Choice under Uncertainty: Aversion to Risk and the Utility Function

Eric Jacquier

Boston University Questrom School of Business

MF793: Statistics for Mathematical Finance

Fall 2021

Goal of this Note

This condensed note introduces decision making under uncertainty

- ▶ Some decisions only make sense taking into account risk preferences
- ► We introduce the utility function.
- ▶ .. the Certainty Equivalent and the risk premium
- ... show how this makes sense ... St Petersburg Paradox

Saint Petersburg Game - Bernoulli goes to the Casino

Game: Toss coin, count number of tosses needed before Heads comes up. Payoff:

Tails		Probability	Payoff	Profit
0	Н	1/2	$2^0 = 1$	1-f
1	TH	$1/2^2$	$2^1 = 2$	2 – <i>f</i>
2	TTH	$1/2^{3}$	$2^2 = 4$	4 – <i>f</i>
•			.:	
N		$1/2^{N+1}$	\$ 2 ^N	2^N-f

- ▶ What fee are you willing to pay for the right to play the game?
- ▶ Observed: Players never want to pay more than a few dollars ... but:

$$E(\widetilde{Payoff}) = \sum_{i=0}^{\infty} p(i) \times W_i = 1/2 \times 1 + 1/4 \times 2 + 1/4$$

Choice under Uncertainty

Expected Value is an incomplete description of the game

- ▶ ???
- Expected value of wealth does not account for risk
- ... investors are risk averse.

Utility of Rational Risk Averse Investors - Von Neumann & Morgenstern

- ▶ If Investors 1) can assess risky bets (gambles), and 2) are rational:
 - 1. Can compare gambles: $G_1 \succ G_2$ or $G_2 \succ G_1$
 - 2. Consistent comparisons: If $G_1 \succ G_2$ and $G_2 \succ G_3$, then $G_1 \succ G_3$
 - 3. and a few more such axioms of behavior ...
- ► Then:

Von Neumann and Morgenstern show that gambles can be ranked using expected value rule and a utility function: the concept of expected utility

$$\widetilde{G} \overset{p}{\underbrace{\qquad \qquad }} \S \text{ a} \qquad \qquad E[\widetilde{G}] = p \ a + (1 - p) \ b$$

$$E[U(\widetilde{G})] = p U(a) + (1 - p) U(b)$$

Choice under Uncertainty

Utility MUST be concave: Classic Logarithmic Utility

- ightharpoonup Risk Aversion: we prefer $E(\widetilde{W})$ to the risky wealth itself
 - \rightarrow Utility is concave: $U(E(\widetilde{W})) > E(U(\widetilde{W}))$
- ▶ The logarithm function is concave (.. has other desirable properties)
- ► Consider the risky wealth
- ► Then:

Certainty Equivalent and Risk Premium

► Certainty Equivalent:

Guaranteed amount CE\$ providing the same utility as the risky wealth Investor is indifferent between CE\$ for sure and the risky wealth

$$U(CE\$) = EU(\widetilde{W})$$

$$CE = U^{-1}(EU(\widetilde{W})) = e^{11.3691} =$$
\$ 86603

▶ Risk Premium:

$$RP = E(\widetilde{W}) - CE$$

$$RP = $13397$$

Log Utility vs Wealth

Increasing Risk Aversion

In finance, we will show how to to quantify risk aversion

Certainty Equivalent of the St Petersburg game

Back to Saint-Petersburg:

- ▶ Use U(W) = Log (W)
- ► Then EU(W) is:

$$EU(W) = \frac{1}{2}U(\$1) + \frac{1}{4}U(\$2) + \dots + \frac{1}{2^{N+1}}U(2^{N}) + \dots$$

$$= \log(2) \underbrace{\left[\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \dots + \frac{N}{2^{N+1}} + \dots\right]}_{1}$$

$$= \log(2) = U(CE) = 0.693$$

► Certainty Equivalent: