日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2002年10月 7日

出 願 番 号 Application Number:

特願2002-293137

[ST. 10/C]:

[JP2002-293137]

出 願 人
Applicant(s):

日本電気株式会社

2003年 9月 81

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 55100043

【提出日】 平成14年10月 7日

【あて先】 特許庁長官殿

【国際特許分類】 H04Q 7/00

【発明者】

【住所又は居所】 東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】 川口 研次

【発明者】

【住所又は居所】 東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】 小島 正彦

【発明者】

【住所又は居所】 東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】 田村 利之

【特許出願人】

【識別番号】 000004237

【氏名又は名称】 日本電気株式会社

【代理人】

【識別番号】 100088812

【弁理士】

【氏名又は名称】 ▲柳▼川 信

【手数料の表示】

【予納台帳番号】 030982

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9001833

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 移動通信システム及びその動作制御方法並びにそれに用いるノード

【特許請求の範囲】

【請求項1】 パケットデータ通信のためのパケット交換機能を有するノードを有するコアネットワークと、無線制御装置と、移動端末とを含み、前記無線制御装置と前記ノードとの間のインタフェースにおいてシグナリングコネクションを設定するようにした移動通信システムであって、

前記パケットデータ通信よりも高速なマルチキャストデータ通信のためのシグナリングコネクションを、前記パケットデータ通信のためのシグナリングコネクションとは別に設定するコネクション設定手段を含むことを特徴とする移動通信システム。

【請求項2】 前記コネクション設定手段は、前記マルチキャストデータ通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末に対して共通に設定することを特徴とする請求項1記載の移動通信システム。

【請求項3】 前記コネクション設定手段は、前記マルチキャストデータ通信のサービスを受ける最初の移動端末からのサービス加入要求に応答して、前記マルチキャストデータ通信のためのシグナリングコネクションを設定することを特徴とする請求項2記載の移動通信システム。

【請求項4】 前記マルチキャストデータ通信のサービスを受ける最後の移動端末からのサービス脱会要求に応答して、前記マルチキャストデータ通信のためのシグナリングコネクションを開放するコネクション開放手段を、更に含むことを特徴とする請求項2または3記載の移動通信システム。

【請求項5】 前記コネクション設定手段は、前記マルチキャストデータ通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末の各々に対して個々に設定することを特徴とする請求項1記載の移動通信システム。

【請求項6】 前記移動端末の各々からの前記マルチキャストデータ通信の サービス脱会要求に応答して、当該移動端末に対応した前記マルチキャストデー タ通信のためのシグナリングコネクションを開放するコネクション開放手段を、 更に含むことを特徴とする請求項5記載の移動通信システム。

【請求項7】 前記コアネットワークでの前記パケット交換機能のための領域であるPSドメインで、前記移動端末の前記マルチキャストデータ通信用のシグナリングコネクションを管理するようにしたことを特徴とする請求項1~6いずれか記載の移動通信システム。

【請求項8】 前記コアネットワークでの前記パケット交換機能のための領域であるPSドメインとは別の前記マルチキャストデータ通信のためのドメインで、前記移動端末の前記マルチキャストデータ通信用のシグナリングコネクションを管理するようにしたことを特徴とする請求項1~6いずれか記載の移動通信システム。

【請求項9】 パケットデータ通信のためのパケット交換機能を有するノードを有するコアネットワークと、無線制御装置と、移動端末とを含み、前記無線制御装置と前記ノードとの間のインタフェースにおいてシグナリングコネクションを設定するようにした移動通信システムにおける動作制御方法であって、

前記パケットデータ通信よりも高速なマルチキャストデータ通信のためのシグナリングコネクションを、前記パケットデータ通信のためのシグナリングコネクションとは別に設定するコネクション設定ステップを含むことを特徴とする動作制御方法。

【請求項10】 前記コネクション設定ステップは、前記マルチキャストデータ通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末に対して共通に設定することを特徴とする請求項9記載の動作制御方法。

【請求項11】 前記コネクション設定ステップは、前記マルチキャストデータ通信のサービスを受ける最初の移動端末からのサービス加入要求に応答して、前記マルチキャストデータ通信のためのシグナリングコネクションを設定することを特徴とする請求項10記載の動作制御方法。

【請求項12】 前記マルチキャストデータ通信のサービスを受ける最後の移動端末からのサービス脱会要求に応答して、前記マルチキャストデータ通信のためのシグナリングコネクションを開放するコネクション開放ステップを、更に含むことを特徴とする請求項10または11記載の動作制御方法。。

【請求項13】 前記コネクション設定ステップは、前記マルチキャストデータ通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末の各々に対して個々に設定することを特徴とする請求項9記載の動作制御方法。

【請求項14】 前記移動端末の各々からの前記マルチキャストデータ通信のサービス脱会要求に応答して、当該移動端末に対応した前記マルチキャストデータ通信のためのシグナリングコネクションを開放するコネクション開放ステップを、更に含むことを特徴とする請求項13載の動作制御方法。

【請求項15】 パケットデータ通信のためのパケット交換機能を有するノードを有するコアネットワークと、無線制御装置と、移動端末とを含み、前記無線制御装置と前記ノードとの間のインタフェースにおいてシグナリングコネクションを設定するようにした移動通信システムにおけるノードであって、

前記パケットデータ通信よりも高速なマルチキャストデータ通信のためのシグナリングコネクションを、前記パケットデータ通信のためのシグナリングコネクションとは別に設定するコネクション設定手段を含むことを特徴とするノード。

【請求項16】 前記コネクション設定手段は、前記マルチキャストデータ 通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末に対して共通に設定することを特徴とする請求項 15記載のノード。

【請求項17】 前記コネクション設定手段は、前記マルチキャストデータ 通信のサービスを受ける最初の移動端末からのサービス加入要求に応答して、前 記マルチキャストデータ通信のためのシグナリングコネクションを設定すること を特徴とする請求項16記載のノード。

【請求項18】 前記マルチキャストデータ通信のサービスを受ける最後の 移動端末からのサービス脱会要求に応答して、前記マルチキャストデータ通信の ためのシグナリングコネクションを開放するコネクション開放手段を、更に含む ことを特徴とする請求項16または17記載のノード。

【請求項19】 前記コネクション設定手段は、前記マルチキャストデータ 通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末の各々に対して個々に設定することを特徴とする 請求項15記載のノード。

【請求項20】 前記移動端末の各々からの前記マルチキャストデータ通信のサービス脱会要求に応答して、当該移動端末に対応した前記マルチキャストデータ通信のためのシグナリングコネクションを開放するコネクション開放手段を、更に含むことを特徴とする請求項19記載のノード。

【請求項21】 パケットデータ通信のためのパケット交換機能を有するノードを有するコアネットワークと、無線制御装置と、移動端末とを含み、前記無線制御装置と前記ノードとの間のインタフェースにおいてシグナリングコネクションを設定するようにした移動通信システムにおけるノードの動作制御をコンピュータにより実行させるためのプログラムであって、

前記パケットデータ通信よりも高速なマルチキャストデータ通信のためのシグナリングコネクションを、前記パケットデータ通信のためのシグナリングコネクションとは別に設定するコネクション設定ステップを含むことを特徴とするコンピュータ読取り可能なプログラム。

【請求項22】 前記コネクション設定ステップは、前記マルチキャストデータ通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末に対して共通に設定することを特徴とする請求項21記載のプログラム。

【請求項23】 前記コネクション設定ステップは、前記マルチキャストデータ通信のサービスを受ける最初の移動端末からのサービス加入要求に応答して、前記マルチキャストデータ通信のためのシグナリングコネクションを設定することを特徴とする請求項22記載のプログラム。

【請求項24】 前記マルチキャストデータ通信のサービスを受ける最後の 移動端末からのサービス脱会要求に応答して、前記マルチキャストデータ通信の ためのシグナリングコネクションを開放するコネクション開放ステップを、更に 含むことを特徴とする請求項22または23記載のプログラム。

【請求項25】 前記コネクション設定ステップは、前記マルチキャストデータ通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末の各々に対して個々に設定することを特徴とする請求項21記載のプログラム。

【請求項26】 前記移動端末の各々からの前記マルチキャストデータ通信のサービス脱会要求に応答して、当該移動端末に対応した前記マルチキャストデータ通信のためのシグナリングコネクションを開放するコネクション開放ステップを、更に含むことを特徴とする請求項25載のプログラム。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は移動通信システム及びその動作制御方法並びにそれに用いるノードに関し、特に移動通信システムにおいてMBMS(Multimedia Broadcast Multica st Service)と呼ばれる高速データ通信に対応したブロードキャストやマルチキャストサービスを提供する際に必要となる、コアネットワークと無線制御装置との間のインタフェースにおけるシグナリングコネクションの構成方式に関するものである。

[0002]

【従来の技術】

W-CDMA(Wideband-CDMA)方式の移動通信システムにおける各種制御信号の転送制御を行うためのシグナリングコネクションの構成方法が、3GPP(Third Generation Partnership Project)により発行されている仕様書であるTS25.331の第5章の"RRC Services provided to upper layers"(非特許文献1)に規定されている。図7を参照して、このシグナリングコネクションの構成方式について説明する。

[0003]

図7において、W-CDMA移動通信システムは、交換機ネットワークである

コアネットワーク(CN) 10 と、無線制御装置(RNC) 22 と、移動端末(UE) 51 とを有している。コアネットワーク 10 と無線制御装置 22 との間には、シグナリング転送用の論理的なコネクション(論理コネクション) 111 や 121 が設定されている。なお、111 はCS I u コネクションと称されるものであり、コアネットワーク 10 を構成する M SC(Mobile-services Switching Center) 11 と無線制御装置 22 との間の論理コネクションであって、音声通信用の回線交換(Circuit Switched)機能を有する C S網である C Sドメイン用の論理コネクションである。

[0004]

また、121はPS I u コネクションと称されるものであり、コアネットワーク 10 を構成する S G S N (Serving GPRS(Global Packet Radio Service)Support Node) 12 と無線制御装置 22 との間の論理コネクションであって、パケット交換 (Packet Switched) 機能を有する P S網である P S ドメイン用の論理コネクションである。無線制御装置 22 は無線リソースの管理や無線基地局であるノードB (図示せず) の制御等を行うものであり、例えば、ハンドオーバの制御を行う制御装置である。

[0005]

この無線制御装置 2 2 と移動端末 5 1 との間には、シグナリング転送用のRRC(Radio Resource Connection)コネクション 2 1 1 が設定されている。このRRCコネクション 2 1 1 は移動端末 5 1 におけるRRCシグナリングコネクション 7 1 1 に対応しており、このRRCシグナリングコネクション 7 1 1 はCSドメイン 6 1 1 用のCSシグナリングコネクション 5 1 1 とPSドメイン 6 1 2 用のPSシグナリングコネクション 5 1 2 とからなる。

[0006]

この様に、W-CDMA移動通信システムでは、移動端末51において、CSドメイン611及びPSドメイン612の各々に対応して1つのシグナリングコネクション511及び512を確立することが可能であることが、上記非特許文献1に定義されている。

[0007]

この様な構成を有するW-CDMA移動通信システムにおいて、新たなサービスであるMBMS(Multimedia Broadcast Multicast Service)をサポートする場合が考えられる。すなわちMBMSと呼ばれる、動画像や音響情報付きの画像等の大容量の高速データ通信に対応したブロードキャストやマルチキャストサービスを提供するような場合、図8に示すシステム構成となる。図8においては、マルチキャストサービスの場合を示す。

[0008]

図8において図7と同等部分は同一符号により示されている。図8を参照すると、コアネットワーク10と移動端末 $51\sim53$ との間には、RAN(無線アクセス制御装置)21が設けられており、このRAN21は無線制御装置(RNC)22とノードB23とからなっており、図7ではノードB23を省略して、無線制御装置22のみを示している。

[0009]

MBMSのマルチキャストサービスの情報を配信するエリアであるMBMSエリア41内には、MBMSサービスに加入している移動端末51,52と、MBMSサービスに加入していない移動端末53とが在圏しているものとする。マルチキャストは指定された複数の宛先アドレス(移動端末)に対して同一データを配信するサービスである。

[0010]

この場合において、コアネットワーク10と無線制御装置22との間におけるシグナリング用の論理コネクションは図9に示す如くなる。図9において、移動端末51では、既に、CSドメイン611のCSシグナリングコネクション511とPSドメイン612のPSシグナリングコネクション512とが確立しているものとし、その状態で、移動端末51が更にMBMSサービスを受ける場合には、この移動端末51に対しては、MBMSサービスに対して新たなシグナリングコネクションの確立処理を実施する必要はない。すなわち、MBMSサービスもパケット通信であるために、パケット交換処理機能のPSドメインに含まれるものと考えて、既に確立されている論理コネクションであるPS Iuコネクション121を使用することができるためである。

$[0\ 0\ 1\ 1]$

この様に、移動端末に対して既にPSドメイン用のIuコネクションが確立されている場合には、SGSN12はRANAP(Radio Access Network Application Part)プロトコルに準拠したページング処理(複数ある無線制御装置エリア(セル)の中で、移動端末がどのエリアに在圏しているかを把握するための処理)を行わないことになる。

[0012]

これに対して、他の移動端末 52 に対しては、PS ドメインのシグナリングコネクションが確立されていないために、MBMS サービスを実施するために、新たにMBMS シグナリングコネクション 523 を確立することが必要になり、SGSN12 はページング処理が要求されることになる。なお、613 は移動端末 52 のPS ドメインを示し、712 は移動端末 52 のPS ドメインを示し、712 は移動端末 52 のPS ドメインを示し、712 は移動端末 52 のPS に 212 は移動端末 52 と無線制御装置 22 との間の 22 に 22 に対しては 23 に 33 に 3

[0013]

【非特許文献1】

3 G P P 発行の仕様書 T S 2 5. 3 3 1, v 3. 1 0. 0 の第 5 章及び第 1 0 章

$[0\ 0\ 1\ 4]$

【発明が解決しようとする課題】

図9を参照して説明した様に、W-CDMA移動通信システムにおいてMBMSサービスを新たにサポートする場合、移動端末51において既にPSドメイン用のPSシグナリングコネクション512が確立しており、コアネットワーク10と無線制御装置22との間に、論理コネクションであるPS Iuコネクション121が確立しているときには、MBMS用のシグナリングも、このPS Iuコネクション121を用いることができる。

[0015]

しかしながら、この様に、既存のパケット交換サービスであるPSサービスと

新たなMBMSサービスとに共通してシグナリングコネクションを使用することは、異種サービス間での処理の競合が発生するという問題がある。すなわちMBMSサービス実施中に、通常のパケットサービスの確立要求(パケットデータの着信等)が発生すると、PSシグナリングコネクションは既に確立されているために、ページング処理は実施されないが、MBMSサービスで使用されていたシグナリングコネクションがパケットサービスのRAB(Radio Access Bearer)で立処理のために使用されるために、MBMSサービスとパケット通信サービスとの競合処理が発生する可能性が高い。

[0016]

また、コアネットワーク10におけるSGSN12における処理が複雑化するという問題が生ずる。すなわち、移動端末においては、PSドメインで1つのシグナリングコネクションしか持っていないために、通常のパケットサービス向けに、PSのシグナリングコネクションが確立済みの移動端末に対しては、既存のPSシグナリングコネクションを使用してメッセージの送受信が行われる。そのために、MBMSサービス向けに新たなPSシグナリング確立は不要であるが、PSシグナリングコネクションの確立が行われていない移動端末に対しては、MBMSサービス向けにPSシグナリングコネクションを確立して、MBMSのメッセージの送受信を行うので、SGSNは各移動端末のPSシグナリングコネクションの確立の状態をチェックして、メッセージの送受信に用いるシグナリングコネクションを決定する必要がある。また、MBMSサービスが終了した場合も、通常のパケットサービスを実施中の移動端末かどうかを判断して、SGSNはシグナリングコネクションの解放処理を行う必要が生ずる。

[0017]

本発明の目的は、既存のパケット通信サービスと新たなMBMSサービスとの 競合発生をなくした移動通信システム及びその動作制御方法並びにそれに用いる ノードを提供することである。

[0018]

本発明の他の目的は、SGSNにおける処理の複雑化をなくした移動通信システム及びその動作制御方法並びにそれに用いるノードを提供することである。

[0019]

【課題を解決するための手段】

本発明による移動通信システムは、パケットデータ通信のためのパケット交換機能を有するノードを有するコアネットワークと、無線制御装置と、移動端末とを含み、前記無線制御装置と前記ノードとの間のインタフェースにおいてシグナリングコネクションを設定するようにした移動通信システムであって、前記パケットデータ通信よりも高速なマルチキャストデータ通信のためのシグナリングコネクションを、前記パケットデータ通信のためのシグナリングコネクションとは別に設定するコネクション設定手段を含むことを特徴とする。

[0020]

そして、前記コネクション設定手段は、前記マルチキャストデータ通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末に対して共通に設定するか、または前記マルチキャストデータ通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末の各々に対して個々に設定することを特徴とする。

[0021]

本発明による動作制御方法は、パケットデータ通信のためのパケット交換機能を有するノードを有するコアネットワークと、無線制御装置と、移動端末とを含み、前記無線制御装置と前記ノードとの間のインタフェースにおいてシグナリングコネクションを設定するようにした移動通信システムにおける動作制御方法であって、前記パケットデータ通信よりも高速なマルチキャストデータ通信のためのシグナリングコネクションを、前記パケットデータ通信のためのシグナリングコネクションとは別に設定するコネクション設定ステップを含むことを特徴とする。

[0022]

そして、前記コネクション設定ステップは、前記マルチキャストデータ通信の ためのシグナリングコネクションを、前記マルチキャストデータ通信のサービス を受ける複数の移動端末に対して共通に設定するか、または前記マルチキャスト データ通信のためのシグナリングコネクションを、前記マルチキャストデータ通信のサービスを受ける複数の移動端末の各々に対して個々に設定することを特徴とする。

[0023]

本発明によるノードは、パケットデータ通信のためのパケット交換機能を有するノードを有するコアネットワークと、無線制御装置と、移動端末とを含み、前記無線制御装置と前記ノードとの間のインタフェースにおいてシグナリングコネクションを設定するようにした移動通信システムにおけるノードであって、前記パケットデータ通信よりも高速なマルチキャストデータ通信のためのシグナリングコネクションを、前記パケットデータ通信のためのシグナリングコネクションとは別に設定するコネクション設定手段を含むことを特徴とする。

[0024]

本発明によるプログラムは、パケットデータ通信のためのパケット交換機能を有するノードを有するコアネットワークと、無線制御装置と、移動端末とを含み、前記無線制御装置と前記ノードとの間のインタフェースにおいてシグナリングコネクションを設定するようにした移動通信システムにおけるノードの動作制御をコンピュータにより実行させるためのプログラムであって、前記パケットデータ通信よりも高速なマルチキャストデータ通信のためのシグナリングコネクションを、前記パケットデータ通信のためのシグナリングコネクションとは別に設定するコネクション設定ステップを含むことを特徴とする。

[0025]

本発明の作用を述べる。コアネットワークと無線制御装置との間における論理コネクションとして、既存のパケット通信サービスのためのPS(パケット交換処理)機能用シグナリングコネクションと、新たな高速データ通信であるMBMS(ブロードキャスト/マルチキャスト)サービスのためのMBMS用シグナリングコネクションとを独立に分離して設ける構成とする。これにより、PSサービスとMBMSサービスとの異種サービス間での競合がなくなり、異種サービス間での処理が、互いの処理を意識することなく行えることになる。また、シグナリングコネクションの開放処理が、各サービス毎に単独で行えるので、SGSN

の処理の複雑さが解消されることにもなる。

[0026]

【発明の実施の形態】

以下に図面を参照しつつ本発明の実施例を説明する。図1は本発明の一実施例の概略システム構成図であり、図7~9と同等部分は同一符号にて示している。図1を参照すると、コアネットワーク(CN)10は、音声通信用の回線交換処理機能を有するMSC11(CSドメインとして定義される)と、パケットデータ通信用のパケット交換処理機能を有するSGSN(汎用パケット無線サービスサポートノード)12(PSドメインとして定義される)とを含んでいる。このSGSN12は既存のパケットサービスの他、上述した新たなMBMSサービス(当該パケットサービスよりも高速のデータ通信に対応したブロードキャストやマルチキャスト通信サービス)に対応しており、移動端末51,52も同様であるものとする。

[0027]

これ等移動端末51,52は、共に、MBMSの情報を配信するエリア内に在 圏しており(図8参照)、MBMSサービスに加入しているものとする。

[0028]

無線制御装置(RNC)22は無線リソースの管理や無線基地局であるノード B(図示せず)の制御などを行うものである。この無線制御装置22と各移動端末51や52との間には、RRCコネクション211や212が設定される。移動端末51には、既にCSシグナリングコネクション511とPSシグナリングコネクション512とが確立されており、よって、コアネットワーク10と無線制御装置22との間のIuインタフェースには、移動端末51用のCS Iuコネクション111とPS Iuコネクション121とが確立されている。これにより、移動端末51はMSC11やSGSN12とメッセージの送受信を可能としている。

[0029]

更に、移動端末51がMBMSサービスを受ける場合、このMBMSサービスのための論理コネクションとして、本実施例では、PS Iuコネクション12

1を使用せずに、その代りに、MBMSサービス専用のMBMS Iuコネクション122を別に確立するのである。移動端末51側では、PSドメン612内において、PSシグナリングコネクション512とMBMSシグナリングコネクション513とが設定される。これにより、移動端末52はSGSN12とMBMSサービスを受けるために必要となるメッセージの送受信が可能となる。

[0030]

ここで、他の移動端末52が同一のMBMSサービスを受ける場合には、移動端末51に対するMBMSサービス用に既に確立されているMBMS Iuコネクション122を共用するようになっている。更に別の移動端末が同一のMBMSサービスを受ける場合にも、このMBMS Iuコネクション122を共用するのである。移動端末52において、523はMBMSシグナリングコネクションである。

[0031]

複数の移動端末に共用のMBMS Iuコネクション122はMBMSサービスに関連したメッセージのみを扱い、PSドメイン612,614のシグナリングコネクションとして設定される。

[0032]

MBMSのマルチキャストサービスでは、移動端末がネットワークに対してマルチキャストモードのデータを受信したい(マルチキャストモードのサービスを受けたい、すなわち入会したい)ことを通知する、いわゆる"Joining"と呼ばれる処理、マルチキャストデータの転送等が実施されることを通知する"MBMS notification"処理、MBMSデータの転送処理、マルチキャストサービスから脱会する"Leaving"処理等を実施することになる。

[0033]

次に、図2~図4のシーケンス図を参照して本実施例の全体の動作について詳細に説明する。なお、本実施例では、移動端末51に対する"Joining"処理が完了した後に、他の移動端末52から"Joining"の要求が通知されるものとする。図2、3は"Joining"処理の動作を示すシーケンス図

であり、図4は"Leaving"処理の動作を示すシーケンス図である。これ 等各図における右端の四角で囲むステップは、SGSN12での処理を示してい るものとする。

[0034]

まず、移動端末51は電源投入等の操作をトリガとしてRRCコネクションを無線制御装置22との間で確立する(ステップA1)。そして、移動端末51はSGSN12に対して"Joining"に関する情報を通知する。この処理はコネクションレスで実施されるため、無線制御装置22とSGSN12との間に Iuコネクションは不要である。この処理により、SGSN12は移動端末51からMBMSのデータ受信要求があることを認識する(ステップA2)。

[0035]

ステップA 2 において、 "Initial Direct Transfer "なるメッセージは、シグナリングコネクションを確立するために使用されるものであり、無線上、最初のNAS (移動端末とコアネットワークとの間で授受される) メッセージを送信するための使用される。また、 "SCCP"は "Signaling Connection Control Part"の略であり、アプリケーションの信号や情報を効率的に転送するための信号方式を意味し、 "UDT"は "Unitdata"の略であり、コネクションレスでデータを送信したい場合に使用されるメッセージである。

[0036]

次に、移動端末51からの"Joining"要求が、同一のMBMSエリア41 (図8参照) に存在する複数の移動端末の中で、最初のMBMSサービスへの"Joining"要求であれば、SGSN12は無線制御装置22に対して I u コネクション122の確立を要求する(ステップA3, A3´)。この処理 により、呼MBMSサービスの呼毎に I u コネクションを確立することが不要に なり、メッセージ量を減らす効果がある。なお、ステップA3において、"CR"は "Connection Request"の略であり、シグナリングコネクションの設定要求 のために使用される。"CC"は "Connection Confirm"の略であり、シグナリングコネクションの設定を実行したことを通知するメッセージである。

[0037]

その後、SGSN12は認証やセキュリティの処理を実施し、不正な移動端末でないことを確認すると(ステップA4, A4´)、SGSN12は移動端末51の"Joining"情報を、図示せぬ上位のゲートウェイ(GGSN)に通知し、移動端末51に対しても"Joining"処理が完了したことを通知する(ステップA5, A6)。

[0038]

ステップA4において、"DT1"は"Data Form 1"であり、様々なSCC Pデータ(認証の要求や応答に関する情報など)を相手ノードへ送信するために使用されるメッセージである。

[0039]

ここで、電源投入などによりRRCコネクションが確立されている(ステップ A 7)移動端末52からSGSN12に対して"Joining"に関する情報 が通知された場合、既に、MBMS向けのIuコネクションが確立されているために、無線制御装置22に対してIuコネクションの確立要求が再度なされることはない(ステップA 8,A 9)。SGSN12は、移動端末51に対すると同様に、移動端末52に対しても認証やセキュリティの処理を実施し(ステップA 10)、不正な移動端末でないことを確認すると、ゲートウェイであるGGSNに対する移動端末52の"Joining"情報の通知と、移動端末52への"Joining"処理の完了報告を行う(ステップA 10及びA 11,A 12)

[0040]

各移動端末の"Joining"処理の完了後に、MBMSデータの転送が実施されることを、MBMSサービスに加入した移動端末51,52に通知する"MBMS notification"処理が実施される(ステップB1及びB2,B3)。このとき、SGSN12から無線制御装置22に対して"MBMS notification"を移動端末へ送信するために要求するメッセージは1メッセージのみであるが、同一のMBMSサービスを受ける複数の移動端末に対しては、同じMBMSサービスを受けるグループを示すグループ番号を使用することにより、同時に複数の移動端末にメッセージを送信することが可能にな

る。

[0041]

なお、このグループ番号はMBMSサービスの種別を示す識別番号であって、 予めシステム側(MBMSサービスを提供するサーバ)から、不特定多数の移動 端末に対して、予め識別番号とそれに対応するサービス種別とを報知しておき、 移動端末は、自分が享受したいサービス種別に対応する識別番号を"Joining"情報に含ませてSGSN12へ送信するようになっている。従って、この "Joining"情報に含まれている識別番号により、SGSN12は、"Joining"要求のあった移動端末がどのMBMSサービスを享受するのか判 断することができることになる。

[0042]

[0043]

次に、MBMSデータの受信が不要になった場合、MBMSサービスから脱会するために"Leaving"処理が実施される(ステップB7)。この処理では、仮に移動端末52の"Leaving"処理のみが終了した場合、移動端末51の"Leaving"処理が終了していないため、Iuコネクション122の解放処理を実施する必要がない(ステップB8)。最後に、MBMSサービスに加入していた全移動端末(移動端末51及び52)で"Leaving"処理が完了すると、SGSN12は無線制御装置22とのIuコネクション122を解放して、MBMSのマルチキャストサービスを終了する(ステップB9,B9 ´´)。

$[0\ 0\ 4\ 4]$

なお、ステップB9において、"RLSD"は "Released"を示し、シグナリングコネクションや割当てられていたリソースの開放のために使用され、"RLC"はRelease Complete"であり、開放が完了したことを通知するためのもので

ある。

[0045]

この様に、MBMSサービスのためのIuコネクション122を、PS用のIuコネクション121とは別に独立して設けたので、MBMSサービスと他のサービス (パケットデータ通信) との競合が発生することがなくなり、他のサービスを意識することなくMBMSサービスの実施ができ、特に他のサービスのシグナリングコネクションの確立状態をチェックする必要もなくなる。

[0046]

更に、MBMSサービスに加入している複数の移動端末に対して、MBMS用のシグナリングコネクションを共用する構成とすることにより、各移動端末に対して、個別の識別番号(IMSI: International Mobile Subscriber Identify)を用いて個別にメッセージの送信を行う必要がなく、MBMSサービスに属していることを示すグループ番号(TMGI: Teporary mobile Group Identify)を用いてメッセージを送信することができ、更にはまた、一度、Iuコネクションを確立すれば、同一のMBMSサービスを受けている移動端末の全てが"Leaving"するまで、Iuコネクション122を開放する必要がなく、よってノード間のメッセージ量を削減することができる。

[0047]

図5は本発明の他の実施例の概略ブロック図であり、図1と同等部分は同一符号により示している。本例では、移動端末51において、確立される3つのシグナリングコネクションのうち、MBMS用のシグナリングコネクション513がPSドメン612ではなく、新たなMBMSドメイン613に対して確立されている点が、図1の実施例とは相違する。

[0048]

ただし、無線制御装置 2 2 と移動端末との間に R R C コネクションを確立する場合に、コアネットワーク 1 0 から無線制御装置 2 2 へのメッセージにおいて、移動端末でのドメインの指定が異なるだけで、他の動作態様は図 2 ~図 4 に示した動作シーケンスと同一である。本実施例では、シグナリングコネクションを、それぞれ互いに異なるドメンイに確立するため、移動端末におけるシグナリング

コネクションの管理が容易となる。

[0049]

より詳述すると、コアネットワーク10側では、CSドメインやPSドメイン毎に管理しているエリアが異なっており、CSドメインであれば、LA(Local Area)と呼ばれるエリアで移動端末の位置管理をしており、またPSドメインであれば、RA(Routing Area)と呼ばれるエリアで移動端末の位置管理をしている。MBMSでは、MBMSエリアと呼ばれるエリアによって、MBMS情報の送付先を管理することになるので、PSドメインのRAエリアと同じ範囲のエリアであるとは決まっていない。仮に、既存のPSのシグナリングコネクションと、新たなMBMSのシグナリングコネクションとを、図1の実施例のように、同一のPSドメインで管理すると、PSドメインとしてのRAは変わっていなくても、MBMSエリアが変われば、位置登録を行う必要があり、1つのドメインで2つのエリアをチェックすることが必要となる。

[0050]

そこで、図5に示す実施例のように、ドメインをPSドメイン612とMBM Sドメイン613とに分割することにより、ドメインと管理するエリアとが一対 ーにすることができ、管理が容易となるのである。

[0051]

- 但し、SGSN12で問題が発生した場合、無線制御装置22でRRCシグナリングコネクションの開放処理が必要であるが、この場合、本実施例では、"RRC: Signaling Connection Release"メッセージをドメイン毎に送信する必要があるが、先の実施例では、ドメインを分割していないので、1回のメッセージで済むことになる。

[0052]

図6は本発明の更に他の実施例の概略ブロック図であり、図1と同等部分は同一符号にて示している。本例では、移動端末にそれぞれ対応して、MBMS用のシグナリングコネクション122,123をそれぞれに設ける構成であり、他は図1の構成と同じである。これ等各シグナリングコネクション122,123の確立処理及び開放処理は、各移動端末毎に独立してSGSN12にて実施される

ことになるが、PS用のシグナリングコネクションとは別にMBMS用のシグナリングコネクションを設けているので、異種サービスとの競合の発生やSGSNでの処理の複雑化をなくすことができる。

[0053]

なお、この図6に示した実施例では、移動端末毎に異なるIuコネクションを設定する場合には、同一メッセージを複数の指定された移動端末に対して送信する必要があり、よって無線上の複数のメッセージの送信により、輻輳が発生し、またノード間で実施されるメッセージ量が増大して処理能力に影響が出る可能性があるが、図1に示した実施例では、複数の移動端末に共通にIuコネクションを設定することで、無線上の同一メッセージによる輻輳の発生やノード間での処理能力に対する悪影響はなくなる。

[0054]

なお、図6の実施例に図5に示した実施例を適用することができることは明白である。

[0055]

上記実施例の動作は、予め記録媒体に動作手順をプログラムとして格納しておき、これをコンピュータ(CPU)により読取らせて順次実行することにより実現可能であることは勿論である。

[0056]

【発明の効果】

以上述べたように、本発明によれば、MBMSサービスのためのIuコネクションを、PS用のIuコネクションとは別に独立して設けたので、MBMSサービスと他のサービス(パケットデータ通信)との競合が発生することがなくなり、他のサービスを意識することなくMBMSサービスの実施ができ、特に他のサービスのシグナリングコネクションの確立状態をチェックする必要もなくなるという効果がある。

【図面の簡単な説明】

【図1】

本発明の一実施例の概略ブロック図である。

【図2】

本発明の一実施例のMBSMにおけるマルチキャストサービスへの "J o i n i n g"処理の一部を示すシーケンス図である。

【図3】

本発明の一実施例のMBSMにおけるマルチキャストサービスへの "Join ing" 処理の一部を示すシーケンス図である。

【図4】

本発明の一実施例のMBSMにおけるマルチキャストサービスのデータ転送と "Leaving"処理を示すシーケンス図である。

【図5】

本発明の他の実施例の概略ブロック図である。

【図6】

本発明の更に他の実施例の概略ブロック図である。

【図7】

従来例を説明する概略ブロック図である。

【図8】

MBSMにおけるマルチキャストサービスのための概略システム図である。

【図9】

図7に示した構成においてMBSMにおけるマルチキャストサービスを受ける場合の説明図である。

【符号の説明】

- 10 コアネットワーク (CN)
- 1 1 MSC
- 12 SGSN
- 22 無線制御装置(RNC)
- 51,52 移動端末
 - 111 CS Iuコネクション
- 121, 122 MBMS Iuコネクション
- 211, 212 RRCコネクション

- 511 CSシグナリングコネクション
- 512 PSシグナリングコネクション
- 513, 523 MBMSシグナリングコネクション
 - 611 CSドメイン
- 612, 614 PSドメイン
- 613, 615 MBMSドメイン
- 711, 712 RRCシグナリングコネクション

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【書類名】 要約書

【要約】

【課題】 移動通信システムにおいて、MBMSと称される高速データ通信に対応したサービスを提供するために必要な I u インタフェースにおけるシグナリングコネクションを構成する際に、他のパケット通信サービスとの競合をなくす。

【解決手段】 CN10のSGSN12と無線制御装置22との間における論理コネクションとして、既存のパケット通信サービスのためのPS(パケット交換処理)機能用シグナリングコネクション121と、新たな高速データ通信であるMBMSサービスのためのシグナリングコネクション122とを独立に分離して設ける構成とする。これにより、PSサービスとMBMSサービスとの異種サービス間での競合がなくなり、異種サービス間での処理が、互いの処理を意識することなく行えることになる。また、シグナリングコネクションの開放処理が、各サービス毎に単独で行えるので、SGSN12の処理の複雑さが解消される。

【選択図】 図1

特願2002-293137

出願人履歴情報

識別番号

[000004237]

1. 変更年月日 [変更理由] 住 所 1990年 8月29日 新規登録

東京都港区芝五丁目7番1号

氏 名 日本電気株式会社