Matrices

Produits de matrices

Exercice 1 (Calcul 1)

Lorsque c'est possible, calculer AB et BA:

a)
$$A = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$,

b)
$$A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$,

c)
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 1 \end{pmatrix}$.

Exercice 2 (Calcul 2)

On pose
$$X = \begin{pmatrix} -1 & 2 & 0 \end{pmatrix}$$
 et $Y = \begin{pmatrix} -3 & 2 & 4 \end{pmatrix}$

Lorsque c'est possible, calculer:

$$XY$$
, tXY , X^tY , ${}^tX^tY$.

Exercice 3 (Matrices qui commutent 1)

On pose
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

1) Déterminer l'ensemble E des matrices qui commutent avec A.

 $M\'{e}thode : \'{E}crire \ AB = BA$ et chercher à identifier les coefficients de B.

2) Montrer qu'il s'agit en fait de l'ensemble :

$$E = \{aI_3 + bA + cA^2, (a, b, c) \in \mathbb{R}^3\}.$$

Exercice 4 (Matrices qui commutent 2)

Déterminer les matrices de $\mathcal{M}_3(\mathbb{R})$

qui commutent avec
$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Puissances de matrices

Exercice 5 ("Équation" matricielle)

Soit
$$D = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}$$
. Déterminer les $M \in \mathcal{M}_2(\mathbb{R})$

satisfaisant : $M^3 - 2M = D$.

On pourra commencer par montrer qu'une telle $matrice\ commute\ avec\ D.$

Exercice 6 (Calcul de puissances)

On pose
$$A = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$$
.

1. Déterminer N telle que $A = 2I_2 + N$.

Calculer N^n pour tout $n \in \mathbb{N}$.

2. En déduire l'expression de A^n pour tout $n \in \mathbb{N}$.

Exercice 7 (Plusieurs méthodes)

On note
$$M = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$
.

- 1. Calculer M^2 et l'exprimer en fonction de M et I_3 .
- 2. Calcul de M^n : Première méthode
- (a) À l'aide de la question 1. montrer que $\forall n \in \mathbb{N}, \ \exists (a_n, b_n) \in \mathbb{R}^2, M^n = a_n M + b_n I_3.$ On donnera l'expression de a_{n+1} et b_{n+1} en fonction de a_n et b_n .
- (b) Déterminer les expressions de a_n et b_n en fonction de n et en déduire M^n .
- 3. Calcul de M^n : Deuxième méthode
- (a) À l'aide de la question 1., déterminer un polynôme $P \in \mathbb{R}[X] \setminus \{0\}$ tel que $P(M) = 0_3$.
- (b) Pour tout $n \in \mathbb{N}$, déterminer le reste de la division euclidienne de X^n par P.
- (c) En déduire M^n .

Exercice 8 (Matrices et récurrence linéaire 1)

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par : $u_0 = 1, v_0 = -1$ et pour tout $n \in \mathbb{N}$,

$$\begin{cases} u_{n+1} = 6u_n - v_n \\ v_{n+1} = u_n + 4v_n \end{cases}$$

On pose, pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R})$.

1. (a) Déterminer $A \in \mathcal{M}_2(\mathbb{R})$ de sorte que :

$$\forall n \in \mathbb{N}, \ X_{n+1} = AX_n$$

- (b) En déduire que : $\forall n \in \mathbb{N}, X_n = A^n X_0$.
- 2. (a) Montrer que l'on peut écrire $A = 5I_2 + J$, où J est une matrice à déterminer.
- (b) En déduire A^n pour tout $n \in \mathbb{N}$.
- 3. Conclusion : déterminer l'expression des termes généraux u_n et v_n en fonction de $n \in \mathbb{N}$.

Exercice 9 (Matrices et récurrence linéaire 2)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite satisfaisant :

$$\forall n \in \mathbb{N}, u_{n+2} = 3u_{n+1} - 2u_n$$

$$\text{pour tout } n \in \mathbb{N} \ U = \begin{pmatrix} u_{n+1} \\ \end{pmatrix}$$

On pose, pour tout $n \in \mathbb{N}$, $U_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$.

1. Déterminer $A \in \mathcal{M}_2(\mathbb{R})$ de sorte que :

$$\forall n \in \mathbb{N}, U_{n+1} = AU_n.$$

Quelle expression déduit-on pour U_n , pour $n \in \mathbb{N}$?

2. (a) Montrer que:

$$\forall n \in \mathbb{N}, \exists a_n \in \mathbb{R}, A^n = a_n \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix}$$

On exprimera au passage a_{n+1} en fonction de a_n .

- (b) En déduire A^n pour tout $n \in \mathbb{N}$.
- 3. Donner finalement u_n en fonction de n, u_0 et u_1 .

Exercice 10 (Matrices nilpotentes)

On dit qu'une matrice $N \in \mathcal{M}_n(\mathbb{R})$ est nilpotente lorsqu'il existe un $p \in \mathbb{N}^*$ tel que $N^p = 0_n$.

- 1. (a) Donner un exemple de matrice nilpotente $N \in \mathcal{M}_2(\mathbb{R})$ (à part $A = 0_2$!)
- (b) Donner un exemple de matrice nilpotente $N \in \mathcal{M}_3(\mathbb{R})$ (à part $A = 0_3!$)
- 2. (a) Montrer que le produit de deux matrices nilpotentes qui commutent est une matrice nilpotente.
- (b) Montrer que la somme de deux matrices nilpotentes qui commutent est une matrice nilpotente.
- 3. Montrer qu'une matrice nilpotente n'est jamais inversible.

Matrices inversibles

Exercice 11 (Calcul d'inverse 1)

On pose
$$A = \begin{pmatrix} 2 & 1 \\ -2 & -3 \end{pmatrix}$$

Montrer que A est inversible et calculer A^{-1} .

Exercice 12 (Calcul d'inverse 2)

Soit
$$A = \begin{pmatrix} -3 & 5 & 6 \\ -1 & 2 & 2 \\ 1 & -1 & -1 \end{pmatrix}$$
.

Montrer que A est inversible et calculer A^{-1} .

Exercice 13 (Calcul d'inverse 3)

Soit
$$M = \begin{pmatrix} 2 & 4 & -1 \\ 2 & 5 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
.

Montrer que M est inversible et calculer M^{-1} . En déduire les solutions du système :

(S)
$$\begin{cases} 2x + 4y + z = 5 \\ 2x + 5y + z = 1 \\ x + 2y + z = -3 \end{cases}$$

Exercice 14 (Calcul d'inverse 4)

1. Soit
$$B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
. Calculer $B^3 - 3B^2 + 3B$.

- 2. En déduire que B est inversible, et déterminer directement B^{-1} .
- 3. Retrouver l'expression de B^{-1} à l'aide de la méthode d'inversion "classique" (pivot de Gauss).

Exercice 15 (Condition d'inversibilité?)

On pose
$$A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 3 \\ 1 & 1 & -2 \end{pmatrix}$$

- 1. Pour quelles valeurs de $\lambda \in \mathbb{R}$ la matrice $A \lambda I_3$ est-elle inversible?
- 2. Résoudre l'équation AX = -3X. (d'inconnue $X \in \mathcal{M}_{3,1}(\mathbb{R})$).
- 3. Résoudre, sans calcul, l'équation AX = 2X.

Bonus

Exercice 16 (Une décomposition)

Montrer que toute matrice de $\mathcal{M}_n(\mathbb{R})$ s'écrit de manière unique comme somme d'une matrice symétrique et d'une matrice antisymétrique.

Raisonner par analyse-synthèse...

Exercice 17 (Le centre de $\mathcal{M}_n(\mathbb{R})$)

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ commutant avec toute autre matrice. Montrer que $A = \lambda I_n$ pour un $\lambda \in \mathbb{R}$.

Considérer les matrices $E_{i,j}$ dont tous les coefficients sont nuls, sauf un 1 sur la i-ème ligne et la j-ième colonne...

Extrait EML 2010

On appelle matrice stochastique toute matrice $A=(a_{i,j})$ de $\mathcal{M}_p(\mathbb{R})$ telle que :

a)
$$\forall (i,j) \in \{1,\ldots,p\}^2, \ a_{i,j} \geqslant 0$$

a)
$$\forall (i,j) \in \{1,\ldots,p\}^2, \ a_{i,j} \ge 0$$
 b) $\forall i \in \{1,\ldots,p\}, \sum_{j=1}^p a_{i,j} = 1.$

On note \mathcal{ST}_p l'ensemble des matrices stochastiques de $\mathcal{M}_p(\mathbb{R})$.

Pour toute matrice A de $\mathcal{M}_p(\mathbb{R})$, pour tout réel λ , on note $E_{\lambda}(A) = \{X \in \mathcal{M}_{p,1}(\mathbb{R}) \mid AX = \lambda X\}$. Notons que cet ensemble n'est jamais vide car on a toujours $A0_{p,1} = \lambda 0_{p,1}$.

1. (a) On note V la matrice colonne à p lignes dont tous les coeffcients sont égaux

Montrer que, pour tout
$$A = (a_{i,j}) \in \mathcal{M}_p(\mathbb{R}) : A \in \mathcal{ST}_p \iff \begin{cases} \forall (i,j) \in \{1,\ldots,p\}^2, \ a_{i,j} \geqslant 0 \\ AV = V. \end{cases}$$

- (b) En déduire que pour toute matrice A de \mathcal{ST}_p , $E_1(A) \neq \{0_{p,1}\}$.
- (c) En déduire : $\forall A, B \in \mathcal{ST}_p$, $AB \in \mathcal{ST}_p$.
- 2. Soit $A \in \mathcal{ST}_p$ et λ un réel tel que $E_{\lambda}(A) \neq \{0_{p,1}\}$. On introduit donc $X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in E_{\lambda}(A)$, non nulle. On introduit l'indice $i \in \{1, \dots, p\}$ tel que : $\forall k \in \{1, \dots, p\}, |x_k| \leqslant |x_i|$.
 - (a) Montrer que $|\lambda x_i| \leq |x_i|$. (b) En déduire : $|\lambda| \leq 1$.