Fair Allocation with Special Externalities

Shaily Mishra

Manisha Padala

Sujit Gujar

Machine Learning Lab, International Institute of Information Technology, Hyderabad

The 19th Pacific Rim International Conference on Artificial Intelligence (PRICAI 2022)

Resource Allocation

Image Credits: https://newspatrolling.com/what-happens-to-your-property-after-you-die/, https://accination-info.eu/en/disease-factsheets/influenza, https://www.subpng.com/free-png/transcript.html, https://www.toppr.com/ask/content/story/amp/the-marketing-mix-channels-of-distribution-113719/

Fair Division

Objective: Divide items among agents fairly and efficiently

Fair Division

Objective: Divide items among agents fairly and efficiently

Figure: Envy Free (EF): No agent envies the other

Motivation

Motivation

Motivation ○○○●

Image Credits: http://www.strokecaregiver.org/https://www.vecteezy.com/vector-art/450931-happy-womanrunning-in-the-park-vector-illustration-in-flat-style-concept-illustration-for-healthy-lifestyle-sport-exercising https://www.baamboozle.com/game/108103

Our Goal

Achieving fairness in the presence of externalities

Our Goal

Achieving fairness in the presence of externalities

• Do existing definition generalizes? Or new definitions?

Our Goal

Achieving fairness in the presence of externalities

- Do existing definition generalizes? Or new definitions?
- When can we leverage existing algorithms?

Introduce 2-D valuations space to model special externalities

Introduce 2-D valuations space to model special externalities

Contributions

 PROP-E: introduce proportionality for general valuations with full externalities

Introduce 2-D valuations space to model special externalities

Contributions

- PROP-E: introduce proportionality for general valuations with full externalities
- T: Transformation on 2-D valuations that retains fairness and efficiency notions

Introduce 2-D valuations space to model special externalities

Contributions

- PROP-E: introduce proportionality for general valuations with full externalities
- T: Transformation on 2-D valuations that retains fairness and efficiency notions

Introduce 2-D valuations space to model special externalities

Contributions

- PROP-E: introduce proportionality for general valuations with full externalities
- T: Transformation on 2-D valuations that retains fairness and efficiency notions – One can adapt the existing algorithms for these settings
- **Shifted** α -**MMS**: α -MMS may not exist in 2-D. We propose Shifted α -MMS, a novel way of approximating MMS in 2-D

State of the Art

Key Results without Externalities

Utilities/Valuations only if agent receives goods - we call it
 1-D valuations

Key Results without Externalities

Utilities/Valuations only if agent receives goods - we call it
 1-D valuations

Items	Valuation	Fairness	Results
any	general	EF1	✓[Bhaskar et al., 2020]
goods	identical general	EFX	✔[Plaut and Roughgarden, 2020]
chores	IDO general	EFX	√ [Li et al., 2021]
goods	additive	PROPX	✗ [Aziz et al., 2022]
goods	additive	PROPM	✔[Baklanov et al., 2021]
chores	additive	PROPX	√ [Li et al., 2021]
goods	additive	3/4 + 1/12 <i>n</i> -MMS	√ [Garg et al., 2019]
chores	additive	11/9-MMS	✓[Huang and Lu, 2021]
any	additive	lpha-MMS	✗ [Kulkarni et al., 2021]

Table: Existing results for 1-D valuations

Key Results for Externalities

Items	Valuation	Externalities	Fairness	Results	Paper
			MMS	√Proposed extended-maximin-share (EMMS)	
goods	additive	positive		✓ Explored relaxation of EMMS	[Seddighin et al., 2019]
			Proportionality	√Proposed Average Share (Proportionality)	
			EF	✓EF1/EFX for two agents	
any	additive	any		XEF1 for three agents	[Aziz et al., 2021]
			Proportionality	✓Proposed General Fair Share	_

Table: Existing results for indivisible items with Externalities

Fairness with Special Externalities

Challenges with Externalities

	(Jel)	6			P	Š
Agent 1	(1,,)	(6,,)	(1,,)	(2,,)	(1,,)	(1,,)
Agent 2	(4,,)	(1,,)	(2,,)	(1,,)	(1,,)	(3,,)
Agent 3	(1,,)	(1,,)	(3,,)	(3,,)	(3,,)	(1,,)

EF ??

Agent 1 might not value pen much, but on not receiving it they might incur a high negative utility.

2-D Valuations for Special Externalities

2-D Valuation

 $v = (v_{ik}, v'_{ik}) \in \mathbb{R}^2$

 v_{ik} : valuation that agent i obtains if **receives** an item k

 v'_{ik} : valuation that agent i obtains if **does not receive** an item k

 $v'_{ik} < 0$ indicates loss for not receiving item k

2-D Valuations for Special Externalities

2-D Valuation

 $v = (v_{ik}, v'_{ik}) \in \mathbb{R}^2$

 v_{ik} : valuation that agent i obtains if **receives** an item k

 v'_{ik} : valuation that agent i obtains if **does not receive** an item k

 $v'_{ik} < 0$ indicates loss for not receiving item k

Agent 1	(5,-20)	(6,-10)
Agent 2	(6,-19)	(5,-20)

Our Key Results for 2-D Valuations

Items	Valuation	1-D Fairness	2-D Fairness
any	general	EF1	EF1
goods	identical general	EFX	EFX
chores	IDO general	EFX	EFX
goods	additive	PROPM	PROPM PROPM-E
chores	additive	PROPX	PROPX PROPX-E
goods	additive	3/4 + 1/12 <i>n</i> -MMS	3/4 + 1/12n-MMS
chores	additive	11/9-MMS	11/9-MMS

Table: Fairness: 1-D vs 2-D

Fairness: Proportionality

Agent 1	(5,-20)	(6,-10)
Agent 2	(6,-19)	(5,-20)

Proportionality in 2-D

Definition (Proportionality (PROP))

An allocation A satisfies PROP if, $\forall i \in N, u_i(A_i) \geq \frac{1}{n} \cdot v_i(M)$

Definition (Proportionality with externality (PROP-E))

An allocation A satisfies PROP-E if, $\forall i \in N, u_i(A_i) \geq \frac{1}{n} \cdot \sum_{j \in N} u_i(A_j)$

Transformation from 2-D ${\cal V}$ to 1-D ${\cal W}$

Definition (Transformation T)

Given a resource allocation problem (N, M, \mathcal{V}) , we obtain an equivalent problem in 1-D valuations with valuations denoted by $\mathcal{W} = \mathfrak{T}(\mathcal{V}(\cdot))$ as follows,

$$\forall i \in N, w_i(A_i) = \mathfrak{T}(V_i(A_i)) = v_i(A_i) + v_i'(A_{-i}) - v_i'(M)$$

Illustration of $\mathfrak T$

		~	
Agent 1	(5,-20)	(6,-10)	(16,-40)
Agent 2	(6,-19)	(5,-20)	(16,-40)

		⇔	
Agent 1	35	26	56
Agent 2	26	29	56

Theorem

An allocation A is \mathfrak{F} -Fair and \mathfrak{E} -Efficient in \mathcal{V} iff A is \mathfrak{F} -Fair and \mathfrak{E} -Efficient in the transformed 1-D, \mathcal{W} , where

 $\mathfrak{F} \in \{\textit{EF, EF1, EFX, PROP-E, PROP1-E, PROPX-E, MMS}\} \& \mathfrak{E} \in \{\textit{PO, MUW}\}.$

Theorem

An allocation A is \mathfrak{F} -Fair and \mathfrak{E} -Efficient in \mathcal{V} iff A is \mathfrak{F} -Fair and \mathfrak{E} -Efficient in the transformed 1-D, \mathcal{W} , where

 $\mathfrak{F} \in \{\textit{EF, EF1, EFX, PROP-E, PROP1-E, PROPX-E, MMS}\} \& \mathfrak{E} \in \{\textit{PO, MUW}\}.$

 Implication – We can adapt the existing algorithms in 2-D for the above properties

Existing algorithms cannot be directly applied

 In 2-D, MNW cannot be defined. MNW allocation implies EF1 and PO [Caragiannis et al., 2019] doesn't extend to 2-D

Existing algorithms cannot be directly applied

 Modified leximin algorithm gives PROP1 and PO for chores for 3 or 4 agents in [Chen and Liu, 2020], but it is not PROP1-E (or PROP1) and PO in 2-D when applied on utilities

	c1	c2	c3	c4
Agent 1	(-30,1)	(-20,1)	(-30,1)	(-30,1)
Agent 2	(-30,1)	(-20,1)	(-30,1)	(-30,1)
Agent 3	(-1,40)	(-1,40)	(-1,40)	(-1,40)

leximin
PROP1-E + PO

	c1	c2	сЗ	c4
Agent 1	-31	-21	-31	-31
Agent 2	-31	-21	-31	-31
Agent 3	-41	-41	(-41)	(-41)

leximin PROP1-E + PO

α -MMS

Another important fairness notion studied in the literature: MMS and its approximations

α -MMS

Another important fairness notion studied in the literature: MMS and its approximations

Theorem

There may not exist α -MMS for any $\alpha \in [0,1]$ for $\mu_i > 0$ or $1/\alpha$ -MMS allocation for any $\alpha \in (0,1]$ for $\mu_i < 0$ in the presence of externalities

Shifted α -MMS

Definition (Shifted α -MMS)

An allocation A guarantees **shifted** α -MMS if $\forall i \in N, \alpha \in (0,1]$

$$u_i(A_i) \ge \alpha \mu_i + (1 - \alpha)v_i'(M)$$
 for goods $u_i(A_i) \ge \frac{1}{\alpha}\mu_i + \frac{\alpha - 1}{\alpha}v_i'(M)$ for chores

Shifted α -MMS

Theorem

An allocation A is shifted α -MMS in $\mathcal V$ iff A is α -MMS in $\mathcal W$

Future Directions

- Better approximation for MMS
- Explore MMSX
- Explore Proportionality Adaptation
- Increase complexity in Externalities

References I

- Aziz, H., Caragiannis, I., Igarashi, A., and Walsh, T. (2022). Fair allocation of indivisible goods and chores.

 Autonomous Agents and Multi-Agent Systems, 36(1):1–21.
- Aziz, H., Suksompong, W., Sun, Z., and Walsh, T. (2021). Fairness concepts for indivisible items with externalities.
- Baklanov, A., Garimidi, P., Gkatzelis, V., and Schoepflin, D. (2021). Propm allocations of indivisible goods to multiple agents. arXiv preprint arXiv:2105.11348.
 - Bhaskar, U., Sricharan, A., and Vaish, R. (2020).

 On approximate envy-freeness for indivisible chores and mixed resources.
 - arXiv preprint arXiv:2012.06788.

References II

The unreasonable fairness of maximum nash welfare.

ACM Transactions on Economics and Computation (TEAC), 7(3):1–32.

chen, X. and Liu, Z. (2020).

The fairness of leximin in allocation of indivisible chores. arXiv preprint arXiv:2005.04864.

Garg, J., McGlaughlin, P., and Taki, S. (2019).

Approximating maximin share allocations.

In Fineman, J. and Mitzenmacher, M., editors, 2nd Symposium on Simplicity in Algorithms, SOSA 2019 - Co-located with the 30th ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, OpenAccess Series in Informatics. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.

References III

Funding Information: Work on this paper partly supported by NSF CRII Award 1755619. Publisher Copyright: © Jugal Garg, Peter McGlaughlin, and Setareh Taki.; 2nd Symposium on Simplicity in Algorithms, SOSA 2019; Conference date: 08-01-2019 Through 09-01-2019.

Huang, X. and Lu, P. (2021).

An algorithmic framework for approximating maximin share allocation of chores.

In Proceedings of the 22nd ACM Conference on Economics and Computation, pages 630–631.

Kulkarni, R., Mehta, R., and Taki, S. (2021).

Indivisible mixed manna: On the computability of mms+ po allocations.

In Proceedings of the 22nd ACM Conference on Economics and Computation, pages 683–684.

References IV

Almost (weighted) proportional allocations for indivisible chores. arXiv preprint arXiv:2103.11849.

Plaut, B. and Roughgarden, T. (2020).

Almost envy-freeness with general valuations.

SIAM Journal on Discrete Mathematics, 34(2):1039–1068.

Seddighin, M., Saleh, H., and Ghodsi, M. (2019). Externalities and fairness.

In The World Wide Web Conference, pages 538-548.

Questions?

Thank you

Machine Learning Lab, IIIT

