Отчет по лабораторной работе

Фотоэффект и измерение постоянной Планка

Работу выполнили студенты

Краснощёкова Дарья, Козлов Александр

Содержание

1 Теория		рия	2
2	Опі	исание эксперимента	3
3	Выволнение заданий		5
	3.1	Проверка закона Столетова	5
	3.2	Проверка наличия красной границы фотоэффекта	5
	3.3	Определение постоянной Планка и красной границы фотоэффекта по дан-	
		ным, полученным с лампы накаливания	8
	3.4	Вычисление постоянной Планка	9
4	Вы	вод	9

1 Теория

В настоящей работе будет исследоваться внешний фотоэффект, который заключается в том, что тело эммитирует (испускает) во внешнее по отношению к нему пространство электроны под действием падающего света. При этом используется вакуумный фотоэлемент, имеющий два электрода: катод, испускающий электроны, и анод, их принимающий. Если на последний подать положительное напряжение (разность потенциалов между двумя электродами), то во внешней цепи будет течь ток, называемый фототоком.

Основные законы фотоэффекта, заключаются в следующем:

- 1. Величина фототока в режиме насыщения при фиксированном спектральном составе излучения прямо пропорциональна интенсивности падающего сета (закон Столетова).
- 2. Для каждого вещества существует длинноволновая граница фотоэффекта λ_0 , за которой (при $\lambda > \lambda_0$) фотоэммисия не наблюдается.
- 3. Максимальная кинетическая энергия электронов W_{max} при фотоэффекте не зависит от интенсивности падающего света и прямопропорциональна частоте падающего света.

Данные законы легко объясняются на основе квантовой теории света и электронной теории света. Свет обладает корпускулярно-волновой дуальностью и может быть излучён либо поглащён отдельными квантами (фотонами). Энергия одного фотона $E=h\nu$, где h— постоянная Планка, равная

$$h = 6.6260755(40) \cdot 10^{-34}$$
 Дж · с.

Закон Столетова объясняется следующим образом. Пускай на тело падает N фотонов в единицу времени. С вероятностью P каждый из них может "выбить" электрон. Так как каждый фотон действует на тело независимо, то всего электронов в единицу времени будет выбиваться $n=N\cdot P$. Интенсивность падающего света вычисляется по известному из электродинамики соотношению $I=\omega\cdot v$, где ω — плотность энергии электромагнитного излучения. Она пропорциональна $\omega\propto N\cdot E$, где через E обозначена энергия одного фотона. Таким образом, становится ясно, что фототок во внешней цепи

$$I_{\text{внеш}} = en \propto N \propto \omega \propto I. \tag{1}$$

Существование красной границы фотоэффекта объясняется тем, что электроны находится в металле в потенциальной яме, заполняя её до некоторого уровня. Чтобы вывести электрон из потенциальной ямы, а, следовательно, и из металла, нужно передать ему некоторую энергию. Наименьшая из таких энергий называется работой выхода $A_{\text{вых}} = e\phi$. Наибольшая энергия, которая может быть получена от фотона электроном, равна $h\nu$. Очевидно, что в случае $h\nu < A_{\text{вых}}$ фотоэффект не наблюдается.

Из предыдущих соображений можно восстановить уравнение Эйнштейна

$$W_{max} = h\nu - A_{\text{BMX}}. (2)$$

Данное уравнение служит объяснением третьего закона фотоэффекта.

Для определения максимальной кинетической энергии электрона нужно подать на анод отрицательное напряжение V. Оно будет тормозить направляющиеся к аноду электроны. Все электроны, эммитированные с катода и облабающие энергией W < eV, не смогут добраться до анода. Уменьшая V до напряжения, называемого $\mathit{запирающим}$, можно добиться того, что ни один из электронов уже не будет обладать достаточно энергией для преодаления потенциального барьера между катодом и анодом. При этом

$$W_{max} = eV_3. (3)$$

Подставляем данное выражение в уравнение Эйнштейна (2) и получаем следующее линейное соотношение между запирающим напряжением и частотой падающего света:

$$V_3 = -\frac{h}{e}\nu - \varphi. \tag{4}$$

2 Описание эксперимента

Целью работы является проверка законов фотоэффекта, а также измерение постоянной Планка на основании соотношения

$$V_3 = -\frac{h}{e}\nu - \varphi. \tag{5}$$

Свет от лампы накаливания или ртутной лампы фокусируется конденсором на входную щель призменного монохроматора УМ-2. В монохроматоре свет через входную щель, регулирующую световой поток, падает на объектив коллиматора и параллельным пучком проходит диспергирующую призму. Фокусное расстояние объектива для каждой длины волны изменяется, поэтому предусмотрена возможность фокусировки объектива коллиматора. Фокусировочное движение осуществляется маховичком и контролируется по миллиметровой шкале. Поворачивая призменный столик на различные углы относительно падающего пучка света, получаем свет различной длины волны, распространяющийся параллельно оси выходной трубы. Фокусируя свет в выходную плоскость, выделяем с помощью выходной щели узкий спектральный интервал. На выходной щели крепится фотоэлемент, помещенный в металлический экран, предохраняющий от попадания паразитного света и от электрических наводок. Таким образом, поворачивая призму монохроматора, можно изменять частоту освещающего фотоэлемент света.

Потенциал анода фотоэлемента можно менять с помощью двух потенциометров "Вел. V_3 " и "Вел. ΔV_3 ". Величина потенциала измеряется вольтметром при положении переключателя "Измерение" на " V_3 " (шкала вольтметра при этом соответствует 2,5 В). В положении переключателя " ΔV_3 " измеряется лишь часть анодного напряжения, подаваемая с потенциометра "Вел. ΔV_3 " (шкала вольтметра на 0,25 В). Имеется переключатель знака анодного напряжения.

Возникающий в фотоэлементе ток при отрицательном потенциале анода (режим задержки) очень мал и не может быть измерен непосредственно. Для его измерения служит

Рис. 1: Схема установки.

балансный электрометрический усилитель. На вход усилителя подается напряжение, пропорциональное величие фототока, которое образуется на большом сопротивлении R, включенном в цепь фотоэлемента. Поэтому показания микроамперметра на выходе усилителя пропорциональны величине фототока.

Потенциал запирания определяется величиной тормозящего электроны анодного напряжения в момент исчезновения фототока. Очень важно, что измеренное запирающее напряжение отличается от истинного значения

$$V_0 = V_3 + C. (6)$$

Величина поправки С зависит от ряда факторов, важнейшими из которых являются наличие обратного тока, вызванного вторичной эмиссией с анода, и контактная разность потенциалов между анодом и катодом. Это приводит к большой погрешности при определении постоянной Планка по зависимости запирающего напряжения от частоты света.

С целью увеличения точности опыта можно провести измерения для двух близких значений частоты света. Если частоты достаточно близки, то поправка «С» практически не изменится. Тогда для определения постоянной Планка можно воспользоваться соотношением

$$\Delta V_3 = -\frac{h}{e} \Delta \nu,\tag{7}$$

где $\Delta \nu = \nu_2 - \nu_1$.

Необходимо достаточно точно знать значения частот ν_2 и ν_1 . Поэтому необходимо использовать источник с линейчатым спектром, для которого частоты излучения измерены высокой точностью.

3 Выволнение заданий

3.1 Проверка закона Столетова

Первым делом мы проверяем справедливость закона Столетова. Для трёх значений длин волн света снимаем зависимости фототока в режиме насыщения от интенсивности падающего света, изменяя для этого ширину входной щели монохроматора.

Для каждой длины волны сначала подбираем ширину выходной щели монохроматора таким образом, чтобы фототок вышел в режим насыщения (то есть чтобы стрелка прибора "фототок" отклонилась на всё шкалу), когда ширина входной щели равна 1 мм. Затем проводим 10 измерений величины фототока для значений ширины входной щели от 1 мм для 0.1 мм. Результаты измерений представлены на рисунке 2. Так как форму входной щели можно приблизительно принять за прямоугольник, то выполнение закона Столетова означает линейную зависимость фототока насыщения от ширины входной щели, что и было получено. Коэффициент пропорциональности получается равным 51.21.

3.2 Проверка наличия красной границы фотоэффекта

Если красная граница фотоэффекта существует, то существует такая частота ν_0 , что при частотах

$$\nu < \nu_0 \tag{8}$$

Рис. 2: Результаты измерений фототока в режиме насыщения в зависимости от ширины входной щели. Видно, что эмпирические данные хорошо ложаться на кривую линейной зависимости.

фотоэффект не наблюдается. Проверим данное утверждение. Для этого снимем зависимость тока фотоэлемента от частоты света, используя источник белого света.

Сперва переключим "Измерение" в положение " ΔV_3 ", ручку "Вел. ΔV_3 " выведем в крайнее положение против часовой стрелки, а на анод подадим максимальное положительное напряжение. Найдём, перестраивая монохроматор, длину волны света, при которой фототок максимален, и подберём ширину щелей таким образом, чтобы стрелка прибора "фототок" отклонилась на всю шкалу. Отмечаем положения равенства фототока нулю. У нас такими положениями были частоты $2.4 \cdot 10^{14}$ Γ ц и $6 \cdot 10^{14}$ Γ ц.

Затем снимем зависимость фототока от частоты света. Нами было сделано 21 измерение в тех пределах диапазона перестройки монохроматора, для которых фототок отличен от нуля. Результаты измерений отображены на рисунке 3. Вид полученной зависимости объясняется формулой Планка для излучения абсолютно черного тела

$$\omega \propto \frac{\nu^3}{e^{\frac{h\nu}{kT}} - 1}.$$
 (9)

То есть формула (9) определяет плотность электро—магнитного излучения света в зависимости от частоты света. Фототок, как следует из формулы (1), пропорционален плотности падающего на фотоэлемент электро—магнитного излучения, отсюда и получаем имеющуюся картину.

Теперь определим красную границу фотоэффекта. Для этого определим наименьшую из частот, соответсвующих нулевому фототоку. Напомним, что таковыми были $2.4\cdot 10^{14}$ Γ ц и $6\cdot 10^{14}$ Γ ц. Наименьшей из них будет $2.4\cdot 10^{14}$ Γ ц. Тогда красной границей фотоэффекта будет

$$\lambda_0 = 12491 \text{ Å}.$$
 (10)

При частотах, меньших $2.4 \cdot 10^{14}$ Гц, (что соответсвует длинам волн, большим λ_0) фототок был равен нулю, что подтверждает наличие красной границы фотоэффекта.

Рис. 3: Результаты измерений фототока в зависимости от частоты. Стоит заметить, что возраста стрелочного прибора, по которому определялся фототок, лаборант посоветовал принять нуль фототока за те места, где стрелочный прибор показывал 3 деления фототока. Видна схожесть экспериментальной кривой с кривой Планка (закон излучения абсолютно черного тела).

3.3 Определение постоянной Планка и красной границы фотоэффекта по данным, полученным с лампы накаливания

С помощью источника белого света измерим величину V_3 для 8-10 значений частот света. Частоты выбираем равномерно распределенными в интервале заметного фотоэффекта по результатам предыдущего задания. Начинаем измерения, установив ширину обеих щелей монохроматора по 0,35 мм. Переключатель "Знак V_3 " ставим в положение "-" (тормозящее поле), а переключатель "измерение"—в положение " V_3 ".

Отметим, что при измерении V_3 важно тщательно контролировать равенство нулю фототока. Для этого мы закрывали свет, проверяли установку нуля, вновь открывали свет и следили за стрелкой прибора "фототок", которая должна была едва заметно отклоняться вправо. Если стрелка прибора совсем не отклонялась или отклонялась вправо, это говорило о том, что тормозящий потенциал анода велик, а при значительном отклонении стрелки вправо—о том, что V_3 мало.

По данным, полученным с лампы накаливания, построим зависимость V_3 от частоты света, представленную на рисунке 4. Аппроксимирующая прямая полученной кривой:

Рис. 4: Результаты измерений запирающего напряжения в зависимости от частоты.

$$y = -7.12 + 0.02x. (11)$$

Тогда красная граница фотоэффекта находится примерно на частоте 300 ТГц.

Найдем постоянную Планка, пользуясь полученными данными и учитывая, что 1 деление отвечает 0.25 Вольта:

$$0.02 \left(\frac{\text{дел.}}{\text{ТГц}}\right) \cdot 1.6 \cdot 10^{-19} (\text{K}\pi) = 0.03 \cdot 10^{-19} \left(\frac{\text{дел. K}\pi}{\text{ТГц}}\right). \tag{12}$$

Получаем, что постоянная Планка равна $7.5 \cdot 10^{-34} \pm 1.4 \cdot 10^{-34}$ Дж с.

3.4 Вычисление постоянной Планка

Измерим величину ΔV_3 , используя в качестве источника света ртутную лампу. Максимумы спектра ртути были обнаружены на длинах волн (в градусах) 550, 1084, 2190, 2370. Для измерения постоянной Планка используем пары первого-второго и третьего-четвертого пиков спектра ртути.

Из анализа градуировочного графика получаем, что длинам волн (в градусах), равным 550, 1084, 2190 и 2370, соответствуют частоты 5.24, 5.57, 6.93, $7.4\cdot 10^{14}~\Gamma$ ц.

Переключатель "измерение" ставим в положение " ΔV_3 ", а потенциометр "Вел. ΔV_3 " в крайнее положение против часовой стрелки.

Проводим три серии измерений при различной ширине входной щели.

- 1. Первая серия измерений проводилась при ширине входной щели $0.3~\mathrm{mm}$ и выходной $0.3~\mathrm{mm}$.
- 2. Вторая серия измерений проводилась при ширине входной щели $0.5~\mathrm{mm}$ и выходной $0.3~\mathrm{mm}$.
- 3. Третья серия измерений проводилась при ширине входной щели $0.7~\mathrm{mm}$ и выходной $0.3~\mathrm{mm}$.

При нулевом потенциале анода настраиваемся на самую длинноволновую линию и регулируем ртутную лампу, добиваясь максимального значения фототока. Установив нужное значение на отсчетном барабане монохроматора, подстраиваем это положение, добиваясь максимума фототока. Затем потенциометрами "Вел. V_3 " устанавливаем фототок равным нулю. Тщательно, как в предыдущем задании, проверяем установку фототока на нуль. После этого перестраиваем монохроматор на соседнюю спектральную линию и вновь тщательно устанавливаем фототок равным нулю, пользуясь потенциометром "Вел. ΔV_3 " и не меняя положение потенциометра "Вел. ΔV_3 ". Показания вольтметра в таком случае равнялись разности потенциалов запирания ΔV_3 для исследуемой пары линий.

Вернемся к различным сериям измерений. Находим значение постоянной Планка, используя формулу

$$\Delta V_3 = -\frac{h}{e} \Delta \nu. \tag{13}$$

Результаты расчётов представлены ниже.

- 1. $h = 8.0 \cdot 10^{-34}$ Дж с, $h = 1.0 \cdot 10^{-33}$ Дж с.
- 2. $h = 1.1 \cdot 10^{-33}$ Дж c, $h = 3.2 \cdot 10^{-34}$ Дж c.
- 3. $h = 8.0 \cdot 10^{-34}$ Дж с, $h = 1.1 \cdot 10^{-33}$ Дж с.

4 Вывод

В данной работе нами были проверены законы фотоэффекта, а именно закон Столетова и наличие красной границы фотоэффекта. Кроме того, удалось определить постоянную Планка двумя способами (с помощью источника белого света и источника линейчатого

спектра в виде ртутной лампы). С помощью источника белого света удалось определить постоянную Планка наиболее точно, вычисленное значение составляет

$$h = 7.50 \cdot 10^{-34} \pm 1.40 \cdot 10^{-34}$$
 Дж с. (14)

Постоянная Планка, вычисленная с использованием ртутной лампы, получилась равной

$$h = 8.53 \cdot 10^{-34} \pm 2.98 \cdot 10^{-9}$$
Дж с. (15)