Decompose Restaurant in Detail

Donglai Wei

2010.6.21

0) Notations

Hierarchical Dirichlet Process Model with Dirichlet-Multinomial:

Hyper-parameter:

 α, γ : HDP concentration parameter

 λ : Prior for Dirichlet Distribution(W:number of different words, $\phi_1, ..., \phi_W = \phi$)

Hidden Variable:

(M-step)z: Discrete assignment (t_{ji} , k_{jt} correspond to customer, table assignment in Chinese Restaurant Franchise)

 $(E-step)\theta$:Multinomial parameter

Observation:

 $x : \in (1, ..., W)$

1) Algorithm:Decompose Restaurant (DR)

GOAL: Maximize log Probability $P = log p(x, z | \lambda, \alpha, \gamma)$

- (i) Make Restaurant j into one table t_0 where customers following uniform distribution: (% Thus the Probability $P(t_{ji}=t_0)=\frac{1}{W}$)
- (ii) Possible Dish={Nonempty dishes}
- (iii) Iterate until no customers are left in this uniform table t_0 :
 - (a) For each dish k \in Possible Dish, propose to form a new table t_k out of t_0 with dish k and calculate the change ΔP_k :

```
(%For each customer i in t_0, sample t_{ji} \in \{t_0, t_k\} \sim \{\frac{1}{W}, \frac{n_{i,k}^w + \phi}{n_{i,k} + W\phi}\})
(%Propose to form table t_k with customers whose t_{ji} = t_k)
```

- (b) Sample a proposal t_{k*} according to the weight and make the new table: $(\%Sample\ a\ proposal\ \{t_{k_1},...,t_{k_K}\} \sim e^{r_{proposal}\{\Delta P_{k_1},...\Delta P_{k_K}\}})$ $(\%r_{proposal}>0$, the more decrease of ΔP_k , the less propable to form table t_k)
- (c) Possible Dish=Possible Dish/ k_*
- (iv) TKM:Local search Table/Dish(allowing new dish)+Merge dish (%Calculate the change of P between present config and config before DR move: ΔP)
- (v) Decision:

```
(%Accept the new config with Probability min\{e^{r_{accept}\Delta P}, 1\}
(%r_{accept} > 0, if P increase, always accept; otherwise more decrease, more likely to reject)
```