STATS 3DA3

Homework Assignment 6

Haochen Wei (400267600), Xianmiao Zhao (400326996)2024-04-16

```
# we start import our dataset from the project discription
from ucimlrepo import fetch_ucirepo

# we set up the variables for the upcoming questions
# fetch dataset
chronic_kidney_disease = fetch_ucirepo(id=336)

# data (as pandas dataframes)
ckd = chronic_kidney_disease.data.features
y = chronic_kidney_disease.data.targets

# metadata
print(chronic_kidney_disease.metadata)

# variable information
print(chronic_kidney_disease.variables)
```

{'u	ci_id':	336, 'na	me': 'Chronio	c Kidney Disease',	'repository_url':	'https://archive.ics.uci.ed
	name	role	type	demographic	description	. \
0	age	Feature	Integer	Age	None	
1	bp	Feature	Integer	None	blood pressure	
2	sg	Feature	Categorical	None	specific gravity	
3	al	Feature	Categorical	None	albumin	
4	su	Feature	Categorical	None	sugar	
5	rbc	Feature	Binary	None	red blood cells	
6	рс	Feature	Binary	None	pus cell	
7	рсс	Feature	Binary	None	pus cell clumps	
8	ba	Feature	Binary	None	bacteria	
9	bgr	Feature	Integer	None b	lood glucose random	
10	bu	Feature	Integer	None	blood urea	
11	sc	Feature	Continuous	None	serum creatinine	
12	sod	Feature	Integer	None	sodium	

potassium	None	Continuous	Feature	pot	13
hemoglobin	None	Continuous	Feature	hemo	14
packed cell volume	None	Integer	Feature	pcv	15
white blood cell count	None	Integer	Feature	wbcc	16
red blood cell count	None	Continuous	Feature	rbcc	17
hypertension	None	Binary	Feature	htn	18
diabetes mellitus	None	Binary	Feature	dm	19
coronary artery disease	None	Binary	Feature	cad	20
appetite	None	Binary	Feature	appet	21
pedal edema	None	Binary	Feature	pe	22
anemia	None	Binary	Feature	ane	23
ckd or not ckd	None	Binary	Target	class	24

units missing_values

0	year	yes
1	mm/Hg	yes
2	None	yes
3	None	yes
4	None	yes
5	None	yes
6	None	yes
7	None	yes
8	None	yes
9	mgs/dl	yes
10	mgs/dl	yes
11	mgs/dl	yes
12	mEq/L	yes
13	mEq/L	yes
14	gms	yes
15	None	yes
16	cells/cmm	yes
17	millions/cmm	yes

```
18
             None
                               yes
19
             None
                               yes
20
             None
                               yes
21
             None
                               yes
22
             None
                               yes
23
             None
                               yes
24
             None
                                no
```

```
# we put most of the import codes here for the simplicity of the code
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import random
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
```

Based on the above dataset, our classification problem is to predict whether an individual has chronic kidney disease (CKD) by comparing 24 features such as age, blood pressure, glucose, and red blood cells. The prediction result of the model can help doctors to make early intervention.

```
# display the data type in the ckd dataset
ckd.dtypes
```

```
float64
age
         float64
bp
sg
         float64
         float64
al
         float64
su
rbc
          object
          object
рс
          object
рсс
          object
ba
bgr
         float64
         float64
bu
         float64
sc
         float64
sod
         float64
pot
hemo
         float64
         float64
pcv
         float64
wbcc
         float64
rbcc
htn
          object
dm
          object
          object
cad
          object
appet
          object
ре
ane
          object
dtype: object
```

```
# select the columns by data type(float64 and object), and print first 10 observations
float_columns = ckd.select_dtypes(include=['float64']).columns
object_columns = ckd.select_dtypes(include=['object']).columns
```

```
print(ckd[object_columns].head(10))
```

```
rbc
                   рс
                               рсс
                                             ba htn
                                                        dm cad appet
                                                                       ре
                                                                            ane
0
        NaN
               normal
                        notpresent
                                    notpresent
                                                 yes
                                                      yes
                                                                good
                                                                             no
1
        NaN
                        notpresent
                                    notpresent
               normal
                                                  no
                                                        no
                                                            no
                                                                good
                                                                        no
                                                                             no
2
     normal
               normal
                        notpresent notpresent
                                                                poor
                                                  no
                                                      yes
                                                            no
                                                                        no
                                                                            yes
             abnormal
3
     normal
                           present
                                    notpresent
                                                 yes
                                                            no
                                                                poor
                                                                      yes
                                                                            yes
                                                        no
4
     normal
               normal
                        notpresent notpresent
                                                                good
                                                  no
                                                        no
                                                            no
                                                                        no
                                                                             no
5
        NaN
                   {\tt NaN}
                        notpresent notpresent
                                                                good
                                                                      yes
                                                 yes
                                                       yes
                                                            no
                                                                             no
6
        NaN
               normal
                        notpresent
                                   notpresent
                                                                good
                                                  no
                                                        no
                                                            no
                                                                        no
                                                                             no
7
                        notpresent
     normal
             abnormal
                                    notpresent
                                                      yes
                                                            no
                                                                good
                                                                      yes
                                                                             no
8
     normal
             abnormal
                                    notpresent
                           present
                                                                good
                                                 yes
                                                      yes
                                                            no
                                                                        no
                                                                            yes
   abnormal
             abnormal
                           present
                                    notpresent
                                                 yes
                                                                poor
                                                      yes
                                                            no
                                                                        no
                                                                            yes
```

```
#mapping the object columns to the numercial values

transfer = {
    'rbc': {'abnormal':0, 'normal':1},
    'pc': {'abnormal':0, 'present':1},
    'pcc': {'notpresent':0, 'present':1},
    'ba': {'notpresent':0, 'present':1},
    'htn': {'no':0, 'yes':1},
    'dm': {'no':0, 'yes':1},
    'cad': {'no':0, 'yes':1},
    'appet': {'poor':0, 'good':1},
    'pe': {'no':0, 'yes':1},
    'ane': {'no':0, 'yes':1},
}
```

```
# apply the mappings defined in the previous code.
ckd_transformed = pd.DataFrame(ckd)

for column, mapping in transfer.items():
```

if column in ckd_transformed.columns: ckd_transformed[column] = ckd_transformed[column].map(mapping)

print the summary of the dataset after mapping.

ckd_transformed.describe()

	age	bp	sg	al	su	rbc	pc	pcc
count	391.000000	388.000000	353.000000	354.000000	351.000000	248.000000	335.000000	396.000000
mean	51.483376	76.469072	1.017408	1.016949	0.450142	0.810484	0.773134	0.106061
std	17.169714	13.683637	0.005717	1.352679	1.099191	0.392711	0.419431	0.308305
min	2.000000	50.000000	1.005000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	42.000000	70.000000	1.010000	0.000000	0.000000	1.000000	1.000000	0.000000
50%	55.000000	80.000000	1.020000	0.000000	0.000000	1.000000	1.000000	0.000000
75%	64.500000	80.000000	1.020000	2.000000	0.000000	1.000000	1.000000	0.000000
max	90.000000	180.000000	1.025000	5.000000	5.000000	1.000000	1.000000	1.000000

normalize the float columns, scale the float type column using standardScaler
scaler = StandardScaler()
ckd_transformed[float_columns] = scaler.fit_transform(ckd_transformed[float_columns])

#print the summary of our dataset after mapping and normalization.
ckd_transformed[float_columns].describe()

	age	bp	sg	al	su	bgr	bu
count	3.910000e+02	3.880000e+02	3.530000e+02	354.000000	351.000000	3.560000e+02	3.810000e-
mean	9.994847e-17	-2.380684e-16	2.415443e-15	0.000000	0.000000	-1.796316e-16	-3.729883e
std	1.001281e+00	1.001291e+00	1.001419e+00	1.001415	1.001428	1.001407e + 00	1.001315e-
min	-2.885708e+00	-1.936857e + 00	-2.173584e+00	-0.752868	-0.410106	-1.591967e + 00	-1.108830e
25%	-5.530393e-01	-4.733701e-01	-1.297699e+00	-0.752868	-0.410106	-6.193803e-01	-6.032459e
50%	2.050779e-01	2.583733e-01	4.540705e-01	-0.752868	-0.410106	-3.414983e-01	-3.058433e
75%	7.590867e-01	2.583733e-01	4.540705 e - 01	0.727772	-0.410106	1.890038e-01	1.700008e-

	age	bp	sg	al	su	bgr	bu
max	2.246163e+00	7.575807e + 00	1.329955e+00	2.948733	4.145186	4.319341e+00	6.613723e-

#let's show the detatypes of transformed dataset
ckd_transformed.dtypes

age	float64
bp	float64
sg	float64
al	float64
su	float64
rbc	float64
рс	float64
рсс	float64
ba	float64
bgr	float64
bu	float64
sc	float64
sod	float64
pot	float64
hemo	float64
pcv	float64
wbcc	float64
rbcc	float64
htn	float64
dm	float64
cad	float64
appet	float64
pe	float64

ane float64

dtype: object

show the summary of transformed dataset

ckd_transformed.describe()

	age	bp	sg	al	su	rbc	pc j
count	3.910000e+02	3.880000e+02	3.530000e+02	354.000000	351.000000	248.000000	335.000000 3
mean	9.994847e-17	-2.380684e-16	2.415443e-15	0.000000	0.000000	0.810484	0.773134
std	1.001281e+00	1.001291e+00	1.001419e+00	1.001415	1.001428	0.392711	0.419431
min	-2.885708e+00	-1.936857e + 00	-2.173584e+00	-0.752868	-0.410106	0.000000	0.000000
25%	-5.530393e-01	-4.733701e-01	-1.297699e+00	-0.752868	-0.410106	1.000000	1.000000
50%	2.050779e-01	2.583733e- 01	4.540705 e-01	-0.752868	-0.410106	1.000000	1.000000
75%	7.590867e-01	2.583733e- 01	4.540705e- 01	0.727772	-0.410106	1.000000	1.000000
max	2.246163e+00	7.575807e + 00	1.329955e+00	2.948733	4.145186	1.000000	1.000000

From the dataset, we can see that numerical variables such as "age", "blood pressure" and "specific gravity" have been standardized. Categorical variables such as "erythrocytes", "pus cells", and "hypertension" have been coded as binary values.

The dataset has 400 observations. The number of non-null values varies from variable to variable, indicating that there is missing data in multiple columns, which needs to be addressed in subsequent data processing steps.

Standardized numerical variables now have a mean close to 0 and a standard deviation of 1. This standardization helps keep the model inputs consistent.

```
# calculate and show the heatmap of the correlation matrix
correlation_matrix = ckd_transformed[float_columns].corr()
```

```
plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5)
plt.title('Correlation matrix for Float variables')
plt.show()
```


from the plot, we can see that 'hemo' (homoglobin) and 'pcv' (packed cells volumn) show a very strong positive correlation, which means they might have redunant informations.

The variable 'pot' (potassium) has relatively low correlations with all other variables. This may suggest that this variable will plays an important role in prediction.

from the plot, we can see that 'sod'(sodium) and 'sc'(serum creatinine) have a strong negative correlation, which is -0.69. This means if sod increase will cause a decrease in sc.

```
#let's find all the missing values
missing_value = ckd_transformed.isnull().sum()
missing_value
```

age	9	
bp	12	
sg	47	
al	46	
su	49	
rbc	152	
рс	65	
pcc	4	
ba	4	
bgr	44	
bu	19	
sc	17	
sod	87	
pot	88	
hemo	52	
pcv	71	
wbcc	106	
rbcc	131	
htn	2	
dm	3	
cad	2	
appet	1	
pe	1	

```
ane 1 dtype: int64
```

```
#next, let's handling all the missing values
ckd_mean = ckd_transformed.mean()
ckd_filled = ckd_transformed.fillna(ckd_mean)
ckd_filled.head()
```

	age	bp	sg	al	su	m rbc	pc	pcc	ba	bgr	 h
0	-0.203139	0.258373	0.454071	-0.012548	-0.410106	0.810484	1.0	0.0	0.0	-3.414983e-01	 0.
1	-2.594124	-1.936857	0.454071	2.208413	-0.410106	0.810484	1.0	0.0	0.0	-1.796316e-16	 -0
2	0.613295	0.258373	-1.297699	0.727772	2.323069	1.000000	1.0	0.0	0.0	3.473064e+00	 -1
3	-0.203139	-0.473370	-2.173584	2.208413	-0.410106	1.000000	0.0	1.0	0.0	-3.920223e-01	 -0
4	-0.028189	0.258373	-1.297699	0.727772	-0.410106	1.000000	1.0	0.0	0.0	-5.309633e-01	 -0

- 1. There are some outliers on the Blood Pressure hiigher end. Given that high blood pressure is a significant clinical indicator, those outliers can be examined further, not removed.
- 2. Some outliers in Serum Creatinine and Blood Urea Nitrogen may relevant to the study on chronic kidney disease. So, it is better to keep those outliers.

In the context of medical data, the outliers may represent the special cases for diagnosis. Therefore, we should keep them in the dataset instead of remove them.

```
# let's use PCA and K-means clustering and show the figure.
ckd_cluster = pd.concat([ckd_filled], axis=1)
pca = PCA(n_components=2)
```

```
pca_data = pca.fit_transform(ckd_cluster)

kmeans = KMeans(n_clusters=3, random_state=17)

cluster_labels = kmeans.fit_predict(ckd_cluster)

plt.figure(figsize=(10, 8))

plt.scatter(pca_data[:, 0], pca_data[:, 1], c=cluster_labels, cmap='viridis', marker='o')

plt.colorbar()

plt.show()
```



```
#split the data for model training

X_train, X_test, y_train, y_test = train_test_split(
    ckd_filled,
    y,
    test_size=0.3,
    random_state=1
)

(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
```

```
((280, 24), (120, 24), (280, 1), (120, 1))
```

Question 9

- We can choose Random Forest Classifier. Random forests don't suffer too much from outliers
 and it can handle unbalanced datasets. This is useful for the healthcare industry, especially
 for collecting special case scenarios.
- 2. We also can use Logistic Regression in our model. Our model is a classical binary classification model, and logistic regression is very effective for dealing with binary classification models. It can provide insight into the role of different features in preventing CKD.

Question 10

1. Accuracy:

Accuracy measures the proportion of total correct predictions amony the total number of cases examined. It enables us to evaluate the effectiveness of various classifiers in the simplest way possible. But it may not be very informative on its own when the data is unbalanced. It may be more misleading when the model needs to predict majority class.

2. Area Under the ROC Curve(AUC-ROC)

This metric assesses the ability of the classifier to distinguish between classes. When AUC is higher, it indicates the better ability to distinguish between CKD and not CKD. Compare with Accuracy metric, when the classes are imbalance, ROC will more useful than Accuracy because it considers both the true postive rate and the false positive rate.

```
# let's train the random forest classifier and show the importance of each feature
rf = RandomForestClassifier(random_state=1)
rf.fit(X_train, y_train)

fi = rf.feature_importances_
ckd_fi = pd.DataFrame({'Feature': X_train.columns, 'Importance': fi})
sorted_ckd_fi = ckd_fi.sort_values(by='Importance', ascending=False)
sorted_ckd_fi
```

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/base.pg
return fit_method(estimator, *args, **kwargs)

	Feature	Importance
15	pcv	0.183065
14	hemo	0.149958
2	sg	0.135327
11	sc	0.092571
3	al	0.077848
5	rbc	0.075599
17	rbcc	0.068890
18	htn	0.038598
19	dm	0.034299
12	sod	0.026322

	Feature	Importance
9	bgr	0.025741
10	bu	0.025468
0	age	0.013358
4	su	0.012915
1	bp	0.009555
16	wbcc	0.007720
6	pc	0.006608
13	pot	0.005260
21	appet	0.005227
22	pe	0.003003
7	pcc	0.001677
23	ane	0.000685
20	cad	0.000186
8	ba	0.000120

```
# We build the model with only the important features and evaluates them on accuracy and metri-
top_features = sorted_ckd_fi[sorted_ckd_fi['Importance'] > 0.05]['Feature']

rf_top_features = RandomForestClassifier(random_state=1)

rf_top_features.fit(X_train[top_features], y_train)

logreg = LogisticRegression(max_iter=1000, random_state=1)

logreg.fit(X_train[top_features], y_train)

y_pred_rf = rf_top_features.predict(X_test[top_features])

y_pred_logreg = logreg.predict(X_test[top_features])

accuracy_rf = accuracy_score(y_test, y_pred_rf)
```

```
accuracy_logreg = accuracy_score(y_test, y_pred_logreg)
auc_roc_rf = roc_auc_score(y_test, rf_top_features.predict_proba(X_test[top_features])[:, 1])
auc_roc_logreg = roc_auc_score(y_test, logreg.predict_proba(X_test[top_features])[:, 1])
(accuracy_rf, accuracy_logreg, auc_roc_rf, auc_roc_logreg)
```

```
/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/base.pg
return fit_method(estimator, *args, **kwargs)

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/utils/
y = column_or_1d(y, warn=True)
```

```
(0.991666666666667, 0.983333333333333, 0.37142857142857144, 0.09)
```

- 1. We can see from the result, The accuracy has significantly higher ratio in both Random Forest and Logistic Regression than AUC-ROC. accuracy have 99.16% in Random Forest and 98.33% in Logistic Regression. But AUC-ROC only have 37.14% in Random Forest and 9% in Logistic Regression.
- 2. From the result, we also can make the decision that Random Froest is more suitable in our model than Logistic Regression. Both Accuracy and AUC-ROC have higher ratio in Random Froest. Random Forest is highly accurate and robust against overfitting.

```
# we train a logistic regression model on the whole dataset using the selected features.
# and calculate the coefficents

rf_full = LogisticRegression(max_iter=1000, random_state=1)

rf_full.fit(ckd_filled[top_features],y)

coef = rf_full.coef_[0]

ckd_coef = pd.DataFrame({'Feature': top_features, 'Coefficient': coef})
```

```
sorted_ckd_coef = ckd_coef.sort_values(by='Coefficient', key=abs, ascending=False)
sorted_ckd_coef
```

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/utils/y = column_or_1d(y, warn=True)

	Feature	Coefficient
5	rbc	-1.332504
3	al	0.876320
2	sg	-0.861387
14	hemo	-0.819001
11	sc	0.791152
15	pcv	-0.712005
17	rbcc	0.155859

- 1. rbc have the most significant negative coefficient (-1.33). Represent that this feature has the highest impact on predicting CKD.
- 2. al have a significant positive coefficient (0.87), also have a lagre impact on predicting CKD.

Question 14

Team contribution

Question 1:Xianmiao Zhao

Question 2:Haochen Wei

Question 3:Xianmiao Zhao

Question 4:Haochen Wei

Question 5:Xianmiao Zhao

Question 6:Haochen Wei

Question 7:Xianmiao Zhao

Question 8:Haochen Wei

Question 9:Xianmiao Zhao

Question 10:Haochen Wei

Question 11:Haochen Wei, Xianmiao Zhao

Question 12:Haochen Wei, Xianmiao Zhao

Question 13:Haochen Wei, Xianmiao Zhao

link to public GitHub repository

 $https://github.com/ShoterMK2/Assignment_6.git$