Appunti di Analisi 3 - Analisi Complessa

Osea

Primo semestre A.A. 2024 - 2025, prof. Enrico Vitali

1 Convergenza puntuale e uniforme

Sia E un'insieme (non vuoto) e $\{f_n\}$ una successione di funzioni $E \to \mathbb{R}$ (o $E \to \mathbb{R}^n$ o $E \to \mathbb{C}$). Sia $f: E \to \mathbb{R}$.

Definizione 1.1: D

iciamo che $\{f_n\}$ converge **puntualmente** ad f se

$$\lim_{n \to \infty} f_n(x) = f(x) \quad \forall x \in E$$

Esempio 1.1. $E = \mathbb{R} \ \mathrm{e} \ f_n(x) = \frac{1}{n+x^2}, \ f_n \to 0 \ \mathrm{su} \ \mathbb{R}$

Esempio 1.2. $f_n(x) = (x - \frac{1}{n})^2 \to x^2$

Esempio 1.3. $f_n(x) = x^2 - \frac{1}{n}$

Esempio 1.4. $f_n(x) = e^{x-n} f_n \to 0$

Esempio 1.5. $E = [0, 1], f_n(x)$ funzione che è a triangolo con vertici $(\frac{1}{4n}, 0), (\frac{1}{2n}, 1), (\frac{1}{n}, 0)$. Allora $f_n \to 0$

In questi esempi l'idea è che per ogni ε esiste un n_{ε} tale che per $n \geq n_{\varepsilon}$, $f_n(x) < \varepsilon$. La domanda è se si riesce a esprimere n_{ε} senza che dipenda da x. Nell'esempio di $f_n(x) = \frac{1}{n+x^2}$ si può perché f_n ha un massimo in x = 0, in tal caso infatti se prendo n_{ε} tale che $\frac{1}{n+x^2} < \varepsilon$ allora $\frac{1}{n+x^2} < \varepsilon$.

 n_{ε} tale che $\frac{1}{n_{\varepsilon}} < \varepsilon$ allora $\frac{1}{n+x^2} \le \frac{1}{n} \le \frac{1}{n_{\varepsilon}} < \varepsilon$. Nell'esempio 1.2 invece vogliamo un n_{ε} tale che $\forall n \ge n_{\varepsilon}, |f_n(x) - f(x)| \le \varepsilon$ ossia $|-\frac{2}{n}x + \frac{1}{n^2}| \le \varepsilon$. Da questo troviamo che

$$\frac{1}{n^2} - \varepsilon \le \frac{2x}{n} \le \frac{1}{n^2} + \varepsilon$$

Ma è sempre possibile, per qualsiasi $\frac{1}{n^2} + \varepsilon$ è possibile trovare un x tale che sia maggiore, quindi non è possibile non esprimere n_{ε} anche in funzione di x.

Definizione 1.2: S

ia $f, f_n : E \to \mathbb{R}$. Diciamo che $f_n \to f$ uniformemente in E se:

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} \in \mathbb{N} : \forall n > n_{\varepsilon}, \forall x \in E, \quad |f_n(x) - f(x)| < \varepsilon$$

Osservazione. La condizione della definizione di convergenza uniforme è equivalente a richiedere che $\sup_{x\in E}|f_n(x)-f(x)|<\varepsilon$. Da questo concludiamo che $f_n\to f$ uniformemente se e solo se

$$\lim_{n \to \infty} \sup_{x \in E} |f_n(x) - f(x)| < \varepsilon$$

Allora con questa nuova osservazione è facile notare la non convergenza uniforme dell'esempio 1.2. Infatti se $f_n(x) = \left(x - \frac{1}{n}\right)^2$ e $f(x) = x^2$ allora $\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \ge |f_n(n) - f(n)| = |2 - \frac{1}{n}| \to 2 > 0$.

Abbiamo però che converge uniformemente sugli insiemi limitati (esercizio). Similmente nell'esempio 1.4 f_n converge uniformemente sugli insiemi $(-\infty, a]$ infatti $0 \le f_n(x) \le e^{a-n} \to 0$ per $n \to +\infty$

Geometricamente la convergenza uniforme dice che il grafico di f_n è contenuta in un intorno tubolare arbitrario di f per n sufficientemente grande.

Proposizione 1.1 (Criterio di Cauchy / completezza di \mathbb{R}). Se $\{a_n\}$ è una successione di numeri reali si ha: a_n converge se e solo se a_n è una successione di Cauchy, ossia se $\forall \varepsilon > 0 \exists n_{\varepsilon}$ tale che $\forall n_1, n_2 \geq n_{\varepsilon}$, $|a_{n_1} - a_{n_2}| < \varepsilon$

Teorema 1.2: Criterio di Cauchy per la convergenza uniforme

Siano $f, f_n : E \to \mathbb{R}$, con $f_n \to f$ in E. Allora la convergenza è uniforme in E se e solo se

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} \in \mathbb{N} : \forall n, m \ge n_{\varepsilon} \in \forall x \in E, \quad |f_n(x) - f_m(x)| < \varepsilon$$

Dimostrazione.

- $\implies \text{Sia } f_n \to f \text{ uniformemente in } E. \text{ Fissato } \varepsilon > 0, \text{ sia } n_\varepsilon \text{ tale che (convergenza uniforme)} \ \forall k \geq n_\varepsilon \text{ e } \forall x \in E, \ |f_k(x) f(x)| < \frac{\varepsilon}{2} \text{ allora presi } n, m \geq n_\varepsilon \text{ ho che } |f_n(x) f_m(x)| \leq |f_n(x) f(x)| + |f_m(x) f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
- \Leftarrow Valga la condizione di Cauchy. Allora $\forall x \in E$ la successione $\{f_n(x)\}$ è una successione di Cauchy, quindi è convergente, quindi $\exists f: E \to \mathbb{R}$ tale che $f_n \to f$. Allora dalla condizione di Cauchy, tenendo n fisso e facendo tendere $n \to +\infty$ si ottiene esattamente la convergenza uniforme.

Fun fact: esistono dei cosiddetti "Spazi uniformi", che sono spazi topologici ma non metrici.

Esempio 1.6. Sia $f_n = \frac{n^2 - x}{n^3 + e^{nx}}$. È evidente per $x \in \mathbb{R}$ che $f_n(x) \to 0$. C'è convergenza uniforme sui limitati, infatti se $|x| \leq M$ allora $|f_n(x)| \leq \frac{n^2 + M}{n^3} \to 0$. Consideriamo ora $x \geq 0$ (esercizio). Invece per $x \leq 0$, posso prendere per ogni $n x_n = -n^4$ e allora ottengo che $f_n(x_n) \to +\infty$

Osservazione. Sia $f_n:[a,b)\to\mathbb{R}$ continua, suppongo che $\{f_n\}$ converga uniformemente a f in (a,b). Allora converge uniformemente in [a,b)

Dimostrazione. Per Cauchy

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} \in \mathbb{N} : \forall n, m \ge n_{\varepsilon}, \forall x \in (a, b), \quad |f_n(x) - f_m(x)| \le \varepsilon$$

Per $x \to a$ abbiamo per continuità che $|f_n(a) - f_m(a)| \le \varepsilon$ per $n, m \ge \overline{n} \in \mathbb{N}$, quindi preso $\tilde{n} = \max n_{\varepsilon}, \overline{n}$ si ha che f_n soddisfa il criterio di Cauchy in [a,b) e quindi converge uniformemente.

Da questa osservazione noto anche che vale il contrapositivo: se f_n non converge uniformemente in [a,b) non può neanche convergere uniformemente in (a,b)

Esempio 1.7.
$$f_n(x) = \frac{1}{1 + n^2 \left(x - \frac{q}{\sqrt{n}}\right)^2}$$
, allora ho che $f_n(0) = \frac{1}{1 + n} \to 0$, e per

 $x \neq 0$ pure, infatti

$$0 \leq \frac{1}{1 + n^2 \left(x - \frac{1}{\sqrt{n}}\right)^2} \stackrel{\text{definitivamente}}{\leq} \frac{1}{1 + n^2 \left(\frac{x^2}{2}\right)^2} \to 0$$

è convergente uniformemente su tutto $\mathbb R$

Sia E un insieme non vuoto e sia $\mathcal{B}(E)$ l'insieme delle funzioni reali e limitate su E.

Definizione 1.3: Norma dell'estremo superiore

Sia $f: E \to \mathbb{R}^n$ una funzione. Allora

$$||f||_{\infty} := \sup_{x \in E} |f(x)|$$

è la norma dell'estremo superiore (anche denotata semplicemente ||f||).

Buona definizione. Perché sia una buona definizione, serve che sia una norma.

a.
$$||f|| \ge 0$$
 e $||f|| = 0 \iff f = 0$

b.
$$||\lambda f|| = |\lambda| ||f||$$

c.
$$||f + g|| \le ||f|| + ||g||$$

Proposizione 1.3. $\mathcal{B}(E)$ è uno spazio metrico normato con la norma dell'estremo superiore, e quindi distanza d(f,g) = ||f-g||

Dimostrazione. ovvio

1.1 Scambi di limite, derivate, integrali

Esempio 1.8. Dimostrare che se $f \in C^0([a,b] \times [c,d])$ a valori reali e

$$g(y) = \int_a^b f(x, y) dx \quad y \in [c, d]$$

Allora g è continua in [c, d]

Infatti $\forall \overline{y} \in [c,d]$ abbiamo che comunque presa $y_n \to \overline{y}$ chiaramente $g(y_n) \to g(\overline{y})$. Ponendo ora $f_n = f(\cdot,y_n)$. Allora vogliamo mostrare che $f_n(\cdot) \to f(\cdot,\overline{y})$ uniformemente in [a,b]. Poiché f è uniformemente continua in $[a,b] \times [c,d]$ perché continua su un compatto, allora $\forall \varepsilon > 0 \quad \exists \delta > 0$ tale che $\forall x,x' \in [a,b] \in \forall y,y' \in [c,d]$ se $\sqrt{(x-x')^2 + (y-y')^2} < \delta$ allora $|f(x,y) - f(x',y')| < \varepsilon$. Allora fissato $\varepsilon > 0$ sia δ come sopra; sia quindi n_ε tale che $n \geq n_\varepsilon \implies |y_n - \overline{y}| \leq \delta$ e quindi, per ogni $x \in [a,b]$ abbiamo $|(x,y_n)-(x,\overline{y})| = |y_n-y| \leq \delta$, da cui $|f_n(x,y_n)-f(x,\overline{y})| \leq \varepsilon$. Abbiamo quindi mostrato l'uniforme convergenza.

Proposizione 1.4 (Derivation under the integral sign). Sia $f \in C^1([a,b] \times [c,d])$ $e \ g(y) = \int_a^b f(x,y) dx \ per \ y \in [c,d], \ allora$

$$g \in C^1([c,d]) \ e \ g'(y) = \int_a^b \frac{\partial f}{\partial y}(x,y) \, dx$$

Dimostrazione. Fissiamo $\overline{y} \in [c, d]$ e consideriamo

$$\frac{g(y) - g(\overline{y})}{y - \overline{y}} = \int_{a}^{b} \frac{f(x, y) - f(x, \overline{y})}{y - \overline{y}} dx = \int_{a}^{b} \varphi(x, y) dx$$

con $\varphi(x,y)$ l'integrando. Siappiamo che $\lim_{y\to \overline{y}} \varphi(x,y) = \frac{\partial f}{\partial y}(x,\overline{y})$ e vogliamo mostrare che questa convergenza è uniforme al variare di x. Per il teorema di Lagrange si ha che

$$\varphi(x,y) = \frac{f(x,y) - f(x,\overline{y})}{y - \overline{y}} = \frac{\partial f}{\partial y}(x,\xi_{x,y}) \quad \xi_{x,y} \in (\overline{y},y) \text{ oppure } (\overline{y},y)$$

Poiché $\frac{\partial f}{\partial u}$ è uniformemente continua in $[a,b]\times [c,d]$ allora

$$\forall \varepsilon > 0 \quad \exists \delta > 0 : \forall x, x' \in [a, b] \in \forall y, y' \in [c, d]$$
$$|(x, y) - (x', y')| < \delta \implies \left| \frac{\partial f}{\partial y}(x, y) - \frac{\partial f}{\partial y}(x', y') \right| < \varepsilon$$

e ora prendiamo come coppie (x, \overline{y}) e $(x, \xi_{x,y})$ e abbiamo

$$|(x, \xi_{x,y}) - (x, \overline{y})| = |\xi_{x,y} - \overline{y}| \le |y - \overline{y}|$$

Ora come prima ciò dimostra che $\varphi(x,y) \to \frac{\partial f}{\partial y}(x,\overline{y})$ uniformemente in [a,b] e quindi

$$\frac{d}{dy} \int_{a}^{b} f(x, y) \, dx = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) \, dx$$

1.2 Serie di funzioni

I risultati visti per le successioni di funzioni danno luogo ad analoghi risultati per le serie di funzioni. Sia quindi E un insieme $f_n: E \to \mathbb{R}$ (oppure \mathbb{R}^m, \mathbb{C}) e si considera la serie

$$\sum_{n=1}^{\infty} f_n(x) \quad x \in E$$

che è una serie di funzioni.

Definizione 1.4: D

iciamo che la serie $\sum_{n=1}^{\infty} f_n(x)$ converge puntualmente in E se la successione delle somme parziali converge puntualmente in E, ossia se

$$\lim_{N \to \infty} \sum_{n=1}^{N} f_n(x) = f(x) \quad \forall x \in E$$

Diciamo che la serie $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente in E se la successione delle somme parziali converge uniformemente in E,

Ne consegue che alcuni risultati hanno rispettivi analoghi, ad esempio

$$\sum_{i=1}^{\infty} f_n(x)$$

converge uniformemente in E se e solo se

$$s_N(x) = \sum_{n=1}^N f_n(x)$$

converge uniformemente in E (definizione), ossia questo vale se

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} \in \mathbb{N} : \forall N, M \ge n_{\varepsilon}, \forall x \in E, \quad |s_N(x) - s_M(x)| < \varepsilon$$

Ora assumiamo senza perdita di generalità che $N \leq M$, allora chiamiamo M = N + p e otteniamo che l'ultima eguaglianza si scrive come

$$\left| \sum_{n=N+1}^{N+p} f_n(x) \right| < \varepsilon$$

Otteniamo

Proposizione 1.5 (Criterio di Cauchy). La serie $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente in E se e solo se

$$\forall \varepsilon > 0 \quad \exists n_{\varepsilon} \in \mathbb{N} : \forall n, p \ge n_{\varepsilon}, \forall x \in E, \quad \left| \sum_{k=n+1}^{n+p} f_k(x) \right| < \varepsilon$$
 (1)

Corollario 1.5.1. Condizione necessaria affinche la serie $\sum_{n=1}^{\infty} f_n(x)$ converga uniformemente in E è che $f_n \to 0$ uniformemente in E

Dimostrazione. prendiamo p=1 in (1) e otteniamo $|f_{n+1}(x)|<\varepsilon$ ossia $f_n\to 0$ uniformemente in E

Esempio 1.9. Supponiamo ora che esista una successione numerica $\{a_n\}_{n\in\mathbb{N}}$ tale che

- $|f_n(x)| \le a_n$ per ogni $x \in E$
- $\sum_{n=1}^{\infty} a_n < +\infty$

vogliamo mostrare che allora la serie $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente in E, usando (1), infatti abbiamo

$$\left| \sum_{k=n+1}^{n+p} f_k(x) \right| \le \sum_{k=n+1}^{n+p} |f_k(x)| \le \sum_{k=n+1}^{n+p} a_k < \varepsilon$$

dove nell'ultima diseguaglianza si è utilizzato il criterio di Cauchy per le serie numeriche.

Definizione 1.5: Convergenza totale

Si dice che la serie $\sum_{n=1}^{\infty} f_n(x)$ converge **totalmente** in E se esiste $\{a_n\}$ in \mathbb{R} tale che

- $|f_n(x)| \le a_n$ per ogni $x \in E$
- $\sum_{n=1}^{\infty} a_n < +\infty$

Per quanto visto prima quindi

Proposizione 1.6. Convergenza totale implica convergenza uniforme, e notando dalla dimostrazione prima abbiamo anche che implica la convergenza assoluta uniforme.

Esempio 1.10. Non vale il contrario, un esempio di serie uniformemente convergente ma non totalmente convergente è

$$\sum_{n=1}^{\infty} -1 \cdot \frac{\left(-1\right)^n}{n}$$

dove $f_n(x)$ è costante per ogni n. Allora la serie converge uniformenente in \mathbb{R} ovviamente perché è costante e converge in quanto a segno alternato, ma non converge totalmente perché la serie armonica diverge.

Esempio 1.11. Sia $f_n(x) = (-1)^{n+1} \frac{x^n}{n}$, per $x \in \mathbb{R}$. Allora usiamo il criterio della radice ottenendo

$$\lim_{n \to \infty} \sqrt[n]{|f_n(x)|} = \lim_{n \to \infty} \frac{|x|}{\sqrt[n]{n}} = |x|$$

quindi per |x| < 1 la serie converge assolutamente, per |x| > 1 la serie diverge, per x = -1 la serie è la serie armonica che diverge, per x = 1 la serie è una serie a segni alterni che converge.

Concludiamo quindi che la serie converge puntalmente in (-1,1] e per ogni $0 < \delta < 1$ la serie converge uniformemente in $[-\delta, \delta]$, infatti

$$\left| \left(-1 \right)^{n+1} \frac{x^n}{n} \right| \le \delta^n n$$

la cui serie converge, quindi la serie converge totalmente.

Naturalmente però la serie non converge totalmente in [0,1] poiché

$$\max_{x \in [0,1]} |f_n(x)| = \frac{1}{n}$$

ma comunque la serie converge uniformemente in [0,1], infatti usiamo il criterio di Cauchy.

$$\left| \sum_{k=n+1}^{n+p} f_k(x) \right| \le |s_{n+p}(x) - s_n(x)| < = |s_{n+p} - S(x)| + |S(x) - s_n(x)| < \frac{x^{n+p}}{n+p} + \frac{x^n}{n}$$

che converge a 0 per $n \to +\infty$ e si è usato il fatto che se $S = \sum_{i=1}^{\infty} (-1)^{n+1} a_n$ è una serie convergente a segni alterni, con $a_n > 0$, $a_n \to 0$ allora $|S - s_n| \le a_{n+1}$

Procediamo a chiederci se la serie converge uniformemente in (-1,0]. Utilizziamo allora la seguente osservazione dedotta direttamente dalle successioni

Osservazione. Sia $\sum_{i=1}^{\infty} f_n(x)$, $f_n \in C^0([a,b])$. Se la serie converge uniformemente in [a,b] allora converge uniformemente in [a,b] (in particolare converge in x=a)

Dimostrazione. Per ipotesi $s_n(x)$ converge uniformemente in (a,b] e s_n sono funzioni continue in x=a, quindi per il risultato che avevamo già per le successioni (in breve basta enunciare il criterio di Cauchy e usare la continuità in x=a) otteniamo che la serie converge uniformemente in [a,b]

Ne concludiamo che la serie non può convergere uniformemente in (-1,0] altrimenti convergerebbe uniformemente in [-1,0] ma sappiamo che in -1 non abbiamo neanche convergenza puntuale.

Esempio 1.12. Studiare la convergenza puntuale e uniforme di

$$\sum_{n=1}^{\infty} \frac{x}{(1+x)^n}$$

2 Richiami su limiti e serie

Proposizione 2.1. Sia a_n una successione di numeri reali positivi. Allora

$$\liminf_{n\to +\infty}\frac{a_{n+1}}{a_n}\leq \liminf_{n\to +\infty}\sqrt[n]{a_n}\leq \limsup_{n\to +\infty}\sqrt[n]{a_n}\leq \limsup_{n\to +\infty}\frac{a_{n+1}}{a_n}$$

Dimostrazione. Sia $L=\limsup \frac{a_{n+1}}{a_n}.$ Se $L=+\infty$ non c'è nulla da dimostrare. Sia allora $L<+\infty.$ Fissato un $\varepsilon>0$ quindi esiste n_ε tale che $\forall n\geq n_\varepsilon$ si ha

$$\frac{a_{n+1}}{a_n} \le L + \varepsilon$$

Allora iterando otteniamo

$$a_n \le (L+\varepsilon)^{n-n_\varepsilon} a_{n_\varepsilon} \implies \sqrt[n]{a_n} \le (L+\varepsilon)^{1-\frac{n_\varepsilon}{n}} \sqrt[n]{a_{n_\varepsilon}} \to L+\varepsilon$$

Per $n \to \infty$, ora per l'arbitrarietà di $\varepsilon > 0$ otteniamo

$$\limsup_{n \to \infty} \sqrt[n]{a_n} \le L = \limsup_{n \to \infty} \frac{a_{n+1}}{a_n}$$

Similmente si dimostra anche l'altra uguaglianza, quella centrale è ovvia.

Esempio 2.1. Sia $a_n = n$. Allora poiché $\frac{a_{n+1}}{a_n} \to 1$ abbiamo che anche $\sqrt[n]{n} \to 1$. Sia $a_n = n!$. Allora $\frac{a_{n+1}}{a_n} = n+1 \to +\infty$ e quindi anche $\sqrt[n]{n!} \to +\infty$ Sia $a_n = \frac{n^n}{n!}$ allora

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1)!} \frac{n!}{n^n} = \frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n \to e$$

e quindi $\sqrt[n]{\frac{n^n}{n!}} = \frac{n}{\sqrt[n]{n!}} \to e.$

Osservazione. In realtà (e potremmo vederlo più tardi), l'approssimazione di Stirling ci dice

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Ora procediamo vedendo un criterio di convergenza (non assoluta) che sarà il criterio di convergenza di Abel. Procediamo a passi più piccoli.

Lemma 2.2: Disuguaglianza di (Brunacci) Abel

Siano $\gamma_0, \gamma_1, \dots, \gamma_\ell \in \mathbb{C}$ e siano $\zeta_0, \zeta_1, \dots, \zeta_\ell \in \mathbb{C}$. Poniamo ora

$$w_m = \sum_{i=0}^m \zeta_i \quad m = 0, 1, \dots, \ell$$

Sia M > 0 tale che

$$|w_m| \leq M \quad \forall m = 0, 1, \dots, \ell$$

Allora

$$\left| \sum_{i=0}^{\ell} \gamma_i \zeta_i \right| \le (|\gamma_0 - \gamma_1| + |\gamma_1 - \gamma_2| + \dots + |\gamma_{\ell-1} - \gamma_{\ell}| + |\gamma_{\ell}|) M$$

Dimostrazione.

$$\sum_{i=0}^{\ell} \gamma_i \zeta_i = \sum_{i=0}^{\ell} \gamma_i (w_i - w_{i-1}) = \sum_{i=0}^{\ell} (\gamma_i - \gamma_{i+1}) w_i$$

Dove si intende che $\gamma_{\ell+1} = 0$ e $w_{-1} = 0$. Ora semplicemente per disuguaglianza triangolare e applicando l'ipotesi definente M otteniamo la tesi.

Teorema 2.3: primo criterio di convergenza di Abel

Sia $\sum_{n=1}^{\infty} c_n z_n$ una serie numerica. Se

- $z_n \in \mathbb{C}$ (oppure in \mathbb{R}^N)
- $\sum_{n=1}^{\infty} z_n$ è una serie le cui somme parziali sono limitate
- $\{c_n\}$ è una successione di numeri reali non creascente e infinitesima

allora la serie $\sum_{n=1}^{\infty} c_n z_n$ converge.

Dimostrazione. Utilizziamo il criterio di convergenza di Cauchy. Fissiamo $N,p\in\mathbb{N}$ e consideriamo

$$\left| \sum_{n=N}^{N+p} c_n z^n \right| \le 2M \sum_{n=N}^{N+p} |c_n - c_{n+1}| \text{ (diciamo } c_{N+p+1} = 0 \text{ per comodità notazionale)}$$

Dove M è maggiorante per le somme parziali di z_n . Infatti abbiamo che

$$w_m = z_N + z_{N+1} + \cdots + z_{N+m} = \sum_{i=0}^{N+m} z_n - \sum_{i=0}^{N-1} z_n$$

per cui effettivamente $|w_m| \leq 2M$ e possimao applicare la disuguaglianza di Abel.

Ora possiamo, sapendo che $c_k \to 0$ da sopra, ottenere che la serie precedentemente trovata è telescopica per N sufficientemente grande e quindi

$$\left| \sum_{n=N}^{N+p} c_n z^n \right| \le 2M |c_N| \to 0 \text{ per } N \to +\infty$$

e quindi per il criterio di Cauchy la serie converge.

Esempio 2.2. Consideriamo la serie

$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{z^n}{n} \quad z \in \mathbb{C}$$

Allora se |z| > 1 manca la condizione necessaria di convergenza.

Sia allora $|z| \leq 1$. Consideriamo prima il caso |z| < 1. Sia ha allora convergenza assoluta, perché

$$\frac{|z|^{n+1}}{n+1} \cdot \frac{n}{|z|^n} = |z| \frac{n}{n+1} \to 0$$

Consideriamo invine il caso |z| = 1. Se z = -1 la serie non converge:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot (-1)^n}{n} = -\sum_{i=1}^{\infty} \frac{1}{n} \to -\infty$$

Ora consideriamo |z|=1 con $z \neq -1$ e vogliamo applicare il criterio di Abel, con $c_n=\frac{1}{n}$ e $z_n=(-1)^{n+1}z^n$. Chiaramente c_n è infinitesima non crescente reale. Inoltre

$$|z_1 + z_2 + \dots + z_N| = \left| \sum_{i=1}^N (-1)^{i-1} z^n \right| = \left| \sum_{i=1}^N (-z)^N \right| = |z| \left| \frac{1 - (-z)^N}{1 - (-z)} \right| \le \frac{z}{|1 + z|}$$

Quindi sono soddisfatte le ipotesi del criterio di Abel e la serie converge.

Figura 1: Punti del piano C tali che la serie dell'esempio 2.2 converge

Corollario 2.3.1 (Criterio di Leibniz). Se una serie è a segni alterni del tipo

$$\sum_{n=1}^{\infty} \left(-1\right)^n a_n$$

con $a_n \to 0$ e $a_n > 0$ non crescente. Allora abbiamo che $z_n = (-1)^n$ e $c_n = a_n$ soddisfano le ipotesi del criterio di Abel e quindi la serie converge.

Teorema 2.4: Secondo criterio di convergenza di Abel

Si consideri la serie

$$\sum_{n=0}^{\infty} c_n z_n$$

con

- $z_n \in \mathbb{C}$ (oppure in \mathbb{R}^N)
- $\sum_{n=0}^{\infty} z_n$ è una serie convergente
- $\{c_n\}$ è una successione monotona e convergente

Allora la serie $\sum_{n=0}^{\infty} c_n z_n$ converge.

Dimostrazione. Supponiamo $c_n \to c$ non crescente. Allora

$$\sum_{n=0}^{N} c_n z_n = \sum_{n=0}^{N} (c_n - c) z_n + c \sum_{n=0}^{N} z_n$$

Ora per $N \to \infty$ abbiamo che $c_n - c \to 0$ decrescente e le somme parziali di z_n sono limitate, perché la serie converge. Quindi abbiamo che la prima serie converge per il primo criterio di Abel. Anche la seconda serie converge per ipotesi, quindi la tesi è dimostrata.

Sappiamo che

$$\left(\sum_{n=0}^{N} a_n z^n\right) \left(\sum_{n=0}^{M} b_n z^n\right) = \sum_{n=0}^{N+M} \sum_{k=0}^{n} a_k b_{n-k} z^n$$

è il prodtto di polinomi. Quindi formalmente, se z=1 e $N,M\to\infty$ otteniamo

Definizione 2.1: Serie prodotto alla Cauchy

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) := \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

che è detta serie prodotto alla Cauchy delle serie $\sum_{n=0}^\infty a_n$ e $\sum_{n=0}^\infty b_n$

Teorema 2.5: Mertens + Cauchy

Se le serie $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ sono convergenti e almeno una è assolutamente convergente, allora la serie prodotto è convergente ed ha per somma il prodotto delle serie.

Se entrambe le serie sono assolutamente convergenti, allora tale è anche la serie prodotto.

Consideriamo serie della forma

$$\sum_{n=0}^{\infty} c_n (z-a)^n \text{ con } c_n \in \mathbb{C} \text{ e } z, a \in \mathbb{C}$$

Abbiamo visto alcuni esempi:

- a) $\sum_{n=0}^{\infty} z^n$ converge se e solo se |z| < 1
- b) $\sum_{n=0}^{\infty}{(-1)^{n+1}\frac{z^n}{n}},$ converge se e solo se $|z|\leq 1$ e $z\neq -1$

In entrambi i casi (e vedremo in generale) la convergenza è nei punti di un disco (detto cerchio di convergenza) di centro z=a. Il comportamento sul bordo del cerchio varia da caso a caso.

Teorema 2.6: Abel

Si consideri la seire di potenze

$$\sum_{n=0}^{\infty} c_n (z-a)^n$$

Se la serie converge in un punto $z \in \mathbb{C}$ allora converge uniformemente su tutto il segmento di estremi a e z.

Dimostrazione. Il teorema è significativo quando $z_1 \in \partial D_R(a)$ Non è restrittivo supporre a=0. Consideriamo

$$\sum_{n=0}^{\infty} c_n z_t^n = \sum_{n=0}^{\infty} c_n (tz_1)^n$$

Figura 2: abel

utilizziamo il criterio di Cauchy per le convergenze uniformi: fissiamo $\varepsilon > 0$, vogliamo avere che per un n_{ε} allora per ogni $N \geq n_{\varepsilon}, \ p \in \mathbb{N}$ e $t \in [0,1]$ si abbia che

$$\left| \sum_{m=N}^{N+p} \underbrace{t^n}_{\gamma_{m-N}} \underbrace{c_n z_1^n}_{\zeta_{m-N}} \right| < \varepsilon$$

$$\leq M(|\gamma_0 - \gamma_1| + |\gamma_1 - \gamma_2| + \dots + |\gamma_{p-1} - \gamma_p|)$$

con M un maggiorante per le somme parziali di $c_n z_1^n$. Ora poiché per ipotesi tale serie converge, esiste n_{ε} tale per cui per ogni $N \geq n_{\varepsilon}$ e per ogni $p \in \mathbb{N}$ si ha che

$$\left| \sum_{m=N}^{N+p} c_m z_1^m \right| \le \varepsilon$$

ora poiché $1 \geq t^n$ per ogni $n \in \mathbb{N}$ abbiamo che la precedente disugaglianza è soddisfatta per M=1, quindi

$$\left| \sum_{n=N}^{N+p} t^n c_n z_1^n \right| \le t^N \varepsilon \le \varepsilon$$

Definizione 2.2: S

ia I un intervallo aperto. Diciamo che una funzione $f:I\to\mathbb{R}$ è analitica se per ogni $x_0\in I$ esiste $\delta>0$ tale che su $(x_0-\delta,x_0+\delta)$ la funzione sia esprimibile come somma di una serie di potenze

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 (2)

Sia f come in (2); Sia R il raggio di convergenza della serie. Su ogni intervallo J tale che $\overline{J} \subseteq (x_0 - R, x_0 + R)$ sappiamo che la serie converge totalmente. Consideriamo la serie delle derivate (cioè la serie derivata)

$$\sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$$

è una serie di potenze con raggio di convergenza R, poiché

$$\limsup_{n \to \infty} \sqrt[n]{n|a_n|} = \limsup_{n \to \infty} \sqrt[n]{|a_n|} \cdot \limsup_{n \to \infty} \sqrt[n]{n}$$

Quindi la Erie delle derivate è uniformemente convergente su ogni compatto di $x_0 - R, x_0 + R$.

Lemma 2.7 (Teorema di derivazione per Serie). Sia $f = \sum f_n$ convergente e $g = \sum f'_n$ uniformemente convergente. Allora f è derivabile e f' = g.

Per il teorema di derivazione per serie, f è derivabile e

$$f'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} \quad \forall x \in (x_0 - R, x_0 + R)$$

A f' applichiamo lo stesso ragionamento visto su f: f' è derivabile e si ha che

$$f''(x) = \sum_{n=2}^{\infty} n(n-1)a_n(x-x_0)^{n-2} \quad \forall x \in (x_0 - R, x_0 + R)$$

Procedendo induttivamente otteniamo che $f \in C^{\infty}(x_0 - R, x_0 + R)$ e

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) a_n (x-x_0)^{n-k}$$

In particolare abbiamo che $f^{(k)}(x_0) = k! a_k$ e quindi la serie di potenze è la serie di Taylor di f centrata in x_0 . Più precisamente

Teorema 2.8

Sia $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ per $x \in (x_0 - R, x_0 + R)$, con $a_n \in \mathbb{R}$ e $x_0 \in \mathbb{R}$. Allora $f \in C^{\infty}(x_0 - R, x_0 + R)$ e la serie è la serie di Taylor di f centrata in x_0 .

Dimostrazione. Vedasi sopra.

Non è vero che ogni funzione C^{∞} sia sviluppabile in serie di Taylor.

Esempio 2.3. Sia $f(x) = e^{-\frac{1}{x^2}}$ per $x \in \mathbb{R} \setminus \{0\}$ e f(0) = 0. Allora

$$f'(x) = \begin{cases} \lim_{x \to 0} \frac{f(x)}{x} = \frac{1}{x} e^{-\frac{1}{x^2}} = 0 & x = 0\\ \frac{2}{x^3} e^{-\frac{1}{x^2}} & x \neq 0 \end{cases}$$

eccetera anche per le altre derivate si ha che $f^{(k)}(0) = 0$. Quindi la serie di Taylor centrata in 0 è la serie nulla, ma $f \neq 0$ in alcun intorno di 0.

Teorema 2.9

Sia $f \in C^{\infty}(I)$ con $I \subseteq \mathbb{R}$ un intervallo aperto per la quale esistano M, L > 0 tali che per ogni $k \in \mathbb{N}$

$$\forall x \in I \quad |f^{(k)}(x)| \le ML^k$$

Allora f è analitica.

Dimostrazione. Sia $x_0 \in I$ e consideriamo

$$\sum_{n=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \quad x \in I$$

Figura 3: $e^{-\frac{1}{x^2}}$

Scriviamo lo sviluppo di Taylor con il resto di Lagrange.

$$f(x) = \sum_{k=0}^{k} \frac{f^{(n)}}{k!} (x - x_0)^k + \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) (x - x_0)^{n+1}$$

dove $\xi_x \in (x_0, x)$ è un opportuno punto. Mostriamo ora che

$$\left| \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) (x - x_0)^{n+1} \right| \le \frac{ML^{n+1}}{(n+1)!} (x - x_0)^{n+1} \to 0 \text{ per } n \to \infty$$

Esempio 2.4. Le funzioni e^x , $\sin x$, $\cos x$ sono analitiche.

C-differenziabilità

Sia $\Omega \subseteq \mathbb{C}$ aperto, $f: \Omega \to \mathbb{C}$

Definizione 2.3: C-differenziabilità

Sia $a \in \Omega$. Diciamo che f è \mathbb{C} -differenziabile in z = a se esiste

$$\lim_{z \to a} \frac{f(z) = f(a)}{z - a} = f'(a) \tag{3}$$

o equivalentemente

$$f(z) = f(a) + f'(a)(z-a) + (\varepsilon(z-a))(z-a) \tag{4}$$

$$f(z) = f(a) + f'(a)(z - a) + (\varepsilon(z - a))(z - a)$$

$$\lim_{w \to 0} \varepsilon(w) = 0$$
(5)

Se poniamo $\varepsilon(0) = 0$ allora la (1)' vale per ogni $z \in \Omega$, non solo $z \neq a$ Alcune proprietà:

- Se f è \mathbb{C} -differenziabile in z=a allora è continua (da (1)')
- f,g \mathbb{C} differenziabile in z=a; allora $f\pm g$ è \mathbb{C} differenziabile, $\lambda f,$ con $\lambda\in\mathbb{C}$ è $\mathbb{C}-\text{differenziabile}$ e fgè $\mathbb{C}-\text{differenziabile}.$

Se $g(a) \neq 0$ allora $\frac{f}{g}$ è \mathbb{C} -differenziabile in z=a e $\left(\frac{f}{g}\right)'=\frac{f'g-fg'}{g^2}$

Esempio 2.5. $z \mapsto z$ è \mathbb{C} -differenziabile in ogni $z \in \mathbb{C}$. Ne consegue dalle proprietà che i polinomi sono C-differenziabili, e anche le funzioni razionali.

Esempio 2.6. $z \mapsto \overline{z}$ non è \mathbb{C} -differenziabile. Infatti

$$\frac{f(z) - f(a)}{z - a} = \frac{\overline{z} - \overline{a}}{z - a} = \frac{\overline{z - a}}{z - a}$$

che non ha limite perché assume valori diversi ad esempio sulla retta $a + \delta$ e $a + \delta i$ al variare di $\delta \in \mathbb{R}$.

Una funzione $f:\Omega\to\mathbb{C}$ può essere vista come $f:\Omega\subseteq\mathbb{R}^2\to\mathbb{R}^2$ tralasciando la struttura di campo di \mathbb{C} . Allora possiamo scrivere $f(x,y) = (u(x,y),v(x,y)) \in \mathbb{R}^2$, con $u, v: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$. Si utilizza spesso la scrittura

$$f(x,y) = u(x,y) + iv(x,y)$$

che è una sorta di "ibrido". Possiamo ora scrivere $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial y}$ ecc. Supponiamo ora che f sia \mathbb{C} -differenziabile in $z=a=x_0+iy_0$. Esiste quindi

$$\lim_{z \to a} \frac{f(z) - f(a)}{z - a} = f'(a)$$

Guardiamo ora la retta $z = a + \delta$, con $\delta \in \mathbb{R}$, quindi

$$f'(a) = \lim_{\delta \to 0} \frac{f(x_0) + \delta, y_0) - f(x_0, y_0)}{\delta} = \frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial x}(a)$$

In maniera analoga, per $z = a + \delta i$ abbiamo

$$f'(a) = \lim_{\delta \to 0} \frac{f(x_0, y_0 + \delta i) - f(x_0, y_0)}{\delta i} = \frac{1}{i} \frac{\partial f}{\partial y} f(x_0, y_0) = -i \frac{\partial f}{\partial y} f(a)$$

In breve abbiamo che deve esser

$$\frac{\partial f}{\partial x}(a) = -i\frac{\partial f}{\partial y}(a)$$

Che in termini di u e v equivale a dire che

$$u_x + iv_x = -i(u_y + iv_y) = v_y - iu_y \iff \begin{cases} u_x = v_y \\ u_y = -v_x \end{cases}$$

Proposizione 2.10 (Condizioni necessarie). Se $f \in \mathbb{C}$ -differenziabile in z = aallora valgono le condizioni di Cauchy-Riemann, cioè

$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y} \quad o \quad equivalentemente \quad \begin{cases} u_x &= v_y \\ u_y &= -v_x \end{cases}$$

Dimostrazione. Vedasi sopra.

Proposizione 2.11. Sia f differenziabile in $a = (x_0, y_0)$ come funzione $\mathbb{R}^2 \supseteq$ $\Omega \to \mathbb{R}^2$. Se valgono le condizioni di Cauchy-Riemann, allora $f: C \supseteq \Omega \to \mathbb{C}$ è \mathbb{C} -differenziabile in $z = x_0 + iy_0$

Dimostrazione. Per ipotesi (con $h = (h_1, h_2)$)

$$f(a+h) - f(a) = \frac{\partial f}{\partial x}(a)h_1 + \frac{\partial f}{\partial y}(a)h_2 + o(h)$$

Poiché $\frac{\partial f}{\partial y} = i \frac{\partial f}{\partial x}$ si ha

$$f(a+h) - f(a) = \frac{\partial f}{\partial x}(a)h_1 + i\frac{\partial f}{\partial x}(a)h_2 + o(h) = \frac{\partial f}{\partial x}(a)(h_1 + ih_2) + o(h)$$
$$= \frac{\partial f}{\partial x}(a)h + o(h) = \frac{\partial f}{\partial x}(a)(z-a) + o(z-a)$$

Teorema 2.12: Looman-Menchoff

Sia $f:\Omega\to\mathbb{C}$ continua e dotata di $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ in z=a. Se valgono le condizioni di Cauchy Riemann, allora f è \mathbb{C} —differenziabile in z=a

Abbiamo già visto sui reali che analitica implica C^{∞} . Ora spiace lo spoiler ma dimostreremo che \mathbb{C} -differenziabile implica analitica, quindi \mathbb{C} -differenziabilità, C^{∞} , analitica saranno nozioni equivalenti e gli assegneremo la dicitura di **olomorfe**.

Definizione 2.4: Derivata complessa

$$\begin{split} \frac{\partial f}{\partial z} &= \frac{1}{2} \bigg(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \bigg) \\ \frac{\partial f}{\partial \overline{z}} &= \frac{1}{2} \bigg(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \bigg) \end{split}$$

Ciò è motivato dal seguente passaggio formale: Sia z=x+iy con $x,y\in\mathbb{R}$, allora $f(x,y)=f\left(\frac{z+\overline{z}}{2},\frac{z-\overline{z}}{2}\right)$ e quindi si ottiene formalmente il risultato come sopra definito

Osservazione. Le condizioni di Cauchy-Riemann diventano $\frac{\partial f}{\partial \overline{z}}=0$

2.2 C-differenziabilità delle funzioni analitiche

Teorema 2.13

Si consideri la serie

$$\sum_{n=0}^{\infty} c_n (z-a)^n \quad c_n \in \mathbb{C}$$

con R il raggio di convergenza. Allora la serie derivata

$$\sum_{n=1}^{\infty} n c_n (z-a)^{n-1}$$

ha lo stesso raggio di convergenza R. Inoltre se f(z) è la somma della serie data e g(z) la somma della serie derivata, allora avremo che f è \mathbb{C} -differenziabile e f'(z)=g(z) per ogni $z\in D_R(a)$

Dimostrazione. Come nel caso reale,

$$\limsup_{n \to \infty} \sqrt[n]{|nc_n|} = \limsup_{n \to \infty} \sqrt[n]{|c_n|}$$

quindi i due raggi di convergenza coincidono. Supponiamo a=0. Fissiamo $w\in D_R(0)$ e consideriamo

$$\frac{f(w+h) - f(w)}{h}$$

con h tale che $w + h \in D_R(0)$. Scriviamo, per $N \in \mathbb{N}$,

$$f(z) = S_N(z) + R_N(z)$$
 con $S_N(z) = \sum_{n=0}^{N} c_n (z-a)^n$

e $R_N(z)$ il resto della serie. Sappiamo che

$$\lim_{n\to 0} \frac{S_N(w+h) - S_N(w)}{h} = S_N'(w) \to g(z) \text{ per } N \to \infty$$

Consideriamo il resto

$$\frac{R_N(w+h) - R_N(w)}{h} = \frac{1}{h} \sum_{n=N=1}^{\infty} (c_n((w+h)^n - w^n))$$

essendo

$$(w+h)^n - w^n = (w+h-w)\left((w+h)^{n-1} + (w+h)^{n-2}w + \dots + w^{n-1}\right)$$

ottengo

$$\left| \frac{R_N(w+h) - R_N(w)}{h} \right| \le \sum_{n=N+1}^{\infty} |c_N| \left(|w+h|^{n-1} + |w+h|^{n-2} |w| + \dots + |w|^{n-1} \right)$$

Ora, per h tale che $w+h \in D_{\rho}(0)$, con $|w| \le \rho < R$ si ha che $|w+h|^{n-k}|w|^{k-1} \le \rho^{n-1}$ quindi

$$\left| \frac{R_N(w+h) - R_N(w)}{h} \right| \le \sum_{n=N+1}^{\infty} |c_n| n \rho^{n-1} \to 0$$

Poiché la serie $\sum_{n=1}^{\infty} nc_n \zeta^{n-1}$ la serie derivata converge assolutamente in $D_R(0)$ in particolare per $\zeta = \rho$. Concludiamo ora

$$\begin{split} & \limsup_{h \to 0} \left| \frac{f(w+h) - f(w)}{h} - g(w) \right| \leq \limsup_{h \to 0} \left| \frac{S_N(w+h) - S_N(w)}{h} - S_N'(w) \right| + \\ & + \limsup_{h \to 0} \left| S_N'(w) - g(w) \right| + \limsup_{h \to 0} \left| \frac{R_N(w+h) - R_N(w)}{h} \right| = \left| S_N'(w) - g(w) \right| + \varepsilon \end{split}$$

per N sufficientemente grande. Si conclude per l'arbitrarietà di ε

2.3 Integrazione su Curve

Definizione 2.5: Curva in $\mathbb C$

Diremo **curva** in $\mathbb C$ ogni funzione continua $\gamma:[a,b]\to\mathbb C$. Si dice **chiusa** se $\gamma(a)=\gamma(b)$. Il **sostegno** di γ è l'immagine di γ , cioè $\gamma([a,b])$. Inoltre γ si dice C^1 a tratti se esistono $a=t_0< t_1< \cdots < t_n=b$ tali che

$$\gamma|_{[t_{k-1},t_k]} \in C^1([t_{k-1},t_k]) \quad \forall k=1,\ldots,n$$

Diciamo curva opposta di γ la curva percorsa in "senso opposto" ossia:

$$-\gamma: [a,b] \to \mathbb{C}$$
 $-\gamma(t) = \gamma(a+b-t)$

Chiamiamo saldatura di due curve $\gamma_1 : [a_1, b_1] \to \mathbb{C}, \gamma_2[a_2, b_2] \to \mathbb{C}, \text{ con } \gamma_1(b_1) = \gamma_2(a_2)$., la curva

$$(\gamma_1 + \gamma_2)(t) = \begin{cases} \gamma_1(t) & t \in [a_1, b_1] \\ \gamma_2(a_2 + t - b_1) & t \in [b_1, b_1 + b_2 - a_2] \end{cases} \quad \forall t \in [a_1, b_1 + (b_2 - a_2)]$$

(Notare che esiste anche la notazione moltiplicativa per saldatura e curva opposta). Siano ora $\gamma:[a,b]\to\mathbb{C}$ e $\tilde{\gamma}:[\alpha,\beta]\to\mathbb{C}$ due curve. Allora diciamo che le due curve sono **equivalenti** se esiste $\varphi:[\alpha,\beta]\to[a,b]$ C^1 a tratti, biettiva, con $\varphi'>0$, tale che $\tilde{\gamma}=\gamma\circ\varphi$

Per convenzione, se non espressamente specificato diversamente considereremo curve \mathbb{C}^1 a tratti.

Definizione 2.6: Integrale su curva

Sia $\gamma:[a,b]\to\mathbb{C}$ una curva C^1 a tratti e sia f continua a valori in \mathbb{C} definita (almeno) sul sostegno di γ . Allora si definisce

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

Abbiamo le seguenti proprietà:

- (linearità)
$$\int_{\gamma} (\lambda f + \mu g) dz = \lambda \int_{\gamma} f dz + \mu \int_{\gamma} g dz$$
- (additività)
$$\int_{\gamma_1 + \gamma_2} f dz = \int_{\gamma_1} f dz + \int_{\gamma_2} f dz$$
-
$$\left| \int_{\gamma} f dz \right| \le \text{ lungh } (\gamma) \cdot \max_{\text{spt } \gamma} |f|$$
-
$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz$$

Sia $\mathcal C$ una curva in $\mathbb C$ assegnata come "oggetto geometrico": circonferenza, retangolo, segmento eccetera. Allora scriveremo $\int_{\mathcal C} f(z)dz$ purché il contesto chiarisca il tipo di parametrizzazione. Ad esempio $\int_{\partial D_R}$ o $\int_{\partial R}$ (rispettivamente integrale su circonferenza e su bordo di un rettangolo) si intenderà a meno di specificare in orientamento antiorario.

Proposizione 2.14. Siano $\gamma:[a,b]\to\mathbb{C}\ e\ \tilde{\gamma}:[\alpha,\beta]\to\mathbb{C}\ due\ curve\ equivalenti.$ Allora

$$\int_{\gamma} f(z)dz = \int_{\tilde{\gamma}} f(z)dz$$

Dimostrazione. Sia $\varphi: [\alpha, \beta] \to [a, b]$ la funzione di equivalenza. Allora

$$\int_{\tilde{\gamma}} f(z)dz = \int_{\alpha}^{\beta} f(\tilde{\gamma}(t))\tilde{\gamma}'(t)dt = \int_{\alpha}^{\beta} f(\gamma(\varphi(t)))\gamma'(\varphi(t))\varphi'(t)dt =$$

$$= \int_{a}^{b} f(\gamma(s))\gamma'(s)ds = \int_{\gamma} f(z)dz$$

Esempio 2.7. Se consideriamo $\int_{\partial D_R(a)}$ allora la parametrizzazione che prendiamo sarà $\gamma(t) = a + Re^{it}$ con $t \in [0, 2\pi]$. Quindi abbiamo $\gamma'(t) = iRe^{it}$ e

$$\int_{\partial D_R(a)} f(z)dz = \int_0^{2\pi} f(a + Re^{it})iRe^{it}dt$$

ad esempio se $f(z) = \frac{1}{z-a}$

$$\int_{\partial D_R(a)} \frac{1}{z-a} dz = \int_0^{2\pi} \frac{1}{Re^{it}} iRe^{it} dt = \int_0^{2\pi} i dt = 2\pi i$$

Esempio 2.8. Se consideriamo R rettangolo, $a \in R \setminus \partial R$. Calcoliamo quindi

$$\int_{\partial P} \frac{1}{z - a} dz$$

dove $z=a+\rho(\theta)e^{i\theta}$ dove $\theta\in[0,2\pi]$ e ρ è C^1 a tratti. Allora otteniamo che

$$\int_{\partial R} \frac{1}{z-a} dz = \int_0^{2\pi} \frac{1}{\rho(\theta) e^{i\theta}} i \rho(\theta) e^{i\theta} d\theta = \int_0^{2\pi} i d\theta = 2\pi i$$

Osservazione. Se ho $F: \Omega \subseteq \mathbb{C} \to \mathbb{C}$, \mathbb{C} -differenziabile e $\gamma: [a,b] \to \Omega$ C^1 a tratti, allora $\frac{d}{dt}F(\gamma(t)) = F'(\gamma(t))\gamma'(t)$. Infatti, fissato $t_0 \in [a,b]$ Consideriamo

$$\frac{F(\gamma(t)) - F(\gamma(t_0))}{t - t_0}$$

Ricordiamo che $F(z) = F(a) + F'(a)(z-a) + (\varepsilon(z-a))(z-a)$ con $\varepsilon(w)$ infinitesimo per $w \to 0$ e $\varepsilon(0) = 0$. Allora

$$\frac{F(\gamma(t)) - F(\gamma(t_0))}{t - t_0} = F'(\gamma(t_0)) \frac{\gamma(t) - \gamma(t_0)}{t - t_0} + \varepsilon(\gamma(t) - \gamma(t_0)) \frac{\gamma(t) - \gamma(t_0)}{t - t_0}$$

e passando al limite otteniamo la tesi.

Osservazione. $\int_{\gamma} f(z)dz$ è l'integrale su un intervallo di una funzione vettoriale $f(\gamma(t))\gamma'(t)$. Come tale possiamo applicare i risultati visti di passaggio al limite sotto il segno di integrale. Ad esempio supponiamo di avere $\gamma:[a,b]\to\Omega$ e una successione e una funzione $f_n,f:\operatorname{spt}\gamma\to\mathbb{C}$ continua e $f_n\to f$ uniformemente su spt γ . Allora

$$\int_{\gamma} f_n(z)dz \to \int_{\gamma} f(z)dz$$

Infatti per ipotesi sappiamo che

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n \ge n_{\varepsilon} \ \forall z \in \operatorname{spt} \gamma \quad |f_n(z) - f(z)| < \varepsilon$$

ma quindi anche $\forall t \in [a, b]$ abbiamo che $|f_n(\gamma(t)) - f(\gamma(t))| < \varepsilon$ e quindi

$$|f_n(g(t))\gamma'(t) - f(\gamma(t))\gamma'(t)| \le |f_n(\gamma(t)) - f(\gamma(t))| \max_{a < s < b} |\gamma'(s)| < M\varepsilon$$

cioè $f_n(\gamma(\cdot))\gamma'(\cdot) \to f(\gamma(\cdot))\gamma'(\cdot)$ uniformemente.

In particolare (come successione si consideri la successione delle somme parziali di una serie) si ha che se $\sum_{n=0}^{\infty} f_n(z)$ converge uniformemente sul supporto di γ allora

$$\int_{\gamma} \sum_{n=0}^{\infty} f_n(z) dz = \sum_{n=0}^{\infty} \int_{\gamma} f_n(z) dz$$

Definizione 2.7: Primitiva

Sia $\Omega \subseteq \mathbb{C}$ aperto e $f:\Omega \to \mathbb{C}$ continua. Una funzione $F:\Omega \to \mathbb{C}$ si dice **primitiva** di f se F è \mathbb{C} -differenziabile e F'(z)=f(z) per ogni $z\in\Omega$.

Proposizione 2.15. Sia F primitiva di f e $\gamma:[a,b]\to\Omega$ una curva C^1 a tratti. Allora

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a))$$

Dimostrazione.

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} F'(\gamma(t))\gamma'(t)dt = F(\gamma(b)) - F(\gamma(a))$$

Corollario 2.15.1. Se F ammette primitiva in Ω allora $\int_{\gamma} f(z)dz = 0$ per ogni curva chiusa γ in Ω .

Dimostrazione. ovvia

Corollario 2.15.2. Sia Ω un aperto connesso, allora se f è \mathbb{C} -differenziabile e f' = 0 allora f è costante.

Dimostrazione. Fissiamo $z_0, z_1 \in \Omega$, allora esiste (connessione per archi) una γ C^1 a tratti (poligonale) con $\gamma(a) = z_0$ e $g(b) = z_1$ e allora poiché f è primitiva di f' abbiamo che

$$0 = \int_{\gamma} f'(z)dz = f(\gamma(b)) - f(\gamma(a)) = f(z_1) - f(z_0)$$

Ricordiamo la notazione "mista" per le funzioni $f:\mathbb{C}\to\mathbb{C},\ f=f(x,y)=u(x,y)+iv(x,y).$ Sia ora $\gamma:[a,b]\to\Omega$ C^1 a tratti e la denotiamo $\gamma(\cdot)=x(\cdot)+iy(\cdot).$ Allora

$$\int_{\gamma} f(z)dz = \int_{a}^{b} (u(x(t), y(t)) + iv(x(t), y(y)))(x'(t) + iy'(t))dt =$$

$$= \int_{a}^{b} u(x(t), y(t))x'(t) - v(x(t), y(t))y'(t)dt +$$

$$+ i \int_{a}^{b} u(x(t), y(t))y'(t) + v(x(t), y(t))x'(t)dt$$

Se ora poniamo $\omega_r(x,y)=u(x,y)dx-v(x,y)dy$ e $\omega_i(x,y)=v(x,y)dx+u(x,y)dy$ allora otteniamo

$$\int_{\gamma} f(z)dz = \int_{\gamma} \omega_r + i \int_{\gamma} \omega_i$$

e anche

$$\int_{\gamma} f(z)dz = \int_{a}^{b} (u(x(t), y(t)) + iv(x(t), y(t)))x'(t)dt +$$

$$+ i \int_{a}^{b} (u(x(t), y(t)) + iv(x(t), y(t)))y'(t)dt =$$

$$= \int_{\gamma} f(x, y)dx + i \int_{\gamma} f(x, y)dy$$

Proposizione 2.16. Sia $\Omega \subseteq \mathbb{C}$ aperto, $f: \Omega \to \mathbb{C}$.

- a) Sia f continua. Allora f ammette primitiva se e solo se ω_r e ω_i sono esatte
- b) Sia $f \in C^1$. Allora f soddisfa le condizioni di Cauchy Riemann (cioè è \mathbb{C} -differenziabile) se e solo se ω_r e ω_i sono chiuse

Dimostrazione.

a) f ammette primitiva $F = \varphi + i\psi$; si ha quindi che

$$u + iv = F' = F_x = \varphi_x + i\psi_x$$
 e
$$\begin{cases} \varphi_x = \psi_y \\ \varphi_y = -\psi_x \end{cases}$$

Allora otteniamo che

$$\begin{cases} u = \varphi_x = \psi_y \\ v = \psi_x = -\varphi_y \end{cases}$$

ne consegue che

$$\begin{cases} \omega_r = udx - vdy = \varphi_x dx - \varphi_y dy = d\varphi \\ \omega_i = vdx + udy = \psi_x dx + \psi_y dy = d\psi \end{cases}$$

sono esatte.

Viceversa, siano ω_r e ω_i esatte, quindi $\omega_r = d\varphi$ e $\omega_i = d\psi$, per opportune $\varphi, \psi \in C^1(\Omega)$. Allora

$$\begin{cases} u = \varphi_x \\ -v = \varphi_y \end{cases} \qquad \begin{cases} v = \psi_x \\ u = \psi_y \end{cases}$$

Ponendo ora $F = \varphi + i\psi \in C^1$ si ha che

$$\begin{cases} \varphi_x = y = \psi_y \\ \varphi_y = -v = -\psi_x \end{cases}$$

che sono esattamente le condizioni di Cauchy-Riemann per F. Allora F è \mathbb{C} -differenziabile e $F'=F_x=\varphi_x+i\psi_x=u+iv=f$, quindi F è primitiva di f.

b) f = u + iv. Le condizioni di Cauchy-Riemann sono

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \iff \begin{cases} w_i = vdx + udy \text{ è chiusa} \\ w_r = udx - vdy \text{ è chiusa} \end{cases}$$

semplicemente per definizione

Ricordiamo che vogliamo cercare di invertire il risultato precedente, ossia il corollario 2.15.1. Per il viceversa quindi abbiamo che $\int_{\gamma} f = 0$ per ogni γ chiusa in Ω , ma ora poiché $\int_{\gamma} f = \int_{\gamma} \omega_r + i \int_{\gamma} \omega_i$ ne consegue che

$$\int_{\gamma} \omega_r = \int_{\gamma} \omega_i = 0 \quad \forall \gamma \stackrel{\text{Teorema } 3.1}{\Longrightarrow} \omega_r, \omega_i \text{ esatte } \stackrel{\text{Proposizione}}{\Longrightarrow} f \text{ ammette primitiva}$$

Con questo abbiamo dimostrato

Proposizione 2.17. Sia $f:\Omega\to\mathbb{C}$ continua, allora f ammette primitiva se e solo se

$$\int_{\gamma} f(z)dz = 0 \quad \forall \gamma \ chiusa \ in \ \Omega$$

Nella dimostrazione $f\mathbb{C}$ -differenziabile $\Longrightarrow f$ analitica servirà avere che $\int_{\gamma} f = 0$ per ogni γ chiusa in Ω semplicemente connesso. Ma non possiamo usare (b) della proposizione 2.16 perché non possiamo assumere che f sia C^1 . Allora mostriamo direttamente che $\int_{\gamma} f = 0$ in un caso particolare, usando il seguente lemma

Lemma 2.18: Cauchy-Goursat

Sia $f:\Omega\to\mathbb{C}$ C
—differenziabile. Sia R un rettangolo chiuso, co
n $R\subseteq\Omega.$ Allora

$$\int_{\partial R} f(z)dz = 0$$

Dimostrazione. Sia $A=\left|\int_{\partial R}fdz\right|.$ Per assurdo supponiamo sia A>0. Ora suddividiamo R in quattro rettangoli R_1^1,R_2^1,R_3^1,R_4^1 e abbiamo

$$A = \left| \int_{\partial R} f \right| = \left| \sum_{i=1}^{4} \int_{\partial R_i^1} f \right| \le \sum_{i=1}^{4} \left| \int_{\partial R_i^1} f \right|$$

Allora abbiamo che per un qualche R_i^1 si ha che

$$\left| \int_{\partial R_{j_1}^1} f \right| \ge \frac{A}{4}$$

Procediamo in questo modo suddividendo $R^1_{j_1}$ in quattro rettangoli R^2_i per i=1,2,3,4 e così procedendo si forma una successione di rettangoli

$$R_{j_1}^1 \supseteq R_{j_2}^2 \supseteq \cdots \supseteq R_{j_n}^n$$

che hanno diametro diam $R^k_{j_k}=\frac{1}{2^k}$ diamR di lunghezza lungh $R^k_{j_k}=\frac{1}{2^k}$ lungh e tali che

$$\left| \int_{\partial R_{j_k}^k} f \right| \ge \frac{1}{4^k}$$

Ora essendo ogni rettangolo compatto, la loro intersezione non è vuota e anzi è un solo punto $\bigcap_{k\in\mathbb{N}}\mathbb{R}^k_{j_k}=\{a\}$, avendo diametro 0. Poiché f è \mathbb{C} -differenziabile in z=a:

$$f(z) = f(a) + f'(a)(z-a) + \varepsilon(z-a)(z-a)$$
 $\varepsilon(0) = 0$ $\varepsilon(w) \to 0$ per $w \to 0$

Infine notiamo che

$$\int_{\partial R_{j_k}^k} f(z)dz = \int_{\partial R_{j_k}^k} (f(a) + f'(a)(z-a))dz + \int_{\partial R_{j_k}^k} \varepsilon(z-a)(z-a)dz$$

dove il primo termine è uguale a 0 poiché la funzione integranda ammette primitiva $f(a)z+\frac{1}{2}f'(a)(z-a)^2$. Ora fissiamo $\sigma>0$. Sia $\delta>0$ tale che $|w|<\delta\implies |\varepsilon(w)|<\sigma$. Per k sufficientemente grande abbiamo che diam $R_{j_k}^k<\delta$ e allora $|z-a|<\delta$ se $z\in\partial R_{j_k}^k$. Allora, per tali k:

$$\left| \int_{\partial R_{j_k}^k} \varepsilon(z-a)(z-a) dz \right| \leq \sigma \text{ diam } R_{j_k}^k \text{ lungh } R_{j_k}^k = \sigma \cdot \frac{1}{2^k} \text{ diam } R \cdot \frac{1}{2^k} \text{ lungh } \partial R$$

Ricordando che

$$\left| \int_{\partial R_{j_k}^k} f \right| \ge \frac{1}{4^k}$$

e mettendo assieme i pezzi otteniamo che A=0 (per l'arbitrarietà di σ), che è assurdo

Estendiamo ora il risultato

Proposizione 2.19. Sia $f: \Omega \to \mathbb{C}$ continua. Sia $a \in \Omega$ e supponiamo che f sia \mathbb{C} -differenziabile in $\Omega \setminus \{a\}$. Allora

$$\int_{\partial R} f = 0$$

per ogni rettangolo chiuso R in Ω

Dimostrazione. – Se $a \notin R$ allora si usa il lemma di Cauchy-Goursat

– Se $a \in \partial R$ si approssima R con una successione R_n di rettangoli internamente (come in figura 4) Risulta poi

$$0=\int_{\partial R_n}f\to\int_{\partial R}f$$

(possiamo pensare ogni ∂R_n parametrizzato su un intervallo fisso [a,b]e c'è convergenza uniforme)

w C 010

Figura 4: Approssimazione di R con R_n per $a \in \partial R$ e decomposizione per $a \in \mathring{R}$

- $a \in \mathring{R}$ Scomponendo R in due rettangoli R_1 e R_2 come in figura, con $a \in \partial R_1 \cap \partial R_2$ si ha che

$$\int_{\partial R} f = \int_{\partial R_1} f + \int_{\partial R_2} f = 0$$

per il caso precedente

Teorema 2.20: Formula di Cauchy per il rettangolo

Sia $f:\Omega\to\mathbb{C}$
 C—differenziabile. Sia $R\subseteq\Omega$ un rettangolo chiusa. Allora per ogn
i $w\in\mathring{R}$ risulta

$$f(w) = \frac{1}{2\pi i} \int_{\partial R} \frac{f(z)}{z - w} dz$$

Dimostrazione. Sia

$$g(z) := \begin{cases} \frac{f(z) - f(w)}{z - w} & z \neq w \\ f'(w) & z = w \end{cases}$$

allora poiché f è \mathbb{C} -differenziabile, g è continua Ω . Inoltre g è \mathbb{C} -differenziabile in $\Omega \setminus \{w\}$. Allora per la proposizione 2.19 si ha che

$$0 = \int_{\partial R} g(z)dz = \int_{\partial R} \frac{f(z) - f(w)}{z - w}dz = \int_{\partial R} \frac{f(z)}{z - w}dz - f(w) \int_{\partial R} \frac{1}{z - w}dz$$

Infine poiché $\int_{\partial R} \frac{dz}{z-w} = 2\pi i$ per $w \in \mathring{R}$ si ottiene la tesi.

Teorema 2.21

Sia $\Omega\subseteq\mathbb{C}$ aperto e $f:\Omega\to\mathbb{C}$ una funzione \mathbb{C} -differenziabile. Allora f è analitica in Ω

Dimostrazione. Fissiamo $a \in \Omega$ e mostriamo che f è sviluppabile in serie di potenze in un intorno di a. Sia R un rettangolo chiuso con $a \in \mathring{R}$ e $R \subseteq \Omega$. Sia $D_r(a)$ con

Figura 5: diffanalitica

 $\overline{D_r(a)} \subseteq \mathring{R}$. Consideriamo $z \in D_r(a)$. Sappiamo per la formula di Cauchy per il rettangolo

$$f(z) = \frac{1}{2\pi i} \int_{\partial R} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Ora comunque presi $z \in D_r(a)$ e $\zeta \in \partial R$

$$\frac{1}{\zeta-z} = \frac{1}{\zeta-a-(z-a)} = \frac{1}{\zeta-a} \cdot \frac{1}{1-\frac{z-a}{\zeta-a}}$$

e poiché

$$\left| \frac{z - a}{\zeta - a} \right| \le \alpha < 1$$

per un opportuno α . Allora abbiamo

$$\frac{1}{1 - \frac{z - a}{\zeta - a}} = \sum_{n=0}^{\infty} \left(\frac{z - a}{\zeta - a}\right)^n$$

e quindi

$$f(z) = \frac{1}{2\pi i} \int_{\partial R} \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - a)^{n+1}} (z - a)^n d\zeta$$

Risulta che

$$\left| \frac{f(\zeta)}{(\zeta - a)^{n+1}} (z - a)^n \right| \le \left(\max_{\partial R} |f| \right) \frac{1}{|\zeta - a|} \cdot \alpha^n$$

e quindi poiché $\alpha < 1$ si ha convergenza globale e si può scambiare il segno di serie e integrale ottenendo

$$f(z) = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{\partial R} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta \right) (z - a)^n = \sum_{n=0}^{\infty} c_n (z - a)^n$$

dove
$$c_n = \frac{1}{2\pi i} \int_{\partial R} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta$$

Abbiamo allora dimostrato che f è \mathbb{C} -differenziabile se e solo se è analitica. Si parla anche di funzioni **olomorfe** e si indica con $f \in \mathcal{H}(\Omega)$

Osservazione. Se f è olomorfa allora f è infinitamente differenziabile in senso complesso. Inoltre se guardiamo f come funzione reale $f:\mathbb{R}^2\to\mathbb{R}^2$ allora f è C^∞

Sia $f: \Omega \to \mathbb{C}$. Abbiamo già visto che se per ogni γ chiusa in Ω si ha $\int_{\gamma} f = 0$ allora f ammette primitiva in Ω , ossia esiste $F: \Omega \to \mathbb{C}$ tale che F' = f. In particolare F è \mathbb{C} -differenziabile e quindi olomorfa, ma quindi anche f è olomorfa.

Ricordando la dimostrazione del teorema 3.1 che dice che se l'integrale su ogni curva chiusa di una forma differenziale è nullo allora la forma è esatta. Similmente se per ogni curva chiusa γ si ha che l'integrale su γ di f è nullo allora f ammette primitiva, costruita nello stesso modo, ossia

$$F(z) = \int_{\gamma_z} f(\zeta) d\zeta$$

dove γ_z è una curva che unisce z_0 a z, con z_0 fissato. Richiedere che l'integrale su ogni curva chiusa sia nullo serve perché questa funzione sia ben definita.

Supponiamo ora di avere solamente l'ipotesi

$$\forall R \subseteq \Omega \quad \int_{\partial R} f = 0$$

Otteniamo un simile risultato

Teorema 2.22: Morera

Sia $f:\Omega\to\mathbb{C}$ continua e tale che

$$\forall R \subseteq \Omega \quad \int_{\partial R} f = 0$$

Allora f è olomorfa in Ω

Dimostrazione. Fissato $\overline{D}_r(a) \subseteq \Omega$, per ogni $z \in D_r(a)$ costruiamo

$$F(z) := \int_{\gamma_{z}} f(\zeta) d\zeta$$

dove γ_z consiste in due dei lati di un rettangolo con vertici a e z. Tecnicamente allora ci sono due curve γ_z e $\tilde{\gamma}_z$ con questa proprietà, ma per l'ipotesi posta hanno uguale integrale, quindi F è ben posta. Ora come nel caso precedente si dimostra che F è \mathbb{C} -differenziabile e F'(z) = f(z) in ogni $z \in D_r(a)$. Allora F è \mathbb{C} -differenziabile in $D_r(a)$. Per l'arbitrarietà di a si ha che f è olomorfa in Ω .

Osservazione. Non abbiamo dimostrato in questo caso che f ammette primitiva su tutto Ω , ma soltanto in un intorno di ogni punto. Questo comunque ci permette di mostrare che f è olomorfa.

Con quanto appena visto possiamo aggiornare la Proposizione 2.16. Infatti se f è olomorfa, in particolare è C^1 e allora ω_i e ω_r sono chiuse. Ora usando il Teorema 3.2 vale l'invarianza per omotopia. Allora

Teorema 2.23: Cauchy, forma omotopica

Sia $f \in \mathcal{H}(\Omega)$ e γ_0, γ_1 curve chiuse fra loro omotope in Ω . Allora

$$\int_{\gamma_0} f = \int_{\gamma_1} f$$

Dimostrazione. vedasi sopra

Risultato analogo vale per curve omotope rispetto a un'omotopia che fissa gli estremi.

Corollario 2.23.1. Sia $f \in \mathcal{H}(\Omega)$, con Ω semplicemente connesso. Allora f ammette primitiva in Ω

Osservazione. Segue che $f \in \mathcal{H}(\Omega)$ ammette sempre una primitiva locale.

Teorema 2.24: Formula di Cauchy per il cerchio

Sia $f \in \mathcal{H}(\Omega)$ e D disco aperto con $\overline{D} \subseteq \Omega$. Allora per ogni $z \in D$

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Figura 6: cauchy-disco

Dimostrazione. Sappiamo che

$$f(z) = \frac{1}{2\pi i} \int_{\partial R} \frac{f(\zeta)}{\zeta - z} d\zeta$$

se R è un rettangolo chiuso in $\Omega,$ con $z\in \mathring{R}.$ Sia $R\subseteq D$ Poiché

$$\zeta \mapsto \frac{f(\zeta)}{\zeta - z}$$

è olomorfa in $\Omega \setminus \{z\}$ e ∂D e ∂R sono omotope in $\Omega \setminus \{z\}$ risulta

$$\int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\partial R} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Osservazione. La formula si estende al caso in cui anziché D vi è una "qualunque forma" con bordo omotopo a ∂R

Funzioni olomorfe Sia $f \in \mathcal{H}(\Omega)$. Allora se $a \in \Omega$ sappiamo che in un intorno di z=a

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

per opportuni $c_n = \frac{f^{(n)}(a)}{n!}$ per il teorema della serie derivata. Domanda naturale è chiedersi quant'è il raggio di convergenza di tale serie di potenze.

Proposizione 2.25. La serie $\sum_{n=0}^{\infty} c_n (z-a)^n$ converge nel più grande disco contenuto in Ω

Dimostrazione. Sia $r = d(a, \partial\Omega)$. Fissiamo $z \in D_r(a)$ e sia $0 < \rho < r$ tale che $z \in D_\rho(a)$. Applichiamo la formula di Cauchy:

$$f(z) = \frac{1}{2\pi i} \int_{\partial D_{\alpha}(a)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

e procediamo come nella dimostrazione dell'analiticità delle funzioni $\mathbb C$ -differenziabili. Allora per z fissato

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a - (z - a)} = \frac{1}{(\zeta - a)(1 - \frac{z - a}{\zeta - a})}$$

e poiché $\left|\frac{z-a}{\zeta-a}\right|=\frac{1}{\rho}|z-a|<1$ e indipendente da ζ . Quindi

$$f(z) = \frac{1}{2\pi i} \int_{\partial D_{\rho}(a)} \sum_{n=0}^{\infty} \frac{f(\zeta)}{\zeta - a} \left(\frac{z - a}{\zeta - a}\right)^n d\zeta =$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{D_{\rho}(a)} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta\right) (z - a)^n$$

e quindi questa deve essere la serie di taylor

Dalla dimostrazione scende anche che

$$\frac{f^{(n)}(a)}{n!} = c_n = \frac{1}{2\pi i} \int_{\partial D_a(a)} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta$$

e poiché la funzione integranda è olomorfa in $\Omega \setminus \{a\}$ e le curve ∂D e $\partial D_{rho}(a)$ sono omotope, per D qualsiasi $a \in D \subseteq \overline{D} \subseteq \Omega$ si ottiene il seguente corollario

Corollario 2.25.1. Sia $\overline{D} \subseteq \Omega$ disco chiuso. Allora per ogni $z \in D$

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \tag{6}$$

Osservazione. Per n=0 si trova proprio la formula di Cauchy per il cerchio.

Osservazione. Il corollario può essere ottenuto dalla formula di Cauchy per il cerchio per derivazione sotto il segno di integrale

$$\frac{d}{dz}\frac{1}{\zeta - z} = \frac{1}{(\zeta - z)^2}$$

Proposizione 2.26. Per ogni $a \in \Omega$ e $\overline{D_{\rho}}(a) \subseteq \Omega$

$$\frac{|f^{(n)}(a)|}{n!} \le \rho^{-n} \max_{\partial D_{\rho}(a)} |f|$$

Dimostrazione. Da (6) si ottiene che

$$\frac{|f^{(n)}(a)|}{n!} \leq \frac{1}{2\pi} \frac{1}{\rho^{n+1}} \left(\max_{\partial D_{\rho}} |f| \right) \cdot \underbrace{\operatorname{lungh} \partial D_{\rho}(a)}_{2\pi\rho}$$

Teorema 2.27: Liouville

Se $f \in \mathcal{H}(\mathbb{C})$ è limitata, allora f è costante

Dimostrazione. Fissiamo $a\in\mathbb{C}$ e
 $\rho>0$ arbitrario. Consideriamo lo sviluppo di Taylor di centro
 z=a

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$
 $c_n = \frac{f^{(n)}(a)}{n!}$

è valido per ogni $z \in \mathbb{C}$.

Sappiamo per la proposizione precedente che

$$|c_n| \le \frac{1}{\rho^n} \max_{\partial D_{\rho}(a)} |f| \le \rho^{-n} \max_{\mathbb{C}} |f| \to 0 \text{ per } \rho \to \infty$$

da cui $c_n = 0$ per $n \ge 1$ da cui $f(z) = c_0$ è costante.

Corollario 2.27.1 (Teorema Fondamentale dell'Algebra). Sia

$$p_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$$

 $con \ a_n \neq 0$. Allora p_n ha almeno uno zero

Dimostrazione. Per assurdo sia $p_n(z) \neq 0$ per ogni z. Allora sia

$$f(z) = \frac{1}{p_n(z)}$$

Si ha che

$$p_n(z) = a_n z^n \left(1 + \frac{a_{n-1}}{a_n z} + \frac{a_{n-2}}{a_n z^2} + \dots + \frac{a_0}{a_n z^n} \right)$$

il cui valore assoluto va a $+\infty$ per $|z| \to \infty$. Allora f è limitata perché $\lim_{|z| \to \infty} \frac{1}{p_n(z)} = 0$. Ma allora per il teorema di Liouville f è costante, assurdo.

2.4 Sviluppo di Laurent

Con

$$\sum_{m=-\infty}^{\infty} c_m (z-a)^m \tag{7}$$

intendiamo

$$\sum_{m=-1}^{-\infty} c_m (z-a)^m + \sum_{m=0}^{\infty} c_m (z-a)^m$$
 (8)

cioè diremo che la serie (7) converge (uniformemente, assolutamente, ecc) se tali sono le serie (8).

Siano $0 \le r_1 < r_2 < +\infty$ e $a \in \mathbb{C}$. Consideriamo

$$\Omega = \{ z \in \mathbb{C} : r_1 < |z - a| < r_2 \}$$

Nel caso di $r_1=0, r_2=r$ allora si indica anche $D^*_r(a)=D_r(a)\diagdown\{a\}$

Teorema 2.28

Sia $f \in \mathcal{H}(\Omega)$. Allora esiste unica una successione c_n tale che

$$f(z) = \sum_{m=-\infty}^{\infty} c_m (z-a)^m \quad z \in \Omega$$

Tale serie converge assolutamente in modo uniforme sui compatti di Ω . Inoltre si ha che

$$c_m = \frac{1}{2\pi i} \int_{\partial D_\rho} \frac{f(\zeta)}{(\zeta - a)^{m+1}} d\zeta$$

Dimostrazione. Siano $r_1 < \rho_1 < \rho_2 < r_2$ come in figura. Rappresentiamo f in forma integrale in $\{z: \rho_1 < |z-a| < \rho_2\}$. Sia

$$g(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z} & \zeta \neq z \\ f'(z) & \zeta = z \end{cases}$$

Allora g è olomorfa in Ω , infatti se $\zeta \neq z$, poiché $f(\zeta) = \sum_{n=0}^{\infty} a_n (\zeta - z)^n$, con $a_0 = f(z)$,

$$\frac{f(\zeta) - f(z)}{\zeta - z} = \frac{1}{\zeta - z} \sum_{n=1}^{\infty} a_n (\zeta - z)^n = \sum_{n=1}^{\infty} a_n (\zeta - z)^{n-1}$$

che è una funzione olomorfa anche in un intorno di z e vale $a_1=f'(z)$ in $\zeta=z$. Ne consegue che per il teorema di Cauchy

$$\partial D_{\rho_1} \sim \partial D_{\rho_2} \implies \int_{\partial D_{\rho_1}(a)} g = \int_{\partial D_{\rho_2}(a)} g$$

ma allora

$$\int_{\partial D_{\varrho_1}(a)} \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) \int_{\partial D_{\varrho_1}(a)} \frac{d\zeta}{\zeta - z} = \int_{\partial D_{\varrho_2}(a)} \frac{f(z)}{\zeta - z} d\zeta - f(z) \int_{\partial D_{\varrho_2}(a)} \frac{d\zeta}{\zeta - z} = 0$$

ma $\int_{\partial D_{\rho_1}} \frac{1}{\zeta - z} d\zeta = 0$ poiché la funzione $\zeta \mapsto \frac{1}{\zeta - z}$ è olomorfa in un disco contenente ∂D_{ρ_1} e non contenente z e in tale disco $D_{\rho_1} \sim 0$. Allora

$$-f(z)\int_{\partial D_{\rho_2}}\frac{d\zeta}{\zeta-z}d\zeta = -f(z)2\pi i = \int_{\partial D_{\rho_1}(a)}\frac{f(\zeta)}{\zeta-z}d\zeta - \int_{\partial D_{\rho_2}(a)}\frac{f(\zeta)}{\zeta-z}d\zeta$$

e quindi ora per il secondo passo usiamo la rappresentazione

$$f(z) = \frac{1}{2\pi i} \left(\int_{\partial D_{\rho_2}(a)} \frac{f(\zeta)}{\zeta - z} d\zeta - \int_{D_{\rho_1}(a)} \frac{f(\zeta)}{\zeta - z} d\zeta \right)$$

Sia ora $\zeta \in \partial D_{\rho_1}(a)$ e allora

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a - (z - a)} = -\frac{1}{(z - a) - (\zeta - a)} = -\frac{1}{(z - a)\left(1 - \frac{\zeta - a}{z - a}\right)}$$

e poiché $\left|\frac{\zeta-a}{z-a}\right|=\frac{\rho_1}{z-a}<1$ abbiamo che la precedente

$$\frac{1}{\zeta - z} = -\frac{1}{z - a} \sum_{n=0}^{\infty} \left(\frac{\zeta - a}{z - a}\right)^n$$

converge uniformemente per $\zeta \in \partial D_{\rho_1}$ e quindi

$$-\int_{\partial D_{\rho_1}(a)} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \left(\int_{\partial D_{\rho_1}} f(\zeta) (\zeta - a)^n d\zeta \right) \frac{1}{(z - a)^{n+1}}$$

da cui

$$-\frac{1}{2\pi i} \int_{\partial D_{\rho_1}} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial D_{\rho_1}} \frac{f(\zeta)}{(\zeta - a)^{-n}} d\zeta \right) (z - a)^{-(n-1)} = \cdots$$

se ora m := -(n+1) si ha che

$$\cdots = \sum_{m=-1}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial D_{\rho_1}(a)} \frac{f(\zeta)}{(\zeta - a)^{m+1}} d\zeta \right) (z - a)^m$$

che è esattamente la forma promessa dal teorema per le potenze negative. Consideriamo ora invece $\zeta \in \partial D_{\rho_2}(a)$ e allora

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a - (z - a)} = \frac{1}{(\zeta - a)\left(1 - \frac{z - a}{\zeta - a}\right)}$$

e come prima poiché $\left|\frac{z-a}{\zeta-a}\right| \leq \frac{|z-a|}{\rho_2} < 1$ la precedente

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a} \sum_{n=0}^{\infty} \left(\frac{z - a}{\zeta - a}\right)^n$$

converge uniformemente per $\zeta \in \partial D_{\rho_2}$ e quindi

$$\int_{\partial D_{\rho_2}(a)} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \left(\int_{\partial D_{\rho_2}} \frac{f(z)}{(\zeta - a)^{n+1}} d\zeta \right) (z - a)^n$$

da cui

$$\frac{1}{2\pi i} \int_{\partial D_{\rho_2}} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial D_{\rho_2}} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta \right) (z - a)^n$$

Infine poiché $\zeta \mapsto \frac{f(z)}{(\zeta - a)^{n+1}}$ è olomorfa in Ω l'espressione dei coefficienti coincide con

$$c_m = \frac{1}{2\pi i} \int_{\partial D_{\rho}(a)} \frac{f(\zeta)}{(\zeta - a)^{m+1}} d\zeta$$

per ρ arbitrario con $r_1 < \rho < r_2$ e allora

$$f(z) = \sum_{m=-\infty}^{\infty} c_m (z-a)^m$$

3 Richiamo delle forme differenziali

Sia $\Omega \subseteq \mathbb{R}^2$ aperto. Una forma differenziale su Ω è un'espressione formale della forma

$$\omega(x,y) = A(x,y)dx + B(x,y)dy$$

con $A, B \in C^0(\Omega)$. Più precisamente ω è una funzione continua $\omega : \Omega \to (\mathbb{R}^2)'$. Se γ è una curva C^1 a tratti in $\Omega, \gamma : [a, b] \to \Omega$, allora

$$\int_{\gamma} \omega \stackrel{\text{def}}{=} \int_{a}^{b} A(x(t), y(t)) x'(t) + B(x(t), y(t)) y'(t) dt \quad \gamma(t) = (x(t), y(t))$$

Definizione 3.1: Forma esatta

La forma differenziale ω si dice **esatta** se esiste $F\in C^1(\Omega)$ tale che $\omega=dF,$ e F è detta primitiva di ω

Se ω è C^1 (cio
è $A,B\in C^\Omega$) allora, se è esatta, ossia $\frac{\partial F}{\partial x}=A$ e $\frac{\partial F}{\partial y}=B$ risulta

$$\frac{\partial A}{\partial y} = \frac{\partial B}{\partial x} \tag{9}$$

Definizione 3.2: Forma chiusa

Se ω è una forma differenziale C^1 e soddisfa (9) allora si dice **chiusa**

Teorema 3.1

Sia Ω connesso. Allora

$$\omega$$
 esatta $\iff \int_{\gamma} \omega = 0$ per ogni γ in Ω chiusa

idea di dimostrazione.

 \implies semplice

 \iff Fissiamo $(x_0, y_0) \in \Omega$. Definiamo ora

$$F(x,y) = \int_{\gamma(x,y)} \omega$$

dove $\gamma_{x,y}$ è una qualunque curva in Ω che unisce (x_0, y_0) a (x, y). La definizione è ben posta perché se $\gamma_{(x,y)} e \tilde{\gamma}_{(x,y)}$ sono due tali curve allora

$$0 = \int_{\gamma_{(x,y)} - \tilde{\gamma}_{(x,y)}} \omega = \int_{\gamma_{(x,y)}} \omega - \int_{\tilde{\gamma}_{(x,y)}} \omega$$

La dimostrazione procede dimostrando che $dF = \omega$

Teorema 3.2

Sia Ω connesso e ω chiusa. Allora se γ_0 e γ_1 sono curve chiuse C^1 a tratti

omotope in Ω allora

$$\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$$

Osservazione. Il teorema vale anche per curve non necessariamente chiuse purché siano omotope mediante un'omotopia che fissa gli estremi.

Corollario 3.2.1. Sia Ω semplicemente connesso e ω chiusa. Allora ω è esatta.

Dimostrazione. Se Ω è semplicemente connesso ogni curva chiusa è omotopa a costante 0e quindi $\int_{\gamma}\omega=0,$ ossia ω è esatta