# EE3104C Introduction to RF and Microwave Systems & Circuits

Owen Leong owenleong@u.nus.edu

November 29, 2024

#### 1 Transmission Line

$$\frac{d^2V(z)}{dz^2} - \gamma^2V(z) = 0, V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$

$$V(z,t) = |V_o^+| \cos(\omega t - \beta z + \phi^+) + |V_0^-| \cos(\omega t + \beta z + \phi^-)$$

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}, \lambda = \frac{2\pi}{\beta}, v_p = \frac{\omega}{\beta}$$

$$\alpha \text{ is attenuation constant, } \beta \text{ is phase constant.}$$

$$Z_{0} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}, I_{0}^{+} = \frac{V_{0}^{+}}{Z_{0}}, I_{0}^{-} = -\frac{V_{0}^{-}}{Z_{0}}$$

$$\Gamma_{L} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} = \frac{V_{0}^{-}}{V_{0}^{+}}, \ \Gamma(-l) = \Gamma_{L} e^{-j2\beta l} = \frac{V_{0}^{-} e^{-j\beta l}}{V_{0}^{+} e^{j\beta l}}$$

$$Z_{in}(-l) = Z_{0} \frac{Z_{L} + jZ_{0} \tan(\beta l)}{Z_{0} + jZ_{L} \tan(\beta l)}$$

$$SWR = \frac{1 + |\Gamma_{L}|}{1 - |\Gamma_{L}|} \quad P_{av} = \frac{1}{2} \frac{|V_{0}^{+}|^{2}}{Z_{0}} (1 - |\Gamma|^{2})$$

Lossless transmission line  $R = G = 0, \alpha = 0$ 

# 2 Smith Chart & Scattering Parameters



Figure 1: (L) Const resistance (r) circles, (R) Const reactance (x) circles

Normalized impedance z = r + jxAdmittance smith chart is same but rotated 180°



Figure 2: Rotate clockwise to obtain  $z_{in}$  from  $z_L$  by multiples of  $\lambda$ 

#### 2.1 Scattering Matrix

$$\begin{bmatrix} V_1^- \\ V_2^- \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} V_1^+ \\ V_2^+ \end{bmatrix}, \quad S_{ij} = \frac{V_i^-}{V_j^+} \Big|_{V_k^+ = 0 \text{ for } k \neq j}$$

For reciprocal network,  $S = S^T$ 

Lossless, 
$$\sum_{n=1}^{N} S_{ni} S_{ni}^* = 1$$
 and  $\sum_{n=1}^{N} S_{ni} S_{nj}^* = 0$  for  $i \neq j$ 

### 3 Antennae

 $\begin{array}{ll} \textbf{Far-Field} & \textbf{Region} \\ \textbf{Practical} & \textbf{definition} & \textbf{where} \\ \textbf{maximum} & \textbf{phase} & \textbf{error} & \textbf{of} \\ 22.5^{\circ}. & R \geq \frac{2D^2}{\lambda} \\ \textbf{Reflection} & \textbf{Coefficient} \\ \Gamma = \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \end{array}$ 



**VSWR** voltage standing wave ratio is  $VSWR = \frac{1+|\Gamma|}{1-|\Gamma|}$ . 1 for perfectly matched,  $\infty$  for completely unmatched. **Radiated Power**  $P_{rad} = \oiint_S \frac{1}{2}\Re[E \times H^*] \cdot ds$  **Directivity** The ratio of maximum power density to average value.

$$D = \frac{4\pi}{\int\limits_{\phi=0}^{2\pi} \int\limits_{\theta=0}^{\pi} P_n(\theta, \phi) \sin \theta \ d\theta \ d\phi}$$

Gain  $G = \eta_{rad}D$ ,  $0 < \eta_{rad} < 1$  is antenna efficiency  $D_{max} = \frac{4\pi A_P}{\lambda^2}$ ,  $D = \eta_{ap}D_{max} = \frac{4\pi A_e}{\lambda^2}$ , for aperture efficiency  $\eta_{ap}$ , aperture area  $A_P$  and effective aperture area  $A_e = \eta_{ap}A_P$ .

Beam area  $\Omega_A = \iint_{4\pi} P_n(\theta, \phi) d\Omega$ 

Brightness Temp 
$$T_b = \frac{\int\limits_{\theta=0}^{\pi}\int\limits_{\phi=0}^{2\pi}T_B(\theta,\phi)D(\theta,\phi)\sin\theta d\theta d\phi}{\int\limits_{\theta=0}^{\pi}\int\limits_{\phi=0}^{2\pi}D(\theta,\phi)\sin\theta d\theta d\phi}$$

 $T_B$  background noise temp. D radiation pattern. **Antenna Noise Temp**  $T_A = e_{rad}T_b + (1-e_{rad})T_p$   $e_{rad}$  radiation efficiency, 1 for lossless antenna.  $T_p$  is physical temperature of antenna.

# 4 Amplifiers

#### 4.1 Noise Power of White Noise Source

 $N_0 = KTB = (1.38 \times 10^{-23} J/K)(290K)(BW, Hz)$ Equivalent Noise Temperature  $T_e = \frac{N_0}{kB}$ 

#### 4.2 Noise Figure of a Component

$$F = \frac{S_i/N_i}{S_o/N_o} \ge 1$$
 
$$T_e = (F-1)T_0, \ F = 1 + \frac{T_e}{T_0}, \ T_0 = 290K$$
 
$$N_0 = FkGBT_0 = kGB(T_0 + T_e)$$

#### 4.2.1 Cascaded Amplifiers

$$T_{cas} = T_{e1} + \frac{T_{e2}}{G_1} \quad T_{cas} = T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1 G_2}$$

$$F_{cas} = F_1 + \frac{F_2 - 1}{G_1} \quad F_{cas} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2}$$

$$G = G_1 G_2 \quad G = G_1 G_2 G_3$$

#### 4.2.2 Example



$$F_{cas} = F_a + \frac{F_f - 1}{G_a} + \frac{F_m - 1}{G_a G_f} = 10^{0.2} + \frac{10^{0.1} - 1}{10^1} + \frac{10^{-0.3} - 1}{10^1 \times 10^{-0.1}}$$

$$T_{cas} = (F_{cas} - 1)T_0 = (1.80 - 1) \times 290 = 232K$$

$$N_o = k(T_A + T_{cas})BG, SNR = \frac{S_o}{N_c}, S_o = GS_i$$

#### 4.3 Nonlinearities

Suppose 
$$v_o = c_o + c_1 v_i + c_2 v_i^2 + c_3 v_i^3$$
 and  $v_i = A \cos(\omega t)$ 

$$v_o = \left(c_o + \frac{c_2 A^2}{2}\right) + \left(c_1 A + \frac{3c_3 A^3}{4}\right) \cos \omega t$$

$$+ \frac{c_2 A^2}{2} \cos 2\omega t + \frac{c_3 A^3}{4} \cos 3\omega t$$
1dB Compression Point  $OP_{1dB} = IP_{1dB} + G - 1$ 

#### 4.3.1 IM3 (Third-order inter-modulation) products

For 
$$v_i = A(\cos \omega_1 t + \cos \omega_2 t)$$
  
 $\frac{3}{4}c_3A^3(\cos(2\omega_1 + \omega_2)t + \cos(2\omega_1 - \omega_2)t$   
 $+\cos(2\omega_2 + \omega_1)t + \cos(2\omega_2 - \omega_1)t)$   
Extrapolate 1st-order and 3rd-order output to find  $IIP3$ , for small  $A$ ,  $|c_1A| = \left|\frac{3}{4}c_3A^3\right| \implies A^2 = \frac{4}{3}\left|\frac{c_1}{c_3}\right|$ 

# 5 Propagation

Equivalent isotropically radiated power: to get the same power either increase input power or increase directivity, both can achieve the same radiated power. U is power density.

Downlink is satellite to earth transmission

In system design always consider frequency, consider time varying channel Some estimation of the link in the power point of view

#### 5.1 Friis Transmission Equation

**Gain**  $G = \max G(\theta, \phi)$ 

$$G(\theta, \phi) = \frac{U(\theta, \phi)}{U_{ave}} = e_{rad} \frac{U(\theta, \phi)}{U_{rad,ave}} = e_{rad} D(\theta, \phi)$$

Total radiated power  $P_{rad} = \iint_{4\pi} U(\theta, \phi) d\Omega$   $U_{rad,ave} = e_{rad} U_{ave} = e_{rad} \frac{P_{input}}{4\pi}$ 

$$U_{rad,ave} = e_{rad}U_{ave} = e_{rad}\frac{P_{input}}{4\pi}$$

Equivalent Isotropically Radiated Power  $EIRP = G_t P_t$  (W)

**Effective Aperture**  $P_r$  available power,  $A_e$  effective area,  $U_{inc}$  power density of incident plane wave

$$A_e = \frac{G\lambda^2}{4\pi} \quad P_r = A_e U_{inc} = A_e \frac{G_t P_t}{4\pi R^2} = \frac{G_t G_r \lambda^2 P_t}{(4\pi R)^2} \quad (W)$$

$$A_{ei} = \frac{\lambda^2}{4\pi} (m^2) \quad G = \frac{P_r}{P_{ri}} = \frac{A_e}{A_{ei}}$$

$$e_{ap}(\theta, \phi) = \frac{A_e(\theta, \phi)}{A_{nhv}} \quad A_e(\theta, \phi) = G_r A_{ei}$$

Electrical area  $\frac{A_e}{\lambda^2}$ Polarization  $e_{pm} = |a_i \cdot a_r|^2 = |a_\theta \cdot a_z|^2 = |\cos \theta|^2$ Pathloss

$$P_r = U_{inc}A_{er} = G_t \frac{P_t}{4\pi r^2} G_r \frac{\lambda^2}{4\pi} = P_t G_t G_r (\frac{\lambda}{4\pi r})^2$$
$$\frac{P_r}{P_t} = G_t G_r (\frac{\lambda}{4\pi r})^2 |a_t \cdot a_r|^2$$

Freespace pathloss  $(\frac{4\pi r}{\lambda})^2$  or  $20\log(\frac{4\pi R}{\lambda})$  dB (> 0) G/T ratio Gain of the receiving antenna divided by antenna noise temperature

$$SNR = \frac{S_{input}}{N_{input}} = \frac{G_r}{T_A} \frac{G_t P_t \lambda^2}{k B (4\pi r)^2} \propto \frac{G_r}{T_A}$$

#### 5.2 Pathloss, Attenuation and Fading

Receive power = Transmit Power - Transmit antenna line loss + Transmit antenna gain - Path loss (free space) - Atmospheric attenuation + Receive antenna gain - Receive antenna line loss

#### 6 Receiver Architectures

Noise temp of antenna  $T_A = e_{rad}T_b + (1 - e_{rad})T_p$ Minimum detectable input signal

$$S_{i,min} = \frac{S_{o,min}}{G} = \frac{N_o}{G} \frac{S_o}{N_o} \frac{1}{min} = kB(T_A + T_e) \frac{S_o}{N_o} \frac{1}{min}$$

$$V_{i,min} = \sqrt{2Z_oS_{i,min}}$$

$$DR_r = \frac{s_{i,max}}{s_{i,min}}, \quad s_{i,max} \text{ determined by 3rd-order intercept point, } s_{i,min} \text{ determined above.}$$

Automatic gain control gain depending on input level to meet dynamic range requirements.

Down-conversion to IF frequency

$$f_{IF} = |f_{RF} - f_{LO}|, f_{LO} = f_{RF} - f_{IF}$$
  
 $f_{IM} = f_{RF} - 2f_{IF}$  or  $f_{RF} + 2f_{IF}$   
Intermodulation products are at  $f = |mf_{RF} - nf_{LO}|$ , should not be less than the IF bandwidth.

#### 7 Radar

Radar power density  $S_t(\theta,\phi) = \frac{P_t G}{4\pi R^2} W/m^2$ Radar cross section  $\sigma(\theta, \phi) = \frac{P_s}{S_t} m^2$  is ratio of power scattered in the direction to incident power density Received scattered power  $S_r(\theta, \phi) = \frac{P_s}{4\pi R^2}$ Radar equation  $P_r = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4} W$ 

Max detection range 
$$R_{max} = \sqrt[4]{rac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 P_{min}}}$$

Radar mechanisms continuous wave (cw) for velocity, pulsed for range, pulsed-Doppler for range and velocity, frequency-modulated continuous wave for velocity and range

**Doppler shift**, transmitted frequency  $f_0$ , target velocity v, then doppler frequency shift is  $f_d = \frac{2vf_0}{c}$ received frequency is  $f_0 \pm f_d$ , + for approaching target and - for receding target

#### 8 Extras

$$\begin{array}{l} 1~{\rm in}=2.54~{\rm cm} \\ k=10^3, M=10^6, G=10^9, T=10^{12}, P=10^{15}, E=10^{18} \\ m=10^{-3}, \mu=10^{-6}, n=10^{-9}, p=10^{-12}, f=10^{-15}, a=10^{-18} \end{array}$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

$$\cos 3x = 4\cos^3 x - 3\cos x, \sin 3x = 3\sin x - 4\sin^3 x$$
On a sphere, 
$$ds = (rd\theta)(r\sin\theta d\phi) = r^2\sin\theta d\theta d\phi$$
Sphere area 
$$\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} ds = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} r^2\sin\theta d\theta d\phi = 4\pi r^2$$

$$ds = r^2 d\Omega, d\Omega = ds/r^2 = \sin\theta d\theta d\phi \text{ (solid angle)}$$