Homework 2; Thursday 23 February To be handed in no later than 9.15 on Thursday 2 March

1. Suppose

$$\pi(a,b) \propto a^4 b^6 e^{-a-b-3ab}$$

for a, b > 0 is required to be sampled. Find

$$\pi(a|b)$$
 and $\pi(b|a)$

and hence find a transition density $p(a_{n+1}, b_{n+1}|a_n, b_n)$ which has π as the stationary density.

Implement the chain and use the output to evaluate the integral

$$I = \int \int a b \, \pi(a, b) \, da \, db.$$

2. Suppose we wish to sample from

$$\pi(x) \propto \frac{\exp(-\frac{1}{2}x^2)}{1+x^2}$$

using a Metropolis–Hastings algorithm with density $q(x'|x) = N(x'|x, \sigma^2)$ for some σ as the proposal density.

Describe what you think might be the problems encountered if (i) σ is too small and (ii) σ is too big. Run the algorithm with such σ to verify your conclusions.

Without using any theory, find what you think is a suitable σ and run the algorithm with this σ to evaluate

$$I = \int x \, \pi(x) \, dx.$$

What happens if instead you use $q(x'|x) = N(x'|-x, \sigma^2)$.

3. Suppose a posterior density is given by

$$f(\theta|\text{data}) \propto e^{\theta a} e^{-ne^{\theta}} e^{-\frac{1}{2}\theta^2}$$

for some a > 0 and n integer, and $-\infty < \theta < +\infty$. In fact this is a Poisson model with mean e^{θ} and standard normal prior for θ .

Find a Markov chain for sampling from f and implement it.