Foundational Statistics Random Variables and Probability Distributions (Continued)

Discrete probability distributions commonly used in the sciences

The Binomial Distribution

$$f(k) = inom{n}{k} p^k (1-p)^{n-k}$$

n = number of trials k = number of successes in a trial p = probability of a success

Frequency of a particular outcome

Useful for binary variables

- behavioral choice trials
- presence / absence data
- yes / no survey questions

Discrete probability distributions commonly used in the sciences

The Poisson Distribution

$$Pr(y=r)=rac{e^{-\lambda}\lambda^r}{r!}$$

$$r = count$$

$$\lambda$$
 ("lambda") = mean = variance

Continuous probability distributions commonly used in the sciences

The Exponential Distribution

$$f(x) = \lambda e^{-\lambda x}$$

 λ ("lambda") = rate

Continuous probability distributions commonly used in the sciences

The Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$\mu$$
 ("mu") = mean

 σ ("sigma") = standard deviation

Useful for many random, continuous variables

- complex traits in biology
- physical processes
- social science metrics
- measurement error

The Normal Distribution

Mean = Median = Mode

A historical controversy

The "Mendelians"

discrete genetic factors -> discrete phenotypes

evolution: large steps

? genetic factors -> continuous phenotypes

evolution: gradual

The "Biometricians"

A historical controversy (reconciled)

Moving toward synthesis: "The multiple-factor hypothesis"

1 (diallelic) locus -> 3 genotypes: AA Aa aa

10 (diallelic) loci -> $3^{10} \approx$ 60,000 genotypes

Also: Non-genetic (environmental) factors add continuous variation

A depiction of human height variation

The CLT is useful when thinking about random samples from a variety of prob. distributions

The CLT and sampling distributions

Sampling variation around a parameter = often normal

Random Variable
Distribution
(Poisson)

Sampling
Distribution
(Normal)

Mean bp from a sample

Simulating the CLT for a quantitative trait in R

Can we simulate a ≈ Normal distribution for 500 mallard duck bill length measurements, from <u>discrete genotypes at 5 loci</u>?

What "ingredients" do we need for our simulation?