

Dipartimento di Elettronica e Informazione

POLITECNICO DI MILANO

Automazione industriale dispense del corso 12. Metodi top-down, bottom-up e ibridi

Luigi Piroddi piroddi@elet.polimi.it

Introduzione

Esistono varie tecniche sistematiche di modellizzazione che consentono di ottenere un modello completo a partire da sotto-modelli più semplici:

- ▶ metodi *top-down*
- ▶ metodi *bottom-up*
- metodi ibridi

Alcune di queste tecniche assicurano determinate proprietà strutturali del modello al termine del progetto.

Questi metodi di modellizzazione prendono anche il nome di *metodi diretti* di progetto (di un controllore logico), in quanto sono spesso impiegati per modellizzare il comportamento desiderato del sistema, a partire dal quale si ricava in modo semplice il controllore.

Metodi top-down

I metodi top-down sono basati su affinamenti successivi di un modello a reti di Petri:

- Si parte da una rete molto semplice (*rete di primo livello*) che descrive in modo aggregato il funzionamento dell'intero sistema.
 - ▼ la rete di primo livello è molto astratta, ma anche molto semplice, e quindi facile da analizzare
- 2 Si affina (si espande) la rete di primo livello, agendo su posti o transizioni, e aumentando il dettaglio descrittivo contenuto nel modello.
 - ▼ le regole di affinamento conservano le proprietà fondamentali della rete (limitatezza, vivezza e reversibilità)
 - ▼ l'idea è simile a quella delle regole di riduzione, ma applicata in senso opposto

Metodo di Valette

Si consideri una rete, detta *rete di primo livello* (N_1), in cui esistano transizioni 1-abilitate (cioè tali che il numero di gettoni in ingresso a tali transizioni basti solo per uno scatto, in una data marcatura).

Tali transizioni possono essere sostituite con opportune reti di Petri con ben determinate caratteristiche, dette *blocchi ben formati*.

L'affinamento della transizione avviene eliminandola e collegando gli archi in ingresso [uscita] alla transizione iniziale [finale] del blocco ben formato.

E' possibile operare anche l'affinamento dei posti.

- esso avviene sostituendo prima il posto con una sequenza posto-transizioneposto e poi affinando la transizione intermedia
- ▶ il posto a monte [valle] della transizione intermedia viene collegato con gli archi in ingresso [uscita] al posto da affinare
- ▶ i gettoni originariamente presenti nel posto da affinare vengono trasferiti nel posto a monte della transizione intermedia

Proprietà del metodo di Valette

La rete risultante dopo l'affinamento di una transizione (o un posto) nella rete di primo livello prende il nome di *rete di secondo livello* (N_2).

Essa conserva le proprietà fondamentali se queste erano possedute dalla rete di partenza (N_1):

- ► N_1 limitata $\Rightarrow N_2$ limitata $(N_1 \text{ binaria} \Rightarrow N_2 \text{ binaria})$
- $ightharpoonup N_1 \text{ viva} \Rightarrow N_2 \text{ viva}$
- $ightharpoonup N_1$ reversibile $\Rightarrow N_2$ reversibile

Pertanto, anche operando più affinamenti successivi si mantengono tali proprietà, se queste erano possedute da N_1 .

Caratteristiche di un blocco ben formato

Un blocco ben formato è una rete con le seguenti caratteristiche:

- esistono una sola transizione di ingresso (*transizione iniziale*, t_{iniz}) e una sola transizione di uscita (*transizione finale*, t_{fin})
 - lacktriangledown solo lo scatto di t_{iniz} immette gettoni nel blocco e solo lo scatto di t_{fin} ne toglie
 - lacktriangledown il pre-set di t_{iniz} ed il post-set di t_{fin}
 - ▼ si sostituisce il blocco ad una transizione t imponendo $\bullet t_{iniz} = \bullet t$ e $t_{fin} \bullet = t \bullet$
 - ▼ l'evoluzione del blocco "inizia" quando scatta t_{iniz} e "finisce" quando scatta t_{fin}
 - ▼ il blocco è interpretabile come un (macro) evento che rappresenta la descrizione dettagliata dell'azione simboleggiata dalla transizione affinata
- la rete (*blocco aggiunto*) che si ottiene aggiungendo al blocco un posto (p_a) marcato con un gettone e con solo t_{iniz} [t_{fin}] nel suo post-set [pre-set] è viva
 - ▼ l'evoluzione del blocco può avvenire un numero arbitrario di volte
 - ▼ ciò è coerente col fatto che, se al livello di astrazione superiore una transizione non può più scattare, non è per colpa di quel che avviene "al suo interno"

- la marcatura iniziale della rete aggiunta è l'unica marcatura raggiungibile in cui p_a è marcato (con un gettone)
 - \vee t_{iniz} non può essere abilitata nuovamente, prima che l'evoluzione del blocco ben formato non sia esaurita, facendo scattare t_{fin} e marcando nuovamente p_a
 - ▼ ciò è coerente col fatto che ogni scatto della transizione affinata determina una sola occorrenza del (macro) evento da essa rappresentato
 - ▼ ogni volta che il blocco inizia ad evolvere, lo fa a partire dalla stessa condizione (il (macro) evento è sempre uguale a sé stesso)
- l'unica transizione del blocco aggiunto abilitata nella sua marcatura iniziale è t_{iniz}
 - ▼ quando il blocco non evolve, al suo interno non succede nulla
 - ▼ è evidente che se questo non fosse vero il blocco non potrebbe essere rappresentato al livello di astrazione superiore da una sola transizione.
- NB. Il metodo di Valette può essere esteso a transizioni *k*-abilitate se le condizioni 2 e 3 valgono anche marcando il posto aggiuntivo con *k* gettoni.

Esempio di blocco ben formato

Un blocco ben formato è per esempio quello raffigurato in figura.

Infatti:

- \blacktriangleright il blocco ha una sola transizione di ingresso (t_{iniz}) e una sola transizione di uscita (t_{fin})
- la il blocco aggiunto è una rete viva
- la marcatura iniziale del blocco aggiunto è l'unica in cui il posto p_a è marcato
- l'unica transizione del blocco aggiunto abilitata nella sua marcatura iniziale è t_{iniz}

Altri esempi di blocchi ben formati

Esempi di reti di primo livello

Rete che modellizza un Rete con sincronizzazione tra vari cicli di lavorazione

ciclo di operazioni

Rete che modellizza due sequenze cicliche con una risorsa condivisa

Rete con struttura a scelta-sincronizzazione, dove due sequenze di lavoro devono essere svolte in alternanza

Esempio di progetto top-down

Si consideri il sistema manifatturiero automatizzato rappresentato in figura, dove:

- $ightharpoonup S_1$ e S_2 sono magazzini di pezzi grezzi
- $ightharpoonup M_1$ e M_2 sono machine
- $ightharpoonup R_1$, R_2 e R_3 sono robot manipolatori di trasporto
- ► A è una cella di assemblaggio
- $ightharpoonup S_3$ è il magazzino dei prodotti finiti

La sequenza del processo produttivo è la seguente:

- **1** $R_1[R_2]$:
 - a) preleva un pezzo da S_1 [S_2]
 - b) lo carica su M_1 [M_2]
- $\mathbf{2} \ M_1 [M_2]$ effettua la lavorazione
- 3 al termine di entrambe le lavorazioni, R_3 :
 - a) preleva il semilavorato da M_1
 - b) lo porta nella cella A
 - c) preleva il semilavorato da M_2
 - d) lo porta nella cella A_1
- \bullet il manipolatore R_3 effettua l'assemblaggio
- \bullet al termine dell'assemblaggio, R_3 :
 - a) svuota la cella A
 - b) pone il prodotto finito in S_3

Specifichiamo le attività come transizioni, mentre i posti rappresentano solo condizioni. Specifichiamo le seguenti 4 attività principali:

- t_1) macchina M_1 in lavorazione
- t_2) macchina M_2 in lavorazione
- t_3) scarico di M_1 e M_2 e carico di A
- t_4) cella A in lavorazione

Le condizioni sono:

- p_1) macchina M_1 disponibile
- p_2) macchina M_2 disponibile
- p_3) semilavorato 1 pronto
- p_4) semilavorato 2 pronto
- p_5) cella A disponibile
- p_6) semilavorati 1 e 2 nella cella A
- p_7) robot R_3 disponibile

La rete di primo livello che rappresenta nel modo più astratto la procedura di lavorazione è la seguente:

Si notano quattro strutture cicliche, a 2 posti ("libero", "occupato"), che modellizzano gli stati delle due macchine, della cella A e del robot R_3 , e una transizione di sincronizzazione.

E' facile verificare che la rete di primo livello è viva, limitata (binaria) e reversibile.

Per dettagliare le attività del sistema le transizioni della rete di primo livello possono essere affinate.

Ad esempio, la lavorazione di una macchina può essere dettagliata in due operazioni:

- ► il carico della macchina e
- la vera e propria lavorazione

Significato nuovi posti:

- p_{11}) R_1 carica M_1
- p_{12}) M_1 in lavorazione
- p_{13}) R_1 disponibile
- p_{21}) R_2 carica M_2
- p_{22}) M_2 in lavorazione
- p_{23}) R_2 disponibile

L'operazione di scarico delle macchine e carico della cella può essere rappresentata nel modo seguente:

Infine, l'operazione di assemblaggio può essere dettagliata nell'effettiva lavorazione e il successivo scarico della cella.

Significato nuovo posto:

 p_{31}) scarico di M_1 e M_2 e carico di A

Significato nuovi posti:

 p_{41}) R_1 opera l'assemblaggio in A

 p_{42}) R_1 scarica A

Nel modello finale le attività sono diventate 9 e sono modellizzate da posti.

Considerazioni conclusive sul metodo top-down

Vantaggi:

- garanzia che la rete di Petri finale soddisfi importanti proprietà strutturali
- ▶ semplicità → facile implementazione in ambienti CAD dedicati

Svantaggi:

- non è semplice garantire la coerenza interpretativa del modello (dipende dal livello di espansione delle varie parti)
 - ▼ ad esempio, la rete appena descritta è per lo più conforme al modello FMS di rappresentazione delle operazioni, ma alcuni posti non sono né posti operazione, né posti risorsa, ma solo posti di collegamento (v. posti p₃ e p₄)
- ▶ impossibilità di inserire blocchi non indipendenti
 - ▼ se, per esempio, nel caso precedentemente analizzato ci fosse stato un robot solo per le operazioni di carico macchina (risorsa condivisa), il metodo non si sarebbe potuto applicare

- ▼ questo è un limite notevole, perché la presenza di risorse condivise è assai comune nei sistemi manifatturieri e non è ovvio il livello al quale modellizzarle
- ▼ allora, o si modellizzano subito le risorse condivise nella rete di primo livello, oppure occorre che tutte le risorse condivise siano confinate all'interno di blocchi
- ▼ in ogni caso, il metodo top-down è molto rigido e si adatta bene a sistemi essenzialmente sequenziali, ma non altrettanto a sistemi concorrenti con elevati accoppiamenti dovuti a condivisione delle risorse

Metodi bottom-up

Nei metodi bottom-up si sviluppano dei sotto-modelli (*moduli*) indipendenti, che poi vengono connessi, condividendo (per *fusione*) alcuni elementi della rete.

Si possono fondere posti, transizioni, percorsi (*path*) particolari (sequenze, alternative, fork-join, ecc.)

In generale i metodi bottom-up forniscono risultati poco potenti:

- ▶ non garantiscono il mantenimento delle proprietà fondamentali nel corso del progetto
- ▶ i metodi che garantiscono qualche proprietà ci riescono a prezzo di semplificazioni estreme del modello

Tuttavia,

- ▶ sono intrinsecamente adatti al riutilizzo dei modelli
- ▶ se si parte da moduli "ben formati" (p.es. coperti da P- e da T-invarianti, vivi e reversibili), è facile individuare le cause del mancato rispetto di qualche proprietà fondamentale

Operazioni di fusione:

Esempio di progetto bottom-up

Si consideri il sistema manifatturiero automatizzato rappresentato in figura, dove:

- $ightharpoonup S_1$ e S_2 sono magazzini di pezzi grezzi
- $ightharpoonup M_1$ e M_2 sono machine
- $ightharpoonup R_1$, R_2 e R_3 sono robot manipolatori di trasporto
- $ightharpoonup S_3$ e S_4 sono i magazzini dei prodotti finiti

La procedura di lavorazione è la seguente:

- **1** $R_1 [R_2]$:
 - a) preleva un pezzo da S_1 [S_2]
 - b) lo carica su M_1 [M_2]
- $\mathbf{2} \ M_1 [M_2]$ effettua la lavorazione
- \odot al termine di entrambe le lavorazioni, R_3 :
 - a) preleva il prodotto da M_1 [M_2]
 - b) lo pone in S_3 [S_4]

Per ognuno dei dispositivi dell'impianto è possibile individuare un ciclo di lavorazione, come nelle figure seguenti, dove il significato dei posti è il seguente:

- ▶ $p_1[p_5]$ macchina $M_1[M_2]$ disponibile
- $ightharpoonup p_2[p_6]$ spostamento di un pezzo da $S_1[S_2]$ a $M_1[M_2]$
- ▶ $p_3[p_7] M_1[M_2]$ lavora
- $ightharpoonup p_4 [p_8]$ spostamento di un pezzo da $M_1 [M_2]$ a $S_3 [S_4]$
- $ightharpoonup p_9[p_{10}]$ robot $R_1[R_2]$ disponibile
- $ightharpoonup p_{11}$ robot R_3 disponibile

 p_2 p_9 p_{10} p_6 p_6

cicli di trasporto di R_1 e R_2

cicli di trasporto di R₃

ciclo di lavorazione di M_2

Le operazioni di fusione si riferiscono tutte a sequenze di 3 elementi (transizione-posto-transizione):

- ► t_1 - p_2 - t_2 \rightarrow il carico del pezzo richiede R_1 e M_1
- ► t_5 - p_6 - t_6 \rightarrow il carico del pezzo richiede R_2 e M_2
- ► t_3 - p_4 - t_4 → lo scarico del pezzo richiede R_3 e M_1
- ► t_7 - p_8 - t_8 → lo scarico del pezzo richiede R_3 e M_1

La rete risultante è rappresentata in figura.

Essa contiene una sola risorsa condivisa, è viva, limitata (binaria) e reversibile.

In generale non c'è garanzia che la rete finale sia viva (anche se lo sono i singoli moduli).

▶ ad esempio, se ci fossero 2 risorse condivise $(R_{12} ext{ e } R_3)$ e i due flussi produttivi fossero in senso opposto (uno utilizza prima R_{12} e poi R_3 , l'altro prima R_3 e poi R_{12}), il sistema potrebbe finire in deadlock

Metodi di progetto ibridi

Si utilizzano in modo combinato tecniche top-down e bottom-up per avere i vantaggi di entrambi, combinando la flessibilità di utilizzo con la possibilità di analisi.

Ad esempio la rete di primo livello usata in precedenza può essere ricavata aggregando 4 semplici moduli che rappresentano M_1 , M_2 , R_3 e A.

Reti gerarchiche

Nella modellizzazione di sistemi complessi è importante poter scomporre il modello in sotto-modelli, sfruttando una qualche struttura gerarchica.

Un metodo (ibrido) di questo genere è basato sul metodo di affinamento di posti di Valette, ma aggrega reti.

Non si *sostituiscono* elementi della rete, ma si *sincronizza* la rete contenente il posto da affinare (*posto radice*) con la sottorete che lo affina.

In tal modo il posto radice e la sottorete coesistono, coordinati opportunamente.

Si consideri la rete di primo livello N riportata in figura, dove p_1 rappresenta un posto di attesa e p_2 (il posto radice) l'esecuzione di un programma A.

Il programma A è rappresentato da una rete di secondo livello S, caratterizzata dall'avere un unico posto di partenza p_{iniz} ($\bullet p_{iniz} = \emptyset$) e un unico posto di finale p_{fin} ($p_{fin} \bullet = \emptyset$). Una rete di questo tipo è detta P-blocco.

Si vuole connettere opportunamente N ad S in modo che A venga eseguito quando viene posto un gettone in p_2 e che quest'ultimo non possa essere rimosso finché A non sia terminato.

Questa connessione, detta *P-connessione* è ottenuta nel modo seguente

- inserisce un autoanello tra p_2 e ogni transizione in uscita da p_{iniz}
- ► si inserisce un arco da p_{fin} ad ogni transizione in uscita da p_2
- si inserisce un arco da ogni transizione in uscita da p₂ a p_{iniz}

Si chiama P-blocco aggiunto la rete ottenuta aggiungendo al P-blocco una transizione che sia in uscita da p_{fin} e in ingresso a p_{iniz} , e marcata inizialmente con un gettone in p_{iniz} .

Il P-blocco si dice ben definito se e solo se il corrispondente P-blocco aggiunto è vivo e binario.

Allora la rete *F* ottenuta operando una P-connessione tra la rete *N* e il P-blocco ben definito *S* ha le seguenti proprietà:

- $ightharpoonup F viva \Leftrightarrow N viva$
- ► F binaria $\Leftrightarrow N$ binaria
- ightharpoonup F reversibile $\Leftrightarrow N$ reversibile

Evoluzione della rete *F*:

- la sottorete S non può essere eseguita finché p_2 non è marcato
- ightharpoonup se p_2 è marcato, t_2 non è abilitata e può evolvere solo la sottorete S
- quando, durante l'evoluzione della sottorete S, si marca p_{fin} (ciò avviene sicuramente poiché il P-blocco S è ben definito), t_2 risulta abilitata, mentre S non può evolvere ulteriormente
- quando scatta t_2 , la rete N può continuare ad evolvere liberamente e il P-blocco è nuovamente marcato con un gettone in p_{iniz}

In altre parole, quando scatta t_1 , il gettone si congela nel posto p_2 per consentire l'esecuzione della sottorete.

Alla fine dell'esecuzione di quest'ultima, l'evoluzione della rete *N* riprende.

L'evoluzione della rete *N* non è influenzata dalla P-connessione, ma solo ritardata.