A Fast and Simple Heuristic for Constrained Two-Level Crossing Reduction

Michael Forster University of Passau, Germany

One-Sided Two-Level Crossing Reduction

- Important and well-known problem in hierarchical graph drawing
 - Two-level graph, permutation of the first level is fixed
 - Wanted: Permutation of the second level with few crossings
- NP-hard → heuristics
- Barycenter heuristic: Sort second level by barycenter values

Constrained Crossing Reduction

- In addition: Constraints
 - Predetermined vertex order
 - Violated / satisfied
- Applications
 - Given by the user
 - Big vertices / clusters
 - Preserving mental map

- Objective
 - Satisfy all constraints
 - Few crossings
- Constraint graph
 - Must be acyclic
 - Important special case: Single path + isolated vertices

Overview

- Introduction
- Previous work
 - Barycenter heuristic extensions
 - Penalty graph method
- New algorithm
 - Idea
 - Details
- Experimental results
 - Comparison to the penalty graph method
- Summary

Previous Work: Barycenter Extensions

- Sander [1996]
 - Extends iterative two-level crossing reduction algorithms
 - Start with arbitrary admissible permutation
 - Execute updates only if no violations
- Waddle [2000]
 - Compute barycenter values
 - Violated constraint: Change barycenter value of source vertex
- Evaluation
 - Very fast
 - Medium quality
 - Especially bad for many constraints

Previous Work: Penalty Graph Method

- Schreiber [2001], Finocchi [2001]
 - Compute the penalty graph
 - Insert constraints as ∞-edges
 - Find a feedback arc set with small weight (NP-hard)
 - Sort vertices topologically
- Evaluation (Experimental results of Schreiber)
 - High quality (up to 15% less crossings)
 - Significantly slower

Idea

- New extension of barycenter heuristic
- First step: compute barycenter values b(v) for all vertices
- Consider a constraint (s, t)
 - \blacksquare b(s) > b(t) \rightarrow violated by sorting
 - $b(s) < b(t) \rightarrow satisfied by sorting$
- Violation must be prohibited
 - Sander: Prohibit swapping of s and t
 - Waddle: Increase barycenter value of s

GD 2004

Idea

- Our Assumption
 - Violated constraint → No other vertices between the end vertices
- Valid?
 - True for some special cases
 - False in general
- But: Justified by good experimental results (see later)

Algorithm

- For every violated constraint
 - Replace end vertices with a single vertex
 - Compute barycenter value in constant time:

$$b(s) \cdot deg(s) + b(t) \cdot deg(t)$$

$$3(c) = deg(s) + deg(t)$$

- No constraint cycles must be introduced
 - Constraints must be processed in correct order
 - Modified topological sorting
- When no violated constraints are left
 - Sort remaining vertices by barycenter values
 - Re-insert removed vertices

Experimental Results

Experimental Results

Summary

- Constrained one-sided two-level crossing minimization
 - New heuristic
 - Based on barycenter heuristic
- Quality
 - Better than other simple extensions
 - Smaller dependency on the number of constraints
 - Comparable to penalty graph approach
- Running time
 - O($|V_2| \log |V_2| + |E| + |C|^2$)
 - Significantly faster than penalty graph approach
- Easy to implement (~ 100 LOC)
- Future Research
 - Improve complexity
 - Investigate linear constraint graphs (sifting?)

The End

Thank you for your attention!