Chap 23 – Minimum Spanning Trees

- 23.1 Growing a minimum spanning tree
- 23.2 The algorithms of Kruskal and Prim

Minimum spanning tree

- Minimum spanning tree
 - An undirected graph G = (V, E) with **weight** w(u, v) on each edge $(u, v) \in E$
 - \circ Find an MST $T \subseteq E$ such that
 - 1 T connects all vertices (T is a **spanning tree**), and

2
$$w(T) = \sum_{(u,v) \in T} w(u,v)$$
 is minimized

A minimum spanning tree, or MST, is a spanning tree
 whose weight is minimum over all spanning trees.

Minimum spanning tree

- Minimum spanning tree
 - Some Properties of an MST
 - It has |V|-1 edges.
 - It has no cycles
 - It might not be unique.
 - Example : Replacing (e, f) by (c, e) yields another MST.

- Generic MST algorithm (Greedy strategy)
 - Initially, $A = \emptyset$ has no edges.
 - As we add edges to A, maintain a loop invariant
 Loop invariant

A is a subset of some MST

Add only *safe* edges to maintain the loop invariant:
 If A is a subset of some MST, an edge (u, v) is safe iff
 A ∪ {(u, v)} is also a subset of some MST.

Generic MST algorithm

```
• GENERIC-MST(G = (V, E), w)
A = \emptyset
while A is not a spanning tree
find an edge (u, v) \in E that is safe for A
A = A \cup \{(u, v)\}
```

return A

- $G_A = (V, A)$ is a forest containing connected components. Each component is a tree. (: A is a subset of some MST.)
- Initially, each component is a single vertex.
- Any safe edge merges two components into one.
- The loop iterates |V| 1 times.

- Generic MST algorithm: some definitions
 - \circ Let $G = (V, E), S \subseteq V$ and $A \subseteq E$
 - A *cut* (S, V S) is a partition of V.
 - ∘ An edge (u, v) ∈ E *crosses* the cut (S, V S) if one endpoint ∈ S and the other ∈ V S.

- A cut *respects* A if and only if no edge in A crosses the cut.
- An edge is a *light edge* crossing the cut iff its weight is minimum over all edges crossing the cut.

For a given cut, there can be > 1 light edge crossing it.

Generic MST algorithm

THEOREM

Let A be a subset of some MST, (S, V - S) be a cut that respects A, and (u, v) be a light edge crossing the cut.

Then, (u, v) is safe for A.

Proof

Let T be an MST that includes A.

If T contains (u, v), done.

If T doesn't contain (u, v), we'll construct a different MST T' that includes $A \cup \{(u, v)\}$.

Recall: A tree has unique path between each pair of vertices

Generic MST algorithm

THEOREM (Cont'd)

Since T is an MST, it contains a unique path p between u and v. Path p must cross the cut (S, V - S) at least once. Let (x, y) be an edge of p that crosses the cut.

All edges shown are in T.

A is some subset of T, but it doesn't contain any edges that cross the cut.

- Generic MST algorithm
 - THEOREM (Cont'd)

Then, $w(u, v) \le w(x, y) : (u, v)$ is a light edge crossing

the cut.

Also, $(x, y) \notin A$, : the cut respects A.

Now, let

$$T' = T - \{(x, y)\} \cup \{(u, v)\}$$

Then, T' is a spanning tree.

Since T is an MST and

$$w(T') = w(T) - w(x, y) + w(u, v) \le W(T)$$

It follows that T' is an MST, too.

Generic MST algorithm

THEOREM (Cont'd)

We now show that (u, v) is safe for A.

- $A \subseteq T$ and $(x, y) \notin A \Rightarrow A \subseteq T'$
- $A \cup \{(u, v)\} \subseteq T'$
- Since T' is an MST, (u, v) is safe for A.

COROLLARY

If $C = (V_c, E_c)$ is a connected component in the forest $G_A = (V, A)$ and (u, v) is a light edge connecting C to some other component in G_A , i.e. (u, v) crosses the cut $(V_c, V - V_c)$, then (u, v) is safe for A.

Proof Set $S = V_c$ in the theorem

Kruskal's algorithm

- Kruskal's algorithm immediately follows the corollary.
 - start with each vertex being its own component
 - repeatedly
 merge two components into one by choosing the
 light edge that connects them, i.e. the light edge
 crossing the cut between them
- For the light edge, scan the set of edges in monotonically increasing order by weight.
- Use a disjoint-set data structure to determine whether an edge connects vertices in different components

 Kruskal's algorithm \circ MST-KRUSKAL(G, w) $A = \emptyset$ **for** each vertex $v \in G.V$... |V| MAKE-SETS $\mathsf{MAKE}\text{-}\mathsf{SET}(v)$ sort the edges of G. E into nondecreasing order by w **for** each (u, v) taken from the sorted list if FIND-SET $(u) \neq FIND-SET(v)$ then $A = A \cup \{(u, v)\}$ UNION(u, v) ... O(E) FIND-SETS and UNIONS return A

Kruskal's algorithm

Example

(c, f) : safe

(g,i) : safe

(e, f) : safe

(c,e) : reject

(d,h) : safe

(f,h) : safe

(d,e) : reject

(b,d) : safe

(d,g) : safe

(b,c) : reject

(g,h) : reject

(a,b) : safe

Kruskal's algorithm

- With union by rank and path compression, the sequence of O(V+E) disjoint-set operations on |V| elements takes a time in $O((V+E)\alpha(V))$.
- Total time: $O((V + E)\alpha(V)) + O(E \lg E)$
- Since the graph is connected, $|E| \ge |V| 1$

Also,
$$\alpha(V) = O(\lg V) = O(\lg E)$$

Total time:
$$O(E \lg E) + O(E \lg E) = O(E \lg E)$$

Another result

$$|E| \le |V|^2 \Rightarrow \lg E = O(\lg V)$$

Total time: $O(E \lg V)$

Prim's algorithm

- Build one tree, so A is always a tree
- Start from an arbitrary "root" r
- At each step, find a light edge crossing cut $(V_A, V V_A)$, where V_A = vertices that A is incident on.

Add this edge to A

Prim's algorithm

- How to find the light edge quickly?
 Use a priority queue Q
 - Each object is a vertex u in $V V_A$ (i.e. not in tree A)
 - u. key is minimum weight of any edge $(u, v), v \in V_A$
 - Then, the vertex returned by EXTRACT-MIN is u such that there exists $v \in V_A$ and (u,v) is the light edge crossing $(V_A,V-V_A)$
 - $u. key = \infty$ if u is not adjacent to any vertices in V_A

Prim's algorithm

- The edges of A will form a rooted tree with root r:
 - r is given; it can by any vertex.
 - $v.\pi = \text{parent of } v$
 - As algorithm progress,

$$A = \{(v, v.\pi : v \in V - \{r\} - Q)\}\$$

• At termination, $Q = \emptyset$

So, MST is
$$A = \{(v, v, \pi : v \in V - \{r\})\}$$

 Prim's algorithm \circ MST-PRIM(G, w, r) $Q = \emptyset$ **for** each $u \in G.V$ $u.key = \infty$; $u.\pi = NIL$ ··· |V| INSERTS INSERT(Q, u)DECREASE-KEY(Q, r, 0) // r. key = 0while $Q \neq \emptyset$ $u = \text{EXTRACT-MIN}(Q) \cdots |V| \text{EXTRACT-MINS}$ **for** each $v \in G$. Adj[u]if $v \in Q$ and w(u, v) < v. key $v.\pi = u$ DECREASE-KEY $(Q, v, w(u, v)) \cdots \leq |E|$ DECREASE-KEY

Example on Prim's algorithm

- Analysis of Prim's algorithm
 - \circ Depend on how the priority queue Q is implemented
 - Suppose Q is a binary heap |V| INSERTS + |V| EXTRACT-MINS + $(\le |E|)$ DECREASE-KEYS) take a time in $O(V \lg V) + O(V \lg V) + O(E \lg V) = O(E \lg V)$ \therefore the graph is connected $\Rightarrow |E| \ge |V| 1$
 - Suppose Q is a Fibonacci heap (Chap. 19)

 DECREASE-KEY can be done in O(1) amortized time.

 Then, the operations take a time in $O(V \lg V) + O(V \lg V) + O(E) = O(E + V \lg V)$