DM870 V3.0

数字式两相步进驱动器 使用说明书

版本: V1.12

版权所有 不得翻印【使用前请仔细阅读本手册,以免损坏驱动器】

深圳市雷赛智能控制股份有限公司

地 址: 深圳市南山区学苑大道 1001 号南山智园 A3 栋 10-11 楼

邮 编: 518000

电 话: 400-885-5521

传 真: 0755-26402718

Email: marketing@leisai.com

网 址: www.leisai.com

深圳市雷赛智能控制股份有限公司 Leadshine Technology Co., Ltd.

目 录

一、产品简介	2
1. 概述	
2. 特点	
3. 应用领域	
二、电气、机械和环境指标	
1. 电气指标	2
2. 使用环境及参数	
3. 机械安装图	
4. 散热方式	4
三、驱动器接口和接线介绍	4
1. 接口描述	4
2. 控制信号接口电路	5
3. 控制信号时序图	5
4. 控制信号模式设置	6
5. 接线要求	6
四、电流、细分拨码开关设定和参数自整定	7
四、电流、细分拨码开关设定和参数自整定	
	7
1. 电流设定	7
1. 电流设定	7 7
 电流设定	7 8 8
1. 电流设定	7 8 8
1. 电流设定	7 8 8
 电流设定 细分设定 参数自整定功能 五、供电电源选择 六、电机选配 电机选配 	7 8 8 9
1. 电流设定	7 8 8 9 9
1. 电流设定 2. 细分设定 3. 参数自整定功能 五、供电电源选择 六、电机选配 1. 电机选配 2. 电机接线 3. 输入电压和输出电流的选用	7 8 8 8 9 9 10
1. 电流设定	7 8 8 9 9 10 10 11
1. 电流设定	5 8 9 9 10 11 12
1. 电流设定	7 8 8 9 9 10 11 12 12

DM870 V3.0

数字式两相步进驱动器

一、产品简介

1. 概述

DM870 V3.0 是雷赛公司新推出的高性能数字式两相步进驱动器,采用数字 PID 技术, 用户可以设置常用的8档电流以及16档细分,能够满足大多数场合的应用需要。低中高速运 行都很平稳,噪音小。多种功能可通过外部拨码选择,极大地方便了客户的应用。

2. 特点

- ●数字 PID 技术
- ●超低振动噪声
- ●内置高细分, 拨码可选
- ●上电自动整定功能, 拨码可选
- ●精密电流控制使电机发热大为降低
- ●静止时电流自动减半, SW4 选择
- ●支持单双脉冲, 拨码选择
- 100mA,耐压 24Vdc

- 可驱动 4, 6, 8线两相步进电机
- 光隔离差分信号输入
- 信号支持 5V 或者 24V,通过一个滑动开关选择
- 脉冲响应频率最高可达 200KHz
- 3 位拨码,可设定 8 档电流
- 4位拨码,可调16档细分
- 具有过压、短路等保护功能
- 外置抱闸输出,最大输出电流 外置报警输出,最大输出电流 100mA.耐压 24Vdc

3. 应用领域

适合各种中小型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图 仪、数控机床、自动装配设备等。

二、电气、机械和环境指标

1. 电气指标

说明	DM870 V3.0						
1元9月	最小值	典型值	最大值	单位			
输出电流(峰值)	1.4	-	7.0	A			
输入电源电压	20VDC	36/48/60VDC	75VDC	V			
控制信号输入电流	7	10	16	mA			
步进脉冲频率	0	-	200	KHz			
绝缘电阻	100			ΜΩ			

2. 使用环境及参数

冷却方	冷却方式 自然冷却或强制风冷		
	场合	不能放在其它发热的设备旁,要避免粉尘、油雾、腐蚀性气体,	
	場合	湿度太大及强振动场所,禁止有可燃气体和导电灰尘;	
使用环境	温度	050°C	
	湿度	40—90%RH	
	振动	10~55Hz/0.15mm	
保存温度		-20°C∼65°C	
重量		230 克	

3. 机械安装图

图 1 安装尺寸图(单位:毫米)

※推荐采用侧面安装,散热效果更佳,安装设计时,需要考虑接线端子大小和散热所需空间!

4. 散热方式

- 1) 驱动器的可靠工作温度通常在60℃以内, 电机工作温度为80℃以内;
- 2) 建议使用时选择自动半流方式,马达停止时电流自动减一半,以减少电机和驱动器的发热;
- 3) 安装驱动器时请采用竖着侧面安装,使散热齿形成较强的空气对流;必要时机内靠近驱动器处安装风扇,强制散热,保证驱动器在可靠工作温度范围内工作。

三、驱动器接口和接线介绍

1. 接口描述

1. 控制信号接口

名称	功能
PUL+	脉冲控制信号:脉冲上升沿有效,信号通过一位滑动开关选择 5Vdc 或者
PUL-	24Vdc。出厂设置在 24v 位置。
DIR+	方向信号: 高/低电平信号,为保证电机可靠换向,方向信号应先于脉冲信号至少 5μs 建立。电机的初始运行方向与电机的接线有关,互换任一相绕
DIR-	组(如 A+、A-交换)可以改变电机初始运行的方向,信号通过一位滑动开 关选择 5Vdc 或者 24Vdc。出厂设置在 24v 位置。
ENA+	使能信号:此输入信号用于使能或禁止。使能信号接通时,驱动器将切断电机各相的电流使电机处于自由状态,此时驱动器不响应脉冲。当不需用此功
ENA-	能时,使能信号端悬空即可,信号支持 5-24V。(使能无清除报警功能)
ALM	报警信号:此信号用于驱动器故障信号输出,为光电隔离 OC 输出,最高承受电压 30VDC,最大饱和电流 100mA。
BR	抱闸信号:最高承受电压 30VDC,最大饱和电流 100mA。
COM	报警和抱闸信号公共端(负端)

2) 强电接口

名称	功能
GND	电源输入负极
+Vdc	电源输入正极,电源电压范围为 20~80Vdc, 推荐 36、48、60Vdc
A+、A-	电机 A 相线圈。
B+, B-	电机 B 相线圈。

3) 232 通讯接口

DM870 V3.0 有一个 4pin 的串口(白色),可以通过专用串口线连接至 PC 机,通过调试 软件进行一些参数的设置和保存,注意:禁止在驱动器上电的情况下拔插串口线。以下是该驱动器串口引脚的定义。

4) 滑动开关

DM870 V3.0 有一个滑动开关, 用来设置 5V 或者 24V 信号。

图示	信号	输入/输	名称
	5V	输入	脉冲、方向信号输入电平 5V
5V 24V	24	输入	脉冲、方向信号输入电平 24V

3) 状态指示

绿色 LED 为电源指示灯,当驱动器接通电源时,该 LED 常亮;当驱动器切断电源时,该 LED 熄灭。红色 LED 为故障指示灯,当出现故障时,该指示灯以 3 秒钟为周期循环闪烁;当 故障被用户清除时,红色 LED 常灭。红色 LED 在 3 秒钟内闪烁次数代表不同的故障信息,具体关系如下表所示:

序号	闪烁次数	红色 LED 闪烁波形	故障说明
1	1		过流或相间短路故障默认打开
2	2		过压故障(电压>92dc)默认打开

2. 控制信号接口电路

DM870 V3.0 驱动器采用差分式接口电路可适用差分信号,单端共阴及共阳等接口,内置高速光电耦合器,允许接收长线驱动器,集电极开路和 PNP 输出电路的信号。在环境恶劣的场合,我们推荐用长线驱动器电路,抗干扰能力强。现在以集电极开路和 PNP 输出为例,接口电路示意图如下:

R ENA-

共阳极接法

雷赛智能 Leadshine

图 2 输入接口电路

说明: 当控制信号是 5V 时,需要将滑动开关拨到 5V 信号选择位置;

当控制性是 24V 时,需要将滑动开关拨到 24V 信号选择的位置;

当控制信号是 12V 时,需要将滑动开关拨到 5V 信号选择位置,同时信号端需要串联 1K 的电阻;

3. 控制信号时序图

为了避免一些误动作和偏差,PUL、DIR和ENA应满足一定要求,如下图所示:

图 3 控制信号时序图

注释:

- 1) tl: ENA (使能信号) 应提前 DIR 至少 5ms, 确定为高。一般情况下建议 ENA+和 ENA-悬空即可。
- 2) t2: DIR 至少提前 PUL 下降沿 5 μs 确定其状态高或低。
- 3) t3: 脉冲宽度至少不小于 2.5 us。
- 4) t4: 低电平宽度不小于 2.5μs。

4. 报警信号接口电路

DM870 V3.0 报警信号如下图所示,报警信号的逻辑可以通过拨码 SW12 进行设置。

报警信号输出接口电路

一般 ALM 连接控制卡或者控制器的 ALM 输入端, COM 连接控制卡或控制器的公共负端。

5. 抱闸信号接线

DM870 V3.0 抱闸信号如下图所示

6. 接线要求

- 1) 为了防止驱动器受干扰,建议控制信号采用屏蔽电缆线,并且屏蔽层与地线短接,除特殊要求外,控制信号电缆的屏蔽线单端接地:屏蔽线的上位机一端接地,屏蔽线的驱动器一端悬空。同一机器内只允许在同一点接地,如果不是真实接地线,可能干扰严重,此时屏蔽层不接。
- 2)脉冲和方向信号线与电机线不允许并排包扎在一起,最好分开至少 10cm 以上,否则电机噪声容易干扰脉冲方向信号引起电机定位不准,系统不稳定等故障。
- 3)如果一个电源供多台驱动器,应在电源处采取并联连接,不允许先到一台再到另一台链状 式连接。
- 4) 严禁带电拔插驱动器强电端子,带电的电机停止时仍有大电流流过线圈,拔插强电端子将导致巨大的瞬间感生电动势将烧坏驱动器。
- 5) 严禁将导线头加锡后接入接线端子, 否则可能因接触电阻变大而过热损坏端子。
- 6)接线线头不能裸露在端子外,以防意外短路而损坏驱动器。

7

DM870 V3.0 驱动器采用八位拨码开关设定细分精度、动态电流、静止半流以及实现电机参数和内部调节参数的自整定。详细描述如下:

1. 电流设定

1) 工作(动态) 电流设定

					1
输出峰值电流	输出均值电流	SW1	SW2	SW3	说明
1.40A(default)	1.0A	off	off	off	
2.6A	1.8A	on	off	off	SW1/SW2/SW3 为 全 off 时,是 default
3.4A	2.4A	off	on	off	档位,可以用调试软
4.0A	2.8A	on	on	off	件进行修改,参数壳
4.8A	3.4A	off	off	on	设置范围是 _100~7000mA,出厂
5.4A	3.8A	on	off	on	默认 1.4A,推荐匹配
6.1A	4.3A	off	on	on	电机额定电流在 1A 以上的电机
7.0A	5.0A	on	on	on	シエルモルに

2) 静止(静态)电流设定

SW4 设置静止电流:

SW4=off: (出厂默认)驱动器停止接收脉冲约 0.4 秒后,输出电流为峰值的 50% (设置半流,在某些应用场合可以降低驱动器和电机的发热);

SW4=on: 驱动器输出电流在电机静止时为峰值的 90%。

2. 每转脉冲设定

雷赛智能 Leadshine

步数/转	SW5	SW6	SW7	SW8	说明
200 (default)	on	on	on	on	
400	off	on	on	on	
800	on	off	on	on	
1600	off	off	on	on	
3200	on	on	off	on	
6400	off	on	off	on] 当 SW5~SW8 全为 on 时,驱动器的
12800	on	off	off	on	每转脉冲数是 200, 此档位可以通过
25600	off	off	off	on	调试软件进行修改,注意,每转脉冲
1000	on	on	on	off	数只能改成 200 的倍数), 不能任意
2000	off	on	on	off	改成每转脉冲。每转脉冲数的范围是
4000	on	off	on	off	200-51200。
5000	off	off	on	off	
8000	on	on	off	off	
10000	off	on	off	off	
20000	on	off	off	off	
25000	off	off	off	off	

3.指令滤波、微细分设置

微细分/滤波设置	SW9	SW10
默认 (微细分)	on	on
6ms	off	on
12ms	on	off
指令滤波设置值(默认值 25ms)	off	off

4.自整定设置

SW11 设置自整定:

SW11=off: 电机上电自整定(出厂默认);

SW11=on: 电机上电不自整定,采用默认参数。

5.报警输出阻态设置

SW12 设置报警输出阻态:

SW12=off: 正常工作情况下,报警输出为低阻态(导通状态)(出厂默认),当驱动器发生报警时,报警输出为高阻(非导通状态);

SW12=on: 正常工作情况下,报警输出为高阻态(非导通状态),当驱动器发生报警时,报 警输出为低阳(导通状态)。

注意:报警输出阻态设置根据客户实际要求设置。

6.脉冲有效沿设置

SW13 设置脉冲有效沿:

SW13=off: 脉冲上升沿有效(出厂默认):

SW13=on: 脉冲下降沿有效。

7.脉冲模式设置

SW14 设置脉冲模式:

SW14=off: 设置为单脉冲模式(出厂默认);

SW14=on:设置为双脉冲模式。

8.使能锁轴设置

SW15 设置非使能时电机状态:

SW15=off: 当驱动器非使能时,不响应脉冲,无电流输出,电机不锁(出厂默认);

SW15=on: 当驱动器非使能时,不响应脉冲,有电流输出,电机锁定。

9.自测设置

SW16 设置自检测:

SW16=off: 关闭自检测(出厂默认):

SW16=on: 电机以 0.4R/S 的速度,在当前设置的细分条件下正转一圈,再反转一圈。

五、供电电源选择

电源电压在 DC20V-80V 之间都可以正常工作, DM870 V3.0 驱动器最好采用非稳压型直 流电源供电,也可以采用变压器降压+桥式整流+电容滤波。建议用户使用 20V-80V 直流供 电, 避免电网波动超过驱动器电压工作范围。

如果使用稳压型开关电源供电,应注意开关电源的输出电流范围需设成最大。 请注意:

- 1)接线时要注意电源正负极切勿反接;
- 2) 最好用非稳压型电源:
- 3) 采用非稳压电源时, 电源电流输出能力应大于驱动器设定电流的 60%即可;
- 4) 采用稳压开关电源时,电源的输出电流应大于或等于驱动器的工作电流;
- 5) 为降低成本, 两三个驱动器可共用一个电源,但应保证电源功率足够大。

六、电机选配

DM870 V3.0 可以用来驱动 4、6、8 线的两相、四相混合式步进电机, 步距角为 1.8 度和 0.9 度。选择电机时主要由电机的扭矩和额定电流决定。扭矩大小主要由电机尺寸决定。尺寸 大的电机扭矩较大; 而电流大小主要与电感有关, 小电感电机高速性能好, 但电流较大。

1. 电机选配

1) 确定负载转矩, 传动比工作转速范围

T 电机=C (Jε+T 负载)

J: 负载的转动惯量 ε: 负载的最大角加速度 C: 安全系数, 推荐值 1.2-1.4 T 负载: 最大负载转矩,包括有效负载、摩擦力、传动效率等阻力转矩

2) 电机输出转矩由哪些因素决定

对于给定的步进电机和线圈接法,输出扭矩有以下特点:

- ●电机实际电流越大,输出转矩越大,但电机铜损(P=I²R)越多,电机发热偏多;
- ●驱动器供电电压越高,电机高速扭矩越大;
- ●由步进电机的矩频特性图可知, 高速比中低速扭矩小。

图 4 矩频特性图

2. 电机接线

对于 6、8 线步进电机,不同线圈的接法电机性能有相当大的差别,如下图所述:

图 5 电机接线图

1) 供电电压的设定

一般来说,供申申压越高,申机高速时力矩越大。越能避免高速时掉步。但另一方面, 电压太高会导致过压保护, 电机发热较多, 甚至可能损坏驱动器。在高电压下工作时, 电机 低速运动的振动会大一些。

2) 输出电流的设定值

对于同一电机, 电流设定值越大时, 电机输出力矩越大, 但电流大时电机和驱动器的发 热也比较严重。具体发热量的大小不仅与电流设定值有关,也与运动类型及停留时间有关。 以下的设定方式采用步进电机额定电流值作为参考,但实际应用中的最佳值应在此基础上调 整。原则上如温度很低(<40℃)则可视需要适当加大电流设定值以增加电机输出功率(力矩 和高速响应)。

- ●四线电机:输出电流设成等于或略小于电机额定电流值:
- ●六线电机高力矩模式:输出电流设成电机单极性接法额定电流的 50%;
- ●六线电机高速模式:输出电流设成电机单极性接法额定电流的 100%;
- ●八线电机串联接法:输出电流可设成电机单极性接法额定电流的 70%;
- ●八线电机并联接法:输出电流可设成电机单极性接法额定电流的140%。

△注意: 电流设定后请运转电机 15-30 分钟, 如电机温升太高 (>70℃), 则应降低电流设定值。所 以,一般情况是把电流设成电机长期工作时出现温热但不过热时的数值。

七、典型接线案例

DM870 V3.0 配 57 系列电机串联, 并联接法 (若电机转向与期望转向不同时,仅交换 A+、A 一的位置即可), DM870 V3.0 驱动器能驱动四线、 六线或八线的两相/四相电机。下图是 DM870 V3.0 配 57HS13 步进电机的典型接法:

图 6 DM870 V3.0 配 57 电机典型接法

注意:

1) 电机的接线以电机资料说明为准。

雷赛智能 Leadshine

- 2) 相是相对的, 但不同相的绕组不能接在驱动器同一相的端子上(A+、A-为一相, B+、B-为另一相)。
- 3) DM870 V3.0 驱动器只能驱动两相混合式步进电机,不能驱动三相和五相步进电机。
- 4) 判断步进电机串联或并联接法正确与否的方法: 在不接入驱动器的条件下用手直接转动电 机的轴,如果能轻松均匀地转动则说明接线正确,如果遇到阻力较大和不均匀并伴有一定 的声音说明接线错误。

八、保护功能

驱动器具有过流,过压等保护功能,具体描述如下表所示:

保护功能	红色 LED 灯闪烁次数	说明
过流/短路保护	1	电机或者驱动器出现短路或者接错线等情况下,驱动器会产生过流保护,当出现过流保护时,请及时断电后,检查电机接线,重新上电可清除此报警。
过压保护	2	当驱动器电压超过 92VDC 时,会进入过压保护,此时要重新给驱动器上电才能清除报警,如果频繁出现过压保护,建议适当调低输入电源电压。
缺相保护	4	当驱动器未接电机上电,或者在上电后静止后发生断线,会触发驱动器报缺相保护,如果该报警经常发生(误报警),建议检查接线或者通过调试软件屏蔽缺相保护(仅仅保留过流过压报警),注意,30A版本的驱动器有该保护功能,30B及后面版本的驱动器无缺相保护功能。

注意: 由于驱动器不具备电源正负极反接保护功能,因此,上电前请再次确认电源正负 极接线正确。正负极接反将导致烧坏驱动器中的保险管!

九、常见问题

1. 应用中常见问题和处理方法

现象	可能问题	解决措施
电源灯不亮		正常供电
	电流设定太小	根据电机额定电流,选择合适电流档
电机不转	驱动器已保护	排除故障后,重新上电
	使能信号为低	此信号拉高或不接
	控制信号问题	检查控制信号的幅值和宽度是否满足要求

14

13

DM870 V3.0 数字式两相步进驱动器使用说明书

电机转向错误	电机线接错	任意交换电机同一相的两根线(例如 A+、A-交换接 线位置)	
	电机线有断路	检查并接对	
报警指示灯亮	电机线接错	检查接线	
	电压过高或过低	检查电源电压	
	电机或驱动器损坏	更换电机或驱动器	
位置不准	信号受干扰	排除干扰	
	屏蔽地未接或未接好	可靠接地	
	细分错误	设对细分	
	电流偏小	适当加大电流	
	控制信号问题	检查控制信号是否满足时序要求	
电机加速时堵转	加速时间太短	适当增大加速时间	
	电机扭矩太小	选大扭矩电机	
	电压偏低或电流太小	适当提高电压或设置更大的电流	

2. 用户常见问题解答

1) 何为步进电机和步进驱动器?

步进电机是一种专门用于速度和位置精确控制的特种电机,它旋转是以固定的角度(称为"步距角")一步一步运行的,故称步进电机。其特点是没有累积误差,接收到控制器发来的每一个脉冲信号,在驱动器的推动下电机运转一个固定的角度,所以广泛应用于各种开环控制。

步进驱动器是一种能使步进电机运行的功率放大器,能把控制器发来的脉冲信号转化为步进电机的功率信号,电机的转速与脉冲频率成正比,所以控制脉冲频率可以精确调速,控制脉冲数就可以精确定位。

2) 何为驱动器的细分? 步进电机的转速与脉冲频率的关系是什么?

步进电机由于自身特有结构决定,出厂时都注明"电机固有步距角"(如 0.9°/1.8°, 表示半步工作每走一步转过的角度为 0.9°, 整步时为 1.8°)。但在很多精密控制和场合, 整步的角度太大,影响控制精度,同时振动太大,所以要求分很多步走完一个电机固有步距角, 这就是所谓的细分驱动,能够实现此功能的电子装置称为细分驱动器。

$$V = \frac{P^*\theta e}{360^* m}$$

V: 电机转速 (r/s)

P: 脉冲频率 (Hz)

θe: 电机固有步距角

m: 细分数 (整步为1, 半步为2)

3) 细分驱动器有何优点?

- ●因减少每一步所走过的步距角,提高了步距均匀度,因此可以提高控制精度。
- ●可以大大地减少电机振动, 低频振荡是步进电机的固有特性, 用细分是消除它的最好方法。

DM870 V3.0 数字式两相步进驱动器使用说明书

●可以有效地减少转矩脉动,提高输出转矩。 以上这些优点普遍被用户认可,并给他们带来实惠,所以建议您最好选用细分驱动器。

4) 为什么我的电机只朝一个方向运转?

- ●可能方向信号太弱,或接线极性错,或信号电压太高烧坏方向限流电阻。
- ●脉冲模式不匹配,信号是脉冲/方向,驱动器必须设置为此模式;若信号是 CW/CCW (双脉冲模式),驱动器则必须也是此模式,否则电机只朝一个方向运转。

如出现其它问题请与雷赛公司应用工程师联系: 电话: 400-885-5501

雷赛产品保修条款

1 一年保修期

雷赛公司对其产品的原材料和工艺缺陷提供从发货日起一年的质保。在保修期内雷赛公司为有缺陷的产品提供免费维修服务。

2 不属保修之列

- 不恰当的接线,如电源正负极接反和带电拔插
- 未经许可擅自更改内部器件
- 超出电气和环境要求使用

3 维修流程

如需维修产品,将按下述流程处理:

- 1) 发货前需致电雷赛公司客户服务人员获取返修许可;
- 2) 随货附寄书面说明,说明返修驱动器的故障现象;故障发生时的电压、电流和使用环境等情况;联系人的姓名、电话号码及邮寄地址等信息。
- 3) 预付邮费寄至深圳南山区松白路百旺信工业区第5区22栋3楼 雷赛智能 邮编:518052。

4 保修限制

- 雷赛产品的保修范围限于产品的器件和工艺(即一致性),使用不当导致的损坏不在保修 之列。
- 雷赛公司不保证其产品能适合客户的具体用途,因为是否适合还与该用途的技术指标要求 和使用条件及环境有关,因客户选型不当而造成不适用的问题,不属于保修之列。
- 本公司不建议将此产品用于临床医疗用途。

版本说明

版本	日期	更改内容
V1.00	2018-09-20	
V1.10	2020-03-27	增删部分内容
V1.11	2021-01-28	增删部分内容
V1.12	2021-12-30	增删部分内容