

Learning Latent Variable Analysis with Dr. Hu

潜在变量分析

胡悦 清华大学政治学系

内容概要

因素分析(Factorial Models)

- 1. 探索性影子分析(EFA)
- 2. 验证性因果分析(CFA)
- 3. 结构方程模型(SEM)

类型分析(Typological Models)

- 1. 项目反应理论(IRT)
- 2. 跨群组项目反应(MrP, GIRT, DCPO)

操作语言

- R¹
 - o mirt
 - o DCPO

项目反应理论 (Item Response Theory, IRT)

因子分析不香么?

- 1. 假定潜在变量是连续的;
- 2. 对于指标不区分变量类型;
- 3. 难以捕捉群组差异
- 4. EFA无法囊括指标间关系;
- 5. CFA面临"简略理论vs测量质量"的矛盾

IRT优势

- 1. 天生为二元指标设计(衍生适应定序变量和连续变量);
- 2. 易与Bayesian inference结合,解决潜在变量scale 不确定问题;
- 3. 在Bayesian框架下更好解决缺失值和 "Don't Know" 问题;
- 4. 易与跨群组估计结合,实现指标跨组可比

个人层级IRT

应用范围: 社会调查

调查问题:

- 1. Yes/No
- 2. 可以转化为二元的问题
- 3. 定序问题(e.g., Liker scale questions)

IRT 假定

- 1. Monotonicity
- 2. Unidimensionality
- 3. Local independence
- 4. Parameter invariance

Monotonicity

单增趋势: 随潜在变量增加,获得1的可能性也随之增加。

Unidimensionality

- 聚合的项目均指向同一个潜在变量。
- 基于理论

直到引入multidimensional IRT

Local Independency

对于每一项目(e.g.,一道题)的响应(e.g., 选择的选项)间的关联性只来自共同的潜在变量。

换言之,控制潜在变量影响后,问题间响应相互独立

$$P(y_{iq},y_{i'q} \mid \theta_q) = P(y_{iq} \mid \theta_q)P(y_{i'q} \mid \theta_q)$$

Parameter Invarance

- Parameters在项目间不变
- Parameters在响应人群间不变¹
 - 当进行Multiple Group IRT时尤可能被违反

11 / 54

¹ 通过基于Wald and likelihood-ratio approach来检测Differential item functioning (DIF).

Modeling Latent Variables

Rasch Model (1PL)

- → Two-Parameter Logistic Model (2PL)
- → Three-Parameter Logistic Model (3PL)
- → Four-Parameter Logistic Model (4PL)

Group IRT

Rasch Model (1PL)

- y_{iq}∈{0,1}: subject i's score on question q
- $\theta_i \in \{-\infty, +\infty\}$: Unbounded latent trait
- σ_q : Difficulty

$$Pr(y_{iq} = 1) = logist^{-1}(\theta_i - \sigma_q)$$

Item Response

Response Theory

操作案例 (Bock & Lieberman 1970)

Law School Admissions Test, sec 7 5个yes/no问题

Item.1	Item.2	Item.3	Item.4	Item.5
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Difficulty Parameter

```
m_lsat <- mirt(df_lsat, model = 1, itemtype = "Rasch", verbose
coef(m_lsat, simplify = TRUE) %>%
  kable(format = "html")
```

	a1	d	g	u
Item.1	1	1.8680718	0	1
Item.2	1	0.7909134	0	1
Item.3	1	1.4608233	0	1
Item.4	1	0.5214399	0	1
Item.5	1	1.9927710	0	1

Please always diagnose your results,

and understand what you are diagnosing.

--- Dr. Yue Hu

Item Characteristic Curves (ICC)

Test Charactersitic Curve

Rasch局限: Measurement error

Two-Parameter Logistic Model (2PL IRT)

$$Pr(y_{iq} = 1) = logist^{-1}(\kappa_q \theta_i - \sigma_q)$$

κ_α: Discrimination (Parameter of dispersion)

另一种常见写法

$$Pr(y_{iq}=1) = logist^{-1}[rac{ heta_i - oldsymbol{eta_q}}{oldsymbol{lpha_q}}]$$

 β_q : σ_q/κ_q , threshold("difficulty", 控制location) α_q : κ_q^{-1} , dispersion (控制斜率)


```
m_lsat2PL <- mirt(df_lsat, model = 1, itemtype = "2PL", verbos
coef(m_lsat2PL, simplify = TRUE)</pre>
```

```
## $items

## Item.1 0.988 1.856 0 1

## Item.2 1.081 0.808 0 1

## Item.3 1.706 1.804 0 1

## Item.4 0.765 0.486 0 1

## Item.5 0.736 1.855 0 1

##

## $means

## F1

## 0

##

## $cov
```

需要2PL吗?

Likelihood-Ratio Test

```
##
## Model 1: mirt(data = df_lsat, model = 1, itemtype = "Rasch",
## Model 2: mirt(data = df_lsat, model = 1, itemtype = "2PL", vereal temptype = "2PL", vereal tempt
```

AIC	SABIC	HQ	logLik	df	р
5341.802	5352.192	5352.994	-2664.901	NaN	NaN
5337.610	5354.927	5356.263	-2658.805	4	0.0159822

如果有人全凭猜咋办? ——大量低θ人群

Three-Parameter Logistic Model (3PL)

$$Pr(y_{iq}=1) = extbf{\emph{c}}_i + extbf{(1-\emph{\emph{c}}_i)} logist^{-1}[rac{(heta_i-eta_q)}{lpha_q}]$$

c_i: Item lower asymptote ("guessing")

极大增加演算成本→通常需要1000以上观测点

如果有人不care咋办

Four-Parameter Logistic Model (4PL)

$$Pr(y_{iq}=1) = c_i + (extbf{d}_i - c_i) logist^{-1} [rac{(heta_i - eta_q)}{lpha_q}]$$

d_i: Item upper asymptote ("carelessness"), d < 1

鉴于3PL已经需要1000-ish观测点……

IRT统计检验

• 测试层: Global fit

• 项目层: Item fit & residual

• 个体层: Personal fit

Global Fit¹

$$G^2=2[\sum_l^s r_l ln(rac{r_l}{N ilde{P_l}})]$$

N: 参与人数

l: 可能的反应

r: 做出特定反应的人数

当数据过于稀疏时(item > 10), M2, M2*

```
## M2 df p RMSEA RMSEA_5 RMSEA_9!
## stats 23.17287 9 0.00581954 0.03970314 0.02003961 0.05998303
## SRMSR TLI CFI
## stats 0.04744033 0.9284234 0.9355811

[1] RMSEA, SRMSR, CFI, TLI对于IRT同样使用
```

Item Diagnostics

Covariation-based residuals

```
## LD matrix (lower triangle) and standardized values:
##
## Item.1 Item.2 Item.3 Item.4 Item.5
## Item.1 NA -0.017 0.020 0.022 0.019
## Item.2 0.292 NA 0.105 -0.042 -0.064
## Item.3 0.389 10.976 NA 0.007 0.007
## Item.4 0.474 1.801 0.055 NA -0.052
## Item.5 0.362 4.063 0.045 2.691 NA
```

Single item/person fit

```
# Ttem
itemfit(m lsat, fit stats = "infit")
##
      item outfit z.outfit infit z.infit
## 1 Item.1 0.744 -3.597 0.939 -1.025
## 2 Item.2 0.758 -7.500 0.826 -6.303
## 3 Item.3 0.711 -5.420 0.860 -3.202
## 4 Item.4 0.770 -8.877 0.818 -7.962
                                -0.081
## 5 Item.5 0.797 -2.572 0.993
# Person
personfit(m_lsat)
```

```
outfit z.outfit
##
                                infit
                                       z.infit
                                                            Zh 🗅
## 1
       0.6420958 -0.9001784 0.6953214 -0.96202244 0.93429336
## 2
       0.6420958 - 0.9001784 \ 0.6953214 - 0.96202244 \ 0.93429336
## 3
       0.6420958 - 0.9001784 \ 0.6953214 - 0.96202244 \ 0.93429336
       0.6420958 -0.9001784 0.6953214 -0.96202244 0.93429336
## 4
## 5
       0.6420958 -0.9001784 0.6953214 -0.96202244 0.93429336
## 6
       0.6420958 - 0.9001784 \ 0.6953214 - 0.96202244 \ 0.93429336
## 7
       0.6420958 -0.9001784 0.6953214 -0.96202244
                                                    0.93429336
```

如果出现问题:

- 1. 通过S-χ²、local dependency等检查观测和估计数值差别
- 2. 改变model type, 比如2PL → 3PL
- 3. 如果最初用binary,尝试polytomous或者nominal response models
- 4. 尝试non-parametric smoothing techniques

延展1:一维到多维

传统IRT: 一维聚合

Multidimentional IRT (MIRT, Phil Chalmers, 2015)

$$Pr(y_{iq}=1) = logist^{-1}[rac{oldsymbol{ heta_i} - eta_q}{oldsymbol{lpha_q}}]$$

 θ_i 和 α_q 不再是单一值,而是一个矩阵。

延展2: 二元到定序

Logit → Cumulative logit

$$Pr(y_{iq} = 1) \rightarrow Pr(\frac{y_{iq} \le c}{y_{iq} > c})$$

Expected Total Score (rotate = 'none')

三种主要类型

- 1. (Modified) Graded Response Model
 - 用于scoring rubrics,比如 Likert
- 2. (Generalized) Partial Credit Model, Rating Scale Model
 - 用于可转化为定序的分类变量
- 3. Nominal Response Model
 - 用于无序分类变量

延展3: 群组效应

Multilevel Mixture IRT with Item Bias Effects (Stegmueller 2011)

在估测 α_q 时加入random effect.

超越个体

Individual fallacy: Ecological fallacy 的反面

再比如,民主、不平等、政治文化……

Disaggregation

$$y_{kq} = \sum y_{ikq}/n$$
.

问题:

- 1. 如果群组过小,其平均值的代表意义不大
- 2. 不同的指标对于潜在变量贡献不一样

Multilevel Regression and Post-stratification (MrP)

经过群组信息(地理、人口)加权的平均值

- 1. 将总体(population)按群组(strata,如国家、地区) 切分;
- 2. 估测对象为核心变量在每个群组中的平均值/比例, θ_h (h ∈ {1, H});
- 3. 已知各群组以人口变量j(如老年男性、青年女性等)划分,群组人口(N_j)或占总人口比;
- 4. 各组总体平均值μ¡可通过multilevel model 进行估算。

$$heta_h = rac{\sum_{j \in h} N_j \mu_j}{\sum_{j \in h} n_j}$$

N: 总体(来自普查)

n: 样本(来自sample)

操作案例

数据:某年某市五区域2396家产业公司的财政信息

目标: 估测每个区域的产业平均收入(记为 $\theta_{1\sim5}$)

公司规模和区域分布

	Α	В	С	D	E
Big	30	13	1	16	23
Medium	180	121	111	187	138
Small	97	593	862	20	4

总体平均值(真值)

Zone	income
Α	652.28
В	320.75
С	331.02
D	684.98
E	767.39

我们随机选取数据中1000个产业公司作为样本:

Step I: Mr

Income =
$$\beta_{0z} + \beta_{1z}$$
Level_{iz} + ϵ_{iz}

$$\beta_{0z} = \gamma_{00} + \gamma_{01} Zone_z + u_{0z}$$

	Α	В	С	D	Е
Big	1274.74	1148.58	1189.59	1238.51	1251.95
Medium	706.19	580.03	621.03	669.96	683.40
Small	372.95	246.79	287.79	336.72	350.16

Step II: P

$N_z \times weighted mean / n_z$

```
## A B C D E
## 656.4551 318.3753 326.6951 680.8675 754.5761
```

Comparision

- 答题难度的地区差异
- 题目的scale
- Measurement error

聚合层级IRT: DGIRT

Dynamic Group-level IRT——结合IRT和MrP (Caughey & Warshaw 2015)

DGIRT

- 1. 在群组层面估测IRT;
- 2. 在估测IRT过程中加入群组级别变量;
- 3. 将时间变量融入IRT估测;
- 4. 用MrP给估测进行权重。

IRT的群组层级估测

个体

$$p_{iq} = logist^{-1}[rac{ heta_i - eta_q}{lpha_q}]$$

群组

$$\eta_{ktq} = logit^{-1}(rac{ar{ heta}_{kt} - eta_q}{\sqrt{lpha_q^2 + (1.7\sigma_{kt})^2}}).$$

 $\bar{\theta}_k$ 和 σ_{kt} 是潜在变量在组k时间t的均值和sd。

囊括时间与空间问题

$$ar{ heta}_k \sim N(\xi_t + m{x}_k' m{\gamma}, \sigma_{ar{ heta}}^2)$$
 $\xi_t \sim N(\xi_{t-1}; \sigma_{m{\gamma}}^2)$ $\gamma_{pt} \sim N(\gamma_{p,t-1} \delta_t + m{z'}_p. \eta_t, \sigma_{m{\gamma}}^2)$ n^*_{kqt}

DGIRT:

- 囊括诸多因素
- 可以部分平衡样本代表性问题
- 强大,但复杂

DGIRT简装版 (Claassen 2019)

简化1: 只作用于代表性样本和国家级别

简化2: 将国家作用从估测θ变为估测difficulty

简化3: 忽略本地问题分布(如极化现象)

$$egin{align} \eta_{ktq} &= logit^{-1}(rac{ar{ heta}_{kt}' - eta_q}{\sqrt{lpha_q^2 + (1.7\sigma_{kt})^2}}). \ &\downarrow \ &\eta_{ktq} &= logit^{-1}(rac{ar{ heta}_{kt}' - (eta_q + \delta_{kq})}{lpha_q}). \end{aligned}$$

聚合IRT最新进化态: DCPO

Dynamic Comparative Public Opinion

复杂程度:

Claasseen 2019 < DCPO < DGIRT

	McGann (2014)	Claassen (2019)	Caughey, O'Grady, and	DC
Cross- National	×	YES	Warshaw (2019) YES	YES
Dynamic Priors	×	YES	YES	YES
Ordinal	×	×	YES	YES
δ_{kq}	×	YES	×	YES
Bounded Mean Opinion	YES	×	×	YES
Opinion Polarization	YES	×	×	YES 51 / 54

优化效果

	Internal Validation Test			External Validation Test		
	(1)	(2)	(3)	(4)	(5)	(6)
	Mean		% Im-		k-fold	k-fold 80%
	Absolute	Country-	prove-	k-fold	$\mathrm{Mean}~\%$	Credible
	Error	Means	ment in	Mean	Improve-	Interval
Model	(MAE)	MAE	MAE	MAE	ment	Coverage
Claassen (2019)	0.032	0.112	71.4	0.057	51.7	+4.9
Model 5						
Caughey, O'Grady,	0.049	0.186	73.7	0.063	66.1	-67.4
and Warshaw (2019)						
DCPO	0.031	0.186	83.3	0.055	70.5	-4.5

操作过程

- 1. 收集survey数据,明确与感兴趣的变量相关的指标 问题
- 2. 通过DCPOtools对数据进行预处理
- 3. 通过DCPO进行数据分析
- 4. 通过shinystan诊断convergence

总结

- 个体IRT
 - Rasch model
 - o nPL model
 - 多维IRT
- 检验
 - ∘ Glbal: G2/M2
 - Item: in/outfit

- 群体IRT
 - o MrP
 - o DGIRT
 - o DCPO