Homework 3: Statistics – Regression and Correlation

${\rm CHEM4050/5050~Fall~2025}$

Wednesday, September 24, 2025, at 11:59 PM Central

${\bf Contents}$

1	Trouton's Rule, Regression, and Uncertainty Analysis	2
	1.1 Tasks	4
	1.2 Submission Guidelines	4
2	Graduate Supplement	
	2.1 Tasks	
	2.2 Submission Guidelines	:

1 Trouton's Rule, Regression, and Uncertainty Analysis

Trouton's rule offers a valuable empirical insight: the entropy of vaporization (ΔS_v) for many non-associating liquids is approximately constant, around 85–88 J/mol·K (or $\sim 10.5R$), at their normal boiling points. This rule underscores the consistency in thermodynamic properties during phase transitions and provides a convenient approximation for estimating vaporization entropies when direct measurements are unavailable.

In this problem, you are given data on the boiling points (T_B) and enthalpies of vaporization (H_v) for 24 substances. Using this dataset, complete the following tasks:

1.1	Tasks
	Fit a linear regression model: Model the relationship between H_v and T_B using the equation
	$H_v = a \cdot T_B + b \tag{1}$
	where a is the slope, and b is the intercept.
	Interpret the slope: The slope a can be interpreted as an approximation of the entropy of vaporization ΔS_v .
	Compare to Trouton's Rule: According to Trouton's rule, $\Delta S_v \approx 10.5R$ (or $\sim 88\mathrm{J/mol\text{-}K}$) for many substances. Discuss how well your data aligns with this approximation.
	Compute uncertainty: Calculate the 95% confidence intervals for both the slope a and the intercept b .
1.2	Submission Guidelines
	Push a Python script named troutons_rule.py to your GitHub repository titled chem-4050-5050 for this course.
	When executed, troutons_rule.py should:
	☐ Import and use the functions ols_slope, ols_intercept, and ols from Lecture 7 for the ordinary least squares (OLS) regression.
	\square Produce a clear plot of H_v vs. T_B with the fitted linear regression line:
	\Box Color data points by their Class.
	\square Convert H_v to J/mol-K for interpretation and labeling.
	\square Display the equation $H_v = a \cdot T_B + b$ on the plot, along with the numerical values of a (in J/mol-K) and b (in kJ/mol), including their 95% confidence intervals.
	$\hfill\Box$ Title the plot as "Trouton's Rule."
	\square Save the plot as a png file in a folder titled homework-3-1.
	Include clear comments in your code, explaining each key step.
	Ensure your plots are well-labeled, properly formatted, and saved to the directory homework-3-1.

2 Graduate Supplement

In the previous problem, you utilized a linear regression approach to model the relationship between enthalpy of vaporization (H_v) and boiling points (T_B) of various substances, deriving the entropy of vaporization (ΔS_v) as the slope of the regression line. In this graduate supplement, you will approach the same problem using numerical optimization techniques.

2.1 Tasks

 \Box Objective Function: Define a suitable objective function based on the least squares error between the predicted and actual values of H_v . Specifically, minimize the sum of squared residuals

Objective
$$(a, b) = \sum_{i=1}^{n} \left(H_v^{(i)} - (a \cdot T_B^{(i)} + b) \right)^2$$
 (2)

where a and b are the variables to optimize.

☐ Include clear comments in your code, explaining each key step.

${\bf Minimization \ using \ scipy.optimize.minimize: \ Implement \ a \ script \ that \ uses \ scipy.optimize.minimize \ a \ script \ a \ $
to find the optimal slope (a) and intercept (b) that minimize the least squares error.
Compare Results: Compare the slope (a) from the optimization with the slope obtained from the
linear regression in the first problem. How do the results differ, if at all?

□ **Interpretation**: Discuss the implications of using an optimization-based approach versus a linear regression approach for this problem. Are there any notable advantages or disadvantages?

2.2 Submission Guidelines

\square Push a Python script named troutons_rule_optimization.py to your GitHub repository titled chem-4050-5050 for this course.
$\hfill \Box$ When executed, troutons_rule_optimization.py should:
\square Define the objective function as described above.
\square Use scipy.optimize.minimize to find the optimal parameters a and b .
\square Plot the resulting fit of H_v vs. T_B using the optimized parameters:
\Box Color data points by their Class.
\square Convert H_v to J/mol-K for interpretation and labeling.
\square Display the equation $H_v = a \cdot T_B + b$ on the plot, along with the numerical values of a and b
$\hfill\Box$ Title the plot as "Trouton's Rule Optimization."
\square Save the plot as a png file in a folder titled homework-3-2.
\square Ensure your plots are well-labeled, properly formatted, and saved to the directory homework-3-2.