มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

สอบกลางภาค 1/2555

วิชา P	HY	305	Vacuum	Technology

นักศึกฟิสิกส์ชั้นปีที่ 3

สอบวัน จันทร์ ที่ 15 ฅุลาคม 2555

เวลา 9:00 - 12:00 น.

คำชี้แจง

- 1. ข้อสอบมีทั้งหมด 9 ข้อ คะแนนเต็ม 90 คะแนน 7 หน้า (รวมใบปะหน้า)
- 2. ห้ามนำตำราหรือเอกสารต่างๆ เข้าห้องสอบ
- 3. อนุญาตให้ใช้เครื่องคำนวณทางวิทยาศาสตร์และไม้โปรแทรกเตอร์เข้าห้องสอบได้
- 4. ข้อสอบไม่มีการแก้ไขใดๆ ทั้งสิ้น

์ ชื่อ สถล	รหัสนักศึกษา	เลขเพื่อไปสดาเ	
១០ – ពារួត	ยาการที่สามารถสานารถสานารถสานารถสานารถสานารถสานารถสานารถสานารถสานารถสานารถสานารถสานารถสานารถสานารถสา	เถขทนงถยบ	

สมชาย ปัญญาอื่นแก้ว

ข้อสอบฉบับนี้ ได้ผ่านการพิจารณาของกรรมการกลั่นกรองข้อสอบภาควิชาฟิสิกส์เป็นที่เรียบร้อยแล้ว

मंडरत्नाच्य च्याच

- 1. จงสร้างตารางของกราฟ log-log scale ขนาด 4 cycles x 4 cycles โดยแต่ละ cycle มี ความยาว 4 เซนติเมตร (5 คะแนน)
- 2. ระบบสุญญากาศแสดงดังรูปที่ 1 จงหา total conductance ของระบบ (10 คะแนน)

Fig. 1 Typical vacuum system involving mechanical and vapor pumps.

- 3. ค่า net speed ของท่อที่ต่อกับภาชนะสุญญากาสมีค่า 258 cfm. และ conductance ของ ท่อเท่ากับ 500 cfm. ซึ่งกราฟแสดงความสัมพันธ์ระหว่าง S_n , S_m และ U แสดงคังรูปที่
 - (3.1) จงใช้ข้อมูลจากกราฟ เพื่อคำนวณหาค่า measured pumping speed (6 คะแนน)
 - (3.2) จงหาค่า S_m โดยใช้สมการที่แสดงความสัมพันธ์ระหว่าง $S_n, S_{
 m m}$ และ U (3 คะแนน)
 - (3.3) จงหาค่า % ความผิดพลาคของ $S_{
 m m}$ (1 คะแนน)

Fig. 2 Net speed versus conductance for various values of measured pumping speed.

4. ภาชนะสุญญากาศต่อเข้ากับปั๊มโรตารี Kinney KS-13 ท่อที่ต่อระหว่างภาชนะกับปั๊มมี เส้นผ่านศูนย์กลางภายใน 1.5 นิ้ว ยาว 3 ฟุต ความคันของแก๊ส ณ ตำแหน่งค้านเข้าของ ท่อ (pipe inlet) เป็น 0.07 mmHg

กำหนดให้
$$U_v = 0.04 \ U_m dP$$

1mmHg = 1000μ Hg

 $28.37 \ l/min = 1 \ cfm$

มีกราฟที่ต้องใช้ในการคำนวณ 3 รูป

จงคำนวณหาค่า loss of pumping speed (15 คะแนน)

Fig. 3(2) Pumping speed curves for some small pumps (manufacturers' data).

Fig. 3(b) Net speed versus conductance for various values of measured pumping speed.

Fig. 3 (C) Molecular conductance versus length for several diameters of pipe.

5. ปั้มสุญญากาศชนิคหนึ่ง มีโครงสร้างบางส่วนแสคงคังรูปที่ 4 จงบอกชื่อและหน้าที่ ของหมายเลขตั้งแต่ 1 – 10 (10 คะแนน)

Fig. 4

6. Performance curve ของ mercury diffusion pump แสคงคังรูปที่ 5 จงตอบคำถามหรือ
หาค่าต่อไปนี้

- (6.1) ค่า Q_{max} ของระบบมีค่าคงที่หรือไม่ จงอธิบายเหตุผลประกอบ (4 คะแนน)
- (6.2) curve 2 และ curve 3 เป็นกราฟที่แสคงค่าของอะไร และทำไม curve 2 จึงต้อง อยู่ทางซ้ายมือของ curve 3 (4 คะแนน)
- (6.3) จงหาขนาดของ Backing pump ที่เหมาะสม โดยใช้ service factor = 2 (5 คะแนน)
- (6.4) จงหาค่า Conductance โดยใช้ข้อมูลจากกราฟ (2 คะแนน)

Fig. 5 Performance curves for 6 in. metal mercury diffusion pump (Consolidated Vacuum Corp. Type MHG-300).

- 7. Bourdon gauge มีโครงสร้างอย่างง่าย พร้อมกับหน้าปั๊ดแสดงผลแสดงคังรูปที่ 6
 - (7.1) จงอธิบายหลักการทำงานของ Bourdon gauge (3 คะแนน)
 - (7.2) ตัวเลข 0 30 ใช้สำหรับบอกค่าของอะไร และถ้าเข็มชื้อยู่ที่ตัวเลข 25 นักศึกษา จะแปลผลจากค่าตัวเลขคังกล่าวได้อย่างไร (2 คะแนน)

Fig. 6 (a) Principle of simple Bourdon gauge. (b) Appearance of Bourdon gauge.

- 8. เกจวัดความคันสุญญากาศแสดงคังรูปที่ 7
 - (8.1) จงบอกว่าศักดา ใฟฟ้าที่ขั้วต่างๆ มีความสัมพันธ์กับศักดา ใฟฟ้าของขั้วคา โทด อย่างไร จงอธิบาย (3 คะแนน)
 - (8.2) จงอธิบายหลักการทำงานของเกจดังกล่าว (7 คะแนน)

Fig. 7 Physical arrangement of thermionic ionization gauge

9. ท่อกลวงรูปทรงกระบอก มีเส้นผ่านศูนย์กลางภายใน D ยาว L แก๊สไหลจากปลายท่อ ที่มีความคัน P_{1} ไปยังปลายท่ออีกค้านหนึ่ง ซึ่งมีความคัน P_{2} การไหลของแก๊สอยู่ ในช่วง Viscous flow จงพิสูจน์ว่า Conductance ของท่อ มีค่า

$$U = \frac{\pi D^4}{128\eta L} P_{av}$$

โดยที่
$$P_{av} = \frac{P_1 + P_2}{2}$$

(10 คะแนน)