Curvas e Superfícies, FGV/EMAp 2022 Asla Medeiros e Sá (data de entrega: 28/05/2022 - quarta-feira) Lista 7 #

Tópicos: Topologia, conjuntos abertos, fechados, compactos e conexos, continuidade e homeomorfismo.

Conceitos fundamentais que caracterizam espaços topológicos:

• Aula 1:

- Bola aberta: $B(a,r) = x \in \mathbb{R}^n / ||x-a|| < r$;
- Bola fechada: $B(a,r) = x \in \mathbb{R}^n / ||x a|| \le r;$
- Esfera: $B(a,r) = x \in \mathbb{R}^n / ||x-a|| = r;$
- O ponto $a \in X \subset \mathbb{R}^n$ é interior ao conjunto X quando $\exists r > 0/B(a,r) \subset X$;
- O conjunto $U \subset \mathbb{R}^n$ é dito aberto, quando $\forall p \in U, \exists r > 0/B(a,r) \subset U$, isto é, todo ponto $p \in U$ é ponto interior, isto é, A = int(A);
- Um conjunto é dito *limitado* quando existe uma bola que o contém, isto é, $\exists a \in \mathbb{R}^n, r > 0/X \subset B(a, r)$;
- Uma aplicação $f: A \to \mathbb{R}^m$ é dita limitada quando $f(A) \subset \mathbb{R}^m$ é limitado;
- Uma aplicação $f: \mathbb{R}^n \to \mathbb{R}^m$ é aberta quando \forall aberto $A \subset \mathbb{R}^n, f(A) \subset \mathbb{R}^m$ é aberto;

• Aula 2:

- PROPRIEDADES FUNDAMENTAIS DOS CONJUNTOS ABERTOS:
 - 1. O conjunto vazio \emptyset e o espaço \mathbb{R}^n são abertos;
 - 2. A INTERSECÇÃO de uma família FINITA de abertos é aberta;
 - 3. A UNIAO de uma família QUALQUER de abertos é aberta.
- ESPAÇO TOPOLÓGICO: É um par (X, τ) em que X é um conjunto e τ é uma família de subconjuntos de X, chamados de abertos, que satisfazem as propriedades fundamentais dos conjuntos abertos. Diz-se então que a família τ define uma topologia em X;

- TOPOLOGIA E CONVERGÊNCIA:Uma sequência em \mathbb{R}^n converge para $a \in \mathbb{R}^n \iff \forall V$, vizinhança de a em \mathbb{R}^n , $\exists k_0 \in \mathbb{N}/k > k_0 \Longrightarrow x_k \in V$;
- Um subconjunto de \mathbb{R}^n cujo complementar é aberto é dito fechado;
- PROPRIEDADES FUNDAMENTAIS DOS CONJUNTOS FECHADOS:
 - 1. O conjunto vazio \emptyset e o espaço \mathbb{R}^n são fechados;
 - 2. A UNIÃO de uma família FINITA de fechados é fechada;
 - 3. A INTERSECÇÃO de uma família QUALQUER de fechados é fechada.
- Aplicação fechada: leva fechados em fechados
- Aderência: um ponto a é aderente a um conjunto X quando existe alguma sequencia de pontos de X que converge para a.
- O fecho de X, denotado por \overline{X} , é o conjunto de pontos que são aderentes a X.
- Conjuntos fechados caracterizam-se também pelo fato de coincidirem com o seu fecho, isto é, $C \subset \mathbb{R}^n$ é fechado \iff o limite de toda sequencia convergente de pontos de C é ponto de C;
- A fronteira ou bordo de X é o conjunto $\partial X = \overline{X} \cap \overline{\mathbb{R}^n X}$

• Aula 3:

- Um conjunto fechado C que é também limitado é dito *compacto*;
- Diz-se que A é um aberto relativo de X quando existe um aberto U de \mathbb{R}^n tal que $A = U \cap X$;
- Uma $cis\tilde{a}o$ é uma decomposição de um conjunto X em subconjuntos disjuntos cuja união é o próprio conjunto X;
- Um conjunto é dito *conexo* se a única cisão que admite é a tivial $(X = X \cup \emptyset)$;
- Dois espaços topológicos (X_1, τ_1) e (X_2, τ_2) são homeomorfos quando existe uma bijeção $\varphi: X_1 \to X_2$ tal que para quaisquer abertos $A_1 \in \tau_1$, $A_2 \in \tau_2$ tem-se que $\varphi(A_1) \in \tau_2$ e $\varphi^{-1}(A_2) \in \tau_1$. nesse caso, φ é dita homeomorfismo.
- Aplicações são ditas contínuas quando preservam convergência;
- Teorema: Dados $X \subset \mathbb{R}^n$ e $Y \subset \mathbb{R}^m$, uma bijeção $f: X \to Y$ é um homeomorfismo $\iff f$ e f^{-1} são contínuas.

Exercícios:

1. Provar que toda bola aberta B(x;r) é um conjunto aberto.

Solução: Seja $y \in B(r; x)$. Queremos provar que existe $\epsilon > 0$ tal que $B(y; \epsilon) \subseteq B(r; x)$. Definimos para isto $\epsilon := r - |y - x| > 0$. Logo, dado qualquer ponto $z \in B(y; \epsilon)$, temos que

$$|z - x| \le |z - y| + |y - x| < \epsilon + |y - x| = r - |y - x| + |y - x| = r.$$

Logo $z \in B(x;r)$. Isto é, $B(y;\epsilon) \subseteq B(x;r)$. Concluímos que B(x;r) é aberto.

- 2. Provar que $Z := \{(x,y) \in \mathbb{R}^2 : xy < 0\}$ é aberto. Dica: Seja (a,b) no conjunto Z. Seja $\epsilon := \min\{|a|,|b|\} > 0$. Provar que $B((a,b);\epsilon) \subseteq Z$.
- 3. Provar que união de conjuntos abertos é um conjunto aberto.

Solução: Seja $\{A_{\lambda} : \lambda \in \Lambda\}$ uma família de abertos, onde Λ é um conjunto de índices (possívelmente infinito, não enumerável). Consideremos a união:

$$A := \bigcup_{\lambda \in \Lambda} A_{\lambda}.$$

Seja $z \in A$. Logo $z \in A_{\lambda}$ para algum índice λ . Dado que A_{λ} é aberto, existe $\epsilon > 0$ tal que $B(z; \epsilon) \subseteq A_{\lambda}$. Logo $B(z; \epsilon) \subseteq A$. Concluímos que A é aberto.

- 4. Provar que a interseção de uma quantidade finita de abertos é um conjunto aberto.
- 5. Provar que a interseção de conjuntos fechados é um conjunto fechado. Será que união de fechados é também fechado? Se não for certo, dar um contraexemplo.
- 6. O conjunto $\{1/n : n \in \mathbb{N}_*\} \subset \mathbb{R}$ é aberto? É fechado?
- 7. Dê exemplos de conjuntos que não são nem abertos nem fechados.
- 8. Prove que

$$\{(x,y)\in\mathbb{R}^2:y>0\}$$

é aberto.

- 9. Prove que um conjunto em \mathbb{R}^n é aberto se, e somente se, é união de bolas abertas.
- 10. Prove que as bolas fechadas são conjuntos fechados.
- 11. Seja $A \subset \mathbb{R}^n$ tal que existe d > 0 tal que $||x y|| \ge d$ para todo par de pontos $x, y \in A$. Prove que A é fechado em \mathbb{R}^n .
- 12. Seja $A\subset\mathbb{R}^2$ um conjunto não vazio contido numa reta de \mathbb{R}^2 . Prove que A não é aberto.

- 13. Seja $A \subseteq \mathbb{R}^n$. Prove que $\mathbb{R}^n \setminus int(A)$ é fechado.
- 14. Seja $A \subset B \subseteq \mathbb{R}^n$, e x ponto de acumulação de A. Será que x é também ponto de acumulação de B?
- 15. Se $A \subset \mathbb{R}^n$ é aberto, prove que sua fronteira tem interior vazio.
- 16. Seja $A \subseteq \mathbb{R}^n$ com $n \ge 2$. Prove que, dado $a \in \mathbb{R}^n \setminus A$, o conjunto $A \cup \{a\}$ é aberto se, e somente se, a é um ponto isolado da fronteira de A.
- 17. Prove que se $F \subseteq \mathbb{R}^n$ é fechado então sua fronteira tem interior vazio.
- 18. Sejam $F \in \mathbb{R}^n$ fechado e $f: F \to \mathbb{R}^m$ uma aplicação contínua. Mostre que f leva subconjuntos limitados de F em subconjuntos limitados de \mathbb{R}^m . Prove, exibindo um contra-exemplo, que não se conclui o mesmo removendo-se a hipótese de F ser fechado.
- 19. Prove que duas bolas abertas de \mathbb{R}^n são homeomorfas.

Solução: Dados $a \in \mathbb{R}^n$ e r > 0, consideremos a aplicação:

$$f: B(0,1) \to B(a,r)$$

 $x \to rx + a$

A aplicação f é bijetiva e contínua. Sua inversa, $f^{-1}: B(a,r) \to B(0,1)$, é dada por $f^{-1}(y) = \frac{1}{r}(y-a)$, donde se vê que f^{-1} é contínua, portanto f é um homeomorfismo. Pela transitividade da relação de homeomorfismo, conclui-se que duas bolas bertas quaisquer de \mathbb{R}^n são homeomorfas. Um argumento análogo prova que vale o mesmo para duas bolas, ambas, fechadas.

20. Verifique que a aplicação:

$$f: B(0,1) \to \mathbb{R}^n$$
$$x \to \frac{x}{1 - ||x||}$$

é um homeomorfismo entre a bola aberta unitária B(0,1) e \mathbb{R}^n . Conclua que qualquer bola aberta de \mathbb{R}^n é homeomorfa a todo o espaço \mathbb{R}^n .

21. Mostre que o cone $C=\{(x,y,z)\in\mathbb{R}^3; z=\sqrt{x^2+y^2}\}$ e \mathbb{R}^2 são homeomorfos.