Travel time for deliveries is dependent on distance travelled in miles, number of deliverie #Following is a model for analysis of the collected data:

```
import pandas
import math
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

df = pandas.read_csv('D:\DS\Data\TravelTime.csv')

df

	miles	deliveries	gasPrice	traveltime
0	89	4	3.84	7.0
1	66	1	3.19	5.4
2	78	3	3.78	6.6
3	111	6	3.89	7.4
4	44	1	3.57	4.8
5	77	3	3.57	6.4
6	80	3	3.03	7.0
7	66	2	3.51	5.6
8	109	5	3.54	7.3
9	76	3	3.25	6.4

. . .

Dependent variable = TravelTime
Independent variables:
 miles
 deliveries
 gasPrice

The following independent variables are compared with the dependent variable:

```
TravelTime vs deliveries
TravelTime vs gasPrice

For multicolinearity the following independent variables are considered:
miles vs deliveries
miles vs gasPrice
deliveries vs gasPrice

Dependent variable vs multiple independent variables
TravelTime vs (deliveries, gasPrice)
TravelTime vs (miles, gasPrice)
TravelTime vs (miles, deliveries)
TravelTime vs (miles, deliveries, gasPrice)
```

```
# TravelTime vs miles

X = df[['miles']]
y = df['traveltime']

model = LinearRegression().fit(X, y)

plt.scatter(X, y)
plt.plot(X, model.predict(X))
plt.title('TravelTime Project')
plt.xlabel('Miles')
plt.ylabel('TravelTime')
plt.show()

print('co-efficient', model.coef_)
print ('constant', model.intercept_)
```


co-efficient [0.04025678]
constant 3.185560248999555

TravelTime vs miles

X = sm.add_constant(X)
res = sm.OLS(y,X).fit()
print(res.summary())

OLS Regression Results

=========	======	:=========	======	==========	======	========
Dep. Variable:		traveltime	R-sq	uared:		0.862
Model:		OLS	Adj.	R-squared:		0.844
Method:		Least Squares	F-st	atistic:		49.77
Date:		Sat, 16 Apr 2022	. Prob	(F-statistic)	:	0.000107
Time:		12:56:04	Log-	Likelihood:		- 2.3532
No. Observatio	ns:	10	AIC:			8.706
Df Residuals:		8	BIC:			9.312
Df Model:		1				
Covariance Typ	e:	nonrobust	:			
=========	======	:=========	======	==========	=======	========
	coef	std err	t	P> t	[0.025	0.975]
const	3.1856	0.467	6.822	0.000	2.109	4.262
miles	0.0403	0.006	7.055	0.000	0.027	0.053
=========	======		======	==========	======	========
Omnibus:		0.542	. Durb	in-Watson:		2.608
Prob(Omnibus):		0.763	3 Jarq	ue-Bera (JB):		0.554
Skew:		0.370) Prob	(JB):		0.758
Kurtosis:		2.115	Cond	. No.		353.
=========	======		======	==========	=======	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
C:\Users\fakhi\AppData\Local\Programs\Python\Python310\lib\site-packages\scipy\stats_st
 warnings.warn("kurtosistest only valid for n>=20 ... continuing "

print('standard error of regression', math.sqrt(1-(res.rsquared_adj))*(df.std()['traveltime']
print(variance_inflation_factor(res.resid,1))

standard error of regression 0.3423088398195204

```
# TravelTime vs deliveries

X = df[['deliveries']]
y = df['traveltime']

model = LinearRegression().fit(X, y)

plt.scatter(X, y)
plt.plot(X, model.predict(X))
plt.title('TravelTime Project')
plt.xlabel('Deliveries')
plt.ylabel('TravelTime')
plt.show()
```



```
# TravelTime vs Deliveries
X = sm.add_constant(X)
res = sm.OLS(y,X).fit()
print(res.summary())
```

OLS Regression Results

OLS Keglession Kesuits								
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:		travelt: travelt: (Least Squan it, 16 Apr 20 12:56	OLS res 022	F-stat	======================================	======	0.840 0.820 41.96 0.000193 -3.0794 10.16 10.76	
Covariance Typ	e:	nonrobi	ust					
	coef	std err	====:	====== t 	P> t	======= [0.025	0.975]	
const deliveries	4.8454 0.4983	0.265 0.077		.261 .478	0.000 0.000	4.234 0.321	5.457 0.676	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.8	===== 391 822 147 736		•	======	1.970 0.065 0.968 8.41	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
C:\Users\fakhi\AppData\Local\Programs\Python\Python310\lib\site-packages\scipy\stats_st
 warnings.warn("kurtosistest only valid for n>=20 ... continuing "

```
# TravelTime vs Gas Price
```

```
X = df[['gasPrice']]
y = df['traveltime']

model = LinearRegression().fit(X, y)

plt.scatter(X, y)
#plt.plot(X, model.predict(X))
plt.title('TravelTime Project')
plt.xlabel('Gas Price')
plt.ylabel('TravelTime')
plt.show()
```

```
7.5 7.0 - TravelTime Project
```

```
# TravelTime vs Gas Price
X = sm.add_constant(X)
res = sm.OLS(y,X).fit()
print(res.summary())
```

OLS Regression Results

=========	======		======	:========	=======	.=======
Dep. Variable:		traveltime	R-squ	ared:		0.071
Model:		OLS	Adj.	R-squared:		-0.045
Method:		Least Squares	F-sta	tistic:		0.6151
Date:	Sa	t, 16 Apr 2022	Prob	(F-statistic)	:	0.455
Time:		12:56:05	Log-L	ikelihood:		-11.868
No. Observations	:	10	AIC:			27.74
Df Residuals:		8	BIC:			28.34
Df Model:		1				
Covariance Type:		nonrobust				
=======================================	======		======	=========	=======	
	coef	std err	t	P> t	[0.025	0.975]
const 3	.5365	3.649	0.969	0.361	-4.878	11.951
gasPrice 0	.8113	1.034	0.784	0.455	-1.574	3.197
Omnibus:	======	 1.232	====== Durbi	:======= .n-Watson:	=======	 2.823
Prob(Omnibus):		0.540	Jarqu	e-Bera (JB):		0.765
Skew:		-0.619	Prob(JB):		0.682
Kurtosis:		2.451	Cond.	No.		49.6

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
C:\Users\fakhi\AppData\Local\Programs\Python\Python310\lib\site-packages\scipy\stats_st
 warnings.warn("kurtosistest only valid for n>=20 ... continuing "

```
# miles vs deliveries

X = df[['miles']]
y = df['deliveries']

model = LinearRegression().fit(X, y)

plt.scatter(X, y)
plt.plot(X, model.predict(X))
plt.title('TravelTime Project')
```

plt.xlabel('Miles')
plt.ylabel('Deliveries')

plt.show()


```
# miles vs Gas Price

X = df[['miles']]
y = df['gasPrice']

model = LinearRegression().fit(X, y)

plt.scatter(X, y)
#plt.plot(X, model.predict(X))
plt.title('TravelTime Project')
plt.xlabel('Miles')
plt.ylabel('Gas Price')
plt.show()
```



```
# deliveries vs Gas Price
```

```
X = df[['deliveries']]
y = df['gasPrice']
```

```
model = LinearRegression().fit(X, y)
plt.scatter(X, y)
#plt.plot(X, model.predict(X))
plt.title('TravelTime Project')
plt.xlabel('Deliveries')
plt.ylabel('Gas Price')
plt.show()
```



```
# TravelTime vs (deliveries, gasPrice)
X = df[['deliveries', 'gasPrice']]
y = df['traveltime']

X = sm.add_constant(X)
res = sm.OLS(y,X).fit()
```

print(res.summary())

OLS Regression Results

=========				=========				
Dep. Variable: traveltime		ne R-sq	uared:		0.888			
Model:		OL	₋S Adj.	R-squared:		0.855		
Method:		Least Square	es F-st	atistic:		27.63		
Date:		Sat, 16 Apr 202	22 Prob	(F-statisti	c):	0.000476		
Time:		12:56:6	6 Log-	Likelihood:		-1.3104		
No. Observati	lons:	1	l0 AIC:	AIC:				
Df Residuals:	;		7 BIC:			9.529		
Df Model:			2					
Covariance Ty	/pe:	nonrobus	st					
=========	======			=========				
	coe-	f std err	t	P> t	[0.025	0.975]		
const	7.3243	3 1.458	5.025	0.002	3.878	10.771		
deliveries	0.566		7.129	0.000	0.379	0.754		

gasPrice	-0.7650	0.444	-1.724	0.128	-1.814	0.284
Omnibus:		 1.3	221 Dunhi	n-Watson:		2.054
Prob(Omnibus):				e-Bera (JB):		0.811
Skew:	·		•	, ,	•	0.667
Kurtosis:		1.7	. `	,		71.9

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
C:\Users\fakhi\AppData\Local\Programs\Python\Python310\lib\site-packages\scipy\stats_st
 warnings.warn("kurtosistest only valid for n>=20 ... continuing "

```
# TravelTime vs (miles, gasPrice)
X = df[['miles', 'gasPrice']]
y = df['traveltime']

X = sm.add_constant(X)
res = sm.OLS(y,X).fit()
print(res.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	ns:	travelt: (Least Squan Sat, 16 Apr 20 12:56	OLS A res F 022 P :06 L 10 A 7 B	-squared dj. R-sd -statist rob (F-s og-Like .ic:	quared: tic: statistic)):	0.866 0.828 22.63 0.000879 -2.1863 10.37 11.28
=========	coef	std err		t		[0.025	0.975]
	0.0414	1.482 0.006 0.449	2.6 6.4	45	0.035	0.026	0.057
Omnibus: Prob(Omnibus): Skew: Kurtosis:	======	0.0 0.0	594 J 025 P	urbin-Warque-Be arque-Be arob(JB) ond. No	era (JB): :		2.740 0.563 0.755 1.11e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
- [2] The condition number is large, 1.11e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- C:\Users\fakhi\AppData\Local\Programs\Python\Python310\lib\site-packages\scipy\stats_st
 warnings.warn("kurtosistest only valid for n>=20 ... continuing "

```
# TravelTime vs (miles, deliveries)
X = df[['miles', 'deliveries']]
y = df['traveltime']
X = sm.add_constant(X)
res = sm.OLS(y,X).fit()
print(res.summary())
    C:\Users\fakhi\AppData\Local\Programs\Python\Python310\lib\site-packages\scipy\stats\_st
     warnings.warn("kurtosistest only valid for n>=20 ... continuing "
                           OLS Regression Results
    ______
    Dep. Variable:
                          traveltime
                                    R-squared:
                                                                0.871
    Model:
                                OLS
                                    Adj. R-squared:
                                                                0.835
    Method:
                       Least Squares
                                    F-statistic:
                                                                23.72
    Date:
                     Sat, 16 Apr 2022
                                    Prob (F-statistic):
                                                             0.000763
    Time:
                            12:56:06
                                    Log-Likelihood:
                                                              -1.9830
    No. Observations:
                                10
                                    AIC:
                                                                9.966
                                 7
    Df Residuals:
                                    BIC:
                                                                10.87
    Df Model:
                                 2
    Covariance Type:
                           nonrobust
    ______
                  coef
                        std err
                                            P>|t|
                                                     [0.025
                3.7322
                          0.887
    const
                                   4.208
                                            0.004
                                                      1.635
                                                                5.830
    miles
                0.0262
                          0.020
                                   1.310
                                            0.232
                                                     -0.021
                                                                0.074
    deliveries
                0.1840
                          0.251
                                   0.733
                                            0.487
                                                     -0.409
                                                                0.777
    _____
    Omnibus:
                              1.340
                                    Durbin-Watson:
                                                                2,402
    Prob(Omnibus):
                              0.512
                                    Jarque-Bera (JB):
                                                               0.867
    Skew:
                              0.654
                                    Prob(JB):
                                                                0.648
    Kurtosis:
                              2.393
                                    Cond. No.
                                                                 670.
    ______
    Notes:
    [1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
# VIF dataframe
vif_data = pandas.DataFrame()
vif data["feature"] = X.columns
# calculating VIF for each feature
vif_data["VIF"] = [variance_inflation_factor(X.values, i)
                     for i in range(len(X.columns))]
print(vif_data)
         feature
                     VIF
          const 63.263365
    0
```

```
# TravelTime vs (miles, deliveries, gasPrice)
X = df[['miles', 'deliveries', 'gasPrice']]
y = df['traveltime']

X = sm.add_constant(X)
res = sm.OLS(y,X).fit()
print(res.summary())
```

OLS Regression Results

Dep. Variable:		traveltime		R-sq	uared:	0.895	
Model:		OLS		Adj.	R-squared:		0.842
Method:	L	east Square	es.	F-st	atistic:		16.99
Date:	Sat,	16 Apr 202	22	Prob	(F-statistic):		0.00245
Time:		12:56:6	7	Log-	Likelihood:		-0.98426
No. Observations:		1	.0	AIC:			9.969
Df Residuals:			6	BIC:			11.18
Df Model:			3				
Covariance Type:		nonrobus	t				
C	oef	======= std err	:===	===== t	P> t	======= [0.025	0.975]
const 6.2	114	2.321	2	 .677	0.037	0.533	 11.890
miles 0.0		0.022	0	.636	0.548	-0.040	0.068
deliveries 0.3	832	0.300	1	.277	0.249	-0.351	1.117
gasPrice -0.6	066	0.527	-1	.152	0.293	-1.895	0.682
Omnibus:	=====:	 2.87	=== '4	==== Durb	======== in-Watson:	======	 2.406
Prob(Omnibus):		0.23	88	Jarq	ue-Bera (JB):		1.204
Skew:		0.45	7	Prob	(JB):		0.548
Kurtosis:		1.56	57	Cond	. No.		1.79e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specifi
- [2] The condition number is large, 1.79e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- C:\Users\fakhi\AppData\Local\Programs\Python\Python310\lib\site-packages\scipy\stats_st
 warnings.warn("kurtosistest only valid for n>=20 ... continuing "

	feature	VIF
9	const	453.235497
1	miles	14.936013
2	deliveries	17.353065
3	gasPrice	1.713803

df.corr()

	miles	deliveries	gasPrice	traveltime
miles	1.000000	0.955898	0.355796	0.928179
deliveries	0.955898	1.000000	0.498242	0.916443
gasPrice	0.355796	0.498242	1.000000	0.267212
traveltime	0.928179	0.916443	0.267212	1.000000

df2 = pandas.read_csv("D:\DS\Data\Summary.csv")
df2

	F	P-value	std error	Rsq(Adj)	RSq(Pred)	miles	deliveries	gasPrice	VIF
0	49.77	< 0.001	0.34230	0.8442	0.7907	Х	NaN	NaN	1.00
1	41.96	< 0.001	0.36809	0.8199	0.7027	NaN	X	NaN	1.00
2	0.62	0.455	0.88640	0.0000	0.0000	NaN	NaN	X	1.00
3	23.72	0.001	0.35264	0.8347	0.5995	Х	Х	NaN	11.59
4	22.63	0.001	0.35988	0.8278	0.6811	Х	NaN	X	1.14
5	27.63	< 0.001	0.32970	0.8555	0.7176	NaN	Х	X	1.33
6	16.99	0.002	0.34469	0.8420	0.5749	Х	Х	X	below
7	NaN	NaN	NaN	NaN	NaN	14.94	17.35	1.71	NaN

. . .

Conclusion

In terms of dependent variable TimeTravel, the following have a high correlation:

TravelTime vs Miles

TravelTime vs Number of Deliveries

Miles vs Number of Deliveries- Miles and Deliveries have multicollinearity and thus one of th variance inflation factor VIF is 11.59 and low predicted R Squared therefore one of miles or deliveries independent variables has to be dropped. Also two variab

miles and deliveries can be dropped.

Gas Price has a low correlation with Time Travel and a high standard error and can be taken out from the list of independent variables. All models with gas price can be droppped.

Miles travelled has the highest Adjusted RSquared, RSquared predicted and a low srandard erro This is the best model and should be used.

. . .

×