The University of Melbourne — School of Mathematics and Statistics MAST30012 Discrete Mathematics — Semester 2, 2021

Practice Class 2: Arrangements and Combinations – Answers

Q1: (a)
$$\binom{20}{3} = \frac{20!}{3! \, 17!} = 1140.$$

(b) $7 \cdot 5 \cdot 3 \cdot 1 = 105$.

(c)
$$\frac{\binom{8}{2}\binom{6}{2}\binom{4}{2}\binom{2}{2}}{4!} = \frac{8!}{2^4 \cdot 4!} = \frac{8!}{8 \cdot 6 \cdot 4 \cdot 2} = 7 \cdot 5 \cdot 3 = 105.$$

(d) Total number of possible configurations is 2^{10} . 5 heads can be chosen in $\binom{10}{5}$ ways so

$$\Pr(5 \text{ heads}) = \frac{\binom{10}{5}}{2^{10}} = \frac{63}{256} = 0.246073...$$

At least 5 heads in a row. Number of favourable outcomes is $2^5 + 5 \times 2^4 = 112$ and hence

Assignment Project⁰² Exactly 5 heads in a row. N umber of favourable outcomes is 64 and therefore

https://powcoder.com5.

Q2: (a)
$$aaa$$
, aab , abb , bbb total of $A = \begin{pmatrix} 2+3-1 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$.
(b) $\begin{pmatrix} 20+3-1 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2+3-1 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$.

- (c) Number of ways to arrange n-1 symbols I, and r symbols in a line is $\binom{n+r-1}{r}$
- (d) Same as (c).
- Q3: (a) Derivation required.
 - (b) Derivation required.
 - (c) Arguments required.
- Q4: (a) Derivation required.
 - (b) Derivation required.
- **Q5**: (a) There are $\binom{n}{r}$ ways to order r '1's and n-r '2's in a line.
 - (b) By the stated correspondence (bijection) the two counting problems are the same.