

Bordes

Operadores primera derivada: tipo "Canny"

- □ El **operador de Canny** se fundamenta en los operadores derivada pero introduce otras fases para mejorar la detección.
- Resulta especialmente interesante porque extrae bordes y cierra los contornos.
- ☐ Se desglosa en las siguientes fases:
 - \Box Suavizado de la imagen original con filtro gaussiano (σ).
 - \Box Obtención del gradiente (|G| y θ) en cada píxel.
 - Adelgazamiento del ancho de los bordes, obtenidos con el gradiente, hasta lograr bordes de un píxel de ancho (supresión no máxima).
 - ☐ Umbralizamos: si los píxeles superan cierto umbral serán considerados como bordes. Pero hay problemas:
 - ☐ Si imponemos un umbral muy alto perdemos parte de los bordes,
 - ☐ Si usamos un umbral bajo aparecería ruido.

55

Bordes

Operadores primera derivada: tipo "Canny"

- □ Solución: Histéresis de umbral. Fijar dos umbrales T_1 y T_2 con T_1 < T_2
 - Umbralizar todos los puntos de $I_N(u,v)$ usando T_1 y T_2 y explorando en un orden fijo:
 - Localizar los puntos tal que:
 - \square I_N(u,v) > T₂(strong edge pixels) y
 - \Box $T_1 < I_N(u,v) < T_2$ (weak edge pixels)
 - Consideraremos bordes válidos:
 - todos los píxeles fuertes más
 - los píxeles débiles que sean vecinos de los píxeles fuertes.
 - ☐ De esta forma, obtenemos una detección mucho más **limpia** y en la que desaparecen muchos de los pixeles interiores a los bordes.
 - La salida es un conjunto de bordes conectados de contornos de la imagen junto a su magnitud y orientación, que describen las propiedades de los puntos de borde.
- ☐ Frecuentemente, es común realizar un último paso consistente en **cerrar los contornos** que pudiesen haber quedado abiertos por problemas de ruido.

Bordes

Operadores primera derivada: tipo "Canny"

Ejemplos de aplicación sobre la misma imagen del filtro de Canny con diferentes valores para el filtro gaussiano (\sigma) y para los umbrales T1, T2.

$$\sigma$$
 =1, T_2 =255, T_1 =220

$$\sigma$$
 =1, T_2 =128, T_1 =1

 $\sigma = 2$, $T_2 = 128$, $T_1 = 1$

Probar distintos pasos en: http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

57

Bordes

Segunda derivada: Laplaciana

$$\begin{split} \nabla^2 f(u,v) &= \frac{\partial^2 f(u,v)}{\partial u^2} + \frac{\partial^2 f(u,v)}{\partial v^2} \approx \\ f(u,v-1) + f(u-1,v) + f(u+1,v) + f(u,v+1) - 4f(u,v) \end{split}$$

$$h = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$h = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix} \qquad h = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Bordes Ejemplo: Laplaciana

Máscara 5x5

Máscara 9x9

Universidad Boraes de Alcalá Segunda derivada: Laplaciana de la Gaussiana

$$G(u,v) = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{(u^2 + v^2)}{2\sigma^2}\right] \longrightarrow \nabla^2 G(u,v) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{(u^2 + v^2)}{2\sigma^2}\right] \exp\left[-\frac{(u^2 + v^2)}{2\sigma^2}\right]$$

Operador Sombrero Mexicano

 $\sigma^{2} = 0.5$

$$\sigma^2 = 1.0$$

$$\sigma^2 = 2.0$$

Bordes

Segunda derivada: Laplaciana de la Gaussiana

$$\nabla^{2}\left\{f(u,v)*G(u,v)\right\} = G(u)*\left\{f(u,v)*\frac{\partial^{2}}{\partial v^{2}}G(v)\right\} + G(v)*\left\{f(u,v)*\frac{\partial^{2}}{\partial u^{2}}G(u)\right\}$$

Cuatro convoluciones unidimensionales

61

Bordes

Ejemplo: Laplaciana de la Gaussiana

Máscara 13x13

Bordes

Segunda derivada: Laplaciana de la Gaussiana

□ ¿Cómo se generan las máscaras bidimensionales?

$$\nabla^2 G(u, v) = -\frac{1}{\pi \sigma^4} \left[1 - \frac{(u^2 + v^2)}{2\sigma^2} \right] \exp \left[-\frac{(u^2 + v^2)}{2\sigma^2} \right]$$

- 1. Fijar el valor de la desviación típica (σ).
- Determinar el valor de la ecuación anterior para los diferentes valores de (u,v): u=0, 1,2,.... y v= 0, 1, 2, ...Dada la simetría sólo hay que calcular en un cuadrante.
- 3. Escalar los valores y redondear los valores al entero más próximo.
- 4. Extender el ancho de la máscara de forma que contenga todos los valores distintos de cero.
- Ajustar de forma simétrica los valores, mediante la adición o substracción de valores pequeños hasta conseguir que todos los valores de la máscara sumen cero.

63

Bordes

Segunda derivada: Laplaciana de la Gaussiana

Máscara de 17x17

0 0	0	0 0 0 -1	•	_	_	_	_	-1 -1	•	0 -1	0	0	~	0
0 0	-1	-1 -1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0	0
0 0	-1	-1 -2	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0	0
0 -1	-1	-2 -3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1	0
0 -1	-2	-3 -3	-3	0	2	4	2	0	-3	-3	-3	-2	-1	0
-1 -1	-3	-3 -3	0	4	10	12	10	4	0	-3	-3	-3	-1 -	1
-1 -1	-3	-3 -2	2	10	18	21	18	10	2	-2	-3	-3	-1 -	1
-1 -1	-3	-3 -3	4	12	21	24	21	12	4	-3	-3	-3	-1 -	1
-1 -1	-3	-3 -2	2	10	18	21	18	10	2	-2	-3	-3	-1 -	1
-1 -1	-3	-3 -3	0	4	10	12	10	4	0	-3	-3	-3	-1-	1
0 -1	-2	-3 -3	-3	0	2	4	2	0	-3	-3	-3	-2	-1	0
0 -1	-1	-2 -3	-3	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0
0 0	-1	-1 -2	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0	0
0 0	-1	-1 -1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0	0
0 0	0	0 -1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	0

Departamento de Electrónica

Bordes Detección en imágenes en color

Dos alternativas frecuentes:

Detección de esquinas

Detección de esquinas

Método: Kitchen y Rosenfeld

- En las esquinas cambia la dirección del gradiente a lo largo del borde.
- □ Un método habitual es el uso de **derivadas de segundo orden**, para medir la **razón de cambio de la dirección del gradiente** (E) con la **magnitud del gradiente** ("mg").
- Una esquina se declara como tal si: $E ≥ T_1$ y/o $mg ≥ T_2$ siendo T_1 y T_2 dos umbrales predeterminados.
- □ Detector de esquinas de Kitchen y Rosenfeld:

http://www.disc.ua.es/ tavarca/ponencias/esquinas.pdf

$$f_{u} = \frac{\partial f(u, v)}{\partial u}, f_{v} = \frac{\partial f(u, v)}{\partial v}, f_{uu} = \frac{\partial}{\partial u} \left(\frac{\partial f(u, v)}{\partial u} \right), f_{vv} = \frac{\partial}{\partial v} \left(\frac{\partial f(u, v)}{\partial v} \right), f_{uv} = \frac{\partial}{\partial u} \left(\frac{\partial f(u, v)}{\partial v} \right)$$

67

Detección de esquinas

Método: Kitchen y Rosenfeld

Donde:

$$\frac{\partial}{\partial u} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \qquad \frac{\partial}{\partial v} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Por tanto:

$$f_{u} = \frac{\partial f(u,v)}{\partial u} = \left[\frac{\partial}{\partial u}\right] * f(u,v), f_{v} = \frac{\partial f(u,v)}{\partial v} = \left[\frac{\partial}{\partial u}\right] * f(u,v)$$

$$f_{uu} = \left[\frac{\partial}{\partial u}\right] * \left(\left[\frac{\partial}{\partial u}\right] * f(u,v)\right), \ f_{vv} = \left[\frac{\partial}{\partial v}\right] * \left(\left[\frac{\partial}{\partial v}\right] * f(u,v)\right), \ f_{uv} = \left[\frac{\partial}{\partial u}\right] * \left(\left[\frac{\partial}{\partial v}\right] * f(u,v)\right)$$

Detección de esquinas *Método: Kitchen y Rosenfeld*

☐ Ejemplo de detección de esquinas

Departamento de Electrónica

69

3. Segmentación Basada en Bordes

Departamento de Electrónica

Grado en Ingeniería de Computadores - Sistemas de Visión Artificial

Segmentación basada en bordes Análisis Local

Proceso:

- Se pasa un filtro paso alto por la imagen para detectar los bordes.
- □ Se **umbraliza** la imagen de bordes.
- Se busca conectividad entre píxeles para detectar contornos cerrados.
- Cada contorno cerrado define un objeto.

Grado en Ingeniería de Computadores - Sistemas de Visión Artificial

71

Segmentación basada en bordes Análisis Local

Binarización de la imagen

Imagen segmentada

Segmentación basada en bordes Análisis Local

Ventajas:

- ☐ Definición exacta de los contornos de los objetos
- ☐ Facilidad de implementación

Inconvenientes:

- Detección por umbral
- Análisis muy local: definición de regiones depende del cierre de contornos

Grado en Ingeniería de Computadores - Sistemas de Visión Artificial

73

Segmentación basada en bordes Análisis Global (detección de líneas)

Detección de segmentos de línea rectos General

- □ Dado un conjunto local de elementos de borde (obtenidos mediante técnicas de detección de bordes), con o sin información de orientación ¿Cómo se pueden extraer las líneas rectas que forman el borde?
- Idea general:
 - ☐ Encontrar un espacio alternativo en el cual las líneas se "mapean" como puntos.
 - □ Cada elemento de borde "vota" por una línea recta a la cual puede pertenecer.
 - □ Aquellos puntos (pares: *pendiente, desplazamiento*) que en el espacio alternativo reciban un alto número de *votos* se corresponden con líneas en la imagen.

7

Detección de segmentos de línea rectos General

https://unoyunodiez.files.wordpress.com/ 2012/03/output.png

https://nachorodriguezpfc.files.wordpress. com/2009/12/resultado18.jpg

Detección de segmentos de línea rectos Ejemplo de la transformada de Hough

■ Ejemplo de transformada de Hough en coordenadas cartesianas (cada punto de borde se mapea como una recta en el array de acumulación)

Imagen

Bordes

Array de acumulación

Resultado

77

Detección de segmentos de línea rectos *Transformada de Hough: Problemas*

- Un problema de la representación cartesiana de la recta es que tanto la pendiente (a) como la ordenada en el origen (b) tienden a infinito conforme la recta se acerca a posiciones verticales.
- Para evitar este problema se usan las coordenadas polares. La forma de construir el acumulador en el plano ρ-θ es similar al primer algoritmo, la única diferencia está en que, en vez de líneas rectas, se obtendrán curvas sinusoidales.

Imagen

Bordes

Array de acumulación en coord polares

Resultado

Segmentación Basada en Bordes **Transformada de Hough (Circunferencias)**

- □ Ecuación de la circunferencia: h(x, p); $(u \chi)^2 + (v \psi)^2 \rho^2 = 0$
- \Box donde $p = (\chi, \psi, \rho)$ son el centro y el radio respectivamente.

- □ Las infinitas circunferencias que pasan por (u_i, v_i) en el espacio de parámetros se representan por curvas cónicas $(\chi u_i)^2 + (\psi v_i)^2 \rho^2 = 0$
- \square El plano $\chi\psi\rho$ se cuantifica con un array de acumulación 3D (a).
- □ Un elemento a(i, j) se incrementa en 1 si: $\frac{1}{(\chi u_i)^2} + \frac{(\psi v_i)^2}{(\psi v_i)^2} \frac{\rho}{(\psi v_i)^2}$
- \square Si las curvas cónicas tienen un punto de intersección se obtendrá un máximo en el acumulador (a) correspondiente a la circunferencia (χ_r, ψ_v, ρ_t)

Grado en Ingeniería en Tecnologías de Telecomunicación - Visión Artificial

79

Segmentación basada en bordes Análisis Global

- Transformada de Hough: generalización a otras formas geométricas
 - **Detección de líneas**. Parámetros: (r, θ)

$$r = x\cos\theta + y\operatorname{sen}\theta$$

Detección de círculos: Parámetros: (r, x_0, y_0) 2 para el centro + radio

$$r^2 = (x - x_0)^2 + (y - y_0)^2$$

□ **Detección de elipses**: Parámetros: $(r_x, r_y, \theta, x_0, y_0)$ centro + orientación + eje mayor + eje menor

$$1 = \frac{(x - x_0)^2}{r_v^2 \cos \theta} + \frac{(y - y_0)^2}{r_v^2 sen \theta}$$

Ballard: Transformada de Hough generalizada

Segmentación Basada en Bordes Transformada de Hough (Generalización)

- ☐ Transformada de Hough para la detección de elipses
 - \Box 5 parámetros: eje mayor (r_x) , eje menor (r_y) , orientación (θ) , centro (x_0, y_0)

$$1 = \frac{(x - x_0)^2}{r_x^2 \cos \theta} + \frac{(y - y_0)^2}{r_y^2 \sin \theta}$$

- □ Transformada de Hough generalizada (Ballard)
 - ☐ Generalización para formas no analíticas con lookup table

Departamento de Electrónica

Grado en Ingeniería en Tecnologías de Telecomunicación - Visión Artificial

81

2. Segmentación basada en Regiones

Grado en Ingeniería de Computadores - Sistemas de Visión Artificial

Segmentación basada en regiones Formulación básica

- La segmentación en regiones de una imagen, f(u,v) representada mediante la región R, es un proceso de partición de R en un conjunto de K regiones {R_j}, 1≤j≤K, tal que:
 - La unión de todas las regiones forman la imagen $\longrightarrow R = \bigcup_{i=1}^K R_i$
 - ☐ Ningún píxel pertenece a más de una region:

$$\longrightarrow R_i \cap R_j = \emptyset \ \forall i, j ; i \neq j$$

- Coherencia espacial
 - → R_i es una región conectada
- Coherencia de características — Para algún predicado P:

 $P(R_i)$ es CIERTO para i = 1,2,...,K $P(R_i \cup R_i)$ es FALSO para R_i , R_i adyacentes e $i \neq j$

Grado en Ingeniería de Computadores - Sistemas de Visión Artificial

83

Segmentación basada en regiones Crecimiento de regiones

- Método de crecimiento de regiones: Para segmentar la imagen se comienza con un conjunto de puntos semilla y se van haciendo crecer las regiones a su alrededor, añadiendo a cada punto semilla aquellos píxeles vecinos que tengan propiedades similares.
- Idea general:
 - ☐ Un píxel se añade a una región si se cumplen dos condiciones:
 - ☐ El píxel debe ser **adyacente** a la región.
 - ☐ El píxel debe ser **similar** a los píxeles de esa región.
 - ☐ El proceso continua hasta que **no** se puedan añadir más puntos.
 - Se elige **otro punto de semilla**, no perteneciente a ninguna de las regiones previas, y el proceso se repite hasta que se segmenta la totalidad de la imagen.

Segmentación basada en regiones Crecimiento de regiones

- □ **Criterio de similitud**: ¿Cuándo se considera un píxel similar para ser añadido a una región?
 - □ Cuando la **diferencia de características (predicados)** con respecto a los píxeles de la región es inferior a un determinado **umbral** (T).

Grado en Ingeniería de Computadores - Sistemas de Visión Artificial

8

Segmentación basada en regiones Crecimiento de regiones

Punto semilla

Grado en Ingeniería de Computadores - Sistemas de Visión Artificial

Segmentación basada en regiones Crecimiento de regiones

Problemas:

- □ Selección de las semillas iniciales (número y ubicación)
- Criterio de similitud
 - ☐ Características a tener en cuenta
 - ☐ Fijación del umbral

Debilidades:

Deriva

Secuencia de píxeles:

 $p_1,...,p_k$ p_j, p_{j+1} entorno

$$|P(p_j) - P(p_{j+1})| < T \text{ pero } |P(p_1) - P(p_k)| > T$$

☐ Los umbrales no tienen en cuenta las características de la distribución espacial global

Grado en Ingeniería de Computadores - Sistemas de Visión Artificial

Segmentación basada en regiones **Splitting and Merging Regions**

- ☐ El método de división y fusión de regiones (splitting and merging): divide la imagen en un conjunto de regiones y después las fusiona (merge) y/o divide (split) para satisfacer algún criterio de similitud. La fase de merging evita la sobresegmentación producida en la fase de splitting.
- Proceso:
 - Partición inicial: 1 región (R)
 - Criterio de similitud: distancia de características de los píxeles (predicados) p: píxel respecto a un modelo

$$C = \sum ||P(p) - M[P(R_i)]|$$

P(): predicados calculados

R_i: región

M[]: modelo de la región (media, ...)

Parar cuando no sea posible realizar más fusiones ni divisiones.

Segmentación basada en regiones Splitting and Merging Regions

□ Ejemplo de funcionamiento: $C_{R_i} = |I(p_j) - I(R_i)_{max}|; \forall p_j \in R_i \ (Th = 3)$

Split if $C_{R_i} \ge Th$

$$C_{R_1} = 2$$
 $C_{R_3} = 4$
 $C_{R_2} = 1$ $C_{R_4} = 8$

Quadtree

Grado en Ingeniería en Tecnologías de Telecomunicación - Visión Artificial

7

7

80

Segmentación basada en regiones Splitting and Merging Regions

Merge if $C_{R_i} \cap C_{R_j} \leq Th$

La fase de merging evita la sobresegmentación producida en la fase de splitting

Segmentación basada en regiones **Splitting and Merging Regions**

Ventajas:

- Simple
- Sin partición inicial fija
- Visión global

Inconvenientes:

- Dependencia del umbral
- ☐ División puramente geométrica
- □ Contornos poco naturales

Umbral=0.1

Grado en Ingeniería de Computadores - Sistemas de Visión Artificial

Bibliografía

- http://www-2.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html (Computer Vision Homepage CMU)
- http://svr-www.eng.cam.ac.uk/milab.html (Machine Intelligence Laboratory. Cambridge University)
- http://www.inria.fr/recherche/equipes/listes/theme_3.en.html (INRIA Vision)
- http://www-white.media.mit.edu/vismod/ (MIT Media Lab)
- http://www.cvc.uab.es (Centro de Visión Artificial. Barcelona)

Segmentación basada en regiones **Transformada Watershed**

- Transformada Watershed. Es útil para separar objetos que se tocan en una imagen.
- □ Aplica conceptos **topológicos** para segmentar. Se puede interpretar como:
 - Se parte de una imagen donde su nivel de gris representa la distancia de cada pixel de la imagen original al borde más cercano del objeto o su inversa.
 - □ Niveles de gris altos indican picos mientras que niveles bajos indican valles.
 - □ Se llenan los valles (catchment basins) con agua de diferentes colores.
 - ☐ Cuando el agua subiera obviamente diferentes colores se fusionarían.
 - □ Para evitarlo se construyen barreras (watershed ridge).
 - ☐ Se termina cuando todos los picos están bajo el agua.
 - □ Las barreras creadas son el resultado de la segmentación.

- □ **Problema**: sobresegmentación (a veces, se segmentan muchos más objetos de los necesarios)
- Solución a la sobresegmentación: marcar a "grosso modo" los objetos y el fondo de cara a hacer la transformada.

Grado en Ingeniería en Tecnologías de Telecomunicación - Visión Artificial

9

Segmentación basada en regiones Transformada Watershed (ejemplo)

Departamento de Electrónica Grado en Ingeniería en Tecnologías de Telecomunicación - Visión Artificial

Segmentación basada en regiones Transformada Watershed

□ Ventajas:

☐ Buen funcionamiento para segmentar múltiples objetos que se tocan aunque todos tengan similares niveles de gris

□ Inconvenientes:

- ☐ Método complejo con gran contenido heurístico
- ☐ Baja precisión en la posición de los contornos

Grado en Ingeniería en Tecnologías de Telecomunicación - Visión Artificial