

Google Cloud Professional Data Engineer

Introduction

A Professional Data Engineer enables data-driven decision-making by collecting, transforming, and publishing data. A Data Engineer should be able to design, build, operationalize, secure, and monitor data processing systems with a particular emphasis on security and compliance; scalability and efficiency; reliability and fidelity; and flexibility and portability. A Data Engineer should also be able to leverage, deploy, and continuously train pre-existing machine learning models.

The Professional Data Engineer exam assesses your ability to:

- Design data processing systems
- Build and operationalize data processing systems
- Operationalize machine learning models
- Ensure solution quality

Course Objective

- Design a data processing system
- Build and maintain data structures and databases
- Analyze data and enable machine learning
- Optimize data representations, data infrastructure performance, and cost
- Ensure reliability of data processing infrastructure
- Visualize data
- Design secure data processing systems

Course Outline

1. Designing data processing systems

- 1.1 Selecting the appropriate storage technologies. Considerations include:
 - Mapping storage systems to business requirements
 - Data modeling
 - Tradeoffs involving latency, throughput, transactions
 - Distributed systems
 - Schema design

1.2 Designing data pipelines. Considerations include:

- Data publishing and visualization (e.g., BigQuery)
- Batch and streaming data (e.g., Cloud Dataflow, Cloud Dataproc, Apache Beam, Apache Spark and Hadoop ecosystem, Cloud Pub/Sub, Apache Kafka)
- Online (interactive) vs. batch predictions
- Job automation and orchestration (e.g., Cloud Composer)
- 1.3 Designing a data processing solution. Considerations include:
 - · Choice of infrastructure
 - System availability and fault tolerance
 - Use of distributed systems
 - Capacity planning
 - Hybrid cloud and edge computing
 - · Architecture options (e.g., message brokers, message queues, middleware, service-oriented

- architecture, serverless functions)
- At least once, in-order, and exactly once, etc., event processing
- 1.4 Migrating data warehousing and data processing. Considerations include:
 - Awareness of current state and how to migrate a design to a future state
 - Migrating from on-premises to cloud (Data Transfer Service, Transfer Appliance, Cloud Networking)
 - Validating a migration

2. Building and operationalizing data processing systems

- 2.1 Building and operationalizing storage systems. Considerations include:
 - Effective use of managed services (Cloud Bigtable, Cloud Spanner, Cloud SQL, BigQuery, Cloud Storage, Cloud Datastore, Cloud Memorystore)
 - Storage costs and performance
 - · Lifecycle management of data
- 2.2 Building and operationalizing pipelines. Considerations include:
 - Data cleansing
 - Batch and streaming
 - Transformation
 - Data acquisition and import
 - Integrating with new data sources
- 2.3 Building and operationalizing processing infrastructure. Considerations include:
 - Provisioning resources
 - Monitoring pipelines
 - Adjusting pipelines
 - Testing and quality control

3. Operationalizing machine learning models

- 3.1 Leveraging pre-built ML models as a service. Considerations include:
 - ML APIs (e.g., Vision API, Speech API)
 - Customizing ML APIs (e.g., AutoML Vision, Auto ML text)
 - Conversational experiences (e.g., Dialogflow)
- 3.2 Deploying an ML pipeline. Considerations include:
 - Ingesting appropriate data
 - Retraining of machine learning models (Cloud Machine Learning Engine, BigQuery ML, Kubeflow, Spark ML)
 - Continuous evaluation
- 3.3 Choosing the appropriate training and serving infrastructure. Considerations include:
 - Distributed vs. single machine
 - Use of edge compute
 - Hardware accelerators (e.g., GPU, TPU)
- 3.4 Measuring, monitoring, and troubleshooting machine learning models. Considerations include:
 - Machine learning terminology (e.g., features, labels, models, regression, classification, recommendation, supervised and unsupervised learning, evaluation metrics)
 - Impact of dependencies of machine learning models
 - Common sources of error (e.g., assumptions about data)

4. Ensuring solution quality

- 4.1 Designing for security and compliance. Considerations include:
 - Identity and access management (e.g., Cloud IAM)

- Data security (encryption, key management)
- Ensuring privacy (e.g., Data Loss Prevention API)
- Legal compliance (e.g., Health Insurance Portability and Accountability Act (HIPAA), Children's Online Privacy Protection Act (COPPA), FedRAMP, General Data Protection Regulation (GDPR))
- 4.2 Ensuring scalability and efficiency. Considerations include:
 - Building and running test suites
 - Pipeline monitoring (e.g., Stackdriver)
 - Assessing, troubleshooting, and improving data representations and data processing infrastructure
 - Resizing and autoscaling resources
- 4.3 Ensuring reliability and fidelity. Considerations include:
 - Performing data preparation and quality control (e.g., Cloud Dataprep)
 - Verification and monitoring
 - Planning, executing, and stress testing data recovery (fault tolerance, rerunning failed jobs, performing retrospective re-analysis)
 - Choosing between ACID, idempotent, eventually consistent requirements
- 4.4 Ensuring flexibility and portability. Considerations include:
 - Mapping to current and future business requirements
 - Designing for data and application portability (e.g., multi-cloud, data residency requirements)
 - Data staging, cataloging, and discovery

Prerequisites

Basic database knowledge

Recommended Experience

3+ years of industry experience including 1+ years designing and managing solutions using GCP.

Target Audience

- Data professionals
- Engineers who successfully work on building excellent data architectures using GCP
- People preparing for the Google Professional Data Engineer examination
- Jr. Data Engineers
- Information Security Engineers
- Data Analysts
- System Engineers
- Software Engineers
- Cloud Data Engineers

Duration

3 days training course