C311 Test 2

Name Greg Witt

/100

1. (30) True or False. Use grammars A, B, C in the following.

A.
$$< Q > ::= < Q > ? < Q > | < R > < R > ::= < R > ! < R > | (< Q >) | a | b | c$$

- **B.** <L> ::= <M> @ <L> | <M> <M> ::= <M> %o <N> | <N> <N> ::= (<M>) | x | y | z
- C. <!ELEMENT x (a+,b*)> <!ELEMENT y ((y,a) | a) > <!ELEMENT a EMPTY> <!ELEMENT b EMPTY>
- a. T Grammar B defines the precedence of @ below %.
- b. T Grammar B defines @ as left-associative.
- c. $\frac{T}{}$ By grammar A "(a?b)!c" and "a?b!c" parse to the same AST.
- d. $\frac{F}{A}$ By B, "x @ y @ z" and "x @ (y @ z)" parse to the same AST.
- e. F By B, "x % (y % z)" and "x % y % z" parse to the same AST.
- f. T By A defines the precedence of ? above !.
- g. $\frac{T}{A}$ By A, "(a?(a?a))" is valid.
- h. T Grammar A is ambiguous, allows multiple valid parses.
- i. F Grammar B is ambiguous, allows multiple valid parses.
- j. $\frac{F}{}$ By C, XML "<x></x>" is valid.
- k. $\frac{T}{}$ By C, XML "<y><a/>>/y>" is valid.
- I. $\frac{T}{T}$ By C, XML "<y><a/><y><a/><y></y></y>" is valid.
- m. T By C, XML "<y><y><a/></y><a/></y>" is valid.
- n. $\frac{\mathsf{F}}{\mathsf{C}}$ By C, XML "<x><m is valid.
- o. F By C, XML "<x><a/><a/><a/><i is valid.

- 2. (8) Give a complete grammar, in BNF or EBNF, for the following languages:
- a. All even binary numbers (i.e. end with 0). Examples: 0101010, 0, 111110

```
<digit> ::= <zero> | <one> | <digit> <zero> ::= 0 <one> ::= 1 <even-binary> ::= (<digit>)+ <zero> | <zero>
```

b. All binary numbers of at least three consecutive 1's and three consecutive 0's. The language includes 111000 and 110001011101 but not 001100010111.

Multiple Repitions of Consecutive numbers:

```
<consective-binary> ::= [<binary>+] (<one> <one>) [<zero>] [<binary>+] |
[<binary> ::= <zero> | <one> | <zero>+ | <one>+
<zero> ::= 0
<one> ::= 1
```

3. (10) Syntax of the *ADMIN* language is quite simple yet only administrators can speak a complete <sentence> without making mistakes. The alphabet of the language is {T, L, A, _} where _ stands for a space. The grammar is:

```
<stop> ::= L | A

<plosive> ::= <stop> A

<syllable> ::= <plosive> | <plosive> <stop> | T <plosive> | T <stop>

<word> ::= <syllable> | <word> <syllable>

<sentence> ::= <word> | <sentence>_<word>
```

Which of the following speakers is posing as an administrator (i.e. cannot correctly speak a <sentence> of TLA language)? Mark each as an administrator or not.

- a) SAY WHAT not
- b) TLA administrator
- c) T not
- d) TLATLA not
- e) TLA_TLA_TLA administrator

- 4. (15)
- a. Give the corresponding AST for the following.

b. Give the post-order traversal (i.e. RPN) of the following AST.

c. Represent the RPN at right as standard, infix expression: 1 2 + 3 * 8 4 7 - + /

d. Evaluate the RPN: 123*+84/+7-

$$[(2+3) + (8/4)] - 7$$

[5+2]-7=0
Resulting in 0

$$[((2+3) + (8/4)) - 7]$$

5. (12) Use the following grammar

a. Give the parse tree for: (1 & 2 & 3) \$ 4 \$ 5

b. Modify the following grammar to add a left-associative rule for a binary operator \bot with precedence between that of \otimes and \oplus .

$$< r > ::= < r > \otimes < s > | < s >$$
 $< r > ::= < r > OX < s > | < s >$
 $< u > ::= < t > _|_ < u > | < t >$
 $< s > ::= < t > O+ < s > | < t >$
 $< t > ::= (< r >) | 1 | 2 | 3 | 4 | 5$

6. (15) STATIC ACTIVATION RECORDS: Fill in the two tables with activation record <u>contents</u>, <u>label</u> and the <u>value</u> through the complete program execution. Use call-by-reference parameter passing and static activation records.

1.	_	ıb(double	x[], double &r)	Table 1 – Activation Records				
	2. { 3. double I;				Addr. Contents Label			
4.	、			345		IP	AR main	
	5. r = I; 6. } 7.			346	OS	DL		
				347	registers	TMP		
	8. void bsub(double t[], double &s)9. {					IP	AR asub	
						PAR[1]		
10. s = t[0]+t[1]+t[2]; 11. }				350		PAR[2]		
	12. 13. void main(void) 14. { 15. double y[3];					DL		
						TMP		
						IP	AR bsub	
15. double $y[3]$, 16. $y[0] = 4.0$; 17. $y[1] = 5.0$; 18. $y[2] = 1.0$; 19. double $a = 2.0$; 20. asub(y, a);				354		PAR[1]		
				355		PAR[2]		
				356		DL		
				357		TMP		
	21. cout << a;							
22. } Table 2 – Values				359				
				360				
	Address	Symbol	Value	361				
	123	У		362				
	124			363				
	125			364				
	126	а	2.0					
	127	i						

5) See the valN listing on last page. Include all necessary types in your answers.						
) What are v, e1, e2 and Context at Line 9 of valN for the following?						
<pre>valN (Let("R", Var("Q"), Plus(Var("Q"), Var("R")))) [("Q", Const(2)); ("R", Const(3))];;</pre>						
v e1						
e2 Context						
Result of the following valN call?						
<pre>valN (Times(Plus(Var ("X"), Var("Q")), Const(10))) [("Q", Const 3); ("Q", Const 10); ("X", Const 5)]</pre>						
Result of the following valN call?						
valN (Apply (Fn ("X", Plus (Var "X", Const 5)), Const 2)) []						
Result of the following valN call?						
<pre>valN (Let ("f", Fn ("X", Times (Var "Y", Var "X")), Apply (Var "f", Var "Y"))) [("X", Const 2); ("Y", Const 3)]</pre>						
The following fails, why?						
valN (Apply (Fn ("x", Plus (Var "x", Const 4)), Var "x")) []						
Give type case and match expression case statements that extend $valN$ to implement Max , the $maximum$ of two Const values operator. Example use of Max :						
<pre>valN (Max (Const 2, Const 3)) [] returns Const(3) valN (Max (Var "Z", Var "Y")) [("Z", Const 2); ("Y", Const 3)]</pre>						

```
type AST =
| Const of int
| Var of string
| Plus of AST * AST
| Times of AST * AST
| Let of string * AST * AST
| Fn of string * AST
| Apply of AST * AST;;
let rec lookup V L =
  let (var,value)::T = L
  if V=var then value else lookup V T;;
let rec valN exp context =
match exp with
 | Const x -> Const x
 | Var V -> lookup V context
 | Plus (Const x, Const y) -> Const (x+y)
 | Plus (x, y) \rightarrow valN (Plus(valN x context, valN y context)) context
 | Times (Const x, Const y) -> Const (x*y)
 | Times (x, y) \rightarrow valN (Times (valN x context, valN y context)) context
 | Let (V, exp1, exp2) -> valN exp2 ((V, valN exp1 context)::context)
 | Fn (formal, body) -> Fn(formal, body)
 | Apply (Fn(formal, body), actual) ->
         valN body ((formal, valN actual context)::context)
 | Apply (Var v, actual) ->
         valN (Apply (valN (Var v) context, actual)) context;;
```