Partiel - Mardi 20 octobre 2020.

durée: 2h00.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits.

La qualité de la rédaction sera prise en compte dans la notation.

Le barème est donné à titre indicatif.

Exercice 1. On considère l'univers $\Omega = \{1, 2, 3, 4\}$ que l'on munit de la tribu $\mathcal{F} = \{\emptyset, \Omega, \{1\}, \{2, 3, 4\}\}$ (on notera bien que \mathcal{F} n'est pas la tribu formée par l'ensemble des parties de Ω)

- 1. Rappeler la définition d'une tribu.
- 2. Qu'appelle-t-on une probabilité sur un espace mesurable? Donner un exemple de probabilité sur (Ω, \mathcal{F}) .
- 3. La fonction $X: \Omega \to \mathbb{R}$ définie par $X(1) = X(2) = \pi$ et X(3) = X(4) = 100 est elle une variable aléatoire? Si oui préciser sa loi quand l'espace de départ est muni de la probabilité que vous avez choisie à la question précédente.
- 4. La fonction $Y: \Omega \to \mathbb{R}$ définie par Y(1) = 0 et Y(2) = Y(3) = Y(4) = 1 est elle une variable aléatoire? Si oui préciser sa loi quand l'espace de départ est muni de la probabilité que vous avez choisie à la question précédente.

Exercice 2. On considère un dé cubique dont les faces sont numérotées de 1 à 6. On suppose que le dé est truqué de sorte que la probabilité d'obtenir une face est proportionnelle au numéro inscrit sur cette face.

- 1. Proposer un espace de probabilité (Ω, \mathcal{F}, P) modélisant cette expérience.
- 2. On considère la variable aléatoire X, identité sur Ω , définie pour tout $\omega \in \Omega$ par $X(\omega) = \omega$ (qui correspond donc à un tirage du dé!). Donner la loi P_X de X et calculer son espérance.
- 3. On pose Y = 1/X. Déterminer la loi P_Y de Y et son espérance.

Exercice 3. Soit $\lambda > 0$ un réel et X une variable aléatoire de loi exponentielle de paramètre λ c'est-à-dire de densité $x \to \lambda e^{-\lambda x} 1_{[0,+\infty[}(x)$. On note Y la partie entière de X, i.e. $Y = \lfloor X \rfloor$ (où pour tout $x \in \mathbb{R}$, $\lfloor x \rfloor$ désigne la partie entière de x c'est-à-dire l'unique entier k tel que $k \le x < k + 1$).

- 1. Montrer que Y est
 - i. une variable aléatoire
 - ii. discrète.
- 2. Pour tout $k \ge 1$, calculer P(Y = k 1) et en déduire la loi de Y + 1. Quelle loi reconnait on?
- 3. On pose Z = X Y. Pour tout $z \in [0, 1]$, calcular $P(Z \le z)$.
- 4. La variable Z est elle une variable à densité? Si oui calculer une densité de Z.

Exercice 4. Soit X une variable aléatoire discrète à valeurs dans \mathbb{N} . On note F sa fonction de répartition.

1. Montrer que pour tout $x \in]0,1[$ il existe un unique entier $k \in \mathbb{N}$ tel que

$$F(k-1) < x \le F(k).$$

Pour tout $x \in]0,1[$ on note Q(x) cet entier.

- 2. Montrer que Q est croissante.
- 3. Soit U une variable aléatoire de loi uniforme sur [0,1]. Montrer que Q(U) et X ont même loi.