Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

What is claimed:

- (Withdrawn) A particle comprising:
 - a core comprising ion-exchange material; and
 - a coating comprising polyelectrolyte material,
 - wherein the core and coating are adapted to separate PCR reaction products.
- (Withdrawn) The particle of claim 1, wherein the core couples to at least one PCR reaction product chosen from primers, primer-dimer, ssDNA fragments, unincorporated nucleotides, and salts.
- (Withdrawn) The particle of claim 2, wherein the particle is adapted to substantially exclude dsDNA fragments having greater than 100 basepairs.
- 4. (Withdrawn) The particle of claim 1, wherein the coating comprises a biopolymer.
- 5. (Withdrawn) The particle of claim 4, wherein the biopolymer is non-sample DNA.
- 6. (Withdrawn) The particle of claim 1, wherein the coating comprises a synthetic polymer.
- 7. (Withdrawn) The particle of claim 6, wherein the synthetic polymer comprises a copolymer, wherein the copolymer comprises at least one monomer chosen from (meth)acrylamide, N-methyl (methyl)acrylamide, N,N-dimethyl (meth)acrylamide, N-ethyl (meth)acrylamide, N-n-propyl (meth)acrylamide, N-iso-propyl (meth)acrylamide, N-tyl-methyl (meth)acrylamide, N,N-diethyl (meth)acrylamide, N-hydroxymethyl (meth)acrylamide, N-(3-hydroxypropyl) (methy)acrylamide, N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide, vinyl acetate (precursor of vinyl alcohol), 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, N-vinypyrrolidone, poly(ethylene oxide) (methy)acrylate, N-(meth)acryloxysuccinimide,

N-(meth)acryloylmorpholine, N-2,2,2-trifluoroethyl (meth)acrylamide,

N-acetyl (meth)acrylamide, N-amido(meth)acrylamide, N-acetamido (meth)acrylamide, N-tris(hydroxymethyl)methyl (meth)acrylamide, styrenesulfonic acid, homopolymers of styrenesulfonic acid, co-polymers of styrenesulfonic acid, N-(methyl)acryloyltris(hydroxymethyl)methylamide, (methyl) acryloylurea, vinyloxazolidone, vinylmethyloxazolidone, acrylic acid, methacrylic acid, vinyl sulfonic acid, styrene sulfonic acid, 4-acetoxystyrene (precursor of 4-hydroxystyrene), and vinylphosphonic acid, and vinyl methyl ether.

- (Withdrawn) The particle of claim 7, wherein the synthetic polymer is poly(acrylic acidco-N.N-dimethylacrylamide) or poly(N.N-dimethyl acrylamide-co-styrene sulfonic acid).
- 9. (Withdrawn) The particle of claim 1, wherein the ion-exchange material is porous.
- (Withdrawn) The particle of claim 9, wherein the ion-exchange material is surfaceactivated
- (Withdrawn) The particle of claim 9, wherein the ion-exchange material has a pore size of 100 Angstroms to 2000 Angstroms.
- (Withdrawn) The particle of claim 11, wherein the polyelectrolyte material has a Mw of 1.0 megaDaltons to 3.0 megaDaltons.
- (Withdrawn) The particle of claim 12, wherein the ion-exchange material has the pore size of 1000 Angstroms and the Mw of 1.7 megaDaltons to 2.4 megaDaltons.
- 14. (Withdrawn) The particle of claim 6, wherein the synthetic polymer comprises a copolymer, wherein the copolymer comprises at least one monomer chosen from allyl amide hydrochloride, (3-acrylamidopropyl)trismethylammonium chloride, N-(3-aminopropyl)methacrylamide hydrochloride, and N-vinyl amides hydrolyzed to give an amino group.
- (Withdrawn) The particle of claim 14, wherein the synthetic polymer is poly(N-(3aminopropyl)methacrylamide-co-N,N-dimethylacrylamide).
- (Withdrawn) The particle of claim 1, wherein the polyelectrolyte material comprises polyanions and polycations.

- (Withdrawn) The particle of claim 16, wherein the polyanions and polycations form alternating layers.
- (Withdrawn) A mixture comprising particles of claim 1, wherein the mixture includes a cationic ion-exchange material, and an anionic ion-exchange material.
- (Withdrawn) A purification device comprising a receptacle, and the mixture of claim 18 disposed in the receptacle.
- (Withdrawn) A microfluidic device comprising a plurality of columns, and the mixture of claim 18 disposed in each column.
- (Currently Amended) A method for purifying PCR reaction products, the method comprising:

providing a plurality of particles, wherein each particle comprises an ion-exchange core coated by exposing the core to a polyelectrolyte polymer <u>copolymer material</u>, wherein the polyelectrolyte copolymer material comprises at least one type of charged monomer and at least one type of neutral co-monomer;

providing a mixture of cationic ion-exchange particles and anionic ion-exchange particles, wherein the plurality of particles are either the cationic ion-exchange particles or the anionic ion-exchange particles: and

contacting the PCR reaction products with the mixture of particles to separate dsDNA fragments and purifying the PCR reaction products.

- (Original) The method of claim 21, wherein the contacting comprises moving the PCR reaction products through the plurality of particles using centripetal force.
- 23. (Original) The method of claim 21, wherein the plurality of particles comprise a first volume, the PCR reaction products comprise a second volume, and the first volume is greater than or equal to the second volume.
- (Original) The method of claim 21, further comprising positioning a mixture comprising the plurality of particles in a column.
- 25. (Withdrawn) A particle comprising:

a core comprising ion-exchange material; and

a coating comprising polyelectrolyte material,

wherein the core and coating are adapted to separate DNA sequencing reaction products.

- (Withdrawn) The particle of claim 25, wherein the core couples to at least one DNA sequencing reaction product chosen from primers, dye-labeled primers, nucleotides, dye-labeled nucleotides, dideoxynucleotides, dye-labeled dideoxynucleotides, and salts.
- (Withdrawn) The particle of claim 26, wherein the particle is adapted to substantially exclude dye-labeled ssDNA fragments having greater than 45 nucleotides.
- 28. (Withdrawn) The particle of claim 25, wherein the coating comprises a biopolymer.
- 29. (Withdrawn) The particle of claim 28, wherein the biopolymer is non-sample DNA.
- 30. (Withdrawn) The particle of claim 25, wherein the coating comprises a synthetic polymer.
- 31. (Withdrawn) The particle of claim 30, wherein the synthetic polymer comprises a copolymer, wherein the copolymer comprises at least one monomer chosen from (meth)acrylamide, N-methyl (methyl)acrylamide, N,N-dimethyl (methyl)acrylamide, N-ethyl (meth)acrylamide, N-n-propyl (meth)acrylamide, N-iso-propyl (meth)acrylamide, N-ethyl-N-methyl (meth)acrylamide, N,N-diethyl (meth)acrylamide, N-hydroxymethyl (meth)acrylamide, N-(3-hydroxypropyl) (methy)acrylamide, N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide, vinyl acetate (precursor of vinyl alcohol), 2-hydroxypethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, N-vinypyrrolidone, poly(ethylene oxide) (methy)acrylate, N-(meth)acryloxysuccinimide,

N-(meth)acryloylmorpholine, N-2,2,2-trifluoroethyl (meth)acrylamide,

N-acetyl (meth)acrylamide, N-amido(meth)acrylamide, N-acetamido (meth)acrylamide, N-tris(hydroxymethyl)methyl (meth)acrylamide, styrenesulfonic acid, homopolymers of styrenesulfonic acid, co-polymers of styrenesulfonic acid, N-(methyl)acryloyltris(hydroxymethyl)methylamide, (methyl) acryloylurea, vinyloxazolidone, vinylmethyloxazolidone, acrylic acid, methacrylic acid, vinyl sulfonic

- acid, styrene sulfonic acid, 4-acetoxystyrene (precursor of 4-hydroxystyrene), and vinylphosphonic acid, and vinyl methyl ether.
- (Withdrawn) The particle of claim 31, wherein the synthetic polymer is poly(acrylic acidco-N,N-dimethylacrylamide) or poly(N,N-dimethyl acrylamide-co-styrene sulfonic acid).
- 33. (Withdrawn) The particle of claim 30, wherein the synthetic polymer comprises a copolymer, wherein the copolymer comprises at least one monomer chosen from allyl amide hydrochloride, (3-acrylamidopropyl)trismethylammonium chloride, N-(3-aminopropyl)methacrylamide hydrochloride, and N-vinyl amides hydrolyzed to give an amino group.
- (Withdrawn) The particle of claim 33, wherein the synthetic polymer is poly(N-(3aminopropyl)methacrylamide-co-N,N-dimethylacrylamide).
- 35. (Withdrawn) The particle of claim 25, wherein the ion-exchange material is porous.
- (Withdrawn) The particle of claim 35, wherein the ion-exchange material is surfaceactivated.
- (Withdrawn) The particle of claim 35, wherein the ion-exchange material has a pore size of 5 Angstrom to 1000 Angstroms.
- (Withdrawn) The particle of claim 37, wherein the polyelectrolyte material has a Mw of 1000 Daltons to 6.0 megaDaltons.
- (Withdrawn) The particle of claim 38, wherein the ion-exchange material has the pore size of 10 Angstroms to 50 Angstroms and the Mw of 2.4 megaDaltons to 4.9 megaDaltons.
- (Withdrawn) The particle of claim 25, wherein the polyelectrolyte material comprises polyanions and polycations.
- (Withdrawn) The particle of claim 40, wherein the polyanions and polycations form alternating layers.
- (Withdrawn) A mixture comprising particles of claim 25, wherein the mixture includes a cationic ion-exchange material, and an anionic ion-exchange material.

- (Withdrawn) A purification device comprising a receptacle, and the mixture of claim 42 disposed in the receptacle.
- (Withdrawn) A microfluidic device comprising a plurality of columns, and the mixture of claim 42 disposed in each column.
- 45. (Currently Amended) A method for purifying DNA sequencing reaction products, the method comprising:

providing a plurality of particles, wherein each particle comprises an ion-exchange core coated by exposing the core to a polyelectrolyte polymer <u>copolymer material</u>, <u>wherein</u> the <u>polyelectrolyte copolymer material comprises at least one type of charged monomer</u> and at least one type of neutral co-monomer:

providing a mixture of cationic ion-exchange particles and anionic ion-exchange particles, wherein the plurality of particles are either the cationic ion-exchange particles or the anionic ion-exchange particles; and

contacting the DNA sequencing reaction products with the mixture of particles to separate dye-labeled ssDNA fragments and purifying the DNA sequencing reaction products.

- (Original) The method of claim 45, wherein the contacting comprises moving the DNA sequencing reaction products through the plurality of particles using centripetal force.
- 47. (Previously Presented) The method of claim 45, wherein the plurality of particles comprise a first volume, the DNA sequencing reaction products comprise a second volume, and the first volume is less than or equal to the second volume.
- 48. (Original) The method of claim 45, further comprising removing residual dve artifacts.
- (Original) The method of claim 45, further comprising maintaining dye-labeled ssDNA fragment length.
- (Withdrawn) A method for forming a particle, the method comprising:
 selecting core material and polyelectrolyte material adapted to separating at least one of PCR reaction products and DNA sequencing reaction products;

providing the core comprising ion-exchange material; and coating the core with polyelectrolyte material.

- (Withdrawn) The method of claim 50, further comprising activating the surface of the core.
- (Withdrawn) The method of claim 50, further comprising rinsing excess polyelectrolyte material
- 53. (Withdrawn) A composition comprising:

polyelectrolyte material wherein the polyelectrolyte material is adapted to coating ionexchange material and to providing separation of at least one of PCR reaction products or DNA sequencing reaction products.

- (Withdrawn) The composition of claim 53, wherein the polyelectrolyte material comprises a synthetic polymer.
- 55. (Withdrawn) The composition of claim 53, wherein the synthetic polymer comprises a copolymer, wherein the copolymer comprises at least one monomer chosen from (meth)acrylamide, N-methyl (methyl)acrylamide, N,N-dimethyl (methyl)acrylamide, N-ethyl (meth)acrylamide, N-n-propyl (meth)acrylamide, N-iso-propyl (meth)acrylamide, N-ethyl-n-methyl (meth)acrylamide, N,N-diethyl (meth)acrylamide, N-hydroxymethyl (meth)acrylamide, N-(3-hydroxypropyl) (methylacrylamide, N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide, vinyl acetate (precursor of vinyl alcohol), 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, N-vinypyrrolidone, poly(ethylene oxide) (methylacrylate, N-(meth)acryloxysuccinimide,

N-(meth)acryloylmorpholine, N-2,2,2-trifluoroethyl (meth)acrylamide,

N-acetyl (meth)acrylamide, N-amido(meth)acrylamide, N-acetamido (meth)acrylamide, N-tris(hydroxymethyl)methyl (meth)acrylamide, styrenesulfonic acid, homopolymers of styrenesulfonic acid, co-polymers of styrenesulfonic acid, N-(methyl)acryloyltris(hydroxymethyl)methylamide, (methyl) acryloylurea, vinyloxazolidone, vinylmethyloxazolidone, acrylic acid, methacrylic acid, vinyl sulfonic

- acid, styrene sulfonic acid, 4-acetoxystyrene (precursor of 4-hydroxystyrene), and vinylphosphonic acid, and vinyl methyl ether.
- (Withdrawn) The composition of claim 55, wherein the synthetic polymer is poly(acrylic acid-co-N,N-dimethylacrylamide) or poly(N,N-dimethyl acrylamide-co-styrene sulfonic acid).
- 57. (Withdrawn) The composition of claim 53, wherein the synthetic polymer comprises a copolymer, wherein the copolymer comprises at least one monomer chosen from allyl amide hydrochloride, (3-acrylamidopropyl)trismethylammonium chloride, N-(3-aminopropyl)methacrylamide hydrochloride, and N-vinyl amides hydrolyzed to give an amino group.
- (Withdrawn) The composition of claim 57, wherein the synthetic polymer is poly(N-(3aminopropyl)methacrylamide-co-N,N-dimethylacrylamide).
- 59. (Withdrawn) A system for biological separation, the system comprising:
 - polyelectrolyte material wherein the polyelectrolyte material is adapted to coating ionexchange material and to providing sieving for separation of at least one of PCR reaction products or DNA sequencing reaction products.
- 60. (Withdrawn) The system of claim 59, wherein the system further provides desalting.
- 61. (Withdrawn) The system of claim 59, wherein the system does not provide desalting.
- (Withdrawn) The system of claim 59, wherein the system the ion-exchange material comprises cationic ion-exchange material and anionic ion-exchange material.
- 63. (Withdrawn) The system of claim 62, wherein the system is in the form of a mixed bed.
- 64. (Withdrawn) The system of claim 63, wherein the cationic ion-exchange material and the anionic ion-exchange material are present in stoichiometrically equivalent amounts.
- 65. (Withdrawn) A particle for biological separation, the particle comprising:

polyelectrolyte material wherein the polyelectrolyte material is adapted to coating ionexchange material and to providing sieving for separation of at least one of PCR reaction products or DNA sequencing reaction products,

wherein the polyelectrolyte material comprises at least one polyanion chosen from poly(styrenephosphoric acid), poly(phosphoric acid), homo-polymers of maleic acid, co-polymers of maleic acid, homo-polymers of fumaric acid, co-polymers of fumaric acid, peptide polyanions, poly(aspartic acid), poly(glactronic acid), poly(glutamic acid), nucleic polyanions, poly(adenylic acid), poly(inosinic acid), poly(uridylic acid), and polysaccharides.

- 66. (Previously Presented) The method of claim 21, further comprising coupling the core with at least one PCR reaction product chosen from primers, primer-dimer, ssDNA fragments, unincorporated nucleotides, and salts.
- (Previously Presented) The method of claim 21, wherein the particle is adapted to substantially exclude dsDNA fragments having greater than 100 basepairs.
- (Previously Presented) The method of claim 21, wherein the core comprises of porous ion-exchange material.
- (Previously Presented) The method of claim 68, wherein the ion-exchange material is surface-activated.
- (Previously Presented) The method of claim 68, wherein the ion-exchange material has
 a pore size of 100 Angstroms to 2000 Angstroms.
- (Currently Amended) The method of claim 69, wherein the polyelectrolyte <u>copolymer</u> material has a Mw of 1.0 megaDaltons to 3.0 megaDaltons.
- (Currently Amended) The method of claim 71, wherein the ion-exchange material has
 the pore size of 1000 Angstroms and the polyelectrolyte <u>copolymer</u> material has Mw of
 1.7 megaDaltons to 2.4 megaDaltons.
- (Currently Amended) The method of claim 21, wherein the polyelectrolyte <u>copolymer</u> <u>material</u> comprises polyanions and polycations.

- (Previously Presented) The method of claim 73, wherein the polyanions and polycations form alternating layers.
- 75. (Cancelled)
- 76. (Previously Presented) The method of claim 45, further comprising coupling the core with at least one DNA sequencing reaction product chosen from primers, dye-labeled primers, nucleotides, dye-labeled nucleotides, dideoxynucleotides, dye-labeled dideoxynucleotides, and salts.
- (Previously Presented) The method of claim 76, wherein the particle is adapted to substantially exclude dye-labeled ssDNA fragments having greater than 45 nucleotides.
- (Previously Presented) The method of claim 45, wherein the core comprises of porous ion-exchange material.
- (Previously Presented) The method of claim 78, wherein the ion-exchange material is surface-activated.
- (Previously Presented) The method of claim 78, wherein the ion-exchange material has a pore size of 5 Angstrom to 1000 Angstroms.
- (Currently Amended) The method of claim 80, wherein the polyelectrolyte <u>copolymer</u> material has a Mw of 1000 Daltons to 6.0 megaDaltons.
- (Currently Amended) The method of claim 81, wherein the ion-exchange material has the pore size of 10 Angstroms to 50 Angstroms and the polyelectrolyte <u>copolymer</u> material has Mw of 2.4 megaDaltons to 4.9 megaDaltons.
- (Currently Amended) The method of claim 45, wherein the polyelectrolyte <u>copolymer</u> material comprises polyanions and polycations.
- (Previously Presented) The method of claim 83, wherein the polyanions and polycations form alternating layers.
- 85. (Cancelled)

- 86. (New) The method of Claim 21, wherein the polyelectrolyte copolymer material has a composition in molar percent for the at least one type of charged monomer of between about 0.1 percent to about 20 percent.
- 87. (New) The method of Claim 45, wherein the polyelectrolyte copolymer material has a composition in molar percent for the at least one type of charged monomer of between about 0.1 percent to about 20 percent.