Universidade Federal de Uberlândia

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Wellington Maycon Santos Bernardes

Universidade Federal de Uberlândia

Relatório de Experimental de Circuitos Elétricos

2

Circuitos Trifásicos desequilibrados

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Wellington Maycon Santos Bernardes

Conteúdo

1	Obj	jetivos				
2	Intr	odução		2		
3	Prep	paração		3		
	3.1	Materia	ais e ferramentas	3		
	3.2	Montag	gem	3		
		3.2.1	Ligação em Estrela com fio neutro conectado	3		
		3.2.2	Ligação em estrela com neutro desconectado	4		
		3.2.3	Ligação em delta	4		
4	Aná	lise sobı	re segurança	5		
5	Aná	lise		6		
	5.1	Dados		6		
		5.1.1	Ligação em estrela com neutro conectado	6		
		5.1.2	Ligação em estrela com neutro desconectado	6		
		5.1.3	Ligação em delta	6		
	5.2	Questõ	es	7		
		5.2.1		7		
		5.2.2		7		
		5.2.3		7		
		5.2.4		10		
6	Sim	ulação		12		
	6.1	Estrela	com neutro conectado	12		
	6.2	Estrela	com neutro desconectado	13		
	6.3	Ligaçã	o em delta	14		
7	Con	clusão		16		

1 Objetivos

Confrontar relatos teóricos em relação ao deslocamento de neutro em circuitos desequilibrados.

2 Introdução

Circuitos desequilibrados são um realidade nos circuitos que alimentam as cidades. Portanto é de suma importância compreender e entender como uma rede se comporta devido a cargas não equilibradas. Visto que sistemas trifásicos também alimentam sistemas monofásicos e bifásicos.

Existe duas maneiras de desequilibrar um circuito. A primeira é o desequilibro já vir do gerador com tensões e/ou defasamento diferente de circuitos equilibrados, este é menos comum devido a tecnologia atual usada para geração de energia. A segunda maneira de causar desequilíbrio são cargas diferentes, bastando uma ser diferente para desequilibrar o circuito todo.

A concessionária tenta diminuir ao máximo o desequilíbrio na rede, porém normalmente as cargas que uma rede alimenta são variadas no tempo (uma lampada não fica acesa o tempo todo).

Em circuitos desequilibrados sempre ocorrera a tensão deslocamento de neutro, esta causada ou pela falta do fio neutro ou pela impedância de linha do fio neutro.

A tensão de deslocamento de neutro pode ser calculada pelas seguintes equações: Seja: I_n Corrente de neutro e V_{nN} a Tensão de deslocamento de neutro.

• Circuito com ausência do neutro (fio desconectado).

$$I_n = 0$$

$$V_{nN} = \frac{E_{an} \cdot Y_a + E_{bn} \cdot Y_b + E_{cn} \cdot Y_c}{Y_a + Y_b + Y_c}$$

• Circuito com impedância no neutro.

$$I_{n} = I_{a} + I_{b} + I_{c}$$

$$V_{nN} = \frac{E_{an} \cdot Y_{a} + E_{bn} \cdot Y_{b} + E_{cn} \cdot Y_{c}}{1 + Z_{n}(Y_{a} + Y_{b} + Y_{c})}$$

3 Preparação

3.1 Materiais e ferramentas

- Regulador de tensão(Varivolt)
- Resistores banana de 50Ω
- Indutor de 160 mH
- Capacitor de 45.9 μF
- Medidor Trifásico Kron Mult-K
- Amperímetro analógico

3.2 Montagem

3.2.1 Ligação em Estrela com fio neutro conectado

Figura 1: circuito em estrela a ser montado

Para realizar a montagem deve seguir a figura 1, antes de iniciar a montagem certifique-se que o circuito esteja desligado.

3.2.2 Ligação em estrela com neutro desconectado

Figura 2: circuito em estrela com neutro desconectado a ser montado

Para realizar a montagem deve seguir a figura 2, antes de iniciar a montagem certifique-se que o circuito esteja desligado.

3.2.3 Ligação em delta

Figura 3: circuito em delta a ser montado

4 Análise sobre segurança

Antes de montar o experimento é importante o uso de equipamentos de proteção, estar com calça, sapatos fechados, sem acessórios metálicos e se o cabelo for grande, este deve estar preso.

A bancada deve estar desenergizada durante a montagem. Durante o experimento não ter contato com nenhum fio ou elemento energizado do circuito além do risco de choque elétrico. Certifique-se de que os equipamentos estão na escala adequada para realizar as medições.

Para movimentar os indutores pegue pela parte inferior evitando riscos de que se desprenda e caia, assim evitando lesões e dano ao dispositivo. Deixe os capacitores na horizontal para que fique melhor apoiado na bancada, este é muito leve e pode cair com facilidade.

Realizar as medidas em um tempo curto evitando que o circuito fique energizado por um longo período de tempo, pois os resistores estarão dissipando potência assim esquentando.

Deve-se manter uma distância segura do circuito quando o mesmo está energizado assim evitando queimaduras e choque elétrico.

5 Análise

5.1 Dados

5.1.1 Ligação em estrela com neutro conectado

Sequencia	$I_a[A]$	$I_b[A]$	$I_c[A]$	$I_n[A]$
ABC	1.065	0.613	0.746	0.125
CBA	1.089	0.612	0.758	1.6

Tabela 1: Medidas de corrente circuito em Estrela com fio neutro conectado

Sequencia	$V_{ab}[V]$	$V_{bc}[V]$	$V_{ca}[V]$	$V_{aN}[V]$	$V_{bN}[V]$	$V_{cN}[V]$	$V_{nN}[V]$
ABC	96.24	100.3	96.33	54.63	57.09	57.33	1.38
CBA	98.77	97.97	99.87	56.68	56.54	58.01	2.23

Tabela 2: Medidas de tensão circuito em Estrela com fio neutro conectado

5.1.2 Ligação em estrela com neutro desconectado

Sequencia	$I_a[A]$	$I_b[A]$	$I_c[A]$
ABC	1.221	0.600	0.684
CBA	0.275	0.994	1.137

Tabela 3: Medidas de corrente circuito em Estrela com fio neutro conectado

Sequencia	$V_{ab}[V]$	$V_{bc}[V]$	$V_{ca}[V]$	$V_{aN}[V]$	$V_{bN}[V]$	$V_{cN}[V]$	$V_{nN}[V]$
ABC	97.19	100.9	97.17	61.05	47.01	52.27	8.25
CBA	99.68	98.68	102.1	13.5	73.64	86.887	45

Tabela 4: Medidas de tensão circuito em Estrela com fio neutro conectado

5.1.3 Ligação em delta

Sequencia	$I_a[A]$	$I_b[A]$	$I_c[A]$
ABC	1.571	1.470	0.240
CBA	0.971	0.899	1.098

Tabela 5: Medidas de corrente circuito em Estrela com fio neutro conectado

5.2 Questões

5.2.1

- Como se manifestou o desequilíbrio do sistema com a presença do fio neutro?

Se manifestou em maior parte nas correntes de cara carga. A tensão permaneceu quase a mesma que a tensão na fonte.

5.2.2

- Como se manifestou o desequilíbrio do sistema na ausência do fio neutro?

Algumas tensões em foram maiores outras menores e as correntes também apresentaram grandes diferenças, por exemplo em abc a corrente I_a foi duas vezes maior que I_b e I_c .

5.2.3

- Usando os módulos das tensões e correntes medidas, obtenha os fasores correspondentes e faça um diagrama fasorial de cada caso, em ambas as sequências.

Utilizando apenas modulo não é possível determinar os fasores, uma vez que este é constituído de angulo e fase. Caso a: Neutro conectado

Considerando $E_{ab'}$ na referência, e utilizando as equações de deslocamento de neutro obtém-se:

Circuito com neutro conectado

Figura 4: correntes fasoriais ABC. Em verde a corrente de neutro

Figura 5: correntes fasoriais CBA. Em verde a corrente de neutro

Circuito com neutro desconectado

Figura 6: tensões fasoriais ABC. Em verde a tensão de deslocamento de neutro

Note que o deslocamento é muito pequeno.

Figura 7: tensões fasoriais CBA. Em verde a tensão de deslocamento de neutro

neste o deslocamento do neutro afetou drasticamente as demais tensões. Essas imagens foram geradas por um programa(Desenhando Fasores[1]) escrito em javascrip juntamente com python Abaixo uma captura da utilização do mesmo.

Figura 8: captura de tela do programa "Desenhando Fasores"

5.2.4

- Dois tipos de ligações existentes no kron são: a) TL = 0003 (3ø com Neutro) e;
b) TL = 0049 (3ø sem Neutro). A primeira configuração poderia ser usada na seção
2.1? E a segunda configuração, poderia ser usada nas seções 2.2 e 2.3? Justifique as

respostas. Não poderia pois estas são para circuitos equilibrados e como esse não é um circuito equilibrado não pode usar essas configurações.

6 Simulação

6.1 Estrela com neutro conectado

Figura 9: simulação do circuito abc em estrela com neutro conectado

Figura 10: simulação do circuito cba em estrela com neutro conectado

Sequencia	$I_a[A]$	$I_b[A]$	$I_c[A]$	$I_n[A]$
ABC	1.15	0.73	0.77	0.31
CBA	1.16	0.73	0.78	1.67

Tabela 6: correntes obtidas através da simulação

Sequencia	$V_{ab}[V]$	$V_{bc}[V]$	$V_{ca}[V]$	$V_{aN}[V]$	$V_{bN}[V]$	$V_{cN}[V]$	$V_{nN}[V]$
ABC	99.1	99.1	99.2	57.7	57.2	58.3	0
CBA	100	99.1	99.8	58.1	57.2	57.9	0

Tabela 7: Medidas de tensão circuito em Estrela com fio neutro conectado

6.2 Estrela com neutro desconectado

Figura 11: simulação do circuito abc em estrela com neutro desconectado

Figura 12: simulação do circuito cha em estrela com neutro desconectado

Sequencia	$I_a[A]$	$I_b[A]$	$I_c[A]$
ABC	1.32	0.69	0.71
CBA	0.26	1.13	1.16

Tabela 8: Medidas de corrente circuito em Estrela com fio neutro desconectado

Sequencia	$V_{ab}[V]$	$V_{bc}[V]$	$V_{ca}[V]$	$V_{aN}[V]$	$V_{bN}[V]$	$V_{cN}[V]$	$V_{nN}[V]$
ABC	99.1	100	99.2	66.2	54.3	53.8	8.53
CBA	99.1	100	99.2	12.8	89.7	89.2	45.4

Tabela 9: Medidas de tensão circuito em Estrela com fio neutro desconectado

6.3 Ligação em delta

Figura 13: simulação do circuito abc em delta

Figura 14: simulação do circuito cba em delta

Sequencia	$I_a[A]$	$I_b[A]$	$I_c[A]$
ABC	2.64	2.58	0.38
CBA	1.62	1.65	1.95

Tabela 10: corrente do circuito em delta

7 Conclusão

Este experimento mostra a importância de manter conectado o fio neutro, na ausência do mesmo as tensões em cima das cargas se elevaram muito e em outras abaixou muito em relação a tensão fornecida pelo gerador. Em sistemas de consumo comum abastecidos pela concessionária, os equipamentos poderiam parar de funcionar (devido a baixa tensão provocada pela tensão deslocamento de neutro) ou queimar (devido ao aumento provocado pela tensão de deslocamento de neutro)

Em comparativo, sistemas trifásicos com ligação em delta não alteram a tensão em cima das cargas, por se tratar de tensão de linha. Mas alteram as correntes. Dependendo do equipamento essa corrente pode queima-lo.

Os resultados da simulação mostram comportamentos semelhantes ao encontrados experimentalmente e teóricos. O que já era esperado pois o software usa algoritmos baseados nas equações analíticas.

Referencias

ALEXANDER, C.K.; SADIKU, M.N. Fundamentos de Circuitos Elétricos. 5ª ed. Porto Alegre: Mc Graw-Hill, 2015

[1] - LIMA, H.S.; Desenhando Fasores https://xx220xx.github.io/FASORES/index.html acesso em 30/11/2019