Biomass estimation on 0.25 ha FOS Rainfor data

Maxime Rejou-Mechain 14 February 2017

Load and prepare data

```
library(BIOMASS)
  ##Read in data (Modification="NULL" values converted in NA)
  FosData<-read.csv("100Plots/FOSDataDecember2016/FOSDataIndvData2016modifMRM.csv")
  # Plot latlong and dimension
  FosDataCoord <- read.csv("100Plots/FOSDataDecember2016/FOSPlotsLatLongWithAllometricRegion.csv")
  FosData$Long<-FosDataCoord[match(FosData$PlotCode,FosDataCoord$PlotCode),"LongitudeDecimal"]
  FosData$Lat<-FosDataCoord[match(FosData$PlotCode,FosDataCoord$PlotCode),"LatitudeDecimal"]
  # Feldpausch regions
  FosData$FeldRegion<-paste(as.character(FosDataCoord[match(FosData$PlotCode,FosDataCoord$PlotCo
  de), "Continent"]),
                            as.character(FosDataCoord[match(FosData$PlotCode,FosDataCoord$PlotCo
 de), "Region"]), sep="")
  # Plot dimension
 maxXperplot<-tapply(FosData$x_standard,FosData$PlotCode,function(x) quantile(x,probs = 0.95,na</pre>
  .rm = T)) # use of quantile to avoid the effect of outliers
  MinDim<-FosDataCoord[match(names(maxXperplot),FosDataCoord$PlotCode),"MinimumDimension"]
  MaxDim<-FosDataCoord[match(names(maxXperplot),FosDataCoord$PlotCode),"MaximumDimension"]
 plotDim<-data.frame(PlotCode=names(maxXperplot),dimX=MinDim,dimY=MinDim)
  filt=maxXperplot>MinDim
  plotDim$dimX[filt]<-MaxDim[filt]</pre>
 plotDim$dimY[!filt]<-MaxDim[!filt]</pre>
  # Correct plotdim for GAU-06
 plotDim[plotDim$PlotCode=="GAU-06",c("dimX","dimY")]=c(180,60)
  FosData=merge(FosData,plotDim)
  # D in cm
  FosData$Dcm<-FosData$D/10
  #### Dealing with trees that do not have coordinates or that have wrong coordinates (outside t
 he plot)
 FosData$Plot_Subplot=paste(FosData$PlotID, "_", FosData$Subplot_Standard, sep="")
 meanX<-tapply(FosData$x_standard,FosData$Plot_Subplot,mean,na.rm=T)
 meanY<-tapply(FosData$y_standard,FosData$Plot_Subplot,mean,na.rm=T)</pre>
  filtNA <- (is.na(FosData$x_standard) | is.na(FosData$y_standard))
  filtNoSubplot <- is.na(FosData$Subplot Standard)</pre>
  filtWrong <- !filtNA & !filtNoSubplot & (FosData$y_standard<0 | FosData$x_standard<0 | FosData
  $y_standard> FosData$dimY | FosData$x_standard>FosData$dimX)
  # Based on subplot
  FosData$x standard[(filtWrong | filtNA) & !filtNoSubplot]<-meanX[FosData$Plot_Subplot[(filtWro
Loading [MathJax]/jax/output/HTML-CSS/jax.js
```

```
FosData$y standard[(filtWrong | filtNA) & !filtNoSubplot] < - meanY[FosData$Plot Subplot](filtWro
ng | filtNA) & !filtNoSubplot]]
# Based on the closest treeID
filt2<- FosData$TreeID==(FosData$TreeID[(filtWrong | filtNA) & filtNoSubplot]-1)
FosData$x_standard[(filtWrong | filtNA) & filtNoSubplot] <- FosData$x_standard[filt2]
FosData$y_standard[(filtWrong | filtNA) & filtNoSubplot] <- FosData$y_standard[filt2]
# Designing subquadrats
FosData$x_standard[FosData$x_standard==FosData$dimX]=FosData$dimX[FosData$x_standard==FosData$
dimX]-0.1
FosData$y_standard[FosData$y_standard==FosData$dimY]=FosData$dimY[FosData$y_standard==FosData$
dimY]-0.1
QuaDindex=function(gx,gy,gridsizeX,gridsizeY){
  output=paste(floor(gx/gridsizeX),floor(gy/gridsizeY),sep="_")
 return(output)
} # end gxgy.2.index
gridsizeX<-pmin(FosData$dimX,50)</pre>
gridsizeY=pmin(FosData$dimY,50)
gridsizeX[gridsizeY<50]<-2500/gridsizeY[gridsizeY<50]</pre>
gridsizeY[gridsizeX<50]<-2500/gridsizeX[gridsizeX<50]</pre>
# Correction for GAU-06
gridsizeX[FosData$PlotCode=="GAU-06"]=180/4 # 2500/60
gridsizeY[FosData$PlotCode=="GAU-06"]=60
FosData$gridsizeX=gridsizeX
FosData$gridsizeY=gridsizeY
FosData$QuadID<-paste(FosData$PlotCode,QuaDindex(FosData$x_standard,FosData$y_standard,gridsiz
eX=gridsizeX,gridsizeY=gridsizeY))
FOSCoordQuad<-unique(FosData[,c("PlotCode","QuadID","dimX","dimY","gridsizeX","gridsizeY")])
## Plots corner in UTM
source("100Plots/ScriptCoordSubPlot140217.R")
getLeedsUTMcoord()
```

```
## Loading required package: proj4
```

```
UTMcoord<-read.csv("/media/rejou-mechain/DATADRIVE1/Rejou/Collab/FOS/Rainfor/LeedsVisit/100Plo
ts/OutCoord.csv")

# Correction for LFB-01 and LFB-02 that do not follow the clockwise rule
UTMcoord[UTMcoord$PlotCode*in*c("LFB-01","LFB-02"),c("Corner1X","Corner2X","Corner3X","Corner4
X","Corner1Y","Corner2Y","Corner3Y","Corner4Y")]=UTMcoord[UTMcoord$PlotCode*in*c("LFB-01","LFB-02"),c("Corner4X","Corner1X","Corner2X","Corner3X","Corner4Y","Corner1Y","Corner2Y","Corner3Y")]
#
FOSCoordQuad=merge(FOSCoordQuad,UTMcoord)
# Building the relative coordinate center of quadrats
codeQuad=strsplit(sapply(strsplit(FOSCoordQuad$QuadID,split = " "),"[",2),split="_")
codeQuadX=as.numeric(sapply(codeQuad,"[",1))</pre>
```

```
codeQuadY=as.numeric(sapply(codeQuad, "[",2))
FOSCoordQuad$QuadXrel=((codeQuadX+1)*FOSCoordQuad$gridsizeX+codeQuadX*FOSCoordQuad$gridsizeX)/
FOSCoordQuad$QuadYrel=((codeQuadY+1)*FOSCoordQuad$gridsizeY+codeQuadY*FOSCoordQuad$gridsizeY)/
2
FOSCoordQuad$Sizeha=FOSCoordQuad$gridsizeX*FOSCoordQuad$gridsizeY/10000
FOSCoordQuad$QuadXabs<-(1-FOSCoordQuad$QuadXrel/FOSCoordQuad$dimX)*(1-FOSCoordQuad$QuadYrel/FO
SCoordQuad$dimY)*FOSCoordQuad$Corner1X+FOSCoordQuad$QuadXrel/FOSCoordQuad$dimX*(1-FOSCoordQuad
$QuadYrel/FOSCoordQuad$dimY)*FOSCoordQuad$Corner2X+FOSCoordQuad$QuadYrel/FOSCoordQuad$dimY*(1-
FOSCoordQuad$QuadXre1/FOSCoordQuad$dimX)*FOSCoordQuad$Corner4X+FOSCoordQuad$QuadXre1*FOSCoordQ
uad$QuadYrel/(FOSCoordQuad$dimX*FOSCoordQuad$dimY)*FOSCoordQuad$Corner3X
FOSCoordQuad$QuadYabs<-(1-FOSCoordQuad$QuadXrel/FOSCoordQuad$dimX)*(1-FOSCoordQuad$QuadYrel/FO
SCoordQuad$dimY)*FOSCoordQuad$Corner1Y+FOSCoordQuad$QuadXrel/FOSCoordQuad$dimX*(1-FOSCoordQuad
$QuadYrel/FOSCoordQuad$dimY)*FOSCoordQuad$Corner2Y+FOSCoordQuad$QuadYrel/FOSCoordQuad$dimY*(1-
FOSCoordQuad$QuadXre1/FOSCoordQuad$dimX)*FOSCoordQuad$Corner4Y+FOSCoordQuad$QuadXre1*FOSCoordQ
uad$QuadYrel/(FOSCoordQuad$dimX*FOSCoordQuad$dimY)*FOSCoordQuad$Corner3Y
FOSCoordQuad$Quadlat=NA
FOSCoordQuad$Quadlong=NA
for (i in 1:nrow(FOSCoordQuad)){
  FOSCoordQuad[i,c("Quadlong","Quadlat")]<-project(cbind(FOSCoordQuad$QuadXabs[i],FOSCoordQuad
$QuadYabs[i]),proj=FOSCoordQuad$UTMzone[i],inverse=T)
# Remove quadrats with less than 2 trees > 10 cm dbh
FosData<-FosData[!FosData$QuadID%in%names(table(FosData$QuadID))[table(FosData$QuadID)<2],]
```

Location of the plots

Retrieve wood density

```
## [1] "Calling http://taxosaurus.org/retrieve/1540f5a82dde3856ae13b1f6b0f429e2"
## [1] "Calling http://taxosaurus.org/retrieve/b8724811995659d027600a92b16ca147"
## [1] "Calling http://taxosaurus.org/retrieve/f0clae68a3339c2dd4e108960de84b9e"
## [1] "Calling http://taxosaurus.org/retrieve/f32ef1974b8b07f1e3eabe7d76262913"
## [1] "Calling http://taxosaurus.org/retrieve/b3528a41defa9155d47ab7aa764910f2"
## [1] "Calling http://taxosaurus.org/retrieve/a8a84ba984e4eb51253d92f6cfb24b8f"
## [1] "Calling http://taxosaurus.org/retrieve/84ba59af10579c8d6c9f76c9727ceeb1"
## [1] "Calling http://taxosaurus.org/retrieve/a4d942359321169423468caf960bca93"
## [1] "Calling http://taxosaurus.org/retrieve/c53ea30dec94651bfb9365e1bb33e7f4"
## [1] "Calling http://taxosaurus.org/retrieve/eld5715e0e9657ff79eded9eec13c557"
## [1] "Calling http://taxosaurus.org/retrieve/15867a0bb0463543308d4a5a72d4bc76"
## [1] "Calling http://taxosaurus.org/retrieve/0e73527203aba1ba58fc2d0cf2faf7fc"
## [1] "Calling http://taxosaurus.org/retrieve/9eec069b49cc09422f23a5bb2f51bf1f"
## [1] "Calling http://taxosaurus.org/retrieve/ff4430e0880e9d9de42cbba9355675d3"
## [1] "Calling http://taxosaurus.org/retrieve/8616159c50e49ea16a6bead3cd48b4c5"
## [1] "Calling http://taxosaurus.org/retrieve/735c07b2a16fb8305b0a923a7a5876b3"
## [1] "Calling http://taxosaurus.org/retrieve/d57d510da5b45b387de0f2e3a0e7e12f"
## [1] "Calling http://taxosaurus.org/retrieve/80fbae552ec0227f6e6aa7d85bad5ffb"
## [1] "Calling http://taxosaurus.org/retrieve/a2856229f9aa2a2490be9c59031e7ed3"
## [1] "Calling http://taxosaurus.org/retrieve/e2b309fe985fd82fe81be766ed5a8e47"
## [1] "Calling http://taxosaurus.org/retrieve/2c20e14439ca5c5200b48bcb83dff4f6"
## [1] "Calling http://taxosaurus.org/retrieve/c2235f470361a21257f02e5e6c4735a4"
## [1] "Calling http://taxosaurus.org/retrieve/8472e6cf25dcf7284ac5a78c4e3769ea"
```

```
## [1] "Calling http://taxosaurus.org/retrieve/94bd82000ac1512342010bd11e7a5eee"
## [1] "Calling http://taxosaurus.org/retrieve/0d919c830ccc48385cbccedbd7e6eaf9"
## [1] "Calling http://taxosaurus.org/retrieve/e196a6f51f20d78dc8450dcbbefae184"
## [1] "Calling http://taxosaurus.org/retrieve/7c021a99a8bd3a14e33905c0390a5fbd"
## [1] "Calling http://taxosaurus.org/retrieve/6b49a174789c15d2a76d515b0dd418e6"
## [1] "Calling http://taxosaurus.org/retrieve/cda7b62e94125d7fde5d6cbdadb0bc0d"
## [1] "Calling http://taxosaurus.org/retrieve/e15d6995ce2983444e53d7357bd730c8"
## [1] "Calling http://taxosaurus.org/retrieve/51950b8ffeb4895df3e57f5e3a10bbb3"
## [1] "Calling http://taxosaurus.org/retrieve/4d8368f197aa64a149a98235de87df45"
## [1] "Calling http://taxosaurus.org/retrieve/26514896b13673773998ef53c82184ac"
## [1] "Calling http://taxosaurus.org/retrieve/81f2e7799a45918fd8b5e8cc5c518291"
## [1] "Calling http://taxosaurus.org/retrieve/911604a378129d46b715323225ae433b"
## [1] "Calling http://taxosaurus.org/retrieve/8c5053d0edd9594f144151b5f55843aa"
## [1] "Calling http://taxosaurus.org/retrieve/89916c0c4df9a51367c9b474b0752af0"
## [1] "Calling http://taxosaurus.org/retrieve/112b075880bdfe831cbcbb1edeb2bff4"
## [1] "Calling http://taxosaurus.org/retrieve/d18753a34df11bb070e2fcf49a2d203a"
## [1] "Calling http://taxosaurus.org/retrieve/213169da276c9a557e101d051de26790"
## [1] "Calling http://taxosaurus.org/retrieve/02a4c93f4ea09be10d1be40571c84bf0"
## [1] "Calling http://taxosaurus.org/retrieve/2f92e6c642b17908687051307ac129ff"
## [1] "Calling http://taxosaurus.org/retrieve/34ba89084d9e16c68a38523b096f1863"
## [1] "Calling http://taxosaurus.org/retrieve/f6db68fa7a6014c1ccd866f00c635e24"
## [1] "Calling http://taxosaurus.org/retrieve/bf361524e9502ab54548a9d90851cc0a"
## [1] "Calling http://taxosaurus.org/retrieve/34bdf8a9935d18114b8dd4c880a6b8a5"
## [1] "Calling http://taxosaurus.org/retrieve/7c0fe98c7cb87f90b87d61d544389abe"
## [1] "Calling http://taxosaurus.org/retrieve/cc185bf477827bb812a46cd887102741"
## [1] "Calling http://taxosaurus.org/retrieve/f699e13a36e676039d2154dc8bac2d9e"
## [1] "Calling http://taxosaurus.org/retrieve/31dbbc82ad34d60f8cb9597454a67f60"
## [1] "Calling http://taxosaurus.org/retrieve/95066bcf3acf378386efab9c55467766"
## [1] "Calling http://taxosaurus.org/retrieve/5726f0c03ef2aa6f0f5076d8968913df"
## [1] "Calling http://taxosaurus.org/retrieve/18626010eb732a4defce38a29afa085d"
## [1] "Calling http://taxosaurus.org/retrieve/6c35fc6dc07e5e4c96c2b1367a76980d"
## [1] "Calling http://taxosaurus.org/retrieve/3641404758f4a49fa3cc53c16d9ae8ba"
## [1] "Calling http://taxosaurus.org/retrieve/01ca1c693270ba5cb3af2d5ebeea1fe0"
## [1] "Calling http://taxosaurus.org/retrieve/6073f58880a120fc48b7ddb18836b693"
## [1] "Calling http://taxosaurus.org/retrieve/5470f493047f48b89cf27b037c13acc4"
## [1] "Calling http://taxosaurus.org/retrieve/fc992ccea864ffb31602a1f6da095bac"
## [1] "Calling http://taxosaurus.org/retrieve/9470cd3dcddd7e262d52463871158257"
## [1] "Calling http://taxosaurus.org/retrieve/ed23546250f8cb6be177c57bb458b222"
## [1] "Calling http://taxosaurus.org/retrieve/6477135221b988ceebeed0111b00f4c9"
## [1] "Calling http://taxosaurus.org/retrieve/61555775dacdd3e979e747514917502f"
## [1] "Calling http://taxosaurus.org/retrieve/4b601885a7f5518c7feaa58cb6ae73b9"
## [1] "Calling http://taxosaurus.org/retrieve/57905a62b002d162302bdce19d6f80be"
## [1] "Calling http://taxosaurus.org/retrieve/b28e2d1715a6731e668aaeb120df8557"
## [1] "Calling http://taxosaurus.org/retrieve/la3cb8fff8ef35b5a9720828470bed75"
## [1] "Calling http://taxosaurus.org/retrieve/74b6472c8b8cacbe18934c2c28975de5"
## [1] "Calling http://taxosaurus.org/retrieve/c6edb8f90989185b19248651e8b13a85"
## [1] "Calling http://taxosaurus.org/retrieve/4eeeaa5f17c29cef60968bf9c7af30a1"
## [1] "Calling http://taxosaurus.org/retrieve/7789888ffa622991e476e68c33a0bf21"
## [1] "Calling http://taxosaurus.org/retrieve/0162fd2c746a526687ac9b95462a0b2f"
## [1] "Calling http://taxosaurus.org/retrieve/821474a75cc55eb2060bc0cd04109359"
## [1] "Calling http://taxosaurus.org/retrieve/98981d067130ce5471febb1427090295"
## [1] "Calling http://taxosaurus.org/retrieve/a8099447f8248c615e96b346129a46c7"
## [1] "Calling http://taxosaurus.org/retrieve/fd9ea3e9c1b45139b832061fd9bcd89f"
## [1] "Calling http://taxosaurus.org/retrieve/a3b95d7c0fa4751dda979245c50a0ccd"
```

```
## [1] "Calling http://taxosaurus.org/retrieve/d147be3df3dcfc11d03c388fad6651d4"
## [1] "Calling http://taxosaurus.org/retrieve/a2fd4d3bf64b2ecba3b91ef96a5ecd73"
## [1] "Calling http://taxosaurus.org/retrieve/23b091f1129f3ff9295d1fb4b9f89dc4"
## [1] "Calling http://taxosaurus.org/retrieve/0b523c295799aec9a723697299b26d63"
## [1] "Calling http://taxosaurus.org/retrieve/676ba060321b0d90ea16d4dda20f32b4"
## [1] "Calling http://taxosaurus.org/retrieve/ff2ace330ab7d266244f314ea9a80694"
## [1] "Calling http://taxosaurus.org/retrieve/6542140306b875dece3f5e32950f8816"
## [1] "Calling http://taxosaurus.org/retrieve/fa8051f664a7544fdae340ea039e11a2"
## [1] "Calling http://taxosaurus.org/retrieve/f957b2b9b31f18b15059c4828e107cf2"
## [1] "Calling http://taxosaurus.org/retrieve/7ae5cfca507be3ccc1fa4445769b965d"
## [1] "Calling http://taxosaurus.org/retrieve/0f6b2f774b9655979bca54d075853014"
## [1] "Calling http://taxosaurus.org/retrieve/ed35efdb87e02dfd4919c1603ac4fa6c"
## [1] "Calling http://taxosaurus.org/retrieve/98b5aed589cle4elb6d5c66954le4bf7"
## [1] "Calling http://taxosaurus.org/retrieve/540fd69f543150425f25a763a8364a00"
```

```
## The reference dataset contains 16467 wood density values
## Your taxonomic table contains 2706 taxa
```

```
FosData$WD=dataWD$meanWD
FosData$sdWD=dataWD$sdWD
```

Overall, 60.8 % of the values have been attributed at the species level, 31.6 % at the genus level, and 7.7 % at the plot level.

Construct H-D models

We implemented a three parameter weibull model of the form:

```
H = a \quad (1 - exp(-(D/b)^c))
```

where a represents the asymptotic height of trees in the stand. Note that the model is fitted by giving a proportional weight to the volume of trees (proportional to $D^{2*}H$).

```
# Number of tree height data per plot
ntree <- tapply(FosData$Height,FosData$PlotCode,function(x) length(x[!is.na(x)]))
ntree</pre>
```

```
## ALF-01 ALP-01 ALP-02 ALP-30 ALV-02 ASN-02 BNT-01 BNT-02 BNT-04 CAP-09
       46
              21
                     41
                             40
                                     0
                                           54
                                                    0
                                                           0
                                                                  38
## CAP-10 CRP-02 CVL-01 CVL-11 DAD-03 DAD-04 DAN-01 DAN-02 DAN-03 DJK-01
               0
                                    38
                                                           0
##
                     66
                             61
                                           53
                                                   39
## DJK-02 DJK-03 DJK-04 DJK-05 DJK-06 FLO-02 FMH-01 FMH-02 FMH-03 FRP-01
                                                           0
              59
                     60
                             58
                                    60
                                          584
                                                    0
                                                                   0
## FRP-02 GAU-02 GAU-05 GAU-06 GBO-02 GBO-04 GBO-08 GBO-11 GBO-15 GBO-19
##
      258
             520
                    505
                            483
                                    85
                                           61
                                                   69
                                                          72
```

```
## HCC-21 HCC-22 JBS-01 JBS-02 JEN-11 KSN-01 KSN-02 KSN-05 KSN-06 LFB-01
                           776
                                   33
                                          73
##
              26
                    423
                                                  66
                                                         75
                                                                85
## LFB-02 LFB-03 LNL-02 LNL-03 LNL-04 LNL-05 LNL-06 LNL-07 LNL-08 LNL-09
                                   52
                                           27
                                                  41
                                                                53
                      8
                            19
                                                         68
## LNL-10 LNL-11 LNL-12 LSL-02 MBT-01 MBT-02 MBT-08 NGI-01 NGI-02 NGI-03
       78
              68
                     82
                             0
                                    0
                                            0
                                                   0
                                                          0
## NGI-05 NGI-06 NGI-07 NGI-08 NGI-09 NGI-10 NGI-11 NGI-12 NOU-03 PNY-05
                            74
                                           75
                                                  77
              69
                     73
                                   72
                                                         86
## PNY-06 PNY-07 POA-01 POA-02 RCS-01 RCS-02 RCS-05 SAA-02 SAT-01 SAT-02
##
                    651
                           353
                                    0
                                            0
                                                   0
                                                        546
                                                               518
## SCT-06 SOR-01 SUC-01 TAM-01 TAM-02 TAM-05 TAM-06 TAM-07 TAM-09
             451
                     40
                            41
                                  309
                                         170
                                                 357
                                                        180
```

Note that the number of tree height measurements per stand is pretty low in many plots

Plot	а	b c RSE
ALF-01	47.754	57.2830.6013.825
ALP-02	27.331	22.8781.0813.593
ALP-30	33.688	35.0680.6423.481
ASN-02	54.321	55.2671.1224.839
BNT-04	33.403	23.8160.8672.690
CAP-09	34.714	26.1091.3915.121
CAP-10	45.388	36.5871.0674.987
CVL-01	34.357	24.9871.0705.137
CVL-11	153.267	4473.5850.3514.854
DAD-03	1648.937	10608.7750.7723.674
DAD-04	47.326	52.3401.3916.614
DAN-01	2600.614	95336.8080.5906.282
DJK-01	48.015	30.1801.2627.192
DJK-02	45.919	33.4170.9477.917
DJK-03	41.658	24.2971.6156.463
DJK-04	35.899	27.5581.6216.273
DJK-05	41.551	23.1151.2034.989
DJK-06	71.541	81.9780.5588.816
FLO-02	28.160	28.0220.5502.634
FRP-01	27.895	27.1830.7673.030
FRP-02	79.021	1362.7180.5321.282

GAU-02	17.972	7.1430.7631.894
GAU-05	24.605	20.4250.8823.318
GAU-06	40.829	53.3300.9213.311
GBO-02	33.352	23.2461.0324.492
GBO-04	981.5743	321678.1260.4075.211
GBO-08	37.927	30.6831.1025.045
GBO-11	262.001	11841.8050.3924.174
GBO-15	37.903	34.8611.3575.508
GBO-19	49.884	54.4690.6514.500
JBS-01	28.579	25.7501.1343.875
JBS-02	15.486	16.3420.8141.968
JEN-11	1258.5442	277668.8140.4214.782
KSN-01	786.0202	226029.4010.3844.861
KSN-02	470.081	78093.8380.3754.862
KSN-05	47.967	46.7560.7173.975
KSN-06	278.783	6442.6480.4394.730
LFB-01	223.926	8323.7310.3864.517
LNL-04	43.240	34.4181.2214.594
LNL-06	29.774	17.4781.2883.596
LNL-07	270.717	9322.7740.3947.942
LNL-08	35.089	19.9551.0624.438
LNL-09	43.794	31.9071.2267.096
LNL-10	49.840	55.1520.6658.034
LNL-11	43.061	44.5920.6536.137
LNL-11	36.688	42.9461.3525.475
NGI-05	45.534	54.9930.9145.109
NGI-06	48.184	45.7600.7964.381
NGI-07	38.756	39.1891.4715.297
NGI-08	38.079	36.2791.2255.466
		97697.8760.4534.382
		145489.0700.4784.227
		27.1481.2843.573
	35.725	
PNY-05	1288.410	63534.1490.5284.315
PNY-06	1439.938	34559.1620.5735.270
PNY-07	1117.740	45026.5770.5166.215
POA-01	25.689	18.3000.5762.295
POA-02	9.700	13.0731.5401.333
SAA-02	34.257	54.6210.5462.787
SAT-01	25.726	19.3090.6663.370
SAT-02	11.282	17.0460.9971.231
SOR-01	1175.202	46548.1850.6431.342
SUC-01	31.649	20.2561.0544.029
TAM-01	280.493	31643.3660.3724.093
TAM-02	285.322	13079.0550.4194.092
TAM-05	246.249	7791.4570.4303.328
TAM-06	85.938	258.1060.5245.030
	47.073	

Weibull parameters are unrealistic for some plots (e.g. assymptotic height > 1000 m).

```
# retrieving predicted height values in the database
FosData$Hlocal<-FosData$Height # keeping directly measured trees
FosData$HlocalRSE<- 1 # to be refined

Plot=as.character(ResHD$Plot)
for(i in 1:length(ResHD$Plot)){
  filt<-FosData$PlotCode==Plot[i] & is.na(FosData$Hlocal)
  FosData$Hlocal[filt]<-retrieveH(D=FosData$Dcm[filt], model=modelHDperplot[[Plot[i]]])$H
  FosData$HlocalRSE[filt]<-modelHDperplot[[Plot[i]]]$RSE
}</pre>
```

Estimating biomass and associated uncertainties

Below, we used a Bayesian Monte-Carlo scheme to estimate the mean AGB and associated credibility interval per plot.

Using a local H-D model for all plots with at least 30 height measurements

```
#Below we only consider the small error from Chave 2004 to occur in the Rainfor dataset - larg
e errors presumed to be corrected during quality control
filt <- FosData$PlotCode%in%Plot</pre>
FosDataH<-droplevels(FosData[filt,])</pre>
resultMC<- by(FosDataH,FosDataH$QuadID,
               function(x)AGBmonteCarlo(D=x$Dcm,
                                WD=x$WD,
                                 H=x$Hlocal,
                                 errWD =x$sdWD,
                                 errH=x$HlocalRSE,
                                 Dpropag = 0.0062*x$Dcm+0.0904),
               simplify=FALSE)
credperplot<-t(as.data.frame(sapply(resultMC, "[",4)))*4</pre>
ResHDlocal<-data.frame(Plot=names(resultMC),</pre>
                     AGB=round(unlist(sapply(resultMC, "[",1)),1)*4,
                     Cred_2.5=round(credperplot[,"2.5%"],1),
                     Cred_97.5=round(credperplot[, "97.5%"],1))
```

Plot	AGBC	cred_2.5Cre	ed_97.5
ALF-01 0_0	356.8	306.7	419.0
ALF-01 0_1	164.0	135.8	204.6
ALF-01 0_2	212.8	186.5	244.7
ALF-01 0_3	176.4	156.3	201.1
ALP-02 0_0	214.4	186.8	247.8
ALP-02 0_1	189.2	166.5	216.3
ALP-02 0_2	220.4	188.1	259.5
ALP-02 0_3	248.8	211.3	298.5
ALP-30 0_0	220.4	195.1	248.5

ALP-30 1_0 247.2	216.6	283.8
ALP-30 2_0 163.2	143.5	186.4
ALP-30 3_0 187.6	166.6	212.9
ASN-02 0_0 160.0	139.3	184.6
ASN-02 0_1 255.2	205.7	328.0
ASN-02 1_0 247.2	211.4	297.7
ASN-02 1_1 322.0	208.1	518.1
BNT-04 0_0 225.2	196.3	258.6
BNT-04 0_1 369.2	332.5	410.0
BNT-04 1_0 286.4	255.3	320.8
BNT-04 1_1 381.6	327.4	455.9
CAP-09 0_0 358.4	307.2	418.1
CAP-09 0_1 357.2	308.0	413.7
CAP-09 1_0 373.2	323.5	429.3
CAP-09 1_1 470.8	408.2	542.6
CAP-10 0_0 336.8	289.7	388.6
CAP-10 0_1 356.4	300.4	425.7
CAP-10 1_0 140.0	121.3	162.9
CAP-10 1_1 188.0	155.8	227.1
CVL-01 0_0 325.6	276.5	377.9
CVL-01 0_1 330.4	279.1	396.2
CVL-01 1_0 252.4	218.6	294.9
CVL-01 1_1 312.0	263.8	369.8
CVL-11 0_0 280.0	235.5	340.5
CVL-11 0_1 360.8	312.2	421.4
CVL-11 1_0 368.4	288.8	479.8
CVL-11 1_1 356.4	310.3	416.2
DAD-03 0_0 132.4	75.6	229.9
DAD-03 0_1 131.6	87.5	200.2
DAD-03 1_0 83.6	59.9	116.6
DAD-03 1_1 60.0	44.3	81.2
DAD-04 0_0 86.4	72.2	105.7
DAD-04 0_1 448.4	333.4	606.2
DAD-04 1_0 299.6	237.5	384.8
DAD-04 1_1 206.8	142.4	308.6
DAN-01 0_0 197.2	158.5	248.3
DAN-01 0_1 301.6	206.7	460.6
DAN-01 1_0 322.8	242.7	436.6
DAN-01 1_1 391.2	285.6	537.7
DJK-01 0_0 524.8	421.5	649.5
DJK-01 0_1 518.8	403.0	677.3
DJK-01 1_0 696.8	554.6	888.9
DJK-01 1_1 583.2	486.6	702.7
DJK-02 0_0 340.0	286.2	399.0
DJK-02 0_1 639.2	509.4	817.0
DJK-02 1_0 235.6	203.3	274.4
DJK-02 1_1 228.8	194.1	269.5
DJK-03 0_0 449.2	366.8	551.4

DJK-03 0_1 423.6	334.2	537.6
DJK-03 1_0 396.0	329.2	473.8
DJK-03 1_1 855.6	690.7	1053.7
DJK-04 0_0 248.8	212.7	295.7
DJK-04 0_1 315.2	255.1	393.1
DJK-04 1_0 218.4	176.3	269.3
DJK-04 1_1 205.6	172.8	246.3
DJK-05 0_0 525.2	426.9	642.4
DJK-05 0_1 551.6	457.2	664.8
DJK-05 1_0 608.8	485.3	764.8
DJK-05 1_1 631.6	542.9	739.8
DJK-06 0_0 317.6	265.2	384.9
DJK-06 0_1 334.0	277.3	400.9
DJK-06 1_0 263.2	225.7	304.7
DJK-06 1_1 373.2	297.6	465.9
FLO-02 0_0 145.6	126.3	172.2
FLO-02 0_1 143.6	129.4	160.4
FLO-02 1_0 142.8	124.7	166.0
FLO-02 1_1 147.6	127.8	173.1
FRP-01 0_0 198.0	168.7	238.1
FRP-01 0_1 177.2	154.2	206.1
FRP-01 1_0 146.0	128.4	168.5
FRP-01 1_1 188.0	163.6	216.4
FRP-02 0_0 15.2	13.3	17.2
FRP-02 0_1 12.0	10.6	14.0
FRP-02 1_0 11.2	9.5	13.6
FRP-02 1_1 15.2	13.3	17.0
GAU-02 0_0 160.8	145.6	177.6
GAU-02 0_1 145.6	133.3	158.4
GAU-02 1_0 140.8	129.1	153.6
GAU-02 1_1 132.8	120.8	146.1
GAU-05 0_0 166.8	152.1	185.2
GAU-05 0_1 140.4	127.7	155.1
GAU-05 1_0 172.4	154.8	195.1
GAU-05 1_1 102.8	91.1	115.6
GAU-06 0_0 355.2	264.7	477.4
GAU-06 1_0 116.4	93.7	146.3
GAU-06 2_0 247.2	196.8	315.5
GAU-06 3_0 294.8	226.5	395.3
GBO-02 0_0309.6	257.9	375.9
GBO-02 0_1399.2	341.4	471.9
GBO-02 1_0310.0	255.0	374.6
GBO-02 1_1380.8	327.2	441.8
GBO-04 0_0363.2	288.7	456.8
GBO-04 0_1203.6	166.1	249.9
GBO-04 1_0350.8	300.6	415.1
GBO-04 1_1236.4	199.4	285.2
GBO-08 0_0291.2	227.6	373.3

GBO-08 0_1390.4	309.1	503.2
GBO-08 1_0346.4	280.3	424.4
GBO-08 1_1342.4	289.8	403.2
GBO-11 0_0391.2	328.4	475.7
GBO-11 0_1237.2	203.8	283.2
GBO-11 1 0184.8	159.3	215.6
GBO-11 1 1426.0	362.1	504.0
GBO-15 0_0436.4	333.7	588.4
GBO-15 0_1 196.0	160.6	242.4
GBO-15 1_0180.4	158.9	205.4
GBO-15 1_1283.6	231.0	350.6
GBO-19 0_0345.2	287.3	421.9
GBO-19 0_0343.2 GBO-19 0_1314.0	234.0	445.8
GBO-19 0_1314.0 GBO-19 1 0390.0	315.2	486.1
GBO-19 1_1248.0	208.0	296.7
JBS-01 0_0 261.6	218.2	314.3
-		422.0
JBS-01 0_1 364.0	318.3	_
JBS-01 1_0 288.4	254.4	328.9
JBS-01 1_1 229.6	195.3	267.7
JBS-02 0_0 106.0	96.6	117.5
JBS-02 0_1 106.4	98.8	115.4
JBS-02 1_0 110.4	101.1	120.3
JBS-02 1_1 112.0	104.5	121.3
JEN-11 0_0 314.4	270.1	366.4
JEN-11 0_1 222.4	192.7	258.3
JEN-11 1_0 357.6	316.8	404.9
JEN-11 1_1 396.0	341.1	464.1
KSN-01 0_0 281.6	245.2	321.9
KSN-01 0_1 479.6	385.0	611.1
KSN-01 0_2 354.4	295.9	425.5
KSN-01 0_3 328.0	282.0	378.4
KSN-02 0_0 181.2	148.8	226.9
KSN-02 0_1 401.2	332.5	497.7
KSN-02 0_2 385.6	301.4	501.5
KSN-02 0_3 293.2	248.1	345.8
KSN-05 0_0 270.4	230.3	320.2
KSN-05 0_1 524.0	435.8	632.1
KSN-05 0_2 412.0	332.6	524.4
KSN-05 0_3 257.2	209.7	318.9
KSN-06 0_0 220.4	183.6	274.3
KSN-06 0_1 184.4	153.7	226.2
KSN-06 0_2 330.8	278.4	393.1
KSN-06 0_3 639.2	533.3	768.8
LFB-01 0_0 283.6	235.5	351.2
LFB-01 1_0 298.4		369.1
LFB-01 2_0 285.6		331.5
LFB-01 3_0 246.4		298.7
LNL-04 0_0 295.6		342.6
		,

LNL-04 1_0	129.6	112.7	149.4
LNL-06 0_0	159.6	144.4	175.6
LNL-06 1_0	208.8	192.0	228.2
LNL-07 0_0	370.8	313.7	439.7
LNL-07 0_1	335.2	293.0	384.9
LNL-07 1_0	298.0	257.7	347.2
LNL-07 1_1	306.8	267.0	357.8
LNL-08 0_0	309.2	277.2	344.2
LNL-08 0_1	328.0	295.0	362.7
LNL-08 1_0	293.2	261.2	326.4
LNL-08 1_1	297.2	264.0	338.5
LNL-09 0_0	439.2	361.6	538.1
LNL-09 0_1	310.8	269.6	357.4
LNL-09 1_0	270.8	228.1	328.3
LNL-09 1 1		347.7	506.5
LNL-10 0_0	331.6	286.4	390.1
LNL-10 0 1		249.7	355.0
LNL-10 1_0		409.0	596.9
LNL-10 1_1		279.1	457.8
LNL-11 0_0		334.8	495.1
LNL-11 0_1		222.9	306.2
LNL-11 1_0		291.6	479.5
LNL-11 1_1		255.3	386.3
LNL-12 0_0		266.1	362.2
LNL-12 0_1		212.8	296.3
LNL-12 1_0		293.9	433.9
LNL-12 1_1		140.9	193.8
NGI-05 0_0		247.2	361.8
NGI-05 0 1		265.8	378.1
NGI-05 1_0			544.4
NGI-05 1_0		218.5	304.6
NGI-06 0_0			490.6
NGI-06 0 1			374.3
NGI-06 1_0			450.6
NGI-06 1_0			322.5
NGI-00 1_1			328.2
NGI-07 0_0 NGI-07 0_1			292.0
NGI-07 0_1 NGI-07 1_0			282.2
NGI-07 1_0 NGI-07 1_1		188.7	316.7
NGI-08 0_0			281.5
NGI-08 0_1		161.2	235.0
NGI-08 1_0		115.5	190.8
NGI-08 1_1		88.9	128.1
NGI-09 0_0			324.4
NGI-09 0_1		230.2	298.7
NGI-09 1_0			219.1
NGI-09 1_1		199.9	335.8
NGI-10 0_0	306.4	261.4	355.0

NGI-10 0_1 445.2	384.0	522.8
NGI-10 1_0 379.6	325.7	451.3
NGI-10 1_1 356.0	313.0	402.7
NGI-11 0_0 407.6	359.8	463.0
NGI-11 0_1 306.4	264.8	355.0
NGI-11 1_0 304.8	267.3	349.0
NGI-11 1_1 185.6	161.4	213.6
NGI-12 0_0 266.4	223.2	314.1
NGI-12 0_1 198.4	157.2	255.3
NGI-12 1_0 361.6	306.0	430.7
NGI-12 1_1 398.4	342.9	461.1
PNY-05 0_0 429.2	336.8	560.3
PNY-05 0_1 257.6	215.8	311.7
PNY-05 1_0 262.0	225.5	306.3
PNY-05 1_1 240.4	214.7	270.2
PNY-06 0_0 304.4	257.0	366.5
PNY-06 0_1 197.2	169.9	229.3
PNY-06 1_0 267.6	217.4	336.5
PNY-06 1_1 275.6	234.1	328.5
PNY-07 0_0 173.2	149.5	200.5
PNY-07 0_1 171.2	150.6	196.9
PNY-07 1_0 250.8	213.0	294.9
PNY-07 1_1 248.4	221.5	279.8
POA-01 0_0 180.8	158.8	207.7
POA-01 0_1 158.4	143.0	177.9
POA-01 1_0 157.6	143.5	172.6
POA-01 1_1 145.6	134.1	159.2
POA-02 0_0 18.0	16.0	21.1
POA-02 0_1 24.0	21.3	26.9
POA-02 1_0 23.6	20.9	26.8
POA-02 1_1 27.2	24.1	30.2
SAA-02 0_0 161.6	137.0	193.3
SAA-02 0_1 130.0	114.8	149.9
SAA-02 1_0 136.8	121.9	155.0
SAA-02 1_1 94.4	82.9	108.8
SAT-01 0_0 120.0	108.0	133.3
SAT-01 0_1 155.2	131.6	184.5
SAT-01 1_0 136.4	114.3	162.6
SAT-01 1_1 105.6	94.6	119.4
SAT-02 0_0 30.0	27.1	33.8
SAT-02 0_1 30.0	26.7	33.8
SAT-02 1_0 24.4	20.5	29.2
SAT-02 1_1 19.2	16.8	22.0
SOR-01 0_0 26.0	23.6	29.0
SOR-01 0_1 20.0	17.8	22.8
SOR-01 1_0 20.0	18.2	22.2
SOR-01 1_1 22.0	19.9	24.8
SUC-01 0_0 221.2	191.9	255.2

SUC-01 0_1 320.0	273.2	373.4
SUC-01 0_2 300.0	264.3	346.4
SUC-01 0_3 292.0	256.2	337.1
TAM-01 0_0 190.4	167.5	216.7
TAM-01 0_1 144.4	123.3	174.0
TAM-01 1_0 310.0	259.3	374.1
TAM-01 1_1 192.8	169.2	221.7
TAM-02 0_0 242.8	203.9	305.9
TAM-02 0_1 189.6	162.5	229.2
TAM-02 1_0 197.6	173.2	227.9
TAM-02 1_1 224.0	169.2	310.8
TAM-05 0_0 218.4	186.8	255.9
TAM-05 0_1 232.4	188.9	294.5
TAM-05 1_0 249.2	216.2	291.2
TAM-05 1_1 299.2	247.4	363.9
TAM-06 0_0 278.8	244.8	321.9
TAM-06 0_1 249.2	214.6	293.7
TAM-06 1_0 296.0	235.7	379.7
TAM-06 1_1 398.4	296.6	565.3
TAM-07 0_0 277.2	220.8	355.1
TAM-07 0_1 218.8	176.2	284.1
TAM-07 1_0 208.8	168.4	270.3
TAM-07 1_1 162.4	143.3	185.3

Using Feldpausch et al. 2012 regional Weibull models

```
FosData$FeldRegion<-sub("Amazonia Brazilian Shield", "BrazilianShield", FosData$FeldRegion)
FosData$FeldRegion<-sub("Amazonia W", "WAmazonia", FosData$FeldRegion)
FosData$FeldRegion<-sub("Africa W", "WAfrica", FosData$FeldRegion)
FosData$FeldRegion<-sub("Amazonia E-Central", "ECAmazonia", FosData$FeldRegion)
FosData$FeldRegion<-sub("Asia SE", "SEAsia", FosData$FeldRegion)
FosData$FeldRegion<-sub("Africa C", "CAfrica", FosData$FeldRegion)
FosData$FeldRegion<-sub("Amazonia Guyana Shield", "GuianaShield", FosData$FeldRegion)
# Retrieving height
temp=by(FosData,FosData$FeldRegion,
   function(x) retrieveH(D=x$Dcm,region =unique(x$FeldRegion)),
   simplify=F)
region=unique(FosData$FeldRegion)
FosData$Hfeld=rep(NA,nrow(FosData))
FosData$RSEfeld=rep(NA,nrow(FosData))
for(i in 1:length(region))
FosData[FosData$FeldRegion==region[i],c("Hfeld","RSEfeld")]=
  temp[[region[i]]][c("H","RSE")]
# Retrieving agb per plot
resultMC<-by(FosData, FosData$QuadID,
              function(x) AGBmonteCarlo(D=x$Dcm,WD=x$WD,errWD=x$sdWD,H=x$Hfeld,
                                         errH=x$RSEfeld,Dpropag =0.0062*x$Dcm+0.0904),
              simplify=FALSE)
```

	Cre	d_97.5=round(credperplot[,"9	7.5
Plot AGBC	red_2.5Cr	red_97.5	
ALF-01 0_0 321.6	270.6	389.0	
ALF-01 0_1 141.6	115.1	178.4	
ALF-01 0_2 188.8	162.3	219.1	
ALF-01 0_3 154.8	134.0	177.6	
ALP-01 0_0 249.2	210.8	298.9	
ALP-01 0_1 323.6	256.2	420.6	
ALP-01 0_2 231.6	202.5	266.9	
ALP-01 0_3 295.6	251.8	339.8	
ALP-02 0_0 256.4	223.3	293.3	
ALP-02 0_1 219.2	192.2	251.7	
ALP-02 0_2 264.4	225.4	314.9	
ALP-02 0_3 303.6	257.3	366.3	
ALP-30 0_0 254.4	224.6	287.8	
ALP-30 1_0 292.8	252.1	342.1	
ALP-30 2_0 184.8	161.9	211.2	
ALP-30 3_0 221.6	192.7	254.2	
ALV-02 0_0 307.2	266.1	357.8	
ALV-02 0_1 312.8	268.1	361.3	
ALV-02 1_0 268.4	229.9	316.8	
ALV-02 1_1 253.6	220.1	293.0	
ASN-02 0_0 171.6	150.2	195.1	
ASN-02 0_1 259.6	210.2	325.3	
ASN-02 1_0 250.8	214.4	295.7	
ASN-02 1_1 316.4	207.9	484.4	
BNT-01 0_0 410.0	344.0	501.6	
BNT-01 0_1 316.4	274.2	367.4	
BNT-01 1_0 338.0	282.5	413.9	
BNT-01 1_1 374.0	325.3	429.8	
BNT-02 0_0 424.4	373.3	483.5	
BNT-02 0_1 355.6	314.8	405.8	
BNT-02 1_0 283.2	254.5	317.9	
BNT-02 1_1 388.4	340.8	440.6	
BNT-04 0_0 217.6	188.4	255.5	
BNT-04 0_1 359.2	321.9		
BNT-04 1 0 275.2	243.2		
BNT-04 1_1 400.8	334.7		
CAP-09 0 0 384.4	327.0		
CAP-09 0_1 364.0	311.5		
CAP-09 1_0 376.8		446.7	
CAP-09 1_1 472.4	402.9		
CAP-10 0_0 294.0	253.0	340.1	
2 10 0_0 20 110		5.511	

CAP-10 0_1 332.8	278.1	405.9
CAP-10 1_0 135.6	115.8	159.6
CAP-10 1_1 188.4	152.9	236.7
CRP-02 0_0 200.0	172.7	233.0
CRP-02 0_1 216.0	184.2	254.8
CRP-02 1_0 232.0	199.8	276.0
CRP-02 1_1 176.8	153.8	204.0
CVL-01 0_0 348.0	286.9	429.1
CVL-01 0_1 357.6	291.2	450.9
CVL-01 1 0 264.4	227.4	308.8
CVL-01 1_1 322.0	271.6	383.0
CVL-11 0_0 282.8	238.0	338.2
CVL-11 0_1 369.6	311.6	440.8
CVL-11 1_0 393.6	293.6	533.5
CVL-11 1_1 373.6	318.1	439.9
DAD-03 0_0 126.4	81.5	196.4
DAD-03 0_1 137.6	95.8	202.7
DAD-03 0_1 197.0 DAD-03 1 0 96.4	72.7	130.7
DAD-03 1_1 68.0	50.5	93.1
DAD-03 1_1 08.0 DAD-04 0_0 110.8	92.8	133.4
_		
DAD-04 0_1 498.4	368.7	676.5
DAD-04 1_0 369.6	287.2	481.3
DAD-04 1_1 203.6	147.8	290.7
DAN-01 0_0 238.0	187.6	301.7
DAN-01 0_1 297.2	201.7	430.7
DAN-01 1_0 322.8	252.0	425.1
DAN-01 1_1 397.6	291.9	545.3
DAN-02 0_0 249.2	199.4	308.3
DAN-02 0_1 398.8	307.4	515.2
DAN-02 1_0 216.0	165.3	287.4
DAN-02 1_1 280.0		343.6
DAN-03 0_0 237.6		277.7
DAN-03 0_1 451.2		592.2
DAN-03 1_0 614.4		853.3
DAN-03 1_1 295.2	239.4	369.0
DJK-01 0_0 494.4	387.6	627.2
DJK-01 0_1 475.2	363.9	608.3
DJK-01 1_0 624.8	491.9	803.8
DJK-01 1_1 514.4	425.3	625.0
DJK-02 0_0 334.4	284.2	393.7
DJK-02 0_1 645.2	512.0	809.2
DJK-02 1_0 238.0	200.9	279.0
DJK-02 1_1 229.6	194.0	273.8
DJK-03 0_0 438.8	348.6	548.4
DJK-03 0_1 431.6	328.8	579.7
DJK-03 1_0 353.2		431.4
DJK-03 1_1 879.6		1086.3
DJK-04 0_0 286.8		338.4

DJK-04 0_1 369.6	304.1	459.5
DJK-04 1_0 244.0	198.4	306.8
DJK-04 1_1 232.0	195.9	275.3
DJK-05 0_0 536.8	431.1	673.5
DJK-05 0_1 536.0	442.0	663.1
DJK-05 1_0 596.4	474.1	767.1
DJK-05 1_1 599.2	507.5	709.9
DJK-06 0_0 293.2	242.8	357.5
DJK-06 0_1 315.2	259.7	383.8
DJK-06 1_0 225.6	194.6	265.8
DJK-06 1_1 324.0	257.2	412.3
FLO-02 0_0 177.6	148.2	218.0
FLO-02 0_1 155.2	136.4	180.2
FLO-02 1_0 164.8	141.2	197.8
FLO-02 1_1 169.6	141.5	208.8
FMH-01 0_0621.6	522.8	732.2
FMH-01 0_1 771.2	654.0	901.9
FMH-01 1_0737.6	638.9	856.0
FMH-01 1_1 885.6	744.7	1059.3
FMH-02 0_0 799.6	681.0	936.6
FMH-02 0_1 498.8	417.1	607.9
FMH-02 1_0 586.0	486.5	705.0
FMH-02 1_1 689.6	578.9	826.1
FMH-03 0_0 474.8	423.5	532.4
FMH-03 0_1 407.2	360.8	464.8
FMH-03 1_0 454.8	405.0	515.8
FMH-03 1_1 433.2	386.0	486.6
FRP-01 0_0 235.2	195.0	292.0
FRP-01 0_1 204.4	175.2	240.5
FRP-01 1_0 167.6	143.6	195.1
FRP-01 1_1 220.0	189.9	260.4
FRP-02 0_0 30.0	25.9	34.9
FRP-02 0_1 25.2	21.4	30.2
FRP-02 1_0 22.4	18.6	27.7
FRP-02 1_1 31.2	26.9	35.7
GAU-02 0_0 187.2	165.4	209.8
GAU-02 0_1 163.2	146.0	183.2
GAU-02 1_0 159.6	143.2	178.1
GAU-02 1_1 152.0	134.8	170.9
GAU-05 0_0 190.0	169.2	214.2
GAU-05 0_1 151.2	133.2	171.9
GAU-05 1_0 192.8	168.9	222.9
GAU-05 1_1 126.8	110.4	147.2
GAU-06 0_0 416.4	306.3	559.8
GAU-06 1_0 150.8		198.0
GAU-06 2_0 258.0	208.2	330.9
GAU-06 3_0 348.0		468.3
GBO-02 0_0368.8	297.0	455.4

GBO-02 0_1420.4	354.0	511.2
GBO-02 1_0336.4	269.3	421.0
GBO-02 1_1392.8	334.9	459.4
GBO-04 0_0404.4	316.6	523.7
GBO-04 0_1229.2	185.0	290.6
GBO-04 1_0397.2	328.0	483.4
GBO-04 1 1248.4	204.3	305.2
GBO-04 1_1248.4 GBO-08 0_0318.8	248.6	418.2
-		542.9
GBO-08 0_1412.8	324.9	
GBO-08 1_0384.0	307.7	486.1
GBO-08 1_1342.0	289.3	405.3
GBO-11 0_0401.2	333.7	496.7
GBO-11 0_1246.8	205.4	293.8
GBO-11 1_0176.8	150.8	210.2
GBO-11 1_1436.8	364.0	534.1
GBO-15 0_0532.4	396.6	749.8
GBO-15 0_1211.2	172.7	264.3
GBO-15 1_0203.6	178.2	232.2
GBO-15 1_1299.2	243.3	368.8
GBO-19 0_0335.6	272.5	416.2
GBO-19 0_1306.4	227.0	452.8
GBO-19 1_0412.8	324.9	528.1
GBO-19 1_1248.8	206.4	309.8
HCC-21 0_0 330.8	278.9	395.9
HCC-21 0_1 248.0	194.7	327.5
HCC-21 0_2188.4	156.4	232.1
HCC-21 0_3162.0	141.2	186.1
HCC-22 0_0 271.2	213.0	345.9
HCC-22 0_1 220.0	182.8	263.0
HCC-22 0_2 206.4	181.6	235.0
HCC-22 0_3 327.2		395.4
JBS-01 0_0 313.6	261.5	381.5
JBS-01 0_1 412.0		477.8
JBS-01 1_0 356.0		413.5
JBS-01 1_1 294.0		346.3
JBS-02 0_0 192.4		216.1
JBS-02 0_1 193.2		213.1
JBS-02 1_0 208.4		232.2
JBS-02 1_0 200.4 JBS-02 1_1 217.2		235.5
JEN-11 0_0 268.4		316.6
JEN-11 0_0 208.4 JEN-11 0_1 192.8		
		221.9
JEN-11 1_0 310.8		349.4
JEN-11 1_1 335.2		392.2
KSN-01 0_0 314.4		370.4
KSN-01 0_1 507.6		630.9
KSN-01 0_2 387.2		492.2
KSN-01 0_3 374.8		447.2
KSN-02 0_0 217.6	170.9	290.0

KSN-02 0_1 454.4	374.3	554.0
KSN-02 0_2 440.8	336.7	579.8
KSN-02 0_3 327.2	272.7	396.4
KSN-05 0_0 305.2	255.0	365.6
KSN-05 0_1 574.0	477.1	699.3
KSN-05 0_2 436.4	344.3	561.8
KSN-05 0_3 283.6	224.9	370.8
KSN-06 0_0 236.4	193.4	294.9
KSN-06 0_1 204.8	165.4	253.9
KSN-06 0_2 353.6	294.5	422.1
KSN-06 0_3 669.2	543.5	823.9
LFB-01 0_0 256.0	208.5	323.7
LFB-01 1_0 276.4	226.4	340.1
LFB-01 2_0 249.6	212.8	296.6
LFB-01 3_0 212.0	175.0	260.5
LFB-02 0_0 283.2	226.4	364.3
LFB-02 1_0 330.4	273.7	403.6
LFB-02 2_0 292.0	245.1	351.3
LFB-02 3_0 220.0	181.1	264.4
LFB-03 0_0 23.2	19.6	27.3
LFB-03 0_1 26.8	22.8	31.5
LFB-03 1_0 21.2	18.2	24.6
LFB-03 1_1 20.4	17.5	23.9
LNL-02 0_1 0.8	0.2	1.3
LNL-02 1_1 1.6	1.1	2.8
LNL-03 0_0 15.6	11.6	20.6
LNL-03 0_1 93.6	61.1	144.1
LNL-03 1_0 3.2	2.2	4.3
LNL-03 1_1 4.4	2.0	8.0
LNL-04 0_0 310.4	268.2	361.4
LNL-04 1_0 150.0		175.7
LNL-05 0_0 53.6	44.0	64.9
LNL-05 1_0 77.6		89.6
LNL-06 0_0 169.2	151.8	187.4
LNL-06 1_0 215.6		239.8
LNL-07 0_0 381.2		454.6
LNL-07 0_1 345.6		398.3
LNL-07 1_0 312.0	267.9	360.2
LNL-07 1_1 330.0		388.4
LNL-08 0_0 305.6		344.7
LNL-08 0_1 320.8		357.5
LNL-08 1_0 292.0		330.1
LNL-08 1_1 303.2		347.9
LNL-09 0_0 465.2		572.1
LNL-09 0_1 294.8		340.0
LNL-09 1_0 266.0		318.6
LNL-09 1_1 436.0		521.5
LNL-10 0_0 373.6	323.8	433.6

LNL-10 0_1 353.6	298.2	427.2
LNL-10 1_0 539.6	443.0	661.7
LNL-10 1 1 400.0	317.1	525.1
LNL-11 0_0 478.0	389.1	587.7
LNL-11 0 1 313.2	265.0	368.9
LNL-11 1_0 452.4	352.3	588.6
LNL-11 1_1 377.2	303.7	474.9
LNL-12 0_0 425.6	367.0	495.6
LNL-12 0_1 351.2	302.0	411.2
LNL-12 1_0 491.6	406.8	605.0
LNL-12 1_0 491.0 LNL-12 1_1 258.4	223.4	300.9
LSL-02 0_0 126.4	112.1	144.6
LSL-02 0_0 120.4 LSL-02 0_1 221.6		253.3
	196.4 204.6	
LSL-02 0_2 230.0		258.1
LSL-02 0_3 222.4	196.1	254.4
MBT-01 0_0 264.8	218.1	327.0
MBT-01 0_1 195.6	164.8	238.4
MBT-01 1_0 191.6	161.2	227.3
MBT-01 1_1 190.8	164.1	222.5
MBT-02 0_0 275.6	220.0	354.9
MBT-02 0_1 141.6	121.1	167.7
MBT-02 1_0 226.8	185.2	292.7
MBT-02 1_1 251.2	184.3	351.1
MBT-08 0_0 132.8	113.4	158.3
MBT-08 0_1 284.8	228.1	371.5
MBT-08 1_0 168.8	139.4	208.1
MBT-08 1_1 190.4	162.3	222.6
NGI-01 0_0 519.2	407.2	664.2
NGI-01 0_1 308.8	265.8	358.3
NGI-01 1_0 282.8	228.8	352.7
NGI-01 1_1 391.2	326.3	477.4
NGI-02 0_0 409.2	325.2	516.9
NGI-02 0 1 570.8		767.4
NGI-02 1_0 483.6	362.1	667.3
NGI-02 1 1 590.8	504.9	698.1
NGI-03 0_0 281.6	232.2	347.5
NGI-03 0_1 284.4		392.5
NGI-03 1_0 434.8	333.6	576.4
NGI-03 1_0 434.6	290.6	473.7
NGI-05 0_0 405.2	328.7	510.1
NGI-05 0_0 403.2 NGI-05 0_1 401.2		479.1
NGI-05 0_1 401.2 NGI-05 1_0 508.0		
_	402.2	638.2
NGI-05 1_1 334.4	287.2	387.0
NGI-06 0_0 377.6	314.7	468.2
NGI-06 0_1 314.4		379.0
NGI-06 1_0 356.8	295.1	429.5
NGI-06 1_1 271.6		320.7
NGI-07 0_0 335.6	284.1	396.7

NGI-07 0_1 316.8	266.1	376.1
NGI-07 1_0 318.4	268.2	386.0
NGI-07 1_1 278.4	226.6	346.5
NGI-08 0_0 272.0	224.2	333.4
NGI-08 0_1 236.0	200.2	282.9
NGI-08 1_0 194.0	153.9	247.7
NGI-08 1_1 142.0	121.0	169.3
NGI-09 0_0 381.6	322.3	454.2
NGI-09 0_1 352.0	307.7	402.5
NGI-09 1_0 257.6	221.7	303.7
NGI-09 1_1 318.0	252.7	425.9
NGI-10 0_0 393.6	333.2	461.8
NGI-10 0_1 546.4	465.3	642.0
NGI-10 1_0 457.6	389.5	538.4
NGI-10 1_1 456.8	395.0	525.7
NGI-11 0 0 530.8	463.2	609.4
NGI-11 0 1 395.2	338.3	461.6
NGI-11 1_0 391.6	340.4	446.0
NGI-11 1_1 242.4	207.7	284.9
NGI-11 1_1 242.4 NGI-12 0_0 340.8	287.9	410.3
NGI-12 0_0 340.8 NGI-12 0_1 276.8	222.7	353.6
NGI-12 0_1 270.6 NGI-12 1_0 425.6	358.0	499.9
NGI-12 1_0 425.6 NGI-12 1_1 481.2	416.4	559.5
_		
NOU-03 0_0388.8	325.9	467.1
NOU-03 0_1508.0	433.0	600.0
NOU-03 1_0646.8	536.4	792.6
NOU-03 1_1707.6	577.9	867.5
PNY-05 0_0 387.2	310.2	489.3
PNY-05 0_1 254.0	216.0	301.5
PNY-05 1_0 260.8	223.6	304.8
PNY-05 1_1 248.0	221.4	277.3
PNY-06 0_0 258.8	220.5	306.9
PNY-06 0_1 175.6	152.7	204.6
PNY-06 1_0 229.6	188.4	287.7
PNY-06 1_1 246.0	208.5	291.3
PNY-07 0_0 156.4	135.9	180.0
PNY-07 0_1 165.6	143.6	192.7
PNY-07 1_0 221.6	187.9	263.3
PNY-07 1_1 222.4	196.1	252.9
POA-01 0_0 201.2	171.6	239.2
POA-01 0_1 160.8	141.3	184.3
POA-01 1_0 166.8	147.0	189.9
POA-01 1_1 152.0	136.6	170.4
POA-02 0_0 39.6	33.8	47.1
POA-02 0_1 50.8	45.1	57.7
POA-02 1_0 50.4	43.3	58.7
POA-02 1_1 53.6	46.8	61.4
RCS-01 0_0 261.2		290.7
	_00.0	_00.7

RCS-01 0_1 298.8	267.1	333.1
RCS-01 1_0 174.8	154.5	196.3
RCS-01 1_1 244.0	218.7	273.1
RCS-02 0_0 179.6	160.4	202.5
RCS-02 0_1 267.6	237.5	301.4
RCS-02 1_0 246.0	222.6	274.2
RCS-02 1_1 258.0	231.6	288.2
RCS-05 0_0 168.0	143.5	199.4
RCS-05 0_1 204.0	175.1	237.7
RCS-05 1_0 269.6	221.9	326.7
RCS-05 1_1 244.0	215.1	280.1
SAA-02 0_0 196.4	163.6	242.1
SAA-02 0_1 145.2	126.4	168.5
SAA-02 1_0 154.8	133.8	182.1
SAA-02 1_1 115.2	99.4	134.0
SAT-01 0_0 130.4	114.4	147.4
SAT-01 0_1 176.0	144.6	216.4
SAT-01 1_0 176.4	143.7	219.0
SAT-01 1_1 117.6	102.8	135.7
SAT-02 0_0 62.0	54.5	70.8
SAT-02 0_1 63.2	55.4	73.0
SAT-02 1_0 55.6	45.1	68.0
SAT-02 1_1 42.4	36.6	49.5
SCT-06 0_0 237.6	203.7	282.6
SCT-06 0_1 175.6	151.9	203.0
SCT-06 1_0 206.8	174.9	253.6
SCT-06 1_1 142.8	123.1	164.9
SOR-01 0_0 53.2	47.3	59.7
SOR-01 0_1 42.8	37.8	49.4
SOR-01 1_0 42.8	38.2	47.4
SOR-01 1_1 47.2	41.9	53.3
SUC-01 0_0 219.2	189.3	256.3
SUC-01 0_1 323.6	272.0	380.0
SUC-01 0_2 292.0	254.2	339.4
SUC-01 0_3 283.6	245.5	328.0
TAM-01 0_0 222.8	193.5	259.3
TAM-01 0_1 163.6	138.6	197.8
TAM-01 1_0 350.0	289.4	431.8
TAM-01 1_1 213.2	186.3	242.8
TAM-02 0_0 254.4	210.4	322.6
TAM-02 0_1 200.4	168.8	244.6
TAM-02 1_0 216.4	188.0	252.1
TAM-02 1_1 238.4	179.8	330.1
TAM-05 0_0 233.2	194.6	279.1
TAM-05 0_1 248.0	199.1	322.1
TAM-05 1_0 272.8	232.5	326.7
TAM-05 1_1 303.2		369.1
TAM-06 0_0 266.4	232.3	311.3

TAM-06 0_1 239.6	207.2	277.9
TAM-06 1_0 303.6	236.6	399.5
TAM-06 1_1 364.0	275.5	513.7
TAM-07 0_0 288.8	232.0	365.4
TAM-07 0_1 227.6	183.5	292.2
TAM-07 1_0 222.8	177.0	299.9
TAM-07 1_1 174.8	153.1	200.1
TAM-09 0_0 210.0	178.4	249.5
TAM-09 0_1 305.2	255.5	365.3
TAM-09 1_0 239.2	194.9	304.2
TAM-09 1_1 222.0	192.5	259.0

Using Chave et al. 2014 Equation 7 model

Plot	AGBCre	ed_2.5Cred	1_97.5
ALF-01 0_0	370.4	307.1	469.3
ALF-01 0_1	163.6	130.5	217.3
ALF-01 0_2	220.4	188.1	257.8
ALF-01 0_3	179.6	155.0	209.2
ALP-01 0_0	260.8	218.3	315.4
ALP-01 0_1	353.2	270.8	482.5
ALP-01 0_2	237.2	204.2	276.5
ALP-01 0_3	306.0	261.2	363.5
ALP-02 0_0	264.8	225.2	316.1
ALP-02 0_1	223.6	192.3	263.8
ALP-02 0_2	279.6	235.0	337.9
ALP-02 0_3	319.2	263.4	399.7
ALP-30 0_0	259.2	225.9	297.1
ALP-30 1_0	302.4	257.0	355.9
ALP-30 2_0	187.6	162.6	216.2
ALP-30 3_0	228.0	195.9	264.3
ALV-02 0_0	212.0	180.0	255.5
ALV-02 0_1	214.8	185.7	255.0
ALV-02 1_0	185.6	155.3	220.7
ALV-02 1_1	176.0	150.7	205.1
ASN-02 0_0	156.0	136.1	178.8
ASN-02 0_1	232.0	188.7	297.0

ASN-02 1_0 224.8	192.1	266.2
ASN-02 1_1 313.2	195.1	510.2
BNT-01 0_0 456.0	369.4	575.3
BNT-01 0_1 344.8	293.7	404.0
BNT-01 1_0 368.8	309.0	462.9
BNT-01 1_1 408.8	355.9	471.4
BNT-02 0_0 462.0	402.0	537.9
BNT-02 0_1 389.6	339.1	446.2
BNT-02 1_0 310.4	276.6	351.4
BNT-02 1_1 427.2	371.6	488.2
BNT-04 0_0 241.2	204.1	288.8
BNT-04 0_1 394.0	346.4	453.9
BNT-04 1_0 301.6	264.1	350.8
BNT-04 1_1 442.0	363.4	546.0
CAP-09 0_0 388.4	326.0	468.9
CAP-09 0_1 367.6	308.9	442.1
CAP-09 1_0 382.0	325.6	457.9
CAP-09 1_1 478.8	405.3	570.4
CAP-10 0_0 303.6	257.9	358.8
CAP-10 0_1 349.2	285.4	432.0
CAP-10 1_0 142.8	120.7	167.4
CAP-10 1_1 196.8	159.5	246.8
CRP-02 0_0 176.0	149.9	206.2
CRP-02 0_1 189.2	159.2	223.9
CRP-02 1_0 203.2	173.7	241.0
CRP-02 1_1 153.6	133.5	178.6
CVL-01 0_0 340.8	282.6	418.8
CVL-01 0_1 353.6	282.5	439.4
CVL-01 1_0 260.0	221.9	305.4
CVL-01 1_1 316.4	264.8	383.4
CVL-11 0_0 276.8	224.1	339.6
CVL-11 0_1 364.4	303.0	443.0
CVL-11 1_0 392.8	285.0	547.6
CVL-11 1_1 368.4	306.8	438.6
DAD-03 0_0 124.0	76.3	207.1
DAD-03 0_1 131.6	90.9	203.7
DAD-03 1_0 92.0	67.8	128.7
DAD-03 1_1 64.8	48.1	88.6
DAD-04 0_0 105.2	87.4	130.3
DAD-04 0_1 477.6	343.0	684.0
DAD-04 1_0 345.6	259.6	459.7
DAD-04 1_1 194.4	136.6	296.2
DAN-01 0_0 220.4	170.8	288.6
DAN-01 0_1 284.0	188.9	442.0
DAN-01 1_0 296.0		401.9
DAN-01 1_1 367.2	261.2	515.2
DAN-02 0_0 228.0		285.6
DAN-02 0_1 367.6	276.5	498.7

DAN-02 1_0 201.2	153.8	279.8
DAN-02 1_1 255.6	207.8	316.4
DAN-03 0_0 213.2	179.5	257.9
DAN-03 0_1 420.8	312.2	595.3
DAN-03 1_0 579.2	410.7	847.7
DAN-03 1_1 270.0	213.0	340.6
DJK-01 0_0 469.2	354.6	616.1
DJK-01 0_1 463.2	346.4	628.6
DJK-01 1_0 608.4	467.8	820.9
DJK-01 1_1 484.4	391.5	594.2
DJK-02 0_0 310.4	260.2	373.9
DJK-02 0_1 620.0	487.8	806.4
DJK-02 1_0 219.2	185.5	261.6
DJK-02 1_1 211.2	176.8	256.5
DJK-03 0_0 416.0	323.9	539.1
DJK-03 0_1 412.4	299.3	567.4
DJK-03 1_0 328.4	261.7	412.0
DJK-03 1_1 865.2	674.5	1113.0
DJK-04 0 0 265.6	224.2	316.9
DJK-04 0_1 353.6	278.0	465.1
DJK-04 1_0 230.8	185.6	293.9
DJK-04 1_1 213.6	178.1	259.4
DJK-05 0_0 516.0	400.6	669.9
DJK-05 0_1 503.2	404.9	637.0
DJK-05 1_0 586.8	436.6	807.8
DJK-05 1_0 561.6	458.8	680.8
DJK-06 0_0 273.2	222.0	343.9
DJK-06 0_1 295.6	236.9	377.6
DJK-06 1_0 206.8	178.0	244.5
DJK-06 1_1 304.0	236.6	404.8
FLO-02 0_0 178.4		221.1
FLO-02 0_0 178.4 FLO-02 0_1 158.8	138.3	184.9
FLO-02 1_0 168.4		200.8
FLO-02 1_0 108.4 FLO-02 1_1 171.6		215.6
FMH-01 0_0 597.6	489.3	747.2
FMH-01 0_1 748.0	622.7	918.8
FMH-01 1_0 705.6		849.7
FMH-01 1_1 876.8		1083.8
FMH-02 0_0 786.8	658.3	945.7
FMH-02 0_1 473.2	381.3	590.1
_		
FMH-02 1_0 569.2		713.1
FMH-02 1_1 668.8	556.9	814.3
FMH-03 0_0 430.4	378.4	492.6
FMH-03 0_1 371.2		437.8
FMH-03 1_0 413.2		472.4
FMH-03 1_1 390.4		445.6
FRP-01 0_0 241.6		298.8
FRP-01 0_1 210.4	178.2	251.9

FRP-01 1_0 171.6	147.4	203.2
FRP-01 1_1 225.6	190.6	268.9
FRP-02 0_0 30.8	26.7	36.0
FRP-02 0_1 25.6		30.3
-	22.1	
FRP-02 1_0 22.8	19.1	27.8
FRP-02 1_1 32.0	27.6	36.6
GAU-02 0_0 192.4	169.6	221.0
GAU-02 0_1 167.6	149.1	186.3
GAU-02 1_0 164.0	146.6	184.2
GAU-02 1_1 156.0	137.2	176.0
GAU-05 0_0 194.4	172.5	220.5
GAU-05 0_1 154.8	137.6	178.1
GAU-05 1_0 197.2	169.5	231.7
GAU-05 1_1 130.0	111.7	152.6
-		
GAU-06 0_0 409.2	294.7	569.3
GAU-06 1_0 154.4	119.4	207.1
GAU-06 2_0 261.2	205.8	343.9
GAU-06 3_0 343.2	254.4	480.6
GBO-02 0_0370.8	293.3	473.6
GBO-02 0_1420.8	350.5	521.0
GBO-02 1_0343.6	268.8	440.9
GBO-02 1_1396.4	329.2	472.2
GBO-04 0_0410.8	312.9	556.3
GBO-04 0_1227.2	175.1	292.3
GBO-04 1_0400.4	322.4	499.3
GBO-04 1_1254.4	207.3	321.8
GBO-04 1_1234.4 GBO-08 0_0322.8	239.7	433.6
-		
GBO-08 0_1418.0	314.5	572.0
GBO-08 1_0385.2	302.3	492.2
GBO-08 1_1340.4	279.3	411.1
GBO-11 0_0402.8	325.5	501.6
GBO-11 0_1248.8	205.0	308.9
GBO-11 1_0179.6	150.6	216.0
GBO-11 1_1438.4	360.7	535.7
GBO-15 0_0559.6	390.2	849.1
GBO-15 0_1215.2	174.4	271.5
GBO-15 1 0209.2	182.5	238.4
GBO-15 1_1304.4	245.3	386.3
GBO-19 0_0340.0	275.2	427.2
GBO-19 0_1322.0	225.7	479.7
GBO-19 1_0416.0		542.0
GBO-19 1_1250.4	204.1	310.4
HCC-21 0_0 306.0	257.6	368.6
HCC-21 0_1 226.8	177.3	300.7
HCC-21 0_2176.4	144.7	219.7
HCC-21 0_3 154.0	131.7	185.5
HCC-22 0_0 250.8	193.7	334.8
HCC-22 0_1 204.0	169.3	255.8

HCC-22 0_2 192.4	167.2	222.1
HCC-22 0_3 303.6	250.5	374.1
JBS-01 0_0 167.6	133.8	208.2
JBS-01 0_1 217.6	182.8	260.3
JBS-01 1 0 182.4	155.6	217.2
JBS-01 1_1 154.0	127.9	185.9
JBS-02 0_0 92.0	81.5	104.2
		104.2
JBS-02 0_1 91.2	81.9	_
JBS-02 1_0 100.4	89.7	112.0
JBS-02 1_1 101.6	92.0	111.7
JEN-11 0_0 282.8	236.3	342.1
JEN-11 0_1 202.4	171.4	241.4
JEN-11 1_0 324.0	279.2	375.2
JEN-11 1_1 357.2	302.0	433.4
KSN-01 0_0 279.6	236.9	335.0
KSN-01 0_1 475.2	364.8	634.2
KSN-01 0_2 347.6	281.5	444.7
KSN-01 0_3 336.0	274.3	412.6
KSN-02 0_0 199.2	152.0	272.8
KSN-02 0_1 414.8	332.6	529.3
KSN-02 0_2 410.0	301.9	570.4
KSN-02 0_3 294.0	240.6	355.8
_		
KSN-05 0_0 271.6	226.3	324.6
KSN-05 0_1 523.2	425.4	654.7
KSN-05 0_2 406.4	306.5	555.7
KSN-05 0_3 254.4	200.1	342.3
KSN-06 0_0 212.8	168.5	276.1
KSN-06 0_1 182.0	144.4	235.7
KSN-06 0_2 318.0	259.5	392.6
KSN-06 0_3 618.4	491.0	758.2
LFB-01 0_0 232.0	185.7	295.7
LFB-01 1_0 250.0	202.2	315.1
LFB-01 2_0 226.4	187.9	273.4
LFB-01 3_0 192.8	155.7	248.4
LFB-02 0_0 256.0		335.2
LFB-02 1_0 300.0		373.7
LFB-02 2_0 265.6		326.5
LFB-02 3_0 201.2	163.9	245.1
LFB-03 0_0 20.4		24.1
LFB-03 0_1 23.6	20.4	26.8
LFB-03 1_0 18.4		20.7
LFB-03 1_1 18.0	15.5	20.8
LNL-02 0_1 0.8	0.3	1.1
LNL-02 1_1 1.6	1.1	2.5
LNL-03 0_0 14.4	11.2	19.8
LNL-03 0_1 88.0	56.0	139.9
LNL-03 1_0 2.8	2.3	3.9
LNL-03 1_1 4.0	2.0	7.6

LNL-04 0_0 299.6	257.8	351.9
LNL-04 1_0 138.4	118.2	160.6
LNL-05 0_0 49.2	41.1	59.4
LNL-05 1_0 71.6	61.9	83.0
LNL-06 0_0 156.0	139.0	174.0
LNL-06 1_0 199.2	179.2	221.2
LNL-07 0_0 377.6	312.0	458.5
LNL-07 0_1 331.6	289.9	381.4
LNL-07 1_0 300.0	256.9	351.5
LNL-07 1_1 316.4	267.9	381.1
LNL-08 0_0 287.6	252.0	328.7
LNL-08 0_1 300.4	267.2	336.5
LNL-08 1_0 274.8	241.6	314.6
LNL-08 1_1 284.8	245.5	327.4
LNL-09 0_0 469.2	363.0	606.5
LNL-09 0_1 285.2	242.6	329.3
LNL-09 1_0 258.4	214.6	315.9
LNL-09 1_1 416.8	341.0	513.4
LNL-10 0_0 350.8	296.3	412.0
LNL-10 0_1 336.0	275.4	407.8
LNL-10 1_0 531.6	424.0	671.4
LNL-10 1_1 398.4	300.0	552.6
LNL-11 0_0 458.4	364.4	581.5
LNL-11 0_1 294.0	243.5	352.1
LNL-11 1_0 441.2	337.3	621.2
LNL-11 1_1 364.8	284.8	480.0
LNL-12 0_0 408.8	345.6	480.4
LNL-12 0_1 330.0	280.1	391.5
LNL-12 1_0 478.8	387.1	593.0
LNL-12 1_1 241.6	205.4	286.4
LSL-02 0_0 115.6	100.1	133.9
LSL-02 0_1 204.0	179.7	234.7
LSL-02 0_2 212.8	187.1	243.3
LSL-02 0_3 204.0	178.4	236.6
MBT-01 0_0 288.8	230.0	371.2
MBT-01 0_1 199.2	166.9	241.3
MBT-01 1_0 200.4	165.3	241.4
MBT-01 1_1 192.8	164.6	226.8
MBT-02 0_0 297.2	229.9	409.4
MBT-02 0_1 142.0	120.8	169.5
MBT-02 1_0 240.4	188.4	319.7
MBT-02 1_1 278.4	192.0	447.8
MBT-08 0_0 132.8	112.4	159.3
MBT-08 0_1 308.4	243.6	401.7
MBT-08 1_0 170.4		211.0
MBT-08 1_1 192.4		230.1
NGI-01 0_0 494.8		663.0
NGI-01 0_1 276.4	236.8	328.2

NGI-01 1_0 256.4	203.7	322.5
NGI-01 1_1 356.0	285.8	437.7
NGI-02 0_0 377.6	302.7	481.0
NGI-02 0_1 542.0	409.8	771.4
NGI-02 1_0 468.0	329.7	680.5
NGI-02 1_1 535.6	442.9	642.1
NGI-03 0_0 254.0	204.0	317.9
NGI-03 0_1 268.4	198.7	373.5
NGI-03 1_0 411.6	304.4	589.9
NGI-03 1_1 344.4	267.2	468.7
NGI-05 0_0 370.8	297.0	483.1
NGI-05 0_1 366.0	299.9	445.2
NGI-05 1_0 468.0	363.5	614.1
NGI-05 1_1 301.2	256.9	359.4
NGI-06 0_0 378.8	312.1	475.5
NGI-06 0_1 319.2	267.6	391.3
NGI-06 1_0 356.4	289.2	439.9
NGI-06 1_1 273.6	232.1	322.5
NGI-07 0_0 300.4	250.4	365.2
NGI-07 0_1 288.0	237.6	361.1
NGI-07 1_0 291.6	242.5	364.4
NGI-07 1_1 251.6	202.0	322.8
NGI-08 0_0 249.2	200.9	314.2
NGI-08 0_1 212.0	176.7	259.2
NGI-08 1_0 179.6	139.1	242.9
NGI-08 1_1 125.6	104.0	151.5
NGI-09 0_0 338.8	281.4	411.7
NGI-09 0_1 308.0	264.6	363.1
NGI-09 1_0 226.0	191.2	270.3
NGI-09 1_1 292.4	226.0	406.6
NGI-10 0_0 354.4	291.8	438.3
NGI-10 0_1 496.4	417.7	602.2
NGI-10 1_0 407.2	340.9	491.2
NGI-10 1_1 402.8	344.4	478.6
NGI-11 0_0 467.6	401.1	550.3
NGI-11 0_1 348.4	293.1	419.8
NGI-11 1_0 345.6	295.4	410.1
NGI-11 1_1 214.4	180.5	256.8
NGI-12 0_0 305.2	251.4	375.3
NGI-12 0_1 250.8	196.7	328.7
NGI-12 1_0 387.6	322.3	469.7
NGI-12 1_1 424.0	365.0	501.9
NOU-03 0_0372.0	308.1	449.3
NOU-03 0_1488.4	405.8	590.6
NOU-03 1_0658.0	529.6	809.2
NOU-03 1_1723.2	572.9	921.1
PNY-05 0_0 507.6	400.7	673.4
PNY-05 0_1 308.8	259.8	381.6

PNY-05 1_0 313.6	264.7	379.6
PNY-05 1_1 294.0	257.6	335.6
PNY-06 0_0 319.2	267.0	390.8
PNY-06 0_1 209.2	181.3	243.8
PNY-06 1_0 284.0	228.6	372.5
PNY-06 1_1 298.8	247.2	370.4
PNY-07 0_0 186.0	159.0	220.2
PNY-07 0_1 195.2	166.4	230.3
PNY-07 1_0 272.4	226.4	328.9
PNY-07 1_1 269.6	233.8	312.7
POA-01 0_0 215.6	182.9	255.0
POA-01 0_1 171.2	148.1	198.3
POA-01 1_0 179.6	158.6	207.6
POA-01 1_1 162.4	145.6	182.0
POA-02 0_0 42.0	36.0	51.1
POA-02 0_1 54.0	47.6	61.4
POA-02 1_0 53.6	46.2	61.8
POA-02 1_1 57.2	50.5	64.9
RCS-01 0_0 283.6	250.8	320.9
RCS-01 0_1 327.6	289.4	375.1
RCS-01 1_0 187.6	165.1	214.0
RCS-01 1_1 262.8	233.5	296.0
RCS-02 0_0 183.6	163.9	207.2
RCS-02 0_1 281.6	248.4	319.4
RCS-02 1_0 251.6	226.3	281.1
RCS-02 1_1 267.6	238.3	300.6
RCS-05 0_0 188.8	158.4	229.4
RCS-05 0_1 228.4	193.8	272.1
RCS-05 1_0 306.8	250.7	384.0
RCS-05 1_1 273.6	236.7	313.5
SAA-02 0_0 214.8	174.0	274.3
SAA-02 0_1 156.8	135.8	185.5
SAA-02 1_0 168.4	146.9	198.0
SAA-02 1_1 126.0	109.3	151.2
SAT-01 0_0 140.8	123.1	161.0
SAT-01 0_1 188.0	152.6	239.5
SAT-01 1_0 189.6	150.9	242.5
SAT-01 1_1 128.4	110.8	148.2
SAT-02 0_0 65.6	57.8	74.3
SAT-02 0_1 66.8	58.2	76.7
SAT-02 1_0 59.6	48.6	74.1
SAT-02 1_1 45.2	38.7	52.3
SCT-06 0_0 221.6	186.8	267.4
SCT-06 0_1 161.6	139.7	190.8
SCT-06 1_0 193.6	159.8	241.7
SCT-06 1_1 129.2		152.0
SOR-01 0_0 54.8	49.1	62.3
SOR-01 0_1 44.4	39.4	50.8

```
SOR-01 1_0 44.0
                     39.4
                               49.0
SOR-01 1_1 48.8
                     43.2
                               54.8
SUC-01 0 0 222.8
                    188.8
                              266.3
SUC-01 0_1 339.6
                    283.2
                              412.1
SUC-01 0_2 300.4
                    257.8
                              358.3
SUC-01 0 3 291.2
                    248.2
                              344.5
TAM-01 0 0 229.2
                              272.4
                    193.9
TAM-01 0_1 167.2
                    136.9
                              210.2
TAM-01 1_0 383.2
                    310.8
                              476.3
TAM-01 1 1217.6
                    187.1
                              256.4
TAM-02 0_0 268.0
                    216.2
                              344.6
TAM-02 0_1 205.2
                    169.0
                              257.9
TAM-02 1_0 219.2
                    187.3
                              258.3
TAM-02 1_1 260.4
                    186.0
                              396.2
TAM-05 0_0 244.8
                    199.1
                              303.5
TAM-05 0_1 263.2
                    203.7
                              356.5
TAM-05 1_0 282.8
                    238.0
                              344.0
TAM-05 1 1 329.2
                    265.9
                              421.2
TAM-06 0_0 277.2
                    235.5
                              331.6
TAM-06 0_1 248.8
                    211.8
                              294.5
TAM-06 1_0 332.4
                    250.7
                              453.7
TAM-06 1 1 420.8
                    297.3
                              636.2
TAM-07 0_0 313.2
                    240.5
                              423.6
TAM-07 0_1 237.6
                    183.7
                              328.4
TAM-07 1 0 238.0
                    182.5
                              334.6
TAM-07 1_1 176.0
                    152.2
                              206.7
TAM-09 0_0 214.0
                    179.8
                              258.0
TAM-09 0 1 321.6
                    263.2
                              397.8
TAM-09 1_0 255.6
                    202.0
                              335.4
TAM-09 1_1 226.0
                    190.9
                              269.7
```

```
# Calculating the maximum height and the Lorey's height per (sub)plot
FosData$Hchave<-retrieveH(D=FosData$Dcm,coord=cbind(FosData$Long,FosData$Lat))$H
# Max height
maxHlocal<-tapply(FosData$Hlocal,FosData$QuadID,max)</pre>
maxHchave<-tapply(FosData$Hchave,FosData$QuadID,max)</pre>
maxHfeld<- tapply(FosData$Hfeld,FosData$QuadID,max)</pre>
# Lorey height
FosData$BAm<-(pi*(FosData$Dcm/2)^2)/10000
FosData$HBAlocal<-FosData$Hlocal*FosData$BAm
FosData$HBAchave<-FosData$Hchave*FosData$BAm
FosData$HBAfeld<-FosData$Hfeld*FosData$BAm
LoreyLocal<-tapply(FosData$HBAlocal,FosData$QuadID,sum)/tapply(FosData$BAm,FosData$QuadID,sum)
LoreyChave<-tapply(FosData$HBAchave,FosData$QuadID,sum)/tapply(FosData$BAm,FosData$QuadID,sum)
LoreyFeld<-tapply(FosData$HBAfeld,FosData$QuadID,sum)/tapply(FosData$BAm,FosData$QuadID,sum)
# Mean wood density
meanWD=tapply(FosData$WD,FosData$QuadID,mean)
```

Comparison of the AGB approaches

Biomass estimation on 1 ha FOS Rainfor data

Martin Sullivan & Maxime Rejou-Mechain 27 January 2017

Load data

Location of the plots

Retrieve

wood density

```
## [1] "Calling http://taxosaurus.org/retrieve/deed01d27c1d5dbf9be6a0a55de5d676"
## [1] "Calling http://taxosaurus.org/retrieve/7c468d2584a3d80233ae6a69a37889e8"
## [1] "Calling http://taxosaurus.org/retrieve/386c9d7aee0f1d0f4127dee3b279e9bb"
## [1] "Calling http://taxosaurus.org/retrieve/5ecb00979a3c948c2afc154ecc00f9cf"
## [1] "Calling http://taxosaurus.org/retrieve/a76ec0d27e26f3ed5426524337138837"
## [1] "Calling http://taxosaurus.org/retrieve/2aeda2eb662e217f6b8c02e07318137b"
## [1] "Calling http://taxosaurus.org/retrieve/ec679c04440abc4a98248d667ac2c6f8"
## [1] "Calling http://taxosaurus.org/retrieve/667535c81b2340b08a62d49e8348ce04"
## [1] "Calling http://taxosaurus.org/retrieve/2270d6f3746f8eae8dd7ed5e5523532a"
## [1] "Calling http://taxosaurus.org/retrieve/8e480744ea67cc6f7d566b6778b406d3"
## [1] "Calling http://taxosaurus.org/retrieve/c7f62017414c3f07338eacf6c6b8dc6a"
## [1] "Calling http://taxosaurus.org/retrieve/0f8f831a077c61d60ceb4fe1e8c3ee60"
## [1] "Calling http://taxosaurus.org/retrieve/d7afba6991fc7cdef04df75ee5e9d25e"
## [1] "Calling http://taxosaurus.org/retrieve/dd5a898fa8290f9276957c26c83dac8d"
## [1] "Calling http://taxosaurus.org/retrieve/7e84010c45072d5f6b64918f64afb810"
## [1] "Calling http://taxosaurus.org/retrieve/ab50d5461bf26e322d0f32a04a430828"
## [1] "Calling http://taxosaurus.org/retrieve/5976818960daa27e175e5f4a9c796074"
## [1] "Calling http://taxosaurus.org/retrieve/fa9c097ed061a96c7ef3a397184838b5"
## [1] "Calling http://taxosaurus.org/retrieve/4daa2bddb51a04e6cd257da17ad6b46d"
## [1] "Calling http://taxosaurus.org/retrieve/599fla57278bf1368b70ed4f5478debc"
## [1] "Calling http://taxosaurus.org/retrieve/21525bdcbb0ce7ae817f746728ec0d37"
## [1] "Calling http://taxosaurus.org/retrieve/99b9118ce5dcdfe52cae1e9b20731eaf"
## [1] "Calling http://taxosaurus.org/retrieve/0165246d128b0dcb298055b5635d3193"
## [1] "Calling http://taxosaurus.org/retrieve/0e45e8a64ed330a5084090881155b714"
## [1] "Calling http://taxosaurus.org/retrieve/0eb4c0c75a7d16801dabb466703f95a2"
```

```
## [1] "Calling http://taxosaurus.org/retrieve/0383e4ab1a33267d2a530ed40de36fd8"
## [1] "Calling http://taxosaurus.org/retrieve/c01fd4f950baa222336914a03daa447c"
## [1] "Calling http://taxosaurus.org/retrieve/0b4e8b8ac0e72c314fdb3cd78a7cbfbd"
## [1] "Calling http://taxosaurus.org/retrieve/b3d30ac573091aed08a4ad67d3d51c6e"
## [1] "Calling http://taxosaurus.org/retrieve/0b32438bbbb29dd60eedefac46718861"
## [1] "Calling http://taxosaurus.org/retrieve/e58860dab0d052416cb036cb40a87930"
## [1] "Calling http://taxosaurus.org/retrieve/960abfeb70fc9ad2c5e1a1b5e9186c50"
## [1] "Calling http://taxosaurus.org/retrieve/7e50eb2a133d2ddfdde0b2f0eca66f95"
## [1] "Calling http://taxosaurus.org/retrieve/608f9c49a585c89f09be27e37a76eb53"
## [1] "Calling http://taxosaurus.org/retrieve/6b6c9f2b0bdc8fab59111857be37b58d"
## [1] "Calling http://taxosaurus.org/retrieve/a8b308400bd4623d429ac4d5c4f8a929"
## [1] "Calling http://taxosaurus.org/retrieve/04487872c83e579a8e42ed13fe471709"
## [1] "Calling http://taxosaurus.org/retrieve/1d9aaf7a7e0d92492e5b361c71ecf3ad"
## [1] "Calling http://taxosaurus.org/retrieve/5d6451f5ff3a20e0eb2afc30015b3d35"
## [1] "Calling http://taxosaurus.org/retrieve/8d240a68385736100b29341a6b2b418e"
## [1] "Calling http://taxosaurus.org/retrieve/8a6e05c4f145359d9e3d947d746ca263"
## [1] "Calling http://taxosaurus.org/retrieve/4d503be5b512dcb0c50d03a51be86636"
## [1] "Calling http://taxosaurus.org/retrieve/1ff2de02c58bf3303f45305df3d3abd2"
## [1] "Calling http://taxosaurus.org/retrieve/f566fc1d9398298871a32d8ede9c11a0"
## [1] "Calling http://taxosaurus.org/retrieve/24dab59e82af71268799d3fe9fc4e6fd"
## [1] "Calling http://taxosaurus.org/retrieve/70170b738d4893927737fb8f383832cc"
## [1] "Calling http://taxosaurus.org/retrieve/607fc4919882913d3ad8685b85d6b797"
## [1] "Calling http://taxosaurus.org/retrieve/6d5eecace0c330dd8eaa3183fb6ef8e8"
## [1] "Calling http://taxosaurus.org/retrieve/6b606d8a9e5d1f9d069eeabc2ae48803"
## [1] "Calling http://taxosaurus.org/retrieve/2d28c6dbb4e8a0c337ee3abf2a71477a"
## [1] "Calling http://taxosaurus.org/retrieve/d28f5890c1ff29033824b8af05939b01"
## [1] "Calling http://taxosaurus.org/retrieve/05f497af4526049bbc265a4e54b1f888"
## [1] "Calling http://taxosaurus.org/retrieve/f697506e61630dfc54ad9256945f77ef"
## [1] "Calling http://taxosaurus.org/retrieve/e4761dde8729eb936ea2cc64d63733e5"
## [1] "Calling http://taxosaurus.org/retrieve/9196d2c38345c43cbf5dea6654c5d7e5"
## [1] "Calling http://taxosaurus.org/retrieve/2dd5ea05fddd7d4f110a489603d1aaae"
## [1] "Calling http://taxosaurus.org/retrieve/6ccb7c0d814dc536832ccb8fe8044795"
## [1] "Calling http://taxosaurus.org/retrieve/c1217235e9278c745c5f6a1849b8cc6c"
## [1] "Calling http://taxosaurus.org/retrieve/b613aa6f480876a5768d691570b5c128"
## [1] "Calling http://taxosaurus.org/retrieve/fe1069534861a9c97b3acf74cc81999e"
## [1] "Calling http://taxosaurus.org/retrieve/bf0c38c4dff032ba879ce09cd5cbdf57"
## [1] "Calling http://taxosaurus.org/retrieve/f7ab35fcd86d20ffff4596d36199ee91"
## [1] "Calling http://taxosaurus.org/retrieve/0bfaecfbc9012d1cda48f100cba58222"
## [1] "Calling http://taxosaurus.org/retrieve/b5f1f68368b42a360e211358bcc40946"
## [1] "Calling http://taxosaurus.org/retrieve/78287dad7da2fb34d7a16b0bdd5876e5"
## [1] "Calling http://taxosaurus.org/retrieve/6cce72e9fb0cda481c3d8ec7a4e8c1b1"
## [1] "Calling http://taxosaurus.org/retrieve/05a09e0bc53e3a85442fd8055f0a2205"
## [1] "Calling http://taxosaurus.org/retrieve/dc9792edfb8b0bed3b4d88e64897b7c3"
## [1] "Calling http://taxosaurus.org/retrieve/0329e8ffcc6fd5859171da6dee169957"
## [1] "Calling http://taxosaurus.org/retrieve/fe9c1744ed9478263457df8c473cb540"
## [1] "Calling http://taxosaurus.org/retrieve/af1290db036d0781e00f0d6e901a3239"
## [1] "Calling http://taxosaurus.org/retrieve/7a22f859e3dab306386f6a5ee9000d83"
## [1] "Calling http://taxosaurus.org/retrieve/e67e3e777e0124294c8386f2354dc139"
## [1] "Calling http://taxosaurus.org/retrieve/7f7b662a05eba85272ff6d75017e8244"
## [1] "Calling http://taxosaurus.org/retrieve/464c7df16b6c7e5adbe068ca20c8201a"
## [1] "Calling http://taxosaurus.org/retrieve/c6e4c015903366a33c01447c4b8b9968"
## [1] "Calling http://taxosaurus.org/retrieve/050f24f74d7a1b21a0385cc995ec2c54"
## [1] "Calling http://taxosaurus.org/retrieve/dcb871667d4b441c9396fabf293ce412"
## [1] "Calling http://taxosaurus.org/retrieve/a1050dec24d8121198a81458c32365bf"
```

```
## [1] "Calling http://taxosaurus.org/retrieve/59392b28b1dd7d5a746467665716e269"
## [1] "Calling http://taxosaurus.org/retrieve/f255d5165e565564b873d5335516d032"
## [1] "Calling http://taxosaurus.org/retrieve/9abde043f457ccb59594e443184a6f0b"
## [1] "Calling http://taxosaurus.org/retrieve/80f47ba38d87cb8a7df25cba4152da90"
## [1] "Calling http://taxosaurus.org/retrieve/ccc6f6090c6c3be291afd15a5b49763f"
## [1] "Calling http://taxosaurus.org/retrieve/58ac673ce5a4531eac112c74fed75418"
## [1] "Calling http://taxosaurus.org/retrieve/8d0dab769d619dd5da84fc83d0718947"
## [1] "Calling http://taxosaurus.org/retrieve/d9e76eb8585891cbcd396f32ab24a4a3"
## [1] "Calling http://taxosaurus.org/retrieve/8607db498ab966c1018b29718242923f"
## [1] "Calling http://taxosaurus.org/retrieve/680cbb0bb047dbf3a87f0cc280da0cbf"
## [1] "Calling http://taxosaurus.org/retrieve/b09cf77a8c36d77ea2bced61c1507274"
## [1] "Calling http://taxosaurus.org/retrieve/da5f13495d27b23fd70877c289d397ca"
```

```
FosData$WD=dataWD$meanWD
FosData$sdWD=dataWD$sdWD
```

Overall, 60.7 % of the values have been attributed at the species level, 31.6 % at the genus level, and 7.7 % at the plot level.

Construct H-D models

We implemented a three parameter weibull model of the form:

```
H = a \quad (1 - exp(-(D/b)^c))
```

where a represents the asymptotic height of trees in the stand. Note that the model is fitted by giving a proportional weight to the volume of trees (proportional to $D^{2*}H$).

```
# Number of tree height data per plot
ntree <- tapply(FosData$Height,FosData$PlotCode,function(x) length(x[!is.na(x)]))
ntree</pre>
```

```
## ALF-01 ALP-01 ALP-02 ALP-30 ALV-02 ASN-02 BNT-01 BNT-02 BNT-04 CAP-09
               21
                      41
                                             54
                                                     0
                                                             0
       46
                              40
                                      0
                                                                   38
## CAP-10 CRP-02 CVL-01 CVL-11 DAD-03 DAD-04 DAN-01 DAN-02 DAN-03 DJK-01
                      66
                                     38
                                             53
                                                    39
                                                             0
## DJK-02 DJK-03 DJK-04 DJK-05 DJK-06 FLO-02 FMH-01 FMH-02 FMH-03 FRP-01
                      60
                              58
                                     60
                                           584
                                                     0
##
## FRP-02 GAU-02 GAU-05 GAU-06 GBO-02 GBO-04 GBO-08 GBO-11 GBO-15 GBO-19
                                                    69
                                                            72
                                                                   60
      258
             520
                     505
                            483
                                     85
                                             61
## HCC-21 HCC-22 JBS-01 JBS-02 JEN-11 KSN-01 KSN-02 KSN-05 KSN-06 LFB-01
                            776
                                            73
                                                            75
##
       2.1
              2.6
                     423
                                     33
                                                    66
                                                                   85
```

```
## LFB-02 LFB-03 LNL-02 LNL-03 LNL-04 LNL-05 LNL-06 LNL-07 LNL-08 LNL-09
                      9
                            19
                                   52
##
                                           27
                                                  41
                                                         68
                                                                 53
## LNL-10 LNL-11 LNL-12 LSL-02 MBT-01 MBT-02 MBT-08 NGI-01 NGI-02 NGI-03
                     82
                             0
                                     0
                                            0
                                                   0
                                                          0
                                                                 0
##
       78
              68
## NGI-05 NGI-06 NGI-07 NGI-08 NGI-09 NGI-10 NGI-11 NGI-12 NOU-03 PNY-05
                     73
                            74
                                   72
                                           75
                                                  77
              69
                                                         86
##
## PNY-06 PNY-07 POA-01 POA-02 RCS-01 RCS-02 RCS-05 SAA-02 SAT-01 SAT-02
                                                   0
              40
                    651
                           353
                                     0
                                            0
                                                        546
                                                               518
## SCT-06 SOR-01 SUC-01 TAM-01 TAM-02 TAM-05 TAM-06 TAM-07 TAM-09
##
             451
                     40
                            41
                                   309
                                          170
                                                 357
                                                        180
```

Plot	а	b c RSE
ALF-01	47.754	57.2830.6013.825
ALP-02	27.331	22.8781.0813.593
ALP-30	33.688	35.0680.6423.481
ASN-02	54.321	55.2671.1224.839
BNT-04	33.403	23.8160.8672.690
CAP-09	34.714	26.1091.3915.121
CAP-10	45.388	36.5871.0674.987
CVL-01	34.357	24.9871.0705.137
CVL-11	153.267	4473.5850.3514.854
DAD-03	1648.937	10608.7750.7723.674
DAD-04	47.326	52.3401.3916.614
DAN-01	2600.614	95336.8080.5906.282
DJK-01	48.015	30.1801.2627.192
DJK-02	45.919	33.4170.9477.917
DJK-03	41.658	24.2971.6156.463
DJK-04	35.899	27.5581.6216.273
DJK-05	41.551	23.1151.2034.989
DJK-06	71.541	81.9780.5588.816
FLO-02	28.160	28.0220.5502.634
FRP-01	27.895	27.1830.7673.030
FRP-02	79.021	1362.7180.5321.282
GAU-02	17.972	7.1430.7631.894
GAU-05	24.605	20.4250.8823.318
GAU-06	40.829	53.3300.9213.311
GBO-02	33.352	23.2461.0324.492

```
GBO-04 981.574321678.1260.4075.211
GBO-08 37.927
                   30.6831.1025.045
GBO-11 262.001 11841.8050.3924.174
GBO-15 37.903
                   34.8611.3575.508
GBO-19 49.884
                54.4690.6514.500
         28.579
JBS-01
                   25.7501.1343.875
JBS-02
         15.486
                   16.3420.8141.968
JEN-11 1258.544277668.8140.4214.782
KSN-01 786.020226029.4010.3844.861
KSN-02 470.081 78093.8380.3754.862
KSN-05
        47.967
                   46.7560.7173.975
KSN-06 278.783 6442.6480.4394.730
LFB-01 223.926 8323.7310.3864.517
        43.240
LNL-04
                   34.4181.2214.594
         29.774
LNL-06
                   17.4781.2883.596
LNL-07 270.717 9322.7740.3947.942
LNL-08
        35.089
                 19.9551.0624.438
LNL-09
         43.794
                   31.9071.2267.096
        49.840
LNL-10
                   55.1520.6658.034
LNL-11
         43.061
                   44.5920.6536.137
LNL-12
         36.688
                   42.9461.3525.475
         45.534
                   54.9930.9145.109
NGI-05
NGI-06
        48.184
                   45.7600.7964.381
NGI-07
         38.756
                   39.1891.4715.297
         38.079
NGI-08
                   36.2791.2255.466
NGI-09 775.822 97697.8760.4534.382
NGI-10 1219.571145489.0700.4784.227
NGI-11
         30.916
                   27.1481.2843.573
NGI-12
         35.725
                   33.4731.8905.429
PNY-05 1288.410 63534.1490.5284.315
PNY-06 1439.938 34559.1620.5735.270
PNY-07 1117.740 45026.5770.5166.215
POA-01
        25.689
                   18.3000.5762.295
        9.700
                   13.0731.5401.333
POA-02
        34.257
SAA-02
                   54.6210.5462.787
SAT-01
         25.726
                   19.3090.6663.370
SAT-02
        11.282
                   17.0460.9971.231
SOR-011175.202 46548.1850.6431.342
         31.649
SUC-01
                   20.2561.0544.029
TAM-01 280.493 31643.3660.3724.093
TAM-02 285.322 13079.0550.4194.092
TAM-05 246.249 7791.4570.4303.328
TAM-06 85.938
                  258.1060.5245.030
TAM-07
         47.073
                   62.1430.6693.176
```

Weibull parameters are unrealistic for some plots (e.g. assymptotic height > 1000 m).

```
# retrieving predicted height values in the database
FosData$Hlocal<-FosData$Height # keeping directly measured trees
FosData$HlocalRSE<- 1 # to be refined?! Assume a 1-m error on directly measured trees</pre>
```

```
Plot=as.character(ResHD$Plot)
for(i in 1:length(ResHD$Plot)){
  filt<-FosData$PlotCode==Plot[i] & is.na(FosData$Hlocal)
  FosData$Hlocal[filt]<-retrieveH(D=FosData$Dcm[filt], model=modelHDperplot[[Plot[i]]])$H
  FosData$HlocalRSE[filt]<-modelHDperplot[[Plot[i]]]$RSE
}</pre>
```

Estimating biomass and associated uncertainties

Below, we used a Bayesian Monte-Carlo scheme to estimate the mean AGB and associated credibility interval per plot.

Using a local H-D model for all plots with at least 30 height measurements

```
#Below we only consider the small error from Chave 2004 to occur in the Rainfor dataset - larg
e errors presumed to be corrected during quality control
filt <- FosData$PlotCode%in%Plot</pre>
FosDataH<-droplevels(FosData[filt,])</pre>
resultMClocal <- by(FosDataH,FosDataH$PlotCode,
              function(x)AGBmonteCarlo(D=x$Dcm,
                                WD=x$WD,
                                H=x$Hlocal,
                                errWD =x$sdWD,
                                errH=x$HlocalRSE,
                                Dpropag = 0.0062*x$Dcm+0.0904),
              simplify=FALSE)
credperplotlocal<-t(as.data.frame(sapply(resultMClocal,"[",4)))</pre>
ResHDlocal <- data.frame(Plot=names(resultMClocal),
                    AGB=round(unlist(sapply(resultMClocal, "[",1)),1),
                     Cred_2.5=round(credperplotlocal[,"2.5%"],1),
                     Cred 97.5=round(credperplotlocal[,"97.5%"],1))
```

Plot	AGBC	red_2.5Cr	ed_97.5
ALF-01	227.6	209.4	246.8
ALP-02	218.2	203.3	235.2
ALP-30	204.6	191.6	219.2
ASN-02	246.2	211.0	297.8
BNT-04	315.4	294.5	339.9
CAP-09	389.4	360.8	419.8
CAP-10	254.7	233.2	280.9
CVL-01	305.4	280.5	332.4
CVL-11	341.9	312.1	377.4
DAD-03	102.5	81.4	133.1
DAD-04	261.4	221.6	314.1
DAN-01	301.7	256.6	359.3
DJK-01	577.4	512.3	650.5
DJK-02	360.7	323.3	408.6

DJK-03 531.2	478.6	592.3
DJK-04 246.3	223.7	271.9
DJK-05 579.3	523.7	643.9
DJK-06 322.4	293.2	357.0
FLO-02 144.9	135.0	156.9
FRP-01 178.0	165.6	191.8
FRP-02 13.4	12.5	14.4
GAU-02 145.2	138.0	152.5
GAU-05 145.9	138.0	155.5
GAU-06 253.1	219.2	293.5
GBO-02350.5	321.6	384.0
GBO-04289.6	261.4	324.4
GBO-08343.1	307.8	385.4
GBO-11309.4	282.7	341.5
GBO-15273.9	240.7	316.0
GBO-19323.9	289.2	364.3
JBS-01 285.8	265.0	309.1
JBS-02 108.9	104.3	113.7
JEN-11 322.2	298.3	347.4
KSN-01 360.8	327.0	401.7
KSN-02 313.5	280.8	350.7
KSN-05 365.6	331.2	407.6
KSN-06 343.3	308.6	381.1
LFB-01 279.0	254.4	306.5
LNL-04 106.5	95.1	119.2
LNL-06 92.2	86.0	98.5
LNL-07 329.2	305.5	354.1
LNL-08 306.9	289.2	325.7
LNL-09 360.1	326.7	397.5
LNL-10 369.5	335.2	409.0
LNL-11 336.7	304.4	375.8
LNL-12 271.3	248.6	298.0
NGI-05 322.2	291.1	357.5
NGI-06 343.6	314.6	379.3
NGI-07 247.6	224.1	275.2
NGI-08 169.3	152.6	188.5
NGI-09 244.6	223.1	272.2
NGI-10 371.0	341.5	404.5
NGI-11 301.0	281.2	323.3
NGI-12 306.0	280.3	335.5
PNY-05 296.2	268.4	328.5
PNY-06 259.8	236.9	286.4
PNY-07 211.1	196.4	227.4
POA-01 160.5	151.8	170.0
POA-02 23.2	21.8	24.7
SAA-02 130.6	121.8	142.5
SAT-01 129.6	120.2	141.1
SAT-02 25.9	24.3	27.8

SOR-01 22.1	20.9	23.2
SUC-01 283.2	264.6	305.5
TAM-01 209.1	192.9	227.8
TAM-02 214.0	192.8	241.1
TAM-05 249.6	225.5	278.7
TAM-06 306.6	271.9	354.3
TAM-07 215.9	193.7	242.9

Using Feldpausch et al. 2012 regional Weibull models

```
FosData$FeldRegion<-sub("Amazonia Brazilian Shield", "BrazilianShield", FosData$FeldRegion)
FosData$FeldRegion<-sub("Amazonia W", "WAmazonia", FosData$FeldRegion)
FosData$FeldRegion<-sub("Africa W", "WAfrica", FosData$FeldRegion)
FosData$FeldRegion<-sub("Amazonia E-Central", "ECAmazonia", FosData$FeldRegion)
FosData$FeldRegion<-sub("Asia SE", "SEAsia", FosData$FeldRegion)
FosData$FeldRegion<-sub("Africa C", "CAfrica", FosData$FeldRegion)
FosData$FeldRegion<-sub("Amazonia Guyana Shield", "GuianaShield", FosData$FeldRegion)
# Retrieving height
temp=by(FosData,FosData$FeldRegion,
   function(x) retrieveH(D=x$Dcm,region =unique(x$FeldRegion)),
   simplify=F)
region=unique(FosData$FeldRegion)
FosData$Hfeld=rep(NA,nrow(FosData))
FosData$RSEfeld=rep(NA,nrow(FosData))
for(i in 1:length(region))
 FosData[FosData$FeldRegion==region[i],c("Hfeld","RSEfeld")]=
  temp[[region[i]]][c("H","RSE")]
# Retrieving agb per plot
resultMCfeld<-by(FosData, FosData$PlotCode,
              function(x) AGBmonteCarlo(D=x$Dcm,WD=x$WD,errWD=x$sdWD,H=x$Hfeld,
                                         errH=x$RSEfeld,Dpropag =0.0062*x$Dcm+0.0904),
              simplify=F)
credperplotfeld<-t(as.data.frame(sapply(resultMCfeld,"[",4)))</pre>
ResFeld<-data.frame(Plot=names(resultMCfeld),
                    AGB=round(unlist(sapply(resultMCfeld, "[",1)),1),
                    Cred 2.5=round(credperplotfeld[,"2.5%"],1),
                    Cred_97.5=round(credperplotfeld[,"97.5%"],1))
```

```
Plot
        AGBCred 2.5Cred 97.5
               183.9
ALF-01 201.4
                         223.1
ALP-01 275.3
               251.5
                         303.4
ALP-02 261.1
               241.7
                         286.9
ALP-30 238.6
               221.5
                         257.2
                         307.9
ALV-02 284.8
               263.8
ASN-02 249.3
               216.4
                         296.2
BNT-01 358.4
               328.3
                         392.8
BNT-02 363.2
               339.5
                         388.3
BNT-04 313.3
               291.5
                         339.4
```

CAP-09 400.6	369.2	436.8
CAP-10 238.7	216.7	263.0
CRP-02 206.0	191.3	224.1
CVL-01 322.6	293.9	356.5
CVL-11 354.8	317.7	402.7
DAD-03 107.5	87.5	132.7
DAD-04 295.2	249.4	349.9
DAN-01 315.4	270.0	374.0
DAN-02 286.1	252.7	327.3
	345.6	
DAN-03 400.4		468.0
DJK-01 527.2	468.4	597.2
DJK-02 361.5	319.9	410.0
DJK-03 524.4	463.2	593.8
DJK-04 283.3	257.2	312.9
DJK-05 567.2	510.8	634.4
DJK-06 290.6	261.7	324.3
FLO-02 166.3	152.7	184.2
FMH-01 753.6	696.2	820.9
FMH-02 641.6	585.9	702.6
FMH-03 442.8	415.4	471.6
FRP-01 206.9	189.7	227.9
FRP-02 27.3	25.0	29.8
GAU-02 165.4	155.7	175.3
GAU-05 165.3	155.0	176.4
GAU-06 292.2	252.5	342.3
GBO-02379.4	343.3	417.9
GBO-04319.5	283.4	362.6
GBO-08364.0	322.3	411.7
GBO-11314.8	284.1	349.9
GBO-15312.4	272.0	371.7
GBO-19325.0	286.2	369.8
HCC-21 232.5	210.3	258.7
HCC-22 256.1	231.4	283.1
JBS-01 344.2	316.4	373.4
JBS-02 203.0	192.8	213.6
JEN-11 277.1	256.6	301.2
KSN-01 396.8	357.4	441.0
KSN-02 360.0	317.4	413.6
KSN-05 400.1	356.9	447.5
KSN-06 364.9	325.3	412.0
LFB-01 247.7	224.2	275.1
LFB-02 281.2	253.5	313.0
LFB-03 22.8	21.1	24.6
LNL-02 1.2	0.7	2.0
LNL-02 1.2 LNL-03 29.0	21.2	40.1
LNL-04 114.8	102.5	128.3
LNL-05 32.7	29.1	36.9
LNL-06 96.2	89.3	103.2

		101 0000
LNL-07 342.3	316.1	372.2
LNL-08 305.2	285.6	324.4
LNL-09 363.8	327.3	404.6
LNL-10 416.6	375.8	463.5
LNL-11 405.8	361.7	456.6
LNL-12 380.8	350.4	415.2
LSL-02 200.8	188.3	214.4
MBT-01 211.1	193.0	232.7
MBT-02 224.0	195.0	260.4
MBT-08 193.2	174.7	215.5
NGI-01 376.4	338.2	419.5
NGI-02 512.7	455.0	588.9
NGI-03 345.0	303.9	393.4
NGI-05 411.6	369.3	462.2
NGI-06 331.5	302.5	364.5
NGI-07 312.5	285.2	344.4
NGI-08 211.0	191.1	235.8
NGI-09 327.1	298.8	359.9
NGI-10 463.6	428.3	504.0
NGI-11 390.5	361.3	424.4
NGI-12 382.0	347.5	420.8
NOU-03562.7	510.2	618.2
PNY-05 288.1	262.0	318.4
PNY-06 226.9	207.9	249.8
PNY-07 191.1	178.0	205.8
POA-01 170.7	159.5	183.7
POA-02 48.6	45.2	52.4
RCS-01 244.7	231.1	259.4
RCS-02 237.8	224.4	251.3
RCS-05 221.4	204.0	241.3
SAA-02 152.9	140.6	168.5
SAT-01 149.3	136.7	165.0
SAT-02 55.8	51.9	60.7
SCT-06 190.5	175.7	208.6
SOR-01 46.4	43.6	49.6
SUC-01 279.0	258.6	300.6
TAM-01 237.3	215.6	262.0
TAM-02 227.8	205.7	259.3
TAM-05 264.5	239.0	292.8
TAM-06 294.9	260.1	337.7
TAM-07 229.5	205.9	257.1
TAM-09 244.7	224.0	273.1

Using Chave et al. 2014 Equation 7 model

			cred_97
Plot	AGB	Cred_2.5Cr	ed_97.5
ALF-01	232.2	209.0	259.8
ALP-01	289.9	257.5	329.9
ALP-02	271.5	245.5	301.4
ALP-30	244.1	223.4	267.1
ALV-02	197.3	180.4	217.2
ASN-02	232.2	198.2	288.0
BNT-01	394.6	358.7	439.9
BNT-02	397.3	369.5	428.4
BNT-04	343.9	315.8	378.4
CAP-09	403.8	367.5	446.1
CAP-10	248.1	223.5	279.0
CRP-02	180.4	165.6	197.2
CVL-01	317.9	285.7	357.3
CVL-11	349.4	309.8	398.9
DAD-03	103.1	84.4	132.0
DAD-04	280.9	234.6	351.1
DAN-01	290.5	241.1	349.9
DAN-02	263.6	228.6	302.8
DAN-03	372.3	315.3	453.9
DJK-01	504.1	437.8	582.4
DJK-02	340.2	298.3	392.8
DJK-03	505.7	432.8	588.0
DJK-04	267.1	236.9	300.3
DJK-05	540.0	475.9	616.1
DJK-06	269.7	241.0	304.9
FLO-02	170.1	153.3	189.4
FMH-01		646.4	810.3
FMH-02	623.7	554.7	702.7
FMH-03	402.0	375.5	434.5
FRP-01	211.7	192.1	234.9
FRP-02	27.8	25.6	30.3
GAU-02	170.4	158.9	182.3
GAU-05	168.8	156.6	182.7
GAU-06	291.5	247.0	344.4
GBO-02	382.7	340.2	431.7
GBO-04	324.2	283.1	379.6
GBO-08	368.1	321.2	423.5
GBO-11	317.4	281.9	359.3
GBO-15	322.1	276.9	394.5

GBO-19333.3	288.8	391.4
HCC-21 216.3	194.2	243.2
HCC-22 238.4	214.0	272.0
JBS-01 180.2	161.5	200.7
JBS-02 96.2	89.7	103.0
JEN-11 291.1	267.0	318.3
KSN-01 361.3	319.2	408.4
KSN-02 329.6	286.1	385.5
KSN-05 365.2	320.8	420.4
KSN-06 334.5	294.0	381.7
LFB-01 224.9	201.5	251.8
LFB-02 255.3	228.8	286.5
LFB-03 20.0	18.4	21.6
LNL-02 1.1	0.7	1.9
LNL-03 27.4	19.1	38.9
LNL-04 109.8	97.2	123.1
LNL-05 30.3	26.8	34.1
LNL-06 88.8	81.2	96.4
LNL-07 331.0	301.3	363.8
LNL-08 287.0	266.1	311.1
LNL-09 357.9	316.7	410.6
LNL-10 404.1	357.3	461.8
LNL-11 391.8	342.0	460.3
LNL-12 364.3	327.2	406.5
LSL-02 184.7	170.9	199.9
MBT-01 219.2	197.2	244.7
MBT-02 239.5	204.5	291.4
MBT-08 201.3	177.5	232.5
NGI-01 346.2	304.0	400.3
NGI-02 479.1	416.2	569.8
NGI-03 319.6	273.1	377.9
NGI-05 376.0	332.3	428.8
NGI-06 332.2	302.0	367.9
NGI-07 282.9	252.2	315.4
NGI-08 191.2	168.2	217.5
NGI-09 291.5	259.8	329.3
NGI-10 415.2	377.7	461.0
NGI-11 343.8	314.1	376.1
NGI-12 342.4	310.4	381.1
NOU-03560.5	496.0	631.2
PNY-05 354.8	315.9	404.4
PNY-06 278.6	249.9	315.1
PNY-07 231.0	211.9	253.2
POA-01 182.1	169.0	197.7
POA-02 51.8	48.1	56.1
RCS-01 265.6	247.5	285.1
RCS-02 245.8	228.7	264.3
RCS-05 249.7	227.6	276.7

```
SAA-02 166.6
                        185.0
               151.6
SAT-01 161.9
               147.2
                        181.5
SAT-02 59.2
                        64.7
               54.4
SCT-06 175.8
               159.7
                        194.7
SOR-01 48.0
              44.8
                        51.7
SUC-01 289.1
                        319.2
               263.9
TAM-01 249.1
               222.2
                        279.4
TAM-02 238.1
               207.3
                        279.8
TAM-05 279.8
               246.8
                        316.1
TAM-06 318.5
               271.3
                        388.0
TAM-07 241.5
               209.4
                        284.6
```

```
TAM-09 254.9
              227.0
                        286.7
 # Calculating the maximum height and the Lorey's height per (sub)plot
 FosData$Hchave<-retrieveH(D=FosData$Dcm,coord=cbind(FosData$Long,FosData$Lat))$H
 # Max height
 maxHlocal<-tapply(FosData$Hlocal,FosData$PlotCode,max)</pre>
 maxHchave<-tapply(FosData$Hchave,FosData$PlotCode,max)</pre>
 maxHfeld<- tapply(FosData$Hfeld,FosData$PlotCode,max)</pre>
 # Lorey height
 FosData$BAm<-(pi*(FosData$Dcm/2)^2)/10000
 FosData$HBAlocal<-FosData$Hlocal*FosData$BAm
 FosData$HBAchave<-FosData$Hchave*FosData$BAm
 FosData$HBAfeld<-FosData$Hfeld*FosData$BAm
 LoreyLocal < - tapply (FosData$HBAlocal,FosData$PlotCode,sum)/tapply(FosData$BAm,FosData$PlotCode,
 LoreyChave<-tapply(FosData$HBAchave,FosData$PlotCode,sum)/tapply(FosData$BAm,FosData$PlotCode,
 sum)
 LoreyFeld<-tapply(FosData$HBAfeld,FosData$PlotCode,sum)/tapply(FosData$BAm,FosData$PlotCode,su
 m)
```

Comparison of the AGB approaches

