(İktisatçılar İçin) Makine Öğrenmesi (TEK-ES-2020) Gözetimsiz Öğrenme

Hüseyin Taştan Yıldız Teknik Üniversitesi

Plan:

Gözetimli ve gözetimsiz öğrenme

Temel Bileşenler Analizi

K-Ortalamalar Algoritması ile Kümeleme

Hiyerarşik Kümeleme

Gözetimsiz Öğrenme

Şimdiye kadar sadece gözetimli öğrenme yöntemlerini inceledik.
Gözetimli öğrenmede çıktı değişkeni
Y ve öznitelik matrisi X birlikte
gözlemleniyordu.

- Gözetimsiz öğrenmede ise Y çıktısı ya da etiketi yoktur. Sadece X değişkenleri gözlemlenir.
- Elimizde bir çıktı değişkeni olmadığı için amacımız bu değişkenin kestirimlerini oluşturmak değildir.
- Bunun yerine amaç verilerdeki gizli gruplanmaları ve ilişkileri ortaya çıkarmak ve faydalı bir şekilde görselleştirmektir.

Gözetimsiz Öğrenme

- Gözetimsiz öğrenme yöntemleri keşifsel veri analizinin (exploratory data analysis -EDA) bir parçası olarak da kullanılabilir. Yaygın olarak kullanılan iki gözetimsiz öğrenme yöntemi:
- 1. Temel Bileşenler Analizi (Principal Components Analysis PCA): çok boyutlu verilerin görselleştirilmesinde faydalı. Boyut küçültme (dimension reduction) ve gözetimli öğrenme yöntemlerinin öncesinde verileri işlemden geçirme amacıyla kullanılabilir (örneğin PCA regresyonu).
- 2. Gruplandırma (Clustering): özellikle büyük veri yığınlarında gizlenmiş homojen grupların ortaya çıkarılması.
- o K-Ortalamalar (K-means) gruplandırma
- Hiyerarşik gruplandırma (hierarchical clustering)
- Örnek: Bir alışveriş sitesinde müşterilerin kişisel özelliklerine ve alışveriş alışkanlıklarına göre gruplandırılması.
- Ürünlerin kullanıcı yorumları ve değerlendirmelerine göre gruplandırılması
- Hastaların genetik özelliklerine göre gruplandırılması.

Temel Bileşenler Analizi

Temel Bileşenler Analizi

- Temel bileşenler (principal components) nedir?
- Elimizde (X_1, X_2, \ldots, X_p) ile gösterdiğimiz p tane öznitelik olsun. Keşifsel veri analizi amacıyla bu değişkenlerin ikili serpilme grafiklerini (scatter plot) çizmek istediğimizi düşünelim.
- Elimizde kaç tane grafik olur?
- Cevap = p(p-1)/2. Örneğin, p=10 ise 45, p=20 ise 190!
- Daha pratik bir yol: verilerdeki toplam değişkenliğin önemli bir kısmını içeren iki boyutlu bir temsilini bulabilir miyiz?
- PCA: verilerdeki bilginin önemli bir kısmını içeren düşük boyutlu bir temsilini bulmak

issizlik t_gun_kazar ta_ust_gelir_ is_tatmin temel_iht_gr 9 Corr. Corr. -0.702 Corr. -0.612 Corr. 0.835 Corr. Corr. 0.501 Corr Corr. -0.26 Corr. 20 40 orta_ust_gelir_gr Corr. 0.702 Corr: Corr. -0.633 Corr. 0.612 Corr. 0.622 Corr. 0.652 Corr. 0.462 Corr. -0.179 tasarruf Corr. 0.569 -0.555 0.414 0.413 Corr. 0.426 Corr. 0.352 Corr Corr Corr Corr is_tatmin Corr. Corr. 0.768 Corr. Corr. 0.409 Corr. 0.105 Corr. 0.531 ort_gun_kazanc 0.00863 -0.212 Corr. 0.272 Corr: 0.365 Corr Corr. 0.127 Corr Corr. -0.219 Corr: -0.792 Corr. Corr. 0.364 issizlik istihdam 0.525 0.149 Corr -0.286 Corr. Corr ev_kalite -0.799 -0.655 Corr Corr Corr: 0,655 trv 50 60 70 70-70-50-90-000 0.75 1.00 1.25 1.50 0.00 0. 40 - 09 30 70 60 50 40 20 15 10 2

Türkiye il verileri 2015 (ilk 10 öznitelik)

Temel Bileşenlerin Bulunması

• Birinci temel bileșen, Z_1 , değişkenlerin en yüksek varyansa sahip normalize edilmiş doğrusal bir bileşkesidir:

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \ldots + \phi_{p1}X_p$$

Normalize edilmesinden kasıt ϕ ağırlıklarının (factor loadings) kareler toplamının 1

olmasıdır:

$$\sum_{j=1}^p \phi_{j1}^2 = 1, \qquad \phi_{11}, \phi_{21}, \dots, \phi_{p1}$$

Birinci bileşenin ağırlıkları

• Birinci temel bileşenin ağırlık vektörü:

$$\phi_1=(\phi_{11},\phi_{21},\ldots,\phi_{p1})^T$$

Temel Bileşenlerin Bulunması

Verilerin ortalamadan farkları alındıktan sonra, birinci temel bileşen aşağıdaki optimizasyon probleminin çözümüyle bulunabilir:

$$\max_{\phi_{11},\dots,\phi_{p1}} \left\{ rac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^p \phi_{j1} x_{ij}
ight)^2
ight\} ext{ subject to } \sum_{j=1}^p \phi_{j1}^2 = 1$$

Birinci temel bileşen: verilerin en fazla değişkenlik gösterdiği yön. Bu örnekte $\phi_{11}=0.839,\,\phi_{21}=0.544$

 $z_{i1}=0.839~\mathrm{N\ddot{u}fus}_i+0.544~\mathrm{Reklam~H.}_i$

Temel Bileşenlerin Bulunması

İkinci temel bileşen: birinci temel bileşenle ilişkisiz en yüksek değişkenliğe sahip doğrusal bileşkedir. Örnekte $\phi_{12}=0.544,$ $\phi_{22}=-0.839$

$$z_{i2}=0.544~\mathrm{N\ddot{u}fus}_i-0.839~\mathrm{Reklam}~\mathrm{H.}_i$$

• İkinci temel bileşen birinci temel bileşene ortogonaldir (aralarındaki korelasyon sıfır). Grafikten de görüleceği gibi aralarındaki açı 90 derecedir.

Not: Nüfus ve Reklam Harcamalarının ortalamadan farkları alınmıştır.

Açıklanan varyans oranı

- Temel bileşenler varyansın ne kadarını açıklar?
- Merkezden farkları alınmış bir veri setinde toplam varyans:

$$\sum_{j=1}^p \mathrm{Var}(X_j) = \sum_{j=1}^p rac{1}{n} \sum_{i=1}^n x_{ij}^2$$

mnci temel bileşen tarafından açıklanan varyans

$$rac{1}{n} \sum_{i=1}^n z_{im}^2 = rac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^p \phi_{jm} x_{ij}
ight)^2$$

Açıklanan Varyans Oranı (Proportion of Variance Explained - PVE)

$$PVE_m = rac{\sum_{i=1}^n \left(\sum_{j=1}^p \phi_{jm} x_{ij}
ight)^2}{\sum_{j=1}^p \sum_{i=1}^n x_{ij}^2}$$

Scree (PVE plot)

Açıklanan varyans oranlarının toplamı 1'dir. Bu oranların temel bileşenlere göre grafiğine PVE ya da scree grafiği adı verilir. Bu grafikte ilk iki bileşen değişkenliğin %87'sini açıklamaktadır.

Gruplandırma (Kümeleme)

- Gruplandırmada (clustering) amaç verilerde kendi içinde homojen gözlemleri barındıran alt grupları ortaya çıkarmaktır.
- İyi bir gruplandırmada gözlemler grup içinde birbirine benzer. Gruplar arasında ise çok farklıdır.
- değişkenlerden hareketle birbirine benzeyen müşteri gruplarını ortaya çıkarmak. • Örnek: Pazar segmentasyonu. Gelir, hane özellikleri, meslek, cinsiyet, vb.
- Yaygın kullanılan yöntemler
- o K-Ortalama (K-means) gruplandırma
- Hiyerarşik gruplandırma

K-Ortalamalar

K-Ortalamalar ile Gruplandırma

ullet Amaç: bir veri setini birbiriyle örtüşmeyen K gruba ayırmak.

K-Ortalama Gruplandırma

Her bir gruptaki gözlem indekslerini içeren kümeleri C_1, C_2, \ldots, C_K ile gösterelim.

Her bir gözlem bir grupta yer alır, yani $C_1 \cup C_2 \cup \ldots \cup C_K = \{1,\ldots,n\}$

Ayrıca gruplar örtüşmez: $C_k \cap C_{k'} = \emptyset$, her $k \neq k'$ için.

K-ortalamalar gruplandırması: Grup-içi değişkenliği en küçük yapacak şekilde grupları belirler. Optimizasyon problemi:

$$\min_{C_1,\ldots,C_K} \left\{ \sum_{k=1}^K rac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p \left(x_{ij} - x_{i'j}
ight)^2
ight\}$$

 $|C_k| = k$ grubundaki gözlem sayısı.

k grubundaki tüm gözlem çiftleri arasındaki uzaklığı en küçük yap.

Veriler:

Algoritma adımları:

- Gözlemleri tesadüfi bir şekilde K gruptan birine ata.
- 2. İterasyonlar: Yakınsama sağlanıncaya kadar aşağıdaki adımları tekrarla:
- 2a. Her K grubu için grup merkezini (aritmetik ortalamaları) hesapla.
- 2b. Gözlemleri en yakındaki geometrik merkezin bulunduğu gruba ata.

Adım 1:

İterasyon 1, Adım 2a:

- Her bir grup için grup merkezlerini hesapla (grafikte farklı renkte daireler grup merkezleridir)
- Başlangıçta grup ataması tesadüfi yapıldığı için merkezler birbirine çok yakındır.

İterasyon 1, Adım 2b:

 Her bir gözlemi en yakın olduğu merkezin içinde year aldığı gruba ata.

İterasyon 2, Adım 2a:

- Yeni grup merkezlerini hesapla.
- Grup atamalarını tekrarla (Adım 2b)
- Başa dön, yinele.

Sonuç:

- K-ortalamalar algoritması 10 adımda sonuca ulaştı.
- Ancak bu algoritma sadece lokal optimumu bulmaktadır.
- Ulaşılan sonuç global optimum olmayabilir.
- Bu nedenle farklı başlangıç grup atamalarıyla adımlar tekrarlanarak karşılaştırılabilir.

(ISLR, Fig-10.7, p.390)

- Grafikte farklı başlangıç koşulları ile çalıştırılan 6 K-Ortalamalar çözümü gösterilmektedir.
- Birincisinde minimum değer 320.9, ikincisinde ise 235.8'dir. Bu çözümlerin lokal olduğu unutulmamalıdır.
- Farklı başlangıç değerleriyle algoritma tekrar çalıştırılarak sonuçlar karşılaştırılmalıdır. Buradaki örnekte en iyi çözüm 235.8 amaç fonksiyonu değerini veren çözümdür. (Not: 2-3-4-5 çözümleri renkler farklı olsa da aynıdır.)

Hiyerarşik Kümeleme

Hiyerarşik Gruplandırma

- K-ortalamalar algoritmasında grup sayısının bilinmesi gerekir. Verilerde kaç tane grup olduğunu belirlemek şarttır.
- Ancak K'yi bilmiyorsak ya da belirlemek istemiyorsak Hiyerarşik Gruplandırmayı tercih edebiliriz.
- Hiyerarşik gruplandırmada K'nin bilinmesi gerekmez. Ayrıca verilerin nasıl gruplandırıldığını gösteren bir ağaç grafiği (dendrogram) çizilebilir.
- En yaygın hiyerarşik kümeleme yaklaşımı aşağıdan-yukarı ya da aglomeratif kümelemedir.
- Bu yaklaşımda ağacın dallarından başlanarak gözlemler kümelenir.

 Kümeleme hiyerarşisi aşağıdan yukarıya doğrudur (yapraklardan dallara doğru)

- Kümeleme hiyerarşisi aşağıdan yukarıya doğrudur (yapraklardan dallara doğru)
- Birbirine yakın olan gözlemler birlikte kümelenir.

- Kümeleme hiyerarşisi aşağıdan yukarıya doğrudur (yapraklardan dallara doğru)
- Birbirine yakın olan gözlemler birlikte kümelenir.

- Kümeleme hiyerarşisi aşağıdan yukarıya doğrudur (yapraklardan dallara doğru)
- Birbirine yakın olan gözlemler birlikte kümelenir.
- Birbirine yakın gruplar da birlikte kümelenir.

- Kümeleme hiyerarşisi aşağıdan yukarıya doğrudur (yapraklardan dallara doğru)
- Birbirine yakın olan gözlemler birlikte kümelenir.
- Birbirine yakın gruplar da birlikte kümelenir.
- En sonunda tüm gözlemleri kapsayan kümeye ulaşılır.

- Dendrogram ters çevrilmiş bir ağaç gibi düşünülebilir. En altta yapraklar (gözlemler) yer almaktadır.
- Birbirine yakın gözlemler ve gruplar birleştirilerek yukarıya doğru çıkılır.
 Yukarıya çıktıkça küme sayısı azalmaktadır.
- Dendrogram'ın yüksekliği iki gözlemin birbirinden ne kadar farklı olduğunu gösterir.
- Grafiğin altlarında birleşen gözlemler göreceli olarak birbirine daha çok benzer.

Örnek

- Simülasyonla türetilmiş veriler, n=45, iki değişken. Grup sayısı, K=3, ve gözlemlerin hangi grupta yer aldığı biliniyor (ISLR, p.391).
- Grup etiketlerinin bilinmediğini varsayalım ve hiyerarşik kümele uygulayarak dendrogramını çizelim.

Dendrogram

- Birbirine yakın gözlemler daha altlarda birleşir.
- (Sol):
 gözlemleri
 temsil eden
 yapraklar
 (yeşil)
- (Orta): yatay kesikli çizgi ile kesilirse 2 grup
- (Sağ): 3 grup

Dendrogram Örnek

- (5,7) gözlemleri ile (1,6) gözlemleri birbirine yakın olduğu için altta birleşti.
- (2,9) birbirine yakın diyebilir miyiz? Sonuçta dendrogramda yakın görünüyorlar.
- Cevap: Hayır. Serpilme çiziminden de görüldüğü gibi 9 numaralı gözlem oldukça uzakta.
- Dendrogram üzerinde gözlemlerin benzerliği yatay eksen üzerinden değil dikey eksen üzerinden yapılır.
- Grafikte (2,8,5,7) gözlemleri 9 ile aynı yükseklikte birleşiyor, ≈ 1.8 .

• Her bir gözlemin kendi grubunu oluşturduğu n küme ile başla.

- Önce bir benzemezlik ölçütü

 (dissimilarity measure) tanımla
 (örneğin Öklid uzaklığı)
- Her bir gözlemin kendi grubunu oluşturduğu n küme ile başla.
- Benzemezlik ölçütünü hesapla ve en yakın gözlemleri birleştir, örneğin (5,7). Geriye kalan küme sayısı n – 1

- Önce bir benzemezlik ölçütü

 (dissimilarity measure) tanımla
 (örneğin Öklid uzaklığı)
- Her bir gözlemin kendi grubunu oluşturduğu n küme ile başla.
- Benzemezlik ölçütünü hesapla ve en yakın gözlemleri birleştir, örneğin (5,7). Geriye kalan küme sayısı n-1
- Sonraki en çok benzeyen kümeleri birleştir (6,1), geriye kalan = n-2

- Önce bir benzemezlik ölçütü
 (dissimilarity measure) tanımla
 (örneğin Öklid uzaklığı)
- Her bir gözlemin kendi grubunu oluşturduğu n küme ile başla.
- Benzemezlik ölçütünü hesapla ve en yakın gözlemleri birleştir, örneğin
 (5,7). Geriye kalan küme sayısı n 1
- Sonraki en çok benzeyen kümeleri birleştir (6,1), geriye kalan = n-2
- Tüm gözlemler birleşip tek küme oluncaya kadar devam et.

- (5,7) grubunu (8) grubu ile birleştireceğimiz nereden biliyoruz? Benzemezlik (ya da benzerlik) ölçütünü nasıl tanımlarız?
- İki grup arasındaki benzemezlik ölçütü bağlantı (linkage) kavramı ile tanımlanabilir.
- Pratikte kullanılan bağlantı tipleri: tam (complete), ortalama (average), tek (single), ve ağırlık merkezi (centroid)
- Kümelemeler bağlantı tipine ve benzerlik ölçütüne göre değişebilir.

Bağlantı (Linkage) Türleri

- 1. Tam Bağlantı (complete linkage): Kümeler arasındaki en yüksek benzemezliği dikkate alır. A ve B kümesindeki gözlemler arasındaki tüm ikili benzemezlik değerleri hesaplanır ve bunların en yüksek olanı kullanılır.
- A ve B kümesindeki gözlemler arasındaki tüm ikili benzemezlik değerleri hesaplanır ve 2. **Tek Bağlantı** (single linkage): Kümeler arasındaki en düşük benzemezliği dikkate alır. bunların en düşük olanı kullanılır.
- dikkate alır. A ve B kümesindeki gözlemler arasındaki tüm ikili benzemezlik değerleri 3. **Ortalama Bağlantı** (average linkage): Kümeler arasındaki ortalama benzemezliği hesaplanır ve bunların aritmetik ortalaması kullanılır.
- benzemezliği dikkate alır. Yorumlaması zor kümelemelere yol açtığı için pratikte tercih 4. Ağırlık Merkezi (centroid linkage): Kümelerin ağırlık merkezleri arasındaki edilmez.

Bağlantı Türleri

(Kaynak: ISLR Fig-10.12, p.397)

Benzemezlik Ölçütünün Seçimi

- Benzerlik ölçüsü dendrogramın şeklini etkiler.
- Gözlemler arasında benzerliğin ölçülmesinde Öklid uzaklık ölçüsü yaygın olarak kullanılır.
- Alternatif olarak Korelasyon bazlı ölçüler de tanımlanabilir.

arasındaki korelasyon düşük, yani korelasyon-bazlı benzemezlik değeri yüksek. (1) ve (2) birbirine çok yakın (Öklid uzaklığı düşük, yani benzerliği yüksek). Ancak (1) ve (3) Yukarıdaki grafikte (Kaynak: ISLR Fig-10.13, p.398) (1) ve (3) numaralı gözlemler numaralı gözlemler ise Öklid uzaklığı yüksek (az benzer) ancak korelasyon-bazlı benzemezlik değeri düşük (çok benzer)

Özet ve Pratikte Karşılaşılan Sorunlar

- Kümeleme algoritmaları gözetimsiz öğrenmede en önemli araçlardır.
- Bu algoritmaların uygulamasında çeşitli kararların verilmesi gerekir:
- etmek (ortalaması 0 standart sapması 1 olacak şekilde) gerekebilir (örnek için bkz. Hem K-ortalamalar hem de hiyerarşik kümelemede değişkenlerin ölçü birimleri sonuçları etkileyebilir. Bu nedenle algoritmayı uygulamadan önce standardize ISLR, s. 398-9)
- Hiyerarşik kümelemede: hangi benzerlik ölçütü (Öklid vs. korelasyon), hangi bağlantı türü (tek, tam, ortalama), hangi noktada dendrogramın kesileceği
- K-Ortalamalar: grup sayısının kaç olduğu.
- Pratikte farklı tercihlerin sonuçları nasıl etkilediğine bakılarak en uygun olanı tercih edilebilir.
- Sonuçların yorumlanmasında bu kararların etkili olacağı unutulmamalıdır. Sonuçlar mutlak doğru olarak yorumlanmanılıdır.