Question Number	Scheme	Marks
1.	$T_1 \uparrow \uparrow T_2$ $T_1 = \frac{175 \times 0.2}{1}$ $\frac{175 \times 0.2}{1} + \frac{\lambda \times 0.3}{0.9} = 49$	B1 M1 A 1
	$5g 1 0.9$ $\Rightarrow \lambda = 42$	M1 A1 (5) (5 marks)
2. (a)	3, 4, 5 Δ $R(\uparrow) T \sin \theta = mg$	B1 M1
	$T = \frac{5mg}{4}$ $T = \frac{mv^2}{4}$	A1 (3)
(b)	R \leftarrow $T + T \cos \theta = \frac{mv^2}{3l}$ $\frac{8}{5} \times \frac{5mg}{4} = \frac{mv^2}{3l}$	M1 A2
	$v = \sqrt{6gl}$	A1 (5)
(c)	Could not assume tensions same	B1 (1) (9 marks)
3. (a)	Cylinder half-sphere toy	
	$\pi r^2 h \rho \qquad \qquad \frac{2}{3} \pi r^3 6 \rho \qquad \qquad \pi r^2 h \rho + \frac{2}{3} \pi r^3 6 \rho$	M1 A1
	$\frac{h}{2} + r \qquad \qquad \frac{5r}{8} \qquad \qquad d$	B1 B1
	$\pi r^2 h \rho (\frac{h}{2} + r) + 4\pi r^3 \rho \frac{5r}{8} = (\pi r^2 h \rho + 4\pi r^3 \rho) d$	M1 A1
	$\Rightarrow d = \frac{h^2 + 2rh + 5r^2}{2(h+4r)} \tag{*}$	A1 (7)
(b)	$d=r, \implies h^2+2rh+5r^2=2r(h+4r)$	M1, M1
	$h=\sqrt{3}r$	A1 (3)
		(10 marks)

Question Number		Scheme	Marks	
4.	(a)	$\frac{2\pi}{\omega} = \pi \Rightarrow = 2$	B1	
		$2.4^2 = 4 (a^2 - 0.5^2)$	M1 A1ft	
		a = 1.3 m	A1	(4)
	(<i>b</i>)	$v_{\rm max} = a\omega = 2.6 \text{ m s}^{-1}$	B1	(1)
	(c)	$arct_{max} = a\omega^2 = 5.2 \text{ m s}^{-2}$	B1ft	(1)
	(<i>d</i>)	$0.5 = 1.3 \sin 2t$	M1	
		$t = \frac{1}{2} \sin^{-1} \left(\frac{0.5}{1.3} \right)$	M1 A1	
		Total time = $4t = 0.79 (2 dp)$	M1 A1	(5)
			(11 marks)	
5.	(a)	$800 \ \frac{dv}{dt} = \frac{48000}{(t+2)^2}$	M1	
		$v = 60 \int \frac{\mathrm{d}t}{(t+2)^2} = \frac{-60}{(t+2)} (+c)$	M1 A1	
		$t = 0, v = 0 \Rightarrow c = 30$	M1 A1	
		$v = 30 - \frac{60}{(t+2)} \Rightarrow v \to 30 \text{ as } t \to \infty$	A1	(6)
	(<i>b</i>)	$s = \int v dt = 30t - 60 \ln(t+2) \ (+c)$	M1 A1	
		substitute in $t = 0$ and $t = 6$	M1	
		$s = 180 - 60 \ln 8,60 \ln 2$	A1, A1	
		≈ 96.8 m	A1	(6)
			(12 mai	rks)

_	estion mber	Scheme		Marks	
6.	(a)	$\frac{1}{2} \times \frac{58.8}{4} x^2 = 0.5 \times 9.8 \ (x+4)$	M1	A1 A1	
		$3x^2 - 2x - 8 = 0$	M1	A1	
		(3x+4)(x-2)=0, x=2			
		Distance fallen = 6 m	M1	A1	(7)
	(b)	$\frac{1}{2} \times 0.5v^2 = \frac{1}{2} \times \frac{58.8}{4} \times 3^2 - 0.5 \times 9.8 \times 3$	M1	A1 A1	
		$v = 14.3 \text{ m s}^{-1}$	M1	A 1	(5)
			(12 marks)		rks)
7.	(a)	$\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mga (1 + \cos 60^\circ)$	M1	A1	
		$v^2 = u^2 - 3ga$	A1		(3)
	(b)	$R + mg\cos 60^\circ = \frac{mv^2}{a}$	M1	A1	
		$R = \frac{m}{a} \left(6ga - 3ga \right) - \frac{mg}{2}$			
		$=\frac{5mg}{2}$	A1		(3)
	(c)	$R = 0$ at $B \Rightarrow \frac{mg}{2} = \frac{mv^2}{a} \Rightarrow v^2 = \frac{1}{2}ag$	M1		
		$\Rightarrow u^2 = \frac{7ga}{2} \Rightarrow u = \sqrt{\frac{7ga}{2}}$	M1	A1	(3)
	(<i>d</i>)	$(\rightarrow) B \text{ to } C: v \cos 60^{\circ} \times t = a\sqrt{3}$	M1	A1	
		$t = \frac{2a\sqrt{3}}{v}$			
		$C = \frac{1}{a^{\frac{\sqrt{3}}{2}}} + a^{\frac{\sqrt{3}}{2}} B$ (1) $B \text{ to } C: 0 = v \sin 60t - \frac{1}{2}gt^2$	M1	A1	
		$\Rightarrow t = \frac{2v\sin 60^{\circ}}{g} = \frac{v\sqrt{3}}{g}$			
		$\therefore \frac{2a\sqrt{3}}{v} = \frac{v\sqrt{3}}{g} \Rightarrow v^2 = 2ga$	M1	A1	
		$\Rightarrow u^2 = 5ga$			
		$\Rightarrow u = \sqrt{5ga}$	A1		(7)
				(16 ma	rks)