

Section 10. 정규화 (Regularization)

Motivation for this section

Copyright@2023. Acadential. All rights reserved.

Gradient Descent을 계속하면 test data에 대한 Model의 performance가 계속 개선될까?

Motivation for this chapter

Copyright©2023. Acadential. All rights reserved.

- Gradient Descent을 계속하면 test data에 대한 Model의 performance가 계속 개선될까?
- 그렇지 않다!
- Training data에 대한 Loss은 계속 줄어들지만, test data에 대한 loss은 줄어들다가 어느 지점부터 loss가 증가하기 시작한다!

Overfitting!

• Overfitting이 무엇인지, 이에 대한 해결 방법 중 하나인 Regularization에 대해서 살펴보자!

목차

ACADENTIAL

Copyright@2023. Acadential. All rights reserved.

- 섹션 7. 활성 함수 (Activation Function)
- 섹션 8. 최적화 (Optimization)
- 섹션 9. PyTorch로 만들어보는 Fully Connected NN
- 섹션 10. 정규화 (Regularization)
- 섹션 11. 학습 속도 스케쥴러 (Learning Rate Scheduler)
- 섹션 12. 초기화 (Initialization)
- 섹션 13. 표준화 (Normalization)

학습 목표

- Regularization에 대해 이해하기
- 과적합 (Overfitting)에 대해 이해하기
- Regularization의 종류

Objective

- L1 Regularization
- L2 Regularization
- Dropout
- Early Stopping
- L2 regularization (L2 Norm)과 Weight Decay간의 관계

ACADENTIAL

Copyright@2023. Acadential. All rights reserved.

10-1. Regularization이란?

Copyright © 2023. Acadential. All rights reserved.

Regularization

Regularization이란? 또 왜 필요한가?

• Regularization 정의 = 뉴럴넷 모델이 너무 복잡해지지 않도록 model complexity을 통제하는 방법.

Regularization

Copyright@2023. Acadential. All rights reserved.

Regularization이란? 또 왜 필요한가?

- Regularization 정의 = 뉴럴넷 모델이 너무 복잡해지지 않도록 model complexity을 통제하는 방법.
- 왜 필요한가? = 뉴럴넷 모델이 학습되는 과정에서 학습 데이터셋에 대해서 "overfitting" (과적합)되는 것을 막기 위해서다.

Regularization

Copyright@2023. Acadential. All rights reserved.

Regularization이란? 또 왜 필요한가?

- Regularization 정의 = 뉴럴넷 모델이 너무 복잡해지지 않도록 model complexity을 통제하는 방법.
- 왜 필요한가? = 뉴럴넷 모델이 학습되는 과정에서 학습 데이터셋에 대해서 "overfitting" (과적합)되는 것을 막기 위해서다.
- 과적합이란? = 뉴럴넷 모델이 학습 데이터에 있는 noise (노이즈)에 대해서도 학습하여 일 반화 성능 (generalizability)가 저하되는 현상.

10-2. Overfitting (과적합)

Overfitting

ACADENTIAL

Copyright©2023. Acadential. All rights reserved.

Overfitting의 정의

Overfitting 정의:

Unseen data (즉, Validation)에 대해서 모델의 예측값이 일반화되지 않을때

Overfitting의 현상:

Train loss은 감소하는데 Valid Loss은 계속 증가한다.

Overfitting

Copyright@2023. Acadential. All rights reserved.

과적합의 예시

Good Fit

High Variance

Copyright © 2023. Acadential. All rights reserved.

Regularization

Regularization이란? 또 왜 필요한가?

- 즉, Regularization은 model의 complexity을 줄이는 방법이다.
- Regularization의 종류:
 - L1 regularization
 - L2 regularization (Weight Decay)
 - Dropout
 - Early Stopping

10-3. L1, L2 Regularisation

L1 Regularization term

Regularization

L1 Regularization

$$\hat{L}(y, \hat{y}; W) = L(y, \hat{y}; W) + \alpha ||W||_1$$

Regularization

L1 Regularization

$$\hat{L}(y, \hat{y}; W) = L(y, \hat{y}; W) + \alpha ||W||_1$$

$$||W||_1 = \sum_i \sum_j |w_{ij}|$$

weight matrix의 parameter들의 절대값의 합!

Regularization

L1 Regularization

$$\hat{L}(y, \hat{y}; W) = L(y, \hat{y}; W) + \alpha \|W\|_1$$

$$||W||_1 = \sum_i \sum_j |w_{ij}|$$

lpha: L1 regularization term의 비중을 조절하는 상수.

Regularization

L1 Regularization

$$\hat{L}(y, \hat{y}; W) = L(y, \hat{y}; W) + \alpha ||W||_{1}$$

$$||W||_{1} = \sum_{i} \sum_{j} |w_{ij}|$$

뉴럴넷의 weight 값이 크다.

- ightarrow L1 Regularization term $\|W\|_1$ 이 커진다.
- → Loss의 값도 커진다.

L2 Regularization

L2 Regularization term

$$\hat{L}(y, \hat{y}; W) = L(y, \hat{y}; W) + \alpha ||W||_2^2$$

Regularization

L2 Regularization

$$\hat{L}(y, \hat{y}; W) = L(y, \hat{y}; W) + \alpha ||W||_2^2$$

$$||W||_2^2 = \sum_i \sum_j w_{ij}^2$$

weight matrix의 parameter들의 제곱의 합!

Regularization

L2 Regularization

$$\hat{L}(y, \hat{y}; W) = L(y, \hat{y}; W) + \alpha ||W||_2^2$$

$$||W||_2^2 = \sum_i \sum_j w_{ij}^2$$

 α : L2 regularization term=

비중을 조절하는 상수.

뉴럴넷의 weight 값이 크다

ightarrow L2 Regularization term $\|W\|_2^2$ 이 커진다.

→ Loss의 값도 커진다.

Copyright © 2023. Acadential. All rights reserved.

Regularization

L1 vs. L2 regularization

L1 Regularization = ||W||

L2 Regularization = $||W||_2^2$

L1, L2 Regularization 모두 뉴럴넷의 weight 값이 작아지도록 만든다!

빨간색 = L1 Regularization 파란색 = L2 Regularization

L1 혹은 L2 regularization을 사용하면 overfitting을 어떻게 완화할 수 있는가?

L1 혹은 L2 regularization을 사용하면 overfitting을 어떻게 완화할 수 있는가?

예시)

 W_1 와 W_2 로 구성된 뉴럴넷이 있다고 가정.

L1 혹은 L2 regularization을 사용하면 overfitting을 어떻게 완화할 수 있는가?

예시)

 W_1 와 W_2 로 구성된 뉴럴넷이 있다고 가정.

L1과 L2 regularization을 사용하는 것의 의미?

L1 혹은 L2 regularization을 사용하면 overfitting을 어떻게 완화할 수 있는가?

L1과 L2 regularization을 사용하는 것

→ 2가지 조건에 대한 최적화

L1 혹은 L2 regularization을 사용하면 overfitting을 어떻게 완화할 수 있는가?

L1 regularization의 경우:

- 1. 원래의 손실함수 $L(y, \hat{y}; W)$ 최소화
- 2. $|W_1| + |W_2| \le s$ 조건을 만족시키는 W_1, W_2 을 찾는 것 (왼쪽)

출처: An Introduction to Statistical Learning by Gareth James, et al.

L1 혹은 L2 regularization을 사용하면 overfitting을 어떻게 완화할 수 있는가?

L2 regularization의 경우:

- 1. 원래의 손실함수 $L(y, \hat{y}; W)$ 최소화
- 2. $(W_1)^2 + (W_2)^2 \le s$ 조건을 만족시키는 W_1, W_2 찾는 것 (오른쪽)

출처: An Introduction to Statistical Learning by Gareth James, et al.

L1 혹은 L2 regularization을 사용하면 overfitting을 어떻게 완화할 수 있는가?

즉, L1, L2 Regularization은

제약 조건 (constraint)을 주는 것이다!

출처: An Introduction to Statistical Learning by Gareth James, et al.

L1 혹은 L2 regularization을 사용하면 overfitting을 어떻게 완화할 수 있는가?

(빨간색 화살표)

 $=L(y,\hat{y};W)$ 을 최소화하는 weight 값

(주황색 화살표)

= L1과 L2 regularization의 constraint에 의해서 이르게 되는 weight 값.

출처: An Introduction to Statistical Learning by Gareth James, et al.

Regularization은 모델에 일종의 constraint (제약조건)을 줌으로서 뉴럴넷 모델의 complexity을 줄인다!

모델의 complexity가 너무 크면 데이터에 대해서 쉽게 overfit되어 버리기 때문에!

ACADENTIAL

10-4. Weight Decay

Regularization Weight Decay

Copyright@2023. Acadential. All rights reserved.

• PyTorch의 SGD documentation을 보면 "Weight Decay"라는 term이 있다.

SGD

Regularization Weight Decay

Copyright©2023. Acadential. All rights reserved.

• PyTorch의 SGD documentation을 보면 "Weight Decay"라는 term이 있다.

SGD
이게 뭘까?

CLASS torch.optim.SGD(params, 1r=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False, *, maximize=False, foreach=None) [SOURCE]

Regularization Weight Decay

Copyright@2023. Acadential. All rights reserved.

• PyTorch의 SGD documentation을 보면 "Weight Decay"라는 term이 있다.

```
input : \gamma (lr), \theta_0 (params), f(\theta) (objective), \lambda (weight decay), \mu (momentum), \tau (dampening), nesterov, maximize
```

$$egin{aligned} \mathbf{for} \ t &= 1 \ \mathbf{to} \ \dots \ \mathbf{do} \ & g_t \leftarrow
abla_{ heta} f_t(heta_{t-1}) \ & \mathbf{if} \ \lambda
eq 0 \ & g_t \leftarrow g_t + \lambda heta_{t-1} \ & heta_t \leftarrow heta_{t-1} - \gamma g_t \end{aligned}$$

$$W_t = W_{t-1} - \gamma \nabla_W L_{CE} - \gamma \cdot \lambda \cdot W_{t-1}$$

Copyright © 2023. Acadential. All rights reserved.

Regularization

Weight Decay

• PyTorch의 SGD documentation을 보면 "Weight Decay"라는 term이 있다.

```
input : \gamma (lr), \theta_0 (params), f(\theta) (objective), \lambda (weight decay), \mu (momentum), \tau (dampening), nesterov, maximize
```

$$egin{aligned} \mathbf{for} \ t &= 1 \ \mathbf{to} \ \dots \ \mathbf{do} \ & g_t \leftarrow
abla_{ heta} f_t(heta_{t-1}) \ & \mathbf{if} \ \lambda
eq 0 \ & g_t \leftarrow g_t + \lambda heta_{t-1} \ & heta_t \leftarrow heta_{t-1} - \gamma g_t \end{aligned}$$

$$W_t = W_{t-1} - \gamma \nabla_W L_{CE} - \gamma \cdot \lambda \cdot W_{t-1}$$

weight 값을 W_{t-1} 에 비례해서 penalize한다!

Regularization Weight Decay

Copyright@2023. Acadential. All rights reserved.

• PyTorch의 SGD documentation을 보면 "Weight Decay"라는 term이 있다.

```
input : \gamma (lr), \theta_0 (params), f(\theta) (objective), \lambda (weight decay), \mu (momentum), \tau (dampening), nesterov, maximize
```

$$egin{aligned} \mathbf{for} \ t = 1 \ \mathbf{to} \ \dots \ \mathbf{do} \ & g_t \leftarrow
abla_{ heta} f_t(heta_{t-1}) \ & \mathbf{if} \ \lambda
eq 0 \ & g_t \leftarrow g_t + \lambda heta_{t-1} \ & heta_t \leftarrow heta_{t-1} - \gamma g_t \end{aligned}$$

$$W_t = W_{t-1} - \gamma \nabla_W L_{CE} - \gamma \cdot \lambda \cdot W_{t-1}$$

weight 값을 W_{t-1} 에 비례해서 penalize한다!

잠시 L2 Regularization을 다시 한번 살펴보자!

Regularization

L2 Regularization과 Weight Decay 간의 관계

L2 Regularization

$$L = L_{CE} + \lambda ||W||^2$$

ACADENTIAL

Copyright © 2023. Acadential. All rights reserved.

Regularization

L2 Regularization과 Weight Decay 간의 관계

L2 Regularization

$$L = L_{CE} + \lambda ||W||^2$$

$$\frac{dL}{dW} = \frac{dL_{CE}}{dW} + 2\lambda W$$

ACADENTIAL

Copyright@2023. Acadential. All rights reserved.

Copyright © 2023. Acadential. All rights reserved.

Regularization

L2 Regularization과 Weight Decay 간의 관계

L2 Regularization

$$L = L_{CE} + \lambda ||W||^2$$

$$\frac{dL}{dW} = \frac{dL_{CE}}{dW} + 2\lambda W$$

Regularization

L2 Regularization과 Weight Decay 간의 관계

L2 Regularization

$$L = L_{CE} + \lambda W^{2}$$

$$\frac{dL}{dW} = \nabla_{W} L_{CE} + 2\lambda W$$

$$\Delta W \approx -\gamma \frac{dL}{dW} = -\gamma \left(\nabla_{W} L_{CE} + 2\lambda W \right)$$

SGD의 update step γ 은 learning rate

Copyright@2023. Acadential. All rights reserved.

SGD

Regularization

L2 Regularization과 Weight Decay 간의 관계

L2 Regularization

$$L = L_{CE} + \lambda W^{2}$$

$$\frac{dL}{dW} = \nabla_{W} L_{CE} + 2\lambda W$$

$$\Delta W \approx -\gamma \frac{dL}{dW} = -\gamma \left(\nabla_{W} L_{CE} + 2\lambda W \right)$$

$$W_{t} \leftarrow W_{t-1} + \Delta W$$

Copyright@2023. Acadential. All rights reserved

Regularization

L2 Regularization과 Weight Decay 간의 관계

L2 Regularization

$$L = L_{CE} + \lambda W^{2}$$

$$\frac{dL}{dW} = \nabla_{W} L_{CE} + 2\lambda W$$

$$\Delta W \approx -\gamma \frac{dL}{dW} = -\gamma \left(\nabla_{W} L_{CE} + 2\lambda W \right)$$

$$W_{t} \leftarrow W_{t-1} + \Delta W$$

 ΔW 을 위 식에 대입하면

 $W_t \leftarrow W_{t-1} - \gamma \cdot \nabla_W L_{CE} - 2\gamma \lambda W$

Regularization

169ulai Lauvii

L2 Regularization과 Weight Decay 간의 관계

앞서서 살펴봤던 SGD의 Weight Decay와 비교해보자!

$$L = L_{CE} + \lambda W^2$$

$$\frac{dL}{dW} = \nabla_W L_{CE} + 2\lambda W$$

$$\Delta W \approx -\gamma \frac{dL}{dW} = -\gamma \left(\nabla_W L_{CE} + 2\lambda W \right)$$

$$W_t \leftarrow W_{t-1} + \Delta W$$

$$W_t \leftarrow W_{t-1} - \gamma \cdot \nabla_W L_{CE} - 2\gamma \lambda W_{t-1}$$

동일하다!

(factor 2은 L2 Regularization의 weight ¼에 포함시켜 버려도 무방)

$$W_t = W_{t-1} - \gamma \nabla_W L_{CE} - \gamma \cdot \lambda \cdot W_{t-1}$$

Regularization

L2 Regularization과 Weight Decay 간의 관계

L2 Norm와 SGD에서의 Weight Decay은 서로 동일한 효과를 가짐!

10-5. Dropout

Regularization Drop Out

Copyright@2023. Acadential. All rights reserved.

Drop Out이란:

뉴럴넷을 학습시킬 때, p의 확률로 일부의 neuron들을 비활성화시키는 것.

Copyright © 2023. Acadential. All rights reserved.

Regularization Drop Out

- 뉴럴넷을 학습시킬 때, p의 확률로 일부의 neuron들을 비활성화시키는 것.
- Dropout은 모델을 학습할 때만 사용
- 모델을 학습할 시
 - → "model.train()"
- 모델을 추론에 사용할시
 - → "model.eval()"

(a) Standard Neural Net

(b) After applying dropout.

Copyright © 2023. Acadential. All rights reserved.

Regularization Drop Out

의미:

N개의 뉴런으로 구성된 layer에서는 평균적으로 $N \times p$ 개수만큼의 뉴론들이 비활성화된다!

(a) Standard Neural Net

(b) After applying dropout.

Copyright@2023. Acadential. All rights reserved.

Regularization Drop Out

효과:

일부의 뉴런들만 활성화

- →더 단순화된 모델
- → 감소된 모델의 complexity!

(a) Standard Neural Net

(b) After applying dropout.

10-6. Early Stopping

Regularization Early Stopping

Loss

"Valid Loss의 증가"

= Overfitting의 징조.

Regularization

Early Stopping

Early Stopping:

Valid Loss가 증가하기 시작할때 학 습을 중단한다!

Regularization Early Stopping

Loss

Early stop이 regularization인 이유:

• Early stop = number of GD의 step에 제한을 거는 셈이기 때문이다.

10-7. PyTorch로 구현해보는 Regularisation

10-8. Section 10 요약

Section Summary 학습 목표

- Regularization에 대해 이해하기
- 과적합 (Overfitting)에 대해 이해하기
- Regularization의 종류
 - L1 Regularization
 - L2 Regularization
 - Dropout
 - Early Stopping
- L2 regularization (L2 Norm)과 Weight Decay간의 관계

ACADENTIAL

Copyright@2023. Acadential. All rights reserved.

Copyright © 2023. Acadential. All rights reserved.

Section Summary

Regularization의 정의

- Regularization 정의 = 뉴럴넷 모델이 너무 복잡해지지 않도록 model complexity을 통제하는 방법.
- 왜 필요한가? = 뉴럴넷 모델이 학습되는 과정에서 학습 데이터셋에 대해서 "overfitting" (과적합)되는 것을 막기 위해서다.
- 과적합이란? = 뉴럴넷 모델이 학습 데이터에 있는 noise (노이즈)에 대해서도 학습하여 일반화 성능 (generalizability)가 저하되는 현상.

Section Summary

Loss

Overfitting의 정의

Overfitting 정의:

Unseen data (즉, Validation)에 대해서 모델의 예측값이 일반화되지 않을때

Overfitting의 현상:

Train loss은 감소하는데 Valid Loss은 계속 증가한다.

ACADENTIAL

Copyright © 2023. Acadential. All rights reserved.

L1 Regularization term

Section Summary

Regularization의 종류 (L1, L2)

$$\hat{L}(y, \hat{y}; W) = L(y, \hat{y}; W) + \alpha ||W||_1$$

$$\hat{L}(y, \hat{y}; W) = L(y, \hat{y}; W) + \alpha ||W||_2^2$$

L2 Regularization term

Section Summary

Regularization의 종류 (L1, L2)

L1 Regularization = ||W||

L2 Regularization = $||W||_2^2$

L2 Regularization은 SGD의 Weight Decay와 동일한 개념이다.

빨간색 = L1 Regularization 파란색 = L2 Regularization

Regularization

Regularization은 모델에 일종의 constraint (제약조건)을 줌으로서 뉴럴넷 모델의 complexity을 줄인다!

모델의 complexity가 너무 크면 데이터에 대해서 쉽게 overfit되어 버리기 때문에!

Copyright@2023. Acadential. All rights reserved.

Regularization Drop Out

효과:

일부의 뉴런들만 활성화

- →더 단순화된 모델
- → 감소된 모델의 complexity!

(a) Standard Neural Net

(b) After applying dropout.

Regularization

Early Stopping

Early Stopping:

Valid Loss가 증가하기 시작할때 학 습을 중단한다!

Next Up!

Next Up!

Learning Rate Scheduler

- 이전 Section "Optimization"에서는 Learning Rate을 Gradient의 history에 따라 "adaptive"하게 조절해주는 방법들이 있었다.
 - (e.g. AdaGrad, AdaDelta, RMSProp)

Next Up!

Learning Rate Scheduler

- 이전 Chapter "Optimization"에서는 Learning Rate을 Gradient의 history에 따라 "adaptive"하게 조절해주는 방법들이 있었다.
 - (e.g. AdaGrad, AdaDelta, RMSProp)
- 하지만 학습이 진행되면서의 학습 경과 (Validation Loss)나 Time step (Gradient descent의 iteration 수)에 따라 Learning Rate을 조절하는 방법은 없을까?

Next Up!

Learning Rate Scheduler

- 이전 Chapter "Optimization"에서는 Learning Rate을 Gradient의 history에 따라 "adaptive"하게 조절해주는 방법들이 있었다.
 - (e.g. AdaGrad, AdaDelta, RMSProp)
- 하지만 학습이 진행되면서의 학습 경과 (Validation Loss)나 Time step (Gradient descent의 iteration 수)에 따라 Learning Rate을 조절하는 방법은 없을까?

바로 Learning Rate Scheduler!