Quadratic Functions

November 23, 2016

Quadratic Functions

When $a \neq 0$, quadratic quation $ax^2 + bx + c = 0$ has two solutions and the roots are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. $y = ax^2 + bx + c$ $= a\left(x^2 + 2 \times \frac{b}{2a}x + \frac{c}{a}\right)$ $= a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$ Vertex of the parabola, y = f(x) is $\left(-\frac{b}{2a}, c - \frac{b^2}{4a}\right)$.

$$y = ax^{2} + bx + c$$

$$= a(x^{2} + 2 \times \frac{b}{2a}x + \frac{c}{a})$$

$$= a(x + \frac{b}{2a})^{2} - \frac{b^{2}}{4a} + c$$

$d = b^2 - 4ac$	comment about roots
d > 0	roots are real and distinct
d = 0	roots are real and same
d < 0	roots are complex

Figure 1: Quadretic Functions

$\mathbf{2}$ Conclusion

Congratulations!!! You are now a $\ensuremath{\mathbb{L}} \ensuremath{\mathsf{TEX}}$ user.