CS182 Introduction to Machine Learning

Recitation 8

2025.4.16

Outline

- Correlation & Convolution
- CNN
- Upsampling & Downsampling

Correlation 相关 & Convolution 卷积

Correlation

$$w(s,t) \not\approx f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolution

$$w(s,t) \star f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

TABLE 3.5

Some fundamental properties of convolution and correlation. A dash means that the property does not hold.

Property	Convolution	Correlation
Commutative	$f \star g = g \star f$	-
Associative	$f \star (g \star h) = (f \star g) \star h$	_
Distributive	$f \star (g + h) = (f \star g) + (f \star h)$	$f \stackrel{\wedge}{\sim} (g + h) = (f \stackrel{\wedge}{\sim} g) + (f \stackrel{\wedge}{\sim} h)$

2D Convolution

If A and B are two 2-D arrays, then:

卷积核反转一下就是做一个相关, 因为卷积核的参数是可训练的, 所以在CNN里具体是做的卷积还是做的相关其实并不重要. 实际上torch就是用correlation算的https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

Padding 填充

Zero padding to handle non-integer cases or control the output sizes

Dimension 维度

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

一个32*32*3的图像, 经过6个5*5*3的卷积核, 没有padding, 步长为1: 变成28*28*6的特征图.

special: W*H*D的图像经过n个1*1*D的卷积核, 得到W*H*n的特征图.

作用: 改变维度数 (feature层面的pooling)

Dimension of convolution operation 卷积操作的维度

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S.
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

一个 $W_1*H_1*D_1$ 的图像, 经过K个 $F*F*D_1$ 的卷积核, padding的大小为P, 步长为S最终得到一个 $W_2*H_2*D_2$ 的特征图

Upsampling 上采样 & Downsampling 下采样

- upsample: 时域 / 频域 补零
- downsample: max pooling / average pooling / ...

Dimension of pooling operation 池化操作的维度

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

- $O_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

pooling操作只改变图像的大小,不改变特征的维度 $- \uparrow W_1 * H_1 * D_1$ 的图像,经过**感受野**F * F池化,步长为S最终得到一个 $W_2 * H_2 * D_1$ 的特征图

Have a try!

• LeNet-5

