Zhiquan Wang

+1 5302207047; wang4490@purdue.edu

EDUCATION

Purdue University

Ph.D. Student in Computer Science

University of California, Davis

Exchange Student in Computer Science

Nanjing Tech University

Bachelor of Science in Computer Science

West Lafayette, IN, USA 08/2019 - Present Davis, CA, USA 08/2018 - 01/2019 JiangSu, China 09/2015 - 05/2019

PUBLICATIONS

- Wang, Z., Benes, B., Qureshi, A. H., & Mousas, C. (2022). Co-design of Embodied Neural Intelligence via Constrained Evolution. arXiv preprint arXiv:2205.10688.
- Mousas, C., Krogmeier, C., & Wang, Z. (2021). Photo Sequences of Varying Emotion: Optimization with a Valence-Arousal Annotated Dataset. ACM Transactions on Interactive Intelligent Systems (TiiS), 11(2), 1-19.
- Liu, H., Wang, Z., Mazumdar, A., & Mousas, C. (2021). Virtual reality game level layout design for real environment constraints. Graphics and Visual Computing, 4, 200020.
- Liu, H., Wang, Z., Mousas, C., & Kao, D. (2020, November). Virtual reality racket sports: Virtual drills for exercise and training. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 566-576). IEEE.

RESEARCH EXPERIENCE

Virtual Agent Editor Software Development West Lafayette, IN, USA

- Developed a virtual creature editor for fast robot prototyping and interactive motion planning with **OpenGL** and **C++**.
- Designed a novel robot description with pre-defined body parts for rapid crafting and compatibility with URDF and MJCF.

Co-design of Virtual Creatures via Evolution

West Lafayette, IN, USA

Research Assistant

Purdue Research Foundation Graduate Fellowship Grant, 2022

- Developed a virtual creature generator supporting random generation based on input rules and user constraints with Python.
- Implemented a reinforcement learning algorithm (PPO) on Pytorch for parallel training of arbitrary creatures' locomotion.
- Proposed a novel pipeline for the parallel co-design of large-scale population creatures with evolution methods.
- Doubled the performance of creatures in locomotion while significantly reducing computational resources.

Gait Analysis Using Transformers and Reinforcement Learning Research Assistant

West Lafayette, IN, USA

2021

- Designed and Developed robot locomotion task environments based on Isaac Gym with real-time attention visualization.
- Implemented a reinforcement learning algorithm PPO aims at large-scale experience sampling from parallel environments.
- Designed an Transformer-based policy net with self-attention mechanisms that capture the relationship between joints
- Analyzed the importance of joints and their relationships in a locomotion task with self-attention matrix from policy net.

Bird Retina Droplet Detection

West Lafayette, IN, USA

Research Assistant

Purdue Polytechnic Institute, 2020

- Developed a tool for data cleaning for an unorganized dataset with different resolutions, backgrounds, and formats.
- Designed and implemented a bird retina droplet VGG based detection model with high accuracy (86%) on average.
- Deployed the detection model on a local machine, integrating it into an application for easy real-time result editing.

Emotion Recognition and Classification From Real-Time Video Research Assistant

West Lafayette, IN, USA

Purdue Polytechnic Institute, 2019

- Designed and Implemented a VGG based model for classification on Russell's model with accuracy up to 87.5% on average.
- Develop a real-time emotion recognition system to capture the emotion of audiences in a virtual classroom.

Virtual Racket Sports Study in VR

West Lafayette, IN, USA

Research Assistant

Purdue Polytechnic Institute, 2019

- Designed and Implemented different virtual Racket Sports (e.g., ping-pong, tennis ball) on VR device with Unity3D.
- Proposed a novel optimization method for game-level control in racket sports with Markov chain Monte Carlo (MCMC).

ADDITIONAL INFORMATION

- Programming: C/C++, CUDA, Python
- Development: Pytorch, OpenGL, Unity3D, Git, Linux