Devoir surveillé nº 6

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

EXERCICE 1.

On considère les équations différentielles suivantes :

$$(\mathcal{E}): y''' - y = 0$$

$$(\mathcal{F}): y'' + y' + y = 0$$

$$(\mathcal{G}): \mathbf{y}' - \mathbf{y} = \mathbf{0}$$

On note E, F et G les ensembles respectifs des solutions à valeurs réelles de (\mathcal{E}) , (\mathcal{F}) et (\mathcal{G}) . Les solutions de (\mathcal{E}) , (\mathcal{F}) et (\mathcal{G}) sont toutes de classe \mathcal{C}^{∞} sur \mathbb{R} , ce qu'on ne demande pas de montrer. On note $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} à valeurs dans \mathbb{R} .

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$.
- **2.** Montrer que $F \subset E$ et $G \subset E$.
- **3.** Donner les solutions des équations différentielles (\mathcal{F}) et (\mathcal{G}) .
- 4. Montrer que F et G sont des sous-espaces vectoriels de E et donner pour chacun une famille génératrice.
- 5. a. Soit $y \in E$. On pose $y_1 = 2y y' y''$ et $y_2 = y + y' + y''$. Montrer que $y_1 \in F$ et $y_2 \in G$.
 - ${\bf b}$. Montrer que ${\sf F}$ et ${\sf G}$ sont supplémentaires de ${\sf E}$.
- **6.** En déduire l'ensemble des solutions de (\mathcal{E}) .

EXERCICE 2.

- 1. Soient a et n des entiers strictement supérieurs à 1. On suppose que $a^n + 1$ est un nombre premier.
 - ${\bf a.}$ Montrer que ${\bf \alpha}$ est pair.
 - **b.** On suppose que n admet un diviseur positif impair m supérieur ou égal à 3. Il existe alors $k \in \mathbb{N}^*$ tel que n = km. Montrer que $a^k + 1$ divise $a^n + 1$ et aboutir à une contradiction.
 - c. Que peut-on en déduire sur n?
- 2. On pose pour $n \in \mathbb{N}$, $F_n = 2^{2^n} + 1$.
 - a. Montrer que pour tout $n \in \mathbb{N}, F_{n+1} = (F_n 1)^2 + 1$.
 - $\mathbf{b.}\ \, \mathrm{Montrer}\ \mathrm{que}\ \mathrm{pour}\ \mathrm{tout}\ n\in\mathbb{N}^*,\, F_n-2=\prod_{k=0}^{n-1}F_k.$
 - c. Soit $(m,n) \in \mathbb{N}^2$ tel que m < n. Montrer que $F_m \wedge F_n = 1$.
- 3. Soient $n \in \mathbb{N}$ et p un nombre premier divisant F_n et distinct de F_n . On considère l'ensemble

$$A = \left\{ k \in \mathbb{N}^*, \ 2^k \equiv 1[p] \right\}$$

- **a.** Montrer que $2^{n+1} \in A$.
- ${\bf b.}$ Justifier que A admet un minimum que l'on notera ${\bf m.}$
- c. En écrivant la division euclidienne de 2^{n+1} par m, montrer que m divise 2^{n+1} .

- **d.** Montrer que $m = 2^{n+1}$.
- e. Justifier que $p-1 \in A$.
- **f.** En déduire que $p \equiv 1 [2^{n+1}]$.

Problème 1 —

On admettra l'irrationalité de $\sqrt{2}$.

Partie I -

On introduit l'ensemble $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}, \ (a,b) \in \mathbb{Z}^2\}.$

- 1. Montrer que $\mathbb{Z}[\sqrt{2}]$ est un sous-anneau de $(\mathbb{R}, +, \times)$. $(\mathbb{Z}[\sqrt{2}], +, \times)$ est donc un anneau.
- **2. a.** Montrer que pour tout $x \in \mathbb{Z}[\sqrt{2}]$, il existe un *unique* couple $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. On peut alors définir le *conjugué* de x par $\overline{x} = a b\sqrt{2}$.
 - $\mathbf{b.}\ \, \mathrm{Montrer}\ \, \mathrm{que}\ \, \mathrm{l'application}\ \, \phi:\left\{\begin{array}{ccc} \mathbb{Z}[\sqrt{2}] & \longrightarrow & \mathbb{Z}[\sqrt{2}] \\ x & \longmapsto & \overline{x} \end{array}\right.\ \, \mathrm{est}\ \, \mathrm{un}\ \, \mathrm{automorphisme}\ \, \mathrm{d'anneau}.$
- **3.** Pour $x \in \mathbb{Z}[\sqrt{2}]$, on pose $N(x) = x\overline{x}$.
 - **a.** Justifier que pour tout $x \in \mathbb{Z}[\sqrt{2}], N(x) \in \mathbb{Z}$.
 - **b.** Montrer que pour tout $(x,y) \in (\mathbb{Z}[\sqrt{2}])^2$, N(xy) = N(x)N(y).
 - c. Montrer que $x \in \mathbb{Z}[\sqrt{2}]$ est inversible dans l'anneau $(\mathbb{Z}[\sqrt{2}], +, \times)$ si et seulement si |N(x)| = 1.

Partie II -

On note H l'ensemble des éléments inversibles de l'anneau $\mathbb{Z}[\sqrt{2}]$. Autrement dit, $H = \{x \in \mathbb{Z}[\sqrt{2}], |N(x)| = 1\}$.

- 1. Montrer que H est un sous-groupe de (\mathbb{R}^*, \times) .
- 2. Soient $x \in H$ et $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$.
 - $\mathbf{a.} \ \, \mathrm{Montrer} \,\, \mathrm{que} \,\, \mathrm{si} \,\, \mathfrak{a} \geqslant 0 \,\, \mathrm{et} \,\, \mathfrak{b} \geqslant 0, \,\, \mathrm{alors} \,\, \mathfrak{x} \geqslant 1.$
 - **b.** Montrer que si $a \le 0$ et $b \le 0$, alors $x \le -1$.
 - c. Montrer que si $ab \le 0$, alors $|x| \le 1$.
- 3. On note $H^+ = H \cap]1, +\infty[$.
 - a. Soient $x \in H^+$ et $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. Montrer que a > 0 et b > 0.
 - **b.** En déduire que $u = 1 + \sqrt{2}$ est le plus petit élément de H^+ .
- **4.** Soit $x \in H^+$.
 - a. Montrer qu'il existe un entier n tel que $u^n \le x < u^{n+1}$.
 - **b.** Montrer que $x = u^n$.
- 5. En déduire que $H = \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}.$