1. Точка М движется по спирали с постоянной по величине скоростью в направлении, указанном стрелкой. При этом величина полного ускорения...

- 1. увеличивается;
- 2. уменьшается;
- 3. не изменяется.
- 2. Частица движется вдоль окружности радиусом 1 м в соответствии с уравнением $\varphi(t) = 2\pi(t^2 6t + 12)$, где φ в радианах, t в секундах. Линейная скорость частицы через 4 с после начала движения равна...
 - 1. $4\pi \text{ m/c}$;
- 2. $3\pi \text{ m/c}$;
- 3. $2\pi \text{ m/c}$;
- 4. π м/c.

3. По графику силы построить график ускорения.

Варианты ответа:

4. По графику силы построить график перемещения ($V_{_0} \neq 0$).

Варианты ответа:

5. В каком случае ускорение лыжника будет больше: 1) без рюкзака; 2) с рюкзаком?

- 1. Без рюкзака
- 2. Надо знать коэффициент трения
- 3. Ускорения одинаковы
- 4. Зависит от положения центра масс
- 5. С рюкзаком
- 6. Найдите изменение импульса тела массой 5 кг через 15 с при равномерном движении по окружности радиусом 5 м со скоростью 1 м/с (π =3, $\sqrt{2}$ =1.4).
 - 1. 5 (кг·м)/с
- 2. 2 $(\kappa \Gamma \cdot M)/c$
- 3. $7 (\kappa \Gamma \cdot M)/c$
- 4. 10 (кг·м)/c
- 5. 14 (кг·м)/c

7. Два тела движутся с одинаковыми скоростями $v_1 = v_2 = 1 M/c$, как показано P^{10^3} . Па на рисунке. Определить модуль скорости движения первого тела относительно второго $|\upsilon_{lomu2}|$.

$$\overrightarrow{v_1}$$
 $\overrightarrow{v_2}$

- 1. 2:
- 2.0;
- 3. $\sqrt{2}$;
- 4. 1.

8. С наклонной плоскости высотой h без проскальзывания скатывается цилиндр с радиусом r_0 . Определить скорость цилиндра в конце наклонной плоскости.

- 1. $V = \sqrt{gh}$
- 2. $V = \sqrt{2gh}$
- 3. $V = \sqrt{\frac{gh}{3}}$

9. Происходит абсолютно упругое столкновение двух тел (см. рис.).

$$m_1 \longrightarrow \overrightarrow{U} \qquad m_2$$

При каком соотношении масс $\frac{m_1}{m_2}$ шарик m_1 после удара будет иметь вдвое меньшую скорость и

двигаться в обратном направлении?

- 2.3
- 3.1/3
- 4.0

10. Планета массой т движется по эллиптической орбите, в одном из фокусов которой находится звезда массой M.

Если r - радиус-вектор планеты, то справедливы утверждения:

- 1. Момент силы тяготения, действующей на планету, относительно центра звезды, равен нулю.
- 2. Момент импульса планеты относительно центра звезды при движении по орбите не изменяется.
- 3. Момент силы тяготения, действующий на планету, относительно центра звезды не изменяется.
- 11. Частица движется вдоль оси x по закону, $x=7\sin(0.5\pi\ t+\pi/2)$. Определить величину изменения скорости частицы за четверть периода от начала движения.
 - 1.0 m/c
- 2. $\pi \, \text{m/c}$
- 3. 1.5 π M/c

- 4. $2 \pi \text{ m/c}$
- 5. 3,5 π M/c

12. Как изменится площадь под кривой распределения молекул идеального газа по скоростям, если температуру газа увеличить в 2 раза.

- 1. увеличится в 2 раза
- 2. увеличится в 4 раза

3. не изменится

4. уменьшится в 2 раза

13. Молярные теплоемкости аргона в процессах 1-2 и 1-3 равны C_1 и C_2 соответственно.

Тогда $\frac{C_{\scriptscriptstyle 1}}{C_{\scriptscriptstyle 2}}$ составляет...

- 2. 5/3; 3. 7/5; 4. 5/7.

14. Цикл работы тепловой машины изображен на плоскости (p, V) в виде прямоугольника. Рабочее тело – 1 Моль идеального газа. Чему равна работа при изобарном сжатии газа?

- 1. 1;
- 2. 2;
- 3. -1;
- 4. -2;
- 5. 3.

15. Два точечных заряда q_1 =4·10⁻⁹Кл и q_2 =10⁻⁹Кл находятся на расстоянии 1м один от другого. Построить график напряженности поля вдоль прямой, проходящей через заряды.

- 16. Заряженный шар A радиусом 2 см приводится в соприкосновение с незаряженным шаром B, радиус которого 3 см. После того как шары разъединили, энергия шара B оказалась равной 0,4Дж. Какой заряд был на шаре A до соприкосновения?
 - 1. 0,7·10⁻⁶Кл
- 2. 1,7·10⁻⁶Кл
- $3.2,7\cdot10^{-6}$ Кл.
- 17. Что покажет вольтметр, если лампочка перегорит?

- 2. $U = \varepsilon Jr$.
- 3. Ничего не покажет, т.к. ток через лампочку не пойдет.
- 18. Составить уравнение Кирхгофа для контура.

2.
$$I_1R_1 + I_1r_1 - I_2r_2 - I_2R_2 = \varepsilon_3 - \varepsilon_2 - \varepsilon_1$$

3.
$$I_1R_1 + I_1r_1 - I_2r_2 - I_2R_2 = \varepsilon_1 - \varepsilon_2 + \varepsilon_3$$
.

19. На рисунке изображены сечения двух параллельных прямолинейных длинных проводников с однонаправленными токами, причем $J_1=2J_2$. Индукция \vec{B} магнитного поля равна нулю в некоторой точке участка....

- 1. *a*;
- 2. *d*;
- 3. *b*;
- 4. c.
- 20. Частица массой m и заряда q влетает со скоростью υ в однородное магнитное поле под углом α к линиям индукции. Индукция поля B. Определить период вращения.

$$1. \quad T = \frac{2\pi m \cos \alpha}{qB}$$

$$2. T = \frac{2\pi m \sin \alpha}{qB}$$

3.
$$T = \frac{2\pi m}{aB}$$