

FIG.1A

FIG.1B

FIG.2

BAW				AMOUNT	O F	EACH CON	CONPONENT	(wt %)			
MATERIAL	MATERIAL COMPONENTS	EXAMPLE1	PLE1	EXAMPLE	IPLE2	COMPAI	COMPARATIVE EX1	COMPA	COMPARATIVE EX.2	COMPA	COMPARATIVE EX.3
		LOW # HIGH MATERIAL MATERI		LOW H	HIGH H	LOW #	HIGH H MATERIAL	LOW #	μ LOW μ HIGH μ LOW μ HIGH μ LOW μ HIGH μ	LOW # HIGH #	HIGH H MATERIAL
FIBER	ARAMID FIBER	25	15	25	15	25	15	25	15	25	15
BASE	COPPER FIBER	വ		ល		വ		വ		വ	
	STEEL FIBER		10		10		10		10		10
FRICTION	GRAPHITE	10	2	10	വ	10	9	10	5	10	വ
REGULA ING	CASHEW DUST	10	10	9	0	10	10	10	10	10	10
AND FILER	CALC I UM HYDROX I DE	7	8	7	α	0	7	8	2	α	8
	ALUMINUM		2	2	9		വ	4	S	`. O	-
	MICA	15	5	5	15	15	15	15	15	15	15
	BARIUM	23	28	25	26	23	28	23	28	23	28
BINDER	PHENOL RESIN	10	10	ω	12	10	10	10	10	10	10
FRICTION	FRICTION COEFFICIENT	0.35	0.45	0.40	0.46	0.35	0.45	0.44	0.46	0.35	0.38
YOUNG'S MODULUS	ODULUS	200	800	150	1000	200	800	200	800	200	800
SLIT WIDTH	I	1 mm	r.i.	4.5mm	mm	0.5mm	nm	2mm	mı	3mm	LIL.

FIG.3

	EXAMPLE1	EXAMPLE2	COMPARATIVE EX.1	COMPARATIVE COMPARATIVE COMPARATIVE EX.1 EX.2 EX.3	COMPARATIVE EX.3
NOISE GENERATION RATE(%)	0	2	0	50	0
BRAKE EFFECTIVENESS	SUFFICIENT	SUFFICIENT	SUFFICIENT	SUFFICIENT INSUFFICIENT	INSUFFICIENT
POST-BRAKING TEST BRAKE NOISE	0	2	0	50	0
POST-BRAKING TEST BRAKE EFFECTIVENESS	SUFFICIENT	SUFFICIENT	SUFFICIENT INSUFFICIENT SUFFICIENT	SUFFICIENT	INSUFFICIENT

FIG.4