Реализация криптографических алгоритмов в ИС

Лекция 1 Введение в криптографию. Основные нормативные и законодательные документы

Содержание лекции

- 1. Введение в криптографию
- 2. Основные нормативные и законодательные документы (законы в области защиты информации)
- 3. Правовые основы информационной безопасности

Лекция 1 Введение в криптографию. Основные нормативные и законодательные документы

1. Введение в криптографию

1. Введение в криптографию

Криптография (от греч. *kryptós* «тайный» и *gráphō* — «пишу») — это наука о методах обеспечения конфиденциальности, целостности и аутентичности информации. Если проще, это искусство создания и взлома шифров.

Криптография работает с двумя основными понятиями:

Шифрование (encryption) — детерминированный процесс преобразования открытого текста в шифртекст с использованием ключа и криптографического алгоритма.

Расшифрование (decryption) — обратный процесс преобразования шифртекста в открытый текст.

1. Введение в криптографию

Основные задачи криптографии:

- Конфиденциальность (Confidentiality) обеспечение доступа к информации только авторизованным субъектам.
- **Целостность** (**Integrity**) гарантия точности и полноты информации, защита от несанкционированного изменения.
- **Аутентичность (Authenticity)** подтверждение подлинности источника информации и идентификация участников взаимодействия.
- **Неотрекаемость** (Non-repudiation) невозможность для стороны отказаться от совершенных ею действий (например, от подписания документа).

1. Введение в криптографию

Криптоанализ — наука, изучающая методы вскрытия шифров без знания ключей.

Симбиоз криптографии и криптоанализа образует более общую дисциплину — **криптологию**.

1. Введение в криптографию Исторический экскурс: эволюция криптографических парадигм

Историю криптографии принято разделять на два кардинально отличающихся периода:

- 1. Классический (докомпьютерный) период (до XX века)
- 2. Современный период: криптография с секретным и открытым ключом

1. Введение в криптографию Исторический экскурс: эволюция криптографических парадигм

Классический (докомпьютерный) период (до XX века):

- **Античность:** Спарта шифр перестановки, шифр Цезаря (Рим) шифр замены, где каждая буква сдвигалась на фиксированное число позиций в алфавите.
- **Средневековье:** Более сложные моноалфавитные и полиалфавитные шифры. Яркий пример диск Альберти (XV век), который реализовал первый полиалфавитный шифр.
- XIX-XX век: Механические и электромеханические устройства. Легендарная немецкая шифровальная машина «Энигма» времен Второй мировой войны, взлом которой силами союзников (с участием Алана Тьюринга) значительно повлиял на исход войны.

2. Современный период:

Начало современной эпохе положила публикация работы Уитфилда Диффи и Мартина Хеллмана «New Directions in Cryptography» (1976). Ими была предложена концепция асимметричной криптографии (криптографии с открытым ключом).

- Вся классическая криптография была симметричной: один и тот же ключ использовался и для шифрования, и для расшифрования. Проблема как безопасно передать этот ключ второй стороне?
- В 1970-х гг. было предложено асимметричное шифрование (криптография с открытым ключом). Появились два ключа: открытый (public key) для шифрования, который можно всем показывать, и закрытый (private key) для расшифрования, который хранится в секрете. Это решило проблему распределения ключей.

1. Введение в криптографию Современное состояние криптографии

Современная криптография — это фундамент цифрового мира. Она основана на сложных математических вычислениях, которые практически невозможно реализовать без знания ключа.

Куда она встроена?

Повсюду: мессенджеры (TG, WhatsApp), интернет-банкинг, HTTPS-соединения в браузере, цифровые подписи, криптовалюты (Bitcoin) и блокчейн.

1. Введение в криптографию Современное состояние криптографии

Основные алгоритмы

- Симметричные (быстрые, для шифрования больших объемов данных): AES (Advanced Encryption Standard) мировой стандарт.
- **Асимметричные** (для установки безопасного соединения и цифровых подписей): RSA, ECC (Elliptic Curve Cryptography).
- **Хеш-функции** (для проверки целостности): SHA-256 (используется в Bitcoin).

1. Введение в криптографию Современное состояние криптографии

Современные вызовы:

- Квантовые вычисления: существующие квантовые компьютеры теоретически могут взломать многие современные асимметричные алгоритмы. Уже активно развивается постквантовая криптография новые алгоритмы, устойчивые к таким атакам.
- Сохранить баланс между правом на приватность и интересами национальной безопасности.

Лекция 1 Введение в криптографию. Основные нормативные и законодательные документы

2. Основные нормативные и законодательные документы (законы в области защиты информации)

2. Основные нормативные и законодательные документы защиты информации

Что защищаем? Основные понятия и объекты защиты

Защищаемая информация — это ключевой актив государства, бизнеса и гражданина.

Основные объекты правовой защиты:

- 1. Конфиденциальность:
- 2. Целостность:
- 3. Доступность: обеспечение доступа к информации и связанным с ней активам авторизованных пользователей по мере необходимости.

2. Что такое Комплаенс в Информационной Безопасности?

- **Комплаенс в ИБ** это система соблюдения установленных требований к защите информации.
- Суть: Выполнение предписаний законов, стандартов и внутренних правил компании в области кибербезопасности.
- Основные регуляторы в России:
- **ФСТЭК России:** Требования к защите информации, особенно персональных данных (152-ФЗ) и критической информационной инфраструктуры (187-ФЗ).
- ФСБ России: Требования к использованию шифровальных средств (СКЗИ) и электронной подписи (63-ФЗ).
- Роскомнадзор: Контроль за обработкой персональных данных.
- Международные стандарты: ISO/IEC 27001, PCI DSS, GDPR.

2. Цель и Польза Комплаенса в ИБ

Цель: систематическое снижение рисков, связанных с нарушением законодательства и стандартов, для минимизации штрафов, репутационных потерь и операционных сбоев.

Польза комплаенса:

- Снижение рисков избежание крупных штрафов и судебных исков.
- Доверие регуляторов и партнеров упрощение проверок и аудитов.
- Укрепление репутации повышение лояльности клиентов, которые уверены в безопасности своих данных.
- Повышение зрелости процессов ИБ помогает выстроить структурированные и измеримые процессы защиты.

2. Основные нормативные и законодательные документы защиты информации

Категории информации, требующие защиты:

- Государственная тайна
- Коммерческая тайна
- Персональные данные (ПДн)
- Служебная тайна
- Профессиональная тайна (врачебная, нотариальная и т.д.)

Правовое поле РФ в сфере защиты информации формируется несколькими уровнями законов.

1. Федеральный закон от 27.07.2006 № 149-ФЗ «Об информации, информационных технологиях и о защите информации»

Базовый, «рамочный» закон.

Определяет основные понятия, принципы регулирования и цели защиты информации.

2. Федеральный закон от 27.07.2006 № 152-ФЗ «О персональных данных»

Ключевой закон для работы с данными граждан.

Устанавливает требования к обработке ПДн, права субъектов ПДн и обязанности операторов.

Правовое поле РФ в сфере защиты информации формируется несколькими уровнями законов.

3. Федеральный закон от 06.04.2011 № 63-ФЗ «Об электронной подписи»

Устанавливает виды ЭП (простая, неквалифицированная, квалифицированная), их юридическую значимость и требования к средствам ЭП. Поскольку в основе квалифицированной ЭП (КЭП) лежит криптография, закон напрямую регулирует использование криптографических алгоритмов и средств шифрования для подписи документов. Требует, что средства КЭП должны быть сертифицированы ФСБ России.

Правовое поле РФ в сфере защиты информации формируется несколькими уровнями законов.

3. Федеральный закон от 26.07.2017 № 187-ФЗ «О безопасности критической информационной инфраструктуры РФ»

Регулирует защиту важнейших объектов (энергетика, транспорт, здравоохранение и др.).

Обязывает владельцев объектов КИИ обеспечивать их безопасность и информировать госорганы о кибератаках.

Также важны: Уголовный кодекс РФ (ст. 272, 273, 274), законы о гостайне, коммерческой тайне и лицензировании деятельности по ТЗКИ (технической защите конфиденциальной информации).

Что требуют законы от организаций?

- Для операторов ПДн (152-Ф3):
 - Получить согласие на обработку ПДн.
 - Обеспечить конфиденциальность данных.
 - Уведомлять Роскомнадзор о начале обработки.
 - Применять необходимые организационные и технические меры защиты.

2. Ключевые законы Российской Федерации Что требуют законы от организаций?

- Для субъектов КИИ (187-ФЗ):
- Выявить и категоризовать информационные системы.
- Установить систему мониторинга и управления инцидентами.
- Провести аттестацию информационных систем (ИС) на соответствие требованиям ФСТЭК России (Федеральная служба по техническому и экспортному контролю).
- Предоставлять информацию в ГосСОПКА (Государственная Система Обнаружения, Предупреждения и Анализа Атак на информационные ресурсы России). Это национальный центр киберобороны, который видит угрозы по всей стране.

Административная (денежные штрафы по Кодексу РФ об административных правонарушениях РФ - Обработка персональных данных без согласия человека: штраф для компании — до 300 000 руб., а для директора — до 50 000 руб.)

Наиболее частый вид наказания. Применяется за сам факт нарушения установленных правил, даже если никакого ущерба еще не произошло.

Кто наказывается? Как должностные лица (например, директор, ответственный за IT), так и юридическое лицо (сама компания) в целом.

В чем выражается? В основном — в денежных штрафах.

Уголовная (лишение свободы по УК РФ)

Самая суровая мера ответственности. Применяется не за сам факт нарушения, а когда нарушение повлекло **тяжкие последствия** (крупный ущерб, нарушение работы критической инфраструктуры, суицид потерпевшего и т.д.) или совершено с корыстным умыслом.

Кто наказывается? Только физические лица (например, системный администратор, сис.админ, руководитель).

В чем выражается? Не только штрафы, но и:

- Лишение свободы (реальный тюремный срок).
- Принудительные работы.
- Лишение права занимать определенные должности.

Уголовная (лишение свободы по УК РФ) Примеры (по ст. 272, 273, 274 УК РФ):

- Незаконный доступ к информации (ст. 272):

Если он повлек уничтожение или блокировку данных, — срок до 5 лет лишения свободы.

Создание и распространение вредоносных программ (ст. 273):

Повлекшее тяжкие последствия — до 7 лет лишения свободы.

— Нарушение правил эксплуатации средств хранения, обработки или передачи информации (ст. 274):

Повлекшее по неосторожности тяжкие последствия — до 5 лет лишения свободы.

Гражданско-правовая (возмещение ущерба)

- Это финансовая компенсация конкретным людям или организациям, которым был причинен вред из-за утечки данных или сбоя в работе системы.
- Кто подает иск? Пострадавшая сторона (физическое лицо, чьи данные утекли, или компания-партнер, чья работа остановилась из-за сбоя у вас).
- В чем выражается? Деньги. Размер ущерба доказывается в суде.

Гражданско-правовая (возмещение ущерба)

Примеры:

- После утечки данных паспортов и телефонов клиентов из банка, мошенники взяли кредиты на их имена. Клиенты через суд могут взыскать с банка компенсацию морального вреда (например, 50 000 руб. каждому) и возмещение материального ущерба (сумму незаконно взятого кредита).
- Компания-поставщик не смогла отгрузить товар изза хакерской атаки на вашу систему, сорвав контракт. Она может потребовать компенсацию упущенной выгоды.

Приостановление деятельности

• временный запрет на работу всей компании или ее части, связанной с нарушением. Это крайняя мера, применяемая регулятором или судом.

• Когда применяется?

Чаще всего, если нарушение создает **непосредственную угрозу** жизни, здоровью людей, безопасности государства или невозможно быстро устранить другим способом.

Приостановление деятельности

Примеры:

- Сайт интернет-магазина взломан, и хакеры имеют доступ к базе данных клиентов (номера карт, пароли). Роскомнадзор или суд может приостановить работу сайта до полного устранения уязвимостей и обеспечения безопасности, чтобы предотвратить дальнейшие утечки.
- Обнаружено, что оператор связи обрабатывает данные абонентов с грубыми нарушениями, не обеспечивая их защиту. Его деятельность по обработке данных могут приостановить.

Выводы

Защита информации — не опция, а законодательное требование.

Правовое поле постоянно усложняется и ужесточается в ответ на растущие киберугрозы.

Комплаенс позволяет не только избежать штрафов, но и повысить устойчивость бизнеса и доверие клиентов.

Развитие регулирования в сфере больших данных и искусственного интеллекта.

Соблюдение законов в области ЗИ — основа цифровой трансформации и безопасности в современном мире.