## Transformações Lineares

MAP 2110 - Diurno

IME USP

19 de maio

## Espaço $V_n$ como espaço de matrizes



Se A é uma matriz  $m \times n$ , ela induz uma transformação  $T_A : \mathbb{R}^n \to \mathbb{R}^m$  dada por  $T_A(\mathbf{x}) = A\mathbf{x}$  que é a transformação gerada por A.

### Exemplo

$$A = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$$
 Então temos:

$$T_A(x_1, x_2) = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2x_2 \\ 2x_1 \end{bmatrix} = (-2x_2, 2x_1)$$



# Propriedades das Transformações geradas por matrizes

Seja A uma matriz  $m \times n$  e identificamos  $\mathbb{R}^n$  com o conjunto das matrizes de n linhas e 1 coluna de números reais, e da mesma forma  $\mathbb{R}^m$  será o conjunto das matrizes reais com m linhas e 1 coluna. A tranformação  $T_A: \mathbb{R}^n \to \mathbb{R}^m$ , como definida acima tem as seguintes Propriedades

1. 
$$T_A(\mathbf{x} + \mathbf{y}) = T_A(\mathbf{x}) + T_A(\mathbf{y})$$

2. 
$$T_A(\alpha \mathbf{x}) = \alpha T_A(\mathbf{x})$$

Isso quer dizer que  $T_A$  é uma transformação linear.

## Exemplo

$$A = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ e } \mathbf{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \implies \mathbf{x} + \mathbf{y} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \text{ Então}$$

$$T_A(\mathbf{x} + \mathbf{y}) = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \end{bmatrix}$$

$$T_A(\mathbf{x}) + T_A(\mathbf{y}) = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \end{bmatrix}$$

# Obtendo a matriz A a partir da transformação

Em  $\mathbb{R}^n$  vamos considerar o seguinte conjunto de vetores  $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$  dados por

$$T_A(\mathbf{e}_j) = A.\mathbf{e}_j = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$$
 com  $A = [a_{ij}]$  uma matriz  $m \times n$ 

## Transformações Lineares

De forma geral  $T: \mathbb{R}^n \to \mathbb{R}^m$  é linear quando satisfaz:

1. 
$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})(\forall \mathbf{x} \in \mathbb{R}^n)(\forall \mathbf{y} \in \mathbb{R}^n)$$

2. 
$$T(\alpha \mathbf{x}) = \alpha T(\mathbf{x}) (\forall \mathbf{x} \in \mathbb{R}^n) (\forall \alpha \in \mathbb{R})$$

Então podemos achar a matriz  $Am \times n$  que gera T sabendo que  $T(\mathbf{e}_j)$  será a j-ésima coluna de A.

|     | $T(\mathbf{e}_1)$ | • • • | $T(\mathbf{e}_j)$ | • • • | $T(\mathbf{e}_n)$ |
|-----|-------------------|-------|-------------------|-------|-------------------|
|     | a <sub>11</sub>   | • • • | $a_{1j}$          | • • • | $a_{1n}$          |
|     | :                 |       | :                 |       | :                 |
| A = | $a_{i1}$          | • • • | $a_{ij}$          | • • • | a <sub>in</sub>   |
|     | :                 |       | :                 |       | :                 |
|     | $a_{m1}$          | • • • | $a_{mj}$          | • • • | a <sub>mn</sub>   |

## Exemplo

Ache a matriz da transformação que dê o ponto simétrico em relação à reta r:(0,0)+t(1,1)



Note que  $T(\mathbf{e}_1) = \mathbf{e}_2$  e  $T(\mathbf{e}_2) = \mathbf{e}_1$  Então

A = 
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

### Rotação no Plano

Qual a matriz de uma Rotação em torno da origem em  $\mathbb{R}^2$ 



Note que 
$$T(\mathbf{e}_1) = \cos\theta \mathbf{e}_1 + \sin\theta \mathbf{e}_2$$
 e  $T(\mathbf{e}_2) = -\sin\theta \mathbf{e}_1 + \cos\theta \mathbf{e}_2$ 

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

## Projeção ortogonal no plano

Dada uma reta que passa pela origem  $r:(0,0)+s\mathbf{v}$ , achar a matriz da projeção ortogonal sobre esta reta



Agora precisamos lembrar como é a fórmula da projeção, que a gente já fez.

proj<sub>z</sub>(
$$\mathbf{x}$$
) =  $\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ 

Se colocamos 
$$\mathbf{v}=(v_1,v_2)$$
 então  $\mathbf{e}_1\cdot\mathbf{v}=v_1$  e  $\mathbf{e}_2\cdot\mathbf{v}=v_2$ .  
Dessa forma

Dessa forma 
$$\text{proj}_r(\mathbf{e}_1) = \begin{bmatrix} v_1^2/(v_1^2 + v_2^2) \\ v_1v_2/(v_1^2 + v_2^2) \end{bmatrix} \text{ e } \text{proj}_r(\mathbf{e}_2) = \begin{bmatrix} v_1v_2/(v_1^2 + v_2^2) \\ v_2^2/(v_1^2 + v_2^2) \end{bmatrix}$$

$$\|\mathbf{v}\|^2$$
 Se colocamos  $\mathbf{v}=(v_1,v_2)$  então  $\mathbf{e}_1\cdot\mathbf{v}=v_1$  e  $\mathbf{e}_2\cdot\mathbf{v}=v_2$ .

 $A = \frac{1}{(v^2 + v^2)} \begin{pmatrix} v_1^2 & v_1 v_2 \\ v_1 v_2 & v_2^2 \end{pmatrix}$ 

$$\mathsf{proj}_r(\mathsf{x}) = \frac{\mathsf{x} \cdot \mathsf{v}}{\|\mathsf{v}\|^2} \mathsf{v}$$

### Exemplos em dimensão 3

Qual a matriz que define a rotação de uma ângulo  $\phi$  em torno do eixo y, digamos.



Projeção ortogonal sobre um plano gerado pelos vetores  $\boldsymbol{u}$  e  $\boldsymbol{v}$ 



#### Fazendo as contas

Vamos chamar

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \text{ e } \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

queremos encontrar  $\alpha$  e  $\beta$  tais que

$$\operatorname{proj}(\mathbf{x}) = \alpha \mathbf{u} + \beta \mathbf{v} = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

# Condição de ortogonalidade

O vetor  $\mathbf{x} - \text{proj}(\mathbf{x})$  deve ser ortogonal ao plano, e assim ortogonal aos vetores  $\mathbf{u}$  e  $\mathbf{v}$  que nos fornece as equações

$$\mathbf{u} \cdot (\mathbf{x} - \alpha \mathbf{u} - \beta \mathbf{v}) = 0$$
$$\mathbf{v} \cdot (\mathbf{x} - \alpha \mathbf{u} - \beta \mathbf{v}) = 0$$

ou

$$\mathbf{u} \cdot \mathbf{x} = \alpha \mathbf{u} \cdot \mathbf{u} - \beta \mathbf{u} \cdot \mathbf{v} = 0$$
$$\mathbf{v} \cdot \mathbf{x} = \alpha \mathbf{v} \cdot \mathbf{u} - \beta \mathbf{v} \cdot \mathbf{v} = 0$$

Na forma matricial:

$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{u} & \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

Resolvendo a equação para  $\alpha$  e  $\beta$  temos

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{u} & \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \end{bmatrix}^{-1} \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \mathbf{x}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{u} & \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \end{bmatrix}^{\top} \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$
$$\begin{bmatrix} u_1 & v_1 \end{bmatrix} \begin{bmatrix} \alpha \end{bmatrix} \begin{bmatrix} u_1 & v_1 \end{bmatrix} \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$$

$$\begin{bmatrix} \beta \end{bmatrix} = \begin{bmatrix} \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \mathbf{x}$$

$$\operatorname{proj}(\mathbf{x}) = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_2 \end{bmatrix} \begin{bmatrix} \mathbf{u} \cdot \mathbf{u} & \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \end{bmatrix}^{-1} \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \mathbf{x}$$

 $A = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \\ \vdots & \ddots & v_1 \end{bmatrix} \begin{bmatrix} \mathbf{u} \cdot \mathbf{u} & \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{u} & \mathbf{v} \cdot \mathbf{v} \end{bmatrix}^{-1} \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$ 

Se  $T:\mathbb{R}^n o \mathbb{R}^m$  é uma aplicação linear, então T(0)=0

2

Se  $F:\mathbb{R}^3 \to \mathbb{R}$  é linear então só pode ser constante igual a zero.

3

Se a matriz A tiver blocos quadrados

$$A = \begin{bmatrix} A_1 & \mathbf{O} \\ \mathbf{O} & A_2 \end{bmatrix}$$

e A é invertível, então cada um dos blocos  $A_i$  é invertível.

4

se  $\wedge$  denotar o produto vetorial então temos que

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \land \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$\begin{array}{l}
5 \\
A^T A \mathbf{x} = 0 \iff A \mathbf{x} = 0
\end{array}$$