AKSHAT	
C3-3	
1601012222	1

Roll No.: Experiment / assignment / tutorial No. _ Grade: AA/ AB / BB / BC / CC / CD / DD

	Module -1
	Love to the close of the control of
91	
	Determine the hardness of water sample prepared by dissolving 1:36 gram of Cally in 500 ml distilled water.
inh.sH	of city of order.
=>	Criven mass of Caclo = 1-36am
. 3	Criven mars of Cacl2 = 1-36gm
- 1	
	Volume of distilled water = 500 ml
-	Cach equivalent = 1.36 q = 2.729/L = 2720mg/
	500 ml
	mol· weight of caloz = 100
	mol weight of cacl = 111
day	and the state of t
ection !	1009 of calog = 1119 of caclz
	1009 of caco3 = 1119 of cacl2
	O and
	: 1 ppm of cac12 = 0.401 ppm of caco3
	:. 2720 ppm) of cacle = cacoz equivalent hardness
	:. Hardness = 2720 x 0.901 = 2450.72 ppm
	Later the part of the state of the best sold to have
82.	Convert 50° clarke of hardness in mg/L and of rench.
=>	Criven: Hardness = 50°cl
A-	0.07 cl = 1mg/L = 0.1° fr
137	:. Hardness in $mg/L = 50 = 714.286 mg/L$
	To the state of th
	: Hardness in fr = 50 x0.7 = 71.428°fr
	0.01
	K I Comoive Cellers of P.
ll ll	K.J. Somaiya College of Engineering, Vidyavihar (E), Mumbai - 400 077.

03.	Calculate the temperature landage of water en	1- 15 1
	Calculate the temporary hardness of water sample contains My Soy = 12ppm, Cacl2 = 11.1 ppm, MgCO3=1 Na(HCO3)= 13ppm.	e it it
=>	Constituent (PPm) M.F Cacoz equivalent	Hardness
	$M_{9.504} = 12 Plm$ $100/120 \times 12 = 10 Plm$	
	Cacly = 11.1 PPm 100/111 ×11.1 = 10PPm 100/84 × 16.8 = 20PPm	
T. CF	Na HCO3 = 13 ppm - "	-
	Temporary Hardness = 20 PPm	
94.	Calculate total Hardness of water sample if 50 m. sample sequired 12ml of M/2a EDTA solution for using EBT.	l water r titration
=7	Civen: concentration of EDTA = M/20 = 0.05 M Volume of EDTA required = 12 ml volume of water sample = 50 ml	
	1000 ml of 1M EDTA = 100 g of CaCo ₃ (Avagad ro	10. A
	1000 ml of 1 M EDTA = 100 g of CaCo3 (Avagad ro (Avagad ro mole i. 1 ml of 0.05 M EDTA = 100 X 0.05 mg of	cacoz.
	50 ml of Water Sample = 12 ml of 0.05 M Es	DTA
	1000 ml of water Sample = 12 x 5 = 60 mg of Co	a of Ca(0,
	Hardness of water Sample = 1200 ppm	

Batch: Roll No.: Experiment / assignment / tutorial No._ Grade: AA/ AB / BB / BC / CC / CD / DD

05.	I Calculate the amount of lime neguired for the
	Softening of 50,000 Liter of water sample having following impurities: mgCl2 = 1.9 ppm, Casoy = 6.8 ppm, Mg (Hcoz) = 7.3 ppm, Ca(Hcoz) = 4.05 ppm.
	following comparities: mallet = 1.9 ppm, casoy = 6. 8 ppm,
1.83	Mg (19coz) = 7.3 ppm; Ca(4coz) = 4.05 ppm.
1 4 4	The state of the s
=>	Impurities M.F cacoz equivalent Requirement
24.1	$M_{9} Cl_{2} = 1.9 pem$ $100/95$ $100/95 \times 1.95 = 2 pem$ $L+S$ $Ca Soy = 6.8 PPm$ $100/136$ $100/136 \times 6.8 = 5 pem$ S
	Ca soy = 6.8 PPm 100/136 100/136 × 6.8 = 5 PPm S
who to	Casoy = 6.8 PPm 100/136 100/136 x 6.8 = 5PPm S Mg(HCQ3)2 = 7.3PPm 100/146 100/146 x 7.3 = 5PPm 2L
m For	Ca(HCO2) = 4:05 ppm 100/162 100/162 × 4:05 = 25 ppm L
	The state of the s
	Line Required = 74 [Mg+2 permanent +2 Mg+2 temp + Ca+2 temp]
100 C X 1	× volume · to water
Sport .	100 × 100 0 × %. Purity.
	$= 74 \left[2 + 2(5) + (2.5)\right] \times 50000 = 74 \times 14.5 \times 50000$
	[00 ×1000 × 7. Purity.] = 74 [2+2(5)+(2.5)] ×50000 = 74 × 14.5 × 50000 100 × 1000 × 100 100 × 1000 × 100
	Lime required = 5.365 Kg
100	and the first property of the state of the s
The sales	Soda required = 106 [mgt 2 perm. + Cat 2 perm] XV. of wate
1	100 × 1000 × 7. Purity 1
	$= 106 \times 7 \times 50000 = 2.3109$ $100 \times 1000 \times 100$
	Soda required= 2.310 Kg
96:-	Calculate the amount of soda neguired for the
	Softening of 25,000 liter of water sample having
	following O impurities: Cacl = 1. 11 f.Pm , Mason = 68pm,
	Calculate the amount of soda nequired for the softening of 25,000 liter of water sample having following impurities: Cacl = 1. 11 f. Pm , Mg Soy = 6 ppm, Na (HCO3) = 7.3 flm, Ca (HCO3) = 4.05 ppm, CO2 = 22 ft
	HCL = 7.3 ppm.
	K.J. Somaiya College of Engineering, Vidyavihar (E), Mumbai - 400 077.

=>	Impurities	MF	cae coz equivalent	Require men
	Cacl2 = 1.11 PPm	100/111	100/111 × 1.11 = 1 Plw	S
	Mgsoy = 6 PPm	100/120	100/120 × 6= 5 PPm	Lts
	Na (4003) 2 = 7.3 PPm	100/84		
la Line	Ca(HCO3)2 = 4.05 PPm	100/162	100/162 × 4.05 = 2.5	PPm L
	CO2 = 22 PPm	100/44	100/44 x 22 = 50P	em L
	HCL = 7.3 PPm	100/36.5	100 (36.5 x 7.3 - 20	PPm L+S
	0		a to find the hand	
	Soda Required	= 106 [c at]	Perm, + mg+2 Perm-	H (03 - temp-
		100	×1000 x 1/. Purity	1
2000	To the grant could be			
1 3	= 106 [1+5-8	5.69+20] ~	25000= 106x1	7.31 ×250
	100 × 100	00 × 100	100 X	1000 × 1000
	County Taylor pr	A Standard		
	sold and a poll	Soda regui	red = 4.8572 Kg	
97.	UR2Cr207 S	solution rea	fluent water sample using with 30 ml wired 12 ml of the titration readi	0.05 N
=>	Criven: Volume	of water.	Sample = 50 ml	
	Volume	Of FAS in	blank titration (V1)	= 33 ml
	Volume	of FAS in	blank titration (v2)	= 12 ml.
4	Normal	A FAS =	0.05	
		0		pir rie
	COO = (NT-NS)	XNFAS X800C	$= (33-12) \times 0.0$	5 X 8000
	Volu	me of sample	50	
		0	CHATTE STORY	1
	C	OD = 168	PPm	
				Carried to
				Marie Consul

Batch: Roll No.: Experiment / assignment / tutorial No. __ Grade: AA/ AB / BB / BC / CC / CD / DD

08:-	Calculate the equivalence of cacoz hardness in degrees Charke for the Following:- O 7.4 mg of Mg(Noz)z in 750 ml distilled water.
=>	given: Mass of Mg (NO3)2 = 7.4 mg Volume of water = 750 ml Mg (NO3)2 equivalent = 7.4 mg / 750 ml = 9.87 mg/2.
	100 q d caco3 = 148 q f Mg (NO3)2 148 mg/L of Mg (NO3)2 d = 100 mg/L of caco3 9.87 mg/L of Mg (NO3)2 = Hardness in calco3
	Hardness = 9.87 x 100 = 6.669 mg/L 147 1mg/L = 0.07°cl.
	1 mg/L = 0.07°cl. 6.669 mg/L = Hardness in °cl Hardness = 6.669x0.07 = 0.467°cl.
09	if 200 Lit of 0.1 N HCL used in negentration of cation exchange column.
⇒	Hardness of water = 200L of 0.1N HCL Lequivalent of HCL = 1 equivalent of caco; 0.1 N of HCL - 0.1 N of caco;
	Hardness of water = $200 \times 0.1 \text{ N Caco}_3$ $= 20 \text{ L of 1 N Caco}_3$ $= 1 \text{ L of 1 N Caco}_3 = 50 \text{ g of Caco}_3$ $= 1000 \text{ g/L of Caco}_3 = 1000 \text{ g/L Caco}_3$
	Hardress = 1000000mg/L caco3 = 1000000 ppm
	K.J. Somaiya College of Engineering, Vidyavihar (E), Mumbai - 400 077.

010	Calculate the equivalence of Cacoz hardness if 150 (it of 10 % Nacl solution in nequired for negeneration of zeolite Column.
=>	given: Volume of Nacl solution = 1506 % purity = 10%
	150 L of 10%. Nacl = 150 × 10 = 15g = 15000 mg
	58.5 mg of Nacl = 50 mg of Calog. 15000 mg of Nacl = Hardness of Calog.
	Hardness = 15000 x50 = 128 20.513 PPm 585
911.	Calculate the equivalence of caco, hardness of EDTA Solution if 50 ml of Standard hard water Usolutio (1.11g Cach in lower) required 11 ml of EDTA Solution for titration.
=>	1000 ml & S.H.W Solution = 1.11 a Cacl2 1000 ml of S.H.W Solution = 1 a Caco3 (100 g Caco3 = 111g (acl2) :. 1ml of SHW Solution = 1 mg of Caco3
	: 50 ml of SHW Solution = 50 mg of Cacog
	50 ml of SHW Solution = 21 ml of EDTA : 21 ml of EDTA = 50 mg of cacos
	: Iml & EDTA - 50 mg of caco3 = 2.381 mg caco
	: 1000 ml of EDTA = 2381 mg of caco; : Hardness of EDTA = 2381 ppm.
	Cacoz equivalent hardness of the EDTA Solution = 2381 Ppm.

Roll No .: Experiment / assignment / tutorial No. __ Grade: AA/ AB / BB / BC / CC / CD / DD

	TRUST Signature of the Faculty In-Charge with date
	MODULE -3
01.	Calculate the Cycv of coal of its composition is as follows: C=82%, H=5%, S=3%, N=2%, Ash=Remaining
=7	given => $C = 82\%$. $H = 5\%$ $S = 3\%$ $N = 2\%$ Ash=Remaining By Dulong's formula
	$Gcv = \frac{1}{100} \times \left[8080 \times C + 34500 \times (H - 0/8) + 2240 \times S \right]$ $Gcv = \frac{1}{100} \times \left[8080 \times 82 + 34500 \times 5 + 2240 \times 3 \right]$ $Gcv = \frac{1}{100} \times 841780$ $Gcv = 8417.80 \text{ Kcal } \left[\frac{1}{100} \right]$
<u>©</u>	Calculate the NCV of coal it its composition is as follows: C = 901, H=407., S= 2%, N=11., Ash = Remaining.
=>	given =) C=90%, S=2% H=4%, N=1% Ash = Remaining. By Dulong's formula GCV = 1/100 x [8080 x C + 34500 (H-0/8) + 22 40/5] GCV = 1/100 x [8080 x qo + 34 500 x + 2240 x 2] GCV = 1/100 x 86 9680 GCV = 86 96.80 Kcal/kg. NCV = HCV - [9/100 x H x 587] NCV = 86 96.80 - [0.09 x 4 x 587] NCV = 86 96.80 - 211.32 NCV = 8485.42 Kcal/kg
	K.J. Somaiya College of Engineering, Vidyavihar (E), Mumbai - 400 077.

93.	Calculate the mointure % of coal if 1.2 g of coal is heated at loo' c for 1h given heridue of 0.88 g.
=>	given: Weight of coal sample = W = 1.29 Weight of coal sample after heating = 0.889
	"/ Moisture = change in weight x100 = (W1-W2) x10 weight of coal sample w
	7. Moisture = 1.2-0.88 × 100 = 26.671. 1.2
<u>04.</u>	Calculate the 1. V.M of coal having 101. moisture Content if 1.8 g of coal is heated at 920° c for. 7 minutes gives residue of 1.09 g.
=>	Given: "/ Moisture = 10%. Weight of coal sample = W1 = 1.89 Weight of after heating at 925° = W2 = 1.099
	weight ofter removing moisture = W_1 $W_1 = W - \frac{7. \text{ m} \times W}{100} = 1.8 - 1.8 - 1.8 - 0.18$
3	$W_1 = 1.62g$
	1. VM = Volatile matter x100 = W1-W2 x100 weight of coal sample w
	$= 1.62 - 1.09 \times 100$
	°/- ₩M= 29.44.1.
	and the second s

Roll No.: Experiment / assignment / tutorial No. __ Grade: AA/AB / BB / BC / CC / CD / DD

0.57.	Calculate the 1- Ash of Coal having 101 moisture content if 1.89 of Coal is heated at 750°c for 30 minutes gives he sidue of 0.63g.
=>	given: Weight of Coal Sample = W = 1.8g "moisture = 10". weight of residue = W3 = 0.63 g weight of ash = W3 = 0.63 g
4.1.4	7. Ash = W3 x100 - 0.63 x100 W 1.8
<u>06</u>	Calculate 1. C of Coal if 1.56g of coal in combustion experiment gave increase in maxx of KoH tube 4.8g.
=>	given: weight of coal sample = 1.56 g increase in many of KOH tube = 4.89
	Vic = increase in mass of kon x12x100 = 4.8 x12x100 Weight of coal sample x44 1.56 x 44
	1/c = 83.921/
07.	Calculate 1. H of Cool if 1.56g of Coal in Combustion experiment gave increase in mass of caclz tube 1.2g.
=>	Given: Weight of Coal Sample = 1.56 g increase in mass of cacle tube = 1.2g
	VIH = increase in mass of Cally x2 x100 = 1.2 x2 x100 weight of Coal sample x18 1.56 x18
	Y-H= 8.55 Y.
10000	K.J. Somaiya College of Engineering, Vidyavihar (E), Mumbai - 400 077.

08	Calculate the 1. N if 2.89 of Coal in Kjeldahls experiment required 15ml of 0.05 N KOH Solution for neutralization while blank titration is 28ml or 0.05 N KOH Solution
=>	Given: Weight of Sample = 2.8 g blank titration = 0.05 N° 28 ml ROH back titration = 0.05N 15 ml KOH V. 61 KOH Used = 28-15 = 13ml 0.05 N KOH Volume of Roth used = Volume of acid used
	$\frac{1}{N} = \frac{\text{Volume of acid used } \times \text{Normality} \times 1.4}{\text{Useight of Sample}}$ $\frac{1}{N} = \frac{13 \times 0.05 \times 1.4}{2.8}$
<u>0</u> .q,	1.N= 0.325
=>	given: weight of Coal sample = 1.75 g Weight of Bason residue used x32 x 100 Weight of Coal sample x233 //S = 0.66 x32 x100 1.75 x 233
	· 1.75 x 2 33

Batch: Roll No.: Experiment / assignment / tutorial No. __ Grade: AA/ AB / BB / BC / CC / CD / DD

010	Calculate amount of oxygen required for combustion of system if it confains: C = 85 %, H=41, S=21-,
	N=17. Ash=41.
->	given: weight of coal = 5 kg C = 85 /. = 85/100 × 5 = 4.25 kg
	$C = 85\%$ = $\frac{65}{100} \times 5 = 4.25$ kg $H = 4\% = 4 / \frac{100}{100} \times 5 = 0.2$ kg
	S= 2% = 2/100 x5 = 0.1 kg
	N=11. = 2/100 x5 = 0.05 kg
	Ash = 41. = 4/100 x 5 = 0.2 kg
	$0 = 4.1. = 4/100 \times 5 = 0.2 \text{ kg}$
	Oxygen required = $32 \times 4.25 + 8 \left[0.2 - 0.2 \right] + 0.1$
	oxygen required = 12.83 kg.
0.11	required for combustion of coal if 2 kg of coal required 4.857 kg of oxygen for combustion if lo it excess air is required for combustion.
3	Given: Weight of coal = 2kg quantity of oxygen = 4.85kg
	quantity of air = oxygen quantity x100 = 4.85 x 100
	mass & air = 21, 68 + 10/200 x 21,087 = 23. 20 Kg
	Volume of cir = Quantity of air x22.4 = 23.70 x 22.1
	Volume of cuir = Quantity of air x22.4 = 23.20 x 22.1 28.94 28.94
	Volume of air = 17.96 m ³
	K.J. Somaiya College of Engineering, Vidyavihar (E), Mumbai - 400 077.

	Module-5
<u> </u>	it transmits 60% of incident nadiation at 650 nm wavelength and 1.5 cm path length.
=>	Criven: 1- T = 60%
	wavelength = 6.5 onm $path length = 1 - 1.5 \text{ cm}$ $A = 2 - \log [7.7] = 2 - \log [60]$
	A = 0.2218
101-	The state of the s
01.	if it absorbs 50% of incident qualication at 380 nm wavelength and 1.2 cm path length.
=>	Given: - Absorbance = A = 50%
	1. T = 100 - 30 = 50 %.
A STATE OF THE PARTY OF THE PAR	wavelength = 380 pm
	Path length = 1 = 1.2 cm
	A= 2- log [1.7] = 2- log [50]
	A = 0.3010
<u>83</u> .	A solution of tryptophan has an absorbance of 0.56 at 280 nm in curette of 0.75cm path length. Calculate concentration of
15- 05-	Solution if absorptivity of Solution is 6.4 x10 ² 2 mol ⁻¹ cm ⁻¹ .
MENDA	
=7	given:- A = 0.56
	$e = 6.4 \times 10^{3} \text{ L mol}^{-1} \text{ cm}^{-1}$
	e = 6.4 x103 L mol-1cm-1

Batch: Roll No.: Experiment / assignment / tutorial No. Grade: AA/ AB / BB / BC / CC / CD / DD

	Grade: AA/ AB / BB / BC / CC / CD / DD T R U S T Signature of the Faculty In-Charge with date
1	A = Ecl
	C = A = 0.56
	EL 0.75 × 6.4 × 103
	C = 1.167 × 10-4 mol/L
04:	A Solution of aspirin shows transmittance of o.45 at 230 nm on cuvette of Path length 2cm calculate concentration the absorbance of same
	Path length at Same wavelength.
7	given: - wavelength 2cm 1cm Transmittance 0.45 2
	Absorbance??
	Aold = - log [Told] = - log (0.45)
	Aold = 0.3469
	E = Aad = Anew :. 0.3469 = Anew
	Clold Clnew 0.45 1
	Absorbance = Anew = 0.1825
05	Calculate Molar absorbity of 10-3 no all ti
	having 0.334 ab 20 abance measured in
	Calculate Molar absorbity of 10-3 M solution having 0.334 absorbance measured in cuvette of path length of 1.2cm.
7	Criven: concentration = c = 10-3 M
	Abrorbance = A = 0.334
	curette length = 1 = 1.2cm
	$E = A = 0.334 = 7.78.33 Lmol^{-1} cm^{-1}$
	1.2×10-3
	8 = 272.32 L mol =1 = -1:
	K.J. Somaiya College of Engineering, Vidyavihar (E), Mumbai - 400 077.
	sio. Somarya Conege of Engineering, viuyavinar (E), Mumbai - 400 0//.

