Capitolo 3: Strutture dei sistemi operativi

- Componenti del sistema
- Servizi di un sistema operativo
- Chiamate del sistema
- Programmi di sistema
- Struttura del sistema
- Macchine virtuali
- Progettazione e realizzazione di un sistema
- Generazione di sistemi

Componenti del sistema

- Gestione dei processi
- Gestione della memoria centrale
- Gestione dei file
- Gestione del sistema di I/O
- Gestione della memoria secondaria
- Reti
- Sistema di protezione
- Interprete dei comandi

Gestione dei processi

- Un **processo** è un programma in esecuzione. Per svolgere i propri compiti, un processo necessita di alcune risorse, tra cui tempo di CPU, memoria, file e dispositivi di I/O.
- Il sistema operativo è responsabile delle seguenti attività connesse alla gestione dei processi:
 - reazione e cancellazione dei processi utenti e di sistema
 - sospensione e ripristino dei processi
 - fornitura di meccanismi per:
 - sincronizzazione dei processi
 - comunicazione tra processi

Gestione della memoria centrale

- La memoria centrale è un vasto vettore di dimensioni che variano tra le centinaia di migliaia e i miliardi di parole, ciascuna delle quali è dotata del proprio indirizzo. È un magazzino di dati velocemente accessibile ed è condivisa dalla CPU e da alcuni dispositivi di I/O.
- La memoria centrale è volatile, e perde le informazioni in caso di guasto del sistema.
- Il sistema operativo è responsabile delle seguenti attività connesse alla gestione della memoria centrale:
 - tenere traccia di quali parti della memoria sono attualmente usate e da che cosa;
 - decidere quali processi si debbano caricare nella memoria quando vi sia spazio disponibile;
 - assegnare e revocare lo spazio di memoria secondo le necessità.

Gestione dei file

- Un file è una raccolta di informazioni correlate definite dal loro creatore. Comunemente, i file rappresentano programmi (sia sorgente sia oggetto) e dati.
- Il sistema operativo è responsabile delle seguenti attività connesse alla gestione dei file:
 - creazione e cancellazione di file;
 - creazione e cancellazione di directory;
 - fornitura delle funzioni fondamentali per la gestione di file e directory;
 - associazione dei file ai dispositivi di memoria secondaria;
 - creazione di copie di riserva (backup) dei file su dispositivi di memorizzazione non volatili.

Gestione del sistema di I/O

- Il sistema di I/O è composto dalle seguenti parti:
 - un sistema buffer-caching
 - un'interfaccia generale per i driver dei dispositivi
 - i driver per gli specifici dispositivi

Gestione della memoria secondaria

- Poiché la memoria centrale è troppo piccola per contenere tutti i dati e tutti i programmi, e il suo contenuto va perduto se il sistema si spegne, il calcolatore deve disporre di una memoria secondaria a sostegno della memoria centrale.
- La maggior parte dei moderni sistemi di calcolo impiega i dischi come principale mezzo di memorizzazione secondaria, sia per i programmi sia per i dati.
- Il sistema operativo è responsabile delle seguenti attività connesse alla gestione dei dischi:
 - gestione dello spazio libero
 - assegnazione dello spazio
 - scheduling del disco

Reti (sistemi distribuiti)

- Un **sistema distribuito** è un insieme di unità di elaborazione che non condividono la memoria, i dispositivi periferici o un clock; ciascun processore dispone di una propria memoria locale e di un suo clock.
- Le unità d'elaborazione sono collegate da una rete di comunicazione.
- La comunicazione avviene utilizzando un protocollo.
- Un sistema distribuito offre all'utente l'accesso alle varie risorse di sistema.
- L'accesso a una risorsa condivisa permette di:
 - accelerare il calcolo
 - aumentare la disponibilità dei dati
 - incrementare l'affidabilità

Sistema di protezione

- La **protezione** è definita da ogni meccanismo che controlla l'accesso da parte di programmi, processi o utenti alle risorse di un sistema di calcolo.
- Il meccanismo di protezione deve:
 - distinguere tra uso autorizzato e non autorizzato.
 - specificare i controlli che devono essere attivati.
 - fornire strumenti di miglioramento dell'affidabilità.

Interprete dei comandi

- Molti comandi si impartiscono al sistema operativo attraverso istruzioni di controllo che riguardano:
 - creazione e gestione di processi
 - **/**0
 - gestione della memoria secondaria
 - gestione della memoria centrale
 - accesso al file-system
 - protezione
 - reti

Interprete dei comandi (Cont.)

- Il programma che legge e interpreta le istruzioni di controllo ha diversi nomi:
 - interprete di schede di controllo (control-card interpreter)
 - interprete di riga di comando (command-line interpreter)
 - shell (nello UNIX)

La sua funzione consiste nel prelevare ed eseguire la successiva istruzione di comando.

Servizi di un sistema operativo

- Esecuzione di un programma: capacità del sistema di caricare un programma nella memoria ed eseguirlo.
- Operazioni di I/O: poiché i programmi utenti non possono eseguire direttamente operazioni di I/O, il sistema operativo deve offrire mezzi adeguati.
- Gestione del file system: capacità del programma di leggere, scrivere, creare e cancellare file.
- Comunicazioni: scambio di informazioni tra processi in esecuzione nello stesso calcolatore e tra processi in esecuzione in calcolatori diversi collegati per mezzo di una rete. La comunicazione si può realizzare tramite una memoria condivisa o attraverso lo scambio di messaggi.
- Rilevamento d'errori: capacità di rilevare eventuali errori che possono verificarsi nella CPU e nei dispositivi di memoria, nei dispositivi di I/O e nei programmi utenti.

Funzioni addizionali di un sistema operativo

- Esiste anche un'altra serie di funzioni del sistema operativo che non riguarda direttamente gli utenti, ma assicura il funzionamento efficiente del sistema stesso.
 - Assegnazione delle risorse: se sono in corso più sessioni di lavoro di utenti o sono contemporaneamente in esecuzione più processi, il sistema operativo provvede all'assegnazione delle risorse necessarie a ciascuno di essi.
 - Contabilizzazione dell'uso delle risorse: registrazione degli utenti che usano il calcolatore, con segnalazione di quali e quante risorse vengono impiegate, a fini di addebito dei costi o di preparazione di statistiche.
 - Protezione: assicura che l'accesso alle risorse del sistema sia controllato.

Chiamate del sistema

- Le chiamate del sistema costituiscono l'interfaccia tra un processo e il sistema operativo.
 - Generalmente disponibili in forma di istruzioni in linguaggio assemblativo.
 - Certi sistemi consentono che le chiamate del sistema siano invocate direttamente da un programma scritto in un linguaggio di alto livello (es.: C, C++, Perl)
- Per passare parametri al sistema operativo si usano tre metodi generali.
 - Passare i parametri in registri.
 - Memorizzare i parametri in un blocco o tabella di memoria e passare l'indirizzo del blocco, in forma di parametro, in un registro.
 - Collocare (push) i parametri in una pila da cui sono prelevati (pop) dal sistema operativo.

Passaggio di parametri in forma di tabella

Tipi di chiamate del sistema

- Controllo dei processi
- Gestione dei file
- Gestione dei dispositivi
- Gestione delle informazioni
- Comunicazione

Esecuzione nell'MS-DOS

spazio libero di memoria

interprete dei comandi

nucleo

(a)

spazio libero di memoria

processo

interprete dei comandi

nucleo

(b)

All'avviamento del sistema Durante l'esecuzione di un programma

Esecuzione di più programmi nel sistema operativo UNIX

processo D

spazio libero di memoria

processo C

interprete

processo B

nucleo

Modelli di comunicazione

■ La comunicazione può avvenire o attraverso il modello a scambio di messaggi o mediante il modello a memoria condivisa.

Scambio di messaggi

Memoria condivisa

Programmi di sistema

- I programmi di sistema offrono un ambiente conveniente per lo sviluppo e l'esecuzione dei programmi; in generale si possono classificare nelle seguenti categorie:
 - Gestione dei file
 - Informazioni di stato
 - Modifica dei file
 - Ambienti d'ausilio alla programmazione
 - Caricamento ed esecuzione dei programmi
 - Comunicazioni
 - Programmi d'applicazione
- Per la maggior parte degli utenti, l'interfaccia col sistema operativo è definita dai programmi di sistema piuttosto che dalle effettive chiamate di sistema.

Struttura del sistema MS-DOS

- MS-DOS: progettato per fornire la massima funzionalità nel minimo spazio
 - non suddiviso in moduli
 - e i livelli di funzionalità non sono ben separati.

Struttura degli strati dell'MS-DOS

Struttura del sistema UNIX

- Lo UNIX è un altro esempio di strutturazione che inizialmente era limitata dalle funzioni dell'architettura sottostante. E' formato da due parti:
 - Programmi di sistema
 - Nucleo:
 - tutto quello che si trova sotto l'interfaccia delle chiamate di sistema e sopra i dispositivi fisici è il nucleo
 - fornisce il file system, lo scheduling della CPU, la gestione della memoria e altre funzioni riguardanti il sistema operativo: in un solo livello sono combinate un'enorme quantità di funzioni.

Struttura del sistema UNIX

utenti

interprete dei comandi e comandi compilatori e interpreti librerie di sistema

interfaccia delle chiamate del sistema col nucleo

segnali gestione dei terminali sistema di I/O a caratteri driver di terminali file system
avvicendamento
sistema di I/O a blocchi
driver di nastri e dischi

scheduling della CPU sostituzione delle pagine paginazione su richiesta memoria virtuale

interfaccia del nucleo con l'architettura fisica

controllore di terminali terminali

controllori di dispositivi dischi e nastri

controllore di memoria memoria fisica

Metodo stratificato

- Con il metodo stratificato si suddivide il sistema operativo in un certo numero di strati (o livelli), ciascuno costruito sopra gli strati inferiori. Lo strato più basso (0) è lo strato fisico; quello più alto (strato n) è l'interfaccia d'utente.
- Ogni strato si realizza impiegando unicamente le operazioni messe a disposizione dagli strati inferiori.

Uno strato di sistema operativo

Struttura stratificata dell'OS/2

applicazione

applicazione

applicazione

Microkernel Orientamento a micronucleo

- Secondo questo orientamento, si progetta il sistema operativo rimuovendo dal nucleo tutti i componenti non essenziali, realizzandoli come programmi del livello d'utente e di sistema.
- La comunicazione si realizza secondo il modello a scambio di messaggi.
- Vantaggi:
 - facilità di estensione del sistema operativo
 - più semplice da adattare alle diverse architetture
 - più affidabile (i servizi si eseguono in gran parte come processi utenti, non come processi del nucleo)
 - più sicuro

Struttura client-server del sistema operativo Windows NT

Macchine virtuali

- Il concetto di **macchina virtuale** si sviluppa logicamente dal metodo stratificato. I programmi d'applicazione possono considerare quello che si trova a un livello gerarchico inferiore come se fosse parte della macchina stessa, anche se i programmi di sistema si trovano a un livello superiore.
- Una macchina virtuale è un'interfaccia identica all'architettura sottostante.
- Il sistema operativo crea l'illusione che un processo disponga della propria CPU con la propria memoria (virtuale).

Macchine virtuali (Cont.)

- Il calcolatore fisico condivide le risorse in modo da creare macchine virtuali.
 - La partizione del tempo d'uso della CPU si può usare sia per condividere la CPU sia per dare l'illusione che gli utenti dispongano di una propria CPU.
 - La gestione asincrona delle operazioni di I/O e dell'esecuzione di più processi, unita a un file system, consente di creare lettori di schede e stampanti virtuali.
 - Un normale terminale di un sistema a partizione del tempo funziona da console d'operatore della macchina virtuale.

Modelli di sistema

Semplice

Macchina virtuale

Vantaggi/svantaggi delle macchine virtuali

- L'uso delle macchine virtuali protegge completamente le risorse di sistema poiché ciascuna macchina virtuale è isolata dalle altre. Uno svantaggio di questo tipo d'ambiente è che non c'è una condivisione diretta delle risorse.
- Un sistema di macchine virtuali è un perfetto mezzo di ricerca e sviluppo dei sistemi operativi. Lo sviluppo avviene sulla macchina virtuale non sulla macchina fisica, evitando così modifiche che potrebbero causare oscuri errori di programmazione in altri punti.
- A una maggiore complessità della macchina da emulare corrisponde una maggiore difficoltà di realizzazione di un'accurata macchina virtuale, e una maggiore lentezza nell'esecuzione.

Macchina virtuale Java

- I programmi Java sono *bytecode* indipendente dall'architettura sottostante eseguiti dalla macchina virtuale Java (JVM, *Java Virtual Machine*).
- La JVM consiste di:
 - un caricatore delle classi
 - un verificatore delle classi
 - un interprete del linguaggio che esegue il bytecode
- Il compilatore istantaneo Just-In-Time (JIT) ne migliora le prestazioni

Macchina virtuale dell'ambiente Java

Scopi della progettazione

- Scopi degli utenti: gli utenti desiderano che un sistema sia utile, facile da imparare e usare, affidabile, sicuro ed efficiente.
- Scopi del sistema: il sistema operativo deve essere di facile progettazione, realizzazione e manutenzione; deve essere flessibile, affidabile, senza errori ed efficiente.

Meccanismi e criteri

- I meccanismi determinano come eseguire qualcosa; i criteri invece stabiliscono cosa si debba fare.
- La distinzione tra meccanismi e criteri è molto importante, e consente la massima flessibilità, poiché i criteri sono soggetti a cambiamenti rispetto alle situazioni o ai momenti.

Realizzazione

- Tradizionalmente, i sistemi operativi si scrivevano in un linguaggio assemblativo; attualmente si scrivono spesso in linguaggi di alto livello come il C o il C++.
- Il codice in un linguaggio di alto livello:
 - può essere scritto più rapidamente
 - e è più compatto
 - e è più facile da capire e mettere a punto.
- Un sistema operativo scritto in un linguaggio di alto livello è più facile da adattare a un'altra architettura (porting).

Generazione di sistemi (SYSGEN)

- I sistemi operativi sono progettati per un impiego su macchine di una stessa classe con configurazioni diverse.
- Il processo di generazione di sistemi (SYSGEN) configura o genera il sistema per ciascuna situazione specifica.
- **Booting**: avviamento di un calcolatore attraverso il caricamento del nucleo.
- Bootstrap program: piccolo segmento di codice memorizzato in una ROM che individua il nucleo, lo carica nella memoria e ne avvia l'esecuzione.

