Elastic waves for Pedestrians

B. Arntsen

NTNU
Department of Geoscience
borge.arntsen@ntnu.no

Svalbard April 2024

Content

- 1. P-waves, S-waves and Surface Waves
- 2. Reflected waves
- 3. Refracted waves
- 4. Head waves
- 5. Diving waves
- 6. Rayleigh Waves

Hooks Law

$$F = \kappa \Delta L \tag{1}$$

STRESS - STRAIN

ultimate strength

Newton and Hook's laws

```
\begin{array}{lll} \mathsf{Force} &=& \mathsf{mass} \times \mathsf{acceleration} \\ \mathsf{Stress} &=& \mathsf{Stiffness} \times \mathsf{Strain} \end{array}
```

Simple model

Model with free surface

P-waves free surface

P-waves free surface

P-waves free surface

PS-waves v_x

PS-waves v_x

PS-waves v_x

PS-waves v_y

PS-waves v_y

PS-waves v_y

Summary

- P-waves
- ► Reflected and Transmitted waves
- Refracted waves
- ► Head waves
- Diffractions
- Diving waves
- PS-waves
- ► Rayleigh waves (surface waves)