US					
N					

21CS44

Third Semester B.E. Degree Examination, Apr/May 2023 DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Q. No.		Questions	Marks	BL/CO	
		Module I			
1	a.	Define Space complexity and time complexity of an algorithm and compute the time complexity of Fibonacci number algorithm.	06	CL2/CO1	
	b.	What are the various basic asymptotic efficiency classes? Illustrate Big O, Big Omega and Big Theta asymptotic notations with example.	07	CL3/CO1	
	c.	Write and apply bubble sort to sort the list E, X, A, M, P, L, E in alphabetical order.	07	CL3/CO1	
		OR			
2	a.	Explain the general plan for analyzing time efficiency of non-recursive algorithms.	06	CL2/CO1	
	b.	Write a function to perform the addition of two matrix. Apply program step counter method and tabular method to estimate the time complexity.	07	CL3/CO1	
	c.	Derive an algorithm using recursive analysis to find the number of binary digits in the binary representation of a positive decimal number and obtain its time complexity.	07	CL3/CO1	
	Į.	Module II			
3	a.	Give the recursive algorithm to find maximum and minimum element from the list and apply the algorithm to find maximum and minimum to the list. [31, 76, 25, 12, -7, 8, 22, 70, -2, 4, -9]	10	CL3/CO2	
	b.	Obtain topological sort for the graph using i) Source Removal Method ii) DFS Method	10	CL3/CO2	
		OR			
4	a.	Explain the three major variations of decrease and conquer technique with example for each. Apply insertion sort algorithm for the given data: 34, 21, 45, 89, 22, 67, 87, 11, 9.	10	CL3/CO2	
	b.	Apply both Merge sort and Quick sort algorithm to sort the characters VIBGYOR.	10	CL3/CO2	

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

		Module III		
5		Apply Greedy method to obtain an optimal solution to the Knapsack problem where Knapsack capacity m=15.		
	a.	Object 1 2 3 4 5 6 7 Weight 10 5 15 7 6 8 3 Profit 2 3 5 7 1 4 1	07	CL3/CO3
	b.	What is Job sequencing with deadlines problem? For the given data, find the optimal job sequence and maximum profit using Greedy approach. Jobs J1 J2 J3 J4 J5 Profits 60 100 20 40 20 Deadlines 2 2 3 1 1 Apply Prim's algorithm to obtain the minimum cost spanning tree for the given	06	CL2/CO3
	c.	07	CL3/CO3	
	ı	OR		
6	a.	Design Dijkstra's algorithm and apply the same to find single source shortest path for the given graph by considering 'S' as the source vertex.	07	CL3/CO3
	b.	Construct the Huffman tree for the following data: Character A B C D E - Probability 0.5 0.35 0.5 0.1 0.4 0.2 i. Encode: a] BED b] AB_CD ii. Decode: 0110110	06	CL2/CO3
	c.	07	CL3/CO3	

		Module IV		
7	a.	Apply Floyd's algorithm to find all pair shortest path for the graph given below.	08	CL3/CO4
	b.	Explain Multistage graphs with example. Write multistage graph algorithm using forward approach.	06	CL2/CO4
	c.	Construct an optimal binary search tree for the following four–key set. Key A B C D Probability 0.1 0.2 0.4 0.3	06	CL3/CO4
		OR		
8	a.	Find the optimal tour for sales person using dynamic programming technique for the given graph and its corresponding edge length matrix	08	CL3/CO4
	b.	Write Warshall's algorithm to compute transitive closure of a directed graph. Apply the same on the graph defined by the following adjacency matrix: $A = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$	06	CL3/CO4
	c.	Match the pattern BOABAB in the text BESS_KNEW_ABOUT_BOABAB using Horspool's algorithm	06	CL2/CO4
		Module V		
9	a.	Draw the state space tree to generate solutions to 4-Queens problem	4	CL2/CO5
	b.	Apply backtracking method to solve subset sum problem for the instance n=6, d=30, S= {5, 10, 12, 13, 15, 18}.	8	CL3/CO5
	c.	What are different computational models? Discuss in detail.	8	CL3/CO5
	1	OR	<u> </u>	1
10	a.	What is Hamiltonian circuit problem? What is the procedure to find Hamiltonian circuit of a graph?	4	CL2/CO5
	b.	Solve the below instance of assignment problem using branch and bound algorithm.	8	CL3/CO5

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

	F	Person	Job1 a 9 b 6 c 5 d 7	Job2 2 4 8 6	Job3 7 3 1 9	Job4 8 7 8 4			
	Apply Branch and Knapsack Capacit		pproach to s	solve the	instance	of 0/1 Knaps	ack problem.		
c.		Item	1	2	3	4]	8	CL3/CO5
		Weight	4	7	5	3	1		
		Value	40	42	25	12			

Cognitive Levels of Bloom's Taxonomy

No.	CL1	CL2	CL3	CL4	CL5	CL6
Level	Remember	Understand	Apply	Analyze	Evaluate	Create

Course Outcomes

CO1	Solve the time complexity of recursive, non-recursive and brute force algorithm using asymptotic notations.	CL3
CO2	Solve the recurrence relation to obtain the performance of divide-and-conquer, decrease-and conquer approach.	CL3
CO3	Apply greedy technique, transform and conquer strategy to solve the problem for optimal solution.	CL3
CO4	Determine the time complexity for Dynamic-Programming paradigm and String-matching techniques.	CL3
CO5	Apply backtracking and branch-and-bound approach on combinatorial problems and categorize algorithms as P, NP, NP-complete and NP-hard classes.	CL3