README для задания 1

Пожилая саламандра

November 2019

Содержание

1.	Постановка задачи	2
	1.1. Обобщённые определения	2
	1.2. Максиминные и минимаксные стратегии	3
	1.3. Смешанное расширение матричной игры	4
	1.4. Сведение матричной игры к паре двойственных ЗЛП	5
2.	Метод решения	6
	2.1. Реализованные функции	6
	2.2. Ход решения	7
3.	Тестирование	8
	3.1. Tect 1	8
	3.2. Tect 2	9
4.	Необходимое ПО	10
5.	Инструкция по запуску	10
6.	Вклад участников команды	11
7.	Использованная литература	11

1. Постановка задачи

1.1. Обобщённые определения

Пусть функция F(x,y) определена на декартовом произведении $X\times Y,$ где X,Y - множества произвольной природы.

Определение 1. Пара $(x^0,y^0)\in X\times Y$ называется *седловой точкой* функции F(x,y) на $X\times Y$, если

$$F(x, y^0) \le F(x^0, y^0) \le F(x^0, y), \forall x \in X, \forall y \in Y.$$

Понятие седловой точки используется в определении решения антагонистической игры.

В антагонистической игре принимают участие два игрока: игрок 1 и игрок 2. Игрок 1 выбирает стратегию x из множества стратегий X, игрок 2 - стратегию y из Y. Нормальная форма игры подразумевает, что каждый игрок выбирает свою стратегию независимо, не зная выбора партнера. Задана функция выигрыша F(x,y) первого игрока, определенная на $X \times Y$. Выигрыш F(x,y) первого игрока является проигрышем для второго. Цель первого игрока состоит в увеличении своего выигрыша, в то время как цель второго - в уменьшении F(x,y).

Таким образом, антагонистическая игра задается тройкой

$$\Gamma = \langle X, Y, F(x, y) \rangle \tag{1}$$

3амечание. Если значение F(x,y) < 0, то выигрыш первого игрока является фактически проигрышем.

Определение 2. Говорят, что антагонистическая игра Γ имеет pewe-ние, если функция F(x,y) имеет на $X\times Y$ седловую точку. Пусть (x^0,y^0) - седловая точка функции F(x,y). Тогда тройка $(x^0,y^0,v=F(x^0,y^0))$ называется решением игры, x^0,y^0 - оптимальными стратегиями игроков, а v - значением игры.

Следующая лемма показывает, что значение игры не зависит от седловой точки.

Лемма 1. Если $(x^0,y^0),(x^*,y^*)$ - две седловые точки функции F(x,y) на $X\times Y,$ то $F(x^0,y^0)=F(x^*,y^*).$

Определение 3. Антагонистическая игра Γ называется матричной, если множества стратегий игроков конечны: X=1,...,m,Y=1,...,n. При этом принято обозначать стратегию первого игрока через i, стратегию второго через j, выигрыш первого F(i,j) через a_{ij} . Матрица $A=(a_{ij})_{m\times n}$

называется *матрицей игры*. Первый игрок выбирает в ней номер строки i, а второй - номер столбца j.

В обозначениях матричной игры (i^0,j^0) - седловая точка матрицы A если

$$a_{ij^0} \le a_{i^0j^0} \le a_{i^0j}, i = 1, ..., m, j = 1, ..., n.$$

Иначе, элемент матрицы $a_{i^0j^0}$ является минимальным в i^0 -й строке и максимальным в j^0 -м столбце.

Таким образом, антагонистическая матричная игра задается тройкой

$$\Gamma = \langle X = \{1, ..., m\}, Y = \{1, ..., n\}, F(i, j) = (a_{ij})_{m \times n} \rangle, i \in X, j \in Y$$
 (2)

1.2. Максиминные и минимаксные стратегии

Рассмотрим игру Γ с точки зрения первого игрока. Пусть он выбрал стратегию x. Ясно, что что его выигрыш будет не меньше чем

$$\inf_{y \in Y} F(x,y)$$

Эту величину назовём гарантированным выигрышем (результатом) для первого игрока, если он использует стратегию x. Наилучший гарантированный выигрыш для первого игрока

$$\underline{v} = \sup_{x \in X} \inf_{y \in Y} F(x, y)$$

называется нижним значением игры.

Определение 4. Стратегия x^0 называется *максиминной*, если

$$\inf_{y \in Y} F(x^0, y) = \underline{v}$$

Рассмотрим игру Γ с точки зрения второго игрока. Если он выбрал стратегию y, то для него естественно считать гарантированным результатом величину

$$\sup_{x \in X} F(x, y)$$

Проигрыш второго игрока будет не больше, чем эта величина. Наилучший гарантированный результат для второго игрока

$$\overline{v} = \inf_{y \in Y} \sup_{x \in X} F(x, y)$$

называется верхним значением игры.

Определение 5. Стратегия y^0 называется минимаксной, если

$$\sup_{x \in X} F(x, y^0) = \overline{v}$$

Лемма 2. В любой антагонистической игре Γ справедливо неравенство $\underline{v} \leq \overline{v}$.

Теорема 1. 1) Функция F(x,y) имеет седловую точку \Leftrightarrow выполняется равенство

$$\max_{x \in X} \inf_{y \in Y} F(x, y) = \min_{y \in Y} \sup_{x \in X} F(x, y)$$
 (3)

2) Пусть выполняется равенство (3). Пара (x^0, y^0) - седловая точка функции $F(x,y) \Leftrightarrow x^0$ - максиминная, а y^0 - минимаксная стратегия игроков.

1.3. Смешанное расширение матричной игры

Бывают примеры антагонистических игр, не имеющих решения в чистых стратегиях 1 . Для таки задач теория игр предлагает игрокам использовать смешанные стратегии.

Определение 6. Смешанной стратегией первого (второго) игрока называется вероятностное распределение $\varphi(\psi)$ на множестве стратегий X(Y).

Для первого игрока применить смешанную стратегию φ - это выбрать стратегию $x \in X$ как реализацию случайной величины, имеющей закон распределения φ .

Пусть X=1,...,m, как это имеет место в матричной игре. Тогда вместо φ для обозначения смешанной стратегии будем использовать вероятностный вектор $p=(p_1,...,p_m)$, удовлетворяющий ограничениям

$$\sum_{i=1}^{m} p_i = 1, p_i \le 0, i = 1, ..., m$$

Если применяется вектор p, то стратегия i выбирается с вероятностью p_i .

Обозначим через $\{\varphi\}$ - множество всех смешанных стратегий первого игрока на множестве X. Можно считать, что $X \subset \{\varphi\}$. Действительно, в последнем случае стратегию x можно отождествить с вероятностной мерой I_x . Если множество X конечно, то выбор стратегий i эквивалентен выбору смешаннной стратегии $p^i = (0,0,...,0,1,0,...,0,0)$, где единица стоит на i-ом месте.

 $^{^1}$ Чистая стратегия $x^i\ (y^j)$ - стратегия, выбор которой даёт полную определённость, каким образом игрок $1\ (2)$ продолжит игру. Далее более подробно

Множество X будем называть множеством *чистых стратегий* первого игрока (в противовес смешанным).

Пусть дана матричная игра Γ вида (2). Множество смешанных стратегий первого игрока -

$$P = \left\{ p = (p_1, ..., p_m) \middle| \sum_{i=1}^{m} p_i = 1, p_i \le 0, i = 1, ..., m \right\}$$

множество смешанных стратегий второго игрока -

$$Q = \left\{ q = (q_1, ..., q_n) \middle| \sum_{j=1}^{n} q_j = 1, q_j \le 0, j = 1, ..., n \right\}$$

а математическое ожидание выигрыша первого игрока -

$$K(p,q) = \sum_{i=1}^{m} \sum_{j=1}^{n} p_i a_{ij} q_j$$

Таким образом, $\overline{\Gamma} = \langle P, Q, K(p,q) \rangle$ - смешанное расширение матричной игры Γ . Следующее утверждение называют *основной теоремой матричных игр*.

Теорема 2 (*теорема фон Неймана*). Всякая матричная игра имеет решение в смешанных стратегиях.

1.4. Сведение матричной игры к паре двойственных ЗЛП

Матричная игра Γ в определенном смысле эквивалентна паре двойственных задач линейного программирования:

$$\begin{cases} (x,u) \to min, \\ xA \ge w, \\ x_i \ge 0, i = \overline{1,m}. \end{cases} \begin{cases} (y,w) \to max, \\ Ay^T \le w, \\ y_i \ge 0, i = \overline{1,n}. \end{cases}$$
(4)

, где
$$u = \{1, 1, ..., 1\} \in \mathbb{R}^m$$
, $w = \{1, 1, ..., 1\} \in \mathbb{R}^n$.

Теорема 3. Пусть Γ - игра вида (2) с положительной матрицей A^2 и даны задачи ЛП (4). Тогда имеют место следующие утверждения:

1) Обе задачи (4) имеют оптимальное решение \bar{x} и \bar{y} , при этом

$$\theta = \min_{x}(x, u) = \max_{y}(y, w)$$

 $^{^{2}}$ Все элементы матрицы положительны.

2) Значение игры v игры Γ равно

$$v = \frac{1}{\theta}$$

а вероятностные вектора

$$p^0 = \frac{\overline{x}}{\theta}, \qquad q^0 = \frac{\overline{y}}{\theta}$$

являются оптимальными смешанными стратегиями первого и второго игроков.

3) Любые оптимальные стратегии $p \in P, q \in Q$ игроков могут быть построены указанным способом, то есть

$$P = \frac{\overline{X}}{\theta}, \qquad Q = \frac{\overline{Y}}{\theta};$$

где $\overline{X}, \overline{Y} \neq \varnothing$ множества оптимальных решений задач (4).

2. Метод решения

2.1. Реализованные функции

- correct_output() получает на вход матрицу игры $A \in \mathbb{R}^{m \times n}$, вероятностные вектора оптимальных стратегий p^0, q^0 , значение игры v и выводит их в красивом виде (если числа нецелые, представляет их в виде дробей).
- spectre_vizual() получает на вход вероятностный вектор и графически показывает вероятность использования каждой из стратегий
- permutation() получает на вход числа m и n и возвращает число перестановок
- combinations() получает на вход матрицу, размерность квадратной матрицы и возвращает все возможные комбинации из исходной матрицы.
- check_extreme() проверяет, удовлетворяет ли найденная точка условиям многогранника
- extreme_points() получает на вход исходную матрицу, столбец ограничений, строку с символами ограничений и находит крайние точки прямым методом решения $3\Pi\Pi$ (решения C_n^m систем линейных уравнений)
- fixed_solution() получает на вход исходную матрицу, вектор минимумов по строкам, вектор максимумов по столбцам, цену игры и находит

координаты седловых точек, а также вектора вероятностей применения стратегий для игроков 1 и 2 и цену игры (\exists *pewenue* в чистых стратегиях).

- mixed_solution() получает на вход исходную матрицу и возвращает вектора вероятностей применения стратегий для игроков и цену игры (решение возможно только *в смешанных стратегиях*).
- KahanSum() алгоритм Кэхэна (компенсационное суммирование) необходимо для корректного суммирования float.
- nash_equilibrium() получает на вход матрицу, определяет, есть ли в ней седловая точка, и далее, в зависимости от ситуации, использует необходимые функции. Возвращает вероятностные вектора и цену игры.

2.2. Ход решения

На вход функции $nash_equilibrium()$ подается матрица игры. Производится поиск решения в чистых стратегиях. Если оно есть - ищем решение с помощью функции $fixed_solution()$, если решение возможно только в смешанных стратегиях, то переходим к функции $mixed_solution()$ и использует прямой метод решения $3Л\Pi(\text{смотри пункт } 2.1$, функции $extreme_points()$, $check_extreme()$) В зависимости от выбранного решения (в чистых или смешанных стратегиях) $nash_equilibrium()$ получает два вероятностных вектора и значение игры, и вызывает $correct_output()$ для вывода этих результатов. Также вызывается функция $spectre_vizual()$, которую представляет полученные вероятностные векторы оптимальных стратегий в виде графика (matplotlib.pyplot.plot).

3. Тестирование

3.1. Tect 1

Saddle point: 3

 $|\ 1\ |\ 2\ |$ $|\ 3\ |\ 4\ |$

Price of the game: 3

3.2. Tect 2

No saddle point

| 3 | 6 | 1 | 4 |

5 2 4 2

| 1 | 4 | 3 | 5 | | 4 | 3 | 4 | -1 |

Price of the game: 339/104

$$\mid \mathbf{p} \mid \mid 1/8 \mid 25/52 \mid 19/52 \mid 3/104 \mid \\ \mid \mathbf{q} \mid \mid 1/8 \mid 37/104 \mid 23/52 \mid 1/13 \mid$$

Другие примеры рассмотрены в visual.ipynb

4. Необходимое ПО

NumPy – для работы с векторами и матрицами

itertools – для получения перестановок матриц и векторов, дабы облегчить жизнь и не писать это руками

re – для распарсивания входных данных

Fractions – для вывода в обыкновенных дробях

Matplotlib.pyplot – для визуализации

Setuptools – для более удобного сбора пакета

5. Инструкция по запуску

Для запуска самой программы перейти в папку matrgame, открыть ее в терминале и через python3 game.py запустить программу 3 .

Для создания распространяемого пакета выполнить последовательность команд в корневой папке проекта:

- python3 setup.py sdist
- virtualenv -p python3 env
- \bullet ./env/bin/python3 setup.py install

Для проверки работоспособности пакета запускаем его в изолированной среде через:

• ./env/bin/python3

После запуска пакета в среде можно прописать:

- import matrgame.game as mg
- $\operatorname{mg.nash_equilibrium}([[1,2],[3,4])$

 $^{^3 {\}rm Tak}$ как в достаточно скором времени поддержка Python 2.7 будет прекращена, то весь проект создавался под Python 3.7

6. Вклад участников команды

Ловягин Андрей – реализация метода решения ЗЛП, тесты

Никита Денисов – нахождение оптимального решения матричной игры в чистых стратегиях, пакет, объединение частного и общего решения задачи

Иванков Михаил – математическая сторона программы, визуализация, вывод матрицы, README

7. Использованная литература

А. А. Васин, П. С. Краснощёков, В. В. Морозов - Исследование операций/ М.:2008 - пункт 1

http://eos.ibi.spb.ru/umk/4_4/5/print/5_R1_T11.pdf - информация из пункта 1.4