<u>Área personal</u> / Mis cursos / <u>LC_1G_1C24</u> / <u>S2. Lógica de Predicados</u> / <u>Práctica Formativa</u>

iempo empleado 1 hora 6 n Calificación 7,60 de 10		09		
egunta 1				
e puntúa 1,00 sobre 1,00				
Las leyes de De Morgan dicen	1) que la negación de un e	-	uvalente al enuncia	ado ✓ y 2) la negación de un
enunciado <i>o</i> es lógicamente e	equivalente al enunciado	У	✓ en el que co	ada componente es
negado	~ .			
Respuesta correcta La respuesta correcta es: Las leyes de De Morgan dicen	, .	•		ado [o] en el que cada componente ada componente es [negado] .
Respuesta correcta La respuesta correcta es: Las leyes de De Morgan dicen es [negado] y 2) la negación regunta 2 precta	, .	•		ado [o] en el que cada componente ada componente es [negado] .
Respuesta correcta La respuesta correcta es: Las leyes de De Morgan dicen es [negado] y 2) la negación	, .	•		
Respuesta correcta La respuesta correcta es: Las leyes de De Morgan dicen es [negado] y 2) la negación regunta 2 precta	de un enunciado <i>o</i> es lógi	camente equiva		
Respuesta correcta La respuesta correcta es: Las leyes de De Morgan dicen es [negado] y 2) la negación regunta 2 precta e puntúa 1,00 sobre 1,00	o que siempre es verdo	adero		
Respuesta correcta La respuesta correcta es: Las leyes de De Morgan dicen es [negado] y 2) la negación egunta 2 precta e puntúa 1,00 sobre 1,00 Una tautología es un enunciad	o que siempre es verdo	adero		

Pred	unta	3

Incorrecta

Se puntúa 0,00 sobre 1,00

Utilice las leyes de De Morgan para escribir la negación del enunciado:

Hal estudia la licenciatura en matemáticas y la hermana de Hal estudiante de la licenciatura en ciencia computacional.

Seleccione una:

- a. Hal estudia la licenciatura en matemáticas y la hermana de Hal no es estudiante de la licenciatura en ciencia computacional.
- b. Hal no estudia la licenciatura en matemáticas o la hermana de Hal no es estudiante de la licenciatura en ciencia computacional.
- c. Hal no estudia la licenciatura en matemáticas o la hermana de Hal es estudiante de la licenciatura en ciencia computacional.
- d. Hal no estudia la licenciatura en matemáticas y la hermana de Hal no es estudiante de la licenciatura en ciencia computacional.
- e. Hal no estudia la licenciatura en matemáticas y la hermana de Hal es estudiante de la licenciatura en ciencia computacional.
- f. Ninguna de las anteriores

Respuesta incorrecta.

La respuesta correcta es: Hal no estudia la licenciatura en matemáticas o la hermana de Hal no es estudiante de la licenciatura en ciencia computacional.

Pregunta 4

Incorrecta

Se puntúa 0,00 sobre 1,00

Utilice las leyes de De Morgan para escribir la negación del enunciado:

El conector está suelto o el equipo está desconectado.

Seleccione una:

- a. Ninguna de las anteriores.
- b. El conector no está suelto y el equipo no está desconectado
- c. El conector está suelto y el equipo no está desconectado
- d. El conector no está suelto y el equipo está desconectado
- e. El conector está suelto o el equipo no está desconectado
- f. El conector no está suelto o el equipo no está desconectado x

Respuesta incorrecta.

La respuesta correcta es: El conector no está suelto y el equipo no está desconectado

Pregunta 5

Correcta

Se puntúa 1,00 sobre 1,00

Utilice tablas de verdad para establecer si el enunciado es una tautología (t) o una contradicción (c).

$$(p \land q) \lor (\sim p \lor (p \land \sim q))$$

Por lo tanto el enunciado es †

Respuesta correcta

La respuesta correcta es:

Utilice tablas de verdad para establecer si el enunciado es una tautología (t) o una contradicción (c).

$$(p \land q) \lor (\sim p \lor (p \land \sim q))$$

Por lo tanto el enunciado es [t]

Pregunta **6**

Correcta

Se puntúa 1,00 sobre 1,00

Utilice tablas de verdad para establecer si el enunciado es una tautología (t) o una contradicción (c).

$$(p \land \sim q) \land (\sim p \lor q)$$

Por lo tanto el enunciado es C

Respuesta correcta

La respuesta correcta es:

Utilice tablas de verdad para establecer si el enunciado es una tautología (t) o una contradicción (c).

$$(p \land \sim q) \land (\sim p \lor q)$$

$$p \qquad q \qquad {\sim}p {\sim}q \ p \land {\sim}q {\sim}p \lor q \ (p \land {\sim}q) \land ({\sim}p \lor q)$$

Por lo tanto el enunciado es [c]

Pregunta **7**

Correcta

Se puntúa 2,00 sobre 2,00

Dados los enunciados:

a) x<2 o no es el caso de que 1<x<3

b) $1 \ge X$ o bien x < 2 o $x \ge 3$

Dados:

p: "x<2"

q: "1<x"

r: "x<3"

Escribir los enunciados en forma simbólica:

Enunciado a):

¿Los enunciados a) y b) son lógicamente equivalentes?

Por lo tanto los enunciados son ✓ equivalentes.

Respuesta correcta

La respuesta correcta es: Dados los enunciados:

a) x<2 o no es el caso de que 1<x<3

b) $1 \ge X$ o bien x < 2 o $x \ge 3$

Dados:

p: "x<2"

q: "1<x"

r: "x<3"

Escribir los enunciados en forma simbólica:

Enunciado a):

[p] \vee [\sim (q \wedge r)]

Enunciado b):

[~q] V [(p V~r)]

¿Los enunciados a) y b) son lógicamente equivalentes?

```
q
    r
         a)
               b)
    V
          [V] [V]
V
    F
          [V]
               [V]
F
    V
          [V]
               [V]
F
    F
          [V]
               [V]
V
    V
          [F]
               [F]
V
    F
          [V]
               [V]
    V
               [V]
          [V]
    F
          [V]
              [V]
```

Por lo tanto los enunciados [son] equivalentes.

Pregunta 8

Correcta

Se puntúa 1,00 sobre 1,00

De los enunciados que se presentan, se deduce una equivalencia lógica. Dé una razón para cada paso utilizando las propiedades (vistas en el capítulo 3 de la semana 2).

Enunciado 1:

```
\sim (p ∨ q) ∧ ( \simq ∨ q)

\equiv ~ (p ∨ q) ∧ t por Ley de negación

✓

Enunciado 2:

(\sim p \lor (\sim p \land q)) \land (c \lor q)

\equiv ~ p ∧ (c ∨ q) por Ley de absorción

✓

Enunciado 3:

(\sim (\sim p \lor q)) \lor q \equiv

\equiv (\sim (\sim p) \land \sim q) \lor q por Ley de De Morgan
```

Respuesta correcta

La respuesta correcta es:

De los enunciados que se presentan, se deduce una equivalencia lógica. Dé una razón para cada paso utilizando las propiedades (vistas en el capítulo 3 de la semana 2).

Enunciado 1:

```
\sim(p \vee q) \wedge ( \simq \vee q)
```

 $\equiv \sim (p \lor q) \land t por [Ley de negación]$

Enunciado 2:

 $(\sim p \lor (\sim p \land q)) \land (c \lor q)$

 \equiv ~ p \land (c \lor q) por [Ley de absorción]

Enunciado 3:

 $\equiv (\sim (\sim p) \land \sim q) \lor q \text{ por [Ley de De Morgan]}$

Pregunta 9 Parcialmente correcta Se puntúa 0,60 sobre 1,00

Del enunciado que se presenta, se deduce una equivalencia lógica utilizando las propiedades del Capítulo 3, dé una razón para cada paso:

```
\sim((\simp v q) v (\simp ∧ \simq)) v (p ∧ q) ≡

\equiv\sim(\simp ∧ (q v \simq)) v (p ∧ q) por Ley de absorción

\equiv \sim(\simp ∧ t) v (p ∧ q) por Ley de negación

\equiv \sim(\simp) v (p ∧ q) por Ley universal de acotación

\equiv p v (p ∧ q) por Ley de la doble negación
```

por Ley de absorción

Respuesta parcialmente correcta.

Ha seleccionado correctamente 3.

La respuesta correcta es:

≡ p

Del enunciado que se presenta, se deduce una equivalencia lógica utilizando las propiedades del Capítulo 3, dé una razón para cada paso:

■ Lógica de Predicados

Ir a...

Introducción y Orientaciones >

<u>Descargar la app para dispositivos móviles</u>