

Proteus Exploration de l'espace séquence-rotamère Comparaison d'algorithmes

David Mignon 11/05/15

Biomolecular simulation and design

- Conformational space
 - Particular structure for backbone
 - Side chains rotamers
 - Simple model of unfolded state (important for stability)

- hydrophilic
- hydrophobic

- Energy function : pairwise decomposition
 - Intraprotein = Ebb + ΣEii + ΣEij
 - Solvant = dielectric model

unfolded

folded

Energy matrix or lookup table

Energy matrix Whole backbone XPLOR : Molecular interaction Rotamers library Proteus (C language): Exploration of sequence space

Comparaison de méthodes d'exploration des

séquences

- A. Présentation des algorithmes
 - Algorithme de recherche exacte: Toulbar2
 - Une heuristique spécifique à la structure de l'espace
 - méthodes probabilistes
 - 1. Monte Carlo
 - 2. Replica Exchange
- B. Ensemble des tests
 - méthodes
 - résultats
 - analyses

Une méthode exacte par optimisation

combinatoire

La décomposition par paire de notre fonction d'énergie permet une représentation des énergies sous forme d'

"un réseau de fonctions de coûts".

interaction entre acides aminés <=> une arête dans le réseau

une énergie d'un rotamère <=> un nœud dans le réseau

Le logiciel toulbar2 (D. Allouche, S. de Givry, Schiex)

- Un ensemble de transformations qui préservent l'équivalence des problèmes est appliqué sur le réseau.
- 2. Un minorant m et un majorant M du minimum global d'énergie sont mis à jour après transformation.
- 3. Un arbre d'états est "élagué" à partir de m et M.
- 4. retour en 1.

Une méthode exacte par optimisation

combinatoire

La décomposition par paire de notre fonction d'énergie permet une représentation des énergies sous forme d'

"un réseau de fonctions de coûts".

interaction entre acides aminés <=> une arête dans le réseau

une énergie d'un rotamère <=> un nœud dans le réseau

Le logiciel toulbar2 (D. Allouche, S. de Givry, Schiex)

- 1. Un ensemble de transformations qui préservent l'équivalence des problèmes est appliqué sur le réseau.
- 2. Un minorant m et un majorant M de minimum global d'énergie sont mis à jour après transformation.
- 3. Un arbre d'états est "élagué" à partir de m et M.

Une méthode exacte par optimisation

combinatoire

La décomposition par paire de notre fonction d'énergie permet une représentation des énergies sous forme d'

"un réseau de fonctions de coûts".

interaction entre acides aminés <=> une arête dans le réseau

une énergie d'un rotamère <=> un nœud dans le réseau

Le logiciel toulbar2 (D. Allouche, S. de Givry, Schiex)

- 1. Un ensemble de transformations qui préservent l'équivalence des problèmes est appliqué sur le réseau.
- 2. Un minorant m et un majorant M de minimum global d'énergie sont mis à jour après transformation.
- 3. Un arbre d'états est "élagué" à partir de m et M.

Une méthode heuristique spéficique à la structure de l'espace (Wernisch, Wodak)

Le but est la d'obtenir un ensemble de séquences-rotamères qui approchent le minimum globale.

L'algorithme effectue une optimisation à chaque position:

```
1 Pour chaque cycle heuristique
    Une séquence-rotamère S est choisie aléatoirement
3
    Tant que l'énergie de S est améliorée
        Pour i allant de la première position de S jusqu'à la dernière
4
5
             S est fixée sauf à la position i
6
             Le meilleur rotamère possible en i est determiné
             Ce rotamère est utilisé pour fixer S en i
8
        fin de Pour
    fin de Tant que
    S est sauvegardée
11 fin de Pour
```

Le Monte Carlo

algorithme Metropolis-Hastings

Le but est de générer une collection d'état échantillonné selon la distribution de Boltzmann.

$$p(\acute{e}tat) \propto e^{(\frac{-E}{RT})}$$

L'algorithme définit une chaîne de Markov pour laquelle:

 la distribution de probabilité des états est stationnaire.

C'est garantie par la balance détaillée.

Il n'y a qu'une seule distribution stationnaire.

C'est garantie par le caractère ergodique de la chaine.

Le Monte Carlo

algorithme Metropolis-Hastings

```
Une séquence-rotamère So est choisie aléatoirement
1
         Pour i allant du premier pas de la trajectoire jusqu'au dernier
              A partir d'une probabilité conditionnelle select(., S),
              une proposition S'i est choisie par un tirage qui suit
select(.,Si)
              on calcule la probabilité d'acceptation:
4
              acc=exp(\beta\Delta E)select(S_i,S_i)/select(S_i,S_i)
5
              si acc > 1 alors Si+1=Si
              sinon alors S_{i+1} = S_i, avec la probabilité acc
              sinon
                          S_{i+1} = S_i
         fin de Pour
6
```

Dans proteus select(S',S) est une combinaison de changements de rotamères et/ou de mutations.

C'est une fonction symétrique!

Le Monte Carlo

algorithme Metropolis-Hastings

Avantages:

inconvénients:

- ensemble
- propriétés physique de la trajectoire

- Non exacte / stochastique
- exploration peut être inefficace

Repliqua Exchange

Objectif: améliorer le Monte Carlo pour

pouvoir franchir plus souvent les barrières énergétiques tout en conversant les qualités de l'échantillon.

```
    Lancement en parallèle de N marcheurs Monte Carlo aux températures ordonnées (t1,...,tN)
    Tous les P pas
    i est choisie aléatoirement entre 1 et N ce qui sélectionne les marcheurs aux températures ti et ti+1.
    La probabilité d'acceptation suivante est calculée acc=exp((Ei-Ei+1)(1/ti-1/ti+1))
    si acc ≥ 1 alors les températures sont échangées sinon alors les températures sont échangées , avec la probabilité acc
    fin de la trajectoire
```

Repliqua Exchange

Comportement de l'algorithme

Repliqua Exchange

Comportement de l'algorithme

Ensemble de tests

1. 8 protéines de 57 jusqu'à 109 résidus:

1A81(58),1ABO(98),1BM2(57),1CKA(57),1G90(91), 1M61(109),104C(104),1R6J(82),2BYG(97)

2. Méthodes

- Toulbar2: temps d'exécution max 24h, en cas d'échec relance avec une deuxième configuration
- Heuristique: 110 000 cycles (environ 24h de calculs pour le plus long test)
- Monte Carlo: 6 milliards de pas (environ 24h de calculs pour le plus long test)
 - . à chaque pas, 2 modifications de rotamères et 1 mutation en moyenne tous les 10 pas
 - . température: 0.2
- Replica Exchange: 6 milliards de pas cumulés sur tous les marcheurs
 - . 4 marcheurs -> températures 10<->0.01 ou 2<->0.25
 - . 8 marcheurs -> températures:10<->0.003 ou 3<->0.175, swap tests: 100 ou 750,...
- 3. types de tests: séquences fixés, mutation 1 position, mutation multi-positions, tous actifs.
- 4. Analyses: atteinte du minimum global, étude au voisinage, structures

Résultats pour 10 et 20 positions actives

10 positions actives				20 positions actives				
Protéine GMEC H MC RE						RE		
1A81 1	-583.9354	0	0		-566.9106	0	-0.3275	
1A81 2	-581.7802	0	0		-564.6618	-0.1705	-2.4355	-1.0069
1A81 3	-587.4392	-0.0001	-0.1595		-572.9780	0	-0.4640	
1A81 4	-589.1322	0	-0.0317		-570.3480	-0.3568	-0.5128	
1A81 5	-578.2558	0	-0.0563		-571.2480	-0.7658	-0.5088	
1ABO 1	-309.1670	-0.0675	-0.9054		-299.6592	-0.1205	-1.1159	-0.2153
1ABO 2	-308.8387	0	0		no	-298.3854	0	
1ABO 3	-303.8520	0	0		no	-298.3854	0	
1ABO 4	-310.0087	0	-0.0128		no	-297.8545	-0.0076	
1ABO 5	-301.6727	0	0		no	-297.8009	-0.9483	
1BM2 1	-549.8638	0	-0.0950		-526.0936	0	-0.0619	
1BM2 2	-541.5944	0	0		no	-525.3588	-0.0725	
1BM2 3	-543.7434	0	0		-534.3860	-0.0230	-0.4763	
1BM2 4	-549.0453	0	0		no	-526.8307	-2.5883	-0.0789
1BM2 5	-544.1447	0	-0.1082		-535.3334	-0.2396	-0.3746	
1CKA 1	-305.8477	0	0.1002		-295.6311	0.2000	0.0110	
1CKA 2	-309.9886	0	0		-295.8571	ő	ő	
1CKA 3	-304.6618	0	0		-293.8687	Ιŏ	ŏ	
1CKA 4	-302.4894	0	0		no	-293.8687	ő	
1CKA 5	-299.2329	-0.2859	-3.2525	0	no	-293,4203	lŏ	
1G9O 1	-466.6764	0	0		no	-451.4604	-1.2525	-1.2525
1G9O 2	-478.8797	0	0		no	-453.2355	-0.2487	-1.2020
1G9O 3	-477.2503	-0.1366	0		no	-453.2474	-0.2177	
1G9O 4	-470.6458	0.1300	0		no	-456.3751	-0.2275	
1G9O 5	-464.8659	0	-3.9599		no	-456.7331	-0.1455	
1M61 1	-550.0699	0	-0.0776		-528.0700	0	0.1400	
1M61 2	-538.6026	-3.5105	-4.5062	0.3215	-528.7653	ŏ	0	
1M61 3	-552.2673	0	0	0.0210	-530.0684	ŏ	ő	
1M61 4	-550.0553	0	0		-534.5248	0	0	
1M61 5	-553.6559	0	-0.0432		-548.0096	Ö	-0.2521	
104C 1	-587.4665	0	-0.0432		no	-0.2775	-574.0737	
104C 1 104C 2	-585.8545	0	-0.1121		no	-574.8584	-0.1963	
104C 2	-580.3505	0	-0.1519		-573.6314	0	-0.1363	
104C 3	-587.1548	0	-0.1515		-575.8667	lő	-0.3640	
104C 5	-590.2650	0	-0.1753		no	-573.3479	-0.1141	
1R6J 1	-448.8351	0	-2.4022	-0.3986	-440.7417	0	-0.2604	
1R6J 2	-448.4631	0	-1.0398	-0.5560	-437.2537	0	-0.2004	
1R6J 3	-440.4031 -450.3950	0	-0.0106		-439.4335	0	-0.0537	
		_				0		
1R6J 4	-451.7211	0	0		-439.9135	-	-0.0537	
1R6J 5	-450.9943	0	-0.0162		-438.0222	0	-0.0735	0.0057
2BYG 1	no	-505.6397	-0.0337		-496.2991	0	-3.1878	-0.0257
2BYG 2	-504.7389	0	0		-494.8723	0	-0.0524	0.0000
2BYG 3	-504.3048	0	-0.0833		-494.8723	0	-1.3564	-0.0826
2BYG 4	-504.3466	0	-0.2149		-495.9213	0	-0.1968	
2BYG 5	-491.6095	0	0		no	-497.5123	-0.0933	

0,1,5,10,20 et 30 positions actives

Résultats Superfamily

Pour protocole le RE 8 b 2

Protein	Match/seq size	Superfamily Evalue	superfamily success	Family Evalue	family success		
1A81	no						
1ABO	51/58	4.4e-4	100%	2.8e-3	100%		
1BM2	78/98	4.2e-5	100%	2.6e-3	100%		
1CKA	40/57	1.1e-5	100%	3.4e-3.	100%		
1G9O	79/91	7.0e-7	100%	2.5e-3	100%		
1M61	97/109	7.2e-7	100%	2.6e-4	100%		
104C	95/104	2.1e-4	100%	4.5e-3	100%		
1R6J	74/82	9.8e-6	100%	4.6e-3	100%		
2BYG	59/97	1.4e-5	100%	7.1e-3	100%		

Moyenne sur les 10000 séquences-rotamères de meilleurs énergies

Comparaison des temps de calculs

Retour sur quelques tests

Protein	GMEC	H	MC	RE
1CKA 3	-304.6618	0	0	
1CKA 4	-302.4894	0	0	
1CKA 5	-299.2329	-0.2859	-3.2525	0
1G9O 3	-477.2503	-0.1366	0	
1G9O 4	-470.6458	0	0	
1G9O 5	-464.8659	0	-3.9599	0
$1M61\ 1$	-550.0699	0	-0.0776	
$1M61\ 2$	-538.6026	-3.5105	-4.5062	0.3215
1M61 5	-553.6559	0	-0.0432	

Protein	seq-rot nb gmec+1	H rank	MC rank	seq nb gmec+1	H mut nb	MC mut nb
1CKA 3	67669	1	1	227	0	0
1CKA 4	4649	1	1	498	0	0
1CKA 5	1388	78	?	77	0	2
1G9O 3	354559	23	1	63	1	0
1G9O 4	22639	1	1	381	0	0
1G9O 5	8658395	1	?	11	0	0
1M61 1	11199153	?	?	21	3	7
1M61 2	11199153	1	1	88	0	0
1M61 5	16417604	1	1	83	0	0

Retour sur quelques tests

Séquences au voisinage du minimum global

