Doppelmuldenpotential

Allgemeiner Ansatz:

$$\psi_I = Ae^{ikx} + Be^{-ikx} \qquad \text{mit } k = \sqrt{\frac{2m}{\hbar}E}$$
 (1)

$$\psi_{II} = Ce^{qx} + De^{-qx} \qquad \text{mit } q = \sqrt{\frac{2m}{\hbar}(V - E)}$$
 (2)

$$\psi_{III} = Fe^{ikx} + Ge^{-ikx}$$
 mit (siehe ψ_I) $k = \sqrt{\frac{2m}{\hbar}E}$ (3)

Die Randbedingung besagt, dass die Wellenfuktion am Rand des unendlichen Potentials verschwindet. Das kann man für eine Konkretisierung von Teilbereich I und III ausnutzen:

$$\psi_I(-b) = 0 = Ae^{-ikb} + Be^{ikb} \tag{4}$$

$$\Leftrightarrow A = -Be^{2ikb} \qquad \text{A in 1 einsetzen} \tag{5}$$

$$\psi_I(x) = -Be^{2ikb}e^{ikx} + Be^{-ikx} \tag{6}$$

$$= -B(e^{2ikb}e^{ikx} - e^{-ikx}) \tag{7}$$

$$= -Be^{ikb}(e^{ikb}e^{ikx} - e^{-ikb}e^{-ikx}) \tag{8}$$

$$= \underbrace{-Be^{ikb}2i}_{G}\sin(k(x+b)) \tag{9}$$

$$\Rightarrow \psi_I(x) = \alpha \sin(k(x+b)) \tag{10}$$

$$\psi_{III}(b) = 0 = Fe^{ikb} + Ge^{-ikb} \tag{11}$$

$$\Leftrightarrow G = -Fe^{2ikb} \qquad G \text{ in 3 einsetzen}$$
 (12)

$$\psi_{III}(x) = Fe^{ikx} - Fe^{2ikb}e^{-ikx} \tag{13}$$

$$= -F(e^{2ikb}e^{-ikx} - e^{ikx}) \tag{14}$$

$$= -Fe^{ikb}(e^{ikb}e^{-ikx} - e^{-ikb}e^{ikx}) \tag{15}$$

$$=\underbrace{-Fe^{ikb}}_{\beta}\sin(k(-x+b))\tag{16}$$

$$= \beta \sin(k(-x+b)) \tag{17}$$

$$\Rightarrow \psi_{III}(x) = \beta \sin(k(b-x)) \tag{18}$$

Für den mittleren Bereich II gilt es die Anschlussbedingungen zu anderen Bereichen zu untersuchen. Anschluss von I an II

$$\psi_I(-a) = \psi_{II}(-a) \quad \to \alpha \sin(k(b-a)) = Ce^{-qa} + De^{qa} \tag{19}$$

$$\psi_I(-a) = \psi_{II}(-a) \quad \to \alpha \sin(k(b-a)) = Ce^{-qa} + De^{qa}$$

$$\frac{d}{dx}\psi_I(-a) = \frac{d}{dx}\psi_{II}(-a) \quad \to k\alpha \cos(k(b-a)) = qCe^{-qa} - qDe^{qa}$$
(20)

und Anschluss von II an III

$$\psi_{III}(a) = \psi_{II}(a) \quad \to \beta \sin(k(b-a)) = Ce^{qa} + De^{-qa} \tag{21}$$

$$\frac{d}{dx}\psi_{III}(a) = \frac{d}{dx}\psi_{II}(-a) \quad \to -k\beta\cos(k(b-a)) = qCe^{qa} - qDe^{-qa}$$
(22)

NR um zu der Beziehung zwischen den Konstanten C und D gelangen: (19) – (21)

$$(\alpha - \beta)\sin(k(b - a)) = Ce^{-qa} + De^{qa} - Ce^{qa} - De^{-qa}$$
(23)

$$= C(e^{-qa} - e^{qa}) + D(e^{qa} - e^{-qa})$$
(24)

$$= -2C\sinh(qa) + 2D\sinh(qa) \tag{25}$$

$$= 2(D - C)\sinh(qa) \tag{26}$$

$$\Rightarrow (\alpha - \beta)\sin(k(b - a)) = -2(C - D)\sinh(qa) \tag{27}$$

(20) + (22)

$$k(\alpha - \beta)\cos(k(b - a)) = qCe^{-qa} - qDe^{qa} + qCe^{qa} - qDe^{-qa}$$

$$\tag{28}$$

$$= q(C(e^{-qa} + e^{qa}) - D(e^{qa} + e^{-qa})$$
(29)

$$= 2q(C\cosh(qa) - D\cosh(qa) \tag{30}$$

$$=2q(C-D)cosh(qa) (31)$$

$$\Rightarrow k(\alpha - \beta)\cos(k(b - a)) = 2q(C - D)\cosh(qa) \tag{32}$$

 $\frac{(32)}{(27)}$

$$\frac{k(\alpha - \beta)\cos(k(b - a))}{(\alpha - \beta)\sin(k(b - a))} = \frac{2q(C - D)\cosh(qa)}{-2(C - D)\sinh(qa)}$$
(33)

$$\frac{k\cos(k(b-a))}{\sin(k(b-a))} = \frac{-q\cosh(qa)}{\sinh(qa)} \tag{34}$$

$$k\cot(k(b-a)) = -q\coth(qa) \tag{35}$$

(19) + (21)

$$(\alpha + \beta)\sin(k(b-a)) = Ce^{-qa} + De^{qa} + Ce^{qa} + De^{-qa}$$
(36)

$$= C(e^{-qa} + e^{qa}) + D(e^{qa} + e^{-qa})$$
(37)

$$= -2C\cosh(qa) + 2D\cosh(qa) \tag{38}$$

$$= 2(C+D)\cosh(qa) \tag{39}$$

$$\Rightarrow (\alpha + \beta)\sin(k(b-a)) = 2(C+D)\cosh(qa) \tag{40}$$

(20) - (22)

$$k(\alpha - \beta)\cos(k(b - a)) = qCe^{-qa} - qDe^{qa} - qCe^{qa} + qDe^{-qa}$$
(41)

$$= q(C(e^{-qa} - e^{qa}) - D(e^{qa} - e^{-qa})$$
(42)

$$= -2q(C\sinh(qa) - D\sinh(qa) \tag{43}$$

$$= -2q(C+D)\sinh(qa) \tag{44}$$

$$\Rightarrow k(\alpha - \beta)\cos(k(b - a)) = -2q(C + D)\sinh(qa) \tag{45}$$

 $\frac{(45)}{(40)}$

$$\frac{k(\alpha - \beta)\cos(k(b - a))}{(\alpha - \beta)\sin(k(b - a))} = \frac{-2q(C + D)\sinh(qa)}{2(C + D)\cosh(qa)}$$

$$(46)$$

$$\frac{k\cos(k(b-a))}{\sin(k(b-a))} = \frac{-q\sinh(qa)}{\cosh(qa)} \tag{47}$$

$$k\cot(k(b-a)) = -q\tanh(qa) \tag{48}$$

Für gerade Parität ergibt sich: $\frac{(20)}{(19)}$

$$\frac{k\alpha\cos(k(b-a))}{\alpha\sin(k(b-a))} = \frac{qCe^{-qa} - qDe^{qa}}{Ce^{-qa} + De^{qa}} \tag{49}$$

$$\frac{k\alpha\cos(k(b-a))}{\alpha\sin(k(b-a))} = \frac{qCe^{-qa} - qDe^{qa}}{Ce^{-qa} + De^{qa}}$$

$$\underbrace{k\cot(k(b-a))}_{(46)} = \frac{qCe^{-qa} - qDe^{qa}}{Ce^{-qa} + De^{qa}}$$
(50)

$$\frac{1}{\sqrt{q}} \tanh(qa) = \frac{1}{\sqrt{q}} \frac{De^{qa} - Ce^{-qa}}{Ce^{-qa} + De^{qa}}$$

$$\frac{\sinh(qa)}{\cosh(qa)} = \frac{De^{qa} - Ce^{-qa}}{Ce^{-qa} + De^{qa}}$$
(51)

$$\frac{\sinh(qa)}{\cosh(qa)} = \frac{De^{qa} - Ce^{-qa}}{Ce^{-qa} + De^{qa}} \tag{52}$$

Durch den Vergleich der rechten mit der linken Seite der Gleichung () steht jeweils im Nenner und Zähler die Definition von sinh bzw. cosh aber nur für den Fall wenn die Konstanten C = D jeweils gleich sind.

$$\Rightarrow C = D$$