多媒體技術概論 Assignment 2 Report

Method Description

```
function [y, filter] = createFilter(in, fs, N, window, pass, fc)
```

in 為用 wavread 讀取的振幅原值,fs 則為取樣頻率。

N 是 filter 的 order, 取 1001。

window 是選用的 window function, pass 則是 filter 的種類。

fc 則為 cutoff frequency。

```
% Normalization
fc=fc/fs;
middle=round(N/2);
fltr=zeros(1, N);
```

將 fc 標準化使得 π 等於 Nyquist 角頻率

```
if strcmp(pass, 'low-pass') ==
     for n=-round(N/2)+1:round(N/2)
            fltr(middle)=1;
         else
             fltr(n+middle)=sin(2*pi*fc*n)/(pi*n)
                                         elseif strcmp(pass, 'high-pass') ==
                                            for n=-round(N/2)+1:round(N/2)
     fltr(middle)=2*fc;
                                                if n==0
                                                    fltr(middle)=1;
elseif strcmp(pass, 'band-pass') ==1
                                                     fltr(n+middle) = -sin(2*pi*fc*n)/(pi*n);
    for n=-round(N/2)+1:round(N/2)
        if n==0
            fltr(middle)=1:
                                             fltr(middle)=1-2*fc;
            fltr(n+middle) = (sin(2*pi*fc(2)*n) - sin(2*pi*fc(1)*n))/(pi*n);
        end
    fltr(middle)=2*(fc(2)-fc(1));
```

依照給入的 pass 參數做不同的 filtering。

```
% window
if strcmp(window,'Hanning') == 1
    for n = -round(N/2)+1:round(N/2)
    fltr(middle+n) = fltr(middle+n)*(0.5+0.5*cos((2*pi*n)/N));
    end
elseif strcmp(window,'Hamming') == 1
    for n = -round(N/2)+1:round(N/2)
    fltr(middle+n) = fltr(middle+n)*(0.54+0.46*cos((2*pi*n)/N));
    end
elseif strcmp(window,'Blackman') == 1
    for n = -round(N/2)+1:round(N/2)
    fltr(middle+n) = fltr(middle+n)*(0.42+0.5*cos((2*pi*n)/(N-1))+0.08*cos((4*pi*n)/(N-1)));
    end
end
```

依照給入的 window 參數使用不同的 window function 完成 filter 並回傳。

對 input signal 做 convolution,並回傳新的 output signal。

Results

Spectrum of Input signal

Results of Hanning window function

Results of Hamming window function

Results of Blackman window function

Discussion

先用 input spectrum 猜測低、中、高頻資料的大概範圍,再以 Hanning window function 嘗試了幾個 N 的值,反覆多次找出效果最佳的頻率範圍以及 N 值,並用 low-pass, high-pass, band-pass 分別過濾出低頻、高頻、中頻資料。

N=31,三首歌完全分離不出來。

N=91, low-pass 成功把高頻資料篩掉; high-pass 則篩掉了低頻資料,但仔細聽還是有些很小聲的餘音; band-pass 完全沒有篩掉任何歌,但已把高頻及低頻資料的音量降低許多。

N=301, low-pass 篩掉了中頻資料的最高音; high-pass 完全篩掉了低頻及中頻資料, 但中頻資料的些許高音仍未篩掉; band-pass 篩掉了高頻資料, 且大幅降低低頻資料的音量, 但仍未完全篩除。

N=601, low-pass 篩掉了中頻資料,但其最低音仍未被篩除; high-pass 至此已成功篩除低頻及中頻資料; band-pass 至此也成功篩除低頻及高頻資料。

中頻資料最低音仍未篩除

N=1001,成功分離出低、中、高頻三首歌,其結果如 Results 所示。 low-pass threshold=360;high-pass threshold=800;band-pass band=450~720 Hamming 及 Hanning 的效果相差極小,而 Blackman 的結果就比較不一樣,尤其是在 low-pass 的部分,仍會有些微中頻資料未被篩除,在一般環境下應該是聽不出來,要用耳機才聽得出來,因此尚不影響要求的效果;但在相同的參數之下,Hamming 及 Hanning 的 low-pass 都可以完全篩除中頻資料。

Execution

檔案:hw2.m、createFilter.m、hw2 mix.wav 需在同個目錄下。

執行:在 hw2()中傳入要運用的 window function,例:hw2('Hamming') 即可,但

因要處理十張圖,大約需時三分鐘。