Kubične krivulje v kriptografiji

Miha Avsec

Ljubljana, 30. marec 2020

Motivacija

Zakaj bi uporabljali kubične krivulje za namene kriptografije?

• Kubične krivulje nam zagotavljajo večjo varnost glede na dolžino uporabljenega ključa.

AES	ECC	RSA
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	521	15360

 Krajši ključi predstavljajo prednost predvsem v okoljih s slabšo procesorsko močjo in omejenim pomnilnikom (pametne kartice, IoT, ...).

Osnovni pojmi

Projektivna ravnina

Projektivna ravnina \mathbb{P}^2 nad poljem \mathbb{F} je kvocientni prostor $\mathbb{F}^3-\{0\}/\sim$, kjer je ekvivalenčna relacija \sim podana z $(a,b,c)\sim(\alpha a,\alpha b,\alpha c)$ za vsak neničelni $\alpha\in\mathbb{F}$. Točke v \mathbb{P}^2 so torej podane s homogenimi koordinatami $[a,b,c]=[\alpha a,\alpha b,\alpha c]$ za vse $\alpha\neq 0$.

Homogen polinom

Polinom P je homogen stopnje d, če velja

$$P(\lambda x, \lambda y, \lambda z) = \lambda^d P(x, y, z)$$
 za vse $\lambda \in \mathbb{F}$.

Osnovni pojmi

Algebraična krivulja

Algebraična krivulja, podana s homogenim polinomom P, je množica točk

$$\mathcal{C}_P = \{A \in \mathbb{P}^2, P(A) = 0\}.$$

Kubična krivulja

Kubična krivulja je algebraična krivulja, podana s homogenim polinomom stopnje 3. V splošnem je polinom oblike

$$a_{300}x^3 + a_{210}x^2y + a_{201}x^2z + a_{120}xy^2 + a_{102}xz^2 + + a_{012}yz^2 + a_{030}y^3 + a_{003}z^3 + a_{111}xyz + a_{021}y^2z,$$

kjer so $a_{ijk} \in \mathbb{F}$. Ta zapis vsebuje 10 koeficientov, vendar se lahko v gladkih primerih polinom poenostavi z ustrezno zamenjavo spremenljivk.

Osnovni pojmi

Gladkost

Algebraična krivulja je gladka, če nima singularne točke.

Izrek

Enačbo gladke kubične krivulje nad algebraično zaprtim poljem lahko zapišemo v Weierstrassovi obliki

$$y^2z = x^3 + axz^2 + bz^3.$$

Zgled v projektivni ravnini z = 1

Slika: $y^2 = x^3 - x$

Slika: $y^2 = x^3 + x$

Grupa nad kubičnimi krivuljami

Za definicijo grupe na kubičnih krivuljah nad $\mathbb C$ najprej uvedimo pomožno operacijo

$$*: \mathcal{C}_P \times \mathcal{C}_P \to \mathcal{C}_P$$
,

tako da za poljubni točki A, B na krivulji velja:

$$A*B = \begin{cases} A & \text{ \'e je } A = B \text{ prevoj,} \\ C & \text{ \'e je } \overline{AB} \cap \mathcal{C}_P = \{A,B,C\}\,, \\ A & \text{ \'e je } \overline{AB} \text{ tangenta v } A, \text{ ter } A \neq B, \\ B & \text{ \'e je } \overline{AB} \text{ tangenta v } B, \text{ ter } A \neq B, \\ C & \text{ \'e je } A = B \text{ in } \{\text{tangenta v } A\} \cap \mathcal{C}_P = \{A,C\}\,. \end{cases}$$

Grupa nad kubičnimi krivuljami

Izrek

Kubična krivulja ($\mathcal{C}_P,+$) je Abelova grupa za operacijo

$$+: \mathcal{C}_P \times \mathcal{C}_P \rightarrow \mathcal{C}_P$$

 $(A,B) \mapsto (A*B)*O$

kjer je O poljubna izbrana točka na krivulji \mathcal{C}_P .

Opomba

Za kubično krivuljo v Weierstrassovi obliki za točko O ponavadi izberemo takoimenovano točko v neskončnosti, oblike [0,1,0], ki jo označimo $z \infty$.

Eliptične krivulje mod n

Za dani števili $a,\ b\in\mathbb{Z}/p\mathbb{Z}$ je $kubična\ krivulja$ nad poljem $\mathbb{Z}/p\mathbb{Z}$ množica točk

$$E_{(a,b)}(\mathbb{Z}/p\mathbb{Z}) = \left\{ [x,y,z] \in \mathbb{P}^2(\mathbb{Z}/p\mathbb{Z}) : y^2z = x^3 + axz^2 + bz^3 \right\}.$$

Drugače povedano, afina kubična krivulja je množica rešitev Weierstrassove enačbe

$$y^2 = x^3 + ax + b,$$

pri čemer upoštevamo zvezo med afinimi in projektivnimi koordinatami točk:

$$(x,y) \in (\mathbb{Z}/p\mathbb{Z})^2 \Leftrightarrow [x,y,1] \in \mathbb{P}^2(\mathbb{Z}/p\mathbb{Z}).$$

Delitelji

Delitelj

Naj bo K polje in naj bo P točka na krivulji $E(\overline{K})$. Za vsako točko P definirajmo formalen simbol [P]. Delitelj D na krivulji E je končna linearna kombinacija takih simbolov s celoštevilskimi koeficienti

$$D=\sum_{i}a_{j}[P_{j}],\ a_{j}\in\mathbb{Z}_{.}$$

Definicija

Definirajmo vsoto in stopnjo delitelja kot

$$\operatorname{\mathsf{sum}}(\sum_j a_j[P_j]) = \sum_j a_j P_j \in E(\overline{K}),$$
 $\operatorname{\mathsf{deg}}(\sum_i a_j[P_j]) = \sum_i a_j \in \mathbb{Z}.$

Definicija

Naj bo E eliptična krivulja nad poljem K. Funkcija na E je racionalna funkcija

$$f(x,y) \in \overline{K}$$

ki je definirana za vsaj eno točko na $E(\overline{K})$. Funkcija torej zavzame vrednosti v \overline{K} .

Trditev

Naj bo P točka na krivulji E. Potem obstaja funkcija u_P , kateri rečemo uniformizator, z lastnostjo $u_P(P)=0$, za katero velja, da lahko vsako funkcijo f(x,y) nad E zapišemo kot

$$f=u_P^rg, \ ext{\it za nek } r\in \mathbb{Z}, \ ext{\it kjer } g(P)
eq 0 \ ext{\it in } rac{1}{g(P)}
eq 0.$$

Definicija

Številu r iz trditve rečemo red funkcije f v točki P in ga označimo z $ord_P(f)$.

Definicija

Naj bo f funkcija nad E, ki ni identično enaka 0. Definirajmo delitelj funkcije f kot

$$div(f) = \sum_{P \in E(\overline{K})} ord_P(f)[P] \in Div(E).$$

Endomorfizem

Definicija

Naj bo K polje nad katerim je definirana eliptična krivulja E. Endomorfizem na E je homomorfizem $\alpha: E(\overline{K}) \to E(\overline{K})$, ki je podan z racionalno funkcijo. Torej obstajata racionalni funkciji R_1 in R_2 s koeficienti v \overline{K} za kateri velja

$$\alpha(x,y)=(R_1(x,y),R_2(x,y)),$$

za vse $(x,y) \in E(\overline{K})$.

Standardizirana oblika

Endomorfizem lpha lahko zapišemo v standardizirani obliki

$$\alpha(x,y)=(r_1(x),r_2(x)y), \text{ kjer je} r_1(x)=\frac{p(x)}{q(x)}.$$

Definicija

Stopnja endomorfizma je definirana kot

$$deg(\alpha) = egin{cases} \max\{\deg p(x),\deg q(x)\} & \check{c}e \ lpha \not\equiv 0, \\ 0 & \check{c}e \ lpha \equiv 0. \end{cases}$$

Definicija

Netrivialni endomorfizem α je separabilen, če je odvod $r'_1(x) \not\equiv 0$.

Diffie-Hellmanova izmenjava ključev nad eliptičnimi krivuljami

- Alice in Bob se dogovorita za elitpično krivuljo E nad končnim obsegom \mathbb{F}_a , ter za točko $P \in E(\mathbb{F}_a)$.
- ② Alice se odloči za naklučno skrivno število $a \in \mathbb{N}$, in izračuna $P_a = aP$, ter to pošlje Bobu.
- **3** Bob se odloči za naključno skrivno število $b \in \mathbb{N}$, in izračuna $P_b = bP$, ter to pošlje Alice.
- 4 Alice izračuna $aP_b = abP$.
- **1** Bob izračuna $bP_a = baP$.

Problem diskretnega logaritma

Definicija

Naj bosta $a,b\in\mathbb{N}$, ter naj bo p praštevilo. Iščemo število k tako da bo

$$a^k \equiv b \pmod{p}$$
.

Problem Diffie-Hellmanove izmenjave ključev lahko prevedemo na problem diskretnega logaritma na sledeč način

- Vzemi aP in izračunaj a tako, da rešiš problem diskretnega logaritma.
- Izračunaj a(bP).

Velja torej:

$$DL \Rightarrow DH$$

Napadi na diskretni logaritem

- Index Calculus
- Mali korak velik korak
- Pollar rho
- Pollar lambda
- Pohlig-Hellman

Index Calculus

Pričakovana časovna zahtevnost algoritma je $O(e^{\sqrt{2\ln p \ln \ln p}})$.

Definicija

Naj bo p praštevilo in naj bo g generator grupe \mathbb{F}_p^{\times} . Naj L(h) označuje vrednost, da velja

$$g^{L(h)} \equiv h \pmod{p}$$
.

Očitno velja $L(h_1h_2) = L(h_1) + L(h_2) \pmod{p}$.

Ideja napada:

Izračunaj L(I) za dovolj praštevil I, da lahko iz tega izračunaš L(h) za poljuben h.

Torzijske točke

Definicija

Naj bo E eliptična krivulja nad poljem K, ter naj bo $n \in \mathbb{N}$. Torizjske točke so množica

$$E[n] = \{ P \in E(\overline{K}) | nP = \infty \}.$$

Izrek

Naj bo E eliptična krivulja nad poljem K in naj bo $n \in \mathbb{N}$. Če karakteristika polja K ne deli n, ali je enaka 0 potem

$$E[n] \cong \mathbb{Z}_n \oplus \mathbb{Z}_n$$

Definicija

Naj bo K polje in naj bo $n \in \mathbb{N}$ tak, da karakteristika K ne deli n.

$$\mu_n = \{ x \in \overline{K} | x^n = 1 \}$$

je grupa n-tih korenov enote grupe \overline{K} .

Weilovo parjenje

Trditev

Naj bo E eliptična krivulja definirana nad poljem K, in naj bo $n \in \mathbb{N}$. Predpostavimo, da karakteristika polja K ne deli n. Potem obstaja Weilovo parjenje

$$e_n: E[n] \times E[n] \rightarrow \mu_n,$$

za katerega velja:

• e_n je bilinearna v obeh spremenljivkah

$$e_n(S_1 + S_2, T) = e_n(S_1, T)e_n(S_2, T)$$

in

$$e_n(S, T_1 + T_2) = e_n(S, T_1)e_n(S, T_2)$$

za vse $S, S_1, S_2, T, T_1, T_2 \in E[n]$.

Trditev (nadaljevanje)

- e_n je nedegenerirana v obeh spremenljivkah. To pomeni če je $e_n(S,T)=1$ za vse $T\in E[n]$ potem $S=\infty$, ter obratno.
- $e_n(T,T) = 1$ za vse $T \in E[n]$
- $e_n(T,S) = e_n(S,T)^{-1}$ za vse $S,T \in E[n]$
- $e_n(\rho S, \rho T) = \rho(e_n(S, T))$ za vse avtomorfizme ρ iz \overline{K} , za katere je ρ identiteta na koeficientih E.
- $e_n(\alpha(S), \alpha(T)) = e_n(S, T)^{deg(\alpha)}$ za vse separabilne endomorfizme α polja E.

Posledica

Naj bosta T_1, T_2 baza E[n]. Potem je $e_n(T_1, T_2)$ generator grupe μ_n .

MOV napad

MOV napad uporabi Weilovo parjenje, da pretvori problem diskretnega logaritma iz $E(\mathbb{F}_q)$ v problem diskretnega logaritma nad $\mathbb{F}_{q^m}^{\times}$. Nato pa diskretni logaritem nad novim poljem napademo z Index calculus napadom. To deluje če velikost polja \mathbb{F}_{q^m} ni dosti večja od velikosti polja \mathbb{F}_q . Postopek napada sledi poteku dokaza naslednje trditve.

Trditev

Naj bo E eliptična krivulja nad \mathbb{F}_q . Naj bosta $P,Q\in E(\mathbb{F}_q)$, ter naj bo N red točke P. Predpostavimo, da velja $\gcd(N,q)=1$. Potem obstaja tako število k, da velja Q=kP natanko tedaj ko $NQ=\infty$ in $e_N(P,Q)=1$.

MOV napad

Izberi *m* tako, da

$$E[N] \subset E(\mathbb{F}_{q^m}).$$

Ker imajo vse točke E[N] koordiante v $\overline{\mathbb{F}_q} = \cup_{j \geq 1} \mathbb{F}_{q^j}$ tak m obstaja. Prav tako je μ_N v \mathbb{F}_{q^m} .

- **1** Izberi točko $T \in E(\mathbb{F}_{q^m})$.
- 2 Izračunaj red M točke T.
- **3** Naj bo $d = \gcd(M, N)$ in naj bo $T_1 = (M/d)T$. Potem ima T_1 red, ki deli N, torej je $T_1 \in E[N]$.
- ullet Izračunaj $\zeta_1=e_N(P,T_1)$ in $\zeta_2=e_N(Q,T_1)$. Tu sta ζ_1 in ζ_2 v $\mu_d\subset \mathbb{F}_{q^m}^{ imes}$.
- **3** Reši problem diskretnega logaritma $\zeta_2 = \zeta_1^k$ v $\mathbb{F}_{q^m}^{\times}$. To nam da k mod d.
- O Ponovi za različne točke T dokler ni k določen.