1985 FI3.2

 $\ddot{x}(x+y)^a$ 的展開式之係數總和是b,求b的值。

If the sum of the coefficients in the expansion of $(x + y)^4$ is b, find the value of b.

1991 HG4

1,,1110.	
細讀下列之帕斯卡三角形:	Study the Pascal's triangle shown
第 1 行 1	below:
第 2 行 1 1	Row 1 1
第 3 行 1 2 1	Row 2 1 1
	Row 3 1 2 1
第 4 行 1 3 3 1	Row 4 1 3 3 1
第 5 行 1 4 6 4 1	Row 5 1 4 6 4 1
第 6 行 1 5 10 10 5 1	Row 6 1 5 10 10 5 1
求由第 1 行至第 15 行所有數的總	Find the sum of all the numbers from
和。	Row 1 to Row 15.
4000 1114 5	1

1992 HI15

若
$$(3x-1)^7 = a_1x^7 + a_2x^6 + a_3x^5 + \dots + a_8$$
,求 $a_1 + a_2 + a_3 + \dots + a_8$ 的值。

If
$$(3x-1)^7 = a_1x^7 + a_2x^6 + a_3x^5 + \dots + a_8$$
,

find the value of $a_1 + a_2 + a_3 + \cdots + a_8$.

1997 FG2.3

若 c 為正整數及
$$c^3 + 3c + \frac{3}{c} + \frac{1}{c^3} = 8$$
 , 求 c 的值。

If c is an integer and $c^3 + 3c + \frac{3}{c} + \frac{1}{c^3} = 8$, find the value of c.

2000 FI5.4

린 후
$$(x^2 - x + 1)^{1999} \equiv a_0 + a_1 x + a_2 x^2 + \dots + a_{3998} x^{3998}$$
 •

設
$$S = a_0 + a_1 + a_2 + \dots + a_{3007}$$
 , 求 S 的值。

Given that
$$(x^2 - x + 1)^{1999} \equiv a_0 + a_1 x + a_2 x^2 + \dots + a_{3998} x^{3998}$$
.

If $S = a_0 + a_1 + a_2 + \cdots + a_{3007}$, find the value of S.

2001 FI4.1

已知
$$a^{\frac{2}{3}} + b^{\frac{2}{3}} = 17\frac{1}{2}$$
, $x = a + 3a^{\frac{1}{3}}b^{\frac{2}{3}}$, $y = b + 3a^{\frac{2}{3}}b^{\frac{1}{3}}$ 。

若
$$P = (x+y)^{\frac{2}{3}} + (x-y)^{\frac{2}{3}}$$
, 求 P 的值。

Let
$$a^{\frac{2}{3}} + b^{\frac{2}{3}} = 17\frac{1}{2}$$
, $x = a + 3a^{\frac{1}{3}}b^{\frac{2}{3}}$ and $y = b + 3a^{\frac{2}{3}}b^{\frac{1}{3}}$. If $P = (x + y)^{\frac{2}{3}} + (x - y)^{\frac{2}{3}}$, find

the value of P.

2007 FI4.3

設
$$c$$
 為數 $\left(2x - \frac{1}{2\sqrt{x}}\right)^3$ 展開式中的常數項,求 c 的值。

Let c be the constant term in the expansion of $\left(2x - \frac{1}{2\sqrt{x}}\right)^3$.

Find the value of c.

2012 FI3.4

在 $(ax+b)^{2012}$ 的展開式中,a 與 b 為互質之正整數,若 x^{23} 與 x^{24} 的系數相同,求 $\delta=a+b$ 的值。

In the expansion of $(ax + b)^{2012}$, where a and b are relatively prime positive integers. If the coefficients of x^{23} and x^{24} are equal, find the value of $\delta = a + b$.

2019 HG6 設 a_k 為多項式 $(2x-2)^3 (2x+2)^3 (2x+1)^3$ 中 x^k 的係數。

若
$$Q = a_2 + a_4 + a_6 + a_8$$
, 求 Q 的值。

Let a_k be the coefficient of x^k in the polynomial $(2x-2)^3 (2x+2)^3 (2x+1)^3$.

If $Q = a_2 + a_4 + a_6 + a_8$, find the value of Q.

2019 FI1.1

若 $A \in (x^2+2)^5$ 展開式中 x^4 的係數,求 A 的值。

If A is the coefficient of x^4 in the expansion of $(x^2 + 2)^5$, determine the value of A.

Answers

1985 FI3.2	1991 HG4	1992 HI15	1997 FG2.3	2000 FI5.4
16	32767	128	1	0
2001 FI4.1 35	2007 FI4.3 $\frac{3}{2}$	2012 FI3.4 671	2019 HG6 64	2019 FI1.1 80