Task 1

Пусть $x_1 < x_2 < ... < x_m, x_i \in S$. Чтобы найти ERM-гипотезу нужно посчитать ошибку на каждом из интервалов (x_i, x_j) и выбрать интервал, на котором достигается минимум. Последовательное нахождение ошибки на всех возможных интервалах выполняется за время $O(m^3)$.

Построим ДП матрицу $(l_{i,j})$, где $l_{i,j}$ - ошибка на интервале (x_i,x_j) . В данном случае значения $l_{i,j},l_{i+1,j},l_{i,j+1}$ можно вычислить за константу. Первоначально заполняем первую строку матрицы, а затем последовательно недостающие ячейки. При заполнении каждой ячейки получившиеся значение сравниваем с текущим минимумом. Таким образом время работы алгоритма $O(m^2)$.

Task3

Пусть S размера m. Тогда в классе гипотез H_n можно выделить $C_m^n \leq m^n$ эквивалентых классов, что любые две гипотезы из одного класса одинаковы относительно S. Тогда для поиска ERM-гипотезы нужно рассмотреть по одному представителю из каждого эквивалентного класса, эмперический риск которого может быть подсчитан за O(mn). Тогда ERM-гипотезу можно найти за $O(mnm^{O(n)})$.

Task4

Пусть $A \in R^{m \times n}, b \in R^m$. Пусть $b_i \neq 0$, тогда путем умножения строк матрицы на скаляр получим, что $|b_i| = |b_j| = b \ \forall i,j, \in [1,m]$. Пусть $S = (x_i,y_i)$, где $x_i = -\mathrm{sign}(b_i)A_i^T$, $y_i = -\mathrm{sign}(b_i), A_i$ —і-я строка A.

Пусть $S = (x_i, y_i)$, где $x_i = -\text{sign}(b_i)A_i^T$, $y_i = -\text{sign}(b_i)$, A_i -і-я строка А. Покажем, что $h_{w,b}$ правильно классифицирует помеченную точку тогда и только тогда, когда i-е неравенство выполняется при w:

$$h_w(x_i) = y_i \Leftrightarrow y_i(\langle w, x_i \rangle + b) > 0 \Leftrightarrow \langle w, A_i \rangle - b_i > 0$$

Таким образом, алгоритм построения ERM_{HS_n} -гипотезы для S может быть использован для решения задачи MaxFS с параметрами m,n, а также ERM_H вычислительно трудное.

Task5

Пусть S(G) разделимо $(w_1,b_1),...(w_k,b_k) \in (R^n \times R)^k$. Тогда $\forall i,y_i=1 \Leftrightarrow \langle w_j,x_i\rangle + b_j>0$. Рассмотрим $v_q \in V$ и поставим в соответствие e_q с меткой -1. Тогда множество $C_q=j\in [1,k]: w_je_q+b_j<0$ не пусто. Рассмотрим ребро $(v_q,v_r)\in E$ и поставим в соответствие пример $\frac{e_q+e_r}{2}$ с меткой +1. Тогда $C_q\cap C_r=\emptyset$ и можно выбрать соответствующее $c_i,\ \forall i\in [1,n],$ т.е. G k-раскрашиваемым.

Пусть G k-раскрашиваемый $(c_1,...,c_n)$. К каждому вектору $w_i \in R^n$ отнесем некоторый цвет $i \in [1,k]$. Определим $w_i = \sum_{j=1}^n -\mathbb{I}_{[c_j=i]}e_j$. Пусть $b_i = b = 0.6$. Рассмотрим $v_i \in V$ с примером e_i . $\mathrm{sign}(\langle w_{c_i},e_i\rangle + b) = \mathrm{sign}(-0.4) = -1$. Рассмотрим некоторое ребро (v_q,v_r) . Так как $c_q \neq c_r$, тогда $\forall j \in [1,k]$ либо $w_{j,q} = 0$, либо $w_{j,r} = 0$. Тогда $\forall j \in [1,k]$, $\mathrm{sign}(\langle w_j, \frac{e_q+e_r}{2}\rangle + b_j) = 1$, т.е. экземпляр связанный с ребром (v_q,v_r) классифицируется правильно. Получаем, что S(G) разделимо $(w_1,b_1),...(w_k,b_k)$). Алгоритм вычисления $ERM_{H_n^k}$ вернет ответ "граф G k-раскрашиваемый" тогда и только тогда, когда S(G) разделимо. Учитывая то, что задача о k-раскраске является NP-трудной для $k \geq 3$, тогда задача поиска $ERM_{H_n^k}$ является NP-трудной.