Triangulation de Delaunay et Diagramme de Voronoï

— TP —

Les points du plan sont repérés par leurs coordonnées supposées entières et appartenant à $[0, x_{max}] \times [0, y_{max}]$. On pourra, par exemple, fixer $x_{max} = 1024$ et $y_{max} = 1024$.

- 1° Définissez une structure Triangle pour stocker un triangle sous forme de ses coordonnées.
- 2º Écrivez une structure permettant de retrouver le triangle adjacent par une arête dans une triangulation, par exemple un graphe d'adjacence.
- 3° Écrivez une fonction vérifiant si une arête de la triangulation est légale
- 4º Écrivez la fonction de Flip ¹.
- 5° Écrivez l'algorithme de calcul incrémental de la triangulation de Delaunay
- 6º Écrivez une fonction calculant le centre du cercle circonscrit à un triangle
- 7º Testez votre fonction en dessinant ² les cercles circonscrits à des triangles définis aléatoirement à l'aide de la fonction randomizedPoints définie au TP précédent.
- 8° Calculez, à partir d'une triangulation de Delaunay, les points du diagramme de Voronoï
- 9º Dessinez le diagramme de Voronoï correspondant³.

— Optionnel et bonus —

Si vous avez le temps, c'est à dire si vous avez fini avant la fin de la journée, ...

- 10° Implémentez la version randomisé de la triangulation de Delaunay
- 11° ou Implémentez la version 3d de la triangulation de Delaunay
- 12° ou Implémentez la version en ligne de la triangulation de Delaunay

^{1.} Pensez à la mise à jour du graphe d'adjacence ou tout autre structure que vous aurez choisie.

^{2.} Pour dessiner un cercle vous pouvez implémenter l'algorithme de Éric Andrès https://fr.wikipedia.org/wiki/Algorithme_de_tracé_de_cercle_d'Andres ou celui de Bresenham https://fr.wikipedia.org/wiki/Algorithme_de_tracé_d'arc_de_cercle_de_Bresenham.

^{3.} Attention aux triangles du bord de la triangulation.