Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский политехнический университет Петра Великого»

УДК	УТВЕРЖДАЮ
$\mathcal{N}^{\underline{o}}$	Зав. НИЛ «Математическая биология
Инв. №	и биоинформатика», ИПММ
	ФГАОУ ВО «СПбПУ»,
	д.б.н.
	М. Г. Самсонова
	«» 2016 г.

ОТЧЕТ ПО КУРСОВОЙ РАБОТЕ

по предмету: «Системная биология»

Выполнил сту	удент гр. №63601/4
Д. Е	3. Яковлев
«»	2016 г.
Руководитель	НИР, к.фм.н.
B.B	. Гурский
« »	2016 г.

Санкт-Петербург 2016

СОДЕРЖАНИЕ

1	Введение	3
2	Система	3
3	Анализ динамики системы	4
4	Анализ состояния равновесия системы	6
5	Анализ параметров системы	7
6	Выводы	8

1 Введение

В данной работе предлагается рассмотреть систему репрессилатора - три системы транскрипционных репрессора, которые не являются частью какихлибо естественных биологических часов, чтобы построить колебательный сети. В роли программного обеспечения для анализа системы будет использоваться пакет COPASI.

COPASI - это программа с открытым исходным кодом для создания и решения математических моделей биологических процессов, таких как мета-болические сети, сигнальные пути клеток, регуляторные сети, инфекционные заболевания и многое другое.

Цель работы - знакомство с пакетом COPASI на примере системы репрессилатора.

2 Система

Система состоит из 12 биохимических реакций и 7 реагентов. Реагенты:

- ullet X, РХ мРНК и протеин гена LacI
- Y, PY мРНК и протеин гена tetR
- Z, PZ мРНК и протеин гена Cl

Реакции системы представлены на рисунке 1.

# 🔺	Name	Reaction	Rate Law	Flux (mol/s)
1	Reaction1	X -> EmptySet	Function for Reaction1	0
2	Reaction2	Y -> EmptySet	Function for Reaction2	0
3	Reaction3	Z -> EmptySet	Function for Reaction3	0
4	Reaction4	EmptySet + X -> PX + X	Function for Reaction4	0
5	Reaction5	EmptySet + Y -> PY + Y	Function for Reaction5	0
6	Reaction6	EmptySet + Z -> PZ + Z	Function for Reaction6	0
7	Reaction7	PX -> EmptySet	Function for Reaction7	0
8	Reaction8	PY -> EmptySet	Function for Reaction8	0
9	Reaction9	PZ -> EmptySet	Function for Reaction9	0
10	Reaction10	EmptySet -> X; PZ	Function for Reaction10	0
11	Reaction11	EmptySet -> Y; PX	Function for Reaction11	0
12	Reaction12	EmptySet -> Z; PY	Function for Reaction12	0
	New Reaction			

Рисунок 1 – Биохимические реакции системы репрессилатора

С системой дифференциальных уравнений для нашей системы можно познакомиться на рисунке 2.

$$PX'[t] == -(beta*PX[t]) + beta*X[t]$$

$$PY'[t] == -(beta*PY[t]) + beta*Y[t]$$

$$PZ'[t] == -(beta*PZ[t]) + beta*Z[t]$$

$$X'[t] == alpha0 + (alpha + alpha1*PZ[t]^n)/(K^n + PZ[t]^n) - k1*X[t]$$

$$Y'[t] == alpha0 + (alpha + alpha1*PX[t]^n)/(K^n + PX[t]^n) - k1*Y[t]$$

$$Z'[t] == alpha0 + (alpha + alpha1*PY[t]^n)/(K^n + PY[t]^n) - k1*Z[t]$$

Рисунок 2 – Дифференциальные уравнения системы репрессилатора

3 Анализ динамики системы

Первоначально исследуем поведение системы на промежутке 1 секунда с размером интервала 0.01 секунда (Рис. 3). В данном случаем нам сложно что-то утверждать о поведении концентрации tetR и Cl.

Рисунок 3 – Динамика поведения системы на промежутке 1 секунда

Увеличим временной промежуток до 10 секунд (Рис. 4). Теперь мы можем сравнивать между собой кривые. На графике отчётливо видно, что мРНК и протеин для одного гена изменяются одинаково.

Рисунок 4 – Динамика поведения системы на промежутке 10 секунд

С увеличением временного промежутка до 50 секунд можно утверждать закономерности изменения концентраций мРНК и протеина(Рис. 5). То есть сначала вырабатывается мРНК и протеин tetR из Cl, далее из них получается мРНК и протеин LacI и в конце имеем мРНК и протеин Cl после чего процесс повторяется.

Рисунок 5 – Динамика поведения системы на промежутке 50 секунд

4 Анализ состояния равновесия системы

Пакет COPASI предлагает три подхода к поиску состояния равновесия:

- 1. Метод Ньютона
 - Быстрый
 - Не гарантируется сходимость
- 2. Метод интегрирования
 - Медленнее
 - Гарантируется сходимость
- 3. Метод обратного интегрирования
 - Используется в крайне редких случаях

С помощью метода Ньютона обнаружить состояние равновесие не удалось (Рис. 6).

Рисунок 6 – Результат поиска состояния равновесия с помощью метода Ньютона

Рисунок 7 – Результат поиска состояния равновесия с интегрирования

Однако с помощью метода интегрирования удалось найти состояние равновесия (Рис. 7).

Теперь зная состояние равновесия, обновим модель и посмотрим динамику системы. На рисунке 8 можем наблюдать, что система находится в состоянии равновесия.

5 Анализ параметров системы

Наша система имеет параметры - beta, alpha0, alpha1, K, k1, n. Посмотрим, как меняется поток реакции 12 в состоянии равновесия при изменении параметра n. Как видно по рисунку 9 никак не изменяется поток в зави-

Рисунок 8 – Динамика системы в состоянии равновесия

симости от n. K сожалению, попытки получить более красивые графики не увенчались успехом (проверялись другие параметры в остальных реакциях).

6 Выводы

Пакет COPASI предоставляет нам следующие возможности:

- Работа с системами биохимических реакций. Возможность создавать новые, записывать в виде дифференциальных уравнений реакции и т.д.
- Анализ динамики системы на определённом временном промежутке с заданным интервалом
- Поиск состояния равновесия
- Анализ параметров системы

Рисунок 9 – Изменение потока в зависимости от параметра n