3D Slicer Overview

Andras Lasso, PhD PerkLab, Queen's University

Right tool for the job

Robust and usable enough for clinical evaluation, flexible, open, portable, community supported

FDA approved, company supported, closed source

Without an application platform

- Each application is developed from ground up
- Completely new software is developed for each problem/procedure/device
- Significant work is needed to integrate new, advanced algorithms

Building on an application platform

- Core functionalities are already implemented
- New software modules can be developed for specific needs
- Many new, advanced algorithms are available
- Well-supported with a large user and developer community

Quick start.

Huge waste of time, money, and effort overall.

Investment at the beginning: learning.

Minimal wasted efforts.

Software stack example

Building on a platform

LINES OF SOURCE CODE - ILLUSTRATED THROUGH LUMPNAV

Background for 3D Slicer

- Software application for medical image computing: data import/export, visualization, segmentation, registration, quantification, real-time guidance
- Application framework: customizable, extensible custom modules
- Completely free (BSD)
- Multi-platform

- User and developer support
- Training courses, documentation, tutorials

Fedorov, et al. "3D Slicer as an image computing platform for the Quantitative Imaging Network." Magnetic resonance imaging 30.9 (2012): 1323-1341.

Large user community

500 downloads per week in 2012 2000 downloads per week in 2017

250 000+ downloads over the past 4 years:

Project week

- Twice a year
- Bring your own project, work with experts
- Meetings, training
- Upcoming: January 2018, at MIT (Boston, MA)

3D Slicer in clinical use

Radiation dose calculations

Tracking peritumoral white matter fibers

MRI-guided prostate biopsy

Diagnosis of **Different Tumors** in Lung Cancer

Clinical users drive creation of

Breast cancer surgery guidance

Diagnosis of Osteoarthritis Degeneration

Quantitative assessment of COPD

Commercial use

- Xstrahl (small animal radiation product)
- mebio (radiology product, prostate guidance)
- SonoVol (ultrasound product) (R43CA192482...)
- Novartis (quantitative imaging clinical trials)
- New Frontier (navigation system)
- KUKA (surgical robotics)
- Siemens (diagnostic and interventional research)
- Canon (robotic interventions)
- GE (research and products)
- NDI (trackers for surgical navigation)
- Isomics (research, consulting)
- Kitware (research, consulting)
 - 10+ Slicer based projects in the past two years
 - 5 commercial products being launched

Example: Gel Dosimetry tool

https://www.slicer.org/slicerWiki/index.php/Documentation/Nightly/Modules/GelDosimetry

Example: LumpNav (touch optimized)

http://www.slicerigt.org/wp/breast-cancer-surgery/

Chosen option: "simplified main window"

Data import/export

- DICOM: 2D/3D/4D volumes, structure sets, dose volumes, etc. (extensible without Slicer core changes)
- Research data formats for volumes, meshes, transforms (NRRD, MetalO, VTK, HDF, etc.)
- Common non-medical data formats (JPEG, TIFF, etc.)
- Save and complete restore of application state

Data handling: the MRML scene

- MRML: Medical Reality Modeling Language
- All objects (volumetric images, surface models, transforms, etc.) are stored in a hierarchical structure of MRML nodes
- Each MRML node has its own list of custom attributes that can be used to specify additional characteristics for the data object
- Enables the modules to have access to the MRML tree, allowing new extensions to leverage existing processing and visualization functions without directly interfering with other modules

Visualization

- 1. 2D (slice) and 3D views, chart views
- 2. Configurable layout
- Multi-modality image fusion (foreground, background, label map)
- 4. Transforms, vector and tensor field visualization
- Surface and volume rendering
- 6. Time sequence data

Segmentation

- Manual (paint, draw, scissor, threshold, etc.)
- Semi-automatic (region-growing, fill between slices, etc.)
- Automatic (atlas-based, robust statistics, etc.)

Registration

- Manual: translation, rotation in 3D
- Automatic: rigid, deformable, with various similarity metrics, initialization methods, optimizers, masking, etc.
- Extensions: surface-based registration, Elastix, etc.

Many other modules...

- Image filtering

 (image noise
 reduction, MRI bias
 correction, etc.)
- Surface processing
- Diffusion imaging
- Quantification, statistics

•

Python in Slicer

The Python console of Slicer4 gives access to

- Scene objects (MRML)
- Modules (core and extensions)
- Data arrays (volumes, models)
- GUI elements (Qt) that can be encapsulated in a module
- Processing Libraries
 - numpy
 - VTK
 - ITK (SimpleITK)
 - CTK

Python console in Slicer

Automatic regression testing

- Automatic tests ensure detecting regression errors
- Results published on <u>web-based dashboard</u>
- Types
 - Generic tests: automatically generated
 - Logic tests: ests a custom module's behavior, processing results
 - Python self-tests
 - Comprehensive test, including user interface, logic, data storage

Details: http://wiki.slicer.org/slicerWiki/index.php/Documentation/Nightly/D
 evelopers/Tutorials/SelfTestModule

Modular architecture

Three types of modules:

- Scripted modules written in python
- Command-line modules (CLI) use ITK
- Loadable (interactive) modules written in C++

Infage.cExternal

Slicer is extensible

Slicer Extension Manager offers the possibility to the user to download and install additional Slicer modules by a few clicks

Share your tools

- In the spirit of the open-source paradigm, it is encouraged to share your tools
- The shared extensions
 - appear in the Extension Manager
 - are nightly tested on the Slicer Factory platforms
- How to share?
 - Fork ExtensionIndex from GitHub and upload your extension description (.s4ext) file https://github.com/Slicer/ExtensionsIndex
 - Ask the core team to integrate (send a "pull request")

http://discourse.slicer.org @lassoan

