MODUL RESPONSI 04 RANCANGAN ACAK KELOMPOK LENGKAP

PENGACAKAN

Suatu penelitian dilakukan untuk pengaruh sistem tanaman tumpeng sari "padi gogo"-"jagung" pada jarak tanam 90 x 60 cm. Terdapat tiga galur dan satu varietas yang dicobakan yaitu P1, P2, P3, dan P4. Percobaan dilakukan pada lahan di samping sungai.

- a. Rancangan apa yang Anda sarankan untuk digunakan oleh peneliti tersebut? Jelaskan jawaban Saudara!
- b. Buatlah lay out percobaan dari rancangan percobaan yang Anda sarankan pada poin a!
- c. Jika salah satu responnya adalah tinggi tanaman padi, tuliskan model linier dari percobaan tersebut!

 Lengkapi dengan keterangannya!

RAKL

Suatu bisnis waralaba makanan ingin menguji respon pelanggan terhadap tiga menu yang baru saja dirilis. Pengujian dilakukan pada enam titik cabang di kota yang berbeda. Selama periode pengamatan, jumlah makanan terjual dari tiap menu tersebut dicatat. Tipe pengujian yang digunakan ialah rancangan acak kelompok lengkap. Bila digunakan batas nilai signifikan ($\alpha=0.05$) maka tentukan kesimpulan apa yang dapat diambil dari data yang tersedia.

Item1	Item2	Item3	
31	27	24	
31	28	31	
45	29	46	
21	18	48	
42	36	46	
32	17	40	

Jawaban:

PENGACAKAN

a) Jenis rancangan percobaan

Rancangan yang disarankan untuk penelitian tersebut adalah Rancangan Acak Kelompok Lengkap (RAKL). Karena terdapat keheterogenan pada unit percobaan yang berasal dari satu sumber keragaman yakni sungai yang mana sungai ini dapat mempengaruhi kesuburan tanah untuk unit percobaan sehingga akan mempengaruhi respon.

b) Layout percobaan

Langkah 1.

Menentukan jumlak blok. Misalkan jumlah blok adalah 3 dengan blok 1 adalah paling dekat dengan sungai, blok 2 lebih jauh dari sungai, dan blok 3 paling jauh dari sungai.

Langkah 2.

Setiap blok dibagi menjadi 4 petak bagian dan beri label, sehingga terdapat 12 unit percobaan.

Langkah 3.

List semua perlakuan dalam masing-masing blok (pastikan setiap perlakuan ada pada setiap blok) lalu bangkitkan bilangan acak pada masing-masing blok.

Blo	k 1	Blo	k 2	Blo	k 3
Perlakuan	Bil. Acak	Perlakuan Bil. Acak F		Perlakuan	Bil. Acak
P1	0,345924	P1	0,956785	P1	0,520231
P2	0,573852	P2	0,326497	P2	0,785625
Р3	0,137805	Р3	0,110329	Р3	0,26557
P4	0,044637	P4	0,648911	P4	0,058222

Langkah 4.

Lakukan pemeringkatan dari yang terbesar pada masing-masing blok.

	Blok 1			
No	Perlakuan	Bil. Acak		
1	P2	0,573852		
2	P1	0,345924		
3	Р3	0,137805		
4	P4	0,044637		

	Blok 2			
No	Perlakuan Bil. Acal			
1	P1	0,956785		
2	P4	0,648911		
3	P2	0,326497		
4	Р3	0,110329		

	Blok 3			
No	Perlakuan	Bil. Acak		
1	P2	0,785625		
2	P1	0,520231		
3	P3	0,26557		
4	P4	0,058222		

Langkah 5.

Isikan perlakuan secara berurutan (setelah diperingkat) kedalam unit percobaan sesuai blok dan label nomor pada unit percobaan.

Blok 3	Blok 2	Blok 1	
1 (P2)	1 (P1)	1 (P2)	
2 (P1)	2 (P4)	2 (P1)	
3 (P3)	3 (P2)	3 (P3)	
4 (P4)	4 (P3)	4 (P4)	

c) Model Linier Aditif

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

Keterangan:

i = 1,2,3,4

j = 1,2,3

Y_{ii} = Pengamatan pada perlakuan ke-i dan kelompok ke-j

 μ = Rataan umum

 τ_i = Pengaruh perlakuan ke-i

 β_j = Pengaruh kelompok ke-j

 $\epsilon_{ij}~$ = Pengaruh acak pada perlakuan ke-i dan kelompok ke-j

RAKL

Hipotesis.

Pengaruh perlakuan:

 $\mbox{H0}$: $\tau_1 = \tau_2 = \ \tau_3 = 0$ (varian menu baru tidak berpengaruh terhadap penjualan makanan)

H1 : minimal ada satu i dimana $\tau_i \neq 0$ (minimal ada satu varian menu baru yang berpengaruh terhadap penjualan makanan)

Pengaruh pengelompokan:

H0 : $\beta_1 = \beta_2 = ... = \beta_6 = 0$ (pengelompokan kota cabang tidak berpengaruh terhadap respon jumlah penjualan makanan)

H1 : minimal ada satu j dimana $\beta_j \neq 0$ (minimal ada satu pengelompokan kota cabang yang berpengaruh terhadap respon jumlah penjualan makanan)

Perhitungan analisis ragam

		Kota (Kelompok)						
		A	В	C	D	Е	F	Total (Yi.)
Varian	Menu 1	31	31	45	21	42	32	202
Menu	Menu 2	27	28	29	18	36	17	155
(Perlakuan)	Menu 3	24	31	46	48	46	40	235
	Total (Y.j)	82	90	120	87	124	89	592

t = #perlakuan = 3 b=#blok = 6

FK =
$$\frac{Y_{..}^2}{th} = \frac{592^2}{18} = 19470,22$$

JKT =
$$\sum \sum Y_{ij}^2 - FK = (31^2 + 31^2 + 45^2 + 21^2 + \dots + 46^2 + 40^2) - 19470,22 = 1641,78$$

JKB =
$$\sum \frac{Y_{,j}^2}{t}$$
 - FK = $\frac{82^2 + 90^2 + 120^2 + 87^2 + 124^2 + 89^2}{3}$ - 19470,22 = 559,78

JKP =
$$\sum \frac{Y_{i.}^2}{b}$$
 - FK = $\frac{202^2 + 155^2 + 235^5}{6}$ - 19470,22 = 538,78

KTP =
$$\frac{JKP}{dbP} = \frac{538,78}{3-1} = 269,3889$$

KTB =
$$\frac{JKP}{dhB} = \frac{559,78}{6-1} = 111,9556$$

KTG =
$$\frac{JKP}{dbG} = \frac{543,22}{(3-1)(6-1)} = 54,3222$$

Fhitung perlakuan
$$=\frac{\text{KTP}}{\text{KTG}} = \frac{269,3889}{54.3222} = 4,959$$

Fhitung kelompok =
$$\frac{KTB}{KTG} = \frac{111,9556}{54,3222} = 2,0609$$

F tabel (perlakuan) =
$$F(2,10,5\%) = 4,1028$$

F tabel (blok) =
$$F(5,10,5\%) = 3,3258$$

TABEL ANOVA

SK	df	JK	KT	F hit	F tabel
Perlakuan	2	538,78	269,3889	4,959092	4,102821
Blok	5	559,78	111,9556	2,060953	3,325835
Galat	10	543,22	54,32222		
Total	17	1641,78			

Kesimpulan:

a. Pengaruh Perlakuan (Varian menu baru)

Karena nilai F hitung = 4,95 > F tabel = 4,102 maka keputusannya Tolak H0 artinya cukup bukti untuk mengatakan bahwa minimal ada satu varian menu baru yang berpengaruh terhadap rataan penjualan makanan pada taraf nyata sebesar 5%.

b. Pengaruh Pengelompokan

Karena nilai F hitung = 2,06 < F tabel = 3,32 maka keputusannya Tak Tolak H0 artinya tidak cukup bukti untuk mengatakan bahwa minimal ada satu pengelompokan yang berpengaruh terhadap rataan penjualan makanan pada taraf nyata sebesar 5%.

Efisiensi Relatif dari RAK terhadap RAL

$$ER = \frac{(db_b + 1)(db_r + 3)}{(db_b + 3)(db_r + 1)} \times \frac{\widehat{\sigma}_r^2}{\widehat{\sigma}_b^2}$$

db_b = derajat bebas galat dari RAKL

db_r = derajat bebas galat dari RAL

 $\widehat{\sigma}_b^2$ = ragam galat dari RAKL

 $\widehat{\sigma}_r^2$ = ragam galat RAL

$$\begin{array}{ll} \widehat{\sigma}_{b}^{2} & = \text{KTG} = 54,322 \\ \widehat{\sigma}_{r}^{2} & = \frac{(r-1)\text{KTB} + r(t-1)\text{KTG}}{tr-1} = \frac{(6-1)111,9556 + 6(3-1)54,322}{(6x3)-1} = 71,27 \\ \text{ER} & = \frac{(10+1)(15+3)}{(10+3)15+1)} \times \frac{71,27}{54,32} = 1,25 \end{array}$$

Kesimpulan : agar sensitivitas RAL sama dengan RAKL, maka butuh 1,25 kali ulangan pada RAKL atau dengan kata lain RAKL lebih efektif daripada RAL.

Koefisien Keragaman (KK)

KK mencerminkan keheterogenan unit percobaan. Keragaman bagus jika <25%.

KK =
$$\frac{\sqrt{\text{KTG}}}{\overline{Y}_{..}} \times 100\% = \frac{\sqrt{\text{KTG}}}{Y_{../\text{t.b}}} \times 100\% = \frac{\sqrt{54,32}}{592/_{18}} \times 100\% = 0,22 \times 100\% = 22 \%$$

Nilai KK sebesar 22% < 25% sehingga satuan percobaan relatif homogen.