| Tutorium 10: komplexe Zahlen, Beispielklausur sowie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Folgen und Reihen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |
| · Tragen?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |
| · Fragen zu den Beispielklausuren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |
| Aufgabe 1 Mengen: Es seien $M_1 = \{0,1\}, M_2 = \{1,2,3\}, M_3 = \{-3,1\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |
| c) Bestimmen Sie $ \mathcal{P}(M_1^2) $ .<br>c) $\mathcal{M}_{\lambda}^2 = \mathcal{M}_{\lambda} \times \mathcal{M}_{\lambda} = \{(0,0), (0,1), (1,0), (1,1)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| $\mathcal{F}(M_{\lambda}^{?}) = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |
| $\frac{1}{ \mathcal{P}(M_{1}^{2}) } = 2^{ M_{1}^{2} } = 2^{ M_{1} \times M_{1} } = 2^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 2 = 16                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| Aufgabe 2 Abbildungen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |
| Es seien $a, b$ reelle Zahlen, und $f_{a,b} : [-2, 2] \to \mathbb{R}$ definiert durch $f_{a,b}(x) := \begin{cases} ax &, \text{ falls } x \leq 0 \\ bx &, \text{ falls } x > 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |
| b) Bestimmen Sie das Urbild $f_{-1,1}^{-1}([-2,0])$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
| b) -> 0 (1) C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (±y,y≥0                                                                             |
| $\Rightarrow f_{-\lambda,\lambda}(x) = \begin{cases} -\lambda x & x \leq 0 \\ \lambda x & x > 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $f_{1,\lambda}^{-1}(y) = \begin{cases} \pm y, & y \ge 0 \\ -1, & y < 0 \end{cases}$ |
| -> da I lineare Funktion:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\int_{-A,\lambda}^{-1} (-\lambda) = \text{n.d.}$                                   |
| $\int_{-A,A} (x) = (-2)$ $x > 0  (w k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 151 (0)                                                                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 vegen (* *)                                                                       |
| x = 2 7 Uegen (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |
| La, a (x) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                   |
| $-x = 0    \cdot (-\lambda)   \qquad x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z wegen (44)                                                                        |
| x = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>x</i> ,                                                                          |
| ⇒ √4, ([-2,0]) = {0}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| Aufgabe 6 Komplexe Zahlen c) Es seien $z_1, \dots, z_n, w_1, \dots, w_n \in \mathbb{C}$ so, dass $\sum_{k=1}^n w_k \neq 0$ . Lösen Sie die folgende                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
| Gleichung nach $z_1$ auf $\sum_{\nu=1}^n \left( \sum_{k=1}^n w_k  z_\nu  i  \nu \right) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |
| \[ \sum_{k=1}^{n} \times_{k=1}^{n} \times_{k} \] = \( \left( \frac{1}{k} \times_{k} \right) \right) = \( \left( \frac{1}{k} \right) \right) = \( \lef |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left(\frac{1}{R}\right)\left(\frac{1}{R}\right) + 0$                              |
| Ve A ) Real )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / 1 \R=J1 /                                                                         |
| $(5^{1} \cdot 1) + \left( \begin{array}{c} 5^{2} \cdot 1 \\ \end{array} \right) = \frac{1}{1} \cdot \begin{array}{c} 5^{1} \cdot 1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ······································                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                   |

$$(z_{\lambda} \cdot \lambda) + \left( \sum_{v=\lambda}^{N} z_{v} \cdot v \right) = \frac{1}{\lambda} \cdot \sum_{k=\lambda}^{N} u_{k} - \left( \sum_{v=\lambda}^{N} z_{v} \cdot v \right)$$

$$z_{\lambda} = \frac{1}{\lambda} \cdot \sum_{k=\lambda}^{N} u_{k} - \left( \sum_{v=\lambda}^{N} z_{v} \cdot v \right)$$

· Komplexe Zahlen

Acquire 83 b)  $\{z \in \mathbb{C} : -1 \cdot \operatorname{Re}(z) + 1 \cdot \operatorname{Im}(z) \leq 0\}$ 

c)  $\{z \in \mathbb{C} : -1 \cdot \operatorname{Re}(z) + 1 \cdot \operatorname{Im}(z) \le 1\}$ 

$$-\operatorname{Re}(z) \leq -\operatorname{Im}(z)$$
  $|\cdot(-1)|$ 



c) 
$$- Re(z) + Im(z) \leq 1$$
 |  $+ Re(z)$  |  $Im(z) \leq Re(z) + 1$ 



· Tolgen und Reihen

**9.1.1** Wie ist der **Grenzwert** einer Folge  $(a_n)$  definiert?

**9.1.2** Wann ist eine Folge  $(a_n)$  eine Nullfolge?

**9.1.3** Wann ist nach Definition eine Funktion  $f: X \to \mathbb{C}$  mit  $x \subset \mathbb{C}$  an der Stelle  $z \in X$  stetig?

**9.1.4** Sei  $x \in \mathbb{R}$  und  $f: X \to \mathbb{R}$  eine Abbildung. Wann ist f monoton fallend?

**9.1.5** Sei  $x \subset \mathbb{R}$  und  $f: X \to \mathbb{R}$  eine Abbildung. Wann ist f streng monoton fallend?

**9.1.6** Sei  $x \subset \mathbb{R}$  und  $f: X \to \mathbb{R}$  eine Abbildung. Wann ist f monoton wachsend?

9.1.7 Sei  $x \subset \mathbb{R}$  und  $f: X \to \mathbb{R}$  eine Abbildung. Wann ist f streng monoton wachsend?

9.1.8 Was bedeutet es, dass eine Folge  $(a_n)$  nach oben/unten beschränkt ist?

9.1.9 Wie lautet der Hauptsatz über monotone Folgen?

**9.1.10** (a) Wie lautet die allgemeine Definition einer **rekursiven Folge**? (b) Falls eine solche Folge einen Grenzwert hat, wie kann dieser berechnet werden?

**9.2.2** Berechne den Grenzwert der Folge  $\lim_{n\to\infty} \frac{2 \cdot n^2 + 1}{5 \cdot n^3}$ .

$$\lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \cdot \frac{\frac{1}{n^3}}{\frac{1}{n^3}} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot n^3} \right) = \lim_{n \to \infty} \left( \frac{2n^2 + 1}{5 \cdot$$

**9.2.1** Berechne den Grenzwert der Folge  $\lim_{n\to\infty} \frac{n! \cdot \pi}{n! \cdot 3}$ 

$$\lim_{n \to \infty} \left( \frac{m}{3} \right) = \lim_{n \to \infty} \left( \frac{\pi}{3} \right) = \frac{\pi}{3}$$

**Aufgabe 94** Es sei  $(x_k)_{k\in\mathbb{N}}$  eine Folge mit  $\lim_{k\to\infty} x_k = 0$  und  $x_k \neq 0$  für alle  $k \in \mathbb{N}$ . Zeigen Sie, dass für jedes  $n \in \mathbb{N}$  und jedes  $x \in \mathbb{R}$  gilt

$$\lim_{k \to \infty} \frac{(x_k + x)^n - x^n}{x_k} = nx^{n-1}.$$

(Hinweis: Wenden Sie den binomischen Satz auf  $(x_k + x)^n$  an, und untersuchen Sie summandenweise)

$$\lim_{k \to \infty} \left( \frac{(x_k + x)^n - x^n}{x_k} \right) = \lim_{k \to \infty} \left( \frac{(n) \cdot x_k \cdot x^n + (n) \cdot x_k \cdot x^n + \dots + (n) \cdot x_k \cdot x^n - x^n}{x_k \cdot x^n + \dots + (n) \cdot x_k \cdot x^$$