

ANÁLISIS DIMENSIONAL

Nivel/Stufe: SECUNDARIA.	Asignatura / Unterricht: Física	
	Grado/Klasse: II° A – B - C	
Profesor(a)/Lehrer (in): Miguel Angel Barrera Flores	Fecha/Datum:	
Alumno(a)/Name:		

ECUACIÓN DIMENSIONAL

Es aquella igualdad matemática que sirve para relacionar las dimensiones de las magnitudes físicas fundamentales, para obtener las magnitudes derivadas y fijar así sus unidades, además permite verificar si una fórmula o ley física, es o no correcta, dimensionalmente.

Notación:

Se usa un par de corchetes:

[]: se lee "Ecuación dimensional de"

[B]: Ecuación dimensional de la magnitud física B.

Ejemplos: $[AREA] = L^2$ $[VOLUMEN] = L^3$ $[ACELERACION] = LT^{-2}$

ECUACIÓN DIMENSIONAL DE MAGNITUDES FUNDAMENTALES

	Magnitud	Unidad de medida (SI)	Ecuación dimensional
1	Longitud	metro (m)	L
2	Masa	kilogramo (kg)	M
3	Tiempo	segundo (s)	T
4	Temperatura termodinámica	kelvin (K)	θ
5	Intensidad de corriente eléctrica	ampere (A)	I
6	Intensidad luminosa	candela (cd)	J
7	Cantidad de sustancia	mol (mol)	N

ECUACIÓN DIMENSIONAL DE MAGNITUDES DERIVADAS

	Magnitud	Unidad de medida (SI)	Ecuación dimensional
1	Área	metro cuadrado (m²)	L^2
2	Volumen	metro cúbico (m³)	L^3
3	Velocidad lineal	metro por segundo (m/s)	LT ⁻¹
4	Aceleración lineal	metro por segundo al cuadrado (m/s²)	LT ⁻²
5	Frecuencia cíclica	hertz (Hz)	T-1
6	Fuerza - Peso	newton (N)	M LT ⁻²
7	Trabajo - Energía	joule (J)	$M L^2 T^{-2}$
8	Potencia mecánica	watt (w)	$M L^2 T^{-3}$
9	Densidad	kilogramo por metro cúbico (kg/m³)	M L ⁻³
10	Presión	pascal (Pa)	M L ⁻¹ T ⁻²
11	Impulso – Cantidad de movimiento	newton segundo (N.s)	M LT ⁻¹
12	Carga eléctrica	coulomb (C)	IT
13	Intensidad de campo eléctrico	newton por coulomb (N/C)	M LT ⁻³ I ⁻¹
14	Potencial eléctrico – voltaje	volt (V)	$ML^2T^{-3}I^{-1}$
15	Resistencia eléctrica	ohm (Ω)	$ML^2T^{-3}I^{-2}$
16	Intensidad de campo magnético	tesla (T)	MT ⁻² I ⁻¹
17	Flujo magnético	webber (wb)	$ML^2T^{-2}I^{-1}$
18	Caudal	metro cúbico por segundo (m³/s)	L^3T^{-1}

PROPIEDADES DE LAS ECUACIONES DIMENSIONALES

1. Todo número expresado en cualquiera de sus formas tiene como dimensión a la unidad.

Ejemplo:
$$[\cos 74^{\circ}] = 1$$
 $[2\pi] = 1$ $[5 + \sqrt{64}] = 1$

2. Sólo se podrá sumar o restar magnitudes de la misma especie y el resultado de dicha operación será igual a la misma magnitud.

Ejemplo 1:

$$3m + 2m = 5m$$

 $[3m] + [2m] = [5m]$
 $L + L = L$

Ejemplo 2:

$$8s - 5s = 3s$$

 $[8s] - [5s] = [3s]$
 $T - T = T$

3. Si una fórmula física es dimensionalmente correcta, todos los términos de dicha ecuación deben ser dimensionalmente iguales. En la fórmula física:

$$P+Q=R-S+TV - Y \dot{\div} Z$$

Al determinar la ecuación dimensional, la suma y la resta representan una igualdad:

$$[P] = [Q] = [R] = [S] = [T][V] = [Y] \div [Z]$$

Observación importante: Los exponentes de una magnitud siempre son números

- * Son correctas: h^2 ; F^2t^{-4} ; t^5 ; $L^{\cos 30^\circ}$

Ejemplos aplicativos Aplicación 1: Si la ecuación $E = \frac{m \cdot v}{t}$ es dimensionalmente correcta, donde "m: masa", "v: velocidad "t: tiempo", determine las dimensiones de "E".
·
Aplicación 2: La siguiente fórmula física es dimensionalmente correcta: KR = mv, donde m: masa, R: fuerza, v: velocidad. ¿Qué magnitud representa K?

Aplicación 3: La presión (P) es una magnitud física que se define como la fuerza (F) aplicada por cada unidad de área (A). Matemáticamente sería: $P = F/A$. Verifique que esta ecuación es dimensionalmente
consistente.
Aplicación 4: La ley de Newton de la gravitación universal está representada por: $F=Grac{Mm}{r^2}$, dondo
es la fuerza gravitacional, M y m son masas, y r es una longitud. La fuerza tiene las
unidades kg.m/s². ¿Cuáles son las unidades SI de la constante de proporcionalidad G?
(Problema 5 del libro de Física SERWAY - VUILLE. Página 22)
A plicación 5. En la signienta fórmula física E — A V2 + DD
Aplicación 5: En la siguiente fórmula física: $E = AV^2 + BP$ donde: $E = Energía$; $V = Velocidad$; $P = Presión$, determine: $[A/B]$

Problemas propuestos

- 01. Si la ecuación $P = \frac{A \cdot B}{H}$ es dimensionalmente correcta, donde "A: velocidad", "B: caudal" y "H: longitud", determine las dimensiones de P.
- a) L^{-2} b) $L^{3}T^{-2}$ c) ML d) $M^{-1}L^{-1}$ e) TL^{-3}
- 02. En la siguiente ecuación dimensionalmente correcta determine los valores de x e y $P = \frac{1}{3}D^xV^y$
- Si: P = Presión; V = Velocidad; D = Densidad
- a) 1 y 3 b) 1 y 2 c) 2 y 3 d) 2 y 4 e) 1 y 4
- 03. Obtener la dimensión del calor específico (Ce): $Ce = \frac{calor}{temperatura \cdot masa}$
- a) $L^2 T^{-2}$ b) $L T^{-2}$ c) $M L^2 \theta$ d) $L^2 T^{-2} \theta^{-1}$ e) $L^{-2} \theta^{-1}$
- 04. Determinar la dimensión del calor latente (L). $L = \frac{calor}{masa}$
- a) L^2T^{-1} b) L^2T^{-2} c) LT^{-2} d) L^3T^{-2} e) MLT^{-2}
- 05. Hallar la dimensión de "E". $E = \frac{DV^2}{g}$ Siendo: D = Densidad; V = Velocidad; g = Aceleración
- a) ML-2 b) ML-1 c) ML d) M-1L-1 e) ML-3
- 06. Calcular [x] en la siguiente fórmula: $x = \frac{PR}{QBZ}$ P: Presión; R: Radio; Q: Densidad; B: Fuerza; Z: Velocidad
- a) MLT b) MT $^{-1}$ c) LM $^{-1}$ d) M $^{-1}$ LT e) MLT $^{-1}$
- 07. La potencia que requiere la hélice de un helicóptero viene dada por la siguiente fórmula: P = KR^xW^yD^z Donde: [W] = T⁻¹; R: Radio de la hélice; D: Densidad del aire; K: Número Calcular: x + y + z
- a) 5 b) 7 c) 9 d) 11 e) 13
- 08. Dada la expresión dimensionalmente homogénea: $\frac{S}{t} = y \left(\frac{2 g}{h}\right)^{1/2}$

Donde: S = distancia, g = aceleración de la gravedad, t = tiempo, h = altura. Obtenga la dimensión de "y".

- a) L b) L³
- c) LT
- d) L²T⁻¹
- e) LT⁻²