(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-4386

(P2000-4386A)

(43)公開日 平成12年1月7日(2000.1.7)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H 0 4 N 5/225

5/335

H 0 4 N 5/225

D 5 C 0 2 2

V 5C024

審査請求 未請求 請求項の数3 OL (全 12 頁)

(21)出願番号

特簡平10-168649

(22)出顧日

平成10年6月16日(1998.6.16)

(71)出顧人 000000376

5/335

オリンパス光学工業株式会社

東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 槌田 博文

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72)発明者 中城 泰生

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(74)代理人 100058479

弁理士 鈴江 武彦 (外4名)

Fターム(参考) 50022 AB12 AB44 AC41 AC54 AC78

50024 AA01 CA33 EA02 EA04 EA08

FA01

(54) 【発明の名称】 撮影レンズユニット

(57)【要約】

【課題】小型で安価な撮影レンズユニットを提供する。 【解決手段】撮影レンズユニット10は、レンズ12 と、これを保持するレンズ鏡枠20と、撮像素子実装基 板60とを有している。レンズ鏡枠20は、レンズ12 の前方に張り出した絞り部22を備えている。 撮像案子 実装基板60は、撮像素子チップ62とこれを支持する 矩形形状の支持基板64と複数の端子66を有してい る。複数の端子66は矩形形状の支持基板64の一方の 一組の対辺に位置している。レンズ鏡枠20は、z方向 に対する撮像素子実装基板60の位置決め用の当て付け 面26、y方向に対する撮像素子実装基板60の位置決 め用の当て付け面28、x方向に対する撮像素子実装基 板60の位置決め用の当て付け面30を有している。当 て付け面26と28と30への当て付けにより位置決め された撮像素子実装基板60は接着によりレンズ鏡枠2 0に固定される。

【特許請求の範囲】

【請求項1】 撮像素子チップを実装した二方向のみに 端子を持つ撮像素子実装基板と、レンズを保持するレンズ鏡枠とを有しており、撮像素子実装基板とレンズ鏡枠は一体の構造体に組み立てられ、レンズ鏡枠及び/又は 撮像素子実装基板は位置決めのための当て付け面を備えている撮影レンズユニット。

【請求項2】 撮像素子チップを実装した二方向のみに 端子を持つ撮像素子実装基板と、レンズを保持するレンズ 鏡枠とを有しており、撮像素子実装基板とレンズ鏡枠 は一体の構造体に組み立てられ、レンズ鏡枠及び/又は 撮像素子実装基板の位置決めのための当て付け面を有し、レンズ鏡枠は嵌め込みにより撮像素子実装基板と係止する係止部を有し、撮像素子実装基板は係止部の嵌め 込みを容易にするテーパー部を備えている撮影レンズユニット。

【請求項3】 撮像素子チップを実装した二方向のみに端子を持つ撮像素子実装基板と、レンズを保持するレンズ鏡枠とを有しており、撮像素子実装基板とレンズ鏡枠は一体の構造体に組み立てられ、撮像素子実装基板は撮像素子チップを封止するガラスを保持するガラス受けを有し、レンズ鏡枠は撮像素子実装基板の位置決めのための位置決め面を有し、レンズ鏡枠は嵌め込みによりガラス受けと係止する係止部を有している撮影レンズユニット。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、撮像素子チップが 撮影レンズ鏡枠に組み込まれた撮影レンズユニットに関 する。

[0002]

【従来の技術】従来、撮影レンズユニットは、例えば、一般に複数のレンズを組み込んだレンズ鏡枠と、赤外カットフィルタ等の平板状の光学素子と、撮像素子チップを実装した基板とを有している。光学素子と撮像素子チップ実装基板は、クッションゴムを間に挟んで、レンズ鏡枠に設けた凹部に収容され、これに被せた取付部材をネジ止め等でレンズ鏡枠に固定するにより、レンズ鏡枠に取り付けられている。

[0003]

【発明が解決しようとする課題】このような撮影レンズコニットを用いた電子的撮像装置では、機器自体の小型化および低コスト化が急速に進められている。このため、撮影レンズコニット自体の小型化および低コスト化が大いに望まれている。本発明は、このような現状に鑑みて成されたものであり、その目的は、小型で安価な撮影レンズコニットを提供することである。

[0004]

【課題を解決するための手段】本発明による撮影レンズ ユニットは、撮像素子チップを実装した二方向のみに端 子を持つ撮像素子実装基板と、レンズを保持するレンズ 鏡枠とを有しており、撮像素子実装基板とレンズ鏡枠は 一体の構造体に組み立てられ、レンズ鏡枠及び/又は撮 像素子実装基板は位置決めのための当て付け面を備えて いる。

【0005】本発明による別の撮影レンズユニットは、 撮像索子チップを実装した二方向のみに端子を持つ撮像 素子実装基板と、レンズを保持するレンズ鏡枠とを有し ており、撮像素子実装基板とレンズ鏡枠は一体の構造体 に組み立てられ、レンズ鏡枠及び/又は撮像素子実装基 板は位置決めのための当て付け面を有し、レンズ鏡枠は 嵌め込みにより撮像素子実装基板と保止する保止部を有 し、撮像素子実装基板は保止部の嵌め込みを容易にする テーパー部を備えている。

【0006】本発明による更に別の撮影レンズユニットは、撮像素子チップを実装した二方向のみに端子を持つ 撮像素子実装基板と、レンズを保持するレンズ鏡枠とを 有しており、撮像素子実装基板とレンズ鏡枠は一体の構 造体に組み立てられ、撮像素子実装基板は撮像素子チップを封止するガラスを保持するガラス受けを有し、レンズ鏡枠は撮像素子実装基板の位置決めのための位置決め 面を有し、レンズ鏡枠は嵌め込みによりガラス受けと係 止する保止部を有している。

[0007]

【発明の実施の形態】以下、図面を参照しながら本発明 の実施の形態について説明する。

[第一の実施の形態] 第一の実施の形態による撮影レン ズユニットについて図1を用いて説明する。

【0008】撮影レンズユニット10は、レンズ12と、これを保持するレンズ鏡枠20と、撮像素子実装基板60とを有している。レンズ鏡枠20は、レンズ12の前方に張り出した部分22を有し、これはレンズ12に対して絞りとして作用する。つまり、レンズ鏡枠20は絞り部22を備えている。撮像素子実装基板60は、撮像素子チップ62とこれを支持する矩形形状の支持基板64と複数の端子66を有している。複数の端子66は矩形形状の支持基板64の一方の一組の対辺に位置している。つまり、撮像素子実装基板60は二方向のみに端子66を備えている。

【0009】レンズ鏡枠20は、図中のz方向に対する 撮像素子実装基板60の位置決め用の当て付け面26を 有している。撮像素子実装基板60は当て付け面26に 押し当てられることにより、z方向に関して位置決めさ れる。すなわち、押し当てにより、レンズ12と撮像素 子チップ62の間隔が自動的に所望の設計値に揃う。

【0010】また、レンズ鏡枠20は、図中のy方向に対する撮像素子実装基板60の位置決め用の当て付け面28を有している。撮像素子実装基板60は当て付け面28に押し当てられることにより、y方向に関して位置決めされる。

【0011】さらに、レンズ鏡枠20は、図中のx方向に対する撮像素子実装基板60の位置決め用の当て付け面30を有している。撮像素子実装基板60は当て付け面30に押し当てられることにより、x方向に関して位置決めされる。

【0012】このように、当て付け面28と当て付け面30に対する撮像素子実装基板60の押し当てによって、レンズ12の軸に直交する方向に関する撮像素子チップ62の位置が調整され、通常はその中心がレンズ12の軸上に配置される。位置決め終了後、撮像素子実装基板60は接着によりレンズ鏡枠20に固定される。

【0013】本実施の形態による撮影レンズユニット10は、部品が少なく非常にシンプルな形状をしているため小型に構成できるとともに、光学部品間の位置調整は撮像素子実装基板60をレンズ鏡枠20に当て付けるだけで完了するため製造コストを低く抑えられる。

【0014】[第二の実施の形態] 第二の実施の形態による撮影レンズユニットについて図2を用いて説明する。撮影レンズユニット10は、レンズ12と、これを保持するレンズ鏡枠20と、撮像素子実装基板60とを有している。レンズ鏡枠20は、レンズ12の前方に張り出した絞り部22を備えている。撮像素子実装基板60は、撮像素子チップ62とこれを支持する矩形形状の支持基板64と複数の端子66を有している。複数の端子66は矩形形状の支持基板64の一方の一組の対辺に位置している。

【0015】撮像素子実装基板60は回路基板68に取り付けられ、端子66は回路基板68に含まれる配線と電気的に接続されている。レンズ鏡枠20は四つの係止部32を有し、これは回路基板68に設けられた穴70に嵌め込まれる。撮像素子実装基板60と回路基板68は、係止部32の穴70への挿入を容易にするため、テーパー部72を有している。

【0016】レンズ鏡枠20は係止部32の周辺部に弾性を有しており、係止部32は六70への挿入に対して外側に広がって穴70を通り、穴70の通過後に図示される元の形に戻る。その結果、レンズ鏡枠20は回路基板68に対して脱落不能に取り付けられる。回路基板68は筺体等に固定されており、従って、撮影レンズユニット10は回路基板68によって支持される。

【0017】レンズ鏡枠20は、図中のz方向に対する 撮像素子実装基板60の位置決め用の当て付け面26を 有している。係止部32が縦方向にも弾性を有すること により、撮像素子実装基板60は当て付け面26に押し 当てられることで、z方向に関して位置決めされる。す なわち、押し当てにより、レンズ12と撮像素子チップ 62の間隔が自動的に所望の散計値に揃う。

【0018】また、レンズ鏡枠20は、図中のy方向に 対する撮像素子実装基板60の位置決め用の当て付け面 28を有している。撮像素子実装基板60は当て付け面 28に押し当てられることにより、y方向に関して位置 決めされる。

【0019】さらに、レンズ鏡枠20は、図中のx方向に対する撮像素子実装基板60の位置決め用の当て付け面30を有している。撮像素子実装基板60は当て付け面30に押し当てられることにより、x方向に関して位置決めされる。

【0020】このように、当て付け面28と当て付け面30に対する撮像素子実装基板60の押し当てによって、レンズ12の軸に直交する方向に関する撮像素子チップ62の位置が調整され、通常はその中心がレンズ12の軸上に配置される。

【0021】レンズ鏡枠20は、係止部32と当て付け面26が撮像素子実装基板60と回路基板68を挟み込むことにより、回路基板68に対して固定されるが、より好適には回路基板68に対するレンズ鏡枠の移動を防止するために接着される。

【0022】本実施の形態による撮影レンズユニット10は、部品が少なく非常にシンプルな形状をしているため小型に構成できるとともに、光学部品間の位置調整は撮像素子実装基板60をレンズ鏡枠20に当て付けるだけで完了するため製造コストを低く抑えられる。また、係止部32を回路基板68の穴70に挿入するだけでレンズ鏡枠20が回路基板68に取り付けられ、組み立て性に優れており、これは製造コストの低減にも寄与する

【0023】 [第三の実施の形態] 第三の実施の形態による撮影レンズユニットについて図3を用いて説明する。撮影レンズユニット10は、レンズ12と、これを保持するレンズ鏡枠20と、撮像素子実装基板60とを有している。レンズ鏡枠20は、レンズ12の前方に張り出した絞り部22を備えている。撮像素子実装基板60は、撮像素子チップ62とこれを支持する矩形形状の支持基板64と複数の端子66を有している。複数の端子66は矩形形状の支持基板64の一方の一組の対辺に位置している。

【0024】レンズ鏡枠20は、図中のz方向に対する 撮像素子実装基板60の位置決め用の当て付け面26を 有している。撮像素子実装基板60は当て付け面26に 押し当てられることにより、z方向に関して位置決めさ れる。すなわち、押し当てにより、レンズ12と撮像素 子チップ62の間隔が自動的に所望の設計値に揃う。

【0025】また、レンズ鏡枠20は、図中のy方向に対する撮像素子実装基板60の位置決め用の当て付け面28を有している。撮像素子実装基板60は当て付け面28に押し当てられることにより、y方向に関して位置決めされる。

【0026】さらに、レンズ鏡枠20は、図中のx方向に対する撮像素子実装基板60の位置決め用の当て付け面30を有している。撮像素子実装基板60は当て付け

面30に押し当てられることにより、x方向に関して位置決めされる。

【0027】このように、当て付け面28と当て付け面30に対する撮像素子実装基板60の押し当てによって、レンズ12の軸に直交する方向に関する撮像素子チップ62の位置が調整され、通常はその中心がレンズ12の軸上に配置される。位置決め終了後、撮像素子実装基板60は接着によりレンズ鏡枠20に固定される。

【0028】撮像素子実装基板60は回路基板68に取り付けられ、端子66は回路基板68に含まれる配線と電気的に接続されている。回路基板68は筺体等に固定されており、従って、撮影レンズユニット10は回路基板68によって支持される。

【0029】レンズ鏡枠20は、レンズ12の前方に延びている円筒形状の延出部24を有している。外装74には光学的に透明な窓部76が設けられており、窓部76は内側に突出した円筒部78を有している。窓部76の円筒部78の内径はレンズ鏡枠20の延出部24を取り囲んでいる。この円筒部78と延出部24の形状と配置は、塵や埃等の延出部24の内側への侵入を低減し、レンズ12の汚れ防止に貢献する。

【0030】本実施の形態による撮影レンズユニット10は、部品が少なく非常にシンプルな形状をしているため小型に構成できるとともに、光学部品間の位置調整は撮像素子実装基板60をレンズ鏡枠20に当て付けるだけで完了するため製造コストを低く抑えられる。

【0031】[第四の実施の形態] 第四の実施の形態による撮影レンズユニットについて図4を用いて説明する。撮影レンズユニット10は、レンズ12と、これを保持するレンズ鏡枠20と、撮像素子実装基板60とを有している。レンズ鏡枠20は、レンズ12の前方に張り出した絞り部22を備えている。撮像案子実装基板60は、撮像素子チップ62とこれを支持する矩形形状の支持基板64と複数の端子66を有している。複数の端子66は矩形形状の支持基板64の一方の一組の対辺に位置している。

【0032】レンズ12と撮像素子チップ62の間にはIRカットコーティングガラス80が配置されている。IRカットコーティングガラス80は、ガラス受け82を介して、支持基板64に固定されている。撮像素子チップ62は、IRカットコーティングガラス80とガラス受け82によって封止され、不所望な塵や埃等から保護される。

【0033】レンズ鏡枠20は、図中のz方向に対する 撮像素子実装基板60の位置決め用の当て付け面26を 有している。撮像案子実装基板60は当て付け面26に 押し当てられることにより、z方向に関して位置決めさ れる。すなわち、押し当てにより、レンズ12と撮像索 子チップ62の間隔が自動的に所望の設計値に揃う。 【0034】また、レンズ鏡枠20は、図中のy方向に対する撮像素子実装基板60の位置決め用の当て付け面28を有している。撮像素子実装基板60は当て付け面28に押し当てられることにより、y方向に関して位置決めされる。

【0035】さらに、レンズ鏡枠20は、図中のx方向に対する撮像素子実装基板60の位置決め用の当て付け面30を有している。撮像素子実装基板60は当て付け面30に押し当てられることにより、x方向に関して位置決めされる。

【0036】このように、当て付け面28と当て付け面30に対する撮像素子実装基板60の押し当てによって、レンズ12の軸に直交する方向に関する撮像素子チップ62の位置が調整され、通常はその中心がレンズ12の軸上に配置される。位置決め終了後、撮像素子実装基板60は接着によりレンズ鏡枠20に固定される。

【0037】本実施の形態による撮影レンズユニット10は、部品が少なく非常にシンプルな形状をしているため小型に構成できるとともに、光学部品間の位置調整は撮像素子実装基板60をレンズ鏡枠20に当て付けるだけで完了するため製造コストを低く抑えられる。IRカットコーティングガラス80はガラス受け82を介して支持基板64に固定されており、これはレンズ鏡枠20の内部の余っている空間を利用して設けられているため、これを設けることによってユニットの大型化を招いていない。

【0038】 [第五の実施の形態] 第五の実施の形態による撮影レンズユニットについて図5を用いて説明する。撮影レンズユニット10は、レンズ12と、これを保持するレンズ鏡枠20と、撮像素子実装基板60とを有している。レンズ鏡枠20は、レンズ12の前方に張り出した絞り部22を備えている。撮像素子実装基板60は、撮像素子チップ62とこれを支持する矩形形状の支持基板64と複数の端子66を有している。複数の端子66は矩形形状の支持基板64の一方の一組の対辺に位置している。

【0039】レンズ12と撮像素子チップ62の間にはIRカットコーティングガラス80が配置されている。IRカットコーティングガラス80は、ガラス受け82を介して、支持基板64に固定されている。撮像素子チップ62は、IRカットコーティングガラス80とガラス受け82によって封止され、不所望な塵や埃等から保護される。

【0040】撮像素子実装基板60は回路基板68に取り付けられ、端子66は回路基板68に含まれる配線と電気的に接続されている。レンズ鏡枠20は四つの係止部32を有し、これは回路基板68に設けられた穴70に嵌め込まれる。撮像素子実装基板60と回路基板68は、係止部32の穴70への挿入を容易にするため、テーパー部72を有している。

【0041】レンズ鏡枠20は係止部32の周辺部に弾性を有しており、係止部32は穴70への挿入に対して外側に広がって穴70を通り、穴70の通過後に図示される元の形に戻る。その結果、レンズ鏡枠20は回路基板68に対して脱落不能に取り付けられる。回路基板68は筐体等に固定されており、従って、撮影レンズユニット10は回路基板68によって支持される。

【0042】レンズ鏡枠20は、図中のz方向に対する 撮像素子実装基板60の位置決め用の当て付け面26を 有している。係止部32が縦方向にも弾性を有すること により、撮像素子実装基板60は当て付け面26に押し 当てられることで、z方向に関して位置決めされる。す なわち、押し当てにより、レンズ12と撮像素子チップ 62の間隔が自動的に所望の設計値に揃う。

【0043】また、レンズ鏡枠20は、図中のy方向に対する撮像素子実装基板60の位置決め用の当て付け面28を有している。撮像素子実装基板60は当て付け面28に押し当てられることにより、y方向に関して位置決めされる。

【0044】さらに、レンズ鏡枠20は、図中のx方向に対する撮像素子実装基板60の位置決め用の当て付け面30を有している。撮像素子実装基板60は当て付け面30に押し当てられることにより、x方向に関して位置決めされる。

【0045】このように、当て付け面28と当て付け面30に対する撮像素子実装基板60の押し当てによって、レンズ12の軸に直交する方向に関する撮像素子チップ62の位置が調整され、通常はその中心がレンズ12の軸上に配置される。

【0046】レンズ鏡枠20は、係止部32と当て付け面26が撮像素子実装基板60と回路基板68を挟み込むことにより、回路基板68に対して固定されるが、より好適には回路基板68に対するレンズ鏡枠の移動を防止するために接着される。

【0047】本実施の形態による撮影レンズユニット10は、部品が少なく非常にシンプルな形状をしているため小型に構成できるとともに、光学部品間の位置調整は撮像素子実装基板60をレンズ鏡枠20に当て付けるだけで完了するため製造コストを低く抑えられる。また、係止部32を回路基板68の穴70に挿入するだけでレンズ鏡枠20が回路基板68に取り付けられ、組み立て性に優れており、これは製造コストの低減にも寄与する。IRカットコーティングガラス80はガラス受け82を介して支持基板64に固定されており、これはレンズ鏡枠20の内部の余っている空間を利用して設けられているため、これを設けることによってユニットの大型化を招いていない。

【0048】 [第六の実施の形態] 第六の実施の形態に よる撮影レンズユニットについて図6を用いて説明す る。撮影レンズユニット10は、レンズ12と、これを 保持するレンズ鏡枠20と、撮像素子実装基板60とを有している。レンズ鏡枠20は、レンズ12の前方に張り出した絞り部22を備えている。撮像素子実装基板60は、撮像素子チップ62とこれを支持する矩形形状の支持基板64と複数の端子66を有している。複数の端子66は矩形形状の支持基板64の一方の一組の対辺に位置している。

【0049】レンズ12と撮像素子チップ62の間にはIRカットコーティングガラス80が配置されている。IRカットコーティングガラス80は、ガラス受け82を介して、支持基板64に固定されている。撮像素子チップ62は、IRカットコーティングガラス80とガラス受け82によって封止され、不所望な塵や埃等から保護される。

【0050】レンズ鏡枠20は、図中のz方向に対する 撮像素子実装基板60の位置決め用の当て付け面26を 有している。係止部32が縦方向にも弾性を有すること により、撮像素子実装基板60は当て付け面26に押し 当てられることで、z方向に関して位置決めされる。す なわち、押し当てにより、レンズ12と撮像素子チップ 62の間隔が自動的に所望の設計値に揃う。

【0051】また、レンズ鏡枠20は、図中のy方向に対する撮像素子実装基板60の位置決め用の当て付け面28を有している。撮像素子実装基板60は当て付け面28に押し当てられることにより、y方向に関して位置決めされる。

【0052】さらに、レンズ鏡枠20は、図中のx方向に対する撮像素子実装基板60の位置決め用の当て付け面30を有している。撮像素子実装基板60は当て付け面30に押し当てられることにより、x方向に関して位置決めされる。

【0053】このように、当て付け面28と当て付け面30に対する撮像素子実装基板60の押し当てによって、レンズ12の軸に直交する方向に関する撮像素子チップ62の位置が調整され、通常はその中心がレンズ12の軸上に配置される。位置決め終了後、撮像素子実装基板60は接着によりレンズ鏡枠20に固定される。

【0054】撮像素子実装基板60は回路基板68に取り付けられ、端子66は回路基板68に含まれる配線と電気的に接続されている。回路基板68は筐体等に固定されており、従って、撮影レンズユニット10は回路基板68によって支持される。

【0055】レンズ鏡枠20は、レンズ12の前方に延びている円筒形状の延出部24を有している。外装74には光学的に透明な窓部76が設けられており、窓部76は内側に突出した円筒部78を有している。窓部76の円筒部78の内径はレンズ鏡枠20の延出部24の外径よりも大きく、窓部76の円筒部78はレンズ鏡枠20の延出部24を取り囲んでいる。この円筒部78と延出部24の形状と配置は、塵や埃等の延出部24の内側

への侵入を低減し、レンズ12の汚れ防止に貢献する。 【0056】本実施の形態による撮影レンズユニット10は、部品が少なく非常にシンプルな形状をしているため小型に構成できるとともに、光学部品間の位置調整は撮像素子実装基板60をレンズ鏡枠20に当て付けるだけで完了するため製造コストを低く抑えられる。IRカットコーティングガラス80はガラス受け82を介して支持基板64に固定されており、これはレンズ鏡枠20の内部の余っている空間を利用して設けられているため、これを設けることによってユニットの大型化を招いていない。

【0057】 [第七の実施の形態] 第七の実施の形態による撮影レンズユニットについて図7を用いて説明する。撮影レンズユニット10は、レンズ12と、これを保持するレンズ鏡枠20と、撮像素子実装基板60とを有している。レンズ鏡枠20は、レンズ12の前方に張り出した絞り部22を備えている。撮像素子実装基板60は、撮像素子チップ62とこれを支持する矩形形状の支持基板64と複数の端子66を有している。複数の端子66は矩形形状の支持基板64の一方の一組の対辺に位置している。

【0058】レンズ12と撮像素子チップ62の間にはIRカットコーティングガラス80が配置されている。IRカットコーティングガラス80は、ガラス受け82を介して、支持基板64に固定されている。撮像素子チップ62は、IRカットコーティングガラス80とガラス受け82によって封止され、不所望な塵や埃等から保護される。

【0059】撮像素子実装基板60は保持基板84を介して回路基板68に取り付けられ、端子66は回路基板68に含まれる配線と電気的に接続されている。レンズ鏡枠20は四つの係止部32を有し、これは回路基板68に設けられた穴70に嵌め込まれる。撮像素子実装基板60と回路基板68は、係止部32の穴70への挿入を容易にするため、テーパー部72を有している。

【0060】レンズ鏡枠20は係止部32の周辺部に弾性を有しており、係止部32は穴70への挿入に対して外側に広がって穴70を通り、穴70の通過後に図示される元の形に戻る。その結果、レンズ鏡枠20は回路基板68に対して脱落不能に取り付けられる。回路基板68は筐体等に固定されており、従って、撮影レンズユニット10は回路基板68によって支持される。

【0061】レンズ鏡枠20は、図中のz方向に対する 撮像素子実装基板60の位置決め用の当て付け面26を 有している。係止部32が縦方向にも弾性を有すること により、撮像素子実装基板60は当て付け面26に押し 当てられることで、z方向に関して位置決めされる。す なわち、押し当てにより、レンズ12と撮像素子チップ 62の間隔が自動的に所望の設計値に揃う。

【0062】また、レンズ鏡枠20は、図中のy方向に

対する撮像素子実装基板60の位置決め用の当て付け面28を有している。撮像素子実装基板60は当て付け面28に押し当てられることにより、y方向に関して位置決めされる。

【0063】さらに、レンズ鏡枠20は、図中のx方向に対する撮像素子実装基板60の位置決め用の当て付け面30を有している。撮像素子実装基板60は当て付け面30に押し当てられることにより、x方向に関して位置決めされる。

【0064】このように、当て付け面28と当て付け面30に対する撮像素子実装基板60の押し当てによって、レンズ12の軸に直交する方向に関する撮像素子チップ62の位置が調整され、通常はその中心がレンズ12の軸上に配置される。

【0065】レンズ鏡枠20は、係止部32と当て付け面26が撮像素子実装基板60と保持基板84と回路基板68を挟み込むことにより、回路基板68に対して固定されるが、より好適には回路基板68に対するレンズ鏡枠の移動を防止するために接着される。

【0066】本実施の形態による撮影レンズユニット10は、部品が少なく非常にシンプルな形状をしているため小型に構成できるとともに、光学部品間の位置調整は撮像素子実装基板60をレンズ鏡枠20に当て付けるだけで完了するため製造コストを低く抑えられる。また、係止部32を回路基板68の穴70に挿入するだけでレンズ鏡枠20が回路基板68に取り付けられ、組み立て性に優れており、これは製造コストの低減にも寄与する。IRカットコーティングガラス80はガラス受け82を介して支持基板64に固定されており、これはレンズ鏡枠20の内部の余っている空間を利用して設けられているため、これを設けることによってユニットの大型化を招いていない。

【0067】 [第八の実施の形態] 第八の実施の形態として、上述した実施の形態の撮影レンズユニットに適用可能なレンズ鏡枠20に対する撮像素子実装基板60の位置決め構造について図8を用いて説明する。図8

(A) は本実施の形態の一例を示しており、図8(B) は本実施の形態の別の例を示しており、両者は共に同じ技術思想に立脚している。

【0068】図8(A)において、撮像素子実装基板60は、端子66の無い一方の辺に二つの突起86を有し、端子66の有る一方の辺に一つの突起88を有している。二つの突起86がレンズ鏡枠20の当て付け面30に押し当てられることにより、撮像素子実装基板60のx方向に関する位置決めが成され、また、突起88がレンズ鏡枠20の当て付け面28に押し当てられることにより、撮像素子実装基板60のy方向に関する位置決めが成される。

【0069】撮像素子実装基板60は突起86のおかげで当て付け面30に点で接触し、また、突起88のおか

げで当て付け面28に点で接触する。つまり、位置決め 精度は、突起86と当て付け面30および突起86と当 て付け面28の加工精度で決まり、特に撮像素子実装基 板60は突起86と突起88が高い寸法精度を持ちさえ すればよいので加工の制約が緩く、製造コストを低く抑 えることができる。

【0070】図8 (B)において、レンズ鏡枠20は、 撮像素子実装基板60の端子66を持たない一方の面9 0に対向する二つの突起34と、撮像素子実装基板60 の端子66を持つ一方の面92に対向する一つの突起3 6を有している。撮像素子実装基板60の面90が二つ の突起34に押し当てられることにより、撮像素子実装 基板60のx方向に関する位置決めが成され、また、撮 像素子実装基板60の面92が突起36に押し当てられることにより、撮像素子実装基板60の面92が突起36に押し当てられることにより、撮像素子実装基板60のy方向に関する 位置決めが成される。

【0071】撮像素子実装基板60とレンズ鏡枠20 は、突起34と突起36の存在のため、互いに点で接触 する。従って、位置決め精度は、突起34と面90およ び突起36と面92の加工精度で決まり、特にレンズ鏡 枠20は突起34と突起36が高い寸法精度を持ちさえ すればよいので加工の制約が緩く、製造コストを低く抑 えることができる。

【0072】 [第九の実施の形態] 第九の実施の形態として、上述した実施の形態の撮影レンズユニットに適用可能なレンズ鏡枠20に対する撮像素子実装基板60の位置決め構造について図9と図10を用いて説明する。図9は本実施の形態の一例を示しており、図10は本実施の形態の別の例を示しており、両者は共に同じ技術思想に立脚している。

【0073】図9において、撮像素子実装基板60は、レンズ鏡枠20の当て付け面26に対向する位置に三つの突起94を有している。三つの突起94がレンズ鏡枠20の当て付け面26に押し当てられることにより、撮像素子実装基板60のz方向に関する位置決めが成される。

【0074】また、レンズ鏡枠20は、弾性変形し得る 係止部32の各々の内側に突起34を有している。これ ちの突起34が撮像素子実装基板60の電極を持たない 端面90に押し当てられることで、撮像素子実装基板6 0のx方向に関する位置決めが成される。

【0075】さらに、操像素子実装基板60は端子66を持つ一方の面92に突起96を有している。突起96がレンズ鏡枠20の当て付け面28に押し当てられることにより、操像素子実装基板60のy方向に関する位置決めが成される。

【0076】撮像素子実装基板60とレンズ鏡枠20 は、突起94と突起96と突起34の存在のため、互い に点で接触する。従って、位置決め精度は、突起94と 当て付け面26および突起96と当て付け面28および 突起34と面90の加工精度で決まり、突起34と突起96と突起96が高い寸法精度を持ちさえすればよいので加工の制約が綴く、製造コストを低く抑えることができる。

【0077】第九の実施の形態の別の例として、上述した実施の形態の撮影レンズユニットに適用可能なレンズ 鏡枠20に対する撮像素子実装基板60の位置決め構造 について図10を用いて説明する。

【0078】レンズ鏡枠20は、撮像素子実装基板60を保持するための弾性変形し得る複数の保止部32を有している。また、レンズ鏡枠20は、撮像素子実装基板60の上面94に対向する複数の突起38を有している。撮像素子実装基板60は、その上面94が突起38に押し当てられることにより、撮像素子実装基板60のz方向に関する位置決めが成される。

【0079】レンズ鏡枠20は、撮像素子実装基板60 の端子66を持つ一方の面92に対向する一つの突起3 6を有している。撮像素子実装基板60の面92が突起36に押し当てられることにより、撮像素子実装基板6 0のy方向に関する位置決めが成される。

【0080】撮像素子実装基板60は、電極を持たない 端面90に三つの突起86を有している。突起86は、 一方の端面90aに二つ、他方の端面90bに一つ設け られている。端面90aの突起86がレンズ鏡枠20の 当て付け面30に押し当てられることで、撮像素子実装 基板60の×方向に関する位置決めが成される。

【0081】係止部32は肉薄部40を有していてもよい。このようにすることで、レンズ鏡枠20は、端面90bの突起86と接する部分に、バネ性を高めるための肉薄部を有するため、肉薄部40を持つ保止部32は、他の保止部32に比べて弾性変形し易くなっている。従って、肉薄部40を持つ保止部32は弾性変形し易いため、組み立てが容易に行なえる。

【0082】撮像素子実装基板60とレンズ鏡枠20は、突起36と突起38と突起86の存在のため互いに点で接触する。従って、位置決め精度は、突起36と面92および突起38と上面94および突起86と当て付け面30の加工精度で決まり、突起36と突起38と突起86が高い寸法精度を持ちさえすればよいので加工の制約が緩く、製造コストを低く抑えることができる。また、肉薄部40を持つ係止部32は弾性変形し易いため、組み立てが容易に行なえる。

【0083】[第十の実施の形態]第十の実施の形態として、上述した実施の形態の撮影レンズユニットに適用可能なレンズ鏡枠20に対する撮像素子実装基板60の位置決め構造について図11を用いて説明する。

【0084】撮像素子実装基板60は回路基板68に取り付けられる。レンズ鏡枠20は複数の係止部32を有し、これは回路基板68に設けられた穴70に嵌め込まれる。係止部32は、縦方向の弾性をより確実にするた

めにコの字状に折れ曲がった屈曲部42を有し、この屈曲部42は係止部32のパネ性を高めている。係止部32は穴70への挿入に対して外側に広がって穴70を通り、穴70の通過後に図示される元の形に戻り、レンズ鏡枠20を回路基板68から脱落不能に保持する。

4) 4) 🚡

【0085】レンズ鏡枠20は、撮像素子実装基板60 の上面94に対向する複数の突起38を有している。撮像素子実装基板60は、その上面94が突起38に押し当てられることにより、撮像素子実装基板60のz方向に関する位置決めが成される。

【0086】撮像素子実装基板60は、電極を持たない 端面90に突起86を有しており、この突起86がレンズ鏡枠20の当て付け面30に押し当てられることで、 撮像素子実装基板60のx方向に関する位置決めが成される。

【0087】撮像素子実装基板60の位置決め精度は、 突起38と上面94および突起86と当て付け面30の 加工精度で決まり、突起36と突起38と突起86が高 い寸法精度を持ちさえすればよいので加工の制約が緩 く、製造コストを低く抑えることができる。また、係止 部32は、屈曲部42によってバネ性が高められてお り、弾性変形し易いため、組み立てが容易に行なえる。

【0088】 [第十一の実施の形態] 第十一の実施の形態による撮影レンズユニットは撮像素子実装基板60に容易に鏡枠が取り付けられる形態でありながら回路基板68に何ら影響を及ぼさない実施の形態を示しており、これについて図12を用いて説明する。図12(A)は撮影レンズユニットの部分断面平面と部分断面側面を示しており、図12(B)は図12(A)中のB-B線におけるレンズ鏡枠の断面を示し、図12(C)は図12(A)中のC-C線におけるレンズ鏡枠の断面を示し、図12(D)は図12(A)中のC-C線におけるレンズ鏡枠と撮像素子実装基板の断面を拡大して示している。

【0089】撮影レンズユニットは、レンズを保持するレンズ鏡枠20と、撮像素子実装基板60とを有している。レンズ鏡枠20は、撮像素子実装基板60への取り付け構造を除いては、上述した第一ないし第七の実施の形態のいずれかのレンズ鏡枠と同じ形状を有している。

【0090】撮像素子実装基板60は、撮像素子チップ62とこれを支持する矩形形状の支持基板64と複数の端子66を有している。複数の端子66は矩形形状の支持基板64の一方の一組の対辺に位置している。

【0091】撮像素子チップ62の上方にはIRカットコーティングガラス80が配置されている。IRカットコーティングガラス80は、ガラス受け82を介して、支持基板64に固定されている。ガラス受け82はテーパー部102を有している。

【0092】レンズ鏡枠20は、横方向用の位置決め面 112と縦方向用の位置決め面114を備えた位置決め 部110と、弾性変形し得る弾性部122を備えた係止 部120を有し、弾性部122はガラス受け82のテー パー部102に当接する爪部124を有している。

【0093】レンズ鏡枠20は、ガラス受け82に嵌め込まれることによって、撮像素子実装基板60に取り付けられる。レンズ鏡枠20のガラス受け82への押し込みに対して、保止部120の爪部124は外側に広がってレンズ受け82の最大幅部を通過した後、テーパー部102に当接する。レンズ鏡枠20は撮像素子実装基板60に対して脱落不能に取り付けられる。

【0094】左側の係止部120の幅A1は右側の係止部120の幅A2よりも小さく設定されており、このため保止部120が元の形状に戻ろうとする復元力は右側の方が大きく、このためレンズ受け82に取り付けられたレンズ鏡枠20は右方向へ付勢される。

【0095】レンズ鏡枠20は、位置決め部110の横 方向用の位置決め面112はガラス受け82の端面10 4に当たることで横方向の位置決めが成され、縦方向用 の位置決め面114が支持基板64の上面65に当たる ことで縦方向の位置決めが成される。

【0096】本実施の形態の撮影レンズユニットでは、レンズ鏡枠20がIRカットコーティングガラス80を支持するガラス受け82に取り付けられるため、レンズ鏡枠20を非常に小さく構成することができる。従って、上述した第一ないし第七の実施の形態の撮影レンズユニットに比べて更に小型の撮影レンズユニットを実現できる。本発明は、上述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で行なわれるすべての実施を含む。

[0097]

【発明の効果】本発明によれば、小型で安価な撮影レン ズユニットが提供される。

【図面の簡単な説明】

【図1】本発明の第一の実施の形態による撮影レンズユニットを示している。

【図2】本発明の第二の実施の形態による撮影レンズユニットを示している。

【図3】本発明の第三の実施の形態による撮影レンズユニットを示している。

【図4】本発明の第四の実施の形態による撮影レンズユニットを示している。

【図5】本発明の第五の実施の形態による撮影レンズユニットを示している。

【図 6】 本発明の第六の実施の形態による撮影レンズユニットを示している。

【図7】本発明の第七の実施の形態による撮影レンズユニットを示している。

【図8】本発明の第八の実施の形態におけるレンズ鏡枠 に対する撮像素子実装基板の位置決め構造を示してい る。 【図9】本発明の第九の実施の形態におけるレンズ鏡枠 に対する撮像素子実装基板の位置決め構造を示してい る。

【図10】本発明の第九の実施の形態の別の例における レンズ鏡枠に対する撮像素子実装基板の位置決め構造を 示している。

【図11】本発明の第十の実施の形態におけるレンズ鏡 枠に対する撮像素子実装基板の位置決め構造を示してい る。

【図12】本発明の第十一の実施の形態による撮影レンズユニットを示している。

【符号の説明】

- 10 撮影レンズユニット
- 12 レンズ
- 20 レンズ鏡枠
- 26 当て付け面
- 28 当て付け面
- 30 当て付け面
- 60 撮像素子実装基板
- 62 撮像素子チップ
- 6 6 端子

【図1】

【図2】

【図11】

【図3】

【図4】

【図5】

【図6】

【図7】

【8図】

【図9】

【図10】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.