Отчёт по лабораторной работе №1

Установка ОС Linux

Киньябаева Аиша Иделевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	16

Список иллюстраций

3.1	Выбор ОС	7
3.2	Назначение размера памяти	8
3.3	Создание жесткого диска	8
3.4	Выбор носителя	9
3.5	выбор языка	9
3.6	Регистрация	10
3.7	Обновление пакетов	10
3.8	Установка tmux	11
3.9	Установка dkms	11
3.10	Подключение образа диска	11
3.11	Установка драйверов	12
		12
3.13	Версия ядра Linux	12
3.14	Частота и модель процессора	13
3.15	Объем доступной оперативной памяти	13
3.16	Тип гипервизора и корневой ФС	13
3 17	Последовательность монтирования ФС	1 4

Список таблиц

1 Цель работы

Целью данной работы является установка виртуальной машины, установка ОС Linux, настройка ОС.

2 Задание

Установить виртуальную машину и ОС Linux

3 Выполнение лабораторной работы

Установка виртуальной машины (установка виртуальной машины и ОС были произведены ранее, здесь приведено краткое описание основных действий) (рис. 3.1), (рис. 3.2]), (рис. 3.3)

Рис. 3.1: Выбор ОС

Создать виртуальную машину Укажите объём памяти Укажите объём оперативной памяти (RAM) выделенный данной виртуальной машине. Рекомендуемый объём равен 1024 МБ. 4 МБ 8192 МБ

Рис. 3.2: Назначение размера памяти

Рис. 3.3: Создание жесткого диска

Настройка операционной системы (рис. 3.4), (рис. 3.5), (рис. 3.6)

Рис. 3.4: Выбор носителя

Рис. 3.5: выбор языка

Рис. 3.6: Регистрация

Основные настройки ОС после установки. Обновление всех пакетов из суперпользователя и повышение комфорта работы с помощью установки tmux (рис. 3.7), (рис. 3.8)

```
oot@aikinjyabaeva-VirtualBox:~# apt-get upgrade
Чтение списков пакетов… Готово
Построение дерева зависимостей… Готово
Чтение информации о состоянии… Готово
Расчёт обновлений... Готово
Следующие пакеты устанавливались автоматически и больше не требуются:
libflashrom1 libftdi1-2 libllvm13
Для их удаления используйте «apt autoremove».
Следующие пакеты будут оставлены в неизменном виде:
 gnome-remote-desktop grub-efi-amd64-bin grub-efi-amd64-signed
  language-pack-ru language-pack-ru-base python-apt-common python3-apt
 python3-distupgrade python3-software-properties shim-signed
  software-properties-common software-properties-gtk
 ubuntu-advantage-desktop-daemon ubuntu-release-upgrader-core
 ubuntu-release-upgrader-gtk update-notifier update-notifier-common
 ледующие пакеты будут обновлены:
 base-files firmware-sof-signed fwupd-signed gnome-initial-setup
  language-pack-en language-pack-en-base language-pack-gnome-en
  language-pack-gnome-en-base language-pack-gnome-ru
```

Рис. 3.7: Обновление пакетов

```
Sroot@aikinjyabaeva-VirtualBox:~# sudo apt install tmux mc
Чтение списков пакетов… Готово
Построение дерева зависимостей… Готово
Чтение информации о состоянии… Готово
Уже установлен пакет mc самой новой версии (3:4.8.27-1).
Уже установлен пакет tmux самой новой версии (3.2a-4ubuntu0.2).
Следующие пакеты устанавливались автоматически и больше не требуются:
libflashrom1 libftdi1-2 libllvm13
```

Рис. 3.8: Установка tmux

Установка драйверов для виртуальной машины (dkms) (рис. 3.9)

```
root@aikinjyabaeva-VirtualBox:~# sudo apt install dkms
Чтение списков пакетов… Готово
Построение дерева зависимостей… Готово
Чтение информации о состоянии… Готово
Уже установлен пакет dkms самой новой версии (2.8.7-2ubuntu2.1).
Следующие пакеты устанавливались автоматически и больше не требуются:
libflashrom1 libftdi1-2 libllvm13
Для их удаления используйте «sudo apt autoremove».
```

Рис. 3.9: Установка dkms

Подключение образа диска дополнений гостевой ОС (рис. 3.10])

Рис. 3.10: Подключение образа диска

Установка драйверов (рис. 3.11])

```
root@aikinjyabaeva-VirtualBox:~# /media/VBoxLinuxAdditions.run
Verifying archive integrity... All good.
Uncompressing VirtualBox 6.1.38 Guest Additions for Linux......
VirtualBox Guest Additions installer
Removing installed version 6.1.38 of VirtualBox Guest Additions...
```

Рис. 3.11: Установка драйверов

Пропущенные пункты хода выполнения работы считаются уже проделанными* Далее устанавливаю программное обеспечение для создания документации (pandoc уже установлен) (рис. 3.12])

```
alkinjyabacvadalkinjyabacva-VirtualBox:~$ sudo apt install textive
[sudo] пароль для alkinjyabacva:
Чтение списков вакетов. Готово
Построение дерева зависимостей. Готово
Чтение информации о состоянии. Готово
Спедувиме пакеты установливались автоматически и больше не требуются:
libflashron1 libftdi1-2 libllvn13
Для их удаления используйте *sudo apt ewtoremove*.
будут установлены следующие дополнительные пакеты:
fonts-texgyre tex-gyre texlive-fonts-recommended texlive-latex-base
texlive-latex-recommended tipa
Предлагаемые пакеты:
texlive-latex-recommended-doc texlive-latex-base-doc
texlive-latex-recommended-doc texlive-pstricks tipa-doc
Следувие HOBME важеты будут установлены:
fonts-texgyre tex-gyre texlive texlive-fonts-recommended texlive-latex-base
texlive-latex-recommended tipa
Обновлено в пакетов, установлено 7 новых вакетов, для удаления отмечено в пакето
в, и 28 пакетов не обновлено.
Необходимо скачать 39,9 МВ архивов.
После данной операции объём занятого дискового пространства возрастёт на 107 МВ.
```

Рис. 3.12: Установка TexLive

ДОМАШНЕЕ ЗАДАНИЕ

Изучение работы команды dmesg и нахождение заданных пунктов (рис. 3.13]), (рис. 3.14]), (рис. 3.15]), (рис. 3.16]), (рис. 3.17])

```
root@aikinjyabaeva-VirtualBox:-# dmesg | grep ·i "linux version"
[ 0.000000] Linux version 5.19.0-32-generic (buildd@lcy02-amd64-026) (x86_64-linux-gnu-gcc (Ubuntu 11.3.0-lubuntu1-22.04) 11.3.0, GNU ld (GNU Binutils for Ubuntu) 2.38) #33-22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2 (Ubuntu 5.19.0-32.33-22.04.1-generic 5.19.17)
root@aikinjyabaeva-VirtualBox:-#
```

Рис. 3.13: Версия ядра Linux

```
root@aikinjyabaeva-VirtualBox:~# dmesg | grep -i "mhz processor"
[    0.000008] tsc: Detected 2995.200 MHz processor
root@aikinjyabaeva-VirtualBox:~# dmesg | grep -i "cpu0"
[    0.222047] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i3-1115G4 @ 3.00GHz (family: 0x6, model: 0x8c, stepping: 0x1)
```

Рис. 3.14: Частота и модель процессора

```
[ 8.871958] Memory: 3948628K/4193848K available (18448K kernel code, 4858K rw data, 11288K rodata, 3168K init, 4988K bss, 253568K reserved, 6K cma-reserved)
[ 8.113586] Freeing SMP alternatives namery: 44K
[ 8.223882] x86/mm: Memory block size: 128MB
[ 8.818196] Freeing initrd nemory: 69344K
[ 8.983955] memory nemory6: hash matches
[ 9.998340] Freeing unused decrypted namery: 2036K
[ 0.998340] Freeing unused kernel image (initmen) namery: 3164K
[ 1.807924] Freeing unused kernel image (text/rodata gap) memory: 2036K
[ 1.808972] Freeing unused kernel image (rodata/data gap) memory: 1888K
[ 2.399579] vwwgfx 8080:80:02.0: [drm] Legacy memory limits: VRAM = 131672 kB
FIFO = 2048 kB, surface = 393216 kB
[ 2.399584] vwwgfx 8080:80:02.0: [drm] Maximum display memory size is 131672 kB
```

Рис. 3.15: Объем доступной оперативной памяти

Рис. 3.16: Тип гипервизора и корневой ФС

```
root@aikinjyabaeva-VirtualBox:~# dmesg | grep -i "Mount"
[    0.231083] Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, line ar)
[    0.231089] Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
[    2.678603] EXT4-fs (sda3): mounted filesystem with ordered data mode. Quota mode: none.
[    3.042468] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[    3.042587] systemd[1]: Reached target Mounting snaps.
[    3.050619] systemd[1]: Mounting Huge Pages File System...
[    3.051229] systemd[1]: Mounting POSIX Message Queue File System...
[    3.051229] systemd[1]: Mounting Kernel Debug File System...
[    3.188408] systemd[1]: Mounted Huge Pages File System...
[    3.188041] systemd[1]: Mounted Huge Pages File System...
[    3.188118] systemd[1]: Mounted POSIX Message Queue File System.
[    3.188212] systemd[1]: Mounted Fore Posix Message Queue File System.
[    3.188258] systemd[1]: Mounted Kernel Trace File System.
[    3.188258] systemd[1]: Mounted Kernel Trace File System.
[    3.21204] EXT4-fs (sda3): re-mounted. Quota mode: none.
[    3.212533] systemd[1]: Finished Remount Root and Kernel File Systems.
[    3.2126067] systemd[1]: Mounting FUSE Control File System...
```

Рис. 3.17: Последовательность монтирования ФС

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Учетная запись пользователя содержит информацию, необходимую для опознания пользователя при подключении к системе (сведения для авторизации: логин и пароль)
- 2. Для получения справки по команде используется help
 - Для перемещения по файловой системе используется cd
 - Для просмотра содержимого каталога используется ls
 - Для определения объема каталога используется du
 - Для создания каталога mkdir, для удаления rm, для создания файла touch, для удаления - rm
 - Для задания прав chmod
 - Для просмотра истории команд стрелки вверх/вниз
- 3. Файловая система организация хранения данных в памяти. Примеры: XFS (64-битная, журналируемая), JFS (64-битная, журналируемая), Ext2
- 4. Подмонтированные файловые системы можно посмотреть с помощью команды dmesg | grep -i "mount", которая выводит загруженные данные по ключевому слову

5.	Остановить запущенный процесс можно с помощью комбинации "ctrl+c"
	или же удалить процесс с помощью команды kill

4 Выводы

В ходе данной лабораторной работы были установлены виртуальная машина и OC Linux, проведены обновления и все необходимые загрузки, а также изучены команды для просмотра загрузок.