### NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters



Jayaram Mudigonda, Praveen Yalagandula, Jeff Mogul, Bryan Stiekes, Yanick Pouffary

> Venus Team, NSLab RIIT, Tsinghua Univ.

Oct. 26, 2011 @ NSLab Seminar

### **The Goal**

Build the right network for a cloud datacenter?



### **The Goal**

Build the right network for a cloud datacenter?



### **Cloud Datacenter**

- Provides Infrastructure as a Service
  - Shared across multiple tenants
  - Pay-as-you-go model
- Virtualized
  - Tenants run Virtual Machines (VMs)
  - Time-multiplex
- Examples
  - Amazon EC2

## The Right Network

- Virtualization + Multi-tenancy
  - A Virtual Network to each tenant
  - No restrictions on addressing or protocols
- Scale
  - Tenants, Servers: 10s of 1000s, VMs: 100s of 1000s
  - Adequate bandwidth
- Inexpensive
  - CAPEX: Cheap COTS components
  - OPEX: Ease of management

## The Challenge

- Basic COTS switching gear ->
  - Limited functionality and resources:
    - Not enough Forwarding Information Base (FIB) space

- Multi-tenancy →
  - Not full address-space virtualization
    - Only MAC/IP address-space sharing

- Configuration →
  - Careful manual configuration

### The Challenge

No switch support and conserve switch resources to simultaneously achieve:

Scale

Multi-tenancy

Ease of configuration



### State of the Art – Scale

- Most prior work is limited by one or more of:
  - New protocols
  - Modified control and/or data planes
  - Preferred topologies
  - Resources (such as table space) on switches



## **State of the Art – Multi-tenancy**

- Traditional VLANs
  - Single tenant
  - Careful configuration
  - Cannot scale beyond 4K

Mostly on segregation not virtualization



### **NetLord**

- An encapsulation scheme
- A complementary switch configuration
  - $\rightarrow$
- Scalable multi-tenancy
- Ease of configuration
- Significant reduction in FIB requirements
- High bisection BW

### A Tenant's View of NetLord



- One or more private MAC address space
- Full L2 L3 address-space virtualization
  - Multiple tenants can use the same address

## **NetLord Components**



- Fabric switches
- Configuration repository
- NetLord agents (NLA)

### **NetLord Encapsulation**

- Why encapsulate?
  - Unmodified VM packets onto the network
  - Excessive FIB pressure, FIB miss
  - MAC/IP address-spaces conflict

- Alternative: Rewrite headers
  - Rewrite with server MAC somewhat reduced FIB
  - Cannot identify the right VM on dst Server



### **NetLord Encapsulation**

- Two headers: a MAC and an IP
- Reduced FIB pressure
  - Outer Src MAC = MAC of the Src edge switch
  - Outer Dst MAC = MAC of the Dst edge switch
- Correct delivery
  - Right edge switch: The outer MAC header
  - Right server: Right port # in the outer dest IP addr
  - Right VM: Tenant-ID frm outer dest IP + Inner dest MAC
  - Clean abstraction
    - No assumptions about VM protocols and/or addressing

## **NetLord Encapsulation**





## **Switch Configuration**

Outer MAC hdr takes pkt to egress edge switch

- A switch on MAC Pkt addressed to itself
  - Strips MAC hdr and forwards based on IP hdr inside
  - Standard behavior

- Correct forwarding
  - Configure the L3 forwarding tables right
  - Make sure to match the server configs

## **Switch Configuration**



## **Putting It All Together**



### **Evaluation**

- Overhead of NLA
  - "ping" for latency
  - 1 / 2 way Netperf for throughput

- Scalability of NetLord
  - Multi-tenant parallel shuffle workload



### **Evaluation - Overhead of NLA**

### Overhead of NLA

| Case         | Metric  | PLAIN   | SPAIN   | NetLord |
|--------------|---------|---------|---------|---------|
| Ping         | avg     | 97      | 99      | 98      |
| $(in \mu s)$ | min/max | 90/113  | 95/128  | 93/116  |
| NetPerf      | avg     | 987.57  | 987.46  | 984.75  |
| 1-way        | min     | 987.45  | 987.38  | 984.67  |
| (in Mbps)    | max     | 987.67  | 987.55  | 984.81  |
| NetPerf      | avg     | 1835.26 | 1838.51 | 1813.52 |
| 2-way        | min     | 1821.34 | 1826.49 | 1800.23 |
| (in Mbps)    | max     | 1858.86 | 1865.43 | 1835.21 |

encaping overheads are ignorable



74 Servers in a 2-level fat-tree topology





- NLA Kernel module
- VM Emulator
  - A thin module above NLA
  - TCP flow -> emulated VM
  - Exports a virtual device
  - Re-writes MAC addresses
- Up to 3K VMs / Server
  - 74 VMs / Tenant
  - 200K VMs in all





- Parallel shuffles
  - Emulating shuffle-phase of Map-Reduce jobs
  - Each shuffle: 74 mappers & 74 reducers
  - Each mapper transfers 10MB data to all reducers



### Goodput

Goodput (in Gbps)



### Floods



Number of VMs

### **Summary**

- NetLord combines simple existing primitives in a novel fashion to achieve several outsized benefits of practical importance:
  - Scale
  - Multi-tenancy
  - Ease-of-use
  - Bisection BW



## **Acknowledgements**

- Almost the whole content comes from authors' slides presented at SIGCOMM 2011 and also their paper
- This slides is only for seminar use in NSLab
- For more information, please refer to the following links:
  - http://conferences.sigcomm.org/sigcomm/2011/papers/sigcomm/p62.pdf
  - http://conferences.sigcomm.org/sigcomm/2011/sli des/s62.pptx



# **Discussion**