ARITHMETIC Chapter 4

Y+X=

MAGNITUDES PROPORCIONALES II

¿CÓMO PODRÍAMOS OBTENER LA RESPUESTA CORRECTA?

REGLA DE TRES

Una de las aplicaciones de proporcionalidad más antigua es la famosa regla de tres que no es otra cosa más que el resultado de comparar las medidas de dos o más magnitudes.

REGLA DE TRES SIMPLE:

Ejemplo aplicativo 1

Se necesitan 3 bidones para depositar 36 litros de agua, ¿Cuántos bidones serán necesarios para depositar 144 litros de agua?

N° de bidones	3	n
Volumen (litros)	36	144

➤ La relación entre cantidad de bidones y volumen es directamente proporcional, puesto que, el doble de bidones tiene el doble de litros, el triple de bidones es el triple de litros, y así ...

Entonces se establece la igualdad

Ejemplo aplicativo 2

Si 3 grifos llenan una piscina en 24 horas, ¿Cuánto se tardaría en llenar la piscina si hubiese 8 grifos funcionando al mismo ritmo?

Las magnitudes que intervienen son : número de grifos y tiempo en horas.

N° de grifos	3	8
Tiempo (horas)	24	×

Entonces se establece la igualdad

$$3.24 = 8.x$$

 $X = 9$

.: Se necesitarán 9 horas.

REGLA DE TRES COMPUESTA:

Ejemplo aplicativo

Cinco hornos industriales consumen 30 toneladas de carbón en 20 días; 3 hornos más consumirán en 25 días un cantidad de toneladas de carbón igual a?

- Cuando participan en una problema más de dos magnitudes, determinamos la relación existente entre ellas, dos a dos, tomando una como referencia.
- > Entonces se establecen las relaciones

$$N^{\circ}$$
 de hornos x N° de días = Cte.

T de carbón

> Reemplazando y mediante la relación

N° de hornos	5	8
T de carbón	30	X
N° de días	20	25

$$\frac{5.20}{30} = \frac{8.25}{x}$$

X = 60 toneladas

.: Se necesitan 60 toneladas

En un fuerte hay 1500 hombres provistos de víveres para 6 meses. ¿Cuántos hombres habrá que despedir, para que los víveres duren dos meses más, dando a cada hombre la misma ración?

RESOLUCIÓN

Nos piden:

$$1500 - 1125 = 375$$

∴ Habrá que despedir 375 hombres.

 N° de hombres x N° de meses = Cte.

$$1500.6 = X.8$$
 $1125 = X$

Un obrero pensó hacer una obra en 15 días, pero tardó 6 días más por trabajar 2 horas menos al día. ¿Cuántas horas trabajo por día?

RESOLUCIÓN

N° de días x N° de horas diarias = Cte.

15 .
$$X = 21$$
 . $(X - 2)$
15 . $X = 21$.

Nos piden:

$$X - 2 = 7 - 2 = 5$$

: Trabajó 5 horas diarias.

Un caballo amarrado con una cuerda de 8 metros de longitud emplea 32 días para comer la hierba que está a su alcance. ¿Cuántos días más podrá comer si es amarrado con una cuerda de 10 metros de longitud?

RESOLUCIÓN

Área circular N° de días

$$\frac{\text{Área circular}}{\text{N}^{\circ} \text{ de días}} = \text{Cte.}$$

$$\frac{8^2 \pi}{32} = \frac{10^2 \pi}{X}$$

$$2.X = 100 \rightarrow X = 50 \text{ días}$$

Nos piden:

$$50 - 32 = 18 días$$

.: Podrá comer 18 días más.

RPTA: 18

Fabricio es el triple de rápido que Sebastián y la mitad que Natalia. Si Fabricio hace una obra en 40 días, ¿en cuánto tiempo harán la obra los tres juntos?

RESOLUCIÓN

Sea la rapidez de:

Sebastián = 1 Fabricio = 3 Natalia = 6

Luego:

RPTA:

Si en 90 litros de agua azucarada existen 5 libras de azúcar, ¿cuántos litros de agua pura se debe dejar evaporar para que por cada 3 litros de la mezcla contenga ¼ de libra de azúcar?

RESOLUCIÓN

Sea x la cantidad de agua a evaporar:

$$\frac{90 - x}{5} = \frac{3}{1/4} \rightarrow 90 - x = 60$$
30 litros = X

Con 8 obreros se puede hacer una obra en 20 días. Con 10 obreros 4 veces más rápidos que los anteriores, ¿en cuántos días harán una obra 9 veces más difícil que la anterior?

RESOLUCIÓN

Sea x la cantidad de días :

$$\frac{20.8.1}{1} = \frac{x.10.5}{10}$$

$$\to 20.8 = x.5$$

$$32 \text{ días} = X$$

Una panadería puede suministrar 16 panes diarios a cada uno de sus 250 clientes por un periodo de 15 días. Si el número de clientes aumentara en 50 y el consumo diario se reduce a 10 panes cada uno, ¿para cuántos días alcanzará?

RESOLUCIÓN

N°clientes.días.N°panes = Cte.

Sea x la cantidad de días:

$$250.15.16 = 300.10.X$$

 $20 = X$

Se solicitó los servicios de la empresa constructora Graña y Montero para un proyecto de una obra de 15 m de ancho por 16 m de alto que se puede realizar con 9 obreros en 8 días trabajando 10 horas diarias. ¿En cuánto deberá variar el ancho de la obra para que 10 obreros, de 20% de rendimiento menos que los anteriores, hagan una obra que es el doble de dificultosa que la anterior y de 20 m de alto si se demoran 5 días trabajando 6 horas diarias?

Obra.(ancho.alto).dific
Obreros.días.h/d.rend = Cte.

Sea x el ancho de la nueva obra:

$$\frac{15.16.1}{9.8.10.100\%} = \frac{x.20.2}{10.5.6.80\%}$$
$$\rightarrow \frac{16}{48.100} = \frac{x}{50.12}$$

X = 2 m nuevo ancho

 \rightarrow El ancho varia (disminuye) = 15 - 2 = 13