CE TRADE

PTO/SB/08a (08-03)

Approved for use through 08/30/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid CMB control number.

Substitute for form 1449A/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet

Of
4 17

	Complete if Known	
Application Number	10/849,348	
Filing Date	May 19, 2004	
First Named Inventor	Robert H. Burgener, II	
Group Art Unit	2814	
Examiner Name	Wai Sing Louie	
Attorney Docket Number	3398.2.10	

	U.S. PATENT DOCUMENTS				
Examiner		Document Number	Publication Date	Name of Patentee or Applicant of	Pages, Columns, Lines, Where Relevant
Initials *	Cite No.1	Number - Kind Code ^{2 (F ARCAPA)}	MM-DD-YYYY	Cited Document	Passages or Relevant Figures Appear
482	U1	US-2004/0061114 A1	04/01/2004	Yan et al.	
	U2				
	U3				
	U4				•
	U5				
	U6				
	U7				
	UB				
	U9				
	U10				
	U11				
	U12				
··································	U13				
	U14				

	FOREIGN PATENT DOCUMENTS					
Examiner	Cite No.1	Foreign Patent Document	Publication Date	Publication Date MM-DD-YYYY Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages	
Initials*	Cité No.	Country Code ³ - Number ⁴ - Kind Code ⁶ (Fixeen)			or Relevant Figures Appear	T [©]
	F1					
	F2					
	F3					
	F4					
	F5					
	F6					

Examiner Signature	SA	Date Considered	5/21/06	,

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. \(^1\) Applicant's unique citation designation number (optional). \(^2\) See Kinds Codes of USPTO Patent Occuments at www.uspto.gov or MPEP 901.04. \(^3\) Enter Office that issued the document, by the two-letter code (WIPO) Standard ST.3). * For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. * Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 18 If possible. * Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

FRADEMAN

PTO/SB/08b (08-03) Approved for use through 06/30/2006. OMB 0651-0031

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet Of

Substitute for form 1449B/PTO

Complete if Known				
Application Number	10/849,348			
Filing Date	May 19, 2004			
First Named Inventor	Robert H. Burgener, II			
Group Art Unit	2814			
Examiner Name	Wai Sing Louie			
Attorney Docket Number	3398.2.10			

		NON PATENT LITERATURE DOCUMENTS	
Examiner Initials *	Cite No.1	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T?
WSL	O1	AULBUR, W.; Density Functional Theory: Basic Ideas & Applications; Ohio State University.	•
1	O2	LOOK, D.C., and CLAFLIN, B.; P-type doping and devices based on ZnO; 08/2003; Wiley-VCH Verlag GmbH & Co.	,
	О3	ZUNGER, A.; Practical Doping Principles; NCPV and Solar Program Review Meeting 2003; pp. 831-835.	•
	04	ZHANG, S.B., WEI, S.H., and ZUNGER, A.; Intrinsic <i>n</i> -type versus <i>p</i> -type doping asymmetry and the defect physics of ZnO; Physical Review B; 01/31/2001; pp. 075205-1 – 075205-7; Volume 63; The American Physical Society.	•
	O5	LIMPIJUMNONG, S., ZHANG, S.B., WEI, S-H., and PARK C.H; Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide; Physical Review Letters; 04/16/2004; Volume 92, Number 15; The American Physical Society.	•
	O6	YAMAMOTO, T., and KATAYAMA-YOSHIDA, H.; Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO; Japanese Journal of Applied Physics; 02/15/1999; pp. L 166-L 169; Volume 38; Japanese Journal of Applied Physics Publication Board.	·
	07	PARK, C.H., ZHANG, S.B., and WEI, S-H.; Origin of p-type doping difficulty in ZnO: The impurity perspective; Physical Review B; 08/05/2002; pp. 073202-1 – 073202-3; Volume 66; The American Physical Society.	•
	O8	TSUKAZAKI, A., ATSUSHI, T., OHTOMO, A., ONUMA, T., OHTANI, M., MAKINO, T., et al; Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO; Nature Materials; 01/2005; pp. 42-46; Volume 4; Nature Publishing Group.	0
	O9	NONAKA, M., MATSUSHIMA, S., MIZUNO, M., and KOBAYASHI, K.; Electronic Structure of Group III Elements Dopes into ZnO by Using Molecular Orbital Calculation; Chemistry Letters 2002; 02/20/2002; pp. 580-581; The Chemical Society of Japan.	•
	O10	WANG, L.G., and ZUNGER, A.; Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of p-type ZnO; Physical Review Letters; 06/27/2003; pp. 256401-1 – 256401-4; Volume 90, Number 25; The American Physical Society.	•
	011	NORTON, D.P., HEO, Y.W., IVILL, M.P., IP, K., PEARTON, S.J., et al; ZnO: growth, doping and processing; Materialstoday; 06/2004; Elsevier Ltd.	٠
	O12	LEE, E-C., KIM, YS., JIN, YG., and CHANG, K.J.; First-Principles Study of p-Type Doping and Codoping in ZnO; Journal of the Korean Physical Society; 12/2001; pp. S23-S26; Volume 39.	• ,
1	013	MORHAIN, C., TEISSEIRE, M., VEZIAN, S., VIGUE, F., RAYMOND, F., et al; Spectroscopy of Excitons, Bound Excitons and Impurities in h-ZnO Epilayers; 09/30/2001; pp. 881-885; Volume 229, Number 2; Wiley VCH; Berlin.	•
V	014	BANDYOPADHYAY, S., PAUL, G.K., ROY, R., SEN, S.K., and SEN, S; Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique; Materials Chemistry and Physics; 05/17/2001; pp. 83-91; Volume 74; Elsevier Science B.V.	,

			
Examiner	Date	- / / -	
Signature	 Considered	5/21/26	
Ungridient -	00		

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Applicant's unique citation designation number (optional). Applicant is to place a check mark here if English language Translation is attached.

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO Complete if Known 10/849,348 Application Number INFORMATION DISCLOSURE Filing Date May 19, 2004 STATEMENT BY APPLICANT First Named Inventor Robert H. Burgener, II Group Art Unit 2814 (use as many sheets as necessary) Examiner Name Wai Sing Louie Sheet Of Attorney Docket Number 3398.2.10

wsr	O15	WILKINSON, J., XIONG, G., UCER, K.B., and WILLIAMS, R.T.; Lifetime and Oscillator Strength of Excitonic Luminescence in Zinc Oxide; Department of Physics, Wake Forest University, Winston-Salem, NC.	
	O16	KOBAYASHI, A., SANKEY, O.F., and DOW, J.D.; Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, and ZnO; Physical Review B; 07/15/1983; pp. 946-956; Volume 28, Number 2; The American Physical Society.	ø
	017	DANEU, N., REENIK, A., and BERNIK, S.; Grain Growth Control in Sb ₂ O ₃ -Doped Zinc Oxide; Journal of the American Ceramic Society; 2003; pp. 1379-1384; Volume 86, Number 8.	
	O18	OHYAMA, M.; Sol-Gel Preparation of Transparent and Conductive Aluminum-Doped Zinc Oxide Films with Highly Preferential Crystal Orientation; Journal of the American Ceramic Society; 1998; pp. 1622-1632; Volume 81, Number 6.	•
	O19	DUAN, X.L., YUAN, D.R., CHENG, X.F., SUN, H.Q., SUN, Z.H., et al; Microstructure and Properties of Co ² : ZnAl₂O₃/SiO₂ Nanocomposite Glasses Prepared by Sol-Gel Method; Journal of the American Ceramic Society; 2005; pp. 399-403; Volume 88, Number 2.	-•
	O20	SOHN, K.S., HWANG, D.K., and MYOUNG, J.M.; Time Integrated/Resolved Photoluminescense of ZnO Films Deposited on Sapphire and GaAs; Japanese Journal of Applied Physics; 12/2003; pp. 7376-7378; The Japan Society of Applied Physics.	,
	021	SUN, X.W.; Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition; Journal of Applied Physics; 07/01/1999; pp. 408-411; Volume 86, Number 1; American Institute of Physics.	
	O22	BURDEN, A.P., BISHOP, H.E., BRIERLEY, M., FRIDAY, J.M., HOOD, C., et al.; Incorporating consumer-priced field emitting inks into arrays of triode devices; Solid State Electronics; 2001; pp. 987-996; Vol. 45; Printable Field Emitters Ltd.	
	O23	MINAMI, T., MIYATA, T., SHIRAI, T., and NAKATANI, T.; Electroluminescent Oxide Phosphor Thin Films Prepared by a Sol-gel Process; Mat. Res. Soc. Symp. Proc.; 2000; pp. Q4.3.1 – Q4.3.6; Vol. 621; Materials Research Society.	•
	O24	QIU, C., CHEN, H., WONG, M., and KWOK, H.S.; Dependence of the Current and Power Efficiencies of Organic Light-Emitting Diode on the Thickness of the Constituent Organic Layers; IEEE Transactions On Electron Devices; 09/2001; pp. 2131-2137; Vol. 48; IEEE.	•
	O25	MATSUDA, T., KAWABE, M., IWATA, H., and OHZONE, T.; Visible Electroluminescence from MOS Capacitors with Si-Implanted SiO ₂ ; IEICE Trans. Electron.; 09/11/2002; pp. 1895-1904; Vol. E85-C, No. 11.	•
	O26	ONG, H.C., LI, A.S.K., and DU, G.T.; Depth profiling of ZnO thin films by cathodoluminescence; Applied Physics Letters; 04/30/2001; pp. 2667-2669; Vol. 78, No. 18; American Institute of Physics.	`
	O27	WASHINGTON, P.L., ONG, H.C., DAI, J.Y., and CHANG, R.P.H.; Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry; Applied Physics Letter; 06/22/1998; pp. 3261-3263; Vol. 72, No. 25; American Institute of Physics.	,
	O28	SEKIGUCHI, T., OHASHI, N., and YAMANE, H.; Cathodoluminescence Study on ZnO and GaN; Solid State Phenomena; 1998; pp. 171-182; Vols. 63-64; Scitec Publications; Switzerland.	•
V	029	KOUYATE, D., RONFARD-HARET, JC., and KOSSANYI, J.; Photo- and electro- luminescence of rare earth-doped semiconducting zinc oxide electrodes: Emission from both the dopant and the support; Journal of Luminescence; 1991; pp. 205-210; Vol. 50; Elsevier Science Publishers B.V.	,

Examiner Signature	The same	Date Considered	5/21/06

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached.

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO Complete if Known Application Number 10/849,348 INFORMATION DISCLOSURE Filing Date May 19, 2004 STATEMENT BY APPLICANT First Named Inventor Robert H. Burgener, II Group Art Unit 2814 (use as many sheets as necessary) Examiner Name Wai Sing Louie 3398.2.10 Sheet Of Attorney Docket Number

WSV	O30	KOSSANYI, J., KOUYATE, D., POULIQUEN, J., RONFARD-HARET, J.C., VALAT, P., et al.; Photoluminescence of Semiconducting Zinc Oxide Containing Rare Earth lons as Impurities; Journal of Luminescence; 1990; pp. 17-24; Vol. 46; Elsevier Science Publishers B.V. (north-Holland).	3
{	O31	WANG, Y.G., LAU, S.P., LEE, H.W., YU, S.F., TAY, B.K., et al.; Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air; Journal of Applied Physics; 07/01/2003; pp. 354-358; Vol 94, No.1; American Institute of Physics.	٠,
	O32	YU, S.F., YUEN, C., LAU, S.P., WANG, Y.G., LEE, H.W., et al.; Ultraviolet amplified spontaneous emission from zinc oxide ridge waveguides on silicon substrate; Applied Physics Letter; 11/24/2003; pp. 4288-4290; Vol. 83, No. 21; American Institute of Physics.	•
	O33	XIONG, G., WILKINSON, J., LYLES, J., UCER, K.B., and WILLIAMS, R.T.; Luminescence and stimulated emission in zinc oxide nanoparticles, films, and crystals.	÷
	O34	ONG, H.C., DAI, J.Y., and DU, G.T.; Studies of electronic structure of ZnO grain boundary and its proximity by using spatially resolved electron energy loss spectroscopy; Applied Physics Letter, 07/08/2002; pp. 277-279; Vol. 81, No. 2; American Institute of Physics.	•
	O35	AGNE, T., GUAN, Z., LI, X.M., WOLF, H., and WICHERT, T.; Incorporation of the Donor Indium in Nanocrystalline ZnO; phys. stat. sol.; 2002; pp. 819-823; Vol. 229; WILEY-VCH Verlag Berlin GmbH; Berlin.	
	O36	QADRI, S.B., KIM, H., HORWITZ, J.S., and CHRISEY, D.B.; Transparent conducting films of ZnO-ZrO ₂ : Structure and properties; Journal of Applied Physics; 12/01/2000; pp. 6564-6566; Vol. 88, No. 11; American Institute of Physics.	
	O37	HAN, J., MANTAS, P.Q., and SENOS, A.M.R.; Grain growth in Mn-doped ZnO; Journal of the European Ceramic Society; 2000; 2753-2758; Vol. 20.	•
	O38	JIN, Y., ZHANG, B., YANG, S., WANG, Y., CHEN, J., et al.; Room temperature UV emission of Mg, Zn _{1-x} O films; Solid State Communications; 2001; pp. 409-413; Vol. 119; Elsevier Science Ltd.	•
	O39	PETRIK, N.G., ALEXANDROV, A.B., and VALL, A.I.; Interfacial Energy Transfer during Gamma Radiolysis of Water on the Surface of ZrO₂ and Some Other Oxides; J. Phys. Chem. B; 2001; pp. 5935-5944; Vol. 105; American Chemical Society.	t
	O40	COUNIO, G., ESNOUF, S., GACOIN, T., and BOILOT, JP.; CdS:Mn Nanocrystals in Transparent Xerogel Matrices: Synthesis and Luminescence Properties; J. Phys. Chem.; 1996; pp. 20021-20026; Vol. 100; American Chemical Society.	•
	041	STRAVREV, K., KYNEV, K., ST. NIKOLOV, G., and DYAKOVITCH, V.A.; Semiempirical Assignment of the Electron Transitions in Manganese(II)-Doped II-VI Compounds; J. Phys. Chem. Solids; 1987; pp. 841-844; Vol. 48, No. 9; Pergamon Journals Ltd.	ŧ
	042	FALCONY, C., ORTIZ, A., DOMINGUEZ, J.M., FARIAS, M.H., COTA-ARAIZA, L. et al.; Luminescent Characteristics of Tb Doped Al ₂ O ₃ Films Deposited by Spray Pyrolysis; J. Electrochem Soc.; 01/1992; pp. 267-271; Vol. 139, No. 1; The Electrochemical Society, Inc.	•
	O43	BACHIR, S., KOSSANYI, J., SANDOULY, C., VALAT, P., and RONFARD-HARET, J.C.; Electroluminescence of Dy ³⁺ and Sm ³⁺ lons in Polycrystalline Semiconducting Zinc Oxide; J. Phys. Chem; 1995; pp. 5674-5679; Vol. 99; American Chemical Society.	4
	044	BACHIR, S., KOSSANYI, J., and RONFARD-HARET, J.C.; Electroluminescence of Ho ^{3*} Ions in a ZnO Varistor-Type Structure; Solid State Communications; 1993; pp. 859-863; Vol. 89, No. 10; Elsevier Science Ltd.; Great Britain.	•
V	045	CHAKRABARTI, S., GANGULI, D., CHAUDHURI, S., and PAL, A.K.; Crystalline magnesium oxide films on soda lime glass by sol-gel processing; Meterials Letters; 05/2002; pp. 120-123; Vol. 54; Elsevier Science B.V.	١

Examiner Signature Date Considered 5/21/06

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Applicant's unique citation designation number (optional). Applicant is to place a check mark here if English language Translation is attached.

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO Complete if Known 10/849,348 Application Number INFORMATION DISCLOSURE Filing Date May 19, 2004 STATEMENT BY APPLICANT First Named Inventor Robert H. Burgener, II Group Art Unit 2814 (use as many sheets as necessary) Examiner Name Wai Sing Louie Sheet Attorney Docket Number 3398.2.10

WSL	O46	ARKLES, B.; Commercial Applications of Sol-Gel-Derived Hybrid Materials; MRS Bulletin; 05/2001; pp. 402-407.	
1	047	MURRAY, C.E., NOYAN, I.C., and MOONEY, P.M.; Mapping of strain fields about thin film structures using x-ray microdiffraction; Applied Physics Letters; 11/17/2003; pp. 4163-4165; Vol. 83, No. 20; American Institute of Physics.	٠
	O48	MODENA, S., SORARU, G.D., BLUM, Y., and RAJ, R.; Passive Oxidation of an Effluent System: The Case of Polymer-Derived SiCO; Journal of the American Ceramic Society; 2005; pp. 339-345; Vol. 88.	•
	O49	NOYAN, I.C., WANG, PC., KALDOR, S.K., and JORDAN-SWEET, J.L.; Deformation field in single-crystal fields semiconductor substrates caused by metallization features; Applied Physics Letters; 04/19/1999; pp. 2352-2354; Vol. 74, No. 16; American Institute of Physics.	d
	O50	NOYAN, I.C., JORDAN-SWEET, J., LINIGER, E.G., and KALDOR, S.K.; Characterization of substrate-thin-film interfaces with x-ray microdiffraction; Applied Physics Letters; 06/22/1998; pp. 3338-3340; Vol. 72, No. 25; American Institute of Physics.	
	051	TULLER, H.L.; ZnO Grain Boundaries: Electrical Activity and Diffusion; Journal of Electroceramics; 1999; pp. 33-40; Vol. 4:S1; Kluwer Academic Publishers; Boston.	4
	O52	WESTIN, G., EKSTRAND, A., NYGREN, M., OSTERLUND, R., and MERKELBACH, P.; Preparation of ZnO-based Varistors y the Sol-Gel Technique; J. Mater. Chem.; 1994; pp. 615-621; Vol. 4.	ı
	O53	WANG, M., YANG, X., and WANG., F.; Properties of Sensitive Materials Mainly Composed of ZnO; J. Mater. Sci. Technol.; 2000; p. 204; Vol. 16, No. 2.	,
	054	BAPTISTA, J.L., and MANTAS, P.Q.; High Temperature Characterization of Electrical Barriers in ZnO Varistors; Journal of Electroceramics; 2000; pp. 215-224; Vol. 4:1; Kluwer Academic Publishers; The Netherlands.	•
	O55	BRANKOVIC, Z., BRANKOVIC, G., POLETI, D., and VARELA, J.A.; Structural and electrical properties of ZnO varistors containing different spinel phases; Ceramics International; 2001; pp. 115-122; Vol. 27; Elsevier Science Ltd. And Techna S.r.I.	ď
	O56	TANAKA, A., and MUKAE, K.; Evaluation of Single Grain Boundaries in ZnO: Rare-Earth Varistor by Micro-Electrodes; Key Engineering Materials; 1999; pp. 235-240; Vols. 157-158; Trans Tech Publications, Switzerland; CSJ Series-Publications of the Ceramic Society of Japan Vol. 1, The Ceramic Society of Japan.	•
	O57	PANDEY, R., JAFFE, J.E., and KUNZ, A.B., Ab initio band-structure calculations for alkaline- earth oxides and sulfides; Physical Review B; 04/15/1991; pp. 9228-9237; Vol. 43, No. 11; The American Physical Society.	÷
	O58	CANNEY, S.A., SASHIN, V.A., FORD, M.J., and KHEIFETS, A.S.; Electronic band structure of magnesium and magnesium oxide: experiment and theory; J. Phys. Condens. Matter; 1999; pp. 7507-7522; Vol. 11; IOP Publishing Ltd.	
	O59	YAMASAKI, A., and FUJIWARA, T.; Electronic structure of the MO oxides (M=Mg, Ca, Ti, V) in the GW approximation; Physical Review B; 2002; pp. 245108-1 – 245108-9; Vol. 66; The American Physical Society.	,
	O60	MIKAJLO, E.A., SASHIN, V.A., NIXON, K.L., SEOULE DE BAS, B., DORSETT, H.E., and FORD, M.J.; Band Structures of the Group I and II Oxides: Using EMS Measurements as a Test of Theoretical Models.	•
V	O61	JOHNSON, P.D.; Some Optical Properties of MgO in the Vacuum Ultraviolet; Physical Review, 05/15/1954; pp. 845-846; Vol. 94, No. 4.	,

Examiner Signature	Date Considered	5/21/06	
-----------------------	--------------------	---------	--

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered, include copy of this form with next communication to applicant.

This collection of Information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450.

DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

¹ Applicant's unique citation designation number (optional) . 2 Applicant is to place a check mark here if English language Translation is attached.

Approved for use through 08/30/2006. OMB 0651-0031
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitu	ite for form 1449	B/PTO			Complete if Known	
				Application Number	10/849,348	
INF	ORMATIC	on disc	CLOSURE	Filing Date	May 19, 2004	
STA	TEMENT	T BY AP	PLICANT	First Named Inventor	Robert H. Burgener, II	
_				Group Art Unit	2814	
	(use as many	sheets as ne	cessary)	Examiner Name	Wai Sing Louie	
Sheet	5	Of	9	Attomey Docket Number	3398.2.10	

WSV	O62	NARAZAKI, A., TANAKA, K., HIRAO, K., HASHIMOTO, T., NASU, H., et al., IR and XPS Studies on the Surface Structure of Poled ZnO-TeO ₂ Glasses with Second-Order Nonlinearity, Journal of the American Ceramic Society, 2001; pp. 214-217; Vol. 84.	
1	O63	SCHONBERGER, U., and ARYASETIAWAN, F.; Bulk and surface electronic structures of MgO; Physical Review B; 09/15/1995; pp. 8788-8793; Vol. 52, No. 12; The American Physical Society.	•
	O64	GONZALEZ, R., CHEN, Y., SEBEK, R.M., WILLIAMS, G.P., WILLIAMS, R.T., et al.; Properties of the 800-nm luminescence band in neutron-irradiated magnesium oxide crystals; Physical Review B; 03/01/1991; pp. 5228-5233; Vol. 43, No. 7; The American Physical Society.	•
	O65	BALZER, B., HAGEMEISTER, M., KOCHER, P., and LUDWIG, J.G.; Mechanical Strength and Microstructure of Zinc Oxide Varistor Ceramics; Journal of the American Ceramic Society; 2004; pp. 1932-1938; Vol. 87.	•
	O66	SHENG, H., EMANETOGLU, N.W., MUTHUKUMAR, S., YAKSHINSKIY, B.V., FENG, S., et al.; Ta/Au Ohmic Contacts to n_type ZnO; Journal of Electronic Materials; 2003; p. 935; Vol. 32, No. 9.	,
	O67	SHENG, H., EMANETOGLU, N.W., MUTHUKUMAR, S., FENG, S., and LU, L.; Nonalloyed Al Ohmic Contacts to Mg _x Zn _{12x} O; Journal of Electronic Materials; 2002; p. 811; Vol. 31, NO. 7.	بد
	O68	XIONG, G., WILKINSON, J., MISCHUCK, B., TU ZEMEN, S., UCER, K.B., et al; Control of p- and n-type conductivity in sputter deposition of undoped ZnO; Applied Physics Letters; 02/18/2002; p. 1195; Vol. 80, No. 7.	4
	O69	YAMAMOTO, T., and KATAYAMA-YOSHIDA, H.; Unipolarity of ZnO with a wide-band gap and its solution using codoping method; Journal of Crystal Growth; 2000; pp. 552-555; Vol. 214/215; Elsevier Science B.V.	,
	070	CHANG, R., MARKS, T., MASON, T., and POEPPELMEIR, K.; n/p-Type Transparent Conductors; pp. 259-260.	•
	071	OLORUNYOLEMI, T., BIRNBOIM, A., CARMEL, Y., WILSON, O.C., LLOYD, I.K.; Thermal Conductivity of Zinc Oxide: From Green to Sintered State; Journal of the American Ceramic Society; 2002; pp. 1249-1253; Vol. 85.	
	072	MARTIN, L.P., and ROSEN, M.; Correlation between Surface Area Reduction and Ultrasonic Velocity in Sintered Zinc Oxide Powders; Journal of the American Ceramic Society; 1997; pp. 839-846; Vol. 80.	• • • • • • • • • • • • • • • • • • • •
	073	WILKINSON, J., XIONG, G., UCER, K.B., and WILLIAMS, R.T.; Lifetime and Oscillator Strength of Excitonic Luminescence in Zinc Oxide.	
	074	SEKIGUCHI, T., HAGA, K., and INABA, K.; ZnO films grown under the oxygen-rich condition; Journal of Crystal Growth; 2000; pp. 68-71; Vol. 214-215; Elsevier Science B.V.	`
	075	VAN DE WALLE, C.G.; Hydrogen as a Cause of Doping in Zinc Oxide; Physical Review Letters; 07/31/2000; pp. 1012-1015; Vol. 85, No. 5; The American Physical Society.	•
	076	KATO, H., SANO, M., MIYAMOTO, K., and YAO, T.; Effect of O/Zn on Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy; Japanese Journal of Applied Physics; 2003; pp. 2241-2244; Vol. 42; The Japan Society of Applied Physics.	•
V	077	NAKAHARA, K., TANABE, T., TAKASU, H., FONS, P., IWATA, K., et al.; Growth of undoped ZnO Films with Improved Electrical Properties by Radical Source Molecular Beam Epitaxy; Japanese Journal of Applied Physics; 2001; pp. 250-254; Vol. 40; The Japan Society of Applied Physics.	·

Signature Considered 3/4/08	Examiner Signature	THE.	Date Considered	5/4/06
-----------------------------	-----------------------	------	--------------------	--------

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450.

DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

¹ Applicant's unique citation designation number (optional) . 2 Applicant is to place a check mark here if English language Translation is attached.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO Complete if Known **Application Number** 10/849,348 INFORMATION DISCLOSURE May 19, 2004 Filing Date STATEMENT BY APPLICANT First Named Inventor Robert H. Burgener, II Group Art Unit (use as many sheets as necessary) Examiner Name Wai Sing Louie Attorney Docket Number 3398.2.10 Sheet Of

·			
WSL	078	WANG, X., DU, G., GU, C., JIA, J., LI, X., et al.; Two-step growth of ZnO thin films on diamond/Si low-pressure metal-organic chemical vapour deposition; J. Phys. D: Appl. Phys.; 2002; pp. L74-L76; Vol. 35; IOP Publishing Ltd., United Kingdom.	7
	079	HAN, J., MANTAS, P.Q., and SENOS, A.M.R.; Grain growth in Mn-doped ZnO; Journal of the European Seramic Society; 2000; pp. 2753-2758; Vol. 20; Elsevier Science Ltd.	•
	080	FONS, P., IWATA, K., NIKI, S., YAMADA, A., MATSUBARA, K., et al.; Uniaxial locked growth of high-quality epitaxial ZnO films on (1 1 2 0)α-A1 ₂ O ₃ ; Journal of Crystal Growth; 2000; pp. 532-536; Vol. 209; Elsevier Science B.V.	> ,
	O81	HAGA, K., KAMIDAIRA, M., KASHIWABA, Y., SEKIGUCHI, T., WATANABE, H.; ZnO thin films prepared by remote plasma-enhanced CVD method; Journal of Crystal Growth; 2000; pp. 77-80; Vol. 214/215; Elsevier Science B.V.	1
	O82	FONS, P., IWATA, K., NIKI, S., YAMADA, A., and MATSUBARA, K.; Growth of high-quality epitaxial ZnO films on α-A1₂O₃; Journal of Crystal Growth; 1999; pp. 627-632; Vol. 201/202; Elsevier Science B.V.	1
	083	MYOUNG, J-M., YOON, W-H., LEE, D-H., YUN, I., BAE, S-H., et al.; Effects of Thickness Variation of Properties of ZnO Thin Films Grown by Pulsed Laser Deposition; Japanese Journal of Applied Physics; 2002; pp. 28-31; Vol. 41; The Japan Society of Applied Physics.	•
	084	YULDASHEV, S.U., PANIN, G.N., CHOI, S.W., YALISHEV, V.S., NOSOVA, L.A., et al.; Electrical and Optical Properties of ZnO Films Grown on GaAs Substrates; Jpn. J. Appl. Phys; 2003; pp. 3333-3336; Vol. 42; The Japan Society of Applied Physics.	,
	O85	NONAKA, M., MATSUSHIMA, S., MIZUNO, M., KOBAYASHI, K.; Electronic Structure of Group III Elements Doped into ZnO by Using Molecular Orbital Calculation; Chemistry Letters; 2002; pp. 580-581; The Chemical Society of Japan.	i
	O86	LIN, G-R., and WANG, S-C.; Comparison of High-Resistivity ZnO Films Sputtered on Different Substrates; Japanese Journal of Applied Physics; 2002; pp. L398-L401; Vol. 41; The Japan Society of Applied Physics.	*.
	O87	MANTAS, P.Q., and BAPTISTA, J.L.; The Barrier Height Formation in ZnO Varistors; Journal of the European Ceramic Society; 1995; pp. 605-615; Vol. 15; Elsevier Science Limited, Great Britain.	•
	088	ALBERTSSON, J., and ABRAHAMS, S.C.; Atomic Displacement, Anharmonic Thermal Vibration, Expansivity and Pyroelectric Coefficient Thermal Dependences in ZnO; Acta Cryst.; 1989; pp. 34-40; Vol. B45; International Union of Crystallography.	•
	O89	BLEVINS, J.D.; Wide Bandgap Semiconductor Substrates: Current Status and Future Trends.	4
	O90	TEKE, A., OZGUR, U., DOGAN, S., GU, X., MORKOC, H., et al.; Excitonic fine structure and recombination dynamics in single-crystalline ZnO; Physical Review B; 2004; pp. 195207-1 – 195207-10; Vol. 70; The American Physical Society.	4
	091	LOOK, D.C., REYNOLDS, D.C., LITTON, C.W., JONES, R.L., EASON, D.B., et al.; Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy; Applied Physics Letters; 09/02/2002; pp. 1830-1832; Vol. 81, No. 10; American Institute of Physics.	•
	/ 092	KIM, K-K., KIM, H-S., HWANG, D-K., LIM, J-H., and PARK, S-J.; Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant; Applied Physics Letters; 07/07/2003; pp. 63-65; Vol. 83, No. 1; American Institute of Physics.	4
V	093	LOOK, D.C.; Emerging Research Fonts Comments by David C. Look; ISI Essential Science Indicators; 04/28/2005.	•

Examiner Signature .	Date Considered	5/21	106

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450.

DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

¹ Applicant's unique citation designation number (optional) . ² Applicant is to place a check mark here if English language Translation is attached.

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitu	ute for form 14498	3/РТО			Complete if Known	
				Application Number	10/849,348	
INF	ORMATIC	ON DISC	CLOSURE	Filing Date	May 19, 2004	
STA	ATEMENT	BY AP	PLICANT	First Named Inventor	Robert H. Burgener, II	
				Group Art Unit	2814	
	(use as many	sheets as ne	cessary)	Examiner Name	Wai Sing Louie	
Sheet	7	Of	9	Attorney Docket Number	3398.2.10	

wsi	O94	SENGER, R.T., and BAJAI, K.K.; Binding energies of excitons in polar quantum well heterostructures; Physical Review B; 2003; pp. 205314-1 -205314-9; Vol. 68; The American Physical Society.	١
1	O95	SUBRAMANYAM, T.K., NAIDU, B., and UTHANNA, S.; Structure and Optical Properties of do Reactive Magnetron Sputtered Zinc Oxide Films; Cryst. Res. Technol.; 1999; pp. 981-988; Vol. 34.	•
	O96	MUTH, J.F., BROWN, J.D., JOHNSON, M.A.L., YU, Z., KOLBAS, R.M., et al.; Absorption coefficient and refractive index of GaN, AIN and AIGaN alloys; 1999; MRS Internet J. Nitride Semicond.	•
	097	YOSHIKAWA, H., and ADACHI, S.; Optical Constants of ZnO; Japanese Journal of Applied Physics; 1997; pp. 6237-6243; Vol. 36.	•
	O98 .	SPRINGER, J., PORUBA, A., VANECEK, M., FAY, S., FEITKNECHT, L., et al.; Improved optical model for thin film silicon solar cells; Presented at 17th European Photovoltaic Solar Energy Conference, Munich 2001.	•
	O99	NEETHLING, J.H., SCRIVEN, G.J., and KREKELS, T.; A TEM investigation of Zn₃As₂ grown on (001) and (111) InP by MOVPE; Journal of Materials Science; 2001; pp. 3997-4002; Vol. 36; Kluwer Academic Publishers.	•
	O100	BRINK, D.J., and ENGELBRECHT, A.A.; Ellipsometric investigation of rough zinc arsenide epilayers; Applied Optics; 04/01/2002; pp. 1894-1898; Vol. 41, No. 10; Optical Society of America.	•
	0101	SCRIVEN, G.J., LEITCH, A.W.R., NEETHLING, J.H., KOZYRKOV, V.V., and WATTERS, V.J.; The growth of Zn ₃ As ₂ on InP by almospheric pressure MOVPE; Journal of Crystal Growth; 1997; pp. 813-816; Vol. 170; Elsevier Science B.V.	• • • • • • • • • • • • • • • • • • • •
	0102	ENGELBRECHT, J.A.A., SCRIVEN, G.J., NEETHLING, J.H., and WAGENER, M.C.; Crack formation in Zn ₃ As ₂ epilayers grown by MOVPE; Journal of Crystal Growth; 2000; pp. 235-244; Vol. 216; Elsevier Science B.V.	4
	O103	NORMAN, A.G., OLSON, J.M., ROMERO, M.J., and AL-JASSIM, M.M.; Electron Microscopy Studies of Potential 1-eV Bandgap Semiconductor Compounds AnGeAs ₂ and Zn ₃ As ₂ Grown by MOVPE; National Renewable Energy Laboratory.	ě
	O104	MILES, G.C., and WEST, A.R.; Polymorphism and Thermodynamic Stability of Zn ₇ Ab ₂ O ₁₂ ; Journal of the American Ceramic Society; 2005; pp. 396-398; Vol. 88.	•
	O105	TOMLINS, G.W., ROUTBORT, J.L., and MASON, T.O.; Oxygen Diffusion in Single-Crystal Zinc Oxide; Journal of the American Ceramic Society; 1998; pp. 869-876; Vol. 81.	•
	O106	BOTHA, J.R., SCRIVEN, G.J., ENGELBRECTH, J.A.A., and LEITCH, A.W.R.; Photoluminescence properties of metalorganic vapor phase epitaxial Zn ₃ As ₂ ; Journal of Applied Physics; 11/15/1999; pp. 5614-5618; Vol. 86, No. 10; American Institute of Physics.	•
	0107	XIONG, G., WILKINSON, J., MISCHUCK, B., TUZEMEN, S., UCER, K.B., et al.; Control of p- and n-type conductivity in sputter deposition of undoped ZnO; Applied Physics Letters; 02/18/2002; pp. 1195-1197; Vol. 80, No. 7; American Institute of Physics.	•
	O108	LOOK, D.C., RENLUND, G.M., BURGENER, II, R.H., and SIZELOVE, J.R.; As-doped p-type ZnO produced by an evaporation/sputtering process; Applied Physics Letters; 11/2004; Vol. 85.	•
V	O109	AOKI, T., SHIMIZU, Y., MIYAKE, A., NAKAMURA, A., NAKANISHI, Y., and HATANAKA, Y.; p-Type ZnO Layer Formation by Excimer Laser Doping; phys. stat. sol.; 2002; pp. 911-914; Vol. 229, No. 2; WILEY-VCh Verlag Berlin GmbH, Berlin.	`

				7
Examiner .	7.1,3	Date	11/1	1
Signature	110.	Considered	5/4/06	1
Signature	1/-	00110100		_

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1,14. This collection is estimated to take 2 hours to complete, including gethering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandría, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450. 22313-1450.

¹ Applicant's unique citation designation number (optional) . 2 Applicant is to place a check mark here if English language Translation is attached.

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid CMB control number.

Substitute for form 1449B/PTO Complete if Known 10/849,348 **Application Number** INFORMATION DISCLOSURE Filing Date May 19, 2004 STATEMENT BY APPLICANT First Named Inventor Robert H. Burgener, II **Group Art Unit** (use as many sheets as necessary) Examiner Name Wai Sing Louie Attorney Docket Number 3398.2.10 Sheet

is		LEE, J-M., KIM, K.K., PARK, S-J., and CHOI, W.K.; Low-resistance and non-alloyed ohmic contacts to plasma treated ZnO; Applied Physics Letters; 06/11/2001; pp. 3842-2844; Vol. 78, No. 24; American Institute of Physics.	•
1	0111	YAMAMOTO, T.; Codoping Method to Realize Low-Resistivity p-type ZnO Thin Films; Asia Display/IDW '01, Oct. 16-19, 2001, Nagoya, Oct. 18, PH1-2.	١
	0112	WANG, L.G., and ZUNGER, A.; Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of p-type ZnO; Physical Review Letters; 06/27/2003; pp. 256401-1 - 256401-4; Vol. 90, No. 25; The American Physical Society.	,
	0113	NAKAHARA, K., TAKASU, H., FONS, P., YAMADA, A., IWATA, K., et al.; Growth of N-doped and Ga+N-codoped ZnO films by radical source molecular beam epitaxy; Journal of Crystal Growth; 2002; pp. 503-508; Vol. 237-239; Elsevier Science B.V.	,
	0114	RECNIK, A., DANEU, N., WALTHER, T., and MADER, W.; Structure and Chemistry of Basal- Plane Inversion Boundaries in Antimony Oxide-Doped Zinc Oxide; Journal of the American Ceramic Society; 2001; pp. 2357-2668; Vol. 84.	•
	0115	NONAKA, M., MATSUSHIMA, S., MIZUNO, M., and KOBAYASHI, K.; Electronic Structure of Group III Elements Doped into ZnO by Using Molecular Orbital Calculation; Chemistry Letters; 2002; pp. 580-581; The Chemical Society of Japan.	•
	0116	RYU, Y.R., KIM, W.J., and WHITE, H.W.; Fabrication of homostructural ZnO p-n junctions; Journal of Crystal Growth; 2000; pp. 419-422; Vol. 219; Elsevier Science B.V.	•
	0117	LU, J., YE, Z., WANG, L., HUANG, J., and ZHAO, B.; Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD; Materials Science in Semiconductor Processing; 2003; pp. 491-496; Vol. 5; Elsevier Science Ltd.	•
	0118	ZHENGUO, J., KUN, L., CHENGXING, Y., RUIXIN, F., and ZHIZHEN, Y.; Structural, optical and electrical properties of ZnO thin films prepared by reactive deposition; Journal of Crystal Growth; 2003; pp. 246-251; Vol. 253; Elsevier Science B.V.	•
1	0119	JI, Z., YANG, C., LIU, K., and YE, Z.; Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate—ammonia solution; Journal of Crystal Growth; 2003; pp. 239-242; Vol. 253; Elsevier Science B.V.	v
	O120	YE, Z-Z., LU, J-G., CHEN, H-H., ZHANG, Y-Z., WANG, L., et al.; Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering; Journal of Crystal Growth; 2003; pp. 258-264; Vol. 253; Elsevier Science B.V.	*
	0121	MINEGISHI, K., KOIWAI, Y., KIKUCHI, Y., YANO, K., KASUGA, M., et al.; Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition; Japanese Journal of Applied Physics; 1997; pp. L 1453 – L 1455; Vol. 36.	₹
	O122	JOSEPH, M., TABATA, H., and KAWAI, T.; p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping; Japanese Journal of Applied Physics; 1999; pp. L 1205 – L 1207; Vol. 38; Publication Board, Japanese Journal of Applied Physics.	•
	0123	ASHRAFI, A.B.M.A., SUEMUNE, I., KUMANO, H., and TANAKA, S.; Nitrogen-Doped p-Type ZnO Layers Prepared with H₂O Vapor-Assisted Metalorganic Molecular-Beam Epitaxy; Japanese Journal of Applied Physics; 2002; pp. L 1281 – L 1284; Vol. 41; The Japan Society of Applied Physics.	٠
	O124	The Promise of Solid State Lighting for General Illumination: Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs); 2001; pp. 1-29; Optoelectronics Industry Development Association, Washington, D.C.	•
V	O125	TALBOT, D.; LEDs vs. the Light Bulb; Technology Review; 05/2003; pp. 30-36.	N.

Examiner	AND !	Date Considered	5/21/06
Signature	1000	Considered	3/21/00

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

This collection of information is required by 37 CFR 1.97 and 1.98. The Information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

¹ Applicant's unique citation designation number (optional) . 2 Applicant is to place a check mark here if English language Translation is attached.

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO Complete if Known 10/849,348 **Application Number** INFORMATION DISCLOSURE Filing Date May 19, 2004 STATEMENT BY APPLICANT First Named Inventor Robert H. Burgener, II Group Art Unit (use as many sheets as necessary) Wai Sing Louie Examiner Name Sheet Attorney Docket Number 3398.2.10

WSI	O126	JOHNSON, S.; LEDs—An Overview of the State of the Art in Technology and Application; Light Right 5 Conference, May 27-31, 2002, Nice, France.	ŕ
1	O127	TUZEMEN, S., XIONG, G., WILKINSON, J., MISCHICK, B., UCER, K.B., et al.; Production and properties of p-n junctions in reactively sputtered ZnO; Physica B; 2001; pp. 1197-1200; Vol. 308-310; Elsevier Science B.V.	*
	O128	GUO, X-L., CHOI, J-H., TABATA, H., and KAWAI, T.; Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode; Japanese Journal of Applied Physics; 2001; pp. L 177 – L 180; Vol. 40; The Japan Society of Applied Physics.	•
	0129	XIONG, G., WILKINSON, J., TUZEMEN, S., UCER, K.B., and WILLIAMS, R.T.; Toward a new ultraviolet diode laser: luminescence and p-n junctions in ZnO films.	•
	O130	HOFFMAN, R.L., NORRIS, B.J., and WAGER, J.F.; ZnO-based transparent thin-film transistors; Applied Physics Letters; 02/03/2003; pp. 733-735; Vol. 82, No. 5; American Institute of Physics.	1
	0131	BOCKOWSHI, M.; Growth and Doping of GaN and AIN Single Crystals under High Nitrogen Pressure; Cryst. Res. Technol.; 2001; pp. 771-787; Vol. 36; WILEY-VCH Verlag Berlin GmbH, Berlin.	٠
	0132	KATAYAMA-YOSHIDA, H., SATO, K., and YAMAMOTO, T.; Materials design for new functional semiconductors by ab initio electronic structure calculation: Prediction vs. experiment; JSAP International; 07/2006; pp. 20-27; No. 6.	1
	0133	MUKAI, T., MORITA, D., and NAKAMURA, S.; High-power UV InGaN/AlGaN double-heterostructure LEDs; Journal of Crystal Growth; 1998; pp. 778-781; Vol. 189/190; Elsevier Science B.V.	
	0134	XING, H., GREEN, D.S., MCCARTHY, L., SMORCHKOVA, I.P., CHAVARKAR, P., et al.; Progress in Gallium Nitride-based Bipolar Transistors.	,
	O135	PIPREK, J., and NAKAMURA, S.; nano-Scale Effects in GaN-based Light-Emitting Diodes; 2004.	٠
1	O136	PIPREK, J.; Simulation of GaN-based Light-Emitting Devices; 2004.	-
	0137	BUNEA, G.E., HERZOG, W.D., UNLU, M.S., GOLDBERG, B.B., and MOLNAR, R.J.; Time-resolved photoluminescence studies of free and donor-bound exciton in GaN grown by hydride vapor phase epitaxy.	,
	0138	YAO, T.; Plasma-Assisted MBE Growth of ZnO; Molecular Beam Epitaxy; pp. 98-105.	•
1	O139	Chapter 2 Geometric Structure of Metal Oxides; pp. 55-58.	•
1/	O140	Chapter 4 Electronic Structure of Non-Transition-Metal-Oxide Surfaces; pp. 143-150.	•
Ą	0141	IP, K., KHANNA, R., NORTON, D.P., PEARTON, S.J., REN, F., et al.; Thermal Stability of Tungsten-Based Schottky Contacts to N-Type ZnO.	

Examiner <	Aste.	Date Considered	+/21/06	
Signature			3/2/	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Applicant's unique citation designation number (optional). Applicant is to place a check mark here if English language Translation is attached.

This collection of Information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450.

DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.