0 Introduction

Example 0.1. Perfect riffle shuffle $\sigma \in S_{52}$ s.t. $\sigma(j) := 2j \mod 51$. I.e.

$$\sigma(j) := \begin{cases} 2j & \text{if } 0 \le j \le 25\\ 2j - 51 & \text{if } 26 \le j \le 51 \end{cases}$$

The perfect riffle is deterministic, i.e. as a distribution $\mu: S_{52} \to [0,1], \ \mu = \delta_{\sigma}$. It has order 8:

Proof. We seek minimal k s.t. $\sigma^k = \text{id}$. Since $\sigma^k(j) = 2^k j \mod 51$ we require k s.t. $2^k = 1 \mod 51$. Checking $k = 1, 2, \ldots, 8$ shows 8 is the correct value.

Example 0.2. Random transposition Randomly pick two cards and swap, with replacement after first choice (so doing nothing is possible). Has probability distribution $\mu: S_{52} \to [0, 1]$,

$$\mu(\sigma) = \begin{cases} \sum^{52} \frac{1}{52^2} = \frac{1}{52} & \sigma = \mathrm{id} \\ \frac{2}{52^2} & \sigma = (ij) \\ 0 & \mathrm{otherwise} \end{cases}$$

Example 0.3. Pass the broccoli (i.e. \mathbb{Z}_p) $\mathbb{Z}_p = \{0, \dots, p-1\}$, the broccoli starts at 0, and at each step the broccoli is passed either left or right with probability $\frac{1}{2}$, generating random walk on \mathbb{Z}_p .

Definition 0.4. • Sample space is a set Ω (i.e. $\Omega = \mathbb{Z}_p$), and an **event** is element of the power set of the sample space: $P(\Omega)$.

- Probability distribution is a map $\mu: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \mu(\omega) = 1$.
- **Probability measure** is the extension of the distribution to the event space: $\mu: P(\Omega) \to [0,1]$, such that for $A \subset \Omega$: $\mu(A) := \sum_{\omega \in A} \mu(\omega)$, with $\mu(\emptyset) := 0$. Its properties:
 - $-\mu(\Omega)=1$
 - $-A \subset B \subset \mathbb{Z}_p \implies \mu(A) \leq \mu(B)$ "monotonicity"
 - $\{A_i\}$ countable pairwise disjoint subsets, then $\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$ " σ -additive"
 - $-\mu(\mathbb{Z}_p)=1$
- Probability space is triple $(\Omega, P(\Omega), \mu)$ Sample space, event space, probability measure.
- For a set S, an S-valued random variable is a map $X: \Omega \to S$.
- Probability distribution wrt random variable $X: \Omega \to S$ and probability space $(\Omega, P(\Omega), \mu)$ is the function $\widetilde{\mu}: X(\Omega) \to [0, 1]$ s.t. $\widetilde{\mu}(b) := \mu(X^{-1}(\{b\}))$. This allows us to associate probabilities to "areas" in the image space of the random variable.

1 Probability on \mathbb{Z}_p

Course notes use $t \oplus s := t + s \mod p$, $t \ominus s := t - s \mod p$. We use +, - here.

Definition 1.1. Probability distribution on \mathbb{Z}_p is a map $\mu : \mathbb{Z}_p \to [0,1]$ s.t. $\sum_{t=0}^{p-1} \mu(t) = 1$.

Example 1.2. • Uniform distribution is $\lambda : \mathbb{Z}_p \to [0,1]$ s.t. $\lambda(t) = 1/p \ \forall t \in \mathbb{Z}_p$.

- Dirac distribution at $s \in \mathbb{Z}_p$ is $\delta_s : \mathbb{Z}_p \to [0,1]$ s.t. $\delta_s(t) := 1$ if t = s, 0 otherwise.
- Fair Pass the broccoli distribution

$$\mu(t) = \begin{cases} \frac{1}{2} & t = 1\\ \frac{1}{2} & t = -1\\ 0 & \text{otherwise} \end{cases}$$

Definition 1.3. The expectation of random var $f: \mathbb{Z}_p \to \mathbb{C}$ wrt distribution $\mu: \mathbb{Z}_p \to [0,1]$ is:

$$\mathbb{E}_{\mu}(f) = \mu(f) := \sum_{t \in \mathbb{Z}_p} f(t)\mu(t) \in \mathbb{C}$$

Note the probability of event $A \subset \Omega$ is the expectation of the indicator function (rv) over A:

$$\mathbf{1}_A(t) := \begin{cases} 1 & t \in A \\ 0 & t \notin A \end{cases}$$

Theorem 1.4. For distributions μ_1, \ldots, μ_n and $\alpha_1, \ldots, \alpha_n \in [0, 1]$ s.t. $\sum_i \alpha_i = 1$, the **convex combination** $\mu(t) := \sum_i \alpha_i \mu_i(t)$ is also a probability distribution.

Definition 1.5. Biased pass the broccoli is the convex combination of delta distributions: for $\alpha \in (0,1)$

$$\mu_{\alpha} = \alpha \delta_1 + (1 - \alpha) \delta_{-1}$$

Definition 1.6. • Total variation distance of dists μ, ν is: $d(\mu, \nu) := \max_{A \subset \mathbb{Z}_p} |\mu(A) - \nu(A)|$

- L_1 -norm on the set of functions $\{f: \mathbb{Z}_p \to \mathbb{R}\}$ is $||f||_1 := \sum_{t \in \mathbb{Z}_p} |f(t)|$
- L^{∞} -norm on $f: \mathbb{Z}_p \to \mathbb{R}$ is $||f||_{\infty} = \max_{t \in \mathbb{Z}_p} |f(t)|$

Lemma 1.7. Total variation distance is a metric, i.e. satisfies triangle inequality: $d(\mu, \nu) \leq d(\mu, \tau) + d(\tau, \nu)$, symmetric: $d(\mu, \nu) = d(\nu, \mu)$, equality: $d(\mu, \nu) = 0 \iff \mu = \nu$.

Theorem 1.8 (Total variation distance $\equiv L_1$ norm).

$$d(\mu,\nu) = \frac{1}{2} \parallel \mu - \nu \parallel_1 = \frac{1}{2} \sum_{t \in \mathbb{Z}_p} |\mu(t) - \nu(t)|$$

Theorem 1.9 (Variational formula). The $tvd = the \ max \ difference in expectations over all <math>rv$'s with $max \ value \ (L_{\infty})$ at $most \ 1$:

$$d(\mu, \nu) = \frac{1}{2} \max\{ |\mu(f) - \nu(f)| | f : \mathbb{Z}_p \to \mathbb{R} \text{ s.t. } || f ||_{\infty} \le 1 \}$$

Definition 1.10. • Information of distribution μ is $I_{\mu}: \mathbb{Z}_p \to [0, \infty), \ I_{\mu}(t) := -\ln(\mu(t))$

• Entropy of distribution μ is $H(\mu) = -\sum_{t \in \mathbb{Z}_p} \mu(t) \ln(\mu(t))$ (i.e. the expected information). Note: the uniform and dirac distributions have entropies:

$$H(\lambda) = \ln(p), \qquad H(\delta_s) = 0$$

Theorem 1.11 (Pinsker's Inequality). For distribution $\mu: \mathbb{Z}_p \to [0,1]$ and uniform dist λ

$$\frac{1}{2(H(\lambda)+1)}|H(\mu)-H(\lambda)| \le d(\mu,\lambda) \le \sqrt{2|H(\mu)-H(\lambda)|}$$

2 Dynamics

Definition 2.1. The **convolution** of $f, g : \mathbb{Z}_p \to [0, 1]$ is $(f * g)(t) := \sum_{s \in \mathbb{Z}_p} f(t \ominus s)g(s)$. Iterated convolutions are denoted: $\mu^{*n} := \mu^{*(n-1)} * \mu$, with $\mu^{*0} := \delta_0$

Theorem 2.2. • Commutativity: f * g = g * f

- Associative: f * (g * h) = (f * g) * h
- Bilinear: $f * (\lambda g + \mu h) = \lambda (f * g) + \mu (f * h)$
- for distributions μ, ν , then $\mu * \nu$ is also a distribution.
- for distribution μ and uniform dist λ , we have: $\mu * \lambda = \lambda$
- for distribution μ and dirac dist δ_s , we have: $(\delta_s * \mu)(t) = \mu(t-s)$, hence: $\delta_0 * \mu = \mu$.

Example 2.3. Fair pass the broccoli: $(\mu * \mu)(t) = \frac{\delta_2(t)}{4} + \frac{\delta_0(t)}{2} + \frac{\delta_{-2}(t)}{4}$ (distribution after two steps).

Theorem 2.4. For distributions $\mu, \nu : \mathbb{Z}_p \to [0,1]$, "entropy grows under convolution":

$$\max\{H(\mu), H(\nu)\} \le H(\mu * \nu) \le H(\mu) + H(\nu)$$

Definition 2.5. • Sumset of $A, B \subset \mathbb{Z}_p$ is $A \oplus B := \{t + s : t \in A, s \in B\}$.

- Iterated sumsets: $A^{\oplus n} := A^{\oplus (n-1)} \oplus A$, with $A^{\oplus 0} := \emptyset$.
- Support of distribution μ is: $\operatorname{spt}(\mu) = \{t \in \mathbb{Z}_p : \mu(t) > 0\} \subset \mathbb{Z}_p$

Properties of sumsets:

- $\max\{|A|, |B|\} \le |A \oplus B| \le |A||B|$
- (Cauchy-Davenport inequality) If p prime, then: $\min\{|A|+|B|-1,p\} \leq |A \oplus B|$

Theorem 2.6. For distributions μ, ν , $spt(\mu * \nu) = spt(\mu) \oplus spt(\nu)$

Definition 2.7. A random walk on \mathbb{Z}_p with n steps is the \mathbb{Z}_p -valued random variable:

$$X_n := t_1 + \cdots + t_n$$

for \mathbb{Z}_p -valued random variables t_1, \ldots, t_n identically distributed wrt distribution μ , so for each j: $\mathbb{P}(t_j = t) = \mu(t)$. By probability, probability distribution for the sum of random variables is the convolution of the distributions: $\mathbb{P}(X_n = t) = \mu^{*n}(t)$.

Definition 2.8.

$$\mathbb{P}(X_1 = s, X_n = t) := \mathbb{P}(X_1 = s)\mathbb{P}(X_n = t) = \mu(s)\mu^{*n}(t)$$

Note: here X_1 and X_n are two **distinct** rw's, so are independent, and therefore the probability of both events is the product of the probabilities of each event. Hence

$$P(X_n = t \mid X_1 = s) := \frac{\mathbb{P}(X_1 = s, X_n = t)}{\mathbb{P}(X_1 = s)} = \mathbb{P}(X_n = t)$$

This is stupid as we should have: $P(X_n = t \mid X_1 = s) = \mathbb{P}(s + t_2 + \dots + t_n = t)$ (see below).

Note: The probability the *n*-th step is $t \in \mathbb{Z}_p$ given the first step was $s \in \mathbb{Z}_p$ is:

$$\mathbb{P}(s + t_2 + \dots + t_n = t) = \delta_s * \mu^{*(n-1)}(t)$$

Definition 2.9. The **limit** of the sequence of distributions $\mu_1, \mu_2, \dots : \mathbb{Z}_p \to [0, 1]$ is $\mu_\infty : \mathbb{Z}_p \to [0, 1]$ such that: $\lim_{n \to \infty} \mu_n(t) = \mu_\infty(t) \ \forall t \in \mathbb{Z}_p$. In this case: μ_∞ is also a distribution.

Theorem 2.10 (Characterisation of limits). μ_{∞} is limit of $\mu_1, \mu_2, \cdots \iff \lim_{n \to \infty} d(\mu_n, \mu_{\infty}) = 0$

Definition 2.11. Distribution μ is **ergodic** if $\lim_{n\to\infty} \mu^{*n}(t) = \lambda(t)$, for λ the uniform distribution.

Lemma 2.12. If $A \subset \mathbb{Z}_p$ is not contained within a coset of a proper subgroup, then $\exists n \in \mathbb{N}$ s.t.

$$A^{\oplus n} = \mathbb{Z}_p$$

Theorem 2.13. For distribution μ , the support $spt(\mu)$ is not contained within a coset of a proper subgroup $\iff \exists n \in \mathbb{N} \text{ such that } spt(\mu^{*n}) = \mathbb{Z}_p.$

Theorem 2.14 (Ergodic theorem). μ is ergodic \iff $spt(\mu)$ is not contained within a coset of a proper subgroup.

Definition 2.15. • The mixing time $n_{\text{mix}}(\epsilon) \in \mathbb{N}$ of a random walk driven by distribution μ , with a **threshold** $\epsilon > 0$, is such that: $d(\nu * \mu^{*n}, \lambda) < \epsilon \ \forall n \geq n_{\text{mix}}(\epsilon), \ \forall \text{ starting dists } \nu$.

• For $\phi: \mathbb{N} \to [0, \infty)$ s.t. $\lim_{n \to \infty} \phi(n) = 0$, μ is mixing with rate ϕ if

$$d(\nu * \mu^{*n}, \lambda) \le \phi(n) \ \forall n, \nu$$

• μ is **exponentially mixing** if $\exists C \in (0, \infty), \theta \in [0, 1)$ such that μ is mixing with a rate function ϕ that is expontentially decaying: $\phi(n) \leq C\theta^n$.

3 Harmonic Analysis

Definition 3.1. • The discrete fourier transform of $f: \mathbb{Z}_p \to \mathbb{C}$ is $\hat{f}: \mathbb{Z}_p \to \mathbb{C}$ such that:

$$\hat{f}(k) := \sum_{t=0}^{p-1} f(t)e^{\frac{-2\pi ikt}{p}}$$

• The maps $\chi_k(t) := e^{\frac{-2\pi i k t}{p}}$ are **characters** of \mathbb{Z}_p (i.e. group homomorphism $\mathbb{Z}_p \to \mathbb{C}$).

Lemma 3.2. 1. $\hat{\mu}(0) = 1$ (by definition of μ being a distribution).

- 2. $\hat{\mu}(k) \leq 1 \ \forall k$
- 3. (Exponential sum formula) For $\theta \neq 0$, $\sum_{t=0}^{p-1} e^{it\theta} = \frac{1 e^{ip\theta}}{1 e^{i\theta}}$

Proof. Pt 2:
$$|\hat{\mu}(k)| = |\sum_t \mu(t)e^{\frac{-2\pi ikt}{p}}| \le \sum_t |\mu(t)e^{\frac{-2\pi ikt}{p}}| = \sum_t |\mu(t)| \cdot |e^{\frac{-2\pi ikt}{p}}| = \sum_t |\mu(t)| = 1$$

Example 3.3. Fourier transform of distributions. The moral is the more spread out $\hat{\mu}$ is, the more confined μ is, and vice versa.

• $\hat{\lambda} = \delta_0$

- $\hat{\delta}_0 = \lambda$. So $\hat{\delta}_0(k) = 1 \ \forall k$. More generally: $\hat{\delta}_s(k) = e^{\frac{-2\pi i k s}{p}}$
- $\mu = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$, then $\hat{\mu}(k) = \frac{1}{2}e^{\frac{-2\pi ik}{p}} + \frac{1}{2}e^{\frac{2\pi ik}{p}} = \cos(\frac{2\pi k}{p})$

Theorem 3.4 (Fourier series theorem). Every $f: \mathbb{Z}_p \to \mathbb{C}$ has fourier expansion/inverse FT:

$$f(t) = \frac{1}{p} \sum_{k=0}^{p-1} \hat{f}(k) e^{\frac{2\pi i k t}{p}}$$

Definition 3.5. • The inner product of $f, g : \mathbb{Z}_p \to \mathbb{C}$ is $\langle f, g \rangle := \sum_t f(t) \overline{g(t)}$

- The L_2 -norm is $||f||_2 := \sqrt{\langle f, f \rangle}$
- For $1 , the <math>L_p$ -norm is $||f||_p = \left(\sum_t |f(t)|^p\right)^{\frac{1}{p}}$

Lemma 3.6. • Characters χ_k are orthonormal, i.e. $\langle \chi_k, \chi_l \rangle = \begin{cases} 1 & \text{if } k = l, \\ 0 & \text{otherwise.} \end{cases}$

- (Cauchy-Schwartz Inequality) $\forall f,g \colon |\langle f,g \rangle| \le ||f||_2 ||g||_2$
- (Holders Inequality) For $1 < p, q < \infty$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$, then $|\langle f, g \rangle| \le ||f||_p ||g||_q$

Theorem 3.7 (Plancherels theorem/Parsevals identity).

$$\langle f, g \rangle = \frac{1}{p} \langle \hat{f}, \hat{g} \rangle$$
 $\parallel f \parallel_2 = \frac{1}{\sqrt{p}} \parallel \hat{f} \parallel_2$

Theorem 3.8 (Convolution theorem).

$$\widehat{f * g} = \widehat{f}\widehat{g}$$

4 Mixing Time

Theorem 4.1. • (Upper Bound Lemma) For distribution μ , then $\forall n \in \mathbb{N}$

$$d(\mu^{*n}, \lambda) \le \frac{1}{2} \sqrt{\sum_{k \in \mathbb{Z}_p \setminus \{0\}} |\hat{\mu}(k)|^{2n}}$$

• Generalisation:

$$d(\mu_1 * \cdots * \mu_n, \lambda) \le \frac{1}{2} \sqrt{\sum_{k \in \mathbb{Z}_p \setminus \{0\}} \prod_{j=1}^n |\hat{\mu_j}(k)|^2}$$

• (Lower Bound Lemma) $\forall n \in \mathbb{N}$

$$d(\mu^{*n}, \lambda) \ge \frac{1}{2} \sqrt{\frac{1}{p} \sum_{k \in \mathbb{Z}_p \setminus \{0\}} |\hat{\mu}(k)|^{2n}}$$

• (*Entropy*)

$$H(\mu^{*n}) \ge \ln(p) - (\ln(p) + 1) \sqrt{\sum_{k \in \mathbb{Z}_p \setminus \{0\}} |\hat{\mu}(k)|^{2n}}$$

Definition 4.2. Distribution μ has a spectral gap if $|\hat{\mu}(k)| < 1 \ \forall k \in \mathbb{Z}_p \setminus \{0\}$.

Theorem 4.3. • Distribution μ has a spectral gap \implies it is exponentially mixing.

• Distribution μ has a spectral gap \iff it is ergodic.

5 Beyond \mathbb{Z}_p

For general group G, probability distributions, total variation distance, L_1 -norms, ergodicity are defined identically. A random walks are denoted $X_n = a_1 \dots a_n$, as products rather sums since G not necessarily abelian.

Definition 5.1. For distributions f, g over G (the following coincide for abelian G):

- The left convolution $(f *_L g)(a) := \sum_{b \in G} f^{-1}(b^{-1}a)g(b)$
- The right convolution is $(f *_R g)(a) := \sum_{b \in G} f^{-1}(ab^{-1})g(b)$

Theorem 5.2. μ is ergodic \iff the support of $spt(\mu)$ is not contained within a coset of a proper subgroup. (Result as above, but requires new proof).

Definition 5.3. $\mathbb{Z}_p^d = \{(t_1, \dots, t_d) : t_j \in \mathbb{Z}_p\}$ is a vector space, so group over addition.

Example 5.4. Ehrenfests Urn model is made up of d balls in 2 urns, whose states are modelled via a vector $v \in \mathbb{Z}_2^d$, one coordinate per ball, with $v_j = 0$ if j-th ball is in the left urn, $v_j = 1$ if in the right urn. Each move selects a ball/coordinate randomly and swaps its urn/value, so is equivalent to adding a standard basis vec $e_j \in \mathbb{Z}_2^d$. Hence the distribution of possible moves is:

$$\mu(t') = \begin{cases} \frac{1}{d} & t' = e_j \text{ for some } 1 \le j \le n \\ 0 & \text{otherwise} \end{cases}$$
 (1)

The distribution after one move, starting at configuratio $t \in \mathbb{Z}_2^d$ is then $\mu * \delta_t$, and after n moves: $\mu^{*n} * \delta_t$.

Definition 5.5. The fourier transform of $f: \mathbb{Z}_2^d \to \mathbb{C}$ is $\hat{f}: \mathbb{Z}_2^d \to \mathbb{C}$ s.t.

$$\hat{f}(k) := \sum_{t \in \mathbb{Z}_2^d} f(t)(-1)^{k \cdot t}$$

With this definition, all the Harmonic analysis such as the Plancheral/Parseval/Convolution theorems for \mathbb{Z}_p hold for \mathbb{Z}_2^d too.

Theorem 5.6 (Upper Bound Lemma for \mathbb{Z}_2^d). $\forall n \in \mathbb{N}$

$$d(\mu^{*n}, \lambda) \le \frac{1}{2} \sqrt{\sum_{k \in \mathbb{Z}_2^d \setminus \{0\}} |\hat{\mu}(k)|^{2n}}$$

Lemma 5.7. The fourier transform of the distribution of moves in Ehrenfests Urn model (in Equation (1)) is: $\hat{\mu}(k) = 1 - \frac{2}{d} |\{1 \le j \le d : k_j = 1\}|$.