Definitely niche, but also a great example

## Let's consider a data mining problem for web analytics



- A company wants to analyze user behavior on their web site
- ...With the goal of optimizing its structure
- For privacy reason, the company does not want to resort to tracking
- ...And plan to relies on simple page/link-click counts

#### Our input consists of page and link counts for multiple time steps

- Each simple number refers to a page, each pair to a link
- Cells contain presence/link-click counts for different value of the time t

## Our output consists of navigation paths on the web site

A path specifies which page is visited at every point of time, e.g.:

$$\{(2,0),(3,0),(4,1),(5,3)\}$$

- lacktriangle In this case the path starts at time 2, stays at page 0 for two time units
- $\blacksquare$  ...Then moves to 1 and then 3

How would you tackle the problem?

## How would you tackle the problem?

## The main issue is representing and handling paths

- $\blacksquare$  A path is combinatorial object ( $\Rightarrow$  not differentiable)
- Nodes in a path must be connected

In other words, the main issue is dealing with constraints

## We will see how to tackle the problem directly via Constrained Optimization

- The approach will work well (though it will not be necessarily SotA)
- ...But more importantly we will see many CO methods in action!

## This is a very challenging problem!



- There are many viable paths!
- ...And we start with quite poor information

# Web Site as Graph

## Our web site can be represented as a directed graph

We will generate one at random, with a realistic structure



- The method generates nnodes vertexes in a tree structure as a base
- The #children per vertex follows a Poisson distribution with specified rate
- ...Then a fraction of the missing arcs is added at random

# Web Site as Graph

## Our web site can be represented as a directed graph

We will generate one at random, with a realistic structure



- The graph is handled via the <u>python-igraph</u> library
- ...Which provides a fast C++ implementation of many graph primitives
- The library also include a good selection of graph algorithms

#### **Ground Truth Generation**

## We obtain realistic counts by routing "flow" along random paths

For one path, this can be done via a function from the utility module:

```
In [21]: home = g.vs[0] # Home page
eoh = 4 # End of Horizon

flow, path = util.route_random_flow(home, min_units=1, max_units=10, eoh=eoh, seed=10)
print(f'{flow:.2f}: {">".join(str(v) for v in path)}')

3.69: (1, 0)>(2, 3)>(3, 3)
```

- The first vertex represents the home page
- The "flow" represents the amount of users that traverse the path
- eoh is the number of time units over which we assume to have counts

#### **Ground Truth Generation**

## A second function performs random routing for multiple paths

We will start from a simple example with a very small number of paths:

- Paths may start from any page
- Paths may start at any time step within the horizon

## The generated paths represent our ground truth

# **Time-Unfolded Graph**

## Our paths may be see as traversal of a time-unfolded version of the graph



- We create eoh replicas of the vertexes, each referring to a specific time step
- We create eoh replicas of the edges, linking vertexes in adjacent time step

This representation is referred to as Time Unfolded Graph

## **Computing Counts**

## We can now compute counts for all vertexes and edges in the TUG

```
In [23]: node counts, arc_counts = util.get_counts(tug, flows, paths)
        print('NODE COUNTS')
        print('\t'.join(f'{k}:{v:.2f}' for k, v in node counts.items()))
        print('ARC COUNTS')
        print('\t'.join(f'{k}:{v:.2f}' for k, v in arc counts.items()))
        NODE COUNTS
                    (0, 1):4.89 (0, 2):5.47 (0, 3):0.00 (1, 0):3.32 (1, 1):4.89
        (0, 0):0.00
                    (1, 3):0.00 (2, 0):8.22 (2, 1):0.00
        (1, 2):5.47
                                                                   (2, 2):5.47 (2, 3):8.17
                                   (3, 2):8.79 (3, 3):11.91
        (3, 0):4.89
                    (3, 1):0.00
        ARC COUNTS
        (1, 0, 0):0.00 (1, 0, 1):0.00 (1, 1, 1):4.89 (1, 0, 2):0.00 (1, 2, 2):5.47 (1, 0, 3):0.00
        (1, 3, 3):0.00 (1, 1, 0):0.00 (1, 1, 2):0.00 (2, 0, 0):3.32 (2, 0, 1):0.00 (2, 1, 1):0.00
        (2, 0, 2):0.00 (2, 2, 2):5.47 (2, 0, 3):0.00 (2, 3, 3):0.00 (2, 1, 0):4.89 (2, 1, 2):0.00
        (3, 0, 0):4.89 (3, 0, 1):0.00 (3, 1, 1):0.00
                                                     (3, 0, 2):3.32 (3, 2, 2):5.47 (3, 0, 3):0.00
        (3, 3, 3):8.17 (3, 1, 0):0.00 (3, 1, 2):0.00
```

- TUG nodes/vertexes are labeled with (*time*, *node*) pairs
- TUG ares are labeled with (time, source, destination) triplets

## **Computing Counts**

## We can inspect the arc counts visually on the TUG



- A grey shade corresponds to lower counts
- A red shade corresponds to higher counts

#### These counts are our available information

By far the most important step of any solution process

## Every good approach starts with a problem formulation

- If you don't have a formulation
- Odds are that you will come up with a patched-up solution

Let's try to come up with a formulation for our problem!

## Every good approach starts with a problem formulation

- If you don't have a formulation
- Odds are that you will come up with a patched-up solution

## Let's try to come up with a formulation for our problem!

## We can introduce a variable $x_j$ for each path

- lacksquare The value of  $x_j$  represents the flow associated to the path
- Then we can compute the estimated count per TUG node/arc
- lacktriangleright ...By simply summing the  $x_i$  values of paths that pass through the node/arc

## Every good approach starts with a problem formulation

- If you don't have a formulation
- Odds are that you will come up with a patched-up solution

Let's try to come up with a formulation for our problem!

## This approach is remarkably simple

- Computing counts is easy
- Connectivity constraints are safisfied by construction

## Basically, we handle some constraints in the problem formulation itself

This is a first, powerful, and underestimated method to deal with constraints

#### **Path Formulation**

## We will call this approch the path formulation

Formally, our problem can be stated as:

$$\arg\min_{x} \left\{ \|Vx - \hat{v}\|_{2}^{2} + \|Ex - \hat{e}\|_{2}^{2} \mid x \ge 0 \right\}$$

- For simplicity, here we use linear indexes for TUG nodes and arcs
- lacksquare V is a matrix such that  $V_{ij}=1$  iff path j passes through node i
- lacksquare E is a matrix such that  $E_{kj}=1$  iff path j passes through arc k

## Path variables cannot be negative (it would make no sense)

- Hence the path formulation is itself a constrained optimization problem
- ...Though the constraints are in this case very simple

#### **Problem Reduction**

For an squared L2 norm in the form  $||Ax - b||_2^2$  we have that:

$$||Ax - b||_{2}^{2} = (Ax - b)^{T} (Ax - b)$$

$$= x^{T} A^{T} Ax - x^{T} A^{T} b - b^{T} Ax + b^{T} b$$

$$\propto \frac{1}{2} x^{T} (A^{T} A)x - \frac{1}{2} x^{T} A^{T} b - \frac{1}{2} b^{T} Ax$$

$$= \frac{1}{2} x^{T} (A^{T} A)x + (-A^{T} b)^{T} x$$

- lacksquare This is true since  $x^TA^Tb$  and  $b^TAx$  are scalar
- ...And  $y^T x = x^T y$  if the quantity is a scalar
- $\blacksquare$  The scaling factor 1/2 will become convenient later

This reduction is valid for any least squares problem

#### **Problem Reduction**

#### We can use the relation to reduce our problem to a more compact form

In particular, we have that:

$$||Vx - \hat{v}||_{2}^{2} + ||Ex - \hat{e}||_{2}^{2}$$

$$\propto \frac{1}{2} ||Vx - \hat{v}||_{2}^{2} + \frac{1}{2} ||Ex - \hat{e}||_{2}^{2}$$

$$= \frac{1}{2} x^{T} (V^{T} V) x + (-V^{T} \hat{v})^{T} x + \frac{1}{2} x^{T} (E^{T} E) x + (-E^{T} \hat{e})^{T} x$$

$$= \frac{1}{2} x^{T} P x + q^{T} x$$

- $\blacksquare \text{ Where } P = V^T V + E^T E$
- lacksquare ...And  $q = -V^T \hat{v} E^T \hat{e}$

# Path Formulation as Convex Quadratic Programming

## Therefore, the path formulation can be reduced to:

$$\arg\min_{x} \left\{ \frac{1}{2} x^{T} P x + q^{T} x \mid x \ge 0 \right\}$$

...Which is a quadratic program

- I.e. a problem where we want to minimize a quadratic form
- ...Subject to linear constraints

#### Our problem is also convex

- This is true since  $P = V^T V + E^T E$
- ...And it is therefore guaranteed semi-definite positive

Convex quadratic programs can be solved in polynomial time