	گروه آموزشی :		M		نام و نام خانوادگی :
11	تاريخ :		کا کا اینا وسنتی تا هرو ^د	,	شماره دانشجویی :
دقيقه	وقت :				نام مدرس :
		() -	امتحان میان ترم درس :	
			18 -18 (نيمسال (اولي ا	

توجه: مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید.

معادله
$$z^* + z^* + z^*$$
 معادله -

$$l_{\gamma} = \lim_{x \to 1} (x - 1) \tan \frac{\pi}{\gamma} x \quad (\varphi \qquad \qquad l_{\gamma} = \lim_{x \to 1} \frac{\sqrt{\gamma x + 1} - \sqrt{\gamma x + 1}}{\sqrt{\gamma x + 1} - \sqrt{\gamma x + 1}} \quad (ق)$$

. الف) وارون تابع
$$y=x+\sqrt{x^{\mathsf{Y}}-\mathsf{Y}}$$
 را بیابید

ب) اگر
$$g(x)=x^{\mathsf{t}}-\mathsf{T} x^{\mathsf{t}}$$
 و ایابید. $g(x)=x^{\mathsf{t}}-\mathsf{T} x^{\mathsf{t}}$ و $f(x)=x^{\mathsf{t}}-\mathsf{T} x^{\mathsf{t}}$

نمره ۱۵ نمره
$$y=cosec\ x$$
 نمودار تابع $y=cosec\ x$ نامره $y=cosec\ x$ نمودار تابع نوجه: $y=cosec\ x$

دانشکده ریاضی **() -** ۱۳۹۱/۲/۳

:

روش اول : طرفین معادله را در
$$(1-z)$$
 ضرب می کنیم : -1 ورش اول : طرفین معادله را در -1 ویل ($1-z$) ضرب می کنیم : -1 ویل -1 ویل قبول دریم های ششم واحد عبارتند از -1 ویل -1 ویل -1 ویل -1 ویل -1 ویل -1 ویل -1 ویل قبول -1 ویل -1 ویل ویل -1 ویل ویل و این و این

:

$$A = \frac{\sqrt{(\tau x + 1)} + \sqrt{(\tau x + 1)}}{\sqrt{(\tau x + 1)}} : \frac{1}{\sqrt{(\tau x + 1)}}$$

:

$$(\sin \mathfrak{r}\mathfrak{r}^\circ = \cdot, \mathfrak{saffan})$$
 (مقدار واقعی $y = \sin x$ را در نظر می گیریم. (مقدار واقعی $y = \sin x$ میدانیم که $y = \sin x$ را در نظر می گیریم. $y = \sin x$ را در

:

: الف) تابع
$$y = x + \sqrt{x^{\mathsf{Y}} - 1}$$
 روی دامنه خود یعنی برای $|x| \ge 1$ یک به یک است پس وارون دارد. می نویسیم $y = x + \sqrt{x^{\mathsf{Y}} - 1}$ $y - x = \sqrt$

- () دانشکده ریاضی ۱۳۹۱/۲/۳

ووش دوم : اگر بخواهیم g(x) را حدس بزنیم اولین حدس تابع $g(x) = ax^{\mathsf{Y}} + bx + c$ خواهد بود. با این حدس داریم : g(x) را حدس بزنیم اولین حدس تابع $g(x) = a(x^{\mathsf{Y}} - 1)^{\mathsf{Y}} + b(x^{\mathsf{Y}} - 1) + c = ax^{\mathsf{Y}} + (-\mathsf{Y}a + b)x^{\mathsf{Y}} + (a - b + c) = x^{\mathsf{Y}} - \mathsf{Y}x^{\mathsf{Y}}$ $g(x) = x^{\mathsf{Y}} - 1$: $g(x) = x^{\mathsf{Y}} - 1$ بنایم داشته باشیم $g(x) = x^{\mathsf{Y}} - 1$ بنایم داشته باشیم $g(x) = x^{\mathsf{Y}} - 1$ بنایم این $g(x) = x^{\mathsf{Y}} - 1$ بنایم و وارون دارد. $g(x) = x^{\mathsf{Y}} - 1$ بنایم این برای بازه $g(x) = x^{\mathsf{Y}} - 1$ بنیم قابل قبول است.

:

$$y = \csc x = \frac{1}{\sin x} , D_f = (-\pi, \pi) - \{\cdot\} \rightarrow \begin{vmatrix} x \to -\pi \\ y \to -\infty \end{vmatrix}, \begin{vmatrix} x \to \pi \\ y \to \infty \end{vmatrix}, \begin{vmatrix} x \to \pi \\ y \to \pm \infty \end{vmatrix}$$

$$y' = \frac{-\cos x}{\sin^7 x} , y' = \cdot \rightarrow x = \pm \frac{\pi}{\mathbf{Y}} \rightarrow \begin{vmatrix} x \to -\pi/\mathbf{Y} \\ y \to -1 \end{vmatrix}, \begin{vmatrix} x \to \pi/\mathbf{Y} \\ y \to -1 \end{vmatrix}$$

х	$-\pi$	$-\pi/\Upsilon$		•		π/٢		π	
<i>y</i> '	+		_		_	•	+		
у	- 8	7	-1	7 -∞	+ ∞	7	+1	7	+ ∞

