# Bootstrap analysis of stable clusters in resting-state fMRI



Pierre Bellec

Neurolmaging Analysis Kit

Département d'informatique et de recherche opérationnelle, Université de Montréal









## Resting-state fMRI: functional connectivity map



The posterior cingulate cortex is used as a seed to derive an individual resting-state functional connectivity map, identifying the default-mode network.

## Resting-state fMRI: functional connectome



## Resting-state fMRI: resting-state networks



- Hierarchical clustering on resting-state networks
  - Clustering

## Clustering: unsupervised classification



On the left, coordinates of individuals define their similarities; on the right, HC proceeds by iterative mergings. Many clustering algorithms exist, e.g. k-means, fuzzy k-means, spectral clustering, SOM, neural gas. See Jain, Pattern Recognition Letters, 2009, for a review.

- Hierarchical clustering on resting-state networks
- Clustering

## Clustering: bi-scale approach in fMRI functional connectivity



- Hierarchical clustering on resting-state networks
  - └ Clustering

## Adjacency matrix representation of a clustering



- Hierarchical clustering on resting-state networks
  - Stability analysis

## Individual-level bootstrap stability analysis



- Hierarchical clustering on resting-state networks
  - Stability analysis

## Consensus clustering



- Hierarchical clustering on resting-state networks
  - Stability analysis

## Group-level stability analysis



From Bellec et al., Neuroimage 2010.

- Hierarchical clustering on resting-state networks
  - └Stability analysis

## Clustering: stability maps



## Local maxima of stability



Individual stability contrasts for 43 subjects.

## Interpolation of stability matrices I



## Interpolation of stability matrices II



Bellec, Proceedings of the 2013 International Workshop on Pattern Recognition in Neuroimaging

## Multiresolution stepwise selection (MSTEPS) I

### Forward MSTEPS procedure

- 1 Initialization: no resolution is selected.
- 2 Select a resolution that has not yet been selected, with probability proportional to the residual sum of squares at this resolution.
- 3 Iterate (2-3) until a predefined percentage of residual sum of squares across all resolutions is reached.
- 4 Iterate the model selection B times, and keep the model with smallest residual sum of squares.

## Multiresolution stepwise selection (MSTEPS) II

### Component-wise MSTEPS procedure

- Initialization: run a forward MSTEPS.
- 2 For each resolution of the model, try to replace it by any of the resolutions not currently in the model.
- 3 Keep the model with the minimal residual sum of squares across all resolutions.
- 4 Iterate (2-3) until it is not possible anymore to reduce the residual sum of squares.

## Reproducibility of resolution selection







## Group consensus clusters as a function of resolution



Bellec PRNI 2013.

## Group consensus clusters @(resolution 2)



## Group consensus clusters @(resolution 7)



Bellec et al. HBM 2010. See Yeo et al., J Neurophysiol 2011, for more info on this resolution.

## Sensorimotor network @(resolution 43)



Bellec et al. HBM 2010.

# Sensorimotor network, subnetwork 1 (resolution 43)@(resolution 150)



Bellec et al. HBM 2010.

## Summary

- It is possible to identify resting-state networks (RSNs) at different levels and resolutions of analysis, using BASC.
- The estimation of the stability of RSNs is an important validation step.
- Rather than identifying the "correct" resolution (an ill-defined problem in fMRI), MSTEPS seeks representative resolutions, to approximate accurately all stability matrices.

## Acknowledgements

#### SIMEXP-lab members

Dr Pierre Orban Mr Sebastian Urchs

Mr Christian Dansereau

Mr Phil Dickinson

Mr François Chouinard-Decorte

Mr Yassine Benhajali

#### Collaborators

Dr Felix Carbonell Dr Alan Evans

Dr Michael Milham

Dr Sâad Ibabdi

Dr Michael Petrides Dr Mélanie Pélégrini-Issac

Dr Clare Kelly Dr Jean-Luc Anton
Dr Pedro Rosa-Neto Dr Habib Benali

veto Di Habib Beriali

#### With the support of:





Fonds de la recherche en santé





More infos on www.simexp-lab.org