Ejercicios Propuestos

- 1. Halle todos los números x para los que:
 - a) 4 x < 3 2x.
 - b) $5 x^2 < 8$.
 - c) $x^2 2x + 2 > 0$.
 - d) $2^x < 8$.
 - e) $x + 3^x < 4$.
 - $f) \frac{1}{x} + \frac{1}{1-x} > 0.$
- 2. Demuestre que si 0 < a < b entonces

$$a < \sqrt{ab} < \frac{a+b}{2} < b.$$

Observe que la desigualdad $\sqrt{ab} \leq \frac{a+b}{2}$ se verifica que todo $a,b \geq 0$.

- 3. Formule de nuevo cada una de las siguientes expresiones utilizando como mínimo una vez menos el signo de valor absoluto.
 - a) $|\sqrt{2} + \sqrt{3} \sqrt{5} + \sqrt{7}|$.
 - b) ||a+b|-|a|-|b||.
 - c) $|x^2 2xy + y^2|$.
- 4. Halle todos los números x para los cuales:
 - a) |x-3|=8.
 - b) |x-3| < 8.
 - c) |x+4| < 2.
 - d) |x-1|+|x-2|>1.
 - e) $|x-1| \cdot |x+1| = 0$.
 - $f) |x-1| \cdot |x+2| = 3.$
- 5. Demuestre que si x e y no son ambos igual a 0 entonces $x^2 + xy + y^2 > 0$.
- 6. Comprueba que

$$r_1 = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}$$

es racional.

- 7. Determine los extremos superior e inferior de los siguientes conjuntos de números reales, justificando si son máximo o mínimo en algún caso.
 - a) $A = \{r \in \mathbb{Q} : 2r^3 1 < 15\};$
- c) $C = \{x + \frac{1}{x} : x > 0\};$

b) $B = \{x : x^2 < 9\};$

d) $D = \{ \frac{-1}{n^2} : n \in \mathbb{N} \} \cup \{0\}.$

8. Demuestre por inducción:

a)
$$4^n > n^2$$
.

b) $(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$. Utilice, y demuestre, la igualdad:

$$\binom{n}{i} + \binom{n}{i+1} = \binom{n+1}{i+1}$$

c) Para $r \neq 1$.

$$1 + r + r^2 + \ldots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

d) Desigualdad de Bernoulli.

$$(1+x)^n \ge 1 + n x,$$

para todo $x \ge -1$, $n \ge 1$.

- e) $2^{2n}+15\,n-1$ es múltiplo de 9 para todo $n\in\mathbb{N}.$
- f) $n! \leq n^n$ para cada $n \in \mathbb{N}$.

9. ¿Verdadero o Falso?. Si $x \geq y$ y $u \geq v,$ entonces:

a)
$$x + u \ge y + v$$
.

b)
$$x \cdot u \ge y \cdot v$$
.

10. Demuestre que

$$\max\{x,y\} = \frac{x+y+|x-y|}{2},$$

 \mathbf{y}

$$\min\{x,y\} = \frac{x+y-|x-y|}{2}.$$