Econometrics 1

Dr. Willi Mutschler

February 16, 2018

- Answer all of the following exercises in either German or English.
- Explain your answers and derivations. All your computations and intermediate steps need to be verifiable and understandable.
- Formulas which we covered in the lecture and class need not to be derived again.
- If you prefer a notation different from the one used in the course, define it.
- Always use significance level a = 5%.
- Please report 3 decimal places in numerical answers.
- If not otherwise stated, assume the validity of the assumption A, B and C given in the lecture.
- Permissible aids:
 - non-programmable pocket calculator
 - cheat sheet: one-sided A4 white sheet of paper with annotations, formulas, texts, sketches, etc.

1 Understanding

- (a) State one of the A, B and C assumptions introduced in the lecture in your own words. Provide a counter example by drawing a picture of points (scatterplot), if possible. Otherwise describe the counterexample in your own words.
- (b) Explain the idea of the Likelihood-Ratio test in two sentences.

2 Money demand

The demand for money is determined using the regression model

$$y_t = \alpha + \beta_1 x_{1t} + \beta_2 x_{2t} + u_t$$

where

 y_t : real money stock in logs

 x_{1t} : real income in logs

 x_{2t} : interest rate in %

Given quarterly data for the period 1970-1996 (T = 108), a least squares estimation shows that

$$\hat{y}_t = -8.2 + 1.5x_{1t} - 0.01x_{2t}$$

and

$$R^2 = 0.95$$

The estimated covariance matrix of $\hat{\beta}$ is given by

$$\widehat{\text{Var}}(\hat{\beta}) = \hat{\sigma}^2 (X'X)^{-1} = \begin{pmatrix} 0.012 & -0.002 & 0\\ & 0.002 & 0\\ & & 0.001 \end{pmatrix}$$

Furthermore, we have that

$$\frac{1}{T}(\mathbf{y}'\mathbf{y} - T\bar{y}^2) = 20$$

where **y** denotes the $T \times 1$ vector with y_t in the t-th row.

- (a) What do the estimated values $\hat{\beta}_1$ and $\hat{\beta}_2$ mean for the effect of the corresponding variables on the demand for money?
- (b) Test the following hypotheses:
 - (i) $H_0: \beta_1 = 1 \text{ vs. } H_1: \beta_1 \neq 1$
 - (ii) $H_0: \beta_2 = 0$ vs. $H_1: \beta_2 < 0$
 - (iii) $H_0: \beta_1 = 1$ and $\beta_2 = 0$ vs. $H_1:$ the null hypothesis is not true.
- (c) Compute the maximum likelihood estimators for α , β_1 , β_2 and σ^2 . Hint: $R^2 = 1 - \frac{S_{\hat{u}\hat{u}}}{S_{yy}}$.

3 Capital-Asset-Pricing-Model

Consider the following regression model for an extended Capital-Asset-Pricing-Model (CAPM):

$$y_t = \alpha + \beta_1 x_{1t} + \beta_2 x_{2t} + u_t$$

where

 y_t : rate of return of BMW in %

 x_{1t} : rate of return of the DAX index in %

 x_{2t} : price-earnings (P/E) ratio of BMW

Note that the P/E ratio is defined as the ratio of a company's stock price to the company's earnings per share. For daily observations we have the following intermediate results:

$$\mathbf{X'X} = \begin{pmatrix} 100 & 30 & 20 \\ 30 & 110 & 7 \\ 20 & 7 & 200 \end{pmatrix},$$

$$(\mathbf{X'X})^{-1} = \begin{pmatrix} 0.011 & -0.003 & -0.001 \\ -0.003 & 0.010 & 0 \\ -0.001 & 0 & 0.005 \end{pmatrix},$$

$$\mathbf{X'y} = \begin{pmatrix} 29.29 \\ 58.79 \\ 45.86 \end{pmatrix},$$

$$\mathbf{y'y} = 138.496$$

(a) Estimate a 95% confidence interval for β_2 given the least squares estimator $\hat{\beta}_2$.

Your professor argues that x_{2t} is not a relevant variable and wants you to reestimate the model without it.

- (b) Do you agree with your professor given the current dataset? Briefly outline the possible consequences of omitting x_{2t} .
- (c) Assume that the true value of β_2 is 0.2. Compute the bias of the least squares estimators $\hat{\alpha}$ and $\hat{\beta}_1$ if one estimates

$$y_t = \alpha + \beta_1 x_{1t} + v_t$$

where
$$v_t$$
 are the error terms of the simplified regression model.
Hint:
$$\begin{pmatrix} 100 & 30 \\ 30 & 110 \end{pmatrix}^{-1} = \begin{pmatrix} 0.011 & -0.003 \\ -0.003 & 0.010 \end{pmatrix}$$

4 Estimating functions

Consider the simple linear regression model

$$y_t = \alpha + \beta x_t + u_t, \qquad t = 1, ..., 20$$

and the following estimating function for the slope parameter β :

$$\tilde{\beta} = \frac{\bar{y}_2 - \bar{y}_1}{\bar{x}_2 - \bar{x}_1}$$

where

$$\bar{y}_1 = \frac{1}{10} \sum_{t=1}^{10} y_t, \quad \bar{y}_2 = \frac{1}{10} \sum_{t=11}^{20} y_t, \quad \bar{x}_1 = \frac{1}{10} \sum_{t=1}^{10} x_t, \quad \bar{x}_2 = \frac{1}{10} \sum_{t=11}^{20} x_t$$

(a) Show that $\tilde{\beta}$ is an unbiased estimating function for β . Hint: Show that

$$\tilde{\beta} = \beta + \frac{\sum_{t=11}^{20} u_t - \sum_{t=1}^{10} u_t}{k}$$

where $k = \sum_{t=11}^{20} x_t - \sum_{t=1}^{10} x_t$.

For the next two exercises assume that

$$\sum_{t=1}^{20} (x_t - \bar{x})^2 = 40, \quad \sigma^2 = 1, \quad \bar{x}_1 = 3, \quad \bar{x}_2 = 5.$$

- (b) Compute the variance of $\tilde{\beta}$. Hint: Use the fact that $E(u_t u_s) = 0$ for $t \neq s$.
- (c) Compute the variance of the least-squares estimator $\hat{\beta}$ and compare it to the one of $\tilde{\beta}$.

Table of quantiles of the t_{ν} -distribution, given are the (1-a)-quantiles

a0.0250.050.0131.82050 6.3138012.706202.920006.964604.302703 2.353403.182404.540704 2.131802.776403.746905 2.015002.570603.364906 1.943202.44690 3.142707 2.364602.998001.894608 1.859502.306002.896509 1.83310 2.262202.8214010 1.812502.228102.763801.795902.201002.7181011 12 1.782302.178802.6810013 1.770902.160402.6503014 1.761302.144802.6245015 1.753102.131402.6025016 1.745902.119902.58350171.739602.109802.566902.55240 18 1.734102.100902.53950 19 1.729102.0930020 2.528001.724702.0860021 1.720702.079602.5176022 2.073902.508301.7171023 1.713902.068702.4999024 1.710902.063902.4922025 1.708102.059502.4851026 1.705602.055502.4786027 1.703302.051802.4727028 1.701102.048402.467102.0452029 1.699102.4620030 2.042302.457301.6973031 1.695502.039502.4528032 1.69390 2.03690 2.448702.034502.4448033 1.692402.4411034 2.032201.6909035 2.437701.689602.0301036 1.688302.028102.4345037 1.687102.026202.4314038 1.686002.024402.4286039 2.022702.425801.68490 40 1.683902.02110 2.42330> 401.6451.9602.326

Table of quantiles of the χ^2_{ν} -distribution, given are (1-a)-quantiles

		\overline{a}	
ν	0.05	0.025	0.01
1	3.84	5.02	6.63
2	5.99	7.38	9.21
3	7.82	9.35	11.35
4	9.49	11.14	13.28
5	11.07	12.83	15.09
6	12.59	14.45	16.81
7	14.07	16.01	18.48
8	15.51	17.54	20.09
9	16.92	19.02	21.67
10	18.31	20.48	23.21
11	19.68	21.92	24.73
12	21.03	23.34	26.22
13	22.36	24.74	27.69
14	23.68	26.12	29.14
15	25.00	27.49	30.58
16	26.30	28.84	32.00
17	27.59	30.19	33.41
18	28.87	31.53	34.81
19	30.14	32.85	36.19
20	31.41	34.17	37.57
21	32.67	35.48	38.93
22	33.92	36.78	40.29
23	35.17	38.08	41.64
24	36.41	39.36	42.98
25	37.65	40.65	44.31
26	38.88	41.92	45.64
27	40.11	43.20	46.96
28	41.34	44.46	48.28
29	42.56	45.72	49.59
30	43.77	46.98	50.89
35	49.80	53.20	57.34
40	55.76	59.34	63.69
45	61.66	65.41	69.96
50	67.50	71.42	76.15
55	73.31	77.38	82.29
60	79.08	83.30	88.38
65	84.82	89.18	94.42
70	90.53	95.02	100.43
75	96.22	100.84	106.39
80	101.88	106.63	112.33
85	107.52	112.39	118.24
90	113.15	118.14	124.12
95	118.75	123.86	129.97
100	124.34	129.56	135.81

Table of the quantiles of the F_{ν_1,ν_2} -distribution, given are the 0.95 -quantiles (i.e. a=0.05)

	T		ν 1 ,ν		ν	/1				,
ν_2	1	2	3	4	5	10	15	20	25	50
1	161.45	199.50	215.71	224.58	230.16	241.88	245.95	248.01	249.26	251.77
2	18.51	19.00	19.16	19.25	19.30	19.40	19.43	19.45	19.46	19.48
3	10.13	9.55	9.28	9.12	9.01	8.79	8.70	8.66	8.63	8.58
4	7.71	6.94	6.59	6.39	6.26	5.96	5.86	5.80	5.77	5.70
5	6.61	5.79	5.41	5.19	5.05	4.74	4.62	4.56	4.52	4.44
6	5.99	5.14	4.76	4.53	4.39	4.06	3.94	3.87	3.83	3.75
7	5.59	4.74	4.35	4.12	3.97	3.64	3.51	3.44	3.40	3.32
8	5.32	4.46	4.07	3.84	3.69	3.35	3.22	3.15	3.11	3.02
9	5.12	4.26	3.86	3.63	3.48	3.14	3.01	2.94	2.89	2.80
10	4.96	4.10	3.71	3.48	3.33	2.98	2.85	2.77	2.73	2.64
15	4.54	3.68	3.29	3.06	2.90	2.54	2.40	2.33	2.28	2.18
20	4.35	3.49	3.10	2.87	2.71	2.35	2.20	2.12	2.07	1.97
25	4.24	3.39	2.99	2.76	2.60	2.24	2.09	2.01	1.96	1.84
30	4.17	3.32	2.92	2.69	2.53	2.16	2.01	1.93	1.88	1.76
35	4.12	3.27	2.87	2.64	2.49	2.11	1.96	1.88	1.82	1.70
40	4.08	3.23	2.84	2.61	2.45	2.08	1.92	1.84	1.78	1.66
45	4.06	3.20	2.81	2.58	2.42	2.05	1.89	1.81	1.75	1.63
50	4.03	3.18	2.79	2.56	2.40	2.03	1.87	1.78	1.73	1.60
55	4.02	3.16	2.77	2.54	2.38	2.01	1.85	1.76	1.71	1.58
60	4.00	3.15	2.76	2.53	2.37	1.99	1.84	1.75	1.69	1.56
65	3.99	3.14	2.75	2.51	2.36	1.98	1.82	1.73	1.68	1.54
70	3.98	3.13	2.74	2.50	2.35	1.97	1.81	1.72	1.66	1.53
75	3.97	3.12	2.73	2.49	2.34	1.96	1.80	1.71	1.65	1.52
80	3.96	3.11	2.72	2.49	2.33	1.95	1.79	1.70	1.64	1.51
85	3.95	3.10	2.71	2.48	2.32	1.94	1.79	1.70	1.64	1.50
90	3.95	3.10	2.71	2.47	2.32	1.94	1.78	1.69	1.63	1.49
95	3.94	3.09	2.70	2.47	2.31	1.93	1.77	1.68	1.62	1.48
100	3.94	3.09	2.70	2.46	2.31	1.93	1.77	1.68	1.62	1.48