Applications of Machine Learning in the analysis of breast cancer

By Ultan Kearns & Liam Millar

Introduction

- When starting this project we investigated many datasets finally settling on https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
- This dataset is from the University of Wisconsin a well-known institute of higher learning in the USA
- The main objective of our project was to use Machine Learning models to accurately predict the presence / absence of breast cancer based on features in the data
- We used a combination of both Supervised and Unsupervised learning in this project to train our models
- Cleaning and analyzing the data was our first task
- We noticed diagnosis had M for malignant and B for benign we decided to replace these with 1 and 0 respectively
- Did this so that we could perform numerical operations easier
- We started by showing a heatmap of our correlations as you can see on the right hand side
- Did this to analyze relations in the data and to see which features were highly correlated with our diagnosis
- We also played around with the training / test set ratios and finally settled on a 70 / 30 split

		man, pecial m	MILTERY MIRTH	rische	Mary Area	Aut. Soctions	PER EMPETERS	Man, circle (5)	NW.CHORLEGES		met, rocket, merelier		10000,00	NUMBER 16	ANN, TE	SENSENHAL DE	OWNERSON, N		36 CROHLMISS,30	Specify St. 1	RAISHNINE STATE	
Dispose	1,00000	0.734900	6.49000 0	14979	0.714040	0.329701	0.00409	64070	8.775596	1,9600	-0.99500	8.900×05	6.01705	1.0100	0.50400	4.50794	3,0404	1 129	OR. CHAPTE	940341	0.00000	1,75000
Mon, Salice	0.737921	1,000000	0.366901 1	MALE	1760401	4 Names	61903	1 84576	1.0000	11000	-0.00360	1 607	4 96000	13000	274900	4.30(80)	0,0194	0.100	(34(f)) (m)	000104	4.0000	137793
Most, Sortice	6.00(0)	0.200407	100000 (Hes	0.54(10)	444901	622994	6,307686	13040	143516	-912554	10076	0.00059	6290x	425979	410'00	1965	0.40	GA: 0.15000I	00190	68296	17092
Man / Verbooks	1.5650	2:92150	0.99ES	. 000000	1800	£20000	630755	0.700219	11075	1 107/00	0.25090	177000	4.99092	17045	it factors	4 10109	1,0425	6.99	P1 #31000F	40040	1,0000	8.97554
Mars, Area	£7940m	(1004))	0.040100 0	MONTH.	1 (0000)	0.07400	- comm	60((4)	130000	1 10000	425841	1790	4.9000	672746	HHDS	419010	1260	8490	PE CMIN	406432	4 0000	1000
New, Incohes	1.100%	0.105741	444011 1	264's	0.174003	1.00000	0.640624	0.004716	6.54De	11000	0.001507	0.00000	13969	4,36741	9.25+mm	11000	.0 0000	6296	00000	9.221679	1,27mm	62mox
den Conseitem	119401	HHOI-	6399H (HOME	+5900	0.040001	1 00000	68744	1,0000	15000	#3660s	1500	60000w	6 (6400)	94009	+120H	47790	1 199	* 10000	03(144)	14040	£3400
Man, Committe	66070	6.665%	£38566 (1606	0479346	8,000710	65744	4 3400000	17040	6.4055	936573	104704	1.0408	1500	1400047	4 10000	14709	1 100	661540	0.00+125	14000	E-6000/K
ner, forener, Perm	£.770000	144600	47mm (MARCH	15000	2 04596	0.0000	610 MI	10000	14050	0.177900	870997	18005	8.79904	a retain	114598	0.45400		1010H	019790	1,7950	9.000000
Mon, Synmetry	£36000	0.101001	04001111	AFTER	0.150090	11000	£ 500 mm	6.40333	1.40%	-	0.075642	830060	11004	13454	+284CE	0 xx0xxx	0.0047	0.000	61 (1967)	440600	(100	0.00000
or Presid Discourse	41900	43000	0000	2900	.42989	1000	0.00004	4.8671	6.07000	1000	1,00000	0.00000	+ 3647	88802	Actions	4 34600	9 6627	140	EE 237000	427000	1000	43400
Subsa, M	FREIGH	64MCET	6271783 0	50,000	0.156430	6 909403	4.55will	6467394	9 700NT	a triberal	130000	1390000	6.2596	1900	934070	114700	42300	1 157	ET 271114	1223(4)	670906	£1690
Stellare, SE	0.613000	4 66500	0.00k2m	HERE	41001	FOREST	0.078834	0.09400	1000	1 1000	1000	1.7384A	1 00000	1,7000	9-120-020	0.79000	1,7611	400	0.000	Accept	10000	A STRUCK
Person, N	0.514130	1 (44)	039884 I	NOVE	0.027146	438790	6 66650	8,61400	\$79806	13800	9.09852	a battan	6.788k)	1 20000	NUMBER	413969	3 4613	1 1385	6A E100731	0.00004	630508	6750071
Ave. St.	13603	0.7880E	0219011 0	1900	000000	12290	0.0000	200047	8.74DK	12000	-0.079199	194720	0.0000	16397	1 000000	1.00000	9,200	130	0.665717	0.000339	8 1997	17090
Senten, S.	4.0000	4.30 (907	445500 1	BICK	0.0000	0.331am	0.02819	2 9794	0.00000	1 3000	13860	816729	1200	4 (0.00)	1000	1.00000	5 5000	627	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.010275	13000	4 2000
timestres, M	1,79490	92196	9.9609	PACEN	0.236477	9.80901	0.75898	5230	1000	4,0000	10101	1000	6,04000	14079	9.50100	0.0000	1,0000	170	H 179911	140011	6 89477	17000
Comarky, NI	621808	0.70000	0.00000	980	0.016073	921460	5.53816	20596	13607	1,0000	0.98800	110091	12/760	8.56mg	9300M	12000	37516	1.000	4.7716.01	0.30962	1760	6.760 pt
Court, Posts, 26	8.89875	13401	0.12800 1	1798	0.398799	0.0480	04000	2644	0.550000	120/06	0.07900	200M	1.23034	Keens	-	12000	97090	100	10000	0.046702	1643	13800
Spready, 55	1.0307	0.027600	441700 -	10000	0.004400	12397	0,300438	1.99(35)	A cores	1000	17760	1,01145	t-come	12000	4 20070	3.45025	2 6000	0.000	6346773	1.000001	1 1007	4.1004
alst (Newwood, M.	1.00007	44000	6427655 (14490	-0-000000	12700	0.0040	0.40030	\$.340mm	1,7900	0.000(1)	KIDSSÓ	12044	1,30'00	9.19070	43604	0.00077	0.766	00 110400	COMM	1	-448079
MINISTRAL	6.77900	nation	0.1040	of those	0.079752	921069	Sizerer.	2 (000)	1.0000	1,1000	42601	1000	6.88400	a tarre	2.70mm	1200	927869	1781	11 110000	(0.10384)	4 6807	1.646000
Marri, Society	0.6560	11010	C01004 I	12980	0.290000	1000	6,00047	0.30000	1290W	1,6546	4.55000	1:10055	14549	3.9502	12059	41209	2770	+90	100000	4386N	42047	4.30mm
Brint Semester	a rices	1,94400	1969	19500	11206434	0.33580	0.597687	0.701	8.896/90	1,77504	0.555150	107706	6.F30H	1500	a mainte	4.5000	4,050	1 100	68 0.071790	-0.009461	1000	8.96579
Street, Ann	4.736600	6.642500	0.335546 1	1644 (DI	OMINI	0.30464	45000	14710	6.61004	3.0500	July July 1	3275045	4.8800	476265	0.00360	4 Hell	10409	1 110	64 635686	-0.00044)	41990	£36904
Maral, Streetholese	6.4000	11010	0-0418E - 1	MOS	0.136477	HARM	6.00401	1 4001	1.000	1.6947	0.00000	11499	6 9300	1905	0.94000	4,7976	11992	1 100	00 0.10001	0.0004451	6 125.00	12300
not, Corporate	£1000001	14000	4294477 (4 ties	0.813300	4.400E	64004	674800	1,6957	1.0539	11000	130004	43875	63901	9.50mm	40000	1000	140	75. 0429401	HITMIN	627040	14000
West, Concepts	0.044007	640004	938HET 1	- MARCIN	0.543580	8.44525	coverty	0.00000	67900	1.0004	0.00000	140770	43655	1 40000	147590	41405#	cours	0.000	00 0143000	046500	1997	1576765
est, Compan, Forms	43000	A THAT'S	630040 1	. Nacri	0.793066	- AMACIE	1000	6 815 125	8 800000	6,4980	1,000	2100mi	4 0000	1.10054	H1768	41000	0.40006	0.600	10 001004	0.007589	6.00mm	6.76006
Mark Scientis	1000	E Mines	CMINI I	- Chicago	1 the ext	A ACRES	0.00001	1 44711	Lenes	10000	3.50000	114000	4.8876	A MOVE	à mene	A SHARE	4.7766	110	W 0.000	0.45000	6.45540	17900

Models Used

Linear Regression - to predict and analyze the correlation of 2 features in our dataset

K Means - This is an unsupervised learning technique creating clusters of data based on a centroid

KNN - This is a clustering technique which analyzes data nearest to other data to predict a diagnosis

Naïve Bayes - This is a technique used to predict cancer by taking features of our dataset and using the same weight for each -> Assumes data has same effect on output hence Naïve

Decision Trees - Which were used to predict diagnosis by making a tree of features in our dataset which will either lead to positive or negative diagnosis based on their values

Random Forest - Extended the decision trees to help remove the over fitting of the individual decision trees by taking the tallied vote of different data/decision tree configurations

PCA (Principle Component Analysis) - unsupervised dimensionality-reduction which reduced features in our dataset by removing similar features which were highly correlated, while still retaining as much pertinent information as possible.

Analysis of our models

Linear Regression was used to analyze the strength of the relationship between certain features and our Diagnosis - Also used Cramérs V

Had good results we could see which features were positively correlated with a diagnosis value and the strength of this correlation

K Means - Performed fairly well with 86% accuracy

KNN - Performed better than KNN with 91% accuracy

Gaussian Naïve Bayes - without smoothing or scaling had 90% accuracy on test set

Gaussian Naïve Bayes with scaling had around a 91% accuracy rate - not much improvement

Most of our **Decision Tree** and **Random Forest** models had a had high degree of accuracy. However with our smaller dataset we must consider the possibility of **over fitting**.

Entropy Forest had 90% accuracy

PCA Gini Tree had an accuracy of 94%

PCA Random Forest had the best accuracy of all our models at 97%

Final Results Table And Conclusion

- Here we can see our **final results** table
- Notice which models performed correctly and which didn't
- Trial and error process it took time finding the right ratio of the training / test sets
- Also it took time to analyze the models and determine how we could get the best performance from them
- From our study we determined PCA Random Forest had the best accuracy when predicting the diagnosis
- We also learned the limitations of machine learning in healthcare should be used as an assistant not an expert as even the best trained models can yield false predictions
- We learned the importance of data cleaning and analysis
- We learned which models worked on our dataset and which didn't it was a fairly small set of only **570 values**!

A. Accuracy of Models

Method Description	Accuracy
PCA Gini Random Forest:	0.98%
cross validation gini rdm forest:	0.96%
Standard trained gini rdm forest:	0.95%
cross validation ent random forest:	0.95%
PCA Gini Tree:	0.94%
Standard trained ent random forest:	0.94%
Standard trained gini decision tree:	0.94%
cross validation ent decision tree:	0.92%
Gaussian Naive Bayes-with scaling:	0.93%
Gaussian Naive Bayes-without scaling:	0.92%
Standard trained ent decision tree:	0.91%
cross validation gini decision tree:	0.91%
K Neighbour:	0.90%
K Means:	0.86%
Gaussian Naive Bayes-with smoothing:	0.79%