Exercise 7. Let V be a vector space over \mathbb{R} . A function $(\cdot, \cdot): V \times V \to \mathbb{R}$ is an *inner product* on V if

- (i) $(x, x) \ge 0$
- (ii) (x,x) = 0 if and only if x = 0
- (iii) (x, y) = (y, x)
- (iv) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$

hold for all x, y, z in V and all α, β in \mathbb{R} . An inner product space is a vector space, together with an inner product on it. The norm $\|\cdot\|$ associated with the inner product (\cdot, \cdot) is defined by $\|x\| = \sqrt{(x, x)}$.

- (a) Prove that an inner product satisfies the Cauchy-Schwartz inequality: if $x, y \in V$, then $|(x, y)| \leq ||x|| ||y||$. (Hint: define a function $p : \mathbb{R} \to \mathbb{R}$ by $p(t) = ||x||^2 + 2t(x, y) + t^2 ||y||^2$ and note that $p(t) = ||x + ty||^2 \geq 0$ holds for each real t; then recall that a quadratic polynomial $at^2 + bt + c$ is nonnegative for each t if and only if $b^2 4ac \leq 0$).
- (b) Verify that the norm associated with (\cdot, \cdot) is indeed a norm. (Hint: use the Cauchy-Schwartz inequality when checking the triangle inequality).

Proof.

(a) Fix $x, y \in V$ and consider $p(t) = ||x + ty||^2$ for all $t \in \mathbb{R}$. We have:

$$p(t) = (x + ty, x + ty) = (x, x) + (x, ty) + (ty, x) + (y, y)$$
$$= ||x||^2 + 2t(x, y) + t^2||y||^2$$

by the rules of the inner product, and $p(t) \ge 0$ since $(z, z) \ge 0$ for all $z \in V$. p(t) can only be positive if, as a polynomial in $t \in \mathbb{R}$ with real coefficients, it does not have any real roots, which in turns necessitates that its discriminant $4(x, y)^2 - 4||x||^2||y||^2$ be negative. This gives us $(x, y)^2 \le ||x||^2||y||^2$, which in turn implies that $|(x, y)| \le ||x|||y||$.

(b) Since $(x,x) \ge 0$ for all $x \in V$ and (x,x) = 0 if and only x = 0, $||x|| = \sqrt{(x,x)} \ge 0$ and is zero if and only if x = 0. For all $\alpha \in \mathbb{R}$ and $x \in V$, $||\alpha x||^2 = (\alpha x, \alpha x) = \alpha(x, \alpha x) = \alpha(\alpha x, x) = \alpha^2(x, x) \ge 0$, so that $||\alpha x|| = |\alpha|||x||$. Finally, for $x, y \in V$, we have:

$$\begin{aligned} &\|x+y\|^2 = \|x\|^2 + 2(x,y) + \|y\|^2 \\ &\|x+y\|^2 \le \|x\|^2 + 2|(x,y)| + \|y^2\| \\ &\|x+y\|^2 \le \|x\|^2 + 2\|x\| \|y\| + \|y\|^2 \quad \text{ by Cauchy-Schwartz} \\ &\|x+y\|^2 \le (\|x\| + \|y\|)^2 \end{aligned}$$

and since both sides of the last inequality are the squares of positive reals, we conclude that $\|x+y\| \leq \|x\| + \|y\|$, and the norm associated with the inner product is a norm.