Aughdon Breslin and Isabella Cruz

"I pledge my honor that I have abided by the Stevens Honor System."

Problem 1

Use the pumping lemma to show that the following languages are not regular

a) $\{ 0^i 1^j : i < j \}$

Let's make $A = \{ 0^i 1^j : i < j \}$ and assume A is a regular language. By the pumping lemma, A has a pumping length p.

Let's say $S = 0^p l^{p+1}$ where S = xyz $S \in A$, |y| > 0, $|xy| \le p$ y must consist of some number of 0s. $y = 0^k$ where $1 \le k \le p$.

If k = 1, $xyyz = 0^p0^11^{p+1} = 0^{p+1}1^{p+1}$. In this string, i = j, which contradicts the rule that i < j. If k > 1, i will be greater than j, which contradicts the rule that i < j. Thus, for any k such that 1 <= k <= p, xyyz will violate the ruleset of A.

This violates the Pumping Lemma; therefore $\{ 0^i 1^j : i < j \}$ is not a regular language.

b) $\{ O^i 1^j : i > j \}$

<u>Proof that $\{ O^{\underline{i}} \ \underline{l}^{\underline{i}} : i > \underline{j} \}$ is non-regular</u>

Let's assume that $\{ 0^i 1^j : i > j \}$ is regular, and $A = \{ 0^i 1^j : i > j \}$. By the Pumping Lemma, A has a pumping length, p.

Let $s = 0^{p+1}1^p \in A$, p+1 -> 0...0 1...1 <- p s = xyz, |y| > 0, |xy| <= py must consist of some number of 0s. $y = 0^k$ where 1 <= k <= p. $xz = 0^{p+1-k}1^p$.

If k = 1, $xz = 0^p1^p$, which means i = j, thus this does not belong to the language A. If k > 1, i < j, thus this still does not belong to the language A. For any k where 1 <= k <= p, xz does not follow the rule set of the language.

This violates the Pumping Lemma. Therefore $\{ 0^i 1^j : i > j \}$ is not a regular language.

Problem 2

Prove that the language B = $\{0^i 1^j : i \neq j\}$ is not regular. Do not use the pumping lemma. Instead, express B as the result of regular operations between the nonregular language $\{0^i 1^i : i \geq 0\}$ and a regular language.

Assume B is regular. Let c represent complement

 $\{0^i \ 1^i: i \ge 0\}$ is equal to the regular expression $B^c \cap 0^*1^*$ where B^c is the language of strings that are not in B. Strings that are not in the language B are strings in which i=j (represented by i) and intersecting it with expression 0^*1^* ensures that the string has the correct order of numbers (only 0s followed by only 1s).

If B were regular then B° would be regular due to the closure of regular languages under complement. B° \cap 0*1* would also be regular due to the closure of regular languages under intersection (both B° and 0*1* are regular languages). However, since we know that $\{0^i 1^i : i \ge 0\}$ is not regular there is a contradiction, and thus B cannot be regular.

Problem 3

The pumping lemma says that every regular language has a pumping length p, such that every string in the language can be pumped if it has length p or greater. If p is a pumping length for regular language A, then so is any length $p' \ge p$. The minimum pumping length for A is the smallest p that is a pumping length of A.

For example, the pumping length of 01^* cannot be 1 because the string s = 0 of length 1 cannot be pumped to give another string in the language. But any string of length 2 or more can be pumped by choosing x = 0, y = 1, and z to be the rest of the string.

What is the minimum pumping length for each of the following languages? Justify your answer in each case.

1. 0001*

Answer: 4

Explanation: Every string in the language cannot be pumped with a pumping length less than 4 because y would consist of only 0s, completely omitting all the strings in the language with 1s. In order to pump the language, the string s would have to consist of x = 000, y = 1, and z to be the rest of the string.

2. 0*1*

Answer: 1

Explanation: The smallest string you can make with this language is the empty string, but y cannot equal 0 so 1 would be the minimum pumping length. This way you can make $x = \varepsilon$, y = 0 or 1, and z = 0 the rest of the string. Other strings in the language would require higher pumping lengths.

3. 0*1*0*1* U 10*1

Answer: 1

Explanation: Similar to #2, the smallest string you can make is the empty string, so the minimum pumping length must be 1. This way you can make $x = \epsilon$, y = 0 or 1, and z = the rest of the string. Other strings in the language would require higher pumping lengths.

4. (01)*

Answer: 2

Explanation: Every string in the language can be pumped given that y = 01 because every string in the language is a chain of '01's and if you remove y from xyz you get the empty string, which is also a member of the language. Y cannot be just 0 or just 1, since that would break the ruleset if pumped. You would make $x = \varepsilon$, y = 01, and z = 0 the rest of the string.

5. 1* 01* 01*

Answer: 1

Explanation: Every string in this language can be pumped given that $x = \varepsilon$, y = 1, and z = the rest of the string. If you pump y up or down the string will exist in the given language.

Problem 4

a) Show that the language $L = \{ a^i b^j c^k : i, j, k \ge 0 \text{ and } i = 1 \rightarrow j = k \}$ satisfies the three conditions of the pumping lemma. Hint: set the pumping threshold to 2 and argue that every string in L can be divided into three parts to satisfy the conditions of the pumping lemma.

When i = 0:

s = xyz, |y| > 0, $|xy| \le p$ $s \in L$ if broken up as follows: $x = \varepsilon$, y = b, $z = c^p$ where $p \ge 2$

When i = 1:

s = xyz, |y| > 0, $|xy| \le p$ s \in L if broken up as follows: x = ϵ , y = a, z = $b^p c^p$ where $p \ge 2$

When i > 1:

s = xyz, |y| > 0, $|xy| \le p$ Let's say there is some variable u and v where $2 \le u \le p-1$ and $2 \le v \le p-1$ s \in L if broken up as follows: $x = a^u$, y = b, $z = c^v$

b) Prove that L is not regular. Note that L = b*c* U aaa*b*c* U { $ab^ic^i: i \ge 0$ }, and use the fact that regular languages are closed under complement and difference.

Assume L is regular.

Proof that $\{ab^ic^i: i \ge 0\}$ is non-regular

Let's assume that $\{ab^ic^i: i \ge 0\}$ is regular, and $A = \{ab^ic^i: i \ge 0\}$. By the Pumping Lemma, A has a pumping length, p.

Let
$$s = ab^pc^p \in A$$
,
 $s = xyz$, $|y| > 0$, $|xy| <= p$

y must consist of some number of bs. $y = b^k$ where $1 \le k \le p$ If y included the first a as well, it would pump a's into the rest of the string, and would break out very quickly. For any k where $1 \le k \le p$, $xz = ab^{p-k}c^p$ and thus does not follow the rule set.

This violates the Pumping Lemma. Therefore $\{ab^ic^i: i \ge 0\}$ is not a regular language.

$L = b*c* U aaa*b*c* U {ab^ic^i : i \ge 0}$

Since b^*c^* , aaa* b^*c^* , and $\{ab^ic^i: i \ge 0\}$ are mutually disjoint, we can manipulate the expression

L = $b*c* U aaa*b*c* U {ab^ic^i : i \ge 0} to be$ L - $b*c* - aaa*b*c* = {ab^ic^i : i \ge 0}.$

Since we assume L is regular, and b*c*, aaa*b*c* are both regular languages, so is L - b*c* - aaa*b*c* under closure of difference. However, that is equivalent to a non-regular language which is a contradiction. Therefore, L must be non-regular.

c) Explain why parts (a) and (b) do not contradict the pumping lemma. Parts (a) and (b) do not contradict the pumping lemma because the pumping lemma states:

If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p,then s may be divided into three pieces, s=xyz, satisfying the following conditions: 1.For each $i \ge 0$, $xy^iz \in A$, 2. |y| > 0, and 3. $|xy| \le p$.

The pumping lemma shows that if a regular language cannot be pumped then it is not a regular language. However it does not say anything about whether there exists non-regular languages that can be pumped.