AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Currently Amended) A press molding die, comprising:

a punch which presses moves in a first direction, pressing a workpiece;

a molding die having a molding surface on which the workpiece is placed and a concave portion which is formed on the molding surface and which has a shape corresponding to the punch, said punch moving into the concave portion to deform the workpiece into a shape corresponding to the concave portion;

a pad which presses a portion that is a part of the workpiece placed on the molding surface and that is on a periphery of the concave portion; and

a micro-rough layer provided on at least one of the molding surface or the pad having a particle diameter of 10 to 30 µm, a thickness of 10 to 40 µm, a hardness of 1000 to 1100 HV, a surface roughness of 10 to 30 µmRy, and an average height of roughness of 0.01 to 0.06 mm, and convex portions; which is formed by performing a particulate coating process on at least one of a portion of the pad, for pressing the workpiece, and a portion of the molding surface, corresponding to the portion of the pad

wherein said micro-rough layer is configured so that the workpiece contacts only at the convex portions, causing deformation of the workpiece in a second direction generally perpendicular to the first direction, thereby substantially preventing displacement of the workpiece.

2. (Canceled)

- 3. (Original) The press molding die according to claim 1, wherein the particulate coating process is performed using a silicofluoric chrome plating solution.
- 4. (Original) The press molding die according to claim 3, wherein the silicofluoric chrome plating solution contains 200 to 300 g of chromic anhydride, 1 to 8 g of sodium silicofluoride, and 0.5 to 1.5 g of sulfuric acid per liter, and the particulate coating process is performed in a condition in which a temperature of the plating solution is 40 to 50 °C, a current density is 100 to 150 A/dm², and a plating time is 3 to 10 minutes.
- 5. (Original) The press molding die according to claim 1, wherein a plurality of grooves which are parallel to each other, and another plurality of grooves which are parallel to each other are formed on the molding surface such that the plurality of grooves and the other plurality of grooves extend in different directions.
- 6. (Withdrawn) A manufacturing method of a press molding die, comprising the steps of:

forming a punch which presses a workpiece;

forming a molding die having a molding surface on which the workpiece is placed and a concave portion which is formed on the molding surface and which has a shape corresponding to the punch;

forming a pad which presses a portion that is a part of the workpiece placed on the molding surface and that is on a periphery of the concave portion; and forming a micro-rough layer having a particle diameter of 10 to 30 µm by performing a particulate coating process on at least one of a portion of the pad, for pressing the workpiece, and a portion of the molding surface, corresponding to the portion of the pad.

- 7. (Withdrawn) The manufacturing method of a press molding die according to claim 6, wherein an average height of roughness of the micro-rough layer is 0.01 to 0.06 mm.
- 8. (Withdrawn) The manufacturing method of a press molding die according to claim 6, wherein the particulate coating process is performed using a silicofluoric chrome plating solution.
- 9. (Withdrawn) The manufacturing method of a press molding die according to claim 8, wherein the silicofluoric chrome plating solution contains 200 to 300 g of chromic anhydride, 1 to 8 g of sodium silicofluoride, and 0.5 to 1.5 g of sulfuric acid per liter, and the particulate coating process is performed in a condition in which a temperature of the plating solution is 40 to 50 °C, a current density is 100 to 150 A/dm², and a plating time is 3 to 10 minutes.
- 10. (Withdrawn) The manufacturing method of a press molding die according to claim 6, wherein a plurality of grooves which are parallel to each other, and another plurality of grooves which are parallel to each other are formed on the molding surface

such that the plurality of grooves and the other plurality of grooves extend in different directions.

- 11. (Canceled)
- 12. (Withdrawn) The method according to claim 6 wherein the forming step forms said micro-rough layer with a thickness of 10 to 40 μ m, a hardness of 1000 to 1100 HV, and a surface roughness of 10 to 30 μ mRy.