DPara cada NZZ especifica que grado se repite en la respectiva grafica

sular de ora	len n		
Primero lean:	s algunas graf	icas casi Irresula-	-5
n	grafica	grade repetide	grados
h= 2	0 0	1	(1,1)
n=3 1	2	1	(1,1,2)
n=4 o	3 2	2	(1, 2, 2, 3)
1=5		2	(4,3,2,2,1)
=6 z 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3	3 (1	, 2, 3, 3, 4, 5)
7=7 0-	2006	3 (6	5,4,3,3,2,1)

*apartir de aqui las graficas se me "complicaron"

n=9 4 (8,7,6,5,4,4,3,2,1)

n=16 (1,2,3,4,5,5,6,7,8,9)

(1,2,3,4,4,5,6,7)

por lo que podemes vor para el grado que se repite es

si el orden n es

o) par , es n/2

o) impa , es n-1/2

yes pa que, al ver los grados de las graticos vemos

que al pasor de en impar a par, los isuales aumentan en grado

(debido a la suma de KI) y esto solo pasa en los pares

porque al hace el complemento los grados de Goda vertice

es n-1-deg(v) y a esto se le suma 1 (la suma de KI), entonos los

repetidos solo cambian cuando nes par