20-Channel, Serial-Input, Vacuum-Fluorescent Display Driver for Anode/Grid

Features

- ► HVCMOS® technology for high performance
- Operating voltage up to 80V
- ► High speed source driver
- ▶ 5.0V CMOS logic circuitry
- ▶ Up to 5.0MHz data input rate
- Excellent noise immunity
- ► Flexible high voltage supplies

General Description

The Supertex HV5812 is a 20-channel, serial input, vacuum-fluorescent display driver. It combines a 20-bit CMOS shift register, data latches, and control circuitry with high voltage MOSFET outputs. The HV5812 is primarily designed for vacuum-fluorescent displays.

The CMOS shift register and latches allow direct interfacing with microprocessor based systems. Data input rates are typically over 5.0MHz with 5.0V logic supply. Especially useful for interdigit blanking, the BLANKING input disables the output source drives and turns on the sink drivers. Use with TTL may require external pull-up resistors to ensure an input logic high.

Functional Block Diagram

Ordering Information

Part Number	Package	Packing		
HV5812P-G	28-Lead PDIP	13/Tube		
HV5812PJ-G	28-Lead PLCC	38/Tube		
HV5812PJ-G M904	28-Lead PLCC	500/Reel		
HV5812WG-G	28-LeadSOW	1000/Reel		

⁻G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V _{DD}	-0.5V to +7.5V
Supply voltage, V _{PP}	-0.5V to +90V
Logic input levels	-0.3V to V _{DD} +0.3V
Maximum junction temperature	125°C
Storage temperature range	-55°C to +150°C
Power dissipation:	
28-Lead PDIP	2000mW
28-Lead PLCC	1900mW
28-Lead SOW	1700mW

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to GND.

Recommended Operating Conditions

Sym	Parameter	Min	Max	Units
V _{DD}	Supply voltage	4.5	5.5	V
V _{PP}	Supply voltage	20	80	V
T _j	Operating junction temperature	-40	+125	ů

Power-up sequence should be the following:

- 1. Connect ground.
- 2. Apply V_{DD}.
- 3. Set all inputs (Data, CLK, etc.) to a known state.
- Apply V_{□D}.

The V_{PP} should not drop below V_{DD} during operation.

Power-down sequence should be the reverse of the above.

Typical Thermal Resistance

	
Package	$oldsymbol{ heta}_{ja}$
28-Lead PDIP	43°C/W
28-Lead PLCC	48°C/W
28-Lead SOW	55°C/W

Pin Configuration

Product Marking

Package may or may not include the following marks: Si or \$\infty\$

28-Lead PDIP

Package may or may not include the following marks: Si or

28-Lead PLCC

Package may or may not include the following marks: Si or 🚯

28-Lead SOW

Electrical Characteristics

DC Characteristics (over recommended operating conditions, $T_A = 25^{\circ}$ C, unless otherwise noted)

Sym	Parameter		Min	Тур	Max	Units	Conditions
I _{DSS}	Output leakage current			-5.0	-15	μA	V _{OUT} = 0V, T _A = +70°C
		LIV	78	78.5	-	V	$I_{OUT} = -25 \text{mA}, V_{PP} = 80 \text{V}, T_j = +25 ^{\circ}\text{C}$
V _{OH}	High-level output	HV _{out}	77	78	-	V	$I_{OUT} = -25 \text{mA}, V_{PP} = 80 \text{V}, T_j = +125 ^{\circ}\text{C}$
		DATA OUT	4.5	4.7	-	V	$I_{OUT} = -200\mu A, V_{DD} = 5.0V$
		LIV	-	1.5	3.0	V	$I_{OUT} = 1.0 \text{mA}, T_j = +25 ^{\circ}\text{C}, V_{DD} = 5.0 \text{V}$
V _{OL}	Low-level output	HV _{OUT}	-	2.3	4.0	\ \ \	$I_{OUT} = 1.0 \text{mA}, T_j = +125^{\circ}\text{C}, V_{DD} = 5.0 \text{V}$
		DATA OUT	-	200	250	V	$I_{OUT} = +200 \mu A, V_{DD} = 5.0 V$
I _{SINK}	Output pull-down current			3.5	-	mA	$V_{OUT} = 5.0V \text{ to } V_{PP}, V_{DD} = 5.0V$
V _{IH}	High level logic input voltage			-	5.3	V	V _{DD} = 5.0V
V _{IL}	Low level logic inp	ut voltage	-0.3	-	0.8	V	
I _{IH}	High level logic inp	out current	-	0.05	0.5	μA	$V_{IN} = V_{DD}, V_{DD} = 5.0V$
I	Low level logic inp	ut current	-	-0.05	-0.5	μA	$V_{IN} = 0.8V, V_{DD} = 5.0V$
	I _{DDQ} Quiescent V _{DD} supply current		-	100	300		All outputs high, V _{DD} = 5.0V
DDQ			-	100	300	μA	All outputs low, V _{DD} = 5.0V
	L Ouissant V supply supply		-	10	100		All outputs high, no load
PPQ	Quiescent V _{PP} sup	pry current	-	10	100	μA	All outputs low, no load

AC Characteristics (over recommended operating conditions, $T_A = 25^{\circ}$ C, unless otherwise noted)

t _{PHL}		-	2000	-		C = 20 = 50% to 50% V = 5 0V	
t _{PLH}	Blanking to output delay	-	1000	-	ns	$C_L = 30pF, 50\% \text{ to } 50\%, V_{DD} = 5.0V$	
t,	Output fall time	-	1450	-	ns	C _L = 30pF, 90% to 10%, V _{DD} = 5.0V	
t _r	Output rise time	-	650	-	ns	$C_L = 30pF, 10\% \text{ to } 90\%, V_{DD} = 5.0V$	
t _{su}	Data set-up time	75	-	-	ns	See timing diagram	
t _h	Data hold time	75	-	-	ns	See timing diagram	
t _{pwd}	Minimum data pulse width	150	-	-	ns	See timing diagram	
t _{pwclk}	Minimum clock pulse width	150	-	-	ns	See timing diagram	
t _{cks}	Minimum time between clock activation and strobe	300	-	-	ns	See timing diagram	
t _{pws}	Minimum strobe pulse width	100		-	ns	See timing diagram	
t _{sto}	Typical time between strobe activation and output transition	-	500	-	ns	See timing diagram	
f	Maximum alaak fraguanay	-	8.0	-	MHz	$T_j = +25^{\circ}C, V_{DD} = 5.0V$	
f _{CLK}	Maximum clock frequency	-	5.0	-	IVITZ	$T_j = +125$ °C, $V_{DD} = 5.0$ V	

Function Table

Serial Data	Clock	Sh	ift Re	gister Cont	ents	Serial Strobe		Data Strobe		Data			Lato	h Content		Blanking		Outp	ut Content	
Input	Input	I ₁	l ₂	l ₃ l _{N-1}	I _N	Output	Input	I ₁	l ₂	l ₃ l _{N-1}	I _N		I,	l ₂	I ₃ I _{N-1}	I _N				
Н	L to H	Н	R ₁	R ₂ R _{N-2}	R _{N-1}	R _{N-1}	-	-	-	-	-	-	-	-	-	-				
L	L to H	L	R ₁	R ₂ R _{N-2}	R_{N-1}	R _{N-1}	-	-	-	-	-	-	-	-	-	-				
X	H to L	R ₁	R_{2}	R ₃ R _{N-1}	R_{N}	R _N	-	-	-	-	-	-	-	-	-	-				
-	-	Х	Χ	X X	Χ	Х	L	R ₁	R_{2}	R ₃ R _{N-1}	R_{N}	-	-	-	-	-				
-	-	P ₁	P_2	P ₃ P _{N-1}	P_{N}	P _N	Н	P ₁	P_2	P ₃ P _{N-1}	P_{N}	L	P ₁	P_{2}	P ₃ P _{N-1}	P_{N}				
-	-	-	-	-	-	-	-	Х	Х	X X	Х	Н	L	L	L L	L				

Note:

L = Low logic level

H = High logic level

X = Irrelevant

P = Present state

R = Previous state

Timing Diagram

Input and Output Equivalent Circuits

28-Lead PDIP Pin Description

Pin#	Function
1	VPP
2	Data Out
3	HV _{OUT} 20
4	HV _{ουτ} 19
5	HV _{OUT} 18
6	HV _{out} 17
7	HV _{out} 16
8	HV _{out} 15
9	HV _{out} 14
10	HV _{OUT} 13

Pin#	Function
11	HV _{OUT} 12
12	HV _{OUT} 11
13	BLANKING
14	GND
15	CLOCK
16	STROBE
17	HV _{out} 10
18	HV _{OUT} 9
19	HV _{OUT} 8
20	HV _{out} 7

Pin#	Function
21	HV _{OUT} 6
22	HV _{OUT} 5
23	HV _{OUT} 4
24	HV _{OUT} 3
25	HV _{OUT} 2
26	HV _{OUT} 1
27	Data In
28	VDD

28-Lead PLCC Pin Description

Pin#	Function
1	VPP
2	Data Out
3	HV _{OUT} 20
4	HV _{out} 19
5	HV _{out} 18
6	HV _{out} 17
7	HV _{out} 16
8	HV _{out} 15
9	HV _{out} 14
10	HV _{out} 13

Pin#	Function
11	HV _{OUT} 12
12	HV _{out} 11
13	BLANKING
14	GND
15	CLOCK
16	STROBE
17	HV _{out} 10
18	HV _{OUT} 9
19	HV _{OUT} 8
20	HV _{OUT} 7

Pin#	Function
21	HV _{out} 6
22	HV _{OUT} 5
23	HV _{OUT} 4
24	HV _{out} 3
25	HV _{OUT} 2
26	HV _{out} 1
27	Data In
28	VDD

28-Lead SOW Pin Description

Pin#	Function
1	VPP
2	Data Out
3	HV _{OUT} 20
4	HV _{out} 19
5	HV _{out} 18
6	HV _{out} 17
7	HV _{out} 16
8	HV _{out} 15
9	HV _{OUT} 14
10	HV _{out} 13

Pin#	Function
11	HV _{OUT} 12
12	HV _{OUT} 11
13	BLANKING
14	GND
15	CLOCK
16	STROBE
17	HV _{out} 10
18	HV _{OUT} 9
19	HV _{OUT} 8
20	HV _{OUT} 7

Pin#	Function
21	HV _{OUT} 6
22	HV _{OUT} 5
23	HV _{OUT} 4
24	HV _{OUT} 3
25	HV _{OUT} 2
26	HV _{out} 1
27	Data In
28	VDD

28-Lead PDIP (.600in Row Spacing) Package Outline (P)

1.565x.580in body, .250in height (max), .100in pitch

Note:

 A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		Α	A1	A2	b	b1	D	D1	Е	E1	е	eA	еВ	L
Dimension (inches)	MIN	.140*	.015	.125	.014	.030	1.380	.065 [†]	.590 [†]	.485		.600 BSC	.600*	.115
	NOM	-	-	-	-	-	-	-	-	-	.100 BSC		-	-
	MAX	.250	.055*	.195	.023 [†]	.070	1.565	.085*	.625	.580			.700	.200

JEDEC Registration MS-011, Variation AB, Issue B, June, 1988.

Drawings not to scale.

Supertex Doc. #: DSPD-28DIPP, Version B041009.

^{*} This dimension is not specified in the JEDEC drawing.

[†] This dimension differs from the JEDEC drawing.

28-Lead PLCC Package Outline (PJ)

.453x.453in. body, .180in. height (max), .050in. pitch

Notes:

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- Actual shape of this feature may vary.

Symbol		Α	A 1	A2	b	b1	D	D1	E	E1	е	R
Dimension (inches)	MIN	.165	.090	.062	.013	.026	.485	.450	.485	.450		.025
	MOM	.172	.105	-	-	-	.490	.453	.490	.453	.050 BSC	.035
	MAX	.180	.120	.083	.021	.032	.495	.456	.495	.456		.045

JEDEC Registration MS-018, Variation AB, Issue A, June, 1993.

Drawings not to scale.

Supertex Doc. #: DSPD-28PLCCPJ, Version B031111.

28-Lead SOW (Wide Body) Package Outline (WG)

17.90x7.50mm body, 2.65mm height (max), 1.27mm pitch

Note:

 A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	E	E1	е	h	L	L1	L2	θ	θ1
	MIN	2.15*	0.10	2.05	0.31	17.70*	9.97*	7.40*		0.25	0.40			0 º	5°
Dimension (mm)	NOM	-	-	-	-	17.90	10.30	7.50	1.27 BSC	-	-	1.40 REF	0.25 BSC	-	-
(11111)	MAX	2.65	0.30	2.55*	0.51	18.10*	10.63*	7.60*		0.75	1.27			8 º	15°

JEDEC Registration MS-013, Variation AE, Issue E, Sep. 2005.

Drawings are not to scale.

Supertex Doc. #: DSPD-28SOWWG, Version D041309.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to: http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

^{*} This dimension is not specified in the JEDEC drawing.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.