Deciphering Monetary Policy Board Minutes through Text Mining Approach: The Case of Korea (텍스트 마이닝을 활용한 금융통화위원회 의사록 분석)

박기영(연세대), 이영준(연세대), 김수현

(연구 배경)

- □ 중앙은행 커뮤니케이션은 통화정책의 방향, 경제상황에 대한 판단 등이 포함되어 시장의 기대에 즉각적인 영향을 미칠 수 있으며 글로벌 금융위기 이후 이에 대한 관심이 고조
- □ 중앙은행 커뮤니케이션은 절제된 표현이 많아 일반적인 **독해만으로** 는 커뮤니케이션의 내재된 정보를 추출하고 그 영향력 등을 분석하는데 한계
 - ⇒ 본고에서는 **텍스트 마이닝***을 활용하여 금융통화위원회 **의사록에 담긴 어조를 추출**하여 지수로 편제하고 **기준금리 변동에 대한 설** 명력과 예측력을 검정
 - * 텍스트 마이닝(text mining)이란 대규모 텍스트 자료에서 육안으로 읽고 분석 하기 힘든 정보를 추출하고 이를 분석하는 기법

(분석 방법)

- □ 2005.5월 ~ 2017.12월 중 약 23만 건의 신문기사와 채권 애널리스 트 보고서, 금통위 의사록에서 추출한 형태소 조합(n-gram)을 분석하여 감성사전*(sentiment lexicon)을 구축
 - * 특정 형태소 조합(예: 금통위 금리 인상)이 지닌 극성(polarity)을 규정한 사전으로(예: 금통위 금리 인상 = 매파적) 문장의 극성을 사전에 정의된 형태소등장 여부나 횟수 등으로 판단
 - o 경제·금융 관련 어휘를 잘 인식하지 못했던 기존 형태소 사전의 단점을 보완한 경제·금융 형태소 사전(eKoNLPy)을 이용하여 시장 접근법(market approach)과 사전접근법(lexical approach)을 동시에 사용

문의처: 김수현 국제경제연구실 부연구위원 (☎ 5362)

※ 이 연구내용은 집필자들의 개인의견이며 한국은행의 공식견해와는 무관합니다. 따라서 본 논문의 내용을 보도하거나 인용할 경우에는 집필자명을 반드시 명시하여 주시기 바랍니다.

- 시장접근법과 사전접근법에 따라 각각 구축한 사전과 저자들이 직접 통화정책방향결정문 문장의 감성을 분류한 결과를 비교하여 감성사 전의 정확도를 검정
- 작성사전에 따라 금통위 의사록의 어조를 분석하고 이를 표준화한 지수의 기준금리에 대한 설명력과 예측력을 검정하고 여타 변수 및 지수와도 비교 분석

(분석 결과)

- □ 금통위 의사록에서 추출한 지수는 여타 변수에 비해 기준금리에 대한 설명력과 예측력이 높은 것으로 나타남
 - 기존 테일러준칙의 GDP갭률과 인플레이션율 등과 함께 본고에서 작성한 금통위 의사록 어조지수를 설명변수로 추가할 경우 현재 및 향후 금리에 대해 상당부분을 설명
 - o 또한 기존에 활용되고 있는 한국의 불확실성지수(EPU 및 UI)* 등에 비해서도 기준금리에 대한 설명력과 예측력이 높게 나타남
 - * EPU(economic policy uncertainty)는 www.policyuncertainty.com에서 발표하며, UI(uncertainty index)는 https://www.sciencedirect.com/science/article/pii/S0165176 517304305에 공개됨

기준금리 변동에 대한 설명력 및 예측력 검정

ΔBOK_{t-1}	Dependent variable: ΔBOK_t							
	1.893**	1.790**	-0.209	-0.839	1.611*	1.296		
	(0.622)	(0.632)	(0.736)	(0.797)	(0.642)	(0.725)		
$\Delta(\pi_t - \pi^*)$	0.142	0.0163	-0.364	-0.490	-0.0690	0.0274		
	(0.331)	(0.341)	(0.517)	(0.431)	(0.348)	(0.352)		
$\Delta(y_t - y^*)$	7.068	5.614	6.025	8.351	5.696	4.803		
	(4.362)	(4.634)	(5.298)	(5.160)	(4.660)	(4.764)		
$\Delta \pi_t^e$		1.734	1.553	1.635	1.948*	1.883*		
		(0.910)	(1.262)	(1.107)	(0.928)	(0.923)		
Δy_t^e		0.322	0.153	0.0661	0.294	0.313		
		(0.450)	(0.637)	(0.536)	(0.456)	(0.455)		
$tone_t^{mkt}$			5.327***					
(S)			(1.114)					
$tone_t^{lex}$				4.515***				
2.5				(0.797)				
EPU_t (Korea)					-0.00374	E		
					(0.00191)			
UI_t (Korea)						-2.886		
						(2.155)		
N	143	143	143	143	143	133		
pseudo \mathbb{R}^2	0.076	0.095	0.446	0.364	0.116	0.107		

ΔBOK_t $\Delta (\pi_t - \pi^*)$ $\Delta (y_t - y^*)$ $\Delta \pi_t^e$ Δy_t^e	Dependent variable: ΔBOK_{t+2}											
	2.406***	2.339***	0.773	0.692	2.239**	2.017**						
	(0.671)	(0.678)	(0.777)	(0.797)	(0.688)	(0.741)						
	0.359 (0.338) 5.521	0.326 (0.343) 5.190	0.290 (0.373) 6.167	0.174 (0.367) 6.659	0.268 (0.350) 5.241	0.302 (0.350) 4.720						
							(4.721)	(4.945)	(5.127)	(5.073)	(4.948)	(5.041)
								0.629	0.607	0.536	0.718	0.781
		(0.901)	(0.963)	(0.946)	(0.908)	(0.907)						
		0.0952	0.160	0.00654	0.0702	0.0901						
		(0.449)	(0.482)	(0.468)	(0.451)	(0.451)						
	$tone_t^{mkt}$			1.406***								
				(0.383)								
$tone_t^{lex}$				1.970***								
				(0.542)								
EPU_t (Korea)					-0.00179							
					(0.00205)							
UI_t (Korea)						-2.106						
						(2.121)						
N	142	142	142	142	142	134						
pseudo R^2	0.110	0.113	0.203	0.189	0.117	0.118						

주: ΔBOK_t 는 정책금리 변동, $\Delta(\pi_t-\pi^*)$ 는 인플레이션갭 변동, $\Delta(y_t-y^*)$ 는 GDP갭 변동, $\Delta\pi_t^e$ 는 인플레이션 기대 변동, Δy_t^e 는 경기선행지수 변동, tone the 시장접근법으로 측정한 의사록 어조지수, tone lex 는 사전접근법으로 측정한 의사록 어조지수, EPU는 정책불확실성지수, UI는 불확실성지수를 의미

(시사점)

- □ 텍스트 마이닝은 금융시장에서 중앙은행의 의도를 파악하는 도구로 활용될 수 있을 뿐만 아니라, 중앙은행이 자체적으로 통화정책 커뮤니케이션을 진단하는 도구로 활용 가능함을 시사
 - o 즉, 텍스트 마이닝으로 **중앙은행 커뮤니케이션을 지수화**하면 해당 커 뮤니케이션의 어조 혹은 강도가 중앙은행이 의도한 바와 일치하는지 여부를 점검 가능
 - o 또한 금통위 전·후 기사의 어조 변화를 통해 통화정책의 충격을 측정하고 이것이 금융시장 및 실물경기에 미치는 영향을 분석하는 것도 가능