# Приложения EM-алгоритма Практикум на ЭВМ, весна 2018

Попов Артём Сергеевич

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

11 марта 2018 г.

ЕМ-алгоритм

Кластеризация

Вычитание фона

Тематические модели

Мультиязычные ТМ

# ЕМ-алгоритм в общем виде

X — наблюдаемые переменные; T — скрытые;  $\Theta$  — параметры.

Тематические модели

Задача максимизации неполного правдоподобия:

$$\ln p(X|\Theta) = \ln \int p(X, T|\Theta) dT \to \max_{\Theta}$$

Преобразуем:

$$\ln p(X|\Theta) = \int \ln p(X|\Theta)q(T)dT = \int q(T) \ln \frac{p(X,T|\Theta)}{p(T|X,\Theta)} \frac{q(T)}{q(T)}dT$$

$$= \underbrace{\int q(T) \ln \frac{p(X,T|\Theta)}{q(T)}dT}_{L\{q,\Theta\}} + \underbrace{\int q(T) \ln \frac{q(T)}{p(T|X,\Theta)}dT}_{KL(q(T)||p(T|X,\Theta))} \ge L\{q,\Theta\}$$

▶ E-step: 
$$KL(q(T)||p(T|X,\Theta)) \rightarrow \min_{q(T)} \Leftrightarrow q(T) = p(T|X,\Theta)$$

▶ M-step:  $L\{q,\Theta\} \to \max_{\Theta} \Leftrightarrow \mathbb{E}_{q(T)} \ln p(X,T|\Theta) \to \max_{\Theta}$ 

### Геометрическая интерпретация оптимизационного процесса

Тематические модели



- ▶ E-step:  $KL(q(T)||p(T|X,\Theta)) \rightarrow \min_{q(T)} \Leftrightarrow q(T) = p(T|X,\Theta)$
- $\blacktriangleright \text{ M-step: } L\{q,\Theta\} \to \max_{\Theta} \Leftrightarrow \mathbb{E}_{q(T)} \ln p(X,T|\Theta) \to \max_{\Theta}$

# Модель смеси распределений

# Наблюдаемые переменные:

 $X = x_1, x_2, \dots x_N$  – выборка из смеси распределенй

# Скрытые переменные:

 $T=t_1,t_2,\ldots t_N$  – номера компонент смеси

# Параметры:

$$\Theta = \theta_1, \dots \theta_k, w_1, \dots w_k$$

**Модель:** K компонент, каждая имеет свое распределение:

$$p(x_i|t_i=j,\Theta)=p_i(x_i|\theta_i)$$

Компоненты выбираются с весами:

$$p(t_i = j | \Theta) = w_i;$$

# Если бы видели скрытые переменные...

Максимизировали бы полное правдоподобие:

$$\begin{cases} \ln p(X, T|\Theta) = \sum_{i=1}^{N} \ln p(x_i, t_i|\Theta) = \\ = \sum_{i=1}^{N} \sum_{j=1}^{k} \left[ t_i = j \right] \ln w_j p_j(x_i|\theta_j) \rightarrow \max_{\Theta} \\ \sum_{j=1}^{k} w_j = 1, \quad w_j \ge 0 \end{cases}$$

#### Оценки:

$$\sum_{i=1}^{N} [t_i = j] \ln p_j(x_i | \theta_j) \rightarrow \max_{\theta_j}; \qquad w_j = \frac{1}{N} \sum_{i=1}^{N} [t_i = j]$$

#### ... Но мы их не видим.

ЕМ-алгоритм для максимизации неполного правдоподобия:

$$\ln p(X|\Theta) = \sum_{i=1}^{N} \ln p(x_i|\Theta) = \sum_{i=1}^{N} \ln \sum_{j=1}^{k} p(x_i, t_j|\Theta) =$$

$$= \sum_{i=1}^{N} \ln \sum_{j=1}^{k} p(x_i|t_j, \Theta) p(t_j|\Theta) = \sum_{i=1}^{N} \ln \sum_{j=1}^{k} w_j p_j(x_i|\theta_j)$$

Тематические модели

$$\left\{egin{array}{l} \displaystyle\sum_{i=1}^{N} \ln \displaystyle\sum_{j=1}^{k} w_{j} p_{j}(x_{i} | heta_{j}) 
ightarrow \max_{eta} \ \displaystyle\sum_{j=1}^{k} w_{j} = 1, \quad w_{j} \geq 0 \end{array}
ight.$$

# ЕМ-алгоритм для разделения смеси

▶ E-шаг: оцениваем апостериорные распределения на скрытые переменные по формуле Байеса:

$$p(t_i = j | x_i, \Theta) = \frac{p(t_i = j | \Theta)p(x_i | t_i = j, \Theta)}{p(x_i | \Theta)} = \frac{w_j p_j(x_i | \theta_j)}{\sum_{s=1}^k w_s p_s(x_i | \theta_s)}$$

Тематические модели

▶ М-шаг: максимизируем м.о. полного правдоподобия:

$$\begin{cases} \mathbb{E}_{q(T)} \ln p(X, T|\Theta) = \mathbb{E}_{q(T)} \sum_{i=1}^{N} \ln p(x_i, t_i|\Theta) = \\ = \sum_{i=1}^{N} \sum_{j=1}^{k} p(t_i = j|x_i, \Theta) \ln w_j p_j(x_i|\theta_j) \rightarrow \max_{\Theta} \\ \sum_{j=1}^{k} w_j = 1, \qquad w_j \geq 0 \end{cases}$$

# ЕМ-алгоритм как способ решения системы уравнений

# Теорема (необходимые условия экстремума)

Точка  $\Theta = (w_j, \theta_j)_{j=1}^k$  локального экстремума  $p(X|\Theta)$ удовлетворяет системе уравнений относительно  $\Theta$  и  $G=(g_{ii})$ ,  $g_{ij} = p(t_i = j | x_i, \Theta)$ :

$$g_{ij} = \frac{w_{j}p_{j}(x_{i}|\theta_{j})}{\sum_{s=1}^{k} w_{s}p_{s}(x_{i}|\theta_{s})}, \quad i = 1, ..., m, \quad j = 1, ..., k; \text{ (E)}$$

$$\theta_{j} = \arg\max_{\theta} \sum_{i=1}^{m} g_{ij} \ln p_{j}(x_{i}|\theta), \quad j = 1, ..., k; \text{ (M)}$$

$$w_{j} = \frac{1}{m} \sum_{i=1}^{m} g_{ij}, \quad j = 1, ..., k. \text{ (M)}$$

EM-алгоритм — это метод простых итераций для её решения

ЕМ-алгоритм

00000000



# Постановка задачи кластеризации

#### Дано:

$$X = \{x_1, \dots x_N\}$$
 — обучающая выборка

#### Найти:

Y — множество кластеров

 $a: X \to Y$  — сопоставление объектов кластерам

- ▶ Каждый кластер состоит из похожих объектов
- Объекты в разных кластерах сильно различаются
- 1. Нет чёткой постановки задачи  $\Rightarrow$  нет правильного решения
- 2. Число кластеров обычно не известно заранее, но часто задаётся исследователем
- 3. Кластеризация может быть жёсткой (одному объекту один кластер) или мягкой (объект принадлежит кластеру с некоторой вероятностью)

Модельная задача: сколько кластеров?



#### Модельная задача: сколько кластеров?



#### Модельная задача: истинные данные



### Смесь гауссиан для кластеризации

ЕМ-алгоритм для смеси гауссиан можно использовать для решения задачи мягкой кластеризации.

#### Скрытые переменные:

 $T=t_1,t_2,\ldots t_{\mathcal{K}}$  – номера компонент смеси, каждая компонента соответствует кластеру

 $p(t_i = i | x_i, \Theta)$  — вероятность принадлежности объекта iкластеру i

Какая форма у кластеров?

# Результат кластеризации (5 итераций)



### Постановка задачи вычитания фона

#### Дано:

$$X = \{\hat{x}_1, \dots \hat{x}_N\}$$
 — видеопоследовательность (камера статична)

На каждом изображении присутствуют фон (слабо изменяется во времени) и объекты (сильно изменяются во времени)





#### Найти:

Для каждого изображения  $x_i$  выделить пиксели фона

# Гауссиана для описания фона

Выберем последовательность [i,j] пикселей:  $x_1^{ij},\dots x_N^{ij}\in\mathbb{R}^3$ orall i,j последовательность  $x_1^{ij},\dots x_N^{ij}$  слабо меняется во времени

Тематические модели

Опишем последовательность трёхмерной гауссианой:

$$p(x^{ij}) \sim \mathcal{N}(\mu^{ij}, \Sigma^{ij}), \qquad \mu^{ij} \in \mathbb{R}^3, \Sigma^{ij} \in \mathbb{R}^{3 \times 3}$$

Как получить  $\mu$  и  $\Sigma$ ?

# Гауссиана для описания фона

Выберем последовательность [i,j] пикселей:  $\mathbf{x}_1^{ij},\dots\mathbf{x}_N^{ij}\in\mathbb{R}^3$  $\forall i, i$  последовательность  $x_1^{ij}, \dots x_N^{ij}$  слабо меняется во времени

Тематические модели

Опишем последовательность трёхмерной гауссианой:

$$p(x^{ij}) \sim \mathcal{N}(\mu^{ij}, \Sigma^{ij}), \qquad \mu^{ij} \in \mathbb{R}^3, \Sigma^{ij} \in \mathbb{R}^{3 \times 3}$$

Как получить  $\mu$  и  $\Sigma$ ?

Оценка максимального правдоподобия:

$$\sum_{n=1}^{N_{train}} \ln \mathcal{N}(x_n^{ij} | \mu^{ij}, \Sigma^{ij}) 
ightarrow \max_{\mu, \Sigma}$$

# Как отделять фон от объектов?

Пороговое правило:

$$x_n^{ij}$$
 — фон  $\Leftrightarrow |p(x_n^{ij}) - \mu^{ij}| \le kq$ 

# Как отделять фон от объектов?

Пороговое правило:

$$x_n^{ij}$$
 — фон  $\Leftrightarrow |p(x_n^{ij}) - \mu^{ij}| \le kq$ 

Проблемы модели: фон не настолько статичен, чтобы описать его нормальным распределением

Тематические модели

Способы улучшить модель:

- ${f 1}$ . Использовать более сложное семейство распределений Вместо гауссианы — смесь гауссиан ЕМ-алгоритм для вычисления параметров смеси
- 2. Адаптивно обновлять параметры при поступлении новых изображений
- 3. При предсказании учитывать соседние пиксели

### Адаптивная модель

```
Учитываем постепенное изменение фона
(для краткости \mu = \mu^{ij}, \Sigma = \Sigma^{ij}):
  Вычислить \mu_n, \sigma_n^2 по первым n объектам.
  для t = n + 1...
      I_{+} — яркости пикселя
      если |(I_t - \mu_t)| < \sigma_t k то
         \mu_{t+1} = \rho I_t + (1-\rho)\mu_t
         \Sigma_{t+1} = \rho (I_t - \mu_{t+1})(I_t - \mu_{t+1})^T + (1 - \rho)\Sigma_t
      иначе
         \mu_{t+1} = \mu_t
         \Sigma_{t\perp 1} = \Sigma_t
```

#### Тематическое моделирование

**Тематическое моделирование** (*Topic Modeling*) приложение машинного обучения к анализу текстов.

**Тема** (неформально) — набор терминов часто встречающихся вместе в документах, семантически однородное множество документов и т.д.

Тематические модели

•000000000000000

Тема (формально) задаётся распределениями:

- ▶ распределение p(w|t) над терминами  $w \in W$
- ▶ распределение p(t|d) над темами  $t \in T$ , где  $d \in D$

Цели тематического моделирования:

- ▶ выявить структуру текстовой коллекции документов
- построить представления для документов

# Пример темы

| Топ слова      | Топ документы                             |  |  |
|----------------|-------------------------------------------|--|--|
| вода           | В школах Авдеевки установили резервуары   |  |  |
|                | для питьевой воды                         |  |  |
| павел          | В Авдеевке заканчивается питьевая вода    |  |  |
| авдеевка       | В Авдеевке установили резервуары          |  |  |
|                | с водой и стеклят окн                     |  |  |
| фильтровальный | Жители Авдеевки будут набирать            |  |  |
|                | питьевую воду в специальных емкостях      |  |  |
| станция        | Авдеевка осталась без воды - надежда      |  |  |
|                | на колодцы, скважины и развозку           |  |  |
| донецкий       | Донецкая фильтровальная станция           |  |  |
|                | возобновила работу                        |  |  |
| водоснабжение  | В Авдеевке снова попытаются разминировать |  |  |
|                | фильтровальную станцию                    |  |  |
| подача         | П.Жебривский-В Авдеевке осталось          |  |  |
|                | воды на две подачи                        |  |  |
| ремонтный      | Авдеевка с водой из запасов               |  |  |

# Пример темы

# Коллекция статей конференций ММРО, ИОИ на русском

| распознавание образов в биоинформатике |                         | теория вычислительной сложности |                      |
|----------------------------------------|-------------------------|---------------------------------|----------------------|
| unigrams                               | bigrams                 | unigrams                        | bigrams              |
| объект                                 | задача распознавания    | задача                          | разделять множества  |
| задача                                 | множество мотивов       | множество                       | конечное множество   |
| множество                              | система масок           | подмножество                    | условие задачи       |
| мотив                                  | вторичная структура     | условие                         | задача о покрытии    |
| разрешимость                           | структура белка         | класс                           | покрытие множества   |
| выборка                                | распознавание вторичной | решение                         | сильный смысл        |
| маска                                  | состояние объекта       | конечный                        | разделяющий комитет  |
| распознавание                          | обучающая выборка       | число                           | минимальный аффинный |
| информативность                        | оценка информативности  | аффинный                        | аффинный комитет     |
| состояние                              | множество объектов      | случай                          | аффинный разделяющий |
| закономерность                         | разрешимость задачи     | покрытие                        | общее положение      |
| система                                | критерий разрешимости   | общий                           | множество точек      |
| структура                              | информативность мотива  | пространство                    | случай задачи        |
| значение                               | первичная структура     | схема                           | общий случай         |
| регулярность                           | тупиковое множество     | комитет                         | задача MASC          |

Тематические модели 00000000000000

#### Основные положения модели

- ▶ порядок слов в документе не важен (bag of words)
- ▶ порядок документов в коллекции не важен
- $\blacktriangleright$  каждое слово w в документе d связано с некоторой темой t

Тематические модели

000000000000000

- ▶ d, w наблюдаемые переменные, темы t скрытые
- ▶  $D \times W \times T$  дискретное вероятностное пространство
- ightharpoonup гипотеза условной независимости: p(w|d,t) = p(w|t)

Вероятность появления слова w в документе d:

$$p(w|d) = \sum_{t \in T} p(w|t, d)p(t|d) = \sum_{t \in T} p(w|t)p(t|d) = \sum_{t \in T} \phi_{wt}\theta_{td}$$

# Прямая задача: порождение коллекции по p(w|t) и p(t|d)

Вероятностная тематическая модель коллекции документов Dописывает появление терминов w в документах d темами t:

Тематические модели

000000000000000

$$p(w|d) = \sum_{t \in T} p(w|t) p(t|d)$$



Разработан спектрально-аналитический подход к выявлению размытых протяженных повторов в геномных последовательностях. Метод основан на разномасштабном оценивании сходства нуклеотидных последовательностей в пространстве коэффициентов разложения фрагментов кривых GC- и GA-содержания по классическим ортогональным базисам. Найдены условия оптимальной аппроксимации, обеспечивающие автоматическое распознавание повторов различных видов (прямых и инвертированных, а также тандемных) на спектральной матрице сходства. Метод одинаково хорошо работает на разных масштабах данных. Он позволяет выявлять следы сегментных дупликаций и мегасателлитные участки в геноме, районы синтении при сравнении пары геномов. Его можно использовать для детального изучения фрагментов хромосом (поиска размытых участков с умеренной длиной повторяющегося паттерна).

# Прямая задача: порождение коллекции по p(w|t) и p(t|d)

Вероятностная тематическая модель коллекции документов D описывает появление терминов w в документах d темами t:

Тематические модели

000000000000000

$$p(w|d) = \sum_{t \in T} p(w|t) p(t|d)$$

**Input:** распределение p(w|t) для каждой темы  $t\in T$ ; распределение p(t|d) для каждого документа  $d\in D$ ; длины документов  $n_d$ 

Output: коллекция документов;

```
forall d \in D do
```

forall позиций  $i=1,\ldots,n_d$  в документе d do выбрать тему  $t_i$  из p(t|d); выбрать термин  $w_i$  из  $p(w|t_i);$ 

000000000000000

 $n_{wd}$  — сколько раз слово w встретилось в документе d

Максимизация правдоподобия модели:

$$\begin{split} \sum_{d \in D} \sum_{w \in d} \ln p(w, d) &= \sum_{d \in D} \sum_{w \in d} \ln p(w|d) p(d) = \\ &= \sum_{d \in D} \sum_{w \in d} \ln p(w|d) + const \; \hat{=} \sum_{d \in D} \sum_{w \in d} \ln \sum_{t \in T} \phi_{wt} \theta_{td} = \\ &= \sum_{d \in D} \sum_{w \in W} n_{wd} \ln \sum_{t \in T} \phi_{wt} \theta_{td} \to \max_{\Phi, \Theta} \end{split}$$

при условии:

$$\sum_{w \in W} \phi_{wt} = 1, \quad \phi_{wt} \ge 0, \quad \sum_{t \in T} \theta_{td} = 1, \quad \theta_{td} \ge 0$$

000000000000000

Если есть время, выведем на доске :)

### Тематическое моделирование как матричное разложение

Дано: коллекция текстовых документов

►  $n_{dw}$  — частоты терминов в документах,  $\hat{p}(w|d) = \frac{n_{dw}}{n_d}$ 

Найти: параметры тематической модели

$$p(w|d) = \sum_{t \in T} \phi_{wt} \theta_{td}$$

- ▶  $\phi_{wt} = p(w|t)$  вероятности терминов w в каждой теме t
- ▶  $\theta_{td} = p(t|d)$  вероятности тем t в каждом документе d

Это задача стохастического матричного разложения:



#### Тематическое моделирование как матричное разложение

Минимизация взвешенных KL-дивергенций между частотными оценками и модельными:

$$\sum_{d \in D} \sum_{w \in W} n_{dw} \ln p(w|d) = \sum_{d \in D} n_d \sum_{w \in W} \frac{n_{dw}}{n_d} \ln p(w|d) \to \max_{\Phi, \Theta} \Leftrightarrow$$

$$\Leftrightarrow -\sum_{d \in D} n_d \sum_{w \in W} \frac{n_{dw}}{n_d} \left( \ln p(w|d) - \ln \frac{n_{dw}}{n_d} \right) =$$

$$= \sum_{d \in D} n_d KL(\tilde{p}(w|d) \parallel p(w|d)) \to \min_{\Phi, \Theta} \quad (1)$$

Тематические модели

0000000000000000

# Тематическое моделирование как система уравнений

# Ненаблюдаемые частоты, зависящие от t:

$$n_{dwt} = \sum_{i=1}^n [d_i = d] \, [w_i = w] \, [t_i = t]$$
 — частота  $(d, w, t)$  в коллекции

$$n_{wt} = \sum_d n_{dwt}$$
 — частота термина  $w$  в теме  $t$   $n_{td} = \sum_w n_{dwt}$  — частота терминов темы  $t$  в документе  $d$ 

# Наблюдаемые частоты, не зависящие от t:

$$n_{dw} = \sum_t n_{dwt}$$
 — частота термина  $w$  в документе  $d$   $n_d = \sum_{w,t} n_{dwt}$  — длина документа  $d$ 

### По частотным оценкам:

$$\phi_{wt} = \frac{n_{wt}}{n_w} \qquad \qquad \theta_{td} = \frac{n_{td}}{n_d}$$

# Тематическое моделирование как система уравнений

Выразим  $n_{dwt}$  через  $\phi_{wt}$ ,  $\theta_{td}$  по формуле Байеса:

$$\frac{n_{dwt}}{n_{dw}} = p(t|d,w) = \frac{p(w,t|d)}{p(w|d)} = \frac{p(w|t)p(t|d)}{p(w|d)} = \frac{\phi_{wt}\theta_{td}}{\sum_s \phi_{ws}\theta_{sd}}.$$

Тематические модели

0000000000000000

Получим систему уравнений относительно параметров модели  $\phi_{wt}$ ,  $\theta_{td}$  и вспомогательных переменных  $n_{dwt}$ :

$$\begin{cases} n_{dwt} = n_{dw} \frac{\phi_{wt}\theta_{td}}{\sum_{s} \phi_{ws}\theta_{sd}}, & d \in D, w \in W, t \in T; \\ \phi_{wt} \equiv \frac{n_{wt}}{n_t} = \frac{\sum_{d} n_{dwt}}{\sum_{d,w} n_{dwt}}, & w \in W, t \in T; \\ \theta_{td} \equiv \frac{n_{td}}{n_d} = \frac{\sum_{w} n_{dwt}}{\sum_{t,w} n_{dwt}}, & d \in D, t \in T. \end{cases}$$

Решаем методом простых итераций (решение совпадает с ЕМ)

# Усложнение алгоритма ТМ

Два пути — задание априорных распределений и регуляризация

Тематические модели

0000000000000000

задание априорных распределений

вместо 
$$\ln p(X|\Theta)$$
 оптимизируем  $\ln p(X|\Theta)p(\Theta|\alpha)$ 

регуляризация

вместо 
$$\ln p(X|\Theta)$$
 оптимизируем  $\ln p(X|\Theta) + R(\Theta)$ 

 $R(\Theta)$  не обязан иметь вероятностный смысл

0000000000000000

При некоторых ограничениях на R формулы почти не отличаются:

$$\sum_{d,w} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} \, + \, \mathop{R}(\Phi,\Theta) \to \max_{\Phi,\Theta}$$

ЕМ-алгоритм:

Е-шаг: 
$$\begin{cases} p_{tdw} \equiv p(t|d,w) = \underset{t \in T}{\operatorname{norm}} \left(\phi_{wt}\theta_{td}\right) \\ n_{dwt} = n_{dw}p_{tdw} \\ \phi_{wt} = \underset{w \in W}{\operatorname{norm}} \left(n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}}\right), \quad n_{wt} = \sum_{d \in D} n_{dwt} \\ \theta_{td} = \underset{t \in T}{\operatorname{norm}} \left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}}\right), \quad n_{td} = \sum_{w \in d} n_{dwt} \end{cases}$$

где  $\displaystyle \operatorname*{norm}_{t \in T}(x_t) = \frac{\max\{x_t, 0\}}{\sum\limits_{s \in T} \max\{x_s, 0\}}$  — операция нормировки вектора.

```
Идея: Е-шаг встраивается внутрь М-шага, чтобы не хранить трёхмерный массив значений n_{dwt}.
```

**Input**: коллекция D, число тем |T|, число итераций  $i_{\max}$ ; **Output**: матрицы терминов тем  $\Theta$  и тем документов  $\Phi$ ; инициализация  $\phi_{wt}$ ,  $\theta_{td}$  для всех  $d \in D$ ,  $w \in W$ ,  $t \in T$ ; **forall** итераций  $i = 1, \ldots, i_{\max}$  **do** 

### Примеры регуляризации

▶ Дальность от заданного распределения  $\beta_{w}$  или  $\beta_{t}$ 

$$\sum_{t \in \mathcal{T}} \mathit{KL}(\beta_w || p(w|t)) \to \max_{\Phi} \qquad \sum_{d \in D} \mathit{KL}(\beta_t || p(t|d)) \to \max_{\Theta}$$

lacktriangle Близость к данному распределению  $eta_{w}$  или  $eta_{t}$ 

$$-\sum_{t\in T} \mathit{KL}(eta_w||p(w|t)) o \max_{\Phi} \qquad -\sum_{d\in D} \mathit{KL}(eta_t||p(t|d)) o \max_{\Theta}$$

▶ Понижение корреляции между разными темами

$$-\frac{1}{2} \sum_{t \in T} \sum_{s \in T, s \neq t} \sum_{w \in W} \phi_{wt} \phi_{ws} \to \max_{\Phi}$$

### Мультимодальная тематическая модель



Тематические модели

Мультимодальная ТМ строит распределения тем на терминах p(w|t), авторах p(a|t), метках времени p(y|t), связанных документах p(d'|t), рекламных баннерах p(b|t), пользователях p(u|t), и объдиняет все эти модальности в одно тематическую модель.

### Пример

Пусть у нас есть две модальности:

- обычные слова;
- слова-имена авторов



### Пример

Пусть у нас есть две модальности:

- обычные слова;
- слова-имена авторов



# M-ARTM и EM-алгоритм

 $W^m$  — словарь терминов m-й модальности,  $m \in M$ 

Максимизация логарифма мультимодального регуляризированного правдоподобия:

Тематические модели

$$\sum_{\substack{m \in M}} \lambda_m \sum_{\substack{d \in D}} \sum_{\substack{w \in W^m}} n_{dw} \ln \sum_t \phi_{wt} \theta_{td} + R(\Phi, \Theta) \ \rightarrow \ \max_{\Phi, \Theta}$$

### ЕМ-алгоритм:

Е-шаг: 
$$\begin{cases} p_{tdw} = \underset{t \in T}{\operatorname{norm}} \left( \phi_{wt} \theta_{td} \right), \\ n_{dwt} = n_{dw} p_{tdw} \\ \\ M\text{-шаг:} \end{cases} \\ \begin{cases} \phi_{wt} = \underset{w \in \mathcal{W}^m}{\operatorname{norm}} \left( n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right), \quad n_{wt} = \sum_{d \in D} \lambda_{m(w)} n_{dwt} \\ \\ \theta_{td} = \underset{t \in T}{\operatorname{norm}} \left( n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right), \quad n_{td} = \sum_{w \in d} \lambda_{m(w)} n_{dwt} \end{cases}$$

# Мультиязычные модели

Хотим строить единую модель сразу для нескольких языков Единая модель == одни и те же темы описывают слова в разных языках

Тематические модели

 $W^{\ell}$  — словарь языка  $\ell$  из множества языков L.

Что у нас для этого есть:

- ► Parallel texts точный перевод (с выравниванием предложений), пример: EuroParl, протоколы европарламента, 21 язык.
- ► Comparable не перевод, а пересказ на другом языке, пример: Википедия.
- ▶ Словари все переводы слова w из языка / в язык m

# Примеры тем

# (вероятности в %)

| Тема №68    |      |              |      | Тема №79 |      |           |      |
|-------------|------|--------------|------|----------|------|-----------|------|
| research    | 4.56 | институт     | 6.03 | goals    | 4.48 | матч      | 6.02 |
| technology  | 3.14 | университет  | 3.35 | league   | 3.99 | игрок     | 5.56 |
| engineering | 2.63 | программа    | 3.17 | club     | 3.76 | сборная   | 4.51 |
| institute   | 2.37 | учебный      | 2.75 | season   | 3.49 | фк        | 3.25 |
| science     | 1.97 | технический  | 2.70 | scored   | 2.72 | против    | 3.20 |
| program     | 1.60 | технология   | 2.30 | cup      | 2.57 | клуб      | 3.14 |
| education   | 1.44 | научный      | 1.76 | goal     | 2.48 | футболист | 2.67 |
| campus      | 1.43 | исследование | 1.67 | apps     | 1.74 | гол       | 2.65 |
| management  | 1.38 | наука        | 1.64 | debut    | 1.69 | забивать  | 2.53 |
| programs    | 1.36 | образование  | 1.47 | match    | 1.67 | команда   | 2.14 |

# Использование словарей

Все переводы слова w из языка L в M:

$$\Pi_{LM}(w) = \left\{ u \mid u \in W^M, u -$$
перевод  $w \right\}$ 

Регуляризация (1) — сближение p(t|w) для comparable текстов:

Тематические модели

$$-\sum_{L,M}\sum_{w\in W^L}\sum_{u\in\Pi_{LM}(w)}\mathsf{K}L\left(p(t|u)\parallel p(t|w)
ight)
ightarrow \max_{\Phi}$$

Регуляризация (2) — сближение p(t|d) одного языка и частотной оценки  $\frac{n_{td}}{n_d}$  для другого языка:

$$-\sum_{L,M}\sum_{w\in W^L}\sum_{u\in\Pi_{LM}(w)}\mathsf{KL}\left(rac{n_{tu}}{n_u}\parallel p(t|w)
ight)
ightarrow \mathsf{max}$$

$$p(t|w) = \frac{p(w|t)p(t)}{p(w)} = \frac{\phi_{wt}n_tN}{n_wN} = \frac{\phi_{wt}n_t}{n_w}$$

# Использование параллельных корпусов

Пары comparable текстов для языков L и M:

$$\Pi_{LM} = \left\{ (d_l, d_m) \mid d_l \in L, d_m \in M, d_l \text{ in } d_m - \text{comparable } 
ight\}$$

Регуляризация (1) — сближение p(t|d) для comparable текстов:

Тематические модели

$$-\sum_{L,M}\sum_{(d_l,d_m)\in\Pi_{LM}} extsf{KL}\left(p(t|d_l)\ ig\|\ p(t|d_m)
ight)
ightarrow \max_{\Theta}$$

Регуляризация (2) — сближение p(t|d) одного языка и частотной оценки  $\frac{n_{td}}{n_d}$  для другого языка:

$$-\sum_{L,M}\sum_{(d_l,d_m)\in\Pi_{LM}}\mathsf{KL}\left(\frac{n_{td_l}}{n_{td_l}}\parallel p(t|d_m)\right)\to\max_{\Theta}$$

### Использование параллельных корпусов: модальности

Пары comparable текстов для языков L и M:

$$\Pi_{LM} = \left\{ (d_l, d_m) \mid d_l \in L, d_m \in M, d_l$$
 и  $d_m$  — comparable  $\right\}$ 

Пусть каждая пара документов из  $\Pi_{IM}$  представляет собой один документ с двумя модальностями (язык L и язык M)

Тогда, каждому документу из пары  $(d_I, d_m)$  соответствует однопредставление

### Применение ТМ на практике

### Когда полезно использовать:

- ▶ Когда нужно узнать что-то о коллекции в целом
- ▶ Кластеризация документов
- ▶ Тематический поиск
- ▶ Задачи с большим числом модальностей
- Один из факторов в рекоммендациях

#### Заключение

- ► ЕМ-алгоритм != разделение смеси гауссиан
- ► ЕМ-алгоритм может использоваться в большом числе задач (в любых, где есть скрытые переменные)
- ▶ Иногда, формулы ЕМ-алгоритма можно вывести более простым путём
- ▶ С помощью восстановления плотности можно решать задачу индентификации
- ▶ С помощью ЕМ-алгоритма можно строить тематические модели
- ▶ Тематические модели легко расширяются с помощью регуляризации и модальностей
- ▶ Регуляризованные мультимодальные тематические модели могут использоваться для задач мультиязычного поиска