Векторы и операторы

Краткое напутствие

Зачем нужна линейная алгебра?

• Линейная алгебра прекрасна сама по себе!

Краткое напутствие

Зачем нужна линейная алгебра?

- Линейная алгебра прекрасна сама по себе!
- Работает «под капотом» практически всех методов машинного обучения.

Краткий план:

• Вектор — это столбец чисел.

Краткий план:

- Вектор это столбец чисел.
- Сложение двух векторов и умножение на число.

Краткий план:

- Вектор это столбец чисел.
- Сложение двух векторов и умножение на число.
- Расстояние и косинус угла между векторами.

Рабочее определение

Вектор — столбец из нескольких чисел.

$$\mathbf{v} = \begin{pmatrix} \sqrt{5} \\ 3 \\ -3.45 \end{pmatrix}$$

Рабочее определение

Вектор — столбец из нескольких чисел.

$$\mathbf{v} = \begin{pmatrix} \sqrt{5} \\ 3 \\ -3.45 \end{pmatrix}$$

Идея вектора

Вектор — всё, что можно описать столбцом из нескольких чисел.

Рабочее определение

Вектор — столбец из нескольких чисел.

$$\mathbf{v} = \begin{pmatrix} \sqrt{5} \\ 3 \\ -3.45 \end{pmatrix}$$

Идея вектора

Вектор — всё, что можно описать столбцом из нескольких чисел.

Мы не пишем стрелочку над вектором.

Рабочее определение

Вектор — столбец из нескольких чисел.

$$\mathbf{v} = \begin{pmatrix} \sqrt{5} \\ 3 \\ -3.45 \end{pmatrix}$$

Идея вектора

Вектор — всё, что можно описать столбцом из нескольких чисел.

Мы не пишем стрелочку над вектором.

Вектор из нулей обозначаем 0.

Пространство \mathbb{R}^n

Определение

Пространство \mathbb{R}^n :

Множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

Пространство \mathbb{R}^n

Определение

Пространство \mathbb{R}^n :

Множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

Определение

Размерность пространства \mathbb{R}^n :

Количество чисел в каждом векторе, n.

Длина вектора

Евклид, около 300 лет до н.э.

Определение

Евклидова длина или норма

вектора

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

wikipedia.org / общественное достояние

Длина вектора

Сложение и вычитание двух векторов

Определение

Сложение и вычитание двух векторов выполняем

поэлементно:

$$\begin{pmatrix} 2\\3.5\\-1 \end{pmatrix} + \begin{pmatrix} 3\\-3\\1 \end{pmatrix} = \begin{pmatrix} 5\\0.5\\0 \end{pmatrix}$$

Умножение вектора на число

Определение

Умножение вектора на число выполняем поэлеметно:

$$4 \cdot \begin{pmatrix} 2 \\ 3.5 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 14 \\ -4 \end{pmatrix}$$

Расстояние между векторами

Определение

Евклидово расстояние между векторами

$$d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\| = \sqrt{(a_1 - b_1)^2 + \ldots + (a_n - b_n)^2}$$

Расстояние между векторами

Определение

Евклидово расстояние между векторами

$$d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\| = \sqrt{(a_1 - b_1)^2 + \dots + (a_n - b_n)^2}$$

По определению, $d(\mathbf{a}, \mathbf{b}) \ge 0$.

Также говорят Евклидова метрика.

Расстояние между векторами

Определение

Евклидово расстояние между векторами

$$d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\| = \sqrt{(a_1 - b_1)^2 + \dots + (a_n - b_n)^2}$$

По определению, $d(\mathbf{a}, \mathbf{b}) \ge 0$.

Также говорят Евклидова метрика.

Скалярное произведение и угол

Определение

Скалярное произведение векторов а и b:

$$\langle \mathbf{a}, \mathbf{b} \rangle = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$$

Скалярное произведение и угол

Определение

Скалярное произведение векторов а и b:

$$\langle \mathbf{a}, \mathbf{b} \rangle = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$$

Определение

Косинус угла и угол между векторами а и b:

$$\cos \angle(\mathbf{a}, \mathbf{b}) = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{a}\| \|\mathbf{b}\|} \quad \angle(\mathbf{a}, \mathbf{b}) = \arccos \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

Угол определён, если $\|\mathbf{a}\| > 0$ и $\|\mathbf{b}\| > 0$.

• Скалярное произведение вектора на себя равно квадрату длины $\langle {\bf a}, {\bf a} \rangle = {\| {\bf a} \|}^2$

- Скалярное произведение вектора на себя равно квадрату длины $\langle {f a}, {f a}
 angle = {\| {f a} \|}^2$
- Линейность по каждому аргументу

$$\langle \lambda \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{a}, \lambda \mathbf{b} \rangle = \lambda \langle \mathbf{a}, \mathbf{b} \rangle$$

 $\langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle = \langle \mathbf{a}, \mathbf{c} \rangle + \langle \mathbf{b}, \mathbf{c} \rangle$

- Скалярное произведение вектора на себя равно квадрату длины $\langle {f a}, {f a}
 angle = {\| {f a} \|}^2$
- Линейность по каждому аргументу

$$\langle \lambda \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{a}, \lambda \mathbf{b} \rangle = \lambda \langle \mathbf{a}, \mathbf{b} \rangle$$

 $\langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle = \langle \mathbf{a}, \mathbf{c} \rangle + \langle \mathbf{b}, \mathbf{c} \rangle$

• Симметричность

$$\langle \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{b}, \mathbf{a} \rangle$$

- Скалярное произведение вектора на себя равно квадрату длины $\langle \mathbf{a}, \mathbf{a} \rangle = \left\| \mathbf{a} \right\|^2$
- Линейность по каждому аргументу

$$\langle \lambda \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{a}, \lambda \mathbf{b} \rangle = \lambda \langle \mathbf{a}, \mathbf{b} \rangle$$

 $\langle \mathbf{a} + \mathbf{b}, \mathbf{c} \rangle = \langle \mathbf{a}, \mathbf{c} \rangle + \langle \mathbf{b}, \mathbf{c} \rangle$

• Симметричность $\langle \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{b}, \mathbf{a} \rangle$

• Скалярное произведение для ненулевых векторов
$$\langle \mathbf{a}, \mathbf{b} \rangle = \|\mathbf{a}\| \|\mathbf{b}\| \cos \angle (\mathbf{a}, \mathbf{b})$$

Скалярное произведение и проекция

• Следствие формулы $\langle \mathbf{a}, \mathbf{b} \rangle = \|\mathbf{a}\| \|\mathbf{b}\| \cos \angle (\mathbf{a}, \mathbf{b})$

Скалярное произведение и проекция

- Следствие формулы $\langle \mathbf{a}, \mathbf{b} \rangle = \|\mathbf{a}\| \|\mathbf{b}\| \cos \angle (\mathbf{a}, \mathbf{b})$
- Если вектор а имеет единичную длину, $\|\mathbf{a}\| = 1$, то $\langle \mathbf{a}, \mathbf{b} \rangle = \|\mathbf{b}\| \cos \angle(\mathbf{a}, \mathbf{b})$ длина* проекции b на a.

Ортогональность векторов

Определение

Векторы \mathbf{a} и \mathbf{b} ортогональны, $a \perp b$, если

$$\langle \mathbf{a}, \mathbf{b} \rangle = 0$$

Также говорят «перпендикулярны».

Ортогональность векторов

Для ненулевых векторов $\langle \mathbf{a}, \mathbf{b} \rangle \|\mathbf{a}\| \|\mathbf{b}\| \cos \angle (\mathbf{a}, \mathbf{b}) = 0$:

