# Chapter 2 Chemical and Physical State of the Solid Surface

## Atomic Arrangement of the Solid Surface (to lower the free energy of formation)

(a) reconstruction, (b) segregation, (c) chemisorption,(d) formation of compounds, (e) physisorption,(f) nucleation of atoms on the surface



# Why is the state of the surface important in tribology?

#### Light load

- Important mechanical properties, surface contaminants, reconstruction of the surface, etc.
- Contaminants adhesion

#### 2. Heavy load

- Less important
- Elastic and plastic deformation dominated

#### 3. Small contacts

Important

#### 4. Large contacts

Less important

## Much progress due to the availability of instrumentation

- 1. Scanning electron microscope (SEM)
- 2. Atomic force microscope (AFM)
- 3. Auger spectroscope
- 4. Etc.

# Modification of the surface through the use of coating techniques

- 1. Molecular beam epitaxy (MBE)
- 2. Chemical vapor deposition (CVD)
- 3. Physical vapor deposition (PVD)
- 4. Atomic layer deposition (ALD)
- 5. Diamond-Like Carbon or Coating (DLC)

#### **General Characteristics of Metals**

- 1. Metallic bonding
- 2. Structure -- fcc, bcc, hcp
- 3. Defects control mechanical properties.
  - Dislocations
  - Vacancies
- 4. Higher energy state at the surface Surface energy
- 5. Importance of microstructure
- 6. Alloys substitutional, interstitial, multiphase, dispersion strengthened,
- 7. Reactive -- oxides, carbides, intermetallics

### **General Characteristics of Polymers**

- 1. Covalently bonded long chain molecules
- 2. Thermoplastics, thermosets, elastomers, liquid crystal polymers (LCD)
- 3. Linear polymers HDPE, PTFE
- 4. Semicrystalline vs amorphous polymers
- 5. Low melting point, glass transition temperature
- 6. Difference in molecular weight at the surface and the bulk = f(nucleation conditions)

#### **General Characteristics of Ceramics**

- 1. Mostly ionic bonding, some have covalent bonding
- 2. Combination of metallic and nonmetallic elements
- 3. Oxides and nitrides are very stable Low free energy of formation
- 4. Carbides are very hard and have very high temperature
- 5. Brittle
- 6. Electrically non-conducting
- 7. Abrasives

### **General Characteristics of Composites**

- 1. Typically resin + fibers or filler or both
- 2. Fiber orientation important
- 3. May be designed to achieve specific properties
- 4. Used without lubricants

#### General Characteristics of a Solid Surface

- 1. Surface energy
- 2. Surface may be different from the bulk in atomic structure, mechanical properties, chemical state

## Electric double layer



#### Role of lubricants

- 1. Change surface energy (monolayer)
- 2. Reduce metal to metal contact through wetting
- 3. Prevent particle agglomeration through wetting

## **Mechanical Properties of the Surface**

- 1. Is the surface harder or softer than the bulk?
  - 2. Does it matter?

## Mechanical Properties of the Surface (aluminum monocrystal – after Kramer and Demer, 1961



## **Mechanical Properties of the Surface** (Copper -- Fourie, 1968)

Graph removed for copyright reasons.

See Figure 2.3 in [Suh 1986]: Suh, N. P. *Tribophysics*. Englewood Cliffs NJ:

Prentice-Hall, 1986. ISBN: 0139309837.

### Image force on dislocations near the surface

1. Dislocations near the surface experience an image force due to the free surface

$$\tau_{i} = \frac{Gb \square}{4 \pi (1 - \nu)h}$$

$$h = \frac{Gb \square}{4 \pi (1 - \nu)\sigma_{i}}$$

## Thermodynamic analysis of an Interface



### Thermodynamic analysis of an Interface

How thick is the interface?

$$f(c,\nabla c,\nabla^2,\dots) = f_0(c) + \sum_{i\square} L_i \left(\frac{\partial^2 \square}{\partial x_{i\square}}\right) + \sum_{i,j\square} K_{i,j\square} \left(\frac{\partial^2 c \square}{\partial x_i \partial x_{j\square}}\right) + \frac{1}{2} \sum_{i,j\square} K_{i,j\square} \left(\frac{\partial^2 c \square}{\partial x_{i,j\square}}\right) + \dots$$

## Thermodynamic analysis of an Interface Free energy of a binary system as a function of composition

Graph removed for copyright reasons.

See Figure 2.6 in [Suh 1986]: Suh, N. P. *Tribophysics*. Englewood Cliffs NJ:

Prentice-Hall, 1986. ISBN: 0139309837.

### Thermodynamic analysis of an Interface

Interfacial free energy as a function of composition (from Cahn and Hilliard, 1958)

$$\sigma = N_{v} \int_{-\infty}^{\infty} f_{0}(c) + K(\frac{dc}{dx})^{2} - c\mu_{B}(e) - (1 - c)\mu_{A}(e) dx$$

$$= N_{v} \int_{-\infty}^{\infty} \Delta f_{0}(c) + K(\frac{dc}{dx})^{2} dx \Box$$