FYZIKÁLNÍ PRAKTIKUM		Jméno a příjmení Ladislav Šulák			ID 155736
Ústav fyziky		Ročník	Předmět	Kroužek	Lab. skup.
FEKT VUT BRNO		1	IFY	38	Α
Spolupracoval		Měřeno dne		Odevzdáno dne	
Jan Tinka, Marek Teuchner		8.4.2013		22.4.2013	
Příprava	Opravy	Učitel		Hodnocen	ĺ
Název úlohy			•	Číslo úlohy	
lonizujúce žiarenie			33		

1 Úloha

- A. Zmerajte závislosť počtu pulzov nameraných Geiger-Müllerovým (G-M) počítačom na vzdialenosti od bodového zdroja gama žiarenia. Zistite, s akou mocninou klesá intenzita žiarenia so vzdialenosťou od zdroja.
- B. Stanovte absorpčný koeficient priložených vzorkov pre gama žiarenie.

2 Teoretický úvod

Ionizujúce žiarenie je súhrnné označenie pre tie druhy žiarenia , kt. kvanta majú energiu postačujúcu k ionizácii atómov alebo molekúl ožiarenej látky. Ionizácia je proces, pri kt. sa z elektricky neutrálneho atómu alebo molekuly stáva iont. Pokiaľ k tomuto javu dôjde v bunkách živých organizmov , môže je to vážne poškodiť.

Ionizujúce žiarenie sa delí na korpuskulárne (tvorené časticami) a fotónové (tvorené elektromagnetickým žiarením.

Intenzita ionizujúceho žiarenia klesá so štvorcom vzdialenosti. Teda pre N (počet impulzov) môžeme zostaviť rovnicu $N = \frac{k}{r^2}$, pričom k je konštanta a vzdialenosť r nie je rovná nule.

K detekcii ionizujúceho žiarenia sa veľmi často využíva Geiger-Müllerov čítač. Keď do meracej trubici vznikne ionizujúce žiarenie, vznikne primárna ionizácia, ktorá je nasledovaná ionizáciou lavínovitou. Zmeraná výdatnosť žiarenia bude úmerná počtu načítaných pulzov za jednotku času a aktivite.

3 Použité prístroje

- Oceľové a mosadzné tehličky (pre meranie absorbcie ionizujúceho žiarenia)
- Železný meter
- Rádioaktívny žiarič
- Geiger-Müllerov čítač

4 Postup pri meraní

Úloha č.1 - meranie zmeny intenzity žiariča so vzdialenosťou od zdroja žiarenia

- Vybrali sme žiarič z kontajneru a umiestnili souose oproti meraciemu zariadeniu.
- Pre meranie emisie žiarenia zo zdroja sme použili časový interval 60 sekúnd a pre každú vzdialenosť sme urobili tri merania.

Vzhľadom k menšej ohybnosti káblu sme nechali čítaciu trubicu v stabilnej polohe a žiarič posúvali pozdĺž pravítka. K nameraným vzdialenostiam bolo treba pričítať 11mm. Vzhľadom k chybe , ktorá vzniká tým, že žiarič a sonda nie sú presne souosé, merali sme iba v rozmedzí 7mm-30mm

Úloha č.2 – stanovenie absorbčného koeficientu priložených vzorkou pre gama žiarenie

- Zmerali sme hrúbku každej absorbujúcej tehličky. Zvolili sme oceľové a mosadzné tehličky.
- Zasunuli sme žiarič na doraz priamo proti trubici s plynom.
- Postupne sme vkladali absorbčné tehličky medzi žiarič a meracie zariadenie.
- Po nameraní intenzity žiarenia sme absorbčnú tehličku ponechali a pridali ďalšiu.
- Meranie sme vykonali pre oba materiály.

5 Namerané hodnoty a výpočet

Úloha č.1

Tab.1: Zmena intenzity žiarenia so vzdialenosťou od zdroja žiarenia

Nastavená vzdialenosť	Počet impulzov za 60 s			
rN / mm	1.meranie	2.meranie	3.meranie	priemer
18	954	1005	1003	987,33
21	826	807	881	838
26	653	696	632	660,333
31	570	537	545	550,67
36	432	448	397	425,67
41	356	339	354	349,67

Hodnoty namerane v laboratóriu sme v grafe prelozili priamkou, ktorej smernicu sme odčítali. Smernica b=-0.045.

Úloha č.2

Tab.2: Hrúbka jednotlivých vzorkou

materiál	Hrúbka vzorku d / mm				
	1meranie	2.meranie	3.meranie	4.meranie	priemer
Ocel	5,05	5,295	5,19	5,01	5,13625
Mosadz	4,905	4,905	4,905	4,9	4,904

Tab.3, 4: Počet pulzov pri postupnom pridávaní vzorkou (pre oba materiály)

Ocel [mm]	Počet pulzov za 60s
0	289
5,05	226
10,345	201
15,535	190
20,545	163
25,68125	153

Mosadz [mm]	Počet pulzov za 60s
0	289
4,905	235
9,81	189
14,715	166
19,615	142
24,519	104

$$b_{ocel'} = \frac{\log(Y2) - \log(Y1)}{X2 - X1} = \frac{\log(153) - \log(226)}{25,68125 - 5,05} = -0,01891$$

$$b_{mosadz} = \frac{\log(Y2) - \log(Y1)}{X2 - X1} = \frac{\log(104) - \log(235)}{24,519 - 4,905} = -0.04156$$

6 Záver

Hodnoty namerané v lab. u prvej úlohy sme vyniesli do grafu a preložili mocninovou regresívnou priamkou (Mocninový - počet impulzov.

Výsledok smernice nám vyšiel b = -0.045, čo je hodnota pomerne dosť odlišná od očakávanej -2. Chyba mohla byť spôsobená napríklad nekvalitným meracím prístrojom.

Hodnoty namerané pri úlohe 2 sme tiež vyniesli do grafu. Už na prvý pohľad sa dá zistiť, že sa od seba veľmi neodchyľujú , z čoho môžeme usúdiť že sa intenzita žiarenia prechádzajúceho materiálom zvyšuje exponenciálne.

Po vypočítaní zostavených rovníc vyšli absorbčné koeficienty jednotlivých materiálov nasledovne:

$$b_{ocel} = -0.01891$$

$$b_{mosadz} = -0.04156$$

Absorbčné koeficienty mosadze a oceli sa od seba pomerne dosť líšia. Z toho môžeme vyvodiť záver , že mosadz je lepší pohlcovač než oceľ.