Solutions to some exercises from Walter Rudin's $Functional\ Analysis$

gitcordier

July 27, 2020

Contents

1	Top	ological Vector Spaces	1
	1.1	Exercise 7. Metrizability & number theory	2
	1.2	Exercise 9. Quotient map	4
	1.3	Exercise 10. An open mapping theorem	5
	1.4	Exercise 14. \mathscr{D}_{K} equipped with other seminorms	6
	1.5	Exercise 16. Uniqueness of topology for test functions	7
	1.6	Exercise 17. Derivation in some non normed space	9
bil	bliog	raphy	10

CONTENTS

Chapter 1

Topological Vector Spaces

1.1 Exercise 7. Metrizability & number theory

Let be X the vector space of all complex functions on the unit interval [0,1], topologized by the family of seminorms

$$p_x(f) = |f(x)| \quad (0 \le x \le 1).$$

This topology is called the topology of pointwise convergence. Justify this terminology. Show that there is a sequence $\{f_n\}$ in X such that (a) $\{f_n\}$ converges to 0 as $n \to \infty$, but (b) if $\{\gamma_n\}$ is any sequence of scalars such that $\gamma_n \to \infty$ then $\{\gamma_n f_n\}$ does not converge to 0. (Use the fact that the collection of all complex sequences converging to 0 has the same cardinality as [0,1].) This shows that metrizability cannot be omitted in (b) of Theorem 1.28.

Proof. Our justification consists in proving that τ -convergence and pointwise convergence are the same one. To do so, remark first that the family of the seminorms p_x is separating. By [1.37], the collection \mathscr{B} of all finite intersections of the sets

$$V^{((x,k)} \triangleq \{p_x < 2^{-k}\} \quad (x \in [0,1], k \in \mathbf{N})$$
 (1.1)

is then a local base for a topology τ on X. Given $\{f_n : n = 1, 2, 3, \dots\}$, we set

$$off(U) \triangleq \sum_{n=1}^{\infty} [f_n \notin U] \quad (U \in \tau),$$
 (1.2)

with the convention $off(U) = \infty$ whether the sum has no finite support. So,

$$\sum_{i=1}^{m} \mathsf{off}(U^{(i)}) = \sum_{n=1}^{\infty} \sum_{i=1}^{m} [f_n \notin U^{(i)}] \ge \mathsf{off}(U^{(1)} \cap \dots \cap U^{(m)})$$
 (1.3)

We first assume that $\{f_n\}$ τ -converges to some f in X, i.e.

$$off(f+V) < \infty \quad (V \in \mathcal{B}).$$
 (1.4)

The special cases $V = V^{(x,k)}$ mean the pointwise convergence of $\{f_n\}$. Conversely, assume that $\{f_n\}$ does not τ -converges to any g in X, *i.e.*

$$\forall g \in X, \exists V^{(g)} \in \mathscr{B}: \mathsf{off}(g + V^{(g)}) = \infty. \tag{1.5}$$

Given g, $V^{(g)}$ is then an intersection $V^{(x^{(1)},k^{(1)})} \cap \cdots \cap V^{(x^{(m)},k^{(m)})}$. Thus

$$\sum_{i=1}^{m} \text{off}(g + V^{(x^{(i)}, k^{(i)})}) \stackrel{(1.3)}{\geq} \text{off}(g + V^{(g)}) \stackrel{(1.5)}{=} \infty.$$
 (1.6)

One of the sum $\operatorname{off}(g+V^{(x^{(i)},k^{(i)})})$ must then be ∞ . This implies that convergence of f_n to g fails at point x_i . g being arbitrary, we so conclude that f_n does not converge pointwise. We have just proved that τ -convergence is a rewording of pointwise convergence. We now aim to prove the second part. From now on, k, n and p run on N_+ . Let $\operatorname{dyadic}(x)$ be the usual dyadic expansion of a real number x, so that $\operatorname{dyadic}(x)$ is an aperiodic binary sequence iff x is irrational. Define

$$f_n(x) \triangleq \begin{cases} 2^{-\sum_{k=1}^n dyadic(x)_{-k}} & (x \in [0,1] \setminus \mathbf{Q}) \\ 0 & (x \in [0,1] \cap \mathbf{Q}) \end{cases}$$
 (1.7)

so that $f_n(x) \xrightarrow[n \to \infty]{} 0$ and take scalars γ_n such that $\xrightarrow[n \to \infty]{} \infty$, *i.e.* at fixed p, γ_n is greater than 2^p for almost all n. Next, choose $n^{(p)}$ among those almost all n that are large enough to satisfy

$$n^{(p-1)} - n^{(p-2)} < n^{(p)} - n^{(p-1)}$$
 (1.8)

(start with $n^{(-1)} = n^{(0)} = 0$) and so obtain

$$2^p < \gamma_{n^{(p)}}: \ 0 < n^{(p)} - n^{(p-1)} \underset{p \to \infty}{\longrightarrow} \infty. \tag{1.9} \label{eq:1.9}$$

The indicator χ of $\{n^{(1)}, n^{(2)}, \dots\}$ is then aperiodic, *i.e.*

$$\mathbf{x}^{(\gamma)} \triangleq \sum_{k=1}^{\infty} \chi_k 2^{-k} \tag{1.10}$$

is irrational. Consequently,

$$dyadic(x^{(\gamma)})_{-k} = \chi_k. \tag{1.11}$$

We now easily see that

$$\chi_1 + \dots + \chi_{n(p)} = p, \tag{1.12}$$

which, combined with (1.7), yields

$$f_{n(p)}(x^{(\gamma)}) = 2^{-p}.$$
 (1.13)

Finally,

$$\gamma_{n(p)} f_{n(p)}(x^{(\gamma)}) > 1.$$
 (1.14)

We have so established that the subsequence $\{\gamma_{n^{(p)}}f_{n^{(p)}}\}$ does not tend pointwise to 0, hence neither does the whole sequence $\{\gamma_n f_n\}$. In other words, (b) holds, which is in violent contrast with [1.28]: X is then not metrizable. So ends the proof.

1.2 Exercise 9. Quotient map

Suppose

- (a) X and Y are topological vector spaces,
- (b) $\Lambda: X \to Y$ is linear.
- (c) N is a closed subspace of X,
- (d) $\pi: X \to X/N$ is the quotient map, and
- (e) $\Lambda x = 0$ for every $x \in N$.

Prove that there is a unique $f: X/N \to Y$ which satisfies $\Lambda = f \circ \pi$, that is, $\Lambda x = f(\pi(x))$ for all $x \in X$. Prove that f is linear and that Λ is continuous if and only if f is continuous. Also, Λ is open if and only if f is open.

Proof. The equation $\Lambda = f \circ \pi$ has necessarily a unique solution, which is the binary relation

$$f \triangleq \{(\pi x, \Lambda x) : x \in X\} \subset X/N \times Y. \tag{1.15}$$

To ensure that f is actually a mapping, simply remark that the linearity of Λ implies

$$\Lambda x \neq \Lambda x' \Rightarrow \pi x' \neq \pi x'. \tag{1.16}$$

It straightforwardly derives from (1.15) that f inherits linearity from π and Λ . Now remark that

$$\pi x = N \stackrel{\text{(f linear)}}{\Rightarrow} f(\pi x) = 0 \stackrel{\text{(1.15)}}{\Rightarrow} \Lambda x = 0 \Rightarrow \pi x = N$$
 (1.17)

and so conclude that f is also one-to-one. Now assume f to be continuous. Then so is $\Lambda = f \circ \pi$, by (a) of [1.41]. Conversely, if Λ is continuous, then for each neighborhood V of 0_Y there exists a neighborhood U of 0_X such that

$$\Lambda(\mathbf{U}) = f(\pi(\mathbf{U})) \subset \mathbf{V}. \tag{1.18}$$

Since π is open (see (a) of [1.41]), $\pi(U)$ is a neighborhood of $N = 0_{X/N}$: This is sufficient to establish that the linear mapping f is continuous. If f is open, so is $\Lambda = f \circ \pi$, by (a) of [1.41]. Conversely, let

$$W \triangleq \pi(V) \subset X/N \quad (V \text{ neighborhood of } 0_X)$$
 (1.19)

range over all neighborhoods of N, as Λ is kept open: So is

$$\Lambda(V) = f(\pi(V)) = f(W). \tag{1.20}$$

The linear mapping f is then open.

1.3 Exercise 10. An open mapping theorem

Suppose that X and Y are topological vector spaces, $\dim Y < \infty$, $\Lambda : X \to Y$ is linear, and $\Lambda(X) = Y$.

- (a) Prove that Λ is an open mapping.
- (b) Assume, in addition, that the null space of Λ is closed, and prove that Λ is continuous.

Proof. (a) Let e range over a base of Y: For each e, there exists x_e in X such that $\Lambda(x_e) = e$, since Λ is onto.So,

$$y = \sum_{e} y_e \Lambda x_e \quad (y \in Y). \tag{1.21}$$

The sequence $\{x_e\}$ is finite hence bounded: Given V a balanced neighborhood of the origin, there exists a positive scalar s such that

$$x_e \in sV$$
 (1.22)

for all x_e. Combining this with (1.21) shows that

$$y \in \sum_{e} \Lambda(V) \quad (y \in Y : |y_e| < s^{-1}).$$
 (1.23)

(b) Since N is closed, π continously maps X onto X/N, another topological (Hausdorff) vector space, see [1.41]. Now take f as in Exercise 9: Since Λ is onto, the first isomorphism theorem asserts that f is an isomorphism of X/N onto Y. Consequently, X/N has dimension $n = \dim Y$. f is then an homeomorphism of X/N $\equiv \mathbb{C}^n$ onto Y; see [1.21]. We have thus established that f is continuous: So is $\Lambda = f \circ \pi$.

1.4 Exercise 14. \mathcal{D}_{K} equipped with other seminorms

Put K = [0,1] and define \mathcal{D}_K as in Section 1.46. Show that the following three families of seminorms (where n = 0, 1, 2, ...) define the same topology on \mathcal{D}_K . If D = d/dx:

(a)
$$\|D^n f\|_{\infty} = \sup\{|D^n f(x)| : \infty < x < \infty\}$$

(b)
$$\|\mathbf{D}^{n}\mathbf{f}\|_{1} = \int_{0}^{1} |\mathbf{D}^{n}\mathbf{f}(x)| dx$$

(c)
$$\|\mathbf{D}^{\mathbf{n}}\mathbf{f}\|_{2} = \left\{ \int_{0}^{1} |\mathbf{D}^{\mathbf{n}}\mathbf{f}(x)|^{2} dx \right\}^{1/2}$$
.

Proof. First, remark that

$$\|D^{n}f\|_{1} \le \|D^{n}f\|_{2} \le \|D^{n}f\|_{\infty} < \infty \tag{1.24}$$

(the inequality on the left is a Cauchy-Schwarz one), since K has length 1. Next, start from

$$D^{n}f(x) = \int_{-\infty}^{x} D^{n+1}f$$
 (1.25)

(which is true, since f has a bounded support) to obtain

$$|D^{n}f(x)| \le \int_{-\infty}^{x} |D^{n+1}f| \le ||D^{n+1}f||_{1}$$
 (1.26)

hence

$$\|D^{n}f\|_{\infty} \le \|D^{n+1}f\|_{1}. \tag{1.27}$$

Combining (1.24) with (1.27) yields

$$\|Df\|_1 \le \dots \le \|D^n f\|_1 \le \|D^n f\|_2 \le \|D^n f\|_{\infty} \le \|D^{n+1} f\|_1 \le \dots$$
 (1.28)

We now define

$$V_n^{(i)} \triangleq \{ f \in \mathcal{D}_K : ||f||_i < 1/n \} \quad (i = 1, 2, \infty)$$
 (1.29)

$$\mathscr{B}^{(i)} \triangleq \{V_n^{(i)} : n = 1, 2, 3, \dots\}$$
 (1.30)

so that (1.28) is mirrored in terms of neighborhood inclusions, as follows,

$$V_1^{(1)}\supset\cdots\supset V_n^{(1)}\supset V_n^{(2)}\supset V_n^{(\infty)}\supset V_{n+1}^{(1)}\supset\cdots. \tag{1.31}$$

Since $V_n^{(i)}\supset V_{n+1}^{(i)}$, \mathscr{B}_i is the local base of a topology τ_i . But the chain (1.31) forces the τ_i 's to be equals. To see that, choose a set S that is τ_1 -open at, say a: So, $V_n^{(1)}\subset S-a$ for some n. Now $V_n^{(1)}\supset V_n^{(2)}$ (see (1.31)) forces $V_n^{(2)}\subset S-a$, which implies that S is τ_2 -open at a. Similarly, we deduce, still from (1.31), that

$$\tau_2$$
-open $\Rightarrow \tau_\infty$ -open $\Rightarrow \tau_1$ -open. (1.32)

So ends the proof. \Box

1.5 Exercise 16. Uniqueness of topology for test functions

Prove that the topology of $C(\Omega)$ does not depend on the particular choice of $\{K_n\}$, as long as this sequence satisfies the conditions specified in section 1.44. Do the same for $C^{\infty}(\Omega)$ (Section 1.46).

Comment This is an invariance property: The function test topology only depends on the existence of the supremum-seminorms p_n , then, eventually, only on the ambient space itself. This should then be regarded as a very part of the textbook [2] The proof consists in combining trivial consequences of the local base definition with a well-known result (e.g. [2.6] in [1]) about intersection of nonempty compact sets.

Lemma 1 Let X be a topological space with a countable local base $\{V_n : n = 1, 2, 3, ...\}$. If $\tilde{V}_n = V_1 \cap \cdots \cap V_n$, then every subsequence $\{\tilde{V}_{\rho(n)}\}$ is a decreasing $(i.e.\ \tilde{V}_{\rho(n)} \supset \tilde{V}_{\rho(n+1)})$ local base of X.

Proof. The decreasing property is trivial. Now remark that $V_n \supset \tilde{V}_n$: This shows that $\{\tilde{V}_n\}$ is a local base of X. Then so is $\{\tilde{V}_{\rho(n)}\}$, since $\tilde{V}_n \supset \tilde{V}_{\rho(n)}$.

The following special case $V_n = \tilde{V}_n$ is one of the key ingredients:

Corollary 1 (special case $V_n = \tilde{V}_n$) Under the same notations of Lemma 1, if $\{V_n\}$ is a decreasing local base, then so is $\{V_{\rho(n)}\}$.

Corollary 2 If $\{Q_n\}$ is a sequence of compact sets that satisfies the conditions specified in section 1.44, then every subsequence $\{Q_{\rho(n)}\}$ also satisfies theses conditions. Furthermore, if τ_Q is the $C(\Omega)$'s (respectively $C^{\infty}(\Omega)$'s) topology of the seminorms p_n , as defined in section 1.44 (respectively 1.46), then the seminorms $p_{\sigma(n)}$ define the same topology τ_Q .

Proof. Let X be $C(\Omega)$ topologized with the seminorms p_n (the case $X = C^{\infty}(\Omega)$ is proved the same way). If $V_n = \{p_n < 1/n\}$, then $\{V_n\}$ is a decreasing local base of X. Moreover,

$$Q_{\rho(n)} \subset \overset{\circ}{Q}_{\rho(n)+1} \subset Q_{\rho(n)+1} \subset Q_{\rho(n+1)}. \tag{1.33}$$

Thus,

$$Q_{\rho(n)} \subset \overset{\circ}{Q}_{\rho(n+1)}. \tag{1.34}$$

In other words, $Q_{\rho(n)}$ satisfies the conditions specified in section 1.44. $\{p_{\rho(n)}\}$ then defines a topology $\tau_{Q_{\rho}}$ for which $\{V_{\rho(n)}\}$ is a local base. So, $\tau_{Q_{\rho}} \subset \tau_{Q}$. Conversely, the above corollary asserts that $\{V_{\rho(n)}\}$ is a local base of τ_{Q} , which yields $\tau_{Q} \subset \tau_{Q_{\rho}}$.

Lemma 2 If a sequence of compact sets $\{Q_n\}$ satisfies the conditions specified in section 1.44, then every compact set K lies in allmost all Q_n° , *i.e.* there exists m such that

$$K \subset \overset{\circ}{Q}_{m} \subset \overset{\circ}{Q}_{m+1} \subset \overset{\circ}{Q}_{m+2} \subset \cdots$$
 (1.35)

Proof. The following definition

$$C_n \triangleq K \setminus \overset{\circ}{Q}_n \quad (n = 1, 2, 3, \dots)$$
 (1.36)

shapes $\{C_n\}$ as a decreasing sequence of compact¹ sets. We now suppose (to reach a contradiction) that no C_n is empty and so conclude² that the C_n 's intersection contains a point that is not in any Q_n° . On the other hand, the conditions specified in [1.44] force the Q_n° 's collection to be an open cover. This contradiction reveals that $C_m = \emptyset$, *i.e.* $K \subset Q_m^{\circ}$, for some m. Finally,

$$K \subset \overset{\circ}{Q}_m \subset Q_m \subset \overset{\circ}{Q}_{m+1} \subset Q_{m+1} \subset \overset{\circ}{Q}_{m+2} \subset \cdots \ . \eqno(1.37)$$

So ends the proof.

We are now in a fair position to establish the following:

Theorem The topology of $C(\Omega)$ does not depend on the particular choice of $\{K_n\}$, as long as this sequence satisfies the conditions specified in section 1.44. Neither does the topology of $C^{\infty}(\Omega)$, as long as this sequence satisfies the conditions specified in section 1.44.

Proof. With the second corollary's notations, $\tau_K = \tau_{K_\lambda}$, for every subsequence $\{K_{\lambda(n)}\}$. Similarly, let $\{L_n\}$ be another sequence of compact subsets of Ω that satisfies the condition specified in [1.44], so that $\tau_L = \tau_{L_x}$ for every subsequence $\{L_{\kappa(n)}\}$. Now apply the above Lemma 2 with K_i ($i=1,2,3,\ldots$) and so conclude that $K_i \subset L_{m_i}^{\circ} \subset L_{m_i+1}^{\circ} \subset \cdots$ for some m_i . The special case $n=m_i+i$ is then

$$K_i \subset \overset{\circ}{L}_{\varkappa_i} \quad (\varkappa_i \triangleq m_i + i)$$
 (1.38)

Let us reiterate the above proof with K_n and L_n in exchanged roles then similarly find a subsequence $\{\lambda_j: j=1,2,3,\ldots\}$ such that

$$L_{j} \subset \overset{\circ}{K}_{\lambda_{j}}$$
 (1.39)

Combine (1.38) with (1.39) and so obtain

$$K_1 \subset \overset{\circ}{L}_{\varkappa_1} \subset L_{\varkappa_1} \subset \overset{\circ}{K}_{\lambda_{\varkappa_1}} \subset K_{\lambda_{\varkappa_1}} \subset \overset{\circ}{L}_{\varkappa_{\lambda_{\varkappa_1}}} \subset \cdots,$$
 (1.40)

which means that the sequence $Q = (K_1, L_{\varkappa_1}, K_{\lambda_{\varkappa_1}}, \dots)$ satisfies the conditions specified in section 1.44. It now follows from the corollary 2 that

$$\tau_{K} = \tau_{K_{\lambda}} = \tau_{Q} = \tau_{L_{x}} = \tau_{L}. \tag{1.41}$$

So ends the proof \Box

¹ See (b) of 2.5 of [1].

² The intersection of a decreasing sequence of nomempty Hausdorff compact sets is nonempty. This is a corollary of 2.6 of [1].

1.6 Exercise 17. Derivation in some non normed space

In the setting of Section 1.46, prove that $f \mapsto D^{\alpha}f$ is a continuous mapping of $C^{\infty}(\Omega)$ into $C^{\infty}(\Omega)$ and also of \mathscr{D}_K into \mathscr{D}_K , for every multi-index α .

Proof. In both cases, D^{α} is a linear mapping. It is then sufficient to establish continuousness at the origin. We begin with the $C^{\infty}(\Omega)$ case.

Let U be an aribtray neighborhood of the origin. There so exists N such that U contains

$$V_{N} = \{ \phi \in C^{\infty}(\Omega) : \max\{ |D^{\beta}\phi(x)| : |\beta| \le N, x \in K_{N} \} < 1/N \}.$$
 (1.42)

Now pick g in $V_{N+|\alpha|}$, so that

$$\max\{|D^{\gamma}g(x)|: |\gamma| \le N + |\alpha|, x \in K_N\} < \frac{1}{N}.$$
 (1.43)

(the fact that $K_N \subset K_{N+|\alpha|}$ was tacitely used). The special case $\gamma = \beta + \alpha$ yields

$$\sup\{|D^{\beta}D^{\alpha}g(x)|: |\beta| \le N, x \in K_N\} < \frac{1}{N}.$$
(1.44)

We have just proved that

$$g \in V_{N+|\alpha|} \Rightarrow D^{\alpha}g \in V_N, \quad i.e. \quad D^{\alpha}(V_{N+|\alpha|}) \subset V_N.$$
 (1.45)

The continuity of $D^{\alpha}: C^{\infty}(\Omega) \to C^{\infty}(\Omega)$ is so established. We now prove the second part, *i.e.* that $D^{\alpha}: \mathcal{D}_{K} \to \mathcal{D}_{K}$ is continuous.

Let r be a positive scalar. From now on, V(r) will denote the preimage in \mathcal{D}_K of the open disc D(r) *i.e.*

$$V(r) \triangleq \{ f \in \mathcal{D}_K : |D^{\alpha}f| < r \}. \tag{1.46}$$

Similarly, we define A(r) as the preimage of D(r) in $C^{\infty}(\Omega)$, *i.e.*

$$A(r) \triangleq \{ f \in C^{\infty}(\Omega) : |D^{\alpha}f| < r \}. \tag{1.47}$$

The continuousness of D^{α} in $C^{\infty}(\Omega)$ implies that A(r) is open in $C^{\infty}(\Omega)$. Moreover, $B(r) = A(r) \cap \mathcal{D}_K$. B(r) is then open in \mathcal{D}_K , for all r. So ends the proof.

Bibliography

- [1] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1986.
- [2] Walter Rudin. Functional Analysis. McGraw-Hill, 1991.