

安路科技 EG4D20 FPGA 数据手册

DS004 (v1.0) 2016年12月

目 录

目 录	······································
1 简介	
? 硬件设计	
2.1 FG4D20FG176 引脚列害	
2.1 EG4D20EG176 扩展尺寸	
	14
4.1 付% IF 使用	

DS004 (v1.0) 2016年12月

1 简介

1.1 EAGLE 器件系列特性

- 灵活的逻辑结构
 - 等效 23,520 个 4 输入查找表(LE).
- 低功耗器件
 - 先进的 55nm 低功耗工艺
 - 静态功耗低至 5mA
- 丰富的片内存储空间
 - 等效 23.520 个 4 输入查找表(LE)
 - 128Mb DDR SDRAM 存储空间
 - 最大 156.8Kb 分布式 RAM
 - 64 块 9Kb 嵌入式 RAM(EMB9K),16 块 32Kb 嵌入式 RAM
- 可配置逻辑模块(PLBs)
 - 优化的 LUT4/LUT5 组合设计
 - 双端口分布式存储器
 - 支持算数逻辑运算
 - 快速进位链逻辑
- 嵌入式乘法器
 - 29个18 x 18乘法器,支持9 X9模式
 - 最高 250MHz
- 源同步输入/输出接口
 - 输入/输出单元包含 DDR 寄存器
 - Generic DDRx1
 - Generic DDRx2
- BSCAN
 - 兼容 IEEE-1149.1

- 高性能,灵活的输入/输出缓冲器
 - 支持热插拔
 - 可配置上拉/下拉模式
 - 片内 100 欧姆差分电阻
 - 可配置施密特触发器,最大 0.5V 迟滞
- 时钟资源
 - 16个全局时钟
 - 4个 PLLs 用于频率综合
 - 5路时钟输出
 - 分频系数 1 到 128
 - 支持 5 路时钟输出级联
 - 动态相位选择
- 嵌入式硬核 IP
 - ADC
 - 12 比特逐次逼近寄存器型(SAR)
 - 8个模拟输入
 - 1MHz 采样速率 (MSPS)
 - 集成电压监控模块
 - 内置环形振荡器
- 配置模式
 - 主模式串行 SPI (MSPI)
 - JTAG 模式 (IEEE-1532)
 - 支持双启动和多启动模式
- 封装
 - TQFP176

表 1-1 EG4D20 器件资源

General feature	EG4D20EG176		
Number of FFs	19,800		
Number of LUTS	23,520		
Number of Dis-Ram bits	156,800		
Number of EMB (9k)	64		
Number of EMB (32k)	16		
Total EBR bits	1,114,112		17-12
Number of M18x18	29		
Total Configuration SRAM (bits)	4,988,928	\wedge	
PLL	4	-XX	,
Low-skew gclock in chip	16	XXX	
EM DDR SDRAM	8M X 16bits		
User IO Banks	8	7	
Maximum user IOs	135	7/	

表 1-2 EG4D20 FPGA 封装

Packages		EG4D20EG176		
176TQFP (20x20, 0.4mm pitch)	X	135/24 (注)	
	~ /			
() \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	J			

注:表示用户可用 IO 数/用户可用差分输出(LVDS)对

1.2 EG4D20 器件特色

安路最新的 EG4D20 FPGA,是基于安路成熟可靠的低成本、低功耗可编程 FPGA EG4X20,采用最新的 3D 合封技术,与一块 8M X 16bits 的 DDR SDRAM 合封而成。EG4D20 FPGA 拥有更小,更简单可靠的器件封装,更大的内嵌存储容量,特别适用于大容量,高速数据的采集、传输和变换等应用。

特色优势

- ◆ 多品种,大容量的内置存储空间
 - 内置 128Mb SDRAM 存储空间,16 位数据总线宽度,最高 200Mhz 工作频率,最大读写带宽高达 800MB/s
 - 内置 64 块 EMB9K 随机读写 RAM,可配置为真双口,简单双口,单口 RAM 和 FIFO 工作模式,位宽可配置为 512x18, 1Kx9, 2Kx4, 4Kx2, 8Kx1, 最高频率 250Mhz
 - 内置 16 块 32Kb RAM, 可配置为单口 RAM, 双口 RAM, 可独立配置为 2Kx16 或者 4Kx8
- ◆ 更小封装, 更多 IO, 更利于 PCB 布线的引脚排布
 - eLQFP176 封装, EPAD 接地, 最多达 135 个用户 IO
 - 最多支持 24 对 True LVDS, 最高频率 800Mbps
 - eLQFP144 封装为 0.4mm 引脚间距, 20mm X 20mm
 - 优化的引脚排布,使得只需要两层 PCB 即可轻松使用器件所有 IO
 - 支持简单低成本的 SPI FLASH 配置;上电配置后,FLASH 可作为用户使用

2 硬件设计

2.1 EG4D20EG176 引脚列表

表 2-1 EG4D20EG176 FPGA 引脚列表

IO BANK (注6)	名称	引脚 号	最小系统需要 (注5)	第二功能	功能描述
BANK1	VCC	1	是 <i>(注3)</i>		内核电源
BANK1	IO	2		LVDS1_N	通用 IO
BANK1	IO	3		LVDS1_P	通用 IO
BANK1	IO	4		LVDS24_N	通用 IO
BANK1	DDR_VREF	5	是		DDR 参考电 压,1/2 VDD
BANK1	IO	6		LVDS24_P	通用 IO
BANK1	VCCIO1	7	是	-1/1	2.5V BANK1 IO 电源 <i>(注4)</i>
BANK1	IO	8		TX	通用 IO
BANK1	GND	9	是		芯片地
BANK1	IO	10		DONE/LVDS2_P (注1)	配置完成/通用 IO
BANK1	IO	11		LVDS2_N	通用 IO
BANK1	VCCIO1	12	是		2.5V BANK1 IO 电源
BANK1	GND	13	是		芯片地
BANK1	10	14		LVDS3_P	通用 IO
BANK1	IO.	15		LVDS3_N	通用 IO
BANK1	IO	16		LVDS4_N	通用 IO
BANK1	IO	17		LVDS4_P	通用 IO
BANK1	VCCIO1	18	是		2.5V BANK1 IO 电源
BANK1	IO	19			通用 IO
BANK1	VCC	20	是		内核电源
BANK1	GND	21	是		芯片地
BANK2	IO	22		GCLKIOL_5/LVDS5_P (注 2)	通用 IO
BANK2	IO	23		GCLKIOL_4/LVDS5_N	通用 IO

	BANK2	VCCIO2	24	是		2.5V BANK2 IO 电源
ŀ	BANK2	IO	25		GCLKIONL_6	通用 IO
Ī	BANK2	IO	26		LVDS6_P	通用 IO
Ī	BANK2	IO	27		LVDS6_N	通用 IO
ľ	BANK2	IO	28		LVDS7_P	通用 IO
İ	BANK2	IO	29		LVDS7_N	通用 IO
	BANK2	IO	30		LVDS8_N	通用 IO
	BANK2	IO	31		LVDS8_P	通用 IO
	BANK2	IO	32		_ (/)	通用 IO
	BANK2	GND	33	是	/2,/	芯片地
	BANK2	VCCIO2	34	是	XXX	2.5V BANK2 IO 电源
	BANK2	IO	35			通用 IO
Ī	BANK2	IO	36		LVDS9_N	通用 IO
Ī	BANK2	IO	37		LVDS9_P	通用 IO
	BANK2	GND	38	是		芯片地
Ī	BANK2	IO	39			通用 IO
	BANK2	VCCIO2	40	是		2.5V BANK2 IO 电源
ľ	BANK2	IO	41		LVDS10_N	通用 IO
Ī	BANK2	IO	42		LVDS10_P	通用 IO
	BANK2	IO	43	是	JTAG_TDO	JTAG 接口/通用 IO
	BANK2	IO	44	是	JTAG_TMS	JTAG 接口/通用 IO
	BANK3	VCCAUX	45	是		辅助电源
	BANK3	IO	46	是	JTAG_TDI	JTAG 接口/通用 IO
	BANK3	IO	47	是	JTAG_TCK	JTAG 接口/通用 IO
ľ	BANK3	VCC	48	是		内核电源
f	BANK3	IO	49		ELVDS1_N	通用 IO
f	BANK3	IO	50		ELVDS1_P	通用 IO
	BANK3	IO	51		ELVDS2_N	通用 IO
_						

	BANK3	IO	52		ELVDS2_P	通用 IO
-	BANK3	IO	53		ELVDS3_P	通用 IO
-	BANK3	IO	54		ELVDS3_N	通用 IO
-	BANK3	IO	55			通用 IO
-	BANK3	IO	56			通用 IO
-	BANK3	IO	57		ELVDS4_N	通用 IO
-	BANK3	IO	58		ELVDS4_P	通用 IO
-	BANK3	VCCIO3	59	是		BANK3 IO 电源
-	BANK3	IO	60		GCLKIOB_4/ ELVDS5_N	通用 IO
-	BANK4	IO	61		GCLKIB_5/ELVDS5_P	通用 IO
-	BANK4	IO	62		GLKIOB_2/ELVDS6_N	通用 IO
-	BANK4	IO	63		GCLKIOB_3/ELVDS6_P	通用 IO
-	BANK4	IO	64		1/	通用 IO
-	BANK4	VCC	65	是		内核电源
-	BANK4	IO	66		BAL	通用 IO
-	BANK4	VCCIO4	67	是		BANK4 IO 电源
-	BANK4	IO	68		ELVDS7_P	通用 IO
	BANK4	IO	69		ELVDS7_N	通用 IO
	BANK4	IO	70		ELVDS8_P	通用 IO
	BANK4	IO	71	X	ELVDS8_N	通用 IO
-	BANK4	IO	72	7		通用 IO
-	BANK4	IO	73		ELVDS9_N	通用 IO
-	BANK4	IO	74		ELVDS9_P	通用 IO
-	BANK4	IO	75		ELVDS10_N	通用 IO
-	BANK4	IO	76		ELVDS10_P	通用 IO
-	BANK4	IO	77		ELVDS11_N	通用 IO
-	BANK4	IO	78		ELVDS11_P	通用 IO
-	BANK4	IO	79		ELVDS12_P	通用 IO
-	BANK4	VCCIO4	80	是		BANK4 IO 电源
-	BANK4	IO	81		ELVDS12_N	通用 IO
	BANK4	IO	82		ELVDS13_N	通用 IO
ļ	BANK4	Ю	83		ELVDS13_P	通用 IO
L			l	l		i

BANK4	IO	84		ELVDS14_N	通用 IO
BANK4	VCC	85	是		内核电源
BANK4	IO	86		ELVDS14_P	通用 IO
BANK4	VCCAUX	87	是		辅助电源
BANK4	Ю	88		HSWAPEN	程序加载时 IO 状态选择 /通用 IO
BANK5	IO	89		LVDS11_N	通用 IO
BANK5	IO	90		LVDS11_P	通用 IO
BANK5	IO	91		IO	通用 IO
BANK5	VCC	92	是	<u> </u>	核心电源
BANK5	IO	93		LVDS12_P	通用 IO
BANK5	IO	94		LVDS12_N	通用 IO
BANK5	IO	95		LVDS13_N	通用 IO
BANK5	VCCIO5	96	是		2.5V BANK5 电 源
BANK5	IO	97		LVDS13_P	通用 IO
BANK5	IO	98		LVDS14_P	通用 IO
BANK5	IO	99		LVDS14_N	通用 IO
BANK5	IO	100		LVDS15_P	通用 IO
BANK5	IO	101	X	LVDS15_N	通用 IO
BANK5	IO	102	7	LVDS16_N	通用 IO
BANK5	Ю	103		LVDS16_P	通用 IO
BANK5	IO	104			通用 IO
BANK5	VCCIO5	105	是		2.5V BANK5 电 源
BANK5	IO	106		LVDS17_P	通用 IO
BANK5	IO	107		LVDS17_N	通用 IO
BANK5	VCCIO5	108	是		2.5V BANK5 电 源
BANK5	IO	109			通用 IO
BANK5	IO	110		LVDS18_N	通用 IO
BANK5	IO	111		LVDS18_P	通用 IO
BANK5	IO	112			通用 IO
		l	1		1

	BANK6	VCC	113	是		核心电源
	BANK6	IO	114			通用 IO
İ	BANK6	IO	115			通用 IO
Ī	BANK6	GND	116	是		芯片地
	BANK6	VCCIO6	117	是		2.5V BANK6 电
						源
	BANK6	IO	118			通用 IO
Ī	BANK6	IO	119		,	通用 IO
Ī	BANK6	VCCIO6	120	是		2.5V BANK6 IO
						电源
	BANK6	IO	121		LVDS19_P	通用 IO
	BANK6	IO	122		LVDS19_N	通用 IO
	BANK6	IO	123		LVDS20_N	通用 IO
	BANK6	IO	124		LVDS20_P	通用 IO
İ	BANK6	VCCIO6	125	是	-XIV	2.5V BANK6 IO
						电源
	BANK6	IO	126		LVDS21_P	通用 IO
	BANK6	IO	127		LVDS21_N	通用 IO
	BANK6	VCC	128	是		核心电源
Ī	BANK6	IO	129		LVDS22_N	通用 IO
	BANK6	IO	130		LVDS22_P	通用 IO
İ	BANK6	IO	131	7	LVDS23_P	通用 IO
-	BANK6	IO	132		LVDS23_N	通用 IO
ŀ	BANK7	IO	133		ELVDS15_P	通用 IO
f	BANK7	IO	134	是	PROGRAM_B/	通用 IO/芯片复
					ELVDS15_N	位
-	BANK7	VCCAUX	135	是		辅助电源
4	BANK7	IO	136		ELVDS16_P	通用 IO
	BANK7	VCC	137	是		核心电源
-	BANK7	IO	138		ELVDS16_N	通用 IO
-	BANK7	IO	139		INITB/ELVDS17_P	通用 IO
ŀ	BANK7	IO	140		CSO_B/ELVDS17_N	FLASH 片选/通
						用 IO
	BANK7	IO	141			通用 IO
L		I .		l .		ı

	BANK7	VCCIO7	142	是		BANK7 IO 电源
f	BANK7	IO	143			通用 IO
F	BANK7	IO	144		ELVDS18_P	通用 IO
F	BANK7	IO	145		ELVDS18_N	通用 IO
f	BANK7	IO	146		ELVDS19_P	通用 IO
f	BANK7	IO	147		ELVDS19_N	通用 IO
f	BANK7	IO	148			通用 IO
ŀ	BANK7	IO	149		ELVDS20_P	通用 IO
ŀ	BANK7	IO	150		ELVDS20_N	通用 IO
f	BANK7	IO	151		7	通用 IO
f	BANK7	IO	152		ELVDS21_P	通用 IO
ŀ	BANK7	IO	153		ELVDS21_N	通用 IO
f	BANK7	VCCIO7	154	是	1/	BANK7 IO 电源
f	BANK7	IO	155		ELVDS22_N	通用 IO
f	BANK7	IO	156		ELVDS22_P	通用 IO
f	BANK7	IO	157		GCLKIOT_7	通用 IO
f	BANK7	IO	158		GCLKIOT_4/ELVDS23_N	通用 IO
f	BANK7	IO	159		GCLKIOT_5/ELVDS23_P	通用 IO
f	BANK7	VCCIO7	160	是		BANK7 IO 电源
f	BANK7	IO	161	X	GCLKIOT_0	通用 IO
f	BANK7	IO	162	7	GCLKIOT_3/ELVDS24_P	通用 IO
f	BANK7	Ю	163		GCLKIOT_2/ELVDS24_N	通用 IO
f	BANK8	VCC	164	是		核心电源
	BANK8	IO	165		D0_DIN_MISO	FLASH 数据输 出/通用 IO
	BANK8	IO	166		MOSI_CSI_B	FLASH 数据输 入/通用 IO
f	BANK8	VCCIO8	167	是		BANK8 IO 电源
	BANK8	IO	168		CCLK	FLASH 时钟/通 用 IO
	BANK8	IO	169		M0	模式选择/通用 IO
	BANK8	IO	170		M1/ADC_CH_0	模式选择/ADC 输入/通用 IO

BANK8	VCCIO8	171	是		BANK8 IO 电源
BANK8	ADC_REF	172	是		ADC 参考电压 输入
					柳八
BANK8	IO	173		ADC_CH_4	ADC 输入/通用
					IO
BANK8	Ю	174			通用 IO
BANK8	VCCAUX	175	是		辅助电源
BANK8	IO	176		GPLL1_CLKIN1/ADC_CH_6	ADC 输入/通用
					IO
BANK8	GND	177	是		芯片地 PAD

- 注1: 可通过软件配置,使 FPGA 在上电配置后,这些引脚可以作为用户 IO 使用。
- 注 2: 参考 EG4 FPGA 手册可知,DPCLK,GCLKIO,GPLL_CLKIN 均可作为 PLL 专用时钟输入,输入延时固定。
- 注 3: 这些引脚为芯片最小系统需求,必须保证这些引脚正确连接,芯片才能正常工作。
- 注 4: BANK1, BANK2, BANK5, BANK6必须使用 2.5V 电压, 其他 BANK 可支持 1.2V,
- 1.5V, 1.8V, 2.5V, 3.3V IO 电平。

2.2 EG4D20EG176 封装尺寸

SYMBOL	MILLIMETER				
31MBOL	MIN	NOM	MAX		
Α	_	_	1.60		
A1	0.05	0.10	0.15		
A2	1.30	1.40	1.50		
A3	0.59	0.64	0.69		
ь	0.14	_	0.22		
b1	0.13	0.16	0.19		
С	0.13		0.17		
c1	0.12	0.13	0.14		
D	21.80	22.00	22.20		
D1	19.90	20.00	20.10		
E	21.80	22.00	22.20		
E1	19.90	20.00	20.10		
е		0.40BSC			
L	0.45	0.60	0.75		
L1		1.00REF			
θ	0	_	7°		

(a(1)	D2	E2
236*236	6.00REF	6.00REF
200*200	7.00REF	7.00REF

2.3 EG4D20EG176 最小硬件系统

EG4D20EG176 FPGA 要正常工作,需要保证如表 2-1 所示的最小系统需要相关的引脚都正确的连接。硬件设计实例请参考附录 EG4D20EG176_FPGA_CORE.pdf。

3 使用内部 DDR SDRAM

EG4D20 内嵌一片 8M X 16bit 的 SDRAM,最高 200Mhz 工作频率,最大读写带宽高达 800MB/s。SDRAM 与 FPGA 通过软件深度整合,所以如果要使用 SDRAM,只需要在顶层实例化如下 IP 模块即可。该 IP 的原型如下:

module EG_PHY_SDRAM_128 (

clk,	差分时钟正端		
clk_n,	差分时钟负端		
ras_n,	行选通信号		
cas_n,	列选通信号		
we_n,	写使能信号		
cs_n,	芯片片选信号		
addr,	行列地址信号		
ba,	BANK 地址信号		
dq,	读写双向数据		
ldqs,	低字节数据选通信号		
udqs,	高字节数据选通信号		
ldm,	低字节数据屏蔽信号		
udm,	高字节数据屏蔽信号		
cke	时钟使能信号);		

表 3-1 SDRAM 引脚分配

SDRAM 引脚名称	SDRAM 引脚描述	引脚连接	数据方向
DQ0	数据脚 0	与 IP 相连	双向
DQ1	数据脚 1	与IP相连	双向
DQ2	数据脚 2	与 IP 相连	双向
DQ3	数据脚 3	与 IP 相连	双向
DQ4	数据脚 4	与IP相连	双向
DQ5	数据脚 5	与IP相连	双向
DQ6	数据脚 6	与IP相连	双向
DQ7	数据脚7	与 IP 相连	双向
DQ8	数据脚 8	与 IP 相连	双向
DQ9	数据脚 9	与 IP 相连	双向
DQ10	数据脚 10	与 IP 相连	双向
DQ11	数据脚 11	与 IP 相连	双向
DQ12	数据脚 12	与 IP 相连	双向
DQ13	数据脚 13	与 IP 相连	双向
DQ14	数据脚 14	与 IP 相连	双向
DQ15	数据脚 15	与 IP 相连	双向
ADDR0	地址脚 0	与 IP 相连	输出
ADDR1	地址脚 1	与 IP 相连	输出
ADDR2	地址脚 2	与 IP 相连	输出
ADDR3	地址脚 3	与 IP 相连	输出
ADDR4	地址脚 4	与 IP 相连	输出
ADDR5	地址脚 5	与 IP 相连	输出

ADDR6	地址脚 6	与 IP 相连	输出
ADDR7	地址脚7	与 IP 相连	输出
ADDR8	地址脚 8	与 IP 相连	输出
ADDR9	地址脚 9	与 IP 相连	输出
ADDR10	地址脚 10	与 IP 相连	输出
ADDR11	地址脚 11	与 IP 相连	输出
BA0	BANK 地址脚 0	与IP相连	输出
BA1	BANK 地址脚 1	与IP相连	输出
WE_N	写使能	与IP相连	输出
RAS_N	行选通	与IP相连	输出
CAS_N	列选通	与 IP 相连	输出
CLK	芯片时钟正端	与IP相连	输出
CLK_N	芯片时钟负端	与 IP 相连	输出
LDQS	低字节数据选通	与 IP 相连	双向
UDQS	高字节数据选通	与 IP 相连	双向
LDM	低字节数据屏蔽	与IP相连	输出
UDM	高字节数据屏蔽	与IP相连	输出
CKE	时钟使能	与 IP 相连	输出
CS_N	芯片片选	与 IP 相连	输出

4 软件使用向导

4.1 特殊 IP 使用

- IO 延时单元,可使用该单元调节 RGMII 信号的输入延时 EG_LOGIC_IDELAY U0_EG_LOGIC_IDELAY(.i(PHY1_RXDV),.o(rxdv_int)); defparam U0_EG_LOGIC_IDELAY.INDEL = 0;
 经过此单元后起始增加 0.8ns 延时,参数用于设置延时长度,每增加 1,增加延时 0.1ns;参数调节范围为 0-31.
- 二、 输入双沿采样单元,用于对 RGMII 输入信号的双沿采样 EG_LOGIC_IDDR IDDR_0 (.q0(rxd_r2g_tmp[3]), .q1(rxd_r2g_tmp[7]), .clk(rxc), .d(rxd[3]), .rst(~rst_n));
- 三、 输出双沿驱动单元,用于对 RGMII 输出信号的双沿驱动 EG_LOGIC_ODDR ODDR_0(.q(txd[0]), .clk(txc_tmp), .d0(txd_tmp[4]), .d1(txd_tmp[0]), .rst(RST_OUT0));
- 四、 内部重启控制单元,用于程序控制芯片从 FLASH 的指定地址加载程序重新启动 EG_LOGIC_MBOOT U_EG_LOGIC_MBOOT(.rebootn(rebootn),.dynamic_addr(dynamic_addr)); 在 dynamic_addr 设置相应的启动地址,该地址为 24 位 FLASH 地址的高 8 位,然后在 rebootn 上输入低脉冲,则 触发 FPGA 重新加载程序。
- 五、 双功能引脚的设置

PROGRAM_B,CSO_B,DO_DIN_MISO,MOSI_CSI_B,CCLK,DONE,JTAG_TMS,JTAG_TCK,JTAG_TDO,JTAG_TDI 等信号以及 ADC 输入 ADC CHx 信号均可以通过软件设置为通用 IO 或者专用引脚。设置步骤如下:

1 在工程栏双击器件, 跳出第二步的器件选择界面。

2 单击 DeviceOption 框

3 跳出下图的双功能引脚设置界面后,可以在相应需要设置的引脚处设置该引脚为专用功能脚还是作为 GPIO 使用。需要特别注意 JTAG 引脚如果作为 GPIO 使用,在 FPGA 上电成功加载程序后将不能使用 JTAG 接口控制 FPGA。

18

