APPENDIX A. 2-DIMENSIONAL SUPERNATURALITY.

We recall (see §1.2; see [EK66, ML98]) that given categories $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ and functors $P \colon \mathcal{A} \times \mathcal{B}^{\mathrm{op}} \times \mathcal{B} \to \mathcal{D}, Q \colon \mathcal{A} \times \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathcal{D}$, an extranatural transformation $\alpha \colon P \xrightarrow{\sim} Q$ consist of a collection of arrows in \mathcal{D}

$$\{\alpha_{abc} \colon P(a,b,b) \longrightarrow Q(a,c,c)\}$$

indexed by triples of object in $\mathcal{A} \times \mathcal{B} \times \mathcal{C}$ such that the following hexagonal diagram commutes for every morphism $f: a \to a', g: b \to b', h: c \to c'$:

$$P(a,b',b) \xrightarrow{P(f,b',g)} P(a',b',b') \xrightarrow{\alpha_{a'b'c}} Q(a',c,c)$$

$$\downarrow^{P(a,g,b)} \qquad \qquad \downarrow^{Q(a',c,h)}$$

$$P(a,b,b) \xrightarrow{\alpha_{abc'}} Q(a,c',c') \xrightarrow{Q(f,h,c')} Q(a',c,c');$$

Notice how this commutative hexagon can be equivalently described as the juxtaposition of three distinguished commutative squares, depicted in $[\mathbf{EK66}]$: the three can be obtained letting respectively f and h, f and g, or g and h be identities in the former diagram, which collapses from time to time to

Now we are interested in a 2-dimensional enhancement of this definition, for 2-categories $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ and 2-functors $P \colon \mathcal{A} \times \mathcal{B}^{\mathrm{op}} \times \mathcal{B} \to \mathcal{D}$ and $Q \colon \mathcal{A} \times \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathcal{D}$.

A tentative definition of a 2-co/wedge was in fact given in [Boz77], and a particular case of the following definition, having P or Q a constant 2-functor, was given in []; we've been unable to find additional relevant literature on the topic.

Lemma A.1 [THE $*_F$ NOTATION]:...

Definition A.2: A lax extranatural transformation between strict 2-functors $P: \mathcal{A} \times \mathcal{B}^{\mathrm{op}} \times \mathcal{B} \to \mathcal{D}$ and $Q: \mathcal{A} \times \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathcal{D}$ consists of a family of 1-cells $\theta_{abc}: P(a,b,b) \to Q(a,c,c)$ and 2-cells θ_{fgh} , one for each $f: a \to a', g: b \to b', h: c \to c'$, filling the diagram

$$P(a,b',b) \xrightarrow{P(f,b',g)} P(a',b',b') \xrightarrow{\theta_{a'b'c}} Q(a',c,c)$$

$$P(a,g,b) \downarrow \qquad \qquad \downarrow Q(a',c,h)$$

$$P(a,b,b) \xrightarrow{\theta_{abc'}} Q(a,c',c') \xrightarrow{Q(f,h,c')} Q(a',c,c');$$

and such that the following coherence conditions are satisfied:

(1) The diagram of 2-cells

$$P(a,b,b) \xrightarrow{P(f,b,b)} P(a',b,b) \qquad P(a',b,$$

commutes for each 2-cell $\alpha \colon f \Rightarrow f'$;

(2) The diagram of 2-cells

$$P(a,b',b) \xrightarrow{P(a,b,g)} P(a,b',b') \xrightarrow{P(a,b',g')} P(a,b',b') \xrightarrow{P(a,b',g')} P(a,b',b') \xrightarrow{P(a,b',g')} P(a,b',b') \xrightarrow{P(a,b',g')} P(a,b',b') \xrightarrow{P(a,b',g)} P(a,b',b')$$

commutes for each 2-cell β : $g \Rightarrow g'$;

(3) The diagram of 2-cells

$$P(a,b,b) \xrightarrow{\theta_{abc}} Q(a,c,c) \qquad P(a,b,b) \xrightarrow{\theta_{abc}} Q(a,c,c)$$

$$\downarrow^{\theta_{abc'}} \downarrow \qquad \downarrow^{Q(a,c,h)} \qquad = \qquad \downarrow^{Q(a,b,c')} \qquad Q(a,c,h') \qquad \downarrow^{Q(a,c,h')} \qquad \downarrow^{Q(a,c,h')} \qquad Q(a,c,h') \qquad \downarrow^{Q(a,c,h')} \qquad Q(a,c,c')$$

$$Q(a,c',c') \xrightarrow{Q(a,h',c')} Q(a,c,c') \qquad Q(a,c,c')$$

commutes for each 2-cell $\gamma: h \Rightarrow h'$;

- (4) The 2-cell $\theta_{\rm id,id,id}$ coincides with the identity 2-cell of θ_{abc} : $P(a,b,b) \rightarrow Q(a,c,c)$;
- (5) There are compatibilities with the composition...

F says : Open questions:

- Are these conditions sufficient (guess: no, we miss coherence for composition, identities)?
- Is it necessary to take into account also A^{co} , B^{co} , etc.?
- Is it possible to package these three conditions in a single commutative diagram of 2-cells (hint: maybe, using the $\beta *_P \alpha$ notation)?

References

- [Boz77] Syméon Bozapalides, Les fins cartésiennes généralisées, Archivum Mathematicum 13 (1977), no. 2, 75–87.
- [EK66] Samuel Eilenberg and G.M. Kelly, A generalization of the functorial calculus, J. Algebra 3 (1966), 366–375.
- [Gro13] M. Groth, Derivators, pointed derivators and stable derivators, Algebraic & Geometric Topology 13 (2013), no. 1, 313–374.
- [GV72] A. Grothendieck and J. Verdier, Théorie des topos (SGA 4, exposés I-VI), Springer Lecture Notes in Mathematics 269 (1972), 270.
- [ML98] S. Mac Lane, Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.
- [SW78] R. Street and R. Walters, Yoneda structures on 2-categories, J. Algebra 50 (1978), no. 2, 350–379.