Introduction

Representations of Lattices

Athar Abdul-Quader

Purchase College, SUNY

CUNY Models of Peano Arithmetic Seminar April 2, 2024

Substructure / Interstructure Lattices

- If $\mathcal{M} \models \mathsf{PA}$, then $\mathsf{Lt}(\mathcal{M}) = (\{\mathcal{K} : \mathcal{K} \prec \mathcal{M}\}, \preccurlyeq)$ is a lattice, called the substructure lattice of \mathcal{M} .
- ② If $\mathcal{M} \leq \mathcal{N}$, then $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) = (\{\mathcal{K} : \mathcal{M} \leq \mathcal{K} \leq \mathcal{N}\}, \leq)$ is a lattice, called the interstructure lattice between \mathcal{M} and \mathcal{N} .

Question

For which finite lattices L is there \mathcal{M} such that $Lt(\mathcal{M}) \cong L$?

Similarly for interstructure lattices: given (countable / nonstandard) \mathcal{M} , for which finite lattices L is there $\mathcal{M} \prec \mathcal{N}$ such that $\mathrm{Lt}(\mathcal{N}/\mathcal{M}) \cong L$?

Schmerl

Many results are known (e.g. \aleph_1 -algebraic distributive lattices), but the question remains open.

We are also interested in the nature of these extensions. That is: given a (countable, nonstandard) \mathcal{M} , and a finite L, is there $\mathcal{M} \prec_{\mathsf{end}} \mathcal{N}$ such that $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong L$? Can such an extension be conservative? Cofinal? Mixed?

Many results rely on a technique devised by Schmerl (1986): representations of lattices. From now on, we will restrict our attention to countable models.

Outline

Introduction

For today, we will study the Boolean Algebra \mathbf{B}_2 to motivate this technique.

- First, we will consider $\mathcal{M} \prec \mathcal{M}(c)$ where $Lt(\mathcal{M}(c)/\mathcal{M}) \cong \mathbf{B}_2$. We will recover certain information about tp(c/M) based on the fact that the interstructure lattice is \mathbf{B}_2 .
- 2 This will motivate the definition of representations of lattices. along with properties of those representations.
- **3** We will take a countable \mathcal{M} and show it has a set of representations of \mathbf{B}_2 satisfying some of these properties, using this to construct a type p(x) which, when realized, will generate a model \mathcal{N} where $Lt(\mathcal{N}/\mathcal{M}) \cong \mathbf{B}_2$.
- This, in turn, motivates the main result, due to Schmerl, showing the connection between realizing a lattice as an interstructure lattice and the existence of certain representations of that lattice.

The Lattice **B**₂

Figure: The lattice \mathbf{B}_2

For now: fix $\mathcal{M} \prec \mathcal{N}$ is such that $Lt(\mathcal{N}/\mathcal{M}) \cong \mathbf{B}_2$.

Generators

 \mathbf{B}_2 is finite: so each element is compact. There are $a, b \in N$ such that $\mathrm{Lt}(\mathcal{N}/\mathcal{M})$ is exactly:

In fact: $tp(\langle a, b \rangle / \mathcal{M})$ knows this! (How can we make this precise?)

$\mathsf{tp}(\langle a,b \rangle)$

Suppose $c \in N$. Let t be such that $\mathcal{N} \models t(\langle a, b \rangle) = c$. One of the following must hold:

- $\mathbf{0}$ $c \in M$.
- $M(c) = \mathcal{M}(a).$

If $c \in M$: Let

$$X = \{x : t(x) = c\}.$$

X is an infinite, \mathcal{M} -definable set, $\langle a,b\rangle\in X^{\mathcal{N}}$ and $\mathcal{M}\models t\restriction X$ is constant.

$\mathcal{M}(a)$

If $\mathcal{M}(c) = \mathcal{M}(a)$: There are \mathcal{M} -definable g_1, g_2 such that $\mathcal{N} \models g_1(c) = a \land g_2(a) = c$. Let π_1 be the projection function $\pi_1(\langle x, y \rangle) = x$. Let

$$X = \{x : g_1(t(x)) = \pi_1(x) \land g_2(\pi_1(x)) = t(x)\}.$$

X is an infinite, \mathcal{M} -definable set, $\langle a, b \rangle \in X^{\mathcal{N}}$, and $\mathcal{M} \models \forall x, y \in X(t(x) = t(y) \leftrightarrow \pi_1(x) = \pi_1(y)).$

$\mathcal{M}(b)$

Introduction

If $\mathcal{M}(c) = \mathcal{M}(b)$: There are \mathcal{M} -definable g_1 , g_2 such that $\mathcal{N} \models g_1(c) = b \land g_2(b) = c$. Let π_2 be the projection function $\pi_2(\langle x,y \rangle) = y$. Let

$$X = \{x : g_1(t(x)) = \pi_2(x) \land g_2(\pi_2(x)) = t(x)\}.$$

X is an infinite, \mathcal{M} -definable set, $\langle a,b \rangle \in X^{\mathcal{N}}$, and $\mathcal{M} \models \forall x,y \in X(t(x)=t(y) \leftrightarrow \pi_2(x)=\pi_2(y))$.

Introduction

If
$$\mathcal{M}(c) = \mathcal{N}$$
: there is \mathcal{M} -definable g_1 such that $\mathcal{N} \models g_1(c) = \langle a, b \rangle$. Let

$$X = \{x : t(x) = c \land g_1(c) = x\}.$$

X is an infinite, \mathcal{M} -definable set, $\langle a,b \rangle \in X^{\mathcal{N}}$, and $\mathcal{M} \models \forall x,y \in X(t(x)=t(y) \leftrightarrow x=y)$.

Notice

Whenever t is an \mathcal{M} -definable (total) function, consider the equivalence relation induced by t: $x \sim y$ iff t(x) = t(y). We can find an infinite, \mathcal{M} -definable X such that $\langle a,b\rangle \in X^{\mathcal{N}}$ and one of the following holds on X:

- \bullet is trivial (ie, for all $x, y \in X$, $x \sim y$).
- 2 $x \sim y$ iff $\pi_1(x) = \pi_1(y)$.
- **3** $x \sim y$ iff $\pi_2(x) = \pi_2(y)$.
- \bullet \sim is discrete (ie, for all $x, y \in X$, $x \sim y$ iff x = y).

Definitions

Let X be a set and L a finite lattice. Then:

- **1** Eq(X) is the lattice of equivalence relations on X, with top element $\mathbf{1}_X = X \times X$ (trivial relation) and bottom element $\mathbf{0}_X = \{(a, a) : a \in X\}$ (discrete relation).
- ② $\alpha: L \to Eq(X)$ is a representation if it is one to one and:
 - $\alpha(0_L) = \mathbf{1}_X \ (\alpha(0) \text{ is trivial}),$
 - $\alpha(1_L) = \mathbf{0}_X$ ($\alpha(1)$ is discrete), and
 - $\alpha(x \vee y) = \alpha(x) \wedge \alpha(y)$.

That is, a representation picks out specific equivalence relations on X, one for each $r \in L$. Ensure that if $x \leq y$, then $\alpha(y)$ refines $\alpha(x)$.

Example

Introduction

Let X be the set of pairs $\{\langle x,y\rangle:x< y\}$. Define $\alpha:\mathbf{B}_2\to \mathsf{Eq}(X)$:

- $\alpha(0)$ is trivial,
- $(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) \in \alpha(a)$ iff $a_1 = b_1$,
- $(\langle a_1, a_2 \rangle, \langle b_1, b_2 \rangle) \in \alpha(b)$ iff $a_2 = b_2$, and
- $\alpha(1)$ is discrete.

(Clearly a representation.)

More definitions

Let $\alpha: L \to Eq(X)$ be a representation. Then:

- If $Y \subseteq X$, then $\alpha | Y : L \to Eq(Y)$ is defined by $(\alpha | Y)(r) = \alpha(r) \cap Y^2$ for each $r \in L$.
- ② If $\Theta \in \text{Eq}(X)$, Θ is canonical for α if there is $r \in L$ such that for all $x, y \in X$, $(x, y) \in \Theta$ iff $(x, y) \in \alpha(r)$.

Notice what happened in our analysis of $\operatorname{tp}(\langle a,b\rangle/\mathcal{M})$: for every \mathcal{M} -definable equivalence relation Θ (on some \mathcal{M} -definable X where $\langle a,b\rangle\in X$), there is \mathcal{M} -definable $Y\subseteq X$ such that $\langle a,b\rangle\in Y^{\mathcal{N}}$ and $\Theta\cap Y^2$ is canonical for $\alpha|Y$.

Plan

Let $\mathcal{M} \models \mathsf{PA}$ be countable. Fix X and $\alpha : \mathbf{B}_2 \to \mathsf{Eq}(X)$ as before. We wish to construct a complete type p(x) such that if c realizes p(x), then $\mathsf{Lt}(\mathcal{M}(c)/\mathcal{M}) \cong \mathbf{B}_2$.

We do this by constructing a sequence $X_0 \supseteq X_1 \supseteq ...$ of definable sets that will generate p(x); that is,

$$p(x) = {\phi(x) : \exists n \in \omega(X_n \subseteq \phi(\mathcal{M}))}.$$

We ensure that p(x) knows that $\mathrm{Lt}(\mathcal{M}(c)/\mathcal{M})\cong \mathbf{B}_2$: that is, for each t(x), we ensure that there is X_n where (the equivalence relation induced by) t is canonical for $\alpha|X_n$.

Canonical Ramsey's Theorem

Definition

Introduction

Suppose $\alpha: L \to Eq(A)$ and $\beta: L \to Eq(B)$. $\alpha \cong \beta$ if there is a bijection $f: A \to B$ such that whenever $x, y \in A$ and $r \in L$, then $(x, y) \in \alpha(r)$ iff $(f(x), f(y)) \in \beta(r)$.

Start with $X_0 = X = \{\langle x, y \rangle : x < y\}$. Then: for any \mathcal{M} -definable $\Theta \in Eq(X)$, there is $Y \subseteq X$ such that $\Theta \cap Y^2$ is canonical for $\alpha | Y$ and $\alpha | Y \cong \alpha$. Why?

Theorem (Canonical Ramsey's Theorem (Erdős-Rado 1950))

For any $k \in \mathbb{N}$ and coloring $c : [\mathbb{N}]^k \to \mathbb{N}$, there is $I \subseteq k$ and an infinite $H \subseteq \mathbb{N}$ such that whenever $\bar{x}, \bar{y} \in [H]^k$, $c(\bar{x}) = c(\bar{y})$ iff $x_i = y_i$ for all $i \in I$.

Generating a type

Introduction

Enumerate definable equivalence relations as $\Theta_0, \Theta_1, \ldots$ Given X_i , use CRT to find $X_{i+1} \subseteq X_i$ for which Θ_i is canonical. Obtain $X_0 \supset X_1 \dots$ which generates p(x)Claim: p(x) is complete.

Suppose $\phi(x)$ is a formula and let Θ be the equivalence relation given by $(x, y) \in \Theta$ iff $\mathcal{M} \models \phi(x) \leftrightarrow \phi(y)$. Notice that Θ has exactly two classes, but $\alpha(a)$, $\alpha(b)$, $\alpha(1)$ all have infinitely many.

Therefore if Θ is canonical on $\alpha | X_i$, it must be trivial (ie $\Theta \cap X_i^2 = \alpha(0) \cap X_i^2$). That is, one of the following must hold:

Ensuring **B**₂

Introduction

Let c realize p(x). How do we show that $Lt(\mathcal{M}(c)/\mathcal{M}) \cong \mathbf{B}_2$? Let $c = \langle a, b \rangle$, then we claim this lattice is exactly $\{\mathcal{M}, \mathcal{M}(a), \mathcal{M}(b), \mathcal{M}(c)\}.$

To see this: let $d \in \mathcal{M}(c)$ and t such that $\mathcal{M}(c) \models t(c) = d$. t is made canonical on some X_i .

That is: there is $r \in \mathbf{B}_2$ such that for all $x, y \in X_i$, t(x) = t(y) iff $(x,y) \in \alpha(r)$.

Exercise: if r=0, then $d\in\mathcal{M}$, if r=a then $\mathcal{M}(d)=\mathcal{M}(a)$, if r=b. then . . .

(Exercise: check that $\mathcal{M}(a) \cap \mathcal{M}(b) = \mathcal{M}$.)

Definitions

Introduction

Definition (Schmerl 1986)

Let $\alpha: L \to Eq(X)$ be a representation.

- \bullet has the 0-canonical partition property, or is 0-CPP, if for each $r \in L$, $\alpha(r)$ does not have exactly two classes.
- α is (n+1)-CPP if, for each $\Theta \in Eq(X)$ there is $Y \subseteq X$ such that $\alpha|Y$ is an *n*-CPP representation and $\Theta \cap Y^2$ is canonical for $\alpha | Y$.

The α we used was n-CPP for every $n \in \omega$.

Other properties

We used the following facts about the representations:

- Each $\alpha | X_i$ is 0-CPP (implies p(x) is complete!)
- ② Whenever $\Theta \in \text{Eq}(X)$ is \mathcal{M} -definable, there is X_i such that Θ is canonical for $\alpha | X_i$.

Definition

Let $\mathcal{M} \models \mathsf{PA}$ and L a finite lattice.

- **1** $\alpha: L \longrightarrow \text{Eq}(X)$ is an \mathcal{M} -representation if α and X are \mathcal{M} -definable.
- ② If $X \in \text{Def}(\mathcal{M})$, then by $\text{Eq}^{\mathcal{M}}(X)$ we mean the lattice of \mathcal{M} -definable equivalence relations on X.
- ③ $\mathcal C$ is an $\mathcal M$ -correct set of representations of L if each $\mathcal C$ is a nonempty set of 0-CPP $\mathcal M$ -representations of L and whenever $\alpha: L \longrightarrow \mathsf{Eq}(X) \in \mathcal C$ and $\Theta \in \mathsf{Eq}^{\mathcal M}(X)$, there is $Y \subseteq X$ such that $\alpha|Y \in \mathcal C$ and $\Theta \cap Y^2$ is canonical for $\alpha|Y$.

Theorem

Introduction

Theorem (Schmerl 2024)

Let $\mathcal{M} \models PA$ and L be a finite lattice. Then:

- If there is \mathcal{N} such that $\mathcal{M} \prec \mathcal{N}$ and $\mathsf{Lt}(\mathcal{N}/\mathcal{M}) \cong \mathsf{L}$, then there is an \mathcal{M} -correct set of representations of L.
- If M is countable and there is an M-correct set of representations of L, then there is $\mathcal{N} \succ \mathcal{M}$ such that $Lt(\mathcal{N}/\mathcal{M}) \cong L$.

Ranked lattices

A ranked lattice (L, ρ) is a lattice L equipped with a function $\rho: L \longrightarrow L$ such that for all x and y in L

The rankset of a ranked lattice (L, ρ) is $\{\rho(x) : x \in L\}$. If $\mathcal{M} \prec \mathcal{N}$, the rank function we use is $\mathrm{rk}(\mathcal{K}) = \overline{\mathcal{K}}$, where $\mathcal{K} \preccurlyeq_{\mathsf{cof}} \overline{\mathcal{K}} \preccurlyeq_{\mathsf{end}} \mathcal{N}$. Then $\mathrm{Ltr}(\mathcal{N}/\mathcal{M}) = (\mathrm{Lt}(\mathcal{N}/\mathcal{M}), \mathrm{rk})$.

Ranking \mathbf{B}_2

What is the rankset for the \mathbf{B}_2 extension we constructed?

$$\mathcal{M}(c)$$
 $\mathcal{M}(a)$
 $\mathcal{M}(b)$

Figure: Lt($\mathcal{M}(c)/\mathcal{M}$) \cong **B**₂

First: $\mathcal{M} \prec_{end} \mathcal{M}(c)$. (Exercise.)

$\mathcal{M}(a)$ and $\mathcal{M}(b)$

Notice: exactly one of $\mathcal{M}(a)$ and $\mathcal{M}(b)$ must be cofinal in $\mathcal{M}(c)$. Why?

Since
$$X = \{\langle x, y \rangle : x < y\}$$
, then $\pi_1(x) < \pi_2(x) \in \mathsf{tp}(c)$, so $\mathcal{M}(c) \models a < b$. Hence: $\mathcal{M}(a) \prec_{\mathsf{end}} \mathcal{M}(c)$ and $\mathcal{M}(b) \prec_{\mathsf{cof}} \mathcal{M}(c)$.

The rankset must be $\{\mathcal{M}, \mathcal{M}(a), \mathcal{M}(c)\}$. How did the representation α imply this?

Other rankings?

What other ranksets could work? How could we realize them?

Definition

Introduction

Definition (Schmerl 2024)

Let $\mathcal{M} \models \mathsf{PA}$ and (L, ρ) a finite ranked lattice.

- If $A \in \text{Def}(\mathcal{M})$ and $\Theta \in \text{Eq}^{\mathcal{M}}(A)$, a set \mathcal{E} of Θ classes is \mathcal{M} -bounded if there is a bounded $I \in \mathsf{Def}(\mathcal{M})$ such that $I \cap X \neq \emptyset$ for each $X \in \mathcal{E}$.
- $\alpha: L \to Eq(A)$ is an \mathcal{M} -representation of (L, ρ) if α is an \mathcal{M} -representation of L and whenever $r \leq s \in L$, $s \leq \rho(r)$ if and only if every $\alpha(r)$ -class is the union of an \mathcal{M} -bounded set of $\alpha(s)$ -classes.
- **3** \mathcal{C} is an \mathcal{M} -correct set of representations of (L, ρ) if \mathcal{C} is an \mathcal{M} -correct set of representations of L and each $\alpha \in \mathcal{C}$ is an \mathcal{M} -correct representation of (L, ρ) .

Theorem

Introduction

$\mathsf{Theorem}$

Suppose $\mathcal{M} \models \mathsf{PA}$ and (L, ρ) is a finite ranked lattice.

- If there is \mathcal{N} such that $\mathcal{M} \prec \mathcal{N}$ and $\mathsf{Ltr}(\mathcal{N}/\mathcal{M}) \cong (L, \rho)$, then there is an \mathcal{M} -correct set of representations of (L, ρ) .
- If M is countable and there is an M-correct set of representations of (L, ρ) , then there is $\mathcal{N} \succ \mathcal{M}$ such that $Ltr(\mathcal{N}/\mathcal{M}) \cong (L, \rho).$