

planetmath.org

Math for the people, by the people.

diffeotopy

Canonical name Diffeotopy

Date of creation 2013-03-22 14:52:43 Last modified on 2013-03-22 14:52:43

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 9

Author rspuzio (6075)
Entry type Definition
Classification msc 57R50
Defines isotopic
Defines diffeotopic

Let M be a manifold and I = [0, 1] the closed unit interval. A smooth map $h: M \times I \to M$ is called a diffeotopy (on M) if for every $t \in I$:

$$h_t := h(-,t) \colon M \to M$$

is a diffeomorphism.

Two diffeomorphisms $f,g\colon M\to M$ are said to be diffeotopic if there is a diffeotopy $h\colon M\times I\to M$ such that

- 1. $h_0 = f$, and
- 2. $h_1 = g$.

Remark. Diffeotopy is an equivalence relation among diffeomorphisms. In particular, those diffeomorphisms that are diffeotopic to the identity map form a group.

Two points $a,b \in M$ are said to be isotopic if there is a diffeotopy h on M such that

- 1. $h_0 = id_M$, the identity map on M, and
- 2. $h_1(a) = b$.

Remark. If M is a connected manifold, then every pair of points on M are isotopic.

Pairs of isotopic points in a manifold can be generalized to pairs of isotopic sets. Two arbitrary sets $A, B \subseteq M$ are said to be *isotopic* if there is a diffeotopy h on M such that

- 1. $h_0 = id_M$, and
- 2. $h_1(A) = B$.

Remark. One special example of isotopic sets is the isotopy of curves. In \mathbb{R}^3 , curves that are isotopic to the unit circle are the trivial knots.