Lecture 8: Principal Component Analysis

Course Teacher: Md. Shariful Islam Bhuyan

Linear Dimensionality Reduction

- Reduce dimensionality ... number of feature K<<D
- $\mathbf{z}_{K\times 1} = \mathbf{U}_{K\times D} \times \mathbf{x}_{D\times 1}$
- Useful linear projection ... matrix is orthogonal unit vectors ... dot products give corresponding component.
- Defining useful
 - Capture variance, differentiating properties
 - Minimize reconstruction loss

Principal Component Analysis

- Full PCA is a rotation operation, change of axis
- First principal component (PC) finds direction of highest variance
- Second PC finds direction of next highest variability orthogonal to first PC
- Take top K PCs and project the data along those
- Maximizing variance and minimizing reconstruction loss is equivalent due to Pythagoras theorem

Projection

First Principal Component

• Mean of Projection $\mathbf{z}_n = \mathbf{u}_1^T \mathbf{x}_n$ $\frac{1}{N} \left(\sum_{n=1}^N \mathbf{u}_1^T \mathbf{x}_n \right) = \mathbf{u}_1^T \boldsymbol{\mu}$

Variance of Projection

$$\frac{1}{N} \left(\sum_{n=1}^{N} (\mathbf{u}_{1}^{T} \mathbf{x}_{n} - \mathbf{u}_{1}^{T} \boldsymbol{\mu})^{2} \right) = \frac{1}{N} \left(\sum_{n=1}^{N} \{\mathbf{u}_{1}^{T} (\mathbf{x}_{n} - \boldsymbol{\mu})\}^{2} \right) = \frac{1}{N} \left(\sum_{n=1}^{N} \mathbf{u}_{1}^{T} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \mathbf{u}_{1} \right)$$

$$= \mathbf{u}_{1}^{T} \frac{1}{N} \left(\sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{T} \right) \mathbf{u}_{1} = \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}$$

• First principal component = $\arg \max_{\mathbf{u}_1} \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$

Eigen Decomposition

- To prevent trivial solution let \mathbf{u}_1 is a unit vector. Assume $\|\mathbf{u}_1\| = 1 = \mathbf{u}_1^T \mathbf{u}_1$
- Using Lagrange multiplier first principal component = $\underset{\mathbf{u}_1}{\text{arg max}} \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^T \mathbf{u}_1)$

$$\frac{\partial}{\partial \mathbf{u}_1} \{ \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1) \} = 2 \mathbf{S} \mathbf{u}_1 - 2 \lambda_1 \mathbf{u}_1 = 0 \quad or$$

$$\mathbf{S} \mathbf{u}_1 = \lambda_1 \mathbf{u}_1 \left\{ \frac{\partial}{\partial \mathbf{x}} \mathbf{x}^T \mathbf{A} \mathbf{x} = 2 \mathbf{A} \mathbf{x} \right\}$$

- Which eigenvector? Where λ_1 is largest since $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 = \mathbf{u}_1^T \lambda_1 \mathbf{u}_1 = \lambda_1$
- Data \rightarrow Covariance matrix \rightarrow Eigen-decomposition \rightarrow Top K PC

Further explanation

- https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
- http://www.onmyphd.com/?p=lagrange.multipliers