

Studiengang Informatik

Diplomanden **Gabriel Nobel** Rebekka von Wartburg-Kottler

Supervisor Prof. Thilo Stadelmann Pascal Sager

Institut / Zentrum Center for Artificial Intelligence

Recent advances in artificial intelligence (AI) have boosted progress across various domains, particularly enabling breakthroughs in the discipline of Natural Language-Instructed Autonomous Agents for Computer Control (A2C2s). Due to their capabilities of understanding natural language and executing actions the same way a human would, these agents have the potential to significantly simplify human-machine interaction, reduce resource requirements in business, and empower non-technical users to operate computer systems effortlessly.

Problem Statement

- What does the research landscape look like, and how can it be categorized to gain a clear and valuable overview?
- What are the strengths and potentials of existing systems, and how can they be exploited?
- Which **challenges** are known to be **unsolved** and could lead to breakthroughs in the field if solved?
- What does the look like proposed system, based on well-founded knowledge in this field and ideally representing a further step towards A2C2?

Input

instruction? - can be affected by wording, precision and completeness.

Observation Space – what does the agent perceive?

- Textual (API, HTML): structured, interpretable, domain-dependent
- Multimodal (Text+Image): structured,
- Preprocessed (Minecraft): clear action space, not generalizable

Background

The research area has made a clear transition from reinforcement learning to language models to more advanced multimodal models. The impact of generative models is highly visible.

Learning

Neural learning – how can the model weights be adjusted?

- RL: predefined policy, n
- Fine-Tuning: iterative, few

Memory – how is an external knowledge base built?

- Natural Language: comprehensible, difficult to query
- Embedding: semantic query, flexible, integrated in models,
- Symbolic DB: structured, stable,

Taxonomy

- Input providing information to the agent
- **Learning** refining skills and building knowledge
- Input Decomposition ensuring task comprehensibility
- Plan Refinement debating and refining subtasks
- System Output interacting with the environment

Instruction Space – what is the user

- Pixel-Based (Screenshot, Video): generalizable, large possible action space
- generalizable, domain-dependent

Input Input Decomposition Learning System Output Plan Refinement

Conclusion

Our proposed architecture, contains identified strengths and further research areas like security, performance, and personalization optimizations.

System Output

IO Peripherals: generalizable, large action

Executable Code: execute actions independently (task & domain), less

Tool usage: reduces complexity,

SYNAPSE

Pinnacle Methods

Input Decomposition

	Size (KB)	Actions	tokens
raw HTML	224	1331 tags	76485
raw image	530	2400 x 1080px	425
filtered HTML	20	41 tags	6178
processed image	530	91 elements	425
inferred representation	2	48 elements	797
Input Decomposition can be divided into dynamic			

Input Decomposition can be divided into dynamic action inference – how can the observation space be simplified? – and subtask inference – how can a complex instruction be partitioned?

Plan Refinement

Open loop reasoning – how good is the plan in itself? - can correct a plan through few-shot examples without feedback.

Multiagent reasoning – how good is the plan if compared? – introduces debating and independent control agents.

Closed loop reasoning – what if an unexpected behavior occurs? – adds refinement via environment- and human feedback.