Public Key Cryptography - Labı

The substitution cipher

The set of keys is $\mathcal{K} = \{\sigma \colon \mathbb{Z}_n \to \mathbb{Z}_n \mid \sigma \text{ bijective}\}$. That is, a key is a permutation over \mathbb{Z}_n . For a given encryption key, the corresponding decryption key is the encryption key's inverse function

$$\forall \sigma \in \mathcal{K}, \forall x, y \in \mathbb{Z}_n : \sigma(x) = e_{\sigma}(x) = y, \sigma^{-1}(y) = d_{\sigma}(y) = x$$

Example: n = 27

	а	b	С	d	е	f	g	h	i	j	k	ı	m	n	0	р	q	r	S	t	u	٧	W	Χ	У	Z
Р	Υ	Ν	W	L	Ζ	Τ	Χ	R	V	U	0	S	М	Q	F	J	D	Н	В	K			С	G	Α	Ε

In practice, the decryption key can be obtained from the encryption key by using the following steps:

1. Reverse the associations (i.e. for $x \to y$, write $y \to x$)

Р	Υ	Ν	W	L	Z	Т	Χ	R	٧	U	0	S	М	Q	F	J	D	Н	В	K	_	ı	С	G	Α	Е
_	а	b	С	d	е	f	g	h	i	j	k	ı	m	n	0	р	q	r	s	t	u	V	W	Χ	У	Z
	2.	Reor	der	the t	able	(i.e	. sor	t the	nev	v x e	elem	ents	s)													
_	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
u				q																						

The application

The GUI consists of the following elements:

- two list views for the encryption key and the decryption key, respectively; used to easily view the keys
- a textbox where the user can enter <u>only</u> letters and space, without repeating two characters (these rules pre-validates the encryption key)
- a textbox for plaintext
- a textbox for ciphertext
- a <u>Clear All</u> button, used to clear the content of all textboxes
- an <u>Encrypt</u> button, used to encrypt the plaintext and produce the ciphertext
- a <u>Decrypt</u> button, used to decrypt the ciphertext and produce the plaintext

The functionality

Use case 1: encrypt a message

- 1. the user inputs the encryption key in the textbox
- 2. the user inputs the plaintext to be encrypted (lowercase) in the **Plaintext** textbox
- 3. the user clicks the **Encrypt** button
- 4. the application validates the encryption key and the plaintext; if this step fails, an error is shown
- 5. the application encrypts the plaintext and writes the result inside the **Ciphertext** textbox

Use case 2: decrypt a ciphertext

- 1. the user inputs the encryption key in the textbox
- 2. the user inputs the ciphertext to be decrypted (uppercase) in the **Ciphertext** textbox
- 3. the user clicks the **Decrypt** button
- 4. the application validates the encryption key and the ciphertext; if this step fails, an error is shown
- 5. the application computes the decryption key
- 6. the application decrypts the ciphertext and writes the result inside the **Plaintext** textbox