# **Chapitre 22**

# Intégration sur un segment

## **Objectifs**

- Définir géométriquement l'intégrale d'une fonction en commençant par les fonctions en escalier, puis en étendant cette notion aux fonctions continues par morceaux par une technique d'approximation uniforme.
- Étudier les propriétés de l'intégrale et les différentes techniques de calcul (primitives, intégration par parties et changement de variable).
- Étudier les inégalités de Cauchy-Schwarz, de Minkowski, de la moyenne. Étudier les sommes de Riemann et les applications.
- Donner les changements de variable usuels.

#### **Sommaire**

| I)   | Définition de l'intégrale                     |  |
|------|-----------------------------------------------|--|
|      | 1) Cas des fonctions en escalier              |  |
|      | 2) Cas des fonctions continues par morceaux   |  |
|      | 3) Premières propriétés de l'intégrale 4      |  |
| II)  | Calcul d'une intégrale                        |  |
|      | 1) Primitives                                 |  |
|      | 2) Intégration par parties                    |  |
|      | 3) Changement de variable                     |  |
| III) | Propriétés de l'intégration                   |  |
|      | 1) Inégalités                                 |  |
|      | 2) Sommes de Riemann                          |  |
| IV)  | Recherche de primitives                       |  |
|      | 1) Fonctions usuelles                         |  |
|      | 2) Fractions rationnelles en sinus et cosinus |  |
|      | 3) Fractions rationnelles en ch et sh         |  |
|      | 4) Fonctions se ramenant aux types précédents |  |
|      | 5) Polynômes trigonométriques                 |  |
| V)   | Exercices                                     |  |

## I) Définition de l'intégrale

## 1) Cas des fonctions en escalier

## Rappels:

- L'ensemble des fonctions en escalier sur I = [a; b] est noté  $\mathcal{E}(I, \mathbb{C})$ , pour les lois usuelles sur les fonctions, c'est une  $\mathbb{C}$ -algèbre.
- Si  $f \in \mathcal{E}([a;b],\mathbb{C})$  et si  $\sigma = (x_i)_{0 \le i \le n}$  est une subdivision de [a;b], on dit que  $\sigma$  est adaptée à f lorsque  $\forall i \in \llbracket 0..(n-1) \rrbracket$ , f est constante sur  $]x_i; x_{i+1}[$ .



FIGURE 22.1: Interprétation géométrique

- Si  $\sigma$ ,  $\sigma'$  sont deux subdivisions de [a;b], on dit que  $\sigma'$  est plus fine que  $\sigma$  lorsque les points de la subdivision  $\sigma$  font partie de la subdivision  $\sigma'$ , ce que l'on note  $\sigma \subset \sigma'$ , si de plus  $\sigma$  est adaptée à  $f \in \mathcal{E}([a;b],\mathbb{C})$ , alors  $\sigma'$  aussi.
- Si  $\sigma$ ,  $\sigma'$  sont deux subdivisions de [a;b], on note  $\sigma \cup \sigma'$  la subdivision obtenue en réunissant les points de  $\sigma$  avec ceux de  $\sigma'$ . Cette nouvelle subdivision est plus fine que les deux précédentes.

#### -**∵**-THÉORÈME **22.1**

Soit  $f \in \mathcal{E}([a;b],\mathbb{C})$  et soit  $\sigma = (x_i)_{0 \le i \le n}$  une subdivision de [a;b] adaptée à f, alors la quantité :

$$I_{\sigma}(f) = \sum_{i=0}^{n-1} (x_{i+1} - x_i)c_i,$$

où  $c_i$  désigne la valeur de f sur l'intervalle  $]x_i, x_{i+1}[$ , est indépendante de la subdivision adaptée à f. Autrement dit, si  $\sigma'$  est une autre subdivision adaptée à f, alors  $I_{\sigma}(f) = I_{\sigma'}(f)$ .

**Preuve:** Si on rajoute un point d à la subdivision  $\sigma$ , on obtient une nouvelle subdivision  $\sigma'$  et il existe un indice  $j \in [0..(n-1)]$  tel que  $d \in ]x_j, x_{j+1}[$ , mais alors  $c_j(x_{j+1}-x_j)=c_j(d-x_j)+x_j(x_{j+1}-d)$ , on voit donc que  $I_{\sigma}(f)=I_{\sigma'}(f)$ . Par récurrence, on en déduit que si  $\sigma'$  est une subdivision plus fine que  $\sigma$ , alors  $I_{\sigma}(f)=I_{\sigma'}(f)$ .

Soit  $\sigma'$  une autre subdivision de [a;b] adaptée à f, la subdivision  $\sigma'' = \sigma' \cup \sigma$  est adaptée à f et plus fine que  $\sigma$  et  $\sigma'$ , donc  $I_{\sigma''}(f) = I_{\sigma'}(f) = I_{\sigma}(f)$ .



Géométriquement, si  $f \in \mathcal{E}([a;b],\mathbb{R})$  et si  $\sigma$  est une subdivision de [a;b] adaptée à f, alors dans un repère orthonormé, la quantité  $I_{\sigma}(f)$  représente l'aire algébrique de la portion de plan délimitée par la courbe de f, l'axe des abscisses, et les droites d'équation : x = a et x = b, c'est une somme d'aires de rectangles.

## DÉFINITION 22.1 (intégrale d'une fonction en escalier)

Si  $f \in \mathcal{E}([a;b],\mathbb{C})$ , on appelle intégrale de f sur [a;b] le nombre (complexe) noté  $\int_{[a;b]} f$  et défini par :

$$\int_{[a;b]} f = I_{\sigma}(f) = \sum_{i=0}^{n-1} (x_{i+1} - x_i)c_i,$$

où  $\sigma = (x_i)_{0 \le i \le n}$  est une subdivision adaptée à f.

### Remarques:

- L'intégrale de f sur [a; b] ne dépend pas de la valeur de f aux points de la subdivision. Il en découle que si on modifie la valeur de f en un nombre fini de points, la valeur de l'intégrale reste inchangée.
- Si  $f, g \in \mathcal{E}([a; b], \mathbb{C})$  et si f et g coïncident sur  $[a; b] \setminus \{x_1, \dots, x_n\}$ , alors  $\int_{[a; b]} f = \int_{[a; b]} g$ . Il suffit pour s'en convaincre de changer la valeur de f aux points  $x_1, \ldots, x_n$  pour obtenir la fonction g, d'après une remarque précédente, l'intégrale de f reste inchangée.

## THÉORÈME 22.2 (Propriétés élémentaires)

- Soient  $f, g \in \mathcal{E}([a; b], \mathbb{C})$ :

    $linéarité: \int_{[a;b]} f + g = \int_{[a;b]} f + \int_{[a;b]} g \ et \ si \ \lambda \in \mathbb{C}, \int_{[a,b]} \lambda f = \lambda \int_{[a;b]} f.$
- **positivité** : si f est à valeurs réelles et si  $f \ge 0$ , alors  $\int_{[a,b]} f \ge 0$ . On en déduit que si f et g sont à valeurs réelles et si  $f \leq g$ , alors  $\int_{[a;b]} f \leq \int_{[a;b]} g$ .
- majoration :  $\left| \int_{[a;b]} f \right| \leq \int_{[a;b]} |f|$ .
- relation de Chasles  $^1:$  si a < c < b, alors  $\int_{[a;b]} f = \int_{[a;c]} f + \int_{[c;b]} f$ .

Preuve: Celle-ci est simple et laissée en exercice.

#### Cas des fonctions continues par morceaux 2)

## Rappels:

- L'ensemble des fonctions continues par morceaux sur [a;b] est noté  $\mathscr{C}_{\mathscr{M}}([a;b],\mathbb{C})$ , pour les opérations usuelles sur les fonctions, c'est une  $\mathbb{C}$ -algèbre.
- Si  $f \in \mathscr{C}_{\mathscr{M}}([a;b],\mathbb{C})$ , alors il existe une suite de fonctions en escalier sur [a;b],  $(\phi_n)$  qui converge uniformément vers f sur [a;b], i.e. :  $\lim_{n\to +\infty} \|\phi_n f\|_{\infty} = 0$ .

## -THÉORÈME 22.3

Soit  $f \in \mathscr{C}_{\mathscr{M}}([a;b],\mathbb{C})$  et soit  $(\phi_n)$  une suite de fonctions en escalier qui converge uniformément vers f, alors la suite complexe  $(\int_{[a;b]} \phi_n)$  converge vers un complexe  $\ell$ , qui ne dépend pas de la suite

**Preuve**: Posons  $u_n = \int_{[a;b]} \phi_n$ , soit  $\varepsilon > 0$ , il existe un entier  $N \in \mathbb{N}$  tel que  $n \geqslant N \Longrightarrow \|\phi_n - f\|_{\infty} < \frac{\varepsilon}{2(b-a)}$ , on en déduit que si  $p,n\geqslant N$ , alors  $\|\phi_n-\phi_p\|_{\infty}<\frac{\varepsilon}{b-a}$ , mais alors  $|u_n-u_p|=|\int_{[a;b]}\phi_n-\phi_p|\leqslant \int_{[a;b]}|\phi_n-\phi_p|\leqslant \int_{[a;b]}|\phi_n-\phi_p|$  $\int_{[a;b]} \|\phi_n - \phi_p\|_{\infty} < \varepsilon$ . La suite  $(u_n)$  est donc une suite de Cauchy, par conséquent elle converge vers un complexe  $\ell$ .

Soit  $(\psi_n)$  une autre suite de fonctions en escalier qui converge uniformément vers f, posons  $v_n = \int_{[a:b]} \psi_n$ , d'après ce qui précède, la suite  $(v_n)$  converge vers un complexe  $\ell'$ . Soit  $(g_n)$  la suite de fonctions en escalier définie par  $g_{2n} = \phi_n$  et  $g_{2n+1} = \psi_n$ , il est facile de voir que  $(g_n)$  converge uniformément vers f, donc la suite  $(w_n = \int_{[a;b]} g_n)$ converge vers un complexe  $\ell''$ , or  $w_{2n} = u_n$  et  $w_{2n+1} = v_n$ , on en déduit que  $\ell'' = \ell = \ell'$ .

## DÉFINITION 22.2 (intégrale d'une fonction continue par morceaux)

Soit  $f \in \mathscr{C}_{\mathscr{M}}([a;b],\mathbb{C})$ , on appelle intégrale de f sur [a;b] le nombre (complexe) noté  $\int_{[a:b]} f$  et

$$\int_{[a;b]} f = \lim_{n \to +\infty} \int_{[a;b]} \phi_n,$$

où  $(\phi_n)$  est une suite de fonctions en escalier sur [a;b] qui converge uniformément vers f. Géométriquement, dans un repère orthonormé, si f est à valeurs réelles, on dit que  $\int_{[a;b]} f$  représente l'aire algébrique de la portion de plan délimitée par la courbe de f, l'axe des abscisses, et les droites

<sup>1.</sup> CHASLES MICHEL (1793 - 1880) : mathématicien français, auteur d'importants travaux en géométrie.



FIGURE 22.2: Cas d'une fonction continue

*d'équation* x = a *et* x = b.

## 3) Premières propriétés de l'intégrale

-\\_-

THÉORÈME 22.4 (linéarité de l'intégrale)

Soient  $f, g \in \mathscr{C}_{\mathscr{M}}([a; b], \mathbb{C})$  et soit  $\lambda \in \mathbb{C}$ , alors :

$$\int_{[a;b]} (f+g) = \int_{[a;b]} f + \int_{[a;b]} g \ \text{et} \ \int_{[a;b]} \lambda . f = \lambda . \int_{[a;b]} f.$$

**Preuve:** Soient  $(\phi_n)$  et  $(\psi_n)$  deux suites de fonctions en escalier qui convergent uniformément respectivement vers f et g, il est facile de voir que la suite  $(\phi_n + \psi_n)$  converge uniformément vers f + g. D'après la définition, on a  $\int_{[a;b]} (f+g) = \lim_{n \to +\infty} \int_{[a;b]} (\phi_n + \psi_n)$ , la linéarité étant vérifiée pour les fonctions en escalier, on peut écrire que  $\int_{[a;b]} (f+g) = \int_{[a;b]} \phi_n + \int_{[a;b]} \psi_n$ , le résultat s'obtient alors par passage à la limite. La preuve est du même type pour le second point.



Soit  $f \in \mathscr{C}_{\mathscr{M}}([a;b],\mathbb{C})$ , posons  $u = \operatorname{Re}(f)$  et  $v = \operatorname{Im}(f)$ . La linéarité de l'intégrale permet d'écrire :  $\int_{[a;b]} f = \int_{[a;b]} \operatorname{Re}(f) + i \int_{[a;b]} \operatorname{Im}(f)$ . On peut donc toujours se ramener à intégrer des fonctions à valeurs réelles (mais ce n'est pas toujours la meilleure solution). D'autre part, on a établi :

$$\operatorname{Re}(\int_{[a:b]} f) = \int_{[a:b]} \operatorname{Re}(f) \ \text{et} \ \operatorname{Im}(\int_{[a:b]} f) = \int_{[a:b]} \operatorname{Im}(f).$$



THÉORÈME 22.5 (positivité)

Si  $f \in \mathscr{C}_{\mathscr{M}}([a;b],\mathbb{R})$  est à valeurs positives, alors  $0 \leq \int_{[a;b]} f$ . En particulier si  $f,g \in \mathscr{C}_{\mathscr{M}}([a;b],\mathbb{R})$  et si  $f \leq g$ , alors  $\int_{[a;b]} f \leq \int_{[a;b]} g$ .

**Preuve**: Si f est à valeurs positives, on peut construire une suite  $(\phi_n)$  de fonctions en escalier **positives**, qui converge uniformément vers f, comme  $\int_{[a:b]} f = \lim_{n \to +\infty} \phi_n$ , on a le résultat par passage à la limite.

Si  $f \leq g$ , on applique ce qui précède à la fonction h = g - f et on conclut avec la linéarité.



## THÉORÈME 22.6 (majoration en module)

Si  $f \in \mathscr{C}_{\mathscr{M}}([a;b],\mathbb{C})$ , alors  $|\int_{[a;b]} f| \leq \int_{[a;b]} |f|$ . En particulier si  $|f| \leq M$  sur [a;b], alors  $|\int_{[a;b]} f| \leq M(b-a)$ .

**Preuve**: Si f est continue par morceaux sur [a; b], alors |f| aussi, et si  $(\phi_n)$  est une suite de fonctions en escalier qui converge uniformément vers f, il est facile de vérifier que la suite  $(|\phi_n|)$  est une suite de fonctions en escalier qui converge uniformément vers |f|, de plus, on sait que  $|\int_{[a;b]} \phi_n| \le \int_{[a;b]} |\phi_n|$ , le résultat s'obtient par passage à la limite.



## THÉORÈME 22.7 (relation de Chasles)

Si  $f \in \mathscr{C}_{\mathscr{M}}([a;b],\mathbb{C})$  et si a < c < b, alors  $\int_{[a;b]} f = \int_{[a;c]} f + \int_{[c;b]} f$ .

Preuve: Même type de preuve que pour les résultats précédents.



## THÉORÈME 22.8 (cas d'une intégrale nulle)

Si f est à valeurs réelles, continue, positive sur [a;b], et si  $\int_{[a;b]} f = 0$ , alors f est nulle sur

**Preuve**: Par l'absurde, supposons  $f \neq 0$ , alors il existe  $t_0 \in [a;b]$  tel que  $f(t_0) > 0$ , soit  $\varepsilon = f(t_0)/2$ , f étant continue en  $t_0$ , il existe  $t_1 < t_2 \in [a;b]$  tels que  $\forall t \in [t_1;t_2], f(t) > \varepsilon$ . Soit g la fonction en escalier définie  $\operatorname{par} g(t) = \begin{cases} 0 & \text{si } t \notin [t_1; t_2] \\ \varepsilon & \text{si } t \in [t_1; t_2] \end{cases}, \text{ alors on } g \leqslant f, \text{ donc } \int_{[a;b]} g \leqslant \int_{[a;b]} f, \text{ or } \int_{[a;b]} g = \varepsilon(t_2 - t_1) > 0, \text{ ce qui est } 0$ contradictoire, donc f est nulle sur  $\lceil a:b \rceil$ 



Le théorème ci-dessus est faux si f n'est pas continue sur [a; b], on peut considérer par exemple la fonction f définie par  $f(t) = \begin{cases} 1 & \text{si } t = a \\ 0 & \text{sinon} \end{cases}$ , cette fonction est positive, non nulle et d'intégrale nulle.



## 🎖 THÉORÈME 22.9 (égalité d'intégrales)

Si  $f,g \in \mathscr{C}_{\mathscr{M}}([a;b],\mathbb{C})$  coïncident sur  $[a;b] \setminus \{x_1,\ldots,x_n\}$ , alors  $\int_{[a;b]} f = \int_{[a;b]} g$ .

**Preuve**: Posons h = g - f, alors h est une fonction en escalier qui coïncide avec la fonction nulle sauf éventuellement aux points  $x_1, \ldots, x_n$ , on sait alors que  $\int_{[a;b]} h = 0$ , et la linéarité entraîne alors le résultat.

**Convention d'écriture** : si f est continue par morceaux sur un intervalle [a;b], pour  $x,y \in [a;b]$ , on pose:

$$\int_{x}^{y} f = \begin{cases} \int_{[x;y]} f & \text{si } x < y \\ 0 & \text{si } x = y \\ -\int_{[y;x]} f & \text{si } y < x \end{cases}$$

Avec cette convention:



Si  $f \in \mathscr{C}_{\mathcal{M}}([a;b],\mathbb{C})$  alors:  $- \forall x, y \in [a;b], \int_{x}^{y} f = -\int_{y}^{x} f.$   $- \forall x, y, z \in [a;b], \int_{x}^{y} f = \int_{x}^{z} f + \int_{z}^{y} f$  (relation de Chasles généralisée).

П

**Preuve**: Celle-ci est simple et laissée en exercice.

#### Calcul d'une intégrale II)

## **Primitives**



## **Ø**DÉFINITION 22.3

Soient  $f, F: I \to \mathbb{C}$  deux fonctions définies sur un intervalle I de  $\mathbb{R}$ , on dit que F est une primitive de f sur I lorsque F est dérivable sur I et que F'=f. L'ensemble des primitives de f sur I est noté  $\mathcal{P}_I(f)$ .

Remarque: D'après le théorème de DARBOUX, une dérivée vérifie toujours le théorème des valeurs intermédiaires, par conséquent une fonction f qui ne vérifie pas ce théorème (i.e. une fonction f telle que Im(f) n'est pas un intervalle), ne peut pas avoir de primitive sur *I*.



## 🛜 - THÉORÈME **22.11**

Si  $f: I \to \mathbb{C}$  admet une primitive F sur l'intervalle I, alors  $\mathscr{P}_I(f) = \{F + \lambda \mid \lambda \in \mathbb{C}\}.$ 

**Preuve**:  $G \in \mathcal{P}_I(f) \iff G' = F' \iff (G - F)' = 0 \iff \exists \lambda \in \mathbb{C}, G = F + \lambda \text{ (car } I \text{ est un intervalle)}.$ 

**Conséquence** : Si  $f: I \to \mathbb{C}$  admet une primitive F sur I, alors  $\forall y_0 \in \mathbb{C}, \forall t_0 \in I, f$  possède une unique primitive *G* sur *I* qui vérifie  $G(t_0) = y_0$ .



## THÉORÈME 22.12 (existence de primitives)

Si  $f: I \to \mathbb{C}$  est **continue**, alors f admet des primitives sur I. Plus précisément, si  $t_0 \in I$  et  $y_0 \in \mathbb{C}$ , alors la fonction F définie sur I par :

$$F(t) = y_0 + \int_{t_0}^t f,$$

est l'unique primitive de f sur I qui prend la valeur  $y_0$  en  $t_0$ .

**Preuve**: Soit  $t_1 \in I$ , on a  $|F(t) - F(t_1) - (t - t_1)f(t_1)| = |\int_{t_1}^t f - \int_{t_1}^t f(t_1)| = |\int_{t_1}^t (f - f(t_1))| \le |\int_{t_1}^t |f - f(t_1)||$ . On se donne  $\varepsilon > 0$ , f étant continue en  $t_1$ , il existe  $\alpha > 0$  tel que  $\forall u \in I, |u - t_1| < \alpha \Longrightarrow |f(u) - f(t_1)| < \varepsilon$ , donc si  $|t-t_1| < \alpha$ , alors  $|\int_{t_1}^t |f-f(t_1)|| \le |t-t_1|\varepsilon$ , d'où:

$$\left|\frac{F(t)-F(t_1)}{t-t_1}-f(t_1)\right| \leqslant \varepsilon,$$

on en déduit que F est dérivable en  $t_1$  et que  $F'(t_1) = f(t_1)$ . La fonction F est donc une primitive de f sur I, et il est clair que  $F(t_0) = y_0$ .

**Remarque**: La continuité de f est essentielle pour la démonstration, prenons  $f(t) = \begin{cases} 1 & \text{si } t = 0 \\ 0 & \text{sinon} \end{cases}$ , alors avec  $t_0 = y_0 = 0$ , on obtient que F = 0, F est bien dérivable mais ce n'est pas une primitive de f sur [0;1].



## THÉORÈME 22.13 (calcul d'une intégrale)

Si  $f: I \to \mathbb{C}$  est continue sur l'intervalle I et si F désigne une primitive de f sur I, alors :

$$\forall a, b \in I, \int_{a}^{b} f = [F]_{a}^{b} = F(b) - F(a).$$

**Preuve**: F étant une primitive de f, on a  $\forall t \in I$ ,  $F(t) = F(a) + \int_a^t f$ , d'où  $F(b) - F(a) = \int_a^b f$ .

Cas d'une fonction continue par morceaux : si  $f:[a;b]\to\mathbb{C}$  est continue par morceaux, soit  $\sigma=(x_i)_{0\leqslant i\leqslant n}$  une subdivision adaptée à f. Sur chacun des morceaux  $]x_i;x_{i+1}[$  la fonction f admet un prolongement par continuité  $f_i$  sur le segment  $[x_i,x_{i+1}]$ , les deux fonctions coïncidant sur le segment  $[x_i,x_{i+1}]$ , sauf peut être en deux points, on a  $\int_{x_i}^{x_{i+1}}f=\int_{x_i}^{x_{i+1}}f_i$ , mais  $f_i$  admet une primitive  $F_i$  sur  $[x_i;x_{i+1}]$ , d'où :  $\int_{x_i}^{x_{i+1}}f=F_i(x_{i+1})-F_i(x_i)$ , la relation de Chasles donne alors :

$$\int_{a}^{b} f = \sum_{i=0}^{n-1} F_{i}(x_{i+1}) - F_{i}(x_{i}).$$

On peut donc toujours se ramener au cas des fonctions continues et donc à une recherche de primitive.



## THÉORÈME 22.14 (lien entre une fonction et sa dérivée)

Si f est de classe  $\mathscr{C}^1$  sur l'intervalle I, alors  $\forall t, t_0 \in I, f(t) = f(t_0) + \int_{t_0}^t f'$ .

Preuve: Celle-ci est simple et laissée en exercice.



## THÉORÈME 22.15 (inégalité des accroissements finis généralisée)

Si  $f, g: I \to \mathbb{C}$  sont de classe  $\mathscr{C}^1$  sur l'intervalle I et si  $\forall t \in I, |f'(t)| \leq g'(t)$ , alors :

$$\forall a, b \in I, |f(b) - f(a)| \leq |g(b) - g(a)|.$$

**Preuve**: Supposons a < b, on a  $|f(b) - f(a)| = |\int_{[a;b]} f'| \le \int_{[a;b]} |f'| \le \int_{[a;b]} g' = g(b) - g(a) = |g(b) - g(a)|$ .

## 2) Intégration par parties



## -`<mark>@</mark>-THÉORÈME **22.16**

 $Soient \ f,g: I \to \mathbb{C} \ deux \ fonctions \ de \ classe \ \mathscr{C}^1, \ alors \ \forall \ a,b \in I, \int_a^b f' \times g = [f \times g]_a^b - \int_a^b f \times g'.$ 

**Preuve**: La fonction  $f' \times g + f \times g'$  est continue et admet comme primitive sur I la fonction  $f \times g$ , d'où  $\int_a^b (f' \times g + f \times g') = [f \times g]_a^b$ , ce qui donne le résultat par linéarité.

## Quelques cas à connaître :

- Toute fonction de la forme  $f(t) = P(t) \times \exp(\alpha t)$  (où α ∈ ℂ et  $P \in \mathbb{C}[X]$ ) peut s'intégrer par parties en posant  $u' = \exp(\alpha t)$ .

**Exemple**:  $\int_0^{\pi} t \sin(t) dt = \text{Im}(\int_0^{\pi} t \exp(it) dt)$ , or :

$$\int_0^{\pi} t \exp(it) dt = [-it \exp(it)]_0^{\pi} + i \int_0^{\pi} \exp(it) dt = i\pi + [\exp(it)]_0^{\pi} = -2 + i\pi$$

on en déduit que :

$$\int_0^{\pi} t \sin(t) dt = \pi \text{ et } \int_0^{\pi} t \cos(t) dt = -2$$

- Toute fonction de la forme  $f(t) = P(t) \times \ln(Q(t))$  (où  $P \in \mathbb{C}[X]$  et  $Q \in \mathbb{R}[X]$ ), peut s'intégrer par parties en posant u' = P(t).

**Exemple**: Soit x > 0;  $\int_{1}^{x} t^{2} \ln(t) dt = \left[\ln(t) \frac{t^{3}}{3}\right]_{1}^{x} - \int_{1}^{x} \frac{t^{2}}{3} dt = \frac{x^{3} \ln(x)}{3} - \frac{x^{3} - 1}{9}$ .

- Toute fonction de la forme  $f(t) = P(t) \arctan(Q(t))$  (où P,Q sont des polynômes), peut s'intégrer par parties en posant u' = P(t).

Exemple: Une primitive de la fonction arctan est :

$$F(x) = \int_0^x \arctan(t) dt = [t \arctan(t)]_0^x - \int_0^x \frac{t}{1+t^2} dt = x \arctan(x) - \frac{1}{2} \ln(1+x^2)$$

- Calcul d'intégrales par récurrence : soit  $n \ge 1$ , pour  $x \in \mathbb{R}$ , on pose  $F_n(x) = \int_0^x \frac{1}{(1+t^2)^n} dt$ , on a  $F_1(x) = \int_0^x \frac{1}{(1+t^2)^n} dt$ , on a  $F_2(x) = \int_0^x \frac{1}{(1+t^2)^n} dt$ , on a  $F_3(x) = \int_0^x \frac{1}{(1+t^2)^n} dt$ , on  $F_3(x) = \int_0^x \frac{1}{(1+t^2)^n} dt$ .  $\arctan(x)$ . En posant u'=1 et en intégrant par parties, on a  $F_n(x)=\left[\frac{t}{(1+t^2)^n}\right]_0^x+\int_0^x\frac{2nt^2}{(1+t^2)^{n+1}}\,dt$ , en écrivant que  $\frac{t^2}{(1+t^2)^{n+1}} = \frac{1}{(1+t^2)^n} - \frac{1}{(1+t^2)^{n+1}}$ , on obtient :  $F_n(x) = \frac{x}{(1+x^2)^n} + 2nF_n(x) - 2nF_{n+1}(x)$ , d'où

$$F_{n+1}(x) = \frac{x}{2n(1+x^2)^n} + \frac{2n-1}{2n}F_n(x).$$

## Changement de variable



## <sup>°</sup>C-THÉORÈME **22.17**

Soit  $\theta: J \to I$  une fonction de classe  $\mathscr{C}^1$  sur l'intervalle J, et soit  $f: I \to \mathbb{C}$  une fonction continue sur l'intervalle I, alors on  $a: \forall a, b \in J$ ,  $\int_a^b f \circ \theta \times \theta' = \int_{\theta(a)}^{\theta(b)} f$ .

**Preuve**: Soit F une primitive de f sur I, la fonction  $F \circ \theta$  est dérivable sur J et  $(F \circ \theta)' = \theta' \times f \circ \theta$ , d'où :

$$\int_{a}^{b} \theta' \times f \circ \theta = F \circ \theta(b) - F \circ \theta(a) = F(\theta(b)) - F(\theta(a)) = \int_{\theta(a)}^{\theta(b)} f.$$

**Dans la pratique** : Soit à calculer  $\int_{\alpha}^{\beta} f(t) dt$  où  $f: I \to \mathbb{C}$  est une fonction continue sur l'intervalle I, avec  $\alpha, \beta \in I$ . On pose  $t = \theta(u)$  où  $\theta: J \to I$  est une fonction de classe  $\mathscr{C}^1$  sur l'intervalle J, on cherche  $a, b \in J$ tels que  $\theta(a) = \alpha$  et  $\theta(b) = \beta$ . On écrit alors  $\frac{dt}{du} = \theta'(u)$ , d'où (calcul symbolique)  $dt = \theta'(u)du$ , puis on remplace :  $\int_{\alpha}^{\beta} f(t) dt = \int_{a}^{b} f(\theta(u))\theta'(u) du$  en faisant attention aux bornes de la nouvelle variable. Remarquons que la formule du changement de variable peut se lire dans l'autre sens.

#### **Exemples:**

- Soit  $I = \int_0^1 \sqrt{1-t^2} dt$ . On effectue le changement de variable  $t = \sin(u)$  avec  $u \in [0; \frac{\pi}{2}]$ , on a alors  $dt = \int_0^1 \sqrt{1-t^2} dt$ .  $\cos(u)du$ , d'où  $I = \int_0^{\pi/2} \sqrt{1 - \sin(u)^2} \cos(u) du = \int_0^{\pi/2} \cos(u)^2 du = \int_0^{\pi/2} \frac{1 + \cos(2u)}{2} du = \left[\frac{u}{2} + \frac{\sin(2u)}{4}\right]_0^{\pi/2} = \frac{\pi}{4}$ . En particulier on en déduit que la surface du cercle trigonométrique vaut  $\pi$ .
- Soit  $I = \int_0^{\pi/3} \ln(\cos(t))\sin(t) dt$ . On effectue le changement de variable  $u = \cos(t)$  avec  $\cos: [0; \frac{\pi}{3}] \to [\frac{1}{2}; 1]$ ( $\mathscr{C}^1$ ), on a  $du = -\sin(t)dt$  et donc  $I = \int_{1/2}^1 \ln(u) du = [u \ln(u) - u]_{1/2}^1 = \frac{\ln(2) - 1}{2}$ .

## √THÉORÈME 22.18 (applications)

*Soit*  $f: \mathbb{R} \to \mathbb{C}$  *une fonction continue* 

- Soit  $f : \mathbb{R} \to \mathbb{C}$  une fonction continue

   Si f est impaire alors  $\forall a > 0$ ,  $\int_{-a}^{a} f = 0$ .

   Si f est paire alors  $\forall a > 0$ ,  $\int_{-a}^{a} f = 2 \int_{0}^{a} f$ .

   Si f est T-périodique (T > 0) alors :

$$\forall a, b \in \mathbb{R}, \int_a^b f = \int_{a+T}^{b+T} f \text{ et } \int_a^{a+T} f = \int_b^{b+T} f.$$

**Preuve**: Supposons que f est impaire, et soit  $I = \int_{-a}^{a} f(t) dt$ . On effectue le changement de variable t = -u, d'où dt = -du et donc  $I = -\int_{a}^{-a} f(-u) du = -\int_{a}^{-a} f(u) du = -I$ , ce qui donne le premier résultat. Si maintenant f est paire : soit  $J = \int_{0}^{a} f(t) dt$ , en reprenant le changement de variable ci-dessus, on obtient

Si maintenant f est paire : soit  $J = \int_0^a f(t) dt$ , en reprenant le changement de variable ci-dessus, on obtient  $J = -\int_0^{-a} f(-u) du = \int_{-a}^0 f(u) du$ , d'où I = 2J d'après la relation de Chasles.

Si f est T-périodique : soit  $I = \int_a^b f(t) dt$ , on effectue le changement de variable u = t + T, on a alors du = dt et donc  $I = \int_{a+T}^{b+T} f(u-T) du = \int_{a+T}^{b+T} f(u) du$ , ce qui donne la première égalité. Mais d'après la relation de Chasles,  $\int_a^b f = \int_a^{a+T} f + \int_{a+T}^{b+T} f + \int_{b+T}^b f$ , donc d'après ce qui précède, il reste  $0 = \int_a^{a+T} f + \int_{b+T}^b f$ , ce qui donne l'autre égalité.

**Remarque**: Plus généralement si f présente un élément de symétrie (f(2a-t)=f(t)) ou 2b-f(t), alors il faut penser au changement de variable u=2a-t surtout si on intègre sur un intervalle de centre a.



## 7-THÉORÈME 22.19

Soit f une fonction continue et T-périodique (T > 0), alors f admet des primitives T-périodiques si et seulement si l'intégrale de f sur une période est nulle.

**Preuve**: Soit F une primitive de f sur  $\mathbb{R}$ , si F est T-périodique, alors F(T) - F(0) = 0 i.e.  $\int_0^T f = 0$ .

Réciproquement, si l'intégrale de f sur une période est nulle, alors la fonction  $h: t \to F(t+T) - F(t) = \int_t^{t+T} f$ , est nulle, et donc F est T-périodique (en fait toutes les primitives de f sont périodiques).

## III) Propriétés de l'intégration

## 1) Inégalités

## -`\_

## THÉORÈME 22.20

Soit f, g deux fonctions continues sur [a; b] et à valeurs réelles, on a les inégalités suivantes :  $-\left(\int_{[a;b]} f \times g\right)^2 \le \left(\int_{[a;b]} f^2\right) \left(\int_{[a;b]} g^2\right) \text{ (inégalité de Cauchy-Schwarz)}.$ 

$$-\sqrt{\int_{[a;b]} (f+g)^2} \le \sqrt{\int_{[a;b]} f^2} + \sqrt{\int_{[a;b]} g^2} \text{ (inégalité de Minkowski}^2).$$

**Preuve**: Posons  $a = \int_{[a;b]} f^2$ ,  $b = \int_{[a;b]} f \times g$  et  $c = \int_{[a;b]} g^2$ . Pour tout réel  $\lambda$  on a  $0 \le \int_{[a;b]} (\lambda f + g)^2$  (intégrale d'une fonction positive), en développant on obtient par linéarité  $a\lambda^2 + 2b\lambda + c \ge 0$ . Si  $a \ne 0$  alors on a un trinôme du second degré qui est toujours positif, donc son discriminant est négatif ou nul, *i.e.*  $b^2 - ac \le 0$  ce qui donne exactement l'inégalité de Cauchy-Schwarz. Si a = 0 alors pour tout réel  $\lambda$  on a  $2b\lambda + c \ge 0$  ce qui entraîne b = 0 et donc  $b^2 \le ac$ .

Pour la seconde inégalité :  $\int_{[a;b]} (f+g)^2 = a+2b+c \le a+2\sqrt{a}\sqrt{c}+c = (\sqrt{a}+\sqrt{c})^2$ , ce qui donne exactement l'inégalité de Minkowski.



## -THÉORÈME 22.21 (cas d'égalité de Cauchy-Schwarz 3)

Si f, g sont **continues** et à valeurs **réelles**, alors :

$$\left(\int_{[a;b]} f \times g\right)^2 = \left(\int_{[a;b]} f^2\right) \left(\int_{[a;b]} g^2\right) \iff f \text{ et } g \text{ sont colinéaires.}$$

<sup>2.</sup> MINKOWSKI HERMANN (1864 – 1909) : mathématicien allemand qui a travaillé notamment en physique mathématique en donnant une interprétation géométrique de la relativité restreinte.

**Preuve**: S'il existe  $\lambda \in \mathbb{R}$  tel que  $f = \lambda g$ , alors :

$$\left(\int_{[a;b]} f \times g\right)^2 = \lambda^2 \left(\int_{[a;b]} f^2\right)^2$$

et de l'autre coté on a :

$$\left(\int_{[a;b]} f^2\right) \left(\int_{[a;b]} g^2\right) = \lambda^2 \left(\int_{[a;b]} f^2\right)^2$$

on a donc bien l'égalité.

Réciproquement, si on a l'égalité, alors avec les notations de la démonstration du théorème précédent, si  $a \neq 0$ , le discriminant du trinôme  $a\lambda^2 + 2b\lambda + c$  est nul, ce trinôme a donc une racine double  $\lambda_0$ , i.e.  $\int_{[a;b]} (\lambda_0 f + g)^2 = 0$ , or la fonction intégrée est positive et continue, donc elle est nulle, ce qui donne  $g = -\lambda_0 f$ . Lorsque a = 0, alors  $f^2$ étant positive continue et d'intégrale nulle, on a f=0 et donc f=0.g. Dans les deux cas les fonctions f et g sont

**Exemple**: Soit  $f:[0;1] \to \mathbb{R}$  une fonction de classe  $\mathscr{C}^1$  telle que f(0)=0. Pour  $t\in[0;1]$  on a  $f(t)=\int_0^t f'$ , d'où  $f(t)^2 = \left(\int_0^t f'\right)^2 \leqslant \left(\int_0^t 1\right) \left(\int_0^t f'^2\right)$ , ce qui entraı̂ne  $f(t)^2 \leqslant t \int_0^1 f'^2$ , il en découle alors que :

$$\int_0^1 f^2 \leqslant \frac{1}{2} \int_0^1 f'^2.$$

## THÉORÈME 22.22 (Inégalité de la moyenne)

Soient  $f,g:[a;b] \to \mathbb{R}$  continues par morceaux, à valeurs réelles, avec g positive. Si f est majorée par  $M \in \mathbb{R}$  et minorée par  $m \in \mathbb{R}$  sur [a; b], alors :

$$m\int_{[a;b]}g\leqslant \int_{[a;b]}fg\leqslant M\int_{[a;b]}g.$$

**Preuve**: La fonction g étant à valeurs positives, on pour  $t \in [a;b]$ ,  $mg(t) \le f(t)g(t) \le Mg(t)$ , le résultat en découle en passant à l'intégrale sur [a; b].

**Exemple**: Soient 0 < a < b et soit  $\varepsilon > 0$ . D'après le théorème ci-dessus  $\cos(\varepsilon b) \ln(\frac{b}{a}) \le \int_{\varepsilon a}^{\varepsilon b} \frac{\cos(t)}{t} dt \le \cos(\varepsilon a) \ln(\frac{b}{a})$ . D'où :  $\lim_{\varepsilon \to 0} \int_{\varepsilon a}^{\varepsilon b} \frac{\cos(t)}{t} dt = \ln(\frac{b}{a}).$ 

## Sommes de Riemann



## **DÉFINITION 22.4**

Soit  $f:[a;b]\to\mathbb{C}$  une fonction continue, soit  $\sigma=(x_i)_{0\leqslant i\leqslant n}$  une subdivision de [a;b], et soit  $\alpha = (\alpha_i)_{0 \leqslant i \leqslant n-1}$  une famille de réels telle que  $\forall i \in \llbracket 0..(n-1) \rrbracket, \alpha_i \in [x_i; x_{i+1}]$ . On appelle somme de Riemann <sup>4</sup> de la fonction f associée à la subdivision  $\sigma$  et à la famille  $\alpha$ , la quantité :

$$R_{\sigma,\alpha}(f) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) f(\alpha_i).$$

<sup>3.</sup> SCHWARZ HERMANN (1846 - 1921): mathématicien allemand.

**Remarque**: Soit  $\phi$  la fonction en escalier sur [a;b] définie par  $\phi(x_i) = f(x_i)$  et  $\phi(t) = f(\alpha_i)$  si  $t \in ]x_i; x_{i+1}[$ , alors on a  $R_{\sigma,\alpha}(f) = \int_{[a;b]} \phi$ .

Dans la suite on ne considère que des subdivisions  $\sigma$  à pas constant, c'est à dire des subdivisions  $(x_i)_{0 \le i \le n}$  telles que  $\forall i \in \llbracket 0..(n-1) \rrbracket, x_{i+1} - x_i = \frac{b-a}{n}$ , pour une telle subdivision, on a  $x_i = a + i \frac{b-a}{n}$ , et la quantité  $\frac{b-a}{n}$  est appelée **pas de la subdivision**.

## - THÉORÈME 22.23 (limite d'une somme de Riemann)

Soit  $f:[a;b]\to\mathbb{C}$  une fonction continue, pour chaque entier  $n\geqslant 1$ , on pose pour  $i\in [0..n]$ ,  $x_{n,i}=a+i\frac{b-a}{n}$ , on a ainsi une subdivision  $\sigma_n=(x_{n,i})_{0\leqslant i\leqslant n}$  à pas constant, on se donne également une famille de réels  $\alpha_n=(\alpha_{n,i})_{0\leqslant i\leqslant n-1}$  telle que pour  $i\in [0..(n-1)]$ ,  $\alpha_{n,i}\in [x_{n,i},x_{n,i+1}]$ . On a alors  $\lim_{n\to\infty}R_{\sigma_n,\alpha_n}(f)=\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}}\int_{\mathbb{C}$ 

$$\lim_{n \to +\infty} R_{\sigma_n, \alpha_n}(f) = \int_{[a;b]} f, \text{ c'est à dire } : \lim_{n \to +\infty} \frac{b-a}{n} \sum_{i=0}^{n-1} f(\alpha_{n,i}) = \int_{[a;b]} f.$$

**Preuve**: On se donne  $\varepsilon > 0$ , la fonction f étant continue sur le segment [a;b], elle est uniformément continue (théorème de Heine), il existe donc  $\eta > 0$  tel que  $\forall x, y \in [a; b], |x - y| < \eta \Longrightarrow |f(x) - f(y)| < \varepsilon$ . Il existe un entier N tel que  $n \ge N \Longrightarrow \frac{b-a}{n} < \eta$ , donc si  $n \ge N$  on a :

$$\left| R_{\sigma_{n},\alpha_{n}}(f) - \int_{[a;b]} f \right| = \left| \sum_{i=0}^{n-1} \int_{x_{n,i}}^{x_{n,i+1}} f(\alpha_{n,i}) - \sum_{i=0}^{n-1} \int_{x_{n,i}}^{x_{n,i+1}} f \right| = \left| \sum_{i=0}^{n-1} \int_{x_{n,i}}^{x_{n,i+1}} \left( f(\alpha_{n,i}) - f(t) \right) dt \right|$$

$$\leq \sum_{i=0}^{n-1} \left| \int_{x_{n,i}}^{x_{n,i+1}} \left( f(\alpha_{n,i}) - f(t) \right) dt \right| \leq \sum_{i=0}^{n-1} \int_{x_{n,i}}^{x_{n,i+1}} \left| f(\alpha_{n,i}) - f(t) \right| dt$$

$$\leq \sum_{i=0}^{n-1} \int_{x_{n,i}}^{x_{n,i+1}} \varepsilon dt \text{ (car ci-dessus on a } |\alpha_{n,i} - t| < \eta)$$

$$\leq \sum_{i=0}^{n-1} \varepsilon \frac{b-a}{n} \leq (b-a)\varepsilon.$$

Ce qui prouve le théorème.

## **Applications:**

- Méthode des rectangles pour le calcul approché d'une intégrale (l'estimation de l'erreur fait l'objet du théorème suivant), pour les réels  $\alpha_{n,i}$  on peut prendre :
  - $-\alpha_{n,i}=a+i\frac{b-a}{n}$  : c'est la méthode des rectangles de gauche, on a alors (si f est continue sur [a;b]) :

$$\lim_{n\to+\infty}\frac{b-a}{n}\sum_{i=0}^{n-1}f(a+i\frac{b-a}{n})=\int_{[a;b]}f.$$

 $-\alpha_{n,i}=a+(i+1)\frac{b-a}{n}$ : c'est la méthode des rectangles de droite, on a alors:

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{i=1}^{n} f(a+i\frac{b-a}{n}) = \int_{[a:b]} f.$$

 $-\alpha_{n,i}=a+(i+\frac{1}{2})\frac{b-a}{n}$  (milieu de  $[x_{n,i};x_{n,i+1}]$ ) : c'est la méthode du point médian, on a alors :

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{i=0}^{n-1} f(a+(i+\frac{1}{2})\frac{b-a}{n}) = \int_{[a:b]} f.$$

- Étude de certaines suites. **Exemple**: Soit  $u_n = \sum_{k=1}^n \frac{1}{n+k}$ , on a alors  $u_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+k/n}$ , c'est la méthode des rectangles de droite appliquée à la fonction  $f: t \mapsto \frac{1}{1+t}$  sur l'intervalle [0; 1], la fonction étant continue sur cet intervalle, on a  $\lim u_n = \int_{[0,1]} f = \ln(2)$ .

<sup>4.</sup> RIEMANN GEORG FRIEDRICH BERNHARD (1826 - 1866): mathématicien allemand dont l'œuvre est colossale.



FIGURE 22.3: Méthode des rectangles de gauche



FIGURE 22.4: Méthode des rectangles de droite



FIGURE 22.5: Méthode du point médian

– Calcul de certaines intégrales comme :  $\int_0^{2\pi} \ln(1 - 2x\cos(t) + x^2) dt$  pour  $|x| \neq 1$  (cf. exercice).

THÉORÈME 22.24 (estimation de l'erreur)

 $Si\ f:[a;b] \to \mathbb{C}$  est continue et k-lipschitzienne, alors, avec les notations précédentes :

$$\left| R_{\sigma_n, a_n}(f) - \int_{[a;b]} f \right| \leqslant k \frac{(b-a)^2}{n}.$$

Preuve: En reprenant la démonstration précédente, on a :

$$\begin{split} \left| R_{\sigma_{n},\alpha_{n}}(f) - \int_{[a;b]} f \right| & \leq \sum_{i=0}^{n-1} \int_{x_{n,i}}^{x_{n,i+1}} \left| f(\alpha_{n,i}) - f(t) \right| \, dt \leqslant \sum_{i=0}^{n-1} \int_{x_{n,i}}^{x_{n,i+1}} k \left| \alpha_{n,i} - t \right| \, dt \\ & \leq \sum_{i=0}^{n-1} \int_{x_{n,i}}^{x_{n,i+1}} k \frac{b-a}{n} \, dt \leqslant k \frac{b-a}{n} \sum_{i=0}^{n-1} \int_{x_{n,i}}^{x_{n,i+1}} dt \leqslant k \frac{(b-a)^{2}}{n}. \end{split}$$

## IV) Recherche de primitives

**Convention**: soit f une fonction continue sur un intervalle I, une primitive de f sur I est la fonction  $F: x \mapsto \int_a^x f(t) dt$  où  $a \in I$  est quelconque, ce qui fait que l'on notera simplement  $F(x) = \int_a^x f(t) dt$ .

## 1) Fonctions usuelles

| Fonction                                  | Primitive                                                                          |
|-------------------------------------------|------------------------------------------------------------------------------------|
| $u'u^{\alpha}$                            | $\frac{u^{\alpha+1}}{\alpha+1} \text{ si } \alpha \neq -1, \ln( u ) \text{ sinon}$ |
| u'e <sup>u</sup>                          | $e^u$                                                                              |
| $u'\cos(u)$                               | $\sin(u)$                                                                          |
| $u'\sin(u)$                               | $-\cos(u)$                                                                         |
| $u'(1 + tan^2(u)) = \frac{u'}{\cos^2(u)}$ | tan(u)                                                                             |
| $u'\operatorname{ch}(u)$                  | $\operatorname{sh}(u)$                                                             |
| $u' \operatorname{sh}(u)$                 | $\operatorname{ch}(u)$                                                             |
| $u'(1-th^2(u)) = \frac{u'}{\cosh^2(u)}$   | th(u)                                                                              |
| $u' \tan(u)$                              | $-\ln( \cos(u) )$                                                                  |
| $u' \tan(u)^2$                            | tan(u) - u                                                                         |
| $\frac{u'}{1+u^2}$                        | arctan(u)                                                                          |
| $\frac{u'}{\sqrt{1-u^2}}$                 | arcsin(u)                                                                          |
| $\frac{u'}{\sqrt{1+u^2}}$                 | argsh(u)                                                                           |
| $\frac{u'}{\sqrt{u^2-1}}$                 | argch(u)                                                                           |
| $\frac{u'}{1-u^2}$                        | $\operatorname{argth}(u) = \ln(\sqrt{\left \frac{1+u}{1-u}\right })$               |

## 2) Fractions rationnelles en sinus et cosinus

Soit f(t) une fraction rationnelle en  $\sin(t)$  et  $\cos(t)$ :  $f(t) = \frac{\sum\limits_{p,q} a_{p,q} \sin(t)^p \cos(t)^q}{\sum\limits_{p,q} b_{p,q} \sin(t)^p \cos(t)^q}$ .

Pour intégrer ce type de fonction on peut appliquer la **règle de** BIOCHE

- Si f(-t)d(-t) = f(t)dt, alors on peut poser  $u = \cos(t)$ .

- Si  $f(\pi t)d(\pi t) = f(t)dt$ , alors on peut poser  $u = \sin(t)$ .
- Si  $f(\pi + t)d(\pi + t) = f(t)dt$ , alors on peut poser  $u = \tan(t)$ .
- Sinon on peut poser  $u = \tan(t/2)$ . Rappelons que  $\sin(t) = \frac{2u}{1+u^2}$  et  $\cos(t) = \frac{1-u^2}{1+u^2}$ .

Dans tous les cas, on est ramené à une fraction rationnelle en u.

### **Exemples:**

– Calculer une primitive de  $f(t) = \frac{1}{\sin(t)^2 + 3\cos(t)^2}$  sur ] –  $\pi/2$ ;  $\pi/2$ [.

**Réponse**: Il s'agit de calculer  $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} \frac{dt}{1 + 2\cos(t)^2}$ , d'après la règle de Bioche, on peut poser  $u = \tan(t)$ , ce qui donne  $du = (1 + u^2)dt$ , et donc  $F(x) = \int_{-\infty}^{\tan(x)} \frac{du}{u^2 + 3}$ , ce qui donne :

$$F(x) = \frac{1}{\sqrt{3}}\arctan(\frac{\tan(x)}{\sqrt{3}}) + \text{cte.}$$

– Calculer une primitive de  $f(x) = \frac{1}{\sin(x)}$  sur ]0;  $\pi$ [.

**Réponse**: Une primitive est  $F(x) = \int_{-\infty}^{x} \frac{dt}{\sin(t)}$ , posons  $u = \tan(t/2)$ , on a alors  $2du = (1 + u^2)dt$ , d'où  $F(x) = \int_{-\infty}^{\tan(x/2)} \frac{2(1+u^2)}{2u(1+u^2)} du = \int_{-\infty}^{\tan(x/2)} \frac{1}{u} du = \ln(|\tan(x/2)|) + \text{cte.}$ 

## 3) Fractions rationnelles en ch et sh

Soit F(X,Y) une fraction rationnelle à deux indéterminées X et Y, la fonction  $f(t) = F(\operatorname{ch}(t), \operatorname{sh}(t))$  est une fraction rationnelle en ch et sh. Pour intégrer ce type de fonction, on peut appliquer la règle de BIOCHE à la fonction  $g(t) = F(\cos(t), \sin(t))$ , c'est à dire en remplaçant  $\operatorname{ch}(t)$  par  $\cos(t)$  et  $\operatorname{sh}(t)$  par  $\sin(t)$ :

- Si g(-t)d(-t) = g(t)dt, alors on peut poser  $u = \operatorname{ch}(t)$ .
- Si  $g(\pi t)d(\pi t) = g(t)dt$ , alors on peut poser  $u = \operatorname{sh}(t)$ .
- Si  $g(\pi + t)d(\pi + t) = g(t)dt$ , alors on peut poser u = th(t).
- Sinon on peut poser  $u = \exp(t)$ .

Dans tous les cas, on est ramené à une fraction rationnelle en u.

**Exemple**: Calculons  $F(x) = \int_{-\infty}^{x} \frac{dt}{\operatorname{ch}(t)}$  sur  $\mathbb{R}$ , d'après la règle de Bioche, on peut poser  $u = \operatorname{sh}(t)$ , d'où  $du = \operatorname{ch}(t)dt$  et  $F(x) = \int_{-\infty}^{\operatorname{sh}(x)} \frac{du}{1+u^2}$ , et donc :  $F(x) = \arctan(\operatorname{sh}(x)) + \operatorname{cte}$ .

## 4) Fonctions se ramenant aux types précédents

– Une fraction rationnelle en t et  $\sqrt{a^2-t^2}$  peut s'intégrer en posant  $t=a\sin(u)$ , ce qui donne une fraction rationnelle en  $\sin(u)$  et  $\cos(u)$ .

**Exemple**: Une primitive de  $f(x) = \sqrt{1+x-x^2}$  sur  $\left[\frac{1-\sqrt{5}}{2}; \frac{1+\sqrt{5}}{2}\right]$  est  $F(x) = \int^x \sqrt{1+t-t^2} \, dt$ . On a  $f(t) = \frac{\sqrt{5}}{2} \sqrt{1-\left(\frac{2t-1}{\sqrt{5}}\right)^2}$ , donc  $F(x) = \frac{\sqrt{5}}{2} \int^x \sqrt{1-\left(\frac{2t-1}{\sqrt{5}}\right)^2} \, dt$ , on pose  $\sin(u) = \frac{2t-1}{\sqrt{5}} \in [-1;1]$ , on peut donc prendre  $u \in [-\pi/2; \pi/2]$ , on a  $dt = \frac{\sqrt{5}}{2} \cos(u) du$ , et donc :

$$F(x) = \frac{5}{4} \int_{0}^{\arcsin(\frac{2x-1}{\sqrt{5}})} \cos(u)^2 du$$

ce qui donne:

$$F(x) = \frac{5}{8}\arcsin(\frac{2x-1}{\sqrt{5}}) + \frac{2x-1}{4}\sqrt{1+x-x^2} + \text{cte.}$$

– Une fraction rationnelle en t et  $\sqrt{t^2 - a^2}$  peut s'intégrer en posant  $t = a \operatorname{ch}(u)$ , on obtient alors une fraction rationnelle en  $\operatorname{ch}(u)$  et  $\operatorname{sh}(u)$ .

**Exemple**: Une primitive de  $f(x) = \sqrt{x^2 - 1}$  sur  $[1; +\infty[$  est la fonction  $F(x) = \int^x \sqrt{t^2 - 1} \, dt$ , on pose  $t = \operatorname{ch}(u)$  avec  $u \in [0; +\infty[$ , on a  $dt = \operatorname{sh}(u)du$ , et donc  $F(x) = \int^{\ln(x + \sqrt{x^2 - 1})} \operatorname{sh}(u)^2 \, du$ , or  $\operatorname{sh}(u) = \frac{e^{2u} + e^{-2u} - 2}{4}$ , donc  $F(x) = \left[\frac{e^{2u} - e^{-2u} - 4u}{8}\right]^{\ln(x + \sqrt{x^2 - 1})}$ , ce qui donne après simplifications :

$$F(x) = \frac{x\sqrt{x^2 - 1} - \ln(x + \sqrt{x^2 - 1})}{2} + \text{cte.}$$

– Une fraction rationnelle en t et  $\sqrt{t^2 + a^2}$  peut s'intégrer en posant  $t = a \operatorname{sh}(u)$ , on obtient alors une fraction rationnelle en  $\operatorname{ch}(u)$  et  $\operatorname{sh}(u)$ .

**Exemple**: Une primitive de la fonction  $f(x) = \frac{1}{\sqrt{1+x^2}}$  sur  $\mathbb{R}$  est la fonction  $F(x) = \int^x \frac{dt}{\sqrt{1+t^2}}$ , on pose  $t = \operatorname{sh}(u)$ , on a  $dt = \operatorname{ch}(u)du$  et donc  $F(x) = \int^{\ln(x+\sqrt{x^2+1})} du = \ln(x+\sqrt{1+x^2}) + \operatorname{cte}$ .

– Une fraction rationnelle en t et  $\sqrt{\frac{at+b}{ct+d}}$  peut s'intégrer en posant  $u=\sqrt{\frac{at+b}{ct+d}}$ , on obtient alors une fraction rationnelle en u.

**Exemple**: Une primitive de  $f(x) = \frac{1}{x - \sqrt{x - 1}}$  sur  $[1; +\infty[$  est la fonction  $F(x) = \int^x \frac{dt}{t - \sqrt{t - 1}} dt$ , on pose  $u = \sqrt{t - 1}$ , d'où  $t = u^2 + 1$ , donc dt = 2udu et  $F(x) = \int^{\sqrt{x - 1}} \frac{2udu}{u^2 - u + 1}$ . Or  $\frac{2u}{u^2 - u + 1} = \frac{2u - 1}{u^2 - u + 1} + \frac{1}{(u - 1/2)^2 + 3/4}$ , d'où  $F(x) = \ln(x - \sqrt{x - 1}) + \frac{4}{3} \int^{\sqrt{x - 1}} \frac{du}{\left(\frac{2u - 1}{\sqrt{3}}\right)^2 + 1}$ , ce qui donne finalement :

$$F(x) = \ln(x - \sqrt{x - 1}) + 2\frac{\sqrt{3}}{3}\arctan(\frac{2\sqrt{x - 1} - 1}{\sqrt{3}}) + \text{cte.}$$

## 5) Polynômes trigonométriques

Il s'agit des sommes finies du type  $\sum_{p,q} a_{i,j} \cos(x)^p \sin(x)^q$ . Une telle fonction est un cas particulier de fraction rationnelle en cos et sin, la règle de BIOCHE peut s'appliquer, mais il y a parfois plus simple, on est en fait ramené à chercher une primitive de  $\cos(x)^p \sin(x)^q$ :

– Linéarisation : on écrit que  $\cos(t)^p = \left(\frac{e^{it} + e^{-it}}{2}\right)^p$  et  $\sin(t)^q = \left(\frac{e^{it} - e^{-it}}{2i}\right)^q$ , puis on développe.

**Exemple**:  $\int_{-\infty}^{\infty} \cos(t)^4 \sin(t)^2 dt$ , on a :

$$\cos(t)^4 \sin(t)^2 = \left(\frac{e^{it} + e^{-it}}{2}\right)^4 \left(\frac{e^{it} - e^{-it}}{2i}\right)^2 = \frac{-\cos(6t) - 2\cos(4t) + \cos(2t) + 2}{32}.$$

Ce qui donne finalement :

$$\int_{0}^{x} \cos(t)^{4} \sin(t)^{2} dt = -\frac{\sin(6x)}{192} - \frac{\sin(4x)}{64} + \frac{\sin(2x)}{64} + \frac{x}{16} + \text{cte.}$$

- Changement de variable : lorsque l'un des exposants est impair, par exemple p=2k+1, on a  $F(x)=\int^x \cos(t)^p \sin(t)^q dt = \int^x \cos(t)^{2k} \sin(t)^q \cos(t) dt$ , on pose alors  $u=\sin(t)$ , d'où  $du=\cos(t)dt$  et donc  $F(x)=\int^{\sin(x)} (1-u^2)^k u^q du$ , c'est un polynôme en u.

**Exemple**: Soit à calculer  $F(x) = \int_0^x \sin(t)^5 dt$ , on pose  $u = \cos(t)$ , d'où  $du = -\sin(t)dt$  et

$$F(x) = -\int_{0}^{\cos(x)} (1 - u^2)^2 du = -\frac{\cos(x)^5}{5} + \frac{2\cos(x)^3}{3} - \cos(x) + \text{cte}$$

## V) Exercices

## ★Exercice 22.1

Calculer la limite éventuelle de la suite  $(u_n)$  dans les cas suivants :

$$u_n = \frac{1^p + \dots + n^p}{n^{p+1}} \ (p \in \mathbb{N}) \quad u_n = n \sum_{k=1}^n \frac{1}{n^2 + k^2} \quad u_n = n \sum_{k=0}^{n-1} \frac{1}{(n+k)^2}.$$

#### ★Exercice 22.2

À l'aide d'une somme de Riemann, calculer pour  $|x| \neq 1$ :

$$\int_0^{2\pi} \ln(x^2 - 2x\cos(t) + 1) \, dt.$$

## ★Exercice 22.3

Soit f une fonction continue sur [a; b] et telle que  $\forall \in [a; b], f(a+b-t) = f(t)$ .

a) Montrer que : 
$$\int_{a}^{b} t f(t) dt = \frac{a+b}{2} \int_{a}^{b} f(t) dt = (a+b) \int_{a}^{(a+b)/2} f(t) dt$$
.

b) Applications : calculer les intégrales suivantes : 
$$\int_0^{\pi} \frac{t \sin(t)}{1 + \cos(t)^2} dt \quad \int_0^{\pi} \frac{t}{1 + \sin(t)} dt.$$

c) En s'inspirant d'une même démarche, calculer  $\int_0^{\pi/4} \ln(1+\tan(t)) dt$ .

## ★Exercice 22.4

Pour  $p, q \in \mathbb{N}$ , on pose  $B(p,q) = \int_0^1 t^p (1-t)^q dt$ .

a) Montrer que 
$$B(p,q) = B(q,p)$$
.

b) Montrer que pour 
$$q \ge 1$$
,  $B(p,q) = \frac{q}{p+1}B(p+1,q-1)$ .

c) En déduire l'expression de B(p,q).

### ★Exercice 22.5

Soit f une fonction  $\mathscr{C}^2$  sur [a;b], on pose pour  $n \ge 1$ :

$$M_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a + (k+1/2) \frac{b-a}{n}).$$

a) Montrer que  $\forall t, x \in [a; b], \exists c_{x,t} \in [a; b]$  tel que :

$$f(t) - f(x) = (t - x)f'(x) + \frac{(t - x)^2}{2}f''(c_{x,t}).$$

b) En déduire que 
$$|M_n(f) - \int_a^b f| \le \frac{M_2(b-a)^3}{24n^2}$$
, où  $M_2 = \sup_{t \in [a;b]} |f''(t)|$ .

## ★Exercice 22.6

Étudier les fonctions suivantes :

a) 
$$f: x \mapsto \int_{x}^{x^2} \frac{e^t}{t} dt$$
.

b) 
$$g: x \mapsto \int_{x}^{3x} \frac{e^{-t}}{t} dt$$
.

## ★Exercice 22.7

Pour  $n \in \mathbb{N}$ , on pose :  $I_n = \int_0^{\pi/2} \sin(t)^n dt$  (intégrales de Wallis).

- a) Calculer  $I_0$  et  $I_1$ . Montrer que  $I_n = \int_0^{\pi/2} \cos(t)^n dt$ .
- b) Établir une relation de récurrence entre  $I_{n+2}$  et  $I_n$ . En déduire l'expression de  $I_n$  en fonction de n.
- c) Étudier le sens de variation de la suite  $(I_n)$ , en déduire que  $I_{n+1} \sim I_n$ .
- d) Montrer que la suite  $((n+1)I_nI_{n+1})$  est constante, en déduire un équivalent simple de  $I_n$ .

## ★Exercice 22.8

Calculer les intégrales suivantes :  $\int_0^1 (1-t^2)^n dt \int_0^{\pi/2} \frac{1}{5+2\cos(t)^2} dt.$ 

## ★Exercice 22.9

Calculer une primitive des fonctions suivantes :

$$\cos(t)^{4} \quad \cos(t)^{2} \sin(t)^{3} \quad \frac{t^{2}}{(t^{2} - 1)^{3}} \quad \frac{t}{\cos(t)^{2}} \quad \tan(t)^{7}$$

$$\frac{e^{\sqrt{t}}}{\sqrt{t}} \quad t \arcsin(t) \quad \frac{t^{2}}{(1 - t^{2})^{3/2}} \quad t^{n} e^{t} \quad \frac{1}{t\sqrt{t^{2} - 1}}.$$

## ★Exercice 22.10

Soit f une fonction continue sur [0; 1].

- a) Montrer que si f est dérivable sur ]0;1[ et si  $f(1) = \int_0^1 f$ , alors il existe  $c \in$  ]0;1[ tel que f'(c) = 0.
- b) Montrer que si  $\int_0^1 f = 1/2$ , alors f possède au moins un point fixe.
- c) Si f est de classe  $\mathscr{C}^2$  et si f(0) = f(1) = 0, montrer que  $\int_0^1 f(f + f'') \le 0$  (exprimer f en fonction de f').
- d) Calculer:  $\lim_{n \to +\infty} \int_0^1 f(\frac{t}{n}) dt$ .
- e) Montrer que :  $\lim_{n \to +\infty} n \int_0^1 t^n f(t) dt = f(1)$ .

## ★Exercice 22.11

Calculer de deux façons  $\int_0^n (1-\frac{t}{n})^n dt$ , en déduire une simplification de :  $\sum_{k=0}^n (-1)^k \frac{C_n^k}{k+1}$ .

## ★Exercice 22.12

Soient f et g deux fonctions continues sur [a;b] telles que  $f \times g \ge 1$ . Montrer que :

$$(b-a)^2 \leqslant \left(\int_a^b f\right) \left(\int_a^b g\right).$$

Quand a-t-on l'égalité?