Grupo ARCOS

uc3m Universidad Carlos III de Madrid

Tema 2 (I) Representación de la información

Estructura de Computadores Grado en Ingeniería Informática

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- 1. Alfanuméricas: caracteres y cadenas
- 2. Numéricas: naturales y enteras
- 3. Numéricas: coma fija
- 4. Numéricas: coma flotante: estándar IEEE 754

Introducción: computador

Un computador es una máquina destinada a procesar datos.

Se aplican unas instrucciones y se obtiene unos resultados

Introducción: computador

Un computador es una máquina destinada a procesar datos.

- Se aplican unas instrucciones y se obtiene unos resultados
- Los datos/información pueden ser de distintos tipo

Introducción: computador

Un computador es una máquina destinada a procesar datos.

- Se aplican unas instrucciones y se obtiene unos resultados
- Los datos/información pueden ser de distintos tipo
- Un computador solo usa una representación: binario.

Introducción: representación de la información

El uso de una representación permite transformar los distintos tipos de información en binario (y viceversa)

Necesitaremos...

Conocer posibles representaciones:

Introducción: características de la información

- Un computador maneja un conjunto finito de valores
 - Tipo binario (dos estados)
 - Finito (representación acotada)
 - N° de bits de palabra del computador
 - Con n bits se pueden codificar 2ⁿ valores distintos

- Hay algunos tipos de información que son infinitos
 - Imposible representar todos los valores de los números naturales, reales, etc.

La representación elegida tiene limitaciones

Ejemplo 1: la calculadora de Google con 15 dígitos...

http://www.20minutos.es/noticia/415383/0/google/restar/error/

Ejemplo 2: la profundidad de color...

l bit	2 colores
4 bits	16 colores
8 bits	256 colores

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Ejemplo 2: la profundidad de color...

I bit	2 colores
4 bits	16 colores
8 bits	256 colores

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Ejemplo 2: la profundidad de color...

I bit	2 colores
4 bits	16 colores
8 bits	256 colores

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Necesitaremos...

Conocer posibles representaciones:

- ▶ Conocer las características de las mismas:
 - Limitaciones

Necesitaremos...

Conocer posibles representaciones:

- Conocer las características de las mismas:
 - Limitaciones

Conocer cómo operar con la representación:

Contenidos

Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- 1. Alfanuméricas: caracteres y cadenas
- 2. Numéricas: naturales y enteras
- 3. Numéricas: coma fija
- 4. Numéricas: coma flotante: estándar IEEE 754

- Un número se define por una cadena de dígitos, estando afectado cada uno de ellos por un factor de escala que depende de la posición que ocupa en la cadena.
- Dada una base de numeración b, un número X se define como la cadena de dígitos:

$$X = (... x_2 x_1 x_0, x_{-1} x_{-2} ...)_b$$
 Con $0 \le x_i < b$ con una lista de pesos asociados:

$$P = (... b^2 b^1 b^0 b^{-1} b^{-2} ...)_b$$

- Un número se define por una cadena de dígitos, estando afectado cada uno de ellos por un factor de escala que depende de la posición que ocupa en la cadena.
- Dada una base de numeración b, un número X se define como la cadena de dígitos:

$$X = (... x_2 x_1 x_0, x_{-1} x_{-2} ...)_b$$
 Con $0 \le x_i < b$ con una lista de pesos asociados:

$$P = (... b^2 b^1 b^0 b^{-1} b^{-2} ...)_b$$

Su valor es:

$$V(X) = \sum_{i=-\infty}^{+\infty} b^{i} \cdot x_{i} = \cdots b^{2} \cdot x_{2} + b^{1} \cdot x_{1} + b^{0} \cdot x_{0} + b^{-1} \cdot x_{-1} + b^{-2} \cdot x_{-2} \cdots$$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $16^3 16^2 16^1 16^0$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $16^3 16^2 16^1 16^0$

Paso de binario a hexadecimal:

- Agrupar de 4 en 4 bits, de derecha a izquierda
- Cada 4 bits es el valor del dígito hexadecimal

Decimal

$$X = 9 7 3 I$$
... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $16^3 16^2 16^1 16^0$

Ejercicio

Representar 342 en binario:

Ejercicio (solución)

Representar 342 en binario:

Ejemplo

▶ Con 3 dígitos binarios, se pueden representar 8 símbolos:

¿Cuántos valores se pueden representar con n bits?

Con n bits, si el valor mínimo representable corresponde al número 0, ¿Cuál es el máximo valor numérico representable?

- ¿Cuántos valores se pueden representar con n bits?
 - 2ⁿ
 - Ej.: con 4 bits se pueden representar 16 valores
- - ▶ Log₂(n) por exceso
 - Ej.: para representar 35 valores se necesitan 6 bits
- Con n bits, si el valor mínimo representable corresponde al número 0, ¿Cuál es el máximo valor numérico representable?
 - 2n-1

Ejercicio

► Calcular el valor de (23 unos):

Ejercicio (solución)

► Calcular el valor de (23 unos):

$$X = 2^{23} - 1$$

Truco:

$$X = 2^{23} - 1$$

Ejemplo: operaciones

Sumar en binario:
 1 0
 + 1 1
 1 1 0

Ejemplo: operaciones

Sumar en binario:

Restar en binario:

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- 1. Alfanuméricas: caracteres y cadenas
- 2. Numéricas: naturales y enteras
- 3. Numéricas: coma fija
- 4. Numéricas: coma flotante: estándar IEEE 754

Representación alfanumérica

- Cada carácter se codifica con un byte.
- ▶ Para n bits \Rightarrow 2ⁿ caracteres representables:

# bits	# caracteres	Incluye	Ejemplo
6	64	 26 letras: az 10 números: 09 Puntuación: .,;: Especiales: + - [BCDIC
7	128	 añade mayúsculas y caracteres de control 	ASCII
8	256	 añade letras acentuadas, ñ, caracteres semigráficos 	EBCDIC ASCII extendido
16	34.168	Añade distintos idiomas (chino, árabe,)	UNICODE

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064		096	
:001	<u>Ö</u>	SOH	033	l	065	@ A	097	ā
002		STX	034	n	066	В	098	ь
003		ETX	035	#	067	Č	099	c
004	: •	EOT	036	\$	068	ā.	100	d
005	- <u></u>	ENQ	037	%	069	D E	101	ė
006	A	ACK	038	&z	070	F	102	f
007	(beep)	BEL	039	7	071	Ğ	103	
008	/pecbi	BS	:040		072	H	104	g h
009	(tab)	HT	041	ì	073	ī	105	i
010	(line feed)	LF	042	4	074	j	106	
011	(home)	VT	043	+	075	K	107	j k
012	(form feed)	FF	044		076	Ĺ	108	ī
013	(carriage return)	CR	045	<u>.</u>	077	M	109	m
014	.fl	so	046	.' -	078	N	110	n
015	ø	SI	047	\dot{i}	079	Ö	iii	
016	- 1945 	DLE	048	0	080	P	112	p q
017	-	DC1	049		081	Q	113	o o
018	‡ !!	DC2	050	1 2	082	R	114	1 gr
019	ii	DC3	051	3	083	S	115	S
020	ជ	DC4	052	4	084	Ť	116	t
021	·§	NAK	053	5	- 085	U	417	u
022		SYN	054	6	086	v	118	v
023	<u>↑</u>	ETB	055	7	087	w	119	w
024	▼	CAN	056	8	088	X	120	x
025	j	EM	057	9	089	Ÿ	121	y
026	. *	SUB	058		090	Z	122	Z
027	←	ESC	059	1	091	Ī	123	. [
028	(cursor right)	FS	060	<	092		124	
029	(cursor left)	GS	061		093	1	125	
030	(cursor up)	RS	062	> ::	094	À	126	- i~ - :
:031	(cursor down)	US	063	?	095	:	127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

caracteres de control

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	·@	096	
001	0	SOH	033	1	065	@ A B	097	ä
002	8	STX	034	0	066	В	098	ь
003	. ₩	ETX	035	#	067	C	099	c
004	1∳	EOT	036	\$ %	068	D E	100	d
005	4	ENO	037	%	069	E	101	e
006	•	ACK	038	8z	070	F	102	f
007	(beep)	BEL	039	· ·	071	G	103	
800		BS	040	(:	072	H	104	g h
009	(tab)	HT	041)	073	1	105	i.
010	(line feed)	LF	042	·	074	1	106	
011	(home)	VT	043	·+ :	075	K	107	j k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	<u> </u>	077	M	109	m
014	,n	so	046		078	Ň	110	n
015	\$	SI	047	$\cdot j$	079	0	111	:0
016		DLE	048	· 0	080	P :	T12	P
017		DC1	049		081	0	113	g
018	Î	DC2	050	1 2	082	Q R	114	ir Ir
019	ΙĬ	DC3	051	3	083	S	115	s
020	ជ	DC4	052	4	084	S T	116	Ti.
021	Š	NAK	053	5	085	U	117	u
022		SYN	054	6	086	V	118	v
023	·	ETB	055	7	087	w	119	w
024	→	CAN	056	8	088	X	120	x
025	į	EM	057	9	089	Y	121	y
026	<u>*</u>	SUB	058	-	090	Z	122	z
027	←	ESC	059	1	091	ſ	123	$\overline{\overline{i}}$
028	(cursor right)	FS	060	<	092		124	
029	(cursor left)	GS	061	= .	093	1	125	- }
030	(cursor up)	RS	062	- 3	094	À	126	:[~
031	(cursor down)	ÜS	063	> ?	095		127	:🗅

 ≤ 32

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

distancia mayúsculas-minúsculas

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
:001	0	SOH	033	1	065	Ā	097	α
002	8	STX	034	n :	066	В	098	:b
003	₩	ETX	035	#	067	·C	099	c
004	•	EOT	036	\$ %	068	D E	100	· d
005	4	ENQ	037	%	:069	E	101	e
006	•	ACK	038	&z	070	F	102	: f
007	(beep)	BEL	039	Y .	071	G	103	
800	6	BS	:040	(:	072	Ĥ	104	g h
:009	(tab)	HT	041)	073	4	105	-i
010	(line feed)	LF	042	*	074	J	106	j
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044		076	L	108	1
013	(carriage return)	CR	045		077	M	109	m
014	.,;3	SO	046		078	N	110	n
015	\$	SI	047	$\cdot I$	079	0	111	:0
016		DLE	048	.0	080	P :	112	
017		DC1	049	1	081	Q	113	P q
018	t	DC2	050	2	082	R	114	ř
019	ĬĬ	DC3	051	3	083	S	115	
020	ជ	DC4	052	4	084	Ť	116	s t
021	§	NAK	053	5	085	U	117	u
022		SYN	054	6	086	V	118	v
023	<u> </u>	ETB	055	7	087	w	119	W
024	▼	CAN	056	8	088	X	120	х
025	i	EM	057	9	089	Y	121	y
026	▼	SUB	058	- -	090	Z	122	Z
027	· ←	ESC	059		091	\bar{i}	123	ī
028	(cursor right)	FS	060	<	092		124	
029	(cursor left)	GS	061		093	1	125	.}
030	(cursor up)	RS	062	3	094	À	126	: * -
:031	(cursor down)	US	063	2	095		127	\triangle
<u> </u>	mPrice.Com Copyright 1982, Leading Ed			4.	. 500		10/647	

Copyright 1998, Jim Price.Com Copyright 1982, 'Leading Edge Computer Products, Inc.

conversión de un número a carácter

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	0	SOH	033		065	@ A B	097	ά
002		STX	034	0	066	В	098	ъ
003	. i∳	ETX	035	#	067	C	099	c
004	1∳	EOT	036	\$ %	068		100	; di
005	*	ENQ	037	%	069	D E F	101	e
006	•	ACK	038	&	070	F	102	: f
007	(beep)	BEL	039	Y	071	G	103	
800	•	BS	:040	(:	072	H	104	g h
009	(tab)	HT	041)	073	1	105	: i
010	(line feed)	LF	042	*.	074	J	106	à
011	(home)	VT	043	+	075	K	107	j k
012	(form feed)	FF	044		076	L .	108	1
013	(carriage return)	CR	-045	<u> 1</u>	077	M	109	m
014	.,13	SO	046		078	N	110	n
015	Ø	SI	047	4	079	0	111	10
016		DLE	048	0	080	P	112	P
017		DC1	∴049	1 2	:081	Q :	113	g
018	Ů	DC2	050	2	082	Q R S T	114	ir.
019	i i	DC3	051	3	083	S	115	S
020	ា	DC4	052	4	084		116	it.
021	· §	NAK	053	5	085	U	417	u
022	1990	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	†	CAN	056	8	088	X	120	x
025	j	EM	057	-9	089	Y	121	У
026	→ ·	SUB	058	:	090	Z	122	z
027	←	ESC	059	;	091	[123	
028	(cursor right)	FS	060	<	092	\sim	124	i
029	(cursor left)	GS	061	=	093	1	125	:}
030	(cursor up)	RS	062	> ?	094	Α	126	·~
031	(cursor down)	US	063	?	095	- i	127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

Curiosidad: Visualización 'gráfica' con caracteres

http://www.typorganism.com/asciiomatic/

Cadenas de caracteres

Cadenas de longitud fija:

2. Cadenas de longitud variable con separador:

3. Cadenas de longitud variable con longitud en cabecera:

Contenidos

Introducción

- Objetivo
- 2. Motivación
- 3. Sistemas posicionales

2. Representaciones

- 1. Alfanuméricas: caracteres y cadenas
- 2. Numéricas: naturales y enteras
- 3. Numéricas: coma fija
- 4. Numéricas: coma flotante: estándar IEEE 754

Representación numérica

- Clasificación de números reales:
 - Naturales: 0, 1, 2, 3, ...
 - ▶ Enteros: ... -3, -2, -1, 0, 1, 2, 3,
 - Racionales: fracciones (5/2 = 2,5)
 - Irracionales: $2^{1/2}$, π , e, ...
- Conjuntos infinitos y espacio de representación finito:
 - Imposible representar todos
- Características de la representación usada:
 - Elemento representado: Natural, entero, ...
 - Rango de representación:
 Intervalo entre el menor y mayor nº representable
 - Resolución de representación:
 Diferencia entre un n° representable y el siguiente.
 Representa el máximo error cometido. Puede ser cte. o variable.

Sistemas de representación binarios más usados

A. Coma fija sin signo o binario puro

naturales

- B. Signo magnitud
- c. Complemento a uno (Ca I)

enteros

- D. Complemento a dos (Ca 2)
- E. Exceso 2ⁿ⁻¹-1
- F. Coma flotante: Estándar IEEE 754

reales

Coma fija sin signo o binario puro [naturales]

Sistema posicional con base 2 y sin parte fraccionaria.

$$V(X) = \sum_{i=0}^{n-1} 2^i \cdot X_i$$

- Rango de representación: [0, 2ⁿ -1]
- Resolución: Lunidad

Ejemplo comparativo (3 bits)

Decimal	Binario Puro		
+7	111		
+6	110		
+5	101		
+4	100		
+3	011		
+2	010		
+1	001		
+0	000		
-0	N.D.		
-	N.D.		
-2	N.D.		
-3	N.D.		
-4	N.D.		
-5	N.D.		
-6	N.D.		
-7	N.D.		

Coma fija con signo o signo magnitud [enteros]

• Se reserva un bit (S) para el signo $(0 \Rightarrow +; I \Rightarrow -)$

Si
$$x_{n-1} = 0$$
 $V(X) = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$ $\Rightarrow V(X) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$
Si $x_{n-1} = 1$ $V(X) = -\sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$

- Rango de representación: [-2ⁿ⁻¹ +1, 2ⁿ⁻¹ -1]
- Resolución: Lunidad
- Ambigüedad del 0

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	
+7	111	N.D.	
+6	110	N.D.	
+5	101	N.D.	
+4	100	N.D.	
+3	011	011	
+2	010	010	
+1	001	001	
+0	000	000	
-0	N.D.	100	
-1	N.D.	101	
-2	N.D.	110	
-3	N.D.	111	
-4	N.D.	N.D.	
-5	N.D.	N.D.	
-6	N.D.	N.D.	
-7	N.D.	N.D.	

Complemento a uno (a la base menos uno) [enteros] (1/3)

Número positivo: se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

- Rango de representación (+): [0, 2ⁿ⁻¹ 1]
- Resolución: Lunidad

Complemento a uno (a la base menos uno) [enteros] (2/3)

Número negativo:

- Se complementa a la base menos uno
- El número X < 0 se representa como $2^n X 1$ con n bits

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot y_{i} + 1$$

- Rango de representación (-): [-(2ⁿ⁻¹-1), -0]
- Resolución: Lunidad

Complemento a uno

Los números positivos tienen un 0 en el bit más signficativo

Los números negativos tienen un I en el bit más significativo

Complemento a uno (a la base menos uno) [enteros] (3/3)

- ► Ejemplo: Para $n=4 \Rightarrow el valor +3_{10} = 0011_2$
- ▶ Ejemplo: Para n=4 \Rightarrow el valor -3₁₀ = 1100₂
 - → I (bit signo y también parte de magnitud)
 - Ca $I(3) \Rightarrow 2^4 00 I I_2 I = 2^4 3 I = I2 \Rightarrow I I 00_2$
 - Rango de representación: [-2ⁿ⁻¹+1,2ⁿ⁻¹-1]
 - Resolución: I unidad
 - El 0 tiene doble representación (+0 y -0)
 - Rango simétrico

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	
+7	111	N.D.	N.D.	
+6	110	N.D.	N.D.	
+5	101	N.D.	N.D.	
+4	100	N.D.	N.D.	
+3	011	011	011	
+2	010	010	010	
+1	001	001	001	
+0	000	000	000	
-0	N.D.	100	111	
-I	N.D.	101	110	
-2	N.D.	110	101	
-3	N.D.	111	100	
-4	N.D.	N.D.	N.D.	
-5	N.D.	N.D.	N.D.	
-6	N.D.	N.D.	N.D.	
-7	N.D.	N.D.	N.D.	

Ejemplo

- \triangleright Para n = 5 bits
- ¿Cómo se representa X = 5?
 - Como es positivo, en binario puro
 - > 00101
- ¿Cómo se representa X = -5?
 - Como es negativo, se complementa el valor 5 (00101)
 - **II010**
- ¿Cuál es el valor de 00111 en complemento a 2?
 - Como es positivo, su valor es directamente 7
- ¿Cuál es el valor de I I 000 en complemento a 2?
 - Como es negativo, se complementa y se obtiene 00111 (7)
 - ▶ El valor es -7

- Sumas y restas se realizan de igual forma
- ▶ Para n = 5 bits
- ▶ Sea X = 5
 - ► En complemento a uno = 00101
- \blacktriangleright Sea Y = 7
 - ► En complemento a uno = 00111
- X + Y? X = 00101 Y = 00111+ X+Y = 01100
- ▶ El valor de 01100 en complemento a uno es 12

- ▶ Para n = 5 bits
- \rightarrow Sea X = -5
 - ▶ En complemento a uno = complemento de 00101:11010
- \rightarrow Sea Y = -7
 - ► En complemento a uno = complemento de 00111:11000

$$-X = 11010$$

$$-Y = 11000+$$

$$-(X+Y) = 110010$$
 Se produce un acarreo, se suma y se

desprecia

► El valor de 10011 en complemento a uno es el valor negativo de su complemento -01100 = -12

¿Porqué se desprecia el acarreo y se suma al resultado?

- ightharpoonup -X se representa como $2^n X I$
- ightharpoonup -Y se representa como 2^n -Y I
- \rightarrow -(X + Y) se representa como 2ⁿ (X+Y) I
- ▶ Cuando sumamos directamente –X –Y se obtiene

-X =
$$2^{n} - X - I$$

-Y = $2^{n} - Y - I$
-(X+Y) = $2^{n} + 2^{n} - (X + Y) - 2$

Se corrige el resultado sumando el acarreo (2^n) y despreciándolo

$$=> 2^n - (X + Y) - I$$

Complemento a dos (complemento a la base) [enteros] (1/3)

Número positivo: se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

- Rango de representación (+): [0, 2ⁿ⁻¹ -1]
- Resolución: I unidad

Complemento a dos (complemento a la base) [enteros] (2/3)

Número negativo:

- Se complementa a la base
- ► El número X< 0 se representa como 2ⁿ X con n bits

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot y_{i}$$

- Rango de representación (-): [-2ⁿ⁻¹, -1]
- Resolución: Lunidad

Complemento a dos (complemento a la base) [enteros] (3/3)

Truco:
$$C \ a \ 2 \ (X) = X$$

 $C \ a \ 2 \ (-X) = C \ a \ I \ (X) + I$

- ▶ Ejemplo: Para $n=4 \Rightarrow +3 = 0011_2$
- ▶ Ejemplo: Para $n=4 \Rightarrow -3 = 1101_2$
 - ► $I \Rightarrow$ (bit signo y también parte de magnitud)
 - C a 2 (3) = C a 2(0011₂) = $2^4 3 = 13 \Rightarrow 1101_2$
 - Rango de representación: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Resolución: Lunidad
 - El 0 tiene una única representación (No ∃ -0)
 - Rango asimétrico

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos
+7	111	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.
+3	011	011	011	011
+2	010	010	010	010
+1	001	001	001	001
+0	000	000	000	000
-0	N.D.	100	111	N.D.
-1	N.D.	101	110	111
-2	N.D.	110	101	110
-3	N.D.	111	100	101
-4	N.D.	N.D.	N.D.	100
-5	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.

Complemento a dos

 2^{N-1} no negativos 2^{N-1} negativos Un cero

Complemento a dos para 32 bits

```
0000 \dots 0000 \ 0000 \ 0000 \ 0000_{dos} =
0000 \dots 0000 \ 0000 \ 0000 \ 0001_{dos} =
                                              1_{(10)}
0000 \dots 0000 \ 0000 \ 0010_{dos} =
0111 \dots 1111 \quad 1111 \quad 1101_{dos} = 2,147,483,645_{(10)}
0111 ... 1111 1111 1111 1110<sub>dos</sub> = 2,147,483,646_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1111_{\text{dos}} = 2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000_{\text{dos}} = -2,147,483,648_{(10)}
1000 \dots 0000 \ 0000 \ 0001_{dos} = -2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000 \ 0010_{dos} = -2,147,483,646_{(10)}
1111 ... 1111 1111 1111 1101<sub>dos</sub> = -3_{(10)}
1111 ... 1111 1111 1111 1110_{dos} = -2_{(10)}
1111 ... 1111 1111 1111 1111_{\text{dos}} = -1_{(10)}
```

- Sumas y
- \triangleright Para n = 5 bits
- ▶ Sea X = 5
 - ► En complemento a dos= 00101
- \triangleright Sea Y = 7
 - En complemento a uno = 00111
- X + Y? X = 00101 Y = 00111+ X+Y = 01100
- ▶ El valor de 01100 en complemento a uno es 12
- restas de igual forma

- ▶ Para n = 5 bits
- \rightarrow Sea X = -5
 - ▶ En complemento a dos= complemento de 00101: 11010 + 1 = 11011
- \triangleright Sea Y = -7
 - ► En complemento a uno = complemento de 00111:11000 +1 = 11001
- X + Y? -X = 11011 -Y = 11001+
 - -(X+Y) = 110100 Se produce un acarreo: se desprecia
- ► El valor es 10100. Su valor en complemento a dos = el valor negativo de su complemento a dos = complemento a uno: 01011 + 1 = 01100 = >- 12

- ▶ Para n = 5 bits
- ▶ Sea X = 8
 - ► En complemento a dos= 01000
- \blacktriangleright Sea Y = 9
 - ► En complemento a uno = 01001
- X + Y? X = 01000 Y = 01001+ X+Y = 10001
- ▶ Se obtiene un negativo ⇒ desbordamiento

- ▶ Para n = 5 bits
- \rightarrow Sea X = -8
 - ▶ En complemento a dos= complemento de 01000: 10111 + 1 = 11000
- \rightarrow Sea Y = -9
 - ▶ En complemento a uno = complemento de 01001:10110 +1 = 10111

$$-X = 11000$$

$$-Y = 10111+$$

$$-(X+Y) = |0||||$$

Se produce un acarreo: se desprecia

▶ El valor 01111, como es positivo ⇒ desbordamiento

¿Porqué se desprecia el acarreo?

- ightharpoonup -X se representa como $2^n X$
- → -Y se representa como 2ⁿ -Y

64

- \rightarrow -(X + Y) se representa como 2^n (X+Y)
- ▶ Cuando sumamos directamente –X –Y se obtiene

-X =
$$2^{n} - X$$

-Y = $2^{n} - Y$
-(X+Y) = $2^{n} + 2^{n} - (X + Y)$

Se corrige el resultado despreciando el acarreo

$$=> 2^{n} - (X + Y)$$

Desbordamientos en complemento a dos

- ▶ Suma de dos negativos ⇒ positivo
- ▶ Suma de dos positivos ⇒ negativo

Extensión de signo en complemento a dos

- ¿Cómo pasar de n bits a m bits, siendo n < m?</p>
- Ejemplo:
 - n = 4, m = 8
 - \rightarrow Si X = 0110 con 4 bits \Rightarrow X = 00000110 con 8 bits
 - ▶ Si X = 1011 con 4 bits \Rightarrow X = 11111011 con 8 bits

Representación en Exceso 2ⁿ⁻¹-1 [enteros]

- ► El valor X con n bits se reprsenta como X + 2ⁿ⁻¹-1
- Se denomina sesgo a la cantidad 2ⁿ⁻¹-1

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} - (2^{n-1} - 1)$$

- Rango de representación: [-(2ⁿ⁻¹-1), 2ⁿ⁻¹]
- Resolución: Lunidad
- No existe ambigüedad con el 0

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos	Exceso 3
+7	111	N.D.	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.	Ш
+3	011	011	011	011	110
+2	010	010	010	010	101
+1	001	001	001	001	100
+0	000	000	000	000	011
-0	N.D.	100	111	N.D.	N.D.
-1	N.D.	101	110	111	010
-2	N.D.	110	101	110	001
-3	N.D.	111	100	101	000
-4	N.D.	N.D.	N.D.	100	N.D.
-5	N.D.	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.	N.D.

Ejercicio

Indique la representación de los siguientes números, razonando brevemente su respuesta:

- 1. -32 en complemento a uno con 6 bits
- 2. -32 en complemento a dos con 6 bits
- 3. -10 en signo magnitud con 5 bits
- 4. +14 en complemento a dos con 5 bits

Ejercicio (solución)

- Con 6 bits **no es representable** en C1: $[-2^{6-1}+1,...,-0,+0,....2^{6-1}-1]$
- 2. C| + | -> 100000
- 3. Signo=1, magnitud=1010 -> 11010
- 4. Positivo -> CI=C2=SM -> 01110

Ejercicio

- Usando 5 bits para representarlo, haga las siguientes sumas en complemento a uno:
 - a) 4 + 12
 - b) 4-12
 - c) -4-12

Ejercicio (Solución)

- Usando 5 bits en complemento a uno:
 - a) 4 + 12

00100

01100

 $10000 \Rightarrow$ se obtiene un negativo \Rightarrow -15 \Rightarrow overflow

Ejercicio (Solución)

- Usando 5 bits en complemento a uno:
 - b) 4 12

00100

10111 ⇒ -8

Ejercicio (Solución)

Usando 5 bits en complemento a uno:

```
c) -4 - 12
```

11011

 $101110 \Rightarrow$ se obtiene un negativo \Rightarrow overflow