

Clarifying Feature Overspecification in Reward Learning from State Corrections via Follow Up Questions

Ethan Villalovoz¹

Michelle Zhao²

Henny Admoni²

Reid Simmons²

THE **ROBOTICS** INSTITUTE

¹Washington State University

²Carnegie Mellon University

Motivation

Household robots need to know what people want. In high-level semantic tasks, the user may want to correct the goal state of the robot, rather than teleoperation [1]. The reason why users correct differs.

Key Challenge

Candidate Preference Model M_1

For different users, the task features relevant to their preference-guided decisions may vary.

Key Insight: Leverage follow-up questions to clarify features relevant to a human correction to speed-up reward learning.

Approach

Next Object Iteration

3. Update Robot Beliefs from Human Correction

5. Pose Followup Question to Human

Type and color matter

Results

Clarification questions enabled the robot to more quickly find the true reward model of the human preferences.

4. Identify Each Reward Model's Relevant Features

M_1	Object Type	Color	
M_2	Material	Object Type	
M_3	Material	Object Type	Color

6. Update Robot Beliefs Again from Human Dialogue

Future Work

1. Clarification Question Implementation:

- Enhance the naive approach for feature uncertainty questions.
- Develop LLM-generated questions addressing environment states, features, and hypotheses.
- 2. Pilot User Study

Acknowledgments

This work is supported by the Robotics Institute, Carnegie Mellon University. I would like to thank Dr. Henny Admoni, Dr. Reid Simmons, and especially my mentor Michelle Zhao for the transformative experience and opportunity to conduct research throughout this summer. I would like to thank the Robotics Institute Summer Scholars Program, specifically Rachel Burcin and Dr. John Dolan, for the opportunity.

References

[1] Bobu, A., Bajcsy, A., Fisac, J. F., Deglurkar, S., & Dragan, A. D. (2020). Quantifying hypothesis space misspecification in learning from human–robot demonstrations and physical corrections. IEEE Transactions on Robotics, 36(3), 835-854.