

Page

MacST: Multi-Accent Speech Synthesis via Text Transliteration for Accent Conversion

Authors: Sho Inoue, Shuai Wang, Wanxing Wang, Pengcheng Zhu, Mengxiao Bi, Haizhou Li

Presenter: Sho Inoue

Email: shoinoue@link.cuhk.edu.cn

Introduction

- Foreign Accent Conversion: Convert the accent of the source speech
 - While keeping the linguistic content and the speaker identity.
- Problem: Lack of parallel dataset with only accent changes.
- **Solution**: To generate the target samples to build synthetic parallel dataset.
 - However, it can lead some problems.
 - Entanglement issue of speaker and accent
 - Limited availability of accented speeches.

 \rightarrow We propose a pipeline to address these issues using **text transliteration**.

Proposed System

- MacST: Multi-accent speech synthesis via text transliteration to construct parallel accent dataset
 - **Translation**: Converting the language while keeping the similar meaning.
 - **Transliteration**: Converting the language while keeping the phonetic similarity.
- Procedure:
 - Describe English sentences using the characters of the target language (transliteration).
 - E.g. I love you → <u>आई लव यू (aaee lav yoo)</u> or <u>アイラブユー (ai rabu yū)</u>
 - Use **Multilingual TTS** to generate the accented speech from transliterated texts.

Hypothesis and Motivation

Hypothesis:

- Lexical features of accents are based on availability of phonemes in the native languages [1-2].
- Large Language Models (LLMs) is capable of transliterating texts of target languages.

Motivation:

- We do not need accented speech samples.
- We can avoid entanglement of speaker and accent.
- MacST applies to any English texts and any speaker.
- Consistent linguistic representation in accented speech across different speakers.

- [1] Alison Behrman: Segmental and prosodic approaches to accent management
- [2] James Flege: Second language speech learning: Theory, findings and problems

Methodology

- Two Procedures:
 - Text Transliteration via Large Language Models (LLMs)
 - Speech Generation via Multilingual Text-to-Speech (TTS) Models
- Three inputs: <u>English Text</u>, <u>Target Accent</u>, and <u>Speaker Information</u>
- Speaker Information depends on TTS models.
 - In this paper, speech samples from the chosen speaker.
- This system can be applied to various LLMs and Multilingual TTS models.

Dataset Analysis (Experiment Setup)

- Target Accents: American, Hindi, and Korean
- We synthesize accented speech samples using native and non-native speakers.
 - Native Speaker: Accent Addition
 - Non-native Speaker: Accent Enhancement
- **Evaluation Metrics**: MUSHRA tests for Speech Naturalness (Humanness) and Accentedness
- Comparing Datasets: L2-ARCTIC and CMU-ARCTIC
 - ARCTIC datasets contain speech samples from different speakers with the same transcripts.
 - Each speaker only speaks in a single accent.

Dataset Analysis (Results)

- American Speakers: SLT
- Hindi Speakers: ASI, TNI
- Korean Speakers: HKK, YDCK
- MacST: Proposed system
- The language in MacST indicates
 the transliteration language.
- Accent Addition Capability is good.
 - \circ E.g. <u>SLT/American</u> \rightarrow <u>SLT/Hindi</u>

	Naturalness (†)	Accentedness (†)	
Ground-Truth (SLT/American)	76.48± 3.82	9.56± 1.32	
MacST (SLT/American)	70.95 ± 4.07	$10.78 \pm \scriptscriptstyle{ 1.41}$	
Ground-Truth (ASI/Hindi)	85.17± 1.87	67.67± 2.60	
Ground-Truth (TNI/Hindi)	81.29 ± 2.76	70.74 ± 2.40	
MacST (SLT/Hindi)	69.51 ± 3.99	51.61 ± 3.02	
MacST (ASI/Hindi)	82.12 ± 2.36	73.61 ± 2.51	
MacST (TNI/Hindi)	79.64 ± 2.82	77.35 ± 2.66	
Ground-Truth (SLT/American)	66.84± 3.45	6.90± 1.07	
MacST (SLT/American)	$70.37 \pm \scriptstyle{3.52}$	$8.56\pm$ 1.40	
Ground-Truth (HKK/Korean)	75.28± 2.55	39.08± 2.46	
Ground-Truth (YDCK/Korean)	78.84 ± 1.87	32.90 ± 2.10	
MacST (SLT/Korean)	58.47 ± 4.85	77.63 ± 2.33	
MacST (HKK/Korean)	63.22 ± 4.06	83.40 ± 1.67	
MacST (YDCK/Korean)	63.87 ± 4.36	83.44 ± 1.67	

- Accent Enhancement Capability is also good.
 - Ground-Truth \rightarrow MacST for ASI/Hindi, TNI/Hindi, HKK/Korean, and YDCK/Korean

Accent Conversion (Experiment Setup)

- Accent Conversion: American → Hindi
- We synthesize accented speech samples using American speaker (SLT).
- Evaluation Metrics:
 - MUSHRA tests for Speech Naturalness (Humanness) and Accentedness
 - Objective Evaluations:
 - Speech Intelligibility: Word Error Rate (WER)
 - Speaker Similarity: Speaker Encoding Cosine Similarity (SECS)
 - Accentedness: Accent classification prob (Hindi)
- Two accent conversion models with different training datasets:
 - The parallel dataset with the ground-truth source and the synthetic target (1 hour pairs)
 - Additional pairs of the synthetic source and the target (<u>additional</u> 4 hours): **Data Augmentation**

Accent Conversion (AC) (Results)

	Speech Quality		Accentedness			Speaker Similarity
	MUSHRA (†)	WER (↓)	MUSHRA (†)	Classification Prob. (†)	AECS Diff. (†)	SECS (†)
Ground-Truth (American)	76.48± 3.82	1.97	9.56± 1.32	0.000	-	-
MacST (American)	70.95 ± 4.07	1.75	10.78 ± 1.41	0.000	-	0.866
MacST (Hindi)	69.51 ± 3.99	8.52	51.61 ± 3.02	0.819	-	0.822
AC w/o Data Augmentation AC w/ Data Augmentation (ours)	51.48± 3.73 67.18± 3.43	13.99 8.74	34.85± 2.29 47.26± 2.65	0.801 0.897	0.411 0.465	0.834 0.833

- Consistent speaker characteristics between the source and the converted audio.
- Accent conversion significantly increased accentedness: Ground-Truth (American) → AC results
- Data Augmentation enhanced the conversion results in speech quality and accentedness.

Conclusion

- We introduce the multi-accent speech synthesis via text transliteration method (MacST)
 - Transliteration via LLMs
 - Speech Generation via Multilingual TTS Models
- Dataset analysis validates MacST's ability to amplify accents in native and non-native English speakers.
- Experiment results validate the efficacy of our method in training accent conversion models.

Thank you very much for your time Q & A

Presenter: Sho Inoue

Email: shoinoue@link.cuhk.edu.cn

Accent Conversion (Model Configuration)

- Accent Conversion (AC): Voice Transformer Networks (VTN)
 - A sequence-to-sequence encoder-decoder model.
 - Mel-spectrogram as input and output.
 - We pretrain AC with TTS-like tasks using LibriTTS-R.
- Pre-training Strategy: Two-stage pretraining.
 - 1st stage: Input is <u>Hubert discrete tokens (without repetition)</u> and Output is <u>Mel-spectrogram</u>
 - 2nd stage: Input and Output are Mel-spectrograms
 - Initialize encoder and <u>Freeze decoder</u>
- Vocoder: HiFiGAN trained on LibriTTS-R and ARCTIC datasets.

Text Transliteration with LLMs

How to build a prompt for LLMs

- Word-level transliteration with phoneme-sequence.
- Put three candidate words and Sort them in similarity order.
- We include few transliterated samples to avoid *translation*.

Post Process

- We got six responses in total, three for GPT 3.5 Turbo and three for GPT-4o.
- Among six responses, we obtain the most frequent transliterated texts for each word.
- We re-put commas and periods.

Speech Generation with Multilingual TTS

- Multilingual TTS Models: the Eleven Multilingual v2 model from <u>11Elevenlabs</u>.
 - It covers 29 languages.
 - Speaker Condition: speech samples (voice clone)
 - Language Condition: the characters of the input text

Evaluation Metrics (Accentedness)

- We used three metrics to evaluate "Accentedness" of synthesized speeches.
 - MUSHRA test for Accentedness (strength of the accent)
 - Classification probability for Hindi accent using a pre-trained accent classification model.
 - Accent Encoding Cosine Similarity (AECS) Difference.
- **AECS Difference**: To quantify accent similarity of converted speech from native and non-native speech.
 - Obtain accent embeddings of converted sample and MacST samples of American and Hindi speech.
 - Calculate AECS between
 - Converted speech and American speech: AECS_american
 - Converted speech and Hindi speech: AECS_hindi
 - compute "AECS_hindi AECS_american"

Thank you very much for your time Q & A

Presenter: Sho Inoue

Email: shoinoue@link.cuhk.edu.cn