

An Introduction to Al

Vincent Bardusco, MVA (ENS Paris Saclay)
Denis Fouchard, Inria Saclay (MIND team)

Machine Learning Deep Learning Artificial Intelligence

• • •

First: data science!

Data

- Image (PNG, JPG)
- Text
- Sound
- Coordinate
- Arrays
- •

Task

- Classification
- Regression
- Clustering
- Generation
- •

Data Image (PNG, JPG) Text Sound Coordinate Arrays ... Task Objective

How to find f

Start with
$$\hat{f}$$

$$oldsymbol{\hat{f}}$$
 is an **estimator** of f

Data Input $\widehat{f} \longrightarrow \widehat{f} \longrightarrow \widehat{y}$

Output

 \widehat{y}

Score: 0.145...

Scoring

- F1 score
- Avg accuracy
- Mean-Square Error
- • •

Define a loss function L

Loss

- MSE
- Cross-Entropy
- Log Loss
- [Custom Loss]

Task	Error type	Loss function	Note
Regression	Mean-squared error	$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	Easy to learn but sensitive to outliers (MSE, L2 loss)
	Mean absolute error	$\frac{1}{n}\sum_{i=1}^{n} y_i-\hat{y}_i $	Robust to outliers but not differentiable (MAE, L1 loss)
Classification	Cross entropy = Log loss	$-\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)] =$	Quantify the difference between two probability

Define a loss function L

Loss

- MSE
- Cross-Entropy
- Log Loss
- [Custom Loss]

$$L(\hat{y}, y) \rightarrow 0$$

Data Input Output $X \longrightarrow \widehat{f} \longrightarrow \widehat{y} \longrightarrow L(\widehat{y},y)$

Learn

- Iteratively (gradient descent, SRM...)
- Analyticly (Ridge Regression)

Learning procedure

- Iteratively (gradient descent, SRM...)
- Analyticly (Ridge Regression)

Supervised learning

- Clear objective (labels, ...)
- Prediction
- Regression
- The loss is defined by the data

Classification
Regression
Optical Character Recognition
(OCR)

Unsupervised learning

- Clustering
- Generation
- The model learns hidden patterns in the data

Clustering
Image segmentation
Text/image generation

Preprocessing

- Labelisation
- Tokenisation
- Parsing
- Formating
- Shuffling

We do it on all the data!

$$x_4 | x_2 | x_1 | x_n | x_7 | x_5 | x_3 | x_8 | x_3$$

Shuffling

χ_{A}	χ_2	χ_1	x_n	χ_{7}	χ_{5}	χ ₃	x_8	<i>X</i> 3
T			11	/	3	3	U	3

Training data set

 x_7 x_5 x_3 x_8 x_3

Testing data set

 x_4 x_2 x_1 x_n

Preprocessing

- Regularisation
- Normalisation

We do it **separately** on training and testing data!

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_n \end{bmatrix}$$

Preprocessing

- Labelisation
- Tokenisation
- Parsing
- Formating
- Shuffling

We do it on all the data!

Shuffling

$$x_4 \mid x_2 \mid x_1 \mid x_n$$

Preprocessing

- Regularisation
- Normalisation

We do it **separately** on training and testing data!

$$x_7 \mid x_5 \mid x_3 \mid x_8 \mid x_3$$

$$x_4 \mid x_2 \mid x_1 \mid x_n$$

Common models

Classification

- Decision trees
- Support Vector Machines (SVM)
- K-Nearest-neighbours
- Neural Networks

Regression

- Ordinary Linear Regression(OLS)
- Regularised Regression (Ridge, LASSO)
- Neural Networks

Clustering

K-Means, K-Means++

For anything more complex -> Neural Networks

- What we got: data

(x,y)

- What we want to do: the task

Find the relation between x and y: $f(x) \approx y$

What we got: data

- What we want to do: the task

Find the relation between x and y: $f(x) \approx y$

What we got: data

- What we want to do: the task

Find the relation between x and y: $f(x) \approx y$

What we got: data

- What we want to do: the task

Find the relation between x and y: $f(x) \approx y$

- What we got: data

- What we want to do: the task

Find the relation between x and y:

- What we got: data

- What we want to do: the task

Find the relation between x and y:

1. Model choice: Linear Regression

 Too many possibilities for f, we suppose that there is a linear relation between x and y

$$x = (x_1, x_2, ..., x_p)$$
 p features
$$y = \theta_1^* x_1 + \theta_2^* x_2 + ... + \theta_p^* x_p$$
$$y = \sum_{i=1}^{n} \theta_i^* x_i^*$$

- We then restrain ourselves to functions of the type: $f_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + ... + \theta_p x_p$

1. Model choice: Linear Regression

 Too many possibilities for f, we suppose that there is a linear relation between x and y

$$x = (x_1, x_2, ..., x_p)$$
 p features
$$y = \theta_1^* x_1 + \theta_2^* x_2 + ... + \theta_p^* x_p + \epsilon$$
$$y = \sum_{k} \theta_j x_j + \epsilon$$

- We then restrain ourselves to functions of the type:
- $f_{\theta}(x) = \theta_1 x_1 + \theta_2 x_2 + ... + \theta_p x_p$ (f is parametric)

2. Vector/Matrix notation

We have a dataset of n samples (n patients, n occurrences, n realisations, ...), each sample has p features

Data samples

x_1	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄		x_{1d}		y_1
24								
x_2	<i>x</i> ₂₁	x_{22}	x_{23}	x_{24}		x_{2d}		y_1
								•••
x_n	x_{n1}	x_{n2}	x_{n3}	x_{n4}		x_{nd}		y_n

Data samples

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \qquad y_1 \\ y_2 \\ \dots \\ y_n$$

2. Vector/Matrix notation

- We have a dataset of n samples (n patients, n occurrences, n realisations, ...), each sample has p features

$$Y = X\theta^* + \varepsilon$$

- We want to find f of the form:

$$f_{\theta}(X) = X\theta$$

- Still an infinite number of possibilities! (an infinite number of parameters theta possible)... How to find the best one?

3. Loss function

 Objective: measure how far our prediction is from the reality on the set of known Y

$$L(Y, f_{\theta}(X)) = ||Y - f_{\theta}(X)||^2 = ||Y - X\theta||^2$$

This is the sum of squared differences!

Why this function?

3. Loss function

 Objective: measure how far our prediction is from the reality on the set of known Y

$$L(Y, f_{\theta}(X)) = ||Y - f_{\theta}(X)||^2 = ||Y - X\theta||^2$$

This is the sum of squared differences!

Why this function?

- Well measures how bad our predictions are (penalizes more the very bad predictions)
- Easy to optimize (remember we want to minimize it!)
- Theoretical statistical reasons

4. Resolution: find the best estimation

- As f is entirely determined by the parameter θ , finding the best f is the same as finding the best θ
- We're lucky, there is an exact formula to compute the estimator θ that minimizes our loss!

$$\hat{\theta} = argmin_{\{\theta\}} ||Y - X\theta||^2$$

$$\hat{\theta} = (X^t X)^{-1} X^t Y$$

- This estimator is called the OLS estimator

5. Predictions: use the model

 We have learned a prediction function on our dataset, we can now use it to predict Y for any X!

- How?

5. Predictions: use the model

 We have learned a prediction function on our dataset, we can now use it to predict Y for any X!

- How?

Recap on Linear Regression on the simple visual case

A bit more complex...

Task: Ridge Regression

Minimize

$$||Y - X\theta||^2 + \lambda ||\theta||^2$$

$$\widehat{\theta} = argmin_{\{\theta\}} ||Y - X\theta||^2 + \lambda ||\theta||^2$$

$$\hat{\theta} = (X^t X + \lambda I)^{-1} X^t Y$$

Now it is your turn!

Be sure to have installed...

Mandatory

- Python >= 3.9
- Jupyter-Notebook
- Numpy
- Scipy
- Sci-kit learn
- Pandas

Very helpful

- Anacoda/pyenv
- VSCode

Must-have VSCode extensions

- Jupyter
- Github Copilot (but not for this lab...)

Useful ressources

- kaggle.com: datasets, example notebooks
- scikit-learn.org: models, documentation
- microsoft.github.io/AI-For-Beginners/: courses and labs to overview AI techniques
- youtube.com/c/3blue1brown: introduction to statistics and ML concepts