

DATASHEET

JMS580 USB 3.1 Gen2 to SATA 6Gb/s Bridge Controller

Document No.: PDS-16016 / Revision: 1.00 / Date: 01/10/2018

JMicron Technology Corporation

1F, No. 13, Innovation Road 1, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Website: http://www.jmicron.com

Certificate No.: TW16/00614

Copyright © 2018, Jmicron Technology Corp. All Rights Reserved.

Printed in Taiwan 2018

Jmicron and the Jmicron Logo are trademarks of Jmicron Technology Corporation in Taiwan and/or other countries.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use implantation or other life supports application where malfunction may result in injury or death to persons. The information contained in this document does not affect or change Jmicron's product specification or warranties. Nothing in this document shall operate as an express or implied license or environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Jmicron be liable for damages arising directly or indirectly from any use of the information contained in this document.

For more information on Jmicron products, please visit the Jmicron web site at http://www.JMicron.com or send e-mail to sales@jmicron.com. For product application support, please send e-mail to fae@jmicron.com.

Jmicron Technology Corporation

1F, No.13, Innovation Road 1, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Revision History

Devision	Effective date		Author	
Revision		Reference	Detail of change	Autioi
0.10	11/18/2016		Initial release.	Seth Peng
0.20	02/09/2017		Grammar modifications	Seth Peng
0.30	03/06/2017		Modified VCCK/AVDDL voltage	Seth Peng
0.40	05/25/2017		Update typo and removed Vbus de-bounce description	Mika Cheng
0.50	08/04/2017		Update power dissipation Update VCCK and AVDD voltage	Mika Cheng
1.00	01/10/2017	2, 7.4	 Update chapter 7.4 power dissipation Removed feature "embedded 5V to 1.0V switch regulator" 	Mika Cheng

Table of Contents

Re	visio	n History	i
Та	ble of	Contents	ii
Fiç	jure L	ist	iv
Та	ble Li	st	v
1	Intro	oduction	1
2	Feat	tures	2
3	Bloc	k Diagram	3
4	Pac	kage Dimensions	4
5	Pac	kage Pin-out	5
	5.1	Pin Assignment	5
	5.2	Pin Type Definition	6
	5.3	Pin Description	6
	5.4	LED Indicator	10
	5.5	GPIO Initial Value	10
6	Cloc	k and Reset	11
	6.1	Crystal Input	11
	6.2	Reset Input	11
7	Elec	strical Characteristics	12
	7.1	Absolute Maximum Rating	12
	7.2	Operating Voltage and Temperature	12
	7.3	External Clock Source Conditions	12
	7.4	Power Dissipation	13
	7.5	I/O DC Characteristics	16
	7.6	V _{BUS} Detector	16
	7.7	Internal Linear Regulator	16
	7.8	Power-on Sequence	17
8	Proc	duct Naming Rule and Ordering Information	19
	8.1	Format of the Part Number	19
	8.2	Definition of the Part Number	19

Figure List

Figure 1	Block diagram	3
	Package outline drawing	
Figure 3	Pin assignment of JMS580	5
Figure 4	Power-on sequence	17
Figure 5	Format of the part number	19

Table List

Table 1	Pin type definition	6
Table 2	Pin description – Serial ATA interface	6
Table 3	Pin description – USB 3.1 interface	7
Table 4	Pin description – USB 2.0 interface	7
Table 5	Pin description – Crystal interface	8
Table 6	Pin description – Switching regulator interface	8
Table 7	Pin description - USB Type-C configuration channel	9
Table 8	Pin description – Control and GPIO interface	g
Table 9	Pin description – Power supply interface	10
Table 10	Crystal electrical specification	11
Table 11	Reset voltage	11
Table 12	Absolute maximum rating	12
Table 13	Operating voltage and temperature	12
Table 14	External clock source conditions	12
Table 15	Power dissipation – USB 2.0 to SATA idle mode	13
Table 16	Power dissipation – USB 2.0 to SATA operating mode	13
Table 17	Power dissipation – USB 2.0 to SATA suspend mode	13
Table 18	Power dissipation – USB 3.1 Gen1 to SATA idle mode	14
Table 19	Power dissipation – USB 3.1 Gen1 to SATA U0 mode	14
Table 20	Power dissipation –USB 3.1 Gen1 to SATA suspend mode	14
Table 21	Power dissipation – USB 3.1 Gen2 to SATA idle mode	15
Table 22	Power dissipation – USB 3.1 Gen2 to SATA U0 mode	15
Table 23	Power dissipation – USB 3.1 Gen2 to SATA suspend mode	15
Table 24	I/O DC characteristics	16
Table 25	Internal linear regulator specification	16
Table 26	Power-on timing requirements	18
Table 27	Explanation of the part number	19

1 Introduction

The JMS580 is JMicron's first USB 3.1 Gen 2 to SATA 6Gb/s bridge controller between USB host and SATA storage device. The USB 3.1 Gen 2 interface offers data transfer speed up to 10Gbps, doubling the USB Gen 1 data rate. Meanwhile, the downstream port of the JMS580 is compatible with storage device with SATA interface, such as HDD or SSD. The SATA port is compliant with SATA 6Gb/s specifications.

The JMS580 supports TRIM command for SSD and complies with USB Attached SCSI Protocol (UASP), providing much elevated performance for data transfer between USB and SATA devices.

USB Type-CTM connectivity is implemented in the JMS580 so that no additional component is required to enable Type-CTM connectivity when hardware system designers deploy this advanced controller. The built-in USB Type-CTM feature can save costs, PCB board space and development time for storage device developers.

Regarding power managements, the JMS580 is capable of working with specific power management controllers to develop a USB Power Delivery (PD) enabled device. For instance, a PD-enabled storage device with 3.5" HDDs can receive 12V from a PD-enabled host acting as the power provider to the device through the USB cable without additional plug-in. Designed with power management features, the JMS580 can meet the power consumption for a wide variety of applications such as data center, network attached storage (NAS), and thumb-sized Internet-of-Things (IoT) devices.

The JMS580 can be adopted with other JMicron SATA port multipliers, such as the JMB572, JMB575 to form medium-sized data storage for digital video recorder (DVR) and network video recorder (NVR) surveillance storages.

The JMS580 is compatible with the JMS576, and therefore provides a seamless upgrade to double USB bandwidth.

2 Features

- Integrates with USB Type-CTM multiplexer & configuration channel (CC) logic
- Complies with Serial ATA 6Gb/s Electrical Specification 3.2
- Supports TRIM for SSD
- Complies with USB 3.1 Specification Revision 1.0, USB BOT Specification
- Complies with USB UASP Specification
- Supports USB 2.0 High-Speed/Full-Speed Operation
- Supports USB2.0/USB 3.1 power saving modes
- Supports external SPI NVRAM for Vendor VID/PID of USB2.0/USB 3.1 device controller
- Supports ATA/ATAPI PACKET command set
- 12x GPIOs for customization
- Provides hardware controlled PWMs
- Provides software utilities for downloading the upgraded firmware code under USB2.0/USB 3.1
- Compatible with Windows 7, Windows 10 and MAC 10.10.5 or later version
- Supports 25MHz external crystal
- Supports 3.3V I/O
- Embedded 5V to 3.3V linear voltage regulator (LDO)
- QFN48 6x6 package

3 Block Diagram

Figure 1 Block diagram

4 Package Dimensions

Figure 2 Package outline drawing

5 Package Pin-out

5.1 Pin Assignment

Figure 3 Pin assignment of JMS580

5.2 Pin Type Definition

Table 1 Pin type definition

Pin type	Definition
Α	Analog
D	Digital
I	Input
О	Output
Р	Power
Ю	Bi-directional
L	Internal weak pull-low
Н	Internal weak pull-high

5.3 Pin Description

5.3.1 Serial ATA Interface

 Table 2
 Pin description – Serial ATA interface

Signal name	QFN 48	Туре	Description
SARXP	29	AI	SATA Port RX+ Signal A 10 nF capacitor should be placed between this pin and SATA connector.
SARXN	30	AI	SATA Port RX- Signal A 10 nF capacitor should be placed between this pin and SATA connector.
SATXN	32	АО	SATA Port TX- Signal A 10 nF capacitor should be placed between this pin and SATA connector.
SATXP	33	АО	SATA Port TX+ Signal A 10 nF capacitor should be placed between this pin and SATA connector.
REXT	34	AI	External Reference Resistance A 12 k Ω ±1% external resistor should be connected to this pin.

5.3.2 USB 3.1 Interface

Table 3 Pin description – USB 3.1 interface

Signal name	QFN 48	Туре	Description
SSRXP2	23	AI	Super Speed RX+ 2 signal
SSRXN2	22	AI	Super Speed RX- 2 signal
SSRXN1	21	Al	Super Speed RX- 1 signal
SSRXP1	20	Al	Super Speed RX+ 1 signal
SSTXP2	18	АО	Super Speed TX+ 2 signal A 100 nF capacitor should be placed between this pin and USB connector.
SSTXN2	17	AO	Super Speed TX- 2 signal. A 100 nF capacitor should be placed between this pin and USB connector.
SSTXN1	16	АО	Super Speed TX- 1 signal. A 100 nF capacitor should be placed between this pin and USB connector.
SSTXP1	15	AO	Super Speed TX+ 1 signal. A 100 nF capacitor should be placed between this pin and USB connector.

5.3.3 USB 2.0 Interface

Table 4 Pin description – USB 2.0 interface

Signal name	QFN 48	Туре	Description
DM	11	AIO	USB 2.0 Bus D- Signal
DP	12	AIO	USB 2.0 Bus D+ Signal
VBUS	10	PI	USB 5V VBUS power for LDO input

Signal name	QFN 48	Туре	Description
AV33O	13	РО	USB 2.0 Analog 3.3V Output. A capacitor to ground is recommended for this pin. The value should be 1 uF. The output voltage range is 3.3V±10%. Note: 1. This pin supplies power current lower than 100mA @ 3.3V. 2. This pin can only support internal power usage within the chip.

5.3.4 Crystal Interface

 Table 5
 Pin description – Crystal interface

Signal name	QFN 48	Туре	Description
XIN	27	AI	Crystal Input/Oscillator Input. It is connected to a 25MHz crystal or crystal oscillator. The variation range should be around ±30ppm and the input voltage should lie within the range of 3.3V±5%.
хоит	26	АО	Crystal Output. It is connected to a crystal. While crystal oscillator is applied, this pin should be reserved for No Connection (NC). The output variation range is around ±30ppm (input dependent) and the output voltage range should lie within 3.3V±5% (input dependent).

5.3.5 Switching Regulator Interface

 Table 6
 Pin description – Switching regulator interface

Signal name	QFN 48	Туре	Description
VREG_IN	1	PI	Voltage Regulator 5V Power Supply
GND	47	Р	Voltage Regulator Ground
LXO	48	РО	Voltage Regulator 1.0V Output Switch node. Connected with external power inductor with a value of 4.7 uH.

5.3.6 USB Type-C Configuration Channel

 Table 7
 Pin description - USB Type-C configuration channel

Signal name	QFN 48	Туре	Description
CC1	46	AI	CC pin1 input for voltage detection. The maximum tolerant input voltage is 3.3V
CC2	45	AI	CC pin2 input for voltage detection. The maximum tolerant input voltage is 3.3V

5.3.7 Control and GPIO Interface

Table 8 Pin description – Control and GPIO interface

Signal name	QFN 48	Туре	Description
RST#	38	DI	System Global Reset Input. Schmitt trigger input pin. Set active-low to reset the entire chip. An external RC should be connected to this pin.
TME	44	DI	MP Test Mode Enable. Schmitt trigger input pin. This pin is reserved for IC mass production testing. Keep this pin to logic "0" during normal operation.
GPIO[0]	2	DIOH	Serial Flash (SO) After power-on status detection, this pin becomes Data Output for serial flash. This pin is by default set to input.
GPIO[1]	3	DIOH	Serial Flash (SCK) This pin is Serial Flash Data Clock (SCK) of serial flash. This pin is set to output by default.
GPIO[2]	5	DIOH	Serial Flash(SI) Serial Flash Data Input (SI) of serial flash. This pin is set to output by default.
GPIO[3]	6	DIOH	Serial Flash(CE0#) This pin functions is configured as Chip Enable (CE0#) of Serial Flash
GPIO[4]	8	DIOH	GPIO[4] Configurable by customer firmware.
GPIO[5]	9	DIOH	GPIO[5] Configurable by customer firmware.
GPIO[6]	35	DIOH	GPIO[6] Configurable by customer firmware.
GPIO[7]	36	DIOH	GPIO[7] Configurable by customer firmware.

Signal name	QFN 48	Туре	Description
UAO/GPIO[8]	37	DIOH	RISC UART TX interface/GPIO[8] Configurable by customer firmware.
UAI/GPIO[9]	41	DIOH	RISC UART RX interface/GPIO[9] Configurable by customer firmware.
GPIO[10]	42	DIOH	GPIO[10] Configurable by customer firmware.
GPIO[11]	43	DIOH	GPIO[11] Configurable by customer firmware.

5.3.8 Power Supply

 Table 9
 Pin description – Power supply interface

Signal name	QFN 48	Туре	Description
vcco	7, 39	PI	3.3V I/O power supply
VCCK	4, 40	PI	1.0V core power supply
NC	25		No connect
AVDDL	14, 19, 24, 28, 31	PI	Analog 1.0V power supply
GND	E-PAD	Р	Ground

5.4 LED Indicator

By default, GPIO [4] is used as the LED for disk access indicator. If the user/system designer has a different application for LED indicator, please contact JMicron's AE before conducting PCB layout.

5.5 GPIO Initial Value

All GPIOs are set as input mode and internal pull-up function is disabled upon reset. Once reset, the firmware will program all GPIOs as input mode. Afterward, the initial value of GPIOs is read and stored in the system RAM for future use.

6 Clock and Reset

6.1 Crystal Input

Single crystal input (25MHz) is required.

Table 10 Crystal electrical specification

Parameter	Symbol	Min.	Typical	Max.	Unit
Crystal start up time v.s AVDDL	T _{Crystal}			150	mS
Crystal Frequency	f _{clk}		25		MHz
Long term stability (Crystal Only)	Δ f _{MAX_Crystal}	-30		30	ppm
Long term stability (On Board)	$\Delta \mathbf{f}_{MAX_OnBoard}$	-150		150	ppm
Equivalent Series Resistance	ESR			55	Ω

6.2 Reset Input

All functions will be initialized upon reset except the Analog Power-On Reset Circuit, which is varied depending on the Power on-off. The reset input pin is the Schmitt trigger input pin. VT+ Schmitt Trigger Low to High threshold point is 2.2V and VT- Schmitt Trigger High to Low threshold point is 0.7V.

Table 11 Reset voltage

Parameter	Symbol	Condition	Min.	Typical	Max.	Unit
Reset voltage	V _{T+}	Low to High	2.2			V
Reset voltage	V _{T-}	High to Low			0.7	V

7 Electrical Characteristics

7.1 Absolute Maximum Rating

Table 12 Absolute maximum rating

Parameter	Symbol	Condition	Min.	Max.	Unit
Digital 3.3V	VCCO _(ABS)		-0.3	3.63	V
Digital 1.0V	VCCK _(ABS)		-0.3	1.1	V
Switching regulator	AVDDS _(ABS)		-0.3	5.5	V
Analog 1.0V	AVDDL _(ABS)		-0.3	1.1	V
USB VBUS	VBUS		4.0	5.5	V
Digital I/O input voltage	V _{I(D)}		-0.3	3.63	V
Storage temperature	T _{STORAGE}		-40	150	°C

7.2 Operating Voltage and Temperature

 Table 13
 Operating voltage and temperature

Parameter	Symbol	Condition	Min.	Typical	Max.	Unit
Digital 3.3V power supply	VCCO		3.0	3.3	3.6	V
Digital 1.0V power supply	VCCK		1	1.05	1.1	V
Analog 1.0V power supply	AVDDL		1	1.05	1.1	V
Digital I/O input voltage	$V_{I(D)}$		0	3.3	3.6	V
Ambient operation temperature	T _A		0		70	°C
Case operation temperature	T _C		0		105	°C
Junction Temperature	TJ				125	°C

7.3 External Clock Source Conditions

Table 14 External clock source conditions

Parameter	Symbol	Condition	Min.	Typical	Max.	Unit
External reference clock				25		MHz
Clock Duty Cycle			45	50	55	%

7.4 Power Dissipation

7.4.1 USB 2.0 to SATA mode

7.4.1.1 Idle

Table 15 Power dissipation – USB 2.0 to SATA idle mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @3.3V		3	5	mA
Digital 1.0V	VCCK	Operate @1.05V		60	80	mA
Analog 1.0V	AVDDL	Operate @1.05V		200	250	mA

7.4.1.2 Operating

Table 16 Power dissipation – USB 2.0 to SATA operating mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @ 3.3V		3	5	mA
Digital 1.0V	VCCK	Operate @ 1.05V		62	80	mA
Analog 1.0V	AVDDL	Operate @ 1.05V		200	250	mA

7.4.1.3 Suspend

Table 17 Power dissipation – USB 2.0 to SATA suspend mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @ 3.3V		1	3	mA
Digital 1.0V	VCCK	Operate @ 1.05V		8	15	mA
Analog 1.0V	AVDDL	Operate @ 1.05V		2.5	5	mA

7.4.2 USB 3.1 Gen1 to SATA mode

7.4.2.1 Idle

Table 18 Power dissipation – USB 3.1 Gen1 to SATA idle mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @3.3V		3	5	mA
Digital 1.0V	VCCK	Operate @1.05V		70	80	mA
Analog 1.0V	AVDDL	Operate @1.05V		255	285	mA

7.4.2.2 Operation

Table 19 Power dissipation – USB 3.1 Gen1 to SATA operation mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @ 3.3V		3	5	mA
Digital 1.0V	VCCK	Operate @ 1.05V		81	100	mA
Analog 1.0V	AVDDL	Operate @ 1.05V		259	285	mA

7.4.2.3 Suspend

Table 20 Power dissipation –USB 3.1 Gen1 to SATA suspend mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @ 3.3V		1	3	mA
Digital 1.0V	VCCK	Operate @ 1.05V		8	15	mA
Analog 1.0V	AVDDL	Operate @ 1.05V		3	6	mA

7.4.3 USB 3.1 Gen2 to SATA mode

7.4.3.1 Idle

 Table 21
 Power dissipation – USB 3.1 Gen2 to SATA idle mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @3.3V		3	5	mA
Digital 1.0V	VCCK	Operate @1.05V		97	120	mA
Analog 1.0V	AVDDL	Operate @1.05V		298	330	mA

7.4.3.2 Operation

 Table 22
 Power dissipation – USB 3.1 Gen2 to SATA operation mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @ 3.3V		3	5	mA
Digital 1.0V	VCCK	Operate @ 1.05V		112	140	mA
Analog 1.0V	AVDDL	Operate @ 1.05V		302	330	mA

7.4.3.3 Suspend

Table 23 Power dissipation – USB 3.1 Gen2 to SATA suspend mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V	VCCO	Operate @ 3.3V		1	3	mA
Digital 1.0V	VCCK	Operate @ 1.05V		8	15	mA
Analog 1.0V	AVDDL	Operate @ 1.05V		3	6	mA

7.5 I/O DC Characteristics

Table 24 I/O DC characteristics

Parameter	Symbol	Condition	Min.	Typical	Max.	Unit
Input low voltage	V _{IL}				0.7	V
Input high voltage	V _{IH}		1.5			V
Output low voltage	V _{OL}				0.3	V
Output high voltage	V _{OH}		1.9			V
Output Current	Io				24	mA

7.6 V_{BUS} Detector

There are two parts for V_{BUS} de-bounce by VBUS (pin 10): One is hysteresis, and another is logic glitch filter.

Hysteresis:

- Switching threshold is 2.45V for high to low
- Switching threshold is 3.08V for low to high

7.7 Internal Linear Regulator

Table 25 Internal linear regulator specification

Parameter	Symbol	Condition	Min.	Typical	Max.	Unit
Input Voltage Range	V _{IN_LINEAR}			5		V
Output Voltage Range	V _{OUT_LINEAR}			3.3		V
Max Output Current	I _{MAX}		-	-	100	mA

7.8 Power-on Sequence

The power-on sequence is defined in **Figure 4** Designers should follow the following rules for external power designs.

Figure 4 Power-on sequence

T_{5V}: Rise time for 5V power rail from 10% to 90%

T1: Rise time for 3V3 power rail from 10% to 90%

T2: Rise time for 1V0 power rail from 10% to 90%

T3: Time interval between 3V3 power and 1V0 Power

T4: Rise time for RST# signal from 0V to 2V2

 $T_{\text{Clock:}}$ Time interval between 3V3 and 90% clock swing

Note: Clock must meet 25MHz +/-30ppm during the sequence.

The recommended power sequence and timing requirements are listed in Table 2626.

Table 26 Power-on timing requirements

Time Interval	Minimum	Maximum
T _{5V}	-	20 ms
T1	0.0 ms	10 ms
T2	0.0 ms	10 ms
T3	-5ms	5ms
T4	150 ms	500 ms
T _{CLOCK}	-	150.0 ms

The RESET timing constraint is based on the external RC reset circuits. To control the charge and discharge time for RC circuits, minimum and maximum requirements are defined. If designers apply timing control chip to control the reset signal, simply follow the minimum value. The maximum value can be ignored without further issues.

8 Product Naming Rule and Ordering Information

8.1 Format of the Part Number

The part number covers the information of the provider, product category, device number, package type, material type, product grade (based on operating temperature), mask ROM version and device version. The format of the part number is illustrated in **Figure 5** below.

Figure 5 Format of the part number

8.2 Definition of the Part Number

Table 27 defines each section of the part number illustrated in Figure 5.

Section Length Designation Code(s) **Definition JM**icron 2 digits Brand name JM b 1 digit Product category S SuperSpeed USB The serial number assigned randomly to form the device name "JMS580" in 3 digits Device number 580 С conjunction with brand name and product category. Q d 1 digit **Q**FN Package type RoHS compliant green product with JEDEC MSL 3 and commercial-grade 1 digit Material & grade Η е operating temperature ranging from 0 to 70°C. Α f 1 digit Internal bonding type Wire bonding option A 2 digit Version of mask ROM Α1 Version A1 g Version of the IC Α h 1 digit Version A

Table 27 Explanation of the part number

