Propositional logic 1

Semantics 1.1

 $\Gamma = F_1, \dots, F_n \ (promises); \ F \ conclusion; \ \Gamma \vDash F \iff F \ \text{is a logical consequence of } \Gamma.$ Valid formula \iff Tautology \iff True in any circumstance. Inconsistent formula \iff Unsatisfiable formula \iff False in any circumstance. G valid $\iff \neg G$ inconsistent.

Truth table of main logical connectives							
P_1	P_2	$\neg P_1$	$P_1 \wedge P_2$	$P_1 \vee P_2$	$P_1 \rightarrow P_2$	$P_1 \leftrightarrow P_2$	
Т	Т	F	Т	Т	Т	Т	
Т	F	F	F	Т	F	F	
F	Т	Т	F	Т	Т	F	
F	F	Т	F	F	Т	Т	

F logically equivalent to $G \iff F \equiv G \iff (F \models G \text{ and } G \models F).$

1.2 Calculus

Logical equivalence rules						
$P \wedge Q$	=	$Q \wedge P$	Commutativity of AND			
$P \lor Q$	=	$Q \lor P$	Commutativity of OR			
$(P \wedge Q) \wedge R$	=	$P \wedge (Q \wedge R)$	Associativity of AND			
$(P \lor Q) \lor R$	=	$P \vee (Q \vee R)$	Associativity of OR			
$\neg(\neg P)$	=	P	Double-negation elimination			
P o Q	=	$\neg P \rightarrow \neg Q$	Contraposition			
P o Q	=	$\neg P \land Q$	Implication elimination			
$P \leftrightarrow Q$	=	$(P \to Q) \land (Q \to P)$	Biconditional elimination			
$\neg (P \land Q)$	=	$\neg P \lor \neg Q$	De Morgan			
$\neg (P \lor Q)$		$\neg P \land \neg Q$	De Morgan			
$P \wedge (Q \vee R)$		$(P \wedge Q) \vee (P \wedge R)$	Distributivity of AND over OR			
$P \lor (Q \land R)$	=	$(P \vee Q) \wedge (P \vee R)$	Distributivity of OR over AND			

Conjunctive Normal Form: $F = F_1 \wedge F_2 \wedge ... \wedge F_n$ where $F_i = F_{i1} \vee F_{i2} \vee ... \vee F_{ik}$ (disjunction of atoms). Disjunctive Normal Form: $F = F_1 \vee F_2 \vee ... \vee F_n$ where $F_i = F_{i1} \wedge F_{i2} \wedge ... \wedge F_{ik}$ (conjunction of atoms). Deduction Theorem: $(F_1 \wedge F_2 \wedge ... \wedge F_n) \models G \iff (\models (F_1 \wedge F_2 \wedge ... \wedge F_n)) \rightarrow G$ Proof by refutation: $(F_1 \wedge F_2 \wedge ... \wedge F_n) \models G \iff F_1 \wedge F_2 \wedge ... \wedge F_n \wedge \neg G$ inconsistent.

1.2.1 Natural deduction

$$\begin{array}{lll} \text{AND:} & \frac{\varphi}{\varphi \wedge \theta} \wedge I & \frac{\varphi \wedge \theta}{\varphi} \wedge E & \frac{\varphi \wedge \theta}{\varphi} \wedge E. \\ \text{OR:} & \frac{\varphi}{\varphi \vee \theta} \vee I & \frac{\theta}{\varphi \vee \theta} \vee I & . \\ & & \vdots & & \\ \text{IMPLIES:} & \frac{\theta}{\varphi \rightarrow \theta} \rightarrow I & \frac{\varphi \quad \varphi \rightarrow \theta}{\theta} \rightarrow E. \\ & & & \vdots \\ \text{Ex falso sequitur quodlibet:} & \frac{\bot}{\varphi} \bot. \text{ Reduction ad absurdum:} & \frac{\bot}{\varphi} RAA. \\ \Gamma \vdash \varphi \iff \Gamma \vDash \varphi \text{ (Completeness theorem: } \Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi; \text{ Soundness theorem: } \Gamma \vdash \varphi \Leftarrow \Gamma \vDash \varphi). \end{array}$$

1.2.2 Resolution

$$\frac{R\vee A \quad R'\vee \bot A}{R\vee R'}$$

2 First Order Logic

TODO