Практика № 5. Вариант 1

Необходимо в зависимости от варианта сгенерировать датасет и сохранить его в формате csv.

Построить модель, которая будет содержать в себе автокодировщик и регрессионную модель.

В качестве результата представить исходный код, сгенерированные данные в формате csv, кодированные и декодированные данные в формате csv (что должно быть и что выдает модель), и сами 3 модели в формате h5.

Исходные данные:

 $X \sim N(3,10)$

 $e \sim N(0,0.3)$

Признак	1	2	3	4	5	6	6
Формула	X^2 + e	sin(X/2) +	cos(2*X) +	X-3 + e	-X + e	X + e	$(X^3)/4 + e$
		е	е				

Реализация

В функции *genData* генерируется датасет с помощью фунций из стат пакета *scupy.stats*. В функции *splitData* набор данных разделяется на три части — тренировочный, ввлидационный и тестовый. Основная функция программы — *createModel*, в которой проиходит создание всех трёх моделей. Каждая из моделей представляет собой неглубокую нс — один или два скрытых слоя с функцией активаций Relu, батч нормализацией и дропаутом.

Сначала обучается одна нс, выполняющая функции всех трёх. Но после обучения часть весов общей сети передаётся всем "маленьким" – кодировщику, декодировщику и регрессии. Каждая из моделей сохраняется в соответствующий файл расширеня h5. Также создаются csv файлы с кодированными и декодированными тестовыми данными, а также файл с результатом работы регрессии.