$12n_{0118} \ (K12n_{0118})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -647u^{17} + 2375u^{16} + \dots + 9396b - 4651, \ -6142u^{17} + 31873u^{16} + \dots + 9396a - 63899, \\ &u^{18} - 5u^{17} + \dots + 9u + 1 \rangle \\ I_2^u &= \langle au - u^2 + b + a + u + 1, \ -2u^2a + a^2 - 2au + 4u^2 - a + 8, \ u^3 + u^2 + 2u + 1 \rangle \\ I_3^u &= \langle b, \ u^5 - 2u^4 + 4u^3 - 4u^2 + a + 3u - 2, \ u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle \\ I_4^u &= \langle b - u, \ u^2 + a + u + 1, \ u^3 + u^2 + 2u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -647u^{17} + 2375u^{16} + \dots + 9396b - 4651, -6142u^{17} + 31873u^{16} + \dots + 9396a - 63899, u^{18} - 5u^{17} + \dots + 9u + 1 \rangle$$

(i) Arc colorings

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.653682u^{17} - 3.39219u^{16} + \dots - 10.7699u + 6.80066 \\ 0.0688591u^{17} - 0.252767u^{16} + \dots + 0.207322u + 0.494998 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.722542u^{17} - 3.64496u^{16} + \dots - 10.5626u + 7.29566 \\ 0.0688591u^{17} - 0.252767u^{16} + \dots + 0.207322u + 0.494998 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.257450u^{17} - 0.780438u^{16} + \dots - 0.469455u - 2.80502 \\ -0.357812u^{17} + 1.57620u^{16} + \dots + 3.73297u + 0.156982 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.00500213u^{17} + 0.206152u^{16} + \dots + 1.80449u - 2.50234 \\ -0.181141u^{17} + 0.997233u^{16} + \dots + 2.45732u - 0.00500213 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.232546u^{17} - 1.30726u^{16} + \dots - 5.17156u + 5.55034 \\ 0.181141u^{17} - 0.997233u^{16} + \dots - 2.45732u + 0.00500213 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{2501}{1566}u^{17} + \frac{12545}{1566}u^{16} + \dots + \frac{44011}{3132}u - \frac{28247}{3132}u^{16} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{18} + 10u^{17} + \dots + 526u + 1$
c_{2}, c_{4}	$u^{18} - 10u^{17} + \dots + 14u + 1$
c_{3}, c_{6}	$u^{18} - 4u^{17} + \dots + 256u - 64$
c_5, c_9	$u^{18} + 9u^{17} + \dots - 2048u - 512$
c_7, c_8, c_{11}	$u^{18} + 5u^{17} + \dots - 9u + 1$
c_{10}, c_{12}	$u^{18} - 5u^{17} + \dots - 497u + 49$

Crossings	Riley Polynomials at each crossing
c_1	$y^{18} + 134y^{17} + \dots - 240078y + 1$
c_2, c_4	$y^{18} - 10y^{17} + \dots - 526y + 1$
c_3, c_6	$y^{18} + 48y^{17} + \dots - 81920y + 4096$
c_5, c_9	$y^{18} - 63y^{17} + \dots - 3014656y + 262144$
c_7, c_8, c_{11}	$y^{18} + 13y^{17} + \dots - 109y + 1$
c_{10}, c_{12}	$y^{18} - 47y^{17} + \dots - 257005y + 2401$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.405109 + 0.770998I		
a = -0.291015 - 0.772728I	-1.63880 - 0.39759I	1.43515 + 1.37331I
b = 1.202570 + 0.386446I		
u = -0.405109 - 0.770998I		
a = -0.291015 + 0.772728I	-1.63880 + 0.39759I	1.43515 - 1.37331I
b = 1.202570 - 0.386446I		
u = 0.725373 + 0.450694I		
a = -1.51182 - 2.82088I	4.14833 - 1.63757I	3.60384 - 0.80616I
b = 0.43981 + 1.86757I		
u = 0.725373 - 0.450694I		
a = -1.51182 + 2.82088I	4.14833 + 1.63757I	3.60384 + 0.80616I
b = 0.43981 - 1.86757I		
u = 1.194030 + 0.232985I		
a = 1.74711 - 4.55330I	-16.4086 + 6.1635I	4.05351 - 2.26793I
b = -1.67536 + 2.69388I		
u = 1.194030 - 0.232985I		
a = 1.74711 + 4.55330I	-16.4086 - 6.1635I	4.05351 + 2.26793I
b = -1.67536 - 2.69388I		
u = 0.360607 + 1.183990I		
a = 0.448733 + 1.258690I	1.63305 + 5.70935I	3.81042 - 6.18784I
b = 0.550074 - 0.990997I		
u = 0.360607 - 1.183990I		
a = 0.448733 - 1.258690I	1.63305 - 5.70935I	3.81042 + 6.18784I
b = 0.550074 + 0.990997I		
u = -0.110512 + 1.276710I		
a = -0.353124 - 0.089950I	-3.23015 - 1.96870I	3.57157 + 3.68129I
b = -0.038877 + 0.478514I		
u = -0.110512 - 1.276710I		
a = -0.353124 + 0.089950I	-3.23015 + 1.96870I	3.57157 - 3.68129I
b = -0.038877 - 0.478514I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.250746 + 1.287460I		
a = -1.43169 + 2.15528I	-4.27182 - 2.53682I	-10.79254 + 3.39126I
b = -0.532012 - 0.309792I		
u = -0.250746 - 1.287460I		
a = -1.43169 - 2.15528I	-4.27182 + 2.53682I	-10.79254 - 3.39126I
b = -0.532012 + 0.309792I		
u = -0.456369		
a = -0.475415	0.789107	12.7820
b = -0.212377		
u = 0.48335 + 1.48077I		
a = -0.44539 - 2.81436I	17.6239 + 12.0475I	1.51476 - 4.65853I
b = -1.31271 + 2.12200I		
u = 0.48335 - 1.48077I		
a = -0.44539 + 2.81436I	17.6239 - 12.0475I	1.51476 + 4.65853I
b = -1.31271 - 2.12200I		
u = 0.77938 + 1.42726I		
a = 2.16835 + 3.72673I	19.6304 + 0.9404I	2.54501 - 0.81034I
b = -0.76484 - 3.84358I		
u = 0.77938 - 1.42726I		
a = 2.16835 - 3.72673I	19.6304 - 0.9404I	2.54501 + 0.81034I
b = -0.76484 + 3.84358I		
u = -0.0963755		
a = 7.81308	-1.21816	-10.2650
b = 0.475099		

 $II. \\ I_2^u = \langle au-u^2+b+a+u+1, \ -2u^2a+a^2-2au+4u^2-a+8, \ u^3+u^2+2u+1 \rangle$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a\\-au + u^{2} - a - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -au + u^{2} - u - 1\\-au + u^{2} - a - u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2}a - 3\\-u^{2}a - 2au - a - 3u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\-u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1\\-u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1\\-u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1\\-u^{2} - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2}a - 3\\-u^{2}a - 2au - a - 3u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2au - a - 3u - 5\\-u^{2}a - 2au - a - 3u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2a 10au + 11u^2 4a$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_{11}	$(u^3 - u^2 + 2u - 1)^2$
c_2, c_{10}, c_{12}	$(u^3 + u^2 - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5, c_9	u^6
c_6, c_7, c_8	$(u^3 + u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_6 \\ c_7, c_8, c_{11}$	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4, c_{10} c_{12}	$(y^3 - y^2 + 2y - 1)^2$
c_5, c_9	y^6

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -1.06984 + 1.06527I	-5.65624I	-0.00556 + 4.66003I
b = -0.215080 - 1.307140I		
u = -0.215080 + 1.307140I		
a = -1.68504 + 0.42445I	-4.13758 - 2.82812I	-6.5820 + 15.2977I
b = -0.569840		
u = -0.215080 - 1.307140I		
a = -1.06984 - 1.06527I	5.65624I	-0.00556 - 4.66003I
b = -0.215080 + 1.307140I		
u = -0.215080 - 1.307140I		
a = -1.68504 - 0.42445I	-4.13758 + 2.82812I	-6.5820 - 15.2977I
b = -0.569840		
u = -0.569840		
a = 0.25488 + 3.03873I	4.13758 - 2.82812I	4.08755 + 6.14773I
b = -0.215080 - 1.307140I		
u = -0.569840		
a = 0.25488 - 3.03873I	4.13758 + 2.82812I	4.08755 - 6.14773I
b = -0.215080 + 1.307140I		

$$III. \\ I_3^u = \langle b, \ u^5 - 2u^4 + 4u^3 - 4u^2 + a + 3u - 2, \ u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{5} + 2u^{4} - 4u^{3} + 4u^{2} - 3u + 2 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{5} + 2u^{4} - 4u^{3} + 4u^{2} - 3u + 2 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{5} + u^{4} - 2u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ u^{5} - u^{4} + 2u^{3} - u^{2} + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{4} - 2u^{3} + 4u^{2} - 2u + 2 \\ -u^{5} + u^{4} - 2u^{3} + u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^5 + 7u^4 13u^3 + 20u^2 15u + 13$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_3, c_6	u^6
C ₄	$(u+1)^6$
<i>C</i> ₅	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$
c_{7}, c_{8}	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$
c_9, c_{10}, c_{12}	$u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1$
c_{11}	$u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_6	y^6
c_5, c_9, c_{10} c_{12}	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$
c_7, c_8, c_{11}	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.873214		
a = 0.422181	6.01515	10.0580
b = 0		
u = -0.138835 + 1.234450I		
a = -0.26610 + 1.72116I	-4.60518 - 1.97241I	-6.63014 + 2.86834I
b = 0		
u = -0.138835 - 1.234450I		
a = -0.26610 - 1.72116I	-4.60518 + 1.97241I	-6.63014 - 2.86834I
b = 0		
u = 0.408802 + 1.276380I		
a = 0.417699 - 0.090629I	2.05064 + 4.59213I	5.72906 - 1.01197I
b = 0		
u = 0.408802 - 1.276380I		
a = 0.417699 + 0.090629I	2.05064 - 4.59213I	5.72906 + 1.01197I
b = 0		
u = -0.413150		
a = 4.27462	-0.906083	23.7440
b = 0		

IV.
$$I_4^u = \langle b - u, u^2 + a + u + 1, u^3 + u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} - u - 1 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} - 1 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 3u 4$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_{11}	$u^3 - u^2 + 2u - 1$
c_2, c_{10}, c_{12}	$u^3 + u^2 - 1$
C ₄	$u^3 - u^2 + 1$
c_5, c_9	u^3
c_6, c_7, c_8	$u^3 + u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_6 \\ c_7, c_8, c_{11}$	$y^3 + 3y^2 + 2y - 1$
c_2, c_4, c_{10} c_{12}	$y^3 - y^2 + 2y - 1$
c_5, c_9	y^3

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = 0.877439 - 0.744862I	0	3.29468 - 1.67231I
b = -0.215080 + 1.307140I		
u = -0.215080 - 1.307140I		
a = 0.877439 + 0.744862I	0	3.29468 + 1.67231I
b = -0.215080 - 1.307140I		
u = -0.569840		
a = -0.754878	0	-3.58940
b = -0.569840		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^3-u^2+2u-1)^3(u^{18}+10u^{17}+\cdots+526u+1)$
c_2	$((u-1)^6)(u^3+u^2-1)^3(u^{18}-10u^{17}+\cdots+14u+1)$
<i>c</i> ₃	$u^{6}(u^{3} - u^{2} + 2u - 1)^{3}(u^{18} - 4u^{17} + \dots + 256u - 64)$
c_4	$((u+1)^6)(u^3-u^2+1)^3(u^{18}-10u^{17}+\cdots+14u+1)$
<i>C</i> ₅	$u^{9}(u^{6} + u^{5} + \dots - u - 1)(u^{18} + 9u^{17} + \dots - 2048u - 512)$
<i>c</i> ₆	$u^{6}(u^{3} + u^{2} + 2u + 1)^{3}(u^{18} - 4u^{17} + \dots + 256u - 64)$
c_{7}, c_{8}	$(u^{3} + u^{2} + 2u + 1)^{3}(u^{6} - u^{5} + 3u^{4} - 2u^{3} + 2u^{2} - u - 1)$ $\cdot (u^{18} + 5u^{17} + \dots - 9u + 1)$
<i>c</i> ₉	$u^{9}(u^{6} - u^{5} + \dots + u - 1)(u^{18} + 9u^{17} + \dots - 2048u - 512)$
c_{10}, c_{12}	$(u^{3} + u^{2} - 1)^{3}(u^{6} - u^{5} - 3u^{4} + 2u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{18} - 5u^{17} + \dots - 497u + 49)$
c_{11}	$(u^{3} - u^{2} + 2u - 1)^{3}(u^{6} + u^{5} + 3u^{4} + 2u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{18} + 5u^{17} + \dots - 9u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1	$((y-1)^6)(y^3+3y^2+2y-1)^3(y^{18}+134y^{17}+\cdots-240078y+1)$	
c_2, c_4	$((y-1)^6)(y^3-y^2+2y-1)^3(y^{18}-10y^{17}+\cdots-526y+1)$	
c_3, c_6	$y^{6}(y^{3} + 3y^{2} + 2y - 1)^{3}(y^{18} + 48y^{17} + \dots - 81920y + 4096)$	
c_5,c_9	$y^{9}(y^{6} - 7y^{5} + 17y^{4} - 16y^{3} + 6y^{2} - 5y + 1)$ $\cdot (y^{18} - 63y^{17} + \dots - 3014656y + 262144)$	
c_7, c_8, c_{11}	$(y^3 + 3y^2 + 2y - 1)^3(y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1)$ $\cdot (y^{18} + 13y^{17} + \dots - 109y + 1)$	
c_{10},c_{12}	$(y^3 - y^2 + 2y - 1)^3 (y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)$ $\cdot (y^{18} - 47y^{17} + \dots - 257005y + 2401)$	