Housing in King County

Anh Luong

Problem

This presentation was prepared after we analysed the housing data in King County.

This purpose of this analysis is to determine which features of a property are critical to a property pricing.

What did we look at?

- → Sales data of King County
- → Multiple features of a property
- → Number of Bedrooms
- → Number of bathrooms
- → Footage of the home
- → Footage of the lot
- → A view to a waterfront
- → Condition How good the condition is (Overall)
- → Grade overall grade given to the housing unit, based on King County grading system
- → Age

What are the most important features?

Summary

R-square - 0.516

- 4 significant variables based on P value
 - Footage of home (sqft_living)
 - Footage of the lot (sqft_lot)
 - No. of bathrooms
 - Grade

OLS Regression R	esults					
Dep. Variable:		price_log		R-squared:		0.516
Model:		C	LS A	Adj. R-squared:		0.516
Method: Le		ast Squa	res	F-statistic:		5760.
Date: Sun,		12 Feb 2	023 Pro	Prob (F-statistic):		0.00
Time:		17:50	:02 Lo	Log-Likelihood:		-22803.
No. Observations:		21	597		AIC:	4.562e+04
Df Residuals:		21592			BIC:	4.566e+04
Df Model:			4			
Covariance Typ	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
const	0.5617	0.013	44.398	0.000	0.537	0.587
sqft_living_log	0.5411	0.006	89.843	0.000	0.529	0.553
sqft_lot_log	-0.1006	0.005	-20.074	0.000	-0.110	-0.091
baths_5+baths	0.9087	0.107	8.487	0.000	0.699	1.119
quality_low	-0.7016	0.015	-48.041	0.000	-0.730	-0.673
Omnibus:	67.763	Durbin-Watson: 1.975				
Prob(Omnibus):	0.000	Jarque-Bera (JB): 65.605				
Skew:	0.116	Prob(JB): 5.68e-15				
Kurtosis:	2.862		Cond. N	0.	30.1	

Model Validation Normal Distribution assumption

Regression plot of the variables

Regression plot of the variables

Train test

Train Mean Squared Error: 0.48344525331522825 Test Mean Squared Error: 0.48512251743393336

The difference between Test MSE and Train MSE is quite small (appx 0.35%)

Thank you