Vehicle dynamics

Lesson n.2:

Longitudinal dynamics: acceleration performance

Outline

- Power-limited acceleration
 - Powertrain: engine, clutch, transmission, driveline, differential, axle, wheel
- Traction-limited acceleration
 - Tire-road contact modelling
 - Load distribution on the wheels

Powertrain: main components

Engine: provides power for traction

Clutch: allows to disengage engine shaft from driveshaft

Transmission: allows to match engine speed with vehicle speed through gearsets

Driveshaft: power transfer

Differential: turns power flow by 90° and allows speed differentiation for the traction wheels

Axle shaft: transmits power the the wheel (rear/front/all)

Note: multiple arrangements and component variants are possible

Internal Combustion Engine (ICE)

Spark-ignition 4-stroke engine

Source: https://mechstuff.com

- reciprocating engine
- 4 cylinders, 16 valves

Piston + connecting rod + crank:

From reciprocating motion of the piston (caused by expanding forces of gases) to rotational motion of the crankshaft

Flywheel: rotating disk for energy storing

Inlet & Outlet valves:

- Fresh air/fuel mixture in
- Exhaust gases out

Camshaft: synchronized valves activation

Spark Plug*: electric spark-induced ignition of air/fuel mixture in the combustion chamber→ gas expansion

*Different ignition principle in Diesel engines

Internal Combustion Engine

Thermodynamic cycle

Source: https://mechstuff.com

1 - Intake

2 - Compression

3 - Combustion / Expansion

4 - Exhaust

1 active stroke

Multicylinder solution

Engine characteristic curves

Gasoline (petrol) engine

Diesel engine

Notes:

1. Power/Torque relationship

$$P = T \cdot \Omega$$
 $\left[W = \frac{Nm}{s} \right]$

Units

Power (kW) = 0.746 HP

2. Limited torque and speed range → need for transmission → need for clutch (more info will follow)

Upper limit for longitudinal acceleration

What about your car?

Clutch

Single plate clutch

Function: engine-to-transmission connection enabling

- Disengagement of a gear when the vehicle is stationary and the engine is running
- Smooth transmission of the engine power to the traction wheels at vehicle start
- Gradual loading of the engine at each gear shifting
- To permit the engaging of the gears when the vehicle is in motion

Types of clutches used in vehicles

Multi-plate clutch

Centrifugal clutch

Hydraulic clutch

Source: https://mechstuff.com

Transmission (or Gearbox): why do we need it?

- 1. To keep the engine running even when the vehicle is not moving (with clutch engaged).
- 2. To be able to drive the car backwards by shifting to reverse gear.
- 3. To carry high loads OR climb steep slopes as well as achieve high speeds on straight roads.

Achieved by changing the transmission ratio between input and output shaft

Typical gear ratios in 5-speed gearboxes

1st gear 3-4:1 2nd gear 2-2.5:1 3rd gear 1.4-1.6:1 4th gear 1-1.2:1 5th gear 0.7-0.8:1 Reverse gear -3.1:1

What is the gear (transmission) ratio?

- 0 2

$$Reduction = \frac{40}{12} = 3.33$$

The gearbox REDUCES speed

The gearbox INCREASES torque

Manual transmission: sliding-mesh gearbox

3-speed gearbox

1st **gear:** D moves on the left side, power flows through A-B-C-D

2nd gear: F moves on the right side, power flows through A-B-E-F

3rd gear: F moves to the left side, power flows through A-F

Reverse: D moves to the right side, power flows through A-B-G-D + idler gear

Neutral: no gear of the counter shaft meshes with the output one

Manual transmission: constant-mesh gearbox

Input shaft: receives engine power/torque

Output shaft: transmits power/torque to the driveshaft

Layshaft: connects the input shaft and the output shaft

Selector rods and forks: enable gear selection

Idler gear: engages to provide reverse motion

Synchronizer: enables smooth gear shifting

Syncronizer

Syncronizer disengaged

The gear on the output shaft turns freely on a bush, rotated by a meshing gear on the layshaft. The synchronizer unit, splined the the output shaft, is close but disconnected from the gear.

Syncronizer engaged

The fork moves the synchromesh towards the selected gear. Friction surfaces synchronise the shaft speeds, and synchronizer and gear lock together.

4-speed manual transmission

Neutral

1st gear

4th gear

Reverse

Automated manual transmissions (AMT)

- Similar layout as manual transmission
- Automated (ECU controlled) activation of shift and clutch (hydraulic, electromechanical,...)
- Several commercial variants
- Pros: cost-efficient (wrt AT), driver comfort, semi-automatic option (to accommodate different driving styles), tunable shifting programs, reduced fuel consumption (based on optimized shifting)
- Cons: fuel-efficient settings and overtaking maneouvers, jerky shifting (mitigated in recent gearboxes)

Automatic transmissions (AT)

9 speed ZF AT

- Different layouts and wide variety of commercial variants
- Automatic (ECU controlled) activation by multiple mechanical systems (clutches, brakes)
- Pros: wide-spread range of gear ratio (almost 10, from 4.7 in 1st gear to 0.48 in 9th gear), driver comfort, tunable shifting programs, reduced fuel consumption (based on optimized shifting), smooth shifting
- Cons: cost and complexity, size and weight (mitigated in recent gearboxes)

Differential: why do we need it?

Driving a car along a turn

Source: https://www.tec-science.com

Kinematic relationship:
$$\omega_{out1} + \omega_{out2} = 2 * \tau_0 * \omega_{in}$$

Differential: why do we need it?

Driving a car along a turn

Driving a car along a straight-line

Limited slip differentials (LSD)

- Clutch type
- Cone differential
- Hydraulic locking type
- Torsen (worm gears)

Power-limited acceleration

Dynamics of the powertrain:

Engine:

$$T_c = T_e - I_e \alpha_e$$

Transmission:

$$T_d = (T_c - I_t \alpha_e) N_t$$

Kinematic relationships

$$a_{x} = \alpha_{w} r$$

$$\alpha_d = N_f \alpha_w$$

$$F_x r + I_w \alpha_w = (T_d - I_d \alpha_d) N_f$$

$$\alpha_e = N_t \alpha_d = N_t N_f \alpha_w$$

$$F_{x} = \frac{T_{e}N_{tf}}{r} \frac{\eta_{TF} - \{(I_{e} + I_{t}) N_{tf}^{2} + I_{d}N_{f}^{2} + I_{w}\} \frac{a_{x}}{r^{2}}$$

Power-limited acceleration

Rotational equilibrium of the powertrain:

Translational equilibrium of the vehicle

$$F_x = \frac{T_e N_{tf}}{r} \eta_{TF} \{ (I_e + I_t) N_{tf}^2 + I_d N_f^2 + I_w \} \frac{a_x}{r^2}$$

$$M a_X = \frac{W}{g} a_X = F_X - R_X - D_A - R_{hx} - W \sin \Theta$$

$$(M + M_r) a_x = \frac{T_e N_{tf} \eta_{tf}}{r} - R_x - D_A - R_{hx} - W \sin \Theta$$

PS:- T_E input data

- M_r equivalent mass for rotating bodies ———
- η_{TF} efficiency typically in the range 80% 90%
- N_{TF} variable based on the gear shift

Mass factor:

$$\longrightarrow$$
 (M+M_r)/M=1+0.04+0.0025 N_{tf}2

Traction-limited acceleration

$$F_{X,max} = \mu W$$

Let's compute Fx under the following assumptions:

- Solid axle suspension
- Rear driving axle
- Open differential

Sospensione ad assale (ponte) rigido

Vantaggi: semplicità costruttiva

Svantaggi: potere autosterzante, masse non sospese considerevoli (differenziale)

Trasferimento di carico trasversale

Schemi per l'analisi dei carichi

$$W_{y} = \frac{T_{D} - T_{SR}}{t}$$

 $T_d = F_x r/N_f$

$$T_{SR} = k_{\Phi_R} \Phi$$

Rigidezza a rollio

Angolo di rollio

Trasferimento di carico trasversale

Schemi per l'analisi dei carichi

$$\phi = T_d / K_\phi = T_d / (K_{\phi f} + K_{\phi r})$$

$$T_{sr} = K_{\phi r} T_d / (K_{\phi f} + K_{\phi r})$$

Trasferimento di carico trasversale

$$\bigvee_{r} W_r = W(\frac{b}{L} + \frac{F_x}{M g} \frac{h}{L})$$
 Hp: - resistenza aerodi - moto in pianura

Hp: - resistenza aerodinamica e al rotolamento trascurabile- moto in pianura

$$F_{X,max} = 2\mu \left(W_r/2 - W_y\right)$$

$$W_{y} = \frac{T_{D} - T_{SR}}{t} \leftarrow T_{d} = F_{x} r/N_{f}$$

$$T_{ST} = K_{\phi r} T_{d} / (K_{\phi f} + K_{\phi r})$$

$$F_{xmax} = \frac{\mu \frac{Wb}{L}}{1 - \frac{h}{L} \mu + \frac{2 \mu r}{N_f t} \frac{K_{\phi f}}{K_{\phi}}}$$

Sistema con differenziale autobloccante

$$F_{x \text{max}} = \frac{\mu \frac{Wb}{L}}{1 - \frac{h}{L}\mu}$$

Traction-limited acceleration

$$F_{X,max} = \mu W$$

Let's compute Fx under the following assumptions:

- Rear driving wheel
- Independent suspensions

$$W_r = W(\frac{b}{L} + \frac{F_x}{M g} \frac{h}{L})$$
$$F_{X,max} = \mu W_r$$

$$F_{X,max} = \mu W_r$$

$$F_{xmax} = \frac{\mu \frac{Wb}{L}}{1 - \frac{h}{L}\mu}$$

$$a_{X,max} = F_{X,max} / M$$