

Alexander Neuwirth

ZO Resonanz

ZO-Resonanz
Assauder Research

wissen,leben

wissen.leben

Gliederung

ZO Resonanz

2018-11-2

Z0 Resonanz -Gliederung

└─Gliederung

Gliederung Historischer Überblick

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

y ZO Resonanz Historischer Überblick

Historischer Überblick

2018

Z0 Resonanz

2018-

Historischer Überblick

Steven Weinberg, Sheldon Glashow und Abdus Salam [5]

Alexander Neuwirth 3

Z Z0 Resonanz —Historischer Überblick

∟Historischer Überblick

- 1. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung.
- 2. 1979 Nobelpreis für GWS
- 3. LEP bis 2000
- 4. 2013 François Englert und Peter Higgs Nobelpreis

Historischer Überblick

Alexander Neuwirth 3

ZO Resonanz
Historischer Überblick
Historischer Überblick

- 1. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung.
- 2. 1979 Nobelpreis für GWS
- 3. LEP bis 2000
- 4. 2013 Francois Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung.
- 2. 1979 Nobelpreis für GWS
- 3. LEP bis 2000
- 4. 2013 François Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung.
- 2. 1979 Nobelpreis für GWS
- 3. LEP bis 2000
- 4. 2013 Francois Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung.
- 2. 1979 Nobelpreis für GWS
- 3. LEP bis 2000
- 4. 2013 Francois Englert und Peter Higgs Nobelpreis

and the same of th

Theorie

Einordnung im Standardmodell der Elementarteilchen

Elektroschwache Vereinheitlichung Zerfallsbreite

Experimentelle Untersuchung

7usammenfassun

ZO Resonanz
—Theorie

Orie

Tamina Control of the Elementate Chen Chen Control of the Co

Einordnung im Standardmodell der Elementarteilchen

Standardmodell[6]

Alexander Neuwirth 5

Z0 Resonanz

Theorie
Einordnung im Standardmodell der
Elementarteilchen
Elementarteilchen
Elementarteilchen

- Fichboson und Flementarteilchen
- schwache WW
- eigenes Antiteilchen
- W+- => elek. Teilchen WW (beta Zerfall)
- Z0 => auch neutral Teilchen WW (Neutrino)

Elektroschwache VereinheitlichungAustauschteilchen

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

- 1. Allg. Grund + Was es ist.
- 2. Kräfte durch Austauschteilchen
- 3. Higgs
- 4. experimentelle Bestimmung

Elektroschwache Vereinheitlichung Austauschteilchen

ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung

- 1. Allg. Grund + Was es ist.
- 2. Kräfte durch Austauschteilchen
- 3. Higgs
- 4. experimentelle Bestimmung

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung▶ W,Z-Boson → schwache Wechselwirkung

- 1. Allg. Grund + Was es ist.
- 2. Kräfte durch Austauschteilchen
- 3. Higgs
- 4. experimentelle Bestimmung

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung
- ► Gluon → starke Wechselwirkung

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung
 ▶ W.Z-Boson → schwache Wechselwirkung
 ▶ Gluon → starke Wechselwirkung

- 1. Allg. Grund + Was es ist.
- 2. Kräfte durch Austauschteilchen
- 3. Higgs
- 4. experimentelle Bestimmung

Elektroschwache Vereinheitlichung Schwacher Isospin

Schwacher Isospin[1]

Alexander Neuwirth 7

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	
Leptonen	$\left(\begin{array}{c} \nu_{\mathrm{e}} \\ \mathrm{e} \end{array}\right)_{\mathrm{L}}$	$\left(\begin{array}{c} u_{\mu} \\ \mu \end{array} \right)_{ m L}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\mathrm{L}}$	1/2	
Γ_{ϵ}	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	
Quarks	$\left(\begin{array}{c} u \\ d' \end{array}\right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c} t \\ b' \end{array}\right)_L$	1/2	
Que	$u_{\rm R}$	c_{R}	t_{R}	0	
	d_{R}	\mathbf{s}_{R}	b_{R}	0	

Schwacher Isospin[1]

Alexander Neuwirth 7

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	
Leptonen	$\left(\begin{array}{c} u_{\mathrm{e}} \\ \mathrm{e} \end{array} \right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)_{ m L}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\mathrm{L}}$	1/2	$^{+1/2}_{-1/2}$	
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	
Quarks	$\left(\begin{array}{c} u \\ d' \end{array}\right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	$^{+1/2}_{-1/2}$	
Que	u_{R}	c_{R}	t_{R}	0	0	
	d_{R}	s_{R}	b_{R}	0	0	

Schwacher Isospin[1]

Alexander Neuwirth 7

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\begin{pmatrix} \nu_{\mathrm{e}} \\ \mathrm{e} \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{ au} \\ au \end{array} ight)_{ ext{L}}$	1/2	$^{+1/2}_{-1/2}$	0 -1
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
Quarks	$\left(\begin{array}{c} u \\ d' \end{array} \right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c} t \\ b' \end{array}\right)_L$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
Qua	u_{R}	c_{R}	t_{R}	0	0	+2/3
	d_{R}	\mathbf{s}_{R}	b_{R}	0	0	-1/3

Schwacher Isospin[1]

Alexander Neuwirth 7

Z0 Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt

Elektroschwache VereinheitlichungAustauschteilchen

 β -Zerfall[2]

Z0 Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. Wieso T=1
- 5. B⁰ postuliert

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

 β -Zerfall[2]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

T₃ soll erhalten bleiben

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. Wieso T=1
- 5. B⁰ postuliert

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

 β -Zerfall[2]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

T. soll erhalten bleiben

W⁻: T₂ = −1

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. Wieso T=1
- 5. B⁰ postuliert

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

$$W^+: T_3 = 1$$

 β -Zerfall[2]

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben $ightharpoonup W^-$: $T_3 = -1$ $ightharpoonup W^+$: $T_3 = 1$

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. Wieso T=1
- 5. B⁰ postuliert

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

$$W^+: T_3 = 1$$

$$W^0$$
: $(T = 1, T_3 = 0)$

$$\triangleright B^0$$
: $(T=0, T_3=0)$

 β -Zerfall[2]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

- → T₃ soll erhalten bleiber
 → W⁻: T₃ = −1
- $W^-: T_3 = -1$ $W^+: T_2 = 1$
- $W^{\dagger}: T_3 = 1$ $W^0: (T = 1, T_3 = 0)$ $B^0: (T = 0, T_1 = 0)$

1. Bekannt aus schwacher WW

2.
$$d\rightarrow u + W^-$$

- 3. analog u \rightarrow d + W^+
- 4. Wieso T=1
- 5. B⁰ postuliert

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\rm W} |B^0\rangle + \sin\theta_{\rm W} |W^0\rangle$$

 $|Z^0\rangle = -\sin\theta_{\rm W} |B^0\rangle + \cos\theta_{\rm W} |W^0\rangle$

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

W- cord le⁰ cha lw

 $|Z^0\rangle = -\sin\theta_w |B^0\rangle + \cos\theta_w |W^0\rangle$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung
- 4. Kopplungskonstanten relevant?

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m 7}} pprox 0.88$$

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

oschwache Vereinheitlichun

 $|\gamma\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

 $\cos \theta_W = \frac{M_W}{M_Z} \approx 0.88$

- Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung
- 4. Kopplungskonstanten relevant?

Elektroschwache Vereinheitlichung

$$\begin{aligned} \left|\gamma\right\rangle &= +\cos\theta_{\mathrm{W}}\left|B^{0}\right\rangle + \sin\theta_{\mathrm{W}}\left|W^{0}\right\rangle \\ \left|Z^{0}\right\rangle &= -\sin\theta_{\mathrm{W}}\left|B^{0}\right\rangle + \cos\theta_{\mathrm{W}}\left|W^{0}\right\rangle \end{aligned}$$

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m 7}} pprox 0.88$$

$$e = g \cdot sin\theta_{W}$$

Z0 Resonanz -Elektroschwache Vereinheitlichung Elektroschwache Vereinheitlichung

 $Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$ $\cos \theta_W = \frac{M_W}{M_*} \approx 0.88$ $e = q \cdot \sin\theta_w$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung
- 4. Kopplungskonstanten relevant?

Experimentelle Untersuchung

Erzeugung

Nachweis

Eigenschaften Neutrinogenerationen

2018-1

_φ Z0 Resonanz Experimentelle Untersuchung

Erzeugung Nachweis Eigenschaften Neutrinogenerationen

10

Erzeugung

ZO Resonanz
—Experimentelle Untersuchung
—Erzeugung
—Erzeugung

- Allg. W/Z-Boson durch Anti+Lepton/Anti-Quark Reaktion
- kollidierende Teilchenstrahlen
- feynman diagram
- bei passender Energie approx M_Z dominiert Z^0 , aus QFT+Feynmanregeln

Erzeugung

Schwerpunktsenergie $\sqrt{s} = 2E_e \ge M_Z c^2 \approx 91.6 \, \text{GeV}$

Erzeugung

Schwerounktsenerele $\sqrt{3} = 2E. > M_{\odot}c^2 \approx 91.6 \text{ GeV}$

- 1. 1989 am Stanford Linear Collider
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d)
- 3. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \text{ GeV}$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600$ GeV pro Proton

ZO Resonanz

Experimentelle Untersuchung

Erzeugung

Erzeugung

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_x \ge M_2 c^2 \approx 91.6 \, \text{GeV}$ ▶ $pp\text{-Kollision}: u + \overline{u} \rightarrow Z^0 \text{ benötigt } \sqrt{s} \gtrapprox 600 \, \text{GeV} \text{ pro Proton}$

- 1. 1989 am Stanford Linear Collider
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d)
- 3. 1996 am LEP, 50 ightarrow 86 ightarrow 104,6 GeV

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \,\text{GeV}$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600$ GeV pro Proton
- $ightharpoonup e^+ + e^-
 ightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2 M_{
 m W} c^2 pprox 160.8 \,{
 m GeV}$

ZO Resonanz
Experimentelle Untersuchung
Erzeugung
Erzeugung

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_g \ge M_2 c^2 \approx 91.6 \, \text{GeV}$ ▶ pp-Kollision: $u + \overline{v} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600 \, \text{GeV}$ pro Proton

▶ $e^+ + e^- \rightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2M_W c^2 \approx 160.8 \, \text{GeV}$

- 1. 1989 am Stanford Linear Collider
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d)
- 3. 1996 am LEP, $50 \rightarrow 86 \rightarrow 104,6\,\text{GeV}$

Nachweis

1983 am CERN

 $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^-$ [1]

Alexander Neuwirth 13

ZO Resonanz
Experimentelle Untersuchung
Nachweis
Nachweis

- Energie Summe = Masse Z⁰ (exakt?)
- Woher sicher, dass Z⁰ Zerfall?

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \,\text{GeV/c}^2$
 - $\Gamma_Z = 2,495(2) \text{ GeV}$

ZO Resonanz
LExperimentelle Untersuchung
Eigenschaften
Eigenschaften

Experimentelle Bestimmung

Messung:

M₂ = 91,188(2) GeV/c²

F₂ = 2,405(2) GeV

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2.
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- Anti+Neutrino schwer detektierbar => % über Γ_{tot}
 totale Breite = alle Zerfälle Anti+Fermion???

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \text{ GeV/c}^2$
 - $\Gamma_7 = 2,495(2) \text{ GeV}$
- > Zerfall:

$$Z^0
ightharpoonup e^+ + e^- \ \mu^+ + \mu^- \ 3,363(4) \% \ \tau^+ + \tau^- \ 3,370(8) \% \ v_{e,\mu,\tau}^+ + \overline{v}_{e,\mu,\tau} \ 20,0(6) \% \ Hadronen \ 69,91(6) \%$$

ZO Resonanz

Experimentelle Untersuchung

Eigenschaften

Eigenschaften

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 4. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}
- 5. totale Breite = alle Zerfälle Anti+Fermion???

Neutrinogenerationen

Wirkungsquerschnitt

$$\sigma_f = \sigma_0 \cdot \frac{s\Gamma_Z^2}{(s - M_Z^2)^2 + M_Z^2\Gamma_Z^2}$$

mit

$$\sigma_0 = \frac{12\pi}{M_Z^2} \cdot \frac{\Gamma_{i=e}\Gamma_f}{\Gamma_Z^2}$$

ZO Resonanz

Experimentelle Untersuchung

Neutrinogenerationen

Neutrinogenerationen

Neutrinogenerationen Wirkungsquerschnitt

 $\sigma_{f} = \sigma_{0} \cdot \frac{s\Gamma_{f}^{2}}{(s - M_{f}^{2})^{2} + M_{f}^{2}\Gamma_{f}^{2}}$ mit $\sigma_{0} = \frac{12\pi}{M_{f}^{2}} \cdot \frac{\Gamma_{f-\phi}\Gamma_{f}}{\Gamma_{f}^{2}}$

- 1. Formel für σ Breit-Wigner
- 2. Abhängig von ...
- 3. y unterdrückt

Neutrinogenerationen

Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z \to f\bar{f}}$$

Alexander Neuwirth 16

ZO Resonanz
Experimentelle Untersuchung
Neutrinogenerationen

1.
$$\Gamma_f = \frac{G_f M_Z^2}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. *G_F* Fermikonstante

3. Q_f Ladung des Fermions

4. Lep:
$$e^{\pm}$$
, μ^{\pm} , τ^{\pm}

5. Had:
$$u,c=2/3$$
; $d,s,b=-1/3$

6. Neutrinos

7. kein top-Quark weil nicht genug Energie ($\approx 175\,\text{GeV}$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\Gamma_{Z} = \sum_{f} \Gamma_{Z
ightarrow f ar{f}}$$

$$= \Gamma_{Had} + \Gamma_{Lep} + \Gamma_{v}$$

Z0 Resonanz

Experimentelle Untersuchung

1.
$$\Gamma_f = \frac{1}{2}$$

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

─Neutrinogenerationen

2. G_F Fermikonstante

3. Q_f Ladung des Fermions

4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}

5. Had: u,c=2/3; d,s,b=-1/3

6. Neutrinos

7. kein top-Quark weil nicht genug Energie ($\approx 175 \, \text{GeV}$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{v} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \end{split}$$

Z0 Resonanz

Experimentelle Untersuchung └─Neutrinogenerationen

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. *G_F* Fermikonstante

3. Q_f Ladung des Fermions

4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}

5. Had: u,c=2/3; d,s,b=-1/3

6. Neutrinos

7. kein top-Quark weil nicht genug Energie ($\approx 175 \, \text{GeV}$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

16

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_Z &= \sum_f \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{\text{V}} \\ &= N_{\mathcal{C}} \cdot 2 \cdot \Gamma_{u} + N_{\mathcal{C}} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{\text{V}} \\ &= 3 \cdot 2 \cdot 94,9 \text{ MeV} + 3 \cdot 3 \cdot 122,4 \text{ MeV} + 3 \cdot 83,3 \text{ MeV} + 3 \cdot 165,8 \text{ MeV} \end{split}$$

Z0 Resonanz

Experimentelle Untersuchung
Neutrinogenerationen
Neutrinogenerationen

utrinogenerationen fallsbreite

 $= \sum_{f} \Gamma_{Z \rightarrow f \bar{f}}$ $= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{\text{s}}$

 $_{ad} + \Gamma_{Lep} + \Gamma_{\nu}$ $\cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{\nu}$

1.
$$\Gamma_f = \frac{G_f M_2^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. G_F Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c = 2/3; d,s,b = -1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie (\approx 175 GeV)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} & \Gamma_{Z} = \sum_{f} \Gamma_{Z \to f\bar{f}} \\ & = \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{v} \\ & = N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \\ & = 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \\ & = 2,42 \, \text{GeV} \end{split}$$

Z0 Resonanz

Experimentelle Untersuchung
Neutrinogenerationen

leutrinogenerationen erfallsbreite

 $\Gamma_Z = \sum_f \Gamma_{Z \rightarrow f \bar{f}}$

$$\begin{split} & = \Gamma_{\text{blad}} + \Gamma_{\text{Lep}} + \Gamma_{\nu} \\ & = N_{C} \cdot 2 \cdot \Gamma_{\alpha} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{\nu} \\ & = 3 \cdot 2 \cdot 94.9 \, \text{MeV} + 3 \cdot 3 \cdot 122.4 \, \text{MeV} + 3 \cdot 83.3 \, \text{MeV} + 3 \cdot 165.8 \, \text{N} \end{split}$$

1.
$$\Gamma_f = \frac{G_f M_2^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

└─Neutrinogenerationen

- 2. G_F Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c= 2/3; d,s,b=-1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie (\approx 175 GeV)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} &\Gamma_{Z} = \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{\nu} \\ &= N_{\mathcal{C}} \cdot 2 \cdot \Gamma_{u} + N_{\mathcal{C}} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{\nu} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \\ &= 2,42 \, \text{GeV} \\ &\xrightarrow[\text{barrel-tur}]{\text{Strahlungs-}} 2,497 \, \text{GeV} \end{split}$$

ZO Resonanz

Experimentelle Untersuchung Neutrinogenerationen └─Neutrinogenerationen

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. *G_F* Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c=2/3; d,s,b=-1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie ($\approx 175 \, \text{GeV}$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

17

Neutrinogenerationen

Wirkungsquerschnitt $e^+e^- \rightarrow Hadronen$ [1]

26

Z0 Resonanz

lacksquare Experimentelle Untersuchung

1. Cern Experiment

- 2. Schwerpunkt energie gegen Wirkungsquerschnitt
- 3. Ähnlich der breit wigner funktion aber nicht passend symmetrisch durch Korrekturen höherer Ordnung
- 4. Verschiedene Anzahl-Neutrinogenerationen-Kurven

Alexander Neuwirth

2018-11-2

_φ Z0 Resonanz -Zusammenfassung

Zusammenfassung

Neutrinogenerationen

- \triangleright Weinbergwinkel $\cos \theta_{\rm W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_7 \approx 2.4 \, \text{GeV}$
- ▶ 3 Neutrinogeneration

Z0 Resonanz 2018-13

-Zusammenfassung

└─Neutrinogenerationen

Neutrinogenerationen

Weinbergwinkel cos θ_W ≈ 0.88 ➤ Zerfallsbreite Γ₂ ≈ 2.4 GeV 3 Neutrinogeneration

1. Weinbergwinkel Massenverhältniss W,Z Boson

Quellen I

Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.

Beta-Decay. URL: https://de.wikipedia.org/wiki/Betastrahlung (besucht am 12.11.2018).

F.J. Hasert u. a. "Search for elastic muon-neutrino electron scattering". In: Physics Letters B 46.1 (1973), S. 121–124. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(73)90494-2. URL: http://www.sciencedirect.com/science/article/pii/

Z0 Resonanz
-Zusammenfassung
-Quellen

Quellen I

Powh et al. Tellchen und Kerne. Springer Spektrum, 2014. Kap. 12.

Beta-Decay. URL:
https://de.wikipedia.org/wiki/Betastrahlung (besucht am

12.11. 2018).

F.J. Hasert u. a. "Search for elastic muon-neutrino electron scattering". In: Physics Letters B 46.1 (1973), S. 121–124. ISSN

scattering*.in: Physics Letters B 46.1 (1973), S. 121-0370-2693. DOI: https://doi.org/10.1016/0370-2693(73)90494http://www.sciencedirect.com/science/article 027200272900494.

20

21

Quellen II

Donald H. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.

Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225putting-the-puzzle-together (besucht am 12.11.2018).

Standardmodell. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).

Z0 Resonanz
-711-50
-720 Zusammenfassung
-720 Cuellen

Quellen II

Domald H. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.
 Sheldon Glashow, Abdus Salam and Steven Weinberg, urt:

Sheldon Glashow, Abdus Salam and Steven Weinberg.
 http://thescientificodyssey.libsyn.com/episodeputting-the-puzzle-together (besucht am 12.11.2
 Standardmodell. URL:

Standardmodell. uru: https://de.wikipedia.org 12.11.2018).

Alexander Neuwirth

Folien-Überschrift

Hier kommt Text!

Ein "normaler" Block

Inhalt hier.

itemize und enumerate:

- ► Ein Punkt
 - ► Ein Unterpunkt
- Noch ein Punkt
- Ein Punkt
 Ein Unterpunkt
- 1.1 Em onterpum

2. Noch ein Punkt

Z0 Resonanz
—Zusammenfassung
—Folien-Überschrift

Folies-Oberschrift
Note homes text

Gin_normales* Block
Inhalt Nor.

Stenize und enumerate:

In Public

In the Public

Noch ein runist

Sinch ein runist

2. Noch ein Punkt

Ein Alert-BlockEin Folien-Untertitel

Achtung!

Hier kommt Rot ins Spiel!

ZO Resonanz
—Zusammenfassung
—Ein Alert-Block

Ein Alert-Block Ein Folien-Untertitel

Achtung! Hier kommt Rot ins Spiel!

er kommt Rot ins Spiel!

Ein Example-Block

Hier kommt Grün ins Spiel!

Alexander Neuwirth

Z0 Resonanz 2018-11-2

-Zusammenfassung

└─Ein Example-Block

Ein Example-Block

Hier kommt Grün ins Spiel!

24

ız

Zo Resonanz

—Zusammenfassung

Vielen Dank für eure Aufme

Habt Ihr noch Fragen?

https://www.uni-muenster.de/Physik.FSPHYS

Vielen Dank für eure Aufmerksamkeit!

Habt ihr noch Fragen?

https://www.uni-muenster.de/Physik.FSPHYS

25