Ревидиран симплекс метод

input Проблем линеарног програмирања у канонском облику

$$(min)f = c_1x_1 + \dots + c_nx_n$$
$$k_1x_1 + \dots + k_nx_n = b$$
$$x_1, \dots, x_n \ge 0$$

 $k_1, ..., k_n$ колоне матрице A

 $Q=\{i|k_i$ небазисна колона $\},\ P=\{j|k_j$ базисна колона $\}$ $x^0=(x^0_1,...,x^0_n)$ базисно могуће почетно решење

K1 Очисти функцију циља $f=\sum_{p\in P}c_px_p+\sum_{q\in Q}c_qx_q$ од базисних променљивих тј нађи $u=(u_1,...,u_m)$ такво да је $uk_p=c_p, p\in P.$ Нова ("чиста") функција циља је $f=ub+\sum_{q\in Q}(c_q-uk_q)x_q$

K2 Да ли је $r_j \geq 0, \forall j \in Q$?

Ако је \top онда STOP. x^0 је оптимално решење.

Ако је \perp онда $\rightarrow K3$

K3 За изабрано $j \in Q$ такво да је $r_j < 0$ реши систем

 $\sum_{i\in P} y_i k_i = k_j$, а потом одреди параметарско решење

$$x(t) = \begin{cases} x_i^0 - ty_i, & i \in P \\ t, & i = j \\ 0, & i \in Q \setminus \{j\} \end{cases}$$

K4 Одреди највеће ненегативно $t \ge 0$ такво да је $x_i^0 - ty_i \ge 0$ за $i \in P$.

Ако \sharp такво $t \to STOP$. f је неограничена одоздо.

Ако \exists такво t, стави $t = t^*$ и $\to K5$.

K5 Изабери $s \in P$ такво да је $x_s - t^*y_s = 0$ и $y_s > 0$.

Замени старо базисно могуће решење са $x^0 = (x_1^1, ..., x_n^1)$ где је

$$x_{i}^{1} = \begin{cases} x_{i}^{0} - t^{*}y_{i}, & i \in P \setminus \{s\} \\ t^{*}, & i = j \\ 0, & -- \end{cases}$$

Замени старо P са $P=(P\backslash \{s\})\cup \{j\},\ Q=(Q\backslash \{j\})\cup \{s\}$ и $\to K1.$

ТЕСТ ПРИМЕР

$$(min)f = -x - 2y$$
$$x + y \le 3$$
$$-x + 3y \le 5$$
$$x, y \ge 0$$

input

После пребацивања на канонски облик... $P=\{3,4\},\ Q=\{1,2\},\ x^0=(0,0,3,5).$ output $x^0=(1,2,0,0),\ f_{min}=-5.$