Deterministic Finite Automaton

Finite Automaton can be classified into two types -

- Deterministic Finite Automaton (DFA)
- Non-deterministic Finite Automaton (NDFA / NFA)

Deterministic Finite Automaton (DFA)

In DFA, for each input symbol, one can determine the state to which the machine will move. Hence, it is called **Deterministic Automaton**. As it has a finite number of states, the machine is called **Deterministic Finite Machine** or **Deterministic Finite Automaton**.

Formal Definition of a DFA

A DFA can be represented by a 5-tuple (Q, \sum , δ , q₀, F) where –

- Q is a finite set of states.
- ∑ is a finite set of symbols called the alphabet.
- δ is the transition function where δ : $Q \times \sum \rightarrow Q$
- q_0 is the initial state from where any input is processed $(q_0 \in Q)$.
- **F** is a set of final state/states of Q ($F \subseteq Q$).

Graphical Representation of a DFA

A DFA is represented by digraphs called state diagram.

- The vertices represent the states.
- The arcs labeled with an input alphabet show the transitions.
- The initial state is denoted by an empty single incoming arc.
- The final state is indicated by double circles.

Example

Let a deterministic finite automaton be \rightarrow

- Q = {a, b, c},
- $\sum = \{0, 1\},$
- $q_0 = \{a\},$
- F = {c}, and

Transition function δ as shown by the following table –

Present State	Next State for Input 0	Next State for Input 1
а	а	b
b	С	а
С	b	С

Its graphical representation would be as follows -

