Optimization

2012-9-13

Yijuan Hu

MLE $\hat{\theta} = \arg \max_{\theta} l(\theta)$, where θ is a *p*-vector parameter

Review

```
Log likelihood l(\theta) = \log \Pr(X|\theta)

Score function \dot{l}(\theta) = (\partial l/\partial \theta_1, \dots, \partial l/\partial \theta_p)'

Hessian matrix \ddot{l}(\theta) = \{\partial^2 l/\partial \theta_i \partial \theta_j\}_{i,j=1,\dots,p}

Fisher information I(\theta) = -\mathrm{E}\ddot{l}(\theta) = \mathrm{E}\dot{l}(\theta)\{\dot{l}(\theta)\}'

Observed information -\ddot{l}(\hat{\theta})
```

Approach Find $\hat{\theta}$ such that $\hat{l}(\hat{\theta}) = 0$. When $\hat{\theta}$ is a local maximum of l, $\hat{l}(\hat{\theta}) = 0$ and $\hat{l}(\hat{\theta})$ is negative definite.

Maximization vs. minimization: Maximizing f(.) minimizes -f(.). Switch from minimization to maximization by standing on your head.

Newton-Raphson method

$$\theta^{(k+1)} = \theta^{(k)} - \dot{l}(\theta^{(k)}) / \ddot{l}(\theta^{(k)}).$$

By Taylor expansion at $\theta^{(k)}$, $\dot{l}(\theta) \approx \dot{l}(\theta^{(k)}) + \ddot{l}(\theta^{(k)})(\theta - \theta^{(k)})$. Setting $\dot{l}(\theta) = 0$, we obtain $\theta^{(k+1)}$ as above.

Notice the change in the figure: $f(z) = -\dot{l}(\theta)$

Quadratic convergence

$$\lim_{k \to \infty} \frac{|\theta^{(k+1)} - \hat{\theta}|}{|\theta^{(k)} - \hat{\theta}|^2} = c \qquad \text{(rate = } c > 0, \text{ order = 2)}$$

The # of significant digits nearly doubles at each step (in the neighborhood of $\hat{\theta}$).

Proof: Let $f(\theta) = \dot{l}(\theta)$ and $\hat{\theta}$ is the root. By Taylor expansion at $\theta^{(k)}$,

$$0 = f(\hat{\theta}) = f(\theta^{(k)}) + f'(\theta^{(k)})(\hat{\theta} - \theta^{(k)}) + \frac{1}{2}f''(\xi^{(k)})(\hat{\theta} - \theta^{(k)})^2, \quad \xi^{(k)} \in [\hat{\theta}, \theta^{(k)}]$$

Dividing the equation by $f'(\theta^{(k)})$ gives

$$-f(\theta^{(k)})/f'(\theta^{(k)}) - (\hat{\theta} - \theta^{(k)}) = \frac{f''(\xi^{(k)})}{2f'(\theta^{(k)})}(\hat{\theta} - \theta^{(k)})^2.$$

The definition of $\theta^{(k+1)} = \theta^{(k)} - f(\theta^{(k)})/f'(\theta^{(k)})$ gives

$$\theta^{(k+1)} - \hat{\theta} = \frac{f''(\xi^{(k)})}{2f'(\theta^{(k)})} (\hat{\theta} - \theta^{(k)})^2.$$

What conditions are needed?

- $f'(\theta^{(k)}) \neq 0$ in the neighborhood of $\hat{\theta}$
- $f''(\xi^{(k)})$ is bounded
- Starting point is sufficiently close to the root $\hat{\theta}$

- Bad starting point
- May not converge to the global maximum
- Saddle point: $\hat{l}(\hat{\theta}) = 0$, but $\hat{l}(\hat{\theta})$ is neither negative definite nor positive definite (stationary point but not a local extremum; can be used to check the likelihood)

starting point & local extremum

saddle point

$$l(\theta) = \theta^{3}$$

$$10 - \frac{1}{x^{3}} - \frac{1}{x^{$$

saddle point

$$l(\theta_1,\theta_2)=\theta_1^2-\theta_2^2$$

General Algorithm

- 1. (Starting point) Pick a starting point $\theta^{(0)}$ and let k=0
- 2. (**Iteration**) Determine the direction $d^{(k)}$ (a p-vector) and the step size $\alpha^{(k)}$ (a scaler) and calculate

$$\theta^{(k+1)} = \theta^{(k)} + \alpha^{(k)} d^{(k)},$$

such that

$$l(\theta^{(k+1)}) > l(\theta^{(k)})$$

3. (Stop criteria) Stop iteration if

$$|l(\theta^{(k+1)}) - l(\theta^{(k)})|/(|l(\theta^{(k)})| + \epsilon_1) < \epsilon_2$$

or

$$|\theta_{k+1,j} - \theta_{k,j}|/(|\theta_{k,j}| + \epsilon_1) < \epsilon_2, \quad j = 1, \dots, p$$

for precisions such as $\epsilon_1 = 10^{-4}$ and $\epsilon_2 = 10^{-6}$. Otherwise go to 2.

Key: Determine the direction and the step size

Determining the direction (general framework, details later)

We generally pick $d^{(k)} = R^{-1}\dot{l}(\theta^{(k)})$, where R is a positive definite matrix.

Choosing a step size (given the direction)

- Step halving
 - To find $\alpha^{(k)}$ such that $l(\theta^{(k+1)}) > l(\theta^{(k)})$
 - Start at a large value of $\alpha^{(k)}$. Halve $\alpha^{(k)}$ until $l(\theta^{(k+1)}) > l(\theta^{(k)})$
 - Simple, robust, but relatively slow
- Linear search
 - To find $\alpha^{(k)} = \arg \max_{\alpha} l(\theta^{(k)} + \alpha d^{(k)})$
 - Approximate $l(\theta^{(k)} + \alpha d^{(k)})$ by doing a polynomial interpolation and find $\alpha^{(k)}$ maximizing the polynomial
 - Fast

Given a set of p+1 data points from the function $f(\alpha) \equiv l(\theta^{(k)} + \alpha d^{(k)})$, we can find a unique polynomial with degree p that goes through the p+1 data points. (For a quadratic approximation, we only need 3 data points.)

1. Steepest ascent: R = I = identity matrix

$$\begin{split} d^{(k)} &= \dot{l}(\theta^{(k)}) \\ \alpha^{(k)} &= \arg\max_{\alpha} \, l(\theta^{(k)} + \alpha \dot{l}(\theta^{(k)})) \quad \text{or a small fixed number} \\ \theta^{(k+1)} &= \theta^{(k)} + \alpha^{(k)} \dot{l}(\theta^{(k)}) \end{split}$$

Why $\dot{l}(\theta^{(k)})$ is the steepest ascent direction?

By Taylor expansion at $\theta^{(k)}$,

$$l(\theta^{(k)} + \Delta) - l(\theta^{(k)}) = \Delta' \dot{l}(\theta^{(k)}) + o(||\Delta||).$$

By Cauchy-Schwarz inequality,

$$\Delta' \dot{l}(\theta^{(k)}) \le ||\Delta|| \cdot ||\dot{l}(\theta^{(k)})||,$$

and equality holds at $\Delta = \alpha \dot{l}(\theta^{(k)})$. It means when $\Delta = \alpha \dot{l}(\theta^{(k)})$, $l(\theta^{(k)} + \Delta)$ increases the most.

- Easy to implement; only require the first derivative/gradient/score
- Guarantee an increase at each step no matter where you start
- Converge slowly. The directions of two consecutive steps are nearly orthogonal, so the algorithm 'zigzags' to the maximum point.

When $\alpha^{(k)}$ is chosen as $\arg\max_{\alpha} l(\theta^{(k)} + \alpha \dot{l}(\theta^{(k)}))$, the directions of two consecutive steps are orthogonal, i.e.,

$$[\dot{l}(\theta^{(k)})]'\dot{l}(\theta^{(k+1)}) = 0.$$

Proof: By the definition of $\alpha^{(k)}$ and $\theta^{(k+1)}$

$$0 = \frac{\partial l(\theta^{(k)} + \alpha \dot{l}(\theta^{(k)}))}{\partial \alpha} \Big|_{\alpha = \alpha^{(k)}} = \dot{l}(\theta^{(k)} + \alpha^{(k)} \dot{l}(\theta^{(k)}))' \dot{l}(\theta^{(k)}) = \dot{l}(\theta^{(k+1)})' \dot{l}(\theta^{(k)}).$$

Maximize the function

$$f(x) = 6x - x^3$$


```
fun0 \leftarrow function(x) return(-x^3 + 6*x) # target function
grd0 \leftarrow function(x) return(-3*x^2 + 6)
                                         # gradient
# Steepest Ascent Algorithm
Steepest_Ascent <- function(x, fun=fun0, grd=grd0, step=0.01, kmax=1000, tol1=1e-6, tol2=1e-4)
{
       diff <- 2*x # use a large value to get into the following "while" loop
       k <- 0
               # count iteration
       while (all(abs(diff) > tol1*(abs(x)+tol2)) & k \le k \le k x stop criteria
        {
                               # calculate gradient using x
               g_x \leftarrow grd(x)
               diff <- step * g_x # calculate the difference used in the stop criteria
                               # update x
               x < -x + diff
               k < -k + 1
                                    # update iteration
        }
        f_x = fun(x)
       return(list(iteration=k, x=x, f_x=f_x, g_x=g_x))
}
```

```
> Steepest_Ascent(x=2, step=0.01)
$iteration
[1] 117
$x
[1] 1.414228
f_x
[1] 5.656854
$g_x
[1] -0.0001380379
> Steepest_Ascent(x=1, step=-0.01)
$iteration
[1] 159
$x
[1] -1.414199
f_x
[1] -5.656854
$g_x
[1] 0.0001370128
```

2. Newton-Raphson: $R = -\ddot{l}(\theta^{(k)}) = \text{observed information}$

$$d^{(k)} = [-\ddot{l}(\theta^{(k)})]^{-1}\dot{l}(\theta^{(k)})$$

$$\theta^{(k+1)} = \theta^{(k)} + [-\ddot{l}(\theta^{(k)})]^{-1}\dot{l}(\theta^{(k)})$$

$$\alpha^{(k)} = 1 \text{ for all } k$$

- Fast, quadratic convergence
- Need very good starting points
- Hessian may not be negative definite; the algorithm is perfectly happy to go down rather than up

Theorem: If R is positive definite, the equation set $Rd^{(k)} = \dot{l}(\theta^{(k)})$ has a unique solution for the direction $d^{(k)}$, and the direction ensures ascent of $l(\theta)$.

Proof: When R is positive definite, it is invertible. So we have a unique solution $d^{(k)} = R^{-1}\dot{l}(\theta^{(k)})$. Let

$$\theta^{(k+1)} = \theta^{(k)} + \alpha d^{(k)} = \theta^{(k)} + \alpha R^{-1} \dot{l}(\theta^{(k)}).$$

By Taylor expansion,

$$l(\theta^{(k+1)}) \approx l(\theta^{(k)}) + \alpha [\dot{l}(\theta^{(k)})]' R^{-1} \dot{l}(\theta^{(k)}).$$

The positive definite matrix R ensures that $l(\theta^{(k+1)}) > l(\theta^{(k)})$ for sufficiently small positive α .

```
fun0 \leftarrow function(x) return(-x^3 + 6*x)
                                           # target function
grd0 \leftarrow function(x) return(-3*x^2 + 6)
                                           # gradient
hes0 <- function(x) return(- 6*x)
                                           # Hessian
# Newton-Raphson Algorithm
Newton_Raphson <- function(x, fun=fun0, grd=grd0, hes=hes0, kmax=1000, tol1=1e-6, tol2=1e-4)
{
        diff <- 2*x
        k <- 0
        while (all(abs(diff) > tol1*(abs(x)+tol2)) & k \le k \le k
        {
                g_x \leftarrow grd(x)
                h_x \leftarrow hes(x)
                                       # calculate the second derivative (Hessian)
                diff < -g_x/h_x
                                       # calculate the difference used by the stop criteria
                x \leftarrow x + diff
                k < -k + 1
        }
        f_x = fun(x)
        return(list(iteration=k, x=x, f_x=f_x, g_x=g_x, h_x=h_x))
}
```

```
> Newton_Raphson(x=2)
$iteration
[1] 5
$x
[1] 1.414214
f_x
[1] 5.656854
$g_x
[1] -1.353229e-11
$h_x
[1] -8.485281
> Newton_Raphson(x=1)
$iteration
[1] 5
$x
[1] 1.414214
f_x
[1] 5.656854
$g_x
[1] -1.353229e-11
$h_x
[1] -8.485281
```

4. Modification of Newton-Raphson

- **Fisher scoring**: replace $-\ddot{l}(\theta)$ with $-E\ddot{l}(\theta)$
 - $-E\ddot{l}(\theta) = E\dot{l}(\theta)\dot{l}(\theta)'$ is always positive and stabilize the algorithm
 - $-E\ddot{l}(\theta)$ can have a simpler form than $-\ddot{l}(\theta)$
 - Newton-Raphson and Fisher score are equivalent for parameter estimation in GLM with canonical exponential families.
- **Quasi-Newton**: aka "variable metric methods" or "secant methods". Approximate $\ddot{l}(\theta)$ in a way that
 - avoids calculating Hessian and its inverse
 - has convergence properties similar to Newton

In the Poisson regression model of n subjects,

- The responses $Y_i \sim \mathsf{Poisson}(\lambda_i) = (Y_i!)^{-1} \lambda_i^{Y_i} e^{-\lambda_i}$. We know that $\lambda_i = \mathrm{E}(Y_i|X_i)$.
- We relate the mean of Y_i to X_i by $g(\lambda_i) = X_i\beta$. Taking derivative on both sides,

$$g'(\lambda_i) \frac{\partial \lambda_i}{\partial \beta} = X_i \quad \Rightarrow \quad \frac{\partial \lambda_i}{\partial \beta} = \frac{X_i}{g'(\lambda_i)}$$

- Log likelihood: $l(\beta) = \sum_{i=1}^{n} (Y_i \log \lambda_i \lambda_i)$, where λ_i 's are such that $g(\lambda_i) = X_i \beta$.
- Maximum likelihood estimation: $\hat{\beta} = \arg \max_{\beta} l(\beta)$

Newton-Raphson needs

$$\dot{l}(\beta) = \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{\partial \lambda_{i}}{\partial \beta} = \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{1}{g'(\lambda_{i})} X_{i}$$

$$\ddot{l}(\beta) = -\sum_{i} \frac{Y_{i}}{\lambda_{i}^{2}} \frac{\partial \lambda_{i}}{\partial \beta} \frac{1}{g'(\lambda_{i})} X_{i} - \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{g''(\lambda_{i})}{g'(\lambda_{i})^{2}} \frac{\partial \lambda_{i}}{\partial \beta} X_{i}$$

$$= -\sum_{i} \frac{1}{\lambda_{i}} \frac{1}{g'(\lambda_{i})^{2}} X_{i}^{2} - \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{1}{\lambda_{i}} \frac{1}{g'(\lambda_{i})^{2}} X_{i}^{2} - \sum_{i} \left(\frac{Y_{i}}{\lambda_{i}} - 1\right) \frac{g''(\lambda_{i})}{g'(\lambda_{i})^{3}} X_{i}^{2}$$

Fisher scoring needs $\dot{l}(\beta)$ and

$$E\left[\ddot{l}(\beta)\right] = -\sum_{i} \frac{1}{\lambda_{i}} \frac{1}{g'(\lambda_{i})^{2}} X_{i}^{2}$$

which is $\ddot{l}(\beta)$ without the extra terms.

With the canonical link for Poisson regression:

$$g(\lambda_i) = \log \lambda_i$$

we have

$$g'(\lambda_i) = \lambda_i^{-1}$$
 and $g''(\lambda_i) = -\lambda_i^{-2}$.

So that the extra terms equal to zero and we conclude that Newton-Raphson and Fisher scoring are equivalent.

1. Davidson-Fletcher-Powell QNR algorithm

Let $\Delta \dot{l}^{(k)} = \dot{l}(\theta^{(k)}) - \dot{l}(\theta^{(k-1)})$ and $\Delta \theta^{(k)} = \theta^{(k)} - \theta^{(k-1)}$. Approximate negative Hessian by $G^{(k+1)} = G^{(k)} + \frac{\Delta \theta^{(k)}(\Delta \theta^{(k)})'}{(\Delta \theta^{(k)})'\Delta \theta^{(k)}} - \frac{G^{(k)}\Delta \dot{l}^{(k)}(\Delta \dot{l}^{(k)})'G^{(k)}}{(\Delta \dot{l}^{(k)})'G^{(k)}\Delta \dot{l}^{(k)}}.$

Use the starting matrix $G^{(0)} = I$.

Theorem: If the starting matrix $G^{(0)}$ is symmetric positive definite, the above formula ensures that every $G^{(k)}$ during the iteration is positive definite.

Data: (x_i, y_i) for i = 1, ..., n

Notation and assumptions

- Model: $y_i = h(x_i, \beta) + \epsilon_i$, where $\epsilon_i \stackrel{i.i.d}{\sim} N(0, \sigma^2)$ and h(,) is known
- Residual: $e_i(\beta) = y_i h(x_i, \beta)$
- Jacobian: $\{J(\beta)\}_{ij} = \frac{\partial h(x_i,\beta)}{\partial \beta_i} = -\frac{\partial e_i(\beta)}{\partial \beta_i}$, a $n \times p$ matrix

Goal: to obtain MLE $\hat{\beta} = \arg\min_{\beta} S(\beta)$, where $S(\beta) = \sum_{i} \{y_i - h(x_i, \beta)\}^2 = [e(\beta)]'e(\beta)$

We could use the previously-discussed **Newton-Raphson algorithm**.

- Gradient: $g_j(\beta) = \frac{\partial S(\beta)}{\partial \beta_j} = 2 \sum_i e_i(\beta) \frac{\partial e_i(\beta)}{\partial \beta_j}$, i.e., $g(\beta) = -2J(\beta)'e(\beta)$
- Hessian: $H_{jr}(\beta) = \frac{\partial^2 S(\beta)}{\partial \beta_i \partial \beta_r} = 2 \sum_i \{e_i(\beta) \frac{\partial^2 e_i(\beta)}{\partial \beta_i \partial \beta_r} + \frac{\partial e_i(\beta)}{\partial \beta_i} \frac{\partial e_i(\beta)}{\partial \beta_r} \}$

Recall in linear regression models, we minimize

$$S(\beta) = \sum_{i} \{y_i - x_i'\beta\}^2$$

Because $S(\beta)$ is a quadratic function, it is easy to get MLE

$$\hat{\beta} = (\sum_{i} x_i x_i')^{-1} (\sum_{i} x_i y_i)$$

Now in the nonlinear regression models, we want to minimize

$$S(\beta) = \sum_{i} \{y_i - h(x_i, \beta)\}^2$$

Idea: Approximate $h(x_i, \beta)$ by a linear function, iteratively at $\beta^{(k)}$

Given $\beta^{(k)}$ and by Taylor expansion of $h(x_i, \beta)$ at $\beta^{(k)}$, $S(\beta)$ becomes

$$S(\beta) \approx \sum_{i} \left\{ y_i - h(x_i, \beta^{(k)}) - (\beta - \beta^{(k)})' \frac{\partial h(x_i, \beta^{(k)})}{\partial \beta} \right\}^2.$$

- 1. Find a good starting point $\beta^{(0)}$
- 2. At step k + 1,
 - (a) Form $e(\beta^{(k)})$ and $J(\beta^{(k)})$
 - (b) Use a standard linear regression routine to obtain $\delta^{(k)} = [J(\beta^{(k)})'J(\beta^{(k)})]^{-1}J(\beta^{(k)})'e(\beta^{(k)})$
 - (c) Obtain the new estimate $\beta^{(k+1)} = \beta^{(k)} + \delta^{(k)}$

- Need good starting values
- Require $J(\beta^{(k)})'J(\beta^{(k)})$ to be invertible.

Data: (y_i, x_i) for i = 1, ..., n

Notation and assumptions

- Mean: $E(y|x) = \mu$
- Link g: $g(\mu) = x'\beta$
- Variance function V: $Var(y|x) = \phi V(\mu)$
- Log likelihood (exponential family): $l(\theta, \phi; y) = \{y\theta b(\theta)\}/a(\phi) + c(y, \phi)$

We obtain

- Score function: $\dot{l} = \{y b'(\theta)\}/a(\phi)$
- Observed information: $-\ddot{l} = b''(\theta)/a(\phi)$
- Mean (θ) : $E(y|x) = a(\phi)E(\dot{l}) + b'(\theta) = b'(\theta)$
- Variance (θ, ϕ) : $Var(y|x) = E(y b'(\theta))^2 = a(\phi)^2 E(\dot{l}\dot{l}') = a(\phi)^2 E(-\ddot{l}) = b''(\theta)a(\phi)$

Canonical link: g such that $g(\mu) = \theta$, i.e. $g^{-1} = b'$

Generally we have $a(\phi) = \phi/w$, in which case ϕ will drop out of the following.

Model	Normal	Poisson	Binomial	Gamma
ϕ	σ^2	1	1/ <i>m</i>	$1/\nu$
$b(\theta)$	$\theta^2/2$	$\exp(\theta)$	$\log(1+e^{\theta})$	$-\log(-\theta)$
μ	$oldsymbol{ heta}$	$\exp(\theta)$	$e^{\theta}/(1+e^{\theta})$	$-1/\theta$
Canonical link g	identity	log	logit	reciprocal
Variance function V	1	μ	$\mu(1-\mu)$	μ^2

In linear regression models, $E(y_i|x_i) = x_i'\beta$, so we minimize

$$S(\beta) = \sum_{i} \{y_i - x_i'\beta\}^2$$

Because $S(\beta)$ is a quadratic function, it is easy to get MLE

$$\hat{\beta} = (\sum_{i} x_i x_i')^{-1} (\sum_{i} x_i y_i)$$

In generalized linear models, consider construct a similar quadratic function $S(\beta)$.

Question? Can we use

$$S(\beta) = \sum_{i} \{g(y_i) - x_i'\beta\}^2$$

Answer: No, because

$$E\{g(y_i)|x_i\} \neq x_i'\beta$$

Idea: Approximate $g(y_i)$ by a linear function with expectation $x_i'\beta^{(k)}$, interactively at $\beta^{(k)}$

Linearize $g(y_i)$ around $\hat{\mu}_i^{(k)} = g^{-1}(x_i'\beta^{(k)})$

$$\tilde{y}_i^{(k)} \equiv g(\hat{\mu}_i^{(k)}) + (y_i - \hat{\mu}_i^{(k)})g'(\hat{\mu}_i^{(k)})$$

Check the variances of $\tilde{y}_{i}^{(k)}$ and use them as weights

$$W_i^{(k)} = \left\{ \text{Var}(\tilde{y}_i^{(k)}) \right\}^{-1} = \left[\{ g'(\hat{\mu}_i^{(k)}) \}^2 V(\hat{\mu}_i^{(k)}) \right]^{-1}$$

Given $\beta^{(k)}$, we consider minimize

$$S(\beta) = \sum_{i} W_{i}^{(k)} \left\{ \tilde{y}_{i}^{(k)} - x_{i}'\beta \right\}^{2}$$

IRLS algorithm:

- 1. Start with initial estimates, generally $\hat{\mu}_i^{(0)} = y_i$
- 2. Form $\tilde{y}_{i}^{(k)}$ and $W_{i}^{(k)}$
- 3. Estimate $\beta^{(k+1)}$ by regressing $\tilde{y}_i^{(k)}$ on x_i with weights $W_i^{(k)}$
- 4. Form $\hat{\mu}_{i}^{(k+1)} = g^{-1}(x_{i}'\beta^{(k+1)})$ and return to step 2.

Model	Poisson	Binomial	Gamma
$\mu = g^{-1}(\eta)$	e^{η}	$e^{\eta}/(1+e^{\eta})$	$1/\eta$
$g'(\mu)$	$1/\mu$	$1/[\mu(1-\mu)]$	$-1/\mu^{2}$
$V(\mu)$	μ	$\mu(1-\mu)$	μ^2

- McCullagh and Nelder (1983) justified IRLS by showing that IRLS is equivalent to Fisher scoring.
- In the case of the canonical link, IRLS is also equivalent to Newton-Raphson.
- IRLS is attractive because no special optimization algorithm is required, just a subroutine that computes weighted least square estimates.

Dispersion parameter: When we do not take $\phi = 1$, the usual estimate is via the method of moments:

$$\hat{\phi} = \frac{1}{n-p} \sum_{i} \frac{(y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)}$$

Standard errors:

$$\widehat{\operatorname{Var}}(\hat{\beta}) = \hat{\phi}(X'\widehat{W}X)^{-1}$$

Quasi likelihood: Pick a link and a variance function, and IRLS can proceed without worrying about the model. In other words, IRLS is a good thing!

```
poisreg <- function(y, x, tol=1e-8) {</pre>
  ## get init value from lm
  lmfit <- lm(log(y+1)~x)</pre>
  b <- coef(lmfit);</pre>
  xb <- fitted(lmfit)</pre>
  ## iterate
  diff <- 1;
  maxiter <- 50;</pre>
  iter <- 0
  while(diff > tol & iter < maxiter) {</pre>
    ## form adjusted response
    mu \leftarrow exp(xb);
    ty \leftarrow xb + (y-mu)/mu
    ## create weights - weights are mu
    w < - mu
```

```
## weighted regression
  fit <- lm(ty~x, weights=w)</pre>
  ## get updated beta and fitted values
  b.old <- b;
  b <- coef(fit);</pre>
  xb <- fitted(fit)</pre>
  ## check for convergence
  diff <- sum((b-b.old)^2)</pre>
  iter <- iter+1
  cat("iter", iter, ": b=",b, ", diff=", diff, "\n")
}
## calculate variance/covariance matrix
X1 <- cbind(int=rep(1, length(x)), x)</pre>
v <- solve(t(X1) %*% diag(w) %*% X1)</pre>
## return
list(b=b, v=v, niter=iter)
```

}

```
> ### simulation
> n=100; beta=2;
> X=rnorm(n, mean=1, sd=.3)
> Y=rpois(n, exp(beta*X))
> result=poisreg(Y,X)
iter 1 : b = 0.07046616 1.990243 , diff = 0.02322995
iter 2 : b= 0.06573701 1.992766 , diff= 2.873326e-05
iter 3 : b= 0.06581331 1.992703 , diff= 9.809174e-09
> result
$b
(Intercept)
                      X
 0.06581331 1.99270302
$v
             int
                            X
int 0.003326508 -0.002614283
x -0.002614283 0.002122114
$niter
Γ1 3
```