Jensen's forcing at an inaccessible

Victoria Gitman

vgitman@nylogic.org https://victoriagitman.github.io

16th International Luminy Workshop in Set Theory September 14, 2021 This is joint work with Sy-David Friedman.

2 / 18

Jensen's forcing and applications

Jensen's forcing \mathbb{P}^J is a subposet of the Sacks forcing constructed in L using \diamondsuit .

- Perfect trees ordered by ⊆.
- Has the ccc.
- Adds a unique Π_2^1 -definable generic real over L.

Theorem: (Jensen) It is consistent that there is a Π_2^1 -definable non-constructible real.

Theorem: (Lyubetsky, Kanovei) Suppose $\mathbb{P}^{J<\omega}$ is the finite-support product of \mathbb{P}^J of length ω and $G\subseteq \mathbb{P}^{J<\omega}$ is L-generic. Then in L[G], a real r is L-generic for \mathbb{P}^J if and only if it is added by the n-th slice of G for some $n<\omega$.

Theorem: (Lyubetsky, Kanovei) There is a countable OD set of reals without an OD real.

Theorem: (Friedman, G., Kanovei) There is a model of second-order arithmetic Z_2 with the choice scheme in which the Π_2^1 -dependent choice scheme fails.

The model is the reals of a symmetric submodel of a forcing extension by a tree iteration of \mathbb{P}^J .

Perfect posets

An infinite tree $T \subseteq 2^{<\omega}$ is perfect if every node of T has a splitting node above it.

Proposition: If T and S are perfect trees such that $T \cap S$ contains a perfect tree, then there is a maximal such perfect tree denoted $T \wedge S$.

A subposet P of Sacks forcing is perfect if:

- $(2^{<\omega})_s \in \mathbb{P}$ for every $s \in 2^{<\omega}$. For every $T, S \in \mathbb{P}$:
- $T \cup S \in \mathbb{P}$ (closed under unions),
- $T \wedge S \in \mathbb{P}$ (closed under meets).

- r is a cofinal branch through every tree in G.
- If $r \in [T]$ for some $T \in \mathbb{P}$, then $T \in G$.

Smallest perfect poset $\mathbb{P}_{\min} = \{(2^{<\omega})_s \mid s \in 2^{<\omega}\}.$

The fusion poset $\mathbb{Q}(\mathbb{P})$

Suppose that \mathbb{P} is a perfect poset.

 $\mathbb{Q}(\mathbb{P})$: elements are pairs (T, n) with $T \in \mathbb{P}$ and $n < \omega$ ordered by $(T, n) \le (S, m)$ if $n \ge m$ and $T \cap 2^m = S \cap 2^m$.

Fusion arguments with trees from $\mathbb P$ can be expressed by meeting dense sets of $\mathbb Q(\mathbb P)$.

Proposition: Suppose that $G \subseteq \mathbb{Q}(\mathbb{P})$ is V-generic. Then in V[G],

$$\mathscr{T} = \bigcup_{(T,n)\in G} T \cap 2^n$$

is a perfect tree and $\mathscr{T} \subseteq T$ for every condition $(T, n) \in G$.

 $\mathbb{Q}(\mathbb{P})^{<\omega}$: finite support ω -length product of the $\mathbb{Q}(\mathbb{P})$.

Growing perfect posets with generic perfect trees

Set-up

- P is a perfect poset
- ullet $\mathbb{Q}(\mathbb{P})$ is a fusion poset for \mathbb{P}
- $G \subseteq \mathbb{Q}(\mathbb{P})^{<\omega}$ is V-generic
- \mathcal{T}_n is the generic perfect tree added by the *n*-th slice of *G*

In V[G]

 \mathbb{P}^* : close $\{\mathscr{T}_n \mid n < \omega\} \cup \mathbb{P}$ under meets and unions.

Proposition:

- $\{(\mathscr{T}_n)_s \mid n < \omega, s \in \mathscr{T}_n\}$ is dense in \mathbb{P}^* .
- $\{\mathcal{T}_n \mid n < \omega\}$ is a maximal antichain of \mathbb{P}^* .
- ullet Every maximal antichain of ${\mathbb P}$ from V remains maximal in ${\mathbb P}^*$.

An argument template for \mathbb{P}^*

Proof sketch: Fix a maximal antichain A of \mathbb{P} from V.

Suffices to show that for a level n, for every $s \in 2^n$, $\mathscr{T}_s \subseteq A$ for some $A \in \mathcal{A}$.

- Fix a condition $(T, n) \in \mathbb{Q}(\mathbb{P})$.
- For every s on level n of T, choose $A^{(s)} \in \mathcal{A}$ compatible with T_s .
- Let $U^{(s)} \subseteq T_s, A^{(s)}$ in \mathbb{P} .
- Let T' be obtained by replacing T_s with $U^{(s)}$ (closure under unions).
- Conditions of the form (T', n) are dense in $\mathbb{Q}(\mathbb{P})$.
- $\mathscr{T}_s \subseteq U^{(s)} \subseteq A^{(s)}$ for every s on level n of \mathcal{T} .

Jensen's forcing: \mathbb{P}^J

Work in L and fix a canonical \diamondsuit -sequence $\vec{D} = \{D_{\xi} \mid \xi < \omega_1\}$.

A model M is suitable if M is countable, $M = L_{\alpha}$ for some α , and $M \models \mathrm{ZFC}^- + \mathrm{P}(\omega)$ exists.

Observations:

- The Mostowski collapse M of any countable $X \prec L_{\omega_2}$ is suitable.
- If M is suitable and $\delta = (\omega_1)^M$, then $\langle D_{\xi} \mid \xi < \delta \rangle \in M$.

 \mathbb{P}^J : union of a chain $\mathbb{P}_0 \subseteq \mathbb{P}_1 \subseteq \cdots \subseteq \mathbb{P}_{\xi} \subseteq \cdots$ of length ω_1 of perfect posets.

$$\mathbb{P}_0 = \mathbb{P}_{\min}$$

$$\mathbb{P}_{\lambda} = \bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$$
 at limits λ .

Suppose \mathbb{P}_{ξ} has been defined.

If D_{ξ} codes a suitable model M_{ξ} such that $\mathbb{P}_{\xi} \in M_{\xi}$ and $(\omega_1)^{M_{\xi}} = \xi$:

- Let G_{ξ} be the *L*-least M_{ξ} -generic filter for $\mathbb{Q}(\mathbb{P}_{\xi})^{<\omega}$.
- $\mathbb{P}_{\xi+1} = \mathbb{P}_{\xi}^*$ as constructed in $M_{\xi}[G_{\xi}]$.

Otherwise, $\mathbb{P}_{\xi+1} = \mathbb{P}_{\xi}$.

Victoria Gitman

Sealing Lemma: Every maximal antichain of \mathbb{P}_{ξ} from M_{ξ} remains maximal in \mathbb{P}^{J} .

◆□ > ◆□ > ◆□ > ◆□ > □ □

8 / 18

Luminy

Perfect κ -trees

Suppose that κ is an inaccessible cardinal.

A perfect κ -tree is a tree $T \subseteq 2^{<\kappa}$ such that:

- T has size κ (T is a κ -tree).
- Every node of T has a splitting node above it (T is splitting).
- For every limit $\lambda < \kappa$ if $s \in 2^{\lambda}$ and $s \upharpoonright \xi \in T$ for every $\xi < \lambda$, then $s \in T$ (T is closed).
- For every limit $\lambda < \kappa$ if $s \in 2^{\lambda}$ and for cofinally many $\xi < \lambda$, $s \upharpoonright \xi$ splits, then s splits (the splitting nodes of T are closed).

Proposition: Suppose that $\{T_{\xi} \mid \xi < \beta\}$, for $\beta < \kappa$, is a \subseteq -decreasing sequence of perfect κ -trees. Then $T = \bigcap_{\xi < \beta} T_{\xi}$ is a perfect κ -tree.

Badly behaved perfect κ -trees

Proposition: There are perfect κ -trees whose intersection does not contain a maximal perfect κ -tree.

Proposition: There are ω -many perfect κ -trees whose union is not a perfect κ -tree.

κ -perfect posets

Suppose that κ is an inaccessible cardinal.

A collection \mathbb{P} of perfect κ -trees ordered by \subseteq is a κ -perfect poset if:

- $2^{<\kappa} \in \mathbb{P}$.
- If $T \in \mathbb{P}$ and $t \in T$, then $T_t \in \mathbb{P}$.
- If $\{T_{\xi} \mid \xi < \beta\} \subseteq \mathbb{P}$, with $\beta < \kappa$, then $T = \bigcap_{\xi < \beta} T_{\xi} \in \mathbb{P}$ ($<\kappa$ -closure property).
- Suppose $T \in \mathbb{P}$, $\alpha < \kappa$ is a successor, and $\{T^{(s)} \subseteq T_s \mid s \in T \cap 2^{\alpha}\} \subseteq \mathbb{P}$. Then $T' = \bigcup_{s \in 2^{\alpha}} T^{(s)} \in \mathbb{P}$ (weak union property).

κ -perfect posets (continued)

Proposition: Suppose $\mathbb P$ is a κ -perfect poset and $G \subseteq \mathbb P$ is V-generic. Let $A = \bigcap_{T \in G} T$. Then in V[G]:

- A is cofinal branch through every tree in G.
- If $A \in [T]$ for some $T \in \mathbb{P}$, then $T \in G$.

Smallest κ -perfect poset \mathbb{P}_{\min} : close $\{(2^{<\kappa})_s \mid s \in 2^{<\kappa}\}$ under $<\kappa$ -intersection property and weak union property.

$$\mathbb{P}_0 = \{(2^{<\kappa})_s \mid s \in 2^{<\kappa}\}$$

$$\mathbb{P}_{\lambda} = \bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$$
 for limits λ

Suppose \mathbb{P}_{ε} has been defined.

 $\mathbb{P}'_{\xi+1}$ consists of all $T' = \bigcup_{s \in 2^{\alpha}} T^{(s)}$ for $T \in \mathbb{P}_{\xi}$, successor $\alpha < \kappa$, and $\{T^{(s)} \subseteq T_s \mid s \in T \cap 2^{\alpha}\} \subseteq \mathbb{P}_{\xi}$.

 $\mathbb{P}_{\xi+1}$ consists of all $T=\bigcap_{\xi<eta}T_{\xi}$, for $eta<\kappa$, and \subseteq -decreasing $\{T_{\xi}\mid \xi<eta\}\subseteq \mathbb{P}'_{\xi+1}$.

Clean Levels Lemma: Every tree $T \in \mathbb{P}_{\min}$ has a level α such that for every $t \in T \cap 2^{\alpha}$, $T_t = (2^{<\kappa})_t$.

The fusion poset $\mathbb{Q}(\mathbb{P})$

Suppose that \mathbb{P} is a κ -perfect poset.

 $\mathbb{Q}(\mathbb{P})$: elements are pairs (T, α) , with $T \in \mathbb{P}$ and $\alpha < \kappa$ successor, ordered by $(T, \alpha) \leq (S, \beta)$ if $\alpha \geq \beta$ and $T \cap 2^{\beta} = S \cap 2^{\beta}$.

Proposition: The poset $\mathbb{Q}(\mathbb{P})$ is $<\kappa$ -closed.

Proposition: Suppose $G \subseteq \mathbb{Q}(\mathbb{P})$ is V-generic. Then in V[G],

$$\mathscr{T} = \bigcup_{(T,\alpha)\in G} T \cap 2^{\alpha}$$

is a perfect κ -tree and $\mathscr{T} \subseteq T$ for every condition $(T, \alpha) \in G$.

 $\mathbb{Q}(\mathbb{P})^{<\kappa}$: bounded support κ -length product of the $\mathbb{Q}(\mathbb{P})$.

Growing κ -perfect posets with generic perfect κ -trees

Set-up

- ullet ${\mathbb P}$ is a κ -perfect poset
- \bullet $\mathbb{Q}(\mathbb{P})$ is a fusion poset for \mathbb{P}
- $G \subseteq \mathbb{Q}(\mathbb{P})^{<\kappa}$ is V-generic
- \mathscr{T}_{ξ} is the generic perfect κ -tree added by the ξ -th slice of G

In V[G]

 \mathbb{P}^* : close $\{(\mathscr{T}_{\xi})_t \mid \xi < \kappa, t \in \mathscr{T}_{\xi}\} \cup \mathbb{P}$ under $<\kappa$ -intersection property and weak union property.

$$\mathbb{P}_0 = \{(\mathscr{T}_{\xi})_t \mid \xi < \kappa, t \in \mathscr{T}_{\xi}\} \cup \mathbb{P}$$

$$\mathbb{P}_{\lambda} = \bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$$
 for limits λ

Suppose \mathbb{P}_{ξ} has been defined.

 $\mathbb{P}'_{\xi+1}$ consists of all $T' = \bigcup_{s \in T \cap 2^{\alpha}} T^{(s)}$ for $T \in \mathbb{P}_{\xi}$, $\alpha < \kappa$ successor, and $\{T^{(s)} \subseteq T_s \mid s \in T \cap 2^{\alpha}\} \subseteq \mathbb{P}_{\xi}$.

 $\textstyle \mathbb{P}_{\xi+1} \text{ consists of all } T = \bigcap_{\xi < \beta} T_\xi \text{ for } \beta < \kappa \text{ and } \subseteq \text{-decreasing } \{T_\xi \mid \xi < \beta\} \subseteq \mathbb{P}'_{\xi+1}.$

Growing κ -perfect posets with generic perfect κ -trees (continued)

Clean Levels Lemma: Every tree $T \in \mathbb{P}^*$ has a level α such that for every $t \in T \cap 2^{\alpha}$,

- $T_t = (\mathscr{T}_{\xi})_t$ for some $\xi < \kappa$ or
- $T_t \in \mathbb{P}$.

Proposition:

- $\{(\mathcal{T}_{\xi})_s \mid \xi < \kappa, s \in \mathcal{T}_{\xi}\}$ is dense in \mathbb{P}^* .
- $\bullet \ \{\mathscr{T}_\xi \mid \xi < \kappa\} \text{ is a maximal antichain of } \mathbb{P}^*.$
- ullet Every maximal antichain from V remains maximal in \mathbb{P}^* .

Jensen's forcing at an inaccessible κ : $\mathbb{P}^{\kappa J}$

Work in L and fix a canonical $\diamondsuit_{\kappa^+}(\operatorname{Cof}(\kappa))$ -sequence $\vec{D} = \{D_\xi \mid \xi \in \operatorname{Cof}(\kappa)\}.$

A model M is κ -suitable if:

- $|M| = \kappa$,
- $M^{<\kappa}\subseteq M$,
- $M = L_{\alpha}$ for some α ,
- $M \models \mathrm{ZFC}^- + \mathrm{P}(\kappa)$ exists.

Observations:

- The Mostowski collapse M of any $X \prec L_{\kappa^{++}}$, with $X^{<\kappa} \subseteq X$ and $|X| = \kappa$, is κ -suitable.
- If M is κ -suitable and $\delta = (\kappa^+)^M$, then $\langle D_{\xi} \mid \xi < \delta \rangle \in M$.
- If M is κ -suitable and $\mathbb{P} \in M$ is $<\kappa$ -closed, then there is an M-generic filter for \mathbb{P} .

 $\mathbb{P}^{\kappa J}$: union of a chain $\mathbb{P}_0 \subseteq \mathbb{P}_1 \subseteq \cdots \subseteq \mathbb{P}_{\xi} \subseteq \cdots$ of length κ^+ of κ -perfect posets.

Jensen's forcing at an inaccessible κ : $\mathbb{P}^{\kappa J}$ (continued)

$$\mathbb{P}_0 = \mathbb{P}_{\mathsf{min}}$$

 $\mathbb{P}_{\lambda} = \bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$ at limits $\lambda \in \operatorname{Cof}(\kappa)$.

Suppose $\mathbb{P}_{\mathcal{E}}$ has been defined.

If $\xi \in \operatorname{Cof}(\kappa)$ and D_{ξ} codes a κ -suitable model M_{ξ} such that $\mathbb{P}_{\xi} \in M_{\xi}$ and $(\kappa^+)^{M_{\xi}} = \xi$:

- Let G_{ε} be the *L*-least M_{ε} -generic filter for $\mathbb{Q}(\mathbb{P}_{\varepsilon})^{<\kappa}$.
- $\mathbb{P}_{\xi+1} = \mathbb{P}_{\xi}^*$ as constructed in $M_{\xi}[G_{\xi}]$.

Otherwise, $\mathbb{P}_{\varepsilon+1} = \mathbb{P}_{\varepsilon}$.

Suppose λ is a limit of cofinality $<\kappa$.

 \mathbb{P}_{λ} : close $\bigcup_{\xi < \lambda} \mathbb{P}_{\xi}$ under $<\kappa$ -intersection property and weak union property.

Let $\mathscr{T}_{\nu}^{(\xi)}$ for $\xi < \kappa^+$ and $\nu < \kappa$ be the perfect κ -trees added in $M_{\xi}[G_{\xi}]$.

Clean Levels Lemma: Every tree $T \in \mathbb{P}^{\kappa J}$ has a level α such that for every $t \in 2^{\alpha} \cap T$,

- $T_t = (2^{<\kappa})_t$
- $T_t = (\mathscr{T}_{\nu}^{(\xi)})_t$ for some $\xi < \kappa^+$ and $\nu < \kappa$,
- $T_t = \bigcap_{\epsilon < \alpha} (\mathscr{T}_{\rho_{\epsilon}}^{(\mu_{\xi})})_t$, with $\alpha < \kappa$, for some \subseteq -decreasing $\{(\mathscr{T}_{\rho_{\epsilon}}^{(\mu_{\xi})})_t \mid \xi < \alpha\}$.

Sealing Lemma: Every maximal antichain of \mathbb{P}_{ξ} from M_{ξ} remains maximal in $\mathbb{P}^{\kappa J}$.

16 / 18

Properties of $\mathbb{P}^{\kappa J}$

Theorem: The forcing $\mathbb{P}^{\kappa J}$

- is $<\kappa$ -closed,
- has the κ^+ -cc,
- adds a unique generic subset of κ over L.

Theorem: Suppose $\mathbb{P}^{\kappa J < \kappa}$ is the bounded support product of \mathbb{P}^J of length κ and $G \subseteq \mathbb{P}^{\kappa J < \kappa}$ is L-generic. Then in L[G], $A \subseteq \kappa$ is L-generic for $\mathbb{P}^{\kappa J}$ if and only if it is added by the α -th slice of G for some $\alpha < \kappa$.

Conjecture: (Work in progress) There is a model of Kelley-Morse set theory with the choice scheme in which the dependent choice scheme fails.

The model should be $V_{\kappa+1}$ of a symmetric submodel of a forcing extension by a tree iteration of $\mathbb{P}^{\kappa J}$.

Jensen's forcing outside of L

A version of Jensen's forcing can be constructed in any universe with \diamondsuit .

A version of Jensen's forcing at an inaccessible κ can be constructed in any universe with $\diamondsuit_{\kappa^+}(\operatorname{Cof}(\kappa))$.

- lose low complexity of generics
- keep uniqueness properties of generics