# ¿Quién debería pagar por la estabilidad de la red eléctrica?

Spoiler: tú, no 😁







**Imperial College** London

### Lower inertia on the road to lower emissions

#### Thermal generators

(nuclear, gas, coal...)











The risk of instability has increased!

#### Inertia stores kinetic energy:

this energy gave us time to contain a sudden generation-demand imbalance

# Frequency stability



Key to keep frequency within safe limits to avoid demand disconnection!

## Cost allocation for stability services

Some 'services' are needed to maintain grid stability, and they have a cost

#### 1. Who should cover this cost?

- Generators?
- Consumers?
- Only a subset of the former?
- 2. How much should each market participant pay?



## **Economics of stability**

Ancillary services
('insurance to prevent blackouts')

Described by differential equations

(timescale of sub-seconds)

Mapping the stability boundary

Economic optimization

Based on algebraic equations

(timescale of min/hours)

Goal:
Achieve minimum cost while keeping system stability

## First, why worry about who pays?

- Currently costs are socialized in most countries
- Until recently, irrelevant who paid (costs were small due to high inertia)

Goal of moving towards a 'causer pays' framework:

To create incentives to 'do less harm' to the grid

(in order to reduce the cost of frequency services for consumers)

## Who causes the need for frequency services?

Large units do: a low-inertia system would do fine if all units were small (there would be no large, sudden power imbalances)



**Impact of inertia** 

under a large contingency



Impact of contingency size

in a low-inertia system

# How to split the cost?

# 'Airport problem'





### Benefits of the cost allocation

- To create investment signals
  - Large units would <u>internalize their system-integration cost</u> (e.g., nuclear, offshore wind, HVDC)
  - > Costs would still trickle down to consumers, but appropriate economic signals for generation would be in place

- To incentivize flexibility
  - Large units can reduce the cost they are allocated by <u>reducing</u> <u>power output/demand</u>

### What's next in research?

### Challenges

- Decision making under uncertainty
- Market design for decarbonized grids
- Planning of multi-energy
   Systems
- **Stability** of powerelectronics based grids
- Resilience of power grids



#### Tools

- Optimization
- Artificial
   Intelligence (AI)
- Physics-based modelling
- Economic theory