Polynomial and FFT

Outline

- Polynomials
 - Algorithms to add, multiply and evaluate polynomials
 - Coefficient and point-value representation
- Fourier Transform
 - Discrete Fourier Transform (DFT) and inverse DFT to translate between polynomial representations
 - "A Short Digression on Complex Roots of Unity"
 - Fast Fourier Transform (FFT) is a divide-and-conquer algorithm based on properties of complex roots of unity

Polynomials

• A polynomial in the variable x is a representation of a function

$$A(x) = a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
 as a formal sum $A(x) = \sum_{j=0}^{n-1} a_j x^j$.

- We call the values a0,a1,...,an-1 the **coefficients** of the polynomial
- Ax is said to have **degree** k if its highest nonzero coefficient is a_k .
- Any integer strictly greater than the degree of a polynomial is a degree-bound of that polynomial

Examples

- $A(x) = x^3 2x 1$
 - A(x) has degree 3
 - A(x) has degree-bounds 4,5,6,... or all values \geq degree
 - A(x) has coefficients (-1, -2, 0, 1)
- $B(x) = x^3 + x^2 + 1$
 - B(x) has degree 3
 - B(x) has degree bounds 4,5,6,... or all values \geq degree
 - B(x) has coefficients (1,0,1,1)

Coefficient Representation

- A coefficient representation of a polynomial $A(x) = \sum_{j=0}^{n-1} a_j x^j$ of degree-bound n is a vector of coefficients $a = (a_0, a_1, ..., a_{n-1})$.
- More examples

•
$$A(x)=6x^3+7x^2-10x+9$$
 (9,-10,7,6)
• $B(x)=-2x^3+4x-5$ (-5,4,0,-2)

- The operation of **evaluating** the polynomial A(x) at point x_0 consists of computing the value of $A(x_0)$.
- Evaluation takes time $\Theta(n)$ using Horner's rule
 - $A(x_0)=a_0+x_0(a_1+x_0(a_2+\cdots+x_0(a_{n-2}+x_0(a_{n-1}))\cdots))$

Adding Polynomials

- Adding two polynomials represented by the coefficient vectors $a=(a_0,a_1,...,a_{n-1})$ and $b=(b_0,b_1,...,b_{n-1})$ takes time $\Theta(n)$.
- Sum is the coefficient vector $c=(c_0,c_1,...,c_{n-1})$, where $c_j=a_j+b_j$ for j=0,1,...,n-1.
- Example

$$A(x) = 6x^{3} + 7x^{2} - 10x + 9 \qquad (9, -10, 7, 6)$$

$$B(x) = -2x^{3} + 4x - 5 \qquad (-5, 4, 0, -2)$$

$$C(x) = 4x^{3} + 7x^{2} - 6x + 4 \qquad (4, -6, 7, 4)$$

Multiplying Polynomials

- For **polynomial multiplication**, if A(x) and B(x) are polynomials of degree-bound n, we say their **product** C(x) is a polynomial of degree-bound 2n-1.
- Example

$$6x^{3} + 7x^{2} - 10x + 9$$

$$-2x^{3} + 4x - 5$$

$$-30x^{3} - 35x^{2} + 50x - 45$$

$$24x^{4} + 28x^{3} - 40x^{2} + 36x$$

$$-12x^{6} - 14x^{5} + 20x^{4} - 18x^{3}$$

$$-12x^{6} - 14x^{5} + 44x^{4} - 20x^{3} - 75x^{2} + 86x - 45$$

Multiplying Polynomials

- Multiplication of two degree-bound n polynomials A(x) and B(x) takes time Θn_2 , since each coefficient in vector a must be multiplied by each coefficient in vector b.
- Another way to express the product C(x) is $\sum_{j=0}^{2n-1} c_j x^j$, where $c_j = \sum_{k=0}^{j} a_k b_{j-k}$
- The resulting coefficient vector $c = (c_0,c_1,...c_{2n-1})$ is also called the **convolution** of the input vectors a and b, denoted as $c=a \otimes b$.

Point-Value Representation

• A **point-value representation** of a polynomial A(x) of degree-bound n is a set of n **point-value pairs** $\{(x_0,y_0),(x_1,y_1),...,(x_{n-1},y_{n-1})\}$ such that all of the x_k are distinct and $y_k=A(x_k)$ for k=0,1,...,n-1.

- Example $A(x) = x^3 2x + 1$
 - $-x_k 0,1,2,3$ {(0,1),(1,0),(2,5),(3,22)} • $-A(x_k) 1,0,5,22$
- Using Horner's method, n-point evaluation takes time $\Theta(n_2)$.

Point-Value Representation

- The inverse of evaluation is called interpolation
 - determines coefficient form of polynomial from point-value representation
 - For any set $\{(x_0,y_0),(x_1,y_1),...,(x_{n-1},y_{n-1})\}$ of n point-value pairs such that all the x_k values are distinct, there is a **unique** polynomial A(x) of degree-bound n such that

$$yk = A(x_k)$$
 for $k = 0,1,...,n-1$.

Lagrange's formula

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j=k} (x - x_j)}{\prod_{j=k} (x_k - x_j)}$$

• Using Lagrange's formula, interpolation takes time $\Theta(n2)$.

Example

• Using Lagrange's formula, we interpolate the point-value representation $\{(0,1),(1,0),(2,5),(3,22)\}$.

•
$$1\frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)} = \frac{x^3 - 6x^2 + 11x - 6}{-6} = \frac{-x^3 + 6x^2 - 11x + 6}{-6}$$

•
$$0 \frac{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)} = 0$$

•
$$5\frac{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)} = 5\frac{x^3-4x^2+3x}{-2} = \frac{-15x^3+60x^2-45x}{6}$$

•
$$22\frac{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)} = 22\frac{x^3-3x^2+2x}{6} = \frac{22x^3-66x^2+44x}{6}$$

•
$$\frac{1}{6}$$
 (6x³+0x²-12x+6)

•
$$x^3 - 2x + 1$$

Adding Polynomials

- In point-value form, addition C(x)=A(x)+B(x) is given by $C(x_k)=A(x_k)+B(x_k)$ for any point x_k .
 - $A:\{(x_0,y_0),(x_1,y_1),...,(x_{n-1},y_{n-1})\}$
 - B:{ $(x_0,y'_0),(x_1,y'_1),...,(x_{n-1},y'_{n-1})$ }
 - C: $\{(x_0, y_0+y'_0), (x_1, y_{1+}y'_1), ..., (x_{n-1}, y'_{n-1}+y'_{n-1})\}$
- A and B are evaluated for the **same** n points.
- The time to add two polynomials of degree-bound n in point-value form is $\Theta(n)$.

Example

- We add C(x)=A(x)+B(x) in point-value form
 - $A(x) = x^3 2x + 1$
 - $B(x) = x^3 + x^2 + 1$
 - $x_k = (0,1,2,3)$
 - $A: \{(0,1),(1,0),(2,5),(3,22)\}$
 - $B: \{(0,1),(1,3),(2,13),(3,37)\}$
 - $C: \{(0,2),(1,3),(2,18),(3,59)\}$

Multiplying Polynomials

- In point-value form, multiplication C(x) = A(x)B(x) is given by $C(x_k) = A(x_k)B(x_k)$ for any point x_k .
- **Problem:** if A and B are of degree-bound n, then C is of degree-bound 2n.
- Need to start with "extended" point-value forms for A and B consisting of 2n point-value pairs each.
 - $A:\{(x_0,y_0),(x_1,y_1),...,(x_{2n-1},y_{2n-1})\}$
 - B:{ $(x_0,y'_0),(x_1,y'_1),...,(x_{2n-1},y'_{2n-1})$ }
 - C: $\{(x_0, y_0, y'_0), (x_1, y_1, y'_1), ..., (x_{n-1}, y'_{n-1}, y'_{n-1})\}$
- The time to multiply two polynomials of degree-bound n in point-value form is $\Theta(n)$.

Example

- We multiply Cx = AxB(x) in point-value form
 - $A(x) = x^3 2x + 1$
 - $B(x) = x^3 + x^2 + 1$
 - $x_k = (-3, -2, -1, 0, 1, 2, 3)$ We need 7 coefficients!
 - $A: \{(-3,-17),(-2,-3),(-1,1),(0,1),(1,0),(2,5),(3,22)\}$
 - $B: \{(-3,-20),(-2,-3),(-1,2),(0,1),(1,3),(2,13),(3,37)\}$
 - $C: \{(-3,340),(-2,9),(-1,2),(0,1),(1,0),(2,65),(3,814)\}$

Road So far

- Can we do better?
 - Using Fast Fourier Transform (FFT) and its inverse, we can do evaluation and interpolation in time $\Theta(n \log n)$.
- The product of two polynomials of degree-bound n can be computed in time Θ(n log n), with both the input and output in coefficient form.

Fourier Transform

- Fourier Transforms originate from signal processing
 - Transform signal from time domain to frequency domain

- Input signal is a function mapping time to amplitude
- Output is a weighted sum of phase-shifted sinusoids of varying frequencies

Fast Multiplication of Polynomials

- Using complex roots of unity
 - Evaluation by taking the Discrete Fourier Transform (DFT) of a coefficient vector
 - Interpolation by taking the "inverse DFT" of point-value pairs, yielding a coefficient vector
 - Fast Fourier Transform (FFT) can perform DFT and inverse DFT in time Θ(n log n)
- Algorithm
 - 1. Add n higher-order zero coefficients to A(x) and B(x)
 - 2. Evaluate A(x) and B(x) using FFT for 2n points
 - Pointwise multiplication of point-value forms
 - 4. Interpolate C(x) using FFT to compute inverse DFT

Complex Roots of Unity

- A complex nth root of unity (1) is a complex number ω such that ωⁿ = 1.
- There are exactly n complex n^{th} root of unity $e^{2\pi i k/n} \text{ for } k=0,1,\ldots,n-1$ where $e^{iu}=\cos(u)+i\sin(u)$. Here u represents an angle in **radians**.
- Using $e^{2\pi i k/n} = \cos(2\pi k/n) + i\sin(2\pi k/n)$, we can check that it is a root $\left(e^{2\pi i k/n}\right)^n = e^{2\pi i k} = \underbrace{\cos(2\pi k)}_{i} + i\underbrace{\sin(2\pi k)}_{0} = 1$

Examples

The complex 4th roots of unity are

$$1, -1, i, -i$$

where $\sqrt{-1} = i$.

 The complex 8th roots of unity are all of the above, plus four more

$$\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}, \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}, -\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}, \text{ and } -\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$$

For example

$$\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^2 = \frac{1}{2} + \frac{2i}{2} + \frac{i^2}{2} = i$$

Principal nth Root of unity

· The value

$$\omega_n = e^{2\pi i/n}$$

is called the principal n^{th} root of unity.

- All of the other complex n^{th} roots of unity are powers of ω_n .
- The n complex n^{th} roots of unity, $\omega_n^0, \omega_n^1, \ldots, \omega_n^{n-1}$, form a group under multiplication that has the same structure as $(\mathbb{Z}_n, +)$ modulo n.
- $\omega_n^n = \omega_n^0 = 1$ implies
 - $\omega_n^j \omega_n^k = \omega_n^{j+k} = \omega_n^{(j+k) \bmod n}$
 - $\omega_n^{-1} = \omega_n^{n-1}$

Visualizing 8 complex 8th Roots of Unity

Cancellation Lemma

- For any integers $n\geq 0$, $k\geq 0$, and b>0, $\omega_{dn}^{dk}=\omega_{n}^{k}.$
- Proof

$$\omega_{dn}^{dk} = \left(e^{2\pi i/dn}\right)^{dk} = \left(e^{2\pi i/n}\right)^k = \omega_n^k$$

- For any even integer n>0, $\omega_n^{n/2}=\omega_2=-1$.
- Example $\omega_{24}^6 = \omega_4$

$$-\omega_{24}^6 = \left(e^{2\pi i/24}\right)^6 = e^{2\pi i \frac{6}{24}} = e^{2\pi i/4} = \omega_4$$

Halving Lemma

- If n > 0 is even, then the squares of the n complex nth roots of unity are the ⁿ/₂ complex ⁿ/₂th roots of unity.
- Proof
 - By the cancellation lemma, we have $(\omega_n^k)^2 = \omega_{n/2}^k$ for any nonnegative integer k.
- If we square all of the complex $n^{\rm th}$ roots of unity, then each $^n/_2{}^{\rm th}$ root of unity is obtained exactly twice

$$-\left(\omega_n^{k+n/2}\right)^2 = \omega_n^{2k+n} = \omega_n^{2k} \omega_n^n = \omega_n^{2k} = \left(\omega_n^k\right)^2$$

– Thus, ω_n^k and $\omega_n^{k+n/2}$ have the same square

Summation Lemma

- For any integer $n \geq 1$ and nonzero integer k not divisible by n, $\sum_{j=0}^{n-1} (\omega_n^k)^j = 0$.
- Proof
 - Geometric series $\sum_{j=0}^{n-1} x^j = \frac{x^{n-1}}{x-1}$

$$-\sum_{j=0}^{n-1} (\omega_n^k)^j = \frac{(\omega_n^k)^{n-1}}{\omega_{n-1}^k} = \frac{(\omega_n^n)^{k-1}}{\omega_{n-1}^k} = \frac{(1)^{k-1}}{\omega_{n-1}^k} = 0$$

— Requiring that k not be divisible by n ensures that the denominator is not 0, since $\omega_n^k=1$ only when k is divisible by n

Discrete Fourier Transform

- Evaluate a polynomial A(x) of degree-bound n at the n complex n^{th} roots of unity, $\omega_n^0, \omega_n^1, \omega_n^2, \dots, \omega_n^{n-1}$.
 - assume that n is a power of 2
 - assume A is given in coefficient form $a = (a_0, a_1, ..., a_{n-1})$
- We define the results y_k , for k = 0, 1, ..., n 1, by

$$y_k = A(\omega_n^k) = \sum_{j=0}^{n-1} a_j \omega_n^{kj}$$
.

• The vector $y = (y_0, y_1, ..., y_{n-1})$ is the **Discrete** Fourier Transform (DFT) of the coefficient vector $a = (a_0, a_1, ..., a_{n-1})$, denoted as $y = DFT_n(a)$.

Fast Fourier Transform

- Fast Fourier Transform (FFT) takes advantage of the special properties of the complex roots of unity to compute DFT_n(a) in time Θ(n log n).
- Divide-and-conquer strategy
 - define two new polynomials of degree-bound n/2, using even-index and odd-index coefficients of A(x) separately

$$-A^{[0]}(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-2} x^{n/2-1}$$

$$-A^{[1]}(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-1} x^{n/2-1}$$

$$-A(x) = A^{[0]}(x^2) + xA^{[1]}(x^2)$$

Continued

- The problem of evaluating A(x) at $\omega_n^0, \omega_n^1, ..., \omega_n^{n-1}$ reduces to
 - 1. evaluating the degree-bound $^{n}/_{2}$ polynomials $A^{[0]}(x)$ and $A^{[1]}(x)$ at the points $(\omega_{n}^{0})^{2}$, $(\omega_{n}^{1})^{2}$, ..., $(\omega_{n}^{n-1})^{2}$
 - 2. combining the results by $A(x) = A^{[0]}(x^2) + xA^{[1]}(x^2)$
- · Why bother?
 - The list $(\omega_n^0)^2$, $(\omega_n^1)^2$, ..., $(\omega_n^{n-1})^2$ does not contain n distinct values, but n/2 complex n/2th roots of unity
 - Polynomials $A^{[0]}$ and $A^{[1]}$ are recursively evaluated at the n/2 complex n/2th roots of unity
 - Subproblems have exactly the same form as the original problem, but are half the size

Example

• $A(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ of degree-bound 4 • $A(\omega_4^0) = A(1) = a_0 + a_1 + a_2 + a_3$ • $A(\omega_4^1) = A(i) = a_0 + a_1i - a_2 - a_3i$ • $A(\omega_4^2) = A(-1) = a_0 - a_1 + a_2 - a_3$ • $A(\omega_4^3) = A(-i) = a_0 - a_1i + a_2 + a_3i$ • Using $A(x) = A^{[0]}(x^2) + xA^{[1]}(x^2)$ • $A(x) = a_0 + a_2x^2 + x(a_1 + a_3x^2)$ • $A(\omega_4^0) = A(1) = a_0 + a_2 + 1(a_1 + a_3)$ • $A(\omega_4^0) = A(i) = a_0 - a_2 + i(a_1 - a_3)$

 $-A(\omega_4^2) = A(-1) = a_0 + a_2 - 1(a_1 + a_2)$

 $-A(\omega_A^3) = A(-i) = a_0 - a_2 - i(a_1 - a_3)$

Recursive FFT

```
Recursive-FFT(\alpha)
  1 n \leftarrow length[a]
                                                                          n is a power of 2
  2 if n = 1
            then return a
                                                                           basis of recursion
  4 \omega_n \leftarrow e^{2\pi i/n}
                                                                           \omega_n is principal n^{\text{th}} root of unity
  5 \omega \leftarrow 1
  6 \ a^{[0]} \leftarrow (a_0, a_2, ..., a_{n-2})
  7 a^{[1]} \leftarrow (a_1, a_3, ..., a_{n-1})
  8 y^{[0]} \leftarrow \text{RECURSIVE-FFT}(a^{[0]})
                                                                          y_k^{[0]} = A^{[0]}(\omega_{n/2}^k) = A^{[0]}(\omega_n^{2k})
  9 y^{[1]} \leftarrow \text{RECURSIVE-FFT}(a^{[1]})
                                                                         y_k^{[1]} = A^{[1]}(\omega_{n/2}^k) = A^{[1]}(\omega_n^{2k})
10 for k \leftarrow 0 to \frac{n}{2} - 1
11 do y_k \leftarrow y_k^{[0]} + \omega y_k^{[1]}
                                                                          since -\omega_n^k = \omega_n^{k+(n/2)}
                   y_{k+(n/2)} \leftarrow y_k^{[0]} - \omega y_k^{[1]}
                                                                          compute \omega_n^k iteratively
13
                   \omega \leftarrow \omega \omega_n
14 return y
```

Why does it work?

```
• For y_0, y_1, \dots y_{n/2-1} (line 11) y_k = y_k^{[0]} + \omega_n^k y_k^{[1]}= A^{[0]}(\omega_n^{2k}) + \omega_n^k A^{[1]}(\omega_n^{2k})= A(\omega_n^k)
• For y_{n/2}, y_{n/2+1}, \dots, y_{n-1} (line 12) y_{k+n/2} = y_k^{[0]} - \omega_n^k y_k^{[1]}= y_k^{[0]} + \omega_n^{k+(n/2)} y_k^{[1]} \qquad \text{since } -\omega_n^k = \omega_n^{k+(n/2)}= A^{[0]}(\omega_n^{2k}) + \omega_n^{k+(n/2)} A^{[1]}(\omega_n^{2k})= A^{[0]}(\omega_n^{2k+n}) + \omega_n^{k+(n/2)} A^{[1]}(\omega_n^{2k+n})= A(\omega_n^{k+(n/2)})
```

Input Vector Tree of RECURSIVEFFT(a)

Interpolation

- Interpolation by computing the inverse DFT, denoted by a = DFT_n⁻¹(y).
- By modifying the FFT algorithm, we can compute DFT_n^{-1} in time $\Theta(n \log n)$.
 - switch the roles of α and y
 - replace ω_n by ω_n^{-1}
 - divide each element of the result by n