Stat 5309 Lab 6

Tom Wilson Mar 26, 2019

1

```
bit_sizes <- c("1/16","1/8")
speeds <- c("40","90")</pre>
treatments <- expand.grid(bit_size=rep(bit_sizes,4),speed=speeds)</pre>
treatments
##
      bit_size speed
## 1
          1/16
## 2
           1/8
                   40
## 3
          1/16
                   40
           1/8
## 4
                   40
## 5
          1/16
                   40
## 6
           1/8
                   40
## 7
          1/16
                   40
## 8
           1/8
                   40
## 9
          1/16
                   90
## 10
          1/8
                   90
## 11
          1/16
                   90
## 12
           1/8
                   90
## 13
          1/16
                   90
## 14
           1/8
                   90
## 15
          1/16
                   90
## 16
           1/8
                   90
circuit_data <- data.frame(treatments,</pre>
                            vibration =c(18.2, 27.2,
                                           18.9,24.0,
                                           12.9,22.4,
                                           14.4,22.5,
                                           15.9,41.0,
                                           14.5,43.9,
                                           15.1,36.3,
                                           14.2,39.9
                                           )
circuit_data %>% kable()
```

bit_size	speed	vibration
${1/16}$	40	18.2
1/8	40	27.2
1/16	40	18.9
1/8	40	24.0
1/16	40	12.9
1/8	40	22.4
1/16	40	14.4

bit_size	speed	vibration
1/8	40	22.5
1/16	90	15.9
1/8	90	41.0
1/16	90	14.5
1/8	90	43.9
1/16	90	15.1
1/8	90	36.3
1/16	90	14.2
1/8	90	39.9

 \mathbf{a}

analyze the data from this experiment.

```
vibration_model <- aov(formula = vibration~bit_size*speed, data=circuit_data)
summary(vibration_model)</pre>
```

```
##
                 Df Sum Sq Mean Sq F value
                  1 1107.2 1107.2 185.25 1.17e-08 ***
## bit_size
## speed
                  1 227.3
                            227.3
                                    38.02 4.83e-05 ***
## bit_size:speed 1 303.6
                            303.6
                                    50.80 1.20e-05 ***
## Residuals
                 12
                     71.7
                              6.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

b

construct a normal probability plot of the residuals, and plot the residuals versus the predicted vibration level. Interpret these plots.

```
par( mfrow = c(2,2) )
plot(vibration_model)
```


 \mathbf{c}

Draw the AB interaction plot. What levels of bit size and speed would you recommend for routine operation?

2

```
cutting_speeds <- c("-","+")</pre>
tool_geometries <- c("-","+")
cutting_angles <- c("-","+")</pre>
machine_trts <- expand.grid(cutting_speed=rep(cutting_speeds,3),</pre>
                              tool_geometry=tool_geometries,
                              cutting_angle=cutting_angles)
machine_trts
##
      cutting_speed tool_geometry cutting_angle
## 1
## 2
## 3
## 4
## 5
## 6
## 8
## 10
## 11
## 12
## 13
```

```
## 14
## 15
## 16
## 17
## 18
## 19
## 20
## 21
## 22
## 23
## 24
machine_data <- data.frame(machine_trts,</pre>
                             lifetime = c(22,32,
                                           31,42,
                                           25,29,
                                           35,55,
                                           34,47,
                                           50,46,
                                           44,40,
                                           45,37,
                                           38,36,
                                           60,39,
                                           50,41,
                                           54,47
machine_data %>% kable()
```

cutting_speed	$tool_geometry$	$cutting_angle$	lifetime
_	-	-	22
+	-	-	32
-	-	-	31
+	-	-	42
-	-	-	25
+	-	-	29
-	+	-	35
+	+	-	55
-	+	-	34
+	+	-	47
-	+	-	50
+	+	-	46
-	-	+	44
+	-	+	40
-	-	+	45
+	-	+	37
-	-	+	38
+	-	+	36
-	+	+	60
+	+	+	39
-	+	+	50
+	+	+	41
-	+	+	54
+	+	+	47

Estimate the factor effects. Which effect appears to be large?

```
lifetime_model <- aov(lifetime~cutting_speed*tool_geometry*cutting_angle,data=machine_data)
lifetime_model$coefficients</pre>
```

```
##
                                      (Intercept)
##
                                        26.000000
##
                                   cutting_speed+
##
                                         8.333333
##
                                   tool_geometry+
##
                                        13.666667
##
                                   cutting_angle+
##
                                        16.333333
##
                   cutting_speed+:tool_geometry+
##
                                         1.333333
##
                   cutting_speed+:cutting_angle+
##
                                       -13.000000
##
                   tool_geometry+:cutting_angle+
##
                                        -1.333333
## cutting_speed+:tool_geometry+:cutting_angle+
                                        -9.000000
```

b

Use the analysis of variance to confirm your conclusions for part a.

anova(lifetime_model)

```
## Analysis of Variance Table
##
## Response: lifetime
                                            Df Sum Sq Mean Sq F value
##
## cutting_speed
                                                 0.38
                                                         0.38 0.0129
                                              1 782.04 782.04 26.8129
## tool_geometry
## cutting_angle
                                              1 287.04 287.04 9.8414
## cutting_speed:tool_geometry
                                             1 15.04
                                                        15.04 0.5157
## cutting_speed:cutting_angle
                                             1 459.38 459.38 15.7500
## tool_geometry:cutting_angle
                                              1 51.04
                                                        51.04 1.7500
## cutting_speed:tool_geometry:cutting_angle 1
                                                30.37
                                                        30.37
                                                              1.0414
                                                        29.17
## Residuals
                                             16 466.67
##
                                               Pr(>F)
                                             0.911132
## cutting_speed
                                             9.154e-05 ***
## tool_geometry
## cutting_angle
                                             0.006365 **
## cutting_speed:tool_geometry
                                             0.483031
## cutting_speed:cutting_angle
                                             0.001102 **
## tool_geometry:cutting_angle
                                             0.204473
## cutting_speed:tool_geometry:cutting_angle  0.322673
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Write down a regression model for predicting tool life (in hours) based on the results of this experiment.

reduced_lifetime_model <- lm(lifetime~tool_geometry*cutting_angle+cutting_speed:cutting_angle,data=mach summary(reduced_lifetime_model)

```
##
## Call:
  lm(formula = lifetime ~ tool_geometry * cutting_angle + cutting_speed:cutting_angle,
##
       data = machine_data)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -6.2500 -3.3542 -0.4583 3.1250 10.0000
##
## Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                   25.667
                                              2.667
                                                      9.624 1.6e-08 ***
## tool_geometry+
                                                      4.655 0.000197 ***
                                   14.333
                                              3.079
## cutting_angle+
                                   18.583
                                              3.772
                                                      4.927 0.000109 ***
## tool_geometry+:cutting_angle+
                                   -5.833
                                              4.355 -1.339 0.197091
## cutting_angle-:cutting_speed+
                                   9.000
                                              3.079
                                                       2.923 0.009090 **
## cutting_angle+:cutting_speed+
                                  -8.500
                                               3.079 -2.760 0.012888 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.334 on 18 degrees of freedom
## Multiple R-squared: 0.7552, Adjusted R-squared: 0.6872
## F-statistic: 11.11 on 5 and 18 DF, p-value: 5.361e-05
```

\mathbf{d}

Analyze the residuals. Are there any obvious problems?

```
par( mfrow = c(2,2) )
plot(reduced_lifetime_model)
```


 \mathbf{e}

based on an analysis of main effect and interaction plots, what levels of A, B, and C would you recommend using?

low cutting speed and high cutting angle is associated with the longest lifetime.

3

An experiment was performed to improve the yield of a chemical process. Four factors were selectd, and two replicates of a completely randomized experiment were run. The results are shown in the following table.

factor1	factor2	factor3	factor4	yield
_	-	-	-	90
+	_	-	_	74
-	-	_	-	93
+	-	-	-	78
-	- +	-	-	81
+	+	-	-	83
-	+	-	-	85
+	+	-	-	80
-	-	+	-	77
+	-	+	-	81
-	-	+	-	78
+	-	+	-	80
-	+ + + +	+	-	88
+	+	+	-	73
-	+	+	-	82
+	+	+	-	70
-	-	-	+	98
+	-	-	+	72
-	-	-	+	98
+	-	-	+	76
-	- + + +	-	+ + +	87
+	+	-	+	85
-	+	-	+	83
+	+	-	+	86
-	-	+	+	99
+	-	+	+	79
-	-	+	+	90
+	-	+	+	75
-	+	+	+	87
+ - + - + - + - + - + - + - + - + - + -	+	+	+	80
-	+	+	+	84
+	+	+	+	80

\mathbf{a}

Estimate the factor effects.

	x
(Intercept)	91.5
factor1+	-15.5
factor2+	-8.5
factor3+	-14.0
factor4+	6.5
factor1+:factor2+	14.0
factor1+:factor3+	18.5
factor2+:factor3+	16.0

	X
factor1+:factor4+	-8.5
factor2+:factor4+	-4.5
factor3+:factor4+	10.5
factor1+:factor2+:factor3+	-30.5
factor1+:factor2+:factor4+	10.5
factor1+:factor3+:factor4+	-12.0
factor2+:factor3+:factor4+	-12.0
factor1+:factor2+:factor3+:factor4+	18.0

b

Prepare an analysis of variance table and determine which factors are important in explaining yield.

summary(chem_model)

```
##
                                    Df Sum Sq Mean Sq F value
                                                                 Pr(>F)
                                                684.5 92.814
                                                                4.6e-08 ***
## factor1
                                        684.5
## factor2
                                         18.0
                                                 18.0
                                                         2.441 0.137785
## factor3
                                                         8.966 0.008580 **
                                     1
                                         66.1
                                                 66.1
## factor4
                                        136.1
                                                136.1
                                                        18.458 0.000555 ***
## factor1:factor2
                                     1
                                        144.5
                                                144.5
                                                        19.593 0.000423 ***
## factor1:factor3
                                                         0.831 0.375652
                                     1
                                          6.1
                                                   6.1
                                                         0.153 0.701269
## factor2:factor3
                                          1.1
                                                   1.1
                                     1
## factor1:factor4
                                         45.1
                                                         6.119 0.024964 *
                                     1
                                                 45.1
## factor2:factor4
                                     1
                                          1.1
                                                   1.1
                                                         0.153 0.701269
## factor3:factor4
                                     1
                                         18.0
                                                 18.0
                                                         2.441 0.137785
## factor1:factor2:factor3
                                        231.1
                                                       31.339 4.0e-05 ***
                                     1
                                                231.1
                                        190.1
## factor1:factor2:factor4
                                     1
                                                190.1
                                                        25.780 0.000112 ***
## factor1:factor3:factor4
                                                         0.610 0.446129
                                     1
                                          4.5
                                                   4.5
## factor2:factor3:factor4
                                     1
                                          4.5
                                                   4.5
                                                         0.610 0.446129
                                                         5.492 0.032355 *
## factor1:factor2:factor3:factor4
                                     1
                                         40.5
                                                 40.5
## Residuals
                                    16
                                        118.0
                                                  7.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

\mathbf{c}

Write down a regression model for predicting yield, assuming that all four factors were varied over the range from -1 to +1.

$$yield = 91.5 - 15.5f1 - 8.5f2 - 14.0f3 + 6.5f4 + 14.0f1f2 - 30.5f1f2f3 + 10.5f1f2f4$$

d

Plot the residuals versus the predicted yield and on a normal probability scale. Does the residual analysis appear satisfactory?

```
par( mfrow = c(2,2) )
plot(chem_model)
```


 \mathbf{e}

Two three-factor interactions, ABC and ABD, apparently have large effects. Draw a cube plot in th factors A, B, and C with the average yields shown at each corner. Repeat using the factors A, B, and D. Do these two plots aid in a data interpretation? Where would you recommend that the process be run with respect to the four variables?

```
colorpalette <- gray.colors(length(chem_data$yield))
colorpalette

## [1] "#4D4D4D" "#575757" "#606060" "#696969" "#707070" "#777777" "#7E7E7E"

## [8] "#848484" "#8A8A8A" "#8F8F8F" "#949494" "#999999" "#9E9E9E" "#A3A3A3"

## [15] "#A8A8A8" "#ACACAC" "#B0B0B0" "#B4B4B4" "#B8B8B8" "#BCBCBC" "#C0C0C0"

## [22] "#C4C4C4" "#C8C8C8" "#CBCBCB" "#CFCFCF" "#D2D2D2" "#D6D6D6" "#D9D9D9"

## [29] "#DCDCDC" "#DFDFDF" "#E2E2E22" "#E6E6E6E"

colors <- colorpalette[rank(chem_data$yield)]
scatterplot3d(chem_data[1:3],pch=20,color = colors)</pre>
```


scatterplot3d(chem_data[c(1,2,4)],pch=20,color = colors)

