It Burns When I Decision Tree

Kevin Fagan

Introduction

Business problem:

 Finding fires in an petrochemical plant while they are in the incipient stage, before they become a bigger problem.

Goal

 Determine if fire can be detected with existing infrastructure for Monroe Energy's Trainer Refinery.

Data

- A dataset of over 62M smoke detector sensor readings was obtained from Kaggle.
- The dataset was generated by Stefan Blattmann for his IOT project Real-time Smoke Detection with Al-based Sensor Fusion.
- Many different environments and fire sources have to be sampled to ensure a good dataset for training. A short list of different scenarios which are captured:
 - Normal indoor
 - Normal outdoor
 - Indoor wood fire, firefighter training area
 - Indoor gas fire, firefighter training area
 - Outdoor wood, coal, and gas grill
 - Outdoor high humidity
 - etc.

Data

The dataset features in detail:

- Air Temperature
- Air Humidity
- TVOC: Total Volatile Organic Compounds; measured in parts per billion (Source)
- eCO2: co2 equivalent concentration; calculated from different values like TVCO
- Raw H2: raw molecular hydrogen; not compensated (Bias, temperature, etc.)
- Raw Ethanol: raw ethanol gas (Source)
- Air Pressure
- PM 1.0 and PM 2.5: particulate matter size < 1.0 μm (PM1.0). 1.0 μm < 2.5 μm (PM2.5)
- Fire Alarm: ground truth is "1" if a fire is there
- CNT: Sample counter
- UTC: Timestamp UTC seconds
- NC0.5/NC1.0 and NC2.5: Number concentration of particulate matter. This differs from PM because NC gives the actual number of particles in the air. The raw NC is also classified by the particle size: < 0.5 μm (NC0.5); 0.5 μm < 1.0 μm (NC1.0); 1.0 μm < 2.5 μm (NC2.5);

Data

• The dataset features in detail:

- Air Temperature
- Air Humidity
- TVOC: Total Volatile Organic Compounds; measured in parts per billion (Source)
- eCO2: co2 equivalent concentration; calculated from different values like TVCO
- Raw H2: raw molecular hydrogen; not compensated (Bias, temperature, etc.)
- Raw Ethanol: raw ethanol gas (Source)
- Air Pressure
- PM 1.0 and PM 2.5: particulate matter size < 1.0 μm (PM1.0). 1.0 μm < 2.5 μm (PM2.5)
- Fire Alarm: ground truth is "1" if a fire is there Target
- CNT: Sample counter Dropped, unnecessary
- UTC: Timestamp UTC seconds Dropped, unnecessary
- NC0.5/NC1.0 and NC2.5: Number concentration of particulate matter. This differs from PM because NC gives the actual number of particles in the air. The raw NC is also classified by the particle size: < 0.5 μm (NC0.5); 0.5 μm < 1.0 μm (NC1.0); 1.0 μm < 2.5 μm (NC2.5);

Method

- The data was used to create classification models (declare fire based on sensor data) to predict if there is fire present
- Models were then analyzed by Recall score, as correctly classifying actual fire is more important than false alarms
- The best performing model was selected and run using only the data that an oil refinery would have available to it
- Business recommendations will be made based on that

Models

Logistic Regression gave us an accuracy of 89% and a recall of 94.6%

after tuning.

True Negatives: 2726	False Positives: 849
False Negatives: 482	True Positives: 8469

A Decision Tree gave us 100% accuracy and recall.

True Negatives: 3575	False Positives:
False Negatives: 0	True Positives: 8951

Random Forest

 A Random Forest model also gave us 100% accuracy and recall.

True Negatives: 3575	False Positives: 0
False Negatives: 0	True Positives: 8951

Select features

Now we know smoke detectors, which our refinery does not have,
can detect fire. Lets try this again with instrumentation we do have.

True Negatives: 3575	False Positives:
False Negatives:	True Positives: 8951

 Good news. This includes ambient temperature, VOCs, CO2, H2, Ethanol, and ambient pressure, for which there are standing monitors around the refinery.

Instruments and analyzers

- These exist in varying frequencies throughout the refinery.
- Ambient pressure can also be inferred from process monitoring instruments by detecting changes in groups of physically close points.

Even less equipment

 All possible combinations of available existing equipment were used to predict fire, and ranked by recall score.

• We get acceptable results with only three sensors. Recall of 99.99%

True Negatives: 3572	False Positives: 3
False Negatives:	True Positives: 8950

Distributions

Recommendations and Next Steps

- It is clear that we can leverage existing equipment to improve the refineries ability to detect fire at the incipient stage.
- We should evaluate the physical location of the available instruments and analyzers to find gaps in protection.
- Then, more analyzers can be added at a lower cost than installing smoke detectors (which would include the cost of supporting and training personnel on new equipment). It is difficult to estimate the cost of a dedicated fire protection system, but as an example, a small tank farm (24 tanks) in Bavaria estimated that it would cost them approximately \$1.3MM.

Recommendations and Next Steps

Next steps:

- Ethanol detection was used in this case because in the real world testing that created this dataset, ethanol was used as the Class B fuel. LEL detection would be more versatile and should swap right in, but real world testing should be conducted to confirm.
- If possible, find data regarding the physical distance limits of these readings, to plan and optimize the density of our instruments.

Questions? Kevin Fagan

https://www.linkedin.com/in/kevin-m-fagan/kevinmfagan@gmail.com