Modelli di traffico per la formazione della congestione su una rete stradale

Gregorio Berselli

Laurea in Fisica Università di Bologna

22 luglio 2022

Relatore: Prof. Armando Bazzani Correlatore: Dott. Alessandro Fabbri

Congestioni su network stradale

Definizione

Diminuzione della qualità del trasporto del network.

PROBLEMA: studio della dinamica di formazione delle congestioni su network stradale

IDEA: modello di simulazione di un network stradale basato su una dinamica di optimal velocity e una dinamica di incrocio

Diagrammi Fondamentali Macroscopici

Relazione fondamentale

$$\Phi = \rho V$$

Referenza:

Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings.

Modello - Dinamica veicolare: optimal velocity

Velocità di immissione

$$v(t) = v_{max} \left(1 - k \frac{\rho(t)}{\rho_{max}} \right)$$

La densità stabilisce il tempo di percorrenza.

Modello - Dinamica agli incroci

- Se la penalità temporale è nulla si è giunti ad un incrocio
- In base al best path viene scelta la prossima strada in cui immettersi, in particolare:
 - se vuota, il veicolo si immette e gli viene assegnata una nuova velocità
 - 2 se piena, il veicolo rimane fermo all'incrocio e "perde" uno step temporale

Simulazioni

Parametri del modello

- Lunghezza strade: 500 m
- Lunghezza veicoli: 8 m
- Numero di incroci: 120
- Numero di strade: 436
- Veicoli immessi: ∼ 10⁴
- Velocità massima: 50 km/h (per ogni strada)
- Velocità minima: 25% della velocità massima

Rete stradale e domanda di mobilità

Scala cromatica da verde scuro (densità nulla) a rosso scuro (densità massima)

Distribuzioni della congestione in diversi regimi

Figura: Distribuzione rapporto densità / densità massima per network non congestionato (sinistra) e congestionato (destra) con interpolazioni esponenziali.

Fenomeno di isteresi

Congestione: diminuzione repentina del flusso medio

Figura: Variazione del flusso medio nel tempo (sinistra) e diagramma temporale flusso/densità (destra).

Conclusioni

Riscontri positivi

- Evidenziate le principali dinamiche
- Congestioni localizzate nello spazio

Necessità

- Rete più realistica da inserire
- Confronto con dati reali

Grazie per l'attenzione

Riferimenti principali:

Nikolas Geroliminis, Carlos F. Daganzo "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings." (2008), https://doi.org/10.1016/j.trb.2008.02.002.

Gazis, Denos C. "The origins of traffic theory." (2002): 69-77.

Park, S., Rakha, H. and Guo, F. "Calibration issues for multistate model of travel time reliability." (2010).

Evoluzione temporale completa

Figura: Variazione del flusso medio nel tempo.

Sistema congestionato

Distribuzioni della congestione in diversi regimi - Log Scale

Figura: Distribuzione rapporto densità / densità massima per sistema non congestionato (sinistra) e congestionato (destra) con interpolazioni esponenziali.