<u>Proof.</u> We only consider $1 \le p < 2$. The assertion for p > 2 then follows by duality while p = 2 was treated in Prop.2.13.

At first we observe that without loss of generality we may assume that μ is a probability measure and that T(t)1=1 for every $t \geq 0$. In fact, the assumptions imply that T(t)h=h for some h >> 0, $\left\|h\right\|_p=1$. We consider the measure ν which has the density h^p with respect to μ . Then ν is a probability measure and $M:L^p(\nu)\to L^p(\mu)$; defined by Mh:=hf, is an isometric lattice isomorphism of $L^p(\nu)$ onto $L^p(\mu)$. The semigroup defined by $\tilde{T}(t):=M^{-1}T(t)M$ possesses the same properties as (T(t)) and satisfies $\tilde{T}(t)1=1$ for $t\geq 0$.

Now the properties T(t)1=1, $T(t)\geq 0$ imply that $L^{\infty}(\mu)$ is an invariant subspace for every operator T(t) which is contractive with respect to the L^{∞} -norm. The Riesz Convexity Theorem [Dunford-Schwartz (1958), VI.10.11] then implies that by restricting the semigroup (T(t)) to $L^{q}(\mu)$ (p < q < ∞) we obtain a strongly continuous semigroup $(T_{q}(t))_{t\geq 0}$ on $L^{q}(\mu)$ such that $\|T_{q}(t)\| \leq \|T(t)\|^{p/q}$ for $t\geq 0$, $q\geq p$.

Let A_q be the generator of $(T_q(t))$. In order to apply Prop.2.13 we have to show that 0 is a pole of the resolvent of A_2 . Denoting the residue of R(.,A) at 0 by P then P = h0l for a suitable $h \in (L^p(\mu))'$. Since $(L^p(\mu))' \subset (L^2(\mu))'$, P can also be considered as bounded operator on $L^2(\mu)$. We denote it by P_2 . From AP = PA = 0 it follows that

$$(R(1,A)(Id-P))^n = R(1,A)^n - P \quad (n \in N) \quad and$$

 $(R(1,A_2)(Id-P_2))^n = R(1,A_2)^n - P_2 \quad (n \in N)$.

The Riesz Convexity Theorem yields the following estimate for the operator norm:

$$\|R(1,A_2)^n - P_2\| \le \|R(1,A)^n - P\|^{2/p} \|R(1,A)_{\infty}^n - P_{\infty}\|^{1-2/p}$$

$$\le \|R(1,A)^n - P\|^{2/p} (1 + \|P_{\infty}\|)^{1-2/p}.$$

Since 0 is a pole with residue P , the spectral radius of the operator R(1,A)(1-P) is less than 1 . Thus for the right hand side of the inequality tends to 0 as n + ∞ . It follows that $r_{\rm ess}(R(1,A_2)) < 1$, hence 1 is a pole of the resolvent of $R(1,A_2)$, or equivalently, 0 is a pole of $R(.,A_2)$ (see A-III,Prop.2.5). Now we can apply Prop.2.13 and obtain a projection Q such that $\lim_{t\to\infty} \|T(t)f - R_{\tau}(t) \circ Qf\|_2 = 0$ for every $f \in L^2(\mu)$. On order intervals of $L^\infty(\mu)$ both, $L^{\rm P}-$ and $L^{\rm P}-$ norm induce the same topology (see