BMP 位图格式

基础格式

文件头

变量名	地址偏移	大小	值	作用
		(bytes)		
bfType	0000h	2	42 4d	'BM',即 Windows 支持 <mark>的位</mark> 图格式。
bfSize	0002h	4	0000B6CA	文件大小,即文件属性中文件大小的值
bfReserved1	0006h	2	0000	保留
bfReserved2	0008h	2	0000	保留
bf0ffBits	000Ah	4	00000036	从文件头到位图数据需偏移 70 字节

共计: 14 字节

信息头

一共有以下几种:

大小	文件头	标识	兼容性(被導些GDI支持)
12	0S/2 V1	BITMAPCOREHEADER	OS/2以及Tindows 3.0以上的Tindows版本
64	0S/2 V2	BITMAPCOREHEADER2	
40	Tindows V3	BITMAPINFOHEADER	Tindows 3.0以上例indows版本
108	Tindows V4	BITMAPV4HEADER	Tindows 95/NT4以上的Tindows版本
124	Tindows V5	BITMAPVSHEADER	Vindows 98/2000及其新版本

应该是出于兼容考虑,目前 windows 生成的位图都采用"windows V3",Mac OS(苹果操作系统)采用"OS/2 V1"。因此,以下针对最可能用到的两种格式进行说明。

1.1 windows V3

变量名	地址偏移	大小	值	作用
		(bytes)		
biSize	000E	4	00000028	BITMAPINFOHEADER 结构所需要的字数。
biWidth	0012	4	00000140	说明图像的宽度,以像素为单位
			(320)	
biHeight	0016	4	00000036	说明图像的高度,以像素为单位
			(54)	如果该值是正数,说明图像是倒向;
				如果该值是负值,说明图像是正向。
biPlanes	001A	2	0001	为目标设备说明颜色平面数, 其值将总
				是被设为1。

biBitCount	001C	2	0018	说明比特数/像数, 其值为 1, 4, 8, 16,
			(24)	32
biCompressi	001E	4	00000000	说明图像数据压缩的类型,取值范围:
on				0 BI_RGB不压缩(最常用)
				3 BI_BITFIELDS 比特域,用于 16/32
				位位图
				•••••
biSizeImage	0022	4	00000000	说明图像大小。
				以字节为单位。当用 BI_RGB 格式时,
				可设置为 0。
biXPelsPerM	0026	4	00000000	说明水平分辨率,用像素/米表示
eter				
biYPelsPerM	002A	4	00000000	说明垂直分辨率,用像素/米表示
eter				
biClrUsed	002E	4	00000000	说明位图实际使用的彩色表中的颜色
				索引数(设为0的话,则说明使用所有
				调色板项)
biClrImport	0032	4	00000000	说明对图显示有重要影响的颜色索引
ant				的数目
				如果是 0,表示都重要

共计: 40 字节

示例位图:

windows V3.bmp

1.2OS/2 V1

变量名	地址偏移	大小	值	作用
		(bytes)		
biSize	000E	4	0000000C	BITMAPINFOHEADER 结构所需要的字数。
biWidth	0012	2	0140	说明图像的宽度,以像素为单位
			(320)	
biHeight	0016	2	0036	说明图像的高度,以像素为单位
			(54)	如果该值是正数,说明图像是倒向;
				如果该值是负值,说明图像是正向。
biPlanes	001A	2	0001	为目标设备说明颜色平面数, 其值将总
				是被设为1。
biBitCount	001C	2	0018	说明比特数/像数, 其值为1, 4, 8, 16,
			(24)	32

共计: 12 字节

示例位图:

OS V1.bmp

调色板

16 位色

在嵌入式平台上常见的16位r5g6b5位图实际上采用的掩模的方式而不是索引的方式来 表示图像。此时,在调色板数据段共有四个部分,每个部分为四个字节,实际表示的是彩色 版规范。即:

74.47.2-1.2					
变量名	地址偏移	大小	值	作用	
		(bytes)			
第一部分	0036	4	0000F800	红色分量的掩模	
第二部分	003A	4	000007E0	绿色分量的掩摸	
第三部分	003E	4	0000001F	蓝色分量的掩模	
第四部分	0042	4	00000000	Alpha 分量的掩模(缺省为 0)	

共计: 16 字节

低于 16 位色

分 1/4/8 三种

调色板实际上是一个数组,共有 biClrUsed 个元素(如果该值为零,则有 **2**^{BitCount} 个元素)。数组中每个元素的类型是一个 RGBQUAD 结构,占 4 个字节,其定义如下:

typedef struct tagRGBQUAD {

BYTErgbBlue;//该颜色的蓝色分量BYTErgbGreen;//该颜色的绿色分量BYTErgbRed;//该颜色的红色分量

BYTE rgbReserved; //保留值

} RGBQUAD;

补充

调色板信息是可选的,有的位图文件中有,有的没有。比如 24 位色,每个分量占 8 位,调色板就没用了,可以省略。对于 16 位色,分了很多种,如常用的 565,还有 5551 等,因此一般需要调色板项。

调色板如上, 共占用 16 个字节, 紧接在"位图信息头"后面存放。

图像数据

DIB 压缩

BITMAPINFOHEADER 结构的 biCompression 字段可以为 4 个常量之一,它们是: BI_RGB、BI_RLE8、BI_RLE4 或 BI_BIFIELDS,在 WINGDI. H 头文件中有定义,值分别为 0,1,2,3。此字段有两个用途:对于 4 位和 8 位 DIB,指出像素位用一种行程编码方式压缩了;对于 16 位和 32 位 DIB,指出颜色掩蔽是否用于对像素位进行编码。

1、行程编码(run-length: RLE 压缩): 对 4 位和 8 位

对于 1 位和 24 位 DIB, biCompression 字段始终是 BI_RGB; 对于 4 位和 8 位 DIB, 此字 段是 BI_RGB, 像素位存储方式和前面的 DIB 一样, 若是 BI_RLE4 或 BI_RLE8, 则使用行程编码。

行程编码是根据 DIB 映像在一行内经常有相同的像素串这个事实进行压缩的。

- 8位 DIB 的 RLE:解码时,成对查看 DIB 数据字节。
- (1)如果第一个字节非 0,则它就是行程的重复因子,随后的像素值被重复多次。如,对 0x05 0x27,解码后为 0x27 0x27 0x27 0x27 0x27 0x27
- (2) 如果第二字节为 n=0x03-0xFF 中的一个,则说明要使用接下来的 n 个像素值。如,序列 0x00 0x06 0x45 0x32 0x77 0x34 0x59 0x90,则解码后为 0x45 0x32 0x77 0x34 0x59 0x90。由于总是两字节地检查,所以这此序列总是以 2 字节边界排列,所以若第二字节为奇数,则序列内就有一个未用的多余字节,如,0x00 0x05 0x45 0x32 0x77 0x34 0x59 0x00,则解码后为 0x45 0x32 0x77 0x34 0x59
- (3) 若 2 字节为 00 02, 则后面的 2 字节分别为 dx 和 dy 指出了在现有的 (x,y) [这对数字在开始时为 (0,0),在解码时,每对一个像素解码,x 的值加 1,每完成一行就将 x 置 0,y 加 1] 这个解码位置上移到 (x+dx,y+dy) 上。
 - (4) 若 2 字节为 00 01 和 00 00, 分别说明图像结束和行结束。

对于 4 位 DIB 的 RLE 编码方法相同,但字节和像素之间不是一对一的关系,如,序列 0x07 0x35 0x05 0x24,则解码为 0x35 0x35 0x35 0x32 0x42 0x42

2、颜色掩蔽(color masking): 对 16 位和 32 位 DIB

在 biCompression 字段为 BI_RGB 时:

16 位 DIB 编码方式: 红、绿、蓝三种颜色各使用 5 位,对于行内的第一个像素,蓝色值是第 1 字节的最低 5 位。绿色值在第一和第二字节中都有位: 绿色值的两个最高位是第二个字节中的两个最低位,绿色值的 3 个最低位是第一个字节的 3 个最高位。红色值是第二个字节中的 2 到 6 位。第二个字节的最高位是 0。之所以要这样安排,是因为在以 16 位字访问像素值时,应先取低字节,在取完二个字节后形成的像素值以红、绿、蓝排列。

32 位 DIB 编码方式:由于每个字节是 4 字节,所以前三个字节为红、绿、蓝,最后字节为 0。

在 biCompression 字段为 BI_BITFIELDS 时: 紧跟 DIB 的 BITMAPINFOHEADER 结构的是三个 32 位颜色掩码,分别用于红、绿、蓝。然后用 C 的按位与操作符 (&) 把这些掩码应用于 16 位或 32 位的像素值上。