Programming Languages and Compiler Design

Provably Correct Implementation

Yliès Falcone, Jean-Claude Fernandez

Master of Sciences in Informatics at Grenoble (MoSIG)
University of Grenoble-Alpes
(Université Joseph Fourier, Grenoble INP)

Academic Year 2014 - 2015

Provably correct Implementation/Code Generation

Using an operational semantics to argue about the correctness of its implementation.

We will see:

- how to define an operational semantics for an abstract machine: a machine with an evaluation stack;
- how to specify a code generator for such a machine (translation functions on the syntax of language While);
- ▶ how to use the source and target language semantics to prove that the code generation is correct.

Correctness

- ► Translate the program into code.
- ▶ Execute the code on the abstract machine.

 \rightarrow We get the "same result".

Outline - Provably Correct Implementation

Abstract Machine AM

Properties of AM

Correct Code Generation

Summary

Outline - Provably Correct Implementation

Abstract Machine AM

Properties of AM

Correct Code Generation

Summary

Abstract machine AM: short overview

Machine AM is defined by a transition system.

Configurations are 3-tuples of the form (c, s, m):

- ▶ *m*: a *storage*, i.e., a memory content

Transition relation ⊳:

$$(c,s,m)\triangleright(c',s',m')$$

Remarks

- ► AM has no registers.
- ▶ Every internal computations is performed in/using the stack.

2 | 22

Refining the ingredients

A target program is a word on the instruction alphabet.

Instruction list: $c \in \mathbf{Code}$

Code denotes the syntactic category of program instructions:

 $\begin{array}{ll} \textit{inst} ::= & \mathsf{push-n} \mid \mathsf{add} \mid \mathsf{sub} \mid \mathsf{mult} \\ & \mid \mathsf{True} \mid \mathsf{False} \mid \mathsf{and} \mid \mathsf{le} \mid \mathsf{equal} \mid \mathsf{neg} \\ & \mid \mathsf{branch}(c,c) \mid \mathsf{loop}(c,c) \mid \mathsf{noop} \\ c \in \mathsf{Code} ::= & \epsilon \mid \mathit{inst} \cdot c \end{array}$

Evaluation stack: $s \in \mathbf{Stack}$

- ▶ Used to evaluate arithmetic and Boolean expressions.
- ▶ A list of values: **Stack** = $(\mathbb{Z} \cup \mathbb{B})^*$.

Storage m

- ▶ Represents the memory content, i.e., value of variables: a *state*.
- ▶ A function from the variables to \mathbb{Z} : **State** = $\mathbf{Var} \xrightarrow{part.} \mathbb{Z}$.

The instruction set: description

Instruction	Effect
push-n, True, False	push constant n,tt,ff
fetch(x)	push current value of x
store(x)	pop and assign the top of stack to x
add	replace the 2 top-most stack elements
	by their sum
sub,mult,and,le,equal,neg	similar
$branch(c_1,c_2)$	if the top of the stack is tt execute c_1
	if it is ff then execute c_2
	else deadlock
noop	skip
$loop(c_1,c_2)$	execute c_1 , then,
	if the top of stack is \mathbf{tt} , execute c_2
	followed by $loop(c_1,c_2)$
	if it's ff then noop

3122

Semantics of instructions: an operational semantics

A configuration of AM is (c, s, m) where:

- $ightharpoonup c \in \mathbf{Code}$ is a target program,
- ▶ $s \in$ Stack is a stack content, i.e., a word on $\mathbb{Z} \cup \mathbb{B}$,
- ▶ $m \in$ **State** is the memory content.

Final configurations are of the form (ϵ, s, m) .

Relation ▷ is inductively defined:

```
 \begin{array}{l} (\mathsf{push} \text{-} \mathsf{n} \cdot c, s, m) \rhd (c, \mathcal{N}[n] \cdot s, m) \\ (\mathsf{True} \cdot c, s, m) \rhd (c, \mathsf{tt} \cdot s, m) \\ (\mathsf{False} \cdot c, s, m) \rhd (c, \mathsf{ff} \cdot s, m) \\ (\mathsf{fetch}(x) \cdot c, s, m) \rhd (c, m(x) \cdot s, m) \\ (\mathsf{store}(x) \cdot c, v \cdot s, m) \rhd (c, s, m[x \mapsto v]) \quad \text{if } v \in \mathbb{Z} \\ \end{array}
```

4122 5122

Semantics of instructions (2)

```
 \begin{array}{lll} (\mathsf{add} \cdot c, v_1 \cdot v_2 \cdot s, m) \rhd (c, (v_1 + v_2) \cdot s, m) & \text{if } v_1, v_2 \in \mathbb{Z} \\ (\mathsf{sub} \cdot c, v_1 \cdot v_2 \cdot s, m) \rhd (c, (v_1 - v_2) \cdot s, m) & \text{if } v_1, v_2 \in \mathbb{Z} \\ (\mathsf{mult} \cdot c, v_1 \cdot v_2 \cdot s, m) \rhd (c, (v_1 * v_2) \cdot s, m) & \text{if } v_1, v_2 \in \mathbb{Z} \\ (\mathsf{le} \cdot c, v_1 \cdot v_2 \cdot s, m) \rhd (c, (v_1 \leq v_2) \cdot s, m) & \text{if } v_1, v_2 \in \mathbb{Z} \\ (\mathsf{equal} \cdot c, v_1 \cdot v_2 \cdot s, m) \rhd (c, (v_1 = v_2) \cdot s, m) & \text{if } v_1, v_2 \in \mathbb{Z} \\ (\mathsf{and} \cdot c, b_1 \cdot b_2 \cdot s, m) \rhd (c, (b_1 \land b_2) \cdot s, m) & \text{if } b_1, b_2 \in \mathbb{B} \\ (\mathsf{neg} \cdot c, b \cdot s, m) \rhd (c, (\neg b) \cdot s, m) & \text{if } b \in \mathbb{B} \\ (\mathsf{branch}(c_1, c_2) \cdot c, \mathsf{tt} \cdot s, m) \rhd (c_1 \cdot c, s, m) & (\mathsf{branch}(c_1, c_2) \cdot c, \mathsf{ff} \cdot s, m) \rhd (c_2 \cdot c, s, m) \\ (\mathsf{loop}(c_1, c_2) \cdot c, s, m) \rhd (c_1 \cdot b_1, c_2) & \mathsf{loop}(c_1, c_2), \mathsf{noop}) \cdot c, s, m) \\ (\mathsf{loop}(c_1, c_2) \cdot c, s, m) \rhd (c_1 \cdot b_1, c_2), \mathsf{noop}) \cdot c, s, m) \end{array}
```

6122

About the semantics of the Abstract Machine

Terminology:

A computation sequence may be either

- **terminating** iff it is finite
- ▶ **looping** iff it is infinite

A terminating computation sequence may end

- ▶ in a terminal configuration (i.e., with an empty code component)
- ▶ in a *stuck configuration* (i.e., for which there is no derivation)

Example

- ▶ terminating computation: $(noop, \epsilon, m) \triangleright (\epsilon, \epsilon, m)$
- ▶ looping computation: $(loop(True, noop), \epsilon, m) \triangleright^* (loop(True, noop), \epsilon, m) \triangleright^* \dots$
- ▶ terminal configuration: $(\epsilon, \mathbf{n1} \cdot \mathbf{b1} \cdot \mathbf{b2}, m)$
- \blacktriangleright stuck configuration: (add, ϵ , m)

About the semantics of the Abstract Machine

This is "close" to a *structural* operational semantics

- execution is done "step by step", and
- semantics defines the execution of individual instructions.

Definition (Computation sequence)

Given $c \in \mathbf{Code}, m \in \mathbf{State}$, a computation sequence for c on σ is either:

- ▶ a *finite* sequence $\gamma_0, \gamma_1, \dots, \gamma_k$ of configurations s.t.
 - ho $\gamma_0 = (c, \epsilon, m)$
 - $\forall i \in [0, k[: \gamma_i \triangleright \gamma_{i+1}]$
- ▶ an *infinite* sequence $\gamma_0, \gamma_1, \gamma_2, \ldots$ of configurations s.t.
 - $\gamma_0 = (c, \epsilon, m)$
 - $\forall i \geq 0 : \gamma_i \triangleright \gamma_{i+1}$

Some exercises

Exercise: computing an execution

Compute the execution of push-1 · fetch(x) · add · store(x) in $m = [x \mapsto 3]$.

Exercise: computing an execution

Compute the execution of loop(True, noop) in any memory m.

8122 9122

Abstracting machine code

Outline

Game: what is the function computed by this machine code?

```
\begin{array}{l} \operatorname{push-0} \cdot \operatorname{store}(z) \cdot \operatorname{fetch}(x) \cdot \operatorname{store}(r) \\ \operatorname{loop}(\operatorname{fetch}(r) \cdot \operatorname{fetch}(y) \cdot \operatorname{le}, \\ \operatorname{fetch}(y) \cdot \operatorname{fetch}(r) \cdot \operatorname{sub} \cdot \operatorname{store}(r) \cdot \\ \operatorname{push-1} \cdot \operatorname{fetch}(z) \cdot \operatorname{sub} \cdot \operatorname{store}(z) \\ \end{array} \right)
```

Properties of AM

Correct Code Generation

Summary

10 | 22

11 | 22

Proof technique for AM

Semantics of AM is close in spirit to SOS:

 \hookrightarrow concerned with execution of the individual steps

Induction on the length of computation sequences

In order to prove a given property Prop for all computation sequences:

- prove that Prop holds for all computation sequences of length 0;
- ▶ prove Prop holds for all other computation sequences:

 - ▶ Prove Prop holds for all computations of length k + 1.

Some properties of AM

```
Code and stack contents can be extended
```

$$(c_1, s_1, m_1) \triangleright^k (c_2, s_2, m_2)$$
 implies $(c_1 \cdot c, s_1 \cdot s, m_1) \triangleright^k (c_2 \cdot c, s_2 \cdot s, m_2)$

12 | 22

Proof.

By induction on k.

Code can be decomposed and composed

```
(c_1 \cdot c_2, s, m) \triangleright^k (\epsilon, s_2, m_2) implies
```

$$\exists k' \in \mathbb{N}, \exists (\epsilon, s', m') \in \mathbf{Config} : (c_1, s, m) \triangleright^{k'} (\epsilon, s', m') \wedge (c_2, s', m') \triangleright^{k-k'} (\epsilon, s_2, m_2)$$

Proof.

By induction on k.

Relation ▷ is deterministic

$$(c, s, m) \triangleright (c_1, s_1, m_1) \wedge (c, s, m) \triangleright (c_2, s_2, m_2)$$

implies
 $(c_1, s_1, m_1) = (c_2, s_2, m_2)$

Proof.

By induction on the length of *c*.

Semantics of a target program

We define semantic function (referred to as the execution function):

$$\mathcal{M}: \mathbf{Code} o (\mathbf{State} \overset{\mathit{part.}}{ o} \mathbf{State}).$$

$$\mathcal{M}[c]m = \left\{ egin{array}{ll} m' & (c,\epsilon,m) \, riangle^* \, (\epsilon,s,m') \ & ext{undef} & ext{otherwise} \end{array}
ight.$$

Remarks

- ▶ It is a well-defined function (because of determinism).
- ▶ In the terminal configuration:
 - code component must be empty,
 - stack component is not required to be empty.

13 | 22

Outline - Provably Correct Implementation

Abstract Machine AM

Properties of AM

Correct Code Generation

Code generation

Correctness of code generation

Summary

Outline - Provably Correct Implementation

Abstract Machine AM

Properties of AV

Correct Code Generation

Code generation
Correctness of code generation

Summar

Code Generation: the problem

How can we define an automatic and systematic translation from **While** to **Code**?

We define 3 functions:

- 1. \mathcal{CA} : Aexp \rightarrow Code
- 2. $CB : \mathbf{Bexp} \to \mathbf{Code}$
- 3. $CS : Stm \rightarrow Code$
- s.t. the generated code "mimics" the semantics of $S_{ns}[]$.

To do so:

- we do not distinguish m and σ anymore
- \blacktriangleright we prove that \mathcal{CA} , \mathcal{CB} and \mathcal{CS} verify the following properties:
 - 1. $(\mathcal{CA}[a], \epsilon, \sigma) \triangleright^* (\epsilon, \mathcal{A}[a]\sigma, \sigma)$,
 - 2. $(\mathcal{CB}[b], \epsilon, \sigma) \triangleright^* (\epsilon, \mathcal{A}[b]\sigma, \sigma)$,
 - 3. $(\mathcal{CS}[S], \epsilon, \sigma) \triangleright^* (\epsilon, \epsilon, \sigma')$ iff $(S, \sigma) \rightarrow \sigma'$.

Code generation for arithmetical and Boolean expressions

Examples of clauses to define CA:

$$ightharpoonup \mathcal{CA}[n] = \text{push-n.}$$

$$ightharpoonup \mathcal{C}\mathcal{A}[x] = \text{fetch}(x)$$

Examples of clauses to define CB:

$$\blacktriangleright \ \mathcal{CB}[\mathsf{true}] = \mathsf{True}$$

$$\mathcal{CB}[\neg b] = \mathcal{CB}[b] \cdot \mathsf{neg}$$

Exercise

Give the complete definition of code-generation functions \mathcal{CA} and \mathcal{CB} .

Exercise

Calculate the code for:

- ▶ arithmetical expressions: x + 1, 2 * x
- ▶ Boolean expression 2 * x = 5 * y

Code generation for statements

Examples of clauses to define \mathcal{CS} :

$$\mathcal{CS}[x := a] = \mathcal{CA}[a] \cdot \mathsf{store}(x)$$

$$\blacktriangleright \ \mathcal{CS}[S_1; S_2] = \mathcal{CS}[S_1] \cdot \mathcal{CS}[S_2]$$

Exercise

Complete the definition of code generation function \mathcal{CS} .

15/122 17/122

Example of code generation for a program/statement

Exercise

Give the target code obtained when translating the factorial program

$$y := 1$$
; while $\neg(x = 1)$ do $y := y * x$; $x := x - 1$ od

Outline - Provably Correct Implementation

Abstract Machine AN

Properties of AN

Correct Code Generation

Code generation

Correctness of code generation

Summary

Proving the correctness of the code generation?

Several intermediate steps.

Correctness for arithmetical expressions

 $\forall a \in \mathbf{Aexp} : (\mathcal{CA}[a], \epsilon, \sigma) \triangleright^* (\epsilon, \mathcal{A}[a]\sigma, \sigma)$ Proof.

By structural induction on $a \in Aexp$.

Correctness for Boolean expressions

 $\forall b \in \mathbf{Bexp} : (\mathcal{CB}[b], \epsilon, \sigma) \triangleright^* (\epsilon, \mathcal{B}[b]\sigma, \sigma)$ Proof.

By structural induction on $b \in \mathbf{Bexp}$.

Correctness for statements:

 $\forall S \in \mathbf{Stm}, \forall \sigma, \sigma' \in \mathbf{State}$:

- 1. $(S, \sigma) \to \sigma'$ implies $(\mathcal{CS}[S], \epsilon, \sigma) \triangleright^* (\epsilon, \epsilon, \sigma')$
- 2. $(\mathcal{CS}[S], \epsilon, \sigma) \triangleright^k (\epsilon, e, \sigma')$ implies $(S, \sigma) \to \sigma'$ and $e = \epsilon$ Proof.
- 1. by induction on the shape of the derivation tree for $(S, \sigma) \rightarrow \sigma'$
- 2. by induction on k, the length of the computation sequence.

Correctness of code generation

Meaning of a statement on the abstract machine:

$$\begin{array}{ccc} \mathcal{S}_{\textit{am}} & : & \textit{Stm} \rightarrow (\textit{State} \overset{\textit{part.}}{\rightarrow} \textit{State}) \\ \mathcal{S}_{\textit{am}}[S] & = & \mathcal{M} \circ \mathcal{CS}(S) \end{array}$$

Correctness of code generation

For any program $S \in \mathbf{Stm}$:

20 | 22

$$S_{ns}[S] = \mathcal{M} \circ \mathcal{CS}[S]$$

Outline - Provably Correct Implementation

Abstract Machine AM

Properties of AM

Correct Code Generation

Summary

Summary - Provably Correct Implementation

Summary - Provably Correct Implementation

- ▶ Definition of abstract machine AM.
 - ▶ (list of) instructions to be executed,
 - (evaluation) stack,
 - memory.
- ► Translation from While to Code.
- ► AM plus the translation function provides a provably-correct implementation of the NOS of **While**.

21 | 22