Universidade Federal de São Carlos

Bacharelado em Ciência da Computação Algoritmos e Programação I

PROF. TIAGO A. ALMEIDA <talmeida@ufscar.br>

PROFA. TIEMI C. SAKATA < tiemi@ufscar.br>

LISTA 7 EXERCÍCIOS – MATRIZES

• Prazo para entrega: 17/06/2018 - 23:55:00

• Atenção:

- Arquivo: o nome do arquivo referente ao código-fonte deverá seguir o seguinte padrão: <número do RA>_L<número da lista>EX<número do exercício>.c. Exemplo: 123456_L07EX01.c;
- 2. E/S: tanto a entrada quanto a saída de dados devem ser "secas", ou seja, não devem apresentar frases explicativas. Siga o modelo fornecido e apenas complete as partes informadas.
- 3. Identificadores de variáveis: escolha nomes apropriados;
- 4. Documentação: inclua comentários e indentação no programa.

Exercícios

1. Crie um protótipo para um jogo de Campo Minado. O programa receberá um inteiro N (2 \leq N \leq 10) que representa o número de linhas e colunas do campo, seguido pelos valores do campo. Os valores do campo podem ser 0 (sem mina) ou 1 (com mina). Após isso, o programa receberá um inteiro C (1 \leq C \leq 100) que representa a quantidade de cliques do jogador, seguido pelas coordenadas dos cliques (coluna e linha) no campo minado.

A saída do programa será MSG_VENCEU ("Voce venceu.\n") caso tenha completado o jogo sem clicar em uma mina, MSG_PERDEU ("Voce perdeu.\n") caso tenha clicado em uma mina ou MSG_SAIU ("O jogador saiu do jogo.\n") caso o jogador tenha saído antes do fim do jogo.

Complete o arquivo L07EX01.c

Detalles

- (a) O canto superior esquerdo do campo minado possui coordenada (1, 1).
- (b) Não haverá mais de um clique na mesma coordenada.

(c) O programa deve ter exatamente uma saída.

Você deve apenas completar as operações nos lugares indicados e não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada		Saída	
2 (tamanho)			
1 0 (campo)			
0 1			
1 (quantidade	de cliques)		
2 1 (clique 1))		
		O jogađor saiu do	jogo. (saída)
2 (tamanho)			
1 0 (campo)			
0 1			
2 (quantidade	de cliques)		
2 1 (clique 1))		
2 2 (clique 2))		
		Voce perdeu. (sa	iída)
2 (tamanho)			
1 0 (campo)			
0 1			
2 (quantidade	de cliques)		
2 1 (clique 1))		
1 2 (clique 2))		
		Voce venceu. (sa	iída)

- 2. Para estudar GAAL, você decidiu fazer um programa que recebe uma matriz quadrada e faz algumas operações com ela. Seu programa deve primeiro receber a ordem da matriz (um inteiro 0 < n <= 100), e depois os elementos(int) da matriz. Depois de receber a matriz, seu programa deve ficar em loop realizando as operações como descrita abaixo, até que a opção seja 0. As opções são as seguintes:
 - 0. Sair do programa;
 - 1. Somar por um escalar;
 - 2. Multiplicar por um escalar;
 - 3. Imprimar a transposta;
 - 4. Imprimir se a Matriz é identidade;
 - 5. Imprimir se a Matriz é simétrica;

- 6. Imprimir se a Matriz é esparsa;
- 7. Imprimir se a Matriz é triangular superior, inferior ou nenhum dos dois;
- 8. Imprimir a Matriz;

Na opção 1 e 2, você deve receber um inteiro para realizar as operações, e somar ou multiplicar cada elemento da matriz por esse inteiro. Você deve modificar a própria matriz, e não deve imprimir a matriz resultante.

Matriz transposta é quando os elementos da linha tornam-se os elementos da coluna e vice-versa. Matriz identidade é uma matriz que possui a diagonal principal com elementos iguais a 1, e o restante dos elementos são iguais a 0. Matriz simétrica é quando a matriz é igual a sua transposta. Matriz esparsa é quando mais da metade dos elementos são iguais a zero, ou seja, o número de elementos igual a zero >= linhas * colunas / 2.

Uma matriz triangular é quando os elementos acima ou abaixo da diagonal principal são iguais a zero. Se for abaixo, a matriz é triangular superior, se for acima, a matriz é triangular inferior. Uma matriz pode ser tanto triangular superior quanto triangular inferior, nesse caso você deve imprimir as duas mensagens pré definidas.

Complete o arquivo LO7EXO2.c

Você deve apenas completar as operações nos lugares indicados e não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada		Saída
3	(n)	
1 2 3	(\mathtt{matriz})	
0 4 5		
0 0 6		
7	$({\tt triangular})$	
		A matriz é triangular superior
1	(\mathtt{soma})	
2	$(\mathtt{escalar})$	
8	$({\tt imprimir})$	
		03 04 05 (matriz)
		02 06 07
		02 02 08
7	$({\tt triangular})$	
		A matriz não é triangular
0	(\mathtt{sair})	

Detalles

- (a) Os elementos da matriz, devem ser impressas com duas casas tanto na opção 3 quanto na 8 (não há casos de teste com resultado maior que 2 casas decimais para os elementos da matriz). Deve haver um espaço em branco após cada e uma quebra de linha após a impressão de cada linha.
- (b) Utilize as mensagens pré definidas.
- 3. Astheobaldo, dessa vez, decide descansar um pouco e jogar com você, caro programador, em seu tempo livre. O jogo escolhido é de estratégia por turnos em um cenário de guerra e, para auxiliar nas estratégias e verificar o desempenho de vocês dois, Astheobaldo pede para que você desenvolva um programa.

Seu programa deve receber uma matriz L×C de inteiro $(1 \le L, C \le 10)$ que representará o mapa apresentado em jogo, sendo que cada célula da matriz representa o número de unidades em combate naquele campo (Por exemplo, se M[1][1] = 5, há 5 unidades no campo de combate referente a linha 1 e coluna 1).

Em seguida, conforme o jogo avança, seu programa deve ser capaz de manipular o mapa com as seguintes opções:

- 1 REFORÇO: O programa recebe o número de reforços N ($1 \le N \le 10$), seguido de i e j ($1 \le i, j \le 10$) que representam, respectivamente, a linha e coluna do campo que receberá os reforços.
- 2 PERDA: O programa recebe o número de perdas N (1 ≤ N ≤ 10), seguido de i e j (1 ≤ i, j ≤ 10) que representam, respectivamente, a linha e coluna do campo que perdeu unidades.
- 3 TRANSFERÊNCIA: O programa recebe o número de unidades N (1 \leq N \leq 10), seguido de i, j, k e l (1 \leq i, j, k, l \leq 10) que representam, respectivamente, a linha e coluna do campo de origem e linha e coluna do campo de destino.
- 4 VER MAPA: O programa imprime o mapa em seu estado atual e a quantidade de tropas pelo mapa.
- 5 FINALIZAR: O programa imprime em cada linha:
 - * Se houveram ou não unidades perdidas (contabilizada pela opção 2) e quantas.
 - * Se o número de unidades total na tropa aumentou, diminuiu ou se manteve do início do programa comparado ao fim.
 - * Imprime o mapa final.

Observação: Nesse programa as opções tratam a primeira célula da matriz como M[1][1] e não M[0][0].

Complete o arquivo L07EX03.c

Você deve apenas completar as operações nos lugares indicados e não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada		Saída
3 3	(L e C da matriz)	
1 5 6	$({\tt Matriz})$	
5 3 2		
6 3 3		
1	$({\tt Reforço})$	
2 1 1		
2	(Perda)	
2 3 1		
3	$({\tt Transfer \hat{e}ncia})$	
2 1 3	$({\tt N} \ {\tt e} \ {\tt Origem})$	
3 1	$({\tt Destino})$	
4	(Ver Mapa)	
		3 5 4 (matriz)
		5 3 2
		6 3 3
		Há um total de 34 unidades em campo.
5	$({\tt Finalizar})$	
		Foram perdidas 2 unidades.
		A tropa se manteve com o mesmo número.
		3 5 4 (matriz)
		5 3 2
		6 3 3

Detalles

- (a) Os casos de teste entra com valores válidos na matriz. A única verificação necessária é a da escolha de opções.
- 4. Para realizar um trabalho de GAAL, você percebeu que seria interessante desenvolver um programa que desloca os elementos de uma matriz quadrada de acordo com a necessidade do usuário.

A primeira linha da entrada será um inteiro N (02 \leq $N \leq$ 100), que corresponde às dimensões da matriz. As N linhas seguintes serão os elementos de uma matriz N×N, que variam de 1 a N^2 , sem repetição.

A próxima linha será um inteiro M (01 \leq $M \leq$ 100), que corresponde ao número de deslocamentos que serão feitos na matriz. Por fim, as M linhas seguintes conterão os deslocamentos.

Cada deslocamento é composto por 1 caractere, 1 inteiro e 1 caractere, nesta ordem e separados por espaço. O primeiro caractere será 'L' ou 'C', que indica se o deslocamento será em uma linha ou coluna, respectivamente. O inteiro será um número P ($00 \le P \le N-1$), que indica qual linha ou coluna será feito o deslocamento. O segundo caractere poderá ser 'E' ou 'D' (esquerda ou direita), para deslocamentos em linha, ou 'C' ou 'B' (cima ou baixo), para deslocamentos em coluna.

Por exemplo, um deslocamento "L 0 E" desloca todos os elementos da linha 0 para a esquerda, sendo que o elemento da extremidade esquerda passe para a extremidade direita. Já um deslocamento "C 1 B" desloca todos os elementos da coluna 1 para baixo, sendo que elemento inferior passa a ser o superior.

A saída será a matriz resultante, seguida do estado da matriz, que será "Arrumado", caso os elementos estejam ordenados de forma crescente (da esquerda para a direita, de cima para baixo) ou "Desarrumado", caso contrário

Complete o arquivo LO7EX04.c

Você deve apenas completar as operações nos lugares indicados e não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entra	da	Saída
3	(tamanho N da matriz)	
1 2 3	(matriz NxN)	
4 5 6		
7 8 9		
2	(qtde de deslocamentos)	
L O E	(deslocamentos)	
C 1 B		
		2 8 1 (matriz resultante)
		4 3 6
		7 5 9
		Desarrumado (estado da matriz)
3	(tamanho N da matriz)	
2 8 1	(matriz NxN)	
4 3 6		
7 5 9		
2	(qtde de deslocamentos)	
C 1 C	(deslocamentos)	
L O D		
		1 2 3 (matriz resultante)
		4 5 6
		7 8 9
		Arrumado (estado da matriz)

Detalhes

- (a) Todas as entradas serão válidas, não sendo necessário qualquer tipo de verificação.
- (b) A mensagem de exibição do estado da matriz encontra-se predefinida no arquivo fornecido.
- (c) Cada elemento da matriz deve possuir um espaço em seguida. O último elemento de cada linha deve possuir um espaço e uma quebra de linha (\n) em seguida.

5. Escreva um programa que receba uma matriz quadrada e ordene valores de suas linhas de forma crescente e depois ordene as colunas de forma decrescente.

O programa deve receber um inteiro N ($2 \le N \le 20$) indicando o tamanho da matriz, seguido pelos valores da matriz. A saída do programa será a matriz com as ordenações realizadas.

Você deve apenas completar as operações nos lugares indicados e não deve realizar nenhuma alteração nas partes fornecidas. Inclusive, se houverem comandos de entrada (scanf) e saída (printf) definidos, estes não poderão ser alterados.

Exemplos de E/S (os comentários entre parênteses não deverão ser exibidos):

Entrada	Saída	
3 (tamanho)		
5 -3 4 (valores)		
10 8 12		
6 2 9		
	8 10 12	(\mathtt{saida})
	2 6 9	
	-3 4 5	

Detalles

(a) Os valores da matriz são números positivos.

• Cuidados

- 1. Erros de compilação: nota zero no exercício
- 2. Tentativa de fraude: nota zero na média para todos os envolvidos.