Practice quiz on the Cartesian Plane

PUNTOS TOTALES DE 5

 Wł 	nich of the	following	points in	the	Cartesian	Plane is	s on th	ne u-axis?
------------------------	-------------	-----------	-----------	-----	-----------	----------	---------	------------

1 / 1 puntos

- $\bigcirc (-5,0)$
- \bigcirc (5,0)
- \bigcirc (1,1)
- (0, -5)

The y-axis is defined to be all points in the Cartesian plane with zero as x-coordinate. The point (0,-5) meets that requirement.

2. Find the distance between the points A=(2,2) and C=(3,3):

1/1 puntos

- \bigcirc 0
- O 1
- O 2
- √2

✓ Correcto

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$.

In this case (a,b)=(2,2) and (c,d)=(3,3), so the distance is $\sqrt{(3-2)^2+(3-2)^2}=\sqrt{2}$.

3. Find the point-slope form of the equation of the line that goes between A=(1,1) and B=(5,3):

0 / 1 puntos

- $\bigcirc \hspace{-0.8em} \begin{array}{c} y-3=\,\frac{1}{2}\,(x-1) \end{array}$
- $\bigcirc \ y=rac{1}{2}\, x$
- $\bigcirc y-1=rac{1}{2}\left(x-5
 ight)$
- $\bigcirc \ y-1=\frac{1}{2}\left(x-1\right)$
 - Incorrecto

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$

In this case, the slope $m=rac{3-1}{5-1}=rac{1}{2}$

We can choose either ${\cal A}$ or ${\cal B}$ for the point on the line, but in neither case do we get this chosen answer.

4. Which of the following points is on the line with equation:

1 / 1 nuntos

$$y - 1 = 2(x - 2)$$
?

- (2,1)
- \bigcirc (0,0)
- \bigcirc (2,3)
- \bigcirc (3, 2)
 - ✓ Correcto

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, 0 = 0, so this point lies on the line.

5. Suppose that a line ℓ has slope 2 and goes through the point (-1,0). What is the y-intercept of ℓ ?

1/1 puntos

- O 1
- \bigcirc -1
- ② 2
- O 0

✓ Correct

Recall that the y -intercept of ℓ is the y -coordinate of where ℓ hits the y -axis.

Since $(-1,0)\in \ell$, the point on ℓ with x=0 is obtained by running one unit from (-1,0) while rising two units.

This gives y=2 as the y-intercept.

Practice quiz on Types of Functions

PUNTOS TOTALES DE 6

1- Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A\to B$?

0 / 1 puntos

- $\bigcap f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$
- $\textcircled{ } f(a) = 4a, \text{for each } a \in A$
- $\bigcap f(1) = 5, f(2) = 8, \text{ and } f(10) = 40.$
- $\bigcap f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$
 - Incorrecto

A function $f:A\to B$ is a rule which assigns an element $f(a)\in B$ to each $a\in A$. This is a perfectly fine rule. In this case, rather than listing out each assignment explicitly, we have given a formula

Suppose that T:A o Y is the function which gives T(a)=+ if person a tests positive and T(a)=- if they test negative.

Suppose that D:A o Z is the function which gives D(a)=H does not actually have VBS and D(a)= ${\cal S}$ if the person actually has VBS.

Which of the following must be true of person \boldsymbol{a} if we have a false positive?

- $\bigcap T(a) = + \text{ and } D(a) = S$
- $\bigcap T(a) = \text{ and } D(a) = S$
- $\textcircled{ } T(a) = + \operatorname{and} D(a) = H$
- $\bigcap T(a) = \text{ and } D(a) = H$

✓ Correcto

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

- 3. Consider the function $g:\mathbb{R} o\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are not on the 1/1 puntos graph of g?

- \bigcirc (1,0)
- 0 (0, -1)
- \bigcirc (2, -1)
- $\bigcirc (-1,0)$

✓ Correcto

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is $emph{not}$ on the graph of g.

	The graph of $h(x)=x-1$ The graph of $f(x)=2x$ The graph of $g(x)=x+2$ The graph of $s(x)=x^2$ Correcto The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1\neq 4$, so the point $(2,4)$ is not on the graph of h .	
	The graph of $g(x)=x+2$ The graph of $s(x)=x^2$ Correcto The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1\neq 4$, so the point	
	The graph of $s(x)=x^2$ Correcto The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1\neq 4$, so the point	
	\checkmark Correcto $ \hbox{The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1\neq 4$, so the point } $	
	The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 eq 4$, so the point	
D. S.	Suppose that $h(x)=-3x+4.$ Which of the following statements is true?	1/1 puntos
	h is a strictly decreasing function	
(All statements are correct	
($\bigcap_{i=1}^n h_i$ is neither a strictly increasing function nor a strictly decreasing function.	
	h is a strictly increasing function	
	\checkmark Correcto $ \hbox{A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$ } $ Since the graph of h is a line with negative slope, this is in fact true!	
6. Sı	uppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$	1/1 puntos
W	/hich of the following is a possible value for $f(3.7)$?	
C) -3	
C) 14.7	
	17	
C) 3	
	\checkmark Correcto	
	Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies that.	

Graded quiz on Cartesian Plane and Types of Function

CALIFICACIÓN DEL ÚLTIMO ENVÍO 84.61%

1. Which of the following points in the Cartesian Plane have positive x-coordinate and negative y-coordinate? $\bigcirc (-4,5)$ $\bigcirc (7,-1)$

(0,0) (5,7)

 \checkmark Correcto $\mbox{The x-coordinate, 7, is positive, and the y-coordinate, -1, is negative.}$

2. Which of the following points is in the first quadrant of the Cartesian Plane?

1/1 puntos

 $\bigcirc (-4, -7)$

(7,11)

 $\bigcirc (-5,1)$

 \bigcirc (5,-1)

✓ Correcto

The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.

3.	Let A, B, C, I	D be points in the	Cartesian Plane, and	let the set $S=\cdot$	$\{B,C,D\}$
----	------------------	--------------------	----------------------	-----------------------	-------------

1 / 1 nuntos

Suppose that the distances from A to B,C,D are 5.3,2.1, and 11.75, respectively.

Which of the following points is the nearest neighbor to the point A in the set S?

- O D
- c
- Ов
- ОА

✓ Correcto

The distance from A to C is 2.1 and that is smaller than the distance from A to any other element of S.

4. Find the distance between the points A=(2,2) and B=(-1,-2).

1/1 puntos

- O 25
- \bigcirc -25
- 5
- O 1

✓ Correcto

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2+(-2-2)^2}=\sqrt{(-3)^2+(-4)^2}=\sqrt{25}=5$$

- -1
- O 1
- $\bigcirc \sqrt{2}$
- O 0

The slope of this line segment is $\, rac{0-1}{1-0} = -1 \,$

6. Find the point-slope form of the equation of the line with slope -2 that goes through the point (5,4).

1/1 puntos

- 0 y 5 = -2(x 4)
- 0 y 4 = 2(x 5)
- \bigcirc (5,4)
- y-4=-2(x-5)

✓ Correcto

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$.

In this case, the slope m=-2 is given and the point $(\mathbf{5},4)$ on the line is given.

- y = -3x 8
- $\bigcirc y = 5x$
- $\bigcirc \ y=8x-3$
- $\bigcirc y = 5x + 2$

✓ Correcto

The slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis.

This line has slope m=-3 which is the same slope as the given line.

8. Which of the following equations is for a line with the same y-intercept as y=-3x+2?

1/1 puntos

- $\bigcirc y = 5x$
- 0 y = -3x 8
- $\bigcirc \ y = 8x 3$
- y = 5x + 2

✓ Correcto

The the slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis. This line has a y-intercept of 2 which is the same as the given line.

9.	How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1/1 puntos
	O infinitely many	
	O 2	
	O None	
	1	
	✓ Correcto	
	The line with equation $y=x$ is the one and only line that meets the stated requirements.	
10.	Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions $F:A o Z$ are possible?	0 / 1 puntos
	O There are none	
	O 4	
	1	
	O There are infinitely many	
	<u> </u>	
	Incorrecto $ \hbox{Here are at least two different functions from A to Z: we could do $F(a)=x$ and $F(b)=y$ or we could do $F(a)=x$ and $f(b)=x$.} $	
	we could do $\Gamma(u) = x$ and $f(v) = x$.	
11.	How many graphs contain both the point $A=\left(0,0\right)$ and the point $B=\left(1,1\right)$	0/1 puntos
	① 1	
	O None	
	O 2	
	O Infinitely many	
	Incorrecto	
	Here are at least two functions whose graphs contain both A and B : $f(x)=x$ and $g(x)=x^2$	
	Suppose that $g:\mathbb{R} o\mathbb{R}$ is a continuous function whose graph intersects the x -axis more than once. Which of the following statements is true?	1/1 puntos
	lacktriangledown g is neither strictly increasing nor strictly decreasing.	
	O All of the above.	
	$\bigcirc g$ is strictly increasing.	
	$\bigcirc g$ is strictly decreasing.	
	✓ Correcto	
	The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly decreasing.	

- O 4
- $\bigcirc \sqrt{20}$
- O 2
- \odot $\frac{1}{2}$

✓ Correcto

The slope of this line segment is $\ \frac{3-1}{5-1}=\frac{1}{2}$, where 3-1 is the rise and 5-1 is the run.