

EINFÜHRUNG IN DIE TECHNISCHE INFORMATIK

TUTORIUM 02.12.2016

FEEDBACK

Was sollte man ändern?

WIEDERHOLUNG

Für Blatt 6 & 7

WIEDERHOLUNG: SCHALTWERKSSYNTHESE

- ➤ Festlegung der Eingangs- und Ausgangsvektoren sowie des Anfangszustandes
- ➤ Aufstellen eines ersten Zustandsgraphen
- ➤ Schrittweise Zustandsreduktion durch Zusammenfassen äquivalenter Zustände
- Ermittlung der erforderlichen Anzahl an Speichergliedern und Codierung der Zustände
- ➤ Aufstellen der Zustandsübergangstabelle
- ➤ Bestimmung der Übergangsfunktion
- Bestimmung der Ausgangsfunktion
- ➤ Minimierung & Darstellung des Schaltwerks in einem Schaltplan

WIEDERHOLUNG: SCHALTWERKSANALYSE

- ➤ Ziel: Bestimmung des Zustandsgraphen für ein gegebenes Schaltwerk
- ➤ Zunächst: Bestimmung von Eingangs-, Zustands- und Ausgangsvektor anhand des Schaltplans
- ➤ Bestimmung der Übergangsfunktion und der Ausgangsfunktion aus dem Schaltplan
- ➤ Aufstellen der Zustandsübergangstabelle durch Einsetzen aller Kombinationen für Eingangs- und Zustandsvektor
- ➤ Aus der Zustandsübergangstabelle kann der Zustandsgraph gezeichnet werden

≥] ≥į ≥] CIA ID

- ➤ Eingangsvektor: x
- ➤ Ausgangsvektor: y

≥] ≥] ≥į 1D

 $\qquad \qquad \dot{\textbf{U}} \text{bergangsfunktion:} \quad \begin{array}{ll} z_0^+ = (\bar{z}_0 \wedge \bar{x}) \vee (\bar{z}_0 \wedge x) \\ z_1^+ = (z_0 \wedge \bar{z}_1) \vee (z_0 \wedge x) \ \hline{\ \ } \ (\bar{z}_0 \wedge z_1 \wedge \bar{x}) \end{array}$

≥] ≥į ≥] 1D CI4

ightharpoonup Ausgangsfunktion: $y = (z_0 \land z_1 \land \bar{x}) \lor (\bar{z}_0 \land z_1 \land x)$

➤ Anhand der Übergangsfunktionen kann nun Zustandsübergangstabelle erstellt werden und daraus der Zustandsgraph

Z ₁	\mathbf{z}_0	X	Z ₁ ⁺	z_0^+	у
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	1	0
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	1	0	0

- ➤ Ein- bzw. Ausgangsvektor bestehen aus je einer Variablen
- > Schaltwerk kann 4 Zustände einnehmen (da 2 JK-FF)

➤ Aus dem Schaltwerk ergeben sich die Schalt- und Ausgabefunktionen

$$J_0 = x \vee z_1$$
 $y = (\bar{z}_1 \wedge z_0) \vee (z_1 \wedge \bar{z}_0)$
 $K_0 = z_1$
 $J_1 = \bar{x} \vee z_0$
 $K_1 = z_0$

➤ Wir gehen von dem Anfangszustand z0=0 und z1=0 aus, x soll zunächst den Wert 0 haben

➤ Damit folgt die Zustandsübergangstabelle und daraus der Zustandsgraph:

Z ₁	z_0	x	K ₁	J_1	K_0	J_0	Z ₁ +	z_0^+	у	
0	0	0	0	1	0	0	1	0	0	
0	0	1	0	0	0	1	0	1	0	Start 00
0	1	0	1	1	0	0	1	1	1	
0	1	1	1	1	0	1	1	1	1	0 1 0
1	0	0	0	1	1	1	1	1	1	
1	0	1	0	0	1	1	1	1	1	0
1	1	0	1	1	1	1	0	0	0	
1	1	1	1	1	1	1	0	0	0	

➤ Achtung: Im Graph fehlt die Ausgabe! (da es ein Moore Automat ist muss sie durch / im Knoten angefügt werden)