Efficient Bundled Spatial Range Queries

Eleni Tzirita Zacharatou[‡] Darius Sidlauskas [‡]

Thomas Heinis* Farhan Tauheed[‡] Anastasia Ailamaki[‡]

Exploring Multiple Spatial Datasets

Problem: Spatial range query on multiple categories of spatial objects within the same spatial universe

Query: { 3D Spatial Range; Category preference }

Challenge: Scale with an increasing number of categories

Shortcomings of Existing Techniques

One index per category

Independent search space

Index over union

Common search space

Existing Techniques in Action

Category size: ~1GB, 100 categories, 200 range queries, Query size: 10⁻³ % of total volume

Goal: queried-in-1 performance for ad-hoc category selection

Category-Aware Spatial Data Organization

Category-oblivious partitioning Distinct group per category

Common search space

Access to specific categories

STITCH Bundled Index

Link intersecting partitions

Common Reference Space

Combination of data-oriented partitioning with space-oriented indexing

STITCH Query Execution

Link intersecting partitions

Common Reference Space

Grid: Locate the spatial region once

Links: Prune irrelevant categories

Sliced Data-Oriented Partitioning:

I. X Dimension

Sliced Data-Oriented Partitioning:

I. X Dimension

Sliced Data-Oriented Partitioning:

I. X Dimension

Sliced Data-Oriented Partitioning: I. X Dimension

Sliced Data-Oriented Partitioning: II. Y Dimension

Scaling with the Number of Queried Categories

Datasets: 3D triangular mesh, 10 neuron categories, ≤ 5GB each, 45GB in total.

Benchmark: 200 spatial range queries. Random aspect ratio, location and size (avg. 10⁻⁶%).

Hardware: Intel Xeon @2.8GHz, 48GB RAM

Overhead Analysis

Datasets: 3D triangular mesh, 10 neuron categories, ≤ 5GB each, 45GB in total.

Benchmark: 200 spatial range queries. Random aspect ratio, location and size (avg. 10⁻⁶%).

Number of categories in the category selection

STITCH reduces the amount of unnecessary data retrieved

Scalable Exploration of Multiple Spatial Datasets

Single physical index → Common search space

Hybrid partitioning scheme → Access to selected datasets

Scalable performance for ad-hoc dataset selection

Thank You!