In some embodiments, the formulated LP problem is an integer-linearprogramming ("ILP") problem, and solving the ILP problem returns integer solutions that
specify one propagation permutation for each route in each first-set sub-region traversed
by the route. In other embodiments, solving the LP problem returns real-numbered
solutions. In some of these embodiments, the method converts the real-number solutions
into integer solutions that specify one identified propagation permutation for each route in
each first-set sub-region traversed by the route.--

IN THE CLAIMS

Please cancel claims 1-26.

Please add the following claims 27-52.

- 27. For a router that hierarchically defines routes for nets within a region of an design layout, the router (i) partitioning the region into a first set of sub-regions and (ii) for each particular net identifying a route that traverses a set of the first-set sub-regions, a method of propagating the routes comprising:
- a) partitioning the first set of sub-regions into a second set of smaller sub-regions;
- b) identifying a plurality of propagation possibilities for propagating each route into the second set of smaller sub-regions of the first set sub-regions;

- c) formulating a linear-programming ("LP") problem based on the identified propagation possibilities;
 - d) solving the LP problem.
- 28. The method of claim 27 wherein formulating an LP problem includes using the propagation possibilities to specify an objective function to optimize.
- 29. The method of claim 28, wherein the objective function minimizes the overall wirelength necessary for routing the identified propagation possibilities.
 - 30. The method of claim 28,
- a) wherein identifying for each particular route a plurality of propagation possibilities comprises:

identifying a plurality of propagation configurations in each incident first set sub-region traversed by the first route, wherein each propagation configuration in each incident sub-region includes a unique combination of propagation possibilities for each path of the particular route that is incident on the incident sub-region;

computing the cost of each identified propagation configuration;

b) wherein the objective function is specified by using each propagation configuration and the cost of each propagation configuration.

- 31. The method of claim 30,
 - a) wherein each net includes a set of pins;
 - b) wherein identifying the propagation possibilities further comprises:

for each particular identified propagation configuration in each particular first set sub-region, identifying a particular pin configuration that accounts for the particular propagation configuration in the particular first set sub-region;

- c) wherein computing the cost for each particular propagation configuration comprises using the propagation configuration's pin configuration to compute a cost of a route necessary for routing the pin configuration;
- d) wherein the objective function includes the routing cost of each propagation configuration.
- 32. The method of claim 27 wherein formulating an LP problem includes specifying a number of constraints.
- 33. The method of claim 32, wherein one of the constraints is to select only one propagation configuration
 - 34. The method of claim 32,

wherein identifying the plurality of propagation possibilities comprises identifying sets of propagation possibilities for propagating each route in each sub-region traversed by the route;

wherein formulating the LP problem comprises specifying a propagationconsistency constraint that ensures that solving the LP problem results in a consistent values for the sets of propagation possibilities identified for each route in each sub-region traversed by the route.

- 35. The method of claim 32, wherein one of the constraints is a capacity constraint that ensures that areas between the second set of sub-regions are not overcongested.
- 36. A method of routing nets within a particular region of an integrated circuit ("IC") layout, each net having a set of pins, the method comprising:
 - a) partitioning the particular IC region into a first set of sub-regions;
- b) for each particular net, identifying a route that connects a set of sub-regions containing the particular net's pins;
- c) partitioning the sub-regions into a second set of smaller sub-regions;
- d) identifying a plurality of propagation permutations for propagating each route into the second set of smaller sub-region;

- e) formulating a linear-programming ("LP") problem based on the identified propagation permutations; and
- f) solving the LP problem to select one identified propagation permutation for each route in each sub-region traversed by the route.
- 37. The method of claim 36, wherein a plurality of paths exist between the first set of sub-regions, each particular route is defined with respect to the paths traversed by the particular route, and the paths include diagonal paths.

94

- 38. The method of claim 37, wherein a plurality of paths exist between the second set of sub-regions, wherein a plurality of the paths between the second set of sub-regions are diagonal, wherein some of the identified propagation permutations traverse the diagonal paths between the second set of smaller sub-regions.
- 39. The method of claim 38, wherein some of the diagonal paths traversed by the identified propagation permutations are for propagating diagonal paths of routes between the first set of sub-regions.
- 40. The method of claim 38, wherein some of the diagonal paths traversed by the identified propagation permutations are for propagating Manhattan paths of routes between the first set of sub-regions.

- 41. The method of claim 36, wherein a plurality of edges exist between the first set of sub-regions, each particular route is defined with respect to the edges intersected by the particular route, and the edges include diagonal edges.
- 42. The method of claim 41, wherein a plurality of edges exist between the second set of sub-regions, wherein a plurality of the edges between the second set of sub-regions are diagonal, wherein some of the identified propagation permutations intersect the diagonal edges between the second set of smaller sub-regions.
- 43. The method of claim 42, wherein some of the diagonal edges intersected by the identified propagation permutations are for propagating diagonal edges of routes between the first set of sub-regions.

Q⁴

- 44. The method of claim 42, wherein some of the diagonal edges intersected by the identified propagation permutations are for propagating Manhattan edges of routes between the first set of sub-regions.
- 45. The method of claim 36, wherein the formulated LP problem is an integer-linear-programming ("ILP") problem, and the solving of the ILP problem returns integer solutions that specify one propagation permutation for each route in each first-set sub-region traversed by the route.
- 46. The method of claim 36, wherein the solving of the LP problem returns real-numbered solutions, wherein the method further comprises converting the real-

number solutions into integer solutions that specify one identified propagation permutation for each route in each first-set sub-region traversed by the route.

- 47. The method of claim 36, wherein the method identifies a first route for a first net, said first route having a plurality of paths incident on a plurality of sub-regions in the first set, wherein, for the first route, each propagation permutation in each particular incident sub-region includes one propagation possibility for each of the first-route's paths that are incident on the particular sub-region.
- 48. For a router that hierarchically defines routes for nets within a region of a design layout, the router (i) partitioning the region into a first set of sub-regions and (ii) for each particular net identifying a route that traverses a set of the first-set sub-regions, a computer readable medium comprising a computer program having executable code, the computer program for propagating the routes, the computer program comprising:
- a) a first set of instructions for partitioning the first set of sub-regions into a second set of smaller sub-regions;
- b) a second set of instructions for identifying a plurality of propagation possibilities for propagating each route into the second set of smaller subregions of the first set sub-regions;
- c) a third set of instructions for formulating a linear-programming ("LP") problem based on the identified propagation possibilities;

94

- d) a fourth set of instructions for solving the LP problem.
- 49. The computer readable medium of claim 48 wherein the third set of instructions includes a fifth set of instructions for using the propagation possibilities to specify an objective function to optimize.
 - 50. The computer readable medium of claim 49,
 - a) wherein the second set of instructions includes:

a sixth set of instructions for identifying a plurality of propagation configurations in each incident first set sub-region traversed by the first route, wherein each propagation configuration in each incident sub-region includes a unique combination of propagation possibilities for each path of the particular route that is incident on the incident sub-region;

a seventh set of instructions for computing the cost of each identified propagation configuration;

- b) wherein the fifth set of instructions includes an eight set of instructions for using each propagation configuration and the cost of each propagation configuration to specify the objective function.
 - 51. The computer readable medium of claim 50,
 - a) wherein each net includes a set of pins;

9

b) wherein the second set of instructions includes:

a ninth set of instructions for identifying, for each particular identified propagation configuration in each particular first set sub-region, a particular pin configuration that accounts for the particular propagation configuration in the particular first set sub-region;

9

- c) wherein the seventh set of instructions comprises a tenth set of instructions for using the propagation configuration's pin configuration to compute a cost of a route necessary for routing the pin configuration;
- d) wherein the objective function includes the routing cost of each propagation configuration.
- 52. The computer readable medium of claim 51, wherein the third set of instructions includes a fifth set of instructions for specifying a number of constraints.

IN THE ABSTRACT

On page 175, lines 1-8, please delete the "Abstract of the Invention", and insert therein a new Abstract of the Invention as follows:

-- ABSTRACT OF THE INVENTION

95

Some embodiments provide an LP method that identifies route propagations. In some embodiments, this method is used by a router that hierarchically defines routes for