

PES UNIVERSITY

Department of Computer Science & Engineering

Computer Networks Lab

UE23CS252B

LAB 2 submission

Name of the Student	CHIRAG K M
SRN	PES1UG23CS167
Section	C
Department	CSE
Campus	RR

'Understanding Persistent and Non-persistent HTTP Connection'

Q1. Non-persistent connection Wireshark capture (should include all 10 images)

Total Page Load Time = Time of Last Response - Time of First Request

TPLT = 4.033054 - 0.001119

TPLLT = **4.031935** sec

Q2.Persistent connections Wireshark capture

Persistent = 2

Total Page Load Time = Time of Last Response - Time of First Request

TPLT = 6.377903 - 5.551113

TPLT = **0.82679** sec

Persistent = 4

Total Page Load Time = Time of Last Response - Time of First Request

TPLT = 0.721140 - 0.000747

TPLT = **0.720393** sec

Persistent = 6

Total Page Load Time = Time of Last Response - Time of First Request

TPLT = 0.687620 - 0.001415

TPLT = 0.686205 sec

Persistent = 8

Total Page Load Time = Time of Last Response - Time of First Request TPLT = 0.542982 - 0.001361

TPLT = **0.541621** sec

Persistent = 10

Total Page Load Time = Time of Last Response - Time of First Request

TPLT = 0.739528 - 0.001213

TPLT = 0.738315 sec

NOTE: There is increase in TPLT at this point

Persistent	TPLT
2	0.82
4	0.72
6	0.68
8	0.54
10	0.74
12	0.76
14	0.82

Q3. The optimal number of HTTP persistent connections based on your observations.

Persistent=8 is optimal, increasing it further (P=10) might not improve parallelism but instead introduce inefficiencies.

