0.1 September 19th

Proof. $S \subset \mathbb{Z} \Rightarrow S = m\mathbb{Z}$

Since $S \neq \emptyset$, $\exists a \in S$

Since S is closed under $+, -, 0 \in S$. We may assume that $S \neq \{0\}$. (if $S = \{0\}$, then $S = 0 \cdot \mathbb{Z}$)

Take any $n \in S$. Then $0 - n = -n \in S$. Thus we may also assume that S has a positive integer.

In all, $WLOG^1$, we may assume that S has a positive integer.

By WOP, S has a least positive integer m. We want to show that $S = m\mathbb{Z}$.

 $A = B \Rightarrow A \subset B$ and $B \subset A$ $A \subset B \Rightarrow \text{if } x \in A$

A then $x \in B$

1. $m\mathbb{Z} \subset S$

 $m \in S$ and S is closed under +, -. So S must have all multiples of m.

2. $S \subset m\mathbb{Z}$

Take any $a \in S$. By division algorithm, $\exists q, r \in \mathbb{Z}$ such that a = qm + r where $0 \le r < m$. Since $mq \in S$ and $a \in S$,

$$r = a - mq \in S$$

. Thus r = 0 by the minimality of m. Hence $a = mq \in m\mathbb{Z}$.

Remains to show the uniqueness of m. Suppose $m\mathbb{Z} = S = m'\mathbb{Z}$. Then $m = \pm m'$. Since m, m' > 0, m = m'.

Theorem 1. Let d=(a,b). Then d=ax+by for some $x,y\in\mathbb{Z}$ and $\{ax+by\mid x,y\in\mathbb{Z}\}$ is the set of all multiples of d. i. e. $a\mathbb{Z}+b\mathbb{Z}=\{ax+by\mid x,y\in\mathbb{Z}\}$.

Proof. We knew that d = ax + by for some $x, y \in \mathbb{Z}$. (by the theorem in the last class)

Define $S := a\mathbb{Z} + b\mathbb{Z}$. Then $a\mathbb{Z} \subset S$ and $b\mathbb{Z} \subset S$. Since S is closed under +, -, it follows the previous theorem that

$$\exists m \geq 0 \in \mathbb{Z} \text{ such that } S = m\mathbb{Z}.$$

¹ Without loss of generality

We want to show that m = d. Since $a, b \in S = m\mathbb{Z}$, $m \mid a, m \mid b$. If $e \mid a$ and $e \mid b$, then $e \mid m$. $(\because m + as + bt \text{ for some } s, t \in \mathbb{Z})$

By the definition of GCD, m = d.

Remark 1. The GCD of a and b (not both 0) is the least positive integer that is a linear combination of a and b.

Theorem 2 (Euclidean Algorithm). $a, b \in \mathbb{Z}$, $a \neq 0$. Using the division algorithm,

$$b = aq_1 + r_1$$
, where $0 < r_1 < |a|$.

If $r_1 = 0$, terminate process.

Repeating process,

$$a = r_1q_2 + r_2$$
 $0 < r_2 < r_1$
 $r_1 = r_2q_3 + r_3$ $0 < r_3 < r_2$
 \vdots
 $r_{n-2} = r_{n-1}q_n + r_n$ $0 < r_n < r_{n-1}$
 $r_{n-1} = r_nq_{n+1}$

Then $(a, b) = r_n$.

Proof. Clearly, $r_n > 0$. Note that

$$r_{n} \mid r_{n-1}, r_{n} \mid r_{n} \Rightarrow r_{n} \mid r_{n-2}$$

$$r_{n} \mid r_{n-2}, r_{n} \mid r_{n-1} \Rightarrow r_{n} \mid r_{n-3}$$

$$\vdots$$

$$r_{n} \mid r_{1}, r_{n} \mid r_{2} \Rightarrow r_{n} \mid a$$

$$r_{n} \mid a, r_{n} \mid r_{1} \Rightarrow r_{n} \mid b$$

Note also that if

$$k \mid a, k \mid b \Rightarrow k \mid r_{1}$$

$$k \mid r_{1}, k \mid a \Rightarrow k \mid r_{2}$$

$$\vdots$$

$$k \mid r_{n}, k \mid r_{n-1} \Rightarrow k \mid r_{n}$$

Hence we conclude that $r_n = (a, b)$.

Proof (Alternate proof).

$$b=aq+r\Rightarrow (a,b)=(a,r) \qquad r=a\,(-q)+b, b=aq+r$$
 Note that $e\mid a,e\mid b$ iff $e\mid r,e\mid a$. Thus $(a,b)\mid (a,b)$ and $(a,k)\mid (a,b)$.

Hence
$$(a, b) = (a, r)$$
, since $(a, b) > 0$ and $(a, k) > 0$. Therefore we can see that
$$(a, b) = (a, r) = (r_1, r_2) = \cdots = (r_{n-1}, r_n).$$

Example

$$(68,710) = 2$$

$$710 = 68 \cdot 10 + 30$$

$$68 = 30 \cdot 2 + 8$$

$$30 = 8 \cdot 3 + 6$$

$$8 = 6 \cdot 1 + 2$$

$$6 = 2 \cdot 3$$

$$2 = 8 - 6 \cdot 1$$

$$= 8 - (30 - 8 \cdot 3)$$

$$= 8 \cdot 4 + 30 \cdot (-1)$$

$$= (68 - 30 \cdot 2) \cdot 4 + 30 \cdot (-1)$$

$$= 68 \cdot 4 + 30 \cdot (-1)$$

$$= 68 \cdot 4 + (710 - 68 \cdot 10) \cdot (-9)$$

$$= 68 \cdot 94 + 710 \cdot (-9)$$

Definition 1 (Diophantine Equation). A **Diophantine equation** is a polynomial equation that allows two or more variables to take integer values only.

e.g.

$$ax + by = c$$
$$x^n + y^n = z^n$$

$$x^2 - dy^2 = 1$$

Theorem 3. $a \neq 0$, $b \neq 0$.

- 1. The equation ax + by = c has integer solutions if and only if $(a, b) \mid c$.
- 2. Suppose that $(a, b) \mid c$. Then the general solution of the equation ax + by = c has form the of

$$\left\{x_0 + \frac{b}{(a,b)}t, y_0 - \frac{a}{(a,b)}t\right\}$$

where $t \in \mathbb{Z}$ and (x_0, y_0) is an arbitrary solution of the equation.

General solution for y'' - 4y' + 3y = 0? $\Rightarrow c_1 e^x + c_2 e^{3x}$ - 2 bases

0.2 September 24th

Proof. Note that

$$a \mid b, a \mid c \Rightarrow a \mid (bx + cy)$$
 $\forall x, y \in \mathbb{Z}$
 $m \mid ab, (m, a) = 1 \Rightarrow m \mid b$ $\therefore (m, a) = 1, \exists s, t \in \mathbb{Z}$ $as + mt = 1$

Then bas + bmt = b.

Since $m \mid ab$, it follows that $m \mid b$.

1. (
$$\Rightarrow$$
) $(a,b) \mid a,(a,b) \mid b \Rightarrow (a,b) \mid (ax+by) = c$
(\Leftarrow) Let $(a,b) = d$ and $c = c_1d$. Then $\exists s, t \in \mathbb{Z}$ such that $as+bt = d$. thus

$$c = c_1 d = c_1 (as + bt)$$
$$= ac_1 s + bc_1 t$$

hence (c_1s, c_1t) is a solution.

2. Note that

$$a\left(x_0 + \frac{b}{d}t\right) + b\left(y_0 - \frac{a}{d}t\right)$$
$$= ax_0 + \frac{ab}{d}t + by_0 - \frac{ba}{d}t$$
$$= ax_0 + by_0 = c$$

Suppose that (x, y) is an arbitrary solution of ax + by = c. Since $ax + by = c = ax_0 + by_0$, we have

$$a(x-x_0) = b(y_0 - y).$$

Let $a = a_1 d$, $b = b_1 d$, where d = (a, b). Then

$$a_1(x-x_0) = b_1(y_0-y)$$
.

Since (a, b) = 1, $b_1 \mid (x - x_0)$. Then $\exists t \in \mathbb{Z}$ such that $x - x_0 = b_1 t$, and similarly $y_0 - y = a_1 t$. Hence

$$x = x_0 + \frac{b}{(a,b)}t$$
, $y = y_0 - \frac{a}{(a,b)}t$.

Example

$$710x + 68y = 6$$

² Recall

$$710 \cdot (-9) + 68 \cdot 94 = 2$$
$$710 \cdot (-9 \times 3) + 68 \cdot (94 \times 3) = 2 \times 3 = 6$$

² Maybe an eaxm problem?

Hence

$$x = -27 + \frac{68}{2}t = -27 + 34t$$
$$x = 282 - \frac{710}{2}t = 282 - 355t$$

Definition 2 (Least Common Multiple). The **least common multiple** of two nonzero integers a and b, denoted [a,b] or lcm(a,b) is the integer l satisfying the followings:

- 1. l > 0.
- 2. a | l, b | l
- 3. $a \mid c, b \mid c \Rightarrow l \mid c$

Theorem 4. For $a \neq 0$, $b \neq 0 \in \mathbb{Z}$, [a, b] uniquely exists. Moreover, $a\mathbb{Z} \cap b\mathbb{Z} = [a, b]\mathbb{Z}$.

Proof. Let $S = a\mathbb{Z} \cap b\mathbb{Z}$. Since $ab \in S$, $S \neq \emptyset$. Clearly, S is closed under +, -.

By theorem, $\exists l$ such that $S = l\mathbb{Z}$.

We want to show that l = [a, b]. Since $l \in S$, $a \mid l$, $b \mid l$. If $a \mid c$, $b \mid c$, then $c \in S = l\mathbb{Z}$ and $l \mid c$.

Remains to show the uniqueness of l. Suppose l_1 and l_2 are both the LCMs of a and b. Then $l_1 \mid l_2$ and $l_2 \mid l_1$. By (2), (3), $l_1 = l_2$, since $l_1 > 0$, $l_2 > 0$.

Remark 2.

$$(a,b)\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z} = \{ax + by \mid x, y \in \mathbb{Z}\}\$$

Recall

1.
$$(0,0) := 0$$

2.
$$(a, 0) := |a|$$

3.
$$[0,0] := 0$$

4.
$$[a, 0] := 0$$

Theorem 5. For a > 0, $b > 0 \in \mathbb{Z}$,

$$(a, b) [a, b] = ab.$$

Proof. (Proof left for homework – due September 26th.)

Theorem 6. Let b be a positive integer with b > 1. Then every positive integer n can be expressed in unique form of

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b^1 + a_0$$

where $a_i \in \mathbb{Z}$, $0 \le a_i \le b-1$ for $i = 0, 1, \dots, k$ and $a_k \ne 0$.

 $b \Rightarrow \text{base}$.

Proof. We use the division algorithm. (Proof left for homework – due September 26th.)

Definition 3 (Prime Numbers). A prime is an integer p such that

1.
$$p > 1$$

2.
$$a \mid p \Rightarrow a = \pm 1 \text{ or } \pm p$$
.

Remark 3. p is prime.

- 1. $\forall a \in \mathbb{Z}, (a, p) = 1 \text{ or } (a, p) = p. \text{ (iff } p \text{ is prime)}$
- 2. $p \mid ab \Rightarrow p \mid a \text{ or } p \mid b$. (iff p is prime)

Theorem 7 (Infinitude of Primes). There exists infinitely many primes.

Proof (Euclid's).

Lemma 1. Every positive integer $n \ge 2$ has a prime factor.

Proof. Consider the set $S = \{m \mid m \text{ is a divisor of } n\}$. Then $S \neq \emptyset$.

By WOP, \exists least positive integer $p \in S$. Note that every divisor of p is also a divisor of n. Thus p is a prime number by the minimality of p.

Suppose there exists finitely many primes

$$p_1, p_2, \cdots, p_k$$
.

Let

$$n := p_1 p_2 \times \cdots \times p_k$$
.

Then n > 1 and \exists prime p such that $p \mid n$ by Lemma 1.

Thus $p = p_i$ for some $1 \le i \le k$, hence $p \mid p_1 p_2 \times \cdots \times p_k$, thus

$$p \mid (n - p_1 p_2 \times \cdots \times p_k) \Rightarrow p \mid 1.$$

Which is a contradiction to the definition of prime numbers. Thus there exists infinitely many primes.

Theorem 8. There are arbitrary large gaps between successive primes. i. e. For any positive integer n, there exists at least n consecutive composite positive integers.

Proof. Consider *n* consecutive integers

$$(n+1)!+2, (n+1)!+3, \cdots, (n+1)!+(n+1).$$

For $2 \le j \le n+1$, it is clear that $j \mid (n+1)!$. Thus $j \mid ((n+1)!+j)$.

Hence $\exists n$ consecutive integers which are all composites.

Definition 4 (Mersenne Primes). A Mersenne prime is a Mersenne number³ which is also prime.

e. g.
$$M_2 = 2^2 - 1 = 3$$
, $M_3 = 2^3 - 1 = 7$, $M_5 = 2^5 - 1 = 31$, $M_7 = 2^7 - 1 = 127$, ... but $M_{11} = 2^{11} - 1 = 2047 = 23 \times 89$

0.3 September 26th

It can be seen that

- 1. If $2^n 1$ is prime, then *n* is prime.
- 2. If a and p are positive integers such that $a^p 1$ is prime, then a = 2 or p = 1.4

The converse of 1. does not hold. (e. g. $2^{11} - 1 = 23 \times 89$)

Question Are there infinitely many Mersenne primes? ⇒ yet unknown!

Only God Knows

Remark 4. Using Mersenne numbers and some theorem of groups⁵, we can show the infinitude of primes.

⁴ Proof exists at Wikipedia

⁵ Lagrange theorem

Example $2^{11213} - 1$ is prime (1963)

 $2^{82589933} - 1$ is prime (2018)

Definition 5 (Fermat Primes). A Fermat prime is a Fermat number 6 which is also prime.

e.g. $F_0 = 3$, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$: the only known Fermat primes.

Theorem 9. If $2^m + 1$ is an odd prime, then m is a power of 2.

Proof. If m is a positive integer and is not a power of 2, then

$$m = rs$$

where $1 \le r, s < m$ and s is odd. Note that for any $n \in \mathbb{Z}^+$,

$$(a-b) \mid \left(a^l-b^l\right).$$

Put $a = 2^r$, b = -1, l = s. Then

$$(2^r+1) \mid (2^{rs}+1) \Rightarrow (2^r+1) \mid (2^m+1).$$

Since $1 < 2^r + 1 < 2^m + 1$, it follows that $2^m + 1$ is not prime. $\rightarrow \leftarrow$

Theorem 10. A regular polygon of n sides can be constructed using an unmarked ruler and compass if and only if

$$n=2^m$$
 or $n=2^r p_1 p_2 \times \cdots \times p_k$

where $m \ge 2$, $r \ge 0$ and p_1, p_2, \dots, p_k are distinct Fermat primes.

e.g.

$$3 = 2^{2^0} + 1$$
 : constructive
 $5 = 2^{2^1} + 1$: constructive
 7 : not constructive
 $17 = 2^{2^2} + 1$: constructive

Theorem 11.

$$(F_m, F_n) = 1$$

if $m \neq n \in \mathbb{Z}^+ \cup \{0\}$.

Proof. Claim $F_n = F_0 F_1 \times \cdots \times F_{n-1} + 2$ where $n \ge 1$.

$$n = 1$$
. $F_1 = 5$; $F_0 + 2 = 3 + 2 = 5$.
 $n = 2$. $F_2 = 17$; $F_0F_1 + 2 = 3 \times 5 + 2 = 17$.

Inductive step. Assume that the claim is true for $s \le k$. Then

$$F_0F_1 \times \dots \times F_k + 2$$

$$= (F_0F_1 \times \dots \times F_{k-1})F_k + 2$$

$$= (F_k + 2)F_k + 2$$

$$= F_k^2 - 2F_k + 2$$

$$= (F_k - 1)^2 + 1$$

$$= 2^{2^{k+1}} + 1 = F_{k+1}.$$

Note that for $i = 0, 1, \dots, n-1$,

$$F_n \div F_i = (F_0 F_1 \times \cdots \times F_{n-1} + 2) \div F_i$$

leaves the remainder of 2. i. e. $F_n = qF_i + 2$.

Thus if $m \mid F_n$, then $m \mid 2$, and so m = 1 or m = 2. Since F_n and F_i are odd, it follows that m = 1.

Corollary 1. *There are infinitely many primes.*

Proof. It follows immediately by the following statements.

- 1. $\{F_n \mid n \ge 0\}$ is an infinite set.
- 2. F_n has a prime factor of p_n .
- 3. $(F_m, F_n) = 1$ if $m \neq n$.

Remark 5. 1. Fermat conjectured all Fermat numbers are primes, but it's not true:

$$F_5 = 4294967297 = 641 \times 6700417.$$

- 2. Open questions remains:
 - (a) Are there infinitely many Fermat primes?
 - (b) Are there infinitely many composite Fermat numbers?
 - (c) Is it true that F_n is composite for all n > 4?

Theorem 12 (Prime Number Theorem). If

 $\pi(x) := (number\ of\ primes\ less\ than\ or\ equal\ to\ x)$

Then

$$\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\ln x}} = 1.$$

e. g. $\pi(10) = 4$.

It was conjectured by Gauss and Legendre; proved by Hadamad and Poisson independently using complex analysis.

Theorem 13. If n is a positive composite integer, then n has a prime factor not exceeding \sqrt{n} .

i. e. \exists *prime factor p such that p* \mid *n and p* $\leq \sqrt{n}$.

Corollary 2. If n has no prime factors not exceeding \sqrt{n} , then n is prime.

Proof (by the contrapositive of the theorem above). (Proof left for students.)

Theorem 14 (Fundamental Theorem of Arithmetic). Let n > 1 be an integer. Then n can be expressed as a product of prime factors in an unique way, except for the order of factors. i. e. \mathbb{Z} is an unique factorization domain⁷.

Proof. (Using WOP; see the book.)

1 Congrugences

1.1 October 1st

Definition 6. $m \in \mathbb{Z}^+$, $a, b \in \mathbb{Z}$

a is **congrugent** to b modulo m if $m \mid (a-b)$.

Theorem 15. *l.* $a \equiv a \pmod{m}$

- 2. $a \equiv b \Rightarrow b \equiv a$
- 3. $a \equiv b, b \equiv c \Rightarrow a \equiv c$
- 4. $a \equiv b, c \equiv d \Rightarrow a \pm c \equiv b \pm d, ac \equiv bd$.
- $4\frac{1}{2}$. $1 \le i \le n$. Then $a_i \equiv b_i \Rightarrow \sum_{1}^n a_i \equiv \sum_{1}^n b_i$, $\prod_{1}^n a_i \equiv \prod_{1}^n b_i$
- 5. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n$, $g(x) = b_0 + b_1x + \cdots + b_nx^n$, where $a_i, b_i \in \mathbb{Z}$. Suppose $a_i \equiv b_i \pmod{m}$. If $a \equiv b$, then $f(a) \equiv g(b)$.

Example 1. $10 \equiv 1 \pmod{3}$.

 $10 \equiv 1 \pmod{9}$.

 $10 \equiv -1 \pmod{11}$.

Let $a = a_n \cdot 10^n + \dots + a_1 \cdot 10 + a_0$. Then

$$a \equiv a_0 + a_1 + \dots + a_n \pmod{3}$$
$$\equiv a_0 + a_1 + \dots + a_n \pmod{9}$$
$$\equiv a_0 - a_1 + \dots + (-1)^n a_n \pmod{11}$$

: If
$$f(x) = a_0 + a_1x + \cdots + a_nx^n$$
, then

$$f(10) \equiv f(1) \pmod{3}$$

$$f(10) \equiv f(1) \pmod{9}$$

$$f(10) \equiv f(-1) \pmod{11}$$

e.g.

$$26384 \equiv 2 + 6 + 3 + 8 + 4 \equiv 2 \pmod{3}$$

$$26384 \equiv 2 + 6 + 3 + 8 + 4 \equiv 5 \pmod{9}$$

$$26384 \equiv 2 - 6 + 3 - 8 + 4 \equiv 6 \pmod{11}$$

Example 2. $41 \mid (2^{20} - 1)$?

Note that

$$2^5 \equiv -9 \pmod{41}.$$

Thus

$$(2^5)^4 \equiv (-9)^4$$
$$\equiv 81 \times 81$$

Since $81 \equiv -1 \pmod{41}$, $81 \times 81 \equiv 1 \pmod{41}$. Hence

$$2^{20} - 1 \equiv (2^5 - 4) - 1$$
$$\equiv (-9)^4 - 1$$
$$\equiv 1 - 1 \equiv 0 \pmod{41}.$$

Note that $7 \times 2 \equiv 4 \times 2 \pmod{6}$, but $7 \not\equiv 4 \pmod{6}$, also $7 \equiv 4 \pmod{3}$.

Theorem 16. $a, b, c \in \mathbb{Z}$, $m \in \mathbb{Z}^+$, d = (c, m).

If $ac \equiv bc \pmod{m}$, then $a \equiv b \pmod{\frac{m}{d}}$.

Proof. Since $ac \equiv bc \pmod{m}$,

$$m \mid (ac - bc)$$
.

Thus $\exists k \in \mathbb{Z}$ such that c(a-b) = km, and so

$$\frac{c}{d}\left(a-b\right) = k\frac{m}{d}.$$

Since $\left(\frac{c}{d}, \frac{m}{d}\right) = 1$, it follows that

$$\frac{m}{d} \mid (a-b)$$
.

Question. $2^{1137} \equiv ? \pmod{17}$

Theorem 17. Let $m \in \mathbb{Z}^+$. For any $a \in \mathbb{Z}$, $\exists ! r \in \mathbb{Z}$ such that

$$a \equiv r \pmod{m}$$

where $0 \le r \le m-1$.

Proof. Use the division algorithm.

Definition 7. A complete system of residues modulo m is the set of integers such that every integers is congrugent modulo m to exactly one integer of the set.

e.g.

- 1. $\{0, 1, 2, \dots, m-1\}$ is a complete system of residues modulo m.⁸
- 2. If *m* is odd, $\left\{-\frac{m-1}{2}, -\frac{m-3}{2}, \cdots, -1, 0, 1, \cdots, \frac{m-3}{2}, \frac{m-1}{2}\right\}$ is also a complete system of residues modulo *m*.

Theorem 18. If $\{r_1, r_2, \dots, r_m\}$ is a complete system of residues modulo m and if $a \in \mathbb{Z}^+$ with (a, m) = 1, then for any integer b,

$$\{ar_1+b, ar_2+b, \cdots, ar_m+b\}$$

is a complete system of residues modulo m.

e. g.
$$m = 4 \Rightarrow \{0, 1, 2, 3\}, \{0, 3, 6, 9\}, \{1, 2, 3, 4\}, \cdots$$

but $\{0, 2, 4, 6\}$ is not a complete system of residues modulo 4.

Proof. Note that a set of m incongrugent integers modulo m will always form a complete system of residues modulo m.

Thus it suffices to show that no two integers $ar_1 + b, \dots, ar_m + b$ are congrugent modulo m.

Suppose that

$$ar_i + b \equiv ar_k + b$$
.

 $^{^8}$ The least nonnegative residues modulo m

then

$$ar_j \equiv ar_k$$
.

Since
$$(a, m) = 1$$
, $r_j \equiv r_k$. Hence $j = k$.

Theorem 19. $a, b \in \mathbb{Z}^+, m \in \mathbb{Z}^+, d = (a, m).$

If $d \nmid b$, then $ax \equiv b \pmod{m}$ has no solutions.

If $d \mid b$, then $ax \equiv b \pmod{m}$ has exactly d incongrugent solutions modulo m as follows:

$$x = x_0 + \frac{m}{d}t$$
 $t = 0, 1, 2, \dots, d-1$

where x_0 is a particular solution of $ax \equiv b \pmod{m}$.

Example 3. $9x \equiv 12 \pmod{15}$?

Note that $(9, 15) = 3 \mid 12$, by theorem, \exists exactly 3 incongrugent solutions modulo 15.

To find a particular solution, consider 9x + 15y = 12. Note that

$$15 = 9 \times 1 + 6$$

$$9 = 6 \times 1 + 3$$

$$6 = 3 \times 2 + 0$$

$$3 = 9 - 6 = 9 \times 2 - 15.$$

Thus $9 \times 8 + 15 \times (-4) = 12$.

Hence the general solution is given by

$$x = x_0 \equiv 8 \pmod{15}$$

 $x = x_0 + \frac{15}{3} \times 1 \equiv 13 \pmod{15}$
 $x = x_0 + \frac{15}{3} \times 2 = 18 \equiv 3 \pmod{15}$.

Proof. (Proof left for homework – due October 3rd.)

Remark 6. Consider $ax \equiv 1 \pmod{m}$. By the previous theorem, \exists solutions of this congrugence if and only if (a, m) = 1.

Definition 8. $a \in \mathbb{Z}$, $m \in \mathbb{Z}^+$, (a, m) = 1.

A solution of $ax \equiv 1 \pmod{m}$ is called an **inverse** of a modulo m.

e. g. $7x \equiv 1 \pmod{31} \Rightarrow x = 9 \pmod{31}$. Thus 9 and all integers congrugent to 9 are inverses of 7 modulo 31.

e. g.
$$7x \equiv 22 \pmod{31} \Rightarrow 9 \times 7x \equiv 9 \times 22 \pmod{31} \Rightarrow 1 \times x \equiv 12 \pmod{31}$$

Remark 7. $\mathbb{Z}_n^* = \{\overline{a} \in \mathbb{Z}_m \mid (a, m) = 1\}.$ $(\mathbb{Z}_n^*, *)$ is a group.

e. g.
$$\mathbb{Z}_8^* = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$$

 $\mathbb{Z}_5 = \left\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\right\}$

1.2 October 8th

Definition 9 (Euler ϕ Function). Let $n \in \mathbb{Z}^+$. The Euler ϕ -function $\phi(n)$ is defined to be the count of positive integers not exceeding n which are relatively prime to n.

e. g.
$$\phi(1) = 1$$
, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(8) = 4$, $\phi(12) = 4$

In general, if *p* is prime, then $\phi(p) = p - 1$.

Question. How to compute $\phi(n)$? Goal: $\phi(mn) = \phi(m) \phi(n)$ if (m, n) = 1, i. e. ϕ is multiplicative.

Definition 10 (Reduced Residue System). A reduced residue system modulo n is a set of ϕ (n) integers such that each element of the set is relatively prime to n and no two distinct elements of the set are congrugent modulo n.

e. g. $n = 8 \Rightarrow \{1, 3, 5, 7\}$: a reduced residue system modulo 8.

Lemma 2. If $\{r_1, r_2, \dots, r_{\phi(n)}\}$ is a reduced residue system modulo n and if $a \in \mathbb{Z}^+$ with (a, n) = 1 then $\{ar_1, ar_2, \dots, ar_{\phi(n)}\}$ is also a reduced residue system modulo n.

Only multiplication holds; addition does not hold.

Proof. (See the textbook.)

Theorem 20 (Euler's Theorem). *If* $m \in \mathbb{Z}^+$ *and* $a \in \mathbb{Z}$ *with* (a, m) = 1 *then*

$$a^{\phi(m)} \equiv 1 \pmod{m}$$
.

Proof. Let $\{r_1, r_2, \dots, r_{\phi(m)}\}$ be a reduced residue system modulo m. Since (a, m) = 1, the set $\{ar_1, ar_2, \dots, ar_{\phi(m)}\}$ is a reduced residue system modulo m by Lemma.

Then

$$ar_1 \times ar_2 \times \cdots \times ar_{\phi(m)} \equiv r_1 \times r_2 \times \cdots \times r_{\phi(m)} \pmod{m}$$

and so

$$a^{\phi(m)} \times r_1 \times r_2 \times \cdots \times r_{\phi(m)} = r_1 \times r_2 \times \cdots \times r_{\phi(m)} \pmod{m}$$
.

Hence $a^{\phi(m)} \equiv 1 \pmod{m}$.

Corollary 3 (Fermat's Little Theorem). *If* p *is prime and* $p \nmid a \ (\Rightarrow (a, p) = 1)$, *then*

$$a^{p-1} \equiv 1 \pmod{p}$$
.

⁹ Note that $(r_1 r_2 \times \cdots \times r_{\phi(m)}, m) = 1$

Corollary 4. Let p: prime. Then

$$a^p \equiv a \pmod{p}$$
.

Proof. If $a \equiv 0 \pmod{p}$, then $a^p \equiv 0 \equiv a \pmod{p}$.

If
$$a \not\equiv 0 \pmod{p}$$
, then $a^{p-1} \equiv 1 \pmod{p}$ thus $a^{p-1} \equiv a \pmod{p}$.

Example 4. 2¹¹³⁷ (mod 17)?

By Euler's theorem, $2^{16} \equiv 1 \pmod{17}$. Thus

$$2^{1137} = (2^{16})^{71} \cdot 2 \equiv 1 \cdot 2 \equiv 2 \pmod{17}.$$

Example 5. Show that 117 is not a prime.

Suppose 117 is prime. then

$$2^{117} \equiv 2 \pmod{117}$$
.

Note that

$$2^7 \equiv 128 \equiv 11 \pmod{117}$$
.

Thus

$$2^{117} \equiv (2^7)^{16} \cdot 2^5$$

$$\equiv 11^{16} \cdot 2^5$$

$$\equiv 121^8 \cdot 2^5$$

$$\equiv 4^8 \cdot 2^5$$

$$\equiv 2^{21} \equiv 11^3 \not\equiv 2 \pmod{17}.$$

Example 6. Solve $x^{35} + 5x^{19} + 11x^3 \equiv 0 \pmod{17}$.

By Fermat's little theorem,

$$x^{17} \equiv x \pmod{17}$$
.

Then

$$x^{35} = x (x^{17})^2 \equiv x^3$$

 $x^{19} = x^2 (x^{17}) \equiv x^3$

Thus

$$x^{35} + 5x^{19} + 11x^3 \equiv (1 + 5 + 11)x^3 \equiv 0 \cdot x^3 \equiv 0 \pmod{17}$$
.

Hence *x* can be any integer.

Theorem 21 (Wilson's Theorem). *If p is a prime, then*

$$(p-1)! \equiv -1 \ (mod \ p).$$

Was conjectured by Wilson; and proved by Lagrange.

Lemma 3. Let p be prime. a is self-invertible modulo p, i. e. $a \cdot a \equiv 1 \pmod{p}$, if and only if $a \equiv \pm 1 \pmod{p}$.

Proof (of lemma). (\Leftarrow) It's trivial.

 (\Rightarrow) Note that

$$a^2 \equiv 1 \pmod{p}$$

and so p | (a-1)(a+1).

Since p is prime,
$$p \mid (a-1)$$
 or $p \mid (a+1)$. Thus $a \equiv 1$ or $a \equiv -1 \pmod{p}$.

Proof (of theorem). If p = 2, then $(p-1)! = 1 \equiv -1 \pmod{2}$.

Consider for p > 2. Note that $\{1, 2, \dots, p-1\}$ is a reduced residue system modulo p. By lemma, 1 and p-1 are self-invertible. Thus we can group the remaining p-3 residues $\frac{p-3}{2}$ pair of inverses a and b such that $ab \equiv 1 \pmod{p}$.

Hence

$$(p-1)! = 1 \cdot [2 \cdot 3 \times \dots \times (p-2)] (p-1)$$
$$\equiv 1 \cdot 1 \times \dots \times 1 (p-1)$$
$$\equiv p-1 \equiv -1 \pmod{p}.$$

e. g. $(6-1)! + 1 = 121 \not\equiv 0 \pmod{6}$, thus 6 is not prime.

In fact, the converse of Wilson's theorem also holds, but is inefficient to test primality.

Theorem 22. *If* $n \in \mathbb{Z}^+$ *and*

$$(n-1)! \equiv -1 \pmod{m}$$
,

then n is prime.

Proof. Suppose that n is composite. Then n = ab where 1 < a < n and 1 < b < n. Since a < n, $a \mid (n-1)!$. Since $(n-1) \equiv -1 \pmod{n}$,

$$n \mid [(n-1)!+1].$$

Thus $a \mid [(n-1)!+1]$, hence $a \mid 1$, which is a contradiction.

Remark 8. p is prime if and only if $(p-1)! \equiv -1 \pmod{p}$, and also $(p-2)! \equiv 1 \pmod{p}$.

Applications of Euler's and Wilson's theorem.

1. p is odd prime. Then

$$[1 \cdot 3 \cdot 5 \times \cdots \times (p-2)]^2 \equiv [2 \cdot 4 \cdot 6 \times \cdots \times (p-1)]^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}.$$

2. p is odd prime. Then $x^2 \equiv -1 \pmod{p}$ has a solution if and only if $p \equiv 1 \pmod{4}$.

October 10th

Proof. 1. As x runs through $\frac{p-1}{2}$ even integers from 2 to p-1, then p-x runs through odd integers from p-2 down to 1. Then

$$(2 \cdot 4 \cdot 6 \times \dots \times (p-1)) \equiv (-1)^{\frac{p-1}{2}} (1 \cdot 3 \cdot 5 \times \dots \times (p-2)) \pmod{p}$$

and so

$$(2 \cdot 4 \cdot 6 \times \cdots \times (p-1))^2 \equiv (1 \cdot 3 \cdot 5 \times \cdots \times (p-2))^2 \pmod{p}.$$

By Wilson's theorem,

$$-1 \equiv (p-1)! = (1 \cdot 3 \cdot 5 \times \cdots \times (p-2)) (2 \cdot 4 \cdot 6 \times \cdots \times (p-1)) \pmod{p}.$$

Thus

$$(-1)^{\frac{p-1}{2}} \left(1 \cdot 3 \cdot 5 \times \cdots \times (p-2)\right)^2 \equiv -1 \pmod{p},$$

hence

$$(1 \cdot 3 \cdot 5 \times \dots \times (p-2))^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}.$$

2. (\Rightarrow) Suppose $x_0^2 \equiv -1 \pmod{p}$ for some $x \in \mathbb{Z}$. Then

$$x_0^{p-1} = (x_0^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}}.$$

On the other hand, by Euler's theorem, $x_0^{p-1} \equiv 1 \pmod{p}$. ¹⁰ Thus $(-1)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$; i. e.

$$p\mid \left\lceil 1-(-1)^{\frac{p-1}{2}}\right\rceil.$$

Hence $1-(-1)^{\frac{p-1}{2}}=0$. 11 Therefore $\frac{p-1}{2}$ is even and so $p\equiv 1\pmod 4$. (⇐) Note that

$$(p-1)! = \left(1 \cdot 2 \cdot 3 \times \dots \times \frac{p-1}{2}\right) \left((p-1)(p-2)(p-3) \times \dots \times \frac{p+1}{2}\right)$$

$$\equiv \left(1 \cdot 2 \cdot 3 \times \dots \times \frac{p-1}{2}\right) \left((-1)(-2)(-3) \times \dots \times \frac{-(p-1)}{2}\right) \pmod{p}$$

$$\equiv (-1)^{\frac{p-1}{2}} \times 1^2 \cdot 2^2 \cdot 3^2 \times \dots \times \left(\frac{p+1}{2}\right)^2 \pmod{p}$$

 $[\]overline{\begin{array}{c} 10 \text{ Note that } x_0^2 \equiv -1 \text{ (mod } p), \text{ thus } (x_0, p) \mid 1, \text{ and so } (x_0, p) = 1; \text{ i. e. } p \nmid x_0. \\
\hline{\begin{array}{c} 11 \text{ If } 1 - (-1)^{\frac{p-1}{2}} = 2 \neq 0, \text{ then } p \mid 2. \to \leftarrow \end{array}}$

Thus

Thus
$$-1 \equiv (p-1)! \equiv \left(1 \cdot 2 \cdot 3 \times \dots \times \frac{p-1}{2}\right)^2 \pmod{p}.$$
 Put $x_0 = 1 \cdot 2 \cdot 3 \times \dots \times \frac{p-1}{2}$. Then $x_0^2 \equiv -1 \pmod{p}$.

Theorem 23. Let p be a prime number and $e \in \mathbb{Z}^+$. Then

$$\phi(p^e) = p^e - p^{e-1}.$$

Proof. Note that

 $\phi(p^2)$ = (the number of positive integers $\leq p^e$ which are relatively prime to p^e) $= p^e$ – (the number of positive integers $\leq p^e$ which are NOT relatively prime to p^e)

while the positive integers $\leq p^{e}$ which are NOT relatively prime to p^{e} are

$$p, 2p, 3p, \cdots, (p^{e-1}) p.$$

Remark 9. 1. $\phi(p^e) = p^e - p^{e-1} = p^e \left(1 - \frac{1}{p}\right)$. 2. Let $n = p_1^{e_1} p_2^{e_2} \times \cdots \times p_k^{e_k}$. Then

$$\begin{split} \phi\left(n\right) &= \phi\left(p_1^{e_1}\right)\phi\left(p_2^{e_2}\right)\times \dots \times \phi\left(p_k^{e_k}\right) \\ &= p_1^{e_1}\left(1-\frac{1}{p_1}\right)p_2^{e_2}\left(1-\frac{1}{p_2}\right)\times \dots \times p_k^{e_k}\left(1-\frac{1}{p_k}\right) \\ &= \left[p_1^{e_1}p_2^{e_2}\times \dots \times p_k^{e_k}\right]\times \left[\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\times \dots \times \left(1-\frac{1}{p_k}\right)\right] \\ &= n\left[\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\times \dots \times \left(1-\frac{1}{p_k}\right)\right]. \end{split}$$

Note 1. m = 4, n = 7 ((m, n) = 1)

$$\phi(mn) = \phi(28) = 12 = 2 \times 6 = \phi(4) \phi(7).$$

Lemma 4. If $m, n \in \mathbb{Z}^+$, $r \in \mathbb{Z}$, (m, n) = 1, then the integers $r, m + r, 2m + r, \dots, (m - 1)m + r$ are congrufent to $0, 1, 2, \dots, n - 1$ modulo n.

Proof. Suffies to show that no two integers in the list are congrugent modulo n.

Suppose that $km+r \equiv lm+r \pmod{n}$ where $0 \leq k, l < n$. Then $km \equiv lm \pmod{n}$. Since (m, n) = 1, hence $k \equiv l \pmod{n}$. Since $0 \leq k, l < n, k = l$.

Theorem 24. $\phi(mn) = \phi(m) \phi(n) \text{ if } (m, n) = 1.$

Proof. Consider

$$1 m+1 2m+1 \cdots (n-1)m+1$$

$$2 m+2 2m+2 \cdots (n-1)m+2$$

$$\vdots \vdots \vdots \ddots \vdots$$

$$m 2m 3m \cdots nm$$

Let $r \le m$ be a positive integer with (r, m) > 1. Let d = (r, m). Then $d \mid r, d \mid m$, and so $d \mid (km + r)$ for any $k \in \mathbb{Z}$; i. e. d is a factor of every element in the r^{th} row.

Thus no element in the r^{th} row is relatively prime to m and hence to mn if (r, m) > 1. Hence, there are $\phi(m)$ rows satisfying (r, m) = 1.

Consider now the r^{th} row where (r, m) = 1.

$$r, m+r, 2m+r, \cdots, (n-1)m+r$$

By Lemma, exactly $\phi(n)$ elements in the r^{th} row are relatively prime to n, and hence to mn. Hence we conclude that $\phi(mn) = \phi(m) \phi(n)$ if (m, n) = 1.

Note 2. n = 28, d = n. $C_d :=$ (the class of positive integers $m \le n$ satisfying (m, n) = d). Then

$$C_{1} = \{1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27\}$$

$$C_{2} = \{2, 6, 10, 18, 22, 26\}$$

$$C_{4} = \{4, 8, 12, 20, 24, 28\}$$

$$C_{7} = \{7, 21\}$$

$$C_{14} = \{14\}$$

$$C_{28} = \{28\}$$

$$12 = \phi(28) = \phi\left(\frac{28}{1}\right)$$

$$6 = \phi(14) = \phi\left(\frac{28}{2}\right)$$

$$2 = \phi(4) = \phi\left(\frac{28}{1}\right)$$

$$1 = \phi(2) = \phi\left(\frac{28}{14}\right)$$

$$1 = \phi(1) = \phi\left(\frac{28}{28}\right)$$

$$12+6+6+2+1+1=28.$$

Theorem 25. For
$$n \in \mathbb{Z}^+$$
,

$$n = \sum_{d \mid n} \phi(d) = \sum_{d \mid n} \phi\left(\frac{n}{d}\right).$$

Proof. Let $m \in \mathbb{Z}^+$ such that $m \le n$. Then $m \in C_d$ if and only if (m, n) = d, if and only if $\left(\frac{m}{d}, \frac{n}{d}\right) = 1$.

Thus the number of positive integers $\leq \frac{n}{d}$ which are relatively prime to $\frac{n}{d}$ is equial to the number og elements m in C_d . Hence each class C_d has $\phi\left(\frac{n}{d}\right)$ elements.

Since there is a class corresponding to elery factor d of n and every integer $m \le n$ belongs to exactly one class, it follows that the sum of the count of elements in various classes is n; i. e. $\sum_{d\mid n} \phi\left(\frac{n}{d}\right) = n$.

As d runs over the divisors of n, so does
$$\frac{n}{d}$$
. Hence $\sum_{d|n} \phi(d) = n$.

Theorem 26 (Chinese Remainder Theorem). Let m_1, m_2, \dots, m_r are pairwise relatively prime positive integers. Then the system of congrugences

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots \\ x \equiv a_r \pmod{m_r} \end{cases}$$

where $a_i \in \mathbb{Z}$, has a unique solution modulo $M = m_1 m_2 \times \cdots \times m_r$.

Proof. (Proof left for homework – due October 15th.)

Example 7. 1.

$$\begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

$$35 \times \underline{?}_3 \equiv 1 \tag{mod 4}$$

$$28 \times \underline{?}_2 \equiv 3 \tag{mod 5}$$

$$20 \times \underline{?}_6 \equiv 2 \pmod{7}$$

Note that

$$M = 4 \cdot 5 \cdot 7 = 35 \cdot 4 = M_1 m_1$$

= $28 \cdot 5 = M_2 m_2$
= $20 \cdot 7 = M_3 m_3$

thus $x = 1 \cdot 35 \cdot 3 + 3 \cdot 28 \cdot 2 + 2 \cdot 20 \cdot 6 = 93 \pmod{140}$

2.

$$\begin{cases} 8x \equiv 4 \pmod{14} \\ 5x \equiv 3 \pmod{11} \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x \equiv 2 \pmod{7} \\ 5x \equiv 3 \pmod{11} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 4 \pmod{7} \\ x \equiv 5 \pmod{11} \end{cases}$$

By CRT,
$$x = 4 \cdot 11 \cdot 2 + 5 \cdot 7 \cdot 8 \equiv 368 \equiv 60 \pmod{77}$$

Note that $x \equiv 60 \pmod{77} \Leftrightarrow x \equiv 60, x \equiv 137 \pmod{154}$.

Primitive Roots

October 15th

Recall By Euler, (a, m) = 1, then $a^{\phi(m)} \equiv 1 \pmod{m}$. Thus \exists at least one positive integer x such that $a^x \equiv 1 \pmod{m}$. By WOP, \exists a least posivite integer x satisfying $a^x \equiv 1 \pmod{m}$.

Definition 11. $a, m \in \mathbb{Z}^+$, (a, m) = 1. The least positive integer x such that $a^x \equiv 1 \pmod{m}$ is called the **order** of a modulo m.

We denote this as $\operatorname{order}_m a$, or $\operatorname{ord}_m a$.

e. g.
$$ord_7 2 = 3$$
, $ord_7 3 = 6$

Remark 10. 1. $a \equiv b \pmod{m}$, then $\operatorname{ord}_m a = \operatorname{ord}_m b$. $(:b^{\operatorname{ord}_m a} \equiv a^{\operatorname{ord}_m a} \equiv 1 \Rightarrow \operatorname{ord}_m b \leq \operatorname{ord}_m a)$ 2. Suppose $(a, m) \neq 1$. Then $a^x \equiv 1 \pmod{m}$ has no solution. Thus $a^k \not\equiv 1 \pmod{m} \ \forall k \in \mathbb{Z}^+$.

Theorem 27. (a, m) = 1. A positive integer x is a solution of $a^x \equiv 1 \pmod{m}$ if and only if $\operatorname{ord}_m a \mid x$.

Proof. (\Rightarrow) By division algorithm,

$$x = q \operatorname{ord}_m a + r$$
 $0 \le r < \operatorname{ord}_m a$.

Then

$$a^{x} = a^{q \operatorname{ord}_{m} a + r}$$

$$= (a^{\operatorname{ord}_{m} a})^{q} a^{r}$$

$$\equiv a^{r} \pmod{m}.$$

Since $a^x \equiv 1$, $a^r \equiv 1$. Since $0 \le r < \operatorname{ord}_m a$, it follows that r = 0. Hence $a = q \operatorname{ord}_m a$ and so $\operatorname{ord}_m a \mid x$.

(⇐) Since $\operatorname{ord}_m a \mid x, x = k \operatorname{ord}_m a$ for some $k \in \mathbb{Z}^+$. Then $x^a \equiv x^{k \operatorname{ord}_m a} \equiv \left(a^{\operatorname{ord}_m a}\right)^k \equiv 1^k \equiv 1 \pmod{m}$.

Corollary 5.

$$(a, m) = 1$$

 $\Rightarrow \operatorname{ord}_m a \mid \phi(m).$

e. g.
$$ord_{17} 5 = 16$$
, $\phi(17) = 16$.

Recall m = 7, then ord₇ 2 = 3, ord₇ 3 = 6.

m = 12, then $\phi(12) = 4$: so there is no positive integer a such that $\operatorname{ord}_m a = 4$.

Definition 12 (Primitive root). $r, m \in \mathbb{Z}^+$ and (r, m) = 1. If $\operatorname{ord}_m r = \phi(m)$, then r is called a *primitive root* modulo m.

e.g.

- 1. 3 is a primitive root modulo 7.
- 2. There are no primitive roots modulo 12.

Theorem 28. $(r, m) \in \mathbb{Z}^+$, (r, m) = 1. If r is a primitive root modulo m, then the integers $r, r^2, \dots, r^{\phi(m)}$ form a reduced residue system modulo m.

e. g. 2 is a primitive root modulo 9; $\phi(9) = 6$.

$$2 \equiv 2$$

$$2^{2} \equiv 4$$

$$2^{3} \equiv 8$$

$$2^{4} \equiv 7$$

$$2^{5} \equiv 5$$

Proof. Suffices to show that the first $\phi(m)$ powers of r are all relatively prime to m and that no two are congrugent modulo m.

 $2^6 \equiv 1$

Since (r, m) = 1, $(r^k, m) = 1$ for any $k \in \mathbb{Z}^+$. Thus $r, r^2, \dots, r^{\phi(m)}$ are all relatively prime to m.

Assume that $r^{i} \equiv r^{j} \pmod{m}$. Since $1 \leq i, j \leq \phi(m)$, we have i = j, since $i \equiv j \pmod{\phi(m)}$ by the next theorem.

Theorem 29. $a, m \in \mathbb{Z}^+$, (a, m) = 1. $a^i \equiv a^j \pmod{m}$ if and only if $i \equiv j \pmod{\operatorname{ord}_m a}$ where $i, j \in \mathbb{Z}^+ \cup \{0\}$.

Proof. (\Rightarrow) Suppose $a^i \equiv a^j \pmod{m}$ where $i \geq j$. Since (a, m) = 1, $(a^j, m) = 1$. Then

$$a^j a^{i-j} \equiv a^i \equiv a^j \pmod{m}$$
.

Since $(a^j, m) = 1$, $a^{i-j} \equiv 1 \pmod{m}$. Thus $\operatorname{ord}_m a \mid (i-j)$, therefore $i \equiv j \pmod{m}$.

 (\Leftarrow) Proof left for students.

Theorem 30. $r, m \in \mathbb{Z}^+$, (r, m) = 1. Suppose r is a primitive root modulo m. Then r^n is also a primitive root modulo m if and only if $(n, \phi(m)) = 1$.

Corollary 6. *If a positive integer m has a primitive root, then it has a total of* $\phi(\phi(m))$ *incongrugent primitive roots.*

e. g. m = 11

By Corollary, 11 has $\phi(\phi(11)) = 4$ incongrugent primitive roots – of 2, 6, 7, 8.

Lemma 5. If $\operatorname{ord}_m a = t$, then

$$\operatorname{ord}_{m}(a^{u}) = \frac{\operatorname{ord}_{m} a}{(\operatorname{ord}_{m} a, u)} = \frac{t}{(t, u)}.$$

Proof (of lemma). Let $s := \operatorname{ord}_m(a^u)$ and v := (t, u). Then $t = t_1 v$, $u = u_1 v$ where $(t_1, u_1) = 1$.

Note that

$$(a^u)^{t_1} \equiv (a^{uv})^{t_1} \equiv (a^t)^{u_1} \equiv 1^{u_1} \equiv 1.$$

Thus $s \mid t_1$.

On the other handm since $1 \equiv (a^u)^s = a^{us}$, we have $t \mid us$. Then $t = t_1 v \mid us = \underline{u_1 vs}$, and so, $t_1 \mid u_1 s$.

Since
$$(t_1, u_1) = 1$$
, $t_1 \mid s$. Hence $s = t_1 = \frac{t}{v} = \frac{t}{(t, u)}$.

Proof (of theorem). By Lemma,

$$\operatorname{ord}_{m}(r^{n}) = \frac{\operatorname{ord}_{m} r}{(\operatorname{ord}_{m} r, n)}$$
$$= \frac{\phi(m)}{(\phi(m), n)}.$$

End of midterm.

3 Index (or Discrete Logarithm)

3.1 October 15th

Note 3. Let r be a primitive root modulo m. Then $\{r, r^2, \cdots, r^{\phi(m)}\}$ is a reduced residue system.

Thus if a is an integer such that (a, m) = 1, then $\exists !$ integer x with $1 \le x \le \phi(m)$ such that $r^x \equiv a \pmod{m}$.