Chapter 8 – Additional Problems with Solution – Helpful for the Homework, and Chapter Quiz on Chapter 8

Problem 1:

Let
$$S = \{ (0,0), (0,3), (1,0), (1,2), (2,0), (3,2) \}$$

Find S', the transitive closure of S.

Solution:

S' has all the elements of S union these new elements: $\{(0,2), (1,3), (2,2), (2,3), (3,0), (3,3)\}$ to make the relation transitive.

Problem 2:

Sets R and S are transitive. Give a counter example to disprove: $\mathbf{R} \cap \mathbf{S}$ is Transitive.

Solution:

Counterexample:

Let Relation, $R = \{(1, 2), (2, 3), (1, 3)\}$

Let Relation, $S = \{(2, 3), (3, 4), (2, 4)\}$

Therefore, $R \cap S = \{(2, 3)\}$, which is not transitive.

Problem 3:

For the relation given, do the following:

- 1. state whether the relation is reflexive
- 2. state whether the relation is symmetric
- 3. state whether the relation is transitive

If the relation is NOT (reflexive, symmetric, transitive), you must give a counterexample that proves it.

$$R1 = \{ (0,0), (0,1), (0,3), (1,1), (1,0), (2,3), (3,3) \}$$

Solution:

The relation is not reflexive. Counterexample: $(2, 2) \notin R1$

The relation is not symmetric. Counterexample: $(3, 2) \notin R1$

The relation is not transitive. Counterexample: $(1, 0), (0, 3) \in R1$. However, $(1, 3) \notin R1$

Problem 4:

Let $A = \{2, 3, 4, 5\}$

Let $B = \{3, 4, 5, 6\}$

Let S be the *less than* relation, so for all (x, y) ordered pairs, $xSy \equiv x < y$

(x < y means x is less than y)

part 1: state explicitly which ordered pairs are in S

part 2: state explicitly which ordered pairs are in S⁻¹

Solution:

$$S = \{(2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)\}$$

$$S^{-1} = \{(3, 2), (4, 2), (5, 2), (6, 2), (4, 3), (5, 3), (6, 3), (5, 4), (6, 4), (6, 5)\}$$

 S^{-1} is the greater than relation. This means, $x S^{-1}y \equiv x > y$