SREEDY TECHNOLOGY

Alternating Direction Method of Multipliers

Concept

- ➤ It was first introduced in the mid-1970s by Gabay, Mercier, Glowinski, and Marrocco, though similar ideas emerged as early as the mid-1950s. The algorithm was studied throughout the 1980s, and by the mid-1990s
- ➤ It takes the form of a *decomposition-coordination* procedure, in which the solutions to small local subproblems are coordinated to find a solution to a large global problem
- ➤ It can be viewed as an attempt to blend the benefits of **dual decomposition** and **augmented Lagrangian methods** (also called method of multipliers) for constrained optimization

Dual problem

convex equality constrained optimization problem

minimize
$$f(x)$$
 subject to $Ax = b$

► Lagrangian: $L(x,y) = f(x) + y^T(Ax - b)$

y is dual variable or Lagrange multiplier

- ▶ dual function: $g(y) = \inf_x L(x, y)$
- ▶ dual problem: maximize g(y)
- $\blacktriangleright \ \operatorname{recover} \ x^\star = \operatorname{argmin}_x L(x,y^\star)$

Assuming that strong duality holds, the optimal values of the primal and dual problems are the same

Dual ascent

- Figradient method for dual problem: $y^{k+1} = y^k + \alpha^k \nabla g(y^k)$
- ▶ $\nabla g(y^k) = A\tilde{x} b$, where $\tilde{x} = \operatorname{argmin}_x L(x, y^k)$
- ▶ dual ascent method is

$$x^{k+1} := \operatorname{argmin}_x L(x, y^k)$$
 // x -minimization
$$y^{k+1} := y^k + \alpha^k (Ax^{k+1} - b)$$
 // dual update

 $\alpha^k > 0$ is a step size residual for the equality constraint

Dual decomposition

ightharpoonup suppose f is separable:

 $x_i \in \mathbf{R}^{n_i}$ are subvectors of x.

$$f(x) = f_1(x_1) + \dots + f_N(x_N), \quad x = (x_1, \dots, x_N)$$

▶ then L is separable in x: $L(x,y) = L_1(x_1,y) + \cdots + L_N(x_N,y) - y^T b$,

$$L_i(x_i, y) = f_i(x_i) + y^T A_i x_i$$
 $A = [A_1 \cdots A_N],$

lacktriangleq x-minimization in dual ascent splits into N separate minimizations

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} L_i(x_i, y^k) \quad y^{k+1} := y^k + \alpha^k (\sum_{i=1}^N A_i x_i^{k+1} - b)$$

which can be carried out in parallel

Each iteration requires a *broadcast and a* gather operation

Augmented Lagrangian methods (method of multipliers)

> Transform the primal problem

minimize
$$f(x) + (\rho/2)||Ax - b||_2^2$$

subject to $Ax = b$.

ho>0~ penalty parameter

▶ use **augmented Lagrangian** (Hestenes, Powell 1969), $\rho > 0$

$$L_{\rho}(x,y) = f(x) + y^{T}(Ax - b) + (\rho/2)||Ax - b||_{2}^{2}$$

▶ method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

$$x^{k+1} := \underset{x}{\operatorname{argmin}} L_{\rho}(x, y^{k})$$
$$y^{k+1} := y^{k} + \rho(Ax^{k+1} - b)$$

(note specific dual update step length ρ)

ADMM

► ADMM problem form (with *f*, *g* convex)

variables $x \in \mathbf{R}^n$ and $z \in \mathbf{R}^m$, $A \in \mathbf{R}^{p \times n}$, $B \in \mathbf{R}^{p \times m}$, $c \in \mathbf{R}^p$.

- two sets of variables, with separable objective
- > Augment the objective

$$\min_{x} f(x) + g(z) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$

subject to $Ax + Bz = c$

> Augmented Lagrangian

$$L_{\rho}(x,z,y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + (\rho/2)||Ax + Bz - c||_{2}^{2}$$

ADMM

 \triangleright ADMM repeats the steps, for k=1, 2, 3

$$x^{k+1}$$
 := $\operatorname{argmin}_x L_{\rho}(x, z^k, y^k)$ // x -minimization z^{k+1} := $\operatorname{argmin}_z L_{\rho}(x^{k+1}, z, y^k)$ // z -minimization y^{k+1} := $y^k + \rho(Ax^{k+1} + Bz^{k+1} - c)$ // dual update

- \triangleright Note that if we minimized over x and z jointly, reduces to method of multipliers
- > Else in an alternating fashion, which accounts for the term alternating direction

Example: Lasso regression

> Problem

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_1$$

> ADMM form

minimize
$$(1/2)\|Ax-b\|_2^2 + \lambda \|z\|_1$$
 subject to
$$x-z=0$$

> Update

$$x^{k+1} := (A^T A + \rho I)^{-1} (A^T b + \rho (z^k - u^k))$$

$$z^{k+1} := S_{\lambda/\rho} (x^{k+1} + u^k)$$

$$u^{k+1} := u^k + x^{k+1} - z^{k+1}.$$

minimize
$$f(x) + g(z)$$

subject to $x - z = 0$,

$$f(x) = (1/2) ||Ax - b||_2^2$$

$$g(z) = \lambda ||z||_1.$$

Example: Lasso regression

 \succ Soft thresholding operator S

$$S_{\kappa}(a) = \begin{cases} a - \kappa & a > \kappa \\ 0 & |a| \le \kappa \\ a + \kappa & a < -\kappa, \end{cases}$$

$$S_{\kappa}(a) = (a - \kappa)_{+} - (-a - \kappa)_{+}.$$

REEDY TECHNOLO!

```
Code

ADMM

lambda = 1;
rho = 1/2
                                          rho = 1/lambda;
                                           x = zeros(n,1);
                                          z = zeros(n,1);
                                          u = zeros(n,1);
                                          [L U] = factor(A, rho);
                                          for k = 1:MAX ITER
                                               % x-update
                                               q = Atb + rho*(z - u);
                                              if m >= n
                                                  x = U \setminus (L \setminus q);
                                               else
                                                  x = lambda*(q - lambda*(A'*(U \setminus (L \setminus (A*q)))));
                                               end
```

☐ afbujan / admm_lasso

<> Code

Issues

Pull requests

TECHNOLOGY GREEDY TECHNOLOGY

Thanks

TECHNOLOGI GREEDY TECHNOLOGI TECHNOLOGY TECHNOLOGY

算法

数学

机器学习

最优化

运筹学

交替方向乘子法(ADMM)算法的流程和原理是怎样的?

关注问题

🧪 写回答

+ዹ 邀请回答

┢ 好问题 21

● 1条评论

7 分享

https://www.zhihu.com/question/36566112

TECHNOLOGY TECHNOLOGY

Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein

Foundations and Trends in Machine Learning, 3(1):1–122, 2011. (Original draft posted November 2010.)

- Paper
- Matlab examples
- MPI example
- ADMM links and resources

https://stanford.edu/~boyd/papers/admm_distr_stats.html