Zadania 1.10

Rodziny zbiorów

- **1.10.1** Niech \mathcal{R} będzie pierścieniem zbiorów. Zauważyć, że jeśli $A, B \in \mathcal{R}$ to $A \triangle B \in \mathcal{R}$ \mathcal{R} i $A \cap B \in \mathcal{R}$. Sprawdzić, że $(\mathcal{R}, \Delta, \cap)$ jest także pierścieniem w sensie algebraicznym, w szczególności, że działanie \triangle jest łączne i \cap jest rozdzielne względem \triangle .
- **1.10.2** Niech \mathcal{F} będzie taką rodziną podzbiorów X, że $X \in \mathcal{F}$ oraz $A \setminus B \in \mathcal{F}$ dla $A, B \in \mathcal{F}$. Sprawdzić, że \mathcal{F} jest ciałem.
- 1.10.3 Zauważyć, że przekrój dowolnej ilości pierścieni, ciał...jest pierścieniem, ciałem itp.
- **1.10.4** Zauważyć, że jeśli $\mathcal{F} \subseteq \mathcal{G} \subseteq \mathcal{P}(X)$ to $\alpha(\mathcal{F}) \subseteq \alpha(\mathcal{G})$, gdzie α oznacza jeden z symboli generowania r, s, a, σ .
- **1.10.5** Niech \mathcal{G} będzie rodziną wszystkich skończonych podzbiorów X. Opisać $r(\mathcal{G})$, $s(\mathcal{G}), a(\mathcal{G}) i \sigma(\mathcal{G}).$
- **1.10.6** Niech $\mathcal{A} \subseteq \mathcal{P}(X)$ będzie ciałem zbiorów i niech $Z \subseteq X$. Wykazać, że

$$a(\mathcal{A} \cup \{Z\}) = \{(A \cap Z) \cup (B \cap Z^c) : A, B \in \mathcal{A}\}.$$

- **1.10.7** Zauważyć, że jeżeli \mathcal{C} jest taką rodziną podzbiorów X że $X = \bigcup_{n=1}^{\infty} C_n$ dla pewnych $C_n \in \mathcal{C}$ to $s(\mathcal{C}) = \sigma(\mathcal{C})$.
- 1.10.8 Zauważyć, że rodzina, która jest jednocześnie pierścieniem i klasą monotoniczną jest σ -pierścieniem.
- 1.10.9 Sprawdzić, że jeśli \mathcal{A} jest ciałem zbiorów i rodzina \mathcal{A} jest zamknięta na roz**łączne** przeliczalne sumy to \mathcal{A} jest σ -ciałem.
- **1.10.10** Niech \mathcal{A} bedzie skończonym ciałem zbiorów. Udowodnić, że $|\mathcal{A}| = 2^n$ dla pewnej liczby naturalnej n. WSKAZÓWKA: wymyśleć, co to jest n,
- 1.10.11 Niech \mathcal{F} będzie przeliczalną rodziną zbiorów. Udowodnić, że ciało $a(\mathcal{F})$ jest przeliczalne.
- 1.10.12 Udowodnić, że jeśli \mathcal{A} jest nieskończonym σ -ciałem to \mathcal{A} ma przynajmniej \mathfrak{c} elementów. Wskazówka: Wykazać, że w każdym nieskończonym σ -ciele istnieje ciąg niepustych parami rozłącznych zbiorów; skorzystać z tego, że \mathfrak{c} jest mocą $\mathcal{P}(\mathbb{N})$.

Funkcje zbioru

- 1.10.13 Niech μ będzie skończoną addytywną funkcją zbioru, określoną na pierścieniu \mathcal{R} . Sprawdzić, że (dla dowolnych $A, B, C \in \mathcal{R}$)
- (i) $|\mu(A) \mu(B)| \leq \mu(A \triangle B)$;
- (ii) $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B);$
- $(iii) \ \mu(A \cup B \cup C) = \mu(A) + \mu(B) + \mu(C) \mu(A \cap B) \mu(A \cap C) \mu(B \cap C) + \mu(A \cap B \cap C).$

Jak będzie wygladał analogiczny wzór dla 4, 5...zbiorów?

- 1.10.14 Sprawdzić, że dla funkcji μ z poprzedniego zadania, warunek $A \sim B \iff$ $\mu(A \triangle B) = 0$ określa relację równoważności na \mathcal{R} .
- **1.10.15** Niech X będzie zbiorem skończonym. Sprawdzić, że wzór $\mu(A) = \frac{|A|}{|X|}$ określa miarę probabilistyczną na $\mathcal{P}(X)$.
- **1.10.16** Niech $(x_n) \subseteq X$ będzie ustalonym ciągiem i niech (c_n) będzie ciągiem liczb nieujemnych. Wykazać, że wzór

$$\mu(A) = \sum_{n: x_n \in A} c_n$$

określa miarę na $\mathcal{P}(X)$ (w razie trudności rozważyć ciąg skończony x_1,\ldots,x_n). Kiedy taka miara jest skończona?

- 1.10.17 Zauważyć, że $\mathcal{P}(\mathbb{N})$ jest σ -ciałem generowanym przez singletony. Wykazać, że każda miara na $\mathcal{P}(\mathbb{N})$ jest postaci opisanej w poprzednim zadaniu.
- **1.10.18** Niech μ będzie miarą na σ -ciele \mathcal{A} i niech $A_n \in \mathcal{A}$. Zakładając, że $\mu(A_n \cap \mathcal{A}_n)$ A_k) = 0 dla $n \neq k$, wykazać że

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n).$$

1.10.19 Uzupełnić szczegóły dowodu Twierdzenia 1.5.5 w następujący sposób: Dla przestrzeni miarowej (X, Σ, μ) zdefiniujmy $\hat{\Sigma}$ jako rodzinę zbiorów postaci $A \triangle N$, gdzie $A \in \Sigma$, $N \subseteq B$ dla pewnego $B \in \Sigma$ miary zero. Wtedy Σ jest σ -ciałem, a wzór $\widehat{\mu}(A \triangle N) = \mu(A)$ definiuje poprawnie przedłużenie miary $\mu \ge \Sigma$ na $\widehat{\Sigma}$.

Na prostej; miara Lebesgue'a

- 1.10.20 Niech \mathcal{R} będzie pierścieniem na prostej rzeczywistej, generowanym przez przedziały postaci [a,b). Sprawdzić, że $A \in \mathcal{R}$ wtedy i tylko wtedy gdy A jest rozłączną skończoną sumą takich przedziałów.
- 1.10.21 Wykazać, że rodzina podzbiorów R postaci

$$(F_1 \cap V_1) \cup \ldots \cup (F_k \cap V_k),$$

gdzie F_i są domknięte, V_i są otwarte, $k \in \mathbb{N}$, jest ciałem.

- 1.10.22 Sprawdzić, że σ -ciało $Bor(\mathbb{R})$ jest generowane przez każdą z rodzin
- (i) odcinki otwarte o końcach wymiernych;
- (ii) odcinki domknięte;
- (iii) półproste postaci $(-\infty, a]$;
- (iv) półproste postaci (a, ∞) ;
- (v) odcinki domknięte o końcach wymiernych.

- 1.10.23 Sprawdzić, że
- (i) $\lambda(A) = 0$ dla każdego zbioru skończonego A;
- (ii) $\lambda[a,b] = \lambda(a,b) = b a \, dla \, a < b$;
- (iii) $\lambda(U) > 0$ dla każdego zbioru otwartego $U \neq \emptyset$;
- (iv) $\lambda(A) = 0$ dla każdego zbioru przeliczalnego A.
- 1.10.24 Podać przykład zbioru mierzalnego A, takiego że
- (i) $\lambda(A) = 1$ i A jest nieograniczonym zbiorem otwartym;
- (ii) $\lambda(\operatorname{int}(A)) = 1$, $\lambda(A) = 2$, $\lambda(\overline{A}) = 3$;
- (iii) $\lambda(A) = 0$ i $A \subseteq [0, 1]$ jest zbiorem nieprzeliczalnym.

UWAGA: int(A) oznacza wnętrze zbioru, czyli największy zbiór otwarty zawarty w A.

1.10.25 Skonstruować, dla ustalonego $\varepsilon > 0$, zbiór domknięty $F \subseteq [0,1]$ o wnętrzu pustym, dla którego $\lambda(F) > 1 - \varepsilon$.

I sposób: Zmodyfikować konstrukcję zbioru Cantora.

II sposób: Niech $(q_n)_n$ będzie ciągiem liczb wymiernych z [0,1]. Rozważyć zbiór otwarty $V = \bigcup_{n=1}^{\infty} (q_n - \varepsilon 2^{-n}, q_n + \varepsilon 2^{-n})$ przy odpowiednim doborze $\varepsilon > 0$.

- **1.10.26** Zauważyć, że dla każdego zbioru $M \in \mathfrak{L}$, jeśli $\lambda(M) < \infty$ to dla każdego $\varepsilon > 0$ istnieje ograniczony zbiór mierzalny $M_0 \subseteq M$, taki że $\lambda(M \setminus M_0) < \varepsilon$.
- ${\bf 1.10.27}$ Wykazać, że istnieje zbiór domknięty $F\subseteq [0,1]$ miary dodatniej złożony z liczb niewymiernych.
- **1.10.28** Dla $B \subseteq \mathbb{R}$ i $x \neq 0$, niech xB oznacza zbiór $\{xb : b \in B\}$ (czyli jednokładność zbioru B).

Sprawdzić, że takie przeskalowanie zbioru otwartego jest otwarte i że rodzina tych $B \in Bor(\mathbb{R})$ dla których $xB \in Bor(\mathbb{R})$ dla każdego $x \neq 0$ jest σ -ciałem. Wyciągnąć stąd wniosek, że dla każdego $B \in Bor(\mathbb{R})$ i x mamy $xB \in Bor(\mathbb{R})$ (tzn. że σ -ciało $Bor(\mathbb{R})$ jest niezmiennicze na jednokładność).

- **1.10.29** Wykazać, że $\lambda(xB) = x\lambda(B)$ dla każdego zbioru borelowskiego B i x > 0. Rozszerzyć ten rezultat na zbiory mierzalne.
- **1.10.30** Udowodnić, że dla dowolnego zbioru mierzalnego M miary skończonej i $\varepsilon>0$ istnieje zbiór postaci $I = \bigcup_{i \leq n} (a_i, b_i)$, taki że $\lambda(M \triangle I) < \varepsilon$, przy czym $a_i, b_i \in \mathbb{Q}$.

Własności miar

- **1.10.31** Niech (X, Σ, μ) będzie skończoną przestrzenią miarową. Wykazać, że jeżeli $A_n \in \Sigma$ i dla każdego n zachodzi nierówność $\mu(A_n) \geqslant \delta > 0$, to istnieje $x \in X$, taki że $x \in A_n$ dla nieskończenie wielu n.
- **1.10.32** Udowodnić, że jeśli (A_n) jest ciągiem zbiorów z σ -ciała, na którym określona jest skończona miara μ , to jeśli (A_n) jest zbieżny do A to $\mu(A) = \lim_n \mu(A_n)$. Czy skończoność miary jest istotna?

1.10.33 Niech (X, Σ, μ) będzie przestrzenią miarową. Zbiór $T \in \Sigma$ jest atomem miary μ jeśli $\mu(T) > 0$ i dla każdego $A \in \Sigma$ jeśli $A \subset T$ to $\mu(A) = 0$ lub $\mu(A) = \mu(T)$. Mówimy, że miara μ jest **bezatomowa** jeśli nie ma atomów.

Sprawdzić, że miara Lebesgue'a jest bezatomowa. Zauważyć, że inne miary rozważane do tej pory miały atomy.

1.10.34 Udowodnić, że skończona miara bezatomowa μ na Σ ma następującą własność Darboux: dla każdego $A \in \Sigma$ i $0 \le r \le \mu(A)$ istnieje $B \in \Sigma$, taki że $B \subseteq A$ i $\mu(B) = r$.

WSKAZÓWKA: Niech $\mu(X) = 1$; sprawdzić, że dla każdego $\varepsilon > 0$ i $A \in \Sigma$ jeśli $\mu(A) > 0$ to istnieje $B \in \Sigma$, że $B \subseteq A$ i $0 < \mu(B) < \varepsilon$. Następnie sprawdzić, że X jest rozłączną sumą zbiorów A_n o własności $0 < \mu(A_n) < \varepsilon$. To rozumowanie pokaże, że zbiór wartości μ jest gęsty w [0,1]; potem już blisko do celu.

Ideały i miary zewnętrzne

- **1.10.35** Niepustą rodzinę $\mathcal{J} \subseteq \mathcal{P}(X)$ nazywamy σ -ideałem jeśli $A \subseteq B$ i $B \in \mathcal{J}$ implikuje $A \in \mathcal{J}$ oraz $\bigcup_{n=1}^{\infty} A_n \in \mathcal{J}$ jeśli $A_n \in \mathcal{J}$ dla $n = 1, 2, \dots$ Podaj znane Ci przykłady σ -ideałów na \mathbb{R} i \mathbb{R}^2 .
- **1.10.36** Niech \mathcal{J} będzie σ -ideałem na X. Opisać $\mathcal{A} = \sigma(\mathcal{J})$ (rozważyć przypadki $X \in$ $\mathcal{J}, X \notin \mathcal{J}$). Zdefiniować na \mathcal{A} zerojedynkową miarę μ , analogicznie jak w przykładzie z rozdziału 1.2.
- **1.10.37** Niech $\mathcal{J} \subseteq \mathcal{P}(X)$ będzie σ -ideałem nie zawierającym X. Na $a(\mathcal{J})$ definiujemy addytywną, zerojedynkową funkcję zbioru μ (por. zadanie poprzednie). Określić miarę zewnętrzną za pomocą μ i scharakteryzować rodzinę zbiorów mierzalnych.
- **1.10.38** Niech $\{A_1, A_2, \ldots\}$ będzie partycją przestrzeni X na zbiory niepuste.
- (i) Opisać ciało \mathcal{A} generowane przez zbiory $A_n, n \in \mathbb{N}$.
- (ii) Na \mathcal{A} określamy addytywną funkcję μ , tak aby $\mu(A_n) = 2^{-n}$ i $\mu(X) = 1$. Jak można opisać σ -ciało zbiorów mierzalnych względem miary zewnętrznej pochodzącej od μ ? (patrz Definicja 1.9.1)
- **1.10.39** Niech $X = [0,1) \times [0,1]$ i niech \mathcal{R} bedzie ciałem w X generowanym przez cylindry postaci $[a, b) \times [0, 1]$. Na \mathcal{R} rozważamy funkcję zbioru, taką że $\mu([a, b) \times [0, 1]) =$ b-a dla $0 \le a < b \le 1$. Jak wyglądają (z grubsza...) zbiory μ^* -mierzalne? (patrz Definicja 1.9.1). Zauważyć, że w X można wskazać wiele parami rozłącznych zbiorów E niemierzanych, takich że $\mu^*(E) = 1$.
- 1.10.40 Niech \mathcal{R} będzie pierścieniem podzbiorów \mathbb{Q} generowanym przez zbiory postaci $\mathbb{Q} \cap [a,b) \ (a,b \in \mathbb{R})$. Sprawdzić, że na \mathcal{R} można określić addytywną funkcje ν , tak że $\nu(\mathbb{Q} \cap [a,b)) = b - a$ dla a < b. Udowodnić, że ν nie jest przeliczalnie addytywna na \mathcal{R} i obliczyć $\nu^*(\mathbb{O})$.
- 1.10.41 Zauważyć, że we wzorze na λ^* można zastąpić odcinki postaci [a,b) przez odcinki postaci (a,b) (lub [a,b]). Stad bezpośrednio wynika możliwość przybliżania od góry zbiorami otwartymi.

Problemy 1.11

- 1.11.A Udowodnić, że suma dowolnej (nawet nieprzeliczalnej) rodziny przedziałów na prostej, postaci [a, b], a < b, jest zbiorem borelowskim.
- **1.11.B** Udowodnić, że dla dowolnego zbioru $X, |X| \leq \mathfrak{c}$ wtedy i tylko wtedy gdy istnieje w $\mathcal{P}(X)$ przeliczalna rodzina zbiorów \mathcal{F} , taka że $\sigma(\mathcal{F})$ zawiera wszystkie punkty.
- **1.11.C** Niech $\mathcal{F} \subset \mathcal{P}(X)$ będzie rodziną mocy $\leqslant \mathfrak{c}$. Udowodnić, że $|\sigma(\mathcal{F})| \leqslant \mathfrak{c}$. Wywnioskować stąd, że $|Bor(\mathbb{R})| = \mathfrak{c}$ i że istnieją nieborelowskie zbiory na prostej.

UWAGA: tutaj potrzebna jest indukcja pozaskończona.

- **1.11.D** Udowodnić, że funkcja zbioru λ zdefiniowana na pierścieniu generowanym przez odcinki postaci [a,b) (przez warunek $\lambda([a,b)) = b - a$ dla a < b) jest ciągła z góry na zbiorze Ø (a więc jest przeliczalnie addytywna). Wskazówka: Zbiory postaci $\bigcup_{i=1}^n [c_i, d_i]$ są zwarte i (w pewnym sensie) przybliżają zbiory z \mathcal{R} od środka.
- **1.11.E** Niech (X, Σ, μ) będzie przestrzenią probabilistyczną i niech $A_1, \ldots, A_{2009} \in \Sigma$ beda zbiorami o własności $\mu(A_i) \ge 1/2$. Wykazać, że istnieje $x \in X$, taki że $x \in A_i$ dla przynajmniej 1005 wartości i.
- **1.11.F** Przeprowadzić następującą konstrukcję zbioru Vitali'ego: Dla $x, y \in [0, 1)$, niech $x \sim y \iff x - y \in \mathbb{Q}$. Sprawdzić, że \sim jest relacją równoważności. Niech Z będzie zbiorem, który z każdej klasy abstrakcji tej relacji wybiera dokładnie jeden element. Sprawdzić, że $\bigcup_{q\in\Omega}(Z\oplus q)=[0,1)$, gdzie \oplus oznacza dodawanie mod 1.

Zauważyć, że λ jest neizmienniczna na [0,1) względem działania \oplus ; wywnioskować stad, że powyższy zbiór Z nie jest mierzalny w sensie Lebesgue'a.

- **1.11.G** Skonstruować zbiór borelowski $B \subseteq \mathbb{R}$, taki że $\lambda(B \cap I) > 0$ i $\lambda(B^c \cap I) > 0$ dla każdego niepustego odcinka otwartego I.
- **1.11.H** Udowodnić twierdzenie Steinhausa: Jeśli $A \subseteq \mathbb{R}$ jest mierzalny i $\lambda(A) > 0$ to zbiór A-A (różnica kompleksowa) zawiera odcinek postaci $(-\delta,\delta)$ dla pewnego $\delta > 0$.

Wskazówka: Można założyć, że $\lambda(A) < \infty$; pokazać najpierw że istnieje taki niepusty odcinek I, że $\lambda(A \cap I) \geqslant \frac{3}{4}\lambda(I)$.

1.11.I Niech $A \subseteq \mathbb{R}$ będzie takim zbiorem mierzalnym, że $\lambda(A \triangle (x+A)) = 0$ dla każdej liczby wymiernej x. Udowodnić, że $\lambda(A) = 0$ lub $\lambda(\mathbb{R} \setminus A) = 0$.

Wskazówka: Twierdzenie Steinhausa.

1.11.J (Wymaga indukcji pozaskończonej.) Skonstruować zbiór Bernsteina $Z \subseteq [0,1]$, czyli taki zbiór, że

$$Z \cap P \neq \emptyset$$
, $P \setminus Z \neq \emptyset$,

dla dowolnego zbioru domkniętego nieprzeliczalnego $P \subseteq [0,1]$. Zauważyć, że Z nie jest mierzalny w sensie Lebesgue'a, a nawet $\lambda^*(Z) = \lambda^*([0,1] \setminus Z) = 1$.

Wskazówka: Wszystkie zbiory P domknięte nieprzeliczalne można ustawić w ciąg $P_{\alpha},\ \alpha<\mathfrak{c}.$ Zdefiniować Z jako $\{z_{\alpha}:\alpha<\mathfrak{c}\},$ gdzie ciąg z_{α} i pomocniczy ciąg y_{α} sa takie, że

$$z_{\alpha}, y_{\alpha} \in P_{\alpha} \setminus \{z_{\beta}, y_{\beta} : \beta < \alpha\}.$$

Aby przeprowadzić konstrukcję trzeba wiedzieć lub sprawdzić, że każdy zbiór P_α ma $\operatorname{moc}\,\mathfrak{c}.$