Hyperbolic Structure of Reaction Fronts in Porous Media

Marc Hesse, Valentina Prigiobbe
Ashwin Venkatraman, Steve Bryant
University of Texas at Austin

Outline

- Introduction & Examples
- Governing equations
- Classical chromatography
- Extensions to geochemistry
- Anomalous waves

MOTIVATION

Idaho Waste "Management" Complex

Research Needs in Subsurface Science, The National Academies Press, 2000.

(Source: Idaho Natl. Engineering & Environmental Laboratory)

cerns. As shown in the figure, travel time estimates have decreased from tens of thousands to a few tens of years. The uncertainty of these estimates is attributed to several factors, including incorrect conceptualizations of the hydrogeologic system, improper simplifying assumptions, incorrect transport parameters, and overlooked transport phenomena.

⇒ It is all about wave/front speeds, i.e. hyperbolic part

Immediate motivation

Planning Experiments

Benchmarking codes

EXAMPLE

4 components: Ca, Mg, Na, Cl

Voeglin et al. (2000) JCH 48

Exp 3 (Fig 5B)

GOVERNING EQUATIONS

n_c component Solid-fluid system

$$\frac{\partial}{\partial t} (\phi c_{f,c}) + \nabla \cdot (\vec{q} c_{f,c} - \phi \mathbf{D} \nabla c_{f,c}) = kS(c_{s,c}^{eq} - c_{s,c})$$

$$\frac{\partial}{\partial t} \left((1 - \phi) c_{s,c} \right) = -k S \left(c_{s,c}^{eq} - c_{s,c} \right)$$

- $c_{f,c} \& c_{s,c}$: total concentrations in fluid & solid
- $c_{s,c}^{eq}$: equilibrium concentration in/on solid
- ϕ : porosity, \vec{q} : Darcy flux, $m{D}$: hydro. Dispersion
- *k*: reaction rate, *S*: surface area,

Hyperbolic limit - small Pe

Effect of "dispersion"

•
$$Pe = \frac{|\vec{v}|L}{D} \gg 1$$

• Lab: L is small $|\vec{v}|$ is large D is small $\Rightarrow Pe \approx 160 - 400$

• Field: L is very large $|\vec{v}|$ is small D is debated $\Rightarrow Pe \approx 200 - 40,000$

Local Chemical Equilibrium (LCE)

In limit of
$$Da = \frac{kSL}{\phi |\vec{v}|} \gg 1$$
 then $c_{s,c} \rightarrow c_{s,c}^{eq}$

Equilibrium constraint:
$$c_{s,Ca}^{eq} = c_{s,Ca}^{eq}(c_{f,Ca}, c_{f,Mg}, c_{f,Na})$$

Sum the fluid and solid equations:

$$\frac{\partial}{\partial t} \left(\phi c_{f,c} + (1 - \phi) c_{s,c}^{eq} (c_{f,c}) \right) + \nabla \cdot (\vec{q} c_{f,c}) = 0$$

Or in almost standard hyperbolic notation:

$$|\boldsymbol{a}(\boldsymbol{c})_t + \boldsymbol{c}_x = 0|$$
 or $\boldsymbol{c}_t + (\nabla_c \boldsymbol{a})^{-1} \boldsymbol{c}_x = 0$

Langmuir Isotherm: $c_{s,Ca}^{eq}(c_{f,Ca}, c_{f,Na})$

Voeglin et al. (2000) JCH 48

Langmuir Isotherm:

$$c_{s,i}^{eq} = \frac{NK_i c_{f,i}}{1 + \sum_j K_j c_{f,j}}$$

Couples all variables Langmuir properties:

Monotone:
$$\frac{\partial c_{s,i}^{eq}}{\partial c_{f,j}} \ge 0$$

Convex:
$$\frac{\partial^2 c_{s,i}^{eq}}{\partial c_{f,j} \partial c_{f,k}} \leq 0$$

Surface complexation

Amphoteric surfaces

Heavy metals show "Sorption edges"

 \Rightarrow inflection points?

Precipication/Dissolution

⇒ Many types of nonlinear constitutive functions!

Comparison with standard form

Chromatography

$$\mathbf{a}(\mathbf{c})_t + \mathbf{c}_x = 0$$
$$\mathbf{c}(x,0) = \mathbf{c}_0(x)$$

Nonlinear accumulation: $oldsymbol{a}(oldsymbol{c})$ $oldsymbol{c}$ not conserved quantities Self-similar solution:

$$\left(\nabla_{c}\boldsymbol{a} - \frac{1}{\lambda}\boldsymbol{I}\right)\frac{d\boldsymbol{c}}{d\xi} = 0$$

$$\sigma = \frac{1}{\lambda} = \frac{t}{x}$$
 \Rightarrow retardation

Jump condition:
$$\Sigma_p = \frac{[a_p]}{[c_p]}$$

Standard conservation law

$$\mathbf{q}_t + \mathbf{f}(\mathbf{q})_x = 0$$
$$\mathbf{q}(x, 0) = \mathbf{q}_0(x)$$

Nonlinear flux: f(q)

q conserved quantities

Self-similar solution:

$$\left(\nabla_{q} \boldsymbol{f} - \lambda \boldsymbol{I}\right) \frac{d\boldsymbol{q}}{d\lambda} = 0$$

$$\lambda = \frac{x}{t}$$
 \Rightarrow velocity

Jump condition:
$$\Lambda_p = \frac{[f_p]}{[q_p]}$$

Rewrite in standard form

Chromatography

$$oldsymbol{c} = oldsymbol{c}_f = ext{fluid concentration}$$

$$c_t + (\nabla_c a)^{-1} c_{\chi} = 0$$
$$a = c + \varphi \frac{NKc}{1 + Kc}$$

Total concentration

$$\mathbf{C} = \mathbf{a}(\mathbf{c}) = \phi \mathbf{c}_f + (1 - \phi)\mathbf{c}_s$$

$$\boldsymbol{C}_t + \boldsymbol{F}(\boldsymbol{C})_x = 0$$

$$F = \frac{(1 + \varphi NK - KC) + \sqrt{(1 + \varphi NK - KC)^2 + 4KC}}{2K}$$

Classical chromatography

Glueckauf (1949) Rhee et al. (1970)

2 x 2 Langmuir adsorption

$$c_{s,i} = \frac{NK_i c_{f,i}}{1 + \sum_j K_j c_{f,j}}$$

Integral curves of eigenvectors

$$\frac{d^2c_1}{dc_2^2} \left[2c_2 \frac{dc_1}{dc_2} - (k + c_1 - hc_2) \right] = 0$$

Which has the family of solutions

$$c_1 = \beta c_2 - \frac{k\beta}{\beta + h}$$

 $\beta > 0$: fast paths

 $\beta > 0$: slow paths

Hodograph plane

Solution construction

Hodograph plane

xt - plane

Environmental reactive transport

System: Sr²⁺, H⁺, OH⁻, Cl⁻

- In chromatography coupling is through competition for sorption sites!
- Charges species:
 electro-neutrality constraint
 ⇒ strong coupling
- Dissosiation of water:

$$K_w = c_H c_{OH}$$

• 2 x 2 system for Sr²⁺ and Cl⁻

Isotherm:

$$Z_{Sr} = \frac{Z_{t}C_{Sr}K_{Sr}}{1 + C_{H}K_{H} + C_{Sr}K_{Sr}}$$

Environmental reactive transport

System: Sr²⁺, H⁺, OH⁻, Cl⁻

- In chromatography coupling is through competition for sorption sites!
- Charges species:
 electro-neutrality constraint
 ⇒ strong coupling
- Dissosiation of water:

$$K_w = c_H c_{OH}$$

• 2 x 2 system for Sr²⁺ and Cl⁻

Isotherm:

$$Z_{Sr} = \frac{Z_t C_{Sr} K_{Sr}}{1 + 0.5 \left[-C_{Sr} + C_a + \sqrt{(C_{Sr} - C_a)^2 + 4K_w} \right] K_H + C_{Sr} K_{Sr}}$$

Hodograph plane

Enumerate the types of solution

—— Analytical solution

– – Numerical solution assuming large Pe

Anomalous wave

Theory & Simulation

Analytical solution

Numerical solution assuming small Pe

Experiments

PV (-)

4

Formation of anomalous wave

Not limiting to the hyperbolic solution in the expected way

Summary

- Theory of hyperbolic eqns. can help us understand reactive transport in the environment.
- Provides useful benchmarks for numerical solutions.
- Helps us identify unusual behavior.
- May eventually help improve robustness of numerical solutions