Lycée Buffon TD 10
MPSI Année 2020-2021

Nombres réels

Exercice 1:

- 1. Montrer qu'une intersection de deux intervalles est encore un intervalle.
- 2. Montrer que l'union de deux intervalles non disjoints est encore un intervalle.

Exercice 2: Montrer que pour tout $(x,y) \in \mathbb{R}^2$, on a

- 1. $E(x) + E(x+y) + E(y) \le E(2x) + E(2y)$
- $2. \ E\left(\frac{E(nx)}{n}\right) = E(x)$
- $3. \sum_{k=0}^{n-1} E\left(x + \frac{k}{n}\right) = E(nx)$

Exercice 3 : Soient A et B deux parties non vides majorées de \mathbb{R}

- 1. Soit $\lambda \in \mathbb{R}^{+*}$. On pose $\lambda A = \{\lambda a, \ a \in A\}$. Déterminer $\operatorname{Sup}(\lambda A)$ en fonction de $\operatorname{Sup}(A)$.
- 2. Montrer que $\operatorname{Sup}(A+B) = \operatorname{Sup}(A) + \operatorname{Sup}(B)$ où $A+B = \{a+b, (a,b) \in A \times B\}$.
- 3. On suppose que $A \cup B \subset \mathbb{R}^+$. Montrer que $\operatorname{Sup}(A \cdot B) = \operatorname{Sup}(A) \times \operatorname{Sup}(B)$ où $A \cdot B = \{ab, \ (a,b) \in A \times B\}$.

Exercice 4 : On cherche toutes les applications de $\mathbb R$ dans $\mathbb R$ telles que

$$\forall (x,y) \in \mathbb{R}^2$$
, $f(x+y) = f(x) + f(y)$ et $f(xy) = f(x)f(y)$

1. Montrer que si f est solution alors il existe une constante c telle que

$$\forall x \in \mathbb{Q}, \quad f(x) = cx$$

- 2. Montrer que si f est une solution non nulle alors f est positive sur \mathbb{R}^+ et croissante sur \mathbb{R} .
- 3. En déduire que si f est solution alors $\exists c \in \mathbb{R} : \forall x \in \mathbb{R}, \quad f(x) = cx$
- 4. Conclure.