1317 - Throwing Balls into the Baskets

You probably have played the game "Throwing Balls into the Basket". It is a simple game. You have to throw a ball into a basket from a certain distance. One day we (the AIUB ACMMER) were playing the game. But it was slightly different from the main game. In our game we were **N** people trying to throw balls into **M** identical Baskets. At each turn we all were selecting a basket and trying to throw a ball into it. After the game we saw exactly **S** balls were successful. Now you will be given the value of **N** and **M**. For each player probability of throwing a ball into any basket successfully is **P**. Assume that there are infinitely many balls and the probability of choosing a basket by any player is **1/M**. If multiple people choose a common basket and throw their ball, you can assume that their balls will not conflict, and the probability remains same for getting inside a basket. You have to find the expected number of balls entered into the baskets after **K** turns.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing three integers N ($1 \le N \le 16$), M ($1 \le M \le 100$) and K ($0 \le K \le 100$) and a real number P ($0 \le P \le 1$). P contains at most three places after the decimal point.

Output

For each case, print the case number and the expected number of balls. Errors less than 10⁻⁶ will be ignored.

Sample Input	Output for Sample Input
2	Case 1: 0.5
1 1 1 0.5	Case 2: 1.000000
1 1 2 0.5	