

"Topic- Object detection using faster r-cnn model on COCO Dataset "

Introduction:

A computer vision task that aims to identify and localize the object of interest in an image or video is called object detection. A major advancement in this direction is the Faster R-CNN (Faster Region-based Convolutional Neural Network)-speed combined with accuracy enables nearly real-time object detection in many applications, spanning from autonomous driving to surveillance systems. Objective of this project: This project aims at including the workings of the Faster R-CNN architecture.

Objective:

1

To develop an efficient object detection model using Faster R-CNN architecture to accurately identify and localize objects within images from the COCO dataset.

2 Project Overview:

It utilizes a pre-trained Faster
R-CNN having a ResNet-50
backbone with large COCO
dataset. The project involves
preprocessing data, training the
model, evaluating its
performance, and optimizing it
for real-time applications.

Challenges:

3

- 1. Handling diverse and extensive COCO dataset variations.
- 2. Addressing computational resource demands for training Faster R-CNN.
- 3. Managing overfitting due to the complexity of the model.

.

Faster R-CNN:

Faster R-CNN consists of the following few layers:

Convolutional Layers: Using the VGG or ResNet layer, it extracts feature maps from the input image while capturing the essential spatial and semantic information.

RPN: Sliding a small network over these feature maps produces a score based on object and box coordinates for each of the proposed regions.

Anchor Boxes: The predefined boxes within the RPN of different scales and aspect ratios? Anchor boxes? Getting back on the path: to cover the different sizes and shapes of objects and help later on in generating the right proposals for the region.

RoI pooling layer: Pooling in feature maps from each proposed region is in a fixed size. This guarantees that any feature extraction will process these very regions identically for purposes of classification and refinement of bounding box position.

Fully Connected Layers: Further refine the RoI features with some last classifier and bounding box regression layers to yield the final detection.

Classification and Bounding Box Regression: The final layer assigns labels to each region based on class and refines box positions for object localization.

Methodology:

Literature Survey:

Author(s) &Year	Title	Objective	Methodology	Key Contributions	Remarks
Ren, S., He, K., Girshick, R., & Sun, J. (2017)	Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks	To develop a faster, more accurate object detection system for real-time applications.	Introduces Region Proposal Networks (RPN) for efficient object proposal generation, integrated into the Faster R-CNN framework.	Proposed RPNs, significantly improving detection speed and accuracy over previous methods.	Faster R-CNN became foundational for real-time object detection tasks, influencing various subsequent models.
Zhu, Y., Liu, Y., Shi, W., & Chen, X. (2020)	Research on Vehicle Detection and Classification Algorithm Based on Improved Faster R-CNN	To improve vehicle detection and classification in real-world conditions using Faster R-CNN.	Enhances Faster R-CNN by tuning parameters and structures specific to vehicle detection challenges.	Demonstrates significant improvements in detecting and classifying vehicles in complex environments.	Provides insight into adapting existing models for specific domains, such as transportation surveillance.
Girshick, R. (2015)	Fast R-CNN	To speed up R-CNN- based object detection by eliminating the need for per-region convolution.	Fast R-CNN uses Rol pooling to apply a single CNN pass on the entire image, followed by region classification and bounding box regression.	Significantly reduces computational cost, making R-CNNs more practical for real-time applications	Fast R-CNN laid the groundwork for Faster R-CNN, reducing computational demands in object detection.
Dosovitskiy et al., 2021	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale	Assesses transformers as a viable alternative to convolutional networks in vision task	Applies transformer architecture to image patches instead of traditional CNNs	Demonstrated compe titive performance of transformers in large- scale vision tasks	Set a precedent for transformer-based architectures in vision

Litaratura Curvey

Literature 3u	IIVE
Zhou et al., 2022	

Zhang, Yang & Zhang,

Hong et al., 2023

Tang et al., 2023

Ma et al., 2023

2022

Improved Multi-Class
Object Detection via

Faster R-CNN with

A Comprehen sive Review

Efficient Object Detection

in the Wild: Faster R-CNN

Faster R-CNN and YOLO

Approaches Combined

for Improved Real-Time

Object Detection with

Dynamic Pruning and

Improvements in Faster

Transformer-Based

R-CNN Models

Detection

with Edge Features

Enhanced RPN

on Object Detec

Learning

tion Based on Deep

real-world scenarios accuracy in the wild Combine Faster R-CNN Hybrid approach using and YOLO to leverage YOLO's speed with Faster strengths of both R-CNN's accuracy

Enhance Faster R-CNN

with dynamic pruning

and transformers for

efficiency

Enhance Faster R-CNN's

multi-class detection

Review advances in

deep learning

object detection using

Improve Faster R-CNN's

performance in complex,

capability

Increased detection

classes

detection

accuracy across multiple

Provided insights into

current challenges and

Achieved more robust

leveraging edge features

detection in variable

Increased real-time

both models

load

detection accuracy by

combining strengths of

Achieved faster and more

efficient detection, with

reduced computational

environments by

future directions in object

Modified Faster R-CNN's

RPN for better proposal

Extensive survey covering

methods like Faster R-

Added edge features to

enhance RPN's proposal

Uses transformer layers

with dynamic pruning to

reduce computation

CNN, YOLO, SSD, and transformer-based

generation in complex

scenarios

models

Improved Faster R-CNN

A valuable resource for

understanding the

landscape of deep-

detection

learning-based object

Improved Faster R-CNN

in diverse contexts

Shows potential for

Latest advancements

with Faster R-CNN

combining transformers

hybrid model

development

for practical applications

for diverse environments

Image Stacking And Bounding Boxes:

1 Stacked Image:

Sampling 4-digit rows per image..

Bounding Box Generation:

Defined bounding boxes for each digit based on the column position in the row

3 Key Code Snippet:

for col_idx in range(num_per_row): x_min = col_idx * image_size
x_max = x_min + image_size row_bboxes.append([x_min, 0, x_max image_size])

Visualizing Stacked Image:

Training Process and Metrics Calculation:

1 Training Loop:

Forward pass, loss calculation, back-propagation.

Metrics:

Precision, Recall, Accuracy calculated per epoch.

3 Key Snippet:

precision = precision_score(true_labels, pred_labels,
average='micro')

Future Scope:

Real-Time Optimization

Edge computing and model compression will probably soon enable the acceleration of application and optimization of efficiency to extend into the world of real-time usage.

• Integration with Transformers

Application with transformers can boost the power of detection, and thus can extend its usage towards complex scenarios such as autonomous driving or even medical imaging.

• Enhanced Performance in Demanding Conditions Low light, occlusion, and crowding adaptations are enhanced for applications that include surveillance, wildlife monitoring, and emergency response.

Training Results:

Epoch-wise Performance:

Loss decreased and metrics improved at 5 epochs.

Sample Output:

Total loss and accuracy metrics at each epoch.

Graph:

Loss curve which illustrates the training.

REFERENCE:

- 1. Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.
- 2. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. "You Only Look Once: Unified, Real-Time Object Detection," CVPR, 2016.
- 3. Carion, N., et al. "End-to-End Object Detection with Transformers," European Conference on Computer Vision (ECCV), 2020.
- 4. Dosovitskiy, A., et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," International Conference on Learning Representations (ICLR), 2021.
- 5. Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. "YOLOX: Exceeding YOLO Series in 2021." arXiv:2107.08430, 2021.
- 6. Zhou, C., et al. "Improved Multi-Class Object Detection via Faster R-CNN with Enhanced Region Proposal Network," IEEE Access, 2022.
- 7. Zhang, Y., Yang, F., & Zhang, H. "A Comprehensive Review on Object Detection Based on Deep Learning," IEEE Access, 2022.
- 8. Hong, Y., et al. "Efficient Object Detection in the Wild: Faster R-CNN with Edge Features," Pattern Recognition, 2023.
- 9. Tang, Z., et al. "Faster R-CNN and YOLO Approaches Combined for Improved Real-Time Detection," Computer Vision and Image Understanding, 2023.
- 10. Ma, L., et al. "Object Detection with Dynamic Pruning and Transformer-Based Improvements in Faster R-CNN Models," arXiv:2310.04829, 2023.

Team Name: Innovators

Group Members:

S.No.	Name
1	Devansh Patel
2	Vishesh Shahu
3	Akshay Gupta
4	Pradeep Shahu
5	Sumit Patil

TA: Anirvinya Gururajan