

planetmath.org

Math for the people, by the people.

sinc is not L^1

Canonical name SincIsNotL1

Date of creation 2013-03-22 15:44:32 Last modified on 2013-03-22 15:44:32 Owner cvalente (11260) Last modified by cvalente (11260)

Numerical id 14

Author cvalente (11260)

Entry type Result
Classification msc 26A06

The main results used in the proof will be that $f \in L^1(A) \iff |f| \in$ $L^{1}(A)$ and the dominated convergence theorem.

Proof by contradiction:

Let $f(x) = |\operatorname{sinc}(x)|$ and suppose it's Lebesgue integrable in \mathbb{R}^+ .

Consider the intervals $I_k = [k\pi, (k+1)\pi]$ and $U_k = \bigcup_{i=0}^k I_k = [0, (k+1)\pi]$. and the succession of functions $f_n(x) = f(x)\chi_{U_n}(x)$, where χ_{U_n} is the characteristic function of the set U_n .

Each f_n is a continuous function of compact support and will thus be integrable in \mathbb{R}^+ . Furthermore $f_n(x) \nearrow f(x)$ (pointwise)

in each I_k , $f(x) \ge \frac{|\sin(x)|}{(k+1)\pi}$

So
$$\int_{\mathbb{R}^+} f_n = \sum_{k=0}^n \int_{k\pi}^{(k+1)\pi} \frac{|\sin(x)|}{x} dx \ge \sum_{k=0}^n \int_{k\pi}^{(k+1)\pi} \frac{|\sin(x)|}{(k+1)\pi} = \sum_{k=0}^n \frac{2}{(k+1)\pi}.$$

Suppose f is integrable in \mathbb{R}^+ . Then by the dominated convergence the-

orem $\lim_{n\to\infty} \int_{\mathbb{R}^+} f_n = \int_{\mathbb{R}^+} f$. But $\lim_{n\to\infty} \int_{\mathbb{R}^+} f_n \ge \lim_{n\to\infty} \sum_{k=0}^n \frac{2}{(k+1)\pi} = +\infty$ and we get the contradiction $\int_{\mathbb{R}^+} f \ge +\infty$.

So f cannot be integrable in \mathbb{R}^+ . This implies that f cannot be integrable in \mathbb{R} and since a function is integrable in a set iff its absolute value is $\operatorname{sinc}(x) \notin L^1(\mathbb{R})$