

# Projeto e Análise de Algoritmos **Recorrências**

Professor Douglas Castilho douglas.braz@ifsuldeminas.edu.br

# Últimas aulas...



# Notações

- O
- Ω
- (H)
- $\Box$   $\omega$
- 0





| Função   | Tamanho $n$  |              |              |              |              |              |
|----------|--------------|--------------|--------------|--------------|--------------|--------------|
| de custo | 10           | 20           | 30           | 40           | 50           | 60           |
| n        | 0,00001<br>s | 0,00002<br>s | 0,00003<br>s | 0,00004<br>s | 0,00005<br>s | 0,00006<br>s |

supondo que uma operação gasta em média 10-6 segundos...





| Função   | Tamanho $n$ |         |         |         |         |         |  |
|----------|-------------|---------|---------|---------|---------|---------|--|
| de custo | 10          | 20      | 30      | 40      | 50      | 60      |  |
| n        | 0,00001     | 0,00002 | 0,00003 | 0,00004 | 0,00005 | 0,00006 |  |
|          | s           | s       | s       | s       | s       | s       |  |
| $n^2$    | 0,0001      | 0,0004  | 0,0009  | 0,0016  | 0,0.35  | 0,0036  |  |
|          | s           | s       | s       | s       | s       | s       |  |





| Função   | Tamanho $n$ |         |         |         |         |         |  |
|----------|-------------|---------|---------|---------|---------|---------|--|
| de custo | 10          | 20      | 30      | 40      | 50      | 60      |  |
| n        | 0,00001     | 0,00002 | 0,00003 | 0,00004 | 0,00005 | 0,00006 |  |
|          | s           | s       | s       | s       | s       | s       |  |
| $n^2$    | 0,0001      | 0,0004  | 0,0009  | 0,0016  | 0,0.35  | 0,0036  |  |
|          | s           | s       | s       | s       | s       | s       |  |
| $n^3$    | 0,001       | 0,008   | 0,027   | 0,64    | 0,125   | 0.316   |  |
|          | s           | s       | s       | s       | s       | s       |  |





| Função   | Tamanho $n$ |         |         |         |         |         |
|----------|-------------|---------|---------|---------|---------|---------|
| de custo | 10          | 20      | 30      | 40      | 50      | 60      |
| n        | 0,00001     | 0,00002 | 0,00003 | 0,00004 | 0,00005 | 0,00006 |
|          | s           | s       | s       | s       | s       | s       |
| $n^2$    | 0,0001      | 0,0004  | 0,0009  | 0,0016  | 0,0.35  | 0,0036  |
|          | s           | s       | s       | s       | s       | s       |
| $n^3$    | 0,001       | 0,008   | 0,027   | 0,64    | 0,125   | 0.316   |
|          | s           | s       | s       | s       | s       | s       |
| $n^5$    | 0,1         | 3,2     | 24,3    | 1,7     | 5,2     | 13      |
|          | s           | s       | s       | min     | min     | min     |





| Função   | Tamanho $n$ |         |         |         |         |         |
|----------|-------------|---------|---------|---------|---------|---------|
| de custo | 10          | 20      | 30      | 40      | 50      | 60      |
| n        | 0,00001     | 0,00002 | 0,00003 | 0,00004 | 0,00005 | 0,00006 |
|          | s           | s       | s       | s       | s       | s       |
| $n^2$    | 0,0001      | 0,0004  | 0,0009  | 0,0016  | 0,0.35  | 0,0036  |
|          | s           | s       | s       | s       | s       | s       |
| $n^3$    | 0,001       | 0,008   | 0,027   | 0,64    | 0,125   | 0.316   |
|          | s           | s       | s       | s       | s       | s       |
| $n^5$    | 0,1         | 3,2     | 24,3    | 1,7     | 5,2     | 13      |
|          | s           | s       | s       | min     | min     | min     |
| $2^n$    | 0,001       | 1       | 17,9    | 12,7    | 35,7    | 366     |
|          | s           | s       | min     | dias    | anos    | séc.    |





| Função   |            | Tamanho $n$ |             |              |                         |                |  |
|----------|------------|-------------|-------------|--------------|-------------------------|----------------|--|
| de custo | 10         | 20          | 30          | 40           | 50                      | 60             |  |
| n        | 0,00001    | 0,00002     | 0,00003     | 0,00004      | 0,00005                 | 0,00006        |  |
|          | s          | s           | s           | s            | s                       | s              |  |
| $n^2$    | 0,0001     | 0,0004      | 0,0009      | 0,0016       | 0,0.35                  | 0,0036         |  |
|          | s          | s           | s           | s            | s                       | s              |  |
| $n^3$    | 0,001      | 0,008       | 0,027       | 0,64         | 0,125                   | 0.316          |  |
|          | s          | s           | s           | s            | s                       | s              |  |
| $n^5$    | 0,1        | 3,2         | 24,3        | 1,7          | 5,2                     | 13             |  |
|          | s          | s           | s           | min          | min                     | min            |  |
| $2^n$    | 0,001      | 1           | 17,9        | 12,7         | 35,7                    | 366            |  |
|          | s          | s           | min         | dias         | anos                    | séc.           |  |
| $3^n$    | 0,059<br>s | 58<br>min   | 6,5<br>anos | 3855<br>séc. | 10 <sup>8</sup><br>séc. | $10^{13}$ séc. |  |



 Quando um algoritmo contém uma chamadas recursiva, seu tempo de execução pode frequentemente ser descrito por uma recorrência;



- Quando um algoritmo contém uma chamadas recursivas, seu tempo de execução pode frequentemente ser descrito por uma recorrência;
- Com o ferramental aprendido até o momento, não somos capazes de analisar a complexidade de algoritmos recursivos;



- Quando um algoritmo contém uma chamadas recursivas, seu tempo de execução pode frequentemente ser descrito por uma recorrência;
- Com o ferramental aprendido até o momento, não somos capazes de analisar a complexidade de algoritmos recursivos;
- Para os algoritmos recursivos, a ferramenta principal desta análise não é uma somatória, mas um tipo especial de equação chamada relação de recorrência.



- Quando um algoritmo contém uma chamadas recursivas, seu tempo de execução pode frequentemente ser descrito por uma recorrência;
- Com o ferramental aprendido até o momento, não somos capazes de analisar a complexidade de algoritmos recursivos;
- Para os algoritmos recursivos, a ferramenta principal desta análise não é uma somatória, mas um tipo especial de equação chamada relação de recorrência.
- Uma recorrência é uma equação ou desigualdade que descreve uma função em termos de seu valor em entradas menores;



• Para cada procedimento recursivo é associada uma função de complexidade *T*(*n*) desconhecida, onde *n* mede o tamanho dos argumentos para o procedimento.

• <u>Equação de recorrência:</u> maneira de definir uma função por uma expressão envolvendo a mesma função.



Vamos considerar o algoritmo de ordenação por Inserção.





#### Considerando o pior caso:

- Na primeira vez, apenas uma operação é necessária...
- Da segunda, 2...
- Da terceira, 3... E isso é executado... N vezes...
- Ou seja, todos os elementos serão inseridos na última posição verificada;



#### Considerando o pior caso:

- Na primeira vez, apenas uma operação é necessária...
- Da segunda, 2...
- Da terceira, 3... E isso é executado... N vezes...

$$T(n) = T(n-1)+1$$

$$T(n-1) = T(n-2)+2$$

$$T(n-2) = T(n-3)+3$$

$$T(n-3) = T(n-4)+4$$

• • •

$$T(2) = T(1) + n - 2$$

$$T(1) = n - 1$$



$$T(n) = 1 + 2 + 3 + 4 + ... + (n-2) + (n-1)$$



$$T(n) = 1 + 2 + 3 + 4 + ... + (n-2) + (n-1)$$

$$T(n) = \sum_{i=1}^{n-1} i$$



$$T(n) = 1 + 2 + 3 + 4 + ... + (n-2) + (n-1)$$

$$T(n) = \sum_{i=1}^{n-1} i = \left(\sum_{i=1}^{n} i\right) - n = \left(\frac{n(n+1)}{2}\right) - n$$

$$T(n) = \frac{n^2 + n}{2} - n = \frac{n^2 + n - 2n}{2}$$

$$T(n) = \frac{n^2 - n}{2}$$



$$T(n) = 1 + 2 + 3 + 4 + ... + (n-2) + (n-1)$$

$$T(n) = \sum_{i=1}^{n-1} i = \left(\sum_{i=1}^{n} i\right) - n = \left(\frac{n(n+1)}{2}\right) - n$$

$$T(n) = \frac{n^2 + n}{2} - n = \frac{n^2 + n - 2n}{2}$$

$$T(n) = \frac{n^2 - n}{2}$$

$$T(n) = \frac{n^2 - n}{2} \in \Theta(n^2)$$



- Outro exemplo de recorrência:
  - Considere o algoritmo "pouco formal" abaixo:
    - O algoritmo inspeciona n elementos de um conjunto qualquer;
  - De alguma forma, isso permite descartar 2/3 dos elementos e fazer uma chamada recursiva sobre um terço do conjunto original.

```
Algoritmo Pesquisa(vetor)

if vetor.size() ≤1 then

inspecione elemento;

else

inspecione cada elemento recebido (vetor);

Pesquisa(vetor.subLista(1, (vetor.size()/3));

end if

end.
```



Montando a equação de recorrência:

```
L1: Algoritmo Pesquisa(vetor)

L2: if vetor.size() ≤ 1 then

L3: inspecione elemento;

L4: else

L5: inspecione cada elemento recebido (vetor);

L6: Pesquisa(vetor.subLista(1, (vetor.size()/3));

L7: end if

L8: end.
```

#### Caso base da recursão:

- O custo da linha 2 é  $\theta(1)$ ;
- O custo da linha  $3 \in \theta(1)$ ;



Montando a equação de recorrência:

```
L1: |Algoritmo Pesquisa(vetor)
         L2:
                 if vetor.size() \le 1 then
\Theta(1)
\Theta(1)
         L3:
                  inspecione elemento;
         L4:
                 else
         L5:
                   inspecione cada elemento recebido (vetor);
         L6:
                   Pesquisa(vetor.subLista(1, (vetor.size()/3));
         L7:
                 end if
         L8: |end.
```

#### Caso geral da recursão:

- O custo da linha 5 é  $\theta$ (n);
- A linha 6 é onde a própria função Pesquisa é chamada em um conjunto reduzido.



Montando a equação de recorrência:

```
L1: |Algoritmo Pesquisa(vetor)
             \Theta(1)
                      L2:
                              if vetor.size() \le 1 then
             \Theta(1)
                      L3:
                               inspecione elemento;
                       L4:
                              else
                      L5:
                                 inspecione cada elemento recebido (vetor);
              \Theta(n)
Chamada recursiva
                      L6:
                                 Pesquisa(vetor.subLista(1,(vetor.size()/3));
                      L7:
                              end if
                       L8: end.
```

Monte a equação de recorrência...



$$T(n) = \begin{cases} 1, sen \le 1 \\ T(n/3) + n, caso contrário \end{cases}$$

```
L1: |Algoritmo Pesquisa(vetor)
             \Theta(1)
                     L2:
                              if vetor.size() \le 1 then
             \Theta(1)
                    L3:
                               inspecione elemento;
                      L4:
                              else
                      L5:
                                inspecione cada elemento recebido (vetor);
              \Theta(n)
                      L6:
Chamada recursiva
                                Pesquisa(vetor.subLista(1, (vetor.size()/3));
                      L7:
                              end if
                      L8: |end.
```

• Resolva a equação de recorrência...



$$T(n) = \begin{cases} 1, sen \le 1 \\ T(n/3) + n, caso contrário \end{cases}$$

$$T(n)$$
 =  $n+T(n/3)$   
 $T(n/3)$  =  $n/3+T(n/3/3)$   
 $T(n/3/3)$  =  $n/3/3+T(n/3/3)$   
 $T(n/3/3/3)$  =  $n/3/3/3+T(n/3/3/3)$   
...

 $T(n/3/3.../3) = n/3/3/3.../3+T(n/3/3/3.../3)$   
 $T(1)$  = 1



$$T(n) = \begin{cases} 1, sen \le 1 \\ T(n/3) + n, caso contrário \end{cases}$$

$$T(n) = n + T(n/3)$$
  
 $T(n/3) = n/3 + T(n/3/3)$   
 $T(n/3) = n/3/3 + T(n/3/3/3)$   
 $T(n/3/3) = n/3/3/3 + T(n/3/3/3/3)$   
...

 $T(n/3/3.../3) = n/3/3/3.../3 + T(n/3/3/3.../3)$   
 $T(1) = 1$ 

$$T(n) = n + n/3 + n/3/3 + ... + n/3/3.../3/3 + 1$$



$$T(n) = \begin{cases} 1, se & n \le 1 \\ T(n/3) + n, caso \ contrário \end{cases}$$

$$T(n) = n + n/3 + n/3/3 + ... + n/3/3/3.../3 + 1$$

• A formula representa a soma de uma série geométrica de razão 1/3, multiplicada por n, e adicionada de  $T(n/3/3/3/3 \cdot \cdot \cdot /3)$ , que é menor ou igual a 1.

$$T(n) = n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{3}\right)^{i} + 1$$



$$T(n) = \begin{cases} 1, sen \le 1 \\ T(n/3) + n, caso contrário \end{cases}$$

$$T(n) = n + n/3 + n/3/3 + ... + n/3/3/3.../3 + 1$$

$$T(n) = n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{3}\right)^{i} + 1$$



$$T(n) = \begin{cases} 1, sen \le 1 \\ T(n/3) + n, caso contrário \end{cases}$$

$$T(n) = n + n/3 + n/3/3 + ... + n/3/3/3.../3 + 1$$

$$T(n) = n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{3}\right)^{i} + 1 \rightarrow usando: \sum_{k=0}^{\infty} x^{k} = \frac{1}{1-x}$$



$$T(n) = \begin{cases} 1, sen \le 1 \\ T(n/3) + n, caso contrário \end{cases}$$

$$T(n) = n + n/3 + n/3/3 + ... + n/3/3/3.../3 + 1$$

$$T(n) = n \cdot \sum_{i=0}^{\infty} \left(\frac{1}{3}\right)^{i} + 1 \rightarrow usando: \sum_{k=0}^{\infty} x^{k} = \frac{1}{1-x}$$

$$T(n) = n \left(\frac{1}{1 - 1/3}\right) + 1 = \frac{3n}{2} + 1$$

portanto

$$T(n) \in \Theta(n)$$

### Recursividade



- Com as arquiteturas atuais, devemos evitar o uso de recursividade quando a solução iterativa é óbvia;
- Exemplos:
  - Fatorial;
  - Fibonacci;

Lembrem-se do crescimento da pilha de execução nos algoritmos

recursivos;



### Exercício 1



 Faça a análise de recorrência do algoritmo que calcula o fatorial de um número

```
L1: Algoritmo Fatorial(n)
```

L2: if  $n \le 1$  then

L3: retorne 1;

L4: else

L5:  $retorne \ n \cdot fatorial(n-1)$ 

L6: end if

L7: end.

### Exercício 2



- Implemente os algoritmos de fatorial e fibonacci nas versões:
  - Iterativa;
  - Recursiva.
  - Apresente suas curvas de crescimento em função do tamanho do problema (análise experimental).
  - Faça uma análise sobre os resultados.

# Análise do Fatorial

```
int Fat (int n) {
   if (n \le 0)
       return 1;
   else
      return n * Fat(n-1);

\begin{cases}
T(n) = T(n-1) + c & p/n > 0 \\
T(n) = d & p/n \le 0
\end{cases}
```

## Análise do Fatorial

```
int Fat (int n) {
  if (n \le 0)
     return 1;
  else
     return n * Fat(n-1);
T(n) = T(n-1) + c  p/n>0

T(n) = d  p/n \le 0
```

Expansão de termos: T(n) = T(n-1) + cT(n-1) = T(n-2) + cT(2) = T(1) + cT(1) = dT(n) = c+c+...+c+dT(n) = (n-1).c + d

 $T(n) = \Theta(n)$ 

#### Análise do Mergesort

```
MERGE-SORT (A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT (A, p, q)

4 MERGE-SORT (A, q+1, r)

5 MERGE (A, p, q, r)
```

$$T(n) = 2*T(n/2) + n$$
 p/ n>1  
 $T(n) = 1$  p/ n=1

#### Alguns Detalhes:

- N potência de 2
- Algumas vezes caso base é omitido

$$T(n) = 2T(n/2) + n$$
$$T(1) = 1$$

$$T(n) = 2T(n/2) + n$$
  
 $T(1) = 1$   
Expandindo a equação  
 $T(n) = 2T(n/2) + n$   
 $2T(n/2) = 4T(n/4) + n$   
 $4T(n/4) = 8T(n/8) + n$   
 $\vdots$ 

$$T(n) = 2T(n/2) + n$$
  
 $T(1) = 1$   
Expandindo a equação  
 $T(n) = 2T(n/2) + n$   
 $2T(n/2) = 4T(n/4) + n$   
 $4T(n/4) = 8T(n/8) + n$   
:  
:  
 $2^{i-1}T(n/2^{i-1}) =$   
 $= 2^{i}T(n/2^{i}) + n$ 

$$T(n) = 2T(n/2) + n$$
$$T(1) = 1$$

Expandindo a equação

$$T(n) = 2T(n/2) + n$$
  
 $2T(n/2) = 4T(n/4) + n$   
 $4T(n/4) = 8T(n/8) + n$ 

 $2^{i-1}T(n/2^{i-1}) =$   $= 2^{i}T(n/2^{i}) + n$ 

Substituindo os termos:

$$T(n) = 2^{i} T(n/2^{i}) + i.n$$

$$T(n) = 2T(n/2) + n$$
$$T(1) = 1$$

Expandindo a equação

$$T(n) = 2T(n/2) + n$$
  
 $2T(n/2) = 4T(n/4) + n$ 

$$4T(n/4) = 8T(n/8) + n$$

 $2^{i-1}T(n/2^{i-1}) =$ =  $2^{i}T(n/2^{i}) + n$  Substituindo os termos:

$$T(n) = 2^{i}T(n/2^{i}) + i.n$$

Caso base:

$$T(n/2^i) \rightarrow T(1)$$
  
 $n/2^i = 1 \rightarrow i = \log_2 n$ 

$$T(n) = 2T(n/2) + n$$
$$T(1) = 1$$

Expandindo a equação

$$T(n) = 2T(n/2) + n$$
  
 $2T(n/2) = 4T(n/4) + n$ 

$$4T(n/4) = 8T(n/8) + n$$

:

$$2^{i-1}T(n/2^{i-1}) =$$
  
=  $2^{i}T(n/2^{i}) + n$ 

Substituindo os termos:

$$T(n) = 2^{i}T(n/2^{i}) + i.n$$

Caso base:

$$T(n/2^i) \rightarrow T(1)$$

$$n/2^i = 1 \rightarrow i = \log_2 n$$

Substituir i na equação

$$T(n) = 2T(n/2) + n$$
  
 $T(1) = 1$   
Expandindo a equação  
 $T(n) = 2T(n/2) + n$   
 $2T(n/2) = 4T(n/4) + n$   
 $4T(n/4) = 8T(n/8) + n$   
:  
:  
 $2^{i-1}T(n/2^{i-1}) =$   
 $= 2^{i}T(n/2^{i}) + n$ 

Substituindo os termos:  $T(n) = 2^{i}T(n/2^{i}) + i.n$ Caso base:  $T(n/2^i) \rightarrow T(1)$  $n/2^i = 1 \rightarrow i = \log_2 n$ Logo:  $T(n) = 2^{i}T(n/2^{i}) + i.n$  $= 2^{\log_2 n} . 1 + (\log_2 n) . n$ 

 $= n + n.\log_2 n = \Theta(n.\log_2 n)$ 

$$T(n) = 2T(n/2) + n$$
  
 $T(1) = 1$   
Expandindo a equação  
 $T(n) = 2T(n/2) + n$   
 $2T(n/2) = 4T(n/4) + n$   
 $4T(n/4) = 8T(n/8) + n$   
:  
:  
 $2^{i-1}T(n/2^{i-1}) =$   
 $= 2^{i}T(n/2^{i}) + n$ 

Substituindo os termos:

$$T(n) = 2^{i}T(n/2^{i}) + i.n$$

Caso base:

$$T(n/2^i) \rightarrow T(1)$$

$$n/2^i = 1 \rightarrow i = \log_2 n$$

Logo:

$$T(n) = 2^{i} T(n/2^{i}) + i.r$$

$$= 2^{\log_2 n} . 1 + (\log_2 n) . n$$

$$= n + n.\log_2 n = \Theta(n.\log_2 n)$$

# ÁRVORE DE RECURSÃO

#### Método da Árvore de Recursão

- Aplicando-se a recursão, monta-se uma árvore onde cada nó representa o custo de um subproblema.
- Expandindo-se a árvore, pode-se obter a soma de todos os custos de cada nível e depois do problema como um todo.
- De certa forma funciona como uma visualização do método da "expansão de termos" apresentado inicialmente.

# Árvore de Recursão - Exemplo



Total:  $cn \lg n + cn$ 

#### Leitura para a próxima aula



- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.;
   (2002). Algoritmos Teoria e Prática. Tradução da 2<sup>a</sup> edição americana. Rio de Janeiro. Editora Campus.
  - Seção 4.3 O método mestre (<u>teorema mestre</u>)



#### Bibliografia



• CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; (2002). Algoritmos – Teoria e Prática. Tradução da 2ª edição americana. Rio de Janeiro. Editora Campus.



• TAMASSIA, ROBERTO; GOODRICH, MICHAEL T. (2004). Projeto de Algoritmos - Fundamentos, Análise e Exemplos da Internet.



• ZIVIANI, N. (2007). Projeto e Algoritmos com implementações em Java e C++. São Paulo. Editora Thomson;

