1. Math 65, Review Sheet for Exam I, Fall 2021.

Question 1.1. Denote by \mathbb{R} the set of real numbers. Define the function $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by F(a,b) = (a+b,a-b).

- (a) Define what it means for a function $f: A \to B$ to be one to one.
- (b) Define what it means for a function $f: A \to B$ to be onto.
- (c) Define what it means for a function $f: A \to B$ to be a bijection.
- (d) For the function F defined above, prove or disprove that F is one to one.
- (e) For the function F defined above, prove or disprove that F is onto.
- (f) For the function F defined above, prove or disprove that F is a bijection.

Question 1.2. (a) Find a recurrence relation a_n for the number of strings of length n using the letters from the set $\{a, b, c, d, e\}$ that contain 2 consecutive e's.

- (b) What are the initial conditions, that is, the values of the first terms that together with the recurrence would allow you to find every other term
- (c) What is a_4 ?

Question 1.3. (1) Assume that $(a_n), (b_n)$ are sequences satisfying that

$$a_n = 6a_{n-1} - 8a_{n-2}$$
 $b_n = 6b_{n-1} - 8b_{n-2}$

Give conditions on a_0, a_1, b_0, b_1 that guarantee that for each sequence c_n satisfying $c_n = 6c_{n-1} - 8c_{n-2}$, one can find constants A, B such that $c_n = Aa_n + Bb_n$.

- (2) Find two sequences of the form $c_n = x^n$ satisfying the recurrence.
- (3) Find a non recursive expression for the sequence or sequences satisfying

$$c_n = 6c_{n-1} - 8c_{n-2}$$
 $c_0 = 4, c_1 = 10$

or show that no such sequence exists.

Question 1.4. Show that $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are logically equivalent.

Question 1.5. Let p(x) be the proposition: "I will go to the concert on day x."

Let q(x) be the proposition: "I have an exam on day x." Using p and q and logical connectives, write the propositions that follow. Write the negation of each of these statements both in mathematical symbols and in English.

- (a) "I will not go to the concert today if I have an exam tomorrow."
- (b) "If I do not have an exam tomorrow, I will go to the concert today."
- (c) "If I do not go to the concert today, I will not have an exam tomorrow."
- (d) "I will have the exam some day"
- (e) "I will never go to the concert"

Question 1.6. Determine the truth value of each of these statements where $\mathbb{N} = \{0, 1, 2, ...\}$ denotes the set of natural numbers. If the statement is true, give a proof, if false give a counterexample. Write the negation of the statements and again give a proof or counterexample.

- $(a) \ \exists x \in \mathbb{N} \ (-x < -3)$
- (b) $\forall x \in \mathbb{N}, \exists y \in \mathbb{N} \ \exists z \in \mathbb{N} \ (x = 2y + 4z)$
- (c) $\exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ (y \ge x)$
- $(d) \ \forall y \in \mathbb{N} \ \exists x \in \mathbb{N} \ (x < y)$
- (e) $\forall x \in \mathbb{N} \ (-2x < -x)$

Question 1.7. Assume that all the sets we are working with are contained in a set U. Then we will indicate with \overline{A} the complement of A, that is the elements in U that are not in A, $\overline{A} = U - A$. Prove that $\overline{(A \cap B \cap C \cap D)} = \overline{A} \cup \overline{B} \cup \overline{C} \cup \overline{D}$ by showing each side is a subset of the other side.

Question 1.8. Let $A = \{x \in \mathbb{R} | x^2 \le 8x\}, B = \{x \in \mathbb{R} | x^2 \le 1\}$

- (a) Find $A \cap B$.
- (b) Find $A \cup B$.

Question 1.9. Assume that x is an integer.

- (a) Prove that if x + 5 is odd, then 3x + 2 is even.
- (b) Prove that if x + 5 is even, then 3x + 2 is odd.
- (c) Prove that (b) is equivalent to proving that if 3x + 2 is even, then x + 5 is odd.

Question 1.10. Use mathematical induction to prove that

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}$$

for all $n \geq 1$.

Question 1.11. Show that any amount of postage of 12 cents or more can be made with 4 cents and 5 cent stamps.

Question 1.12. Assume that A, B are finite sets of cardinality m and n respectively. Show that $A \times B$ is finite of cardinality mn.

Question 1.13. Assume that $A \neq \emptyset$ is a set $f: A \to B$ a function. Show that f is one to one if and only if there exists a function $g: B \to A$ such that $g \circ f = I_A$.

Question 1.14. Let $f: A \to B$ be a function. We are NOT assuming that f is a bijection, so f^{-1} is not defined as a function.

- (a) If $X \subseteq A$, write the definition of f(X).
- (b) If $Y \subseteq B$, write the definition of $f^{-1}(Y)$.
- (c) If $X \subseteq A$, show that $X \subseteq f^{-1}(f(X))$.
- (d) Give an example of an $f: A \to B$ and an $X \subseteq A$ such that $X \neq f^{-1}(f(X))$.

Question 1.15. (a) Show that the set of natural numbers divisible by 5 is countable.

(b) Show that the real plane $\mathbb{R} \times \mathbb{R}$ is not countable.

Question 1.16. How many four digit numbers contain the string 123 or the string 234 (or both)?

2. Answers

Question 2.1. Denote by \mathbb{R} the set of real numbers. Define the function $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by F(a,b) = (a+b,a-b).

- (a) Define what it means for a function $f: A \to B$ to be one to one.
- (b) Define what it means for a function $f: A \to B$ to be onto.
- (c) Define what it means for a function $f: A \to B$ to be a bijection.
- (d) For the function F defined above, prove or disprove that F is one to one.
- (e) For the function F defined above, prove or disprove that F is onto.
- (f) For the function F defined above, prove or disprove that F is a bijection.

Answer 1. (a) A function $f: A \to B$ is one to one if $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$. Equivalently $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

- (b) A function $f: A \to B$ is onto if every element in B is the image of at least one element in A. In symbols $\forall b \in B$, $\exists a \in A$ such that b = f(a).
- (c) A function $f: A \to B$ is a bijection if it is both one-to-one and onto. We saw that this is equivalent to the existence of an inverse function g: For any set X we use the symbol I_X to denote the identity function $I_X: X \to X$ given by $\forall x \in X$, $I_X(x) = x$. Then the inverse function g (if it exists) of a function f satisfies $f \circ g = I_B$, $g \circ f = I_A$. As we mentioned, the existence of the inverse of f is equivalent to f being a bijection.
- (d) We prove that F is one to one. Assume that $F(a_1, b_1) = .F(a_2, b_2)$. From the definition of F,

$$(a_1 + b_1, a_1 - b_1) = F(a_1, b_1) = F(a_2, b_2) = (a_2 + b_2, a_2 - b_2)$$

Therefore, equating each component of the pair, we obtain,

$$a_1 + b_1 = a_2 + b_2$$
, $a_1 - b_1 = a_2 - b_2$

Adding the two equations, we obtain $2a_1 = 2a_2$ and subtracting them we obtain $2b_1 = 2b_2$. Dividing these equations by 2, we have $a_1 = b_1$, $a_2 = b_2$. Therefore the pairs satisfy the equality $(a_1, a_2) = (b_1, b_2)$, proving that F is one to one.

(e) We prove that F is onto by showing that for all $(x, y) \in \mathbb{R} \times \mathbb{R}$, there exists $(a, b) \in \mathbb{R} \times \mathbb{R}$ such that F(a, b) = (x, y). From the definition of F, one such (a, b) should satisfy

$$a+b=x, \ a-b=y$$

Adding and subtracting the two equations, we obtain

$$2a = x + y$$
, $2b = x - y$, or equivalently $a = \frac{x + y}{2}$, $b = \frac{x - y}{2}$

Therefore, for any choice of $(x,y) \in \mathbb{R} \times \mathbb{R}$, $F(\frac{x+y}{2}, \frac{x-y}{2}) = (x,y)$ and F is onto.

(f) As the function F is both one to one and onto, it is a bijection. We essentially found the inverse of F in the previous point. The inverse of F is the function $G: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ defined by $G(x,y) = (\frac{x+y}{2}, \frac{x-y}{2})$. We checked in (e) that

$$(F \circ G)(x,y) = F(G((x,y))) = F((\frac{x+y}{2}, \frac{x-y}{2})) = (x,y) = I_{\mathbb{R} \times \mathbb{R}}(x,y)$$

One can also check that

$$(G \circ F)((a,b)) = G(F((a,b)) = G(a+b,a-b) = (\frac{(a+b)+(a-b)}{2}, \frac{(a+b)-(a-b)}{2}) = (a,b) = I_{\mathbb{R} \times \mathbb{R}}(a,b).$$

Hence, $F \circ G = I_{\mathbb{R} \times \mathbb{R}}$, $G \circ F = I_{\mathbb{R} \times \mathbb{R}}$ and F, G are inverse of each other.

Question 2.2. (a) Find a recurrence relation a_n for the number of strings of length n using the letters from the set $\{a, b, c, d, e\}$ that contain 2 consecutive e's.

- (b) What are the initial conditions, that is, the values of the first terms that together with the recurrence would allow you to find every other term
- (c) What is a_4 ?
- **Answer 2.** (a) We need to find a recurrence relation a_n for the number of strings of length n that contain 2 consecutive e's using the letters from the set $\{a, b, c, d, e\}$. If the last letter is a, b, c, d, the $(n-1)^{-th}$ string must have two e's. If the last 2 letters are ae, be, ce, de, the $n-1^{-th}$ string must have two e's. If the last 2 letters are ee, then anything will do. So

$$a_n = 4a_{n-1} + 4a_{n-2} + 5^{n-2}$$

- (b) The initial conditions are $a_1 = 0$, $a_2 = 1$. Because the recurrence allows you to compute a_n using the two previous terms, a_0, a_1 determine all of the terms of the sequence.
- (c) From the recurrence and initial conditions, $a_3 = 9$ and $a_4 = 4 + 4 \cdot 9 + 5^2 = 65$.
- **Question 2.3.** (1) Assume that $(a_n), (b_n)$ are sequences satisfying that

$$a_n = 6a_{n-1} - 8a_{n-2}$$
 $b_n = 6b_{n-1} - 8b_{n-2}$

Give conditions on a_0, a_1, b_0, b_1 that guarantee that for each sequence c_n satisfying $c_n = 6c_{n-1} - 8c_{n-2}$, one can find constants A, B such that $c_n = Aa_n + Bb_n$.

- (2) Find two sequences of the form $c_n = x^n$ satisfying the recurrence.
- (3) Find a non recursive expression for the sequence or sequences satisfying

$$c_n = 6c_{n-1} - 8c_{n-2} \qquad c_0 = 4, c_1 = 10$$

or show that no such sequence exists.

Answer 3. (1) Assume that $(a_n), (b_n)$ are sequences satisfying that

$$a_n = 6a_{n-1} - 8a_{n-2} \quad b_n = 6b_{n-1} - 8b_{n-2}$$

If $c_n = Aa_n + Bb_n$, then $c_n = 6c_{n-1} - 8c_{n-2}$ as we can check by plugging in. A sequence satisfying an equation as this one, is determined by the value of its first two terms. The question then is whether given c_0, c_1 , we can find A, B such that

$$c_0 = Aa_0 + Bb_0, \ c_1 = Aa_1 + Bb_1$$

Because a_0, a_1, b_0, b_1 have specific values and we are trying to figure out A, B no matter what the c_0, c_1 , we need $\frac{a_0}{a_1} \neq \frac{b_0}{b_1}$ for the equation to always have a solution. (2) We look for solutions of the form $c_n = x^n$. From $c_n = 6c_{n-1} - 8c_{n-2}$, we obtain

- (2) We look for solutions of the form $c_n = x^n$. From $c_n = 6c_{n-1} 8c_{n-2}$, we obtain the equation $x^n = 6x^{n-1} 8x^{n-2}$. Dividing the equation by x^{n-2} , this produces the equation $x^2 6x + 8 = 0$. We factor it as as (x-2)(x-4) = 0. Hence, $c_n = 2^n$, $c_n = 4^n$, are solutions of the recurrence.
- (3) From the previous two parts, the general solution is $c_n = e2^n + f4^n$. We now determine the values of e, f using the initial conditions

$$c_0 = 4 = e + f$$
, $c_1 = 10 = 2e + 4f$

Subtracting from the first equation twice the second, we obtain 2f = 2 and therefore f = 1. Substituting then in the first equation, we obtain e = 3. Hence $c_n = 3 \cdot 2^n + 4^n$.

Question 2.4. Show that $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ are logically equivalent.

Answer 4. $\neg(p \leftrightarrow q)$ is equivalent to $\neg p \leftrightarrow q$

p	q	$p \leftrightarrow q$	$\neg(p \leftrightarrow q)$	$\neg p$	$\neg p \leftrightarrow q$
\overline{T}	T	T	F	F	F
T	F	F	T	F	T
F	T	F	T	T	T
F	F	T	F	T	F

Same true values, hence equivalent.

Question 2.5. Let p(x) be the proposition: "I will go to the concert on day x."

Let q(x) be the proposition: "I have an exam on day x." Using p and q and logical connectives, write the propositions that follow. Write the negation of each of these statements both in mathematical symbols and in English.

- (a) "I will not go to the concert today if I have an exam tomorrow."
- (b) "If I do not have an exam tomorrow, I will go to the concert today."
- (c) "If I do not go to the concert today, I will not have an exam tomorrow."
- (d) "I will have the exam some day"
- (e) "I will never go to the concert"

Answer 5. p(x) "I will go to the concert on day x. q(x) "I have an exam on day x." "Note that $r \to s$ is equivalent to $(\neg r) \lor s$ Therefore, the negation of $r \to s$ is $r \land (\neg s)$

(a) "I will not go to the concert today if I have an exam tomorrow." $q(\text{tomorrow}) \rightarrow (\neg p(\text{today}))$.

The negation of this statement is "I have an exam tomorrow and I will go to the concert today" that is $q(\text{tomorrow}) \land (p(\text{today}))$.

(b) "If I do not have an exam tomorrow, I will go to the concert today." $\neg q(\text{tomorrow}) \rightarrow p(\text{today})$

The negation is the statement "I do not have an exam tomorrow and I will not go to the concert today" $\neg q(\text{tomorrow}) \land (\neg p(\text{today}))$

(c) "If I do not go to the concert today, I will not have an exam tomorrow." $(\neg p(\text{today})) \rightarrow (\neg q(\text{tomorrow}))$

The negation is "I do not go to the concert today and I have an exam tomorrow" $(\neg p(\text{today})) \land q(\text{tomorrow})$

- (d) . "I will have the exam some day" $\exists x, \ q(x)$ The negation is "I never have an exam" $\forall x, \ (\neg q(x))$
- (e) . "I will never go to the concert" $\forall x, \neg p(x)$ The negation is "I will go to the concert some day" $\exists x, P(x)$.

Question 2.6. Determine the truth value of each of these statements where $\mathbb{N} = \{0, 1, 2, ...\}$ denotes the set of natural numbers. If the statement is true, give a proof, if false give a counterexample. Write the negation of the statements and again give a proof or counterexample.

- $(a) \ \exists x \in \mathbb{N} \ (-x < -3)$
- (b) $\forall x \in \mathbb{N}, \exists y \in \mathbb{N} \ \exists z \in \mathbb{N} \ (x = 2y + 4z)$
- $(c) \ \exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ (y \ge x)$
- $(d) \ \forall y \in \mathbb{N} \ \exists x \in \mathbb{N} \ (x < y)$
- (e) $\forall x \in \mathbb{N} \ (-2x < -x)$

Answer 6. (a) $\exists x \in \mathbb{N}, -x < -3$ is true as x = 4 satisfies -x < -3. The negation is $\forall x \in \mathbb{N}, -x \geq -3$

- (b) $\forall x \in \mathbb{N}, \ \exists y \in \mathbb{N}, \ \exists z \in \mathbb{N}, \ x = 2y + 4z$ F If x is odd, then for all y, z natural numbers $x \neq 2y + 4z = 2(y + 2z)$. The negation of the above is $\exists x \in \mathbf{N}, \ \forall y \in \mathbb{N}, \ \forall z \in \mathbb{N}, \ x \neq 2y + 4z$ which is true with for example x = 1
- (c) $(\exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ y \geq x)$ is true where x = 0 works $0 = x \leq y$ for all y positive integers. The negation is $(\forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y < x)$. This is of course false as for x = 0 no such y exists.
- (d) $\forall y \in \mathbb{N}, \ \exists x \in \mathbb{N}, \ x < y \text{ is false because if } y = 0 \text{ no such } x \text{ exists.}$ Its negation can be written as $\exists y \in \mathbb{N}, \ \forall x \in \mathbb{N}, \ y \leq x$. This is true as $y = 0 \ \forall x \ y = 0 \leq x$ (this is in fact part (c) with the variables interchanged).
- (e) $\forall x \in \mathbb{N}, -2x < -x$ is false as it is equivalent to $\forall x \in \mathbb{N}, x < 2x$. This is in turn equivalent to $\forall x, 0 < x$ which is false for x = 0. Therefore, the statement is false

Question 2.7. Assume that all the sets we are working with are contained in a set U. Then we will indicate with \overline{A} the complement of A, that is the elements in U that are not in A, $\overline{A} = U - A$. Prove that $\overline{(A \cap B \cap C \cap D)} = \overline{A} \cup \overline{B} \cup \overline{C} \cup \overline{D}$ by showing each side is a subset of the other side.

Answer 7. . We want to show that

$$\overline{A \cap B \cap C \cap D} = \overline{A} \cup \overline{B} \cup \overline{C} \cup \overline{D}.$$

We will prove that an element is in the left hand side if and only if it is in the right hand side

$$x \in \overline{A \cap B \cap C \cap D} \iff x \notin A \cap B \cap C \cap D \iff \neg(x \in A \land x \in B \land x \in C \land x \in D)$$

$$\iff \neg(x \in A) \lor \neg(x \in B) \lor \neg(x \in C) \lor \neg(x \in D) \iff x \in \bar{A} \lor x \in \bar{B} \lor x \in \bar{C} \lor x \in \bar{D}$$

$$\iff x \in (\bar{A} \cup \bar{B} \cup \bar{C} \cup \bar{D})$$

Question 2.8. Let $A = \{x \in \mathbb{R} | x^2 \le 8x\}, B = \{x \in \mathbb{R} | x^2 \le 1\}$

- (a) Find $A \cap B$.
- (b) Find $A \cup B$.

Answer 8. By definition,

$$A = \{x \in \mathbb{R} | x^2 \le 8x\} = \{x \in \mathbb{R} | x(x - 8) \le 0\}.$$

A product is negative when exactly one of the factors is negative. This would require either $x \le 0, x - 8 \ge 0$ or $x \ge 0, x - 8 \le 0$. The first case cannot happen, hence

$$A = \{x \in \mathbb{R} | x(x-8) \le 0\} = \{x \in \mathbb{R} | 0 \le x \le 8\}.$$

Similarly,

$$B = \{x \in \mathbb{R} | x^2 \le 1\} = \{x \in \mathbb{R} | x^2 - 1 \le 0\} = \{x \in \mathbb{R} | -1 \le x \le 1\}$$

- (a) Therefore, $A \cap B = \{x \in \mathbb{R} | 0 \le x \le 1\}.$
- (b) Find $A \cup B = \{x \in \mathbb{R} | -1 \le x \le 8\}.$

Question 2.9. Assume that x is an integer.

- (a) Prove that if x + 5 is odd, then 3x + 2 is even.
- (b) Prove that if x + 5 is even, then 3x + 2 is odd.

(c) Prove that (b) is equivalent to proving that if 3x + 2 is even, then x + 5 is odd.

Answer 9. (a) x + 5 odd $\Rightarrow 3x + 2$ even.

By definition, x + 5 odd means that $\exists k$ integer such that x + 5 = 2k + 1. Then we find x = 2k + 1 - 5 = 2k - 4. Using this expression for x, we obtain 3x + 2 = 3(2k - 4) + 2 = 6k - 12 + 2 = 2(3k - 5). As k is an integer, 3k - 5 is also an integer, hence 3x + 2 is even.

(b) Assume x + 5 is even, we want to show 3x + 2 is odd. By definition, x + 5 even means $\exists k$ integer x + 5 = 2k. Then x = 2k - 5. Using this

expression for x, we obtain 3x + 2 = 3(2k - 5) + 2 = 6k - 13 = 2(3k - 7) + 1. As 3k - 7 is an integer, 3x + 2 is odd.

(c) We know $p \to q$ is equivalent to $\neg q \to \neg p$. We also showed that the condition that a is related to b if and only if the difference is divisible by two is an equivalence relation that divides the integers into two equivalence classes, namely even and odd numbers. So a number is even if and only if it is not odd. Hence, (b) is equivalent to "If 3x + 2 is even, then x + 5 is odd.

Question 2.10. Use mathematical induction to prove that

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}$$

for all n > 1.

Answer 10. We want to show that

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}$$

for all integer by induction

When n=1,

$$\frac{1}{2} = \frac{2^1 - 1}{2^1} = \frac{2 - 1}{2} = \frac{1}{2}$$

which is true.

Assume now the result true for n, namely

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}.$$

We need to check that the corresponding result when replacing n by n+1 holds too. Adding $\frac{1}{2^{n+1}}$ to both sides of the above identity we obtain,

$$\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \frac{1}{2^{n+1}} = \frac{2^n - 1}{2^n} + \frac{1}{2^{n+1}} = \frac{2(2^n - 1)}{2^{n+1}} + \frac{1}{2^{n+1}} = \frac{2^{n+1} - 2 + 1}{2^{n+1}} = \frac{2^{n+1} - 1}{2^{n+1}}$$

which is the corresponding result for n+1.

Question 2.11. Show that any amount of postage of 12 cents or more can be made with 4 cents and 5 cent stamps.

Answer 11. First

$$12 = 3 \times 4, 13 = 5 + 2 \times 4, 14 = 2 \times 5 + 4, 15 = 3 \times 5$$

Let now n be at least 16. Then $n-4 \ge 12$. Hence, from our induction assumption, there exist integers $a, b \ge 0$ such that n-4=4a+5b. Then, n=4(a+1)+5b. Hence, a postage of n can be made with 4 and 5 cents stamps. Then, by the induction principle, any amount of postage of 12 cents or more can be made with these stamps.

Question 2.12. Assume that A, B are finite sets of cardinality m and n respectively. Show that $A \times B$ is finite of cardinality mn.

Answer 12. From our assumptions, there exist bijections

$$f: A \to \{1, \dots, m\}, \ g: B \to \{1, \dots, n\}$$

We construct a bijection $h: A \times B \to \{1, \dots, mn\}$ as follows

$$h(a,b) = m(g(b) - 1) + f(a).$$

This h is well defined: as $1 \le f(a) \le m, 1 \le g(b) \le n$

$$1 = m(1-1) + 1 \le m(g(b) - 1) + f(a) \le m(n-1) + m = mn$$

and therefore the image of h is in the given codomain.

We show that h is one to one: assume that

$$h(a_1, b_1) = h(a_2, b_2).$$

Equivalently,

$$h(a_1, b_1) = m(g(b_1) - 1) + f(a_1) = m(g(b_2) - 1) + f(a_2) = h(a_2, b_2).$$

As $1 \leq f(a_1) \leq m$, the remainder of dividing $h(a_1, b_1)$ by m is $f(a_1)$ if $f(a_1) < m$ and 0 if $f(a_1) = m$. For the same reason, using that also $1 \leq f(a_2) \leq m$, the remainder of dividing $h(a_1, b_1) = h(a_2, b_2)$ by m is $f(a_2)$ if $f(a_2) < m$ and 0 if $f(a_2) = m$. As this remainder is unique, $f(a_1) = f(a_2)$. As f is one to one, this implies $a_1 = a_2$. From $f(a_1) = f(a_2)$ and $h(a_1, b_1) = m(g(b_1) - 1) + f(a_1) = m(g(b_2) - 1) + f(a_2) = h(a_2, b_2)$, subtracting $f(a_1) = f(a_2)$ from both sides, $m(g(b_1) - 1) = m(g(b_2 - 1))$. Dividing both sides by m and adding 1, $g(b_1) = g(b_2)$. Then, as g is one to one, $b_1 = b_2$. Therefore, h is one to one.

Let us now check that h is onto. Given $y, 1 \le y \le mn$, we can divide y by m and get a unique quotient and unique remainder y = qm + r, $0 \le r < m$. If r = 0 as y > 0, this would imply that q > 0. Then, we can rewrite y = (q - 1)m + 0. So, in any case, we can write $y = q'm + r', 1 \le r' \le m$. Moreover, as $1 \le y \le mnn$, we need to have $0 \le q' \le n - 1$ As f is onto and $1 \le r' \le m$, there exists some $a \in A$ with f(a) = r'. As $0 \le q' \le n - 1$, then $1 \le q' + 1 \le n$. As g is onto, there exists some $b \in B$ such that q' + 1 = g(b). Therefore,

$$y = q'm + r' = (g(b) - 1)m + f(a) = h(a, b)$$

Therefore, h is onto. Then h is a bjjection and $|A \times B| = mn$

Question 2.13. Assume that $A \neq \emptyset$ is a set $f: A \to B$ a function. Show that f is one to one if and only if there exists a function $g: B \to A$ such that $g \circ f = I_A$.

Answer 13. Assume f is one to one. Define $g: B \to A$ as follows: if $b \in f(A)$, we can find a unique (as f is one to one) $a \in A$ such that f(a) = b. Define g(b) = a. If $b \in B - f(A)$, pick an arbitrary $a_0 \in A \neq \emptyset$ and define $g(b) = a_0$. Then, for $a \in A$, $(g \circ f)(a) = g(f(a)) = a$ by definition of g. Hence, $g \circ f = I_A$.

Conversely, assume there exists $g: B \to A$ such that $g \circ f = I_A$. Take $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$. Applying g to both sides of this equality and using that $g \circ f = I_A$, we obtain

$$a_1 = I_A(a_1) = g \circ f(a_1) = g(f(a_1)) = g(f(a_2)) = g \circ f(a_2) = I_A(a_2) = a_2$$

Therefore. f is one to one.

Question 2.14. Let $f: A \to B$ be a function. We are NOT assuming that f is a bijection, so f^{-1} is not defined as a function.

- (a) If $X \subseteq A$, write the definition of f(X).
- (b) If $Y \subseteq B$, write the definition of $f^{-1}(Y)$.
- (c) If $X \subseteq A$, show that $X \subseteq f^{-1}(f(X))$.
- (d) Give an example of an $f: A \to B$ and an $X \subseteq A$ such that $X \neq f^{-1}(f(X))$.

Answer 14. (a) If $X \subseteq A$, we define the subset of elements in B that are images of elements in X that is denoted as f(X) as follows

$$f(X) = \{ y \in B \text{ such that } \exists x \in X, \ y = f(x) \}.$$

(b) If $Y \subseteq B$, we define the subset of elements in A that map to Y that is denoted as $f^{-1}(Y)$ as follows

$$f^{-1}(Y) = \{x \in A \text{. such that } f(x) \in Y\}.$$

- (c) If $x \in X$, by definition of f(X), $f(x) \in f(X)$. Then, with Y = f(X), $x \in f^{-1}(Y)$ because $f(x) \in Y$. Therefore, substituting Y = f(X), $x \in f^{-1}(f(X))$.
- (d) We are assuming that $f(f^{-1}(Y)) = Y$ for all Y. In particular, we can take Y = B. This then says that $f(f^{-1}(B)) = B$. Hence, each element in B is in the image of an element in $f^{-1}(B)$. By definition of onto, the map is onto
- (e) Take

$$A = \{a_1, a_2\}, B = \{b\}, f : A \to B \text{ given as } f(a_1) = b, f(a_2) = b, X = \{a_1\}$$

Then, $f(X) = \{f(a_1)\} = \{b\}$. Therefore,

$$f^{-1}(f(X)) = f^{-1}(\{b\}) = \{a \in A \text{ such that } f(a) \in \{b\}\} = \{a_1, a_2\}$$

This set is larger than $X = \{a_1\}.$

Question 2.15. (a) Show that the set of natural numbers divisible by 5 is countable.

(b) Show that the real plane $\mathbb{R} \times \mathbb{R}$ is not countable.

Answer 15. (a) We can prove this in at least two ways

- We know that any subset of a countable set is either finite or countable. The set of natural numbers divisible by 5 is a subset of N which by its very definition is countable. There are infinitely many natural numbers divisible by 5, so the set is not finite. It then follows that it is countable.
- We can imitate the proof that the set of even numbers is countable by giving an explicit bijection between \mathbb{N} and $5\mathbb{N}$.

(b) As a subset of a countable set is finite or countable, if $\mathbb{R} \times \mathbb{R}$ were countable, then every infinite subset of it would be countable. The real numbers can be taken as a subset of the real plane (for example as the x axis). As \mathbb{R} is not countable, $\mathbb{R} \times \mathbb{R}$ is not countable.

Question 2.16. How many four digit numbers contain the string 123 or the string 234 (or both)?

- **Answer 16.** (a) There is exactly one number 1234 which contains both. If one of the two strings occupies the 3 first spaces, there are 10 choices for the units digit, if it occupies the last 3 spaces there are only 9 choices for the first digit (cannot be zero).
- (b) Hence 10 + 10 + 9 + 9 1 = 37 such numbers.