ALGEBRAIC GEOMETRY

A. Ricolfi

Homework 3 — **Due date**: 9 December 2022

Exercise 1. Let *A* be a ring, $\mathfrak{p} \subset A$ a prime ideal. Describe an explicit isomorphism of fields $\operatorname{Frac} A/\mathfrak{p} \cong \kappa(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p} \cdot A_{\mathfrak{p}}$.

Exercise 2. Let **k** be an algebraically closed field of characteristic different from 2. Show that any non-degenerate conic $C \subset \mathbb{P}^2_{\mathbf{k}}$ is isomorphic to \mathbb{P}^1 .

Exercise 3. Show that if $V \subset \mathbb{P}^n_{\mathbf{k}}$ is a hypersurface (the zero locus of a homogeneous polynomial $f \in \mathbf{k}[x_0, ..., x_n]$), then $\mathbb{P}^n_{\mathbf{k}} \setminus V$ is affine. (**Hint**: start solving the case $\deg f = 1$, then use the Veronese embedding).

Exercise 4. Let $Y \subset \mathbb{A}^n_k$ be an irreducible affine variety of dimension r, and let $H \subset \mathbb{A}^n_k$ be a hypersurface such that $Y \not\subset H$. Show that every irreducible component of $X = Y \cap H$ has dimension r - 1.

Exercise 5. Let $I \subset \mathbf{k}[x_1, ..., x_n]$ be an ideal which can be generated by r elements. Show that ever irreducible component of $V(I) \subset \mathbb{A}^n_k$ has dimension at least n-r.

Exercise 6. Let $X = D(f_1) \cup \cdots \cup D(f_r) \subset \mathbb{A}^n_k$ be a finite union of principal open sets $D(f_i) \subset \mathbb{A}^n_k$. Show that $\mathcal{O}_{\mathbb{A}^n_k}(X) = \mathbf{k}[x_1, \dots, x_n]_f$, where $f = \gcd(f_1, \dots, f_r)$. Show that that every affine open subset of \mathbb{A}^n_k is principal.

Exercise 7. Show that every irreducible closed subset $Z \subset \mathbb{P}^n_k$ of dimension n-1 is principal.

Exercise 8. Show that the complement $W = \mathbb{P}_{\mathbf{k}}^n \setminus U$ of an affine open subset $U \subset \mathbb{P}_{\mathbf{k}}^n$ has pure dimension n-1, and that U is principal.