Compte Rendu TP5 Traitement d'images en couleur Changement d'espaces couleur

Ivan Lejeune

28 février 2024

Table des matières

1	Obtention d'une image en niveaux de gris à partir d'une image couleur	2
	1.1 Choix de l'image	2
	1.2 Transformation de l'image en niveaux de gris	2
	1.3 Comparaison des deux images	3
2	Transformation de l'espace RGB vers l'espace YCbCr	4
	2.1 Programme	4
3	Transformation de l'espace YCbCr vers l'espace RGB	5
	3.1 Programme	5
4	Inversion de composantes à la reconstruction	6
	4.1 Programme	6
5	Modification de la luminance d'une image couleur	7
	5.1 Programme	7
	5.2 Comparaison des images	8
	5.3 Comparaison des histogrammes	8

1 Obtention d'une image en niveaux de gris à partir d'une image couleur

1.1 Choix de l'image

Comme lors des TP précédents, on utilise l'image peppers.ppm et peppers.pgm pour les tests.

FIGURE 1 – Image originale

FIGURE 2 – Image en niveaux de gris

1.2 Transformation de l'image en niveaux de gris

On commence par écrire le programme RGB_to_Y qui prend en entrée une image couleur et renvoie une image en niveaux de gris. Pour cela, on utilise la formule suivante :

$$Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

FIGURE 3 – Image en niveaux de gris

FIGURE 4 - Image obtenue avec RGB_to_Y

1.3 Comparaison des deux images

On compare les deux images obtenues en calculant l'erreur quadratique moyenne (EQM) avec la formule suivante :

$$EQM = \frac{1}{n} \sum_{i=1}^{n} (Y_i - Y_i')^2$$

Où Y_i est la valeur du pixel i de l'image originale et Y_i' est la valeur du pixel i de l'image obtenue

On obtient alors l'EQM suivante :

$$EQM = 113.847305$$

2 Transformation de l'espace RGB vers l'espace YCbCr

2.1 Programme

On commence par écrire le programme RGB_to_YCbCr qui prend en entrée une image couleur et renvoie 3 images en niveaux de gris correspondant aux composantes Y, Cb et Cr de l'image originale.

On utilise les formules suivantes :

$$Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

$$Cb = 128 - 0.1687 \cdot R - 0.3313 \cdot G + 0.5 \cdot B$$

$$Cr = 128 + 0.5 \cdot R - 0.4187 \cdot G - 0.0813 \cdot B$$

Figure 6 – Composante Cb

Figure 7 - Composante Cr

3 Transformation de l'espace YCbCr vers l'espace RGB

3.1 Programme

On commence par écrire le programme YCbCr_to_RGB qui prend en entrée 3 images en niveaux de gris correspondant aux composantes Y, Cb et Cr d'une image couleur et renvoie l'image couleur originale.

On utilise les formules suivantes :

$$R = Y + 1.402 \cdot (Cr - 128)$$

$$G = Y - 0.34414 \cdot (Cb - 128) - 0.714414 \cdot (Cr - 128)$$

$$B = Y + 1.772 \cdot (Cb - 128)$$

FIGURE 8 – Image originale

Figure 9 – Image obtenue avec $YCbCr_to_RGB$

4 Inversion de composantes à la reconstruction

4.1 Programme

On commence par écrire le programme YCbCr_to_mix_RGB qui prend en entrée 3 images en niveaux de gris correspondant aux composantes Y, Cb et Cr d'une image couleur et renvoie 6 images correspondant à toutes les combinaisons possibles des composantes Y, Cb et Cr.

 $\begin{array}{lll} {\rm FIGURE} & 10 & - & {\rm Composantes} \\ {\rm dans} & {\rm l'ordre} & {\rm RGB} \\ \end{array}$

FIGURE 11 – Composantes dans l'ordre RBG

FIGURE 12 – Composantes dans l'ordre GRB

FIGURE 13 – Composantes dans l'ordre BRG

FIGURE 14 – Composantes dans l'ordre BGR

FIGURE 15 – Composantes dans l'ordre GBR

5 Modification de la luminance d'une image couleur

5.1 Programme

On commence par écrire le programme $modify_luminance$ qui prend en entrée la composante Y d'une image couleur et un entier k et renvoie une image grise correspondant à la composante Y multipliée par k.

FIGURE 16 – image modifiée par 10

FIGURE 17 – image modifiée par 50

FIGURE 18 – image modifiée par -30

5.2 Comparaison des images

On choisit d'utiliser l'image modifiée par -30 pour la comparaison. Les résultats sont les suivants :

FIGURE 20 - Image obtenue avec YCbCr_to_RGB

5.3 Comparaison des histogrammes

On compare les histogrammes des images peppers.ppm et peppers-modif-30.ppm. Les résultats sont les suivants :

FIGURE 21 - Histogramme de peppers.ppm