(1) Niech $f\colon X\to\mathbb{R}$ będzie funkcją określoną na przestrzeni topologicznej (X,\mathcal{T}) . Wykazać, że zbiór

$$E(f) = \{(x, t) \in X \times \mathbb{R} \colon f(x) \le t\}$$

jest domknięty w iloczynie kartezjańskim (X, \mathcal{T}) i prostej euklidesowej wtedy i tylko wtedy, gdy funkcja f jest półciągła z dołu.

- (2) Które z następujących podzbiorów przestrzeni euklidesowej \mathbb{R}^2 są zwarte:
 - (a) $A = \{(x, \frac{1}{x}) : x > 0\};$
 - (b) $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^3 \le 2020\};$
 - (c) $C = \{(1 1/n, 1/n) \in \mathbb{R}^2 : n = 1, 2, ...\} \cup \{(x, y) \in \mathbb{R}^2 : y = 0\}.$
- (3) Niech O(a,b) będzie okręgiem na płaszczyźnie, którego średnicą jest odcinek o końcach $a,b \in \mathbb{R} \times \{0\}$. Dla $A \subseteq \mathbb{R} \times \{0\}$ przyjmijmy $O(A) = A \cup \bigcup \{O(a,b) \colon a,b \in A, a \neq b\}$. Wykazać, że O(A) jest zbiorem zwartym na płaszczyźnie euklidesowej wtedy i tylko wtedy, gdy A jest zbiorem zwartym.
- (4) Udowodnić, że jeżeli A jest domkniętym, a B zwartym podzbiorem przestrzeni metrycznej (X, ρ) i $A \cap B = \emptyset$, to istnieje $\varepsilon > 0$, takie że $\rho(a, b) \ge \varepsilon$ dla dowolnych $a \in A, b \in B$.
- (5) Podać przykłady zbiorów w przestrzeniach topologicznych, które są domknięte i ograniczone, ale nie są zwarte.
- (6) Udowodnić, że jeżeli (X, ρ) jest przestrzenią metryczną zwartą, to każda ciągła funkcja $f: X \to \mathbb{R}$ jest ciągła jednostajnie, to znaczy dla każdego $\varepsilon > 0$ istnieje $\delta > 0$, taka że $|f(x) f(x')| < \varepsilon$ dla dowolnych $x, x' \in X$ spełniających warunek $\rho(x, x') < \delta$.

WSKAZÓWKA. Dowód wprost: zastosować pokryciowa definicje zwartości.

Dowód nie wprost: zdefiniować dwa ciągi i skorzystać z ciągowej charakteryzacji zwartości.

(7) Udowodnić, że jeśli przestrzeń K jest zwarta, to rzut $\pi_1: X \times K \to X$ jest odwzorowaniem domkniętym dla dowolnej przestrzeni topologicznej X.

WSKAZÓWKA: Rozważyć domknięty $F\subseteq X\times K$ i $x_0\notin\pi_1[F]$. Wtedy zbiór $\{(x_0,y)\colon y\in K\}$ jest zwarty i rozłączny z F.

- (8) Niech $f: X \to Y$ będzie taką funkcję, że jej wykres jest domkniętym podzbiorem $X \times Y$. Udowodnić, że jeżeli przestrzeń Y jest zwarta to f jest funkcją ciągłą. WSKAZÓWKA: Poprzednie zadanie.
- (9) Niech (X, \mathcal{T}) będzie przestrzenią Hausdorffa, a A i B jej zwartymi podzbiorami rozłącznymi. Wykazać, że istnieją rozłączne zbiory V i W otwarte w X takie, że $A \subseteq V$ i $B \subseteq W$.

WSKAZÓWKA. Dla jednopunktowego B zobacz dowód 2.1.13 w skrypcie.

(10) Niech (X,d) będzie przestrzenią zwartą metryczną. Niech K(X) będzie rodziną wszystkich niepustych zbiorów domkniętych w X. Odległość między $A,B\in K(X)$ określamy formułą

$$d_H(A, B) = \max\{\sup\{d(x, A) : x \in B\}, \sup\{d(x, B) : x \in A\}\}.$$

Sprawdzić, że d_H jest metryką na K(X) (nazywamy ją metryką Hausdorffa).

WSKAZÓWKA: Zauważyć, że $d_H(A,B) = \sup_{x \in A \cup B} |d(x,A) - d(x,B)|$, a następnie pokazać, że $d_H(A,B) = \sup_{x \in X} |d(x,A) - d(x,B)|$.

(11) Niech (X,d) będzie przestrzenią zwartą metryczną. Pokazać, że przestrzeń $(K(X),d_H)$ jest całkowicie ograniczona, tzn. dla każdego $\epsilon>0$ istnieje pokrycie K(X) skończenie wieloma kulami o promieniu ϵ .

WSKAZÓWKA: Rozważyć skończone pokrycie $B(s_1, \epsilon), \ldots, B(s_k, \epsilon)$ przestrzeni X. Następnie rozważyć kule w K(X) o środkach $S \subseteq \{s_1, \ldots, s_k\}$ i promieniu ϵ .

Wywnioskować, że dla dowolnego ciągu elementów z K(X) można wybrać podciąg Cauchy'ego. Przypomnijmy, że (A_n) jest ciągiem Cauchy'ego jeśli

$$\forall_{\epsilon>0}\exists_N\forall_{m,n>N}d_H(A_m,A_n)<\epsilon.$$

(12) Niech (X,d) będzie przestrzenią zwartą metryczną. Pokazać, że przestrzeń $(K(X),d_H)$ jest zwarta.

WSKAZÓWKA: Najpierw pokazać, że dla ciągu zstępującego (A_n) mamy

$$\lim_{n} A_n = \bigcap_{n} A_n.$$

Następnie pokazać, że dla ciągu Cauchy'ego (B_n) mamy

$$\lim_{n} B_n = \bigcap_{n} \bigcup_{k \ge n} B_k.$$

(13) **Twierdzenie Marczewskiego:** Przestrzeń $[0,1]^T$ jest ośrodkowa dla T mocy $\leq \mathfrak{c}$. WSKAZÓWKA: Można założyć, że $T \subseteq [0,1]$. Zdefiniować przeliczalny zbiór gęsty w $[0,1]^T$, używając $\mathbb Q$ i przedziałów o końcach wymiernych.