		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne	NDS 110,1745 (2009)	31-Dec-2008

 $Q(\beta^{-})=-5684\ 9;\ S(n)=10572\ 6;\ S(p)=7809\ 7;\ Q(\alpha)=-2131\ 7$ 2012Wa38

Note: Current evaluation has used the following Q record -5.66E3 3 10568 187806 17-2126 7 2003Au03.

¹⁰²Pd Levels

All band information from (HI, $xn\gamma$) (1996Je02).

Cross Reference (XREF) Flags

		B 102 Ag ε C 102 Ag ε C	decay (207.3 d) decay (12.9 min) decay (7.7 min) γ), 100 Ru(α , 2 n γ)						
E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments					
0@	0+	stable	ABCDEFGHIJ	$(r^2)^{1/2}$ =4.4839 fm 44 (2004An14, evaluation).					
556.44 [@] 5	2+	11.5 ps 8	ABCDEFGHIJ	Q=-0.20 <i>15</i> (1989Ra17) μ =0.82 8 (1989Ra17) β_2 =0.196 6 (2001Ra27) $T_{1/2}$: From evaluation of 2001Ra27. E(level): from ¹⁰² Rh β ⁻ decay (207 d). J^{π} : E2 γ to 0 ⁺ .					
1275.91 [@] 7	4+	2.04 ps 10	BCDEFGHIJ	J^{π} : E2 γ to 2 ⁺ (HI,xn γ), strong (ε + β ⁺) feeding from 5 ⁺ (102 Ag ε decay (12.9 min)).					
1534.48 <i>10</i>	2+	0.65 ps 5	BCDEF IJ	J^{π} : J=2 from p $\gamma(\theta)$ in (p,p' γ); positive parity from observation in Coul. ex.					
1593.16 22	0+	14.5 ns 4	C EFG	J^{π} : E0 γ to 0 ⁺ . T _{1/2} : weighted average of 14.3 ns 5 (p,2n γ), 14.6 ns 7 (p,p' γ) and 17 ns 2 (7.7-min 102 Ag ε decay).					
1658.1 5	0+	0.87 ps 22	C EF	$T_{1/2}$: deduced from B(E2)(J=second 2 ⁺ to third 0 ⁺)=0.008 2. J^{π} : from $\gamma\gamma(\theta)$ in 102 Ag ε decay (7.7 min).					
1715.0? 1919.0?			D D						
1944.48 25	2+	1.9 ps 7	BC EF	$T_{1/2}$: deduced by the evaluator from B(E2)(J=0 to fourth 2^+)=0.0010 3. J^{π} : E2+M1 γ to 2^+ ; $p'\gamma(\theta)$ in $(p,p'\gamma)$ consistent with J=2 only.					
2111.41 [@] 8	6+		B DE GHIJ	E(level): the existence of a close-lying doublet was established by comparing the $I\gamma(835)/I\gamma(1555)$ ratio in different reactions.					
2111.66 12	3 ⁺	0.52 12	B DE HIJ	J^{π} : E2+M1 γ to 2 ⁺ ; $p'\gamma(\theta)$ in $(p,p'\gamma)$ consistent with J=3 only.					
2138.03 8	4+	0.52 ps <i>13</i>	B DEF HIJ	$T_{1/2}$: deduced by the evaluator from B(E2)(J=2 to 4')=0.017 4. J^{π} : E2 γ to 2 ⁺ ; log ft in 102 Ag ε decay (12.9 min).					
2248.8 <i>4</i>	(2,3)		BC E	J^{π} : from $p'\gamma(\theta)$ in $(p,p'\gamma)$.					
2294.57 9	(4-)	1.1 ns <i>I</i>	D IJ	J^{π} : from $\gamma(\theta)$ in $\gamma(\text{linear pol})$ in (HI,xn γ), (5 ⁺) is proposed by 1981Pi02. $J=(4^-)$, proposed by 1976Gr12 from the same reaction, is in contradiction to $\gamma(\text{linear pol})$ results of 1981Pi02. However, 1981Pi02 take into account the possibility of a very close-lying doublet. This possibility is ruled out by 1986An03. From systematics $J=4^-$ most probable. $T_{1/2}$: from $(a,\gamma(t))$ in 100 Ru $(\alpha,2n)$ (1986An03).					
2301.28 <i>9</i> 2342.95 <i>21</i>	(4) ⁺ (3 ⁻)		B DE HIJ B DEF	$I_{1/2}$: from (a,γ(t)) in 102 Ag ε decay (129 min); γ to 2^+ . J^{π} : from $p'\gamma(\theta)$ in (p,p'γ). J^{π} =(3 ⁻) from B(E3) and level systematics in Coul. ex. B(E3)=0.060 6 (2002Ki06, evaluation).					

E(level) [†]	$J^{\pi \#}$	XREI	F	Comments						
2391.2 <i>3</i> 2431.5 <i>7</i>	(1,2)+	C E E		J^{π} : $J=(1,2)$ from $p'\gamma$ in $(p,p'\gamma)$; $\pi=+$ from log ft in 102 Ag ε decay (7.7 min).						
2474.35 8	5-		HIJ	J ^{π} : J=5 from $\gamma(\theta)$ results of 1981Pi02; level populated by E2-cascade from 3727 level (J ^{π} =9 ⁻).						
2480.3 <i>10</i> 2490.0 <i>10</i>		B E E								
2533.0 <i>3</i>	(4) ⁺	ВЕ		J ^π : J=(3,4) from p' $\gamma(\theta)$ in (p,p' γ); from log ft in ¹⁰² Ag ε decay (12.0 min) J=3, and negative parity can be excluded.						
2546.2 7		E								
2553.5 <i>10</i> 2574.3 <i>4</i>	(1,2)	D C E		J^{π} : $J=(1,2)$ from $p'\gamma(\theta)$ in $(p,p'\gamma)$ probably positive parity.						
2582.9 10	(1,2)	B E		$\mathbf{y} \cdot \mathbf{y} = (1,2)$ from $\mathbf{p} \cdot \mathbf{y}(\mathbf{v})$ in $(\mathbf{p},\mathbf{p} \cdot \mathbf{y})$ probably positive pairty.						
2606.5 5		B DE								
2610.78 25	$(1,2)^+$	CE		J^{π} : $J=(1,2)$ from $p'\gamma(\theta)$ in $(p,p'\gamma)$; $\log ft$ in 102 Ag ε decay (7.7 min).						
2651.34 <i>12</i>	(4^{+})	B D	J	J^{π} : from $\gamma(\theta)$ and $\gamma(\text{linear pol})$ in (HI,xn γ). J=5 ⁻ not excluded.						
2660.7 7		E								
2669.62 22 2675.1 <i>10</i>		B E								
2695.9 10	(1,2)	E		J^{π} : from $p'\gamma(\theta)$ in $(p,p'\gamma)$.						
2716.3 3	$(1,2)^+$	CE		J^{π} : J=(1,2) from p' $\gamma(\theta)$ in (p,p' γ); log ft in 102 Ag ε decay (7.7 min).						
2734.02 22	, ,	B E								
2737.0 4		С								
2749.93 12		В								
2769.0? 4	(4+)	B D		J^{π} : log ft=6.1 in ¹⁰² Ag ε decay (12.9 min); γ to 2 ⁺ .						
2798.9 <i>4</i> 2863.60 <i>12</i>	(4^+)	B B		J^{**} : $\log 11=0.1$ in ** Ag ε decay (12.9 min); γ to Z^{*} .						
2914.19 ^{&} 10	6-		HIJ	J^{π} : E2+M1 γ to 5 ⁻ ; J=5,7 ruled out from $\gamma(\theta)$ and γ (linear pol) in (HI,xn γ).						
2977.0 4	4 ⁽⁺⁾ ,5 ⁽⁺⁾ ,6 ⁽⁺⁾	B DE	1113	J^{π} : J=4,5,6 from log ft =5.94 in ¹⁰² Ag ε decay (12.9 min); π probably +.						
3002.9 4	4 ⁺ ,5 ⁺ ,6 ⁺	B DE		J^{π} : from log ft in ¹⁰² Ag ε decay (12.9 min).						
3008.79 14	(4)	E		J^{π} : from log ft =6.05 in ¹⁰² Ag ε decay (12.9 min) and γ -decay to 2 ⁺ .						
3013.13 [@] 9	8+	D	HIJ							
3040.0 10		E								
3075.26 9	$4^+,5^+,6^+$	B E		J^{π} : from log ft in ¹⁰² Ag ε decay (12.9 min).						
3113.2 3	1+ 2+ 2+	В		TT C 1 C 5 G4: 102						
3123.3 4	1+,2+,3+	CE		J^{π} : from log ft =5.74 in 102 Ag ε decay (7.7 min). J^{π} : from log ft =6.2 in 102 Ag ε decay (12.9 min).						
3166.36 <i>11</i> 3178.61 <i>13</i>	4,5,6 4,5,6	B E B		J^{π} : from $\log f = 0.2$ in 102 Ag ε decay (12.9 min). J^{π} : from $\log f = 6.6$ in 102 Ag ε decay (12.9 min).						
3188.19 ^b 10	4,5,0 7 ⁻		HIJ	J^{π} : E2 to 5 ⁻ . Band structure.						
3238.17 25	1 ⁺ ,2 ⁺	C E	птэ	J^{π} : from logft=5.13 in ¹⁰² Ag ε decay (7.7 min) and γ decay to 0 ⁺ .						
3278.9 8	1 ,2	В		3. Holli logit = 3.13 lil 1/2 g c decay (7.7 lillil) and y decay to 0.						
3295.9 5		В								
3340.35 10	8+	D	HIJ	J ^π : E2 to 6 ⁺ , ΔJ=2 for 1228 γ (from $\gamma\gamma(\theta)$ from oriented nuclei in (HI,xn γ), 1976Gr12). Consistent with $\gamma(\theta)$ results of 1981Pi02 in (HI,xn γ).						
3389.74 23	(7^{-})		IJ	J^{π} : populated from 3727 level ($J^{\pi}=9^{-}$), M2+E1 γ to 6 ⁺ .						
3670.64 ^{&} 11 3727.84 ^a 10	8-		HIJ	III. 1001D:02						
	9-		HIJ	J^{π} : 1981Pi02: only 9 ⁻ is consistent with $\gamma(\theta)$ and γ (linear pol) with $J^{\pi}(3340)=8^+$.						
3889.39? ^b 14	(9-)		HIJ	J^{π} : E2 γ to 7^{-} .						
3992.78 [@] 10 4033.2 8	10+		HIJ H J							
4317.82 11	10-		HIJ	17 (TO) (0± (0) 1 (1 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
4328.77 <i>12</i> 4432.82 ^a <i>10</i>	(10 ⁺) 11 ⁻		HIJ HIJ	J^{π} : (E2) γ to 8^+ ; $\gamma(\theta)$ and γ (linear pol) also consistent with $8^+,9^-$.						
11 32.02 10	11		птЭ							

¹⁰²Pd Levels (continued)

E(level) [†]	Jπ#	XREF	Comments
4646.09 ^b 25	(11^{-})	HIJ	
4747.2 3	()	HIJ	
4836.9?		I	
4944.77 18	(11^{-})	H	
5055.17 [@] 11	12 ⁺	HIJ	
5094.11 & <i>12</i>	12-	HIJ	
5260.68 15	(12^{+})	HIJ	J^{π} : E2 γ to (10 ⁺).
5325.97 ^a 12	13-	HIJ	
5577.2? ^b 4	(13^{-})	н ј	
5768.88 <i>25</i> 5984.80 <i>25</i>	1.4-	H J	
5984.80 ° <i>13</i> 6138.70 <i>19</i>	14 ⁻ 14 ⁺	HIJ HIJ	J^{π} : E2 γ to 12 ⁺ .
6179.9 [@] 5	14 14 ⁺		J .: Ε2 γ to 12 .
6222.7?	(14^{+})	H IJ	J^{π} : E2 γ to (12 ⁺).
6345.06 ^a 15	15-	HIJ	J . L2 y to (12).
6539.1? ^b 5	(15 ⁻)	Н	
6988.16 ^{&} 17	16-	HIJ	
7428.9 [@] 6	16 ⁺	Н	
7461.36 ^a 18	17-	HIJ	
7585.7? ^b 6	(17-)	Н	
8063.3 ^{&} 4	18-	Н	
8707.1 [@] 7	18 ⁺	Н	
8737.6 ^a 10	19-	H	
8778.7? ^b 11	(19^{-})	Н	
9214.2 <mark>&</mark> 7	20^{-}	Н	
9892.9 11	20+	H	J^{π} : E2 to 18 ⁺ .
10178.2 ^a 13	21-	Н	
10223.1 8	20^{+}	H	
10540.2 ^{&} 11	22^{-}	H	
11227.7 13	(22^{+})	Н	J^{π} : γ decay to 20^+ .
11886.2 [@] 9	22 ⁺	H	
12025.2 ^{&} 15	24^{-}	H	
13592.9 [@] 10	24+	Н	
15414.4? [@] 12	(26 ⁺)	Н	

[†] From a least squares procedure using adopted gammas.

[‡] Deduced from B(E2) in Coul. ex., unless noted otherwise.

[#] Unless noted otherwise, from $I\gamma(\theta)$, $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ from oriented nuclei and γ linear pol. and observed band structure in different (HI,xn γ).

[@] Band(A): probable member of the g.s. $\Delta J=2$ rotational band.

[&]amp; Band(B): probable member of $\Delta J=2$ rotational band on $J^{\pi}=6^-$ level.

^a Band(C): probable member of $\Delta J=2$ rotational band on $J^{\pi}=9^{-}$ level.

^b Band(D): probable member of $\Delta J=2$ rotational band on $J^{\pi}=7^{-}$ level.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	$\delta^{\#}$	Comments
556.44	2+	556.41 5	100	0	0+	E2		B(E2)(W.u.)=32.6 23
								E_{γ} : from (HI,xn γ).
								Mult.: from α in $(p,p'\gamma)$ see also 102 Ag ε decay and $(p,2n\gamma)$.
1275.91	4+	719.38 6	100	556.44	2+	E2		B(E2)(W.u.)=50.9 25
								Mult.: from α in $(p,p'\gamma)$ see also 102 Ag ε decay and $(p,2n\gamma)$.
1534.48	2+	259 <mark>&</mark>		1275.91				
		977.78 <i>18</i>	97 8	556.44	2+	E2+M1	2.8 2	B(M1)(W.u.)=0.0020 4; B(E2)(W.u.)=15.0 20
								Mult.: from on-line nuclear orientation in 12.9-min ¹⁰² Ag decay (1987Wo04). B(E2)(W.u.),B(M1)(W.u.): deduced from B(E2) (J=2 to second 2 ⁺) in Coul. ex. and adopted decay properties of 1534 level.
								δ from 102 Ag ε decay.
		1534.71 <i>16</i>	100 10	0	0_{+}			B(E2)(W.u.)=4.2 21
								B(E2)(W.u.): deduced from $B(E2)$ (J=2 to 2') in Coul. ex. and adopted decay properties of 1534 level.
1593.16	0_{+}	58.3		1534.48				
		1035.6		556.44				2.5
		1592.6 5		0	0_{+}	E0		From Coul. ex. ρ^2 (J=second 0+ to 0)=4.0×10 ⁻³ .
1650.1	0+	1101 7 5	100	556.44	2+			$q_{K}^{2}(E0/E2) > 2$, $X(E0/E2) > 0.0048$, $\rho^{2}(E0)=0.004$ 15 (2005Ki02, evaluation).
1658.1	0_{+}	1101.7 5	100	556.44		E0		F C 1 2/I d': 10+ (0) (0.2) (10-3
		1658.1		0	0+	E0		From Coul. ex. ρ^2 (J=third 0 ⁺ to 0)<0.3×10 ⁻³ . q_K^2 (E0/E2) < 0.0014 , X(E0/E2) < 0.00038 ρ^2 (E0) < 0.002 (2005Ki02, evaluation).
1715.0?		439 <mark>&</mark>	100	1275.91	4+			oralation).
1919.0?		383 &	100	1534.48				
1944.48	2+	351.4 2	100	1593.16				
1777.70	2	1387.8 <i>4</i>	100	556.44		E2+M1	+8.1 +73-26	B(M1)(W.u.)=5.E-5 +10-5; B(E2)(W.u.)=1.6 6
								Mult.: from $(p,p'\gamma)$.
		1943.8	23		0^{+}			
2111.41	6+	835.48 5	100	1275.91		E2		
2111.66	3+	1555.24 17	100	556.44	2+	E2(+M1)	>15	δ : From (p,p'γ); +0.24 <i>16</i> (1976Gr12) is in disagreement with the (p,p'γ) results of 1977La16.
2138.03	4+	27 <mark>&</mark>		2111.41	6+			It is unclear if 27γ decays to 2111.41 or 2111.66 level or both if it is an unresolved doublet.
		221 <mark>&</mark>		1919.0?				
		603.59 18	11.6 <i>14</i>	1534.48	2+			
		861 <mark>&</mark>		1275.91				

γ (102Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [‡]	δ#	Comments
2248.8	(2,3)	1692.3 4	100	556.44 2+			
2294.57	(4-)	156.7 2	23 10	2138.03 4+	E1		B(E1)(W.u.)=9.E-6 5 Mult.: from $(\alpha,2n\gamma)$.
		182.88 <i>12</i>	47 11	2111.66 3 ⁺	E1(+M2)	-0.055	$B(E1)(W.u.)=1.6\times10^{-5}$ 5; $B(M2)(W.u.)=4.E+1+6-4$
		1018.56 9	100 28	1275.91 4+	E1		$B(E1)(W.u.)=1.4\times10^{-7} 5$
							Mult.: from $\alpha \gamma(\theta)$ in $(\alpha, 2n\gamma)$ (1986An03).
2301.28	$(4)^{+}$	1025.0 3	24.6 25	1275.91 4+	M1(+E2)	0.01 8	Mult.: from on-line nuclear orientation in 12.9-min ¹⁰² Ag decay (1987Wo04).
		1745.05 9	100 9	556.44 2 ⁺			
2342.95	(3^{-})	1786.5 2	100	556.44 2 ⁺			
2391.2	$(1,2)^+$	1834.7 <i>3</i>	100	556.44 2 ⁺			
2431.5		897.2	28	1534.48 2 ⁺			
		1874.9	100	556.44 2+			
2474.35	5-	173.3 <i>1</i>	43 10	$2301.28 (4)^{+}$	M2+E1	-0.124	
		179.75 7	54 8	2294.57 (4-)	E2+M1	+0.47 6	
		336.30 7	100 20	2138.03 4+			
		1198.38 9	40.2 20	1275.91 4+	E1(+M2)	-0.04 6	
2480.3		946.4	33 4	1534.48 2 ⁺			
		1924.1	100 11	556.44 2 ⁺			
2490.0		1933.5	100	556.44 2 ⁺			
2533.0	$(4)^{+}$	231.7 <i>1</i>	1.79 <i>17</i>	$2301.28 (4)^{+}$			
		998.3 <i>3</i>	0.8 3	1534.48 2+			
		1257.1 3	100 6	1275.91 4+			
		1976.0 <i>3</i>	0.8 4	556.44 2+			
2546.2		1012.2	100	1534.48 2+			
2552.5		1989.3	87	556.44 2+			
2553.5	(1.0)	1277.7 10	100	1275.91 4+			
2574.3	(1,2)	2017.8 4	100	556.44 2 ⁺			
2582.9		1307.0	100	1275.91 4+			
2606.5 2610.78	$(1,2)^+$	1330.6 <i>5</i> 1017.6 2	100	1275.91 4 ⁺ 1593.16 0 ⁺			
∠010./8	(1,2)	1017.6 <i>2</i> 2054.5 <i>4</i>	100 16	556.44 2 ⁺			
		2054.5 <i>4</i> 2609.8	100 <i>16</i> 17	0 0+			
2651.34	(4^{+})	2009.8 176	1 /	2474.35 5			
2031.34	(4)	512.5 9		2138.03 4+			
		540.0 2	36	2111.41 6 ⁺			
					MICE	0.61@ 63	C :C 1/0/51\
2660.7		1375.42 10	100	1275.91 4 ⁺	M1(+E2)	+0.61 [@] 63	δ: if J(8651)=5 ⁻ , $δ$ (M2/E1)≈0.1.
2660.7		1126.5	40	1534.48 2 ⁺			
2660.62		2103.9	100	556.44 2 ⁺			
2669.62		1393.7 2	100 100	1275.91 4 ⁺			
2675.1		2118.6	100	556.44 2+			

S

γ (102Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ#	Comments
2695.9	(1,2)	2695.9	100	0 0+			
2716.3	$(1,2)^+$	2159.5 <i>4</i>	100 18	556.44 2+			
		2716.5 4	37 13	$0 0_{+}$			
2734.02		1458.1 2	100	1275.91 4+			
2737.0		1461.1 <i>4</i>	100	1275.91 4 ⁺			
2749.93		1215.5 <i>3</i>	4.6 12	1534.48 2+			
		1474.0 <i>1</i>	100 18	1275.91 4 ⁺			
2769.0?		1493.10 ^{&} <i>30</i>	100	1275.91 4+			
2798.9	(4^{+})	660.5 <i>1</i>	10 5	2138.03 4+			
		854.3 <i>1</i>	8 5	1944.48 2 ⁺			
		1263.9 <i>I</i>	34 <i>4</i>	1534.48 2+			
		1522.7 4	100 10	1275.91 4+			
		2241.6 8	37 16	556.44 2+			
2863.60		1329.1 <i>I</i>	33 7	1534.48 2+			
2014.10	<i>(</i> –	1587.7 2	100 11	1275.91 4+	E0 - 3 / 1	0.22.2	C C . 0 40 0 C . 1001D'00
2914.19	6-	439.90 7	100 13	2474.35 5	E2+M1	+0.32 3	δ: δ = +0.40 9 from 1981Pi 02.
2077.0	1(±) 5 (±) 5 (±)	619.50 <i>19</i>	34 4	2294.57 (4-)	E2		
2977.0	$4^{(+)},5^{(+)},6^{(+)}$	865.0 2	100 9	2111.41 6+			
2002.0	4+ 5+ 6+	1700.4 3	100 11	1275.91 4+			
3002.9	4+,5+,6+	891.5 3	100 <i>11</i> 6.6 8	2111.41 6+			
3008.79	(4)	1727.9 <i>3</i> 1474.3 <i>I</i>	100	1275.91 4 ⁺ 1534.48 2 ⁺			
			100				
3013.13	8+	719.4	100	2294.57 (4 ⁻)	Е0		
2040.0		901.71 4	100	2111.41 6+	E2		
3040.0	4+,5+,6+	2483.5	100 3.1 <i>9</i>	556.44 2 ⁺			
3075.26	4',5',0'	424.4 <i>I</i> 937.7 2	62 5	2651.34 (4 ⁺) 2138.03 4 ⁺			
		963.3 <i>5</i>	9 5	2111.66 3 ⁺			
		964.2 <i>I</i>	55 <i>5</i>	2111.41 6 ⁺			
		1799.5 <i>I</i>	100 11	1275.91 4+			
3113.2		1837.3 3	100 11	1275.91 4+			
3123.3	1+,2+,3+	1588.8 4	100 33	1534.48 2+			
0120.0	1 ,2 ,0	2566.9 5	67 44	556.44 2 ⁺			
3166.36	4,5,6	634.1 <i>I</i>	32 5	$2533.0 (4)^+$			
	,-,-	1054.9 5	19 8	2111.66 3+			
		1055.4 2	100 12	2111.41 6 ⁺			
		1889.4 <i>3</i>	68 8	1275.91 4+			E_{γ} : poor fit. Level-energy difference=1890.6.
3178.61	4,5,6	1067.2 <i>1</i>	100	2111.41 6+			, .
3188.19	7-	274.1 2	36 7	2914.19 6-	E2+M1	+0.20 [@] 7	δ : Other: +0.48 21 or +0.17 2 (1976Gr12).
		713.8 <i>I</i>	100 15	2474.35 5	E2		E_{γ} : from (HI,xn γ) (1996Je02).
3238.17	1+,2+	1644.1 <i>4</i>		1593.16 0 ⁺			

6

$\gamma(^{102}\text{Pd})$ (continued)

	E a l	τ.π	- ÷	. +		Τ		$\delta^{\#}$	
ı	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ"	Comments
	3238.17	$1^+, 2^+$	2682.1 4	35 14	556.44	2+			
	2270.0		3238.6 4	100 22	0	0 ⁺ 6 ⁺			
	3278.9 3295.9		1167.5 8 1184.5 5	100 100	2111.41 2111.41	6 ⁺			
	3340.35	8+	327.22 4	100 11	3013.13	8+	E2+M1	-0.19 5	δ: Other: $-0.27 \ 13 \ \text{from} \ ^{92}\text{Zr}(^{13}\text{C}, 3\text{n}\gamma) \ (1981\text{Pi}02).$
	55 10.55	O	1228.94 20	20.4 21	2111.41	6 ⁺	E2	0.17 5	v. ouer. 0.27 is from 21(0,511) (15011102).
	3389.74	(7^{-})	1278.31 ^{&} 15	100	2111.41	6+	M2+E1	-0.05 4	
	3670.64	8-	482.4 <i>1</i>	28 5	3188.19	7-	E2+M1	+1.5 [@] 5	δ : Other: +1.6 7 in 92 Zr(13 C,3n γ).
			756.5 <i>1</i>	100 6	2914.19	6-	E2		
	3727.84	9-	338.1 2	18.7 <i>14</i>	3389.74	(7^{-})			
			387.5 <i>1</i>	23 4	3340.35	8 ⁺	M2+E1	-0.15 4	
			539.7 <i>1</i> 714.6 <i>1</i>	35 <i>9</i> 100 <i>9</i>	3188.19 3013.13	7- 8+	E2 E1(+M2)	-0.05 4	
	3889.39?	(9^{-})	701.2 <i>I</i>	100	3188.19	7-	E1(+W12) E2	-0.03 4	The relative order of the 756.7 γ and 701.22 γ is not established, and the
		()							reverse ordering would define a level at 3945.0 rather than at 3889.5.
	3992.78	10 ⁺	979.66 <i>5</i>	100	3013.13	8+	E2		E_{γ} : from (HI,xn γ) (1996Je02).
ı	4033.2		1020 <mark>&</mark>		3013.13	8+		_	
1	4317.82	10-	428.5 ^{&} 4	44 4	3889.39?	(9^{-})	M1(+E2)	$-0.05^{\textcircled{0}}$ 7	
ı			590.0 <i>3</i>	16 <i>3</i>	3727.84	9-	E2+M1	+0.14 [@] 9	
ı	1220 55	(10+)	647.18 <i>5</i>	100 8	3670.64	8-	E2		
ı	4328.77	(10^+)	336.0 <i>1</i> 988.4 <i>1</i>	89 <i>14</i> 100 <i>11</i>	3992.78 3340.35	10 ⁺ 8 ⁺	(E2)		
ı	4432.82	11-	440.1 <i>I</i>	6 1	3992.78	10 ⁺	(E2)		
ı	1132.02	11	704.95 5	100 2	3727.84	9-	E2		
	4646.09	(11^{-})	756.7 2	100	3889.39?		E2		
	4747.2		1019.5 4	100	3727.84				
	4836.9?	(4.4-)	508.3 ^{&} 3	100	4328.77	(10^{+})			
	4944.77 5055.17	(11 ⁻) 12 ⁺	951.6 2 110.0 2	100	3992.78 4944.77	10 ⁺ (11 ⁻)			
ı	3033.17	12	1022.0 8	60 19	4033.2	(11)			
ı			1062.41 5	100 2	3992.78	10 ⁺	E2		
	5094.11	12-	661.3 <i>1</i>	32 <i>3</i>	4432.82	11-	D		
ı	5360.60	(10+)	776.3 <i>1</i>	100 9	4317.82	10-	E2		
1	5260.68	(12^{+})	513.5 <i>3</i> 931.9 <i>1</i>	81 <i>11</i> 100 <i>11</i>	4747.2 4328.77	(10^{+})	E2		
	5325.97	13-	893.14 <i>7</i>	100 11	4328.77	11-	E2 E2		
	5577.2?	(13^{-})	931.1 3	100	4646.09	(11^{-})	E2		
	5768.88		508.2 2	100	5260.68	(12^{+})			
	5984.80	14-	658.8 <i>I</i>	19 4	5325.97	13-	D		
			890.7 1	100 10	5094.11	12-	E2		

γ (102Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡
6138.70	14+	1083.53 15	100	5055.17	12+	E2	8737.6	19-	1276.2 9	100	7461.36	17-	
6179.9	14 ⁺	1124.7 4	100	5055.17	12+	E2	8778.7?	(19^{-})	1193.0 9	100	7585.7?	(17^{-})	E2
6222.7?	(14^{+})	962.2 <mark>&</mark> 2	100	5260.68	(12^{+})	E2	9214.2	20-	1150.9 5	100	8063.3	18-	
6345.06	15-	1019.1 <i>1</i>	100	5325.97	13-	E2	9892.9	20^{+}	1185.8 9	100	8707.1	18 ⁺	E2
6539.1?	(15^{-})	961.9 <i>3</i>	100	5577.2?	(13^{-})	(E2)	10178.2	21-	1440.6 9	100	8737.6	19-	
6988.16	16-	643.1 <i>1</i>	26 4	6345.06	15-		10223.1	20^{+}	1516.0 <i>4</i>	100	8707.1	18 ⁺	E2
		1003.3 2	100 8	5984.80	14-	E2	10540.2	22-	1326.0 9	100	9214.2	20^{-}	
7428.9	16 ⁺	1249.0 <i>4</i>	100	6179.9	14+	E2	11227.7	(22^{+})	1334.8 6	100	9892.9	20^{+}	
7461.36	17^{-}	1116.3 <i>1</i>	100	6345.06	15-	E2	11886.2	22 ⁺	1663.1 <i>4</i>	100	10223.1	20 ⁺	E2
7585.7?	(17^{-})	1046.6 <i>3</i>	100	6539.1?	(15^{-})	E2	12025.2	24-	1485.0 9	100	10540.2	22^{-}	E2
8063.3	18-	602.1 4	13 <i>3</i>	7461.36	17-		13592.9	24+	1706.7 5	100	11886.2	22+	
		1074.9 5	100 11	6988.16	16-	E2	15414.4?	(26^+)	1821.4 5	100	13592.9	24 ⁺	
8707.1	18 ⁺	1278.2 <i>3</i>	100	7428.9	16 ⁺	E2							

[†] Unless noted otherwise, from a weighted average of decay, 99 Ru $(\alpha,n\gamma)$, 100 Ru $(\alpha,2n\gamma)$ and (HI,xn γ) data if available.

^{*} Normally from $\gamma(\theta)$ and $\gamma(\text{linear pol})$ (1981Pi02) but for levels above 7461 keV, only observed by 1996Je02, stretched Q were assumed E2. # Unless noted otherwise, from $^{92}\text{Zr}(^{13}\text{C},3\text{n}\gamma)$ (1976Gr12): weighted average of values from directional correlation of oriented nuclei (R(DCO)) and angular distribution results.
[@] From 92 Zr(13 C,3n γ) (1981Pi02).
[&] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ Level Scheme (continued) Intensities: Type not specified γ Decay (Uncertain) 7⁻ 4,5,6 3188.19 3178.61 4,5,6 3166.36 1+,2+,3+ 3123.3 3113.2 4+,5+,6+ 3075.26 3040.0 8⁺ (4) 3013.13 3008.79 $\frac{4^{+},5^{+},6^{+}}{4^{(+)},5^{(+)},6^{(+)}}$ 3002.9 2977.0 2914.19 6-2863.60 (4⁺) 2798.9 2769.0 2749.93 2737.0 2734.02 (1,2) 2716.3 (1,2) 2695.9 2675.1 2669.62 (4⁺) 2651.34 (4)+ 2533.0 2474.35 (4^{-}) 2294.57 1.1 ns *1* 2138.03 0.52 ps 13 2111.66 2111.41 1944.48 1.9 ps 7 1534.48 0.65 ps 5 1275.91 2.04 ps 10 556.44 11.5 ps 8 0 stable $^{102}_{46}\mathrm{Pd}_{56}$

$$^{102}_{46}\mathrm{Pd}_{56}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	NDS 108,2035 (2007)	30-Mar-2007

 $Q(\beta^-) = -4279 \ 4$; $S(n) = 9981 \ 3$; $S(p) = 8656 \ 3$; $Q(\alpha) = -2596.1 \ 17$ 2012Wa38

Note: Current evaluation has used the following Q record -4279 4 9982 5 8657 5 -2596 5 2003Au03.

For comparison of strongly populated high-spin sequences observed in ¹⁰²Pd, ¹⁰⁴Pd, ¹⁰⁶Pd, see 1976Gr12.

¹⁰⁴Pd Levels

Cross Reference (XREF) Flags

Α	104 Rh β^{-} decay (42.3 s)	F	104 Ru(α ,4n γ)	K	106 Pd(p,t)
В	104 Rh β^{-} decay (4.34 min)	G	104 Pd(n,n' γ)	L	107 Ag(p, α)
C	104 Ag ε decay (69.2 min)	H	104 Pd(p,p')	M	⁶⁴ Ni(⁴⁸ Ca,6n2pγ)
D	104 Ag ε decay (33.5 min)	I	Coulomb excitation	N	104 Pd(p,p' γ)
E	94 Zr(13 C,3n γ)	J	105 Pd(d,t)		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	0+	stable	ABCDEFGHIJKLMN	
555.81# 4	2+	9.9 ps 5	ABCDEFGHIJKLMN	μ =+0.92 8 (1980Br01); Q=-0.47 10 (1989Ra17) Q: other: -0.45 10. Method: Coul. ex. reorientation precession technique. μ : IMPAC. Other: see 1989Ra17. J^{π} : L(p,t)=2. $T_{1/2}$: from B(E2)(0-2)=0.535 35 (1987Ra01).
1323.59 [#] 6	4+	1.5 ps 2	ABCDEFGHIJK MN	J^{π} : L(p,t)=4, 767 $\gamma(\theta)$. T _{1/2} : from B(E2) in Coul. ex.
1333.59 8	0^{+}	5.2 ps 5	AB D GH JKL N	J^{π} : L(p,t)=0.
1341.68 5	2+	1.60 ps 4	ABCDEFGHIJK N	J^{π} : E2 γ to 0 ⁺ . T _{1/2} : from B(E2) in Coul. ex.
1792.86 <i>6</i>	0+	<0.25 ps	AB D G IJKL	$T_{1/2}$: from B(E2) in Coul. ex. J^{π} : (555 γ)(777 γ)(θ) (1960Bu05), no γ to (g.s.).
1794.3 5	2+	<1.4 ps	AB D GHIJ N	XREF: J(1797). $T_{1/2}$: from B(E2) in Coul. ex. J^{π} : log ft =6.1 from 2 ⁺ . 1794 γ to 0 ⁺ g.s., M2 γ would not be likely, M1 γ to 2 ⁺ .
1820.65 <i>16</i>	3+		ABCDEFG J L N	J^{π} : $(1265\gamma)(555\gamma)(\theta)$, M1 γ to 2 ⁺ , L=1 in 107 Ag(p, α) is inconsistent with the adopted J^{π} .
1941.2 5			BC GH	
1948 <i>4</i>			H	
1999.1 <i>4</i> 2070	(1,2)		D H L	J^{π} : 1999 γ to 0 ⁺ g.s.
2082.38 6	4+	1.2 ps <i>12</i>	BC EFGHIJK N	$T_{1/2}$: from B(E2) in Coul. ex. J^{π} : L(p,t)=4, E2 γ to 2^+ states.
2103 2	0_{+}		Н	
2125.5 <i>I</i> 2138.7 <i>I0</i> 2178.5 <i>I0</i>	0+		B J GH K G JK	$J^{\pi}: L(p,t)=0.$
2181.56 6	4+		BC E GH N	J^{π} : log $ft=5.4$ from 5 ⁺ , 1625 γ to 2 ⁺ .
2193.4 <i>6</i> 2228 <i>2</i>	(4 ⁺) 4 ⁺		CD GH JK H	J^{π} : L(p,t)=(4), I=3 in (p,p').
2244.9 3	2 ⁺		A D GH JK	J^{π} : L(p,t)=2.
2249.5 [#] 5	6 ⁺		C EFG MN	J^{π} : 926 $\gamma(\theta)$ strong E2 in cascade to g.s.
2265.31 7	4 ⁺		BC EFGH J N	J^{π} : 941 $\gamma(\theta)$ and ang. distribution in (p,p') .
2276.5 3	1+,2+		D G J N	J^{π} : M1 γ to 2 ⁺ , 2276 γ to 0 ⁺ g.s.

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2290		L	
	4-	CDE G	J^{π} : E1+M2 γ to 4 ⁺ , M1 γ from 5 ⁻ , decay to 2 ⁺ .
2298.9 3	1 ⁺ ,2 ⁺		
2337.9 <i>3</i>	1,2	D GH JK	XREF: K(2331).
			J^{π} : log ft =5.9 from 2 ⁺ , 2338 γ to 0 ⁺ g.s.
2351.6 9		GH	
2444.5 <i>3</i>	$4^+,5^+,6^+$	BC G J	J^{π} : log $ft=5.6$ from 5^+ , $L(d,t)=4$.
2456.6 <i>4</i>	(1,2,3)	CD GH J	J^{π} : log $ft = 6.7$ from 2^+ .
2465 5		GH J	
2479.0 <i>6</i>	1,2	CD KL	XREF: K(2484).
			J^{π} : log $ft=7.2$ from 2^{+} , 2479 γ to 0^{+} g.s.
2491.4 5	5-	Е Н	J^{π} : 1167 $\gamma(\theta)$, linear-polarization data, strong E1 to 4 ⁺ member of g.s. band.
2492.0 5		D	
2521.4 <i>4</i>	2+	D GH K	XREF: K(2526).
2321.17	2	D OII K	J^{π} : L(p,t)=2.
2533.4 5	$(2,3)^+$	D GH J	J^{π} : log f = 6.3 from 2^+ , $L(d,t)$ = 0.
	(2,3) 4 ⁺		
2570.3 <i>4</i>	4	CD GH JK N	XREF: K(2564).
0570.5			J^{π} : log ft =6.5 from 5 ⁺ , M1 γ to 4 ⁺ , and ang. distribution in (p,p').
2572.5	2+ 2	G	ADDE WACON
2613.4 5	$2^{+},3^{+}$	C G JKL	XREF: K(2604).
			J^{π} : L(d,t)=0.
2622.2 5	(1,2,3)	D H	J^{π} : log $ft = 6.2$ from 2^+ .
2626.9 <i>4</i>	$(1,2^+)$	D G	J^{π} : log $ft = 6.4$ from 2^+ , 2627 γ to 0^+ g.s.
2642.6 5	4+	D GH JK	XREF: K(2635).
			J^{π} : log $ft=7.3$ from 2^+ , and ang. distribution in (p,p') .
2667.7 2	5-	E H L	J^{π} : E1 γ to 4 ⁺ , E2 γ from 7 ⁻ .
2677.8 <i>4</i>	4+	CD H JK	J^{π} : L(d,t)=4.
2695.0 5	2+	D H J	J^{π} : $L(p,t)=2$.
2714.8 6	(4,5,6)	CD G J	J^{π} : log $ft=7.2$ from 5 ⁺ .
2734 5	4-	ED G J	$J = \log Jt - 7.2$ from $J = 0.0$
			III. 1 6. ((from 5+
2760.3 4	(4,5,6)	CD L	J^{π} : log ft=6.6 from 5 ⁺ .
2767.0 4	4 ⁺	C G K	J^{π} : L(p,t)=4.
2771.5 5		D H J	
2774.5 <i>4</i>	4+	C GH	J_{-}^{π} : log ft =6.1 from 5 ⁺ and ang. distribution in (p,p') .
2784 <i>6</i>	+	J	J^{π} : L(d,t)=2(+4).
2800.5 <i>6</i>	4+	CD GH JK	XREF: K(2795).
			J^{π} : $L(p,t)=4$.
2810.0 5	$2^{+},3^{+}$	D JK	J^{π} : $L(d,t)=0$.
2866.0 10		GH K	XREF: K(2868).
2875.2 5	(4,5,6)	C G J	J^{π} : log ft=6.9 from 5 ⁺ .
2900.8 2	6-	E	J^{π} : M1 γ to 5 ⁻ .
2913 6		НЈ	•
2918.3 4	$(1,2,3)^+$	D GH JK	XREF: J(2920)K(2914).
2710.3 1	(1,2,3)	D dii sik	J^{π} : log ft =6.4 from 2^+ . L(d,t)=2(+4).
2924.2 3	$(4,5,6)^+$	C G	J^{π} : log $ft=6$ from 5 ⁺ . L(d,t)=2.
2924.2 3 2933 6	(4,5,0)		J. $\log J t = 0$ HOIII J. $E(\mathbf{u}, t) = 2$.
	1-5-6-	J	III. M1 to 5-
2958.9 3	4-,5-,6-	E H L	J^{π} : M1 γ to 5 ⁻ .
2960.5 7	$(2^+,3)$	D	J^{π} : log $ft=6.7$ from 2^+ , 2960 γ to 4^+ .
2975.5 5	(1,2,3)	D _G J	J^{π} : log $ft=6.1$ from 2^{+} .
2988.4 2	7-	E	J^{π} : from 738 $\gamma(\theta)$ and linear pol. g.s. band.
2993.6 8	4+	D GH J	J^{π} : log ft =6.6 from 2^+ , $L(d,t)$ =0+2, ang. distribution in (p,p') .
3000.3 5		G J	
3008.3 5	$(1,2^+)$	D GH J	XREF: G(3013.5)H(3014).
	-		J^{π} : log ft=7.0 from 2 ⁺ , 3008 γ to 0 ⁺ g.s.
3013.5 9		GH	
3020.3 9		GH J	
3034.0 5	$(1,2^+)$	D	J^{π} : log ft=6.5 from 2 ⁺ , 3034 γ to 0 ⁺ g.s.
20202	(-,-)	-	- 1 - 1- 1- 1 - 1 - 1 - 1 - 1 - 1 - 1 -

E(level) [†]	Jπ‡	XREF	Comments
3078.5 5	2+,3+	D GH J	XREF: $J(3076)$.
3084 6	(2 ⁺ to 5 ⁺)	C GH J	J^{π} : L=0 (d,t). XREF: G(3086). J^{π} : L(d,t)=2+4. Probable feeding of 4 ⁺ .
3092 <i>6</i> 3094 <i>5</i>	$(2^+,3^+)$	J H	J^{π} : L(d,t)=0+2.
	-		III
3097.8 5	1,2	CD G	J^{π} : γ to 0 ⁺ g.s., log ft =7.8 from 2 ⁺ .
3105.0 4	4+	C G J N	XREF: J(3102). J^{π} : log $ft=5.4$ from 5 ⁺ , M1 γ to 4 ⁺ , γ to 2 ⁺ state.
3112.8 6	5+,6+	C N	
3113.3 6			J^{π} : log $ft=7.3$ from 2^{+} .
	(1,2,3)		$J = \log \mu - 1.5 \text{ from } 2$.
3115.6 5	(1)		
3116.5 5	$1,2^{(+)}$	D j	J^{π} : γ to 0^{+} g.s., $\log ft = 7.8$ from 2^{+} .
3136.9 <i>4</i>	4 ⁺	C GH J	XREF: J(3134).
			J^{π} : log $ft=5.7$ from 5^+ parent, ang. distribution in (p,p') .
3151.8 <mark>&</mark> 2	8-	E	J^{π} : from 251 $\gamma(\theta)$, linear pol, $\Delta J=2 E2 \gamma$ to 6 ⁻ .
3157.9 4	4+	C H N	
3179.3 4	-	G	this is a second business and this is a second with the second with the second
3187 5	2+	Н	
3193.3 6	$(3^-,4^-)$	CD H J	XREF: J(3191).
3193.3 0	(3 ,4)	CD II J	J^{π} : log $ft=7.7$ from 5^+ and 2^+ parents.
2012 5 4	1+,2+,3+	D 11	
3213.5 4	1,2,3	D H	XREF: H(3210).
#			J^{π} : log ft =5.6 from 2 ⁺ .
3220.7 [#] 2	8+	EF M	
3224 5	2+	H	
3230 5	6 ⁺	H	
3253 5	2+	H	
3271 5	6 ⁺	Н	
3280.5 6	4+	C GH	J^{π} : log ft=7.3 from 5 ⁺ parent, not fed from 2 ⁺ parent ang. distribution in (p,p').
3285.4 6	4+	D H	XREF: H(3285).
			J^{π} : log ft=5.7 from 2 ⁺ , ang. distribution in (p,p').
3309.6 5	4,5,6	C	J^{π} : log ft =6 from 5 ⁺ ; not fed from 2 ⁺ parent.
3321 5	2+	H	
3333.8 <i>4</i>	$(3^-,4^-)$	CD H	J^{π} : fed from 5 ⁺ and 2 ⁺ parent.
3349 5	2+	Н	•
3362 5	4+	Н	J^{π} : ang. distribution in (p,p') .
3368.1 [@] 2	9-	E	J^{π} : 380 $\gamma(\theta)$, linear pol., $\Delta J=2$ E2 γ to 7 ⁻ .
3376 <i>5</i>	6 ⁺	Н	5 . 500/(0), illient poil, 25-2 22 / to / .
3381 5	2+	H	
	1+,2+,3+		I^{π} , log f_{-} 5 2 from 2 ⁺
3408.0 4	1',2',3' 2+	D	J^{π} : log $ft=5.3$ from 2^+ .
3417 3	_	Н	I_{A}^{T} , 201, (0)
3421.8 5	(8 ⁺)	E	J^{π} : $201\gamma(\theta)$.
3432 5	3-	H	
3447	.= 1.	Н	
3461 5	(2^{+})	H	
3474.4 5	4+	D H	J^{π} : log ft =6.0 from 2^+ , ang. distribution in (p,p') .
3501.8 5	(9-)	E	J^{π} : 216 $\gamma(\theta)$.
3515 5		H	
3522 5	2+	H	
3556 <i>5</i>	(5^{-})	Н	
3578 <i>5</i>		H	
3590.2 5		C	
3602 5	2+	СН	
3622 <i>5</i>	(2^{+})	Н	
3647 <i>5</i>	2+	D H	
3047 3	۷	ν п	

¹⁰⁴Pd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF		Comments
3666 <i>5</i>	4+	Н		J^{π} : ang. distribution in (p,p') .
3704 5		Н		
3726 5	(4^{+})	H		J^{π} : ang. distribution in (p,p') .
3738 5	4+	H		J^{π} : ang. distribution in (p,p') .
3744 5	(5^{-})	H		
3758 5	2+	H		
3769.5 ^{&} 5	10-	E		
3787 5	4+	H		J^{π} : ang. distribution in (p,p') .
3833 5	2+	H		
3849 5	2+	Н		
3873 5	(2 ⁺)	H		
3903 <i>5</i>	(3^{-})	Н		
3934 <i>5</i> 3959 <i>5</i>	4 ⁺ 3 ⁻	H H		J^{π} : ang. distribution in (p,p') .
4009.2 5	3 1 ⁺ ,2 ⁺ ,3 ⁺	D H		J^{π} : log $ft=4.9$ from 2^{+} .
4023.1 ^a 3	10+		M	$J : \log Ji = 4.2 \text{ from } 2$.
4029.7 5	1+,2+,3+	D		J^{π} : log $ft=5.3$ from 2^+ parent.
4047.9 [@] 3	11-	E		J^{π} : E2 γ to 9 ⁻ .
4202.4 4	(11-)	E		J^{π} : $701\gamma(\theta)$.
4635.0 ^a 3	12+		M	J^{π} : E2 γ to 10 ⁺ .
4648.5 ^{&} 3	12-	E		J^{π} : E2 γ to 10^{-} .
4963.1 [@] 3	13-	E		J^{π} : E2 γ to 11 ⁻ .
5432.1 ^a 3	14 ⁺		M	J^{π} : E2 γ to 12 ⁺ .
5681.2 ^{&} 4	14-	E		J^{π} : E2 γ to 12 ⁻ .
6021.8 [@] 4	15 ⁻	E		J^{π} : E2 γ to 13 ⁻ .
6358.3 ^a 6	16 ⁺	E	M	J^{π} : E2 γ to 14 ⁺ .
7422.4 <mark>a</mark> 6	18 ⁺		M	J^{π} : E2 γ to 16 ⁺ .
8616	(20^{+})		M	J_{\perp}^{π} : γ to 18^{+} .
9873	(22^{+})		M	J^{π} : γ to (20^+) .
11237	(24^{+})		M	J^{π} : γ to (22^+) .
12707 x ^c	(26^{+})		M	J^{π} : γ to (24^+) .
$1263 + x^{b}$	(24) (26)		M M	J^{π} : γ to (22). J^{π} : γ to (24).
				·
2644+xb	(28)		M	J^{π} : γ to (26).
$4155 + x^{b}$	(30)		M	J^{π} : γ to (28).
5793+x ^b	(32)		M	J^{π} : γ to (30).
7556+x ^b	(34)		M	J^{π} : γ to (32).
9475+x ^b	(36)		M	J^{π} : γ to (34).
11554+x b	(38)		M	J^{π} : γ to (36).

 $^{^{\}dagger}$ Level energy from least-squares adjustment.

[‡] Unless indicated otherwise, J^{π} are based upon, $\gamma(\theta)$, linear polarization, $\gamma\gamma(\theta)$ from oriented nuclei. Members of $\Delta J=2$ sequences are connected by stretched E2.

Band(A): ΔJ=2 sequence. up to 8⁺ built on g.s., see 1976Gr12.

@ Band(B): ΔJ=2 sequence. up to 15⁻ built on 9⁻, see 1976Gr12.

[&]amp; Band(C): $\Delta J=2$ sequence. up to 14⁻ built on 8⁻ level, see 1976Gr12.

^a Band(D): $\Delta J=2$ sequence. up to 18^+ built on 10^+ level, see 1976Gr12.

^b Band(E): Superdeformed ΔJ=2 band built on a (24) level, see 1988Ma38.

 $^{^{}c}$ x >9873.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\alpha^{\#}$	Comments
555.81	2+	555.796 23	100	$0.0 0^{+}$	E2		0.0045	B(E2)(W.u.)=36.9 19
1323.59	4+	767.72 8	100	555.81 2 ⁺	E2		0.0019	B(E2)(W.u.)=49 7
1333.59	0^{+}	777.8 1	100	555.81 2+	E2			B(E2)(W.u.)=13.2 13
		1333.6 <i>I</i>		$0.0 0^{+}$	E0			Mult.: $\rho^2 = 4.7 \times 10^{-3} \ 14 \ (1986 \text{Lu} 06)$.
1341.68	2+	785.86 <i>3</i>	100 6	555.81 2+	E2			B(E2)(W.u.)=21.8 17
								δ : -4.8 42.
		1341.69 <i>4</i>	86 <i>5</i>	$0.0 0^{+}$	E2			B(E2)(W.u.)=1.29 10
1792.86	0^{+}	451.15 22	9.4 9	1341.68 2+				
		1237.2 <i>1</i>	100 6	555.81 2+	(E2)			B(E2)(W.u.)>25
1794.3	2+	460.5 4	4 1	1333.59 0+	,			I_{γ} : $I_{\gamma}=16$ in ¹⁰⁴ Rh β^{-} decay (4.34 min).
177.10	-	1238.0 <i>I</i>	100 6	555.81 2+	M1			B(M1)(W.u.)>0.0073
		1794.0 <i>4</i>	10 <i>I</i>	$0.0 0^{+}$	(E2)			B(E2)(W.u.)>0.066
1820.65	3 ⁺	479.1 <i>I</i>	24 4	1341.68 2+	M1,E2			()(),
		497.8 6	77 8	1323.59 4+	,			I_{γ} : Iγ from ¹⁰⁴ Rh β ⁻ decay, Iγ=11 from ¹⁰⁴ Ag ε decay.
		1265.03 7	100 10	555.81 2+	M1+E2	0.23 7		1y, 1, 11om 1mp avous, 1, 11 from 11g o acoust
1941.2		617.0 10	100	1323.59 4+		0.20 /		
1999.1	(1,2)	1999.1 5	100	0.0 0+				
2082.38	4+	740.67 <i>4</i>	95 5	1341.68 2+	E2			B(E2)(W.u.)=25 25
		758.76 <i>5</i>	100 5	1323.59 4+	M1+E2	-0.84 24		B(M1)(W.u.)=0.009 9; B(E2)(W.u.)=10 10
		1526.58 5	85 8	555.81 2 ⁺	E2			B(E2)(W.u.)=0.6 6
2125.5		332.6 2	100	1792.86 0 ⁺				
2138.7	0^{+}	1583.0 2	100	555.81 2 ⁺				
2178.5		1622.8 2	100	555.81 2+				
2181.56	4+	839.7 2	12 3	1341.68 2 ⁺				
		857.9 <i>1</i>	100 10	1323.59 4+	M1+E2	0.45 30		
		1625.8 <i>1</i>	50 5	555.81 2 ⁺	E2			
2193.4	(4^{+})	1637.5 5	100	555.81 2 ⁺				
2244.9	2+	902.4 6	10 2	1341.68 2 ⁺				
		1689.0 2	100 10	555.81 2+				
2249.5	6+	926.2 <i>1</i>	100	1323.59 4+	E2			
2265.31	4+	183.2 <i>3</i>	2 1	2082.38 4+				
		444.5 2	7 2	1820.65 3 ⁺	M1,E2			
		923.3 5	28 3	1341.68 2+				
		941.7 <i>1</i>	100	1323.59 4+	M1+E2	-0.64 14		
		1708.0 5	4 1	555.81 2 ⁺				I_{γ} : from ¹⁰⁴ Ag ε decay $I_{\gamma}=1$ from ¹⁰⁴ Rh β^- decay.
2276.5	$1^+, 2^+$	934.6 2	19 2	1341.68 2 ⁺				,
		1720.8 4	70 7	555.81 2+	(M1)			
		2276.7 4	100 8	$0.0 0^{+}$				
2298.9	4-	116.3 2	70 10	2181.56 4+				
		215.6 <i>3</i>	95 <i>3</i>	$2082.38 4^{+}$				
		974.2 2	100 20	1323.59 4+	E1(+M2)	0.5 6		

S

$\gamma(\frac{104}{\text{Pd}})$ (continued)

$E_i(level)$	\mathbf{J}_i^π	E_{γ}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α#	Comments
2298.9	4-	1743.5 5		555.81 2+				E_{γ} : not seen in 94 Zr(13 C, 3 n γ).
2337.9	1+,2+	996.1 3	24 3	1341.68 2+				2y not seen in 21(0,011/).
2007.5	- ,-	1781.8 5	100 21	555.81 2+				
		2338.3 4	44 8	0.0 0+				
2351.6		1028.1 9	100	1323.59 4+				
2444.5	$4^+,5^+,6^+$	179.3 <i>3</i>	2	2265.31 4+				
	, ,- ,-	263.2 2	40 5	2181.56 4+	E2		0.0465	
		362.3 2	50 10	2082.38 4+	M1,E2			
		623.2 2	100 18	1820.65 3 ⁺	,			
		1120.5 4	33 4	1323.59 4+				
		1889.9 <i>10</i>	30 5	555.81 2 ⁺				
2456.6	(1,2,3)	1133.1 4	90 10	1323.59 4+				
	. , , ,	1900.9 5	100 10	555.81 2 ⁺				
2465		1132.1 3	100 10	1333.59 0+				
		1909.8 <i>10</i>	21 8	555.81 2 ⁺				
2479.0	1,2	1923.8 5	100	555.81 2+				
		2478.3 5	100	$0.0 0^{+}$				
2491.4	5-	193.4 2	13 2	2298.9 4-	M1		0.063	
		309.7 <i>3</i>	8 3	2181.56 4+				
		409.0 2	3.5 <i>3</i>	2082.38 4+				
		1167.8 <i>1</i>	100 5	1323.59 4+	E1			
2492.0		1936.1 <i>5</i>	100	555.81 2+				
2521.4	2+	1179.3 2	100 10	1341.68 2+				
		1965.6 <i>5</i>	33 7	555.81 2 ⁺				
2533.4	$(2,3)^+$	1191.5 <i>4</i>	21 6	1341.68 2+				
		1977.5 <i>4</i>	100 10	555.81 2 ⁺				
2570.3	4+	1247.1 5	100 20	1323.59 4+	(M1)			
2572.5		1230.7 2	100 19	1341.68 2+				
		2016.9 <i>3</i>	81 <i>10</i>	555.81 2 ⁺				
2613.4	$2^{+},3^{+}$	1271.7		1341.68 2+				E_{γ} : seen only in $^{104}Pd(n,n'\gamma)$.
		2613.4 5		$0.0 0^{+}$				E_{γ} : seen only in 104 Ag ε decay.
2622.2	(1,2,3)	1297.8 <i>3</i>	100	1323.59 4+				
2626.9	$(1,2^+)$	2070.0 <i>3</i>		555.81 2 ⁺				E_{γ} : seen only in ${}^{104}\text{Pd}(n,n'\gamma)$.
		2626.9 <i>4</i>		$0.0 0^{+}$				E_{γ} : seen only in 104 Ag ε decay.
2642.6	4+	1300.0 8	33 10	1341.68 2+				, , , , , , , , , , , , , , , , , , , ,
		1318.2 <i>3</i>	100 10	1323.59 4+				
		2086.8 5		555.81 2 ⁺				E_{γ} : seen only in 104 Ag ε decay.
2667.7	5-	1344.1 2	100	1323.59 4+	E1+M2	-0.06 5		, , , , , , , , , , , , , , , , , , , ,
2677.8	4+	1354.3 <i>3</i>	100	1323.59 4+				
2695.0	2+	2139.2 5	100	555.81 2 ⁺				
2714.8	(4,5,6)	1372.6 9	90 <i>30</i>	1341.68 2+				

$\gamma(\frac{104}{\text{Pd}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${\rm I}_{\gamma}^{ \ddagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
2714.8	(4,5,6)	1381.4 8	100 30	1333.59 0+			
	(, , , ,	1390.1 <i>11</i>	70 <i>30</i>	1323.59 4+			
		2158.9 5	100 30	555.81 2 ⁺			E_{γ} : seen only in ¹⁰⁴ Ag ε decay.
2760.3	(4,5,6)	1418.5 3	100	1341.68 2+			Zy, seen sing in 11g s decay.
2767.0	4+	1425.0 5	100	1341.68 2+			E_{γ} : seen only in 104 Ag ε decay.
2707.0	·	2210 6	3	555.81 2 ⁺			E _{γ} : seen only in 104 Pd(n,n' γ).
2771.5		2215.6 5	100	555.81 2 ⁺			Ly. seen only in Ta(ii,ii y).
2774.5	4+	1451.2 5	100 16	1323.59 4+			
2771.3		2218.3 5	8 5	555.81 2+			
2800.5	4+	2244.6 5	100	555.81 2 ⁺			
2866.0		1542.0	100 19	1323.59 4+			
2875.2	(4,5,6)	1551.6 7	100 15	1323.59 4+			
2900.8	6-	233.2 3	16 4	2667.7 5	M1+E2	-0.02 3	
	J	409.5 <i>1</i>	100 7	2491.4 5 ⁻	M1	0.02 3	
		602.8 2	47 3	2298.9 4	E2		
		651.0 2	42 3	2249.5 6 ⁺	E1+M2	0.18 8	
2918.3	$(1,2,3)^+$	2362.4 4	100	555.81 2 ⁺	211112	0.10 0	
2924.2	$(4,5,6)^+$	659.3 <i>3</i>	45 9	2265.31 4+			
	(1,0,0)	1600 2	100 18	1323.59 4+			
2958.9	4-,5-,6-	467.5 5	100	2491.4 5	M1+E2	0.28 5	
2960.5	$(2^+,3)$	1636.1 5	100	1323.59 4+			
2975.5	(1,2,3)	2419.6 <i>4</i>	100	555.81 2 ⁺			
2988.4	7-	320.7 <i>3</i>	4 1	2667.7 5-	E2		
		497.0 <i>1</i>	11 2	2491.4 5	E2		
		738.6 <i>1</i>	100 5	2249.5 6 ⁺	E1(+M2)	-0.042	
2993.6	4+	910.2 <i>4</i>		2082.38 4+			E_{γ} : seen only in 104 Pd(n,n' γ).
		1652.1 5	100 5	1341.68 2+			
		2437.3 5	33 <i>3</i>	555.81 2 ⁺			
3000.3		1676.6 <i>5</i>	100 20	1323.59 4+			
		3001.6 12	53 20	$0.0 0^{+}$			
3008.3	$(1,2^+)$	2452.2 7		555.81 2 ⁺			E_{γ} : seen only in $^{104}Pd(n,n'\gamma)$.
		3008.3 5	100	$0.0 0^{+}$			
3013.5		3013.5 9	100	$0.0 0^{+}$			
3020.3		1696.8 <i>6</i>	100	1323.59 4+			
3034.0	$(1,2^+)$	3034.0 5	100	$0.0 0^{+}$			
3078.5	2+,3+	2522.7 4	100	555.81 2 ⁺			
3097.8	1,2	2540.4 6	100	555.81 2+			
		3097.8 <i>5</i>	100	$0.0 0^{+}$			
3105.0	4 ⁺	1022.9 5	18 <i>3</i>	2082.38 4+	(M1)		
		1283.9 <i>4</i>	25 3	1820.65 3 ⁺			
		1763.1 5	20 6	1341.68 2 ⁺			

$E_i(level)$	\mathbf{J}_i^π	E_{γ}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}		Comments
3105.0	4+	1781.8 <i>4</i>	100 18	1323.59 4+	(M1)			
		2549.0 5	2 1	555.81 2 ⁺	, ,			
3112.8	5+,6+	863.0 <i>3</i>	100 13	2249.5 6 ⁺	(M1)			
	ŕ	1788.2 5	1 <i>1</i>	1323.59 4+				
3113.3	(1,2,3)	2557.4 5	100	555.81 2 ⁺				
3115.6	(, , ,	1792.0 5	100	1323.59 4+				
3116.5	$1,2^{(+)}$	3116.0 5	100	$0.0 0^{+}$				
3136.9	4+	955.3 <i>3</i>	60 10	2181.56 4+				
		1813.7 4	100 20	1323.59 4+				
		2582.3 10	5 5	555.81 2+				
3151.8	8-	163.4 2	31 7	2988.4 7	M1			
		250.97 10	100 5	2900.8 6	E2			
3157.9	4+	892.6 <i>3</i>	10 2	2265.31 4+				
		908.0 <i>3</i>	100 12	2249.5 6+				
		1075.3 <i>3</i>	48 8	2082.38 4+	(M1,E2)			
		1835.0 <i>5</i>	2 1	1323.59 4+				
3179.3		2623.6 4	100	555.81 2 ⁺				
3193.3	$(3^-,4^-)$	1869.7 <i>5</i>	100	1323.59 4+				
3213.5	1+,2+,3+	2657.5 5	22 <i>3</i>	555.81 2 ⁺				
		3213.6 5	100 13	$0.0 0^{+}$				
3220.7	8+	970.7 <i>1</i>	100	2249.5 6+	E2			
3280.5	4+	1956.9 <i>5</i>		1323.59 4+			E_{γ} : seen only in ¹⁰⁴ Ag ε decay.	
		2726.1 11	100 33	555.81 2 ⁺			, , ,	
		3281.3 <i>11</i>	78 22	$0.0 0^{+}$				
3285.4	4 ⁺	2729.5 5	100	555.81 2 ⁺				
3309.6	4,5,6	1986.0 <i>4</i>	100	1323.59 4+				
3333.8	$(3^-,4^-)$	1992.0 5	100	1341.68 2+				
		2777.9 5	30	555.81 2+				
3368.1	9-	216.3 <i>3</i>	15 2	3151.8 8-	M1+E2			
		379.7 <i>1</i>	100	2988.4 7-	E2			
3408.0	$1^+, 2^+, 3^+$	2065.9 5	16 <i>3</i>	1341.68 2+				
		2852.5 5	22 <i>3</i>	555.81 2+				
		3407.8 <i>5</i>	100	$0.0 0^{+}$				
3421.8	(8^{+})	201.1 2	33 <i>3</i>	3220.7 8+	M1+E2	-0.15 15		
		1172.0 2	100 5	2249.5 6 ⁺	E2			
3474.4	4+	2918.8 5	100 20	555.81 2+				
		3473.9 <i>5</i>	55 <i>5</i>	$0.0 0^{+}$				
3501.8	(9-)	350.0 2	100	3151.8 8	M1+E2	0.22 3		
3590.2		2266.6 <i>5</i>	100	1323.59 4+				
3769.5	10-	401.4 2	12 2	3368.1 9	M1+E2	-1.05		
		617.7 <i>1</i>	100 5	3151.8 8-	E2			

γ (104Pd) (continued)

$E_i(level)$	J_i^{π}	E_{γ}	${ m I}_{\gamma}^{\ \ \sharp}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^{π}	Mult. [†]
4009.2	1+,2+,3+	1382.4 <i>3</i>	100	2626.9	$(1,2^+)$		6358.3	16 ⁺	926.2 4	100	5432.1	14+	
		4009.0 5	3	0.0	0^{+}		7422.4	18 ⁺	1064.2 2	100	6358.3	16 ⁺	E2
4023.1	10 ⁺	601.3 2	17 2	3421.8	(8^{+})	E2	8616	(20^+)	1194	100	7422.4	18 ⁺	
		802.5 <i>1</i>	100 5	3220.7	8+	E2	9873	(22^{+})	1257	100	8616	(20^+)	
4029.7	$1^+, 2^+, 3^+$	2705.3 5	100	1323.59	4 ⁺		11237	(24^{+})	1364	100	9873	(22^{+})	
4047.9	11-	679.8 <i>1</i>	100	3368.1	9-	E2	12707	(26^+)	1470	100	11237	(24^{+})	
4202.4	(11^{-})	700.6 2	100	3501.8	(9^{-})		1263+x	(26)	1263	100	X	(24)	
4635.0	12+	611.9 <i>1</i>	100	4023.1	10 ⁺	E2	2644+x	(28)	1381	100	1263 + x	(26)	
4648.5	12-	879.0 <i>1</i>	100	3769.5	10-	E2	4155+x	(30)	1511	100	2644 + x	(28)	
4963.1	13-	915.3 <i>1</i>	100	4047.9	11-	E2	5793+x	(32)	1638	100	4155 + x	(30)	
5432.1	14 ⁺	797.0 <i>1</i>	100	4635.0	12 ⁺	E2	7556+x	(34)	1763	100	5793 + x	(32)	
5681.2	14-	1032.7 2	100	4648.5	12-	E2	9475+x	(36)	1919	100	7556 + x	(34)	
6021.8	15-	1058.7 2	100	4963.1	13-	E2	11554+x	(38)	2079	100	9475 + x	(36)	

 $^{^{\}dagger}$ From $\gamma(\theta)$ and linear polarization in ^{94}Zr ($^{13}C, 3n\gamma),$ and $\alpha(K)exp$ in (p,p' $\gamma).$

9

[‡] Relative photon branching from each level.

‡ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

 $^{104}_{\ 46}\mathrm{Pd}_{58}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Band(E): Superdeformed ΔJ =2 band built on a (24) level, see 1988Ma38

Band(D): $\Delta J=2$ sequence

 6^+

 2^+

2249.5

1323.59

555.81 0.0

768

 $^{104}_{\ 46}\mathrm{Pd}_{58}$

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. De Frenne and A. Negret	NDS 109, 943 (2008)	1-May-2007

 $Q(\beta^{-})=-2965\ 3$; $S(n)=9561.0\ 3$; $S(p)=9345.8\ 24$; $Q(\alpha)=-3229.4\ 16$ 2012Wa38

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=-2965\ 3;\ S(n)=9561.0\ 3;\ S(p)=9345.8\ 25;\ Q(\alpha)=-3229\ 4$ 2003Au03

¹⁰⁶Pd Levels

Cross Reference (XREF) Flags

Α	106 Rh β^{-} decay (30.07 s)	I	105 Pd(n, γ) E=res: av	Q	106 Pd(p,p' γ)
В	106 Rh β^- decay (131 min)	J	105 Pd(n, γ) E=2 keV res	R	$^{106}\mathrm{Pd}(\alpha,\alpha')$
C	106 Ag ε decay (23.96 min)	K	105 Pd(n, γ) E=24 keV res	S	Coulomb excitation
D	106 Ag ε decay (8.28 d)	L	$^{105}\text{Pd}(d,p)$	T	$^{108}\text{Pd}(p,t)$
E	96 Zr(13 C, 3 n γ)	M	106 Pd (γ, γ')	U	109 Ag(p, α)
F	104 Ru(α ,2n γ)	N	106 Pd(e,e')	V	106 Cd 2β + decay
G	105 Pd(n, γ),(n,e) E=thermal	0	106 Pd(n,n' γ)		
H	105 Pd(n, γ) E=resonance	P	$^{106}\text{Pd}(p,p'),(d,d')$		

E(level)	J^π	T _{1/2}	XREF	Comments
0.0^a 511.850 a 23	0 ⁺ 2 ⁺	stable 12.2 ps 4	ABCDEFGHIJKLMNOP RSTUV ABCDEFGHIJKLMNOP RSTUV	rms charge radius: 4.5322 fm 28 (2004An14). μ = 0.74 3 Q=-0.51 7 T _{1/2} : from B(E2)=0.670 <i>19</i> in Coul. ex. Others: 13.6 ps <i>44</i>
				via (γ, γ') (1977Ga06) 14.3 ps 4 from (e, ε') (1991We15). μ : Other: +0.80 4 (1989Ra17). J^{π} : L(p,t)=2. Q: Deduced from (e, e') E=183,250 MeV (1973Ho05). Others:
440000				-0.56 8 or -0.41 and -0.51 7 (1989Ra17).
1128.02 3	2+	3.12 ps 25	ABCDEFGHIJKL NOP RSTUV	μ =+0.58 9 T _{1/2} : from B(E2)=0.0175 <i>13</i> in Coul. ex. with branching
				$(1128\gamma)=35.2\%$ 6.
				J^{π} : from E2 to g.s.
1133.76 <i>4</i>	0^{+}	5 0 mg 12	A C GH JK O RST V	μ: Other: +0.60 12 (1989Ra17).
1133.70 4	U	5.8 ps <i>13</i>	A C GH JK U KSI V	J^{π} : from E0 to g.s. B(E2)[2+(511 keV) to 0+(1133 keV)]=0.021 4: weighted
				average of 0.0184 (1969Ro05) and 0.026 5(1995Sv01) in
				Coul. ex.
1220			Ū	$T_{1/2}$: from B(E2)[2+(511 keV) to 0+(1133 keV)]=0.021 4.
1229.30 ^a 4	4+	1.31 ps 18	ABCDEFGHIJKL NOP RST	$T_{1/2}$: from B(E2)[2 ⁺ (511 keV) to 4+(1229 keV)]=0.38 3.
				B(E2)[2 ⁺ (511 keV) to 4+(1229 keV)]=0.38 3 weighted
				average of B(E2)[2 ⁺ (511 keV) to 4+(1229 keV)]=0.39 5 (1969Ro05) and 0.38 4 (1995Sv01). Other: 0.51 9
				(1962Ec03).
1777 (0.1	2+			J^{π} : L(p,t)=4.
1557.68 <i>4</i> 1562.25 <i>3</i>	3 ⁺ 2 ⁺		AB DEFGHIJK O A CD FGHIJKL OP TU	J^{π} : from M1+E2 to 2 ⁺ state. E1 from 4 ⁻ .
1700	2.		A CD FGHIJKL OP TU U	J^{π} : L(p,t)=2 [E2].
1706.44 5	0_{+}	2.8 ps 5	A C G IJK OP T	J^{π} : $L(p,t)=0$.
				$T_{1/2}$: From measured B(E2)(W.u.)=2.4 +0.4-0.3 and adopted
1904.21 9	2-,3-		G	branching for 1196 γ in Coul. ex. (1995Sv01). J^{π} : from E1 347.14 γ to 3 ⁺ and 1158 γ to 2 ⁺ .
1909.37 [#] 16	2+,3		A C GHIJKL OP T	J^{π} : L(p,p')=2.
-, -, -, 10	_		== = =================================	· - (L)L /

E(level)	J^π	$T_{1/2}$	XREF	Comments
1920			U	
1932.32 6	4+	1.16 ps <i>16</i>	B DEFGHIJKL NOP T	J^{π} : L(p,p')=4. $T_{1/2}$: From measured B(E2)(W.u.)=35 +5-4 and adopted branching for 804 γ in Coul. ex. (1995Sv01).
2001.48 <i>5</i> 2076.69 <i>4</i>	0 ⁺ 4 ⁺		A C GHIJK OP T F HI O	J^{π} : L(p,t)=0. J^{π} : J=4 from (848 γ)(717 γ)(θ) and J^{π} =(4) ⁺ from av res n
2077.01 ^a 6	6+	0.49 ps 5	B DEFG JK	capture. J^{π} : E2 to 4 ⁺ . J=6 from strong E2 in cascade to g.s. $T_{1/2}$: From measured B(E2)(W.u.)=89 +10-13 and adopted branching for 848y in Coul. ex. (1995Sv01) via (13 C,3ny) and (847 γ)(θ).
2083.92 5	3-	1.2 ps <i>3</i>	B DEFGHIJKL OP RST	$T_{1/2}$: from B(E3)=0.128 <i>19</i> (1969Ro05) and adopted gamma branching. J^{π} : E1 to 2 ⁺ . J=3 from (1572γ)(512γ)(θ), 1572γ(θ), J=2 ⁻ ,3 ⁻ from av res n capture.
2229.20 21	a.+		EF	***
2242.48 <i>5</i> 2278.11 <i>9</i>	2 ⁺ 0 ⁺		A C GHIJKL OP TU A C G JK O	J^{π} : L=2 (p,t), L=0 (d,p). J^{π} : E2 to 1128(J^{π} =2 ⁺) level. J=0 from (1766γ)(512γ)(θ), (1150γ)(1128γ)(θ).
2283.05 5	4+		D GHIJKL OP R T	J^{π} : L(p,t)=4.
2305.62 5	4-	2.0 ns 5	B DEFGHIJK O T	$T_{1/2}$: from $\alpha \gamma(t)$ in 104 Ru(α ,2n γ). J^{π} : E1 to 4 ⁺ , M1+E2 to 3 ⁻ . J=4 from (748 γ)(1046 γ)(θ); 222 $\gamma(\theta)$.
2308.82 5	2+		A C GHIJKL O U	J^{π} : L=2(+0)(d,p); J=2 from $(1797\gamma)(512\gamma)(\theta)$, $(1181\gamma)(1128\gamma)(\theta)$.
2350.86 <i>5</i> 2366.01 <i>5</i>	4 ⁺ 5 ⁺		B D FG IJKL O T DEFGH JK O	J^{π} : J=4 from L(p,t)=4. J^{π} : π =+ from M1+E2 to 3 ⁺ state. J=5 from av res data.
2397.41 25	(5)		DE G L PR TU	J^{π} : π =- from E1+M2 to 4 ⁺ . L=(5)(p,t). May be unresolved doublet with 2398 keV level in (p,t).
2400.84 [†] 25 2439.10 7	2 ⁻ ,3 ⁻ 2 ⁺		GHIJK O A C G IJKL O T	J^{π} : from av res n capture. J^{π} : $L(p,t)=2$.
2472.26 [#] 10	$1^+, 2^+$		GILO	J^{π} : L=2 (d,p); γ to 0 ⁺ .
2484.66 20	(1^{-})		A GHIJK O	J^{π} : 1 ⁻ ,4 ⁻ from av res n capture.
2495 <i>1</i>	1 ⁻ 2 ⁺		P R	J^{π} : from L(p,p')=1. J^{π} : from L=2 (p,t), L=0+2 (d,p) but observed states are very
2500 <i>4</i> 2500.31 <i>8</i>	2-		A G TU	probably unresolved multiplets. J^{π} : E1+M2 to 2 ⁺ . J from (1989 γ)(512 γ)(θ).
2578.56 [#] 24	(5 ⁻)		DEFGHI L OP TU	J^{π} : L(p,p')=5. 1,4 ⁻ from av res. γ to 4 ⁺ eliminates J=1. In contradiction with L(d,p)=0+2 for unresolved doublet at 2578 keV. L(p,p') eliminates also J^{π} =4 ⁻ .
2591.6 [#] 4	$(2,3)^+$		HI L O	J^{π} : for L(d,p)=0+2 for unresolved doublet at 2592 keV. J^{π} =2,3+ from av res n capture.
2624.40 5	0+		A C G O	J ^π : J=0 from $(1062\gamma)(1050\gamma)(\theta)$, $(2113\gamma)(512\gamma)(\theta)$ π =+ from log ft =5.76 from ¹⁰⁶ Rh $(J^{\pi}$ =1+) β ⁻ decay.
2626.84 9	(2,3)+		G I L	J^{π} : L=2 (d,p). J=(2,3) ⁺ from av res. Discrepancies exist for branching ratios of the 2626 and 3054 keV levels in (n,γ) and $(n,n'\gamma)$ reactions due to unresolved doublet of 1498 γ deexciting both levels.
2648.9 [#] 5	4+		I L OPRT	J^{π} : $L(p,p')=4$.
2699.37 [@] 15	(6)-	0.5 ns 1	EF L	$T_{1/2}$: from $\alpha \gamma(t)$ in 104 Ru(α ,2n γ). J^{π} : $\Delta J(301.99,M1+E2)=-1$.
2705.30 8	$(1)^{+}$		A C I O	J^{π} : π =+ from M1+E2 to 2 ⁺ . J=(1) suggested by (2193 γ)(512 γ)(θ) and J^{π} =1,2 ⁺ from γ decay pattern.
2712 5	(4+)		P	J^{π} : L(p,p')=(4) could be unresolved doublet with 2713.6 level

E(level)	${\tt J}^\pi$	T _{1/2}	XREF				Comments
							L=2+0 for may be unresolved doublet in (d,p).
2713.89 [†] 8	2+,3+		A GI	L			J^{π} : L=2+0 (d,p) but this level could interfere with 2712 level for which L(p,p')=(4) was observed.
2717.59 <i>21</i> 2737			A	L		Т	
2741.0 [#] 5	4+		G		OP		B(E4) \uparrow =0.0113 8 XREF: P(2746). J ^{π} : L(p,p')=4.
2748.2 [#] 4 2757.06 4	2,3 ⁻ 5 ⁺	<3.6 ns	HI B D F	L	0	T R	J ^{π} : suggested from av res n capture (1971Co19). T _{1/2} : from (K x ray)(γ)(t) in ¹⁰⁶ Ag ε decay (8.28 d). J ^{π} : E2 to 3 ⁺ . J=5 from (1199 γ)(1046 γ)(θ), (1528 γ)(717 γ)(θ), (linear pol 1199 γ)(1046 γ)(θ) and γ -deexcitation pattern.
2775.9 [#] 8 2783.74 2 <i>1</i>	(4 ⁺) 2 ⁺		G A G I	L	OP	T T	J^{π} : $L(p,t)=(4)$. J^{π} : $L(p,p')=2$.
2793.67 [@] 16	(7-)		EF	L			J^{π} : suggested from $(396\gamma)(\theta)$, linear pol 396 γ data in $^{96}Zr(^{13}C.3n\gamma)$.
2820.97 9	2+		A G	L	OP		J^{π} : L=0(+2) in (d,p) for E=2815 3. L(d,p)=0 gives J^{π} =2 ⁺ ,3 ⁺ . γ to 0 ⁺ rules out 3 ⁺ .
2828.29 <i>9</i> 2847 <i>5</i>	0^+ (4^+)		A C G	L	P	T	J^{π} : π =+ from E2 to 2 ⁺ . J=0 from (2316 γ)(512 γ)(θ). L(p,p')=(4).
2850.6 [#] 5	$2^+,3^+$		G	L	0		J^{π} : from L=2+0 (d,p).
2861.4 [#] 4	(+)		GI		0		J^{π} : π =(+) suggested from av res data.
2877.92 7	0+		A C G I				J^{π} : π =+ from log ft =5.77 from ¹⁰⁶ Rh (J^{π} =1 ⁺). J=0 from (2366 γ)(512 γ)(θ).
2879 5	(1^{-})			L	P		J^{π} : $L(p,p')=(1)$.
2886.5 [#] 7	(-)		GI		0		J^{π} : π =(-) suggested from av res data.
2898.1 [#] 7 2902.48 <i>10</i>	(1 ⁻ ,4 ⁻) 2 ⁺		A G	L	0		J ^{π} : suggested from av res data. J ^{π} : L=0(+2) (d,p). J=2,3 from (2391 γ)(512 γ)(θ) but J=3 excluded by γ transition to 0 ⁺ g.s. state.
2908.7 [#] 7	(1-)		GI		OP		J^{π} : $L(p,p')=(1)$.
2917.86 8	2+		A GI	L	0	Т	J^{π} : M1+E2 to 2 ⁺ . J=2 from $(2406\gamma)(512\gamma)(\theta)$.
2930 5	4 ⁺		G		P		J^{π} : L(p,p')=4.
2936.0 [#] 6	$(2^-,3^-)$		I		0		J^{π} : suggested from av res data.
2951.84 6	5+	<2.0 ns	B D	L			$T_{1/2}$: from (K x-ray)(γ)(t) (1968We16) in ¹⁰⁶ Ag ε decay (8.28 d).
							J^{π} : E1 to 4 ⁻ . J=5 from (linear pol 1394 γ)(1046 γ)(θ).
2963.0 ^{&} 4	8+	0.33 ps 7	EF				J^{π} : E2 to 6 ⁺ . J=8 from strong E2 in cascade to g.s. in $^{96}Zr(^{13}C, 3n\gamma)$.
20(0(0 2)	2-						$T_{1/2}$: From measured B(E2)(W.u.)=107 +13-26 and adopted branching for 886 γ in Coul. ex. (1995Sv01) in (13 C,3n γ).
2968.68 21	3-		A GHI		OP	T	J^{π} : L(p,p')=3. E(level): taken from ¹⁰⁶ Rh β ⁻ decay (29.8 s).
2977.4 20	+		I	L			J^{π} : $\pi = +$ from L=4+2 (d,p).
2977.93 [@] 21	(7^{-})		E			U	J^{π} : suggested from $901\gamma(\theta)$, $\gamma\gamma(\theta)$ data in (13 C, 3 n γ).
2998.77 [@] 16	(8-)	<0.2 ns	EF				$T_{1/2}$: from $\alpha \gamma(t)$ in 104 Ru($\alpha, 2n\gamma$). J^{π} : suggested from (205,299 γ)(θ), 299 γ linear pol data and γ -decay pattern.
3026 [‡] 3	+			L			J^{π} : π =+ from L=2 (d,p).
3037.32 <i>17</i>	1,2		A G		0		J ^{π} : suggested from γ decay pattern in ¹⁰⁶ Rh β - decay (30.07 s).
3042.7 [†] 25	4 ⁺		I	L	P		$J^{\pi}: L(p,p')=4.$

3054.97 9 1+ A G I L 0 J^{π} : π =+ from log f t=5.73 from ¹⁰⁶	
$(2543\gamma)(512\gamma)(\theta)$.	$\operatorname{PRh}(J^{\pi}=1^+)$. J=1 from
3069 5 2^+ L P J^{π} : L(p,p')=2.	
$3069.9^{\#} 6$ (2,3) ⁻ G I 0 J^{π} : J^{π} =(2,3 ⁻) suggested from av re	
3083.91 18 0 A L OP J^{π} : J=0 from $(2571\gamma)(512\gamma)(\theta)$ in s).	106 Rh β^{-} decay (30.07)
3097 ‡ 3 (1 ⁻ ,2 ⁺) L E(level): weighted average of 3098 J^{π} : L=2 (d,p). L(p,p')=(1,2).	3 3 (d,p) and 3093 5 (p,p').
3120.0 [#] 10 2 ⁺ ,3 ⁺ L 0 J^{π} : L(d,p)=0+2. 3123 5 (6 ⁺) P J^{π} : from L(p,p')=(6).	
$3144^{\ddagger} 3$ $2^{+},3^{+}$ L J^{π} : L=0 (d,p).	
3161.0 5 2^+ L 0 J^{π} : L(p,p')=2.	
3163.7 3 (1,2 ⁺) A OP J^{π} : γ to 0^{+} .	
$3173.8^{\#} 6$ (2 ⁺ ,3 ⁺) G L 0 J ^{π} : L(d,p)=0+2; however, 1969Di1 doublet, γ 's to 2 ⁺ and 3 ⁺ .	4 suggest possible
3176.77 [@] 20 (8 ⁻) EF J^{π} : J=8 from Δ J(383 γ ,D+Q)=-1 in 3217 5 3 ⁻ P T J^{π} : L(p,p')=3.	$n^{96}Zr(^{13}C,3n\gamma)$. γ to 6 ⁻ .
3221.37 25 0^+ A G J^{π} : $\pi = +$ from log $ft = 5.51$ in 106 Rh	$\beta^{-} \text{ decay}(J^{\pi}=1^{+}). J=0$
from $(2710\gamma)(512\gamma)(\theta)$. 3249.9 5 2 ⁺ A P T J^{π} : $L(p,p')=2$ for E=3250 5. $L(p,t)$	
3252.0 4 2 ⁺ A J^{π} : L(p,p')=2 for E=3250 5. L(p,t))=(2) for E=3251 4.
3273.5 7 1,2 A J^{π} : γ to 0^{+} . 3275 5 J^{π} : $L(p,p')=3$.	
3289.65 $^{\textcircled{@}}$ 16 (9 ⁻) 0.2 ns 1 EF $T_{1/2}$: from $\alpha \gamma$ (t) in 104 Ru(α ,2n γ).	
J^{π} : J=9: $\Delta J(496\gamma, E2 \text{ to } 7^{-})=-2$.	
3320.5 3 0^+ A G J^{π} : π =+ from log ft =5.63 from 106	Rh β^- decay $(J^{\pi}=1^+)$.
$J=0 \text{ from } (2809\gamma)(512\gamma)(\theta).$ 3321 5 5 P J^{π} : $L(p,p')=5$.	
3359 5 $(5^-,6^+)$ P J^{π} : $L(p,p')=(5,6)$.	
3397 5 4^+ A P J^{π} : $L(p,p')=4$.	
3414 5 3^- P J^{π} : L(p,p')=3.	
3449 5 2^+ P J^{π} : L(p,p')=2.	
3461.89 $^{\textcircled{@}}$ 20 9(-) 0.25 ns 10 EF $T_{1/2}$: from $\alpha \gamma$ (t) in 104 Ru(α ,2n γ). J^{π} : J=9 from ΔJ (285 γ ,D+Q) to(8 ⁻	
$\Delta J(463\gamma,D+Q)=-1 \text{ to } (8^-) \text{ in } (^{15})$ 3490 5 2^+ P J^{π} : $L(p,p')=2$.	3 C, 3 n γ).
3490 5 2^+ P J^{π} : $L(p,p')=2$. 3532 5 (5^-) P J^{π} : $L(p,p')=(5)$.	
3533.5 [@] 4 10 ⁺ EF J^{π} : E2 to 8 ⁺ . J=10 from Δ J(570 γ ,I	E2 from this level)= -2 .
3575 5 $-$ P J^{π} : L(p,p')=5.	as from this level) 2.
3607 5 (3 ⁻) P J^{π} : L(p,p')=(3).	
3647 5 2^+ P J^{π} : $L(p,p')=2$.	(13 G 2
3654.16 20 $10^{(-)}$ EF J^{π} : from $\Delta J(65\gamma, Q) = -2$. Q to 8 ⁻ i 3708 5 J^{π} : L(p,p')=(5).	n (13 C,3n γ).
3761 5 3 P J^{π} : $L(p,p')=(3)$.	
3805 5 (3 ⁻) P J^{π} : L(p,p')=(3).	
3825 5 J^{π} : $L(p,p')=3$.	
$3874.80^{\textcircled{@}} 12 (10^{-})$ E J^{π} : suggested from (E2) to (8 ⁻) in	$(^{13}C,3n\gamma).$
3879 5 J^{π} : $L(p,p')=3$.	
3903 5 3 ⁻ P J^{π} : $L(p,p')=3$. 3938 5 2 ⁺ P J^{π} : $L(p,p')=2$.	
47	13 (2 2)
3949.1 $^{\&}$ 5 (10 ⁺) EF J^{π} : suggested from (E2) to 8 ⁺ in (3998.5 J^{π} : $L(p,p')=4$.	···C,3ny).

¹⁰⁶Pd Levels (continued)

E(level)	\mathbf{J}^{π}	XF	REF	Comments
4021.73 [@] 11 4042 5 4054 5	11 ⁽⁻⁾ 4 ⁺ 2 ⁺	EF	P P	J ^π : J=11 from ΔJ(732 γ ,Q)=-2 and Q in (¹³ C,3n γ). J ^π : L(p,p')=4. J ^π : L(p,p')=2.
4088.7 [@] <i>I</i> 4106 5 4134 5 4156 5 4193 5	12 ⁺ 4 ⁺ 3 ⁻ 3 ⁻	E	P P P	J^{π} : π =+ from E2 to 10 ⁺ . J=12 from ΔJ(555 γ ,E2)=-2 in (13 C,2n γ). J^{π} : L(p,p')=4. J^{π} : L(p,p')=3. J^{π} : L(p,p')=3.
4224 5 4259.8 [@] 4 4640.2 [@] 4 4721.8 [@] 4 4752.3 4 4893.8 [@] 3 4990.1 [@] 4 5106.6 [@] 6 5404.0 [@] 5 5895.0 [@] 6	4 ⁺ (11 ⁻) (12 ⁻) 12 ⁽⁺⁾ (12 ⁻) 14 ⁺ (13 ⁻) (12 ⁺) (14 ⁺) (16 ⁺)	E E E E E	P	J ^π : L(p,p')=4. J ^π : suggested from $(798\gamma)(\gamma)(\theta)$ in $(^{13}C,2n\gamma)$. J ^π : suggested from $(986\gamma)(\gamma)(\theta)$ in $(^{13}C,2n\gamma)$. J ^π : from ΔJ(1188 γ ,Q)=-2 to 10 ⁺ in $(^{13}C,2n\gamma)$. J ^π : Suggested from γ decay pattern in $^{96}Zr(^{13}C,3n\gamma)$. J ^π : π =+ from E2 to 12 ⁺ . J=14 from ΔJ(805 γ ,E2)=-2 to 12 ⁺ in $(^{13}C,2n\gamma)$. J ^π : suggested from 968 $\gamma(\theta)$ in $(^{13}C,2n\gamma)$. J ^π : suggested from 1018 $\gamma(\theta)$ in $(^{13}C,2n\gamma)$. J ^π : suggested from (682,1315 γ)(γ)(θ) in $(^{13}C,2n\gamma)$. J ^π : suggested from doublet(1000,1001 γ)(θ) in $(^{13}C,2n\gamma)$.

[†] From 105 Pd(n, γ). ‡ From 105 Pd(d,p).

[#] From 106 Pd(n,n' γ).

@ From 96 Zr(13 C, 3 n γ).

& From 96 Zr(13 C, 3 n γ); possible member of Δ J=2 band built on g.s.

a Band(A): Possible member of Δ J=2 band built on g.s. for more details see 1976Gr12 in 96 Zr(13 C, 3 n γ).

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}^{\prime}	Mult. b	$\delta^{\mathcal{C}}$	Comments
511.850	2+	511.842 28	100	0.0	E2		B(E2)(W.u.)=44.3 15
							BE2W=50 +7-5 from Coul. ex. (1995Sv01).
1128.02	2+	616.174 <i>24</i>	100.0 24	511.850 2	M1+E2+E0	$-9.4\ 20$	B(M1)(W.u.)=0.00022 10; B(E2)(W.u.)=44 4
							B(E2)(W.u.)=39 4 from Coul. ex. (1995Sv01).
		1128.00 <i>6</i>	54.4 8	0.0	E2		B(E2)(W.u.)=1.17 10
1122.76	0^{+}	6.1		1120.02	t [E0]		B(E2)(W.u.)=0.87 10 from Coul. ex. (1995Sv01).
1133.76	0.	6 1		1128.02 2	E2]		E_{γ} : Deduced from level scheme in Coul. ex. (1995Sv01). B(E2)(W.u.)=19 +7-3 in Coul. ex. (1995Sv01).
		621.94 3	100.0 12	511.850 2	E2		B(E2)(W.u.)=19 +7-3 III Couii. ex. (19938 vo1). B(E2)(W.u.)=35 8
		021.94 3	100.0 12	311.030 2	1.2		B(E2)(W.u.)=33.6 B(E2)(W.u.)=43 +6-9 in Coul. ex. (1995Sv01).
		1133.7 7		0.0	⊦ E0		$I(\gamma+ce)=0.057$ 6.
1229.30	4+	101 1		1128.02 2			E_{γ} : calculated from level scheme in (1995Sv01).
	•				[]		B(E2)(W.u.)=0.7 +7.2-0.3 in Coul. ex. (1995Sv01).
		717.24 6	100	511.850 2	E2		B(E2)(W.u.)=76 11
							B(E2)(W.u.)=71 7 in Coul. ex. (1995Sv01).
1557.68	3 ⁺	328.460 20	3.86 17	1229.30 4	E2(+M1)		Mult.: No δ given in 106 Rh β^- decay (131 min).
		429.64 5	44.5 12	1128.02 2		-7.98	•
		1045.83 8	100 5	511.850 2		$-3.8 \ 4$	
1562.25	2+	333 <i>1</i>		1229.30 4	ŀ		E_{γ} : Deduced by evaluators from level scheme in Coul. ex. (1995Sv01).
							B(E2)(W.u.)=5.3 +2.5-1.4 in Coul. ex. (1995Sv01).
		428.56 9	4.53 13	1133.76 0			B(E2)(W.u.)=39 4 in Coul. ex. (1995Sv01).
		434.25 21	1.30 13	1128.02 2		0.04.1	B(E2)(W.u.)=10.2 +2.2-1.5 in Coul. ex. (1995Sv01).
		1050.39 5	100.0 17	511.850 2		+0.24 1	B(E2)(W.u.)=0.52 +0.10-0.07 in Coul. ex. (1995Sv01).
1706.44	0^{+}	1562.24 <i>5</i> 578.38 <i>9</i>	10.43 <i>12</i> 15.1 <i>11</i>	0.0 0.0 $1128.02 2$			B(E2)(W.u.)=0.14 2 in Coul. ex. (1995Sv01).
1700.44	U	378.38 9	13.1 11	1128.02 2	EZ		B(E2)(W.u.)=14 3 B(E2)(W.u.)=13 +3-2 in Coul. ex. (1995Sv01).
		1194.53 <i>4</i>	100.0 7	511.850 2	+ E2		B(E2)(W.u.)=2.4 5
		1171.55 7	100.0 /	311.030 2	22		Mult.: from $\alpha(K)$ exp in (n,γ) . M1 excluded if J^{π} for the initial and final
							states are correct.
							B(E2)(W.u.)=2.4 +0.4-0.3 in Coul. ex. (1995Sv01).
1904.21	$2^{-},3^{-}$	347.14 <i>13</i>	≤198	1557.68 3	E1		Mult.: from $\alpha(K)$ exp=0.0041 10 for the 346.59+347.14 γ transitions.
							E_{ν} : No final level within 0.48 keV.
		775.75 11	100 11	1128.02 2	+		·
1909.37	2+	781.6 [#] 5	2.8 <mark>#</mark> 9	1128.02 2	-		
		1397.4 [#] 2	100.0 [#] <i>10</i>	511.850 2			
		1909.5 [#] 3	35 [#] 4	0.0 0			
1932.32	4+	374.46 <i>13</i>	2.12 28	1557.68 3			
1934.34	7	317.70 13	2.12 20	1337.00 3	WII(TE2)		

6

γ (106Pd) (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.b	δ^{c}	Comments
1932.32	4+	703.11 7	35.8 13	1229.30 4+	M1+E2	-2.30 2	B(M1)(W.u.)=0.0022 4; B(E2)(W.u.)=21 3 B(E2)(W.u.)=23 +3-2 in Coul. ex. (1995Sv01).
		804.34 13	100 4	1128.02 2+	E2		B(E2)(W.u.)=35.6 B(E2)(W.u.)=35.+5-4 in Coul. ex. (1995Sv01).
		1419.4 8	0.28 14	511.850 2 ⁺			B(E2)(W.u.)=0.007 +0.006-0.003 in Coul. ex. (1995Sv01).
2001.48	0^{+}	439.19 26	2.9 5	1562.25 2 ⁺			B(E2)(W.d.)=0.007 10.000-0.003 III Coul. Cx. (17735V01).
2001.40	U	873.48 <i>4</i>	100.0 12	1128.02 2+	E2		
		1489.60 19	0.75 13	511.850 2 ⁺	22		
		2002 1	0.75 15	$0.0 0^{+}$	E0		Mult.: from conversion data in $^{105}Pd(n,\gamma)(n,e)$.
2076.69	4+	847.270 20	100 33	1229.30 4+	E2		ividit If one conversion data in $(u,y)(u,c)$.
2070.07	7	949.52 25	12.2 22	1128.02 2+	LL		E_{γ} : No final level within 0.79 keV.
		1565.76 11	5.9 7	511.850 2 ⁺			E_{γ} : No final level within 0.49 keV.
2077.01	6+	848.0 2	100	1229.30 4+	E2		B(E2)(W.u.)=88 9
2077.01	O	010.02	100	1227.50	22		B(E2)(W.u.)=89 + 10-13 in Coul. ex. (1995Sv01).
2083.92	3-	522.30 30	1.33 27	1562.25 2+			5(22)(mai)=07 110 13 iii Coui. OA. (17750701).
2003.72	5	956.22 22	7.2 12	1128.02 2+			
		1572.35 <i>15</i>	100 8	511.850 2 ⁺	E1		$B(E1)(W.u.)=5.9\times10^{-5} 17$
		2084.0 4	0.35 7	$0.0 0^{+}$	[E3]		B(E3)(W.u.)=29 10
2229.20		999.9 2	100	1229.30 4+			B(E3)(W.u.)-27 10
2242.48	2+	680.22 8	78 14	1562.25 2 ⁺	M1,E2		Mult.: from $\alpha(K)$ exp in (n,γ) . $\alpha(K)$ exp also consistent with E1+M2 with δ =0.4.
2272.70	2	684.80 20	42.8 16	1557.68 3 ⁺	WII,L2		with the first that t
		1108.76 12	47 <i>4</i>	1133.76 0 ⁺			
		1114.48 5	100 7	1128.02 2+	M1+E2	+1.5 +3-2	
		1730.35 23	17.9 13	511.850 2 ⁺	WIITE	11.5 15 2	
		2242.46 12	15.8 7	$0.0 0^{+}$			
2278.11	0^{+}	715.90 20	29.2 12	1562.25 2 ⁺			
2270.11	Ü	1150.20 20	8.9 6	1128.02 2+	[E2]		
		1766.20 10	100.0 18	511.850 2 ⁺	E2		Mult.: from $\alpha(K)$ exp in 105 Pd $(n,\gamma)(n,e)$.
2283.05	4+	1053.77 21	100.0 15	1229.30 4+	M1,E2		Mult.: from $\alpha(K)\exp$ in $\alpha(K,\gamma)(K,\epsilon)$.
	r	1771.1 3	4.2 7	511.850 2+	1711,104		main nom a(m)onp in (ii, j).
2305.62	4-	221.701 10	32.3 11	2083.92 3	M1+E2	-0.11 2	B(M1)(W.u.)=0.00022 6; B(E2)(W.u.)=0.048 21
		228.630 20	10.2 5	2077.01 6 ⁺	111111111111111111111111111111111111111	0.11 2	E_{γ} : No final level within 0.13 keV.
		220,020 20	10.20	2077101			E1 suggested in 106 Rh β^- decay (131 min) but impossible if $J^{\pi}(2305)=4^-$ and
							$J^{\pi}(2077)=6^{+}$.
		748.44 7	100.0 26	1557.68 3 ⁺	E1		$B(E1)(W.u.)=2.5\times10^{-7}$ 7
							E_{γ} : No final level within 0.33 keV.
		1077.2 5	0.26 9	1229.30 4+			
		1178.07 <i>21</i>	0.94 13	1128.02 2+	[M2]		B(M2)(W.u.)=0.0020 6
		1794.01 27	0.18 7	511.850 2+	[M2]		$B(M2)(W.u.)=4.7\times10^{-5} 22$
2308.82	2+	751.30 20	3.9 <mark>&</mark> 8	1557.68 3 ⁺			
	-	1180.72 6	52.6 ^{&} 13	1128.02 2+	M1+E2	-0.06 12	
			100.0 15				
		1796.97 7	100.0~ 15	511.850 2 ⁺	M1+E2	+0.25 2	

$\gamma(\frac{106}{\text{Pd}})$ (continued)

					-		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.b	δ^c	Comments
2308.82	2+	2309.30 20	≤9.0&	0.0 0+			I _γ : taken from 106 Rh β^- decay using the ratio I _γ (2309 from 2309) /I _γ (1180γ+1797γ)≤0.051 8 from ε decay but taking into account the division of the I(2309γ) of the doublet of 2309γ between 2308 and 2821 levels.
2350.86	4+	418.71 28 793.30 25 1121.60 <i>18</i>	5.2 <i>10</i> 83 <i>4</i> 8.1 <i>9</i>	1932.32 4 ⁺ 1557.68 3 ⁺ 1229.30 4 ⁺	M1+E2	-7.5 15	
2366.01	5+	1222.88 <i>12</i> 1839.05 <i>10</i> 433.9 <i>4</i>	100 <i>5</i> 29 <i>4</i> 2.2 <i>9</i>	1128.02 2 ⁺ 511.850 2 ⁺ 1932.32 4 ⁺	E2 E2		
		808.37 10	100 5	1557.68 3+	(M1+E2)	+1.0 8	Mult.: deduced under the assumption $J^{\pi}(2365)=4^+$. $\gamma\gamma(\theta)$ also consistent with mult(808 γ)=E2 and $J^{\pi}(2365)=5^+$. M1 fraction impossible if $J^{\pi}(2566)=5^+$ and $J^{\pi}(1557)=3^+$.
		1136.85 <i>19</i>	5.7 7	1229.30 4+			
2397.41	(5)	1168.25 25	100	1229.30 4+	E1+M2	$-0.04\ 2$	
2400.84	2-,3-	1272.4 3	100 12	1128.02 2+			
2420 10	2+	1889.7 4	52 12	511.850 2 ⁺ 1229.30 4 ⁺			
2439.10	2.	1209.80 <i>20</i> 1305.20 <i>20</i>	2.9 <i>7</i> 8.7 <i>9</i>	1229.30 4 ⁺ 1133.76 0 ⁺			
		1927.27 10	100.0 26	511.850 2+	[M1+E2]	-0.07 + 3 - 7	
		2439.07 12	30.1 13	$0.0 0^{+}$	[E2]	0.07 12 7	
2472.26	1+,2+	471.5 [#] 2	#	2001.48 0 ⁺	. ,		
2172120	- ,-	765.67 [‡] 12	83 [‡] 8	1706.44 0 ⁺			
		1960.17 [‡] 20	100 [‡] 17	511.850 2 ⁺			
2484.66	(1^{-})	1973.5 10	20 11	511.850 2 ⁺			
2.01.00	(-)	2484.60 20	100 7	$0.0 0^{+}$			
2500.31	2^{-}	942.6 <i>4</i>	2.2 5	1557.68 3 ⁺			
		1372.30 <i>30</i>	7.9 <i>7</i>	1128.02 2+			
		1988.44 8	100.0 8	511.850 2 ⁺	E1+M2	-0.05 + 3 - 5	
2578.56	(5^{-})	1020.7 [#] 3	50 [#] 8	1557.68 3 ⁺			
		1349.5 [#] 6	100 [#] 11	1229.30 4+			
2591.6	$(2,3)^+$	659.3 [#] <i>3</i>	100 [#]	1932.32 4+			
2624.40	0+	1062.14 5	92.9 12	1562.25 2+			
		1496.33 <i>13</i>	64.5 18	1128.02 2+			
		2112.54 6	100 5	511.850 2+	[E2]		
2626.84	$(2,3)^+$	1064.60‡ 11	$12^{\ddagger a} 2$	1562.25 2 ⁺			
		1498.80 [‡] 20	$\leq 100^{\ddagger a}$	1128.02 2+			Discrepancies exist for branching ratios of the 2626 and 3054 keV levels in (n,γ) and $(n,n'\gamma)$ due to unresolved doublet of 1498 γ deexciting both levels.
		2114.95 [‡] <i>13</i>	49 [‡] <i>a</i> 7	511.850 2 ⁺			com levels.
2649.0	4 ⁺	1086.5 [#] 5	100#	1562.25 2 ⁺			
2648.9	4	1080.3" 3	100"	1302.23 21			

 ∞

$\gamma(^{106}\text{Pd})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.b	δ^{c}	Comments
2699.37	(6)	301.99 [@] 10	100 [@] 3	2397.41	(5) ⁻	M1+E2	+0.64 22	B(M1)(W.u.)=0.0010 3; B(E2)(W.u.)=3.9 21
		393.36 [@] 20	14 [@] 2		4-	E2		B(E2)(W.u.)=0.50 13
2705.30	$(1)^{+}$	702.8 10	6 4		0_{+}			
		1572.40 20	3.8 4		0+			E_{γ} : No final level within 0.68 keV.
		1577.20 <i>20</i> 2193.30 <i>10</i>	22 <i>4</i> 100 <i>6</i>	1128.02 5 511.850	2 ⁺	M1+E2	-0.17 6	
		2705.02 18	50.5 20	0.0	0+	WII+EZ	-0.17 0	
2713.89	2+,3+	1156.28 [‡] <i>12</i>	100‡ 13		3+			
2713.09	2 ,5	1484.49 [‡] 11	50 [‡] 7		4 ⁺			
		2202.07 [‡] 15	30 [‡] 5	511.850				
2717.59		1159.90 20	100		3 ⁺			
2741.0	4+	2229.5 [#] 10	51 [#] <i>13</i>	511.850				
		2740.9 [#] 5	100 [#] 28		0+			
2748.2	2,3-	2236.3# 4	100 [#]	511.850				
2757.06	5 ⁺	178.2 5	0.19 6		(5 ⁻)			
		391.039 <i>30</i>	13.3 5	2366.01	5 ⁺	E2(+M1)		$B(M1)(W.u.)>2.1\times10^{-6}$; $B(E2)(W.u.)>0.012$
								$\delta \approx -16$ from $\gamma(\theta)$ (1975Sc38) in ¹⁰⁶ Ag ε decay (8.28 d).
		406.17 <i>3</i>	47.6 11		4+	M1+E2	$-3.2\ 2$	$B(M1)(W.u.) > 1.1 \times 10^{-6}$; $B(E2)(W.u.) > 0.063$
		450.97 3	100.0 22		4-	E1		$B(E1)(W.u.)>2.8\times10^{-7}$
		474.060 30	3.31 19		4 ⁺ 4 ⁺	M1+E2 M1,E2	-4.0 +9-6	$B(M1)(W.u.)>2.0\times10^{-8}$; $B(E2)(W.u.)>0.0021$
		680.420 <i>10</i> 824.79 <i>15</i>	5.50 28 54.7 <i>14</i>		4 4 ⁺	M1,E2 M1+E2	-6.5 6	$B(M1)(W.u.)>3.5\times10^{-8}$; $B(E2)(W.u.)>0.0023$
		1199.39 10	40.0 19		3 ⁺	E2	-0.5 0	B(E2)(W.u.)>0.00026
		1527.65 19	58 <i>15</i>		4 ⁺	M1+E2	-2.46 9	$B(M1)(W.u.)>4.1\times10^{-8}$; $B(E2)(W.u.)>9.7\times10^{-5}$
2775.9	(4^{+})	533.53 [‡] <i>12</i>	64 [‡] 8		2+			
		1218.26 [‡] <i>14</i>	100 [‡] <i>17</i>		3 ⁺			
		1546.64 [‡] <i>16</i>	36 [‡] 6		4 ⁺			
		2263.84 [‡] <i>17</i>	64 [‡] 11	511.850	2+			
2783.74	2+	1554.50 [‡] <i>15</i>	3.7‡ 10		4 ⁺			
		1655.66 [‡] <i>17</i>	7.3‡ 10		2+			
		2271.84 [‡] <i>15</i>	100 [‡] <i>16</i>	511.850	2+			
2793.67	(7^{-})	396.26 [@] 5	100 [@] 2		(5)	(E2)		
		717.1 [@] 4	81 [@] 5		6+	(E1)		
2820.97	2+	1258.80 20	13.3 <mark>&</mark> 19		2+	•		
		1687.40 <i>30</i>	13 ^{&} 3	1133.76	0^{+}			
		1693.20 <i>30</i>	15 & 3	1128.02	2+			
		2309.00 10	100.0 29	511.850	2+			I _γ : taken from ¹⁰⁶ Rh β [−] decay using the ratio Iγ(2309 from 2309) /Iγ(1180γ+1797γ)≤0.051 8 from ε decay but taking into account the

9

γ (106Pd) (continued)

E_i (level)	\mathbf{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^π	Mult.b	δ^c	α^d	Comments
	ı		7		<u>f</u>				division of the I(2309 γ) of the doublet of 2309 γ between 2308 and 2821 levels.
2820.97	2+	2821.10 30	28 <mark>&</mark> 1)+				
2828.29	0_{+}	1266.00 20	16.3 16		2+	F2			
2850.6	2+,3+	2316.42 9 1621.3 [#] 4	100.0 <i>9</i> 100 [#]	511.850 2 1229.30 4		E2			
2861.4	2 ,3 (⁺)	1303.4 [#] 4	100 [#] 28	1557.68 3					
2001.4	()	1631.7 [#] 6	52 [#] 12	1229.30 4					
2877.92	0^{+}	1315.70 20	14.9 9	1562.25 2		[E2]			
		2366.04 7	100.0 9	511.850 2		[E2]			
2886.5	(-)	2374.6 [#] 7	100 [#]	511.850 2					
2898.1	$(1^-,4^-)$	1668.8 [#] 7	100#	1229.30 4					
2902.48	2+	1774.5 <i>7</i> 2390.60 <i>10</i>	19 <i>3</i> 100.0 22	1128.02 2 511.850 2		(M1+E2)	-0.10 +7-10		
		2902.5 8	1.0 3	0.0 0		(MII L2)	0.10 17 10		
2908.7	(1^{-})	2396.8 [#] 7	100 [#]	511.850 2					
2917.86	2+	1355.70 30	4.4 10	1562.25 2					
		1360.20 <i>30</i> 1784.10 <i>30</i>	15.4 <i>4</i> 3.0 8	1557.68 3 1133.76 0					
		2405.96 9	100.0 28	511.850 2		M1+E2	-0.05 + 2 - 5		
		2917.90 30	6.34 28	0.0					
2936.0	$(2^-,3^-)$	2424.1 [#] 6	100#	511.850 2		1414 F0	0.10 00 10	0.061	(17) 0.061 10
2951.84	5 ⁺	195.06 <i>15</i>	19.5 20	2757.06 5		M1(+E2)	0.13 +22-13	0.061	$\alpha(K)\exp=0.061 \ 12$ $\alpha(K)(M1)=0.053, \ \alpha(K)(E2)=0.108.$
		585.97 <i>10</i> 601.17 <i>7</i>	28.2 <i>26</i> 100 <i>4</i>	2366.01 5 2350.86 4		M1(+E2) M1+E2	0.13 +22-13 -3.0 7		$B(M1)(W.u.) > 6.0 \times 10^{-7}$; $B(E2)(W.u.) > 0.021$
		646.02 5	90 4	2305.62 4		E1	-3.0 /		B(E1)(W.u.)>1.0×10 ⁻⁷
		874.81 18	20.7 27	2077.01 6		Li			<i>B(21)(W.a.)></i> 1.07.10
		1019.9 3	66 5		ļ ⁺	M1,E2			P. (TA) (TV.) . 0.0000 /
		1394.35 <i>14</i>	93 11	1557.68 3	3 '	[E2]			B(E2)(W.u.)>0.00034 E_{γ} : taken from ¹⁰⁶ Ag ε decay (8.46 d).
		1722.76 18	74 <i>14</i>	1229.30 4	ļ+	(M1+E2)	-2.5 14		E_{γ} : taken from 100 Ag ε decay (8.40 d). B(M1)(W.u.)>1.5×10 ⁻⁹ ; B(E2)(W.u.)>6.9×10 ⁻⁵
2963.0	8+	886.0 [@] 3	100	2077.01 6		E2	2.3 1 f		B(E2)(W.u.)=105 23
	J	200.0	- 00	_0,,,01	-	- -			B(E2)(W.u.)= $107 + 13 - 26$ in Coul. ex. (1995Sv01).
2968.68	3-	2456.8 2	100	511.850 2					E_{γ} : taken from 106 Rh β^- decay (29.8 s).
2977.93	(7^{-})	901.1 @ 2	100 [@]	2077.01 6		(E1)			
2998.77	(8-)	205.11 [@] 5	100 [@] 6	2793.67 (7-)	(M1+E2)	+0.21 2		B(M1)(W.u.)>0.0062; B(E2)(W.u.)>4.6 Mult.: from level scheme.
		299.39 [@] 10	96 [@] 10		6)-	(E2)			B(E2)(W.u.)>19
3037.32	1,2	1909.30 20	100 7	1128.02 2	2"				

$\gamma(\frac{106}{\text{Pd}})$ (continued)

						•	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.b	$\delta^{\mathcal{C}}$	Comments
3037.32	1,2	2525.2 <i>6</i> 3037.30 <i>30</i>	14.3 29 71.4 29	511.850 2 ⁺ 0.0 0 ⁺			
3054.97	1+	1498.80 20	100 ^{&} a 6	1557.68 3+			E_{γ} : No final level within 0.89 keV. Discrepancies exist for branching ratios of the 2626 and 3054 keV levels in (n,γ) and $(n,n'\gamma)$ due to unresolved doublet of 1498 γ deexciting both levels.
		2542.70 10	44 <mark>&a</mark> 2	511.850 2+	[M1+E2]	+0.07 7	
		3055.0 4	5 <mark>&a</mark> 1	$0.0 0^{+}$			
3069.9	$(2,3)^{-}$	2558.0 [#] 6	100#	511.850 2 ⁺			
3083.91	0	1954.6 <i>4</i> 2571.10 <i>20</i>	12.7 28 100 <i>4</i>	1128.02 2 ⁺ 511.850 2 ⁺	Q		E_{γ} : No final level within 0.78 keV.
3120.0	2+,3+	2608.1 [#] 10	100 4	511.850 2 ⁺	Q		Ly. 140 final level within 0.76 ke v.
3161.0	2+,5	1602.2 [#] <i>12</i>	23# 12	1557.68 3 ⁺			
3101.0	2	2649.3 [#] 5	100 [#] 18	511.850 2+	Q		
3163.7	$(1,2^+)$	2651.7 3	100 10	511.850 2+	Q		
	() /	3165.4 [#] <i>13</i>	#	$0.0 0^{+}$			
3173.8	$(2^+,3^+)$	1616.4 [#] 6	93 [#] 28	1557.68 3+			
	. , ,	2045.1 [#] 9	100 [#] 23	1128.02 2+			
3176.77	(8-)	199.0 [@] 3	46 [@] 8	2977.93 (7-)	(D+Q)		Mult.: no δ given in 96 Zr(13 C, 3 n γ).
	, ,	383.11 [@] 20	100 [@] 12	2793.67 (7-)	D+Q		$\delta = -0.55 \ 25 \ \gamma(\theta); \ -0.38 \ 11 \ \text{or} \ -1.5 \ 3 \ \gamma \gamma(\theta) \ \text{in} \ ^{96}\text{Zr}(^{13}\text{C},3\text{n}\gamma).$
		477.0 [@] 3	62 [@] 12	2699.37 (6)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3221.37	0^{+}	2093.3 4	9.8 22	1128.02 2+	[E2]		
2240.0	2+	2709.5 3	100 27	511.850 2+	[E2]		
3249.9 3252.0	2 ⁺ 2 ⁺	3249.8 <i>5</i> 2740.1 <i>4</i>	100 100	$0.0 0^{+}$ $511.850 2^{+}$			
3273.5	1,2	3273.4 7	100	$0.0 0^{+}$			
3289.65	(9-)	290.89 [@] 10	63 [@] 2	2998.77 (8-)	D+Q	+0.36 4	
	(-)	495.97 [@] 5	100 [@] 5	2793.67 (7 ⁻)	E2		B(E2)(W.u.)=1.9 10
3299.2		2787.3 7	100	511.850 2+			
3320.5	0_{+}	2185.7 ^e 5	35 9	1133.76 0+			$E_{\gamma}I_{\gamma}$: if $J^{\pi}=0^+$ for 3320 and 1133 level than 2185 γ is impossible.
	-()	2809.00 30	100 6	511.850 2+	[E2]		
3461.89	9(-)	285.0 [@] 5	27 [@] 9	3176.77 (8-)	D+Q	-0.9 5	
		463.03 [@] 20	64 [@] 9	2998.77 (8-)	D+Q	-0.9 5	
		484.2 [@] 3	41@9	2977.93 (7-)			
		668.1 [@] 3	100 @ 14	2793.67 (7 ⁻)			
3533.5	10+	570.47 [@] 5	100@	2963.0 8+	E2		
3654.16	$10^{(-)}$	655.40 [@] 15	100@	2998.77 (8-)	(E2)		
3874.80	(10^{-})	412.8 [@] 3	30 [@] 8	3461.89 9 ⁽⁻⁾			

[†] Unless noted otherwise, relative photon branchings from each level were calculated with least square procedures using data from 106 Rh β^- decay (29.8 s), 106 Rh β⁻ decay (130 min), 106 Ag ε decay (8.46 d) and 106 Ag ε decay (24 min) if all available, if not only available data sets used. Notify also the discrepancy between the gamma energies from 131-min 106 Rh β^- decay and the other data sets.

[‡] From 105 Pd(n, γ)(n,e).

[#] From 106 Pd(n,n' γ).

[@] From 96 Zr(13 C, 3 n $^{\gamma}$).

[&]amp; From 106 Rh β^- decay.

^a The 1498 γ is doubly placed in $(n,\gamma),(n,n'\gamma)$; however, the branchings in these data sets are not consistent if one assumes that the 2626 level is not fed in β decay. These branchings can be made consistent if part of 1498 γ intensity in β^- decay is placed from the 2626 level. The 2114 level, which also deexcites 2626 level is not seen in β^- decay, but would be masked by strong 2112.5 γ .

^b From $\alpha(K)$ exp, K:L1:L2:L3, $\gamma(\theta)$ and $\gamma\gamma(\theta)$ data.

^c From $\gamma(\theta)$, $\gamma\gamma(\theta)$ or $\gamma(\theta)$ with polarized nuclei oriented at low T.

d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Placement of transition in the level scheme is uncertain.

$\frac{\textbf{Adopted Levels, Gammas}}{\text{Legend}}$

Adopted Levels, Gammas Legend Level Scheme (continued) $\begin{array}{ll} \quad & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \quad & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \quad & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Type not specified 2820.97 2793.67 2⁺ (4⁺) 2783.74 2775.9 5+ 2757.06 <3.6 ns 2748.2 2741.0 2717.59 2⁺,3⁺ (1)⁺ 2713.89 2705.30 (6) 2699.37 0.5 ns 1 $\frac{4^+}{(2,3)^+}$ 2648.9 2626.84 0⁺ (5⁻) 2624.40 2578.56 (5) 2397.41 5⁺ 4⁺ 2366.01 2350.86 2305.62 4-2.0 ns 5 $\frac{4^{+}}{2^{+}}$ 2283.05 2242.48 2077.01 0.49 ps 5 6+ 2076.69 0^+ 2001.48 4+ 1932.32 1.16 ps 16 1562.25 1557.68 1229.30 1.31 ps 18 1133.76 5.8 ps 13 3.12 ps 25 1128.02 511.850 12.2 ps 4 2+ 0.0 stable $^{106}_{\ 46}\mathrm{Pd}_{60}$

Level Scheme (continued)
Intensities: Type not specified

Band(A): Possible member of $\Delta J=2$ band built on g.s. for more details see 1976Gr12 in $^{96}Zr(^{13}C,3n\gamma)$

$$^{106}_{\ 46}\mathrm{Pd}_{60}$$

	Hi	story	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jean Blachot	ENSDF	1-Jul-2008

 $Q(\beta^-)=-1918\ 3;\ S(n)=9223.2\ 17;\ S(p)=9949\ 12;\ Q(\alpha)=-3856\ 3$ 2012Wa38

Note: Current evaluation has used the following Q record -1922 5 9228 5 9950 12-3860 5 2003Au03.

¹⁰⁸Pd Levels

Cross Reference (XREF) Flags

Α	108 Rh β^{-} decay (16.8 s)	G	108 Pd(n,n' γ)	M	100 Mo(11 B,p2n γ)
В	108 Rh β^- decay (6.0 min)	H	108 Pd(p,p')	N	$(HI,xn\gamma)$
C	108 Ag ε decay (2.382 min)	I	108 Pd(d,d')	0	$\alpha \gamma (\mu^-, xnyp\gamma)$
D	108 Ag ε decay (438 y)	J	Coulomb excitation	P	109 Ag(d, 3 He)
E	106 Pd(t,p)	K	176 Yb(31 P,X γ)	Q	¹¹⁰ Pd(pol p,t)
F	108 Pd(e,e')	L	110 Pd(p,t)		

E(level)	J^{π} †	T _{1/2}	XREF	Comments
0#	0+	stable	ABCDEFGHIJKLMNOP	For charge distribution parameters see (e,e) (1978Ar07).
433.938# 4	2+	23.9 ps 7	ABCDEFGHI JKLMNOP	Q=-0.58 4; μ =+0.72 6 J ^{π} : L(t,p)=2. T _{1/2} : from B(E2) in Coulomb excitation. μ : from 1980Br01, 1989Ra17. Other: +0.64 6 (1985ThZY).
931.15 ^e 4	2+	6.2 ps <i>4</i>	ABC EFGHIJKLM OP	Q: from 1989Ra17. Other: $-0.70\ 27\ (1981Ko06)$. J^{π} : $\alpha, \gamma(\theta)$ in Coulomb excitation. $T_{1/2}$: weighted average of 6.8 ps 11 from B(E2) in Coulomb excitation, and 6.1 ps 4 from B(E2) in (e,e').
1048.216 [#] 6	4+	2.8 ps <i>3</i>	B D GHiJKlMNO	XREF: $i(1050)l(1050)$. J^{π} : $\gamma\gamma(\theta)$, (pol $\gamma)(\theta)$ in 438-y $^{108}Ag(\varepsilon)$. $T_{1/2}$: from B(E2) in Coulomb excitation.
1052.78 5	0+	4.0 ps <i>4</i>	A C E GHIJK1M P	XREF: i(1050)l(1050). E(level): transition not observed. Energy is from E(level) difference. J ^{\pi} : L(t,p)=0. T _{1/2} : from B(E2) in Coulomb excitation.
1314.23 6	0+	>25 ps	C GH KL P	$T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : $\gamma\gamma(\theta)$ in 2.382-min 108 Ag(ε). Excited in (p,t).
1335.25 ^f 6	3+		B GIKM	J^{π} : γ' s to 2 ⁺ . Not fed in decay of 2.382-min ¹⁰⁸ Ag, $J^{\pi}=1^+$, or 438-y ¹⁰⁸ Ag, $J^{\pi}=6^+$. Not seen in Coulomb excitation, (t,p), (p,p') or (d,d'). Analogy to ¹⁰⁴ Pd, ¹⁰⁶ Pd in (n,n' γ) (1975Go11).
1441.18 <i>4</i>	2+	4.8 ps +12-10	A C GHIJ	$T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : $\gamma\gamma(\theta)$ in 2.382-min ¹⁰⁸ Ag(ε). log ft =5.4 from 1 ⁺ .
1539.96 <i>5</i> 1624.16 ^{<i>e</i>} 21	(1 ⁺ ,2 ⁺) (4 ⁺)	1.69 ps 20	A C GH L HIJ LM	J^{π} : log ft =6.1 from 1 ⁺ . γ to 0 ⁺ , γ to (3 ⁺). $T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : multiple Coulomb excitation. Comparison with boson expansion model. γ to 2 ⁺ . Excited in (d,d'), (p,p'), (p,t).
1771.126 [#] <i>11</i>	6+	0.88 ps 10	B D G IJK MN	$T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : $\gamma\gamma(\theta)$, (pol γ)(θ) in 438-y 108 Ag(ε).
1955.8 6	4+	4.7 ps 18	E J L	J^{π} : L(t,p)=4. T _{1/2} : from B(E2) in Coulomb excitation.
1989.86 <i>12</i>	(4 ⁺)		E G	$T_{1/2}$: from B(E2) in Coulomb excitation. J^{π} : L(t,p)=(4). γ' s to $2^+,4^+$.

E(level)	J^{π} †	T _{1/2}	XREF	Comments
2015 <i>10</i> 2046.65 <i>14</i>	3-	<1 ps	E EFGHIJ L	B(E3) \uparrow =0.093 26; β_3 =0.14 1 J ^{π} : L(p,p')=3. T _{1/2} : from Doppler broadening in Coulomb excitation. B(E3) \uparrow : from in Coulomb excitation for I(1612 γ)=100%.
2083.56 ^f 12 2098.67? 24 2141 10 2218.00 11 2231.1 5	5 ⁺ (1,2 ⁺) (0 ⁺) 2 ⁺		K M G E E GH	β_3 : from (p,p'). β_3 : γ' s to $0^+,2^+$. β_3 : $L(t,p)=(0)$. β_3 : $L(t,p)=2$.
2259.01° 20 2281.21? 14 2282.43 10 2282.53 11 2324.39° 9 2362 10 2391.42 23 2397.4 4 2404.1? 3	6 ⁺ 5 ⁻ (2 ⁺) 2 ⁺ (8 ⁺)		K M G K M B GH M E H K MN E hI E Gh N	J^{π} : L(t,p)=5. J^{π} : L(t,p)=(2). J^{π} : L(t,p)=2.
2418 <i>10</i> 2421.2 <i>10</i> 2466 <i>10</i>	(6 ⁺) 4 ⁺	1.01 ps +43-10	E J E h	$T_{1/2}$, J^{π} : from B(E2) in Coulomb excitation. XREF: h(2470). J^{π} : L(t,p)=4.
2471.8 <i>5</i> 2477.57 <i>24</i>	(2 ⁺)		M Gh	XREF: $h(2470)$. J^{π} : γ' s to 0^{+} and 4^{+} .
2528.33 20 2530.22 19 2531 10	4-,5-		M M KL	J^{π} : L(d, 3 He)=4 and assumption of g9/2 pickup.
2536.1 <i>3</i> 2540.2 <i>3</i> 2548.39 [#] <i>10</i>	4 ⁺ 8 ⁺	0.44 ps 5	B H EGI JK MN	J^{π} : L(t,p)=4. T _{1/2} : from B(E2) in Coulomb excitation.
2578 <i>10</i> 2637 <i>10</i>	4 ⁺	0 po 0	E E H	J^{π} : $L(t,p)=4$.
2671.33 ^d 20 2691 10 2709.48 ^{&} 8	(5 ⁺) (5 ⁻) 6 ^{(-)‡}		E h	J^{π} : $L(t,p)=(5)$.
2709.48 ²⁶ 8 2720.0 3 2761.24 ^a 7 2790 20	2 ⁺ 7 ⁻		K M E Gh K MN H L	J^{π} : $L(t,p)=2$.
2842.03 ^c 7 2863.70 18 2888.3 4	7 ⁻ (4 ⁺ ,5 ⁺ ,6 ⁺)		K M B E K GH	J^{π} : γ' s to (4 ⁺), 4 ⁺ and 6 ⁺ . Logft=4.9 from (5 ⁺).
2918.56 ^f 23 2940 20 2953.65 ^e 19	(7 ⁺) (8 ⁺)		M HI K M	
2969 20 3050 20 3088.89 ^b 9	4 ⁻ ,5 ⁻ 8 ⁽⁻⁾		K H L K M	J^{π} : L(d, 3 He)=4 and assumption of g9/2 pickup.
3100.25 ^{&} 8 3110.7 ^d 3 3140 20	8 ^{(-)‡} (7 ⁺)		К М М Н	

¹⁰⁸Pd Levels (continued)

E(level)	$J^{\pi\dagger}$	XREF	E(level)	$J^{\pi \dagger}$	XREF
3257.01 [@] 13	10 ⁺	K MN	4492.86 <mark>&</mark> <i>16</i>	$12^{(-)}$ ‡	K M
3280.24 ^a 12	9-	K MN	4528.5 ^d 10	(11^{+})	M
3286.64 12			4642.40 [@] 19	14 ⁺	K MN
3350.89 [#] <i>14</i>	10 ⁺	MN	4684.3 ^b 5	(12^{-})	M
3420.24 ^c 15	9-	M	4710.9 <i>3</i>	(13)	M
3423.8 <i>3</i>		M	4777.7 ^a 3	(13^{-})	K MN
3727.35 ^{&} 13	$10^{(-)}$ ‡	K M	4976.60 [#] 20	14+	K MN
3748.5 ^d 3	(9^+)	M	5132.4 <i>3</i>		M
3789.7 ^e 3	(10^{+})	M	5325.8 ^{&} 3	$(14^{-})^{\ddagger}$	M
3793.69 ^b 22	$10^{(-)}$	K M	5370.9 ^d 15	(13^{+})	M
3798.31 [@] <i>17</i>	12+	K M	5608.1 4		M
3859.0 <i>3</i>		M	5632.0 ^a 3	(15^{-})	M
3963.94 ^a 16	11-	K MN	5691.91 [@] 22	16 ⁺	K MN
4120.4 3	(11)	M	6225.2 ^{&} 8	$(16^{-})^{\ddagger}$	M
4158.7 [#] 9	12 ⁺	K MN	6517.3 ^a 4	(17^{-})	M
4194.7 ^c 3	11-	M	6827.9 [@] 10	18 ⁺	MN
4377.70 <i>24</i>	(11)	M			

 $^{^{\}dagger}$ J^{π} without comments are based on band structure and decay pattern.

[‡] Tentative negative parity assignment based on systematic of even-mass isotopes of palladium.

[#] Band(A): g.s., yrast band.

[®] Band(B): 10⁺ band.

[&]amp; Band(C): $\nu h_{11/2} \otimes \nu(g_{7/2}, d_{5/2}), \alpha = 0.$

^a Band(c): ν h_{11/2}⊗ ν (g_{7/2},d_{5/2}), α=1.

^b Band(D): $vh_{11/2} \otimes v(g_{7/2}, d_{5/2}), \alpha = 0.$

^c Band(d): $vh_{11/2} \otimes v(g_{7/2}, d_{5/2}), \alpha = 1.$

^d Band(E): (5⁺) band, α =1. Tentatively based on second lowest (ν h_{11/2}) excitation.

^e Band(F): γ vibrational band, α =0.

^f Band(f): γ vibrational band, α =1.

$\gamma(^{108}\text{Pd})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^a	$I_{(\gamma+ce)}$	Comments
433.938	2+	433.937 4	100		0+	[E2]		0.0091		B(E2)(W.u.)=50.4 15
931.15	2+	497.22 7	100.0 15	433.938		M1+E2	-3.1 4	0.0061		B(M1)(W.u.)=0.0022 6; B(E2)(W.u.)=72 6 Mult.: D+Q from $\gamma\gamma(\theta)$ in Coulomb excitation. RUL. δ : from $\gamma\gamma(\theta)$ in Coulomb excitation.
		931.15 10	24.1 18		0+	[E2]				B(E2)(W.u.)=0.83 9
1048.216	4+	117#	0.0004		2+	[E2]		0.801		B(E2)(W.u.)=1.21 14
		614.276 <i>4</i>	100	433.938	21	E2				B(E2)(W.u.)=76 9
1050 50	0.1	#								Mult.: from $\gamma\gamma(\theta)$ and (pol γ)(θ) in 438-y 108 Ag(ε).
1052.78	0_{+}	122#	0.027	931.15 433.938		[E2]				B(E2)(W.u.)=47 +5-11
		618.84 <i>5</i> 1052.78	100		0+	[E2]			< 0.0068	B(E2)(W.u.)=52 5 $I_{(\gamma+ce)}$: from 1987Es01. Transition not observed.
		1032.76		U	U				<0.0008	$I_{(\gamma+ce)}$. Holl 1987ES01. Hallstroll not observed. Energy is from E(level) difference.
1314.23	0^{+}	383.2 2	20.9 21	931.15	2+	[E2]		0.0134		B(E2)(W.u.)<16
	-	880.26 7	100	433.938		[E2]				B(E2)(W.u.)<1.2
1335.25	3 ⁺	404.09 9	100 7	931.15	2+	[E2]		0.0104 10		
		901.33 9	100 5	433.938	2+	M1+E2	≤−5			δ : $\delta \le -5$ or $\delta \le 0.2$; the latter value is less likely for positive mixing ratio.
1441.18	2+	388.6 4	13 4		0_{+}	[E2]		0.0128		B(E2)(W.u.)=35 + 14-15
		393 <i>1</i>	<5	1048.216	4+	[E2]				B(E2)(W.u.)=6 +7-6
		510.1 2	20 5	931.15	2+					I _γ : estimated by evaluator from spectrum in ε decay where the insert in fig. 1 of 1973Si02 shows no evidence for a 393γ. This strongly suggests that the value of 25 +6-4 in Coulomb excitation is too large B(E2)(W.u.)=11 +4-5
		310.1 2	20 3	731.13	2					I_{γ} : average of <25 (ε decay) and >14 (Coul. ex.).
		1007.22 5	100 5	433.938	2+					B(E2)(W.u.)= $1.7 + 10-2$
		1441.14 10	25 5		0^{+}	[E2]				B(E2)(W.u.)=0.10 +3-4
										I_{γ} : weighted average of I_{γ}/I_{γ} (1007 γ) from ε decay
										and $(n,n'\gamma)$.
1520.06	(1 + 2+)	204.56.2	120.15	1005.05	2+	FF-0.1		0.110		E _{γ} : E=1441.60 <i>10</i> reported in (n,n' γ).
1539.96	$(1^+,2^+)$	204.5° 3	13.8 15		3 ⁺	[E2]		0.110		
		225.6 ^c 2 608.73 <i>13</i>	17.3 20 34 4		0 ⁺ 2 ⁺	[E2]		0.078		
		1106.01 6	34 <i>4</i> 100 <i>7</i>	433.938						
		1540.03 11	53 7		0+					I_{γ} : $I_{\gamma}(1540\gamma)/I_{\gamma}(1106\gamma)=0.64\ 9$ in 2.382-min ¹⁰⁸ Ag
		13 10.03 11	55 /	V	5					ε decay.
1624.16	(4 ⁺)	184 <i>I</i>		1441.18	2+	[E2]				B(E2)(W.u.)= $3.6 + 27 - 11$ I γ =0.0085 +64-26.
		577 <i>1</i>	22 3	1048.216	4+	[E2]				B(E2)(W.u.)=30 7
		694 <i>1</i>	100 11	931.15		[E2]				B(E2)(W.u.)=54 11
		1191 <i>I</i>	<7.8	433.938		[E2]				B(E2)(W.u.)=0.14 14

$\gamma(^{108}\text{Pd})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.	Comments
771.126	6+	722.907 10	100 2	1048.216	4+	E2	B(E2)(W.u.)=107 13
							Mult.: from $\gamma \gamma(\theta)$, (pol γ)(θ) in 438-y 108 Ag(ε).
955.8	4+	331		1624.16	(4^{+})	[E2]	B(E2)(W.u.)=1.9 +48-11
		908 <i>1</i>		1048.216	4+	[E2]	I _γ : I _γ =0.23 +58-21. B(E2)(W.u.)<1.8
							I_{γ} : I_{γ} <34.
		1025		931.15	2+	[E2]	B(E2)(W.u.)=2.9 11 I_{γ} : I_{γ} =100 +38-25.
989.86	(4^{+})	548.2 <i>3</i>	37 4	1441.18	2+		1y. 1y-100 +50-25.
,,,,,,,	(.)	655.1 <i>3</i>	27 4		3 ⁺		
		941.65 <i>15</i>	100 8	1048.216			
		1058.6 5	20 4		2+		
		1555.9 6	16 3	433.938			
0046 65	2-	998#	<24 [@]				
2046.65	3-			1048.216			
		1115 [#]	10 [@] 10		2+		
		1612.72 <i>14</i>	100	433.938			$B(E1)(W.u.) > 6.2 \times 10^{-5}$
2083.56	5 ⁺	313.1 9	17 <i>3</i>	1771.126	6+		
		748.3 <i>1</i>	100 7		3 ⁺		
2098.67?	$(1,2^+)$	1664.8 <i>4</i>	54 8	433.938			
	,	2098.6 <i>3</i>	100 12	0	0^{+}		
2218.00	2+	677.99 13	71 5		$(1^+,2^+)$		Unplaced by authors in $(n,n'\gamma)$. Placed by evaluators on the basis of energy fit.
		1164.9 9	8.1 20		0+		
		1287.7 6	13.4 22		2+		
		1784.1 2	100 10	433.938			
2231.1		1182.9 5	100	1048.216			
2259.01	6+	634.9 <i>I</i>	100 6		(4^+)		
227.01	5	1211.2 5	11 3	1048.216			
2281.21?		1350.1 2	57 5		2+		
201,21;		1847.2 2	100 11	433.938			
2282.43		511.3 <i>I</i>	100 11	1771.126			
2282.53		947.27 11	100 4		3 ⁺		
202.33		1234.2 3	20.6 20	1048.216			
2324.39	5-	1276.7 10	100	1048.216			
2391.42	2 ⁺	1460.4 3	100 11		2 ⁺		
JJ1.74	<u> </u>						
		1957.2 ^{bc} 4	61 ^b 11	433.938			
		2391.4 7	41 8		0+		
2397.4	(8^{+})	626.3 4	100	1771.126	6+		
2404.1?		1970.1 <i>3</i>	100	433.938			
2421.2	(6^{+})	797 1	100		(4^{+})	[E2]	B(E2)(W.u.)=57 +6-25
2471.8		847.6 <i>4</i>	100		(4^{+})		
2477.57	(2^{+})	1429.5 <i>3</i>	79 <i>11</i>	1048.216	1 +		

S

γ (108Pd) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\ \sharp}$	E_f	J_f^{π} Mult.	Comments
2477.57	(2^{+})	2044.4 8	33 8	433.938 2		
		2476.8 5	100 11	0 0		
2528.33		757.2 2	100	1771.126 6	+	
2530.22		205.6 2	58 9	2324.39 5		
		1482.9 <i>4</i>	100 22	1048.216 4		
2536.1		2102.2 5	100	433.938 2		
2540.2	4 ⁺	1608.5 5	43 9	931.15 2	+	
	- 1	2106.4 3	100 12	433.938 2		
2548.39	8+	777.2 1	100	1771.126 6		B(E2)(W.u.)=148 17
2671.33	(5 ⁺)	1623.1 2	100	1048.216 4		
2709.48	$6^{(-)}$	385.2 <i>1</i>	100 7	2324.39 5		
		938.2 <i>1</i>	96 8	1771.126 6		
2720.0	2+	2286.0 <i>3</i>	100	433.938 2	+	
2761.24	7-	436.8 <i>1</i>	17.3 13	2324.39 5		
		990.2 1	100 5	1771.126 6		
2842.03	7-	132.8 3	6.0 13	2709.48 6	(-)	
		1070.9 <i>1</i>	100 6	1771.126 6	+	
2863.70	$(4^+,5^+,6^+)$	327.6 & <i>3</i>	8.8 <mark>&</mark> <i>15</i>	2536.1		
		581.1 2	100 7	2282.43		
		1092.7 3	7 3	1771.126 6	+	
2888.3		1957.2 <mark>b</mark> 4	92 <mark>b</mark> 17	931.15 2	+	
		2454 <i>1</i>	100 17	433.938 2		
2918.56	(7^{+})	835.0 2	100	2083.56 5		
2953.65	(8^{+})	694.7 <i>1</i>	100	2259.01 6	+	
3088.89	8(-)	246.8 <i>1</i>	39 4	2842.03 7	_	
		327.7 1	100 7	2761.24 7	_	
3100.25	8(-)	258.3 <i>1</i>	50 4	2842.03 7	_	
		339.0 <i>1</i>	81 6	2761.24 7	_	
		390.7 <i>1</i>	100 7		(-)	
3110.7	(7^{+})	439.4 2	100		5 ⁺)	
3257.01	10+	303.4 2	2.6 4		8+)	
		708.6 <i>1</i>	100 4	2548.39 8		
3280.24	9-	519.0 <i>1</i>	100	2761.24 7	_	
3286.64		525.4 <i>1</i>	100	2761.24 7		
3350.89	10 ⁺	802.5 1	100	2548.39 8		
3420.24	9-	578.2 2	89 <i>14</i>	2842.03 7		
		659.0 2	100 16	2761.24 7		
3423.8		875.4 <i>3</i>	100	2548.39 8		
3727.35	$10^{(-)}$	627.1 <i>1</i>	100		(-)	
3748.5	(9^+)	637.8 2	100		7 ⁺)	
3789.7	(10^+)	836.3 <i>3</i>	100 <i>21</i>	2953.65 (8+)	
				`	•	

6

γ (108Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbb{E}_f	J_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
3789.7	(10^+)	1240.7 5	9.×10 ¹ 3	2548.39	8+	4710.9	(13)	912.5 2	100	3798.31	12+
3793.69	$10^{(-)}$	373.6 <i>14</i>	14 3	3420.24	9-	4777.7	(13^{-})	813.8 2	100	3963.94	11-
		704.8 2	100 10	3088.89	8(-)	4976.60	14 ⁺	818.0 <i>1</i>	100	4158.7	12+
3798.31	12 ⁺	541.3 <i>1</i>	100	3257.01	10^{+}	5132.4		973.8 2	100	4158.7	12 ⁺
3859.0		572.4 <i>3</i>	100	3286.64		5325.8	(14^{-})	832.9 2	100	4492.86	$12^{(-)}$
3963.94	11-	683.7 <i>1</i>	100	3280.24	9-	5370.9	(13^{+})	842.4 11	100	4528.5	(11^{+})
4120.4	(11)	863.4 <i>3</i>	100	3257.01	10^{+}	5608.1		897.1 <i>4</i>	$1.0 \times 10^2 \ 3$	4710.9	(13)
4158.7	12+	807.8 9	100	3350.89	10^{+}			966.1 6	$9.\times10^{1} \ 3$	4642.40	14+
4194.7	11-	774.5 2	100	3420.24	9-	5632.0	(15^{-})	854.2 2	100	4777.7	(13^{-})
4377.70	(11)	1026.8 2	100	3350.89	10 ⁺	5691.91	16 ⁺	1049.5 <i>1</i>	100	4642.40	14 ⁺
4492.86	$12^{(-)}$	765.5 <i>1</i>	100	3727.35	$10^{(-)}$	6225.2	(16^{-})	899.4 8	100	5325.8	(14^{-})
4528.5	(11^{+})	780.0 9	100	3748.5	(9^{+})	6517.3	(17^{-})	885.3 <i>3</i>	100	5632.0	(15^{-})
4642.40	14 ⁺	844.1 <i>1</i>	100	3798.31	12 ⁺	6827.9	18 ⁺	1136.0 <i>10</i>	100	5691.91	16 ⁺
4684.3	(12^{-})	890.6 <i>4</i>	100	3793.69	$10^{(-)}$						

 $^{^{\}dagger}$ Weighted average from $(n,n'\gamma)$ and all decay data sets. ‡ Relative photon branching from each level. $^{\sharp}$ Not seen. $E(\gamma)$ from level energy differences.

[@] Intensity limit from Coulomb excitation.

[&]amp; From 6-min 108 Rh(β^{-}).

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Type not specified

Legend

 $^{108}_{\ 46}\mathrm{Pd}_{62}$

Level Scheme (continued)

Legend

Intensities: Type not specified & Multiply placed: undivided intensity given

 $^{108}_{46}\mathrm{Pd}_{62}$

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given

Legend

		Type Full Evaluat		d F. G. Kondev	Citation NDS 113,1315 (2012)	Literature Cutoff Date 1-Aug-2011
			; $S(p)=10621 4$; $Q(a)$ the following Q reco		2012Wa38 8816 710627 5 –4453	9 2011AuZZ.
				¹¹⁰ Pd	Levels	
				Cross Reference	ce (XREF) Flags	
		B 110 R C 110 A D 108 Pe	h β^- decay (3.35 s) h β^- decay (28.0 s) g ε decay (24.56 s) d(t,p) d(α , α')	F 110Pd(e. G 110Pd(π H 110Pd(n I 110Pd(p J 110Pd(p	(-,X) L $(-,n'\gamma)$ M (-,p'),(d,d'),(pol d,d')	Coulomb excitation 176 Yb(31 P,X γ) 238 U(12 C,F γ)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comm	nents
0.0 [#] 373.80 [#] 7	0 ⁺ 2 ⁺	stable 44.0 ps 7	ABCDEFGHIJKLM ABCDEF HIJKLM	T _{1/2} : Weighted 1989Ko40), 4 recoil distanc μ: using dynamintegral perturbed 1985ThZX, (and 0.72 8 (i perturbed 20; using reoried destructive in from (e,e') in 1972Lu08, 5 or -0.23 5 B(E2)↑: Weigh 110Pd(e,e'), (1971Bo08), average of 0.	to 0^+ ; L(t,p), L(α , α')=2. I average of 45.5 ps 17 (from 43.6 ps 8 (from adopted Bere Doppler-shift technique in 198 arbed angular correlations is 14 was used), +0.70 6 ut 0.74 6 using recoil into gain alloy host) using transie gular-correlation technique intation precession technique interference). Others: -0.47 in 1973PeYX, -0.55 8 or -0.72 8 or -0.45 8 from Coulomb excitation ted average of 0.87 3 (1990).82 5 (symmetrized from 0.82 8 (1971Ha08), 0.91 6 and 0.92 6, 0.90 6, 0.91 6 and 0.91	80Br01. Others: +0.6 4 using time in 2005Sm08 and 2004Sm04 using transient field technique in as in 1979LaZL, 0.68 8 (in Fe host) ent field implantation in 1974Hu01. The in 1976Ha21 (-0.60 14 for 7 3 from (e,e') in 1991We15, -0.28 3 -0.35 8 from Coulomb excitation in doulomb excitation in 1971Ha08, -0.48
813.59 [@] 7	2+	17.7 ps 8	AB DEF HIJKL	J ^π : 439.76γ E2 T _{1/2} : From 198	+M1 to 2^+ and 813.7γ to $89\text{Ko}40$ using the recoil-di and $14.0~18$ from 1969Ro	istance technique. Others: $18.6 + 5-9$
920.78# 10	4+	4.1 ps <i>3</i>	B DEF HIJKLM	$T_{1/2}$: From 198 +3-1 (1989) B(E4)=91×10	to 2+; member of the g.s.	istance technique. Others: 4.5 ps Ro05).
946.74 ^{&} 11	0+	7.9 ps 7	A D HIJK	$(J^{\pi}=0^{+}); \text{ ass}$	ignment in 110Pd(p,p'),(d,o	tion of γ -ray transition to g.s d'),(pol d,d'). istance technique. Others: 10.6 ps

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1170.65 ^a 11	0+		A D HIJK	+4-8 (1989SvZZ) and 8.0 ps 14 (1969Ro05). XREF: D(1175)J(1168). J ^{π} : L(t,p)=0; 796.83 γ to 2 ⁺ ; non-observation of γ -ray transition to g.s (J^{π} =0 ⁺); assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
1212.12 [@] 13	(3 ⁺)		B HijKL	XREF: i(1213)j(1212). J^{π} : 291.6 γ to 4 ⁺ , 838.2 γ to 2 ⁺ ; band member.
1214.48 ^{&} 15	2+	9.1 ps 6	A D F HijK	XREF: i(1213)j(1212). J^{π} : L(t,p)=(2); 267.4 γ to 0 ⁺ , 840.9 γ to 2 ⁺ ; band member. $T_{1/2}$: From recoil-distance technique in 1989Ko40. Others: 12.1 ps +10-17 (1989SvZZ) and <16 ps (1969Ro05), both from Coulomb excitation.
1398.31 [@] 13	4 ⁺	5.1 ps 6	B F HIJKL	XREF: J(1401). J ^π : 477.8γ to 4 ⁺ , 584.6γ to 2 ⁺ ; band member. T _{1/2} : From recoil-distance technique in 1989Ko40. Other: 5.4 ps +5-4 from Coulomb excitation in 1989SvZZ. B(E4)≈0.001 from (e,e') in 1991We15.
1470.06 ^a 10	2+		FGHIJK	XREF: J(1472). J^{π} : 1096.29 γ to 2 ⁺ , 1470.2 γ to 0 ⁺ ; band member.
1573.99 [#] <i>17</i>	6+	1.40 ps <i>14</i>	B HIJKLM	XREF: J(1576). J^{π} : 653.1 γ to 4 ⁺ ; member of the g.s. band. $T_{1/2}$: From 1989Ko40 using the recoil-distance technique. Other: 1.46 ps +14-7 in Coulomb excitation (1989SvZZ).
1584 ^{<i>f</i>} 1			I	
1641? 1716.6 ^g 11	(0 ⁺) 2 ⁺		G Ij	E(level), J^{π} : From 1979Du06 in 110 Pd(π^{-} , X). XREF: j(1713). J^{π} : From 110 Pd(p,p'),(d,d'),(pol d,d').
1718.86 ^{&} 15	4 ⁺	2.2 ps 3	НІјК	XREF: j(1713). J ^π : 905.2γ to 2 ⁺ ; 144γ to 6 ⁺ ; band member; assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d'); T _{1/2} : From 1989Ko40 using recoil-distance technique. Other: 1.9 ps 4 in Coulomb excitation (1989SvZZ).
1759.3 [@] 4	(5^+)		L	J^{π} : 547.2 γ to (3 ⁺); band member.
1864 ^{<i>f</i>} 1	$(2^+)^h$		I	
1889.78 <i>19</i>	2+		D HIK	XREF: D(1891)I(1891). J^{π} : L(t,p)=(2); 941.5 γ to 0 ⁺ , 1515.9 γ to 2 ⁺ ; assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
1900.04 <i>15</i>	(4^{+})		B L	J^{π} : 501.9 γ to 4 ⁺ , 1086.5 γ to 2 ⁺ , 890.5 γ from (6 ⁺).
1900.5 3	(2+)		HI	J^{π} : 729.9 γ to 0 ⁺ ; assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
1934.60 ^a 18	4 ⁺		DEF HIJK	XREF: K(1936). J^{π} : L(t,p)=(4); 463.9 γ to 2 ⁺ , 1014 γ to 4 ⁺ ; band member. B(E4)=56×10 ⁻⁴ 13 from ¹¹⁰ Pd(e,e') (1991We15).
1956 ⁸ 2	(4^{+})		I	J^{π} : From ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
1987.22 [@] <i>17</i>	(6^+)		B L	J^{π} : 588.8 γ to (4 ⁺); band member.
19918 2	$(4^+)^h$		I	WDDE W(2015)
2037.67 18	3-		DEF HIJK	XREF: K(2015). J^{π} : L(t,p), L(α , α')=3; assignment in 110 Pd(p,p'),(d,d'),(pol d,d'). ε B(E3) \uparrow =0.086 <i>12</i> in 1969Ro05, weighted average of 0.083 <i>15</i> and 0.093 <i>21</i> . β_3 =0.140 <i>11</i> , deduced from B(E3), assuming ε =1 (3 ⁻ state decays entirely to first 2 ⁺ state).
2061.0 4	(5,6+)		K	J^{π} : 487 γ to 6 ⁺ , 1140 γ to 4 ⁺ . Note, that this level was assigned as the 6 ⁺ member of the g.s. band in Coulomb excitation, but this was contradicted in 176 Yb(31 P,X γ).

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2089.1 5	(4 ⁺)	K	J^{π} : 1275 γ to 2 ⁺ , 515 γ to 6 ⁺ .
2095^{f} 1	()	I	
2125.3 3	(1^{-})	HI	J^{π} : 1751.3 γ to 2 ⁺ , 2125.3 γ to 0 ⁺ ; assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2140.70 ⁸ 25	2+	D F HIJK	XREF: D(2135)F(2130)J(2131).
			J^{π} : L(t,p)=2; 767 γ to 2 ⁺ , 1220 γ to 4 ⁺ ; assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2193.0 <i>3</i>	(2^{+})	HIJ	XREF: I(2190).
			J^{π} : 1378.8 γ to 2 ⁺ ; assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2194 ^{<i>f</i>} 1	$(6^+)^h$	I	
2260.67 19	(5^{+})	B I L	J^{π} : 1048.5 γ to (3 ⁺), 1340.0 γ to 4 ⁺ ; direct feeding in ¹¹⁰ Rh β ⁻ decay (J^{π} =(6 ⁺)).
2276.0 <i>3</i>	(3^{-})	HI	XREF: I(2274).
	(a.t.)		J^{π} : 1354.9 γ to 4 ⁺ , 1462.5 γ to 2 ⁺ ; assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2293.3 <i>3</i>	(2^{+})	HIJ	XREF: I(2295).
2295.5 ^c 3	(5^{-})	DE I L	J^{π} : 1919.5 γ to 2 ⁺ , 2309 γ to 0 ⁺ . XREF: D(2283)E(2290).
2293.3	(3)	DE I L	J^{π} : L(t,p)=5; 721.5 to 6 ⁺ , 1374.6 γ to 4 ⁺ ; band member.
2296.2 [#] 4	8+	KLM	J^{π} : 722.2 γ to 6 ⁺ ; member of the g.s. band.
2322.08 25	2+	HI	J^{π} : 1375.3 γ to 0 ⁺ , 1401.2 γ to 4 ⁺ .
2335.2 <mark>&</mark> 5	(6^+)	ΙK	XREF: I(2332).
2000.2	(0)		J^{π} : 39 γ to 8 ⁺ , 1414 γ to 4 ⁺ .
2336 ^f 1		I	
2369.7 5	2+	HI	XREF: I(2373).
			J^{π} : 1449.5 γ to 4 ⁺ , 2369.6 γ to 0 ⁺ .
2422 <mark>8</mark> 2	(6^{+})	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
2428^{f} 2	4+	D I	XREF: D(2431).
2446.61.24	(a+)		J^{π} : L(t,p)=4.
2446.61 <i>24</i>	(2^{+})	B HIJ	J^{π} : 1048.3 γ to 4 ⁺ , 2094 γ to 2 ⁺ and 2452 γ to 0 ⁺ . Note, that assignment in
2474.4 3	(2^{+})	E HI	¹¹⁰ Pd(p,p'),(d,d'),(pol d,d') favors 4 ⁺ . XREF: E(2461).
2474.4 3	(2)	E HI	J^{π} : 2474.4 γ to 0 ⁺ , 1076.7 γ to 4 ⁺ . Note that $J^{\pi}=1^-$ in 110 Pd(p,p'),(d,d') (1990Pi14
			and 1992Pi08), but $J^{\pi} = (3^{-}, 4^{+})$ in ¹¹⁰ Pd(pol d,d') (1993He13).
2490 <mark>8</mark> 2	3-	D I	J^{π} : L(t,p)=3. Note, that J^{π} =(5 ⁻) in ¹¹⁰ Pd(pol d,d') (1993He13).
2498.9 <i>4</i>	(2^{+})	HIJ	XREF: I(2496)J(2499).
			J^{π} : 1286.7 γ to (3 ⁺), 1577.3 γ to 4 ⁺ ; assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2511 ⁸ 5	(4^{+})	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
2517^{f} 2	2+	D I	J^{π} : L(t,p)=2; assignment in ¹¹⁰ Pd(pol d,d') (1993He13).
2535 ⁸ 5	(2^{+})	D I	XREF: D(2548).
Ĉ.			J^{π} : L(t,p)=(2); assignment in 110 Pd(p,p'),(d,d') (1990Pi14, 1992Pi08).
2558^{f} 2		I	
2563.8 4	$(3^{-})^{h}$	HI	
2575 ⁸ 5	(4^{+})	I	J^{π} : assignment in ¹¹⁰ Pd(pol d,d') (1993He13).
2580 ^e 2		I	
2608 ^g 5	(1^{-})	I .	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
2615.3 <i>4</i>	a = h	L	
2617 ^{<i>f</i>} 2 2637	$(5^{-})^{h}$ (4^{+})	D I	J^{π} : L(t,p)=(4).
2637 2644 ^e 2	$(2^+)^{h}$		J . L(I,P)-(+).
2644 ^e 2	$(2^{+})^{h}$	I	
2649° 2 2650.7 [@] 4		I	TT ((25 , ((+) 1 1 1 1
2650.7° 4 2663.1 5	(8^+) (2^+)	D I L	J^{π} : 663.5 γ to (6 ⁺); band member. XREF: D(2658)I(2658).
2003.1 3	(2)	D I L	J^{π} : L(t,p)=2. Other: (1 ⁻) in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
			σ . $E(t,p)=2$. Other. (1) III = 1 $u(p,p)$, (u,u) , $(pvi u,u)$.

E(level) [†]	Jπ‡	XREF	Comments
2672 ⁸ 5	(4 ⁺)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2686.6 ^d 4	$(2^{+})^{h}$	HI	1 a(p,p),(a,a),(p)1 a,a)
2691 ⁸ 5	(2^{+})	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2695 ⁸ 2	(2) 4 ⁺	D I	XREF: D(2693).
20)3 2	•	D 1	J^{π} : L(t,p)=4.
2714.6 9	(4^{+})	HI	XREF: I(2718).
	,		J^{π} : 2341.0 γ to 2 ⁺ ; assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2737 <mark>d</mark> 2		I	
2741 <mark>8</mark> 5	(5^{-})	D I	XREF: D(2744).
	(-)		J^{π} : L(t,p)=(5,6); assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
2745.5 ^b 3	(7-)	I L	J^{π} : 450.0 γ to (5 ⁻), 1171.5 γ to 6 ⁺ ; band assignment.
2759^{f} 2	$(3^{-})^{h}$	D I	XREF: D(2760).
2764 <mark>8</mark> 5	(1^{-})	D I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
2775.1 6	5,6+	K	J^{π} : 1201γ to 6^{+} , 1377γ to 4^{+} .
2777.1?	(2^+)	Н	J^{π} : 1830.8 γ to 0 ⁺ , 2402.8 γ to 2 ⁺ .
2784 ⁸ 5	(4^+)	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
2784.5° 4	(7-)	L	J^{π} : 488.9 γ to (5 ⁻), 1210.7 γ to 6 ⁺ ; band member.
2790.64 <i>17</i>	(4 ⁺)	B L	J^{π} : 1216.5 γ to 6 ⁺ , 1392.1 γ to 4 ⁺ ; 890.5 γ to (2 ⁺). Note, that significant feeding in
	. ,		¹¹⁰ Rh β^- decay (28.0 s) $(J^{\pi}=(6^+))$ would suggest $J^{\pi}=5^+$.
2792^{f} 2	$(3^{-})^{h}$	I	, , , , , , , , , , , , , , , , , , , ,
2805.03 15	(4^{+})	B HI L	XREF: I(2804).
			J^{π} : 817.6 γ to 6 ⁺ , 1593.6 γ to (3 ⁺); 904.5 γ to (2 ⁺). Note, that significant feeding in
			¹¹⁰ Rh β^- decay (28.0 s) (J^{π} =(6 ⁺)) would suggest J^{π} =5 ⁺ .
2807 ^e 2	$(2^+,6^+,7^-)$	I	J^{π} : assignment in ¹¹⁰ Pd(pol d,d') (1993He13).
2818^{f} 2	(2^+)	FI	J^{π} : assignments in (e,e') and $^{110}Pd(p,p')$, (d,d'), (pol d,d').
2827 <mark>e</mark> 2	$(2^+,5^-)^h$	I	***************************************
2845 <mark>8</mark> 5	(1^{-})	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2845.3 7	,	L	
2862^{f} 2	$(2^+)^h$	I	
2871^{f} 2	$(2^{+})^{h}$	I	
2889^{f} 2	$(2^{+})^{h}$	I	
2893 ⁸ 5	(3^{-})	Ī	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2903.2 10	(10^{+})	K	J^{π} : 607 γ to 8 ⁺ .
2908^{f} 2	$(2^{+})^{h}$	I	
2912 ⁸ 5	(1^{-})	Ī	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2923.8 7	(1)	L	1 d(p,p),(d,d),(poi d,d).
2932 <mark>e</mark> 2	$(2^+)^h$	I	
2937 ^e 2	(2)	Ī	
$2948f_{2}$	$(4^+)^{h}$	I	
2952 ⁸ 5	(2^{+})	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
2972 ⁸ 5	(4^+)	Ī	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
2991.6 4	(8-)	L	J^{π} : 207.2 γ to (7 ⁻), 633 γ from (10 ⁻).
2994 <mark>8</mark> 5	(3^{-})	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
2998 <mark>e</mark> 2	. /	Ī	C day, and the
3002 ^e 2	$(1,2^+,5^-)^h$	I	
3009 ⁸ 5	\-,- ,e ,	ΕÏ	XREF: E(3015).
3023 ⁸ 5	(4^+)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3036 ⁸ 5	` /	Ī	Control of the state of the sta
3050^{f} 2		I	
2020 2		-	

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3058 ⁸ 5	(3-)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3062 ^f 2		I	
3070.2 [#] 5	(10^+)	LM	J^{π} : 774.0 γ to 8^{+} ; member of the g.s. band.
3071 <mark>8</mark> 5	(4 ⁺)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3075^{f} 2		I	
3079 ^f 2	$(2^{+})^{h}$	I	
3089 ⁸ 5	(4^{+})	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
3097 ^f 2	$(3^{-})^{h}$	I	
3102 ⁸ 5	(2+)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
$3110^{f} 2$	$(2^+,5^-)^h$	I	
31198 5	(3-)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3127 ^e 2	(10+)	I	
3131.2 <i>10</i> 3152 ^g 5	(10^+) (3^-)	K I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3168 ⁸ 5	(1-)	Ī	J^{π} : assignment in $^{110}\text{Pd}(p,p')$,(d,d'), but (3 ⁻) in $^{110}\text{Pd}(\text{pol d,d'})$ (1993He13).
31818 2	$(4^{+})^{h}$	I	1 u(p), (u,u), (u,u), (u) (u) 1 u(p) u,u) (1)
3191 5	(3-)	Ī	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3195.8 5	(10^{+})	L	J^{π} : 899.6 γ to (8 ⁺).
3232^{f} 2	$(1,2^+,3^-)^h$	I	
3240^{f} 2	$(1,2^+,3^-)^h$	I	
3246.1° 4	(9-)	L	J^{π} : 254.5 γ to (8 ⁻), 461.6 γ to (7 ⁻); band member.
3259 ⁸ 3	(3 ⁻)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3266.3 7	a h	L	
3271^{f} 2	$(2^+)^h$	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'), but J^{π} =(1,2+,3-) in ¹¹⁰ Pd(pol d,d')
3280 ^g 5	(1-)	I	J^{**} : assignment in ** Pd(p,p),(d,d'), but J^{**} =(1,2',3') in ** Pd(poi d,d') (1993He13).
3288^{f} 2	$(2^+,6^+)^h$	I	(177311013).
3301 ⁸ 5	(4^+)	Ī	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3320^{f} 2	$(4^{+})^{h}$	I	
3326.9 ^b 6	(9-)	L	J^{π} : 581.4 γ to (7 ⁻); band member.
3333^{f} 2	$(4^{+})^{h}$	I	
3353^{f} 2	$(2^+,4^+)^h$	I	
3368^{f} 2	, ,	I	
3374 ⁸ 5	(2^{+})	Ī	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'), but $J^{\pi}=(2^+,4^+)$ in ¹¹⁰ Pd(pol d,d') (1993He13).
$3380^{f} 2$		I	
3386 ^f 2	$(2^{+})^{h}$	I	
3407 <mark>8</mark> 5	(4 ⁺)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
$3413^{f} 2$		I	
3419 ^f 2	$(2^+,5^-)^h$	I	
3427 ^d 2		I	
3431 ^d 2		I	
3435^{d} 2		I	
3445^{f} 2	$(2^+,5^-)^h$	I	
3455 ^e 2	•	I	
3458 ^e 2		I	
3471^{f} 2		I	110
3484 ⁸ 5	(3 ⁻)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').

¹¹⁰Pd Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	XREF	Comments
3489^{f} 2		I	
3501^{f} 2		I	
3511 <mark>8</mark> 5	(3-)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3514 ^f 2	$(2^{+})^{h}$	I	
3525^{f} 2	$(2^{+})^{h}$	I	
3535^{f} 2	$(3^{-})^{h}$	I	
3561 ^f 2	$(2^{+})^{h}$	I	
$3570^{f} 2$	$(2,3,4,5,6)^{h}$	I	
3575 ^f 2	$(4^{+})^{h}$	I	
3592 ^f 2	$(1,2^+,3^-)^h$	I	
3607 ^f 2	$(1,2^+)^h$	I	
3614 ⁸ 5	(3 ⁻)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'), but J^{π} =(1,2 ⁺ ,3 ⁻) in ¹¹⁰ Pd(pol d,d') (1993He13).
3622^{f} 2		I	
3624.1 6	(10^{-})	L	J^{π} : 632.5 γ to (8 ⁻) in ¹⁷⁶ Yb(³¹ P,X γ).
3638^{f} 2		I	- 110
3642 ⁸ 5	(4^{+})	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3653^{f} 2	$(2^+)^h$	I	77 · · · · · · · · · · · · · · · · · ·
3669 ⁸ 5 3679 ^f 2	(4^+) $(4^+)^h$	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
$3679^{f} 2$ $3687^{f} 2$	(4)	I	
3687^{5} 2 3694^{f} 2	$(2^+,5^-)^h$	I	
3694 ³ 2 3700 ⁸ 5	(3^{-})	I I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3718.1 [#] 5	(12^+)	LM	J^{π} : 647.9 γ to (10 ⁺); member of the g.s. band.
$3710.1 \ 3$	(12)	I	3 . 047.57 to (10), member of the g.s. band.
$3720^{f} 2$		I	
3738 ⁸ 5	(4^{+})	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3769 ⁸ 4	(3-)	Ī	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3789 ⁸ 5	(3-)	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
3799 <mark>8</mark> 5	(3-)	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
3826 ^g 5	(3-)	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
3854 ⁸ 5	(3-)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
3869 ⁸ 5 3916 ⁸ 5	(3-)	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d'). J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
3955 ⁸ 5	(3 ⁻) (3 ⁻)	I I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
4001 <mark>8</mark> 5	(4^+)	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
4030.2 11	(12^{+})	K	J^{π} : 899 γ to (10 ⁺).
4031.1 ^b 7	(11-)	L	J^{π} : 704.2 γ to (9 ⁻); band member.
4037 8 5	(4+)	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
4065 ⁸ 5	(4^{+})	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
41548 5	(3-)	I	J^{π} : assignment in 110 Pd(p,p'),(d,d'),(pol d,d').
4239 ⁸ 5	(4+)	I	J^{π} : assignment in ¹¹⁰ Pd(p,p'),(d,d'),(pol d,d').
4484.1 [#] 7	(14^{+})	LM	J^{π} : 766.0 γ to (12 ⁺); member of the g.s. band.

 $^{^{\}dagger}$ From least-squares fit to Ey's, unless otherwise stated.

From comparison of experimental differential cross sections with coupled-channel calculations in ¹¹⁰Pd(p,p') and ¹¹⁰Pd(d,d')

¹¹⁰Pd Levels (continued)

```
(1992Pi08,1990Pi14), unless otherwise stated.
```

- # Band(A): g.s. band.
- [@] Band(B): γ -band.
- & Band(C): band based on 0⁺ At 947-keV.
- ^a Band(D): band based on 0⁺ At 1171-keV.
- ^b Band(E): Band based on (7⁻), 2745.5 keV. Based on the $\nu h_{11/2} \otimes \nu g_{7/2}$ or $\nu h_{11/2} \otimes \nu d_{5/2}$ configuration (2003La23).
- ^c Band(F): Band based on (5⁻), 2295.5 keV. Based on the $\nu h_{11/2} \otimes \nu g_{7/2}$ or $\nu h_{11/2} \otimes \nu d_{5/2}$ configuration (2003La23). ^d Unresolved multiplet in ¹¹⁰Pd(pol d,d') (1993He13). ^e Unresolved doublet in ¹¹⁰Pd(pol d,d') (1993He13).

- f From ¹¹⁰Pd(pol d,d') (1993He13).

 g From ¹¹⁰Pd(d,d') or ¹¹⁰Pd(p,p') (1992Pi08 and 1990Pi14).

 h From ¹¹⁰Pd(pol d,d') in 1993He13.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
373.80	2+	373.80 8	100	0.0 0+	E2		0.01448	$\alpha(K)$ =0.01245 18; $\alpha(L)$ =0.001661 24; $\alpha(M)$ =0.000314 5; $\alpha(N+)$ =5.17×10 ⁻⁵ 8 $\alpha(N)$ =5.17×10 ⁻⁵ 8
813.59	2+	439.76 8	100.0 13	373.80 2+	E2+M1	-4.6 +19-12	0.00870 15	B(E2)(W.u.)=55.5 9 Mult.: α (exp) in 110 Rh β^- decay (3.35 s) (1988Ay02), but the value was not given by the authors. α (K)=0.00752 13; α (L)=0.000970 20; α (M)=0.000183 4; α (N+)=3.03×10 ⁻⁵ 6
								$\alpha(N)=3.03\times10^{-5} 6$ B(M1)(W.u.)=0.0005 4; B(E2)(W.u.)=44 3 Mult.: A ₂ =-0.214 37 using $\gamma(\theta)$ in 1969Ro05; $\gamma\gamma(\theta)$ in 1969Ro03.
		813.52 <i>10</i>	35 4	0.0 0+	[E2]		1.63×10^{-3}	δ: From $\gamma\gamma(\theta)$ in 1969Ro03. $\alpha(K)=0.001423$ 20; $\alpha(L)=0.0001707$ 24; $\alpha(M)=3.20\times10^{-5}$ 5; $\alpha(N+)=5.37\times10^{-6}$ 8
								$\alpha(N)=5.37\times10^{-6} 8$ B(E2)(W.u.)=0.74 10 I_{γ} : From ¹¹⁰ Rh β^{-} decay (28.0 s).
920.78	4+	(107 <mark>&</mark>)		813.59 2+				
		547.04 10	100	373.80 2+	E2		0.00462	$\alpha(K)$ =0.00401 6; $\alpha(L)$ =0.000503 7; $\alpha(M)$ =9.46×10 ⁻⁵ 14; $\alpha(N+)$ =1.575×10 ⁻⁵ 22 $\alpha(N)$ =1.575×10 ⁻⁵ 22 B(E2)(W.u.)=90 7 Mult.: A ₂ =0.36 7 and A ₄ =-0.31 11 from $\gamma(\theta)$ in Coulomb
								excitation (1962Ec01).
946.74	0^{+}	(133 <mark>&</mark>)		813.59 2+				. ,
		572.89 10	100	373.80 2+	[E2]		0.00406	B(E2)(W.u.)=37 4 α (K)=0.00352 5; α (L)=0.000439 7; α (M)=8.26×10 ⁻⁵ 12; α (N+)=1.377×10 ⁻⁵ 20 α (N)=1.377×10 ⁻⁵ 20
1170.65	0+	356.9 2	47.8 22	813.59 2+				$\alpha(N)=1.37/\times 10^{-5} 20$ I_{γ} : Other: 32 9 in ¹¹⁰ Rh β^- decay (3.3 s).
1170.03	U	796.83 10	100 7	373.80 2 ⁺				17. Other. 32 / III - Kii p - decay (3.3 s).
1212.12	(3^{+})	291.6 [#] 2	8.4 [#] <i>17</i>	920.78 4+				I_{γ} : Others: 10.4 8 in ${}^{110}Pd(n,n'\gamma)$, 8 4 in ${}^{176}Yb({}^{31}P,X\gamma)$.
		398.6 [#] 2	93# 5	813.59 2+				I_{γ} : Others: 100 <i>10</i> in ¹¹⁰ Pd(n,n' γ), 64 <i>4</i> in ¹⁷⁶ Yb(³¹ P,X γ).
		838.2 [#] 3	100# 8	373.80 2+				I _{γ} : Others: 58 10 in ¹¹⁰ Pd(n,n' γ), 100 4 in ¹⁷⁶ Yb(³¹ P,X γ).

γ (110Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\sharp}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
1214.48	2+	(44 ^{&}) 267.4 3	24 4	1170.65 946.74		[E2]	0.0435	$\alpha(K)$ =0.0370 6; $\alpha(L)$ =0.00534 8; $\alpha(M)$ =0.001011 15; $\alpha(N+)$ =0.0001651 24
		Q-						α (N)=0.0001651 24 B(E2)(W.u.)=1.6×10 ² 4
		294 <mark>&</mark> 401.0 <i>7</i>	28 12	920.78 813.59		[M1]	0.00955	$\alpha(K)$ =0.00834 <i>13</i> ; $\alpha(L)$ =0.000987 <i>15</i> ; $\alpha(M)$ =0.000185 <i>3</i> ; $\alpha(N+)$ =3.13×10 ⁻⁵ <i>5</i> $\alpha(N)$ =3.13×10 ⁻⁵ <i>5</i>
		840.9 7	64 16	373.80	2+	[M1]	1.66×10^{-3}	B(M1)(W.u.)=0.0048 22 α (K)=0.001454 21; α (L)=0.0001684 24; α (M)=3.16×10 ⁻⁵ 5; α (N+)=5.33×10 ⁻⁶ 8
								$\alpha(N)=5.33\times10^{-6}~8$ B(M1)(W.u.)=0.0012 4 I_{γ} : Other: 100 38 in ¹¹⁰ Rh β^{-} decay (3.3 s).
		1214.5 2	100 6	0.0	0+	[E2]	6.68×10^{-4}	$\alpha(K)$ =0.000577 8; $\alpha(L)$ =6.72×10 ⁻⁵ 10; $\alpha(M)$ =1.258×10 ⁻⁵ 18; $\alpha(N+)$ =1.143×10 ⁻⁵ 17 $\alpha(N)$ =2.12×10 ⁻⁶ 3; $\alpha(IPF)$ =9.31×10 ⁻⁶ 14 B(E2)(W.u.)=0.35 5
1398.31	4+	(183 <mark>&</mark>)		1214.48	2+			I_{γ} : Other:69 31 in ¹¹⁰ Rh β^{-} decay (3.3 s).
1396.31	4	(186 <mark>&</mark>)		1212.12				
		477.8 [#] 2	53 [#] 4	920.78		[E2+M1]	0.0065 4	$\alpha(K)$ =0.00567 25; $\alpha(L)$ =0.00070 6; $\alpha(M)$ =0.000131 12; $\alpha(N+)$ =2.19×10 ⁻⁵ 17 $\alpha(N)$ =2.19×10 ⁻⁵ 17
								$\alpha(N)=2.19\times10^{-6} I/$ I_{γ} : Other: 62 9 in 110 Pd(n,n' γ), 37 5 in 176 Yb(31 P,X γ).
		584.6 [#] 2	100# 8	813.59	2+	[E2]	0.00384	$\alpha(K)=0.00333$ 5; $\alpha(L)=0.000415$ 6; $\alpha(M)=7.80\times10^{-5}$ 11; $\alpha(N+)=1.300\times10^{-5}$ 19 $\alpha(N)=1.300\times10^{-5}$ 19 $\alpha(E)=0.000415$ 6; $\alpha(E)=0.000415$ 70.0004
		1024 <mark>&</mark>		373.80	2+			2(22)()
1470.06	2+	(72 <mark>&</mark>)		1398.31				
		(255 ^{&})	17.2	1214.48				
		298.8 <i>3</i> (523 %)	17 3	1170.65 946.74				
		(549 <mark>&</mark>)		920.78				
		656.42 15	71 5	813.59				

9

γ (110Pd) (continued)

E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\clip{t}}$	${\rm I}_{\gamma}^{ \ddagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	$lpha^\dagger$	Comments
1470.06	2+	1096.29 <i>13</i> 1470.2 <i>2</i>	100 <i>7</i> 31 <i>3</i>	373.80 2 ⁺ 0.0 0 ⁺			
1573.99	6+	(176 <mark>&</mark>)		1398.31 4+			
		653.1 2	100	920.78 4+	[E2]	0.00285	$\alpha(K)$ =0.00248 4; $\alpha(L)$ =0.000304 5; $\alpha(M)$ =5.71×10 ⁻⁵ 8; $\alpha(N+)$ =9.54×10 ⁻⁶ 14
							α (N)=9.54×10 ⁻⁶ <i>14</i> B(E2)(W.u.)=108 <i>11</i>
1718.86	4+	(144 <mark>&</mark>)		1573.99 6 ⁺			
		(248 <mark>&</mark>)		1470.06 2+			
		(320 <mark>&</mark>)		1398.31 4+			
		503&		1214.48 2+			
		797 ^{&}	25	920.78 4+	[M1]	0.00187	$\alpha(K)$ =0.001642 23; $\alpha(L)$ =0.000190 3; $\alpha(M)$ =3.57×10 ⁻⁵ 5; $\alpha(N+)$ =6.02×10 ⁻⁶ 9 $\alpha(N)$ =6.02×10 ⁻⁶ 9
							B(M1)(W.u.)=0.0032 5
			100 =	040 50 04		1 2 5 10 - 3	I_{γ} : From Coulomb excitation.
		905.2 2	100 7	813.59 2+	[E2]	1.26×10^{-3}	$\alpha(K)$ =0.001105 16; $\alpha(L)$ =0.0001313 19; $\alpha(M)$ =2.46×10 ⁻⁵ 4; $\alpha(N+)$ =4.13×10 ⁻⁶ 6
							α(N)=4.13×10 ⁻⁶ 6 B(E2)(W.u.)=8.8 15
		1345.5 2	28.1 24	373.80 2+	[E2]	5.68×10^{-4}	$\alpha(K)=0.000467$ 7; $\alpha(L)=5.41\times10^{-5}$ 8; $\alpha(M)=1.012\times10^{-5}$ 15;
		1343.3 2	20.1 27	373.80 2	[E2]	5.06×10	$\alpha(N+)=3.67\times10^{-5}$ 6
							$\alpha(N)=1.704\times10^{-6} \ 24; \ \alpha(IPF)=3.50\times10^{-5} \ 5$
							B(E2)(W.u.)=0.34 6
1759.3	(5^{+})	547.2 [@] 3	100 [@]	1212.12 (3+)			
1889.78	2+	(172 <mark>&</mark>)		1718.86 4+			
		(420 <mark>&</mark>)		1470.06 2+			
		(492 <mark>&</mark>)		1398.31 4+			
		(719 <mark>&</mark>)		1170.65 0+			
		941.5 12	3.4 15	946.74 0+			
		(969 <mark>&</mark>)		920.78 4+			
		1076.7 8	5.1 16	813.59 2 ⁺			
		1515.9 2 (1890&)	100 9	373.80 2 ⁺ 0.0 0 ⁺			
1900.04	(4^{+})	(1890°) 501.9 [#] 2	11# 3	1398.31 4+			I_{γ} : Other: 13 5 in ${}^{176}\text{Yb}({}^{31}\text{P,X}\gamma)$.
1900.04	(4')	501.9" 2 687.7 [#] 2	11" 3 100 [#] 7				I_{γ} : Other: 13.5 in I^{10} Yb(I^{10} , I_{γ}). I_{γ} : Other: 94.12 in I^{10} Pd(I^{10} , I^{10}).
		087.7" 2	100. /	1212.12 (3 ⁺)			I_{γ} : Other: 94 12 in Tapel(n,n γ).

10

γ (110Pd) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	
1900.04	(4^{+})	979.2 <mark>#</mark> <i>3</i>	9.8 [#] 18	920.78	4+	I_{γ}
	, ,	1086.5 [#] 3	22 # 7	813.59	2+	,
1900.5	(2^{+})	729.9 10	41 12	1170.65	0_{+}	
		1526.7 <i>4</i>	100 12	373.80	2+	
1934.60	4+	(218 <mark>&</mark>)		1716.6	2+	
		(362 <mark>&</mark>)		1573.99	6+	
		463.9 <i>4</i>	100 11	1470.06	2+	
		(538 <mark>&</mark>)		1398.31	4+	
		(721 <mark>&</mark>)		1214.48	2+	
		722.5 4	61 8	1212.12	(3^{+})	
		1014.0 5	67 17	920.78	4+	
		1120.8 3	61 11	813.59	2+	
		1560.8 4	78 11	373.80	2+	
1987.22	(6 ⁺)	588.8# 2	100#	1398.31	4+	
2037.67	3-	1224.2 3	20.0 18	813.59	2 ⁺	
		1663.8 2	100 10	373.80	2+	
2061.0	$(5,6^+)$	(125 <mark>&</mark>)		1934.60	4+	
		(343 <mark>&</mark>)		1718.86	4+	
		(487 <mark>&</mark>)		1573.99	6+	
		663&		1398.31	4+	
		(1140 <mark>&</mark>)		920.78	4+	
2089.1	(4^{+})	(371 <mark>&</mark>)		1718.86	4+	
		(515 <mark>&</mark>)		1573.99	6+	
		691 <mark>&</mark>		1398.31	4+	
		1168 <mark>&</mark>		920.78	4+	
		1275 <mark>&</mark>		813.59	2+	
		1715 <mark>&</mark>		373.80	2+	
2125.3	(1^{-})	1751.3 5	15 <i>3</i>	373.80	2+	
	, ,	2125.3 <i>3</i>	100 10	0.0	0_{+}	
2140.70	2+	(423 <mark>&</mark>)		1718.86	4+	
		(567 <mark>&</mark>)		1573.99	6+	
		(671 <mark>&</mark>)		1470.06	2+	
		(743 <mark>&</mark>)		1398.31	4+	
		(926 <mark>&</mark>)		1214.48	2+	
		929.2 ^a 3	100 14	1212.12	(3^{+})	

Comments

 I_{γ} : Other: 46 9 in ${}^{110}\text{Pd}(n,n'\gamma)$ and 15 5 in ${}^{176}\text{Yb}({}^{31}\text{P},X\gamma)$.

γ (110Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
2140.70	2+	1221.0 ^a 4	90 10	920.78 4+	I_{γ} : Other: I_{γ} =47 in Coulomb excitation (1989SvZZ).
		(1327 <mark>&</mark>)		813.59 2+	
2102.0	(2±)	1766.7 <i>3</i>	100 10	373.80 2 ⁺	
2193.0	(2^{+})	1378.8 <i>4</i> 1819.8 <i>4</i>	100 <i>16</i> 59 <i>7</i>	813.59 2 ⁺ 373.80 2 ⁺	
2260 67	(E+)	1048.5 [#] 3	100 [#] 21		
2260.67	(5^+)			1212.12 (3+)	
2276.0	(2-)	1340.0 [#] <i>3</i> 1354.9 <i>7</i>	36 [#] 8 21 5	920.78 4 ⁺ 920.78 4 ⁺	
2270.0	(3-)	1462.5 3	100 10	813.59 2 ⁺	
2293.3	(2^{+})	1354 20	100 10	920.78 4+	E_{γ} : From ¹¹⁰ Pd(p,p' γ).
22/3.3	(2)	1919.5 3	100	373.80 2 ⁺	L_{γ} . From $L_{\alpha}(p,p,\gamma)$.
		2309 20	13 3	$0.0 0^{+}$	E_{γ},I_{γ} : From ¹¹⁰ Pd(p,p' γ).
2295.5	(5^{-})	721.5 [@] 5	33 [@] 7	1573.99 6 ⁺	
	(-)	1374.7 [@] 5	100 [@] 7	920.78 4+	
2296.2	8+	(235 <mark>&</mark>)	100 /	2061.0 (5,6+)	
2270.2	O	722.2 [@] 4	100 [@]	1573.99 6 ⁺	
2322.08	2+	1375.3 3	100 11	946.74 0 ⁺	
	_	1401.2 4	14 3	920.78 4+	
		1948.7 <i>11</i>	6 3	373.80 2+	
		2322.6 10	6.3 19	$0.0 0^{+}$	
2335.2	(6^{+})	(39 <mark>&</mark>)		2296.2 8+	
		(274 <mark>&</mark>)		$2061.0 (5,6^+)$	
		617 <mark>&</mark>		1718.86 4+	
		761 <mark>&</mark>		1573.99 6 ⁺	
		(937 <mark>&</mark>)		1398.31 4+	
		1414 <mark>&</mark>		920.78 4+	
2369.7	2+	1449.5 20	27 13	920.78 4+	
		1556.3 <i>10</i>	79 21	813.59 2+	
		2369.6 6	100 23	0.0 0+	
2446.61	(2^{+})	1048.3 2	100	1398.31 4+	110
		2094 ^a 20	30 7	373.80 2+	E_{γ}, I_{γ} : From $^{110}Pd(p, p'\gamma)$.
2474.4	(2+)	2452 ^a 20	19 11	$0.0 0^{+}$	E_{γ}, I_{γ} : From ¹¹⁰ Pd(p,p' γ).
2474.4	(2^{+})	1076.7 <i>8</i> 2100.0 <i>6</i>	34 <i>11</i> 57 <i>14</i>	1398.31 4 ⁺ 373.80 2 ⁺	
		2474.4 <i>4</i>	100 14	0.0 0+	
2498.9	(2^{+})	1286.7 ^a 4	100 17	1212.12 (3 ⁺)	
	` /	1577.3 ^a 7	64 18	920.78 4+	

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
2563.8	(3-)	2190.0 4	100	373.80	2+	
2615.3		714.8 [@] 3	100 [@]	1900.04		
2650.7	(8^{+})	663.5 [@] 3	100 [@]	1987.22		
2663.1	(2 ⁺)	762.6 [@] 4	100 [@]	1900.04		
2686.6	(2 ⁺)	1873.2 5	53 16	813.59	2+	
		2312.7 4	100 11	373.80		
2714.6	(4^{+})	1900.2 20	56 26	813.59		
2745.5	(7-)	2341.0 10	100 <i>31</i> <7.7 [@]	373.80		
2745.5	(7^{-})	450.0 [@] 6		2295.5	(5-)	
		1171.5 [@] 3	100 [@] 8	1573.99		
2775.1	$5,6^{+}$	714 <mark>&</mark>			$(5,6^+)$	
		1201&		1573.99		
2555 12	(2±)	1377 ^{&}	100.25	1398.31		
2777.1?	(2^{+})	1830.8 ^a 11 2402.8 ^a 10	100 <i>35</i> 88 <i>28</i>	946.74 373.80		
2784.5	(7-)	488.9 3	100 <i>14</i>	2295.5	(5 ⁻)	
2701.5	(,)	1210.7 5	29 14	1573.99		
2790.64	(4^{+})	803.5 [#] 2	11 [#] 3	1987.22		
	,	890.5 [#] <i>3</i>	100 [#] 12	1900.04		
		1216.5 [#] 3	22 [#] 6	1573.99		
		1392.1 [#] <i>3</i>	93 [#] 10	1398.31		
		1579.2 [#] 4	11 [#] 5	1212.12		
		1869.5 [#] 5	20 [#] 4	920.78		
2805.03	(4^{+})	544.4# 2	35 [#] 6	2260.67		
2000.00	(.)	817.6# 2	10 [#] 3	1987.22		
		904.5 [#] 3	100 [#] 10	1900.04		
		1230.9 [#] 3	42 [#] 8	1573.99		I_{γ} : Other: 83 17 in ${}^{176}\text{Yb}({}^{31}\text{P,X}\gamma)$.
		1406.6 [#] 3	24 [#] 4	1398.31		I_{γ} : Other: 14 5 in ¹¹⁰ Pd(n,n' γ).
		1593.6 [#] 3	21# 5	1212.12		I_{γ} : Other: 100 I_{γ
		1884.1 [#] 4	26 [#] 5	920.78		ι _γ . Oulei. 100 12 iii — ru(ii,ii γ).
2845.3		1271.3 [@] 6	100 [@]	1573.99		
2903.2	(10^+)	607 1	100	2296.2	8 ⁺	
2923.8	(10)	1349.8 [@] 6	100 [@]	1573.99		
2991.6	(8-)	207.2 [@] 4	100 [@] 20	2784.5	(7-)	
	(0)	246.1 [@] 5	60 [@] 20	2745.5	(7^{-})	
		246.1 5	60 20	2745.5	(7-)	

γ (110Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}
3070.2	(10^{+})	774.0 [@] 3	100 [@]	2296.2 8+	3624.1	(10^{-})	632.5 [@] 4	100 [@]	2991.6 (8 ⁻)
3131.2	(10^{+})	835 <mark>&</mark>		2296.2 8+	3718.1	(12^+)	522.3 [@] 4	36 [@] 9	3195.8 (10 ⁺)
3195.8	(10^{+})	899.6 [@] <i>3</i>	100 [@]	2296.2 8+			647.9 [@] 3	100 [@] 9	3070.2 (10 ⁺)
3246.1	(9^{-})	254.5 [@] 6	<20 [@]	2991.6 (8-)	4030.2	(12^+)	899		3131.2 (10 ⁺)
		461.6 [@] 5	40 [@] 20	2784.5 (7-)			1127		2903.2 (10 ⁺)
		500.5 [@] 4	100 [@] 20	2745.5 (7-)	4031.1	(11^{-})	704.2 [@] 3	100 [@]	3326.9 (9-)
3266.3		651.0 [@] 5	100 [@]	2615.3	4484.1	(14^{+})	766.0 [@] 4	100 [@]	3718.1 (12+)
3326.9	(9-)	581.4 [@] 5	100 [@]	2745.5 (7-)					

[†] Additional information 1. ‡ From 110 Pd(n,n' γ), unless otherwise stated. # From 110 Rh β^- decay (28.0 s). @ From 176 Yb(31 P,X γ) (2003La23). & From Coulomb excitation. a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

