

▼ Исходные дан

```
Коэф. запаса:
                 safety = 1.3
```

turbine = "ТНД"

Высота движения (м):
$$H_{v} = 0$$

$$\begin{pmatrix} G_{\Gamma} \\ G_{leak} \\ G_{cooling} \end{pmatrix} = \begin{pmatrix} 32.30 \\ 106.96 \cdot 10^{-3} \\ 3240.8 \cdot 10^{-3} \end{pmatrix} \text{ if turbine} = "ТВД"} = \begin{bmatrix} 1 \\ 1 \\ 35.43 \\ 2 \\ 0.04 \\ 3 \\ 0.81 \end{bmatrix}$$

$$\begin{pmatrix} 35.43 \\ 35.65 \cdot 10^{-3} \\ 810.2 \cdot 10^{-3} \end{pmatrix} \text{ if turbine} = "ТНД"}$$

Мощность T (Вт):
$$N_T = 10^6 \cdot 14.893$$
 if turbine = "ТВД" = $15.181 \cdot 10^6$ 15.181 if turbine = "ТНД"

Полное давление перед
$$T$$
 (Па):

$$P_{\Gamma}^* = 10^3 \cdot \begin{vmatrix} 2731.8 & \text{if turbine} = "ТВД" = 927.5 \cdot 10^3 \\ 927.5 & \text{if turbine} = "ТНД" \end{vmatrix}$$

$$T^*_{\Gamma} = \begin{bmatrix} 1773 & \text{if turbine} = "ТВД" = 1368.9 \\ 1368.9 & \text{if turbine} = "ТНД" \end{bmatrix}$$

$$\alpha_{\rm ox} = \begin{bmatrix} 2.267 & \text{if turbine} = "ТВД" = 2.493 \\ 2.493 & \text{if turbine} = "ТНД" \end{bmatrix}$$

Полное давление отбора охлаждающего воздуха (К):

$$P^*_{cooling} = 10^3 \cdot 2845.6$$
 if turbine = "ТВД" = $319.4 \cdot 10^3$ 319.4 if turbine = "ТНД"

Полная температура отбора охлаждающего воздуха (К):

$$T^*_{cooling} = \begin{vmatrix} 806.9 & \text{if turbine} = "ТВД" = 418.2 \\ 418.2 & \text{if turbine} = "ТНД" \end{vmatrix}$$

Коэф. сохранения полного давления охлаждения:

$$\sigma_{\text{cooling}} = 0.97$$

Подогрев охл. от КС [K]:
$$\Delta T_{ox}$$

$$\Delta T_{\text{охл.подогрев}} = 40$$

Газовая постоянная (Дж/кг/К):
$$R_{\Gamma a3}(\alpha_{OX}, Fuel) = 288.5$$

$$R_{\Gamma a3}(\alpha_{OX}, Fuel) = 288.5$$

$$T_{\Pi, \text{ДО}\Pi} = 1373$$

Абс. скорость перед Т (м/с):

Абс. скорость после Т (м/с):

[1, c.15]

$$80 \le c_T \le 400 = 1$$

Лопаточный КПДТ: $\eta_{\Pi} = 88\%$

$$\eta_{\rm JI} = 88\%$$

$88\% \le \eta_{\rm JI} \le 95\% = 1$

Угол входа в Т: $\alpha_{\Gamma} = 90$. $^{\circ}$

$$\alpha_{\Gamma} = 90^{\circ}$$

Окр. скорость Л последней ступени на ср. диаметре Т (м/с):

$$\begin{pmatrix} c_{\Gamma} \\ c_{T} \end{pmatrix} = \begin{pmatrix} 100 \\ 180 \end{pmatrix}$$
 if turbine = "ТВД" $= \begin{bmatrix} 1 \\ 1 \\ 180.0 \\ 2 \\ 260.0 \end{bmatrix}$ $\begin{pmatrix} 180 \\ 260 \end{pmatrix}$ if turbine = "ТНД"

$$u_{\rm T} = \begin{vmatrix} 520 & \text{if turbine} = "ТВД" = 260.0 \\ 260 & \text{if turbine} = "ТНД" \end{vmatrix}$$

$$z = ORIGIN...N_r$$

 $P^*_{\text{cooling}} = P^*_{\text{cooling}} \cdot \sigma_{\text{cooling}} = 309.8 \cdot 10^3$ Полное давление отбора охлаждающего воздуха (К):

 $T^*_{\text{cooling}} = T^*_{\text{cooling}} + \Delta T_{\text{охл.подогрев}} = 458.2$ Полная температура отбора охлаждающего воздуха (К):

 $G_{\Gamma} = G_{\Gamma} - G_{leak} = 35.4$ Массовый расход перед Т (кг/с):

 $G_{T} = G_{\Gamma} + G_{cooling} = 36.2$ Массовый расход после Т (кг/с):

Удельная работа T (Дж/кг): $L^*_T = \frac{N_T}{\text{mean} \left(G_\Gamma, G_T\right)} = 424.1 \cdot 10^3$ $L^*_T \le 550 \cdot 10^3 = 1$ Располагаемый теплоперепад в T (Дж/кг): $H_T = \frac{L^*_T + 0.5c_T^{-2}}{\eta_{_{I\!I}}} = 520.3 \cdot 10^3$

$$\begin{vmatrix} \text{iteration} \\ k_{\Gamma} \\ P_{\Gamma} \\ T_{\Gamma} \end{vmatrix} = \begin{vmatrix} \text{iteration} = 0 \\ k_{\Gamma} = k_{\text{AJ}} \left(\text{Cp}_{\text{Fa3}} \left(\text{P}^*_{\Gamma}, \text{T}^*_{\Gamma}, \alpha_{\text{OX}}, \text{Fuel} \right), \text{R}_{\text{Fa3}} \left(\alpha_{\text{OX}}, \text{Fuel} \right) \right) \\ \text{while } 1 > 0 \\ \begin{vmatrix} \text{iteration} = \text{iteration} + 1 \\ \text{Cp}_{\Gamma} = \frac{k_{\Gamma}}{k_{\Gamma} - 1} \cdot \text{R}_{\text{Fa3}} \left(\alpha_{\text{OX}}, \text{Fuel} \right) \end{vmatrix}$$

$$T_{\Gamma} = T^*_{\Gamma} - \frac{c_{\Gamma}^2}{2 \cdot \text{Cp}_{\Gamma}}$$

$$k'_{\Gamma} = k_{\text{AJ}} \left(\text{Cp}_{\text{Fa3}} \left(\text{P}_{\Gamma}, \text{T}_{\Gamma}, \alpha_{\text{OX}}, \text{Fuel} \right), \text{R}_{\text{Fa3}} \left(\alpha_{\text{OX}}, \text{Fuel} \right) \right)$$

$$if \left| \text{eps} \left(\text{"rel"}, k_{\Gamma}, k'_{\Gamma} \right) \right| \leq \text{epsilon}$$

$$\left| k_{\Gamma} = k'_{\Gamma} \right|_{\text{break}}$$

$$k_{\Gamma} = k'_{\Gamma}$$

$$\left(\text{iteration} k_{\Gamma} \cdot \text{P}_{\Gamma} \cdot \text{T}_{\Gamma} \right)^{\text{T}}$$

Количество итераций: iteration = 1

Показатель адиабаты перед Т: ${\bf k}_{\Gamma} = 1.298$

Статическое давление перед Т (Па): $P_{\Gamma} = 890 \cdot 10^{3}$

Статическая температура перед Т (K): $T_{\Gamma} = 1356$

Теплоем кость перед Т (Дж/кг/К): $Cp_{\Gamma} = Cp_{\Gamma a3}(P_{\Gamma}, T_{\Gamma}, \alpha_{oX}, Fuel) = 1256$

$$\begin{vmatrix} \text{iteration} \\ k_{T} \\ P_{T} \\ T_{T} \end{vmatrix} = \begin{vmatrix} \text{iteration} = 0 \\ k_{T} = k_{\Gamma} \\ \text{while } 1 > 0 \end{vmatrix}$$

$$\begin{vmatrix} \text{iteration} = \text{iteration} + 1 \\ k_{Cp} = \text{mean}(k_{\Gamma}, k_{T}) \\ \text{Cp} = \frac{k_{Cp}}{k_{Cp} - 1} \cdot R_{\Gamma 3}(\alpha_{OX}, \text{Fuel}) \end{vmatrix}$$

$$\begin{vmatrix} P_{T} = P^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \\ P_{T} = P^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \end{vmatrix}$$

$$\begin{vmatrix} F_{T} = F^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \\ F_{T} = F^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \end{vmatrix}$$

$$\begin{vmatrix} F_{T} = F^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \\ F_{T} = F^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \end{vmatrix}$$

$$\begin{vmatrix} F_{T} = F^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \\ F_{T} = F^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \end{vmatrix}$$

$$\begin{vmatrix} F_{T} = F^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \\ F_{T} = F^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}} \\ F_{T} = F^{*}_{\Gamma} \cdot \left(1 - \frac{H_{T}}{C_{P} \cdot T^{*}_{\Gamma}}\right)^{\frac{k_{Cp}}{k_{Cp} - 1}}$$

$$\begin{vmatrix} F_{T} - F^{*}_{\Gamma} \cdot F^{*}$$

Количество итераций: iteration = 2

Показатель адиабаты после Т: $k_T = 1.320$

Статическое давление после Т (Па): $P_{T} = 191.5 \cdot 10^{3}$ $P_{T} \geq P_{aTM}(H_{U}) = 1$

Статическая температура после T (K): $T_T = 994.7$

Теплоем кость после Т (Дж/кг/К): $Cp_T = Cp_{\Gamma a3}(P_T, T_T, \alpha_{OX}, Fuel) = 1190.6$

Ср. показатель адиабаты Т:
$$k = mean(k_T, k_T) = 1.309$$

Ср. теплоемкость Т (Дж/кг/К): Ср
$$= \frac{k}{k-1} \cdot R_{\Gamma a3} (\alpha_{ox}, \text{Fuel}) = 1222.3$$

Степень понижения давления:
$$\pi_T = \frac{P^*_{\ \Gamma}}{P_{_T}} = 4.84$$

Удельный объём перед
$$T(M^3/K\Gamma)$$
:
$$\begin{pmatrix} v_{\Gamma} \\ v_{T} \end{pmatrix} = R_{\Gamma a3} \Big(\alpha_{OX}^{}, Fuel \Big) \cdot \begin{pmatrix} \frac{T_{\Gamma}}{P_{\Gamma}} \\ \frac{T_{\Gamma}}{P_{T}} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0.440 \\ 2 \end{pmatrix} = \begin{pmatrix} G_{r} \cdot V_{r} \end{pmatrix}$$

Площадь кольцевого сечения перед
$$T(M^2)$$
:
$$\begin{pmatrix} F_{\Gamma} \\ F_{T} \end{pmatrix} = \begin{pmatrix} \frac{G_{\Gamma} \cdot v_{\Gamma}}{c_{\Gamma}} \\ \frac{G_{\Gamma} \cdot v_{T}}{c_{T}} \end{pmatrix} = \begin{pmatrix} \frac{1}{1} & 86421 \\ \frac{1}{2} & 208684 \end{pmatrix} \cdot 10^{-6}$$

$$y_0 = 0.55$$

Коэф. использования скорости:

$$\mu_c = \text{mean}(0.7, 1) = 0.9$$

 $0.7 \le \mu_{\rm c} \le 1 = 1$

▼ Определение количества ступеней Т

Рекомендуемое количество ступеней: $Z_{recomend} = 5$

Количество ступеней: $Z = \begin{bmatrix} 1 & \text{if turbine} = \text{"ТВД"} = 4 \\ 4 & \text{if turbine} = \text{"ТНД"} \end{bmatrix}$

Дискретизация ступеней: i = 1...Z

Дискретизация сечений: $ii = 1...2 \cdot Z + 1$

Плотность материала
$$J(\kappa r/m^3)$$
:
$$\rho_blade_i = 7938 \quad \text{if material_blade}_i = "BKHA-1B"$$

$$8390 \quad \text{if material_blade}_i = "BKM7"$$

$$8760 \quad \text{if material_blade}_i = "KC-36"$$
 NaN otherwise

Предел длительной прочности Л РК (Па):
$$\sigma_{blade_long_i} = 10^6 \cdot 205 \text{ if material_blade}_{i} = "BKHA-1B"$$

$$120 \text{ if material_blade}_{i} = "BKM7"$$

$$120 \text{ if material_blade}_{i} = "ЖC-36"$$
 NaN otherwise

Коэф. формы: $k_n = 6.8$

Модуль Юнга I рода материала Л (Па): $E_{blade} = 210 \cdot 10^{9}$

Коэф. Пуассона материала Π (): μ steel = 0.3

Мах частота вращения ротора на входе (об/мин):

$$\sqrt{\frac{\sigma_{\text{blade_long}Z}}{\text{safety} \cdot k_{\text{n}} \cdot F_{\Gamma}}} = 12533$$

Мах частота вращения ротора на выходе (об/мин):

$$n_{\text{max}} = \sqrt{\frac{\sigma_{\text{blade_long}Z}}{\text{safety} \cdot k_{\text{n}} \cdot F_{\text{T}}}} = 8065$$

Рекомендукмая ном. частота вращения (об/мин):

$$n = n_{\text{max}} \cdot 0.95 = 7662$$

$$_{\text{v}} = \begin{vmatrix} 15000 & \text{if turbine} = \text{"ТВД"} \\ 5300 & \text{if turbine} = \text{"ТНД"} \end{vmatrix} = 5300$$

Ном. частога вращения (рад/с):

$$\omega = \frac{2 \cdot \pi \cdot n}{60} = 555.0$$

Ср. диаметр перед Т (м):
$$\begin{pmatrix} D_{\Gamma.cp} \\ D_{T.cp} \end{pmatrix} = \frac{2}{\omega} \cdot \begin{pmatrix} u_T \\ u_T \end{pmatrix} = \begin{bmatrix} 1 \\ 1 & 936.9 \\ 2 & 936.9 \end{bmatrix} \cdot 10^{-3}$$

Длина Л первой ступени Т (м):

Длина Л последней ступени Т (м):

	$\begin{pmatrix} F_{\Gamma} \end{pmatrix}$				
$\begin{pmatrix} 1_{\Gamma} \end{pmatrix}$ 1	$D_{\Gamma,cp}$			1	3
$\begin{vmatrix} 1 \end{vmatrix} = \frac{\pi}{\pi}$	F	=	1	29.36	.10
$\binom{1}{T}$	T		2	70.90	
	$\left(D_{\mathrm{T.cp}} \right)$				

Диаметр периферии после
$$T(M)$$
:
$$\begin{pmatrix} D_{T.\Pi ep} \\ D_{T.Kop} \end{pmatrix} = \begin{pmatrix} D_{T.cp} + l_T \\ D_{T.cp} - l_T \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 866.0 \end{bmatrix} \cdot 10^{-3}$$

$$\frac{l_{\rm T}}{D_{\rm T.cp}} = \frac{1}{13}$$

Частота вращения Т

$$N_{cT_i} = \frac{N_T}{Z}$$

$$N_{CT}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3.80 & 3.80 & 3.80 & 3.80 \end{bmatrix} \cdot 10^{6}$$

Вид проточной части:

("const", "кор", "cp", "пер", "доля от предыдушего диаметра периферии")

▼ Определение проточной части О⁻

Линейное распределение кольцевых площадей по сечениям:

$F^{T} =$		1	2	3	4	5	6	7	8	9	1.10^{-6}
	1	86421	101704	116987	132270	147553	162836	178118	193401	208684	

$$\begin{split} D = & & \text{ for } i \in 2Z + 1 \\ & \text{ for } r \in 1..N_r \\ D_{i,r} = & & D_{T,kop} \quad \text{ if } r = 1 \\ D_{D,rep} \quad \text{ if } r = av(N_r) \\ D_{D,mep} \quad \text{ if } r = N_r \\ \end{split}$$

$$for & i \in Z..1$$

$$for & a \in 2..1$$

$$for & a \in 2..1$$

$$for & a \in 2..1$$

$$D_{st(i,a),r} = & \text{ if } 3\Pi\Pi U_{i,a} = \text{"const"} \\ D_{st(i,a+1),av(N_r)} - \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = 1 \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"kop"} \\ D_{st(i,a+1),1} + \sqrt{\left(D_{st(i,a+1),1}\right)^2 + \frac{4 \cdot F_{st(i,a)}}{\pi}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} - \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = 1 \\ D_{st(i,a+1),av(N_r)} - \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = 1 \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = n_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = n_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"const"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = n_r \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = n_r \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),a$$

$$D^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 620.7 & 620.7 & 651.1 & 698.2 & 750.4 & 802.7 & 843.9 & 866.0 & 866.0 \\ 2 & 662.2 & 669.0 & 704.0 & 754.0 & 808.5 & 862.8 & 906.5 & 932.1 & 936.9 \\ 3 & 703.7 & 717.4 & 756.9 & 809.9 & 866.6 & 922.9 & 969.0 & 998.1 & 1007.8 \end{bmatrix} \cdot 10^{-1}$$

$$R = \frac{D}{2}$$

$$\overline{d} = \begin{cases} \text{for } i \in 1..Z \\ \text{for } a \in 1..3 \end{cases}$$

$$\overline{d}_{st(i,a)} = \frac{D_{st(i,a),1}}{D_{st(i,a),N_r}}$$

$$\overline{d}$$

$\overline{d}^T =$		1	2	3	4	5	6	7	8	9
	1	0.8819	0.8651	0.8602	0.8621	0.8659	0.8698	0.8709	0.8677	0.8593

$$\begin{array}{|c|c|} h = & \text{for } i \in 1..2Z + 1 \\ \\ h_i = \frac{F_i}{\pi \cdot D_{i, av(N_r)}} \\ \\ h \end{array}$$

$$\begin{split} & \left[\frac{D}{\text{st}(i, a+1), N_r} \right]^{D-1} r \\ & \text{if } \left(3\Pi\Pi \Psi_{i, a} \neq \text{"const"} \right) \wedge \left(3\Pi\Pi \Psi_{i, a} \neq \text{"kop"} \right) \wedge \left(3\Pi\Pi \Psi_{i, a} \neq \text{"cp"} \right) \wedge \left(3\Pi\Pi \Psi_{i, a} \neq \text{"nep"} \right) \\ & \sqrt{\left(\frac{D}{\text{st}(i, a+1), N_r} \right)^2 - \frac{4 \cdot F_{\text{st}(i, a)}}{\pi}} \quad \text{if } r = 1 \\ & \frac{1}{2} \cdot \left[\sqrt{\left(\frac{D_{\text{st}(i, a+1), N_r}}{\text{str2num} \left(3\Pi\Pi \Psi_{i, a} \right)} \right)^2 - \frac{4 \cdot F_{\text{st}(i, a)}}{\pi}} + \frac{D_{\text{st}(i, a+1), N_r}}{\text{str2num} \left(3\Pi\Pi \Psi_{i, a} \right)} \right] \quad \text{if } r = \text{av} \left(N_r \right) \\ & \frac{D_{\text{st}(i, a+1), N_r}}{\text{str2num} \left(3\Pi\Pi \Psi_{i, a} \right)} \quad \text{if } r = N_r \end{split}$$

D

for
$$i \in 1...2 \cdot Z + 1$$

for $r \in 1...N_r$

$$u_{i,r} = \frac{\pi \cdot D_{i,r} \cdot n}{60}$$

		1	2	3	4	5	6	7	8	9
$u^T =$	1	172.2	172.2	180.7	193.8	208.2	222.8	234.2	240.3	240.3
	2	183.8	185.7	195.4	209.3	224.4	239.4	251.6	258.7	260.0
	3	195.3	199.1	210.0	224.7	240.5	256.1	268.9	277.0	279.7

 $\overline{d}_1 = 0.8819$ $\overline{d}_1 \le 0.9 = 1$

$\overline{d}^T =$		1	2	3	4	5	6	7	8	9
	1	0.8819	0.8651	0.8602	0.8621	0.8659	0.8698	0.8709	0.8677	0.8593

$$D^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 620.7 & 620.7 & 651.1 & 698.2 & 750.4 & 802.7 & 843.9 & 866.0 \\ 2 & 662.2 & 669.0 & 704.0 & 754.0 & 808.5 & 862.8 & 906.5 & 932.1 \\ 3 & 703.7 & 717.4 & 756.9 & 809.9 & 866.6 & 922.9 & 969.0 & ... \end{bmatrix} \cdot 10^{-3}$$

$h^{T} =$		1	2	3	4	5	6	7	8	9	1.10^{-3}
	1	41.54	48.39	52.90	55.84	58.09	60.07	62.55	66.05	70.90	

Осевая ширина Л СА и РК [1, с.183]:

$$\begin{pmatrix} B_{CA} \\ B_{PK} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \begin{pmatrix} B_{CA}_i \\ B_{PK_i} \end{pmatrix} = \begin{pmatrix} \frac{D_{st(i,2),av(N_r)} - 0.25 \cdot h_{st(i,2)}}{16.4} \\ \frac{D_{st(i,3),av(N_r)}}{22} \end{pmatrix}$$

$$\begin{pmatrix} B_{CA} \\ B_{PK} \end{pmatrix}$$

Радиальный зазор (м):

Осевой зазор (м):

(Лучше выбирать большее значение)

$$\begin{pmatrix} \Delta_r \\ \Delta_a \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1...Z \\ \text{for } a \in 1...3 \\ \begin{vmatrix} \Delta_{r_{st(i,a)}} = 0.001 \cdot D_{st(i,a),N_r} \\ \Delta_{a_i} = 0.25 \cdot B_{CA_i} \\ \begin{pmatrix} \Delta_r \\ \Delta_a \end{pmatrix}$$

$$\Delta_{\Gamma}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.704 & 0.717 & 0.757 & 0.810 & 0.867 & 0.923 & 0.969 & 0.998 & 1.008 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	
$\operatorname{stack}\left(\gamma_{\prod UKop}^{T}, \gamma_{\prod U}^{T}, \gamma_{\prod Unep}^{T}\right) =$	1	0.00	25.44	27.56	35.37	26.86	26.56	11.18	0.00	
$stack(\gamma_{\Pi H Kop}, \gamma_{\Pi H}, \gamma_{\Pi H \Pi ep}) =$	2	9.70	6.22	2.86	2.27	1.72	2.68	3.42	6.50	
	3	9.70	31.66	30.41	37.64	28.58	29.25	14.59	6.50	

$\gamma_{\prod \mathbf{q}}^{\mathrm{T}} \leq 20 \cdot \circ =$	1	1 1	2	3 1	4	5 1	6 1	7 1	8
$\gamma_{\prod q}^{T} \le 25 \cdot \circ =$	1	1	2	3	4	5	6	7	8

$\gamma_{\prod q_{KOp}}^{T} > -12 \cdot {}^{\circ} = $		1	2	3	4	5	6	7	8
		1	1	1	1	1	1	1	1
$\gamma_{\text{TIII}} > -15^{\circ} =$		1	2	3	4	5	6	7	8
ПЧкор > 13 -		1	1	1	1	1	1	1	1

$$\left(\begin{array}{c} x_{\Pi q} \\ y_{\Pi q_{nep}} \\ y_{\Pi q_{rop}} \\ y_{\Pi q_{rop}} \\ y_{\Pi nep} \end{array} \right) = \left(\begin{array}{c} c = 1 \\ x_{\Pi q_c} = 0 \\ y_{\Pi q_{rop}} = y_{\Pi q_{nep}_c} - \Delta_{r_c} \\ y_{\Pi q_{rop}_c} = D_{st(c,1), av(N_r)} \\ y_{\Pi q_{rop}_c} = D_{st(c,1), 1} \\ \text{for } i \in 1 .. Z \\ \left(\begin{array}{c} c = c + 1 \\ x_{\Pi q_c} = x_{\Pi q_{c-1}} + 0.5 \cdot \Delta_{a_i} + B_{CA_i} + 0.5 \cdot \Delta_{a_i} \\ y_{\Pi q_{rop}_c} - \Delta_{r_i} \\ c = c + 1 \\ x_{\Pi q_c} = x_{\Pi q_{c-1}} + 0.5 \cdot \Delta_{a_i} + B_{PK_i} + 0.5 \cdot \Delta_{a_i} \\ \left(\begin{array}{c} y_{\Pi q_{rop}_c} \\ y_{q_{rop}_c} \\$$

Length =
$$\sum_{i=1}^{Z} B_{CA_i} + \sum_{i=1}^{Z} \Delta_{a_i} + \sum_{i=1}^{Z} B_{PK_i} = 393.4 \cdot 10^{-3}$$

$$x = \min(x_{\Pi Y}), \min(x_{\Pi Y}) + \frac{\max(x_{\Pi Y}) - \min(x_{\Pi Y})}{N_{dis}} ... \max(x_{\Pi Y})$$

 $\begin{aligned} y_{\Pi \Pi nep}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi nep}, l\Big) & y_{\Pi \Pi cp}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi cp}, l\Big) & y_{\Pi \Pi kop}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi kop}, l\Big) \\ y_{\Pi nep}(l) &= interp\Big(cspline\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi nep}\Big), x_{\Pi \Pi}, 0.5 \cdot y_{\Pi nep}, l\Big) \end{aligned}$

Относ. толщины ЛРК и СА:

$$\overline{c}_{stator.}(r) = \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \\ 15 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \\ 15 \end{bmatrix}, K, r \end{bmatrix} \text{ if } T_{JI.JQOII} < T^*_{\Gamma} \\ \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 7 \\ 9 \\ 11 \end{bmatrix}, \begin{bmatrix} 7 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 7 \\ 9 \\ 11 \end{bmatrix}, K, r \end{bmatrix} \text{ otherwise}$$

$$\overline{c}_{rotor.}(r) = \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 17 \\ 13 \\ 11 \end{bmatrix}, \begin{bmatrix} 17 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 17 \\ 13 \\ 11 \end{bmatrix}, r \end{bmatrix} \text{ if } T_{JI.JOII} < T^*_{\Gamma}$$

$$\begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 14 \\ 9 \\ 7 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 14 \\ 9 \\ 7 \end{bmatrix}, r \end{bmatrix} \text{ otherwise}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{bmatrix}
for & i \in 1...Z \\
for & r \in 1...N_r
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor} \\
i, r
\end{bmatrix} = \begin{bmatrix}
\overline{c}_{stator.}(r) \\
\overline{c}_{rotor.}(r)
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\frac{1}{c_{stator}} = \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 7.00 & 7.00 & 7.00 & 7.00 \\
2 & 9.00 & 9.00 & 9.00 & 9.00 \\
3 & 11.00 & 11.00 & 11.00 & 11.00
\end{bmatrix}$$
.%

$$\overline{c}_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 14.00 & 14.00 & 14.00 & 14.00 \\ 2 & 9.00 & 9.00 & 9.00 & 9.00 \\ 3 & 7.00 & 7.00 & 7.00 & 7.00 \end{vmatrix} .\%$$

		1	2	3	4	
$\frac{1}{r}$ _inlet _{rotor} =	1	4.900	4.900	4.900	4.900	.%
rotor	2	3.150	3.150	3.150	3.150	, 0
	3	2.450	2.450	2.450	2.450	

$$\frac{T}{r_outlet_{rotor}}^T = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 2.100 & 2.100 & 2.100 & 2.100 \\ 2 & 1.350 & 1.350 & 1.350 & 1.350 \\ 3 & 1.050 & 1.050 & 1.050 & 1.050 \end{bmatrix} .\%$$

▲ Относ. толщины и радиусы профилей

$$R_{L.ep} = \begin{pmatrix} 0.16 & \text{if turbine} = "ТВД" & 0.15 & 0.18 & 0.185 & 0.5 & 0.5 \\ 0.13 & \text{otherwise} \end{pmatrix}^T$$

▼ Поступенчатый расчет ОТ

<i>(</i> :, ,:	•• • •
(iteration _{CA}	
<u>k</u> .	R_{L}
H* _{cT}	H_{cT}
H _{stator}	H_{rotor}
сад	$w_{a\mu}$
P*	P
T*	<u>T</u>
<u>G</u>	V
ρ*	ρ
	α_{ox}
α	β
$\varepsilon_{ m stator}$	$\varepsilon_{ m rotor}$
θ_{CA}	$\theta_{ ext{PK}}$
g _{охл} са	g _{охл} РК
a* _c	a* _W
Тад	т _{ад}
Р* _W	-ад Т* _W
a _{3B}	a_{3B}
u	u
<u> </u>	c C
c _a	c _u
W	W
w _a	w _u
$\lambda_{\rm c}$	M_c
$\lambda_{ m W}$	M_{W}
$v_{ m stator}$	$v_{ m rotor}$

chordstator	chord _{rotor}	$ _{if i = 1} $
t оптCA	т _{оптРК}	
t _{stator}	t _{rotor}	$\alpha_{\text{oX}_{\text{st}(i,1)}} = \alpha_{\text{oX}}$
Z _{stator}	Z _{rotor}	$\begin{vmatrix} k_{st(i,1),r} = k_{\Gamma} \\ p_{*,(i,1),r} = p_{*} \end{vmatrix}$
$\overline{v}_{ m stator}$	$\overline{v}_{ m rotor}$	$P^*_{st(i,1),r} = P^*_{\Gamma}$ $P^*_{rt(i,1),r} = P^*_{rt(i,1),r}$
ξ _{TpCA}	ξтрРК	$P^*_{W_{St(i,1),r}} = 0$
ξкрСА	ξ _{кр} РК	$P_{st(i,1),r} = P_{\Gamma}$
ξ _{ReCA}	ξ _{RePK}	$T^*_{st(i,1),r} = T^*_{\Gamma}$
$\xi_{\lambda CA}$	$\xi_{\lambda PK}$	$T^*_{W_{\operatorname{st}(i,1),r}} = 0$
$\xi_{\Pi p C A}$	$\xi_{\Pi p P K}$	$T_{st(i,1),r} = T_{\Gamma}$
ξ_{BTCA}	ξ_{BTPK}	$v_{st(i,1),r} = \frac{R_{\Gamma a3}(\alpha_{oX_{st(i,1)}}, Fuel) \cdot T_{st(i,1),r}}{P_{st(i,1),r}}$
ξ _{тд} СА	ξ _{тдРК}	1 1 1
ξсмСА	ξсмРК	$G_{st(i,1)} = G_{\Gamma}$
$\xi_{\Delta r}$	$\xi_{ m BMX}$	$c_{st(i,1),r} = c_{\Gamma}$
ξ _{тр.в}	ξ _{тр.в}	$\alpha_{st(i,1),r} = \alpha_{\Gamma}$
L _{ct}	Lu _{CT}	$\begin{bmatrix} c_{\mathbf{u}_{st(i,1),r}} \\ c_{\mathbf{a}_{st(i,1),r}} \end{bmatrix} = c_{st(i,1),r} \cdot \begin{pmatrix} \cos(\alpha_{st(i,1),r}) \\ \sin(\alpha_{st(i,1),r}) \end{pmatrix}$
$\eta_{ ext{мощь}}$	$\eta_{ ext{non}}$	$\left[\left(c_{a_{st(i,1),r}} \right)^{-c_{st(i,1),r}} \left(\sin(\alpha_{st(i,1),r}) \right) \right]$
$\eta^*_{ m cT}$	η^*_{cT}	$\mathbf{w}_{\mathrm{st}(i,1),r} = 0$
η_{u1}	η_{u2}	$\left(\sqrt{k_{st(i,1),r} \cdot R_{\Gamma a3} \left(\alpha_{oX_{st(i,1)}}, Fuel \right) \cdot T_{st(i,1),r}} \right)$
ξCA	ξ _{PK}	$ \begin{array}{c c} & a_{3B} \\ \hline & 2 \cdot k_{st(i,1),r} \\ \hline & 7 \cdot k_{st(i,1),r} \end{array} $
Lu _{нагрузка}	Lu _{нагрузка}	
		$ \begin{pmatrix} a_{3B_{st(i,1),r}} \\ a^*c_{st(i,1),r} \\ a^*w_{st(i,1),r} \end{pmatrix} = \begin{pmatrix} \sqrt{k_{st(i,1),r} \cdot R_{\Gamma a3} \left(\alpha_{ox_{st(i,1)}}, Fuel \right) \cdot T_{st(i,1),r}} \\ \sqrt{\frac{2 \cdot k_{st(i,1),r}}{1 + k_{st(i,1),r}} \cdot R_{\Gamma a3} \left(\alpha_{ox_{st(i,1)}}, Fuel \right) \cdot T^*_{st(i,1),r}} \\ \sqrt{\frac{2 \cdot k_{st(i,1),r}}{1 + k_{st(i,1),r}} \cdot R_{\Gamma a3} \left(\alpha_{ox_{st(i,1)}}, Fuel \right) \cdot T^*_{w_{st(i,1),r}}} \\ \sqrt{\frac{2 \cdot k_{st(i,1),r}}{1 + k_{st(i,1),r}} \cdot R_{\Gamma a3} \left(\alpha_{ox_{st(i,1)}}, Fuel \right) \cdot T^*_{w_{st(i,1),r}}} \end{pmatrix} $
		$\begin{pmatrix} \lambda_{c_{st(i,1),r}} \\ \lambda_{w_{st(i,1),r}} \end{pmatrix} = \begin{pmatrix} \frac{c_{st(i,1),r}}{a^*c_{st(i,1),r}} \\ 0 \end{pmatrix}$ $\begin{pmatrix} M_{c_{st(i,1),r}} \\ M_{w_{st(i,1),r}} \end{pmatrix} = \frac{1}{a_{3B_{st(i,1),r}}} \begin{pmatrix} c_{st(i,1),r} \\ w_{st(i,1),r} \end{pmatrix}$
		$\begin{bmatrix} & st(1,1),r \end{pmatrix} & 0 & \\ & & $
		$\left \left \left \left \frac{M_{c}}{st(i,1),r} \right \right = \frac{1}{cst(i,1),r} \right $
		$iteration_{CT_i} = 0$
		while $1 > 0$ $ \text{iteration}_{CT_{i}} = \text{iteration}_{CT_{i}} + 1$
		$iteration_{CT_{i}} = iteration_{CT_{i}} + 1$

$$\begin{aligned} & P_{\text{SG}(1,2),r} = P^{\text{S}_{\text{G}(1,1),r}} \left(\frac{\Gamma_{\text{Ta}_{\text{GI}(1,1),r}}^{-1}}{\Gamma^{\text{E}_{\text{GI}(1,1),r}}} \right)^{\frac{1}{\text{E}_{\text{CA}_{1}}} - 1} \\ & T_{\text{BG}(2,1,r),r} = P^{\text{E}_{\text{BG}(1,1),r}} \left(\frac{\Gamma_{\text{Ta}_{\text{GI}(1,1),r}}^{-1}}{\frac{k_{\text{CA}_{1}}}{k_{\text{CA}_{1}}} - 1} R_{\text{Ta},\text{Cep}} \left(\alpha_{\text{Na}_{\text{BG}(1,2)}},\text{Fuel} \right) \right) \\ & C_{P_{2}} = C_{P_{\text{TBS}}} \left[P_{\text{SG}(1,2),r}, T_{\text{AI}_{1,1},r}, \alpha_{\text{ON}_{\text{AI}_{1,2}},r}, \text{Fuel} \right) \\ & k^{-1} + k_{\text{AB}} \left(C_{\text{PA}_{1}}, P_{\text{EB}_{1,1},r}, x_{\text{PB}_{1,1}} \right) \\ & k^{-1} + k_{\text{AB}} \left(C_{\text{PA}_{1}}, P_{\text{EB}_{1,1},r}, x_{\text{PB}_{1,1}} \right) \\ & k^{-1} + k_{\text{AB}_{1}} \left(C_{\text{PA}_{1}}, P_{\text{EB}_{1,1},r}, x_{\text{PB}_{1,1}} \right) \\ & k^{-1} + k_{\text{AB}_{1,1}} \left(C_{\text{PA}_{1,1},r}, x_{\text{PB}_{1,1}} \right) \\ & k^{-1} + k_{\text{AB}_{1,1},2}, r = k^{-1} \\ & \text{Prea}_{\text{AB}_{\text{AB}_{1,1},2}, r} \\ & P^{\text{Ea}_{\text{AB}_{\text{AB}_{1,1},2}, r}} = P_{\text{AB}_{1,1},2}, r^{-1} + \frac{k_{\text{BB}_{1,1},2}}{k_{\text{BB}_{1,2},2}, r^{-1}} \frac{k_{\text{BB}_{1,1},2}, r^{-1}}{k_{\text{BB}_{1,1},2}, r^{-1}} \\ & P^{\text{Ea}_{\text{AB}_{\text{AB}_{1,1},2}, r}} \\ & P^{\text{Ea}_{\text{AB}_{1,1},2}, r} = P_{\text{AB}_{1,1,2}, r} \left(\frac{r^{-1} \alpha_{\text{AB}_{1,1},2}}{r^{-1} \alpha_{\text{AB}_{1,1},2}, r^{-1}} \frac{k_{\text{BB}_{1,1},2}}{k_{\text{BB}_{1,1},2}, r^{-1}} \frac{k_{\text{BB}_{1,1},2}}{k_$$

$$\left\{ \begin{array}{l} \left\{ \begin{array}{l} \left\{ ^{c_{1}} c_{1} c_{1} c_{2} \cdot c_{2} c_{1} (z_{2}) \cdot r \\ c_{3} c_{1} (z_{2}) \cdot r \\ c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right\} = c_{3} (i,2) \cdot r \cdot \left\{ \begin{array}{l} c_{3} c_{1} c_{2} c_{3} c_{1} c_{2} c_{3} c_{1} \\ c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right\} = c_{3} (i,2) \cdot r \cdot \left\{ \begin{array}{l} c_{3} c_{1} c_{2} c_{3} c_{1} c_{2} c_{3} c_{1} \\ c_{3} c_{1} c_{2} c_{3} c_{3} c_{3} c_{3} c_{3} c_{3} \\ \end{array} \right\} \\ \left\{ \begin{array}{l} w_{3} c_{1} (z_{2}) \cdot r \\ w_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right\} = \left\{ \begin{array}{l} c_{3} c_{1} (z_{2}) \cdot r \\ c_{3} c_{3} c_{3} (z_{2}) \cdot r \\ \end{array} \right\} \\ \left\{ \begin{array}{l} \left(\begin{array}{l} w_{3} c_{1} (z_{2}) \cdot r \\ w_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \end{array} \right\} \\ \left\{ \begin{array}{l} \left(\begin{array}{l} w_{3} c_{1} (z_{2}) \cdot r \\ w_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ = \left\{ \begin{array}{l} \left(\begin{array}{l} c_{3} c_{1} (z_{2}) \cdot r \\ c_{3} c_{3} c_{3} (z_{2}) \cdot r \\ \end{array} \right) \\ \end{array} \right\} \\ \left\{ \begin{array}{l} \left(\begin{array}{l} c_{3} c_{1} (z_{2}) \cdot r \\ c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{1} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c_{3} c_{3} c_{3} c_{3} (z_{2}) \cdot r \\ \end{array} \right) \\ \left(\begin{array}{l} c_{3} c$$

$$\begin{vmatrix} \operatorname{cril} \left(\frac{\operatorname{common}_{\operatorname{cont}}(x_{1}, x_{1}, x_{1}, x_{2}, x_{1}, x_{1}, x_{2})}{\operatorname{ContCa}_{\operatorname{cont}}(x_{1}, x_{2}, x_{2}, x_{2}, x_{2}, x_{2})} + \operatorname{1 otherwise} \\ \\ \operatorname{for } r = 1. N_{\Gamma} \\ \operatorname{Istanor}_{i, t} = \frac{\pi \cdot \operatorname{mean} \left(\operatorname{D}_{\operatorname{st}(i, 1), t}, \operatorname{D}_{\operatorname{st}(i, 2), t} \right)}{\mathcal{L}_{\operatorname{stator}_{i, t}}} \\ \\ \operatorname{SpCA}_{i} = \operatorname{Specime}^{\left(\operatorname{cont}(i, 1), t, \operatorname{Spec}_{i, 2}, x_{2}, x_{2} \right)} \\ \\ \operatorname{SpCA}_{i} = \operatorname{Specime}^{\left(\operatorname{cont}(i, 1), t, \operatorname{Spec}_{i, 2}, x_{2}, x_{2} \right)} \\ \\ \operatorname{SpCA}_{i} = \operatorname{Specime}^{\left(\operatorname{cont}(i, 2), t, \operatorname{ContCa}_{\operatorname{stor}_{i, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t} \\ \\ \operatorname{SpCA}_{i} = \operatorname{Spec}_{\operatorname{contCantContC}_{\operatorname{stor}_{i, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{i, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{i, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t}, \operatorname{ContCa}_{\operatorname{stor}_{\operatorname{stor}_{i, t}, t}, t}, \operatorname{ContCa}_{\operatorname{stor$$

$$\begin{split} &\theta_{PK_{i}} = \theta_{PTIYOHHA} \Big(T^{*}w_{st(i,2),r}, T^{*}cooling, T_{JI,JOH} \Big) \\ &g_{OXIPK_{i}} = \begin{cases} &0.035 \cdot \theta_{PK_{i}} \\ &1 - \theta_{PK_{i}} \end{cases} & \text{if} & \frac{0.035 \cdot \theta_{PK_{i}}}{1 - \theta_{PK_{i}}} \geq 0 \\ &0 & \text{otherwise} \end{cases} \\ &G_{st(i,3)} = G_{st(i,2)} \cdot \Big(1 + g_{OXIPK_{i}} \Big) \\ &\alpha_{OX_{st(i,3)}} = \alpha_{OX_{st(i,2)}} + g_{OXJPK_{i}} \\ &k_{st(i,3),r} = k_{st(i,2),r} \\ &k_{st(i,3),r} = k_{st(i,2),r} \cdot k_{st(i,3),r} \Big) \\ &T_{a\eta_{st(i,3),r}} = T_{st(i,2),r} \cdot \frac{T_{a\eta_{st(i,3),r}}}{k_{PK_{i}} - 1} \cdot R_{ras,cp} \Big(\alpha_{OX_{st(i,2)}}, \alpha_{OX_{st(i,3)}}, rucl \Big) \\ &T_{st(i,3),r} = P_{st(i,2),r} \cdot \frac{T_{a\eta_{st(i,3),r}}}{T_{st(i,2),r}} \Big) \\ &T_{st(i,3),r} = T_{st(i,2),r} - \frac{\left(w_{st(i,3),r}\right)^{2} - \left(w_{st(i,2),r}\right)^{2} - \left(u_{st(i,3),r}\right)^{2} + \left(u_{st(i,2),r}\right)^{2}}{2 \cdot \frac{k_{PK_{i}}}{k_{PK_{i}} - 1}} \\ &Cp_{3} = Cp_{ras} \Big(P_{st(i,3),r}, T_{st(i,3),r}, \alpha_{OX_{st(i,3)}}, Fuel \Big) \\ &k' = k_{aq} \Big(Cp_{3}, R_{ras} \Big(\alpha_{OX_{st(i,3)}}, Fuel \Big) \Big) \\ &k' = k_{aq} \Big(Cp_{3}, R_{ras} \Big(\alpha_{OX_{st(i,3)}}, Fuel \Big) \Big) \\ &k' = k_{st(i,3),r} = k' \\ &break \\ &k_{st(i,3),r} = \frac{R_{ras} \Big(\alpha_{OX_{st(i,3)}}, Fuel \Big) \cdot T_{st(i,3),r}}{P_{st(i,3),r}} \\ &\rho_{st(i,3),r} = asin \Big(\frac{G_{st(i,3),r}, Fus(i,3),r}{W_{st(i,3),r}, Fis(i,3),r} \Big) \\ &c_{u} \\$$

$$\begin{cases} c_{3d(1,3),\tau} = \sqrt{\left(c_{3d(1,3),\tau}\right)^2 + \left(c_{3d(1,3),\tau}\right)^2 + \left(c_{3d(1,3),\tau}\right)^2} \\ c_{3d(1,3),\tau} = \sqrt{\left(w_{3d(1,3),\tau}\right)^2 + \left(c_{3d(1,3),\tau}\right)^2 - \left(c_{3d(1,3),\tau}\right)^2} \\ c_{3d(1,3),\tau} = \sqrt{\left(w_{3d(1,3),\tau}\right)^2 + \left(c_{3d(1,3),\tau}\right)^2 - \left(c_{3d(1,3),\tau}\right)^2} \\ c_{3d(1,3),\tau} = T_{3d(1,3),\tau} + \frac{1}{2 \cdot C_{Pras}\left(P_{3d(1,3),\tau}, T_{3d(1,3),\tau}\right)^2} \\ c_{3d(1,3),\tau} = \frac{1}{2 \cdot C_{3d(1,3),\tau}} \\ c_{3d(1,3),\tau} = \frac{1$$

$$\begin{vmatrix} \sum_{s(i_1,i_2),\tau} \\ \sum_{s'(i_1,i_2),\tau} \\ \\ M_{sd(i_1,i_2),\tau} \\ M_{sd(i_2,i_2),\tau} \end{vmatrix} = \frac{1}{a_{mail_1,3},\tau} \begin{pmatrix} c_{u(i_1,3),\tau} \\ c_{u(i_1,3),\tau} \\ \\ c_{uval_1,3} \\ \\ c_{uval_2,3} \\ \\ c_{uval_2,3}$$

$$\left[H^*_{cT_{\hat{i}}} = Cp_{\Gamma a3.cp} \left(P_{st(i,1),r}, P_{st(i,3),r}, T_{st(i,1),r}, T_{st(i,3),r}, \alpha_{oX_{st(i,1)}}, \alpha_{oX_{st(i,3)}}, Fuel \right) \cdot T^*_{st(i,1),r} \cdot \left[1 - \left(\pi^*_{cT_{\hat{i}}} \right)^{\frac{1}{k_{cp}}} \right] \right]$$

$$\left[\eta^*_{cT_{\hat{i}}} = \frac{L_{cT_{\hat{i}}}}{H^*_{cT_{\hat{i}}}} \right]$$

for $i \in 1...Z$

for $j \in 1...3$

$$\begin{vmatrix} \rho *_{st(i,j),r} = \frac{P *_{st(i,j),r}}{R_{\Gamma a3} \left(\alpha_{ox_{st(i,j)}}, Fuel\right) \cdot T *_{st(i,j),r}} \\ \rho_{st(i,j),r} = \left(v_{st(i,j),r}\right)^{-1} \\ \left(\varepsilon_{stator_{i,av}\left(N_{r}\right)}\right) = \begin{pmatrix} \alpha_{st(i,2),av\left(N_{r}\right)} - \alpha_{st(i,1),av\left(N_{r}\right)} \\ \beta_{st(i,3),av\left(N_{r}\right)} - \beta_{st(i,2),av\left(N_{r}\right)} \end{pmatrix}$$

(iteration_{CA} iteration_{PK})

$$H_{\text{cT}}$$
 H_{cT}

11stator 11rotor

P* P

T* T

G v

0*

 α_{ox} α_{ox}

α β

 $\varepsilon_{
m stator}$ $\varepsilon_{
m rotor}$

 θ_{CA} θ_{PK}

 $g_{\text{охл}CA}$ $g_{\text{охл}PK}$

 a^*_{c} a^*_{w}

 $T_{a \perp}$ $T_{a \perp}$

 P_{W}^{*} T_{W}^{*}

 a_{3B} a_{3B}

u

c c

c_a c

11	1	
	W	W
	w _a	w_{u}
	$\lambda_{\rm c}$	M_c
	$\lambda_{ m W}$	M_W
	$v_{ m stator}$	$v_{ m rotor}$
	chord _{stator}	chordrotor
	-t _{oπτCA}	т oптРК
	t _{stator}	t _{rotor}
	Z _{stator}	Z _{rotor}
	$\frac{Z_{\mathrm{stator}}}{v_{\mathrm{stator}}}$	$\overline{v}_{ m rotor}$
	ξ _{TpCA}	ξ_{TpPK}
	ξ _{τp} CA ξ _{κp} CA	ξ_{kpPK}
	ξ _{ReCA}	ξ _{RePK}
	$\xi_{\lambda CA}$	$\xi_{\lambda PK}$
	$\xi_{\Pi p CA}$	$\xi_{\Pi p P K}$
	ξ _{BT} CA	ξ_{BTPK}
	ξReCA ξλCA ξ _{Πp} CA ξ _{BT} CA ξ _T	$\xi_{\mathrm{TДPK}}$
	ξ _{cm} CA	ξ_{cMPK}
	$\xi_{\Delta r}$	$\xi_{ m BMX}$
	ξ _{тр.в}	$\xi_{\mathrm{Tp.B}}$
	L _{ct}	Lu _{cT}
	η _{мощь}	$\eta_{ extsf{JOH}}$
	$\eta^*_{ m cT}$	$\eta^*_{\ cT}$
	$\eta_{\mathrm{u}1}$	η_{u2}
	ξ _{CA}	$\xi_{ m PK}$
	Lu _{нагрузка}	

▼ Параметры турбины

$$\operatorname{stack} \left(\eta_{u1}^{}, \eta_{u2}^{} \right) = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline 1 & 76.58 & 79.42 & 80.00 & 76.17 \\\hline 2 & 76.26 & 79.19 & 79.84 & 75.97 \\\hline \end{array} .\%$$

Теплоперепад по параметрам торможения (Дж/кг):
$$\begin{pmatrix} H^*_T \\ H_T \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^Z & H^*_{cT_i} \\ Z \\ \sum_{i=1}^Z & H_{cT_i} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 & 475.6 \\ 2 & 565.8 \end{bmatrix} \cdot 10^3$$

Мощность Т (Вт):
$$\sum_{i=1}^{Z} N_{cT_{i}} = 15.18 \cdot 10^{6}$$
 eps "rel", N_{T} , $\sum_{i=1}^{Z} N_{cT_{i}} = 0.000 \cdot \%$

Удельная поступенчатая рабога Т [Дж/кг]:
$$L_T = \sum_{i=1}^{Z} \frac{N_{cT_i}}{\text{mean}\big(G_{st(i,2)},G_{st(i,3)}\big)} = 428.9 \cdot 10^3$$

$$\text{ Лопаточный КПДТ:} \qquad \eta_{\text{Тлоп}} = \frac{\displaystyle \sum_{i=1}^{Z} \frac{N_{\text{CT}_i}}{\text{mean} \big(G_{\text{st}(i,2)}, G_{\text{st}(i,3)} \big)} + \frac{ \left(c_{\text{st}(Z,3)}, \text{av} \big(N_r \big) \right)^2}{2} }{H_{\text{T}}} = 80.55 \cdot \%$$

$$k_{T.cp} = k_{aJ} \left(Cp_{\Gamma a3.cp} \left(P_{st(1,1),av(N_r)}, P_{st(Z,3),av(N_r)}, T_{st(1,1),av(N_r)}, T_{st(Z,3),av(N_r)}, \alpha_{ox_{st(1,1)}}, \alpha_{ox_{st(Z,3)}}, Fuel \right), R_{\Gamma a3.cp} \left(\alpha_{ox_{st(1,1)}}, \alpha_{ox_{st(Z,3)}}, Fuel \right) \right) = 1.308$$

Адиабатный КПДТ:
$$\eta^*_T = \frac{L_T}{H^*_T} = 90.18 \cdot \%$$

Политропический КПД Т:
$$\eta^*_{T,\Pi} = \eta^*_{n} ($$
"расширение", $\eta^*_{T}, \pi^*_{T}, k_{T,cp}) = 88.59 \cdot \%$

$$\text{Мощностной КПДТ:} \qquad \eta_{\text{Тмощь}} = \frac{\displaystyle \sum_{i=1}^{Z} \frac{N_{\text{CT}_i}}{\text{mean} \big(G_{\text{st}(i,2)}, G_{\text{st}(i,3)} \big)}}{H_{\text{T}}} = 75.80 \cdot \%$$

$Lu_{rape} = \begin{bmatrix} T \\ T \end{bmatrix}$		1	2	3	4
⁻ инагрузка –	1	3.0	2.3	1.8	1.6

$H_{am}^{T} =$		1	2	3	4	1.10^3
CT	1	144.2	138.9	138.0	144.8	

. (T T)		1	2	3	4	3
$\operatorname{stack}\left(\mathbf{H}_{\operatorname{stator}}^{1},\mathbf{H}_{\operatorname{rotor}}^{1}\right) =$	1	125.4	118.1	113.1	118.0	10
·	2	18.8	20.9	24.9	26.9	

$G^{T} =$		1	2	3	4	5	6	7	8
	1	35.394	35.394	35.394	35.394	35.394	35.394	35.394	

$$\operatorname{stack}\!\left(\boldsymbol{\theta}_{CA}^{T}, \boldsymbol{\theta}_{PK}^{T}\right) = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & -0.005 & -0.112 & -0.246 & -0.420 \\ \hline 2 & -0.066 & -0.192 & -0.354 & -0.568 \\ \hline \end{array}$$

$$\operatorname{stack}\left(g_{\text{OX}\Pi\text{CA}}^{\text{T}},g_{\text{OX}\Pi\text{PK}}^{\text{T}}\right) = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 0.00 & 0.00 & 0.00 & 0.00 \\ & 2 & 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix} \cdot 10^{-3}$$

$$G_{OXJICA_{i}} = g_{OXJICA_{i}} G_{st(i,1)}$$

$$G_{\text{OX},PK_i} = g_{\text{OX},PK_i} \cdot G_{\text{st}(i,2)}$$

$$G_{cooling} = 0.8$$

$$\sum_{i=1}^{Z} G_{\text{oxnCA}_i} + \sum_{i=1}^{Z} G_{\text{oxnCA}_i} \leq G_{\text{cooling}} = 1$$

$$\operatorname{stack}\left(\operatorname{iteration}_{CA}^{T},\operatorname{iteration}_{PK}^{T}\right) = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline 1 & 2 & 2 & 2 & 2 \\\hline 2 & 2 & 2 & 2 & 2 \\\hline \end{array}$$

submatrix $\left(k^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) =$	1	. 2	.302	3	4	5	6	7	8	9	
(1) (1) /)	1 1.	298 1	.302	1.303	1.306	1.307	1.312	1.313	1.319	1.320	
(T , , , , ,)		1	2		1 4	-		1 7			3
submatrix $(P^*^T, av(N_r), av(N_r), 1, 2Z + 1)$	=	1 927.5	915.4	3 676.8	4 666.5	5 483.6	6 6 476.7	338.0	332.9	9 229.2	$\cdot 10^3$
	1 1	927.5	915.4	0/0.8	000.5	483.0	0 4/6./	338.0	332.9	229.2	
(T /) /)			<u>, </u>	2	4			7	0	0	3
submatrix $(P^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1) =$	1 00	90.0 6	2 66.9	3 633.4	485.6	5 456.7	6 343.4	7 317.3	8 229.2	208.8	10 ³
,	1 8	90.0 6	00.9	633.4	485.6	456.7	343.4	317.3	229.2	208.8	
(T () ()		1	2	1 2		4	-	<u> </u>	7	0	0
submatrix $\left(T^{*T}, av(N_r), av(N_r), 1, 2Z + 1\right)$	=	1368.9	2 1369.9	3	1 1 1	4 282.0	5 1192.3	6 1193.3	7 1102.4	8 1103.7	9 1011.4
,	1	1300.9	1309.9	120	1.1 14	202.0	1192.3	1193.3	1102.4	1103.7	1011.4
(T /) /)		1	2	<u> </u>	1		-	c	7	0	0
submatrix $\left(T^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) =$	1 1	1 356.0	1272.0	1261	.6 119	20.2 1	5 176.4	1103.8	7 1085.9	1008.5	988.8
	1 1.	330.0	12/2.9	1201	.0 113	0.2 1	170.4	1103.0	1003.9	1000.5	900.0
. (-, T (22) (22) . 2)	\	1)		3	4	5	6	7	8	9
submatrix $\left(T^*_{W}^T, av(N_r), av(N_r), 1, 2Z + 1\right)$) = 	0.0	1316	5 2 1	317.8	1225.7	1228.4	1134.0			
		0.0	1510	J.Z I	317.0	1225.7	1220.1	1151.0	1150.	0 1011.5	10 12.0
$T = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$		1	2		2	4	5	6	7	8	9
submatrix $\left(T_{aJ}^{T}, av(N_r), av(N_r), 1, 2Z + 1\right)$	= 1	0.0	1269.	1 12	3 .57.7 :	1186.0	1173.2	1100.2	1083.3	-	
		0.0	1207			1100.0	11, 5.2	1100.2	1 1005.5	1001.5	300.0
$\mathbf{v}_{1} = \mathbf{v}_{1} \cdot \mathbf{v}_{1} \cdot \mathbf{v}_{2} $	1		2	3 0.575	4	5	6	7	8	9	
siinmatrixi V avi N i avi N i i // + i i =	_		_								
Submatrix (* , u* (1*r) , u* (1*r) , 1 , 22 + 1) =	1 0.	440 0.	.551	0.575	0.707 [0.743	0.927	0.987	1,269	1.3661	
submatrix $\left(v^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) =$	1 0.	440 0	.551	0.575	0.707	0.743	0.927	0.987	1.269	1.366	
				•	,				,		
submatrix $\left(\rho^{*T}, av(N_r), av(N_r), 1, 2Z + 1\right) =$ $submatrix \left(\rho^{*T}, av(N_r), av(N_r), 1, 2Z + 1\right) =$				•	4	5	6	7	8	9	
	=		2 2.316	3 1.831	,	5	6	7	8		
submatrix $\left(\rho^{*T}, av(N_r), av(N_r), 1, 2Z + 1\right)$	= 1	1 2.349	2 2.316	3 1.831	4 1.802	5 1.406	6	7 1.063	8	9	
		1 2.349	2 2.316	•	4	5	6 1.385	7	8 1.046	9 0.785	

submatrix $\left(a_{3B}^{T}, av(N_r), av(N_r), 1, 2Z + 1\right)$	=	1	2	3	4	5	6	7	8	9
(3B, (1), (1),)	1	712.6	691.4	688.5	669.8	666.1	646.3	641.3	619.4	613.7
submatrix $\left(a^*_c^T, av(N_r), av(N_r), 1, 2Z + 1\right)$	_	1	2	3	4	5	6	7	8	9
(" c , " (' r) , " (' r) , " , = ' ')	1	667.9	668.6	646.6	647.3	624.3	625.0	600.9	601.8	576.2
submatrix $\left(a^*_{W}^T, av(N_r), av(N_r), 1, 2Z + 1\right)$	= [1	2	3	4	5	6	7	8	9
(" W , " (" r), " (" r), ", == ")	1	0.0	655.4	655.8	632.9	633.7	609.3	610.	L 584.6	584.9
$submatrix \left(c^{T}, av(N_r), av(N_r), 1, 2Z + 1\right) =$		1	2	3	4	5	6	7	8	9
(', a · (' · r) , a · (· · r) , 1 , 22 · · 1)	1	180.0	2 491.2	3 220.3	475.1	197.6	466.2	200.0	476.7	231.9
submatrix $\left(c_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) =$	=	1	2	3	4	5	6	7	8	9
suchatix (*u ,u*(*\r),u*(*\r), 1,22 + 1) =	1	0.0	2 452.3	3 135.3	4 435.8	85.3	420.3	38.7	416.3	10.0
									•	<u> </u>
submatrix $\left(c_a^T, av(N_r), av(N_r), 1, 2Z + 1\right) =$	-	1	2	3	4	5	6	7	8	9
$\frac{1}{2} \frac{1}{2} \frac{1}$	1	1 180.0	2 191.6	3 173.8	4 189.2	178.3	201.6	196.2	232.3	231.7
		•	•		•		•	•	1	
submatrix $\left(\mathbf{w}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) =$		1	2	3	4	5	6	7	8	9
submutik (w , uv (11r), uv (11r), 1,22 + 1) =	1	0.0	2 328.4	3 373.6	4 295.2	357.3	270.8	350.4	280.7	355.8
		•	•	•	•	•	•	•	•	
submatrix $\left(\mathbf{w}_{\mathbf{u}}^{T}, \mathbf{av}(\mathbf{N}_{\mathbf{r}}), \mathbf{av}(\mathbf{N}_{\mathbf{r}}), 1, 2Z + 1\right)$	_ [1	2	3	4	5	6	7	8	9
submatrix (wu , av (1'r), av (1'r), 1', 22 + 1')	1	0.0	266.7	3 330.7	226.5	309.6	180.9	290.3	157.7	270.0
		•		•	•	•	•	•		
submatrix $\left(\mathbf{w_a}^T, \mathbf{av}(\mathbf{N_r}), \mathbf{av}(\mathbf{N_r}), 1, 2Z + 1\right) = 0$		1	2	3	4	5	6	7	8	9
suchatia (wa ,uv(1\r), uv(1\r), 1,22 + 1)	= 1	0.0	191.6	173.8	189.2	178.3	201.6	196.2	232.3	231.7
$submatrix \left(c_{a,I}^{T}, av(N_r), av(N_r), 1, 2Z \right) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$		1 2	2	3	4	5	6	7	8	
застана (ад , ат (тт), ат (тт), т, 22) —	1 !	1 2 537.0 50			85.9 5		75.7 5	38.1	185.8	
		'	•	•	•	•	•	,		
$\text{submatrix} \! \left(\mathbf{w}_{a,\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	_ [1	2	3	4	5	6	7	8	9
"ад , " (''r) , " (''r) , ' (''r) , ' (''r) , ' (''r))	1	0.0	0.0	386.2	2 0.0	368.1	0.0	359.4	1 0.0	365.1

		1	2	3	4	5	6	7	8	9
$u^T =$	1	172.2	172.2	180.7	193.8	208.2	222.8	234.2	240.3	240.3
G.	2	183.8	185.7	195.4	209.3	224.4	239.4	251.6	258.7	260.0
	3	195.3	199.1	210.0	224.7	240.5	256.1	268.9	277.0	279.7

 $submatrix \left(\lambda_{c}, 1, 2Z + 1, av \left(N_{r} \right), av \left(N_{r} \right) \right)^{T} = \boxed{ \begin{array}{c|cccc} 1 & 2 & 3 \\ \hline 1 & 0.2695 & 0.7348 & 0.3407 \\ \end{array} }$ 0.7340 0.3165 0.7458 0.3328 0.5638 0.4445 0.5742 0.7093 0.2967 0.7213 0.3118 $submatrix\left(M_{W},1,2Z+1,av\left(N_{r}\right),av\left(N_{r}\right)\right)^{T} = \boxed{ \begin{array}{c|c} 1 & 2 \\ \hline 1 & 0.0000 & 0.4749 \end{array}}$ 3 0.5426 7 0.4407 0.5364 0.4191 0.5463

T T		1	2	3	4	
$\operatorname{stack}(v_{\operatorname{stator}}^{1}, v_{\operatorname{rotor}}^{1}) =$	1	43.06	63.00	58.89	53.57	••
•	2	68.73		67.41	67.12	

$$t_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 40.6 & 27.9 & 35.9 & 43.3 \\ 2 & 43.6 & 30.1 & 38.6 & 46.6 \\ 3 & 46.5 & 32.4 & 41.3 & 49.8 \end{bmatrix} t_{rotor}^{T} = \begin{bmatrix} & 1 \\ 1 & 19.8 \\ 2 & 21.4 \\ 3 & 22.9 \end{bmatrix}$$

$$t_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 19.8 & 23.5 & 28.4 & 30.6 \\ 2 & 21.4 & 25.3 & 30.5 & 33.0 \\ 3 & 22.9 & 27.1 & 32.7 & 35.4 \end{bmatrix} \cdot 10^{-1}$$

 $\cdot 10^{-3}$

30.6

$$submatrix \left(chord_{stator}^{T}, av(N_r), av(N_r), 1, Z \right) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 58.7 & 50.6 & 60.4 & 69.4 \end{bmatrix} \cdot 10^{-3}$$

$$stack \left(\overline{t}_{O\Pi TCA}^{T}, \overline{t}_{O\Pi TPK}^{T} \right) = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline 1 & 0.762 & 0.603 & 0.645 & 0.686 \\\hline 2 & 0.643 & 0.661 & 0.695 & 0.722 \\\hline \end{array}$$

(- $T - T)$		1	2	3	4
$\operatorname{stack}(v_{\operatorname{stator}}, v_{\operatorname{rotor}}) =$	1	0.9807	0.9777	0.9800	0.9813
	2	0.9646	0.9683	0.9733	0.9727

$$stack \left(\xi_{KpCA}^{}, \xi_{KpPK}^{} \right) = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 1.243 & 1.519 & 1.302 & 1.101 \\ \hline 2 & 0.933 & 0.846 & 0.705 \\ \hline \end{array} .\%$$

2.842

5.483

3.626

4.819

$$stack \left(\xi_{BTCA}^{}, \xi_{BTPK}^{} \right) = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 0.980 & 0.778 & 0.845 & 0.958 \\ \hline 2 & 1.477 & 1.430 & 1.356 & 1.513 \\ \hline \end{array} .\%$$

$$stack\bigg(\xi_{TДCA}^{},\xi_{TДPK}^{}\bigg) = \begin{array}{|c|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline 2 & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline \end{array} \cdot \%$$

$$stack\bigg(\xi_{cMCA}^{},\xi_{cMPK}^{}\bigg) = \begin{array}{|c|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline 1 & 0.000 & 0.000 & 0.000 & 0.000 \\\hline 2 & 0.000 & 0.000 & 0.000 & 0.000 \\\hline \end{array} .\%$$

$$stack\bigg(\xi_{CA}^{T},\xi_{PK}^{T}\bigg) = \begin{array}{|c|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 3.326 & 3.743 & 3.250 & 3.026 \\ \hline 2 & 3.621 & 3.062 & 2.476 & 2.493 \\ \hline \end{array}.\%$$

Вывод-результатов поступенчатого расчета-по-ср. сечению-ОТ в EXCEL:

▼ Выбор закона профилирования Л по высоте

$$\mathbf{m} = \begin{bmatrix} \overline{v}_{stator_1} \cdot \cos(\alpha_{st(1,2),av(N_r)})^2 & \text{if } Z = 1 \\ -0.5 & \text{otherwise} \end{bmatrix}$$

$$0$$

$$0.25$$

$$1$$

$$1$$

$$\begin{pmatrix} \text{"}\alpha.2 = const" \\ \text{"}\Gamma = const" \\ \text{"}m = const" \\ \text{"}R = const" \end{pmatrix} = \begin{pmatrix} cos\left(\alpha_{st(i,2),av(N_r)}\right)^2 \cdot \overline{\upsilon}_{stator_i} \\ 1 \cdot \overline{\upsilon}_{stator_i} \\ 0.2 \\ -1 \cdot \overline{\upsilon}_{stator_i} \end{pmatrix}$$

$\mathbf{m}^{\mathrm{T}} =$		1	2 3		4	5	6	
	1	-0.5000	-0.2500	0.0000	0.2500	1.0000	1.0000	

▲ Выбор закона профилирования Л по высоте

$$\begin{vmatrix} \mathbf{r}_{i} & \mathbf{m}_{i} & - \mathbf{v}_{stator_{i}}^{-v_{stator_{i}}} \\ \mathbf{c}_{a_{st(i,\,a),\,av}(N_{r})} \\ \mathbf{c}_{a_{st(i,\,a),\,av}(N_{r})} \end{vmatrix} + \frac{\left(1 - \frac{\overline{v}_{stator_{i}}}{R_{st(i,\,a),\,av}(N_{r})}\right)^{2}}{tan\left(\alpha_{st(i,\,2),\,av(N_{r})}\right)^{2}} \quad \text{if } a = 2$$

$$\begin{vmatrix} \mathbf{c}_{a_{st(i,\,a),\,av(N_{r})}} \\ \mathbf{c}_{a_{st(i,\,a),\,av(N_{r})}} \end{vmatrix}^{2} \\ + \left[1 - (\overline{v}_{rotor_{i}})^{2}\right] \cdot \left(\mathbf{u}_{st(i,\,a),\,av(N_{r})}\right)^{2} \left[1 - \left(\frac{R_{st(i,\,a),\,r}}{R_{st(i,\,a),\,av(N_{r})}}\right)^{2}\right] - 2 \cdot \mathbf{c}_{\mathbf{u}_{st(i,\,a),\,av(N_{r})}} \\ + \left[1 - (\overline{v}_{rotor_{i}})^{2}\right] \cdot \left(\mathbf{u}_{st(i,\,a),\,av(N_{r})}\right)^{2} \left[1 - \left(\frac{R_{st(i,\,a),\,r}}{R_{st(i,\,a),\,av(N_{r})}}\right)^{2}\right] - 2 \cdot \mathbf{c}_{\mathbf{u}_{st(i,\,a),\,av(N_{r})}} \\ + \left[1 - (\overline{v}_{rotor_{i}})^{2}\right] \cdot \left(\mathbf{u}_{st(i,\,a),\,av(N_{r})}\right) \cdot \left(\mathbf{u}_{st(i,\,a,\,av(N_{r}))}\right)^{2} \cdot \left(\mathbf{u}_{st(i,\,a-1),\,av(N_{r})}\right) + \mathbf{c}_{\mathbf{u}_{st(i,\,a),\,av(N_{r})}} \\ + \left[1 - (\overline{v}_{rotor_{i}})^{2}\right] \cdot \left(\mathbf{u}_{st(i,\,a-1),\,av(N_{r})}\right) \cdot \left(\mathbf{u}_{st(i,\,a-1),\,av(N_{r})}\right)^{2} \cdot \left(\mathbf{u}_{st(i,\,a),\,av(N_{r})}\right)^{2} \cdot \left(\mathbf{u}_{st(i,\,a),\,a$$

for $i \in 1...2 \cdot Z + 1$

for $r \in 1..N_r$

$$\begin{vmatrix} c_{u_{i,r}} \\ c_{a_{i,r}} \end{vmatrix} = c_{i,av(N_r)} \cdot \begin{pmatrix} \cos(\alpha_{i,av(N_r)}) \\ \sin(\alpha_{i,av(N_r)}) \end{pmatrix} \text{ if } (i = 1)$$

$$P^*_{i,r} = P^*_{i,av(N_r)}$$

$$T^*_{i,r} = T^*_{i,av(N_r)}$$

$$\rho^*_{i,r} = \frac{P^*_{i,r}}{R_{ras}(\alpha_{ox_i}, Fuel) \cdot T^*_{i,r}}$$

$$\begin{vmatrix} k_{i,\,r} = k_{aa} \left(Cp_{Bo3,Jyx} \left(P^*_{i,\,r}, T^*_{i,\,r} \right), R_{ra3} \left(\alpha_{oX_i}, Fuel \right) \right) \\ a^*_{c_{i,\,r}} = \sqrt{\frac{2 \cdot k_{i,\,r}}{k_{i,\,r} + 1}} \cdot R_{ra3} \left(\alpha_{oX_i}, Fuel \right) \cdot T^*_{i,\,r} \\ \alpha_{i,\,r} = \operatorname{triangle} \left(c_{a_{i,\,r}}, c_{u_{i,\,r}} \right) \\ c_{i,\,r} = \frac{c_{a_{i,\,r}}}{\sin(\alpha_{i,\,r})} \\ \lambda_{c_{i,\,r}} = \frac{c_{i,\,r}}{a^*_{c_{i,\,r}}} \\ \begin{pmatrix} T_{i,\,r} \\ P_{i,\,r} \end{pmatrix} = \begin{pmatrix} T^*_{i,\,r} \cdot \Gamma \mathcal{H} \Phi \left(^{"}T^{"}, \lambda_{c_{i,\,r}}, k_{i,\,r} \right) \\ P^*_{i,\,r} \cdot \Gamma \mathcal{H} \Phi \left(^{"}P^{"}, \lambda_{c_{i,\,r}}, k_{i,\,r} \right) \end{pmatrix} \\ a_{3B_{i,\,r}} = \sqrt{k_{i,\,r}} \cdot R_{ra3} \left(\alpha_{oX_i}, Fuel \right) \cdot T_{i,\,r} \\ M_{c_{i,\,r}} = \frac{c_{i,\,r}}{a_{3B_{i,\,r}}} \\ \beta_{i,\,r} = \operatorname{triangle} \left(c_{a_{i,\,r}}, u_{i,\,r} - c_{u_{i,\,r}} \right) \\ w_{i,\,r} = \frac{c_{a_{i,\,r}}}{\sin(\beta_{i,\,r})} \\ \begin{pmatrix} w_{u_{i,\,r}} \\ w_{a_{i,\,r}} \end{pmatrix} = w_{i,\,r} \cdot \begin{pmatrix} \cos(\beta_{i,\,r}) \\ \sin(\beta_{i,\,r}) \end{pmatrix} \\ T^*_{w_{i,\,r}} = T^*_{i,\,r} - \frac{\left(c_{i,\,r} \right)^2 - \left(w_{i,\,r} \right)^2}{2 \cdot \frac{k_{i,\,r}}{k_{i,\,r} - 1}} \cdot R_{ra3} \left(\alpha_{oX_i}, Fuel \right) \cdot T^*_{w_{i,\,r}} \\ \lambda_{w_{i,\,r}} = \frac{w_{i,\,r}}{a^*_{w_{i,\,r}}} \\ \lambda_{w_{i,\,r}} = \frac{w_{i,\,r}}{a^*_{w_{i,\,r}}} \\ M_{w_{i,\,r}} = \frac{w_{i,\,r}}{a^*_{w_{i,\,r}}} \\ for \ i \in 1 ... Z \\ for \ r \in 1 ... N_r \\ \end{cases}$$

 $\left| \left(\Delta c_a - c_a \right) \right|$

$$\begin{bmatrix} \begin{bmatrix} \mathbf{c}^{*}\mathbf{st}(i,1),\mathbf{r} \\ \Delta \mathbf{c}_{\mathbf{a}_{\mathbf{st}}(i,2),\mathbf{r}} \end{bmatrix} = \begin{bmatrix} \mathbf{c}^{*}\mathbf{st}(i,2),\mathbf{r} & \mathbf{c}\mathbf{st}(i,1),\mathbf{r} \\ \mathbf{c}_{\mathbf{a}_{\mathbf{st}}(i,2),\mathbf{r}} - \mathbf{c}_{\mathbf{a}_{\mathbf{st}}(i,2),\mathbf{r}} \end{bmatrix} \\ \mathbf{R}_{\mathbf{L}_{\mathbf{i},\mathbf{r}}} = 1 - \frac{\mathbf{c}_{\mathbf{u}_{\mathbf{st}}(i,2),\mathbf{r}} - \mathbf{c}_{\mathbf{u}_{\mathbf{st}}(i,3),\mathbf{r}}}{\mathbf{u}_{\mathbf{st}(i,2),\mathbf{r}} + \mathbf{u}_{\mathbf{st}(i,3),\mathbf{r}}} \\ \boldsymbol{\varepsilon}_{\mathbf{stator}_{\mathbf{i},\mathbf{r}}} = \begin{bmatrix} \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} - \mathbf{c}_{\mathbf{st}}(i,1),\mathbf{r} & \text{if } \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} \geq \frac{\pi}{2} \\ \mathbf{c}_{\mathbf{st}(i,1),\mathbf{r}} - \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} & \text{otherwise} \end{bmatrix} \\ \boldsymbol{\varepsilon}_{\mathbf{rotor}_{\mathbf{i},\mathbf{r}}} = \begin{bmatrix} \mathbf{c}_{\mathbf{st}(i,3),\mathbf{r}} - \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} & \text{if } \mathbf{c}_{\mathbf{st}(i,3),\mathbf{r}} \geq \frac{\pi}{2} \\ \mathbf{c}_{\mathbf{st}(i,1),\mathbf{r}} - \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} & \text{otherwise} \end{bmatrix} \\ \begin{bmatrix} \mathbf{P}^{*} & \mathbf{T}^{*} & \mathbf{T} & \mathbf{\rho}^{*} & \mathbf{k} & \mathbf{a}^{*}_{\mathbf{c}} & \mathbf{a}_{3\mathbf{B}} & \mathbf{c} & \mathbf{c}_{\mathbf{u}} & \mathbf{c}_{\mathbf{a}} & \mathbf{\Delta} \mathbf{c}_{\mathbf{a}} & \mathbf{c} & \mathbf{c}_{\mathbf{u}} \\ \mathbf{p} & \mathbf{T}^{*}_{\mathbf{w}} & \mathbf{T} & \mathbf{\rho} & \mathbf{R}_{\mathbf{L}} & \mathbf{a}^{*}_{\mathbf{w}} & \mathbf{a}_{3\mathbf{B}} & \mathbf{w} & \mathbf{w}_{\mathbf{u}} & \mathbf{w}_{\mathbf{u}} & \mathbf{w}_{\mathbf{d}} & \mathbf{c}_{\mathbf{u}} & \mathbf{c}_{\mathbf{u}} & \mathbf{c}_{\mathbf{u}} \end{bmatrix}^{\mathsf{T}} \\ \mathbf{c}_{\mathbf{u},\mathbf{v}} & \mathbf{c}_{\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} \\ \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} \end{bmatrix}$$

▲ Расчет Л по высоте

▼ Результаты расчета Л по высоте

		1	2	3	4	5	6	7	8	9	
$P^{*T} =$	1	927.5	915.4	676.8	666.5	483.6	476.7	338.0	332.9	229.2	$\cdot 10^3$
-	2	927.5	915.4	676.8	666.5	483.6	476.7	338.0	332.9	229.2	10
	3	927.5	915.4	676.8	666.5	483.6	476.7	338.0	332.9	229.2	

		1	2	3	4	5	6	7	8	9
$T^{*T} =$	1	1368.9	1369.9	1281.1	1282.0	1192.3	1193.3	1102.4	1103.7	1011.4
_	2	1368.9	1369.9	1281.1	1282.0	1192.3	1193.3	1102.4	1103.7	1011.4
	3	1368.9	1369.9	1281.1	1282.0	1192.3	1193.3	1102.4	1103.7	1011.4

		1	2	3	4	5	6	7	8	9
$T^*_W^T =$	1	1381.3	1313.8	1273.2	1222.8	1197.0	1130.2	1120.2	1036.5	1033.9
- W	2	1383.0	1313.1	1278.7	1222.6	1203.2	1130.7	1126.9	1038.0	1041.0
	3	1384.8	1312.5	1284.4	1222.5	1209.7	1131.4	1133.9	1039.7	1048.3

		1	2	3	4	5	6	7	8	9
$o^{*T} =$	1	2.349	2.316	1.831	1.802	1.406	1.385	1.063	1.046	0.785
۲	2	2.349	2.316	1.831	1.802	1.406	1.385	1.063	1.046	0.785
	3	2.349	2.316	1.831	1.802	1.406	1.385	1.063	1.046	0.785

		1	2	3	4	5	6	7	8	9
$k^{T} =$	1	1.317	1.317	1.321	1.321	1.326	1.326	1.331	1.331	1.338
IX.	2	1.317	1.317	1.321	1.321	1.326	1.326	1.331	1.331	1.338
	3	1.317	1.317	1.321	1.321	1.326	1.326	1.331	1.331	1.338

		1	2	3	4
$\mathbf{R}_{\tau}^{\mathrm{T}} =$	1	0.0536	0.0511	0.0925	0.1037
T'L	2	0.0913	0.1091	0.1574	0.1829
	3	0.1251	0.1592	0.2136	0.2505

		1	2	3	4	5	6	7	8	9	
$\mathbf{P}^{\mathrm{T}} =$	1	890.0	632.0	636.1	460.2	459.1	325.8	317.9	215.9	208.8	$\cdot 10^{3}$
-	2	890.0	661.2	638.3	481.8	459.5	340.2	318.0	226.6	208.8	10
	3	890.0	687.3	639.6	501.1	459.7	353.1	318.0	235.9	208.8	

		1	2	3	4	5	6	7	8	9
$T^{T} =$	1	1355.4	1252.9	1262.0	1171.6	1177.2	1086.7	1085.7	990.9	987.9
-	2	1355.4	1266.6	1263.0	1184.8	1177.5	1098.4	1085.7	1002.9	987.9
	3	1355.4	1278.5	1263.6	1196.1	1177.6	1108.5	1085.8	1013.1	987.9

		1		3		5		7		9
$o^{T} =$	1	2.276	1.749	1.747	1.362	1.352	1.039	1.015	0.755	0.733
۲	2		1.810							
	3	2.276	1.864	1.755	1.452	1.353	1.104	1.015	0.807	0.733

		1	2	3	4
$R_{\rm I}^{T} \ge 0.05 =$	1	1	1	1	1
1.L = 0.00	2	1	1	1	1
	3	1	1	1	1

		1	2	3	4	5	6	7	8	9
$u^T =$	1	172.2	172.2	180.7	193.8	208.2	222.8	234.2	240.3	240.3
	2	183.8	185.7	195.4	209.3	224.4	239.4	251.6	258.7	260.0
	3	195.3	199.1	210.0	224.7	240.5	256.1	268.9	277.0	279.7

		1	2	3	4	5	6	7	8	9
$c^{T} =$	1	180.0	529.2	213.2	511.7	188.4	500.2	196.8	511.3	231.7
	2	180.0	497.3	207.1	480.3	186.6	472.1	196.6	483.5	231.7
	3	180.0	467.8	203.6	451.4	185.8	446.3	196.6	458.4	231.7

$$\mathbf{c_u}^{\mathrm{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 476.1 & 142.1 & 459.2 & 77.7 & 444.1 & 29.4 & 444.2 & 13.3 \\ 2 & 0.0 & 458.9 & 112.6 & 441.5 & 55.1 & 426.9 & 13.1 & 424.0 & 0.2 \\ 3 & 0.0 & 444.6 & 86.6 & 426.5 & 35.3 & 411.8 & -1.0 & 406.3 & -10.9 \end{bmatrix}$$

		1	2	3	4	5	6	7	8	9
$a_{W}^{T} = $	1	673.1	656.4	646.6	633.7	627.5	609.7	607.5	584.4	584.3
w	2	673.5	656.3	648.0	633.6	629.1	609.8	609.3	584.8	586.2
	3	674.0	656.1	649.5	633.6	630.8	610.0	611.2	585.3	588.3

		1	2	3	4	5	6	7	8	9
$\mathbf{a}_{}^{\mathrm{T}} =$	1	717.7	690.0	693.6	668.3	671.0	644.7	645.8	616.9	617.5
$a_{3B} =$	2	717.7	693.8	693.9	672.0	671.1	648.2	645.8	620.6	617.5
	3	717.7	697.0	694.0	675.2	671.2	651.1	645.8	623.8	617.5

		1	2	3	4	5	6	7	8	9
$\mathbf{w}^{\mathrm{T}} =$	1	249.1	381.8	163.5	348.6	215.6	319.3	282.5	325.1	324.1
	2	257.2	333.7	192.5	299.5	245.8	275.2	308.8	285.1	348.1
	3	265.6	285.4	221.8	250.2	274.5	232.0	334.0	248.5	371.5

		1	2	3	4	5	6	7	8
$\mathbf{w}_{-}^{T} =$	1	172.2	-303.9	38.6	-265.4	130.5	-221.3	204.8	-203.8
''u	2	183.8	-273.2	82.7	-232.2	169.2	-187.4	238.4	-165.3
	3	195.3	-245.5	123.4	-201.7	205.2	-155.7	269.9	

		1	2	3	4	5	6	7	8	9
$\mathbf{w_a}^T =$	1	180.0	231.1	158.9	225.9	171.6	230.1	194.6	253.2	231.4
·· a	2	180.0	191.6	173.8	189.2	178.3	201.6	196.2	232.3	231.7
	3	180.0	145.5	184.3	148.0	182.4	171.9	196.6	212.2	231.5

		1	2	3	4	5	6	7	8	9	
$\alpha^{T} =$	1	90.00	25.89	48.19	26.20	65.64	27.39	81.41	29.69	86.70	.0
<u> </u>	2	90.00	22.66	57.06	23.20	72.81	25.28	86.17	28.72	89.95	
	3	90.00	18.12	64.82	19.13	79.04	22.65	90.30	27.58	92.70	

		1	2	3	4	5	6	7	8	9
$80.^{\circ} < \alpha^{\mathrm{T}} =$	1	1	0	0	0	0	0	1	0	1
	2	1	0	0	0	0	0	1	0	1
	3	1	0	0	0	0	0	1	0	1

[1, c.78]

Угол поворота потока:

$$\varepsilon_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 64.11 & 21.99 & 38.24 & 51.72 \\ 2 & 67.34 & 33.86 & 47.53 & 57.46 \\ 3 & 71.88 & 45.69 & 56.39 & 62.72 \end{bmatrix} . \circ$$

$$\varepsilon_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 66.40 & 86.85 & 90.35 & 83.28 \\ 2 & 80.41 & 94.34 & 93.47 & 83.71 \\ 3 & 93.16 & 102.10 & 96.11 & 82.82 \end{bmatrix}$$

		1	2	3	4	5	6	7	8	9
$M^T =$	1	0.251	0.767	0.307	0.766	0.281	0.776	0.305	0.829	0.375
···c	2									0.375
	3	0.251	0.671	0.293	0.669	0.277	0.685	0.304	0.735	0.375

		1	2	3	4	5	6	7	8	9
$\lambda_{-}^{T} =$	1	0.370	0.582	0.253	0.550	0.344	0.524	0.465	0.556	0.555
W -	2	0.382	0.509	0.297	0.473	0.391	0.451	0.507	0.488	0.594
	3	0.394	0.435	0.341	0.395	0.435	0.380	0.546	0.425	0.631

		1	2	3	4	5	6	7	8	9
$M_{W}^{T} =$	1	0.347	0.553	0.236	0.522	0.321	0.495	0.437	0.527	0.525
W	2	0.358	0.481	0.277	0.446	0.366	0.425	0.478	0.459	0.564
	3	0.370	0.409	0.320	0.371	0.409	0.356	0.517	0.398	0.602

D.— SAROO, perynatarce pecuera nagamentpos notoce no secone il:

▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_c(v,i,j,r) &= \left| \begin{array}{l} \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r}) \geq 0 \right) \wedge \left(- \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \right| \leq v \leq 0 \right) \\ & \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \right| \right) \\ \Delta_w(v,i,j,r) &= \left| -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) \geq 0 \right) \wedge \left(- \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right| \leq v \leq 0 \right) \wedge \left(j \neq 1 \right) \\ & -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right| \right) \wedge \left(j \neq 1 \right) \\ \Delta_u(v,i,j,r) &= \left| -c_{a_{st(i,j),r}} & \text{if } \left(-c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right) \leq v \leq w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right) \wedge \left(j \neq 1 \right) \\ & \text{NaN otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2} \right) \cdot 10^2 = 600.0$$

$$v = -max(c, w, u), -max(c, w, u) + \frac{max(c, w, u)}{3000} ... max(c, w, u)$$

▲ Построение треугольников скоростей в 3х сечениях

▼ Расчет хорд Л по парусности

$$\begin{pmatrix} \text{chord}_{\text{stator}} \\ \text{chord}_{\text{prior}} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \text{sail} = \frac{R_{\text{st}(i,2),N_f} - R_{\text{st}(i,2),1}}{R_{\text{st}(i,2),\text{av}[N_f]} - R_{\text{st}(i,2),1}} \\ \text{for } r \in 1..N_f \end{cases} \\ \text{for } i \in 1..Z \\ \text{for } r \in 1..N_f \end{cases}$$

$$\begin{pmatrix} \text{chord}_{\text{stator}} \\ \text{isal} \\ \text{bCArop} = \frac{\text{chord}_{\text{stator}} \\ \text{sail} \\ \text{storor} - 1 + \text{sail}}}{\text{sail} \\ \text{storor} - 1 + \text{sail}}} \\ \text{bPKacp} = \begin{pmatrix} \text{chord}_{\text{stator}} \\ \text{sur} \\ \text{storor} - 1 + \text{sail}} \\ \text{bPKacp} \end{pmatrix} = \begin{pmatrix} \text{bCArop} \\ \text{bPKnep} \end{pmatrix} = \begin{pmatrix} \text{bCArop} \\ \text{bPKnep} \end{pmatrix} \text{sail} \\ \text{storor} - 1 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{$$

Длины хорд РК и СА (м):

$$\bar{x}_{f} = 0.45$$

▼ Расчет параметров решетки

$$\begin{bmatrix} s_{tator} & r_{totor} \\ r_{inlet} \\ s_{tator} & r_{inlet} \\ r_{outlet} \\ s_{tator} & r_{outlet} \\ r_{outlet$$

$$\begin{pmatrix} \upsilon_{\text{установки}}(\alpha_{\text{st(i,1),r}},\alpha_{\text{st(i,2),r}}) \\ \upsilon_{\text{установки}}(\beta_{\text{st(i,2),r}},\beta_{\text{st(i,3),r}}) \end{pmatrix}$$

 $\frac{\pi}{2}$ добавляется в виду поворота рисунка на 90 град

Относительные радиусы профилей ():

$$\frac{1}{r_inlet_{stator}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 2.800 & 2.800 & 2.800 & 2.800 \\ 2 & 3.600 & 3.600 & 3.600 & 3.600 \\ 3 & 4.400 & 4.400 & 4.400 & 4.400 \end{bmatrix}$$

$$\frac{1}{\text{r_outlet}} \frac{1}{\text{stator}} = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 1.400 & 1.400 & 1.400 & 1.400 \\ \hline 2 & 1.800 & 1.800 & 1.800 & 1.800 \\ \hline 3 & 2.200 & 2.200 & 2.200 & 2.200 \\ \hline \end{array} .\%$$

$$\frac{T}{r_outlet_{rotor}}^T = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2.100 & 2.100 & 2.100 & 2.100 \\ 2 & 1.350 & 1.350 & 1.350 & 1.350 \\ 3 & 1.050 & 1.050 & 1.050 & 1.050 \end{vmatrix} .\%$$

Относительная толщина профиля ():

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 7.00 & 7.00 & 7.00 & 7.00 \\ 2 & 9.00 & 9.00 & 9.00 & 9.00 \\ 3 & 11.00 & 11.00 & 11.00 & 11.00 \end{bmatrix} .6$$

Относительный шаг решетки ():

Относительная густота решетки ():

$$\left(\frac{\text{chord}_{\text{stator}}}{t_{\text{stator}}} \right)^{\text{T}} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1.444 & 1.816 & 1.683 & 1.602 \\ 2 & 1.347 & 1.681 & 1.564 & 1.490 \\ 3 & 1.262 & 1.564 & 1.461 & 1.392 \end{vmatrix}$$

$$\left(\frac{\text{chord}_{\text{rotor}}}{t_{\text{rotor}}}\right)^{\text{T}} = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 1.788 & 1.695 & 1.610 & 1.635 \\ \hline 2 & 1.514 & 1.439 & 1.375 & 1.393 \\ \hline 3 & 1.202 & 1.122 & 1.102 & 1.177 \\ \hline \end{array}$$

Длина хорды профиля [м]:

		1	2	3	4				1	2	3	4	
$chord_{stator}^{T} =$	1	58.7	50.6	60.4	69.4	$\cdot 10^{-3}$	$chord_{rotor}^{T} =$	1	35.4	39.8	45.8	50.0	$\cdot 10^{-3}$
stator	2	58.7	50.6	60.4	69.4	10	rotor	2	32.3	36.4	42.0	45.9	10
	3	58.7	50.6	60.4	69.4			3	27.6	30.5	36.0	41.7	

Радиусы профилей:

$r_{inlet} \frac{T}{stator} =$	1 2	1 1.64 2.11	2 1.42 1.82	3 1.69 2.17	4 1.94 2.50	$\cdot 10^{-3}$ r_inlet _{rot}	$or^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	1 2	1 1.73 1.02	2 1.95 1.15	3 2.24 1.32	4 2.45 1.45	·10 ⁻³
	3	2.58	2.23	2.66	3.05			3	0.68	0.75	0.88	1.02	
		1	2	3	4				1	2	3	4	
r_outlet _{stator} =	1	0.82	0.71	0.85	0.97	10^{-3} r_outlet _{ro}	, T =	1	0.74	0.83	0.96	1.05	$\cdot 10^{-3}$
stator	2	1.06	0.91	1.09	1.25		otor	2	0.44	0.49	0.57	0.62	
	3	1.29	1.11	1.33	1.53			3	0.29	0.32	0.38	0.44	

Толщина профиля [м]:

		1	2	3	4			1	2	3	4	
$c \cdot T =$	1	4.11	3.55	4.23	4.86	$\cdot 10^{-3}$ $c_{rotor}^{T} =$	1	4.95	5.57	6.41	7.00	$\cdot 10^{-3}$
c _{stator} –	2	5.28	4.56	5.43	6.24	rotor –	2	2.91	3.28	3.78	4.14	10
	3	6.45	5.57	6.64	7.63		3	1.93	2.13	2.52	2.92	

Шаг решетки [м]:

		1	2	3	4				1	2	3	4	
t, T	1	40.6	27.9	35.9	43.3	$\cdot 10^{-3}$	$t \cdot T = \begin{bmatrix} T \\ T \end{bmatrix}$	1	19.8	23.5	28.4	30.6	$\cdot 10^{-3}$
stator –	2	43.6	30.1	38.6	46.6	10	rotor –	2	21.4	25.3	30.5	33.0	10
	3	46.5	32.4	41.3	49.8			3	22.9	27.1	32.7	35.4	

			1	2	3	4				1	2	3	4		
Угол поворота потока:	ε , $T =$	1	64.11	21.99	38.24	51.72	.0	ε , $T = $	1	66.40	86.85	90.3	35 83	.28	.0
v romanosporu meren a m	$\varepsilon_{ m stator} =$	2	67.34	33.86	47.53	57.46		$\varepsilon_{ m rotor} =$	2	80.41	94.34	93.4	17 83.	.71	
		3	71.88	45.69	56.39	62.72			3	93.16	102.10	96.1	1 82	.82	
			1	2	3	4				1	2	3	4		
	Т	1	12// 1	124.4	120.0	126.4		Т	-1	142.1	125.0	124.0	120.2		

			1	2	3	4				1	2	3	4	
Угол установки профиля:	$v_{-4} = T$	1	134.1	124.4	130.0	136.4	.0	v T =	1	142.1	135.9	134.8	138.2	.0
v ron y v ranozan npo quaza.	ostator =	2	129.9	123.9	129.5	136.6	rotor	2	136.4	132.6	133.0	137.5	.5	
		3	123.2	120.8	127.7	136.2			3	130.3	128.8	131.3	137.0	

Угол изгиба профиля: $\pi - \varepsilon_{\text{stator}}^{\qquad \qquad T} =$			1	2	3	4				1	2	3	4	
	$\pi - \varepsilon$ 1 $ $	1	115.9	158.0	141.8	128.3	1	1	113.6	93.1	89.7	96.7	.0	
	Stator	2	112.7	146.1	132.5	122.5		2	99.6	85.7	86.5	96.3		
		3	108.1	134.3	123.6	117.3		3	86.8	77.9	83.9	97.2		

Результаты расчета параметров решеток

▼ Подключение симметричного профиля

$$\begin{pmatrix} X_{U} & Y_{U} \\ X_{L} & Y_{L} \end{pmatrix} = NACA(0, 0, 100\%, 1)$$

Относ. координаты профиля РК и СА:

$$\begin{split} \text{AIRFOIL}_0\Big(x, \text{line}\,\overline{,f}\,, \overline{x}_f, \overline{c}\,\Big) &= & \text{if } 0 \leq x \leq 1 \\ & & \text{linterp}\big(X_U, Y_U, x\big) \text{ if line} = "+" \\ & \frac{\text{linterp}\big(X_U, Y_U, x\big) + \text{linterp}\big(X_L, Y_L, x\big)}{2} \text{ if line} = "0" \\ & & \text{linterp}\big(X_L, Y_L, x\big) \text{ if line} = "-" \\ & & \text{NaN otherwise} \end{split}$$

$$\begin{split} \text{AIRFOIL}(x,\text{line},\overline{c}^-,\theta) &= \begin{vmatrix} \text{linterp}\big(X_U,y/b_{cp.J}\!\left(X_U,\theta\right) + Y_U\cdot\overline{c}^-,x\big) & \text{if line} = "+" \\ \frac{\text{linterp}\big(X_U,y/b_{cp.J}\!\left(X_U,\theta\right) + Y_U\cdot\overline{c}^-,x\big) + \text{linterp}\big(X_L,y/b_{cp.J}\!\left(X_L,\theta\right) + Y_L\cdot\overline{c}^-,x\big)}{2} & \text{if line} = "0" \\ \frac{\text{linterp}\big(X_L,y/b_{cp.J}\!\left(X_L,\theta\right) + Y_L\cdot\overline{c}^-,x\big) + \text{linterp}\big(X_L,y/b_{cp.J}\!\left(X_L,\theta\right) + Y_L\cdot\overline{c}^-,x\big)}{2} & \text{if line} = "-" \\ \text{NaN otherwise} \end{aligned}$$

▶ Результат расчета абсолютных геометрических характеристик сечений Л

▼ Результат расчета абсолютных геометрических характеристик сечений Л

		1	2	3	4	
1_upper _{stator} T =	1	63.47	51.71	62.74	73.48	$\cdot 10^{-3}$
_ stator	2	64.41	52.70	64.03	74.79	10
	3	65.61	53.99	65.52	76.17	

$$l_lower_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 60.67 & 50.86 & 60.98 & 70.78 \\ & 2 & 60.72 & 51.07 & 61.31 & 71.03 \\ & 3 & 60.91 & 51.38 & 61.69 & 71.35 \end{bmatrix} \cdot 10^{-3}$$

$$area_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 164.78 & 122.77 & 174.49 & 230.41 \\ 2 & 211.86 & 157.85 & 224.34 & 296.25 \\ 3 & 258.93 & 192.93 & 274.19 & 362.08 \end{bmatrix} \cdot 10^{-6}$$

$$Sx_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 1061.6 & 226.1 & 672.4 & 1396.3 \\ 2 & 1439.6 & 450.4 & 1082.8 & 2006.5 \\ 3 & 1890.1 & 749.6 & 1584.1 & 2693.9 \end{bmatrix} \cdot 10^{-9}$$

$$Sy_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 4071.3 & 2618.3 & 4436.4 & 6732.1 \\ 2 & 5234.5 & 3366.4 & 5703.9 & 8655.5 \\ 3 & 6397.7 & 4114.5 & 6971.5 & 10579.0 \end{bmatrix} \cdot 10^{-9}$$

$$x0_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 24.7 & 21.3 & 25.4 & 29.2 \\ 2 & 24.7 & 21.3 & 25.4 & 29.2 \\ 3 & 24.7 & 21.3 & 25.4 & 29.2 \end{bmatrix} \cdot 10^{-3}$$

$$y0_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 6.4 & 1.8 & 3.9 & 6.1 \\ 2 & 6.8 & 2.9 & 4.8 & 6.8 \\ 3 & 7.3 & 3.9 & 5.8 & 7.4 \end{bmatrix} \cdot 10^{-3}$$

$$1_upper_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 39.66 & 46.66 & 54.18 & 58.15 \\ 2 & 36.48 & 42.49 & 48.89 & 52.24 \\ 3 & 31.76 & 35.92 & 41.76 & 46.84 \end{bmatrix} \cdot 10^{-3}$$

$$1_lower_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 36.43 & 41.97 & 48.58 & 52.49 \\ 2 & 34.08 & 39.38 & 45.33 & 48.71 \\ 3 & 29.93 & 33.74 & 39.30 & 44.33 \end{bmatrix} \cdot 10^{-3}$$

$$area_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 119.78 & 151.28 & 200.50 & 239.04 \\ 2 & 64.32 & 81.62 & 108.55 & 129.92 \\ 3 & 36.38 & 44.43 & 61.95 & 83.13 \end{bmatrix} \cdot 10^{-6}$$

$$Sx_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 483.2 & 926.0 & 1479.2 & 1752.8 \\ 2 & 293.2 & 504.1 & 764.8 & 881.1 \\ 3 & 167.6 & 252.5 & 386.5 & 505.1 \end{bmatrix} \cdot 10^{-9}$$

$$Sy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 1784.1 & 2532.5 & 3864.1 & 5030.0 \\ & 2 & 875.6 & 1251.6 & 1919.7 & 2513.8 \\ & 3 & 422.4 & 570.0 & 938.6 & 1458.9 \end{bmatrix} \cdot 10^{-9}$$

$$x0_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 14.9 & 16.7 & 19.3 & 21.0 \\ 2 & 13.6 & 15.3 & 17.7 & 19.3 \\ 3 & 11.6 & 12.8 & 15.2 & 17.5 \end{bmatrix} \cdot 10^{-3}$$

$$Jx_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 7676 & 549 & 3039 & 9634 \\ 2 & 11083 & 1608 & 6143 & 15621 \\ 3 & 15756 & 3556 & 10770 & 23247 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 27857 & 5131 & 18182 & 43361 \\ 2 & 37769 & 10217 & 29269 & 62292 \\ 3 & 49570 & 16997 & 42799 & 83602 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 837 & 133 & 448 & 1172 \\ 2 & 1301 & 323 & 916 & 2030 \\ 3 & 1960 & 644 & 1617 & 3204 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1628 & 309 & 1086 & 2565 \\ 2 & 2200 & 612 & 1737 & 3666 \\ \hline 3 & 2871 & 1010 & 2522 & 4894 \end{vmatrix} \cdot 10^{-12}$$

$$\alpha_{major_{stator}}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 3.06 & 1.03 & 1.80 & 2.45 \\ 2 & 3.23 & 1.59 & 2.25 & 2.74 \\ 3 & 3.48 & 2.17 & 2.70 & 3.01 \end{vmatrix}$$

		1	2	3	4	
Jx = T	1	2310	6463	12383	14730	$\cdot 10^{-12}$
Jx _{rotor} =	2	1494	3444	5964	6663	10
	3	850	1571	2649	3398	

$$Jy_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 34823 & 55552 & 97582 & 138694 \\ 2 & 15620 & 25151 & 44488 & 63733 \\ 3 & 6426 & 9583 & 18633 & 33548 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 7643 & 16433 & 30208 & 39111 \\ 2 & 4234 & 8188 & 14327 & 18078 \\ 3 & 2061 & 3427 & 6201 & 9401 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 361 & 794 & 1471 & 1878 \\ 2 & 158 & 330 & 575 & 687 \\ \hline 3 & 78 & 136 & 238 & 329 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy0_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 446 & 931 & 1701 & 2229 \\ 2 & 242 & 458 & 802 & 1029 \\ 3 & 115 & 188 & 345 & 536 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_{\text{major}_{\text{rotor}}}^{\text{T}} = \begin{vmatrix} & 1 & 2 & 3 & 4 \\ 1 & 3.22 & 4.28 & 4.47 & 4.09 \\ 2 & 3.90 & 4.62 & 4.57 & 4.07 \\ 3 & 4.54 & 5.01 & 4.70 & 4.01 \end{vmatrix}.$$

$$Ju_{stator}^{T} = \begin{bmatrix} \hline & 1 & 2 & 3 & 4 \\ 1 & 750 & 127 & 414 & 1063 \\ 2 & 1176 & 306 & 848 & 1855 \\ 3 & 1785 & 605 & 1499 & 2946 \end{bmatrix} \cdot 10^{-12}$$

$$Jv_{\text{stator}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 31306.3 & 17336.5 & 35041.3 & 61154.6 \\ 2 & 40263.3 & 22299.6 & 45077.7 & 78661.7 \\ 3 & 49233.3 & 27272.6 & 55130.2 & 96185.3 \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 32056 & 17464 & 35455 & 62217 \\ 2 & 41440 & 22605 & 45925 & 80516 \\ 3 & 51018 & 27878 & 56629 & 99132 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 927.3 & 594.5 & 1008.3 & 1531.7 \\ 2 & 1196.3 & 767.4 & 1301.6 & 1976.7 \\ 3 & 1468.5 & 942.6 & 1598.5 & 2426.8 \end{bmatrix} \cdot 10^{-9}$$

		1	2	3	4	
Ju =	1	336	725	1338	1718	$\cdot 10^{-12}$
Ju _{rotor} =	2	141	293	511	614	10
	3	68	120	209	291	

$$Jv_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 8273 & 13227 & 23245 & 33009 \\ 2 & 3716 & 5994 & 10601 & 15168 \\ 3 & 1531 & 2286 & 4442 & 7983 \end{bmatrix} \cdot 10^{-12}$$

$$Juv_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & -0 & 0 \\ 3 & 0 & -0 & 0 & 0 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 412.5 & 585.9 & 893.9 & 1163.7 \\ 2 & 200.3 & 286.2 & 439.0 & 575.0 \\ 3 & 96.3 & 129.8 & 213.9 & 332.6 \end{bmatrix} \cdot 10^{-9}$$

$$stiffness_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 676.2 & 1078.8 & 1895.0 & 2693.4 \\ 2 & 125.4 & 201.9 & 357.0 & 511.5 \\ 3 & 31.2 & 46.5 & 90.5 & 162.9 \end{bmatrix} \cdot 10^{-12}$$

		1	2	3	4	
$CPx_{stator}^{T} =$	1	20.536	17.726	21.132	24.284	$\cdot 10^{-3}$
Stator	2	20.536	17.726	21.132	24.284	10
	3	20.536	17.726	21.132	24.284	

		1	2	3	4	
$CPy_{stator}^{T} =$	1	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$
Stator	2	0.0000	0.0000	0.0000	0.0000	10
	3	0.0000	0.0000	0.0000	0.0000	

		1	2	3	4	
$CPx_{rotor}^{T} =$	1	12.380	13.914	16.018	17.490	1.10^{-3}
rotor	2	11.315	12.746	14.699	16.082	10
	3	9.649	10.663	12.592	14.586	

		1	2	3	4	
$CPy_{rotor}^{T} =$	1	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$
rotor	2	0.0000	0.0000	0.0000	0.0000	10
	3	0.0000	0.0000	0.0000	0.0000	

ightharpoons Результат расчета абсолютных геометрических характеристик сечений Л

Вывод результатов расчета геометрических хар-к сечений Л

▼ Профилирование решеток

Абс. координаты профиля:

▲ Профилирование решеток

Рассматриваемая ступень: j = j = Z

$$j_w = \begin{cases} j = Z \\ j = \end{cases}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$

▼ Построение профилей Л РК и НА

$$\begin{aligned} \text{AXLEO(type}, x, i, r) &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{i,r}}\right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if type = "rotor"} \\ \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}}\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type = "stator"} \\ \text{NaN otherwise} \end{aligned}$$

$$\text{AXLE90(type}, x, i, r) &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{i,r}} + \frac{\pi}{2}\right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if (type = "rotor")} \land \left|\alpha_{-}\text{major}_{rotor_{i,r}}\right| \ge 1 \cdot \circ \right. \\ &\left. \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}} + \frac{\pi}{2}\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if (type = "stator")} \land \left|\alpha_{-}\text{major}_{stator_{i,r}}\right| \ge 1 \cdot \circ \right. \\ &\left. \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}} + \frac{\pi}{2}\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if (type = "stator")} \land \left|\alpha_{-}\text{major}_{stator_{i,r}}\right| \ge 1 \cdot \circ \right. \end{aligned}$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-3}$$

$r = av(N_r)$

■ Построение профилей Л РК и НА

Рассматриваемая ступень:
$$j = Z$$
 = $j = Z$ = $j = Z$ | $j = Z$ | "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ | $j = Z$ | j

$$b_{line} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-10}$$

▼ Построение плоских решеток профилей Л на треугольниках скоростей

 $r = av(N_r)$

▲ Построение плоских решеток профилей Л на треугольниках скоростей

$$j_{v} =$$
 $j = Z$ $= 4$ $j =$ "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{dis}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{rotor} = 1 ... Z_{rotor_{j}}$$

$$\mathbf{i}_{stator} = 1 ... Z_{stator_{j}}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} ... 2 \cdot \pi$$

$$\Pi_{HA}(r,j) = \begin{bmatrix} \frac{2 \cdot \pi}{Z_{stator_{j}}} & \text{if } D_{st(j,2),1} < r < D_{st(j,2),N_{r}} \\ NaN & \text{otherwise} \end{bmatrix}$$


```
\nu 0_{\rm M3\Gamma.stator}
                                                                                                                                                                                                                                                                                                                                                                           \nu 0_{\rm M3\Gamma,rotor}
                                                             \nu 0_{
m yr.n.stator}
                                                                                                                                                                                                                                                                                                                                                                           ν0<sub>угл.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for i \in 1...Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for r \in av(N_r)

u^0угл.stator_bondage 
u^0угл.rotor_bondage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            for mode \in 1...6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}\tilde{0}} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{1},\,1)}\,, h_{\text{st}(\hat{1},\,2)} \Big)\,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( h_{\text{st}(\hat{1},\,1)}\,, h_{\text{st}(\hat{1},\,2)} \Big) \Big) \Big( h_{\text{st}(\hat{1},\,2)} \Big) \Big( h_{\text{st}(\hat{1},\,2)} \Big) \Big) \Big( h_{\text{st}(\hat{1},\,2)} \Big) \Big( h_{\text{st}(\hat{1},\,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \nu 0_{\text{M3}\Gamma.\text{rotor}_{\hat{i}\,,\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}\delta} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big)\,, \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) \Big) \Big( h_{\text{st}(\hat{i}\,,\,3)} \Big) 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{\text{yrn.stator}_{i,\,\text{mode}}} = \nu 0_{\text{yrn}} \left( \text{mode}\,, 0\,, \text{mean} \left( h_{\text{st}(i,\,1)}\,, h_{\text{st}(i,\,2)} \right), \text{Jung}(2\,, \mu\_\text{steel}\,, E\_\text{blade})\,, \rho\_\text{blade}_i\,, \text{stiffness}_{\text{stator}_{i,\,r}}\,, \text{Jp}_{\text{stator}_{i,\,r}} \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{y_{\Gamma JI}.rotor_{\hat{1}},\,mode} = \nu 0_{y_{\Gamma JI}} \left(mode,0,mean\left(h_{st(\hat{1},2)},h_{st(\hat{1},3)}\right),Jung(2,\mu\_steel,E\_blade),\rho\_blade_{\hat{1}},stiffness_{rotor_{\hat{1},r}},Jp_{rotor_{\hat{1},r}}\right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{\text{YFJI.stator\_bondage}_{i, \, mode}} = \nu 0_{\text{YFJI}} \left( \text{mode} , 1, \text{mean} \left( h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu\_\text{steel}, E\_\text{blade}), \rho\_\text{blade}_i, \text{stiffness}_{\text{stator}_{i, r}}, \text{Jp}_{\text{stator}_{i, r}}, \text{Jp}_{\text{stator}_{i,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \nu 0_{\text{YFJI.rotor\_bondage}_{\hat{1}, \, mode}} = \nu 0_{\text{YFJ}} \left( \text{mode} \,, 1 \,, \text{mean} \left( h_{st(\hat{1}, 2)} \,, h_{st(\hat{1}, 3)} \right) \,, \\ \text{Jung}(2 \,, \mu\_\text{steel} \,, E\_\text{blade}) \,, \rho\_\text{blade}_{\hat{1}} \,, \\ \text{stiffness}_{rotor_{\hat{1}, \, r}} \,, \\ \text{Jp}_{rotor_{\hat{1}, \, r}} \,, \\ \text{Jp}_{rotor
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \nu 0_{\text{изг.rotor}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu 0_{\rm M3\Gamma.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \nu 0_{y_{\Gamma JI}.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ν0<sub>угл.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \nu_0^0угл.stator bondage \nu_0^0угл.rotor bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

$$\operatorname{stack} \left(\nu 0_{\text{M3}\Gamma.\text{stator}}, \nu 0_{\text{M3}\Gamma.\text{rotor}}\right)^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3263 & 1318 & 1559 & 1694 & 1618 & 1636 & 1616 & 1298 \\ 2 & 20449 & 8261 & 9769 & 10618 & 10139 & 10252 & 10130 & 8134 \\ 3 & 57262 & 23133 & 27357 & 29734 & 28391 & 28708 & 28368 & 22777 \\ 4 & 112296 & 45365 & 53649 & 58311 & 55677 & 56299 & 55632 & 44667 \\ 5 & 185556 & 74961 & 88649 & 96353 & 92001 & 93028 & 91925 & 73807 \\ 6 & 277118 & 111950 & 132392 & 143897 & 137398 & 138932 & 137285 & 110226 \\ \end{bmatrix}$$

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

		1	2	3	4	5	6	7	8
	1	3125	2608	2392	2193	2761	2440	2268	2039
, / \T	2	9376	7823	7177	6578	8284	7319	6803	6118
$\operatorname{stack}(\nu 0_{\text{угл.stator}}, \nu 0_{\text{угл.rotor}})^{-} =$	3	15626	13038	11962	10963	13806	12199	11339	10197
	4	21877	18253	16747	15348	19329	17078	15875	14275
	5	28128	23468	21532	19733	24851	21958	20410	18354
	6	34378	28683	26317	24118	30374	26838	24946	22433

		1	2	3	4	5	6	7	8
	1	6251	5215	4785	4385	5523	4880	4536	4079
, T	2	12501	10430	9570	8770	11045	9759	9071	8157
stack(ν 0 _{yгл.stator_bondage} , ν 0 _{yгл.rotor_bondage}) =	3	18752	15645	14355	13155	16568	14639	13607	12236
	4	25002	20860	19140	17540	22090	19518	18143	16315
	5	31253	26076	23924	21925	27613	24398	22678	20394
	6	37503	31291	28709	26310	33135	29277	27214	24472

(D.:: Вывод результатов расчета собственнох частот колебаний 71-

Pасчетный узел: type = "turbine"

Объем бандажной полки (м 3): $V_{6\pi} =$

Радиус положения ЦМ бандажной полки (м): $R_{\delta\Pi} = 0$

▶ Расчет Л на прочность —

$$\text{neutral_line(type, x, i, r)} = \begin{vmatrix} y0_{rotor_{i, r}} \\ \frac{y0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}} + \tan\left(\left(\alpha_{major_{rotor_{i, r}}} + \phi_{neutral_{rotor}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}}\right) \text{ if type} = "rotor"$$

$$\frac{y0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}} + \tan\left(\left(\alpha_{major_{stator_{i, r}}} + \phi_{neutral_{stator}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}}\right) \text{ if type} = "stator"$$

$$\frac{y0_{rotor_{i, r}}}{\text{chord}_{stator_{i, r}}} + \frac{-1}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{ma$$

$$\begin{aligned} & \text{epure(type,x,i,r)} = \boxed{\frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_\text{major}_{rotor_{i,r}} + \varphi_\text{neutral}_{rotor}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) \text{ if type = "rotor"} \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_\text{major}_{stator_{i,r}} + \varphi_\text{neutral}_{stator}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) \text{ if type = "stator"} \end{aligned}$$

■Определение координат точек профиля Л, наиболее удаленных от НП

Наиболее удаленные точки от НЛ (мм):

$$u_{-1}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 28.375 & 28.028 & 27.933 & 28.008 \\ 2 & 25.969 & 25.738 & 25.725 & 25.849 \\ 3 & 23.420 & 23.278 & 23.334 & 23.497 \end{vmatrix} \cdot 10^{-3}$$

$$u_l_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & -9.648 & -27.201 & -27.296 & -26.659 \\ 2 & 2.702 & -20.244 & -22.418 & -24.751 \\ 3 & 34.492 & 34.701 & 10.465 & -19.527 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	
$\mathbf{v} \cdot \mathbf{u} = \mathbf{T}$	1	4.927	5.365	5.441	5.299	$\cdot 10^{-3}$
v_u _{rotor} =	2	3.698	3.973	3.956	3.765	
	3	3.189	3.344	3.240	3.002	

$$v_{-1}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & -7.980 & -10.413 & -10.906 & -10.223 \\ 2 & -8.576 & -10.135 & -10.108 & -9.138 \\ 3 & -8.916 & -9.837 & -9.322 & -8.081 \end{bmatrix} \cdot 10^{-3}$$

$$v_{-}u_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 29.582 & 4.200 & 5.221 & 6.027 \\ 2 & 38.137 & 20.800 & 13.898 & 8.774 \\ 3 & 7.817 & 9.146 & 23.918 & 15.820 \end{vmatrix} \cdot 10^{-3}$$

$$v_{-}l_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & -39.707 & -6.703 & -9.605 & -12.000 \\ 2 & -30.181 & -20.609 & -18.668 & -15.935 \\ 3 & -22.276 & -20.913 & -39.336 & -22.312 \end{vmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-n}rotor \\ \sigma_{-Dstator} & \sigma_{-n}rotor \\ \sigma_{-Dstator}$$

$$\begin{pmatrix} \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} &$$

$$\sigma_{protor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & -49.58 & -38.69 & -24.96 & -15.94 \\ 2 & -31.38 & -25.94 & -16.28 & -8.77 \\ 3 & -4.79 & -6.12 & -2.55 & -0.07 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4	
$\sigma p_{rotor} \leq 70.10^6 =$	1	1	1	1	1	
$\sigma_p_{rotor} \leq /0.10^\circ =$	2	1	1	1	1	
	3	1	1	1	1	

$$\sigma_{-n_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 86.83 & 79.81 & 53.31 & 33.39 \\ 2 & 76.42 & 69.01 & 43.71 & 22.64 \\ 3 & 13.77 & 18.44 & 7.63 & 0.20 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4
$\sigma n_{rotor} \leq 70.10^6 =$	1	0	0	1	1
$\sigma_{\text{notor}} \leq 70.10^{\circ} =$	2	0	1	1	1
	3	1	1	1	1

		1	2	3	4	
$\sigma p_{-+} = T$	1	0.00	1.03	0.58	0.05	·10 ⁶
$\sigma_p_{stator} =$	2	1.78	12.03	7.28	2.32	
	3	-10.85	-20.23	-8.47	8.70	

		1	2	3	4	
$\sigma p_{\text{stator}} \leq 70 \cdot 10^6 =$	1	1	1	1	1	
$\sigma_{\text{pstator}} \leq 70.10^{\circ} =$	2	1	1	1	1	
	3	1	1	1	1	

$$\sigma_{-} n_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0.00 & -1.58 & -1.01 & -0.10 \\ 2 & -0.09 & -9.17 & -6.42 & -3.38 \\ 3 & 31.68 & 42.27 & 8.54 & -7.36 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4	
$\sigma n_{\text{stater}} \leq 70 \cdot 10^6 =$	1	1	1	1	1	
$\sigma_{\text{nstator}} \leq 70.10^{\circ} =$	2	1	1	1	1	
	3	1	1	1	1	

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \text{for } r \in 1...N_r \end{cases}$$

$$\begin{vmatrix} \sigma_{rotor_{i,r}} = \sqrt{\left(\sigma_{-}z_{rotor}(i,R_{st(i,2),r}) + \max\left(\sigma_{-}p_{rotor_{i,r}},\sigma_{-}n_{rotor_{i,r}}\right)\right)^2 + \tau_{rotor}(i,R_{st(i,2),r})^2}$$

$$\begin{vmatrix} \sigma_{stator_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{-}p_{stator_{i,r}},\sigma_{-}n_{stator_{i,r}}\right)\right)^2 + \tau_{stator}(i,R_{st(i,2),r})^2} \\ \begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big$$

$$\sigma_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 113.20 & 114.67 & 95.63 & 80.56 \\ 2 & 97.50 & 97.27 & 77.14 & 56.67 \\ 3 & 22.50 & 32.20 & 20.77 & 3.32 \end{bmatrix} \cdot 10^6$$

$$\sigma_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 0.00 & 1.09 & 0.70 & 0.16 \\ 2 & 2.67 & 12.08 & 7.36 & 2.47 \\ 3 & 31.86 & 42.31 & 8.71 & 8.81 \end{bmatrix} \cdot 10^{6}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix} = \begin{vmatrix} for \ i \in 1...Z \\ for \ r \in 1...N_r \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor} \\ i,r \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{rotor}} & \text{if } \sigma_{rotor} \\ \infty & \text{otherwise} \end{vmatrix}$$

$$safety_{stator} \\ i,r \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{stator}} & \text{if } \sigma_{stator} \\ \frac{\sigma_blade_long_i}{\sigma_{stator}} & \text{if } \sigma_{stator} \\ \infty & \text{otherwise} \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix}$$

$$contact$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix}$$

		1	2	3	4
$safety_{rotor}^{T} =$	1	1.06	1.05	1.25	1.49
rotor	2	1.23	1.23	1.56	2.12
	3	5.33	3.73	5.78	36.17

		1	2	3	4
$safety_{rotor}^{T} \ge safety =$	1	0	0	0	1
rotor – salvy	2	0	0	1	1
	3	1	1	1	1

		1	2			1	2	3	4
$safety_{stator} = $	1	000000000000000000000000000000000000000		T safety _{stator} \geq safety =	1	1	1	1	1
stator	2	44.88		stator = surety	2	1	1	1	1
	3	3.77			3	1	1	1	1

$$b_{\text{line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 422.0 & 453.2 & 484.5 \\ 2 & 433.0 & 466.0 & 499.1 \\ 3 & 433.0 & 468.5 & 503.9 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = min(Rj), min(Rj) + \frac{max(Rj) - min(Rj)}{100} ... max(Rj)$$

$$z_{rotor} = \begin{vmatrix} mean \left(Rj_{1,1}, Rj_{2,1}\right), mean \left(Rj_{1,1}, Rj_{2,1}\right) + \frac{mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) - mean \left(Rj_{1,1}, Rj_{2,1}\right)}{100} ... mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) \text{ if type = "compressor"} \\ mean \left(Rj_{2,1}, Rj_{3,1}\right), mean \left(Rj_{2,1}, Rj_{3,1}\right) + \frac{mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) - mean \left(Rj_{2,1}, Rj_{3,1}\right)}{100} ... mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) \text{ if type = "turbine"} \\ 100 \end{aligned}$$

$$z_{stator} = \begin{bmatrix} mean \left(Rj_{2,1}, Rj_{3,1}\right), mean \left(Rj_{2,1}, Rj_{3,1}\right) + \frac{mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) - mean \left(Rj_{2,1}, Rj_{3,1}\right)}{100} ... mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) & \text{if type} = "compressor" \\ mean \left(Rj_{1,1}, Rj_{2,1}\right), mean \left(Rj_{1,1}, Rj_{2,1}\right) + \frac{mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) - mean \left(Rj_{1,1}, Rj_{2,1}\right)}{100} ... mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) & \text{if type} = "turbine" \\ \end{bmatrix}$$

$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "stator" \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.62 & 3.77 \\ 2 & 25.85 & -9.14 \\ 3 & 22.59 & 8.77 \\ 4 & -24.75 & -15.93 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j},r} & \sigma_{-}p_{stator_{j},r} \\ \sigma_{-}n_{rotor_{j},r} & \sigma_{-}n_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -8.8 & 2.3 \\ 2 & 22.6 & -3.4 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 56.7 \end{bmatrix} \cdot 10^{-1}$$

$$\begin{pmatrix} v_{-}p \\ v_{-} \end{pmatrix} = \begin{pmatrix} v_{-}u_{rotor_{j},r} \\ v_{-}l_{rotor_{j},r} \end{pmatrix} \text{ if blade = "rotor"} = \begin{pmatrix} x_{0} \\ 1 & 8.774 \\ 2 & -15.935 \end{pmatrix} \cdot 10^{-3} \quad \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \end{pmatrix} \text{ if blade = "rotor"} = \begin{pmatrix} x_{0} \\ 1 & 29.217 \\ 2 & 6.773 \end{pmatrix} \cdot 10^{-3} \quad \text{chord} = \begin{pmatrix} \text{chord}_{rotor_{j},r} \\ \text{chord}_{stator_{j},r} \\ \text{chord}_{stator_{j},r} \end{pmatrix} \text{ if blade = "rotor"} = 69.4 \cdot 10^{-3}$$

$$\begin{pmatrix} v_{-}u_{stator_{j},r} \\ v_{-}l_{stator_{j},r} \end{pmatrix} \text{ otherwise}$$

$$\begin{pmatrix} v_{-}u_{stator_{j},r} \\ v_{-}l_{stator_{j},r} \end{pmatrix} \text{ otherwise}$$

$$\begin{pmatrix} v_{-}u_{stator_{j},r} \\ v_{-}l_{stator_{j},r} \end{pmatrix} \text{ otherwise}$$

$$\begin{pmatrix} \text{blade} \\ \text{max} \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 0.22 & 3.00 \\ 2 & 23.50 & -8.08 \\ 3 & 37.61 & 15.82 \\ 4 & -19.53 & -22.31 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-p_{rotor_{j},r}} & \sigma_{-p_{stator_{j},r}} \\ \sigma_{-n_{rotor_{j},r}} & \sigma_{-n_{stator_{j},r}} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.1 & 8.7 \\ 2 & 0.2 & -7.4 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 8.8 \\ 2 \\ 3.3 \end{bmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{vmatrix} 1 \\ 1 \\ 2 \\ 36.173 \end{vmatrix}$$

$$\begin{pmatrix} v_{u} \\ v_{r} \\ v$$

$$\begin{pmatrix} \text{blade} \\ \text{min} \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1.00 & 5.30 \\ 2 & 28.01 & -10.22 \\ 3 & 15.69 & 6.03 \\ 4 & -26.66 & -12.00 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j},r} & \sigma_{-}p_{stator_{j},r} \\ \sigma_{-}n_{rotor_{j},r} & \sigma_{-}n_{stator_{j},r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -15.9 & 0.1 \\ 2 & 33.4 & -0.1 \end{bmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0.2 \\ 2 \\ 80.6 \end{bmatrix} \cdot 10^{-1}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 751.571 \\ 2 \end{bmatrix}$$

$$\begin{pmatrix} v_{u} \\ v_{r} \\ v$$

$$\begin{pmatrix} \text{blade} \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -0.62 & 3.77 \\ 2 & 25.85 & -9.14 \\ 3 & 22.59 & 8.77 \\ 4 & -24.75 & -15.93 \end{bmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j},r} & \sigma_{-}p_{stator_{j},r} \\ \sigma_{-}n_{rotor_{j},r} & \sigma_{-}n_{stator_{j},r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -8.8 & 2.3 \\ 2 & 22.6 & -3.4 \end{bmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2.5 \\ 2 \\ 56.7 \end{bmatrix} \cdot 10^{6}$$

Вывод результатов расчета Л на прочность

▼ Выбор материала Д

Запас по температуре (К): $\Delta T_{\text{safety}} = 0$

Выбранный материал Д: material_disk_i = "ВЖ175" if turbine = "ТВД" "ЭП742" if turbine = "ТНД"

Плотность материала Д (кг/м^3):

$\begin{array}{lll} \rho_{disk_i} = & 8266 & if \; material_{disk_i} = "B\%175" \\ & 8320 & if \; material_{disk_i} = "9\Pi742" \\ & 8393 & if \; material_{disk_i} = "\%C-6K" \\ & 7900 & if \; material_{disk_i} = "BT41" \\ & 4500 & if \; material_{disk_i} = "BT25" \\ & 4570 & if \; material_{disk_i} = "BT23" \\ & 4510 & if \; material_{disk_i} = "BT9" \\ & 4430 & if \; material_{disk_i} = "BT6" \\ & NaN & otherwise \\ \end{array}$

Предел длительной прочности Д (Па):

$$\sigma_{\rm disk_long_i} = 10^6$$
. 620 if material_disk $_{\rm i}$ = "ВЖ175" 680 if material_disk $_{\rm i}$ = "ЭП742" 125 if material_disk $_{\rm i}$ = "ЖС-6К" 123 if material_disk $_{\rm i}$ = "ВТ41" 150 if material_disk $_{\rm i}$ = "ВТ25" 230 if material_disk $_{\rm i}$ = "ВТ23" 200 if material_disk $_{\rm i}$ = "ВТ9" 210 if material_disk $_{\rm i}$ = "ВТ6" NaN otherwise

material_disk
T
 = $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & "ЭП742" & "ЭП742" & "ЭП742" & "ЭП742" \end{bmatrix}$

$$\sigma_{\text{disk_long}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 680 & 680 & 680 & 680 \end{bmatrix} \cdot 10^{6}$$

Рассматриваемая ступень:
$$j_w = \begin{cases} j = Z \\ j = \end{cases}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$

▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \begin{pmatrix} chord_{rotor_{i},ORIGIN} \cdot sin \Big(\upsilon_{rotor_{i},ORIGIN}\Big) \Big) \cdot e^{\frac{\rho_{-}disk_{i} \cdot \omega^{2}}{2} \cdot \frac{1}{\sigma_{-}z_{rotor}(i,R_{st(i,2),ORIGIN})} \cdot \Big[\big(R_{st(i,2),ORIGIN}\big)^{2} - z^{2} \big]} \\ \text{if } z \leq R_{st(i,2),ORIGIN} \end{pmatrix}$$

$$NaN \quad otherwise$$

$$z = 0, \frac{R_{st(j,2),ORIGIN}}{N_{dis}} .. R_{st(j,2),ORIGIN}$$

Рассматриваемая ступень: j = j = 1

$$j = \begin{vmatrix} j = 1 \\ j = \end{vmatrix}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

•

Приведенная скорость по профилю Л

D.... Общие параметры охлаждения

— В параметры охлаждения

— В параметры охлаждения

— В параметры охлаждения

Конвективное охлаждение ——

▶ Результаты конвективного охлаждения ————————————————————————————————————		

ГКонвективно-пленочное охлаждение —

▶ Результат конвективно-пленочного охлаждения ———

Вывод результатов охлаждения

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 196.80 \\ 511.29 \\ 231.75 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 194.59 \\ 253.24 \\ 231.37 \end{pmatrix}$$

$$\begin{pmatrix} W_{st(j,1),r} \\ W_{st(j,2),r} \\ W_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 282.51 \\ 325.09 \\ 324.12 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 81.41 \\ 29.69 \\ 86.70 \end{pmatrix} \cdot \circ$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 234.20 \\ 240.32 \\ 240.32 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 43.53 \\ 128.83 \\ 45.55 \end{pmatrix}.$$

$$\varepsilon_{\mathrm{stator}_{j,r}} = 51.72^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 83.28^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 196.62 \\ 483.45 \\ 231.73 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 196.19 \\ 232.28 \\ 231.73 \end{pmatrix}$$

$$\begin{pmatrix} W_{st(j,1),r} \\ W_{st(j,2),r} \\ W_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 308.77 \\ 285.12 \\ 348.14 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 86.17 \\ 28.72 \\ 89.95 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 251.56 \\ 258.65 \\ 260.00 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 39.45 \\ 125.44 \\ 41.73 \end{pmatrix}.$$

$$\varepsilon_{\text{stator}_{j,r}} = 57.46^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 83.71^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 196.61 \\ 458.40 \\ 231.72 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 196.60 \\ 212.23 \\ 231.46 \end{pmatrix}$$

$$\begin{pmatrix} W_{st(j,1),r} \\ W_{st(j,2),r} \\ W_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 333.95 \\ 248.53 \\ 371.50 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 90.30 \\ 27.58 \\ 92.70 \end{pmatrix} \cdot \circ$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 268.92 \\ 276.98 \\ 279.68 \end{pmatrix}$$

$$\begin{pmatrix}
\beta_{st(j,1),r} \\
\beta_{st(j,2),r} \\
\beta_{st(j,3),r}
\end{pmatrix} = \begin{pmatrix}
36.07 \\
121.36 \\
38.54
\end{pmatrix} \cdot \circ$$

$$\varepsilon_{\mathrm{stator}_{\dot{j},r}} = 62.72^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 82.82^{\circ}$$