Usually applied to Optimization Problems:

► Usually applied to Optimization Problems:

Find a configuration that minimizes or maximizes an objective function.

► A greedy algorithm...

Usually applied to Optimization Problems:

- ► A greedy algorithm...
 - Builds up a solution in small steps

Usually applied to Optimization Problems:

- A greedy algorithm...
 - Builds up a solution in small steps
 - At each step, makes its decision on some local criterion, myopically ignoring the global state

Usually applied to Optimization Problems:

- A greedy algorithm...
 - Builds up a solution in small steps
 - At each step, makes its decision on some local criterion, myopically ignoring the global state
- Greedy algorithms that implement a greedy heuristic are easy.
 However,...

Usually applied to Optimization Problems:

- A greedy algorithm...
 - Builds up a solution in small steps
 - At each step, makes its decision on some local criterion, myopically ignoring the global state
- Greedy algorithms that implement a greedy heuristic are easy.
 However,...
- Greedy algorithms that actually obtain a global optimum often do not exist.

Usually applied to Optimization Problems:

- A greedy algorithm...
 - Builds up a solution in small steps
 - At each step, makes its decision on some local criterion, myopically ignoring the global state
- Greedy algorithms that implement a greedy heuristic are easy.
 However,...
- Greedy algorithms that actually obtain a global optimum often do not exist.
- Greedy algorithms are usually simple, but the proof of correctness may not be so simple.

Usually applied to Optimization Problems:

- A greedy algorithm...
 - Builds up a solution in small steps
 - At each step, makes its decision on some local criterion, myopically ignoring the global state
- Greedy algorithms that implement a greedy heuristic are easy. However,...
- Greedy algorithms that actually obtain a global optimum often do not exist.
- Greedy algorithms are usually simple, but the proof of correctness may not be so simple.
- ▶ We will give several examples of greedy algorithms.

▶ Informal description:

- Informal description:
 - ► There are *n* objects. Each object has a given weight and a given value.

- Informal description:
 - ► There are *n* objects. Each object has a given weight and a given value.
 - ▶ There is a knapsack that can hold a given maximum weight.

- Informal description:
 - ► There are *n* objects. Each object has a given weight and a given value.
 - ▶ There is a knapsack that can hold a given maximum weight.
 - ► Find the most valuable collection of objects that can fit into the knapsack.

- Informal description:
 - ► There are *n* objects. Each object has a given weight and a given value.
 - There is a knapsack that can hold a given maximum weight.
 - ► Find the most valuable collection of objects that can fit into the knapsack.
- ▶ In the fractional version of the problem, we are allowed to break items into fractional portions.

- Informal description:
 - ► There are *n* objects. Each object has a given weight and a given value.
 - There is a knapsack that can hold a given maximum weight.
 - ► Find the most valuable collection of objects that can fit into the knapsack.
- ▶ In the fractional version of the problem, we are allowed to break items into fractional portions.
- ► In the zero-one version of the problem, we either include all of each object or none of it.

- Informal description:
 - ► There are *n* objects. Each object has a given weight and a given value.
 - ▶ There is a knapsack that can hold a given maximum weight.
 - ► Find the most valuable collection of objects that can fit into the knapsack.
- ▶ In the fractional version of the problem, we are allowed to break items into fractional portions.
- In the zero-one version of the problem, we either include all of each object or none of it.
- ► For now, we will consider just the fractional version.

► Inputs:

- Inputs:
 - For each object (i = 1, ..., n): weight $= w_i$, value $= v_i$

- ► Inputs:
 - For each object (i = 1, ..., n): weight $= w_i$, value $= v_i$
 - ► capacity of knapsack = W

- Inputs:
 - ▶ For each object (i = 1, ..., n): weight = w_i , value = v_i
 - capacity of knapsack = W
- Output: For each object i:

- Inputs:
 - For each object (i = 1, ..., n): weight $= w_i$, value $= v_i$
 - capacity of knapsack = W
- Output: For each object i:
 - \rightarrow x_i = the weight of object i that we will put in the knapsack

- Inputs:
 - For each object (i = 1, ..., n): weight $= w_i$, value $= v_i$
 - capacity of knapsack = W
- Output: For each object i:
 - $x_i =$ the weight of object i that we will put in the knapsack
- ► The goal is to maximize the quantity

$$\sum_{i=1}^{n} \left(\frac{x_i}{w_i} \right) \cdot v_i$$

- Inputs:
 - For each object (i = 1, ..., n): weight $= w_i$, value $= v_i$
 - capacity of knapsack = W
- Output: For each object i:
 - $x_i =$ the weight of object i that we will put in the knapsack
- ► The goal is to maximize the quantity

$$\sum_{i=1}^{n} \left(\frac{x_i}{w_i} \right) \cdot v_i$$

subject to the conditions

- Inputs:
 - For each object (i = 1, ..., n): weight $= w_i$, value $= v_i$
 - capacity of knapsack = W
- Output: For each object i:
 - $x_i =$ the weight of object i that we will put in the knapsack
- ► The goal is to maximize the quantity

$$\sum_{i=1}^{n} \left(\frac{x_i}{w_i} \right) \cdot v_i$$

subject to the conditions

$$0 < x_i < w_i, i = 1, ..., n$$

- Inputs:
 - For each object (i = 1, ..., n): weight $= w_i$, value $= v_i$
 - capacity of knapsack = W
- ▶ Output: For each object *i*:
 - $x_i =$ the weight of object i that we will put in the knapsack
- ► The goal is to maximize the quantity

$$\sum_{i=1}^{n} \left(\frac{x_i}{w_i} \right) \cdot v_i$$

subject to the conditions

$$0 \le x_i \le w_i, i = 1, \ldots, n$$

and

$$\sum_{i=1}^n x_i \leq W.$$

Suppose we have two objects:

- $v_1 = 80, v_1 = 80$
- $w_2 = 25, v_2 = 50$
- ► W = 100

Suppose we have two objects:

- $v_1 = 80, v_1 = 80$
- $v_2 = 25, v_2 = 50$
- ► W = 100

Optimal solution:

Suppose we have two objects:

- $v_1 = 80, v_1 = 80$
- $v_2 = 25, v_2 = 50$
- ► *W* = 100

Optimal solution:

► Take all of object 2 (weight = 25, value = 50)

Suppose we have two objects:

- $w_1 = 80, v_1 = 80$
- $v_2 = 25, v_2 = 50$
- ► W = 100

Optimal solution:

- ► Take all of object 2 (weight = 25, value = 50)
- ► Take 75 weight units of object 1 (weight = 75, value = 75)

Suppose we have two objects:

- $v_1 = 80, v_1 = 80$
- $v_2 = 25, v_2 = 50$
- ► W = 100

Optimal solution:

- ► Take all of object 2 (weight = 25, value = 50)
- ► Take 75 weight units of object 1 (weight = 75, value = 75)
- ► Total weight = 100, total value = 125

Solution of Fractional Knapsack Problem

Solution of Fractional Knapsack Problem

▶ Define the value density of object *i* to be v_i/w_i .

Solution of Fractional Knapsack Problem

- ▶ Define the value density of object *i* to be v_i/w_i .
- Use object of highest value density in knapsack, then next highest, etc. Continue until knapsack is filled.

- ▶ Define the value density of object *i* to be v_i/w_i .
- Use object of highest value density in knapsack, then next highest, etc. Continue until knapsack is filled.
- ► Formal proof of correctness is in [GT] (page 288).

- ▶ Define the value density of object *i* to be v_i/w_i .
- Use object of highest value density in knapsack, then next highest, etc. Continue until knapsack is filled.
- ► Formal proof of correctness is in [GT] (page 288).

- ▶ Define the value density of object *i* to be v_i/w_i .
- Use object of highest value density in knapsack, then next highest, etc. Continue until knapsack is filled.
- Formal proof of correctness is in [GT] (page 288).

Implementation detail:

Sort items in decreasing order of value density:

- ▶ Define the value density of object *i* to be v_i/w_i .
- Use object of highest value density in knapsack, then next highest, etc. Continue until knapsack is filled.
- Formal proof of correctness is in [GT] (page 288).

- Sort items in decreasing order of value density:
 - ▶ Algorithm Runs in $O(n \log n)$ time.

- ▶ Define the value density of object *i* to be v_i/w_i .
- Use object of highest value density in knapsack, then next highest, etc. Continue until knapsack is filled.
- Formal proof of correctness is in [GT] (page 288).

- Sort items in decreasing order of value density:
 - ▶ Algorithm Runs in $O(n \log n)$ time.
- Alternatively, implement using a max-heap. (Key of each object is its value density.)

- ▶ Define the value density of object *i* to be v_i/w_i .
- Use object of highest value density in knapsack, then next highest, etc. Continue until knapsack is filled.
- Formal proof of correctness is in [GT] (page 288).

- Sort items in decreasing order of value density:
 - ▶ Algorithm Runs in $O(n \log n)$ time.
- Alternatively, implement using a max-heap. (Key of each object is its value density.)
 - Algorithm runs in $O(n + k \log n)$ time, where k is the number of objects fully or partially added to the knapsack.

► Given *n* tasks

- ► Given *n* tasks
- ▶ Each task has a start time s_i and a finishing time f_i

- ► Given *n* tasks
- Each task has a start time s_i and a finishing time f_i
- ► Each task must run on some machine. It will occupy that machine from its start time to its finishing time.

- ► Given *n* tasks
- ▶ Each task has a start time s_i and a finishing time f_i
- ► Each task must run on some machine. It will occupy that machine from its start time to its finishing time.
- ▶ Each machine can only work on one task at a time.

- ► Given *n* tasks
- Each task has a start time s_i and a finishing time f_i
- ► Each task must run on some machine. It will occupy that machine from its start time to its finishing time.
- ▶ Each machine can only work on one task at a time.
- ▶ Find the minimum number of required machines.

Task scheduling problem example

Task scheduling problem example

Example: 8 tasks: $\{(12, 14), (5, 9), (0, 6), (6, 10), (1, 4), (3, 8), (8, 12), (2, 13)\}$

Process tasks according to start times, earliest start time first

- ▶ Process tasks according to start times, earliest start time first
- ▶ For each task T_i :

- Process tasks according to start times, earliest start time first
- ► For each task *T_i*:
 - ▶ If we have a machine that can handle T_i , schedule T_i on that machine.

- Process tasks according to start times, earliest start time first
- ► For each task *T_i*:
 - ▶ If we have a machine that can handle T_i , schedule T_i on that machine.
 - Otherwise, allocate a new machine, and schedule T_i on this new machine.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
-						_									3
	-			_											5
		_													8
			_					_							6
					_				_						2
						_				_					4
								_				_			7
												_		_	1

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1							_									3
		_			_											5
			_											_		8
				_					_							6
						_				_						2
							-				_					4
									_				_			7
													_		_	1

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	_															3
2		_			_											5
			_											_		8
				-					_							6
										_						2
							_				_					4
									_				_			7
													_		_	1

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	_						_									3
2		_			_											5
3			-											_		8
				-					_							6
						-				_						2
							_				_					4
									_				_			7
													_		_	1

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	_						_									3
2		_			_											5
3			_											_		8
4																6
1																Ü
						_				_						2
							_				_					4
									_				_			7
													_			1

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	_
1	_						_									3
2		_			_											5
3			_											_		8
4				_					_							6
2						_				_						2
							_				_					4
									_				_			7
													_		_	1

4 machines are sufficient

- 4 machines are sufficient
- 4 machines are necessary (so solution is optimal)

Greedy Algorithm 3: Single-machine scheduling

Greedy Algorithm 3: Single-machine scheduling

([GT] problem A-10.2)

Greedy Algorithm 3: Single-machine scheduling

([GT] problem A-10.2)

▶ Given *n* tasks and only 1 machine.

([GT] problem A-10.2)

- ▶ Given *n* tasks and only 1 machine.
- ▶ Each task has a start time s_i and a finish time f_i .

([GT] problem A–10.2)

- ▶ Given *n* tasks and only 1 machine.
- ▶ Each task has a start time s_i and a finish time f_i .
- ▶ If a task is selected, it will occupy the machine from its start time to its finishing time.

([GT] problem A-10.2)

- ▶ Given *n* tasks and only 1 machine.
- ▶ Each task has a start time s_i and a finish time f_i .
- ▶ If a task is selected, it will occupy the machine from its start time to its finishing time.
- ▶ The machine can only work on one task at a time.

([GT] problem A-10.2)

- ▶ Given *n* tasks and only 1 machine.
- **Each** task has a start time s_i and a finish time f_i .
- ▶ If a task is selected, it will occupy the machine from its start time to its finishing time.
- The machine can only work on one task at a time.
- ▶ Find the maximum number of tasks that can be run.

Single-Machine scheduling problem example

Single-Machine scheduling problem example

Example: 8 tasks (same tasks as previous problem): $\{(12, 14), (5, 9), (0, 6), (6, 10), (1, 4), (3, 8), (8, 12), (2, 13)\}$

 Process tasks according to finishing times, earliest finishing time first.

- Process tasks according to finishing times, earliest finishing time first.
- ▶ For each task T_i:

- Process tasks according to finishing times, earliest finishing time first.
- ► For each task *T_i*:
 - ▶ If task *T_i* does not conflict with tasks already chosen, select it.

- Process tasks according to finishing times, earliest finishing time first.
- ► For each task *T_i*:
 - ▶ If task *T_i* does not conflict with tasks already chosen, select it.
 - Otherwise, do not select task T_i.

- Process tasks according to finishing times, earliest finishing time first.
- For each task T_i:
 - ▶ If task T_i does not conflict with tasks already chosen, select it.
 - Otherwise, do not select task T_i.
- [Kleinberg-Tardos] gives correctness proof and presents some plausible alternative greedy heuristics that do not work.

- Process tasks according to finishing times, earliest finishing time first.
- For each task T_i:
 - ▶ If task *T_i* does not conflict with tasks already chosen, select it.
 - Otherwise, do not select task T_i.
- [Kleinberg-Tardos] gives correctness proof and presents some plausible alternative greedy heuristics that do not work.
- ► This algorithm is optimal because the set of tasks it chooses "stays ahead" of any other set of tasks.

- Process tasks according to finishing times, earliest finishing time first.
- ▶ For each task *T_i*:
 - ▶ If task *T_i* does not conflict with tasks already chosen, select it.
 - ▶ Otherwise, do not select task T_i .
- [Kleinberg-Tardos] gives correctness proof and presents some plausible alternative greedy heuristics that do not work.
- ► This algorithm is optimal because the set of tasks it chooses "stays ahead" of any other set of tasks.

[Kleinberg-Tardos] Jon Kleinberg and Éva Tardos, Algorithm Design, Addison-Wesley, 2006.

Choose 3 jobs: 5, 2, and 1

▶ Greedy algorithms appear in various contexts.

- ▶ Greedy algorithms appear in various contexts. For example:
 - Graph problems: shortest paths, minimum spanning tree

- Greedy algorithms appear in various contexts. For example:
 - Graph problems: shortest paths, minimum spanning tree
 - String compression: Huffman coding

- Greedy algorithms appear in various contexts. For example:
 - Graph problems: shortest paths, minimum spanning tree
 - String compression: Huffman coding
- Given an optimization problem, it is always worth asking: will a greedy algorithm work?

- Greedy algorithms appear in various contexts. For example:
 - Graph problems: shortest paths, minimum spanning tree
 - String compression: Huffman coding
- Given an optimization problem, it is always worth asking: will a greedy algorithm work?
 - ▶ If the answer is yes, you have an easy solution.

- Greedy algorithms appear in various contexts. For example:
 - Graph problems: shortest paths, minimum spanning tree
 - String compression: Huffman coding
- Given an optimization problem, it is always worth asking: will a greedy algorithm work?
 - If the answer is yes, you have an easy solution.
 - If the answer is no (which it often is), seeing why the greedy approach fails may give you some insight into the structure of the problem.