SEQUENCE LISTING

- (1) GENERAL INFORMATION:
- (i) APPLICANT: HOPWOOD, JOHN JOSEPH; SCOTT, HAMISH STEELE; WEBER, BIRGIT; BLANCH, LIANNE; ANSON, DONALD STEWART
- (ii) TITLE OF INVENTION: SYNTHETIC MAMMALIAN $\alpha\textsc{-N-ACETYLGLUCOSAMINIDASE}$ AND GENETIC SEQUENCES ENCODING SAME
 - (iii) NUMBER OF SEQUENCES: 6
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: NIXON PEABODY LLP
 - (B) STREET: 990 STEWART AVENUE
 - (C) CITY: GARDEN CITY
 - (D) STATE: NEW YORK
 - (E) COUNTRY: UNITED STATES
 - (F) ZIP: 11530
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: 09/077,354
 - (B) FILING DATE: 22-APRIL-1999
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US96/00747
 - (B) FILING DATE: 22-NOV-1996
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: POKALSKY, ANN R.
 - (B) REGISTRATION NUMBER: 34,697
 - (C) REFERENCE/DOCKET NUMBER: 2249/104
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 516 742 4343
 - (B) TELEFAX: 516 742 4366
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2575 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

 $(1-\frac{1}{2})^{\frac{1}{2}} = (1-\frac{1}{2})^{\frac{1}{2}}$

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(F) TISSUE TYPE: Peripheral Blood

(G) CELL TYPE: Leukocyte

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 102..2330

(2) 100	01111014. 1022550	,								
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: CCCGGGCTTA GCCTTCGGGT CCACGTGGCC GGAGGCCGGC AGCTGATTGG ACGCGGGCCG										
CCCCACCCC TGGCCC	GTCGC GGGACCCGCA		ATG GAG GCG GTG Met Glu Ala Val 1	113						
			CC GGG GCC GGG GGC a Gly Ala Gly Gly 20	161						
			TG CGG GCG CTC GTG al Arg Ala Leu Val 35	209						
			TC TCC GTG TCG GTG ne Ser Val Ser Val 50	257						
			CC TAC AGC CTG GGC nr Tyr Ser Leu Gly 65	305						
		Jal Arg Gly Se	CC ACG GGC GTG GCG er Thr Gly Val Ala 30	353						
			TC TGT GGC TGC CAC ne Cys Gly Cys His 100	401						
Val Ala Trp Ser (eg CCA CTG CCA GCC eg Pro Leu Pro Ala 115	449						
	Leu Thr Glu Ala T		eg TAC CGC TAT TAC eg Tyr Arg Tyr Tyr 130	497						
			GG TGG GAC TGG GCC rp Trp Asp Trp Ala 145	545						
			AT GGC ATC AAC CTG sn Gly Ile Asn Leu 50							

 $\tau_{-\frac{1}{2}} \in \mathcal{T}_3^{-1}$

									- 47 -							
					GGC Gly 170											641
					CAG Gln											689
					GGG Gly											737
					TGG Trp											785
					CGC Arg											833
					CCC Pro 250											881
					GGC Gly											929
					GCT Ala											977
					GAG Glu											1025
					TTC Phe											1073
TCC Ser 325	TAC Tyr	CTT Leu	GCC Ala	GCA Ala	GCC Ala 330	ACC Thr	ACT Thr	GCC Ala	GTC Val	TAT Tyr 335	GAG Glu	GCC Ala	ATG Met	ACT Thr	GCA Ala 340	1121
					GTG Val											1169
					ggg Gly											1217

GTG CCC CGT GGC CGC CTC CTG GTT CTG GAC CTG TTT GCT GAG AGC CAG

Val Pro Arg Gly Arg Leu Leu Val Leu Asp Leu Phe Ala Glu Ser Gln

385

380

375

1265

- 48 -

 	TAT Tyr	 							1313
	CTG Leu								1361
	GTG Val								1409
	GTA Val								1457
 	TAT Tyr 455	 	 						1505
	TTG Leu							_	1553
	CAC His								1601

 $\tau_{-q^2} = -\epsilon \tau_1^2$

- 49 -

	AAC Asn							1649
	AGG Arg							1697
	GAT Asp 535							1745
	GCC Ala							1793
	GCA Ala							1841
	TAC Tyr							1889
	GCC Ala							1937
	CGC Arg 615							1985
	AGT Ser							2033
	ACC Thr							2081
	CTG Leu							2129
	CTG Leu							2177
	CAC His 695							2225
	AGC Ser							2273

GAC CTG GCC AAG AAG ATC TTC CTC AAA TAT TAC CCC GGC TGG GTG GCC 2321
Asp Leu Ala Lys Lys Ile Phe Leu Lys Tyr Tyr Pro Gly Trp Val Ala
725 730 740

GGC TCT TGG TGATAGATTC GCCACCACTG GGCCTTGTTT TCCGCTAATT
Gly Ser Trp

2370

CCAGGGCAGA TTCCAGGGCC CAGAGCTGGA CAGACATCAC AGGATAACCC AGGCCTGGGA 2430

GGAGGCCCCA CGGCCTGCTG GTGGGGTCTG ACCTGGGGGG ATTGGAGGGA AATGACCTGC 2490

CCTCCACCAC CACCCAAAGT GTGGGATTAA AGTACTGTTT TCTTTCCACT TAAAAAAAAA 2550

AAAAAAAGTCG AGCGGCGCG AATTC 2575

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 743 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 261
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 272
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 435
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 503
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 513
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 526
- (ix) FEATURE:
 - (A) NAME/KEY: Potentially-glycosylated Asn site,
 - (B) LOCATION: 532
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

2 gl 17 4

- Met Glu Ala Val Ala Val Ala Ala Val Gly Val Leu Leu Ala 1 5 10 15
- Gly Ala Gly Gly Ala Ala Gly Asp Glu Ala Arg Glu Ala Ala Val 20 25 30
- Arg Ala Leu Val Ala Arg Leu Leu Gly Pro Gly Pro Ala Ala Asp Phe 35 40 45
- Ser Val Ser Val Glu Arg Ala Leu Ala Ala Lys Pro Gly Leu Asp Thr 50 55 60
- Tyr Ser Leu Gly Gly Gly Gly Ala Ala Arg Val Arg Val Arg Gly Ser
 65 70 75 80
- Thr Gly Val Ala Ala Ala Gly Leu His Arg Tyr Leu Arg Asp Phe 85 90 95
- Cys Gly Cys His Val Ala Trp Ser Gly Ser Gln Leu Arg Leu Pro Arg 100 105 110
- Pro Leu Pro Ala Val Pro Gly Glu Leu Thr Glu Ala Thr Pro Asn Arg 115 120 125
- Tyr Arg Tyr Tyr Gln Asn Val Cys Thr Gln Ser Tyr Ser Phe Val Trp 130 135 140
- Trp Asp Trp Ala Arg Trp Glu Arg Glu Ile Asp Trp Met Ala Leu Asn 145 150 150 160
- Gly Ile Asn Leu Ala Leu Ala Trp Ser Gly Gln Glu Ala Ile Trp Gln 165 170 175
- Arg Val Tyr Leu Ala Leu Gly Leu Thr Gln Ala Glu Ile Asn Glu Phe 180 185 190
- Phe Thr Gly Pro Ala Phe Leu Ala Trp Gly Arg Met Gly Asn Leu His 195 200 205
- Thr Trp Asp Gly Pro Leu Pro Pro Ser Trp His Ile Lys Gln Leu Tyr 210 215 220
- Leu Gln His Arg Val Leu Asp Gln Met Arg Ser Phe Gly Met Thr Pro 225 230 235 235
- Val Leu Pro Ala Phe Ala Gly His Val Pro Glu Ala Val Thr Arg Val 245 250 255
- Phe Pro Gln Val Asn Val Thr Lys Met Gly Ser Trp Gly His Phe Asn 260 265 270
- Cys Ser Tyr Ser Cys Ser Phe Leu Leu Ala Pro Glu Asp Pro Ile Phe 275 280 285

- 52 -Pro Ile Ile Gly Ser Leu Phe Leu Arg Glu Leu Ile Lys Glu Phe Gly Thr Asp His Ile Tyr Gly Ala Asp Thr Phe Asn Glu Met Gln Pro Pro 315 Ser Ser Glu Pro Ser Tyr Leu Ala Ala Ala Thr Thr Ala Val Tyr Glu 330 Ala Met Thr Ala Val Asp Thr Glu Ala Val Trp Leu Leu Gln Gly Trp Leu Phe Gln His Gln Pro Gln Phe Trp Gly Pro Ala Gln Ile Arg Ala 355 Val Leu Gly Ala Val Pro Arg Gly Arg Leu Leu Val Leu Asp Leu Phe 375 380 Ala Glu Ser Gln Pro Val Tyr Thr Arg Thr Ala Ser Phe Gln Gly Gln 395 390 Pro Phe Ile Trp Cys Met Leu His Asn Phe Gly Gly Asn His Gly Leu 410 405 Phe Gly Ala Leu Glu Ala Val Asn Gly Gly Pro Glu Ala Ala Arg Leu 425 Phe Pro Asn Ser Thr Met Val Gly Thr Gly Met Ala Pro Glu Gly Ile Ser Gln Asn Glu Val Val Tyr Ser Leu Met Ala Glu Leu Gly Trp Arg 455 Lys Asp Pro Val Pro Asp Leu Ala Ala Trp Val Thr Ser Phe Ala Ala 470 475 465 Arg Arg Tyr Gly Val Ser His Pro Asp Ala Gly Ala Ala Trp Arg Leu 490 485 Leu Leu Arg Ser Val Tyr Asn Cys Ser Gly Glu Ala Cys Arg Gly His 505 510 Asn Arg Ser Pro Leu Val Arg Arg Pro Ser Leu Gln Met Asn Thr Ser 520 Ile Trp Tyr Asn Arg Ser Asp Val Phe Glu Ala Trp Arg Leu Leu Leu 535 Thr Ser Ala Pro Ser Leu Ala Thr Ser Pro Ala Phe Arg Tyr Asp Leu 555 545 Leu Asp Leu Thr Arg Gln Ala Val Gln Glu Leu Val Ser Leu Tyr Tyr 570

Glu Glu Ala Arg Ser Ala Tyr Leu Ser Lys Glu Leu Ala Ser Leu Leu 580 585 590

* ;:

w ri

- Arg Ala Gly Gly Val Leu Ala Tyr Glu Leu Leu Pro Ala Leu Asp Glu 595 600 605
- Val Leu Ala Ser Asp Ser Arg Phe Leu Leu Gly Ser Trp Leu Glu Gln 610 620
- Ala Arg Ala Ala Val Ser Glu Ala Glu Ala Asp Phe Tyr Glu Gln 625 630 635 640
- Asn Ser Arg Tyr Gln Leu Thr Leu Trp Gly Pro Glu Gly Asn Ile Leu 645 650 655
- Asp Tyr Ala Asn Lys Gln Leu Ala Gly Leu Val Ala Asn Tyr Tyr Thr 660 665 670
- Pro Arg Trp Arg Leu Phe Leu Glu Ala Leu Val Asp Ser Val Ala Gln 675 680 685
- Gly Ile Pro Phe Gln Gln His Gln Phe Asp Lys Asn Val Phe Gln Leu 690 695 700
- Glu Gln Ala Phe Val Leu Ser Lys Gln Arg Tyr Pro Ser Gln Pro Arg
 705 710 715 720
- Gly Asp Thr Val Asp Leu Ala Lys Lys Ile Phe Leu Lys Tyr Tyr Pro
 725 730 735
- Gly Trp Val Ala Gly Ser Trp 740
- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10380 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (viii) POSITION IN GENOME:
 - (A) CHROMOSOME/SEGMENT: Chromosome 17
 - (ix) FEATURE:
 - (A) NAME/KEY: exon 1
 - (B) LOCATION: 990..1372
 - (ix) FEATURE:
 - (A) NAME/KEY: exon 2
 - (B) LOCATION: 2115..2262

4 30 x 1

(ix) FEATURE:

- (A) NAME/KEY: exon 3
- (B) LOCATION: 3056..3202

(ix) FEATURE:

- (A) NAME/KEY: exon 4
- (B) LOCATION: 3387..3472

(ix) FEATURE:

- (A) NAME/KEY: exon 5
- (B) LOCATION: 5667..5923

(ix) FEATURE:

- (A) NAME/KEY: exon 6
- (B) LOCATION: 7745..8955

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATAATGAGCA	GTGAGGACGA	TCAGAGGTCA	CCTTCCTGTC	TTGGTTTTGG	CAGGTTTTGA	60
CCAGTTTCTT	TGCTGCATTC	TGTTTTATCA	GCGGGGTCTT	GTGACCTTTT	ATCTTGTGCT	120
GACCTCCTGT	CTCATCCTGT	GACGAAGGCC	TAACCTCCTG	GGAATTCAGC	CCAGCAGGTC	180
TCTGCCTCAT	TTTACCCAGC	CCCTGTTCAA	GATGGAGTCG	CTCTGGTTGG	AAACTTCTGA	240
CAAAATGACA	GCTCCTGTTA	TGTTGCTGCT	GCTGCCGCCA	ATGGACAGCC	TTTAACGTGC	300
CCGCCAGCCC	TGCTCCACCG	CCGGCCTGGG	CTCACATGGC	CCCATCCCTC	CTCGAACCTC	360
CTAGCCTGTT	AGTTACTCAA	ATCTGCAAGC	TCTCTGCCTT	CTCAGGGCCT	TCAATAAATG	420
CATTTCTTCT	GTCTGGAAGG	CTCTTCCTTT	CCCTCTTCTA	GCCAATTCCT	ATTCATCCCT	480
GAGTTTCAGA	TTAAAAGTCA	CTTCCTTTGG	AAACCTTACT	TCGCTACTTC	GCTACTTACT	540
GCACTACTTC	GCAGCATCAC	AACTATGATG	GAAATCCTTA	CTTACGTTAA	ATATCTGGTT	600
TCTAGGTCAC	CTCCCTGACG	GGGACGGTAG	GGACCGTCTT	CTCGTTCATC	AGTAGGGAAG	660
TAGCTATGGC	AGTGCCTGAT	ACAAAATAAA	CTCCAAATGT	GTATTTATTA	GATGGTTGGA	720
TGGAAGTTAT	TTGCGTGTGA	AAGCGCGTTT	TACCCGAAGG	CGCTCTGTGA	GGGCCAGCGG	780
GTCCCCTTCG	GCCCTGGAGC	CGGGGTCACA	CGCTCCCCAC	CGCGTGCGGT	CACGAGACGC	840
CCCCAAGGGA	GTATCCTGGT	ACCCGGAAGC	CGCGACTCCT	GGCCCTGAGC	CCGGGCTTAG	900
CCTTCGGGTC	CACGTGGCCG	GAGCCGGCAG	CTGATTGGAC	GCGGGCCGCC	CCACCCCCTG	960
GCCGTCGCGG	GACCCGCAGG	ACTGAGACCA	TGGAGGCGGT	GGCGGTGGCC	GCGGCGGTGG	1020
GGGTCCTTCT	CCTGGCCGGG	GCCGGGGGCG	CGGCAGGCGA	CGAGGCCCGG	GAGGCGGCGG	1080
CCGTGCGGGC	GCTCGTGGCC	CGGCTGCTGG	GGCCAGGCCC	CGCGGCCGAC	TTCTCCGTGT	1140

CGGTGGAGCG	CGCTCTGGCT	GCCAAGCCGG	GCTTGGACAC	CTACAGCCTG	GGCGGCGGCG	1200
GCGCGGCGCG	CGTGCGGGTG	CGCGGCTCCA	CGGGCGTGGC	GGCCGCCGCG	GGGCTGCACC	1260
GCTACCTGCG	CGACTTCTGT	GGCTGCCACG	TGGCCTGGTC	CGGCTCTCAG	CTGCGCCTGC	1320
CGCGGCCACT	GCCAGCCGTG	CCGGGGGAGC	TGACCGAGGC	CACGCCCAAC	AGGTACCGCC	1380
CCGAAGCTTC	CCCGCGTCCG	CCCGAGGCGC	TTACCCCCTC	CCGGAGCCGC	TGCCACCCAA	1440
ATCGGGAGGC	TGAGCGGGGA	GCGCTGGCCG	GAAGGCCCAG	CTGCGCCGCC	TCCAGCAGCT	1500
GTGTGGCCTT	GAGCCAGCCA	CTCTGCCTTT	CAGAGCCTCG	GCTGGCCCAC	CTGAAAAACG	1560
GAAAGAAGAC	GCCTACCGTG	CAGTGTTATT	GTGAGGATTT	GCACGATGAT	GGGCATAGAA	1620
TTTGTGGTGC	ACAATTGGTG	ATGAGTGAAT	TTTCTTGCCT	TCCTCCCCCA	CCTTCTCTTT	1680
GAACCTGCGG	ACTGAGGAAG	GACGCCTCCA	TCCCCCACCC	TACAGGCCTG	TGTTCCAGCG	1740
CCTGCCACAC	TATGGAGTGA	TGTGTTCACA	CAGCTGTCCT	CCCCTGCCCA	TCTGTTAGAC	1800
TGTGGGGGCA	GGGATTCCCC	GTTCCAGGAA	AACACCGTGC	AGAGGAGGG	CTCTGGCAGT	1860
GTGGCATGAA	AGTGGAATAT	GCCACCCAAA	TACCCGCCAG	GCTAGAGGGC	CCTGGGAGAG	1920
TGCAGGGGAC	GAGTGCCTCA	GAAGCCCAGC	CCCGGTACCT	GGTCTCAGCT	CCACCTGGGG	1980
TGGGTCCCAG	TGTGCAGCAG	AAGGGCCGAG	TTTGGAGCCC	CTCCCCTCTC	CTCTAGGTGG	2040
GGGATGGGGG	ATTTGTTCCA	GGGCCGTGGA	CCCTCCAGGG	TGGGATGCGC	CCCTGCTCAT	2100
GACACTGCCC	GCAGGTACCG	CTATTACCAG	AATGTGTGCA	CGCAAAGCTA	. CTCCTTCGTG	2160
TGGTGGGACT	GGGCCCGCTG	GGAGCGAGAG	ATAGACTGGA	TGGCGCTGAA	TGGCATCAAC	2220
CTGGCACTGG	CCTGGAGCGG	CCAGGAGGCC	ATCTGGCAGC	GGGTGCGTGC	CCACTGTCCC	2280
TTCCCCACCC	TCCTCTATGG	CGGGAGCCAC	CGTAGGTGTT	TTCACCCGCC	CCCCAGCATG	2340
GGCGCAGTGT	CTCTCTCTAG	AAGTGCTTTC	AGCGTGCACA	GTGGCTTGGG	CCTCCTAAAA	2400
ACTGAGGCTT	CCGGCCGGGC	GCGGTGGCTC	ACGCCTGTCA	TCCCAGCACT	TCGGGAGGCC	2460
TAGGCGGGCG	GATCAGGAGT	TCAGGAGATC	GAGACCATCC	TGGCCAACAT	TGTGAAACCC	2520
CGTCTCTACT	AAAATACAAA	. GAAATAGCAA	CCTGGGCAAC	AGAGCGAGAC	C TCTGTCTAAA	2580
AAAAAAAA	AAAAAAACTG	AGGCTTCCAG	TTTGAGGAGT	GGGGCTCCTT	CCCCCATCTC	2640
CCCTATGCAG	CCAATCACCI	' GGTCCCTTGG	ATCCAACTCA	TGGGCAGCT	TAGATCTGCC	2700
TCCCTGGAAG	CTTCTGTGCT	GCAATGGCTG	CTCCAGGCTC	TGCTTAAGCT	CTTCACACAG	2760
TTGCCCTGCC	CTTCCATCTG	GCACTCTTGC	TCCATGAAGC	CTTCTAAGG	C CTTCCTGTTG	2820

GGGGAAAGCC	CCTTTGTGCC	CCATCTCCTC	ACCCATGCGA	CAAAGGCAAC	ACAGTGAACT	2880
CACCTACTCA	CAGGTCTCTT	TCCTCTGGGC	TGTGGGCTCC	TTGATGGCAG	CGTTCGGATT	2940
TTGTCTCAGT	AGCCCTAGCA	CCCAGCACAA	AGAAGCAATG	AGTGAATGGT	TGTTGAATGA	3000
ATGAATGAAT	GAATGAAGAT	GAATATATTT	CTATGTGTGG	GCCCTTCTTC	CTCAGGTGTA	3060
CCTGGCCTTG	GGCCTGACCC	AGGCAGAGAT	CAATGAGTTC	TTTACTGGTC	CTGCCTTCCT	3120
GGCCTGGGGG	CGAATGGGCA	ACCTGCACAC	CTGGGATGGC	CCCCTGCCCC	CCTCCTGGCA	3180
CATCAAGCAG	CTTTACCTGC	AGGTAAAAGG	ATGGAAAAGG	GAAGGGGCAG	AATCGGTGAT	3240
AGATGGTCAT	GGGCCCAGGA	AGGGTGGTAT	TAGGCCGGCC	CCAGGGCTCT	TAACTGAGGC	3300
GGGGGGCTGC	GTGTATCCTG	GGAGATGAGG	GCCTTCTCAT	AGGACAGCAG	TGGCCATGCT	3360
CACCACCCTT	CCTTCTGTTC	CTCCAGCACC	GGGTCCTGGA	CCAGATGCGC	TCCTTCGGCA	3420
TGACCCCAGT	GCTGCCTGCA	TTCGCGGGGC	ATGTTCCCGA	GGCTGTCACC	AGGTGAGGTT	3480
CCGCTCACCC	CCTCCACTTA	GCTCAGAGAG	GGAATTTTAT	TCCCTTCTAG	AACATGACTT	3540
AAAAACTTAA	GCTCTGGGCC	GGGCGCAGTG	GCTCACGCCT	GTAATCCCAG	CACTTTGGGA	3600
GGCCGAGTTG	GGCGGATCAC	CTGAGGTCAG	GAGTTCGAGA	CCAGCCTGGC	CAACATGGTG	3660
AAACCCTGTC	TCTACTAAAA	ATATAAAAAT	TAGCTGGGCA	TGGTGGCACG	CGCCTGTAAT	3720
CCCATCTACT	TAGGAGGCTG	AGACAGGAGA	ATTGCTTAAA	CCTGGGAGGC	AGACGTTGCA	3780
GTGAGTCAAG	ATCACGCCAT	TGCACTCCAG	CCTGGGTGAC	GAGCGAAACT	CTGTCTCAAA	3840
CAAACAAACA	AGCTCTGGAC	GTAGGCCTGG	GTTTGATTTC	TGACTCTGCT	ACTAATTAGC	3900
TGTGTGACTT	CGGGCAGATG	ACATGACTGC	TCTGTGCCTC	AGTTTCCTTA	CTTGTAAAAT	3960
GGGATCTCTA	CCCACTTCGC	TGTAGGGTTT	GTAATTATCT	CTCGATCTAT	CTGTGACTTT	4020
GCACAGAGTG	CTAGCAAATG	GCAGCCCTTG	GGAGTGGCAG	CAGGGGTGCT	CCAGTGTCCC	4080
TTGTCCCTCC	TGTTCCTCTG	TGCTTCCCAG	CCATCCTCTC	ACATGTGGTT	GGGAAAAGTC	4140
TTCAAGGCTC	ACCTGAGACC	TCCCCTCCTT	CAGGAAGCCT	TGCTAGTGCC	CCGCATGACC	4200
TCCTTTGCAC	CTGCTAATGT	CTGGCTCCCA	TACTCTCGTA	GGACTTAATG	CATGCCAGTG	4260
GCCTCCCTGC	CCGCCTCTTT	GCCCCCATCA	CCAGGTGGCA	GGAAACTCAC	TCATTCATTC	4320
AATAAACTTG	GTCCAGCTGT	CTGAGGCTGC	CAGAACTGGC	TGTGCTGGGT	CCTGGGAGGC	4380
GGCAAGAAAG	GTGCCCAAGG	GCTTACCCCT	GATAGGAGAG	ATATGTTGGC	TGAAGGATAC	4440
AATGTGGGGA	CAAGGACAGG	AATATATGTG	GGTTCCGCTC	TCCTCTGCCG	GGAGAGAGGG	4500

GCAGGAAGGG CTCAGGGCAG AGCCCAGCCT TGAAAAATGA GTGTTGCTTG GACGGACGCT 4560 TGGCTAATGC TTGTAATCCT AGCGTTTTGG GAGGCTGAGG CGTATGGATC ACCTGCGGTC 4620 AGGAGTTAAA GACCAGCCTG GCCAACATGG CGAAACCCCA TCTCTACTAA AAGTACAAAA 4680 ATTAGCCAGG CGTGGTGGCG GGCTCCTGTA ATCCCAGCTA CTCGGTAGGC TGAGGCATGA 4740 GAATCTCTTG AAGCCAGGGG CCAGAGACTG CAGTGAGCCG AGATCACACC ACTTCACTCC 4800 AGCCTGGGTG ACAGAGTGAG ACTCCGTCTC AAAAAAAAA AAAAAAAAG GAAAGAAAAT 4860 TAAACACCTC ATGTTCTCAC TCATAGTGGG AGTTGAACAA TGAGAACAAC ATGGACACAG 4920 GAAGGGGAAC ATCACACAC GGGGCCTTTC GCGGTGTGGG GGTCAAGGGG AGGAGTAGCA 4980 TTGGGACAGA TACTTAATGC ATGCGGGGCT GAAAACCTAG ATGATGGGTT GATGGGTGCA 5040 GCAAACCACC ATGGCACATG TATACCTATG CAACAAACCT GCATGTTCTG CACAGAACTG 5100 AACTGAAAGT ATAATTAAAA AAAAAAAAA AAGCTGGGTG CGGTGGCCCA CACCTGTAAT 5160 CCCAGCACTT TGGGAGGCCG AGACGGGCGG ATCACAAGGT CAGCAGATCG AGACCATCCT 5220 GGCTAACACA GTGAAACTCA GTCTCTACTA AAAATACAAA AAATTAGCCG GGTGTGGTGG 5280 CGGGCACCTG TAGTCCCAGC TACTAGGGAG GCTGAGGCAG GAGAATGGCA TGAACCTGGG 5340 AGGCAGAGCT TGCAGTGAGC TGAGAATGCG CCACTGCACT CCAGCCTGGG GGACAGAGTG 5400 AGACTCTGCC TCAAAAAAAA AAAAAAAAAG AAAGAAAAAG GAGCGTTGCT TGTTTCAGGC 5460 CACAGGAAGG GGAGAGATAG TGAAAGTTTT TCAGAGAAGG TGGCCAGGGA AGGAGAAGAA 5520 AGGACTGTAG GCAGAGAGCA TAGCCTGTAC AAAGCCATAG AGGCAAGAGA AACCAGGAGC 5580 TGTAGAGAG TTGGCAAGGC TGTTGAACAC TATGGTGAAC ACTATGGCGG CTTCCATGAA 5640 ATATCTGAGC TTTTGCTCCC CACTAGGGTG TTCCCTCAGG TCAATGTCAC GAAGATGGGC 5700 AGTTGGGGCC ACTTTAACTG TTCCTACTCC TGCTCCTTCC TTCTGGCTCC GGAAGACCCC 5760 ATATTCCCCA TCATCGGGAG CCTCTTCCTG CGAGAGCTGA TCAAAGAGTT TGGCACAGAC 5820 CACATCTATG GGGCCGACAC TTTCAATGAG ATGCAGCCAC CTTCCTCAGA GCCCTCCTAC 5880 CTTGCCGCAG CCACCACTGC CGTCTATGAG GCCATGACTG CAGGTACAGT GCCTGGGTGG 5940 GGTGGGAGAG CCCCCAGAC CCTCAAAAAG AAGGGAGTAG CAGATGTCAG TAGGGGTAGG 6000 CAGAGGGACT GGAATAATGC CTCGCCATAA CACACAGTAC TTTATAGTTT ACCAAGCACG 6060 TGTACACATG CGTTGTCTCA GTGAATCCCA CTGTGGTTGA GAGGTGAGCT CTGGAAGCCA 6120 ACAACCTGGG TCACACCTCG CGCTCCTATT TCCTGGCCGT GTGACTTATG ACTCATGACC 6180 - 58 -

TCCTTCCCAG TGTCTCGTTT GCTTTTCCTG TAAACTGGGA CTACCTCATA GGTAGAATAA 6240 CGCCTGGCCC AGAGCAAAGG CCACTAAGAG CTAGCTATGA ACAAGGATTT TGTTTCATCT 6300 CTGCGTGGTT GCTGAAGTAG GCACTGCAGG CAGGAGGTGA GTGGATGTGC CTAAAGGCAC 6360 TAAGTGCGCA TCCTGCTACA AAACTGTGAA GCCAGGGCTC CTTCCTGCCA CTTAAAGGAG 6420 GAGTGGAGCA GAGGGCGCCC AAGTCAGGAA TGACTTAGTG GAGAGGCGTC TGTGTTGGCC 6480 AGGAAGGGAA CAGATCAGCT CAGCCTTTCT TGAGCAGTAC TGCTCCAAGT GTGACCCAAA 6540 ACCAGCAGCA GCAGCAGCAG CAGCCCGAGC TGTGAGATGG CAAATTCTCA GGCCCTACCC 6600 AAGACCTGAA GGAGAAGCTA CATTTTTTT TTTTTTGAGA CAGATTTCAC TCTGTTGCTG 6660 AGGCTGGAGC ACAGTGGCAC AATCTCATCT CACTGCAACC TTCGTCTCCT AGGTTCAAGC 6720 GATTCTCCTG CCTCAGCCTC CCGAGTAGCT GGGACTATAG GCACCCGCCA CCACGCCCGG 6780 CAATTTTGT TTGTTTTGAG ATAGAGTCTC GCTCTGTCAC CCAGGCTGGA GTGCAGTGGC 6840 ACGATCTCAG TTCACTGCAA CCTCTGCTTC CTGAGTTCAA GCGATTCTCC TGCCTCAGCC 6900 TCCTGAGTAG CTGGGATTAC AGGCGCCCC CAACCACACT CGGCTAATTT TTGTATTTTT 6960 AGTAGAGACG GGGTTTCGCT ATGTAGGTCA AGCTGGTTTC AAACTCCTGA CCTCAAATGA 7020 TTCGCCCACT TCAGCCTCCC AAAGTGCTGG GATTACAGGT GTGAGCCACC TTGCCTGGCC 7080 AATTTTTGTA TTTTTAGTAG AAACAGGTTT CACCATGGTG GCCAGACTGG TCTCAAACTC 7140 CTGACCTCAG GTGAACTGCC CACCTCAGCC TCCCAAAGTA CTGGTATTAC AGGCGTGATC 7200 CACTGCGACT GGCCTTGATT TTGTTTTTGA GACAGAATCT TACTCTGTCG CCCAGACTGG 7260 AGTGCAGTGG CACAATCTCA GCTCACTGCA ACTTCTGCCT CATGGGTTCA AGTGATTCTT 7320 GTGCCTCTAC CTCCCGAGTA GCCGGGATTA CAGGCACCTG CCATTACGCT AGGCTAATTT 7380 TTGTATTTT AGTATAGACA GGGTTTCCCC ACATTGGCCA GGCTGGTCTG GAACTCCTGG 7440 GCTCAAGTGA TCCACCTGCT TCAGCCCCTC AGAGTACTGG GATTATAGGT GTGGGCCACC 7500 ACGCCCATTC AGAAACCTCC ATGTTTTAAG GAGCCCTCTG GGTAACTCTC ATGTTCACCC 7560 AAGCTGCTGA ACCCTGTCCT GGAGTTTTCA GAGGGACGCG TATGTGCCAC AGAGCGTCCC 7620 GCTGGTGGGG GTCATGGGAA GCCATGACCT GGGATAGACA GTCGTCTGTA GAGTGGGGTG 7680 AACATTCCCT GGGCCCTCTG TTTCATCACT CCTCTTCTCT GTTCCCCCTA CCTCCTGTCC 7740 ACAGTGGATA CTGAGGCTGT GTGGCTGCTC CAAGGCTGGC TCTTCCAGCA CCAGCCGCAG 7800 TTCTGGGGGC CCGCCCAGAT CAGGGCTGTG CTGGGAGCTG TGCCCCGTGG CCGCCTCCTG 7860 GTTCTGGACC TGTTTGCTGA GAGCCAGCCT GTGTATACCC GCACTGCCTC CTTCCAGGGC 7920 CAGCCCTTCA TCTGGTGCAT GCTGCACAAC TTTGGGGGGAA ACCATGGTCT TTTTGGAGCC 7980 CTAGAGGCTG TGAACGGAGG CCCAGAAGCT GCCCGCCTCT TCCCCAACTC CACCATGGTA 8040 GGCACGGGCA TGGCCCCCGA GGGCATCAGC CAGAACGAAG TGGTCTATTC CCTCATGGCT 8100 GAGCTGGGCT GGCGAAAGGA CCCAGTGCCA GATTTGGCAG CCTGGGTGAC CAGCTTTGCC 8160 GCCCGGCGGT ATGGGGTCTC CCACCCGGAC GCAGGGGCAG CGTGGAGGCT ACTGCTCCGG 8220 AGTGTGTACA ACTGCTCCGG GGAGGCCTGC AGGGGCCACA ATCGTAGCCC GCTGGTCAGG 8280 CGGCCGTCCC TACAGATGAA TACCAGCATC TGGTACAACC GATCTGATGT GTTTGAGGCC 8340 TGGCGGCTGC TGCTCACATC TGCTCCCTCC CTGGCCACCA GCCCCGCCTT CCGCTACGAC 8400 CTGCTGGACC TCACTCGGCA GGCAGTGCAG GAGCTGGTCA GCTTGTACTA TGAGGAGGCA 8460 AGAAGCGCCT ACCTGAGCAA GGAGCTGGCC TCCCTGTTGA GGGCTGGAGG CGTCCTGGCC 8520 TATGAGCTGC TGCCGGCACT GGACGAGGTG CTGGCTAGTG ACAGCCGCTT CTTGCTGGGC 8580 AGCTGGCTAG AGCAGGCCCG AGCAGCGGCA GTCAGTGAGG CCGAGGCCGA TTTCTACGAG 8640 CAGAACAGCC GCTACCAGCT GACCTTGTGG GGGCCAGAAG GCAACATCCT GGACTATGCC 8700 AACAAGCAGC TGGCGGGGTT GGTGGCCAAC TACTACACCC CTCGCTGGCG GCTTTTCCTG 8760 GAGGCGCTGG TTGACAGTGT GGCCCAGGGC ATCCCTTTCC AACAGCACCA GTTTGACAAA 8820 AATGTCTTCC AACTGGAGCA GGCCTTCGTT CTCAGCAAGC AGAGGTACCC CAGCCAGCCG 8880 CGAGGAGACA CTGTGGACCT GGCCAAGAAG ATCTTCCTCA AATATTACCC CGGCTGGGTG 8940 GCCGGCTCTT GGTGATAGAT TCGCCACCAC TGGGCCTTGT TTTCCGCTAA TTCCAGGGCA 9000 GATTCCAGGG CCCAGAGCTG GACAGACATC ACAGGATAAC CCAGGCCTGG GAGGAGGCCC 9060 CACGGCCTGC TGGTGGGGTC TGACCTGGGG GGATTGGAGG GAAATGACCT GCCCTCCACC 9120 ACCACCCAAA GTGTGGGATT AAAGTACTGT TTTCTTTCCA CTTAAACTGA TGAGTCCCCT 9180 GGGTCTGTCA AAATGAGAAG GTCACTGCTG CCACGCTTGG GAGGACTCAG GGCTATAGCA 9240 TGGCCCTGGG GTGGGACCTG TTCTCCCATC CCTTGCCTCA CGTCCCTGTT TTTGTTTGTT 9300 TGTTTGTTTG TGACGGAGCC TTGGTCTGTT GCCCAGGCTT GAGTACAATG GCACAGTCTC 9360 GGCTCACTGC AACCTCCGCC TCCTGGGTTC AAGCAATTCT TGTGCCTCAG CCTCCCCGGT 9420 AGCTGGGACT ATAGGCATGC ACCACCACAC CAGGCTAATT TTTTTTTTC CAAGATGGAG 9480 TCTTGCTCTG TCGCCCAGGT TGGAGTTTAG TGGCACCATA TTGGTTTACT GCAACCTCTG 9540 CCTCCCGGGT TCAAGCAATT CTCCTGCCTC AGTCTACCAG GGAGTTAGGA CTACGGGCCT 9600
GTGCCATCAC GCCTGGCTAA TTTTTGTATT TTTCATAGAG ATAAGGTTTC ACCATGTTGG 9660
CCAGGCTGGT CTTTAACTCC TGAACTCAAG TGATCCACCT GCCTCGGCCT TCCAAAGTGC 9720
TGGGATTACA GGAGTGAGCC ACCGTGCCCG GCCATGTCTC TCTTTTTAAC ACTAATGTTA 9780
CCCTGACCTT TGAACGTAGA ATGCCCTTCT GTTGCAGGAA AACCTCTTTT CAAAACCATGT 9840
TTGTCCTTTG CTGGCATGCC ACAGCACAG TCACCAACAC AGAAGACTTC TGTGACCAAA 9900
TATTTGGAGG ATTTTCCCCA CACACACAC ACAGCAGACA TCAGCTGGGT GTCCTCAAT 9960
TCAGTTCCAA TGTAATCAAC CAGAGACAGC ATCAGATCCC ACAGGGTTAG GGTGCAGATC 10020
CATGAGACCA CCCCTCCTT CCCAACGGTT ACAAGTCCC ACAGGGTTAG GGTGCAGATC 10080
ACTGGCTTCA AGTTGGAGTT CCCCACGCC CCTTCCCCTC TTTGGAGTCA ACTCATTTGC 10140
GACAGTGACC CACGAAACAC AGGGAAACCC TTATTATGTT TATTGCTTTA TTACAGAGGA 10200
AAAAAATTTT TTTCTTTCTT TTTTGAGACA GGGTCCCC CTGTCACCT GAACTGACTC 10320
ACAGCCTCCA TCCCCCCAA ACCCCACGCC TCAGCGCCC ACCCCGCAAG TGGCTGGGC 10380

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
 - (v) FRAGMENT TYPE: N-terminal

id ort

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 10
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Asp Glu Ala Arg Glu Ala Ala Ala Val Arg Ala Leu Val Ala Arg
1 5 10 15

Leu Leu Gly Pro Gly

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (v) FRAGMENT TYPE: N-terminal
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site, glycosylated or phosphorylated, wherein Xaa may be any amino acid residue, preferably Arg.
 - (B) LOCATION: 16
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Lys Pro Gly Leu Asp Thr Tyr Ser Leu Gly Gly Gly Gly Ala Ala Xaa Val

Arg

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

→ }

- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
 - (v) FRAGMENT TYPE: internal
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site, glycosylated or phosphorylated, wherein Xaa may be any amino acid residue, preferably Ala
 - (B) LOCATION: 12
- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site, glycosylated or phosphorylated, wherein Xaa may be any amino acid residue, preferably Ser
 - (B) LOCATION: 14
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Trp Arg Leu Leu Leu Thr Ser Ala Pro Ser Leu Xaa Thr Xaa Pro 1 5 10 10 15