$histogram :: Map Int (Bag word) \rightarrow Map word Int$ $histogram = mapReduce \text{ groupOnBags} \ additiveGroupOnIntegers \ histogramMap \ histogramReduce$ where $additiveGroupOnIntegers = Group(+)(\lambda n \rightarrow -n) 0$ histogramMap _ = foldBag groupOnBags ($\lambda n \rightarrow \text{singletonBag}(n, 1)$) $histogramReduce \ _$ = foldBag additiveGroupOnIntegers id -- Precondition: -- For every $key_1 :: k_1$ and $key_2 :: k_2$, the terms mapper key_1 and reducer key_2 are homomorphisms. $mapReduce :: Group \ v_1 \to Group \ v_3 \to (k_1 \to v_1 \to Bag \ (k_2, v_2)) \to (k_2 \to Bag \ v_2 \to v_3) \to$ Map $k_1 \ v_1 \rightarrow \text{Map } k_2 \ v_3$ $mapReduce\ qroup_1\ qroup_3\ mapper\ reducer = reducePerKey \circ qroupByKey \circ mapPerKey$ where $mapPerKey = foldMap \ qroup_1 \ groupOnBags \ mapper$ qroupByKey = foldBag (groupOnMaps groupOnBags) $(\lambda(key, val) \rightarrow \text{singletonMap } key \text{ (singletonBag } val))$ $reducePerKey = foldMap groupOnBags (groupOnMaps group_3)$ $(\lambda key \ bag \rightarrow singletonMap \ key \ (reducer \ key \ bag))$