Engineering Mathematics I-(BAS-103) Unit 2 Differential Calculus I Tutorial 2

Que1. Find all the symmetry in the curve

$$(a)x^2y^2 = x^2 - a^2$$
. [2020-21] $(b) x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$
 $(c) y^2(a^2 + x^2) = x^2(a^2 - x^2)$ [2023-24] $(d) r^2 \cos \theta = a^2 \sin 3\theta$

Que2. Find the asymptote of the following curves

(a)
$$xy(x^2 - y^2) + x^2 + y^2 = a^2$$
 (b) $r\theta = a$

Que3. Show that the parabola $y^2 = 4ax$ has no asymptotes.

Que4. Find the nature of origin for the curve $y^2(a-x) = x^2(a+x)$

Que5. Trace the curve
$$y^2(a+x) = x^2 (3a-x)$$
. [2017-18]

Que6. Trace the curve
$$x^2y^2 = (a^2 + y^2)(a^2 - y^2)$$
 where *a* is constant. [2022-23]

[2019-20]

[2014-15], [2016]

Que7.Trace the curve
$$r^2 = a^2 \cos 2\theta$$
.

Que8. Trace the curve
$$r = a \sin 3\theta$$

Que9. Trace the curve $y^2(2a - x) = x^3$.

Que10. Trace the curve $x^3 + y^3 = 3axy$ and writes its asymptotes.

Que11. Trace the curve $v^2 = x^3$

Answers

1. (a) The curve is symmetrical about both axes and in opposite quadrants.

(b) The curve is symmetrical about both axes and also symmetrical about lines $y = \pm x$

(c) The curve is symmetrical about both axes and also symmetrical in opposite quadrant.

(d)The curve is symmetrical about pole.

2. (a) x = 0, y = 0, x + y = 0 and x - y = 0

(b) $y = \pm x$. $a = r \sin \theta$.

4. The curve passes through the origin. The tangents at origin are $y = \pm x$. The origin is a node.

5.

6.

7.

18.

19.

10.

11.

