DM 18. Un corrigé

Problème 1 : Endomorphimes u tels que $u^2 = ku$.

On posera $e = Id_E$.

```
1°) Soit u \in A_k \cap GL(E). Alors u = u^2u^{-1} = kuu^{-1} = ke, donc A_k \cap GL(E) \subset \{ke\}. Réciproquement, lorsque k \neq 0, (ke)^2 = k.(ke) et (ke).(\frac{1}{k}e) = e = (\frac{1}{k}e)(ke), donc ke \in A_k \cap GL(E).
```

Cependant, lorsque k = 0, $ke = 0 \notin GL(E)$, sauf dans le cas particulier où $E = \{0\}$. En conclusion, lorsque $k \neq 0$ ou $E = \{0\}$, $A_k \cap GL(E) = \{ke\}$ et lorsque k = 0 et $E \neq \{0\}$, $A_k \cap GL(E) = \emptyset$.

2.a) Soit
$$x \in Im(u)$$
. Il existe $y \in E$ tel que $x = u(y)$. Ainsi, $u(x) = u^2(y) = ku(y) = kx$, donc $u(x) = kx$.

2.b)

 \diamond On suppose que $k \neq 0$.

Soit $x \in Im(u) \cap Ker(u)$. D'après b, u(x) = kx, or u(x) = 0 et $k \neq 0$, donc x = 0. Ainsi $Im(u) \cap Ker(u) = \{0\}$

Ainsi,
$$Im(u) \cap Ker(u) = \{0\}$$
.
Soit $x \in E$. $x = (x - \frac{1}{k}u(x)) + \frac{1}{k}u(x)$, et $u(x - \frac{1}{k}u(x)) = 0$, donc $x \in Ker(u) \oplus Im(u)$.
Ainsi, $E = Ker(u) \oplus Im(u)$.

- \diamond On suppose que k=0. Alors $u^2=0$, donc $Im(u)\subset Ker(u)$.
- **3.a)** Supposons que uv + vu = 0. Ainsi, uv = -vu, donc $(uv)u = -vu^2 = -kvu$ et $u(vu) = -u^2v = -kuv$. Ainsi,

kvu = kuv, or $k \neq 0$, donc uv = vu = -vu. Ainsi uv = vu = 0.

3.b)

- $\diamond u + v \in A_k \iff (u + v)^2 = k(u + v) \iff u^2 + v^2 + uv + vu = k(u + v), \text{ donc}$ $u + v \in A_k \iff uv + vu = 0 \iff uv = vu = 0.$
- \diamond On suppose que uv = vu = 0.
- Si $x \in Im(u+v)$, il existe $y \in E$ tel que $x = (u+v)(y) = u(y)+v(y) \in Im(u)+Im(v)$, donc $Im(u+v) \subset Im(u)+Im(v)$.

Réciproquement, soit $x \in Im(u) + Im(v)$. Ainsi, il existe $(y, z) \in E^2$ tel que

$$x = u(y) + v(z)$$
. Alors $x = (u+v)(\frac{1}{k}(u(y) + v(z))) \in Im(u+v)$,

donc Im(u+v) = Im(u) + Im(v).

• Si $x \in Ker(u) \cap Ker(v)$, (u+v)(x) = u(x) + v(x) = 0, donc $x \in Ker(u+v)$.

Réciproquement, si $x \in Ker(u+v)$,

$$u(x) = \frac{1}{k}u^2(x) = \frac{1}{k}(u^2 + uv)(x) = \frac{1}{k}u((u+v)(x)) = 0$$
, donc $x \in Ker(u)$, et de même, $x \in Ker(v)$.

Ainsi, $Ker(u+v) = Ker(u) \cap Ker(v)$.

3.c)

- $(uv)^2 = uvvu = kuvu = kvu^2 = k^2uv$, donc $uv \in A_{k^2}$.
- $\Rightarrow Im(uv) = uv(E) = u(v(E)) \subset Im(u)$ et de même, $Im(uv) \subset Im(v)$, donc $Im(uv) \subset Im(u) \cap Im(v)$.

Soit $x \in Im(u) \cap Im(v)$. Il existe $(y, z) \in E^2$ tel que x = u(y) = v(z).

Alors
$$uv(z) = u^2(y) = ku(y) = kx$$
, or $k \neq 0$, donc $x = uv(\frac{1}{k}z) \in Im(uv)$.

Ainsi, $Im(uv) = Im(u) \cap Im(v)$.

 \diamond Soit $x \in Ker(u) + Ker(v)$. Il existe $(y, z) \in Ker(u) \times Ker(v)$ tel que x = y + z. uv(x) = vu(y) + uv(z) = 0, donc $Ker(u) + Ker(v) \subset Ker(uv)$.

Réciproquement, soit $x \in Ker(uv)$. $x = (x - \frac{1}{k}u(x)) + \frac{1}{k}u(x)$. De plus $u(x - \frac{1}{k}u(x)) = 0$,

et
$$v(\frac{1}{k}u(x)) = \frac{1}{k}uv(x) = 0$$
, donc $x \in Ker(u) + Ker(v)$.

Ainsi, Ker(u) + Ker(v) = Ker(uv).

- **4.a)** Soit $\alpha, \beta \in \mathbb{R}$ tels que $\alpha f + \beta e = 0$. Si $\alpha \neq 0$, alors $f = -\frac{\beta}{\alpha}e$ ce qui est faux, car f n'est pas une homothétie. Ainsi, $\alpha = 0$, puis $\beta e = 0$, donc $\beta = 0$. Ainsi, pour tout $\alpha, \beta \in \mathbb{R}, \alpha f + \beta e = 0 \iff \alpha = \beta = 0.$
- \diamond Soit $(\lambda_1, k) \in \mathbb{R}^2$.

$$f - \lambda_1 e \in A_k \iff (f - \lambda_1 e)^2 = k(f - \lambda_1 e) \iff f^2 - (2\lambda_1 + k)f + (\lambda_1^2 + k\lambda_1)e = 0.$$

Or $f^2 - af + be = 0$, donc

$$f - \lambda_1 e \in A_k \iff (2\lambda_1 + k - a)f + (b - \lambda_1^2 - k\lambda_1)e = 0 \iff \begin{cases} 2\lambda_1 + k - a &= 0 \\ b - \lambda_1^2 - k\lambda_1 &= 0 \end{cases},$$

d'après le début de cette question. Donc $f - \lambda_1 e \in A_k \iff \begin{cases} a = \lambda_1 + (\lambda_1 + k) \\ b = \lambda_1(\lambda_1 + k) \end{cases}$ Ainsi, $f - \lambda_1 e \in A_k$ si et seulement si λ_1 et $\lambda_1 + k$ sont les racines, comptées avec

multiplicité du polynôme $X^2 - aX + b$.

- \diamond S'il existe $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ avec $\lambda_1 \neq \lambda_2$ et $(k, k') \in \mathbb{R}^2$ tels que $f \lambda_1 e \in A_k$ et $f - \lambda_2 e \in A_{k'}$, alors le polynôme $X^2 - aX + b$ admet deux racines réelles distinctes, λ_1 et λ_2 , donc $a^2 - 4b > 0$.
- \diamond Réciproquement, supposons que $a^2-4b>0$, et notons λ_1 et λ_2 les deux racines réelles distinctes de $X^2 - aX + b$. D'après ce qui précède, $f - \lambda_1 e \in A_{\lambda_2 - \lambda_1}$ et $f - \lambda_2 e \in A_{\lambda_1 - \lambda_2}$. \diamond En conclusion, la condition nécessaire et suffisante demandée est $a^2 - 4b > 0$, et dans ce cas, $k = \lambda_2 - \lambda_1$ et $k' = \lambda_1 - \lambda_2$.

$$v = (f - \lambda_1 e)(f - \lambda_2 e) = f^2 - (\lambda_1 + \lambda_2)f + \lambda_1 \lambda_2 e = f^2 - af + be = 0.$$

De même, vu = 0.

 $\diamond \ u-v = (\lambda_2-\lambda_1)e \in A_{\lambda_2-\lambda_1}, u \in A_k = A_{\lambda_2-\lambda_1} \text{ et } -v \in A_{-k'} = A_{\lambda_2-\lambda_1}, \text{ or } \lambda_2-\lambda_1 \neq 0,$ donc d'après 2.b, uv = vu = 0.

4.c) Soit $p \in \mathbb{N}^*$. $f = \frac{1}{\lambda_2 - \lambda_1}(\lambda_2 u - \lambda_1 v)$, et u et v commutent, donc on peut appliquer

$$f^{p} = \frac{1}{(\lambda_{2} - \lambda_{1})^{p}} \sum_{k=0}^{p} \binom{p}{k} (\lambda_{2} u)^{k} (-\lambda_{1} v)^{p-k}, \text{ or } uv = vu = 0, \text{ donc}$$

$$f^{p} = \frac{1}{(\lambda_{2} - \lambda_{1})^{p}} \sum_{k=0}^{p} \binom{p}{k} (\lambda_{2} u)^{k} (-\lambda_{1} v)^{p-k}, \text{ or } uv = vu = 0, \text{ donc}$$

 $f^{p} = \frac{1}{(\lambda_{2} - \lambda_{1})^{p}} (\lambda_{2}^{p} u^{p} + (-\lambda_{1})^{p} v^{p}).$

 $u \in A_{\lambda_2 - \lambda_1}$, donc par récurrence, on montre que pour tout $p \in \mathbb{N}^*$, $u^p = (\lambda_2 - \lambda_1)^{p-1}u$. De même, $v^p = (\lambda_1 - \lambda_2)^{p-1}v$, donc $f^p = \frac{1}{\lambda_2 - \lambda_1}(\lambda_2^p u - \lambda_1^p v)$ (formule également valable pour p = 0).

4.d)

 \diamond Supposons que b=0. Alors $f^2-af=0$. Si f est inversible,

 $f - ae = f^{-1}(f^2 - af) = 0$, ce qui est impossible car f n'est pas une homothétie. Donc f n'est pas inversible.

 \diamond Supposons que $b \neq 0$.

Dans ce cas, on peut écrire $f^2 - af + be = 0$ sous la forme $f(\frac{-1}{b})(f - ae) = e$, donc fest inversible et $f^{-1} = \frac{1}{b}(ae - f)$.

On peut aussi donner pour f^{-1} une formule du même type qu'à la question précédente :

On a $\lambda_1 \lambda_2 = b \neq 0$, donc $\lambda_1 \neq 0$ et $\lambda_2 \neq 0$. Posons $g = \frac{1}{\lambda_2 - \lambda_1} (\lambda_2^{-1} u - \lambda_1^{-1} v)$ (inspiré de la formule précédente avec p = -1). Alors $fg = \frac{1}{(\lambda_2 - \lambda_1)^2} (u^2 + v^2)$, car $f = \frac{1}{\lambda_2 - \lambda_1} (\lambda_2 u - \lambda_1 v)$. Ainsi, $fg = \frac{1}{\lambda_2 - \lambda_1} (u - v) = e$.

 \diamond En conclusion, f est inversible si et seulement si $b \neq 0$ et dans ce cas,

$$f^{-1} = \frac{1}{\lambda_2 - \lambda_1} (\lambda_2^{-1} u - \lambda_1^{-1} v).$$

5°) Par hypothèse, il existe $x_0 \in E$ tel que $x_0 \neq 0$ et $\text{Im}(g) = \text{Vect}(x_0)$.

 $g(x_0) \in \text{Im}(g)$, donc il existe $\alpha \in \mathbb{R}$ tel que $g(x_0) = \alpha x_0$.

Soit $x \in E$. $g(x) \in \text{Im}(g)$, donc il existe $\beta \in \mathbb{R}$ tel que $g(x) = \beta x_0$.

Alors $g^2(x) = \beta g(x_0) = \beta \alpha x_0 = \alpha g(x)$. Ainsi, $g \in A_{\alpha}$.

6.a) Soit $(G_1, G_2) \in E^2$ et $\alpha \in \mathbb{R}$. Soit $x \in [0, 1]$.

 $u(\alpha G_1 + G_2)(x) = \int_0^1 F(x)t(\alpha G_1(t) + G_2(t))dt = \alpha \int_0^1 F(x)tG_1(t)dt + \int_0^1 F(x)tG_2(t)dt,$ donc $u(\alpha G_1 + G_2)(x) = \alpha u(G_1)(x) + u(G_2)(x)$, ce qui prouve que u est linéaire.

De plus, $u(G) = (x \mapsto F(x) \int_{-\infty}^{\infty} tG(t)dt)$ est une application continue, donc u est un endomorphisme sur E.

6.b) Pour tout $G \in E$, $u(G) = (\int_0^1 tG(t)dt) \times F \in Vect(F)$, donc $Im(u) \subset Vect(F)$.

De plus, $u(1) = (\int_0^1 t dt) \times F = \frac{1}{2} F$, donc $F = 2 \times (\frac{1}{2} F) \in \text{Im}(u)$, puis $\text{Vect}(F) \subset \text{Im}(u)$. En conclusion, Im(u) = Vect(F).

6.c) D'après 4.a, il existe $k \in \mathbb{R}$ tel que $u \in A_k$, et k et le rapport de l'homothétie correspondant à l'endomorphisme induit par F sur Vect(F).

Or
$$u(F) = (\int_0^1 tF(t)dt) \times F$$
, donc $k = \int_0^1 tF(t)dt$.

6.d) $k = \int_0^1 t A \sin(t) dt$. L'application $x \mapsto \sin(x)$ étant de classe C^1 de $[0, \frac{\pi}{2}]$ dans [0,1], on peut poser $t = \sin(x)$. On obtient

$$k = \int_0^{\frac{\pi}{2}} x \sin(x) \cos(x) dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} x \sin(2x) dx, \text{ puis par intégration par parties,}$$

$$k = \left[-\frac{\cos(2x)}{4}x \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \frac{\cos(2x)}{4} dx = \frac{\pi}{8} + \left[\frac{\sin(2x)}{8} \right]_0^{\frac{\pi}{2}}.$$

Finalement, $k = \frac{\pi}{\circ}$.

6.e) $k = \int_0^1 t e^{\sqrt{t}} dt$. L'application $x \mapsto x^2$ étant de classe C^1 , on peut poser $t = x^2$.

On obtient $k = \int_0^1 x^2 e^x 2x dx$.

D'après le cours sur les calculs de primitives,

il existe
$$(a, b, c, d) \in \mathbb{R}^4$$
 tel que $\int 2x^3 e^x dx = (ax^3 + bx^2 + cx + d)e^x + C$.

En dérivant, $2x^3e^x = e^x(3ax^2 + 2bx + c + ax^3 + bx^2 + cx + d)$,

donc 2 = a, b + 3a = 0, c + 2b = 0 et c + d = 0.

Ainsi, $k = [(2x^3 - 6x^2 + 12x - 12)e^x]_0^1$, puis k = 4(3 - e).

7.a) Les théorèmes usuels prouvent que si $f \in C$, alors $u(f) \in C$.

De plus, on vérifie que pour tout $(f,g) \in C^2$ et $\alpha \in \mathbb{R}$, pour tout $x \in \mathbb{R}_+^*$,

 $u(\alpha f + g)(x) = \alpha u(f)(x) + u(g)(x)$, ce qui prouve que u est un endomorphisme sur C.

7.b) Soit
$$f \in C$$
.

$$u^{2}(f) = ku(f) \iff \forall x \in \mathbb{R}^{*}_{+}, \quad x \frac{d}{dx}(xf'(x)) = kxf'(x)$$

$$\iff \forall x \in \mathbb{R}^{*}_{+}, \quad x^{2}f''(x) + (1-k)xf'(x) = 0$$

$$\iff \forall x \in \mathbb{R}^{*}_{+}, \quad f''(x) = \frac{(k-1)}{x}f'(x)$$

$$\iff \exists C \in \mathbb{R} \quad \forall x \in \mathbb{R}^{*}_{+}, \quad f'(x) = Ce^{(k-1)\ln(x)}$$

$$\iff \exists C \in \mathbb{R} \quad \forall x \in \mathbb{R}^{*}_{+}, \quad f'(x) = Cx^{(k-1)}.$$
Premier cas: Supposons que $k = 0$. Alors

 $u^2(f) = ku(f) \iff \exists (C, D) \in \mathbb{R}^2 \ \forall x \in \mathbb{R}_+^* \ f(x) = C \ln(x) + D.$

On note la l'application $x \longmapsto \ln(x)$ de \mathbb{R}_+^* dans \mathbb{R} et 1 l'application constante égale à 1. Ainsi, $u^2(f) = ku(f) \iff f \in Vect(\ln, 1)$.

De plus $Vect(\ln, 1)$ est stable par u, donc $E = Vect(\ln, 1)$ est un sous-espace vectoriel de C tel que la restriction de u à E est un endomorphisme v vérifiant $v^2 = kv$. De plus E est un plan vectoriel car ln n'est pas une application constante.

Second cas: Supposons que $k \neq 0$. Alors

$$u^2(f) = ku(f) \iff \exists (C, D) \in \mathbb{R}^2 \ \forall x \in \mathbb{R}_+^* \ f(x) = \frac{C}{k} x^k + D.$$

On note X^k l'application $x \longmapsto x^k$ de \mathbb{R}_+^* dans \mathbb{R} et toujours 1 l'application constante égale à 1. Ainsi, $u^2(f) = ku(f) \iff f \in Vect(X^k, 1)$.

Donc dans ce cas, $E = Vect(X^k, 1)$ est un plan vectoriel qui convient.

Problème 2 : Une équation différentielle d'Euler

1°) Soit $y: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ une solution de (E) à valeurs réelles. Alors y = Re(y), or y est aussi une solution de (E) à valeurs complexes, donc y est la partie réelle d'une solution de (E) à valeurs complexes.

Réciproquement, supposons que $y: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ est la partie réelle d'une solution z de (E) à valeurs complexes. Ainsi, pour tout $x \in \mathbb{R}_+^*$, z(x) = y(x) + iv(x) avec $v(x) \in \mathbb{R}$. Pour tout $x \in \mathbb{R}_+^*$, (1) : $f(x) = x^2 z''(x) + 5xz'(x) + 9z(x)$, or d'après le cours, z'(x) = y'(x) + iv'(x) et z''(x) = y''(x) + iv''(x), donc en prenant la partie réelle de l'égalité (1), sachant que Re(f(x)) = f(x), on obtient que y est une solution de (E) à valeurs réelles.

- **2°)** Soit $\alpha \in \mathbb{C}$. L'application $x \longmapsto x^{\alpha}$ est solution de (H) si et seulement si
- (C): $\forall x \in \mathbb{R}_+^*$, $0 = 9x^{\alpha} + 5x(\alpha x^{\alpha 1}) + x^2(\alpha(\alpha 1)x^{\alpha 2})$.
- $(C) \iff \forall x \in \mathbb{R}_+^*, \ 0 = x^{\alpha}(9 + 5\alpha + \alpha(\alpha 1)), \text{ or } x^{\alpha} \neq 0, \text{ donc } (C) \iff 0 = \alpha^2 + 4\alpha + 9.$

Le discriminant de cette équation de degré 2 est $\Delta = 16 - 36 = -20 = (2i\sqrt{5})^2$, donc $(C) \iff \alpha = -2 \pm i\sqrt{5}.$

Pour la suite, on pose donc $\alpha = -2 + i\sqrt{5}$.

- 3°) Avec les notations de l'énoncé,
- $\iff \forall x \in \mathbb{R}_+^*, \ f(x) = 9z\varphi + 5x(z'\varphi + z\varphi') + x^2(z''\varphi + 2z'\varphi' + z\varphi'')$ (E) $\iff f(x) = z(9\varphi + 5x\varphi' + x^2\varphi'') + 5xz'\varphi + x^2z''\varphi + 2x^2z'\varphi'$

mais
$$\varphi$$
 est solution de (H) , donc $9\varphi + 5x\varphi' + x^2\varphi'' = 0$. Ainsi, $(E) \iff \forall x \in \mathbb{R}_+^*, \ f(x) = 5xz'x^{\alpha} + x^2z''x^{\alpha} + 2x^2z'\alpha x^{\alpha-1}$ $\iff f(x)x^{-\alpha-2} = \frac{5z'}{x} + z'' + 2\frac{z'\alpha}{x}$ $\iff Z' + \frac{2\alpha + 5}{x}Z = x^{-\alpha-2}f(x).$

 4°) Dans cette question, on résout donc l'équation homogène associée à (E'), que nous noterons (H'). $(H') \iff Z' = -\frac{2\alpha + 5}{x}Z$, donc d'après le cours, $(H') \iff \exists \lambda \in \mathbb{C}, \ Z = \lambda e^{-(2\alpha + 5)\ln x} = \lambda x^{-2\alpha - 5}$.

- 5°) Posons $Z=\lambda(x)e^{-2\alpha-5}$. Pour une telle application Z, d'après le cours, $(E')\Longleftrightarrow \lambda'(x)x^{-2\alpha-5}=x^{-\alpha-2}f(x)\Longleftrightarrow \lambda'(x)=x^{\alpha+3}f(x)$, donc
- $(E') \iff \exists C \in \mathbb{C}, \ \forall x \in \mathbb{R}_+^*, \ \lambda(x) = C + \int_1^x t^{\alpha+3} f(t) \ dt. \text{ Ainsi,}$ $(E') \iff \exists C \in \mathbb{C}, \ \forall x \in \mathbb{R}_+^*, \ Z = Cx^{-2\alpha-5} + Z_0(x).$

En particulier, ceci démontre que Z_0 est bien une solution particulière de (E').

6°) Soit x > 0. En intégrant par parties,

$$\int_{1}^{x} Z_{0}(t)dt = \int_{1}^{x} t^{-2\alpha - 5} G_{\alpha + 3}(t) dt = \frac{x^{-(2\alpha + 4)}}{-(2\alpha + 4)} G_{\alpha + 3}(x) + \frac{1}{2\alpha + 4} \int_{1}^{x} t^{-2\alpha - 4} t^{\alpha + 3} f(t) dt,$$

$$\operatorname{donc} \int_{1}^{x} Z_{0}(t)dt = \frac{-1}{2\alpha + 4} (x^{-(2\alpha + 4)} G_{\alpha + 3}(x) - G_{-\alpha - 1}(x)).$$

7°) D'après la question 5,

(E')
$$\Longrightarrow \exists C \in \mathbb{C}, \ \forall x \in \mathbb{R}_+^*, \ z' = Cx^{-2\alpha - 5} + Z_0(x)$$

 $\iff \exists C, D \in \mathbb{C}, \ \forall x \in \mathbb{R}_+^*, \ z = D + Cx^{-2\alpha - 4} + \int_1^x Z_0(t) \ dt$
 $\iff \exists C, D \in \mathbb{C}, \ y = Dx^{\alpha} + Cx^{-\alpha - 4} - \frac{1}{2\alpha + 4}(x^{-(\alpha + 4)}G_{\alpha + 3}(x) - x^{\alpha}G_{-\alpha - 1}(x)).$

- 8°) Notons y_1 l'application $x \mapsto x^{\alpha} \int_1^x Z_0(t) \ dt$. D'après la question précédente, c'est une solution particulière de (E), donc d'après la première question, $\operatorname{Re}(y_1)$ est une solution de (E) à valeurs réelles. De plus $y_1(1) = 0 = \operatorname{Re}(y_1)(1)$ et $y_1'(x) = \alpha x^{\alpha-1} \int_1^x Z_0(t) \ dt + x^{\alpha} Z_0(x)$, donc $y_1'(1) = 0 = \operatorname{Re}(y_1)'(1)$. Ainsi, y_1 et $\operatorname{Re}(y_1)$ sont deux solutions du même problème de Cauchy associé à (E) et aux conditions initiales y(1) = y'(1) = 0. Or $(E) \iff y'' = -\frac{5}{x}y' \frac{9}{x^2}y + \frac{1}{x^2}f(x)$ et les applications $x \mapsto -\frac{5}{x}$, $x \mapsto -\frac{9}{x^2}$ et $x \mapsto \frac{1}{x^2}f(x)$ sont continues, donc on peut appliquer le
- application à valeurs réelles sur \mathbb{R}_+^* . $\mathbf{9}^{\circ}$) D'après la question 1, y est une solution de (E) à valeurs réelles si et seulement si elle est de la forme $x \longmapsto \operatorname{Re}(Dx^{\alpha}) + \operatorname{Re}(Cx^{-\alpha-4}) + x^{\alpha} \int_1^x Z_0(t) \ dt$ (en utilisant la question précédente), où $C, D \in \mathbb{C}$.

théorème de Cauchy-Lipschitz. Ainsi, $y_1 = \text{Re}(y_1)$ ce qui prouve que y_1 est bien une

Soit $x \in \mathbb{R}_+^*$. $x^{-\alpha-4} = x^{-2-i\sqrt{5}} = e^{-(2+i\sqrt{5})\ln x} = e^{\ln(\frac{1}{x^2})}e^{-i\sqrt{5}\ln x}$, donc $x^{-\alpha-4} = \frac{1}{x^2}(\cos(\sqrt{5}\ln x) - i\sin(\sqrt{5}\ln x))$ et $x^{\alpha} = x^{-2+i\sqrt{5}} = e^{(-2+i\sqrt{5})\ln x} = \frac{1}{x^2}(\cos(\sqrt{5}\ln x) + i\sin(\sqrt{5}\ln x))$. On en déduit que y est une solution de (E) à valeurs réelles si et seulement si elle est

de la forme $x \mapsto \frac{1}{x^2}(C'\cos(\sqrt{5}\ln x) + D'\sin(\sqrt{5}\ln x)) + x^{\alpha} \int_1^x Z_0(t) dt$ où $C', D' \in \mathbb{R}$. (H) est un cas particulier de (E) en prenant f = 0, auquel cas $Z_0 = 0$, donc la forme générale des solutions de (H) est $x \mapsto \frac{1}{x^2}(C'\cos(\sqrt{5}\ln x) + D'\sin(\sqrt{5}\ln x))$ où $C', D' \in \mathbb{R}$.