

Session 1.7

Module 1b

PN Junction Diodes

Session 1.7: Focus

- PN junction
 - Diode construction and its symbols
- Biasing of diodes
 - Forward and Reverse biasing
- Various types of diodes
- Depletion region
- Diode characteristics
 - Forward biasing and Cut-in voltage
- Reverse biasing
 - Breakdown voltage
- I-V characteristics of diode
 - Q-point of a diode
- Sample Circuits with Diodes

Diode Construction

Diode Construction

- A silicon crystal is taken, the left side is doped with **acceptors** (**p-type**) and the right side is doped with the **donors** (**n-type**).
- This results in a junction between p-type and n-type material.
- The diagram on the right shows the doping concentration of acceptors (N_a) and donors (N_d) where $N_a > N_d$
- The **doping** of impurities is **uniform** on both p-type and n-type.

Diode: Symbols

Diode has **two** terminals, an **anode** and a **cathode**

Zener Diode

Light Emitting Diode

Photo Diode

Biasing of Diode

Diode: No Bias

No bias, leads of PN junction are left open

- No bias means that there is no external voltage applied to the diode.
- It is equivalent to a diode kept on a table with both its terminals open.

Diode: Biasing

Diode has different behaviours under each conditions.

Reverse bias

Anode (p-type) is connected to +ve terminal of bias voltage and the cathode (n-type) to -ve terminal

Anode (p-type) is connected to -ve terminal of bias voltage and the cathode (n-type) to +ve terminal

Various types of Diodes

Various Types of Diodes

Note: A silver line on the diode signifies the cathode terminal.

Note: The longer terminal is the anode.

Power Diode

Depletion Region

Diode: Depletion Region

- Majority carriers on each side cross the junction of the p-type and n-type materials.
- The electrons entering the p-region combine with the holes, depleting or reducing the holes in the p-region, near the junction.
- Similarly electrons around the junction on n-type material are also depleted.
- The region thus formed is called **depletion region**.
- Further crossing of majority carriers prevented by the formation of depletion region.

Diode Characteristics

Forward Biasing

Forward Biasing: Explained

- Positive potential applied at the anode repels the holes (majority carriers) on p-type pushing them towards the junction.
- Similarly the negative potential on the cathode repels the electrons (majority carriers) on n-type pushing them as well towards the junction.
- When V_D crosses a threshold, majority carriers on either side cross the depletion region causing the flow of current through the diode.
- Since current is passing through the diode it is said to be in **ON state**.

Cut-in Voltage

- When the applied forward bias (V_F) crosses $V_{\text{cut-in}}$ or V_{Knee} , diode starts conducting and allows current (I_F) to flow through.
- Cut-in voltage or knee voltage is the voltage at which the forward bias current of a diode starts increasing rapidly.
- Cut-in voltage of a silicon diode is approximately 0.7V, and for germanium diode it is approximately 0.3V.

Diode Characteristics

Reverse Biasing

Reverse Biasing: Explained

- Because of reverse bias, large number of free electrons are drawn to the positive potential of the applied voltage (on n-region), which in turn increases the width of the depletion region at the junction.
- The diode is said to be in OFF state because current passing through it is very minimal.
- There are a very few charges crossing the junction, in micro amperes.
- When the reverse voltage is increased continuously beyond **breakdown voltage**, the diode starts conducting heavily, reaching the **Zener region**.

Reverse Bias Current

- When the reverse voltage goes beyond $-V_{\rm BV}$ the **minority carriers** move quickly across the depletion region.
 - Minority carriers in p material are electrons.
 - Minority carriers in n material are holes.
- Note that electrons flow from left to right and the holes from right to left.

I-V Characteristics

I-V Characteristics

• It's characteristics have non-linear shapes at different operating voltages/currents, so diode is a non-linear element.

Q-Point of a Diode

Q-point: Explained

- Q-point is the operating or quiescent point at which a diode operates.
- It is specific to a **circuit** with which a diode is part of.
- The Q-point of a diode is decided by the circuit elements (resistors and power supplies) that are used to bias a diode.
- The circuit **designer** chooses the **Q-point** such that **diode** operates within its safe limits.

Sample Circuits using Diodes

Sample Circuits using Diodes

Sample Circuits using Diodes: Full-wave Rectifier

Resultant Output Waveform

Session 1.7: Summary

- PN junction
 - Diode construction and its symbols
- Biasing of diodes
 - Forward and Reverse biasing
- Various types of diodes
- Depletion region
- Diode characteristics
 - Forward biasing and Cut-in voltage
- Reverse biasing
 - Breakdown voltage
- I-V characteristics of diode
 - Q-point of a diode
- Sample Circuits with Diodes