Calculus I Rational function asymptotes, part 1

Todor Miley

2019

$$\lim_{x\to\infty}\frac{\sqrt{3x^2+1}}{2x-3}$$

$$\lim_{x\to-\infty}\frac{\sqrt{3x^2+1}}{2x-3}$$

$$\lim_{x\to\infty}\frac{\sqrt{3x^2+1}}{2x-3}\cdot\frac{\frac{1}{x}}{\frac{1}{x}}$$

$$\lim_{x\to-\infty}\frac{\sqrt{3x^2+1}}{2x-3}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$\lim_{x\to-\infty}\frac{\sqrt{3x^2+1}}{2x-3}$$

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$=\lim_{x o\infty}rac{\sqrt{?}}{?}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.

$$\lim_{x\to -\infty} \frac{\sqrt{3x^2+1}}{2x-3}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{?}$$

$$\lim_{x\to-\infty}\frac{\sqrt{3x^2+1}}{2x-3}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{\frac{2x - 3}{x}} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{\frac{2}{x}}$$

$$\lim_{x\to-\infty}\frac{\sqrt{3x^2+1}}{2x-3}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{\frac{2x - 3}{x}} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$Y = \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{\frac{2 - \frac{3}{x}}{x}}$$

$$\lim_{x\to-\infty}\frac{\sqrt{3x^2+1}}{2x-3}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$\lim_{x\to-\infty}\frac{\sqrt{3x^2+1}}{2x-3}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$= \frac{\sqrt{3 + 0}}{2 - 0} = \frac{\sqrt{3}}{2}$$

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$= \frac{\sqrt{3 + 0}}{2 - 0} = \frac{\sqrt{3}}{2}$$

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.
If $x < 0$ then $x = -\sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$= \frac{\sqrt{3 + 0}}{2 - 0} = \frac{\sqrt{3}}{2}$$
If $x > 0$ then $x = \sqrt{x^2}$.
$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{-1}{\sqrt{x^2}}}{\frac{1}{x}}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.
If $x < 0$ then $x = -\sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$= \frac{\sqrt{3 + 0}}{2 - 0} = \frac{\sqrt{3}}{2}$$

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{-1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to -\infty} -\frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.
If $x < 0$ then $x = -\sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$= \frac{\sqrt{3 + 0}}{2 - 0} = \frac{\sqrt{3}}{2}$$

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{-1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to -\infty} -\frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = -\frac{\sqrt{3}}{2}$$

Find the horizontal and vertical asymptotes of $f(x) = \frac{\sqrt{3x^2+1}}{2x-3}$.

If x > 0 then $x = \sqrt{x^2}$. If x < 0 then $x = -\sqrt{x^2}$. Vertical Asymptote:

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$= \frac{\sqrt{3 + 0}}{2 - 0} = \frac{\sqrt{3}}{2}$$

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{-1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to -\infty} -\frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = -\frac{\sqrt{3}}{2}$$

If
$$x > 0$$
 then $x = \sqrt{x^2}$.
If $x < 0$ then $x = -\sqrt{x^2}$.
Vertical Asymptote:

$$X=\frac{3}{2}$$
.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$= \frac{\sqrt{3 + 0}}{2 - 0} = \frac{\sqrt{3}}{2}$$

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{-1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to -\infty} -\frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = -\frac{\sqrt{3}}{2}$$

Find the horizontal and vertical asymptotes of $f(x) = \frac{\sqrt{3x^2+1}}{2x-3}$.

If x > 0 then $x = \sqrt{x^2}$. If x < 0 then $x = -\sqrt{x^2}$. Vertical Asymptote: $x = \frac{3}{2}$.

$$\lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = \frac{\sqrt{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 2 - 3 \lim_{x \to \infty} \frac{1}{x}}$$

$$= \frac{\sqrt{3} + 0}{2 - 0} = \frac{\sqrt{3}}{2}$$

$$= \frac{\sqrt{x^2}}{2x - 3} \cdot \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{\sqrt{3x^2 + 1}}{2x - 3} \cdot \frac{\frac{-1}{\sqrt{x^2}}}{\frac{1}{x}}$$

$$= \lim_{x \to -\infty} -\frac{\sqrt{3 + \frac{1}{x^2}}}{2 - \frac{3}{x}} = -\frac{\sqrt{3}}{2}$$