## **Student Information**

Full Name : Nazır Bilal Yavuz

Id Number: 2099471

### Answer 1

#### a.

It is countably infinite.

Lets think that there are only n rational numbers in the interval which is like

$$c < r_1 < r_2 < r_3 < \dots < r_n < d$$

But there must be a rational in the interval  $c < r_1$ , hence this is a contradiction and we can count them so this is a countably infinite.

### b.

By the definition of non regular languages,  $L^+$  can not be finite and countable, so D is uncountable infinite set.

#### c.

If the set is can not be recognized by Finite Automaton it must be non regular set so that it must be uncountable infinite set.

a.



b.



 $\mathbf{c}.$ 





### a.

We can only reach  $q_5$  with an a. They are  $q_4 \rightarrow q_5$  and  $q_3 \rightarrow q_5$ . So that abbb is not reachable.

### b.

For w = ababa we can trace  $q_0 \rightarrow q_1 \rightarrow q_3 \rightarrow q_3 \rightarrow q_5 \rightarrow q_1 \rightarrow q_3 \rightarrow q_3 \rightarrow q_5$ .



## b.

Eliminate  $q_0$ 



### Eliminate $q_3$



## Eliminate $q_1$



Eliminate  $q_2$ 



a.

| Table 1: Transition Table |              |          |
|---------------------------|--------------|----------|
|                           | a            | b        |
| $\{q0, q1, q2\}$          | $\{q1,q3\}$  | $\{q2\}$ |
| $\{q1, q3\}$              | Ø            | {q1}     |
| $\{q2\}$                  | $\{q1, q3\}$ | Ø        |
| {q1}                      | Ø            | Ø        |



### b.

We can figure out that:

$$L(N) = a|ba$$
 so that,

$$\overline{L}(N) = \{a, b\}^* - a|ba$$

### Answer 6

 $L_1$  and  $L_2$  is regular expression and we know that  $L_1$  -  $L_2$  is also regular but we must prove that by constructing NFA.

- 1- Change the expression:  $L_1$   $L_2 = L_1 \cap \overline{L_2}$
- 2- We can use method which we used in Question 4 part A.
- 3- When we using method  $\overline{L_2}$  we must change the arrows' directions.
- 4- After that we must use intersection operation on NFA. 5- Now the expression is  $= L_1 \cap \overline{L_2}$  which is equal to  $L_1$   $L_2$ .
- 6- We can use this algorithm.

### Answer 7

#### a.

Lets assume w = aaaaaaaaa

And x = aaaa, y = aa and z = aaa.

Lets take  $xy^2z$  which is equal to aaaaaaaaaa

Hence, number of a's are 11 so this is not a regular.