Problem Set 1

Daniel Halmrast

January 25, 2018

Problem 1

Let \mathscr{F} be the set of all measurable functions which are finite μ -a.e. on Ω .

Part a

Prove \mathcal{F} is a vector space.

Proof. We first note that \mathscr{F} is a subset of the vector space of all measurable functions (modulo functions zero μ -a.e.). We just need to show, then, that \mathscr{F} is closed under addition and scalar multiplication.

So, let f and g be measurable functions that are finite μ -a.e. on Ω . Now, let's consider f+g. If $x \in \Omega$ is such that f(x) and g(x) are finite, then the sum f(x)+g(x) is finite. Let E be the set of all such x. We will show that $\Omega \setminus E$ has measure zero, so that f+g is finite μ -a.e.

To see that $\Omega \setminus E$ has measure zero, we note that $\Omega \setminus E = \{|f| = \infty\} \cup \{|g| = \infty\}$. Now, since f and g are finite μ -a.e., we know that each of these sets has measure zero, and so the union $\Omega \setminus E$ has measure zero as well. Thus, f + g is finite μ -a.e.

It is immediately clear as well that for arbitrary scalar α , we have that αf is also finite μ -a.e., since for $x \in \{|f| < \infty\}$, we have that $|f(x)| < \infty$, which implies that $|\alpha f(x)| < \infty$ as well.

Thus, \mathscr{F} is an algebraically closed subspace of a vector space, and is a vector space itself. \square

Part b

Prove that \mathscr{F} is a metric space with the metric

$$d(f,g) = \int_{\Omega} \frac{|f-g|}{1+|f-g|} d\mu$$

Proof. To show that d is a metric, we need to show that d(f, f) = 0, d(f, g) > 0 for $f \neq g$, and the triangle inequality $d(f, h) \leq d(f, g) + d(g, h)$.

It is clear that d(f, f) = 0, since this amounts to

$$d(f, f) = \int_{\Omega} \frac{|f - f|}{1 + |F - f|} d\mu$$
$$= \int_{\Omega} \frac{0}{1} d\mu$$
$$= 0$$

Now, suppose f and g differ on a positive-measure set E. In other words, $|f - g| \neq 0$ on E. Now, since |f-g| is positive on E, $\frac{|f-g|}{1+|f-g|}$ is as well. Thus, $\frac{|f-g|}{1+|f-g|} \neq 0$ in L^1 , and so $\|\frac{|f-g|}{1+|f-g|}-0\|_{L^1}=\int_{\Omega}\frac{|f-g|}{1+|f-g|}d\mu>0$ as desired. Finally, we wish to prove the triangle inequality. This will follow from the convexity of the

function $\frac{x}{1+x}$. That is, for $f, g, h \in \mathscr{F}$, we have that

Part c

Show that d metrizes the convergence in measure.

Proof. Suppose first that $f_n \to f$ in μ . That is, for all t > 0,

$$\mu(\{|f_n - f| > t\}) \to 0$$

Now, consider the integral

$$\begin{split} \int_{\Omega} \frac{|f_n - f|}{1 + |f_n - f|} d\mu &= \int_{\{|f_n - f| \le t\}} \frac{|f_n - f|}{1 + |f_n - f|} d\mu + \int_{\{|f_n - f| > t\}} \frac{|f_n - f|}{1 + |f_n - f|} d\mu \\ &\le \int_{\{|f_n - f| \le t\}} \frac{t}{1 + t} d\mu + \int_{\{|f_n - f| > t\}} 1 d\mu \end{split}$$

Now, the first term goes to zero as t goes to zero, and the second term is just $\mu(\{|f_n - f| > t\})$, which goes to zero as n goes to infinity. Thus, the expression goes to zero, and $d(f_n, f)$ goes to zero, as desired.

Now, suppose $d(f_n, f)$ goes to zero. We wish to prove that for all t > 0, $\mu(\{|f_n - f| > t\}) \to 0$. To do so, we consider

$$d(f_n, f) = \int_{\Omega} \frac{|f_n - f|}{1 + |f_n - f|} d\mu$$

$$= \int_{\{|f_n - f| > t\}} \frac{|f_n - f|}{1 + |f_n - f|} d\mu + \int_{\{|f_n - f| \le t\}} \frac{|f_n - f|}{1 + |f_n - f|} d\mu$$

$$\geq \int_{\{|f_n - f| > t\}} \frac{|f_n - f|}{1 + |f_n - f|} d\mu$$

$$\geq \int_{\{|f_n - f| > t\}} \frac{t}{1 + t} d\mu \qquad \qquad = \frac{t}{1 + t} \mu(\{|f_n - f| > t\})$$

and since $d(f_n, f)$ goes to zero, so does $\frac{t}{1+t}\mu(\{|f_n - f| > t\})$, which implies that for fixed t > 0,

$$\mu(\{|f_n - f| > t\}) \to 0$$

as well.