Systems Sciences Applications

Systems Sciences Foundations

Author: Eng. Carlos Andrés Sierra, M.Sc. cavirguezs@udistrital.edu.co

Lecturer
Department of Computer Engineering
School of Engineering
Universidad Distrital Francisco José de Caldas

2025-I

Outline

- 1 Modeling, Analysis and Design of Systems
- 2 Strategies of Control for Dynamical Systems
- 3 Dynamic Systems Applications Using Al
- 4 Current Research Lines in System Sciences
- 5 Al and Cybernetics Applications

Outline

- 1 Modeling, Analysis and Design of Systems
- 2 Strategies of Control for Dynamical Systems
- Opposition of the state of t
- 4 Current Research Lines in System Sciences
- 5 Al and Cybernetics Applications

Systems Analysis Process

- **Systems analysis** is the process of studying a system in order to identify its components, interactions, and goals.
- Systems analysis is the process of understanding how a system works and how it can be improved.
- **Systems analysis** is the first step in the systems development lifecycle.

Systems Analysis Process

- **Systems analysis** is the process of studying a system in order to identify its components, interactions, and goals.
- Systems analysis is the process of understanding how a system works and how it can be improved.
- Systems analysis is the first step in the systems development lifecycle.

Systems Analysis Process

- Systems analysis is the process of studying a system in order to identify its components, interactions, and goals.
- Systems analysis is the process of understanding how a system works and how it can be improved.
- Systems analysis is the first step in the systems development lifecycle.

Systems Analysis Techniques

- Systems analysis uses a variety of techniques to study a system.
- It includes interviews, surveys, observations, and document analysis.
- It also includes data modeling, process modeling, and requirements analysis.

Systems Analysis Techniques

- Systems analysis uses a variety of techniques to study a system.
- It includes interviews, surveys, observations, and document analysis.
- It also includes data modeling, process modeling, and requirements analysis.

- Uncertainty is the lack of knowledge about the future outcome of a decision or event.
- Risk is the probability of a negative outcome or loss associated with a
 decision or event.
- Uncertainty and risk are inherent in complex systems and decisions.
- They can be managed through planning, analysis, and mitigation strategies.

- Uncertainty is the lack of knowledge about the future outcome of a decision or event.
- Risk is the probability of a negative outcome or loss associated with a decision or event.
- Uncertainty and risk are inherent in complex systems and decisions
- They can be managed through planning, analysis, and mitigation strategies.

- Uncertainty is the lack of knowledge about the future outcome of a decision or event.
- Risk is the probability of a negative outcome or loss associated with a decision or event.
- Uncertainty and risk are inherent in complex systems and decisions.
- They can be managed through planning, analysis, and mitigation strategies.

- Uncertainty is the lack of knowledge about the future outcome of a decision or event.
- Risk is the probability of a negative outcome or loss associated with a decision or event.
- Uncertainty and risk are inherent in complex systems and decisions.
- They can be managed through planning, analysis, and mitigation strategies.

Abstraction and Modularity

- Abstraction and modularity are two important concepts in systems analysis.
- They help reduce the complexity of a system by ignoring details and dividing it into smaller parts.
- They help improve the understanding, development, and maintenance of a system.

Abstraction and Modularity

- Abstraction and modularity are two important concepts in systems analysis.
- They help reduce the complexity of a system by ignoring details and dividing it into smaller parts.
- They help improve the understanding, development, and maintenance of a system.

Abstraction and Modularity

- Abstraction and modularity are two important concepts in systems analysis.
- They help reduce the complexity of a system by ignoring details and dividing it into smaller parts.
- They help improve the understanding, development, and maintenance of a system.

- **Complexity** is the degree to which a system is difficult to understand.
- **Emergence** is the appearance of unexpected properties in a system that arise from the interactions of its components.
- Complexity and emergence are common in dynamic systems that are non-linear and chaotic.
- They can be studied and understood through systems analysis and modeling.

- **Complexity** is the degree to which a system is difficult to understand.
- **Emergence** is the appearance of unexpected properties in a system that arise from the interactions of its components.
- Complexity and emergence are common in dynamic systems that are non-linear and chaotic.
- They can be studied and understood through systems analysis and modeling.

- **Complexity** is the degree to which a system is difficult to understand.
- **Emergence** is the appearance of unexpected properties in a system that arise from the interactions of its components.
- Complexity and emergence are common in dynamic systems that are non-linear and chaotic.
- They can be studied and understood through systems analysis and modeling.

- **Complexity** is the degree to which a system is difficult to understand.
- **Emergence** is the appearance of unexpected properties in a system that arise from the interactions of its components.
- Complexity and emergence are common in dynamic systems that are non-linear and chaotic.
- They can be studied and understood through systems analysis and modeling.

Conceptual Design

- Once the initial set of requirements are defined, the next step is to create a conceptual design of the system.
- Conceptual Design is a high-level design that defines the structure and behavior of the system. It is achieved by the recognition of the appropriates components, connections, and responsabilities.
- The conceptual design is used to communicate the vision of the system to stakeholders and to guide the development of the system

Conceptual Design

- Once the initial set of requirements are defined, the next step is to create a conceptual design of the system.
- Conceptual Design is a high-level design that defines the structure and behavior of the system. It is achieved by the recognition of the appropriates components, connections, and responsabilities.
- The conceptual design is used to communicate the vision of the system to stakeholders and to guide the development of the system.

Process Definition

- A Process is a series of steps or actions taken to achieve a particular end.
- Processes are used to **organize** and **manage** work.

Causal Loops

- A Causal Loop is a diagram that shows the relationships between different variables in a system.
- Causal loops are used to analyze and understand the dynamics of a system.
- Causal loops can be positive or negative.

Causal Loops

- A Causal Loop is a diagram that shows the relationships between different variables in a system.
- Causal loops are used to analyze and understand the dynamics of a system.
- Causal loops can be positive or negative.

System Schema Example: Processing Pipeline

Business Process Model and Notation (BPMN)

Stock and Flow Diagram

Technical Design

- Once the **conceptual design** of the system is defined, the next step is to create a **technical design** of the system.
- Technical Design is a detailed design that defines the architecture, components, and interfaces of the system.
- The **technical design** is used to guide the development of the system and to communicate the implementation details to developers.

Technical Design

- Once the **conceptual design** of the system is defined, the next step is to create a **technical design** of the system.
- Technical Design is a detailed design that defines the architecture, components, and interfaces of the system.
- The **technical design** is used to guide the development of the system and to communicate the implementation details to developers.

Systems Design applied to Software Architectures

Systems Sciences Foundations

Outline

- 1 Modeling, Analysis and Design of Systems
- Strategies of Control for Dynamical Systems
- 3 Dynamic Systems Applications Using Al
- 4 Current Research Lines in System Sciences
- 5 Al and Cybernetics Applications

- A dynamical system is a system whose state evolves with time according to a fixed rule.
- Dynamical systems are characterized by state variables that represent the system's condition at a given time.
- The evolution of a **dynamical system** is described by differential equations (*continuous time*) or difference equations (*discrete time*).
- Examples include ecological systems, economic models, robotics, and neural networks.

- A dynamical system is a system whose state evolves with time according to a fixed rule.
- **Dynamical systems** are characterized by state variables that represent the system's condition at a *given time*.
- The evolution of a dynamical system is described by differential equations (continuous time) or difference equations (discrete time).
- Examples include ecological systems, economic models, robotics, and neural networks.

- A dynamical system is a system whose state evolves with time according to a fixed rule.
- **Dynamical systems** are characterized by state variables that represent the system's condition at a *given time*.
- The evolution of a dynamical system is described by differential equations (continuous time) or difference equations (discrete time).
- Examples include ecological systems, economic models, robotics, and neural networks.

- A dynamical system is a system whose state evolves with time according to a fixed rule.
- **Dynamical systems** are characterized by state variables that represent the system's condition at a *given time*.
- The evolution of a dynamical system is described by differential equations (continuous time) or difference equations (discrete time).
- Examples include ecological systems, economic models, robotics, and neural networks.

Classical Control Theory

- Classical control theory focuses on designing controllers for single-input, single-output systems.
- PID Control: Proportional-Integral-Derivative controllers
- These methods are widely used in **industrial applications** due to their simplicity and robustness.

- Classical control theory focuses on designing controllers for single-input, single-output systems.
- Key techniques include:
 - PID Control: *Proportional-Integral-Derivative* controllers.
 - Root Locus: Analysis of closed-loop poles.
 - Frequency Response: Bode and Nyquist plots.
- These methods are widely used in industrial applications due to their simplicity and robustness.

- Classical control theory focuses on designing controllers for single-input, single-output systems.
- Key techniques include:
 - PID Control: *Proportional-Integral-Derivative* controllers.
 - Root Locus: Analysis of closed-loop poles.
 - Frequency Response: Bode and Nyquist plots.
- These methods are widely used in industrial applications due to their simplicity and robustness.

- Classical control theory focuses on designing controllers for single-input, single-output systems.
- Key techniques include:
 - PID Control: *Proportional-Integral-Derivative* controllers.
 - Root Locus: Analysis of closed-loop poles.
 - Frequency Response: Bode and Nyquist plots.
- These methods are widely used in industrial applications due to their simplicity and robustness.

- Classical control theory focuses on designing controllers for single-input, single-output systems.
- Key techniques include:
 - PID Control: *Proportional-Integral-Derivative* controllers.
 - Root Locus: Analysis of closed-loop poles.
 - Frequency Response: Bode and Nyquist plots.
- These methods are widely used in industrial applications due to their simplicity and robustness.

- Modern control theory focuses on multi-input, multi-output systems using state-space representations.
- Key techniques include:
 - State Feedback Control: Using state variables for feedback.
 Optimal Control: Minimizing a cost function (e.g., LQR-Linea Quadratic Regulator).

 These methods provide more flexibility and handle complex constraints.

- Modern control theory focuses on multi-input, multi-output systems using state-space representations.
- Key techniques include:
 - State Feedback Control: Using state variables for feedback.
 - Optimal Control: Minimizing a cost function (e.g., LQR-Linear Quadratic Regulator).
 - Observer Design: Estimating unmeasured state variables.
 - Robust Control: Handling uncertainties and disturbances
- These methods provide more flexibility and handle complex constraints.

- Modern control theory focuses on multi-input, multi-output systems using state-space representations.
- Key techniques include:
 - State Feedback Control: Using state variables for feedback.
 - Optimal Control: *Minimizing* a cost function (e.g., LQR-Linear Quadratic Regulator).
 - Observer Design: Estimating unmeasured state variables
 - Robust Control: Handling uncertainties and disturbances
- These methods provide more flexibility and handle complex constraints.

- Modern control theory focuses on multi-input, multi-output systems using state-space representations.
- Key techniques include:
 - State Feedback Control: Using state variables for feedback.
 - Optimal Control: *Minimizing* a cost function (e.g., LQR-Linear Quadratic Regulator).
 - Observer Design: Estimating unmeasured state variables.
 - Robust Control: Handling uncertainties and disturbances
- These methods provide more flexibility and handle complex constraints.

- Modern control theory focuses on multi-input, multi-output systems using state-space representations.
- Key techniques include:
 - State Feedback Control: Using state variables for feedback.
 - Optimal Control: *Minimizing* a cost function (e.g., LQR-Linear Quadratic Regulator).
 - Observer Design: Estimating unmeasured state variables.
 - Robust Control: Handling uncertainties and disturbances.
- These methods provide more flexibility and handle complex constraints.

- Modern control theory focuses on multi-input, multi-output systems using state-space representations.
- Key techniques include:
 - State Feedback Control: Using state variables for feedback.
 - Optimal Control: *Minimizing* a cost function (e.g., LQR-Linear Quadratic Regulator).
 - Observer Design: Estimating unmeasured state variables.
 - Robust Control: Handling uncertainties and disturbances.
- These methods provide more flexibility and handle complex constraints.

Feedback Control Loop

- Adaptive control systems can modify their behavior in response to changes in system dynamics or disturbances.
- Main approaches:
- Model Reference Adaptive Control (MRAC): System tries to follow a reference model.
 - Selectuling Regulators (STR). I alameters are estimated online.

 Con Selectulines Controller parameters change based on operating
- Advantages include handling time-varying systems and uncertainty

- Adaptive control systems can modify their behavior in response to changes in system dynamics or disturbances.
- Main approaches:
 - Model Reference Adaptive Control (MRAC): System tries to follow a reference model.
 - Self-Tuning Regulators (STR): Parameters are estimated online.
 - Gain Scheduling: Controller parameters change based on operating conditions.
- Advantages include handling time-varying systems and uncertainty

- Adaptive control systems can modify their behavior in response to changes in system dynamics or disturbances.
- Main approaches:
 - Model Reference Adaptive Control (MRAC): System tries to follow a reference model.
 - Self-Tuning Regulators (STR): Parameters are estimated online.
 - Gain Scheduling: Controller parameters change based on operating conditions.
- Advantages include handling time-varying systems and uncertainty

- Adaptive control systems can modify their behavior in response to changes in system dynamics or disturbances.
- Main approaches:
 - Model Reference Adaptive Control (MRAC): System tries to follow a reference model.
 - Self-Tuning Regulators (STR): Parameters are estimated online.
 - Gain Scheduling: Controller parameters change based on operating conditions.
- Advantages include handling time-varying systems and uncertainty

- Adaptive control systems can modify their behavior in response to changes in system dynamics or disturbances.
- Main approaches:
 - Model Reference Adaptive Control (MRAC): System tries to follow a reference model.
 - Self-Tuning Regulators (STR): Parameters are estimated online.
 - Gain Scheduling: Controller parameters change based on operating conditions.
- Advantages include handling time-varying systems and uncertainty.

- Nonlinear control techniques address systems with nonlinear dynamics.
- Key methods include:
- Feedback Linearization: Transform nonlinear systems into linear form.
 - Backstepping: Recursive Lyapunov-based design for cascaded systems.

 These methods handle complex behaviors like limit cycles and chaos.

- Nonlinear control techniques address systems with nonlinear dynamics.
- Key methods include:
 - Feedback Linearization: Transform nonlinear systems into linear form.
 - Backstepping: Recursive Lyapunov-based design for cascaded systems.
 - Sliding Mode Control: Robust control with switching dynamics
 - Passivity-Based Control: Energy-based approach for stability
- These methods handle complex behaviors like limit cycles and chaos.

- Nonlinear control techniques address systems with nonlinear dynamics.
- Key methods include:
 - Feedback Linearization: Transform nonlinear systems into linear form.
 - Backstepping: Recursive Lyapunov-based design for cascaded systems.
 - Sliding Mode Control: Robust control with switching dynamics
 - Passivity-Based Control: Energy-based approach for stability
- These methods handle complex behaviors like limit cycles and chaos.

- Nonlinear control techniques address systems with nonlinear dynamics.
- Key methods include:
 - Feedback Linearization: Transform nonlinear systems into linear form.
 - Backstepping: Recursive Lyapunov-based design for cascaded systems.
 - Sliding Mode Control: Robust control with switching dynamics.
 - Passivity-Based Control: Energy-based approach for stability
- These methods handle complex behaviors like limit cycles and chaos.

- Nonlinear control techniques address systems with nonlinear dynamics.
- Key methods include:
 - Feedback Linearization: Transform nonlinear systems into linear form.
 - Backstepping: Recursive Lyapunov-based design for cascaded systems.
 - Sliding Mode Control: Robust control with switching dynamics.
 - Passivity-Based Control: Energy-based approach for stability.
- These methods handle complex behaviors like limit cycles and chaos.

- Nonlinear control techniques address systems with nonlinear dynamics.
- Key methods include:
 - Feedback Linearization: Transform nonlinear systems into linear form.
 - Backstepping: Recursive Lyapunov-based design for cascaded systems.
 - Sliding Mode Control: Robust control with switching dynamics.
 - Passivity-Based Control: Energy-based approach for stability.
- These methods handle complex behaviors like limit cycles and chaos.

Outline

- Modeling, Analysis and Design of Systems
- 2 Strategies of Control for Dynamical Systems
- 3 Dynamic Systems Applications Using AI
- 4 Current Research Lines in System Sciences
- 5 Al and Cybernetics Applications

- Artificial Intelligence offers new approaches for controlling complex, uncertain, and nonlinear dynamic systems.
- Key advantages:

AI combines the strengths of control theory and machine learning

- Artificial Intelligence offers new approaches for controlling complex, uncertain, and nonlinear dynamic systems.
- Key advantages:
 - Learning from Data: No need for explicit mathematical models.
 - Adaptation: Continuous improvement through experience.
 - Handling Complexity: Managing high-dimensional, complex systems
 - Generalization: Performing well in unseen conditions.
- AI combines the strengths of control theory and machine learning

- Artificial Intelligence offers new approaches for controlling complex, uncertain, and nonlinear dynamic systems.
- Key advantages:
 - Learning from Data: No need for explicit mathematical models.
 - Adaptation: Continuous improvement through experience.
 - Handling Complexity: Managing high-dimensional, complex systems
 - Generalization: Performing well in unseen conditions.
- AI combines the strengths of control theory and machine learning

- Artificial Intelligence offers new approaches for controlling complex, uncertain, and nonlinear dynamic systems.
- Key advantages:
 - Learning from Data: No need for explicit mathematical models.
 - Adaptation: Continuous improvement through experience.
 - Handling Complexity: Managing high-dimensional, complex systems.
 - Generalization: Performing well in unseen conditions.
- AI combines the strengths of control theory and machine learning

- Artificial Intelligence offers new approaches for controlling complex, uncertain, and nonlinear dynamic systems.
- Key advantages:
 - Learning from Data: No need for explicit mathematical models.
 - Adaptation: Continuous improvement through experience.
 - Handling Complexity: Managing high-dimensional, complex systems.
 - Generalization: Performing well in unseen conditions.
- AI combines the strengths of control theory and machine learning

- Artificial Intelligence offers new approaches for controlling complex, uncertain, and nonlinear dynamic systems.
- Key advantages:
 - Learning from Data: No need for explicit mathematical models.
 - Adaptation: Continuous improvement through experience.
 - Handling Complexity: Managing high-dimensional, complex systems.
 - Generalization: Performing well in unseen conditions.
- AI combines the strengths of control theory and machine learning.

- **System identification** is the process of building mathematical models of dynamic systems from measured data.
- Neural networks can:

Common architectures

- **System identification** is the process of building mathematical models of dynamic systems from measured data.
- Neural networks can:
 - Learn complex nonlinear relationships from input-output data.
 - Implement black-box models when physical insights are unavailable
 - Create hybrid models combining first principles with data-driven components.
- Common architectures:

- **System identification** is the process of building mathematical models of dynamic systems from measured data.
- Neural networks can:
 - Learn complex nonlinear relationships from input-output data.
 - Implement black-box models when physical insights are unavailable.
 - Create hybrid models combining first principles with data-driven components.
- Common architectures:

- **System identification** is the process of building mathematical models of dynamic systems from measured data.
- Neural networks can:
 - Learn complex nonlinear relationships from input-output data.
 - Implement black-box models when physical insights are unavailable.
 - Create hybrid models combining first principles with *data-driven* components.
- Common architectures
 - Recurrent Neural Networks (RNNs) for dynamic temporal behavious
 Long Short-Term Memory (LSTM) for capturing long-term dependencies.

- **System identification** is the process of building mathematical models of dynamic systems from measured data.
- Neural networks can:
 - Learn complex nonlinear relationships from input-output data.
 - Implement black-box models when physical insights are unavailable.
 - Create hybrid models combining first principles with data-driven components.
- Common architectures:
 - Recurrent Neural Networks (RNNs) for dynamic temporal behavior.
 - Long Short-Term Memory (LSTM) for capturing long-term dependencies.
 - Nonlinear Autoregressive Networks (NARX) for time-series prediction

- **System identification** is the process of building mathematical models of dynamic systems from measured data.
- Neural networks can:
 - Learn complex nonlinear relationships from input-output data.
 - Implement black-box models when physical insights are unavailable.
 - Create hybrid models combining first principles with data-driven components.
- Common architectures:
 - Recurrent Neural Networks (RNNs) for dynamic temporal behavior.
 - Long Short-Term Memory (LSTM) for capturing *long-term* dependencies.
 - Nonlinear Autoregressive Networks (NARX) for time-series prediction

- **System identification** is the process of building mathematical models of dynamic systems from measured data.
- Neural networks can:
 - Learn complex nonlinear relationships from input-output data.
 - Implement black-box models when physical insights are unavailable.
 - Create hybrid models combining first principles with *data-driven* components.
- Common architectures:
 - Recurrent Neural Networks (RNNs) for dynamic temporal behavior.
 - Long Short-Term Memory (LSTM) for capturing long-term dependencies.
 - Nonlinear Autoregressive Networks (NARX) for time-series prediction.

- Reinforcement Learning (RL) enables agents to learn optimal control policies through interaction with the environment.
- Key components:
 - States: System conditions.
 - Powerds: Foodback on performance
 - Deliana Manaina francisco de actiona
 - Policy: Mapping from states to actions.
- Popular algorithms
 - Deep Q-Networks (DQN): Value-based method.
 - Acres Enter Medicale Combine value and voltex
- Successfully applied in robotics, autonomous vehicles, and

- Reinforcement Learning (RL) enables agents to learn optimal control policies through interaction with the environment.
- Key components:
 - States: System conditions.
 - Actions: Control inputs.
 - Rewards: Feedback on performance.
 - Policy: Mapping from states to actions.
- Popular algorithms
 - Deep Q-Networks (DQN): Value-based method.
 Policy Gradient Methods: Directly optimize police
- Successfully applied in robotics, autonomous vehicles, and industrial control

- Reinforcement Learning (RL) enables agents to learn optimal control policies through interaction with the environment.
- Key components:
 - States: System conditions.
 - Actions: Control inputs.
 - Rewards: Feedback on performance.
 - Policy: Mapping from states to actions.
- Popular algorithms:
 - Deep Q-Networks (DQN): Value-based method.
 - Policy Gradient Methods: Directly optimize policy.
 - Actor-Critic Methods: Combine value and policy approaches
- Successfully applied in robotics, autonomous vehicles, and industrial control.

- Reinforcement Learning (RL) enables agents to learn optimal control policies through interaction with the environment.
- Key components:
 - States: System conditions.
 - Actions: Control inputs.
 - Rewards: Feedback on performance.
 - Policy: Mapping from states to actions.
- Popular algorithms:
 - Deep Q-Networks (DQN): Value-based method.
 - Policy Gradient Methods: Directly optimize policy.
 - Actor-Critic Methods: Combine value and policy approaches
- Successfully applied in robotics, autonomous vehicles, and industrial control.

- Reinforcement Learning (RL) enables agents to learn optimal control policies through interaction with the environment.
- Key components:
 - States: System conditions.
 - Actions: Control inputs.
 - Rewards: Feedback on performance.
 - Policy: Mapping from states to actions.
- Popular algorithms:
 - Deep Q-Networks (DQN): Value-based method.
 - Policy Gradient Methods: Directly optimize policy.
 - Actor-Critic Methods: Combine value and policy approaches.
- Successfully applied in robotics, autonomous vehicles, and industrial control.

- Reinforcement Learning (RL) enables agents to learn optimal control policies through interaction with the environment.
- Key components:
 - States: System conditions.
 - Actions: Control inputs.
 - Rewards: Feedback on performance.
 - Policy: Mapping from states to actions.
- Popular algorithms:
 - Deep Q-Networks (DQN): Value-based method.
 - Policy Gradient Methods: Directly optimize policy.
 - Actor-Critic Methods: Combine value and policy approaches.
- Successfully applied in robotics, autonomous vehicles, and industrial control.

Model Predictive Control with Al

- Model Predictive Control (MPC) optimizes control actions over a future horizon.
- AI enhances MPC by:
 - Providing accurate prediction models trained on data.
 Enabling faster optimization through learned approximations
 Improving robustness against uncertainties.
 Supporting real-time implementation for fast systems.
- Hybrid approaches combine physics-based models with data-driven components.

Model Predictive Control with Al

- Model Predictive Control (MPC) optimizes control actions over a future horizon.
- AI enhances MPC by:
 - Providing accurate prediction models trained on data.
 - Enabling faster optimization through learned approximations.
 - Improving robustness against uncertainties.
 - Supporting real-time implementation for fast systems.
- Hybrid approaches combine physics-based models with data-driven components.

Model Predictive Control with Al

- Model Predictive Control (MPC) optimizes control actions over a future horizon.
- AI enhances MPC by:
 - Providing accurate prediction models trained on data.
 - Enabling faster optimization through learned approximations.
 - Improving robustness against uncertainties.
 - Supporting real-time implementation for fast systems.
- Hybrid approaches combine physics-based models with data-driven components.

Case Study: Autonomous Vehicles

Figure: Al-driven control architecture for autonomous vehicles

4 D > 4 B > 4 B > 4 B

Outline

- Modeling, Analysis and Design of Systems
- 2 Strategies of Control for Dynamical Systems
- Opposition of the state of t
- 4 Current Research Lines in System Sciences
- 5 Al and Cybernetics Applications

- Complex Adaptive Systems (CAS) are systems that can learn and adapt to changing environments.

31 / 44

- Complex Adaptive Systems (CAS) are systems that can learn and adapt to changing environments.
- Key research areas:
 - Emergence: How complex behaviors arise from simple rules.
 - Self-organization: Spontaneous order without central control.
 - Adaptation: System evolution in response to environmental changes
 - Networks: Study of interaction patterns and information flow
- Applications in biology, economics, social systems, and artificial intelligence.

- Complex Adaptive Systems (CAS) are systems that can learn and adapt to changing environments.
- Key research areas:
 - Emergence: How complex behaviors arise from simple rules.
 - Self-organization: Spontaneous order without central control.
 - Adaptation: System evolution in response to environmental changes
 - Networks: Study of interaction patterns and information flow
- Applications in biology, economics, social systems, and artificial intelligence.

- Complex Adaptive Systems (CAS) are systems that can learn and adapt to changing environments.
- Key research areas:
 - Emergence: How complex behaviors arise from simple rules.
 - Self-organization: Spontaneous order without central control.
 - Adaptation: System evolution in response to environmental changes.
 - Networks: Study of interaction patterns and information flow.
- Applications in biology, economics, social systems, and artificial intelligence.

- Complex Adaptive Systems (CAS) are systems that can learn and adapt to changing environments.
- Key research areas:
 - Emergence: How complex behaviors arise from simple rules.
 - Self-organization: Spontaneous order without central control.
 - Adaptation: System evolution in response to environmental changes.
 - Networks: Study of interaction patterns and information flow.
- Applications in biology, economics, social systems, and artificial intelligence.

- Complex Adaptive Systems (CAS) are systems that can learn and adapt to changing environments.
- Key research areas:
 - Emergence: How complex behaviors arise from simple rules.
 - Self-organization: Spontaneous order without central control.
 - Adaptation: System evolution in response to environmental changes.
 - Networks: Study of interaction patterns and information flow.
- Applications in biology, economics, social systems, and artificial intelligence.

- Resilience is the ability of systems to recover from perturbations and maintain functionality.
- Current research focuses on:
 - Quantifying resilience using mathematical metrics.
 - Design principles for building resilient systems.
- Important for critical infrastructure, ecological systems

- Resilience is the ability of systems to recover from perturbations and maintain functionality.
- Current research focuses on:
 - Quantifying resilience using mathematical metrics.
 - Design principles for building resilient systems.
 - Multi-scale resilience across different temporal and spatial scales
 - Early warning signals for detecting decreased resilience
- Important for critical infrastructure, ecological systems, and supply chains.

- Resilience is the ability of systems to recover from perturbations and maintain functionality.
- Current research focuses on:
 - Quantifying resilience using mathematical metrics.
 - Design principles for building resilient systems.
 - Multi-scale resilience across different temporal and spatial scales
 - Early warning signals for detecting decreased resilience.
- Important for critical infrastructure, ecological systems, and supply chains.

- Resilience is the ability of systems to recover from perturbations and maintain functionality.
- Current research focuses on:
 - Quantifying resilience using mathematical metrics.
 - Design principles for building resilient systems.
 - Multi-scale resilience across different temporal and spatial scales.
 - Early warning signals for detecting decreased resilience.
- Important for critical infrastructure, ecological systems, and supply chains.

- Resilience is the ability of systems to recover from perturbations and maintain functionality.
- Current research focuses on:
 - Quantifying resilience using mathematical metrics.
 - Design principles for building resilient systems.
 - Multi-scale resilience across different temporal and spatial scales.
 - Early warning signals for detecting decreased resilience.
- Important for critical infrastructure, ecological systems, and supply chains.

- Resilience is the ability of systems to recover from perturbations and maintain functionality.
- Current research focuses on:
 - Quantifying resilience using mathematical metrics.
 - Design principles for building resilient systems.
 - Multi-scale resilience across different temporal and spatial scales.
 - Early warning signals for detecting decreased resilience.
- Important for critical infrastructure, ecological systems, and supply chains.

- Digital twins are virtual representations of physical systems that use real-time data to mirror behavior.
- Research directions:
 - Real-time synchronization between physical and digital systems

 Applications in manufacturing, healthcare, smart cities, and aerospace.

- Digital twins are virtual representations of physical systems that use real-time data to mirror behavior.
- Research directions:
 - High-fidelity modeling combining physics and data.
 - Real-time synchronization between physical and digital systems
 - Predictive capabilities for maintenance and optimization
 - Multi-physics integration across domains
- Applications in manufacturing, healthcare, smart cities, and aerospace.

- Digital twins are virtual representations of physical systems that use real-time data to mirror behavior.
- Research directions:
 - High-fidelity modeling combining physics and data.
 - Real-time synchronization between physical and digital systems.
 - Predictive capabilities for maintenance and optimization.
 - Multi-physics integration across domains
- Applications in manufacturing, healthcare, smart cities, and aerospace.

- Digital twins are virtual representations of physical systems that use real-time data to mirror behavior.
- Research directions:
 - High-fidelity modeling combining physics and data.
 - Real-time synchronization between physical and digital systems.
 - Predictive capabilities for maintenance and optimization.
 - Multi-physics integration across domains
- Applications in manufacturing, healthcare, smart cities, and aerospace.

- Digital twins are virtual representations of physical systems that use real-time data to mirror behavior.
- Research directions:
 - High-fidelity modeling combining physics and data.
 - Real-time synchronization between physical and digital systems.
 - Predictive capabilities for maintenance and optimization.
 - Multi-physics integration across domains.
- Applications in manufacturing, healthcare, smart cities, and aerospace.

- Digital twins are virtual representations of physical systems that use real-time data to mirror behavior.
- Research directions:
 - High-fidelity modeling combining physics and data.
 - Real-time synchronization between physical and digital systems.
 - Predictive capabilities for maintenance and optimization.
 - Multi-physics integration across domains.
- Applications in manufacturing, healthcare, smart cities, and aerospace.

- Socio-technical systems integrate human, social, and technical components.
- Active research areas:
 - Trust and explainability in automated systems
- Ethical frameworks for technology deployment.
- Applications in organizational design, urban planning, and healthcare delivery.

- Socio-technical systems integrate human, social, and technical components.
- Active research areas:
 - Human-Al collaboration frameworks.
 - Trust and explainability in automated systems.
 - Ethical frameworks for technology deployment
 - Collaborative decision-making with mixed human-AI teams
- Applications in organizational design, urban planning, and healthcare delivery.

- Socio-technical systems integrate human, social, and technical components.
- Active research areas:
 - Human-Al collaboration frameworks.
 - Trust and explainability in automated systems.
 - Ethical frameworks for technology deployment
 - Collaborative decision-making with mixed human-AI teams
- Applications in organizational design, urban planning, and healthcare delivery.

- Socio-technical systems integrate human, social, and technical components.
- Active research areas:
 - Human-Al collaboration frameworks.
 - Trust and explainability in automated systems.
 - Ethical frameworks for technology deployment.
 - Collaborative decision-making with mixed human-Al teams
- Applications in organizational design, urban planning, and healthcare delivery.

- Socio-technical systems integrate human, social, and technical components.
- Active research areas:
 - Human-Al collaboration frameworks.
 - Trust and explainability in automated systems.
 - Ethical frameworks for technology deployment.
 - Collaborative decision-making with mixed human-AI teams.
- Applications in organizational design, urban planning, and healthcare delivery.

- Socio-technical systems integrate human, social, and technical components.
- Active research areas:
 - Human-Al collaboration frameworks.
 - Trust and explainability in automated systems.
 - Ethical frameworks for technology deployment.
 - Collaborative decision-making with mixed human-AI teams.
- Applications in organizational design, urban planning, and healthcare delivery.

Systems-of-Systems

- Systems-of-Systems (SoS) are collections of independent systems that together provide enhanced capabilities.
- Current research challenges:
 - Interoperability between neterogeneous systems
- a Distributed annemance models
- Found in smart grids, transportation networks, and military operations.

- Systems-of-Systems (SoS) are collections of independent systems that together provide enhanced capabilities.
- Current research challenges:
 - Interoperability between heterogeneous systems.
 - Emergent behavior prediction and management.
 - Distributed governance models.
 - Resilience against cascading failures
- Found in smart grids, transportation networks, and military operations.

- Systems-of-Systems (SoS) are collections of independent systems that together provide enhanced capabilities.
- Current research challenges:
 - Interoperability between heterogeneous systems.
 - Emergent behavior prediction and management.
 - Distributed governance models.
 - Resilience against cascading failures
- Found in smart grids, transportation networks, and military operations.

- Systems-of-Systems (SoS) are collections of independent systems that together provide enhanced capabilities.
- Current research challenges:
 - Interoperability between heterogeneous systems.
 - Emergent behavior prediction and management.
 - Distributed governance models.
 - Resilience against cascading failures
- Found in smart grids, transportation networks, and military operations.

- Systems-of-Systems (SoS) are collections of independent systems that together provide enhanced capabilities.
- Current research challenges:
 - Interoperability between heterogeneous systems.
 - Emergent behavior prediction and management.
 - Distributed governance models.
 - Resilience against cascading failures.
- Found in smart grids, transportation networks, and military operations.

- Systems-of-Systems (SoS) are collections of independent systems that together provide enhanced capabilities.
- Current research challenges:
 - Interoperability between heterogeneous systems.
 - Emergent behavior prediction and management.
 - Distributed governance models.
 - Resilience against cascading failures.
- Found in smart grids, transportation networks, and military operations.

Outline

- Modeling, Analysis and Design of Systems
- 2 Strategies of Control for Dynamical Systems
- Opposition of the state of t
- 4 Current Research Lines in System Sciences
- 5 Al and Cybernetics Applications

- **Smart manufacturing** integrates Al and cybernetic principles to create self-regulating production systems.
- Key technologies:
- Predictive maintenance using sensor data and machine learning
 Quality control with computer vision and deep learning

• Benefits include increased efficiency, reduced downtime, and

©

- **Smart manufacturing** integrates Al and cybernetic principles to create self-regulating production systems.
- Key technologies:
 - Predictive maintenance using sensor data and machine learning.
 - Quality control with computer vision and deep learning.
 - Production optimization through reinforcement learning
 - Supply chain management with dynamic feedback systems
- Benefits include increased efficiency, reduced downtime, and improved resource utilization.

- **Smart manufacturing** integrates Al and cybernetic principles to create self-regulating production systems.
- Key technologies:
 - Predictive maintenance using sensor data and machine learning.
 - Quality control with computer vision and deep learning.
 - Production optimization through reinforcement learning.
 - Supply chain management with dynamic feedback systems
- Benefits include increased efficiency, reduced downtime, and improved resource utilization

- **Smart manufacturing** integrates Al and cybernetic principles to create self-regulating production systems.
- Key technologies:
 - Predictive maintenance using sensor data and machine learning.
 - Quality control with computer vision and deep learning.
 - Production optimization through reinforcement learning.
 - Supply chain management with dynamic feedback systems
- Benefits include increased efficiency, reduced downtime, and improved resource utilization.

- **Smart manufacturing** integrates Al and cybernetic principles to create self-regulating production systems.
- Key technologies:
 - Predictive maintenance using sensor data and machine learning.
 - Quality control with computer vision and deep learning.
 - Production optimization through reinforcement learning.
 - Supply chain management with dynamic feedback systems.
- Benefits include increased efficiency, reduced downtime, and improved resource utilization.

- **Smart manufacturing** integrates Al and cybernetic principles to create self-regulating production systems.
- Key technologies:
 - Predictive maintenance using sensor data and machine learning.
 - Quality control with computer vision and deep learning.
 - Production optimization through reinforcement learning.
 - Supply chain management with dynamic feedback systems.
- Benefits include increased efficiency, reduced downtime, and improved resource utilization.

- **Smart grids** use Al and cybernetic principles to create self-regulating energy distribution networks.
- Applications:

• These systems enable energy efficiency, reliability, and sustainability.

®

- Smart grids use Al and cybernetic principles to create self-regulating energy distribution networks.
- Applications:
 - Demand forecasting using time-series analysis and neural networks.
 - Dynamic pricing through reinforcement learning.
 - Fault detection with anomaly detection algorithms
 - Microgrid management with distributed control systems
 - Renewable integration through predictive balancing
- These systems enable energy efficiency, reliability, and sustainability

- **Smart grids** use Al and cybernetic principles to create self-regulating energy distribution networks.
- Applications:
 - Demand forecasting using time-series analysis and neural networks.
 - Dynamic pricing through reinforcement learning.
 - Fault detection with anomaly detection algorithms
 - Microgrid management with distributed control systems
 - Renewable integration through predictive balancing
- These systems enable energy efficiency, reliability, and sustainability

- Smart grids use Al and cybernetic principles to create self-regulating energy distribution networks.
- Applications:
 - Demand forecasting using time-series analysis and neural networks.
 - Dynamic pricing through reinforcement learning.
 - Fault detection with anomaly detection algorithms.
 - Microgrid management with distributed control systems
 - Renewable integration through predictive balancing
- These systems enable energy efficiency, reliability, and sustainability

- Smart grids use Al and cybernetic principles to create self-regulating energy distribution networks.
- Applications:
 - Demand forecasting using time-series analysis and neural networks.
 - Dynamic pricing through reinforcement learning.
 - Fault detection with anomaly detection algorithms.
 - Microgrid management with distributed control systems.
 - Renewable integration through predictive balancing.
- These systems enable energy efficiency, reliability, and sustainability

- **Smart grids** use Al and cybernetic principles to create self-regulating energy distribution networks.
- Applications:
 - Demand forecasting using time-series analysis and neural networks.
 - Dynamic pricing through reinforcement learning.
 - Fault detection with anomaly detection algorithms.
 - Microgrid management with distributed control systems.
 - Renewable integration through *predictive balancing*.
- These systems enable energy efficiency, reliability, and sustainability

- Smart grids use Al and cybernetic principles to create self-regulating energy distribution networks.
- Applications:
 - Demand forecasting using time-series analysis and neural networks.
 - Dynamic pricing through reinforcement learning.
 - Fault detection with anomaly detection algorithms.
 - Microgrid management with distributed control systems.
 - Renewable integration through predictive balancing.
- These systems enable energy efficiency, reliability, and sustainability.

- Healthcare systems benefit from AI and cybernetic approaches for patient care and management.
- Applications:

 These technologies enable better outcomes, cost reduction, and accessibility.

- Healthcare systems benefit from AI and cybernetic approaches for patient care and management.
- Applications:
 - Personalized medicine through predictive models.
 - Disease monitoring with wearable sensors and feedback
 - Hospital resource optimization using systems dynamics.
 - Drug discovery with Al-driven experimentation
 - Robotic surgery with advanced control systems
- These technologies enable better outcomes, cost reduction, and accessibility.

- Healthcare systems benefit from AI and cybernetic approaches for patient care and management.
- Applications:
 - Personalized medicine through predictive models.
 - Disease monitoring with wearable sensors and feedback.
 - Hospital resource optimization using systems dynamics.
 - Drug discovery with Al-driven experimentation
 - Robotic surgery with advanced control systems
- These technologies enable better outcomes, cost reduction, and accessibility.

- Healthcare systems benefit from AI and cybernetic approaches for patient care and management.
- Applications:
 - Personalized medicine through predictive models.
 - Disease monitoring with wearable sensors and feedback.
 - Hospital resource optimization using systems dynamics.
 - Drug discovery with Al-driven experimentation
 - Robotic surgery with advanced control systems
- These technologies enable better outcomes, cost reduction, and accessibility.

- Healthcare systems benefit from AI and cybernetic approaches for patient care and management.
- Applications:
 - Personalized medicine through predictive models.
 - Disease monitoring with wearable sensors and feedback.
 - Hospital resource optimization using systems dynamics.
 - Drug discovery with Al-driven experimentation.
 - Robotic surgery with advanced control systems
- These technologies enable better outcomes, cost reduction, and accessibility.

- Healthcare systems benefit from AI and cybernetic approaches for patient care and management.
- Applications:
 - Personalized medicine through predictive models.
 - Disease monitoring with wearable sensors and feedback.
 - Hospital resource optimization using systems dynamics.
 - Drug discovery with Al-driven experimentation.
 - Robotic surgery with advanced control systems.
- These technologies enable better outcomes, cost reduction, and accessibility.

- Healthcare systems benefit from AI and cybernetic approaches for patient care and management.
- Applications:
 - Personalized medicine through predictive models.
 - Disease monitoring with wearable sensors and feedback.
 - Hospital resource optimization using systems dynamics.
 - Drug discovery with Al-driven experimentation.
 - Robotic surgery with advanced control systems.
- These technologies enable better outcomes, cost reduction, and accessibility.

- Smart cities implement Al and cybernetic systems to improve urban living and efficiency.

- **Smart cities** implement Al and cybernetic systems to improve urban living and efficiency.
- Key applications:
 - Traffic management with real-time optimization.
 - Public safety through predictive policing and emergency response
 - Waste management with IoT-enabled collection.
 - Environmental monitoring for pollution and climate impacts
 - Utility management with smart metering and feedback systems
- Benefits include sustainability, economic growth, and quality of life.

- **Smart cities** implement Al and cybernetic systems to improve urban living and efficiency.
- Key applications:
 - Traffic management with real-time optimization.
 - Public safety through predictive policing and emergency response.
 - Waste management with IoT-enabled collection.
 - Environmental monitoring for pollution and climate impacts
 - Utility management with smart metering and feedback systems
- Benefits include sustainability, economic growth, and quality of life

- **Smart cities** implement Al and cybernetic systems to improve urban living and efficiency.
- Key applications:
 - Traffic management with real-time optimization.
 - Public safety through predictive policing and emergency response.
 - Waste management with IoT-enabled collection.
 - Environmental monitoring for pollution and climate impacts
 - Utility management with smart metering and feedback systems
- Benefits include sustainability, economic growth, and quality of life.

- **Smart cities** implement Al and cybernetic systems to improve urban living and efficiency.
- Key applications:
 - Traffic management with real-time optimization.
 - Public safety through predictive policing and emergency response.
 - Waste management with IoT-enabled collection.
 - Environmental monitoring for pollution and climate impacts.
 - Utility management with smart metering and feedback systems
- Benefits include sustainability, economic growth, and quality of life

- **Smart cities** implement Al and cybernetic systems to improve urban living and efficiency.
- Key applications:
 - Traffic management with real-time optimization.
 - Public safety through predictive policing and emergency response.
 - Waste management with IoT-enabled collection.
 - Environmental monitoring for pollution and climate impacts.
 - Utility management with smart metering and feedback systems.
- Benefits include sustainability, economic growth, and quality of life

- **Smart cities** implement Al and cybernetic systems to improve urban living and efficiency.
- Key applications:
 - Traffic management with real-time optimization.
 - Public safety through predictive policing and emergency response.
 - Waste management with IoT-enabled collection.
 - Environmental monitoring for pollution and climate impacts.
 - Utility management with smart metering and feedback systems.
- Benefits include sustainability, economic growth, and quality of life.

Autonomous Systems

- Autonomous systems represent advanced integration of Al and cybernetics.
- Examples:
 - Autonomous drones for delivery, inspection, and mapping.

• These systems require sophisticated feedback mechanisms, learning capabilities, and decision-making frameworks.

Autonomous Systems

- Autonomous systems represent advanced integration of Al and cybernetics.
- Examples:
 - Self-driving vehicles using perception, planning, and control.
 - Autonomous drones for delivery, inspection, and mapping
 - Robotic process automation for business workflows
 - Autonomous trading systems in financial markets.
 - Space exploration robots with self-governance capabilities
- These systems require sophisticated feedback mechanisms, learning capabilities, and decision-making frameworks.

Autonomous Systems

- Autonomous systems represent advanced integration of AI and cybernetics.
- Examples:
 - Self-driving vehicles using perception, planning, and control.
 - Autonomous drones for delivery, inspection, and mapping.
 - Robotic process automation for business workflows.
 - Autonomous trading systems in financial markets.
 - Space exploration robots with self-governance capabilities
- These systems require sophisticated feedback mechanisms, learning capabilities, and decision-making frameworks.

- Autonomous systems represent advanced integration of AI and cybernetics.
- Examples:
 - Self-driving vehicles using perception, planning, and control.
 - Autonomous drones for delivery, inspection, and mapping.
 - Robotic process automation for business workflows.
 - Autonomous trading systems in financial markets
 - Space exploration robots with self-governance capabilities
- These systems require sophisticated feedback mechanisms, learning capabilities, and decision-making frameworks.

- Autonomous systems represent advanced integration of AI and cybernetics.
- Examples:
 - Self-driving vehicles using perception, planning, and control.
 - Autonomous drones for delivery, inspection, and mapping.
 - Robotic process automation for business workflows.
 - Autonomous trading systems in financial markets.
 - Space exploration robots with self-governance capabilities
- These systems require sophisticated feedback mechanisms, learning capabilities, and decision-making frameworks.

- Autonomous systems represent advanced integration of AI and cybernetics.
- Examples:
 - Self-driving vehicles using perception, planning, and control.
 - Autonomous drones for delivery, inspection, and mapping.
 - Robotic process automation for business workflows.
 - Autonomous trading systems in *financial markets*.
 - Space exploration robots with *self-governance capabilities*.
- These systems require sophisticated feedback mechanisms, learning capabilities, and decision-making frameworks.

- Autonomous systems represent advanced integration of AI and cybernetics.
- Examples:
 - Self-driving vehicles using perception, planning, and control.
 - Autonomous drones for delivery, inspection, and mapping.
 - Robotic process automation for business workflows.
 - Autonomous trading systems in *financial markets*.
 - Space exploration robots with self-governance capabilities.
- These systems require sophisticated feedback mechanisms, learning capabilities, and decision-making frameworks.

Technical challenges:

- Explainability and transparency of AI decisions.
- Safety and verification of complex systems
- Energy efficiency of AI algorithms
- Integration of heterogeneous systems
- Social and ethical challenges

Technical challenges:

- Explainability and transparency of AI decisions.
- Safety and verification of complex systems.
- Energy efficiency of AI algorithms
- Integration of heterogeneous systems
- Social and ethical challenges

Technical challenges:

- Explainability and transparency of AI decisions.
- Safety and verification of complex systems.
- Energy efficiency of AI algorithms.
- Integration of heterogeneous systems
- Social and ethical challenges

Technical challenges:

- Explainability and transparency of AI decisions.
- Safety and verification of complex systems.
- Energy efficiency of AI algorithms.
- Integration of heterogeneous systems.
- Social and ethical challenges

Technical challenges:

- Explainability and transparency of AI decisions.
- Safety and verification of complex systems.
- Energy efficiency of AI algorithms.
- Integration of heterogeneous systems.

- Privacy concerns in data-driven systems.
- Job displacement from automation
- Equitable access to technology benefits.
- Governance of autonomous systems.
- These challenges require interdisciplinary approaches combining technical expertise with ethical considerations.

Technical challenges:

- Explainability and transparency of AI decisions.
- Safety and verification of complex systems.
- Energy efficiency of AI algorithms.
- Integration of heterogeneous systems.

- Privacy concerns in data-driven systems.
- Job displacement from automation.
- Equitable access to technology benefits.
- Governance of autonomous systems.
- These challenges require interdisciplinary approaches combining technical expertise with ethical considerations.

Technical challenges:

- Explainability and transparency of AI decisions.
- Safety and verification of complex systems.
- Energy efficiency of AI algorithms.
- Integration of heterogeneous systems.

- Privacy concerns in data-driven systems.
- Job displacement from automation.
- Equitable access to technology benefits.
- Governance of autonomous systems.
- These challenges require interdisciplinary approaches combining technical expertise with ethical considerations.

Technical challenges:

- Explainability and transparency of AI decisions.
- Safety and verification of complex systems.
- Energy efficiency of AI algorithms.
- Integration of heterogeneous systems.

- Privacy concerns in data-driven systems.
- Job displacement from automation.
- Equitable access to technology benefits.
- Governance of autonomous systems.
- These challenges require interdisciplinary approaches combining technical expertise with ethical considerations.

Technical challenges:

- Explainability and transparency of AI decisions.
- Safety and verification of complex systems.
- Energy efficiency of AI algorithms.
- Integration of heterogeneous systems.

- Privacy concerns in data-driven systems.
- Job displacement from automation.
- Equitable access to technology benefits.
- Governance of autonomous systems.
- These challenges require interdisciplinary approaches combining technical expertise with ethical considerations.

Outline

- Modeling, Analysis and Design of Systems
- 2 Strategies of Control for Dynamical Systems
- Oynamic Systems Applications Using Al
- 4 Current Research Lines in System Sciences
- 5 Al and Cybernetics Applications

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/courses/systems-sciences-foundations

