Mathematik Lexikon Lexique Mathématique

Carole Engelberger • Martin Gunn-Sechehaye Ignace Morand • Henri Volken

Avant-propos

Ce lexique français-allemand et allemand-français couvre l'ensemble des mathématiques enseignées jusqu'à la fin du deuxième semestre universitaire et s'adresse à tout public désireux de trouver dans l'autre langue le terme mathématique en usage.

Il a pour origine un travail de maturité ¹ réalisé en 2008 par trois étudiants, Carole Engelberger, Martin Gunn-Sechehaye et Fabien Darvey, sous la conduite du professeur de mathématiques Ignace Morand. Avec leur ancien professeur, deux des membres de l'équipe se sont retrouvés plus tard afin de parachever ce travail. Ils furent rejoints par Henri Volken (voir « Volken » dans la partie Allemand-Français), professeur émérite de l'Université de Lausanne, dont les relectures, traductions et suggestions furent précieuses.

Cet ouvrage pourrait combler une absence, car à part le *Vocabulaire mathéma*tique français-allemand et allemand-français de Felix Müller (1843-1928), publié par Teubner et Gauthier-Villars en 1900, il ne semble pas en exister de similaires.

Les entrées, accompagnées de leur traduction, sont parfois suivies de compléments ou de commentaires dans la langue source (annoncés par le signe ◆). Le choix des personnalités citées s'est opéré au gré de nos rencontres et ne prétend en aucune façon à l'exhaustivité.

Nous vous serions reconnaissants de nous faire part de vos remarques ou de nous signaler toutes erreurs et coquilles à l'adresse mathlex.ch@gmail.com.

^{1.} Travail personnel ou de groupe nécessaire à l'obtention du certificat ouvrant l'accès aux hautes écoles suisses.

Remerciements

Les auteurs tiennent à remercier :

- le gymnase de Nyon dans le canton de Vaud en Suisse romande qui a vu naître la première version de ce projet;
- Thomas Gauglhofer, enseignant de mathématiques en ce même gymnase, qui a construit un code-source LATEX adéquat.
- celles et ceux qui ont relu, commenté et fait d'intéressantes suggestions pour les textes introductifs.

An 2017, troisième nombre premier du millénaire.

Carole Engelberger, dipl. math. Université de Genève Martin Gunn-Sechehaye, ing. microtechn. dipl. EPFL Ignace Morand, dipl. math. EPFZ Henri Volken, Dr sc. math. EPFZ

Vorwort

Dieses mathematische Wörterbuch Deutsch-Französisch Französisch-Deutsch deckt den Wortschatz der Mathematik bis zum Ende des 2. Hochschulsemesters ab. Interessierte Leserinnen und Leser finden für jeden Fachbegriff die entsprechende Übersetzung.

Es fusst auf der Maturaarbeit ² von Carole Engelberger, Martin Gunn-Sechehaye und Fabien Darvey. Zwei von ihnen nahmen sich vor, diese 2008 beendete Arbeit unter Aufsicht ihres ehemaligen Mathematiklehrers Ignace Morand zu vollenden. Dabei stand ihnen auch Prof. em. Dr. Henri Volken von der Universität Lausanne (s. Teil Deutsch-Französisch unter « Volken ») mit Gegenlesungen, Übersetzungen und wertvollen Hinweisen zur Seite.

Dadurch sollte ein Mangel ausgeglichen werden: Seit dem 1900 von Felix Müller (1843-1928) im Verlag Teubner et Gauthier-Villars veröffentlichten Französisch-Deutsch und Deutsch-Französischen Mathematischen Vokabularium gab es offensichtlich keine Publikation dieser Art.

Ein karo-Zeichen ♦ markiert eine Ergänzung oder ein Kommentar in der Quellsprache. Die Auswahl der angeführten Persönlichkeiten entspricht dem Zufall unserer Begegnungen und nicht dem Anspruch auf Vollständigkeit.

Für die Mitteilung von etwaigen Unachtsamkeiten, Fehlern oder Kommentaren an mathlex.ch@gmail.com sind wir jederzeit dankbar.

^{2.} Projekt dessen Durchführung, alleine oder in einer Gruppe, für den Erhalt des Schweizer Hochschulreifezeugnisses vorausgesetzt wird.

Wir bedanken uns bei

- dem Gymnasium Nyon im Waadtland, Westschweiz, in welchem die erste Version dieses Projekts erstanden ist;
- Thomas Gauglhofer, Mathematiklehrer an diesem Gymnasium, der uns einen geeigneten LaTeX-Quellencode zur Verfügung gestellt hat;
- all denen, die sich mit Gegenlesungen, Kommentaren und Vorschlägen an den Einführungstexten beteiligt haben.

Im dritten Primzahl-Jahr des Jahrtausends, 2017.

Carole Engelberger, dipl. math. Universität Genf Martin Gunn-Sechehaye, ing. microtechn. dipl. EPFL Ignace Morand, dipl. math. ETHZ Henri Volken, Dr. sc. math. ETHZ

Table des matières – Sachverzeichnis

Préface	3
Vorwort	5
Introduction	8
Einleitung	10
Abréviations – Abkürzungen	13
Allemand – Français / Deutsch – Französisch	15
Notes personnelles – persönliche Notizen	119
Symboles mathématiques – Mathematische Symbole	121
Français – Allemand / Französisch – Deutsch	. 125
Notes personnelles – persönliche Notizen	211
Sources – Quellen	213

Introduction

En français comme en allemand, le vocabulaire mathématique est issu principalement du grec, du latin et de la langue locale. En parallèle, l'allemand a parfois puisé dans le français, comme en témoigne la monumentale Encyklopädie der mathematischen Wissenschaften mit Einschluß ihrer Anwendungen en 24 volumes, commencée sous la direction de Felix Klein (voir « Klein » dans la partie Allemand-Français), dont la parution s'est étalée de 1898 à 1935 et qui a fait collaborer des mathématiciens allemands et français. De son côté, Jules Molk (1857-1914), mathématicien français ayant fait ses études à Zürich (EPFZ), Paris et Berlin, s'est attelé à sa traduction sous le titre Encyclopédie des Sciences mathématiques pures et appliquées parue, elle, entre 1904 et 1916.

Le latin ayant longtemps cohabité avec le français, on en trouve encore aujourd'hui des traces telles que quod erat demonstrandum, abrégé en q. e. d. et traduit en français par ce qu'il fallait démontrer (c. q. f. d.), ou le theorema egregium de Gauss (voir « Gauss » dans la partie Allemand-Français). La thèse de doctorat In re mathematica ars propendi pluris facienda est quam solvendi (1867) de Georg Cantor (voir « Cantor » dans la partie Allemand-Français) semble être un des derniers textes importants à avoir été écrit en latin mais, peu à peu, les langues vernaculaires finissent par s'imposer partout en développant leur propre langage technique.

Comme toute langue, celle des mathématiques évolue; par exemple, on trouve chez Jacques Ozanam, dans son Dictionnaire mathématique ou idée générale des mathématiques (1691), le terme angle rectiligne pour angle de deux droites; le dictionnaire Littré (1872-1877) mentionne encore le terme de triangle oxygone, en précisant toutefois qu'il est inusité, comme synonyme de triangle acutangle. Le langage mathématique n'est pas non plus à l'abri de certains régionalismes; par exemple, le critère de convergence dit théorème des deux gendarmes est mieux connu au Québec sous le nom de théorème du sandwich! Les symboles eux aussi sont sujets à évolution; l'inclusion, par exemple, a longtemps été notée \subseteq , par voisinage de sens avec \le , mais à l'heure actuelle il est souvent remplacé par le symbole \subseteq en gardant, mais pas toujours, le même sens. Les mathématiques sont donc parfois, mais rarement, aussi sujettes à des modes et des ambiguïtés, telles que la fonction réciproque.

Dans le passage d'une langue à l'autre, certains mots ne sont traduisibles que par des périphrases, à l'instar de *gelten*, fréquemment utilisé dans des phrases du

genre: Ist eine gewisse Bedingung erfüllt, dann gilt... qu'on peut traduire par : Si une certaine condition est satisfaite, alors nous pouvons affirmer que... Un autre est Ansatz, dont l'acception mathématique n'apparaît quasiment pas dans les dictionnaires usuels et qui pourrait se traduire par : expression utilisée comme essai pour résoudre une équation; ce terme est si évocateur que les francophones – voire les anglophones – l'emploient tel quel. Un autre cas intéressant est celui de trivial, utilisé tel quel en allemand; après une longue histoire (voir Le Robert [19]), ce mot a fini par prendre dans la langue vernaculaire le sens péjoratif de grossier ou inconvenant, mais en mathématiques, sous l'influence de l'anglais, il devient synonyme de banal ou évident : « La solution de cette équation est triviale », dans le sens qu'elle s'obtient à vue, sans calculs.

Notons encore que certaines dénominations n'existent que dans une des langues; par exemple, la relation de Chasles et l'affixe n'ont pas de dénomination particulière en allemand. À l'inverse, la règle de dérivation $(c \cdot f(x))' = c \cdot f'(x)$, connue chez les germanophones sous le nom de Faktorregel, ne porte pas de nom particulier en français.

Par ailleurs, l'usage de synonymes existe aussi en mathématique, comme transvection/cisaillement ou centre de gravité/barycentre, et il est encore plus fréquent en allemand : Drehung/Rotation, Verschiebung/Translation, Seitenhalbierende/Schwerlinie, Abstand/Distanz, etc.

Einleitung

In der französischen sowie in der deutschen Sprache, stammt der mathematische Wortschatz aus drei Quellen: dem Griechischen, dem Lateinisch und der üblichen Landessprache. Beachten wir allerdings, dass das Deutsche und das Französische, als Folge der Zusammenarbeit der Mathematiker des 19. Jahrhunderts diesseits und jenseits des Rheins, sich gegenseitig beeinflussten. Das bemerkenswerteste Ergebnis davon ist sicher die monumentale Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, in 24 Bänden, begonnen unter der Leitung von Felix Klein (s. « Klein » im Teil Deutsch-Fransösisch), erschienen von 1898 bis 1935. Gleichzeitig begann Jules Molk (1857-1914), ein französischer Mathematiker, der sein Studium in Zürich (ETHZ), Paris und Berlin absolvierte, die Übersetzung dieses Werks unter dem Titel Encyclopédie des Sciences mathématiques pures et appliquées, erschienen zwischen 1904 bis 1916.

Die gängige Sprache der Mathematik war seit langer Zeit die lateinische Sprache. Deshalb findet man jetzt noch Ausdrücke, wie zum Beispiel quod erat demonstrandum, abgekürzt q. e. d, was man auf Deutsch mit was zu beweisen war (w. z. b. w.) übersetzt. Das theorema egregium von Gauss (s. « Gauss » im Teil Deutsch-Fransösisch) ist auch ein Beispiel dafür. Die Doktorarbeit Georg Cantors (s. « Cantor » im Teil Deutsch-Fransösisch), die im Jahre 1867 erschien, In re mathematica ars propendi pluris facienda est quam solvendi, scheint einer der letzten wichtigen mathematischen Texte zu sein, die auf Latein geschrieben wurden.

Nach und nach dringt die Umgangssprache in das Gebiet der Mathematik ein und verliess es nicht mehr. So entstand im Laufe der Jahre ein mathematischer Jargon. Die mathematische Sprache entwickelt und verändert sich, wie jede andere Sprache auch. So findet man zum Beispiel im Lehrgang der höheren Mathematik Teil II von Smirnow (1964), ein Kapitel mit dem Titel Differentialgleichungen mit separierbaren Veränderlichen. Später findet man im Duden Rechnen und Mathematik (2000) dieses Kapitel unter der Bezeichnung Differenzialgleichung mit getrennten Variablen. Die Symbole entwickeln sich ebenfalls. So wurde die Inklusion lange \subseteq geschrieben, in Annäherung an das Symbol \le , jetzt wird das Symbol der Inklusion jedoch oft durch \subseteq ersetzt, und behält trotzdem (fast immer) denselben Sinn. Die Mathematik ist also nicht vor Moden oder Zweideutigkeiten geschützt (s. Umkehrfunktion), auch wenn solche Fälle, wie die eben beschriebenen, eher selten sind.

Der Übergang von einer Sprache zur der anderen ist bei manchen Wörtern problematisch. So hat zum Beispiel das Wort gelten in folgendem Satz: Ist eine gewisse Bedingung erfüllt, dann gilt..., keine direkte, einfache Übersetzung. Es wird im Französischen durch eine Umschreibung übersetzt wie etwa: Si une certaine condition est satisfaite, alors nous pouvons affirmer que...

Ähnliches gilt für das Wort Ansatz, dessen mathematische Bedeutung man in den üblichen Wörterbüchern nicht findet. Auf Französisch könnte man dieses Wort etwas umständlich, beispielsweise mit dem Ausdruck : expression utilisée comme essai pour résoudre une équation übersetzen. Der Begriff Ansatz ist jedoch so einfach und prägend, dass er auf Französisch, mangels einer äquivalenten Bezeichnung, unverändert verwendet wird. Die Englisch sprechenden Personen haben diesen letzten Begriff auch übernommen, sowie die Wörter Eigenwert und Eigenvektor, die sie als eigenvalue und eigenvector gebrauchen. Derselbe Gebrauch hat sich auch für andere allgemeine Ausdrücke wie Ersatz, Diktat, Leitmotiv, Bretzel oder Kitsch eingebürgert. Ein anderer interessanter Fall ist das französiche Wort trivial, das auf französisch auch den Sinn von ordinär annimmt, aber in der Mathematik den Sinn einfach vom Englischen übernommen hat, wie es im Deutschen üblich ist, so z. B. Diese Gleichung besitzt eine triviale Lösung im Sinne von Diese Lösung kann man einfach ohne Berechnung erhalten.

Beachten wir auch, dass manche Begriffe in der einen, jedoch nicht in der anderen Sprache existieren; so zum Beispiel gibt es auf Deutsch keine spezifischen Begriffe für la relation de Chasles und l'affixe. Anderseits gibt es für die Ableitungsregel $(c \cdot f(x))' = c \cdot f'(x)$, die auf Deutsch Faktorregel heisst, keine einfache Bezeichnung auf Französisch.

Im Übrigen ist die Verwendung von Synonymen auch in der Mathematik verbreitet, wie zum Beispiel in den französischen Ausdrücken: transvection/cisaillement, centre de gravité/barycentre usw. Noch öfter begegnet man solchen Dubletten im Deutschen: Seitenhalbierende/Schwerlinie, Spiegelung/Symmetrie, Drehung/Rotation, Verschiebung/Translation, Abstand/Distanz usw.

Abréviations – Abkürzungen

masculin	m.	Maskulinum
féminin	f.	Femininum
neutre	n.	Neutrum
pluriel	pl.	Plural
adjectif	adj .	Adjektiv
adverbe	adv.	Adverb
préposition	prép. – Präp.	Präposition
verbe transitif	${ m tr.}$	transitives Verb
verbe intransitif	$\operatorname{intr.}$	intransitives Verb
antonyme	$ant.\ -Ant.$	Antonym
synonyme	syn. – $Syn.$	Synonym
français - allemand	${ m fr ext{-}all-de ext{-}fr}$	Deutsch – Französich
respectivement	resp bzw.	beziehungsweise
c'est-à-dire ³	i. e d. h.	das heisst
se référer à ⁴	cf s.	siehe
par exemple 5	p. ex z. B.	zum Beispiel
ce qu'il fallait démontrer ⁶	c. q. f. d. – w. z. b. w.	was zu beweisen war
sans restriction de la généralité	s. r. d. l. g. – o. B. d. A.	ohne Beschränkung der Allgemeinheit ⁷

N.B.

- ↑ précède les mots répertoriés dans le lexique.
- ♦ annonce un commentaire ou un développement de l'entrée.
- ↑ bezeichnet ein Wort, das ein Eintrag des Lexikons ist.
- ♦ zeigt einen Kommentar an, oder eine Weiterentwicklung des Eintrages.

Convention – Vereinbarung

Nous appliquons dans cet ouvrage les conventions typographiques usuelles suisses en écrivant, par exemple, Gauss et Aussenwinkel au lieu de $Gau\beta$ et $Au\betaenwinkel$.

Wir verwenden hier die in der Schweiz übliche Schreibweise, z. B. : Gauss und Aussenwinkel anstelle von $Gau\beta$ und $Au\betaenwinkel$.

^{3.} Du latin id est.

^{4.} Du latin confer.

^{5.} En latin : exempli gratia (e. g.).

^{6.} En latin: quod erat demonstrandum (q. e. d.).

^{7.} Manchmal auch ohne Einschränkung der Allgemeinheit (o. E. d. A.).

Première partie Allemand – Français

Erster Teil

Deutsch – Französisch

Abakus Ableitung

\mathbf{A}

Abakus m. abaque, boulier ◆Stammt aus dem Griechischen *abax* oder *abakos* « Rechnungsbrett ».

Abbildung f. (-, en) application \blacklozenge Eine Abbildung f von A in B ist eine \uparrow eindeutige \uparrow Relation zwischen A und B; man schreibt

$$f: A \to B$$
$$x \mapsto y = f(x)$$

A ist die \uparrow Ausgangsmenge, die den \uparrow Definitionsbereich (oder \uparrow Definitionsmenge) enthält; B ist die \uparrow Zielmenge, die den \uparrow Wertebereich (oder \uparrow Bildbereich oder \uparrow Bildmenge) f(A) enthält; y ist das \uparrow Bild von x und x ein \uparrow Urbild von y.

Der Gebrauch dieser Bezeichnungen ist leider nicht einheitlich... (s. Funktion)

Abel, Niels Henrik (1802-1829).

Norwegischer Mathematiker. Der Abelpreis wird seit 2003 jährlich durch die Norwegische Akademie der Wissenschaften als internationale Auszeichnung für aussergewöhnliche wissenschaftliche Arbeiten auf dem Gebiet der Mathematik verliehen.

abelsch adj. abélien, commutatif (pour un groupe). (Syn. kommutativ im Rahmen der \uparrow Gruppen)

abgeschlossen adj. fermé.

 Intervall intervalle fermé ◆Intervall der Form :

$$[a\,,b]\coloneqq\{x\in\mathbb{R}:a\leqslant x\leqslant b\}$$

- **Kugel** boule **♦**Kugel der Form :

$$(x-a)^2 + (y-b)^2 + (z-c)^2 \le r^2$$

Scheibe disque fermé ◆Scheibe der
 Form :

$$(x-a)^2 + (y-b)^2 \le r^2$$

- **Struktur** structure fermée \bullet [M,*] ist bezüglich der Operation * abgeschlossen falls diese eine \uparrow innere Verknüpfung ist.

(s. offen)

abhängig adj. dépendant.

 Variable variable dépendante ◆In einer ↑Funktion

$$f: x \mapsto y = f(x)$$

ist y die abhängige Variable.

- **Vektoren** vecteurs dépendants ♦Die Vektoren \vec{a} und $k\vec{a}$ mit $k \in \mathbb{R}$ sind (\uparrow linear) abhängig.

(Ant. unabhängig)

ableitbar adj. dérivable, différentiable ♦Wenn eine ↑Funktion an einer ↑Stelle ableitbar (↑differenzierbar) ist, dann ist sie dort auch ↑stetig.

ableiten tr. dériver.

(Syn. differenzieren; s. Ableitung)

Ableitung f. (-, en) dérivée, dérivation \blacklozenge Die Ableitung einer \uparrow Funktion f an der \uparrow Stelle x_0 ist der \uparrow Grenzwert

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

falls er existiert.

- n-ter Ordnung dérivée d'ordre n◆Die n-te Ableitung der Funktion fist mit $f^{(n)}$ bezeichnet.
- zweiter Ordnung dérivée seconde.

Ableitungsfunktion f. (-, en) fonction dérivée. (s. Ableitung)

Ableitungsregel f. (-, n) règle de dérivation.

(s. Faktor-, Ketten-, Produkt-, Quotienten-, Summenregel)

abnahmig adj. Syn. abnehmend.

abnehmend adj. Syn. fallend.

absolut adj. absolu, global \blacklozenge Die \uparrow Funktion f hat an der \uparrow Stelle x_0 ein absolutes (oder \uparrow globales) \uparrow Maximum, wenn :

$$f(x) \leqslant f(x_0) \ \forall x \in D_f$$

gilt, ein absolutes (oder globales) †Minimum, wenn :

$$f(x) \geqslant f(x_0) \ \forall x \in D_f$$

gilt. (s. lokal, relativ)

Absolutbetrag m. (s, "e) valeur absolue ◆Definitionsgemäss hat man

$$|a| := \begin{cases} a & \text{falls } a \geqslant 0 \\ -a & \text{falls } a < 0 \end{cases}$$

(Syn. Absolutwert; s. Betrag)

Absolutwert m. (s, e) *Syn.* Absolutbetrag.

Abstand m. (s, "e) distance.

- eines Punktes von einer Geraden distance d'un point à une droite \bullet Den Abstand δ eines Punktes $P(x_0; y_0)$ von einer Geraden

$$q: ax + by + c = 0$$

kann man folgendermassen berechnen:

$$\delta(P,g) = \frac{|ax_0 + bx_0 + c|}{\sqrt{a^2 + b^2}}$$

- **zweier Punkte** distance entre deux points \bullet Den Abstand $\delta(P_1, P_2)$ zweier Punkte $P_1(x_1; y_1)$ und $P_2(x_2; y_2)$ kann man nach Pythagoras berechnen:

$$\overline{P_1P_2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

(Syn. Distanz; s. Pythagoras de-fr)

abstandsgleich (zu) adj. équidistant (de).

abstandstreu adj. qui conserve les distances. (s. treu)

Abszisse f. (-, n) abscisse ♦Übliche Bezeichnung für die erste ↑Koordinate eines ↑Punktes in einem bidimensionalen ↑Koordinatensystem. (s. Ordinate)

Abszissenachse f. (-, n) axe des abscisses \triangle Auch $\uparrow x$ -Achse oder 1. Achse genannt. (s. Ordinatenachse)

abwickelbar adj. développable ◆Einige ↑Flächen sind abwickelbar, wie z. B. der ↑Kreiskegel, andere nicht, wie z. B. die ↑Kugelfläche.

abwickeln tr. développer.

Abwicklung f. (-, en) développement ◆Die Abwicklung eines ↑Kreiskegels liefert einen ↑Kreissektor.

abzählbar adj. dénombrable \blacklozenge Eine \uparrow Menge M heisst abzählbar (genauer abzählbar \uparrow unendlich), wenn es eine \uparrow bijektive \uparrow Abbildung der Menge \mathbb{N} auf M gibt.

(Ant. überabzählbar; s. diskret)

Abzählverfahren n. (s, -) technique de dénombrement. (s. Kombinatorik)

Achse f. (-, n) axe \bullet Ein \uparrow kartesisches Koordinatensystem in \mathbb{R}^2 besteht aus zwei \uparrow senkrechten Achsen : die \uparrow Abszissenachse und die \uparrow Ordinatenachse. (s. Abszisse, Ordinate)

Achsenabschnittsform f. (-, en) équation aux abscisses ◆Schneidet eine ↑Ebene die ↑Koordinatenachsen in den ↑Punkten

dann hat sie die †Gleichung

$$E: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Achsenaffinität Algebra

Achsenaffinität f. (-, en) s. Affinität. Achsenkreuz n. (es, e) Syn. kartesisches Koordinatensystem (in der

Ebene).

Achsenspiegelung f. (-, en) symétrie axiale. (*Syn.* Achsensymmetrie, Geradensymmetrie; *s.* affine Abbildung, Spiegelung)

Achsensymmetrie f. (-, n) *Syn.* Achsenspiegelung.

achsensymmetrisch adj. symétrique relativement à une droite (un axe). (s. Achsenspiegelung)

Achteck n. (s, e) octogone ◆Die ↑Zentriwinkel eines ↑regelmässigen Achtecks betragen 45°. (Syn. Oktogon)

Achtflächner m. (s, -) Syn. Oktaeder.

Addition f. (-, en) addition ◆Das Addieren von ↑Zahlen wird mit dem Pluszeichen (+) beschrieben und sein Ergebnis heisst ↑Summe. Eine Addition ist ↑kommutativ und ↑assoziativ.

Additionstheorem n. (s, e) théorème d'addition ♦In der ↑Trigonometrie gibt es mehrere Formeln für die ↑Addition, wie z. B.

$$\sin(\alpha \pm \beta) = \sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$$

Additionsverfahren n. (s, -) méthode de résolution d'un système d'équations par addition ◆Spezialfall des ↑gaussschen Eliminationsverfahrens.

affine Abbildung application, transformation affine ♦↑Bijektive ↑geradentreue Abbildung der ↑Ebene (des ↑Raumes) auf sich mit den ↑Gleichungen

$$\begin{cases} x' = a_{11}x + a_{12}y + a_1 \\ y' = a_{21}x + a_{22}y + a_2 \end{cases}$$

und $a_{11}a_{22} - a_{12}a_{21} \neq 0$. (Syn. (geometrische) Transformation; s. Achsenaffinität, Ähnlichkeitsabbildung, Kongruenzabbildung, Scherung, Schrägspiegelung, Streckung)

affine Funktion fonction affine ♦Funktion der Form :

$$x \mapsto ax + b$$

Ist b = 0, dann hat man eine \uparrow lineare Funktion.

Affinität f. (-, en) affinité ◆↑Transformation der ↑Ebene (bzw. des ↑Raumes) die durch eine ↑Achse (bzw. eine Ebene), eine ↑Richtung und ein ↑Verhältnis definiert ist. Ein Beispiel dafür ist die ↑Ellipse, als ↑affine Abbildung des ↑Kreises.

(s. Schrägspiegelung)

Agnesi, Maria Gaetana (1718-1799). Italienische Mathematikerin ◆Sie beschrieb u. a. die Konstruktion der *Versiera* (Wendekurve) :

$$f(x) = \frac{a^3}{x^2 + a^2} \quad (a > 0)$$

ähnlich adj. semblable ◆Z. B. zwei zueinander ähnliche ↑Dreiecke stimmen in allen ↑Winkeln und im ↑Verhältnis der ↑Seitenlängen überein.

Ähnlichkeitsabbildung f. (-, en) similitude ♦↑Verkettung einer ↑Kongruenzabbildung mit einer ↑Streckung. (s. affine Abbildung)

Aleph m. aleph (\aleph) \blacklozenge Erste Buchstabe des hebräischen Alphabets; \aleph_0 ist die \uparrow Kardinalzahl jeder \uparrow abzählbar \uparrow unendlichen \uparrow Menge.

Algebra f. (-, -) algèbre ◆Das Wort Algebra stammt zum Teil aus dem Titel des Buches Kitab al jabr w'al muqabalah was Buch der Rechenverfahren durch Ergänzen und Ausgleichen und der Vereinfachung heisst. Es ist ein Buch des Mathematikers und Astronomen Mohammed Ibn Mousa Al Chwarizmi (um 780 bis nach 850); das «Rechenverfahren durch Ergänzen und Ausgleichen » entspricht unserem Ausdruck «in einer Gleichung ein Element

algebraisch annehmen

auf die andere Seite der Gleichheit bringen, in dem man sein Zeichen wechselt » (in der strengeren Sprache würde man « auf jeder Seite der Gleichung die Gegenzahl einer der Elemente addieren » sagen). Lange hiess im Süden von Spanien algebrista derjenige, der die Knochen wieder an die richtige Stelle nach einem Bruch tat.

algebraisch adj. algébrique.

- Funktion fonction algébrique
 ♦↑Ganzrationale, ↑rationale Funktion oder ↑Wurzelfunktion.
 - (Ant. transzendente Funktion)
- Gleichung équation polynomiale
 ♦↑Polynomgleichung mit ↑reellen
 ↑Koeffizienten.

(Ant. transzendente Gleichung)

- Struktur structure algébrique ◆Z.
 B. die ↑Gruppe, der ↑Ring und der ↑Körper.
- Zahl nombre algébrique ◆↑Lösung einer algebraischen ↑Gleichung mit ganzzahligen Koeffizienten.

(Ant. transzendente Zahl)

Algorithmus m. (-, men) algorithme
◆Eine Handlungsvorschrift zur Lösung
einer Klasse von Problemen die sich nur
durch die in den verschiedenen Etappen
eingegebenen Werte unterscheiden; die
Formel zur Lösung der Gleichung zweiten Grades ist ein einfaches Beispiel
dafür. Ein Computerprogramm ist ein
Algorithmus, geschrieben in einer für
die Maschine verständlichen Sprache.
Diese Bezeichnung wird auf den Namen
des persisch-arabischen Mathematikers
und Astronomen Ibn Musa Al Chwarismi (franz. Al Khwarizmi) zurückgeführt. (s. Algebra, Flussdiagramm)

Allquantor m. (s, en) quantificateur universel \bullet Die Bezeichnung $\forall x$ bedeutet « für alle x ». (s. Existenzquantor)

alternierend adj. alterné.

- Folge suite ♦Z. B.

$$\langle a_n \rangle$$
 mit $a_n = (-1)^n$

Reihe série ♦Z. B.

$$\sum_{k=0}^{\infty} (-1)^k a_k \text{ mit } a_k > 0$$

Analysis f. analyse ♦David ↑Hilbert:

Die mathematische Analysis ist eine einzigartige Symphonie des Unendlichen.

analytische Geometrie géométrie analytique ◆Zweig der Geometrie, in dem man ↑Probleme mit den Mitteln der ↑Arithmetik und der ↑Algebra löst.

- a) **ebene** géométrie analytique plane.
- b) **räumliche** géométrie (analytique) dans l'espace.

Änderungsrate f. (-, n) Syn. Differenzenquotient.

Anfangsbedingung f. (-, en) condition initiale.

Anfangsglied n. (s, er) premier terme, terme initial (d'une suite).

Anfangspunkt m. (es, e) origine (d'un segment p. ex.). (s. Endpunkt)

Ankathete f. (-, n) cathète adjacente

◆↑Seite des ↑rechtwinkligen Dreiecks
die bezüglich eines ↑Winkels auf der

↑anliegenden Seite des Dreiecks ist.

(s. Gegenkathete, Hypotenuse, Kathete)

Ankreis m. (es, e) cercle exinscrit

♦↑Kreis, der eine ↑Seite eines ↑Dreiecks von ↑Aussen und die Verlängerungen den anderen tangential ↑berührt.

(s. Inkreis, Umkreis)

anliegend adj. adjacent, consécutifs (angles ou côtés). (s. Ankathete)

Annahme f. (-, n) hypothèse, supposition. (s. Hypothèse, Vermutung, Voraussetzung)

annehmen tr. supposer ◆« Nehmen wir an, das Problem sei gelöst... »

Anordnung Areafunktion

Anordnung f. (-, en) ordre \P Ist (M, *) eine \uparrow algebraische \uparrow Struktur und < eine \uparrow lineare \uparrow Ordnungsrelation in M, und gilt ferner

$$a < b \implies a * c < b * c \quad \forall c \in M$$

dann heisst (M, *, <) eine angeordnete algebraische Struktur.

Anordnungsaxiom n. (s, e) axiome d'ordre.

Ansatz m. (es, "e) ansatz ◆Bezeichnet ein heuristisches ↑Verfahren zum Lösen eines ↑Problems, wie z. B. die ↑Annahme über die Lösungsfunktion einer ↑Diffenrentialgleichung. (s. Vorwort, S. 5)

antiproportional adj. Syn. umgekehrt proportional.

Antiproportionalität f. (-, en) proportionnalité inverse.

(s. Proportionalität)

antireflexiv adj. antireflexif Φ Bezeichnet eine \uparrow Relation R in A mit

$$\forall a \in A : (a, a) \notin R \subset A \times A$$

(Syn. irreflexiv; s. antisymmetrisch, reflexiv, symmetrisch, transitiv)

antisymmetrisch adj. antisymétrique.

- Matrix Syn. schiefsymmetrische Matrix.
- Relation relation antisymétrique \uparrow Relation R in M mit der Eigenschaft:

$$\forall a, b \in M : a R b \land b R a \Rightarrow a = b$$

(Syn. identitiv; s. antireflexiv, Ordnungsrelation, reflexiv, symmetrisch, transitiv)

anzahlgleich adj. se dit d'ensembles finis ayant le même cardinal ♦Bezeichnet ↑endliche Mengen die ↑gleichmächtig sind.

Approximationspolynom n. (s. e) Syn. Näherungspolynom.

äquivalent adj. équivalent ♦Bezeichnet z. B. ↑Gleichungen mit derselben ↑Lösungsmenge.

(s. Äquivalenzumformung)

Äquivalenz f. (-, en) équivalence \bullet Die \uparrow logische Äquivalenz $A \Leftrightarrow B$ ist genau dann wahr, wenn die \uparrow Aussagen A und B den gleichen \uparrow Wahrheitswert haben.

Äquivalenzklasse f. (-, n) classe d'équivalence.

Äquivalenzrelation f. (-, en) relation d'équivalence \blacklozenge Eine solche \uparrow Relation in der \uparrow Menge E ist \uparrow reflexiv, \uparrow symmetrisch und \uparrow transitiv und erzeugt eine \uparrow Partition von E in \uparrow Äquivalenzklassen.

Äquivalenzumformung f. (-, en) transformation d'une équation qui laisse son ensemble de solutions invariant ◆Eine Äquivalenzumformung einer ↑Gleichung lässt ihre ↑Lösungsmenge ↑invariant; Z. B.

$$(a = b) \Leftrightarrow (a + c = b + c)$$

 $\Leftrightarrow (a \cdot c = b \cdot c \text{ mit } c \neq 0)$

(s. äquivalent)

arccos s. Arkuskosinus.

arccot s. Arkuskotangens.

Archimedes Archimède (287-212). Griechischer Mathematiker :

Es gibt Dinge, die den meisten Menschen unglaublich erscheinen, die nicht Mathematik studiert haben.

archimedischer Körper corps archimédien. (s. Körper)

arcsin s. Arkussinus.

arctan s. Arkustangens.

Areafunktion f. (-, en) fonction hyperbolique réciproque ♦↑Umkehrfunktion der ↑Hyperbelfunktion (lies: « Areasinushyperbolicus », usw.), nämlich:

Argument Attraktor

- $\operatorname{arsinh}(x)$ mit $x \in \mathbb{R}$;
- $-\operatorname{arcosh}(x)$ mit $x \in [1, \infty[$;
- $\operatorname{artanh}(x)$ mit $x \in]-1,1[;$
- $-\operatorname{arcoth}(x)$ mit $x \in \mathbb{R} \setminus [-1, 1]$.

Argument n. (s, e) argument ♦Bezeichnung für ein ↑Element der ↑Definitionsmenge einer ↑Funktion.

Arithmetik f. (-, -) arithmétique ♦Carl Friedrich Gauß :

Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik.

arithmetisch adj. arithmétique.

 Folge suite arithmétique ◆Folge mit dem ↑rekursiven ↑Bildungsgesetz :

$$a_n = a_{n-1} + d$$

wobei d die \uparrow Differenz ist. (s. geometrische Folge)

- Mittel moyenne arithmétique ◆Das arithmetische Mittel der ↑Zahlen a_1, a_2, \ldots, a_n ist

$$\frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{k=1}^{n} a_k$$

(s. geometrisches Mittel, harmonisches Mittel, Mittelwert)

Arkusfunktion f. (-, en) fonction cyclométrique, fonction réciproque d'une fonction trigonométrique.

(Syn. zyklometrische Funktion)

Arkuskosinus m. (-, se) arccosinus ◆↑Umkehrfunktion der ↑Kosinusfunktion :

$$f(x) = \arccos(x) \text{ mit } D_f =]-1, 1[$$

Arkuskotangens m. (-, -) arccotangente ♦↑Umkehrfunktion der ↑Kotangensfunktion :

$$f(x) = \operatorname{arccot}(x) \text{ mit } D_f = \mathbb{R}$$

Arkussinus m. (-, se) arcsinus ♦↑Umkehrfunktion der ↑Sinusfunktion :

$$f(x) = \arcsin(x) \text{ mit } D_f = [-1, 1[$$

Arkustangens m. (-, -) arctangente ◆↑Umkehrfunktion der ↑Tangensfunktion :

$$f(x) = \arctan(x) \text{ mit } D_f = \mathbb{R}$$

assoziativ adj. associatif. (s. Assoziativität)

Assoziativgesetz n. (es, e) associativité **♦**Z. B. ist die ↑Addition ↑assoziativ:

$$a + (b + c) = (a + b) + c = a + b + c$$

(Syn. Assoziativität)

Assoziativität f. *Syn.* Assoziativgesetz.

Ast m. (es, "e) branche (d'une courbe) ◆Der ↑Graph einer ↑Funktion kann einen oder mehrere Äste haben.

Asymptote f. (-, n) asymptote \bullet Eine Asymptote einer \uparrow Funktion f ist eine \uparrow Gerade für die gilt, dass der \uparrow Abstand zwischen einem \uparrow Punkt dieser Geraden und dem \uparrow Graphen von f gegen 0 strebt, wenn sich der Punkt auf der Geraden vom \uparrow Ursprung entfernt (und dies für mindestens eine \uparrow Richtung). Anders gesagt, wenn :

$$\lim_{x \to \pm \infty} [f(x) - (ax + b)] = 0$$

dann ist die Gerade y = ax + b eine Asymptote der Funktion f.

Attraktor m. (s, en) attracteur ♦↑Punktmenge, auf die sich ein dynamisches System im Laufe der Zeit zubewegt. Z. B. besagt die ↑Syracuse-Vermutung (oder Collatz-Problem), dass folgende ↑Zahlenfolge

$$a_{n+1} = \begin{cases} \frac{a_n}{2} & \text{falls } a_n \text{ gerade} \\ 3a_n + 1 & \text{falls } a_n \text{ ungerade} \end{cases}$$

mit $a_0 \in \mathbb{N}^*$, die \uparrow Menge $\{1, 2, 4\}$ als Attraktor besitzt; diese Vermutung wurde (2016) bis $2^{60} = 1,15 \cdot 10^{18}$ überprüft...

aufeinanderfolgende Zahlen nombres consécutifs.

aufgehen intr. qui divise sans reste 4 geht in 12 auf.

Auflösung eines Gleichungssystems résolution d'un système d'équations. (s. Additionsverfahren, Einsetzungsverfahren, Gauss-Algorithmus, Gleichsetzungsverfahren)

Aufriss m. (es, e) plan vertical de projection ♦↑Parallelprojektion eines ↑räumlichen Gegenstandes auf eine ↑senkrechte ↑Ebene.

(s. Grundriss, Zweitafelverfahren)

aufspannen tr. engendrer ◆Die ↑Basisvektoren spannen den ganzen ↑Vektorraum auf.

(Syn. erzeugen; s. Spann)

aufzählende Schreibweise écriture d'un ensemble en énumération, en extension ◆Z. B. ist die ↑Menge der ↑Teiler von 8

$$M = \{1, 2, 4, 8\}$$

(s. charakterisierende Schreibweise)

Ausartung f. (-, en) dégénérescence (coniques) ◆Man hat folgende Möglichkeiten :

- \(\gamma\) reelles Geradenpaar mit \(\gamma\)Schnittpunkt im Endlichen (\(\gamma\) Hyperbel);
- \(\phi\)paralleles oder \(\phi\)zusammenfallendes
 Geradenpaar (\(\phi\)Parabel);
- †imaginäres Geradenpaar mit reellem Schnittpunkt im Endlichen (†Kreis, †Ellipse).

(Syn. Entartung; s. Kegelschnitt)

Ausdruck m. (s, "e) expression, forme Φ Für den \uparrow Wert x = 0 ist $x \ln(x)$ ein \uparrow unbestimmter Ausdruck.

Ausfall m. (s, "e) cas possible, éventualité, issue ♦↑Element der ↑Grundmenge. (s. Elementarereignis, Stichprobenraum, Zufallsversuch)

Ausgangsmenge f. (-, n) ensemble de départ, source. (s. Abbildung)

ausgeartet adj. Syn. entartet.

ausklammern tr. mettre en évidence \bullet Nähmlich : ab + ac = a(b + c). (s. ausmultiplizieren, Distributivität)

Ausklammerung f. (-, en) factorisation, mise en évidence. (s. Faktorzerlegung)

ausmultiplizieren tr. effectuer \spadesuit Nämlich : a(b+c) = ab + ac. (s. ausklammern, Distributivität)

Aussage f. (-, n) proposition ◆Eine Aussage ist entweder wahr oder falsch.

Aussagenlogik f. logique des propositions.

ausschliessend adj. exclusif ♦Die ↑Aussage

$$A\dot{\vee}B$$

ist wahr, falls entweder A wahr ist oder B wahr ist, aber nicht beide. \lor bezeichnet ein ausschliessendes « oder ». (s. einschliessend)

Aussenwinkel m. (s, -) angle extérieur, externe ◆In einem ↑Dreieck ist dieser ↑Winkel gleich der ↑Summe der beiden nichteinliegenden Winkel.

äussere Verknüpfung loi de composition externe \P Sind R und M zwei nichtleere \uparrow Mengen, dann heissen die \uparrow Abbildungen

$$g: R \times M \to M$$

und

$$h: M \times M \to R$$

äussere Verknüpfungen. Das †Skalarprodukt und die †Vervielfachung sind Beispiele davon. (s. innere Verknüpfung, S-Multiplikation)

Auswahlaxiom n. axiome du choix.

Auswertung eines unbestimmten Ausdrucks levée d'une indétermination. (s. Regel von de L'Hospital, unbestimmter Ausdruck)

Automorphismus m. (-, en) automorphisme ♦↑Bijektiver ↑Endomorphismus. (s. Homo-, Isomorphismus)

Axiom n. (s, e) axiome.

Axiome der Wahrscheinlichkeitsrechnung axiomes de probabilité \bullet Das \uparrow Axiomensystem von Kolmogoroff ist folgendes : es sei eine nichtleere \uparrow Menge Ω (\uparrow Grundmenge, \uparrow Stichprobenraum) und ihre \uparrow Potenzmenge $\mathfrak{P}(\Omega)$ (\uparrow Ereignisraum) gegeben, ferner eine \uparrow Abbildung

$$P:\mathfrak{P}(\Omega)\to\mathbb{R}$$

Dann gilt

(K1)
$$\forall A \subset \Omega, \ 0 \leqslant P(A) \leqslant 1$$

(K2)
$$P(\Omega) = 1$$

(K3)
$$A \cap B = \emptyset$$

 $\Rightarrow P(A \cup B) = P(A) + P(B)$

(s. Kolmogorov fr-all)

Axiomensystem n. (s, e) système axiomatique, système d'axiomes \blacklozenge Z. B. das peanosche Axiomensystem (1889) lautet : es sei \mathbb{N} eine \uparrow Menge und « 1 » ein Objekt, ferner f eine auf \mathbb{N} definierte \uparrow Abbildung. Für diese Grundbegriffe gilt :

- (P1) $1 \in \mathbb{N}$
- (P2) $x \in \mathbb{N} \Rightarrow f(x) \in \mathbb{N}$
- (P3) $x \in \mathbb{N} \Rightarrow f(x) \neq 1$
- (P4) $x, y \in \mathbb{N} \land x \neq y \Rightarrow f(x) \neq f(y)$

(P5)
$$(A \subset \mathbb{N} \land 1 \in A \land (x \in A \Rightarrow f(x) \in A)) \Rightarrow A = \mathbb{N}$$

Man bezeichnet \mathbb{N} als die Menge der \uparrow natürlichen Zahlen und nennt f(x) den Nachfolger (x+1) der natürlichen Zahl x. (s. Peano fr-all, vollständige Induktion)

Banach Bernoulli

 \mathbf{B}

Banach, Stephan (1892-1945).

Polnischer Mathematiker, der als Begründer der modernen Funktionsanalysis gilt.

Bandornament n. (s, e) frise. (*Syn.* Fries)

Basis f. (-, en) base.

- einer Potenz base d'une puissance.(s. Potenz)
- eines Logarithmus base d'un logarithme. (s. Logarithmus)
- eines Polyeders Syn. Grundfläche.
- eines Polygons Syn. Grundseite.
- eines Vektorraumes base d'un espace vectoriel ♦↑Menge von ↑unabhängigen ↑Vektoren, die ein ↑Erzeugendensystem bilden.

Basisvektor m. (s, en) vecteur de base ◆Bei der ↑Orthonormalbasis

$$B = \{\vec{e}_1; \vec{e}_2\}$$

eines \uparrow Vektorraumes V sind \vec{e}_1 und \vec{e}_2 die Basisvektoren und es gilt

$$\vec{e}_1 \perp \vec{e}_2 \text{ und } ||\vec{e}_1|| = ||\vec{e}_2|| = 1$$

Basiswechsel m. (s, -) changement de base.

Baumdiagramm n. (s, e) diagramme en arbre ◆Dient als Ordnungsschema zur ↑Lösung von Zählproblemen in der ↑Kombinatorik und zur ↑Darstellung mehrstufiger ↑Versuche in der ↑Wahrscheinlichkeitsrechnung.

(kurz : Baum; s. Diagramm)

Bayes, Thomas (1702-1761). (s. bedingte Wahrscheinlichkeit, Formel von Bayes)

bedingte Wahrscheinlichkeit probabilité conditionnelle ◆Bezeichnet mit

P(A|B) oder P(A/B) (lies : « P von A gegeben B »), sie ist folgendermassen definiert :

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

und ist die Wahrscheinlichkeit für das Eintreten des \uparrow Ereignisses A unter der \uparrow Voraussetzung, dass vorher schon das Ereignis B eingetreten ist, genauer, dass man statt Ω (\uparrow Menge aller möglichen \uparrow Ausfälle) nur noch die Menge B als die Menge der möglichen Ausfälle zulässt. (s. Bayes de-fr, Multiplikationssatz)

Behauptung f. (-, en) assertion, conclusion (d'un théorème) \bullet Besteht ein \uparrow Satz aus einer \uparrow Voraussetzung (A) und einer Behauptung (B), dann ist die \uparrow Aussage

$$A \Rightarrow B$$

zu \uparrow beweisen. (*Syn.* Schluss; *s.* Beweis)

Beizahl f. (-, en) Syn. Koeffizient.

beliebiges Dreieck triangle quelconque, scalène.

Bereich m. (s, e) domaine. (s. Definitionsbereich, Gebiet, Wertebereich)

Bernays, Isaac Paul (1888-1977). Deutscher Mathematiker.

Bernoulli, Schweizer Mathematiker:

- Jakob (1654-1705)
 - (s. Fagnano fr-all);
- Johann (1667-1748)(s. L'Hospital fr-all);
- Nikolaus (1687-1759);
- Nikolaus II (1695-1726);
- Daniel (1700-1782);
- Johann II (1710-1790);
- Johann III (1744-1807);

berühren Bildpunkt

– Jakob II (1759-1789).

berühren tr. être tangent. (s. Berühr(ungs)punkt)

Berühr(ungs)punkt m. (s, e) point de contact, de tangence \bullet Der Berührpunkt der \uparrow Parabel $f(x) = x^2$ mit der $\uparrow x$ -Achse ist an der \uparrow Stelle x = 0. (s. Doppellösung)

beschränkt adj. borné. (Ant. unbeschränkt; s. Schranke)

Beschränkung f. (-, en) restriction. (*Syn.* Einschränkung; *s.* Abkürzungen S. 13)

bestimmtes Integral Syn. Riemann-Integral.

Betrag m. (s, "e)

 einer komplexen Zahl module d'un nombre complexe ◆Ist

$$z = a + bi$$

dann ist $r = \sqrt{a^2 + b^2}$ ihr Betrag.

- einer reellen Zahl valeur absolue.
 (Syn. Absolutbetrag, Absolutwert)
- eines Vektors norme d'un vecteur.(Syn. Norm)

Bewegung f. (-, en) Syn. Kongruenzabbildung.

Beweis m. (es, e) démonstration.

a) **direkter** démonstration directe lackSeien V eine \uparrow Voraussetzung und B eine \uparrow Behauptung, ein direkter Beweis schliesst logischerweise B aus V:

$$V \Rightarrow B$$

- b) **indirekter** démonstration indirecte
 - Kontraposition contraposition ◆Braucht die Äquivalenz :

$$(V \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg V)$$

Reductio ad absurdum reduction ad absurdum.
 (Syn. Widerspruchsbeweis)

Widerspruchsbeweis démonstration ou raisonnement par l'absurde ◆Braucht die Aussage

$$(H \land \neg C) \Rightarrow Widerspruch$$

was äquivalent mit $V \Rightarrow B$ ist.

c) vollständige Induktion induction complète, raisonnement par récurrence. (s. Axiomensystem)

Beziehung f. (-, en) relation ◆Eine Beziehung ist nicht notwendigerweise eine ↑Relation...

Bijektion f. (-, en) application bijective, bijection. (*Syn.* bijektive Abbildung; *s.* Injektion, Surjektion)

bijektiv adj. bijectif ♦Ist

$$f: A \to B$$

eine \uparrow eineindeutige (1-1-d) \uparrow Abbildung, also

$$\forall b \in B, \exists! a \in A : b = f(a)$$

dann ist sie bijektiv. Eine bijektive Abbildung (oder †Bijektion) ist †injektiv und †surjektiv.

Bild n. (es, er) image \blacklozenge Ist f eine \uparrow lineare Abbildung von V in W, dann ist das Bild von f folgendermassen definiert :

$$Bild f := \{ f(\vec{v}) : \vec{v} \in V \} \subset W$$

Bild f ist ein \uparrow Unterraum von W. (s. Kern)

Bildbereich m. (s, e) Syn. Bildmenge.

Bildkurve f. (-, n) graphe, courbe représentative. (*Syn.* Funktionsgraph, Graph, Schaubild)

Bildmenge f. (-, n) domaine des valeurs, ensemble image. (s. Abbildung)

Bildpunkt m. (s, e) image d'un point engendrée par une application. (s. Urbild)

Bildungsgesetz Büschel

Bildungsgesetz n. (es, e) terme général (série, suite).

Binärsystem n. (s, e) système binaire ◆↑Stellenwertsystem mit der Basis 2. (Syn. Dualsystem, Zweiersystem)

Binom n. (s, e) binôme \blacklozenge Zweigliedriger \uparrow Term der Form a+b wobei a und b \uparrow Monomen sind.

Binomialkoeffizient m. (en, en) coefficient binomial:

$$C_k^n = \binom{n}{k} \coloneqq \frac{n!}{(n-k)! \, k!}$$

(s. Fakultät, Kombination)

Binomialverteilung f. (-, en) loi (distribution) binomiale. (*Syn.* binomische Verteilung; s. Wahrscheinlichkeitsrechnung)

binomische Formel identité remarquable, produit remarquable ◆Formel über die ↑Multiplikation bzw. das ↑Potenzieren von ↑Binomen. Z. B. :

$$(a \pm b)^2$$
, $a^2 - b^2$, $a^3 \pm b^3$

binomische Verteilung Syn. Binomialverteilung.

binomischer Lehrsatz binôme de Newton ♦Es gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

wobei die $\binom{n}{k}$ die †Binomialkoeffizienten sind.

biquadratisch adj. bicarrée ◆Bezeichnet eine ↑Gleichung der Form :

$$ax^4 + bx^2 + c = 0$$

bis auf ein(e)... à un(e)... près ♦Z. B. ist eine ↑Stammfunktion bis auf eine additive ↑Konstante definiert.

Bogen m. (s, e) arc.

Bogenlänge f. (-, n) longueur d'arc \bullet Die Bogenlänge ℓ eines \uparrow Kreisbogens mit \uparrow Zentriwinkel φ ist durch

$$\ell = r\varphi$$

gegeben, wobei r der \uparrow Radius des \uparrow Kreises ist.

Bogenmass n. (es, e) mesure d'angle en radian \bullet Dem \uparrow Winkel 360° entspricht das Bogenmass 2π . Die zugehörige \uparrow Einheit ist der \uparrow Radiant :

$$1 \operatorname{rad} \leftrightarrow 57^{\circ}17'44.8''$$

(s. Gon, Grad)

Bolyai, János (1802-1860).

Ungarischer Mathematiker, einer der Begründer, mit Lobatschewski, der nichteuklidischen Geometrien.

(s. Lobatschewski de-fr)

Bolzano, Bernhard (1781-1848). Tschechischer Mathematiker.

Boole, George (1815-1864). Englischer Mathematiker.

Brennpunkt m. (s, e) foyer ◆Als Brennpunkte der ↑Ellipse bezeichnet man die beiden ↑Punkte, von denen alle Punkte auf der Ellipse eine bestimmte Abstandssumme, zumeist als 2a bezeichnet, aufweisen. (s. Hauptachse)

Bruch m. (s, "e) fraction. (s. Division, rationale Zahl)

Bruchfunktion f. (-, en) fonction quotient. (s. rationale Funktion)

Bruchstrich m. (s, e) barre de fraction. (s. Division)

Bündel n. (s, -) gerbe. (s. Ebenenbündel, Schar)

Bürgi, Jost (1552-1632).

Schweizer Mathematiker, einer der Erfinder der Logarithmen.

Büschel n. (s, -) faisceau. (s. Ebenenbüschel, Geradenbüschel, Schar)

 \mathbf{C}

Cantor, Georg (1845-1918). Deutscher Mathematiker, Pionier der Mengenlehre mit Richard Dedekind:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objecten m unsrer Anschauung oder unseres Denkens (welche die Elemente von M gennant werden) zu einem Ganzen (1895).

(s. Dedekind de-fr)

Cauchy-Folge suite de Cauchy ◆Jede ↑konvergente ↑Folge ist eine Cauchy-Folge. (s. Cauchy fr-all)

Cauchy-Kriterium critère de Cauchy $\blacklozenge \uparrow$ Folge $\langle a_n \rangle$ mit folgender \uparrow Eigenschaft :

$$\forall \varepsilon > 0, \exists N(\varepsilon) : |a_n - a_m| < \varepsilon \ \forall n, m > N$$

(s. Cauchy fr-all, konvergent)

Cauchy-Schwarzsche Ungleichung Syn. Ungleichung von Cauchy-Schwarz.

Cavalieri, Bonaventura (1598-1647). Italienischer Mathematiker.

Cavalieri-Prinzip n. principe de Cavalieri ◆Zwei ↑Körper besitzen dasselbe ↑Volumen, wenn jede – zu einer festen ↑Ebene parallele – Ebene die Körper in Schnittflächen mit demselben ↑Flächeninhalt schneidet. Liu Hui (225-295) aus China, hat 263 die erste – uns bekannte – Version davon beschrieben. (s. Zu Chongzhi fr-all)

Cayley, Arthur (1821-1895). Englischer Mathematiker: As for everything else, so for a mathematical theory: beauty can be perceived but not explained.

charakterisierende Schreibweise écriture d'un ensemble en compréhension ♦Nämlich

$$A = \{x : E(x)\}$$

Lies : « A ist die \uparrow Menge der \uparrow Elemente x, die die \uparrow Eigenschaft E besitzen ». Z. B. ist

$$M = \{x : x \mid 8\}$$

die Menge der †Teiler von 8. (s. aufzählende Schreibweise)

charakteristische Gleichung équation caractéristique ♦Sie besitzt die Form

$$\det(A - \lambda E) = 0$$

wobei E die †Einheitsmatrix, A eine †quadratische Matrix und λ ein ihrer †Eigenwerte sind.

Chordale f. (-, n) axe radical ♦↑Geometrischer Ort der ↑Punkte, die dieselbe ↑Potenz bezüglich zwei nicht ↑konzentrischen ↑Kreisen besitzen. (Syn. Potenzgerade, Potenzlinie)

Cosinus m. (-, -) Syn. Kosinus.

Cosinussatz Syn. Kosinussatz.

Cosinus hyperbolicus s. hyperbolische Funktion.

Cotangens m. (-, -) Syn. Kotangens.

Cotangens hyperbolicus s. hyperbolische Funktion.

dann und nur dann Determinante

${ m D}$

dann und nur dann si et seulement si ♦Z. B. ein ↑Produkt ↑reeller Zahlen ist dann und nur dann null, wenn mindestens ein ↑Faktor gleich Null ist:

$$(a \cdot b = 0) \Leftrightarrow (a = 0 \lor b = 0)$$

(s. genau dann wenn)

darstellen tr. représenter Φ In \mathbb{R}^n stellt die \uparrow Gleichung

$$\sum_{k=1}^{n} a_k x_k = b$$

eine \uparrow Hyperebene dar. Ist n=3, dann spricht man von einer \uparrow Ebene; ist n=2, dann spricht man von einer \uparrow Geraden.

darstellende Geometrie géométrie descriptive ◆Darunter versteht man Methoden zur Darstellung dreidimensionaler Objekte auf einer ↑Ebenen anhand von Parallelprojektionen (↑Zweitafelverfahren und Axonometrien) oder Zentralprojektionen (Perspektiven). (s. Monge fr-all)

Darstellung f. (-, en) représentation ◆Die ↑graphische Darstellung (oder ↑Graph) einer ↑Funktion zweiten ↑Grades ist eine ↑Parabel.

Darstellungsmatrix f. (-, zen) matrice représentative ◆Z. B. die ↑Matrix

$$\mathbf{M} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$$

stellt eine \uparrow Streckung in \mathbb{R}^2 dar.

Deckfläche f. (-, n) face parallèle à la base d'un solide. (s. Grundfläche)

Dedekind, Richard (1831-1916). Deutscher Mathematiker. (s. Cantor de-fr) definierendes Gleichheitszeichen symbole (signe) d'affectation ♦Z. B.

$$a_1 + a_2 + \dots + a_n =: \sum_{k=1}^n a_k$$

Definitionsbereich m. (s, e) domaine, ensemble de définition ◆↑Untermenge der ↑Ausgangsmenge einer ↑Abbildung (Funktion), auch Urbildmenge oder ↑Definitionsmenge genannt.

Definitionsmenge f. (-, n) *Syn.* Definitionsbereich.

dekadisch adj. décimal.

- **Logarithmus** Syn. Zehnerlogarithmus. (s. Logarithmus)
- **System** Syn. Zehnersystem.

Dekagon n. (s, e) décagone ♦↑Polygon mit zehn ↑Seiten.

Deltoid n. (s, e)

- a) konvexes s. Drachenviereck.
- b) **nichtkonvexes** s. Pfeilviereck.

Deltoide f. (-, en) deltoïde ♦Spezialfall der ↑Zykloide.

de morgansche Regeln règles de De Morgan ♦Die Formeln für Mengen sind :

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Und die Formeln für ↑Aussagen sind :

$$\neg(A \land B) = \neg A \lor \neg B$$

$$\neg(A \lor B) = \neg A \land \neg B$$

(s. Morgan de-fr)

Determinante f. (-, n) déterminant ◆Die Determinante der ↑Matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Dezimalbruch Differenzmenge

ist

$$\det A = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
$$= a_{11}a_{22} - a_{12}a_{21}$$

Dezimalbruch m. (s, "e) *Syn.* Zehnerbruch.

Dezimalsystem n. (s, e) système décimal ♦↑Stellenwertsystem zur ↑Basis 10. (*Syn.* dekadisches System, Zehnersystem)

Dezimalzahl f. (-, en) nombre décimal ◆Darstellung eines ↑Zehnerbruchs als ↑Kommazahl.

diabolisches Quadrat Syn. magisches Quadrat, Zauberquadrat.

Diagonale f. (-, n) diagonale $\uparrow \uparrow$ Strecke in einem $\uparrow n$ -Eck, die zwei nicht benachbarte \uparrow Ecken verbindet. (s. Hauptdiagonale, Raumdiagonale)

Diagonalmatrix f. (-, zen) matrice diagonale ◆↑Quadratische Matrix mit :

$$a_{ij} = 0$$
 für $i \neq j$

Diameter m. (s, -) Syn. Durchmesser.

dicht adj. dense $\blacklozenge M$ und N seien \uparrow Mengen \uparrow reeller Zahlen mit $N \subset M$. N ist dicht in M wenn jede \uparrow Umgebung in M mindestens einen Punkt aus N enthält. Z. B. liegt \mathbb{Q} dicht in \mathbb{R} .

Differential n. (s, e) différentielle \blacklozenge Ist $f \uparrow$ differenzierbar, dann ist

$$\mathrm{d}f = f'(x)\,\mathrm{d}x$$

ihr Differential. (s. Differentialquotient, Differenzial, Differenzialquotient)

$$\Phi(x, y, y', y'', \dots, y^{(n)}) = 0$$

Die höchste \uparrow Ordnung n der auftretenden Ableitungen ist die Ordnung der Differentialgleichung.

Differentialgleichung getrennter Variablen équation différentielle à variables séparées (séparables).

Differentialquotient m. (en, en) dérivée.

(Syn. Ableitung, Differenzialquotient)

Differenz f. (-, en)

- différence ◆Die Differenz ist das Resultat einer ↑Subtraktion.
- raison ◆Eine ↑arithmetische Folge ist eine ↑Zahlenfolge mit :

$$a_n = a_1 + (n-1)d$$

oder

$$a_n - a_{n-1} = d$$

wobei d die Differenz ist.

Differenzenquotient m. (en, en) quotient différentiel, taux de variation \bullet Der \uparrow Grenzwert, für $x \to x_0$, des Differenzenquotienten

$$\frac{f(x) - f(x_0)}{x - x_0} =: \frac{\Delta y}{\Delta x}$$

ist, falls er existiert, die \uparrow Ableitung von f an der \uparrow Stelle x_0 .

(Syn. Änderungsrate)

Differenzial n. (s, e) *Syn.* Differential.

Differenzialquotient m. (en, en) Syn. Differentialquotient.

Differenzial- und Integralrechnung calcul différentiel et intégral.

differenzierbar adj. Syn. ableitbar.

Differenzierbarkeit f. (-, en) dérivabilité.

differenzieren Syn. ableiten.

Differenzmenge f. (-, n) différence de deux ensembles \bullet Seien zwei \uparrow Mengen A und B. Die \uparrow Elemente von A, die

Dimension Dodekaeder

nicht zu B gehören, bilden die Differenzmenge $A \setminus B$ (lies : « A ohne B »). (s. Ergänzungsmenge, Komplementärmenge)

Dimension f. (-, en) dimension.

- eines Raums Anzahl Informationen, die nötig und hinreichend sind, um einen ↑Punkt in diesem Raum zu bestimmen.
- eines Vektorraums Anzahl der †Basisvektoren.

diophantische Gleichung équation diophantienne ◆Bezeichnung für eine ↑algebraische Gleichung mit ↑ganzzahligen ↑Koeffizienten, für welche nur ganze ↑Zahlen als ↑Lösungen gesucht werden. (s. Diophante fr-all)

disjunkt adj. disjoint ♦Ist

$$A \cap B = \emptyset$$

so nennt man die \uparrow Mengen A und B \uparrow elementefremd oder disjunkt.

Disjunktion f. (-, en) disjonction \bullet Die Disjunktion der \uparrow Aussagen A und B bezeichnet man mit $A \lor B$ (lies : « A oder B »). Das « oder » ist dabei nicht ausschliessend gemeint, d. h. $A \lor B$ ist auch wahr, wenn sowohl A als auch B wahr sind. (s. ausschliessend, einschliessend, Konjunktion)

diskret adj. discret \bullet Die \uparrow Menge M heisst diskret, wenn es zu jedem \uparrow Element eine \uparrow offene \uparrow Umgebung gibt, die kein weiteres Element von M enthält. Die Elemente sind anschaulich voneinander isoliert, getrennt. $(s. \text{ abz\"{a}hlbar})$

Diskriminante f. (-, n) discriminant ◆Im Rahmen der ↑Gleichungen zweiten ↑Grades

$$ax^2 + bx + c = 0$$

nennt man die ↑Zahl

$$D := b^2 - 4ac$$

die Diskrimante.

(s. Mitternachtsformel)

Distanz f. (-, en) Syn. Abstand.

distributiv adj. distributif ◆Die ↑Multiplikation ist distributiv bezüglich der ↑Addition, d. h. :

$$a(b+c) = ab + ac$$

Distributivgesetz n. (es, e) distributivité. (*Syn.* Distributivität; *s.* ausklammern, ausmultiplizieren, distributiv, Faktorzerlegung)

Distributivität f. (-, en) *Syn.* Distributivgesetz.

divergent adj. divergent ◆Eine ↑Folge (↑Reihe) nennt man divergent, falls sie keinen oder mehr als einen ↑Häufungspunkt besitzt.

(s. harmonische Reihe, konvergent)

Divergenz f. (-, en) divergence.

Dividend m. (s, e) dividende. (s. Division)

dividieren (durch) tr. diviser (par).

Division f. (-, en) division ◆Bezeichnet die Operation :

$$\frac{a}{b} = a : b = a \div b = a/b$$

wobei a der \uparrow Dividend (\uparrow Zähler) und b der \uparrow Divisor (\uparrow Nenner) sind. (s. Quotient)

Divisionsalgorithmus m. (-, en) division euclidienne \bullet Ist $a \ge b$, dann hat man:

$$\frac{a}{b} = q + \frac{r}{b} \iff a = bq + r \text{ mit } r < b$$

wobei q der \uparrow Quotient und r der \uparrow Rest sind. (s. Division)

Divisor m (s, en) diviseur. (s. Division)

Dodekaeder n. (s, -) dodécaèdre ♦↑Polyeder mit zwölf ↑Seitenflächen. (s. Pentagondodekaeder, Rhombendodekaeder, Zwölfflächner) **Dodekagon** n. (s, e) dodécagone ♦↑Polygon mit zwölf ↑Seiten.

Doppellösung f. (-, en) solution double ♦Z. B. besitzt die ↑Gleichung

$$(x-a)^2 = 0$$

a als Doppellösung.

(Syn. doppelte Lösung; s. Vielfachheit)

Doppelpunkt m. (s, e) point double (au sens d'une courbe qui se recoupe).

doppelpunktfrei adj. se dit d'une courbe sans point double (au sens où elle ne se recoupe pas).

Doppelspiegelung f. (-, en) composition de deux symétries axiales.

doppelte Lösung Syn. Doppellösung.

doppelte Verneinung double négation Φ Die Verneinung (\uparrow Negation) von A schreibt man $\neg A$ und es gilt :

$$\neg(\neg A) = A$$

Drachenviereck n. (s, e) cerf-volant ♦↑Konvexes ↑Deltoid.

Drehachse f. (-, n) axe de rotation. (Syn. Rotationsachse)

Drehpunkt m. (s, e) centre de rotation ♦↑Fixpunkt einer ↑Drehung. (Syn. Drehzentrum)

Drehsinn m. (s, e) sens de rotation.

Drehstreckung f. (-, en) rotation dilatante.

Drehung f. (-, en) rotation \blacklozenge Man kann eine Drehung (α) aus zwei \uparrow Achsenspiegelungen zusammensetzen, wobei die \uparrow Spiegelachsen durch den \uparrow Drehpunkt gehen und einen \uparrow Winkel von $\frac{\alpha}{2}$ einschliessen.

(Syn. Rotation; s. affine Abbildung)

Drehwinkel m. (s, -) angle de rotation. (s. Winkel)

Drehzentrum m. (s, en) *Syn.* Drehpunkt.

dreidimensional adj. tridimensionnel (s. eindimensional, zweidimensional)

Dreieck n. (s, e) triangle. (s. gleichschenklig, gleichseitig, rechtwinklig)

Dreiecksungleichung f. (-, en) inégalité du triangle.

a) In einem \uparrow Dreieck mit den \uparrow Seitenlängen a, b, c gilt :

$$c \leqslant a + b$$
 \circlearrowleft

b) Für die ↑reellen Zahlen a, b gilt :

$$|a+b| \leqslant |a| + |b|$$

c) Für die \uparrow Vektoren \vec{a} und \vec{b} gilt :

$$\|\vec{a} + \vec{b}\| \le \|\vec{a}\| + \|\vec{b}\|$$

Dreieckszahlen f. pl. nombres triangulaires \bullet Die \uparrow Folge $\langle a_n \rangle$ der Dreieckszahlen lautet :

$$a_n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Die ersten \uparrow Glieder der Folge sind : 1, 3, 6, 10, 15, ...

Dreisatz règle de trois **♦**Konsequenz der Definition der ↑Gleichheit zweier ↑Brüche :

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc$$

Sind b, c und d bekannt, dann hat man:

$$\frac{x}{b} = \frac{c}{d} \iff x = b \cdot \frac{c}{d}$$

(s. vierte Proportionale)

Dreiteilung des Winkels trisection de l'angle. (s. Wantzel fr-all, Zirkel und Lineal)

dritte Potenz puissance trois. (s. potenzieren)

dritte Proportionale troisième proportionnelle \blacklozenge Die \uparrow Lösung der \uparrow Proportion b: a = a: x ist die dritte Proportionale von a und b.

dritte Wurzel Durchstosspunkt

(s. vierte Proportionale)

dritte Wurzel Syn. Kubikwurzel.

Dualsystem n. (s, e) *Syn.* Binärsystem.

Durchlaufsinn m. (s, e) Syn. Umlaufsinn.

Durchmesser m. (s, -) diamètre ◆Jede durch den ↑Mittelpunkt eines ↑Kreises oder einer ↑Kugel verlaufende ↑Verbindungsstrecke zweier ↑Punkte der ↑Kreislinie bzw. der ↑Kugeloberfläche. (Syn. Diameter; s. konjugiert, Radius)

Durchschnitt m. (s, e)

a) moyenne ◆Der Durchschnitt endlich vieler ↑Zahlen ist ihr ↑arithmetisches Mittel oder ein anderer geeigneter ↑Mittelwert. (Syn. Mittel) b) intersection \bullet Die \uparrow Schnittmenge $A \cap B$ (lies : « A geschnitten mit B ») zweier \uparrow Mengen nennt man auch ihren Durchschnitt oder ihre \uparrow Durchschnittsmenge. Definitionsgemäss hat man :

$$A \cap B := \{x \mid x \in A \land x \in B\}$$

(s. Vereinigung)

Durchschnittsmenge f. (-, n) (ensemble) intersection.

(Syn. Durchschnitt, Schnittmenge)

Durchschnittswert m. (s, e) Syn. Mittelwert.

Durchstosspunkt m. (s, e) point d'intersection. (*Syn.* Spurpunkt)

Ebene

\mathbf{E}

Ebene f. (-, n) plan ◆Einer der ↑Grundbegriffe der ↑räumlichen Geometrie und ↑Spezialfall der ↑Flächen. (s. Hyperebene)

ebene Geometrie géométrie plane. (Syn. Planimetrie)

Ebenenbündel n. (s, -) gerbe de plans ♦↑Menge von ↑Ebenen die einen ↑Punkt gemeinsam haben.

Ebenenbüschel n. (s, -) faisceau de plans ◆↑Menge von ↑Ebenen die eine ↑Gerade gemeinsam haben.

echt adj. (sous-ensemble) propre, strictement inclus \uparrow Teilmenge A einer \uparrow Menge B mit $A \subset B$ aber $A \neq B$.

Ecke f. (-, n) sommet. (s. Scheitelpunkt, Spitze)

Eckmann, Beno (1917-2008). Schweizer Mathematiker:

Love and happiness are important inside and outside mathematics.

Eckpunkt m. (s, e) sommet. (s. Ecke, Scheitelpunkt, Spitze)

e-Funktion f. *Syn.* Exponentialfunktion zur Basis e.

Eigenraum m. (s, "e) sous-espace propre \bullet Die \uparrow Eigenvektoren zu einem \uparrow Eigenwert λ bilden zusammen mit dem \uparrow Nullvektor \vec{o} diesen \uparrow Unterraum $E(\lambda)$ eines \uparrow Vektorraums.

Eigenschaft f. (-, en) propriété. ◆Ein ↑Satz ist nichts anders als eine erfolgreiche Eigenschaft...

Eigenvektor m. (s, en) vecteur propre ◆Gegeben sei eine ↑lineare Abbildung

$$f:V\to V$$

eines \mathbb{R} -Vektorraums V in sich. Ein \uparrow Vektor $\vec{v} \in V$ mit $\vec{v} \neq \vec{o}$, der durch f auf ein \uparrow Vielfaches von \vec{v} abgebildet wird, also

$$f: \vec{v} \mapsto \lambda \vec{v} \quad \text{mit} \quad \lambda \in \mathbb{R}$$

ist ein Eigenvektor von f. (s. Eigenraum, Eigenwert, Vektorraum)

Eigenwert m. (s, e) valeur propre ◆Gegeben sei eine ↑lineare Abbildung

$$f: V \to V$$

eines \mathbb{R} -Vektorraums V in sich. Eine \uparrow Zahl λ , zu der ein \uparrow Vektor

$$\vec{v} \in V \text{ mit } \vec{v} \neq \vec{o} \text{ und } f(\vec{v}) = \lambda \vec{v}$$

existiert, ist ein Eigenwert von f. (s. Eigenraum, Eigenvektor, Vektorraum)

einbetten tr. immerger.

Einbettung f. (-, en) immersion ◆Der Übergang

$$\vec{v} = \begin{pmatrix} a \\ b \end{pmatrix} \quad \rightarrow \quad \vec{v} = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$$

ist eine Einbettung von \mathbb{R}^2 in \mathbb{R}^3 . (s. einbetten)

eindeutig adj. univoque.

(s. Abbildung, eineindeutig, mehrdeutig)

eindimensional adj. unidimensionnel. (s. dreidimensional, zweidimensional)

eineindeutig adj. biunivoque ◆Ab-kürzung : 1-1-d. (s. bijektiv, eindeutig, mehrdeutig)

einelementige Menge singleton. (s. Paar, zweielementige Menge)

Einerziffer f. (-, n) chiffre des unités.

Einheitsmatrix matrice unité **♦**Die †quadratische Matrix

$$E = (\delta_{ij}) \ i, j = 1, \ldots, n$$

wobei δ_{ij} das \uparrow Kronecker-Symbol ist, spielt die Rolle des \uparrow neutralen Elements der Multiplikation.

(s. Identitätsmatrix)

Einheitsvektor m. (s, en) vecteur unitaire ♦↑Vektor mit der ↑Norm 1.

Einhüllende f. (-, n) Syn. Enveloppe.

einschalig adj. à une nappe ♦Z. B. die ↑Gleichung

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

stellt ein einschaliges †Hyperboloid dar. (s. Schale, zweischalig)

einschliessend adj. inclusif ♦Die Aussage

$$A \vee B$$

(lies : « A oder B ») ist wahr, falls A oder B oder beide wahr sind. « \vee » bezeichnet ein einschliessendes (nichtausschliessendes) « oder ».

(s. ausschliessend)

Einschliessungskriterium (s, en) théorème des (deux) gendarmes, théorème du sandwich (Québec) \bullet Seien $\langle a_n \rangle$ und $\langle b_n \rangle$ zwei \uparrow konvergente \uparrow Folgen mit demselben \uparrow Grenzwert ℓ und eine weitere Folge $\langle c_n \rangle$ mit der \uparrow Eigenschaft, dass :

$$a_n \leqslant c_n \leqslant b_n \ \forall n$$

dann gilt

$$c_n \to \ell$$

(Syn. Zangensatz)

Einschränkung f. (-, en) *Syn.* Beschränkung; *s.* Abkürzungen, S. 13.

einseitig adj. à une seule face ◆Das ↑Möbiusband ist ein schönes Beispiel davon. Einselement élément neutre (multiplicatif) ◆Neutrales Element der Multiplikation. (s. Gruppe, Körper, Ring)

einsetzen tr. introduire, remplacer, substituer. (s. Einsetzungsverfahren)

Einsetzen n. (s, -) substitution. (s. Einsetzungsverfahren, Substitution)

Einsetzungsverfahren n. (s, -) méthode de résolution d'un système d'équations par substitution ◆Bei dieser Methode wird eine der ↑Gleichungen nach einer ↑Variablen aufgelöst, die wieder in die anderen Gleichungen eingesetzt wird, damit eine Variable momentan eliminiert wird. (Syn. Substitution)

Einstein, Albert (1879-1955). Deutscher Physiker ◆Sein Hauptwerk ist die Relativitätstheorie.

Zwei Dinge sind unendlich : das All und die menschliche Dummheit. Beim All bin ich mir noch nicht ganz sicher.

If my theory of relativity is proven successful, Germany will claim me as a German and France will declare that I am a citizen of the world. Should my theory prove untrue, France will say that I am a German and Germany will declare that I am a Jew.

Element n. (s, e) élément \bullet Objekt, das einer \uparrow Menge gehört. Gehört x zu M, dann schreibt man : $x \in M$. Ist das nicht der Fall, dann schreibt man : $x \notin M$.

Elementarereignis n. (ses, se) évènement élémentaire ◆In einem ↑Zufallsversuch mit endlich vielen ↑Ausfällen, also

$$\Omega = \{\omega_1, \, \omega_2, \, \dots, \, \omega_n\}$$

heissen Elementarereignisse die \uparrow Ereignisse $\{\omega_i\}$ (i=1,...,n). Oft unterscheidet man nicht zwischen einem Ausfall ω und dem Elementarereignis $\{\omega\}$.

elementefremd Ersatzfunktion

elementefremd adj. Syn. disjunkt.

Elfeck n. (s, e) hendécagone. *Syn.* Hendekagon.

Ellipse f. (-, n) ellipse ◆↑Bild eines ↑Kreises bei einer ↑Affinität. Eine mögliche ↑Gleichung ist

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(s. Halbachse, Kegelschnitt)

endlich adj. fini.

- **Folge** suite finie ◆↑Abbildung eines Abschnitts $\{1, 2, 3, ..., n\}$ von \mathbb{N} in \mathbb{R} .
- Menge ensemble fini ◆Menge die zu keiner ihrer ↑echten ↑Teilmengen ↑gleichmächtig ist.

(s. diskret, unendlich)

Endomorphismus m. (-, en) endomorphisme ♦↑Homomorphismus einer ↑Menge auf sich selbst.

(s. Automorphismus)

Endpunkt m. (s, e) extrémité (d'un segment p. ex.). (s. Anfangspunkt)

entartet adj. dégénéré lacktriangle Man kann die Kegelschnitte als Schnitte einer Ebene E mit einem geraden Kreiskegel definieren. Enthält E die Spitze S des Doppelkegels, so sind die Schnittfiguren entweder ein Punkt oder eine Mantellinie, wenn E den Kegel berührt, oder zwei sich in S schneidende Mantellinien. Diese Schnittfiguren sind als entartete Kegelschnitte bezeichnet. (Syn. ausgeartet, zerfallend; s. Ausartung)

Entartung f. (-, en) Syn. Ausartung.

Entscheidbarkeit f. (-, en) décidabilité.

(s. gödelscher Unvollständigkeitssatz)

Entwicklung einer Funktion développement (en série) d'une fonction. (s. MacLaurinsche Formel, Taylorsche Formel)

Enveloppe f. (-, n) enveloppe ♦↑Kurve, die jede Kurve einer ↑Kurvenschar in einem ↑Punkt ↑berührt.

(Syn. Einhüllende, Hüllkurve)

Ereignis n. (-, se) évènement (probabilités) \uparrow Teilmenge der \uparrow Menge Ω der möglichen \uparrow Ausfälle eines \uparrow Zufallsversuchs.

(s. Grundmenge, Stichprobenraum)

Ereignisraum m. (s, "e) ensemble de tous les évènements possibles \bullet Ist Ω eine endliche \uparrow Grundmenge (\uparrow Stichprobenraum) dann ist

$$\mathscr{P}(\Omega) = \{A : A \subset \Omega\}$$

ihr zugehöriger Ereignisraum d. h. die †Menge aller möglichen †Ereignisse eines †Zufallsversuchs (s. Axiome der Wahrscheinlichkeit, Potenzmenge)

Erfüllungsmenge f. (-, n) *Syn.* Lösungsmenge.

Ergänzung f. (-, en)

a) quadratische complétion quadratique ♦ Z. B.

$$x^2 + 2ax = (x+a)^2 - a^2$$

b) **stetige** prolongement par continuité. (s. Erweiterung, Fortsetzung)

Ergänzungsmenge f. (-, n) Syn. Komplementärmenge.

Ergänzungswinkel m. pl. angles supplémentaires ◆Zwei ↑Winkel die sich zu 180° ergänzen. (Syn. Nebenwinkel, Supplementärwinkel, Supplementwinkel)

erhalten adj. conservé ◆Bei einer †Kongruenzabbildung werden z. B. die †Winkel erhalten. (s. Invariante)

Ersatzfunktion f. (-, en) fonction auxiliaire ◆Hat man eine ↑Zielfunktion der Form

$$Z(x) = \sqrt{g(x)} = \max$$

Erwartungswert

dann wählt man eine Ersatzfunktion der Form

$$Z^2(x) = g(x) = \max$$

deren †Ableitung genau dieselben †Nullstellen liefert.

(s. Extremwertaufgabe, Hilfsfunktion, Hilfsunbekannte, Hilfsvariable)

Erwartungswert m. (s, e) espérance mathématique.

erweitern tr. amplifier (fraction), prolonger (fonction).

(s. Erweiterung, kürzen)

Erweiterung f. (-, en)

- eines Bruchs amplification

$$\frac{a}{b} = \frac{a}{b} \cdot \frac{c}{c} = \frac{ac}{bc}$$

(s. kürzen, vollgekürzt)

- **stetige** prolongement par continuité.

(s. Ergänzung, Fortsetzung)

erzeugen tr. Syn. aufspannen.

Erzeugende f. (-, n) génératrice ♦↑Gerade, deren Bewegung längs einer ↑Kurve, die ↑Leitkurve, eine ↑Regelfläche erzeugt.

Erzeugendensystem n. (s, e) système générateur **♦**Sei

$$S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

Die \uparrow Menge aller \uparrow Linearkombinationen der \vec{v}_k bildet die \uparrow lineare Hülle (oder \uparrow Erzeugnis) $\mathcal{L}(S)$ des \uparrow Systems. Man kann beweisen, dass $\mathcal{L}(S)$ ein \uparrow Unterraum ist. S ist ein Erzeugendensystem dieses \uparrow Raumes.

Erzeugnis n. (ses, se) *Syn.* lineare Hülle, Spann.

Euklid (ca 330-275 v. C.) Euclide. Griechischer Mathematiker.

Hier eine mögliche Darstellung seines Axiomensystems für die Ebene : Gefordert wird, A1 dass man von jedem Punkt nach jedem Punkt die Strecke ziehen könne;

- A2 dass man eine begrenzte Strecke zusammenhängend gerade verlängern könne;
- A3 dass man mit jedem Mittelpunkt und Abstand den Kreis zeichnen könne;
- A4 dass alle rechten Winkel einander gleich seien;
- A5 dass zu einer geraden Linie durch einen gegebenen Punkt, der ausserhalb dieser Geraden läge, höchstens eine dazu parallele gerade Linie existieren dürfe.

(s. Primzahl, Satz des Euklid)

euklidisch adj. euclidien.

- Algorithmus algorithme d'Euclide
 ♦Rechenverfahren zur Bestimmung des ↑grössten gemeinsamen Teilers (↑ggT) zweier ↑natürlichen Zahlen.
- Geometrie géométrie euclidienne ◆Die Analyse der kosmologischen Hintergrundstrahlung – entstanden als das Universum 380 000 Jahre alt war – scheint zu zeigen, dass die Geometrie des Alls euklidisch ist, m.a.W., dass die Axiome der euklidischen Geometrie im grossen Massstab gültig sind, nicht jedoch in der Nähe von sehr massiven Objekten, die die Raumzeit krümmen [18].
- **Norm** norme euclidienne \blacklozenge Die euklidische Norm (auch 2-Norm genannt) ist die natürliche \uparrow Länge eines \uparrow Vektors \vec{v} in \mathbb{R}^n :

$$\|\vec{v}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Euler, Leonhard (1707-1783). Schweizer Mathematiker ◆Er hat eine der schönsten mathematischen Gleichheiten gefunden:

$$e^{i\pi} + 1 = 0$$

Evolute Extrem(al)wert

- eulersche Gerade droite d'Euler ◆↑Gerade, die durch den ↑Höhenschnittpunkt, den ↑Schwerpunkt und den Umkreismittelpunkt eines ↑Dreiecks läuft.
- eulersche Konstante constante d'Euler \bullet Diese Konstante ist der \uparrow Grenzwert γ der \uparrow Folge $\langle a_n \rangle$ mit

$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$

und es gilt : $\gamma \approx 0,5772156649...$

Man weiss noch nicht, ob diese ↑Zahl ↑rational oder ↑irrational ist...

(s. harmonische Reihe, Logarithmus)

eulersche Relation relation d'Euler ◆Bindeglied zwischen ↑trigonometrischen Funktionen und ↑komplexen Zahlen :

$$e^{i\varphi} = \cos\varphi + i \cdot \sin\varphi$$

- eulersche Zahl s. Zahl.
- eulerscher Polyedersatz formule (théorème) d'Euler ◆Für ↑konvexe
 ↑Polyeder gilt der folgende ↑Satz :
 Ist e die ↑Zahl der ↑Ecken, k die
 Zahl der ↑Kanten und f die Zahl der ↑Seitenflächen, dann gilt stets :

$$e + f - k = 2$$

Evolute f. (-, n) développée ◆↑Geometrischer Ort der ↑Krümmungsmittelpunkte einer ↑Kurve (oder ↑Enveloppe) ihrer ↑Normalen.

Evolvente f. (-, n) développante ♦Ausgangskurve, aus der eine ↑Evolute entsteht.

Existenzquantor m. (s, en) quantificateur existentiel Φ Es gelten folgende Schreibweisen:

 $\exists x : \text{es existiert mindestens ein } x;$

 $\exists ! x : \text{es existiert genau ein } x;$

 $\nexists x$: es existiert kein x.

(s. Allquantor)

Exponent m. (en, en) exposant \blacklozenge Beim \uparrow Ausdruck a^n ist n der Exponent. (s. Basis, Potenz)

Exponentialform einer komplexen Zahl forme exponentielle d'un nombre complexe \blacklozenge Verwendet man anstelle der \uparrow kartesischen Koordinaten a und b die \uparrow Polarkoordinaten

$$r = |z| = \sqrt{a^2 + b^2}$$
 und $\varphi = \arctan \frac{b}{a}$

so kann die \uparrow komplexe Zahl z = a + bi auch in der Exponentialform

$$z = r \cdot e^{i\varphi}$$

dargestellt werden. Man hat einen schönen Spezialfall mit :

$$e^{i\pi} + 1 = 0$$

(s. eulersche Relation)

Exponentialfunktion f. (-, en) fonction exponentielle \uparrow Funktion der Form:

$$f(x) = a^x \text{ mit } a > 0 \text{ und } a \neq 1$$

wobei a die \uparrow Basis ist. Für a > 1 ist sie \uparrow monoton \uparrow wachsend und monoton \uparrow fallend sonst. Die \uparrow Umkehrfunktion der Exponentialfunktion ist die \uparrow Logarithmusfunktion. Die wichtigste Exponentialfunktion ist diejenige zur Basis « e » und es gilt :

$$a^x = e^{x \ln a}$$

(s. eulersche Zahl)

Extremalaufgabe f. (-, n)

Syn. Extremwertaufgabe.

Extrem(al)stelle f. (-, en) abscisse d'un extremum \bullet Hat eine \uparrow Funktion f an der \uparrow Stelle x_0 ein \uparrow Extremum, dann heissen x_0 die Extrem(al)stelle, $f(x_0)$ der Extrem(al)wert (oder Extremum) und $(x_0, f(x_0))$ der Extremalpunkt. (s. absolut, global, lokal, relativ)

Extrem(al)wert m. (s, e) ordonnée d'un extremum. (s. Extrem(al)stelle)

Extremum Exzentrizität

Extremum n. (s, ma) Syn. Extremalwert; s. Hochpunkt, Tiefpunkt.

Extremwertaufgabe f. (-, n) problème d'extrémalisation, d'optimisation ♦ Aufgabe, bei der extremale (minimale oder maximale) ↑Werte einer ↑Funktion (d. h. einer von einer oder mehreren ↑Variablen abhängigen ↑Grösse) berechnet werden sollen.

(s. Extremalaufgabe, Nebenbedingung, Zielfunktion)

exzentrisch adj. excentrique ◆Bezeichnet die Lage zweier ↑Kreise einer ↑Ebene, die verschiedene ↑Mittelpunkte haben.

(Ant. konzentrisch, mittelpunktsgleich)

Exzentrizität f. (-, en) excentricité \bullet Sei P ein Kegelschnittpunkt, F_1 ein \uparrow Brennpunkt und Q die \uparrow Orthogonalprojektion von P auf die zugehörige \uparrow Leitlinie; dann ist

$$\frac{\overline{PF_1}}{\overline{PQ}} =: \varepsilon$$

eine †Konstante, nämlich die Exzentrizität des †Kegelschnitts. Es gilt weiter :

 $0 < \varepsilon < 1$ für die †Ellipse;

 $\varepsilon > 1$ für die †Hyperbel;

 $\varepsilon = 1$ für die \uparrow Parabel;

 $\varepsilon = 0$ für den †Kreis.

Faktor flächentreu

 \mathbf{F}

Faktor m. (s, en) facteur ◆Bezeichnung für die ↑Termen einer ↑Multiplikation (eines ↑Produkts).

(s. Primfaktor, Primfaktorzerlegung)

Faktorregel une des règles de dérivation ◆Ein konstanter ↑Faktor bleibt beim ↑Differenzieren ↑erhalten :

$$(k \cdot f(x))' = k \cdot f'(x)$$

(s. Ableitungsregel)

Faktorzerlegung f. (-, en) décomposition en produits de facteurs, factorisation ◆↑Darstellung einer ↑natürlichen Zahl oder eines ↑Polynoms als ↑Produkt von ↑Faktoren.

(s. Primfaktorzerlegung)

Fakultät f. (-, en) factorielle ◆Bezeichnung für das ↑Produkt der ↑natürlichen Zahlen bis zu einer bestimmten ↑Stelle:

$$1 \cdot 2 \cdot 3 \cdot 4 \cdots n = \prod_{k=1}^{n} k =: n!$$

Man vereinbart 0! = 1. (s. Kombinatorik, Permutation)

fällen tr. abaisser ◆Ein ↑Lot, eine ↑Senkrechte fällen.

fallend adj. décroissant. (Syn. abnahmig, abnehmend; s. monoton)

Fasskreisbogen m. (es, e) arc capable ◆Teil des ↑Kreises über eine ↑Strecke, von dem aus diese Strecke immer unter demselben ↑Winkel erscheint. Als Spezialfall hat man den ↑Thaleskreis.

Fehlerrechnung f. (-, en) calcul d'erreur.

fermatsche Vermutung

s. Fermat fr-all.

Fibonacci, Leonardo (ca. 1180- ca. 1250). Italienischer Mathematiker ◆Er

lernte in Nordafrika das Rechnen mit den novem figurae indorum (neun Ziffern der Inder), unseren heutigen indoarabischen Ziffern, die den arabischen Mathematikern in Bagdad seit der zweiten Hälfte des 8. Jahrhunderts aus Indien bekannt geworden waren und im 12. Jahrhundert von Spanien aus durch lateinische Übersetzungen aus den arabischen Schriften des Al-Chwarizmi auch im Westen allmählich verbreitet wurden.

(s. Algebra, Gerbert d'Aurillac fr-all)

Fibonacci-Folge suite de Fibonacci ◆Folge der Form :

$$a_{n+2} = a_{n+1} + a_n$$
 mit $a_0 = a_1 = 1$

mit der Eigenschaft

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \Phi$$

(s. goldener Schnitt, Rekursionsformel)

Fixgerade f. (-, n) droite fixe, invariante ♦↑Gerade, welche auf sich abgebildet wird (Beispiel einer ↑schwachen Invariante). Wird jeder ↑Punkt dieser Geraden auf sich abgebildet, dann hat man eine ↑Fixpunktgerade (Beispiel einer ↑starken Invariante).

Fixpunkt m. (s, e) point invariant, fixe ♦↑Punkt, der mit seinem ↑Bild ↑übereinstimmt.

Fixpunktgerade f. (-, n) s. Fixgerade.

Fläche f. (-, n) surface ♦Übliche Bezeichnung für ↑zweidimensionale ↑Punktmengen.

(s. Flächeninhalt, Seitenfläche)

Flächeninhalt m. (s, e) aire. (s. Inhalt)

flächentreu adj. qui conserve les aires. (s. treu)

Flachpunkt Funktion

Flachpunkt m. (s, e) point plat \blacklozenge Sei $f \in C^n$ mit

$$f''(x_0) = f'''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$

und $f^{(n)}(x_0) \neq 0 \ (n \geqslant 4)$:

- ist $n \uparrow \text{gerade}$, dann ist $P(x_0; f(x_0))$ ein Flachpunkt. Gilt zusätzlich $f'(x_0) = 0$, dann hat man ein $\uparrow \text{Ex-}$ tremum;
- ist $n \uparrow$ ungerade, dann ist der Flachpunkt auch ein \uparrow Wendepunkt. Gilt zusätzlich $f'(x_0) = 0$, dann hat man einen \uparrow Terrassenpunkt.

Fluchtpunkt m. (s, e) point de fuite (perspective).

Flussdiagramm n. (s, e) organigramme ◆Schema, mit dem man die verschiedenen Schritte eines ↑Algorithmus visualisieren kann.

Folge f. (-, n) suite $\uparrow \uparrow$ Funktion deren $\uparrow \downarrow$ Definitionsbereich \mathbb{N} ist. (s. Häufungs-punkt, Konvergenz, monoton)

Formel f. (-, n) formule.

 von Bayes formule (théorème) de Bayes :

$$P(A_k|B) = \frac{P(A_k)P(B|A_k)}{\sum_{k=1}^{n} P(A_k)P(B|A_k)}$$

(s. Bayes de-fr, bedingte Wahrscheinlichkeit)

- von Vieta formules de Viète ♦Seien x_1 und x_2 die ↑Lösungen der ↑quadratischen Gleichung

$$ax^2 + bx + c = 0$$

dann hat man

$$x_1 + x_2 = -\frac{b}{a}$$
 und $x_1 \cdot x_2 = \frac{c}{a}$

Diese Formeln können auf beliebige †Polynomfunktionen verallgemeinert werden. (Syn. Satz von Vieta, vietasche Beziehungen, Wurzelsatz von Vieta; s. Viète fr-all) Formvariable f. (-, n) Syn. Beizahl.

Fortsetzung f. (-, en)

- a) **analytische** prolongement analytique.
- b) **stetige** prolongement par continuité. (s. Ergänzung, Erweiterung)

Fraktale f. (-, n) fractale ◆Durch Iteration erzeugte Kurve; die bekannteste ist die Koch-Kurve von 1906, die beschränkt, jedoch unendlich lang ist. Sie ist überdies überall stetig und nirgends differenzierbar. Fraktale beschreiben auch das Verhalten von bestimmten komplexen Folgen vom Typus:

$$z_{n+1} = z_n^2 + c \text{ mit } z, c \in \mathbb{C}$$

I believe that scientific knowledge has fractal properties, that no matter how much we learn, whatever is left, however small it may seem, is just as infinitely complex as the whole was to start with. That, I think, is the secret of the Universe.

Isaac Asimov (1920-1992)

(s. Koch de-fr)

Frege, Gottlob (1848-1925). Deutscher Mathematiker, Logiker und Philosoph:

Was einfach ist, kann nicht zerlegt werden, und was logisch einfach ist, kann nicht eigentlich definiert werden.

freier Vektor vecteur libre ♦Vektor ohne festen Anfangspunkt, er ist also ↑bis auf eine ↑Verschiebung definiert.
(s. gebundener Vektor, Ortsvektor)

Fries m. (es, en) Syn. Bandornament.

Fundamentalsatz m. (es, "e) Syn. Hauptsatz.

Fünfeck n. (s, e) Syn. Pentagon.

Funktion f. (-, en) fonction ◆Sind ↑Ausgangs- und ↑Zielmenge einer ↑Abbildung ↑reelle oder ↑komplexe

Funktionsgraph Funktionswert

Zahlen, dann spricht man üblicherweise von einer Funktion.

Funktionsgraph m. (en, en) graphe d'une fonction.

(Syn. Bildkurve, Graph, Schaubild)

Funktionsterm m. (s, e) expression caractérisant une fonction ◆Sei die ↑Funktion

$$f(x) = \sqrt[n]{x}$$

dann ist $\sqrt[n]{x}$ der Funktionsterm.

Funktionswert m. (s, e) valeur prise par une fonction ◆Durch eine ↑Zuordnung der Form

$$x \mapsto f(x) = y$$

wird jedem x aus der \uparrow Definitionsmenge D_f genau ein Funktionswert (Termwert) zugeordnet.

G

Gabelverfahren méthode de la bissection, de dichotomie ♦Näherungsverfahren zur Nullstellenberechnung einer ↑stetigen Funktion in einem ↑abgeschlossenen Intervall.

Syn. Intervallhalbierung.

ganze Zahl Syn. ganzrationale Zahl. ganzrational adj.

- **Funktion** fonction polynomiale. (Syn. Polynomfunktion)
- Zahl (nombre) entier (relatif).(s. Zahl)

Ganzteilfunktion f. (-, en) fonction partie entière \uparrow Treppenfunktion, welche jeder \uparrow reellen Zahl x die grösste \uparrow ganze Zahl \uparrow zuordnet, die nicht grösser als x ist :

$$[x] = n \in \mathbb{Z}$$
 für $n \leqslant x < n+1$

(Syn. Gauss-Funktion, Gauss-Klammer, gausssche Klammerfunktion)

Gärtnerkonstruktion f. (-, en) ellipse du jardinier.

Gauss, Carl Friedrich (1777-1855). Deutscher Mathematiker.

Gauss-Algorithmus Syn. gausssches Eliminationsverfahren.

Gauss-Funktion

Syn. Ganzteilfunktion.

Gauss-Klammer

Syn. Ganzteilfunktion

Gauss-Verteilung f. (-, en) loi normale gaussienne, loi de Laplace-Gauss \bullet Eine \uparrow Zufallsgrösse X heisst normalverteilt, wenn ihre Wahrscheinlichkeitsdichte durch

$$\varphi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

gegeben ist; dabei ist $\mu := E(X)$ der \uparrow Erwartungswert und $\sigma = \sigma(X)$ die \uparrow Standardabweichung von X. Der \uparrow Graph der \uparrow Funktion φ wird auch gausssche Glockenkurve genannt. (Syn. Normalverteilung)

gausssche Klammerfunktion

Syn. Ganzteilfunktion.

gausssches Eliminationsverfahren pivot de Gauss ◆In einem ↑linearen Gleichungssystem mit drei (oder mehr) ↑Gleichungen und ebensovielen ↑Unbekannten kann mindestens eine ↑Variable pro ↑Zeile eliminiert werden, indem man die Gleichungen ↑paarweise ↑addiert, nachdem man sie mit ausgewählten ↑Zahlen ↑multipliziert hat:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{cases}$$

$$\begin{cases} \tilde{a}_{11}x_1 + \tilde{a}_{12}x_2 + \tilde{a}_{13}x_3 & = \tilde{b}_1 \\ \tilde{a}_{22}x_2 + \tilde{a}_{23}x_3 & = \tilde{b}_2 \\ \tilde{a}_{33}x_3 & = \tilde{b}_3 \end{cases}$$

Durch Vertauschung von Gleichungen und †Addition von †Vielfachen einer Gleichung zu einer anderen bringt man das Gleichungssystem auf †Stufengestalt (†Staffelgestalt). Das gausssche Eliminationsverfahren nennt man auch gaussscher Algorithmus oder †Gauss-Algorithmus.

(s. Additionsverfahren)

Gebiet n. (s, e) domaine \uparrow Teilmenge von \mathbb{R}^n , die \uparrow offen und \uparrow zusammenhängend ist. (s. Bereich)

gebrochenrationale Funktion

Syn. rationale Funktion.

gebundener Vektor vecteur lié (physique) ◆In der Physik haben die Vektoren oft einen festen Anfangspunkt (die Kräfte z. B.), weil ihre Lage im ↑Raum auch wichtig ist. (s. freier Vektor)

Gegenbeispiel n. (s, e) contreexemple.

Gegenecke f. (-, n) sommet opposé.

Gegenereignis n. (-, se) évènement contraire \blacklozenge Ist A ein \uparrow Ereignis, dann ist \overline{A} (lies : « A quer ») das zugehörige Gegenereignis. (s. Komplementärmenge)

Gegenhypothese f. (-, n) hypothèse alternative.

Gegenkante f. (-, n) arête opposée.

Gegenkathete f. (-, n) cathète opposée ♦↑Seite des ↑rechtwinkligen Dreiecks die bezüglich eines ↑Winkels auf der ↑Gegenseite des Dreiecks ist. (s. Ankathete, Hypotenuse, Kathete)

Gegenseite f. (-, n) côté opposé.

gegenseitige Lage position relative ◆Zwei ↑Geraden in der ↑Ebene können ↑identisch, parallel oder schneidend sein. Im ↑Raum können sie auch zusätzlich ↑windschief sein.

Gegenvektor m. (s, en) vecteur opposé \blacklozenge ↑Inverses Element in einem ↑Vektorraum : \vec{a} und $-\vec{a}$ sind Gegenvektoren weil

$$\vec{a} + (-\vec{a}) = \vec{o}$$

Gegenzahl f. (-, en) inverse additif, opposé. (s. Kehrzahl)

gekrümmt adj. curviligne (pour une courbe), courbe (pour une surface). (s. krummlinig)

gelten s. Vorwort, S. 5.

gemischtes Vektorprodukt Syn. Spatprodukt.

genau dann wenn si et seulement si lacktriangleIn der Logik schreibt man häufig für « A äquivalent zu B »

$$A \Leftrightarrow B \text{ oder } A \leftrightarrow B$$

(lies : « A gilt genau dann wenn B »). (s. Äquivalenz, dann und nur dann)

Geodreieck n. (s, e) équerrerapporteur ◆Gerät zum Zeichnen von Parallelen und ↑rechtwinkligen ↑Geraden und zum Messen und Zeichnen von ↑Winkeln.

Geometrie f. (-, n) géométrie ◆Das Wort Geometrie bedeutet etymologisch « Erdmessung ».

– **im Raum** *Syn.* räumliche Geometrie

geometrisch adj. géométrique.

- **Abbildung** Syn. Transformation.
- Folge suite géométrique ◆↑Zahlenfolge der Form :

$$a_n = a_1 \cdot q^{n-1} \text{ oder } \frac{a_{n+1}}{a_n} = q$$

wobein q der \uparrow Quotient ist. (s. arithmetisch)

- Interpretation interprétation géométrique ◆Z. B. ist eine ↑senkrechte (↑vertikale) ↑Asymptote die geometrische Interpretation eines ↑Pols.
- Körper solide (géométrique).(s. Körper)
- Mittel moyenne géométrique ◆Das geometrische Mittel der ↑positiven ↑Zahlen $a_1, a_2, ..., a_n$ ist

$$\bar{a}_{\text{geom}} = \sqrt[n]{a_1 \cdot a_2 \cdot \cdot \cdot a_n} = \left(\prod_{k=1}^n a_k\right)^{\frac{1}{n}}$$

(s. arithmetisch, Durchschnittswert, harmonisch, Höhensatz, Mittelwert)

Ort lieu géométrique ◆Ein geometrischer Ort ist eine ↑Teilmenge eines ↑Raumes, welche aus allen ↑Punkten

geordnetes Paar Gleichheitsrelation

mit vorgegebenen †Eigenschaften besteht. Z. B. ist die †Ellipse der geometrische Ort aller †Punkte einer †Ebene, für die die Summe der †Abstände von zwei festen Punkten konstant ist.

 Reihe série géométrique ◆↑Reihe der Form :

$$\sum_{k=0}^{\infty} aq^k$$

wobei a das \uparrow Anfangsglied und q der \uparrow Quotient sind.

geordnetes Paar couple \blacklozenge Zweielementiges $\uparrow n$ -Tupel. Bei einem solchen Paar kommt es auf die \uparrow Reihenfolge der \uparrow Elemente an, es gilt also

$$(a,b) \neq (b,a)$$
 falls $a \neq b$

(Syn. Paar)

gerade adj.

Funktion fonction paire ◆↑Reelle
 Funktion f mit der ↑Eigenschaft

$$f(-x) = f(x) \ \forall x \in D_f$$

Dann ist der \uparrow Graph von $f \uparrow$ achsensymmetrisch bezüglich der y-Achse. (s. ungerade)

- **Kegel** cône droit. (s. schief)
- Körper solide droit. (s. schief)
- Kreiskegel cône de révolution.(s. Kegel, schief)
- **Prisma** prisme droit. (s. schief)
- **Pyramide** pyramide droite.
- **Zahl** s. Zahl. (Ant. ungerade)

Gerade f. (n, n) droite \blacklozenge Eine Gerade in einer \uparrow Ebene zerlegt diese Ebene in zwei \uparrow Halbebenen. Falls eine Gerade g durch einen \uparrow Punkt A läuft, dann schreibt man

$$A \in g \text{ oder } g \ni A$$

Geradenbüschel n. (s, -) faisceau de droites. (s. Geradenschar, Schar)

Geradengleichung f. (-, en) équation de droite ◆In einem ↑kartesischen Koordinatensystem ist die ↑Normalform der Geradengleichung

$$g: ax + by + c = 0$$
 mit $(a, b) \neq (0, 0)$

Die *†*Funktionsform lautet

$$g: y = f(x) = ax + b \text{ mit } a, b \in \mathbb{R}$$

Und die †Parameterdarstellung ist

$$g: \vec{r} = \vec{a} + \lambda \vec{v} \text{ mit } \lambda \in \mathbb{R}$$

Geradenschar f. (-, en) famille, faisceau de droites. (s. Geradenbüschel, Schar)

Geradenspiegelung f. (-, en)

Syn. Achsenspiegelung.

Geradenstück n. (s, e) Syn. Strecke.

geradentreu qui conserve l'alignement. (s. treu)

geradlinig adj. rectiligne. (s. krummlinig)

geschlossene Kurve courbe fermée ♦Sei

$$c:[0,1]\to\mathbb{R}$$

eine stetige Funktion. Ihre zugehörige Kurve heisst geschlossen, wenn gilt c(0) = c(1). (s. offene Kurve)t.

Gesetz der grossen Zahlen loi des grands nombres (probabilités).

gestreckter Winkel angle plat.

(s. Winkel).

ggT pgdc

(s. grösster gemeinsamer Teiler)

Gleichheit f. (-, en) égalité \blacklozenge Ausdruck der Form A = B wobei A und B die \uparrow Seiten sind. Ist dieser Ausdruck wahr, dann hat man eine \uparrow Identität. Ist eine \uparrow Variable vorhanden, dann hat man eine \uparrow Gleichung.

Gleichheitsrelation f. (-, en) relation d'égalité. (s. Äquivalenzrelation)

Gleichheitszeichen n. (s, -) signe d'égalité. (s. definierendes Gleichheitszeichen, Ungleichheitszeichen)

gleichlang adj. de même longueur.

gleichmächtig adj. équipotent \bigstar Zwei \uparrow Mengen A und B heissen gleichmächtig wenn eine \uparrow bijektive \uparrow Abbildung

$$f:A\to B$$

existiert, und man schreibt dann

$$A \sim B$$

(s. Mächtigkeit)

gleichmässig adj.

- stetige Funktion fonction uniformément continue.
- Stetigkeit continuité uniforme.
- Überdeckung recouvrement régulier.

gleichnamig machen mettre au même dénominateur.

(Syn. gleichnennerig machen)

gleichnennerig machen Syn. gleichnahmig machen.

gleichschenklig adj. isocèle.

- Dreieck triangle isocèle.(s. gleichseitig, rechtwinklig)
- **Trapez** trapèze isocèle. (s. Viereck)

gleichseitig adj.

- Dreieck triangle équilatéral.
 (s. gleichschenklig, rechtwinklig)
- Hyperbel hyperbole équilatère
 ♦Hyperbel, deren ↑Asymptoten
 ↑senkrecht zueinander sind.

Gleichsetzungsverfahren méthode de résolution d'un système d'équations par comparaison.

Gleichung f. (-, en) équation ♦↑Gleichheit deren ↑Seiten eine ↑Variable (↑Unbekannte) enthalten. Die ↑Werte der Variablen, die zu einer ↑Identität führen, sind die ↑Lösungen der Gleichung.

- dritten Grades *Syn.* kubische Gleichung.
- *n*-ten Grades équation du *n*-ième degré.
- **zweiten Grades** équation du deuxième degré. (*Syn.* quadratische Gleichung; *s.* Mitternachtsformel)

Gleichungssystem n. (s, e) système d'équations.

gleichwahrscheinlich adj. équiprobable (probabilité).

gleichwertige Brüche fractions équivalentes.

Gleitspiegelung f. (-, en) symétrie glissée ♦↑Verkettung einer ↑Achsenspiegelung und einer ↑Verschiebung. (Syn. Schubspiegelung)

Glied n. (s, er) terme.

- einer Folge d'une suite ◆In der Folge

$$\langle a_n \rangle = \{a_1, a_2, a_3, ..., a_n, ...\}$$

sind die a_k ihre Glieder.

- eines Polynoms d'un polynôme◆In einem ↑Polynom

$$P(x) = \sum_{k=0}^{n} a_k x^k$$

sind die $a_k x^k$ seine Glieder.

global adj. Syn. absolut.

Gödel, Kurt (1906-1978).

Österreich-ungarischer Mathematiker:

Either mathematics is too big for the human mind or the human mind is more than a machine.

gödelscher Unvollständigkeitssatz théorème d'incomplétude de Gödel •Der Unvollständigkeitssatz von Kurt Gödel lautet (vereinfacht) : Jeder widerspruchsfreie Kalkül, der es erlaubt, Goldbach Grundseite

von den natürlichen Zahlen zu sprechen, der also die elementare Arithmetik umfasst, enthält unendlich viele Aussagen, die in diesem Kalkül weder bewiesen noch widerlegt werden können. Solche Aussagen heissen unentscheidbar.

Goldbach, Christian (1690-1764). Preussischer Mathematiker.

goldbachsche Vermutung conjecture de Goldbach \bullet Jede \uparrow gerade Zahl, die grösser als 2 ist, ist darstellbar als \uparrow Summe von zwei \uparrow Primzahlen. Zurzeit (2013) weiss man, dass diese Vermutung bis auf $N=4\cdot 10^{18}$ richtig ist...

goldener Schnitt nombre d'or, section dorée \bullet Ein \uparrow Punkt P einer \uparrow Strecke AB teilt diese im goldenen Schnitt (sectio aurea), wenn die Beziehung

$$\overline{AB}: \overline{PB} = \overline{PB}: \overline{AP}$$

besteht. Als ↑Zahl ist der goldene Schnitt mit Φ bezeichnet und ist die ↑positive ↑Lösung der ↑Gleichung

$$\Phi^2 - \Phi - 1 = 0$$

d. h.

$$\Phi = \frac{1 + \sqrt{5}}{2} \approx 1,618$$

Gon n. (s, e) grade ♦Winkeleinheit mit

$$1 gon = \frac{\pi}{200} rad$$

(Syn. Neugrad; s. Winkel)

goniometrische Funktion Syn. trigonometrische Funktion.

Grad n. (s, e) degré.

- a) Dient als ↑Masseinheit für ↑Winkel. (s. Bogenmass, Gon)
- b) Unter dem Grad eines ↑Polynoms versteht man den grössten auftretenden ↑Exponent.

Gradmass m. (-, e) degré \blacklozenge Ist α die \uparrow Grösse eines \uparrow Winkels in \uparrow Grad und x das entsprechende \uparrow Bogenmass, so gilt :

$$\alpha = \frac{x}{\pi} \cdot 180^{\circ}$$

(s. Bogenmass)

Graph m. (s, en) graphe, représentation graphique. (*Syn.* Bildkurve, Funktionsgraph, Schaubild)

Grenze f. (-, n) borne, frontière, limite.

- eines Intervalls borne d'un intervalle.

(s. Schranke)

Grenzübergang m. (s, "e) passage à la limite. (s. Grenzwert, Limes)

Grenzwert m. (s, e) limite, valeur limite ♦Z. B. :

$$\lim_{n \to \infty} a_n = a \iff a_n \stackrel{n \to \infty}{\longrightarrow} a$$

lies : « a ist der \uparrow Limes von a_n wenn n gegen \uparrow Unendlich strebt » bzw. « a_n strebt gegen a wenn n gegen Unendlich strebt ».

(s. divergent, konvergent, Konvergenz)

Grosskreis m. (es, e) grand cercle (d'une sphère).

grösster gemeinsamer Teiler (ggT) plus grand diviseur commun (pgdc)

♦Der grösste gemeinsame Teiler zweier \uparrow natürlichen Zahlen a und b ist die grösste \uparrow Zahl, die sowohl ein \uparrow Teiler von a als auch von b ist.

Grundfläche f. (-, n) base d'un polyèdre (Syn. Basis eines Polyeders; s. Seitenfläche)

Grundmenge f. (-, n)

Syn. Stichprobenraum.

Grundriss m. (es, e) plan de sol (géométrie de Monge).

(s. Aufriss, Zweitafelverfahren)

Grundseite f. (-, n) base d'un polygone ♦Z. B. die ↑Seite eines ↑gleichschenkligen Dreiecks, an welcher die beiden gleichen ↑Winkel anliegen.

Grundzahl Guldin

(Syn. Basis)

Grundzahl f. (-, en) Syn. Basis. (s. Potenz)

Gruppe f. (-, n) groupe $\uparrow \land$ Algebraische Struktur (G, *), die folgendermassen definiert ist :

a) die Operation * ist eine ↑innere Verknüpfung :

$$a * b \in G, \ \forall a, b \in G$$

(s. abgeschlossen);

b) die Operation ist assoziativ:

$$(a * b) * c = a * (b * c) = a * b * c$$

für alle a, b und c in G;

c) es existiert ein \uparrow neutrales Element e:

$$a * e = e * a = a$$

d) jedes \uparrow Element a besitzt ein \uparrow inverses Element a':

$$a*a'=a'*a=e$$

Ist die Operation * zusätzlich †kommutativ, dann heisst die Gruppe †kommutativ oder †abelsch.

(s. Körper, Ring, Struktur, Vektorraum)

Guldin, Paul (1577-1643).

Schweizer Mathematiker ◆Seine Regeln zur Berechnung des Oberflächeninhalts und des Volumens von Rotationskörpern sind :

a) 1. guldinsche Regel : Die \uparrow Oberfläche (\uparrow Mantelfläche) eines \uparrow Rotationskörpers ist das \uparrow Produkt aus der \uparrow Länge ℓ der \uparrow erzeugenden \uparrow Kurve und der Länge y_s des von ihrem \uparrow Schwerpunkt zurückgelegenes \uparrow Weges. Es gilt :

$$\ell \cdot 2\pi y_s = 2\pi \int_0^\ell y \, \mathrm{d}s$$

b) **2. guldinsche Regel** : Das Volumen eines Rotationskörpers ist das \uparrow Produkt aus dem \uparrow Inhalt A der erzeugenden \uparrow Fläche und der Länge y_s des von ihrem Schwerpunkt zurückgelegten Weges. Es gilt :

$$A \cdot 2\pi y_s = 2\pi \int_a^b \frac{y}{2} \cdot y \, \mathrm{d}x$$

Halbachse Hauptsatz

\mathbf{H}

Halbachse f. (-, n) demi-axe (Ellipse, Hyperbel). (s. grosse Halbachse, Hauptachse, Nebenachse)

Halbgerade f. (-, n) demi-droite. (s. Gerade)

halbieren tr. diviser en deux parties égales lacktriangle Man kann z. B. die \uparrow Strecke \overline{AB} halbieren, wobei

$$\overrightarrow{OM} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB})$$

 \updownarrow

$$M\left(\frac{a_1+b_1}{2};\frac{a_2+b_2}{2}\right)$$

(s. Winkelhalbierende)

Halbkugel f. (-, n) demi-boule. (s. Kugel)

Halbmesser m. (s, -) *Syn.* Radius. (s. Durchmesser)

halboffen adj. semi-ouvert. (s. abgeschlossen, Intervall, offen)

Halbordnung f. (-, en) ordre partiel. (s. Ordnungsrelation)

Hamilton, William R. (1805-1865). Irischer Mathematiker.

harmonisch adj. harmonique.

Mittel moyenne harmonique ◆Die ↑Zahl

$$H = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$$

bezeichnet man als harmonisches Mittel der n †positiven Zahlen a_k . (s. arithmetisch, Durchschnittswert, geometrisch, Mittelwert)

 Reihe série harmonique ◆Bezeichnet die folgende †divergente †Reihe :

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

- **Teilung** division harmonique.

Haube f. (-, en) *Syn*. Kalotte, Kugelkappe.

Häufigkeit f. (-, en) fréquence (Statistik).

Häufungspunkt m. ((e)s, e) point d'accumulation Φ Eine \uparrow Folge besitzt den Häufungspunkt c falls mindestens eine ihrer \uparrow Teilfolgen gegen diesen \uparrow Wert strebt. (s. divergent, konvergent)

Hauptachse f. (-, n)

- axe focal ◆↑Normale zur ↑Leitlinie durch den ↑Brennpunkt eines ↑Kegelschnitts.
- axe principal, grand axe ◆Ist die
 ↑Ellipse mit der ↑Gleichung

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a > b)$$

gegeben, dann sind a und b die \uparrow Halbachsen, 2a die Hauptachse und 2b die \uparrow Nebenachse.

Hauptdiagonale f. (-, n) diagonale principale \bullet Bezeichnet die \uparrow Komponenten a_{ii} einer \uparrow quadratischen Matrix. (s. Diagonalmatrix)

Hauptnenner m. (s, -) plus petit dénominateur commun ♦↑Kleinstes gemeinsames Vielfaches der ↑Nenner mehrerer ungleichnamiger ↑Brüche.

Hauptsatz m. (es, "e) théorème fondamental.

Hausdorff Hochzahl

- der Algebra théorème fondamental de l'algèbre ◆Eine ↑Polynomgleichung n-ten ↑Grades besitzt ↑höchstens n ↑Lösungen in ℝ. Ist n ↑ungerade dann besitzt sie ↑mindestens eine Lösung. Im Rahmen der ↑komplexen Zahlen hat man genau n Lösungen.
- der Integralrechnung théorème fondamental du calcul intégral ◆Zusammenhang zwischen ↑bestimmtem und ↑unbestimmtem ↑Integral :

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

wobei F eine \uparrow Stammfunktion von f ist. (s. Integrationsgrenze)

(Syn. Fundamentalsatz)

Hausdorff, Felix (1868-1942). Deutscher Mathematiker.

hebbare Singularität singularité apparente. (s. wesentliche Singularität)

Hendekagon n. (s, e) Syn. Elfeck.

Heptagon n. (s, e) Syn. Siebeneck.

Heron von Alexandria Héron d'Alexandrie (um 60 n. Chr.).

heronsche Flächenformel formule de Héron \bullet Bezeichnet s in einem \uparrow Dreieck den halben \uparrow Umfang, d. h.

$$s = \frac{a+b+c}{2}$$

so gilt die heronsche Formel für den ↑Flächeninhalt & des Dreiecks

$$\mathscr{A} = \sqrt{s(s-a)(s-b)(s-c)}$$

Unter ↑Verwendung dieser ↑Grösse lautet die heronsche Formel für den ↑Inkreisradius :

$$r = \frac{\mathscr{A}}{s}$$

Hexaeder m. (s, -) hexaèdre ◆Ein von sechs ↑Vierecken begrenzter ↑Polyeder.

Ein \uparrow regelmässiger Hexaeder ist ein \uparrow Würfel. (*Syn.* Sechsflächner)

Hexagon n. (s, e) *Syn.* Sechseck.

Hilbert, David (1862-1943). Deutscher Mathematiker:

> Im grossen Garten der Geometrie kann sich jeder nach seinem Geschmack einen Strauss pflücken.

> Manche Menschen haben einen Gesichtskreis vom Radius Null und nennen ihn ihren Standpunkt.

> Wir müssen wissen, wir werden wissen.

Hilfsfunktion f. (-, en) fonction auxiliaire ♦Die ↑Funktion

$$G(x) := \int_{a}^{x} f(t) dt$$

ist eine gute Hilfsfunktion, um den †Hauptsatz der Integralrechnung beweisen zu können. (s. Ersatzfunktion)

Hilfsunbekannte f. (-, en) inconnue auxiliaire ♦Möchte man die ↑Lösungen der ↑Gleichung

$$ax^4 + bx^2 + c = 0$$

finden, dann wählt man $y := x^2$ als Hilfsunbekannte und man bekommt die einfachere Gleichung:

$$ay^2 + by + c = 0$$

(s. Ersatzfunktion)

Hilfsvariable f. (-, n) variable auxiliaire. (s. Ersatzfunktion)

hinreichend adj. suffisant ◆Die Monotonie und Beschränktheit einer ↑Folge bilden ein hinreichendes Kriterium für ihre ↑Konvergenz.

(s. notwendig)

Hochpunkt m. (s, e) Syn. Maximum.

Hochzahl f. (-, en) *Syn.* Exponent. (s. Potenz)

Höhenfusspunkt m. (s, e) pied d'une hauteur (triangle).

Höhenfusspunktdreieck n. (s, e) triangle orthique ◆Das einem ↑spitzwinkligen ↑Dreieck einbeschriebene Dreieck, dessen ↑Ecken die ↑Höhenfusspunkte sind. Als Dreieck mit minimalem ↑Umfang ist es also die Lösung des Fagnano-Problems. (s. Fagnano fr-all)

Höhensatz théorème de la hauteur lacktriangleIm rechtwinkligen \uparrow Dreieck seien p und q die durch die \uparrow Höhe h auf der \uparrow Hypotenuse definierten \uparrow Hypotenusenabschnitte. Dann gilt :

$$h^2 = pq \Leftrightarrow h = \sqrt{pq}$$

(s. geometrisches Mittel, Kathetensatz)

Höhen(schicht)linie *Syn.* Niveaulinie.

Höhenschnittpunkt m. (s, e) orthocentre.

homogen adj. homogène ◆Ein †Gleichungssystem der Form

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

ist homogen wenn

$$b_i = 0$$
 für $i = 1, \ldots, m$

sonst ist das System \uparrow inhomogen genannt.

Homomorphismus m. (-, men) homomorphisme $\blacklozenge \uparrow$ Abbildung f einer algebraischen \uparrow Struktur (A, *) in eine algebraische Struktur (B, \circ) , bei welcher

$$f(a_1 * a_2) = f(a_1) \circ f(a_2)$$

für alle $a_1, a_2 \in A$ gilt. Ist A=B, dann ist f ein \uparrow Endomorphismus. (s. Automorphismus, isomorph)

Hopf, Heinz (1894-1971).

Schweizer Mathematiker.

horizontal adj. Syn. waagerecht. (s. senkrecht, vertikal)

Horner, William G. (1787-1837). Englischer Mathematiker.

Hüllkurve f. (-, n) Syn. Einhüllende.

Hülle f. (-, n) s. lineare Hülle.

Hypatia von Alexandria (370-415). Griechische Mathematikerin.

Hyperbel f. (-, n) hyperbole ◆Die ↑Gleichung

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

stellt eine Hyperbel dar.

Hyperbelfunktion f. (-, en) *Syn.* hyperbolische Funktion.

hyperbolische Funktion fonction hyperbolique ♦Bezeichnung für die folgenden ↑transzendenten Funktionen :

a) **Hyperbelsinus** sinus hyperbolique

$$\sinh(x) := \frac{e^x - e^{-x}}{2}$$

(s. Sinus hyperbolicus)

b) **Hyperbelkosinus** cosinus hyperbolique

$$\cosh(x) := \frac{e^x + e^{-x}}{2}$$

(s. Cosinus hyperbolicus, Kettenlinie)

c) **Hyperbeltangens** tangente hyperbolique

$$\tanh(x) := \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh(x)}{\cosh(x)}$$

(s. Tangens hyperbolicus)

d) **Hyperbelkotangens** cotangente hyperbolique

$$coth(x) := \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{1}{\tanh(x)}$$

(s. Cotangens hyperbolicus)

(Syn. Hyperbelfunktion)

hyperbolisches Paraboloid paraboloïde hyperbolique ◆Schönes Beispiel einer ↑Regelfläche mit der ↑Gleichung

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

(Syn. Sattelfläche)

Hyperboloid n. (s(es), e) hyperboloïde ♦↑Fläche erzeugt durch eine ↑Hyperbel.

- a) einschalig hyperboloïde à une nappe ◆Wenn die ↑Drehachse die ↑Leitlinie der Hyperbel ist. Diese Fläche kann auch als ↑Regelfläche beschrieben werden.
- b) zweischalig hyperboloïde à deux nappes ◆Die Drehachse ist hier die ↑Hauptachse der Hyperbel.

(Syn. Rotationshyperboloid)

Hyperebene f. (-, n) hyperplan \P Für beliebige n beschreibt die \uparrow Lösungsmenge der \uparrow linearen Gleichung der Form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = c$$

eine Hyperebene in \mathbb{R}^n , falls die \uparrow Koeffizienten $a_1, a_2, ..., a_n$ nicht alle null sind.

Hypotenuse f. (-, n) hypoténuse ♦Die längste ↑Seite eines ↑rechtwinkligen Dreiecks. (s. Kathete)

Hypotenusenabschnitte m. pl. segments déterminés par la hauteur sur l'hypoténuse. (s. Höhensatz)

Hypothese f. (-, n) hypothèse. (s. Annahme, Vermutung, Voraussetzung) identisch Inkreis

I - J

identisch adj. confondu, identique. (s. gleich, übereinanderliegend, zusammenfallend)

identische Abbildung application identité \uparrow Abbildung einer \uparrow Menge M auf sich, die folgendermassen definiert ist:

$$id_M: x \mapsto x \ \forall x \in M$$

(Syn. Identität)

Identität f. (-, en) identité.

- a) Syn. identische Abbildung.
- b) Wahre †Gleichheit.

Identitätsmatrix matrice identité ◆Die ↑quadratische Matrix

$$I = (\delta_{ij})$$
 $i, j = 1, \ldots, n$

stellt die †identische Abbildung id dar. (s. Einheitsmatrix, Kronecker de-fr)

identitiv adj. Syn. antisymmetrisch (Relation).

Ikosaeder n. (s, -) icosaèdre Φ Ein †regelmässiger Ikosaeder wird von zwanzig †gleichseitigen Dreiecken begrenzt. (Syn. Zwanzigflächner)

Imaginärteil m. (s, e) partie imaginaire (d'un nombre complexe). (s. Zahl)

Implikation f. (-, en) implication \bullet Den Ausdruck $A \Rightarrow B$ liest man : « wenn A, dann B ».

in Abhängigkeit von en fonction de ◆Durch eine ↑Funktion der Form

$$y = f(x)$$

wird die \uparrow Variable y in Abhängigkeit von der ↑unabhängigen Variablen x ausgedrückt.

Index m. (es, e/Indizes) indice. \blacklozenge Z. B. ist k der Index von a in a_k .

Induktion s. vollständige Induktion.

Infeld, Leopold (1898-1968).

Polnischer Mathematiker und Physiker.

Infimum m. (s, -) infimum ♦Bezeichnung für die grösste †untere Schranke einer †Menge †reeller Zahlen. (s. Supremum)

Infinitesimalrechnung f. calcul infinitésimal ♦Die ↑Differential- und Integralrechnung, zusammengefasst auch Infinitesimalrechnung gennant, stellen die Grundlage für die höhere †Analysis dar.

Inhalt m. ((e)s, e) aire ou volume. (s. Flächeninhalt, Rauminhalt)

inhomogen adj. inhomogène. (s. homogen)

Injektion f. (-, en) application injective, injection. (Syn. injektive Abbildung; s. Bijektion, Surjektion)

injektiv adj. injectif ◆Eine ↑Abbildung $f: A \to B$ heisst injektiv, wenn zwei verschiedene \uparrow Elemente von A immer zwei verschiedene \uparrow Bilder in B haben:

$$(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$$

$$\updownarrow$$

$$(f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

(Syn. Injektion; s. bijektiv, surjektiv)

Inklusionsrelation f. (-, en) relation d'inclusion.

Inkreis m. (es, e) cercle inscrit ♦↑Kreis, welcher alle ↑Seiten eines ↑Polygons von innen ↑berührt. (s. Ankreis, Umkreis)

Inkugel f. (-, n) boule inscrite dans un polyèdre.

Innenwinkel m. (s, -) angle intérieur ♦Je zwei der ↑Geraden, auf denen die benachbarten ↑Seiten eines ↑Polygons liegen, bilden einen Innenwinkel des Polygons. Der Innenwinkel eines ↑regelmässigen ↑n-Ecks beträgt

$$\frac{n-2}{n} \cdot \pi$$

(s. Winkel)

Innenwinkelsumme f. (-, en) somme des angles d'un polygone \blacklozenge Die Innenwinkelsumme eines \uparrow regelmässigen $\uparrow n$ Ecks beträgt $(n-2)\pi$.

innere Verknüpfung loi de composition interne \bullet Bezeichnet eine \uparrow Operation * in der \uparrow Menge M mit der \uparrow Eigenschaft :

$$\forall a, b \in M : a * b \in M$$

(s. abgeschlossen, äussere Verknüpfung)

Integral n. (s, e) intégrale.

a) bestimmtes Integral intégrale définie, de Riemann lacktriangle Gesucht ist die \uparrow Fläche \mathscr{A} , welche das \uparrow Schaubild der \uparrow stetigen Funktion f mit der x-Achse in einem gewissen \uparrow Intervall [a,b] einschliesst. Bei der \uparrow regelmässigen Unterteilung des Intervalls in n Unterintervalle

$$[x_k, x_{k+1}]$$
 mit $k \in \mathbb{N}$

gilt

$$x_{k+1} - x_k = \frac{b-a}{n} =: \Delta x_k$$

Sei

$$\xi_k \in [x_k, x_{k+1}]$$

dann rechnet man den †Flächeninhalt mit

$$\mathscr{A} = \lim_{n \to \infty} \sum_{k=0}^{n} f(\xi_k) \Delta x_k$$
$$=: \int_{a}^{b} f(x) \, \mathrm{d}x \in \mathbb{R}$$

(Syn. Riemann-Integral)

- b) **Riemann-Integral** Syn. bestimmtes Integral.
- c) unbestimmtes Integral intégrale indéfinie, primitive \blacklozenge Als \uparrow Stammfunktion einer \uparrow Funktion f bezeichnet man eine Funktion F(x) mit F'(x) = f(x) und man schreibt

$$F(x) =: \int f(x) \, \mathrm{d}x$$

Da das Integral nicht †eindeutig definiert ist, gilt

$$\int f(x) \, \mathrm{d}x = F(x) + C$$

wobei C eine \uparrow Konstante ist.

Integralrechnung f. (-) calcul intégral ◆Ist jener Zweig der Mathematik, in dem es um Integrale reeller Funktionen, d. h. um deren Stammfunktionen (unbestimmte Integrale) und bestimmte Integrale sowie um die damit zusammenhängenden Methoden geht. Der Ausgangspunkt zu ihrer Entwicklung war das Flächeninhaltsproblem. Zusammen mit der Differentialrechnung ist sie Teil der Analysis.

(s. Hauptsatz der Integralrechnung)

Integrand m. (en, en) intégrant ◆In dem ↑Ausdruck

$$I = \int f(x) \, \mathrm{d}x$$

ist f(x) der Integrand. (s. Integral, Stammfunktion)

Integrationsgrenze f. (-, n) borne d'intégration **♦**Im ↑Ausdruck

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

nennt man a die untere und b die obere Integrationsgrenze.

Integrations variable f. (-, n) variable d'intégration. (s. Substitutionsregel)

integrieren tr. intégrer ♦Integrieren oder eine Integration ausführen heisst, eine Stammfunktion (d. h. ein unbestimmtes Integral) einer gegebenen Funktion zu finden oder ein bestimmtes Integral zu berechnen. Aufgrund des Hauptsatzes der Differential- und Integralrechnung kann das Integrieren in gewissem Sinn als « Umkehrung » des Differenzierens angesehen werden.

Integritätsbereich m. (s, e) anneau intègre ♦↑Ring ohne ↑Nullteiler. (s. nullteilerfrei)

Intervall n. (s, e) intervalle ♦Man bezeichnet ein Intervall mit \uparrow Endpunkten a und b (für a < b und $x \in \mathbb{R}$) als:

a) **abgeschlossen** fermé

$$[a,b] = \{a \leqslant x \leqslant b\}$$

b) halboffen semi-ouvert

$$[a, b] = \{a < x \leqslant b\}$$

c) **offen** ouvert

$$|a, b| = \{a < x < b\}$$

Intervallhalbierung f. s. Gabelverfahren.

Intervallschachtelung f. (-, en) intervalles emboîtés.

Invariante f. (-, n) invariant.

- a) schwache invariant faible ♦Z. B.: Nach einer †Drehung mit \uparrow Zentrum M sind alle \uparrow Kreise von \uparrow Mittelpunkt M schwache Invariante.
- b) starke invariant fort ♦Z. B. die ↑Achse einer ↑Achsensymmetrie.

invers adj. inverse.

- Element élément inverse, symétrique \bullet Ist (M, *) eine \uparrow algebraische †Struktur mit dem †neutralen Element e und es gilt :

$$a, a' \in M \Rightarrow a * a' = a' * a = e$$

dann heisst a' inverses Element von a und umgekehrt.

- **Funktion** Syn. Kehrfunktion.
- Matrix matrice inverse ◆Seien A und $B \uparrow$ quadratische Matrizen mit

$$A \cdot B = B \cdot A = E$$

dann ist $B =: A^{-1}$ die inverse Matrix von A und umgekehrt.

- **Proportionalität** s. Proportionalität.

invertierbar adj. inversible.

- **Element** ♦Z. B. jedes Element einer ↑Gruppe ist invertierbar.
- Matrix matrice inversible ◆Bezeichnet eine \uparrow Matrix A für die A^{-1} existiert. (s. inverse Matrix)

Involution f. (-, en) ◆↑Abbildung mit der ↑Eigenschaft :

$$f^2 = f \circ f = \mathrm{id}$$

Die ↑Spiegelung ist ein Beispiel davon.

involutorisch adj. involutif.

(s. Involution)

irrational adj. irrationnel.

- **Funktion** fonction irrationnelle (s. Wurzelfunktion).
- **Zahl** nombre irrationnel (s. Zahl).

irreduzibel adj. irréductible ♦Die †Polynome ersten und zweiten †Grades (mit D < 0) sind in \mathbb{R} \underline{\text{unzerlegbar}} also irreduzibel. Sie sind sozusagen die « Primzahlen » der Polynome.

(s. Diskriminante, vollgekürzt)

irreflexiv adj. Syn. antireflexiv.

isomorph

Jacobi

isomorph adj. isomorphe ◆Zwei ↑Strukturen (G, *) und (H, \circ) heissen isomorph, wenn es eine verknüpfungstreue ↑bijektive ↑Abbildung von (G, *) auf (H, \circ) gibt, wenn also eine ↑Bijektion

$$\beta: G \to H$$

existiert mit

$$\beta(a*b) = \beta(a) \circ \beta(b)$$

man schreibt dann

$$G \cong H$$

und nennt β einen Isomorphismus. Falls A = B, dann ist β ein \uparrow Automorphismus. (s. Endomorphismus) Isomorphismus m. (-, men) isomorphisme ◆Bijektiver Homomorphismus. (s. Endomorphismus)

Jacobi, Carl Gustav (1804-1851). Deutscher Mathematiker:

... M. Fourier avait l'opinion que le but principal des mathématiques était l'utilité publique et l'explication des phénomènes naturels; mais un philosophe comme lui aurait dû savoir que le but unique de la science, c'est l'honneur de l'esprit humain, ...

Wer einmal [...] die Süssigkeit der mathematischen Ideen gekostet hat, kann nicht mehr davon lassen.

Kalotte Kehrzahl

K

Kalotte f. (-, n) *Syn.* Haube, Kugelkappe.

Kante f. (-, n) arête (d'un polyèdre, d'un graphe).

Kardinalzahl f. (-, en) cardinal \blacklozenge Die Anzahl der \uparrow Elemente einer \uparrow Menge M wird als card M bezeichnet und heisst Kardinalzahl dieser Menge. Hat man card $M = \operatorname{card} \mathbb{N}$, dann heisst M \uparrow abzählbar. (Syn. Mächtigkeit)

kartesisch adj. cartésien.

- Koordinatensystem repère cartésien, système d'axes orthonormé ◆In der ↑Ebene auch ↑Achsenkreuz genannt.
- Produkt produit cartésien ◆Produkt zweier oder mehrerer ↑Mengen :

$$A_1 \times \cdots \times A_n \coloneqq \{(a_1, ..., a_n) \mid a_i \in A_i\}$$

mit der †Eigenschaft

$$A_i \times A_j \neq A_j \times A_i$$
 falls $A_i \neq A_j$

 $(A_i \times A_j \text{ liest man } : \ll A_i \text{ Kreuz} A_j \gg)$ Ist n=2 dann spricht man von einer \uparrow Paarmenge. (Syn. Kreuzprodukt, Mengenprodukt, Produktmenge)

Kathete f. (-, n) cathète ♦↑Seite, die am ↑rechten Winkel eines ↑rechtwinkligen Dreiecks liegt. Aus dem Griechischen kathetos, « senkrecht ». (s. Ankathete, Gegenkathete, Hypotenuse)

Kathetensatz théorème d'Euclide ◆Im ↑rechtwinkligen ↑Dreieck ist das Quadrat über einer ↑Kathete flächengleich dem ↑Rechteck aus der Länge der ↑Hypotenuse und der Länge der ↑Projektion dieser Kathete auf die Hypotenuse. (s. Satz des Euklid, Höhensatz)

Kegel m. (s, -) cône. (s. Kreiskegel)

Kegelschnitt m. ((e)s, e) conique ♦Schneidet man einen ↑Kreiskegel mit einer ↑Ebene, so entstehen verschiedene Arten von ↑Schnittkurven nämlich ↑Kreise, ↑Ellipsen, ↑Parabeln und ↑Hyperbeln und ihre jeweiligen ↑Ausartungen.

Kegelstumpf m. (s, "e) tronc de cône ◆Ein Kegelstumpf entsteht, wenn von einem ↑Kegel durch einen zur ↑Grundfläche parallelen ↑Schnitt ein Stück abgeschnitten wird. (s. stumpf)

Kehrabbildung f (- , en) application inverse \bullet Die Kehrabbildung g von f ist folgendermassen definiert :

$$g(x) = \frac{1}{f(x)}$$

mit

$$D_g = D_f \setminus \{x \mid f(x) = 0\}$$

(Syn. Kehrfunktion, Reziprokabbildung, -funktion)

Kehrbruch m (s, "e) fraction inverse lacktriangle Falls a und b ungleich Null sind, dann sind

$$\frac{a}{b}$$
 und $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$

Kehrbrüche. (Syn. Reziprokwert)

Kehrfunktion f. (-, en) *Syn.* Kehrabbildung.

Kehrwert m. (s, e) Syn. Kehrzahl.

Kehrzahl f. (-, en) inverse multiplicatif d'un nombre \blacklozenge Gegeben sei eine von \uparrow Null verschiedene \uparrow Zahl a. Ihrer Kehrzahl ist dann

$$\frac{1}{a} = a^{-1}$$

(s. Gegenzahl, Kehrbruch)

Kern Kombinatorik

Kern m. (s, e) noyau \bullet Der Kern einer \uparrow linearen Abbildung $f: V \to W$ ist als

$$\operatorname{Kern} f = \operatorname{Ker} f := \{ \vec{v} \in V : f(\vec{v}) = \vec{o} \}$$

definiert und bildet einen \uparrow Unterraum von V. (s. Bild)

Kettenlinie f. (-, n) chaînette ♦↑Graph der ↑transzendenten Funktion:

$$f(x) = a \cosh \frac{x}{a} := \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right)$$

(s. Hyperbelfunktion)

Kettenregel règle de dérivation pour la composition de fonctions \bullet Sind f und g an der \uparrow Stelle x_0 \uparrow differenzierbar, dann ist die \uparrow Verkettung $f \circ g$ an der Stelle x_0 differenzierbar und es gilt

$$(f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0)$$

(s. Ableitungsregel, Verkettung)

kgV ppmc.

(s. kleinstes gemeinsames Vielfaches)

Klasseneinteilung Syn. Partition.

Klein, Felix (1849-1925). Deutscher Mathematiker:

Im Einzelnen möchte ich der Individualität des Lehrers eine weitgehende Freiheit lassen; ich glaube mehr an die Wirksamkeit der Persönlichkeiten als an diejenige der Methoden und ausgeklügelten Lehrpläne.

Alle Pädagogen sind sich darin einig: man muss vor allem tüchtig Mathematik treiben, weil ihre Kenntnis für das praktische Leben den größten direkten Nutzen gewährt.

kleinsch adj.

 Flasche bouteille de Klein
 ◆Umgangssprachlich formuliert hat diese Flasche die Eigenschaft, dass innen und aussen nicht unterschieden werden können, oder anders formuliert, dass sie nur eine einzige Seite besitzt, die gleichzeitig innen und aussen ist. Dies wird in der Mathematik eine nicht-orientierbare Fläche genannt. (s. Möbiusband)

- Vierergruppe f. groupe de Klein.

kleinstes gemeinsames Vielfaches (kgV) plus petit multiple commun (ppmc) \bullet Das kleinste gemeinsame Vielfache zweier \uparrow natürlichen Zahlen a und b ist die kleinste \uparrow Zahl, die sowohl ein \uparrow Vielfaches von a als auch von b ist.

Knickstelle f. (-, n) point anguleux ♦↑Unstetigkeit (↑Sprungstelle) der ↑Ableitung. (s. Rückkehrpunkt)

Koch, Helge von (1870-1924).

Schwedischer Mathematiker \blacklozenge Er konstruierte die nach ihm benannte Koch-Kurve (Koch-Schneeflocke), eines der ersten Fraktale, als Beispiel für eine unendlich lange, an keiner Stelle differenzierbare Kurve.

Koeffizient m. (en, en) coefficient. (Syn. Beizahl; s. Parameter)

kollinear adj. colinéaire.

- a) Drei oder mehrere ↑Punkte (in der ↑Ebene oder im ↑Raum) heissen kollinear, wenn sie auf einer ↑Geraden liegen.
- b) Zwei †Vektoren \vec{a} und \vec{b} sind genau dann kollinear, wenn sie linear †abhängig sind d. h. wenn ein λ existiert so, dass $\vec{a} = \lambda \vec{b}$.

(s. komplanar)

Kombination f. (-, en) combinaison \blacklozenge Anzahl der \uparrow Möglichkeiten bei k Ziehungen ohne Beachtung der Reihenfolge und ohne Wiederholung aus einer \uparrow Grundmenge vom Umfang n:

$$\binom{n}{k} \coloneqq \frac{n!}{(n-k)! \, k!} \quad (k \leqslant n)$$

(lies : « n über k »).

(s. Binomialkoeffizient, Kombinatorik)

Kombinatorik f. combinatoire, analyse combinatoire ◆Zweig der Mathematik, in dem man sich mit

Kommazahl konjugiert

Fragestellungen über endliche Mengen beschäftigt. Die Bezeichnung Kombinatorik geht auf Gottfried Wilhelm Leibniz zurück. Die eigentlichen Begründer der Kombinatorik sind die Franzosen Blaise Pascal und Pierre de Fermat. (s. Fakultät, Permutation, Variation, Kombination, Abzählverfahren)

Kommazahl f. (-, en) nombre à virgule.

kommutativ adj. commutatif ◆Bezeichnet eine Operation * so, dass :

$$a * b = b * a \quad \forall a, b$$

Eine \uparrow Struktur mit einer solchen \uparrow Verknüpfung heisst auch kommutativ. Z. B. ist \mathbb{R} ein kommutativer \uparrow Körper. Falls diese Struktur eine \uparrow Gruppe ist, dann spricht man auch von einer \uparrow abelschen Gruppe. (s. Abel de-fr)

Kommutativgesetz Syn. Kommutativität.

Kommutativität f. commutativité. (*Syn.* Kommutativgesetz, Vertauschungsgesetz)

kompakt adj. compact ◆Bezeichnet eine ↑abgeschlossene und ↑beschränkte ↑Menge. Gilt auch als Schmähwort zwischen Mathematikern...

komplanar adj. coplanaire \bullet Vier oder mehr \uparrow Punkte heissen komplanar, wenn sie in einer \uparrow Ebene liegen. (Ant. nichtkomplanar)

Komplement n. (s, e) complémentaire Φ Sei $B \subset A$; das Komplement von B in A ist folgendermassen definiert :

$$\overline{B}^A := \{ x : x \in A \land x \notin B \}$$

(lies : $\langle B \text{ quer } \rangle$)

Komplementärmenge f. (-, n) Syn. Ergänzungsmenge, Komplement. (s. Differenzmenge)

Komplementärwinkel m. pl. angles complémentaires ◆Ergänzen sich zwei

Winkel zu einem rechten Winkel (90°), dann heissen sie komplementär zueinander. (s. Winkel)

Komplementwinkel Syn. Komplementärwinkel.

komplexe Zahl s. Zahl.

Komponente f. (-, n) composante \bullet In einem $\uparrow n$ -Tupel sind die a_k die Komponenten oder \uparrow Koordinaten.

(s. Tupel, Vektor)

konfokal adj. homofocale ◆Bezeichnet zwei ↑Kegelschnitte, die gemeinsame ↑Brennpunkte haben.

kongruent modulo congru modulo •Man definiert für $a, b \in \mathbb{Z}$ und $m \in \mathbb{N}$

$$a \equiv b \pmod{m} \Leftrightarrow m \mid (a - b)$$

d. h. a ist kongruent zu b modulo m genau dann, wenn m ein \uparrow Teiler von a-b ist.

kongruente Figuren figures égales, isométriques, superposables.

Kongruenz f. (-, en) congruence. (s. kongruent modulo)

Kongruenzabbildung f. (-, en) isométrie ♦↑Spezialfall der ↑Ähnlichkeitsabbildung. (Syn. Bewegung, s. affine Abbildung, Drehungen, Parallelverschiebungen, Spiegelungen)

Kongruenzsätze für Dreiecke cas d'égalité des triangles.

konjugiert adj. conjugué.

- a) Zwei †Durchmesser einer †Ellipse heissen konjugiert falls sie †Bilder zweier †rechtwinkliger Durchmesser eines †Kreises durch eine †affine Abbildung sind. (s. Affinität)
- b) Jeder \tau komplexen Zahl

$$z = a + bi$$

entspricht ihre konjugierte

$$\overline{z} := a - bi$$

Konjunktion Körper

Konjunktion f. (-, en) conjonction \bullet Die \uparrow Aussage $A \land B$ (lies : « A und B ») ist genau dann wahr, wenn A und B wahr sind. (s. Disjunktion)

konkav adj. concave ♦Eine Punktmenge (in der †Ebene oder ↑Raum) heisst konkav, wenn darin zwei ↑Punkte gibt, deren †Verbindungsstrecke mindestens einen Punkt enthält, der nicht zu der Punktmenge gehört.

(Syn. nichtkonvex; Ant. konvex)

konstant adj. constant.

- a) \uparrow Folge der Form $a_n = a \ \forall n$.
- b) \tag{Funktion der Form :}

$$f(x) = c \ \forall x$$

Konstante f. (n, n) constante. (s. eulersche Konstante)

Kontinuum n. (s, ua) continu ◆Bezeichnung für die ↑Menge der ↑reellen ↑Zahlen, für ein ↑Intervall reeller Zahlen oder allgemeiner für jede zur Menge der reellen Zahlen ↑gleichmächtige Menge.

(s. abzählbar, diskret, überabzählbar)

Kontraposition f. (-, en) s. Beweis.

konvergent adj. convergent \bullet Eine Folge $\langle a_n \rangle$ heisst konvergent zum \uparrow Grenzwert a, wenn für jede \uparrow positive Zahl ε eine \uparrow natürliche Zahl $N(\varepsilon)$ derart existiert, dass :

$$|a_n - a| < \varepsilon \ \forall n > N_{\varepsilon}$$

gilt. Man schreibt dann

$$\lim_{n \to \infty} a_n = a$$

(s. Cauchy-Folge, divergent, Häufungspunkt, Reihe)

Konvergenz f. (-, en) convergence ◆Besitzen alle ↑Teilfolgen einer ↑Folge denselben ↑Häufungspunkt, so ist diese Folge ↑konvergent. Der Häufungspunkt ist also auch der \uparrow Grenzwert der Folge. (s. Divergenz)

Konvergenzkriterium n. (s, -ien) critère de convergence.

(s. Cauchy-Kriterium)

Konvergenzradius m. (-, -ien) rayon de convergence.

konvex adj. convexe ◆Eine ebene oder räumliche Punktmenge ist konvex, wenn sie zu je zwei ↑Punkten auch deren ↑Verbindungsstrecke enthält. (Ant. konkav, nicht-konvex)

- **Funktion** fonction convexe \uparrow Funktion die auf dem \uparrow Intervall I, und für alle $x_1, x_2 \in I$, folgende \uparrow Eigenschaft besitzt :

$$f\left(\frac{x_1+x_2}{2}\right) \geqslant \frac{f(x_1)+f(x_2)}{2}$$

Wäre das Ungleichheitszeichen umgekehrt, dann wäre die Funktion dort †konkav.

konzentrisch adj. concentrique. (*Syn.* mittelpunktsgleich; *Ant.* exzentrisch)

Koordinate f. (n, n) coordonnée. (s. Abszisse, Ordinate)

Koordinatensystem n. (s, e) repère, système de coordonnées. (s. kartesisch)

Koordinatenursprung m. (s, "e) origine d'un repère.

(Syn. Nullpunkt, Ursprung)

Körper m. (s, -) corps (Struktur), solide (Geometrie).

- a) **algebraischer** corps algébrique \blacklozenge In der \uparrow Algebra bezeichnet man eine algebraische \uparrow Struktur mit zwei \uparrow Verknüpfungen $[K,+,\cdot]$ als einen Körper, wenn folgende Bedingungen erfüllt sind :
 - i) [K, +] ist eine \uparrow abelsche \uparrow Gruppe und $[K^*, \cdot]$ eine Gruppe;

Kosinus Kreiszylinder

ii) und es gilt : $\forall a, b, c \in K$

$$a(b+c) = ab + ac$$
$$(a+b)c = ac + bc$$

Als Beispiele haben wir \mathbb{Q} , \mathbb{R} und \mathbb{C} .

b) **archimedischer** corps archimédien $\mathbf{\Phi}\mathbb{R}$ ist ein solcher Körper, denn es gilt : zu je zwei \uparrow positiven \uparrow Zahlen a, b

$$\exists n \in \mathbb{N} : n \cdot a > b$$

- c) **geometrischer** solide (géométrique) ◆Eine allseitig von ebenen oder gekrümmten ↑Flächen begrenzte ↑Teilmenge des ↑Raumes heisst Körper. Ein von endlich vielen ↑Polygonen begrenzter Körper ist ein ↑Polyeder.
- d) **platonische** corps platoniciens. (s. platonische Körper)

Kosinus m. (-, -) cosinus ♦↑Sinus des ↑Komplementärwinkels :

$$\cos\alpha := \sin(\frac{\pi}{2} - \alpha)$$

(Syn. Cosinus)

$$\cos(x) =: \cos x = \sin(\frac{\pi}{2} - x)$$

(s. trigonometrische Funktion)

Kosinussatz théorème du cosinus \uparrow Verallgemeinerung des \uparrow Satzes von Pythagoras. Seien a, b und c die \uparrow Seiten eines \uparrow beliebigen \uparrow Dreiecks, dann gilt :

$$c^2 = a^2 + b^2 - 2ab\cos\gamma \quad \circlearrowleft$$

(Syn. Cosinussatz; s. Sinussatz)

Kotangens m. (-, -) cotangente ♦Definitionsgemäss hat man

$$\cot \alpha = \frac{1}{\tan \alpha} = \tan \left(\frac{\pi}{2} - \alpha \right)$$

(Syn. Cotangens)

Kreisabschnitt m. ((e)s, e) segment circulaire ◆Teilfläche einer ↑Kreisfläche, die von einem ↑Kreisbogen und einer Kreissehne begrenzt wird. (Syn. Kreissegment)

Kreisausschnitt m. ((e)s, e) secteur circulaire. *Syn.* Kreissektor.

Kreisbogen m. (s, ") arc de cercle. (s. Bogenlänge)

Kreisbüschel n. (s, -) faisceau de cercles. (s. Schar)

Kreisfläche f. (-, n) Syn. Scheibe.

Kreisfunktion f. (-, en) *Syn.* trigonometrische Funktion.

Kreiskegel m. (s, -) cône circulaire.

Kreislinie f. (-, n) cercle, circonférence. (*Syn.* Kreis; s. Peripherie, Umfang)

Kreisquadrant m. (en, en) quart de disque.

Kreisring m. (s, e) couronne, anneau circulaire.

Kreissegment n. (s, e) *Syn.* Kreisabschnitt.

Kreissektor m. (s, en). Syn. Kreisausschnitt.

Kreisumfang m. ((e)s, "e) circonférence. (s. Kreislinie, Peripherie)

Kreiszahl f. Syn. Pi.

Kreiszylinder m. (s, -) cylindre à base circulaire.

Kreuzmultiplikation f. (-, en) produits croisés ◆Anwendung der Definition der ↑Gleichheit zweier ↑Brüche:

$$\frac{a}{b} = \frac{c}{d} \implies a \cdot d = b \cdot c$$

Kreuzprodukt n. *Syn.* kartesiches Produkt.

Kronecker, Leopold (1823-1891). Deutscher Mathematiker:

Nos mathematici sumus isti veri poetae sed quod fingimus nos et probare decet. (Wir Mathematiker sind die wahren Dichter, nur müssen wir das, was unsere Phantasie schafft, noch beweisen.)

Die ganzen Zahlen hat der liebe Gott geschaffen, alles andere ist Menschenwerk.

ullet Die folgende \uparrow Funktion der Indizes i und j heisst das Kronecker-Symbol :

$$\delta_{ij} = \begin{cases} 0 & \text{falls } i \neq j \\ 1 & \text{falls } i = j \end{cases}$$

krummlinig adj. curviligne. (s. geradlinig)

Krümmung f. (-, en) courbure.

Krümmungskreis m. (es, e) *Syn.* Schmiegkreis.

Krümmungsradius m. (-, ien) rayon de courbure.

Kubikwurzel f. (-, n) racine cubique. (*Syn.* dritte Wurzel; *s.* n-te Wurzel)

kubische Gleichung équation cubique, du troisième degré ◆Die allgemeine Form der kubischen Gleichung ist:

$$ax^3 + bx^2 + cx + d = 0 \quad (a \neq 0)$$

(Syn. Gleichung dritten Grades)

Kubusverdopplung f. (-, en) *Syn.* Würfelverdopplung.

Kugel f. (-, n) sphère, boule.

Kugelabschnitt m. ((e)s, e) *Syn.* Kugelsegment.

Kugelausschnitt m. ((e)s, e) *Syn.* Kugelsektor.

Kugelfläche f. (-, n) sphère (surface) \uparrow Geometrischer Ort der \uparrow Punkte des \uparrow Raumes, die von einem festen \uparrow Punkt M (\uparrow Mittelpunkt, \uparrow Zentrum) die gleiche Entfernung r (\uparrow Radius) haben.

Kugelkappe f. (-, n) calotte sphérique (surface) \bullet Eine \uparrow Ebene, deren \uparrow Abstand von M kleiner als r ist, zerlegt die \uparrow Kugelfläche in zwei Kugelkappen. (Syn. Haube, Kalotte)

Kugelkeil m. ((e)s, e) fuseau sphérique (volume) ◆Zwei ↑Ebenen durch den ↑Mittelpunkt zerlegen den ↑Kugelkörper in vier Kugelkeile.

Kugelkoordinate f. (-, n) coordonnée sphérique ◆Ein beliebiger ↑Punkt *P* einer Kugel kann mit seinen Kugelkoordinaten

$$(r, \varphi, \theta)$$

definiert werden, mit respektive : dem \uparrow Abstand $r \geqslant 0$ des Punktes P vom \uparrow Ursprung O, dem \uparrow Winkel θ , den die gerichtete \uparrow Strecke OP mit der x,y-Ebene einschliesst und für den gilt

$$-\frac{\pi}{2} \leqslant \theta \leqslant +\frac{\pi}{2}$$

und dem Winkel φ , den die \uparrow Projektion der Strecke OP auf die x,y-Ebene mit der positive \uparrow Richtung der x-Achse einschliesst und für den gilt

$$0 \leqslant \varphi < 2\pi$$

(Syn. räumliche Polarkoordinate)

Kugelkörper m. (s, -) boule \blacklozenge Die \uparrow Kugelfläche begrenzt den Kugelkörper; er besteht aus allen \uparrow Punkten P mit

$$\overline{MP} \leqslant r$$

Kugeloberfläche f. (-, n) surface sphérique.

Kugelschicht kürzen

Kugelschicht f. (-, en) segment sphérique (volume) ♦Wird eine ↑Kugel von zwei ↑zueinander parallelen Ebenen geschnitten, dann wird der ↑Kugelkörper in zwei ↑Kugelabschnitte und eine Kugelschicht zerlegt.

Kugelsegment n. (s, e) calotte sphérique (volume) ◆Schneidet man eine ↑Kugel mit einer ↑Ebene, so entstehen zwei Kugelsegmente. (Syn. Kugelabschnitt)

Kugelsektor m. (s, en) secteur sphérique. (*Syn.* Kugelausschnitt)

Kugelzone f. (-, n) segment sphérique (surface).

Kugelzweieck n. (s, e) fuseau (surface).

Kurve f. (-, n) courbe. (s. Bildkurve, Graph)

Kurvendiskussion f. (-, en) étude de fonction.

Kurvenintegral n. (s, e) intégrale curviligne, de ligne.

Kurvenschar f. (-, n) famille de courbes. ♦↑Menge ↑ebener ↑Kurven mit der ↑Gleichung

$$f(x, y, c) = 0$$

In diesem Fall spricht man von einer einparametrigen Kurvenschar. (s. Büschel, Geradenschar, Schar)

kürzen tr. simplifier (une fraction). (*Ant.* erweitern; s. Erweiterung)

Lambert

\mathbf{L}

Lambert, Johann H. (1728-1777). Europäischer Mathematiker Φ Er hat bewiesen (1768), dass π eine irrationale Zahl ist.

längentreu adj. qui conserve les longueurs. (s. treu)

Laplace-Versuch m. (s, e) expérience dont les issues sont équiprobables (situation d'équiprobabilité)
◆Bezeichnung für einen ↑Zufallsversuch mit ↑endlich vielen ↑Ausfällen, die alle gleich wahrscheinlich sind.

leere Menge ensemble vide \blacklozenge Man schreibt $\{\}$ oder \varnothing , ein Symbol das aus dem dänischen Alphabet stammt.

Lehrsatz m. (es, "e) Syn. Satz.

Leibniz, Gottfried Wilhelm (1646-1716). Deutscher Mathematiker, Physiker, Wissenschaftler, Philosoph, Diplomat, Historiker, Politiker, usw. ◆Leibniz verband in sich die beiden gegensätzlichen Gebiete der Mathematik, das kontinuierliche und diskrete. Er schuf für die Mathematik die Infinitesimalrechnung und die Kombinatorik:

... der Heilige Geist fand einen erhabenen Ausweg in der Analysis mit diesem Mittelding zwischen Sein und Nichtsein, das wir als imaginäre (Quadrat)wurzel der negativen Einheit bezeichnen.

Musica est exercitium arithmeticae occultum nescientis se numerare animi. (Musik ist die versteckte arithmetische Tätigkeit der Seele, die sich nicht dessen bewußt ist, daß sie rechnet.)

Leitlinie f. (-, n) directrice (d'une conique) ◆↑Polare eines ↑Brennpunktes eines ↑Kegelschnitts.

Leitgerade f. (-, n) Syn. Leitlinie.

Leitkurve f. (-, n) directrice (d'une surface réglée) ◆Z. B. gleitet im ↑Raum eine ↑Gerade (↑Erzeugende) ohne ihre ↑Richtung zu verändern, längs einer ↑gekrümmten ↑Linie (Leitkurve), so beschreibt sie eine Zylinderfläche.

Limes m. (-, -) limite. (Syn. Grenzwert; s. Grenzübergang)

Lindemann, Ferdinand (1852-1939). Deutscher Mathematiker Φ Er hat bewiesen (1882), dass π eine transzendente Zahl ist und somit auch, dass die Quadratur des Kreises unmöglich ist.

Lineal n. (s, e) règle. (s. Zirkel und Lineal)

linear adj. und adv. linéaire(ment).

- **abhängig** linéairement dépendant •Ein †System $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ von †Vektoren heisst linear abhängig, wenn es †Zahlen a_1, a_2, \dots, a_n gibt, die nicht alle Null sind, so dass gilt

$$\sum_{k=1}^{n} a_k \vec{v}_k = \vec{o}$$

- **unabhängig** linéairement indépendant ◆Man nennt ein System $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ linear unabhängig, wenn die obige ↑Gleichung nur für die Zahlen $a_k = 0$ für alle k erfüllt ist.

lineare adj.

- **Abbildung** application linéaire \bullet Eine \uparrow Abbildung $f: V \to W$ eines \uparrow Vektorraums V in einen Vektorraum W (beide über demselben \uparrow Körper \mathbb{K}) ist linear, wenn

$$\forall \vec{a}, \vec{b} \in V \text{ und } \forall \lambda, \mu \in \mathbb{K}$$

gilt:

$$f(\lambda \vec{a} + \mu \vec{b}) = \lambda f(\vec{a}) + \mu f(\vec{b})$$

d. h., die †Linearkombinationen sind †erhalten. (s. Endomorphismus, Homomorphismus, Isomorphismus)

- **Approximation** approximation linéaire \blacklozenge Mit Hilfe der Ableitung kann man eine an einer Stelle x_0 differenzierbare Funktion in einer Umgebung $U(x_0)$ linear approximieren :

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

Z. B. $\sin x \approx x$ in U(0).

(s. MacLaurin, Reihenentwicklung, Taylor)

- Funktion fonction linéaire ♦↑Funktion der Form f(x) = ax. (s. proportional)
- **Gleichung** équation linéaire \blacklozenge Z. B. ax + by = c.
- Hülle enveloppe linéaire.
 (Syn. Erzeugnis, Spann)
- Interpolation interpolation linéaire
 ◆Eine ↑Funktion sei durch eine
 ↑diskrete ↑Menge von Messungen gegeben, wobei A und B zwei dieser Werte sind. Um einen beliebigen Zwischenwert von A und B zu berechnen, verwendet die lineare Interpolation die gerade ↑Strecke, die diese zwei ↑Punkte verbindet. So kann zum Beispiel die Position eines Planeten bestimmt werden, aus den Werten der Ephemeriden.
- Ordnung ordre total.(s. Ordnungsrelation)

lineares Gleichungssystem système d'équations linéaires ◆Die allgemeine Form eines solchen ↑Systems lautet :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

(s. homogen)

Linearkombination f. (-, en) combinaison linéaire Φ Sei V ein \uparrow Vektorraum über \mathbb{R} und $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ mit $\vec{v}_k \in V$. Dann ist

$$\vec{v} = \sum_{k=1}^{n} \lambda_k \vec{v}_k \in V, \ \lambda_k \in \mathbb{R}$$

eine Linearkombination der \vec{v}_k .

Linie f. (-, n) courbe, ligne. (s. Leit-, Ketten-, Kreis-, Mantel-, Niveau-, Potenz-, Schnitt-, Schwerlinie)

linksseitiger Grenzwert limite à gauche \bullet Geht man auf eine kritische \uparrow Stelle x_0 über $x < x_0$ zu, dann schreibt man

$$\lim_{x \to x_0^-} f(x) = A$$

falls dieser \uparrow Grenzwert existiert. (s. Limes, rechtsseitiger Grenzwert)

linksseitig stetig continue à gauche. (s. rechtsseitig stetig, stetig)

In-Funktion f. *Syn.* natürliche Logarithmusfunktion.

Lobatschewski, Nikolaï (1792-1856). Russischer Mathematiker, einer der Begründer, mit Bolyai (s. Bolyai de-fr), der nichteuklidischen Geometrien:

Die beste von allen Sprachen der Welt ist eine künstliche Sprache, eine ziemlich gedrängte Sprache, die Sprache der Mathematik.

Logarithmentafel f. (-, n) table de logarithmes.

Logarithmus m. (-, men) logarithme. \bullet Seien a und b ($b \neq 1$) positive \uparrow Zahlen, dann ist der Logarithmus von a zur \uparrow Basis b diejenige Zahl, mit der man b \uparrow potenzieren muss, um a zu erhalten :

$$b^{\log_b a} = a$$

a) dekadischer Logarithmus logarithme décimal ♦Logarithmus zur Basis 10 und man schreibt

$$\log_{10} b =: \log b$$

(Syn. Zehnerlogarithmus)

b) **natürlicher** logarithme naturel ou népérien ◆Logarithmus zur Basis e (↑eulersche Zahl) und man schreibt

$$\log_e b =: \ln b$$

(Syn. Logarithmus naturalis)

c) **Zehnerlogarithmus** *Syn.* dekadischer Logarithmus.

Logarithmusfunktion f. (-, en) fonction logarithme ♦Die Logarithmusfunktionen

$$f(x) = \log_a x$$
 mit $a > 0$ und $a \neq 1$

sind für jedes positive \uparrow Argument \uparrow stetig und \uparrow monoton \uparrow wachsend. Die \uparrow Umkehrfunktion der Logarithmusfunktion ist die \uparrow Exponentialfunktion. Ist a = e dann hat man die natürliche Logarithmusfunktion oder ln-Funktion. (s. Logarithmus)

logische Äquivalenz équivalence logique ♦Die ↑Aussage

$$(A \Rightarrow B) \land (B \Rightarrow A)$$

kürzt man mit $A \Leftrightarrow B$ ab.

lokal local, relatif \bullet Die \uparrow Funktion f hat an der \uparrow Stelle x_0 ein lokales (\uparrow relatives) \uparrow Extremum, wenn eine \uparrow Umgebung

$$U(x_0) \subset D_f$$

derart existiert, dass

$$f(x) < f(x_0) \ \forall x \in U(x_0) \setminus \{x_0\}$$

dann liegt ein lokales \uparrow Maximum vor. Falls

$$f(x) > f(x_0) \ \forall x \in U(x_0) \setminus \{x_0\}$$

dann liegt ein lokales \uparrow Minimum vor. (s. absolut, global)

lösbar adj. résoluble. (s. unlösbar)

Lösbarkeit f. (-, en) résolubilité \bullet Eine \uparrow Gleichung n-ten Grades der Form $P_n(x) = 0$ besitzt in \mathbb{R} höchstens n \uparrow Lösungen. Die Anzahl der Lösungen ist gerade falls n = 2k, ungerade sonst. (s. Hauptsatz der Algebra)

Lösungsmenge f. (-, n) ensemble des solutions. (*Syn*. Erfüllungsmenge)

 ${f L\ddot{o}sungsverfahren}$ n. (s, -) méthode de résolution.

Lot n. (s, e) (droite) perpendiculaire, normale ◆Bezeichnung für eine ↑Gerade, die durch einen ↑Punkt geht und ↑rechtwinklig zu einer Geraden bzw. ↑Ebene ist. (s. Normale)

Mächtigkeit Mengenlehre

\mathbf{M}

Mächtigkeit f. (-, en) puissance, cardinal Φ Für eine n-elementige \uparrow Menge M hat man

$$|M| = \operatorname{Card}(M) = n \text{ und } |\mathfrak{P}(M)| = 2^n$$

Ferner gilt

$$\operatorname{Card} \mathbb{N} = |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| =: \aleph_0$$

Und für \mathbb{R} , nach der Kontinuumhypothese

$$\operatorname{Card} \mathbb{R} = |\mathbb{R}| = |\mathfrak{P}(\mathbb{N})| = 2^{\aleph_0}$$

(s. Aleph, Kardinalzahl, Potenzmenge)

MacLaurin, Colin (1698-1746). Schottischer Mathematiker.

maclaurinsche Formel formule de MacLaurin \uparrow Spezialfall der \uparrow Taylorsche Formel mit $x_0 = 0$:

$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(0)}{i!} x^{i} + R_{n}(x)$$

magisches Quadrat Syn. diabolisches Quadrat, Zauberquadrat.

Majorante f. (-, n) majorante ♦↑Reihe, deren ↑Glieder nicht kleiner sind als die einer zu untersuchenden Reihe. (s. Minorante)

Majorantenkriterium n. critère de comparaison ♦Gilt

$$0 \leqslant a_i \leqslant b_i \ \forall i \in \mathbb{N}$$

dann folgt aus der †Konvergenz von

$$\sum_{i=1}^{\infty} b_i \text{ die Konvergenz von } \sum_{i=1}^{\infty} a_i$$

(s. Minorantenkriterium, Reihe)

Mantelfläche f. (-, n) surface latérale.

Mantellinie Syn. Erzeugende.

Mantisse f. (-, n) mantisse ♦Ziffern nach dem Komma eines ↑Logarithmus.

Mathematik f. mathématique ◆Mathematik, stammt aus dem Lateinischen mathematicus, das seinerseits aus dem Griechischen methematikos kommt, und bedeutet : « der lernen will ». Mathematikos ist aus dem Wort mathêma (Einzahl) : « das, was beigebracht wird » abgeleitet, und (Mehrzahl) « Wissen » bedeutet. Der Ursprung ist manthanein, das früher für « lernen » gebraucht wurde, und später « verstehen » bedeutete.

Matrix f. (-, trizen) matrice \blacklozenge Eine (m, n)-Matrix A ist ein System von $m \times n \uparrow$ Zahlen

$$a_{ij}, i = 1, \ldots, m; j = 1, \ldots, n$$

die in einem Schema aus $m \uparrow Z$ eilen und $n \uparrow S$ palten folgendermassen angeordnet sind :

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} =: (a_{ij})$$

Maximum n. (s, ma) maximum. (s. absolut, global, lokal, relativ)

mehrdeutig adj. multivoque. (s. eindeutig, eineindeutig)

mehrfaches Integral intégrale multiple.

Menge f. (-, n) ensemble ◆↑Zusammenfassung wohldefinierter Objekte. (s. aufzählende Schreibweise, Cantor de-fr, charakterisierende Schreibweise)

Mengenlehre f. théorie des ensembles. (s. Cantor de-fr)

Mengenprodukt Mittelwertsatz

Mengenprodukt n. *Syn.* kartesisches Produkt.

Methode des Vektorparallelogramms règle du parallélogramme \blacklozenge Graphisch gesehen ist die \uparrow Summe der \uparrow Vektoren \vec{a} und \vec{b} die \uparrow Diagonale des \uparrow Parallelogramms, das diese Vektoren bilden. (s. Parallelogrammregel)

Minimum n. (s, ma) minimum. (s. absolut, global, lokal, relativ)

Minkowski, Hermann (1864-1909). Deutscher Mathematiker:

Es handelt sich, so kurz wie möglich ausgedrückt [...] darum, daß die Welt in Raum und Zeit in gewissem Sinne eine vierdimensionale nichteuklidische Mannigfaltigkeit ist.

[Einstein] ist ein fauler Hund, sicherlich sehr intelligent aber von Mathematikkenntnissen überhaupt nicht belastet. (Minkowski war Lehrer Einsteins an der ETH-Zürich)

Minorante f. (-, n) minorante ♦↑Reihe, deren ↑Glieder nicht grösser sind als die einer zu untersuchenden Reihe. (s. Majorante)

Minorantenkriterium n. critère de comparaison ♦Gilt

$$0 \leqslant a_i \leqslant b_i \ \forall i \in \mathbb{N}$$

dann folgt aus der †Divergenz von

$$\sum_{i=1}^{\infty} a_i \text{ die Divergenz von } \sum_{i=1}^{\infty} b_i$$

(s. Majorantenkriterium, Reihe)

Mises, Hilda Geiringer von (1893-1973). Österreichische Mathematikerin.

Mittel n. (s, -) moyenne. (Syn. Durchschnitt, Mittelwert; s. arithmetisch, geometrisch, harmonisch)

Mittellot n. ((e)s, e) Syn. Mittelsenkrechte.

Mittelparallele f. (-, n) droite des milieux.

- zweier Geraden ◆Sind zwei parallele Geraden g und h gegeben, so ist ihre Mittelparallele die Gerade, die von g und h jeweils den gleichen ↑Abstand hat.
- eines Dreiecks ◆Die ↑Verbindungsstrecken der Seitenmittelpunkte eines Dreiecks bezeichnet man als die Mittelparallelen des Dreiecks, weil sie jeweils zu einer ↑Seite des Dreiecks parallel sind. Jede dieser Mittelparallelen ist halb so lang wie die zugehörige Seite des Dreiecks.
- eines Trapezes ◆Verbindungsstrecke der ↑Mittelpunkte der beiden nicht parallelen Seiten. Diese Strecke ist parallel zu den beiden parallelen Seiten (↑Grundseiten) des Trapezes.

Mittelpunkt m. (es, e) centre, milieu. (Syn. Zentrum).

mittelpunktsgleich adj. concentrique ◆Bezeichnet ↑Kreise mit demselben ↑Mittelpunkt. (Syn. konzentrisch; Ant. exzentrisch)

Mittelpunktswinkel m. (s, -) angle au centre ◆Die ↑Umfangswinkel über einem ↑Kreisbogen betragen nämlich alle die Hälfte des zugehörigen Mittelpunktswinkels.

(s. Winkel, Zentriwinkel)

Mittelsenkrechte f. (-, n) médiatrice ◆↑Gerade durch den ↑Mittelpunkt einer ↑Strecke, welche zu der Strecke ↑rechtwinklig (↑senkrecht) ist. Sie ist auch der ↑geometrische Ort der ↑Punkte mit gleichem ↑Abstand von den beiden ↑Endpunkten der Strecke. (Syn. Mittellot)

Mittelwert m. ((e)s, e) valeur moyenne. (s. arithmetisch, Durchschnittswert, geometrisch, harmonisch)

Mittelwertsatz théorème de la moyenne.

Mitternachtsformel Multiplikator

- der Differenzialrechnung du calcul différentiel, théorème des accroissements finis ♦Die ↑Funktion f sei ↑stetig auf [a,b] und ↑differenzierbar auf]a,b[. Dann gibt es ein $\xi \in]a,b[$ mit

$$\frac{f(b) - f(a)}{b - a} = f'(\xi)$$

(s. Satz von Rolle)

- der Integralrechnung du calcul intégral \blacklozenge Ist f stetig auf [a,b], dann existiert ein $\xi \in]a,b[$ mit der \uparrow Eigenschaft

$$\int_{a}^{b} f(x) dx = f(\xi)(b - a)$$

Mitternachtsformel f. formule de résolution des équations du deuxième degré ◆Übliche Benennung der Lösungsformel für die allgemeine ↑quadratische Gleichung:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a}$$

(s. Diskriminante)

mittlere Proportionale moyenne proportionnelle ◆Die ↑Lösung der Proportion

$$\frac{x-a}{b-x} = \frac{a}{x} \quad \text{bzw.} \quad b: x = x: a$$

ist das \uparrow geometrische Mittel oder die mittlere Proportionale der Zahlen a und b. (s. Höhensatz)

Moebius, August (1790-1868). Deutscher Mathematiker.

Moebiusband n. ruban de Moebius (Möbius) ◆Bezeichnung für eine ↑Fläche, die folgendermassen entsteht: Man denke sich einen Streifen zusammengeklebt, nachdem seine Enden um 180° gegeneinander verdreht worden sind. (s. einseitig, kleinsche Flasche)

Möndchen des Hippocrates lunules d'Hippocrate.

Monom n. (s, e) monôme \uparrow Polynom, das nur aus einem \uparrow Glied besteht.

(s. Binom)

monoton adj. monotone.

- **Folge** suite monotone ◆Eine ↑Folge $\langle a_n \rangle$ ist monoton ↑fallend, wenn

$$a_{n+1} \leqslant a_n \ \forall n > N_0$$

und †streng monoton fallend, wenn

$$a_{n+1} < a_n \ \forall n > N_0$$

Sie ist monoton \tag{wachsend wenn

$$a_{n+1} \geqslant a_n \ \forall n > N_0$$

und streng monoton wachsend, wenn

$$a_{n+1} > a_n \ \forall n > N_0$$

Eine monotone †beschränkte Folge ist †konvergent.

- **Funktion** fonction monotone ♦Eine \uparrow Funktion f ist auf einem \uparrow Intervall monoton fallend $(f \searrow)$, wenn

$$f(x_1) \geqslant f(x_2)$$
 für $x_1 < x_2$ gilt

und monoton wachsend $(f \nearrow)$ wenn

$$f(x_1) \leqslant f(x_2)$$
 für $x_1 < x_2$ gilt.

Morgan, Augustus De (1806-1871). Englischer Mathematiker. (s. de morgansche Regeln)

Multiplikand m. (en, en) multiplicande. (s. Multiplikation)

Multiplikation f. (-, en) multiplication ♦↑Produkt eines ↑Multiplikators und eines ↑Multiplikanden.

Multiplikationssatz théorème de multiplication ♦Aus der ↑bedingten Wahrscheinlichkeit folgt

$$P(A \cap B) = P(B) \cdot P(A|B)$$

(s. unabhängiges Ereigniss)

Multiplikator m. (s, en) multiplicateur. (s. Multiplikation).

Nachbarwinkel Nonagon

N

Nachbarwinkel m. pl. Syn. Stufenwinkel.

Näherungspolynom n. (s, e) développement limité. (*Syn.* Approximationspolynom; s. lineare Approximation, MacLaurin, Taylor)

Näherungswert m. ((e)s, e) valeur approchée \blacklozenge Z. B. kann man die Dezimalbruchentwicklung einer \uparrow Zahl a nicht vollständig angeben, so muss man sich mit einem Näherungswert a' begnügen, also $a \approx a'$; und dann ist |a-a'| der \uparrow Betrag des Fehlers.

natürlich adj. naturel.

- **Logarithmus** logarithme naturel. (s. Logarithmus)
- **Zahl** nombre naturel. (s. Zahl)

Nebenachse f. (-, n) petit axe. (s. Ellipse, Hauptachse, Hyperbel)

Nebenbedingung f. (-, en) contrainte, équation de liaison. (s. Extremwertaufgabe, Optimierung)

Nebenwinkel m. pl. *Syn.* Ergänzungswinkel.

n-Eck n. (s, e) *Syn.* Polygon, Vieleck.

Negation f. (-, en) négation \diamond Symbol $\ll \neg \gg$. Jede \uparrow Aussage A besitzt ihre Negation $\neg A$. (lies : \ll nicht $A \gg$) (s. doppelte Verneinung)

Neigungswinkel m. (s, -) Syn. Steigungswinkel.

Nenner m. (s, -) dénominateur ◆Was unter dem ↑Bruchstrich steht. (s. Division, Zähler)

Neugrad m. (s, e) Syn. Gon.

Neumann, John (1903-1957). Ungarischer Mathematiker: By and large it is uniformly true that in mathematics there is a time lapse between a mathematical discovery and the moment it becomes useful; and that this lapse can be anything from 30 to 100 years, in some cases even more; and that the whole system seems to function without any direction, without any reference to usefulness, and without any desire to do things which are useful.

There is an infinite set A that is not too big.

Neuneck n. (s, e) ennéagone, nonagone. (s. Nonagon)

neutrales Element élément neutre lacktriangleIst (M,*) eine \uparrow algebraische \uparrow Struktur und e ein \uparrow Element aus M mit

$$e * a = a * e = a \ \forall a \in M$$

dann ist e das neutrale Element von (M, *).

Newton, Isaac (1642-1727).

Englischer Mathematiker und Physiker.

Newton-Verfahren n. s. Tangentenverfahren.

nichteuklidisch adj. non euclidien. (s. Bolyai de-fr, euklidisch, Lobatschewski de-fr)

nichtkonvex adj. *Syn.* konkav.

nichtlineare Ordnungsrelation relation d'ordre partiel. (s. Ordnungsrelation)

(s. Ordiningsrelation)

Niveaulinie f. (-, n) courbe de niveau. (Syn. Höhen(schicht)linie)

Nonagon n. (s, e) *Syn.* Neuneck.

Norm

Norm f. (-, en) norme \bullet Die übliche Norm eines \uparrow Vektors $\vec{x} \in \mathbb{R}^n$ lautet

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

(s. Betrag)

Normale f. (n, n) normale ◆↑Gerade, die in einem ↑Punkt einer ↑Kurve (bzw. ↑Fläche) ↑senkrecht (bzw. ↑orthogonal) zur ↑Tangente (bzw. ↑Tangentialebene) in diesem Punkt ist. (s. Subnormale)

Normalform f. (-, en) équation cartésienne ♦Z. B.

– einer ↑Geraden der ↑Ebene :

$$ax + by + c = 0$$

– einer Ebene im ↑Raum :

$$ax + by + cz + d = 0$$

(s. Hyperebene)

(s. Parameterdarstellung)

Normalvektor m. (s, en) vecteur normal ◆Ein Normalvektor einer ↑Ebene der Form

$$\gamma: ax + by + cz + d = 0$$

ist z. B. der Vektor

$$\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \perp \gamma$$

(s. Normale, orthogonal, senkrecht)

Normalverteilung f. (-, en) loi normale (gaussienne).

(Syn. Gauss-Verteilung)

normiert adj. normé, normalisé.

- a) Ein \tag{Vektor heisst normiert,} wenn er den \tag{Betrag 1 hat, also ein \tag{Einheitsvektor ist.}
- b) Ein ↑Vektorraum heisst normiert, wenn auf ihm eine ↑Norm definiert ist.

c) Ein ↑Polynom heisst normiert, wenn der ↑Koeffizient der höchsten ↑Potenz 1 ist.

notwendig adj. nécessaire \blacklozenge Notwendig für die \uparrow Konvergenz einer \uparrow Folge $\langle a_n \rangle$ ist beispielsweise die Bedingung

$$\lim \left(a_n - a_{n+1}\right) = 0$$

(s. hinreichend)

n-te Wurzel racine n-ième ♦Seien a eine positive ↑Zahl und $n \in \mathbb{N}^*$. Die n-te Wurzel von a ist dann folgendermassen definiert :

$$\sqrt[n]{a} = a^{\frac{1}{n}} = r > 0$$
 mit $r^n = a$

- a) Ist n=2, dann hat man eine \uparrow Quadratwurzel : $\sqrt[2]{a}=:\sqrt{a}$.
- b) Ist n = 3, dann hat man eine \uparrow Kubikwurzel.
- c) Ist a < 0 und n \undersightagraphingerade, dann kann man definieren :

$$\sqrt[n]{a} =: -\sqrt[n]{|a|}$$

(s. Radikand, Wurzelzeichen)

n-Tupel n. (s, -) n-uplet ◆Ein n-Tupel besteht aus n ↑Elementen und hat die Form $(a_1, a_2, ..., a_n)$. Die a_k sind die ↑Koordinaten des n-Tupels, manchmal sind sie auch ↑Komponenten genannt. Ist n = 2, spricht man von einem ↑Paar, falls n = 3, von einem ↑Tripel; n = 4 von einem ↑Quadrupel und n = 5 von einem ↑Quintupel.

(s. kartesisches Produkt, Tupel)

Null f. (-, en) zéro ◆In Indien seit dem 6. Jahrhundert gebraucht, in Europa ungefähr im 10. Jahrhundert dank den Araber erschienen und erst einige Jahrhunderte später allgemein verwendet. Es sei bemerkt, dass sie den Mayas auch bekannt war. Details dazu kann man im bemerkenswerten Buch von Robert Kaplan [12] finden:

Betrachtet man eine Null, sieht man nichts. Blickt man aber durch sie hindurch, so sieht man die Welt. nulldimensional Nullwinkel

nulldimensional adj. de dimension zéro ♦Ein nulldimensionaler ↑Raum ist ein ↑Punkt.

Nullelement élément neutre (additif) ◆Neutrales Element der Addition. (s. Gruppe, Körper, Ring)

Nullfolge f. (-, n) suite nulle ♦↑Folge mit dem ↑Grenzwert ↑Null ♦Z. B.

$$\langle aq^n \rangle$$
 mit $|q| < 1$

Nullmatrix matrice nulle ◆↑Quadratische Matrix der Form

$$O = (a_{ij}) \text{ mit } a_{ij} = 0 \ \forall i, j$$

die die Rolle des †neutralen Elements der †Addition spielt.

Nullpunkt m. (es, e) *Syn.* Koordinatenursprung.

Nullstelle einer Funktion zéro d'une fonction ♦Lösung der ↑Gleichung :

$$f(x) = 0 \text{ mit } x \in D_f$$

Nullteiler m. pl. diviseurs de zéro \uparrow Elemente a und b eines \uparrow Rings mit der \uparrow Eigenschaft :

$$a \neq 0 \land b \neq 0 \implies a \cdot b = 0$$

Z. B.

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

(s. nullteilerfrei)

nullteilerfrei adj. sans diviseur de zéro. (s. Integritätsbereich, Ring)

Nullvektor vecteur nul \blacklozenge In einem \uparrow Vektorraum V gibt es einen Nullvektor \vec{o} (oder $\vec{0}$) so, dass gilt

$$\vec{a} + (-\vec{a}) = \vec{o}$$
 und $\lambda \cdot \vec{o} = \vec{o} \quad \forall \lambda$

(s. neutrales Element)

Nullwinkel m. (s, -) angle nul. (s. Winkel)

obere Schranke Ordnung

O

obere Schranke borne supérieure. (s. Schranke)

Oberfläche f. (-, n) surface (d'un solide) ◆↑Menge der ↑Randpunkte eines ↑Körpers.

Ockham, Wilhelm von Occam, Guillaume d' (1288-1348) :

Essentia non sunt multiplicanda praeter necessitam.

So lautet der Ockhams Rasiermesser.

offen adj. ouvert \bullet Eigenschaft einer \uparrow Menge M von \uparrow Punkten der \uparrow Geraden (\mathbb{R}) , der \uparrow Ebene (\mathbb{R}^2) oder des \uparrow Raumes (\mathbb{R}^3) , wenn sie nur aus \uparrow inneren Punkten besteht. (s. abgeschlossen, halboffen, Intervall)

offene Kurve courbe ouverte. *Ant.* geschlossene Kurve.

offene Kugel boule ouverte ♦Kugel ohne ↑Randpunkte.

ohne Beschränkung der Allgemeinheit s. Abkürzungen, S. 13.

ohne Einschränkung der Allgemeinheit s. Abkürzungen, S. 13.

Oktaeder n. (s, -) octaèdre ◆Ein †reguläres Oktaeder wird von acht †gleichseitigen †Dreiecken begrenzt. Das †Volumen eines solchen †Körpers der †Kantenlänge a lautet

$$V = \frac{\sqrt{2}}{3} \cdot a^3$$

(Syn. Achtflächner; s. platonische Körper)

Oktogon n. (s, e) Syn. Achteck.

Oleinik, Olga (1925-2001). Russische Mathematikerin. Olive, Gloria (1923-2006). Amerikanische Mathematikerin.

Operationssymbol n. (s, e) *Syn.* Operationszeichen.

Operationszeichen n. (s, -) signe, symbole d'opération. (s. allgemeine Zeichen der Mathematik, S. 121)

Operator m. (s, en) opérateur ♦Diese Bezeichnung wird in verschiedenen Zusammenhängen in der Bedeutung von ↑Abbildung verwendet.

optimal adj. optimal ◆Bedeutet sozusagen « extremal unter gewissen Bedingungen ». (s. Extremwertaufgabe, Optimierung)

Optimierung f. (-, en) optimisation ◆Bei einer Aufgabe (↑Optimierungsaufgabe oder ↑Extremwertaufgabe) sucht man, mit Hilfe einer ↑Zielfunktion und einer oder mehreren ↑Nebenbedingungen, den ↑Extremwert einer Grösse, welche von mehreren ↑Variablen abhängt.

Ordinate f. (-, n) ordonnée ♦Übliche Bezeichnung für die zweite ↑Koordinate eines ↑Punktes in einem bidimensionalen ↑Koordinatensystem. (s. Abszisse)

Ordinatenabschnitt m. (s, en) ordonnée à l'origine \bullet In der \uparrow Funktion f(x): y = ax + b ist b der Wert des Ordinatenabschnitts.

Ordinatenachse f. (-, n) axe des ordonnées \bullet Auch $\uparrow y$ -Achse oder 2. Achse genannt. (s. Abszissenachse)

Ordnung f. (-, en) ordre.

- a) Anzahl der ↑Elemente einer endlichen ↑Gruppe.
- b) Die \uparrow zweite Ableitung f'' einer \uparrow Funktion f nennt man auch ihre \uparrow Ableitung zweiter Ordnung.

Ordnungsrelation Ortsvektor

c) \(\gamma\)Grad eines \(\gamma\)Polynoms.

Ordnungsrelation f. (-, en) relation d'ordre.

- a) **Partialordnung** ordre partiel

 ◆Bezeichnet eine ↑Relation in
 einer ↑Menge M die ↑reflexiv,
 ↑antisymmetrisch und ↑transitiv
 ist. (Syn. Halbordnung, nichtlineare, partielle Ordnung)
- b) **Totalordnung** ordre total ◆Wenn zusätzlich die Relation linear ist, d. h. wenn je zwei verschiedene ↑Elemente von M vergleichbar sind. (Syn. lineare, totale Ordnung)

Orientierung f. (-, en) orientation ◆Bei einer ↑Achsensymmetrie ändert sich die Orientierung einer Figur.

Ornament n. (s, e) s. Bandornament. Orshansky, Mollie (1915-2006). Amerikanische Mathematikerin.

Ort m. ((e)s, e) s. geometrischer Ort. orthisches Dreieck Syn. Höhenfusspunktdreieck.

orthogonal adj. orthogonal.

- a) Zwei †Kurven schneiden sich orthogonal in einem †Punkt, wenn die †Tangenten in diesem Punkt zueinander †senkrecht sind.
- b) Ein †Koordinatensystem heisst orthogonal, wenn seine †Achsen (†Koordinatenachsen) paarweise zueinander †rechtwinklig sind.
- c) Sind \vec{a} und \vec{b} orthogonale \uparrow Vektoren, dann gilt

$$\vec{a} \cdot \vec{b} = 0$$

(s. Skalarprodukt)

Orthogonalbasis f. (-, sen) base orthogonale ♦↑Basis in der alle ↑Basisvektoren ↑paarweise ↑orthogonal sind.

Orthonormalbasis f. (-, en) base orthonormée ♦↑Orthogonalbasis mit der zusätzlichen ↑Eigenschaft, dass alle ↑Basisvektoren ↑normiert sind.

Ortsvektor m. (s, en) rayon-vecteur, vecteur-lieu \bullet Ist P ein \uparrow Punkt, dann ist \overrightarrow{OP} der zugehörige Ortsvektor. (s. Stützvektor)

P

Paar n. ((e)s, e) Syn. geordnetes Paar.

Paarmenge f. (-, n) produit cartésien \blacklozenge Das \uparrow kartesische Produkt $A \times B$ der \uparrow Menge A mit der Menge B besteht aus allen \uparrow Paaren (a,b) mit $a \in A$ und $b \in B$. (s. Produkt)

paarweise adj. deux à deux ◆Z. B. sind in einem ↑Parallelogramm die ↑gegenüberliegenden ↑Seiten paarweise parallel.

Parabel f. (-, n) parabole ♦Die allgemeine Form einer Parabel mit ↑horizontaler ↑Symmetrieachse lautet

$$(y - y_S)^2 = 2p(x - x_S)$$

wobei $S(x_S; y_S)$ der \uparrow Scheitelpunkt und p der Parameter sind. (s. Kegelschnitt)

Parallelepiped n. ((e)s, e) parallélépipède ♦↑Prisma, dessen ↑Grundfläche ein ↑Parallelogramm ist. (s. Spat)

Parallelismus m. (-, men) Syn. Parallelität.

Parallelität f. (-, en) parallélisme.

Parallelogramm n. (s, e) parallélogramme ♦↑Punktsymmetrisches ↑Viereck.

Parallelogrammregel Syn. Methode des Vektorparallelogramms.

Parallelverschiebung f. (-, en) translation Φ Hat für jeden \uparrow Punkt P und seinen \uparrow Bildpunkt P' die \uparrow Strecke PP' die gleiche \uparrow Länge und die gleiche \uparrow Richtung, dann liegt eine Verschiebung vor. Man beschreibt diese durch den \uparrow Vektor $\overrightarrow{PP'}$ (Verschiebungsvektor). (Syn. Translation, Verschiebung; s. affine Abbildung)

Parameter m. (s, -) paramètre.

a) Sei E eine \uparrow Ebene, die durch die Parameterform

$$E: \vec{r} = \vec{a} + \lambda \vec{u} + \mu \vec{v}$$

bestimmt ist, dann sind die \uparrow Variabeln λ und μ die Parameter der Ebenengleichung.

b) In der Gleichung

$$ax + by + cz + d = 0$$

einer Ebene sind a, b, c und d Parameter.

(s. Formvariable, Koeffizient, Parabel)

Parameterdarstellung f. (-, n) équation(s) paramétrique(s) ◆Z. B.

– einer ↑Geraden :

$$\vec{r} = \vec{a} + \lambda \vec{v}$$

wobei \vec{a} ein \uparrow Ortsvektor und \vec{v} ein \uparrow Richtungsvektor sind. (s. Achsenabschnittsform, Funktionsform, Normalform)

– eines ↑Kreises :

$$\begin{cases} x = x_Z + r\cos\varphi \\ y = y_Z + r\sin\varphi \end{cases} \quad 0 \leqslant \varphi < 2\pi$$

wobei $(x_Z; y_Z)$ das \uparrow Zentrum (\uparrow Mittelpunkt) und r der \uparrow Radius sind.

– einer ↑Raumkurve :

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \\ z = \chi(t) \end{cases} \quad t \in I$$

wobei I ein vorgegebenes †Intervall ist.

Parameterform f. (-, en)

Syn. Parametergleichung.

Parametergleichung f. (-, en) équation paramétrique ou vectorielle. (Syn. Parameterdarstellung)

Parität f. parité Φ Die \uparrow Funktion f mit dem \uparrow Definitionsbereich D_f heisst

a) **gerade** paire, falls

$$f(-x) = f(x) \ \forall x \in D_f$$

gilt; dann ist ihr †Graph symmetrisch bezüglich der $\uparrow y$ -Achse;

b) **ungerade** impaire, falls

$$f(-x) = -f(x) \ \forall x \in D_f$$

gilt; dann ist ihr Graph \punktsymmetrisch bezüglich dem †Ursprung.

Parkettierung f. (-, en) pavage.

Partialbruchzerlegung f. (-, en) décomposition en éléments ou fractions simples (technique d'intégration) ♦Sei f eine \uparrow rationale Funktion :

$$f(x) = \frac{A(x)}{B(x)}$$
 mit $\operatorname{Grad} A < \operatorname{Grad} B$

a) Ist $B(x) = (x+a)^n$, dann gilt

$$\frac{A(x)}{(x+a)^n} = \sum_{i=1}^n \frac{k_i}{(x+a)^i}$$

mit $k_i \in \mathbb{R}$.

b) Ist B(x) = (x+a)(x+b), dann gilt

$$\frac{A(x)}{(x+a)(x+b)} = \frac{k_1}{x+a} + \frac{k_2}{x+b}$$

c) Ist $B(x) = (x^2 + a^2)^n$, dann gilt

$$\frac{A(x)}{(x^2+a^2)^n} = \sum_{i=1}^n \frac{k_i x + k_i'}{(x^2+a^2)^i}$$

Partialordnung f. (-, en) ordre partiel. (s. Ordnungsrelation)

Partialsumme f. (-, n) somme partielle. (Syn. Teilsumme; s. Reihe)

Partialsummenfolge f. (-, n) suite des sommes partielles. (s. Reihe)

partielle adj.

- Ableitung dérivée partielle.
- Integration intégration par parties \blacklozenge Sind f und $g \uparrow$ differenzierbare ↑Funktionen, dann gilt :

$$\int f \cdot g' \, \mathrm{d}x = f \cdot g - \int f' \cdot g \, \mathrm{d}x$$

- **Ordnung** Syn. Partialordnung.

partikuläre Lösung solution particulière. (s. Differentialgleichung)

Partition f. (-, en) partition ♦Zerlegung einer \uparrow Menge M in nichtleere, \paarweise \disjunkte (elementefremde) \uparrow Teilmengen M_k (Klassen) mit

$$\bigcup_{k} M_k = M$$

(s. Äquivalenzrelation, Klasseneinteilung)

Pascalsches Dreieck triangle de Pascal

(s. Pascal fr-all)

Passante f. (-, n) droite extérieure à un cercle ♦↑Gerade, die keinen ↑Punkt mit einem †Kreis gemeinsam hat. (s. Sekante, Tangente, Zentrale)

Pentagon n. (s, e) Syn. Fünfeck.

Pentagondodekaeder n. (s, -) dodécaèdre ♦↑Regelmässiges ↑Polyeder, dessen †Seitenflächen †Pentagone sind. (s. Dodekaeder, platonische Körper, Rhombendodekaeder, Zwölfflächner)

Pentagramm Polarkoordinate

Pentagramm n. (s, e) étoile à cinq branches, pentagone étoilé, pentagramme ◆Nichtkonvexes reguläres Fünfeck, auch fünfeckiger Stern oder fünfzackiger Stern genannt, das auf mehr als einem Viertel aller Landeswappen der Welt erscheint...

periodische Funktion fonction périodique \bullet Bezeichnung für eine Funktion f wenn eine positive \uparrow Zahl p mit

$$f(x+p) = f(x) \ \forall x \in \mathbb{R}$$

existiert. Die kleinste Zahl p, für die diese Bedingung erfüllt ist, heisst primitive Periode, jedes andere solche p eine Periode von f.

Peripherie f. (-, n) circonférence, périmètre ◆Äusserster ↑Rand einer ↑krummlinig begrenzten ↑Fläche, besonders eines ↑Kreises.

(s. Kreislinie, Umfang)

Peripheriewinkel m. (s, -) angle inscrit dans un cercle ◆Alle Peripheriewinkel über einem gegebenen ↑Kreisbogen sind gleich gross und der zugehörige ↑Zentriwinkel ist doppelt so gross.

(s. Fasskreisbogen, Umfangswinkel, Winkel)

Permutation f.(-, en) permutation \uparrow Abbildung einer endlichen \uparrow Menge auf sich. Besitzt diese Menge n \uparrow Elemente so gibt es n! mögliche verschiedene Permutationen.

(s. Fakultät, Kombinatorik)

Pfeilviereck n. (s, e) fer de lance ♦↑Nichtkonvexes ↑Deltoid.

Pi pi ♦Sechzehnter Buchstabe des griechischen Alphabets (π), Abkürzung des Worts periphereia. Der Berechnungsrekord (2016) liegt bei 13 300 Milliarden ↑Stellen von Pi...

(Syn. Kreiszahl; s. Lindemann de-fr)

Planck, Max (1858-1947).

Deutscher Mathematiker und Physiker:

Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der Weise durchzusetzen, dass ihre Gegner überzeugt werden und sich als belehrt erklären, sondern vielmehr dadurch, dass ihre Gegner allmählich aussterben und dass die heranwachsende Generation von vornherein mit der Wahrheit vertraut gemacht ist.

Planimetrie f. Veraltete Bezeichnung für \(\gamma ebene Geometrie. \) (s. Stereometrie)

platonische Körper corps platoniciens ◆Die fünf platonischen Körper (†regelmässige Polyeder) sind : das †Tetraeder, das †Hexaeder (†Würfel), das †Oktaeder, das †Dodekaeder und das †Ikosaeder.

Pol m. (s, e) pôle.

- a) s. Polare.
- b) ↑Unstetigkeit, Lücke im ↑Definitionsbereich einer ↑Funktion; seine ↑graphische Darstellung ist eine ↑senkrechte ↑Asymptote. (Syn. Polstelle)
- c) †Ursprung eines †Polarkoordinatensystems.

Polare f. (-, n) polaire \bullet Seien $P(x_0; y_0)$ (der Pol) und

$$\gamma : x^2 + y^2 - r^2 = 0$$

ein Kreis, dann ist

$$p: x_0 x + y_0 y - r^2 = 0$$

eine \uparrow Gerade, die Polare von P bezüglich γ . Liegt P ausserhalb des \uparrow Kreises, dann sind die \uparrow Schnittpunkte von p und γ die \uparrow Berührpunkte der \uparrow Tangenten aus P; liegt P auf γ , dann ist p die Tangente und liegt P innerhalb des Kreises, dann liegt p ausserhalb. Dieser Begriff kann man für alle \uparrow Kegelschnitte verallgemeinern.

Polarkoordinate f. (-, n) coordonnée polaire \blacklozenge Ist in der \uparrow Ebene ein \uparrow Punkt O (\uparrow Pol) und eine von ihm ausgehende \uparrow Halbgerade h gegeben, so kann man

jeden Punkt P der Ebene durch seine Entfernung von O (Radialkoordinate) und den \uparrow Winkel zwischen OP und h (Winkelkoordinate) beschreiben.

Polarkoordinatensystem n. (s, e) repère en coordonnées polaires. (s. Polarkoordinate)

Polstelle f. (-, n) pôle (d'une fonction). (s. Pol, Unstetigkeit)

Pólya, György (1887-1985). Ungarischer Mathematiker:

Dieses Prinzip ist so vollkommen allgemein, daß keine besondere Anwendung davon möglich ist.

Geometrie ist die Kunst, richtig zu schließen an falschen Figuren.

Was ist der Unterschied zwischen Methode und Kunstgriff? Eine Methode ist ein Kunstgriff, den man zweimal anwendet.

Polyeder n.(s, -) polyèdre ◆Ein Polyeder heisst ↑regelmässig oder ↑regulär, wenn seine ↑Seitenflächen regelmässige ↑n-Ecke von gleichem Typ und gleicher ↑Grösse sind. (s. eulerscher Polyedersatz, platonische Körper, Vielflächner)

Polygon n. (s, e) *Syn.* Vieleck, *n*-Eck.

 $\textbf{Polygonzug} \ m. \ \big((e)s, \ "e \big)$

Syn. Streckenzug.

Polynom n. (s, e) polynôme ♦Z. B. ist

$$P(n(x) = \sum_{i=0}^{n} a_i x^i$$

ein Polynom n-ten Grades in der Variablen x wobei die a_i die \uparrow Koeffizienten sind.

Polynomfunktion f. (-, en) fonction polynomiale.

(Syn. ganzrationale Funktion)

Polynomgleichung f. (-, en) équation polynomiale.

Potenz f. (-, en) puissance.

a) Die \uparrow Zahl a^n (lies : « a hoch n ») ist eine Potenz, genauer die n-te Potenz von a. Ferner ist a die \uparrow Basis und n der \uparrow Exponent.

(s. potenzieren)

- b) Sei ein fester \uparrow Kreis mit \uparrow Mittelpunkt M und \uparrow Radius r und sei P ein \uparrow Punkt der \uparrow Ebene.
 - Liegt P ausserhalb des Kreises und sind g_1 und g_2 zwei beliebige \uparrow Sekanten aus P, dann hat man den Sekantensatz:

$$\overline{PA}_1 \cdot \overline{PB}_1 = \overline{PA}_2 \cdot \overline{PB}_2$$
$$= d^2 - r^2$$

mit $d := \overline{PM}$; $d^2 - r^2$ heisst die Potenz des Punktes P bezüglich des Kreises.

- Ist eine der \uparrow Geraden eine \uparrow Tangente mit T als \uparrow Berührungspunkt, dann gilt der Tangentensatz :

$$\overline{PT}^2 = d^2 - r^2$$

und die Potenz ist immer noch positiv.

- Liegt P innerhalb des Kreises, dann ist die Potenz negativ und das liefert den ↑Sehnensatz.
- Liegt *P* auf dem Kreis, dann gilt

$$d^2 - r^2 = 0$$

Potenzgerade f. (-, n) *Syn.* Chordale, Potenzlinie.

potenzieren tr. élever à une puissance.

- a) ins Quadrat erheben, quadrieren élever au carré.
- b) in die dritte Potenz erheben mettre au cube.

Potenzlinie Proportion

(s. Potenz)

Potenzlinie f. (-, n) *Syn.* Chordale, Potenzgerade.

Potenzmenge f. (-, n) ensemble puissance \blacklozenge Menge aller \uparrow Teilmengen $(\uparrow$ Untermengen) einer \uparrow Menge M.

$$\mathfrak{P}(M) := \mathscr{P}(M) := \{A : A \subset M\}$$

Potenzreihe f. (-, n) série de puissances ◆Bezeichnung für eine ↑Reihe der Form :

$$a_0 + a_1 x + a_2 x^2 + \dots =: \sum_{n=0}^{\infty} a_n x^n$$

Primfaktor m. (s, en) facteur premier. (s. Primzahl, Primfaktorzerlegung)

Primfaktorzerlegung f. (-, en) décomposition en facteurs premiers ◆↑Darstellung einer ↑natürlichen Zahl oder eines ↑Polynoms als ↑Produkt von ↑Primfaktoren. (s. Faktorzerlegung)

Primteiler m. (s, -) diviseur premier.

Primzahl f. (-, en) nombre premier Φ Eine natürliche Zahl p mit p > 1 heisst Primzahl, wenn sie nur durch 1 und durch sich selbst teilbar ist. Seit Euklid weiss man, dass unendlich viele Primzahlen existieren. Hier ist sein Beweis: nehmen wir an, dass nur n Primzahlen: $p_1, p_2, p_3, \ldots, p_n$, existieren. Dann bildet man die Zahl

$$\prod_{k=1}^{n} p_k + 1 = N$$

Eine der Zahlen p_k ist unbedingt ein Teiler von N, zum Beispiel p_i , dann haben wir :

$$\frac{\prod p_k + 1}{p_i} = \frac{\prod p_k}{p_i} + \frac{1}{p_i} = \frac{N}{p_i} \in \mathbb{N}$$

aber das heisst, dass $\frac{1}{p_i}$ eine ganze Zahl ist, und daher entsteht ein Widerspruch. (s. Euklid de-fr, reductio ad absurdum)

Primzahlzwillinge m. pl. nombres premiers jumeaux ♦↑Primzahlen, zwischen denen nur eine ↑Zahl liegt, z. B. 11 und 13. Je grössere Zahlen man betrachtet, desto weniger Primzahlen findet man. Obwohl unendlich viele Primzahlen existieren, ist es ungewiss, ob es unendlich viele Primzahlzwillinge gibt.

Prisma (s,men) prisme n. ◆Bezeichnung für einen ↑geometrischen Körper, der von zwei †kongruenten †Polygonen, die parallelen in †Ebenen liegen, als†Grundfläche ↑Deckfläche sowie und als†Parallelogrammen als †Seitenflächen begrenzt wird.

Problemstellung f. (-, en) énoncé, donnée d'un problème.

Produkt n. ((e)s, e) produit ◆Ergebnis einer ↑Multiplikation. (s. gemischtes Vektorprodukt, kartesisches Produkt, Kreuzprodukt, Mengenprodukt, Paarmenge, Produktmenge, Skalarprodukt, Spatprodukt)

Produktmenge f. *Syn.* kartesisches Produkt.

Produktregel règle de dérivation d'un produit de fonctions \bullet Sind u(x) und v(x) †differenzierbare †Funktionen dann gilt :

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

(s. Ableitungsregel)

Produktzeichen n. (s, -) s. Zeichen der Mathematik, S. 121.

Projektionsstrahl m. ((e)s, en) projetante ◆Bei einer Projektion, Gerade die von einem Punkt des abzubildenden räumlichen Körpers hin zur Bildebene gezeichnet wird.

Proportion f. (-, en) proportion ◆↑Gleichheit zweier ↑Quotienten von ↑Zahlen oder Grössen :

$$\frac{A}{B} = \frac{C}{D}$$

(lies : « A verhält sich zu B wie C zu D »). (s. Verhältnis)

a) **fortlaufende** proportion continue.

Proportionalität f. (-, en) proportionnalité.

a) **direkte** proportionnalité directe \bullet Die Grössen x und y sind (direkt) proportional wenn ein \uparrow Proportionalitätstsfaktor k existiert so, dass gilt :

$$\frac{y}{x} = k \quad \Leftrightarrow \quad y = kx$$

Mann schreibt dann : $x \propto y$.

b) indirekte, inverse proportionnalité inverse \bullet Die Grössen x und y sind zueinander \uparrow umgekehrt proportional wenn ein k existiert so, dass

$$\frac{y}{x} = k \quad \Leftrightarrow \quad xy = k$$

(Syn. Antiproportionalität).

Proportionalitätsfaktor m. (s, en) coefficient de proportionnalité. (s. Proportionalität)

Punktspiegelung f. (-, en) *Syn* Punktsymmetrie.

Punktsymmetrie f. (-, n) symétrie centrale ◆Eine Punktsymmetrie entsteht, wenn man zwei ↑Achsenspiegelungen an zueinander ↑rechtwinkligen Achsen ausführt, welche sich im ↑Zentrum (Symmetriepunkt) S der Punktsymmetrie schneiden. Sie kann auch als eine Drehung um 180° aufgefasst werden. (Syn. Punktspiegelung; s. ungerade Funktion)

punktweise adv. et adj. point par point, par points.

Pyramide f. (-, n) pyramide. (s. gerade, Pyramidenstumpf, quadratisch, regelmässig, schief)

Pyramidenstumpf m. (s, "e) pyramide tronquée, tronc de pyramide ◆Ein Pyramidenstumpf entsteht, wenn von einer ↑Pyramide durch einen zur ↑Grundfläche parallelen ↑Schnitt ein Stück abgeschnitten wird.

Pythagoras von Samos (ca. 569 - ca. 500). Pythagore de Samos. Griechischer Mathematiker:

In rectangulis : quadratum quod à latere rectum angulum subtendente describitur, æquale est eis, quæ à lateribus rectum angulum continentibus describuntur quadratis (1550).

pythagorisches Zahlentripel triplet de Pythagore \bullet Bezeichnung für ein \uparrow Tripel (a, b, c) \uparrow natürlicher Zahlen a, b, c mit

$$a^2 + b^2 = c^2$$

Q

Quader m. (s, -) parallélépipède rectangle ♦↑Prisma, dessen ↑Grund- und ↑Seitenflächen ↑Rechtecke sind.

Quadrant m. (en, en) quadrant ◆Ein †kartesisches Koordinatensystem teilt die †Ebene in vier Quadranten ein.

Quadrat n. ((e)s, e) carré. (s. potenzieren, Viereck, Zauberquadrat)

quadratisch adj.

- **Ergänzung** s. Ergänzung.
- Form forme quadratique ♦Homogenes
 ↑Polynom 2. Grades der Form

$$ax^2 + bxy + cy^2$$

 Gleichung équation du deuxième degré ◆Gleichung der Form

$$ax^2 + bx + c = 0 \text{ mit } a \neq 0$$

Die ↑Normalform der quadratischen ↑Gleichung lautet

$$x^2 + px + q = 0$$

(Syn. Gleichung zweiten Grades)

- **Matrix** matrice carrée. ($Syn. (n \times n)$ -Matrix; s. Matrix)
- **Pyramide** pyramide à base carrée.

Quadratur des Kreises quadrature du cercle ◆Es geht darum, ein ↑Quadrat mit ↑Zirkel und Lineal zu konstruieren, das einem ↑Kreis von gegebenem ↑Radius ↑flächengleich ist. (s. Lindemann de-fr)

Quadratwurzel f. (-, n) racine carrée. (s. n-te Wurzel)

Quadratzahl f. (-, en) carré parfait Φ Zahl der Form n^2 mit $n \in \mathbb{N}$.

quadrieren tr. élever au carré. (s. potenzieren)

Quadrupel n. (s, -) quadruplet. (s. n-Tupel)

Quantor m. (s, en) quantificateur.

Querschnitt m. (s, e) coupe ◆Z. B. ein geeigneter Querschnitt eines ↑hyperbolischen Paraboloids liefert eine ↑Hyperbel.

Quersumme f. (-, n) somme des chiffres d'un nombre ♦Summe der ↑Ziffern einer im ↑Zehnersystem geschriebenen natürlichen ↑Zahl.

Quersummenregel règle de divisibilité utilisant la somme des chiffres d'un nombre.

Quintupel n. (s, -) quintuplet. (s. n-Tupel)

Quotient m. (en, en)

- a) quotient ◆Ergebnis einer ↑Division. (s. Divisionsalgorithmus)
- b) raison. (s. geometrische Folge)

quotientengleich adj. se dit de deux fractions équivalentes ◆Bezeichnet zwei ↑Brüche die denselben ↑Wert haben. (s. Gleichheit, Äquivalenz)

Quotientenkriterium n. critère du quotient de d'Alembert lacktriangleGibt es eine \uparrow Zahl q mit

$$0 < q < 1$$
 und $\frac{a_{i+1}}{a_i} < q \ \forall i \in \mathbb{N}$

dann ist die \uparrow Reihe $\sum_{i=1}^{\infty} a_i$ (mit positiven \uparrow Gliedern) \uparrow konvergent.

Quotientenregel règle de dérivation d'un quotient Φ Sind u(x) und v(x) \uparrow differenzierbare \uparrow Funktionen dann

gilt :
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
 (s. Ableitungsregel)

Raabe rechter Winkel

\mathbf{R}

Raabe, Joseph (1801-1859). Schweizer Mathematiker.

Radiant m. (en, en) radian. (s. Bogenmass, Winkel)

Radikand m. (en, en) radicande \bullet Im Ausdruck \sqrt{a} ist a der Radikand. (s. radizieren, Wurzel, Wurzelzeichen)

Radius n. (-, en) rayon. (s. Diameter, Durchmesser, Halbmesser, Konvergenzradius, Krümmungsradius)

Radizieren n. (s, -)Syn. Wurzelziehen.

Rand m. ((e)s, "er) bord ◆↑Menge aller ↑Randpunkte einer Figur.

Randbedingung f. (-, en) condition au(x) bord(s).

Randextremum n. (s, ma) extremum au bord.

Randpunkt m. ((e)s, e) point du bord. rational adj. rationnel.

Funktion fonction rationnelleFunktion der Form :

$$f(x) = \frac{P_n(x)}{P_m(x)}$$

wobei $P_n(x)$ und $P_m(x)$ †Polynome sind. (Syn. gebrochenrationale Funktion)

Zahl s. Zahl.

Raum m. ((e)s, "e) espace. (s. Stereometrie, Vektorraum)

Raumdiagonale f. (-, en) diagonale principale \blacklozenge Die Länge der Raumdiagonalen in einem \uparrow Quader mit den Kantenlängen a, b, c ist

$$\sqrt{a^2 + b^2 + c^2}$$

Rauminhalt m. (s, e) volume. (Syn. Volumen; s. Flächeninhalt)

Raumkurve f. (-, n) courbe dans l'espace, courbe gauche.

(s. Parameterdarstellung)

räumlich adj.

- Geometrie géométrie dans l'espace.
 (Syn. Geometrie im Raum ; s. Stereometrie)
- **Gebiet** région de l'espace.
- Polarkoordinate coordonnée sphérique. (Syn. Kugelkoordinate)

Raummass f. (es, e) unité de volume. (s. Rauminhalt)

Raumwinkel m. (s, -) angle solide. ◆Der ↑Winkel, der vom ↑Zentrum einer ↑Kugel aus gesehen ein gegebenes Flächenstück (↑Haube, ↑Kalotte) der Kugel umfasst. Der numerische Wert (↑Steradiant) des Raumwinkels ist gleich der Grösse des Flächenstücks im ↑Verhältnis zum Quadrat des ↑Radius der Kugel.

Raute f. (-, n) losange ♦↑Viereck, bei dem alle vier ↑Seiten gleich lang sind. Das Quadrat ist ein Spezialfall davon. (Syn. Rhombus)

Realteil m. ((e)s, e) partie réelle (d'un nombre complexe). (s. Zahl)

Rechenschieber m. (s, -) règle à calcul. (s. Rechenstab)

Rechenstab m. (s, "e) *Syn.* Rechenschieber.

Rechteck m. ((e)s, e) rectangle. (s. Viereck)

rechteckig adj. rectangulaire.

rechter Winkel angle droit. (s. Winkel)

rechtsseitiger Grenzwert limite à droite lacktriangleGeht man auf eine kritische \uparrow Stelle \mathbf{x}_0 über $x > x_0$ zu, dann schreibt man

$$\lim_{x \to x_0^+} f(x) = A$$

falls dieser \(\)Grenzwert existiert.

(s. Limes, linksseitiger Grenzwert)

rechtsseitig stetig continu à droite. (s. linksseitig stetig, stetig)

rechtwinklig adj.

- Geraden droites perpendiculaires.(s. orthogonal, senkrecht)
- Dreieck triangle rectangle.(s. gleichschenklig, gleichseitig)

Reductio ad absurdum

Syn. Widerspruchsbeweis; s. Beweis.

reduzierter Bruch fraction irréductible. (Syn. vollgekürzter Bruch)

reell adj. réel.

- **Funktion** fonction réelle \uparrow Abbildung f mit

$$f: \mathbb{R}^n \to \mathbb{R}$$

– **Zahl** nombre réel. (s. Zahl)

reflexiv adj. réflexif \uparrow Relation R in M mit der Eigenschaft :

$$(a, a) \in R \subset M \times M \ \forall a \in M$$

(s. antireflexiv, antisymmetrisch, symmetrisch, transitiv)

Regel von de l'Hospital règle de l'Hospital \blacklozenge Seien f und g zwei \uparrow differenzierbare \uparrow Funktionen mit $f(x_0) = g(x_0) = 0$ (bzw. ∞); dann ergibt ihr \uparrow Quotient in $x = x_0$ einen \uparrow unbestimmten Ausdruck. Nach der Regel von de l'Hospital hat man :

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = a \Rightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = a$$

Regelfläche f. (-, n) surface réglée ◆Durch die Bewegung einer

↑Geraden (die ↑Erzeugende) im ↑Raum entstandene ↑Fläche; das ↑einschalige ↑Hyperboloid – das man in den Kühltürmen der Atomkraftwerke sieht – ist ein Beispiel davon.

regelmässig adj.

- Körper, Polyeder corps, polyèdre régulier. (Syn. regulär; s. platonische Körper)
- Polygon polygone régulier.(Syn. regulär)
- Pyramide pyramide régulière
 ◆Pyramide deren ↑Grundfläche ein
 ↑reguläres ↑Polygon ist und deren ↑Seite ↑gleichschenklige Dreiecke sind.
- Stetigkeit continuité uniforme ◆Sei
 f eine ↑stetige ↑Funktion auf einem
 ↑Intervall I, d. h.

$$\forall \varepsilon > 0, \ \exists \, \delta(\varepsilon) > 0$$

mit

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Darin hängt die \uparrow Zahl δ sowohl von ε als auch von x_0 ab. Ist δ nicht von x_0 abhängig, so heisst $f \uparrow$ gleichmässig stetig auf I.

Regula falsi méthode de la fausse position, de la sécante, regula falsi ◆Näherungsverfahren zur Nullstellenberechnung einer ↑stetigen Funktion in einem ↑abgeschlossenen Intervall.

Syn. Sehnen-, Sekantenverfahren.

regulär adj. Syn. regelmässig (Geometrie).

reguläre Matrix matrice régulière \bullet Quadratische Matrix mit $|A| \neq 0$, also invertierbar. (Ant. singulär)

Reihe f. (-, n) série ♦Objekt der Form

$$a_1 + a_2 + a_3 + \dots =: \sum_{k=1}^{\infty} a_k$$

Eine Reihe konvergiert falls ihre †Teilsummenfolge konvergiert.

Reihenentwicklung f. (-, en) développement en série. (s. lineare Approximation, MacLaurin, Taylor)

reinquadratische Gleichung équation de la forme $x^2 + q = 0$.

Rekursion f. (-, en) récurrence.

Rekursionsformel f. (-, n) formule de récurrence. (s. Bildungsgesetz, Fibonacci de-fr)

rekursive Folge suite donnée par une formule de récurrence.

Relation f. (-, en) relation \blacklozenge Eine Relation R in einer \uparrow Menge M ist eine \uparrow Untermenge von $M \times M$, sie kann zum Beispiel \uparrow reflexiv, \uparrow symmetrisch, \uparrow antisymmetrisch, \uparrow transitiv sein. (s. Äquivalenz-, Ordnungsrelation)

relativ adj. Syn. lokal.

Rényi, Alfréd (1921-1970). Ungarischer Mathematiker :

Wenn ich unglücklich bin, betreibe ich Mathematik, um wieder glücklich zu werden. Wenn ich glücklich bin, dann betreibe ich Mathematik, um glücklich zu bleiben.

Rest m. (es, e) reste. (s. Divisionsalgorithmus)

Reziprokabbildung f. (-, en) *Syn.* Kehrabbildung.

Reziprokfunktion f. (-, en) *Syn.* Kehrfunktion.

Reziprokwert m. (es, e) inverse. (Syn. Kehrwert; s. Kehrbruch)

Rhombus m. (es, en) Syn. Raute.

Richtung f. (-, en) direction.

eines Vektors direction et sens d'un vecteur.

Richtungskoeffizient m. (en, en) Syn. Steigung.

Richtungsvektor m. (s, en) vecteur directeur ♦In der Geradengleichung

$$\vec{r} = \vec{a} + \lambda \vec{v}$$

ist \vec{v} der Richtungsvektor. (s. Ortsvektor)

Riemann, Bernhard (1826-1866).

Deutscher Mathematiker ◆Die riemannsche Vermutung ist für die heutigen Mathematiker noch eines der ungelösten Probleme. Es handelt sich um das Problem, eine Formel zu finden, nach der man die Anzahl der Primzahlen bis zu einer gewissen Zahl n berechnen kann. Zu diesem Zweck untersucht Riemann eine unendliche Reihe (Zetafunktion):

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$$

in der s eine komplexe Zahl ist und die Frage ist immer noch die Nullstellen dieser Funktion zu erhalten.

Riemann-Integral n. (s, e) intégrale de Riemann, intégrale définie.

(Syn. bestimmtes Integral; s. Integral)

Ring m. (es, e) anneau $\spadesuit \uparrow$ Algebraische \uparrow Struktur $[M, *, \circ]$ mit folgenden \uparrow Eigenschaften :

- a) [M, *] ist eine \uparrow abelsche \uparrow Gruppe;
- b) o ist eine innere †assoziative †Verknüpfung;
- c) o ist †distributiv bezüglich *.

Besitzt o ein \u2227neutrales Element, dann spricht man von einem Ring mit Eins; ist o ferner \u2224kommutativ und \u2224nullteilerfrei, dann hat man einen \u2224Integrit\u00e4tsbereich.

römisches Zahlzeichen chiffre romain ♦Diese ↑Zahlen bildeten ein Zahlensystem mit nur sieben Buchstaben um ↑ganzen Zahlen zu schreiben. Die ↑Null schrieben die Römer nicht, da sie sie nicht kannten. Die Null hat man in Europa erst im X. Jahrhundert eingeführt. (s. Gerbert d'Aurillac fr-all)

Rotation f. (-, en) Syn. Drehung.

Rotationsachse

Rotationsachse f. (-, n) Syn. Drehachse.

Rotationshyperboloid (s(es), e) Syn. Hyperboloid.

Rotationskörper m. (s, -) solide de révolution.

Rückkehrpunkt m. (s, e) point de rebroussement ◆Einem Rückkehrpunkt entspricht ein ↑Pol der ↑Ableitungsfunktion; die ↑Funktion ist trotzdem an dieser †Stelle †stetig, wo ihr †Graph also eine †senkrechte †Tangente besitzt.

(s. Knickstelle, Unstetigkeit)

Russell, Bertrand (1906-1978). Englischer Mathematiker:

Mathematics may be defined as the subject where we never know what we are talking about, nor whether what we are saying is true.

S

Sattelfläche f. (-, n) *Syn.* hyperbolisches Paraboloid.

Sattelpunkt m. (es, e) point de selle (surface), point d'inflexion à tangente horizontale (courbe) \bullet Hat die \uparrow Funktion f an der \uparrow Stelle x_0 einen \uparrow Wendepunkt mit \uparrow waagerechter \uparrow Tangente, dann nennt man $(x_0, f(x_0))$ einen Sattelpunkt des \uparrow Graphen von f. (Syn. Terrassenpunkt)

Satz m. (es, "e) théorème ♦Wahre ↑Aussage über einen mathematischen Sachverhalt. Die übliche Struktur eines Satzes ist : 1. ↑Vorraussetzung, 2. ↑Behauptung, 3. ↑Beweis. (Syn. Lehrsatz, Theorem)

des Euklid théorème d'Euclide ◆Sei ein in A ↑rechtwinkliges Dreieck
 ABC und H der ↑Höhenfusspunkt, dann hat man :

$$\overline{AB}^2 = \overline{BC} \cdot \overline{BH}$$

und

$$\overline{AC}^2 = \overline{BC} \cdot \overline{CH}$$

(s. Euklid de-fr)

 des Thales théorème de Thalès
 ◆Jedes ↑Dreieck, dessen ↑Grundseite der ↑Durchmesser eines ↑Kreises ist und dessen ↑Spitze auf diesem Kreis liegt, ist ↑rechtwinklig.

(s. Thales de-fr, Thaleskreis)

- **von Pythagoras** théorème de Pythagore. (s. Pythagoras de-fr)
- von Rolle théorème de Rolle ◆Ist f eine auf [a, b] ↑stetige und auf]a, b[↑differenzierbare ↑Funktion und gilt

$$f(a) = f(b)$$

dann hat man:

$$\exists \, \xi \in \,]a,b[\text{ mit } f'(\xi) = 0$$

von Vieta Syn. Formeln von Vieta.
 (s. Viète fr-all)

Schale f. (-, n) nappe. (s. einschalig, zweischalig)

Schar f. (-, en) famille ◆↑Menge von ↑Kurven oder ↑Flächen. (s. Bündel, Büschel, Ebenenbündel, Ebenenbüschel, Geradenschar, Kreisbüschel)

Schaubild n.(es, er) graphe, représentation graphique (d'une fonction). (Syn. Bildkurve, Funktionsgraph, Graph)

Scheibe f. (-, n) disque. *Syn.* Kreisfläche.

Scheitel(punkt) m. (es, e) sommet ♦↑Schnittpunkt eines ↑Kegelschnitts mit seiner ↑Hauptachse, Schnittpunkt der ↑Schenkel eines ↑Winkels. (s. Ecke)

Scheitelwinkel m. pl. angles opposés par le sommet. (s. Winkel)

Schenkel m. (s, -) côté ◆Zwei †Halbgeraden, die einen gemeinsamen Anfangspunkt besitzen, bilden die Schenkel eines †Winkels.

(s. gleichschenklig, Scheitel, Seite)

Scherung f. (-, en) cisaillement, transvection $\blacklozenge \uparrow$ Verkettung von zwei \uparrow Affinitäten mit der gleichen \uparrow Achse und zueinander reziproken \uparrow Faktoren d. h. $k_1 \cdot k_2 = 1$. (s. affine Abbildung)

schief adj. oblique.

- **Asymptote** asymptote oblique.
- **Pyramide** pyramide oblique.

schiefsymmetrische Matrix matrice antisymétrique $\uparrow \uparrow$ Quadratische Matrix $A = (a_{ij})$ mit

$$a_{ij} = -a_{ji} \ \forall i,j$$

Schläfli Seitenhalbierende

und daraus folgt : $a_{ii} = 0 \ \forall i$. (Syn. antisymmetrisch, s. symmetrisch)

Schläfli, Ludwig (1814-1895). Schweizer Mathematiker ◆Er spielte eine Schlüsselrolle bei der Entwicklung des Begriffs der Dimension.

Schluss m. (es, "e) Syn. Behauptung.

Schmieg(e)kreis m. (es, e) cercle osculateur \bullet Der Schmiegkreis zu einem bestimmten \uparrow Punkt $P(x_0, y_0)$ einer ebenen \uparrow Kurve C ist der Kreis, der die Kurve in diesem Punkt am besten annähert. Syn. Krümmungskreis.

Schnitt m. (es, e) coupe. (s. Querschnitt)

Schnittebene f. (-, n) plan de coupe.

Schnittgerade f. (-, n) droite d'intersection.

Schnittmenge f. (-, n) intersection (notion ensembliste).

(s. Durchschnitt, Durchschnittsmenge)

Schnittpunkt m. (es, e) point d'intersection.

Schnittwinkel m. (s, -) angle d'intersection ♦↑Winkel der ↑Tangenten (falls existieren) im ↑Schnittpunkt zweier ↑Kurven.

Schrägspiegelung symétrie oblique \blacklozenge Verallgemeinerung der üblichen \uparrow Spiegelung; \uparrow Spezialfall der \uparrow Affinität mit k = -1. (s. affine Abbildung)

Schranke f. (-, n) borne \blacklozenge Eine \uparrow Teilmenge M von \mathbb{R} heisst nach oben (unten) \uparrow beschränkt, wenn eine obere (untere) Schranke $k \in \mathbb{R}$ existiert, sodass

$$|x| \leqslant k \ (|x| \geqslant k) \ \forall x \in M$$

gilt.

Schubspiegelung f. (-, en) *Syn.* Gleitspiegelung.

schwache Invariante invariant faible.

(s. Invariante)

Schwarz, Hermann (1843-1921). Deutscher Mathematiker.

(s. Ungleichung von Cauchy-Schwarz)

Schwerlinie f. (-, n)

Syn. Seitenhalbierende.

Schwerpunkt m. (es, e) centre de gravité, barycentre ◆Im ↑Dreieck ist es der ↑Schnittpunkt der ↑Seitenhalbierenden, die man daher auch ↑Schwerlinien nennt.

Sechseck n. (s, e) *Syn.* Hexagon.

Sechsflächner m. (s, -) Syn. Hexaeder.

Sehne f. (-, n) corde ♦↑Strecke, die zwei beliebige ↑Punkte einer ↑Kurve verbindet.

Sehnenpolygon n. (s, e) polygone inscriptible, inscrit.

Sehnensatz s. Potenz.

Sehnentangentenwinkel m. (s, -) angle aigu formé par l'intersection d'une corde et de la tangente à une extrémité de celle-là \blacklozenge ↑Winkel zwischen einer \uparrow Sehne \overline{PQ} einer \uparrow Kurve und der \uparrow Tangente in P (oder Q).

Sehnenverfahren n. *Syn.* Regula falsi.

Sehnenvieleck n. (s, e) *Syn.* Sehnenpolygon.

Seite f. (-, n)

- eines Polygons côté d'un polygone.
- einer Gleichung membre d'une équation.
- eines Winkels côté d'un angle.
 (s. Schenkel)

Seitenfläche f. (-, n) face latérale. (s. Deckfläche, Grundfläche)

Seitenhalbierende f. (-, n) médiane ♦↑Gerade, die eine ↑Ecke eines ↑Dreiecks mit dem ↑Mittelpunkt der gegenüberliegenden ↑Seite verbindet. (Syn. Schwerlinie)

Seitenhöhe Sinusfunktion

Seitenhöhe f. (-, n) apothème ◆↑Höhe eines Seitenflächendreiecks einer ↑Pyramide.

Seitenkante f. (-, n) arête latérale.

Sekante f. (-, n) sécante ♦↑Gerade, die einen ↑Kreis (eine ↑Kurve) schneidet. (s. Passante, Tangente, Zentrale)

Sekantensatz s. Potenz.

Sekantenverfahren n. *Syn.* Regula falsi.

Sektor m. (s, en) secteur **♦**Zwei ↑Radien zerlegen eine ↑Kreisfläche in zwei Sektoren.

(s. Kreissektor, Kugelsektor)

senkrecht adj.

- a) vertical. (s. waagerecht)
- b) perpendiculaire \bigstar Zwei \uparrow Geraden mit den \uparrow Steigungen m_1 bzw. m_2 sind zueinander senkrecht, falls

$$m_1 \cdot m_2 = -1$$

gilt. (s. orthogonal, rechtwinklig)

Senkrechte f. (-, n) perpendiculaire. (s. Lot, orthogonal)

sicheres Ereignis évènement certain Φ Dieses \uparrow Ereignis ist Ω selbst.

Sieb des Eratosthenes crible d'Ératosthène ♦↑Verfahren für die Bestimmung aller ↑Primzahlen unterhalb einer ↑Schranke. (s. Ératosthène fr-all)

Siebeneck n. (s, e) heptagone. *Syn.* Heptagon.

Siebenflächner m. (s, -) heptaèdre. (s. Polyeder)

Sierpinski, Waclaw (1882-1969).

Polnischer Mathematiker ◆Er ist bekannt für seine herausragenden Beiträge zur Mengenlehre (Untersuchungen zum Auswahlaxiom und zur Kontinuumshypothese), Zahlentheorie, Funktionentheorie und Topologie. Drei wohlbekannte Fraktale (das Sierpinski-Dreieck, der Sierpinski-Teppich und der

Sierpinski-Schwamm) sind nach ihm benannt.

Signumfunktion f. (-, en) fonction signe, fonction signum ◆Die Signumfunktion ist folgendermassen definiert:

$$\operatorname{sgn}(x) = \begin{cases} +1 & \text{falls } x > 0 \\ 0 & \text{falls } x = 0 \\ -1 & \text{falls } x < 0 \end{cases}$$

(Syn. Vorzeichenfunktion)

singuläre Matrix matrice singulière $\$ Quadratische Matrix mit |A| = 0, also nicht invertierbar.

(Ant. regulär; s. Determinante)

Singularität f. (-, en) singularité, discontinuité.

Sinus m. (-, se) sinus.

- a) In einem †rechtwinkligen Dreieck ist der Sinus eines †Winkels das Längenverhältnis von †Gegenkathete zur †Hypotenuse.
 - (s. Trigonometrie)
- b) Der Sinus ist mit einer Kreissehne verknüpft; « Sehne » heisst auf Indisch « jiva », und die Araber übernahmen dieses Wort als Fremdwort. Da das arabische Wort für « Ein- oder Ausbuchtung » sehr ähnlich klingt, übersetzte man das Wort irrtümlicherweise mit dem lateinischen Wort « sinus » für diesen Begriff. Dieser Name blieb, obschon der ursprüngliche Begriff nichts mit Ein- oder Ausbuchtung zu tun hatte.

Sinus hyperbolicus s. hyperbolische Funktion.

Sinusfunktion f. (-, en) fonction sinus $\$ ↑Periodische oszillierende ↑Funktion mit der ↑Periode 2π . Sie schwankt zwischen +1 und -1, ist also ↑beschränkt :

$$\sin(x) =: \sin x$$

(s. trigonometrische Funktion)

Sinussatz spitzer Winkel

Sinussatz théorème du sinus \blacklozenge Sei ein \uparrow rechtwinkliges Dreieck, wobei α und a, β und b, und γ und c die \uparrow Winkel und ihre \uparrow gegenüberliegenden \uparrow Seiten sind. Dann gilt :

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r$$

wobei r der \uparrow Umkreisradius ist. (s. Kosinussatz)

Skalar m. (s, en) Syn. reelle Zahl.

Skalarmultiplikation Syn. Vervielfachung.

Skalarprodukt m. (es, e) produit scalaire Φ Für zwei \uparrow Vektoren \vec{u} , \vec{v} in \mathbb{R}^n ist ihr Skalarprodukt als die \uparrow reelle Zahl

$$\vec{u} \cdot \vec{v} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} =: \sum_{k=1}^n a_k \cdot b_k$$

definiert, woraus folgt:

$$\vec{u} \cdot \vec{v} \coloneqq \| \vec{u} \| \cdot \| \vec{v} \| \cdot \cos \alpha$$

(s. Spatprodukt, Vektorprodukt)

S-Multiplikation Syn. Skalarmultiplikation.

Spalte f. (-, n) colonne. (s. Matrix, Zeile)

Spann m. (s, e) enveloppe linéaire \uparrow Unterraum, der durch die \uparrow Linearkombinationen der \uparrow Vektoren der \uparrow Menge $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ erzeugt ist :

$$\mathcal{L} = \operatorname{Span}(v_1, v_2, \dots, v_n)$$
$$= \operatorname{span}(v_1, v_2, \dots, v_n)$$

S ist also ein \uparrow Erzeugendensystem dieses Unterraumes. (Syn. Erzeugnis, lineare Hülle)

Spat m. (s, e) Syn. Parallelepiped.

Spatprodukt n. produit mixte \blacklozenge Zu je drei \uparrow Vektoren \vec{a} , \vec{b} , \vec{c} im \uparrow Raum lässt sich das \uparrow Produkt

$$(\vec{a}\vec{b}\vec{c}) \coloneqq (\vec{a},\vec{b},\vec{c}) \coloneqq (\vec{a} \times \vec{b}) \cdot \vec{c}$$

bilden, wobei « \times » das Vektorprodukt und « \cdot » das \uparrow Skalarprodukt bezeichnen. (Syn. gemischtes Vektorprodukt)

Specker, Ernst (1920-2011).

Schweizer Mathematiker ◆Er beschäftigte sich insbesondere mit mathematischer Logik und axiomatischer Mengenlehre. 1967 veröffentlichte er mit Simon Bernard Kochen ein wichtiges Theorem der Quantenmechanik, das so genannte Kochen-Specker-Theorem, das die Unmöglichkeit eines nicht kontextuellen Modells mit verborgenen Variablen der Quantenmechanik beweist.

Spezialfall m. (s, "e) cas particulier ◆Z. B. sind die ↑gleichseitigen ↑Dreiecke Spezialfälle der gleichschenkligen Dreiecke.

Sphäre f. (-, n) Syn. Kugelfläche.

Spiegelung f. (-, en) symétrie ◆Eine der ↑involutorischen ↑Abbildungen.

- an einer Geraden symétrie axiale.
 (Syn. Achsenspiegelung, Achsensymmetrie, Geradenspiegelung)
- an einem Punkt symétrie centrale.
 (Syn. Punktspiegelung, Punktsymmetrie)

(s. affine Abbildung, Schrägspiegelung, Symmetrie)

Spitze f. (-, n) sommet ◆Die ↑Kanten einer Pyramide treffen sich an der Spitze. Der ↑Schnittpunkt aller ↑Erzeugenden eines ↑Kegels ist dessen Spitze.

(s. Ecke, Eckpunkt, Scheitelpunkt)

Spitze-minus-Schaft-Regel extrémitémoins-origine \bullet Die \uparrow Punkte $A(a_1; a_2)$ und $B(b_1; b_2)$ erzeugen den \uparrow Vektor

$$\overrightarrow{AB} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \end{pmatrix}$$

spitzer Winkel angle aigu ♦↑Winkel zwischen 0° und 90°.

(s. stumpfer, rechter Winkel, Winkel)

spitzwinkliges Dreieck triangle acutangle \uparrow Dreieck dessen \uparrow Winkel alle kleiner als 90° sind. (s. stumpfwinklig)

Sprungstelle f. (-, n) discontinuité de type saut. (s. Unstetigkeit)

Spur f. (-, en) trace.

- b) Spurpunkt ◆↑Durchstosspunkt einer ↑Geraden durch eine Ebene (darstellende Geometrie).
- c) \uparrow Summe der \uparrow Diagonalelemente einer \uparrow quadratischen Matrix (a_{ij})

$$\operatorname{spur}(A) = \operatorname{sp}(A) = \operatorname{Sp}(A) := \sum_{i=1}^{n} a_{ii}$$

Staffelgestalt f. (-, en) *Syn.* Stufengestalt.

Stammfunktion f. (-, en) primitive \blacklozenge Als Stammfunktion einer \uparrow Funktion f bezeichnet man eine Funktion F mit F' = f. (s. Integral)

Standardabweichung f. (-, en) déviation standard, écart-type, indice de dispersion \bullet Dient als \uparrow Streuungsmass einer \uparrow Zufallsgrösse X bzw. Messreihe. Sie wird mit $\sigma(X)$ bezeichnet und es gilt

$$\sigma(X) = \sigma \coloneqq \sqrt{V(X)}$$

mit V(X) =: Var(X). (s. Varianz)

starke Invariante invariant fort. (s. Invariante)

steigend adj. Syn. wachsend.

Steigung f. (-, en) pente, coefficient angulaire.

- einer Strecke pente d'un segment
 ◆Ist eine ↑Strecke AB in einem
 ↑kartesischen Koordinatensystem gegeben, dann ist der ↑Quotient

$$m_{AB} := \frac{y_B - y_A}{x_B - x_A}$$

die Steigung dieser Strecke, d. h. der †Tangens des †Steigungswinkels.

einer Geraden pente d'une droite.
 (Sun. Richtungskoeffizient: s. Stei-

(Syn. Richtungskoeffizient; s. Steigungswinkel)

Steigungsdreieck n. (s, e) triangle d'appui.

Steigungswinkel m. (s, -) angle d'inclinaison.

(Syn. Neigungswinkel; s. Steigung)

Steiner, Jacob (1796-1863).

Schweizer Mathematiker ◆Steiner arbeitete vor allem in der Geometrie. Das Poncelet-Steiner-Theorem besagt, dass geometrische Konstruktionsaufgaben mit Zirkel und Lineal auch mit dem Lineal allein und einem vorgegebenen Kreis ausführbar sind. Bekannt ist seine geometrische Lösung des isoperimetrischen Problems das verlangt, zu zeigen, dass der Kreis die Kurve ist, die bei gegebenem Umfang den grössten Inhalt umschliesst.

Stelle f. (-, n) abscisse \bigstar Z. B. die Funktion $f(x) = \sqrt{x}$ ist an der Stelle $x_0 = 0$ nicht differenzierbar. (s. Abszisse)

Stellenwertsystem n. (s, e) système de numération positionnelle, numération de position ◆System zur Darstellung von ↑Zahlen durch ↑Ziffern. Bei einem solchen System hängt der Wert der Ziffern von der Stelle ab, an welcher sie innerhalb der Zahl geschrieben ist.

Stellenzahl f. (-, en) nombre de décimales.

Steradiant (sr) m. (en, en) stéradian (sr). (s. Raumwinkel)

Stereometrie f. Veraltete Bezeichnung für \(\gamma \) r\(\alpha um liche Geometrie. \((s. Planimetrie) \)

stetig differenzierbar continûment dérivable \blacklozenge Sei f eine \uparrow differenzierbare \uparrow Funktion und f' ihre \uparrow Ableitungsfunktion. Ist f' an der \uparrow Stelle x_0 stetig, so heisst f an der Stelle x_0 stetig differenzierbar.

stetige Erweiterung s. Erweiterung.

stetige Funktion fonction continue \blacklozenge Sei f eine \uparrow Funktion, die an der \uparrow Stelle x_0 und in einer \uparrow Umgebung von x_0 definiert ist. Falls

$$\exists \delta(\varepsilon) > 0 \quad \forall \varepsilon > 0$$

derart, dass

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

dann ist f an der Stelle x_0 stetig.

- a) linksseitige continue à gauche.
- b) rechtsseitige continue à droite.
- c) **regelmässige** uniformément continue. (s. regelmässig)
- d) **stückweise** continue par morceaux.

(s. unstetige Funktion)

Stetigkeit f. (-, en) continuité. (s. stetig, unstetig)

Stichprobe f. (-, n) échantillon (Statistik, Wahrscheinlichkeit).

Stichprobenraum m. (s, "e) ensemble fondamental, univers \uparrow Menge Ω aller \uparrow Elementarereignisse eines \uparrow Zufallsversuchs. (Syn. Grundmenge; s. Axiome der Wahrscheinlichkeitsrechnung)

Stifel, Michael (1486-1567).

Deutscher Mathematiker ◆Sein Hauptwerk ist die Arithmetica integra (Nürnberg 1554). Hier behandelte er u. a. negativen Zahlen, Exponenten und Zahlenfolgen. Er befasste sich dort als erster mit Logarithmen und gilt daher als deren Erfinder. Das Wurzelzeichen und der Begriff Exponent wurden erstmals von Stifel verwendet.

Strahlensatz théorème de Thalès lacktriangle Werden zwei von einem \uparrow Punkt S ausgehende Strahlen (\uparrow Halbgeraden) oder zwei sich in S schneidende \uparrow Geraden von parallelen Geraden in den Punkten

A und B bzw. A' und B' geschnitten, dann gilt

$$\overline{SA}: \overline{SA'} = \overline{SB}: \overline{SB'} = \overline{AB}: \overline{AB'}$$

streben (gegen) intr. tendre (vers) ◆Eine ↑Folge, die gegen ↑Unendlich strebt ist ↑divergent.

Strecke f. (-, n) segment ◆Geradlinige ↑Punktmenge zwischen zwei ↑Punkten. (Syn. Geradenstück)

Streckenzug m. (s, "e) chemin polygonal. (*Syn.* Polygonzug)

Streckfaktor m. (s, en) rapport d'homothétie. (Syn. Streckungsfaktor)

Streckung f. (-, en) homothétie \bullet Gegeben seien ein \uparrow Punkt Z (\uparrow Streckzentrum) und eine \uparrow Zahl k (\uparrow Streck(ungs)faktor). Dann ist Z ein \uparrow Fixpunkt, und für $P \neq Z$ erhält man den \uparrow Bildpunkt P' durch die folgenden Bedingungen : P' liegt auf dem Strahl von Z aus durch P, und es gilt

$$\overline{ZP}' = k \cdot \overline{ZP}$$

(s. affine Abbildung)

Streckungsfaktor m. (s, en) *Syn.* Streckfaktor. (s. Streckung)

Streckzentrum n. (s, tren) centre d'homothétie. (s. Streckung)

streng adv. strictement. (s. monoton)

Streuung f. (-, en) s. Varianz.

Streuungsmass n. (es, e) indice de dispersion ♦Z. B. die ↑Varianz und die ↑Standardabweichung.

Struktur f. (-, en) structure. (s. boolesche Algebra, Gruppe, Ring, Körper, Vektorraum)

stückweise adv.

definierte Funktion fonction définie par morceaux ◆Zum Beispiel :

$$f(x) = \begin{cases} x - 1 & \text{für } x < 1\\ x^2 - 2x + 1 & \text{für } x \geqslant 1 \end{cases}$$

stetig continue par morceaux.(s. stetig)

Stufenwinkel Symmetrieebene

Stufenwinkel m. pl. angles correspondants. (*Syn.* Nachbarwinkel)

Stufengestalt f. (-, en) forme échelonnée. (s. gausssches Eliminationsverfahren)

stumpfer Winkel adj. angle obtus ♦Winkel zwischen 90° und 180°. (s. spitzer, rechter Winkel, Winkel)

stumpfwinkliges Dreieck triangle obtusangle ◆In einem solchen Dreieck ist einer der Winkel grösser als 90°.

(s. spitzwinkliges Dreieck)

Stützvektor m. (s, en) rayon-vecteur ◆Bei einer ↑Geradengleichung der Form

$$\vec{r} = \vec{a} + \lambda \vec{v}$$

ist \vec{a} der Stützvektor eines †Punktes dieser †Geraden.

(s. Ortsvektor, Richtungsvektor)

Subnormale f. (n, n) sous-normale \blacklozenge Ist eine \uparrow Kurve an der \uparrow Stelle x_0 \uparrow differenzierbar, dann ist die Subnormale die \uparrow Strecke zwischen x_0 und der \uparrow Nullstelle der \uparrow Normalen und ihre Länge beträgt $|f(x_0) \cdot f'(x_0)|$. Z. B. für die \uparrow Parabel $f(x) = \sqrt{2px}$ ist diese Strecke eine \uparrow Konstante, nämlich p. (s. Subtangente)

Substitution f. (-, en)

Syn. Einsetzungsverfahren.

Substitutionsregel substitution (technique d'intégration) \blacklozenge Es seien f und g auf dem \uparrow Intervall $[a,b] \uparrow$ stetig differenzierbare \uparrow Funktionen, dann gilt

$$\int_{a}^{b} (f \circ g)(x)g'(x) dx = \int_{g(a)}^{g(b)} f(t) dt$$

wobei t die neue \uparrow Integrationsvariable ist.

Subtangente f. (-, n) sous-tangente \blacklozenge Ist eine \uparrow Kurve an der \uparrow Stelle x_0 \uparrow differenzierbar, dann ist die Subtangente die \uparrow Strecke zwischen x_0 und

der †Nullstelle der †Tangente und ihre Länge beträgt

$$\left| \frac{f(x_0)}{f'(x_0)} \right|$$

Z. B. für $f(x) = e^x$ ist diese Strecke eine †Konstante, nämlich 1.

(s. Subnormale)

Summand m. (s, en) terme d'une somme.

Summe f. (-, n) somme ◆Ergebnis einer ↑Addition.

Summenregel règle de dérivation d'une somme ◆Die Summenregel lautet :

$$(f(x) + g(x))' = f'(x) + g'(x)$$

(s. Ableitungsregel)

Supplementärwinkel m. pl. *Syn.* Ergänzungswinkel.

Supplementwinkel m. pl. *Syn.* Ergänzungswinkel.

Supremum m. (s, -) supremum ◆Bezeichnung für die kleinste ↑obere Schranke einer ↑Menge ↑reeller Zahlen.

Surjection f. (-, en) application surjective, surjection ♦↑Abbildung

$$f:A\to B$$

mit der \uparrow Eigenschaft, dass jedes \uparrow Element von B als \uparrow Bild vorkommt, also

$$\forall b \in B, \exists a \in A : f(a) = b$$

(Syn. surjektive Abbildung; s. Injektion, Bijektion)

surjektiv adj. surjectif.
(s. bijektiv, injektiv)

Symmetrie f. (-, n) Syn. Spiegelung.

Symmetrieebene f. (-, n) plan de symétrie.

- einer Strecke plan médiateur.
- **zweier Ebenen** plan bissecteur.

Symmetriezentrum n. (s, tren) centre de symétrie.

symmetrisch adj. symétrique ◆Ein ↑mathematisches Objekt wird als symmetrisch bezeichnet, wenn es gegenüber bestimmten ↑Abbildungen unverändert (↑invariant) bleibt.

Matrix matrice symétrique ◆↑Quadratische Matrix A mit

$$a_{ij} = a_{ji} \ \forall i, j$$

und daraus folgt : $A = A^T$.

- (s. antisymmetrisch, schiefsymmetrisch, transponiert)
- **Relation** \spadesuit ↑Relation R in M mit der ↑Eigenschaft:

$$a R b \Rightarrow b R a \quad \forall a, b \in M$$

Z. B. der †Parallelismus.

(s. antireflexiv, antisymmetrisch, reflexiv, transitiv)

Syracuse-Vermutung conjecture de Syracuse. (s. Attraktor)

Tangens Teilmenge

T

Tangens m. (-, -) tangente ◆In einem ↑rechtwinkligen Dreieck ist der Tangens eines von 90° verschiedenen ↑Winkels das Längenverhältnis von ↑Gegenkathete zu ↑Ankathete.

(s. Kosinus, Sinus, Trigonometrie)

hyperbolicus s. hyperbolische
 Funktion.

Tangensfunktion f. (-, en) fonction tangente. \blacklozenge ↑Periodische Funktion mit der ↑Periode π :

$$\tan(x) =: \tan x = \frac{\sin x}{\cos x}$$

(s. trigonometrische Funktion)

Tangente f. (-, n) tangente \bullet Die Tangente an einen \uparrow Kreis mit \uparrow Mittelpunkt M im \uparrow Punkt P ist \uparrow rechtwinklig zu Berührradius MP. (s. Passante, Sekante, Subtangente, Zentrale)

Tangentensatz s. Potenz.

Tangentenverfahren n. méthode de la tangente, de Newton ♦Näherungsverfahren zur Nullstellenberechnung einer ↑stetigen Funktion in einem ↑abgeschlossenen Intervall. Syn. Newton-Verfahren.

Tangentenviereck n. (es, e) quadrilatère circonscrit à un cercle.

Tangentialebene f. (-, n) plan tangent ◆Die Tangentialebene einer ↑Fläche ist diejenige ↑Ebene, die im betrachteten ↑Punkt die Fläche berührt. Sie steht ↑senkrecht auf dem Normalenvektor der Fläche in diesem Punkt.

Taylor, Brook (1685-1731). Englischer Mathematiker.

taylorsche Formel formule de Taylor Φ Sei I ein \uparrow Intervall, f eine (n+1)-mal \uparrow stetig differenzierbare \uparrow Funktion

auf I und x_0 ein \uparrow innerer Punkt von I, dann kann man mithilfe der Taylorschen \uparrow Potenzreihe die Funktion in der \uparrow Umgebung von x_0 darstellen. Für alle $x \in I$ gilt

$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + R_n(x, x_0)$$

wobei

$$R_n = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}, \ x_0 < c < x$$

das Restglied ist.

(s. lineare Approximation, MacLaurin, Reihenentwicklung)

teilbar (durch) adj. divisible (par).

Teilbarkeit f. divisibilité.

Teiler m. (s, -) diviseur \bullet Es seien a und $b \uparrow$ natürliche Zahlen. Ist a ein Teiler von b dann schreibt man

$$a \mid b \iff \exists k \in \mathbb{N} : b = ka$$

(s. ggT)

teilerfremd adj. sans diviseur commun \bullet Gilt \uparrow ggT(a,b) = 1, dann sind die \uparrow Zahlen a und b teilerfremd.

Teilersumme f. (-, n) somme des diviseurs d'un nombre naturel.

Teilfolge f. (-, n) sous-suite $\mathbf{\Phi}$ Z. B. $\langle a_{2n} \rangle$ ist eine Teilfolge der \uparrow Folge $\langle a_n \rangle$.

Teilintervall n. (s, e) sous-intervalle.

Teilmenge f. (-, n) sous-ensemble \bullet Die \uparrow Menge A ist eine Teilmenge der Menge B, wenn jedes \uparrow Element von A auch ein Element von B ist, und man schreibt :

$$A \subset B \Leftrightarrow (x \in A \Rightarrow x \in B)$$

(Syn. Untermenge; s. echt, Potenzmenge)

Teilsumme Turing

Teilsumme f. (-, n) somme partielle. (*Syn.* Partialsumme; s. Reihe)

Teilsummenfolge f. (-, n) suite des sommes partielles. (s. Reihe)

Terrassenpunkt m. (s, e) Syn. Sattelpunkt.

Tetraeder n. (s, -) tétraèdre ♦Von vier ↑Dreiecken begrenzter ↑Polyeder. (s. platonische Körper)

Thales von Milet Thalès de Milet (625-547 v. C.). Griechischer Vorsokratiker ionischer Philosoph und Mathematiker.

Thaleskreis m. (es, e) cercle de Thalès. (s. Satz des Thales)

Theorem n. (s, e) *Syn.* Lehrsatz.

Tiefpunkt m. (s, e) *Syn.* Minimum.

Torus m. (-, ri) tore ◆Ringförmige ↑Fläche (bzw. ↑Körper), eine Art Gummischlauch oder Rettungsring...

totale Ordnung Syn. Totalordnung.

Totalordnung f. ordre total. (s. Ordnungsrelation)

Transformation f. (-, en) transformation $\uparrow \uparrow$ Abbildung im Rahmen der $\uparrow \uparrow$ Geometrie. (s. affine Abbildung)

transitiv adj. transitif \bullet Eine \uparrow Relation R in M heisst transitiv, wenn für $a, b, c \in M$ gilt :

$$aRb \wedge bRc \Rightarrow aRc$$

(s. antireflexiv, antisymmetrisch, reflexiv, symmetrisch)

Translation f. (-, en) *Syn.* Parallelverschiebung, Verschiebung.

transponierte Matrix matrice transposée Φ Sei A eine $(m \times n)$ -Matrix, dann ist

$$A^T = (b_{ij}) \text{ mit } b_{ij} = a_{ji}$$

ihre transponierte $(n \times m)$ -Matrix.

transzendent adj. transcendant.

- Funktion fonction transcendante
 ♦Z. B. die ↑Exponentialfunktion und die ↑trigonometrischen Funktionen.
 (Ant. algebraische Funktion)
- Zahl nombre transcendant ◆Z. B.
 die ↑eulersche Zahl und die ↑Kreiszahl. (Ant. algebraische Zahl)

Trapez n. (-, e) trapèze ♦↑Konvexes ↑Viereck mit zwei parallelen ↑Seiten.

Treppenfunktion f. (-, en) fonction en escalier ◆Bezeichnung für eine ↑stückweise konstante Funktion. Z. B. die ↑Ganzteilfunktion.

treu suffixe indiquant une conservation. (s. abstandstreu, geradentreu, winkeltreu, ...)

trigonometrische Funktion fonction circulaire, trigonométrique. (*Syn.* goniometrische Funktion, Kreisfunktion, Winkelfunktion; *s.* Sinus-, Kosinus-, Tangens-, Kotangensfunktion)

trigonometrischer Drehsinn sens trigonométrique ◆In der ↑Geometrie wird als der übliche Drehsinn der entgegen dem Uhrzeigersinn bezeichnet; der negative Drehsinn folgt also der Bewegung des Uhrzeigers.

Tripel m. (s, n) triplet. (s. n-Tupel)

Trisektion des Winkels

Syn. Dreiteilung des Winkels.

trivial adj. évident, simple, trivial. (s. Vorwort, S. 5)

Tupel m. (s, n) tuple. (s. n-Tupel)

Turing, Alan (1912-1954). Englischer Mathematiker:

Science is a differential equation. Religion is a boundary condition.

überabzählbar Umkehrrelation

U

überabzählbar adj. non dénombrable ◆Z. B. ist ℝ überabzählbar. (Ant. abzählbar)

Überdeckung f. (-, en) recouvrement ♦Wunderschöne Beispiele davon findet man in einigen Werken des Künstlers M. C. Escher (1898-1972).

übereinanderliegend adj. confondu. (s. gleich, identisch, zusammenfallend)

Übergangsmatrix f. (-, en) matrice de passage ♦↑Reguläre Matrix, die einen ↑Basiswechsel in einem ↑Vektorraum erlaubt.

überstumpfer Winkel angle rentrant ♦↑Winkel zwischen 180° und 360°.

Umfang m. (s, "e) circonférence, périmètre ◆Länge der Begrenzungslinie einer ebenen Figur. (s. Peripherie)

Umfangswinkel m. (s, -) *Syn.* Peripheriewinkel.

Umgebung eines Punktes voisinage d'un point.

- der Zahlengeraden : Ist x_0 eine \uparrow reelle Zahl, dann nennt man das \uparrow offene Intervall

$$U_{\varepsilon}(x_0) :=]x_0 - \varepsilon, x_0 + \varepsilon[$$

eine ε -Umgebung von x_0 ; dabei ist ε eine \uparrow positive reelle Zahl die man \uparrow beliebig klein wählen kann.

- **der Ebene** : Ist $P(x_0, y_0)$ gegeben, so nennt man die offene \uparrow Kreisscheibe

$$(x-x_0)^2 + (y-y_0)^2 < \varepsilon^2$$

eine ε -Umgebung von P.

- **des Raumes**: Ist $P(x_0; y_0; z_0)$ gegeben, so nennt man die offene \uparrow Kugel $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 < \varepsilon^2$ eine ε -Umgebung von P.

umgekehrt proportional inversement proportionnel.

(s. Proportionalität)

Umkehrabbildung f. (-, en) *Syn.* Umkehrfunktion.

umkehrbar adj. inversible. (s. invertierbar)

Umkehrfunktion f. (-, en) fonction réciproque, inverse ◆Ist

$$f: A \to B$$

 \uparrow bijektiv, dann ist $f \uparrow$ umkehrbar; die Umkehrfunktion

$$\bar{f} := \bar{f}^{-1} := f^{-1} : B \to A$$

ist dann durch

$$f^{-1}(b) = a \Leftrightarrow f(a) = b$$

definiert. Die Funktion $f^{-1}(x)$ ist nicht zu verwechseln mit

$$f(x)^{-1} = (f(x))^{-1} = \frac{1}{f(x)}$$

Hier ist die Notation leider nicht konsistent und $f^{-1}(x)$ kann auch die \uparrow Menge der \uparrow Urbilder von x bezeichnen. (Syn. inverse Funktion)

Umkehrrelation f. (-, en) relation inverse ◆Die Umkehrrelation (oder inverse Relation) ist für eine ↑Relation

$$R \subset A \times B$$

definiert als

$$R^{-1} = \{ (b, a) \in B \times A : (a, b) \in R \}$$

Umkehrung eines Satzes réciproque d'un théorème ♦Z. B. die Umkehrung des Satzes :

 $(f \text{ differenzierbar}) \Rightarrow (f \text{ stetig})$

gilt nicht.

Umklappung f. (-, en) retournement.

Umkreis m. (es, e) cercle circonscrit ◆↑Kreis, der durch alle ↑Ecken eines ↑Polygons geht. (s. Ankreis, Inkreis)

Umkugel f. (-, n) sphère circonscrite.

Umlaufsinn m. (es, e) sens de parcours. (*Syn*. Durchlaufsinn)

unabhängig adj. indépendant.

- **Ereignisse** évènements indépendants $\blacklozenge A$ und B heissen \uparrow genau dann unabhängig, wenn

$$P(A \cap B) = P(A) \cdot P(B)$$

- Variable variable indépendante \blacklozenge Z. B. x im \uparrow Ausdruck y = f(x). (s. abhängig)
- Vektoren vecteurs indépendants
 ◆Z. B. die Vektoren einer ↑Basis.
 (Ant. abhängig; s. linear)

Unbekannte f. (-, n) inconnue ◆↑Variable in einer ↑Gleichung.

unbeschränkt adj. non borné. (*Ant.* beschränkt)

unbestimmt adj.

Ausdruck forme indéterminée◆Ausdruck der Form :

$$\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0^0, \dots$$

(s. Auswertung, Regel von de l'Hospital)

Integral intégrale indéfinie.(s. Integral, Stammfunktion)

uneigentlich adj.

- Gerade droite à l'infini (géométrie projective). (Syn. unendlich ferne Gerade)
- Integral intégrale généralisée, impropre ◆Z. B.

$$\int_{-1}^{+1} \frac{1}{x} \, \mathrm{d}x \quad \text{und} \quad \int_{1}^{+\infty} \frac{1}{x} \, \mathrm{d}x$$

Punkt point à l'infini ◆Die
 ↑Menge dieser Punkte bildet die
 ↑uneigentliche Gerade. Jedem dieser
 Punkte entspricht eine ↑Richtung in der ↑Ebene. (Syn. unendlich ferner Punkt)

unendlich adj. infini.

- **ferne Gerade** Syn. uneigentliche Gerade.
- ferner Punkt Syn. uneigentlicher Punkt.

(Ant. endlich)

Unendliche n. infini (∞) .

unentscheidbar adj. indécidable.

(s. gödelscher Unvollständigkeitssatz)

ungerade adj. impair.

- Funktion ◆↑Reelle Funktion mit der Eigenschaft :

$$f(-x) = -f(x) \ \forall x \in D_f$$

Ihr ↑Graph ist punktsymmetrisch bezüglich des ↑Ursprungs.

(s. gerade)

- **Zahl** s. Zahl. (Ant. gerade)

ungleich Null différent de zéro, non nul $(\neq 0)$.

Ungleichheit f. (-, en) inégalité ◆Z. B.

$$a \neq b$$

Ungleichheitszeichen n. (s, -) signe d'inégalité (\neq) . (s. Gleichheitszeichen)

Ungleichung f. (-, en) inéquation ◆Schreibt man zwischen zwei ↑Termen eines der Zeichen :

< (kleiner als),

 \leq (kleiner als oder gleich),

> (grösser als),

≥ (grösser als oder gleich),

so entsteht eine Ungleichung, falls eine †Variable vorhanden ist.

von Cauchy-Schwarz inégalité de Cauchy-Schwarz ◆In einem ↑Vektorraum, in dem ein ↑Skalarprodukt definiert ist, gilt

$$|\vec{a} \cdot \vec{b}| \leqslant ||\vec{a}|| \cdot ||\vec{b}||$$

wobei die †Norm durch

$$\|\vec{a}\| \coloneqq \sqrt{\vec{a} \cdot \vec{a}}$$

definiert wird. (*Syn.* Cauchy-Schwarzsche Ungleichung; *s.* Cauchy fr-all, Schwarz de-fr)

unlösbar adj. insoluble, sans solution ♦Z. B. die ↑Gleichung

$$x^2 + 1 = 0$$

im Rahmen der \uparrow reellen \uparrow Zahlen. (s. lösbar)

unmögliches Ereignis évènement impossible Φ Dieses \uparrow Ereignis wird mit \varnothing bezeichnet.

unstetige Funktion fonction discontinue ◆Ist z. B.

$$\lim_{x \to x_0} f(x) \neq f(x_0)$$

oder $f(x_0)$ existiert nicht, dann ist f an der \uparrow Stelle x_0 unstetig.

Unstetigkeit f. (-, en) discontinuité. (s. Polstelle, Sprungstelle, Stetigkeit)

untere Schranke borne inférieure. (s. Schranke)

Untergruppe f. (-, n) sousgroupe ♦Nichtleere ↑Untermenge einer ↑Gruppe die selbst eine Gruppe bildet.

Untermenge Syn. Teilmenge.

Unterraum m. (s, "e) sous-espace ♦Nichtleere ↑Untermenge eines ↑Vektorraumes die diesselbe ↑Struktur besitzt. (s. Eigenraum)

unvereinbar adj. incompatibles, mutuellement exclusifs \bullet Bezeichnet zwei \uparrow Ereignisse A und B, wenn :

$$A \cap B = \emptyset$$

 \uparrow Gegenereignisse (A und \overline{A}) sind stets unvereinbar. (s. Axiome der Wahrscheinlichkeitsrechnung)

Urbild n. (s, er) antécédent, préimage. (s. Abbildung, Bild, Definitionsbereich)

Ursprung m. (s, "e) *Syn.* Koordinatenursprung.

Ursprungsgerade f. (-, n) droite passant par l'origine.

\mathbf{V}

Variable f. (-, en) variable. (s. abhängig, unabhängig)

Varianz f. (-, en) variance ♦Mass für die Streuung einer ↑Zufallvariable. (s. Standardabweichung)

Variation f. (-, en) arrangement \blacklozenge Anzahl der Möglichkeiten von k Ziehungen mit Beachtung der Reihenfolge und ohne Wiederholung aus einer \uparrow Grundmenge vom Umfang n:

$$V(n,k) := \frac{n!}{(n-k)!}$$

(s. Kombinatorik)

Vektor m. (s, en) vecteur ◆Interpretation einer ↑Verschiebung. Objekt, das durch eine ↑Richtung und eine ↑Norm definiert wird und durch seine ↑Komponenten bezüglich einer ↑Basis dargestellt ist. Allgemeiner ist ein Vektor ein ↑Element eines ↑Vektorraumes.

Vektorprodukt n. produit vectoriel \bullet Das Vektorprodukt $\vec{u} \times \vec{v}$ (lies : « \vec{u} Kreuz \vec{v} ») aus dem \uparrow Vektorraum \mathbb{R}^3 ist wieder ein \uparrow Vektor aus \mathbb{R}^3 mit folgenden Eigenschaften :

- a) Sind \vec{u} , \vec{v} \uparrow linear abhängig, so ist $\vec{u} \times \vec{v} = \vec{o}$:
- b) Sind \vec{u} , \vec{v} †linear unabhängig, so ist $\vec{u} \times \vec{v}$ †orthogonal zu \vec{u} und zu \vec{v} , die Vektoren \vec{u} , \vec{v} und $\vec{u} \times \vec{v}$ bilden eine †Basis, und für die †Norm von $\vec{u} \times \vec{v}$ gilt

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \cdot \|\vec{v}\| \sin \alpha$$

Dabei ist α der von \vec{u} und \vec{v} eingeschlossene \uparrow Winkel mit

$$0^{\circ} \leqslant \alpha \leqslant 180^{\circ}$$

(s. Skalarprodukt, Spatprodukt)

Vektorraum m. (s, "e) espace vectoriel \bullet Bezeichnung für eine \uparrow Menge V, wenn folgende \uparrow Axiome erfüllt sind :

- a) [V, +] ist eine \uparrow abelsche Gruppe;
- b) $\forall \lambda, \mu \in \mathbb{K} \text{ und } \forall v, w \in V \text{ gilt } :$ $(\lambda \mu) v = \lambda (\mu v)$ $(\lambda + \mu) v = \lambda v + \mu v$ $\lambda (v + w) = \lambda v + \lambda w$ $1 \cdot v = v$

Wobei \mathbb{K} ein \uparrow Körper ist.

Venn, John (1834-1923). Englischer Logiker.

Venn-Diagramm n. (s, e) diagramme de Venn.

Verbindungsstrecke segment reliant deux points.

Vereinbarung f. (-, en) convention ♦Nach Vereinbarung schreibt man

$$\sin^2 x$$
 anstatt $(\sin(x))^2$

Vereinigung f. (-, en) réunion, union (opération) \bullet In der \uparrow Mengenlehre ist die Vereinigung zweier \uparrow Mengen A und B die Menge, die alle \uparrow Elemente aus A sowie aus B enthält. Die Vereinigung von A und B schreibt man $A \cup B$ (lies: « A vereinigt mit B »):

$$(x \in A \cup B) \Leftrightarrow (x \in A \lor x \in B)$$

(s. Durchschnitt)

Vereinigungsmenge f. (-, n) ensemble résultant de la réunion d'autres ensembles ♦Z. B. wenn

$$C = A \cup B$$

ist C die Vereinigungsmenge von A und B. (s. Vereinigung)

Verhältnis n. (ses, se) rapport ♦↑Quotient zweier ↑Zahlen oder ↑Grössen. Z. B.

$$a:b=c:d$$

(lies : « a verhält sich zu b wie c zu d »).

Verkettung f. (-, en) composition ◆Sind

$$f: A \to B$$
 und $g: B \to C$

 \uparrow Abbildungen, so ist die Verkettung $g \circ f$ (lies : « g verkettet mit f » oder « g nach f » oder « f eingesetzt in g ») folgendermassen definiert :

$$g \circ f : A \to C$$

 $(g \circ f)(x) := g(f(x))$

- von Vektoren Relation de Chasles.

Verlängerung einer Strecke prolongement d'un segment.

Verknüpfung f. (-, en) loi de composition, opération.

 von Vektoren Syn. Verkettung von Vektoren.

(s. Abbildung, innere Verknüpfung, Operation)

Vermutung f. (-, en) conjecture.

(s. Annahme, fermatsche Vermutung, goldbachsche Vermutung, Hypothese, Voraussetzung)

Verschiebung f. (-, en) translation ♦Man kann eine Verschiebung aus zwei ↑Achsenspiegelungen an zueinander parallelen ↑Achsen zusammensetzen, welche ↑rechtwinklig zur Verschiebungsrichtung sind.

(Syn. Parallelverschiebung, Translation; s. affine Abbildung)

Vertauschungsgesetz n. Syn. Kommutativität.

vertikal adj. vertical.

(s. horizontal, senkrecht, waagerecht)

Vertrauensintervall n. (s, e) intervalle de confiance (probabilité).

Vervielfachung f. multiplication par un scalaire \bullet Seien \vec{a} ein \uparrow Vektor und k eine \uparrow reelle Zahl, dann versteht man unter $k \cdot \vec{a}$ eine Vervielfachung von \vec{a} . Es gilt zusätzlich:

$$0 \cdot \vec{a} = k \cdot \vec{o} = \vec{o}$$

(Syn. Skalarmultiplikation, S-Multiplikation)

Vieleck n. (es, e) polygone. (Syn. n-Eck, Polygon)

Vielecksfläche f. (-, n) surface polygonale.

Vielfaches n. (ein Vielfaches, das Vielfache, des Vielfachen, zwei Vielfache, die Vielfachen) multiple.

Vielfachheit f. (-, en) multiplicité ◆Z. B. eine ↑doppelte ↑Nullstelle ist eine Nullstelle mit Vielfachheit 2.

Vielflächner m. (s, -) Syn. Polyeder.

Viereck n. (s, e) quadrilatère ◆Die gewöhnlichen Spezialfälle sind : das ↑Deltoid, das ↑Drachenviereck, das ↑Parallelogramm, das ↑Quadrat, die ↑Raute, das ↑Rechteck und das ↑Trapez.

viereckig adj. carré, quadrangulaire. (s. quadratisch)

vierte Proportionale quatrième proportionnelle \blacklozenge Die \uparrow Lösung der \uparrow Proportion a:b=c:x heisst die vierte Proportionale von a,b und c. (s. Dreisatz, Dreisatzrechnung, dritte Proportionale)

vietasche Beziehungen Syn. Formeln von Vieta. (s. Viète fr-all)

Volken, Henri (geb. 1945). Schweizer Mathematiker und Logiker.

Mathematik : der witzigste Versuch, unbeirrbare Genauigkeit und zügellose Phantasie zusammenzuspannen!

vollgekürzter Bruch fraction irréductible. (s. erweitern, kürzen)

vollständige Induktion induction complète, démonstration par récurrence ◆Beweisverfahren für ↑Aussagen über ↑natürliche Zahlen. Der ↑Beweis durch vollständige Induktion geht so:

Induktionsanfang : A(1) ist wahr Ind.voraussetzung : A(n) ist wahr

Induktionsschritt: \downarrow

Ind.behauptung : A(n+1) ist wahr

A(n) gilt dann für alle $n \in \mathbb{N}$.

(s. Axiomensystem, Beweis, Peano frall)

Vollwinkel m. (s, -) angle plein \bullet Dieser Winkel beträgt 360° oder 2π rad oder 400 gon. (s. Winkel)

Volumen n. (-, -) Syn. Rauminhalt.

Voraussetzung f. (-, en) hypothèse ◆Ein mathematischer ↑Satz besteht aus einer ↑Voraussetzung und einer ↑Behauptung in der Form :

 $(Voraussetzung) \Rightarrow (Behauptung)$

(s. Annahme, Beweis)

Vorschrift f. (-, en) Syn. Funktion.

Vorzeichen n. (-, -) signe.

Vorzeichenfunktion f. (-, en) Syn. Signumfunktion.

Vorzeichenregel règle des signes.

waag(e)recht Winkel

\mathbf{W}

waag(e)recht adj. horizontal. (Syn. horizontal; s. vertikal)

wachsend adj. croissant. (Syn. steigend, zunehmend)

Wachstum n. (s) croissance.

Wahrheitstafel f. (-, n) table de vérité (Logik).

Wahrheitswert m. (s, e) valeur de vérité d'une proposition (Logik).

Wahrscheinlichkeit f. (-, en) probabilité. (s. Axiome der Wahrscheinlichkeitsrechnung)

was zu beweisen war s. Vorwort S. 5 und Abkürzungen S. 13.

Wechselwinkel m. pl. angles alternesinternes et alternes-externes. (s. Winkel)

Weierstrass, Karl (1815-1897). Deutscher Mathematiker:

Ein Mathematiker, der nicht irgendwie ein Dichter ist, wird nie ein vollkommener Mathematiker sein.

Wendepunkt m. (s, e) point d'inflexion ♦↑Punkt einer ↑Kurve, in welchem die ↑Krümmung ihr ↑Vorzeichen ändert. Ist die zugehörige ↑Funktion zweimal ↑differenzierbar, dann entspricht dieser Punkt einer ↑Nullstelle von f''(x). (s. Flachpunkt)

Wendetangente f. (-, n) tangente en un point d'inflexion.

Wertebereich m. (s, e) domaine des valeurs, ensemble image. (s. Abbildung)

wesentliche Singularität singularité essentielle. (s. hebbare Singularität)

Weyl, Hermann (1885-1955).

Deutscher Mathematiker:

Die Logik ist die Hygiene, Mathematiker ren sich der bedient, seine Gedanken umgesund und kräftig zu erhalten.

Mathematics, besides language and music, is one of the primary manifestation of the free creative power of the human mind and it is the universal organ for world-understanding through theoretical construction. It has to remain an essential element of the knowledge and abilities we have to teach, of the culture we have to transmit to the next generation.

widerlegen tr. infirmer, réfuter.

Widerspruchsbeweis m. (es, e) Syn. Reductio ad absurdum, s. Beweis.

widerspruchsfrei adj. non contradictoire ♦Ein ↑Axiomensystem muss widerspruchsfrei sein.

willkürlich adj. arbitraire ◆In dem ↑Ausdruck

$$\int f(x)\mathrm{d}x = F(x) + C$$

ist C eine willkürliche \uparrow Konstante. (s. beliebig, Stammfunktion)

windschiefe Geraden droites gauches ♦↑Geraden im ↑Raum ohne ↑Schnittpunkt und nicht parallel. Der ↑Abstand zweier windschiefen Geraden ist die ↑Länge der ↑Strecke, die zu beiden Geraden ↑rechtwinklig ist.

Winkel m. (s, -) angle (plan) ◆Zwei ↑Halbgeraden die denselben ↑Anfangspunkt haben oder zwei ↑Radien eines ↑Kreises bilden einen Winkel. Die üblichen Einheiten sind das ↑Gon (gon),

Winkelfeld Wurzelziehen

das \uparrow Grad (°), der \uparrow Neugrad (gr) und der \uparrow Radiant (rad). (s. Bogenmass)

Winkelfeld n. (s, er) secteur angulaire ♦Die ↑Ebene wird durch einen ↑Winkel in zwei Winkelfelder zerlegt, das innere und das äussere Winkelfeld.

Winkelfunktion f. (-, en) Syn. trigonometrische Funktion.

Winkelhalbierende f. (-, n) bissectrice ◆↑Gerade, die einen ↑Winkel genau in zwei teilt. Die Winkelhalbierende ist der ↑geometrische Ort der ↑Punkte mit gleichem ↑Abstand bezüglich zwei Geraden.

Winkelmass n. (es, en) unité de mesure d'angle. (s. Gon, Grad, Radiant)

Winkelmesser m. (s, -) rapporteur. (s. Geodreieck)

winkeltreu adj. qui conserve les angles. (s. treu)

Würfel m. (s, -) cube, dé (à jouer) ◆Dieses ↑regelmässige ↑Hexaeder ist einer der fünf ↑platonischen Körper. Würfelverdopplung f. duplication du cube.

(s. Wantzel fr-all, Zirkel und Lineal)

Wurzel f. (-, n) racine. (s. n-te Wurzel)

Wurzelfunktion f. (-, en) fonction irrationnelle, fonction racine ◆Bezeichnung für die ↑Umkehrfunktion der ↑Potenzfunktion

$$f(x) = x^n \quad \Leftrightarrow \quad f^{-1}(x) = \sqrt[n]{x}$$

(s. irrational)

Wurzelgleichung équation irrationnelle. (s. irrational)

Wurzelsatz Syn. Formeln von Vieta.

Wurzelzeichen radical \bullet Das Symbol dafür erscheint in der Form « $\sqrt{}$ », erstmals 1525, in dem Buch $Die\ Coss$ von Christoff Rudolff (ca. 1500 - ca. 1545); das Symbol ist eine mögliche Verformung des « r » von radix.

(s. n-te Wurzel, Radikand)

Wurzelziehen n. (s, -) extraction de racine ♦Umkehroperation des Potenzierens. (Syn. Radizieren)

x-Achse Zahlentripel

$$X - Y - Z$$

x-Achse f. (-, n) axe des x, axe des abscisses.

x-Achsenabschnitt m. (s, e) point d'intersection d'une courbe avec l'axe des abscisses Φ Die x-Achsenabschnitte eines \uparrow Funktionsgraphen entsprechen den \uparrow Nullstellen dieser \uparrow Funktion.

y-Achse f. (-, n) axe des y, axe des ordonnées.

y-Achsenabschnitt m. (s, e) ordonnée à l'origine \blacklozenge Bei einem Funktionsgraphen entspricht der y-Achsenabschnitt dem \uparrow Wert f(0).

Zahl f. (-, en) nombre.

- a) algebraische s. algebraisch.
- b) **eulersche** nombre d'Euler • Diese Zahl ist folgendermassen definiert:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n =: e$$

und es gilt : $e \approx 2,7182818284...$ Charles Hermite hat bewiesen (1873), dass diese Zahl †transzendent ist.

(s. Hermite fr-all)

- c) ganze (nombre) entier (relatif).
- d) **gerade** nombre pair.
 (s. goldbachsche Vermutung)
- e) **irrationale** nombre irrationnel **♦**Zahl, die sich nicht als ↑rationale Zahl darstellen lässt, wie z. B. √2.
- f) **komplexe** nombre complexe ◆Diese Zahlen bilden die ↑Menge

$$\{z \mid z = a + b\mathbf{i}\} =: \mathbb{C} \cong \mathbb{R} \times \mathbb{R}$$

wobei a =: Re(z) der \uparrow Realteil, b = Im(z) der \uparrow Imaginärteil und

 $i = \sqrt{-1}$ sind. Es gilt auch

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}\subset\cdots$$

 $[\mathbb{C}, +, \cdot]$ ist ein \uparrow kommutativer \uparrow Körper.

(s. Argand fr-all, konjugiert)

g) **natürliche** nombre naturel Diese Zahlen bilden die Menge :

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

h) rationale nombre rationnel Diese Zahlen bilden die Menge :

$$\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}^* \right\}$$

 $[\mathbb{Q}, +, \cdot]$ ist ein \uparrow kommutativer \uparrow Körper.

- i) **reelle** nombre réel ◆Diese Zahlen bilden die Menge ℝ, die die ↑Vereinigung der rationalen und irrationalen Zahlen ist. [ℝ, +, ·] ist ein ↑kommutativer ↑Körper.
- j) **ungerade** nombre impair.
- k) **transzendente** nombre transcendant. (s. transzendent)
- zusammengesetzte nombre composé ◆Bezeichnet eine von 0 und 1 verschiedene ↑natürliche Zahl, die keine ↑Primzahl ist.
- m) **zweistellige** nombre à deux chiffres.

(s. Ziffer)

Zahlenfolge f. (-, en) suite numérique. (s. Folge)

Zahlengerade f. (-, n) droite numérique ♦Veranschaulichung der ↑reellen Zahlen als ↑Punkte auf einer ↑Geraden.

Zahlenmenge f. (-, n) ensemble de nombres. (s. Zahl)

Zahlentripel n. (s, -) triplet de nombres \uparrow Tupel der Form (a, b, c) wobei $a, b, c \uparrow$ Zahlen sind.

Zähler m. (s, -) numérateur ♦Was über dem ↑Bruchstrich steht. (s. Division, Nenner)

Zangensatz Syn. Einschliessungskriterium.

Zauberquadrat n. ((e)s, e) carré magique \bullet Ein quadratisches Zahlenschema aus den Zahlen $1, 2, 3, \dots n^2$ heisst ein magisches Quadrat der Ordnung n, wenn die Zahlen in jeder Spalte, jeder Zeile und jeder Diagonale die Gleiche Summe ergeben. (Syn. diabolisches Quadrat, magisches Quadrat)

Zehner m. (s, -) chiffre des dizaines.

Zehnerbruch m. (s, "e) fraction décimale ♦↑Bruch, dessen ↑Nenner eine ↑Zehnerpotenz ist.

(Syn. Dezimalbruch)

Zehnerlogarithmus m. (-, men) logarithme décimal, en base 10. (s. Logarithmus)

Zehnerpotenz f. (-, en) puissance de dix. (s. Exponent, Potenz)

Zehnersystem n. (s, e) *Syn.* Dezimal-system.

Zeile f. (-, n) ligne. (s. Matrix, Spalte)

Zentrale f. (-, n) droite passant par le centre d'un cercle. (s. Passante, Sekante, Tangente)

Zentralpunkt m. (s, e) *Syn.* Symmetriezentrum.

zentrische Streckung Syn. Streckung.

Zentriwinkel m. (s, -) *Syn.* Mittelpunktswinkel.

Zentrum n. (s, en) Syn. Mittelpunkt. zerfallend adj. Syn. entartet.

Zerlegung f. (-, en) décomposition, factorisation ♦Als Beispiel hat man die Darstellung einer ↑natürlichen ↑Zahl als ↑Produkt von ↑Primzahlen.

(s. Faktorzerlegung)

Zermelo, Ernst (1871-1953). Deutscher Mathematiker.

Zielfunktion f. (-, en) fonction-but. (s. Extremwertaufgabe, Optimierung)

Zielmenge f. (-, n) ensemble but, ensemble d'arrivée. (s. Abbildung)

Ziffer f. (-, n) chiffre. (s. Zahl)

Zirkel und Lineal règle et compas ♦Werkzeuge der konstruktiven Geometrie mit den berühmten Problemen der ↑Dreiteilung des Winkels, der ↑Quadratur des Kreises und der ↑Würfelverdopplung.

zufällig adj. aléatoire.

Zufallsexperiment n. (s, e) expérience aléatoire ◆Bei einem solchen Experiment weiss man was vorkommen kann aber nicht was vorkommen wird. Das Würfelspiel ist ein klassisches Beispiel. (s. Wahrscheinlichkeit)

Zufallsgrösse f. (-, n) *Syn.* Zufallsvariable.

Zufallsvariable f. (-, n) variable aléatoire (probabilité).

Zufallsversuch m. (s, e) *Syn.* Zufalls-experiment.

zunehmend adj. *Syn.* wachsend.

zuordnen tr. assigner, faire correspondre, mettre en relation ◆Bei einer ↑Abbildung ist jedem ↑Element der ↑Ausgangsmenge genau ein Element der ↑Zielmenge zugeordnet.

Zuordnung f. (-, en) correspondance, relation. (s. zuordnen)

zusammenfallend adj. confondu. (s. gleich, identisch, übereinanderliegend)

zusammengesetzt adj. composé.

- **Funktion** fonction composée, fonction de fonction. (s. Verkettung)
- **Zahl** nombre composé. (s. Zahl)

zusammenhängend adj. connexe.

Zwanzigflächner m. (s, -) Syn. Ikosaeder.

zweidimensional adj. bidimensionnel (s. dreidimensional, eindimensional)

zweielementige Menge paire. (s. Paar)

Zweierpotenz f. (-, en) puissance de deux.

Zweiersystem n. (s, e) *Syn.* Binärsystem.

zweischalig adj. à deux nappes ♦Die Gleichung

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

stellt ein zweischaliges \uparrow Hyperboloid dar. (s. einschalig, Schale)

zweiseitige Fläche surface à deux faces. (s. Moebius de-fr, Möbiusband)

zweistellig adj. s. Zahl.

Zweitafelverfahren n. géométrie de Monge. (s. darstellende Geometrie)

zweite Ableitung dérivée seconde.

Zwischenwertsatz théorème de la valeur intermédiaire \bullet Sei f \uparrow stetig auf [a,b], sie besitzt dort einen kleinsten Wert m und einen grössten M. Sei jetzt c mit m < c < M, dann gilt

$$\exists \, \xi \in [a, b] : f(\xi) = c$$

Hat man zusätzlich $m \cdot M \leq 0$ dann gibt es mindestens eine \uparrow Nullstelle in diesem \uparrow Intervall.

Zwölfeck n. (s, e) dodécagone. (s. Polygon)

Zwölfflächner m. (s, -) *Syn.* Dodekaeder.

Zykloide f. (-, n) cycloïde ♦Wenn ein ↑Kreis auf einer ↑Geraden abrollt, dann beschreibt ein mit der ↑Kreisscheibe starr verbundener ↑Punkt P eine als Zykloide bezeichnete Kurve. P kann im Kreisinnern, auf der ↑Kreislinie oder im Aussengebiet des Kreises liegen. (s. Deltoid(e))

zyklometrische Funktion fonction cyclométrique. (Syn. Arkusfunktion)

Zylinder m. (s, -) cylindre. (s. Kreiszylinder)

$Symboles\ math\'ematiques-Mathematische\ Symbole$

Signes usuels – übliche Zeichen

égal	=	gleich
symbole d'affectation	=:	definierendes Gleichheitszeichen
différent de, pas égal à	\neq	ungleich
environ égal à	\approx	ungefähr gleich
plus	+	Additionszeichen, plus
moins	_	Subtraktionszeichen, minus
plus ou moins	土	plus oder minus
multipliá pon foia		Multiplicationszeichen, mal,
multiplié par, fois	· , ×	multipliziert mit
divigé par gur	\underline{m}	Divisionszeichen, geteilt durch,
divisé par, sur	n	dividiert durch
rapport	a:b	Verhältnis a zu b
plus grand que	>	grösser als
plus grand ou égal à	≽	grösser oder gleich
plus petit que	<	kleiner als
plus petit ou égal à	€	kleiner oder gleich
proportionnel à	\propto	proportional zu
signe somme ($sigma$ majuscule)	Σ	Summenzeichen (grosses Sigma)
signe produit $(pi \text{ majuscule})$	П	Produktzeichen (grosses Pi)
racine carrée	² √=: √	Quadratwurzel
racine n -ième	$\sqrt[n]{}$	n-te Wurzel
a (à la) puissance b	a^b	a hoch b
valeur absolue de a	a	Betrag von a
factorielle de n ou n -factorielle	n!	n-Fakultät
acofficient binomial (lu . k parmi m)	(n)	Binomialkoeffizient (lies : n über k ,
coefficient binomial (lu : k parmi n)	$\binom{n}{k}$	n tief k)
f est fonction de A vers B	$f:A\to B$	f ist Funktion von A nach B
a ost appliqué sur h	$a \mapsto b$	a wird b zugeordnet, auf b
a est appliqué sur b	$a \mapsto b$	abgebildet
fonction décroissante	$f \searrow$	fallende Funktion
fonction croissante	$f \nearrow$	wachsende Funktion
permutation cyclique	Q	zyklische Vertauschung

${\bf Ensembles\ de\ nombres-Zahlenmengen}$

ensemble des entiers naturels	N	Menge der natürlichen Zahlen
ensemble des entiers naturels	N*	Menge der natürlichen Zahlen
(privé de zéro)		(ohne Null)
ensemble des entiers relatifs	\mathbb{Z}	Menge der ganzen Zahlen
ensemble des nombre rationnels	$\mathbb Q$	Menge der rationalen Zahlen
ensemble des nombres réels	\mathbb{R}	Menge der reellen Zahlen
ensemble des nombres réels	\mathbb{R}_+^*	Menge der positiven reellen
positifs		Zahlen
ensemble des nombres réels non	\mathbb{R}_+	Menge der nichtnegativen reellen
négatifs		Zahlen
produit cartésien de $\mathbb R$ de degré	\mathbb{R}^n	n-faches kartesisches Produkt
n		von \mathbb{R}
ensemble des nombres complexes	\mathbb{C}	Menge der komplexen Zahlen

$Nombres\ sp\'{e}ciaux-spezielle\ Zahlen$

nombre d'Euler	e = 2,718	eulersche Zahl
pi	$\pi=3,141\ldots$	Kreiszahl
unité imaginaire	$i = \sqrt{-1}$	imaginäre Einheit

Logique-Logik

conjunction, et	\wedge	Konjunktion, und	
disjonction, ou	V	Disjunktion, oder	
non, n'est pas	_	Negation, nicht	
implication, si alors	\Rightarrow	Implikation, wenn, so	
double implication, si et	\Leftrightarrow	Bijunktion, genau dann, wenn	
seulement si		Dijunktion, genau dann, wenn	
pour tout x , quantificateur	$\forall x$	für alle x , Allquantor	
universel	V X		
il existe au moins un x ,	$\exists x$	es gibt mindestens ein x ,	
quantificateur existentiel		Existenzquantor	
il existe exactement un x	$\exists ! x$	es gibt genau ein x	
	· · · · · · · · · · · · · · · · · · ·		

${\bf G\acute{e}om\acute{e}trie-Geometrie}$

angle droit	L	rechter Winkel
angle ABC de sommet B	\widehat{ABC}	Winkel ABC mit Spitze in B
angle entre a et b	$\angle(a,b)$	Winkel zwischen a und b
parallèle à		parallel zu
perpendiculaire à		rechtwinklig zu
semblable	~	ähnlich
degré	0	Grad
minute	,	Minute
seconde	"	Sekunde

Ensembles – Mengen

est élément de, appartient à	€	ist Element von, gehört zu
n'appartient pas à	∉	ist nicht Element von
ensemble vide	Ø	leere Menge
tel que	:,	so, dass
union (réunion)	U	vereinigt mit (Vereinigung)
inter (intersection)	\cap	geschnitten mit (Durchschnitt)
ensemble puissance de A	$\mathscr{P}(A), \mathfrak{P}(A)$	Potenzmenge von A
produit cartésien	$A \times B$	kartesisches Produkt
(« A croix B » $)$	$A \times D$	$(\ll A \text{ Kreuz } B \gg)$
couple formé de a et b	(a,b)	geordnetes Paar aus a und b
n-uplet, n -tuple	(a_1,a_2,\ldots,a_n)	n-Tupel

${\bf Analysis}-{\bf Analysis}$

dérivée première de $f(x)$	$\frac{\mathrm{d}f(x)}{\mathrm{d}x} =: f'(x)$	erste Ableitung von $f(x)$
dérivée seconde de $f(x)$	$\frac{\mathrm{d}^2 f(x)}{\mathrm{d}x^2} =: f''(x)$	zweite Ableitung von $f(x)$
dérivée n -ième de $f(x)$	$\frac{\mathrm{d}^n f(x)}{\mathrm{d} x^n} =: f^{(n)}(x)$	n-te Ableitung von $f(x)$
domaine de définition de f	D_f	Definitionsbereich von f
domaine des valeurs	W_f	Wertebereich, Wertemenge von f
intégrale de la fonction f entre	$\int_{a}^{b} f(x) dx$	Integral der Funktion f nach den
les bornes a et b	$\int_{a}^{b} \int_{a}^{b} (x) dx$	Grenzen a und b
l'infini	∞	das Unendliche
limite	\lim	Limes, Grenzwert

Algèbre linéaire et géométrie analytique – lineare Algebra und analytische Geometrie

vecteur a	$ec{a}$	Vektor a
norme du vecteur \vec{a}	$\parallel \vec{a} \parallel$	Norm des Vektors \vec{a}
produit scalaire de \vec{a} et \vec{b}	$ec{a}\cdotec{b}$	Skalar produkt von \vec{a} und \vec{b}
produit vectoriel de \vec{a} et \vec{b}	$ec{a} imesec{b}$	Vektorprodukt von \vec{a} und \vec{b}
f rond g (composition)	$f \circ g$	f verkettet mit g (Verkettung)
A et B sont isomorphes	$A \cong B - A \cong B$	A und B sind isomorph
dimension de l'espace vectoriel V	$\dim V - \dim V$	Dimension des Vektorraumes V

Deuxième partie Français – Allemand

Zweiter Teil Französisch – Deutsch abaisser algèbre

A

abaisser tr. fällen ◆Dans un ↑triangle ABC, on peut construire, tracer ou abaisser sur AB la ↑hauteur issue de C.

abaque m. Abakus ♦Du grec *abax* ou *abakos* « table à calcul ». (*syn.* boulier)

abélien adj. abelsch.

(cf. Abel de-fr, commutatif)

abscisse f. Abszisse, Stelle ◆Appellation usuelle pour la première ↑coordonnée d'un ↑point dans un ↑repère ↑bidimensionnel.

à l'origine x-Achsenabschnitt ◆Désigne le ↑point d'intersection d'une ↑droite avec l'↑axe des x dans le ↑plan. (cf. ordonnée à l'origine, zéro d'une fonction).

(cf. ordonnée)

absolu adj. absolut, global \bullet Une \uparrow fonction f a un \uparrow maximum absolu (ou \uparrow global) en x_0 si :

$$f(x) \leqslant f(x_0) \ \forall x \in D_f$$

un †minimum absolu (ou global) si :

$$f(x) \geqslant f(x_0) \ \forall x \in D_f$$

(cf. local, relatif)

acutangle cf. triangle acutangle.

addition f. Addition ◆L'addition (de ↑nombres, de ↑vecteurs, de ↑matrices, etc.) est une ↑opération interne, ↑associative, ↑commutative, possédant un ↑élément neutre et dont chaque élément a un ↑inverse; le ↑signe de l'addition est + et son résultat est une ↑somme. (cf. groupe)

adjacent adj. anliegend.

- a) angle anliegender Winkel ◆↑Angle qui partage son ↑sommet et un ↑côté avec un autre.
- b) **cathète** anliegende Kathete ◆Cathète formant avec l'↑hypoténuse l'↑angle étudié.

(cf. opposé)

affine cf. fonction affine.

affinité f. Affinität ◆↑Transformation du ↑plan (resp. de l'↑espace) définie par un ↑axe (resp. un plan) de ↑points fixes, une ↑direction et un ↑rapport; c'est une généralisation de la ↑symétrie axiale. L'↑ellipse comme image affine d'un ↑cercle en est l'exemple le plus fréquent. (cf. symétrie oblique, transformation affine)

affixe f. Bezeichnung für eine komplexe Zahl z = a + ib, die den Punkt P(a;b) darstellt \bullet Nom donné au \uparrow nombre complexe z = a + ib lorsqu'il représente le \uparrow point P(a;b). (cf. Avant-propos p. 9)

aire f. Flächeninhalt, Inhalt.

aléatoire adj. zufällig. (*cf.* expérience aléatoire)

aleph m. Aleph (\aleph) \blacklozenge Première lettre de l'alphabet hébreu; \aleph_0 est le \uparrow cardinal de tout \uparrow ensemble infini \uparrow dénombrable.

algèbre f. Algebra ◆Le mot algèbre vient d'une partie du titre du livre Kitab al jabr w'al muqabalah, ce qui signifie « Livre de la remise en place et de la simplification », ouvrage du mathématicien et astronome Mohammed ibn Mousa Al Khwarizmi (788-850); la « remise en place » correspondant à notre expression « dans une ↑équation, passer un ↑élément de l'autre côté de l'↑égalité en changeant son ↑signe » (en

algébrique angle

langage plus rigoureux, on dirait « additionner de part et d'autre de l'équation l'↑inverse additif d'un des éléments »). Longtemps, en Espagne du sud (qui a été pendant des siècles occupée par les Arabes), on appelait algebrista celui qui remettait les os en place après une fracture, ce qui correspond à notre « rebouteux ».

algébrique adj. algebraisch.

- a) **équation** algebraische Gleichung (*syn*. équation polynomiale; *ant*. équation transcendante).
- b) **fonction** algebraische Funktion ◆↑Fonction polynomiale, ↑rationnelle ou ↑irrationnelle (ant. fonction transcendante).
- c) **nombre** algebraische Zahl Solution d'une †équation algébrique à †coefficients rationnels (ant. nombre transcendant).
- d) structure algebraische Struktur
 ◆P. ex. un ↑groupe, un ↑anneau ou un ↑corps.

algorithme m. Algorithmus ◆Méthode utilisée pour résoudre une classe de problèmes qui ne diffèrent que par la valeur des données introduites dans les différentes étapes; la formule de ↑résolution d'une ↑équation du deuxième degré en est un exemple simple. Un programme informatique est un algorithme rédigé dans un langage compris par un ordinateur. Ce terme a été forgé en hommage à Al Khwarizmi. (cf. algèbre, organigramme)

 d'Euclide euklidischer Algorithmus
 ♦Méthode de calcul qui permet de déterminer le ↑plus grand diviseur commun (pgdc) de deux ↑nombres naturels.

alignés adj. s. points alignés. alternée adj. alternierende. a) **série** f. Reihe ♦P. ex.

$$\sum_{k=0}^{\infty} (-1)^k a_k \text{ avec } a_k > 0$$

b) **suite** f. Folge \blacklozenge Suite $\langle a_n \rangle$ telle que

$$a_n \cdot a_{n+1} < 0 \ \forall n$$

 ${\bf amplifier} \ {\rm tr.\ erweitern.}$

(cf. amplification)

amplification f. Erweiterung ◆Manipulation de ↑fraction :

$$\frac{a}{b} \Rightarrow \frac{a}{b} = \frac{a}{b} \cdot \frac{c}{c} = \frac{ac}{bc}$$

(ant. simplification; cf. irréductible)

analyse f. Analysis ♦David Hilbert :

L'analyse mathématique est une symphonie cohérente de l'infini.

(cf. Hilbert de-fr)

combinatoire Kombinatorik ◆Ensemble des techniques qui servent à compter (ou dénombrer) certaines structures finies ou à les énumérer. (syn. combinatoire, techniques de dénombrement)

angle m. Winkel ♦Un angle plan est défini par deux ↑demi-droites issues d'un même ↑point ou par deux ↑rayons d'un ↑cercle. La mesure d'un angle peut se faire en ↑degrés, ↑grades ou ↑radians.

- adjacent anliegender Winkel.
- aigu spitzer Winkel ◆Angle compris entre 0° et 90°.
- au centre Mittelpunktswinkel, Zentriwinkel ◆Angle qui a son ↑sommet au ↑centre d'un cercle; il mesure le double d'un ↑angle inscrit qui intercepte le même ↑arc.
- de rotation Drehwinkel.
- d'inclinaison Neigungswinkel, Steigungswinkel. (cf. pente)
- d'intersection Schnittwinkel ◆Angle de deux ↑courbes, défini par l'angle des ↑tangentes (si elles existent) au point d'intersection de ces courbes.

angles antécédent

- d'ouverture Öffnungswinkel.
- **droit** rechter Winkel.
- extérieur, externe Aussenwinkel.
- inscrit Peripheriewinkel, Umfangswinkel ◆Angle qui a son sommet sur un cercle et qui en intercepte un arc. Deux tels angles interceptant le même arc sont égaux. (cf. arc capable)
- intérieur Innenwinkel ◆L'angle intérieur d'un ↑polygone régulier mesure

$$\frac{n-2}{n} \cdot \pi$$

où n est le \uparrow nombre de \uparrow côtés.

- **nul** Nullwinkel.
- **obtus** stumpfer Winkel ◆Angle compris entre 90° et 180°.
- **plat** gestreckter Winkel.
- **plein** Vollwinkel.
- rentrant überstumpfer Winkel
 ♦Angle compris entre 180° et 360°.
- solide Raumwinkel ◆Angle tridimensionnel engendré par les †génératrices d'un †cône de révolution; sa mesure est le †stéradian (sr). En analogie avec le radian pour l'angle plan, on considère une †sphère centrée au sommet du cône : le stéradian est alors le †rapport de l'†aire de la †calotte interceptée par le cône sur le carré du rayon.

angles m. pl. Winkel.

- alternes-externes Wechselwinkel.
- alternes-internes Wechselwinkel.
- **complémentaires** Komplementärwinkel, Komplementwinkel.
- **correspondants** Nachbarwinkel, Stufenwinkel.
- **égaux** kongruente Winkel.
- opposés par le sommet Scheitelwinkel.
- **supplémentaires** Nebenwinkel.

anneau m. Ring ◆Soit M un ↑ensemble non vide muni de deux ↑opérations; la ↑structure [M, *, o] est un anneau si :

- a) [M,∗] est un ↑groupe ↑abélien;
- b) M est †fermé relativement à l'opération o;
- c) l'opération o est \u2224associative;
- d) l'opération ∘ est ↑distributive relativement à l'opération *.
- **circulaire** Kreisring.
- d'intégrité Integritätsbereich ◆Ce terme peut varier en signification, mais, en général, il s'agit d'un ↑anneau unitaire ↑commutatif sans ↑diviseur de zéro, dont Z est un exemple (syn. domaine d'intégrité).
- intègre syn. anneau d'intégrité.
- unitaire Ring mit Eins ◆Anneau dont la deuxième opération possède un ↑élément neutre.

ansatz m. Ansatz ♦↑Conjecture, ↑hypothèse, tentative pour ↑modéliser ou ↑résoudre un ↑problème; à ce titre, il fait partie des méthodes dites heuristiques. Par exemple, au vu d'un ensemble de ↑mesures expérimentales, on fera l'ansatz (utilisé aussi tel quel par les anglophones!) d'un comportement ↑linéaire ou ↑exponentiel qui sera précisé par des méthodes idoines; ou encore, on fera l'ansatz d'une ↑fonction bien choisie comme ↑solution particulière d'une ↑équation différentielle.

(cf. Avant-propos, p. 3)

antécédent m. Urbild ◆Lors d'une ↑application

$$f: A \to B$$

l'^ensemble

$$\{a: a \in A \land f(a) = b \in B\}$$

est l'ensemble des antécédents (ou \uparrow préimages) de b. Si f est une \uparrow bijection, a est unique et on écrit :

$$a = f^{-1}(b)$$

antiréflexif arccotangente

(cf. fonction réciproque)

antiréflexif adj. antireflexiv ♦Une ↑relation R dans A est antiréflexive si

$$(a, a) \notin \mathbf{R} \subset \mathbf{A} \times \mathbf{A} \ \forall a \in \mathbf{A}$$

antisymétrique adj.

- a) **matrice** schiefsymmetrische Matrix. (*cf.* matrice)
- b) **relation** antisymmetrische, identitive Relation Φ Relation \mathcal{R} telle que :

$$x \mathcal{R} y \wedge y \mathcal{R} x \Rightarrow x = y$$

apothème m.

- d'un polygone régulier Inkreisradius ◆↑Rayon du ↑cercle inscrit.
- d'une pyramide régulière Seitenhöhe ◆Distance du ↑sommet à l'une des ↑arêtes de la ↑base.

application f. Abbildung ◆↑Relation ↑univoque entre A et B qui s'écrit :

$$f: A \to B$$

 $x \mapsto y = f(x)$

où A est l'\tensemble de départ (ou \tensemble) dont le \tensemble de définition est un \tensemble; B est l'\tensemble d'arrivée (ou but) dont le \tensemble d'arrivée (ou but) dont le \tensemble des valeurs (ou \tensemble image) f(A) est un sous-ensemble; y est l'\tensemble de x par f et x est une \tensemble image (un \tensemble antécédent) de y. Si A et B sont des sous-ensembles de \mathbb{R} , on parle plus volontiers de \tensemble fonction. Précisons que ce vocabulaire est parfois sujet à variations...

- affine affine Abbildung. (cf. fonction affine, transformation affine)
- identité identische Abbildung, Identität ◆Application d'un ↑ensemble M sur lui-même définie comme suit :

$$id_{\mathcal{M}}: x \mapsto x \ \forall x \in \mathcal{M}$$

(syn. identité)

- inverse Kehrabbildung. (cf. fonction inverse)
- linéaire lineare Abbildung◆Application

$$f: V \to W$$

où V et W sont deux \uparrow espaces vectoriels sur le même \uparrow corps $\mathbb K$ avec la propriété :

$$\forall \vec{u}, \vec{v} \in V \text{ et } \forall \lambda, \mu \in \mathbb{K}$$

$$f(\lambda \vec{u} + \mu \vec{v}) = \lambda f(\vec{u}) + \mu f(\vec{v})$$

i. e. les \uparrow combinaisons linéaires sont \uparrow conservées. (cf. homomorphisme, image de f, noyau)

réciproque Umkehrabbildung.(cf. fonction réciproque)

approximation linéaire lineare Approximation \bullet Si une \uparrow fonction f est \uparrow dérivable en x_0 et dans un voisinage $V(x_0)$, on peut en faire une approximation linéaire avec :

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

P. ex. $\sin x \approx x$ dans V(0). (cf. développement en série, développement limité, MacLaurin, Taylor)

arbitraire adj. willkürlich. (*cf.* quelconque)

arc m. Bogen.

- capable Fasskreisbogen ◆↑Lieu des
 ↑points formant un arc de ↑cercle
 qui « voient » un ↑segment sous un
 ↑angle donné. Le ↑cercle de Thalès
 en est un ↑cas particulier.
- de cercle Kreisbogen.

arccosinus m. Arkuskosinus ◆↑Fonction ↑cyclométrique donnée par :

$$f(x) = \arccos(x)$$
 avec $D_f =]-1, 1[$

arccotangente f. Arkuskotangente ◆↑Fonction ↑cyclométrique donnée par :

$$f(x) = \operatorname{arccot}(x) \operatorname{avec} D_f = \mathbb{R}$$

arcsinus axe

arcsinus m. Arkussinus **♦**↑Fonction †cyclométrique donnée par :

$$f(x) = \arcsin(x) \text{ avec } D_f =]-1, 1[$$

arctangente f. Arkustangens ◆↑Fonction ↑cyclométrique donnée par :

$$f(x) = \arctan(x) \text{ avec } D_f = \mathbb{R}$$

arête f. Kante ♦↑Droite (ou ↑segment) délimitant deux demi-plans qui contiennent deux des ↑faces d'un ↑polyèdre.

- **opposée** Gegenkante.

Argand, Jean-Robert (1768-1822). Mathématicien suisse ◆II introduit en 1806 la configuration plane des nombres complexes (plan d'Argand-Gauss) et on lui doit le terme de module d'un nombre complexe.

argument m. Argument ♦Désigne une valeur du ↑domaine de définition d'une ↑fonction.

arithmétique adj. arithmetisch. (*cf.* moyenne arithmétique, suite arithmétique)

arithmétique f. Arithmetik ♦Lautréamont (1846-1870) :

Arithmétique! algèbre! géométrie! trinité grandiose! triangle lumineux! Celui qui ne vous a pas connues est un insensé!

arrangement m. Variation \blacklozenge Un arrangement de n objets pris r à r est une \uparrow permutation de r \uparrow éléments pris dans un \uparrow ensemble de n éléments. Le nombre de ces permutations est donné par la formule :

$$A_r^n = \frac{n!}{(n-r)!} \quad (r < n)$$

(cf. combinatoire)

assertion f. Behauptung. (cf. conclusion)

associatif adj. assoziativ.

(cf. associativité)

associativité f. Assoziativgesetz, Assoziativität ♦P. ex. la multiplication est associative :

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c = a \cdot b \cdot c$$

asymptote f. Asymptote.

- a) une asymptote \(\gamma\) verticale est la \(\gamma\) représentation graphique des \(\gamma\) pôles d'une \(\gamma\) fonction.
- b) la \uparrow droite d' \uparrow équation y = b est une asymptote horizontale à la \uparrow courbe d'équation y = f(x) si

$$\lim_{x \to \pm \infty} f(x) = b$$

c) la droite d'équation y = ax + best une asymptote \uparrow oblique à la courbe d'équation f(x) si

$$\lim_{x \to \pm \infty} [f(x) - (ax + b)] = 0$$

attracteur m. Attraktor ♦↑Ensemble de ↑points vers lequel un système dynamique finit par se stabiliser. P. ex. la ↑conjecture de Syracuse (ou de Collatz) concerne la ↑suite

$$a_{n+1} = \begin{cases} \frac{a_n}{2} & \text{si } a_n \text{ pair} \\ 3a_n + 1 & \text{si } a_n \text{ impair} \end{cases}$$

avec $a_0 \in \mathbb{N}^*$, qui possède l'ensemble $\{1, 2, 4\}$ comme attracteur; cette conjecture a été vérifiée (2016) jusqu'à $2^{60} = 1,15 \cdot 10^{18}$.

à un(e)... près bis auf ein(e)... ♦Une †primitive est définie à une †constante près.

automorphisme m. Automorphismus ♦↑Endomorphisme ↑bijectif.

(cf. homomorphisme, isomorphisme)

auxiliaire adj. *cf.* fonction auxiliaire, inconnue auxiliaire, variable auxiliaire.

axe m. Achse.

- de rotation Drehachse.
- des abscisses m. Abszissenachse, x-Achse \diamond Aussi nommé « axe des x ».

- des ordonnées Ordinatenachse, y-Achse ♦Aussi nommé « axe des y ».
- focal Hauptachse ◆↑Droite passant par un ↑foyer d'une ↑conique et ↑perpendiculaire à la ↑directrice.
- principal Hauptachse ◆Soit l'↑ellipse

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

alors a et b sont les \uparrow demi-axes, 2a l'axe principal (\uparrow grand axe) et 2b le \uparrow petit axe.

radical Chordale, Potenzgerade, Potenzlinie ◆↑Droite dont les ↑points ont la même ↑puissance par rapport à deux ↑cercles de ↑centres distincts.

axiome m. Axiom.

- **d'ordre** Anordnungsaxiom.

- de choix Auswahlaxiom.

axiomes de probabilités Axiome der Wahrscheinlichkeitsrechnung \blacklozenge Le \uparrow système axiomatique de Kolmogorov est le suivant : soit un \uparrow ensemble Ω \uparrow non vide (espace d'état ou ensemble fondamental ou univers ou espace d'échantillonnage ou...) et $\mathfrak{P}(\Omega)$ son \uparrow ensemble puissance ainsi qu'une \uparrow application $P:\mathfrak{P}(\Omega)\to\mathbb{R}$.

Alors on a:

(K1)
$$0 \le P(A) \le 1$$
, $\forall A \subset \Omega$

(K2)
$$P(\Omega) = 1$$

(K3)
$$A \cap B = \emptyset$$

 $\Rightarrow P(A \cup B) = P(A) + P(B)$

(cf. Kolmogorov fr-all).

barre de fraction biunivoque

\mathbf{B}

barre de fraction Bruchstrich. (cf. division, fraction)

barycentre m. Schwerpunkt ◆De la racine grecque barus « lourd, grave », qui a aussi donné bar (unité de pression atmosphérique), baromètre et baryton. (syn. centre de gravité)

base f.

- d'une puissance Basis einer Potenz. (cf. puissance)
- d'un espace vectoriel Basis eines Vektorraums ◆↑Ensemble de ↑vecteurs ↑indépendants et ↑générateurs.
- d'un logarithme Basis eines Logarithmus. (cf. fonction exponentielle, logarithme)
- d'un polyèdre, d'un solide
 Grundfläche eines Polyeders, eines
 Körpers ◆↑Face sur laquelle repose
 un ↑polyèdre, un ↑solide.
- d'un polygone Grundseite eines Polygons ◆↑Côté inférieur d'un polygone.
- orthogonale Orthogonalbasis ◆Base dont les vecteurs sont orthogonaux
 ↑deux à deux.
- **orthonormale** Orthonormalbasis \bullet Base \uparrow orthogonale dont les vecteurs sont de \uparrow norme 1. Si la base $B = \{\vec{e_1}, \vec{e_2}\}$ est orthonormale (aussi dite \uparrow orthonormée), alors on a

$$\vec{e}_1 \perp \vec{e}_2 \text{ et } ||\vec{e}_1|| = ||\vec{e}_2|| = 1$$

- **orthonormée** *syn.* base orthonormale.

bicarré adj. biquadratisch ◆Désigne une †équation du type :

$$ax^4 + bx^2 + c = 0$$

bidimensionnel adj. zweidimensional. (*cf.* espace, tridimensionnel, unidimensionnel)

bijection f. Bijektion, bijektive Abbildung \uparrow Application $f: A \rightarrow B$ dans laquelle tout \uparrow élément de son \uparrow ensemble d'arrivée a un et un seul \uparrow antécédent, i. e. est \uparrow image d'exactement un élément de son \uparrow ensemble de départ. En d'autres termes :

$$\forall b \in B, \exists ! a \in A : b = f(a)$$

Une application bijective est donc †injective et †surjective. (cf. injection, surjection)

binôme m. Binom \blacklozenge Expression \uparrow algébrique composée de deux \uparrow termes, p. ex. $a \pm b$.

- de Newton binomischer Lehrsatz:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

où les $\binom{n}{k}$ sont les \uparrow coefficients binomiaux.

(cf. monôme, polynôme)

bipoint m. Vektor, der durch zwei Punkte definiert ist ♦↑Vecteur déterminé par un ↑couple de ↑points :

$$(A, B) := \overrightarrow{AB}$$

bissection f. Halbieren ◆Partage en deux parties égales, d'où le terme ↑bissectrice. (cf. méthode de la bissection)

bissectrice f. Winkelhalbierende ♦↑Droite partageant un ↑angle en deux parties égales. C'est aussi le ↑lieu des ↑points ↑équidistants de deux droites.

biunivoque adj. eineindeutig (1-1-d)

bord

 Φ Une \uparrow bijection est une application biunivoque. (*cf.* multivoque, univoque)

bord m. Rand. (*cf.* condition au bord, frontière)

Borel, Armand (1923-2003).

Mathématicien suisse ◆Il est considéré comme le plus éminent mathématicien suisse de la seconde moitié du XX^e siècle.

Borel, Émile (1871-1956). Mathématicien français.

borne f. Grenze, Schranke.

- d'intégration Integrationsgrenze◆Dans l'↑intégrale

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

b est la borne supérieure et a la borne inférieure.

- **d'un intervalle** Grenze eines Intervalls \blacklozenge La borne supérieure de l'intervalle]a, b[est b et sa borne inférieure est a.
- inférieure untere Schranke ◆Pour un ↑ensemble M de ↑nombres ↑réels, on a S comme borne inférieure si

$$|x| \geqslant S \ \forall x \in M$$

 supérieure obere Schranke ◆Pour un ensemble M de nombres réels, on a S comme borne supérieure si

$$|x| \leqslant S \ \forall x \in M$$

borné adj. beschränkt.

boule f. Kugel, Kugelkörper ◆↑Ensemble des ↑points intérieurs d'une ↑sphère; une boule est ↑ouverte si le ↑bord n'est pas compris, ↑fermée sinon. Le bord est la sphère formant la ↑frontière de ce ↑domaine.

- inscrite Inkugel.
- circonscrite Umkugel.

boulier m. *syn.* abaque.

Bourbaki, Nicolas (né en 1935). ◆Pseudonyme d'un collectif de mathématiciens français fondé par Henri Cartan (cf. Cartan fr-all) et André Weil (cf. Weil fr-all). Ils décident d'écrire un traité axé sur les structures fondamentales pour l'étude de l'analyse, i. e. la théorie des ensembles, l'algèbre, la topologie, les espaces vectoriels topologiques et l'intégration. Bourbaki refonde totalement les mathématiques mais actuellement ses publications se font plus rares.

bouteille de Klein kleinsche Flasche. (*cf.* Klein de-fr)

branche f. Ast ◆Toute ↑courbe est composée d'une ou de plusieurs branches; p. ex. une ↑hyperbole est formée de deux branches.

\mathbf{C}

calcul m. Rechnung.

- **d'erreur** Fehlerrechnung.
- **différentiel** Differenzialrechnung.
- **infinitésimal** Infinitesimalrechnung.
- intégral Integralrechnung ◆Chapitre dédié aux intégrales de fonctions réelles, i. e. de leurs fonctions primitives (intégrales indéfinies) et d'intégrales définies (de Riemann), le point de départ étant le calcul d'aires. Avec le calcul différentiel, il est une part de l'analyse.

(cf. Riemann de-fr)

calotte sphérique Kugelkappe, Kugelsegment ♦Si un ↑plan coupe une ↑sphère, on obtient deux calottes sphériques.

cardinal d'un ensemble Kardinalzahl, Mächtigkeit einer Menge. (cf. puissance)

carré adj. viereckig.

carré m. Quadrat (cf. quadrilatère)

- magique diabolisches, magisches Quadrat, Zauberquadrat ◆Un schéma carré des ↑nombres $1, 2, 3, ..., n^2$ est un carré magique d'ordre n si l'↑addition des nombres de chaque ↑ligne, de chaque ↑colonne et de chaque ↑diagonale donne la même ↑somme.
- parfait Quadratzahl ◆Désigne le carré d'un naturel. (cf. mettre au carré)

Cartan, Élie (1869-1951). Mathématicien français.

Cartan, Henri (1904-2008).

Mathématicien français ◆Fils d'Élie, créateur, avec Dieudonné, du groupe Bourbaki. (cf. Bourbaki fr-all)

cas m.

- d'égalité des triangles Kongruenzsätze für Dreiecke.
- **possible** syn. issue (probabilité).
- particulier Spezialfall ◆P. ex. le †triangle †équilatéral est un cas particulier de triangle †isocèle.

cathète f. Kathete ♦Du grec *kathetos*, « perpendiculaire ».

- adjacente Ankathete ◆↑Côté adjacent à un ↑angle aigu dans un ↑triangle rectangle.
- opposée Gegenkathete ◆Côté opposé à un angle aigu dans un triangle rectangle.

(cf. hypoténuse)

Cauchy, Augustin-Louis (1789-1857). Mathématicien français ◆C'est en analyse que le nom de Cauchy reste le plus célèbre. Soucieux de rigueur, il introduit une notion précise de continuité et élabore une définition rigoureuse de l'intégrale. Son œuvre est le lien entre les mathématiques de la fin du XVIII^e siècle, encore très mêlées à la réalité physique, et celle de la deuxième moitié du XIX^e siècle où l'on s'efforce de construire une science justifiée rigoureusement, et qui prétend de plus en plus se suffire à elle-même.

(cf. critère, inégalité, suite de Cauchy)

Cavalieri, principe de Cavalieri-Prinzip ◆Si les figures planes, déterminées par les intersections de deux solides avec tout plan parallèle à un plan fixe donné, ont la même aire, alors les deux solides ont le même volume. Le Chinois Liu Hui (225-295) en avait présenté la première version connue en 263. (*cf.* Cavalieri de-fr, Zu Chongzhi fr-all)

ce qu'il fallait démontrer cf. Avantpropos, p. 3 et Abréviations, p. 13.

centre m. Mittelpunkt, Zentrum.

- de gravité Schwerpunkt ◆Celui d'un ↑triangle est l'↑intersection des ↑médianes. (syn. barycentre)
- de rotation Drehpunkt, Drehzentrum.
- de symétrie Symmetriezentrum,
 Zentralpunkt.
- d'homothétie Streckzentrum.

cercle m. Kreis, Kreislinie.

- circonscrit Umkreis ◆Cercle passant par les ↑sommets d'un ↑polygone.
- de Thalès Thaleskreis ◆Cercle qui a comme †diamètre l'†hypoténuse d'un †triangle rectangle y †inscrit. C'est donc un cas particulier d'†arc capable. (cf. théorème de Thalès)
- exinscrit Ankreis ◆Cercle ↑tangent aux ↑droites portant les ↑côtés d'un triangle, mais qui n'est pas le ↑cercle inscrit. Son centre est l'↑intersection de la ↑bissectrice intérieure de l'un des ↑sommets du triangle et des bissectrices extérieures des deux autres sommets. Il y a donc trois cercles exinscrits.
- inscrit Inkreis ◆Cercle tangent aux côtés d'un polygone.
- **osculateur** Schmiegkreis \blacklozenge Le cercle osculateur en un \uparrow point $P(x_0, y_0)$ d'une \uparrow courbe est le cercle qui approche le mieux la courbe en ce point. Étymologiquement parlant, le cercle donne un baiser à la courbe au point de contact...
- trigonométrique Einheitskreis
 ◆Cercle de ↑rayon unité centré à

l'†origine d'un †repère orthonormé dans le †plan euclidien et sur lequel sont définies les †fonctions trigonométriques.

cerf-volant m. Deltoid, Drachenvier-eck ◆↑Quadrilatère ↑convexe dont les ↑diagonales sont ↑perpendiculaires et les ↑côtés ↑isométriques deux à deux. Lorsque le cerf-volant est ↑concave (↑non convexe), il devient un ↑fer de lance. Si tous les côtés sont isométriques, c'est un ↑losange.

chaînette f. Kettenlinie ◆↑Courbe plane engendrée par un fil pesant flexible, infiniment mince, homogène et inextensible, suspendu entre deux points et placé dans un champ de pesanteur uniforme. Son ↑équation est donnée par :

$$f(x) = a \cosh \frac{x}{a} = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right)$$

(cf. cosinus hyperbolique)

changement de base Basiswechsel.

Chasles, Michel (1793-1880). Mathématicien français. (cf. relation de Chasles)

chemin polygonal Polygonzug, Streckenzug.

chiffre m. Ziffer.

- des dizaines Zehner.
- **des milliers** Tausenderziffer.
- des unités Einerziffer.
- romain römisches Zahlzeichen ◆Les chiffres romains formaient un système de numération à partir de seulement sept lettres pour écrire des ↑nombres ↑entiers. Les Romains ne connaissaient pas le zéro, qui n'apparaîtra en Europe qu'au X^e siècle.
 (cf. Gerbert d'Aurillac fr-all).

(cf. nombre)

circonférence f. Kreislinie, Kreisumfang, Peripherie, Umfang ◆Synonyme de ↑périmètre dans le cadre du ↑cercle.

circonscrit complexe

circonscrit adj. *cf.* cercle circonscrit, sphère circonscrite.

circulaire adj. *cf.* anneau, cône, couronne, cylindre, fonction, secteur, segment.

cisaillement m. Scherung. (*syn.* transvection; *cf.* transformation affine)

classe d'équivalence Äquivalenzklasse.

Clairaut, Alexis Claude (1713-1765). Mathématicien et astronome français. ♦C'est à lui qu'on doit le terme de courbe gauche.

classe d'équivalence Äquivalenzklasse. (cf. relation d'équivalence)

coefficient m.

- angulaire syn. pente.
- **binomial** Binomialkoeffizient :

$$\binom{n}{k} \coloneqq \frac{n!}{(n-k)! \, k!}$$

(cf. combinaison, factorielle).

- de proportionnalité Proportionalitätsfaktor. (syn. facteur).
- d'une équation Beizahl, Formvariable, Koeffizient.

(cf. paramètre)

colinéaire adj. kollinear \bullet Les \uparrow vecteurs \vec{u} et \vec{v} sont colinéaires s'il existe un \uparrow scalaire λ tel que

$$\vec{u} = \lambda \vec{v}$$

Il s'ensuit qu'ils sont †dépendants.

colonne f. Spalte. (cf. ligne, matrice)

combinaison f. Kombination \bullet Dénombrement des possibilités de prendre k objets, sans tenir compte de l'ordre et sans répétition, d'un ensemble en contenant n. Ce \uparrow nombre est donné par la formule :

$$C_k^n := \binom{n}{k} := \frac{n!}{(n-k)! \, k!} \quad (k \leqslant n)$$

(lire: $\langle k \text{ parmi } n \rangle$ ou $\langle n \text{ pris } k \text{ à } k \rangle$) (cf. coefficient binomial, combinatoire).

- linéaire Linearkombination \bullet Soit V un \uparrow espace vectoriel sur le \uparrow corps \mathbb{R} et $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}, \ \vec{v}_k \in V$. Alors le \uparrow vecteur

$$\vec{v} = \sum_{k=1}^{n} \lambda_k \vec{v}_k \in V, \ \lambda_k \in \mathbb{R}$$

est une combinaison linéaire des \vec{v}_k .

combinatoire f. *syn.* analyse combinatoire, techniques de dénombrement.

commutatif adj. kommutativ ♦Qualifie une ↑opération * telle que :

$$a * b = b * a \quad \forall a.b$$

Se dit aussi d'une \uparrow structure munie d'une telle opération, p. ex. \mathbb{R} est un \uparrow corps commutatif; si cette structure est un \uparrow groupe, on le qualifie aussi d' \uparrow abélien. (*cf.* Abel de-fr)

commutativité f. Kommutativität, Vertauschungsgesetz. (*cf.* commutatif)

compact adj. kompakt ◆Se dit d'un ↑ensemble ↑fermé et ↑borné. S'utilise parfois comme injure entre mathématiciens...

compas m. Zirkel. (*cf.* règle et compas)

complémentaire Ergänzungsmenge, Komplement ♦Soit B ⊂ A; le complémentaire de B dans A est alors défini par :

$$\overline{\mathbf{B}}^{\mathbf{A}} := \{ x : x \in \mathbf{A} \land x \notin \mathbf{B} \}$$

(lu: «B barre»)

complet adj. vollständig. (*cf.* induction complète)

complétion quadratique quadratische Ergänzung ◆Par exemple :

$$x^2 + 2x \rightarrow (x+1)^2 - 1$$

complexe adj. *cf.* nombre complexe.

composante conjecture

composante f. Komponente \bullet D'un $\uparrow n$ -uplet de la forme $(a_1, a_2, a_3, ..., a_n)$, les a_k sont les composantes. (cf. vecteur)

composé adj. zusammengesetzt. (*cf.* fonction composée, nombre composé)

composition f.

 - d'applications Verkettung von Abbildungen ♦Soit les application

$$f: A \to B$$
 et $q: B \to C$

alors la composition $g \circ f$ est définie par :

$$g \circ f : A \to C$$

 $(g \circ f)(x) := g(f(x))$

souvent lu : « g rond f ». (syn. fonction de fonction)

 de deux symétries Doppelspiegelung.

compréhension f. *cf.* ensemble donné en compréhension.

 ${\bf concave} \ {\rm adj.} \ {\rm konkav}.$

(syn. non convexe; ant. convexe)

concentrique adj. konzentrisch, mittelpunktsgleich ◆Qualifie des ↑cercles partageant un ↑centre commun. (ant. excentrique)

conclusion f. Behauptung, Schluss ◆À partir de certaines hypothèses H on énonce une conclusion C, reste à démontrer la validité de l'↑assertion

$$H \Rightarrow C$$

(cf. démonstration)

condition f. Bedingung.

- au bord Randbedingung.
- initiale Anfangsbedingung.
- **nécessaire** notwendige Bedingung.
- **suffisante** hinreichende Bedingung.

cône m. Kegel.

- circulaire Kreiskegel.
- circulaire droit syn. cône de révolution.
- de révolution gerade Kreiskegel
 ♦↑Solide engendré par la ↑rotation d'un ↑triangle rectangle autour d'une de ses ↑cathètes.
- tronqué Kegelstumpf.

confondu adj. gleich (dat.), identisch, übereinanderliegend, zusammenfallend.

congru modulo kongruent modulo \bullet On définit pour $a, b \in \mathbb{Z}$ et $m \in \mathbb{N}$

$$a \equiv b \pmod{m} \Leftrightarrow m \mid (a - b)$$

i. e. a est congru à b modulo m si m est un \uparrow diviseur de a-b.

congruence f. Kongruenz ◆Une figure †géométrique F, *i. e.* un †ensemble F de †points, est congruente à une figure géométrique F', s'il existe un †déplacement qui transfère F sur F'.

conique f. Kegelschnitt ◆↑Intersection d'un ↑cône de révolution (avec ses deux ↑nappes) et d'un ↑plan. Suivant l'↑angle formé par le plan et l'axe du cône, on a des ↑cercles, des ↑paraboles, des ↑hyperboles ou des ↑ellipses, y compris leurs ↑dégénérescences respectives si le plan passe par le ↑sommet du cône. (cf. dégénéré)

conjecture f. Vermutung.

- de Fermat fermatsche Vermutung◆Elle s'énonçait (env. 1637) :
 - « Pour $n \ge 3$, l'équation $x^n + y^n = z^n$ n'admet aucune solution avec x, y et z entiers naturels non nuls. »

Elle fut (enfin!) démontrée en 1994 par Andrew Wiles et porte désormais le nom de théorème de Fermat-Wiles. (cf. Fermat fr-all)

de Goldbach goldbachsche Vermutung ◆Chaque ↑nombre ↑pair plus

conjonction convergent

grand que 2 est représentable comme \uparrow somme de deux \uparrow nombres premiers. Depuis 2013, on sait que cette conjecture est vraie jusqu'à $N=4\cdot 10^{18}$. (cf. Goldbach de-fr)

- de Syracuse Syracuse-Vermutung.(cf. attracteur)

conjonction f. Konjunktion ♦ La conjonction de deux ↑propositions s'écrit

$$A \wedge B$$

On appelle également la conjonction le « et » logique. La conjonction est vraie si les deux propositions sont simultanément vraies, sinon elle est fausse. (cf. disjonction)

conjugué adj. konjugiert.

- a) diamètres konjugierte Diameter ◆Paire de ↑diamètres d'une ↑ellipse, ↑images par ↑affinité de diamètres ↑perpendiculaires d'un ↑cercle.
- b) **nombre complexe** konjugierte (komplexe Zahl) ♦À tout ↑nombre complexe

$$z = a + bi$$

correspond son conjugué:

$$\overline{z} := a - bi$$

connexe adj. zusammenhängend.

consécutif adj. *cf.* nombres consécutifs.

conservation f. ◆Pour exprimer la conservation d'↑angles, de ↑longueurs, etc. lors d'une ↑application, on utilise en allemand le suffixe -treu; p. ex. winkeltreu, längentreu, etc.

constant adj. konstant.

a) fonction konstante Funktion◆Fonction de la forme

$$f(x) = c \ \forall x$$

b) **suite** konstante Folge ◆Suite de la forme

$$a_n = a \ \forall n$$

constante f. Konstante.

- **d'Euler** eulersche Konstante \uparrow Limite γ de la \uparrow suite $\langle a_n \rangle$ avec

$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$

et : $\gamma \approx 0,5772156649...$

On ne sait toujours pas (2015) si ce nombre est \(\gamma\)rationnel ou \(\dagma\)irrationnel...

contact cf. point de contact.

continu m. Kontinuum ◆Dénomination pour l'↑ensemble des ↑nombres ↑réels, pour un ↑intervalle de nombres réels, ou plus généralement pour chaque ensemble ↑équipotent à l'ensemble des nombres réels.

continu adj.

- a) **fonction** stetige Funktion (ant. discontinue; cf. fonction).
- b) **proportion** fortlaufende Proportion.

continûment dérivable stetig differenzierbar ◆Se dit d'une ↑fonction dont la ↑dérivée est aussi une fonction ↑continue.

continuité f. Stetigkeit.

- uniforme gleichmässige Stetigkeit.

contrainte f. Nebenbedingung.

contraire adj. *cf.* évènement contraire.

contraposition f. Kontraposition. (*cf.* démonstration)

contre-exemple m. Gegenbeispiel.

convention f. Vereinbarung ◆Par convention, on écrit

$$\sin^2 x$$
 au lieu de $(\sin(x))^2$

convergence f. Konvergenz ◆Le fait, pour une ↑suite, d'être ↑monotone et ↑bornée, assure sa convergence. (ant. divergence; cf. critère)

convergent adj. konvergent \bullet Une \uparrow suite $\langle a_n \rangle$ est dite convergente vers le

convexe cotangente

†point d'accumulation a s'il existe un †naturel $N(\varepsilon)$ pour tout †nombre positif ε tel que :

$$|a_n - a| < \varepsilon \quad \forall n > N(\varepsilon)$$

On écrit alors : $\lim_{n\to\infty} a_n = a$. (ant. divergent; cf. critère)

convexe adj. konvex ◆Un ↑ensemble de ↑points (dans l'↑espace ou dans le ↑plan) est dit convexe si, pour toute ↑paire de points, il contient le ↑segment qui les relie. Dans le cas contraire, cet ensemble est dit ↑concave ou ↑non convexe. (cf. fonction convexe)

coordonnée f. Koordinate.

- polaire Polarkoordinate
 (cf. repère en coordonnées polaires).
- sphérique Kugelkoordinate ◆Un
 ↑point P quelconque d'une ↑boule
 peut être défini à l'aide de ses coordonnées sphériques :

$$P(r, \varphi, \theta)$$

où:

- a) $r \ge 0$ est la \uparrow distance du point P à l' \uparrow origine O;
- b) φ est la longitude, soit l'angle défini par la \uparrow projection du segment OP sur le plan xy avec le sens positif de l'axe des x, et pour lequel on a :

$$0 \le \varphi < 2\pi$$

c) θ est la latitude, soit l' \uparrow angle défini par le \uparrow segment OP et le plan xy, tel que :

$$-\frac{\pi}{2} \leqslant \theta \leqslant +\frac{\pi}{2}$$

coplanaire adj. komplanar ◆Quatre ↑points (ou plus) sont dits coplanaires s'ils sont sur un ↑plan. (*cf.* colinéaire)

corde f. Sehne \uparrow Segment joignant deux \uparrow points d'une \uparrow courbe.

corps m. Körper.

- algébrique algebraischer Körper
 ◆En ↑algèbre, une ↑structure avec deux ↑opérations [K,+,·] est définie comme un corps si les ↑conditions suivantes sont remplies :
 - a) [K, +] est un \uparrow groupe abélien et $[K^*, \cdot]$ un groupe;
 - b) de plus on a : $\forall a, b, c \in K$

$$a(b+c) = ab + ac$$
$$(a+b)c = ac + bc$$

P. ex. \mathbb{Q} , \mathbb{R} et \mathbb{C} sont des corps (*cf.* distributivité).

archimédien archimedischer Körper ◆Les ↑réels en sont un exemple car, pour toute paire de nombres positifs a et b, on a

$$\exists n \in \mathbb{N} : n \cdot a > b$$

platonicien platonischer Körper
 Désigne les cinq ↑polyèdres réguliers : le ↑tétraèdre, l'↑hexaèdre (↑cube), l'↑octaèdre, le ↑dodécaèdre et l'↑icosaèdre.

correspondant adj. *cf.* angles correspondants.

cosinus m. Cosinus, Kosinus ♦Le cosinus d'un ↑angle est le ↑sinus de son ↑complémentaire :

$$\cos\alpha = \sin(\frac{\pi}{2} - \alpha)$$

(cf. trigonométrique)

hyperbolique Cosinus hyperbolicus, Hyperbelkosinus ◆↑Fonction ↑transcendante donnée par :

$$\cosh(x) := \frac{e^x + e^{-x}}{2}$$

(cf. chaînette, fonction hyperbolique)

cotangente f. Cotangens, Kotangens ♦Par définition on a :

$$\cot \alpha = \frac{1}{\tan \alpha} = \tan \left(\frac{\pi}{2} - \alpha \right)$$

(cf. trigonométrique)

côté critère

hyperbolique Cotangens hyperbolicus, Hyperbeltangens ◆↑Fonction ↑transcendante donnée par :

$$coth(x) := \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{1}{\tanh(x)}$$

(cf. fonction hyperbolique).

côté m. Schenkel, Seite.

- adjacent anliegende Seite.
- opposé Gegenseite.

coupe f. Querschnitt, Schnitt, Schnittfläche. (*syn.* section)

couple m. (geordnetes) Paar $\uparrow n$ -uplet à deux \uparrow éléments :

$$(a,b) \neq (b,a)$$
 si $a \neq b$

(cf. paire)

courbe adj. gekrümmt, krummlinig.courbe f. krumme Linie, Kurve.

- dans l'espace Raumkurve.(syn. gauche)
- de niveau f. Höhen(schicht)linie,
 Niveaulinie. (syn. ligne de niveau)
- **d'intersection** Schnittlinie.
- **fermée** geschlossene Kurve \diamond Soit c une \uparrow fonction continue de type

$$c:[0,1]\to\mathbb{R}$$

Sa \uparrow courbe représentative est dite fermée si c(0) = c(1). (ant. courbe ouverte)

- gauche syn. dans l'espace.(cf. Clairaut fr-all)
- ouverte offene Kurve.(ant. courbe fermée)
- **plane** ebene Kurve.
- représentative Bildkurve, Graph.(cf. graphe d'une fonction)
- sans point double doppelpunktfreie Kurve.

courbure f. Krümmung.

couronne circulaire Kreisring.

Cramer, Gabriel (1704-1752).

Mathématicien suisse \bullet On appelle système de Cramer un système de n équations linéaires à n inconnues et de déterminant non nul.

crible d'Ératosthène Sieb des Eratosthenes lacktriangle Méthode de recherche des \uparrow nombres premiers \uparrow impairs plus petits qu'un \uparrow naturel n. On souligne 3 et on raye tous ses \uparrow multiples. On souligne le plus petit nombre non rayé (5) et on raye tous ses multiples. On réitère le procédé jusqu'à la \uparrow partie entière de \sqrt{n} . Les nombres non rayés sont les nombres premiers impairs $p_k \leqslant n$. (cf. Ératosthène fr-all)

critère m. Kriterium.

- de Cauchy Cauchy-Kriterium ♦Si une ↑suite $\langle a_n \rangle$ est telle que, $\forall \varepsilon > 0$:

$$\exists N(\varepsilon) : |a_n - a_m| < \varepsilon \ \forall n, m > N$$

alors c'est une suite (\tauchyconvergente) de Cauchy. (cf. Cauchy fr-all)

de comparaison Majoranten-, Minorantenkriterium ♦Soit les ↑séries

$$s_1 = \sum_{i=1}^{\infty} a_i \text{ et } s_2 = \sum_{i=1}^{\infty} b_i$$

où $0 \leqslant a_i \leqslant b_i \ \forall i \in \mathbb{N}$.

Si s_2 \tag{converge}, alors s_1 aussi car ayant une \tag{majorante convergente}; si s_1 \tag{diverge}, alors s_2 aussi par une \tag{minorante} \tag{divergente}.

- de convergence Konvergenzkriterium.
- du quotient de d'Alembert Quotientenkriterium \blacklozenge Si un \uparrow nombre qexiste tel que

$$0 < q < 1 \quad \text{et} \quad \frac{a_{i+1}}{a_i} < q \ \forall i \in \mathbb{N}$$

alors la †série $\sum_{i=1}^{\infty} a_i \ (a_i > 0)$ est convergente.

croissance limitée, bornée begrenztes Wachstum.

croissant adj. steigend, wachsend, zunehmend. (*ant.* décroissant; *cf.* monotone croissant)

cube m.

- a) dritte Potenz. (cf. élever à une puissance)
- b) Hexaeder, Würfel. (*cf.* corps platoniciens, duplication du cube, hexaèdre)

cubique adj. *cf.* équation, racine cubique.

curviligne adj. krummlinig.

cycloïde f. Zykloide ♦↑Courbe décrite par un ↑point fixe sur, à l'intérieur ou à l'extérieur d'un ↑cercle lorsque celui-ci roule sans glisser sur une ↑droite.

cyclométrique adj. zyklometrisch ♦Qualifie la ↑fonction ↑réciproque (↑inverse) d'une fonction ↑trigonométrique. (*cf.* arccosinus, arccotangente, arcsinus, arctangente)

cylindre m. Zylinder.

- à base circulaire Kreiszylinder.

Darboux démonstration

D

Darboux, Gaston (1842-1917). Mathématicien français :

Je compterai toujours, pour ma part, au nombre des heures les plus douces, les plus heureuses de ma vie, celles où j'ai pu saisir dans l'espace et étudier sans trève quelques-uns de ces êtres géométriques qui flottent en quelque sorte autour de nous.

décagone m. Dekagon ♦↑Polygone à dix ↑côtés.

décidabilité f. Entscheidbarkeit.

décimal adj. dezimal. (cf. fraction, nombre, système)

décimale f. Dezimale ♦↑Élément de la ↑suite de ↑chiffres qui se trouve après la ↑virgule. (cf. nombre de décimales)

décomposition f. Zerlegung.

 en éléments simples Partialbruchzerlegung ◆Soit des ↑fonctions rationnelles de la forme

$$f(x) = \frac{A(x)}{B(x)}$$
 avec deg A < deg B

a) si
$$B(x) = (x+a)^n$$
, alors

$$\frac{A(x)}{(x+a)^n} = \sum_{i=1}^n \frac{k_i}{(x+a)^i}$$

avec $k_i \in \mathbb{R}$

b) si
$$B(x) = (x+a)(x+b)$$
, alors

$$\frac{A(x)}{(x+a)(x+b)} = \frac{k_1}{x+a} + \frac{k_2}{x+b}$$

c) si
$$B(x) = (x^2 + a^2)^n$$
, alors

$$\frac{A(x)}{(x^2 + a^2)^n} = \sum_{i=1}^n \frac{k_i x + k_i'}{(x^2 + a^2)^i}$$

- en facteurs Faktorzerlegung
 ◆Représentation d'un ↑nombre (d'un ↑polynôme) sous la forme d'un ↑produit de certains de ses ↑diviseurs. (syn. factorisation)
- en facteurs premiers Primfaktorzerlegung ◆Représentation d'un ↑nombre (d'un ↑polynôme) sous la forme du ↑produit de ses ↑diviseurs ↑premiers.

décroissant adj. abnahmig, abnehmend, fallend. (ant. croissant; cf. monotone décroissant)

dégénéré adj. ausgeartet, entartet, zerfallend ♦Les coniques peuvent être obtenues par section d'un cône droit à deux nappes par un plan. Si le plan contient le sommet du cône, on a soit un point, soit une génératrice double en cas de tangence, soit une paire de droites : ce sont les coniques dégénérées.

dégénérescence f. Ausartung, Entartung. (*cf.* dégénéré)

degré m. Grad, Gradmass.

- d'angle Gradmass.(cf. grade, radian)
- d'un †polynôme Grad eines Polynoms.

deltoïde f. Deltoide ♦Hypocycloïde à trois rebroussements. (cf. cycloïde)

demi-axe m. Halbachse. (*cf.* axe principal, ellipse, hyperbole)

demi-boule f. Halbkugel.

demi-droite f. Halbgerade ◆↑Ensemble des ↑points situés du même ↑côté d'un point O d'une droite, point qui est alors l'↑origine de la demi-droite.

démonstration f. Beweis.

dénombrable dérivée

 directe direkter Beweis ◆Soit une †hypothèse H et une †conclusion C, la démonstration directe consiste à déduire logiquement C de H :

$$H \Rightarrow C$$

- **indirecte** indirekter Beweis
 - a) **contraposition** Kontraposition Φ Elle joue sur l'équivalence

$$(H \Rightarrow C) \Leftrightarrow (\neg C \Rightarrow \neg H)$$

b) **démonstration par l'absurde** Widerspruchsbeweis **\Delta** Elle utilise le fait que

$$(H \land \neg C) \Rightarrow Contradiction$$

est équivalent à $H \Rightarrow C$.

- c) raisonnement par l'absurde syn. reductio ad absurdum.
- d) **reductio ad absurdum** Reductio ad absurdum. (*syn.* démonstration par l'absurde)
- par induction complète vollständige Induktion. (*cf.* induction complète, Peano fr-all)
- par récurrence syn. induction complète.

dénombrable adj. abzählbar $\mathbf{\Phi}$ Qualifie un \uparrow ensemble pouvant être mis en \uparrow bijection avec \mathbb{N} ; \mathbb{Z} et \mathbb{Q} sont dénombrables, \mathbb{R} ne l'est pas.

(ant. non dénombrable; cf. continu, discret, puissance)

dénominateur m. Nenner ◆Ce qui est sous la ↑barre de fraction. (*cf.* division)

dense adj. dicht \bullet Soit $N \subset M$ deux \uparrow ensembles de \uparrow nombres réels; N est dense en M si tout \uparrow voisinage dans M contient au moins un point de N. Par exemple, \mathbb{Q} est dense dans \mathbb{R} .

dépendant adj. abhängig.

a) **variable** abhängige Variable ♦Dans la ↑fonction

$$f: x \mapsto y = f(x)$$

y est la variable dépendante.

b) **vecteurs** abhängige Vektoren \bullet Les vecteurs \vec{a} et $k\vec{a}$, où $k \in \mathbb{R}$, sont \uparrow linéairement dépendants.

(ant. indépendant)

déplacement m. Bewegung ◆↑Transformation ↑isométrique qui conserve l'↑orientation. Les seuls déplacements du ↑plan sont les ↑rotations et les ↑translations.

(cf. transformation affine)

de Rham, Georges (1903-1990). Mathématicien suisse.

dérivabilité f. Differenzierbarkeit.

dérivable adj. ableitbar, differenzierbar ♦Là où une ↑fonction est dérivable, elle y est aussi ↑continue.

dérivation f. Ableitung. (cf. règle de dérivation)

dérivée f. Ableitung, Differential quotient \blacklozenge La dérivée d'une \uparrow fonction f en x_0 est la \uparrow limite

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} =: f'(x_0)$$

si elle existe. (cf. fonction dérivée)

 d'une fonction composée Kettenregel ◆Si f et g sont ↑dérivables, alors :

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

- d'une fonction multipliée par une constante Faktorregel Φ Si f est dérivable, on a :

$$(k \cdot f(x))' = k \cdot f'(x)$$

- d'une somme Summenregel Φ Si f et g sont dérivables, on a :

$$[f(x) + g(x)]' = f'(x) + g'(x)$$

- **d'un produit** Produktregel \diamond Si f et g sont dérivables, on a :

$$[f(x)\cdot g(x)]' = f'(x)\cdot g(x) + f(x)\cdot g'(x)$$

dériver différence

- d'un quotient Quotientenregel ◆Si
 f et q sont dérivables, on a :

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$$

- **d'ordre** n Ableitung n-ter Ordnung \bullet La dérivée d'ordre n de la fonction f est désignée par $f^{(n)}$ lorsque n > 2.
- partielle partielle Ableitung.
- seconde Ableitung zweiter Ordnung, zweite Ableitung.

dériver tr. ableiten, differenzieren. (*cf.* règle de dérivation)

Descartes, René (1596-1650). Mathématicien et philosophe français ◆De son nom, en latin *Cartesius*, vient l'adjectif *cartésien*.

déterminant m. Determinante ◆Le déterminant de la ↑matrice

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

est le ↑nombre

$$a_{11}a_{22} - a_{12}a_{21} =: \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$=: |A| =: \det A$$

deux à deux paarweise **♦**Les †côtés d'un †parallélogramme sont †isométriques deux à deux.

développable adj. abwickelbar ◆Certaines ↑surfaces sont développables, comme le ↑cône circulaire, d'autres pas, comme la ↑sphère.

développante f. Evolvente ♦↑Courbe dont la courbe de départ est la ↑développée.

développée f. Evolute ◆↑Lieu des ↑centres de ↑courbure d'une ↑courbe ou ↑enveloppe de ses ↑normales.

développement m.

- d'une surface Abwicklung einer
 Fläche ◆P. ex. le développement
 d'un ↑cône de révolution donne un
 ↑secteur circulaire.
- en série Reihenentwicklung
 (cf. MacLaurin, Taylor).
- limité Approximationspolynom,
 Näherungspolynom
 (cf. approximation linéaire).

développer tr. abwickeln ◆Développer un ↑cylindre de révolution donne un ↑rectangle.

déviation standard syn. écart-type. diagonale f. Diagonale.

- principale d'un cube Raumdiagonale eines Würfels.
- principale d'une matrice Hauptdiagonale einer Matrix \uparrow Éléments diagonaux d'une \uparrow matrice carrée i.~e.les a_{ii} .

diagramme de Venn Venn-Diagramm.

diagramme en arbre Baumdiagramm ♦Sert d'↑organigramme pour la ↑résolution de ↑problèmes numériques en ↑analyse combinatoire ainsi que la représentation des ↑expériences lors de ↑calculs de probabilité.

diamètre m. Diameter, Durchmesser. (*cf.* conjugué)

dichotomie *cf.* méthode de dichotomie.

Dieudonné, Jean (1906-1992). Mathématicien français :

Finalement, nous arrivons au paradis des mathématiciens : ce sont les problèmes qui, à force de réflexion, ont engendré des idées nouvelles qui, souvent, dépassent de façon incommensurable le problème qui leur a donné naissance.

différence f. Differenz ◆Résultat de la ↑soustraction de deux ↑nombres.

différentiable disque

de deux ensembles Differenzmenge ◆Ensemble des †éléments qui font partie de l'un mais pas de l'autre :

$$A \setminus B = \{x : x \in A \land x \notin B\}$$

(lu: « A moins B »).

différentiable adj. syn. dérivable.

différentielle f. Differential, Differenzial Φ Si f est \uparrow dérivable, alors

$$\mathrm{d}f = f'(x)\mathrm{d}x$$

est sa différentielle.

dimension f. Dimension.

- a) Nombre d'informations †nécessaires et †suffisantes pour définir un †point dans un †espace donné.
- b) Nombre de \(\gamma\) vecteurs que contient chacune des \(\gamma\) bases d'un \(\gamma\) espace vectoriel.

Diophante (env. 200-env. 284). Mathématicien de culture grecque ◆Les deux apports fondamentaux de son oeuvre sont l'utilisation de puissances d'exposants supérieurs à trois et l'introduction du symbolisme. Par exemple chez lui

$$x^2 + 2x + 3$$

se note

$$\Delta^Y \ \overline{\alpha} \ \sigma \ \overline{\beta} \ \overset{\circ}{M} \ \overline{\gamma}$$

(cf. équation diophantienne)

Dirac, Paul (1902-1984).

Mathématicien anglais d'origine suisse :

This result is too beautiful to be false; it is more important to have beauty in one's equations than to have them fit experiment.

God used beautiful mathematics in creating the world.

direction et sens d'un vecteur Richtung eines Vektors ◆En français, on différencie la direction et le sens, alors que le terme allemand comprend les deux notions.

directrice f.

- d'une conique Leitgerade, Leitlinie.
- d'une surface réglée Leitkurve.

discontinu adj. unstetig. (*cf.* fontion discontinue)

discontinuité f. Singularität, Unstetigkeit.

- **de type pôle** Polstelle. (*syn.* pôle)
- de type saut Sprungstelle \bullet La \uparrow fonction \uparrow partie entière a une discontinuité de type \uparrow saut pour chaque $x \in \mathbb{N}$.

(cf. singularité)

discret adj. diskret ♦Un ↑ensemble E l'est si, pour tout ↑élément, il existe un ↑voisinage ↑ouvert ne contenant aucun autre élément de E. Les éléments d'un tel ensemble sont donc isolés les uns des autres. (ant. continu; cf. dénombrable)

discriminant m. Diskriminante ◆Désigne le ↑nombre

$$\Delta := b^2 - 4ac$$

dans le cadre des †équations du deuxième †degré.

disjoint adj. disjunkt, elementefremd ♦Les ensembles A et B le sont si

$$A \cap B = \emptyset$$

disjonction f. Disjunktion \bullet On décrit la disjonction des \uparrow propositions A, B avec A \vee B (lu : « A ou B »). Le « ou » est \uparrow inclusif, *i. e.* A \vee B est aussi vraie si A et B sont vraies. (*cf.* conjonction)

dispersion f. *cf.* indice de dispersion.

disque m. Kreisfläche, Scheibe ◆↑Ensemble des ↑points intérieurs d'un ↑cercle; le disque est ↑ouvert si le ↑bord distance domaine

n'est pas compris, \uparrow fermé sinon. Le bord est le cercle formant la \uparrow frontière de ce \uparrow domaine.

distance f. Abstand, Distanz.

- d'un point à une droite Abstand Punkt-Gerade \blacklozenge La distance du point P $(x_0; y_0)$ à la \uparrow droite

$$d: ax + by + c = 0$$

se calcule par la formule :

$$\delta(P, d) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

- de deux points Abstand zweier Punkte \blacklozenge La distance $\delta(P_1, P_2)$ de deux points $P_1(x_1; y_1)$ et $P_2(x_2; y_2)$ se calcule par :

$$\overline{P_1P_2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

distributif adj. distributiv. (*cf.* distributivité)

distribution binomiale Binomialverteilung.

distributivité f. Distributivität ♦Dans un ↑anneau ou un ↑corps, on a :

$$a(b+c) = a \cdot b + a \cdot c$$

(cf. effectuer, mettre en évidence)

divergence f. Divergenz. (ant. convergence)

divergent adj. divergent ♦P. ex. la ↑suite

$$a_n = (-1)^n$$

est divergente, car ayant deux †points d'accumulation. (ant. convergent)

dividende m. Dividend. (*cf.* division)

diviser tr. dividieren.

diviseur m.

a) Divisor. (cf. division)

b) Teiler \blacklozenge Soit deux \uparrow naturels a et b; si a est un diviseur de b, on écrit

$$a \mid b \iff \exists k \in \mathbb{N} : b = ka$$

(cf. pgdc)

premier Primteiler.(syn. facteur premier)

diviseurs de zéro Nullteiler \uparrow Éléments a et b d'un \uparrow anneau avec la \uparrow propriété :

$$a \neq 0 \land b \neq 0 \implies a \cdot b = 0$$

Par exemple:

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

(cf. sans diviseur de zéro)

divisibilité f. Teilbarkeit.

divisible (par) teilbar (durch).

division f. Division ♦Qualifie l'opération :

$$\frac{a}{b} = a : b = a \div b = a/b$$

où a est le \uparrow dividende (\uparrow numérateur) et b le \uparrow diviseur (\uparrow dénominateur). (cf. quotient)

- euclidienne Divisionsalgorithmus \bullet si $a \ge b$, alors :

$$\frac{a}{b} = q + \frac{r}{b} \iff a = bq + r \text{ avec } r < b$$

où q est le \uparrow quotient et r le \uparrow reste. (cf. division)

- harmonique harmonische Teilung.

dodécaèdre m. Dodekaeder, Zwölfflächner ♦↑Polyèdre à douze ↑faces.

régulier Pentagondodekaeder ◆↑Polyèdre à douze ↑faces pentagonales.
 (cf. corps platonicien)

dodécagone m. Dodekagon, Zwölfeck. (*cf.* polygone)

domaine m. Bereich.

- de définition Definitionsbereich,
 Definitionsmenge, Urbild ◆↑Sousensemble de l'↑ensemble de départ (↑source) d'une ↑application.
- des valeurs Bildbereich, Bildmenge, Wertebereich ◆Ensemble des
 †valeurs prises par une application.
 (syn. ensemble image)
- d'intégrité syn. anneau intégre.

donnée d'un problème Problemstellung. (syn. énoncé d'un problème)

double négation doppelte Verneinung Φ La \uparrow négation de A s'écrit $\neg A$ et la double négation nous donne : $\neg(\neg A) = A$.

droite f. Gerade.

- à l'infini uneigentliche (unendlich ferne) Gerade ◆Droite formée par les ↑points à l'infini du plan (géométrie projective).
- d'Euler eulersche Gerade ◆Droite passant par l'↑orthocentre, le ↑centre de gravité et le centre du ↑cercle circonscrit d'un ↑triangle.
- d'intersection Schnittgerade.
- des milieux Mittelparallele.
 - a) de deux droites ◆Droite
 †équidistante de deux droites
 parallèles.
 - b) **d'un triangle ◆**Droite passant par les ↑milieux de deux ↑côtés et donc parallèle au troisième.
 - c) d'un trapèze Droite passant par les milieux des deux côtés non parallèles et donc parallèle aux deux autres.

- extérieure à un cercle Passante.
 (cf. sécante, tangente)
- globalement invariante Fixgerade ◆Droite appliquée sur ellemême. Par exemple, dans une ↑symétrie ↑orthogonale, toute droite ↑perpendiculaire à l'↑axe reste globalement ↑invariante (invariant faible).
- invariante point par point Fixpunktgerade ◆Droite transformée en elle-même. P. ex. dans une ↑symétrie ↑orthogonale, l'↑axe reste invariant ↑point par point (invariant fort).
- numérique Zahlengerade ◆Représentation des ↑nombres réels comme ↑points d'une droite.
- passant par le centre d'un cercle
 Zentrale. (cf. sécante, tangente)
- passant par l'origine Ursprungsgerade.
- **verticale** senkrechte, vertikale Gerade.

droites f. pl. Geraden.

- **concourantes en P** durch *P* gehende (laufende) Geraden.
- gauches windschiefe Geraden.(cf. gauche)
- parallèles parallele Geraden.
- **perpendiculaires** senkrechte Geraden \bullet Dans le \uparrow plan les droites d_1 et d_2 le sont si leurs \uparrow pentes satisfont la \uparrow relation :

$$m_{d_1} \cdot m_{d_2} = -1$$

- **sécantes** sich schneidende Geraden.

duplication du cube Kubus-, Würfelverdopplung.

(cf. règle et compas, Wantzel fr-all)

écart-type ensemble

\mathbf{E}

écart-type m. Standardabweichung, Streuung lacktriangleMesure de la \uparrow dispersion d'une \uparrow variable aléatoire X autour de sa \uparrow moyenne. Elle est désignée par $\sigma(X)$ et on a

$$\sigma(X) = \sigma := \sqrt{Var(X)}$$

où Var(X) est la \uparrow variance de X. (syn. déviation standard; cf. indice de dispersion)

échantillon m. Stichprobe.

échelonné adj. cf. forme échelonnée.

effectuer tr. ausmultiplizieren ♦Utilisation de la ↑distributivité :

$$a(b+c) \rightarrow ab+ac$$

(cf. mettre en évidence)

égalité f. Gleichheit Φ Énoncé du type A = B où A et B sont les \uparrow membres. Si l'énoncé est vrai, c'est une \uparrow identité; s'il contient des \uparrow variables c'est une \uparrow équation. (cf. cas d'égalité des triangles)

élément m. Element lack Chacun des objets constituant un \uparrow ensemble; si x appartient à M, on écrit : $x \in M$, sinon : $x \notin M$.

- **inverse** inverses Element ◆Soit [M,*] une ↑structure ↑algébrique avec l'↑élément neutre e; si

$$a, a' \in M \Rightarrow a * a' = a' * a = e$$

alors a' est l'élément inverse de a (et réciproquement) relativement à l' \uparrow opération *.

- **neutre** Einselement, neutrales Element, Nullelement Φ Élément e d'une structure algébrique [M, *] tel que :

$$e * a = a * e = a \ \forall a \in M$$

symétrique inverses Element ◆Généralisation de la notion d'↑opposé et d'↑inverse dans une structure munie d'une opération.

élever

- à une puissance potenzieren.
- à la puissance 2 ins Quadrat erheben, quadrieren. (syn. mettre au carré)
- à la puissance 3 in die dritte Potenz erheben. (syn. mettre au cube)
 (cf. puissance)

ellipse f. Ellipse ♦L'↑équation générale des ellipses dont les ↑axes sont parallèles aux axes du ↑repère est :

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1$$

où $M(\alpha; \beta)$ est le \uparrow centre et a et b les \uparrow demi-axes. (cf. conique)

- du jardinier Gärtnerkonstruktion.

endomorphisme m. Endomorphismus ♦↑Homomorphisme d'un ↑ensemble sur lui-même.

(cf. automorphisme, isomorphisme)

engendrer tr. aufspannen, erzeugen.

ennéagone m. syn. nonagone.

énoncé d'un problème Problemstellung. (*syn.* donnée d'un problème)

ensemble m. Menge ◆Collection d'objets bien définis qui en sont les ↑éléments. (cf. Cantor de-fr)

- à deux éléments zweielementige Menge. (syn. paire)
- à n éléments n-Menge.
- **but** Zielmenge. (*cf.* application, ensemble d'arrivée)

- complémentaire Komplementärmenge ◆Soit A un ↑sous-ensemble de G, alors l'ensemble G\A est le ↑complémentaire de A par rapport à G, qu'on écrit aussi C_GA ou Ā.
- d'arrivée Zielmenge.(cf. application, ensemble but)
- de définition Definitionsbereich,
 Definitionsmenge. (cf. application,
 domaine de définition)
- de départ Ausgangsmenge.(cf. application, source)
- des évènements possibles syn. univers.
- de nombres Zahlenmenge.(cf. nombre)
- des parties syn. ensemble puissance.
- des solutions Erfülllungsmenge,
 Lösungsmenge.
- donné en compréhension charakterisierende Schreibweise ◆On a :

$$A = \{x : P(x)\} = \{x \mid P(x)\}\$$

qui se lit : « A est l'ensemble des \uparrow éléments x tels qu'ils satisfont la \uparrow propriété $P \gg$, p. ex. l' \uparrow ensemble des \uparrow diviseurs de 8 se note

$$M = \{x : x \mid 8\}$$

donné en énumération aufzählende Schreibweise ◆Dans ce cas l'ensemble précédent se note :

$$M = \{1, 2, 4, 8\}$$

- donné en extension syn. en énumération.
- fondamental *syn.* univers.
- image Bildbereich, Bildmenge, Wertebereich. (cf. application, domaine des valeurs)
- non vide nichtleere Menge.
- **produit** syn. produit cartésien.

 puissance Potenzmenge ◆Ensemble de tous les ↑sous-ensembles d'un ensemble E.

$$\mathfrak{P}(E) := \mathscr{P}(E) := \{A \mid A \subset E\}$$

(syn. ensemble des parties)

- singleton einelementige Menge.(cf. singleton)
- vide leere Menge ◆Cet ensemble, ne contenant aucun élément, se note { }
 ou Ø, ce dernier symbole étant emprunté à l'alphabet danois.

ensembles disjoints elementefremde Mengen ♦Ensembles A et B tels que :

$$A \cap B = \emptyset$$

entier m.

- naturel natürliche Zahl.
- relatif ganze Zahl.

énumération f. *cf.* ensemble donné en énumération.

enveloppe f. Einhüllende, Enveloppe, Hüllkurve ♦↑Courbe ↑tangente à chacune des courbes d'une ↑famille en un ↑point.

linéaire Erzeugnis, lineare Hülle,
 Spann ♦↑Sous-espace engendré par les ↑combinaisons linéaires des ↑vecteurs d'un ↑ensemble

$$S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$

Ce sous-espace se note

$$\mathscr{L}(S) := L(S) := \operatorname{span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n)$$

et S en est donc un †système générateur.

équation f. Gleichung ◆↑Égalité dont les ↑membres contiennent une ↑variable (↑inconnue); les ↑valeurs de la variable qui en font une ↑identité sont les ↑solutions (↑racines).

équation équation

 aux abscisses Achsenabschnittsform ♦Soit un ↑plan qui coupe les ↑axes de coordonnées dans les ↑points :

alors son équation aux abscisses est :

$$E: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

- bicarrée cf. bicarré.
- caractéristique charakteristische
 Gleichung ◆De la forme :

$$\det(A - \lambda I) = 0$$

où I est la \uparrow matrice unité, A une matrice carrée et λ une de ses \uparrow valeurs propres.

- cartésienne Normalform ♦P. ex.
 - d'une droite du plan einer Geraden der Ebene :

$$ax + by + c = 0$$

d'un plan dans l'espace einerEbene im Raum :

$$ax + by + cz + d = 0$$

(cf. hyperplan)

- cubique syn. équation du troisième degré.
- de la forme $ax^2 + bx + c = 0$ gemischtquadratische Gleichung.
- de la forme $x^2 + q = 0$ reinquadratische Gleichung.
- de liaison Nebenbedingung.(cf. optimisation)
- différentielle Differentialgleichung \bullet Équation qui a comme \uparrow variable une \uparrow fonction inconnue et sa \uparrow dérivée. Soit x la variable indépendante et y une fonction de cette variable. La forme générale d'une telle équation est :

$$\Phi\left(x, y, y', y'', \dots, y^{(n)}\right) = 0$$

(cf. Clairaut fr-all)

- différentielle à variables séparables Differentialgleichung getrennter Variablen.
- diophantienne diophantische Gleichung ◆Dénomination pour une équation algébrique avec des ↑coefficients entiers, dont seules les solutions entières sont recherchées.
 (cf. Diophante fr-all)
- du deuxième degré quadratische Gleichung, Gleichung zweiten Grades ◆Équation de la forme

$$ax^2 + bx + c = 0$$
 avec $a \neq 0$

 du n-ième degré Gleichung n-ten Grades ◆Équation polynomiale de la forme

$$\sum_{k=0}^{n} a_k x^k = 0 \text{ avec } a_n \neq 0$$

du premier degré lineare Gleichung, Gleichung ersten Grades
 ◆Équation de la forme

$$ax + b = 0$$
 avec $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$

 du troisième degré kubische Gleichung ◆Équation de la forme :

$$ax^3 + bx^2 + cx + d = 0 \quad (a \neq 0)$$

- **en** x Gleichung nach x.
- irrationnelle Wurzelgleichung.
- linéaire lineare Gleichung Φ P. ex. ax + by = c.
- paramétrique Parameterdarstellung ♦P. ex.
 - d'une droite einer Geraden

$$d: \begin{cases} x = a_1 + \lambda v_1 \\ y = a_2 + \lambda v_2 \end{cases}$$

- d'un cercle eines Kreises

$$\gamma : \begin{cases} x = x_{\rm C} + r \cos \varphi \\ y = y_{\rm C} + r \sin \varphi \end{cases}$$

avec

$$0 \leqslant \varphi < 2\pi$$

où $(x_{\rm C}; y_{\rm C})$ est le \uparrow centre et r le \uparrow rayon.

 d'une courbe de l'espace einer Raumkurve

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \\ z = \chi(t) \end{cases} \quad t \in I$$

où I est un †intervalle donné.

- polynomiale f. Polynomgleichung.
 (syn. équation du n-ième degré)
- **vectorielle** Parametergleichung \bullet Une \uparrow droite dans \mathbb{R}^n peut être donnée par son équation vectorielle

$$\vec{r} = \vec{a} + \lambda \vec{v}$$

où \vec{a} est le \tau vecteur-lieu d'un point et \vec{v} un \tau vecteur directeur.

équerre avec rapporteur Geodreieck.

équidistant (de) adj. abstandsgleich (zu) ♦P. ex. le ↑cercle est le ↑lieu géométrique des points d'un ↑plan équidistants d'un ↑point fixe.

équilatéral adj. gleichseitig. (*cf.* triangle équilatéral)

équilatère adj. gleichseitig ◆Qualifie une ↑hyperbole dont les ↑asymptotes sont ↑perpendiculaires.

équipotent adj. gleichmächtig \blacklozenge Qualifie deux \uparrow ensembles, A et B, entre lesquels existe une \uparrow application \uparrow bijective. Notation : A \sim B.

équiprobable adj. gleichwahrscheinlich. (*cf.* probabilités)

équivalence f. Äquivalenz.

 logique logische Äquivalenz ♦L'équivalence logique

$$A \Leftrightarrow B$$

peut aussi s'exprimer par

$$(A \Rightarrow B) \land (B \Rightarrow A)$$

Ératosthène (env. 276 - env. 194). Mathématicien grec ◆Il est particulièrement célèbre pour sa méthode de recherche des nombres premiers (le ↑crible d'Ératosthène) ainsi que pour son calcul du rayon de la Terre.

espace m. Raum.

- de dimension zéro nulldimensionaler Raum ◆C'est donc un ↑point.
 (cf. bi-, tri-, unidimensionnel)
- **d'état** syn. univers.
- vectoriel Vektorraum ◆↑Ensemble
 V dont la ↑structure satisfait les
 ↑axiomes suivants :
 - a) [V, +] est un \uparrow groupe abélien;
 - b) $\forall \lambda, \mu \in \mathbb{K} \ (\uparrow \text{corps}) \text{ et}$ $\forall v, w \in V \text{ on a :}$ $(\lambda \mu)v = \lambda(\mu v)$ $(\lambda + \mu)v = \lambda v + \mu v$ $\lambda(v + w) = \lambda v + \lambda w$ $1 \cdot v = v$

espérance mathématique Erwartungswert. (cf. déviation standard)

étude de fonction Kurvendiskussion.

Euclide (env. 330-275) Euklid.

Mathématicien grec.

Une possible version de ses axiomes de géométrie plane est :

- A1 Par deux point distincts il passe une et une seule droite;
- A2 Tout segment est prolongeable en une droite qui le contient;
- A3 Pour tout point A et tout point B distinct de A, il existe un cercle de centre A passant par B;

euclidien exposant

- A4 À chaque angle correspond sa mesure α qui est un nombre positif inférieur à 2π ; réciproquement, à chaque valeur α correspondent une infinité d'angles égaux entre eux qui ont cette mesure;
- A5 Étant donnés un point P et une droite d, il existe une et une seule droite passant par P et ne coupant pas d.

(cf. algorithme d'Euclide, nombre premier, polyèdre régulier, théorème d'Euclide)

euclidien adj. euklidisch.

Euler, formule d'eulerscher Polyedersatz \bullet Soit e le \uparrow nombre de \uparrow sommets, k le nombre \uparrow d'arêtes et f le nombre de \uparrow faces d'un \uparrow polyèdre convexe, alors :

$$e + f - k = 2$$

(cf. Euler de-fr)

évènement m. Ereignis ◆↑Sousensemble de l'↑ensemble U des ↑issues d'une ↑expérience aléatoire.

- certain sicheres Ereignis ◆Il s'agit de U lui-même.
- contraire Gegenereignis ◆Qualifie
 l'évènement Ā (lu : « A barre »).
 (cf. complémentaire)
- élémentaire Elementarereignis
 ◆Soit une expérience aléatoire avec un nombre fini †d'issues

$$U = \{\omega_1, \omega_2, \dots, \omega_n\}$$

alors les $\{\omega_i\}$ en sont les évènements élémentaires qu'on note souvent ω_i par abus de langage.

(cf. cas possible, éventualité)

- **impossibe** unmögliches Ereignis Φ C'est le cas lorsque $A = \emptyset$.
- incompatible unvereinbarer Ereignis ◆A est incompatible avec B si leur ↑intersection est ↑vide.

Deux évènements \uparrow contraires, A et \overline{A} , sont donc incompatibles.

(syn. mutuellement exclusifs)

indépendant unabhängige Ereignisse ◆Deux évènements A et B le sont si

$$P(A \cap B) = P(A) \cdot P(B)$$

et réciproquement.

(cf. probabilités)

éventualité syn. issue.

excentricité f. Exzentrizität \P Soit P un \uparrow point d'une \uparrow conique, F_1 un \uparrow foyer et Q la \uparrow projection orthogonale de P sur la \uparrow directrice correspondante. Alors

$$\frac{\overline{PF}_1}{\overline{PQ}} =: e$$

est une constante; c'est l'excentricité de la conique considérée et on a

- a) e = 0 pour le \uparrow cercle;
- b) 0 < e < 1 pour l'†ellipse;
- c) e > 1 pour l'†hyperbole;
- d) e = 1 pour la \uparrow parabole.

excentrique adj. exzentrisch ◆Se dit de deux ↑cercles qui ont des ↑centres différents. (ant. concentrique)

exclusif adj. ausschliessend ♦La ↑proposition

$$A \dot{\vee} B$$

est vraie si A est vrai ou B est vrai, mais pas les deux à la fois, c'est donc un « ou » exclusif. (cf. inclusif)

exclusifs adj. unvereinbar. (cf. mutuellement exclusifs)

expérience aléatoire Zufallsexperiment, Zufallsversuch Despérience dont on sait ce qui peut se passer, mais pas ce qui va se passer; le lancer d'un dé en est un exemple des plus classiques. (cf. probabilité)

exponentiel adj. *cf.* fonction exponentielle.

exposant m. Exponent. (cf. puissance)

extension extremum

extension f. cf. ensemble donné en extension.

externe adj. *cf.* loi de composition.

extraction de racine Radizieren, Wurzelziehen.

extrémalisation f. syn. optimisation. extrémité f. Endpunkt.

extrémité-moins-origine Spitzeminus-Schaft-Regel lackAstuce pour retenir le calcul des \uparrow composantes du \uparrow vecteur \overrightarrow{AB} en fonction des \uparrow coordonnées des \uparrow points A et B.

extremum m. (plur. -ma/-mums) Extremum ♦Désigne une valeur extrémale, soit un ↑maximum ou un ↑minimum.

- au bord Randextremum.

(cf. absolu, global, local, relatif)

face

\mathbf{F}

face f.

- d'un polyèdre Seitenfläche.(cf. arête, sommet)
- parallèle à la base d'un solide
 Deckfläche. (cf. base)

facteur m. Faktor.

- de proportionnalité syn. coefficient de proportionnalité directe.
- **premier** Primfaktor (*cf.* diviseur, nombre premier).

factorielle f. Fakultät \bullet Dénomination pour le \uparrow produit des \uparrow nombres naturels de 1 à n:

$$1 \cdot 2 \cdot 3 \cdot 4 \cdots n = \prod_{k=1}^{n} k =: n!$$

Par convention 0! = 1. (*cf.* combinatoire)

factorisation f. Ausklammerung, Faktorzerlegung. (syn. décomposition en facteurs; cf. mise en évidence)

Fagnano, Giulio (1682-1766).

Mathématicien italien ◆Autodidacte, il poursuit certaines études que Jacques (Jakob) Bernoulli avait faites en 1694 sur la rectification de la lemniscate et de l'ellipse qui mènent aux intégrales elliptiques. Le problème de Fagnano (1755) : déterminer le triangle de périmètre minimal inscrit dans un triangle acutangle.

(cf. Bernoulli de-fr, triangle orthique)

faible adj. cf. invariant faible.

faisceau m. cf. famille.

famille f. Schar ♦↑Ensemble de ↑courbes ou de ↑surfaces, généralement décrit par des ↑équations paramétriques.

- de cercles Kreisbüschel.
 (syn. faisceau de cercles)
- de droites Geradenschar.(syn. faisceau de droites)
- de plans ayant une droite commune Ebenenbüschel.
 (syn. faisceau de plans)
- de plans ayant un point commun
 Ebenenbündel. (syn. gerbe de plans)

fausse position (méthode de la) syn. regula falsi.

fer de lance Deltoid, Pfeilviereck. (cf. cerf-volant, quadrilatère)

Fermat, Pierre de (1601-1665). Mathématicien français. (*cf.* conjecture de Fermat)

fermé adj. abgeschlossen.

a) pour un †disque:

$$(x-a)^2 + (y-b)^2 \leqslant r^2$$

(cf. cercle)

b) pour une \tagbox boule :

$$(x-a)^2 + (y-b)^2 + (z-c)^2 \leqslant r^2$$
 (cf. sphère)

c) pour un \intervalle:

$$[a,b] := \{x \in \mathbb{R} : a \leqslant x \leqslant b\}$$

d) qualifie une †structure munie d'une †opération †interne.

(cf. ouvert, semi-ouvert)

Fields, John Charles (1863-1932).

Mathématicien canadien. Il propose de créer un prix pour récompenser les meilleurs chercheurs en mathématiques et ainsi pallier l'absence de prix Nobel dans cette discipline. Les *médailles Fields* sont attribuées tous les quatre ans depuis 1936 à des mathématiciens de moins de quarante ans.

fini adj. endlich.

fonction

- a) **ensemble** endliche Menge ◆Ensemble qui n'est pas †équipotent à un de ses †sous-ensembles propres. (*cf.* discret)
- b) **suite** endliche Folge \P Suite résultant d'une \uparrow application d'une \uparrow partie $\{1, 2, 3, \dots, n\}$ de \mathbb{N} dans \mathbb{R} .

fonction f. Funktion ♦Nom donné usuellement à une ↑application dont les ↑ensembles de départ et d'arrivée sont des ↑nombres réels ou complexes.

affine affine Funktion ◆Fonction du type :

$$f(x) = ax + b$$

Si b = 0, on a une \uparrow fonction linéaire.

- **algébrique** *cf.* algébrique.
- auxiliaire Ersatzfunktion, Hilfsfunktion ◆Soit une ↑fonction-but de la forme :

$$F(x) = \sqrt{g(x)} = \max$$

La fonction auxiliaire $F^2(x) = g(x)$, dont la †dérivée a les mêmes †zéros que F'(x), simplifie les calculs.

- **but** Zielfunktion. (*cf.* optimisation)
- **circulaire** *syn.* fonction trigonométrique.
- composée zusammengesetzte Funktion, Verkettung. (syn. fonction de fonction; cf. composition)
- concave nichtkonvexe Funktion.(cf. fonction convexe)
- **continue** stetige Funktion ◆Soit f une fonction définie en x_0 et dans son ↑voisinage; si, pour tout $\varepsilon > 0$, on peut définir un $\delta(x_0) > 0$ tel que :

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

alors f est continue en x_0 .

- a) **à droite** rechtsseitig stetige Funktion.
- b) **à gauche** linksseitig stetige Funktion.

- c) **par morceaux** stückweise stetige Funktion.
- d) **uniformément** gleichmässig stetige Funktion \blacklozenge Une fonction l'est dans un \uparrow intervalle si δ n'y dépend que du choix de ϵ .

(cf. fonction discontinue)

- **convexe** konvexe Funktion \blacklozenge Une fonction f l'est sur un intervalle I si

$$f\left(\frac{x_1+x_2}{2}\right) \geqslant \frac{f(x_1)+f(x_2)}{2}$$

pour tout $x_1, x_2 \in I$. Si l'†inégalité est dans l'autre sens, on parle d'une fonction non convexe ou concave.

 cosinus Kosinusfunktion ◆Par définition on a :

$$\cos(x) =: \cos x = \sin\left(\frac{\pi}{2} - x\right)$$

(cf. trigonométrique)

cotangente KotangensfunktionPar définition on a :

$$\cot(x) =: \cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

(cf. trigonométrique)

 - croissante steigende, wachsende, zunehmende Funktion.

(cf. monotone croissant)

- cyclométrique Arkusfunktion,
 zyklometrische Funktion.
 (cf. cyclométrique)
- décroissante abnehmende, fallende Funktion. (cf. monotone décroissant)
- définie par morceaux stückweise definierte Funktion ◆Par exemple :

$$f(x) = \begin{cases} x - 1 & \text{pour } x < 1\\ x^2 - 2x + 1 & \text{pour } x \geqslant 1 \end{cases}$$

- de fonction syn. fonction composée.
- **dérivable** ableitbare, differenzierbare Funktion. (*cf.* dérivable)
- dérivée Ableitungsfunktion.
 (cf. dérivée)

fonction

- discontinue unstetige Funktion ♦Si

$$\lim_{x \to x_0} f(x) \neq f(x_0)$$

ou si $f(x_0)$ n'existe pas, alors la fonction f est discontinue en x_0 . (cf. pôle, saut)

- en escalier Treppenfunktion ◆Fonction ↑constante par morceaux, p. ex. la ↑fonction partie entière.
- **exponentielle** Exponentialfunktion
 - a) de base a zur Basis $a \blacklozenge Fonction de la forme$

$$f(x) = a^x$$
 $(a > 0, a \ne 1)$

Elle est \uparrow monotone décroissante pour 0 < a < 1 et \uparrow monotone croissante pour a > 1.

b) de base e e-Funktion, Funktion zur Basis e ◆Cas particulier de la forme

$$f(x) = \exp(x) := e^x$$

où « e » est le ↑nombre d'Euler et on a la relation :

$$a^x = e^{x \ln a}$$

(cf. fonction logarithme)

- hyperbolique Hyperbelfunktion, hyperbolische Funktion
 ◆Dénomination pour les fonctions
 ↑transcendantes suivantes : ↑sinus
 hyperbolique, ↑cosinus hyperbolique, ↑tangente hyperbolique et
 ↑cotangente hyperbolique.
- hyperbolique réciproque Areafunktion ◆Lire : « argument sinus hyperbolique », etc.
 - $\operatorname{arsinh}(x)$ avec $x \in \mathbb{R}$
 - $-\operatorname{arcosh}(x)$ avec $x \in [1, \infty[$
 - artanh(x) avec $x \in]-1,1[$
 - $\operatorname{arcoth}(x)$ avec $x \in \mathbb{R} \setminus [-1, 1]$
- identité identische Funktion, Identität. (cf. identité)

- **impaire** ungerade Funktion.

(cf. parité)

- **inverse** Kehrfunktion, Reziprokfunktion \blacklozenge La fonction inverse g de f est définie par :

$$g(x) = \frac{1}{f(x)}$$

avec

$$D_g = D_f \setminus \{x \mid f(x) = 0\}$$

(cf. fonction réciproque)

- irrationnelle Wurzelfunktion
 ♦Fonction ↑algébrique contenant des
 ↑radicaux.
- linéaire lineare Funktion. (cf. fonction affine)
- logarithme Logarithmusfunktion.
 - a) de base a Logarithmusfunktion zur Basis a ($a > 0, a \ne 1$):

$$f(x) = \log_a x, \quad x \in \mathbb{R}_+^*$$

b) de base e natürliche Logarithmusfunktion, ln-Funktion:

$$f(x) = \log_e x =: \ln x$$

(cf. fonction exponentielle, logarithme)

- monotone monotone Funktion.(cf. monotone)
- **paire** gerade Funktion. (*cf.* parité)
- partie entière Ganzteilfunktion, Gauss-Funktion, Gauss-Klammer, gausssche Klammerfunktion \uparrow Fonction en escalier définie pour tout $x \uparrow$ réel, $n \leq x < n+1$, par :

$$[x] = \mathrm{E}(x) = \lfloor x \rfloor = n \in \mathbb{Z}$$

[x] est le plus grand \uparrow entier plus petit que x. (cf. saut)

- **périodique** periodische Funktion \blacklozenge Dénomination d'une fonction f pour laquelle il existe un \uparrow nombre positif p (la période) tel que :

$$f(x+p) = f(x) \ \forall x \in \mathbb{R}$$

forme

- polynomiale ganzrationale Funktion, Polynomfunktion.
 (cf. fonction algébrique)
- racine Wurzelfunktion ◆↑Fonction réciproque de la fonction puissance

$$f(x) = x^n \implies {}^r f(x) = f^{-1}(x) = \sqrt[n]{x}$$

Cas particulier de fonction †irrationnelle. (cf. fonction algébrique)

rationnelle Bruchfunktion, rationale Funktion ◆Fonction de la forme :

$$f(x) = \frac{P_n(x)}{P_m(x)}$$

où $P_n(x)$ et $P_m(x)$ sont des \uparrow polynômes. (*cf.* fonction algébrique)

- **réciproque** Umkehrfunktion, inverse Funktion \bullet Soit $f: A \to B \uparrow$ bijective, alors la fonction réciproque

$$^r f$$
 ou $f^{-1}: \mathbf{B} \to \mathbf{A}$

est définie par

$$^{r}f(b) = f^{-1}(b) = a \Leftrightarrow f(a) = b$$

La fonction $f^{-1}(x)$ ne doit pas être confondue avec

$$f(x)^{-1} = (f(x))^{-1} = \frac{1}{f(x)}$$

Il y a là malheureusement un peu de flottement dans les notions et notations; rf est donc préférable, $f^{-1}(x)$ faisant alors allusion aux \uparrow pré-images de x. (cf. fonction inverse)

 réciproque d'une fonction trigonométrique Arkusfunktion.

(cf. cyclométrique)

réelle reelle Funktion ◆↑Application
 f avec

$$f: \mathbb{R}^n \to \mathbb{R}$$

- **signe** *syn.* fonction signum.

signum Signumfunktion, Vorzeichenfunktion ◆Fonction définie par :

$$\operatorname{sgn}(x) = \begin{cases} +1 & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ -1 & \text{si } x < 0 \end{cases}$$

(syn. fonction signe)

- **sinus** Sinusfunktion \blacklozenge Fonction \uparrow périodique de période 2π qui oscille entre +1 et -1, elle est donc \uparrow bornée :

$$\sin(x) =: \sin x$$

(cf. trigonométrique)

- tangente Tangensfunktion \blacklozenge Fonction périodique de période $\frac{\pi}{2}$, non bornée, définie par :

$$\tan(x) =: \tan x = \frac{\sin x}{\cos x}$$

(cf. trigonométrique)

- trigonométrique goniometrische Funktion, Kreisfunktion, trigonometrische Funktion, Winkelfunktion.
 (syn. fonction circulaire, cf. trigonométrique)
- uniformément continue *cf.* fonction continue.

forme f.

- échelonnée Staffelgestalt, Stufengestalt. (cf. pivot de Gauss)
- exponentielle d'un nombre complexe Exponentialform einer komplexen Zahl ϕ Si, au lieu d'utiliser les \uparrow coordonnées cartésiennes a et b, on utilise les \uparrow coordonnées polaires :

$$r = |z| = \sqrt{a^2 + b^2}$$
 et $\varphi = \arctan \frac{b}{a}$

le nombre complexe z = a+bi est représenté dans sa forme exponentielle

$$z = r \cdot e^{i\varphi}$$

dont un très beau \uparrow cas particulier est :

$$e^{i\pi} + 1 = 0$$

(cf. relation d'Euler)

indéterminée unbestimmter Ausdruck ◆Expression du type :

$$\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0^0, \dots$$

(syn. indétermination; cf. levée d'une indétermination, règle de l'Hospital)

quadratique quadratische Form
♦↑Polynôme ↑homogène de ↑degré
2, p. ex.

$$ax^2 + bxy + cy^2$$

formule f. Formel.

- de dérivation Ableitungsformel.
 (cf. règle de dérivation)
- de récurrence Rekursionsformel
 ◆P. ex. la suite de Fibonacci est décrite par la formule :

$$a_n = a_{n-1} + a_{n-2} \ (a_0 = 0, a_1 = 1)$$

(cf. Fibonacci de-fr)

- de résolution de l'équation du deuxième degré Mitternachtsformel ◆Pour toute ↑équation du type $ax^2 + bx + c = 0$ avec $a \neq 0$ on a :

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

formules de Viète Formeln von Vieta, Satz von Vieta, vietasche Beziehungen, Wurzelsatz von Vieta \bullet Soit x_1 et x_2 les \uparrow solutions de l' \uparrow équation $ax^2 + bx + c = 0$ alors on a :

$$x_1 + x_2 = \frac{-b}{a} \quad \text{et} \quad x_1 \cdot x_2 = \frac{c}{a}$$

Ces formules sont généralisables à toutes les équations polynomiales. (cf. Viète fr-all)

fort adj. cf. invariant fort.

foyer m. Brennpunkt. (*cf.* ellipse, hyperbole, parabole)

fractale f. Fraktale ♦↑Courbe obtenue par itération; la plus connue est le flocon de Koch, proposé en 1906, qui a la propriété d'être ↑borné mais de longueur ↑infinie, partout ↑continu et nulle

part †dérivable. Les fractales relèvent aussi de l'étude du comportement de certaines †suites †complexes du type :

$$z_{n+1} = z_n^2 + c$$
 avec $z, c \in \mathbb{C}$

I believe that scientific knowledge has fractal properties, that no matter how much we learn, whatever is left, however small it may seem, is just as infinitely complex as the whole was to start with. That, I think, is the secret of the Universe.

Isaac Asimov (1920-1992)

(cf. Koch de-fr)

fraction f. Bruch.

 décimale Dezimalbruch, Zehnerbruch ◆↑Fraction de la forme

$$\frac{m}{10^n}$$
 avec $m \in \mathbb{Z}, n \in \mathbb{N}$

- **inverse** Kehrbruch ϕ Si a et b sont différents de \uparrow zéro, alors

$$\frac{a}{b}$$
 et $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$

sont des †inverses multiplicatifs l'un de l'autre.

 irréductible reduzierter Bruch, voll gekürzter Bruch. (cf. amplifier, simplifier)

(cf. division)

fractions f. pl. Brüche.

- de même dénominateur gleichnamige Brüche.
- **équivalentes** gleichwertige Brüche.

frise f. Bandornament, Fries.

frontière f. Grenze \blacklozenge P. ex. la frontière du \uparrow domaine plan défini par l' \uparrow inéquation $f(x,y) \leqslant 0$ est donnée par la \uparrow courbe d' \uparrow équation f(x,y) = 0. (cf. bord)

fuseau (sphérique) m. Kugelkeil (volume), Kugelzweieck (surface) ◆Deux ↑plans coupant une ↑sphère en passant par son ↑centre engendrent quatre fuseaux.

Galois grand axe

G

Galois, Évariste (1811-1832).

Mathématicien français ◆Pionnier de la théorie des groupes. Il rédige ses découvertes pendant la nuit qui précède sa mort en duel; ces notes ne seront publiées qu'en 1846 et les premières explications complètes n'apparaîtront qu'en 1866 et 1870.

gauche adj. windschief ◆Qualifie deux ↑droites dans l'↑espace qui ne sont ni ↑sécantes, ni parallèles; leur ↑distance est définie par la ↑longueur du ↑segment qui leur est ↑perpendiculaire.

générateur adj. erzeugend. (*cf.* système générateur)

génératrice f. Erzeugende ◆↑Droite dont le ↑déplacement suivant une ↑courbe, appelée ↑directrice, engendre une ↑surface réglée.

géométrie f. Geometrie ◆Étymologiquement : « mesure (arpentage) de la Terre ».

- analytique analytische Geometrie.
- **constructive** *syn.* descriptive.
- dans l'espace r\u00e4umliche Geometrie,
 Stereometrie.
- de Monge Zweitafelverfahren ◆Parfois nommée géométrie descriptive.
 (cf. Monge fr-all)
- descriptive darstellende Geometrie
 Désigne des méthodes de représentations planes d'objets tridimensionnels à l'aide de projections parallèles (géométrie de Monge et les axonométries) ou centrales (les perspectives). (syn. constructive, spatiale)
- euclidienne euklidische Geometrie
 L'analyse du fond diffus cosmologique un rayonnement électromagnétique émis alors que l'Univers

était âgé de 380 000 ans — suggère que la géométrie de celui-ci est euclidienne, *i.e.* que les axiomes d'Euclide sont vérifiés aux grandes échelles, ce qui n'est pas le cas à proximité d'objets très massifs, qui courbent l'espace-temps [18].

- non euclidienne nichteuklidische
 Geometrie. (cf. Lobatschewski de-fr)
- **plane** ebene Geometrie, Planimetrie.
- **spatiale** *syn.* descriptive.

géométrique adj. geometrisch. (*cf.* interprétation, lieu, moyenne, série, solide, suite, transformation)

gerbe de plans syn. famille de plans ayant un point commun.

Gerbert d'Aurillac (945-1003).

Mathématicien français ◆On lui doit la première tentative d'introduction des chiffres arabes en Occident, le zéro gardant toutefois un statut un peu flou. Il deviendra pape sous le nom de Sylvestre II en 999. (cf. Fibonacci de-fr)

Germain, Sophie (1776-1831).

Mathématicienne française \P Ses travaux portent en particulier sur l'étude des surfaces et elle introduit en 1831 la notion de courbure moyenne; elle travaille aussi en théorie des nombres et en arithmétique.

global adj. syn. absolu.

grade m. Gon, Neugrad ♦Unité d'↑angle définie par

$$1 gon = \frac{\pi}{200} rad$$

(cf. degré, radian)

grand axe Hauptachse. (syn. axe principal)

grand cercle groupe

grand cercle Grosskreis ◆Résultat de l'intersection d'une ↑sphère avec un ↑plan passant par son ↑centre.

graphe m. Graph.

d'une fonction Bildkurve, Funktionsgraph, Graph, graphische Darstellung einer Funktion.

(syn. représentation graphique)

groupe m. Gruppe \uparrow Structure algébrique (G,*) telle que, pour tous les \uparrow éléments de G, on a :

a) l'†opération * est †interne :

$$a * b \in G$$

(cf. fermé)

b) †associative:

$$(a * b) * c = a * (b * c) = a * b * c$$

c) il existe un \uparrow élément neutre e:

$$a * e = e * a = a$$

d) chaque élément a possède un \uparrow inverse a':

$$a * a' = a' * a = e$$

abélien abelsche, kommutative
 Gruppe ◆Groupe dont l'opération
 est ↑commutative :

$$a * b = b * a \ \forall a, b \in G$$

(cf. Abel de-fr)

- commutatif syn. groupe abélien.
- **de Klein** kleinsche Vierergruppe.

harmonique hyperplan

\mathbf{H}

harmonique adj. harmonisch. (*cf.* moyenne harmonique)

hendécagone m. Elfeck, Hendekagon ♦↑Polygone à onze ↑côtés.

heptaèdre m. Siebenflächner ◆↑Polyèdre à sept ↑faces.

heptagone m. Heptagon, Siebeneck.

Hermite, Charles (1822-1901).

Mathématicien français ◆Il démontra en 1873 la transcendance du ↑nombre d'Euler.

Héron, formule de l'aire de heronsche Flächenformel \blacklozenge L'↑aire \mathscr{A} d'un ↑triangle dont les ↑côtés ont pour mesure a, b et c et où p désigne le demipérimètre est donnée par la ↑formule :

$$\mathscr{A} = \sqrt{p(p-a)(p-b)(p-c)}$$

(cf. Heron de-fr)

hexaèdre Hexaeder, Sechsflächner ◆S'il est ↑régulier, c'est un ↑cube.

hexagone Hexagon, Sechseck.

Hippase de Métaponte (5° siècle av. J.-C.) Mathématicien grec \bullet Membre de l'école pythagoricienne, il révéla au monde que celle-ci venait de tomber sur l'irrationalité de $\sqrt{2}$, ce qui déplut à ses collègues... On lui doit aussi une construction du pentagone régulier.

homogène adj. homogen ♦Un ↑système d'↑équations ↑linéaires de la forme :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

est dit homogène quand:

$$b_i = 0 \text{ pour } i = 1, ..., m$$

et \uparrow inhomogène si au moins un des b_i est différent de \uparrow zéro.

homofocal adj. konfokal ◆Qualifie deux ↑coniques ayant les mêmes ↑foyers.

homomorphisme adj. Homomorphismus $\spadesuit \uparrow$ Application f d'une \uparrow structure algébrique [A, *] dans une structure algébrique $[B, \circ]$ telle que

$$f(a_1 * a_2) = f(a_1) \circ f(a_2) \ \forall a_1, a_2 \in A$$

(cf. automorphisme, endomorphisme, isomorphisme)

horizontal adj. horizontal, waagerecht. (cf. vertical)

hyperbole f. Hyperbel.

hyperbolique adj. hyperbolisch. (*cf.* fonction hyperbolique)

hyperboloïde m. Hyperboloid, Rotationshyperboloid ♦↑Surface engendrée par la ↑rotation d'une ↑hyperbole.

- à une nappe einschaliges Hyperboloid ◆L'↑axe de rotation est la ↑directrice de l'hyperbole, ce qui engendre une ↑surface réglée.
- à deux nappes zweischaliges Hyperboloid ◆L'axe de rotation est l'↑axe focal.

hyperplan m. Hyperebene ♦Les ↑solutions de l'↑équation linéaire :

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = c$$

décrivent un hyperplan dans \mathbb{R}^n .

hypoténuse hypothèse

hypoténuse f. Hypotenuse ♦↑Côté opposé à l'↑angle droit dans un ↑triangle rectangle. Du grec hupoteinousa, participe présent féminin de hupoteinein, « sous-tendre » ; l'hypoténuse est donc ce qui sous-tend l'angle droit. (cf. cathète)

hypothèse f.

a) Voraussetzung ◆Correspond au cadre qu'on met en place avant

- d'énoncer la †conclusion d'un †théorème. (cf. démonstration)
- b) Annahme \(\phi\)Quand on suppose, qu'on admet qu'une \(\phi\)condition est satisfaite.
- c) Hypothese ◆Par exemple, l'hypothèse du continu, qui est proche d'une ↑conjecture.
- alternative Gegenhypothese.

icosaèdre indépendant

I - J - K

icosaèdre m. Ikosaeder, Zwanzigflächner ♦↑Polyèdre à ving ↑faces; s'il est ↑régulier, c'est un ↑corps platonicien formé de ↑triangles équilatéraux.

identique adj. identisch, gleich, übereinanderliegend, zusammenfallend.

identité f. Identität. (*syn.* application identité; *cf.* matrice identité)

identité remarquable binomische Formel ♦↑Égalité vraie désignant des expressions du type :

$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$

(syn. produit remarquable)

image f.

- de f Bild von f ♦Soit f une ↑application linéaire de V dans W; on définit alors l'image de f par :

$$Im f := \{ f(\vec{v}) : \vec{v} \in V \} \subset W$$

qui est un †sous-espace de W. (cf. noyau)

- **d'une** application Bildbereich \bullet Dans l' \uparrow application $f: A \to B$, B contient l'image f(A) de A. (cf. domaine des valeurs)
- d'un point Bildpunkt.
- **réciproque** Urbild.

 ${\bf imaginaire}$ adj. imaginär.

(cf. nombre complexe, partie imaginaire)

immerger v. tr. einbetten.

immersion f. Einbettung ◆Le passage

$$\vec{v} = \begin{pmatrix} a \\ b \end{pmatrix} \quad \rightarrow \quad \vec{v} = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$$

est une immersion de \mathbb{R}^2 dans \mathbb{R}^3 .

impair adj. ungerade.

- a) **nombre** ungerade Zahl.
- b) **fonction** ungerade Funktion. (*cf.* parité)

(ant. pair)

implication f. Implikation ♦Se note

$$A \Rightarrow B$$

lu « A implique B » ou « si A, alors B ».

impropre adj. uneigentlich. (*cf.* intégrale impropre)

inclusif adj. einschliessend, nichtausschliessend ♦La ↑proposition

$$A \vee B$$

inclusion f. *cf.* relation d'inclusion.

incompatible adj. cf. évènement incompatible.

inconnue f. Unbekannte.

- auxiliaire Hilfsunbekannte.

indécidable adj. unentscheidbar. (cf. théorème d'incomplétude)

indépendant adj. unabhängig.

- a) **évènement** cf. évènement.
- b) **variable** unabhängige Variable ◆Dans la ↑fonction

$$f: x \mapsto y = f(x)$$

x est la \uparrow variable indépendante.

c) vecteur unabhängiger Vektor
 ◆Les vecteurs d'une ↑base sont indépendants.

indétermination intégrale

(ant. dépendant)

indétermination f. syn. forme indéterminée.

indice m. Index \blacklozenge P. ex. k est l'indice de a dans le \uparrow terme a_k .

de dispersion Streuungsmass ◆P.
 ex. l'†écart-type.

induction complète vollständige Induktion ♦ Méthode de ↑ démonstration pour les ↑ propositions dépendant des ↑ nombres naturels et qui se déroule comme suit :

Initialisation : A(1) est vrai Hypothèse d'ind. : A(n) est vrai

Hérédité : A(n+1) est vrai

Conclusion : A(n) est vrai pour tout n naturel. (syn. raisonnement par récurrence, cf. Peano fr-all)

inégalité f. Ungleichheit Φ En allemand, ce terme se limite aux expressions du type $a \neq b$.

 de Cauchy-Schwartz Ungleichung von Cauchy-Schwartz ◆Dans un †espace vectoriel muni d'un †produit scalaire, on a

$$|\vec{a} \cdot \vec{b}| \leqslant ||\vec{a}|| \cdot ||\vec{b}||$$

où la †norme est définie par

$$\|\vec{a}\| \coloneqq \sqrt{\vec{a} \cdot \vec{a}}$$

(cf. Cauchy fr-all, Schwarz de-fr)

– **du triangle** Dreiecksungleichung

a) pour les \uparrow triangles de \uparrow côtés a, b et c:

$$c \leq a + b$$
 (5)

b) pour les \uparrow nombres réels a et b:

$$|a+b| \leqslant |a| + |b|$$

c) pour les \uparrow vecteurs \vec{a} et \vec{b} :

$$\|\vec{a} + \vec{b}\| \le \|\vec{a}\| + \|\vec{b}\|$$

inéquation f. Ungleichung ◆↑Inégalité entre deux quantités algébriques contenant des ↑paramètres ou des ↑inconnues. Les ↑signes utilisés sont :

- < : plus petit que;

- ≤ : plus petit ou égal à ;

->: plus grand que;

 $- \geqslant$: plus grand ou égal à.

infimum m. Infimum ◆Désigne la plus grande ↑borne inférieure d'un ↑ensemble de ↑nombres réels. (cf. supremum)

infini adj. unendlich. (ant. fini)

infini m. Unendliche (∞) . (*cf.* comportement à l'infini)

infirmer tr. widerlegen. (syn. réfuter)

inhomogène adj. inhomogen. (ant. homogène)

injection f. Injektion, injektive Abbildung \bullet Une \uparrow application $f: A \rightarrow B$ est \uparrow injective si deux \uparrow éléments différents de A ont toujours deux \uparrow images différentes dans B, i.~e.

$$(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$$

$$\updownarrow$$

$$(f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

(cf. bijection, surjection)

injective adj. *cf.* injection.

inscriptible adj. bezeichnet eine geometrische Figur, die man in einen Kreis (bzw. eine Kugel) einschreiben kann ◆Se dit usuellement d'un ↑polygone (ou d'un ↑polyèdre) dont les ↑sommets sont sur un ↑cercle (resp. une ↑sphère) qui lui est alors ↑circonscrit(e).

(cf. polygone inscriptible)

inscrit adj. einbeschrieben, eingeschrieben. (*cf.* angle inscrit, circonscrit, inscriptible)

insoluble adj. syn. sans solution.

intégrale f. Integral.

intégrant intersection

- **curviligne** Kurvenintegral.
- **définie** bestimmtes Integral, Riemann-Integral ◆On cherche l'↑aire \mathscr{A} , délimitée par le ↑graphe de la ↑fonction continue f avec l'↑axe des x dans un certain ↑intervalle [a,b] dans lequel f est ↑positive. On partage cet intervalle en n ↑sousintervalles réguliers

$$[x_k, x_{k+1}]$$
 avec $k \in \mathbb{N}$

et

$$x_{k+1} - x_k = \frac{b-a}{n} =: \Delta x_k$$

alors on a:

$$\mathscr{A} = \lim_{n \to \infty} \sum_{k=0}^{n} f(\xi_k) \Delta x_k$$
$$=: \int_{a}^{b} f(x) \, \mathrm{d}x \in \mathbb{R}$$

avec $\xi_k \in [x_k, x_{k+1}]$ (syn. intégrale de Riemann; cf. Riemann de-fr)

- de ligne syn. curviligne.
- de Riemann syn. intégrale définie.
- généralisée uneigentliches Integral
 ◆P. ex.

$$\int_{-1}^{+1} \frac{1}{x} dx \quad \text{et} \quad \int_{1}^{+\infty} \frac{1}{x} dx$$

(syn. impropre)

- impropre syn. intégrale généralisée.
- **indéfinie** unbestimmtes Integral, Stammfunktion \bullet Désigne une fonction F(x) telle que F'(x) = f(x) et on écrit :

$$F(x) =: \int f(x) \, \mathrm{d}x$$

L'intégrale n'étant pas †univoquement définie, on a donc la forme générale

$$\int f(x) \, \mathrm{d}x = \mathrm{F}(x) + \mathrm{C}$$

où F(x) est une \uparrow primitive de f et C une \uparrow constante arbitraire.

intégrale multiple mehrfaches Integral.

intégrant m. Integrand ◆Dans l'expression

$$\int f(x) \, \mathrm{d}x$$

f(x) est l'intégrant.

intégration par parties partielle Integration \bullet Soit f et g des \uparrow fonctions dérivables, alors :

$$\int f \cdot g' \, \mathrm{d}x = f \cdot g - \int f' \cdot g \, \mathrm{d}x$$

intégrer tr. integrieren ◆C'est calculer une intégrale de Riemann ou déterminer une primitive d'une fonction; dans ce dernier cas, on pourrait dire que la dérivation est l'« inverse » de l'intégration, sauf que cette dernière n'est pas univoque.

inter cf. intersection.

interne adj. cf. loi de composition.

interpolation linéaire lineare Interpolation. ◆Soit un phénomène dont on possède un ensemble discret de mesures et soit A et B deux d'entre elles; pour évaluer des valeurs intermédiaires, on remplacera l'arc AB par un segment; c'est une forme de linéarisation locale qu'on trouve, p. ex., dans le calcul de positions des planètes à partir des éphémérides.

interprétation géométrique geometrische Interpretation ◆P. ex. une †équation du type :

$$ax + by + c = 0$$

peut s'interpréter comme une \uparrow droite dans \mathbb{R}^2 , un \uparrow plan \uparrow vertical dans \mathbb{R}^3 ou un \uparrow hyperplan dans \mathbb{R}^n .

intersection f. Durchschnitt ♦↑Opération entre deux ↑ensembles définie par :

$$A \cap B := \{x \mid x \in A \land x \in B\}$$

intervalle isomorphe

(lire : « A inter B »). (cf. réunion, union)

intervalle m. Intervall ♦↑Ensemble de ↑réels compris entre deux ↑valeurs :

- de confiance Vertrauensintervall (Statistik, Wahrscheinlichkeit).
- **fermé** abgeschlossen

$$[a, b] = \{a \leqslant x \leqslant b\}$$

- **ouvert** offen

$$]a, b[= \{a < x < b\}]$$

- **semi-ouvert** halboffen

$$[a, b] = \{a < x \leqslant b\}$$

intervalles emboîtés

Intervallschachtelung.

invariant m. Invariante.

- faible schwache Invariante ◆P. ex. sous l'effet d'une ↑rotation de ↑centre
 C, les ↑cercles centrés en C seront des invariants faibles.
- fort starke Invariante ◆P. ex. l'↑axe d'une ↑symétrie axiale est un invariant fort.

inverse adj. *cf.* élément inverse, fonction inverse, matrice inverse, proportionalité.

inverse m.

- additif d'un nombre Gegenzahl \bullet P. ex. pour tout $a \in \mathbb{Z}$ il existe un inverse $-a \in \mathbb{Z}$ tel que :

$$a + (-a) = 0$$

(syn. opposé)

- multiplicatif d'un nombre Kehrzahl Φ P. ex. pour tout $a \in \mathbb{R} (a \neq 0)$ on a :

$$a \cdot \frac{1}{a} = a \cdot a^{-1} = 1$$

(cf. élément inverse, élément neutre, élément symétrique)

inversible adj. invertierbar, umkehrbar.

- a) élément invertierbares Element
 ◆Tout élément d'un ↑groupe est inversible.
- b) **matrice** invertierbare Matrix ◆Toute ↑matrice régulière est inversible.

involutif adj. involutorisch. (*cf.* involution)

involution f. Involution \uparrow Application f avec la \uparrow propriété :

$$f^2 = f \circ f = id$$

La †symétrie axiale en est un exemple. irrationnel adj. irrational. (*cf.* fonction irrationnelle, nombre irrationnel) irréductible adj.

- a) fraction vollgekürzter Bruch.
- b) polynôme irreduzibles Polynom ◆Dans ℝ, ce sont les ↑polynômes du premier ↑degré ainsi que ceux du deuxième à ↑discriminant négatif; ils sont, d'une certaine façon, les « nombres premiers » des polynômes.

isocèle adj. gleichschenklig \bullet Du grec iso, égal, et skelos, jambe : qui a deux jambes égales, ce que confirme le mot allemand. (cf. triangle isocèle)

isométrie f. Kongruenzabbildung

♦Dénomination des ↑applications qui conservent les ↑angles et les ↑longueurs, à savoir : ↑rotation, ↑symétrie axiale et ↑translation. (cf. transformation affine)

isométrique adj. kongruent ♦Qualifie des figures égales ou des ↑applications conservant ↑angles et ↑longueurs. (cf. isométrie)

isomorphe adj. isomorph \bullet Deux \uparrow structures [G, *] et $[H, \circ]$ sont isomorphes s'il existe une \uparrow application \uparrow bijective respectant les \uparrow opérations

de [G, *] sur [H, \circ], *i. e.* s'il existe une \uparrow bijection

$$f: G \to H$$

avec

$$f(a*b) = f(a) \circ f(b)$$

et on écrit

$$G \cong H$$

Si G = H on a un \uparrow automorphisme.

isomorphisme m. Isomorphismus ♦↑Homomorphisme ↑bijectif.

(cf. automorphisme, endomorphisme, isomorphe)

issue f. Ausfall ♦Nom donné à un †élément de l'†univers.

(cf. axiomes de probabilités)

jumeaux *cf.* nombres premiers jumeaux.

Kolmogorov, Andreï (1903-1987).

Mathématicien russe ◆Son apport en théorie des probabilités est fondamental; on lui doit (1933) une axiomatisation de celle-ci.

(cf. axiomes des probabilités)

Kovalevski, Sophie (1850-1891).

Mathématicienne et romancière russe, elle fut élève de Karl Weierstrass.

(cf. Weierstrass de-fr)

Kronecker, symbole de Kronecker-Symbol ♦Qui se définit par :

$$\delta_{ij} = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$

(cf. Kronecker de-fr, matrice identité, matrice unité)

\mathbf{L}

levée d'une indétermination Auswertung eines unbestimmten Ausdrucks. (*cf.* indétermination, règle de l'Hospital)

L'Hospital Guillaume François Antoine, Marquis de (1661-1704).

Mathématicien français ◆Il suit les cours de Jean (Johann) Bernoulli et c'est par lui que sont introduites en France les notions de calcul infinitésimal. Par suite d'un arrangement financier avec Bernoulli, il publie sous son propre nom des résultats démontrés par son maître, qui dénoncera la supercherie après la mort de son élève.

(cf. Bernoulli de-fr)

Lhuilier, Simon (1750-1840).

Mathématicien suisse ◆II énonce les fondements du concept de limite et on lui doit (1786) l'abréviation *lim* pour la désigner; il introduit aussi le terme série de Taylor.

Lichnerovicz, André (1915-1998). Mathématicien français :

> Il est difficile de faire la différence entre un mathématicien qui dort et un mathématicien qui travaille.

lieu géométrique geometrischer Ort ◆↑Ensemble de ↑points ↑satisfaisant une ou plusieurs ↑conditions. P. ex. l'↑ellipse est le lieu des points dont la ↑somme des ↑distances à deux points ↑fixes est une ↑constante.

ligne f. Linie (Geometrie), Zeile (Matrix). (*cf.* colonne, matrice)

- de niveau syn. courbe de niveau.

limite f. Grenzwert, Limes ♦P. ex., si

$$\lim_{n \to \infty} a_n = a \iff a_n \stackrel{n \to \infty}{\longrightarrow} a$$

on lira respectivement : « La limite de a_n quand n tend vers l'infini vaut a » et « a_n tend vers a quand n tend vers l'infini ».

- à droite rechtsseitiger Grenzwert, Limes ♦Si on s'approche de x_0 par des x tels que $x > x_0$, on écrit :

$$\lim_{x \to x_0^+} f(x) = A$$

si cette limite existe.

- à gauche linksseitiger Grenzwert, Limes \bullet Si on s'approche de x_0 par des x tels que $x < x_0$, on écrit :

$$\lim_{x \to x_0^-} f(x) = A$$

si cette limite existe.

(cf. Lhuilier fr-all)

limité adj. cf. développement limité.

linéaire adj. linear. (*cf.* application, approximation, enveloppe, équation, fonction)

linéairement adv. linear.

- **dépendant** linear abhängig ◆Se dit des ↑vecteurs $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ s'il existe des ↑nombres a_1, a_2, \dots, a_n , non tous nuls, tels que :

$$\sum_{k=1}^{n} a_k \vec{v}_k = \vec{o}$$

 indépendant linear unabhängig
 ◆Se dit lorsque l'↑équation ci-dessus ne possède que la ↑solution triviale.

local adj. lokal, relativ \bullet La \uparrow fonction f a un \uparrow extremum local (ou \uparrow relatif) en x_0 s'il existe un \uparrow voisinage $V(x_0) \subset D_f$ avec

$$f(x) < f(x_0) \ \forall x \in V(x_0) \setminus \{x_0\}$$

pour un †maximum local ou

$$f(x) > f(x_0) \ \forall x \in V(x_0) \setminus \{x_0\}$$

pour un ↑minimum local. (cf. absolu, global)

logarithme m. Logarithmus \bullet Soit a et b ($b \neq 1$) des \uparrow nombres positifs. Alors le logarithme de a dans la \uparrow base b est la \uparrow puissance à laquelle on doit élever la base pour obtenir ce nombre :

$$b^{\log_b a} = a$$

décimal dekadischer Logarithmus,
 Zehnerlogarithmus ◆Le logarithme
 de base 10 s'écrit :

$$\log_{10} b =: \log b$$

naturel natürlicher Logarithmus◆Le logarithme de base e s'écrit :

$$\log_e b =: \ln b$$

(cf. nombre d'Euler)

- **népérien** syn. logarithme naturel.

logique des propositions Aussagenlogik.

loi f.

- binomiale Binomialverteilung.
- de composition Operation, Verknüpfung
 - externe äussere Verknüpfung.
 ◆Si R et E sont deux ↑ensembles non ↑vides, alors les ↑applications

$$g: \mathbb{R} \times \mathbb{E} \to \mathbb{E}$$

et

$$h: \mathbf{E} \times \mathbf{E} \to \mathbf{R}$$

sont des lois de composition externes; le †produit par un †scalaire et le †produit scalaire en sont les exemples les plus courants.

interne innere Verknüpfung
 ◆Qualifie une ↑opération *
dans un ↑ensemble E ayant la
↑propriété :

$$\forall a, b \in E : a * b \in E$$

(cf. fermé)

- de Laplace-Gauss syn. loi normale.
- des grands nombres Gesetz der grossen Zahlen.
- gaussienne syn. loi normale.

$$\varphi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

(syn. loi de Laplace-Gauss, loi gaussienne)

longueur d'arc Bogenlänge Φ P. ex. la longueur d'un \uparrow arc de cercle \uparrow d'angle au centre φ est donnée par

$$\ell = r \varphi$$

où r est le \uparrow rayon du cercle.

losange m. Raute, Rhombus ♦↑Quadrilatère dont les ↑côtés sont de même ↑longueur et dont le ↑carré est un ↑cas particulier.

lunules d'Hippocrate Möndchen des Hippocrates.

\mathbf{M}

MacLaurin, formule de MacLaurinsche Formel \bullet Cas particulier de la \uparrow formule de Taylor pour $x_0 = 0$:

$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(0)}{i!} x^{i} + R_{n}(x)$$

(cf. MacLaurin de-fr)

majorante f. Majorante ♦↑Série dont les ↑termes ne sont pas plus petits que ceux de celle qu'on étudie.

(cf. critère de comparaison, minorante)

mantisse f. Mantisse ♦↑Chiffres situés après la ↑virgule dans un ↑logarithme.

mathématique f. Mathematik ◆Emprunté d'abord (XIIIe s.) au latin mathematicus, il vient du grec mathematikos signifiant « qui désire apprendre »; ce mot est dérivé de mathêma « ce qui est enseigné », employé au pluriel pour « connaissances ». La source en est « manthanein », verbe passé de sa signification première, « apprendre, par l'expérience, apprendre à connaître, à faire », au sens plus abstrait de « comprendre ».

matrice f. Matrix \blacklozenge Une matrice $m \times n$ est un système de $m \cdot n$ \uparrow nombres

$$a_{ii}, i = 1, \ldots, m; j = 1, \ldots, n$$

classés dans un schéma de m †lignes et n †colonnes :

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} =: (a_{ij})$$

- antisymétrique antisymmetrische, schiefsymmetrische Matrix \bullet Matrice carrée $A = (a_{ij})$ telle que

$$a_{ij} = -a_{ji} \ \forall i, j$$

Il s'ensuit que $a_{ii} = 0 \ \forall i$.

- **carrée** quadratische Matrix.
- de passage Übergangsmatrix ◆Matrice ↑régulière permettant des changements de ↑base dans un ↑espace vectoriel.
- diagonale Diagonalmatrix ◆Matrice carrée dont tous les éléments sont nuls hormis ceux de la ↑diagonale principale.
- identité Identitätsmatrix ◆La matrice carrée

$$I = (\delta_{ij}) \ i, j = 1, \dots, n$$

- où δ_{ij} est le symbole de \uparrow Kronecker, représente l' \uparrow application identité Id.
- inverse inverse Matrix ◆Soit A une matrice carrée d'ordre n et une matrice B telle que

$$A \cdot B = B \cdot A = I$$

alors $B =: A^{-1}$ est la matrice inverse de A et réciproquement.

- inversible invertierbare Matrix ◆Se dit d'une matrice possédant une inverse.
- nulle Nullmatrix ◆Matrice dont tous les éléments sont nuls

$$O = (a_{ij}) \text{ avec } a_{ij} = 0 \ \forall i, j$$

C'est l'†élément neutre de l'addition.

- régulière reguläre Matrix ◆Matrice carrée dont le †déterminant est différent de †zéro; elle est donc †inversible.
- représentative Darstellungsmatrix
 ♦P. ex. la matrice

$$\mathbf{M} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$$

représente une \uparrow homothétie dans \mathbb{R}^2 .

maximum Monge

- singulière singuläre Matrix
 Matrice carrée dont le déterminant est nul; elle n'est donc pas inversible.
- **symétrique** symmetrische Matrix igthedark Matrice carrée $A = (a_{ij})$ telle que

$$a_{ij} = a_{ji} \ \forall i, j$$

il s'ensuit que $A = A^{T}$.

- **transposée** transponierte Matrix \bullet Soit $A = (a_{ij})$ une matrice $m \times n$, alors sa transposée, de format $n \times m$, est donnée par :

$$A^{T} = (b_{ij}) \text{ avec } b_{ij} = a_{ji}$$

avec $(A^T)^T = A$. (cf. involution)

 unité Einheitsmatrix ◆La matrice carrée

$$I = (\delta_{ij}) \ i, j = 1, \ldots, n$$

est l'†élément neutre de la multiplication. (cf. Kronecker, symbole de)

maximum m. (plur. -ma/-mums) Maximum, Hochpunkt. (cf. absolu, extremum, global, local, relatif)

médiane Schwerlinie, Seitenhalbierende ♦↑Segment (ou ↑droite) qui, dans un ↑triangle, relie un ↑sommet au ↑milieu du ↑côté opposé.

(cf. barycentre, centre de gravité)

médiatrice f. Mittelsenkrechte, Mittellot ♦↑Lieu des ↑points ↑équidistants des ↑extrémités d'un segment; c'est une ↑droite passant par le ↑milieu du segment perpendiculairement à celui-ci.

 \mathbf{membre} m. Seite. (cf . égalité)

méthode f. Methode, Verfahren.

- de dichotomie syn. méthode de la bissection.
- de la bissection Gabelverfahren,
 Intervallhalbierung ◆Méthode numérique d'obtention d'un †zéro d'une †fonction continue dans un †intervalle fermé. (syn. méthode de dichotomie)

- de la fausse position syn. regula falsi.
- de la sécante Sekantenverfahren
 ◆Variante de la méthode de la tangente (Newton). (cf. regula falsi)
- de la tangente Tangentenverfahren ◆Méthode de détermination des †zéros d'une †fonction †dérivable dans un †intervalle fermé.
- de Newton Newton-Verfahren. (syn. méthode de la tangente; cf. Newton de-fr)
- de résolution Lösungsverfahren.(cf. résolution)

mettre

- au carré syn. élever au carré.
- **au cube** *syn.* élever à la puissance trois.
- au même dénominateur gleichnennerig (gleichnamig) machen.
- en évidence ausklammern ◆Utilisation de la ↑distributivité :

$$ab + ac \rightarrow a(b+c)$$

(cf. effectuer, mise en évidence)

milieu m. Mittelpunkt, Zentrum. (cf. centre)

minimum m. (plur. -ma/-mums) Minimum, Tiefpunkt.

(cf. absolu, global, local, relatif)

minorante m. Minorante ♦↑Série dont les ↑termes ne sont pas plus grands que ceux de celle qu'on étudie.

(cf. critère de comparaison, majorante)

mise en évidence Ausklammerung. (cf. mettre en évidence)

module d'un nombre complexe Betrag einer komplexen Zahl ♦Soit

$$z = a + bi$$

alors $r = \sqrt{a^2 + b^2}$ est son module.

Monge Gaspard (1746-1818).

Mathématicien et homme politique français ◆Créateur de la géométrie descriptive, il est aussi considéré comme le fondateur de la géométrie différentielle. On lui doit les termes d'ellipsoïde, d'hyperboloïde et de paraboloïde.

monotone monoton.

- croissant monoton steigend, wachsend, zunehmend
 - a) Une \uparrow suite $\langle a_n \rangle$ est monotone croissante si

$$a_{n+1} \geqslant a_n, \ \forall n > N_0$$

et strictement monotone croissante si $a_{n+1} > a_n$.

b) Une \uparrow fonction f sur un \uparrow intervalle I est monotone croissante $(f \nearrow)$ si

$$f(x_1) \leqslant f(x_2)$$
 pour $x_1 < x_2$

- décroissant monoton abnehmend, abnahmig, fallend
 - a) Une \uparrow suite $\langle a_n \rangle$ est monotone décroissante si

$$a_{n+1} \leqslant a_n \ \forall n > N_0$$

et strictement monotone décroissante si $a_{n+1} < a_n$; une suite monotone et \uparrow bornée est \uparrow convergente.

b) Une \uparrow fonction f sur un \uparrow intervalle I est monotone décroissante $(f \searrow)$ si

$$f(x_1) \geqslant f(x_2)$$
 pour $x_1 < x_2$

moyenne f. Durchschnitt, Mittel, Mittelwert.

- **arithmétique** arithmetisches Mittel \blacklozenge La moyenne arithmétique des \uparrow nombres a_1, a_2, \ldots, a_n est :

$$\frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{k=1}^{n} a_k$$

- **géométrique** geometrisches Mittel \blacklozenge La moyenne géométrique des \uparrow nombres \uparrow positifs a_1, a_2, \ldots, a_n est :

$$G(a_1, a_2, \dots a_n) = \left(\prod_{k=1}^n a_k\right)^{\frac{1}{n}}$$

(cf. théorème de la hauteur)

- harmonique harmonisches Mittel◆Le ↑nombre

$$H = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$$

définit la moyenne harmonique des n nombres \uparrow positifs a_k .

multiple m. Vielfaches ◆P. ex. tous les ↑nombres se terminant par 0 et 5 sont des multiples de 5.

commun gemeinsames Vielfaches.(cf. ppcm)

multiplicande m. Multiplikand ◆La multiplication est le ↑produit d'un multiplicande par un ↑multiplicateur.

multiplicateur m. Multiplikator. (*cf.* multiplicande)

multiplication par un scalaire Skalarmultiplikation, S-Multiplikation, Vervielfachung ◆ ↑Loi de composition externe entre les ↑réels et un ↑espace vectoriel V définie comme suit :

$$k \cdot \vec{a} = k\vec{a} \in V$$
 où $k \in \mathbb{R}$ et $\vec{a} \in V$

en particulier on a $0 \cdot \vec{a} = k \cdot \vec{o} = \vec{o}$.

multiplicité f. Vielfachheit \bullet P. ex. la \uparrow fonction $f(x) = x^3$ possède à l' \uparrow origine un \uparrow zéro de multiplicité 3.

multivoque adj. mehrdeutig ◆Caractérise une ↑relation qui, à chaque ↑élément de départ, peut associer plusieurs éléments de l'↑ensemble d'arrivée. (ant. univoque; cf. biunivoque)

mutuellement exclusifs syn. incompatibles.

nappe

N

nappe f. Schale.

a) à deux nappes zweischalig

♦P. ex. l'†équation

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

représente un †hyperboloïde à deux nappes.

b) **à une nappe** einschalig **♦**P. ex. l'équation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

représente un †hyperboloïde à une nappe.

naturel adj. natürlich.

- a) **logarithme** (logarithmus naturalis) natürlicher Logarithmus. (cf. logarithme, nombre d'Euler)
- b) **nombre** natürliche Zahl. (*cf.* nombre naturel)

nécessaire adj. notwendig ◆Le fait, pour une ↑suite, d'être ↑bornée est une condition nécessaire (mais pas ↑suffisante!) pour être ↑convergente.

négation f. Negation \spadesuit À toute \uparrow proposition A correspond sa négation \neg A (lue : « non A »). (*cf.* double négation)

nombre m. Zahl.

- à deux chiffres zweistellige Zahl.
- **algébrique** *cf.* algébrique.
- complexe komplexe Zahl ♦Nombres formant l'↑ensemble

$$\{z \mid z = a + bi\} =: \mathbb{C} \cong \mathbb{R} \times \mathbb{R}$$

où i = $\sqrt{-1}$; a =: Re(z) est la \uparrow partie réelle et b = Im(z) la \uparrow partie imaginaire de z. Et on a

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{O} \subset \mathbb{R} \subset \mathbb{C} \subset \cdots$$

 $[\mathbb{C}, +, \cdot]$ est un \uparrow corps \uparrow commutatif. (cf. Argand fr-all, conjugué)

- à virgule Kommazahl.
- composé zusammengesetzte Zahl
 ◆Se dit de tout ↑naturel différent de 0 et de 1 et qui n'est pas ↑premier.
- décimal Dezimalzahl ◆Développement décimal d'une ↑fraction éponyme.
- de décimales Stellenzahl.
- d'Euler eulersche Zahl ◆Ce ↑nombre est défini par

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n =: e$$

e $\approx 2,7182818284...$ Charles Hermite a démontré (1873) qu'il est \uparrow transcendant. (cf. Euler de-fr, Hermite fr-all)

d'or goldener Schnitt ◆Géométriquement, c'est le rapport (sectio aurea),
 noté Φ, obtenu par le point P du segment AB lorsque

$$\overline{AB} : \overline{PB} = \overline{PB} : \overline{AP}$$

Algébriquement, c'est la solution positive de l'équation

$$\Phi^2 - \Phi - 1 = 0$$

donc

$$\Phi = \frac{1+\sqrt{5}}{2} \approx 1,618$$

(syn. proportion divine, section dorée)

entier (relatif) ganze Zahl. ◆L'ensemble des (nombres) entiers (relatifs) est :

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

 $[\mathbb{Z}, +, \cdot]$ est un \uparrow anneau intègre.

nombres

- **impair** ungerade Zahl.
- **irrationnel** irrationale Zahl \blacklozenge Nombre ne pouvant être mis sous forme d'un \uparrow rationnel, p. ex. $\sqrt{2}$, $\sqrt{3}$.
- naturel natürliche Zahl ◆Ces nombres forment l'ensemble

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

Par †convention on se contente souvent de dire « un naturel ».

- pair gerade Zahl. (cf. conjecture de Goldbach)
- **premier** Primzahl ♦Un nombre naturel (différent de 0 et de 1) est dit premier s'il n'est divisible que par 1 et par lui-même. On sait depuis Euclide qu'il y en a une infinité; voici la démonstration qu'il nous a transmise : supposons qu'il n'en existe qu'un nombre fini : $p_1, p_2, p_3, \ldots, p_n$; on forme alors le nombre

$$\prod_{k=1}^{n} p_k + 1 = N$$

N est forcément divisible par au moins un des p_k , disons p_i , et on a

$$\frac{\prod p_k + 1}{p_i} = \frac{\prod p_k}{p_i} + \frac{1}{p_i} = \frac{N}{p_i} \in \mathbb{N}$$

mais ceci implique que $\frac{1}{p_i}$ est entier, d'où contradiction. (cf. Euklid de-fr, reductio ad absurdum)

 rationnel rationale Zahl ◆Ces nombres forment l'ensemble

$$\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}^* \right\}$$

 $[\mathbb{Q}, +, \cdot]$ est un \(\tau\)corps commutatif.

- **réel** reelle Zahl ◆Ces nombres forment l'ensemble \mathbb{R} qui est la ↑réunion des nombres rationnels et irrationnels; $[\mathbb{R}, +, \cdot]$ est un ↑corps commutatif.
- **relatif** syn. entier.

transcendant transzendente Zahl.(cf. transcendant)

(cf. chiffre)

nombres Zahlen.

- **consécutifs** aufeinanderfolgende Zahlen.
- **premiers jumeaux** Primzahlzwillinge \blacklozenge Paire de nombres premiers p et q tels |p-q|=2, p. ex. 11 et 13. Ils se raréfient dans les grands nombres et il semble bien qu'il en existe une infinité mais aucune démonstration n'en a encore été faite.
- **triangulaires** Dreieckszahlen ◆La ↑suite $\langle a_n \rangle$ des nombres triangulaires est définie par :

$$a_n = \sum_{k=1}^n k = \frac{n(n+1)}{2}$$

Les premiers nombres triangulaires sont : 1, 3, 6, 10, 15, ...

non

- **borné** unbeschränkt (*ant.* borné).
- contradictoire widerspruchsfrei
 ◆P. ex. un système d'↑axiomes se doit de l'être.
- convexe nicht-konvex.(syn. concave)
- dénombrable überabzählbar (ant. dénombrable).
- euclidien nichteuklidisch.
 (cf. Bolyai de-fr, euclidien, Lobatschewski de-fr)

nonagone m. Neuneck, Nonagon $\$ Polygone à neuf $\$ côtés. $(syn.\ ennéagone)$

normale f. Normale ♦↑Droite ↑perpendiculaire à la ↑tangente en un point d'une ↑courbe; droite ↑orthogonale au plan tangent en un point d'une ↑surface. (cf. sous-normale)

norme f. Betrag, Norm.

normé n-uplet

- **euclidienne** euklidische Norm \bullet Pour un \uparrow vecteur \vec{v} de \mathbb{R}^n , elle est donnée par

$$\|\vec{v}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

où les x_i , i = 1, 2, ..., n sont les \uparrow composantes du vecteur \vec{v} .

normé adj. normiert.

- a) qualifie un \uparrow vecteur de \uparrow norme 1. (syn. vecteur unitaire)
- b) qualifie un \(\tau\)espace vectoriel dot\(\text{e}\) d'une \(\tau\)norme.
- c) qualifie un †polynôme dont le †coefficient de la plus haute †puissance est 1.

noyau m. Kern \bullet Soit f une \uparrow application linéaire de V dans W, on définit alors son noyau par :

$$\operatorname{Ker} f := \{ \vec{v} \in V : f(\vec{v}) = \vec{o} \} \subset V$$

qui est un \uparrow sous-espace de V. (*cf.* image de f)

numérateur m. Zähler ◆Ce qui est audessus de la ↑barre de fraction. (*cf.* division)

numération de position Stellenwertsystem ♦↑Système qui représente les ↑nombres par des ↑chiffres. La ↑valeur des chiffres dépend de leur ↑position à l'intérieur du nombre. (cf. système de numération positionnelle)

n-uplet n-Tupel \bullet Objet composé de n \uparrow éléments ordonnés qui se notent $(a_1, a_2, ..., a_n)$. Les a_k sont les \uparrow coordonnées du n-uplet, ou ses \uparrow composantes;

pour n = 2, on parle d'un \tagcouple,

pour n = 3, d'un †triplet,

pour n = 4, d'un \(\frac{1}{2}\)quadruplet et

pour n = 5, d'un \(\frac{1}{2}\)quintuplet.

oblique orthogonal

O

oblique adj. schief.

obtus adj. stumpf ◆Se dit d'un ↑angle compris entre 90° et 180° (*cf.* angle aigu, droit, plat, plein, rentrant)

obtusangle adj. stumpfwinklig. (*cf.* triangle obtusangle)

Occam, Guillaume d' Ockham, Wilhelm von (1288-1348):

Essentia non sunt multiplicanda praeter necessitam.

C'est le principe du rasoir d'Occam.

octaèdre m. Achtflächner, Oktaeder ♦↑Polyèdre à huit ↑faces.

octogone m. Achteck ♦↑Polygone à huit ↑côtés.

opérateur m. Operator ◆Nom donné à certaines ↑applications selon le contexte.

opération f. syn. loi de composition.opposé adj.

- a) **angle** cf. angles opposés.
- b) cathète cf. cathète opposée.
- c) vecteur cf. vecteur opposé.

opposé m. syn. inverse additif.

optimal adj. optimal ♦Qualifie une valeur qui correspond à un ↑extremum sous ↑conditions.

optimisation f. Optimierung, Extremwertaufgabe, Extremalaufgabe ◆Type de problèmes dont on cherche l'↑extremum d'une ↑fonction-but; si celle-ci est à plusieurs ↑variables on utilise des ↑équations de liaison. (syn. extrémalisation)

ordonnée f. Ordinate ◆Appellation usuelle de la deuxième coordonnée d'un

point dans un repère bidimensionnel. (cf. abscisse)

ordonnée à l'origine Ordinatenabschnitt, y-Achsenabschnitt \bullet Désigne le \uparrow point d' \uparrow intersection d'une \uparrow droite du \uparrow plan avec l' \uparrow axe des y. (cf. abscisse à l'origine).

ordre m. Ordnung.

- a) la †dérivée seconde d'une †fonction est aussi sa dérivée de deuxième ordre.
- b) ↑nombre ↑d'éléments d'un ↑groupe ↑fini.

(cf. relation d'ordre)

organigramme m. Flussdiagramm ◆Schéma permettant de visualiser les différentes étapes d'un ↑algorithme.

orientation f. Orientierung ◆P. ex. une ↑symétrie axiale inverse l'orientation d'une figure.

origine f. Ursprung.

d'un repère Koordinatenursprung,
 Nullpunkt, Pol.

(cf. repère)

orthique adj. *cf.* triangle orthique.

orthocentre m. Höhenschnittpunkt ◆↑Point d'intersection des ↑hauteurs d'un ↑triangle. Un triangle est ↑rectangle ↑si et seulement si son orthocentre est un ↑sommet du triangle.

orthogonal adj. orthogonal.

- a) deux \(\gamma\)courbes sont orthogonales
 en un \(\gamma\)point si leurs \(\gamma\)tangentes y
 sont \(\gamma\)perpendiculaires.
- b) un †système de coordonnées est dit orthogonal si ses †axes sont perpendiculaires.

orthonormal ouvert

c) deux \uparrow vecteurs \vec{a} et \vec{b} , différents du vecteur nul, sont orthogonaux si

$$\vec{a} \cdot \vec{b} = 0$$

(cf. base orthogonale, produit scalaire)

orthonormal adj. orthonormal. (*cf.* base orthonormale)

osculateur adj. *cf.* cercle osculateur. ouvert adj. offen.

a) pour un †disque:

$$x^2 + y^2 < r^2$$

(cf. cercle)

b) pour une †boule:

$$x^2 + y^2 + z^2 < r^2$$

(cf. sphère)

c) pour un †intervalle :

$$]a,b[:= \{x \in \mathbb{R} : a < x < b\}]$$

(cf. fermé)

pair partition

P

pair adj. gerade.

- a) **nombre** gerade Zahl.
- b) **fonction** gerade Fuktion. (*cf.* parité)

(ant. impair)

paire f. zweielementige Menge ◆↑Ensemble contenant deux ↑éléments. (cf. couple)

parabole f. Parabel ♦↑Courbe ↑d'intersection d'un ↑cône de révolution par un ↑plan parallèle à une de ses ↑génératrices. L'↑équation

$$(y - y_{\rm S})^2 = 2p(x - x_{\rm S})$$

représente les paraboles \uparrow d'axe \uparrow horizontal, de \uparrow sommet $S(x_S; y_S)$ et de paramètre p. (cf. conique)

paraboloïde hyperbolique hyperbolisches Paraboloid, Sattelfläche ◆Bel exemple de ↑surface réglée d'équation :

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

(syn. selle de cheval)

parallélépipède m. Parallelepiped.

 rectangle Quader ◆↑Prisme, dont la ↑base et les ↑faces sont des ↑rectangles.

parallélisme m. Parallelismus, Parallelität.

parallélogramme m. Parallelogramm ♦↑Quadrilatère possédant une symétrie centrale.

paramètre m. Formvariable, Parameter.

a) dans l'†équation du †plan :

$$\pi: \vec{r} = \vec{a} + \lambda \vec{u} + \mu \vec{v}$$

 λ et μ sont des paramètres;

b) et dans celle-ci:

$$\pi : ax + by + cz + d = 0$$

les paramètres sont a, b, c et d. (cf. coefficient, parabole)

parité f. Parität \bullet Une \uparrow fonction f de \uparrow domaine de définition D_f est

– paire si

$$f(-x) = f(x) \ \forall x \in D_f$$

et son \uparrow graphe est \uparrow symétrique par rapport à l' \uparrow axe des y.

- impaire si

$$f(-x) = -f(x) \ \forall x \in D_f$$

et son graphe est symétrique par rapport à l'†origine.

par morceaux stückweise. (cf. fonction définie par morceaux)

partager en deux halbieren.

(cf. bissection)

partie f. Teil.

- d'un ensemble syn. sous-ensemble.
- entière d'un nombre ganzer Anteil einer Zahl

(cf. fonction partie entière).

- **imaginaire** Imaginärteil.

(cf. nombre complexe)

- réelle Realteil.

(cf. nombre complexe)

partition f. Partition \bullet Décomposition d'un \uparrow ensemble E en \uparrow sous-ensembles M_k , \uparrow disjoints et non \uparrow vides, telle que

$$\bigcup_k \mathbf{M}_k = \mathbf{M}$$

(cf. relation d'équivalence)

Pascal pied de la hauteur

Pascal, Blaise (1623-1662).

Mathématicien français ◆II fait (1653) une étude fouillée du triangle qui porte aujourd'hui son nom mais qui était déjà connu des Chinois (vers 1300) et des Arabes (vers 1400).

(cf. triangle de Pascal)

passage à la limite Grenzübergang.

pavage m. Parkettierung.

Peano Giuseppe (1818-1932).

Mathématicien italien \bullet Il proposa en 1889 son système axiomatique : soit $\mathbb N$ un ensemble et « 1 » un objet, puis f une application définie dans $\mathbb N$ avec :

- (P1) $1 \in \mathbb{N}$
- (P2) $x \in \mathbb{N} \Rightarrow f(x) \in \mathbb{N}$
- (P3) $x \in \mathbb{N} \Rightarrow f(x) \neq 1$
- (P4) $x, y \in \mathbb{N} \land x \neq y \Rightarrow f(x) \neq f(y)$

(P5)
$$(A \subset \mathbb{N} \land 1 \in A \land (x \in A \Rightarrow f(x) \in A)) \Rightarrow A = \mathbb{N}$$

On décrit \mathbb{N} comme l'ensemble des nombres naturels et f(x) comme le successeur x+1 du nombre naturel x. Ce système axiomatique est le socle de l'induction complète. On lui doit aussi les symboles $:\in$, \cup , \cap et \subset .

pentagone m. Fünfeck, Pentagon.

- étoilé Pentagramm ◆Pentagone régulier non ↑convexe aussi nommé étoile à cinq branches ou pentagramme; on le trouve sur plus du quart des drapeaux nationaux de par le monde...

pentagramme m. *syn*. pentagone étoilé.

pente f. Richtungskoeffizient, Steigung.

 - d'un segment Steigung einer Strecke ◆Soit AB un ↑segment en un ↑repère cartésien, alors le ↑quotient

$$m_{\rm AB} := \frac{y_{\rm B} - y_{\rm A}}{x_{\rm B} - x_{\rm A}}$$

en représente la pente qui est donc la †tangente de son †angle d'inclinaison.

 - d'une droite Steigung einer Geraden ◆Dans l'expression

$$y = mx + h$$

le \uparrow coefficient m est la pente de la \uparrow droite.

(syn. coefficient angulaire)

périmètre m. Peripherie, Umfang. ◆Longueur de la ↑frontière d'une figure plane. (*cf.* circonférence)

périodique adj. *cf.* fonction périodique.

permutation f. Permutation \uparrow Bijection d'un \uparrow ensemble fini sur luimême. Si cet ensemble a $n \uparrow$ éléments, alors il y a n! (lu : « $n \uparrow$ factorielle » ou « factorielle de n ») permutations différentes possibles. (cf. combinatoire)

perpendiculaire (à) adj. senkrecht (zu). (cf. orthogonal, vertical)

perpendiculaire f. Senkrechte. (*cf.* normale)

petit axe Nebenachse ◆Le petit axe d'une ↑ellipse est sur la ↑médiatrice de ses ↑foyers. (cf. axe principal)

pgdc ggT.

(cf. plus grand diviseur commun)

pi Kreiszahl, Pi. Φ Seizième lettre de l'alphabet grec (π) , abréviation de *periphereia*. Le record de calcul (2016) en donne 13 300 milliards de décimales... (*cf.* Lindemann de-fr)

Piccard, Sophie (1904-1990).

Mathématicienne suisse ◆Née à Saint-Pétersbourg. Sa famille se réfugie à Neuchâtel en 1925; elle y devient en 1938 la première femme professeure de l'Université, spécialisée en géométrie supérieure, probabilité et statistique.

pied de la hauteur Höhenfusspunkt ♦↑Intersection d'une hauteur pivot de Gauss point

d'un †triangle avec le †côté opposé ou son †prolongement.

pivot de Gauss Gauss-Algorithmus, gausssches Eliminationsverfahren ◆Dans un ↑système d'équations linéaires on élimine successivement au moins une inconnue par ↑ligne avec des ↑combinaisons linéaires de paires d'équations jusqu'à obtention d'une ↑forme échelonnée :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{cases}$$

$$\begin{cases} \tilde{a}_{11}x_1 + \tilde{a}_{12}x_2 + \tilde{a}_{13}x_3 & = \tilde{b}_1 \\ \tilde{a}_{22}x_2 + \tilde{a}_{23}x_3 & = \tilde{b}_2 \\ \tilde{a}_{33}x_3 & = \tilde{b}_3 \end{cases}$$

(cf. Gauss de-fr, résolution d'un système d'équations)

plan m. Ebene ♦L'équation

$$ax + by + cz + d = 0$$

représente un plan dans \mathbb{R}^3 ou un †hyperplan de \mathbb{R}^n si n > 3.

- bissecteur Symmetrieebene.
- de coupe Schnittebene.
- de sol Grundriss.
- de symétrie Symmetrieebene.
- **médiateur** Symmetrieebene.
- tangent Tangentialebene.
- vertical de projection Aufriss.

Plancherel, Michel (1885-1967).

Mathématicien suisse. Il étudie puis enseigne à l'université de Fribourg et termine sa carrière à l'École Polytechnique Fédérale de Zürich (ETHZ).

plat adj. flach. (cf. point plat)

plus grand diviseur commun (pgdc) grösster gemeinsamer Teiler (ggT) ◆Plus grand ↑entier qui en divise deux autres.

plus petit multiple commun (ppmc) kleinstes gemeinsames Vielfaches (kgV) ◆Plus petit ↑entier ↑multiple de deux autres.

Poincaré, Henri (1854-1912). Mathématicien français :

La science a eu de merveilleuses applications, mais la science qui n'aurait en vue que les applications ne serait plus de la science, elle ne serait plus que de la cuisine.

Le savant doit ordonner; on fait la Science avec des faits comme une maison avec des pierres; mais une accumulation de faits n'est pas plus une science qu'un tas de pierres n'est une maison.

Il n'y a pas des problèmes qu'on se pose, il y a des problèmes qui se posent.

point m.

- à l'infini uneigentlicher (unendlich ferner) Punkt ◆Chaque point à l'infini correspond à une ↑direction du ↑plan et l'↑ensemble de ces points forme la ↑droite à l'infini.
- anguleux Knickstelle ◆Une †discontinuité de type saut de sa †dérivée se traduit par un point anguleux pour la fonction impliquée.

(cf. point de rebroussement)

- d'accumulation Häufungspunkt◆P. ex. la ↑suite

$$\langle a_n \rangle$$
 avec $a_n = (-1)^n$

a 1 et -1 comme points d'accumulation. (*cf.* suite convergente)

- **de contact** Berührpunkt, Berührungspunkt. (*syn.* point de tangence)
- de fuite Fluchtpunkt (perspective).
- de rebroussement Rückkehrpunkt ♦Un ↑pôle de f', avec changement de ↑signe, correspond à un point de rebroussement du ↑graphe de f; la ↑courbe y a alors une ↑tangente ↑verticale. (cf. discontinuité)

points alignés polygone

- de selle Sattelpunkt, Terrassenpunkt ◆↑Point d'inflexion à ↑tangente ↑horizonzale.
- de tangence syn. point de contact.
- d'inflexion Wendepunkt ◆Point d'une ↑courbe en lequel celle-ci change de signe de ↑courbure.
 Ces points sont les ↑zéros de la ↑deuxième dérivée si celle-ci existe.
 (cf. point plat)
- d'inflexion à tangente horizontale Sattelpunkt, Terrassenpunkt.
- d'intersection Schnittpunkt.(cf. trace)
- d'intersection d'une courbe avec
 l'axe des abscisses Nullstelle, x Achsenabschnitt ◆Correspond aux
 †zéros d'une fonction.
- **double** Doppelpunkt.
- **du bord** Randpunkt.
- fixe Fixpunkt.
- **frontière** Randpunkt. (*cf.* frontière)
- invariant Fixpunkt ◆Point confondu avec son ↑image lors d'une ↑transformation.
- par point punktweise.
- **plat** m. Flachpunkt ♦ Soit $f \in \mathbb{C}^n$ avec

$$f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$

- et $f^{(n)}(x_0) \neq 0 \ (n \geqslant 4)$:
 - a) si n est \uparrow pair, alors $P(x_0; f(x_0))$ est un point plat. Si, de plus, $f'(x_0) = 0$, alors on a un \uparrow extremum;
 - b) si n est \uparrow impair, alors le point plat est aussi un \uparrow point d'inflexion. Si, de plus, $f'(x_0) = 0$, alors on a un point d'inflexion à \uparrow tangente horizontale.

points alignés Punkte, die auf einer Geraden liegen.

polaire f. Polare \blacklozenge Soit un point $P(x_0; y_0)$ (le \uparrow pôle) et un \uparrow cercle

$$\gamma : x^2 + y^2 - r^2 = 0$$

alors

$$p: x_0 x + y_0 y - r^2 = 0$$

est une \uparrow droite, la polaire de P relativement à γ . Si P est extérieur au cercle, p coupe γ aux \uparrow points de contact des \uparrow tangentes issues de P; si P est sur γ , p est la tangente et si P est à l'intérieur p est à l'extérieur de γ . Cette notion peut se généraliser à toutes les \uparrow coniques.

pôle m. Pol.

d'une fonction Pol, Polstelle einer Funktion ♦↑Argument a d'une ↑fonction f tel que celle-ci tend vers l'↑infini lorsque x tend vers a; sur le ↑graphe, cela se traduit par une ↑asymptote verticale.

(syn. discontinuité de type pôle)

- d'une polaire Pol. (cf. polaire)
- d'un repère Pol ◆↑Origine d'un ↑repère en coordonnées polaires.

polyèdre m. Polyeder, Vielflächner.

régulier regulärer Polyeder ◆Polyèdre inscriptible dans une ↑sphère dont toutes les ↑faces sont des ↑polygones réguliers ↑isométriques.
↑Euclide termina son oeuvre Les Eléments en prouvant qu'il existe exactement cinq polyèdres ↑convexes réguliers : le ↑tétraèdre, le ↑cube, l'↑octaèdre, le ↑dodécaèdre et l'↑icosaèdre. (cf. corps platonicien)

polygone m. Polygon, *n*-Eck, Vieleck.

- inscriptible (inscrit)
 Sehnenpolygon, Sehnenvieleck.
 (cf. inscriptible, inscrit)
- régulier regelmässiges Polygon
 ◆Polygone ↑convexe inscriptible dans un ↑cercle et dont tous ↑les côtés ont la même ↑longueur.

polynôme produit

polynôme m. Polynom ♦P. ex.

$$P_n(x) = \sum_{i=0}^n a_i x^i$$

est un polynôme de \uparrow degré n, de \uparrow variable x et de \uparrow coefficients a_i .

Pont, Jean-Claude (né en 1941).

Mathématicien suisse, historien et philosophe des sciences, il fut le premier titulaire de la chaire Histoire et Philosophie des Sciences de l'Université de Genève, unité qu'il dirigea durant une vingtaine d'années. Ses publications et ses enseignements ont porté sur l'histoire de la topologie algébrique, sur l'histoire et la philosophie de la géométrie non euclidienne, sur les révolutions conceptuelles en mathématiques et dans les sciences au XIX^e, sur les cadres conceptuels de la pensée scientifique, etc. Par ailleurs guide de haute montagne, créateur de la course Sierre-Zinal, du Chemin des Planètes et de l'Observatoire François-Xavier Baquoud, créateur et directeur de la collection Mémoire Vivante avec le sociologue Bernard Crettaz.

position relative gegenseitige Lage ♦P. ex. dans le ↑plan, deux ↑droites peuvent être ↑confondues, parallèles ou ↑sécantes; dans l'↑espace elles peuvent en plus être ↑gauches.

ppmc kgV.

(cf. plus petit multiple commun)

pré-image f. Urbild. (*syn.* antécédent) **premier** adj.

- a) **nombre** Primzahl. (*cf.* nombre premier)
- b) **terme** Anfangsglied ◆ ↑Terme initial d'une ↑suite ou d'une ↑série.

preuve f. syn. démonstration.

primitive f. Stammfunktion. (*cf.* intégrale indéfinie)

principe de Cavalieri Cavalieri-Prinzip ♦Méthode pour comparer et calculer des ↑aires et des ↑volumes. (cf. Cavalieri fr-all)

prisme m. Prisma ♦↑Polyèdre constitué de deux ↑bases polygonales situées dans deux ↑plans parallèles et par des ↑parallélogrammes joignant les bases.

- **droit** gerades Prisma.
- régulier regelmässiges Prisma.(syn. cube)

probabilité f. Wahrscheinlichkeit.

conditionnelle bedingte Wahrscheinlichkeit ◆La probabilité conditionnelle P(A|B) ou P(A/B) (lu : « P de A sachant (étant donné) B »)

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

est la probabilité de la réalisation de l'†évènement A sous l'†hypothèse que l'évènement B se soit déjà réalisé; plus précisément c'est la probabilité de A dans l'†univers réduit B. (cf. axiomes de probabilités, théorème de multiplication)

produit m. Produkt.

- cartésien kartesisches Produkt,
 Kreuzprodukt, Mengenprodukt,
 Paarmenge, Produktmenge ◆Produit de deux ou plusieurs ↑ensembles :

$$A_1 \times \cdots \times A_n := \{(a_1, ..., a_n) \mid a_i \in A_i\}$$

avec

$$A_i \times A_j \neq A_j \times A_i \text{ si } A_i \neq A_j$$

 $(A_i \times A_j \text{ est lu} : (A_i \text{ croix } A_j)).$ (syn. ensemble-produit)

mixte Spatprodukt, gemischtes Produkt ◆Produit de trois ↑vecteurs u,
v et w défini par :

$$[\,\vec{u}\,;\vec{v}\,;\vec{w}\,] \coloneqq (\vec{u}\times\vec{v})\cdot\vec{w}$$

où « \times » est le \uparrow produit vectoriel et « \cdot » le \uparrow produit scalaire.

produits croisés puissance

- **par un scalaire** Vervielfachung, S-Multiplikation. (*syn.* multiplication par un scalaire)
- **remarquable** syn. identité remarquable.
- scalaire Skalarprodukt \bullet Soit deux \uparrow vecteurs \vec{u} et \vec{v} dans \mathbb{R}^n , leur produit scalaire $\vec{u} \cdot \vec{v}$ est défini par le nombre réel

$$\vec{u} \cdot \vec{v} := \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} := \sum_{k=1}^n a_k b_k$$

d'où il s'ensuit :

$$\vec{u} \cdot \vec{v} \coloneqq ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos \alpha$$

- **vectoriel** Vektorprodukt ◆Dans \mathbb{R}^3 , noté $\vec{u} \times \vec{v}$ (lu : « \vec{u} croix \vec{v} »), il se définit comme suit :
 - a) si \vec{u} et \vec{v} sont \uparrow linéairement dépendants, alors $\vec{u} \times \vec{v} = \vec{o}$;
 - b) si \vec{u} et \vec{v} sont \uparrow linéairement indépendants, alors $\vec{u} \times \vec{v}$ est \uparrow orthogonal à \vec{u} et à \vec{v} et les vecteurs \vec{u} , \vec{v} et $\vec{u} \times \vec{v}$ forment une \uparrow base; pour la \uparrow norme de $\vec{u} \times \vec{v}$, on a

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \cdot \|\vec{v}\| \cdot \sin \alpha$$

où α est l'†angle formé par \vec{u} et \vec{v} avec $0^{\circ} \leq \alpha \leq 180^{\circ}$.

produits croisés Kreuzmultiplikation ◆Application de la définition de l'égalité de deux ↑fractions :

$$\frac{a}{b} = \frac{c}{d} \implies ad = bc$$

projetante f. Projektionsstrahl ♦Lors d'une projection, ↑droite reliant un ↑point de l'↑ensemble de départ à son ↑image dans l'↑ensemble d'arrivée.

prolongement m.

- analytique analytische Fortsetzung.
- d'un segment Verlängerung einer Strecke.

 par continutité stetige Erweiterung.

proportion f. Proportion, Verhältnis ♦↑Égalité de ↑rapports de ↑nombres ou de grandeurs :

$$\frac{A}{B} = \frac{C}{D}$$

(lire : « A est à B comme C est à D »)

- **continue** fortlaufende Proportion.
- divine syn. nombre d'or, section dorée.

proportionnalité f.

- **directe** direkte Proportionalität ullet Les grandeurs x et y sont (directement) proportionnelles s'il existe un k, le \uparrow coefficient ou \uparrow facteur de proportionnalité, tel que :

$$y = kx \Leftrightarrow \frac{y}{x} = k$$

et on écrit alors : $x \propto y$.

- **inverse** indirekte, inverse Proportionalität \blacklozenge Les grandeurs x et y sont inversement proportionnelles s'il existe un k tel que :

$$y = \frac{k}{x} \iff xy = k$$

proposition f. Aussage (Logik) ◆Une proposition est vraie ou (↑exclusif) fausse.

propre adj.

- a) sous-ensemble echte Teilmenge.
- b) sous-espace Eigenraum.
- c) valeur Eigenwert.
- d) **vecteur** Eigenvektor.

propriété f. Eigenschaft ◆Un ↑théorème n'est autre qu'une propriété qui a réussi dans la vie...

puissance f. Mächtigkeit \bullet Pour un \uparrow ensemble E de $n \uparrow$ éléments on a

$$|\mathbf{E}| = \operatorname{Card}(\mathbf{E}) = n \text{ et } |\mathfrak{P}(\mathbf{E})| = 2^n$$

puissance pyramide

Si Card(E) = Card(N), E est dit \uparrow dénombrable. De plus

$$\operatorname{Card} \mathbb{N} = |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| =: \aleph_0$$

et pour \mathbb{R} , d'après l'hypothèse du continu

$$\operatorname{Card} \mathbb{R} = |\mathbb{R}| = |\mathfrak{P}(\mathbb{N})| = 2^{\aleph_0}$$

(cf. aleph, cardinal, ensemble puissance)

puissance f. Potenz.

- a) expression du type a^n (lu : « a puissance n ») dans laquelle a est la \uparrow base et n l' \uparrow exposant. (cf. élever à une puissance)
- b) soit un \uparrow cercle de \uparrow centre M et de \uparrow rayon r et P un \uparrow point du \uparrow plan,
 - si P est à l'extérieur du cercle
 et si g₁ et g₂ sont deux
 ↑sécantes passant par P, alors
 on a :

$$\overline{\mathrm{PA}}_1 \cdot \overline{\mathrm{PB}}_1 = \overline{\mathrm{PA}}_2 \cdot \overline{\mathrm{PB}}_2 = d^2 - r^2$$

où $d \coloneqq \overline{\mathrm{PM}}$; $d^2 - r^2 > 0$ est la
puissance du point P par rap-
port au cercle (Sekantensatz).

 si une des droites est une tangente avec T comme point de contact, alors on a :

$$\overline{PT}^2 = d^2 - r^2$$

- et la puissance est toujours positive (Tangentensatz).
- si P est à l'intérieur du cercle, alors la puissance est négative (Sehnensatz).
- si P est sur le cercle, alors

$$d^2 - r^2 = 0$$

puissance de deux Zweierpotenz.

puissance de dix Zehnerpotenz.

puissance trois dritte Potenz, hoch drei.

pyramide f. Pyramide.

- à base carrée quadratische Pyramide.
- **droite** gerade Pyramide.
- **oblique** schiefe Pyramide.
- régulière regelmässige Pyramide
 ♦Pyramide dont la ↑base est un
 ↑polygone régulier et les ↑faces des
 ↑triangles isocèles.
- tronquée Pyramidenstumpf.

Q

quadrangulaire adj. viereckig.

quadrant m. Quadrant ♦Un ↑système d'axes partage le ↑plan en quatre quadrants :

quadratique adj. quadratisch ♦Qualifie une ↑fonction de la forme

$$f(x) = ax^2 + bx + c$$
 avec $a \neq 0$

Son †graphe est une †parabole d'axe vertical.

quadrature du cercle Quadratur des Kreises ◆Très vieux problème où il est question de construire, avec ↑règle et compas, un ↑carré de même ↑aire que celle d'un ↑cercle donné. Il a fallu attendre 1882 pour prouver que c'est impossible. (cf. Lindemann de-fr)

quadrilatère m. Viereck ◆↑Carré, ↑cerf-volant, ↑fer de lance, ↑losange, ↑parallélogramme, ↑rectangle et ↑trapèze en sont les plus usuels.

 circonscrit à un cercle Tangentenviereck.

quadruplet m. Quadrupel. (*cf. n*-uplet)

quantificateur m. Quantor.

- existentiel Existenzquantor ◆Son symbole est ∃ et il signifie : « il existe au moins un(e)... ». Sa variante ∃! signifie : « il existe exactement un(e)... ».
- universel Allquantor ◆Son symbole
 est ∀ et il signifie : « pour tous... » ou
 « pour tout... ».

quart de disque Kreisquadrant.

quatrième proportionnelle vierte Proportionale \bullet C'est la règle de trois, conséquence de l'†égalité de deux †fractions, qui s'énonce aussi sous la forme « le †produit des extrêmes est égal au produit des moyens. »

quelconque adj. *cf.* triangle quelconque.

Quételet, Adolphe (1796-1874). Mathématicien, astronome, statisticien et sociologue belge.

qui se divise sans reste aufgehen. (cf. reste)

Quine, Willard (1908-2000). Logicien et philosophe américain.

To be is to be the value of a variable.

I have been accused of denying consciousness but I am not conscious of having done so.

quintuplet m. Quintupel.

(cf. n-uplet)

quotient m. Quotient. (cf. division euclidienne)

quotient différentiel Differentialquotient ♦Donné par

$$\frac{\Delta y}{\Delta x} := \frac{f(x) - f(x_0)}{x - x_0}$$

Si sa limite quand x tend vers x_0 existe, il donne la dérivée de f en x_0 . (cf. taux de variation)

racine rayon-vecteur

\mathbf{R}

racine f. Wurzel.

- carrée (Quadrat)wurzel.
- **cubique** Kubikwurzel, dritte Wurzel.
- d'une équation Lösung einer Gleichung ◆Synonyme pour la ↑solution d'une ↑équation polynomiale.
- n-ième n-te Wurzel ◆Soit a > 0 et $n \in \mathbb{N}^*$. La racine n-ième de a est définie par :

$$\sqrt[n]{a} = a^{\frac{1}{n}} = r > 0$$
 tel que $r^n = a$

- a) Pour n=2, c'est une ↑racine carrée : $\sqrt[2]{a} =: \sqrt{a}$.
- b) Pour n = 3, c'est une \uparrow racine cubique.
- c) Pour a < 0 et $n \uparrow impair$, une définition possible en est :

$$\sqrt[n]{a} =: -\sqrt[n]{|a|}$$

(cf. radical, radicande)

radian m. Radiant ◆Soit un ↑angle formé par deux ↑demi-droites et un ↑cercle centré en leur intersection; la mesure de l'angle en radians est le ↑rapport entre la longueur de l'arc intercepté et le ↑rayon du cercle :

1 rad
$$\approx 57^{\circ}17'44.8''$$

(cf. degré, grade)

radical m. Wurzelzeichen \P Son symbole apparaît pour la première fois en 1525, sous la forme « $\sqrt{\ }$ », dans l'ouvrage $Die\ Coss$ de Christoff Rudolff (env. 1500 - env. 1545); c'est une possible déformation du « r » de radix. (cf. racine, radicande)

radicande m. Radikand ♦Désigne ce qui est sous un ↑radical.

(cf. racine, radical)

raison d'une suite

- arithmétique Differenz einer arithmetischen Folge.
- géométrique Quotient einer geometrischen Folge.

(cf. suite arithmétique, suite géométrique)

raisonnement m.

- par l'absurde syn. reductio ad absurdum.
- par récurrence syn. induction complète.

(cf. démonstration)

rapport m. Verhältnis ♦↑Quotient de deux ↑nombres ou ↑grandeurs. P. ex.

$$a:b=c:d$$

(lu : « a est à b comme c est à d »).

- **d'homothétie** Streckfaktor, Streckungsfaktor. (*cf.* homothétie)

rapporteur m. Winkelmesser.

rationnel adj. rational. (cf. fonction rationnelle, nombre rationnel)

rayon m.

- de convergence Konvergenzradius.
- de courbure Krümmungsradius.
- d'un cercle Radius, Halbmesser.

rayon-vecteur m.

- d'un point isolé Ortsvektor ◆À tout ↑point P correspond son rayonvecteur OP.
- d'un point d'une droite ou d'un plan Stützvektor ◆Dans l'↑équation

$$\vec{v} = \vec{a} + \lambda \vec{v}$$

le \uparrow vecteur \vec{a} représente ce \uparrow point.

réciproque règles

(syn. vecteur-lieu)

réciproque f.

- **d'une fonction** Umkehrfunktion.(*cf.* fonction réciproque)

- d'un théorème Umkehrung eines
 Satzes ◆La réciproque du théorème :

$$(f \text{ dérivable}) \Rightarrow (f \text{ continue})$$

n'est pas vraie.

recouvrement m. Überdeckung ◆On peut en voir de magnifiques exemples dans certaines œuvres de l'artiste M. C. Escher (1898-1972).

 régulier gleichmässige Überdeckung.

rectangle adj. rechtwinklig. (cf. triangle rectangle)

rectangle m. Rechteck. (cf. quadrilatère)

rectangulaire adj. rechteckig. (*cf.* rectangle)

rectiligne adj. geradlinig. (cf. curviligne)

récurrence f. Rekursion.

(cf. formule de récurrence, raisonnement par récurrence)

reductio ad absurdum syn. raisonnement par l'absurde; cf. démonstration.

réel adj. reell. (*cf.* fonction réelle, nombre complexe, nombre réel)

réflexif adj. reflexiv ♦Une ↑relation R dans E est réflexive si

$$(a,a) \in \mathcal{R} \subset \mathcal{E} \times \mathcal{E}$$

(cf. relation)

réflexion f. syn. symétrie axiale.

réfuter tr. syn. infirmer.

région de l'espace räumliches Gebiet. **règle** f. Regel. de divisibilité utilisant la somme des chiffres d'un nombre Quersummenregel.

- de l'Hospital Regel von de l'Hospital, l'hospitalsche Regel \blacklozenge Soit f et g ↑dérivables avec

$$f(x_0) = g(x_0) = 0 \text{ (ou } \infty)$$

leur \uparrow quotient donne alors une \uparrow indétermination en $x = x_0$; selon la règle de l'Hospital on a :

si

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = a$$

alors

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = a$$

- des signes Vorzeichenregel.
- de trois Dreisatz ◆Conséquence de la définition de l'↑égalité de deux ↑fractions qui s'énonce :

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc$$

alors, si b, c et d sont connus, on a :

$$\frac{x}{b} = \frac{c}{d} \iff x = b \cdot \frac{c}{d}$$

(syn. quatrième proportionnelle)

- du parallélogramme Methode des Vektorparallelogramms, Parallelogrammregel ◆Allusion au fait que, graphiquement, $\vec{a} + \vec{b}$ est le vecteur associé à la diagonale du parallélogramme que définissent \vec{a} et \vec{b} .

règle à calcul Rechenschieber, Rechenstab.

règle et compas Zirkel und Lineal ◆Formule consacrée en géométrie constructive. C'est de ce domaine que sont issus les célèbres problèmes de la ↑duplication du cube, de la ↑quadrature du cercle et de la ↑trisection de l'angle.

règles f. plur. Regeln.

regula falsi repère

de De Morgan de morgansche Regeln ◆Pour les ↑ensembles on a :

$$\overline{A\cap B}=\overline{A}\cup\overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

et pour les †propositions :

$$\neg(A \land B) = \neg A \lor \neg B$$

$$\neg(A \lor B) = \neg A \land \neg B$$

(cf. Morgan de-fr)

de dérivation Ableitungsregeln.(cf. dérivée)

regula falsi Regula falsi, Sehnen-, Sekantenverfahren ◆Méthode numérique d'obtention d'un ↑zéro d'une ↑fonction continue dans un ↑intervalle fermé. (syn. méthode de la fausse position, de la sécante)

régulier adj. regelmässig, regulär. (*cf.* corps platonicien, matrice, polyèdre, polygone)

relatif adj. cf. local, nombre entier.

relation f. Relation ♦Une relation R dans un ↑ensemble E est un ↑sousensemble de E × E; elle peut être ↑réflexive, ↑symétrique, ↑transitive ou ↑antisymétrique. Elle peut aussi être le cadre d'une ↑application si elle est ↑univoque.

- d'égalité Gleichheitsrelation ◆Notée « = », c'est une ↑relation d'équivalence.
- d'équivalence Âquivalenzrelation
 ◆Relation binaire dans un ensemble
 E; elle est réflexive, symétrique
 et transitive et elle induit une
 ↑partition de E en ↑classes d'équivalence.
- d'Euler eulersche Relation ◆Cette relation, attribuée au mathématicien suisse Leonhard Euler, fait le lien entre les ↑fonctions trigonométriques et les ↑nombres complexes :

$$e^{i\phi} = \cos\phi + i\sin\phi$$

(cf. Euler de-fr, forme exponentielle d'un nombre complexe)

d'inclusion Inklusionsrelation ♦Notée « ⊂ », c'est une relation d'↑ordre partiel :

$$(A \subset B) \Leftrightarrow (x \in A \Rightarrow x \in B)$$

- **d'ordre** Anordnung, Ordnungsrelation
 - partiel Halbordnung ◆Une telle relation dans E, l'↑inclusion p. ex., est ↑réflexive, ↑antisymétrique et ↑transitive mais ne concerne pas tous les éléments de E.
 - total Totalordnung ◆Relation d'ordre qui concerne tous les éléments de E, on a donc :

$$\forall a, b \in E : a R b \lor b R a$$

p. ex. $\ll \gg$ dans \mathbb{R} .

- de Chasles
 - a) **pour les \tauvecteurs** Verkettung, Verknüpfung von Vektoren:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

b) pour les \(\paralle\) angles :

$$\angle(\vec{a}, \vec{b}) + \angle(\vec{b}, \vec{c}) = \angle(\vec{a}, \vec{c})$$

c) pour les intégrales :

$$\int_{a}^{b} f \, \mathrm{d}x + \int_{b}^{c} f \, \mathrm{d}x = \int_{a}^{c} f \, \mathrm{d}x$$

(cf. Chasles fr-all)

relations de Viète Syn. formules de Viète. (cf. Viète fr-all)

repère Koordinatensystem.

cartésien kartesisches Koordinatensystem.

représentation ruban de Möbius

en coordonnées polaires Polar-koordinatensystem ◆P. ex. dans le ↑plan, ce système est formé d'un ↑point fixe, le ↑pôle, et d'une ↑demidroite h issue de celui-ci; chaque point P est défini par la ↑longueur r de OP et par l'↑angle φ que forme ce segment avec h : P(r, φ).

(cf. coordonnée polaire)

- **orthonormé** Achsenkreuz, kartesisches Koordinatensystem $\uparrow \uparrow$ Repère $(0, \vec{i}, \vec{j})$ du $\uparrow plan$ dont les $\uparrow vecteurs$ de base \vec{i} et \vec{j} sont $\uparrow orthogonaux$ et de même $\uparrow norme$.

représentation f. Darstellung.

- graphique graphische Darstellung.(syn. graphe)

représentative adj. cf. matrice.

représenter tr. darstellen Φ Dans \mathbb{R}^n l' \uparrow équation

$$\sum_{k=1}^{n} a_k x_k = b$$

représente un \uparrow hyperplan; si n=3, alors on parle d'un \uparrow plan et si n=2, d'une \uparrow droite.

résolubilité f. Lösbarkeit. (*cf.* théorème fondamental de l'algèbre)

résoluble adj. lösbar.

résolution d'un système d'équations Auflösung eines Gleichungssystems.

- par addition Additionsverfahren.
- par comparaison Gleichsetzungsverfahren.
- par substitution Einsetzungsverfahren.

 par l'algorithme d'élimination de Gauss Gauss-Algorithmus.
 (cf. pivot de Gauss)

reste m. Rest. (cf. division euclidienne)

restriction f. Beschränkung, Einschränkung. (cf. Abréviations, p. 13)

retournement m. Umklappung ◆↑Transformation consistant à sortir une ↑figure plane de son ↑plan, la retourner et la ré-insérer dans le plan. (cf. symétrie axiale)

réunion f. Vereinigung, Vereinigungsmenge ◆↑Opération entre ↑ensembles définie par :

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

(lire: « A union B »). (cf. intersection, union)

Revuz, André (1914-2008). Mathématicien français :

La mathématique n'est pas une science de la nature mais une science de l'esprit.

rotation f. Drehung, Rotation \bullet Une rotation d' \uparrow angle α peut être considérée comme la \uparrow composition de deux \uparrow symétries dont les \uparrow axes font un angle de $\frac{\alpha}{2}$ et qui se coupent au \uparrow centre de rotation. (cf. transformation affine)

dilatante Drehstreckung ◆↑Composition d'une rotation et d'une ↑homothétie.

ruban de Möbius Möbiusband ♦↑Surface à une face obtenue en cousant bord à bord deux ↑extrémités d'un ruban ↑rectangulaire après une torsion d'un demi-tour. (cf. Moebius de-fr) sans sens

S

sans prép.

- **diviseur commun** teilerfremd ◆Se dit de deux ↑naturels a et b pour lesquels ↑pgdc(a,b) = 1.
- diviseur de zéro nullteilerfrei.
 (cf. anneau, diviseur de zéro, domaine d'intégrité)
- **élément commun** disjunkt, elementefremd. (*syn.* disjoint)
- restriction de la généralité
 cf. Abréviations, p. 13.
- **solution** unlösbar **♦**L'équation

$$x^2 + 1 = 0$$

est sans solution dans \mathbb{R} . (syn. insoluble)

saut m. Sprungstelle. (cf. discontinuité de type saut)

scalaire m. Skalar. (*syn.* nombre réel; *cf.* produit scalaire)

scalène adj. cf. triangle scalène.

Schwartz, Laurent (1915-2002). Mathématicien français :

Le concret c'est de l'abstrait devenu familier.

sécant adj. cf. droites sécantes.

sécante f. Sekante ◆↑Droite coupant une ↑courbe en au moins deux ↑points distincts. (cf. tangente, regula falsi)

secteur m.

- angulaire Winkelfeld ◆↑Figure
 ↑plane obtenue par ↑intersection ou
 ↑réunion de deux demi-plans délimités par des ↑droites ↑sécantes ou
 ↑confondues.
- circulaire Kreisausschnitt, Kreissektor ◆Partie d'un ↑disque délimitée par deux ↑rayons.

sphérique Kugelausschnitt, Kugelsektor ◆↑Intersection d'une sphère de centre M et d'un cône circulaire de sommet M.

section f. syn. coupe.

- **conique** Kegelschnitt. (*cf.* conique)
- dorée goldener Schnitt.
 (syn. nombre d'or, proportion divine)

segment m. Strecke ♦Partie d'une †droite limitée par deux de ses †points.

- circulaire Kreisabschnitt, Kreissegment ◆Toute ↑corde définit dans un ↑cercle deux segments circulaires formés par la corde et les ↑arcs interceptés.
- reliant deux points Verbindungsstrecke zweier Punkte.
- sphérique Kugelschicht ◆S'obtient en coupant une ↑sphère par deux ↑plans parallèles.

segments déterminés par la hauteur sur l'hypoténuse Hypotenusenabschnitte. (*cf.* théorème de la hauteur)

selle de cheval syn. paraboloïde hyperbolique.

semblable adj. ähnlich \blacklozenge P. ex. deux \uparrow triangles sont semblables si leurs \uparrow angles sont égaux. (cf. similitude)

semi-ouvert adj. halboffen. (*cf.* intervalle)

sens m.

- **de parcours** Durchlaufsinn, Umlaufsinn.
- de rotation Drehsinn.
 - positif positiver Drehsinn ◆Sens de rotation contraire au sens des aiguilles d'une montre, représenté par ∅.

série sinus

- négatif negativer Drehsinn ◆Sens de rotation des aiguilles d'une montre, représenté par ☼.
- d'un vecteur cf. direction et sens d'un vecteur.

série f. Reihe ♦Objet de la forme

$$a_1 + a_2 + a_3 + \dots =: \sum_{k=1}^{\infty} a_k$$

- convergente konvergente Reihe
 ◆Série dont la ↑suite des ↑sommes partielles converge.
- de puissances Potenzreihe ◆Série de la forme :

$$a_0 + a_1 x + a_2 x^2 + \dots =: \sum_{n=0}^{\infty} a_n x^n$$

géométrique geometrische Reihe
 ♦Série de la forme

$$\sum_{k=0}^{\infty} ar^k$$

dont a est le \uparrow terme initial et r la \uparrow raison.

harmonique harmonische Reihe
 Désigne la série divergente :

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

(cf. suite)

Serre, Jean-Pierre (né en 1926). Mathématicien français :

La physique, ce sont les lois que Dieu a choisies; les mathématiques, celles auxquelles il a dû obéir.

si et seulement si dann und nur dann, genau dann wenn ◆Exprime l'↑équivalence de deux ↑propositions :

$$A \Leftrightarrow B \quad (A \leftrightarrow B)$$

P. ex. le †produit de deux †nombres réels est nul si et seulement si l'un des deux au moins est nul; en d'autres termes :

$$(a \cdot b = 0) \Leftrightarrow (a = 0 \lor b = 0)$$

signe d'affectation syn. symbole d'affectation.

similitude f. Ähnlichkeitsabbildung ♦↑Transformation affine composée d'une ↑isométrie et d'une ↑homothétie. (cf. semblable)

simplifier tr. kürzen ♦Désigne la manipulation de fraction :

$$\frac{ac}{bc} \Rightarrow \frac{a}{b} \cdot \frac{c}{c} = \frac{a}{b}$$

(ant. amplifier; cf. fraction irréductible)

singleton m. einelementige Menge ◆↑Ensemble ne contenant qu'un seul ↑élément. (syn. ensemble singleton)

singularité f. Singularität.

- apparente hebbare Singularität.
- essentielle wesentliche Singularität.(cf. discontinuité)

singulière adj. singuläre. (cf. matrice)

sinus m. Sinus ◆Dans un ↑triangle ABC, rectangle en A, on définit le sinus de l'↑angle β comme étant le ↑rapport du ↑côté opposé sur l'↑hypoténuse :

$$\sin \beta = \frac{\overline{AC}}{\overline{BC}}$$

Ce mot, attesté en 1544, est emprunté au latin médiéval sinus, terme de géométrie, choisi d'après le sens de « pli de la toge » qu'avait le latin classique sinus (sein, sinueux), pour traduire l'arabe djayb. Ce dernier, qui signifiait à l'origine « ouverture (pectorale) d'un vêtement », était employé en géométrie, au sens de « demi-corde (de l'arc double) », sens probablement emprunté au sanskrit djîva « corde », un certain nombre de notions mathématiques

solide sous-tangente

arabes provenant des savants indiens. L'équivalent latin du mot arabe résulterait donc d'une confusion; le nom latin de la demi-corde, semi inscripta, était abrégé en s. ins. ce ce qui a pu surdéterminer sinus. [19] (cf. trigonométrique)

 hyperbolique Hyperbelsinus, Sinus hyperbolicus •†Fonction transcendante donnée par :

$$\sinh(x) := \frac{e^x - e^{-x}}{2}$$

(cf. fonction hyperbolique)

solide m. Körper.

- de révolution Rotationskörper
 ♦Solide engendré par la rotation d'une ↑surface plane autour d'un ↑axe ↑coplanaire.
- **droit** gerader Körper.
- **géométrique** geometrischer Körper.
- **oblique** schiefer Körper.

solution f. Lösung.

- **double** Doppellösung, doppelte Lösung ◆L'équation $(x - a)^2 = 0$ possède la solution double :

$$x_1 = x_2 = a$$

(cf. multiplicité)

particulière partikuläre Lösung.(cf. racine)

somme f. Summe ◆Résultat d'une †addition.

- des chiffres d'un nombre Quersumme.
- des diviseurs d'un nombre Teilersumme einer Zahl.
- partielle Teilsumme, Partialsumme.
 (cf. série convergente)

sommet m.

- d'un cône Spitze eines Kegels
 ◆↑Intersection de ses ↑génératrices.

- d'une conique Scheitelpunkt
 ◆Intersection avec son ↑axe focal.
- d'une pyramide Spitze einer Pyramide.
- d'un polygone Ecke eines Polygons.
- opposé Gegenecke.

source f. Ausgangsmenge. (*cf.* application, ensemble de départ)

sous-ensemble m. Teilmenge, Untermenge \uparrow Partie A d'un ensemble B lorsque tout \uparrow élément de A est aussi élément de B; noté : A \subset B.

propre echte Teilmenge ♦Lorsque

$$A \subset B$$
 avec $A \neq B$

On dit aussi que A est †strictement inclus dans B.

(cf. ensemble des parties)

sous-espace m. Unterraum ◆Sous-ensemble non vide d'un ↑espace vectoriel et conservant la même ↑structure.

propre Eigenraum ◆Les ↑vecteurs propres associés à une ↑valeur propre λ engendrent, avec le ↑vecteur nul, le sous-espace propre de λ noté E(λ).

sous-groupe m. Untergruppe ♦↑Sousensemble non vide d'un ↑groupe conservant cette ↑structure.

sous-intervalle m. Teilintervall.

sous-normale f. Subnormale \blacklozenge Soit f \uparrow dérivable en x_0 , alors la sous-normale est le \uparrow segment compris entre x_0 et l'intersection de la \uparrow normale avec l'axe des x et sa longueur est de $|f(x_0) \cdot f'(x_0)|$. P. ex., pour la parabole $f(x) = \sqrt{2px}$, ce segment est constant et vaut p. (cf. sous-tangente)

sous-suite f. Teilfolge \blacklozenge P. ex. $\langle a_{2n} \rangle$ est une sous-suite de la \uparrow suite $\langle a_n \rangle$.

sous-tangente f. Subtangente \bullet Soit f \uparrow dérivable en x_0 , alors la sous-tangente

spatial surface

est le \uparrow segment compris entre x_0 et l'intersection de la \uparrow tangente avec l'axe des x; la longueur de ce segment vaut :

$$\left| \frac{f(x_0)}{f'(x_0)} \right|$$

P. ex., pour la fonction $f(x) = e^x$, ce segment est constant et vaut 1. (cf. sous-normale)

spatial adj. cf. géométrie.

sphère f. Kugel(fläche), Sphäre ♦↑Ensemble des ↑points de l'↑espace situés à ↑distance fixe, le ↑rayon, d'un point donné, le ↑centre.

- circonscrite Umkugel.

stéradian (sr) m. Steradiant (sr). (cf. angle solide)

strictement adj. streng. (*cf.* monotone)

– **inclus** *cf.* sous-ensemble propre.

structure f. Struktur. (*cf.* anneau, corps, espace vectoriel, groupe)

Sturm, Charles François (1803-1855). Mathématicien franco-suisse.

substitution f.

- a) Einsetzungsverfahren ◆Méthode de résolution des ↑systèmes d'équations consistant à exprimer une ↑inconnue en fonction des autres dans une des ↑équations et à l'injecter dans les autres.
- b) Substitution \blacklozenge Soient f et g deux \uparrow fonctions \uparrow dérivables sur l' \uparrow intervalle [a,b] telles que les \uparrow dérivées f' et g' sont \uparrow continues sur [a,b], alors

$$\int_{a}^{b} (f \circ g)(x)g'(x) dx = \int_{g(a)}^{g(b)} f(t) dt$$

où t est la nouvelle \uparrow variable d'intégration.

suffisant adj. hinreichend ◆La ↑dérivabilité est une condition suffisante pour assurer la ↑continuité d'une ↑fonction. (cf. nécessaire)

suite f. Folge \diamond Cas particuliers de fonctions dont le \uparrow domaine de définition est \mathbb{N} .

- **arithmétique** arithmetische Folge \bullet Suite $\langle a_n \rangle$ donnée par la formule de \uparrow récurrence :

$$a_n = a_{n-1} + r$$

où r est la \uparrow raison.

- de Cauchy Cauchy-Folge ◆Chaque ↑suite ↑convergente est une suite de Cauchy. (cf. Cauchy fr-all, critère de Cauchy)
- des sommes partielles Teilsummenfolge. (cf. série convergente)
- géométrique geometrische Folge
 ♦Suite numérique définie par :

$$a_n = a_1 \cdot r^{n-1}$$
 ou $\frac{a_{n+1}}{a_n} = r$

où r est la \uparrow raison.

- monotone monotone Folge.(cf. monotone)
- nulle Nullfolge ◆Se dit d'une ↑suite qui ↑converge vers zéro, p. ex.

$$\langle aq^n \rangle$$
 avec $|q| < 1$

- **numérique** Zahlenfolge.

supposer tr. annehmen, vermuten ♦« Et maintenant, supposons le problème résolu... ».

supposition f. Annahme, Vermutung. (cf. conjecture, hypothèse)

supremum m. Supremum ◆Désigne la plus petite ↑borne supérieure d'un ↑ensemble de ↑nombres réels. (cf. infimum)

surface f. Fläche, Oberfläche.

- latérale Mantelfläche.
- polygonale Vielecksfläche.

surjection système

- réglée Regelfläche ◆Surface engendrée par le mouvement d'une †droite, la †génératrice, dans l'†espace; p. ex. l'†hyperboloïde à une †nappe en est une, qu'on retrouve dans les tours de refroidissement des centrales nucléaires.
- sphérique Kugeloberfläche.(cf. boule, sphère)

surjection f. Surjektion, surjektive Abbildung \bullet Une \uparrow application f de A sur B est surjective si tout \uparrow élément de B est \uparrow image d'au moins un élément de A, i.~e.

$$\forall b \in B, \exists a \in A : f(a) = b$$

(cf. bijection, injection)

surjectif adj. cf. surjection.

symbole m.

- d'affectation definierendes Gleichheitszeichen (=:) ◆P. ex.

$$a_1 + a_2 + \dots + a_n =: \sum_{k=1}^n a_k$$

- de Kronecker *cf.* Kronecker.
- d'opération Operationssymbol,
 Operationszeichen. (cf. Symboles mathématiques, p. 121)

symétrie f. Symmetrie, Spiegelung ♦Elle fait partie des ↑transformations ↑involutives.

- axiale Achsenspiegelung, Achsensymmetrie, Geradenspiegelung, Spiegelung an einer Geraden. (syn. réflexion; cf. transformation affine, fonction paire)
- centrale Punktspiegelung, Punktsymmetrie ◆↑Composition de deux symétries axiales d'↑axes ↑perpendiculaires se coupant au ↑centre de symétrie; c'est aussi une ↑rotation de 180°. (cf. fonction impaire)

glissée Gleitspiegelung, Schubspiegelung ◆Composition d'une ↑réflexion et d'une ↑translation.

- **oblique** Schrägspiegelung ◆Généralisation de la symétrie orthogonale ou cas particulier de l'†affinité avec un †rapport k = -1.
- orthogonale syn. axiale.

symétrique adj. symmetrisch ♦Un objet mathématique est considéré comme symétrique s'il reste †invariant sous l'action de certaines †applications.

- a) **matrice** symmetrische Matrix. (*cf.* antisymétrique, matrice)
- b) **relation** symmetrische Relation ◆↑Relation \mathscr{R} possédant la propriété :

$$\forall a, b \in A : a \mathcal{R} b \Rightarrow b \mathcal{R} a$$

- d'un élément inverses Element.
 (cf. élément inverse, élément symétrique)
- relativement à une droite achsensymmetrisch.

système m. System.

- axiomatique Axiomensystem.
 (cf. axiomes de probabilité, Peano frall)
- binaire Binärsystem, Dualsystem,
 Zweiersystem ◆↑Numération positionnelle en ↑base 2.
- d'axes Achsensystem.
- d'axes de coordonnées Koordinatenachsensystem.
- d'axiomes syn. système axiomatique.
- décimal dekadisches System, Dezimalsystem, Zehnersystem ◆↑Numération positionnelle en ↑base 10.
- **d'équations** Gleichungssystem.
- **d'équations linéaires** lineares Gleichungssystem. (*cf.* homogène)
- de numération positionnelle
 Stellenwertsystem.
 (cf. numération de position)

système

- **générateur** Erzeugendensystem \blacklozenge Un système $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ de \uparrow vecteurs est générateur d'un \uparrow espace vectoriel si tout \uparrow élément de

celui-ci peut s'exprimer comme †
combinaison linéaire des \vec{v}_k .

(cf. enveloppe linéaire)

T

table de logarithmes Logarithmentafel.

tableau de vérité Wahrheitstafel.

tangent (être) berühren, tangential sein. (cf. point de contact)

tangente f.

- a) **fonction** Tangensfunktion (*cf.* trigonométrique).
- b) **droite** Tangente ◆Droite coupant une ↑courbe avec une ↑multiplicité d'au moins 2 (cf. normale, sous-tangente).
- en un point d'inflexion Wendetangente.
- hyperbolique Hyperbeltangens,
 Tangens hyperbolicus ◆↑Fonction
 transcendante de la forme :

$$\tanh(x) := \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{\sinh(x)}{\cosh(x)}$$

(cf. fonction hyperbolique).

(cf. méthode de la tangente, de Newton)

taux de variation Änderungsrate. (cf. quotient différentiel)

Taylor, formule de Taylorsche Formel \bullet Soit f une \uparrow fonction (n+1)-fois \uparrow continûment dérivable sur l' \uparrow intervalle I et x_0 un \uparrow point intérieur de I, alors la \uparrow série de puissances de Taylor représente la fonction dans le \uparrow voisinage de x_0 ; pour tous les $x \in I$, on a :

$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i + R_n$$

οù

$$R_n = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

avec $x_0 < c < x$. (cf. Taylor de-fr)

techniques de dénombrement Abzählverfahren, Kombinatorik. (syn. (analyse) combinatoire)

terme m.

- d'un polynôme Glied eines Polynoms.
- d'une somme Summand.
- général (suite, série) Bildungsgesetz.
- **initial** Anfangsglied. (*syn.* premier terme)

tétraèdre m. Tetraeder ♦↑Polyèdre formé de quatre ↑faces triangulaires. (cf. corps platoniciens)

théorème m. Lehrsatz, Satz, Theorem ◆Se présente usuellement sous la forme : ↑hypothèse - ↑conclusion - ↑démonstration.

- d'addition Additionstheorem ◆Par exemple :

$$\sin(\alpha \pm \beta) = \sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$$

 de Bayes Formel von Bayes ◆Son énoncé est le suivant :

$$P(A_k|B) = \frac{P(A_k) \cdot P(B|A_k)}{\sum_{k=1}^{n} P(A_k) \cdot P(B|A_k)}$$

(syn. théorème des cause; cf. Bayes de-fr, probabilité conditionnelle)

 de la hauteur Höhensatz ◆Dans un ↑triangle rectangle, soit p et q les segments définis sur l'hypoténuse par la ↑hauteur h. Alors, on a

$$h^2 = p \cdot q$$

 de la moyenne du calcul différentiel Mittelwertsatz der Differentialrechnung. (syn. théorème des accroissements finis) théorème théorème

- de la moyenne du calcul intégral Mittelwertsatz der Integralrechnung \bullet Soit f une \uparrow fonction \uparrow continue sur [a,b], alors il existe un $\xi \in]a,b[$ avec la propriété

$$\int_{a}^{b} f(x) \, \mathrm{d}x = f(\xi)(b-a)$$

- de la valeur intermédiaire Zwischenwertsatz \blacklozenge Soit f une \uparrow fonction continue sur l' \uparrow intervalle [a,b], alors, pour tout \uparrow nombre c compris entre les valeurs minimale m et maximale M de f, on a :

$$\exists \, \xi \in [a, b] : f(\xi) = c$$

Si $m \cdot M < 0$ alors f a au moins un \uparrow zéro dans cet \uparrow intervalle.

 de multiplication Multiplikationssatz ◆De la ↑probabilité conditionnelle, il s'ensuit que

$$P(A \cap B) = P(B) \cdot P(A|B)$$

(cf. indépendant)

de Pythagore Satz von Pythagoras :

In rectangulis: quadratum quod à latere rectum angulum subtendente describitur, æquale est eis, quæ à lateribus rectum angulum continentibus describuntur quadratis (1550).

(cf. Pythagoras de-fr)

- de Rolle Satz von Rolle ♦Soit f une ↑fonction continue sur l'↑intervalle [a,b] et ↑dérivable sur l'intervalle [a,b[avec f(a)=f(b), alors :

$$\exists c \in \,]a,b[: f'(c) = 0$$

des accroissements finis Mittelwertsatz der Differenzialrechnung
◆Soit f une ↑fonction continue sur [a, b] et ↑dérivable sur [a, b[, alors :

$$\exists \, \xi \in \,]a \,, b[: \frac{f(b) - f(a)}{b - a} = f'(\xi)$$

(cf. théorème de Rolle)

- des causes syn. théorème de Bayes.
- des (deux) gendarmes Einschliessungskriterium, Zangensatz ♦Soit $\langle a_n \rangle$ et $\langle b_n \rangle$ deux ↑suites convergeant vers la même limite a et une autre suite $\langle c_n \rangle$ telle que :

$$a_n \leqslant c_n \leqslant b_n \ \forall n$$

alors $\langle c_n \rangle$ converge aussi vers a. (cf. théorème du sandwich)

- de Thalès
 - a) Satz des Thales ◆Le théorème de Thalès dit que chaque ↑triangle dont la ↑base est le ↑diamètre d'un ↑cercle et dont le ↑sommet est sur ce cercle est ↑rectangle.

(cf. cercle de Thalès)

b) Strahlensatz ◆Soient deux †droites qui se coupent en S ou deux †demi-droites d'extrémité commune S que coupent deux †sécantes parallèles aux †points A et B resp. A' et B', alors on a les relations suivantes :

$$\overline{SA} : \overline{SA'} = \overline{SB} : \overline{SB'} = \overline{AB} : \overline{AB'}$$

(cf. Thales de-fr)

 - d'Euclide Satz des Euklid ◆Dans un †triangle rectangle ABC on a :

$$\overline{AB}^2 = \overline{BC} \cdot \overline{BH} \text{ et } \overline{AC}^2 = \overline{BC} \cdot \overline{CH}$$

où H est le \(\phi\)pied de la \(\pha\)hauteur non \(\phi\)triviale sur l'\(\phi\)hypot\(\text{énuse BC}\). \((cf. \) Euclide fr-all\)

- d'Euler eulerscher Polyedersatz.(cf. Euler de-fr)
- d'incomplétude de Gödel gödelscher Unvollständigkeitssatz ◆Il énonce que toute théorie mathématique dans laquelle on peut formaliser l'arithmétique ne peut prouver en elle-même sa non-contradiction, elle contient donc des propositions indécidables. (cf. Gödel de-fr)

- **du cosinus** Kosinussatz \blacklozenge Généralisation du \uparrow théorème de Pythagore. Soit a, b et c les \uparrow côtés d'un \uparrow triangle quelconque, alors :

$$c^2 = a^2 + b^2 - ab\cos\gamma \quad \circlearrowleft$$

où $\gamma = \angle(a, b)$.

 du sandwich syn. théorème des (deux) gendarmes.

(cf. Avant-propos, p. 3)

- du sinus Sinussatz \bullet Soit un ↑triangle ABC de ↑côtés a, b, c et ↑d'angles α , β et γ , alors on a :

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

où R est le rayon du cercle circonscrit.

- fondamental Fundamentalsatz, Hauptsatz.
- fondamental de l'algèbre Hauptsatz der Algebra \blacklozenge Une \uparrow équation polynomiale de degré n possède dans $\mathbb{R} \uparrow$ au plus $n \uparrow$ solutions. Si n est \uparrow impair, alors elle possède au moins une solution.
- fondamental du calcul intégral Hauptsatz der Integralrechnung \bullet Soit f une \uparrow fonction continue sur l' \uparrow intervalle [a,b] et F une \uparrow primitive de f sur [a,b]; alors :

$$\int_a^b f(x) dx = F(b) - F(a) =: F(x) \Big|_a^b$$

théorie des ensembles Mengenlehre. (*cf.* Cantor fr-all)

Thom, René (1923-2002).

Mathématicien français \bullet Sa célébrité lui vient de la théorie des catastrophes qui étudie les singularités d'équations différentielles et applique la topologie à diverses sciences.

tore f. Torus ♦↑Surface (ou ↑corps) engendrée par la ↑rotation d'un ↑cercle autour d'une ↑droite; cette droite,

l'\u2201axe du tore, appartient au \u2207plan du cercle, mais ne coupe pas celui-ci. Le tore s'apparente donc à une chambre à air ou à une bouée...

trace f.

- d'une droite Durchstosspunkt,
 Spur einer Geraden ♦↑Intersection
 d'une droite avec un ↑plan
 (↑géométrie descriptive).
- d'un plan Spur einer Ebene
 ◆Intersection d'un plan avec un des plans de référence (†géométrie de Monge).
- **d'une matrice** Spur einer Matrix ◆↑Somme des ↑éléments diagonaux d'une matrice carrée $A = (a_{ij})$:

$$\operatorname{Tr}(\mathbf{A}) = \operatorname{Tr} \mathbf{A} = \operatorname{tr} \mathbf{A} \coloneqq \sum_{i=1}^{n} a_{ii}$$

transcendant adj. transzendent.

- a) **fonction** Qualifie une †fonction non †algébrique, par exemple la fonction †exponentielle et les fonctions †trigonométriques.
- b) **nombre** Qualifie un \uparrow nombre réel non algébrique, par exemple e et π .

transformation f. Transformation ♦Appellation fréquente des ↑applications dans le cadre de la ↑géométrie.

affine f. affine Abbildung ◆Une application bijective du plan (de l'espace) sur lui-même est une transformation affine si la colinéarité est conservée; elle est représentée par les équations :

$$\begin{cases} x' = a_{11}x + a_{12}y + a_1 \\ y' = a_{21}x + a_{22}y + a_2 \end{cases}$$

avec $a_{11}a_{22} - a_{12}a_{21} \neq 0$. (cf. affinité, cisaillement, déplacement, homothétie, isométrie, similitude, translation, transvection)

transitif

transitif adj. transitiv ♦Une ↑relation R dans E est transitive si:

 $(a,b) \in \mathbb{R}$ et $(b,c) \in \mathbb{R} \Rightarrow (a,c) \in \mathbb{R}$ (cf. antisymétrique, réflexif, symétrique)

translation f. Translation, Verschiebung, Parallelverschiebung ◆↑Transformation affine déterminée par une ↑direction, un ↑sens et une ↑longueur. Un point P et son ↑image P' définissent le ↑vecteur PP' dont la ↑norme exprime l'ampleur de la translation. C'est aussi une ↑composition de deux ↑symétries d'↑axes ↑parallèles.

transposée adj. transponiert. (*cf.* matrice)

transvection f. Scherung \bullet Composition de deux affinités de même axe et de rapports inverses : $k_1 \cdot k_2 = 1$. (syn. cisaillement; cf. transformation affine)

trapèze m. Trapez ♦↑Quadrilatère ↑convexe avec deux ↑côtés parallèles.

triangle m. Dreieck.

- acutangle spitzwinkliges Dreieck
 ◆Triangle à trois ↑angles ↑aigus.
- d'appui Steigungsdreieck.
- de Pascal pascalsches Dreieck :

(cf. Pascal fr-all)

- **équilatéral** gleichseitiges Dreieck.
- **isocèle** *cf.* isocèle.
- obtusangle stumpfwinkliges Dreieck ◆↑Triangle dans lequel un ↑angle est supérieur à 90°. (cf. angle obtus)
- orthique Höhenfusspunktdreieck
 ◆Il a comme ↑sommets les pieds des
 ↑hauteurs d'un ↑triangle acutangle dans lequel il est aussi la solution du problème de Fagnano.

(cf. Fagnano fr-all)

- quelconque syn. triangle scalène.
- rectangle rechtwinkliges Dreieck.
- scalène beliebiges Dreieck ◆Du grec skalênos « boîteux, qui penche d'un côté ».

triangulaire adj. *cf.* nombres triangulaires.

tridimensionnel adj. dreidimensional. (*cf.* bidimensionnel, espace, unidimensionnel)

trigonométrique adj. trigonometrisch ♦Qualifie essentiellement les ↑fonctions ↑sinus, ↑cosinus, ↑tangente et ↑cotangente.

triplet m. Tripel.

- de nombres Zahlentripel.
- **de Pythagore** pythagorisches Zahlentripel ◆Triplet de ↑nombres entiers (a, b, c) vérifiant la ↑relation :

$$a^2 + b^2 = c^2$$

a, b et c sont donc les \uparrow côtés d'un \uparrow triangle rectangle.

(cf. n-uplet)

trisection (d'un angle) Trisektion (Dreiteilung) des Winkels ◆Comment partager, avec ↑règle et compas, un angle en trois parties égales?

(cf. Wantzel fr-all)

trivial adj. einfach, offensichtlich, trivial. (*cf.* Avant-propos, p. 3)

troisième proportionnelle dritte Proportionale ♦↑Solution de la ↑proportion

$$b: a = a: x$$

tronc m.

- de cône Kegelstumpf ◆Couper un ↑cône par un ↑plan parallèle à la ↑base engendre deux ↑solides : un cône et un tronc de cône.
- de pyramide syn. pyramide tronquée.

tronqué adj. cf. cône, pyramide.

tuple m. Tupel. (*cf.* couple, *n*-uplet, paire, quadruplet, triplet)

unidimensionnel variable

$\mathbf{U} - \mathbf{V}$

unidimensionnel adj. eindimensional. (*cf.* bidimensionnel, espace, tridimensionnel)

union f. *cf.* réunion.

unitaire adj. cf. anneau, vecteur.

unité de mesure d'angle Winkelmass. (*cf.* degré, grade, radian)

uniformément continue cf. fonction.

univers m. Grundmenge, Stichprobenraum \uparrow Ensemble de toutes les \uparrow issues d'une \uparrow expérience aléatoire, noté U ou Ω . (syn. ensemble des évènements possibles, ensemble fondamental, espace d'état; cf. axiomes de probabilités)

univoque adj. eindeutig ◆Qualifie une ↑relation qui, à chaque ↑élément de départ, n'associe qu'un élément de l'↑ensemble d'arrivée. (ant. multivoque; cf. application, biunivoque)

valeur f. Wert.

absolue f. Absolutbetrag, Absolutwert, Betrag ◆↑Fonction définie par :

$$|a| := \begin{cases} a & si \ a \geqslant 0 \\ -a & si \ a < 0 \end{cases}$$

- approchée Näherungswert ♦Se note $a \approx a'$, et |a a'| représente l'erreur commise.
- de la fonction Funktionswert ◆Par une assignation de la forme

$$x \mapsto f(x) = y$$

on peut attribuer à chaque x du \uparrow domaine de définition une valeur de la fonction.

de vérité d'une proposition
 Wahrheitswert einer Aussage.

- **extrémale** syn. extremum.
- **moyenne** Durchschnittswert, Mittelwert.
- **principale** Hauptwert.
- **propre** Eigenwert ♦Soit f un ↑endomorphisme d'un ↑espace vectoriel V. Un ↑nombre $\lambda \neq 0$, pour lequel il existe un \vec{v} avec :

$$\vec{v} \neq \vec{o}$$
 et $f(\vec{v}) = \lambda \vec{v}$

est une valeur propre de f et \vec{v} est un \uparrow vecteur propre. (cf. sous-espace propre)

variable f. Variable.

- aléatoire Zufallsgrösse, Zufallsvariable (Wahrscheinlichkeit).
- auxiliaire Hilfsvariable. (*cf.* fonction auxiliaire, inconnue auxiliaire)
- dépendante abhängige Variable
 Grandeur dont les valeurs dépendent des valeurs prises par une autre. Soit

$$pV = kT$$

la loi des gaz parfaits (p: pression, V: volume, k une constante et T: température). L'expression

$$p(\mathbf{T}) = \frac{k\mathbf{T}}{\mathbf{V}_0}$$

indique une étude des variations, à volume constant, de la pression selon les valeurs prises par la variable indépendante T; p y est la variable dépendante. L'expression

$$T(p) = \frac{pV_0}{k}$$

inverse ces rôles. (cf. dépendant)

d'intégration Integrations variable.
 (cf. bornes d'intégration, substitution)

variance volume

 indépendante unabhängige Variable. (cf. indépendant)

variance f. Varianz. (*cf.* déviation standard, écart-type, indice de dispersion)

vecteur m. Vektor ♦Objet défini par une ↑norme, un ↑sens et une ↑direction. Un vecteur représente une ↑translation. Relativement à une ↑base, il est représenté par ses ↑composantes. De façon plus générale c'est un ↑élément d'un ↑espace vectoriel. (cf. bipoint)

- **de base** Basisvektor ♦Une ↑base orthonormale B = $\{\vec{e}_1; \vec{e}_2\}$ d'un ↑espace vectoriel V est constituée des vecteurs de ↑base \vec{e}_1 et \vec{e}_2 avec :

$$\vec{e}_1 \perp \vec{e}_2$$
 et $||\vec{e}_1|| = ||\vec{e}_2|| = 1$

 directeur Richtungsvektor ◆Dans l'équation de droite

$$\vec{r} = \vec{a} + \lambda \vec{v}$$

 \vec{v} est un vecteur directeur et \vec{a} le \uparrow vecteur-lieu d'un point de la droite.

- libre freier Vektor ♦ Vecteur qui n'a pas de point d'application fixe; il est défini à une ↑ translation près.
- lié gebundener Vektor ◆Vecteur dont l'origine (point d'application) est fixée, ce qui est souvent le cas en physique.
- normal Normalvektor ♦Soit un plan d'équation :

$$ax + by + cz + d = 0$$

alors le vecteur défini par :

$$\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

est un vecteur normal au plan. (cf. orthogonal, perpendiculaire)

- **nul** Nullvektor ◆Dans un ↑espace vectoriel le ↑vecteur nul \vec{o} (ou $\vec{0}$) est l'↑élément neutre de l'addition et on a :

$$\vec{v} + \vec{o} = \vec{v}, \ \forall \vec{v} \text{ et } \lambda \cdot \vec{o} = \vec{o}, \ \forall \lambda$$
 (cf. vecteur opposé)

- **opposé** Gegenvektor ◆Le vecteur $-\vec{a}$, opposé de \vec{a} , est l'↑élément inverse de l'↑addition vectorielle :

$$\vec{a} + (-\vec{a}) = \vec{a} - \vec{a} = \vec{o}$$

(cf. vecteur nul)

- propre Eigenvektor (cf. sous-espace propre, valeur propre)
- unitaire Einheitsvektor ◆Se dit d'un ↑vecteur de ↑norme 1.

vecteur-lieu m. syn. rayon-vecteur.

vertical adj. senkrecht, vertikal. (cf. perpendiculaire (à))

vide adj. leer. (cf. ensemble vide)

Viète, François (1540-1603). Mathématicien français. (cf. formules de Viète)

voisinage d'un point Umgebung eines Punktes.

- de la droite réelle ◆Soit x_0 un ↑nombre réel, alors l'↑intervalle ouvert

$$V_{\varepsilon}(x_0) :=]x_0 - \varepsilon, x_0 + \varepsilon[$$

est un voisinage ε de x_0 ; ε est un \uparrow nombre qu'on peut choisir aussi petit qu'on veut.

- **du plan** ♦Soit $P(x_0; y_0)$ un point du ↑plan, son voisinage est le ↑disque ouvert

$$(x-x_0)^2 + (y-y_0)^2 < \varepsilon^2$$

- de l'espace ♦Soit $P(x_0; y_0; z_0)$ un point de l'↑espace, son voisinage est la ↑boule ouverte

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 < \varepsilon^2$$

volume m. Rauminhalt, Volumen.

Wantzel Zu Chongzhi

W - X - Y - Z

Wantzel, Pierre (1814-1848).

Mathématicien français ◆II démontra en 1837 que la duplication du cube et la trisection de l'angle sont impossibles à construire à la règle et au compas.

Weil, André (1906-1998). Mathématicien français :

Dieu existe puisque les mathématiques sont consistantes, mais le diable existe aussi puisque nous ne pouvons pas le prouver.

Si la logique est l'hygiène du mathématicien, ce n'est pas elle qui lui fournit sa nourriture; le pain quotidien dont il vit, ce sont les grands problèmes.

zéro m. Null ♦Utilisé en Inde depuis au moins le 6^e siècle, il parvint, via les Arabes, vers le 10^e siècle en Europe, mais il fallut encore quelques siècles avant qu'il soit communément admis. Signalons encore qu'il était connu des Mayas. Pour plus de détails, voir le remarquable livre de Robert Kaplan [11]:

Si vous regardez « zéro », vous voyez « rien ». Mais regardez à travers, et vous verrez le monde.

- d'une fonction Nullstelle einer Funktion ♦↑Solution de l'↑équation f(x) = 0; elle correspond à un ↑point d'intersection du ↑graphe de f avec l'↑axe des x.

zone sphérique Kugelschicht. (*cf.* segment sphérique)

Zu Chongzhi (430-501).

Mathématicien chinois. \blacklozenge Avec l'aide de son fils, il calcule π à 10^{-7} près. Il faudra attendre le persan Al Kachi (env. 1380 - env. 1430) pour faire mieux! Notons qu'ils connaissaient, comme Liu Hui, ce qu'on nomme le *principe de Cavalieri*. (cf. Cavalieri, principe de)

Sources - Quellen

- [1] Baruk, Stella Dictionnaire de mathématiques élémentaires, Seuil, 1992
- [2] Cantor, Georg, Beiträge zur Begründung der transfiniten Mengenlehre, Math. Annalen, Teubner, 1895
- [3] CHASTELLAIN M., CALAME J.-A., BRÊCHET M. Aide-mémoire, Lep, 2003
- [4] CRM, Formulaires et tables, Tricorne, 2000
- [5] DMK-DPK, Formeln und Tafeln, Orell Füssli, 2003
- [6] DMK-DPK, Fundamentum Mathematik und Physik, Orell Füssli, 2003
- [7] DUDEN, Rechnen und Mathematik, Dudenverlag, 2000
- [8] ENCYCLOPÉDIE DES FORMES MATHÉMATIQUES REMARQUABLES http://www.mathcurve.com
- [9] GOTTWALD, Siegfried, Kleine Enzyklopädie Mathematik, Meyers Lexikonverlag, 1995
- [10] HAUCHECORNE B., SURATTEAU D., Des mathématiciens de A à Z, Ellipses, 1996
- [11] KAPLAN ROBERT, À propos de rien. Une histoire du zéro, Dunod, 2004
- [12] Kaplan Robert, Die Geschichte der Null, Campus Verlag, Frankfurt, 2000
- [13] LEXIQUE DE MATHÉMATIQUE, http://www.netmaths.net
- [14] LIXI C., GOURION M., Dictionnaire de Mathématiques, Nathan, 1988
- [15] ONLINE WÖRTERBUCH, http://www.freedic.net
- [16] REINHARDT F., SOEDER H., Atlas des mathématiques, Le Livre de Poche, 1997
- [17] REINHARDT F., SOEDER H., Atlas zur Mathematik, DTV, 1974
- [18] REVUE Pour la Science, n° 443 et 446, septembre et décembre 2014
- [19] REY, Alain, *Dictionnaire historique de la langue française*, Paris, Dictionnaires Le Robert, 1998
- [20] UNIVERSITY OF ST ANDREWS, http://www-groups.dcs.st-and.ac.uk/~history/
- [21] UNIVERSITÄT WIEN, http://www.mathe-online.at/mathint/lexikon/index.html
- [22] WIKIPEDIA, http://de.wikipedia.org
- [23] WIKIWÖRTERBUCH, http://de.wiktionary.org/wiki/Wiktionary:Hauptseite

Nous tenons à signaler que les citations et commentaires concernant les mathématiciens proviennent essentiellement du site www.mathematik.ch pour l'allemand, de l'ouvrage de Hauchecorne [10] pour le français et de www.st-andrews.ac.uk [20] pour l'anglais.

Wir möchten darauf hinweisen, dass die Zitate und Kommentare, die die deutschen Mathematiker betreffen, vor allem aus der Website www.mathematik.ch stammen, aus dem Werk von Hauchecorne [10] was die französischen Mathematiker betrifft, die englischen Mathematiker sind nach der Website www.st-andrews.ac.uk [20] zitiert.

Illustration de couverture :

Dessin de Matyo, tiré de l'ouvrage de Didier Nordon, Le~ZYXaire~des~sciences, Paris, Belin, 2003, avec l'aimable autorisation du dessinateur.

Bildnachweis:

Zeichnung von Matyo, aus dem Werk von Didier Nordon, Le ZYXaire des sciences, Paris, Belin, 2003, mit freundlicher Genehmigung des Zeichners.