Appendix Table 6-9

Estimates of other parameters when $c_1^2=c_2^2$ for scenario 5-8

Yi

2021-04-05

Load data

```
s.rdt <- "scenario/18rows/set-0.5b-all.RData"
dt <- "res/DT-pkg-0.5b-all/"</pre>
```

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Table 1: Estimates of the parameters when $c_1^2=c_2^2$

S_P	Par	True	Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	Proposed $(c_1^2 = c_2^2)$	$\mathrm{Reitsma}_O$	$Reitsma_{P}$
25	SAUC	0.828	$0.840\ (0.788,\ 0.872)$	$0.833\ (0.784,\ 0.868)$	$0.868 \ (0.839, \ 0.892)$	$0.826\ (0.799,\ 0.850)$
	μ_1	1.386	1.396 (1.113, 1.649)	$1.391\ (1.183,\ 1.602)$	1.487 (1.303, 1.677)	1.385 (1.218, 1.541)
	μ_2	1.386	$1.501 \ (0.971, \ 1.966)$	$1.473\ (1.002,\ 1.873)$	$2.019\ (1.693,\ 2.314)$	$1.392\ (1.119,\ 1.687)$
	$ au_1^2 \ au_2^2$	1.000	$0.982 \ (0.662, 1.366)$	$0.896 \ (0.619, 1.216)$	$0.847 \ (0.584, 1.163)$	$0.915 \ (0.670, 1.158)$
	$ au_2^2$	4.000	$3.628 \ (2.615, \ 5.124)$	$3.506 \ (2.487, 5.028)$	$2.742\ (2.075,\ 3.570)$	$3.659 \ (2.932, 4.595)$
	$ au_{12}$	-0.600	-0.668 (-1.192, -0.213)	-0.517 (-0.975, -0.118)	-0.648 (-1.031, -0.341)	-0.532 (-0.875, -0.255)
	c_{1}^{2}	0.500	$0.464 \ (0.129, \ 0.798)$			
	$ar{eta}$	0.500	$2.000 \ (0.568, \ 2.000)$	$0.664\ (0.252,\ 2.000)$		
	$\alpha_{0.7}$	-0.761	-0.967 (-2.421, -0.067)	-0.881 (-2.028, -0.271)		
	CR		99.5	99.6	99.9	99.8
50	SAUC	0.828	0.834 (0.801, 0.861)	$0.834\ (0.801,\ 0.859)$	$0.871\ (0.852,\ 0.887)$	$0.826 \ (0.808, \ 0.845)$
	μ_1	1.386	1.396 (1.163, 1.588)	1.387 (1.239, 1.543)	1.494 (1.355, 1.627)	$1.376 \ (1.262, 1.504)$
	μ_2	1.386	1.357 (0.965, 1.801)	1.435 (1.096, 1.774)	1.989 (1.792, 2.203)	1.386 (1.182, 1.584)
	$ au_1^2$	1.000	$1.042 \ (0.814, 1.278)$	$0.957 \ (0.764, 1.155)$	$0.923\ (0.751,\ 1.115)$	$0.958 \ (0.807, 1.141)$
	$ au_2^2$	4.000	$3.983 \ (3.067, 5.249)$	3.744 (2.926, 4.781)	$2.926\ (2.438,\ 3.529)$	3.832 (3.310, 4.448)
	$ au_{12}$	-0.600	-0.667 (-1.057, -0.318)	-0.585 (-0.895, -0.282)	-0.714 (-0.997, -0.485)	-0.576 (-0.817, -0.347)
	c_1^2	0.500	$0.489 \ (0.227, \ 0.748)$			
	β	0.500	$0.832\ (0.459,\ 2.000)$	$0.528 \ (0.280, \ 0.952)$		
	$\alpha_{0.7}$	-0.761	-0.776 (-1.646, -0.230)	-0.738 (-1.285, -0.360)		
	CR		99.8	100	99.8	100
200	SAUC	0.828	$0.831\ (0.813,\ 0.846)$	0.828 (0.813, 0.844)	$0.872\ (0.863,\ 0.880)$	$0.828\ (0.819,\ 0.835)$
	μ_1	1.386	1.399 (1.283, 1.500)	1.388 (1.313, 1.460)	$1.491\ (1.432,\ 1.559)$	$1.383 \ (1.332, \ 1.436)$
	μ_2	1.386	$1.362 \ (1.147, \ 1.588)$	$1.402\ (1.224,\ 1.574)$	$2.002\ (1.898,\ 2.124)$	$1.384\ (1.296,\ 1.488)$
	$ au_1^2$	1.000	$1.015 \ (0.898, \ 1.138)$	$0.989 \ (0.885, 1.099)$	$0.971\ (0.875,\ 1.073)$	$0.994\ (0.903,\ 1.080)$
	$ au_2^2$	4.000	4.064 (3.477, 4.725)	3.933 (3.459, 4.461)	$3.053\ (2.810,\ 3.340)$	$3.977 \ (3.668, 4.263)$
	$ au_{12}$	-0.600	-0.631 (-0.819, -0.462)	-0.592 (-0.742, -0.438)	-0.754 (-0.876, -0.637)	-0.597 (-0.717, -0.473)
	c_{1}^{2}	0.500	$0.481\ (0.339,\ 0.609)$			
	β	0.500	$0.566 \ (0.446, \ 0.716)$	$0.523 \ (0.404, \ 0.652)$		
	$\alpha_{0.7}$	-0.761	-0.757 (-0.979, -0.532)	-0.778 (-0.954, -0.599)		
	CR		99.3	99.8	100	99.9

Table 2: Estimates of the parameters when $c_1^2=c_2^2$

S_P	Par	True	Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	Proposed $(c_1^2 = c_2^2)$	$Reitsma_O$	$Reitsma_{P}$
25	SAUC	0.846	$0.851\ (0.823,\ 0.876)$	$0.849\ (0.819,\ 0.874)$	$0.874\ (0.854,\ 0.891)$	$0.845\ (0.824,\ 0.864)$
	μ_1	1.386	1.375 (1.103, 1.625)	1.395 (1.195, 1.585)	$1.400 \ (1.214, \ 1.579)$	1.379 (1.208, 1.539)
	μ_2	1.386	$1.424 \ (0.901, \ 1.928)$	$1.418 \ (0.947, \ 1.844)$	$1.925\ (1.627,\ 2.222)$	$1.395\ (1.126,\ 1.668)$
	$ au_1^2$	1.000	$1.026 \ (0.702, \ 1.424)$	$0.914 \ (0.639, \ 1.228)$	$0.888 \ (0.623, 1.206)$	$0.924\ (0.704,\ 1.186)$
	$ au_2^{2}$	4.000	$3.829 \ (2.667, 5.376)$	$3.563 \ (2.509, 4.993)$	$2.934 \ (2.204, \ 3.739)$	3.669 (2.933, 4.505)
	$ au_{12}$	-1.200	-1.219 (-1.817, -0.749)	-1.073 (-1.574, -0.659)	-1.067 (-1.517, -0.731)	-1.101 (-1.493, -0.786)
	c_{1}^{2}	0.500	$0.521\ (0.211,\ 0.798)$			
	\dot{eta}	0.500	2.000(0.680, 2.000)	$0.688 \ (0.277, \ 2.000)$		
	$\alpha_{0.7}$	-0.843	-1.445 (-3.058, -0.243)	-1.044 (-2.393, -0.350)		
	CR		100	99.6	99.6	100
50	SAUC	0.846	0.851 (0.825, 0.868)	0.851 (0.828, 0.869)	0.876 (0.863, 0.887)	$0.847 \ (0.834, \ 0.859)$
	μ_1	1.386	1.392 (1.172, 1.597)	1.418 (1.271, 1.549)	1.412 (1.279, 1.539)	1.402 (1.289, 1.504)
	μ_2	1.386	$1.364 \ (0.921, 1.794)$	1.406 (1.035, 1.706)	1.912 (1.700, 2.115)	1.372 (1.184, 1.566)
	$ au_1^2$	1.000	1.029 (0.812, 1.302)	$0.940 \ (0.751, \ 1.140)$	0.941 (0.748, 1.143)	$0.949\ (0.788,\ 1.115)$
	$ au_2^{ ilde{2}}$	4.000	4.041 (3.106, 5.404)	3.839 (2.978, 4.891)	$3.116 \ (2.551, \ 3.706)$	3.868 (3.273, 4.496)
	$ au_{12}$	-1.200	-1.260 (-1.717, -0.911)	-1.156 (-1.471, -0.847)	-1.164 (-1.424, -0.888)	-1.156 (-1.392, -0.921)
	c_{1}^{2}	0.500	$0.521\ (0.269,\ 0.747)$			
	$ar{eta}$	0.500	$0.921\ (0.499,\ 2.000)$	$0.582\ (0.303,\ 1.015)$		
	$\alpha_{0.7}$	-0.843	-1.040 (-1.924, -0.381)	-0.932 (-1.567, -0.456)		
	CR		99.7	99.9	99.8	100
200	SAUC	0.846	$0.847 \ (0.835, \ 0.858)$	$0.847 \ (0.836, \ 0.858)$	$0.875\ (0.869,\ 0.881)$	$0.846 \ (0.839, \ 0.852)$
	μ_1	1.386	$1.387 \ (1.275, \ 1.486)$	$1.382\ (1.311,\ 1.451)$	1.387 (1.320, 1.453)	1.384 (1.326, 1.437)
	μ_2	1.386	1.381 (1.157, 1.608)	$1.403 \ (1.236, \ 1.572)$	1.940 (1.831, 2.037)	1.390 (1.284, 1.482)
	$ au_1^2$	1.000	$1.020 \ (0.921, \ 1.141)$	$0.988 \ (0.893, 1.089)$	$0.997 \ (0.903, 1.098)$	$0.993\ (0.902,\ 1.076)$
	$ au_2^{\overline{2}}$	4.000	4.017 (3.508, 4.623)	3.927 (3.504, 4.393)	$3.220\ (2.961,\ 3.508)$	3.991 (3.689, 4.280)
	$ au_{12}$	-1.200	-1.231 (-1.435, -1.059)	-1.183 (-1.346, -1.039)	-1.197 (-1.333, -1.073)	-1.197 (-1.323, -1.058)
	c_{1}^{2}	0.500	$0.488 \ (0.368, \ 0.613)$			
	\dot{eta}	0.500	$0.560 \ (0.419, \ 0.721)$	$0.507 \ (0.388, \ 0.646)$		
	$\alpha_{0.7}$	-0.843	-0.851 (-1.120, -0.589)	-0.856 (-1.062, -0.643)		
	CR		99.7	99.8	99.9	99.9

Table 3: Estimates of the parameters when $c_1^2=c_2^2$

-						
S_P	Par	True	Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	Proposed $(c_1^2 = c_2^2)$	$Reitsma_O$	$Reitsma_{P}$
25	SAUC	0.892	$0.892\ (0.868,\ 0.911)$	$0.892\ (0.871,\ 0.910)$	$0.906 \ (0.888, \ 0.921)$	$0.891\ (0.873,\ 0.905)$
	μ_1	2.197	$2.226 \ (1.987, \ 2.448)$	$2.219\ (2.016,\ 2.422)$	$2.320\ (2.143,\ 2.497)$	$2.211\ (2.048,\ 2.351)$
	μ_2	-0.405	-0.373 (-0.846, 0.125)	-0.359 (-0.819, 0.117)	0.247 (-0.045, 0.561)	-0.406 (-0.681, -0.122)
	$ au_1^2$	1.000	$0.939 \ (0.659, 1.267)$	$0.881 \ (0.622, 1.209)$	$0.845 \ (0.599, 1.141)$	$0.920\ (0.676,\ 1.165)$
	$ au_2^2$	4.000	$3.767 \ (2.585, 5.225)$	$3.612\ (2.465,\ 5.075)$	$2.713\ (2.000,\ 3.536)$	$3.840\ (2.979,\ 4.702)$
	$ au_{12}$	-0.600	-0.653 (-1.092, -0.206)	-0.563 (-0.961, -0.132)	-0.716 (-1.063, -0.379)	-0.598 (-0.900, -0.241)
	c_{1}^{2}	0.500	$0.479 \ (0.238, \ 0.733)$			
	\dot{eta}	0.500	$2.000\ (0.580,\ 2.000)$	$0.696\ (0.251,\ 2.000)$		
	$\alpha_{0.7}$	-0.199	-0.122 (-1.376, 1.044)	-0.076 (-0.486, 0.282)		
	CR		99.6	99.8	99.8	99.8
50	SAUC	0.892	0.892 (0.875, 0.907)	0.893 (0.878, 0.907)	0.908 (0.896, 0.917)	$0.891\ (0.879,\ 0.902)$
	μ_1	2.197	2.225 (2.043, 2.393)	2.205 (2.054, 2.360)	2.325 (2.192, 2.449)	2.197 (2.085, 2.308)
	μ_2	-0.405	-0.439 (-0.818, -0.083)	-0.381 (-0.723, -0.018)	$0.250\ (0.043,\ 0.447)$	-0.412 (-0.607, -0.229)
	$ au_1^2$	1.000	1.006 (0.769, 1.248)	$0.971\ (0.755,\ 1.205)$	$0.928 \ (0.740, 1.145)$	0.962 (0.814, 1.157)
	$ au_2^{\overset{1}{2}}$	4.000	4.062 (3.075, 5.215)	3.791 (2.888, 4.949)	2.871 (2.368, 3.467)	3.861 (3.272, 4.436)
	$ au_{12}$	-0.600	-0.634 (-0.987, -0.314)	-0.567 (-0.886, -0.258)	-0.754 (-1.008, -0.517)	-0.561 (-0.807, -0.339)
	c_{1}^{2}	0.500	$0.459 \ (0.282, \ 0.645)$			
	\dot{eta}	0.500	$0.839\ (0.455,\ 2.000)$	$0.586 \ (0.298, 1.050)$		
	$\alpha_{0.7}$	-0.199	0.074 (-0.717, 0.726)	-0.094 (-0.335, 0.189)		
	CR		99.6	99.9	99.9	100
200	SAUC	0.892	$0.893 \ (0.885, \ 0.899)$	0.893 (0.886, 0.899)	0.909 (0.904, 0.913)	$0.892 \ (0.886, \ 0.897)$
	μ_1	2.197	2.209(2.120, 2.297)	2.207(2.134, 2.280)	$2.325 \ (2.262, \ 2.386)$	2.197(2.143, 2.254)
	μ_2	-0.405	-0.425 (-0.620, -0.218)	-0.387 (-0.574, -0.214)	$0.245 \ (0.145, \ 0.355)$	-0.403 (-0.505, -0.305)
	$ au_1^2$	1.000	0.994 (0.890, 1.108)	0.982 (0.880, 1.089)	0.963 (0.870, 1.062)	0.995 (0.908, 1.077)
	$ au_2^2$	4.000	4.037 (3.423, 4.655)	3.951 (3.411, 4.520)	2.999(2.721, 3.263)	3.956 (3.683, 4.264)
	$ au_{12}$	-0.600	-0.623 (-0.801, -0.427)	-0.602 (-0.754, -0.439)	-0.780 (-0.903, -0.653)	-0.578 (-0.708, -0.466)
	c_{1}^{2}	0.500	$0.481\ (0.391,\ 0.570)$,		
	\dot{eta}	0.500	$0.552 \ (0.417, \ 0.715)$	$0.514\ (0.387,\ 0.668)$		
	$\alpha_{0.7}$	-0.199	-0.115 (-0.383, 0.132)	-0.164 (-0.253, -0.074)		
	CR		99.6	99.4	99.9	99.8

Table 4: Estimates of the parameters when $c_1^2=c_2^2$

S_P	Par	True	Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	Proposed $(c_1^2 = c_2^2)$	$\mathrm{Reitsma}_O$	$Reitsma_{P}$
25	SAUC	0.877	$0.877\ (0.854,\ 0.896)$	$0.878\ (0.859,\ 0.896)$	$0.888 \ (0.870, \ 0.904)$	$0.876\ (0.858,\ 0.893)$
	μ_1	2.197	2.209 (1.958, 2.451)	2.205 (1.991, 2.413)	$2.216\ (2.017,\ 2.409)$	$2.205\ (2.045,\ 2.355)$
	μ_2	-0.405	-0.417 (-0.959, 0.096)	-0.358 (-0.890, 0.061)	0.167 (-0.146, 0.505)	-0.415 (-0.704, -0.124)
	$ au_1^2 \ au_2^2$	1.000	$0.971\ (0.661,\ 1.331)$	$0.904\ (0.629,\ 1.200)$	$0.879\ (0.611,\ 1.170)$	$0.910 \ (0.676, \ 1.139)$
	$ au_2^2$	4.000	$3.866 \ (2.757, 5.541)$	3.674 (2.573, 5.343)	$2.834\ (2.164,\ 3.637)$	$3.708 \ (3.006, 4.656)$
	$ au_{12}$	-1.200	-1.192 (-1.785, -0.733)	-1.057 (-1.557, -0.617)	-1.084 (-1.513, -0.730)	-1.132 (-1.508, -0.791)
	c_{1}^{2}	0.500	$0.477 \ (0.272, \ 0.706)$			
	$ar{eta}$	0.500	$2.000 \ (0.707, \ 2.000)$	$0.762\ (0.294,\ 2.000)$		
	$\alpha_{0.7}$	-0.282	-0.304 (-1.677, 0.921)	-0.199 (-0.747, 0.194)		
	CR		99.5	100	100	100
50	SAUC	0.877	$0.877 \ (0.862, \ 0.891)$	$0.878 \ (0.865, \ 0.892)$	0.890 (0.878, 0.900)	$0.876 \ (0.865, \ 0.888)$
	μ_1	2.197	$2.206 \ (2.022, \ 2.392)$	2.192 (2.053, 2.338)	$2.201\ (2.070,\ 2.330)$	$2.191\ (2.072,\ 2.302)$
	μ_2	-0.405	-0.443 (-0.843, -0.058)	-0.351 (-0.725, -0.022)	0.199 (-0.018, 0.417)	-0.388 (-0.585, -0.184)
	$ au_1^2$	1.000	$0.996 \ (0.793, \ 1.249)$	$0.939\ (0.759,\ 1.153)$	$0.935\ (0.760,\ 1.142)$	$0.942 \ (0.776, 1.137)$
	$ au_2^2$	4.000	4.002 (3.145, 5.224)	$3.793\ (2.983,\ 4.780)$	$2.966\ (2.510,\ 3.541)$	$3.810 \ (3.322, 4.406)$
	$ au_{12}$	-1.200	-1.233 (-1.644, -0.898)	-1.140 (-1.492, -0.839)	-1.165 (-1.450, -0.903)	-1.157 (-1.401, -0.918)
	c_{1}^{2}	0.500	$0.467 \ (0.305, \ 0.648)$			
	β	0.500	$0.874 \ (0.448, \ 2.000)$	$0.575 \ (0.296, \ 1.116)$		
	$\alpha_{0.7}$	-0.282	$-0.123 \ (-0.823, \ 0.555)$	-0.208 (-0.482, 0.059)		
	CR		99.7	99.9	99.8	99.9
200	SAUC	0.877	$0.877 \ (0.870, \ 0.884)$	$0.878 \ (0.871, \ 0.884)$	$0.890\ (0.885,\ 0.896)$	$0.877\ (0.871,\ 0.882)$
	μ_1	2.197	2.196 (2.099, 2.283)	2.189 (2.128, 2.256)	$2.203\ (2.137,\ 2.265)$	2.196 (2.135, 2.249)
	μ_2	-0.405	-0.418 (-0.631, -0.154)	-0.371 (-0.573, -0.196)	$0.196\ (0.100,\ 0.300)$	-0.398 (-0.502, -0.301)
	$ au_2 au_1^2$	1.000	1.011 (0.903, 1.132)	$0.993 \ (0.889, 1.096)$	1.004 (0.898, 1.108)	$0.995 \ (0.907, 1.083)$
	$ au_2^2$	4.000	4.013 (3.446, 4.583)	3.906 (3.423, 4.455)	$3.112\ (2.839,\ 3.410)$	$3.962 \ (3.659, 4.259)$
	$ au_{12}$	-1.200	-1.238 (-1.438, -1.049)	-1.192 (-1.373, -1.025)	-1.206 (-1.368, -1.079)	-1.197 (-1.338, -1.075)
	c_{1}^{2}	0.500	$0.484 \ (0.398, \ 0.576)$			
	β	0.500	$0.548 \ (0.403, \ 0.706)$	$0.513\ (0.371,\ 0.661)$		
	$\alpha_{0.7}$	-0.282	-0.208 (-0.469, 0.057)	-0.254 (-0.357, -0.145)		
	CR		99.7	99.9	99.9	99.9