Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Nota:	
-------	--

CIRCUITOS ELÉCTRICOS I

TEMA 4: TÉCNICAS Y MÉTODOS DE ANÁLISIS DE CIRCUITOS PRÁCTICA 4

Grupo:	
Apellido (s) y	Nombre (s):
_	
Docentes:	M.Sc. Ing. Juan José E. MONTERO G. – Ing. Yuri PÉREZ P.
Auxiliar:	Boris COLQUE V. – Osmar IBARRA V. – Gabriel ROJAS M.
Asignatura:	Circuitos Eléctricos I
Carrera:	Ingeniería: Eléctrica - Electrónica - Electromecánica
Semestre:	2° Semestre – 4° Semestre
Fecha de ent	rega: Chha / / / 20

Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Ingeniería: El 'ectrica - Electrónica - Electromec'anica

Circuitos Eléctricos I: 2º Semestre - 4º Semestre

TEMA 4: TÉCNICAS Y MÉTODOS DE ANÁLISIS DE CIRCUITOS ELÉCTRICOS

PRÁCTICA 4

Problema 1.

a) Emplee el método de las corrientes de malla para encontrar las corrientes de rama "i a", "í b" e "i c" en el circuito de la figura

$$R.: 6.4[A]; 0.4[A]; -6[A]$$

b) Repita el problema invirtiendo la polaridad, de la fuente de 64[V].

Problema 2.

a) Emplee el método de las corrientes de malla para encontrar las corrientes de malla "i a", "í b" e "i c" en el circuito de la figura.

$$R.: -10.6[A]; 4.4[A]; -36.8[A]$$

b) Determinar la potencia disipada en las resistencias de $2[\Omega]$ y $3[\Omega]$, calcular la tensión en el resistor de $1[\Omega]$.

c) Verificar la potencia disipada y la potencia suministrada.

R.:
$$P_{dis} = 13202[W]$$
; $P_{gen} = -13202[W]$

Problema 3.

a) Utilizar el método de las corrientes de malla para determinar las corrientes de malla para encontrar las corrientes de rama "i a", "í b" e "i c" en el circuito de la figura.

R.: 5.6[A]; 2.0[A]; -0.80[A]

b) Calcular el voltaje " V_0 " en la resistencia de $8[\Omega]$. R.: 28.8[V]

Problema 4.

Calcule con el método de las corrientes de malla la potencia total que se disipa en el circuito de la figura. R.: 153[W]

Problema 5.

Emplear el método de las corrientes de mallas para análisis de circuitos y determinar la potencia disipada por la resistencia de $4[\Omega]$. R.: 29.6[A]; 26[A]; 28[A]; 1.6[A] 16[W]

Problema 6.

Use el método de las corrientes de malla para encontrar:

- a) La potencia que se suministra la fuente de voltaje dependiente. R.: -1[A]; 4[A]; 3[A]; -36[W]
- b) Determinar la potencia disipada en la resistencia de $2[\Omega]$. R.: 50[W]
- c) Determinar el voltaje en la resistencia de $5[\Omega]$.

R.: 5[W]

Problema 7.

Emplee el método de las corrientes de malla para encontrar " V_0 " en el circuito que se muestra en la figura. R.: 20[V]

Problema 8.

Use el método de las corrientes de malla para encontrar la potencia que suministra la fuente de voltaje dependiente del circuito que aparece en la figura.

R.: 2700[W]

Problema 9.

A partir del método de las corrientes de malla para encontrar: "ia", "ib", "ic" y "V", en el circuito que se muestra en la figura.

R.: 1.75[A]; 1.25[A]; 6.75[A]; 88[V]

Problema 10.

Utilizando el método de de las corrientes de malla y aplicando el método del supermalla determinar i_a ", " i_b " e " i_c " en el circuito que se muestra en la figura. R.: $i_a = -0.622[A]$,

 $i_b = -0.556[A]$; $i_c = -1.150[A]$

Problema 11.

Utilizando el método de los voltajes de los nodos determinar " V_0 " en el circuito de la figura. R.: -5[V]

Problema 12.

Utilizando el método de los voltajes de los nodos determinar V_1 y V_2 .

R.: 9.09[V]; 10.91[V]

Problema 13.

Utilizando el método de los voltajes de los nodos determinar V_1 y V_2 .

R.: 100[V]; 20[V]

Problema 14.

Utilizando el método de los voltajes de los nodos determinar:

- a) Las corrientes en las ramas i_a , i_b e i_c . R.: 2[A]; 4[A]; 1[A]
- b) La potencia asociada a cada fuente y si ésta suministra o consume potencia.

R.: -100[W]; -120[W]; Suministra

Problema 15.

a) Con base en el método de los voltajes de los nodos, encuentre "v₁", "v₂"e "i₁", en el circuito que se muestra en la figura.

R.: 48[V]; 64[V]; -8[A]

b) ¿Cuánta potencia suministra la fuente de l2[A] al circuito?.

c) Repita (a) y (b) para la fuente de 5[A].

R.: 768[W]

Problema 16.

Use el método de los voltajes de los nodos para calcular "v" en el circuito que se muestra en la figura.

R.: 15[V]

Problema 17.

Utilizando el método de los voltajes de los nodos, encuentre el voltaje de los nodos y la potencia total que se disipa en el circuito de la figura

R.: -10[V]; 132[V]; -84[V]; 2430[W]

Problema 18.

- a) Utilizando el método de los voltajes de los nodos, encontrar las corrientes de rama i₁, i₂ e i₃, en el circuito de la figura. R.: 1[mA]; 20[mA]; 31[mA]
- b) Compruebe su solución para i₁, i₂ e i₃, demostrando que la potencia disipada en el circuito es igual a la potencia total generada (Suministrada + Absorbida).

R.: $|P_{gen}| = P_{dis} = 275 [mW]$

Problema 19.

Utilizando el método de los voltajes de los nodos, encontrar el valor de " v_0 " en el circuito de la figura.

R.:
$$V_a = 33[V]$$
; $V_b = 30[V]$;
 $V_c = 52.8[V]$; $V_o = 19.8[V]$

Problema 20.

Use el método de los voltajes de los nodos para determinar el valor de " v_0 " en el circuito de la figura.

$$R.: -23[V]$$

Problema 21.

Utilizar el método de los voltajes de los nodos para encontrar la potencia que disipa la resistencia de $5[\Omega]$ en el circuito de la figura R.: 16[V]; 10[V]; 7.2[W]; $P_{gen} = -38.08[W]$; $P_{dis} = 38.08[W]$

Problema 22.

En el circuito de la figura y utilizando el método de los voltajes de los nodos encontrar " V_1 ", " V_2 " y la corriente de la fuente de voltaje independiente.

Problema 23.

Use el método de los voltajes de los nodos para encontrar la potencia de la fuente de 20[V] del circuito que aparece en la figura

R.: 602.5[W]

Problema 24.

En el circuito de la figura se pide:

a) Utilizar, primero el método de los voltajes de los nodos y verificar con el método de los supernodos, para encontrar " v_{Δ} " en el circuito de la figura R.: 5[V]

b) Calcular la potencia de la fuente controlada. R.: – 37.5[W]

Problema 25.

Basándose en el método de los voltajes de los nodos:

a) El voltaje de los nodos.

 Encuentre la potencia asociada a cada una de las fuentes del circuito que se muestra en la figura.

c) Determine si las fuentes suministran potencia o absorben potencia al circuito.

R.: Todas las fuentes suministran potencia al circuito

Problema 26.

Determinar los voltajes en los nodos uno, dos y tres, utilizando:

a) El método de los voltajes de los nodos.

b) El método de los supernodos.

c) La potencia en la fuente controlada. ¿Absorbe o Suministra?

R.: 50[V]; 60[V]; 80[V] R.: 50[V]; 60[V]; 80[V] R.: + 64[W]

Problema 27.

Utilizando el nodo "d" como referencia y aplicando el método del supernodo determinar " V_b ".
R.: $V_b = 38.909[V]$; $V_c = 8.909[V]$; $i_\beta = 0.066[A]$

