Leeture 1: lutro to porous media

A saturakel p. m.

- 1) solid (e)
 - 2, pore fluid (f)
 - ⇒ single phase flew (linear)

An unstaturated medium

- 1, Solid phase (s)
- 2) Welling phase (w) water
- 3) non-welling phase (n) gas
- => two-pheuse flew (non-linear)

$$\phi_P = \frac{V_P}{V_T}$$

Volume fractions: $\phi_p = \frac{V_p}{V_T}$ $V_p = volume of phase p$

VT = ZVp total volume

Σ φρ = 1 vol. frac. constraint.

Porosity:

(saturated p.m)

$$\phi = \phi_{\omega} + \phi_{\alpha}$$
 (unsaturakel p.m.)

 $1-\phi=\phi_s$ is vol. of solice

Fluid saturations:
$$s_p = \phi_p/\phi$$
 $p \in [w, u]$
 s_p is fraction of pore space occupied by p
 ϕ_p is fraction of space occupied by p
 $s_p + s_w = 1$

Darcy's law

Basis for all p.m. modeling on the "Darcy scale"

A = cycrs - sec. area [L2]

h, h = hydraulic heads [1]

Ah = h_R - h_ change in [L]

Q = vol. flow rate [L3]

Al = distance toe of

head drop

Experimental obs:

$$Q = -AK \stackrel{\Delta h}{\Delta l}$$

$$\stackrel{L^3}{=} L^2 \stackrel{L}{=} \stackrel{L}{=}$$

K = hydratic conductivity [L/T]
constant of proportionality

Observations: 1, Empirical law (o.k.)

2) Macres copie (good)

3) Q "integrated quantity"

it is over all of A (not seed)

For continuum Theory we need a flux.

Rate: amount of something per time [#]
eg. discharge [+] -> scalar

Thux: amount of something per area per time

[#] -> vector

eg specific discharg: $q = \frac{a}{A} \hat{n}$ $\hat{n} = unit normal to surface indiress$

9
$$\left[\frac{L^3}{L^2T} = \frac{L}{T}\right]$$
 looks like a velocity but it is NOT.

$$|q| = -k \frac{\Delta h}{\Delta L}$$
 $q = -k \frac{\Delta h}{\Delta h} \hat{n}$
still ID concept

Darcy's law in 3P

$$q = -\frac{K}{2} \nabla h$$
 $q = \begin{pmatrix} q \times \\ q \times \end{pmatrix}$ spec. disch. vector

$$\nabla h = \begin{pmatrix} \frac{\partial h}{\partial x} \\ \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial z} \end{pmatrix}$$
 gradient of head

$$\underline{K} = \begin{bmatrix} K^{\times X} & K^{\times X} & K^{\times Z} \\ K^{\times X} & K^{\times X} & K^{\times Z} \end{bmatrix} \qquad \underline{K} = \underline{K}^{\perp}$$

homogeneous/he trogeneous

$$K = coust$$
 $K = K(\underline{x})$

isotropic / anisotropic

$$\underline{K} = K(\underline{x}) \underline{I}$$
 $\underline{K}(\underline{x}) \neq K(\underline{x}) \underline{I}$

$$\underline{\underline{k}}(\underline{x}) \neq \underline{K}(\underline{x})\underline{\underline{I}}$$

Darey in krus of
$$p$$
 and k

$$q = -\frac{k}{\mu} (\nabla p + pg^2)$$