```
import pandas as pd
```

import matplotlib.pyplot as plt

pd.read_csv("general_data.csv")

Out[7]:

 $\label{lem:AgeAttrition} Age \ Attrition \ \dots \ Years Since Last Promotion \ Years With Curr Manager$

0	51	No	0	0	
1	31	Yes	1	4	
2	32	No	0	3	
3	38	No	7	5	
4	32	No	0	4	
•••	•••				
440	 05 42			2	
				2	
440	06 29	No	0		
440 440)6 29)7 25	No	0	2	

[4410 rows x 24 columns]

4409 40 No ... 3

dataset=pd.read_csv("general_data.csv")

dataset.head()

Out[8]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

9

0	51	No	0	0
1	31	Yes	1	4
2	32	No	0	3
3	38	No	7	5
4	32	No	0	4

[5 rows x 24 columns]

```
dataset=pd.read_csv("general_data.csv")
dataset.head()
Out[9]:
     Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager
0 51
                                     No ...
                                                                                                          0
                                                                                                                                                         0
1 31
                                  Yes ...
                                                                                                         1
                                                                                                                                                         4
2 32
                                   No ...
                                                                                                      0
                                                                                                                                                         3
3 38
                                   No ...
                                                                                                                                                          5
4 32
                                    No ...
                                                                                0
                                                                                                                                                          4
[5 rows x 24 columns]
dataset.duplicated()
Out[10]:
0
                  False
1
                  False
2
                  False
3
                  False
4
                  False
4405 False
4406 False
4407 False
4408 False
4409 False
Length: 4410, dtype: bool
dataset1=dataset[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike', 'TotalWorkingYears', 'TrainingTimesLastYear', 'TotalWorkingYears', 'TrainingTimesLastYear', 'TotalWorkingYears', 'TrainingTimesLastYear', 'TotalWorkingYears', 'TotalWorkingYe
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].mode()
dataset1
```

```
Out[11]:
```

 $\label{lem:condition} \textbf{Age DistanceFromHome} \ \dots \ \textbf{YearsSinceLastPromotion YearsWithCurrManager}$

0 35 2 ... 0

[1 rows x 11 columns]

dataset2=dataset1[['Age','DistanceFromHome','Education','MonthlyIncome',

'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',

'Years At Company', 'Years Since Last Promotion', 'Years With Curr Manager']]. describe()

dataset2

Out[12]:

Age DistanceFromHome ... YearsSinceLastPromotion YearsWithCurrManager

count	1.0	1.0	1.0	1.0
mean	35.0	2.0	0.0	2.0
std	NaN	NaN	NaN	NaN
min	35.0	2.0	0.0	2.0
25%	35.0	2.0	0.0	2.0
50%	35.0	2.0	0.0	2.0
75%	35.0	2.0	0.0	2.0
max	35.0	2.0	0.0	2.0

[8 rows x 11 columns]

plt.boxplot(dataset["MonthlyIncome"])

plt.boxplot(dataset["MonthlyIncome"])

Out[16]:

{'whiskers': [<matplotlib.lines.Line2D at 0x1e67de11e88>,

<matplotlib.lines.Line2D at 0x1e67de16d08>],

'caps': [<matplotlib.lines.Line2D at 0x1e67de16e08>,

<matplotlib.lines.Line2D at 0x1e67de1ac88>],

'boxes': [<matplotlib.lines.Line2D at 0x1e67de11d08>],

'medians': [<matplotlib.lines.Line2D at 0x1e67de1ad88>],

'fliers': [<matplotlib.lines.Line2D at 0x1e67de1ec08>],

'means': []}

In [17]: plt.scatter(dataset["MonthlyIncome"],dataset["PercentSalaryHike"])

Out[17]: <matplotlib.collections.PathCollection at 0x1e67e8d91c8>

