CARNEGIE MELLON UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE 15-445/645 – DATABASE SYSTEMS (FALL 2017) PROF. ANDY PAVLO

Homework 2 (by Prashasthi Prabhakar)

Due: Wednesday Sep 20, 2017 @ 11:59pm

IMPORTANT:

- Upload a PDF of your answers to Gradescope by 11:59pm on Wednesday Sep 20, 2017.
- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- **Typeset** all your answers.

For your information:

- Graded out of 100 points; 4 questions total
- Rough time estimate: \approx 1-4 hours (0.5-1 hours for each question)

Revision: 2017/09/18 13:52

Question	Points	Score
Functional Dependencies I	15	
Functional Dependencies II	32	
Decompositions	20	
Normal Forms	33	
Total:	100	

Consider the following legal instance of a relational schema S with attributes XYZ:

_			
5	X	Y	Z
	m	20	T
	m	10	F
	0	30	T
	n	30	T
	0	20	T

Table 1: Legal instance of schema S for question 2.1

(a) Which of the following dependencies are <i>violated</i> by the instances of S in Table	ble 17
--	--------

- i. [2 points] \square Yes \square No : $X \to Y$ is violated.
- ii. [2 points] \triangledown Yes \square No : $Z \to X$ is violated.
- iii. [2 points] \square Yes \square No : $Y \rightarrow Z$ is violated.
- iv. [2 points] \square Yes \square No : $XY \rightarrow Z$ is violated.
- v. [2 points] \square Yes \square No : $YZ \rightarrow X$ is violated.
- vi. [2 points] \square Yes \square No : $XZ \rightarrow Y$ is violated.
- (b) [3 points] By only observing the instance of S in Table 1, can you identify the functional dependencies that hold on schema S? Why?
 - □ Yes ☑ No

Cannot use the example induce the whole set.

For the next set of questions consider the relational schema $\mathcal{R} = \{P, Q, R, S, T, U, V, W\}$ and the set of functional dependencies FD:

$$Q \rightarrow U$$
 (1)

$$U \rightarrow V$$
 (2)

$$PQ \rightarrow WST$$
 (3)

$$SU \rightarrow TR$$
 (4)

$$VT \rightarrow RW$$
 (5)

$$R \rightarrow W$$
 (6)

- (a) [8 points] Which of the following is a minimum cover of the FD? Mark all that qualify; if none, mark accordingly, and give your own. answer.
 - i. The given FDs (Eq 1-6), is a minimum cover already.

ii.
$$\{Q \rightarrow U, U \rightarrow V, PQ \rightarrow S, SU \rightarrow T, SU \rightarrow R, VT \rightarrow R, VT \rightarrow W, R \rightarrow W\}$$

iii.
$$\{Q \rightarrow U, U \rightarrow V, PQ \rightarrow S, SU \rightarrow T, PQ \rightarrow W, VT \rightarrow R, PQ \rightarrow T, R \rightarrow W\}$$

iv.
$$\{Q \rightarrow U, U \rightarrow V, PQ \rightarrow S, SU \rightarrow T, VT \rightarrow R, R \rightarrow W\}$$

iv.
$$\{Q \to U, U \to V, PQ \to S, SU \to T, VT \to R, R \to W\}$$

v. $\{Q \to U, U \to V, PQ \to S, SU \to T, SU \to R, VT \to R, PQ \to T, R \to W\}$

- vi. none of the above the cover is _____
- (b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(6))?
 - i. [3 points] \square Yes \square No : $Q \to V$
 - ii. [3 points] \triangledown Yes \square No : $QU \to R$
 - iii. [3 points] \square Yes \square No : $SQ \to T$
 - iv. [3 points] \square Yes \square No : $SQ \rightarrow W$
 - v. [3 points] \square Yes \square No : $PQ \rightarrow R$
 - vi. [3 points] \square Yes \square No : $VT \rightarrow Q$
- (c) [3 points] True or False: The attribute closure $\{Q\}^+$ is $\{Q, U, V\}$.
 - ☑ True □ False
- (d) [3 points] True or False: The attribute closure $\{PQ\}^+$ is $\{P, Q, W, S, T\}$.
 - □ True ☑ False

Question 3: Decompositions.....[20 points]

For this set of questions, consider the relation with attributes, $\mathcal{X} = \{A, B, C, D, E, F\}$, Let the following functional dependencies FD be defined over the relation \mathcal{X} :

$$A \to B$$
$$B \to CD$$
$$E \to F$$

- (a) [2 points] Provide the attribute closure of $\{AB\}$. A,B,C,D
- (b) Consider the decomposition AB, BCD, EF. Mark 'True' or 'False':
 - i. [3 points] □ True □ False: It is lossless
 - ii. [3 points] ☑ True □ False: It is dependency-preserving
- (c) Consider the decomposition AB, BCDF, EF. Mark 'True' or 'False':
 - i. [3 points] ☑ True ☐ False: It is lossless
 - ii. [3 points] ☑ True ☐ False : It is dependency-preserving
- (d) Consider the decomposition ABCEF, EBD. Mark 'True' or 'False':
 - i. [3 points] ☑ True □ False: It is lossless
 - ii. [3 points] ☐ True ☐ False: It is dependency-preserving

Question 4: Norma	d Forms	[33 poi	nts
--------------------------	---------	---------	-----

Consider the relation with attributes, $\mathcal{E} = \{P, Q, R, S\}$. Suppose that the following functional dependencies hold:

$$PQ \rightarrow R$$
 (7)

$$PQ \rightarrow S$$
 (8)

$$R \rightarrow P$$
 (9)

$$S \rightarrow Q$$
 (10)

- (a) [6 points] List all the candidate key(s) for \mathcal{E} ,PQ,RS,PS,QR
- (b) [2 points] Is the relation \mathcal{E} in BCNF? \square Yes \square No
- (c) From the list below, select all applicable choices to justify whether $\mathcal E$ is (or is not) in BCNF.

Note: when we refer to the *main requirement* for BCNF, we mean: *every determinant is a super key*.

- i. [1 point] □ True □ False: All FD's satisfy the main requirement.
- ii. [1 point] □ True □ False: FD (7) violates the main requirement.
- iii. [1 point] □ True □ False: FD (8) violates the main requirement.
- iv. [1 point] ☐ True ☐ False: FD (9) violates the main requirement.
- v. [1 point] ☑ True ☐ False: FD (10) violates the main requirement.
- (d) [2 points] Is the relation \mathcal{E} in 3NF? \square Yes \square No

 $X \to A$, A is part of a candidate key.

(e) From the list below, select all applicable choices to justify whether \mathcal{E} is (or is not) in 3NF. **Note:** when we refer to the *secondary requirement* for 3NF, we mean: *for every FD*

i. [1 point]
☐ True ☐ False: All FD's satisfy the secondary requirement.

- ii. [1 point] □ True □ False: FD (7) violates the secondary requirement.
- iii. [1 point] □ True ☑ False: FD (8) violates the secondary requirement.
- iv. [1 point] □ True ☑ False: FD (9) violates the secondary requirement.
- v. [1 point] \Box True \Box False : FD (10) violates the secondary requirement.
- (f) [5 points] Give a 3NF decomposition of \mathcal{E} that is lossless, dependency preserving, and has as few tables as possible.
- (g) [8 points] Give a BCNF decomposition of \mathcal{E} that is lossless, and has as few tables as possible.