	Initial Temperature (K)	650
	Initial Pressure (bar)	10
	Tau (second)	0.777660158
	Pathway Begin Time (Tau)	0
	Pathway End Time (Tau)	0.9
	Reaction	Probability
1	C ₃ H ₈ +OH=>iR+H ₂ O	1.45E-01
2	C ₃ H ₈ +OH=>nR+H ₂ O	1.45E-01
3		
4	$iROO = > HO_2 + C_3H_6$	1.18E-01
5	OQ'O ₁ =>vinoxy+CH ₂ O	5.94E-02
	O ₂ QOOH ₁ =>OH+OQ'OOH ₁	5.89E-02
6	OQ'OOH ₁ =>OQ'O ₁ +OH	5.89E-02
7	$nROO => HO_2 + C_3 H_6$	5.00E-02
8	O_2 +iR=>H O_2 + C_3 H ₆	4.35E-02
9	vinoxy+O ₂ =>CH ₂ O+CO+OH	4.08E-02
10	$nRO => C_2H_5 + CH_2O$	2.72E-02
11	HCO+O ₂ =>CO+HO ₂	2.47E-02
12	$C_3H_8+HO_2=>iR+H_2O_2$	2.26E-02
13	iRO=>CH ₃ +acetaldehyde	2.07E-02
14	nROOH=>nRO+OH	1.92E-02
15	iROOH=>iRO+OH	1.31E-02
16	CH ₂ O+OH=>HCO+H ₂ O	1.30E-02
17	nROO+HO ₂ =>nROOH+O ₂	1.24E-02
18	iROO+HO ₂ =>iROOH+O ₂	9.13E-03
19	$C_2H_5+O_2=>C_2H_4+HO_2$	8.96E-03
20	CH ₂ O+HO ₂ =>HCO+H ₂ O ₂	6.81E-03
21	nROO+CH ₂ O=>nROOH+HCO	6.62E-03
22	$C_3H_8+HO_2=>nR+H_2O_2$	6.40E-03
23	nROO+nROO=>O ₂ +nRO+nRO	6.29E-03
24	O_2 +nR=>H O_2 +C $_3$ H $_6$	5.56E-03
25	CH ₃ OO+C ₃ H ₈ =>CH ₃ OOH+iR	4.40E-03
26	iROO+iROO=>O ₂ +iRO+iRO	3.96E-03
27	nROO=>OH+propoxide	3.75E-03
28	nROO+C ₃ H ₈ =>nROOH+iR	3.66E-03
29	CH ₃ CH ₂ OO=>C ₂ H ₄ +HO ₂	3.56E-03
30	$H+C_3H_8=>H_2+iR$	3.53E-03
31	iROO+CH ₂ O=>iROOH+HCO	3.08E-03
32	allyloxy=>acrolein+H	3.03E-03
33	CH ₃ OOH=>CH ₃ O+OH	2.86E-03
34	CH ₃ CH ₂ OO+C ₃ H ₈ =>CH ₃ CH ₂ OOH+iR	2.58E-03

35	prod_2=>allyloxy+OH	2.48E-03
36	C ₃ H ₆ +HO ₂ =>propen1ol+OH	2.44E-03
37	ethoxy=>CH ₃ +CH ₂ O	2.20E-03
38	$H+C_3H_6=>iR$	2.09E-03
39	CH ₃ OO+HO ₂ =>CH ₃ OOH+O ₂	1.85E-03
40	acetaldehyde+HO ₂ =>acetyl+H ₂ O ₂	1.82E-03
41	acetyl(+M)=>CH ₃ +CO(+M)	1.82E-03
42	CH ₃ CH ₂ OOH=>ethoxy+OH	1.81E-03
43	iROO+nROO=>iRO+nRO+O ₂	1.79E-03
44	$CH_3O+M=>CH_2O+H+M$	1.71E-03
45	QOOH_2=>OH+propoxide	1.67E-03
46	allyl+HO ₂ =>prod_2	1.33E-03
47	iROO+C ₃ H ₈ =>iROOH+iR	1.29E-03
48	nROO=>QOOH_2	1.26E-03
49	$CH_3CH_2OO+HO_2=>CH_3CH_2OOH+O_2$	1.24E-03
50	nROO+C ₃ H ₈ =>nROOH+nR	1.22E-03
51	nROO+CH ₃ CH ₂ OO=>nRO+ethoxy+O ₂	1.17E-03
52	$CH_3O+O_2=>CH_2O+HO_2$	1.15E-03
53	$O_2QOOH_1 => HO_2 + prod_2$	1.14E-03
54	iROO+CH ₃ OO=>iRO+CH ₃ O+O ₂	9.70E-04
55	nROO+CH ₃ OO=>nRO+CH ₃ O+O ₂	9.55E-04
56	iROO+C ₃ H ₈ =>iROOH+nR	9.19E-04
57	iROO+CH ₃ CH ₂ OO=>iRO+ethoxy+O ₂	8.72E-04
58	HO ₂ +C ₃ H ₆ =>OH+propoxide	8.70E-04
59	C ₃ H ₆ +OH=>allyl+H ₂ O	7.51E-04
60	H+C ₃ H ₈ =>H ₂ +nR	7.37E-04
61	CH ₃ OO+CH ₂ O=>CH ₃ OOH+HCO	7.34E-04
62	$nR+H_2O_2=>C_3H_8+HO_2$	6.09E-04
63	$C_3H_6+HO_2=>allyl+H_2O_2$	5.81E-04
64	O ₂ +nR=>OH+propoxide	5.64E-04
65	nROO+allyl=>nRO+allyloxy	5.55E-04
66	CH ₃ CH ₂ OO+CH ₂ O=>CH ₃ CH ₂ OOH+HCO	5.10E-04
67	$CH_3OO+C_3H_8=>CH_3OOH+nR$	4.85E-04
68	O ₂ +QOOH_1=>OH+OH+OQ'O ₁	4.28E-04
69	$HO_2+C_3H_6=>QOOH_2$	4.14E-04