République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Ferhat Abbas Sétif 1

Classification hybride (Hard et Soft) d'items éducatifs similaires avec ajustement bayésien des réponses en utilisant l'IRT

Présenté par : Abdou Abarchi Aboubacar Sous la Direction de : M^{eme} Harbouche Khadidja

Table des matières

1. INTRODUCTION

Contexte Problématique Objectif

2. APERÇU SUR L'ÉTAT DE L'ART

Educational data minig Modèle de l'apprenant Analyse des items Inférence bayésienne

3. CONTRIBUTIONS

Approche proposée
Application de l'inférence
bayésienne avec des modèles IRT
Résultats des modèles IRT
Regroupement des items à l'aide de
la matrice de similarité
Résultats des méthodes de
clustering

4. CONCLUSION GÉNÉRALE

Conclusion Perspective

1. INTRODUCTION

Contexte Problématique Objectif

2. APERCU SUR L'ÉTAT DE L'ART

Educational data minig Modèle de l'apprenant Analyse des items Inférence bayésienne

3. CONTRIBUTIONS

Approche proposée
Application de l'inférence
bayésienne avec des modèles IRT
Résultats des modèles IRT
Regroupement des items à l'aide de
la matrice de similarité
Résultats des méthodes de
clustering

4. CONCLUSION GÉNÉRALE

Conclusion Perspective

Contexte

Introduction Contexte

Contexte(suite)

Les systèmes informatisés conservent des données détaillées des interactions utilisateur-système, plus précisément des interactions système-apprenant dans les systèmes éducatifs.

Introduction Contexte

Contexte(suite)

Ces données détaillées qui sont dans une grande base de données offrent des opportunités pour étudier ces données récolter.

Introduction Problématique

Problèmes

Cependant les données ne sont jamais aussi complètes et sans équivoque qu'elles garantissent la certitude.

Aussi, dans les systèmes éducatifs, beaucoup d'aptitudes ont une forte relation causale dans laquelle une aptitude doit être présentée avant une autre.

Introduction Problématique

Problèmes ▶ 1

Cependant les données ne sont jamais aussi complètes et sans équivoque qu'elles garantissent la certitude.

Is the sky blue?

Introduction

Problématique

Problèmes ▶ 2

Aussi, dans les systèmes éducatifs, beaucoup d'aptitudes ont une forte relation causale dans laquelle une aptitude doit être présentée avant une autre.

2. Question

What is 2 + 2?

Introduction

Problématique

Problèmes ▶ 2

Aussi, dans les systèmes éducatifs, beaucoup d'aptitudes ont une forte relation causale dans laquelle une aptitude doit être présentée avant une autre.

1. Question

What is 2 + 2?

2. Question

What is 10 / 2?

Objectif

L'objectif principal

Analyse et évaluation du jeu de données en faisant un ajustement bayésien des réponses aux items avant de décider si oui ou non le jeu de données valle le coup d'être utilisé.

Après la validation du jeu de données, les items sont regroupés en composante de connaissance en utilisant une approche basée sur la similarité qui utilise une matrice de similarité calculée selon quatre catégories : réponse correcte et incorrecte avec aide et sans aide.

Introduction Objectif

L'objectif principal

Après la validation du jeu de données, les items sont regroupés en composante de connaissance en utilisant une approche basée sur la similarité qui utilise une matrice de similarité calculée selon quatre catégories : réponse correcte et incorrecte avec aide et sans aide.

1. Question

What is 2+2?

Correct

If you've got this right, good for you! Two and two is four. In fact two times two is four as well.

Incorrect

If you got this wrong you need to work on your addition skills.

Revising Lesson 2: Quick Addition, might help.

1. INTRODUCTION

Contexte Problématique Objectif

2. APERÇU SUR L'ÉTAT DE L'ART Educational data minig Modèle de l'apprenant Analyse des items Inférence bayésienne

3. CONTRIBUTIONS

Approche proposée
Application de l'inférence
bayésienne avec des modèles IRT
Résultats des modèles IRT
Regroupement des items à l'aide de
la matrice de similarité
Résultats des méthodes de
clustering

4. CONCLUSION GÉNÉRALE
Conclusion
Perspective

Aperçu sur l'état de l'art Educational data minig

L'exploration de données est un processus visant à découvrir des modèles de données dans de grandes bases de données. Appliquer dans l'éducation, les données proviennent du milieu éducatif et le but principal est de comprendre le comportement des apprenants et l'environnement de leur apprentissage.

Aperçu sur l'état de l'art

Educational data minig

Aperçu sur l'état de l'art Modèle de l'apprenant

Définition

Le modèle de l'apprenant est une structure de données qui reflète l'état des connaissances supposées de l'apprenant sur un domaine cible.

Abdou Abarchi Aboubacar 15 septembre 2021 Université Ferhat Abbas Sétif 1 14 / 71

Aperçu sur l'état de l'art Modèle de l'apprenant

Définition

Le modèle de l'apprenant est une structure de données qui reflète l'état des connaissances supposées de l'apprenant sur un domaine cible.

Quelque catégorie du modèle de l'apprenant :

- ▶ Modèle cognitif,
- ▶ Modèle d'inférence,
- Modèle émotionnel.

Aperçu sur l'état de l'art

Le modèle cognitif

La modélisation cognitive est utilisé pour simuler ou prédire le comportement humain ou les performances sur des tâches similaires à celles modélisées et améliorer l'interaction homme-machine.

Abdou Abarchi Aboubacar

Aperçu sur l'état de l'art Modèle de l'apprenant

Le modèle d'inférence

Cette approche est une sorte de moteur d'inférence qui fonctionne pour ajuster le modèle de l'apprenant. Il contient des règles qui lui permettent de raisonner sur le modèle cognitif et sur le modèle psychologique pour inférer de nouvelles connaissances dans le modèle de l'apprenant.

17 / 71

Analyse des items

Analyse des items Modèles de traits latents

Modèles de traits latents

- ▶ Ils visent à mesurer la capacité sous-jacente qui produit la performance du test plutôt que de mesurer la performance en soi.
- ► Cela les conduit à être sans échantillon. Comme les statistiques ne dépendent pas de la situation de test qui les a générées, elles peuvent être utilisées de manière plus flexible.

Analyse des items Modèle de Rasch

Modèle de Rasch

Le modèle de Rasch est une méthode d'analyse de données statistiques pour mesurer des éléments tels que les capacités, les attitudes ou des traits de personnalité de personnes répondant à des questionnaires.

Analyse des items Modèle de Rasch

Structure de données typiques

	11	12	13	14
S1	0	0	1	1
S2	0	1	1	1
S 3	1	1	1	1
S4	0	0	0	0
S5	0	0	1	0

	I1	12	13	14
S4	0	0	0	0
S5	1	0	0	0
S1	1	1	0	0
S2	1	1	1	0
S 3	1	1	1	1

Analyse des items Modèle de Rasch

Modèle de Guttman

Le modèle probabiliste de Rasch

La fonction logistique du modèle de Rasch

$$P(x_j|\theta,\beta_j) = \frac{\exp\left[\theta - \beta_j\right]}{1 + \exp\left[\theta - \beta_j\right]} \tag{1}$$

Où,

- \blacklozenge θ la capacité, la compétence de l'apprenant
- lacktriangle eta difficulté de l'item

Analyse des items Le modèle probabiliste de Rasch

La Théorie de la réponse à l'item

Modèle logistique à un paramètre

$$P_i(\theta_j|X=1) = \frac{\exp\left[1.7\alpha_i(\theta_j - \beta_i)\right]}{1 + \exp\left[1.7\alpha_i(\theta_j - \beta_i)\right]} \tag{2}$$

Où,

- \blacklozenge θ la capacité, la compétence de l'apprenant
- \blacklozenge β paramètre de difficulté de l'item
- lacktriangle α paramètre de discrimination de l'item (fixe)
- ♦ 1.7 facteur d'échelle

La Théorie de la réponse à l'item

Modèle logistique à deux paramètres

$$P_i(\theta_j|X=1) = \frac{\exp\left[\alpha_i(\theta_j - \beta_i)\right]}{1 + \exp\left[\alpha_i(\theta_j - \beta_i)\right]}$$
(3)

Où,

- lacklariant θ la capacité, la compétence de l'apprenant
- \blacklozenge β paramètre de difficulté de l'item
- \blacklozenge α paramètre de discrimination de l'item(non fixe, peut changer par item)

La Théorie de la réponse à l'item

Modèle logistique à trois paramètres

$$P_i(\theta_j) = c_i + \frac{1 - c_i}{1 + \exp\left[-\alpha_i(\theta_j - \beta_i)\right]} \tag{4}$$

Où,

- igoplus heta la capacité, la compétence de l'apprenant
- \blacklozenge β paramètre de difficulté de l'item
- $lacklosh \alpha$ paramètre de discrimination de l'item(non fixe, peut changer par item)
- ♦ *c* paramètre de devinette.

Définition

L'inférence bayésienne est une méthode d'apprentissage des valeurs des paramètres dans les modèles statistiques à partir de données.

Probabilité conditionnelle

La probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu.

Soit A et B deux évènements avec $P(A) \neq 0$.

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \tag{5}$$

Théorème de bayes

Le théorème de Bayes , du nom du mathématicien britannique du XVIIIe siècle Thomas Bayes est definit par l'équation suivante :

$$Pr(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{Pr(A|B) * Pr(B)}{Pr(A)}$$
(6)

$$Pr(hypothesis|data) = \frac{Pr(data|hypothesis) * Pr(hypothesis)}{Pr(data)}$$
 (7)

L'inférence bayésienne

L'inférence bayésienne utilise la règle de bayes lorsqu'on interprète les variables de la règle de Bayes en tant que paramètres θ d'un modèle et de données observées data :

L'inférence bayésienne

L'inférence bayésienne utilise la règle de bayes lorsqu'on interprète les variables de la règle de Bayes en tant que paramètres θ d'un modèle et de données observées data :

$$Pr(\theta|data) = \frac{Pr(data|\theta) * Pr(\theta)}{Pr(data) = \int L(data|\theta)Pr(\theta)d\theta}$$
(8)

Inférence bayésienne

 $Pr(\theta|data)$: Posterior

 $Pr(data|\theta)$: Likelihood

 $Pr(\theta)$: Prior

Pr(data): Evidence

Inférence bayésienne

1. INTRODUCTION

Contexte Problématique Objectif

2. APERCU SUR L'ÉTAT DE L'ART

Educational data minig Modèle de l'apprenant Analyse des items Inférence bayésienne

3. CONTRIBUTIONS

Approche proposée
Application de l'inférence
bayésienne avec des modèles IRT
Résultats des modèles IRT
Regroupement des items à l'aide de
la matrice de similarité
Résultats des méthodes de
clustering

35 / 71

4. CONCLUSION GÉNÉRALE

Conclusion Perspective

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT Résultats des modèles IRT

Regroupement des items à l'aide de la matrice de similarité Résultats des méthodes de clustering

3. CONTRIBUTIONS

Approche proposée

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT Résultats des modèles IRT

Regroupement des items à l'aide de la matrice de similarité Résultats des méthodes de clustering

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT

Abdou Abarchi Aboubacar

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT

Stan est plate-forme de modélsation statistique et d'inference statistique bayésienne.

le bloc de données

```
functions {
}
data {
}
parameters {
}
transformed parameters {
}
model {
}
generated quantities {
}
```

■ Spécification et construction des modèles

le bloc de données

```
data {
    int < lower = 1 > N;
    int < lower = 1 > I;
    int < lower = 1 > S;
    int < lower = 1, upper = 1 > item [N];
    int < lower = 1, upper = S > subject [N];
    int < lower = 0, upper = 1 > grade [N];
}
```

Données dans un dictionnaire

```
{'I': 1084,
'N': 809694,
'S': 574,
'grade': array([0,...,1]),
'item': array([563,...,482]),
'subject': array([72,...,395])}
```

41 / 71

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT

■ Spécification et construction des modèles

le bloc de paramètres

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT

■ Spécification et construction des modèles

le bloc modèle (modèle de Rasch)

■ Spécification et construction des modèles

le bloc de données

```
model {
  for(n in 1:N)
    grade[n] ~
        bernoulli_logit(
        ability[subject[n]] -
            difficulty[item[n]]
        + delta);
}
```

Logit

$$inv_logit(x) = \frac{\exp(x)}{1 + \exp(x)}$$
 (9)

(10)

La fonction logistique du modèle de Rasch

$$P(grade = 1) = rac{\exp{[ability - difficulty + delta]}}{1 + \exp{[ability - difficulty + delta]}}$$

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT

■ Spécification et construction des modèles

bloc modèle (modèle 2PL)

45 / 71

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT

■ Spécification et construction des modèles

bloc modèle (modèle 3PL)

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT

■ Inférence

Compilation

```
posteriori = stan.build(_1pl_model, data=train_data,
    random_seed=2021)
```

Échantillonnage

Approche proposée

Application de l'inférence bayésienne avec des modèles IRT

■ Diagnostic de convergence

Rhat

Rhat fait référence à la statistique de réduction d'échelle potentielle, également connue sous le nom de statistique de Gelman-Rubin.

INTRODUCTION PERÇU SUR L'ÉTAT DE L'ART CONTRIBUTIONS CONCLUSION GÉNÉRALE

Approche proposée
Application de l'inférence bayésienne avec des modèles IRT
Résultats des modèles IRT
Regroupement des items à l'aide de la matrice de similarité
Résultats des méthodes de clustering

	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
ability[0]	0.010	0.051	-0.085	0.106	0.005	0.004	104.0	331.0	1.04
ability[1]	-0.217	0.125	-0.443	0.024	0.004	0.003	902.0	3828.0	1.00
ability[2]	0.001	0.108	-0.197	0.212	0.004	0.003	593.0	2261.0	1.01
ability[3]	-0.761	0.050	-0.859	-0.670	0.005	0.003	103.0	317.0	1.03
ability[4]	0.630	0.115	0.418	0.848	0.004	0.003	661.0	2626.0	1.01
difficulty[1080]	0.137	0.075	-0.000	0.282	0.002	0.002	934.0	3027.0	1.00
difficulty[1081]	-0.014	0.137	-0.276	0.237	0.002	0.002	4904.0	4949.0	1.00
difficulty[1082]	-0.189	0.152	-0.478	0.093	0.002	0.002	4880.0	4918.0	1.00
difficulty[1083]	-0.593	0.070	-0.723	-0.464	0.002	0.002	875.0	3064.0	1.01
delta	1.292	0.049	1.197	1.387	0.005	0.004	93.0	161.0	1.06

Abdou Abarchi Aboubacar

15 septembre 2021

Université Ferhat Abbas Sétif 1

Résultats des modèles IRT

Abdou Abarchi Aboubacar

Approche proposée Application de l'inférence bayésienne avec des modèles IRT <mark>Résultats des modèles IRT</mark>

Approcaie proposee Application de l'inférence bayésienne avec des modèles IRT Résultats des modèles IRT

Regroupement des items à l'aide de la matrice de similarité Résultats des méthodes de clustering

	rank	loo	p_loo	d_loo	weight	se	dse	warning	loo_scale
m1_idata_2	0	-4279.236221	28.501067	0.000000	1.000000e+00	54.218211	0.000000	False	log
m2_idata_2	1	-4285.972449	40.110303	6.736228	9.592327e-14	55.074199	3.392657	False	log

Regroupement des items à l'aide de la matrice de similarité

Abdou Abarchi Aboubacar

55 / 71

Matrice Learners/Items

	Item1			Item2			Item3				Item <i>n</i>						
Learner1	CH11	CS11	IH11	IS11	CH12	CS12	IH12	IS12	CH13	CS13	IH13	IS13		CH1n	CS1n	IH1n	IS1n
Learner2	CH21	CS21	IH21	IS21	CH22	CS22	IH22	IS22	CH23	CS23	IH23	IS23		CH2n	CS2n	IH2n	IS2n
													•••				
Learner <i>j</i>	CHj1	CSj1	IHj1	ISj1	CHj2	CSj2	IHj2	ISj2	СНјЗ	CSj3	IHj3	ISj3		CHjn	CSjn	lHjn	ISjn

Abdou Abarchi Aboubacar 15 septembre 2021 Université Ferhat Abbas Sétif 1

Application de l'inférence bayésienne avec des modèles IRT Résultats des modèles IRT

Regroupement des items à l'aide de la matrice de similarité Résultats des méthodes de clustering

Approche proposée

Regroupement des items à l'aide de la matrice de similarité

Approche proposée

Regroupement des items à l'aide de la matrice de similarité

■ Les méthodes de clustering utilisées :

1: K-means clustering

Regroupement des items à l'aide de la matrice de similarité

Approche proposée

Regroupement des items à l'aide de la matrice de similarité

■ Les méthodes de clustering utilisées :

2 : Clustering hiérarchique agglomératif

pproche proposée

Application de l'inférence bayésienne avec des modèles IRT Résultats des modèles IRT

Regroupement des items à l'aide de la matrice de similarité Résultats des méthodes de clustering

Approche proposée

Regroupement des items à l'aide de la matrice de similarité

■ Les méthodes de clustering utilisées :

3 : **Fuzzy clustering**

Approche proposée Application de l'inférence bayésienne avec des modèles IRT Résultats des modèles IRT

Regroupement des items à l'aide de la matrice de similarité Résultats des méthodes de clustering

Résultats des méthodes de clustering

Abdou Abarchi Aboubacar

■ Réduction de dimensionnalité avec ACP

64 / 71

■ Clustering hiérarchique agglomératif

Regroupement des items à l'aide de la matrice de similarit Résultats des méthodes de clustering

■ Clustering hiérarchique agglomératif

approche proposee Application de l'inférence bayésienne avec des modèles IRT Résultats des modèles IRT

1. INTRODUCTION

Contexte Problématique Objectif

2. APERCU SUR L'ÉTAT DE L'ART

Educational data minig Modèle de l'apprenant Analyse des items Inférence bayésienne

3. CONTRIBUTIONS

Approche proposée
Application de l'inférence
bayésienne avec des modèles IRT
Résultats des modèles IRT
Regroupement des items à l'aide de
la matrice de similarité
Résultats des méthodes de
clustering

68 / 71

4. CONCLUSION GÉNÉRALE

Conclusion Perspective

Conclusion

conclusion

En plus d'une méthode de regroupement des items en composante de connaissance, noter approche inclue dans les méthodes traditionnelles une étape d'analyse et d'évaluation des scores des apprenants.

Perspective

- Extension des modèles IRT aux modèles à plusieurs niveaux,
- ► Appliquer d'autre coefficient de similarité et aussi le critère de calcule de similitude entre items.

Merci pour votre attention!