Mécanique quantique – L2

Antoine Bourget - Alain Comtet - Antoine Tilloy Séance du 17 décembre 2014 - www.phys.ens.fr/~tilloy

Soutien 7 : États cohérents

On cherche à construire des états quantiques de l'oscillateur harmonique dont l'évolution est semblable à celle de l'oscillateur classique correspondant.

1 Retour sur la dynamique classique

- 1. Ecrire l'équation classique du mouvement sur x et la résoudre pour les conditions initiales $(x(0) = A, \dot{x}(0) = 0)$. Quelle est l'impulsion p correspondante?
- 2. Décrire le mouvement dans l'espace des phases $(x, p/m\omega_0)$ à l'aide de la quantité :

$$x + ip/m\omega_0. (1)$$

2 Propriétés des états cohérents

On définit l'état cohérent $|\alpha\rangle$ comme l'état propre de l'opérateur a de valeur propre α :

$$a |\alpha\rangle = \alpha |\alpha\rangle. \tag{2}$$

- 1. A-t-on a priori $\langle \beta | \alpha \rangle = \delta_{\alpha,\beta}$?
- 2. Calculer les coefficients α_n du développement de $|\alpha\rangle$ sur les états propres $|n\rangle$, tels que :

$$|\alpha\rangle = \sum_{n} \alpha_n |n\rangle. \tag{3}$$

- 3. Calculer les valeurs moyennes de X et de P dans l'état $|\alpha\rangle$, et les variances associées ΔX^2 et ΔP^2 .
- 4. Calculer la valeur moyenne de $N = a^{\dagger}a$ dans l'état $|\alpha\rangle$, et la variance associée.
- 5. L'oscillateur est préparé à t=0 dans l'état $|\Psi(0)\rangle = |\alpha\rangle$. Montrer que l'état $|\Psi(t)\rangle$ reste un état cohérent, caractérisé par un $\alpha(t)$ que l'on précisera.
- 6. Représenter finalement l'évolution temporelle de l'état du système dans l'espace des phases, la comparer à la dynamique classique de l'oscillateur et conclure.