

음식 정보 제공 및 영양 관리 프로그램

프로젝트 1차 평가 2024.11.25

인공지능 모델설계 정병선 교수님

게임소프트웨어 5585361 류민우

게임소프트웨어 5585470 유성민

게임소프트웨어 5533446 이지선

게임소프트웨어 5585603 조경훈

프로젝트 개요_ 프로젝트 소개

- 진행배경
 - (1) 건강에 대한 관심이 증가하는 추세 → 식단 관리 및 운동을 지향하는 사람이 증가하는 분위기
 - (2) 젊은 연령대의 사람들이 식사를 챙기지 않는 경향 발생 → 식사를 차리기 귀찮음, 발달된 배달 시스템 등 다양한 요소 有
 - → 간단하게 식단을 관리할 수 있으며, 최소한의 식사를 챙길 수 있도록 해 주는 프로그램을 개발하고 싶다는 기획 의도
- 기존의 식단 관리 어플리케이션의 문제점
 - (1) 유명한 음식, 유명한 식단, 프랜차이즈 음식들만 칼로리가 등록되어 있다는 단점
 - (2) 식사량과 관계 없이 칼로리를 등록할 수 있는 단점 보유
 - (3) 탄수화물, 단백질, 지방 등 어떤 영양을 많이 섭취했으며 어떤 영양이 부족한지 잘 모르는 상황 발생

- 개선 사항
 - (1) AI를 접목시켜 사진 속 음식들의 영양 및 칼로리를 계산해주는 데이터 수집
 - (2) 하루 권장 섭취량만 보여주는 것이 아닌, 현재 섭취량, 필요한 섭취량 및 해당 섭취량 내에서 정보 제공
 - (3) 부족한 영양에 대한 관련 정보를 제공하는 프로그램을 개발

사용 데이터셋

① 사용 데이터셋

데이터 찾기 - Al 데이터찾기 - Al-Hub (aihub.or.kr)

- 데이터설명
 - 한국인 다빈도 섭취 외식 및 한식 메뉴 400종에 대한 칼로리 데이터셋
 - 음식 분류 / 양 추정 알고리즘 연동 → 촬영한 사진에 사각 프레임으로 음식 및 양 추정
 - 음식별 에너지, 탄수화물, 당류, 지방, 단백질, 인, 나트륨 등의 데이터 보유

② 플로우

[1단계] 본인의 키/ 몸무게 / 성별 입력

[2단계] 오늘 먹은 식사 사진을 업로드

촬영한 사진에 **사각 프레임**을 씌운 후

(1) 음식의 종류를 체크 → 무슨 음식인지 확인

(2) 음식의 양 체크

[3단계] 먹은 식사 칼로리 정보 확인

[4단계] 채워야 할 칼로리 정보 제공

[5단계] 채워야 할 칼로리 내 식사 추천

채워야 할 칼로리 정보를 바탕으로 음식 리스트 DB에 있는 데이터 가지고 와서 추천

[6단계] 추천 식사 만족도 조사

만족 / 불만족에 따른 음식 리스트를 학습

프로젝트 구현 목표

프로젝트 진행 현황: 결과 데이터 파일

	Α	В	C	D	E	F	G	Н		J	K	L	M	N
1	epoch	train/box_loss	train/obj_loss	train/cls_loss	metrics/precision	metrics/recall	metrics/mAP_0,5	metrics/mAP_0,5:0,95	val/box_loss	val/obj_loss	val/cls_loss	×/lr0	×/lr1	x/lr2
2	0	0,045448	0,065364	0,016448	0,69798	0,63547	0,71375	0,48104	0,040559	0,037131	0,0095738	0,0937	0,0007	0,0007
3	1	0,043832	0,061739	0,017214	0,79442	0,61459	0,74035	0,50151	0,039955	0,036483	0,008643	0,086485	0,0014851	0.0014851
4	2	0,044755	0,070137	0,015991	0,82129	0,62605	0,74438	0,49897	0,039682	0,035918	0,0079107	0,079254	0,0022545	0.0022545
5	3	0.044052	0,062047	0,013604	0,81253	0,64785	0,75938	0.50841	0,039872	0,035751	0,0073122	0,072008	0,0030079	0.0030079
6	4	0.044562	0,060825	0,013259	0,82007	0,66153	0,77442	0,51811	0,039739	0,035246	0,0067489	0.064746	0,0037456	0.0037456
7	5	0,045296	0,056121	0,013646	0,78246	0,71209	0,78967	0,49755	0,041527	0,033816	0,0062742	0.057467	0,0044673	0.0044673
8	6	0,045347	0,050459	0,013334	0,72989	0,71893	0,77457	0,46156	0,043336	0,033682	0,0061807	0,050173	0,0051733	0,0051733
9	7	0,047918	0,060139	0,010308	0,76358	0,73803	0,78837	0,48822	0,0432	0,032911	0,0056427	0,042863	0,0058634	0.0058634
10	8	0,047687	0,058364	0,012367	0,73385	0,75594	0,79612	0,48024	0,044859	0,032927	0,0054067	0,035538	0,0065377	0,0065377
11	9	0,046287	0,054819	0,010107	0,72754	0,7742	0,79989	0,52943	0,042869	0,032317	0,0053219	0,028196	0,0071961	0,0071961
12	10	0,047514	0,06224	0,010215	0,75039	0,7528	0,7972	0,49523	0,046714	0,031365	0,0052397	0,020839	0,0078387	0,0078387
13	11	0.047471	0,055092	0,0098816	0,78405	0,75357	0,79492	0,50029	0,046054	0,030704	0,0051398	0,013465	0,0084655	0.0084655
14	12	0.047709	0,049679	0,011723	0,79335	0,7463	0,80255	0.51047	0,045073	0,030208	0,0050025	0,008812	0,008812	0,008812
15	13	0,046378	0,055658	0,011356	0,82667	0,7597	0,8168	0,53137	0,043406	0,029908	0,0050693	0,008812	0,008812	0,008812
16	14	0,044814	0,048443	0,0098121	0,81434	0,76054	0,82771	0,55201	0,042358	0,029472	0,0050298	0,008713	0,008713	0,008713
17	15	0,043175	0,051635	0,0093391	0,80781	0,76934	0,8252	0,53989	0,041394	0,029624	0.0049724	0,008614	0,008614	0,008614
18	16	0,045378	0,048272	0,0096453	0,85246	0,77111	0,84558	0,54583	0,040504	0,029681	0,0050005	0,008515	0,008515	0,008515
19	17	0,041951	0,048419	0,0097801	0,83141	0,79998	0,85749	0,56089	0,039375	0,029735	0,0049003	0,008416	0,008416	0,008416
20	18	0,042042	0,04895	0,0094202	0,82107	0,79068	0,8504	0,53255	0,042602	0,029338	0,0048973	0,008317	0,008317	0,008317
21	19	0,042308	0,049139	0,010267	0,81536	0,81695	0,86351	0,55388	0,041943	0,028479	0,0045867	0,008218	0,008218	0,008218
22	20	0,044393	0,047024	0,0095769	0.83101	0,80988	0.86579	0.52932	0.041948	0.028401	0.0044697	0.008119	0.008119	0.008119

프로젝트 진행 현황: 결과 데이터 파일

프로젝트 진행 현황: Result

〈손실 그래프〉

- 상단 4개의 그래프: 학습 데이터의 손실 값 변화
- 하단 4개의 그래프: 검증 데이터의 손실 값 변화
- → epoch 진행에 따라 손실 값이 감소되는 것에 따라 학습이 잘 진행되고 있음을 확인 완료

프로젝트 진행 현황: Confusion Matrix

프로젝트 진행 현황: F1 Confidence Curve

- Confidence 가 기존에 0.383에서 0.97로 올라감
- Y축: 모델이 예측한 클래스 (Predicted Labels)

프로젝트 개요 사용 데이터셋 사용 데이터셋 구현 내용 구현 내용

프로젝트 진행 현황: 라벨 분포

- 클래스별 데이터 샘플의 분포를 막대 그래프화

- 각 클래스의 Bounding Box가 중첩된 위치

Bounding Box 의 좌표 / 크기 분포를 표현한 이미지

프로젝트 진행 현황: Bounding Box

프로젝트 진행 현황: Bounding Box

프로젝트 진행 현황: 결과 이미지

Train_batch

Val_batch_labels

Val_batch_labels_pred

