PR ASSIGNMENT - 2 (Deadline : 02/03/2020) Design of Bayes Classifier

Deliverables for this assignment:

- 1. Programming Assignment (MATLAB or Python)
- 2. Code file and output screenshots for all
- Q1. Find and plot the decision boundary between class ω_1 and ω_2 .
 - i) Assume $P(\omega_1) = 0.8$; $P(\omega_2) = 0.2$
 - ii) Assume $P(\omega_1) = P(\omega_2)$

$$\omega_1 = [1,6; 3,4; 3,8; 5,6]$$

 $\omega_2 = [3,0; 1,-2;3,-4;5,-2]$

Q2. Find and plot the decision boundary between class $\omega 1$ and $\omega 2$. Assume $P(\omega_1) = 0.3$; $P(\omega_2) = 0.7$

$$\omega_1 = [1,-1; 2,-2; 3,-3; 4,4]$$

 $\omega_2 = [2,1; 3,0; 4,-1; 5,6]$

Q3. Find and plot the decision boundary between class $\omega 1$ and $\omega 2$. Assume $P(\omega_1) = P(\omega_2)$

$$\begin{aligned} \omega_1 &= [2,6;\,3,4;\,3,8;\,4,6]\\ \omega_2 &= [3,0;\,1,\text{-2};\,3,\text{-4};\,5,\text{-2}] \end{aligned}$$

Q4. Implement Bayes Classifier for Iris Dataset.

Dataset Specifications:

Total number of samples = 150

Number of classes = 3 (Iris setosa, Iris virginica, and Iris versicolor)

Number of samples in each class = 50

Use the following information to design classifier:

Number of training feature vectors (random choice in each class) = 40 Number of test feature vectors (random choice in each class) = 10 Number of dimensions = 4 Feature vector = <sepal length, sepal width, petal length, petal width>

Q5. Use only two features: Petal Length and Petal Width, for 3 class classification and draw the decision boundary between them (2 dimension, 3 regions also called as multi-class problem)

the test feature vectors.

If the samples follow a multivariate normal density, find the accuracy of classification for