

1/12 DRIVE AXLE ASSEMBLE AND
DIFFERENTIAL
Inventor: Yakov Fleytman

FIG 1

FIG 2

2/12 DRIVE AXLE ASSEMBLE AND
DIFFERENTIAL
Inv ntori Yakov Fleytman

FIG 3

FIG 4

3/12 DRIVE AXLE ASSEMBLE AND
 DIFFERENTIAL
Inventor: Yakov Fl ytman

FIG 5

FIG 6

4/112 DRIVE AXLE ASSEMBLE AND
DIFFERENTIAL
Inventor: Yakov Fleytman

5/12 DRIVE AXLE ASSEMBLE AND
 DIFFERENTIAL
Inventor: Yakov Fleytman

FIG 9

6/12 DRIVE AXLE ASSEMBLE AND
DIFFERENTIAL
Inventor: Yakov Fleytman

FIG 10

7/12 DRIVE AXLE ASSEMBLE AND
DIFFERENTIAL
Inventor: Yakov Fleytman

FIG 11

FIG 12

8/12

DRIVE AXLE ASSEMBLE AND
DIFFERENTIAL
Inventor: Yakov Fleytman

FIG 13

9/12

DRIVE AXLE ASSEMBLE AND
DIFFERENTIAL
Inventor: Yakov Fleytman

FIG 14

10/12

DRIVE AXLE ASSEMBLE AND
DIFFERENTIAL
Inventor: Yakov Fleytman

FIG 15

FIG 16

PARAMETER	HYPOID	ENVELOPING FACE	RESULT
Area of contact	Line or point depends on tooth modification.	Surface or close to surface contact area.	Higher load carrying capacity on enveloping worm face gears.
Relative movement	Sliding and rolling. But sliding and rolling velocities are orthogonal which decreases driving efficiency.	Sliding and rolling, but rolling and sliding are collinear thus improving driving efficiency.	Higher efficiency of enveloping worm face gears even with poor lubrication.
Applying load	On the face.	On the top.	More natural pushing in enveloping worm face gears.
Contact pattern location	Variable distance from axis of rotation.	Constant distance from axis of rotation.	Better dynamic conjugacy action of enveloping worm face gears.
General design	More teeth for the ratio.	Fewer teeth for the ratio.	Reduced machining time for enveloping worm face gears.
Relative position	Radial direction of contact.	Tangential direction contact	Reduced size of enveloping worm face gears for the same load.

FIG. 17