

Machine Learning

Logistic Regression Classificatio

n

Classification

```
Email: Spam / Not Spam?
Online Transactions: Fraudulent (Yes /
No)?
Tumor: Malignant / Benign?
              0: "Negative Class" (e.g., benign
y \in \{0, 1\}
              tumor)
              1: "Positive Class" (e.g., malignant
              tumor)
```


Threshold classifier output) at
$$0.5$$
: If $h_{\theta}(x) \geq 0.5$, predict "y = 1" If $h_{\theta}(x) < 0.5$, predict "y = 0"

Andrew No

Classification:
$$y = 0$$
 or 1 $h_{\theta}(x)$ can be > 1 or

Logistic Regression: $h_{\theta}(x) \leq 1$

Machine Learning

Logistic Regression Hypothesis Representati on

Logistic Regression Model

Want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = \theta^T x$$

Sigmoid function Logistic function

Interpretation of Hypothesis

Output $h_{\theta}(x) = \text{estimated probability that } y = 1 \text{ on } x = 1$

Example:
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
If $h_{\theta}(x) = 0.7$

Tell patient that 70% chance of tumor being malignant

"probability that
$$y=1$$
, given x , θ
$$\text{parameter}(y + 1|x;\theta) = 1$$

$$P(y=0|x;\theta) = 1 - P(y=1|x;\theta)$$

Machine Learning

Logistic Regression Decision boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict
$$h_{\theta}(x)$$
 $h_{\theta}(x)$

predicty = 0 $h_{\theta}^{"}(x)$ f < 0.5

Decision Boundary, 01, 02) defines the decision boundary

not the training set. Training set may be used to find the Parameter θ

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict
$$y = 1$$

Predict
$$y = 1$$
 "— $x_1 + x_2 \ge 0$ "

Non-linear decision boundaries

Machine Learning

Logistic Regression

Cost function

Training $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$ set:

set: x_0 m examples $x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x \end{bmatrix}$ $x_0 = 1, y \in \{0, 1\}$

 $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

How to choose θ parameters ?

Linear regression
$$(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Non-Linear **Function**

$$\operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
"non-convex"
$$J(\theta)$$

Logistic regression cost **function**

function
$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$g(h_{\theta}(x)) \quad \text{if } y = 1$$

$$-h_{\theta}(x)) \quad \text{if } y = 0$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$

large cost.

 $Cost \rightarrow \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y=1|x;\theta)=0$), but y=1, we'll penalize learning algorithm by a very

Different

Cost Function

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

In logistic regression, the cost function for our hypothesis outputting (predicting) $h_{\theta}(x)$ on a training example that has label $y \in \{0,1\}$ is:

$$\mathrm{cost}(h_{\theta}\left(x\right),y) = \begin{cases} -\log h_{\theta}\left(x\right) & \text{if } y = 1\\ -\log(1-h_{\theta}\left(x\right)) & \text{if } y = 0 \end{cases}$$

Which of the following are true? Check all that apply.

 \forall If $h_{\theta}(x)=y$, then $\mathrm{cost}(h_{\theta}(x),y)=0$ (for y=0 and y=1).

Well done!

 $extit{ If } y=0 ext{, then } ext{cost}(h_{ heta}(x),y) o \infty ext{ as } h_{ heta}(x) o 1.$

Well done!

 \blacksquare If y=0, then $\mathrm{cost}(h_{\theta}(x),y) o \infty$ as $h_{\theta}(x) o 0$.

Well done!

 $ilde{\mathscr{G}}$ Regardless of whether y=0 or y=1, if $h_{ heta}(x)=0.5$, then $\cot(h_{ heta}(x),y)>0$.

Well done!

Machine Learning

Logistic Regression Simplified cost function and gradient descent

Logistic regression cost

function
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

Logistic regression cost

 $x^{(i)}$ = input (features) of i^{th} training example.

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit paramet⊕rs

$$\min_{\theta} J(\theta)$$

To make a prediction given new

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$

Repeat{

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update all)

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

 $\mathsf{Wantmin}_{ heta}\,J(heta)$

Repeat{

$$heta_j := heta_j - lpha \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 (simultaneously updates all

Algorithm looks identical to linear regression!

Machine Learning

Logistic Regression Advanced optimizatio

Optimization algorithm

Cost function $f(\theta)$. When $f(\theta)$

Given , we have code that can complife

$$-\frac{\partial}{\partial \theta_j}J(\theta) \qquad \qquad \text{(for } j=0,1,\dots,n$$

Gradient descent:

Repeat{

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Optimization algorithm

Given , we have code that can complife

$$\begin{array}{ll} -\frac{\partial}{\partial\theta_j}J(\theta) & \qquad \text{(for } j=0,1,\dots,n \\ - & \qquad \text{)} \end{array}$$

Optimization algorithms:

- Goanglingmattelescent gradient
- BFGS
- L-BFGS

Advantages:

- No need to manually α pick
- Often faster than gradient descent.

Disadvantages:

- More complex

Example:

$$\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2$$

$$\frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)$$

$$\frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)$$

theta =
$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}$$

function [jVal, gradient] = costFunction(theta)

```
jVal = [code to J(\theta)];
compute gradient(1) = [code to
\begin{array}{l} \text{compute} \\ \text{gradient(1)} = [\text{code to} \\ \text{compute} \\ \text{gradient(2)} = [\text{code to} \\ \end{array} \quad \begin{array}{l} \frac{\partial}{\partial \theta_0} J(\theta)]; \\ \frac{\partial}{\partial \theta_1} J(\theta)]; \end{array}
                                                   compute
```

compute

gradient(n+1) = [code to

Andrew No

 $\frac{\partial}{\partial \theta_n} J(\theta)$];

Machine Learning

Logistic Regression Multi-class classification: Onevs-all

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

One-vs-all

```
Train a logistic regression classifier
for each class to predict the probability
that
On a new input , to make a
prediction, pick the class that
\max_{\max} h_{\theta}(x)
```