

Traffic and Capacity Analytics for Major Ports

Team ID: PNT2022TMID05549

Team Size: 4

Team Leader: SYED AKKEAL JUNIATH S A

Team member: SAKTHI GANESH R

Team member: SUBRAMANIAN P

Team member: SUNDHARESHWAR V

Project Report Format

1. INTRODUCTION

- a. Project Objectives
- b. Project Flow

2. LITERATURE SURVEY

- a. References
- b. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- a. Empathy Map Canvas
- b. Ideation & Brainstorming
- c. Proposed Solution
- d. Problem Solution fit

4. **REQUIREMENT ANALYSIS**

- a. Functional requirement
- b. Non-Functional requirements

5. **PROJECT DESIGN**

- a. Data Flow Diagrams
- b. Solution & Technical Architecture
- c. User Stories

6. **PROJECT PLANNING & SCHEDULING**

- a. Prepare Milestone and Activity List
- b. Sprint Delivery Plan
- 7. **TESTING**
- 8. ADVANTAGES & DISADVANTAGES
- 9. **CONCLUSION**
- 10. **APPENDIX**

GitHub & Project Demo Link

INTRODUCTION

The Indian Railways has a capital base of about Rs. 100000 crores and is often referred to as the lifeline of the Indian economy because of its predominance in transportation of bulk freight and long distance passenger traffic. The network crisis-crosses the nation, binding it together by ferrying freight and passengers across the length and breadth of the country. As the Indian economy moves into a high growth trajectory the Railways have also stepped-up developmental efforts and are preparing themselves for an even bigger role in the future.

a.OBJECTIVES:

- Ports serves as an important link in global supply chain. The Indian
 Railways has a capital base of about Rs.100000 crores and is often
 referred to as the lifeline of the Indian economy because of its
 predominance in transportation of bulk freight and long distance
 passenger traffic. Data analytics can be used for analyzing the port
 performance.
- In this project, the port capacity topic was addressed through Cog nos analysis. Reducing the congestion on rail corridors and improving portconnectivity.

 Railways have also stepped-up developmental efforts and are preparing themselves for an even bigger role in the future. So, data analytics plays the major role in this project.

b.PROJECT FLOW:

LITERATURE SURVEY

a.References

Paper 1:

A systematic Analysis of Port Capacity Literature: Trends and Future Research Avenues Publication year:31 January ,2021 Author name: Cecil-Miguel Journal name: Journal of maritime transport & logistics Summary: The continuous growth in the world economy, technology, and the population still shapes the industrialization patterns. This massive progress has also shaped the international transportation requirements. Ports, as the one of the important infrastructure in international transportation and supply chains, have been pushed by these changes in terms of structuring their capacities to satisfy the demand. To do this, this study adopted a systematic literature review and content analysis together. The result of this study showed that the most attractive topics are service level and performance in main category.

Paper-2:

Performance analysis of major ports in India: A quantitative approach Publication year: January ,2016 Author name: Anindita-Man dal Journal name: International Journal of Business Performance Management Summary: The paper examines the performance of 13 major ports of India in respect of key operational performance indicators. Following rapid economic growth India's share in international trade is escalating. This puts increased pressure on these ports, which handle many of the trade to perform with optimal efficiency. The study presents a systematic analysis of different performance indicators for a 10 yr time period (2003 to 2013) using a variety of statistical methods and evaluates status of each port in different categories of performance.

Paper 3:

Analytics for Decision Making at Ports Publication year: October ,2015 Author name: Mrinal Markup Dupattas Journal name: publishing India Summary:

Ports serve as an important link in global supply chain. The Indian Union has endeavored to invest on major ports of the country to meet up to the global standards. The major ports lost its share to the minor ports under the state governments. This paper an attempt has been made to identify the dimensions of port performance and the causality between the dimensions. It chooses to take average turn round time (ATRT) as an indicator of port performance. The paper proposes an analytical framework to identify the causality that would aid the decision makers

Paper-4:

Towards Analytics-Enabled Efficiency Improvements in Maritime Transportation: A Case Study in a Mediterranean Port Publication year: 21 June ,2019 Author name: Pierluigi Zerbino Journal name: Department of Energy, Systems, Territory and Construction Engineering Summary: The current digitization trend, the increased attention towards sustainability, and the spread of the business analytics call for higher efficiency in port operations and for investigating the quantitative approaches for maritime logistics and freight transport systems. Process mining enabled enhancements in the overall export time length, which might improve the vessels' turnover

and reduce the corresponding operational costs, and supported the potential re-design of performance indicators in process control and monitoring.

Paper 5:

Dimensions of the Port Performance: A Review of Literature Publication year: 25 August ,2020 Author name: Bucak, U., Ba saran Journal name: Journal of ETA Maritime Science Summary: The port performance has frequently been studied in the academic literature, and the first studies on the subject are focused on financial or operational dimensions. However, today, port performance has become multi-dimensional due to the changing roles of the ports to its stakeholders, and the fact that local competition has been replaced by global competition through continuously developing routes, etc. Within this study, it is aimed to determine each dimension of the port performance concept which had been handled as a multidimensional process in recent years in literature. So, the concept of port performance had been divided into four basic dimensions which are operational, financial, sustainable, and logistics.

b.Problem Statement Definition

This aims at developing a Machine Learning Model for Traffic analysis for major ports. The Indian Railways has a capital base of about Rs. 100000 crores and is often referred to as the lifeline of the Indian economy because of its predominance in transportation of bulk freight and long distance passenger traffic. The network crisiscrosses the nation, binding it together by ferrying freight and passengers across the length and breadth of the country. As the Indian economy moves into a high growth trajectory the Railways have also stepped-up developmental efforts and are preparing themselves for an even bigger role in the future at the same time it became hard to analyze traffic in major ports and our project helps to overcome that problem.

QUESTION	DESCRIPTION
Who does the problem affect?	Indian railways
Why is it important?	As Indian railway play major role in
	Indian economy it is important to
	analyze the traffic in major ports
What are the benefits?	 AI along with ML model Automatic Prediction Data Analysis
How is it better than the others?	Faster Processing of data with higher accuracy and optimized model.
When to use?	Scenario where we want to analyze the traffic in major ports.

IDEATION & PROPOSED SOLUTION

a.Empathy Map Canvas

b.Ideation & Brainstorming

Step-1: Team Gathering, Collaboration and Select the Problem Statemen

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

c.Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The Indian Railways has a capital base of about 1 lakhs crores and is often referred to as the lifeline of the Indian economy. As it includes transportation of bulk freight and long-distance passengers, traffic and congestion on rail corridors becomes a major challenge.
2.	Idea / Solution description	Data analytics can be applied to visualize freight transportation and congestion on rail corridors across major railway ports to get better insight of the working of port network and to improve the port connectivity.
3.	Novelty / Uniqueness	Can also predict the time at which the particular train will arrive and depart.
4.	Social Impact / Customer Satisfaction	Adequate resources will be provided for the customers regarding the arrival, departure and delay of the trains.
5.	Business Model (Revenue Model)	Businesses using railway ports can easily track the trains. Government can use data analytics dashboard to ensure less traffic on the ports.
6.	Scalability of the Solution	The solution can be used almost for all modes of transportation including the ships and so on. Thus it is scalable for almost all modes of transportation.

d.Problem - Solution Fit Template:

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why

Purpose:

- a. Solve complex problems in a way that fits the state of your customers.
- b. Succeed faster and increase your solution adoption by tapping into existing mediums and channels of behavior.
- c. Sharpen your communication and marketing strategy with the right triggers and messaging.
- d. Increase touch-points with your company by finding the right problembehavior fit and building trust by solving frequent annoyances, or urgent or costly problems.
- e. Understand the existing situation in order to improve it for your target group.

Template:

REQUIREMENT ANALYSIS

a.Functional requirement

Following are the functional requirements of the proposed solution.

FR	Functional Requirement	Sub Requirement
No.	(Epic)	(Story / Sub-Task)
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through
		LinkedIN
FR-2	User Confirmation	Confirmation via Email
FR-3	User Input Acceptance	The dashboard accepts user input by means
		ofselecting the location of the ports.
FR-4	Options for User to filter	The user can use filter options to view
	location of ports	ports bycountries.
FR-5	Visualization of ports.	The dashboard provides various
		visualization techniques to understand
		the flow.
FR-6	Providing Delay	The dashboard is able to provide the user the
	Information of trains.	information like delay of a particular train to
		the ports.

b.Non-functional Requirements:

FR	Non-Functional	Description
No.	Requirement	
NFR-1	Usability	The dashboard is able to provide the users
		the consistency and the aesthetic they
		expect. The user can constantly use the
		dashboard without any flaw in the visual
		quality.
NFR-2	Security	The dashboard is much secured that the
		data of the users are kept confidential and
		also it is not prone to any kind of attacks.
NFR-3	Reliability	The failure rate is minimal and the
		failure can
		easily be rectified using the measures.
		Thus thismakes the dashboard much
		reliable.
NFR-4	Performance	The dashboard gives better performance.
		It provides the user a convenient and
		flexible User Interface.
NFR-5	Availability	The dashboard is always available to
		serve the users. The availability is
		ensured in such a way that the user can
		access the dashboard any time anywhere.
NFR-6	Scalability	The dashboard is highly scalable. It
		canwithstand any increase or
		decrease of loads.

PROJECT DESIGN:

a.Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

- 1.) Predictive analytics will be done from collected dataset and it will be updated in dashboard.
- 2.) Business People can able to view the dashboard to track their goods.
- Govt Sector People can able to predict the congestion in ports by viewing the dashboard and it helps to avoid congestion in future .
- 4.) Rail Passengers can able to track the correct time of rail in ports.

b.Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- i. Find the best tech solution to solve existing business problems.
- ii. Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- iii. Define features, development phases, and solution requirements.
- iv. Provide specifications according to which the solution is defined, managed, and delivered.

Solution Architecture Diagram:

c.User Stories:

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Business People	Monitoring	USN-1	As a user, I can view the dashboard to see the port status.	I can visualize the port status in dashboard.	High	Sprint-1
	Tracking	USN-2	As a user,I can track the goods.	I can track the goods by it's arrival/departure time	High	Sprint-1
Government Sector People	Viewing	USN-1	As a user,I can view the port status regularly	I can able to know the port status	Low	Sprint-2
	Predicting	USN-2	As a user,I will reduce the congestion in ports by predicting the port congestion through dashboard.	I can able to predict the congestion in future	High	Sprint-2
Passengers	Tracing	USN-1	As a user, I can trace the arrival/departure time of rail in ports.	I can able to track the correct time of rail.	High	Sprint-2

PROJECT PLANNING & SCHEDULING:

a.Prepare Milestone and Activity List

DATE	MILESTONE	ASSIGNEE	STATUS	DESCRIPTION
31/08/2022	Data Collection-Download dataset	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	Completed	The dataset for Traffic and Capacity Analytics is to be collected. The dataset which is considered will havethe port information
7/09/2022	Data Pre-processing 1.Renaming the column names 2.Preparing calculations 3.Checking for NULL values 4.Checking for outliers 5.Summarization of dataset 6. Label Encoding	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	Completed	Preprocessing involves renaming the existing column names into meaningfulone, preparing calculations such as calculating traffic percent, checking forNULL values in the dataset.
14/09/2022	Visualizing the dataset	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	Completed	Visualizing the dataset involves plotting thedataset using various plots and doing analysis on that.
21/09/2022	Model Building 1. Building the model using suitable machine learning algorithm 2. Training and testing the model	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	In -Progress	Using certain algorithms to build the model. Those algorithms include 1.Linear regression

28/09/2022	Dashboard Creation	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	Completed	Dashboard for visualizing the port statuswill be developed.
7/10/2022	Ideation Phase 1. Literature survey on the selected project and information gathering. 2. Prepare the empathy map. 3. Ideation	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	Completed	Start the ideation process
10/10/2022	Project Design Phase -1 1. Proposed solution. 2. Prepared fit solution 3. Solution Architecture	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	Completed	Prepare the proposed solution document, which includes the novelty, feasibility ofidea, business model, social impact, scalability of solution, etc.
12/10/2022	Project Design Phase -2 1. Customer journey. 2. Functional requirements 3. Data flow diagram. 4. Technology architecture	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	Completed	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry toexit), Functional requirements and constructarchitecture
31/10/2022	Project Planning Phase 1. Milestone Activity List 2. Sprint Delivery plan	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	Completed	Prepare milestone activity list and sprintdelivery plan for outline of work flow
02/11/2022	Project Development Phase 1.Sprint -1 2.Sprint-2 3.Sprint-3 4.Sprint-4	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V	In-Progress	Plan of each task sprint to be developed.

b.Sprint Delivery Plan

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registra.io.ı	USN-1	As a ::ser, I can register for the application by entering my email, password, and confirming my password.	2	High	Syed Akkeal Juniath S A Sakthi Gane-h R Subramanian P Sundhareshwar V
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V
Sprint-2		USN-3	As a user, I can register for the application through Facebook	2	Low	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V
Sprint-3		USN-4	As a user, I can register for the application through Gmail	2	Medium	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V
Sprint-4	Login	USN-5	As a user, I can log into the application byentering email & password	1	High	Syed Akkeal Juniath S A Sakthi Ganesh R Subramanian P Sundhareshwar V
	Dashboard					

TESTING

```
import numpy as np
import pandas as pd
# Loading the dataset
df = pd.read csv('D:/ibm/datafile 02.csv')
print(df.columns)
df.head()
Index(['Port', 'Traffic in Eleventh Plan (MT) (2011-12)Proj.',
       'Traffic in Eleventh Plan (MT) (2011-12) Ach.',
       'Traffic in Eleventh Plan (MT) (2011-12) %',
       'Total Capacity in Eleventh Plan (MT) (2011-12) Proj.',
       'Total Capacity in Eleventh Plan (MT) (2011-12) Ach.',
'Total Capacity in Eleventh Plan (MT) (2011-12) %'],
      dtype='object')
             Port Traffic in Eleventh Plan (MT) (2011-12) Proj. \
0
         Kolkata
                                                               1343
                                                               4450
          Haldia
1
        Paradeep
                                                               7640
2
3
   Visakhapatnam
                                                               8220
          Ennore
                                                               4700
4
   Traffic in Eleventh Plan (MT) (2011-12) Ach. \
0
                                               1223
1
                                               3101
2
                                               5425
3
                                               6742
4
                                               1496
   Traffic in Eleventh Plan (MT) (2011-12) % \
0
1
                                            7000
2
                                            7100
3
                                           8200
4
                                           3200
   Total Capacity in Eleventh Plan (MT) (2011-12) Proj. \
0
                                                    3145
1
                                                    6340
2
                                                   10640
3
                                                   10810
4
                                                    6420
   Total Capacity in Eleventh Plan (MT) (2011-12) Ach. \
0
                                                    1635
1
                                                    5070
2
                                                    7650
3
                                                    7293
4
                                                    3100
```

```
Total Capacity in Eleventh Plan (MT) (2011-12) %
0
                                                 5100
                                                 7900
1
2
                                                 7100
3
                                                 6700
4
                                                 4800
# Preprocessing the dataset
# Renaming the columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-
12) Proj.':'Traffic_Projected','Traffic in Eleventh Plan (MT) (2011-12)
Ach.':'Traffic Achieved', 'Total Capacity in Eleventh Plan (MT)
(2011-12) Proj.':'Total_Capacity_Projected', 'Total Capacity in
Eleventh Plan (MT) (2011-12) Ach.':'Total Capacity Achieved'}, inplace
= True)
df
             Port Traffic Projected Traffic Achieved \
0
         Kolkata
                                1343
                                                  1223
1
          Haldia
                                4450
                                                   3101
                                7640
                                                   5425
2
         Paradeep
3
   Visakhapatnam
                                8220
                                                   6742
4
          Ennore
                                4700
                                                  1496
5
         Chennai
                                5750
                                                   5571
6
       Tuticorin
                                3172
                                                   2810
7
          Cochin
                                3817
                                                   2010
8
             NMPT
                                4881
                                                   3294
                                                   3900
9
         Mormugao
                                4455
                                7105
                                                   5618
10
           Mumbai
                                6604
                                                   6575
11
            JNPT
           Kandla
                                8672
                                                   8250
    Traffic in Eleventh Plan (MT) (2011-12) %
Total_Capacity_Projected \
                                          9100
3145
                                          7000
1
6340
2
                                          7100
10640
3
                                          8200
10810
                                          3200
4
6420
                                          9700
7230
```

```
6
                                          8900
6398
7
                                          5300
5475
8
                                          6800
6050
                                          8800
6690
                                          7900
10
9191
                                         10000
11
9560
12
                                          9500
12220
    Total_Capacity_Achieved Total Capacity in Eleventh Plan (MT)
(2011-12) %
0
                       1635
5100
1
                       5070
7900
2
                       7650
7100
3
                       7293
6700
4
                       3100
4800
5
                       7972
11000
6
                       3334
5200
7
                       4098
7400
                       5097
8
8400
                       4190
6200
10
                       4453
4800
                       6400
11
6600
12
                       8691
7100
# Perparing the Calculations:
Traffic_Percent =
round((df.Traffic_Achieved/df.Traffic_Projected)*100,2)
Traffic_Percent
```

```
0
      91.06
      69.69
1
2
      71.01
3
      82.02
4
      31.83
5
      96.89
6
      88.59
7
      52.66
8
      67.49
      87.54
10
     79.07
      99.56
11
      95.13
12
dtype: float64
Total Percent =
round (df.Total Capacity Achieved/df.Total Capacity Projected) *100,2)
Total_Percent
       51.99
0
       79.97
1
2
       71.90
       67.47
3
      48.29
4
5
      110.26
6
      52.11
7
      74.85
8
       84.25
9
       62.63
10
       48.45
       66.95
11
12
       71.12
dtype: float64
# Replacing the existing columns with newly created columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12)
%':'Traffic_Percent','Total Capacity in Eleventh Plan (MT) (2011-12)
%':'Total Percent'}, inplace = True)
df.iloc[:,3:4] = Traffic_Percent
df.iloc[:,6:] = Total_Percent
             Port Traffic Projected Traffic Achieved
Traffic_Percent \
0
          Kolkata
                                1343
                                                   1223
91.06
           Haldia
                                4450
                                                   3101
1
69.69
2
         Paradeep
                                7640
                                                   5425
71.01
3 Visakhapatnam
                                8220
                                                   6742
```

nnore			
HOLC	4700	1496	
i e	F3F0	5.531	
ennai	5750	5571	5
corin	3172	2810)
501111	3172	2010	•
ochin	3817	2010)
NMPT	4881	3294	ł
nugao	4455	3900).
ımbəi	71.05	5.61.9	i
IIIDal	7105	3010	,
JNPT	6604	6575)
andla	8672	8250)
	Total_Capa		
			51.99
			79.97
			71.90
			67.47 48.29
			110.26
			52.11
5475		4098	74.85
6050		5097	84.25
6690		4190	62.63
9191		4453	48.45
			66.95
12220		8691	71.12
or null values			
sum()			
(0		
))		
)		
eved (0		
eved (
eved (ent (cy_Projected (cy_Achieved ()))		
eved (ent (cy_Projected (cy_Achieved ())		
	mugao ambai JNPT andla pacity_Projected	ochin 3817 NMPT 4881 mugao 4455 umbai 7105 JNPT 6604 andla 8672 Dacity_Projected Total_Capa 3145 6340 10640 10810 6420 7230 6398 5475 6050 6690 9191 9560 12220	Ochin 3817 2010 NMPT 4881 3294 mugao 4455 3900 nmbai 7105 5618 JNPT 6604 6575 andla 8672 8250 Dacity_Projected Total_Capacity_Achieved 3145 1635 6340 5070 10640 7650 10810 7293 6420 3100 7230 7972 6398 3334 5475 4098 6050 5097 6690 4190 9191 4453 9560 6400 12220 8691

82.02

df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 13 entries, 0 to 12 Data columns (total 7 columns): # Column Non-Null Count Dtype ---------0 13 non-null object Traffic_Projected 13 non-null 1 int64 2 Traffic_Achieved 13 non-null int64 Traffic Percent 3 13 non-null float64 Total_Capacity_Projected 13 non-null int64 4 Total_Capacity_Achieved 13 non-null 5 int64 Total Percent 13 non-null float64 dtypes: float64(2), int64(4), object(1) memory usage: 856.0+ bytes df.describe() Traffic Projected Traffic Achieved Traffic Percent \ 13.000000 13.000000 13.000000 count mean 5446.846154 4308.846154 77.887692 std 2133.280019 2212.894855 19.382398 31.830000 1343.000000 1223.000000 min 4450.000000 2810.000000 69.690000 25% 50% 4881.000000 3900.000000 82.020000 75% 7105.000000 5618.000000 91.060000 8672.000000 8250.000000 99.560000 max Total Capacity Projected Total Capacity Achieved Total Percent 13.000000 13.000000 count 13.000000 7705.307692 5306.384615 mean 68.480000 2140.254796 std 2570.242673 17.252637 3145.000000 1635.000000 min 48.290000 25% 6340.000000 4098.000000 52.110000 6690.000000 5070.000000 50% 67.470000 75% 9560.000000 7293.000000 74.850000 max 12220.000000 8691.000000 110.260000 cor = df.corr

Summary of Dataset

cor

	method DataFram		Port	Trafí	ic_Projected
Traffic	c_Achieved Traff				
0	Kolkata	134	13	1223	
91.06					
1	Haldia	445	50	3101	
69.69					
2	Paradeep	764	10	5425	
71.01					
3 Vi	sakhapatnam	822	20	6742	
82.02					
4	Ennore	470	00	1496	
31.83					
5	Chennai	575	50	5571	
96.89					
6	Tuticorin	317	12	2810	
88.59					
7	Cochin	381	.7	2010	
52.66					
8	NMPT	488	31	3294	
67.49					
9	Mormugao	445	55	3900	
87.54					
10	Mumbai	710	15	5618	
79.07	110/100 04 1	7.1	, 0	0010	
11	JNPT	660	14	6575	
99.56	OWLI	000	, 1	0070	
12	Kandla	867	12	8250	
95.13	Ranara	001	2	0230	
20.13					
т-	1 C: D	m1	Cit 7-bi		M-+-1 D
	tal_Capacity_Pro		Capacity_Achi		Total_Percent
0		3145		1635	51.99
1		6340		5070	79.97
2		10640		7650	71.90
3		10810		7293	67.47
4		6420		3100	48.29
5		7230		7972	110.26
6		6398		3334	52.11
7		5475		4098	74.85
8		6050		5097	84.25
9		6690		4190	62.63
10		9191		4453	48.45
11		9560		6400	66.95
12		12220		8691	71.12
>					

#Finding Outliers anr replacing the outliers import matplotlib.pyplot as plt import seaborn as sns

sns.boxplot(x='Port',y='Traffic_Projected',data=df)

```
plt.rcParams["figure.figsize"] = [17.50, 3.50]
plt.rcParams["figure.autolayout"] = True
```


Check For Categorical Columns and do encoding

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
print(df.Port.value_counts())
df.Port = le.fit_transform(df.Port)
print(df.Port.value counts())
Kolkata
                 1
Haldia
                 1
Paradeep
                 1
Visakhapatnam
Ennore
Chennai
Tuticorin
Cochin
                 1
NMPT
                 1
Mormugao
Mumbai
JNPT
Kandla
Name: Port, dtype: int64
      1
```

```
3
10
      1
12
     1
2
      1
0
11
      1
1
      1
9
      1
7
      1
8
      1
4
5
     1
Name: Port, dtype: int64
# Classification
#y = df.Traffic Percent
#print(y)
#df.drop(['Traffic_Percent'],axis=1)
df.head()
   Port Traffic_Projected Traffic_Achieved Traffic_Percent \
0
    6
                     1343
                                       1223
                                                        91.06
1
      3
                      4450
                                        3101
                                                        69.69
                      7640
                                        5425
                                                        71.01
2
    10
3
                      8220
                                        6742
                                                        82.02
    12
4
                      4700
                                        1496
                                                        31.83
   Total_Capacity_Projected Total_Capacity_Achieved Total_Percent
0
                                                              51.99
                       3145
                                                1635
1
                       6340
                                                5070
                                                              79.97
2
                      10640
                                                7650
                                                              71.90
3
                      10810
                                                7293
                                                              67.47
4
                       6420
                                                3100
                                                              48.29
ddf = df.drop(['Traffic_Percent'],axis=1)
ddf
    Port Traffic_Projected Traffic_Achieved
Total_Capacity_Projected \
Ω
                       1343
                                         1223
       6
3145
                       4450
                                         3101
6340
2
                       7640
                                         5425
      10
10640
3
      12
                       8220
                                         6742
```

10810								
4	2		4700		1496			
6420 5	0		5750		5571			
7230	U		3730		5571			
6	11		3172		2810			
6398								
7	1		3817		2010			
5475								
8	9		4881		3294			
6050	7		4455		2000			
9 6690	7		4455		3900			
10	8		7105		5618			
9191	Ü		7100		0010			
11	4		6604		6575			
9560								
12	5		8672		8250			
12220)							
nos		500 AN C. 2.4	_ 85.00					
	otal'	_Capacity_Achi		otal_Perce				
0 1			1635 5070	51. 79.				
2			7650	71.				
3			7293	67.				
4			3100	48.				
5			7972	110.				
6			3334	52.				
7			4098	74.				
8			5097	84.				
9			4190	62.				
10			4453	48.				
11			6400	66.				
12			8691	71.				
		loc[:,1:]						
print	(X)							
T	raff	ic Projected	Traffic	Achieved	Total	_Capacity_Pr	oiected	\
0		1343		1223	_		3145	,
1		4450		3101			6340	
2		7640		5425			10640	
3		8220		6742			10810	
4		4700		1496			6420	
5		5750		5571			7230	
6		3172		2810			6398	
7		3817		2010			5475	
8		4881		3294			6050	
9		4455		3900			6690	
10		7105		5618			9191	

ADVANTAGES & DISADVANTAGES

The spatial distribution of the costs and benefits of port activity further complicate the tasks of attributing impacts, distributing mitigation and compensation, and identifying institutional actors with the willingness and ability to overcome the inevitable collective action problems. Strategies to internalise the externalities of port activity are vital, yet they are also limited by the spatial dynamics and other complexities that come with an activity that has multiple connections to the urban economy. In this context, governance frameworks that include all the relevant actors in the search for collaborative solutions to improve traffic management and planning, but that also have the institutional power to enforce them, are probably more important than any one single intervention. In that spirit, I will conclude with an observation about some common elements of the most promising strategies that are emerging in port-city-hinterland connectivity around the world. In the places where maritime and inland terminal operators, and the transport providers which provide the connective linkages between them, have come together to internalise the costs of some externalities, they have done so because they have been prompted by the political intervention of key stakeholders. For example, the PierPass system in Los Angeles and Long Beach really was a preemptive action by terminal operators to avoid even more stringent and potentially unworkable regulation from the state agencies (Giuliano and Linder, 2013). These state agencies in turn were responding to pressures from locally elected representatives, who in turn were responding to the needs of their constituents (Hall, 2007). Likewise, the reservation system, and subsequent actions in Vancouver to compensate truckers for waiting time was the result of strike action by truckers. We have not yet seen the container terminal operating industry take proactive leadership alone in traffic issues beyond the gates, and perhaps this would be an unwelcome intrusion in an urban democracy. However, there are interesting and important examples of action by public authorities, often in partnership with private actors, of traffic planning that works for multiple interest.

CONCLUSION

Indian firms have focused on interconnected and lean supply chains to overcome the supply gaps in normal business operations. The COVID-19 pandemic has led to massive SCDs due to undiscovered supply chain vulnerabilities caused by government-imposed economic restrictions including transportation disruptions worldwide including India, which adversely impacted the normal functioning of the firms. Many Indian firms have experienced severe disruptions in transportation and logistics services, including stronger impact on transportation and logistics data, time delays, and cargo cancellations due to drastically reduced freight capacity, limited mobility, ports shutdown, and problems in routine customs clearances. All this has also severely delayed the production of goods, transport consignments, and logistics services thereby caused massive delays and rerouting to final consumers. The suggested model of robust transport and ALS can be widely used by firms for speedier SCR in the context of economic crises like the COVID-19 pandemic. Over the period, the government has gradually removed most of the restrictions and the firms have made concerted efforts to speedily recover from SCDs, however, inadequate applications of robust TI and ALS have delayed the SCR by the firms. This calls for reviewing current transport and ALS used by firms on priority for speedier SCR. Therefore, the suggested model can be widely applied to address the SCDs using robust intelligence transportation systems and ALS. The challenges and opportunities in operationalizing the suggested model along with optimization of transport and logistics resources should also be considered by the firms.

APPENDIX

 $\textbf{Github:} \underline{https://github.com/IBM-EPBL/IBM-Project-9237-1658988792}$

 $Demo\ Video\ Link: \underline{https://www.youtube.com/embed/tocmnl3GTL4}$