Análisis

Borja Fernández Merchán

November 2019

1 Producto vectorial

Sea la entrada de datos una matriz cuadrada M de orden $3*10^4$, y un vector V de $3*10^4$ elementos, las métricas obtenidas del cálculo de su producto vectorial, tal que MxV = W, según el número de hilos entre los que se reparte la tarea, y el sistema operativo empleado, son los que siguen.

2 Tablas

Número de hilos	Sistema Operativo	Pico de % de uso CPU
1	Windows10	75%
1	Fedora28	75%
2	Windows10	82%
2	Fedora28	72%
4	Windows10	89%
4	Fedora28	75%
8	Windows10	100%
8	Fedora28	100%
16	Windows10	100%
16	Fedora28	100%

Table 1: Tabla de picos de uso de CPU

Número de hilos	Sistema Operativo	Tiempo de ejecución
1	Windows10	10844ms
1	Fedora28	$10894 \mathrm{ms}$
2	Windows10	$5541 \mathrm{ms}$
2	Fedora28	$5505 \mathrm{ms}$
4	Windows10	$3030 \mathrm{ms}$
4	Fedora28	$3081 \mathrm{ms}$
8	Windows10	$2063 \mathrm{ms}$
8	Fedora28	$9281 \mathrm{ms}$
16	Windows10	$2004 \mathrm{ms}$
16	Fedora28	$2958 \mathrm{ms}$

Table 2: Tabla de tiempos de ejecución

- 3 Tabla de tiempo
- 4 Gráfica CPU
- 5 Gráfica Tiempos

6 Impresiones

Aumentando el número de hilos que dedicamos a la tarea se puede observar cómo, aprovechando mejor el rendimiento de la CPU (aumentando su % de uso) podemos reducir significativamente el tiempo de ejecución del problema. La diferencia, por lo general, entre Windows10 y Fedora28 es mínima. Sin embargo, para obtener unos tiempos razonables y parecidos a obtenidos en W10 (no hay más que ver el extraño pico generado al usar 8 hilos) hemos tenido que correr muchas más iteraciones del problema que en este, donde los resultados eran mucho más uniformes a través de las iteraciones.

Esto puede deberse a la diferente gestión (o una diferente traducción de los hilos de la JVM a los del OS huésped) de los hilos que implementan los sistemas Linux y Windows.

Relacion de picos de uso de CPU

Figure 1: Gráfica de uso de CPU

Figure 2: Gráfica de tiempos de ejecución