ALGEBRA 1, Lista 1

Konwersatorium 5.10.2020, Ćwiczenia 6.10.2020 i 7.10.2020.

Oznaczenia zadań i ich części: S: do samodzielnego wykonania, K: do omówienia na konwersatorium.

- OS. Materiał teoretyczny (definicje, twierdzenia, przykłady): działanie w zbiorze, łączność, przemienność, element neutralny. Definicja grupy i pierwsze przykłady grup. Transport działania poprzez bijekcję.
 - 1. Sprawdzić czy następujące działanie * na danym zbiorze A jest łączne, przemienne i czy ma element neutralny.
 - (a)S $A = \mathbb{N}_{>0}$; m * n = NWD(m, n).
 - (b)S $A = \mathbb{N}_{>0}$; m * n = NWW(m, n).
 - (c)S $A = \mathbb{N}; m * m = 2^{mn}.$
 - (d)S $A = \mathbb{N}; m * n = m2^n$.
 - (e)S $A = \mathbb{R}$; $m * n = (m+n)^2$.
 - (g)K $A = \mathbb{N}_{>0}$; $m * n = m^n$.
 - 2. Dla r > 0 niech $K_r = \{z \in \mathbb{C} : |z| \leqslant r\}$.
 - (a) Narysować na płaszczyźnie Gaussa zbiór K_r .
 - (b) Dla których r > 0 mnożenie liczb zespolonych jest działaniem w zbiorze K_r ?
 - 3. Sprawdzić czy następujące działanie * na danym zbiorze A jest łączne, przemienne i czy ma element neutralny. Sprawdzić też, czy (A, *) jest grupą.
 - (a) $A = \mathbb{Q}; \ a * b = \frac{a+b}{2}.$
 - (b) $A = \mathbb{Q} \setminus \{0\}; \ a * b = \frac{a}{b}$.
 - (c) $A = \mathbb{R}$; x * y = x + y + 2.
 - (d) $A = \mathbb{N}; m * n = \min(m, n).$
 - (e) $A = \mathbb{N}; m * n = \max(m, n).$
 - (f) $A = \mathbb{N}; m * n = m.$
 - (g) $A = \mathbb{N}$; $m * n = 2^{m+n}$.
 - (h) $A = \mathbb{Z}$; m * n = m n.
 - (i) A to płaszczyzna; P * Q to środek odcinka o końcach P, Q.
 - 4. Załóżmy, że $f:A\to B$ jest bijekcją, o jest działaniem na zbiorze A i * jest działaniem indukowanym w zbiorze B przez działanie o poprzez funkcje f. Udowodnić, że:
 - (a) jeśli ∘ jest przemienne, to * jest przemienne (na wykładzie był dowód analogicznego faktu dla łączności);
 - (b) jeśli \circ ma element neutralny w A, to * ma element neutralny w B;
 - (c) jeśli (A, \circ) jest grupą, to (B, *) jest grupą.
 - 5. Załóżmy, że o jest działaniem łącznym w skończonym zbiorze A. Udowodnić, że istnieje $a \in A$ takie, że $a \circ a = a$.

Wskazówka

WskazowkaDla $x \in A$ oraz l > 0 niech x^l oznacza $\underbrace{x \circ \cdots \circ x}_{l \text{ razy}}$.

$$\iota$$
 razy

(a) Zauważyć, że dla każdych k, l > 0 oraz $x \in A$ mamy:

$$(x^k)^l = x^{kl}, \quad x^k x^l = x^{k+l}.$$

- (b) Dla $c \in A$ rozważyć elementy c^{2^k} , gdzie $k = 0, 1, 2, \ldots$ i znaleźć $b \in A$ oraz $l \geqslant 2$ takie, że $b^l = b$.
- (c) Udowodnić, że jeśli b i l są jak w (b) powyżej, to dla $a:=b^{l-1}$ mamy $a\circ a=a$.
- 6. Podać przykład działania * na zbiorze {0,1} takiego, że

$$0 * (0 * 0) \neq (0 * 0) * 0.$$

Ile istnieje takich działań?