, caractérisée en ce qu'elle surexprime ou sous-exprime un polypeptide selon la revendication 42.

107. Souche de *Lactococcus lactis* présentant une résistance accrue à l'infection et/ou la propagation des phages, caractérisée en ce qu'elle contient un gène toxique sous le contrôle d'un agent régulateur de l'expression des gènes des phages, codant pour les polypeptides selon la revendication 42.

5

108. Méthode de diagnostic de la présence de phages dans les levains lactiques et produits laitiers, caractérisée en ce que l'on étudie la présence d'acide nucléique codant pour un polypeptide selon la revendication 42.

10

109. Utilisation d'un polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 et 74 d'une cellule transformée selon l'une des revendications 65 à 68 d'une souche selon la revendication 97 à 105 et/ou d'un animal selon la revendication 70, pour la biosynthèse ou la biodégradation d'un composé d'intérêt.

15

110. Procédé de biosynthèse ou de biodégradation d'un composé d'intérêt, caractérisé en ce qu'il met en œuvre un polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 et 74, une cellule transformée selon l'une des revendications 65 à 68 une souche selon l'une des revendications 97 à 20 105 et/ou un animal selon la revendication 70.

**(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)**

**(19) Organisation Mondiale de la Propriété
Intellectuelle**
Bureau international

(43) Date de la publication internationale
18 octobre 2001 (18.10.2001)

PCT

(10) Numéro de publication internationale
WO 01/77334 A3

(51) Classification internationale des brevets⁷ :
**C12N 15/31, 15/62, 11/00, C07K
14/315, 16/12, C12Q 1/68, C12P 1/04, G01N 33/53, G01F
19/00, A01K 67/027, A23C 9/12, 19/032**

(74) Mandataires : MARTIN, Jean-Jacques etc.; Cabinet Reginbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17 (FR).

(21) Numéro de la demande internationale :
PCT/FR01/01103

(81) États désignés (national) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) Date de dépôt international : 11 avril 2001 (11.04.2001)

(84) États désignés (régional) : brevet ARIPPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(25) Langue de dépôt : français

Publiée :

- avec rapport de recherche internationale
- avec la partie réservée au listing des séquences de la description publiée séparément sous forme électronique et disponible sur demande auprès du Bureau international

(26) Langue de publication : français

(88) Date de publication du rapport de recherche internationale: 28 février 2002

(30) Données relatives à la priorité :
00/04630 11 avril 2000 (11.04.2000) FR

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(71) Déposant (pour tous les États désignés sauf US) :
INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE [FR/FR]; 145, rue de l'Université, F-75007 Paris (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement) : BOLOTINE, Alexandre [RU/FR]; 5, rue du Maréchal Galliéni, F-54000 Nancy (FR). SOROKINE, Alexei [RU/FR]; 8, Résidence des Quinquençes, F-91190 Gif-sur-Yvette (FR). RENAULT, Pierre [FR/FR]; 9, rue Magellan, Résidence les Arcades, F-78180 Montigny le Bretonneux (FR). EHRLICH, Stanislav Dusko [FR/FR]; 38, rue de Campo Formio, F-75013 Paris (FR).

(54) Title: LACTOCOCCUS LACTIS GENOME, POLYPEPTIDES AND USES

(54) Titre : GENOME DE LACTOCOCCUS LACTIS, POLYPEPTIDES ET UTILISATIONS

(57) Abstract: The invention concerns the genome sequence and nucleotide sequences of *Lactococcus lactis* IL1403. The invention also concerns polypeptides of said organism, in particular cell envelope polypeptides, polypeptides involved in different metabolism cycles, resistance to phages or stress, or still secreted polypeptides. The invention further concerns the use of said sequences, and different tools for identifying *L. lactis* or associated species. Finally the invention concerns *L. lactis* strains modified so as to increase their industrial properties.

(57) Abrégé : La présente invention concerne la séquence génomique et des séquences nucléotidiques de *Lactococcus lactis* IL1403. L'invention a également pour objet les polypeptides de cet organisme, en particulier les polypeptides d'enveloppe cellulaire, ou impliqués dans les différents cycles de métabolisme, la résistance aux phages ou au stress, ou encore sécrétés. L'invention concerne aussi les utilisations des séquences décrites, ainsi que différents outils permettant l'identification de *L. lactis* ou espèces associées. L'invention concerne aussi des souches de *L. lactis* modifiées afin d'en augmenter les capacités industrielles.

A3

A3

A3

WO 01/77334

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR 01/01103

A. CLASSEMENT DE L'OBJET DE LA DEMANDE					
CIB 7	C12N15/31	C12N15/62	C12N11/00	C07K14/315	C07K16/12
C12Q1/68	C12P1/04	G01N33/53	G06F19/00	A01K67/027	
A23C9/12	A23C19/032				

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 C07K C12N C12Q C12P A01K A23C G01N G06F

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EMBL, EPO-Internal

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	BOLOTIN ET AL.: "Low-redundancy sequencing of the entire <i>Lactococcus lactis</i> IL1403 genome" ANTONIE VAN LEEUWENHOEK, vol. 76, 26 octobre 1999 (1999-10-26), pages 27-76, XP000971953 le document en entier --- -/-	1,2, 46-57, 65-70, 87-94

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- "&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

16 août 2001

Date d'expédition du présent rapport de recherche internationale

23.10.01

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

van Klompenburg, W

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR 01/01103

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	<p>DATABASE EMBL [en ligne] EBI; ACC. NO.: U76424, 25 février 1998 (1998-02-25) EL-KAROUI ET AL.: "Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence" XP002156711 abrégé -& EL-KAROUI ET AL.: "Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence" PROC. NATL. ACAD. SCI. USA, vol. 95, no. 2, janvier 1998 (1998-01), pages 626-631, XP002156710 figure 2</p> <p>---</p>	1,2, 46-57, 65-70, 87-94
A	<p>KALMAN S ET AL: "COMPARATIVE GENOMES OF CHLAMYDIA PNEUMONIAE AND C. TRACHOMATIS" NATURE GENETICS, US, NEW YORK, NY, vol. 21, no. 4, avril 1999 (1999-04), pages 385-389, XP000853883 ISSN: 1061-4036</p> <p>figure 3</p> <p>-----</p>	1,2, 46-57, 65-70, 87-94

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale n°
PCT/FR 01/01103

Cadre I Observations - lorsqu'il a été estimé que certaines revendications ne pouvaient pas faire l'objet d'une recherche (suite du point 1 de la première feuille)

Conformément à l'article 17.2)a), certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:

1. Les revendications n°^{os} se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de procéder à la recherche, à savoir:
2. Les revendications n°^{os} se rapportent à des parties de la demande internationale qui ne remplissent pas suffisamment les conditions prescrites pour qu'une recherche significative puisse être effectuée, en particulier:
3. Les revendications n°^{os} sont des revendications dépendantes et ne sont pas rédigées conformément aux dispositions de la deuxième et de la troisième phrases de la règle 6.4.a).

Cadre II Observations - lorsqu'il y a absence d'unité de l'invention (suite du point 2 de la première feuille)

L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la demande internationale, à savoir:

voir feuille supplémentaire

1. Comme toutes les taxes additionnelles ont été payées dans les délais par le déposant, le présent rapport de recherche internationale porte sur toutes les revendications pouvant faire l'objet d'une recherche.
2. Comme toutes les recherches portant sur les revendications qui s'y prêtaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, l'administration n'a sollicité le paiement d'aucune taxe de cette nature.
3. Comme une partie seulement des taxes additionnelles demandées a été payée dans les délais par le déposant, le présent rapport de recherche internationale ne porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir les revendications n°^{os}
4. Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale ne porte que sur l'invention mentionnée en premier lieu dans les revendications; elle est couverte par les revendications n°^{os} 1, 2, 46-57, 65-70, 87-94 (toutes partiellement)

Remarque quant à la réserve

- Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposant.
 Le paiement des taxes additionnelles n'était assorti d'aucune réserve.

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

1. revendications: Invention 1. revendications: 1,2,46-57,65-70, 87-94 (toutes partiellement)

Séquence nucléotidique SEQ ID NO:1 du génome de *Lactococcus lactis*, vecteur correspondant, cellule hôte comprenant le vecteur, végétal ou animal comprenant la cellule hôte. Procédé de détection qui met en oeuvre la séquence de SEQ ID NO:1.

2. revendications: Invention 2. revendications: 1-8, 18,36,46- 97, 104-110 (toutes partiellement)

ORF2 de *Lactococcus lactis*, polypeptides, séquences nucléotides correspondants, sonde ou amorce, puce à ADN, puce à protéine, vecteur de clonage et/ou d'expression, utilisation de vecteur, cellule hôte, végétale ou animale excepté humaine, procédé pour la détection et/ou l'identification, kit, anticorps, utilisation de polypeptide, polypeptide hybride, procédé de biosynthèse ou de biodégradation, utilisation de séquence nucléotidique, souche de *Lactococcus lactis*, méthode de diagnostic de la présence de phages.

3. revendications: Inventions 3-2323. revendications 1-44,46-97, 104-110 (partiellement et pour autant qu'applicable), 98-103 (complètement et pour autant qu'applicable)

Identique à l'invention 2 mais appliquées aux SEQ ID NO: 3-2323.

4. revendication : Invention 2324. revendication 45

Procédé pour estimer la colinéarité entre les génomes de *Lactococcus lactis* et d'une autre souche de *Lactococcus lactis*.

**(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)**

VERSION CORRIGÉE

**(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international**

**(43) Date de la publication internationale
18 octobre 2001 (18.10.2001)**

PCT

**(10) Numéro de publication internationale
WO 01/077334 A3**

(51) Classification internationale des brevets² :
**C12N 15/31, 15/62, 11/00, C07K
14/315, 16/12, C12Q 1/68, C12P 1/04, G01N 33/53, G01F
19/00, A01K 67/027, A23C 9/12, 19/032**

(81) États désignés (national) : AE, AG, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) Numéro de la demande internationale :
PCT/FR01/01103

(84) États désignés (régional) : brevet ARIPO (GH, GM, KE,
LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(30) Données relatives à la priorité :
00/04630 11 avril 2000 (11.04.2000) FR

Publiée :

- avec rapport de recherche internationale
- avec la partie réservée au listage des séquences de la description publiée séparément sous forme électronique et disponible sur demande auprès du Bureau international

(71) Déposant (pour tous les États désignés sauf US) :
**INSTITUT NATIONAL DE LA RECHERCHE
AGRONOMIQUE [FR/FR]; 145, rue de l'Université,
F-75007 Paris (FR).**

**(88) Date de publication du rapport de recherche
internationale:** 28 février 2002

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement) : BOLOTINE, Alexandre [RU/FR]; 5, rue du Maréchal Galliéni, F-54000 Nancy (FR). SOROKINE, Alexei [RU/FR]; 8, Résidence des Quinquenches, F-91190 Gif-sur-Yvette (FR). RENAULT, Pierre [FR/FR]; 9, rue Magellan, Résidence les Arcades, F-78180 Montigny le Bretonneux (FR). EHRLICH, Stanislav Dusko [FR/FR]; 38, rue dc Campo Formio, F-75013 Paris (FR).

(48) Date de publication de la présente version corrigée: 23 janvier 2003

(74) Mandataires : MARTIN, Jean-Jacques etc.; Cabinet Regimbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17 (FR).

(15) Renseignements relatifs à la correction:
voir la Gazette du PCT n° 04/2003 du 23 janvier 2003,
Section II

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: LACTOCOCCUS LACTIS GENOME, POLYPEPTIDES AND USES

(54) Titre : GENOME DE LACTOCOCCUS LACTIS, POLYPEPTIDES ET UTILISATIONS

(57) Abstract: The invention concerns the genome sequence and nucleotide sequences of *Lactococcus lactis* IL1403. The invention also concerns polypeptides of said organism, in particular cell envelope polypeptides, polypeptides involved in different metabolism cycles, resistance to phages or stress, or still secreted polypeptides. The invention further concerns the use of said sequences, and different tools for identifying *L. lactis* or associated species. Finally the invention concerns *L. lactis* strains modified so as to increase their industrial properties.

(57) Abrégé : La présente invention concerne la séquence génomique et des séquences nucléotidiques de *Lactococcus lactis* IL1403. L'invention a également pour objet les polypeptides de cet organisme, en particulier les polypeptides d'enveloppe cellulaire, ou impliqués dans les différents cycles de métabolisme, la résistance aux phages ou au stress, ou encore sécrétés. L'invention concerne aussi les utilisations des séquences décrites, ainsi que différents outils permettant l'identification de *L. lactis* ou espèces associées. L'invention concerne aussi des souches de *L. lactis* modifiées afin d'en augmenter les capacités industrielles.

WO 01/077334 A3

**GENOME DE LACTOCOCCUS LACTIS, POLYPEPTIDES
ET UTILISATIONS**

5 La présente invention a pour objet la séquence génomique et des séquences nucléotidiques codant pour des polypeptides de *Lactococcus lactis* IL1403. Les polypeptides décrits dans la présente invention sont, de façon non limitative, des polypeptides d'enveloppe cellulaire, des polypeptides impliqués dans les différents cycles du métabolisme de *Lactococcus lactis* ou dans les 10 processus de réPLICATION et de sensibilité ou de résistance aux phages, ou sécrétés.

15 L'invention concerne également l'utilisation de la séquence génomique et/ou des séquences nucléotidiques et/ou polypeptidiques décrites dans la présente invention pour l'analyse de l'expression de gènes, et l'identification de gènes homologues chez des espèces proches de *Lactococcus lactis*.

20 L'invention concerne également différents outils qui permettent d'identifier la présence de *Lactococcus lactis* ou d'espèces avoisinantes dans des échantillons biologiques.

25 Par ailleurs, l'invention concerne également des souches de *Lactococcus lactis* ou d'espèces proches de *Lactococcus lactis*, modifiées par mutagenèse et/ou introduction de gènes spécifiques de *L. lactis*, afin d'augmenter les propriétés industrielles desdites souches.

30 *Lactococcus lactis* est une bactérie gram positive à bas GC%, catalase négative, asporogène et anaérobiose facultative. Elle est membre du groupe des Streptococceae auquel appartient aussi entre autre les bactéries des genres *Enterococcus*, *Streptococcus*, *Leuconostoc*, *Pediococcus*. De nombreuses souches de ces genres sont utilisées dans l'industrie alimentaire, mais aussi dans des fabrications spécialisées. *Lactococcus* est l'une des bactéries les mieux caractérisées de ce groupe, tant au niveau métabolique que génétique. Ces bactéries produisent

principalement du lactate à partir des sucres lors des fermentation alimentaires et sont donc couramment nommées "bactéries lactiques". Les bactéries lactiques sont en général non pathogènes et sont ajoutées comme ferment pour la production d'aliments fermentés. En particulier, *L. lactis* est utilisé comme ferment pour la 5 production de fromages, de beurre et de nombreux autres produits laitiers. Les souches de *L. lactis* sont en général capables de pousser rapidement dans le lait. Cette propriété est conférée entre autre par leur capacité à utiliser le lactose comme source de sucre et les protéines du lait comme source d'acides aminés. Ces gènes sont portés par des plasmides dont la perte provoque un chute de la vitesse de 10 croissance des souches dans le lait.

L'importance de *L. lactis* pour l'industrie a suscité de nombreuses études en particulier durant ces 15 dernières années. Cela a conduit à la construction de nombreux outils d'étude et de modification génétique pour cette bactérie. Ces études ont aussi permis d'accumuler de nombreuses connaissances sur sa génétique et sa 15 physiologie. La plupart de ces études furent conduites sur deux groupes de souches, dont les représentants de laboratoire les plus connus sont les souches IL1403 et MG1363. Ces deux souches sont génétiquement représentatives des deux principales sous espèces utilisées dans l'industrie, *L. lactis* subsp. *lactis* et subsp. *cremoris*.

20 Une étude décrivant la variabilité génétique au sein de l'espèce *L. lactis* a été publiée (Tailliez *et al.*, System. Appl. Microbiol., 21: 530-538, 1998). Elle révèle que les souches industrielles peuvent être réparties en 3 groupes. La souche IL1403 (déposée à la CNCM sous le numéro I-2438) dont la séquence est un objet de la présente invention appartient au groupe de souches le plus représenté.

25

De nombreuses études ont été réalisées pour comprendre le métabolisme et la physiologie des lactocoques dans le but d'améliorer leur utilisation dans l'industrie et de développer de nouvelles applications. Ces études ont permis, entre autre de développer des applications permettant l'accélération de l'affinage, la production

d'arôme ou la résistance aux phages. Il a été aussi mis au point des procédés biotechnologiques permettant de produire avantageusement des produits tel la L-alanine.

La recherche actuelle cherche donc à maîtriser et améliorer les 5 performances des bactéries lactiques pour optimiser les transformations agroalimentaires, en particulier la fabrication des yaourts et des fromages.

A titre d'exemple, le goût de noisette du beurre, le goût frais des fromages blancs est apporté par le diacétyle, molécule produite par les bactéries lactiques. Or, l'addition de diacétyle est interdite en France. Il serait par 10 conséquent intéressant d'utiliser des souches naturellement ou artificiellement surproductrices de diacétyle pour obtenir des produits ayant un goût plus typé.

Les bactéries lactiques sécrètent des enzymes et autres protéines qui contribuent aux qualités organoleptiques (texture et arôme) des fromages. La connaissance des mécanismes facilitant la sécrétion devrait permettre 15 d'accélérer l'affinage ou de faire produire par les bactéries des molécules intéressantes : enzymes digestives, antigènes pour la fabrication de vaccins...

On estime que 10% de la fabrication fromagère est perdue ou fortement déclassée du fait de l'attaque par des phages. Si on comprenait les raisons de la résistance de certaines bactéries, on pourrait améliorer la survie des 20 ferment utilisés par l'industrie.

L'ensemble des études menées sur *L. lactis* a conduit à la publication de 420 séquences dans GenBank correspondant à 1317 peptides traduits. Ces séquences sont largement redondantes par le fait que de nombreux gènes ont été séquencés plusieurs fois dans des souches différentes. De plus, de nombreuses séquences 25 correspondent à une information plasmidique. Il en découle que ces séquences correspondent à environ 500 gènes chromosomiques chez *L. lactis*, ce qui représente entre un cinquième et un quart du génome.

Un certain nombre d'approches a été utilisé pour identifier des gènes de *L. lactis*. Une première approche consiste à isoler dans un premier temps des mutants

affectés dans une fonction, et de rechercher par la suite des fragments d'ADN qui permettent de restaurer cette fonction (Renault, P et al. 1989. *Product of the Lactococcus lactis gene required for malolactic fermentation is homologous to a family of positive regulators. J. Bacteriol.*, no. 171 : 3108-14). Une deuxième approche est de complémenter des mutants d'autres bactéries comme *E. coli* ou *B. subtilis* pour un gène de fonction connue (Bardowski, J., S. D. Ehrlich, and A. Chopin. 1992. *Tryptophan biosynthesis genes in Lactococcus lactis subsp. lactis. J. Bacteriol.* 174: 6563-70.). Une troisième approche est de rechercher des mutants obtenus par insertion de transposons ou de plasmides portant des courtes séquences homologues, ce qui permet ensuite de caractériser le ou les gènes inactivés en clonant des fragments adjacents (Rallu, F., A. Gruss, and E. Maguin. 1996. *Lactococcus lactis and stress. Antonie Van Leeuwenhoek* 70, no. 2-4: 243-51). Des approches génomiques permettent aussi de définir des segments de gènes qui sont conservés dans différents organismes, et d'en déduire des amorces dont l'utilisation en PCR permet d'amplifier et d'isoler un fragment d'un gène connu par ailleurs (Duwat, P., S. D. Ehrlich, and A. Gruss. 1995. *The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Molecular Microbiology* 17: 1121-31). Différentes variantes de ces techniques existent et peuvent être utilisées avantageusement.

20 L'étude de *Lactococcus lactis* demande de nouvelles approches, en particulier génétiques, afin d'améliorer la compréhension des différentes voies métaboliques de cet organisme.

Ainsi, c'est un objet de la présente invention que de divulguer la séquence complète du génome de *Lactococcus lactis* IL1403 ainsi que de tous 25 les gènes contenus dans cedit génome.

En effet, la connaissance du génome de cet organisme permet de mieux définir les interactions entre les différents gènes, les différentes protéines, et par là-même, les différentes voies métaboliques. En effet, et contrairement à la divulgation de séquences isolées, la séquence génomique complète d'un 30 organisme forme un tout, permettant d'obtenir immédiatement toutes les

informations nécessaires à cet organisme pour croître et fonctionner.

La présente invention concerne donc une séquence nucléotidique de *Lactococcus lactis* caractérisée en ce qu'elle correspond à SEQ ID N° 1.

La présente invention concerne également une séquence nucléotidique
5 de *Lactococcus lactis* caractérisée en ce qu'elle est choisie parmi :

- a) une séquence nucléotidique comportant au moins 80 %, 85 %, 90 %, 95 % ou 98 % d'identité avec SEQ ID N° 1 ;
- b) une séquence nucléotidique hybride dans des conditions de forte stringence avec SEQ ID N° 1 ;
- 10 c) une séquence nucléotidique complémentaire de SEQ ID N° 1 ou complémentaire d'une séquence nucléotidique telle que définie en a), ou b), ou une séquence nucléotidique de l'ARN correspondant ;
- d) une séquence nucléotidique de fragment représentatif de SEQ ID N° 15 1, ou de fragment représentatif d'une séquence nucléotidique telle que définie en a), b) ou c);
- e) une séquence nucléotidique comprenant une séquence telle que définie en a), b), c) ou d) ; et
- f) une séquence nucléotidique modifiée d'une séquence nucléotidique 20 telle que définie en a), b), c), d) ou e).

De façon plus particulière, la présente invention a également pour objet les séquences nucléotidiques caractérisées en ce qu'elles sont issues de SEQ ID N° 1 et en ce qu'elles codent pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323.

25 De plus, les séquences nucléotidiques caractérisées en ce qu'elles comprennent une séquence nucléotidique choisie parmi :

- a) une séquence nucléotidique codant pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323;
- b) une séquence nucléotidique comportant au moins 80 %, 85 %, 90 %,

95 % ou 98 % d'identité avec une séquence nucléotidique codant pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323 ;

- 5 c) une séquence nucléotidique s'hybridant dans des conditions de forte stringence avec une séquence nucléotidique codant pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323 ;
- 10 d) une séquence nucléotidique complémentaire ou d'ARN correspondant à une séquence telle que définie en a), b) ou c) ;
- e) une séquence nucléotidique de fragment représentatif d'une séquence telle que définie en a), b), c) ou d) ; et.
- f) une séquence nucléotidique modifiée d'une séquence telle que définie en a), b), c), d) ou e),

sont également des objets de l'invention.

15 Par acide nucléique, séquence nucléique ou d'acide nucléique, polynucléotide, oligonucléotide, séquence de polynucléotide, séquence nucléotidique, termes qui seront employés indifféremment dans la présente description, on entend désigner un enchaînement précis de nucléotides, modifiés ou non, permettant de définir un fragment ou une région d'un acide nucléique,

20 comportant ou non des nucléotides non naturels, et pouvant correspondre aussi bien à un ADN double brin, un ADN simple brin que des produits de transcription desdits ADNs. Ainsi, les séquences nucléiques selon l'invention englobent également les PNA (Peptid Nucleic Acid), ou analogues.

Il doit être compris que la présente invention ne concerne pas les séquences 25 nucléotidiques dans leur environnement chromosomique naturel, c'est-à-dire à l'état naturel. Il s'agit de séquences qui ont été isolées et/ou purifiées, c'est-à-dire qu'elles ont été prélevées directement ou indirectement, par exemple par copie, leur environnement ayant été au moins partiellement modifié. On entend ainsi également désigner les acides nucléiques obtenus par synthèse chimique.

Par « pourcentage d'identité » entre deux séquences d'acides nucléiques ou d'acides aminés au sens de la présente invention, on entend désigner un pourcentage de nucléotides ou de résidus d'acides aminés identiques entre les deux séquences à comparer, obtenu après le meilleur alignement, ce pourcentage étant purement statistique et les différences entre les deux séquences étant réparties au hasard et sur toute leur longueur. On entend désigner par "meilleur alignement" ou "alignement optimal", l'alignement pour lequel le pourcentage d'identité déterminé comme ci-après est le plus élevé. Les comparaisons de séquences entre deux séquences d'acides nucléiques ou d'acides aminés sont traditionnellement réalisées en comparant ces séquences après les avoir alignées de manière optimale, ladite comparaison étant réalisée par segment ou par « fenêtre de comparaison » pour identifier et comparer les régions locales de similarité de séquence. L'alignement optimal des séquences pour la comparaison peut être réalisé, autre manuellement, au moyen de l'algorithme d'homologie locale de Smith et Waterman (1981, Ad. App. Math. 2 : 482), au moyen de l'algorithme d'homologie locale de Needleman et Wunsch (1970, J. Mol. Biol. 48 : 443), au moyen de la méthode de recherche de similarité de Pearson et Lipman (1988, Proc. Natl. Acad. Sci. USA 85 : 2444), au moyen de logiciels informatiques utilisant ces algorithmes (GAP, BESTFIT, BLAST P, BLAST N, FASTA et TFASTA dans le Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI). Afin d'obtenir l'alignement optimal, on utilise de préférence le programme BLAST, avec la matrice BLOSUM 62. On peut également utiliser les matrices PAM ou PAM250.

Le pourcentage d'identité entre deux séquences d'acides nucléiques ou d'acides aminés est déterminé en comparant ces deux séquences alignées de manière optimale dans laquelle la séquence d'acides nucléiques ou d'acides aminés à comparer peut comprendre des additions ou des délétions par rapport à la séquence de référence pour un alignement optimal entre ces deux séquences. Le pourcentage d'identité est calculé en déterminant le nombre de positions identiques pour lesquelles le nucléotide ou le résidu d'acide aminé est identique entre les deux

séquences, en divisant ce nombre de positions identiques par le nombre total de positions comparées et en multipliant le résultat obtenu par 100 pour obtenir le pourcentage d'identité entre ces deux séquences.

Par séquences nucléiques présentant un pourcentage d'identité d'au moins 5 80 %, de préférence 85 % ou 90 %, de façon plus préférée 95 % voire 98 %, après alignement optimal avec une séquence de référence, on entend désigner les séquences nucléiques présentant, par rapport à la séquence nucléique de référence, certaines modifications comme en particulier une délétion, une troncation, un allongement, une fusion chimérique et/ou une substitution, notamment ponctuelle, et 10 dont la séquence nucléique présente au moins 80 %, de préférence 85 %, 90 %, 95 % ou 98 %, d'identité après alignement optimal avec la séquence nucléique de référence. Il s'agit de préférence de séquences dont les séquences complémentaires sont susceptibles de s'hybrider spécifiquement avec les séquences de référence. De préférence, les conditions d'hybridation spécifiques ou de forte stringence seront 15 telles qu'elles assurent au moins 80 %, de préférence 85 %, 90 %, 95 % ou 98 % d'identité après alignement optimal entre l'une des deux séquences et la séquence complémentaire de l'autre.

Une hybridation dans des conditions de forte stringence signifie que les 20 conditions de température et de force ionique sont choisies de telle manière qu'elles permettent le maintien de l'hybridation entre deux fragments d'ADN complémentaires. A titre illustratif, des conditions de forte stringence de l'étape d'hybridation aux fins de définir les fragments polynucléotidiques décrits ci-dessus, sont avantageusement les suivantes.

L'hybridation ADN-ADN ou ADN-ARN est réalisée en deux étapes : (1) 25 préhybridation à 42°C pendant 3 heures en tampon phosphate (20 mM, pH 7,5) contenant 5 x SSC (1 x SSC correspond à une solution 0,15 M NaCl + 0,015 M citrate de sodium), 50 % de formamide, 7 % de sodium dodécyl sulfate (SDS), 10 x Denhardt's, 5 % de dextran sulfate et 1 % d'ADN de sperme de saumon ; (2) hybridation proprement dite pendant 20 heures à une température dépendant de la

taille de la sonde (i.e. : 42°C, pour une sonde de taille > 100 nucléotides) suivie de 2 lavages de 20 minutes à 20°C en 2 x SSC + 2 % SDS, 1 lavage de 20 minutes à 20°C en 0,1 x SSC + 0,1 % SDS. Le dernier lavage est pratiqué en 0,1 x SSC + 0,1 % SDS pendant 30 minutes à 60°C pour une sonde de taille > 100 nucléotides.

5 Les conditions d'hybridation de forte stringence décrites ci-dessus pour un polynucléotide de taille définie, peuvent être adaptées par l'homme du métier pour des oligonucléotides de taille plus grande ou plus petite, selon l'enseignement de Sambrook et al., (1989, Molecular cloning : a laboratory manual. 2nd Ed. Cold Spring Harbor).

10 De plus, par fragment représentatif de séquences selon l'invention, on entend désigner tout fragment nucléotidique présentant au moins 15 nucléotides, de préférence au moins 30, 75, 150, 300 et 450 nucléotides consécutifs de la séquence dont il est issu.

15 Par fragment représentatif, on entend en particulier une séquence nucléique codant pour un fragment biologiquement actif d'un polypeptide, tel que défini plus loin.

Par fragment représentatif, on entend également les séquences intergéniques, et en particulier les séquences nucléotidiques portant les signaux de régulation (promoteurs, terminateurs, voire enhancers...).

20 Parmi lesdits fragments représentatifs, on préfère ceux ayant des séquences nucléotidiques correspondant à des cadres ouverts de lecture, dénommés séquences ORFs (ORF pour « Open Reading Frame »), compris en général entre un codon d'initiation et un codon stop, ou entre deux codons stop, et codant pour des polypeptides, de préférence d'au moins 100 acides aminés,

25 tel que par exemple, sans s'y limiter, les séquences ORFs qui seront décrites par la suite.

La numérotation des séquences nucléotidiques ORFs qui sera utilisée par la suite dans la présente description correspond à la numérotation des séquences d'acides aminés des protéines codées par lesdites ORFs.

Ainsi, les séquences nucléotidiques ORF2, ORF3..., ORF2322 et ORF2323 codent respectivement pour les protéines de séquences d'acides aminés SEQ ID N° 2, SEQ ID N° 3..., SEQ ID N° 2322 et SEQ ID N° 2323 figurant dans la liste de séquences de la présente invention. Les séquences 5 nucléotidiques détaillées des séquences ORF2, ORF3..., ORF2322 et ORF2323 sont déterminées par leur position respective sur la séquence génomique SEQ ID N° 1. Le tableau I fournit les coordonnées des différentes ORFs par rapport à la séquence nucléotidique SEQ ID N° 1, en donnant le nucléotide de départ, le nucléotide de fin d'ORF, ainsi que le nucléotide estimé pour lequel la protéine 10 débute.

Ainsi, ORF N° 2 s'étend du nucléotide 349 au nucléotide 1722, la protéine SEQ ID N° 2 s'étendant quant à elle du nucléotide 358 au nucléotide 1722. De même, OFR N° 6 s'étend du nucléotide 10283 au nucléotide 10846, la protéine débutant au nucléotide 10837, car elle est située sur le brin 15 complémentaire. Ainsi, à la lecture du Tableau I, on voit bien que ORF N° 6 est la séquence complémentaire s'étendant entre les nucléotides 10283 et 10846, extrémités comprises, de la séquence SEQ ID N° 1.

Les fragments représentatifs selon l'invention peuvent être obtenus par exemple par amplification spécifique telle que la PCR ou après digestion par des 20 enzymes de restriction appropriés de séquences nucléotidiques selon l'invention, cette méthode étant décrite en particulier dans l'ouvrage de Sambrook et al.. Lesdits fragments représentatifs peuvent également être obtenus par synthèse chimique lors que leur taille n'est pas trop importante, selon des méthodes bien connues de l'homme du métier.

25 Parmi les séquences contenant des séquences de l'invention, ou des fragments représentatifs, on entend également les séquences qui sont naturellement encadrées par des séquences qui présentent au moins 80 %, 85 %, 90 %, 95 % ou 98 % d'identité avec les séquences selon l'invention.

Par séquence nucléotidique modifiée, on entend toute séquence

nucléotidique obtenue par mutagénèse selon des techniques bien connues de l'homme du métier, et comportant des modifications par rapport aux séquences normales, par exemple des mutations dans les séquences régulatrices et/ou promotrices de l'expression du polypeptide, notamment conduisant à une 5 modification du taux d'expression ou de l'activité dudit polypeptide.

Par séquence nucléotidique modifiée, on entend également toute séquence nucléotidique codant pour un polypeptide modifié tel que définit ci-après.

Les fragments représentatifs selon l'invention peuvent également être 10 des sondes ou amorces, qui peuvent être utilisées dans des procédés de détection, d'identification, de dosage ou d'amplification de séquences nucléiques.

Une sonde ou amorce se définit, au sens de l'invention, comme étant un fragment d'acides nucléiques simple brin ou un fragment double brin dénaturé 15 comprenant par exemple de 12 bases à quelques kb, notamment de 15 à quelques centaines de bases, de préférence de 15 à 50 ou 100 bases, et possédant une spécificité d'hybridation dans des conditions déterminées pour former un complexe d'hybridation avec un acide nucléique cible.

Les sondes et amorces selon l'invention peuvent être marquées directement 20 ou indirectement par un composé radioactif ou non radioactif par des méthodes bien connues de l'homme du métier, afin d'obtenir un signal détectable et/ou quantifiable.

Les séquences de polynucléotides selon l'invention non marquées peuvent être utilisées directement comme sonde ou amorce.

Les séquences sont généralement marquées pour obtenir des séquences 25 utilisables pour de nombreuses applications. Le marquage des amorces ou des sondes selon l'invention est réalisé par des éléments radioactifs ou par des molécules non radioactives.

Parmi les isotopes radioactifs utilisés, on peut citer le ^{32}P , le ^{33}P , le ^{35}S , le ^3H ou le ^{125}I . Les entités non radioactives sont sélectionnées parmi les ligands tels la

biotine, l'avidine, la streptavidine, la dioxygénine, les haptènes, les colorants, les agents luminescents tels que les agents radioluminescents, chémoluminescents, bioluminescents, fluorescents, phosphorescents.

Les polynucléotides selon l'invention peuvent ainsi être utilisés comme amorce et/ou sonde dans des procédés mettant en œuvre notamment la technique de PCR (amplification en chaîne par polymérase) (Rölf et al., 1991, Berlin : Springer-Verlag). Cette technique nécessite le choix de paires d'amorces oligonucléotidiques encadrant le fragment qui doit être amplifié. On peut, par exemple, se référer à la technique décrite dans le brevet américain U.S. N° 4,683,202. Les fragments amplifiés peuvent être identifiés, par exemple après une électrophorèse en gel d'agarose ou de polyacrylamide, ou après une technique chromatographique comme la filtration sur gel ou la chromatographie échangeuse d'ions, puis séquencés. La spécificité de l'amplification peut être contrôlée en utilisant comme amorce les séquences nucléotidiques de polynucléotides de l'invention comme matrice, des plasmides contenant ces séquences ou encore les produits d'amplification dérivés. Les fragments nucléotidiques amplifiés peuvent être utilisés comme réactifs dans des réactions d'hybridation afin de mettre en évidence la présence, dans un échantillon biologique, d'un acide nucléique cible de séquence complémentaire à celle desdits fragments nucléotidiques amplifiés.

L'invention vise également les acides nucléiques susceptibles d'être obtenus par amplification à l'aide d'amorces selon l'invention.

D'autres techniques d'amplification de l'acide nucléique cible peuvent être avantageusement employées comme alternative à la PCR (PCR-like) à l'aide de couple d'amorces de séquences nucléotidiques selon l'invention. Par PCR-like on entend désigner toutes les méthodes mettant en œuvre des reproductions directes ou indirectes des séquences d'acides nucléiques, ou bien dans lesquelles les systèmes de marquage ont été amplifiés, ces techniques sont bien entendu connues, en général il s'agit de l'amplification de l'ADN par une polymérase ; lorsque l'échantillon d'origine est un ARN il convient préalablement d'effectuer une transcription inverse.

Il existe actuellement de très nombreux procédés permettant cette amplification, comme par exemple la technique SDA (Strand Displacement Amplification) ou technique d'amplification à déplacement de brin (Walker et al., 1992, Nucleic Acids Res. 20 : 1691), la technique TAS (Transcription-based Amplification System) 5 décrite par Kwoh et al. (1989, Proc. Natl. Acad. Sci. USA, 86, 1173), la technique 3SR (Self-Sustained Sequence Replication) décrite par Guatelli et al. (1990, Proc. Natl. Acad. Sci. USA 87: 1874), la technique NASBA (Nucleic Acid Sequence Based Amplification) décrite par Kievitis et al. (1991, J. Virol. Methods, 35, 273), la technique TMA (Transcription Mediated Amplification), la technique LCR (Ligase 10 Chain Reaction) décrite par Landegren et al. (1988, Science 241, 1077), la technique de RCR (Repair Chain Reaction) décrite par Segev (1992, Kessler C. Springer Verlag, Berlin, New-York, 197-205), la technique CPR (Cycling Probe Reaction) décrite par Duck et al. (1990, Biotechniques, 9, 142), la technique 15 d'amplification à la Q-béta-réplique décrite par Miele et al. (1983, J. Mol. Biol., 171, 281). Certaines de ces techniques ont depuis été perfectionnées.

Dans le cas où le polynucléotide cible à détecter est un ARNm, on utilise avantageusement, préalablement à la mise en œuvre d'une réaction d'amplification à l'aide des amores selon l'invention ou à la mise en œuvre d'un procédé de détection à l'aide des sondes de l'invention, une enzyme de type transcriptase inverse afin d'obtenir un ADNc à partir de l'ARNm contenu dans l'échantillon biologique. L'ADNc obtenu servira alors de cible pour les amores ou les sondes mises en œuvre dans le procédé d'amplification ou de détection selon l'invention. 20

La technique d'hybridation de sondes peut être réalisée de manières diverses (Matthews et al., 1988, Anal. Biochem., 169, 1-25). La méthode la plus générale 25 consiste à immobiliser l'acide nucléique extrait des cellules de différents tissus ou de cellules en culture sur un support (tels que la nitrocellulose, le nylor, le polystyrène) et à incuber, dans des conditions bien définies, l'acide nucléique cible immobilisé avec la sonde. Après l'hybridation, l'excès de sonde est éliminé et les molécules hybrides formées sont détectées par la méthode appropriée (mesure de la

radioactivité, de la fluorescence ou de l'activité enzymatique liée à la sonde).

Selon un autre mode de mise en œuvre des sondes nucléiques selon l'invention, ces dernières peuvent être utilisées comme sondes de capture. Dans ce cas, une sonde, dite « sonde de capture », est immobilisée sur un support et sert à capturer par hybridation spécifique l'acide nucléique cible obtenu à partir de l'échantillon biologique à tester et l'acide nucléique cible est ensuite détecté grâce à une seconde sonde, dite « sonde de détection », marquée par un élément facilement détectable.

10 Parmi les fragments d'acides nucléiques intéressants, il faut ainsi citer en particulier les oligonucléotides anti-sens, c'est-à-dire dont la structure assure, par hybridation avec la séquence cible, une inhibition de l'expression du produit correspondant. Il faut également citer les oligonucléotides sens qui, par interaction avec des protéines impliquées dans la régulation de l'expression du produit correspondant, induiront soit une inhibition, soit une activation de cette expression.

15 De façon préférée, les sondes ou amorces selon l'invention sont immobilisées sur un support, de manière covalente ou non covalente. En particulier, le support peut être une puce à ADN ou un filtre à haute densité, également objets de la présente invention.

On entend désigner par puce à ADN ou filtre haute densité, un support 20 sur lequel sont fixées des séquences d'ADN, chacune d'entre elles pouvant être repérée par sa localisation géographique. Ces puces ou filtres diffèrent principalement par leur taille, le matériau du support, et éventuellement le nombre de séquences d'ADN qui y sont fixées.

On peut fixer les sondes ou amorces selon la première invention sur des 25 supports solides, en particulier les puces à ADN, par différents procédés de fabrication. En particulier, on peut effectuer une synthèse *in situ* par adressage photochimique ou par jet d'encre. D'autres techniques consistent à effectuer une synthèse *ex situ* et à fixer les sondes sur le support de la puce à ADN par adressage mécanique, électronique ou par jet d'encre. Ces différents procédés

sont bien connus de l'homme du métier.

Une séquence nucléotidique (sonde ou amorce) selon l'invention permet donc la détection et/ou l'amplification de séquences nucléiques spécifiques. En particulier, la détection de cesdites séquences est facilitée lorsque la sonde est 5 fixée sur une puce à ADN, ou à un filtre haute densité.

L'utilisation de puces à ADN ou de filtres à haute densité permet en effet de déterminer l'expression de gènes dans un organisme présentant une séquence génomique proche de *L. lactis* IL1403.

La séquence génomique de *L. lactis* IL1403, complétée par l'identification 10 de tous les gènes de cet organisme, telle que présentée dans la présente invention, sert de base à la construction de ces puces à ADN ou filtre.

La préparation de ces filtres ou puces consiste à synthétiser des oligonucléotides, correspondant aux extrémités 5' et 3' des gènes. Ces oligonucléotides sont choisis en utilisant la séquence génomique et ses annotations 15 divulguées par la présente invention. La température d'appariement des ces oligonucléotides aux places correspondantes sur l'ADN doit être approximativement la même pour chaque oligonucléotide. Ceci permet de préparer des fragments d'ADN correspondants à chaque gène par l'utilisation de condition de PCR appropriées dans un environnement hautement automatisée. Les fragments 20 amplifiés sont ensuite immobilisés sur des filtres ou des supports en verre, silicium ou polymères synthétiques et ces milieux sont utilisés pour l'hybridation.

La disponibilité de tels filtres et/ou puces et de la séquence génomique correspondante annotée permet d'étudier l'expression de grands ensembles, voire de la totalité des gènes dans les micro-organismes associés à *Lactococcus lactis*, en 25 préparant les ADN complémentaires, et en les hybridant à l'ADN ou aux oligonucléotides immobilisés sur les filtres ou les puces. Egalement, les filtres et/ou les puces permettent d'étudier la variabilité des souches ou des espèces, en préparant l'ADN de ces organismes et en les hybridant à l'ADN ou aux oligonucléotides immobilisés sur les filtres ou les puces.

Les différences entre les séquences génomiques des différentes souches ou espèces peuvent grandement affecter l'intensité de l'hybridation et, par conséquent, perturber l'interprétation des résultats. Il peut donc être nécessaire d'avoir la séquence précise des gènes de la souche que l'on souhaite étudier. La méthode de 5 détection des gènes décrite plus loin en détail, impliquant la détermination de la séquence de fragments aléatoires d'un génome, et les organisant d'après la séquence du génome complet de *Lactococcus lactis* IL1403 divulgué dans la présente invention, peut être très utile.

L'utilisation des filtres à haute densité et/ou des puces permet ainsi 10 d'obtenir des connaissances nouvelles sur la régulation des gènes dans les organismes d'importance industrielle, et en particulier les bactéries lactiques propagées dans diverses conditions. Elle permet aussi une identification rapide des différences entre les génomes des souches utilisées dans de multiples applications industrielles.

15 En outre, une puce à ADN ou un filtre peut être un outil extrêmement intéressant pour la détermination, la détection et/ou l'identification d'un microorganisme. Ainsi, on préfère également les puces à ADN selon l'invention qui contiennent en outre au moins une séquence nucléotidique d'un microorganisme autre de *Lactococcus lactis*, immobilisée sur le support de 20 ladite puce. De préférence, le microorganisme choisi l'est parmi les microorganismes associés à *Lactococcus lactis*, les bactéries du genre *Lactococcus*, ou les variants de *Lactococcus lactis*. Par bactérie associée à *Lactococcus lactis*, on entend, comme ceci a déjà été défini plus haut, les bactéries membres du groupe des *Streptocoques*.

25 Une puce à ADN ou un filtre selon l'invention est un élément très utile de certains kits ou nécessaires pour la détection et/ou l'identification de microorganismes, en particulier les bactéries appartenant à l'espèce *Lactococcus lactis* ou les microorganismes associés, également objets de l'invention.

Par ailleurs, les puces à ADN ou les filtres selon l'invention, contenant

des sondes ou amorces spécifiques de *Lactococcus lactis*, sont des éléments très avantageux de kits ou nécessaires pour la détection et/ou la quantification de l'expression de gènes de *Lactococcus lactis* (ou de microorganismes associés).

En effet, le contrôle de l'expression des gènes est un point critique pour 5 optimiser la croissance et le rendement d'une souche, soit en permettant l'expression d'un ou plusieurs gènes nouveaux, soit en modifiant l'expression de gènes déjà présents dans la cellule. La présente invention fournit l'ensemble des séquences naturellement actives chez *L. lactis* permettant l'expression des gènes. Elle permet ainsi la détermination de l'ensemble des séquences exprimées chez *L. lactis*. Elle 10 fournit également un outil permettant de repérer les gènes dont l'expression suit un schéma donné. Pour réaliser cela, l'ADN de tout ou partie des gènes de *L. lactis* peut être amplifié grâce à des amorces selon l'invention, puis fixé à un support comme par exemple le verre ou le nylon ou une puce à ADN, afin de construire un outil permettant de suivre le profil d'expression de ces gènes. Cet outil, constitué de 15 ce support contenant les séquences codantes sert de matrice d'hybridation à un mélange de molécules marquées reflétant les ARN messagers exprimés dans la cellule (en particulier les sondes marquées selon l'invention). En répétant cette expérience à différents instants et en combinant l'ensemble de ces données par un traitement approprié, on obtient alors les profils d'expression de l'ensemble de ces 20 gènes. La connaissance des séquences qui suivent un schéma de régulation donnée peut aussi être mise à profit pour rechercher de manière dirigée, par exemple par homologie, d'autres séquences suivant globalement, mais de manière légèrement différente le même schéma de régulation. En complément, il est possible d'isoler chaque séquence de contrôle présente en amont des segments servant de sondes et 25 d'en suivre l'activité à l'aide de moyen approprié comme un gène rapporteur (luciférase, β -galactosidase, GFP). Ces séquences isolées peuvent ensuite être modifiées et assemblées par ingénierie métabolique avec des séquences d'intérêt en vue de leur expression optimale.

La présente invention donne la liste de nombreux gènes codant pour des

protéines régulant la transcription des gènes de *L. lactis* (Tableau II). Modifier la structure ou l'intégrité de ces gènes pourra permettre de modifier l'expression des gènes cibles contrôlés par des promoteurs cibles de ces régulateurs. Les indications données par le Tableau II permettent de plus à l'homme du métier de choisir le ou les régulateurs pertinents pour l'application recherchée ainsi que leur cible, ce qui permet l'optimisation de l'expression de gènes d'intérêt. Par exemple l'inactivation du gène *kdgR* augmente la transcription des gènes de la voie d'Entner Dodouhoff, codés par les gènes qui lui sont contigus, et transcrits dans le sens opposé (ORF 1674 et 1675). L'utilisation des outils précédemment décrits tels les puces à ADN, permet aussi de repérer l'ensemble des gènes dont la régulation est modifiée par cette inactivation. Il est ainsi possible de sélectionner un ensemble de séquence de contrôle répondant, à des nuances près, à un même type de régulation. Ces séquences peuvent être alors utilisées pour contrôler l'expression de gènes d'intérêt.

L'invention concerne également les polypeptides codés par une séquence nucléotidique selon l'invention, de préférence, par un fragment représentatif de la séquence SEQ ID N° 1 et correspondant à une séquence ORF. En particulier, les polypeptides de *Lactococcus lactis* caractérisés en ce qu'ils sont choisis parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323 sont objet de l'invention.

L'invention comprend également les polypeptides caractérisés en ce qu'ils comprennent un polypeptide choisi parmi :

- a) un polypeptide selon l'invention ;
- b) un polypeptide présentant au moins 80 % de préférence 85 %, 90 %, 95 % et 98 % d'identité avec un polypeptide selon l'invention ;
- c) un fragment d'au moins 5 acides aminés d'un polypeptide selon l'invention, ou tel que défini en b) ;
- d) un fragment biologiquement actif d'un polypeptide selon l'invention, ou tel que défini en b) ou c) ; et
- e) un polypeptide modifié d'un polypeptide selon l'invention, ou tel que défini en b), c) ou d).

Les séquences nucléotidiques codant pour les polypeptides décrits précédemment sont également objet de l'invention.

Dans la présente description, les termes polypeptides, séquences polypeptidiques, peptides et protéines sont interchangeables.

Il doit être compris que l'invention ne concerne pas les polypeptides sous forme naturelle, c'est-à-dire qu'ils ne sont pas pris dans leur environnement naturel mais qu'ils ont pu être isolés ou obtenus par purification à partir de sources naturelles, ou bien obtenus par recombinaison génétique, ou par synthèse chimique, et qu'ils peuvent alors comporter des acides aminés non naturels comme cela sera décrit plus loin.

Par polypeptide présentant un certain pourcentage d'identité avec un autre, que l'on désignera également par polypeptide homologue, on entend désigner les polypeptides présentant par rapport aux polypeptides naturels, certaines modifications, en particulier une délétion, addition ou substitution d'au moins un acide aminé, une troncation, un allongement, une solution chimérique et/ou une mutation, ou les polypeptides présentant des modifications post-traductionnelles. Parmi les polypeptides homologues, on préfère ceux dont la séquence d'acides aminés présentent au moins 80 %, de préférence 85 %, 90 %, 95 % et 98 % d'homologie avec les séquences d'acides aminés des polypeptides selon l'invention. Dans le cas d'une substitution, un ou plusieurs acide(s) aminé(s) consécutif(s) ou non consécutif(s) sont remplacés par des acides aminés « équivalents ». L'expression « acides aminés équivalents » vise ici à désigner tout acide aminé susceptible d'être substitué à l'un des acides aminés de la structure de base sans cependant modifier essentiellement les activités biologiques des peptides correspondant et telles qu'elles seront définies par la suite.

Ces acides aminés équivalents peuvent être déterminés soit en s'appuyant sur leur homologie de structure avec les acides aminés auxquels ils se substituent, soit sur des résultats d'essais comparatifs d'activité biologique

entre les différents polypeptides susceptibles d'être effectués.

A titre d'exemple, on mentionne les possibilités de substitution susceptibles d'être effectuées sans qu'il résulte en une modification approfondie de l'activité biologique du polypeptide modifié correspondant. On peut 5 remplacer ainsi la leucine par la valine ou l'isoleucine, l'acide aspartique par l'acide glutamine, la glutamine par l'asparagine, l'arginine par la lysine, etc... les substitutions inverses étant naturellement envisageables dans les mêmes conditions.

Les polypeptides homologues correspondent également aux 10 polypeptides codés par les séquences nucléotidiques homologues ou identiques, telles que définies précédemment et comprennent ainsi dans la présente définition des polypeptides mutés ou correspondant à des variations inter ou intra espèces, pouvant exister chez *Lactococcus*, et qui correspondent notamment à des troncatures, substitutions, délétions et/ou additions, d'au 15 moins un résidu d'acides aminés.

Il est entendu que l'on calcule le pourcentage d'identité entre deux polypeptides de la même façon qu'entre deux séquences d'acides nucléiques. Ainsi, le pourcentage d'identité entre deux polypeptides est calculé après alignement optimal de ces deux séquences, sur une fenêtre d'homologie 20 maximale. Pour définir ladite fenêtre d'homologie maximale, on peut utiliser les mêmes algorithmes que pour les séquences d'acide nucléique.

Par fragment biologiquement actif d'un polypeptide selon l'invention, on entend désigner en particulier un fragment de polypeptide, tel que défini ci-après, présentant au moins une des caractéristiques biologiques des polypeptides 25 selon l'invention, notamment en ce qu'il est capable d'exercer de manière générale une activité même partielle, tel que par exemple :

- une activité enzymatique (métabolique) ou une activité pouvant être impliquée dans la biosynthèse ou la biodégradation de composés organiques ou inorganiques ;

- une activité structurelle (enveloppe cellulaire, molécule chaperonne, ribosome) ;
- une activité de transport (d'énergie, d'ion) ; ou dans la sécrétion de protéine ;
- 5 - une activité dans le processus de réPLICATION, amplification, préparation, transcription, traduction ou maturation, notamment de l'ADN, de l'ARN ou des protéines.

Par fragment de polypeptides selon l'invention, on entend désigner un polypeptide comportant au minimum 5 acides aminés, de préférence 10, 15, 25, 10 50, 100 et 150 acides aminés.

Les fragments de polypeptides peuvent correspondre à des fragments isolés ou purifiés naturellement présents dans les souches de *Lactococcus*, ou à des fragments qui peuvent être obtenus par clivage dudit polypeptide par une enzyme protéolitique telle que la trypsine ou la chymotrypsine ou la collagénase, 15 par un réactif chimique (bromure de cyanogène, CNBr) ou en plaçant ledit polypeptide dans un environnement très acide (par exemple à pH = 2,5). Des fragments polypeptidiques peuvent également être préparés par synthèse chimique, à partir d'hôtes transformés par un vecteur d'expression selon l'invention qui contiennent un acide nucléique permettant l'expression dudit 20 fragment, et placé sous le contrôle des éléments de régulation et/ou d'expression appropriés.

Par « polypeptide modifié » d'un polypeptide selon l'invention, on entend désigner un polypeptide obtenu par recombinaison génétique ou par synthèse chimique comme décrit plus loin, qui présente au moins une 25 modification par rapport à la séquence normale. Ces modifications peuvent être notamment portées sur des acides aminés nécessaires pour la spécificité ou l'efficacité de l'activité, ou à l'origine de la conformation structurale, de la charge, ou de l'hydrophobicité du polypeptide selon l'invention. On peut ainsi créer des polypeptides d'activité équivalente, augmentée ou diminuée, ou de

spécificité équivalente, plus étroite ou plus large. Parmi les polypeptides modifiés, il faut citer les polypeptides dans lesquels jusqu'à cinq acides aminés peuvent être modifiés, tronqués à l'extrémité N ou C-terminale, ou bien déletés, ou ajoutés.

5 Comme cela est indiqué, les modifications d'un polypeptide ont pour objectif notamment :

- de permettre sa mise en œuvre dans des procédés de biosynthèse ou de biodégradation de composés organiques ou inorganiques,
- de permettre sa mise en œuvre dans des procédés de réPLICATION,
10 d'amplification, de réparation et règle de transcription, de traduction, ou de maturation notamment de l'ADN, l'ARN, ou de protéines,
- de permettre sa sécrétion améliorée,
- de modifier sa solubilité, l'efficacité ou la spécificité de son activité, ou encore de faciliter sa purification.

15 La synthèse chimique présente également l'avantage de pouvoir utiliser des acides aminés non naturels ou des liaisons non peptidiques. Ainsi, il peut être intéressant d'utiliser des acides aminés non naturels, par exemple sous forme D, ou des analogues d'acides aminés, notamment des formes souffrées.

20 La présente invention fournit toutes les séquences nucléotidiques et polypeptidiques du génome de *Lactococcus lactis* IL1403. Par ailleurs, il est un objet de la présente invention que de divulguer les fonctions de ces gènes et protéines (Tableau II).

Ainsi, à chaque cadre ouvert de lecture présenté dans le Tableau I est assigné un descriptif sur son rôle (Tableau II). Les gènes ont ensuite été classés
25 en catégories selon une classification adaptée des gènes de *E. coli* (Riley, Functions of the gene products of *Escherichia coli*, *Microbiology Reviews* 57: 862, 1993). Cela permet à l'homme du métier de repérer les gènes utilisés dans une fonction métabolique donnée, puis d'isoler ce ou ces gènes dans des buts d'application en relation avec sa problématique, en y incluant des applications

industrielles directes (modification des souches) ou indirectes (outil de diagnostique et ses applications). Les gènes décrits dans l'invention ont été isolés sur des fragments d'ADN grâce à des amorces déduites de la séquence de *L. lactis* IL1403. Le Tableau III donne les noms des gènes correspondants aux ORF, ainsi que les protéines correspondantes d'autres organismes après comparaison avec la banque de données Swiss prot.

Les enzymes de biosynthèses d'acides aminés

Dans cette partie sont groupés les cadres ouverts de lecture correspondant aux protéines impliquées dans les réactions catalytiques des voies du métabolisme primaire, intermédiaire, secondaire, la fabrication de molécules complexes ou plus simples. Les voies identifiées ont été déterminées d'après les connaissances relatives aux besoins nutritionnels de ces bactéries et leurs possibilités métaboliques. L'ensemble des gènes impliqués dans les voies de biosynthèse des acides aminés est divulgué. Certaines de ces voies ont été identifiées auparavant tel que les voies de biosynthèse de l'histidine, du tryptophane, des acides aminés branchés ainsi que quelques gènes impliqués dans différentes autres voies.

La synthèse de vitamines

La synthèse de vitamines peut avoir un intérêt certain pour une bactérie alimentaire comme *L. lactis*. Cette bactérie est capable de synthétiser naturellement un certain nombre de vitamines, et la connaissance des gènes menant à leur synthèse permet à l'homme du métier d'optimiser l'expression de ces gènes ou de les modifier en vue d'augmenter la production de ces vitamines. Les bactéries ainsi modifiées peuvent être utilisées soit dans des procédés de fabrication de concentré de vitamines, soit directement dans l'alimentation afin d'obtenir un produit enrichi en vitamine. Comme il est indiqué au Tableau II, les gènes nécessaires à la synthèse de quatre cofacteurs, l'acide folique, la ménaquinone, la riboflavine et la thiorédoxine ont été identifiés.

Les gènes à activité peptidolytique

Les gènes codant pour des enzymes protéolytiques ont été systématiquement recherchés. Un certains nombre d'entre eux avaient déjà été caractérisés et leur fonction décrite tel *pepN*, *pepC*, *pepF*, *pepO*, *pepA*, *pepP*, *pepV*, *pepX* *clpP* and *clpY* et d'autres étaient encore inconnus du public tels *pepQ*, *pepM*, *pepDA1*, *pepDA2*, *ycjE*, *htrA*. Ces enzymes ont un rôle crucial dans la nutrition azotée des bactéries lactiques et participent à la dégradation des peptides dans les produits fermentés, en particulier les fromages. Cet enzyme participe aussi à d'autres processus cellulaires comme la dégradation de protéines permettant le renouvellement des protéines ou même de protéines hétérologues limitant ainsi leur production. D'autres protéines participent à la formation de la paroi comme *vanY* ou à des processus plus généraux comme la dégradation de protéines entrant dans divers processus cellulaires pour *piI36*, *yudC*, *yudD* *yufB* and *yufD*.

15

Les gènes de la glycolyse

Les enzymes impliqués dans la glycolyse ont été plus particulièrement étudiés. Les gènes impliqués dans la glycolyse ont été détectés dans différentes parties du chromosome de la souche IL1403. Ce sont *enoA* (633 kb) et *enoB* (274 kb) codant pour l'énolase, *pgk* (242 kb) codant pour la phosphoglycérate kinase, *pgm* (332 kb) codant pour la phosphoglycérate mutase, *pgmB* (442 kb) codant pour la betta-phosphoglycomutase, *gapA* (554 kb) et *gapB* (2315 kb) codant pour la glycéraldéhyde 3-phosphate déhydrogénase, *tpiA* (1148 kb) codant pour la trioséphosphate isomérase, *pyk* (1370 kb) codant pour la pyruvate kinase, *fbaA* (1963 kb) codant pour la fructose-bisphosphate aldolase, *pgiA* (2228 kb) codant pour la glucose-6-phosphate isomérase. En synthétisant des oligonucléotides homologues aux séquences de contigs proches des zones où ces gènes ont été détectés dans IL1403, et en effectuant des amplifications de type LR PCR sur l'ADN chromosomal de MG1363, des produits

d'amplification contenant les gènes de la glycolyse ont été obtenus. Ces gènes représentent l'ensemble complet des gènes de la glycolyse ayant pu être trouvés chez *L. lactis*. Cette méthode peut être appliquée aux autres souches de *L. Lactis* pour la détection des gènes de la glycolyse dans l'environnement 5 génétique le plus adéquat pour l'industrie. La modification des ces gènes par mutagénèse a permis la construction de nouvelles souches dites « food-grade », qui ont de nombreuses applications dans l'industrie alimentaire et l'agriculture.

En particulier, il a montré qu'il existait 2 copies des gènes *gap* codant pour la glyceraldehyde 3 phosphate déhydrogénase et *eno* codant pour l'énoïlase. Il a été 10 aussi montré que le gène *gap* précédemment isolé n'était pas exprimé de manière significative lors de croissances dans différents milieux, et ne codait donc pas pour le gène réellement impliqué dans la glycolyse. Une analyse détaillée de la séquence montre que le second gène *gap* identifié possède des propriétés qui suggèrent fortement qu'il s'agit du gène réellement actif lors de la glycolyse. Premièrement, 15 son biais de codon est très fort et semblable aux autres gènes de la glycolyse tels ceux de l'opéron *las*, *pgi*, *fdp* et *tpi*. Deuxièmement, il possède une séquence de régulation (boîte CRE) en amont de la boîte -35 de son promoteur, permettant son activation lors de l'assimilation du sucre rapide. Enfin, il a été démontré expérimentalement que ce gène était fortement exprimé lors de croissance 20 exponentielle, et qu'il était indispensable à la croissance cellulaire (son inactivation est létale). Le gène *gap* de la glycolyse a été isolé sur un plasmide de *E. coli* (pGEM) et son expression dans *E. coli* restaure la croissance de mutants *gap* dans les milieux appropriés. Ce gène pourrait donc être utilisé pour augmenter l'activité GAPDH dans des souches où cette activité est limitante pour la vitesse 25 d'acidification. Une telle construction mènera à l'obtention d'une souche acidifiant plus vite le lait, une propriété recherchée dans certains procédés industriels. Un travail comparable peut être réalisé sur les autres enzymes de cette voie.

Les voies d'assimilation secondaire des sucres

L. lactis est capable d'utiliser un grand nombre de carbohydrates (de manière non limitative: L-arabinose, ribose, D-xylose, galactose, glucose, fructose, mannose, mannitol, N-acetyl glucosamine, amygdaline, arbutine, esculine, salicine, cellobiose, 5 maltose, lactose, melibiose, saccharose, trehalose, raffinose, amidon, gentiobiose, gluconate). Les gènes impliqués dans l'entrée de ces sucres et leur transformation pour rejoindre une des étapes de la glycolyse sont présentés au Tableau II. Pour illustrer, deux gènes impliqués dans la voie des pentoses phosphates ont été identifiés : la transkétolase (*YggF*) et la phosphokétolase (*YpdE*). Un fragment 10 interne a été utilisé pour inactiver l'un ou l'autre de ces gènes dans la souche de *L. lactis* NCDO2118. Les mutants ainsi obtenus sont affectés dans le métabolisme des sucres et accusent des retards de croissance, en particulier en présence de xylose pour la souche *ypdE*. L'activité de ces gènes peut également être amplifiée en plaçant l'un ou l'autre de ces gènes sous contrôle d'un promoteur régulé 15 différemment. Un travail similaire avec les autres gènes de ces voies permettra de construire des souches de *L. lactis* avec des capacités fermentaires nouvelles. En particulier, la modification additionnelle de l'expression des gènes codant (i) pour la glucose 6-phosphate déhydrogénase (*zwf*), la gluconate déshydrogénase (*gnd*), la ribulose phosphate isomérase (*rpiA*) ou pour (ii) des gènes de la voie d'Entner- 20 Dodouhoff (*kdg*, *uxu* et *yghA* présent en amont de la transkétolase) et la gluconate phosphate déshydrogénase devrait permettre de produire des souches de *L. lactis* hétérofermentaires vraies à partir de sucre métabolisé en glucose 6-phosphate.

Les gènes impliqués dans la formation et la régulation de l'ensemble 25 des produits de fermentation

Les produits de fermentation sont ce qu'il y a de plus important pour la formation de l'arôme du fromage par *Lactococcus lactis*. Dans les conditions habituellement appliquées pour la production fromagère, 95 % du sucre utilisé est converti en acide lactique. D'autres produits importants pour la fermentation sont

l'éthanol, le fumarate et l'acétate. Une petite partie, habituellement moins de 1 %, du pyruvate produit durant la glycolyse est convertie en alpha-acétolactate, qui est distribué entre les acides aminés branchés et les produits de la branche de formation des acétoïnes : diacétyl, acétoïne ou 2,3-butanediol. L'interaction de ces gènes et leur régulation sont importantes pour la formation de l'ensemble des produits de fermentation. La présente invention fournit les outils pour détecter tous les gènes chromosomiques des bactéries du genre lactococci, impliquées dans la formation de produits de fermentation. Ces produits sont importants pour l'arôme du produit fromager final. Plusieurs gènes ont déjà été détectés auparavant. Ceux-ci incluent la lactate déhydrogénase, la pyruvate formate lyase, α -acétolactate synthase, α -acétolactate décarboxylase. De nouveaux gènes potentiels impliqués dans cette voie, sont fournis par cette invention, détectés durant l'annotation. Ce sont d'autres putatives alpha-acétolactate décarboxylase (*aldC* gene), diacétyl réductase (*buiB*), acétoïne réductase (*buiA*), pyruvate déhydrogénase (*pdhABCD*), acétate kinase (*acdA1*, *acdA2*), alcool déhydrogénase (*adhA*, *adhE*). En manipulant ces gènes par des méthodes de génie génétique ou de génétique, l'homme du métier peut influencer l'arôme du produit final fromager de la façon désirée. D'autres enzymes, qui peuvent être utilisées pour changer l'ensemble des produits de fermentation, sont les NADH oxidases. Ces gènes sont codés par *ndhA*, *yieA*, *yieB*, *yphA*, *ydjE*, *yhjd*, *yrfB*, *nox*. La présente invention fournit les outils pour détecter ces gènes dans les différentes souches de *L. lactis* et pour créer des bactéries « food-grade » capables de produire ces métabolites importants pour les arômes comme le diacétyl.

Les gènes liés à l'activité des bactériophages

Les bactériophages constituent l'un des problèmes majeurs de l'industrie laitière. Ils sont à l'origine de perturbations importantes de les fermentations et par ce biais, de pertes économiques. De nombreux efforts ont été consacrés au développement de méthodes permettant de contrôler leur développement au cours des procédés de fabrication fromagère. On peut

envisager en particulier de cloner sur un plasmide ou dans le chromosome de souches à utilisation industrielle, des gènes bactériens et/ou de bactériophages dont les produits limitent le développement de phages infectants. On peut également développer des systèmes artificiels de résistance mimant les mécanismes naturels dits d'infection abortive, dans lesquels les cellules infectées meurent sans multiplier les phages. Dans ce but, un gène toxique pour la bactérie, placé sous le contrôle d'un promoteur de phage dont l'expression est induite après infection par un phage similaire est cloné sur un plasmide (Djordjevic, G. M., and Klaenhammer, T. R. (1997) Bacteriophage-triggered defense systems : phage adaptation and design improvements. *Appl Environ Microbiol* 63 :4370-4376 ; Walker, S. A., and Klaenhammer, T. R. (1998) Molecular characterization of a phage-inducible middle promoter and its transcriptional activator from the lactococcal bacteriophage Φ31. *J Bacteriol* 180 : 921-931) ou sur le chromosome bactérien. La présente invention, décrit les gènes de la souche IL1403 et de six prophages identifiés sur son chromosome. Cinq de ces prophages ont été identifiés expérimentalement par induction de leur cycle de croissance lytique après exposition à un agent endommageant l'ADN (Ultra-Violets ou Mitomycine C). La présente invention apporte donc la possibilité d'identifier des gènes de bactérie ou de phage répondant à l'une ou l'autre des propriétés citées ci-dessus. A savoir : des gènes qui perturbent le développement d'un phage infectant, des gènes toxiques pour la bactérie, des circuits de régulation induits après infection par un phage.

Il est à noter que les signaux de transcription et traduction des phages ainsi que leurs circuits de régulation peuvent aussi être utilisés pour développer des systèmes d'expression conditionnelle (WO95/31563) ou de surexpression (O'Sullivan, D. J., Walker, S. A., West, G., and Klaenhammer, T. R. (1996) Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. *Biotechnology* 14 : 82-87) de protéines d'intérêt. La présente invention peut donc aussi être utilisée dans ce

but.

Les gènes impliqués dans les systèmes de régulation correspondent aux ORF 38, 41, 448, 452, 518, 1461 et 1472.

5 Les gènes de réponse au stress

Les lactocoques sont soumis à de nombreux changements environnementaux dans les procédés industriels on peut citer parmi d'autres, des changements de température (chaleur, froid), d'osmolarité (salinité, activité en eau), de pH, d'oxygénéation, de conditions redox etc. Une survie optimale de *L. lactis* à ces changements environnementaux, parfois brusques, est recherchée afin d'améliorer la reproductibilité et le rendement des procédés de fabrication et d'utilisation de ces fermentations lactiques. Les lactocoques possèdent des réponses inductibles aux stress notamment aux UV, à la chaleur, au froid, au NaCl, à la présence d'H₂O₂, à la carence en sucre, à la bile, à l'acidité. Il faut noter que certains résultats (Kim *et al.*, 1999, FEMS Microbiol Lett., 171, 57) soulignent des différences dans les capacités de résistance et d'adaptation aux stress de 2 sous-espèces de lactocoques : *L. lactis* ssp. *lactis* et *L. lactis* ssp. *cremoris*. Des études protéomiques montrent qu'un certain nombre de protéines sont induites dans plusieurs conditions de stress. Cependant, les protéines impliquées dans la résistance à un ou plusieurs stress ont été, à ce jour rarement identifiées en particulier du fait de l'absence de l'invention qui limitait les possibilités d'identification des spots protéiques. Il est important de souligner néanmoins, que certaines conditions de stress semblent modifier l'expression d'enzymes métaboliques notamment impliqués dans la glycolyse. D'autres études biochimiques, moins globales, corrélatif l'augmentation de certaines activités enzymatiques à une meilleure survie et/ou à l'adaptation des lactocoques à certains stress. Ainsi, la H⁺-ATPase, la désamination de l'arginine, le transport du citrate dans la sous espèce *diametylactis*, le transport de solutés compatibles, les NADH-peroxidase et NADH-oxidase sont probablement

impliquées dans des mécanismes d'adaptation aux stress et pour certains, dans la survie en fin de fermentation.

Des études génétiques (recherche de gènes conservés ou mutagenèse) ont permis la caractérisation de certains gènes impliqués dans les résistances aux stress.

5 Ceux-ci restent néanmoins peu nombreux et le lien avec les études biochimiques a rarement été établi. Parmi les gènes identifiés on peut notamment citer :

- stress oxydatif : *recA*, *jpg*, *sodA*, *nox*, *pox* (NADH peroxidase), *fhpA* et *fhpB*,
- stress mutagène : *recA*, *polA*, *hexB*, *deoB*, *gerC*, *dltD*, *arcD*, *bglA*,
10 *gidA*, *hgrP*, *metB*, *proA* et sept orf non identifiées par recherche d'homologie avec les banques de données,
- stress thermique, dénaturation protéique : *recA*, *groES*, *groEL*, *dnaK*,
dnaJ, *ftsH*, *grpE*, *hrcA*, *ctsR*, *clpP*, *clpB*, *clpE*, *htrA*,
- stress froid : *cspABCDE*,
- 15 - stress osmotique : *busA*, *gadBCR*,
- stress acide : *gadBCR*, *clpP*, *groES*, *groEL*, *dnaK*.

De plus, deux études génétiques (Duwat *et al.*, 1999, Mol Microbiol., 31, 845 ; Rallu *et al.*, 2000, Mol Microbiol., 35, 517 ; FR27 53201) ont permis d'isoler des mutants plus résistants que la souche initiale (MG1363) à
20 une ou plusieurs conditions de stress et suggèrent fortement que des pools intracellulaires notamment de composés puriques et de phosphate constituent des détecteurs intracellulaires de stress.

La séquence annotée de *L. lactis* IL1403 apporte une base moléculaire
25 pour l'étude systématique des réponses aux stress des lactocoques. Les gènes détectés pendant l'annotation du génome de Il1403 sont fournis dans les Tableaux II et III de la présente demande. La méthode de détection des gènes équivalents dans d'autres bactéries proches de *L. lactis* IL1403 est fournie dans la présente invention et permet d'exploiter les résultats obtenus durant l'étude

des réponses aux stress d'autres souches de *L. lactis*. En effet, les réponses aux stress ont préférentiellement été étudiées avec *L. lactis* MG1363 qui contrairement à IL1403 ne contient pas de prophage inducible en condition de stress.

5

Les gènes des protéines sécrétés ou dont l'activité est liée à la sécrétion des protéines

L. lactis est capable de sécréter un certain nombre de protéines dans le milieu extérieur et à la surface de la cellule. Cette capacité peut être mise à profit pour sécréter des molécules d'intérêt comme des enzymes d'intérêt technologique ou des molécules d'intérêt médical ou pharmaceutique. L'invention présente permet d'isoler rapidement différents signaux d'exportation de *L. lactis* afin de tester celui ou ceux qui donnent les meilleurs résultats avec le gène d'intérêt à exporter. La liste des protéines et des gènes susceptibles de fournir de tels signaux est fournie Tableau II. Ces protéines ont été extraites par une méthode informatique avec le logiciel PSORT (Nakai & Horton, PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization, *Trends Biochem Sci*, 24: 34-6, 1999). D'autres méthodes pourraient être employées pour compléter ce tableau en utilisant une partie des données de l'invention, comme la liste des protéines potentiellement traduites chez *L. lactis* ou directement la séquence nucléotidique traduite dans toutes les phases.

De plus, l'outil fourni dans l'invention donne toutes les informations de base sur les gènes qui peuvent limiter certaines étapes de la sécrétion. Une liste de ces gènes est présentée Tableau IV. Par exemple, l'intégralité du gène codant pour une lipoprotéine qui permet d'accélérer le repliement correct des protéines sécrétées a été isolé grâce aux enseignements de l'invention. Des homologues de cette protéine ont été caractérisés précédemment chez d'autre organismes comme *B. subtilis*. Cependant, il peut exister plusieurs gènes de ce type dans un organisme, ce qui complique la tache de l'expérimentateur confronté soit à une recherche exhaustive

de toutes les protéines homologues afin de réaliser le choix le plus judicieux, soit à développer une expérimentation lourde afin d'isoler le facteur pertinent dans son procédé. La présente invention permet donc à l'homme du métier de choisir en fonction de son expertise le ou les gènes nécessaires à l'accomplissement de son travail. Dans le cas de *L. lactis*, il a été possible d'isoler le gène codant pour l'homologue vrai de *prsA* de *B. subtilis* et de l'exprimer plus fortement dans des cellules surproduisant un enzyme d'intérêt industriel à partir du gène *lip* de *Staphylococcus hyicus*. En condition normale, une grande partie de la lipase est dégradée par limitation de la protéine type *prsA*. Sa surproduction préserve la lipase de toute dégradation de cet enzyme lors ou après son exportation.

Les gènes impliqués dans la compétence des transformations génétiques

La compétence génétique naturelle est la capacité des bactéries à transporter de l'ADN étranger dans la cellule, le processer et à l'intégrer dans le chromosome ou à établire des éléments à réplication autonome. Les gènes, qui permettent à la bactérie de développer cette capacité, sont divisés en ce qu'on appelle des gènes précoces, qui sont des gènes de régulation, et en gènes tardifs, représentant le système de compétence lui-même. L'étude des séquences des gènes tardifs de compétence montre qu'ils sont fortement similaires dans les différentes bactéries AT- riches gram positifs, comme *B. subtilis* ou *Streptococci*. Une grande différence existe dans les mécanismes moléculaires qui régulent le développement de ce processus dans Streptococci et Bacilli. Dans *B. subtilis*, le régulateur ComK existe, qui assemble les signaux des étapes précoces du développement de compétence. Un pendant fonctionnel de ce régulateur a été trouvé chez Streptococci. Il code pour le facteur sigma de l'ARN polymérase. Les conditions de compétence naturelle ne sont pas connues pour l'espèce *L. lactis*. Cependant, des recherches d'homologies dans le génome de *L. lactis* révèlent 4 opérons (*comE*, *comF*, *comC* et *comG*) contenant 8 gènes ayant une forte similarité avec les gènes tardifs de

compétence de *B. subtilis* en *S. pneumoniae*. Comme *L. lactis* semble pouvoir posséder un ensemble complet des gènes tardifs de compétence, il peut acquérir une compétence naturelle. Une manière de découvrir les conditions pour acquérir la compétence peut être l'étude de la régulation des gènes tardifs. Le 5 gène, correspondant au régulateur de la compétence, *ywcA*, existe aussi dans *L.lactis* IL1403. La surproduction de cette protéine dans *L. lactis* permettra l'induction des gènes tardifs de compétence dans ces cellules. La présente invention fournit la manière de détecter le système complet des gènes de compétence dans les plusieurs souches de *L. lactis* différentes de d'IL1403. La 10 connaissance des structures des régions de régulation dans ces bactéries et des régulateurs correspondants donnera la possibilité d'induire la compétence dans ces souches. Cette méthode peut être utilisée pour les souches ne pouvant pas être manipulées par les autres méthodes de génie génétique.

D'une manière préférée, l'invention est relative à une séquence 15 nucléotidique selon l'invention, caractérisées en ce qu'elle pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la biosynthèse des acides aminés et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1507 1508 1511 1512 1513 1514 1515 796 1178 1179 1275 1881 1251 1252 1254 1255 1257 1258 1259 1260 1261 20 683 1238 1240 1241 1243 1245 1246 1247 1248 1249 860 797, de préférence 500 120 1291 1690 1793 1794 1795 1796 1803 1807 1808 166 361 755 1292 1293 1323 1609 1668 1670 1972 1973 2159 2285 128 129 575 812 813 814 815 1324 1325 1656 1657 1935 2257 75 551 613 615 616 617 1904 et un de leurs fragments représentatifs.

25 De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la biosynthèse des cofacteurs, groupes prosthétiques et transporteurs et en ce qu'elle est choisie parmi les séquences suivantes : ORF 1169 1383 398 1405, de

préférence 871 953 1172 1173 1174 1176 1353 1354 610 1157 1615 187 743
744 745 746 747 875 584 585 1362 1487 1011 1012 1013 1014 1123 1145
1871 862 958 1692 1695 497 1130 1300 1301 1302 1526 1120 et un de leurs
fragments représentatifs.

5 De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide d'enveloppe cellulaire de *Lactococcus lactis* ou un de ses fragments, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 328 329 2288 2320 1296, de préférence 326 327
10 631 978 1105 1193 1481 2025 2185 280 320 348 350 351 395 552 554 560
885 886 968 1181 1321 1406 1637 1638 1857 1934 1960 2096 2164 2283
2287 153 206 207 212 213 217 218 219 220 221 222 223 224 693 695 697
754 894 930 936 937 939 940 942 944 945 973 1297 1298 1299 1304 1380
1499 1500 1618 1845 2218 2279 2280 et un de leurs fragments représentatifs.

15 De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la machinerie cellulaire, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 20 22 681 1898 1920 1921 402
20 403 972 417 1015 2134 1779 2206, de préférence 100 818 828 902 914 990
991 1267 1384 1636 1704 2207 508 126 119 562 959 1664 2161 2315 1107
1108 1265 1823 1824 1859 2084 2120 2176 2177 2178 2179 et un de leurs
fragments représentatifs.

De manière préférée, l'invention est relative à une séquence
25 nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme intermédiaire central, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 728 155, de préférence 434 1024 1162 1376 1537 1621 291 716 1289 1538 1539 1728

1729 1732 2005 1663 215 586 712 713 714 715 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme énergétique, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1785 2042 59 1329 1814 1815 1816 1817 1818 1819 1820 994 995 677 918 1205 1262 2211 284 345 439 570 656 682 1152 1372 1373 1374 634 1552 1553 1554 2034 2035 2036 2037 10 2038 2039 684, de préférence 76 136 151 186 242 273 276 342 347 400 643 768 801 843 844 1281 1348 1572 1574 1583 1596 1601 1604 1746 1784 1925 2100 2182 2307 290 502 548 742 751 816 845 846 974 1327 1343 1747 1751 1971 1985 2088 2089 2090 2092 2093 254 256 257 1127 1283 1379 431 609 620 719 720 732 1756 2167 1674 1675 915 916 1125 1142 1207 1290 1707 15 1858 1864 2068 2069 265 253 385 967 1146 1792 1962 2224 2303 1673 1723 1979 2277 2290 61 62 63 64 26 181 426 440 711 784 834 976 1326 1504 1532 1533 1534 1543 1546 1549 1550 1676 1679 1680 1687 1721 1730 1731 2079 2241 2242 685 1212 1213 1214 1215 1216 et un de leurs fragments représentatifs.

20 De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme des acides gras et des phospholipides et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 65 72 118 390 413 414 415 576 577 675 786 787 788 789 790 791 792 793 794 795 25 859 1284 1834 1837 1955 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le

métabolisme des nucléotides, des purines, des pyrimidines ou nucléosides et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 2066 1531 1556 1557 1558 1569 1573 1575 1576 1578 501 1386 1387 1404 1586 1599 21 281 282 947 949 1969 2133 200, de préférence 5 182 506 992 993 1159 1177 311 1112 1754 226 1164 1563 1564 1568 1689 2007 407 1086 1087 1388 1649 1650 295 605 645 829 854 1165 1482 1483 1485 1708 1908 1950 202 204 205 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un 10 polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions de régulation, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1263 1331 1559 2041 2316 405 406 908 909 1022 1478 1641 1725 1696 1726 890 1555 1506 7, de préférence 6 8 110 131 137 154 167 243 245 261 324 335 421 424 429 445 541 565 622 15 674 771 832 847 877 905 929 946 982 1084 1151 1186 1197 1233 1294 1310 1349 1490 1494 1521 1524 1566 1624 1639 1652 1654 1717 1745 1753 1766 1830 1831 1846 1852 1853 1928 1956 2001 2032 2043 2059 2095 2216 2243 2258 2262 2270 2291 2296 2306 1020 1477 1642 1724 1752 1797 1798 740 1545 1688 2200 2205 24 340 383 386 1274 1345 1603 1927 543 435 1480 20 1498 1681 804 975 1211 1336 117 603 723 757 785 926 1344 1517 1527 1585 2172 227 229 360 770 1171 1333 1635 2071 2299 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un 25 polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de réPLICATION, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 4 5 2 3 362 363 563 600 663 664 665 2030 2180 2198 2265 2281, de préférence 573 644 806 856 872 873 1089 1360 1361 1869 101 102 240 349 401 408 428 507 513 542 572 657 761 766

767 857 878 898 923 997 1000 1002 1025 1088 1129 1138 1139 1140 1266
1270 1693 1791 1883 1948 2098 2247 2251 2263 2264 2267 2301 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de transcription, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1237 1332 564, de préférence 817 960 1906 2314 14 619 646 648 709 779 1314 1367 1368 1607 10 1612 1623 1850 1851 2124 2160 2222 2297 359 419 1613 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de traduction, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1239 313 396 706 858 1778 1854 1861 1929 2105 571 1776 97 98 680 2127 782 783 2128, de préférence 68 382 394 807 831 1113 1114 1763 1775 1879 1902 1914 1964 1983 1984 2020 2022 2094 2109 2183 2229 260 303 624 1606 1697 2027 2028 2045 2047 20 2192 374 911 1600 2062 107 135 198 246 292 301 302 748 760 781 805 853 892 906 1097 1099 1307 1308 1617 1644 1790 1893 1894 1937 2056 2057 2123 2125 2126 2135 2136 2137 2138 2139 2140 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2162 2209 2246 2248 2310 2311 2318 2319 13 132 158 168 169 171 496 638 705 852 1144 1923 25 1944 358 607 707 989 1126 1895 1912 2065 2208 2317 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le

processus de transport et de liaison des protéines, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 1256 1787 330 550 699 717 1330 1496 1497 1810 1888 1889 1890 1891 1892 2091 1771 566 919 1551 2040 2104 635 676 1970 121 122 437 81 82 726 927 2221, de préférence 11 74 104 262 263 269 270 271 285 286 287 318 319 333 334 544 545 579 580 672 673 729 855 881 888 889 917 983 984 1080 1121 1122 1203 1311 1312 1366 1567 1602 1667 1800 1801 1825 1826 1844 1926 2051 2052 2074 2157 2260 2261 2313 2321 70 115 331 352 353 354 355 356 357 364 365 375 574 698 824 863 864 955 956 957 1128 1182 1183 1184 1185 1750 1811 1847 1848 1873 2087 2107 2250 52 308 309 310 1767 1768 1769 1770 1772 208 209 259 430 933 934 1282 1369 1370 1371 1530 1540 1541 1542 1548 1671 1678 1683 1684 1685 1686 1733 1734 1735 2239 99 193 194 316 336 337 338 339 341 392 587 636 691 848 849 869 932 1194 1195 1295 1341 1355 1356 1357 1407 1528 1640 1655 2058 2169 2170 2171 2305 896 1166 1651 23 25 180 422 423 425 630 833 977 1149 1150 1505 1757 1758 1759 127 130 160 244 314 389 621 679 721 722 1389 1561 1584 1682 2220 2292 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans l'adaptation aux conditions atypiques, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 174 540 568 654 686 970 1570, de préférence 69 173 195 312 346 418 653 912 971 1102 1170 1414 2085 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments dans la sensibilité aux médicaments et analogues, et en ce qu'elle comprend une séquence

nucléotidique choisie parmi les séquences suivantes : ORF 1244, de préférence 1860 2249 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions relatives aux phages et prophages, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 448 449 452 455 465 471 493 494 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1046 1051 1075 1076 1077 1420 1422 1423 1424 1425 1426 1448 1450 1455 1456 1458 1465 1466 1467 1468 1470 1720, de préférence 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 446 447 450 451 453 454 456 457 458 459 460 461 462 463 464 466 467 468 469 470 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 531 532 533 534 1042 1043 1044 1045 1047 1048 1049 1050 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1200 1217 1416 1417 1418 1419 1421 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1449 1451 1452 1453 1454 1457 1459 1460 1461 1462 1463 1464 1469 1471 1472 1473 1474 1475 1647 1998 2003 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions relatives aux transposons et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 53 54 55 56 90 91 93 94 141 142 143 144 145 146 378 379 380 381 649 650 651 652 662 670 737 738 837 838 839 841 842 1224 1225 1231 1232 1236 1286 1287 1591 1741 1742 2082 2083 2129 2130 2131 2132 2201 2202 2203 2204, de préférence

614 694 718 950 1268 1342 1400 1560 1749 1936 1961 1986 1992 2060 2118
2191 2240 et un de leurs fragments représentatifs.

De manière préférée, l'invention est relative à une séquence nucléotidique selon l'invention caractérisées en ce qu'elle code pour un polypeptide spécifique de *Lactococcus lactis* ou un de ses fragments, et en ce qu'elle comprend une séquence nucléotidique choisie parmi les séquences suivantes : ORF 416 1727 1822 87 88 279 332 569 671 700 701 727 840 850
884 891 900 1204 1242 1277 1382 1592 1605 1718 1719 1762 1777 1780
1907 1917 1918 1919 1930 1938 1939 1940 2102 2106 2174 2210 1250 1328
10 2199 666 948 1381 1990, de préférence 591 618 710 835 1153 1910 1931
1953 2031 17 18 50 57 58 60 78 79 80 84 92 113 114 116 124 125 133 134
139 140 148 149 150 157 159 161 162 170 172 175 176 179 183 184 185 188
189 196 197 214 230 231 232 233 234 235 236 238 247 255 258 264 266 267
268 274 277 283 288 289 293 294 298 299 300 315 317 321 323 325 343 344
15 366 367 369 370 371 372 373 376 377 384 387 388 399 404 409 410 411 420
433 436 438 443 444 498 499 503 510 512 546 549 553 555 556 557 558 582
583 588 589 592 594 597 599 611 625 637 655 678 688 703 704 708 725 730
735 741 749 756 759 762 763 764 765 769 774 780 798 799 800 803 809 810
811 819 827 830 861 865 880 882 883 899 913 920 924 951 963 964 965 986
20 987 999 1001 1004 1016 1019 1023 1078 1079 1090 1091 1094 1098 1100
1103 1104 1106 1109 1110 1115 1116 1117 1119 1124 1131 1137 1141 1147
1148 1155 1156 1160 1161 1168 1175 1187 1188 1201 1202 1208 1209 1223
1276 1278 1280 1303 1313 1315 1316 1318 1319 1322 1340 1352 1358 1359
1363 1391 1392 1393 1408 1409 1411 1412 1476 1486 1489 1491 1492 1493
25 1501 1518 1519 1520 1522 1523 1525 1529 1544 1547 1565 1577 1579 1581
1595 1597 1614 1619 1620 1622 1648 1658 1661 1662 1666 1669 1677 1694
1699 1701 1702 1709 1710 1711 1712 1722 1748 1760 1761 1764 1765 1773
1774 1781 1782 1786 1788 1789 1802 1805 1809 1827 1828 1829 1832 1833
1838 1839 1840 1842 1843 1849 1855 1856 1863 1865 1866 1867 1868 1872

1874 1875 1876 1885 1886 1887 1900 1901 1903 1915 1916 1924 1933 1941
1946 1951 1952 1954 1958 1959 1963 1966 1967 1968 1976 1977 1978 1981
1982 2004 2006 2008 2011 2014 2015 2016 2017 2018 2019 2026 2029 2033
2044 2049 2050 2054 2061 2063 2070 2080 2081 2101 2108 2110 2115 2158
5 2163 2165 2168 2173 2175 2184 2186 2190 2193 2194 2197 2217 2219 2226
2227 2232 2235 2238 2245 2253 2254 2259 2272 2275 2278 2282 2284 2286
2289 2294 2295 2298 2302 2304 2308 2312 2322 2323 16 66 67 73 77 108
109 111 112 252 391 432 505 509 511 559 581 593 598 604 612 640 642 647
702 733 734 736 739 750 752 758 776 777 778 802 820 826 874 876 897 901
10 910 922 952 954 961 979 980 981 996 1017 1093 1111 1118 1135 1196 1199
1273 1320 1377 1413 1562 1610 1705 1783 1804 1884 1897 1909 1922 2117
2293 9 10 12 15 19 51 71 83 85 86 89 95 96 103 105 106 123 138 147 152
156 163 164 165 177 178 190 191 192 199 201 203 210 211 216 225 228 237
239 241 248 249 250 251 272 275 278 296 297 304 305 306 307 322 368 393
15 397 412 427 441 442 495 504 530 535 536 537 538 539 547 561 567 578 590
595 596 601 602 606 608 623 626 627 628 629 632 633 639 641 658 659 660
661 667 668 669 687 689 690 692 696 724 731 753 772 773 775 808 821 822
823 825 836 851 866 867 868 870 879 887 893 895 903 904 907 921 925 928
931 935 938 941 943 962 966 969 985 988 998 1003 1005 1006 1007 1008
20 1009 1010 1018 1021 1081 1082 1083 1085 1092 1095 1096 1101 1132 1133
1134 1136 1143 1154 1158 1163 1167 1180 1189 1190 1191 1192 1198 1206
1210 1218 1219 1220 1221 1222 1226 1227 1228 1229 1230 1234 1235 1253
1264 1269 1271 1272 1279 1285 1288 1305 1306 1309 1317 1334 1335 1337
1338 1339 1346 1347 1350 1351 1364 1365 1375 1378 1385 1390 1394 1395
25 1396 1397 1398 1399 1401 1402 1403 1410 1415 1479 1484 1488 1495 1502
1503 1509 1510 1516 1535 1536 1571 1580 1582 1587 1588 1589 1590 1593
1594 1598 1608 1611 1616 1625 1626 1627 1628 1629 1630 1631 1632 1633
1634 1643 1645 1646 1653 1659 1660 1665 1672 1691 1698 1700 1703 1706
1713 1714 1715 1716 1736 1737 1738 1739 1740 1743 1744 1755 1799 1806

1812 1813 1821 1835 1836 1841 1862 1870 1877 1878 1880 1882 1896 1899
1905 1911 1913 1932 1942 1943 1945 1947 1949 1957 1965 1974 1975 1980
1987 1988 1989 1991 1993 1994 1995 1996 1997 1999 2000 2002 2009 2010
2012 2013 2021 2023 2024 2046 2048 2053 2055 2064 2067 2072 2073 2075
5 2076 2077 2078 2086 2097 2099 2103 2111 2112 2113 2114 2116 2119 2121
2122 2141 2166 2181 2187 2188 2189 2195 2196 2212 2213 2214 2215 2223
2225 2228 2230 2231 2233 2234 2236 2237 2244 2252 2255 2256 2266 2268
2269 2271 2273 2274 et un de leurs fragments représentatifs.

Sous un autre aspect, de manière préférée, l'invention a pour objet un
10 polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de
Lactococcus lactis ou un de ses fragments impliqué dans la biosynthèse des
acides aminés, et en ce qu'il est choisi parmi les polypeptides de séquences
suivantes : SEQ ID N° 1507 1508 1511 1512 1513 1514 1515 796 1178 1179
1275 1881 1251 1252 1254 1255 1257 1258 1259 1260 1261 683 1238 1240
15 1241 1243 1245 1246 1247 1248 1249 860 797, de préférence 500 120 1291
1690 1793 1794 1795 1796 1803 1807 1808 166 361 755 1292 1293 1323
1609 1668 1670 1972 1973 2159 2285 128 129 575 812 813 814 815 1324
1325 1656 1657 1935 2257 75 551 613 615 616 617 1904 et un de leurs
fragments.

20 Sous un autre aspect, de manière préférée, l'invention a pour objet un
polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de
Lactococcus lactis ou un de ses fragments impliqué dans la biosynthèse des
cofacteurs, groupes prosthétiques et transporteurs, et en ce qu'il est choisi
parmi les polypeptides de séquences suivantes : SEQ ID N° 1169 1383 398
25 1405, de préférence 871 953 1172 1173 1174 1176 1353 1354 610 1157 1615
187 743 744 745 746 747 875 584 585 1362 1487 1011 1012 1013 1014 1123
1145 1871 862 958 1692 1695 497 1130 1300 1301 1302 1526 1120 et un de
leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un

polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide d'enveloppe cellulaire de *Lactococcus lactis* ou un de ses fragments, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 328 329 2288 2320 1296, de préférence 326 327 631 978 1105 1193 1481 2025
5 2185 280 320 348 350 351 395 552 554 560 885 886 968 1181 1321 1406
1637 1638 1857 1934 1960 2096 2164 2283 2287 153 206 207 212 213 217
218 219 220 221 222 223 224 693 695 697 754 894 930 936 937 939 940 942
944 945 973 1297 1298 1299 1304 1380 1499 1500 1618 1845 2218 2279
2280 et un de leurs fragments.

10 Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans la machinerie cellulaire, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 20 22 681 1898 1920 1921 402 403 972 417 1015 2134 1779
15 2206, de préférence 100 818 828 902 914 990 991 1267 1384 1636 1704 2207
508 126 119 562 959 1664 2161 2315 1107 1108 1265 1823 1824 1859 2084
2120 2176 2177 2178 2179 et un de leurs fragments.

20 Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme intermédiaire central, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 728 155, de préférence 434 1024 1162 1376
1537 1621 291 716 1289 1538 1539 1728 1729 1732 2005 1663 215 586 712
713 714 715 et un de leurs fragments.

25 Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme énergétique, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1785 2042 59 1329 1814 1815 1816 1817 1818 1819

1820 994 995 677 918 1205 1262 2211 284 345 439 570 656 682 1152 1372
1373 1374 634 1552 1553 1554 2034 2035 2036 2037 2038 2039 684, de
préférence 76 136 151 186 242 273 276 342 347 400 643 768 801 843 844
1281 1348 1572 1574 1583 1596 1601 1604 1746 1784 1925 2100 2182 2307
5 290 502 548 742 751 816 845 846 974 1327 1343 1747 1751 1971 1985 2088
2089 2090 2092 2093 254 256 257 1127 1283 1379 431 609 620 719 720 732
1756 2167 1674 1675 915 916 1125 1142 1207 1290 1707 1858 1864 2068
2069 265 253 385 967 1146 1792 1962 2224 2303 1673 1723 1979 2277 2290
61 62 63 64 26 181 426 440 711 784 834 976 1326 1504 1532 1533 1534
10 1543 1546 1549 1550 1676 1679 1680 1687 1721 1730 1731 2079 2241 2242
685 1212 1213 1214 1215 1216 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme des acides gras et des phospholipides, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 65 72 118 390 413 414 415 576 577 675 786 787 788 789 790 791 792 793 794 795 859 1284 1834 1837 1955 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le métabolisme des nucléotides, des purines, des pyrimidines ou nucléosides, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 2066 1531 1556 1557 1558 1569 1573 1575 1576 1578 501 1386 1387 1404 1586 1599 21 281 25 282 947 949 1969 2133 200, de préférence 182 506 992 993 1159 1177 311 1112 1754 226 1164 1563 1564 1568 1689 2007 407 1086 1087 1388 1649 1650 295 605 645 829 854 1165 1482 1483 1485 1708 1908 1950 202 204 205 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un

polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions de régulation, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1263 1331 1559 2041 2316 405 406 908 909 1022 1478
5 1641 1725 1696 1726 890 1555 1506 7, de préférence 6 8 110 131 137 154
167 243 245 261 324 335 421 424 429 445 541 565 622 674 771 832 847 877
905 929 946 982 1084 1151 1186 1197 1233 1294 1310 1349 1490 1494 1521
1524 1566 1624 1639 1652 1654 1717 1745 1753 1766 1830 1831 1846 1852
1853 1928 1956 2001 2032 2043 2059 2095 2216 2243 2258 2262 2270 2291
10 2296 2306 1020 1477 1642 1724 1752 1797 1798 740 1545 1688 2200 2205
24 340 383 386 1274 1345 1603 1927 543 435 1480 1498 1681 804 975 1211
1336 117 603 723 757 785 926 1344 1517 1527 1585 2172 227 229 360 770
1171 1333 1635 2071 2299 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un
15 polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de réPLICATION, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 4 5 2 3 362 363 563 600 663 664 665 2030 2180 2198
2265 2281, de préférence 573 644 806 856 872 873 1089 1360 1361 1869 101
20 102 240 349 401 408 428 507 513 542 572 657 761 766 767 857 878 898 923
997 1000 1002 1025 1088 1129 1138 1139 1140 1266 1270 1693 1791 1883
1948 2098 2247 2251 2263 2264 2267 2301 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de
25 *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de transcription, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1237 1332 564, de préférence 817 960 1906 2314 14
619 646 648 709 779 1314 1367 1368 1607 1612 1623 1850 1851 2124 2160
2222 2297 359 419 1613 et un de leurs fragments.

- Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de traduction, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1239 313 396 706 858 1778 1854 1861 1929 2105 571 1776 97 98 680 2127 782 783 2128, de préférence 68 382 394 807 831 1113 1114 1763 1775 1879 1902 1914 1964 1983 1984 2020 2022 2094 2109 2183 2229 260 303 624 1606 1697 2027 2028 2045 2047 2192 374 911 1600 2062 107 135 198 246 292 301 302 748 760 781 805 853 892 906 1097 1099 1307 10 1308 1617 1644 1790 1893 1894 1937 2056 2057 2123 2125 2126 2135 2136 2137 2138 2139 2140 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2162 2209 2246 2248 2310 2311 2318 2319 13 132 158 168 169 171 496 638 705 852 1144 1923 1944 358 607 707 989 1126 1895 1912 2065 2208 2317 et un de leurs fragments.
- 15 Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans le processus de transport et de liaison des protéines, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1256 1787 330 550 699 717 20 1330 1496 1497 1810 1888 1889 1890 1891 1892 2091 1771 566 919 1551 2040 2104 635 676 1970 121 122 437 81 82 726 927 2221, de préférence 11 74 104 262 263 269 270 271 285 286 287 318 319 333 334 544 545 579 580 672 673 729 855 881 888 889 917 983 984 1080 1121 1122 1203 1311 1312 1366 1567 1602 1667 1800 1801 1825 1826 1844 1926 2051 2052 2074 2157 25 2260 2261 2313 2321 70 115 331 352 353 354 355 356 357 364 365 375 574 698 824 863 864 955 956 957 1128 1182 1183 1184 1185 1750 1811 1847 1848 1873 2087 2107 2250 52 308 309 310 1767 1768 1769 1770 1772 208 209 259 430 933 934 1282 1369 1370 1371 1530 1540 1541 1542 1548 1671 1678 1683 1684 1685 1686 1733 1734 1735 2239 99 193 194 316 336 337 338

339 341 392 587 636 691 848 849 869 932 1194 1195 1295 1341 1355 1356
1357 1407 1528 1640 1655 2058 2169 2170 2171 2305 896 1166 1651 23 25
180 422 423 425 630 833 977 1149 1150 1505 1757 1758 1759 127 130 160
244 314 389 621 679 721 722 1389 1561 1584 1682 2220 2292 et un de leurs
5 fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans l'adaptation aux conditions atypiques, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 174 540 568 654 686 970 1570, de préférence 69 173 195 312 346 418 653 912 971 1102 1170 1414 2085 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments dans la sensibilité aux médicaments et analogues, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 1244, de préférence 1860 2249 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions relatives aux phages et prophages, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 448 449 452 455 465 471 493 494 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1046 1051 1075 1076 1077 1420 1422 1423 1424 1425 1426 1448 1450 1455
20 25 1456 1458 1465 1466 1467 1468 1470 1720, de préférence 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 446 447 450 451 453 454 456 457 458 459 460 461 462 463 464 466 467 468 469 470 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 531 532 533

534 1042 1043 1044 1045 1047 1048 1049 1050 1052 1053 1054 1055 1056
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
1071 1072 1073 1074 1200 1217 1416 1417 1418 1419 1421 1427 1428 1429
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
5 1444 1445 1446 1447 1449 1451 1452 1453 1454 1457 1459 1460 1461 1462
1463 1464 1469 1471 1472 1473 1474 1475 1647 1998 2003 et un de leurs
fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide de
10 *Lactococcus lactis* ou un de ses fragments impliqué dans les fonctions relatives aux transposons, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 53 54 55 56 90 91 93 94 141 142 143 144 145 146 378 379 380 381 649 650 651 652 662 670 737 738 837 838 839 841 842 1224 1225 1231 1232 1236 1286 1287 1591 1741 1742 2082 2083 2129 2130 2131
15 2132 2201 2202 2203 2204, de préférence 614 694 718 950 1268 1342 1400 1560 1749 1936 1961 1986 1992 2060 2118 2191 2240 et un de leurs fragments.

Sous un autre aspect, de manière préférée, l'invention a pour objet un polypeptide selon l'invention, caractérisé en ce qu'il s'agit d'un polypeptide
20 spécifique de *Lactococcus lactis* ou un de ses fragments, et en ce qu'il est choisi parmi les polypeptides de séquences suivantes : SEQ ID N° 416 1727 1822 87 88 279 332 569 671 700 701 727 840 850 884 891 900 1204 1242 1277 1382 1592 1605 1718 1719 1762 1777 1780 1907 1917 1918 1919 1930 1938 1939 1940 2102 2106 2174 2210 1250 1328 2199 666 948 1381 1990, de préférence
25 591 618 710 835 1153 1910 1931 1953 2031 17 18 50 57 58 60 78 79 80 84 92 113 114 116 124 125 133 134 139 140 148 149 150 157 159 161 162 170 172 175 176 179 183 184 185 188 189 196 197 214 230 231 232 233 234 235 236 238 247 255 258 264 266 267 268 274 277 283 288 289 293 294 298 299 300 315 317 321 323 325 343 344 366 367 369 370 371 372 373 376 377 384

387 388 399 404 409 410 411 420 433 436 438 443 444 498 499 503 510 512
546 549 553 555 556 557 558 582 583 588 589 592 594 597 599 611 625 637
655 678 688 703 704 708 725 730 735 741 749 756 759 762 763 764 765 769
774 780 798 799 800 803 809 810 811 819 827 830 861 865 880 882 883 899
5 913 920 924 951 963 964 965 986 987 999 1001 1004 1016 1019 1023 1078
1079 1090 1091 1094 1098 1100 1103 1104 1106 1109 1110 1115 1116 1117
1119 1124 1131 1137 1141 1147 1148 1155 1156 1160 1161 1168 1175 1187
1188 1201 1202 1208 1209 1223 1276 1278 1280 1303 1313 1315 1316 1318
1319 1322 1340 1352 1358 1359 1363 1391 1392 1393 1408 1409 1411 1412
10 1476 1486 1489 1491 1492 1493 1501 1518 1519 1520 1522 1523 1525 1529
1544 1547 1565 1577 1579 1581 1595 1597 1614 1619 1620 1622 1648 1658
1661 1662 1666 1669 1677 1694 1699 1701 1702 1709 1710 1711 1712 1722
1748 1760 1761 1764 1765 1773 1774 1781 1782 1786 1788 1789 1802 1805
1809 1827 1828 1829 1832 1833 1838 1839 1840 1842 1843 1849 1855 1856
15 1863 1865 1866 1867 1868 1872 1874 1875 1876 1885 1886 1887 1900 1901
1903 1915 1916 1924 1933 1941 1946 1951 1952 1954 1958 1959 1963 1966
1967 1968 1976 1977 1978 1981 1982 2004 2006 2008 2011 2014 2015 2016
2017 2018 2019 2026 2029 2033 2044 2049 2050 2054 2061 2063 2070 2080
2081 2101 2108 2110 2115 2158 2163 2165 2168 2173 2175 2184 2186 2190
20 2193 2194 2197 2217 2219 2226 2227 2232 2235 2238 2245 2253 2254 2259
2272 2275 2278 2282 2284 2286 2289 2294 2295 2298 2302 2304 2308 2312
2322 2323 16 66 67 73 77 108 109 111 112 252 391 432 505 509 511 559 581
593 598 604 612 640 642 647 702 733 734 736 739 750 752 758 776 777 778
802 820 826 874 876 897 901 910 922 952 954 961 979 980 981 996 1017
25 1093 1111 1118 1135 1196 1199 1273 1320 1377 1413 1562 1610 1705 1783
1804 1884 1897 1909 1922 2117 2293 9 10 12 15 19 51 71 83 85 86 89 95 96
103 105 106 123 138 147 152 156 163 164 165 177 178 190 191 192 199 201
203 210 211 216 225 228 237 239 241 248 249 250 251 272 275 278 296 297
304 305 306 307 322 368 393 397 412 427 441 442 495 504 530 535 536 537

538 539 547 561 567 578 590 595 596 601 602 606 608 623 626 627 628 629
632 633 639 641 658 659 660 661 667 668 669 687 689 690 692 696 724 731
753 772 773 775 808 821 822 823 825 836 851 866 867 868 870 879 887 893
895 903 904 907 921 925 928 931 935 938 941 943 962 966 969 985 988 998
5 1003 1005 1006 1007 1008 1009 1010 1018 1021 1081 1082 1083 1085 1092
1095 1096 1101 1132 1133 1134 1136 1143 1154 1158 1163 1167 1180 1189
1190 1191 1192 1198 1206 1210 1218 1219 1220 1221 1222 1226 1227 1228
1229 1230 1234 1235 1253 1264 1269 1271 1272 1279 1285 1288 1305 1306
1309 1317 1334 1335 1337 1338 1339 1346 1347 1350 1351 1364 1365 1375
10 1378 1385 1390 1394 1395 1396 1397 1398 1399 1401 1402 1403 1410 1415
1479 1484 1488 1495 1502 1503 1509 1510 1516 1535 1536 1571 1580 1582
1587 1588 1589 1590 1593 1594 1598 1608 1611 1616 1625 1626 1627 1628
1629 1630 1631 1632 1633 1634 1643 1645 1646 1653 1659 1660 1665 1672
1691 1698 1700 1703 1706 1713 1714 1715 1716 1736 1737 1738 1739 1740
15 1743 1744 1755 1799 1806 1812 1813 1821 1835 1836 1841 1862 1870 1877
1878 1880 1882 1896 1899 1905 1911 1913 1932 1942 1943 1945 1947 1949
1957 1965 1974 1975 1980 1987 1988 1989 1991 1993 1994 1995 1996 1997
1999 2000 2002 2009 2010 2012 2013 2021 2023 2024 2046 2048 2053 2055
2064 2067 2072 2073 2075 2076 2077 2078 2086 2097 2099 2103 2111 2112
20 2113 2114 2116 2119 2121 2122 2141 2166 2181 2187 2188 2189 2195 2196
2212 2213 2214 2215 2223 2225 2228 2230 2231 2233 2234 2236 2237 2244
2252 2255 2256 2266 2268 2269 2271 2273 2274 et un de leurs fragments.

Il est important de noter toutefois qu'un organisme vivant est un tout et doit être pris comme tel. Ainsi, afin de pouvoir se développer et d'exhiber ses propriétés, tout organisme a besoin d'interactions entre les différentes voies métaboliques. Ainsi, la classification énoncée ci-dessus ne doit pas être considérée comme limitative, un gène pouvant être impliqué dans deux voies métaboliques distinctes.

La présente invention a également pour objet les séquences

- nucléotidiques et/ou de polypeptides selon l'invention, caractérisées en ce que lesdites séquences sont enregistrées sur un support d'enregistrement dont la forme et la nature facilitent la lecture, l'analyse et/ou l'exploitation de ladite ou desdites séquence(s). Ces supports peuvent également contenir d'autres
- 5 informations extraites de la présente invention, notamment les analogies avec des séquences déjà connues, comme mentionné dans le Tableau III et/ou des informations concernant les séquences nucléotidiques et/ou de polypeptides d'autres microorganismes afin de faciliter l'analyse comparative et l'exploitation des résultats obtenus.
- 10 Parmi cesdits supports d'enregistrement, on préfère en particulier les supports lisibles par un ordinateur, tels les supports magnétiques, optiques, électriques ou hybrides, en particulier les disquettes informatiques, les CD-ROM, les serveurs informatiques. De tels supports d'enregistrement sont également objet de l'invention.
- 15 Les supports d'enregistrement selon l'invention, avec les informations apportées, sont très utiles pour le choix d'amorces ou de sondes nucléotidiques pour la détermination de gènes dans *Lactococcus lactis* ou souches proches de cet organisme. De même, l'utilisation de ces supports pour l'étude du polymorphisme génétique de souche proche de *Lactococcus lactis*, en
- 20 particulier par la détermination des régions de colinéarité, est très utile dans la mesure où ces supports fournissent non seulement la séquence nucléotidique du génome de *Lactococcus lactis* IL1403, mais également l'organisation génomique dans ladite séquence. Ainsi, les utilisations de supports d'enregistrement selon l'invention sont également des objets de l'invention.
- 25 Un procédé d'étude du polymorphisme génétique entre les souches proches de *Lactococcus lactis*, par détermination des régions de colinéarité, peut comprendre les étapes de
- fragmentation de l'ADN chromosomal de ladite autre souche (sonication, digestion),

- séquence des fragments d'ADN,
- analyse d'homologie avec le génome de *Lactococcus lactis* IL 1043 (SEQ ID N° 1).

5 Ce procédé qui comprend une étape d'analyse d'homologie avec le génome de *Lactococcus lactis* IL1403, en particulier grâce à l'aide d'un support d'enregistrement, est également l'objet de l'invention.

L'analyse d'homologie entre différentes séquences s'effectue en effet avantageusement à l'aide de logiciels de comparaisons de séquences, tels le logiciel Blast, ou les logiciels de la trousse GCG, décrits précédemment.

10 L'invention vise également les vecteurs de clonage et/ou d'expression, qui contiennent une séquence nucléotidique selon l'invention. On préfère en particulier, les séquences nucléotidiques codant pour des polypeptides impliqués dans la machinerie cellulaire, en particulier la sécrétion, le métabolisme intermédiaire central, en particulier la production de sucre, le métabolisme 15 énergétique, les processus de synthèse des acides aminés, de transcription et de traduction, de synthèse de polypeptides, ou les séquences nucléotidiques impliquées dans les fonctions relatives aux phages et prophages.

20 Les vecteurs selon l'invention sont avantageusement utilisés pour la génération de souches bactériennes qui présentent des propriétés de fermentation améliorée et/ou une stabilité accrue. En particulier, on recherche les souches bactériennes, de préférence de *Lactococcus lactis*, qui présentent une résistance accrue aux phages, ou des capacités de sécrétion améliorées.

25 Les vecteurs selon l'invention comportent de préférence des éléments qui permettent l'expression et/ou la sécrétion des séquences nucléotidiques dans une cellule hôte déterminée.

Le vecteur doit alors comporter un promoteur, des signaux d'initiation et de terminaison de la traduction, ainsi que des régions appropriées de régulation de la transcription. Il doit pouvoir être maintenu de façon stable dans la cellule hôte et peut éventuellement posséder des signaux particuliers qui

spécifient la sécrétion de la protéine traduite. Ces différents éléments sont choisis et optimisés par l'homme du métier en fonction de l'hôte cellulaire utilisé. A cet effet, les séquences nucléotidiques selon l'invention peuvent être insérées dans des vecteurs à réPLICATION autonome au sein de l'hôte choisi, ou 5 être des vecteurs intégratifs de l'hôte choisi.

De tels vecteurs sont préparés par des méthodes couramment utilisées par l'homme du métier, et les clones résultant peuvent être introduits dans un hôte approprié par des méthodes standards, telle que la lipofection, l'électroporation, le choc thermique, ou des méthodes chimiques.

10 Les vecteurs selon l'invention sont par exemple des vecteurs d'origine plasmidique ou virale. Ils sont utiles pour transformer des cellules hôtes afin de cloner ou d'exprimer les séquences nucléotidiques selon l'invention.

L'invention comprend également les cellules hôtes transformées par un vecteur selon l'invention.

15 L'hôte cellulaire peut être choisi parmi des systèmes procaryotes ou eucaryotes, par exemple les cellules bactériennes mais également les cellules de levure ou les cellules animales, en particulier les cellules de mammifères. On peut également utiliser des cellules d'insectes ou des cellules de plantes. Les cellules hôtes préférées selon l'invention sont en particulier les cellules 20 procaryotes, de préférence les bactéries appartenant au genre *Lactococcus*, à l'espèce *Lactococcus lactis*, ou les microorganismes associés à l'espèce *Lactococcus lactis*. L'invention concerne également les animaux et végétaux, excepté l'homme, qui comprennent une cellule transformée selon l'invention. Les cellules transformées selon l'invention sont utilisables dans des procédés de 25 préparation de polypeptides recombinants selon l'invention. Les procédés de préparation d'un polypeptide selon l'invention sous forme recombinante, caractérisés en ce qu'ils mettent en œuvre un vecteur et/ou une cellule transformée par un vecteur selon l'invention sont eux-mêmes compris dans la présente invention. De préférence, on cultive une cellule transformée par un

vecteur selon l'invention dans des conditions qui permettent l'expression dudit polypeptide et on récupère ledit peptide recombinant. Les cellules hôtes selon l'invention peuvent également être utilisées pour la préparation de compositions alimentaires, qui sont elles-mêmes objet de la présente invention.

5 Ainsi qu'il a été dit, l'hôte cellulaire peut être choisi parmi des systèmes procaryotes ou eucaryotes. En particulier, il est possible d'identifier des séquences nucléotidiques selon l'invention, facilitant la sécrétion dans un tel système procaryote ou eucaryote. Un vecteur selon l'invention portant une telle séquence peut donc être avantageusement utilisé pour la production de 10 protéines recombinantes, destinées à être sécrétées. En effet, la purification de ces protéines recombinantes d'intérêt sera facilité par le fait qu'elles sont présentent dans le surnageant de la culture cellulaire plutôt qu'à l'intérieur des cellules hôtes.

On peut également préparer les polypeptides selon l'invention par 15 synthèse chimique. Un tel procédé de préparation est également un objet de l'invention. L'homme du métier connaît les procédés de synthèse chimique, par exemple les techniques mettant en œuvre des phases solides (voir notamment Steward et al., 1984, Solid phase peptides synthesis, Pierce Chem. Company, Rockford, 111, 2ème éd., (1984)) ou des techniques utilisant des phases solides 20 partielles, par condensation de fragments ou par une synthèse en solution classique. Les polypeptides obtenus par synthèse chimique et pouvant comporter des acides aminés non naturels correspondant sont également compris dans l'invention.

L'invention comprend également les polypeptides hybrides qui 25 comprennent au moins la séquence d'un polypeptide selon l'invention, et la séquence d'un polypeptide susceptible d'induire une réponse immunitaire chez l'homme ou l'animal. L'invention comprend également les séquences nucléotidiques qui codent pour de tels polypeptides hybrides, ou les vecteurs qui contiennent ces séquences nucléotidiques. Ce couplage entre un polypeptide

selon l'invention et un polypeptide immunogène, peut être effectué par voie chimique, ou par voie biologique. Ainsi, selon l'invention, il est possible d'introduire un ou plusieurs élément(s) de liaison, notamment des acides aminés pour faciliter les réactions de couplage entre le polypeptide selon l'invention, et 5 le polypeptide immunostimulateur, le couplage covalent de l'antigène immunostimulateur pouvant être réalisé à l'extrémité N ou C-terminale du polypeptide selon l'invention. Les réactifs bifonctionnels permettant ce couplage sont déterminés en fonction de l'extrémité choisie pour réaliser ce couplage, et les techniques de couplage sont bien connues de l'homme du métier.

10 Les conjugués issus d'un couplage de peptides peuvent également préparés par recombinaison génétique. Le peptide hybride (conjugué) peut en effet être produit par des techniques d'ADN recombinant, par insertion ou addition à la séquence d'ADN codant pour le polypeptide selon l'invention, d'une séquence codant pour le ou les peptide(s) antigène(s), immunogène(s) ou 15 haptène(s). Ces techniques de préparation de peptides hybrides par recombinaison génétique sont bien connues de l'homme du métier (voir par exemple Makrides, 1996, Microbiological Reviews 60,512-538).

De préférence, ledit polypeptide immunitaire est choisi dans le groupe 20 des peptides contenant les anatoxines, notamment le toxoïde diphtérique ou le toxoïde tétanique, les protéines dérivées du Streptocoque (comme la protéine de liaison à la séralbumine humaine), les protéines membranaires OMPA et les complexes de protéines de membranes externes, les vésicules de membranes externes ou les protéines de chocs thermiques.

Les séquences nucléotidiques et vecteurs, codant pour un polypeptide 25 hybride selon l'invention sont également objet de l'invention.

Les polypeptides hybrides selon l'invention sont très utiles pour obtenir des anticorps monoclonaux ou polyclonaux, capables de reconnaître spécifiquement les polypeptides selon l'invention. En effet, un polypeptide hybride selon l'invention permet la potentiation de la réponse immunitaire,

contre le polypeptide selon l'invention couplé à la molécule immunogène. De tels anticorps monoclonaux ou polyclonaux, leurs fragments, ou les anticorps chimériques, reconnaissant les polypeptides selon l'invention, sont également objets de l'invention.

5 Les anticorps monoclonaux spécifiques peuvent être obtenus selon la méthode classique de culture d'hybridome décrite par Köhler et Milstein (1975, *Nature* 256, 495).

10 Les anticorps selon l'invention sont par exemple des anticorps chimériques, des anticorps humanisés, des fragments Fab, ou F(ab')². Il peut également se présenter sous forme d'immunoconjugué ou d'anticorps marqué afin d'obtenir un signal détectable et/ou quantifiable.

15 Ainsi, les anticorps selon l'invention peuvent être employés dans un procédé pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un microorganisme associé dans un échantillon biologique, caractérisé en ce qu'il comprend les étapes suivantes :

- a) mise en contact de l'échantillon biologique avec un anticorps selon l'invention ;
- b) mise en évidence du complexe antigène-anticorps éventuellement formé.

20 Les anticorps selon la présente invention sont également utilisables afin de détecter une expression d'un gène de *Lactococcus lactis* ou de microorganismes associés. En effet, la présence du produit d'expression d'un gène reconnu par un anticorps spécifique dudit produit expression peut être détectée par la présence d'un complexe antigène-anticorps formé après la mise
25 en contact de la souche de *Lactococcus lactis* ou du microorganisme associé avec un anticorps selon l'invention. La souche bactérienne utilisée peut avoir été « préparée », c'est-à-dire centrifugée, lysée, placée dans un réactif approprié pour la constitution du milieu propice à la réaction immunologique. En particulier, on préfère un procédé de détection de l'expression dans le gène,

correspondant à un Western blot, pouvant être effectué après une électrophorèse sur gel de polyacrylamide d'un lysat de la souche bactérienne, en présence ou en l'absence de conditions réductrices (SDS-PAGE). Après migration et séparation des protéines sur le gel de polyacrylamide, on transfère 5 lesdites protéines sur une membrane appropriée (par exemple en nylon) et on détecte la présence de la protéine ou du polypeptide d'intérêt, par mise en contact de ladite membrane avec un anticorps selon l'invention.

Ainsi, la présente invention comprend également les kits ou nécessaires pour la mise en œuvre d'un procédé tel que décrit (de détection de l'expression 10 d'un gène de *Lactococcus lactis* ou d'un microorganisme associé, ou pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou un microorganisme associé), comprenant les éléments suivants :

- 15 a) un anticorps polyclonal ou monoclonal selon l'invention ;
- b) éventuellement, les réactifs pour la constitution du milieu propice à la réaction immunologique ;
- c) éventuellement, les réactifs permettant la mise en évidence des complexes antigène-anticorps produits par la réaction immunologique.

Les polypeptides et les anticorps selon l'invention peuvent avantageusement être immobilisés sur un support, notamment une puce à 20 protéines. Une telle puce à protéines est un objet de l'invention, et peut également contenir au moins un polypeptide d'un microorganisme autre que *Lactococcus lactis* ou un anticorps dirigé contre un composé d'un microorganisme autre que *Lactococcus lactis*.

Les puces à protéines ou filtres à haute densité contenant des protéines 25 selon l'invention peuvent être construits de la même manière que les puces à ADN selon l'invention. En pratique, on peut effectuer la synthèse des polypeptides fixés directement sur la puce à protéines, ou effectuer une synthèse *ex situ* suivie d'une étape de fixation du polypeptide synthétisé sur ladite puce. Cette dernière méthode est préférable, lorsque l'on désire fixer des protéines de

taille importante sur le support, qui sont avantageusement préparées par génie génétique. Toutefois, si l'on ne désire fixer que des peptides sur le support de ladite puce, il peut être plus intéressant de procéder à la synthèse desdits peptides directement *in situ*.

5 Les puces à protéines selon l'invention peuvent être avantageusement utilisées dans des kits ou nécessaires pour la détection et/ou l'identification de bactéries associées à l'espèce *Lactococcus lactis* ou à un microorganisme, ou de façon plus générale dans des kits ou nécessaires pour la détection et/ou l'identification de microorganismes. Lorsque l'on fixe les polypeptides selon
10 l'invention sur les puces à ADN, on recherche la présence d'anticorps dans les échantillons testés, la fixation d'un anticorps selon l'invention sur le support de la puce à protéines permettant l'identification de la protéine dont ledit anticorps est spécifique.

15 De préférence, on fixe un anticorps selon l'invention sur le support de la puce à protéines, et on détecte la présence de l'antigène correspondant, spécifique de *Lactococcus lactis* ou d'un microorganisme associé.

Une puce à protéines ci-dessus décrite peut être utilisée pour la détection de produits de gènes, pour établir un profil d'expression desdits gènes, en complément d'une puce à ADN selon l'invention.

20 Les puces à protéines selon l'invention sont également extrêmement utiles pour les expériences de protéomique, qui étudie les interactions entre les différentes protéines d'un microorganisme donné. De façon simplifiée, on fixe des peptides représentatifs des différentes protéines d'un organisme sur un support. Puis, on met ledit support en contact avec des protéines marquées, et
25 après une étape optionnelle de rinçage, on détecte des interactions entre lesdites protéines marquées et les peptides fixés sur la puce à protéines.

Ainsi, les puces à protéines comprenant une séquence polypeptidique selon l'invention ou un anticorps selon l'invention sont objet de l'invention, ainsi que les kits ou nécessaires les contenant.

La présente invention couvre également un procédé de détection et/ou d'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un microorganisme associé dans un échantillon biologique, qui met en œuvre une séquence nucléotidique selon l'invention.

5 Il doit être entendu que le terme échantillon biologique concerne dans la présente invention les échantillons prélevés à partir d'un organisme vivant (en particulier sang, tissus, organes ou autres prélevés à partir d'un mammifère) ou un échantillon contenant du matériel biologique, c'est-à-dire de l'ADN. Un tel échantillon biologique englobe donc les compositions alimentaires contenant des
10 bactéries (par exemple les fromages, les produits laitiers), mais également des compositions alimentaires contenant des levures (bières, pains) ou autres.

Le procédé de détection et/ou d'identification mettant en œuvre les séquences nucléotidiques selon l'invention peut être de diverse nature.

On préfère un procédé comportant les étapes suivantes :

15 a) éventuellement, isolement de l'ADN à partir de l'échantillon biologique à analyser, ou obtention d'un ADNc à partir de l'ARN de l'échantillon biologique ;
b) amplification spécifique de l'ADN de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé à
20 l'aide d'au moins une amorce selon l'invention ;
c) mise en évidence des produits d'amplification.

Ce procédé est basé sur l'amplification spécifique de l'ADN, en particulier par une réaction d'amplification en chaîne.

On préfère également un procédé comprenant les étapes suivantes :

25 a) mise en contact d'une sonde nucléotidique selon l'invention avec un échantillon biologique, l'acide nucléique contenu dans l'échantillon biologique ayant, le cas échéant, préalablement été rendu accessible à l'hybridation, dans des conditions permettant l'hybridation de la sonde à l'acide nucléique d'une bactérie

appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé ;

- b) mise en évidence de l'hybride éventuellement formé entre la sonde nucléotidique et l'ADN de l'échantillon biologique.

5 Un tel procédé ne doit pas être limité à la détection de la présence de l'ADN contenu dans l'échantillon biologique attesté, il peut être également mis en œuvre pour détecter l'ARN contenu dans ledit échantillon. Ce procédé englobe en particulier les Southern et Northern blot.

10 Un autre procédé préféré selon l'invention comprend les étapes suivantes :

- a) mise en contact d'une sonde nucléotidique immobilisée sur un support selon l'invention avec un échantillon biologique, l'acide nucléique de l'échantillon, ayant, le cas échéant, été préalablement rendu accessible à l'hybridation, dans des conditions permettant l'hybridation de la sonde à l'acide nucléique d'une bactérie appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé ;
- 15 b) mise en contact de l'hybride formé entre la sonde nucléotidique immobilisée sur un support et l'acide nucléique contenu dans l'échantillon biologique, le cas échéant après élimination de l'ADN de l'échantillon biologique n'ayant pas hybridé avec la sonde, avec une sonde nucléotidique marquée selon l'invention ;
- 20 c) mise en évidence du nouvel hybride formé à l'étape b).

25 Ce procédé est avantageusement utilisé avec une puce à ADN selon l'invention, l'acide nucléique recherché s'hybridant avec une sonde présente à la surface de ladite puce, et étant détecté par l'utilisation d'une sonde marquée. Ce procédé est avantageusement mis en œuvre en combinant une étape préalable d'amplification de l'ADN ou de l'ADN complémentaire obtenu éventuellement par transcription inverse, à l'aide d'amorces selon l'invention.

Ainsi, la présente invention englobe également les kits ou nécessaires pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- 5 a) une sonde nucléotidique selon l'invention ;
 b) éventuellement, les réactifs nécessaires à la mise en œuvre d'une réaction d'hybridation ;
 c) éventuellement, au moins une amorce selon l'invention ainsi que les réactifs nécessaires à une réaction d'amplification de l'ADN.

10 De même, la présente invention englobe également les kits ou nécessaires pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- 15 a) une sonde nucléotidique, dite sonde de capture, selon l'invention;
 b) une sonde oligonucléotidique, dite sonde de révélation, selon l'invention ;
 c) éventuellement, au moins une amorce selon l'invention ainsi que les réactifs nécessaires à une réaction d'amplification de l'ADN.

20 Enfin, les kits ou nécessaires pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- 25 a) au moins une amorce selon l'invention ;
 b) éventuellement, les réactifs nécessaires pour effectuer une réaction d'amplification d'ADN ;
 c) éventuellement, un composant permettant de vérifier la séquence du fragment amplifié, plus particulièrement une sonde oligonucléotidique selon l'invention.

sont également objets de la présente invention.

De préférence, lesdites amorces et/ou sondes et/ou polypeptides et/ou

anticorps selon la présente invention utilisés dans les procédés et/ou kits ou nécessaires selon la présente invention sont choisis parmi les amorces et/ou sondes et/ou polypeptides et/ou anticorps spécifiques de l'espèce *Lactococcus lactis*. De manière préférée, ces éléments sont choisis parmi les séquences nucléotidiques codant pour une protéine sécrétée, parmi les polypeptides sécrétés, ou parmi les anticorps dirigés contre des polypeptides sécrétés de *Lactococcus lactis*.

La présente invention a également pour objet les souches de *Lactococcus lactis* et/ou de microorganismes associés contenant une ou plusieurs mutation(s) dans une séquence nucléotidique selon l'invention, en particulier une séquence ORF, ou leurs éléments régulateurs (en particulier promoteurs).

On préfère, selon la présente invention, les souches de *Lactococcus lactis* présentant une ou plusieurs mutation(s) dans les séquences nucléotidiques codant pour des polypeptides impliqués dans la machine cellulaire, en particulier la sécrétion, le métabolisme intermédiaire central, en particulier la production de sucres, le métabolisme énergétique, les processus de synthèse des acides aminés, de transcription et de traduction, de synthèse des polypeptides, ou dans la résistance et/ou l'adaptation au stress ou les séquences nucléiques impliquées dans les fonctions relatives aux phages et prophages.

Lesdites mutations peuvent mener à une inactivation du gène, ou en particulier lorsqu'elles sont situées dans les éléments régulateurs dudit gène, à une surexpression de celui-ci.

Ainsi, on recherche en particulier des souches de *Lactococcus lactis* présentant une résistance accrue à l'infection et/ou la propagation des phages, sur-exprimant ou sous-exprimant (en particulier n'exprimant plus du tout) un polypeptide selon l'invention, impliquées dans les fonctions relatives aux phages et prophages. Une souche de *Lactococcus lactis* qui présente une résistance accrue à l'infection et/ou la propagation des phages, contenant un gène toxique sous le contrôle d'un agent régulateur de l'expression des gènes codant pour les

fonctions relatives aux phages et prophages, est également un objet de l'invention.

De telles souches de *Lactococcus lactis* modifiées sont très utiles pour augmenter la biosynthèse ou la biodégradation de composés d'intérêt. En 5 particulier, on recherche une amélioration de la biosynthèse du diacétyle, lorsque l'on désire fabriquer du beurre ou du fromage blanc. Il peut également être intéressant d'améliorer la biodégradation des sucres en particulier les lactoses, présents dans les compositions alimentaires dans lesquelles on rajoute les souches selon l'invention.

10 On peut également utiliser un polypeptide selon l'invention, une cellule transformée selon l'invention, et/ou un animal selon l'invention dans un procédé de biosynthèse ou de biodégradation d'un composé d'intérêt, lui-même également objet de la présente invention.

15 Enfin, une méthode de diagnostic de la présence de phages dans les levains lactiques et dans les produits laitiers, par l'étude de la présence de l'acide nucléique qui code pour un polypeptide impliqué dans les fonctions relatives aux phages et prophages, est également un objet de l'invention.

20 MATERIELS ET METHODES

1. Le séquençage du génome *L. lactis* IL1403.

La stratégie de séquençage du génome de *L. lactis* IL1403 comportait deux étapes principales. Premièrement, la séquence diagnostique a été établie, 25 avec une redondance de séquençage de seulement 2. Deuxièmement, la qualité de la séquence a été améliorée par séquençage de matrices aléatoires jusqu'à obtenir une redondance de 6. Toute partie du génome qui n'a été séquencé que sur un brin a été re-séquencé, en utilisant des matrices générées par PCR à longue distance (Long Range ou LR PCR), afin d'obtenir un taux d'erreur

inférieur à 0,01% (moins d'une erreur pour 10.000 bases).

La stratégie de séquençage avec une faible redondance, du génome de *L. lactis*, est présentée dans le Tableau 2. Cette stratégie est un compromis entre une approche de séquençage direct et une approche de séquençage au hasard.

- 5 L'objectif étant de réduire le temps et l'effort nécessaire pour obtenir l'organisation du génome et connaître les gènes qui le compose. Dans un premier temps, un nombre limité de clones choisis au hasard est séquencé, ainsi le taux d'accumulation de nouvelles séquences reste approximativement constant. Cette condition s'arrête quand le génome a été couvert à peu près une
- 10 fois. Dans un second temps, des clones choisis au hasard, et portant un grand insert, sont séquencés par « primer walking ». On peut garder alors une redondance faible en choisissant les oligonucléotides correspondant aux extrémités des contigs prolongés, pour l'étape suivante de « primer walking ». Cette étape est poursuivie jusqu'à ce que l'obtention d'une nouvelle séquence
- 15 soit supérieure à l'obtention d'1 nouvelle base pour 3 bases séquencées. L'étape finale du séquençage s'achève par l'utilisation d'une autre méthode directe, qui est appelée « multiplex long accurate PCR » (MLA PCR) (Sorokin *et al*, 1996, A new approach using multiplex long accurate PCR and yeast artificial chromosomes for bacterial chromosome mapping and sequencing, Genome Res, 6: 448-53). Celle-ci implique le mélange d'un grand nombre d'oligonucléotides correspondant aux extrémités des contigs. Un produit sera obtenu chaque fois que la distance entre 2 sites sur le génome, correspondant aux extrémités de deux contigs, est inférieure à la taille maximale pouvant être synthétisée par LR PCR. Pour la taille du génome de *L. lactis*, la probabilité d'obtenir ce type de produit est entre 0,5 et 1, si 20 oligonucléotides sont mélangés (au moins la moitié des réactions de PCR contenant 20 oligonucléotides choisis au hasard, donneront un produit d'amplification). Les données statistiques de l'application de cette stratégie pour le séquençage de *L. lactis* sont présentées dans le tableau
- 20 3. Une banque contenant 2854 clones avec des inserts d'une taille comprise
- 25

entre 1 et 2 Kb, a été construite en utilisant les vecteurs pBluescript II KS+ (Stratagène) ou pSGMU2 (Errington J, 1986, A general method for fusion of the *Escherichia coli lacZ* gene to chromosomal genes in *Bacillus subtilis*, J Gen Microbiol, 132 :2953-66). 2625 clones ont été séquencés avec l'oligonucléotide direct (M13-21) et 2168 avec l'oligonucléotide réverse (M13RP1), avec un taux de séquences réussies d'environ 90 %. Après l'obtention d'environ 2100 kb de séquences, 2357 oligonucléotides ont été synthétisés pour fermer les espaces entre les séquences directes et réverses. Un total d'environ 3,3 Mb de séquences a ainsi été obtenu.

Le vecteur λ -FIXII (Stratagène) a été utilisé pour construire une banque de grands inserts. Le chromosome de *L. lactis* a été partiellement digéré avec *Sau3A*, fractionné par centrifugation en gradient de sucre, traité avec la Klenow polymérase en présence de dGTP et de dATP, et ligaturé avec le vecteur λ -FIXII lui-même digéré par *XhoI* et traité avec la Klenow polymérase en présence de dCTP et de dTTP. 262 phages ont été choisis au hasard et les extrémités des inserts ont été séquencées avec l'oligonucléotide T7 (Stratagène). Parmis ces 262 phages séquencés, 122 phages ayant permis d'obtenir une séquence unique avec l'oligonucléotide T7, ont alors été séquencés avec l'oligonucléotide T3 (Stratagène). Environ 250 kb de séquences ont ainsi été obtenues de cette façon.

La MLA PCR a été utilisée pour obtenir des produits pour de nouvelles séquences. L'étape critique de la méthode a été de déterminer quels mélanges de 2 oligonucléotides donnaient un produit utilisable pour le séquençage. Le protocole développé précédemment et qui requérait deux étapes pour l'identification (Sorokin *et al*, 1996, A new approach using multiplex long accurate PCR and yeast artificial chromosomes for bacterial chromosome mapping and sequencing, Genome Res, 6: 448-53), a été modifié ici de façon à ce qu'une seule étape soit requise. Au total, 1641 réactions de séquençage sur des produits de tailles variant entre 1 et 20 kb ont été obtenues, et environ 0,77 Mb de séquences ont été lues. Cette étape a permis de

finir l'assemblage complet du chromosome, donnant un contig de 2,34 Mb. La redondance totale est proche de 2. Pour vérifier que l'assemblage est correct, les Inventeurs ont effectué des amplifications de type LR PCR sur le génome entier, en utilisant 266 oligonucléotides, séparés par des distances prédites entre 10 et 20 kb.

- 5 Les produits espérés ont été obtenus, indiquant que l'assemblage est correct.

Pour améliorer la qualité de la séquence finale, et ainsi faciliter l'étape suivante d'annotation, une autre banque de plasmides contenant des petits inserts (1-2 kb) du génome de *L. lactis* IL1403, a été construite et les inserts obtenus séquencés avec les oligonucléotides directs (M13-21) et réversés (M13RP1). Au total 7665 plasmides ont été séquencés avec succès, ce qui a permis d'obtenir 15310 gels lus, contenant 9671085 caractères. Ces séquences couvrent 93 % de la séquence contiguë obtenue lors de l'étape de séquençage basse-redondance, et sont distribuées dans 358 groupes le long de la séquence contiguë. 978 oligonucléotides ont alors été synthétisés pour séquencer les 10 produits de LR PCR générés en utilisant la séquence connue d'IL1403. La base de données de la séquence finale contient 26036 gels lus, contenant 14842630 caractères. La taille moyenne des gels lus est donc de 570 bases. La longueur de 15 la séquence génomique d'IL1403 est de 2365589 bases, la redondance de la séquence finale est 6,27.

20

2. L'annotation du génome d'IL1403

2.1. Prédiction des gènes codant pour les protéines dans *L. lactis* IL1403.

Les fenêtres ouvertes de lecture prédites ont d'abord été identifiées en 25 utilisant TGA, TAA et TAG comme codons stops et en utilisant le code génétique bactérien standard. La région codante pouvant coder pour une protéine a été considérée comme ayant une taille de plus de 60 acides aminés. Les séquences homologues à l'extrémité 3' de l'ARNr 16S de *L.lactis* (3' UCUUUCCUCCA...5') en amont des codons potentiels d'initiation, qui sont

ATG, GTG, ou TTG, ont été systématiquement recherchées pour assurer la fonctionnalité du gène putatif trouvé. Plusieurs gènes dans *L. lactis* IL1403 ont ainsi été trouvés, ils ont été appelés ARNm « leaderless » et démarrent au codon ATG de l'extrémité 5'. Ceci est applicable en particulier aux gènes impliqués 5 dans le processus de transformation génétique. Ceci peut expliquer que *L. lactis* est protégé de cette façon de l'expression de gènes occasionnels due à une mutation ou à une insertion d'une séquence ayant une activité promotrice.

Les protéines prédites sont ensuite systématiquement testées au niveau de leur homologie avec les protéines connues contenues dans les bases de données. Finalement, ceci a révélé 2323 gènes avec ou sans fonctions assignées, présentés dans le tableau 1. Les gènes sont classés selon un schéma de classification proposé par M. Riley (Riley M, 1993, Functions of the gene products of *Escherichia coli*, *Microbiol Rev*, 57 : 862-952). Plusieurs catégories de gènes de *L. lactis* IL1403 sont décrites ci-dessous.

15 **2.2 Les éléments IS et les prophages chez *L. lactis* IL1403.**

Trois éléments IS étaient déjà connus dans le génome de *L. lactis* IL1403, désignés IS981, IS982 et IS1076. Leur nombre de copies (respectivement dix, une et sept) et leur localisation approximative sont rapportés. Les données de séquençage des Inventeurs révèlent que dans toutes 20 les localisations chromosomiques où IS1076 a été cartographié, la séquence nucléotidique identique à IS904 est présente. Le dernier nom est gardé sur la carte. Un autre élément, appelé IS1077, était présent dans chacun de ces sept sites. Quinze copies d'un élément, qui n'avait pas été décrit précédemment pour l'espèce *Lactococcus* et appelé IS983, ont été détectées dans le génome de 25 IL1403. L'élément le plus proche relativement d'une autre bactérie lactique, qui est IS1070, a été découvert dans le plasmide pNZ63 de *Leuconostoc lactis* NZ6009.

Pour identifier les prophages potentiels présents dans le chromosome, les Inventeurs ont utilisé la recherche d'homologies dans les bases de données

contenant des séquences protéiques de phages connus. La base de données est composée de 1219 séquences protéiques, comprenant l'ensemble complet des 50 protéines putatives dérivées de la séquence du phage tempéré r1t de *L. lactis* (Van Sinderen, D., Karsens, H., Kok, J., Terpstra, P., Ruiters, M.H., Venema, G., & Nauta, A., 1996, Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t, *Mol Microbiol* 19: 1343-1355). Une distribution des homologies non redondantes lancées sur le génome de *L. lactis* a été générée. Cette distribution indique la présence de trois régions, autour de 470, 1060 et 1430 Kb, qui contiennent les prophages identifiés précédemment par des tests biologiques. Deux sites, autour de 45 et 2020 Kb, indiquent un quatrième et un cinquième prophages.

2.3. Le biais GC, l'origine de réPLICATION et le terminus.

Pour prédire les sites de l'origine de la réPLICATION et le terminus, les Inventeurs ont utilisé les biais GC et AT dans des schémas similaires (Lobry, J.R., 1996, Asymmetric substitution patterns in the two DNA strands of bacteria, *Mol Biol Evol*, 13: 660-665). Les distributions des valeurs (C-G)/(C+G) et (A-T)/(A+T) le long de la région chromosomique montre une transition bien franche entre les valeurs positives et négatives, et indique la présence de l'origine de réPLICATION dans le voisinage de gène *dnaA*. Cette région contient quatre boîtes DnaA, qui indiquent aussi la présence de l'origine de réPLICATION. Les Inventeurs ont choisi le point de départ de la présentation circulaire du génome de *L. lactis* au milieu du site *HindIII* près de l'origine de réPLICATION et la carte est orientée de façon avec la direction de transcription des gènes *dnaA* et *dnaN*.

Les biais GC et AT indiquent aussi la localisation du terminus de réPLICATION. La transition entre les valeurs positives et négatives se produit près de la position 1260 K. Ceci est en corrélation avec la localisation du terminus de réPLICATION basée sur l'orientation des gènes potentiels de transcription et la distribution des sites chi le long du génome.

3 Description des catégories de gènes

3.1. Biosynthèses d'acides aminés de vitamines et de nucléotides.

Les analyses des Inventeurs ont montré que *L. lactis* a un potentiel génétique pour synthétiser les 20 acides aminés standards et au moins 4 co-facteurs (l'acide folique, la ménaquinone, la riboflavine et la thiorédoxine). Cependant, cette bactérie est délicate d'un point de vue nutritionnel et nécessite de nombreux métabolites qu'il faut ajouter au milieu synthétique (Jensen & Hammer, 1993, Minimal requirements for exponential growth of *lactococcus lactis*, *Appl Env Microbiol*, 59:4363-4366). Le problème des exigences nutritionnelles délicates des souches *L. lactis* a récemment été abordé par l'application de la technique de simple omission (Cocaign-Bousquet, M., Garrigues, C., Novak, L., Lindley, N.D., & Loubiere, P., 1995, Rational development of a simple synthetic medium for the sustained growth of *Lactococcus lactis*, *J Appl Bacteriol*, 79: 108-116) et des approches génétiques. Il a également été montré que l'auxotrophie de IL1403, utilisée comme une souche laitière, pour l'histidine et les acides aminés à chaîne ramifiée est due à des mutations récemment acquises. La mise à disposition du complément complet des gènes biosynthétiques présents dans *L. lactis* fournira de nombreux éléments pour la compréhension et l'utilisation efficace du métabolisme biosynthétique dans ces bactéries.

Les Inventeurs ont détecté 60 gènes impliqués dans la biosynthèse et la préservation des nucléotides et nucléosides. La plupart des gènes pour la biosynthèse des purines sont regroupés près de l'opéron *purDEK*, qui a été récemment caractérisé. Une copie de IS983 a été détectée entre l'opéron *purDEK* et d'autres gènes de la biosynthèse des purines.

3.2. Métabolisme énergétique et transporteurs.

Le potentiel génétique de *L. lactis* à croître sur différentes sources carbonées peut être estimé à partir de la présence des gènes de biodégradation et des transporteurs adéquats. IL1403 a des gènes qui peuvent être utilisés pour la

croissance sur différentes sources de carbone : le glucose (les gènes de glycolyse), le fructose (positions 1519 et 2230 kb, fructokinase and glucoso-6P-isomérase, *scrK* et *pgiA*), la N-acétyl glucosamine (1032 kb, gène codant pour la glucosamine-fructoso-6P aminotransférase, *glmS*), le xylose (1550 kb, opéron *xyI*), le ribose 5 (1685 kb, opéron *rbs*), le mannose (779 kb, mannose-6P isomérase, *pmi*), le gluconate (608, 2254 et 2254 kb, 6P gluconate déshydrogénases et gluconate kinase, *gnd*, *gntZ* and *gntK*), maltose (692, 700 et 1526 kb, maltodextrine glucosidases and 4- α -glucanotransférase, *malQ*), le lactose (2041 kb, β -galactosidase, *lacZ*), le galactose (2045 kb, opéron *gal*), le mannitol (33 kb, 10 mannitol-1P 5-déshydrogénase, *mtlD*), les différents β -glucosides (186, 419, 830, 1490 et 1520 kb, glucosidases, 6P β -glucosidases, *bglS*, *bglA*, *yidC*, *bglH*, *dexB*). L'opéron catabolique du glucuronate ou du galacturonate (1670 kb, opéron *uxu-kdg*) peut être utilisé pour l'utilisation des produits de dégradation de la pectine comme une source supplémentaire d'énergie et de carbone. Les composants des 15 systèmes de transports dépendant de l'enzyme II sucre-spécifique du phosphoénol-pyruvate ont été trouvés pour le mannitol (30 kb, *mtlAF*), le sucrose ou le tréhalose (435 kb, *yedF*), le fructose (984, *fruA*), le mannose (1748 kb, opéron *ptn*) et des β -glucosides (175, 416, 830, 1144 et 1489 kb, *celB*, opéron *ptc*, *yidB*, *yleDE*, *ptbA*). L'analyse de la séquence du chromosome de IL1403 a révélé que les gènes codant 20 pour la voie PTS-dépendante de l'utilisation du lactose étaient absents dans cette souche. Le chromosome contient cependant un autre système pour l'utilisation du lactose dépendant du transport par le produit du gène *lacS*, codant pour un symporteur H⁺ ou un anti-porteur galactose-lactose. L'analyse des Inventeurs a détecté 19 gènes impliqués dans la glycolyse, complétant la description de ce 25 système et a révélé un second gène de déshydrogénase glyceraldéhyde-phosphate. Ceci a également confirmé l'absence d'un cycle complet de l'acide citrique. Un gène impliqué dans la gluconéogenèse a été identifié ; il s'agit du gène codant pour la fructose 1,6 bisphosphatase. Aucun gène codant pour la phosphoénolpyruvate carboxykinase ou la phosphoénolpyruvate synthétase n'a été trouvé.

Les importeurs et exporteurs de différents métabolites sont largement représentés dans les bactéries par les transporteurs ABC. Les importeurs sont impliqués dans le transport vers l'intérieur de la cellule de différents sucres ainsi que d'oligosaccharides, oligopeptides et acides aminés, anions et cations. Les exporteurs 5 sont impliqués dans l'excrétion des métabolites dangereux pour la cellule et sont donc souvent impliqués dans la résistance de la cellule à différents antibiotiques ou autres drogues. L'inventaire complet de tels transporteurs a été réalisé à partir du séquençage complet de plusieurs microorganismes, y compris de levures telles que *Sacharomyces cerevisiae*, *Escherichia coli* et *Bacillus subtilis*.

10 Dans *L. lactis* plusieurs systèmes codant pour les transporteurs ABC ont été caractérisés. L'un d'entre eux, *oppDFBCA*, code pour un transporteur d'oligopeptides et semble être important pour la croissance dans un milieu contenant des oligopeptides. Le système codé par l'opéron *lcnCD* est impliqué dans la sécrétion et la maturation de lactococcine A et est important dans le développement 15 de la résistance à cet antibiotique. Il a été montré que le gène *lmrA*, impliqué dans la résistance multi-drogues, est capable de complémenter le gène humain MDR1, responsable de la résistance à la chimiothérapie dans plusieurs formes de cancers. Il a été montré que les gènes *busAA* et *busAB* responsables du transport de la bétaine 20 sont importants pour la résistance aux chocs osmotiques. L'inventaire complet des transporteur ABC dans le chromosome de *L. lactis* IL1403 est présenté dans le Tableau ABC. La présente invention fournit les moyens pour détecter les gènes correspondants dans différentes souches de *L. lactis* et apparentés de façon étroite aux Streptocoques. Dans ces derniers, les transporteurs correspondants peuvent être impliqués dans le développement de la pathogénicité.

25 **3.4. Enveloppe cellulaire.**

L'analyse des Inventeurs a révélé 81 gènes impliqués dans les fonctions de l'enveloppe cellulaire, y compris 10 protéines de membrane, 28 gènes de la biosynthèse des peptidoglycans et muréine succulus et 43 gènes de la biosynthèse des polysaccharides de surface.

3.5. Machinerie cellulaire.

Parmi les gènes impliqués dans le fonctionnement de la machinerie cellulaire, listés dans le Tableau 1, les plus importants pour les applications portentielles sont ceux impliqués dans la sécrétion protéique et le développement de 5 la compétence génétique. La liste complète des gènes détectés pertinents est présentée dans le Tableau 1. Leur présentation est détaillée en partie ci-dessus. L'exemple correspondant d'isolement de tels gènes par la mise en œuvre de la présente invention est fourni ci-après.

3.6. Fonctions de régulation.

10 L'analyse a révélé 126 gènes potentiellement impliqués dans la régulation, qui représentent à peu près 5,6 % du nombre total des ORFs identifiés.

3.7. RéPLICATION, TRANSCRIPTION ET TRADUCTION.

65, 27 et 128 gènes ont été attribués aux catégories fonctionnelles de réPLICATION, transcription et traduction respectivement. Il apparaît que le système de 15 réPLICATION de *L. lactis* est très similaire à celui de *B. subtilis*. La contrepartie des gènes de *dnaB* et *dnaD*, essentiels pour la réPLICATION de l'ADN chez *B. subtilis* et non présents dans les bactéries gram négatives, ont été détECTÉS. Deux gènes d'ADN-polymérase III de chaîne α, l'un correspondant à *polC* et un autre à *dnaE* de *B. subtilis*, ont également été détECTÉS chez *L. lactis*. *E. coli* possède seulement 20 ce dernier gène. La machinerie transcriptionnelle et traductionnelle ne semble pas présenter de différence remarquable avec celle de *B. subtilis*. Il semble que *B. subtilis*, avec ses outils génétiques bien développés, puisse être un organisme hôte convenable pour étudier la régULATION des gènes dans les systèmes de *L. lactis*.

25

EXEMPLES

1. Détection des régions de longue colinéarité et établissement de l'organisation correspondante des gènes dans la souche *L. lactis*

MG1363 étroitement apparentée à *L. lactis* IL1403.

Comme base pour la détection de gènes chez une bactérie qui est proche de *L. lactis* IL1403, la présente invention propose le séquençage d'un nombre limité de fragments d'ADN pris au hasard. Leur nombre doit être défini de façon à permettre une densité suffisamment élevée de distribution de leur site d'homologie par rapport au génome de *L. lactis* IL1403. Dans cet exemple, pour la souche *L. lactis* MG1363, il y a 513 séquences qui ont en moyenne un site sur chaque 5 kb. Les séquences des fragments d'ADN correspondant à 2 sites les plus proches du gène d'intérêt sur le génome de IL1403 sont utilisées pour choisir les oligonucléotides pour l'amplification par PCR de la zone correspondante à partir du génome de MG1363. Dans les régions des génomes considérées comme colinéaires, le fragment amplifié devra contenir le gène d'intérêt de MG1363, du fait de la colinéarité des génomes.

L'ADN chromosomique de la souche MG1363 est digéré par l'enzyme de restriction *Alu*I ou par sonication randomisée. Après séparation dans un gel d'agarose à 0,8 %, une fraction contenant des fragments ayant une taille de 500 bp à 1 kb est isolée. Cet ADN est ligaturé au plasmide pSGMU2, digéré par *Sma*I et déphosphorylé par la phosphatase alkaline de *E. coli*. La déphosphorylation du vecteur d'ADN était nécessaire pour empêcher une auto-ligation et ainsi augmenter le nombre de colonies qui portent l'ADN chromosomique de MG1363 inséré dans le vecteur. L'ADN ligaturé a été transformé dans des cellules TG1 de *E. coli*, qui ont été rendues compétentes par un traitement avec une solution de CaCl₂ à 50 mM. Les cellules ont été étalées sur un milieu d'agar, qui contenait 50 µg/ml d'ampicilline, 20 µg/ml de X-gal et 20 µg/ml d'IPTG. Les colonies blanches ont été prises pour le séquençage des inserts par des amorces sens (M13-21) et reverses (M13RP1). 665 plasmides au total ont été séquencés et ils ont donné 882 gels lus contenant 258919 caractères. Ces séquences ont été réparties dans 539 groupes de liaison, chacun correspondant à une unique séquence de l'ADN génomique de MG1363 avec une taille moyenne de 348 bp et une longueur totale de 185292 bp.

- L'analyse de l'homologie avec le génome de *L. lactis* IL1403 a été réalisée en utilisant les algorithmes de FASTA et de BLASTx. Les résultats de cette analyse ont été utilisés pour détecter les zones de forte homologie entre les deux génomes et pour détecter les régions de colinéarité potentielle dans les organisations de génome.
- 5 L'estimation d'un niveau d'homologie statistiquement significatif a été donnée par le calcul de la distribution des contigs (tags ou étiquettes) séquencés avec un pourcentage donné d'homologie par rapport au génome de la souche IL1403. Le niveau d'homologie entre les différentes parties des génomes de MG1363 et IL1403 qui peuvent être considérées comme des contreparties est compris entre 65 et
- 10 100 %, avec un nombre maximum de régions homologues proche de 85 %.

240 oligonucléotides (SEQ ID N° 2324 à 2563) ont été synthétisés et utilisés dans des réactions de Long Range PCR, dans le but de confirmer la colinéarité des régions détectées. Les zones correspondant aux zones de colinéarité peuvent être facilement amplifiées par LR PCR en utilisant les oligonucléotides

15 correspondants comme amorces. L'organisation des gènes dans ces zones de colinéarité est conservée dans ces deux souches. Ce fait peut donc être utilisé pour amplifier les gènes désirés à partir d'autres souches de Lactocoques et les utiliser pour des manipulations génétiques. Certains systèmes génétiques particuliers, amplifiés à partir de la souche MG1363 par utilisation de l'information génomique

20 pour IL1403 et l'approche décrite dans cet exemple, sont décrits dans les exemples 2 et 3.

La présente invention fournit donc les séquences pour le génome de *L. lactis* MG1363, qui permet la détection d'un gène quelconque existant dans les deux souches : IL1403 et MG1363. Puisque l'homologie et la colinéarité des deux

25 génomes sont estimées à 65 %, il y a 65 % de tous les gènes listés dans les Tableaux I et II, représentant une annotation fonctionnelle du génome de IL1403.

L'invention concerne une méthode pour l'estimation de la colinéarité entre l'organisation chromosomique de deux génomes. Les parties de deux génomes sont colinéaires si les régions homologues sont situées à égale distance dans les deux

génomes. Ceci signifie en premier lieu que dans les régions colinéaires pour deux génomes donnés, l'organisation des gènes est conservée. Ceci signifie en second lieu que les oligonucléotides homologues des régions colinéaires devraient donner, par amplification PCR, des fragments de taille similaire pour les deux génomes. Ainsi,
5 pour les régions colinéaires, la similarité de l'amplification PCR devrait indiquer la similarité de l'organisation des gènes. Dans les parties des génomes considérées comme colinéaires, estimées par amplification PCR, les fragments amplifiés devraient contenir des gènes similaires pour les deux génomes, du fait de la colinéarité des génomes.

10 La présente invention fournit donc les moyens de déterminer les séquences du génome de *L. lactis* MG1363 et permet la détection d'un gène quelconque qui existe dans les deux souches : IL1403 et MG1363. L'homologie des deux génomes est estimée à 85 %. Les Inventeurs ont estimé que les régions de non-colinéarité, qui sont une partie du génome et dont la densité de distribution de tags séquencés
15 inférieure à celle attendue à partir d'une distribution randomisée, est d'environ 800 kb. Ces régions ne peuvent pas être amplifiées par PCR utilisant la méthode basée sur l'estimation de la colinéarité entre les deux génomes, fournis par la présente invention. D'autres régions peuvent être amplifiées en utilisant cette méthode. Ainsi, en utilisant cette méthode, 65 % de tous les gènes *L. lactis* peuvent être détectés
20 dans une autre souche de *L. lactis* que IL1403. Ceci signifie également que la préparation de tous les fragments représentatifs à partir de l'ADN de la souche IL1403, ou à partir d'une quelconque autre souche d'intérêt, en utilisant les méthodes décrites ci-dessus, donnera au minimum 65 % de tous les gènes d'une quelconque souche de *L. lactis*. Cet ensemble représentatif de fragments peut être
25 utilisé pour détecter des différences entre les génomes entiers de souches de *L. lactis* ou pour étudier l'expression de gènes par hybridation à de l'ARN extrait. Cette détection de 65 % des gènes ou de leur expression dans *L. lactis* est également basée sur la séquence génomique de IL1403 présentée à la Figure 1, sur l'annotation fonctionnelle de ce génome fournie au Tableau 1 et sur la méthode de la détection

de gènes selon la présente invention.

2. Détection des gènes impliqués dans la biosynthèse de l'arginine dans la souche *L. lactis* MG1363.

5 Un opéron codant pour cinq gènes nécessaires à la biosynthèse de l'arginine a été détecté aux environs de 805 kb du génome de *L. lactis* IL1403. Bien que le séquençage généré à partir de l'ADN génomique de *L. lactis* MG1363 n'a pas révélé un tag séquencé homologue à un quelconque gène de la biosynthèse de l'arginine, on peut s'attendre à ce que de tels gènes soient localisés dans le génome
10 de MG1363 dans la région à partir de 800 à 850 kb, qui est colinéaire entre les deux souches. Les Inventeurs ont choisi deux tags séquencés, les plus proches de la zone, qui doivent contenir des gènes de la biosynthèse de l'arginine dans le génome de MG1363. Il s'agit de contigs séquencés qui ont révélé une homologie avec les gènes *yhdD* et *yibC*. En synthétisant les homologues oligonucléotides des séquences à
15 partir de ces deux contigs, ma86 (SEQ ID N° 2564) et ma87 (SEQ ID N° 2565), et en réalisant une amplification par LR PCR sur l'ADN chromosomique de MG1363, un produit d'amplification d'une taille de 19 kb, ou proche de cela, contenant des gènes de la biosynthèse de l'arginine était attendu. L'amplification a donné lieu à un fragment de la taille de 19 kb. Le séquençage des extrémités de ce fragment a
20 montré que le fragment correspondait effectivement à la zone attendue et que les gènes de la biosynthèse de l'arginine étaient contenus dans cette zone du génome de MG1363. Cette méthode peut être appliquée à d'autres souches de *L. lactis* pour détecter les gènes de l'arginine dans la plupart des environnements génétiques recherchés. Les gènes *argG* et *argH*, codant pour la synthase arginosuccinate et la
25 lyase respectivement, peuvent également être détectés de la même façon. Ils ont été détectés dans le génome de la souche IL1403 proche de 130 kb. Des manipulations génétiques avec ces gènes peuvent être mises en œuvre pour augmenter ou diminuer le niveau de production de l'arginine, ce qui a de nombreuses applications dans l'industrie alimentaire, l'agriculture ou la médecine.

3. Détection des gènes de la déshydrogénase pyruvate dans la souche de *L. lactis* MG1363.

La déshydrogénase pyruvate est l'une des enzymes importantes dans la régulation des flux du métabolisme du pyruvate dans les microorganismes. En manipulant les niveaux d'activité de cette enzyme dans la cellule, il est possible de faire passer une bactérie de fermentation homolactique en fermentation acide mixte et ainsi influencer les rendements les différents produits de fermentation, ce qui peut influencer la saveur du produit final alimentaire. Un opéron codant pour quatre gènes nécessaires à la biosynthèse de la déshydrogénase pyruvate a été détecté aux environs de 60 kb dans le génome de *L. lactis* IL1403. Le séquençage généré à partir de l'ADN génomique de *L. lactis* MG1363 a révélé un contig, homologue du gène *pdhD*, codant pour une sous-unité de la déshydrogénase pyruvate. Un autre tag séquencé qui peut être utilisé pour amplifier ces gènes a été détecté comme homologue du gène *yahG* dans le génome annoté de IL1403. Par synthèse des oligonucléotides homologues aux séquences à partir de ces deux contigs, ma08 (SEQ ID N° 2566) et ma09 (SEQ ID N° 2567), et par la mise en œuvre d'une amplification par LR PCR sur l'ADN chromosomique de MG1363, un produit d'amplification de la taille de 15 kb, ou proche de cela, contenant les gènes de la biosynthèse de la déshydrogénase pyruvate était attendu. L'amplification a effectivement donné un fragment de la taille de 15 kb. Le séquençage des extrémités de ce fragment a montré que ce fragment correspondait bien à la zone attendue et que les gènes de la biosynthèse de la déshydrogénase pyruvate étaient contenus dans cette zone du génome de MG1363. Cette méthode peut être appliquée à d'autres souches de *L. lactis* pour la détection des gènes de la déshydrogénase de pyruvate dans les environnements génétiques les plus recherchés. D'autres gènes également impliqués dans la glycolyse ont été détectés dans différentes parties du chromosome de la souche IL1403. Il s'agit de *enoA* (633 kb) et *enoB* (274 kb), tous deux codant pour une énolase, de *pgk* (242 kb) codant pour une phosphoglycératekinase, de *pgm*

(332 kb) codant pour une phosphoglycérate mutase, de *pgmB* (442 kb) codant pour une betta-phosphoglycomutase, de *gapA* (554 kb) et de *gapB* (2315 kb) les deux codant pour une déshydrogénase de glycéraldéhyde 3-phosphate, de *tpiA* (1148 kb) codant pour une isomérase triosephosphate, de *pyk* (1370 kb) codant pour une 5 pyruvate kinase, de *fbaA* (1963 kb) codant pour une aldolase fructose-bisphosphate, de *pgiA* (2228 kb) codant pour une glucose-6-phosphate isomérase. Par la synthèse des oligonucléotides homologues des séquences à partir des contigs proches des zones où ces gènes étaient détectés dans IL1403, et la mise en œuvre d'une amplification par LR PCR sur l'ADN chromosomal de MG1363, un produit 10 d'amplification contenant les gènes de la glycolyse était attendu. Ces gènes représentent l'ensemble complet des gènes de la glycolyse et peuvent être trouvés dans *Lactococcus lactis*.

Cette méthode peut être appliquée à d'autres souches de *L. lactis* pour la 15 détection des gènes de la glycolyse dans la plupart des environnements génétiques recherchés. La modification de ces gènes par mutagénèse pourrait donner lieu à la construction de nouvelles souches de niveau alimentaire qui auraient de nombreuses applications dans l'industrie alimentaire et l'agriculture.

4. Isolation et surproduction d'une chaperone extracytoplasmique

20 Les protéines sécrétées sont souvent dégradées au cours ou après leur sécrétion par des protéases présentes à la surface des cellules. Cette dégradation est souvent d'autant plus importante que la protéine sécrétée est d'origine étrangère, et ceci probablement parce que leur repliement est soit trop lent, soit mal synchronisé avec la synthèse et/ou la sécrétion. L'expression amplifiée de 25 certains enzymes dont le rôle est de faciliter leur repliement permet parfois de protéger ces protéines de cette dégradation. Dans l'exemple suivant, les Inventeurs ont isolé la séquence complète d'un gène dont le meilleur homologue dans les bases de donnée est *prsA* de *B. subtilis* et dont l'activité semble être celle d'aider les protéines sécrétées à mieux se replier.

Deux amorces PCR (SEQ ID N° 2568 et SEQ ID N° 2569) ont été déduites de la séquence de *L. lactis* IL1403 et ont permis d'amplifier le gène correspondant à *prsA* chez *L. lactis*. Ce gène a été cloné dans le vecteur pGEMT (Promega) et sa séquence vérifiée. Le plasmide obtenu a ensuite été fusionné au site *NcoI* au plasmide pNZ8037 contenant le promoteur de l'opéron nisine de *L. lactis*. La partie pGEMT de cet hybride a ensuite été déletée par coupure *PstI* et recircularisation avec la T4-ligase. Ce plasmide a ensuite été transformé dans la souche NZ9000, un dérivé de *L. lactis* subsp. *cremoris* MG1363 contenant le système permettant d'induire le promoteur placé en amont du gène homologue de *prsA* de *L. lactis*.

Cette souche a ensuite été testée pour la production de la lipase de *Staphylococcus hyicus* qui est dégradée en plusieurs formes tronquées lors de sa sécrétion chez *L. lactis* (Drouault et al. 2000, Appl Environ Microbiol., 66, 588). Dans cette souche, aucune forme dégradée de la lipase n'a pu être visualisée montrant que la production sur plasmide de l'homologue de *prsA* de *L. lactis* IL1403 permet d'éviter l'accumulation de forme dégradée d'un enzyme hétérologue sécrété par une souche de *L. lactis* subsp. *cremoris*

5. Contrôle du métabolisme des sucres

La majeure partie du galactose métabolisé par *L. lactis* et en général les bactéries lactiques est transformé dans la voie de la glycolyse via la voie de Leloir. En effet, du fait du métabolisme fermentaire des bactéries lactiques, ces réactions sont plus actives que celles ayant trait à la synthèse de sucres nucléotides, précurseur du glycogène, d'acide lipotechoïque et d'exopolysaccharides. Une des étapes limitant la synthèse d'EPS, en particulier chez *Streptococcus thermophilus*, bactéries du yaourt, est la réaction glucose-6-phosphate vers le glucose 1-phosphate par la phosphoglucomutase (α PGM). Son amplification est donc souhaitable pour permettre d'augmenter la production des EPS.

Le gène codant pour α PGM, *pgm*, a été caractérisé pour en obtenir une

surexpression. Aucun gène α PGM de bactérie gram positive, et en particulier de bactérie lactique, n'avait été encore caractérisé génétiquement. Les Inventeurs ont donc recherché des séquences potentielles codant pour de tels gènes chez *L. lactis* sur la base de motifs court du site actif des protéines de cette famille comprenant des 5 phosphoglucomutases, des phosphomannomutases, des phosphoNacetylglucosamine-mutases et des gènes de fonction inconnue dont *mrsA* de *E coli* (Swissprot p31120). Les Inventeurs ont ensuite réalisé des alignements multiples des protéines homologues aux gènes homologues chez *L. lactis* et défini pour chacun des régions conservées afin de faire la synthèse d'oligonucléotides 10 dégénérés permettant d'amplifier les régions correspondantes du génome de différente bactéries comme par exemple *Streptococcus thermophilus*. Une PCR dégénérée a été réalisée avec ces oligonucléotides SEQ ID N° 2570 et SEQ ID N° 2571 sur l'ADN total d'une souche de *Streptococcus thermophilus*. Il ont permis 15 d'amplifier un fragment de 1.2 kb dont la séquence a montré qu'il contenait un gène homologue à celui de *L. lactis*.

Le reste du gène a ensuite été obtenu par PCR inverse (Ochman et al., 1990, Biotechnology, 8, 759). L'ADN chromosomal est digérée avec des enzymes de restriction puis les produits de coupure sont circularisés par ligation avec la ligase puis amplifiés par PCR "Long Range" en utilisant des primers 20 complémentaires au brin opposé. Les bandes obtenues sont extraites du gel et séquencées. La taille du gène *pgm* de *Streptococcus thermophilus* est de 1350 pb. Les Inventeurs ont montré par la suite que ce gène correspond bien à l' α -PGM de *S. thermophilus* bien qu'il ait été isolé à partir de séquence supposée être codante pour les mannomutases.

25 Pour montrer que ce gène codait pour l' α -PGM, les Inventeurs ont adopté une stratégie d'inactivation par insertion d'un vecteur dans le gène par recombinaison homologue. Dans un premier temps, des plasmides dont la réPLICATION est thermosensible contenant des fragments internes au gène *pgm* (Biswas et al., 1993, J Bacteriol., 175, 3628) ont été construits. Une souche de *Streptococcus*

thermophilus contenant le plasmide pG+host contenant l'insert interne a *pgm* a été mise à pousser à 42°C sur boites M17 lactose contenant l'erythromycine pour détecter les événements d'intégration. L'ADN chromosomique préparée à partir d'une souches ainsi obtenue a été digéré par *Kpn*I puis analysé par Southern en utilisant une sonde PCR couvrant le gène *pgm*. La bande correspondant à l'hybridation avec le gène *pgm* du chromosome est transformée en deux bandes correspondant à l'intégration du vecteur dans le gène *pgm*. Ce plasmide est donc bien intégré par recombinaison homologue. Il est attendu qu'une souche contenant une mutation dans le gène *pgm* pousse normalement sur milieu contenant du glucose et du galactose mais pas sur milieu contenant du galactose ou glucose seul.

Le clone obtenu après intégration ne pousse pas sur glucose ou galactose seul, mais normalement en lactose ou sur un mélange glucose et galactose. Ceci montre que le métabolisme du glucose et du galactose a bien été découplé dans cette souche et que le gène dont l'activité a été affectée est bien *pgm*. Le travail réalisé dans la présente invention permet de montrer que le gène inactivé code bien pour l'enzyme connectant la voie des EPS et la glycolyse. Il code donc probablement pour l' α -PGM dont la séquence n'était pas encore caractérisée expérimentalement chez les bactéries lactiques. Ces expériences montrent aussi que l'on peut, en s'appuyant sur les séquences du génome de *L. lactis*, isoler des gènes d'autres bactéries et notamment des Streptococcus.

6. Résistance au stress

L'annotation de IL1403 par comparaison avec d'autres bactéries telles que *B. subtilis* ou *E. coli*, permet d'identifier les gènes codant pour des activités répertoriées comme importantes en conditions de stress à la suite d'études biochimiques. Ainsi, l'invention permet l'identification de protéines mises en évidence par analyse protéomique quelle que soit la souche de *L. lactis* étudiée. Par exemple, la comparaison de certaines séquences N-terminales rapportées par Kilstrop *et al.* (1997, Appl Environ Microbiol., 63, 1826, souche MG1363)

et Frees et Ingmer (1999, Mol Microbiol., 31, 79, souche MG1363) avec les orfs détectées dans la séquence de IL1403 permet de confirmer les fonctions assignées ou d'en attribuer. Ce type d'analyse devrait permettre d'identifier des gènes appartenant aux différents régulons de stress. Il deviendra possible de 5 rechercher des séquences régulatrices communes entre les gènes d'un régulon puis dans l'ensemble de la séquence génomique afin d'en identifier tous les éléments. Les gènes codant pour la H⁺-ATPase ou la désimilation de l'arginine dont les activités augmentent en condition de stress, sont désormais identifiés chez IL1403. On peut envisager de les modifier pour renforcer ou réduire la 10 résistance des souches aux conditions acides.

Cette annotation comparée permet aussi de bénéficier des connaissances acquises chez d'autres micro-organismes sur les réponses aux stress. En exemple, il peut être mentionné l'identification chez IL1403 d'un homologue du gène *pexB* de *B. subtilis* aussi appelé *dps* chez *B. subtilis* et *E. coli*. Ce gène a chez ces deux bactéries un rôle majeur dans la protection contre 15 des dommages oxydatifs de l'ADN. Il est extrêmement probable, au vu de sa conservation, qu'il remplisse la même fonction chez *L. lactis* et soit important pour la survie au stress oxydatif et en phase stationnaire. Cette annotation révèle aussi des gènes de métabolisme du glycogène, de polyphosphate et de 20 tréhalose dont il est bien établi qu'ils ont des rôles importants dans la survie en condition de phase stationnaire et de carence. Mais l'annotation révèle aussi des différences majeures entre IL1403 et *B. subtilis* : le facteur sigma-B contrôle chez *B. subtilis* une centaine de gènes de stress, la séquence de IL1403 ne révèle aucun homologue de ce facteur sigma.

25 L'identification des régulateurs de stress doit donc reposer sur d'autres voies que la stricte comparaison. Là encore, la séquence permet d'envisager plusieurs solutions d'une part, elle révèle un certains nombre de régulateurs dont on peut désormais déterminer l'implication dans les phénomènes de résistance aux stress, d'autre part, elle permet le développement d'outils

(notamment des puces à ADN) qui faciliteront cette étude. L'identification des régulateurs est très importante pour le développement d'applications puisque la modification d'un seul gène (le régulateur) affectera l'expression de l'ensemble des gènes appartenant à 1 régulon de stress.

5 La présente invention permet d'identifier les réseaux de gènes de résistance aux stress de *L. lactis*, leur régulateurs et leurs interactions. Des applications potentielles sont i) de trouver des marqueurs de stress pertinents, ii) de modifier ces gènes et/ou leur expression pour changer la capacité de résistance/sensibilité aux stress des Lactocoques et iii) de complémenter de 10 façon pertinente l'absence de certains systèmes chez les Lactocoques éventuellement en implémentant de nouvelles fonctions.

Enfin, cette invention constitue un outil de diagnostic i) des stress réellement perçus par les Lactocoques au cours d'un procédé donné, ii) du potentiel de résistance/sensibilité d'une nouvelle souche et de son adéquation à 15 un procédé, iii) pour choisir entre l'utilisation d'OGM ou de mutants naturels ou chimiques plus résistants aux stress et le cas échéant, identifier et contrôler la(es) mutation(s).

7. Cycle des phages

20 L'analyse de la séquence du chromosome de la souche IL1403 a permis d'identifier 6 prophages et de caractériser les régions du génome dans lesquelles ils sont insérés. Au total, 256 *orfs* ont été identifiées, ainsi que les régions putatives de régulation de leur expression. Sur les 256 protéines codées par ces *orfs*, 186 sont homologues à des protéines de bactériophages ou de 25 bactéries présentes dans les banques de données, mais 70 sont nouvelles, sans homologie avec des protéines déjà décrites. De plus, l'analyse des Inventeurs a permis d'établir que certaines protéines ont une structure modulaire. Ceci implique que ces protéines, bien qu'homologues sur une partie de leur longueur à des protéines déjà décrites, puissent néanmoins présenter des spécificités

d'action différentes. C'est le cas en particulier des protéines d'initiation de la réPLICATION de l'ADN (Orf16, Orf15 et Orf14 respectivement pour les phages bIL285, bIL286 et bIL309) qui, bien qu'ayant des domaines homologues, reconnaissent vraisemblablement des origines de réPLICATION différentes sur
5 l'ADN.

L'analyse de la séquence du chromosome de la souche IL1403 a permis d'identifier des gènes codant pour des protéines impliquées dans des étapes clé de la multiplication des phages telles que la régulation du choix entre cycle lytique et cycle tempéré, la réPLICATION de l'ADN, la recombinaison, la
10 morphogenèse et la lyse cellulaire. En perturbant l'expression ou la fonction de certaines de ces protéines, il serait possible de développer des systèmes de résistance aux phages. Deux stratégies seraient utilisables :

- 1) le développement de phages infectants pourrait être gravement perturbé en changeant la concentration de l'une ou plusieurs des
15 ces protéines ; ceci pourrait être fait en surproduisant, ou au contraire en titrant ces protéines et/ou leurs régulateurs ;
- 2) les systèmes de contrôle temporel d'expression des gènes de phages pourraient être utilisés ; en plaçant des gènes toxiques sous le contrôle de tels systèmes d'expression, il serait possible de développer des «systèmes suicides» dans lesquels l'infection par un
20 phage entraînerait la mort des cellules infectées avant qu'elles ne puissent libérer de nouveaux phages.

La présente invention a également permis de mieux décrire la variété des génomes existant parmi les phages du groupe P335. Cette connaissance
25 pourrait être utilisée pour développer de meilleurs systèmes de diagnostic des phages présents dans les levains lactiques et les produits laitiers.

8. Expression des gènes et milieu d'identification des souches.

L'une des applications directes de l'information découlant de la séquence

génomique est la construction de filtres à haute densité ou de puces, qui peuvent être utilisés pour étudier l'expression des gènes de la cellule entière ou pour comparer des génomes de souches différentes. La base pour la construction d'une telle expression de gènes et les milieux d'identification de souches est la séquence 5 génomique et son annotation. Ainsi, l'information nécessaire pour la construction de filtres à haute densité et de puces pour *L. lactis* IL1403 est la séquence génomique (SEQ ID N° 1) et son annotation présentée dans le Tableau II. La préparation de tels filtres ou puces consiste à synthétiser des oligonucléotides qui correspondent aux parties terminales 5' et 3' des gènes. Ces oligonucléotides sont sélectionnés en 10 utilisant la séquence génomique et son annotation telle que fournie par la présente invention. La température d'annelage des oligonucléotides aux endroits correspondants sur l'ADN doit être approximativement la même pour chaque nucléotide. Ceci permet de préparer les fragments correspondants d'ADN pour chaque gène en utilisant des conditions standards de PCR dans des expérimentations 15 par PCR automatisée à haut débit. Les fragments amplifiés sont ensuite immobilisés sur les filtres ou des supports de verre et ces milieux sont utilisés pour l'hybridation.

La disponibilité de tels filtres et la séquence annotée correspondante permet d'étudier l'expression de l'ensemble des gènes dans le microorganisme en préparant l'ADNc correspondant et en l'hybridant à de l'ADN immobilisé sur le 20 filtre. L'hybridation de l'ADN immobilisé sur le filtre avec l'ADN total de différentes souches permet également d'étudier la divergence de l'organisation génomique chez différentes souches.

Les différences des séquences de gènes chez différentes souches peuvent largement influencer l'intensité de l'hybridation et ainsi influencer la précision de 25 l'interprétation des données. Il est donc nécessaire d'avoir exactement l'ADN de la souche qui est étudiée pour l'immobiliser sur le filtre. Dans ce but, la méthode de la détection des gènes telle que fournie par la présente invention est utile. La procédure consiste dans ce cas à amplifier l'ADN de la souche d'intérêt en utilisant l'information sur la cartographie des régions colinéaires et la méthode de détection

des gènes conformément à l'invention.

L'utilisation de l'expression des gènes et le milieu d'identification de la souche fournira un ensemble de nouvelles connaissances sur la régulation des gènes des souches de *L. lactis* présentant un intérêt industriel et dans différentes conditions de croissance. Ceci permettra également l'identification rapide des différences génomiques dans les souches utilisées pour des applications industrielles multiples.

La souche de *Lactococcus lactis* IL 1403 a été déposée le 7 avril 2000 à la Collection National de Cultures de Microorganismes, Institut Pasteur, 25 rue du Dr Roux, 75724 PARIS Cedex 15, France, selon les provisions du traité de Budapest, 10 et a été enregistrée sous le numéro d'ordre I-2438.

TABLEAU I Coordonnées des ORF par rapport à SEQ ID N° 1

ORF	Début	Fin	Début de protéine
2	349	1722	358
3	1873	3021	1882
4	3109	6426	3130
5	6407	10030	6422
6	10283	10846	10837
7	11116	12231	11119
8	12334	12666	12346
9	12912	13265	12924
10	13272	15269	13281
11	15262	15906	15274
12	16101	16577	16110
13	16595	17161	16598
14	17165	20647	17165
15	20795	21277	20810
16	21336	21665	21351
17	21634	22068	21697
18	22059	22391	22071
19	22496	23878	22532
20	23839	25146	23878
21	25115	25678	25130
22	25869	27971	25887
23	28996	30860	29041
24	30901	32856	30922
25	32907	33335	32907
26	33416	34630	33476
27	35519	35863	35839
28	35867	36301	36274
29	36274	36774	36714
30	36850	37494	37428
31	37667	39307	39292
32	39306	40100	40097
33	40104	40460	40430
34	40611	40871	40862
35	40862	41110	41098
36	41144	41452	41422
37	41422	41691	41670
38	41670	42191	42188
39	42195	42449	42386
40	42465	43220	43202
41	43680	44072	43689
42	44085	44636	44085
43	44747	44977	44750
44	45035	45244	45053
45	45351	45638	45399
46	45702	45998	45777
47	47364	47582	47370
48	47979	48290	47988
49	48477	49724	48543
50	50174	50626	50180

51	50682	50945	50706
52	51032	52489	52411
53	52494	53024	52656
54	53122	53841	53161
55	53903	54799	54661
56	54760	55125	55047
57	55129	55407	55389
58	55587	56117	55599
59	56488	57756	56584
60	57825	58610	57858
61	58974	60413	60389
62	60586	62205	62181
63	62177	63172	63154
64	63160	64308	64281
65	64373	65440	65371
66	65574	66419	66416
67	66500	67222	67147
68	67267	68382	68289
69	68758	69225	68791
70	69353	70699	69389
71	70747	71109	70762
72	71174	72184	72166
73	72272	73102	73081
74	73210	74904	74844
75	75975	77303	77252
76	77482	78327	78312
77	78683	79177	78713
78	79507	80154	79537
79	80190	81374	80208
80	81205	81975	81388
81	82519	84720	82576
82	84720	86156	84738
83	86605	87069	86620
84	87099	87764	87111
85	87873	88160	88151
86	88164	88397	88397
87	88634	88867	88652
88	89117	89824	89117
89	90238	90702	90253
90	91055	91960	91891
91	91906	92178	92163
92	92203	92820	92805
93	93034	93939	93870
94	93885	94157	94142
95	94196	94618	94253
96	94844	95149	95143
97	95882	96040	96028
98	96061	96459	96231
99	96595	98373	96595
100	98432	99229	99214
101	99272	100549	100528
102	100575	101078	101060
103	101209	101676	101212
104	101706	103259	101709

105	103321	103674	103393
106	103661	104200	103715
107	104221	105171	104221
108	105256	106023	105274
109	106031	107008	106055
110	107191	109431	107212
111	109453	110394	110385
112	110564	111028	110576
113	111003	112016	111024
114	111950	112642	112022
115	112776	114191	112785
116	114325	114981	114343
117	115025	115594	115513
118	115551	116228	116192
119	116273	118960	116366
120	119068	120126	119092
121	120335	120643	120380
122	120628	122373	120649
123	122461	122802	122491
124	122849	123184	123145
125	123536	124489	124468
126	124677	125027	124677
127	125116	126312	125152
128	126739	127947	126754
129	127960	129357	127981
130	129379	130611	130572
131	130713	131339	130767
132	131443	131844	131494
133	131778	132650	131844
134	132712	133653	132742
135	133770	133919	133788
136	134097	135038	134130
137	135065	135427	135110
138	135555	135785	135561
139	135900	136508	135966
140	136552	137241	136564
141	137335	137700	137413
142	137661	138557	137799
143	138554	139171	138617
144	139066	139986	139171
145	140048	140944	140806
146	140905	141342	141192
147	141485	141760	141497
148	141748	142191	141835
149	142332	142667	142347
150	142704	143261	143252
151	143350	144186	144132
152	144155	144406	144397
153	144410	145204	145192
154	145301	145846	145304
155	145934	147879	147876
156	148006	148371	148323
157	148777	154743	148795
158	155378	156532	156523

159	156673	157404	156715
160	157471	158673	158649
161	158833	159324	159267
162	159399	160190	159402
163	160331	160564	160358
164	160555	160815	160579
165	160936	162594	161014
166	162603	163877	162666
167	164024	164818	164033
168	165312	165632	165330
169	165620	167092	165635
170	167096	167698	167099
171	167702	169171	167708
172	169389	170894	169398
173	170982	172349	172319
174	172504	172731	172698
175	172780	173346	172816
176	173327	174028	173339
177	174059	174559	174131
178	174944	176002	174953
179	176314	177429	176338
180	177518	179011	177530
181	179656	181101	179668
182	181165	181617	181168
183	181855	183213	181873
184	183213	183983	183231
185	184156	185274	184180
186	185514	186131	185523
187	186255	187262	186285
188	187447	188361	187459
189	188389	189090	189072
190	189094	189405	189270
191	189323	189616	189535
192	189819	190070	190016
193	190006	192159	192132
194	192237	192737	192692
195	192993	193454	193029
196	193590	195257	195194
197	195254	195640	195619
198	195895	196101	196086
199	196213	196878	196222
200	197038	197940	197074
201	197958	198278	197991
202	198320	198940	198350
203	198937	199194	198943
204	199218	200285	199239
205	200317	201273	200377
206	201386	202615	201410
207	202596	203564	202608
208	203422	204354	203548
209	204339	205550	204357
210	205522	205863	205546
211	205878	206897	205908
212	206904	207887	206916

213	207891	209666	207900
214	209636	211213	209672
215	211282	212028	211306
216	211983	212396	212028
217	212332	213321	212383
218	213321	214748	213324
219	214733	215884	214748
220	215881	216720	215887
221	216650	217711	216713
222	217692	218570	217716
223	218597	219823	218600
224	219813	220262	219837
225	220394	220993	220903
226	221261	222763	221285
227	222897	224114	222972
228	224294	224677	224321
229	224722	226005	224848
230	226051	226365	226060
231	226397	227011	226415
232	226995	227594	227007
233	227643	228065	227643
234	228201	228590	228234
235	228693	229424	228693
236	229474	230643	229477
237	230660	231139	230717
238	231277	232011	231298
239	232069	232719	232081
240	232650	233375	232719
241	233414	233908	233719
242	234089	234322	234322
243	234457	235014	234472
244	235131	236591	236588
245	236745	237137	236778
246	237220	237399	237226
247	237570	240017	237609
248	240032	240628	240032
249	240750	240974	240750
250	240926	241249	240926
251	241253	241702	241256
252	241776	242603	241794
253	242781	243989	242796
254	244060	245052	244108
255	245059	245658	245619
256	245674	246687	245740
257	246691	247275	246700
258	247254	247643	247275
259	247647	248369	247656
260	248414	249886	249790
261	249932	250612	249968
262	250632	251444	250701
263	251432	252583	251444
264	252681	253850	252684
265	254016	255962	254043
266	256203	257474	257471

267	257603	258436	257612
268	258579	258998	258588
269	259130	261004	259172
270	261001	261696	261004
271	261675	262877	261696
272	262950	263627	262977
273	263679	264773	264749
274	265024	265530	265497
275	265702	266172	265711
276	266228	267082	266240
277	267221	267760	267248
278	267867	268427	267882
279	268358	268708	268427
280	268753	270108	270069
281	270395	272653	270413
282	272604	273266	272670
283	273381	273953	273884
284	274119	275441	274176
285	275713	276573	275743
286	276750	277625	276762
287	277622	278425	277628
288	278365	279060	278452
289	279261	280040	279273
290	280171	281331	280180
291	281447	282571	281456
292	283755	284366	283758
293	284496	286631	284496
294	286671	287171	286731
295	287447	288502	287447
296	288540	288791	288755
297	288795	289229	289205
298	289412	291142	291091
299	291267	291527	291494
300	291801	292526	291804
301	292408	293049	292483
302	293045	293524	293057
303	293494	294567	293530
304	294546	294767	294570
305	294967	295197	295101
306	295204	296019	295989
307	296211	297335	296289
308	297409	298194	297457
309	298198	299007	298198
310	298998	299831	299025
311	299792	301396	299840
312	301693	302205	301726
313	302354	304918	302381
314	304963	306255	306153
315	306483	306986	306959
316	306959	308254	308233
317	308497	308856	308509
318	309156	310889	309171
319	310893	312887	310896
320	313061	314329	313067

321	314357	314593	314378
322	314626	314982	314979
323	315006	315566	315551
324	315665	316198	316138
325	316205	316792	316777
326	317437	318336	317479
327	318468	319340	318483
328	319445	320317	319460
329	320327	321196	320339
330	321282	322406	321303
331	322394	323101	322409
332	323140	323697	323152
333	323770	325503	323809
334	325496	326317	325499
335	326402	326773	326483
336	326685	327476	326700
337	327469	328419	327472
338	328379	329359	328424
339	329396	330385	329447
340	330438	331352	330450
341	331416	332606	332594
342	332610	333548	333425
343	333540	333911	333567
344	333925	334329	333940
345	334422	335207	334509
346	335345	335944	335384
347	335948	337540	336014
348	337676	339871	337709
349	340010	340606	340013
350	340684	341772	340726
351	341760	343169	341850
352	343306	344991	343342
353	345261	346937	345303
354	347003	347926	347018
355	347930	348973	347945
356	348970	350025	348979
357	350025	350963	350025
358	351198	352766	351198
359	353030	354673	353033
360	355017	355955	355047
361	356037	357644	356055
362	357829	358656	357841
363	358810	359973	358813
364	359992	361371	361362
365	361434	362828	362810
366	362945	363334	362957
367	363300	363635	363312
368	363838	364383	363868
369	364454	365047	365044
370	365240	365902	365261
371	366075	366749	366114
372	366607	367548	366739
373	367548	368429	367551
374	368477	369313	369304

375	369603	371045	369615
376	371109	371972	371163
377	371936	372949	371975
378	373041	373421	373134
379	373382	374278	373520
380	374275	374892	374338
381	374787	375707	374892
382	375787	377289	377268
383	377470	378336	378285
384	378377	379441	378449
385	379660	380619	380601
386	380898	381728	381716
387	381859	382842	381871
388	383104	384351	383134
389	384508	385968	384568
390	386099	386734	386132
391	386831	387265	386834
392	387307	389427	389346
393	389440	389916	389907
394	390034	391365	391290
395	391423	393837	391435
396	393901	395031	394965
397	395059	395349	395161
398	395340	395708	395394
399	395743	396420	395797
400	396571	397923	396586
401	398004	398402	398016
402	398507	398806	398525
403	398885	400522	398897
404	400574	401449	401383
405	401557	403005	402996
406	402992	403726	403690
407	403838	404500	403868
408	404603	405493	404636
409	405524	406327	405548
410	406320	406646	406323
411	406607	407521	406616
412	407604	407795	407792
413	407858	408817	408787
414	409081	410046	409093
415	410006	411022	410036
416	411075	412118	411078
417	412219	412896	412279
418	413142	415499	413148
419	415795	417141	415804
420	417145	417729	417148
421	417885	418631	417888
422	418864	419199	418876
423	419284	419634	419287
424	419713	420456	419728
425	420839	422071	420905
426	422108	423589	422156
427	423779	424156	423878
428	424494	426482	424521

429	426620	427663	426638
430	427856	429016	427883
431	429312	432896	429327
432	433178	434080	433205
433	434004	435028	434073
434	435059	436432	435077
435	436514	437230	437227
436	437329	437820	437338
437	437897	439522	437960
438	439584	441899	439593
439	442024	442710	442048
440	442775	443623	443578
441	443642	444343	443651
442	444258	444485	444288
443	444533	444997	444575
444	444994	445512	444997
445	445607	447001	445619
446	447239	448378	448369
447	448495	449103	449070
448	449157	449993	449990
449	450174	450386	450207
450	450382	450651	450421
451	450712	450909	450763
452	451007	451411	451007
453	451411	452178	451426
454	452182	452520	452194
455	452702	452908	452738
456	453010	453813	453010
457	453810	454589	453816
458	454793	455593	454928
459	455597	456487	455615
460	456500	457048	456575
461	457286	457657	457298
462	457851	458057	457854
463	458029	458322	458053
464	458280	458873	458322
465	458849	459289	458873
466	459277	459579	459292
467	459558	459740	459579
468	459929	460111	459932
469	460263	460478	460296
470	460537	460797	460743
471	460920	461246	460956
472	461360	461602	461360
473	461632	462036	461650
474	461999	462436	462041
475	462403	462585	462436
476	462765	463184	462765
477	463284	463925	463359
478	464012	464494	464045
479	464482	466308	464497
480	466469	467557	466481
481	467515	468144	467560
482	468128	469447	468137

483	469458	469763	469461
484	469753	470085	469753
485	470061	470567	470085
486	470489	470959	470567
487	470952	471566	470964
488	471554	471970	471629
489	472128	475979	472143
490	475976	477517	475985
491	477505	481842	477520
492	481853	482188	481865
493	482094	482462	482178
494	482444	483241	482465
495	483352	483555	483552
496	484205	484984	484226
497	484981	485805	485020
498	485845	486345	485857
499	486329	486868	486329
500	486872	488005	486872
501	488243	489847	488243
502	489971	490899	489989
503	490937	491842	491806
504	492455	492934	492931
505	492918	493376	493337
506	493472	494137	494122
507	494566	497781	494602
508	497818	498543	498468
509	498574	499503	498649
510	499493	500356	499493
511	500341	501564	500356
512	501568	502230	501577
513	502308	502610	502338
514	502726	503934	503871
515	503998	504510	504486
516	504543	504854	504836
517	504886	505494	505470
518	505485	505886	505850
519	506108	506332	506144
520	506336	506608	506351
521	506722	506961	506770
522	506954	507391	506969
523	507330	507665	507429
524	507656	507916	507665
525	507913	508107	507916
526	508097	508420	508097
527	508416	509006	508431
528	509002	510441	509002
529	510551	511177	510596
530	511342	511539	511357
531	511512	512174	511569
532	512186	512773	512186
533	512992	513318	512992
534	513368	513739	513422
535	514069	514350	514338
536	514410	514673	514455

537	514731	515330	514845
538	515293	515862	515299
539	516169	516363	516184
540	517081	517311	517114
541	517858	518373	518352
542	518472	519005	518499
543	519001	519579	519022
544	519667	520482	519676
545	520428	521204	520482
546	521243	521725	521270
547	521722	522099	521725
548	522213	523358	522216
549	523462	524343	523468
550	524406	526067	526052
551	526266	527213	527195
552	527401	528495	527413
553	528540	529169	529169
554	529173	531254	531164
555	531235	531906	531873
556	531927	532475	531954
557	532575	533021	532638
558	533101	533394	533116
559	533357	534139	533375
560	534233	535513	534233
561	535480	535707	535516
562	535840	537147	535867
563	543983	545920	544010
564	545976	547340	546000
565	547413	548198	547458
566	548336	549730	548432
567	550007	550351	550016
568	550378	552648	550405
569	553076	553603	553543
570	553623	554726	553716
571	554875	555561	555507
572	555592	556113	555661
573	556106	558202	556127
574	558332	559207	558401
575	559207	560340	559225
576	560414	560869	560866
577	561121	561891	561142
578	562141	562560	562156
579	562632	563269	562632
580	563244	564170	563253
581	564301	565281	565221
582	565438	566214	566193
583	566291	566908	566878
584	566898	567434	567431
585	567427	568122	568119
586	568268	568465	568450
587	568636	570972	568648
588	570976	571428	570988
589	571538	572467	571538
590	572690	573304	572714

591	573454	573984	573505
592	574061	574504	574106
593	574508	576304	574511
594	576223	577074	576304
595	577206	577583	577224
596	577685	578071	577706
597	578288	578584	578303
598	578893	579615	579588
599	579749	580153	580126
600	580089	581561	581552
601	582011	582571	582541
602	582782	583348	582842
603	583407	583877	583835
604	583888	584346	583936
605	584858	585442	584876
606	585459	585941	585501
607	585938	587032	585962
608	587032	587559	587035
609	587586	588377	587730
610	588459	589295	588486
611	589302	589793	589332
612	589769	590710	589901
613	590913	592187	590943
614	592342	592950	592351
615	593062	594174	593080
616	594174	595367	594174
617	595352	596041	595394
618	596166	596567	596456
619	596767	597534	596779
620	597685	598137	598095
621	598277	599830	599779
622	599930	600292	599993
623	600252	600617	600267
624	600871	601755	600904
625	601766	602680	601790
626	602817	603272	603260
627	603395	604126	603398
628	604140	604433	604161
629	604524	604715	604542
630	604810	605748	604822
631	605764	606597	605815
632	606756	607184	606768
633	607214	607777	607217
634	607883	609328	607913
635	609446	611521	609512
636	611737	613761	611749
637	614178	614858	614196
638	614999	615880	614999
639	615951	616631	615966
640	616793	617698	616805
641	618028	618333	618076
642	618673	619614	618694
643	619502	620308	619610
644	620355	622703	620478

645	622721	623338	622784
646	623500	624117	623557
647	624215	625906	624257
648	625936	626439	625972
649	626564	627460	627322
650	627421	627798	627708
651	627785	628705	628465
652	628600	629202	629154
653	629327	629806	629354
654	629781	632246	629799
655	632372	632938	632384
656	633072	634424	633126
657	634500	635447	634512
658	635714	636487	635723
659	637009	637215	637078
660	637522	637713	637534
661	637732	638904	637738
662	639668	640513	640474
663	640765	643764	640780
664	643795	645351	643807
665	645333	646571	645351
666	646662	647774	646698
667	647900	648205	647939
668	648456	648707	648543
669	648958	649743	648976
670	650160	651065	650996
671	651011	651283	651175
672	652013	652708	652681
673	652687	653781	653757
674	653772	654350	654338
675	654529	656082	656049
676	656258	657154	656294
677	657391	659778	657418
678	659913	660569	659913
679	660554	661789	660575
680	661753	661932	661789
681	662162	663535	662276
682	663635	667054	663644
683	667169	668503	667181
684	668461	671046	668503
685	671058	672305	671070
686	672377	673006	672973
687	673143	673697	673194
688	673836	674255	673860
689	674643	675665	675608
690	675659	675862	675853
691	676090	678900	676147
692	679334	680419	679391
693	680382	681488	680427
694	681557	682519	681575
695	682504	683364	682537
696	683355	683636	683394
697	683603	684643	683636
698	684928	685386	685386

699	685390	686304	686295
700	686535	686849	686849
701	686807	687121	687118
702	687317	688165	687395
703	688161	688736	688206
704	688711	689334	688717
705	689436	690329	689448
706	690403	691488	690433
707	691569	692177	691623
708	692276	692725	692276
709	692667	693689	692721
710	693900	694382	693909
711	694386	695909	694443
712	695956	697152	696013
713	697112	698281	697145
714	698328	699809	698361
715	699865	702300	699901
716	702393	704192	702393
717	704418	705911	704421
718	706677	707639	706695
719	707707	709182	707710
720	709182	710177	709185
721	710460	712373	710529
722	712333	714066	712348
723	714351	715235	714363
724	715246	715749	715264
725	715770	716450	715779
726	716513	718306	716555
727	718331	718954	718939
728	719013	719681	719654
729	719872	721902	721863
730	721974	722204	722189
731	722279	723058	722399
732	723096	724106	724079
733	724232	725353	724247
734	725464	726231	725482
735	726219	727157	726222
736	727161	727625	727161
737	728133	729038	728969
738	728984	729256	729241
739	729460	730281	729487
740	730306	731364	730327
741	731371	731796	731784
742	731784	732887	732884
743	732884	734239	734143
744	734366	735214	735205
745	735595	736437	736407
746	736400	738106	738079
747	738136	739347	739347
748	739664	740263	739685
749	740267	741550	740273
750	741526	742491	741571
751	742701	743684	743669
752	743858	745246	743861

753	745336	745680	745339
754	745718	747250	745742
755	747294	748649	748643
756	748876	749781	749739
757	749732	750232	750205
758	750312	750998	750333
759	751041	753056	751095
760	753029	753505	753056
761	753514	754878	753514
762	755019	755330	755076
763	755375	756172	755402
764	756281	756946	756296
765	757002	757511	757068
766	757887	759074	757902
767	759044	759955	759077
768	759933	760676	759951
769	760676	761293	760781
770	761379	762710	761403
771	762819	763628	762819
772	764111	767653	764114
773	767749	769629	767788
774	769688	770989	769694
775	770979	771701	770979
776	771781	772494	772476
777	772498	772917	772899
778	773130	773642	773172
779	773792	774955	773810
780	775115	775447	775124
781	775429	775755	775453
782	775767	778610	775779
783	778874	779239	778883
784	779388	780365	779421
785	780784	781224	780787
786	781188	782201	781227
787	782335	782589	782371
788	782860	783795	782872
789	783881	784612	783884
790	784644	785882	784656
791	785886	786356	785892
792	786486	786917	786486
793	787239	788678	787314
794	788752	789630	788767
795	789605	790405	789626
796	790498	791676	790537
797	791885	792811	791894
798	793010	793279	793043
799	793270	793713	793339
800	793697	794032	793727
801	794029	795672	794032
802	795699	795953	795702
803	795996	796379	796032
804	796552	797292	797292
805	797389	797970	797949
806	798035	799090	799036

807	799014	801056	799071
808	801157	801501	801265
809	801509	802249	801521
810	802590	803162	802593
811	803251	803898	803269
812	804011	805060	804041
813	805030	806262	805075
814	806266	807408	806278
815	807330	808256	807408
816	808263	809285	808287
817	809446	810153	809461
818	810134	812917	810146
819	812921	813667	812936
820	813906	816077	813912
821	816126	816578	816171
822	816585	817787	816609
823	817760	818545	817787
824	818601	819947	819938
825	820449	822539	820452
826	822666	823475	822669
827	823479	824036	823488
828	824092	825477	824101
829	825593	826627	825656
830	826700	827371	826703
831	827430	829931	827445
832	830164	830952	830200
833	831273	832784	831369
834	832791	834230	832872
835	834473	835285	834485
836	835445	835807	835448
837	835896	836792	836654
838	836753	837130	837040
839	837117	838037	837932
840	837932	838555	838486
841	838489	838848	838561
842	838809	839705	838947
843	839836	841167	839911
844	841314	843314	841314
845	843431	844099	843431
846	844062	844982	844122
847	845088	845558	845106
848	845562	845774	845577
849	845945	848122	845963
850	848316	850991	850964
851	851038	851865	851820
852	852009	853223	852072
853	853395	854660	853437
854	854778	855527	854814
855	855647	856369	855659
856	856395	858470	856467
857	858592	859797	858637
858	859842	861281	859866
859	861330	861743	861387
860	861788	862891	861791

861	862989	863435	863010
862	863573	864880	863576
863	864982	865923	865009
864	865920	867422	865923
865	867648	869594	867687
866	869598	870119	869724
867	870123	870719	870129
868	870716	871168	870719
869	871224	873317	873308
870	873509	876697	873509
871	876827	877711	876830
872	877863	879131	877881
873	879107	879370	879134
874	879522	880676	879522
875	880704	881615	880761
876	881686	882501	881773
877	882495	882944	882501
878	883062	884759	883095
879	884881	885108	884881
880	885482	886051	885488
881	886140	886670	886152
882	886693	887631	886696
883	887806	888804	887854
884	888944	889342	888965
885	889324	891630	889342
886	891689	892684	891698
887	892818	893162	892887
888	893232	894815	893298
889	895005	895580	895101
890	895702	896613	895741
891	896850	897527	896856
892	897638	898012	897638
893	898290	898817	898311
894	898786	900138	898813
895	900343	900900	900367
896	901066	901830	901102
897	902337	902783	902361
898	902878	903252	902908
899	903330	903902	903860
900	903985	906420	904024
901	906600	906938	906609
902	907743	908987	907791
903	908991	909362	909021
904	909257	909571	909275
905	909623	910315	909635
906	910409	910687	910421
907	910832	911482	910856
908	911479	912477	911482
909	912487	913134	912508
910	913196	914011	913208
911	914108	914704	914117
912	914646	915137	914709
913	915128	915739	915137
914	915950	917203	915962

915	917389	918498	917389
916	918515	919285	918527
917	919808	921346	919808
918	921727	923385	921766
919	923403	924677	923403
920	924971	925906	924977
921	925978	927078	925990
922	927063	927779	927135
923	927926	929887	927935
924	930394	931131	930397
925	931271	931918	931316
926	932046	932531	932070
927	932494	934068	932527
928	934068	934787	934071
929	935539	935877	935545
930	935970	936893	935988
931	936911	937201	936920
932	937186	937689	937270
933	937689	939086	937689
934	938999	939895	939089
935	939899	941359	939920
936	941334	944231	941343
937	944235	944798	944247
938	944794	946422	944794
939	946431	948890	946470
940	948894	949670	948942
941	949712	950830	949844
942	950827	951288	950851
943	951310	951756	951328
944	951723	952964	951780
945	952846	954069	952957
946	954065	955000	954083
947	955168	956421	955189
948	956468	956746	956480
949	956802	957521	956820
950	957624	958586	957642
951	958706	959188	958745
952	959215	959598	959275
953	959748	961421	959757
954	961509	962123	961533
955	962252	963106	962264
956	963299	964261	963377
957	964255	965025	964276
958	965431	966375	965452
959	966505	966765	966520
960	967010	969469	967019
961	969473	970075	969491
962	970140	971213	970158
963	971245	972261	972183
964	972316	972597	972337
965	972714	974051	972717
966	974091	974630	974154
967	974650	975393	974701
968	975390	976136	975393

969	976123	976554	976153
970	976661	977818	976778
971	977818	978387	977851
972	978448	980283	978463
973	980483	982258	980498
974	982262	983464	982328
975	983547	984287	983589
976	984365	985288	984374
977	985273	987192	985288
978	987258	988724	987282
979	988792	989691	988807
980	989670	990671	989691
981	990706	991692	990778
982	991742	992329	992296
983	992434	993327	992452
984	993272	994960	993341
985	995096	995473	995105
986	995560	996411	995620
987	996448	996996	996975
988	997317	998156	998045
989	998144	999256	998162
990	999571	1000275	999586
991	1000202	1001203	1000271
992	1001311	1002288	1002285
993	1002638	1004815	1004803
994	1004942	1005376	1005361
995	1005366	1005644	1005539
996	1005758	1006438	1006396
997	1006671	1008602	1006671
998	1008792	1009013	1008810
999	1008971	1009345	1009013
1000	1009335	1010171	1009341
1001	1010117	1010617	1010171
1002	1010892	1013366	1010895
1003	1013398	1014318	1014300
1004	1014497	1017793	1014515
1005	1017673	1018386	1017796
1006	1018370	1018942	1018394
1007	1019052	1019717	1019058
1008	1019764	1020378	1019770
1009	1020375	1021052	1020378
1010	1021056	1021493	1021071
1011	1022028	1023113	1022028
1012	1023107	1023763	1023116
1013	1023751	1024968	1023775
1014	1024972	1025460	1024999
1015	1025563	1026015	1025566
1016	1026028	1026981	1026079
1017	1027119	1027571	1027131
1018	1027705	1029312	1027714
1019	1029330	1030292	1029339
1020	1030403	1031104	1030421
1021	1031094	1031639	1031127
1022	1031643	1032968	1031646

1023	1032972	1033631	1032978
1024	1033797	1035629	1033815
1025	1035733	1036440	1035763
1026	1036645	1037775	1037766
1027	1037892	1038443	1038434
1028	1038494	1038937	1038928
1029	1038928	1039488	1039467
1030	1039635	1039850	1039635
1031	1039866	1040630	1039890
1032	1040634	1040978	1040646
1033	1041313	1041633	1041585
1034	1041664	1041900	1041688
1035	1042019	1042534	1042019
1036	1042543	1043166	1042546
1037	1043166	1043618	1043169
1038	1043731	1044525	1043761
1039	1044501	1045250	1044528
1040	1045211	1045636	1045250
1041	1045624	1045833	1045642
1042	1046177	1046443	1046180
1043	1046628	1047203	1046637
1044	1047575	1047868	1047599
1045	1047826	1048419	1047868
1046	1048395	1048835	1048419
1047	1048823	1049335	1048841
1048	1049256	1049672	1049328
1049	1050309	1050605	1050309
1050	1050728	1051015	1050988
1051	1051115	1051441	1051151
1052	1051522	1051920	1051522
1053	1052025	1052483	1052034
1054	1052578	1052943	1052578
1055	1052918	1054705	1052930
1056	1054599	1055924	1054722
1057	1055939	1056535	1055942
1058	1056510	1057700	1056510
1059	1057749	1058612	1057758
1060	1058596	1058886	1058608
1061	1058855	1059190	1058876
1062	1059168	1059551	1059183
1063	1059518	1059865	1059551
1064	1059862	1060491	1059886
1065	1060495	1060860	1060504
1066	1060854	1061063	1060890
1067	1061077	1063338	1061080
1068	1063342	1064088	1063342
1069	1063980	1066769	1064088
1070	1066773	1068383	1066785
1071	1068355	1069206	1068379
1072	1069247	1069672	1069268
1073	1069614	1069997	1069662
1074	1069987	1070226	1070002
1075	1070243	1070476	1070255
1076	1070480	1070776	1070492

1077	1070758	1071555	1070779
1078	1072173	1072718	1072709
1079	1072925	1073323	1072934
1080	1073480	1075408	1073504
1081	1075558	1076397	1075600
1082	1076360	1076764	1076402
1083	1077258	1077608	1077581
1084	1077622	1078497	1077643
1085	1078699	1079475	1078747
1086	1080652	1081326	1080700
1087	1081430	1082752	1081430
1088	1083120	1083827	1083162
1089	1083840	1084505	1083852
1090	1084498	1085190	1084501
1091	1085178	1085960	1085190
1092	1086005	1086418	1086367
1093	1086492	1087343	1087304
1094	1087354	1088739	1088712
1095	1088878	1089285	1088881
1096	1089242	1090453	1089281
1097	1090611	1090937	1090626
1098	1090934	1091275	1090943
1099	1091217	1091561	1091280
1100	1091810	1092781	1091840
1101	1092738	1093025	1092798
1102	1093127	1094095	1093130
1103	1094099	1094632	1094156
1104	1094775	1095272	1094787
1105	1095253	1095711	1095259
1106	1095722	1096303	1095728
1107	1096343	1097026	1096990
1108	1096990	1098315	1098309
1109	1098336	1098992	1098366
1110	1099117	1099623	1099129
1111	1099662	1100690	1099674
1112	1100782	1101552	1100803
1113	1101801	1102790	1101840
1114	1102769	1104811	1102793
1115	1104922	1105164	1104925
1116	1105354	1106586	1105378
1117	1106615	1107214	1107199
1118	1107709	1109208	1107724
1119	1109208	1109693	1109208
1120	1109745	1110578	1109757
1121	1110673	1111407	1110709
1122	1111404	1114091	1111404
1123	1114173	1114955	1114955
1124	1114959	1116380	1116305
1125	1116404	1117078	1116416
1126	1117338	1119188	1117368
1127	1119255	1119890	1119258
1128	1120022	1121530	1120067
1129	1121746	1124265	1121779
1130	1124349	1125434	1124352

1131	1125438	1126298	1125438
1132	1126347	1127849	1126413
1133	1127831	1128145	1127867
1134	1128144	1129409	1128168
1135	1129525	1132296	1129534
1136	1132277	1132912	1132286
1137	1132863	1133639	1133636
1138	1133784	1136066	1133793
1139	1136041	1136553	1136089
1140	1136581	1137171	1136602
1141	1137210	1137707	1137252
1142	1137872	1139380	1137875
1143	1139518	1140243	1139554
1144	1140363	1141373	1140387
1145	1141392	1142306	1141407
1146	1142401	1143375	1142407
1147	1143534	1144595	1143537
1148	1144576	1145481	1144591
1149	1145480	1146880	1145519
1150	1146884	1147468	1146884
1151	1147533	1148381	1147533
1152	1148470	1149270	1148515
1153	1149406	1150404	1149436
1154	1150447	1151040	1150456
1155	1151243	1152592	1151258
1156	1152547	1153101	1152577
1157	1153284	1154420	1153284
1158	1154467	1155282	1154470
1159	1155286	1155828	1155388
1160	1155904	1156425	1155928
1161	1156275	1156652	1156275
1162	1156687	1157475	1156705
1163	1157563	1158195	1157581
1164	1158427	1159443	1158457
1165	1159637	1160308	1159718
1166	1160333	1161661	1160360
1167	1161696	1162145	1162106
1168	1162229	1162804	1162735
1169	1163113	1163637	1163134
1170	1163815	1165116	1163884
1171	1165086	1165700	1165116
1172	1165730	1166104	1165757
1173	1166121	1167233	1166187
1174	1167203	1168303	1167233
1175	1168297	1168803	1168309
1176	1168807	1170105	1168825
1177	1170211	1170873	1170238
1178	1171041	1172336	1171053
1179	1172299	1173231	1172344
1180	1173470	1174084	1173488
1181	1174121	1175026	1174130
1182	1175597	1176964	1175681
1183	1176964	1177749	1176964
1184	1177733	1178551	1177754

1185	1178569	1179666	1178602
1186	1180029	1180901	1180044
1187	1180982	1183258	1181003
1188	1183486	1184355	1183495
1189	1184172	1184741	1184370
1190	1184752	1185153	1184767
1191	1185119	1185679	1185119
1192	1186273	1186665	1186321
1193	1187114	1188592	1187174
1194	1189123	1190235	1189138
1195	1190239	1191657	1190368
1196	1191725	1192420	1192318
1197	1192538	1193395	1192577
1198	1193658	1193927	1193685
1199	1194110	1195504	1194125
1200	1195508	1197148	1195544
1201	1197141	1197770	1197153
1202	1197830	1198042	1197839
1203	1198046	1199008	1198070
1204	1199024	1200292	1199039
1205	1200447	1202111	1200450
1206	1202318	1202545	1202488
1207	1203465	1204616	1203477
1208	1204667	1204903	1204679
1209	1204858	1205079	1204912
1210	1205083	1205424	1205164
1211	1205757	1206707	1206683
1212	1206732	1207802	1206765
1213	1207708	1208082	1207795
1214	1208069	1208998	1208087
1215	1208973	1210526	1208991
1216	1210523	1211915	1210586
1217	1212051	1212992	1212051
1218	1213086	1213406	1213089
1219	1213267	1213524	1213381
1220	1213517	1213969	1213517
1221	1214150	1214341	1214150
1222	1214736	1214945	1214909
1223	1215140	1216081	1215140
1224	1216212	1217117	1217048
1225	1217063	1217335	1217320
1226	1217306	1219597	1217351
1227	1219624	1219968	1219654
1228	1219947	1220495	1219968
1229	1220492	1221139	1220495
1230	1221010	1221597	1221037
1231	1221622	1221894	1221637
1232	1221840	1222745	1221909
1233	1222887	1223216	1222887
1234	1223197	1224267	1223254
1235	1224246	1224758	1224246
1236	1224752	1226008	1224836
1237	1226198	1228198	1226204
1238	1228585	1229751	1228672

1239	1229846	1230724	1229867
1240	1230687	1231259	1230720
1241	1231326	1232621	1231329
1242	1232618	1233461	1232675
1243	1233449	1234060	1233461
1244	1234051	1234845	1234060
1245	1234854	1235492	1234887
1246	1235496	1236212	1235496
1247	1236100	1236981	1236205
1248	1236969	1237616	1236981
1249	1237620	1238426	1237620
1250	1238446	1239411	1239402
1251	1239665	1241341	1239827
1252	1241350	1242315	1241356
1253	1242356	1242829	1242775
1254	1242855	1244258	1242879
1255	1244269	1244853	1244281
1256	1244807	1245646	1244816
1257	1245768	1247480	1245771
1258	1247509	1249218	1247599
1259	1249211	1249687	1249214
1260	1249706	1250755	1249736
1261	1250814	1252061	1250814
1262	1252126	1252887	1252180
1263	1252901	1253308	1252931
1264	1253334	1253555	1253457
1265	1253552	1254301	1253570
1266	1254553	1256694	1254565
1267	1256673	1258109	1256769
1268	1258160	1259260	1259227
1269	1259523	1259729	1259729
1270	1259822	1260634	1260634
1271	1260585	1260815	1260728
1272	1261097	1261276	1261276
1273	1261598	1263334	1261619
1274	1263333	1264313	1263405
1275	1264589	1265533	1265515
1276	1265557	1265760	1265733
1277	1265894	1266454	1266442
1278	1266466	1266660	1266651
1279	1266664	1267233	1267221
1280	1267259	1267513	1267498
1281	1267983	1268831	1267992
1282	1269310	1270053	1270044
1283	1270098	1271942	1271924
1284	1271964	1273523	1273457
1285	1273829	1275313	1275292
1286	1275419	1276324	1276255
1287	1276270	1276542	1276527
1288	1276586	1277209	1277206
1289	1277425	1278915	1277443
1290	1278988	1280229	1280136
1291	1280373	1281395	1281392
1292	1281759	1282625	1282607

1293	1282600	1284888	1284876
1294	1285025	1285684	1285675
1295	1285772	1288519	1288501
1296	1288987	1290294	1290270
1297	1290263	1290520	1290499
1298	1290545	1291771	1291765
1299	1291768	1293288	1293264
1300	1293613	1294263	1294257
1301	1294250	1295110	1295050
1302	1295067	1295828	1295816
1303	1296104	1298575	1298575
1304	1298568	1299719	1299653
1305	1300170	1300532	1300170
1306	1300508	1300864	1300508
1307	1300982	1301356	1301344
1308	1301417	1301944	1301929
1309	1302154	1302354	1302339
1310	1302358	1303134	1303113
1311	1303237	1305078	1305060
1312	1305047	1306876	1306861
1313	1307013	1307795	1307750
1314	1307982	1308752	1308752
1315	1308688	1309266	1309182
1316	1309247	1309975	1309972
1317	1310005	1310757	1310742
1318	1310699	1311169	1311157
1319	1311191	1311712	1311691
1320	1311742	1312344	1312344
1321	1312348	1313187	1313160
1322	1313318	1313641	1313554
1323	1313709	1314968	1314965
1324	1315085	1316542	1316521
1325	1316524	1320999	1320981
1326	1321141	1321758	1321150
1327	1321797	1322837	1322816
1328	1322890	1323720	1322977
1329	1323839	1325263	1325236
1330	1325259	1326776	1326767
1331	1326914	1327795	1327741
1332	1328297	1329085	1329070
1333	1329209	1330093	1330054
1334	1330281	1330838	1330823
1335	1330918	1331700	1331664
1336	1331830	1332600	1331842
1337	1332596	1332949	1332596
1338	1332873	1333979	1333029
1339	1334050	1334628	1334574
1340	1334652	1336664	1336610
1341	1336913	1337920	1337914
1342	1337970	1338932	1337988
1343	1338898	1340298	1340268
1344	1340400	1340870	1340403
1345	1340918	1341742	1340924
1346	1341789	1342574	1342559

1347	1342669	1342893	1342863
1348	1343075	1343896	1343087
1349	1343883	1344887	1343916
1350	1344952	1345572	1345039
1351	1345634	1345990	1345954
1352	1346016	1346420	1346390
1353	1346576	1348474	1348459
1354	1348467	1349063	1349045
1355	1349216	1350172	1350154
1356	1350150	1350992	1350992
1357	1351003	1351737	1351713
1358	1351958	1352398	1351988
1359	1352485	1352736	1352715
1360	1352846	1356004	1355983
1361	1355989	1357188	1357158
1362	1357313	1358314	1358248
1363	1358451	1358924	1358867
1364	1359622	1361811	1361796
1365	1362146	1362586	1362586
1366	1362855	1364513	1362894
1367	1364517	1364954	1364556
1368	1364958	1365368	1365018
1369	1365537	1367066	1365549
1370	1367062	1368153	1367062
1371	1368135	1369103	1368153
1372	1369227	1370219	1370201
1373	1370322	1371854	1371827
1374	1371918	1372937	1372937
1375	1373042	1373317	1373314
1376	1373326	1374558	1374471
1377	1374647	1375855	1375822
1378	1375970	1376632	1376593
1379	1376746	1377807	1376785
1380	1377848	1378792	1377854
1381	1378857	1379270	1378866
1382	1379267	1379797	1379270
1383	1379788	1380747	1379791
1384	1380726	1381460	1380747
1385	1381696	1381965	1381944
1386	1381949	1382677	1382659
1387	1382812	1383816	1383744
1388	1383820	1384656	1384605
1389	1385075	1386475	1386436
1390	1386747	1388021	1386855
1391	1388175	1389320	1388184
1392	1389242	1390102	1389320
1393	1390138	1390716	1390692
1394	1391013	1391369	1391336
1395	1391308	1392174	1392174
1396	1392255	1393076	1393064
1397	1393042	1393476	1393383
1398	1393433	1394488	1394434
1399	1394449	1395615	1395546
1400	1395679	1396641	1395697

1401	1396607	1397155	1397011
1402	1397065	1397499	1397496
1403	1397512	1398090	1398090
1404	1398290	1401553	1401481
1405	1401796	1402293	1402236
1406	1402440	1403075	1402449
1407	1403123	1405768	1405756
1408	1406017	1406757	1406739
1409	1406960	1407544	1407526
1410	1407670	1408488	1408482
1411	1408957	1409532	1408993
1412	1409722	1410486	1409731
1413	1411008	1411472	1411433
1414	1411747	1412175	1412145
1415	1412210	1412440	1412261
1416	1414115	1414651	1414642
1417	1414777	1415061	1414831
1418	1415367	1415555	1415534
1419	1415808	1416011	1415811
1420	1416051	1416854	1416827
1421	1416830	1417192	1417126
1422	1417155	1418735	1418714
1423	1418729	1418962	1418950
1424	1418973	1421405	1421402
1425	1421383	1421595	1421553
1426	1421556	1422677	1422674
1427	1422693	1424492	1424477
1428	1424480	1426021	1426012
1429	1426018	1430949	1430937
1430	1431004	1431222	1431222
1431	1431165	1431593	1431581
1432	1431729	1432349	1432319
1433	1432353	1432748	1432745
1434	1432745	1433278	1433248
1435	1433253	1433633	1433600
1436	1433578	1433898	1433898
1437	1433917	1435176	1435140
1438	1435155	1435859	1435859
1439	1435905	1437080	1437080
1440	1437080	1437286	1437286
1441	1437258	1439249	1439228
1442	1439218	1439703	1439688
1443	1439820	1440341	1440332
1444	1440337	1440654	1440639
1445	1440790	1441209	1441209
1446	1441290	1441679	1441646
1447	1442110	1442304	1442301
1448	1442463	1442816	1442795
1449	1442820	1443164	1443161
1450	1443168	1443608	1443584
1451	1443584	1443877	1443868
1452	1443868	1444530	1444521
1453	1444496	1444855	1444852
1454	1444864	1445388	1445370

1455	1445388	1445966	1445957
1456	1445950	1446138	1446126
1457	1446151	1446441	1446438
1458	1446553	1446897	1446789
1459	1446785	1447315	1447276
1460	1447276	1447647	1447647
1461	1447801	1448691	1448682
1462	1448695	1449534	1449531
1463	1449662	1450099	1450084
1464	1450080	1450838	1450835
1465	1450847	1451281	1451239
1466	1451357	1451593	1451569
1467	1451624	1451944	1451672
1468	1451947	1452150	1452138
1469	1452284	1452583	1452571
1470	1452587	1453351	1453294
1471	1453311	1453604	1453547
1472	1453683	1454231	1453713
1473	1454235	1454828	1454244
1474	1454836	1455744	1454896
1475	1455861	1456946	1455870
1476	1457657	1458031	1457989
1477	1458098	1458880	1458173
1478	1458822	1460423	1458873
1479	1460427	1460963	1460427
1480	1460977	1461693	1461681
1481	1461876	1462976	1462925
1482	1463187	1463582	1463576
1483	1463566	1464237	1464225
1484	1464241	1464441	1464426
1485	1464431	1465735	1465720
1486	1465754	1466461	1466353
1487	1466478	1467458	1466541
1488	1467531	1467998	1467959
1489	1468016	1468975	1468957
1490	1469255	1469572	1469554
1491	1469638	1470207	1470177
1492	1470162	1471184	1471166
1493	1471188	1471541	1471478
1494	1471741	1472316	1471753
1495	1472370	1472549	1472537
1496	1472732	1474450	1474450
1497	1474450	1475685	1475673
1498	1475888	1476505	1476505
1499	1476724	1478349	1478346
1500	1478373	1479917	1479890
1501	1479933	1483229	1483202
1502	1483352	1484353	1484296
1503	1484515	1488852	1488837
1504	1489449	1490894	1490882
1505	1490933	1492903	1492840
1506	1492985	1493815	1493791
1507	1493959	1494738	1494717
1508	1494717	1495991	1495922

1509	1495952	1496305	1496263
1510	1496309	1496536	1496515
1511	1496511	1497581	1497563
1512	1497556	1498356	1498347
1513	1498397	1499422	1499422
1514	1499394	1499996	1499987
1515	1500115	1501491	1501482
1516	1501943	1502317	1502299
1517	1502317	1503387	1503384
1518	1503501	1504244	1504241
1519	1504320	1505012	1504997
1520	1505000	1505698	1505686
1521	1505788	1506195	1505812
1522	1506338	1506688	1506344
1523	1506863	1507771	1506887
1524	1507818	1508288	1508249
1525	1508263	1509054	1508278
1526	1509166	1510974	1510962
1527	1511215	1511664	1511631
1528	1511780	1512715	1511813
1529	1512784	1514199	1512823
1530	1514249	1516066	1515991
1531	1516223	1517845	1517761
1532	1517973	1518854	1518845
1533	1518951	1519865	1519829
1534	1519869	1521305	1521293
1535	1521326	1521952	1521931
1536	1522049	1523191	1523074
1537	1523179	1524834	1524816
1538	1524883	1526445	1526427
1539	1526423	1527478	1527397
1540	1527478	1528995	1528926
1541	1529032	1529952	1529949
1542	1530008	1530949	1530937
1543	1530937	1533639	1533633
1544	1533671	1534981	1534963
1545	1535061	1536236	1535202
1546	1536227	1538386	1536236
1547	1538485	1540980	1540950
1548	1541111	1542421	1542409
1549	1542581	1543192	1543180
1550	1543241	1544941	1544917
1551	1544945	1546531	1546414
1552	1546483	1547496	1547484
1553	1547490	1549052	1548992
1554	1549056	1550390	1550372
1555	1550471	1551457	1550477
1556	1551584	1552702	1552630
1557	1552741	1553277	1553223
1558	1553259	1554521	1554497
1559	1554766	1555473	1554850
1560	1555570	1556532	1555588
1561	1556639	1558045	1556660
1562	1558095	1558829	1558784

1563	1558964	1560598	1560517
1564	1560696	1561253	1561235
1565	1561375	1562409	1562409
1566	1562483	1563067	1562540
1567	1563124	1564719	1564710
1568	1564880	1565452	1565425
1569	1565456	1566490	1566469
1570	1566661	1569270	1569261
1571	1569441	1570832	1569495
1572	1570871	1571500	1571491
1573	1571604	1573112	1573100
1574	1573218	1574078	1574060
1575	1574175	1576400	1576391
1576	1576614	1577285	1577282
1577	1577285	1577596	1577545
1578	1577604	1578353	1578311
1579	1578458	1578871	1578856
1580	1578875	1579177	1579165
1581	1579187	1579510	1579492
1582	1579531	1579953	1579896
1583	1579914	1580693	1580663
1584	1580890	1582278	1582260
1585	1582260	1582757	1582703
1586	1582813	1583712	1583649
1587	1583748	1584200	1584197
1588	1584197	1584661	1584661
1589	1584495	1584854	1584830
1590	1584830	1585408	1585399
1591	1585852	1586757	1586688
1592	1586703	1586975	1586960
1593	1587000	1587341	1587314
1594	1587268	1587915	1587912
1595	1587919	1590387	1590348
1596	1590531	1591619	1591574
1597	1591689	1592000	1591955
1598	1592018	1592740	1592722
1599	1592842	1593804	1593774
1600	1593897	1594463	1593915
1601	1594479	1595489	1595450
1602	1595668	1597554	1597536
1603	1597667	1598652	1598637
1604	1598738	1599853	1599811
1605	1599917	1600489	1600459
1606	1600577	1601998	1601998
1607	1602117	1603373	1603349
1608	1603533	1604081	1604066
1609	1604118	1604927	1604897
1610	1605001	1605909	1605843
1611	1605864	1606283	1606253
1612	1606382	1607173	1607134
1613	1607130	1607660	1607642
1614	1607817	1608650	1608641
1615	1608785	1609777	1609726
1616	1609991	1610230	1610227

1617	1610326	1610700	1610595
1618	1610687	1611955	1611916
1619	1611999	1613192	1613135
1620	1613441	1614595	1613444
1621	1614662	1615414	1615366
1622	1615521	1616516	1616480
1623	1616768	1617811	1616777
1624	1617894	1618283	1618202
1625	1618287	1619081	1619063
1626	1619085	1619468	1619456
1627	1619582	1624549	1624528
1628	1624568	1625335	1625320
1629	1625361	1626143	1626116
1630	1626157	1626810	1626585
1631	1626976	1627836	1627818
1632	1627882	1628094	1627974
1633	1628779	1629405	1628791
1634	1629425	1629619	1629592
1635	1629623	1630945	1630933
1636	1631086	1632261	1632261
1637	1632265	1633392	1633335
1638	1633548	1634900	1634897
1639	1635391	1635795	1635729
1640	1635864	1637114	1637102
1641	1637288	1638784	1638760
1642	1638771	1639508	1639460
1643	1639619	1640149	1640146
1644	1640280	1640609	1640522
1645	1640681	1641157	1641109
1646	1641227	1641622	1641586
1647	1642074	1642640	1642592
1648	1642665	1643507	1643498
1649	1644120	1645223	1645190
1650	1645256	1646218	1646185
1651	1646372	1647670	1647661
1652	1647759	1648301	1648277
1653	1648541	1649308	1649236
1654	1649323	1649628	1649332
1655	1649579	1650532	1649621
1656	1650621	1651907	1651859
1657	1651880	1652689	1652689
1658	1652822	1654318	1654291
1659	1654294	1654584	1654530
1660	1654660	1654986	1654983
1661	1654973	1655737	1655677
1662	1655838	1656422	1655850
1663	1656486	1657046	1656507
1664	1657079	1658635	1658632
1665	1658714	1661947	1661929
1666	1661981	1663714	1663690
1667	1664025	1664708	1664040
1668	1664754	1665653	1665644
1669	1665988	1666440	1666440
1670	1666454	1667542	1667527

1671	1667625	1668551	1668485
1672	1668860	1669123	1669111
1673	1669209	1671200	1671182
1674	1671416	1672105	1672054
1675	1672060	1673010	1673007
1676	1673007	1674431	1674422
1677	1674422	1675330	1675312
1678	1675375	1676913	1676898
1679	1677087	1678172	1678160
1680	1678402	1680078	1680033
1681	1680106	1680882	1680202
1682	1680934	1682490	1682361
1683	1682565	1683560	1683536
1684	1683551	1684537	1684489
1685	1684495	1685988	1685970
1686	1685992	1686408	1686387
1687	1686412	1687356	1687311
1688	1687325	1688317	1688305
1689	1688442	1689815	1689734
1690	1689934	1690629	1690611
1691	1690877	1691152	1691077
1692	1691324	1691677	1691635
1693	1691735	1694074	1694062
1694	1694110	1694712	1694667
1695	1694830	1695810	1695792
1696	1695933	1696934	1696928
1697	1697101	1698228	1697143
1698	1698363	1700459	1700366
1699	1700517	1701671	1701668
1700	1701742	1701942	1701903
1701	1702305	1702721	1702688
1702	1702745	1703752	1703746
1703	1703756	1704274	1704241
1704	1704241	1706580	1706529
1705	1706679	1707473	1706745
1706	1707524	1707919	1707913
1707	1708051	1709046	1709028
1708	1709248	1709946	1709865
1709	1710136	1711140	1710163
1710	1711413	1712009	1712009
1711	1712607	1713623	1712667
1712	1713654	1715225	1715189
1713	1715361	1715606	1715591
1714	1715616	1715897	1715882
1715	1715915	1716565	1716553
1716	1716553	1716906	1716855
1717	1717010	1717864	1717840
1718	1717879	1718223	1718142
1719	1718190	1718792	1718633
1720	1718716	1721421	1721418
1721	1721680	1723158	1723110
1722	1723236	1723499	1723499
1723	1723619	1725385	1725358
1724	1725509	1726918	1726876

1725	1726972	1727652	1727646
1726	1727818	1728807	1728789
1727	1728945	1731212	1731197
1728	1731223	1732869	1732857
1729	1732903	1734549	1734474
1730	1734467	1735135	1735075
1731	1735099	1736733	1736721
1732	1736931	1738724	1738682
1733	1739023	1740279	1739050
1734	1740291	1741709	1740354
1735	1741713	1742570	1741716
1736	1742694	1743725	1742733
1737	1743719	1744675	1743734
1738	1744665	1745234	1744680
1739	1745273	1745818	1745806
1740	1746403	1747095	1746412
1741	1747153	1748058	1747989
1742	1748004	1748276	1748261
1743	1748610	1749275	1748664
1744	1749158	1750030	1749158
1745	1750097	1750426	1750127
1746	1750509	1751693	1750521
1747	1752011	1752961	1752955
1748	1752983	1754098	1754080
1749	1754207	1755169	1754225
1750	1755135	1756547	1756532
1751	1756551	1757624	1757570
1752	1757807	1758826	1758790
1753	1758961	1760370	1760361
1754	1760442	1761110	1761101
1755	1761186	1761713	1761701
1756	1761670	1761948	1761748
1757	1762179	1763207	1762221
1758	1763274	1764098	1763289
1759	1764117	1765040	1764120
1760	1765164	1765565	1765185
1761	1765596	1766312	1766288
1762	1766432	1766806	1766438
1763	1767166	1768461	1767193
1764	1768653	1769624	1768653
1765	1769628	1770215	1769649
1766	1770316	1770984	1770966
1767	1771132	1771893	1771890
1768	1772059	1772898	1772865
1769	1772902	1773795	1773792
1770	1773795	1774721	1774715
1771	1774839	1775690	1775687
1772	1776037	1776945	1776930
1773	1777211	1777684	1777675
1774	1777710	1778288	1778282
1775	1778372	1780999	1780987
1776	1781256	1782212	1782179
1777	1782336	1783037	1783016
1778	1783022	1784839	1784824

1779	1784890	1785879	1785876
1780	1785953	1787071	1787035
1781	1787200	1788072	1788045
1782	1788240	1789673	1789658
1783	1789965	1790798	1789965
1784	1790973	1791749	1790982
1785	1791753	1793231	1791762
1786	1793231	1793917	1793237
1787	1793998	1794726	1794708
1788	1794824	1795780	1795735
1789	1795895	1796434	1796404
1790	1796674	1796967	1796737
1791	1797067	1799574	1799568
1792	1799568	1800233	1800158
1793	1800164	1801006	1801000
1794	1801005	1801493	1801490
1795	1801517	1802815	1802806
1796	1802930	1804033	1803991
1797	1803997	1804887	1804869
1798	1804859	1805536	1805527
1799	1805533	1806606	1806594
1800	1806778	1808778	1808778
1801	1808774	1809559	1809550
1802	1809742	1810158	1810098
1803	1810220	1811398	1811383
1804	1811417	1812025	1812010
1805	1812018	1812638	1812614
1806	1812729	1813673	1813649
1807	1813763	1814875	1814830
1808	1814830	1815702	1815687
1809	1815858	1816529	1816511
1810	1816817	1819033	1816892
1811	1819037	1819792	1819052
1812	1819907	1821844	1821823
1813	1821848	1822516	1822486
1814	1822605	1823084	1823027
1815	1823215	1824648	1824621
1816	1824757	1825626	1825623
1817	1825642	1827165	1827141
1818	1827331	1827864	1827855
1819	1827860	1828366	1828363
1820	1828381	1829112	1829031
1821	1829140	1829394	1829200
1822	1829538	1830392	1830311
1823	1830599	1832809	1832806
1824	1832790	1833479	1833434
1825	1833497	1834864	1834855
1826	1834855	1835823	1835784
1827	1835892	1836311	1836287
1828	1836394	1837014	1836954
1829	1837130	1838317	1838305
1830	1838689	1839363	1839342
1831	1839703	1840683	1840671
1832	1840680	1841270	1841246

1833	1841391	1842629	1841391
1834	1842595	1843767	1842622
1835	1843752	1844114	1843755
1836	1844068	1844382	1844092
1837	1844343	1845125	1844382
1838	1845151	1845993	1845151
1839	1846140	1847570	1847549
1840	1847786	1848256	1848148
1841	1848360	1848884	1848839
1842	1848844	1850076	1850058
1843	1850061	1851341	1851314
1844	1851455	1852273	1852222
1845	1852400	1853740	1853728
1846	1853734	1854447	1854432
1847	1854565	1855326	1855296
1848	1855299	1856036	1855982
1849	1856133	1857047	1857038
1850	1857186	1860851	1860779
1851	1860918	1864517	1864505
1852	1864774	1865418	1865379
1853	1865552	1866283	1865612
1854	1866390	1868279	1866399
1855	1868339	1868641	1868641
1856	1868713	1870392	1870383
1857	1870578	1872041	1870593
1858	1872407	1873474	1873426
1859	1873577	1875397	1873622
1860	1875439	1877223	1877175
1861	1877245	1878492	1878483
1862	1878515	1879312	1879309
1863	1879312	1880262	1880253
1864	1880460	1881269	1881251
1865	1881460	1882827	1882806
1866	1882930	1884051	1884042
1867	1884176	1884631	1884191
1868	1884715	1885302	1885293
1869	1885627	1888446	1888446
1870	1888528	1889196	1889163
1871	1889160	1889753	1889232
1872	1889726	1890064	1889753
1873	1890084	1891520	1891430
1874	1891916	1892854	1892830
1875	1892865	1893500	1893497
1876	1893497	1893865	1893841
1877	1893869	1894324	1894297
1878	1894490	1895047	1894511
1879	1895091	1896443	1896431
1880	1896482	1896790	1896790
1881	1896790	1897986	1897968
1882	1897968	1898420	1898408
1883	1898546	1900927	1900927
1884	1901126	1901581	1901147
1885	1901641	1902951	1902930
1886	1903073	1904092	1904071

1887	1904146	1904913	1904889
1888	1905095	1906924	1906894
1889	1907002	1907892	1907883
1890	1907896	1908891	1908852
1891	1908836	1909795	1909792
1892	1909792	1910826	1910805
1893	1911034	1911402	1911390
1894	1911555	1911773	1911752
1895	1911884	1912459	1912375
1896	1912973	1913530	1912985
1897	1913547	1914248	1914248
1898	1914421	1916298	1916295
1899	1916671	1917279	1917243
1900	1917379	1917828	1917744
1901	1917863	1918312	1918261
1902	1918257	1919612	1919600
1903	1919616	1920209	1920206
1904	1920223	1920825	1920819
1905	1920929	1921717	1921696
1906	1921908	1924250	1924226
1907	1924513	1925694	1925655
1908	1925978	1926982	1926020
1909	1927110	1927550	1927538
1910	1927769	1928902	1927769
1911	1928887	1929270	1928929
1912	1929367	1930581	1930551
1913	1930740	1930973	1930794
1914	1931212	1934034	1934007
1915	1934326	1935252	1935249
1916	1935309	1936109	1936097
1917	1936097	1936387	1936369
1918	1936372	1936974	1936959
1919	1936996	1937673	1937670
1920	1937677	1938957	1938927
1921	1938961	1940346	1940328
1922	1940492	1941448	1941358
1923	1941474	1942211	1942199
1924	1942348	1943499	1943466
1925	1943597	1944457	1944439
1926	1944454	1945788	1945779
1927	1945948	1946823	1946823
1928	1946842	1947252	1947243
1929	1947328	1948722	1948635
1930	1948767	1949375	1949357
1931	1949418	1950194	1950194
1932	1950131	1950424	1950406
1933	1950402	1951007	1950983
1934	1951091	1952509	1952464
1935	1952632	1953477	1952692
1936	1953558	1954520	1954502
1937	1954642	1954992	1954908
1938	1955093	1956976	1956973
1939	1956976	1957758	1957638
1940	1957833	1959119	1959104

1941	1959306	1959818	1959809
1942	1960032	1960616	1960589
1943	1960620	1960871	1960859
1944	1961037	1961999	1961993
1945	1961993	1962520	1962496
1946	1962423	1962953	1962941
1947	1962957	1963361	1963328
1948	1963390	1965726	1965726
1949	1965868	1966221	1966218
1950	1966401	1967051	1967015
1951	1967166	1968767	1968758
1952	1968992	1969732	1969702
1953	1969981	1971228	1971177
1954	1971506	1971814	1971775
1955	1971775	1972722	1972695
1956	1972903	1973697	1972948
1957	1973810	1974274	1974271
1958	1974303	1974506	1974503
1959	1974568	1975701	1975680
1960	1975897	1977399	1977321
1961	1977930	1978892	1978874
1962	1979405	1980319	1980298
1963	1986367	1987029	1987023
1964	1987133	1989085	1989070
1965	1989617	1989988	1989931
1966	1989992	1990597	1990555
1967	1990601	1991287	1991251
1968	1991360	1991995	1991965
1969	1992110	1992817	1992742
1970	1992971	1994116	1994107
1971	1994165	1995364	1995325
1972	1995575	1996675	1996660
1973	1996694	1997659	1997656
1974	1997809	1998369	1998366
1975	1998378	1999106	1999091
1976	1999583	2000317	2000287
1977	2000604	2001623	2001545
1978	2001795	2003105	2003096
1979	2003191	2003865	2003838
1980	2003900	2004187	2004154
1981	2004386	2005345	2005306
1982	2005369	2006442	2006370
1983	2006660	2009056	2009050
1984	2009090	2010142	2010127
1985	2010305	2011111	2010581
1986	2011408	2012370	2011426
1987	2013688	2014629	2014605
1988	2014620	2014922	2014913
1989	2015105	2015368	2015281
1990	2015476	2015709	2015703
1991	2015849	2016412	2016352
1992	2016933	2017895	2016951
1993	2017989	2018372	2018348
1994	2018368	2018961	2018937

1995	2019102	2019317	2019305
1996	2019327	2019542	2019506
1997	2019878	2020291	2020189
1998	2020105	2021589	2021571
1999	2021585	2021866	2021851
2000	2022666	2023199	2023178
2001	2023296	2023541	2023499
2002	2023615	2024352	2023648
2003	2024370	2025632	2024436
2004	2025827	2026375	2025839
2005	2026536	2028020	2026545
2006	2028028	2028702	2028043
2007	2028751	2030079	2030040
2008	2030316	2030936	2030933
2009	2031523	2032002	2031987
2010	2032056	2032733	2032730
2011	2032824	2033336	2033324
2012	2033407	2033658	2033655
2013	2033754	2034086	2034074
2014	2034226	2035176	2034235
2015	2035219	2035752	2035234
2016	2035844	2036884	2035883
2017	2037256	2038203	2038137
2018	2038290	2039162	2039135
2019	2039264	2040169	2040103
2020	2040173	2041963	2041942
2021	2042006	2042269	2042251
2022	2042400	2043755	2043689
2023	2044005	2045162	2045162
2024	2045409	2046074	2045981
2025	2046244	2046849	2046813
2026	2046857	2047759	2047750
2027	2047965	2049269	2049194
2028	2049238	2050536	2050491
2029	2050710	2051078	2050719
2030	2051075	2052154	2051081
2031	2052247	2052639	2052612
2032	2052537	2053064	2052690
2033	2053083	2054105	2054024
2034	2054150	2055154	2055127
2035	2055182	2058190	2058169
2036	2058184	2058690	2058642
2037	2058847	2060340	2060325
2038	2060502	2061710	2061698
2039	2061728	2062756	2062744
2040	2062877	2064273	2064261
2041	2064543	2065301	2065274
2042	2065361	2066263	2065403
2043	2066478	2067632	2067614
2044	2067604	2068611	2068578
2045	2068779	2070071	2070068
2046	2070327	2070515	2070491
2047	2070631	2071590	2071551
2048	2071766	2072050	2071772

2049	2072079	2072906	2072897
2050	2073003	2073638	2073015
2051	2073684	2074715	2074700
2052	2074696	2075475	2075463
2053	2075485	2077344	2077335
2054	2077530	2077964	2077566
2055	2077968	2078198	2077980
2056	2078639	2079388	2079325
2057	2079624	2080058	2080046
2058	2080268	2082145	2080271
2059	2082167	2082877	2082212
2060	2083045	2084007	2083063
2061	2084034	2084249	2084240
2062	2084279	2084863	2084794
2063	2084972	2085871	2085826
2064	2085875	2086396	2086330
2065	2086426	2087013	2086980
2066	2087195	2087920	2087908
2067	2087996	2088574	2088445
2068	2088582	2089808	2089766
2069	2089926	2091143	2091110
2070	2091308	2092258	2092243
2071	2092682	2094523	2094520
2072	2094702	2095172	2095157
2073	2095176	2095997	2095946
2074	2096286	2096909	2096909
2075	2096913	2098892	2098892
2076	2098899	2099237	2099222
2077	2099525	2100274	2100250
2078	2100434	2100661	2100443
2079	2100665	2101666	2100698
2080	2101660	2102055	2101672
2081	2102144	2102617	2102587
2082	2102728	2103633	2103564
2083	2103579	2103851	2103836
2084	2103975	2104643	2103981
2085	2104600	2105706	2105688
2086	2105770	2106270	2106258
2087	2106340	2107830	2107830
2088	2108025	2109191	2109152
2089	2109419	2110369	2110360
2090	2110395	2111360	2111336
2091	2111459	2112964	2112928
2092	2113062	2114141	2114123
2093	2114310	2115584	2115539
2094	2115844	2117535	2117535
2095	2117579	2118058	2117603
2096	2118247	2119662	2119617
2097	2119781	2120398	2120371
2098	2120590	2123712	2123691
2099	2123948	2128297	2128297
2100	2128723	2130459	2130423
2101	2130623	2131609	2131606
2102	2131682	2132473	2132458

2103	2132785	2133594	2132812
2104	2133643	2134512	2134509
2105	2134648	2136969	2134681
2106	2136965	2137681	2136974
2107	2137822	2138673	2137834
2108	2138767	2139927	2139897
2109	2140198	2141730	2141646
2110	2141813	2142409	2142340
2111	2142442	2143392	2143362
2112	2143567	2144082	2143591
2113	2144180	2144503	2144500
2114	2144490	2144855	2144834
2115	2144824	2145198	2145183
2116	2145306	2145941	2145932
2117	2146000	2147181	2147082
2118	2147276	2148238	2148220
2119	2148375	2149076	2148393
2120	2149126	2150499	2150484
2121	2150649	2150873	2150873
2122	2151175	2151381	2151339
2123	2151691	2152083	2152068
2124	2152090	2153037	2153025
2125	2153076	2153468	2153456
2126	2153480	2153848	2153842
2127	2153863	2154033	2153976
2128	2154033	2154287	2154248
2129	2154614	2155510	2155372
2130	2155471	2155830	2155758
2131	2155834	2156754	2156649
2132	2156649	2157251	2157203
2133	2157283	2158014	2157927
2134	2158070	2159395	2159386
2135	2159467	2160006	2159907
2136	2160185	2160427	2160361
2137	2160375	2160884	2160878
2138	2160900	2161322	2161244
2139	2161463	2162008	2161996
2140	2162216	2162659	2162611
2141	2162830	2163453	2163411
2142	2163565	2163747	2163747
2143	2163769	2164332	2164308
2144	2164331	2164687	2164633
2145	2164770	2165147	2165135
2146	2165161	2165418	2165418
2147	2165442	2165654	2165648
2148	2165651	2166064	2166061
2149	2166068	2166730	2166718
2150	2166734	2167090	2167078
2151	2167097	2167456	2167372
2152	2167535	2168374	2168362
2153	2168381	2168686	2168671
2154	2168674	2169306	2169297
2155	2169326	2169964	2169946
2156	2169968	2170288	2170273

2157	2170532	2170951	2170586
2158	2170997	2172319	2172196
2159	2172283	2173887	2173770
2160	2173875	2174459	2174429
2161	2174630	2174830	2174821
2162	2174935	2175108	2175081
2163	2175125	2176954	2176939
2164	2177044	2179293	2179272
2165	2179584	2180249	2180216
2166	2180236	2180676	2180664
2167	2180781	2181167	2181155
2168	2181348	2182223	2181360
2169	2182268	2183086	2183074
2170	2183070	2183813	2183804
2171	2183984	2184853	2184823
2172	2184823	2185281	2185257
2173	2185341	2185697	2185622
2174	2185664	2186119	2186047
2175	2186073	2186369	2186366
2176	2186341	2186805	2186769
2177	2186732	2187187	2187112
2178	2187129	2188217	2188199
2179	2188096	2189037	2189031
2180	2189154	2194151	2194127
2181	2194243	2194788	2194776
2182	2194785	2196125	2196113
2183	2196132	2198048	2197979
2184	2198052	2199347	2199335
2185	2199357	2200181	2200157
2186	2200160	2200897	2200891
2187	2201266	2201619	2201595
2188	2201693	2202301	2202145
2189	2202163	2202405	2202387
2190	2202409	2202942	2202909
2191	2202927	2203889	2203871
2192	2204329	2205564	2204341
2193	2205648	2206688	2205693
2194	2206784	2208154	2206817
2195	2208262	2208486	2208265
2196	2208601	2209632	2208631
2197	2209679	2210491	2210428
2198	2210778	2213441	2213408
2199	2213613	2214452	2213646
2200	2214440	2214862	2214455
2201	2214948	2215844	2215706
2202	2215805	2216164	2216092
2203	2216168	2217088	2216983
2204	2216983	2217585	2217537
2205	2217567	2218109	2217579
2206	2223531	2224034	2223956
2207	2224280	2226010	2226007
2208	2226196	2227233	2227221
2209	2227346	2228179	2228110
2210	2228409	2229491	2228469

2211	2229703	2232435	2229727
2212	2232779	2233288	2233273
2213	2233263	2233469	2233469
2214	2233469	2234317	2234293
2215	2234289	2236460	2236409
2216	2236515	2237384	2237369
2217	2237493	2238518	2238518
2218	2238508	2239056	2239002
2219	2239053	2239706	2239616
2220	2239763	2241001	2240980
2221	2241067	2242308	2242290
2222	2242451	2242969	2242478
2223	2242984	2244099	2242996
2224	2244201	2245580	2245544
2225	2245870	2246391	2245888
2226	2246431	2247291	2247273
2227	2247434	2247775	2247500
2228	2247825	2248220	2247891
2229	2248270	2250945	2250909
2230	2251168	2251860	2251821
2231	2252101	2252364	2252346
2232	2252388	2252729	2252729
2233	2252733	2253263	2253239
2234	2253397	2254110	2254101
2235	2254436	2255977	2255974
2236	2256206	2259145	2258983
2237	2259055	2259558	2259525
2238	2259778	2260620	2259811
2239	2265994	2267475	2267406
2240	2267579	2268541	2268523
2241	2268575	2270131	2270131
2242	2270255	2271187	2271160
2243	2271500	2272366	2271521
2244	2272392	2272712	2272407
2245	2272792	2273571	2273562
2246	2273765	2274052	2274007
2247	2274184	2274717	2274681
2248	2274714	2275094	2275004
2249	2275199	2276059	2276050
2250	2276506	2278035	2276518
2251	2278076	2279752	2279731
2252	2279783	2280439	2280421
2253	2280456	2280971	2280941
2254	2281001	2281294	2281025
2255	2281389	2281838	2281832
2256	2281996	2282247	2282050
2257	2282312	2283652	2283649
2258	2283714	2284097	2284079
2259	2284180	2284626	2284614
2260	2285030	2285668	2285644
2261	2285644	2286825	2286825
2262	2287405	2288322	2288286
2263	2288426	2289478	2289397
2264	2289553	2290155	2290143

2265	2290259	2292382	2292343
2266	2292358	2293068	2293050
2267	2293168	2295696	2295687
2268	2295884	2296261	2296228
2269	2296389	2296589	2296484
2270	2296600	2296905	2296905
2271	2296870	2297982	2297032
2272	2298171	2299103	2299049
2273	2299094	2299450	2299411
2274	2299659	2300054	2300033
2275	2300036	2300911	2300884
2276	2301049	2301246	2301070
2277	2301293	2302828	2301320
2278	2303026	2303631	2303550
2279	2303662	2305137	2303692
2280	2305198	2306664	2306646
2281	2307234	2308406	2308370
2282	2308553	2309227	2309227
2283	2309220	2309957	2309939
2284	2309974	2311215	2311197
2285	2311212	2313092	2313086
2286	2313212	2314591	2314579
2287	2314686	2315213	2315210
2288	2315303	2316217	2316175
2289	2316423	2316905	2316468
2290	2316939	2317634	2317610
2291	2317697	2318380	2318380
2292	2318466	2319722	2319683
2293	2319749	2320198	2320183
2294	2320206	2320421	2320406
2295	2320669	2324985	2324976
2296	2325355	2325996	2325385
2297	2326081	2326932	2326899
2298	2326905	2327630	2327624
2299	2327716	2329113	2327749
2300	2329170	2329916	2329913
2301	2329916	2332012	2331913
2302	2332054	2332413	2332395
2303	2332469	2333506	2333476
2304	2333759	2334343	2334277
2305	2334375	2337095	2334405
2306	2337143	2337691	2337613
2307	2337729	2338808	2337792
2308	2339123	2339815	2339285
2309	2339803	2340294	2339842
2310	2346318	2346731	2346707
2311	2346730	2347203	2347173
2312	2347498	2348610	2347540
2313	2348592	2349290	2348622
2314	2349429	2350313	2349438
2315	2350301	2350951	2350328
2316	2351007	2351819	2351819
2317	2352173	2354308	2354299
2318	2354567	2355037	2355031

2319	2355053	2355496	2355463
2320	2355722	2357095	2355791
2321	2357175	2358092	2358059
2322	2358188	2358775	2358775
2323	2358909	2359853	2359847

TABLEAU II. Classification des protéines de L.lactis (SEQ IDs) en groupes fonctionnels

BIOSYNTHESE DES ACIDES AMINES

	Général
SEQ ID:	500
	Famille acides aminés Aromatiques
SEQ IDs:	120 1291 1507 1508 1511 1512 1513 1514 1515 1690
SEQ IDs:	1793 1794 1795 1796 1803 1807 1808
	Famille Aspartate
SEQ IDs:	166 361 755 796 1178 1179 1275 1292 1293 1323
SEQ IDs:	1609 1668 1670 1881 1972 1973 2159 2285
	Famille Chaîne ramifiée
SEQ IDs:	1251 1252 1254 1255 1257 1258 1259 1260 1261
	Famille Glutamate
SEQ IDs:	128 129 575 683 812 813 814 815 1324 1325
SEQ IDs:	1656 1657 1935 2257
	Famille Histidine
SEQ IDs:	1238 1240 1241 1243 1245 1246 1247 1248 1249
	Famille Pyruvate
SEQ IDs:	860
	Famille Sérine
SEQ IDs:	75 551 613 615 616 617 797 1904

BIOSYNTHESE de COFACTEURS, GROUPES PROSTHETIQUES, et TRANSPORTEURS

	acide folique
SEQ IDs:	871 953 1169 1172 1173 1174 1176 1353 1354
	Hème et porphyrine
SEQ IDs:	610 1157 1615
	Ménaquinone et ubiquinone
SEQ IDs:	187 743 744 745 746 747 875 1383
	Pantothenate
SEQ IDs:	584 585 1362 1487
	Riboflavine et cobalamine
SEQ IDs:	1011 1012 1013 1014 1123 1145 1871
	Thiorédoxine, glutarédoxine, et glutathione
SEQ IDs:	398 862 958 1405 1692 1695
	Thiamine
SEQ IDs:	497 1130 1300 1301 1302 1526
	Nucléotides Pyridine
SEQ IDs:	1120

ENVELOPPE CELLULAIRE

SEQ IDs: Membranes, lipoprotéines, et porines
 326 327 328 329 631 978 1105 1193 1481 2025
 SEQ IDs: 2185

SEQ IDs: Muréine sacculus et peptidoglycane
 280 320 348 350 351 395 552 554 560 885
 SEQ IDs: 886 968 1181 1321 1406 1637 1638 1857 1934 1960
 SEQ IDs: 2096 2164 2283 2287 2288 2320

SEQ IDs: Polysaccharides de Surface, lipopolysaccharides et
 antigènes
 153 206 207 212 213 217 218 219 220 221
 SEQ IDs: 222 223 224 693 695 697 754 894 930 936
 SEQ IDs: 937 939 940 942 944 945 973 1296 1297 1298
 SEQ IDs: 1299 1304 1380 1499 1500 1618 1845 2218 2279 2280

MACHINERIE CELLULAIRE

SEQ IDs: Division cellulaire
 20 22 100 681 818 828 902 914 990 991
 SEQ IDs: 1267 1384 1636 1704 1898 1920 1921 2207

SEQ IDs: Mort cellulaire
 508

SEQ IDs: Chaperones
 126 402 403 972

SEQ IDs: Détoxification
 417

SEQ IDs: Sécrétion des Protéines et peptides
 119 562 959 1015 1664 2134 2161 2315

SEQ IDs: Transformation
 1107 1108 1265 1779 1823 1824 1859 2084 2120 2176
 SEQ IDs: 2177 2178 2179 2206

METABOLISME INTERMEDIAIRE CENTRAL

SEQ IDs: Sucres aminés
 434 1024 1162 1376 1537 1621

SEQ IDs: Dégradation des polysaccharides
 291 716 1289 1538 1539 1728 1729 1732 2005

SEQ IDs: Composés phosphorés
 728

SEQ IDs: Biosynthèse de la Polyamine
 1663

SEQ IDs: Autres
 155 215 586 712 713 714 715

METABOLISME ENERGETIQUE

Aérobique

SEQ IDs: 76 136 151 186 242 273 276 342 347 400
 SEQ IDs: 643 768 801 843 844 1281 1348 1572 1574 1583
 SEQ IDs: 1596 1601 1604 1746 1784 1785 1925 2042 2100 2182
 SEQ IDs: 2307

Acides aminés et amines

SEQ IDs: 59 290 502 548 742 751 816 845 846 974
 SEQ IDs: 1327 1329 1343 1747 1751 1971 1985 2088 2089 2090
 SEQ IDs: 2092 2093

Anaérobique

SEQ IDs: 254 256 257 1127 1283 1379

Interconversion force motrice ATP-proton

SEQ IDs: 1814 1815 1816 1817 1818 1819 1820

Transport d'Electron

SEQ IDs: 431 609 620 719 720 732 994 995 1756 2167

Entner-Doudoroff

SEQ IDs: 1674 1675

Fermentation

SEQ IDs: 677 915 916 918 1125 1142 1205 1207 1262 1290
 SEQ IDs: 1707 1858 1864 2068 2069 2211

Gluconéogenèse

SEQ IDs: 265

Glycolyse

SEQ IDs: 253 284 345 385 439 570 656 682 967 1146
 SEQ IDs: 1152 1372 1373 1374 1792 1962 2224 2303

Voie Pentose phosphate

SEQ IDs: 634 1673 1723 1979 2277 2290

Pyruvate déhydrogénase

SEQ IDs: 61 62 63 64

Sucres

SEQ IDs: 26 181 426 440 711 784 834 976 1326 1504
 SEQ IDs: 1532 1533 1534 1543 1546 1549 1550 1552 1553 1554
 SEQ IDs: 1676 1679 1680 1687 1721 1730 1731 2034 2035 2036
 SEQ IDs: 2037 2038 2039 2079 2241 2242

Cycle TCA

SEQ IDs: 684 685 1212 1213 1214 1215 1216

METABOLISME DES ACIDES GRAS ET PHOSPHOLIPIDES

Général

SEQ IDs: 65 72 118 390 413 414 415 576 577 675
 SEQ IDs: 786 787 788 789 790 791 792 793 794 795
 SEQ IDs: 859 1284 1834 1837 1955

PURINES, PYRIMIDINES, NUCLEOSIDES ET NUCLEOTIDES

SEQ IDs: métabolisme 2'-deoxyribonucleotide
 182 506 992 993 1159 1177

SEQ IDs: Interconversions Nucléotide et nucléoside
 311 1112 1754 2066

SEQ IDs: Biosynthèse des ribonucléotides Purine
 226 1164 1531 1556 1557 1558 1563 1564 1568 1569

SEQ IDs: 1573 1575 1576 1578 1689 2007

SEQ IDs: biosynthèse des ribonucléotides Pyrimidine
 407 501 1086 1087 1386 1387 1388 1404 1586 1599

SEQ IDs: 1649 1650

SEQ IDs: Récupération des nucléosides et nucléotides
 21 281 282 295 605 645 829 854 947 949

SEQ IDs: 1165 1482 1483 1485 1708 1908 1950 1969 2133

SEQ IDs: biosynthèse Sucre-nucléotide et interconversions
 200 202 204 205

FONCTIONS DE REGULATION

Général

SEQ IDs: 6 8 110 131 137 154 167 243 245 261

SEQ IDs: 324 335 421 424 429 445 541 565 622 674

SEQ IDs: 771 832 847 877 905 929 946 982 1084 1151

SEQ IDs: 1186 1197 1233 1263 1294 1310 1331 1349 1490 1494

SEQ IDs: 1521 1524 1559 1566 1624 1639 1652 1654 1717 1745

SEQ IDs: 1753 1766 1830 1831 1846 1852 1853 1928 1956 2001

SEQ IDs: 2032 2041 2043 2059 2095 2216 2243 2258 2262 2270

SEQ IDs: 2291 2296 2306 2316

Systèmes deux-composants

SEQ IDs: 405 406 908 909 1020 1022 1477 1478 1641 1642

SEQ IDs: 1724 1725 1752 1797 1798

Régulateurs de la famille LacI

SEQ IDs: 740 1545 1688 1696 1726 2200 2205

Régulateurs de la famille LysR

SEQ IDs: 24 340 383 386 890 1274 1345 1603 1927

Régulateurs de la famille AraC

SEQ IDs: 543 1555

Régulateurs de la famille GntR

SEQ IDs: 435 1480 1498 1681

Régulateurs de la famille DeoR

SEQ IDs: 804 975 1211 1336

Régulateurs de la famille MarR

SEQ IDs: 117 603 723 757 785 926 1344 1517 1527 1585

SEQ IDs: 2172

Régulateurs de la famille BglG

SEQ IDs: 1506

SEQ IDs: Protéines liant le GTP
 7 227 229 360 770 1171 1333 1635 2071 2299

REPLICATION

SEQ IDs: Dégradation de l'ADN
 4 5 573 644 806 856 872 873 1089 1360
 SEQ IDs: 1361 1869

SEQ IDs: Réplication, Restriction, modification, recombination,
 et réparation de l'ADN
 2 3 101 102 240 349 362 363 401 408
 SEQ IDs: 428 507 513 542 563 572 600 657 663 664
 SEQ IDs: 665 761 766 767 857 878 898 923 997 1000
 SEQ IDs: 1002 1025 1088 1129 1138 1139 1140 1266 1270 1693
 SEQ IDs: 1791 1883 1948 2030 2098 2180 2198 2247 2251 2263
 SEQ IDs: 2264 2265 2267 2281 2301

TRANSCRIPTION

SEQ IDs: Dégradation de l'ARN
 817 960 1237 1332 1906 2314

SEQ IDs: Synthèse, modification de l'ARN, et transcription de
 l'ADN
 14 564 619 646 648 709 779 1314 1367 1368
 SEQ IDs: 1607 1612 1623 1850 1851 2124 2160 2222 2297

SEQ IDs: Maturation moléculaire de l'ARN
 359 419 1613

TRADUCTION

SEQ IDs: synthétases d'ARNt amino acyl
 68 382 394 807 831 1113 1114 1239 1763 1775
 SEQ IDs: 1879 1902 1914 1964 1983 1984 2020 2022 2094 2109
 SEQ IDs: 2183 2229

SEQ IDs: Dégradation des protéines, peptides, et glycopeptides
 260 303 313 396 624 706 858 1606 1697 1778
 SEQ IDs: 1854 1861 1929 2027 2028 2045 2047 2105 2192

SEQ IDs: Modification des protéines
 374 571 911 1600 1776 2062

SEQ IDs: Protéines Ribosomales: synthèse et modification
 97 98 107 135 198 246 292 301 302 680
 SEQ IDs: 748 760 781 805 853 892 906 1097 1099 1307
 SEQ IDs: 1308 1617 1644 1790 1893 1894 1937 2056 2057 2123
 SEQ IDs: 2125 2126 2127 2135 2136 2137 2138 2139 2140 2142
 SEQ IDs: 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
 SEQ IDs: 2153 2154 2155 2156 2162 2209 2246 2248 2310 2311
 SEQ IDs: 2318 2319

SEQ IDs: Modification de l'ARNt
 13 132 158 168 169 171 496 638 705 852

SEQ IDs: 1144 1923 1944

Facteurs de traduction

SEQ IDs: 358 607 707 782 783 989 1126 1895 1912 2065
 SEQ IDs: 2128 2208 2317

TRANSPORT ET LIAISON DES PROTEINES

Général

SEQ IDs: 11 74 104 262 263 269 270 271 285 286
 SEQ IDs: 287 318 319 333 334 544 545 579 580 672
 SEQ IDs: 673 729 855 881 888 889 917 983 984 1080
 SEQ IDs: 1121 1122 1203 1256 1311 1312 1366 1567 1602 1667
 SEQ IDs: 1787 1800 1801 1825 1826 1844 1926 2051 2052 2074
 SEQ IDs: 2157 2260 2261 2313 2321

Acides aminés, peptides et amines

SEQ IDs: 70 115 330 331 352 353 354 355 356 357
 SEQ IDs: 364 365 375 550 574 698 699 717 824 863
 SEQ IDs: 864 955 956 957 1128 1182 1183 1184 1185 1330
 SEQ IDs: 1496 1497 1750 1810 1811 1847 1848 1873 1888 1889
 SEQ IDs: 1890 1891 1892 2087 2091 2107 2250

Anions

SEQ IDs: 52 308 309 310 1767 1768 1769 1770 1771 1772

Hydrates de Carbone, alcools organiques et acides

SEQ IDs: 208 209 259 430 566 919 933 934 1282 1369
 SEQ IDs: 1370 1371 1530 1540 1541 1542 1548 1551 1671 1678
 SEQ IDs: 1683 1684 1685 1686 1733 1734 1735 2040 2104 2239

Cations

SEQ IDs: 99 193 194 316 336 337 338 339 341 392
 SEQ IDs: 587 635 636 676 691 848 849 869 932 1194
 SEQ IDs: 1195 1295 1341 1355 1356 1357 1407 1528 1640 1655
 SEQ IDs: 1970 2058 2169 2170 2171 2305

Nucléosides, purines et pyrimidines

SEQ IDs: 896 1166 1651

Système PTS

SEQ IDs: 23 25 121 122 180 422 423 425 437 630
 SEQ IDs: 833 977 1149 1150 1505 1757 1758 1759

Résistance Multidrogue

SEQ IDs: 81 82 127 130 160 244 314 389 621 679
 SEQ IDs: 721 722 726 927 1389 1561 1584 1682 2220 2221
 SEQ IDs: 2292

AUTRES CATEGORIES

Adaptations aux conditions atypiques

SEQ IDs: 69 173 174 195 312 346 418 540 568 653
 SEQ IDs: 654 686 912 970 971 1102 1170 1414 1570 2085

Sensibilité aux médicaments et analogues

SEQ IDs: 1244 1860 2249

Fonctions relatives aux phages et prophages

SEQ IDs:	27	28	29	30	31	32	33	34	35	36
SEQ IDs:	37	38	39	40	41	42	43	44	45	46
SEQ IDs:	47	48	49	446	447	448	449	450	451	452
SEQ IDs:	453	454	455	456	457	458	459	460	461	462
SEQ IDs:	463	464	465	466	467	468	469	470	471	472
SEQ IDs:	473	474	475	476	477	478	479	480	481	482
SEQ IDs:	483	484	485	486	487	488	489	490	491	492
SEQ IDs:	493	494	514	515	516	517	518	519	520	521
SEQ IDs:	522	523	524	525	526	527	528	529	531	532
SEQ IDs:	533	534	1026	1027	1028	1029	1030	1031	1032	1033
SEQ IDs:	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043
SEQ IDs:	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053
SEQ IDs:	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063
SEQ IDs:	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073
SEQ IDs:	1074	1075	1076	1077	1200	1217	1416	1417	1418	1419
SEQ IDs:	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429
SEQ IDs:	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439
SEQ IDs:	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449
SEQ IDs:	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459
SEQ IDs:	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469
SEQ IDs:	1470	1471	1472	1473	1474	1475	1647	1720	1998	2003

Fonctions relatives aux Transposons

SEQ IDs:	53	54	55	56	90	91	93	94	141	142
SEQ IDs:	143	144	145	146	378	379	380	381	614	649
SEQ IDs:	650	651	652	662	670	694	718	737	738	837
SEQ IDs:	838	839	841	842	950	1224	1225	1231	1232	1236
SEQ IDs:	1268	1286	1287	1342	1400	1560	1591	1741	1742	1749
SEQ IDs:	1936	1961	1986	1992	2060	2082	2083	2118	2129	2130
SEQ IDs:	2131	2132	2191	2201	2202	2203	2204	2240		

Autres

SEQ IDs:	416	591	618	710	835	1153	1727	1822	1910	1931
SEQ IDs:	1953	2031								

HYPOTHETIQUES

Général

SEQ IDs:	17	18	50	57	58	60	78	79	80	84
SEQ IDs:	87	88	92	113	114	116	124	125	133	134
SEQ IDs:	139	140	148	149	150	157	159	161	162	170
SEQ IDs:	172	175	176	179	183	184	185	188	189	196
SEQ IDs:	197	214	230	231	232	233	234	235	236	238
SEQ IDs:	247	255	258	264	266	267	268	274	277	279
SEQ IDs:	283	288	289	293	294	298	299	300	315	317
SEQ IDs:	321	323	325	332	343	344	366	367	369	370
SEQ IDs:	371	372	373	376	377	384	387	388	399	404
SEQ IDs:	409	410	411	420	433	436	438	443	444	498
SEQ IDs:	499	503	510	512	546	549	553	555	556	557
SEQ IDs:	558	569	582	583	588	589	592	594	597	599
SEQ IDs:	611	625	637	655	671	678	688	700	701	703
SEQ IDs:	704	708	725	727	730	735	741	749	756	759
SEQ IDs:	762	763	764	765	769	774	780	798	799	800
SEQ IDs:	803	809	810	811	819	827	830	840	850	861
SEQ IDs:	865	880	882	883	884	891	899	900	913	920
SEQ IDs:	924	951	963	964	965	986	987	999	1001	1004

SEQ IDs:	1016	1019	1023	1078	1079	1090	1091	1094	1098	1100
SEQ IDs:	1103	1104	1106	1109	1110	1115	1116	1117	1119	1124
SEQ IDs:	1131	1137	1141	1147	1148	1155	1156	1160	1161	1168
SEQ IDs:	1175	1187	1188	1201	1202	1204	1208	1209	1223	1242
SEQ IDs:	1276	1277	1278	1280	1303	1313	1315	1316	1318	1319
SEQ IDs:	1322	1340	1352	1358	1359	1363	1382	1391	1392	1393
SEQ IDs:	1408	1409	1411	1412	1476	1486	1489	1491	1492	1493
SEQ IDs:	1501	1518	1519	1520	1522	1523	1525	1529	1544	1547
SEQ IDs:	1565	1577	1579	1581	1592	1595	1597	1605	1614	1619
SEQ IDs:	1620	1622	1648	1658	1661	1662	1666	1669	1677	1694
SEQ IDs:	1699	1701	1702	1709	1710	1711	1712	1718	1719	1722
SEQ IDs:	1748	1760	1761	1762	1764	1765	1773	1774	1777	1780
SEQ IDs:	1781	1782	1786	1788	1789	1802	1805	1809	1827	1828
SEQ IDs:	1829	1832	1833	1838	1839	1840	1842	1843	1849	1855
SEQ IDs:	1856	1863	1865	1866	1867	1868	1872	1874	1875	1876
SEQ IDs:	1885	1886	1887	1900	1901	1903	1907	1915	1916	1917
SEQ IDs:	1918	1919	1924	1930	1933	1938	1939	1940	1941	1946
SEQ IDs:	1951	1952	1954	1958	1959	1963	1966	1967	1968	1976
SEQ IDs:	1977	1978	1981	1982	2004	2006	2008	2011	2014	2015
SEQ IDs:	2016	2017	2018	2019	2026	2029	2033	2044	2049	2050
SEQ IDs:	2054	2061	2063	2070	2080	2081	2101	2102	2106	2108
SEQ IDs:	2110	2115	2158	2163	2165	2168	2173	2174	2175	2184
SEQ IDs:	2186	2190	2193	2194	2197	2210	2217	2219	2226	2227
SEQ IDs:	2232	2235	2238	2245	2253	2254	2259	2272	2275	2278
SEQ IDs:	2282	2284	2286	2289	2294	2295	2298	2302	2304	2308
SEQ IDs:	2312	2322	2323							

Conservées

SEQ IDs:	16	66	67	73	77	108	109	111	112	252
SEQ IDs:	391	432	505	509	511	559	581	593	598	604
SEQ IDs:	612	640	642	647	702	733	734	736	739	750
SEQ IDs:	752	758	776	777	778	802	820	826	874	876
SEQ IDs:	897	901	910	922	952	954	961	979	980	981
SEQ IDs:	996	1017	1093	1111	1118	1135	1196	1199	1250	1273
SEQ IDs:	1320	1328	1377	1413	1562	1610	1705	1783	1804	1884
SEQ IDs:	1897	1909	1922	2117	2199	2293				

INCONNUES**Général**

SEQ IDs:	9	10	12	15	19	51	71	83	85	86
SEQ IDs:	89	95	96	103	105	106	123	138	147	152
SEQ IDs:	156	163	164	165	177	178	190	191	192	199
SEQ IDs:	201	203	210	211	216	225	228	237	239	241
SEQ IDs:	248	249	250	251	272	275	278	296	297	304
SEQ IDs:	305	306	307	322	368	393	397	412	427	441
SEQ IDs:	442	495	504	530	535	536	537	538	539	547
SEQ IDs:	561	567	578	590	595	596	601	602	606	608
SEQ IDs:	623	626	627	628	629	632	633	639	641	658
SEQ IDs:	659	660	661	666	667	668	669	687	689	690
SEQ IDs:	692	696	724	731	753	772	773	775	808	821
SEQ IDs:	822	823	825	836	851	866	867	868	870	879
SEQ IDs:	887	893	895	903	904	907	921	925	928	931
SEQ IDs:	935	938	941	943	948	962	966	969	985	988
SEQ IDs:	998	1003	1005	1006	1007	1008	1009	1010	1018	1021
SEQ IDs:	1081	1082	1083	1085	1092	1095	1096	1101	1132	1133
SEQ IDs:	1134	1136	1143	1154	1158	1163	1167	1180	1189	1190
SEQ IDs:	1191	1192	1198	1206	1210	1218	1219	1220	1221	1222
SEQ IDs:	1226	1227	1228	1229	1230	1234	1235	1253	1264	1269
SEQ IDs:	1271	1272	1279	1285	1288	1305	1306	1309	1317	1334

SEQ IDs:	1335	1337	1338	1339	1346	1347	1350	1351	1364	1365
SEQ IDs:	1375	1378	1381	1385	1390	1394	1395	1396	1397	1398
SEQ IDs:	1399	1401	1402	1403	1410	1415	1479	1484	1488	1495
SEQ IDs:	1502	1503	1509	1510	1516	1535	1536	1571	1580	1582
SEQ IDs:	1587	1588	1589	1590	1593	1594	1598	1608	1611	1616
SEQ IDs:	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634
SEQ IDs:	1643	1645	1646	1653	1659	1660	1665	1672	1691	1698
SEQ IDs:	1700	1703	1706	1713	1714	1715	1716	1736	1737	1738
SEQ IDs:	1739	1740	1743	1744	1755	1799	1806	1812	1813	1821
SEQ IDs:	1835	1836	1841	1862	1870	1877	1878	1880	1882	1896
SEQ IDs:	1899	1905	1911	1913	1932	1942	1943	1945	1947	1949
SEQ IDs:	1957	1965	1974	1975	1980	1987	1988	1989	1990	1991
SEQ IDs:	1993	1994	1995	1996	1997	1999	2000	2002	2009	2010
SEQ IDs:	2012	2013	2021	2023	2024	2046	2048	2053	2055	2064
SEQ IDs:	2067	2072	2073	2075	2076	2077	2078	2086	2097	2099
SEQ IDs:	2103	2111	2112	2113	2114	2116	2119	2121	2122	2141
SEQ IDs:	2166	2181	2187	2188	2189	2195	2196	2212	2213	2214
SEQ IDs:	2215	2223	2225	2228	2230	2231	2233	2234	2236	2237
SEQ IDs:	2244	2252	2255	2256	2266	2268	2269	2271	2273	2274

TABLEAU III. Homologies des protéines de *L.lactis* IL1403 avec des protéines connues

SEQID	Nom	Identité	Numéro d'accesion	Meilleur homologue
2	dnaA	95%	Q54375	dnaa; <i>Lactococcus lactis</i>
3	dnaN	97%	Q54376	dna polymerase iii, beta chain; <i>Lactococcus lactis</i>
4	rexB	87%	Q54377	exonuclease rex b; <i>Lactococcus lactis</i>
5	rexA	88%	Q54378	exonuclease rex a; <i>Lactococcus lactis</i>
6	yabA	68%	Q54379	hypothetical 21.4 kd protein; <i>Lactococcus lactis</i>
7	yyaL	99%	Q54380	putative gtp binding protein; <i>Lactococcus lactis</i>
8	yabB	39%	Q46240	nahn gene & orf1,2,3 & 4; <i>Clostridium perfringens</i>
9	yabC			putative
10	yabD			putative
11	yabE	36%	Q9ZHB1	hypothetical 24.0 kd protein; <i>Streptococcus pneumoniae</i>
12	yabF	31%	Q47838	copa, copy and copz genes; <i>Enterococcus hirae</i>
13	pth	52%	Q85235	hypothetical 19.6 kd protein; <i>Lactobacillus sake</i>
14	mfd	47%	P37474	transcription-repair coupling factor; <i>Bacillus subtilis</i>
15	yacI			putative
16	yacB	62%	P37557	hypothetical 9.7 kd protein in mfd-divic intergenic region; <i>Bacillus subtilis</i>
17	yacC	30%	P37471	cell division protein divic; <i>Bacillus subtilis</i>
18	yacD			putative
19	yacG	21%	Q87489	beta-lactamase cef-1 precursor; <i>Pseudomonas aeruginosa</i> , and <i>Escherichia coli</i>
20	mesJ	99%	Q48646	partial orf; <i>Lactococcus lactis</i>
21	hpt	87%	Q02522	hypoxanthine-guanine phosphoribosyltransferase; <i>Lactococcus lactis</i>
22	ftsH	92%	P46469	cell division protein fts H homolog; <i>Lactococcus lactis</i>
23	mtlA	49%	P50852	pts system, mannitol-specific iibc component (ec 2.7.1.6. <i>Bacillus stearothermophilus</i>
24	mtlR	36%	Q02425	hypothetical protein in mtl f 5' region; <i>Streptococcus mutans</i>
25	mtlF	71%	Q02420	pts system, mannitol-specific iia component (eiii-mt. <i>Streptococcus mutans</i>
26	mtlD	61%	Q02418	mannitol-1-phosphate 5-dehydrogenase; <i>Streptococcus mutans</i>
27	ps101			putative
28	ps102	49%	Q53060	hypothetical 16.9 kd protein; <i>Lactococcus lactis</i>
29	ps103	45%	Q03926	lactobacillus bacteriophage phigle complete genomic dna; <i>Bacteriophage phigle</i>
30	ps104			putative
31	ps105	45%	Q9XJC9	putative primase; <i>Streptococcus thermophilus</i> bacteriophage dt1
32	ps106	25%	Q38605	orf1; <i>Streptococcus thermophilus</i> bacteriophage sfi18, and <i>streptococcus thermophilus</i> bacteriophage sfi19
33	ps107			putative
34	ps108			putative
35	ps109			putative
36	ps110			putative
37	ps111			putative
38	ps112	25%	P33537	probable dna polymerase; <i>Neurospora crassa</i>

39	ps113			putative
40	ps114	27%	O34449	yogd protein; <i>Bacillus subtilis</i>
41	ps115	31%	AAF12710	repressor protein; <i>Bacteriophage tpw22</i>
42	ps116	37%	AAF12709	hypothetical 21.8 kd protein; <i>Bacteriophage tpw22</i>
43	ps117			putative
44	ps118			putative
45	ps119			putative
46	ps120			putative
47	ps121			putative
48	ps122	33%	Q00561	lactococcin a immunity protein; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
49	ps123	27%	Q38159	integrase; <i>Bacteriophage t2</i>
50	yafE	34%	BAA77903	hypothetical 15.5 kd protein in dinp-rrfh intergenic region; ; <i>Escherichia coli</i>
51	yafF			putative
52	yafB	25%	P40877	hypothetical 58.4 kd protein in pth-prsa intergenic region; <i>Escherichia coli</i>
53	yafG	100%	O32786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
54	tra1077A	96%	O32787	transposase; <i>Lactococcus lactis</i>
55	tra904A	99%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
56	yafI	100%	Q48713	dna for the transposon-like element on the lactose plasmid; <i>Lactococcus lactis</i>
57	yafJ			putative
58	yafC	34%	CAB62759	putative acetyltransferase; <i>Streptomyces coelicolor</i>
59	araT	97%	AAF06954	aromatic amino acid aminotransferase; <i>Lactococcus lactis</i>
60	yafD	29%	P42095	hypothetical 29.3 kd protein in bex-dnag/dnae intergenic region; <i>Bacillus subtilis</i>
61	pdhD	50%	P11959	dihydrolipoamide dehydrogenase; <i>Bacillus stearothermophilus</i>
62	pdhC	39%	P11961	dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex; <i>Bacillus stearothermophilus</i>
63	pdhB	58%	P21874	pyruvate dehydrogenase e1 component, beta subunit; <i>Bacillus stearothermophilus</i>
64	pdhA	51%	P21881	pyruvate dehydrogenase e1 component, alpha subunit; <i>Bacillus subtilis</i>
65	lpL	38%	O07608	hypothetical 38.0 kd protein; <i>Bacillus subtilis</i>
66	yagA	34%	O07592	hypothetical 27.5 kd protein; <i>Bacillus subtilis</i>
67	yagB	32%	P54168	hypothetical 23.1 kd protein in bsaa-ilvd intergenic region; <i>Bacillus subtilis</i>
68	trpS	66%	Q46127	tryptophanyl-trna synthetase; <i>Clostridium longisporum</i>
69	osmC	49%	P23929	osmotically inducible protein c; <i>Escherichia coli</i>
70	yagE	24%	O26646	cationic amino acid transporter related protein; <i>Methanobacterium thermoautotrophicum</i>
71	yahC			putative
72	plsX	42%	P71018	fatty acid/phospholipid synthesis protein plsX homolog; <i>Bacillus subtilis</i>
73	yahA	30%	P75792	hypothetical protein 1; <i>Escherichia coli</i>
74	yahG	61%	O31716	ykpa protein; <i>Bacillus subtilis</i>
75	cysD	55%	Q9WZY4	o-acetylhomoserine sulfhydrylase; <i>Thermotoga maritima</i>
76	yahI	33%	Q9ZKW1	putative; <i>Helicobacter pylori</i> j99
77	yahB	32%	O26984	conserved protein; <i>Methanobacterium thermoautotrophicum</i>
78	yahD	32%	O34842	yolf; <i>Bacillus subtilis</i>

79	yaiA	32%	O34689	ykca protein; <i>Bacillus subtilis</i>
80	yaiB	43%	O05220	hypothetical protein ywrf; <i>Bacillus subtilis</i>
81	lcnC	89%	Q00564	lactococcin a transport atp-binding protein lcnC; <i>Lactococcus lactis</i>
82	lcnD	93%	Q00565	lactococcin a secretion protein lcnd; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
83	yaiE			putative
84	yaiF	37%	Q48724	abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i>
85	yaiI			putative
86	yaiJ			putative
87	yaiG	92%	Q00565	lactococcin a secretion protein lcnd; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
88	yaiH	76%	Q48724	abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i>
89	yajA			putative
90	tra981A	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
91	yajE	100%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
92	yajF	28%	Q48724	abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i>
93	tra981B	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
94	yajG	97%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
95	yajB			putative
96	yajH			putative
97	rpmGB	100%	O34102	50s ribosomal protein 133; <i>Lactococcus lactis</i>
98	rpmF	100%	O34101	50s ribosomal protein 132; <i>Lactococcus lactis</i>
99	cadA	36%	CAB53131	putative cation-transporting atpase; <i>Streptomyces coelicolor</i>
100	parA	50%	O06671	spspoj; <i>Streptococcus pneumoniae</i>
101	cshA	59%	O34528	yrvn protein; <i>Bacillus subtilis</i>
102	ybaH	44%	CAB51273	putative acetyltransferase; <i>Streptomyces coelicolor</i>
103	ybaA			putative
104	ybaB	58%	O34512	yfmm protein; <i>Bacillus subtilis</i>
105	ybaC			putative
106	ybaD			putative
107	prmA	44%	BAA82791	orf35 protein; <i>Listeria monocytogenes</i>
108	ybaF	42%	P54461	hypothetical 28.8 kd protein in dnaj-rpsu interegenic region; <i>Bacillus subtilis</i>
109	ybaG	37%	P94361	homologous to swissprot:yade_ecoli; <i>Bacillus subtilis</i>
110	relA	67%	Q54089	putative gtp pyrophosphokinase; <i>Streptococcus equisimilis</i>
111	ybaI	37%	Q45539	csbb protein; <i>Bacillus subtilis</i>
112	ybbA	71%	Q54088	dexb, abc, lrp, skc, rel genes and orfl; <i>Streptococcus equisimilis</i>
113	ybbB			putative
114	ybbC	27%	Q9WZ48	conserved hypothetical protein; <i>Thermotoga maritima</i>
115	ctrA	29%	O07576	hypothetical 49.7 kd protein; <i>Bacillus subtilis</i>
116	ybbE	35%	O07584	hypothetical 21.9 kd protein; <i>Bacillus subtilis</i>
117	rmaD	26%	O34692	yvna; <i>Bacillus subtilis</i>
118	acpD	42%	Q9X4K2	nadh dehydrogenase; <i>Bacillus stearothermophilus</i>
119	secA	56%	P28366	preprotein translocase seca subunit; <i>Bacillus subtilis</i>
120	aroF	41%	O54459	phospho-2-dehydro-3-deoxyheptonate aldolase, trp-sensitive (3-deoxy-d-arabino-he. <i>Erwinia herbicola</i>
121	ptsH	96%	Q9ZAD9	histidine containing protein; <i>Lactococcus lactis</i>
122	ptsI	96%	Q9zad8	phosphoenolpyruvate-protein phosphotransferase; <i>Lactococcus lactis</i>

123	ybcC				putative
124	ybcG	38%	Q9XAI3		hypothetical 11.7 kd protein; <i>Streptomyces coelicolor</i>
125	ybcH	27%	CAB49187		hypothetical 2-acetyl-1-alkylglycerophosphocholine esterase; <i>Pyrococcus abyssi</i>
126	sugE	46%	P30743		suge protein; <i>Escherichia coli</i>
127	blt	40%	P39843		multidrug resistance protein 2; <i>Bacillus subtilis</i>
128	argG	64%	O34347		argininosuccinate synthase; <i>Bacillus subtilis</i>
129	argH	59%	O34858		arginine succinate lyase; <i>Bacillus subtilis</i>
130	pmrB	43%	BAA35851		probable integral membrane protein; ; <i>Escherichia coli</i>
131	ybdA	35%	P03039		tetracycline repressor protein class c; <i>Escherichia coli</i>
132	rnpA	48%	BAA82683		rnpA protein; <i>Bacillus sp</i>
133	ybdC	40%	O32298		spoiij protein; <i>Bacillus subtilis</i>
134	ybdD	31%	Q9X1H1		jag protein, putative; <i>Thermotoga maritima</i>
135	rpmH	77%	P45647		50s ribosomal protein 134; <i>Coxiella burnetii</i>
136	ybdE	36%	P42972		hypothetical oxidoreductase in pbpc-lrpc intergenic region; <i>Bacillus subtilis</i>
137	ybdG	35%	O28481		hypothetical transcriptional regulator af1793; <i>Archaeoglobus fulgidus</i>
138	ybdH				putative
139	ybdI	31%	Q48724		abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i>
140	ybdJ	33%	Q48724		abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i>
141	ybdK	100%	Q48710		span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i>
142	tra904B	100%	CAA55220		is1069 gene; <i>Lactococcus lactis</i>
143	ybdL	99%	O32786		hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
144	tra1077B	97%	O32787		transposase; <i>Lactococcus lactis</i>
145	tra904C	100%	CAA55220		is1069 gene; <i>Lactococcus lactis</i>
146	ybeG	100%	Q48710		span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i>
147	ybeA				putative
148	ybeB	53%	O34634		hypothetical 15.2 kd protein in udk-alas intergenic region; <i>Bacillus subtilis</i>
149	ybeC	46%	O34828		yrzb protein; <i>Bacillus subtilis</i>
150	ybeH	17%	AAF10767		hypothetical 23.9 kd protein; <i>Deinococcus radiodurans</i>
151	cbr	28%	P48758		carbonyl reductase [nadph]; <i>Mus musculus</i>
152	ybeI				putative
153	ybeE	32%	CAB53277		putative oxidoreductase; <i>Streptomyces coelicolor</i>
154	ybeD	43%	O67157		transcriptional regulator; <i>Aquifex aeolicus</i>
155	glgB	47%	P30924		1,4-alpha-glucan branching enzyme; <i>Solanum tuberosum</i>
156	ybeM				putative
157	ybeF	21%	Q9X3M7		fibronectin-binding protein i; <i>Streptococcus pyogenes</i>
158	tgt	71%	O32053		queuine trna-ribosyltransferase; <i>Bacillus subtilis</i>
159	ybfA	29%	Q06073		hypothetical 25.7 kd protein in cytochrome p450meg gene 5'region; <i>Bacillus megaterium</i>
160	ybfD	30%	P94577		hypothetical 43.1 kd protein; <i>Bacillus subtilis</i>
161	ybfE	47%	Q45065		ynet; <i>Bacillus subtilis</i>
162	ybfB	25%	O33735		streptodornase; <i>Streptococcus pyogenes</i>
163	ybfC				putative
164	ybgA				putative

165	ybgB			putative
166	aspC	63%	P71348	probable aminotransferase hi0286; <i>Haemophilus influenzae</i>
167	codY	48%	P39779	cody protein; <i>Bacillus subtilis</i>
168	gatC	45%	O06492	glutamyl-trna amidotransferase subunit c; <i>Bacillus subtilis</i>
169	gatA	58%	O06491	glutamyl-trna amidotransferase subunit a; <i>Bacillus subtilis</i>
170	ybgD	43%	Q9ZHC2	mutt; <i>Streptococcus pneumoniae</i>
171	gatB	62%	Q45486	pet112-like protein; <i>Bacillus subtilis</i>
172	ybgE	28%	AAF09821	6-aminohexanoate-cyclic-dimer hydrolase; <i>Deinococcus radiodurans</i>
173	dinF	34%	O33729	dinf protein; <i>Streptococcus pneumoniae</i>
174	cspE	98%	Q9ZAG9	cold shock protein e; <i>Lactococcus lactis</i>
175	ybhA	41%	O66124	hypothetical protein; <i>Streptococcus mutans</i>
176	ybhB	32%	O59166	197aa long hypothetical protein; <i>Pyrococcus horikoshii</i>
177	ybhC			putative
178	ybhD			putative
179	ybhE	40%	O50983	outer surface protein, putative; <i>Borrelia burgdorferi</i>
180	celB	30%	P17334	pts system, cellobiose-specific iic component; <i>Escherichia coli</i>
181	bg1S	59%	P42403	probable beta-glucosidase; <i>Bacillus subtilis</i>
182	dut	52%	Q38106	dutpase; <i>Bacteriophage rlt</i>
183	ybiB	33%	O32133	yund protein; <i>Bacillus subtilis</i>
184	ybiC	53%	O32127	yutd protein; <i>Bacillus subtilis</i>
185	ybiD	54%	O34617	hypothetical 41.6 kd protein in fmt-spoVM intergenic region; <i>Bacillus subtilis</i>
186	ybiE	32%	Q50261	this orf is homologous to nitroreductase from <i>enterobacter cloacae</i> ; <i>Phytoplasma</i> sp
187	preA	30%	P31114	probable heptaprenyl diphosphate synthase component ii; <i>Bacillus subtilis</i>
188	ybiG	21%	P39582	probable 1,4-dihydroxy-2-naphthoate octaprenyltransferase; <i>Bacillus subtilis</i>
189	ybiH	46%	P71468	plni; <i>Lactobacillus plantarum</i>
190	ybiI			putative
191	ybiJ			putative
192	ybiK			putative
193	feoB	36%	O27414	ferrous iron transport protein b; <i>Methanobacterium thermoautotrophicum</i>
194	feoA	42%	O27415	hypothetical 8.2 kd protein; <i>Methanobacterium thermoautotrophicum</i>
195	ybjA	65%	Q9XB39	csr14 protein; <i>Enterococcus faecalis</i>
196	ybjJ	43%	O34751	ylov protein; <i>Bacillus subtilis</i>
197	ybjK	41%	O34318	ylou protein; <i>Bacillus subtilis</i>
198	rpmB	56%	P37807	50s ribosomal protein l28; <i>Bacillus subtilis</i>
199	ybjB			putative
200	rmlA	90%	O54574	glucose-1-phosphate thymidyl transferase; <i>Streptococcus pneumoniae</i>
201	ybjD			putative
202	cpsM	88%	P97005	dtdp-4-keto-6-deoxyglucose-3,5-epimerase; <i>Streptococcus pneumoniae</i>
203	ybjF			putative
204	rmlB	75%	AAC78676	dtdp-glucose-4,6-dehydratase cps19an; <i>Streptococcus pneumoniae</i>
205	rmlC	72%	AAC78677	dtdp-1-rhamnose synthase cps19ao; <i>Streptococcus pneumoniae</i>
206	rgpA	54%	O82873	rgpac protein; <i>Streptococcus mutans</i>
207	rgpB	53%	O82874	rhamnosyltransferase; <i>Streptococcus mutans</i>
208	rgpC	46%	O82875	abc-transporter; <i>Streptococcus mutans</i>

209	rgpD	70%	082876	abc-transporter; <i>Streptococcus mutans</i>
210	ycaF			putative
211	ycaG			putative
212	rgpE	34%	006035	epsG protein; <i>Lactococcus lactis</i>
213	rgpF	52%	082878	rgpfc protein; <i>Streptococcus mutans</i>
214	ycbA	23%	005375	unnamed protein product; <i>Actinobacillus actinomycetemcomitans</i>
215	ycbB	52%	088085	putative glycosyl transferase; <i>Enterococcus faecalis</i>
216	ycbC			putative
217	ycbD	40%	CAB49227	udp-glucose 4-epimerase; <i>Pyrococcus abyssi</i>
218	ycbK	18%	032273	tuab protein; <i>Bacillus subtilis</i>
219	ycbF	25%	Q08918	chromosome xvi reading frame orf ypl175w; <i>Saccharomyces cerevisiae</i>
220	ycbG	32%	Q9X4D4	licd1; <i>Streptococcus pneumoniae</i>
221	ycbH	34%	085000	galactosyl transferase; <i>Streptococcus pneumoniae</i>
222	ycbI	30%	Q57022	putative glycosyl transferase hi0868; <i>Haemophilus influenzae</i>
223	ycbJ	30%	P37965	glycerophosphoryl diester phosphodiesterase; <i>Bacillus subtilis</i>
224	tagD1	55%	005155	tagd; <i>Staphylococcus aureus</i>
225	yccB	40%	066077	putative extracellular protein exp3 precursor; <i>Lactococcus lactis</i>
226	guaB	83%	P50099	inosine-5'-monophosphate dehydrogenase; <i>Streptococcus pyogenes</i>
227	yqeL	51%	P54453	hypothetical 41.0 kd protein in nucb-arod intergenic region; <i>Bacillus subtilis</i>
228	yccE			putative
229	hf1X	54%	P94478	ynba; <i>Bacillus subtilis</i>
230	yccF	44%	P54454	hypothetical 10.8 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
231	yccG	34%	P54455	hypothetical 22.2 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
232	yccH	37%	P54456	hypothetical 21.3 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
233	yccI	29%	P16691	phno protein; <i>Escherichia coli</i>
234	yccJ	41%	P54457	hypothetical 13.3 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
235	yccK	40%	P54458	hypothetical 28.3 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
236	yccL	41%	Q58361	hypothetical protein mj0951; <i>Methanococcus jannaschii</i>
237	ycdA			putative
238	ycdB	94%	P76351	hypothetical 25.9 kd protein in amn-cbl intergenic region; <i>Escherichia coli</i>
239	ycdC			putative
240	ung	54%	Q9XDS8	uracil dna glycosylase; <i>Streptococcus agalactiae</i>
241	ycdE			putative
242	ycdG			putative
243	ycdF	36%	CAB58281	putative tetr family transcriptional regulator; <i>Streptomyces coelicolor</i>
244	ycdH	27%	032182	yusp protein; <i>Bacillus subtilis</i>
245	ycdI	38%	P44617	hypothetical transcriptional regulator hi0293; <i>Haemophilus influenzae</i>
246	rpsU	83%	BAA82793	30s ribosomal protein s21; <i>Listeria monocytogenes</i>
247	ycdJ			putative
248	yceA			putative
249	yceB			putative

250	yceC			putative
251	yceD			putative
252	yceE	29%	Q9WZB9	conserved hypothetical protein; <i>Thermotoga maritima</i>
253	pgk	57%	Q9Z5C4	phosphoglycerate kinase; <i>Staphylococcus aureus</i>
254	dhaK	37%	Q04059	putative 3,4-dihydroxy-2-butanone kinase; <i>Lycopersicon esculentum</i>
255	yceG	41%	Q53054	hypothetical transcriptional regulator in inlc 3'region; <i>Listeria ivanovii</i>
256	dhaL	41%	P76015	hypothetical 24.0k protein; <i>Escherichia coli</i>
257	dhaM	37%	P76014	orf o246#1; <i>Escherichia coli</i>
258	yceJ	32%	AAF12590	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
259	glpF1	47%	P52281	glycerol uptake facilitator protein; <i>Streptococcus pneumoniae</i>
260	pepDA	55%	Q48558	dipeptidase; <i>Lactobacillus helveticus</i>
261	ycfA	45%	Q08306	30s ribosomal protein s21; <i>Nocardiooides simplex</i>
262	ycfB	39%	Q29256	abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
263	ycfC	36%	Q33188	hypothetical 24.4 kd protein; <i>Mycobacterium tuberculosis</i>
264	ycfD	44%	P39587	hypothetical 44.4 kd protein in epr-galk intergenic region; <i>Bacillus subtilis</i>
265	fbp	52%	Q45597	function unknown; <i>Bacillus subtilis</i>
266	ycfF	50%	Q30505	ytfp; <i>Bacillus subtilis</i>
267	ycfG	43%	P96051	hypothetical 29.9 kd protein in fold-pbp2b intergenic region; <i>Streptococcus thermophilus</i>
268	ycfH	48%	Q10845	hypothetical 18.2 kd protein cy39.05c; <i>Mycobacterium tuberculosis</i>
269	ycfI	34%	Q11046	hypothetical abc transporter atp-binding protein rv1273c; <i>Mycobacterium tuberculosis</i>
270	ycgA	26%	Q9WYC4	abc transporter, atp-binding protein; <i>Thermotoga maritima</i>
271	ycgB	50%	Q11047	hypothetical abc transporter atp-binding protein cy50.10; <i>Mycobacterium tuberculosis</i>
272	ycgC	30%	Q9ZL99	putative; <i>Helicobacter pylori</i> j99
273	ycgD	43%	P46853	hypothetical oxidoreductase in gntr-ggt intergenic region; <i>Escherichia coli</i>
274	ycgE	47%	AAF11932	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
275	ycgF			putative
276	ycgG	49%	P22045	probable reductase; <i>Leishmania major</i>
277	ycgH	31%	Q9ZF59	nicotinamidase/pyrazinamidase; <i>Mycobacterium smegmatis</i>
278	ycgI	25%	Q53298	hypothetical 45.8 kd protein; <i>Mycobacterium tuberculosis</i>
279	ycgJ	90%	Q48604	hypothetical 11.3 kd protein; <i>Lactococcus lactis</i>
280	acmA	65%	Q48603	n-acetylmuramidase precursor; <i>Lactococcus lactis</i>
281	nrdD	95%	Q9ZAX6	anaerobic ribonucleotide reductase; <i>Lactococcus lactis</i>
282	nrdG	87%	Q9ZAX5	anaerobic ribonucleotide reductase activator protein; <i>Lactococcus lactis</i>
283	ychC	45%	Q9ZAX4	hypothetical 7.3 kd protein; <i>Lactococcus lactis</i>
284	enoB	91%	Q52191	enolase; <i>Streptococcus thermophilus</i>
285	ychD	57%	Q87533	abc transporter atp-binding protein; <i>Streptococcus pyogenes</i>
286	ychE	53%	P70970	hypothetical 30.6 kd protein; <i>Bacillus subtilis</i>
287	ychF	44%	P70972	ybaF protein; <i>Bacillus subtilis</i>
288	ychG			putative

289	ychH	43%	Q9X1K7	2,3,4,5-tetrahydropyridine-2-carboxylate n-succinyltransferase-related protein; <i>Thermotoga maritima</i>
290	yciA	44%	O34916	ykur protein; <i>Bacillus subtilis</i>
291	xynD	40%	P04339	chitooligosaccharide deacetylase; <i>Rhizobium leguminosarum</i>
292	rpsD	66%	P21466	30s ribosomal protein s4; <i>Bacillus subtilis</i>
293	yciC	44%	Q51152	hypothetical 83.1 kd protein in region e; <i>Neisseria meningitidis</i>
294	yciD	42%	P96628	ydck protein; <i>Bacillus subtilis</i>
295	add	31%	Q9X7T2	putative adenosine deaminase; <i>Streptomyces coelicolor</i>
296	yciF			putative
297	yciG			putative
298	yciH	60%	Q45493	hypothetical 61.5 kd protein in adec-pdha intergenic region; <i>Bacillus subtilis</i>
299	ycjA	32%	O31718	ykzg protein; <i>Bacillus subtilis</i>
300	ycjB	32%	O05516	h. influenzae hypothetical protein; <i>Bacillus subtilis</i>
301	ycjC	36%	O05517	h. influenzae; <i>Bacillus subtilis</i>
302	ycjD	37%	O05517	h. influenzae; <i>Bacillus subtilis</i>
303	gcp	54%	O05518	hypothetical 36.8 kd protein in phob-groes intergenic region; <i>Bacillus subtilis</i>
304	ycjF			putative
305	ycjG			putative
306	ycjH			putative
307	ycjI			putative
308	phnC	40%	O69063	atpase component htxd; <i>Pseudomonas stutzeri</i>
309	phnB	33%	O69053	ptxc; <i>Pseudomonas stutzeri</i>
310	phnE	37%	O69053	ptxc; <i>Pseudomonas stutzeri</i>
311	ycjM	26%	P44764	2',3'-cyclic-nucleotide 2'-phosphodiesterase precursor; <i>Haemophilus influenzae</i>
312	tpx	40%	P80864	probable thiol peroxidase; <i>Bacillus subtilis</i>
313	pepN	96%	P37897	aminopeptidase n; <i>Lactococcus lactis</i>
314	napC	49%	O32603	napc protein; <i>Enterococcus hirae</i>
315	napB	39%	O32602	napb protein; <i>Enterococcus hirae</i>
316	ydaE	43%	P46348	hypothetical 31.8 kd protein in gabp-quaa intergenic region; <i>Bacillus subtilis</i>
317	ydaF	36%	P39044	30s ribosomal protein s14 homolog; <i>Bacillus sphaericus</i>
318	ydaG	38%	Q9WYC3	abc transporter, atp-binding protein; <i>Thermotoga maritima</i>
319	ydbA	58%	Q9ZIC7	abc transporter homolog z; <i>Listeria monocytogenes</i>
320	murA1	55%	P19670	probable udp-n-acetylglucosamine 1-carboxyvinyltransferase; <i>Bacillus subtilis</i>
321	ydbC	46%	O83371	hypothetical protein tp0352; <i>Treponema pallidum</i>
322	ydbD			putative
323	ydbE	34%	O57898	162aa long hypothetical protein; <i>Pyrococcus horikoshii</i>
324	ydbF	37%	P36922	ebsc protein; <i>Enterococcus faecalis</i>
325	ydbH	34%	O32074	yuaj protein; <i>Bacillus subtilis</i>
326	plpA	56%	CAB59827	hypothetical 32.0 kd protein; <i>Lactococcus lactis</i>
327	plpB	61%	CAB59827	hypothetical 32.0 kd protein; <i>Lactococcus lactis</i>
328	plpC	89%	CAB59825	hypothetical 31.6 kd protein; <i>Lactococcus lactis</i>
329	plpD	94%	CAB59827	hypothetical 32.0 kd protein; <i>Lactococcus lactis</i>

330	ydcB	95%	CAB59828	hypothetical 41.0 kd protein; Lactococcus lactis
331	ydcC	65%	CAB59829	hypothetical 24.8 kd protein; Lactococcus lactis
332	ydcD	90%	CAB59830	hypothetical 19.4 kd protein; Lactococcus lactis
333	ydcE	37%	O59479	284aa long hypothetical cobalt transport atp-binding protein; Pyrococcus horikoshii
334	ydcF	24%	Q50292	hypothetical protein mg181 homolog; Mycoplasma pneumoniae
335	ydcG	50%	Q57720	hypothetical transcriptional regulator mj0272; Methanococcus jannaschii
336	fhuC	43%	Q9X665	fhua; Staphylococcus aureus
337	fhuB	25%	P49936	ferrichrome transport permease protein fhub; Bacillus subtilis
338	fhuG	32%	P49937	ferrichrome transport permease protein fhug; Bacillus subtilis
339	fhuD	32%	P54941	probable abc transporter binding protein in idh-deor intergenic region precursor; Bacillus subtilis
340	fhuR	31%	CAB36982	cpsy protein; Streptococcus agalactiae
341	yddA	45%	O34367	ytbd; Bacillus subtilis
342	yddB	54%	O32210	yvgn protein; Bacillus subtilis
343	yddC	61%	O34533	hypothetical 14.5 kd protein in gapb-mutm intergenic region; Bacillus subtilis
344	yddD	50%	P45871	hypothetical 14.8 kd protein in tdk-prfa intergenic region; Bacillus subtilis
345	pmg	86%	Q9X9S2	phosphoglyceromutase; Streptococcus pneumoniae
346	aphC	70%	P80239	alkyl hydroperoxide reductase c22 protein; Bacillus subtilis
347	ahpF	61%	P42974	nadh dehydrogenase; Bacillus subtilis
348	ppb2B	45%	P10524	penicillin-binding protein 2b; Streptococcus pneumoniae
349	recM	78%	Q9ZHC4	recm; Streptococcus pneumoniae
350	ddl	63%	O54631	d-alanine-d-alanine ligase; Streptococcus pneumoniae
351	murF	59%	Q9ZHC3	d-alanine-d-alanine adding enzyme; Streptococcus pneumoniae
352	optS	42%	Q9Z692	hyaluronate-associated protein precursor; Streptococcus equi
353	optA	45%	Q9Z692	hyaluronate-associated protein precursor; Streptococcus equi
354	optB	41%	O31598	oligopeptide abc transporter; Bacillus subtilis
355	optC	39%	P94895	transport system permease homolog; Listeria monocytogenes
356	optD	62%	P24136	oligopeptide transport atp-binding protein oppd; Bacillus subtilis
357	optF	57%	O31599	oligopeptide abc transporter; Bacillus subtilis
358	prfC	57%	O86490	peptide chain release factor 3; Staphylococcus aureus
359	rheA	59%	Q9Z6C9	autoaggregation-mediated protein; Lactobacillus reuteri
360	eraL	77%	Q9XDG9	gtpase era; Streptococcus pneumoniae
361	asnB	38%	Q61024	asparagine synthetase; Mus musculus
362	mutM	89%	P42371	formamidopyrimidine-dna glycosylase; Lactococcus lactis
363	recA	93%	Q01840	reca protein; Lactococcus lactis
364	ydgB	39%	P96704	hypothetical transport protein in expz-dinb intergenic region; Bacillus subtilis
365	ydgC	40%	O06005	amino acid permease aapa; Bacillus subtilis
366	ydgD	25%	O34412	ylbf protein; Bacillus subtilis
367	ydgE			putative

368	ydgG			putative
369	ydgF	29%	031609	yjbk protein; <i>Bacillus subtilis</i>
370	ydgH	32%	034535	yoat; <i>Bacillus subtilis</i>
371	ydgI	53%	031611	yjbm protein; <i>Bacillus subtilis</i>
372	ydgJ	43%	031612	yjbn protein; <i>Bacillus subtilis</i>
373	ydgK	42%	031613	hypothetical 31.5 kd protein in meca-tena intergenic region; <i>Bacillus subtilis</i>
374	ppiA	39%	074942	peptidyl prolyl cis/trans isomerase; <i>Schizosaccharomyces pombe</i>
375	lysQ	47%	P25737	lysine-specific permease; <i>Escherichia coli</i>
376	ydhB	31%	P31465	hypothetical 20.4 kd protein in tnab-bglb intergenic region; <i>Escherichia coli</i>
377	ydhC	30%	083774	thiamine biosynthesis lipoprotein apbe precursor; <i>Treponema pallidum</i>
378	ydhD	100%	Q48713	dna for the transposon-like element on the lactose plasmid; <i>Lactococcus lactis</i>
379	tra904D	99%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
380	ydhE	99%	032786	hypothetical 21.3 kd protein; <i>Lactococcus</i> <i>lactis</i>
381	tra1077C	98%	032787	transposase; <i>Lactococcus lactis</i>
382	lysS	65%	P37477	lysyl-trna synthetase; <i>Bacillus subtilis</i>
383	rlrG	29%	067145	transcriptional regulator; <i>Aquifex aeolicus</i>
384	ydhF	27%	P33019	hypothetical 36.9 kd protein in lysp-nfo intergenic region; <i>Escherichia coli</i>
385	ldhB	53%	P13714	l-lactate dehydrogenase; <i>Bacillus subtilis</i>
386	rlrD	29%	067145	transcriptional regulator; <i>Aquifex aeolicus</i>
387	ydiA	23%	Q58172	hypothetical protein mj0762; <i>Methanococcus</i> <i>jannaschii</i>
388	ydiB	49%	034595	probable thiamine biosynthesis protein thii; <i>Bacillus subtilis</i>
389	ydiC	27%	Q00538	methylenomycin a resistance protein; <i>Bacillus</i> <i>subtilis</i>
390	ydiD	39%	Q9X4K2	nadh dehydrogenase; <i>Bacillus stearothermophilus</i>
391	ydiE	56%	031790	ymad protein; <i>Bacillus subtilis</i>
392	ydiF	29%	P32703	putative na/h exchanger yjce; <i>Escherichia coli</i>
393	ydiG			putative
394	tyrS	53%	P22326	tyrosyl-trna synthetase 1; <i>Bacillus subtilis</i>
395	pbp1B	48%	070038	penicillin-binding protein 1b; <i>Streptococcus</i> <i>pneumoniae</i>
396	pepA	93%	Q48677	glutamyl-aminopeptidase; <i>Lactococcus lactis</i>
397	ydjB			putative
398	trxH	95%	Q48676	pepa gene; <i>Lactococcus lactis</i>
399	ydjD	45%	034943	ytpr; <i>Bacillus subtilis</i>
400	noxE	51%	083891	nadh oxidase; <i>Treponema pallidum</i>
401	ssbA	49%	Q9XJE5	putative single stranded binding protein; Bacteriophage tuc2009
402	groES	84%	P37283	10 kd chaperonin; <i>Lactococcus lactis</i>
403	groEL	94%	P37282	60 kd chaperonin; <i>Lactococcus lactis</i>
404	yeaA	50%	Q45611	function unknown; <i>Bacillus subtilis</i>
405	kinC	88%	007384	histidine kinase; <i>Lactococcus lactis</i>
406	lrrC	87%	086269	arca protein; <i>Lactococcus lactis</i>
407	yeaB	49%	P37537	thymidylate kinase; <i>Bacillus subtilis</i>
408	holB	34%	067707	dna polymerase iii gamma subunit; <i>Aquifex</i> <i>aeolicus</i>
409	yeaC	37%	P37541	hypothetical 31.2 kd protein in xpac-abrb intergenic region; <i>Bacillus subtilis</i>
410	yeaD	29%	P37542	hypothetical 14.1 kd protein in xpac-abrb intergenic region; <i>Bacillus subtilis</i>
411	yeaE	48%	P37544	hypothetical 33.0 kd protein in xpac-abrb intergenic region; <i>Bacillus subtilis</i>
412	yeaF			putative

413	yeaG	32%	O59291	335aa long hypothetical protein; <i>Pyrococcus horikoshii</i>
414	yeaH	28%	P32377	diphosphomevalonate decarboxylase; <i>Saccharomyces cerevisiae</i>
415	yebA	26%	O27995	mevalonate kinase; <i>Archaeoglobus fulgidus</i>
416	yebB	84%	Q48601	hypothetical 15.1 kd protein; <i>Lactococcus lactis</i>
417	sodA	92%	P50911	superoxide dismutase [mn]; <i>Lactococcus lactis</i>
418	cstA	47%	P95095	carbon starvation protein a homolog; <i>Mycobacterium tuberculosis</i>
419	rheB	48%	P54475	probable rna helicase in ccca-soda intergenic region; <i>Bacillus subtilis</i>
420	yebE	32%	O07474	gdmh; <i>Staphylococcus gallinarum</i>
421	yebF	29%	Q9X0V5	transcriptional regulator, rpir family; <i>Thermotoga maritima</i>
422	ptcB	52%	P46318	pts system, cellobiose-specific iib component; <i>Bacillus subtilis</i>
423	ptcA	43%	P46319	pts system, cellobiose-specific iia component (eiii-c. <i>Bacillus subtilis</i>
424	yecA	25%	Q9ZB19	hypothetical 27.6 kd protein; <i>Lactococcus lactis</i>
425	ptcC	34%	P39584	hypothetical 47.6 kd protein in epr-galk intergenic region; <i>Bacillus subtilis</i>
426	bglA	63%	P42973	6-phospho-beta-glucosidase; <i>Bacillus subtilis</i> putative
427	yecD			
428	ligA	52%	O31498	yerq protein; <i>Bacillus subtilis</i>
429	yecE	50%	O31502	yerq protein; <i>Bacillus subtilis</i>
430	msmK	73%	Q00752	multiple sugar-binding transport atp-binding protein msmk; <i>Streptococcus mutans</i>
431	nifJ	55%	Q9X716	pyruvate ferredoxin oxidoreductase; <i>Clostridium pasteurianum</i>
432	yedA	48%	P47351	hypothetical protein mg105; <i>Mycoplasma genitalium</i>
433	yedB	28%	Q9ZA15	hypothetical 34.6 kd protein; <i>Staphylococcus aureus</i>
434	femD	59%	O34824	ybbt protein; <i>Bacillus subtilis</i>
435	rgrA	40%	P39796	trehalose operon transcriptional repressor; <i>Bacillus subtilis</i>
436	yedE	43%	P12655	pts system, sucrose-specific iiabc component (e. <i>Streptococcus mutans</i>
437	yedF	90%	Q9ZAG2	hypothetical 35.3 kd protein; <i>Lactococcus lactis</i>
438	yeeA	99%	Q9ZAG0	hypothetical 87.3 kd protein; <i>Lactococcus lactis</i>
439	pgmB	99%	P71447	beta-phosphoglucomutase; <i>Lactococcus lactis</i>
440	yeeB	27%	P26223	endo-1,4-beta-xylanase b; <i>Butyrivibrio fibrisolvens</i> putative
441	yeeC			
442	yeeD			
443	yeeE	43%	O05515	hypothetical 17.9 kd protein in phob-groes intergenic region; <i>Bacillus subtilis</i>
444	yeeF	31%	Q9W246	conserved hypothetical protein; <i>Thermotoga maritima</i>
445	yeeG	27%	P96499	putative transcriptional regulator; <i>Bacillus subtilis</i>
446	pi101	39%	Q38325	integrase; <i>Lactococcus lactis</i> phage bk5-t
447	pi102	66%	Q38183	orf 3; Bacteriophage tp901-1
448	pi103	97%	Q38089	repressor protein; Bacteriophage rlt
449	pi104	94%	Q38328	cro repressor protein; <i>Lactococcus lactis</i> phage bk5-t putative
450	pi105			

451	pil06			putative
452	pil07	100%	Q38090	integrase, repressor protein , dutpase, holin and lysin genes, complete cds; Bacteriophage rlt
453	pil08	40%	P44189	hypothetical protein hil418; Haemophilus influenzae
454	pil09	75%	Q38092	orf6; Bacteriophage rlt
455	pil10	96%	Q38094	orf8; Bacteriophage rlt
456	pil11	45%	CAB53838	putative recombinase; Bacteriophage a118
457	pil12			putative
458	pil13	52%	Q9XJE6	putative replisome organiser protein; Bacteriophage tuc2009
459	pil14	36%	O03914	zinc finger protein; Bacteriophage phigle
460	pil15			putative
461	pil16	43%	Q9XJF1	hypothetical 22.4 kd protein; Bacteriophage tuc2009
462	pil17			putative
463	pil18			putative
464	pil19	72%	Q9XJF3	hypothetical 14.3 kd protein; Bacteriophage tuc2009
465	pil20	97%	Q38106	dutpase; Bacteriophage rlt
466	pil21			putative
467	pil22			putative
468	pil23			putative
469	pil24			putative
470	pil25			putative
471	pil26	85%	O53058	hypothetical 11.0 kd protein; Lactococcus lactis
472	pil27	41%	O34051	orf20; Streptococcus thermophilus
473	pil28	32%	O53058	hypothetical 11.0 kd protein; Lactococcus lactis
474	pil29	40%	Q05277	gene 64 protein; Mycobacteriophage 15
475	pil30			putative
476	pil31	68%	O53060	hypothetical 16.9 kd protein; Lactococcus lactis
477	pil32			putative
478	pil33	45%	Q9XJ95	hypothetical 17.4 kd protein; Streptococcus thermophilus bacteriophage dt1
479	pil34	37%	Q9XJ75	orf623 gp; Streptococcus thermophilus bacteriophage sfi21
480	pil35	31%	CAB52519	hypothetical 43.3 kd protein; Lactobacillus bacteriophage phi adh
481	pil36	36%	Q9ZXF7	orf26; Bacteriophage phi-105
482	pil37	24%	O80046	capsid protein; Bacteriophage phi pvl
483	pil38			putative
484	pil39	33%	O64288	hypothetical 13.5 kd protein; Streptococcus thermophilus bacteriophage sfi19
485	pil40	42%	Q38219	orfa; Bacteriophage l10
486	pil41	31%	Q38220	orfi; Bacteriophage l10
487	pil42	46%	O36159	small major structural protein; Streptococcus phage phi7201
488	pil43			putative
489	pil44	40%	P45931	hypothetical 171.0 kd protein in spoiiic-cwla intergenic region; Bacillus subtilis
490	pil45	38%	Q38318	orf'410; Lactococcus lactis phage bk5-t
491	pil46	51%	Q38319	orf1904; Lactococcus lactis phage bk5-t
492	pil47			putative
493	pil48	98%	Q38322	orf95; Lactococcus lactis phage bk5-t
494	pil49	97%	Q38323	orf259; Lactococcus lactis phage bk5-t
495	yeID			putative
496	truA	43%	Q9Z9J0	truA protein; Bacillus sp

497	thiD2	37%	O23128	probable thiamin biosynthetic enzyme; <i>Arabidopsis thaliana</i>
498	yeiE	33%	P20298	hypothetical protein in gapdh 3'region; <i>Pyrococcus woesei</i>
499	yeiF	44%	P39157	hypothetical 19.4 kd protein in spoIir-glyc intergenic region; <i>Bacillus subtilis</i>
500	yeiG	35%	Q59569	aspartate aminotransferase; <i>Methanobacterium</i> <i>thermoformicicum</i>
501	pyrG	94%	O87761	ctp synthetase; <i>Lactococcus lactis</i>
502	hicD	38%	P14295	1-2-hydroxyisocaproate dehydrogenase; <i>Lactobacillus confusus</i>
503	yejC	36%	O86314	hypothetical 20.4 kd protein; <i>Mycobacterium</i> <i>tuberculosis</i>
504	yejD	27%	G1017854	nucleoside 2-deoxyribosyltransferase=ntd product {ec 2.4.2.6}; <i>Escherichia coli</i>
505	yejE	29%	O06986	hypothetical 21.1 kd protein; <i>Bacillus subtilis</i>
506	dgk	62%	Q59484	bifunctional deoxy-adenosine/guanosine kinase subunit 2 [includes: deoxyguanosine kinase ; deoxadenosine kinase]; <i>Lactobacillus</i> <i>acidophilus</i>
507	dnaE	33%	O34623	dna polymerase iii, alpha chain; <i>Bacillus</i> <i>subtilis</i>
508	hly	38%	P54176	hemolysin iii; <i>Bacillus cereus</i>
509	yejH	39%	Q53667	hypothetical 21.2 kd protein; <i>Staphylococcus</i> <i>aureus</i>
510	yejI	44%	P96043	hypothetical 31.7 kd protein; <i>Streptococcus</i> <i>thermophilus</i>
511	yejJ	31%	O82840	beta-n-acetylglucosaminidase precursor; <i>Streptomyces thermophilic</i>
512	yfaA	34%	P54179	hypothetical 21.1 kd protein in ilva 3'region; <i>Bacillus subtilis</i>
513	hslA	78%	Q9XB20	histone-like dna-binding protein; <i>Streptococcus</i> <i>gordonii</i>
514	ps201	33%	O54477	integrase; <i>Staphylococcus aureus</i>
515	ps202			putative
516	ps203			putative
517	ps204	36%	AAF12709	hypothetical 21.8 kd protein; <i>Bacteriophage</i> <i>tpw22</i>
518	ps205	53%	AAF12710	repressor protein; <i>Bacteriophage tpw22</i>
519	ps206	40%	CAB52490	hypothetical 7.4 kd protein; <i>Lactobacillus</i> <i>bacteriophage phi adh</i>
520	ps207	50%	Q54879	excisionase; <i>Streptococcus pneumoniae</i>
521	ps208			putative
522	ps209			putative
523	ps210			putative
524	ps211			putative
525	ps212			putative
526	ps213			putative
527	ps214			putative
528	ps215	32%	O54471	orf11; <i>Staphylococcus aureus</i>
529	ps216			putative
530	yfbB			putative
531	ps218			putative
532	ps219	37%	Q9ZXB1	gp35; <i>Bacteriophage phi-c31</i>
533	ps220			putative
534	ps221			putative
535	yfbG			putative
536	yfbH			putative
537	yfbI			putative
538	yfbJ			putative
539	yfbK			putative

540	cspD	93%	Q9ZAH0	cold shock protein d; <i>Lactococcus lactis</i>
541	yfbM	29%	Q32075	yuai protein; <i>Bacillus subtilis</i>
542	ogt	48%	Q9ZBT7	putative methylated-dna-protein-cysteine methyltransferase; <i>Streptomyces coelicolor</i>
543	adaA	42%	P19219	methylphosphotriester-dna alkyltransferase; <i>Bacillus subtilis</i>
544	yfcA	37%	P08720	nodulation atp-binding protein i; <i>Rhizobium leguminosarum</i>
545	yfcB			putative
546	yfcC	27%	Q9WWI2	alginate biosynthesis regulatory protein; <i>Pseudomonas syringae</i>
547	yfcD			putative
548	yfcE	53%	P31672	nifs protein homolog; <i>Lactobacillus delbrueckii</i>
549	yfcF	38%	Q06969	hypothetical 51.0 kd protein; <i>Bacillus subtilis</i>
550	yfcG	93%	CAB61245	lipoprotein precursor; <i>Lactococcus lactis</i>
551	cysM	66%	BAA88310	o-acetylserine lyase; <i>Streptococcus suis</i>
552	yfcH	35%	P37710	autolysin; <i>Enterococcus faecalis</i>
553	yfcI	45%	P54501	hypothetical 23.2 kd protein in soda-comga intergenic region; <i>Bacillus subtilis</i>
554	ponA	53%	Q00573	penicillin-binding protein 1a; <i>Streptococcus oralis</i>
555	yfdA	72%	Q00579	hypothetical 23.1 kd protein in pona 5'region; <i>Streptococcus oralis</i>
556	yfdB	40%	P50838	hypothetical 21.1 kd protein in ctd-kdud intergenic region; <i>Bacillus subtilis</i>
557	yfdC	57%	Q31602	yjbd protein; <i>Bacillus subtilis</i>
558	yfdD	44%	Q45497	hypothetical 10.5 kd protein; <i>Bacillus subtilis</i>
559	yfdE	37%	Q45499	extragenic suppressor protein suhb homolog; <i>Bacillus subtilis</i>
560	murA2	55%	P70965	udp-n-acetylglucosamine 1-carboxyvinyltransferase; <i>Bacillus subtilis</i>
561	yfdG			putative
562	tig	63%	Q85730	ropA; <i>Streptococcus pyogenes</i>
563	dnaG	96%	Q04505	dna primase; <i>Lactococcus lactis</i>
564	rpoD	96%	Q04506	rna polymerase sigma factor rpd; <i>Lactococcus lactis</i>
565	yfeA	35%	Q9ZB19	hypothetical 27.6 kd protein; <i>Lactococcus lactis</i>
566	glpT	91%	Q48705	hexose phosphate transport; <i>Lactococcus lactis</i>
567	yffA			putative
568	clpE	94%	AAD01782	clpe; <i>Lactococcus lactis</i>
569	yffB	96%	Q48660	hypothetical 17.4 kd protein in clpa-gap intergenic region; <i>Lactococcus lactis</i>
570	gapA	97%	P52987	glyceraldehyde 3-phosphate dehydrogenase; <i>Lactococcus lactis</i>
571	def	99%	Q48661	orf211; <i>Lactococcus lactis</i>
572	yffD	45%	Q9ZJ28	putative dgtp pyrophosphohydrolase; <i>Helicobacter pylori</i> j99
573	uvrB	80%	Q54986	excinuclease abc subunit b; <i>Streptococcus pneumoniae</i>
574	gltS	39%	P54535	probable amino-acid abc transporter binding protein in bmru-ansr intergenic region precursor; <i>Bacillus subtilis</i>
575	argE	25%	Q9ZEY0	succinyl-diaminopimelate desuccinylase; <i>Listeria monocytogenes</i>
576	fabZ1	48%	P94584	similar to hydroxymyristoyl- dehydratase; <i>Bacillus subtilis</i>
577	fabI	44%	Q31621	yjbw protein; <i>Bacillus subtilis</i>
578	yfgC	31%	AAD45617	laca; <i>Lactococcus lactis</i>
579	yfgE	36%	AAD45618	lacf; <i>Lactococcus lactis</i>
580	yfgF	28%	AAD45621	lacg; <i>Lactococcus lactis</i>

581	yfgG	39%	AAF03934	membrane protein homolog; <i>Listeria monocytogenes</i>
582	yfgH	25%	Q9Z2M7	phosphomannomutase; <i>Mus musculus</i>
583	yfgL	30%	Q44655	membrane protein; <i>Bacillus acidopullulyticus</i>
584	dfpA	64%	Q54433	dna/pantothenate metabolism flavoprotein homolog; <i>Streptococcus mutans</i>
585	dfpB	28%	O27284	pantothenate metabolism flavoprotein; <i>Methanobacterium thermoautotrophicum</i>
586	xylH	35%	Q9ZI54	4-oxalocrotonate isomerase; <i>Pseudomonas stutzeri</i>
587	yfgQ	35%	Q9Z4W5	putative integral membrane atpase; <i>Streptomyces coelicolor</i>
588	yfhA	39%	P09163	hypothetical 16.4 kd protein in rrfe-meta intergenic region; <i>Escherichia coli</i>
589	yfhB	35%	O07859	putative membrane protein; <i>Staphylococcus epidermidis</i>
590	yfhC			putative
591	crtK	33%	AAF01195	tspo; <i>Rhizobium meliloti</i>
592	yfhF	28%	O41106	a624r protein; <i>Paramecium bursaria chlorella virus 1</i>
593	yfhG	30%	AAF09965	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
594	yfhH	30%	O53731	hypothetical 28.3 kd protein; <i>Mycobacterium tuberculosis</i>
595	yfhI			putative
596	yfhJ			putative
597	yfhK	34%	P94425	hypothetical 10.9 kd protein in phrc-gdh intergenic region; <i>Bacillus subtilis</i>
598	yfhL	30%	CAB49143	hypothetical 23.5 kd protein; <i>Pyrococcus abyssi</i>
599	yfiA	75%	O87254	hypothetical 11.0 kd protein; <i>Lactococcus lactis</i>
600	umuC	89%	O87253	conserved hypothetical protein, orfu; <i>Lactococcus lactis</i>
601	yfiC	32%	P13018	streptothricin acetyltransferase; <i>Escherichia coli</i>
602	yfiD	20%	O02244	unc-54 protein; <i>Caenorhabditis elegans</i>
603	yfiB	45%	O34777	ykma; <i>Bacillus subtilis</i>
604	yfiE	37%	O34762	ykla; <i>Bacillus subtilis</i>
605	yfiG	78%	P47848	thymidine kinase; <i>Streptococcus gordonii challis</i>
606	yfiH			putative
607	prfA	56%	P45872	peptide chain release factor 1; <i>Bacillus subtilis</i>
608	yfiI			putative
609	yfiJ	40%	P39605	hypothetical 28.3 kd protein in qoxd-vpr intergenic region; <i>Bacillus subtilis</i>
610	hemK	37%	P45873	hemk protein homolog; <i>Bacillus subtilis</i>
611	yfiL	29%	O32248	yvbk protein; <i>Bacillus subtilis</i>
612	yfjA	36%	O73972	340aa long hypothetical protein; <i>Pyrococcus horikoshii</i>
613	glyA	61%	P39148	serine hydroxymethyltransferase; <i>Bacillus subtilis</i>
614	yfjB	39%	AAF13613	pxo2-08; <i>Bacillus anthracis</i>
615	serC	50%	AAD47359	3-phosphoserine aminotransferase; <i>Pseudomonas stutzeri</i>
616	serA	35%	AAD51415	3-phosphoglycerate dehydrogenase; <i>Homo sapiens</i>
617	serB	46%	CAB50876	putative phosphoserine phosphatase; <i>Streptomyces coelicolor</i>
618	yfjC	47%	O35031	putative acylphosphatase; <i>Bacillus subtilis</i>
619	yfjD	42%	P94538	hypothetical 26.9 kd protein; <i>Bacillus subtilis</i>
620	yfjE	43%	O34589	probable flavodoxin 2; <i>Bacillus subtilis</i>
621	yfjF	31%	CAB61606	putative export protein; <i>Streptomyces coelicolor</i>

622	yfjG	36%	050423	transcriptional regulator; <i>Mycobacterium tuberculosis</i>
623	yfjH			putative
624	pepM	51%	088076	methionine aminopeptidase a; <i>Enterococcus faecalis</i>
625	ygaB	35%	088169	orfde2; <i>Enterococcus faecalis</i>
626	ygaC	27%	AAD54224	mesh; <i>Leuconostoc mesenteroides</i>
627	ygaD			putative
628	ygaE			putative
629	ygaF			putative
630	ptsK	65%	Q9ZA56	putative hpr kinase; <i>Streptococcus mutans</i>
631	lgt	65%	P72482	prolipoprotein diacylglycerol transferase; <i>Streptococcus mutans</i>
632	ygaI	44%	Q9ZA55	hypothetical 14.4 kd protein; <i>Streptococcus mutans</i>
633	ygaJ	76%	P96788	hypothetical 20.6 kd protein; <i>Lactococcus lactis</i>
634	gnd	98%	P96789	6-phosphogluconate dehydrogenase; <i>Lactococcus lactis</i>
635	kup1	80%	P96790	potassium transporter homolog; <i>Lactococcus lactis</i>
636	kup2	31%	P76748	from bases 3920310 to 3930455 of the complete genome; <i>Escherichia coli</i>
637	ygbB	30%	P54478	hypothetical 32.5 kd protein in ccca-soda intergenic region; <i>Bacillus subtilis</i>
638	miaA	45%	O31795	trna delta-isopentenylpyrophosphate transferase; <i>Bacillus subtilis</i>
639	ygbD			putative
640	ygbE	44%	AAF03497	t22n4.8 protein; <i>Arabidopsis thaliana</i>
641	ygbF			putative
642	ygbG	50%	P54548	hypothetical 34.0 kd protein in glng-ansr intergenic region; <i>Bacillus subtilis</i>
643	ygcA	33%	P54554	hypothetical oxidoreductase in ansr-bmru intergenic region; <i>Bacillus subtilis</i>
644	recJ	36%	O32044	yrve protein; <i>Bacillus subtilis</i>
645	apt	67%	O34443	adenine phosphoribosyltransferase; <i>Bacillus subtilis</i>
646	rpoE	36%	P12464	dna-directed rna polymerase delta subunit; <i>Bacillus subtilis</i>
647	ygcC	36%	O34758	yrll protein; <i>Bacillus subtilis</i>
648	greA	58%	P80240	transcription elongation factor grea; <i>Bacillus subtilis</i>
649	tra904E	100%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
650	ygcD	100%	Q48713	dna for the transposon-like element on the lactose plasmid; <i>Lactococcus lactis</i>
651	tra1077D	98%	O32787	transposase; <i>Lactococcus lactis</i>
652	ygcE	100%	O32786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
653	ctsR	46%	Q48757	clpc atpase; <i>Listeria monocytogenes</i>
654	clpC	90%	Q9ZIL9	clpc; <i>Lactococcus lactis</i>
655	ygdA	51%	P28368	hypothetical 22.0 kd protein in flit-seca intergenic region; <i>Bacillus subtilis</i>
656	enoA	87%	Q9XDS7	enolase; <i>Streptococcus intermedius</i>
657	xerD	29%	O26979	integrase-recombinase protein; <i>Methanobacterium thermoautotrophicum</i>
658	ygdC			putative
659	ygdD			putative
660	ygdF			putative
661	ygdE			putative
662	tra982	92%	087349	putative transposase; <i>Lactococcus lactis</i>
663	hsdR	98%	O68167	hsdr; <i>Lactococcus lactis</i>

664	hsdM	100%	068168	hsdm; <i>Lactococcus lactis</i>
665	hsdS	100%	068169	hsds; <i>Lactococcus lactis</i>
666	ygeA	90%	068170	is982 transposase homolog; <i>Lactococcus lactis</i>
667	ygeB			putative
668	ygeC			putative
669	ygeD	27%	Q9YVT6	orf msv156 hypothetical protein; <i>Melanoplus sanguinipes entomopoxvirus</i>
670	tra981C	86%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
671	ygffF	96%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
672	ygffA	39%	Q9WZG4	abc transporter, atp-binding protein; <i>Thermotoga maritima</i>
673	ygfb	23%	AAF12525	hypothetical 37.1 kd protein; <i>Deinococcus radiodurans</i>
674	ygfc	30%	P96701	ydgC protein; <i>Bacillus subtilis</i>
675	fadD	25%	P29212	long-chain-fatty-acid--coa ligase; <i>Escherichia coli</i>
676	ygfe	96%	Q32796	orfA protein; <i>Lactococcus lactis</i>
677	pfl	100%	Q32797	formate acetyltransferase; <i>Lactococcus lactis</i>
678	yggA	43%	Q34932	hypothetical 22.0 kd protein in gapb-mutm intergenic region; <i>Bacillus subtilis</i>
679	pmrA	48%	Q9ZEX9	multi-drug resistance efflux pump; <i>Streptococcus pneumoniae</i>
680	rpmGA	100%	P27167	50s ribosomal protein l33; <i>Lactococcus lactis</i>
681	ftsW1	95%	P27174	hypothetical protein in rpmg 3'region; <i>Lactococcus lactis</i>
682	pycA	96%	AAF09095	pyruvate carboxylase; <i>Lactococcus lactis</i>
683	gltA	90%	AAF09126	citrate synthase; <i>Lactococcus lactis</i>
684	citB	86%	AAF09127	aconitate hydratase; <i>Lactococcus lactis</i>
685	icd	56%	Q06893	isocitrate dehydrogenase; <i>Bacillus israelii</i>
686	clpP	92%	Q9ZAB0	protease; <i>Lactococcus lactis</i>
687	yghB			putative
688	yghC	54%	Q31602	yjbd protein; <i>Bacillus subtilis</i>
689	yghD			putative
690	yghE			putative
691	yghF	39%	Q34431	ylob protein; <i>Bacillus subtilis</i>
692	yghG			putative
693	icaA	38%	Q54066	icaA; <i>Staphylococcus epidermidis</i>
694	tra983A	50%	Q87534	putative transposase; <i>Streptococcus pyogenes</i>
695	icaB	32%	Q54067	icaB; <i>Staphylococcus epidermidis</i>
696	ygiC			putative
697	icaC	35%	Q53971	fibronectin binding protein; <i>Streptococcus dysgalactiae</i>
698	ygiE	38%	P54104	branched-chain amino acid transport system carrier protein; <i>Lactobacillus delbrueckii</i>
699	brnQ	99%	Q69437	homologous to branched chain amino acid transporters of liv-ii class; <i>Lactococcus lactis</i>
700	ygiG	94%	Q69438	yjdj-like protein; <i>Lactococcus lactis</i>
701	ygiH	96%	Q69439	yjdi-like protein; <i>Lactococcus lactis</i>
702	ygiI	42%	P37545	hypothetical 29.2 kd protein in mets-ksga intergenic region; <i>Bacillus subtilis</i>
703	ygiJ	40%	Q47838	copa, copy and copz genes; <i>Enterococcus hirae</i>
704	ygiK	42%	P37547	hypothetical 20.7 kd protein in mets-ksga intergenic region; <i>Bacillus subtilis</i>
705	ksgA	52%	P37468	dimethyladenosine transferase (s-adenosylmethionine-6-n', n'-adenosyl (high level kasugamycin re. <i>Bacillus subtilis</i>
706	pepP	91%	Q08316	aminopeptidase p; <i>Lactococcus lactis</i>
707	efp	40%	P49778	elongation factor p; <i>Bacillus subtilis</i>
708	ygjB	39%	P54519	hypothetical 14.7 kd protein in accc-fold intergenic region; <i>Bacillus subtilis</i>

709	nusB	45%	P54520	n utilization substance protein b homolog; <i>Bacillus subtilis</i>
710	yggD	58%	O22198	putative 4-alpha-glucanotransferase; <i>Arabidopsis thaliana</i>
711	malQ	40%	O22198	putative 4-alpha-glucanotransferase; <i>Arabidopsis thaliana</i>
712	glgC	51%	O08326	glucose-1-phosphate adenylyltransferase; <i>Bacillus stearothermophilus</i>
713	glgD	29%	O08327	glycogen biosynthesis protein glgd; <i>Bacillus stearothermophilus</i>
714	glgA	46%	P39125	glycogen synthase; <i>Bacillus subtilis</i>
715	glgP	50%	P39123	glycogen phosphorylase; <i>Bacillus subtilis</i>
716	amyX	34%	P36905	T amylopullulanase precursor [includes: alpha-amylase ; pullulanase (1,4-alpha-d-glucan...)
717	dtpT	90%	P36574	di-/tripeptide transporter; <i>Lactococcus lactis</i>
718	tra983B	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
719	cydA	46%	P94364	cytochrome d ubiquinol oxidase subunit i; <i>Bacillus subtilis</i>
720	cydB	36%	Q9ZBY6	putative cytochrome oxidase subunit ii; <i>Streptomyces coelicolor</i>
721	cydC	45%	P94366	transport atp-binding protein cydc; <i>Bacillus subtilis</i>
722	cydD	41%	P94367	transport atp-binding protein cydd; <i>Bacillus subtilis</i>
723	rmaB	35%	O50574	hypothetical 16.1 kda transcriptional regulator; <i>Bacillus firmus</i>
724	yhbE			putative
725	yhbF	22%	O35264	R platelet-activating factor acetylhydrolase ib beta subunit (pl...)
726	lmrA	88%	P97046	multidrug resistance protein lmrA; <i>Lactococcus lactis</i>
727	yhbH	90%	Q48631	hypothetical 13.6 kd protein; <i>Lactococcus lactis</i>
728	apl	83%	Q48630	alkaline phosphatase like protein; <i>Lactococcus lactis</i>
729	yhcA	38%	Q9ZAX8	abc transporter atp binding subunit; <i>Streptococcus mutans</i>
730	yhcC	41%	Q58627	hypothetical protein mj1230; <i>Methanococcus jannaschii</i>
731	yhcB			putative
732	qor	45%	Q9Z3U5	w7. alginate lyase; <i>Pseudomonas sp</i>
733	yhcE	41%	P42319	hypothetical 38.3 kd protein in pept-katb intergenic region; <i>Bacillus subtilis</i>
734	yhcG	43%	O07607	hypothetical 26.5 kd protein; <i>Bacillus subtilis</i>
735	yhcH	25%	O54390	serine/threonine protein phosphatase 1; <i>Microcystis aeruginosa</i>
736	yhcI	49%	P21335	hypothetical 17.8 kd protein in sers-dnah intergenic region; <i>Bacillus subtilis</i>
737	tra981D	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
738	yhcJ	100%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
739	yhcK	26%	O59645	alpha-glucosidase; <i>Sulfolobus solfataricus</i>
740	rliC	28%	Q56201	maltose operon transcriptional repressor; <i>Staphylococcus xylosus</i>
741	yhdA	45%	P14205	coma operon protein 2; <i>Bacillus subtilis</i>
742	yhdB	34%	O34514	ytd; <i>Bacillus subtilis</i>
743	menE	35%	O34837	osb-coa synthase; <i>Bacillus subtilis</i>
744	menB	76%	O34567	dihydroxynaphthoate synthase; <i>Bacillus subtilis</i>
745	menX	34%	O34312	ytxm; <i>Bacillus subtilis</i>
746	menD	40%	P23970	B menaquinone biosynthesis protein mend [includes: 2-succinyl-6-hydroxy- 2,4-

				cyclohexadiene-1-carboxylate synthase ; 2-oxoglutarate decarboxylase (ec...)
747	menF	35%	P74053	isochorismate synthase; <i>Synechocystis</i> sp
748	yhdC	31%	P94482	ynad; <i>Bacillus subtilis</i>
749	yheA	35%	O34921	ytoi; <i>Bacillus subtilis</i>
750	yheB	48%	O34600	ytqi; <i>Bacillus subtilis</i>
751	ansB	38%	AAF11899	l-asparaginase; <i>Deinococcus radiodurans</i>
752	yheD	32%	Q45494	hypothetical 28.9 kd protein; <i>Bacillus subtilis</i> putative
753	yheE			
754	floL	33%	O32076	hypothetical 56.0 kd protein in glgb-gbsb intergenic region; <i>Bacillus subtilis</i>
755	thrA	50%	P94417	probable aspartokinase; <i>Bacillus subtilis</i>
756	yheG	33%	O53410	hypothetical 29.3 kd protein; <i>Mycobacterium tuberculosis</i>
757	rmaA	33%	P96708	ydgj protein; <i>Bacillus subtilis</i>
758	yhfA	30%	Q9X0Y1	beta-phosphoglucomutase, putative; <i>Thermotoga maritima</i>
759	yhfB	31%	P37484	hypothetical 74.3 kd protein in rplI-cotf intergenic region; <i>Bacillus subtilis</i>
760	rplI	44%	P02417	50S ribosomal protein 19; <i>Bacillus stearothermophilus</i>
761	dnaC	52%	P37469	replicative dna helicase; <i>Bacillus subtilis</i> putative
762	yhfC			
763	yhfD	33%	O34935	ytmp; <i>Bacillus subtilis</i>
764	yhfE	54%	O34522	ytmq; <i>Bacillus subtilis</i>
765	yhfF	51%	P33661	hypothetical 15.2 kd protein in sigg 3'region; <i>Clostridium acetobutylicum</i>
766	dnaB	20%	P07908	replication initiation and membrane attachment protein; <i>Bacillus subtilis</i>
767	dnaI	37%	P06567	primosomal protein dnai; <i>Bacillus subtilis</i>
768	yhgA	33%	P94424	hypothetical 27.9 kd protein in phrc-gdh intergenic region; <i>Bacillus subtilis</i>
769	yhgB	31%	O06733	yisx protein; <i>Bacillus subtilis</i>
770	yphL	65%	P50743	hypothetical 48.8 kd gtp-binding protein in cmk-gpsa intergenic region; <i>Bacillus subtilis</i>
771	yhgC	27%	O30416	positive regulator gadR; <i>Lactococcus lactis</i>
772	yhgD	20%	P28968	glycoprotein x precursor; <i>Equine herpesvirus type 1</i>
773	yhgE	27%	Q48707	dna for orf1 and orf2; <i>Lactobacillus leichmannii</i>
774	yhhA	34%	O68213	putative fimbria-associated protein; <i>Actinomyces naeslundii</i> putative
775	yhhB			
776	yhhC	29%	P39590	hypothetical 25.8 kd protein in epr-galk intergenic region; <i>Bacillus subtilis</i>
777	yhhD	50%	O59465	109aa long hypothetical protein; <i>Pyrococcus horikoshii</i>
778	yhhE	36%	P32726	hypothetical 17.6 kd protein in nusa 5'region; <i>Bacillus subtilis</i>
779	nusA	50%	O31756	nusa protein; <i>Bacillus subtilis</i>
780	yhhG	47%	P32728	hypothetical 10.4 kd protein in nusa-infb intergenic region; <i>Bacillus subtilis</i>
781	yhhH	51%	P55768	probable ribosomal protein in infb 5'region; <i>Enterococcus faecium</i>
782	infB	79%	Q9X764	initiation factor 2; <i>Lactococcus lactis</i>
783	rbfA	86%	Q9X765	ribosome binding factor a; <i>Lactococcus lactis</i>
784	pmi	65%	Q59935	mannose-6-phosphate isomerase; <i>Streptococcus mutans</i>
785	yhiA	34%	P70993	hypothetical 15.9 kd protein; <i>Bacillus subtilis</i>
786	fabH	45%	O67185	3-oxoacyl-[acyl-carrier-protein] synthase iii; <i>Aquifex aeolicus</i>

787	acpA	47%	P80643	acyl carrier protein; <i>Bacillus subtilis</i>
788	fabD	46%	O34463	malonyl coa-acyl carrier protein transacylase; <i>Bacillus subtilis</i>
789	fabG1	47%	P51831	3-oxoacyl-[acyl-carrier protein] reductase; <i>Bacillus subtilis</i>
790	fabF	43%	O34340	yjay protein; <i>Bacillus subtilis</i>
791	accB	50%	Q06881	biotin carboxyl carrier protein of acetyl-coa carboxylase; <i>Anabaena sp</i>
792	fabZ2	58%	P94584	similar to hydroxymyristoyl- dehydratase; <i>Bacillus subtilis</i>
793	accC	57%	P49787	biotin carboxylase (a subunit of acetyl-coa carboxylase; <i>Bacillus subtilis</i>
794	accD	57%	O34571	acetyl-coa carboxylase subunit; <i>Bacillus subtilis</i>
795	accA	54%	O34847	acetyl-coenzyme a carboxylase carboxyl transferase subunit alpha; <i>Bacillus subtilis</i>
796	metB2	100%	AAF14693	cystathionine beta-lyase metc; <i>Lactococcus lactis</i>
797	cysK	89%	AAF14694	o-acetylserine sulfhydrylase cysk; <i>Lactococcus lactis</i>
798	yhjA	32%	O16527	ce-lea; <i>Caenorhabditis elegans</i>
799	yhjB	42%	P54510	hypothetical 14.6 kd protein in gcvt-spoiiiaa intergenic region; <i>Bacillus subtilis</i>
800	yhjC	41%	P54510	hypothetical 14.6 kd protein in gcvt-spoiiiaa intergenic region; <i>Bacillus subtilis</i>
801	noxC	36%	O29847	nadh oxidase; <i>Archaeoglobus fulgidus</i>
802	yhjE	48%	BAA86632	hypothetical 9.9 kd protein; <i>Staphylococcus aureus</i>
803	yhjF	51%	O32175	yusi protein; <i>Bacillus subtilis</i>
804	rdrA	38%	P76034	hypothetical transcriptional regulator in osmb-rnb intergenic region; <i>Escherichia coli</i>
805	yhjG	32%	P05332	hypothetical p20 protein; <i>Bacillus licheniformis</i>
806	exoA	61%	P21998	exodeoxyribonuclease; <i>Streptococcus pneumoniae</i>
807	metS	61%	P37465	methionyl-trna synthetase; <i>Bacillus subtilis</i> putative
808	yiaA			
809	yiaB	36%	Q9X248	3-oxoacyl- reductase; <i>Thermotoga maritima</i>
810	yiaC	31%	O05109	cara & orf8 partial cds, argc,j,b,d,f & orf7 citrulline biosynthetic operon; <i>Lactobacillus plantarum</i>
811	yiaD	42%	P71037	hypothetical 23.2 kd protein; <i>Bacillus subtilis</i>
812	argC	41%	O08318	n-acetyl-gamma-glutamyl-phosphate reductase; <i>Lactobacillus plantarum</i>
813	argJ	48%	Q9ZJ14	ornithine acetyltransferase; <i>Bacillus amyloliquefaciens</i>
814	argD	42%	O66442	acetylornithine aminotransferase; <i>Aquifex aeolicus</i>
815	argB	40%	O28988	acetylglutamate kinase; <i>Archaeoglobus fulgidus</i>
816	argF	62%	O53089	ornithine transcarbamoylase; <i>Lactobacillus sake</i>
817	rnc	45%	O31734	ribonuclease iii; <i>Bacillus subtilis</i>
818	smc	32%	O31735	chromosome segregation smc protein homolg; <i>Bacillus subtilis</i>
819	yibB	49%	O31735	chromosome segregation smc protein homolg; <i>Bacillus subtilis</i>
820	yibC	39%	O06487	yfni; <i>Bacillus subtilis</i> putative
821	yibD			putative
822	yibE			putative
823	yibF			putative
824	yibG	40%	O32257	yvbw protein; <i>Bacillus subtilis</i> putative
825	yicA			

826	yicB	35%	P09997	hypothetical 29.7 kd protein in ibpa-gyrb intergenic region; <i>Escherichia coli</i>
827	yicC	32%	Q9WX02	putative membrane protein; <i>Streptomyces coelicolor</i>
828	ftsY	55%	P51835	cell division protein ftsy homolog; <i>Bacillus subtilis</i>
829	prsA	66%	Q48793	tms and prs genes, partial cds; <i>Listeria monocytogenes</i>
830	yicE	32%	Q87552	leucine-rich protein transcriptional regulator; <i>Bacillus firmus</i>
831	leuS	67%	P36430	leucyl-tRNA synthetase; <i>Bacillus subtilis</i>
832	yidA	26%	Q9X0V5	transcriptional regulator, rpir family; <i>Thermotoga maritima</i>
833	yidB	25%	P39584	hypothetical 47.6 kd protein in epr-galk intergenic region; <i>Bacillus subtilis</i>
834	yidC	39%	P42973	6-phospho-beta-glucosidase; <i>Bacillus subtilis</i>
835	cpo	33%	CAB60045	citr protein; <i>Weissella paramesenteroides</i>
836	yidE			putative
837	tra904F	100%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
838	yidF	98%	Q48710	span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i>
839	tra1077E	98%	Q32787	transposase; <i>Lactococcus lactis</i>
840	yidG	99%	Q32786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
841	yidH	100%	Q48710	span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i>
842	tra904G	99%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
843	noxA	33%	Q05267	hypothetical 44.9 kd protein; <i>Bacillus subtilis</i>
844	noxB	33%	P32340	rotenone-insensitive nadh-ubiquinone oxidoreductase precursor; <i>Saccharomyces cerevisiae</i>
845	sdhB	47%	Q34635	probable l-serine dehydratase, beta chain; <i>Bacillus subtilis</i>
846	sdhA	55%	Q34607	probable l-serine dehydratase, alpha chain; <i>Bacillus subtilis</i>
847	copR	40%	Q47839	copab atpases metal-fist type repressor; <i>Enterococcus hirae</i>
848	yieF	45%	AAC33905	mera, mercuric ion reductase; <i>Escherichia coli</i>
849	copA	45%	P32113	copper/potassium-transporting atpase a; <i>Enterococcus hirae</i>
850	yieH	91%	Q66090	transmembrane protein tmp5; <i>Lactococcus lactis</i>
851	yifA			putative
852	trmU	64%	Q35020	probable tRNA -methyltransferase; <i>Bacillus subtilis</i>
853	rpsA	49%	P50889	40s ribosomal protein s1; <i>Leuconostoc lactis</i>
854	udp	35%	Q83990	uridine phosphorylase; <i>Treponema pallidum</i>
855	yifD	29%	Q9ZJT8	nicotinamide mononucleotide transporter; <i>Helicobacter pylori</i> j99
856	uvrC	50%	Q9ZEH3	excinuclease abc, subunit c; <i>Staphylococcus aureus</i>
857	mutY	43%	Q31584	yfhq protein; <i>Bacillus subtilis</i>
858	pepV	96%	Q07121	dipeptidase; <i>Lactococcus lactis</i>
859	acpS	54%	Q07122	hypothetical 8.0 kd protein; <i>Lactobacillus plantarum</i>
860	dal	97%	CAB56755	alanine racemase; <i>Lactococcus lactis</i>
861	yigC	50%	Q31602	yjbd protein; <i>Bacillus subtilis</i>
862	gshR	30%	Q54279	orf454 protein; <i>Staphylococcus sciuri</i>
863	choQ	60%	Q9XBN6	choline transporter; <i>Streptococcus pneumoniae</i>
864	choS	42%	Q9XBN5	choline transporter; <i>Streptococcus pneumoniae</i>
865	yigE	16%	AAB82017	microfilarial sheath protein shp3; <i>Litomosoides sigmodontis</i>

866	yigF		putative
867	yihA		putative
868	yihB		putative
869	yihC	46%	P05425 copper/potassium-transporting atpase b; <i>Enterococcus hirae</i>
870	yihD	21%	O80179 putative minor tail protein; <i>Streptococcus thermophilus</i> bacteriophage sfi11
871	foldD	65%	P96050 fold bifunctional protein [includes: methylenetetrahydrofolate dehydrogenase ; methenyltetrahydrofolate cyclohydrolase]; <i>Streptococcus thermophilus</i>
872	xseA	37%	P54521 putative exodeoxyribonuclease large subunit; <i>Bacillus subtilis</i>
873	xseB	38%	Q9ZDH8 exodeoxyribonuclease small subunit; <i>Rickettsia prowazekii</i>
874	yihF	47%	P44507 hypothetical protein hi0091; <i>Haemophilus influenzae</i>
875	ispA	49%	O66126 geranyltransterase; <i>Micrococcus luteus</i>
876	yiiB	59%	P19672 hypothetical 29.7 kd protein in fold-ahrc intergenic region; <i>Bacillus subtilis</i>
877	ahrC	38%	O86130 arginine repressor; <i>Bacillus licheniformis</i>
878	recN	40%	P17894 dna repair protein recn; <i>Bacillus subtilis</i>
879	yiiD		putative
880	yiiE	33%	O27534 hypothetical 21.2 kd protein; <i>Methanobacterium thermoautotrophicum</i>
881	yiiF	35%	Q56116 <i>Streptococcus thermophilus</i>
882	yiiG	35%	Q9ZI22 membrane protein; <i>Streptococcus salivarius</i>
883	yiiH	71%	AAC95454 yllc; <i>Streptococcus pneumoniae</i>
884	yiiI	85%	O66083 putative transmembrane protein tmp2; <i>Lactococcus lactis</i>
885	pbpX	41%	P14677 penicillin-binding protein 2x; <i>Streptococcus pneumoniae</i>
886	mraY	50%	Q9zha5 phospho-n-acetylmuramoyl-pentapeptide-transferase; <i>Streptococcus pneumoniae</i>
887	yijB		putative
888	yijC	29%	P94412 homologue of hypothetical protein in a rapamycin synthesis gene cluster of streptomyces hygroscopicus; <i>Bacillus subtilis</i>
889	yijD	48%	P94411 homologue of hypothetical protein in a rapamycin synthesis gene cluster of streptomyces hygroscopicus; <i>Bacillus subtilis</i>
890	mleR	93%	P16400 malolactic fermentation system transcriptional activator; <i>Lactococcus lactis</i>
891	yijE	85%	Q48663 positive regulator gene; <i>Lactococcus lactis</i>
892	rplS	77%	O34031 50s ribosomal protein l19; <i>Streptococcus thermophilus</i>
893	yijF		putative
894	yijG	33%	P75905 hypothetical 50.8 kd protein in phoh-csgg intergenic region; <i>Escherichia coli</i>
895	yijH		putative
896	pnuC	26%	O25877 nicotinamide mononucleotide transporter; <i>Helicobacter pylori</i>
897	yjaB	35%	Q57951 hypothetical protein mj0531; <i>Methanococcus jannaschii</i>
898	hslB	45%	Q9XB21 histone-like dna-binding protein; <i>Streptococcus mutans</i>
899	yjaD	36%	CAB55667 putative tetr-family transcriptional regulator; <i>Streptomyces coelicolor</i>
900	yjaE	82%	O66092 transmembrane protein tmp7; <i>Lactococcus lactis</i>
901	yjaF	79%	O33663 dna for sigma 42 protein, dtdp-4-keto-1-rhamnose reductase, complete cds; <i>Streptococcus mutans</i>

902	ftsW2	45%	P27174	hypothetical protein in rpmg 3'region; <i>Lactococcus lactis</i>
903	yjaH			putative
904	yjaI			putative
905	yjaJ	38%	Q56038	epsa; <i>Streptococcus thermophilus</i>
906	rpsN2	63%	O31587	yhza protein; <i>Bacillus subtilis</i>
907	yjbB			putative
908	kinD	92%	O07385	histidine kinase; <i>Lactococcus lactis</i>
909	lrrD	57%	CAB54571	response regulator; <i>Streptococcus pneumoniae</i>
910	yjbC	41%	P21878	hypothetical protein in pdha 5'region; <i>Bacillus stearothermophilus</i>
911	ppiB	41%	P87051	probable peptidyl-prolyl cis-trans isomerase c57a10.03; <i>Schizosaccharomyces pombe</i>
912	yjbE	37%	CAB49760	translation initiation factor aif-2, subun it alpha; <i>Pyrococcus abyssi</i>
913	yjbF	26%	O07559	hypothetical 23.3 kd protein; <i>Bacillus subtilis</i>
914	rodA	28%	P39604	hypothetical 43.3 kd protein in qoxd-vpr intergenic region; <i>Bacillus subtilis</i>
915	butB	42%	O34788	dehydrogenase; <i>Bacillus subtilis</i>
916	butA	67%	O02715	acetoin reductase; <i>Bos taurus</i>
917	yjcA	26%	Q9ZE86	abc transporter atp-binding protein; <i>Rickettsia prowazekii</i>
918	mleS	95%	Q48662	malolactic enzyme; <i>Lactococcus lactis</i>
919	mleP	92%	O07032	citrate-sodium symport; <i>Lactococcus lactis</i>
920	yjcD	32%	Q9ZF46	hypothetical 32.6 kd protein; <i>Bacillus megaterium</i>
921	yjcE			putative
922	yjcF	46%	Q57064	unidentified; <i>Streptococcus pneumoniae</i>
923	gyrB	78%	Q59957	dna gyrase; <i>Streptococcus pneumoniae</i>
924	yjdA	35%	P44074	hypothetical protein hi0912; <i>Haemophilus influenzae</i>
925	yjdB			putative
926	yjdD	37%	P25150	hypothetical transcriptional regulator in gspattyz intergenic region; <i>Bacillus subtilis</i>
927	yjdE	33%	P94422	homologue of multidrug resistance protein b, emrb, of <i>e. coli</i> ; <i>Bacillus subtilis</i>
928	yjdF			putative
929	tagR	38%	O06027	epsr protein; <i>Lactococcus lactis</i>
930	tagL	49%	CAB52231	epsl protein; <i>Streptococcus thermophilus</i>
931	yjdI			putative
932	yjdJ	26%	Q58752	putative potassium channel protein mj1357; <i>Methanococcus jannaschii</i>
933	tagH	48%	P42954	teichoic acid translocation atp-binding protein tagh; <i>Bacillus subtilis</i>
934	tagG	30%	P42953	teichoic acid translocation permease protein tagg; <i>Bacillus subtilis</i>
935	yjeA			putative
936	tagZ	33%	O06035	epsg protein; <i>Lactococcus lactis</i>
937	tagY	31%	AAD56434	tagf; <i>Staphylococcus epidermidis</i>
938	yjeD			putative
939	tagX	30%	AAD56434	tagf; <i>Staphylococcus epidermidis</i>
940	yjeF	30%	P26388	putative colanic acid biosynthesis glycosyl transferase wcal; <i>Salmonella typhimurium</i>
941	yjeG			putative
942	tagD2	50%	O67380	glycerol-3-phosphate cytidyltransferase; <i>Aquifex aeolicus</i>
943	yjfB			putative
944	tagF	41%	AAD56434	tagf; <i>Staphylococcus epidermidis</i>
945	tagB	28%	P27621	teichoic acid biosynthesis protein b precursor; <i>Bacillus subtilis</i>
946	yjfE	34%	Q9X485	hypothetical 33.8 kd protein; <i>Lactococcus lactis</i>

947	deoB	97%	O32808	phosphopentomutase; <i>Lactococcus lactis</i>
948	yjfG	91%	O32809	hypothetical 10.3 kd protein; <i>Lactococcus lactis</i>
949	deoD	93%	O32810	purine nucleoside phosphorylase; <i>Lactococcus lactis</i>
950	tra983C	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
951	yjfI	39%	O86782	hypothetical 19.8 kd protein; <i>Streptomyces coelicolor</i>
952	yjfJ	48%	Q9X8J2	hypothetical 11.3 kd protein; <i>Streptomyces coelicolor</i>
953	fhs	65%	Q59925	formate--tetrahydrofolate ligase; <i>Streptococcus mutans</i>
954	yjgB	44%	Q9X7Z4	putative secreted protein; <i>Streptomyces coelicolor</i>
955	yjgC	29%	P54952	probable amino-acid abc transporter binding protein in idh-deor intergenic region precursor; <i>Bacillus subtilis</i>
956	yjgD	40%	P54953	probable amino-acid abc transporter permease protein in idh-deor intergenic region; <i>Bacillus subtilis</i>
957	yjgE	55%	O34900	putative amino acid transporter; <i>Bacillus subtilis</i>
958	trxB1	58%	O32823	thioredoxin reductase; <i>Listeria monocytogenes</i>
959	secG	32%	O32233	probable protein-export membrane protein secg; <i>Bacillus subtilis</i>
960	vacB	43%	O32231	yvaj protein; <i>Bacillus subtilis</i>
961	yjgF	48%	P94573	hypothetical 21.1 kd protein; <i>Bacillus subtilis</i>
962	yjhA			putative
963	yjhB	23%	P39582	probable 1,4-dihydroxy-2-naphthoate octaprenyltransferase; <i>Bacillus subtilis</i>
964	yjhC	48%	Q58953	hypothetical protein mj1558; <i>Methanococcus jannaschii</i>
965	yjhD	59%	Q59059	hypothetical protein mj1665; <i>Methanococcus jannaschii</i>
966	yjhE			putative
967	yjhF	34%	P96121	phosphoglycerate mutase; <i>Treponema pallidum</i>
968	dacB	64%	Q9ZAT6	putative d,d-carboxypeptidase; <i>Streptococcus mutans</i>
969	yjhH			putative
970	hrcA	97%	P42370	heat-inducible transcription repressor hrca; <i>Lactococcus lactis</i>
971	grpE	81%	Q9X4R3	heat shock protein grpe; <i>Streptococcus pneumoniae</i>
972	dnaK	87%	P42368	dnaK protein; <i>Lactococcus lactis</i>
973	mycA	61%	Q54525	67 kda myosin-crossreactive streptococcal antigen; <i>Streptococcus pyogenes</i>
974	yjiB	44%	O34980	putative hippurate hydrolase; <i>Bacillus subtilis</i>
975	lacR	42%	O31713	transcriptional regulator; <i>Bacillus subtilis</i>
976	lacC	47%	O31714	fructose-1-phosphate kinase; <i>Bacillus subtilis</i>
977	fruA	43%	P71012	phosphotransferase system fructose-specific enzyme iibc component; <i>Bacillus subtilis</i>
978	clsA	47%	P71040	hypothetical 55.8 kd protein in spoiq-mta intergenic region; <i>Bacillus subtilis</i>
979	yjiE	54%	O06973	hypothetical 33.9 kd protein in crh-trxb intergenic region; <i>Bacillus subtilis</i>
980	yjiF	42%	O06974	hypothetical 34.7 kd protein in crh-trxb intergenic region; <i>Bacillus subtilis</i>
981	yjjA	42%	O06975	hypothetical 36.3 kd protein; <i>Bacillus subtilis</i>
982	yjjB	31%	P96222	hypothetical 23.7 kd protein; <i>Mycobacterium tuberculosis</i>
983	yjjC	54%	Q9Z9N6	yhaq; <i>Bacillus sp</i>
984	yjjD	26%	Q9Z9N5	tnrb3protein; <i>Bacillus sp</i>

985	yjjE		putative
986	yjjF	59% AAF04741	hypothetical 18.7 kd protein; <i>Listeria monocytogenes</i>
987	yjjG	60% P71081	hypothetical 12.2 kd protein; <i>Bacillus subtilis</i>
988	yjjH	25% CAB48940	hypothetical 28.0 kd protein; <i>Pyrococcus abyssi</i>
989	prfB	52% P28367	peptide chain release factor 2; <i>Bacillus subtilis</i>
990	ftsE	63% O34814	cell division atp-binding protein; <i>Bacillus subtilis</i>
991	ftsX	38% O34876	cell division protein; <i>Bacillus subtilis</i>
992	nrdF	47% O69274	ribonucleotide reductase subunit r2f; <i>Corynebacterium ammoniagenes</i>
993	nrdE	51% Q9XD63	ribonucleotide reductase alpha-chain; <i>Corynebacterium glutamicum</i>
994	nrdI	93% Q48709	nrdi protein; <i>Lactococcus lactis</i>
995	nrdH	98% Q48708	glutaredoxin-like protein nrdh; <i>Lactococcus lactis</i>
996	ykaC	58% Q9X972	hypothetical 17.9 kd protein; <i>Streptococcus gordonii</i>
997	parE	79% Q59961	topoisomerase iv subunit b; <i>Streptococcus pneumoniae</i>
998	ykaE		putative
999	ykaF	37% CAB60666	hypothetical 25.4 kd protein; <i>Bradyrhizobium japonicum</i>
1000	dnaQ	42% Q9zhf6	dna polymerase iii, alpha chain polc-type; <i>Thermotoga maritima</i>
1001	ykbA	39% P52077	elaa protein; <i>Escherichia coli</i>
1002	parC	71% Q9X5Y7	parc; <i>Streptococcus mitis</i>
1003	ykbB	23% Q9WW83	hypothetical 34.5 kd protein; <i>Lactococcus lactis</i>
1004	ykbC	23% P40889	hypothetical 197.6 kd protein in fsp2 5'region; <i>Saccharomyces cerevisiae</i>
1005	ykbD		putative
1006	ykbE		putative
1007	ykbF		putative
1008	ykcA		putative
1009	ykcB		putative
1010	ykcC		putative
1011	ribG	45% P50853	riboflavin-specific deaminase; <i>Actinobacillus pleuropneumoniae</i>
1012	ribB	58% P50854	riboflavin synthase alpha chain; <i>Actinobacillus pleuropneumoniae</i>
1013	ribA	60% P50855	riboflavin biosynthesis protein riba [includes: gtp cyclohydrolase ii ; 3,4-dihydroxy-2-butanone 4-ph. <i>Actinobacillus pleuropneumoniae</i>
1014	ribH	67% P50856	6,7-dimethyl-8-ribityllumazine synthase (riboflavin synthase beta. <i>Actinobacillus pleuropneumoniae</i>
1015	lspA	78% Q48729	signal peptidase type ii; <i>Lactococcus lactis</i>
1016	ykcD	59% Q45480	hypothetical 33.7 kd protein in lsp-pyrr intergenic region; <i>Bacillus subtilis</i>
1017	ykcE	47% P73185	hypothetical 16.0 kd protein; <i>Synechocystis sp</i>
1018	ykcF		putative
1019	ykcG	50% O34755	hypothetical 38.5 kd protein in tnra-sspd intergenic region; <i>Bacillus subtilis</i>
1020	lrrE	41% O34903	ykog; <i>Bacillus subtilis</i>
1021	ykdA		putative
1022	kinE	73% O07386	histidine kinase; <i>Lactococcus lactis</i>
1023	ykbd	66% O07387	histidine kinase; <i>Lactococcus lactis</i>
1024	glmS	59% P39754	B glucosamine--fructose-6-phosphate aminotransferase [isomerizing] (l-glutamine...)

1025	radC	40%	Q02170	dna repair protein radc homolog; <i>Bacillus subtilis</i>
1026	pi201	99%	Q38325	integrase; <i>Lactococcus lactis</i> phage bk5-t
1027	pi202	91%	Q38183	orf 3; Bacteriophage tp901-1
1028	pi203	95%	Q38182	orf2; Bacteriophage tp901-1
1029	pi204	98%	Q48503	hypothetical 20.8 kd protein; Bacteriophage tp901-1
1030	pi205	100%	Q48504	hypothetical 8.3 kd protein; Bacteriophage tp901-1
1031	pi206	100%	Q48505	hypothetical 28.3 kd protein; Bacteriophage tp901-1
1032	pi207	100%	Q38331	orf111; <i>Lactococcus lactis</i> phage bk5-t
1033	pi208	98%	Q9XJE0	hypothetical 9.9 kd protein; Bacteriophage tuc2009
1034	pi209	100%	Q38272	orf71; <i>Lactococcus</i> bacteriophage
1035	pi210	100%	Q9XJE3	hypothetical 20.1 kd protein; Bacteriophage tuc2009
1036	pi211	94%	Q9XJE4	putative topoisomerase i; Bacteriophage tuc2009
1037	pi212	87%	Q9XJE5	putative single stranded binding protein; Bacteriophage tuc2009
1038	pi213	94%	Q9XJE6	putative replisome organiser protein; Bacteriophage tuc2009
1039	pi214	99%	Q9XJE7	hypothetical 27.2 kd protein; Bacteriophage tuc2009
1040	pi215	88%	Q9XJE9	hypothetical 15.8 kd protein; Bacteriophage tuc2009
1041	pi216	93%	Q38101	orf15; Bacteriophage r1t putative
1042	pi217			
1043	pi218	71%	Q9XJF1	hypothetical 22.4 kd protein; Bacteriophage tuc2009 putative
1044	pi219			
1045	pi220	72%	Q9XJF3	hypothetical 14.3 kd protein; Bacteriophage tuc2009
1046	pi221	99%	Q38106	dutpase; Bacteriophage r1t putative
1047	pi222			putative
1048	pi223			putative
1049	pi224			putative
1050	pi225			putative
1051	pi226	84%	Q53058	hypothetical 11.0 kd protein; <i>Lactococcus lactis</i> putative
1052	pi227			
1053	pi228	31%	Q9XJD9	hypothetical 21.5 kd protein; <i>Streptococcus thermophilus</i> bacteriophage dt1 putative
1054	pi229			
1055	pi230	22%	Q9XJT6	putative terminase; Bacteriophage d3 putative
1056	pi231			
1057	pi232	30%	Q9ZXF7	orf26; Bacteriophage phi-105
1058	pi233	31%	P25386	intracellular protein transport protein usol; <i>Saccharomyces cerevisiae</i> putative
1059	pi234			
1060	pi235			putative
1061	pi236			putative
1062	pi237			putative
1063	pi238			putative
1064	pi239	24%	Q9ZXE9	orf34; Bacteriophage phi-105
1065	pi240			putative
1066	pi241			putative
1067	pi242	22%	P26812	hypothetical protein in mcp 3' region; <i>Lactococcus lactis</i> bacteriophage f4-1
1068	pi243	26%	CAB52531	hypothetical 28.9 kd protein; <i>Lactobacillus</i> bacteriophage phi adh

1069	pi244	41%	O51277	conserved hypothetical protein; <i>Borrelia burgdorferi</i>
1070	pi245			putative
1071	pi246			putative
1072	pi247			putative
1073	pi248			putative
1074	pi249			putative
1075	pi250	95%	Q38321	orf75; <i>Lactococcus lactis</i> phage bk5-t
1076	pi251	91%	Q38322	orf95; <i>Lactococcus lactis</i> phage bk5-t
1077	pi252	98%	Q38323	orf259; <i>Lactococcus lactis</i> phage bk5-t
1078	ykhD	48%	O05521	hypothetical 24.1 kd protein ydih; <i>Bacillus subtilis</i>
1079	ykhE	45%	O31602	yjbd protein; <i>Bacillus subtilis</i>
1080	ykhF	51%	O05519	hypothetical abc transporter atp-binding protein ydif; <i>Bacillus subtilis</i>
1081	ykhG			putative
1082	ykhH			putative
1083	ykhJ			putative
1084	ykhI	27%	O30416	positive regulator gadr; <i>Lactococcus lactis</i>
1085	ykhK			putative
1086	pyrE	72%	Q9ZHA6	orotate phosphoribosyltransferase pyre; <i>Streptococcus pneumoniae</i>
1087	pyrC	42%	O66990	dihydroorotase; <i>Aquifex aeolicus</i>
1088	dnaD	41%	P95775	orf2 protein; <i>Streptococcus mutans</i>
1089	nth	49%	P39788	probable endonuclease iii (dna-; <i>Bacillus subtilis</i>)
1090	ykiC	49%	P95776	orf3 protein; <i>Streptococcus mutans</i>
1091	ykiD	46%	P95777	orf4 protein; <i>Streptococcus mutans</i>
1092	ykiE	23%	Q9X563	hypothetical 14.2 kd protein; <i>Enterococcus faecium</i>
1093	ykiF	41%	P09997	hypothetical 29.7 kd protein in ibpa-gyrb intergenic region; <i>Escherichia coli</i>
1094	ykiG	51%	P39651	hypothetical 51.0 kd protein in pta 3'region; <i>Bacillus subtilis</i>
1095	ykiH			putative
1096	ykiI			putative
1097	rplU	67%	P26908	50s ribosomal protein l21; <i>Bacillus subtilis</i>
1098	ykjA	35%	P26942	hypothetical 12.3 kd protein in rplu-rpma intergenic region; <i>Bacillus subtilis</i>
1099	rpmA	74%	Q44312	ribosomal protein l27; <i>Arthrobacter</i> sp
1100	ykjB	41%	AAD46619	nramp protein mnth2; <i>Pseudomonas aeruginosa</i>
1101	ykjC			putative
1102	phoL	62%	P46343	phoh-like protein; <i>Bacillus subtilis</i>
1103	ykjE	40%	P46351	hypothetical 45.4 kd protein in thiaminase i 5'region; <i>Bacillus subtilis</i>
1104	ykjF	61%	O51806	diacyglycerol kinase; <i>Streptococcus mutans</i>
1105	dgkA	68%	Q05888	diacylglycerol kinase; <i>Streptococcus mutans</i>
1106	ykjH	30%	Q45226	signal peptidase sips; <i>Bradyrhizobium japonicum</i>
1107	comFC	36%	P39147	comf operon protein 3; <i>Bacillus subtilis</i>
1108	comFA	36%	P39145	comf operon protein 1; <i>Bacillus subtilis</i>
1109	ykjI	46%	P32437	hypothetical 24.8 kd protein in degs-tago intergenic region; <i>Bacillus subtilis</i>
1110	ykjJ	41%	CAB61225	vayz protein; <i>Bacillus circulans</i>
1111	ykjK	39%	O06378	hypothetical 39.3 kd protein; <i>Mycobacterium tuberculosis</i>
1112	nucA	30%	Q9X6T9	5'-nucleotidase nuca precursor; <i>Haemophilus influenzae</i>
1113	glySa	71%	P54380	glycyl-trna synthetase alpha chain; <i>Bacillus subtilis</i>
1114	glySb	41%	P54381	glycyl-trna synthetase beta chain; <i>Bacillus subtilis</i>

1115	ylaC	32%	O31818	ynzc protein; <i>Bacillus subtilis</i>
1116	ylaD	30%	Q9Z9W7	transposase protein; <i>Bacillus</i> sp
1117	ylaE	45%	P54455	hypothetical 22.2 kd protein in arod-comer intergenic region; <i>Bacillus subtilis</i>
1118	ylaF	61%	O32090	yuek protein; <i>Bacillus subtilis</i>
1119	ylaG	30%	P46854	hypothetical 18.8 kd protein in gntr-ggt intergenic region; <i>Escherichia coli</i>
1120	nadE	65%	P18843	nh-dependent nad synthetase; <i>Escherichia coli</i>
1121	ylbA	53%	O28456	abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
1122	ylbB	24%	O28455	hypothetical 89.0 kd protein; <i>Archaeoglobus fulgidus</i>
1123	cobQ	43%	Q9ZGG8	cobyric acid synthase cobq; <i>Heliobacillus mobilis</i>
1124	ylbD	33%	Q9ZGG7	udp-n-acetylmuramyl tripeptide synthetase murc; <i>Heliobacillus mobilis</i>
1125	aldC	35%	P95676	alpha-acetolactate decarboxylase; <i>Lactococcus lactis</i>
1126	lepA	74%	P37949	gtp-binding protein lepa; <i>Bacillus subtilis</i>
1127	ylbE	36%	O07609	hypothetical 22.8 kd protein; <i>Bacillus subtilis</i>
1128	ylcA	53%	BAA35634	hypothetical 52.1 kd protein in ebgc-uxaa intergenic region; ; <i>Escherichia coli</i>
1129	gyrA	71%	CAA06715	dna gyrase subunit a; <i>Streptococcus pneumoniae</i>
1130	apbE	30%	Q9X1N9	conserved hypothetical protein; <i>Thermotoga maritima</i>
1131	ylcC	40%	P94587	mbl, flh[o,p], rapd, ywp[b,c,d,e,f,g,h,i,j] and ywqa genes; <i>Bacillus subtilis</i>
1132	ylcD			putative
1133	ylcE			putative
1134	ylcF			putative
1135	ylcG	28%	P94974	hypothetical 128.2 kd protein; <i>Mycobacterium tuberculosis</i>
1136	yldA			putative
1137	yldB	30%	O06251	hypothetical 26.8 kd protein; <i>Mycobacterium tuberculosis</i>
1138	pcrA	53%	P56255	atp-dependent helicase pcra; <i>Bacillus stearothermophilus</i>
1139	mutX	32%	P41354	mutator mutt protein; <i>Streptococcus pneumoniae</i>
1140	tag	46%	Q9X6Y6	putative dna-3-methyladenine glycosydase i; <i>Bifidobacterium longum</i>
1141	yldC	66%	O32784	hypothetical 16.9 kd protein; <i>Lactococcus lactis</i>
1142	frdC	43%	Q9X969	fumarate reductase flavocytochrome c3; <i>Shewanella frigidimarina</i>
1143	yldE			putative
1144	truB	73%	O32785	hypothetical 19.7 kd protein; <i>Lactococcus lactis</i>
1145	ribC	48%	O34127	macrolide-efflux protein; <i>Streptococcus agalactiae</i>
1146	ldhX	35%	P94885	l-lactate dehydrogenase; <i>Lactococcus lactis</i>
1147	yleB	29%	O50983	outer surface protein, putative; <i>Borrelia burgdorferi</i>
1148	yleC	52%	O31420	ybbi protein; <i>Bacillus subtilis</i>
1149	yleD	42%	Q45579	ybbf; <i>Bacillus subtilis</i>
1150	yleE	52%	P40739	pts system, beta-glucosides-specific iiabc component (ec. <i>Bacillus subtilis</i>)
1151	yleF	31%	Q45581	hypothetical 33.3 kd protein; <i>Bacillus subtilis</i>
1152	tpiA	99%	P50918	triosephosphate isomerase; <i>Lactococcus lactis</i>
1153	yleG	29%	P12256	penicillin acylase; <i>Bacillus sphaericus</i>
1154	ylfA			putative
1155	ylfB	28%	BAA35232	orf_id:o166#5; <i>Escherichia coli</i>

1156	ylfC	47%	P77174	hypothetical 23.9 kd protein in csta-dsbg intergenic region; <i>Escherichia coli</i>
1157	hemN	45%	CAB61616	hemN protein; <i>Bacillus subtilis</i>
1158	ylfD	25%	P34020	autolytic lysozyme; <i>Clostridium acetobutylicum</i>
1159	ylfE	50%	CAB49495	dcmp deaminase, putative; <i>Pyrococcus abyssi</i>
1160	ylfF	25%	Q42714	oleoyl-acyl carrier protein thioesterase precursor (s-acyl fatty acid synthase thioeste. <i>Carthamus tinctorius</i>
1161	ylfG	28%	O04792	acyl-acp thioesterase; <i>Garcinia mangostana</i>
1162	ylfH	45%	O32125	yutf protein; <i>Bacillus subtilis</i> putative
1163	ylfI			
1164	guaC	74%	O05269	hypothetical 35.8 kd protein; <i>Bacillus subtilis</i>
1165	xpt	68%	CAA13587	xanthine phosphoribosyltransferase; <i>Streptococcus pneumoniae</i>
1166	pbuX	48%	P42086	xanthine permease; <i>Bacillus subtilis</i> putative
1167	ylgB			
1168	ylgC	57%	P32813	hypothetical 18.2 kd protein in glda 3'region; <i>Bacillus stearothermophilus</i>
1169	dfrA	92%	Q59487	dihydrofolate reductase; <i>Lactococcus lactis</i>
1170	clpX	64%	P50866	atp-dependent clp protease atp-binding subunit clpx; <i>Bacillus subtilis</i>
1171	ysxL	66%	P38424	hypothetical gtp-binding protein in lona-hema intergenic region; <i>Bacillus subtilis</i>
1172	folB	32%	AAF09757	dihydronopterin aldolase; <i>Deinococcus radiodurans</i>
1173	folE	48%	AAF09628	gtp cyclohydrolase i; <i>Deinococcus radiodurans</i>
1174	folP	36%	O67448	dihydropteroate synthase; <i>Aquifex aeolicus</i> putative
1175	ylgG			
1176	folC	41%	Q05865	folylpolyglutamate synthase; <i>Bacillus subtilis</i>
1177	ylhA	76%	Q9ZB43	hypothetical 24.8 kd protein; <i>Streptococcus pyogenes</i>
1178	hom	91%	P52985	homoserine dehydrogenase; <i>Lactococcus lactis</i>
1179	thrB	78%	P52991	homoserine kinase; <i>Lactococcus lactis</i> putative
1180	ylhB			
1181	murB	39%	AAD53934	udp-n-acetylenolpyruvoylglicosamine reductase; <i>Zymomonas mobilis</i>
1182	potA	46%	O51587	spermidine/putrescine abc transporter, atp-binding protein; <i>Borrelia burgdorferi</i>
1183	potB	32%	O85819	potb; <i>Actinobacillus actinomycetemcomitans</i>
1184	potC	38%	O51585	spermidine/putrescine abc transporter, permease protein; <i>Borrelia burgdorferi</i>
1185	potD	43%	P23861	spermidine/putrescine-binding periplasmic protein precursor; <i>Escherichia coli</i>
1186	yliA	28%	P49330	rgg protein; <i>Streptococcus gordoni</i> challis
1187	yliB	24%	O58549	459aa long hypothetical methyltransferase; <i>Pyrococcus horikoshii</i>
1188	yliC	25%	CAB49999	multidrug resistance protein; <i>Pyrococcus abyssi</i>
1189	yliD	31%	Q9WYH7	permease, putative; <i>Thermotoga maritima</i> putative
1190	yliE			
1191	yliF			
1192	yliG			
1193	clsB	41%	P71040	hypothetical 55.8 kd protein in spoIIq-mta intergenic region; <i>Bacillus subtilis</i>
1194	yliI	33%	O08365	probable cation-transporting atpase e; <i>Mycobacterium tuberculosis</i>
1195	yljA	33%	Q9Z4W5	putative integral membrane atpase; <i>Streptomyces coelicolor</i>
1196	yljB	47%	O51589	conserved hypothetical protein; <i>Borrelia burgdorferi</i>
1197	yljC	32%	P26833	hypothetical 31.2 kd protein in nagh 5'region; <i>Clostridium perfringens</i>

1198	yljD			putative
1199	yljE	43%	Q31503	yefa protein; <i>Bacillus subtilis</i>
1200	yljF	52%	Q55555	orf1; <i>Synechocystis</i> sp
1201	yljG	77%	Q32813	lactococcus lactis orfa and orfb genes, partial cds; <i>Lactococcus lactis</i>
1202	yljH	60%	Q32814	lactococcus lactis orfa and orfb genes, partial cds; <i>Lactococcus lactis</i>
1203	yljI	79%	Q32814	lactococcus lactis orfa and orfb genes, partial cds; <i>Lactococcus lactis</i>
1204	yljJ	96%	Q48633	alpha-acetolactate synthase; <i>Lactococcus lactis</i>
1205	als	97%	Q48634	alpha-acetolactate synthase; <i>Lactococcus lactis</i>
1206	ymaB			putative
1207	mae	62%	CAB60039	putative malic enzyme; <i>Weissella</i> <i>paramesenteroides</i>
1208	ymaE	35%	Q48797	malate permease; <i>Oenococcus oeni</i>
1209	ymaF	49%	CAA57770	malate permease; <i>Oenococcus oeni</i>
1210	ymaG			putative
1211	cliR	41%	Q86289	regulatory protein; <i>Leuconostoc mesenteroides</i>
1212	citC	48%	CAB60040	putative citrate lyase ligase; <i>Weissella</i> <i>paramesenteroides</i>
1213	citD	60%	CAB60041	putative gamma subunit of citrate lyase; <i>Weissella paramesenteroides</i>
1214	citE	67%	Q53078	citrate lyase beta chain; <i>Leuconostoc</i> <i>mesenteroides</i>
1215	citF	80%	CAB60043	putative alfa subunit of citrate lyase; <i>Weissella paramesenteroides</i>
1216	citG	46%	Q53080	citg protein; <i>Leuconostoc mesenteroides</i>
1217	ymbA	29%	Q54877	integrase; <i>Streptococcus pneumoniae</i>
1218	ymbC			putative
1219	ymbD			putative
1220	ymbE	26%	Q05949	dna polymerase i; <i>Rickettsia prowazekii</i>
1221	ymbF			putative
1222	ymbG			putative
1223	ymbH	23%	Q58437	hypothetical protein mj1031; <i>Methanococcus</i> <i>jannaschii</i>
1224	tra981E	91%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
1225	ymbI	98%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
1226	ymbJ	32%	Q32802	x42; <i>Lactococcus lactis</i>
1227	ymbK			putative
1228	ymcA			putative
1229	ymcB	21%	Q9X336	pxol-66; <i>Bacillus anthracis</i>
1230	ymcC			putative
1231	ymcD	98%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
1232	tra981F	91%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
1233	ymcE	44%	Q06027	epsr protein; <i>Lactococcus lactis</i>
1234	ymcF	30%	P32653	muramidase-released protein precursor; <i>Streptococcus suis</i>
1235	ymcG	31%	Q9XAS7	r5 protein precursor; <i>Streptococcus agalactiae</i>
1236	tra905	96%	P35881	transposase for insertion sequence element is905; <i>Lactococcus lactis</i>
1237	ymcH	93%	Q02146	hypothetical protein in hisc 5'region; <i>Lactococcus lactis</i>
1238	hisC	98%	Q02135	histidinol-phosphate aminotransferase; <i>Lactococcus lactis</i>
1239	hisX	91%	Q02147	hypothetical 38.0 kd protein in hisc-hisg intergenic region; <i>Lactococcus lactis</i>
1240	hisG	98%	Q02129	atp phosphoribosyltransferase; <i>Lactococcus</i> <i>lactis</i>
1241	hisD	93%	Q02136	histidinol dehydrogenase; <i>Lactococcus lactis</i>
1242	ymdA	87%	Q02148	hypothetical 30.7 kd protein in hisd-hisb intergenic region; <i>Lactococcus lactis</i>

1243	hisB	98%	Q02134	imidazoleglycerol-phosphate dehydratase; <i>Lactococcus lactis</i>
1244	ymdC	99%	Q02149	probable aminoglycoside 3'-phosphotransferase; <i>Lactococcus lactis</i>
1245	hisH	98%	Q02132	amidotransferase hish; <i>Lactococcus lactis</i>
1246	hisA	96%	Q02131	phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase; <i>Lactococcus lactis</i>
1247	hisF	89%	Q02133	hisf protein; <i>Lactococcus lactis</i>
1248	hisI	99%	Q02130	histidine biosynthesis bifunctional protein hisie [includes: phosphoribosyl-amp cyclohydrolase ; phosphori. <i>Lactococcus lactis</i>
1249	hisK	95%	Q02150	hypothetical 31.3 kd protein in hisie 3'region; <i>Lactococcus lactis</i>
1250	ymdE	99%	O34131	hypothetical 36.8 kd protein; <i>Lactococcus lactis</i>
1251	leuA	93%	Q02141	2-isopropylmalate synthase; <i>Lactococcus lactis</i>
1252	leuB	99%	Q02143	3-isopropylmalate dehydrogenase; <i>Lactococcus lactis</i> putative
1253	ymeA			
1254	leuC	93%	Q02142	3-isopropylmalate dehydratase large subunit; <i>Lactococcus lactis</i>
1255	leuD	100%	Q02144	3-isopropylmalate dehydratase small subunit; <i>Lactococcus lactis</i>
1256	ymeB	86%	Q02151	hypothetical abc transporter atp-binding protein in leud 3'region; <i>Lactococcus lactis</i>
1257	ilvD	95%	Q02139	dihydroxy-acid dehydratase; <i>Lactococcus lactis</i>
1258	ilvB	92%	Q02137	acetolactate synthase large subunit; <i>Lactococcus lactis</i>
1259	ilvN	98%	Q02140	acetolactate synthase small subunit; <i>Lactococcus lactis</i>
1260	ilvC	96%	Q02138	ketol-acid reductoisomerase (alpha-keto-beta-hydroxylacil reductoiso. <i>Lactococcus lactis</i>
1261	ilvA	96%	O34132	ilva; <i>Lactococcus lactis</i>
1262	aldB	100%	P95676	alpha-acetolactate decarboxylase; <i>Lactococcus lactis</i>
1263	aldR	99%	O34133	putative regulator aldr; <i>Lactococcus lactis</i>
1264	ymfB			putative
1265	dprA	43%	P39813	smf protein; <i>Bacillus subtilis</i>
1266	topA	62%	P39814	dna topoisomerase i; <i>Bacillus subtilis</i>
1267	gidC	65%	P39815	gid protein; <i>Bacillus subtilis</i>
1268	ymfD	70%	O69155	hypothetical 41.6 kd protein; <i>Streptococcus mutans</i>
1269	ymfE			putative
1270	ymgA	46%	O69155	hypothetical 41.6 kd protein; <i>Streptococcus mutans</i>
1271	ymgB			putative
1272	ymgD			putative
1273	ymgC	30%	O05316	hypothetical 62.6 kd protein; <i>Mycobacterium tuberculosis</i>
1274	rlrA	30%	O68014	adpl. lysr-type transcriptional activator; <i>Acinetobacter sp</i>
1275	ceo	94%	P15244	n5-ornithine synthase (n5--l-ornithine:nadp; <i>Lactococcus lactis</i>
1276	ymgF	62%	Q48607	putative 37-kda protein; <i>Lactococcus lactis</i>
1277	ymgG	92%	Q48606	putative 20-kda protein; <i>Lactococcus lactis</i>
1278	ymgH	43%	Q48605	putative 6-kda protein; <i>Lactococcus lactis</i>
1279	ymgI			putative
1280	ymgJ	49%	P96594	ydas protein; <i>Bacillus subtilis</i>
1281	ymgK	53%	Q9XBS1	2,5-diketo-d-gluconate reductase; <i>Zymomonas mobilis</i>

1282	glpF2	55%	P52281	glycerol uptake facilitator protein; <i>Streptococcus pneumoniae</i>
1283	glpD	53%	O87017	alpha-glycerophosphate oxidase; <i>Streptococcus pneumoniae</i>
1284	glpK	74%	O34154	glycerol kinase; <i>Enterococcus faecalis</i> putative
1285	ymhA			
1286	tra981G	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
1287	ymhB	96%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i> putative
1288	ymhC			
1289	amyL	47%	O31193	alpha amylase; <i>Bacillus stearothermophilus</i>
1290	lctO	45%	Q44467	lactate oxidase; <i>Aerococcus viridans</i>
1291	aroH	41%	O54459	phospho-2-dehydro-3-deoxyheptonate aldolase, trp-sensitive (3-deoxy-d-arabino-he. <i>Erwinia herbicola</i>
1292	metF	37%	O67422	5,10-methylenetetrahydrofolate reductase; <i>Aquifex aeolicus</i>
1293	metE	45%	Q42699	Catharanthus roseus 5- methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase (...)
1294	ymiA	44%	O33330	transcriptional repressor; <i>Mycobacterium tuberculosis</i>
1295	mgtA	49%	P39168	mg transport atpase, p-type 1; <i>Escherichia coli</i>
1296	dltD	90%	O32815	d-alanine carrier homolog dltD; <i>Lactococcus lactis</i>
1297	dltC	41%	AAF09203	dltC; <i>Lactobacillus rhamnosus</i>
1298	dltB	48%	CAB51920	integral membrane protein; <i>Listeria monocytogenes</i>
1299	dltA	41%	AAF09201	dltA; <i>Lactobacillus rhamnosus</i>
1300	thiE	37%	P39594	thiamine-phosphate pyrophosphorylase; <i>Bacillus subtilis</i>
1301	thiD1	43%	P44697	phosphomethylpyrimidine kinase; <i>Haemophilus influenzae</i>
1302	thiM	34%	Q57233	hydroxyethylthiazole kinase; <i>Haemophilus influenzae</i>
1303	ymjE	25%	Q54066	icaa; <i>Staphylococcus epidermidis</i>
1304	epsK	50%	P97003	udp-n-acetylglucosamine-2-epimerase; <i>Streptococcus pneumoniae</i>
1305	ymhG			putative
1306	ymhH			putative
1307	rplL	50%	P02394	50s ribosomal protein 17/112; <i>Bacillus subtilis</i>
1308	rplJ	61%	P42923	50s ribosomal protein 110; <i>Bacillus subtilis</i> putative
1309	ynaA			
1310	ynaB	34%	P45902	hypothetical transcriptional regulator in spoiiic-cwla intergenic region; <i>Bacillus subtilis</i>
1311	ynaC	36%	O07549	hypothetical 76.3 kd protein; <i>Bacillus subtilis</i>
1312	ynaD	40%	P77265	multidrug resistance-like atp-binding protein mdla; <i>Escherichia coli</i>
1313	ynaE	24%	P50726	hypothetical 20.5 kd protein in sera-fer intergenic region; <i>Bacillus subtilis</i>
1314	rsuB	55%	P35159	ribosomal large subunit pseudouridine synthase b; <i>Bacillus subtilis</i>
1315	ynaG	42%	AAF11414	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
1316	ynaH	37%	P35154	hypothetical 29.6 kd protein in ribt-dacb intergenic region; <i>Bacillus subtilis</i>
1317	ynbA	28%	O31698	putative
1318	ynbB			ykul protein; <i>Bacillus subtilis</i>
1319	ynbC	33%	P94559	hypothetical 19.2 kd protein in rph-ilvb intergenic region; <i>Bacillus subtilis</i>
1320	ynbD	50%	P94558	hypothetical 21.9 kd protein; <i>Bacillus subtilis</i>

1321	murI	50%	O31338	glutamate racemase; <i>Bacillus cereus</i>
1322	ynbE	37%	P45708	hypothetical 8.3 kd protein in ttk-ccda intergenic region; <i>Bacillus subtilis</i>
1323	lysA	39%	P31851	taba protein; <i>Pseudomonas syringae</i>
1324	gltD	47%	Q51584	small subunit of nadh-dependent glutamate synthase; <i>Plectonema boryanum</i>
1325	gltB	48%	P39812	glutamate synthase [nadph] large chain; <i>Bacillus subtilis</i>
1326	yncA	44%	P40892	putative acetyltransferase in hxt11-hxt8 intergenic region; <i>Saccharomyces cerevisiae</i>
1327	bcaT	69%	P54689	branched-chain amino acid aminotransferase; <i>Haemophilus influenzae</i>
1328	yncB	94%	O30419	hypothetical protein in gadb 3'region; <i>Lactococcus lactis</i>
1329	gadB	97%	O30418	glutamate decarboxylase; <i>Lactococcus lactis</i>
1330	gadC	90%	O30417	amino acid antiporter gadc; <i>Lactococcus lactis</i>
1331	gadR	94%	O30416	positive regulator gadr; <i>Lactococcus lactis</i>
1332	rnhB	88%	O30415	ribonuclease hii; <i>Lactococcus lactis</i>
1333	ylqL	46%	O31743	ylqf protein; <i>Bacillus subtilis</i>
1334	yndA			putative
1335	yndB	28%	AAF10898	carboxymethylenebutenolidase-related protein; <i>Deinococcus radiodurans</i>
1336	rdrB	41%	P94591	similar to phosphotransferase system regulator; <i>Bacillus subtilis</i>
1337	yndC			putative
1338	yndD			putative
1339	yndE			putative
1340	yndF	34%	P25146	internalin a precursor; <i>Listeria monocytogenes</i>
1341	yndG	57%	O05703	adca protein; <i>Streptococcus pneumoniae</i>
1342	tra983D	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
1343	ipd	42%	P71323	indolepyruvate decarboxylase; <i>Erwinia herbicola</i>
1344	xmaF	32%	P31078	petp protein; <i>Rhodobacter capsulatus</i>
1345	rlrC	27%	P73862	rubisco operon transcriptional regulator; <i>Synechocystis sp</i>
1346	yneB	34%	AAF10396	lipase, putative; <i>Deinococcus radiodurans</i>
1347	yneC			putative
1348	yneD	38%	Q9ZKW1	putative; <i>Helicobacter pylori j99</i>
1349	yneE	38%	Q06861	possible virulence-regulating 38 kd protein; <i>Mycobacterium tuberculosis</i>
1350	yneF			putative
1351	yneG	36%	AAD51848	as4. arsd; <i>Sinorhizobium sp</i>
1352	yneH	29%	O31602	yjbd protein; <i>Bacillus subtilis</i>
1353	pabB	38%	Q9ZV26	similar to streptomyces papa; <i>Arabidopsis thaliana</i>
1354	pabA	50%	P06193	para-aminobenzoate synthase glutamine amidotransferase component ii; <i>Salmonella typhimurium</i>
1355	mtsA	74%	Q53891	scba; <i>Streptococcus cristatus</i>
1356	mtsC	59%	P42361	29 kd membrane protein in psaa 5'region; <i>Streptococcus gordonii challis</i>
1357	mtsB	61%	O68832	putative atp-binding protein; <i>Streptococcus pneumoniae</i>
1358	ynfC	29%	O86747	hypothetical 14.8 kd protein; <i>Streptomyces coelicolor</i>
1359	ynfD	38%	O50571	hypothetical 10.1 kda protein; <i>Bacillus firmus</i>
1360	sbcC	22%	O67124	hypothetical 115.9 kd protein; <i>Aquifex aeolicus</i>
1361	sbcD	34%	O83634	exonuclease, putative; <i>Treponema pallidum</i>
1362	panE	31%	CAB49673	probable 2-dehydropantoate 2-reductase; <i>Pyrococcus abyssi</i>
1363	ynfG	44%	O31602	yjbd protein; <i>Bacillus subtilis</i>

1364	ynfH	28%	Q9X6M3	proline/threonine-rich protein; <i>Salmonella typhi</i> putative
1365	yngA			
1366	yngB	59%	P95752	fibronectin-binding protein-like protein a; <i>Streptococcus gordonii</i>
1367	yngC	46%	P36999	rrna -methyltransferase; <i>Escherichia coli</i>
1368	yngD	27%	P36999	rrna -methyltransferase; <i>Escherichia coli</i>
1369	yngE	62%	O05253	hypothetical 56.3 kd protein; <i>Bacillus subtilis</i>
1370	yngF	34%	O05254	hypothetical 36.8 kd protein; <i>Bacillus subtilis</i>
1371	yngG	47%	O05255	hypothetical 33.7 kd protein; <i>Bacillus subtilis</i>
1372	ldh	96%	P94885	l-lactate dehydrogenase; <i>Lactococcus lactis</i>
1373	pyk	98%	Q07637	pyruvate kinase; <i>Lactococcus lactis</i>
1374	pfk	90%	Q07636	6-phosphofructokinase; <i>Lactococcus lactis</i> putative
1375	ynhA			
1376	nagA	36%	P96166	n-acetylglucosamine-6-phosphate deacetylase; <i>Vibrio furnissii</i>
1377	ynhC	54%	P37535	hypothetical 43.8 kd protein in xpac-abrb intergenic region; <i>Bacillus subtilis</i>
1378	ynhD	18%	P37467	xpac protein; <i>Bacillus subtilis</i>
1379	gpdA	51%	P46919	glycerol-3-phosphate dehydrogenase [nad+] (nad; <i>Bacillus subtilis</i>
1380	hasC	73%	O86882	utp-glucose-1-phosphate uridylyltransferase; <i>Streptococcus pneumoniae</i>
1381	ynhH	77%	Q08009	export element b11; <i>Lactococcus lactis</i>
1382	ynhI	76%	O32817	gerca; <i>Lactococcus lactis</i>
1383	ispB	96%	O32818	gercc; <i>Lactococcus lactis</i>
1384	gidB	55%	P25813	glucose inhibited division protein b; <i>Bacillus subtilis</i> putative
1385	yniC			
1386	pyrF	97%	P50924	orotidine 5'-phosphate decarboxylase; <i>Lactococcus lactis</i>
1387	pyrDb	88%	P54322	dihydroorotate dehydrogenase b; <i>Lactococcus lactis</i>
1388	pyrZ	41%	P46536	hypothetical 27.6 kd protein in pyrab-pyrd intergenic region; <i>Bacillus caldolyticus</i>
1389	yniG	31%	CAB61253	orfB, orfc and hsp18 gene; <i>Oenococcus oeni</i>
1390	yniH	68%	CAA76860	hypothetical 44.9 kd protein; <i>Enterococcus faecalis</i>
1391	yniI	51%	O86211	hypothetical 43.3 kd protein; <i>Enterococcus faecalis</i>
1392	yniJ	33%	O86210	hypothetical 29.4 kd protein; <i>Enterococcus faecalis</i>
1393	ynjA	58%	BAA35957	hypothetical protein hi0694; <i>Escherichia coli</i> putative
1394	ynjB			
1395	ynjC	23%	Q9X336	pxol-66; <i>Bacillus anthracis</i>
1396	ynjD	22%	O17893	f55b11.3 protein; <i>Caenorhabditis elegans</i> putative
1397	ynjE			
1398	ynjF			
1399	ynjG	22%	Q22579	similar to a. <i>faecalis</i> poly depolymerase; <i>Caenorhabditis elegans</i>
1400	tra983E	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i> putative
1401	ynjH			
1402	ynjI			
1403	ynjJ	20%	O94317	serine-rich protein; <i>Schizosaccharomyces pombe</i>
1404	carB	93%	O32771	carbamoylphosphate synthetase; <i>Lactococcus lactis</i>
1405	gpo	93%	O32770	glutathione peroxidase; <i>Lactococcus lactis</i>
1406	acmC	48%	O32083	yube protein; <i>Bacillus subtilis</i>
1407	yoaB	41%	O34431	ylob protein; <i>Bacillus subtilis</i>
1408	yoaD	39%	Q9ZCA9	hypothetical 24.9 kd protein; <i>Rickettsia prowazekii</i>

1409	yoaF	30%	O06531	hypothetical 21.2 kd protein; Lactobacillus fermentum putative
1410	yoaG			
1411	yoaH	33%	O27534	hypothetical 21.2 kd protein; Methanobacterium thermoautotrophicum
1412	yoaI	27%	P17419	possible fimbrial assembly protein fimc; Bacteroides nodosus
1413	yobA	34%	Q57951	hypothetical protein mj0531; Methanococcus jannaschii
1414	arsC	58%	P45947	putative arsenate reductase; Bacillus subtilis putative
1415	yobC			
1416	pi301	41%	Q38326	orf258; Lactococcus lactis phage bk5-t putative
1417	pi302			
1418	pi303			
1419	pi304			
1420	pi305	97%	Q38323	orf259; Lactococcus lactis phage bk5-t
1421	pi306	65%	Q38322	orf95; Lactococcus lactis phage bk5-t
1422	pi307	83%	Q38133	orf47; Bacteriophage rlt
1423	pi308	97%	Q38321	orf75; Lactococcus lactis phage bk5-t
1424	pi309	78%	Q38319	orf1904; Lactococcus lactis phage bk5-t
1425	pi310	78%	O80183	gp57; Streptococcus thermophilus bacteriophage sfi11
1426	pi311	78%	O80182	gp373; Streptococcus thermophilus bacteriophage sfi11
1427	pi312	52%	Q38319	orf1904; Lactococcus lactis phage bk5-t
1428	pi313	38%	Q38318	orf'410; Lactococcus lactis phage bk5-t
1429	pi314	34%	O03937	minor capsid protein; Bacteriophage phigle putative
1430	pi315			
1431	pi316			
1432	pi317	48%	O64291	hypothetical 21.8 kd protein; Streptococcus thermophilus bacteriophage sfi19
1433	pi318	36%	Q38220	orfi; Bacteriophage l10
1434	pi319	36%	Q38219	orfa; Bacteriophage l10
1435	pi320	29%	Q9XJA3	putative head-tail joining protein; Streptococcus thermophilus bacteriophage dt1
1436	pi321	32%	O64276	hypothetical 11.8 kd protein; Streptococcus thermophilus bacteriophage sfi21
1437	pi322	60%	Q9XJV7	orf397 gp; Streptococcus thermophilus bacteriophage sfi19
1438	pi323	49%	Q9XJA0	putative scaffolding protein; Streptococcus thermophilus bacteriophage dt1
1439	pi324	52%	Q9XJ81	orf384 gp; Streptococcus thermophilus bacteriophage sfi21
1440	pi325	46%	Q9XJ98	putative head-tail joining protein; Streptococcus thermophilus bacteriophage dt1
1441	pi326	62%	Q9XJW0	orf623 gp; Streptococcus thermophilus bacteriophage sfi19
1442	pi327	44%	Q9XJ95	hypothetical 17.4 kd protein; Streptococcus thermophilus bacteriophage dt1
1443	pi328	42%	CAB52516	hypothetical 20.6 kd protein; Lactobacillus bacteriophage phi adh putative
1444	pi329			
1445	pi330	69%	O53060	hypothetical 16.9 kd protein; Lactococcus lactis putative
1446	pi331			
1447	pi332			
1448	pi333	86%	O21897	hypothetical 12.7 kd protein; Bacteriophage skl
1449	pi334	46%	Q38107	orf21; Bacteriophage rlt
1450	pi335	97%	Q38106	dutpase; Bacteriophage rlt putative
1451	pi336			
1452	pi337	37%	Q38105	orf19; Bacteriophage rlt

1453	pi338	46%	Q38444	orf2; Bacteriophage t5
1454	pi339	25%	Q90767	atrial-specific myosin heavy-chain; Gallus gallus
1455	pi340	80%	Q9XJF1	hypothetical 22.4 kd protein; Bacteriophage tuc2009
1456	pi341	93%	Q38103	orf17; Bacteriophage rlt, and bacteriophage tuc2009 putative
1457	pi342			
1458	pi343	88%	Q38102	orf16; Bacteriophage rlt
1459	pi344	70%	Q38101	orf15; Bacteriophage rlt putative
1460	pi345			
1461	pi346	37%	O03914	zinc finger protein; Bacteriophage phigle
1462	pi347	35%	Q9XJE6	putative replisome organiser protein; Bacteriophage tuc2009
1463	pi348	66%	Q9XJE5	putative single stranded binding protein; Bacteriophage tuc2009
1464	pi349	31%	AAF10011	hypothetical 23.0 kd protein; Deinococcus radiodurans
1465	pi350	78%	O48508	hypothetical 14.7 kd protein; Bacteriophage tp901-1
1466	pi351	100%	Q38272	orf71; Lactococcus bacteriophage
1467	pi352	98%	Q9XJE0	hypothetical 9.9 kd protein; Bacteriophage tuc2009
1468	pi353	95%	Q38333	orf113; Lactococcus lactis phage bk5-t putative
1469	pi354			
1470	pi355	95%	O48505	hypothetical 28.3 kd protein; Bacteriophage tp901-1
1471	pi356	59%	O64369	hypothetical 9.2 kd protein; Lactobacillus casei bacteriophage a2
1472	pi357	56%	O64370	repressor; Lactobacillus casei bacteriophage a2
1473	pi358	37%	AAF12709	hypothetical 21.8 kd protein; Bacteriophage tpw22
1474	pi359	33%	O21991	orf203 protein; Streptococcus thermophilus bacteriophage sfi21
1475	pi360	54%	Q38159	integrase; Bacteriophage t2
1476	yofM	71%	P96468	ylxm; Streptococcus mutans
1477	lrrB	37%	Q9ZI97	putative response regulator; Lactobacillus sake
1478	kinB	87%	O07383	histidine kinase; Lactococcus lactis putative
1479	yogA			
1480	rgrB	34%	O34817	yvoa; Bacillus subtilis
1481	bmpA	48%	O05252	hypothetical lipoprotein yufn precursor; Bacillus subtilis
1482	cdd	55%	CAB51906	cytidine deaminase; Bacillus psychrophilus
1483	deoC	61%	P39121	deoxyribose-phosphate aldolase; Bacillus subtilis putative
1484	yogE			
1485	pdp	55%	P77836	pyrimidine-nucleoside phosphorylase; Bacillus stearothermophilus
1486	yogG	44%	Q53753	hypothetical 22.7 kd protein; Staphylococcus aureus
1487	coaA	43%	P44793	pantothenate kinase; Haemophilus influenzae putative
1488	yogI			
1489	yogJ	30%	O85699	hypothetical 35.5 kd protein; Streptomyces lividans
1490	yogL	51%	O06027	epsr protein; Lactococcus lactis
1491	yogM	48%	P77174	hypothetical 23.9 kd protein in csta-dsbg intergenic region; Escherichia coli
1492	yohA	27%	BAA35232	orf_id:o166#5; Escherichia coli
1493	yohB	30%	BAA35232	orf_id:o166#5; Escherichia coli
1494	yohC	24%	O67157	transcriptional regulator; Aquifex aeolicus putative
1495	yohD			

1496	busAB	90%	AAF04259	glycine-betaine binding permease protein; <i>Lactococcus lactis</i>
1497	busAA	96%	AAF04258	busaa; <i>Lactococcus lactis</i>
1498	busR	36%	P13669	fatty acyl responsive regulator; <i>Escherichia coli</i>
1499	yohH	27%	Q56916	trsd; <i>Yersinia enterocolitica</i>
1500	yohJ	28%	Q9WZ90	lipopolysaccharide biosynthesis protein, putative; <i>Thermotoga maritima</i>
1501	yoiA	20%	O96133	hypothetical 237.7 kd protein; <i>Plasmodium falciparum</i>
1502	yoiB	40%	Q9X4V4	cps2j; <i>Streptococcus suis</i>
1503	yoiC	27%	Q02290	xylanase b; <i>Neocallimastix patriciarum</i>
1504	bglH	64%	O86291	beta-glucosidase; <i>Lactobacillus plantarum</i>
1505	ptbA	49%	Q46129	pts-dependent enzyme ii; <i>Clostridium longisporum</i>
1506	bglR	98%	Q48639	bglr; <i>Lactococcus lactis</i>
1507	trpA	94%	Q01997	tryptophan synthase alpha chain; <i>Lactococcus lactis</i>
1508	trpB	100%	Q01998	tryptophan synthase beta chain; <i>Lactococcus lactis</i>
1509	yojB	39%	AAF10375	acetyltransferase, putative; <i>Deinococcus radiodurans</i>
1510	yojC			putative
1511	trpF	100%	Q02002	n-anthraniate isomerase; <i>Lactococcus lactis</i>
1512	trpC	100%	Q01999	indole-3-glycerol phosphate synthase; <i>Lactococcus lactis</i>
1513	trpD	100%	Q02000	anthranilate phosphoribosyltransferase; <i>Lactococcus lactis</i>
1514	trpG	99%	Q02003	anthranilate synthase component ii; <i>Lactococcus lactis</i>
1515	trpE	95%	Q02001	anthranilate synthase component i; <i>Lactococcus lactis</i>
1516	ypaA	70%	Q02009	hypothetical 13.3 kd protein in trpe 5'region; <i>Lactococcus lactis</i>
1517	rmaC	53%	P96707	putative nadh nitroreductase ydgi; <i>Bacillus subtilis</i>
1518	ypaC	29%	O87832	methyltransferase; <i>Streptomyces antibioticus</i>
1519	ypaD	31%	AAF13747	hypothetical 24.5 kd protein; <i>Zymomonas mobilis</i>
1520	ypaE	31%	AAF13747	hypothetical 24.5 kd protein; <i>Zymomonas mobilis</i>
1521	fur	35%	AAF00079	ferric uptake regulator homolog; <i>Staphylococcus aureus</i>
1522	ypaG	37%	P54940	hypothetical 13.0 kd protein in idh-deor intergenic region precursor; <i>Bacillus subtilis</i>
1523	ypaH	32%	P96661	hypothetical 35.3 kd protein in cspc-nap intergenic region; <i>Bacillus subtilis</i>
1524	rmeB	36%	P44558	hypothetical transcriptional regulator hi0186; <i>Haemophilus influenzae</i>
1525	ypaI	35%	O54197	clavulanate-9-aldehyde reductase; <i>Streptomyces claviger</i>
1526	dxs	35%	P26242	probable 1-deoxyxylulose-5-phosphate synthase; <i>Rhodobacter capsulatus</i>
1527	rmaE	30%	O85850	marr family regulator; <i>Sphingomonas aromaticivorans</i>
1528	ypbB	26%	AAF12002	transport protein, putative; <i>Deinococcus radiodurans</i>
1529	ypbC	23%	CAB50319	dinf related; <i>Pyrococcus abyssi</i>
1530	ypbD	23%	P70939	orf protein; <i>Bacteroides ovatus</i>
1531	guaA	94%	Q9Z6H4	gmp synthase; <i>Lactococcus lactis</i>
1532	scrK	61%	CAB09691	fructokinase; <i>Lactococcus lactis</i>
1533	ypbG	29%	O51771	xylose operon regulatory protein; <i>Borrelia burgdorferi</i>

1534	ypcA	50%	005508	c. thermocellum beta-glucosidase; Bacillus subtilis putative
1535	ypcB			
1536	ypcC	32%	Q9XBW4	immunoreactive 92 kda antigen pg21; Porphyromonas gingivalis
1537	ypcD	38%	Q9ZB22	endo-beta-n-acetylglucosaminidase; Arthrobacter protophormiae
1538	dexB	55%	084995	alpha, 1-6-glucosidase; Streptococcus pneumoniae
1539	lnbA	28%	Q9Z4I7	lacto-n-biosidase precursor; Streptomyces sp
1540	ypcG	27%	Q9WYP9	sugar abc transporter, periplasmic sugar-binding protein, putative; Thermotoga maritima
1541	ypcH	41%	Q44421	sugar-binding transport protein; Anaerocellum thermophilum
1542	ypdA	44%	Q44420	sugar-binding transport protein; Anaerocellum thermophilum
1543	ypdB	26%	BAA35398	hypothetical protein in hrsa 3'region; ; Escherichia coli
1544	ypdC	42%	CAB52976	hypothetical 47.8 kd protein; Streptomyces coelicolor
1545	rliB	31%	Q45831	transcription regulatory protein rega; Clostridium acetobutylicum
1546	ypdD	33%	AAD51075	immunoreactive 89kd antigen pg87; Porphyromonas gingivalis
1547	ypdE	41%	P74690	hypothetical 92.4 kd protein; Synechocystis sp
1548	xylT	60%	O52733	d-xylose-proton symporter; Lactobacillus brevis
1549	xyaX	26%	P77862	galactoside o-acetyltransferase; Escherichia coli
1550	xynB	51%	O52575	xylosidase/arabinosidase; Selenomonas ruminantium
1551	xynT	97%	AAD20246	xyloside transporter; Lactococcus lactis
1552	xylM	99%	Q9X417	mutarotate; Lactococcus lactis
1553	xylB	95%	Q9X419	xylulokinase; Lactococcus lactis
1554	xylA	93%	Q9X416	xylose isomerase; Lactococcus lactis
1555	xylR	94%	AAD20248	xylose regulatory protein; Lactococcus lactis
1556	purK	100%	Q9ZF42	purk protein; Lactococcus lactis
1557	purE	91%	Q9ZF43	pure protein; Lactococcus lactis
1558	purD	99%	Q9ZF44	purd protein; Lactococcus lactis
1559	ypfD	90%	Q9ZF45	hypothetical 14.0 kd protein; Lactococcus lactis
1560	tra983F	50%	087534	putative transposase; Streptococcus pyogenes
1561	ypfE	26%	O35018	lmrb; Bacillus subtilis
1562	ypfF	32%	O06480	yfnb; Bacillus subtilis
1563	purH	56%	P12048	B bifunctional purine biosynthesis protein purh [includes: phosphoribosylaminoimidazolecarboxamide formyltransferase ; imp cyclohydrolase (ec 3... hypoxanthine-guanine phosphoribosyltransferase; Bacillus firmus similar to dihydroflavonol-4-reductase; Caenorhabditis elegans putative abc transporter; Lactobacillus helveticus phosphoribosylglycinamide formyltransferase homolog; Streptococcus pyogenes phosphoribosylformylglycinamide cyclo-ligase; Lactococcus lactis clpb chaperone homolog; Lactococcus lactis putative putative phosphoribosylpyrophosphate amidotransferase; Lactococcus lactis
1564	hprt	59%	P94303	
1565	ypgB	29%	Q19391	
1566	ypgC			
1567	ypgD	28%	Q48569	
1568	purN	47%	AAF08602	
1569	purM	90%	068186	
1570	clpB	94%	068185	
1571	ypgH			
1572	ypfA			
1573	purF	94%	Q9ZB05	

1574	yphC	41%	CAB53269	putative oxidoreductase; <i>Streptomyces coelicolor</i>
1575	purL	94%	Q9ZB06	phosphoribosylformylglycinamide synthetase ii; <i>Lactococcus lactis</i>
1576	purQ	95%	Q9ZB07	phosphoribosylformylglycinamide synthetase i; <i>Lactococcus lactis</i>
1577	yphF	71%	Q9ZB08	hypothetical 9.9 kd protein; <i>Lactococcus lactis</i>
1578	purC	92%	AAD12623	phosphoribosylaminoimidazoleuccinocarboxamide synthetase; <i>Lactococcus lactis</i>
1579	yphH	41%	Q9X0A3	hypothetical 15.1 kd protein; <i>Thermotoga maritima</i>
1580	yphI			putative
1581	yphJ	37%	Q9XD79	2065. 4-carboxymuconolactone decarboxylase/3-oxoadipate enol-lactone hydrolase; <i>Streptomyces sp</i>
1582	yphK			putative
1583	ypiA	73%	P25145	hypothetical oxidoreductase in inla 5'region; <i>Listeria monocytogenes</i>
1584	ypiB	31%	CAB61253	orfB, orfC and hsp18 gene; <i>Oenococcus oeni</i>
1585	ypiC	35%	P97247	hypothetical 17.1 kd protein; <i>Bacillus subtilis</i>
1586	thyA	96%	P19368	thymidylate synthase; <i>Lactococcus lactis</i>
1587	ypiE			putative
1588	ypiF			putative
1589	ypiG			putative
1590	ypiH			putative
1591	tra981H	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
1592	ypiI	100%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
1593	ypiJ			putative
1594	ypiK			putative
1595	ypiL	18%	O39307	positional counterpart of hsv-1 gene us5; Equine herpesvirus 4
1596	ypjA	40%	O34179	dehydrogenase; <i>Halobacterium volcanii</i>
1597	ypjB			putative
1598	ypjC			putative
1599	pyrDa	92%	P54321	dihydroorotate dehydrogenase a; <i>Lactococcus lactis</i>
1600	ypjE	54%	P54154	putative peptide methionine sulfoxide reductase (peptide met; <i>Bacillus subtilis</i>
1601	ypjF	28%	CAB61731	putative oxidoreductase; ; <i>Streptomyces coelicolor</i>
1602	ypjG	41%	O06476	yfmr; <i>Bacillus subtilis</i>
1603	rlrE	51%	CAB36982	cpsy protein; <i>Streptococcus agalactiae</i>
1604	ypjH	32%	BAA35229	hypothetical protein in csta 3'region; ; <i>Escherichia coli</i>
1605	ypjI	80%	Q48644	cremoris partial putative open reading frame; <i>Lactococcus lactis</i>
1606	pepDB	53%	Q48558	dipeptidase; <i>Lactobacillus helveticus</i>
1607	papL	39%	P42977	poly polymerase; <i>Bacillus subtilis</i>
1608	yqaB	29%	AAF10345	hypothetical 18.1 kd protein; <i>Deinococcus radiodurans</i>
1609	dapB	50%	P42976	dihydronicotinate reductase; <i>Bacillus subtilis</i>
1610	yqaC	33%	P32436	degV protein; <i>Bacillus subtilis</i>
1611	yqaD			putative
1612	trmD	57%	O31741	trna -methyltransferase; <i>Bacillus subtilis</i>
1613	rimM	46%	O31740	probable 16s rrna processing protein rimm; <i>Bacillus subtilis</i>
1614	yqaG	30%	O28521	lysophospholipase; <i>Archaeoglobus fulgidus</i>
1615	hemH	37%	P43413	ferrochelatase; <i>Yersinia enterocolitica</i>
1616	yqbA			putative
1617	rpsP	65%	P21474	30s ribosomal protein s16; <i>Bacillus subtilis</i>

1618	mvaA	38%	O28538	3-hydroxy-3-methylglutaryl-coenzyme A reductase; Archaeoglobus fulgidus
1619	yqbC	47%	AAF11511	acetyl-coa acetyltransferase; Deinococcus radiodurans
1620	yqbD	55%	Q9ZB67	similar to condensing-enzymes; Staphylococcus carnosus
1621	nagB	49%	O31458	hypothetical 27.3 kd protein in gltp-cwlj intergenic region; Bacillus subtilis
1622	yqbF	26%	P54567	hypothetical 34.6 kd protein in glng-ansr intergenic region; Bacillus subtilis
1623	queA	63%	O32054	s-adenosylmethionine:trna ribosyltransferase-isomerase; Bacillus subtilis
1624	yqbH	55%	O06027	epsr protein; Lactococcus lactis
1625	yqbI			putative
1626	yqbJ	29%	Q9X336	pxol-66; Bacillus anthracis
1627	yqbK	21%	O76602	h02f09.3 protein; Caenorhabditis elegans
1628	yqcA	36%	Q54942	orf iota; Streptococcus pyogenes
1629	yqcB			putative
1630	yqcC			putative
1631	yqcD			putative
1632	yqcE			putative
1633	yqcF			putative
1634	yqcG			putative
1635	obgL	59%	P20964	spoOB-associated gtp-binding protein; Bacillus subtilis
1636	ftsQ	30%	P16655	division initiation protein; Bacillus subtilis
1637	murG	50%	O07109	undecaprenyl-pp-n-acetylmuramic acid-pentapeptide n-acetylglucosamine transferase; Enterococcus faecalis
1638	murD	58%	Q9ZHB0	d-glutamic acid adding enzyme murD; Streptococcus pneumoniae
1639	glnB	57%	O30794	nitrogen regulatory protein p-ii; Nostoc punctiforme
1640	amtB	38%	O26759	putative ammonium transporter mth663; Methanobacterium thermoautotrophicum
1641	kinA	87%	O07382	histidine kinase 11kina; Lactococcus lactis
1642	lrrA	61%	O87527	csrr; Streptococcus pyogenes
1643	yqdA	28%	O34445	ylbn protein; Bacillus subtilis
1644	rpmE	67%	Q9ZH28	ribosomal protein l31; Listeria monocytogenes
1645	yqeA			putative
1646	yqeB			putative
1647	yqeC	68%	Q38326	orf258; Lactococcus lactis phage bk5-t
1648	yqeD	36%	O34870	ykue protein; Bacillus subtilis
1649	pyrAA	66%	P77885	L glutaminase of carbamoyl-phosphate synthase (carbamoyl-phosphate synthase (carbamoyl-phosphate synthetase (gluta...
1650	pyrB	55%	P77883	aspartate carbamoyltransferase; Lactobacillus plantarum
1651	pyrP	51%	O52708	putative uracil permease; Enterococcus faecalis
1652	pyrR	60%	O52707	attenuation regulatory protein; Enterococcus faecalis
1653	yqeH			putative
1654	rarA	26%	Q55940	transcriptional repressor smtb homolog; Synechocystis sp
1655	yqeI	29%	O07084	cation transport protein yrdo; Bacillus subtilis
1656	proA	66%	P96489	gamma-glutamyl phosphate reductase; Streptococcus thermophilus
1657	proB	54%	P96488	glutamate 5-kinase; Streptococcus thermophilus
1658	yqfA	32%	CAB49904	hypothetical 52.3 kd protein; Pyrococcus abyssi
1659	yqfB			putative

1660	yqfC			putative
1661	yqfD	25%	O25889	hypothetical protein hp1331; <i>Helicobacter pylori</i>
1662	yqfE	34%	CAB61933	putative reductase; <i>Streptomyces coelicolor</i>
1663	yqfF	48%	P37354	spermidine N1-acetyltransferase; <i>Escherichia coli</i>
1664	ffh	65%	Q54431	signal recognition particle protein; <i>Streptococcus mutans</i>
1665	yqfG	29%	O68831	surface antigen bspa; <i>Bacteroides forsythus</i>
1666	yqgA	37%	Q45493	hypothetical 61.5 kd protein in adec-pdha intergenic region; <i>Bacillus subtilis</i>
1667	yqgG	53%	P26606	hypothetical 23.2 kd protein in slp-hdeb intergenic region; <i>Escherichia coli</i>
1668	dapA	47%	Q04796	dihydrodipicolinate synthase; <i>Bacillus subtilis</i>
1669	yqgC	34%	AAF10361	mutt/nudix family protein; <i>Deinococcus radiodurans</i>
1670	asd	69%	P10539	aspartate-semialdehyde dehydrogenase; <i>Streptococcus mutans</i>
1671	yqgE	49%	P22094	hypothetical 30.9 kd protein in pepX 5' region. <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i> putative
1672	yqgF			
1673	tkt	55%	P45694	transketolase; <i>Bacillus subtilis</i>
1674	kdgA	42%	Q9WXS1	2-dehydro-3-deoxyphosphogluconate aldolase/4-hydroxy-2-oxoglutarate aldolase; <i>Thermotoga maritima</i>
1675	kdgK	45%	P50845	2-dehydro-3-deoxygluconokinase; <i>Bacillus subtilis</i>
1676	uxaC	47%	P42607	uronate isomerase; <i>Escherichia coli</i>
1677	yqhA	40%	P73504	hypothetical 33.0 kd protein; <i>Synechocystis sp</i>
1678	uxuT	22%	AAD20246	xyloside transporter; <i>Lactococcus lactis</i>
1679	uxuA	57%	Q9WXS4	d-mannonate hydrolase; <i>Thermotoga maritima</i>
1680	uxuB	49%	Q9WXS3	d-mannonate oxidoreductase, putative; <i>Thermotoga maritima</i>
1681	kdgR	36%	Q9ZFL9	regulatory protein; <i>Bacillus stearothermophilus</i>
1682	yqiA	22%	Q54806	integral membrane protein; <i>Streptomyces pristinaespiralis</i>
1683	rbsB	44%	P36949	d-ribose-binding protein precursor; <i>Bacillus subtilis</i>
1684	rbsC	53%	P96731	membrane transport protein; <i>Bacillus subtilis</i>
1685	rbsA	59%	P96732	atp-binding transport protein; <i>Bacillus subtilis</i>
1686	rbsD	56%	P36946	high affinity ribose transport protein rbsd; <i>Bacillus subtilis</i>
1687	rbsK	46%	P36945	ribokinase; <i>Bacillus subtilis</i>
1688	rbsR	41%	P36944	ribose operon repressor; <i>Bacillus subtilis</i>
1689	purB	74%	P12047	adenylosuccinate lyase; <i>Bacillus subtilis</i>
1690	aroD	36%	P35146	3-dehydroquinate dehydratase; <i>Bacillus subtilis</i> putative
1691	yqjA			
1692	trxA	59%	CAB40815	thioredoxin; <i>Listeria monocytogenes</i>
1693	mutS	41%	P94545	mutS2 protein; <i>Bacillus subtilis</i>
1694	yqjB	30%	P94543	hypothetical 19.5 kd protein; <i>Bacillus subtilis</i>
1695	trxB2	39%	O05268	thioredoxine reductase; <i>Bacillus subtilis</i>
1696	ccpA	98%	Q9ZFC9	catabolite control protein; <i>Lactococcus lactis</i>
1697	pepQ	53%	O30666	pepq; <i>Streptococcus mutans</i>
1698	yqjD	25%	Q23915	protein kinase; <i>Dictyostelium discoideum</i>
1699	yqjE	48%	P50840	hypothetical 43.5 kd protein in cotd-kdud intergenic region precursor; <i>Bacillus subtilis</i> putative
1700	yraA			
1701	yraB	32%	P50839	hypothetical 11.6 kd protein in cotd-kdud intergenic region; <i>Bacillus subtilis</i>
1702	yraC	36%	O54085	hypothetical 39.7 kd protein; <i>Streptococcus agalactiae</i>

1703	yraD			putative
1704	ftsK	44%	P21458	stage iii sporulation protein e; <i>Bacillus subtilis</i>
1705	yraE	30%	Q45494	hypothetical 28.9 kd protein; <i>Bacillus subtilis</i>
1706	yraF			putative
1707	pta	62%	P39646	probable phosphate acetyltransferase; <i>Bacillus subtilis</i>
1708	udk	57%	Q32033	uridine kinase; <i>Bacillus subtilis</i>
1709	yrbA	34%	P42599	hypothetical 36.2 kd protein in ebgc-uxaa intergenic region; <i>Escherichia coli</i>
1710	yrbB	46%	P19385	lysozyme; <i>Bacteriophage cp-7</i>
1711	yrbC	20%	P39582	probable 1,4-dihydroxy-2-naphthoate octaprenyltransferase; <i>Bacillus subtilis</i>
1712	yrbD	28%	P73745	hypothetical 48.4 kd protein; <i>Synechocystis sp</i>
1713	yrbE			putative
1714	yrbF			putative
1715	yrbG			putative
1716	yrbH			putative
1717	yrbI	37%	Q30416	positive regulator gadr; <i>Lactococcus lactis</i>
1718	yrbJ	97%	P49016	probable menaquinone biosynthesis methyltransferase; <i>Lactococcus lactis</i>
1719	yrbK	84%	P49016	probable menaquinone biosynthesis methyltransferase; <i>Lactococcus lactis</i>
1720	pip	92%	P49022	phage infection protein; <i>Lactococcus lactis</i>
1721	ycrA	58%	P24240	6-phospho-beta-glucosidase ascb; <i>Escherichia coli</i>
1722	ycrB	55%	Q9X1H3	conserved hypothetical protein; <i>Thermotoga maritima</i>
1723	tktB	34%	Q67036	hypothetical 69.9 kd protein; <i>Aquifex aeolicus</i>
1724	kinF	42%	CAB54565	histidine kinase; <i>Streptococcus pneumoniae</i>
1725	lrrF	99%	Q9ZI77	putative response regulator; <i>Lactococcus lactis</i>
1726	rliA	95%	Q9ZI78	hypothetical 36.2 kd protein; <i>Lactococcus lactis</i>
1727	mapA	91%	Q9ZI79	hypothetical 68.4 kd protein; <i>Lactococcus lactis</i>
1728	agl	42%	P94451	exo-alpha-1, 4-glucosidase; <i>Bacillus stearothermophilus</i>
1729	amyY	38%	P20845	alpha-amylase precursor; <i>Bacillus megaterium</i>
1730	maa	40%	P77862	galactoside o-acetyltransferase; <i>Escherichia coli</i>
1731	malA	64%	Q84995	alpha, 1-6-glucosidase; <i>Streptococcus pneumoniae</i>
1732	dexC	49%	P38940	neopullulanase; <i>Bacillus stearothermophilus</i>
1733	malE	27%	Q07009	hypothetical 45.5 kd protein; <i>Bacillus subtilis</i>
1734	malF	34%	Q48396	cym a,b,c,d,e,f,g,h,i,j genes; <i>Klebsiella oxytoca</i>
1735	malG	38%	Q48397	cym a,b,c,d,e,f,g,h,i,j genes; <i>Klebsiella oxytoca</i>
1736	yreA			putative
1737	yreB			putative
1738	yreC			putative
1739	yreD	26%	P77262	hypothetical 23.0 kd protein in intf-eah intergenic region; <i>Escherichia coli</i>
	yreE			putative
1741	tra981I	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
1742	yrdA	100%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
1743	yrdB			putative
1744	yrfF	27%	Q9XAS7	r5 protein precursor; <i>Streptococcus agalactiae</i>
1745	yrfA	36%	Q31245	orf1 protein; <i>Agrobacterium radiobacter</i>
1746	yrfB	40%	P54524	probable nadh-dependent flavin oxidoreductase yqig; <i>Bacillus subtilis</i>
1747	arcC3	54%	Q53090	carbamate kinase; <i>Lactobacillus sake</i>

1748	yrfC	49%	AAD47622	bg33r. hypothetical 41.0 kd protein; Pseudomonas sp
1749	tra983G	50%	O87534	putative transposase; Streptococcus pyogenes
1750	yrfD	19%	BAA84897	orf62 protein; Escherichia coli
1751	otcA	45%	O58457	317aa long hypothetical ornithine carbamoyltransferase; Pyrococcus horikoshii
1752	lrrH	45%	O87395	two-component response regulator orra; Anabaena sp
1753	yrfE	31%	Q47828	psr; Enterococcus hirae
1754	cmk	50%	O05386	cytidylate kinase-like protein; Bacillus cereus putative
1755	yrgA			
1756	fer	36%	P29604	ferredoxin; Thermococcus litoralis
1757	ptnAB	74%	AAD46485	mannose-specific phosphotransferase system component iiab; Streptococcus salivarius
1758	ptnC	46%	AAD46486	mannose-specific phosphotransferase system component iic; Streptococcus salivarius
1759	ptnD	70%	AAD46487	mannose-specific phosphotransferase system component iid; Streptococcus salivarius
1760	yrgE	43%	AAD46488	hypothetical 13.7 kd protein; Streptococcus salivarius
1761	yrgF	28%	O51049	conserved hypothetical integral membrane protein; Borrelia burgdorferi
1762	yrgG	85%	Q48643	cremoris putative partial open reading frame; Lactococcus lactis
1763	serS	60%	P37464	seryl-tRNA synthetase; Bacillus subtilis
1764	yrgH	38%	O35046	yocd; Bacillus subtilis
1765	yrgI	26%	P36942	probable phosphoglycerate mutase 2; Escherichia coli
1766	phoU	35%	Q9X4T4	phou; Streptococcus pneumoniae
1767	pstA	63%	Q58418	probable phosphate transport atp-binding protein pstb; Methanococcus jannaschii
1768	pstB	58%	P46341	hypothetical abc transporter atp-binding protein in soda-comga intergenic region; Bacillus subtilis
1769	pstC	51%	P46340	probable abc transporter permease protein in soda-comga intergenic region; Bacillus subtilis
1770	pstD	47%	P46339	probable abc transporter permease protein in soda-comga intergenic region; Bacillus subtilis
1771	pstE	97%	O66079	lipoprotein nlp1 precursor; Lactococcus lactis
1772	pstF	56%	O66079	lipoprotein nlp1 precursor; Lactococcus lactis
1773	yrhG	70%	O85201	vacb homolog; Streptococcus pneumoniae
1774	yrhH	29%	O80443	f16m14.11 protein; Arabidopsis thaliana
1775	alaS	51%	O34526	alanyl-tRNA synthetase; Bacillus subtilis
1776	pmpA	84%	O66088	lipoprotein nlp4 precursor; Lactococcus lactis
1777	yriA	88%	P94877	methyltransferase; Lactococcus lactis
1778	pepF	96%	P54124	oligoendopeptidase f, plasmid; Lactococcus lactis
1779	coiA	74%	P94875	transcription factor; Lactococcus lactis
1780	yriB	82%	P94874	orf, genes homologous to vsf-1 and pepf2 and gene encoding protein homologous to methyltransferase; Lactococcus lactis
1781	yriC	41%	Q9ZB16	hypothetical 34.5 kd protein; Lactococcus lactis
1782	yriD	38%	AAF12190	conserved hypothetical protein; Deinococcus radiodurans
1783	yrijA	31%	P70947	hypothetical 30.6 kd protein; Bacillus subtilis
1784	yrijB	57%	O07020	hypothetical 26.4 kd protein; Bacillus subtilis
1785	yrijC	97%	O69147	putative iron-binding protein; Lactococcus lactis
1786	yrijD	77%	O69148	hypothetical 25.1 kd protein; Lactococcus lactis

1787	yrjE	93%	069149	putative membrane spanning protein; <i>Lactococcus lactis</i>
1788	yrjF	28%	P39074	bmr protein; <i>Bacillus subtilis</i>
1789	yrjG	31%	067622	hypothetical 64.3 kd protein; <i>Aquifex aeolicus</i>
1790	rpsT	40%	BAA01302	ribosomal protein s20; <i>Escherichia coli</i>
1791	recD	40%	034481	yrrc protein; <i>Bacillus subtilis</i>
1792	yrjI	28%	Q9X194	phosphoglycerate mutase; <i>Thermotoga maritima</i>
1793	pheA	86%	P43909	prephenate dehydratase; <i>Lactococcus lactis</i>
1794	aroK	85%	P43906	shikimate kinase; <i>Lactococcus lactis</i>
1795	aroA	89%	P43905	3-phosphoshikimate 1-carboxyvinyltransferase (epsp synthas. <i>Lactococcus lactis</i>)
1796	tyrA	77%	P43901	prephenate dehydrogenase; <i>Lactococcus lactis</i>
1797	kinG	41%	CAB54567	histidine kinase; <i>Streptococcus pneumoniae</i>
1798	lrrG	45%	CAB54566	response regulator; <i>Streptococcus pneumoniae</i>
1799	ysaA			putative
1800	ysaB	20%	P42424	hypothetical 70.5 kd protein in idh 3'region; <i>Bacillus subtilis</i>
1801	ysaC	49%	P42423	hypothetical abc transporter atp-binding protein in idh 3'region; <i>Bacillus subtilis</i>
1802	ysaD	37%	P54940	hypothetical 13.0 kd protein in idh-deor intergenic region precursor; <i>Bacillus subtilis</i>
1803	aroC	58%	P31104	chorismate synthase; <i>Bacillus subtilis</i>
1804	ysbA	32%	Q57064	unidentified; <i>Streptococcus pneumoniae</i>
1805	ysbB	32%	Q45498	hypothetical 24.6 kd protein; <i>Bacillus subtilis</i>
1806	ysbC	33%	AAF10690	hypothetical 16.7 kd protein; <i>Deinococcus radiodurans</i>
1807	aroB	42%	P73997	3-dehydroquinate synthase; <i>Synechocystis sp</i>
1808	aroE	37%	CAB49372	shikimate 5-dehydrogenase; <i>Pyrococcus abyssi</i>
1809	ysbD	42%	069601	hypothetical 24.3 kd protein; <i>Mycobacterium leprae</i>
1810	glnP	98%	AAF16724	putative integral membrane protein; <i>Lactococcus lactis</i>
1811	glnQ	62%	029577	glutamine abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
1812	yscA	21%	076602	h02f09.3 protein; <i>Caenorhabditis elegans</i>
1813	yscB			putative
1814	atpE	80%	AAF02208	h+ -atpase cytoplasmic f1-part epsilon-subunit; <i>Lactococcus lactis</i>
1815	atpD	91%	AAF02210	h+ -atpase cytoplasmic f1-part beta-subunit; <i>Lactococcus lactis</i>
1816	atpG	89%	AAF02207	h+ -atpase cytoplasmic f1-part gamma-subunit; <i>Lactococcus lactis</i>
1817	atpA	97%	AAF02206	h+ -atpase cytoplasmic f1-part alpha-subunit; <i>Lactococcus lactis</i>
1818	atpH	92%	AAF02205	h+ -atpase cytoplasmic f1-part delta-subunit; <i>Lactococcus lactis</i>
1819	atpF	99%	AAF02204	h+ -atpase f0-part b-subunit; <i>Lactococcus lactis</i>
1820	atpB	94%	AAF02203	h+ -atpase f0-part a-subunit; <i>Lactococcus lactis</i>
1821	yscD			putative
1822	yscE	94%	AAF02201	lipase; <i>Lactococcus lactis</i>
1823	comEC	40%	085198	competence protein; <i>Streptococcus pneumoniae</i>
1824	comEA	41%	P39694	come operon protein 1; <i>Bacillus subtilis</i>
1825	ysdA	25%	Q48856	hypothetical 46.8 kd protein; <i>Lactobacillus sake</i>
1826	ysdB	43%	087564	nata; <i>Bacillus firmus</i>
1827	ysdC			putative
1828	ysdD	30%	068850	hypothetical 19.3 kd protein; <i>Vibrio cholerae</i>
1829	ysdE	23%	Q57898	hypothetical protein mj0456; <i>Methanococcus jannaschii</i>
1830	tenA	37%	P25052	transcriptional activator tena; <i>Bacillus subtilis</i>

1831	birA1	31%	030162	biotin operon repressor/biotin--[acetyl coa carboxylase] ligase; <i>Archaeoglobus fulgidus</i>
1832	yseA	30%	057898	hypothetical protein ph0159; <i>Pyrococcus horikoshii</i>
1833	yseB	27%	007619	hypothetical 52.9 kd protein; <i>Bacillus subtilis</i>
1834	fadA	35%	P44873	acetyl-coa acetyltransferase; <i>Haemophilus influenzae</i>
1835	yseC			putative
1836	yseD			putative
1837	fabG2	40%	067610	3-oxoacyl-[acyl-carrier protein] reductase; <i>Aquifex aeolicus</i>
1838	yseE	37%	Q9WZQ7	conserved hypothetical protein; <i>Thermotoga maritima</i>
1839	yseF	65%	032162	yuru protein; <i>Bacillus subtilis</i>
1840	yseG	52%	032163	yurv protein; <i>Bacillus subtilis</i>
1841	yseH			putative
1842	yseI	58%	032164	yurw protein; <i>Bacillus subtilis</i>
1843	ysfA	39%	032165	yurx protein; <i>Bacillus subtilis</i>
1844	ysfB	73%	P80866	vegetative protein 296; <i>Bacillus subtilis</i>
1845	ysfC	57%	Q9XDW8	rgpg; <i>Streptococcus mutans</i>
1846	ysfD	27%	Q9XDW9	negative regulator of genetic competence; <i>Streptococcus mutans</i>
1847	gltQ	60%	029577	glutamine abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
1848	gltP	42%	Q9WZ61	amino acid abc transporter, permease protein; <i>Thermotoga maritima</i>
1849	ysfG	28%	034799	ytir; <i>Bacillus subtilis</i>
1850	rpoC	70%	Q9Z9M1	rpoC protein; <i>Bacillus sp</i>
1851	rpoB	69%	CAB56706	dna-dependent rna polymerase subunit beta; <i>Listeria monocytogenes</i>
1852	codZ	26%	P39779	cody protein; <i>Bacillus subtilis</i>
1853	ysgA	48%	006027	epsr protein; <i>Lactococcus lactis</i>
1854	pepO	99%	Q09145	neutral endopeptidase; <i>Lactococcus lactis</i>
1855	ysgB	39%	Q50855	putative methylguanine-dna methyltransferase; <i>Myxococcus xanthus</i>
1856	ysgC	31%	034674	ytgp; <i>Bacillus subtilis</i>
1857	murE	28%	067631	udp-murnac-tripeptide synthetase; <i>Aquifex aeolicus</i>
1858	adhA	63%	P20368	alcohol dehydrogenase i; <i>Zymomonas mobilis</i>
1859	recQ	49%	034748	recq homolog; <i>Bacillus subtilis</i>
1860	yshA	53%	Q9ZJ11	yjem; <i>Salmonella typhimurium</i>
1861	pepT	94%	P42020	peptidase t; <i>Lactococcus lactis</i>
1862	yshB	43%	068580	hypothetical 11.4 kd protein; <i>Streptococcus mutans</i>
1863	yshC	70%	P95765	intragenetic coaggregation-relevant adhesin; <i>Streptococcus gordonii</i>
1864	pflA	67%	068575	pyruvate formate-lyase activating enzyme; <i>Streptococcus mutans</i>
1865	ysiA	55%	068574	putative hemolysin; <i>Streptococcus mutans</i>
1866	ysiB	43%	068573	putative permease; <i>Streptococcus mutans</i>
1867	ysiC	36%	Q9X244	conserved hypothetical protein; <i>Thermotoga maritima</i>
1868	ysiD	54%	086222	hypothetical 25.1 kd protein; <i>Haemophilus influenzae rd</i>
1869	uvrA	63%	034863	excinuclease abc subunit a; <i>Bacillus subtilis</i>
1870	ysiE	24%	Q12263	serine/threonine-protein kinase gin4; <i>Saccharomyces cerevisiae</i>
1871	cobC	33%	P77109	putative cobalamin synthesis protein; <i>Escherichia coli</i>
1872	ysiG	52%	Q51440	d-lactate dehydrogenase; <i>Pediococcus acidilactici</i>

1873	ysjA	35%	O32257	yvbw protein; <i>Bacillus subtilis</i>
1874	ysjB	28%	BAA35876	mvim protein; <i>Escherichia coli</i>
1875	ysjC	35%	O34664	ylos protein; <i>Bacillus subtilis</i>
1876	ysjD	47%	Q05247	gene 37 protein; <i>Mycobacteriophage 15</i> putative
1877	ysjE			putative
1878	ysjF			
1879	asnS	57%	P39772	asparaginyl-trna synthetase; <i>Bacillus subtilis</i> putative
1880	ysjG			
1881	aspB	87%	AAF12702	aspartate aminotransferase; <i>Lactococcus lactis</i> putative
1882	ysjH			
1883	dinG	31%	O66684	atp-dependent helicase; <i>Aquifex aeolicus</i>
1884	ytaA	33%	Q57951	hypothetical protein mj0531; <i>Methanococcus jannaschii</i>
1885	ytaB	41%	Q05241	hypothetical 49.5 kd protein in tgl-pgi intergenic region; <i>Bacillus subtilis</i>
1886	ytaC	43%	P12256	penicillin acylase; <i>Bacillus sphaericus</i>
1887	ytaD	27%	Q9X7W7	hypothetical 31.4 kd protein; <i>Streptomyces coelicolor</i>
1888	oppA	87%	Q07741	oligopeptide-binding protein oppa precursor; <i>Lactococcus lactis</i>
1889	oppC	94%	Q07743	oligopeptide transport system permease protein oppC; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
1890	oppB	95%	P50989	oligopeptide transport system permease protein oppB; <i>Lactococcus lactis</i>
1891	oppF	99%	Q07734	oligopeptide transport atp-binding protein oppf; <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
1892	oppD	99%	P50980	oligopeptide transport atp-binding protein oppd; <i>Lactococcus lactis</i>
1893	rplT	54%	P55873	50s ribosomal protein 120; <i>Bacillus subtilis</i>
1894	rpmI	64%	P55874	50s ribosomal protein 135; <i>Bacillus subtilis</i>
1895	infC	55%	Q53084	translation initiation factor if-3; <i>Listeria monocytogenes</i>
1896	ytbA			putative
1897	ytbB	28%	Q06480	yfnb; <i>Bacillus subtilis</i>
1898	gidA	96%	Q32806	glucose inhibited division protein a; <i>Lactococcus lactis</i>
1899	ytbC			putative
1900	ytbD	49%	Q06665	putative dna binding protein; <i>Streptococcus gordonii</i>
1901	ytbE	54%	Q31418	yazc protein; <i>Bacillus subtilis</i>
1902	cysS	47%	Q06752	cysteinyl-trna synthetase; <i>Bacillus subtilis</i>
1903	yticA			putative
1904	cysE	50%	Q06750	serine acetyltransferase; <i>Bacillus subtilis</i>
1905	yticB			putative
1906	pnpA	60%	P50849	polyribonucleotide nucleotidyltransferase; <i>Bacillus subtilis</i>
1907	yticC	78%	Q30413	hypothetical 31.2 kd protein; <i>Lactococcus lactis</i>
1908	prsB	51%	Q33924	prpp synthetase; <i>Corynebacterium ammoniagenes</i>
1909	yticD	32%	Q26984	conserved protein; <i>Methanobacterium thermoautotrophicum</i>
1910	nifS	45%	Q34599	yrvo protein; <i>Bacillus subtilis</i>
1911	yticE			putative
1912	tuf	78%	P33170	elongation factor tu; <i>Streptococcus oralis</i>
1913	ytdA			putative
1914	ileS	62%	Q9ZHB3	isoleucine-trna synthetase; <i>Streptococcus pneumoniae</i>
1915	ytdB	36%	Q9ZHB4	cell division protein diviva; <i>Streptococcus pneumoniae</i>
1916	ytdC	35%	Q9ZHB5	ylmh; <i>Streptococcus pneumoniae</i>
1917	ytdD	81%	Q9ZAI8	hypothetical 10.9 kd protein; <i>Lactococcus lactis</i>

1918	ytdE	85%	Q9ZAI9	hypothetical 21.9 kd protein; <i>Lactococcus lactis</i>
1919	ytdF	92%	Q9ZAJ0	hypothetical 25.5 kd protein; <i>Lactococcus lactis</i>
1920	ftsZ	83%	Q9ZAJ1	cell division protein ftsz; <i>Lactococcus lactis</i>
1921	ftsA	92%	Q9ZAJ2	cell division protein ftsa; <i>Lactococcus lactis</i>
1922	yteA	33%	P70945	hypothetical 31.3 kd protein; <i>Bacillus subtilis</i>
1923	trmH	45%	Q06753	hypothetical trna/rRNA methyltransferase yaco; <i>Bacillus subtilis</i>
1924	yteB	32%	O32159	hypothetical 39.4 kd oxidoreductase in hom-mrga intergenic region; <i>Bacillus subtilis</i>
1925	yteC	41%	P22045	probable reductase; <i>Leishmania major</i>
1926	yteD	26%	O69986	transmembrane efflux protein; <i>Streptomyces coelicolor</i>
1927	r1rB	26%	O66882	transcriptional regulator; <i>Aquifex aeolicus</i>
1928	rmeA	37%	O06008	mercuric resistance operon regulatory protein; <i>Bacillus subtilis</i>
1929	pepC	95%	Q04723	aminopeptidase c; <i>Lactococcus lactis</i>
1930	yteE	87%	Q04731	hypothetical protein in pepC 5' region; <i>Lactococcus lactis</i>
1931	pfs	38%	P24247	mta/sah nucleosidase [includes: 5'- methylthioadenosine nucleosidase ; s- adenosylhomocysteine nucleosidase]; <i>Escherichia coli</i>
1932	ytfA			putative
1933	ytfB	49%	P54570	hypothetical 21.0 kd protein in glnq-ansr intergenic region; <i>Bacillus subtilis</i>
1934	glmU	54%	P14192	udp-n-acetylglucosamine pyrophosphorylase; <i>Bacillus subtilis</i>
1935	proC	37%	Q04708	pyrroline-5-carboxylate reductase; <i>Pisum sativum</i>
1936	tra983H	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
1937	rpsO	61%	P05766	30s ribosomal protein s15; <i>Bacillus stearothermophilus</i>
1938	ytfC	86%	Q9ZEK3	hypothetical 41.6 kd protein; <i>Lactococcus lactis</i>
1939	ytfD	93%	Q9ZEK4	pppl protein; <i>Lactococcus lactis</i>
1940	sunL	92%	Q9ZEK5	sunL protein; <i>Lactococcus lactis</i>
1941	ytgH	74%	Q48606	putative 20-kda protein; <i>Lactococcus lactis</i>
1942	ytgA			putative
1943	ytgB	52%	P96594	ydas protein; <i>Bacillus subtilis</i>
1944	fmt	46%	P94463	methionyl-trna formyltransferase; <i>Bacillus subtilis</i>
1945	yteG	42%	Q9X7R8	hypothetical 17.7 kd protein; <i>Streptomyces coelicolor</i>
1946	ytgC	31%	Q58549	adp-ribose pyrophosphatase; <i>Methanococcus jannaschii</i>
1947	ytgD			putative
1948	priA	47%	P94461	primosomal protein n'; <i>Bacillus subtilis</i>
1949	ytgE	43%	O35011	ylod protein; <i>Bacillus subtilis</i>
1950	gmk	60%	O34328	ylod protein; <i>Bacillus subtilis</i>
1951	ytgF	54%	O31774	ymda protein; <i>Bacillus subtilis</i>
1952	ytgG	39%	P31470	hypothetical 23.3 kd protein in tnab-bglb intergenic region; <i>Escherichia coli</i>
1953	metK	65%	P50307	s-adenosylmethionine synthetase; <i>Staphylococcus aureus</i>
1954	ythD	43%	Q9ZKG8	cyclopocyclopropane fatty acid synthase; <i>Helicobacter pylori</i> j99
1955	cfa	43%	O25171	cyclopropane fatty acid synthase; <i>Helicobacter pylori</i>
1956	birA2	33%	O27938	biotin acetyl-coa carboxylase ligase / biotin operon repressor bifunctional protein; <i>Methanobacterium thermoautotrophicum</i>
1957	ythA	38%	Q9X0P0	conserved hypothetical protein; <i>Thermotoga maritima</i>

1958	ythB	46%	Q9X0P0	conserved hypothetical protein; <i>Thermotoga maritima</i>
1959	ythC	23%	Q34628	yvlb; <i>Bacillus subtilis</i>
1960	acmB	42%	Q52362	n-acetylmuramidase precursor; <i>Lactococcus lactis</i>
1961	tra983I	50%	Q87534	putative transposase; <i>Streptococcus pyogenes</i>
1962	fbaA	74%	Q65944	fructose-bisphosphate aldolase; <i>Streptococcus pneumoniae</i>
1963	ytiA	32%	P37027	hypothetical 22.1 kd protein in hemL-pfs intergenic region; <i>Escherichia coli</i>
1964	thrS	59%	P18255	threonyl-tRNA synthetase 1; <i>Bacillus subtilis</i>
1965	ytjA			putative
1966	ytjB	25%	P96593	hypothetical 45.7 kd protein in mutt-gsib intergenic region; <i>Bacillus subtilis</i>
1967	ytjC	36%	AAD46617	nramp manganese transport protein mnth; <i>Escherichia coli</i>
1968	ytjD	34%	P37261	hypothetical 21.1 kd protein in fusL-agp1 intergenic region; <i>Saccharomyces cerevisiae</i>
1969	upp	99%	P50926	uracil phosphoribosyltransferase; <i>Lactococcus lactis</i>
1970	nah	88%	Q48731	na/h antiporter homolog; <i>Lactococcus lactis</i>
1971	ytjE	37%	Q08432	putative aminotransferase b; <i>Bacillus subtilis</i>
1972	metB1	50%	Q31631	yjci protein; <i>Bacillus subtilis</i>
1973	metA	53%	Q9WZY3	homoserine O-succinyltransferase; <i>Thermotoga maritima</i>
1974	ytjF			putative
1975	ytjG	26%	Q9WY71	conserved hypothetical protein; <i>Thermotoga maritima</i>
1976	ytjH	37%	P42096	lack protein, chromosomal; <i>Lactococcus lactis</i>
1977	yuaA	38%	Q53606	cmp-binding-factor 1; <i>Staphylococcus aureus</i>
1978	yuaB	23%	Q9Z6S7	yign family hypothetical protein; <i>Chlamydia pneumoniae</i>
1979	rpe	55%	P51012	ribulose-phosphate 3-epimerase; <i>Rhodobacter capsulatus</i>
1980	yuaC			putative
1981	yuaD	45%	Q34530	yloq protein; <i>Bacillus subtilis</i>
1982	yuaE	61%	Q66078	putative extracellular protein exp1 precursor; <i>Lactococcus lactis</i>
1983	pheT	44%	P17922	phenylalanyl-tRNA synthetase beta chain; <i>Bacillus subtilis</i>
1984	pheS	60%	P17921	phenylalanyl-tRNA synthetase alpha chain; <i>Bacillus subtilis</i>
1985	pdc	78%	P94900	p-coumaric acid decarboxylase; <i>Lactobacillus plantarum</i>
1986	tra983J	50%	Q87534	putative transposase; <i>Streptococcus pyogenes</i>
1987	yubA	25%	P71160	intb, rega, gepa, gepb, and gpc genes; <i>Bacteroides nodosus</i>
1988	yubB			putative
1989	yubK			putative
1990	yubD	92%	AAF12712	hypothetical 9.1 kd protein; <i>Bacteriophage tpw22</i>
1991	yubE	35%	P39909	spermine/spermidine acetyltransferase; <i>Bacillus subtilis</i>
1992	tra983K	50%	Q87534	putative transposase; <i>Streptococcus pyogenes</i>
1993	yubF	32%	P53352	inner centromere protein; <i>Gallus gallus</i>
1994	yubG	27%	CAB49281	chromosome segregation protein; <i>Pyrococcus abyssi</i>
1995	yubH			putative
1996	yubI			putative
1997	yubJ			putative
1998	yucA	49%	Q00370	hypothetical 26.8 kd protein; <i>Bacteriophage 50</i>

1999	yucB				putative
2000	yucC	30%	P45197	hypothetical protein hil412; <i>Haemophilus influenzae</i>	
2001	yucD			putative	
2002	yucE	30%	P03035	repressor protein c2; Bacteriophage p22, and bacteriophage p21	
2003	intS	26%	P97010	integrase; Bacteriophage t12	
2004	yucF	38%	P94443	yfio; <i>Bacillus subtilis</i>	
2005	chiA	49%	Q9WXD3	chitinase cl; <i>Serratia marcescens</i>	
2006	yucG	46%	Q83009	cbp21 precursor; <i>Serratia marcescens</i>	
2007	purA	67%	P29726	adenylosuccinate synthetase; <i>Bacillus subtilis</i>	
2008	yudA	30%	P95773	cadb; <i>Staphylococcus lugdunensis</i>	
2009	yudB			putative	
2010	yudC			putative	
2011	yudD	30%	Q45146	insertion sequence is1168 and nimb gene for 5-nitroimidazole antibiotic resistance protein; <i>Bacteroides fragilis</i>	
2012	yudE			putative	
2013	yudF			putative	
2014	yudG	57%	Q9ZB45	hypothetical 30.1 kd protein; <i>Streptococcus pyogenes</i>	
2015	yudH	40%	P45862	hypothetical 19.6 kd protein in acda 5'region; <i>Bacillus subtilis</i>	
2016	yudI	59%	P37567	hypothetical 37.1 kd protein in folk-lyss intergenic region; <i>Bacillus subtilis</i>	
2017	yudJ	43%	P42978	hypothetical 23.6 kd protein in qcrc-dapb intergenic region; <i>Bacillus subtilis</i>	
2018	yudK	43%	P42978	hypothetical 23.6 kd protein in qcrc-dapb intergenic region; <i>Bacillus subtilis</i>	
2019	yudL	39%	Q48842	gene cluster; <i>Lactobacillus sake</i>	
2020	aspS	53%	O32038	aspartyl-trna synthetase; <i>Bacillus subtilis</i>	
2021	yueA	42%	CAB49889	hit-like protein; <i>Pyrococcus abyssi</i>	
2022	hisS	63%	P30053	histidyl-trna synthetase; <i>Streptococcus equisimilis</i>	
2023	yueB	23%	O30416	positive regulator gadr; <i>Lactococcus lactis</i>	
2024	yueC			putative	
2025	pgsA	58%	O87532	phosphatidylglycerophosphate synthase; <i>Streptococcus pyogenes</i>	
2026	yueD	35%	P94510	hypothetical 34.7 kd protein; <i>Bacillus subtilis</i>	
2027	yueE	43%	O31766	ymfh protein; <i>Bacillus subtilis</i>	
2028	yueF	36%	O87529	hypothetical 48.2 kd protein; <i>Streptococcus pyogenes</i>	
2029	yufA	71%	Q48692	dna for orf121 and recf genes; <i>Lactococcus lactis</i>	
2030	recF	99%	P50925	recf protein; <i>Lactococcus lactis</i>	
2031	pcaC	40%	O26336	gamma-carboxymuconolactone decarboxylase; <i>Methanobacterium thermoautotrophicum</i>	
2032	yufB	42%	AAF11850	transcriptional regulator, merr family; <i>Deinococcus radiodurans</i>	
2033	yufC	69%	Q9ZB16	hypothetical 34.5 kd protein; <i>Lactococcus lactis</i>	
2034	galE	99%	O87524	udp-galactose-4-epimerase; <i>Lactococcus lactis</i>	
2035	lacZ	98%	O87523	beta-galactosidase; <i>Lactococcus lactis</i>	
2036	thgA	99%	AAC63019	putative galactoside o-acetyltransferase; <i>Lactococcus lactis</i>	
2037	galt	99%	O87522	galactose-1-phosphate uridylyltransferase; <i>Lactococcus lactis</i>	
2038	galK	93%	AAD11510	galactokinase; <i>Lactococcus lactis</i>	
2039	galM	99%	Q9ZB17	aldose 1-epimerase; <i>Lactococcus lactis</i>	
2040	lacS	91%	Q9ZB18	lactose permease; <i>Lactococcus lactis</i>	

2041	yugA	94%	Q9ZB19	hypothetical 27.6 kd protein; <i>Lactococcus lactis</i>
2042	yugB	93%	Q9ZB20	hypothetical 37.6 kd protein; <i>Lactococcus lactis</i>
2043	nadR	28%	P27278	transcriptional regulator nadr; <i>Escherichia coli</i>
2044	yugC	32%	Q9X4A4	hypothetical 35.4 kd protein; <i>Staphylococcus aureus</i>
2045	yugD	48%	032034	yrro protein; <i>Bacillus subtilis</i> putative
2046	yuhA			
2047	yuhB	32%	032035	yrrn protein; <i>Bacillus subtilis</i> putative
2048	yuhC			
2049	yuhD	36%	P42313	hypothetical 31.5 kd protein in katb 3'region; <i>Bacillus subtilis</i>
2050	yuhE	32%	Q9Y321	cgi-32 protein; <i>Homo sapiens</i>
2051	ecsB	26%	P55340	protein ecsb; <i>Bacillus subtilis</i>
2052	ecsA	60%	P55339	abc-type transporter atp-binding protein ecsa; <i>Bacillus subtilis</i>
2053	yuhH	25%	007592	hypothetical 27.5 kd protein; <i>Bacillus subtilis</i>
2054	yuhI	54%	007513	hit protein; <i>Bacillus subtilis</i> putative
2055	yuhJ			
2056	rplA	58%	Q06797	50s ribosomal protein l1; <i>Bacillus subtilis</i>
2057	rplK	80%	P36254	50s ribosomal protein l11; <i>Staphylococcus carnosus</i>
2058	yuiA	38%	Q60048	probable cadmium-transporting atpase; <i>Listeria monocytogenes</i>
2059	rcfA	49%	CAB53581	fnr-like protein; <i>Lactococcus lactis</i>
2060	tra983L	50%	087534	putative transposase; <i>Streptococcus pyogenes</i>
2061	yuiB	41%	031864	yoze protein; <i>Bacillus subtilis</i>
2062	yuiF	52%	P54154	putative peptide methionine sulfoxide reductase (peptide met; <i>Bacillus subtilis</i> yitl protein; <i>Bacillus subtilis</i> putative
2063	yuiC	35%	006747	putative
2064	yuiD			
2065	frr	53%	P81101	ribosome recycling factor; <i>Bacillus subtilis</i>
2066	pyrH	94%	Q9Z5K8	ump-kinase; <i>Lactococcus lactis</i>
2067	yuiE			putative
2068	ackA2	53%	P37877	acetate kinase; <i>Bacillus subtilis</i>
2069	ackA1	50%	P37877	acetate kinase; <i>Bacillus subtilis</i>
2070	yujA	32%	P37876	hypothetical 37.4 kd protein in acka-sspa intergenic region; <i>Bacillus subtilis</i>
2071	typA	70%	007631	gtp-binding protein typa/bipa homolog; <i>Bacillus subtilis</i>
2072	yujB			putative
2073	yujC			putative
2074	yujD	54%	Q9ZHB1	hypothetical 24.0 kd protein; <i>Streptococcus pneumoniae</i>
2075	yujE	23%	Q9ZHB2	hypothetical 55.9 kd protein; <i>Streptococcus pneumoniae</i> putative
2076	yujF			
2077	yujG	24%	Q9X474	entr; <i>Enterococcus faecium</i>
2078	yvaA	35%	031391	orf1 protein; <i>Bacillus megaterium</i>
2079	glk	43%	031392	glucose kinase; <i>Bacillus megaterium</i>
2080	yvaB	35%	P54510	hypothetical 14.6 kd protein in gcvt-spoiiiaa intergenic region; <i>Bacillus subtilis</i>
2081	yvaC	48%	085254	hypothetical 19.3 kd protein; <i>Streptococcus pneumoniae</i>
2082	tra981J	92%	Q48668	insertion sequence is981; <i>Lactococcus lactis</i>
2083	yuiI	100%	Q48667	insertion sequence is981; <i>Lactococcus lactis</i>
2084	comC	26%	P15378	type 4 prepilin-like protein specific leader peptidase; <i>Bacillus subtilis</i>

2085	dinP	42%	Q47155	dna-damage-inducible protein p; <i>Escherichia coli</i>
2086	yvaD	24%	060155	putative prolyl-trna synthetase; <i>Schizosaccharomyces pombe</i>
2087	arcD2	62%	032816	arginine/ornithine antiporter homolog arcD; <i>Lactococcus lactis</i>
2088	arcT	52%	053091	orfT; <i>Lactobacillus sake</i>
2089	arcC2	50%	053090	carbamate kinase; <i>Lactobacillus sake</i>
2090	arcC1	51%	053090	carbamate kinase; <i>Lactobacillus sake</i>
2091	arcD1	86%	032816	arginine/ornithine antiporter homolog arcD; <i>Lactococcus lactis</i>
2092	arcB	72%	053089	ornithine transcarbamoylase; <i>Lactobacillus sake</i>
2093	arcA	60%	053088	arginine deiminase; <i>Lactobacillus sake</i>
2094	argS	37%	074781	putative arginyl-trna synthetase, cytoplasmic; <i>Schizosaccharomyces pombe</i>
2095	argR	37%	Q54870	probable arginine repressor; <i>Streptococcus pneumoniae</i>
2096	murC	56%	P40778	udp-n-acetylmuramate--alanine ligase; <i>Bacillus subtilis</i>
2097	yvcA			putative
2098	yvcB	38%	P94295	orf1 and snf2 gene; <i>Bacillus cereus</i>
2099	yvcC	28%	Q9ZV10	retrotransposon-like protein; <i>Arabidopsis thaliana</i>
2100	poxL	43%	P37063	pyruvate oxidase; <i>Lactobacillus plantarum</i>
2101	yvdA	27%	CAB61729	possible secreted esterase; <i>Streptomyces coelicolor</i>
2102	yvdB	94%	068177	cycl; <i>Lactococcus lactis</i>
2103	yvdC	31%	Q47774	orf8; <i>Enterococcus faecalis</i>
2104	yvdD	92%	P22094	hypothetical 30.9 kd protein in pepX 5'region. <i>Lactococcus lactis</i> , and <i>lactococcus lactis</i>
2105	pepxP	89%	P22093	xaa-pro dipeptidyl-peptidase (x-p. <i>Lactococcus lactis</i>)
2106	yvdE	90%	P22347	hypothetical 18.7 kd protein in pepX 3'region; <i>Lactococcus lactis</i>
2107	yvdF	29%	P54952	probable amino-acid abc transporter binding protein in idh-deor intergenic region precursor; <i>Bacillus subtilis</i>
2108	yvdG	48%	P77212	probable pyridine nucleotide-disulfide oxidoreductase in eaeH-beta intergenic region; <i>Escherichia coli</i>
2109	gltX	56%	086083	glutamyl-trna synthetase; <i>Lactobacillus delbrueckii</i>
2110	yveA	32%	028131	isochorismatase; <i>Archaeoglobus fulgidus</i>
2111	yveB			putative
2112	yveC	27%	CAB57420	putative arylalkylamine n-acetyltransferase; <i>Schizosaccharomyces pombe</i>
2113	yveD			putative
2114	yveE			putative
2115	yveF	38%	087247	conserved hypothetical protein; <i>Lactococcus lactis</i>
2116	yveG			putative
2117	yveH	43%	AAF10688	conserved hypothetical protein; <i>Deinococcus radiodurans</i>
2118	tra983M	50%	087534	putative transposase; <i>Streptococcus pyogenes</i>
2119	yveI			putative
2120	radA	58%	086063	rada homolog; <i>Listeria monocytogenes</i>
2121	yvfA	36%	067432	cation transporting atpase; <i>Aquifex aeolicus</i>
2122	yvfB			putative
2123	rplQ	72%	P20277	50s ribosomal protein l17; <i>Bacillus subtilis</i>
2124	rpoA	58%	BAA75298	rpoA protein; <i>Bacillus</i> sp
2125	rpsK	73%	P04969	30s ribosomal protein s11; <i>Bacillus subtilis</i>

2126	rpsM	70%	P20282	30s ribosomal protein s13; <i>Bacillus subtilis</i>
2127	rpmJ	100%	P27146	50s ribosomal protein 136; <i>Lactococcus lactis</i>
2128	infA	100%	P27149	translation initiation factor if-1; <i>Lactococcus lactis</i>
2129	tra904H	99%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
2130	yvfD	98%	Q48710	span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i>
2131	tra1077F	98%	O32787	transposase; <i>Lactococcus lactis</i>
2132	yvfC	99%	O32786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
2133	adk	98%	P27143	adenylate kinase; <i>Lactococcus lactis</i>
2134	secY	96%	P27148	preprotein translocase secY subunit; <i>Lactococcus lactis</i>
2135	rplO	58%	O06445	50s ribosomal protein 115; <i>Staphylococcus aureus</i>
2136	rpmD	62%	O06444	50s ribosomal protein 130; <i>Staphylococcus aureus</i>
2137	rpsE	58%	Q9Z9J7	rpsE protein; <i>Bacillus</i> sp
2138	rplR	49%	P46899	50s ribosomal protein 118; <i>Bacillus subtilis</i>
2139	rplF	63%	P02391	50s ribosomal protein 16; <i>Bacillus stearothermophilus</i>
2140	rpsH	71%	P12879	30s ribosomal protein s8; <i>Bacillus subtilis</i> putative
2141	yvgA			
2142	rpsN	81%	P54798	30s ribosomal protein s14; <i>Bacillus stearothermophilus</i>
2143	rplE	80%	P08895	50s ribosomal protein 15; <i>Bacillus stearothermophilus</i>
2144	rplX	75%	Q9WW6	rpl24; <i>Streptococcus pneumoniae</i>
2145	rplN	74%	Q9WV22	rpl14; <i>Streptococcus pneumoniae</i>
2146	rpsQ	88%	Q9WW03	rps17; <i>Streptococcus pneumoniae</i>
2147	rpmC	69%	Q9WW8	rpl29; <i>Streptococcus pneumoniae</i>
2148	rplP	89%	Q9X5K1	rpl16; <i>Streptococcus pneumoniae</i>
2149	rpsC	87%	Q9WW37	rps3; <i>Streptococcus pneumoniae</i>
2150	rplV	84%	Q9WVU5	rpl22; <i>Streptococcus pneumoniae</i>
2151	rpsS	90%	Q9WW12	rps19; <i>Streptococcus pneumoniae</i>
2152	rplB	76%	P42919	50s ribosomal protein 12; <i>Bacillus subtilis</i>
2153	rplW	54%	P04454	50s ribosomal protein 123; <i>Bacillus stearothermophilus</i>
2154	rplD	61%	P42921	50s ribosomal protein 14; <i>Bacillus subtilis</i>
2155	rplC	69%	Q9Z9L4	rplc protein; <i>Bacillus</i> sp
2156	rpsJ	86%	P48853	30s ribosomal protein s10; <i>Streptococcus mutans</i>
2157	mscL	44%	P94585	large-conductance mechanosensitive channel; <i>Bacillus subtilis</i>
2158	yvhA	27%	Q58119	hypothetical protein mj0709; <i>Methanococcus jannaschii</i>
2159	thrC	38%	Q42598	threonine synthase; <i>Schizosaccharomyces pombe</i>
2160	nusG	49%	Q06795	transcription antitermination protein nusG; <i>Bacillus subtilis</i> putative
2161	secE			
2162	rpmGC	57%	P51415	50s ribosomal protein 133; <i>Mycoplasma capricolum</i>
2163	yvhB	29%	O05402	hypothetical 72.2 kd protein; <i>Bacillus subtilis</i>
2164	pbp2A	50%	O70039	penicillin-binding protein 2a; <i>Streptococcus pneumoniae</i>
2165	yviA	33%	O32050	yrbg protein; <i>Bacillus subtilis</i> putative
2166	yviB			
2167	yviC	39%	Q46604	fmn-binding protein; <i>Desulfovibrio vulgaris</i>
2168	yviD	37%	P54604	hypothetical 33.7 kd protein in cspb-glp intergenic region; <i>Bacillus subtilis</i>
2169	zitP	57%	O33704	adcb protein; <i>Streptococcus pneumoniae</i>
2170	zitQ	65%	O87862	adcc protein; <i>Streptococcus pneumoniae</i>

2171	zitS	43%	034966	ycdh; <i>Bacillus subtilis</i>
2172	zitR	48%	033703	adcr protein; <i>Streptococcus pneumoniae</i>
2173	yviH	57%	086274	hypothetical 9.1 kd protein; <i>Lactococcus lactis</i>
2174	yviI	76%	086275	orf150 protein; <i>Lactococcus lactis</i>
2175	yviJ	52%	086276	hypothetical 14.8 kd protein; <i>Lactococcus lactis</i>
2176	comGD	31%	085196	competence protein; <i>Streptococcus pneumoniae</i>
2177	comGC	74%	086277	orf125 protein; <i>Lactococcus lactis</i>
2178	comGB	70%	086278	orf348 protein; <i>Lactococcus lactis</i>
2179	comGA	76%	086279	orf248 protein; <i>Lactococcus lactis</i>
2180	polC	98%	086280	dna polymerase iii alpha chain-like protein; <i>Lactococcus lactis</i> putative
2181	yvja		P37061	nadh oxidase; <i>Enterococcus faecalis</i>
2182	noxD	33%	031755	prolyl-trna synthetase; <i>Bacillus subtilis</i>
2183	proS	50%		eep; <i>Enterococcus faecalis</i>
2184	yvjb	52%	AAD47948	cdp-diacylglycerol synthase; <i>Helicobacter pylori</i> j99
2185	cdsA	37%	Q9ZML7	undecaprenyl pyrophosphate synthetase; <i>Bacillus subtilis</i>
2186	ywaA	49%	031751	orf11; <i>Enterococcus faecalis</i>
2187	ywaB	50%	Q47777	dna alkylation repair enzyme; <i>Bacillus cereus</i>
2188	ywaC	40%	Q9XBL3	dna alkylation repair enzyme; <i>Bacillus cereus</i>
2189	ywaD	45%	Q9XBL3	yyda protein; <i>Bacillus subtilis</i>
2190	ywaE	54%	Q45601	putative transposase; <i>Streptococcus pyogenes</i>
2191	tra983N	50%	087534	putative serine protease; <i>Streptococcus pneumoniae</i>
2192	htrA	58%	006670	dtag, rpod, cpoa genes and orf3 and orf5; <i>Streptococcus pneumoniae</i>
2193	ywaF	26%	006452	dtag, rpod, cpoa genes and orf3 and orf5; <i>Streptococcus pneumoniae</i>
2194	ywaG	55%	006453	dtag, rpod, cpoa genes and orf3 and orf5; <i>Streptococcus pneumoniae</i> putative
2195	ywaH			rhoptry protein; <i>Plasmodium berghei yoelii</i>
2196	ywaI	23%	Q26223	hypothetical 28.3 kd protein in xpac-abrb
2197	ywbA	46%	P37543	intergenic region; <i>Bacillus subtilis</i>
2198	polA	93%	032801	dna polymerase i; <i>Lactococcus lactis</i>
2199	ywbB	90%	032800	dna polymerase i; <i>Lactococcus lactis</i>
2200	rliD	43%	P37517	hypothetical transcriptional regulator in tetl-exoa intergenic region; <i>Bacillus subtilis</i>
2201	tra904I	100%	CAA55220	is1069 gene; <i>Lactococcus lactis</i>
2202	yvjF	98%	Q48710	span gene encoding nisin and insertion sequence is904; <i>Lactococcus lactis</i>
2203	tra1077G	98%	032787	transposase; <i>Lactococcus lactis</i>
2204	ywcB	99%	032786	hypothetical 21.3 kd protein; <i>Lactococcus lactis</i>
2205	ywbD	27%	P37517	hypothetical transcriptional regulator in tetl-exoa intergenic region; <i>Bacillus subtilis</i>
2206	ywcA	76%	Q48591	n of 16s rrna gene; <i>Lactococcus lactis</i>
2207	ezrA	21%	034894	ytwp; <i>Bacillus subtilis</i>
2208	tsf	39%	Q9ZJ71	elongation factor ts; <i>Helicobacter pylori</i> j99
2209	rpsB	71%	P49668	30s ribosomal protein s2; <i>Pediococcus acidilactici</i>
2210	ywcC	100%	086271	orf8 protein; <i>Lactococcus lactis</i>
2211	adhE	98%	086272	alcohol-acetaldehyde dehydrogenase; <i>Lactococcus lactis</i>
2212	ywdA	23%	CAB49813	hypothetical 22.1 kd protein; <i>Pyrococcus abyssi</i>
2213	ywdB			putative
2214	ywdC	26%	058557	552aa long hypothetical nitrite reductase; <i>Pyrococcus horikoshii</i>
2215	ywdD	29%	P07782	coenzyme pqq synthesis protein e; <i>Acinetobacter calcoaceticus</i>
2216	ywdE	30%	P49330	rgg protein; <i>Streptococcus gordonii</i> challis

2217	ywdF	34%	O34470	ylbl protein; <i>Bacillus subtilis</i>
2218	kdtB	39%	Q9WZK0	lipopolysaccharide core biosynthesis protein kdtb; <i>Thermotoga maritima</i>
2219	ywdG	49%	O34331	ylbh protein; <i>Bacillus subtilis</i>
2220	yweA	35%	Q48658	lmrp integral membrane protein; <i>Lactococcus lactis</i>
2221	lmrP	91%	Q48658	lmrp integral membrane protein; <i>Lactococcus lactis</i>
2222	sigX	30%	O07627	putative rna polymerase sigma factor ylac; <i>Bacillus subtilis</i>
2223	yweB			putative
2224	pgiA	79%	Q9X670	glucose-6-phosphate isomerase; <i>Streptococcus mutans</i>
2225	yweC	32%	O29764	conserved hypothetical protein; <i>Archaeoglobus fulgidus</i>
2226	yweD	36%	P39315	hypothetical 29.7 kd protein in rpli-cpdb intergenic region; <i>Escherichia coli</i>
2227	yweE	53%	P70885	orf108; <i>Butyrivibrio fibrisolvens</i>
2228	yweF			putative
2229	valS	60%	Q05873	valyl-tRNA synthetase; <i>Bacillus subtilis</i>
2230	ywfA			putative
2231	ywfB			putative
2232	ywfC	40%	P32699	hypothetical 13.5 kd protein in apha-uvra intergenic region; <i>Escherichia coli</i>
2233	ywfD			putative
2234	ywfE	30%	CAB57644	hypothetical 25.3 kd protein; <i>Sulfolobus solfataricus</i>
2235	ywfF	43%	O31545	yfjo protein; <i>Bacillus subtilis</i>
2236	ywfG	27%	Q15333	hr44 protein; <i>Homo sapiens</i>
2237	ywfH	36%	CAB61244	secreted protein precursor; <i>Lactococcus lactis</i>
2238	ywgA	31%	O31575	yfhg protein; <i>Bacillus subtilis</i>
2239	gntP	50%	P46832	gluconate permease; <i>Bacillus licheniformis</i>
2240	tra9830	50%	O87534	putative transposase; <i>Streptococcus pyogenes</i>
2241	gntK	48%	P12011	gluconokinase; <i>Bacillus subtilis</i>
2242	gntZ	56%	P54448	hypothetical 32.8 kd protein in nucb-arod intergenic region; <i>Bacillus subtilis</i>
2243	gntR	29%	Q9WYG1	transcriptional regulator, rpir family; <i>Thermotoga maritima</i>
2244	ywhA			putative
2245	ywhB	31%	O34870	ykue protein; <i>Bacillus subtilis</i>
2246	rpsR	70%	P10806	30s ribosomal protein s18; <i>Bacillus stearothermophilus</i>
2247	ssbD	65%	Q9XJE5	putative single stranded binding protein; <i>Bacteriophage tuc2009</i>
2248	rpsF	59%	P21468	30s ribosomal protein s6; <i>Bacillus subtilis</i>
2249	bacA	39%	AAD50462	baca; <i>Cytophaga johnsoniae</i>
2250	lysP	45%	P25737	lysine-specific permease; <i>Escherichia coli</i>
2251	dnaH	50%	Q9WZF2	DNA polymerase iii, gamma and tau subunit; <i>Thermotoga maritima</i>
2252	ywiA	33%	O05841	hypothetical 51.3 kd protein; <i>Mycobacterium tuberculosis</i>
2253	ywiB	43%	P36088	hypothetical 19.7 kd protein in lhasl-nup100 intergenic region; <i>Saccharomyces cerevisiae</i>
2254	ywiC	31%	P39912	B aroa protein [includes: phospho-2-dehydro-3-deoxyheptonate aldolase (3-deoxy-d-arabino-heptulosonate...]
2255	ywiD			putative
2256	ywiE			putative
2257	glnA	66%	P95692	glutamine synthetase type 1; <i>Streptococcus agalactiae</i>
2258	glnR	45%	P37582	regulatory protein glnr; <i>Bacillus subtilis</i>

2259	ywiF	45%	Q35016	yfkj protein; <i>Bacillus subtilis</i>
2260	ywiG	29%	Q9WZM4	abc transporter, atp-binding protein; <i>Thermotoga maritima</i> putative
2261	ywiH			
2262	ywiI	23%	Q30416	positive regulator gadr; <i>Lactococcus lactis</i>
2263	ruvB	63%	Q32055	holliday junction dna helicase ruvb; <i>Bacillus subtilis</i>
2264	ruvA	42%	Q84509	holliday junction helicase; <i>Chlamydia trachomatis</i>
2265	hexB	86%	Q32819	mismatch repair protein homolog; <i>Lactococcus lactis</i>
2266	ywjA	30%	Q17113	80 kda protein; <i>Babesia bovis</i>
2267	hexA	64%	P10564	dna mismatch repair protein hexa; <i>Streptococcus pneumoniae</i>
2268	ywjB	24%	Q31779	ymca protein; <i>Bacillus subtilis</i> putative
2269	ywjC			
2270	ywjD	43%	Q34647	transcription regulator; <i>Bacillus subtilis</i> putative
2271	ywjE			
2272	ywjF	52%	Q34948	hypothetical 30.7 kd protein in mcpc-kina intergenic region; <i>Bacillus subtilis</i> putative
2273	ywjG			
2274	ywjH			
2275	yxaA	25%	Q28711	conserved hypothetical protein; <i>Archaeoglobus fulgidus</i> putative
2276	yxaB			
2277	zwf	49%	P54547	glucose-6-phosphate 1-dehydrogenase; <i>Bacillus subtilis</i>
2278	yxaC	38%	P54452	hypothetical 20.1 kd protein in nucb-arod intergenic region; <i>Bacillus subtilis</i>
2279	pspA	40%	Q005166	pcpa; <i>Streptococcus pneumoniae</i>
2280	pspB	40%	Q005166	pcpa; <i>Streptococcus pneumoniae</i>
2281	dnaJ	86%	P35514	dnaj protein; <i>Lactococcus lactis</i> putative
2282	yxaF			
2283	racD	53%	P29079	aspartate racemase; <i>Streptococcus thermophilus</i> putative
2284	yxBA			
2285	asnH	40%	Q34902	asparagine synthase; <i>Bacillus subtilis</i>
2286	usp45	63%	P22865	secreted 45 kd protein precursor; <i>Lactococcus lactis</i>
2287	mreD	25%	Q01467	rod shape-determining protein mred; <i>Bacillus subtilis</i>
2288	mreC	95%	Q99223	beta-lactamase precursor; <i>Lactococcus lactis</i>
2289	yxBC	40%	P46351	hypothetical 45.4 kd protein in thiaminase i 5'region; <i>Bacillus subtilis</i>
2290	rpiA	45%	P72012	probable ribose 5-phosphate isomerase; <i>Methanobacterium thermoautotrophicum</i>
2291	rcfB	27%	Q86128	fnr protein; <i>Bacillus licheniformis</i>
2292	yxBD	23%	P94577	hypothetical 43.1 kd protein; <i>Bacillus subtilis</i>
2293	yxBE	33%	Q27074	conserved protein; <i>Methanobacterium thermoautotrophicum</i> putative
2294	yxBF			
2295	yxcA	29%	P11568	activator of -2-hydroxyglutaryl-coa dehydratase; <i>Acidaminococcus fermentans</i>
2296	yxcb	27%	CAB55667	putative tetr-family transcriptional regulator; <i>Streptomyces coelicolor</i>
2297	rsuA	42%	Q9WYA2	16s pseudouridylate synthase; <i>Thermotoga maritima</i> putative
2298	yxcd			
2299	thdF	66%	CAB61255	thiophene degradation protein f; <i>Streptococcus agalactiae</i> putative
2300	yxce			

2301	recG	66%	Q54900	atp-dependent dna helicase recg; <i>Streptococcus pneumoniae</i>
2302	yxdA	44%	P16680	phna protein; <i>Escherichia coli</i>
2303	gapB	78%	P50467	glyceraldehyde 3-phosphate dehydrogenase; <i>Streptococcus pyogenes</i>
2304	yxdb	24%	O15738	zipa; <i>Dictyostelium discoideum</i>
2305	yxdC	37%	P37278	cation-transporting atpase pac1; <i>Synechococcus sp</i>
2306	yxdD			putative
2307	yxdE	34%	AAF12130	oxidoreductase, short-chain dehydrogenase/reductase family; <i>Deinococcus radiodurans</i>
2308	yxdF	30%	Q48724	abortive infection proteins genes, complete cds; <i>Lactococcus lactis</i>
2309	yxdG			putative
2310	rpsI	70%	P21470	30s ribosomal protein s9; <i>Bacillus subtilis</i>
2311	rplM	63%	Q00990	50s ribosomal protein l13; <i>Staphylococcus carnosus</i>
2312	yxeA	29%	AAF12525	hypothetical 37.1 kd protein; <i>Deinococcus radiodurans</i>
2313	yxeB	40%	Q28803	abc transporter, atp-binding protein; <i>Archaeoglobus fulgidus</i>
2314	rnhA	55%	Q07874	ribonuclease hii; <i>Streptococcus pneumoniae</i>
2315	sipL	53%	CAA13401	signal peptidase 1; <i>Streptococcus pneumoniae</i>
2316	purR	100%	O53065	purr; <i>Lactococcus lactis</i>
2317	fusA	73%	P80868	elongation factor g; <i>Bacillus subtilis</i>
2318	rpsG	72%	Q9Z9L8	rpsg protein; <i>Bacillus sp</i>
2319	rpsL	89%	P30891	30s ribosomal protein s12; <i>Streptococcus pneumoniae</i>
2320	dacA	84%	O66081	extracellular protein exp2 precursor; <i>Lactococcus lactis</i>
2321	yxfA	55%	Q54615	putative multiple membrane domain protein; <i>Streptococcus pyogenes</i>
2322	yxfb	37%	O34614	ytqb; <i>Bacillus subtilis</i>
2323	yxfc	59%	O35008	ytqa; <i>Bacillus subtilis</i>

Tableau IV. Gènes impliqués dans les phénomènes de sécrétion

ORF	Nom du gène
9	yabC
19	yacG
109	ybaG
116	ybbE
192	ybiK
210	ycaF
225	yccB
266	ycfF
326	plpA
327	plpB
422	ptcB
433	yedB
445	yeeG
506	dgk
515	ps202
552	yfcH
554	ponA
561	yfdG
578	yfgC
595	yfhI
611	yfiL
627	ygaD
633	ygaJ
638	miaA
667	ygeB
696	ygiC
754	floL
801	noxC
843	noxA
865	yigE
879	yiiD
931	yjdI
944	tagF
954	yjgB
985	yjjE
1007	ykbF
1085	ykhK
1132	ylcD
1133	ylcE
1142	frdC
1177	ylhA
1206	ymaB
1208	ymaE
1228	ymcA
1234	ymcF
1309	ynaA
1335	yndB
1395	ynjC
1396	ynjD
1399	ynjG

1402	ynjl
1403	ynjJ
1416	pi301
1444	pi329
1454	pi339
1495	yohD
1522	ypaG
1626	yqbJ
1627	yqbK
1628	yqcA
1629	yqcB
1631	yqcD
1638	murD
1647	yqeC
1648	yqeD
1710	yrbB
1736	yreA
1802	ysaD
1870	ysiE
1978	yuaB
1980	yuaC
2005	chiA
2024	yueC
2033	yufC
2073	yujC
2076	yujF
2175	yviJ
2176	comGD
2207	ezrA
2217	ywdF
2272	ywjF
2279	pspA
2280	pspB

REVENDICATIONS

1. Séquence nucléotidique de *Lactococcus lactis* caractérisée en ce qu'elle correspond à SEQ ID N° 1.
5
2. Séquence nucléotidique de *Lactococcus lactis*, caractérisée en ce qu'elle est choisie parmi :
 - a) une séquence nucléotidique comportant au moins 80 % d'identité avec SEQ ID N° 1 ;
10
 - b) une séquence nucléotidique hybride dans des conditions de forte stringence avec SEQ ID N° 1 ;
 - c) une séquence nucléotidique complémentaire de SEQ ID N° 1 ou complémentaire d'une séquence nucléotidique telle que définie en a), ou b), ou une séquence nucléotidique de l'ARN correspondant ;
15
 - d) une séquence nucléotidique de fragment représentatif de SEQ ID N° 1, ou de fragment représentatif d'une séquence nucléotidique telle que définie en a), b) ou c);
 - e) une séquence nucléotidique comprenant une séquence telle que définie en a), b), c) ou d) ; et
20
 - f) une séquence nucléotidique modifiée d'une séquence nucléotidique telle que définie en a), b), c), d) ou e).
- 25 3. Séquence nucléotidique selon la revendication 2, caractérisée en ce qu'elle code pour une séquence choisie issue de SEQ ID N° 1 et en ce qu'elle code pour un polypeptide choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323.

4. Séquence nucléotidique caractérisée en ce qu'elle comprend une séquence nucléotidique choisie parmi :

- a) une séquence nucléotidique selon la revendication 3 ;
- b) une séquence nucléotidique comportant au moins 80 % d'identité avec une séquence nucléotidique selon la revendication 3 ;
- c) une séquence nucléotidique s'hybridant dans des conditions de forte stringence avec une séquence nucléotidique selon la revendication 3 ;
- d) une séquence nucléotidique complémentaire ou d'ARN correspondant à une séquence telle que définie en a), b) ou c) ;
- e) une séquence nucléotidique de fragment représentatif d'une séquence telle que définie en a), b), c) ou d) ; et
- f) une séquence nucléotidique modifiée d'une séquence telle que définie en a), b), c), d) ou e).

15

5. Polypeptide codé par une séquence nucléotidique selon l'une des revendications 2 à 4.

20

6. Polypeptide selon la revendication 5, caractérisé en ce qu'il est choisi parmi les séquences SEQ ID N° 2 à SEQ ID N° 2323.

25

7. Polypeptide caractérisé en ce qu'il comprend un polypeptide choisi parmi :

- a) un polypeptide selon l'une des revendications 5 et 6 ;
- b) un polypeptide présentant au moins 80 % d'identité avec un polypeptide selon l'une des revendications 5 et 6 ;
- c) un fragment d'au moins 5 acides aminés d'un polypeptide selon l'une des revendications 5 et 6, ou tel que défini en b) ;
- d) un fragment biologiquement actif d'un polypeptide selon l'une des revendications 5 et 6, ou tel que défini en b) ou c) ; et

- e) un polypeptide modifié d'un polypeptide selon l'une des revendications 5 et 6 ou tel que défini en b), c) ou d).
8. Séquence nucléotidique codant pour un polypeptide selon la revendication 7.
9. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans la biosynthèse des acides aminés ou l'un de ses fragments.
10. Séquence nucléotidique selon l'une des revendications 2 à 4 et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans la biosynthèse des cofacteurs, groupes prosthétiques et transporteurs ou l'un de ses fragments.
11. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide d'enveloppe cellulaire de *Lactococcus lactis* ou l'un de ses fragments.
12. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans la machinerie cellulaire ou l'un de ses fragments.
13. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme intermédiaire central ou l'un de ses fragments.

14. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme énergétique ou l'un de ses fragments.
- 5
15. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme des acides gras et des phospholipides ou l'un de ses fragments.
- 10
16. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme des nucléotides, des purines, des pyrimidines ou nucléosides ou l'un de ses fragments.
- 15
17. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans les fonctions de régulation ou l'un de ses fragments.
- 20 18. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le processus de réPLICATION ou l'un de ses fragment.
- 25 19. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le processus de transcription ou l'un de ses fragments.

20. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le processus de traduction ou l'un de ses fragments.
- 5 21. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans le processus de transport et de liaison des protéines ou l'un de ses fragments.
- 10 22. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans l'adaptation aux conditions atypiques ou l'un de ses fragments.
- 15 23. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans la sensibilité aux médicaments et analogues ou l'un de ses fragments.
- 20 24. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans les fonctions relatives aux phages et prophages ou l'un de ses fragments.
- 25 25. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide de *Lactococcus lactis* impliqué dans les fonctions relatives aux transposons ou l'un de ses fragments.

26. Séquence nucléotidique selon l'une des revendications 2 à 4, et 8, caractérisée en ce qu'elle code pour un polypeptide spécifique de *Lactococcus lactis* ou l'un de ses fragments.
- 5 27. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans la biosynthèse des acides aminés ou l'un de ses fragments.
- 10 28. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans la biosynthèse des cofacteurs, groupes prosthétiques et transporteurs ou l'un de ses fragment.
- 15 29. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide d'enveloppe cellulaire de *Lactococcus lactis* ou l'un de ses fragments.
- 20 30. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans la machinerie cellulaire ou l'un de ses fragments.
- 25 31. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme intermédiaire central ou l'un de ses fragement.
32. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme énergétique ou l'un de ses fragments.

33. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme des acides gras et des phospholipides ou l'un de ses fragments.
- 5
34. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le métabolisme des nucléotides, des purines, des pyrimidines ou nucléosides ou l'un de ses fragments.
- 10
35. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans les fonctions de régulation ou l'un de ses fragments.
- 15 36. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le processus de réplication ou l'un de ses fragments.
- 20 37. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le processus de transcription ou l'un de ses fragments.
- 25 38. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le processus de traduction ou l'un de ses fragments.
39. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans le processus de transport et de liaison des protéines ou l'un de ses fragments.

40. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans l'adaptation aux conditions atypiques ou l'un de ses fragments.
- 5
41. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans la sensibilité aux médicaments et analogues ou l'un de ses fragments.
- 10 42. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans les fonctions relatives aux phages et prophages ou l'un de ses fragments.
- 15 43. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide de *Lactococcus lactis* impliqué dans les fonctions relatives aux transposons ou l'un de ses fragments.
- 20 44. Polypeptide selon l'une des revendications 5 à 7, caractérisé en ce qu'il s'agit d'un polypeptide spécifique de *Lactococcus lactis* ou l'un de ses fragments.
45. Procédé pour estimer la colinéarité entre les génomes de *Lactococcus lactis* IL 1403 et d'une autre souche de *Lactococcus lactis*, caractérisé en ce qu'il comprend les étapes :
- 25 - de fragmentation de l'ADN chromosomal de ladite autre souche (sonication, digestion),
- de séquence des fragments d'ADN,
- d'analyse d'homologie avec le génome de *Lactococcus lactis* IL 1043 (SEQ ID N° 1) en comparant avec un support d'enregistrement

dont la forme et la nature facilitent la lecture, l'analyse et/ou l'exploitation d'une séquence enregistrée sur ledit support, sur lequel est enregistré au moins une séquence nucléotidique selon l'une des revendications 1 à 4, 8 à 26 et/ou une séquence de polypeptide selon l'une des revendications 5 à 7 et 27 à 44.

- 10 46. Séquence nucléotidique utilisable comme amorce ou comme sonde, caractérisée en ce que ladite séquence est choisie parmi les séquences nucléotidiques selon l'une des revendications 2 à 4, et, 8 à 26.

15 47. Séquence nucléotidique selon la revendication 46, caractérisée en ce qu'elle est marquée par un composé radioactif ou par un composé non radioactif.

20 48. Séquence nucléotidique selon l'une des revendications 46 et 47, caractérisée en ce qu'elle est immobilisée sur un support, de manière covalente ou non-covalente.

25 49. Séquence nucléotidique selon l'une des revendications 47 à 48, caractérisée en ce qu'elle est immobilisée sur un support tel qu'un filtre à haute densité ou une puce à ADN.

30 50. Séquence nucléotidique selon l'une des revendications 47 à 49 pour la détection et/ou l'amplification de séquences nucléiques.

51. Puce à ADN ou filtre, caractérisée en ce qu'elle contient au moins une séquence nucléotidique selon la revendication 49.

52. Puce à ADN ou filtre selon la revendication 51, caractérisée en ce qu'elle contient en outre au moins une séquence nucléotidique d'un micro-organisme autre que *Lactococcus lactis*, immobilisée sur le support de ladite puce.

53. Puce à ADN ou filtre selon la revendication 52, caractérisée en ce que le micro-organisme autre est choisi parmi un micro-organisme associé à *Lactococcus lactis*, une bactérie du genre *Lactococcus*, et un variant de *Lactococcus lactis*.
- 5
54. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend une puce à ADN ou un filtre selon la revendication 51.
- 10
55. Kit ou nécessaire pour la détection et/ou l'identification d'un micro-organisme, caractérisé en ce qu'il comprend une puce à ADN ou un filtre selon l'une des revendications 52 et 53.
- 15
56. Kit ou nécessaire pour la détection et/ou la quantification de l'expression d'au moins un gène de *Lactococcus lactis*, caractérisé en ce qu'il comprend une puce à ADN ou un filtre selon l'une des revendications 51 à 53.
- 20
57. Vecteur de clonage, et/ou d'expression, caractérisé en ce qu'il contient une séquence nucléotidique selon l'une des revendications 2 à 4 et 8 à 26.
58. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 13.
- 25
59. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 14.

60. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 9, 19 ou 20.
- 5 61. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 24.
- 10 62. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 12, en particulier codant pour une protéine impliquée dans les mécanismes de sécrétion.
- 15 63. Vecteur de clonage, et/ou d'expression selon la revendication 57, caractérisé en ce qu'il contient une séquence nucléotidique codant pour une protéine impliquée dans la résistance et/ou l'adaptation au stress.
- 20 64. Utilisation d'un vecteur selon l'une des revendications 57 à 63 pour la génération d'une souche bactérienne présentant des propriétés de fermentation améliorées, et/ou une stabilité accrue.
65. Cellule hôte, caractérisée en ce qu'elle est transformée par un vecteur selon l'une des revendications 57 à 63.
- 25 66. Cellule hôte selon la revendication 65, caractérisée en ce qu'il s'agit d'une bactérie appartenant au genre *Lactococcus*.
67. Cellule hôte selon la revendication 66, caractérisée en ce qu'il s'agit d'une bactérie appartenant à l'espèce *Lactococcus lactis*.

68. Cellule hôte selon la revendication 65, caractérisée en ce qu'il s'agit d'un micro-organisme associé à l'espèce *Lactococcus lactis*.
69. Composition alimentaire comprenant une cellule transformée selon l'une des revendications 65 à 68.
70. Végétal ou animal, excepté l'Homme, comprenant une cellule transformée selon l'une des revendications 65 à 68.
- 10 71. Procédé de préparation d'un polypeptide, caractérisé en ce que l'on cultive une cellule transformée par un vecteur selon la revendication 57 dans des conditions permettant l'expression dudit polypeptide et que l'on récupère ledit polypeptide recombinant.
- 15 72. Polypeptide recombinant susceptible d'être obtenu par un procédé selon la revendication 71.
73. Procédé de préparation d'un polypeptide synthétique selon l'une des revendications 5 à 7, 27 à 44, caractérisé en ce que l'on effectue une synthèse chimique dudit polypeptide.
- 20 74. Polypeptide hybride, caractérisé en ce qu'il comprend au moins la séquence d'un polypeptide selon l'une des revendications 5 à 7, 27 à 44 et 72, et une séquence d'un polypeptide susceptible d'induire une réponse immunitaire chez l'homme ou l'animal.
- 25 75. Séquence nucléotidique codant pour un polypeptide hybride selon la revendication 74.

76. Vecteur caractérisé en ce qu'il contient une séquence nucléotidique selon la revendication 75.
77. Anticorps monoclonal ou polyclonal, ses fragments, ou anticorps chimérique, caractérisé en ce qu'il est capable de reconnaître spécifiquement un polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 ou 74.
78. Anticorps selon la revendication 77, caractérisé en ce qu'il s'agit d'un anticorps marqué.
79. Procédé pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un microorganisme associé dans un échantillon biologique, caractérisé en ce qu'il comprend les étapes suivantes :
- mise en contact de l'échantillon biologique avec un anticorps selon l'une des revendications 77 et 78;
 - mise en évidence du complexe antigène-anticorps éventuellement formé.
80. Procédé pour la détection de l'expression d'un gène de *Lactococcus lactis* caractérisé en ce que l'on met en contact une souche de *Lactococcus lactis*, avec un anticorps selon la revendication 77 ou 78 et que l'on détecte le complexe antigène/anticorps éventuellement formé.
81. Kit ou nécessaire pour la mise en œuvre d'un procédé selon la revendication 79 ou 80, caractérisé en ce qu'il comprend les éléments suivants :
- un anticorps polyclonal ou monoclonal selon l'une des

- revendications 77 et 78;
- b) éventuellement, les réactifs pour la constitution du milieu propice à la réaction immunologique ;
- c) éventuellement, les réactifs permettant la mise en évidence des complexes antigène-anticorps produits par la réaction immunologique.
- 5
82. Polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 et 74, ou anticorps selon l'une des revendications 77 et 78, caractérisé en ce qu'il est immobilisé sur un support, notamment une puce à protéine.
- 10
83. Puce à protéine, caractérisée en ce qu'elle contient au moins un polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 et 74, ou au moins un anticorps selon l'une des revendications 77 et 78, immobilisé sur le support de ladite puce.
- 15
84. Puce à protéine selon la revendication 83, caractérisée en ce qu'elle contient en outre au moins un polypeptide de micro-organisme autre que *Lactococcus lactis* ou au moins un anticorps dirigé contre un composé de micro-organisme autre que *Lactococcus lactis*, immobilisé sur le support de ladite puce.
- 20
85. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend une puce à protéine selon l'une des revendications 83 et 84.
- 25
86. Kit ou nécessaire pour la détection et/ou l'identification d'un micro-organisme, caractérisé en ce qu'il comprend une puce à protéine selon la

revendication 84.

87. Procédé de détection et/ou d'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé dans un échantillon biologique, caractérisé en ce qu'il met en œuvre une séquence nucléotidique selon l'une des revendications 1 à 4, 8 à 26, 46 à 50 et 75.
- 5
88. Procédé selon la revendication 87, caractérisé en ce qu'il comporte les étapes suivantes :
- 10
- a) éventuellement, isolement de l'ADN à partir de l'échantillon biologique à analyser, ou obtention d'un ADNc à partir de l'ARN de l'échantillon biologique ;
 - b) amplification spécifique de l'ADN de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé à l'aide d'au moins une amorce selon l'une des revendications 46 à 50 ;
 - c) mise en évidence des produits d'amplification.
- 15
89. Procédé selon la revendication 87, caractérisé en ce qu'il comprend les étapes suivantes :
- 20
- a) mise en contact d'une sonde nucléotidique selon l'une des revendications 46 à 50, avec un échantillon biologique, l'acide nucléique contenu dans l'échantillon biologique ayant, le cas échéant, préalablement été rendu accessible à l'hybridation, dans des conditions permettant l'hybridation de la sonde à l'acide nucléique d'une bactérie appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé ;
 - b) mise en évidence de l'hybride éventuellement formé entre la sonde nucléotidique et l'acide nucléique de l'échantillon biologique.
- 25

90. Procédé selon la revendication 87, caractérisé en ce qu'il comprend les étapes suivantes :
- 5 a) mise en contact d'une sonde nucléotidique immobilisée sur un support selon la revendication 48 avec un échantillon biologique, l'acide nucléique de l'échantillon ayant, le cas échéant, été préalablement rendu accessible à l'hybridation, dans des conditions permettant l'hybridation de la sonde à l'acide nucléique d'une bactérie appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé ;
- 10 b) mise en contact de l'hybride formé entre la sonde nucléotidique immobilisée sur un support et l'acide nucléique contenu dans l'échantillon biologique, le cas échéant après élimination de l'acide nucléique de l'échantillon biologique n'ayant pas hybridé avec la sonde, avec une sonde nucléotidique marquée selon la revendication 47 ;
- 15 c) mise en évidence du nouvel hybride formé à l'étape b).
91. Procédé selon la revendication 90, caractérisé en ce que, préalablement à l'étape a), l'ADN de l'échantillon biologique ou l'ADNc obtenu éventuellement par transcription inverse de l'ARN de l'échantillon, est amplifié à l'aide d'au moins une amorce selon l'une des revendications 46 à 50.
- 25 92. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :
- a) une sonde nucléotidique selon l'une des revendications 46 à 50;
- b) éventuellement, les réactifs nécessaires à la mise en œuvre d'une

réaction d'hybridation ;

- c) éventuellement, au moins une amorce selon l'une des revendications 46 à 50 ainsi que les réactifs nécessaires à une réaction d'amplification de l'ADN.

5

93. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- a) une sonde nucléotidique, dite sonde de capture, selon la 10 revendication 48 ;
b) une sonde oligonucléotidique, dite sonde de révélation, selon la revendication 47;
c) éventuellement, au moins une amorce selon l'une des revendications 46 à 50 ainsi que les réactifs nécessaires à une réaction 15 d'amplification de l'ADN.

94. Kit ou nécessaire pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis* ou à un micro-organisme associé, caractérisé en ce qu'il comprend les éléments suivants :

- a) au moins une amorce selon l'une des revendications 46 à 50;
b) éventuellement, les réactifs nécessaires pour effectuer une réaction d'amplification d'ADN ;
c) éventuellement, un composant permettant de vérifier la séquence du fragment amplifié, plus particulièrement une sonde 25 oligonucléotidique selon l'une des revendications 46 à 50.

95. Procédé selon les revendications 87 à 91 ou kit ou nécessaire selon les revendications 92 à 94 pour la détection et/ou l'identification de bactéries appartenant à l'espèce *Lactococcus lactis*, caractérisé en ce que ladite

amorce et/ou ladite sonde sont choisies parmi les séquences nucléotidiques selon l'une des revendications 2 à 4, 8 à 26, 46 à 50 et 75 spécifiques de l'espèce *Lactococcus lactis*, en ce que lesdits polypeptides sont choisis parmi les polypeptides selon l'une des revendications 5 à 7, 27 à 44 et 72 et 5 74 spécifiques de l'espèce *Lactococcus lactis* et en ce que lesdits anticorps sont choisis parmi les anticorps selon l'une des revendications 77 et 78 dirigés contre les polypeptides choisis parmi les polypeptides selon l'une des revendications 5 à 7, 27 à 44, 72 et 74 spécifiques de l'espèce *Lactococcus lactis*.

10

96. Procédé ou kit ou nécessaire selon la revendication 95, caractérisé en ce que ladite amorce et/ou ladite sonde sont choisies parmi les séquences nucléotidiques codant pour une protéine sécrétée, en ce que lesdits polypeptides sont choisis parmi les polypeptides sécrétés et en ce que lesdits anticorps sont choisis parmi les anticorps selon l'une des revendications 77 et 15 78 dirigés contre des polypeptides sécrétés de *Lactococcus lactis*.

15

97. Souche de *Lactococcus lactis*, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon l'une des revendications 2 à 4 ou 8 à 26.

20

98. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 13.

25

99. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 14.

100. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 9, 19 ou 20.
- 5 101. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 24.
- 10 102. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique selon la revendication 12, en particulier codant pour une protéine impliquée dans les mécanismes de sécrétion.
- 15 103. Souche de *Lactococcus lactis* selon la revendication 97, caractérisée en ce qu'elle contient au moins une mutation dans au moins une séquence nucléotidique codant pour une protéine impliquée dans la résistance et/ou l'adaptation au stress.
- 20 104. Souche de *Lactococcus lactis* selon l'une des revendications 97 à 103, caractérisée en ce que la mutation mène à une inactivation du gène.
105. Souche de *Lactococcus lactis* selon l'une des revendications 97 à 103, caractérisée en ce que la mutation mène à une surexpression du gène.
- 25 106. Souche de *Lactococcus lactis* présentant une résistance accrue à l'infection et/ou la propagation des phages, caractérisée en ce qu'elle surexprime ou sous-exprime un polypeptide selon la revendication 42.

107. Souche de *Lactococcus lactis* présentant une résistance accrue à l'infection et/ou la propagation des phages, caractérisée en ce qu'elle contient un gène toxique sous le contrôle d'un agent régulateur de l'expression des gènes des phages, codant pour les polypeptides selon la revendication 42.

5

108. Méthode de diagnostic de la présence de phages dans les levains lactiques et produits laitiers, caractérisée en ce que l'on étudie la présence d'acide nucléique codant pour un polypeptide selon la revendication 42.

- 10 109. Utilisation d'un polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 et 74 d'une cellule transformée selon l'une des revendications 65 à 68 d'une souche selon la revendication 97 à 105 et/ou d'un animal selon la revendication 70, pour la biosynthèse ou la biodégradation d'un composé d'intérêt.

15

110. Procédé de biosynthèse ou de biodégradation d'un composé d'intérêt, caractérisé en ce qu'il met en œuvre un polypeptide selon l'une des revendications 5 à 7, 27 à 44, 72 et 74, une cellule transformée selon l'une des revendications 65 à 68 une souche selon l'une des revendications 97 à 20 105 et/ou un animal selon la revendication 70.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 01/01103

A. CLASSIFICATION OF SUBJECT MATTER		C12N15/31	C12N15/62	C12N11/00	C07K14/315	C07K16/12
IPC 7		C12Q1/68	C12P1/04	G01N33/53	G06F19/00	A01K67/027
		A23C9/12	A23C19/032			

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C07K C12N C12Q C12P A01K A23C G01N G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EMBL, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>BOLOTIN ET AL.: "Low-redundancy sequencing of the entire <i>Lactococcus lactis</i> IL1403 genome" ANTONIE VAN LEEUWENHOEK, vol. 76, 26 October 1999 (1999-10-26), pages 27-76, XP000971953 the whole document</p> <p>---</p> <p>-/-</p>	<p>1,2, 46-57, 65-70, 87-94</p>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

16 August 2001

23.10.2001

Name and mailing address of the ISA

European Patent Office, P.B. 6618 Patentstaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 apo nl
 Fax: (+31-70) 340-3016

Authorized officer

van Klompenburg, W

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 01/01103

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>DATABASE EMBL [Online] EBI; ACC. NO.: U76424, 25 February 1998 (1998-02-25) EL-KAROUI ET AL.: "Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence" XP002156711 abstract -& EL-KAROUI ET AL.: "Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence" PROC. NATL. ACAD. SCI. USA, vol. 95, no. 2, January 1998 (1998-01), pages 626-631, XP002156710 figure 2</p> <p>---</p> <p>KALMAN S ET AL: "COMPARATIVE GENOMES OF CHLAMYDIA PNEUMONIAE AND C. TRACHOMATIS" NATURE GENETICS, US, NEW YORK, NY, vol. 21, no. 4, April 1999 (1999-04), pages 385-389, XP000853883 ISSN: 1061-4036 figure 3</p> <p>-----</p>	1,2, 46-57, 65-70, 87-94
A		1,2, 46-57, 65-70, 87-94

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/FR 01/01103**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See supplemental sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Claims 1, 2, 46-57, 65-70, 87-94 (all partly)

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FR 01/01103

The International Searching Authority found several (groups of) inventions in the international application, namely.

1. Claims: Invention 1. Claims: 1, 2, 46-57, 65-70, 87-94 (all partly)

Nucleotide sequence SEQ ID NO:1 of the genome of Lactococcus lactis, host cell comprising the vector, plant or animal comprising the host cell.
Method of detection using the sequence SEQ ID NO:1.

2. Claims: Invention 2. Claims: 1-8, 18, 36, 46-97, 104-110 (all partly)

ORF2 of Lactococcus lactis, polypeptides, corresponding nucleotide sequences, probe or primer, DNA chip, protein chip, cloning and/or expression vector, use of vector, host cell, plant or animal except human, detection or identification method, kit, antibodies, use of polypeptide, hybrid polypeptide, method for biosynthesis or biodegradation, use of nucleotide sequence, strain of Lactococcus lactis, method for diagnosing the presence of phages.

**3. Claims: Invention 3-2323. Claims 1-44, 46-97, 104-110 (all partly and insofar as applicable),
98-103 (completely and insofar as applicable)**

identical to invention 2 but concerning SEQ ID NO:3-2323.

4. Claims: Invention 2324. Claim 45

Method for estimating colinearity between genomes of Lactococcus lactis and another strain of Lactococcus lactis.

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR 01/01103

A. CLASSEMENT DE L'OBJET DE LA DEMANDE					
CIB 7	C12N15/31	C12N15/62	C12N11/00	C07K14/315	C07K16/12
	C12Q1/68	C12P1/04	G01N33/53 /	G06F19/00	A01K67/027
	A23C9/12	A23C19/032			

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 C07K C12N C12Q C12P A01K A23C G01N G06F

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EMBL, EPO-Internal

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	BOLOTIN ET AL.: "Low-redundancy sequencing of the entire <i>Lactococcus lactis</i> IL1403 genome" ANTONIE VAN LEEUWENHOEK, vol. 76, 26 octobre 1999 (1999-10-26), pages 27-76, XP000971953 le document en entier ---	1,2, 46-57, 65-70, 87-94 -/-

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

16 août 2001

Date d'expédition du présent rapport de recherche internationale

23.10.01

Nom et adresse postale de l'administration chargée de la recherche Internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

van Klompenburg, W

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale N°

PCT/FR 01/01103

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	<p>DATABASE EMBL [en ligne] EBI; ACC. NO.: U76424, 25 février 1998 (1998-02-25) EL-KAROUI ET AL.: "Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence" XP002156711 abrégé -& EL-KAROUI ET AL.: "Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence" PROC. NATL. ACAD. SCI. USA, vol. 95, no. 2, janvier 1998 (1998-01), pages 626-631, XP002156710 figure 2</p> <p>---</p>	1,2, 46-57, 65-70, 87-94
A	<p>KALMAN S ET AL: "COMPARATIVE GENOMES OF CHLAMYDIA PNEUMONIAE AND C. TRACHOMATIS" NATURE GENETICS, US, NEW YORK, NY, vol. 21, no. 4, avril 1999 (1999-04), pages 385-389, XP000853883 ISSN: 1061-4036</p> <p>figure 3</p> <p>-----</p>	1,2, 46-57, 65-70, 87-94

RAPPORT DE RECHERCHE INTERNATIONALE

Demande internationale n°
PCT/FR 01/01103

Cadre I Observations - lorsqu'il a été estimé que certaines revendications ne pouvaient pas faire l'objet d'une recherche (suite du point 1 de la première feuille)

Conformément à l'article 17.2)a), certaines revendications n'ont pas fait l'objet d'une recherche pour les motifs suivants:

1. Les revendications n°^s se rapportent à un objet à l'égard duquel l'administration n'est pas tenue de procéder à la recherche, à savoir:

2. Les revendications n°^s se rapportent à des parties de la demande internationale qui ne remplissent pas suffisamment les conditions prescrites pour qu'une recherche significative puisse être effectuée, en particulier:

3. Les revendications n°^s sont des revendications dépendantes et ne sont pas rédigées conformément aux dispositions de la deuxième et de la troisième phrases de la règle 6.4.a).

Cadre II Observations - lorsqu'il y a absence d'unité de l'invention (suite du point 2 de la première feuille)

L'administration chargée de la recherche internationale a trouvé plusieurs inventions dans la demande internationale, à savoir:

voir feuille supplémentaire

1. Comme toutes les taxes additionnelles ont été payées dans les délais par le déposant, le présent rapport de recherche internationale porte sur toutes les revendications pouvant faire l'objet d'une recherche.

2. Comme toutes les recherches portant sur les revendications qui s'y prêtaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, l'administration n'a sollicité le paiement d'aucune taxe de cette nature.

3. Comme une partie seulement des taxes additionnelles demandées a été payée dans les délais par le déposant, le présent rapport de recherche internationale ne porte que sur les revendications pour lesquelles les taxes ont été payées, à savoir les revendications n°^s

4. Aucune taxe additionnelle demandée n'a été payée dans les délais par le déposant. En conséquence, le présent rapport de recherche internationale ne porte que sur l'invention mentionnée en premier lieu dans les revendications; elle est couverte par les revendications n°^s 1, 2, 46-57, 65-70, 87-94 (toutes partiellement)

Remarque quant à la réserve

- Les taxes additionnelles étaient accompagnées d'une réserve de la part du déposant.
 Le paiement des taxes additionnelles n'était assorti d'aucune réserve.

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

L'administration chargée de la recherche internationale a trouvé plusieurs (groupes d') inventions dans la demande internationale, à savoir:

1. revendications: Invention 1. revendications: 1,2,46-57,65-70, 87-94 (toutes partiellement)

Séquence nucléotidique SEQ ID N0:1 du génome de *Lactococcus lactis*, vecteur correspondant, cellule hôte comprenant le vecteur, végétal ou animal comprenant la cellule hôte. Procédé de détection qui met en oeuvre la séquence de SEQ ID N0:1.

2. revendications: Invention 2. revendications: 1-8, 18,36,46- 97, 104-110 (toutes partiellement)

ORF2 de *Lactococcus lactis*, polypeptides, séquences nucléotides correspondants, sonde ou amorce, puce à ADN, puce à protéine, vecteur de clonage et/ou d'expression, utilisation de vecteur, cellule hôte, végétale ou animale excepté humaine, procédé pour la détection et/ou l'identification, kit, anticorps, utilisation de polypeptide, polypeptide hybride, procédé de biosynthèse ou de biodégradation, utilisation de séquence nucléotidique, souche de *Lactococcus lactis*, méthode de diagnostic de la présence de phages.

3. revendications: Inventions 3-2323. revendications 1-44,46-97, 104-110 (partiellement et pour autant qu'applicable), 98-103 (complètement et pour autant qu'applicable)

Identique à l'invention 2 mais appliquées aux SEQ ID NO: 3-2323.

4. revendication : Invention 2324. revendication 45

Procédé pour estimer la colinéarité entre les génomes de *Lactococcus lactis* et d'une autre souche de *Lactococcus lactis*.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.