completando a prova de (i). Como $\|(AB)x\| = \|A(Bx)\| \le \|A\| \|Bx\| \le \|A\| \|B\| \|x\|$, (ii) está provado. Para mostrar (iii), afirmamos que

$$||x|| = \sup_{\|y\|=1} |\langle x, y \rangle|.$$

Para provar nossa afirmação, notamos que $|\langle x,y\rangle| \leq \|x\| \ \|y\| \leq \|x\|$, se $\|y\| = 1$. A desigualdade contrária é obtida ao tomarmos $y = x/\|x\|$.

Aplicando esse resultado, obtemos

$$||A|| = \sup_{\|x\|=1} ||Ax|| = \sup_{\|x\|=1=\|y\|} |\langle Ax, y \rangle|.$$

8.9 Exercícios

- 1. Seja $\|\cdot\|$ uma norma no espaço E. Mostre que $\|0\|=0$.
- 2. Seja E um espaço euclidiano complexo. Dê um exemplo mostrando que a validade do Teorema de Pitágoras não implica que $x \perp y$.
- 3. Seja E um espaço com o produto interno $\langle \cdot, \cdot \rangle$. Demonstre a desigualdade de Cauchy-Schwarz da seguinte maneira: para $x,y\in E$, desenvolva a expressão $0 \leq \langle x-\alpha ty, x-\alpha ty \rangle$. Escolhendo $\alpha = \langle x,y \rangle$, obtenha um trinômio do segundo grau com coeficientes reais. Analise esse trinômio e obtenha a desigualdade de Cauchy-Schwarz.
- 4. Seja $C([a,b],\mathbb{K})$ o espaço das funções contínuas $f:[a,b]\to\mathbb{K}$. Mostre que

$$\langle f, g \rangle := \int_{a}^{b} f(t) \overline{g(t)} dt$$

define um produto interno nesse espaço.

- 5. Defina $\langle u, v \rangle = 2x_1x_2 x_1y_2 x_2y_1 + 2y_1y_2$, para $u = (x_1, y_1) \in \mathbb{R}^2$ e $v = (x_2, y_2) \in \mathbb{R}^2$. Mostre que esse é um produto interno em \mathbb{R}^2 .
- 6. Seja E um espaço com produto interno e $A: X \to E$ um isomorfismo entre o espaço vetorial X e E. Para $x,y \in X$ defina $\langle x,y \rangle := \langle Ax,Ay \rangle$. Mostre que está assim definido um produto interno em X. (Compare esse Exercício com a Observação 8.8.)

- 7. Seja E um espaço normado que satisfaz a identidade do paralelogramo. Definindo $\langle \cdot, \cdot \rangle$: $E \times E \to \mathbb{K}$ por meio da identidade de polarização conveniente, mostre que $\langle \cdot, \cdot \rangle$ é um produto interno em E e que a norma de Eé gerada por esse produto interno.
- 8. Considere agora o espaço $C([-\pi,\pi],\mathbb{R})$ com o produto interno definido no Exercício 4. Mostre que o conjunto

$$X := \{1, \operatorname{sen} t, \cos t, \operatorname{sen} 2t, \cos 2t, \ldots\}$$

é um conjunto ortogonal.

- 9. Considere então o espaço vetorial $C([-1,1],\mathbb{R})$ com o produto interno definido no Exercício 4. Seja $\mathcal{P}\subset C([-1,1],\mathbb{R})$ o subespaço formado por todas as funções pares e $\mathcal{I}\subset C([-1,1],\mathbb{R})$ o subespaço formado por todas as funções impares. Mostre que $\mathcal{I} = \mathcal{P}^{\perp}$.
- 10. Seja E um espaço com produto interno. Interprete geometricamente a desigualdade de Cauchy-Schwarz em termos de normas dos vetores não-nulos $y \in proj_x y$.
- 11. Seja $\mathbb{R}[t]$ o espaço vetorial de todos os polinômios com coeficientes em \mathbb{R} . Nesse espaço, considere o produto interno definido em $C([-1,1],\mathbb{R})$. $X = \{1, t, t^2, \ldots\}$ Verifique que

é uma base desse espaço. Encontre os 4 primeiros termos da base $\{p_1, p_2, \ldots\}$ obtida ao se aplicar o processo de ortogonalização de Gram-Schmidt à base X. Os polinômios $p_n(t)$ são os polinômios de Legendre, que são úteis no estudo de equações diferenciais.

- 12. No processo de Gram-Schmidt, passe de uma base arbitrária $\{u_1,\ldots,u_n\}$ do espaço euclidiano E para uma base ortogonal $\{x_1,\ldots,x_n\}$ sem normalizar os vetores ortogonais em cada passo do processo. Verifique que $0 \le \|x_i\| \le$ $\|u_i\|$ para todo $i=1,\ldots,n$. Prove que $\|x_i\|=0$ implica que u_i está no espaço gerado por u_1,\ldots,u_{i-1} , enquanto $\|x_i\|=\|u_i\|$ significa que u_i é ortogonal a cada vetor x_j , para $j=1,\ldots,i-1$.
- 13. Sejam E um espaço com produto interno e $\{w_1, \ldots, w_m\}$ uma base ortonormal do subespaço W. Mostre que, para todo $v \in E$, vale a

desigualdade de Bessel

$$\sum_{j=1}^{m} |\langle v, w_j \rangle|^2 \le ||v||^2.$$

14. Sejam W_1, W_2 subespaços do espaço com produto interno E. Mostre que

$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$$
 e $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$.

- 15. Seja ℓ_0 o espaço de todas as seqüências (x_i) com $x_i = 0$ exceto talvez para um número finito de índices.
 - (a) Verifique que $\{e_1, \ldots, e_n, \ldots\}$ é uma base de ℓ_0 , em que e_i é a sequência cujo i-ésimo elemento é igual a 1, os restantes sendo todos nulos. Dado $x \in \ell_0$, temos que existe $m = m(x) \in \mathbb{N}$ tal que $x = \alpha_1 e_1 + \ldots + \alpha_m e_m$.
 - (b) Defina $\langle e_i, e_j \rangle = \delta_{ij}$, com $\delta_{ij} = 0$, se $i \neq j$ e $\delta_{ii} = 0$. Estenda linearmente para os elementos de ℓ_0 e verifique que está, assim, definido um produto interno em ℓ_0 .
 - (c) Considere $f: \ell_0 \to \mathbb{K}$ definido por

$$f(x) = f(\alpha_1 e_1 + \ldots + \alpha_m e_m) = \alpha_1 + \frac{\alpha_2}{2} + \ldots + \frac{\alpha_m}{m}.$$

Mostre que não existe $v \in \ell_0$ tal que $f(x) = \langle x, v \rangle$ para todo $x \in \ell_0$. (Esse contra-exemplo é uma adaptação daquele apresentado em [1].)

- 16. Prove o Corolário 8.23. O que acontece se E for um espaço complexo?
- 17. Consideremos o espaço ℓ_0 , introduzido no Exercício 15. Se $x \in \ell_0$, então $x = \alpha_1 e_1 + \ldots + \alpha_m e_m$ para únicos escalares $\alpha_1, \ldots, \alpha_m$, em que $m = m(x) \in \mathbb{N}$ depende de x. Defina $T : \ell_0 \to \ell_0$ por

$$T(\alpha_1e_1+\ldots+\alpha_me_m)=(\alpha_1+\ldots+\alpha_m)e_1.$$

Mostre que T não possui adjunta. (Exemplo presente em [1].)

18. Considere o espaço de polinômios $\mathbb{R}[t]$ como no Exercício 11. Seja $D: \mathbb{R}[t] \to \mathbb{R}[t]$ definido por Dp = p' (derivação em t). Mostre que não existe um operador $D^*: \mathbb{K}[t] \to \mathbb{K}[t]$ tal que $\langle Dp, q \rangle = \langle p, D^*q \rangle$.

19. Seja E um espaço euclidiano e $\mathcal{B} = \{v_1, \dots, v_n\}$ uma base qualquer desse espaço. Defina $g_{ij} = \langle v_i, v_j \rangle$. Se $u = \alpha_1 v_1 + \ldots + \alpha_n v_n$ e $v = \beta_1 v_1 + \ldots + \alpha_n v_n$ $\beta_n v_n$, mostre que vale

$$\langle u, v \rangle = \sum_{i,j=1}^{n} g_{ij} \alpha_i \overline{\beta_j}.$$
 (8.10)

Verifique então que a matriz $G = (g_{ij})$ é hermitiana e positiva definida, isto é,

$$[u]_{\mathcal{B}}^{\mathbf{t}}G[\bar{u}]_{\mathcal{B}} > 0 \quad \forall \ 0 \neq u \in E.$$

Reciprocamente, mostre que, se G for uma matriz hermitiana e positiva definida, então (8.10) define um produto interno⁶ em E. A matriz G é a matriz de Gram dos vetores v_1, \ldots, v_n . Também se denota $G = G(v_1, \ldots, v_n)$.

20. Sejam $\mathcal{B} = \{v_1, \ldots, v_n\}$ e $\mathcal{C} = \{w_1, \ldots, w_m\}$ bases ortonormais dos espaços euclidianos E e F, respectivamente. Seja $T:E\to F$ uma aplicação linear. Mostre que, para $i \in \{1, \ldots, m\}$ e $j \in \{1, \ldots, n\}$,

$$T_{\mathcal{B}}^{\mathcal{C}} = A = (a_{ij}), \quad \text{em que} \quad a_{ij} = \langle w_i, T(v_j) \rangle.$$

Conclua que $(T^*)_{\mathcal{C}}^{\mathcal{B}} = B = (b_{ij})$, em que $b_{ij} = \overline{a_{ji}}$, generalizando assim o Exemplo 8.27.

21. Sejam E, F espaços euclidianos. Dadas as aplicações $S, T \in \mathcal{L}(E, F)$, defina

$$\langle S, T \rangle = \operatorname{tr}(ST^*).$$

Mostre que assim está definido um produto interno em $\mathcal{L}(E, F)$. Se $A = (a_{ij})$ e $B=(b_{ij})$ forem, respectivamente, as matrizes de S e T com relação a bases ortonormais de E e F, mostre que

$$\langle A, B \rangle = \sum_{i,j} a_{ij} \overline{b_{ij}}.$$

22. Considere o espaço $C([0,\pi],\mathbb{R})$ com o produto interno definido no Exercício 4 e seu subespaço $\mathbb{R}_2[t]$. Tome o funcional linear $\ell:\mathbb{R}_2[t] o \mathbb{R}$ dado por

$$\ell(p) = \langle p(t), \operatorname{sen} t \rangle.$$

⁶Veja também os Exercícios 23 e 24 do Capítulo 9 para a relação entre produtos internos e matrizes.

Ache $q \in \mathbb{R}_2[t]$ tal que

$$\ell(p) = \langle p(t), q(t) \rangle \quad \forall \ p \in \mathbb{R}_2[t].$$

23. Considere o espaço $C([-\pi, \pi], \mathbb{R})$ com o produto interno definido no Exercício 4 e seu subespaço $\mathbb{R}_5[t]$. Ache $p \in \mathbb{R}_5[t]$ de modo que

$$\int_{\pi}^{\pi} |\sin t - p(t)|^2 dt$$

assuma o menor valor possível. Compare as aproximações de sen t obtidas por meio desse polinômio e da série de Maclaurin de sen t.

24. Ache $a, b, c \in \mathbb{R}$ de forma a minimizar o valor da integral

$$\int_{-1}^{1} |x^3 - ax^2 - bx - c|^2 dx.$$

25. Seja $T: E \to E$ um operador definido no espaço euclidiano real E. Mostre que

$$T_{\mathbb{C}}^*(u+iv) = T^*u + iT^*v$$

- em particular, que a complexificação de um operador normal (respectivamente, auto-adjunto e antiauto-adjunto) é um operador normal (respectivamente, auto-adjunto e antiauto-adjunto).
- 26. Considere a matriz $P = (v_1 \ v_2 \ \dots \ v_n)$, cujas colunas são os vetores $\{v_1, v_2, \dots, v_n\}$ de uma base ortonormal do \mathbb{K}^n . Mostre que

$$PP^* = P^*P = I.$$

27. Em \mathbb{R}^3 verifique que

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = 2x_1y_1 + 3x_2y_2 + 4x_3y_3$$

define um produto interno. Encontre a adjunta da aplicação linear T dada por

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

com relação a esse produto interno.

- 28. Seja $T:X\to X$ um operador sobre o espaço euclidiano X. Suponha que $Tv = \lambda v e T^*w = \mu w$, com $\lambda \neq \bar{\mu}$. Mostre que $\langle v, w \rangle = 0$.
- 29. Sejam E um espaço euclidiano e $T:E\to E$ um operador. Suponha que $F \subset E$ seja um subespaço invariante por T e T^* . Mostre que $(T|_F)^* = T^*|_F$. Assim, a restrição de um operador normal (respectivamente, auto-adjunto ou antiauto-adjunto) a um subespaço invariante tanto por T como por T^* é normal (respectivamente, auto-adjunto ou antiauto-adjunto).
- 30. Sejam E um espaço euclidiano e $\pi:E\to E$ uma projeção. Mostre que π é uma projeção ortogonal (isto é, $\ker \pi = (\operatorname{im} \pi)^{\perp}$) se, e somente se, $\langle \pi x, x - \pi x \rangle = 0$ para todo $x \in E$. Mostre que, se uma projeção $\pi : E \to E$ satisfizer $||\pi x|| \le ||x||$ para todo $x \in E$, então π é ortogonal.
- 31. Sejam E um espaço euclidiano e $\pi:E\to E$ uma projeção. Mostre que as seguintes afirmações são equivalentes:
 - (a) π é normal;
 - (b) π é auto-adjunta;
 - (c) π é uma projeção ortogonal sobre sua imagem.
- 32. Sejam $S,T:E\to E$ operadores auto-adjuntos no espaço euclidiano E. Mostre que ST é auto-adjunto se, e somente se, ST = TS.
- 33. Sejam E,F espaços euclidianos e $T:E\to F$ uma aplicação linear. Mostre que
 - (a) T é injetora se, e somente se, T^* for sobrejetora;
 - (b) T é sobrejetora se, e somente se, T^* for injetora.
- 34. Sejam E, F espaços euclidianos e $T: E \to F$ uma aplicação linear. Mostre que $T^*T: E \to E$ e $TT^*: F \to F$ têm o mesmo posto de T (e de T^*).
- 35. Seja E um espaço com produto interno e $\alpha, \beta \in E$ vetores fixos. Mostre que $Tx = \langle x, \alpha \rangle \beta$ define uma aplicação linear em E. Mostre que T^* existe e
- 36. Um isomorfismo dos espaços com produto interno $E \in F$ é uma bijeção linear $T: E \to F$ que satisfaz, adicionalmente, $\langle Tx, Ty \rangle = \langle x, y \rangle$, para todos $x, y \in E$ (isto é, T é uma isometria).

- Seja $T: E \to F$ uma aplicação linear entre os espaços euclidianos E e F, com dim $E = \dim F$. Mostre que as seguintes afirmações são equivalentes:
 - (a) T preserva o produto interno;
 - (b) T é um isomorfismo (de espaços com produto interno);
 - (c) T leva toda base ortonormal de E em base ortonormal de F;
- (d) T leva alguma base ortonormal de E em uma base ortonormal de F.
- Sejam \mathcal{B} e \mathcal{C} bases ortonormais de E e F, respectivamente. Mostre também que $T_{\mathcal{B}}^{\mathcal{C}}$ é uma matriz ortogonal (unitária) se, e somente se, T for uma isometria.
- 37. Sejam E, F espaços euclidianos e $f: E \to F$ uma aplicação que preserva produto interno. Mostre que f é linear.
- 38. Seja E um espaço euclidiano complexo. Dê exemplo de uma isometria $M: E \to E$, com M(0) = 0, que não é linear.
- 39. Seja E um espaço com produto interno. Dê exemplo de uma aplicação $M: E \to E$ tal que $M^*M = I$, mas $MM^* \neq I$.
- 40. Sejam E, F espaços euclidianos e $M: E \to F$ uma isometria linear. Dê uma interpretação para MM^* .
- 41. Sejam $T: E \to E$ um operador e m o polinômio mínimo de T. Mostre que o polinômio mínimo de T^* é \overline{m} . Se r for o polinômio interpolador de T com respeito a uma função f, conclua que o polinômio interpolador de T^* com respeito a \overline{f} é \overline{r} .
- 42. Seja $T: E \to E$ um operador linear no espaço euclidiano E. Mostre que nem sempre existe um polinômio p tal que $T^* = p(T)$.
- 43. Seja $A \in \mathbb{M}_{n \times n}(\mathbb{K})$. Suponha que $A^* = -A$. Mostre que e^A é ortogonal (ou unitária).
- 44. Sejam E,F dois espaços com produto interno. Considere a soma direta $E\oplus F$ definida no Exercício 37 do Capítulo 1. Mostre que $E\oplus F$ é um espaço com produto interno se definirmos

$$\langle (x_1, y_1), (x_2, y_2) \rangle = \langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle.$$

Mostre também que o gráfico de uma aplicação linear $T:E\to F$ é um subespaço de $E\oplus F$.

- 45. Considere o espaço com produto interno $E\oplus F$, tal qual no Exercício 44.
 - (a) Defina $U: E \oplus F \to F \oplus E$ por U(x,y) = (y,-x). Mostre que U^* existe e obtenha sua expressão. Obtenha também U^*U e UU^* .
 - (b) Se $T: E \to E$ possuir adjunta $T^*: E \to E$, qual é a relação entre os gráficos de T e T^* ?
- 46. Considere $z=(z_1,\ldots,z_n)\in\mathbb{K}^n$ e defina

$$||z||_{\infty} = \max_{1 \le i \le n} |z_i|,$$

$$||z||_{\text{sum}} = ||z_1|| + \ldots + ||z_n||$$

$$||z|| = \sqrt{z_1 \bar{z}_1 + \ldots + z_n \bar{z}_n}.$$

Mostre que $\|\cdot\|_{\infty}$, $\|\cdot\|_{\text{sum}}$ e $\|\cdot\|$ são normas em \mathbb{K}^n . Mostre também que $\|z\|_{\infty} \leq \|z\| \leq \|z\|_{\text{sum}} \leq n\|z\|_{\infty}$.

- 47. Seja $A \in \mathbb{M}_{n \times n}(\mathbb{K})$. Mostre que $||A|| = ||A^*||$ e $||A^*A|| = ||A||^2$.
- 48. Seja $A \in \mathbb{M}_{n \times n}(\mathbb{K})$. Se A for normal, mostre que $||A^2|| = ||A||^2$.
- 49. Considere que $E=\mathbb{K}^n$ e resolva os Exercícios 7 e 8 do Apêndice F.
- 50. Aceite o fato que todo espaço vetorial possui uma base (um resultado que é demonstrado utilizando-se o lema de Zorn). Mostre então que todo espaço vetorial possui um produto interno e, portanto, uma norma.

Definição 8.51 Sejam v_1, \ldots, v_r vetores em \mathbb{K}^n . O conjunto

1 Sejam
$$v_1, \ldots, v_r$$

$$x_1v_1 + \ldots + x_rv_r \quad com \quad 0 \le x_i \le 1 \quad \forall i = 1, \ldots, r$$

é o paralelepípedo $\mathcal{P} = \mathcal{P}(v_1, \ldots, v_r)$ gerado por $\{v_1, \ldots, v_r\}$. Definimos indutivamente o volume (r-dimensional) do paralelepípedo por $\operatorname{vol}(\mathcal{P}(v_1)) = \|v_1\|$ e, supondo definido o volume do paralelepípedo gerado por k-1 vetores, $\|v_1\|$ e, supondo definido o volume do paralelepípedo gerado por $\|h\|$ é a altura definimos $\operatorname{vol}(\mathcal{P}(v_1, \ldots, v_k)) = \|h\| \operatorname{vol}(\mathcal{P}(v_2, \ldots, v_k))$, em que $\|h\|$ é a altura definimos $\operatorname{vol}(\mathcal{P}(v_1, \ldots, v_k)) = \|h\| \operatorname{vol}(\mathcal{P}(v_2, \ldots, v_k))$, sobre o espaço gerado por do paralelepípedo, isto é, se w for a projeção de v_1 sobre o espaço gerado $\{v_2, \ldots, v_k\}$, então $h = v_1 - w$.

51. Dado um conjunto arbitrário $\{v_1,\ldots,v_k\}$ do espaço euclidiano E de dimensão n, considere a matriz A, $k \times n$, cujas linhas são as coordenadas de v_i com relação a uma base ortogonal \mathcal{B} de E:

$$A = \begin{pmatrix} [v_1]_{\mathcal{B}}^{\mathsf{t}} \\ \vdots \\ [v_k]_{\mathcal{B}}^{\mathsf{t}} \end{pmatrix}.$$

- (a) Mostre que AA^* é a matriz de Gram $G(v_1, \ldots, v_k) = (\langle v_i, v_i \rangle)$; conclua então que $\det G(v_1,\ldots,v_k)$ é diferente de zero se os vetores v_1, \ldots, v_k forem linearmente independentes e nulo se esses vetores forem linearmente dependentes;
- (b) mostre que

$$\det G(v_1, ..., v_k) = ||h||^2 \det G(v_2, ..., v_k),$$

em que $v_1 = h + w$, sendo h ortogonal ao espaço gerado por v_2, \ldots, v_k ; conclua a desigualdade de Hadamard:

$$0 \le \det G \le ||v_1||^2 \dots ||v_k||^2$$
;

(c) Mostre que

$$[\operatorname{vol}(\mathcal{P}(v_1,\ldots,v_k))]^2 = \det G(v_1,\ldots,v_k).$$

52. Seja $v_1,\ldots,v_n\in\mathbb{K}^n$ vetores linearmente independentes. Conclua que

$$\operatorname{vol}(\mathcal{P}(v_1,\ldots,v_n)) = |D(v_1,\ldots,v_n)|,$$

em que D é a função determinante.

53. Seja $T:\mathbb{K}^n \to \mathbb{K}^n$ um operador linear e \mathcal{P} um paralelepípedo ndimensional em \mathbb{K}^n . Mostre que $T(\mathcal{P})$ é um paralelepípedo e $\operatorname{vol}(T(\mathcal{P})) =$

Observação 8.52 Uma vez estabelecida a relação entre determinantes e volumes, estamos em condições de interpretar o significado geométrico das outras duas

 $^{^{7}}$ O item (b) garante que det $G(v_1, \ldots, v_k) \geq 0$.

operações elementares sobre as linhas de uma matriz A (compare com a Observação 4.4). O produto de uma linha por uma constante positiva c multiplica o volume do paralelepípedo formado pelas linhas de A também por c. (Isso é evidente, se c for um inteiro ou mesmo uma fração.) A substituição de uma linha de A por sua soma com outra linha certamente não altera o determinante de A, pois a altura do paralelepípedo (gerado pelas linhas de A) não é modificada: a projeção do veto altura sobre o espaço gerado pelos demais vetores permanece a mesma. Isto também pode ser visto de outra maneira: se a linha a ser alterada corresponder a um veto vertical (o que podemos obter por uma mudança de base), adicionar a essa uma outr linha de A corresponde a inclinar o paralelepípedo. Pelo Princípio de Cavalieri, volume não se altera.