Digital Circuits: Part 1

M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* An analog signal x(t) is represented by a real number at a given time point.

- * An analog signal x(t) is represented by a real number at a given time point.
- * A digital signal is "binary" in nature, i.e., it takes on only two values: low (0) or high (1).

- * An analog signal x(t) is represented by a real number at a given time point.
- * A digital signal is "binary" in nature, i.e., it takes on only two values: low (0) or high (1).
- * Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low (high) band will be interpreted as 0 (1) by digital circuits.

- * An analog signal x(t) is represented by a real number at a given time point.
- * A digital signal is "binary" in nature, i.e., it takes on only two values: low (0) or high (1).
- * Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low (high) band will be interpreted as 0 (1) by digital circuits.
- The definition of low and high bands depends on the technology used, e.g.,
 TTL (Transistor-Transistor Logic)
 CMOS (Complementary MOS)
 ECL (Emitter-Coupled Logic)

* If V_i is low ("0"), V_o is high ("1"). If V_i is high ("1"), V_o is low ("0").

- * If V_i is low ("0"), V_o is high ("1"). If V_i is high ("1"), V_o is low ("0").
- * The circuit is called an "inverter" because it inverts the logic level of the input. If the input is 0, it makes the output 1, and vice versa.

- * If V_i is low ("0"), V_o is high ("1"). If V_i is high ("1"), V_o is low ("0").
- * The circuit is called an "inverter" because it inverts the logic level of the input. If the input is 0, it makes the output 1, and vice versa.
- * Digital circuits are made using a variety of devices. The simple BJT inverter is only an illustration.

- * If V_i is low ("0"), V_o is high ("1"). If V_i is high ("1"), V_o is low ("0").
- * The circuit is called an "inverter" because it inverts the logic level of the input. If the input is 0, it makes the output 1, and vice versa.
- * Digital circuits are made using a variety of devices. The simple BJT inverter is only an illustration.
- * Most of the VLSI circuits today employ the MOS technology because of the high packing density, high speed, and low power consumption it offers.

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

- * A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.
- * There are several other benefits of using digital representation:

- * A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.
- * There are several other benefits of using digital representation:
 - can use computers to process the data.

- * A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.
- * There are several other benefits of using digital representation:
 - can use computers to process the data.
 - can store in a variety of storage media.

- * A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.
- * There are several other benefits of using digital representation:
 - can use computers to process the data.
 - can store in a variety of storage media.
 - can program the functionality. For example, the behaviour of a digital filter can be changed simply by changing its coefficients.

Operation	NAND	NOR	XOR
Gate			
Truth table			
Notation			
Hotation			

* The AND operation is commutative.

$$\rightarrow A \cdot B = B \cdot A$$
.

* The AND operation is commutative.

$$\rightarrow A \cdot B = B \cdot A$$
.

* The AND operation is associative.

$$\to (A\cdot B)\cdot C = A\cdot (B\cdot C).$$

* The AND operation is commutative.

$$\rightarrow A \cdot B = B \cdot A$$
.

st The AND operation is associative.

$$\rightarrow (A \cdot B) \cdot C = A \cdot (B \cdot C).$$

* The OR operation is commutative.

$$\rightarrow A + B = B + A$$
.

st The AND operation is commutative.

$$\rightarrow A \cdot B = B \cdot A$$
.

* The AND operation is associative.

$$\rightarrow (A \cdot B) \cdot C = A \cdot (B \cdot C).$$

* The OR operation is commutative.

$$\rightarrow$$
 $A + B = B + A$.

* The OR operation is associative.

$$\rightarrow (A+B)+C=A+(B+C).$$

* Theorem: $\overline{\overline{A}} = A$.

* Theorem: $\overline{\overline{A}} = A$.

The theorem can be proved by constructing a truth table:

Α	Ā	Ā
0	1	0
1	0	1

* Theorem: $\overline{\overline{A}} = A$.

The theorem can be proved by constructing a truth table:

Α	Ā	Ā
0	1	0
1	0	1

Therefore, for all possible values that A can take (i.e., 0 and 1), $\overline{\overline{A}}$ is the same as A.

$$\Rightarrow \overline{\overline{A}} = A.$$

* Theorem: $\overline{\overline{A}} = A$

The theorem can be proved by constructing a truth table:

Α	Ā	Ā
0	1	0
1	0	1

Therefore, for all possible values that A can take (i.e., 0 and 1), $\overline{\overline{A}}$ is the same as A.

$$\Rightarrow \overline{\overline{A}} = A.$$

* Similarly, the following theorems can be proved:

$$A + 0 = A$$
 $A \cdot 1 = A$

$$A \cdot 1 = A$$

$$A+1=1 \qquad A\cdot 0=0$$

$$A \cdot 0 = 0$$

$$A + A = A$$

$$A + A = A$$
 $A \cdot A = A$

$$A + \overline{A} = 1$$
 $A \cdot \overline{A} = 0$

$$A \cdot \overline{A} = 0$$

Boolean algebra (George Boole, 1815-1864)

* Theorem: $\overline{\overline{A}} = A$.

The theorem can be proved by constructing a truth table:

Α	Ā	Ā
0	1	0
1	0	1

Therefore, for all possible values that A can take (i.e., 0 and 1), $\overline{\overline{A}}$ is the same as A.

$$\Rightarrow \overline{\overline{A}} = A.$$

* Similarly, the following theorems can be proved:

$$A + 0 = A$$
 $A \cdot 1 = A$

$$A+1=1 \qquad A\cdot 0=0$$

$$A + 1 \equiv 1$$
 $A \cdot 0 \equiv 0$
 $A + A \equiv A$ $A \cdot A \equiv A$

$$A + \overline{A} = 1$$
 $A \cdot \overline{A} = 0$

Note the duality: $(+ \longleftrightarrow \cdot)$ and $(1 \longleftrightarrow 0)$.

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0								
0	1								
1	0								
1	1								

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0							
0	1	1							
1	0	1							
1	1	1							

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1						
0	1	1	0						
1	0	1	0						
1	1	1	0						

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1					
0	1	1	0	1					
1	0	1	0	0					
1	1	1	0	0					

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1				
0	1	1	0	1	0				
1	0	1	0	0	1				
1	1	1	0	0	0				

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1			
0	1	1	0	1	0	0			
1	0	1	0	0	1	0			
1	1	1	0	0	0	0			

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0		
0	1	1	0	1	0	0	0		
1	0	1	0	0	1	0	0		
1	1	1	0	0	0	0	1		

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	
0	1	1	0	1	0	0	0	1	
1	0	1	0	0	1	0	0	1	
1	1	1	0	0	0	0	1	0	

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

* Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\,\overline{B}$, we conclude that $\overline{A+B}=\overline{A}\,\overline{B}$.

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

- * Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\,\overline{B}$, we conclude that $\overline{A+B}=\overline{A}\,\overline{B}$.
- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

- * Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B}=\overline{A}\overline{B}$.
- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.
- * Similar relations hold for more than two variables, e.g.,

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

- * Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B}=\overline{A}\overline{B}$.
- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.
- * Similar relations hold for more than two variables, e.g.,

$$\overline{A\cdot B\cdot C}=\overline{A}+\overline{B}+\overline{C},$$

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

- * Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B}=\overline{A}\overline{B}$.
- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.
- * Similar relations hold for more than two variables, e.g.,

$$\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C},$$
$$\overline{A + B + C + D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D},$$

Α	В	A + B	$\overline{A+B}$	Ā	\overline{B}	$\overline{A} \cdot \overline{B}$	$A \cdot B$	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

- * Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B}=\overline{A}\overline{B}$.
- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.
- * Similar relations hold for more than two variables, e.g.,

$$\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C},$$

$$\overline{A + B + C + D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D},$$

$$\overline{(A + B) \cdot C} = \overline{(A + B)} + \overline{C} = \overline{A} \cdot \overline{B} + \overline{C}.$$

1.
$$A \cdot (B+C) = AB + AC$$
.

1.
$$A \cdot (B+C) = AB + AC$$
.

Α	В	С	B + C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

1.
$$A \cdot (B+C) = AB + AC$$
.

Α	В	С	B+C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	0				
1	0	1	1				
1	1	0	1				
1	1	1	1				

1.
$$A \cdot (B+C) = AB + AC$$
.

Α	В	С	B+C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	1	0			
1	0	0	0	0			
1	0	1	1	1			
1	1	0	1	1			
1	1	1	1	1			

1.
$$A \cdot (B+C) = AB + AC$$
.

Α	В	С	B+C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0	0		
0	0	1	1	0	0		
0	1	0	1	0	0		
0	1	1	1	0	0		
1	0	0	0	0	0		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	1	1	1		

1.
$$A \cdot (B+C) = AB + AC$$
.

A	В	С	B+C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0	0	0	
0	0	1	1	0	0	0	
0	1	0	1	0	0	0	
0	1	1	1	0	0	0	
1	0	0	0	0	0	0	
1	0	1	1	1	0	1	
1	1	0	1	1	1	0	
1	1	1	1	1	1	1	

1.
$$A \cdot (B+C) = AB + AC$$
.

Α	В	С	B + C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

4	Λ.	(D	C)		D 1	AC.
1.	$A \cdot$	10 +	CI	= A	B +	AC.

Α	В	С	B + C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1
				A			A

2.
$$A + B \cdot C = (A + B) \cdot (A + C)$$
.

2.
$$A + B \cdot C = (A + B) \cdot (A + C)$$
.

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

2.
$$A + B \cdot C = (A + B) \cdot (A + C)$$
.

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0				
0	0	1	0				
0	1	0	0				
0	1	1	1				
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	1				

2.
$$A + B \cdot C = (A + B) \cdot (A + C)$$
.

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0			
0	0	1	0	0			
0	1	0	0	0			
0	1	1	1	1			
1	0	0	0	1			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

2.
$$A + B \cdot C = (A + B) \cdot (A + C)$$
.

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0	0		
0	0	1	0	0	0		
0	1	0	0	0	1		
0	1	1	1	1	1		
1	0	0	0	1	1		
1	0	1	0	1	1		
1	1	0	0	1	1		
1	1	1	1	1	1		

2.
$$A + B \cdot C = (A + B) \cdot (A + C)$$
.

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0	0	0	
0	0	1	0	0	0	1	
0	1	0	0	0	1	0	
0	1	1	1	1	1	1	
1	0	0	0	1	1	1	
1	0	1	0	1	1	1	
1	1	0	0	1	1	1	
1	1	1	1	1	1	1	

2.
$$A + B \cdot C = (A + B) \cdot (A + C)$$
.

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

2	A + B	C -	$(\Delta \perp R)$	1. (A 🕹	C)

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1
				A			A

* A + AB = A.

To prove this theorem, we can follow two approaches:

* A + AB = A.

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.

* A + AB = A.

To prove this theorem, we can follow two approaches:

- (a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.
- (b) Use identities and theorems stated earlier to show that LHS=RHS.

* A + AB = A.

To prove this theorem, we can follow two approaches:

- (a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.
- (b) Use identities and theorems stated earlier to show that LHS=RHS.

$$A + AB = A \cdot 1 + A \cdot B$$

= $A \cdot (1 + B)$
= $A \cdot (1)$
= A

* A + AB = A.

To prove this theorem, we can follow two approaches:

- (a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.
- (b) Use identities and theorems stated earlier to show that LHS=RHS.

$$A + AB = A \cdot 1 + A \cdot B$$

= $A \cdot (1 + B)$
= $A \cdot (1)$
= A

*
$$A \cdot (A + B) = A$$
.

* A + AB = A.

To prove this theorem, we can follow two approaches:

- (a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.
- (b) Use identities and theorems stated earlier to show that LHS=RHS.

$$A + AB = A \cdot 1 + A \cdot B$$

$$= A \cdot (1 + B)$$

$$= A \cdot (1)$$

$$= A$$

* $A \cdot (A + B) = A$.

Proof:
$$A \cdot (A + B) = A \cdot A + A \cdot B$$

= $A + AB$
= A

$$A + AB = A \longleftrightarrow A \cdot (A + B) = A.$$

Note the duality between OR and AND.

$$A + AB = A \longleftrightarrow A \cdot (A + B) = A.$$

Note the duality between OR and AND.

Dual of
$$A + (AB)$$
 (LHS): $AB \rightarrow A + B$
 $A + AB \rightarrow A \cdot (A + B)$.

$$A + AB = A \longleftrightarrow A \cdot (A + B) = A.$$

Note the duality between OR and AND.

Dual of
$$A + (AB)$$
 (LHS): $AB \rightarrow A + B$
 $A + AB \rightarrow A \cdot (A + B)$.

Dual of A (RHS) = A (since there are no operations involved).

$$A + AB = A \longleftrightarrow A \cdot (A + B) = A.$$

Note the duality between OR and AND.

Dual of
$$A + (AB)$$
 (LHS): $AB \rightarrow A + B$
 $A + AB \rightarrow A \cdot (A + B)$.

Dual of A (RHS) = A (since there are no operations involved).

$$\Rightarrow A \cdot (A + B) = A.$$

$$A + AB = A \longleftrightarrow A \cdot (A + B) = A.$$

Note the duality between OR and AND.

Dual of
$$A + (AB)$$
 (LHS): $AB \rightarrow A + B$
 $A + AB \rightarrow A \cdot (A + B)$.

Dual of A (RHS) = A (since there are no operations involved).

$$\Rightarrow A \cdot (A + B) = A.$$

Similarly, consider $A + \overline{A} = 1$, with $(+ \longleftrightarrow .)$ and $(1 \longleftrightarrow 0)$.

$$A + AB = A \longleftrightarrow A \cdot (A + B) = A.$$

Note the duality between OR and AND.

Dual of
$$A + (AB)$$
 (LHS): $AB \rightarrow A + B$
 $A + AB \rightarrow A \cdot (A + B)$.

Dual of A (RHS) = A (since there are no operations involved).

$$\Rightarrow A \cdot (A + B) = A.$$

Similarly, consider $A + \overline{A} = 1$, with $(+ \longleftrightarrow .)$ and $(1 \longleftrightarrow 0)$.

Dual of LHS = $A \cdot \overline{A}$.

$$A + AB = A \longleftrightarrow A \cdot (A + B) = A.$$

Note the duality between OR and AND.

Dual of
$$A + (AB)$$
 (LHS): $AB \rightarrow A + B$
 $A + AB \rightarrow A \cdot (A + B)$.

Dual of A (RHS) = A (since there are no operations involved).

$$\Rightarrow A \cdot (A + B) = A.$$

Similarly, consider $A + \overline{A} = 1$, with $(+ \longleftrightarrow .)$ and $(1 \longleftrightarrow 0)$.

Dual of LHS = $A \cdot \overline{A}$.

Dual of RHS = 0.

$$A + AB = A \longleftrightarrow A \cdot (A + B) = A.$$

Note the duality between OR and AND.

Dual of
$$A + (AB)$$
 (LHS): $AB \rightarrow A + B$
 $A + AB \rightarrow A \cdot (A + B)$.

Dual of A (RHS) = A (since there are no operations involved).

$$\Rightarrow A \cdot (A + B) = A.$$

Similarly, consider $A + \overline{A} = 1$, with $(+ \longleftrightarrow .)$ and $(1 \longleftrightarrow 0)$.

Dual of LHS = $A \cdot \overline{A}$.

Dual of RHS = 0.

$$\Rightarrow A\cdot \overline{A}=0.$$

*
$$A + \overline{A}B = A + B$$
.

*
$$A + \overline{A}B = A + B$$
.

Proof:
$$A + \overline{A}B = (A + \overline{A}) \cdot (A + B)$$
 (by distributive law)
= $1 \cdot (A + B)$
= $A + B$

Dual theorem: $A \cdot (\overline{A} + B) = AB$.

*
$$A + \overline{A}B = A + B$$
.

Proof:
$$A + \overline{A}B = (A + \overline{A}) \cdot (A + B)$$
 (by distributive law)
= $1 \cdot (A + B)$
= $A + B$

Dual theorem: $A \cdot (\overline{A} + B) = AB$.

*
$$AB + A\overline{B} = A$$
.

*
$$A + \overline{A}B = A + B$$
.

Proof:
$$A + \overline{A}B = (A + \overline{A}) \cdot (A + B)$$
 (by distributive law)
= $1 \cdot (A + B)$
= $A + B$

Dual theorem: $A \cdot (\overline{A} + B) = AB$.

*
$$AB + A\overline{B} = A$$
.

Proof:
$$AB + A\overline{B} = A \cdot (B + \overline{B})$$
 (by distributive law)
= $A \cdot 1$
= A

Dual theorem: $(A + B) \cdot (A + \overline{B}) = A$.

In an India-Australia match, India will win if one or more of the following conditions are met:

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tendulkar does not score a century AND Warne fails (to get wickets).

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tendulkar does not score a century AND Warne fails (to get wickets).
- (c) Tendulkar does not score a century AND Sehwag scores a century.

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tendulkar does not score a century AND Warne fails (to get wickets).
- (c) Tendulkar does not score a century AND Sehwag scores a century.

Let $T \equiv \text{Tendulkar scores a century}$.

 $S \equiv$ Sehwag scores a century.

 $W \equiv \text{Warne fails}.$

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tendulkar does not score a century AND Warne fails (to get wickets).
- (c) Tendulkar does not score a century AND Sehwag scores a century.

Let $T \equiv \text{Tendulkar scores a century}$.

 $S \equiv$ Sehwag scores a century.

 $W \equiv Warne fails.$

$$I = T + \overline{T}W + \overline{T}S$$

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tendulkar does not score a century AND Warne fails (to get wickets).
- (c) Tendulkar does not score a century AND Sehwag scores a century.

Let $T \equiv \text{Tendulkar scores a century}$.

 $S \equiv$ Sehwag scores a century.

 $W \equiv \text{Warne fails}.$

$$I = T + \overline{T}W + \overline{T}S$$
$$= T + T + \overline{T}W + \overline{T}S$$

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tendulkar does not score a century AND Warne fails (to get wickets).
- (c) Tendulkar does not score a century AND Sehwag scores a century.

Let $T \equiv \text{Tendulkar scores a century}$.

 $S \equiv$ Sehwag scores a century.

 $W \equiv \text{Warne fails}.$

$$I = T + \overline{T}W + \overline{T}S$$

= T + T + $\overline{T}W + \overline{T}S$

$$= (T + \overline{T}W) + (T + \overline{T}S)$$

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tendulkar does not score a century AND Warne fails (to get wickets).
- (c) Tendulkar does not score a century AND Sehwag scores a century.

Let $T \equiv \text{Tendulkar scores a century}$.

 $S \equiv$ Sehwag scores a century.

 $W \equiv Warne fails.$

$$I = T + \overline{T} W + \overline{T} S$$

$$= T + T + \overline{T} W + \overline{T} S$$

$$= (T + \overline{T} W) + (T + \overline{T} S)$$

$$= (T + \overline{T}) \cdot (T + W) + (T + \overline{T}) \cdot (T + S)$$

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tendulkar does not score a century AND Warne fails (to get wickets).
- (c) Tendulkar does not score a century AND Sehwag scores a century.

Let $T \equiv \text{Tendulkar scores a century}$.

$$S \equiv$$
Sehwag scores a century.

 $W \equiv \text{Warne fails.}$

$$I \equiv India wins.$$

$$I = T + \overline{T}W + \overline{T}S$$

$$= T + T + \overline{T}W + \overline{T}S$$

$$= (T + \overline{T}W) + (T + \overline{T}S)$$

$$= (T + \overline{T}) \cdot (T + W) + (T + \overline{T}) \cdot (T + S)$$

$$=T+W+T+S$$

$$= T + W + S$$

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tendulkar does not score a century AND Warne fails (to get wickets).
- (c) Tendulkar does not score a century AND Sehwag scores a century.

Let $T \equiv \text{Tendulkar scores a century}$.

 $S \equiv$ Sehwag scores a century.

 $W \equiv \text{Warne fails.}$

 $I \equiv India wins.$

$$I = T + \overline{T}W + \overline{T}S$$

$$= T + T + \overline{T}W + \overline{T}S$$

$$= (T + \overline{T}W) + (T + \overline{T}S)$$

$$= (T + \overline{T}) \cdot (T + W) + (T + \overline{T}) \cdot (T + S)$$

$$= T + W + T + S$$

$$= T + W + S$$

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

Consider a function X of three variables A, B, C:

$$X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

$$\equiv X_1 + X_2 + X_3 + X_4$$

Consider a function X of three variables A, B, C:

$$X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

$$\equiv X_1 + X_2 + X_3 + X_4$$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

Consider a function X of three variables A, B, C:

$$X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

$$\equiv X_1 + X_2 + X_3 + X_4$$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for X in a systematic manner:

Consider a function X of three variables A, B, C:

$$X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

$$\equiv X_1 + X_2 + X_3 + X_4$$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for X in a systematic manner:

(1) Enumerate all possible combinations of A, B, C. Since each of A, B, C can take two values (0 or 1), we have 2^3 possibilities.

Consider a function X of three variables A, B, C:

$$X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

$$\equiv X_1 + X_2 + X_3 + X_4$$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for X in a systematic manner:

- (1) Enumerate all possible combinations of A, B, C. Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.
- (2) Tabulate $X_1 = \overline{A}B\overline{C}$, etc. Note that X_1 is 1 only if $\overline{A} = B = \overline{C} = 1$ (i.e., A = 0, B = 1, C = 0), and 0 otherwise.

Consider a function X of three variables A, B, C:

$$X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

$$\equiv X_1 + X_2 + X_3 + X_4$$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for X in a systematic manner:

- (1) Enumerate all possible combinations of A, B, C.
 Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.
- (2) Tabulate $X_1 = \overline{A}B\overline{C}$, etc. Note that X_1 is 1 only if $\overline{A} = B = \overline{C} = 1$ (i.e., A = 0, B = 1, C = 0), and 0 otherwise.
- (3) Since $X=X_1+X_2+X_3+X_4$, X is 1 if any of $X_1,\ X_2,\ X_3,\ X_4$ is 1; else X is 0. \rightarrow tabulate X.

$$X = X_1 + X_2 + X_3 + X_4 = \overline{A}\,B\,\overline{C} + \overline{A}\,B\,C + A\,\overline{B}\,\overline{C} + A\,B\,\overline{C}$$

Α	В	C	X_1	X_2	X_3	X_4	Χ
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

$$\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2 + \mathsf{X}_3 + \mathsf{X}_4 = \overline{\mathsf{A}}\,\mathsf{B}\,\overline{\mathsf{C}} + \overline{\mathsf{A}}\,\mathsf{B}\,\mathsf{C} + \mathsf{A}\,\overline{\mathsf{B}}\,\overline{\mathsf{C}} + \mathsf{A}\,\mathsf{B}\,\overline{\mathsf{C}}$$

Α	В	С	X_1	X_2	X_3	X_4	Х
0	0	0					
0	0	1					
0	1	0	1				
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

$$X = X_1 + X_2 + X_3 + X_4 = \overline{A} \, B \, \overline{C} + \overline{A} \, B \, C + A \, \overline{B} \, \overline{C} + A \, B \, \overline{C}$$

Α	В	С	X_1	X_2	X_3	X_4	Χ
0	0	0	0				
0	0	1	0				
0	1	0	1				
0	1	1	0				
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	0				

$$X = X_1 + X_2 + X_3 + X_4 = \overline{A} \, B \, \overline{C} + \overline{A} \, B \, C + A \, \overline{B} \, \overline{C} + A \, B \, \overline{C}$$

Α	В	С	X_1	X_2	X_3	X_4	Χ
0	0	0	0				
0	0	1	0				
0	1	0	1				
0	1	1	0	1			
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	0				

$$X = X_1 + X_2 + X_3 + X_4 = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

Α	В	С	X_1	X_2	X_3	X_4	Χ
0	0	0	0	0			
0	0	1	0	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	0	0			
1	0	1	0	0			
1	1	0	0	0			
1	1	1	0	0			

$$X = X_1 + X_2 + X_3 + X_4 = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

Α	В	С	X_1	X_2	X_3	X_4	Χ
0	0	0	0	0			
0	0	1	0	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	0	0	1		
1	0	1	0	0			
1	1	0	0	0			
1	1	1	0	0			

$$X = X_1 + X_2 + X_3 + X_4 = \overline{A} \, B \, \overline{C} + \overline{A} \, B \, \overline{C} + A \, \overline{B} \, \overline{C} + A \, B \, \overline{C}$$

Α	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0	0	0		
0	0	1	0	0	0		
0	1	0	1	0	0		
0	1	1	0	1	0		
1	0	0	0	0	1		
1	0	1	0	0	0		
1	1	0	0	0	0		
1	1	1	0	0	0		

$$\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2 + \mathsf{X}_3 + \mathsf{X}_4 = \overline{\mathsf{A}}\,\mathsf{B}\,\overline{\mathsf{C}} + \overline{\mathsf{A}}\,\mathsf{B}\,\mathsf{C} + \mathsf{A}\,\overline{\mathsf{B}}\,\overline{\mathsf{C}} + \mathsf{A}\,\mathsf{B}\,\overline{\mathsf{C}}$$

Α	В	C	X_1	X_2	X_3	X_4	Х
0	0	0	0	0	0		
0	0	1	0	0	0		
0	1	0	1	0	0		
0	1	1	0	1	0		
1	0	0	0	0	1		
1	0	1	0	0	0		
1	1	0	0	0	0	1	
1	1	1	0	0	0		

$$X = X_1 + X_2 + X_3 + X_4 = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

Α	В	C	X_1	X_2	X_3	X_4	Χ
0	0	0	0	0	0	0	
0	0	1	0	0	0	0	
0	1	0	1	0	0	0	
0	1	1	0	1	0	0	
1	0	0	0	0	1	0	
1	0	1	0	0	0	0	
1	1	0	0	0	0	1	
1	1	1	0	0	0	0	

$$\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2 + \mathsf{X}_3 + \mathsf{X}_4 = \overline{\mathsf{A}}\,\mathsf{B}\,\overline{\mathsf{C}} + \overline{\mathsf{A}}\,\mathsf{B}\,\mathsf{C} + \mathsf{A}\,\overline{\mathsf{B}}\,\overline{\mathsf{C}} + \mathsf{A}\,\mathsf{B}\,\overline{\mathsf{C}}$$

Α	В	С	X_1	X_2	X_3	X_4	Χ
0	0	0	0	0	0	0	
0	0	1	0	0	0	0	
0	1	0	1	0	0	0	1
0	1	1	0	1	0	0	1
1	0	0	0	0	1	0	1
1	0	1	0	0	0	0	
1	1	0	0	0	0	1	1
1	1	1	0	0	0	0	

$$X = X_1 + X_2 + X_3 + X_4 = \overline{A} \, B \, \overline{C} + \overline{A} \, B \, C + A \, \overline{B} \, \overline{C} + A \, B \, \overline{C}$$

Α	В	С	X_1	X_2	X_3	X_4	Χ
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	1	0	0	1
1	0	0	0	0	1	0	1
1	0	1	0	0	0	0	0
1	1	0	0	0	0	1	1
1	1	1	0	0	0	0	0

Consider a function Y of three variables A, B, C:

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \cdot Y_2 \cdot Y_3 \cdot Y_4$$

Consider a function Y of three variables A, B, C:

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \cdot Y_2 \cdot Y_3 \cdot Y_4$$

This form is called the "product of sums" form ("sum" corresponding to OR, and "product" corresponding to AND).

Consider a function Y of three variables A, B, C:

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \cdot Y_2 \cdot Y_3 \cdot Y_4$$

This form is called the "product of sums" form ("sum" corresponding to OR, and "product" corresponding to AND).

We can construct the truth table for Y in a systematic manner:

Consider a function Y of three variables A, B, C:

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \cdot Y_2 \cdot Y_3 \cdot Y_4$$

This form is called the "product of sums" form ("sum" corresponding to OR, and "product" corresponding to AND).

We can construct the truth table for Y in a systematic manner:

(1) Enumerate all possible combinations of A, B, C. Since each of A, B, C can take two values (0 or 1), we have 2^3 possibilities.

Consider a function Y of three variables A, B, C:

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \cdot Y_2 \cdot Y_3 \cdot Y_4$$

This form is called the "product of sums" form ("sum" corresponding to OR, and "product" corresponding to AND).

We can construct the truth table for Y in a systematic manner:

- (1) Enumerate all possible combinations of A, B, C. Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.
- (2) Tabulate $Y_1 = A + B + C$, etc. Note that Y_1 is 0 only if A = B = C = 0; Y_1 is 1 otherwise.

Consider a function Y of three variables A, B, C:

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \cdot Y_2 \cdot Y_3 \cdot Y_4$$

This form is called the "product of sums" form ("sum" corresponding to OR, and "product" corresponding to AND).

We can construct the truth table for Y in a systematic manner:

- (1) Enumerate all possible combinations of A, B, C.
 Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.
- (2) Tabulate $Y_1 = A + B + C$, etc. Note that Y_1 is 0 only if A = B = C = 0; Y_1 is 1 otherwise.
- (3) Since $Y=Y_1\ Y_2\ Y_3\ Y_4$, Y is 0 if any of $Y_1,\ Y_2,\ Y_3,\ Y_4$ is 0; else Y is 1. \rightarrow tabulate Y.

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

				13	Y_4	Υ
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

Α	В	С	Y ₁	Ϋ́	Y ₃	Y₄	Υ
0	0	0	0	- 2	- 3	- 4	-
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

Α	В	С	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	1				

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

Α	В	С	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0				
0	0	1	1	0			
0	1	0	1				
0	1	1	1				
1	0	0	1				
1	0	1	1				
1	1	0	1			-	
1	1	1	1				

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

Α	В	С	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0	1			
0	0	1	1	0			
0	1	0	1	1			
0	1	1	1	1			
1	0	0	1	1			
1	0	1	1	1			
1	1	0	1	1			
1	1	1	1	1			

$$Y=Y_1\,Y_2\,Y_3\,Y_4=(A+B+C)\,(A+B+\overline{C})\,(\overline{A}+B+\overline{C})\,(\overline{A}+\overline{B}+\overline{C})$$

Α	В	С	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0	1			
0	0	1	1	0			
0	1	0	1	1			
0	1	1	1	1			
1	0	0	1	1			
1	0	1	1	1	0		
1	1	0	1	1			
1	1	1	1	1			

$$Y=Y_1\,Y_2\,Y_3\,Y_4=(A+B+C)\,(A+B+\overline{C})\,(\overline{A}+B+\overline{C})\,(\overline{A}+\overline{B}+\overline{C})$$

Α	В	C	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0	1	1		
0	0	1	1	0	1		
0	1	0	1	1	1		
0	1	1	1	1	1		
1	0	0	1	1	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	1	1	1		

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

Α	В	C	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0	1	1		
0	0	1	1	0	1		
0	1	0	1	1	1		
0	1	1	1	1	1		
1	0	0	1	1	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	1	1	1	0	

$$Y=Y_1\,Y_2\,Y_3\,Y_4=(A+B+C)\,(A+B+\overline{C})\,(\overline{A}+B+\overline{C})\,(\overline{A}+\overline{B}+\overline{C})$$

Α	В	C	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0	1	1	1	
0	0	1	1	0	1	1	
0	1	0	1	1	1	1	
0	1	1	1	1	1	1	
1	0	0	1	1	1	1	
1	0	1	1	1	0	1	
1	1	0	1	1	1	1	
1	1	1	1	1	1	0	

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

Α	В	C	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0	1	1	1	0
0	0	1	1	0	1	1	0
0	1	0	1	1	1	1	
0	1	1	1	1	1	1	
1	0	0	1	1	1	1	
1	0	1	1	1	0	1	0
1	1	0	1	1	1	1	
1	1	1	1	1	1	0	0

$$Y=Y_1\,Y_2\,Y_3\,Y_4=(A+B+C)\,(A+B+\overline{C})\,(\overline{A}+B+\overline{C})\,(\overline{A}+\overline{B}+\overline{C})$$

Α	В	С	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0	1	1	1	0
0	0	1	1	0	1	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	1	1	0	1	0
1	1	0	1	1	1	1	1
1	1	1	1	1	1	0	0

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

Α	В	С	Y_1	Y_2	Y_3	Y_4	Υ
0	0	0	0	1	1	1	0
0	0	1	1	0	1	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	1	1	0	1	0
1	1	0	1	1	1	1	1
1	1	1	1	1	1	0	0

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

Consider a function X of three variables A, B, C:

$$X = A B \overline{C} + \overline{A} B C + \overline{A} B \overline{C}$$

Consider a function X of three variables A, B, C:

$$X = AB\overline{C} + \overline{A}BC + \overline{A}B\overline{C}$$

This form is called the *standard* sum-of-products form, and each individual term (consisting of all three variables) is called a "minterm."

Consider a function X of three variables A, B, C:

$$X = AB\overline{C} + \overline{A}BC + \overline{A}B\overline{C}$$

This form is called the *standard* sum-of-products form, and each individual term (consisting of all three variables) is called a "minterm."

In the truth table for X, the numbers of 1s is the same as the number of minterms, as we have seen in an example.

Consider a function X of three variables A, B, C:

$$X = AB\overline{C} + \overline{A}BC + \overline{A}B\overline{C}$$

This form is called the *standard* sum-of-products form, and each individual term (consisting of all three variables) is called a "minterm."

In the truth table for X, the numbers of 1s is the same as the number of minterms, as we have seen in an example.

X can be rewritten as,

$$X = AB\overline{C} + \overline{A}B(C + \overline{C})$$

= $AB\overline{C} + \overline{A}B$.

Consider a function X of three variables A, B, C:

$$X = AB\overline{C} + \overline{A}BC + \overline{A}B\overline{C}$$

This form is called the *standard* sum-of-products form, and each individual term (consisting of all three variables) is called a "minterm."

In the truth table for X, the numbers of 1s is the same as the number of minterms, as we have seen in an example.

X can be rewritten as,

$$X = AB\overline{C} + \overline{A}B(C + \overline{C})$$

= $AB\overline{C} + \overline{A}B$.

This is also a sum-of-products form, but not the standard one.

Consider a function X of three variables A, B, C:

$$X = (A + B + C)(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

Consider a function X of three variables A, B, C:

$$X = (A + B + C)(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

This form is called the *standard* product-of-sums form, and each individual term (consisting of all three variables) is called a "maxterm."

Consider a function X of three variables A, B, C:

$$X = (A + B + C)(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

This form is called the *standard* product-of-sums form, and each individual term (consisting of all three variables) is called a "maxterm."

In the truth table for X, the numbers of 0s is the same as the number of maxterms, as we have seen in an example.

Consider a function X of three variables A, B, C:

$$X = (A + B + C)(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

This form is called the *standard* product-of-sums form, and each individual term (consisting of all three variables) is called a "maxterm."

In the truth table for X, the numbers of 0s is the same as the number of maxterms, as we have seen in an example.

X can be rewritten as,

$$X = (A + B + C)(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + B + C)(\overline{A} + C + B)(\overline{A} + C + \overline{B})$$

$$= (A + B + C)(\overline{A} + C + B \overline{B})$$

$$= (A + B + C)(\overline{A} + C).$$

Consider a function X of three variables A, B, C:

$$X = (A + B + C)(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

This form is called the *standard* product-of-sums form, and each individual term (consisting of all three variables) is called a "maxterm."

In the truth table for X, the numbers of 0s is the same as the number of maxterms, as we have seen in an example.

X can be rewritten as,

$$X = (A + B + C)(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$

$$= (A + B + C)(\overline{A} + C + B)(\overline{A} + C + \overline{B})$$

$$= (A + B + C)(\overline{A} + C + B\overline{B})$$

$$= (A + B + C)(\overline{A} + C).$$

This is also a product-of-sums form, but not the standard one.

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

 $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.

 $B \equiv {\sf My}$ favourite player is scheduled to play a match (which I can watch on TV).

 $C \equiv$ The appointment is crucial for my business.

 $S \equiv {\sf Schedule}$ the appointment.

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

 $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.

 $B \equiv {\sf My}$ favourite player is scheduled to play a match (which I can watch on TV).

 $C \equiv$ The appointment is crucial for my business.

 $S \equiv$ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

Α	В	С	5
0	Χ	Х	0
1	0	X	1
1	1	0	0
1	1	1	1

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

 $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.

 $B \equiv {\sf My}$ favourite player is scheduled to play a match (which I can watch on TV).

 $C \equiv$ The appointment is crucial for my business.

 $S \equiv$ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

Α	В	С	5
0	Χ	Х	0
1	0	X	1
1	1	0	0
1	1	1	1

Note that we have a new entity called X in the truth table.

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

 $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.

 $B \equiv {\sf My}$ favourite player is scheduled to play a match (which I can watch on TV).

 $C \equiv$ The appointment is crucial for my business.

 $S \equiv$ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

Α	В	С	S
0	Χ	Х	0
1	0	X	1
1	1	0	0
1	1	1	1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the "don't care" condition.

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

 $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.

 $B \equiv {\sf My}$ favourite player is scheduled to play a match (which I can watch on TV).

 $C \equiv$ The appointment is crucial for my business.

 $S \equiv$ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

Α	В	С	S
0	Χ	Х	0
1	0	X	1
1	1	0	0
1	1	1	1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the "don't care" condition.

Don't care conditions can often be used to get a more efficient implementation of a logical function.