I. Rappels

 $f: \mathcal{U} \longrightarrow \mathbb{R}^p$ \mathcal{U} ouvert non vide de \mathbb{R}^n

I.1. Limites

définition :
$$a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathcal{U}$$
 , f admet une limite en a si

$$\exists \ l \in \mathbb{R}^p \qquad \forall \ \varepsilon > 0 \quad \ \exists \ \alpha > 0 \qquad \forall \ x \in \mathcal{U} \qquad \|x - a\| \leq \alpha \Longrightarrow \|f(x) - l\| \leq \varepsilon$$

si l existe , l est unique

si
$$f: (x_1, \dots, x_n) \longmapsto \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_p(x_1, \dots, x_n) \end{pmatrix}$$

f admet une limite en $a \iff \forall i \in [1, p]$ f_i admet une limite en a donc, quitte à prendre composante par composante, on se ramène aux fonctions de \mathcal{U} sur \mathbb{R} .

$$\underline{\mathbf{th\acute{e}or\grave{e}me}}: \lim_{x \to a} f(x) = l \iff \forall \ (u_m)_m \in \mathcal{U}^{\mathbb{N}} \quad \text{avec } \lim_{m \to +\infty} u_m = a \text{ alors } \lim_{m \to +\infty} f(u_m) = l$$

Ce théorème sert surtout à démontrer qu'une fonction n'a pas de limites.

I.2. Continuité

<u>définition</u>: f est continue en $a \in \mathcal{U}$ si $\lim_{x \to a} f(x) = f(a)$

f est continue sur \mathcal{U} si f est continue en tout point de \mathcal{U}

f est continue en a (respectivement sur \mathcal{U}) $\Longleftrightarrow \forall i \in [1, p]$ f_i est continue en a (respectivement sur \mathcal{U})

Remarque : si p=2 et n=1, la représentation graphique de $f:\mathcal{U}\longrightarrow\mathbb{R}$ continue, (ie z=f(x,y)) définit une surface de \mathbb{R}^3 .

II. Fonctions de classe c^1

On se ramène aux fonctions $f:\mathcal{U}\longrightarrow\mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n

II.1. Dérivées selon un vecteur

$$\underline{\mathbf{d\acute{e}finition}:}\ a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathcal{U} \ , \ \vec{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \in \mathbb{R}^n \setminus \{0\}, \ f \ \text{admet une d\'eriv\'ee selon le vecteur } \vec{u} \ \text{en } a$$

si
$$\lim_{t\to 0} \frac{f(a_1+tu_1,\cdots,a_n+u_n)-f(a_1,...,a_n)}{t}$$
 est finie

ie si $t \longmapsto f(a+t\vec{u})$ est dérivable en 0. Cette limite est notée $D_{\vec{u}}f(a)$

II.2. Dérivées partielles

<u>définition</u>: $a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathcal{U}$, f admet une dérivée partielle en a suivant la i-ème variable

si
$$D_{\vec{e_i}} f(a)$$
 existe , ie $\lim_{t \to 0} \frac{f(a_1, \cdots, a_{i-1}, a_i + t, a_{i+1}, \cdots, a_n) - f(a_1, \cdots, a_n)}{t}$ est finie $D_{\vec{e_i}} f(a)$ se note $\frac{\partial f}{\partial x_i}(a)$ ou $\partial_i f(a)$

Remarque : l'existence des dérivées partielles ne donne rien sur la continuité.

II.3. Fonctions de classe c^1

 $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n

Si f admet une dérivée partielle par rappport à la i-ème variable en tout point de \mathcal{U} , on peut définir

$$\frac{\partial f}{\partial x_i}: \mathcal{U} \longrightarrow \mathbb{R}$$
$$a \longmapsto \frac{\partial f}{\partial x_i}(a)$$

<u>définition</u>: f est de classe c^1 sur \mathcal{U} si f admet n dérivées partielles toutes continues sur \mathcal{U}

Exemples : 1. Tout polynôme de n variables réelles est de classe c^1 sur \mathbb{R}^n

2. Toute fraction rationnelle de n varaibles réelles est de classe c^1 sur son domaine de définition

Propriétés : 1. linéarité : $f,g:\mathcal{U}\longrightarrow\mathbb{R}$ de classe c^1 sur \mathcal{U} $\alpha\in\mathbb{R}$ alors $\alpha f+g$ est de classe c^1 sur \mathcal{U}

- 2. produit $f,g:\mathcal{U}\longrightarrow\mathbb{R}$ de classe c^1 sur \mathcal{U} alors fg est de classe c^1 sur \mathcal{U}
- 3. quotient $f,g:\mathcal{U}\longrightarrow\mathbb{R}$ de classe c^1 sur \mathcal{U} et g ne s'annule pas alors $\frac{f}{g}$ est de classe c^1 sur \mathcal{U}

théorème: dl_1 : f est de classe c^1 sur \mathcal{U} , alors f admet en tout point de \mathcal{U} un dl_1 et

$$\forall \ a \in \mathcal{U} \quad \forall \ h \in \mathbb{R}^n \text{ tel que } a+h \in \mathcal{U} \quad f(a+h) = f(a) + \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(a) + o(\|h\|)$$

<u>Corollaire</u>: f est de classe c^1 sur \mathcal{U} alors f continue sur \mathcal{U}

Approximation: n = 2, f est de classe c^1 sur \mathcal{U} , soit $(x_0, y_0) \in \mathcal{U}$

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + o(\|(h, k)\|)$$

donc $f(x_0 + h, y_0 + k) - f(x_0, y_0)$ s'approxime linéairement par $h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0)$

Si on pose $z - z_0 = h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0)$, équation d'un plan, appelé plan tangent en (x_0, y_0) à la surface z = f(x, y)

II.3. Différentielle

 $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n de classe c^1 sur \mathcal{U}

Soit $a \in \mathcal{U}$, l'application $\mathbb{R}^n \longrightarrow \mathbb{R}$

$$h \longmapsto \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(a)$$

est une application linéaire de \mathbb{R}^n dans \mathbb{R} , appelée différentielle de f en a, notée df_a

donc
$$df_a(h) = \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(a)$$
 et $f(a+h) = f(a) + df_a(h) + o(h)$

théorème: f, g est de classe c^1 sur \mathcal{U} , $\alpha \in \mathbb{R}$, alors

$$d(\alpha f + g)_a = \alpha df_a + dg_a$$

$$d(fg)_a = f(a)dg_a + g(a)df_a$$

si
$$g$$
 ne s'annule pas $d\left(\frac{1}{g}\right)=-\frac{dg_a}{g(a)^2}$
$$d\left(\frac{f}{g}\right)=\frac{g(a)df_a-f(a)dg_a}{g(a)^2}$$

II.4. Composée

théorème : règle de la chaîne : $f:\mathcal{U}\longrightarrow\mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n de classe c^1 sur \mathcal{U}

 \mathcal{I} intervalle de $\mathbb{R}, \, \varphi_1, \cdots, \varphi_n : \mathcal{I} \longrightarrow \mathbb{R}$ de classe $c^1 \operatorname{sur} \mathcal{I}$

telles que
$$\forall t \in \mathcal{I} \quad (\varphi_1(t), \cdots, \varphi_n(t)) \in \mathcal{U}$$

alors
$$\psi: \mathcal{I} \longrightarrow \mathbb{R}$$
 est de classe c^1 sur \mathcal{I}

$$t \longmapsto f(\varphi_1(t), \cdots, \varphi_n(t))$$

et
$$\psi'(t) = \sum_{i=1}^{n} \varphi_i'(t) \frac{\partial f}{\partial x_i}(\varphi_1(t), \dots, \varphi_n(t))$$

Application à la dérivée selon un vecteur :

 $f:\mathcal{U}\longrightarrow\mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n de classe c^1 sur \mathcal{U} $\vec{u}\in\mathbb{R}^n\setminus\{0\}$

alors $\psi(t)=f(a_1+tu_1,\cdots,a_n+tu_n)$, ψ est de classe c^1 et

et
$$\psi'(t) = \sum_{i=1}^{n} u_i \frac{\partial f}{\partial x_i} (a_1 + tu_1, \dots, a_n + tu_n)$$

$$D_{\vec{u}}f(a) = \psi'(0) = \sum_{i=1}^{n} u_i \frac{\partial f}{\partial x_i}(a_1, \dots, a_n)$$

théorème : $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^2 de classe c^1 sur \mathcal{U}

$$\mathcal{V}$$
 ouvert de \mathbb{R}^2 $x: \mathcal{V} \longrightarrow \mathcal{U}$ $y: \mathcal{V} \longrightarrow \mathcal{U}$ x, y de classe c^1 $(u, v) \longmapsto x(u, v)$ $(u, v) \longmapsto y(u, v)$

alors $h:(u,v)\longmapsto f(x(u,v),y(u,v))$ est de classe c^1 de $\mathcal V$ sur $\mathbb R$

et
$$\frac{\partial h}{\partial u} = \frac{\partial x}{\partial u} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial u} \frac{\partial f}{\partial y}$$
 $\frac{\partial h}{\partial v} = \frac{\partial x}{\partial v} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial v} \frac{\partial f}{\partial y}$

<u>Généralisation</u>: $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n de classe c^1 sur \mathcal{U}

 \mathcal{V} ouvert de \mathbb{R}^2 $x_1, \dots, x_n : \mathcal{V} \longrightarrow \mathcal{U}$ de classe c^1

alors $h: (u_1, \dots, u_n) \longmapsto f(x_1(u_1, \dots, u_n), \dots, x_n(u_1, \dots, u_n))$ est de classe c^1 de \mathcal{V} sur \mathbb{R}

et
$$\frac{\partial h}{\partial u_i} = \sum_{i=1}^n \frac{\partial x_i}{\partial u_i} \frac{\partial f}{\partial x_i} (x_1, \dots, x_n)$$

Application : coordonnées polaires : $(r, \theta) \longmapsto (x, y) = (r\cos(\theta), \sin(\theta))$ est de classe c^1 sur \mathbb{R}^2

$$f(r,\theta) = g(x,y)$$

$$\frac{\partial f}{\partial r} = \frac{\partial x}{\partial r} \frac{\partial g}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial g}{\partial y} = \cos(\theta) \frac{\partial g}{\partial x} + \sin(\theta) \frac{\partial g}{\partial y}$$

$$\frac{\partial f}{\partial \theta} = \frac{\partial x}{\partial \theta} \frac{\partial g}{\partial x} + \frac{\partial y}{\partial \theta} \frac{\partial g}{\partial y} = -r \sin(\theta) \frac{\partial g}{\partial x} + r \cos(\theta) \frac{\partial g}{\partial y}$$

théorème : caractérisation des fonctions constantes : f :

 $\mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide convexe de \mathbb{R}^n

f est constante sur $\mathcal{U} \iff f$ de classe c^1 sur \mathcal{U} et $\forall a \in \mathcal{U}$ $df_a = 0$

II.5. Gradient

définition : $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n de classe c^1 sur \mathcal{U}

le gradient de
$$f$$
 en $a \in \mathcal{U}$ est $\nabla f(a) = \overrightarrow{grad}f(a) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix}$

donc
$$df_a(h) = \nabla(f)(a).h = \langle \nabla(f)(a), h \rangle$$

Propriétés :
$$\nabla(\alpha f + g)(a) = \alpha \nabla f(a) + \nabla g(a)$$

$$\nabla (fg)(a) = f(a)\nabla g(a) + g(a)\nabla f(a)$$

si
$$g$$
ne s'annule pas $\displaystyle \nabla \bigg(\frac{1}{g}\bigg)(a) = -\frac{\nabla g(a)}{g^2(a)}$

$$\nabla \left(\frac{f}{g}\right)(a) = \frac{g(a)\nabla f(a) - f(a)\nabla g(a)}{g^2(a)}$$

Autre expression de la règle de la chaîne : $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n

f de classe c^1 sur \mathcal{U}

 \mathcal{I} intervalle de $\mathbb{R}, \varphi_1, \cdots, \varphi_n : \mathcal{I} \longrightarrow \mathbb{R}$ de classe c^1 sur \mathcal{I}

telles que $\forall t \in \mathcal{I} \quad \gamma(t) = (\varphi_1(t), \dots, \varphi_n(t)) \in \mathcal{U}$

alors $\psi: \mathcal{I} \longrightarrow \mathbb{R}$ est de classe c^1 sur \mathcal{I}

 $t \longmapsto f(\varphi_1(t), \cdots, \varphi_n(t))$

et $\psi'(t) = \langle \nabla \psi(t), \gamma'(t) \rangle$

donc $D_{\vec{u}}f(a) = \langle \nabla f(a), \vec{u} \rangle$

Propriété : $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n , f de classe c^1 sur \mathcal{U} le gradient de f est orthogonal aux lignes de niveau de f.

Propriété: $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n , f de classe c^1 sur \mathcal{U}

si $\nabla f(a) \neq \vec{0}$, $\nabla f(a)$ est colinéaire au vecteur unitaire selon lequel la dérivée de f en a est maximale, et de même sens.

III. Dérivées partielles d'ordre supérieur

III.1. Définition

<u>définition</u>: $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n

On suppose que f admet des dérivées partielles sur \mathcal{U} $\frac{\partial f}{\partial x_i}: \mathcal{U} \longrightarrow \mathbb{R}$

si $\frac{\partial f}{\partial x_i}$ admet une dérivée partielle par rapport à sa $j^{\grave{e}me}$ variable, on dit que f admet une dérivée partielle d'ordre 2 par rapport à ses $i^{\grave{e}me}$ et $j^{\grave{e}me}$ variables

On note
$$\frac{\partial f}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_i \partial x_i}$$

<u>Généralisation</u>: On peut définir des dérivées partielles d'ordre k: $\frac{\partial^k f}{\partial x_{i_k} \cdots \partial x_{i_1}}$

<u>définition</u>: f est de classe c^2 sur \mathcal{U} si f admet des dérivées partielles d'ordre 2 toutes continues sur \mathcal{U} f est de classe c^k sur \mathcal{U} si f admet des dérivées partielles d'ordre k toutes continues sur \mathcal{U} f est de classe c^{∞} si f est de classe c^k pour tout k

théorème: $f,g:\mathcal{U}\longrightarrow\mathbb{R}$ de classe c^k sur \mathcal{U} , alors $\alpha f+g$, fg sont de classe c^k sur \mathcal{U} et si g ne s'annule pas sur \mathcal{U} , alors $\frac{f}{g}$ est de classe c^k sur \mathcal{U}

III.2. Théorème de Schwarz

théorème : (admis) $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n f de classe c^2 sur \mathcal{U}

alors
$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$
 si $1 \le i, j \le n$

<u>Utilisation</u>: directe ou pour montrer qu'une fonction n'est pas c^2

III.3. Exemples de résolution d'équations aux dérivées partielles

 $\underline{\text{\'equation aux cordes vibrantes:}} \quad \frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \quad y \ c^2 \qquad c > 0$

III.4. Matrice hessienne

 $\underline{\textbf{définition}:} f: \mathcal{U} \longrightarrow \mathbb{R} \qquad \mathcal{U} \text{ ouvert non vide de } \mathbb{R}^n \text{ } f \text{ de classe } c^2 \text{ sur } \mathcal{U}$

On appelle matrice hessienne de f en $a \in \mathcal{U}$, la matrice $H_f(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{1 \leq i,j \leq n}$

Comme f est de classe c^2 , $H_f(a) \in \mathcal{S}_n(\mathbb{R})$

Formule de Taylor-Young à l'ordre 2:(admis)

 $f:\mathcal{U}\longrightarrow\mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n f de classe c^2 sur \mathcal{U}

 $a \in \mathcal{U}$ $h \in \mathbb{R}^n$ tel que $a + h \in \mathcal{U}$ alors $f(a + h) = f(a) + \nabla f(a)^T h + \frac{1}{2} h^T H_f(a) h + o\left(\|h\|^2\right)$

 $\text{soit pour } n=2 \quad f(a+h)=f(a)+h_1\frac{\partial f}{\partial x}+h_2\frac{\partial f}{\partial y}+h_1^2\frac{\partial^2 f}{\partial x^2}+2h_1h_2\frac{\partial^2 f}{\partial x\partial y}+h_2^2\frac{\partial^2 f}{\partial y^2}+o(h_1^2+h_2^2)$

IV. Extrema

<u>définition</u>: $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n

f admet un minimum local en $a \in \mathcal{U}$ s'il existe $r > 0 \ \forall \ x \in B(a,r) \cap \mathcal{U}$ $f(a) \leq f(x)$

fadmet un maximum local en $a\in\mathcal{U}$ s'il existe $r>0 \ \forall \ x\in B(a,r)\cap\mathcal{U} ~~ f(x)\leq f(a)$

f admet un minimum global en $a \in \mathcal{U}$ si $\forall x \in \mathcal{U}$ $f(a) \leq f(x)$

fadmet un maximum global en $a \in \mathcal{U}$ si $\forall \; x \in \mathcal{U} \quad f(x) \leq f(a)$

théorème : $f: \mathcal{U} \longrightarrow \mathbb{R}$ \mathcal{U} ouvert non vide de \mathbb{R}^n de classe c^1 sur \mathcal{U}

si a extremum local de f, alors $\nabla f(a) = 0$ (ie a s'appelle point critique de f)

la réciproque est fausse

 $\underline{ \text{ th\'eor\`eme r\'eciproque : } } f: \mathcal{U} \longrightarrow \mathbb{R} \qquad \mathcal{U} \text{ ouvert non vide de } \mathbb{R}^n \text{ de classe } c^2 \text{ sur } \mathcal{U}$

si a est un point critique de f, alors

si $H_f(a) \in \mathcal{S}_n^{++}(\mathbb{R})$, alors f atteint un minimum local strict en a.

si $H_f(a) \notin \mathcal{S}_n^+(\mathbb{R})$, alors f n'a pas de minimum en a.

PC Lycee Pasteur 2023 2024

Remarque : pour maximum, utiliser -f, donc

si $H_{-f}(a) \in \mathcal{S}_n^{++}(\mathbb{R})$, alors f atteint un maximum local strict en a. si $H_{-f}(a) \notin \mathcal{S}_n^+(\mathbb{R})$, alors f n'a pas de maximum en a.

alors
$$H_f(a) = \begin{pmatrix} r & s \\ s & t \end{pmatrix}$$

si $det(H_f(a)) > 0$ et $tr(H_f(a)) > 0$, f admet un minimum strict en a. si $det(H_f(a)) > 0$ et $tr(H_f(a)) < 0$, f admet un maximum strict en a. sinon, pas d'extremum, on parle de point selle.