# Week 06: Regulatory genomics

- DNA-binding sites/motifs
  - ChIP-seq
  - Position-weight matrices
  - Motif-finding
    - Expectation-Maximization
    - Gibbs Sampling

### Transcriptional regulation by TFs



### Transcriptional regulation by TFs



- (A) 3D protein structure of CAP (Catabolite Activator Protein, also known as CRP), a transcriptional activator that binds at >100 sites within the *Escherichia coli* genome.
- (B) CAP binding-site logo (based on 59 binding sites):
  - Approximately palindromic provides two very similar recognition sites, one for each subunit of the dimer.
  - The binding site lacks perfect symmetry, possibly due to the inherent asymmetry of the operon promoter region.
  - The displacement of the two halves is 11 bp, or approximately one full turn of the DNA helix.
  - Additional interactions occur between the protein and the first and last two bases within the DNA minor groove, where the protein cannot easily distinguish A from T, or G from C.
- (C) The helix-turn-helix motif from the CAP family of homodimeric DNA binding proteins.

EcoRI binds to the 6-mer GAATTC (palindrome).

occurs once every 4<sup>6</sup>
 (= 4,096) bp in a
 random DNA
 sequence.

Hindll bind to GTYRAC.

occur once per  $4^4 \times 2^2$  (= 1,024) bp.

|       | YCHATTGTTCTC |
|-------|--------------|
| ROX1  | CCAATTGTTTTG |
| ANB1  | TCCATTGTTCGT |
| ANB1  | CCTATTGTTCTC |
| ANB1  | TCCATTGTTCTC |
| ANB1  | CTCATTGTTGTC |
| HEM13 | TCAATTGTTTAG |
| HEM13 | TTTCTGGTTCTC |
| HEM13 | CCCATTGTTCTC |

Motif instance → Motif



- A 00270000010
- C 464100000505
- G 000001800112
- **T** 422087088261







$$I_i = 2 + \sum_{b} f_{b,i} \log_2 f_{b,i}$$

Scaling sequence logos based on 'information content' than frequency.

- $f_{b,i}$ : frequency of base b at position i.
- Perfectly conserved: 2 bits of information.
- Two of the four bases occur 50% of the time each: 1 bit.
- All four bases occur equally often: no information.

Hindll bind to GTYRAC.

What is its information content?



$$I_{seq}(i) = -\sum_{b} f_{b,i} \log_2 \frac{f_{b,i}}{p_b}$$

Relative entropy (a.k.a. Kullback-Leibler distance) to correct for background nucleotide frequencies.

$$W(b,i) = \log_2 \frac{f_{b,i}}{p_b}$$

Position weight matrix (PWM).

A 002700000010
C 464100000505
G 000001800112



$$I_{seq}(i) = -\sum_{b} f_{b,i} \log_2 \frac{f_{b,i}}{p_b}$$

Relative entropy (a.k.a. Kullback-Leibler distance) to correct for background nucleotide frequencies.

$$W(b,i) = \log_2 rac{f_{b,i}}{p_i}$$
 Position weight matrix (PWM).



A 002700000010
C 464100000505
G 000001800112
T 422087088261



A generative model!

#### Assumptions:

- Independence of positions
- Fixed spacing

Position weight matrix (PWM).













Sequences are not aligned, we don't know motif positions.

We also don't know what the motif looks like.

#### The motif model learning task:

- Given: a set of sequences that are thought to contain occurrences of an unknown motif of interest
- Do:
  - infer a model (PWM) of the motif, and
  - predict the locations of the motif occurrences in the given sequences.

Expectation-Maximization: Iteratively refine positions / motif profile

Gibbs sampling: Iteratively sample positions / motif profile



$$\hat{\theta}_{A} = ?$$

$$\hat{\theta}_{\!\scriptscriptstyle B}$$
= ?

 $x = (x_1, x_2, ..., x_5) \mid x_i \in \{0,1,...,10\}$  is the no. of heads observed during the ith set of tosses.

 $z = (z_1, z_2, ..., z_5) \mid z_i \in \{A, B\}$  is the identity of the coin used during the ith set of tosses.

#### A coin-flipping experiment

- $\theta_{A}$  &  $\theta_{B}$  are the biases of two coins A & B.
- **Goal**: Estimate  $\theta = (\theta_A, \theta_B)$  by repeating the following procedure five times:
  - Randomly choose one of the two coins (with equal probability)
  - Perform ten independent coin tosses with the selected coin.

Maximum likelihood estimation: statistical model that has the highest probability of generating the observed data  $-\theta$  that maximizes logP(x,z; $\theta$ ).

a Maximum likelihood



| Coin A    | Coin B    |
|-----------|-----------|
|           | 5 H, 5 T  |
| 9 H, 1 T  |           |
| 8 H, 2 T  |           |
|           | 4 H, 6 T  |
| 7 H, 3 T  |           |
| 24 H, 6 T | 9 H, 11 T |

$$\hat{\theta}_{A} = \frac{24}{24 + 6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9 + 11} = 0.45$$

 $x = (x_1, x_2, ..., x_5) | x_i \in \{0,1,...,10\}$  is the no. of heads observed during the ith set of tosses.

 $z = (z_1, z_2, ..., z_5) \mid z_i \in \{A,B\}$  is the identity of the coin used during the ith set of tosses.

A coin-flipping experiment

- $\theta_A$  &  $\theta_B$  are the biases of two coins A & B.
- **Goal**: Estimate  $\theta = (\theta_A, \theta_B)$  by repeating the following procedure five times:
  - Randomly choose one of the two coins (with equal probability)
  - Perform ten independent coin tosses with the selected coin.

Maximum likelihood estimation: statistical model that has the highest probability of generating the observed data  $-\theta$  that maximizes  $logP(x,z;\theta)$ .



 $x = (x_1, x_2, ..., x_5) \mid x_i \in \{0,1,...,10\}$  is the no. of heads observed during the ith set of tosses.

 $z = (z_1, z_2, ..., z_5) | z_i \in \{A,B\}$  is the identity of the coin used during the ith set of tosses. [Hidden variables / Latent factors]

#### A coin-flipping experiment

- $\theta_A & \theta_B$  are the biases of two coins A & B.
- **Goal**: Estimate  $\theta = (\theta_A, \theta_B)$  by repeating the following procedure five times:
  - Randomly choose one of the two coins (with equal probability; **but you don't no which coin was chosen**.)
  - Perform ten independent tosses with the selected coin.



#### E-step:

Estimate  $P(x_i, z_i | \boldsymbol{\theta}^{(t)})$  and the expected values of the hidden variables.

#### M-step:

Estimate new parameters θ
 <sup>(t+1)</sup> given current estimates of
 hidden variables & parameters.

Repeat until convergence.

 $P(x_i, z_i | \theta^{(t)})$ : Likelihood function, from here on also going to be written as  $P(X, Z | \theta)$ .



#### E-step:

- Estimate  $P(x_i, z_i | \boldsymbol{\theta}^{(t)})$  and the expected values of the hidden variables.

#### M-step:

Estimate new parameters θ
 <sup>(t+1)</sup> given current estimates of
 hidden variables & parameters.

Repeat until convergence.

 $P(x_i, z_i | \theta^{(t)})$ : Likelihood function, from here on also going to be written as  $P(X, Z | \theta)$ .