

نظریه زبانها و ماشینها پاسخ تکلیف چهارم ترم دوم ۰۰-۹۹

در همه بخشهای تمامی سؤالات (به غیر از بخشهایی که مشخص شدهاست)، $\Sigma = \{a,b\}$ است. $\Gamma = \{a,b\}$ مستقل از متن معرفی شده یک PDA طراحی کنید.

 L_1 = { w#x | است. x است، x یک زیررشته برای x

 L_2 = $\{ \; a^n b^m \; | \;$ روج باشد. n-m و $n \geq m \; \}$

 $L_3 = \{ w \mid \text{ same a div } a \text{ or } a \}$

 L_4 = $\{\;a^ib^jc^k\;|\;i=j\;$ يا $j=k\;\}\; \left(\Sigma=\{a,b,c\}\;$ وری الفبای $j=k\;\}$

 $L_5 = \{ w_1 \# w_2 \# ... \# w_k \mid k \ge 1, \forall i : w_i \in \Sigma^*, \exists i \ne j : w_i = w_j^R \}$

۲ - اگر C یک زبان مستقل از متن و R یک زبان منظم باشد، ثابت کنید زبانهای زیر مستقل از متن هستند.

 $L_1 = \{ xy \mid yx \in C \}$

با داشتن یک PDA به نام P برای زبان P برای زبان طراحی میکنیم. PDA به نام P برای این زبان طراحی میکنیم. این عملیات را طی دو مرحله برای ساخت x و y انجام میدهیم:

 $L_2 = \{ w \mid w^R \in C \}$

گرامری ربان C را نوشته و آن را به فرم نرمال چامسکی تبدیل میکنیم در این صورت برای ساختن گرامری برای زبان $C \longrightarrow BA$ برای زبان $C \longrightarrow AB$ که به صورت $C \longrightarrow AB$ که به صورت $C \longrightarrow AB$ در گرامر وجود دارند را با $C \longrightarrow BA$ برای زبان کنیم.

 $L_3 = \{ w \mid \exists x \in R : wx \in C \}$

زبان R است پس برای آن یک PDA به نام R وجود دارد و همینطور زبان R یک زبان منظم است پس برای آن یک R به نام R میتوانیم تعریف کنیم:

 $M = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ $N = (Q_2, \Sigma, \Gamma, \delta_2, q_{02}, F_2)$

حال برای L_1 یک PDA جدید به نام N' طراحی میکنیم که به صورت زیر تعریف می شود:

```
N' = (Q_1 \times Q_2, \Sigma, \Gamma, \delta', q_0', F')
q_0' = (q_{01}, q_{02})
F' = (q_i, q_j) \text{ for all } q_i \in F_1 \text{ and } q_j \in F_2
\text{for all } \delta_2(q_{i1}, x, y) = (q_{i2}, z) \longrightarrow \delta'((q_{01}, q_{i1}), x, y) = ((q_{01}, q_{i2}), z)
\text{for all } \delta_2(q_{i1}, x, y) = (q_{i2}, z) \text{ and } \delta_1(q_{j1}, x) = q_{j2} \longrightarrow \delta'((q_{j1}, q_{i1}), \epsilon, y) = ((q_{i2}, q_{j2}), z)
```

۳ - با استفاده از الگوریتم CYK بررسی کنید که رشته های aaabb و aabab در زبان متناظر با گرامر زیر هستند یا خیر.

$$G: \begin{cases} S \longrightarrow AP \mid AB \\ E \longrightarrow AP \mid EB \mid b \\ P \longrightarrow EB \\ A \longrightarrow a \\ B \longrightarrow b \end{cases}$$

يس رشته aaabb عضو اين زبان نيست، $S \notin \{\phi\}$

	ϕ				
	P	ϕ			
	φ	ϕ	ϕ		
	φ	153	ϕ	15}	
	{A}	1A3	(E,B)	taz	16,8}
ω	a	a	Ь	a	Ь

بس رشته aabab عضو این زبان نیست. $S \notin \{\phi\}$

۴-گرامرهای زیر را با حذف قواعد بی استفاده، اپسیلونی و یکه تا حد ممکن ساده کنید.

$$G_1: \begin{cases} S \longrightarrow aSab \mid bS \mid \epsilon \mid bA \mid aB \\ A \longrightarrow bB \mid B \\ B \longrightarrow B \mid AbB \\ C \longrightarrow A \mid aab \end{cases}$$

$$G_1: \Big\{ S \longrightarrow aSab \,|\, bS \,|\, \epsilon$$

$$G_2: \begin{cases} S \longrightarrow aCC \mid aAA \\ A \longrightarrow aCC \mid a \\ B \longrightarrow AaBc \mid ba \mid a \\ C \longrightarrow cCC \mid A \end{cases}$$

$$G_2: \begin{cases} S \longrightarrow aCC \mid aAA \\ A \longrightarrow aCC \mid a \\ C \longrightarrow cCC \mid aCC \mid a \end{cases}$$

م برای هریک از موارد زیر، بررسی کنید زبان توصیف شده مستقل از متن است یا خیر. $\Sigma = \{a,b,c\}$ بررسی شود.

 $L_1 = \{ w \mid n_a(w) < n_b(w) \cdot n_c(w) \}$

زبان L_1 است. درنتیجه با اثبات L_1 زیر مجموعه نامتناهی از L_1 است. درنتیجه با اثبات مستقل از متن نبودن L_1 می توان ثابت کرد که L_1 نیز مستقل از متن نیست. حال اگر L_1 می توان ثابت کرد که L_1 نیز مستقل از متن نیست. حال اگر L_1 می توان ثابت کرد که L_1 نیز مستقل از متن نیست. حال اگر L_1 می تواند شامل L_2 و یا شامل L_3 و یا شامل L_3 و یا شامل L_4 و یا تعداد و یا کمتر. درنتیجه L_3 و یا تعداد و یا تعداد و یا تعداد و یا کمتر. درنتیجه L_4 و یا تعداد و یا L_4 و یا تعداد و یا تعداد و یا تعداد و یا کمتر. درنتیجه L_4 و یا تعداد و یا تعداد و یا تعداد و یا کمتر. درنتیجه یا و یا کمتر یا تعداد و یا تعداد و یا کمتر و یا

مستقل از متن است و PDA متناظر با آن به صورت زیر می باشد:

 $L_3 = L(a^*b^*c^*) - \{a^nb^nc^n \mid n \ge 0 \}$

زبان L_3 مستقل از متن است و به صورت زیر تعریف می کنیم:

$$\begin{cases} S_0 \rightarrow S_{A>B} \mid S_{A>C} \mid S_{B>A} \mid S_{B>C} \mid S_{C>A} \mid S_{C>B} \\ S_{A>B} \rightarrow aS_{A=B}C \\ S_{B>A} \rightarrow S_{A=B}bC \\ S_{A=B} \rightarrow aS_{A=B}b \mid \varepsilon \\ C \rightarrow cC \mid \varepsilon \\ S_{A>C} \rightarrow aS_{A=C} \\ S_{C>A} \rightarrow S_{A=C}c \\ S_{A=C} \rightarrow aS_{A=C}c \mid B \\ B \rightarrow bB \mid \varepsilon \\ S_{B>C} \rightarrow AbS_{B=C} \\ S_{B$$

 $L_4 = \{ w_1 \# w_2 \mid \dots \mid w_2 \}$ يک زيررشته از $w_1 \}$

زبان L_4 مستقل از متن نیست. فرض می کنیم طول لم تزریق p باشد. رشته $s=a^pb^p\#a^pb^p$ را در نظر می گیریم. اگر s=uvxyz باشد. هیچ کدام از v و v نمی تواند شامل w باشند.

$$\begin{split} v,y &\neq \varepsilon \text{ and } \# \in z \Rightarrow uv^2xy^2z \not\in L_4 \\ v,y &\neq \varepsilon \text{ and } \# \in u \Rightarrow uv^0xy^0z \not\in L_4 \\ v &= \varepsilon \text{ or } y = \varepsilon \Rightarrow uv^0xy^0z \not\in L_4 \\ v,y &\neq \varepsilon \text{ and } \# \in x \xrightarrow{|vxy| < p} v = b^+, y = a^+ \Rightarrow uv^2xy^2z \not\in L_4 \end{split}$$

 $L_5 = \{ w \mid n_b(w) \text{ if } n_a(w) \}$ حداقل یکی از $n_a(w)$ یا $n_b(w)$ عددی

زبان L_5 مستقل از متن نیست. با توجه به لم تزریق و شروط آن رشته ای به فرم $s=a^p$ را در نظر می گیریم که s=uvxyz

$$\begin{split} v &= a^q, y = a^t \xrightarrow{\quad \text{pumping lemma} \quad} q + t > 0 \\ r &= \mid uxz \mid = p - q - t \\ \mid uv^r xy^r z \mid = r + rq + rt = r(1 + q + t) \\ \text{if } r &> 1 \text{ then } r(1 + q + t) \text{ is not prime.} \\ \text{if } r &= 0 \text{ then } \mid uv^2 xy^2 z \mid = \mid v^2 y^2 \mid = 2p \text{ is not prime.} \\ \text{if } r &= 1 \text{ then } \mid uv^{p+1} xy^{p+1} z \mid = p^2 \text{ is not prime.} \end{split}$$

 $L_6 = \{ x_1 \# x_2 \# ... \# x_k \mid for \ k \geq 0, \ each \ x_i \in L(a^*), \ and \ x_i \neq x_j for \ i \neq j \ \} \ (\Sigma = \{a, \#\})$ (روى الفباى)

زبان L_6 مستقل از متن نیست. با توجه به لم تزریق و شروط آن رشته ای به فرم $x^p = x^0 + x^1 + x^2 + x^2 + x^2$ را در نظر می گیریم. طبق لم تزریق |vy|نمی تواند صفر باشد. پس می توان گفت یکی از میان v و یا v حتماً متشکل از حروفی است. حال ممکن است v حالت رخ دهد:

۰۱ فقط *a* دارد.

۰. فقط # دارد : با تزریق زیر رشته تهی تشکیل می شودو تکراری است.

 $\stackrel{\cdot }{a}$. شامل $\stackrel{\cdot }{a}$ و $\stackrel{\cdot }{\#}$ است.

در حالت اول و سوم با تزریق و یا تخلیه زیر رشته تکراری تولید می شود.

موفق باشيد:)