Funciones de Varible Compleja

Abel Doñate Muñoz abel.donate@estudiantat.upc.edu

Contents

1	Funciones Holomorfas	2
2	Teoría local de Cauchy	3
3	Teoría global de Cauchy	4

1 Funciones Holomorfas

Definition. f es Holomorfa $(f \in \mathcal{H})$ si

$$\exists f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

De la definición se deduce que si f es holomorfa $\implies \exists f_x, f_y$.

Definition. f es **Analítica** en U si $\forall z_0 \in U$ existe una serie de potencias con radio de convergencia positivo.

En variable compleja se cumple holomorfa \iff analítica

Theorem. Ecuaciones de Cauchy-Riemann (CR en adelante) (condiciones necesarias para que f sea holomorfa)

$$f_y(z_0) = i f_x(z_0) \iff \begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \iff \begin{cases} f_z = f' \\ f_{\overline{z}} = 0 \end{cases}$$

Theorem. Condiciones suficientes para que f sea holomorfa

$$\begin{cases} u, v \in \mathcal{C}(\Omega) \\ CR \end{cases} \implies f \in \mathcal{H}(\Omega)$$

Si las funciones f,g son holomorfas, entonces son holomorfas

$$\lambda f + \mu g$$
, fg , $\frac{f}{g}$, $f \circ g$

y sus derivadas coinciden con las derivadas en el caso $z \in \mathbb{R}$

Definition. Una función L es lineal $\iff L(z) = \mu z = re^{i\varphi}z$

$$L(z) = L(x + iy) = \begin{pmatrix} a & -c \\ c & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

 $Observamos\ que\ se\ trata\ de\ una\ rotaci\'on\ +\ homotecia$

Proposition. L preserva ángulos y orientación \implies L es \mathbb{C} -lineal

Definition. f es conforme en $\Omega \iff f$ preserva ángulos y orientación

Se cumple f conforme $\iff f$ lineal

Definition. Una función u es armónica si $\Delta u = u_{xx} + u_{yy} = 0$

 $Si \ f = u + iv \ holomorfa \implies u, v \ arm\'onicas$

Definition. Sea a_n una sucesión, definimos la serie de potencias centrada en a

$$\sum_{n\geq 0} a_n (z-a)^n$$

y su radio de convergencia como

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

Theorem. Cauchy-Hadamard. Sea R el radio de convergencia de $S = \sum_{n\geq 0} a_n (z-a)^n$.

1. S es absolutamente convergente en |z-a| < R

- 2. S es divergente en |z-a| > R
- 3. S es uniformemente convergente en $|z-a| \le r$ con r < R

Theorem. Criterio M de Weierstrass. Sea f_n una sucesión de funciones en S tal que existe una sucesión de reales M_n tal que $|f_n(z)| < M_m \ \forall z \in S \ y \sum_{n \geq 0} M_n < \infty$, entonces

$$\sum_{n\geq 0} f_n(z) \ es \ absolutamente \ y \ uniformemente \ convergente \ en \ S$$

Observamos que no podemos saber nada de la convergencia en el borde del disco |z-a|=R con Cauchy-Hadamard

Theorem. Picard.

$$si \begin{cases} c_j \geq 0, c_j \in \mathbb{R} \\ c_j \geq c_{j+1} \\ \lim c_j = 0 \end{cases} \implies \sum_{n \geq 0} c_n z^n \text{ es convergente } \forall |z| = 1 \text{ excepto quizá para } z = 1$$

Theorem. Sea $f(z) = \sum a_n(z-a)^n$ con radio de convergencia RS. Se cumple

- 1. $f \in H(D(a;R))$
- 2. $f \in \mathcal{C}^{\infty}(D(a;R))$
- 3. $f^{(k)}$ tiene radio de convergencia R

2 Teoría local de Cauchy

Definition. La integral de f sobre un camino Γ con parametrización $\gamma(t):[a,b]\to\mathbb{C}$ se define como

$$\int_{\Gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

Si integramos una función derivada, tenemos un campo potencial $\int_{\Gamma} f'(z)dz = f(\gamma(b)) - f(\gamma(a))$

Theorem. Teorema de Green

$$\iint_{R} \frac{\partial F}{\partial \overline{z}} dx dy = \frac{1}{2i} \int_{\gamma} f(z) dz$$

Theorem (Cauchy-Goursat). $f \in C(\Omega) \cap H(\Omega - \{w\}) \implies \int_{\partial R^+} f(z)dz = 0$

Theorem (Existencia de primitivas). $f \in C(D) \cap H(D - \{w\}) \implies \exists F \in H(D) : F'(z) = f(z)$

Theorem (Cauchy).

$$f \in H(D) \cap \mathcal{C}(\overline{D}) \implies f(w) = \frac{1}{2\pi i} \int \frac{f(z)}{z - w} dz$$

Theorem (Representación en serie de potencias). $f \in H(\Omega)$

$$f(z) = \sum c_n (z - a)^n \implies c_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\partial D(a,r)+} \frac{f(z)}{(z - a)^{n+1}} dz$$

Theorem. Extensión analítica. $f \in H(\Omega)$. Si $\exists U$ abierto : $f|_U = 0 \implies f = 0$ en todo Ω

Theorem. Si $f \in H(\Omega) \implies f$ el conjunto de los ceros de f es numerable

Theorem. Sea $f \in H(\Omega), f \neq 0$. Sea $E = \{z \in \Omega : f(z) = 0\}$ el conjunto de ceros. Entonces

$$\forall a \in \Omega \exists ! \ m \ge 1 : f(z) = (z - a)^m g(z) \quad con \quad g \in H(\Omega), \ g(a) \ne 0$$

Theorem (Designaldad de Cauchy). Sea $f \in H(D(a;R))$, definimos $M(r) = \sup_{z \in \partial D(a,r)} \{|f(z)|\}$. Entonces

$$|f^{(n)}(a)| \le n! M(r) r^{-n}$$

Como consecuencia tenemos los dos siguientes teoremas

Theorem (Liouville). Sea f enter g acotada. Entonces $f(z) = c \ \forall z \in \mathbb{C}$

Theorem (Fundamental del Álgebra). Sea $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ un polinomio de grado $n \ge 1$. Entonces

- 1. P tiene n raíces en \mathbb{C} (contando multiplicidad)
- 2. Factoriza como $p(z) = a_n(z \alpha_1) \cdots (z \alpha_n)$

Proposition. Si f entera y $\exists r, M, \lambda : |f(z)| \leq M|z|^{\lambda} \ \forall |z| \geq r$, entonces f es un polinomio de grado $\leq \lambda$

Theorem (Valor medio). Sea $f \in H(\Omega)$, el valor de f en el centro de un disco es el promedio del de la frontera

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta$$

Theorem (Principio del máximo fuerte). Sea $f \in H(\Omega)$. Si |f| alcanza el supremo en $\Omega^{\circ} \implies f(z) = c$

Theorem (Principio del mínimo fuerte). Sea $f \in H(\Omega)$, $f(z) \neq 0 \ \forall z \in \Omega$. Si |f| alcanza el ínfimo en $\Omega^{\circ} \implies f(z) = c$

Theorem (Teorema de la función inversa). Sea $f \in H(\Omega)$, $f'(a) \neq 0$, entonces f tiene una inversa local holomorfa tal que $f^{-1}(f(a)) = a$. Es decir, $\exists r > 0$ tal que

- 1. $D(a;r) \subseteq \Omega, f(D(a;r))$ abierto
- 2. $f: D(a;r) \to f(D(a;r) \text{ biyectiva})$
- 3. $(f^{-1})'(f(w)) = \frac{1}{f'(w)}$

Theorem. Sea $f \in H(\Omega), f \neq c$. Sea $m \geq 1$ el orden del cero de f(z) - f(a) en z = a. Entonces $\exists U \subseteq \Omega$ entorno de $a, \varphi \in H(U)$ y r > 0 tal que

- 1. $f(z) = f(a) + (\varphi(z))^m \ \forall z \in U$
- 2. $\varphi'(z) \neq 0 \ \forall z \in U \ y \ \varphi : U \rightarrow D(0;r)$ es biyectiva

Theorem (Teorema de la aplicación abierta). Sea $f \in H(\Omega), f \neq c, f$ es abierta (envía abiertos a abiertos)

Theorem (Weierstrass). Sea $f_i \in H(\Omega) \in i \geq 1$. $\forall K \subseteq \Omega$ compacto $f_n|_K \to f|_K$ es uniformemente convergente a la función $f: \Omega \to \mathbb{C}$. Entonces $f \in H(\Omega)$

3 Teoría global de Cauchy

Definition (Indice respecto a un punto). sea Γ un camino cerrado y orientado en \mathbb{C} , definimos el indice de Γ respecto al punto a como

$$n(\Gamma, a) := \frac{1}{2\pi i} \int_{\Gamma} \frac{dz}{z - a}$$

Theorem. Sea Γ un camino cerrado y orientado fijado. Entonces $n(\Gamma, \cdot) : \mathbb{C} - \Gamma \to \mathbb{Z}$ es constante en cada una de sus componentes conexas y 0 en la no fitada

Definition (Ciclos homólogos). Γ es homólogo a 0 en $\Omega(\Gamma \sim 0) \iff \forall a \notin \Omega \ n(\Gamma, a) = 0$

Dos ciclos son homólogos en $\Omega(\Gamma_1 \sim \Gamma_2) \iff \Gamma_1 - \Gamma_2 \sim 0$

Definition (Homotopía de caminos). Dos caminos son homótopos ($\Gamma_1 \simeq \Gamma_2$) si se pueden deformar de forma continua en Ω . Es decir

$$\exists F: [0,1] \times [0,1] \to \Omega, F \in \mathcal{C}^0: \begin{cases} F(0,t) = \gamma_1(t) \\ F(1,t) = \gamma_2(t) \\ F(s,1) = F(s,0) \end{cases}$$

Observamos que $\Gamma_1 \simeq \Gamma_2 \implies \Gamma_1 \sim \Gamma_2$ pero $\Gamma_1 \sim \Gamma_2 \not \iff \Gamma_1 \simeq \Gamma_2$

Theorem (Teorema de Cauchy Global). Sea $f \in H(\Omega)$ y Γ ciclo tal que $\Gamma \sim 0$ en Ω

$$\int_{\Gamma} f(z)dz = 0, \qquad n(\Gamma, a)f^{(k)}(a) = \frac{k!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - a)^{k+1}} dz \quad \forall a \in \Omega - \Gamma$$

Definition (Singularidades). .

- 1. **Evitable** si $\exists \lim_{z \to a} f(z) = L \in \mathbb{C} \implies \text{prolongación holomorfa con } f(a) = L$
- 2. **Polo** si $\exists \lim_{z \to a} |f(z)| = \infty \implies f(z) = (z-a)^{-m}h(z)$ con h holomorfa
- 3. **Esencial** si $\not \exists \lim_{z \to a} f(z) \implies f(D(a; \varepsilon) \{a\})$ es denso en \mathbb{C} (Casorati-Weierstrass)

Theorem (Series de Laurent). Sea $f \in H(A(R_1, R_2))$, entonces f admite un desarrollo

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - a)^n, \qquad a_n = \frac{1}{2\pi i} \int_{\partial D(a;r)^+} \frac{f(z)}{(z - a)^{n+1}} dz, \qquad R_1 < r < R_2$$

Definition (Residuo). Sea $f \in H(\Omega)$ y a una singularidad aislada de f

$$Res(f, a) = \frac{1}{2\pi i} \int_{\partial D(a; \varepsilon)} f(z) dz$$
 $\varepsilon > 0 : D(a; \varepsilon) - \{a\} \subseteq \Omega$

Observamos que si
$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - a)^n \implies Res(f, a) = a_{-1} = \frac{1}{(m - 1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} ((z - a)^m f(z))$$

Theorem (Residuos). Sea $f \in H(\Omega - \{a_j\} \ con \ \{a_j\} \ conjunto \ de \ singularidades \ aisladas finitas o numerables <math>y \ \Gamma \sim 0 \ un \ ciclo \ a_j \notin \Gamma$.

$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{j} n(\Gamma, a_{j}) Res(f, a_{j})$$

Definition (Función meromorfa). Sea $f \in H(\Omega)$ con $\{a_j\}$ conjunto de singularidades aisladas finitas o numerables. f es meromorfa si todas las a_j son polos.

Theorem (Principio del argumento). Sea f meromorfa en Ω con ceros $\{a_j\}$ y polos $\{b_j\}$. Sea $\Gamma \sim 0$ un ciclo tal que $a_j, b_j \notin \Gamma$:

$$n(f(\Gamma), 0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = \sum_{j} n(\Gamma, a_j) - \sum_{k} n(\Gamma, b_k)$$

Theorem (Rouche). Sea $f \sim 0$: $\forall z \in \Omega - \Gamma$, $n(\Gamma, z) = 0$ ó 1, $f, g \in H(\Omega)$, $|f(z) - g(z)| < |f(z)| \forall z \in \Gamma \implies \#z_{f,\Gamma} = \#z_{g,\Gamma}$

Proposition. Son equivalentes:

- 1. Ω simplemente conexo
- 2. Para todo ciclo $\Gamma \subseteq \Omega$ se cumple $\Gamma \sim 0$
- 3. Sea $f \in H(\Omega)$ existe $F \in H(\Omega)$ primitiva holomorfa tal que F' = f
- 4. $f \in H(\Omega), \Gamma \subseteq \Omega$ se tiene $\int_{\Gamma} f(z)dz = 0$
- 5. Sea $f \in H(\Omega), f(z) \neq 0 \ \forall z \in \Omega$. Existe $g \in H(\Omega)$: $f = e^g$ $(g = \log f \ determinación \ holomorfa \ del \ logaritmo)$

Theorem (Gauss-Lucas). Sea p(z) un polinomio. Las raíces de p'(z) están en la envoltura convexa de las raíces de p(z)