# Exercices Chapitre sur les Variables Aléatoires \*

# Diego Van Overberghe

# 8 mai 2020

# **Exercice 33**

a) 
$$p = 1 - 0.34 - 0.26 - 0.17 - 0.12 = 0.11$$

b) 
$$p = 1 - 0.26 - 0.24 - 0.14 - 0.13 - 0.04 = 0.19$$

# **Exercice 35**

a) On a:

| $x_i$        | -1             | 0              | 1              | 3              | 4             | 5             | 6              | 8              |
|--------------|----------------|----------------|----------------|----------------|---------------|---------------|----------------|----------------|
| $P(X = x_i)$ | $\frac{1}{20}$ | $\frac{1}{10}$ | $\frac{1}{10}$ | $\frac{3}{20}$ | $\frac{1}{4}$ | $\frac{1}{5}$ | $\frac{1}{10}$ | $\frac{1}{20}$ |

b) 
$$P(1 \le X \le 5) = p_1 + p_3 + p_4 + p_5 = 0.1 + 0.15 + 0.25 + 0.2 = 0.7$$
  
  $P(X \ge 4) = p_{-1} + p_0 + p_1 + p_3 + p_4 = 0.65$ 

# **Exercice 36**

a) On a:

b) On a *x*, le nombre de jetons rouges ou verts et *y*, le nombre de jetons bleus.

$$\begin{cases} 2x + y = 20 \\ y = 2x \end{cases} \iff \begin{cases} x = 5 \\ y = 10 \end{cases}$$

<sup>\*</sup>Page 328 du manuel Hatier

On a 
$$p = 1 - 0.12 - 0.14 - 0.21 - 0.32 - 0.13 = 0.08$$
  
De plus,  $P(U \le 13) = 0.12 + 0.14 + 0.21 + 0.32 = 0.79$   
Donc,  $q = P(U \le 13) - 0.14 - 0.10 = 0.55$   
Et,  $r = 1 - P(V \le 13) - 0.10 = 0.11$ 

#### Exercice 40

- a) Faux.  $P(X \ge 4) = 0.15$
- b) Faux.  $P(2 \le X \le 3) = 0.35$
- c) Vrai.  $P(X \le 2) = 0.15$

# **Exercice 50**

a) 
$$E(X) = p_0 x_0 + p_1 x_1 + p_2 x_2 + p_3 x_3 + p_4 x_4 = 1,2$$
  
 $V(X) = p_0 (x_0 - E(X))^2 + \dots + p_r (x_r - E(X))^2 = 1,46$   
 $\sigma(X) \approx 1,21$ 

b) 
$$E(Y) = p_0 y_0 + \dots + p_r y_r = 1,1$$
  
 $V(Y) = p_0 (y_0 - E(Y))^2 + \dots + p_r (y_r - E(Y))^2 = 0,0184$   
 $\sigma(Y) \approx 0,14$ 

c) 
$$E(Z) = p_0 z_0 + \dots + p_r z_r = 1,01$$
  
 $V(X) = p_0 (z_0 - E(Z))^2 + \dots + p_r (z_r - E(Z))^2 \approx 2,05$   
 $\sigma(Z) \approx 1,43$ 

# Exercice 51

1) 
$$E(X) = p_0 x_0 + \dots + p_r x_r = 4,9$$
  
 $V(X) = p_0 (x_0 - E(X))^2 + \dots + p_r (x_r - E(X))^2 = 1,81$   
 $\sigma(X) \approx 1,35$ 

2) a)

| $y_j$        | 0    | 1    | 2    | 3   | 4    | 5    |
|--------------|------|------|------|-----|------|------|
| $P(Y = y_j)$ | 0,05 | 0,12 | 0,18 | 0,3 | 0,23 | 0,12 |
|              |      |      |      |     |      |      |
| $z_j$        | 2,4  | 3,6  | 4,8  | 6   | 7,2  | 8,4  |
| $P(Z=z_j)$   | 0,05 | 0,12 | 0,18 | 0,3 | 0,23 | 0,12 |
|              |      |      |      |     |      |      |
| $t_j$        | 2,8  | 3,7  | 4,6  | 5,5 | 6,4  | 7,3  |
| $P(T = t_i)$ | 0,05 | 0,12 | 0,18 | 0,3 | 0,23 | 0,12 |

b) 
$$E(Y) = E(X) - 2 = 2.9 \qquad E(Z) = 5.88 \qquad E(T) = 5.41 \\ V(Y) = 1.81 \qquad V(Z) \approx 2.61 \qquad V(T) \approx 1.47 \\ \sigma(Y) \approx 1.35 \qquad \sigma(Z) = 1.62 \qquad \sigma(T) \approx 1.63$$

a) 
$$E(X) = p_0 x_0 + \cdots + p_r x_r = 1,99$$

b) 
$$E(Y) = p_0 y_0 + \cdots + p_r y_r = 2.13$$

c) Au centre d'examen B, les candidats font plus d'erreurs en moyenne.

d) 
$$\sigma(X) = \sqrt{V(X)} = \sqrt{p_0(x_0 - E(X))^2 + \dots + p_r(x_r - E(X))^2} \approx 1,24$$
  
 $\sigma(Y) = \sqrt{V(Y)} = \sqrt{p_0(y_0 - E(Y))^2 + \dots + p_r(y_r - E(Y))^2} \approx 1,76$ 

La centre d'examen B a donc les résultats les plus dispérsés.

#### **Exercice 56**

- a) Les représentations graphiques peuvent tous etre assimilées à des paraboles dont le sommet se situe à un abscisse de 25. Donc, les espérances des variables seront identiques. Les courbes sont symmétriques par rapport à la doite d'équation x = 25.
- b)  $\sigma(X) < \sigma(Z) < \sigma(Y)$

# **Exercice 60**

$$E(X) = p_0 x_0 + \dots + p_r x_r; \quad V(X) = p_0 (x_0 - E(X))^2 + \dots + p_r (x_r - E(X))^2; \quad \sigma(X) = \sqrt{V(X)}$$

$$E(E_1) = -0.21 \qquad \qquad E(E_2) = -0.21$$

$$V(E_1) = 2.2259 \qquad \qquad V(E_2) = 1.8459$$

$$\sigma(E_1) \approx 1.49 \qquad \qquad \sigma(E_2) \approx 1.36$$

La marque modélisée par  $E_2$  a une espérance identique à celle de  $E_1$ , mais l'ecart-type est beacoup plus petit, donc il-y-a moins de risque d'avoir un produit très défectueux.

# **Exercice 61**

a) Vrai. 
$$E(aX) = aE(X)$$

b) Faux. 
$$\sigma(X + b) = \sigma(X)$$

c) Vrai. 
$$V(0.9X) = 0.9V(X)$$
  $\sigma(0.9X) = 0.9\sigma(X)$ 

#### **Exercice 62**

| E(X) = 3,105             | E(Y) = 3,045             | E(Z) = 3,28              |  |  |
|--------------------------|--------------------------|--------------------------|--|--|
| $V(X) \approx 0.51$      | $V(Y) \approx 0.38$      | $V(Z) \approx 0.67$      |  |  |
| $\sigma(X) \approx 0.72$ | $\sigma(Y) \approx 0.62$ | $\sigma(Z) \approx 0.82$ |  |  |

- a) La production Z est la plus dispersée.
- b) La production Z a la masse moyenne la plus élevée.
- c) La production Y est la plus régulière.

- a) Vrai. Les tirages sont indépendants, donc :  $P(B;R) = P(B) \times P(R) = P(R) \times P(B) = P(R;B)$
- b) Faux. Les tirages sont indépendants, donc :  $P(R;R) = P^2(R) = \frac{1}{16}$
- c) Vrai. Les tirages sont indépendants, donc :  $P(B; B) = P^2(B) = \frac{9}{16}$

# **Exercice 65**

- a) Il-y-a 36 issues possibles.
- b)  $P(A) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$   $P(B) = \frac{1}{6} + \frac{1}{6} - P(\text{"on obtient deux fois 1"}) = \frac{12}{36} - \frac{1}{36} = \frac{11}{36}$  $P(C) = \frac{2}{36} = \frac{1}{18}$

#### **Exercice 66**

1.



FIGURE 1 – Arbre pondéré

- 2. a) X prend les valeurs 0; 1; 2.
  - b)  $P(X = 0) = P(\bar{A})^2 = \frac{1}{25}$ ;  $P(X = 2) = P(A)^2 = \frac{16}{25}$  $P(X = 1) = 1 - P(X = 0) - P(X = 2) = \frac{8}{25}$

c) 
$$P(X \ge 1) = P(X = 1) + P(X = 2) = \frac{24}{25}$$
  
 $P(X \le 1) = P(X = 1) + P(X = 0) = \frac{9}{25}$ 

- a) L'affirmation de Victor est fausse. Chaque lancer est indépendant pusisque le dé n'est pas truqué.
  - Sa justification est fausse parce que il considère qu'au deuxieme lancer, il n'y a plus que cinq faces, or il y en a toujours six.
- b) Valentine, quand à elle a raison. Il n'y a que  $\frac{1}{6}$  de chance que l'un des deux joueurs commencent à jouer au premier tour.

#### **Exercice 69**

a)



FIGURE 2 – Arbre pondéré

b) On pose la variable aléatoire X, qui représente le nombre d'usagers abonnés. Ses valeurs possibles sont : 0; 1; 2; 3. On donne sa loi de probabilité par le tableau ci-dessous, avec  $P(X = x_i) = P(\bar{A})^{3-x_i} \times P(A)^{x_i} \times (Nombre d'issues de l'evenement)$ 

| $x_i$        | 0                                            | 1                                            |
|--------------|----------------------------------------------|----------------------------------------------|
| $P(X = x_i)$ | $0.38^3 \times 1 \approx 0.0549$             | $0,38^2 \times 0,62 \times 3 \approx 0,2686$ |
| $x_i$        | 2                                            | 3                                            |
| $P(X = x_i)$ | $0,38 \times 0,62^2 \times 3 \approx 0,4382$ | $0.62^3 \times 1 \approx 0.2384$             |

- P("Deux des usagers sont abonnés.") =  $P(X = 2) \approx 0.1461$
- P("Au moins deux des usagers sont abonnés.") =  $P(X \ge 2) \approx 0.3845$
- P("Au plus deux des usagers sont abonnés.") =  $P(X \le 2) \approx 0,2905$