DM 16

Exercice 1 (d'après Agro 2016). Soient u et v deux vecteurs de \mathbb{R}^n . Le produit scalaire de u et v est notée $u \cdot v$, on note $u^2 = u \cdot u$ et l'on a $u^2 = ||u||^2$.

Si E désigne un sous-espace vectoriel de \mathbb{R}^n , on note

$$E^{\perp} = \{ x \in \mathbb{R}^n \mid \forall y \in E, \langle x, y \rangle = 0 \}.$$

 E^{\perp} s'appelle le sous-espace orthogonal à E, il est formé de tous les vecteurs qui sont orthogonaux à E. 0. Soit E un sous-espace vectoriel de \mathbb{R}^n . Montrer que E^{\perp} est un sous-espace vectoriel de \mathbb{R}^n .

Dans \mathbb{R}^3 on considère les vecteurs u = (1, 2, 3) et v = (-3, 1, 5).

- 1. Déterminer la dimension du sous-espace vectoriel E de \mathbb{R}^3 engendré par la famille (u,v).
- 2. Déterminer le nombre réel λ tel que le vecteur $v' = u + \lambda v$ soit orthogonal à u.
- 3. Pour tout vecteur w de \mathbb{R}^3 , on définit le vecteur w' par $w' = w \frac{(w \cdot u)}{\|u\|^2} u \frac{(w \cdot v')}{\|v'\|^2} v'$.
 - (a) Montrer que pour tout vecteur w, on a $w' \in E^{\perp}$. Dans la suite, on suppose que w = (-2, 3, 2).
 - (b) Montrer que $w \notin E$ et $w \notin E^{\perp}$.
 - (c) Déterminer le vecteur w' associé à w.
 - (d) Montrer que la famille (u, v', w') est une base de \mathbb{R}^3 .

Problème 1. Le but de ce problème est d'étudier la fonction définie par :

$$g: x \mapsto \int_{x}^{x^2} \frac{dt}{\ln(t)}.$$

- 1. Etude globale:
 - (a) Justifier que g est bien définie sur $\mathcal{D}_q =]0, 1[\cup]1, +\infty[$.
 - (b) Montrer que g est positive sur \mathcal{D}_g .
 - (c) Soit F une primitive (qu'on ne cherchera pas à calculer) de $t \mapsto \frac{1}{\ln(t)}$ sur]0,1[. Exprimer g à l'aide de F pour tout $x \in]0,1[$.
 - (d) En déduire que g est dérivable sur \mathcal{D}_g et montrer que pour tout $x \in]0,1[$:

$$g'(x) = \frac{x-1}{\ln(x)}$$

(C'est LA question à faire)

- (e) Par un raisonnement identique montrer que g est dérivable sur D_g .
- (f) Montrer que g est de classe \mathcal{C}^{∞} sur \mathcal{D}_q .
- (g) Etudier les variations de g sur \mathcal{D}_g . (les limites aux bornes ne sont pas demandées pour cette question)
- 2. Etude au voisinage de 0
 - (a) Montrer que:

$$\forall x \in]0,1[\frac{x(x-1)}{2\ln(x)} \le g(x) \le \frac{x(x-1)}{\ln(x)}$$

On fera très attention aux signes dans les inégalités.

(b) En déduire que g se prolonge par continuité en 0 et préciser la valeur de ce prolongement. Par la suite, on note encore g la fonction continue, prolongée en 0

- (c) Montrer que g est dérivable à droite en 0 et préciser g'(0).
- 3. Etude au voisinage de 1.
 - (a) Calculer la limite $\lim_{t \to 1} \frac{1}{\ln(t)} \frac{1}{t-1}$
 - (b) En déduire qu'il existe $\eta>0$ tel que pour tout $t\in [1-\eta,1+\eta]\setminus\{1\}$:

$$\left| \frac{1}{\ln(t)} - \frac{1}{t-1} \right| \le 1$$

(c) Conclure que g est prolongeable par continuité en 1.