

计算几何

Computational Geometry

主讲人: 倪星宇

2024年3月18日

什么是计算几何

什么是计算几何

- 计算几何: ★数学 ✓ 计算机
 - 起源于 1971 年, 计算机图形学 (CG) 与计算机辅助设计 (CAD) 的推动
 - 主要关注解决几何问题的算法
 - 三角剖分、凸包、扫描线、旋转卡壳、半平面交、最小圆覆盖......
 - 特点: 需要处理实数而非整数、关心(低维)向量而非标量
- 为什么需要计算几何
 - 降低在计算机中解决几何问题的复杂度
 - 降低在计算机中解决几何问题的数值误差

点、线、面的表示

- 坐标系选取
 - 笛卡尔坐标 (Cartesian coordinates) x, y, z
 - 原点选取具有任意性; y/z 轴负方向选为重力方向
 - y 轴为竖直方向、右手系: Houdini、Maya
 - x 正方向指向屏幕右侧; y 正方向指向屏幕上方; z 正方向垂直于屏幕朝外
 - y 轴为竖直方向、左手系: Cinema4D、Unity3D、ZBrush、LightWave3D
 - x 正方向指向屏幕右侧; y 正方向指向屏幕上方; z 正方向垂直于屏幕朝内
 - z 轴为竖直方向、右手系: Blender、3DSMax、CryEngine、SketchUp
 - x 正方向指向屏幕右侧; y 正方向垂直于屏幕朝内; z 正方向指向屏幕上方
 - *z* 轴为竖直方向、左手系: Unreal
 - x 正方向指向屏幕右侧; y 正方向垂直于屏幕朝外; z 正方向指向屏幕上方
 - OpenGL 为右手系; Direct3D 为左手系

点、线、面的表示

- 点的表示
 - 一般等同于矢量, 在单位正交基底下用二维或三维坐标表示
 - 物理上对应于从原点到该点的位置矢量 (position vector)
 - 也可以与矢量进行区分, class Point ≠ class Vector
 - Point Point → Vector; Point + Point → undefined
 - Point \pm Vector \rightarrow Point; Vector \pm Point \rightarrow undefined
- 线的表示
 - 直线/射线: $\mathbf{x}(t) = \mathbf{p} + t\mathbf{v}, \ t \in (-\infty, +\infty) \text{ or } [0, +\infty)$
 - p 是直线/射线上一点, v 是直线/射线的方向向量
 - 线段: $\mathbf{x}(t) = \mathbf{p}_1 + t(\mathbf{p}_2 \mathbf{p}_1) = (1 t)\mathbf{p}_1 + t\mathbf{p}_2, t \in [0,1]$
 - p_1, p_2 分别是线段的两个端点

点、线、面的表示

- 面的表示
 - 无穷大平面: $(x p) \cdot n = 0$
 - p 为平面上任一点,n 为平面的法向量
 - 半平面: $(x-p) \cdot n \leq 0$
 - 半"平面"不是平面,而是一半的空间,此时法向量的正负有意义

- **p**₁, **p**₂, **p**₃ 分别为三角形的三个顶点
- 若想将x限制在三角形内
 - 先在 p_1 , p_2 间找一点: $x' = (1 t')p_1 + t'p_2$
 - 再在x', p_3 间找一点: $x = (1-t)x' + tp_3 = (1-t)(1-t')p_1 + (1-t)t'p_2 + tp_3$
 - $\Leftrightarrow u \coloneqq (1-t)(1-t') = tt' t t' + 1, v \coloneqq t' tt', w \coloneqq t$
 - $x = up_1 + vp_2 + wp_3$, u + v + w = 1

点与线的距离

- 点与直线的距离
 - 点p; 直线x = o + td
 - Dist = $h = \frac{\|(p-o)\times d\|}{\|d\|}$
- 点在直线上的投影
 - 点p; 直线x = o + td
 - $(\boldsymbol{o} + t\boldsymbol{d} \boldsymbol{p}) \cdot \boldsymbol{d} = 0$
 - $\boldsymbol{o} \cdot \boldsymbol{d} + t \|\boldsymbol{d}\|^2 \boldsymbol{p} \cdot \boldsymbol{d} = 0$
 - $t = \frac{(p-o)\cdot d}{\|d\|^2}$
 - $q = o + td = o + \frac{(p-o)\cdot d}{\|d\|^2}d$

- 点与射线的距离
 - 点p; 直线x = o + td
 - $t = \frac{(p-o)\cdot d}{\|d\|^2}$
 - $t \ge 0$, Dist = h
 - t < 0, Dist = $\| p o \|$
 - 点与线段的距离同理

线与线的位置关系(2D)

- 共端点射线/线段的绕序
 - 射线 1、2 的端点为 o,方向向量分别为 d_1 , d_2
 - 线段 1 的端点为 o, p_1 ; 线段 2 的端点为 o, p_2

•
$$d_1 = p_1 - o, d_2 = p_2 - o$$

- $d_1 \times d_2$
 - > 0, 射线 2 在射线 1 的"左"边(逆时针转角小于 180°)
 - < 0, 射线 2 在射线 1 的"右"边(顺时针转角小于 180°)
 - = 0, 射线 2 与射线 1 重合或为反方向
 - 通过点乘进一步判断

线与线的位置关系(2D)

- 直线与直线的交点
 - 直线 1: $x_1 = o_1 + t_1 d_1$; 直线 2: $x_2 = o_2 + t_2 d_2$
 - $[(o_2 + t_2 d_2) o_1] \times d_1 = 0$

•
$$(o_2 - o_1) \times d_1 + t_2(d_2 \times d_1) = 0$$

•
$$t_2 = \frac{d_1 \times (o_2 - o_1)}{d_2 \times d_1}, \, \boldsymbol{p} = \boldsymbol{o}_2 + t_2 \boldsymbol{d}_2$$

- 线段的跨立测试
 - 线段 1:端点 p₁, q₁;线段 2:端点 p₂, q₂

•
$$s_1 = [(q_1 - p_1) \times (p_2 - p_1)] \times [(q_1 - p_1) \times (q_2 - p_1)]$$

•
$$s_2 = [(q_2 - p_2) \times (p_1 - p_2)] \times [(q_2 - p_2) \times (q_1 - p_2)]$$

- 两线段相交当且仅当 $s_1, s_2 \leq 0$
 - 取等号时交点在端点处

线与线的位置关系(3D)

- 异面直线之间的距离
 - $\bullet \ x_1 = o_1 + t_1 d_1$
 - $\bullet \ \mathbf{x}_2 = \mathbf{o}_2 + t_2 \mathbf{d}_2$
 - 法 1: 求两直线公垂线并投影

$$\bullet \quad \boldsymbol{n} = \frac{d_1 \times d_2}{\|d_1 \times d_2\|}$$

• Dist =
$$\mathbf{n} \cdot (\mathbf{o}_2 - \mathbf{o}_1)$$

- 法 2: 联立方程求极值
 - $||x_2 x_1|| = ||o_2 + t_2 d_2 o_1 t_1 d_1||$
 - 上式对 t_1 , t_2 分别取偏导为零

• 投影至同平面进行跨立测试; 优化问题求极值

判于 @ 福子诺基

点与面的距离

- 点与面
 - $\overline{\Psi}$ $\overline{\mathbf{n}}$: $(\mathbf{x} \mathbf{p}) \cdot \mathbf{n} = 0$
 - p 为平面上任一点,n 为平面的法向量
 - 平面外一点 x
- 点与面的距离
 - Dist = $||(x p) \cdot n|| / ||n||$
 - 该距离不受p点选取的影响(为什么?)
 - 向量形式与解析形式的关系

•
$$(x - p_x, y - p_y, z - p_z) \cdot (n_x, n_y, n_z) = 0 \Longrightarrow Ax + By + Cz + D = 0$$

• Dist =
$$\frac{\|(x-p)\cdot n\|}{\|n\|} = \frac{\|Ax+By+Cz+D\|}{\sqrt{A^2+B^2+C^2}}$$

• 性质:参数表示与隐式表示;自动适用于二维

多边形的周长与面积(2D)

- 多边形的周长
 - 遍历每条边计算模长求和
- 多边形的面积(逆时针序给出多边形)
 - 三角形的面积

•
$$A_{123} = \frac{1}{2} \| (p_2 - p_1) \times (p_3 - p_1) \|$$

•
$$A_{123} = A_{012} + A_{023} - A_{013} = A_{012} + A_{023} + A_{031}$$

- 凸多边形的面积
 - $A_{1234} = A_{123} + A_{134}$
- 任意多边形的面积
 - $\bullet \quad A_{1234} = A_{012} + A_{023} + A_{034} + A_{041}$
 - $A = \sum_{i=1, j=i\%n+1}^{n} A_{0ij}$

点与多边形的位置关系(2D)

- 点与凸多边形的位置关系
 - 面积法(逆时针序给出多边形)
 - $A = \sum_{i=0, j=(i+1)\%n}^{n-1} A_{0ij}$
 - $A' = \sum_{i=0, j=(i+1)\%n}^{n-1} |A_{0ij}|$
 - 检测 A = A' 的大小关系 (相等则 p_0 在内)
 - 绕序法(逆时针序给出多边形)
 - 检测 p_0 是否在每一条边的"左边": $(p_i p_0) \times (p_{i+1} p_0) > 0$
 - 思考:多面体的面积、点与凸多面体的位置关系 (3D)
- 点与任意多边形的位置关系
 - 光线投射 (ray casting) 算法
 - 回转数 (winding number) 算法

点与多边形的位置关系(2D)

- 光线投射算法
 - 若尔当 (Jordan) 曲线定理:任意一条简单闭曲线可以将平面分成两部分
 - 连接同一部分任意两点的弧与该曲线不相交或相交偶数次
 - 连接不同部分的两点的弧与该曲线相交奇数次
 - 观察: 取多边形为简单闭曲线, 取从判断点出发的射线为弧
 - 弧每与多边形相交一次即改变内/外关系, 无穷远点一定在多边形外
 - 相交点个数为奇数:点在多边形内
 - 相交点个数为偶数:点在多边形外
 - 思考: 该射线与顶点/边重合
 - 取射线的极角为 π 的无理数倍, 降低重合概率
 - 规定射线及射线以上的点在"上方", 否则在"下方"
 - 只有一条边的两个点分别在上方和下方才算相交

点与多边形的位置关系(2D)

- 回转数算法
 - 回转数 (winding number): 曲线绕过一点的次数
 - 对于多边形内的点, 多边形绕过该点的次数为1
 - 对于多边形外的点,多边形绕过该点的次数为0
 - 如何计算回转数 (逆时针给出多边形)
 - 回转数等于回转角 θ 除以 2π
 - $\theta = \sum_{i=1, j=i\%n+1}^{n} \arcsin \frac{\|(p_i p_0) \times (p_j p_0)\|}{\|p_i p_0\| \|p_j p_0\|}$

点到三角形的距离

- 二维情形
 - 点在三角形内: 距离为零
 - 点在三角形外
 - 设 Dist 为点-顶点距离的最小值
 - 将点分别投影到三条边上
 - 若投影点不在边的延长线上,则用点--边距离更新 Dist
- 三维情形
 - 将点投影到三角形所在平面
 - 记投影距离为 D_1 、投影点到三角形的距离为 D_2
 - $D = \sqrt{D_1^2 + D_2^2}$
 - 其它方法: 利用三角形的参数表达转换为优化问题

三角形之间的距离

- 二维情形 (保证不相交)
 - 6 组点—面/18 组点—边距离的最小值
- 三维情形 (保证不相交)
 - 6组点—面距离的最小值
 - 9组边—边距离的最小值
- 三角形距离与碰撞检测
 - 离散碰撞检测 (discrete collision detection, DCD)
 - 求两个三角形网格 (triangular mesh) 之间的距离
 - 连续碰撞检测 (continuous collision detection, CCD)
 - 三角形网格的每个顶点都有速度,求两个网格经过多长时间发生接触
 - 先考察"点—面"和"边—边"何时共面(均为一元三次方程组)再判断共面时是否接触

德洛内 (Delaunay) 三角剖分 (2D)

- 三角剖分
 - 将点集连接为三角网格, 使得各三角形的边不相交
- 德洛内三角剖分
 - 空圆性: 任意三角形的外接圆内无其它点
 - 规则化: 最大化最小角
 - 其它性质
 - 所得结果唯一
 - 增删改顶点只影响局部
 - 最外层边界形成凸多边形
 - 沃罗诺伊 (Voronoi) 图:三角剖分的对偶图
 - 将平面划分为若干由最近控制点决定的区域

凸包 (2D)

- 凸包的定义
 - 在平面上能包含给定点的最小的凸多边形
 - 凸多边形: 所有内角均小于 180° 的多边形
- 凸包与包围盒
 - 轴对齐包围盒 (axis aligned bounding box, AABB)
 - 包含给定点的与坐标轴平行的矩形
 - 凸包一定在 AABB 内; AABB 是凸包最粗糙的近似
 - 方向包围盒 (oriented bounding box, OBB)
 - 包含给定点的最小的矩形
 - 固定方向凸包 (fixed directions hulls, FDH)
 - "凸包"各边(面)的法向只能在给定集合中选取

凸包 (2D)

- 葛立恒 (Graham) 扫描法
 - 观察 1: 点集中纵坐标最小的点一定在凸包内
 - 观察 2: 在凸包上逆时针走, 所经过的边一定是"左拐"的
 - 算法流程
 - 取点集中纵坐标最小的点 p_0
 - 将 p_0 作为原点,对其余所有点按极角排序
 - 维护一个栈,将 p_0 , p_1 压入栈中
 - 按极角序依次考察 **p**₂, **p**₃, ...
 - 设当前考察 p_i
 - 记栈顶元素为 p_f ,栈顶下方的元素为 p_s
 - 若 $(\mathbf{p}_{\mathrm{f}} \mathbf{p}_{\mathrm{s}}) \times (\mathbf{p}_{i} \mathbf{p}_{\mathrm{f}}) > 0$ 则将 \mathbf{p}_{i} 压入栈中
 - 否则弹出栈顶并重复上述过程
 - 时间复杂度 $O(n \log n)$

凸包 (3D)

- 增量法
 - 给定 n-1 个点的凸包,考察新点的加入
 - 若新点在凸包内(如何判断?)则凸包不变
 - 若新点不在凸包内,从该点为光源发射光线
 - 点光源会在凸包上形成明暗分界线(凸包的棱组成)
 - 删除亮面,并连接点光源和分界线将形成新的凸包
 - 时间复杂度 $O(n^2)$
 - 如何处理多点共面的情况?
 - 对输入点进行随机扰动

• 暴力法: 枚举有向三角形, 判断它在不在凸包上

• 快速凸包 (quick hull) 法:增量法的变种,每次选择最远的点

平面最近点对(2D)

- 分治算法
 - 将点集 S 沿中线划分为两个子集 S_1, S_2
 - S 的最近点对的可能来源
 - S_1 的最近点对
 - S_2 的最近点对
 - 横跨 S_1 和 S_2 的最近点对
 - 如何求解横跨两点集的最近点对
 - 设 S_1 的最近点对距离为 h_1
 - 设 S_2 的最近点对距离为 h_2
 - 只需考虑距中线距离小于 $h = \min(h_1, h_2)$ 的点,构成集合 B
 - 在集合 B 内按 y 序扫描

最小圆覆盖(2D)

- 最小圆覆盖: 包围盒→包围球 (2D)
 - 包围给定点集的唯一的最小的圆
- 最小覆盖圆的性质
 - 凸包一定在最小覆盖圆内
 - 最小覆盖圆的三种情况
 - 圆心在某一点处, 半径为零
 - 圆心在两点中点,直径为两点距离
 - 圆心为三点外心, 半径为外接圆半径
- 最小圆覆盖的增量构造(与凸包一致)
 - 给定 n-1 个点的最小覆盖圆
 - 第 n 个点或在上述圆内,或新覆盖圆必过该点

最小圆覆盖 (2D)

- 随机增量法
 - 算法流程 (三层循环)
 - \bigcirc_{ans} = Circle(\boldsymbol{p}_1)
 - For $i = 2 \rightarrow n$
 - 若 $p_i \in \bigcirc_{ans}$ 则直接进入下一次循环
 - \bigcirc_{ans} = Circle(\boldsymbol{p}_i)
 - For $j = 1 \rightarrow i 1$
 - 若 $p_i \in \bigcirc_{ans}$ 则直接进入下一次循环
 - \bigcirc_{ans} = Circle(p_i , p_j)
 - For $k = 1 \rightarrow j 1$
 - 若 $p_k \in \bigcirc_{ans}$ 则直接进入下一次循环
 - \bigcirc_{ans} = Circle(p_i, p_j, p_k)

- 随机增量法
 - 期望时间复杂度 O(n)
 - 最小覆盖圆至多只需要三个特定点确定
 - 每次进入下层循环的概率仅为 $O\left(\frac{3}{i}\right)$
 - 最小球覆盖
 - 三种情况→四种情况(四点确定球面)
 - 随机增量法期望渐进复杂度不变
 - 但求外接球的过程繁琐
- 模拟退火法
 - 随机圆/球心, 取距离最大值为半径

反演变换

- 点的反演
 - 给定反演中心o和反演半径r
 - *p* 与 *p'* 互为反演点
 - *o*, *p*, *p'* 三点共线
 - $\|p o\|\|p' o\| = r^2$
 - 性质: 圆o外(内)的点,反演点在圆o内(外)
- 过点 *o* 的圆的反演 (2D)

•
$$(x - x_0)^2 + (y - y_0)^2 = a^2$$

•
$$x_0^2 + y_0^2 = a^2$$

•
$$(x,y) \rightarrow (x',y') = \left(\frac{r^2}{x},\frac{r^2}{y}\right)$$

反演变换

- 不过点 *o* 的圆的反演 (2D)
 - 依然是不过点 o 的圆
- 反演的应用
 - 求过两圆外一点与两圆相切的所有的圆
- 三维推广
 - 圆→球;直线→平面
- 反演的意义
 - 几何图形关于球的"镜像"
 - 微分方程求解中的"电像法"

总结

- 参考资料
 - Mark de Berg et al. 邓俊辉译. 计算几何: 算法与应用 (第 3 版). 清华大学出版社. 2009.
 - 周培德. 计算几何: 算法设计与分析. 清华大学出版社. 2005.
 - 王华民. GAMES103: 基于物理的计算机动画入门, Lecture 09.
- 课后练习 (POJ)
 - 点、线、面
 - 2318, 2398, 3304, 1269, 2653, 1066, 1410, 1696, 3449, 1584, 2074
 - 凸包
 - 1113, 2007, 1228, 3348
 - 圆、球
 - 1375, 1329, 2354, 1106, 1673