STAT 185 - Homework #2

NAME

This assignment covers multivariate probability and Principal Component Analysis through a mixture of theory and coding. You will need the file *pset2.Rdata* available on Canvas. The commands for loading the data assume this file, *Homework2.Rmd*, and the Rdata file are in the same folder.

Complete the following questions and submit your solutions as a pdf via Canvas by Tuesday September 24th at 11:59 PM.

1. Consider a data matrix $X \in \mathbb{R}^{N \times d}$ with centered columns so that the sample covariance

$$\hat{\Sigma} = \frac{X^T X}{N}.$$

Assume $\hat{\Sigma}$ has eigenvalues $\lambda_1 > \lambda_2 > \dots > \lambda_d > 0$ with orthonormal eigenvectors $\vec{w_1}, \dots, \vec{w_d}$.

a. If $X^{(1)} = X - X\vec{w}_1\vec{w}_1^T$ is the data matrix where each row has had its component in the direction of \vec{w}_1 removed, show that

$$\hat{\Sigma}^{(1)} = \frac{X^{(1)}^T X^{(1)}}{N} = \hat{\Sigma} - \lambda_1 \vec{w}_1 \vec{w}_1^T.$$

b. Show that $\hat{\Sigma}$ can be written in the form $\hat{\Sigma} = \sum_{j=1}^{d} \lambda_j \vec{w}_j \vec{w}_j^T$.

2. Suppose $\vec{q}_1, \dots, \vec{q}_k$ are orthonormal vectors in \mathbb{R}^d with k < d. Suppose

$$\vec{x} = a_1 \vec{q}_1 + \dots + a_k \vec{q}_k + \vec{\epsilon}$$

where a_1, \ldots, a_k are uncorrelated, mean zero random variables with variance λ^2 and $\vec{\epsilon}$ is independent of a_1, \ldots, a_k and follows a multivariate Normal distribution with mean $\vec{0}$ and covariance $\sigma^2 I$. Here, I is the d-dimensional identity matrix.

- a. Find the mean of \vec{x} .
- b. Find the covariance matrix, Σ , of \vec{x} .
- c. Give the eigenvalues and respective eigenvectors of Σ . (Hint: you may assume there are orthonormal vectors \vec{q}_{k+1} , $; \vec{q}_d$ which are a basis for the orthogonal complement of the span of $\vec{q}_1, \ldots, \vec{q}_d$.)
- d. Suppose d=200. A sample of 5000 independent realization of \vec{x} were drawn and saved in the 5000×200 data matrix, problem2. Compute the principal component analysis of problem2 using the command princomp.
- e. Generate the scree plot using your results from part d.
- f. Based on your results from parts c and e, estimate k, λ^2 , and σ^2 . Explain your reasoning.
- 3. Let $\vec{x}_1, \ldots, \vec{x}_N$ be vectors in \mathbb{R}^d . Assume a PCA of these data has loadings $\vec{w}_1, \ldots, \vec{w}_d$ with associated variances $\lambda_1 \geq \cdots \geq \lambda_d \geq 0$. Let U be a $d \times d$ orthonormal matrix and set $\vec{y}_i = U \vec{x}_i$. Find expressions for the principal components loadings and variance of $\vec{y}_1, \ldots, \vec{y}_N$ in terms of $U, \vec{w}_1, \ldots, \vec{w}_d$ and $\lambda_1, \ldots, \lambda_d$.
- 4. The variable *digits* contains a list of pixelated handwritten digits from the MNIST data set. The pixels are saved in data matrix *digits\$pixels*. The labels for each digits are saved in *digits\$labels*.
 - a. Using princomp, conduct principal component analysis only on the 0 and 1 digits in the dataset.
 - b. Generate a scree plot summarizing your results from part a.

- c. Describe the geometry of point cloud of images.
- d. Plot first two principal scores for each digit with red markers for the zero digits and blue markers for 1 digits. Do you see any clustering in the data? Explain, why or why not.
- 5. Repeat problem 2, now including all digits in your analysis.
 - a. Conduct PCA on all 42000 images.
 - b. Generate the scree plot.
 - c. Use the command below the plot the digits with the given coloring scheme. Discuss any clustering you do or do not see in the data.
- 6. Consider a set of points drawn from a 2-dimensional multivariate normal distribution with mean 0 and covariance $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.
 - a. Generate 1000 independent observations from this distribution and generate a scatter plot of these points.
 - b. Compute the principal components scores and variances using princomp. Give the 2×2 matrix with the principal component loadings.
 - c. Add the point $(10000, 10000)^T$ to these data and rerun the principal component analysis. Give the 2×2 matrix of loadings. Did the loadings change? If so, explain why and how the new loadings are related to the new datum.
- 7. In this problem, we will use the mtcar data set containing 11 observations from 32 cars.
 - a. Show the principal component loadings.
 - b. Rescale the mpg (miles per gallon) data to feet per gallon, i.e. mtcars\$mpg <- 5280\$mtcars\$mpg.*Rerun PCA on these modified data and show the loadings.
 - c. What is the first loading capturing? Explain this result.
 - d. Rerun the results using the empirical correlation matrix by setting the option cor = TRUE in the princomp command. Compare this result with part (a)
- 8. Generate 500 independent realizations from a 10,000-dimensional normal distribution with mean zero and covariance equal to the identity matrix.
 - a. What is the rank of the empirical covariance matrix? How does this compare to the true covariance matrix?
 - b. Generate the scree plot for these data by calculating the eigendecomposition of the emprical covariance matrix. Explain the graph and its connection with part (a). (Note: princomp cannot be used since N < d.)
 - c. Is PCA a good method for reducing the dimensions of these data? Explain.
- 9. Consider the data in *problem9* which are samples from \mathbb{R}^3 which are shown in Figure 1.
 - a. What is the dimension of the shape formed by these data? If you generate the graph above in the RStudio console, you can rotate the figure to see more clearly.
 - b. Compute the three principal component variances and show them below.
 - c. Do the principal component variances reflect the dimension of the data? Why or why not?

Figure 1: Problem 9 data