# On the Automorphism Group of a Tree

#### K. C. STACEY AND D. A. HOLTON

Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia

Communicated by W. T. Tutte

Received October 17, 1974

It is shown that  $H = \Gamma(T)_v$  is normal in  $G = \Gamma(T_v)$  for any tree T and any vertex v, if and only if, for all vertices u in the neighborhood N of v, the set of images of u under G is either contained in N or has precisely the vertex u in common with N and every vertex in the set of images is fixed by H. Further, if S is the smallest normal subgroup of G containing H then G/S is the direct product of the wreath products of various symmetric groups around groups of order 1 or 2. The degrees of the symmetric groups involved depend on the numbers of isomorphic components of  $T_v$  and the structure of such components.

#### 1. Introduction

If **G** is any graph, let  $V(\mathbf{G})$  denote the vertex set of **G** and let  $\Gamma(\mathbf{G})$  denote its automorphism group considered as a group of permutations on  $V(\mathbf{G})$ . If  $v \in V(\mathbf{G})$ , we denote by  $\mathbf{G}_v$  the subgraph of **G** obtained by deleting v and all edges incident with v. We denote the stabilizer of v by  $\Gamma(\mathbf{G})_v = \{g \in \Gamma(\mathbf{G}) \mid vg = v\}$ . Note that  $\Gamma(\mathbf{G})_v$  can be embedded in  $\Gamma(\mathbf{G}_v)$ . G is said to be semistable at  $v \in V(\mathbf{G})$  if and only if  $\Gamma(\mathbf{G})_v = \Gamma(\mathbf{G}_v)$ . This concept was introduced by Holton [2] and, with the related concept of stability, has been extensively studied [4].

In this paper we examine other relationships between the groups  $\Gamma(T_v)$  and  $\Gamma(T)_v$  for any tree T at any vertex  $v \in V(T)$ . In particular, we derive necessary and sufficient conditions that  $\Gamma(T)_v$  be a normal subgroup of  $\Gamma(T_v)$  and, denoting by  $S(T)_v$  the smallest normal subgroup of  $\Gamma(T_v)$  containing  $\Gamma(T)_v$ , we find the quotient group  $\Gamma(T_v)/S(T)_v$ .

As the symbols  $\Gamma(T_v)$ ,  $\Gamma(T)_v$ , and  $S(T)_v$  are cumbersome, we simplify these to G, H, and S whenever this is unambiguous. Basic graph—theoretic properties and terminology can be found in [1] and group—theoretic terminology can be found in [5]. Throughout T denotes a tree and  $N_{\mathbf{G}}(v)$  denotes the set of vertices of  $\mathbf{G}$  adjacent to  $v \in V(\mathbf{G})$ .

## 2. PRELIMINARY RESULTS

The most useful characterization for the semistability of a vertex of any graph was proved in [3] and is given in Lemma 2.1. This criterion will be used extensively throughout this paper.

LEMMA 2.1.  $N_T(v)$  is fixed by  $g \in G$  if and only if  $g \in H$ . H = G if and only if  $N_T(v)$  is fixed by every  $g \in G$ .

Let  $z \in V(T)$  and let  $A_1, ..., A_n$  be the branches of T at z. Further, let F be any forest and let  $B_1, ..., B_m$  be the components of F.

DEFINITION 2.2. A z-branch transposition of T is an automorphism  $g \in \Gamma(T)_z$  which is either

- (i) the identity mapping on all branches other than  $A_i$  for some  $i \in \{1,...,n\}$ , or
- (ii) an involution which interchanges  $A_i$  and  $A_j$  for some  $1 \le i < j \le n$  and which acts as the identity on  $A_k$  for each  $k \ne i, j$ .

A branch transposition of F is an automorphism  $g \in \Gamma(F)$  which is either

- (i) the identity mapping on all components except  $B_i$  for some  $i \in \{1,...,n\}$ , or
- (ii) an involution which interchanges  $B_i$  and  $B_j$  for some  $1 \le i < j \le n$  and which acts as the identity on  $B_k$  for each  $k \ne i, j$ .

We omit the straightforward proof of the following lemma.

- LEMMA 2.3. If  $g \in \Gamma(T)_z$ , there exists a z-branch transposition which acts like g on  $A_i$  for any given  $i \in \{1,...,n\}$ . If  $f \in \Gamma(F)$  there is a branch transposition which acts like f on  $B_i$  for any given  $i \in \{1,...,n\}$ .
- Lemma 2.4. Every  $g \in \Gamma(T)_z$  is a product of z-branch transpositions of T. Every  $f \in \Gamma(F)$  is a product of branch transpositions of F.

*Proof.* We will give a proof by induction for  $g \in \Gamma(T)_z$ . The proof for  $f \in \Gamma(F)$  follows in a similar way. Let T have n branches,  $A_1, ..., A_n$  at z. If g is the identity map on at least n-1 branches, then g is a z-branch transposition and we are done. Now assume that g is the identity map on all but two branches  $A_i$  and  $A_j$ . Firstly, if  $A_i g = A_i$  and  $A_j g = A_j$  then, as in Lemma 2.3, we may define z-branch transpositions  $g_i$  and  $g_j$  by  $g_i = g$  on  $A_i$  and  $g_i = e$  elsewhere whilst  $g_i = g$  on  $A_j$  and  $g_j = e$  elsewhere. Then  $g = g_i \cdot g_j$ . Secondly, if  $A_i g = A_j$  then  $A_j g = A_i$  and

by Lemma 2.3 there exist z-branch transpositions  $g_{ij}$  acting like g on  $A_i$  and  $g_i$  acting like  $g^2$  on  $A_i$ . Then if  $x \in A_i$ ,  $xg_{ij}g_i = xgg_i = xg$  whilst if  $x \in A_i$ ,  $xg_{ij}g_i = xg^{-1}g_i = xg$ . Consequently  $g = g_{ij}g_i$ .

Now let us assume that the lemma is true for all automorphisms in  $\Gamma(T)_z$  which are not the identity map on at most m-1 branches and assume that  $g \in \Gamma(T)_z$  is not the identity map on m branches. If  $A_i g = A_i$  for some i, let  $g_i$  be the z-branch transposition which acts as g on  $A_i$ . Then  $gg_i^{-1} = e$  on  $A_i$  so, by the induction hypothesis,  $gg_i^{-1}$  and hence g is a product of z-branch transpositions. If g fixes no  $A_i$  for  $i \in \{1,...,n\}$  then, relabeling if necessary,  $A_1 g = A_2$ , and there exists a z-branch transposition  $g_{12} \in \Gamma(T)_z$  which acts like g on  $A_1$ . Then  $xg_{12}g = xg^{-1}g = x$  for  $x \in A_2$  so that  $g_{12}g$  is not the identity map on at most m-1 branches. By the induction hypothesis,  $g_{12}g$  and hence g is a product of z-branch transpositions.

COROLLARY 2.5. Every  $g \in G$  is a product of branch transpositions of  $T_v$ . Every  $h \in H$  is a product of branch transpositions of  $T_v$  belonging to H.

Lemma 2.6. S is generated by automorphisms of the form  $ghg^{-1}$  where  $g \in G$  and  $h \in H$ .

*Proof.* By the definition of S.

Lemma 2.7. Every  $s \in S$  is a product of branch transpositions of  $T_v$  which belong to S.

*Proof.* By Lemma 2.6, it suffices to show that for all  $g \in G$ ,  $h \in H$ ,



FIGURE 1

 $ghg^{-1}$  is a product of branch transpositions in S. By Corollary 2.5, h is a product of branch transpositions  $h_1$ ,  $h_2$ ,...,  $h_m$  in H so that  $ghg^{-1} = (gh_1g^{-1})(gh_2g^{-1})\cdots(gh_mg^{-1})$ . Each  $gh_ig^{-1} \in S$  and it is easily checked that  $gh_ig^{-1}$  is a branch transposition.

In passing, we note that the analog of Lemma 2.3 is not true for S. An example is provided by the tree in Fig. 1 for which

$$S = \{e, (12)(1'2'), (11')(22')(33')(44')(55'), (12')(21')(33')(44')(55')\}.$$

### 3. The Normality of H in G

In this section necessary and sufficient conditions under which H is a normal subgroup of G are found. This may be considered as a generalization for trees of the criterion that H = G given in Lemma 2.1. We denote  $N_T(v)$  by N in this section.

LEMMA 3.1. If  $x \in V(T_v)$  then the orbit of x under G, denoted by xG, is the union of disjoint H-orbits. If H is normal in G, every  $g \in G$  permutes these H-orbits (as sets) and the H-orbits have the same cardinality.

*Proof.* Since  $H \leq G$ ,  $xG = \bigcup_{i=1}^m x_iH$  for some vertices  $x_i \in xG$ . If  $H \leq G$  then for each  $i \in \{1,...,m\}$  and  $g \in G$ ,  $(x_iH)g = x_i(Hg) = x_igH = x_jH$  for some  $j \in \{1,...,m\}$ . For every pair i,j such that  $1 \leq i \leq j \leq m$  there exists  $g_{ij} \in G$  such that  $x_ig_{ij} = x_j$  so that  $x_iHg_{ij} = x_jH$ . Since  $g_{ij}$  is a permutation of the vertices of  $T_v$ ,  $x_iH$  and  $x_jH$  have the same cardinality.

PROPOSITION 3.2. If  $H \stackrel{\triangleleft}{=} G$  then for some  $u \in N$ , there exists  $x \in uG \setminus N$  which is not fixed by H.

Proof. If H 
rightharpoonup G, there exist  $g \in G$ ,  $h \in H$  such that  $ghg^{-1} \notin H$ . Hence, by Lemma 2.1, there exists  $u \in N$  such that  $ughg^{-1} = y \notin N$ . Since  $u \neq y$ ,  $ug \neq yg = ugh$  so the proposition is proved by putting x = ug if  $ug \notin N$ . If, on the other hand,  $ug \in N$  then  $ugh \in N$  and so ug and ugh belong to different components  $B_1$  and  $B_2$  of  $T_v$ . Consequently h moves both  $B_1$  and  $B_2$  so if  $y \in B_1$  or  $y \in B_2$ ,  $y \neq yh$  and putting x = y satisfies the proposition. If, however, y belongs to a third component  $B_3$  and  $\{z\} = N \cap B_3$  then  $zg \in B_3 g = B_2$  but  $zg \notin N$  as  $zg \neq yg = ugh \in N \cap B_2$ . The proposition is now satisfied by replacing u by u and u by u because u and u by u and u by u and u by u because u and u by u and u by u and u by u because u and u by u and u by u because u by u and u by u because

PROPOSITION 3.3. If there exists  $u \in N$  and  $x \in uG \setminus N$  such that x is not fixed by H, then  $H \not\supseteq G$ .

*Proof.* Let x=ug be moved by  $h\in H$ . If x=ug and xh=ugh both belong to the same component of  $T_v$ , then  $u=(ug)\,g^{-1}$  and  $ughg^{-1}=(ugh)\,g^{-1}$  must belong to the same component. But  $u=ugg^{-1}\neq ughg^{-1}$  so that  $ughg^{-1}\notin N$ , and so by Lemma 2.1,  $ghg^{-1}\notin H$  and  $H\nsubseteq G$ .

If x and xh belong to different components  $B_1$  and  $B_2$  of  $T_v$ , we may assume without loss of generality that  $u \notin B_2$ . (Otherwise replace x by xh and h by  $h^{-1}$ .) Then, by Lemma 2.3, there exists  $g_0 \in G$  such that  $x = ug_0$  and  $xhg_0 = xh$ , and so  $ug_0hg_0^{-1} = xhg_0^{-1} = xh \notin N$ . Thus  $g_0hg_0^{-1} \notin H$  and  $H \nsubseteq G$ .

On combining Propositions 3.2 and 3.3 and using Lemma 3.1, we obtain the following characterization.

THEOREM 3.4.  $H \leq G$  if and only if, for all  $u \in N$ , either

- (i)  $uG \subseteq N$ , or
- (ii)  $uG \cap N = \{u\}$  and every vertex of uG is fixed by H.

*Proof.* By Propositions 3.2 and 3.3,  $H \subseteq G$  if and only if, for all  $u \in N$  and for all  $x \in uG \setminus N$ ,  $xH = \{x\}$ . If  $H \subseteq G$  and  $uG \nsubseteq N$ , then as  $xH = \{x\}$  we conclude by Lemma 3.1 that each H-orbit in uG has size one and consequently every vertex in uG is fixed by H.

If  $uG \cap N \supseteq \{u, y\}$  and  $uG \nsubseteq N$  then there exists  $g \in G$  such that yg = u, so by Lemma 2.3 there is a branch transposition  $g_0 \in G$  such that  $yg_0 = u$  and  $ug_0 = y$ . But  $g_0$  then fixes N so, by Lemma 1.1,  $g_0 \in H$ . Thus, as we have shown above that u is fixed by H, it follows that u = y. As  $uG \cap N$  is nonempty, it has exactly one element, u.

# 4. The Group G/S when $T_v$ is Connected

We now turn to determine the group  $\Gamma(T_v)/S(T)_v$  for all trees T and vertices v. In this section, we consider the special case when v is an end-vertex of T so that  $T_v$  is connected.  $N_T(v) \cap V(T_v)$  then contains only one vertex, which we denote by w.

Lemma 4.1. 
$$|G/S| = |wG|/|wS|$$
.

*Proof.* In both S and G, the subgroups of automorphisms which fix w is H. Hence, by the orbit-stabilizer relation [5, Theorem 3.2],

$$|G| = |wG| \cdot |H|$$
 and  $|S| = |wS| \cdot |H|$ .

LEMMA 4.2. If  $x, y \in V(T_v)$ ,  $xH = \{x\}$ ,  $yH = \{y\}$ , and  $xG = \{x, y\}$ , then  $xS = \{x\}$  and  $yS = \{y\}$ .

- *Proof.* We show that every generator of S (as in Lemma 2.6) fixes x. Let  $g \in G$  and  $h \in H$ . Then xg = x implies that  $xghg^{-1} = xhg^{-1} = xg^{-1} = x$  whilst xg = y implies that  $xghg^{-1} = yhg^{-1} = yg^{-1} = x$ .
- LEMMA 4.3. Let Z be the set of vertices in  $V(T_v)$  which are fixed by G. If Z is nonempty and  $w \notin Z$  then the vertex  $z \in Z$  such that  $d(z, w) = \min\{d(u, w) \mid u \in Z\}$  is unique.
- *Proof.* Assume that  $d(z_1, w) = d(z_2, w) = \min\{d(u, w) \mid u \in Z\}$  and that  $z_1, z_2 \in Z$ . Let  $P(u_1, u_2)$  be the set of vertices of  $T_v$  along the shortest path between any vertices  $u_1$  and  $u_2$  of  $V(T_v)$ . As  $z_1$  and  $z_2$  are fixed by G, every vertex of  $P(z_1, z_2)$  is fixed by G, so that if  $u \in P(z_1, z_2)$ ,  $d(u, w) \geqslant d(z_1, w)$ . Every vertex y of  $P(w, z_1)$  has  $d(y, w) \leqslant d(z_1, w)$  so that  $P(z_1, z_2) \cap P(w, z_1) = \{z_1\}$  and hence  $P(w, z_2) = P(w, z_1) \cup P(z_1, z_2)$  and  $d(w, z_2) > d(w, z_1)$ , unless  $z_1 = z_2$ .

PROPOSITION 4.4. Let  $z \neq w$  be a vertex of  $T_v$  fixed by G and let  $A_1, ..., A_n$  be the branches of  $T_v$  at z, with  $w \in A_1$ .

- (i) If there exists  $\theta \in G$  such that  $A_1\theta = A_i$  for some  $i \in \{2,...,n\}$  then  $wG \cap A_1 = wS \cap A_1$  and  $wG \cap A_i = w\theta S \cap A_i$ .
- (ii) If  $A_1G = A_1 \cup \cdots \cup A_r$  (relabeling if necessary) and  $r \geqslant 3$ , then wG = wS.
- *Proof.* (i) Let  $w_i \in wG \cap A_i$  for some  $i \in \{2,...,n\}$ . As  $w\theta \in wG$  there exists  $g \in G$  such that  $w_i g = w\theta$  and, by Lemma 2.3, there exists a z-branch transposition h which acts like g on  $A_i$  and as the identity elsewhere. Since  $w \in A_1$ , wh = w and  $h \in H$ . As  $w_i h = w\theta$  it follows that  $wG \cap A_i \subseteq w\theta H \cap A_i$ . But as  $H \leqslant S$  and  $S \leqslant G$ ,  $w\theta S \cap A_i \subseteq wG \cap A_i \subseteq w\theta H \cap A_i$  so that  $w\theta S \cap A_i = wG \cap A_i$ . If  $w_1 \in wG \cap A_1$  then  $w_1\theta \in w\theta G \cap A_i = wG \cap A_i = w\theta S \cap A_i$  so that  $w_1 \in w\theta S \cap A_i$ . Hence  $w_1 \in (w\theta S \cap A_i)$   $\theta^{-1} = w\theta S\theta^{-1} \cap A_1 = wS \cap A_1$  so that  $wG \cap A_1 \subseteq wS \cap A_1$ . The equality of  $wG \cap A_1$  and  $wS \cap A_1$  follows by noting again that  $S \leqslant G$ .
- (ii) Let us now assume that  $A_1, ..., A_r$   $(r \ge 3)$  are isomorphic branches at z. Choose any  $w_i \in wG \cap A_i$  for some  $i \in \{1, ..., r\}$ . By part (i) if i = 1 then  $w_i \in wS$ . If, on the other hand, i > 1, there exists a z-branch transposition  $f_i$  such that  $w_i = wf_i$ . Choose  $j \in \{1, ..., r\} \setminus \{1, i\}$  and a z-branch transposition  $g_j$  which interchanges  $A_1$  and  $A_j$ . Now  $A_i f_i^{-1} g_j = A_j$  so there is a z-branch transposition  $h_{ij}$  with the same action on  $A_i$  as  $f_i^{-1} g_j$ . Further,  $h_{ij} \in H$  since  $h_{ij}$  is the identity map on  $A_1$  and thus  $g_j h_{ij} g_j^{-1} \in S$ . But  $w_i (g_j h_{ij} g_j^{-1}) = w_i h_{ij} g_j^{-1} = w_i f_i^{-1} g_j g_j^{-1} = w$  so that

 $wg_ih_{ij}^{-1}g_j^{-1}=w_i$ ,  $w_i\in wS$  and so  $wG\subseteq wS$ . As  $S\leqslant G$ ,  $wS\subseteq wG$  and so wS=wG.

The next theorem uses the preceding results to determine the group G/S for all connected  $T_v$ .

# Theorem 4.5. G = S unless either

- (a)  $T_v$  is a bicentral tree with center  $\{x, y\}$  which possesses a map  $\theta \in G$  which interchanges x and y, or
- (b)  $T_v$  is a tree with a vertex  $z \neq w$  fixed by G and with branches  $A_1,...,A_n$  at z such that  $w \in A_1$  and  $A_1G = A_1 \cup A_i$  for exactly one  $i \in \{2,...,n\}$ .



In Cases (a) and (b)  $G/S \simeq C_2$ , the cyclic group with two elements. The vertices x and y are in both cases fixed by S but interchanged by some  $\theta \in G$ .

*Proof.* (i) Let us first consider trees  $T_v$  which have no vertices fixed by G. Such a tree is bicentral with center  $\{x, y\}$  and there exists a map  $\theta \in G$  such that  $x\theta = y$ . This is Case (a) of the theorem and we now use the notation introduced there. Although this is not exactly the situation described in Proposition 4.4, the result that  $wS \cap A_1 = wG \cap A_1$ 

is still valid. The proof of this requires only a slight modification of the proof of Proposition 4.4, so it is omitted. An application of Lemma 4.2 shows that  $xS = \{x\}$  and since every  $s \in S$  preserves adjacencies, this means that  $wS \subseteq A_1$ . Consequently  $wS = wS \cap A_1 = wG \cap A_1$  so  $|wS| = |wG \cap A_1| = |wG \cap A_2| = \frac{1}{2} |wG|$  and Lemma 4.1 applies to show that |G/S| = 2. Hence  $G/S \simeq C_2$ .

(ii) Let us now assume that some vertex of  $T_v$  is fixed by G. If  $wG = \{w\}$  then G = H = S by Lemma 2.1. If w is not fixed by G, let z be the vertex fixed by G at minimum distance from w. By Lemma 4.3, z is uniquely defined. Let us now adopt the notation of Case (b) of the theorem. Our choice of z now ensures that the vertex x in  $N_T(z) \cap A_1$  is not fixed by G so that, reordering if necessary,

$$A_1G = A_1 \cup A_2 \cup \cdots \cup A_r \qquad (r \geqslant 2).$$

If r > 2, Proposition 4.4(ii) applies and wG = wS so that, by Lemma 4.1, G = S.

If r=2, let  $y=N_T(z)\cap A_2$  and let  $\theta\in G$  interchange  $A_1$  and  $A_2$ . Proposition 4.4(i) can now be applied and we have  $wG\cap A_1=wS\cap A_1$  and  $wG\cap A_2=w\theta S\cap A_2$ . Since  $|wG\cap A_1|=|wG\cap A_2|=\frac{1}{2}|wG|$  we will show that |G/S|=2 by showing that  $wS=wG\cap A_1$  so that  $|wS|=\frac{1}{2}|wG|$  and then applying Lemma 4.1.

If  $w_1 \in wS \cap A_1$  then  $w\theta$ ,  $w_1\theta \in wG \cap A_2$ . Now there exists  $g \in G$  such that  $w\theta = w_1\theta g$  and since g preserves adjacencies, yg = y. Hence, by Lemma 2.3, there is a y-branch transposition h such that  $w\theta = w_1\theta h$  and clearly  $h \in H$ . Thus  $w_1 = w\theta h^{-1}\theta^{-1} \in wS \cap A_1$  and so  $wG \cap A_1 \subseteq wS \cap A_1$ . But as every  $h \in H$  fixes w, it must fix both x and y, so Lemma 4.2 applies and shows that  $wS \subseteq A_1$ . Now, as  $S \leq G$ ,  $wS \cap A_1 \subseteq wG \cap A_1$  so that  $wS = wS \cap A_1 \subseteq wG \cap A_1 \subseteq wS \cap A_1 = wS$  and  $wS = wG \cap A_1$  as required.

COROLLARY 4.6. If  $T_v$  is connected and  $G \neq S$ , then the orbits of G are not the same as the orbits of S.

*Proof.* Consider the vertices x and y in both cases of Theorem 4.5.

## 5. The Group G/S for any Tree T

We will now use and extend Theorem 4.5 to obtain the group G/S for all trees. Before deriving the general result, we must investigate trees T such that  $T_v$  consists of n isomorphic components  $B_1, ..., B_n$ . We denote by  $w_i$  the vertex of  $T_v$  in  $N_T(v) \cap B_i$  for  $i \in \{1, ..., n\}$ . Since all components

are isomorphic under G, by Lemma 2.3 we may choose for every pair  $i,j \in \{1,...,n\}$  a branch transposition  $\phi_{ij}$  of  $T_v$  such that  $\phi_{ij}$  interchanges  $B_i$  and  $B_j$ . We also define the subgroup  $G_i$  of G to be the set of all  $g \in G$  which are identity maps on all components other than  $B_i$ .  $H_i$  is the subgroup of  $G_i$  which fixes  $w_i$ , and  $S_i$  is the smallest normal subgroup of  $G_i$  containing  $H_i$ .  $F_i$  is the subgroup of  $G_i$  generated by elements of the form  $ghg^{-1}$  where  $g \in G$  and, if  $B_k = B_i g$  then  $h \in H_k$ . Theorem 4.5 gives the relationship between  $S_i$  and  $G_i$  for all i. We note the following easy lemmas.

LEMMA 5.1. Either  $F_i = S_i$  or  $F_i = G_i$ .

*Proof.* By Theorem 4.5,  $|G_i/S_i| \le 2$  and  $S_i \le F_i \le G_i$ . Hence  $|G_i/F_i| \le 2$ .

LEMMA 5.2.  $G_i \simeq G_j$  and  $F_i \simeq F_j$  for all  $i, j \in \{1, ..., n\}$ .

*Proof.*  $G_j = \phi_{ij}G_i\phi_{ij}^{-1}$  and  $F_j = \phi_{ij}F_i\phi_{ij}^{-1}$ .

Lemma 5.3. If  $G_i = S_i$  for one  $i \in \{1,...,n\}$  then  $G_j = F_j$  for all  $j \in \{1,...,n\}$ .

*Proof.* If  $G_i = S_i$  then  $F_i = S_i$  by Lemma 5.1, and the result follows via Lemma 5.2.

LEMMA 5.4.  $F_i$  is the group generated by  $\phi_{ij}S_j\phi_{ij}^{-1}$  for all  $j \in \{1,...,n\}$ .

*Proof.* Obviously  $S_i \leqslant F_i$ . If  $i \neq j$ ,  $S_j$  is generated by automorphisms of the form  $ghg^{-1}$  where  $g \in G_j$ ,  $h \in H_j$ . Let  $f = \phi_{ij}ghg^{-1}\phi_{ij}^{-1} = (\phi_{ij}g)h(\phi_{ij}g)^{-1}$ . Now  $B_i\phi_{ij}g = B_jg = B_j$  so it follows that  $f \in F_i$ . We deduce that  $\phi_{ij}S_j\phi_{ij}^{-1} \subseteq F_i$ .

Conversely, every generator of  $F_i$  is of the form  $ghg^{-1}$  where, if  $B_j = B_ig$  then  $h \in H_j$ . Now if  $g = g_0$  on  $B_i$ ,  $ghg^{-1} = g_0hg_0^{-1}$  since for  $x \in B_k$   $(k \neq i)$ ,  $xghg^{-1} = x = xg_0hg_0^{-1}$  and for  $x \in B_i$ ,  $xghg^{-1} = xg_0hg_0^{-1} = (xg_0h)g_0^{-1}$ . Now  $\phi_{ij}g^{-1}$  maps  $B_i$  to  $B_i$  so there exists  $\sigma \in G_i$  such that  $\phi_{ij}g^{-1} = \sigma$  on  $B_i$ . Now  $ghg^{-1} = \phi_{ij}\sigma^{-1}h\sigma\phi_{ij}^{-1}$  and since  $\sigma \in G_i$  and  $h \in H_j$ ,  $\sigma^{-1}h\sigma = h$  so  $ghg^{-1} = \phi_{ij}h\phi_{ij}^{-1}$ . Hence,  $F_i \leqslant \phi_{ij}S_j\phi_{ij}^{-1}$  and we have proved the lemma.

We note the following generalization of Lemma 4.2.

LEMMA 5.5. Let  $x_i$ ,  $y_i \in B_i$  and let  $\{x_i, y_i\}$   $\phi_{ij} = \{x_j, y_j\}$  for all i, j. If, for all i,  $x_iH_i = \{x_i\}$ ,  $y_iH_i = \{y_i\}$  and  $x_iG_i = \{x_i, y_i\}$ , then  $x_kF_k = \{x_k\}$  and  $y_kF_k = \{y_k\}$  for all  $k \in \{1,...,n\}$ .

*Proof.* By Lemma 4.2,  $x_k S_k = \{x_k\}$  for every  $k \in \{1,...,n\}$ . Now  $\{x_i, y_i\} \phi_{ij} = \{x_j, y_j\}$  so if  $x_i \phi_{ij} = x_j$  then  $x_i \phi_{ij} S_j \phi_{ij}^{-1} = \{x_i\}$  whilst if  $x_i \phi_{ij} = y_i$  then  $x_i \phi_{ij} S_j \phi_{ij}^{-1} = \{x_i\}$ .

PROPOSITION 5.6. If  $B_1$  is a bicentral tree with bicenter  $\{x_1, y_1\}$  and  $\theta_1 \in G_1$  interchanges  $x_1$  and  $y_1$  then  $|G_i/F_i| = 2$  for all i.

*Proof.* Let  $\{x_r, y_r\}$  be the bicenter of  $B_r$ . Lemma 5.5 applies to the set of vertices  $\{x_1, y_1, x_2, ..., y_n\}$  so that each  $x_i$  is fixed by  $F_i$ . Now by Lemma 5.1,  $F_i = S_i$  or  $F_i = G_i$ . But by Theorem 4.5,  $x_i$  is not fixed by  $G_i$ . Hence  $F_i \neq G_i$  and so  $|G_i|F_i| = 2$ .

PROPOSITION 5.7. Let  $B_1$  have a vertex fixed by  $G_1$ . Then  $|G_i/F_i| = 2$  for all i, if and only if the following two conditions are satisfied:

- (i) Each component  $B_i$  is of the form described in Theorem 4.5(b) so that each  $|G_i|S_i|=2$ .
- (ii) Denote by  $z_1$  the fixed vertex of  $B_1$  at minimum distance from  $w_1$  and by  $A_1^1$  the branch of  $B_1$  at  $z_1$  containing  $w_1$ . Then, for every r, the vertex  $w_r$  in  $N_T(v) \cap B_r$  must belong to  $(A_1^1 \setminus \{z_1\}) g$  for some  $g \in G$ .

*Proof.* By Lemma 4.3,  $z_1$  is uniquely determined. Let  $z_r = z_1\phi_{1r}$  for each r. If  $g\colon B_1\to B_r$ , then  $z_1g=z_r$ , otherwise  $z_1$  is not fixed by  $\phi_{1r}g^{-1}$  and hence is not fixed by the branch transposition  $g_1\in G_1$  which acts like  $\phi_{1r}g^{-1}$  on  $B_1$  and is the identity map elsewhere. Hence  $z_r$  is defined independently of the  $\phi_{ij}$ .

If each  $|G_i/S_i| = 2$  and condition (ii) holds, then on labeling the two branches at  $z_r$  which are images of  $A_1^{-1}$  by  $A_1^{-r}$  and  $A_2^{-r}$  we see that

$$A_1{}^1G = A_1{}^1 \cup A_2{}^1 \cup \cdots \cup A_1{}^n \cup A_2{}^n.$$

Since  $G_i \neq S_i$  and  $w_i \in A_1{}^i \cup A_2{}^i$ , every  $s_i \in S_i$  fixes both  $A_1{}^i$  and  $A_2{}^i$  as sets (by Theorem 4.5). Consequently  $\phi_{1i}s_i\phi_{1i}^{-1}$  fixes both  $A_1{}^i$  and  $A_2{}^i$  so every  $f \in F_i$  fixes both  $A_1{}^i$  and  $A_2{}^i$  (by Lemma 5.4). But, by Theorem 4.5, there exists  $\theta_i \in G_i$  which interchanges  $A_1{}^i$  and  $A_2{}^i$  so that  $F_i \neq G_i$ .

If  $|G_i/F_i| = 2$  then by Lemma 5.1,  $F_i = S_i$  for all i and  $|G_i/S_i| = 2$  so that condition (i) must hold. If condition (ii) does not hold, then for some j,  $w_j \notin (A_1^{\ 1} \cup A_2^{\ 1})G$ . Hence  $w_j \notin A_1^{\ 1}\phi_{ij} \cup A_2^{\ 1}\phi_{ij}$  and, using Lemma 2.3, there exists a  $z_j$ -branch transposition  $h_j$  such that  $A_1^{\ 1}\phi_{ij}h_j = A_2^{\ 1}\phi_{ij}$  and  $h_j$  is the identity map on other branches and components including the branch of  $B_j$  containing  $w_j$ .

Thus  $h_j \in H_j$  and  $f = \phi_{ij}h_j\phi_{ij}^{-1} \in F_1$ . But f interchanges  $A_1^1$  and  $A_2^1$  so that  $F_i \neq S_i$  and consequently  $F_i = G_i$ . This demonstrates that condition (ii) is implied by  $|G_i/F_i| = 2$ .

Propositions 5.6 and 5.7 together completely characterize those situations in which  $G_i \neq F_i$ . This is because if each  $B_i$  has a vertex fixed by  $G_i$  then Proposition 5.7 applies whilst if no vertex of  $B_i$  is fixed by  $G_i$ ,  $B_i$  is a bicentral tree and  $G_i$  contains an automorphism  $\theta_i$  which interchanges the vertices in the center. We summarize this in the following theorem.

Theorem 5.8. For all i,  $G_i = F_i$  unless each  $B_i$  is a bicentral tree as described in Proposition 5.6 or each  $B_i$  has a vertex fixed by  $G_i$  and is as described in Proposition 5.7. In these cases  $G_i/F_i \simeq C_2$ , the cyclic group of order 2.

Corollary 5.9 shows that  $G_i = F_i$  if and only if  $G_i$  and  $F_i$  have the same orbits.

COROLLARY 5.9. If  $G_i \neq F_i$ , there exist vertices  $x_i$  and  $y_i$  in  $B_i$  such that  $x_iF_i = \{x_i\}, y_iF_i = \{y_i\}, x_iG_i = \{x_i, y_i\} \text{ and } x_iG = \{x_1, y_1, x_2, y_2, ..., y_n\}.$ 

*Proof.* If  $G_i \neq F_i$  then  $F_i = S_i$  and we choose  $x_i$ ,  $y_i$  to be the vertices of the center of a bicentral  $B_i$  as in Proposition 5.6, or the vertices in  $N_T(z_i) \cap (A_1^i \cap A_2^i)$ , when  $B_i$  is as described in Proposition 5.7.

We can now use these results to find the group G/S for a tree T when all the components of  $T_v$  are isomorphic under G.

THEOREM 5.10. If no pair of the n components of  $T_v$  are isomorphic under H, then  $G/S \simeq S_n[G_i/F_i]$ , i.e., the wreath product of the symmetric group on n symbols around  $G_i/F_i$ , for any  $i \in \{1,...,n\}$ .

*Proof.* If there are no automorphisms in H which interchange components of  $T_v$ , then S is generated by  $F_1$ ,  $F_2$ ,...,  $F_n$ .

- (i) If  $G_i = F_i$  for every  $i \in \{1,...,n\}$ , define the mapping  $\sigma \colon G/S \to S_n$  by  $(gS)\sigma = \pi$  where  $\pi$  is the permutation of  $\{1,...,n\}$  which maps i to j when  $B_ig = B_j$ . The mapping  $\sigma$  is well defined since if  $g_1S = g_2S$  then  $g_1g_2^{-1}$  fixes every  $B_i$  (setwise) and so  $B_ig_1 = B_ig_2$ . Since all components  $B_i$  are isomorphic under G,  $\sigma$  is a bijection. If  $B_ig_1 = B_j$  and  $B_jg_2 = B_k$  then  $i(g_1S)\sigma(g_2S)\sigma = j \cdot (g_2S)\sigma = k = i(g_1g_2S)\sigma$ . Consequently,  $(g_1Sg_2S)\sigma = (g_1S)\sigma(g_2S)\sigma$  and so  $\sigma$  is an isomorphism.
- (ii) Now let us assume  $G_i \neq F_i$  and choose  $\theta_i \in G_i$  such that  $G_i$  is generated by  $F_i$  and  $\theta_i$ . By Corollary 5.9, there are vertices  $x_i$ ,  $y_i \in B_i$  such that  $x_iF_j = \{x_i\}$ ,  $y_iF_j = \{y_i\}$  for all j and  $x_i\theta_i = y_i$ ,  $y_i\theta_i = x_i$ . We show that G/S is the wreath product  $S_n[C_2]$  by exhibiting an isomorphism  $\sigma$  from G/S to the group of all permutations of the sets  $\{x_1, y_1\}$ ,  $\{x_2, y_2\}$ ,...,

 $\{x_n, y_n\}$ .  $(gS)\sigma$  is defined as that permutation of  $U = \{x_1, y_1, ..., y_n\}$  which acts in the same way as g acts on U. Since S is generated by  $F_1, ..., F_n$ , if  $g_1S = g_2S$  then  $g_1g_2^{-1}$  fixes every  $x_i$  and  $y_i$  so that  $g_1$  and  $g_2$  have the same action on U and  $\sigma$  is well defined. As before,  $\sigma$  is a bijection and an isomorphism since

$$x_i(g_1S) \sigma(g_1S)\sigma = (x_ig_2)(g_1S)\sigma = x_ig_2g_1 = x_i(g_2g_1S)\sigma.$$

The next lemma provides a useful method of showing that an automorphism does not belong to S.

LEMMA 5.11. Let the vertices  $x_i$ ,  $y_i$  be chosen to satisfy the conditions of Corollary 5.9. Let  $X = \{x_1, ..., x_n\}$  and  $Y = \{y_1, ..., y_n\}$ . Then if  $s \in S$ ,  $|X \cap Xs| \equiv n \pmod{2}$  and  $|Y \cap Ys| \equiv n \pmod{2}$ .

*Proof.* By Lemma 2.7, every  $s \in S$  is a product of branch transpositions of the form  $ghg^{-1}$  where  $g \in G$  and  $h \in H$ . Thus the lemma will be proved if we show that each branch transposition of the form  $ghg^{-1}$  either leaves X and Y unchanged or interchanges two members of X with two members of Y.

First consider a branch transposition which acts as the identity map on all branches other than  $B_k$ . For all  $z \in V(B_i)$  where  $i \in \{1,...,n\} \setminus \{k\}$ ,  $zghg^{-1} = z$  so that zgh = zg and h fixes all vertices of  $T_v$  not in  $B_kg = B_m$ . Thus  $h \in H_m < F_m$ . By Corollary 5.9,  $x_kg \in \{x_m, y_m\}$ . As both  $x_m$  and  $y_m$  are fixed by  $F_m$  (and therefore by h)  $x_kghg^{-1} = x_k$ . Similarly  $y_kghg^{-1} = y_k$ . Consequently, every member of X and Y is fixed by  $ghg^{-1}$ .

Secondly consider a branch transposition  $ghg^{-1}$  which interchanges  $B_i$  and  $B_j$ . As  $ghg^{-1}$  fixes all vertices of  $T_v$  other than those of  $B_i$  and  $B_j$ , it fixes all vertices in the sets  $X\setminus\{x_i\,,\,x_j\}$  and  $Y\setminus\{y_i\,,\,y_j\}$ . Since h is a branch transposition  $h^2=e$  and  $ghg^{-1}=(ghg^{-1})^{-1}$ . Hence if  $x_ighg^{-1}=x_j$  then  $x_jghg^{-1}=x_i$  whilst if  $x_ighg^{-1}=y_i$  then  $y_ighg^{-1}=x_i$  and consequently  $x_jghg^{-1}=y_j$ . This argument applied to the several possibilities shows that  $ghg^{-1}$  either fixes X and Y or interchanges two elements from each set.

The next theorem describes the group G/S when Theorem 5.10 does not apply.

THEOREM 5.12. If the components  $B_1$  and  $B_2$  are isomorphic under H, then  $G/S = G_1/S_1$ . In other words, if H does not fix every component of  $T_v$ , then  $G/S = G_i/S_i$  for all  $i \in \{1, 2, ..., n\}$ .

*Proof.* Let  $h_{12} \in H$  be a branch transposition interchanging  $B_1$  and  $B_2$ . For any  $B_i$   $(i \neq 1, 2)$  there exists  $g \in G$  which interchanges  $B_i$  and  $B_2$ .

Since  $gh_{12}g^{-1}$  then interchanges  $B_1$  and  $B_i$ , there is a map  $s_i \in S$  which interchanges  $B_1$  and  $B_i$  for every  $i \in \{1,...,n\}$ . Given any  $g \in G$ , define the permutation  $\pi$  by  $i\pi = j$  when  $B_i g = B_j$ . As  $S_n$  is generated by the transpositions (12),..., (1n), we can write

$$\pi = (1i_1) \cdots (1i_t).$$

Hence  $g_0 = gs_{i_t}^{-1} \cdots s_{i_1}^{-1}$  fixes each  $B_i$  (as a set) and so  $g_0 = \alpha_1 \cdots \alpha_n$  for suitable  $\alpha_i \in G_i$ . Hence  $g \in \alpha_1 \cdots \alpha_n S$ . If  $G_i = F_i$  then each  $\alpha_i \in F_i \subseteq S$  so that  $g \in S$  and consequently G = S. If  $G_i \neq F_i$ , then  $F_i = S_i$  and there exists  $\theta \in G_1 \setminus F_1$  which interchanges  $A_1^{-1}$  and  $A_2^{-1}$  (in the notation of Propositions 5.6 and 5.7). As  $s_i \theta s_i^{-1}$  interchanges  $A_1^i$  and  $A_2^i$ ,  $G_i$  is generated by  $F_i$  and  $s_i \theta s_i^{-1}$  and so by all  $s_i$  and  $s_i \theta s_i^{-1}$ . As  $\theta^2 \in S$  and  $g = \alpha_1 \cdots \alpha_n S$  where  $\alpha_i \in G_i$  either  $g \in S$  or  $g \in S\theta$ . We complete the proof by showing  $\theta \notin S$ , so that |G/S| = 2. This follows by using Lemma 5.11 on the set of vertices provided by Corollary 5.9 when we note that  $\{x_1, ..., x_n\}\theta = \{y_1, x_2, ..., x_n\}$  so that

$$|\{x_1,...,x_n\}\theta \cap \{x_1,...,x_n\}| \equiv n-1 \pmod{2}.$$

The results above now readily combine to give the group  $\Gamma(T_v)/S(T)_v$  for any tree T and any vertex v. Let the components  $B_{ij}$  of  $T_v$  belong to m isomorphism classes  $\{B_{11},...,B_{1n_1}\}$ ,  $\{B_{21},...,B_{2n_2}\}$ ,...,  $\{B_{m_1},...,B_{mn_m}\}$  and define the graph  $T^i$  to be the subgraph of T containing v and all components  $B_{i1},...,B_{in_i}$ . It is well known that, as no automorphism of  $T_v$  interchanges  $B_{ij}$  and  $B_{kl}$  (for  $i \neq k$ ),

$$\Gamma(T_v) \simeq \Gamma(T_v^{-1}) \times \cdots \times \Gamma(T_v^{m}).$$

Similarly  $S(T)_v$  is constructed from permutation groups on disjoint sets of vertices so that

$$S(T)_v \simeq S(T^1)_v \times \cdots \times S(T^m)_v$$
.

Now  $S(T^i)_v \leq \Gamma(T_v^i)$  so that

$$\Gamma(T_v)/S(T)_v \simeq \Gamma(T_v^{-1})/S(T^{-1})_v \times \cdots \times \Gamma(T_v^{-m})/S(T^{-m})_v$$
.

Each  $\Gamma(T_v^i)/S(T^i)_v$  is known from the earlier results so that we have the following theorem.

THEOREM 5.13. Let the components of  $T_v$  belong to m different isomorphism classes each containing  $n_i$   $(1 \le i \le m)$  components. Then

$$\Gamma(T_v)/S(T)_v \simeq S_{p_1}[Z_1] \times \cdots \times S_{p_m}[Z_n]$$



FIGURE 3



FIGURE 4



FIGURE 5

where the groups  $Z_i$  have order either 1 or 2 and  $p_i = n_i$  or  $p_i = 1$ . The values of  $p_i$  and  $Z_i$  are found from Theorems 5.10 and 5.12.

We conclude with an illustration of Theorem 5.13. For the tree in Fig. 3,  $G/S \cong G_i/F_i$  because Theorem 5.12 applies. As each component is a bicentral tree which satisfies Proposition 5.6,  $|G_i/F_i| = 2$  so that  $G/S \cong C_2$ . For the tree in Fig. 4,  $G/S \cong S_3[G_i/F_i]$  because Theorem 5.10



applies. As each component satisfies the requirements for Proposition 5.7,  $|G_i/F_i| = 2$  and so  $G/S \cong S_3[C_2]$ . The tree in Fig. 5 has  $G/S \cong S_2[G_i/F_i]$ . This tree does not satisfy condition (ii) of Proposition 5.7, so  $G_i = F_i$  and thus  $G/S \cong S_2$ . Using these results we see that, for the tree in Fig. 6,

$$G/S \cong C_2 imes S_3[C_2] imes S_2$$
 .

#### REFERENCES

- 1. M. Behzad and G. Chartrand, "Introduction to the Theory of Graphs," Allyn and Bacon, Boston, 1971.
- D. A. HOLTON, Two applications of semi-stable graphs, Discrete Math. 4 (1973), 151–158.
- 3. D. A. HOLTON AND D. D. GRANT, Regular graphs and stability, J. Austal. Math. Soc. 20 (Series A) (1975), 377–384.
- 4. D. A. Holton, A survey of stability, *Graph Theory Newsletter*, Western Michigan University, 4 (1974), 25-32.
- 5. H. Wielandt, "Finite Permutation Groups," Academic Press, New York, 1964.