PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-035868

(43)Date of publication of application: 07.02.1997

(51)Int.Cl.

H05B 33/04 H05B 33/10

(21)Application number: 07-185968

(71)Applicant:

IDEMITSU KOSAN CO LTD

(22)Date of filing:

21.07.1995

(72)Inventor:

FUKUOKA KENICHI FUJITA MASATO

(54) SEALING METHOD FOR ORGANIC EL ELEMENT AND ORGANIC EL ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To strongly suppress growth of a dark spot in the organic EL element and to improve an element life by providing a specific seal layer in the periphery of an organic EL element of prescribed constitution. SOLUTION: A seal layer containing 1ppm or less as dissolved O2 concentration 20 and consisting of inert liquid (example: perfluoroalkane) containing an adsorbent 20b is provided in the periphery of an organic EL element 10 laminating an anode 12 and a cathode 16 through at least an emitting layer 14. As the adsorbent 20b, it is preferable to use an inorganic compound selected from active alumina, diatom earth, activated carbon, semihydrate gypsum, P2O5, Mg(ClO4)2, KOH, CaSO4, CaBr2, CaO, ZnCl2, ZnBr2 and from anhydrous copper sulfate, metal selected from Li, Be, K, Na, Mg, Rb, Sr and from Ca, alloy of the metals selected from these metal groups or (metha) acrylic type water absorbing polymer.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

10.07.2002

BEST AVAILABLE COPY

THIS PAGE BLANK (USPIC.

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The closure approach of the organic EL device characterized by preparing the closure layer of 1 ppm or less of dissolved oxygen concentration to which an anode plate and cathode become the periphery of the organic EL device by which the laminating is carried out at least through a luminous layer from the inactive liquid containing an adsorbent.

[Claim 2] As an adsorbent, it is (1). The inorganic compound chosen from an activated alumina, the diatom earth, activated carbon, hemihydrate gypsum, a phosphorus pentaoxide, magnesium perchlorate, a potassium hydroxide, a calcium sulfate, a calcium bromide, a calcium oxide, a zinc chloride, a zinc bromide, and anhydrous copper sulfate, (2) The metal chosen from the metal group which consists of a lithium, beryllium, a potassium, sodium, magnesium, a rubidium, strontium, and calcium, (3) The alloy of metals chosen from said metal group, or (4) Approach according to claim 1 using an acrylic absorptivity polymer or a meta-acrylic absorptivity polymer.

[Claim 3] The approach according to claim 1 or 2 using the adsorbent which performed activation as an adsorbent.

[Claim 4] An approach given in any 1 term of claim 1 - claim 3 which make 1mg - 10g of adsorbents contain per 1ml of inactive liquids.

[Claim 5] An approach given in any 1 term of claim [dissolved oxygen concentration] 1 using an inactive liquid 1 ppm or less as an inactive liquid – claim 4.

[Claim 6] An approach given in any 1 term of claim [vapor pressure / in / as an inactive liquid / 25 degrees C] 1 using the liquefied fluorination carbon of 10 to 2 or less Torrs - claim 5.

[Claim 7] An approach given in any 1 term of claim [moisture content] 1 using an inactive liquid 10 ppm or less as an inactive liquid - claim 6.

[Claim 8] An approach given in any 1 term of claim 1 – claim 7 which form a closure layer in the space which prepared wrap housing material and was formed of said substrate and said housing material in said organic EL device in collaboration with said substrate, forming an opening between said organic EL devices on the outside of the organic EL device currently formed on the substrate.

[Claim 9] The organic EL device characterized by carrying out the closure to any 1 term of claim 1 - claim 8 by the approach of a publication.

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the organic EL device by which the closure was carried out to the closure approach of an organic electroluminescent element (it is hereafter written as an organic EL device).

[0002]

[Description of the Prior Art] For self-luminescence, visibility of an EL element is high, and since it is a perfect solid-state component, it is excellent in shock resistance. Since it has such a description, in current, the various inorganic EL elements which used the inorganic compound as a luminescent material, and the various organic EL devices using the organic compound (this compound is hereafter called organic luminescent material) as a luminescent material are proposed, and utilization is tried. Especially, since an organic EL device can reduce applied voltage sharply compared with an inorganic EL element, development for obtaining the organic EL device of high performance more is furthered actively.

[0003] The basic configuration of an organic EL device is a configuration that the laminating of an anode plate, a luminous layer, and the cathode was carried out one by one, and, in many cases, this organic EL device is formed on a substrate. The location of an anode plate and cathode may be reversed at this time. Moreover, in order to raise the engine performance, an electron hole transportation layer may be prepared between an anode plate and a luminous layer, or an electronic injection layer may be formed between cathode and a luminous layer. Although a luminous layer is formed by one sort or two or more sorts of organic luminescent material, it may usually be formed with mixture with an organic luminescent material, an electron hole transportation ingredient, and/or an electron injection ingredient.

[0004] Moreover, the electrode located in an optical drawing side side among one pair of electrodes (an anode plate and cathode) which constitute an organic EL device consists of transparence thru/or a translucent thin film constitutionally as a field light emitting device in order to raise the drawing effectiveness of light. On the other hand, the electrode (henceforth a counterelectrode) located in an opposite side serves as an optical drawing side from a specific metal thin film (thin films, such as a metal, an alloy, and a mixed metal).

[0005] The organic EL device which has the above-mentioned configuration is a light emitting device of a current drive mold, and in order to make light emit, it must pass a high current between an anode plate and cathode. Consequently, when a component generates heat at the time of luminescence and oxygen and moisture are in the perimeter of a component, oxidation of the component component by these oxygen and moisture is promoted, and a component deteriorates. The typical thing of oxidation or degradation of the component by water is

generating and its growth of a dark spot. A dark spot is a luminescence defective point. and -if oxidation of the component of the component concerned progresses with the drive of an organic EL device -- growth of the existing dark spot -- happening -- just -- being alike -- a dark spot spreads in the whole luminescence side.

[0006] In order to suppress the above-mentioned degradation, various approaches are proposed from before. For example, the method of holding an organic EL device in the inactive liquefied compound which makes liquefied fluorination carbon come to contain dehydrating agents, such as permutite, as an approach of removing the moisture which is one of the causes of degradation is indicated by JP,5-41281,A. Moreover, the heat dissipation layer which enclosed the fluorocarbon oil is prepared on [one / at least] an anode plate and cathode, and the approach of lengthening the luminescence life of a component by radiating heat from the aforementioned heat dissipation layer in the heat generated in the case of a component drive is indicated by JP,5-114486,A.

[0007]

[Problem(s) to be Solved by the Invention] However, it was difficult for the conventional approach mentioned above to also fully suppress generation and growth of a dark spot. The reason is guessed as follows. That is, although it is one of the useful means from in [controlling generation and growth of a dark spot] to remove the moisture which invades after the closure process of an organic EL device or the closure at the organic EL device concerned with a dehydrating agent, neither generation of a dark spot nor the cause of growth is only in invasion of moisture, but the direction of the oxygen dissolved in liquefied fluorination carbon or a fluorocarbon oil has influenced greatly rather. Liquefied fluorination carbon and a fluorocarbon oil dissolve a gas very well, for example, a perfluoro amine (Sumitomo 3M 70 [FURORINATO FC-] (trade name)) dissolves no less than 22ml [a maximum of] air into 100ml (63 ppm of dissolved oxygen concentration).

[0008] The purpose of this invention is to offer the organic EL device with which the closure approach of the organic EL device which can control strongly growth of the dark spot in an organic EL device, and growth of a dark spot cannot take place easily. [0009]

[Means for Solving the Problem] The closure approach of the organic EL device of this invention of attaining the above-mentioned purpose is characterized by preparing the closure layer of 1 ppm or less of dissolved oxygen concentration to which an anode plate and cathode become the periphery of the organic EL device by which the laminating is carried out at least through a luminous layer from the inactive liquid containing an adsorbent.

[0010] Moreover, the organic EL device of this invention which attains the above-mentioned purpose is characterized by carrying out the closure by the approach of this invention mentioned above.

[0011]

[Embodiment of the Invention] Hereafter, the gestalt of operation of this invention is explained to a detail. First, explanation of the closure approach of the organic EL device of this invention prepares the closure layer of 1 ppm or less of dissolved oxygen concentration which becomes the periphery of an organic EL device from the inactive liquid containing an adsorbent as mentioned above by this approach.

[0012] Here, the above-mentioned adsorbent is for preventing oxygen and moisture invading from the exterior after the closure process of an organic EL device, or the closure at the organic EL device concerned. Although this adsorbent is not limited especially if oxygen and

water are adsorbed, there is much amount of adsorption and what has the property which can emit easily neither the oxygen to which it stuck once, nor water is desirable. Although not limited, since the direction of a powdery thing becomes large, an adsorption area's is [especially the configuration of an adsorbent] desirable.

[0013] As an example of the adsorbent which can be used by the approach of this invention (1) The inorganic compound chosen from an activated alumina, the diatom earth, activated carbon, hemihydrate gypsum, a phosphorus pentaoxide, magnesium perchlorate, a potassium hydroxide, a calcium sulfate, a calcium bromide, a calcium oxide, a zinc chloride, a zinc bromide, and anhydrous copper sulfate, (2) The metal chosen from the metal group which consists of a lithium, beryllium, a potassium, sodium, magnesium, a rubidium, strontium, and calcium, (3) The alloy of metals chosen from said metal group, and (4) Acrylic absorptivity polymer or meta-acrylic absorptivity polymer ** is mentioned. Only one sort may be used for an adsorbent and it may use two or more sorts together.

[0014] It is desirable to use an adsorbent under the condition holding sufficient adsorption power, and for that purpose, before using it, it is desirable to remove the oxygen with which the adsorbent concerned is adsorbed, and moisture (the processing for removing oxygen and the moisture with which the adsorbent is adsorbed is called "activation" by this invention.). Although the activation of an adsorbent differs according to the class of adsorbent, it can be performed by approaches, such as carrying out cutting removal of the front face of an adsorbent which heats an adsorbent, which carries out vacuum suction of the adsorbent and which leaves an adsorbent in an inert gas air current, and the approach which combined two or more of these approaches.

[0015] As for the activation about an adsorbent, it is desirable to isolate from the open air and to perform the adsorbent concerned. Moreover, isolating from the open air is desirable until it uses it for formation of the closure layer mentioned later from in [preventing that the activity falls also about the adsorbent after activation]. For example, as for the activation by heating or vacuum suction, it is desirable to carry out, where an adsorbent is contained in the container which can intercept the open air like a container with a vacuum cock, to close a cock, after activation is completed, and to save the adsorbent after the activation concerned till the use, where the open air is intercepted.

[0016] Although the closure layer of 1 ppm or less of dissolved oxygen concentration which consists of an inactive liquid containing an above-mentioned adsorbent is prepared in the periphery of an organic EL device by the approach of this invention, the amount of the adsorbent used at this time is selectable suitably according to that class. Although the direction of an adsorption effect with much amount of the adsorbent used is generally high, if there is too much amount of the adsorbent used, when the inactive liquid which mentions the adsorbent concerned later is made to contain and mixed liquor is prepared, it falls remarkably, and formation of a closure layer becomes difficult or the fluidity will damage an organic EL device with an adsorbent.

[0017] When the above-mentioned mixed liquor is prepared using an adsorbent with a small particle size, weight is the same, and although the fluidity of the mixed liquor concerned falls and formation of a closure layer becomes difficulty from the case where the above-mentioned mixed liquor is prepared using an adsorbent with a larger particle size, more as the result, since the effective-surface product is larger than an adsorbent with the adsorbent larger [particle size] with a small particle size, there is also much amount of adsorption. Therefore, the closure effectiveness is not necessarily small just because there is little amount of the adsorbent used

(weight). Although the desirable amount of the adsorbent used is based also on the class and particle size of an adsorbent, lessons is taken for it from 1ml of inactive liquids mentioned later, it is attached to 1ml of inactive liquids which are within the limits of 1mg - 10g in general, and are mentioned later more preferably, and is within the limits of 30mg - 3g in general. [0018] The inactive liquid which constitutes a closure layer with the adsorbent mentioned above in the approach of this invention is a stable liquid chemically and physically, for example, means a liquid with the stability of causing neither a chemical reaction nor the dissolution, even if it contacts other matter. As an example of such an inactive liquid, liquefied fluorination carbon, such as a perfluoro alkane, a perfluoro amine, and a perfluoro polyether, etc. is mentioned. Liquefied fluorination carbon is excellent in (1) electric insulation (for example, the dielectric breakdown voltage of Demnum S-20 shown in the table 1 cited below is 72kV when sample thickness is 2.5mm). (2) Since there is a property which is not dissolved in water and an oil and the wettability to (3) metals and the glass front face which do not have substantially dissolving the layer which constitutes the organic EL device is low, even when the organic EL device is formed on the substrate, the clearance between a substrate side and the electrode (what constitutes the organic EL device) of the right above of it is entered, and exfoliation of an electrode is not caused substantially -- it is an especially suitable inactive liquid from having the advantage of **.

[0019] Although the inactive liquid mentioned above is marketed, the closure layer prepared in the periphery of an organic EL device by the approach of this invention is the thing of 1 ppm or less of dissolved oxygen concentration, as mentioned above, and since it is far higher than 1 ppm, if the dissolved oxygen concentration of the inactive liquid of a commercial item remains as it is, it cannot be used for the approach of this invention. Here, the reason which limits the dissolved oxygen concentration of a closure layer to 1 ppm or less in the approach of this invention is that it will become difficult to control growth of a dark spot strongly if the dissolved oxygen concentration of a closure layer exceeds 1 ppm. Although it is more desirable as the dissolved oxygen concentration of a closure layer is low, within the limits of 0.01-1 ppm is desirable practically, and especially 0.1 ppm or less are desirable.

[0020] The inactive liquid used in order to form a closure layer has the dissolved oxygen concentration higher than 1 ppm in the phase before making an adsorbent contain, and although dissolved oxygen concentration is set to 1 ppm or less by having contained the adsorbent, a thing 1 ppm or less already has the desirable dissolved oxygen concentration in the phase before making an adsorbent contain from [in forming the closure layer which has the higher closure effectiveness]. Therefore, as for an inactive liquid, it is desirable to use it, after reducing dissolved oxygen concentration to 1 ppm or less by approaches, such as ordinary temperature vacuum degassing, freezing vacuum degassing, and an inert gas substitution method. According to the class of inactive liquid which whether dissolved oxygen concentration is reduced uses, it is suitably chosen by what kind of approach.

[0021] For example, although there are many to which the vapor pressure in 25 degrees C exceeds 10-2Torr in a perfluoro alkane or a perfluoro amine, since a degree of vacuum cannot be raised to below the vapor pressure even if it is going to perform an ordinary temperature vacuum deairing about that to which the vapor pressure in 25 degrees C exceeds 10-2Torr, and the evaporation advances easily under ordinary temperature, it is very difficult [it] to reduce dissolved oxygen concentration by ordinary temperature vacuum degassing. Therefore, about that to which the vapor pressure in 25 degrees C exceeds 10-2Torr, it is desirable to reduce dissolved oxygen concentration with freezing vacuum degassing or an inert gas substitution

method.

[0022] In reducing dissolved oxygen concentration by freezing vacuum degassing, it performs a series of actuation which consists of the process which freezes a degassing object (inactive liquid which is going to reduce dissolved oxygen concentration) using liquid nitrogen etc., a process which carries out vacuum suction of the degassing object in a freezing condition by 10 to 2 or less Torrs, and a process which dissolves the degassing object in a freezing condition the number of request times until the dissolved oxygen concentration in a degassing object is set to 1 ppm or less. When degassing objects are Sumitomo 3M 72 [FURORINATO FC-], FURORINATO FC-84, FURORINATO FC-77, FURORINATO FC-40 of FURORINATO FC-75 (all are trade names and these are all one sort of a perfluoro alkane.), or the company, FURORINATO FC-43, and FURORINATO FC-70 (all are trade names and these are all one sort of a perfluoro amine.), the specified substance is obtained by repeating the above-mentioned actuation 5 times or more in general. Moreover, when reducing dissolved oxygen concentration with an inert gas substitution method, 0.1-11. the inert gas for /(argon gas, nitrogen gas, gaseous helium, neon gas, etc.) is supplied to 50 cc of degassing objects, and the specified substance can be obtained by carrying out bubbling in general for 4 to 8 hours until the dissolved oxygen concentration in a degassing object is set to 1 ppm or less. Of the two approaches of these, the point that dissolved oxygen concentration is comparatively reducible by short-time actuation to freezing vacuum degassing is desirable.

[0023] On the other hand, since there is little evaporation under that the thing of 10 to 2 or less Torrs has much vapor pressure in 25 degrees C, and the vapor pressure under ordinary temperature has the low vapor pressure in 25 degrees C about the thing of 10 to 2 or less Torrs and ordinary temperature, dissolved oxygen concentration is reducible in a perfluoro polyether, with ordinary temperature vacuum degassing in addition to a vacuum freezing degassing method or an inert gas substitution method.

[0024] When the vapor pressure in 25 degrees C reduces the dissolved oxygen concentration of the inactive liquid which is 10 to 2 or less Torrs by ordinary temperature vacuum degassing, vacuum suction of the degassing object held at 160 degrees C or less is carried out by 10 to 2 or less Torrs until the dissolved oxygen concentration in the degassing object concerned is set to 1 ppm or less. At the time of degassing actuation, if the kinematic viscosity of a degassing object is 65 or less cSts, it can deaerate dissolved oxygen comparatively easily. Although it is desirable to carry out to heat etc. and to reduce the kinematic viscosity of a degassing object since sufficient degassing will become difficult in order that oxygen and moisture may bite firmly between molecules if the kinematic viscosity of the degassing object at the time of degassing actuation is high, degassing actuation becomes complicated in this case. Moreover, at the time of degassing, churning of a degassing object and/or the zeolite to the inside of a degassing object may be thrown in if needed. When using a zeolite, it is desirable to use what consists of porosity ingredients, such as a biscuit, glass, and polytetrafluoroethylene (Teflon), as this zeolite. If the kinematic viscosity of a degassing object is 65 or less cSts at the time of degassing actuation when obtaining the specified substance by ordinary temperature vacuum degassing, the time amount which degassing actuation takes is 0.1 - 2 hours in general. [0025] Moreover, when the vapor pressure in 25 degrees C reduces the dissolved oxygen concentration in the inactive liquid which is 10 to 2 or less Torrs with freezing vacuum degassing or an inert gas substitution method, actuation to that to which the vapor pressure in 25 degrees C exceeds 10-2Torr, and same actuation are performed. As for an intermediary, it is desirable to subtract dissolved oxygen concentration from the point that can reduce dissolved

oxygen concentration by short-time actuation also in three approaches mentioned above, and degassing actuation is easy, by ordinary temperature vacuum degassing into the inactive liquid whose vapor pressure in 25 degrees C is 10 to 2 or less Torrs.

[0026] The various perfluoro polyethers which dissolved oxygen concentration shows in Table 1 as an example of an inactive liquid in which a thing 1 ppm or less is obtained easily are mentioned by ordinary temperature vacuum degassing.

[Table 1]

. [able I] 表 1					
商	品 名	製造会社	25℃における	25℃における	
			蒸気圧(Torr)	動粘度 (cSt)	
デムナム	S-20	ダイキン工業(株)	10-6	5 3	
フォンブリ	ン Z03	モンテカチーニ(株)	10-4	30	
同	моз	同		3 0	
同	Y 0 4	同		38	
同	Y 0 6	同		60	
同	YLVAC08/6	同	10-8	6 2	
同	Z DEAL	同	10-4	20	
同	Z DIAC	同	10-5	60	
ガルデン	HT250	同	10-2	10	
同	HT270	可	10-2	20	

[0027] In addition, average molecular weight is 2700, by the sample of 2.5mm thickness, dielectric breakdown voltage is 72kV and the volume resistivity of Demnum S-20 in the above-mentioned table 1 is 1013-ohmcm under about 20 degrees C. And the structure expression is expressed with a bottom type (1).

[0028] Moreover, the structure expression of John Boleyn Z03 in Table 1 is expressed with a bottom type (2).

[Formula 2]

[0029] And the structure expression of Galden H250 in Table 1 is expressed with a bottom type (3).

[Formula 3]

[0030] Although the closure layer of 1 ppm or less of dissolved oxygen concentration which consists of an inactive liquid containing an adsorbent is prepared in the periphery of an organic EL device by the approach of this invention using the adsorbent mentioned above and the inactive liquid mentioned above, as for the aforementioned closure layer, it is desirable that a moisture content is especially 10 ppm or less while dissolved oxygen concentration is 1 ppm or less. Although it is also possible to form using the inactive liquid with which dissolved oxygen concentration is set to 1 ppm or less, and a moisture content is set to 10 ppm or less by containing an adsorbent and the adsorbent concerned, the closure layer whose moisture content is 10 ppm or less while dissolved oxygen concentration is 1 ppm or less It is desirable to form using the inactive liquid whose moisture content the dissolved oxygen concentration in the phase before containing an adsorbent and the adsorbent concerned from [in forming the closure layer which has the higher closure effectiveness] is 1 ppm or less, and is 10 ppm or less. [0031] In setting dissolved oxygen concentration in an inactive liquid to 1 ppm or less by ordinary temperature vacuum degassing, while setting dissolved oxygen concentration to 1 ppm or less by this approach, while dissolved oxygen concentration is 1 ppm or less, the inactive liquid whose moisture content is 10 ppm or less can be obtained by repeating degassing actuation further. Moreover, in setting dissolved oxygen concentration in an inactive liquid to 1 ppm or less with an inert gas substitution method, while setting dissolved oxygen concentration to 1 ppm or less by this approach, or while dissolved oxygen concentration is 1 ppm or less by ***** a little and for a long time about bubbling time amount, the inactive liquid whose moisture content is 10 ppm or less can be obtained. And by distilling an inactive liquid in a vacuum, dividing into a first drop, main distillation, and back ruble, and removing a first drop and back ruble, before setting dissolved oxygen concentration to 1 ppm or less by this approach, or after making it 1 ppm or less in setting dissolved oxygen concentration in an inactive liquid to 1 ppm or less by freezing vacuum degassing, while dissolved oxygen concentration is 1 ppm or less, the inactive liquid whose moisture content is 10 ppm or less can be obtained. While dissolved oxygen concentration is 1 ppm or less, by preparing the closure layer whose moisture content is 10 ppm or less, it becomes possible to control growth of a dark spot still more strongly.

[0032] In preparing a closure layer in the periphery of an organic EL device, a closure layer may be prepared in the periphery of the organic EL device concerned by immersing the whole organic EL device in the container into which the inactive liquid containing an adsorbent was put, but when the organic EL device is formed on the substrate, it is more desirable to prepare a closure layer as follows. That is, it is desirable to form a closure layer in the space which prepared wrap housing material in the outside of the organic EL device currently formed on the substrate, and was formed in it of the aforementioned substrate and the aforementioned housing material in the organic EL device in collaboration with the aforementioned substrate, forming an opening between the organic EL devices concerned.

[0033] As an example of the approach of preparing a closure layer in the periphery of an organic EL device using housing material, the approach of of the following (A) and (B) is mentioned. [0034] (A) How to form a closure layer by filling up the above-mentioned space formed of wrap

housing material with the organic EL device on the substrate with which this mixed liquor is prepared in the organic EL device, and the substrate concerned, after mixing an adsorbent and an inactive liquid and preparing mixed liquor. When preparing a closure layer by this approach, it is desirable to carry out in the glove compartment which carried out the ambient atmosphere permutation by the inside of the inert gas ambient atmospheres (nitrogen—gas—atmosphere mind, argon gas ambient atmosphere, etc.) which should not perform preparation of the above—mentioned mixed liquor in atmospheric air, but were dried, for example, dry inert gas. In preparation of mixed liquor, you may also fill with an inactive liquid the container which has held the adsorbent, and an adsorbent may be put into the container which has held the inactive liquid. Furthermore, besides the container which has held the container and the inactive liquid which have held the adsorbent, the container for mixed liquor preparation may be prepared separately, and an adsorbent and an inactive liquid may be put into this container that it is simultaneous or separately. When putting an adsorbent and an inactive liquid into the container for mixed liquor preparation separately, whichever may be put in first.

[0035] Formation of the closure layer using the above-mentioned mixed liquor can fill up the above-mentioned space with the mixed liquor concerned from the inlet which formed beforehand the organic EL device on the above-mentioned substrate with which the organic EL device is formed, or the substrate concerned in wrap housing material, and can be performed by closing the aforementioned inlet after restoration. It is desirable to also perform formation of a closure layer in the dry inert gas ambient atmosphere. This approach is suitable when preparing a closure layer by mixed liquor (inactive liquid containing an adsorbent) with a high fluidity. [0036] (B) How to put an adsorbent and an inactive liquid into the above-mentioned space formed of wrap housing material in the organic EL device on the substrate with which the organic EL device is formed, and the substrate concerned separately, and form a closure layer. Although this approach can be further kicked an exception to three of following (b1) – (b3), as for formation of a closure layer, also in any, it is desirable to carry out in the dry inert gas ambient atmosphere.

[0037] (b1) A closure layer is formed by filling up the above-mentioned space with an inactive liquid from the inlet which prepared housing material on the aforementioned substrate after installing an adsorbent on the field which is on the substrate with which the organic EL device top and the organic EL device concerned are formed, and is restored to the above-mentioned space, and was beforehand established in an aforementioned substrate or the aforementioned aforementioned housing material. An inlet is closed after restoration of an inactive liquid.

[0038] (b2) An adsorbent is put into the crevice which is in housing material and participates in formation of the above-mentioned space, and after preparing on the substrate with which this housing material is prepared in the organic EL device, a closure layer is formed by filling up the above-mentioned space with an inactive liquid from the inlet beforehand established in an aforementioned substrate or the aforementioned aforementioned housing material. An inlet is closed after restoration of an inactive liquid.

[0039] (b3) Housing material is prepared on the substrate with which the organic EL device is formed, the above-mentioned space is formed, and a closure layer is formed by putting an adsorbent and an inactive liquid into the above-mentioned space in random order from the inlet beforehand established in an aforementioned substrate or the aforementioned aforementioned housing material. An inlet is closed after restoration of an adsorbent and an inactive liquid. [0040] When preparing a closure layer in the periphery of an organic EL device using housing material, outside the organic EL device which it is going to close, rather than **, inside

dimension is the cap-like object which has a large crevice, a tabular object (for example, spot facing substrate), a sheet-like object, or a film-like object, and this housing material fixes it on a substrate, as the aforementioned housing material forms a substantial closed space in collaboration with the aforementioned substrate. At this time, the organic EL device for the closure will be in the condition of having been contained in the aforementioned crevice. When two or more organic EL devices are formed on the substrate, the aforementioned housing material may be prepared for every organic EL device, may prepare one thing common to all organic EL devices, and may prepare two or more things common to the plurality of all the organic EL devices. Similarly, the aforementioned crevice formed in housing material may be the thing of the magnitude which may correspond to each organic EL device and can contain all organic EL devices, and may be the thing of the magnitude which can contain the plurality of all the organic EL devices.

[0041] Arrangement of the housing material to a substrate top can be performed by making it fix using various adhesives, such as epoxy resin adhesive and acrylate resin system adhesives. As for back arrival material, what can space neither water nor oxygen easily is desirable, and Araldite AR-R30 (trade name of Ciba-Geigy epoxy resin adhesive) is mentioned as the example. Moreover, various resin, such as thermosetting resin and a photo-setting resin, can also be used instead of the above-mentioned adhesives.

[0042] As for the quality of the material of housing material, it is desirable that they are electric insulation matter, such as glass and a polymer, and soda lime glass, borosilicate salt glass, silic acid salt glass, silica glass, non-fluorescent glass, a quartz, acrylic resin, styrene resin, polycarbonate system resin, epoxy system resin, polyethylene, polyester, silicone system resin, etc. are mentioned as the example. Moreover, when using the electrode line by which pre-insulation of the organic EL device for the closure was carried out for electrode drawing, or when the housing material to a substrate top is fixed with the adhesives of electric insulation, or the resin of electric insulation, what consists of conductive metals, such as stainless steel and an aluminium alloy, as housing material may be used.

[0043] By preparing a predetermined closure layer in the periphery of an organic EL device as mentioned above, the closure of this invention made into the purpose can be performed. Moreover, the organic EL device of this invention made into the purpose at coincidence can be obtained.

[0044] Especially the component configuration of the organic EL device set as the object of the closure by the approach of this invention is not limited, and can be aimed at the organic EL device of various component configurations. Therefore, the component configuration of the organic EL device of this invention also takes various configurations.

[0045] As an example of the lamination of the organic EL device of the type which makes a substrate side the ejection side of light, the thing of following the (1) - (4) is mentioned for the order of a laminating on a substrate front face.

(1) An anode plate / luminous layer / cathode (2) anode plate / luminous layer / electronic injection layer / cathode (3) anode plate / electron hole transportation layer / luminous layer / cathode (4) anode plate / electron hole transportation layer / luminous layer / electronic injection layer / cathode [0046] Here, although a luminous layer is usually formed of one sort or two or more sorts of organic luminescent material, it may be formed with mixture with an organic luminescent material, a hole-injection ingredient, and/or an electron injection ingredient. Moreover, the protective layer for preventing invasion of the moisture to a component, as the component concerned is covered on the periphery of the component of lamination mentioned

above may be prepared.

[0047] When making a substrate side into the ejection side of light, the tabular object which the aforementioned substrate consists of matter which gives high permeability (in general 80% or more) to luminescence (EL light) from an organic EL device at least, and specifically consists of clear glass, a transparent plastic, a quartz, etc., a sheet-like object, or a film-like object is used. [0048] As an ingredient of an anode plate, cathode, a luminous layer, an electron hole transportation layer, an electronic injection layer, and a protective layer, various ingredients can be used, respectively. For example, the metal with a large (for example, 4eV or more) work function as an anode material, an alloy, electrical conductivity compounds, or such mixture are used preferably. As an example, metals, such as gold and nickel, dielectric transparent materials, such as CuI, ITO, SnO2, and ZnO, etc. are mentioned. Especially, the point of productivity or a controllability to ITO is desirable. Although the thickness of an anode plate is based also on an ingredient, it is usually selectable suitably within the limits of 10nm - 1 micrometer. [0049] Moreover, as a cathode material, a small (for example, 4eV or less) metal, an alloy, electrical conductivity compounds, or such mixture of a work function etc. are used preferably. As an example, rare earth metals, such as the alloy of a sodium and sodium-potassium alloy, magnesium, a lithium, magnesium, and silver or a mixed metal, aluminum, aluminum/AIO2, an indium, and an ytterbium, etc. are mentioned. Although the thickness of an anode plate is based also on an ingredient, it is usually selectable suitably within the limits of 10nm - 1 micrometer. Also in any of an anode plate and cathode, below hundreds of ohms / ** of the sheet resistance are desirable. In addition, in case an anode material and a cathode material are chosen, the magnitude of the work function made into criteria is not limited to 4eV.

[0050] The impregnation function in which an electron can be poured in from cathode or an electronic injection layer while the ingredient (organic luminescent material) of a luminous layer can pour in an electron hole from an anode plate or an electron hole transportation layer at the time of the luminous layer for organic EL devices, i.e., electric-field impression, What is necessary is just to be able to form the layer which has the transportation function to which the poured-in charge (an electron and an electron hole at least on the other hand) is moved by the force of electric field, the luminescence function to offer the place of the recombination of an electron and an electron hole and to tie this to luminescence, etc. As the example, the fluorescent brightener of systems, such as a benzothiazole system, a benzimidazole system, and a benzooxazole system, A metal chelation oxy-NOIDO compound, a styryl benzenoid compound, a JISUCHIRIRU pyrazine derivative, Polyphenyl system compound and 12-phtalo peri non, 1, 4-diphenyl-1,3-butadiene, 1, 1, 4, and 4-tetra-phenyl-1,3-butadiene, the North America Free Trade Agreement RUIMIDO derivative, The metal complex of a perylene derivative, an OKISA diazole derivative, an aldazine derivative, a PIRAJIRIN derivative, a cyclopentadiene derivative, a pyrrolo pyrrole derivative, a styryl amine derivative, a coumarin system compound, an aromatic dimethylidyne compound, and an eight-quinolinol derivative etc. is mentioned. Although especially the thickness of a luminous layer is not limited, it is usually suitably chosen within the limits of 5nm - 5 micrometers.

[0051] The ingredient (electron hole transportation ingredient) of an electron hole transportation layer should just have any of the transportability of an electron hole, and electronic obstruction nature they are. As the example, a triazole derivative, an OKISA diazole derivative, An imidazole derivative, the poly aryl alkane derivative, a pyrazoline derivative, A pyrazolone derivative, a phenylenediamine derivative, an arylamine derivative, An amino permutation chalcone derivative, an oxazole derivative, a styryl anthracene derivative, full --

me -- non -- a derivative, a hydrazone derivative, a stilbene derivative, and a silazane derivative -- Conductive polymer oligomer, such as a polysilane system compound, an aniline system copolymer, and thiophene oligomer, a porphyrin compound, an aromatic series tertiary-amine compound, a styryl amine compound, an aromatic series JIMECHIRI DIN system compound, etc. are mentioned. Although especially the thickness of an electron hole transportation layer is not limited, either, it is usually suitably chosen within the limits of 5nm -5 micrometers. An electron hole transportation layer may be 1 layer structure which consists of one sort of the ingredient mentioned above, or two sorts or more, and may be two or more layer structure which consists of two or more layers of the same presentation or a different-species presentation.

[0052] An electronic injection layer that what is necessary is just to have the function to transmit the electron poured in from cathode to a luminous layer as an example of the ingredient (electron injection ingredient) nitration full -- me -- non -- a derivative, an anthra quinodimethan derivative, and a diphenyl quinone derivative -- Heterocycle tetracarboxylic acid anhydrides, such as a thiopyran dioxide derivative and naphthalene perylene, A carbodiimide, a deflection ORENIRIDEN methane derivative, an anthra quinodimethan derivative, A thing, a JISUCHIRIRU pyrazine derivative, etc. with which the metal complex of an anthrone derivative, an OKISA diazole derivative, and an eight-quinolinol derivative, a metal free phthalocyanine, metal phthalocyanines, or these ends are permuted by the alkyl group, the sulfone radical, etc. are mentioned. Although especially the thickness of an electronic injection layer is not limited, either, it is usually suitably chosen within the limits of 5nm - 5 micrometers. An electronic injection layer may be 1 layer structure which consists of one sort of the ingredient mentioned above, or two sorts or more, and may be two or more layer structure which consists of two or more layers of the same presentation or a different-species presentation.

[0053] And the copolymer which is made to carry out copolymerization of the monomer mixture containing tetrafluoroethylene and at least one sort of comonomers as an example of the ingredient of a protective layer, and is obtained, The fluorine-containing copolymer which has cyclic structure in a copolymerization principal chain, polyethylene, polypropylene,

Polymethylmethacrylate, polyimide, polyurea, polytetrafluoroethylene,

Polychlorotrifluoroethylene resin, poly dichlorodifluoroethene, The copolymer of chlorotrifluoroethylene and dichlorodifluoroethene, The absorptivity matter of 1% or more of water absorption, and the dampproof matter of 0.1% or less of water absorption, Metals, such as In, Sn, Pb, Au, Cu, Ag, aluminum, Ti, and nickel, MgO, SiO, SiO2, aluminum 2O3, GeO, NiO, CaO, BaO and Fe 203, Y2 O3, and TiO2 etc. -- a metallic oxide, MgF2, LiF, AIF3, and CaF2 etc. -- a metal fluoride etc. is mentioned.

[0054] Moreover, it is not limited especially about the formation approach of each class (an anode plate and cathode are included) which constitutes the organic EL device for the closure, either, as the formation approach of an anode plate, cathode, a luminous layer, an electron hole transportation layer, and an electronic injection layer -- a vacuum deposition method, a spin coat method, the cast method, the sputtering method, and LB -- although law etc. is applicable, about a luminous layer, it is desirable to apply approaches other than the sputtering method (LB a vacuum deposition method, a spin coat method, the cast method, law, etc.). As for especially a luminous layer, it is desirable that it is the molecule deposition film. the thing of the thin film which deposition was carried out to the molecule deposition film from the ingredient compound of a gaseous-phase condition here, and was formed, and the film solidified and formed from the ingredient compound of a solution condition or a liquid phase condition -- it is -- usually -- this

molecule deposition film -- LB -- with the thin film (molecule built up film) formed of law, it is classifiable with the difference of condensation structure and higher order structure, and the functional difference resulting from it. In forming a luminous layer with a spin coat method etc., it prepares a coating solution by melting a binder and ingredient compounds, such as resin, to a solvent..

[0055] a protective layer — a vacuum deposition method, a spin coat method, the sputtering method, the cast method, and MBE (molecular beam epitaxy) — law, the ionized cluster beam method, the ion plating method, a plasma polymerization method (the high-frequency excitation ion plating method), a reactive-sputtering method, a plasma-CVD method, a laser CVD method, a heat CVD method, a gas source CVD method, etc. are applicable.

[0056] The formation approach of each class can be suitably changed according to the ingredient to be used. If a vacuum deposition method is used in formation of each class which constitutes an organic EL device, since an organic EL device can be formed only with this vacuum deposition method, it is advantageous when aiming at simplification of a facility, and compaction of the production time.

[0057] Since generating of a dark spot and growth of a dark spot are strongly controlled by existence of a closure layer in the organic EL device of this invention which it comes to close by preparing the closure layer mentioned above on the periphery of the organic EL device for the closure mentioned above, a component life is long.

[0058]

[Example] Although explained hereafter, contrasting the example of this invention with the example of a comparison, the manufacture approach of the organic EL device used as an object of the closure in each example and each example of a comparison is explained beforehand. In producing the organic EL device for the closure, what formed the ITO film of 100nm of thickness with vacuum deposition was first prepared as a transparence support substrate on the 25mmx75mmx1.1mm glass substrate. When the light transmittance of this substrate was measured with UV-3100PC by Shimadzu Corp., it was about 80% in the 400-600nm wavelength region. Subsequently this substrate was cleaned ultrasonically for 5 minutes in pure water for 5 minutes in isopropyl alcohol, respectively, and further SAMUKO International Lab washing [***** UV ozone] for equipments was performed for 10 minutes.

[0059] Next, while this substrate is fixed to the substrate electrode holder of commercial vacuum evaporationo equipment (product made from Japanese Vacuum technology) It is an N and N'-screw () to the resistance heating boat made from molybdenum. [3-methylphenyl-N, N'-diphenyl [1 and 1'-biphenyl]-4,] [4'-diamine] After putting in (it having been hereafter written as TPD) and putting 200mg (it is hereafter written as DPVBi) of 4 and 4'-bis(2 and 2'-diphenyl vinyl) biphenyls into the different resistance heating boat made from molybdenum, the vacuum tub was decompressed up to 1x10 to 4 Pa. [200mg]

[0060] Then, heated said boat containing TPD to 215–220 degrees C, TPD was made to vapor–deposit on said ITO film by the evaporation rate 0.1-0.3 nm/s, and the electron hole transportation layer of 60nm of thickness was formed. The substrate temperature at this time was a room temperature. Without taking this out from a vacuum tub, following on membrane formation of an electron hole transportation layer, heated said boat containing DPVBi to 240 degrees C, DPVBi was made to vapor–deposit on said electron hole transportation layer by the evaporation rate 0.1-0.3 nm/s, and the luminous layer of 40nm of thickness was formed. The substrate temperature at this time was also a room temperature.

[0061] From the vacuum tub, the mask made from stainless steel was installed on drawing and

the above-mentioned luminous layer, and this was again fixed to the substrate electrode holder. Subsequently, 200mg (it is hereafter written as Alq3) of tris (eight quinolinol) aluminum was put into the boat made from molybdenum, and magnesium ribbon 1g was put into the different boat made from molybdenum, further, silver wire 500mg was put into the basket made from a tungsten, and the vacuum tub was equipped with these boats.

[0062] Next, it is Alq3 after decompressing a vacuum tub up to 1x10 to 4 Pa. Said boat of entering is heated to 230 degrees C, and it is Alq3. It was made to vapor-deposit on said luminous layer by the evaporation rate 0.01 - 0.03 nm/s, and the electronic injection layer of 20nm of thickness was formed. Furthermore, while making silver vapor-deposit on said glue line by evaporation rate 0.1 nm/s, magnesium was made to vapor-deposit on said glue line by evaporation rate 1.4 nm/s, and the counterelectrode of 150nm of thickness which consists of a mixed metal of magnesium and silver was formed. When the reflection factor of this counterelectrode was measured with UV-3100PC by Shimadzu Corp., it was 80% in the 400-600nm wavelength region.

[0063] When even a counterelectrode formed as mentioned above, the organic EL device the target [the closure] as which the purpose is set was obtained. This organic EL device is Alq3 as the ITO film as an anode plate, the TPD layer as an electron hole transportation layer, the DPVBi layer as a luminous layer, and an electronic injection layer on the 1 main front face of a glass substrate. It comes to carry out the laminating of a layer and the magnesium-silver mixing metal layer as a counterelectrode one by one. Some ITO film and a part of magnesium-silver mixing metal layer serve as the electrode line for electrode ejection, respectively, and the magnitude on the plane view of a luminous layer is 6mmx10mm.

[0064] Example 1 (1) dissolved oxygen concentration Preparation **** of an inactive liquid 1 ppm or less, A perfluoro polyether (Demnum S-20 (trade name; vapor pressure 10-6Torr [in 25 degrees C], kinematic viscosity 53cSt in 25 degrees C) by Daikin Industries, LTD.) is prepared as an inactive liquid before adjusting dissolved oxygen concentration. The suitable amount of this Demnum S-20 was put into the glass specimen container with a vacuum cock, and this specimen container and a vacuum pump with a diffusion pump (ULVAC VPC-050 made from Japanese Vacuum technology) were connected using the flange. Next, dissolved oxygen was discharged by ordinary temperature vacuum degassing for about 30 minutes until it carried out vacuum suction of the inside of the specimen container concerned even to 10-4Torr and foaming was lost, having inserted the zeolite made from polytetrafluoroethylene (Teflon) into Demnum S-20 included in the above-mentioned specimen container, and agitating in ordinary temperature. Then, the vacuum cock was closed and saved.

[0065] Thus, when some prepared inactive liquids were sampled and dissolved oxygen concentration and a moisture content were measured, dissolved oxygen concentration was 0.05 ppm and the moisture content was 5 ppm. In addition, SUD-1 (trade name of a measuring device) by central science incorporated company was used for measurement of dissolved oxygen concentration, and measured value was read after the display numeric value was stabilized after a sink and about 20 seconds in 50ml the constant flow for /in the inactive liquid into the sensor part of above equipment all over the glove compartment which permuted the ambient atmosphere with nitrogen gas. Moreover, measurement of the moisture content in an inactive liquid was performed with the Karl Fischer titration method.

[0066] (2) The activated alumina (the Hiroshima Wako Pure Chem make: about 300 meshes of particle size) was prepared as an activation adsorbent of an adsorbent, the suitable amount of this activated alumina was put into the glass specimen container with a vacuum cock, and a

specimen container and a vacuum pump concerned were connected using the flange. Next, vacuum suction of the inside of the above-mentioned specimen container was carried out to 10-4Torr under ordinary temperature, and vacuum suction was performed further, heating at a heater the part in which the activated alumina is accumulated in the specimen container concerned at 280 degrees C. Said vacuum suction while heating was continued for 5 hours, and the vacuum cock was closed and saved next until generating of the gas from an activated alumina was lost and the degree of vacuum was stabilized.

[0067] (3) Closure **** and glass cap mold housing material (seat GURI substrate by the Toyokazu industrial company) were prepared. This housing material has one crevice whose inside dimension is 13mmx13mmx1mm, and that outside ** is 15mmx15mmx1.8mm. The inlet for pouring in an inactive liquid etc. is established in the bottom of the crevice of this housing material. Next, as the organic EL device for the closure was settled in the aforementioned crevice, the glass substrate with which the aforementioned organic EL device is formed, and the above-mentioned housing material were stuck by epoxy resin adhesive (Ciba-Geigy Araldite AR-R30). At this time, an organic EL device is in the space formed by the crevice and substrate of housing material, and an organic EL device and housing material have it in a non-contact condition.

[0068] After leaving it for 3 hours and solidifying adhesives, the vacuum drying was carried out using the vacuum desiccator. It moved in the glove compartment which carried out the ambient atmosphere permutation of the thing after a vacuum drying with the dry nitrogen gas. Moreover, the aforementioned specimen container containing the inactive liquid prepared above (1) and the aforementioned specimen container containing the adsorbent which performed activation by the above (2) were moved in the above-mentioned glove compartment. And the specified quantity of an adsorbent was added and agitated in the specimen container containing an inactive liquid, and the inactive liquid (henceforth "mixed liquor") containing an adsorbent was prepared. This mixed liquor contains 500mg of adsorbents per 1ml of inactive liquids, and that dissolved oxygen concentration is 1 ppm or less. Then, it poured in from the inlet in which the aforementioned mixed liquor is prepared by the above-mentioned housing material, and the space currently formed by the crevice and substrate of housing material was filled up with the aforementioned mixed liquor.

[0069] Epoxy system adhesives (Ciba-Geigy Araldite AR-R30) closed the aforementioned inlet after restoration of mixed liquor, and in the above-mentioned glove compartment, and it was left all over the glove compartment for about 3 hours until adhesives solidified.

[0070] By having filled up with the above-mentioned mixed liquor the space currently formed by the crevice and substrate of housing material, the closure layer was formed in the periphery of the organic EL device for the closure, and, thereby, the target closure was made. Moreover, the target organic EL device was obtained by coincidence. The outline of the cross section of this organic EL device (that by which the closure was carried out) is shown in drawing 1. As shown in drawing 1, the organic EL device 1 after the closure obtained in the top comes to prepare the closure layer 20 which becomes the periphery of the organic EL device 10 for the closure from the mixed liquor (inactive liquid containing an adsorbent) of inactive liquid 20a prepared above (1) and adsorbent 20b which performed activation by the above (2).

[0071] The organic EL device 10 for the closure is Alq3 as the ITO film 12 as an anode plate, the TPD layer 13 as an electron hole transportation layer, the DPVBi layer 14 as a luminous layer, and an electronic injection layer on a glass substrate 11. The laminating of a layer 15 and the magnesium-silver mixing metal layer 16 as a counterelectrode (cathode) is carried out one by

one. and some ITO film 12 — a part of 12a and magnesium—silver mixing metal layer 16 — 16a is an electrode line for electrode ejection, respectively. This organic EL device 10 is in the space formed on the glass substrate 11 with the crevice of the housing material 18 which fixed by the epoxy resin system 17, and the aforementioned glass substrate 11, and this space is filled up with the above—mentioned mixed liquor. The closure layer 20 is formed in the periphery of an organic EL device 10 as the result. The closure layer 20 is formed by pouring in from the inlet 19 in which the mixed liquor which mixed and obtained inactive liquid 20a prepared above (1) and adsorbent 20b which performed activation by the above (2) was prepared by the housing material 18, and the closure of the aforementioned inlet 19 is carried out by epoxy—resin—adhesive 17a after formation of the closure layer 20.

[0072] (4) Connect a direct-current constant current power supply to the organic EL device (that by which the closure was carried out) obtained by the evaluation above (3) of the closure effectiveness through two electrode lines of the organic EL device concerned, and initial brightness is 100 cd/m2 under 25 degrees C and atmospheric pressure. It energized so that it might become. The current value at this time was 0.56mA, and the electrical-potential-difference value was 9V. In addition, measurement of brightness was performed using the color color difference meter (trade name CS-100) by Minolta Camera Co., Ltd. It was 0.20%, when the enlargement (one 10 times the scale factor of this) of a

Ltd. It was 0.20%, when the enlargement (one 10 times the scale factor of this) of a luminescence side was succeedingly taken to the above-mentioned energization and it asked for the ratio (henceforth "the surface ratio non-emitted light") of the gross area on the plane view of the dark spot to the area on the plane view of a luminescence side from this photograph. Moreover, it was 15 micrometers when asked for the diameter of one certain dark spot. Next, it asked for the surface ratio non-emitted light by the same technique as the above five days and 30 days after energization initiation, and coincidence was asked for the diameter of the same dark spot as the above-mentioned thing. These results are shown in Table 2.

[0073] Mg powder (Kojundo Chemical Laboratory Make: 80 or less meshes of particle size) was prepared as example 2 adsorbent, and activation was performed to the Mg powder concerned as follows. First, it filters, after putting a suitable quantity of Mg powder into a beaker, putting 1M hydrochloric—acid water solution into this beaker and leaving it for several minutes, and residue (Mg powder) is rinsed by sufficient quantity of dehydrated ethanol. The residue (Mg powder) after rinsing is moved to a glass specimen container with a vacuum cock, and the cock of the specimen container concerned is closed. All the actuation so far is performed in the glove compartment in the condition of having carried out the flow of the desiccation nitrogen gas. The above—mentioned specimen container (thing containing residue (Mg powder)) after closing a cock is picked out from a glove compartment, and vacuum suction is performed like an example 1 until evaporation of ethanol is lost and a degree of vacuum is stabilized about Mg powder in the specimen container concerned. Vacuum suction at this time is performed under a room temperature, without heating at a heater the part in which Mg powder is accumulated in the above—mentioned specimen container.

[0074] Except having used as an adsorbent Mg powder which performed activation as mentioned above, the organic EL device was closed like the example 1, and the target organic EL device was obtained to coincidence. The closure layer at this time contains 500mg of adsorbents per 1ml of inactive liquids, and that dissolved oxygen concentration is 1 ppm or less. The closure effectiveness as well as an example 1 (4) was evaluated about the organic EL device after the closure. This result is shown in Table 2.

[0075] The powder (300 or less meshes of particle size) of CaSO4.1 / 2H2O (the product made

from Wako Pure Chem Industry: calcined plaster) is used as example 3 adsorbent. Whenever [at the heater which hits the adsorbent concerned performing activation / stoving temperature] is made into 240 degrees C. And except having made 200mg of adsorbents contain per 1ml of inactive liquids, and having prepared mixed liquor (inactive liquid containing an adsorbent), the organic EL device was closed like the example 1, and the target organic EL device was obtained to coincidence. The dissolved oxygen concentration of the closure layer at this time is 1 ppm or less. The closure effectiveness as well as an example 1 (4) was evaluated about the organic EL device after the closure. This result is shown in Table 2.

[0076] The organic EL device was closed like the example 1 except having not used example of comparison 1 adsorbent. And the closure effectiveness as well as an example 1 (4) was evaluated about the organic EL device after the closure. This result is shown in Table 2. [0077] The organic EL device was closed like the example 1 except having used the example of comparison 2 perfluoro polyether (Demnum S-20 (trade name) by Daikin Industries, LTD.) as an

inactive liquid as it was, without carrying out a vacuum deairing. And the closure effectiveness as well as an example 1 (4) was evaluated about the organic EL device after the closure. This result is shown in Table 2.

[0078] The example of comparison 3 activated alumina (the Hiroshima Wako Pure Chem make: about 300 meshes of particle size) was once put to atmospheric air, and the organic EL device was closed like the example 1 except having used it as an adsorbent, without performing activation next. Since the oxygen which was sticking to the adsorbent began to have melted into the inactive liquid, the dissolved oxygen concentration of the mixed liquor (inactive liquid containing an adsorbent) used for formation of a closure layer was 5.0 ppm. And the closure effectiveness as well as an example 1 (4) was evaluated about the organic EL device after the closure. This result is shown in Table 2.

[0079]

[Table 2]

表 2						
	無発光面積比(%)			ダークスポットの直径(μπ)		
	初 期	5 日後	30日後	初期	5 日後	30日後
実施例1	0.20	0.20	0.25	15	. 15	1 7
実施例2	0.20	0.20	0.25	15	15	17
実施例3	0.20	0.20	0.25	15	15	17
比較例1	0.20	0.25	12	15	17	80
比較例2	0.20	4.0	50	15	5,0	300
比較例3	0.20	4.0	50	15	50	300

[0080] In each organic EL device closed in the example 1 – the example 3, both increase of the surface ratio non-emitted light with time and growth of a dark spot with time were strongly controlled so that clearly from Table 2. Although increase of the surface ratio non-emitted light with time and growth of a dark spot with time are comparatively controlled in the organic EL device closed in the example 1 of a comparison on the other hand, compared with the organic EL device closed in the example 1 – the example 3, the closure effectiveness is low. Moreover, increase of the surface ratio non-emitted light with time and growth of a dark spot with time are large, and the closure effectiveness is [in / both / the organic EL device closed in the example 2 of a comparison] low. And in the example 3 of a comparison which used it, without performing activation once putting an adsorbent to atmospheric air, and formed the closure layer whose

[0081]

[Effect of the Invention] As explained above, according to the approach of this invention, growth of the dark spot in an organic EL device can be controlled strongly. Therefore, it becomes possible by carrying out this invention to offer the long organic EL device of a component life.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the schematic diagram of the cross section of the organic EL device (that by which the closure was carried out) obtained in the example 1.

[Description of Notations]

- 1 Organic EL Device after Closure
- 10 Organic EL Device for Closure
- 11 Glass Substrate
- 17 Epoxy Resin Adhesive
- 17a Epoxy resin adhesive
- 18 Housing Material
- 19 Inlet
- 20 Closure Layer
- 20a An inactive liquid
- 20b Adsorbent

[Translation done.]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Translation done.]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-35868

(43)公開日 平成9年(1997)2月7日

技術表示箇所

(51) Int.Cl.6

H05B 33/04

33/10

設別記号

庁内整理番号

FΙ

H05B 33/04

33/10

審査請求 未請求 請求項の数9 OL (全 12 頁)

(21)出願番号

(22)出願日

特願平7-185968

平成7年(1995)7月21日

(71)出願人 000183646

出光興産株式会社

東京都千代田区丸の内3丁目1番1号

(72)発明者 福岡 賢一

千葉県袖ケ浦市上泉1280番地 出光興産株

式会社内

(72)発明者 藤田 正登

東京都千代田区丸の内三丁目1番1号 出

光興産株式会社内

(74)代理人 弁理士 中村 静男 (外2名)

(54) 【発明の名称】 有機EL素子の封止方法および有機EL素子

(57)【要約】

【課題】 従来の封止方法によっては、有機EL素子に おけるダークスポットの生成やその成長を十分に抑える ことが困難である。

【解決手段】 陽極と陰極とが少なくとも発光層を介し て積層されてる有機EL索子の外周に、吸着剤を含有し た不活性液体からなる溶存酸素濃度 1 ppm以下の封止 層を設けることによって、有機EL素子を封止する。

1

【特許請求の範囲】

【請求項1】 陽極と陰極とが少なくとも発光層を介し て積層されてる有機EL素子の外周に、吸着剤を含有し た不活性液体からなる溶存酸素濃度1ppm以下の封止 層を設けることを特徴とする有機EL素子の封止方法。

【請求項2】 吸着剤として、(1) 活性アルミナ,ケイ ソウ土、活性炭、半水セッコウ、五酸化リン、過塩素酸 マグネシウム、水酸化カリウム、硫酸カルシウム、臭化 カルシウム、酸化カルシウム、塩化亜鉛、臭化亜鉛およ び無水硫酸銅から選ばれた無機化合物、(2) リチウム, ベリリウム、カリウム、ナトリウム、マグネシウム、ル ビジウム、ストロンチウムおよびカルシウムからなる金 属群から選ばれた金属、(3) 前記金属群から選ばれた金 属同士の合金、または、(4) アクリル系吸水性ポリマー もしくはメタアクリル系吸水性ポリマー、を用いる、請 求項1に記載の方法。

【請求項3】 吸着剤として活性化処理を施した吸着剤 を用いる、請求項1または請求項2に記載の方法。

【請求項4】 不活性液体1ミリリットルにつき吸着剤 を1mg~10g含有させる、請求項1~請求項3のい 20 ずれか1項に記載の方法。

不活性液体として溶存酸素濃度が1pp 【請求項5】 m以下の不活性液体を用いる、請求項1~請求項4のい ずれか1項に記載の方法。

【請求項6】 不活性液体として、25℃における蒸気 圧が10⁻¹Torr以下の液状フッ素化炭素を用いる、請求 項1~請求項5のいずれか1項に記載の方法。

【請求項7】 不活性液体として、水分量が10ppm 以下の不活性液体を用いる、請求項1~請求項6のいず れか1項に記載の方法。

【請求項8】 基板上に形成されている有機EL素子の 外側に、前記有機EL素子との間に空隙を形成しつつ前 記基板と共同して前記有機EL素子を覆うハウジング材 を設け、前記基板と前記ハウジング材とによって形成さ れた空間に封止層を形成する、請求項1~請求項7のい ずれか1項に記載の方法。

【請求項9】 請求項1~請求項8のいずれか1項に記 載の方法により封止されていることを特徴とする有機E **L**素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、有機エレクトロル ミネッセンス素子(以下、有機EL素子と略記する)の 封止方法と、封止された有機EL素子とに関する。

[0002]

【従来の技術】EL素子は自己発光のため視認性が高 く、また、完全固体素子であるため耐衝撃性に優れてい る。このような特徴を有していることから、現在では、 発光材料として無機化合物を用いた種々の無機EL素子 機発光材料という)を用いた種々の有機EL素子が提案 されており、かつ実用化が試みられている。なかでも有 機EL素子は、無機EL素子に比べて印加電圧を大幅に 低下させることができるため、より高性能の有機EL素 子を得るための開発が活発に進められている。

【0003】有機EL素子の基本構成は陽極、発光層、 陰極が順次積層された構成であり、との有機EL素子は 多くの場合、基板上に形成される。このとき、陽極と陰 極の位置は逆転することもある。また、性能を向上させ るために、陽極と発光層の間に正孔輸送層を設けたり、 陰極と発光層との間に電子注入層を設けたりする場合が ある。発光層は、通常、1種または複数種の有機発光材 料により形成するが、有機発光材料と正孔輸送材料およ び/または電子注入材料との混合物により形成する場合 もある。

【0004】また、有機EL素子を構成する1対の電極 (陽極および陰極) のうち、光取出し面側に位置する電 極は、光の取出し効率を向上させるため、また、面発光 素子としての構成上、透明ないし半透明の薄膜からな る。一方、光取出し面とは反対の側に位置する電極(以 下、対向電極という)は、特定の金属薄膜(金属、合 金、混合金属等の薄膜)からなる。

【0005】上記の構成を有する有機EL素子は電流駅 動型の発光素子であり、発光させるためには陽極と陰極 との間に高電流を流さなければならない。その結果、発 光時において素子が発熱し、素子の周囲に酸素や水分が あった場合にはこれらの酸素や水分による素子構成材料 の酸化が促進されて素子が劣化する。酸化や水による素 子の劣化の代表的なものはダークスポットの発生および その成長である。ダークスポットとは発光欠陥点のこと である。そして、有機EL素子の駆動に伴って当該素子 の構成材料の酸化が進むと、既存のダークスポットの成 長が起こり、ついには発光面全体にダークスポットが拡 がる。

【0006】上記の劣化を抑えるため、従来より種々の 方法が提案されている。例えば特開平5-41281号 公報には、劣化原因の一つである水分を取り除く方法と して、液状フッ素化炭素に合成ゼオライト等の脱水剤を 含有させてなる不活性液状化合物中に有機EL素子を保 40 持する方法が開示されている。また、特開平5-114 486号公報には、陽極と陰極の少なくとも一方の上に フルオロカーボン油を封入した放熱層を設け、素子駆動 の際に発生する熱を前記の放熱層より放熱することで素 子の発光寿命を長くする方法が開示されている。

[0007]

【発明が解決しようとする課題】しかしながら、上述し た従来の方法よっても、ダークスポットの生成や成長を 十分に抑えることは困難であった。その理由は次のよう に推察される。すなわち、有機EL素子の封止過程や封 や、発光材料として有機化合物(以下、この化合物を有 50 止後において当該有機EL素子に侵入する水分を脱水剤 によって取り除くことはダークスポットの生成や成長を抑制するうえから有用な手段の1つであるが、ダークスポットの生成や成長の原因は水分の侵入のみにあるのではなく、液状フッ素化炭素やフルオロカーボン油中に溶存している酸素の方がむしろ大きく影響している。液状フッ素化炭素やフルオロカーボン油は非常に良く気体を溶解し、例えばパーフルオロアミン(住友スリーエム社製のフロリナートFC-70(商品名))は100ミリリットル中に最大22ミリリットルもの空気を溶解する(溶存酸素濃度63ppm)。

【0008】本発明の目的は、有機EL素子におけるダークスポットの成長を強く抑制することができる有機E L素子の封止方法およびダークスポットの成長が起こり にくい有機EL素子を提供することにある。

[0009]

【課題を解決するための手段】上記の目的を達成する本発明の有機EL素子の封止方法は、陽極と陰極とが少なくとも発光層を介して積層されてる有機EL素子の外周に、吸着剤を含有した不活性液体からなる溶存酸素濃度1ppm以下の封止層を設けることを特徴とするもので20ある。

【0010】また、上記の目的を達成する本発明の有機 EL素子は、上述した本発明の方法により封止されてい ることを特徴とするものである。

[0011]

【発明の実施の形態】以下、本発明の実施の形態について詳細に説明する。まず、本発明の有機EL素子の封止方法について説明すると、この方法では上述のように、有機EL素子の外周に、吸着剤を含有した不活性液体からなる溶存酸素濃度1ppm以下の封止層を設ける。

【0012】 ここで、上記の吸着剤は、有機EL素子の封止過程や封止後において外部から当該有機EL素子に酸素や水分が侵入するのを防ぐためのものである。この吸着剤は、酸素や水を吸着するものであれば特に限定されるものではないが、吸着量が多く、一度吸着した酸素や水を放出しにくい性質を有しているものが望ましい。吸着剤の形状は特に限定されるものではないが、粉状のものの方が吸着面積が大きくなるので好ましい。

【0013】本発明の方法で使用することができる吸着剤の具体例としては、(1) 活性アルミナ、ケイソウ土、活性炭、半水セッコウ、五酸化リン、過塩素酸マグネシウム、水酸化カリウム、硫酸カルシウム、臭化カルシウム、酸化カルシウム、塩化亜鉛、臭化亜鉛および無水硫酸銅から選ばれた無機化合物、(2) リチウム、ベリリウム、カリウム、ナトリウム、マグネシウム、ルビジウム、ストロンチウムおよびカルシウムからなる金属群から選ばれた金属、(3) 前記金属群から選ばれた金属の一台の合金、および、(4) アクリル系吸水性ボリマーもしくはメタアクリル系吸水性ボリマー、が挙げられる。吸着剤は、1種のみを用いてもよいし、2種以上を併用して

もよい。

【0014】吸着剤は、十分な吸着力を保持した状態下で使用することが望ましく、そのためには、使用する前に当該吸着剤に吸着されている酸素や水分を除去しておくことが好ましい(吸着剤に吸着されている酸素や水分を除去するための処理を、本発明では「活性化処理」という。)。吸着剤の活性化処理は、吸着剤の種類に応じて異なるが、吸着剤を加熱する、吸着剤を真空引きする、吸着剤を不活性ガス気流中に放置する、吸着剤の表面を切削除去する等の方法や、これらの方法の2つ以上を組み合わせた方法により行うことができる。

【0015】吸着剤についての活性化処理は、当該吸着剤を外気から隔離して行うことが好ましい。また、活性化処理後の吸着剤についても、その活性が低下するのを防止するうえから、後述する封止層の形成に使用するまで外気から隔離しておくことが好ましい。例えば加熱や真空引きによる活性化処理は、真空コック付きの容器のような外気を遮断することができる容器に吸着剤を収納した状態で行い、活性化処理が終了した後はコックを閉じて、外気を遮断した状態でその使用時まで当該活性化処理後の吸着剤を保存することが好ましい。

【0016】本発明の方法では、上述の吸着剤を含有した不活性液体からなる溶存酸素濃度1ppm以下の封止層を有機EL素子の外周に設けるわけであるが、このときの吸着剤の使用量は、その種類に応じて適宜選択可能である。一般に吸着剤の使用量が多い方が吸着効果が高いが、吸着剤の使用量が多すぎると、当該吸着剤を後述する不活性液体に含有させて混合液を調製したときにその流動性が著しく低下して封止層の形成が困難になったり、吸着剤によって有機EL素子を傷つけることになったりする。

【0017】粒径の小さい吸着剤を使用して上記の混合液を調製した場合には、重量が同じで粒径がより大きい吸着剤を使用して上記の混合液を調製した場合よりも当該混合液の流動性が低下し、その結果として封止層の形成がより困難になるが、粒径の小さい吸着剤の方が粒径の大きい吸着剤よりも有効表面積が大きいことから吸着重も多い。したがって、吸着剤の使用量(重量)が少ないからといって必ずしも封止効果が小さいという訳ではない。吸着剤の好ましい使用量は、吸着剤の種類および粒径にもよるが、後述する不活性液体1ミリリットルにつき概ね1mg~10gの範囲内であり、より好ましくは、後述する不活性液体1ミリリットルにつき概ね30mg~3gの範囲内である。

【0018】本発明の方法において上述した吸着剤とともに封止層を構成する不活性液体とは、化学的、物理的に安定な液体のことであり、例えば他物質と接触しても化学反応や溶解を起こさない等の安定性を持つ液体を意味する。このような不活性液体の具体例としてはパーフルオロアルカン、パーフルオロアミン、パーフルオロボ

リエーテル等の液状フッ素化炭素等が挙げられる。液状フッ素化炭素は、(1)電気絶縁性に優れている(例えば後掲の表1に示すデムナムS-20の絶縁破壊電圧は試料厚が2.5mmの場合72kVである)、(2)水にも油にも溶解しない性質があることから有機EL素子を構成している層を溶解することが実質的にない、

(3)金属やガラス表面に対する濡れ性が低いため、有機EL素子が基板上に設けられている場合でも基板面とその直上の電極(有機EL素子を構成しているもの)との隙間に入り込んで電極の剥離を起こすことが実質的にない、等の利点を有していることから、特に好適な不活性液体である。

【0019】上述した不活性液体は市販されているが、本発明の方法で有機EL素子の外周に設ける封止層は前述したように溶存酸素濃度1ppm以下のものであり、市販品の不活性液体の溶存酸素濃度は1ppmより遥かに高いので、そのままでは本発明の方法に使用することができない。ここで、本発明の方法において封止層の溶存酸素濃度を1ppm以下に限定する理由は、封止層の溶存酸素濃度が1ppmを超えるとダークスポットの成20長を強く抑制することが困難になるからである。封止層の溶存酸素濃度は低ければ低いほど好ましいが、実用上は0.01~1ppmの範囲内が好ましく、特に0.1ppm以下が好ましい。

【0020】封止層を形成するために使用する不活性液体は、吸着剤を含有させる前の段階での溶存酸素濃度が1ppmより高く、吸着剤を含有したことによって溶存酸素濃度が1ppm以下になるものであってもよいが、より高い封止効果を有する封止層を形成するうえからは、吸着剤を含有させる前の段階での溶存酸素濃度が既30に1ppm以下のものが好ましい。したがって、不活性液体は常温真空脱気法、凍結真空脱気法、不活性ガス置換法等の方法により溶存酸素濃度を1ppm以下に減じてから使用することが好ましい。どのような方法によって溶存酸素濃度を減じるかは、使用する不活性液体の種類に応じて適宜選択される。

【0021】例えば、バーフルオロアルカンやバーフルオロアミンでは25℃における蒸気圧が10~Torrを超えるものが多いが、25℃における蒸気圧が10~Torrを超えるものについて常温真空脱気を行おうとしてもその蒸気圧以下にまで真空度を上げることができず、また、常温下でその蒸発が容易に進行することから、常温真空脱気法により溶存酸素濃度を減じることは極めて困難である。したがって、25℃における蒸気圧が10~Torrを超えるものについては凍結真空脱気法や不活性ガス置換法により溶存酸素濃度を減じることが好ましい。【0022】凍結真空脱気法により溶存酸素濃度を減じる場合には、例えば、液体窒素等を用いて脱気対象物(溶存酸素濃度を減じようとする不活性液体)を凍結させる工程と、凍結状態にある暗気対象物を10~Torrelly

下で真空引きする工程と、凍結状態にある脱気対象物を 融解させる工程とからなる一連の操作を、脱気対象物中 の溶存酸素濃度が1ppm以下になるまで所望回数行 う。脱気対象物が住友スリーエム社製のフロリナートF C-72、フロリナートFC-84、フロリナートFC -77, フロリナートFC-75 (いずれも商品名であ り、これらは全てパーフルオロアルカンの1種であ る。)や同社のフロリナートFC-40、フロリナート FC-43, フロリナートFC-70 (いずれも商品名 であり、これらは全てパーフルオロアミンの1種であ る。)である場合には、上記の操作を概ね5回以上繰り 返すことにより目的物が得られる。また、不活性ガス置 換法により溶存酸素濃度を減じる場合には、例えば、脱 気対象物50ccに対して0.1~1リットル/分の不 活性ガス(アルゴンガス、窒素ガス、ヘリウムガス、ネ オンガス等)を供給して、脱気対象物中の溶存酸素濃度 が1 ppm以下になるまで概ね4~8時間バブリングす ることにより目的物を得ることができる。これら2つの 方法の中では、比較的短時間の操作で溶存酸素濃度を減 じることができるという点から、凍結真空脱気法が好ま しい。

6

【0023】一方、パーフルオロボリエーテルでは25 ℃における蒸気圧が10~Torr以下のものが多く、25 ℃における蒸気圧が10~Torr以下のものについては常温下での蒸気圧が低いことと常温下での蒸発量が少ないこととから、真空凍結脱気法や不活性ガス置換法以外に常温真空脱気法によっても溶存酸素濃度を減じることができる。

【0024】25℃における蒸気圧が10⁻¹Torr以下で ある不活性液体の溶存酸素濃度を常温真空脱気法により 滅じる場合には、例えば、160℃以下に保持した脱気 対象物を当該脱気対象物中の溶存酸素濃度が1ppm以 下になるまで10~~Torr以下で真空引きする。脱気対象 物の動粘度が脱気操作時に65cSt以下であれば比較 的容易に溶存酸素を脱気することができる。脱気操作時 の脱気対象物の動粘度が高いと、酸素や水分が分子間に 強固にかみ込んでいるために十分な脱気が困難になるの で、加熱する等して脱気対象物の動粘度を低下させると とが好ましいが、この場合には脱気操作が煩雑になる。 また、脱気時には必要に応じて脱気対象物の撹拌および /または脱気対象物中への沸石の投入を行ってもよい。 沸石を使用する場合、この沸石としては素焼き、ガラ ス、ポリテトラフルオロエチレン (テフロン) 等、多孔 質な材料からなるものを使用することが好ましい。常温 真空脱気法により目的物を得る場合、脱気対象物の動粘

度が脱気操作時に65cSt以下であれば、脱気操作に

おける蒸気圧が10-1Torrを超えるものに対する操作と 同様の操作を行う。25℃における蒸気圧が10-1Torr 以下である不活性液体につては、上述した3つの方法の 中でも短時間の操作で溶存酸素濃度を減じることがで き、かつ脱気操作が簡単であるという点から、常温真空 脱気法により溶存酸素濃度を減じることが好ましい。

*【0026】常温真空脱気法により溶存酸素濃度が1p pm以下のものが容易に得られる不活性液体の具体例と しては、表1に示す各種パーフルオロポリエーテルが挙 げられる。

【表1】

		表 1		
商	品名	製 造 会 社	25℃における	25℃における
			蒸気圧(Torr)	動粘度 (cSt)
デムナム	S-20	ダイキン工業(株)	10-6	5 3
フォンブリ		モンテカチーニ (株)	10-4	3 0
间	моз	同		3 0
同	Y 0 4	同		38
同	Y 0 6	፱		60
同	YLVAC06/6	同	10-	6 2
同	Z DEAL	同	10-4	20
同	Z DIAC	同	10-5	60
	HT250	同	10-2	10
ļ		同	10-2	20
ガルデン同		同		

【0027】なお、上記の表1中のデムナムS-20は 平均分子量が2700であり、絶縁破壊電圧は2.5 m m厚の試料で72kV、体積固有抵抗は約20℃下で1※

※ 0¹ * Q c m である。そして、その構造式は下式(1)で 表される。

【化1】

n=10~20, 平均分子量 2700

【0028】また、表1中のフォンブリン203の構造 ★【化2】

式は下式(2)で表される。

) で表される。
$$\star$$
 CF₃-[(-O-CF₂-CF₂-)。(-O-CF₂-)。(-2)

平均分子量4000

【0029】そして、表1中のガルデンH250の構造 40☆【化3】

式は下式(3)で表される。

【0030】本発明の方法では、前述した吸着剤と上述 した不活性液体とを用いて、吸着剤を含有した不活性液 体からなる溶存酸素濃度1ppm以下の封止層を有機E

存酸素濃度が1ppm以下であるとともに、水分量が1 〇 p p m以下であることが特に好ましい。溶存酸素濃度 が1 ppm以下であるとともに水分量が10 ppm以下 L素子の外周に設けるわけであるが、前記の封止層は溶 50 である封止層は、吸着剤と当該吸着剤を含有することに 20

40

よって溶存酸素濃度が1ppm以下、水分量が10pp 血以下になる不活性液体とを用いて形成することも可能 であるが、より高い封止効果を有する封止層を形成する うえからは、吸着剤と当該吸着剤を含有する前の段階で の溶存酸素濃度が1ppm以下、水分量が10ppm以 下である不活性液体とを用いて形成することが好まし

【0031】不活性液体中の溶存酸素濃度を常温真空脱 気法により1ppm以下にする場合には、この方法によ り溶存酸素濃度を1ppm以下にすると同時に、または 10 脱気操作を更に繰り返すことにより、溶存酸素濃度が 1 ppm以下であるとともに水分量が10ppm以下であ る不活性液体を得ることができる。また、不活性液体中 の溶存酸素濃度を不活性ガス置換法により1ppm以下 にする場合には、この方法により溶存酸素濃度を1pp m以下にすると同時に、またはバブリング時間を若干長 めにすことにより、溶存酸素濃度が1 p p m以下である とともに水分量が10ppm以下である不活性液体を得 ることができる。そして、不活性液体中の溶存酸素濃度 を凍結真空脱気法により1ppm以下にする場合には、 この方法により溶存酸素濃度を1ppm以下にする前、 またはlppm以下にした後に、不活性液体を真空中で 蒸留して初留、本留、後留に分け、初留と後留を除くこ とにより、溶存酸素濃度が1ppm以下であるとともに 水分量が10ppm以下である不活性液体を得ることが できる。溶存酸素濃度が1ppm以下であるとともに水 分量が10ppm以下である封止層を設けることによ り、ダークスポットの成長を更に強く抑制することが可 能になる。

【0032】封止層を有機EL素子の外周に設けるにあ たっては、吸着剤を含有した不活性液体を入れた容器に 有機EL素子全体を浸漬することにより当該有機EL素 子の外周に封止層を設けてもよいが、有機EL素子が基 板上に形成されている場合には次のようにして封止層を 設けることがより好ましい。すなわち、基板上に形成さ れている有機EL素子の外側に、当該有機EL素子との 間に空隙を形成しつつ前記の基板と共同して有機EL素 子を覆うハウジング材を設け、前記の基板と前記のハウ ジング材とによって形成された空間に封止層を形成する ことが好ましい。

【0033】ハウジング材を利用して有機EL素子の外 周に封止層を設ける方法の具体例としては、次の(A) および(B)の方法が挙げられる。

【0034】(A)吸着剤と不活性液体とを混合して混 合液を調製した後、この混合液を、有機EL素子が設け られている基板と当該基板上の有機EL素子を覆うハウ ジング材とによって形成された上記の空間に充填するこ とにより、封止層を形成する方法。この方法により封止 層を設ける場合、上記の混合液の調製は大気中で行うべ

気、アルゴンガス雰囲気等)中、例えば乾燥した不活性 ガスで雰囲気置換したグローブボックス内で行うことが 好ましい。混合液の調製にあたっては、吸着剤を収容し ている容器に不活性液体を注いでもよいし、不活性液体 を収容している容器に吸着剤を入れてもよい。さらに は、吸着剤を収容している容器および不活性液体を収容 している容器の他に混合液調製用の容器を別途用意し、 この容器に吸着剤と不活性液体とを同時にまたは別々に 入れてもよい。混合液調製用の容器に吸着剤と不活性液 体とを別々に入れる場合には、どちらを先に入れてもよ

10

【0035】上記の混合液を用いての封止層の形成は、 有機EL素子が設けられている上記の基板または当該基 板上の有機EL素子を覆うハウジング材に予め設けた注 入口から当該混合液を上記の空間に充填し、充填後に前 記の注入口を封止することにより行うことができる。封 止層の形成も、乾燥した不活性ガス雰囲気中で行うこと が好ましい。との方法は、流動性が高い混合液(吸着剤 を含有した不活性液体)によって封止層を設ける場合に 好適である。

【0036】(B)有機EL素子が設けられている基板 と当該基板上の有機EL素子を覆うハウジング材とによ って形成された上記の空間に吸着剤と不活性液体とを別 々に入れて、封止層を形成する方法。この方法は、更に 下記(b1)~(b3)の3つに別けることができるが、いずれ においても封止層の形成は乾燥した不活性ガス雰囲気中 で行うことが好ましい。

【0037】(b1)有機EL素子上および当該有機EL素 子が設けられている基板上にあって上記の空間に納まる 領域上に吸着剤を設置した後にハウジング材を前記の基 板上に設け、前記の基板または前記のハウジング材に予 め設けた注入口から不活性液体を上記の空間に充填する ことによって封止層を形成する。注入口は、不活性液体 の充填後に封止する。

【0038】(b2)ハウジング材にあって上記の空間の形 成に関与する凹部に吸着剤を入れ、このハウジング材を 有機EL素子が設けられている基板上に設けた後、前記 の基板または前記のハウジング材に予め設けた注入口か ら不活性液体を上記の空間に充填することによって封止 層を形成する。注入口は、不活性液体の充填後に封止す る。

【0039】(b3)有機EL素子が設けられている基板上 にハウジング材を設けて上記の空間を形成し、前記の基 板または前記のハウジング材に予め設けた注入口から吸 着剤と不活性液体とを順不同で上記の空間に入れるとと によって封止層を形成する。注入口は、吸着剤および不 活性液体の充填後に封止する。

【0040】ハウジング材を利用して有機EL素子の外 周に封止層を設ける場合、前記のハウジング材は封止し きではなく、乾燥した不活性ガス雰囲気(窒素ガス雰囲 50 ようとする有機EL素子の外寸よりも内寸が大きい凹部

30

(4) 陽極/正孔翰送層/発光層/電子注入層/陰極 【0046】 CCで、発光層は通常1種または複数種の 有機発光材料により形成されるが、有機発光材料と正孔 注入材料および/または電子注入材料との混合物により 形成される場合もある。また、前述した層構成の素子の 外周に当該素子を覆うようにして素子への水分の侵入を 防止するための保護層が設けられる場合もある。 【0047】基板側を光の取り出し面とする場合、前記

を有するキャップ状物、板状物(例えば座ぐり基板)、シート状物あるいはフィルム状物であり、このハウジング材は前記の基板と共同して実質的な密閉空間を形成するようにして基板上に固着される。このとき、封止対象の有機EL素子は前記の凹部内に収納された状態となる。基板上に複数個の有機EL素子が形成されている場合、前記のハウジング材は有機EL素子毎に設けてもよいし、全ての有機EL素子に共通するものを1つのみ設けてもよいし、全ての有機EL素子のうちの複数とは、回様に、ハウジング材に形成される前記の凹部は、個々の有機EL素子に対応したものであってもよいし、全ての有機EL素子を収納し得る大きさのものであってもよいし、全ての有機EL素子のうちの複数個を収納し得る大きさのものであってもよい。

【0047】基板側を光の取り出し面とする場合、前記の基板は少なくとも有機EL素子からの発光(EL光)に対して高い透過性(概ね80%以上)を与える物質からなり、具体的には透明ガラス、透明プラスチック、石英等からなる板状物やシート状物、あるいはフィルム状物が利用される。

【0041】基板上へのハウジング材の配設は、エボキシ樹脂系接着剤やアクリレート樹脂系接着剤等、種々の接着剤を用いて固着させることにより行うことができる。背着材は水や酸素を透しにくいものが好ましく、その具体例としてはアラルダイトAR-R30(チバガイギー社製のエボキシ樹脂系接着剤の商品名)が挙げられる。また、熱硬化性樹脂や光硬化性樹脂等、種々の樹脂を上記の接着剤の代わりに用いることもできる。

【0048】陽極、陰極、発光層、正孔輸送層、電子注入層、保護層の材料としては、それぞれ種々の材料を用いることができる。例えば、陽極材料としては仕事関数が大きい(例えば4e V以上)金属、合金、電気伝導性化合物、またはこれらの混合物が好ましく用いられる。具体例としては金、ニッケル等の金属や、Cul, ITO, SnO, ZnO等の誘電性透明材料等が挙げられる。特に、生産性や制御性の点からITOが好ましい。陽極の膜厚は材料にもよるが、通常 $10nm\sim1\mu$ mの範囲内で適宜選択可能である。

【0042】ハウジング材の材質はガラス、ポリマー等の電気絶縁性物質であることが好ましく、その具体例としてはソーダ石灰ガラス、硼硅酸塩ガラス、硅酸塩ガラス、シリカガラス、無蛍光ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ボリエチレン、ポリエステル、シリコーン系樹脂等が挙げられる。また、封止対象の有機EL素子が絶縁被覆された電極線を電極取出しに使用したものである場合や、基板上へのハウジング材の固着を電気絶縁性の接着剤あるいは電気絶縁性の樹脂により行った場合には、ハウジング材としてステンレス鋼やアルミニウム合金等の導電性金属からなるものを用いてもよい。

【0049】また、陰極材料としては仕事関数の小さい(例えば4eV以下)金属、合金、電気伝導性化合物、またはこれらの混合物等が好ましく用いられる。具体例としてはナトリウム、ナトリウムーカリウム合金、マグネシウム、リチウム、マグネシウムと銀との合金または混合金属、アルミニウム、A1/A1O、インジウム、イッテルビウム等の希土類金属等が挙げられる。陽極の膜厚は材料にもよるが、通常10nm~1μmの範囲内で適宜選択可能である。陽極および陰極のいずれにおいても、そのシート抵抗は数百Ω/□以下が好ましい。なお、陽極材料および陰極材料を選択する際に基準とする仕事関数の大きさは4eVに限定されるものではない。

【0043】上述のようにして有機EL素子の外周に所定の封止層を設けることにより、目的とする本発明の封止を行うことができる。また同時に、目的とする本発明の有機EL素子を得ることができる。

【0050】発光層の材料(有機発光材料)は、有機EL素子用の発光層、すなわち電界印加時に陽極または正孔輸送層から正孔を注入することができると共に陰極または電子注入層から電子を注入することができる注入機能や、注入された電荷(電子と正孔の少なくとも一方)を電界の力で移動させる輸送機能、電子と正孔の再結合の場を提供してこれを発光につなげる発光機能等を有する層を形成することができるものであればよい。その具体例としては、ベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系等の系の蛍光増白剤や、金属キレート化オキシノイド化合物、スチリルベンゼン系化合物、ジスチリルビラジン誘導体、ボリフェニル系化合物、12-フタロベリノン、1、4-ジフェニルー

【0044】本発明の方法で封止の対象となる有機EL素子の素子構成は特に限定されるものではなく、種々の素子構成の有機EL素子を対象とすることができる。したがって、本発明の有機EL素子の素子構成も種々の構成をとる。

【0045】基板側を光の取り出し面とするタイプの有機EL素子の層構成の具体例としては、基板表面上の積層順が下記(1)~(4)のものが挙げられる。

(1)陽極/発光層/陰極

(2)陽極/発光層/電子注入層/陰極

(3)陽極/正孔翰送層/発光層/陰極

50 1, 3-ブタジエン、1, 1, 4, 4-テトラフェニル

-1,3-ブタジエン、ナフタルイミド誘導体、ペリレ ン誘導体、オキサジアゾール誘導体、アルダジン誘導 体、ピラジリン誘導体、シクロベンタジエン誘導体、ビ ロロピロール誘導体、スチリルアミン誘導体、クマリン 系化合物、芳香族ジメチリディン化合物、8-キノリノ ール誘導体の金属錯体等が挙げられる。発光層の厚さは 特に限定されるものではないが、通常は5 n m~5 μ m の範囲内で適宜選択される。

【0051】正孔輸送層の材料(正孔輸送材料)は正孔 の輸送性と電子の障壁性のいづれかを有しているもので 10 あればよい。その具体例としては、トリアゾール誘導 体、オキサジアゾール誘導体、イミダゾール誘導体、ポ リアリールアルカン誘導体、ピラゾリン誘導体、ピラゾ ロン誘導体、フェニレンジアミン誘導体、アリールアミ ン誘導体、アミノ置換カルコン誘導体、オキサゾール誘 導体、スチリルアントラセン誘導体、フルオレノン誘導 体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘 導体、ポリシラン系化合物、アニリン系共重合体、チオ フェンオリゴマー等の導電性高分子オリゴマー、ポルフ ィリン化合物、芳香族第三級アミン化合物、スチリルア ミン化合物、芳香族ジメチリディン系化合物等が挙げら れる。正孔輸送層の厚さも特に限定されるものではない が、通常は5 n m~5 μ m の範囲内で適宜選択される。 正孔輸送層は上述した材料の1種または2種以上からな る一層構造であってもよいし、同一組成または異種組成 の複数層からなる複数層構造であってもよい。

【0052】電子注入層は陰極から注入された電子を発 光層に伝達する機能を有していればよく、その材料 (電 子注入材料)の具体例としては、ニトロ置換フルオレノ ン誘導体、アントラキノジメタン誘導体、ジフェニルキ 30 ノン誘導体、チオピランジオキシド誘導体、ナフタレン ペリレン等の複素環テトラカルボン酸無水物、カルボジ イミド、フレオレニリデンメタン誘導体、アントラキノ ジメタン誘導体、アントロン誘導体、オキサジアゾール 誘導体、8-キノリノール誘導体の金属錯体、メタルフ リーフタロシアニンやメタルフタロシアニンあるいはこ れらの末端がアルキル基やスルホン基等で置換されてい るもの、ジスチリルピラジン誘導体等が挙げられる。電 子注入層の厚さも特に限定されるものではないが、通常 は5 nm~5 μmの範囲内で適宜選択される。電子注入 層は上述した材料の1種または2種以上からなる一層構 造であってもよいし、同一組成または異種組成の複数層 からなる複数層構造であってもよい。

【0053】そして、保護層の材料の具体例としては、 テトラフルオロエチレンと少なくとも1種のコモノマー とを含むモノマー混合物を共重合させて得られる共重合 体、共重合主鎖に環状構造を有する含フッ素共重合体、 ポリエチレン、ポリプロピレン、ポリメチルメタクリレ ート、ポリイミド、ポリユリア、ポリテトラフルオロエ 14

ロジフルオロエチレン、クロロトリフルオロエチレンと ジクロロジフルオロエチレンとの共重合体、吸水率1% 以上の吸水性物質および吸水率0.1%以下の防湿性物 質、In, Sn, Pb, Au, Cu, Ag, Al, T i, Ni等の金属、MgO, SiO, SiO, Al, O, , GeO, NiO, CaO, BaO, Fe, O, , Y, O, , TiO, 等の金属酸化物、MgF, , Li F, AlF, CaF, 等の金属フッ化物等が挙げられ

【0054】また、封止対象の有機EL素子を構成する 各層(陽極および陰極を含む)の形成方法についても特 に限定されるものではない。陽極、陰極、発光層、正孔 輸送層、電子注入層の形成方法としては、例えば真空蒸 着法、スピンコート法、キャスト法、スパッタリング 法、LB法等を適用することができるが、発光層につい てはスパッタリング法以外の方法(真空蒸着法、スピン コート法、キャスト法、LB法等)を適用することが好 ましい。発光層は、特に分子堆積膜であることが好まし い。ととで分子堆積膜とは、気相状態の材料化合物から 沈着され形成された薄膜や、溶液状態または液相状態の 材料化合物から固化され形成された膜のことであり、通 常との分子堆積膜は、LB法により形成された薄膜(分 子累積膜)とは凝集構造、高次構造の相違や、それに起 因する機能的な相違により区分することができる。スピ ンコート法等により発光層を形成する場合には、樹脂等 の結着剤と材料化合物とを溶剤に溶かすことによりコー ティング溶液を調製する。

【0055】保護層については真空蒸着法、スピンコー ト法、スパッタリング法、キャスト法、MBE(分子線 エピタキシ) 法、クラスターイオンビーム法、イオンプ レーティング法、プラズマ重合法(高周波励起イオンプ レーティング法)、反応性スパッタリング法、プラズマ CVD法、レーザーCVD法、熱CVD法、ガスソース CVD法等を適用することができる。

【0056】各層の形成方法は、使用する材料に応じて 適宜変更可能である。有機EL素子を構成する各層の形 成にあたって真空蒸着法を用いれば、この真空蒸着法だ けによって有機EL素子を形成することができるため、 設備の簡略化や生産時間の短縮を図るうえで有利であ 40 る。

【0057】上述した封止対象の有機EL素子の外周に 前述した封止層を設けることにより封止してなる本発明 の有機EL素子では、封止層の存在によりダークスポッ トの発生やダークスポットの成長が強く抑制されるの で、素子寿命が長い。

[0058]

【実施例】以下、本発明の実施例を比較例と対比しなが ら説明するが、各実施例および各比較例で封止の対象と して用いた有機EL素子の製造方法を予め説明してお チレン、ポリクロロトリフルオロエチレン、ポリジクロ 50 く。封止対象の有機EL素子を作製するにあたっては、

まず、25mm×75mm×1.1mmのガラス基板上 に膜厚100nmのITO膜を蒸着法により成膜したも のを透明支持基板として用意した。との基板の光透過率 を島津製作所社製のUV-3100PCで測定したとこ ろ、400~600nmの波長域で約80%であった。 この基板をイソプロビルアルコール中で5分間、次いで 純水中で5分間、それぞれ超音波洗浄し、さらに、

(株) サムコインターナショナル研究所製の装置用いて UVオゾン洗浄を10分間行った。

【0059】次に、この基板を市販の蒸着装置(日本真 10 空技術(株)製)の基板ホルダーに固定する一方で、モ リブテン製の抵抗加熱ボートにN,N'ービス(3ーメ **チルフェニル-N,N´-ジフェニル[1,1´-ビフ** ェニル] - 4, 4′-ジアミン (以下、TPDと略記す る)を200mg入れ、また、違うモリブデン製の抵抗 加熱ボートに4, 4′-ビス(2, 2′-ジフェニルビ ニル)ビフェニル(以下、DPVBiと略記する)を2 00mg入れた後、真空槽を1×10⁻⁴Paまで減圧し た。

【0060】との後、TPD入りの前記ボートを215 ~220℃まで加熱し、TPDを蒸着速度0.1~0. 3nm/sで前記ITO膜上に蒸着させて、膜厚60n mの正孔輸送層を形成した。このときの基板温度は室温 であった。これを真空槽より取り出すことなく、正孔輸 送層の成膜に引き続きDPVBi入りの前記ボートを2 40℃まで加熱し、DPVBiを蒸着速度0.1~0. 3nm/sで前記正孔輸送層上に蒸着させて、膜厚40 nmの発光層を形成した。このときの基板温度も室温で あった。

【0061】これを真空槽より取出し、上記発光層の上 にステンレススチール製のマスクを設置し、再び基板ホ ルダーに固定した。次いで、モリブデン製ボートにトリ ス (8-キノリノール) アルミニウム (以下、Ala, と略記する)を200mg入れ、また、違うモリブデン 製ボートにマグネシウムリボン1gを入れ、さらに、タ ングステン製バスケットに銀ワイヤー500mgを入れ て、これらのボートを真空槽に装着した。

【0062】次に、真空槽を1×10⁻¹Paまで減圧し てからAia,入りの前記ボートを230℃まで加熱 し、Ala,を蒸着速度0.01~0.03nm/sで 前記発光層上に蒸着させて、膜厚20nmの電子注入層 を形成した。さらに、銀を蒸着速度0. lnm/sで前 記接着層上に蒸着させると同時に、マグネシウムを蒸着 速度1.4nm/sで前記接着層上に蒸着させて、マグ ネシウムと銀の混合金属からなる膜厚150nmの対向 電極を形成した。との対向電極の反射率を島津製作所社 製のUV-3100PCで測定したところ、400~6 00 n m の波長域で80%であった。

【0063】上述のようにして対向電極まで形成すると とにより、目的とする封止対象の有機EL素子が得られ 50 製の座グリ基板)を用意した。このハウジング材は、内

16

た。この有機EL素子は、ガラス基板の一主表面上に陽 極としてのITO膜、正孔輸送層としてのTPD層、発 光層としてのDPVBi層、電子注入層としてのAlq ,層、および対向電極としてのマグネシウム-銀混合金 属層が順次積層されてなるものである。1T〇膜の一部 とマグネシウム - 銀混合金属層の一部はそれぞれ電極取 り出し用の電極線を兼ねており、発光層の平面視上の大 きさは6mm×10mmである。

【0064】実施例1

(1) 溶存酸素濃度が1ppm以下の不活性液体の調製 まず、溶存酸素濃度を調整する前の不活性液体としてパ ーフルオロポリエーテル(ダイキン工業株式会社製のデ ムナムS−20(商品名;25℃における蒸気圧10-6 Torr, 25℃における動粘度53cSt))を用意し、 **このデムナムS−20の適当量を真空コック付きガラス** 製試料容器に入れ、この試料容器と拡散ポンプ付き真空 ポンプ(日本真空技術(株)製のULVAC VPC-050)とをフランジを用いて接続した。次に、上記の 試料容器に入ったデムナムS-20中にポリテトラフル オロエチレン (テフロン) 製の沸石を挿入し、常温にて 撹拌しながら当該試料容器内を10- 'Torrにまで真空引 きして、発泡がなくなるまで約30分間、常温真空脱気 法により溶存酸素を排出した。この後、真空コックを閉 じて保存した。

【0065】このようにして調製された不活性液体の一 部をサンプリングし、溶存酸素濃度および水分量を測定 したところ、溶存酸素濃度は0.05ppm、水分量は 5 p p m であった。なお、溶存酸素濃度の測定にはセン トラル科学株式会社製のSUD-1(測定装置の商品 名)を使用し、雰囲気を窒素ガスで置換したグローブボ ックス中で前記の装置のセンサー部分に不活性液体を5 0 ミリリットル/分の一定流量で流し、約2 0秒後、表 示数値が安定した後に測定値を読み取った。また、不活 性液体中の水分量の測定は、カールフィッシャー滴定法 により行った。

【0066】(2)吸着剤の活性化処理

吸着剤として活性アルミナ(広島和光純薬(株)製:粒 径約300メッシュ)を用意し、この活性アルミナの適 当量を真空コック付のガラス製試料容器に入れて、当該 試料容器と真空ポンプとをフランジを用いて接続した。 次に、上記の試料容器内を常温下にて10-4Torrまで真 空引きし、当該試料容器において活性アルミナを溜めて いる部分をヒーターにより280℃に加熱しながら更に 真空引きを行った。活性アルミナからのガスの発生がな くなって真空度が安定するまで、加熱しながらの前記真 空引きを5時間続け、この後に真空コックを閉じて保存 した。

[0067](3)封止

まず、ガラス製のキャップ型ハウジング材(豊和産業社

18

寸が13mm×13mm×1mmの凹部を1個有し、その外寸は15mm×15mm×1.8mmである。このハウジング材の凹部の底には、不活性液体等を注入するための注入口が設けられている。次に、封止対象の有機EL素子が前記の凹部内に納まるようにして、前記の有機EL素子が形成されているガラス基板と上記のハウジング材とをエポキシ樹脂系接着剤(チバガイギー社製のアラルダイトAR-R30)により貼り合わせた。このとき、有機EL素子はハウジング材の凹部と基板とによって形成された空間内に在り、有機EL素子とハウジング材とは非接触の状態にある。

【0068】3時間放置して接着剤を固化させた後、真空デシケータを用いて真空乾燥した。真空乾燥後のものを、乾燥した窒素ガスで雰囲気置換したグローブボックス内に移した。また、上記(1)で調製した不活性液が入っている前記の試料容器と、上記(2)で活性化処理を施した吸着剤が入っている前記の試料容器とを、上記のグローブボックス内に移した。そして、不活性化処が入っている試料容器内に吸着剤の所定量を添加し、撹拌して、吸着剤を含有した不活性液体(以下「混合液が入っている試料容器内に吸着剤の所定量を添加し、撹拌して、吸着剤を含有した不活性液体(以下「混合液」という。)を調製した。この混合液は、不活性液体1ミリリットルにつき吸着剤を500mg含有してもり、である。この後、前記の混合液を上記のハウジング材の凹部と基板とによって形成されている空間に前記の混合液を充填した。

【0069】混合液の充填後、上記のグローブボックス内において前記の注入口をエポキシ系接着剤(チバガイギー社製のアラルダイトAR-R30)により塞ぎ、接着剤が固化するまで3時間ほどグローブボックス中に放 30置した。

【0070】ハウジング材の凹部と基板とによって形成されている空間に上記の混合液を充填したことにより封止対象の有機EL素子の外周には封止層が形成され、これにより目的とする封止がなされた。また同時に、目的とする有機EL素子が得られた。この有機EL素子(封止されたもの)の断面の概略を図1に示す。図1に示したように、上で得られた封止後の有機EL素子1は、封止対象の有機EL素子10の外周に、上記(1)で調製した不活性液体20aと上記(2)で活性化処理を施した吸着剤20bとの混合液(吸着剤を含有した不活性液体)からなる封止層20を設けてなる。

【0071】封止対象の有機EL素子10は、ガラス基板11上に陽極としてのITO膜12、正孔輸送層としてのTPD層13、発光層としてのDPVBi層14、電子注入層としてのAlq、層15、および対向電極(陰極)としてのマグネシウムー銀混合金属層16を順次積層したものである。そして、ITO膜12の一部12aとマグネシウムー銀混合金属層16の一部16aはそれぞれ電極取り出し用の電極線となっている。との有

機E L素子10は、ガラス基板11上にエポキシ樹脂系17によって固着されたハウジング材18の凹部と前記のガラス基板11とによって形成された空間内に在り、この空間には上記の混合液が充填されている。その結果として、有機E L素子10の外周には封止層20が形成されている。封止層20は、上記(1)で調製した不活性液体20aと上記(2)で活性化処理を施した吸着剤20bとを混合して得た混合液をハウジング材18に設けられていた注入口19から注入することによって形成されたものであり、前記の注入口19は封止層20の形成後にエポキシ樹脂系接着剤17aにより封止されている。

【0072】(4)封止効果の評価

上記(3)で得られた有機EL素子 (封止されたもの) に当該有機 E L 素子の2つの電極線を介して直流定電流 電源を接続し、25℃、大気圧下で初期輝度が100 c d/m² になるように通電した。このときの電流値は 0.56 mA、電圧値は9 Vであった。なお、輝度の測 定はミノルタカメラ社製の色彩色差計(商品名CS-1 00)を用いて行った。上記の通電に引き続いて発光面 の拡大写真(倍率10倍)を撮影し、この写真から発光 面の平面視上の面積に対するダークスポットの平面視上 の総面積の比(以下「無発光面積比」という。)を求め たところ、0.20%であった。また、ある1つのダー クスポットの直径を求めたところ15μmであった。次 に、通電開始から5日後および30日後に上記と同一手 法で無発光面積比を求め、同時に上記のものと同じダー クスポットの直径を求めた。これらの結果を表2に示 す。

80 【0073】実施例2

吸着剤としてMg粉末((株)高純度化学研究所製:粒 径80メッシュ以下)を用意し、次のようにして当該M g粉末に活性化処理を施した。先ず、適当量のMg粉末 をビーカーに入れ、このビーカーに1M塩酸水溶液を入 れて数分間放置した後に濾過し、残渣(Mg粉末)を十 分な量の無水エタノールで濯ぐ。濯いだ後の残渣(Mg 粉末)を真空コック付きのガラス製試料容器に移し、当 該試料容器のコックを閉じる。ととまでの操作は全て、 乾燥窒素ガスをフローした状態のグローブボックス内で 40 行う。コックを閉じた後の上記試料容器(残渣(Mg粉 末)が入ったもの)をグローブボックスから取り出し、 当該試料容器内のMg粉末について、エタノールの蒸発 が無くなって真空度が安定するまで実施例1と同様にし て真空引きを行う。とのときの真空引きは、上記の試料 容器においてMg粉末を溜めている部分をヒーターによ って加熱するととなく、室温下で行う。

(陰極)としてのマグネシウム-銀混合金属層16を順 次積層したものである。そして、1TO膜12の一部1 2aとマグネシウム-銀混合金属層16の一部16aは それぞれ電極取り出し用の電極線となっている。この有 50 を得た。このときの封止層は、不活性液体1ミリリット ルにつき吸着剤を500mg含有するものであり、その 溶存酸素濃度は1ppm以下である。封止後の有機EL 素子について実施例1(4)と同様にして封止効果の評 価を行った。との結果を表2に示す。

[0075] 実施例3

吸着剤としてCaSO。・1/2H。O(和光純薬工業 (株) 製:焼きセッコウ)の粉末(粒径300メッシュ 以下)を用い、当該吸着剤に活性化処理を施すにあたっ てのヒーターによる加熱温度を240℃とし、かつ、不 活性液体 1 ミリリットルにつき吸着剤を200mg含有 10 活性アルミナ(広島和光純薬(株)製:粒径約300メ させて混合液(吸着剤を含有した不活性液体)を調製し た以外は実施例1と同様にして有機EL素子を封止し、 同時に目的とする有機EL素子を得た。このときの封止 層の溶存酸素濃度は1ppm以下である。封止後の有機 E L 素子について実施例 1 (4) と同様にして封止効果 の評価を行った。この結果を表2に示す。

[0076] 比較例1

吸着剤を用いなかった以外は実施例1と同様にして有機 EL素子を封止した。そして、封止後の有機EL素子に ついて実施例1(4)と同様にして封止効果の評価を行*20 【表2】

*った。この結果を表2に示す。

【0077】比較例2

パーフルオロポリエーテル(ダイキン工業株式会社製の デムナムS-20(商品名))を真空脱気せずにそのま ま不活性液体として用いた以外は実施例1と同様にし て、有機EL素子を封止した。そして、封止後の有機E L素子について実施例1(4)と同様にして封止効果の 評価を行った。との結果を表2に示す。

20

[0078]比較例3

ッシュ)を一度大気に曝し、この後に活性化処理を施す ことなく吸着剤として使用した以外は実施例 1 と同様に して、有機EL素子を封止した。封止層の形成に用いた 混合液(吸着剤を含有した不活性液体)の溶存酸素濃度 は、吸着剤に吸着していた酸素が不活性液体中に溶け出 したことから、5.0ppmであった。そして、封止後 の有機EL素子について実施例1(4)と同様にして封 止効果の評価を行った。との結果を表2に示す。

[0079]

		336				
	無発光面積比 (%)			ダークスポ	ットの直径	(μm)
	初 期	5 日 日	30日後	初期	5 日後	30日後
実施例1	0.20	0.20	0.25	15	. 15	17
実施例2	0.20	0.20	0.25	15	15	17
実施例3	0.20	0.20	0.25	15	15	17
比較例1	0.20	0.25	12	15	17	80
比較例2	0.20	4.0	50	15	5,0	300
比較例3	0.20	4.0	50	15	50	300

【0080】表2から明らかなように、実施例1~実施 例3で封止した各有機EL素子においては、無発光面積 比の経時的な増大およびダークスポットの経時的な成長 がともに強く抑制された。一方、比較例1で封止した有 機EL素子においては、無発光面積比の経時的な増大お よびダークスポットの経時的な成長が比較的抑制されて はいるものの、実施例1~実施例3で封止した有機EL 素子と比べると、その封止効果は低い。また、比較例2 で封止した有機EL素子においては、無発光面積比の経 40 時的な増大およびダークスポットの経時的な成長がとも に大きく、その封止効果は低い。そして、吸着剤を一度 大気に曝した後に活性化処理を施さずに使用して溶存酸 素濃度が5.0ppmの封止層を形成した比較例3にお いては、吸着剤を使用しなかった比較例2で封止した有 機EL素子と同様に、無発光面積比の経時的な増大およ びダークスポットの経時的な成長が大きく、吸着剤を使 用した効果が認められなかった。

【発明の効果】以上説明したように、本発明の方法によ 50

れば有機EL素子におけるダークスポットの成長を強く 抑制することができる。したがって、本発明を実施する ことにより素子寿命の長い有機EL素子を提供すること が可能になる。

【図面の簡単な説明】

【図1】実施例1で得た有機EL素子(封止されたも の)の断面の概略図である。

【符号の説明】

- 封止後の有機EL素子 1
 - 封止対象の有機EL素子 10
 - ガラス基板 11
 - エポキシ樹脂系接着剤 17
 - 17a エポキシ樹脂系接着剤
 - ハウジング材 18
 - 注入口 19
 - 封止層 20
 - 20a 不活性液体
 - 20b 吸着剤

【図1】

