NETWORKS LAYERS

Computer Networking

Author: Eng. Carlos Andrés Sierra, M.Sc.

cavirguezs@udistrital.edu.co

Lecturer Computer Engineer School of Engineering Universidad Distrital Francisco José de Caldas

2024-III

Outline

- The Physical Layer
- The Data Link Layer
- The Network Layer
- The Transport Layer
- The Application Layer
- Working Together!

MSc. C.A. Sierra (UD FJC)

OSI Layers & Protocols

Outline

- The Physical Layer
- 2 The Data Link Layer
- The Network Layer
- 4 The Transport Layer
- The Application Layer
- Working Together!

- Physical Layer is the first layer of the OSI model.
- It is responsible for moving bits across the documents.
 It defines the electrical and physical specifications of the data connection. Here modulation is pretty important, helps to move 10
- It is the hardware layer. The cables, switches, and network interface cards are part of this layer. Here it is important the Duplex

- Physical Layer is the first layer of the OSI model.
- It is responsible for moving bits across the wire.
- It defines the electrical and physical specifications of the data connection. Here modulation is pretty important, helps to move 10 millions bps.
- o It is the hardware layer. The cables, switches, and network interface cards are part of this layer. Our it is important the Duplex Comnactation process.

Computer Networking

- he OSI model.
- Physical Layer is the first layer of the OSI model.
- It is **responsible** for moving bits across the wire.
- o It defines the electrical and physical specifications of the data connection. Here modulation is pretty important, helps to move 10 millions bps:
- The calles, switches, and networks are part of this layer. Here it is important the Dup Communication process.

Fry 101 1011! 1029,

- Physical Layer is the first layer of the OSI model.
- It is responsible for moving bits across the wire.
- It defines the electrical and physical specifications of the data connection. Here modulation is pretty important, helps to move 10 millions bps.
- It is the hardware layer. The cables, switches, and network interface cards are part of this layer. Here it is important the Duplex

Networks Ports and Patch Panels Network (Ports are the physical connection points for devices to connect to a network, commonly using RJ45 connectors. Sometimes called as endpoints. Teletro you twork cables using 11172exection url base 18 desint,

Networks Ports and Patch Panels

 Network Ports are the physical connection points for devices to connect to a network, commonly using RJ45 connectors. Sometimes called as endpoints.

• Patch Panels are used to organize and manage network cables using

Networks Ports and Patch Panels

- **Network Ports** are the physical connection points for devices to connect to a network, commonly using RJ45 connectors. Sometimes called as endpoints.
- Patch Panels are used to organize and manage network cables using a set of network ports.
- They are used to terminate cables and connect them to switches.

Cabling Tools

- Crimping Tool is used to attach connectors to the end of a cable.
- Cable Tester is used to verify that the cable is properly connected.
- Fone Generator is used to **trace cables**. It sends a signal through the cable.
- Punch Down Tool is used to terminate cables on patch panels.
- Loopback Plug is used to **test network ports**. It sends a signal back to the device.
- Network Analyzer is used to monitor network traffic. It captures and analyzes packets.
- Network Tap is used to capture network traffic. It copies the data to another device.

Example of a Professional Networking ToolKit

Here is an example of a professional networking toolkit usage.

Outline

- 1 The Physical Layer
- 2 The Data Link Layer
- 3 The Network Layer
- 4 The Transport Layer
- The Application Layer
- 6 Working Together!

- Data Link Layer is the second layer of the OSI model.
- It is responsible for framing and error detection
- It defines the logical link control and media access control
- It is a **software layer**. The Ethernet protocol (1980s) is part of this layer.
- MAC Addresses are unique identifiers assigned to network interfaces. It is a 48-bit (six groups of two hexadecimal) number.
- They are used to identify devices on a network.

- Data Link Layer is the second layer of the OSI model.
- It is responsible for framing and error detection.
- It defines the logical link control and media access control
- It is a **software layer**. The Ethernet protocol (1980s) is part of this layer.
- MAC Addresses are unique identifiers assigned to network interfaces. It is a 48-bit (six groups of two hexadecimal) number.
- They are used to identify devices on a network.

- Data Link Layer is the second layer of the OSI model.
- It is responsible for framing and error detection.
- It defines the logical link control and media access control.
- It is a **software layer**. The Ethernet protocol (1980s) is part of this layer.
- MAC Addresses are unique identifiers assigned to network interfaces. It is a 48-bit (six groups of two hexadecimal) number.
- They are used to identify devices on a network

- Data Link Layer is the second layer of the OSI model.
- It is responsible for framing and error detection.
- It defines the logical link control and media access control.
- It is a **software layer**. The Ethernet protocol (1980s) is part of this layer.
- MAC Addresses are unique identifiers assigned to network interfaces. It is a 48-bit (six groups of two hexadecimal) number.
- They are used to identify devices on a network.

- Data Link Layer is the second layer of the OSI model.
- It is responsible for framing and error detection.
- It defines the logical link control and media access control.
- It is a **software layer**. The Ethernet protocol (1980s) is part of this layer.
- MAC Addresses are unique identifiers assigned to network interfaces. It is a 48-bit (six groups of two hexadecimal) number.
- They are used to identify devices on a network

- Data Link Layer is the second layer of the OSI model.
- It is responsible for framing and error detection.
- It defines the logical link control and media access control.
- It is a **software layer**. The Ethernet protocol (1980s) is part of this layer.
- MAC Addresses are unique identifiers assigned to network interfaces. It is a 48-bit (six groups of two hexadecimal) number.
- They are used to identify devices on a network.

MAC Address Structure

Figure: MAC Address Structure

- Unicast is a one-to-one communication.
- Broadcast is a one-to-all communication
- Multicast is a one-to-many communication
- MAC Addresses are used to determine the type of communication

- Unicast is a one-to-one communication.
- Broadcast is a one-to-all communication.
- Multicast is a one-to-many communication
- MAC Addresses are used to determine the type of communication.

- Unicast is a one-to-one communication.
- Broadcast is a one-to-all communication.
- Multicast is a one-to-many communication.
- MAC Addresses are used to determine the type of communication.

- Unicast is a one-to-one communication.
- Broadcast is a one-to-all communication.
- Multicast is a one-to-many communication.
- MAC Addresses are used to determine the type of communication.

Ethernet Frames

- Ethernet Frames are the data packets used in Ethernet networks.
- They contain the source and destination MAC addresses.
- They also **contain** the type of data and the data payload.
- They are used to transfer data between devices on a network.

Figure: Ethernet Frame

13 / 34

Avoiding Data Corruption

To **avoid data corruption**, error detection is used. The Cyclic Redundancy Check (*CRC*) is a common error detection technique. It is used to detect errors in the data payload.

Figure: Checksum Validation

Outline

- The Physical Layer
- 2 The Data Link Layer
- The Network Layer
- 4 The Transport Layer
- The Application Layer
- Working Together!

- Network Layer is the third layer of the OSI model.
- It is responsible for routing and addressing
- It defines the logical addressing and path determination
- It is a software layer. The IP protocol is part of this layer
- IPv4 Addresses are 32-bit numbers used to identify devices on a network.
- They are divided into classes based on the network size.

- Network Layer is the third layer of the OSI model.
- It is responsible for routing and addressing.
- It defines the logical addressing and path determination
- It is a software layer. The IP protocol is part of this layer
- IPv4 Addresses are 32-bit numbers used to identify devices on a network.
- They are divided into classes based on the network size.

- Network Layer is the third layer of the OSI model.
- It is responsible for routing and addressing.
- It defines the logical addressing and path determination.
- It is a software layer. The IP protocol is part of this layer
- IPv4 Addresses are 32-bit numbers used to identify devices on a network.
- They are divided into classes based on the network size.

- Network Layer is the third layer of the OSI model.
- It is responsible for routing and addressing.
- It defines the logical addressing and path determination.
- It is a software layer. The IP protocol is part of this layer.
- IPv4 Addresses are 32-bit numbers used to identify devices on a network.
- They are divided into classes based on the network size.

- Network Layer is the third layer of the OSI model.
- It is responsible for routing and addressing.
- It defines the logical addressing and path determination.
- It is a software layer. The IP protocol is part of this layer.
- IPv4 Addresses are 32-bit numbers used to identify devices on a network.
- They are divided into classes based on the network size.

- Network Layer is the third layer of the OSI model.
- It is responsible for routing and addressing.
- It defines the logical addressing and path determination.
- It is a software layer. The IP protocol is part of this layer.
- IPv4 Addresses are 32-bit numbers used to identify devices on a network.
- They are divided into classes based on the network size.

IPv4 Datagram

- IPv4 Datagram is the data packet used in IP networks.
- It contains the source and destination IP addresses.
- It also contains the type of data and the data payload.
- It is used to transfer data between devices on a network.

IP Datagram Header

Time To Live

Time To Live is a counter used to limit the lifespan of a data packet.

Address Resolution Protocol (ARP)

- Address Resolution Protocol (ARP) is used to map IP addresses to MAC addresses.
- It is used to **resolve IP addresses** to physical addresses, using ARP table or ARP cache.

Subnetting and CIDR

- **Subnetting** is the process of dividing a network into smaller subnets.
- It is used to reduce network congestion and improve network performance.
- CIDR (stands for *ClassLess InterDomain Routing*) is a subnetting technique that uses a prefix length to define the subnet.
- It is used to reduce the number of IP addresses required for a network.

Routing and Routers

- Routing is the process of determining the best path for data to travel on a network.
- Routing is used to forward data packets between devices on a network.
- Routers are devices that are used to route data between networks.
- Routers are used to connect different networks together

Routing and Routers

- Routing is the process of determining the best path for data to travel on a network.
- Routing is used to forward data packets between devices on a network.
- Routers are devices that are used to route data between networks.
- Routers are used to connect different networks together.

Outline

- The Physical Layer
- 2 The Data Link Layer
- The Network Layer
- The Transport Layer
- The Application Layer
- 6 Working Together!

- Transport Layer is the fourth layer of the OSI model.
- It is responsible for end-to-end communication and error recovery.
- It defines the connection-oriented and reliable data transfer
- It is a software layer. The TCP protocol is part of this layer
- TCP Segment is the data packet used in TCP networks.
- It contains the source and destination port numbers.
- It also contains the sequence number and the data payload.
- It is used to transfer data between devices on a network.

- Transport Layer is the fourth layer of the OSI model.
- It is responsible for end-to-end communication and error recovery.
- It defines the connection-oriented and reliable data transfer
- It is a software layer. The TCP protocol is part of this layer.
- TCP Segment is the data packet used in TCP networks
- It contains the source and destination port numbers.
- It also contains the sequence number and the data payload
- It is used to transfer data between devices on a network.

- Transport Layer is the fourth layer of the OSI model.
- It is responsible for end-to-end communication and error recovery.
- It defines the connection-oriented and reliable data transfer.
- It is a software layer. The TCP protocol is part of this layer.
- TCP Segment is the data packet used in TCP networks.
- It contains the source and destination port numbers.
- It also contains the sequence number and the data payload
- It is used to transfer data between devices on a network.

- Transport Layer is the fourth layer of the OSI model.
- It is responsible for end-to-end communication and error recovery.
- It defines the connection-oriented and reliable data transfer.
- It is a software layer. The TCP protocol is part of this layer.
- TCP Segment is the data packet used in TCP networks.
- It contains the source and destination port numbers.
- It also contains the sequence number and the data payload
- It is used to transfer data between devices on a network.

- Transport Layer is the fourth layer of the OSI model.
- It is responsible for end-to-end communication and error recovery.
- It defines the connection-oriented and reliable data transfer.
- It is a software layer. The TCP protocol is part of this layer.
- TCP Segment is the data packet used in TCP networks.
- It contains the source and destination port numbers.
- It also contains the sequence number and the data payload
- It is used to transfer data between devices on a network.

- Transport Layer is the fourth layer of the OSI model.
- It is responsible for end-to-end communication and error recovery.
- It defines the connection-oriented and reliable data transfer.
- It is a software layer. The TCP protocol is part of this layer.
- TCP Segment is the data packet used in TCP networks.
- It contains the source and destination port numbers.
- It also contains the sequence number and the data payload
- It is used to transfer data between devices on a network.

- Transport Layer is the fourth layer of the OSI model.
- It is responsible for end-to-end communication and error recovery.
- It defines the connection-oriented and reliable data transfer.
- It is a software layer. The TCP protocol is part of this layer.
- TCP Segment is the data packet used in TCP networks.
- It contains the source and destination port numbers.
- It also contains the sequence number and the data payload.
- It is used to transfer data between devices on a network.

- Transport Layer is the fourth layer of the OSI model.
- It is responsible for end-to-end communication and error recovery.
- It defines the connection-oriented and reliable data transfer.
- It is a software layer. The TCP protocol is part of this layer.
- TCP Segment is the data packet used in TCP networks.
- It contains the source and destination port numbers.
- It also contains the sequence number and the data payload.
- It is used to transfer data between devices on a network.

TCP Control Flags

- TCP Control Flags are used to control the flow of data in a TCP connection.
- They are **used** to establish and terminate connections.
- They are **used** to acknowledge data and control the flow of data.

TCP & UDP Packets

- TCP (*Transmission Control Protocol*) is a connection-oriented protocol.
- It is used to establish a connection between devices.
- It is **used** to guarantee the delivery of data.
- UDP (User Datagram Protocol) is a connectionless protocol
- It is used to send data without establishing a connection
- It is used when speed is more important than reliability.

TCP & UDP Packets

- TCP (*Transmission Control Protocol*) is a connection-oriented protocol.
- It is used to establish a connection between devices.
- It is **used** to guarantee the delivery of data.
- **UDP** (*User Datagram Protocol*) is a connectionless protocol.
- It is **used** to send data without establishing a connection.
- It is **used** when **speed** is more important than **reliability**.

TCP Socket States

- TCP Socket States are used to track the state of a TCP connection.
- They are used to manage the connection between devices.
- They are used to establish, maintain, and terminate connections.

Firewalls and NAT

- Firewalls are used to protect networks from unauthorized access.
- They are used to filter traffic based on rules and policies.
- NAT (Network Address Translation) is used to map private IP addresses to public IP addresses.
- It is used to hide internal network addresses from the myemphpublic Internet.

Firewalls and NAT

- Firewalls are used to protect networks from unauthorized access.
- They are used to filter traffic based on rules and policies.
- NAT (Network Address Translation) is used to map private IP addresses to public IP addresses.
- It is used to **hide** internal network addresses from the myemphpublic Internet.

Outline

- The Physical Layer
- 2 The Data Link Layer
- The Network Layer
- 4 The Transport Layer
- The Application Layer
- Working Together!

- Application Layer is the seventh layer of the OSI model.
- It is responsible for user interfaces and application services
- It defines the protocols used by applications to communicate over the network.
- It is the software layer. The HTTP protocol is part of this layer

- Application Layer is the seventh layer of the OSI model.
- It is responsible for user interfaces and application services.
- It defines the protocols used by applications to communicate over the network.
- It is the software layer. The HTTP protocol is part of this layer.

- Application Layer is the seventh layer of the OSI model.
- It is responsible for user interfaces and application services.
- It defines the protocols used by applications to communicate over the network.
- It is the software layer. The HTTP protocol is part of this layer.

- Application Layer is the seventh layer of the OSI model.
- It is responsible for user interfaces and application services.
- It defines the protocols used by applications to communicate over the network.
- It is the **software layer**. The HTTP protocol is part of this layer.

MSc. C.A. Sierra (UD FJC)

Encapsulation

Outline

- The Physical Layer
- 2 The Data Link Layer
- The Network Layer
- 4 The Transport Layer
- The Application Layer
- **6** Working Together!

Computer Networking

All the Layers Together

#	Layer Name	Protocol	Protocol Data Unit	Addressing
5	Application	HTTP, SMTP, etc	Messages	n/a
4	Transport	TCP/UDP	Segment	Port #'s
3	Network	IP	Packet / Datagram	IP Address
2	Data Link	Ethernet, Wi-Fi	Frames	MAC Address
1	Physical	n/a	Bits	n/a

Figure: All the Layers working in Unison

Outline

- The Physical Layer
- 2 The Data Link Layer
- The Network Layer
- The Transport Layer
- The Application Layer
- Working Together!

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/courses/computer-networking

