Verificare Formală - Minisat

Anghel Costel Junior, Coverca Elena Daniela, Coroian Dan Marius, Bogdan Simina Elisa

Universitatea de Vest din Timișoara Facultatea de Matematică și Informatică Inginerie Software

Sunday 26th January, 2025

Cuprins

Organigrama Echipei

Bibliografie

Motivație
Rezultate Experimentale
Structura Minisat
Concluzii

Motivatie

Minisat [1] este un tool folosit pentru a analiza problema satisfiabilității formulelor in formă normal conjunctivă (FNC). Acest format este transformat apoi in format DIMACS, de unde se analizează dacă există soluții care satisfac problema sau nu. Ne-am propus:

- să efectuăm o analiză minuțioasă asupra codului sursă
- să oferim o bună întelegere asupra conceptelor din spate (algoritmi)
- să rulăm benchmark-uri
- să analizăm rezultatele obtinute
- să efectuăm modificări ale codului astfel încât să îmbunătățim tool-ul existent

Pentru o mai bună înțelegere a modului de funcționare al Minisat-ului am realizat și o serie de diagrame ce ilustrează fluxul de execuție al programului.

Rezultate Experimentale

- Au fost selectate două familii de benchmark-uri din Global Benchmark Database [2]: tseitin-formulas și equivalent-chain-principle [3].
 - ► Am creat un script care distribuie cele 24 de ore alocate fiecărei familii în mod proporțional, în funcție de numărul de benchmark-uri incluse.
 - ▶ În cazul familiei tseitin-formulas, nu am reușit să obținem rezultate pentru niciunul dintre cele 8 benchmark-uri, în ciuda timpului alocat.
 - Pentru familia equivalent-chain-principle, am obținut un singur rezultat (UNSAT) din cele 4 benchmark-uri disponibile, restul nefinalizându-se în intervalul de timp acordat.
- Am analizat și un exemplu mai simplu, discutat în cadrul orelor de curs, care generează un rezultat SAT împreună cu un model corespunzător.
- Am reușit să modificăm o parte din cod astfel încat pentru fomulele ce returnează UNSAT putem vedea unique implication points, dar și clauzele învățate pe parcursul rulării.

Structura Minisat

Figure: Diagrama de secvențe la nivelul sistemului a MiniSat

Concluzii

- Importanța analizei codului sursă. Cu ajutotul acestuia ne-am putut da seama cum putem modifica codul încât să avem o viziune mai bună asupra acțiunilor din spatele rulării
- Performanța Minisat pe benchmark-uri complexe. Testarea mai multor benchmark-uri, având ca scop analiza și vizualizarea unor rezultate complexe, a întâmpinat dificultăți din cauza limitărilor de timp alocat fiecărui benchmark, precum și de complexitatea acestora (numărul mare de clauze și literali).
- Limitări observate. Am putut aduce schimbări în cazul vizualizărilor de clauze învățate și unique implication points pentru formulele ce returnează rezultatul UNSAT.
- Rezultatele obținute pentru cazuri mai simple. Am putut genera rezultate corecte și modele satisfiabile pentru formule ce au fost verificate apoi manual.

Organigrama Echipei

- ► Anghel Costel Junior: Testarea familiei euivalence-chain-principle, testare cazuri particulare de benchmarks, identificarea șabloanelor în rezultatele obținute, descriere rezultate, realizare bibliografie.
- Covercă Elena Daniela: Analiza şi identificarea claselor principale şi a structurilor de date utilizate, analiza şi identificarea algoritmilor specifici de determinare a satisfiabilității, documentarea informațiilor identificate.
- Coroian Dan Marius: Testarea familiei tseitin-formulas, identificare potențiale îmbunătățiri ale codului, descriere rezultate, dezvoltarea scriptului utilizat pentru rularea benchmark-urilor.
- Bogdan Simina: Realizarea rezumatului și a părții introductive, a procesului de instalare a MiniSat, realizarea diagramelor UML pe baza codului sursă.

Bibliografie

- Niklas Sorensson and Niklas Een. Minisat v1. 13-a sat solver with conflict-clause minimization. SAT, 2005(53):1-2, 2005.
- [2] Markus Iser and Christoph Jabs. Global Benchmark Database. In Supratik Chakraborty and Jie-Hong Roland Jiang, editors, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024), volume 305 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:10, Daestuhl, Germany. 2024. Schloss Daestuhl – Leibniz-Zentrum (für Informatik).
- 3] Marijn JH Heule, Markus Iser, Matti Järvisalo, and Martin Suda. Proceedings of sat competition 2024: Solver, benchmark and proof checker descriptions. N/A, 2024.