Predict a Click!

trivago Case Study

Data Science Workflow

- Frame the problem
- Exploratory Data Analysis
 - Missing data
 - ID characterization and uniqueness
 - In-depth feature analysis
 - Regression Analysis
 - Data representativeness
- Production Pipeline
 - Data preparation & feature engineering
 - Preprocessing
 - Training, Validation & Test

Frame the Problem

trivago – tech company providing lodging meta search services Regression task – predict n clicks of given hotel entry

Evaluation metric – WMSE

$$wmse := \frac{1}{n} \frac{\sum_{i=0}^{n} w_i \cdot (predictedClicks_i - observedClicks_i)^2}{\sum_{i=0}^{n} w_i}$$

~400K entries

$$w_i := log(observedClicks_i + 1) + 1$$

- Features hotel_id, city_id, content_score, n_images, stars, distance_to_center, avg_rating, n_reviews, avg_rank, avg_price, avg_saving_percent, n_clicks
- Conda 4.5.11 with Python 3.6.5 on Win10 x64
 - NumPy, Pandas, Matplotlib, Seaborn, Scikit-Learn, XGBoost

Exploratory Data Analysis (I)

- All entries have distinct hotel_id
- # missing values negligible excepting for avg_rating
 - n_reviews=0 → avg_rating=NaN (Cold Start problem)
 - Naïve mean imputation / Regression imputation
- city_id ~30k categories
 - One-hot encoding + shrinkage / clusterization
- ~1% of data has n_images=-1
- Insights from quantile/KDE/box plots
 - Extremely skewed distributions → feature = logp1(feature)
 - n_clicks, n_images, distance_to_center, n_reviews
 - All features have reasonable distributions

Exploratory Data Analysis (II)

Exploratory Data Analysis (III)

Exploratory Data Analysis (IV)

EDA – stars: the unknown feature

- Domain: integer in [0, 5]
- What does it describe?
 - Violin plots → hotel stars rating
 - content_score, avg_price, avg_rating grow with stars
 - avg_rank decreases with stars
- What is a 0-star hotel?
 - Violin plots & trivago website → hostels & aparthotels
 - Consistently lower content_score, n_reviews
 - Most of 0-star entries have 0 n_images and avg_saving_percent
- Solutions: categorical / numerical+regression imputation

EDA – Bivariate KDE

Bivariate Kernel Density Estimation

EDA – Bivariate KDE (n_clicks>0)

Bivariate Kernel Density Estimation - n_clicks > 0

EDA – log-Discretized Pairplots

Experimental Framework

- Training & Validation / Test 90/10 randomized split
- Experimental reproducibility (random_state=0)
- Preprocessing
 - Production-ready: type cast, NaN dropping/handling, domain checks
 - Min Max Scaler / Max Abs Scaler
 - One-Hot Encoding / Truncated SVD
- Training
 - 5-fold randomized Cross-Validation
 - Grid search / Randomized search
 - XGBoost with WMSE-based Early Stopping
 - Statistical significance assessment: Wilcoxon Test

ElasticNet, PolyRegression, SVR

WMSE ~= 2.24

Random Baseline WMSE = 2.24

Random Forest

WMSE = 2.20

Random Baseline WMSE = 2.24

Random Forest + Weighted Oversampling

WMSE = 2.12

Random Baseline WMSE = 2.24

XGBoost + Weighted Oversampling

WMSE = 1.66

Without WO, WMSE = 1.74

XGBoost + Weighted Oversampling, no log

WMSE = 1.22

Without WO, WMSE = 1.26

XGBoost + WO, no log, stratified splitting

WMSE = 0.91

