Unité d'Enseignement RCP101 : Recherche Opérationnelle et Aide à la Décision

Cours 1 - Théorie des graphes

Conservatoire National des Arts et Métiers E. Soutil et F. Badran

UE RCP101 – Recherche Opérationnelle et Aide à la Décision – Plan du cours

- □ Partie 1- Eléments de Théorie des Graphes
 - Généralités, fermeture transitive et connexité
 - **□** Chemins de longueur optimale
- □ Partie 2 Ordonnancement
 - Méthode PERT
 - Méthode MPM
- □ Partie 3 Programmation linéaire
 - Modélisation
 - Méthode du simplexe
 - Dualité
- □ Partie 4 : Processus de Markov et files d'attente
- □ Partie 5 : Optimisation multicritères

Bibliographie

- Précis de Recherche
 Opérationnelle Editions Dunod
 - Auteurs : R. Faure, B. Lemaire,Ch. Picouleau
- Méthodes d'optimisation
 combinatoire Editions Masson
 - Auteurs : I. Charon, A. Germa,O. Hudry

Partie 1 – Eléments de Théorie des Graphes – Généralités et définitions

- Les graphes :
 - Un outil irremplaçable pour la modélisation des systèmes réels
 - Qu'est-ce qu'un graphe ? « Des points et des flèches »
 - Point de vue mathématique : une relation binaire
 - Point de vue pratique : représentation abstraite d'un réseau (de télécommunication par exemple)
 - Utilisés dans des domaines très variés : économie, informatique, industrie, chimie, sociologie.

- \Box Graphe orienté : G = (X, U)
 - \square X : ensemble de **sommets**. | X | : ordre de G (noté n)
 - \square *U*: ensemble d'arcs. |U|: taille de G (notée m)
- Représentation graphique :

Sommets: $X = \{1, 2, 3, 4\}$

Arcs : $U = \{a, b, c, d, e, f, g\}$

- □ **Notation**: I'arc u se note u = (x,y)
- Le nom des sommets est quelconque (chiffres, lettres, mot), les arcs sont rarement nommés (désignés par leurs extrémités initiale et terminale)

- Soit G = (X,U) un graphe orienté et u = (x,y) un arc de G:
 - x: extrémité initiale de u; y: extrémité terminale de u
 - x et y sont dits adjacents; u est incident intérieurement à y, extérieurement à x
 - \Box υ est aussi dit adjacent à x et y
 - deux arcs sont adjacents s'ils ont une extrémité commune
 - $d^+(x)$: demi-degré extérieur de x = nb d'arcs qui partent de x
 - $d^{-}(x)$: demi-degré intérieur de x = nb d'arcs qui arrivent en x
 - $d(x) = d^{+}(x) + d^{-}(x) : degré de x$
 - □ G est dit régulier si tous ses sommets ont le même degré

$$d^{+}(2) = 4$$

 $d^{-}(2) = 2$
 $d(2) = 6$

- \Box Soit G = (X,U) un graphe orienté
 - y est successeur de x si $(x,y) \in U$ $\Gamma^+(x)$: ensemble des successeurs de x
 - y est prédécesseur de x si $(y,x) \in U$ $\Gamma(x)$: ensemble des prédécesseurs de x
 - y est voisin de x si $y \in \Gamma(x) = \Gamma^+(x) \cup \Gamma^-(x)$ c-à-d si y est successeur ou prédécesseur de x
 - Un graphe est dit simple (ou encore 1-graphe) s'il ne possède pas deux arcs ayant la même extrémité initiale et la même extrémité terminale : U ⊆ X × X
 - Une boucle est un arc dont l'extrémité initiale est aussi l'extrémité terminale (ex : c = (2,2))
 - On s'intéresse le plus souvent aux graphes simples sans boucle.
 - Graphe non simple = multigraphe
 - □ Graphe valué: les arcs portent une information appelée valuation (distance, coût, gain, ...)

Un 2-graphe (multigraphe)

Un graphe simple valué

- $\Gamma^+(2) = \{1, 2, 3\}$: ensemble des successeurs de 2
- $\Gamma(2) = \{1, 2\}$: ensemble des prédécesseurs de 2
- $\Gamma(2)=\{1, 2, 3\}$: ensemble des voisins de 2

- $\Gamma(D)=\{A, B, C\}: ensemble des voisins de D$

Un 2-graphe (multigraphe)

Un graphe simple valué

Un **chemin** dans G = (X, U): séquence d'arcs $u_1, u_2, ..., u_m$ de U t.q. l'extrémité terminale d'un arc coïncide avec l'extrémité initiale de l'arc suivant :

Pour tout k ($1 \le k \le m-1$) on a :

extrémité terminale de $u_k = \text{extrémité initiale de } u_{k+1}$

- □ Exemple : ((D,A),(A,B),(B,C)) noté DABC
- Un chemin peut être :
 - simple : ne passe pas deux fois le même arc
 - élémentaire : ne passe pas deux fois par le même sommet

DABA : chemin simple, non élémentaire

élémentaire ⇒ simple

 Un circuit : chemin dont l'origine et la fin coïncident

extrémité initiale de u_1 = extrémité terminale de u_m

DABD : circuit élémentaire DABDABD : circuit non élémentaire

élémentaire ⇒ simple

- \Box Graphes non orientés : G = (X, A)
 - X : ensemble de sommets
 - □ A : ensemble d'arêtes (arc sans orientation)
- Deux arêtes ayant une extrémité commune dont dites adjacentes (<u>Ex</u> : [a,b] et [b,c])
- Une chaîne : séquence d'arêtes t.q. toute arête de la séquence est adjacente à l'arête qui la suit et à celle qui la précède.
- Exemple : [acdb] ou ([a,c], [c,d], [b,d])
- □ Chaîne dans un graphe orienté : $D \rightarrow C \leftarrow B \rightarrow A$
- Cycle: chaîne dont les deux extrémités coïncident (<u>Ex</u>: [eacdbe])

Graphe non orienté

Graphe orienté

- Chaîne eulérienne : passant une fois et une seule par chaque arête
- <u>Exemple</u>: les sept ponts de Königsberg. Peut-on se promener dans la ville en traversant chaque pont une et une seule fois ? (Euler, 1736)

Théorème d'Euler : Un multigraphe connexe admet une chaîne eulérienne si et seulement si le nombre de sommets de degré impair est 0 ou 2

Orienté	Non orienté
Arc $x_i \longrightarrow x_k$	Arête x _i x _k
Chemin (la notion de chaîne existe aussi dans les graphes orientés en faisant abstraction de l'orientation)	Chaîne
Circuit (la notion de cycle existe aussi)	Cycle

Généralités et définitions – Connexité

- □ Soit G = (X, U) un graphe, orienté ou non.
- On définit la relation binaire R sur X, dite relation de connexité par : x R y si et seulement si x et y sont reliés par une chaîne dans G.
- R est une relation d'équivalence (réflexive, symétrique, transitive), dont les classes d'équivalence sont appelées composantes connexes de G
- □ G est dit connexe s'il ne possède qu'une unique composante connexe

Un graphe comportant 3 composantes connexes

La Théorie des Graphes Généralités et définitions : les arbres

 Définition: un arbre est un graphe connexe et sans cycle. Une forêt est un graphe sans cycle.

□ Propriété : Soit G = (X, U) un graphe d'ordre n.

- 1. Si G est connexe, $|U| \ge n-1$
- 2. Si $|U| \ge n$, G possède au moins un cycle

Généralités et définitions – Forte connexité (graphes orientés uniquement)

- □ Soit G = (X, U) un graphe, orienté.
- On définit la relation binaire R_{FC} sur X, dite relation de forte connexité par : $x R_{FC} y$ si et seulement s'il existe un circuit de G contenant x et y ou x=y.
- R_{FC} est une relation d'équivalence (réflexive, symétrique, transitive), dont les classes d'équivalence sont appelées composantes fortement connexes de G
- G est dit fortement connexe s'il ne possède qu'une unique composante fortement connexe
- Il existe un algorithme permettant de déterminer les composantes fortement connexes d'un graphe orienté.

Exemple de graphe orienté comportant deux composantes fortement connexes (entourées). Ce graphe n'est donc pas fortement connexe.

Forte connexité et graphe réduit

- □ Soit G un graphe orienté admettant p composantes fortement connexes : C_1 , C_2 , ..., C_p
- □ On définit le graphe réduit de G (noté G_R) par $G_R = (X_R, U_R)$, avec :

$$\square X_{R} = \{C_{1}, C_{2}, \ldots, C_{p}\}$$

 $\square \text{ L'arc}(C_i, C_j) \in U_R \iff$

Il existe au moins un arc dans G ayant son extrémité initiale dans la composante fortement connexe C_i et son extrémité terminale dans C_i

Forte connexité et graphe réduit

Résultat 1 : Le graphe réduit est un graphe sans circuit

Représentation des graphes : matrice binaire

- \square Soit G = (X,U) un graphe orienté ayant n sommets.
- □ On définit la matrice binaire n × n associée :

$$M=[m_{ij}]$$
 (i,j = 1, ..., n) avec

$$m_{ij} = \begin{cases} 1 \text{ si l'arc}(x_i, x_j) \in \mathbf{U} \\ 0 \text{ sinon} \end{cases}$$

□ Exemple :

$$M = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ x_1 & 0 & 1 & 0 & 0 & 0 \\ x_2 & 0 & 0 & 1 & 1 & 1 \\ x_3 & 0 & 0 & 1 & 0 & 1 \\ x_4 & 0 & 0 & 0 & 0 & 1 \\ x_5 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- En utilisant les opérations arithmétiques classiques (+ et \times), on peut calculer les puissances successives de M. Par exemple : $M^2 = M \times M, M^3 = M \times M \times M$
- Nous allons voir que les éléments de chacune de ces matrices a une signification pratique pour cheminer dans le graphe.

$$M = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ x_1 & 0 & 1 & 0 & 0 & 0 \\ x_2 & 0 & 0 & 1 & 1 & 1 \\ x_3 & 0 & 0 & 1 & 0 & 1 \\ x_4 & 0 & 0 & 0 & 0 & 1 \\ x_5 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

□ Exemple : Eléments de la matrice M² :

Notons m_{ij}^2 le terme i, j de la matrice M^2 (différent de m_{ij} au carré)

Dans la suite, m_{ij}^2 désigne donc $M^2[i,j]$ et non $(M[i,j])^2$

Ce terme se calcule de la façon suivante:

 m_{ij}^2 = produit de la $i^{\text{ème}}$ ligne de M et de la $j^{\text{ème}}$ colonne de M

$$m_{ij}^2 = m_{i1}m_{1j} + m_{i2}m_{2j} + ... + m_{in}m_{nj}$$

$$m_{ij}^2 = m_{i1}m_{1j} + m_{i2}m_{2j} + ... + m_{in}m_{nj}$$
 Exemple:

$$m_{25}^2 = m_{21}m_{15} + m_{22}m_{25} + m_{23}m_{35} + m_{24}m_{45} + m_{25}m_{55}$$

$$= 0 \times 0 + 0 \times 1 + 1 \times 1 + 1 \times 0 = 2$$

$$M = \begin{bmatrix} x_1 & 0 & 1 & 0 & 0 & 0 \\ x_2 & 0 & 0 & 1 & 1 & 1 \\ x_3 & 0 & 0 & 1 & 0 & 1 \\ x_4 & 0 & 0 & 0 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 1 & 0 & 0 & 0 \\ x_2 & 0 & 0 & 1 & 1 & 1 \\ x_3 & 0 & 0 & 1 & 0 & 1 \\ x_4 & 0 & 0 & 0 & 0 & 0 \\ x_5 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M^{2} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 0 & 0 & 1 & 1 & 1 \\ x_{2} & 0 & 0 & 1 & 0 & 2 \\ x_{3} & 0 & 0 & 1 & 0 & 1 \\ x_{4} & 0 & 0 & 0 & 0 & 0 \\ x_{5} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$m_{25}^{2=0\times0+0\times1+1\times1+1\times1+1\times0} = 2$$

 $m_{25}^{2} = m_{21}m_{15} + m_{22}m_{25} + m_{23}m_{35} + m_{24}m_{45} + m_{25}m_{55}$

- Les uniques termes valant 1 dans la somme proviennent de $m_{23}m_{35}$ et de $m_{24}m_{45}$
- $m_{23}m_{35}$ vaut 1 car les 2 arcs (x_2, x_3) et (x_3, x_5) existent. Il existe un chemin de 2 arcs allant de x_2 à x_5 passant par x_3
- $m_{24}m_{45}$ vaut 1 car les 2 arcs (x_2, x_4) et (x_4, x_5) existent. Il existe un chemin de 2 arcs allant de x_2 à x_5 passant par x_4
- $\mod m_{25}^2$ vaut donc 2 car il existe 2 chemins de 2 arcs allant de \mathbf{x}_2 à \mathbf{x}_5

- On peut calculer les puissances suivantes de M (M³, M⁴ et M⁵) et s'intéresser à leur signification concrète.
- $\square M^p = M^{p-1} \times M = \left[m_{ij}^p \right]$
- □ Résultat 2 :

$$m_{ij}^p = l \Leftrightarrow \begin{cases} \text{Il existe exactement } l \text{ chemins de } x_i \ge x_j \\ \text{formés de } p \text{ arcs.} \end{cases}$$

- Notation :
 - □ ⊗ désigne le « et » logique
 - désigne le « ou » logique
- **□ Exemple:**
 - \square vrai et faux = faux se traduit par : $1 \otimes 0 = 0$
 - \square vrai ou faux = vrai se traduit par : 1 \oplus 0 = 1
 - \square vrai ou vrai = vrai se traduit par : 1 \oplus 1 = 1
 - □ Remarque : Cette dernière opération (1 ⊕ 1 = 1) est la seule pour laquelle le résultat des opérations logiques et arithmétiques diffèrent sur {0,1} (le résultat étant 1 en logique, 2 en arithmétique).

- □ En utilisant les opérations booléennes ⊗ et ⊕ (et logique et ou logique) sur {0,1} on calcule les puissances successives de M :
- \square $M^{[2]} = M \otimes M$ où \otimes désigne le produit booléen des matrices booléennes.
- \square Si on note $m_{ij}^{[2]}$ l'élément i,j de la matrice $\mathsf{M}^{[2]}$, on a :

$$m_{ij}^{[2]} = m_{i1}m_{1j} \oplus m_{i2}m_{2j} \oplus \oplus m_{in}m_{nj}$$

où \oplus désigne la somme booléenne

On note:
$$M^{[p]} = M^{[p-1]} \otimes M = [m_{ij}^{[p]}],$$

$$\operatorname{avec} m_{ij}^{[p]} = m_{i1}^{[p-1]} m_{1j} \oplus m_{i2}^{[p-1]} m_{2j} \oplus \oplus m_{in}^{[p-1]} m_{nj}$$

□ Résultat 3 :

$$m_{ij}^{[p]} = 1 \iff \begin{cases} \text{Il existe au moins un chemin de } x_i \text{ à } x_j \\ \text{formés de } p \text{ arcs.} \end{cases}$$

- □ **<u>Démonstration</u>**: Par récurrence sur *p*.
 - Le résultat est vrai pour p = 1, par définition de la matrice $M = M^{[1]}$
 - Hypothèse H de récurrence : supposons le résultat vrai pour p-1. Montrons qu'il est alors vrai pour p. $m_{ij}^{[p]} = m_{i1}^{[p-1]} m_{1j} \oplus m_{i2}^{[p-1]} m_{2j} \oplus \oplus m_{in}^{[p-1]} m_{nj} = 1$
 - **□** Or:

Il existe au moins un
$$k$$
, $(1 \le k \le n)$, avec $m_{ik}^{[p-1]} = 1$ et $m_{kj} = 1$

- Compte tenu de l'hypothèse H, $m_{ik}^{[p-1]} = 1$ signifie qu'il existe un chemin de x_i à x_k formés de p-1 arcs. $m_{kj} = 1$ signifie que l'arc (x_k, x_j) existe. En ajoutant cet arc au précédent chemin de x_i à x_k on obtient un chemin de p arcs allant de x_i à x_j .
- □ Ainsi, si l'hypothèse H est vérifiée au rang p-1, le résultat est également vérifié au rang p.

Fermeture transitive d'un graphe

- \square Soit G = (X,U) un graphe orienté ayant n sommets.
- □ On définit sa **fermeture transitive** comme étant le graphe $\hat{G} = (X, \hat{U})$ tel que :

L'arc
$$(x_i, x_j) \in \hat{U} \Leftrightarrow \begin{pmatrix} i = j \\ \text{ou} \\ \text{il existe au moins un chemin dans G de } x_i \text{ vers } x_j \end{pmatrix}$$

 \square Si \widehat{M} désigne la matrice binaire de \widehat{G} , on a alors :

$$\widehat{M} = I \oplus M \oplus M^{[2]} \oplus \oplus M^{[n-1]}$$

