VE3KL Antenna Tuners Revealed (2010-2014 Study)

- A General Approach for all Tuners...the goal
- How to Look at Tuners.....Smith Chart?? No.
- Use the Impedance Z plane
- Use SimSmith for system analysis...4nec2x, VNA for data
- Use the L match as a basic building block
- Several Examples: VE3XK 43 foot Vertical
- Easy to tune into a bed spring but at what cost?
- Losses, Bandwidth, Voltages, Currents, Return Loss

Antenna Tuners VE3KL

Introduction
Block Diagram for Analysis
(Note Right to Left Flow)

The Problem & Basic Questions

- Transform from any Z to 50 Ohms..usually a filter
- How to Design a Tuner
- Only Two Tuning Elements needed (max)
- What is the best circuit? There isn't one!
- Components? Roller Inductors have Low Q if not maintained very carefully
- How to analyze the complete system?
- How to use real data.. Spice does not do well with transmission lines

Many Tuner Types since 1955 Need a Common View

- L Match..... Six Types
- T Match..... Two Types (many variations)
- PI Match.....Two Types (many variations)
- Z Match.....A few variations
- EF Johnson Match Box Tuner...Several Types (Some Capacitors not needed)
- Transformer type for resistive loads..end fed half wave antenna

Match Box Tuner

Design Method

Smith Chart: Reflection Coefficient Hard to Visualize Using LC Tuners Many Overlays: Z,Y,SWR,RL,NF, Max Power, Negative Resistance Parametric Amplifiers

Z Plane Ideal for LC and Simple Matches Impedance based Series Loads

Z Plane Parallel Loads Z=1/Y Y = G +jB

Circle of Constant G

$$G = \frac{R}{R^2 + X^2}$$

Z Plane Region L Match Types Six Regions

Z Plane Region TMatch Regions A,B,C,D,E,F

Special Cases

Region A,B,C: C2 = infinity Region D,E,F: C1 = infinity

Many Other Tuning Strategies

Palstar Differential C Tuner C1 = kC2......K variable.

Transformer Preserves Phase Angle of Impedance Used in VE3KL End Fed Halfwave 20 Metre Antenna

VE3KL Time for some Measurements

Differential T Type
Rload = 1000 Ω
L = 3.55 uH Powdered Iron

Two L Match Tuners High R & Low R

VE3KL Antenna Tuner Examples (2010-2014 Study)

Differential T Type....Measured Rload = 1000 Ω L = 3.55 uH Powdered Iron

Note the High Return Loss @ 10 MHz

Z Match Two Tuning Capacitors PD7MAA 100 Watt T200 Toroid

VE3KL Antenna Tuner Examples

(Zmatch Two Coil Type Jim Dean VE3IQ Built 1957) Design 1955

Two Tuning Knobs

The Basic Circuit... Lmatch Summary

(a) Low Pass L-C High Resistance Antenna > 50 Ohms, All Reactive Loads (b) Low Pass L-C Low Resistance Antenna < 50 Ohms, Drop-Out for some Inductive Loads

(c) High Pass L-C Low Resistance Antenna < 50 Ohms, Drop-Out for Some Capacitive Loads (d) High Pass L-C High Resistance Antenna > 50 Ohms, All Reactive Loads

<u>18</u>

Simulation Tools and Data Collection

- Measured or simulated antenna impedance VNA such as an AIM 4170 EZNEC or 4nec2 for Antenna Simulation
- TL Details for Transmission Line Data
- SimSmith for System Simulation
 Imports data from VNA, Antenna Simulators, TLDetails

TLDetails Example Wireman 551 Window Line Loss 2.6 dB 50 MHz Ice Covered 10m

Tx Modeled as a zero Z impedance

SmithSmith The Cascaded System tool Uses TL Details Imports Antenna Data from VNA,EZNEC ,4nec2

SmithSmith LC Example 100 Ohm Load Type (a) L Match

VE3XK Vertical ..An example 1.9 MHz Low R 18.1 MHz High R Measured Impedance 1-31 MHz

SmithSmith

VE3XK Vertical Antenna Using Measured Impedance Values
1.9 MHz R Load < 50 Ohms B type LC

- Good Match
- •L = 62 uH
- Very Narrow Bandwidth
- •High Voltages (>3KV RMS)
- •0.96 dB Loss
- •96 W loss in Inductor
- •500 WattsTx

SmithSmith

VE3XK Vertical Antenna Using Measured Impedance Values 18.1 MHz

New Topology Based on Z Plane R Load > 50 Ohms D Type LC

- Good Match
- Wide Bandwidth
- Low Voltages (<410RMS)
- 0.05 dB Loss
- 6 dBW loss in Inductor

SmithSmith VE3XK Vertical Antenna Using Measured Impedance Values Summary

Transmitter Power 500 W Continuous, VE3XK Vertical										
Frequency [MHz]	Tuner Type (See L Match Summary)	Load Power [W]	Power Lost in L [W]	Voltage across L [V]						
1.9	(b)	405	96	3260						
3.7	(d)	425	73	1330						
5.3	(b)	495	5	191						
7.1	(a)	488	12	552						
10.1	(d)	476	22	940						
14.2	(b)	484	16	908						
18.1	(d)	495	4	410						
21.2	(d)	480	19	709						
24.9	(d)	472	27	672						
28.5	(a)	496	3 26	150						

T Match.. A Closer Look Three Tuning Elements only Two Needed..but

- Three gives a broad range if a tuning method can be developed
- Three needed if L is a switched inductor
- •C1 and C2 can be part of a Differential Capacitor (Two knobs to tune) C1=K1*C2 + K2 0<k1<1

Palstar AT 1500 Manual Tuner Two Tuning Elements: Easy to Tune

Note the Use of a Fan To Cool Roller Inductor

Palstar AT 1500 Manual Tuner Performance SimSmith

T Match.. A Closer Look Three Tuning Elements...Some Examples

	T Type Tuner Simulation Transmitter Power 500 W 10 MHz Inductor Q = 200 Capacitor Q = 2000								
	Tuner#	RL [Ω]	C _s [pF]	$ \begin{array}{c c} \text{Ctor } Q = 200 \\ L \\ \text{[uH]} \end{array} $	$Capacitor Q = 20$ C_{L} $[pF]$	Power in L [W]	Circuit Q		
	1	300	15	12	6	72	15		
	3	300 300	45 113	2.0	19 75	31	2		
	4	25	22	5.1	28	82	15		
	5	25	66	1.7	88	29	5		
	6	25	452	0.56	450	5	1		
	7	0.1	18.6	1.48	152	391	Not calculated		
	8	50	225	0.84	225	7	Not Calculated		
Short Circuit	9	50	24	5.4	23	63	Not Calculated		
							30		

Z Match Single Coil Type VK5BR Two Tuning Knobs Essentially a Series C Shunt L Match Rp Reflected from Antenna > 50 Ohms Possible Drop Out Regions Type (D) Circuit

Summary

- Z Plane Clarifies the Design Process
- SimSmith Does the Number Crunching
- TLDetails Supplies Transmission Line Data
- VNA Collects Measurements
- EZNEC, 4nec2 does the antenna simulation
- See references TCA, VE3KL, July/Aug..Sept/Oct 2014

Tools Now Available to Evaluate Most Tuner Types

73 Dave VE3KL

References

- Dave Knight, G3YNH..Impedance Matching
- SimSmith Simulator, <u>AE6TL</u>
- TLDetails AC6LA
- EZNEC, W7EL
- See references TCA, VE3KL, July/Aug..Sept/Oct 2014

Tools Now Available to Evaluate Most Tuner Types