LOGICAL AND THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

What do have all the sentences in common?

○ A tree is an animal.

What do have all the sentences in common?

- A tree is an animal.
- Five is greater than two.

What do have all the sentences in common?

- A tree is an animal.
- Five is greater than two.
- The Earth is a sphere.

What do have all the sentences in common?

- A tree is an animal.
- Five is greater than two.
- The Earth is a sphere.
- Chairs have four legs.

What do have all the sentences in common?

- A tree is an animal.
- Five is greater than two.
- The Earth is a sphere.
- Chairs have four legs.

They are all either true or false.

Definition

Statement is an atomic proposition (declarative sentence) iff either true or false are assignable and that cannot be decomposed.

Definition

Statement is an atomic proposition (declarative sentence) iff either true or false are assignable and that cannot be decomposed.

We don't consider questions, commands, wishes, etc.

Definition

Statement is an atomic proposition (declarative sentence) iff either true or false are assignable and that cannot be decomposed.

We don't consider questions, commands, wishes, etc.

 \bigcirc to no strict part of *A fox is a mammal.* the logical/truth values are assignable.

Definition

Statement is an atomic proposition (declarative sentence) iff either true or false are assignable and that cannot be decomposed.

We don't consider questions, commands, wishes, etc.

- to no strict part of *A fox is a mammal*. the logical/truth values are assignable.
- \bigcirc Contrary: A fox is a mammal and can fly. is dividable into

A fox is a mammal. A fox can fly.

Are the following statements atomic propositions and are they true or false?

○ A child has a mother and a father.

- A child has a mother and a father.
- A child has two parents of different genders.

- A child has a mother and a father.
- A child has two parents of different genders.
- A child has two mothers (resp. fathers).

- A child has a mother and a father.
- A child has two parents of different genders.
- A child has two mothers (resp. fathers).
- A child has a biological mother.

Semantics and Syntax

If we are about to define a language we need (as usual) syntax and semantics:

Syntax Which strings are a valid atomic proposition or formula?

Semantics What is the meaning of an atomic proposition or formula?

Definition

The set Φ of (well-formed) propositional formulae for a given set of atoms $A = \{p_i | i \in \mathbb{N}\}$ is inductively defined by

1. each propositional atom is a propositional formula,

Definition

- 1. each propositional atom is a propositional formula,
- 2. if $\phi \in \Phi$ then also $(\neg \phi)$ (negation)

Definition

- 1. each propositional atom is a propositional formula,
- 2. if $\phi \in \Phi$ then also $(\neg \phi)$ (negation)
- 3. if $\phi, \psi \in \Phi$ then also $(\phi \land \psi)$ (conjunction)

Definition

- 1. each propositional atom is a propositional formula,
- 2. if $\phi \in \Phi$ then also $(\neg \phi)$ (negation)
- 3. if $\phi, \psi \in \Phi$ then also $(\phi \land \psi)$ (conjunction)
- 4. if $\phi, \psi \in \Phi$ then also $(\phi \lor \psi)$ (disjunction)

Definition

- 1. each propositional atom is a propositional formula,
- 2. if $\phi \in \Phi$ then also $(\neg \phi)$ (negation)
- 3. if $\phi, \psi \in \Phi$ then also $(\phi \land \psi)$ (conjunction)
- 4. if $\phi, \psi \in \Phi$ then also $(\phi \lor \psi)$ (disjunction)
- 5. if $\phi, \psi \in \Phi$ then also $(\phi \to \psi)$ (implication)

Definition

- 1. each propositional atom is a propositional formula,
- 2. if $\phi \in \Phi$ then also $(\neg \phi)$ (negation)
- 3. if $\phi, \psi \in \Phi$ then also $(\phi \land \psi)$ (conjunction)
- 4. if $\phi, \psi \in \Phi$ then also $(\phi \lor \psi)$ (disjunction)
- 5. if $\phi, \psi \in \Phi$ then also $(\phi \to \psi)$ (implication)
- 6. if $\phi, \psi \in \Phi$ then also $(\phi \leftrightarrow \psi)$ (equivalence)

Definition

- 1. each propositional atom is a propositional formula,
- 2. if $\phi \in \Phi$ then also $(\neg \phi)$ (negation)
- 3. if $\phi, \psi \in \Phi$ then also $(\phi \land \psi)$ (conjunction)
- 4. if $\phi, \psi \in \Phi$ then also $(\phi \lor \psi)$ (disjunction)
- 5. if $\phi, \psi \in \Phi$ then also $(\phi \to \psi)$ (implication)
- 6. if $\phi, \psi \in \Phi$ then also $(\phi \leftrightarrow \psi)$ (equivalence)
- 7. if $\phi, \psi \in \Phi$ then also $(\phi \dot{\lor} \psi)$ (exclusive or)

Definition

The set Φ of (well-formed) propositional formulae for a given set of atoms $A = \{p_i | i \in \mathbb{N}\}$ is inductively defined by

- 1. each propositional atom is a propositional formula,
- 2. if $\phi \in \Phi$ then also $(\neg \phi)$ (negation)
- 3. if $\phi, \psi \in \Phi$ then also $(\phi \land \psi)$ (conjunction)
- 4. if $\phi, \psi \in \Phi$ then also $(\phi \lor \psi)$ (disjunction)
- 5. if $\phi, \psi \in \Phi$ then also $(\phi \to \psi)$ (implication)
- 6. if $\phi, \psi \in \Phi$ then also $(\phi \leftrightarrow \psi)$ (equivalence)
- 7. if $\phi, \psi \in \Phi$ then also $(\phi \dot{\vee} \psi)$
- 8. if $\phi, \psi \in \Phi$ then also $(\phi \downarrow \psi)$

(nor)

(exclusive or)

Definition

The set Φ of (well-formed) propositional formulae for a given set of atoms $A = \{p_i | i \in \mathbb{N}\}$ is inductively defined by

- 1. each propositional atom is a propositional formula,
- 2. if $\phi \in \Phi$ then also $(\neg \phi)$ (negation)
- 3. if $\phi, \psi \in \Phi$ then also $(\phi \land \psi)$ (conjunction)
- 4. if $\phi, \psi \in \Phi$ then also $(\phi \lor \psi)$ (disjunction)
- 5. if $\phi, \psi \in \Phi$ then also $(\phi \to \psi)$ (implication)
- 6. if $\phi, \psi \in \Phi$ then also $(\phi \leftrightarrow \psi)$ (equivalence)
- 7. if $\phi, \psi \in \Phi$ then also $(\phi \dot{\lor} \psi)$ (exclusive or)
- 8. if $\phi, \psi \in \Phi$ then also $(\phi \downarrow \psi)$
- 9. if $\phi, \psi \in \Phi$ then also $(\phi \uparrow \psi)$

(nor)

(nand)

Representations of propositional formulae

- By definition a propostional formula is just a string over the alphabet $A \cup \{\neg, \land, \lor, \rightarrow, \leftrightarrow, \dot{\lor}, \downarrow, \uparrow, (,)\}$.
- \bigcirc Φ can also be generated by a grammar (validity is easy to check by a computer)

$$\varphi \to (\neg \varphi)|(\varphi \land \varphi)|(\varphi \lor \varphi)|\varphi \to \varphi)$$

$$\forall i \in \mathbb{N}: \varphi \to p_i$$

Formulae as Trees

Definition

A tree T = (V, E) is a parse-tree for a formula $\varphi \in \Phi$ iff

- 1. $\varphi \in A$: φ is a node
- 2. $\varphi = (\neg \psi)$: ψ is the only child of \neg
- 3. $\varphi = (\psi \circ \chi)$: ψ is left-child of \circ and χ is right-child of \circ for all $\circ \in \{\land, \lor, \rightarrow,, \leftrightarrow, \dot{\lor}, \downarrow, \uparrow\}$

Ambiguity

What does

If a fox is a mammal then it can fly or it can walk.

mean?

Ambiguity

What does

If a fox is a mammal then it can fly or it can walk.

mean?

 \bigcirc (If a fox is a mammal then it can fly) or it can walk.

Ambiguity

What does

If a fox is a mammal then it can fly or it can walk.

mean?

- (If a fox is a mammal then it can fly) or it can walk.
- If a fox is a mammal then (it can fly or it can walk).

Precedence Conventions

From tightest to weakest binding

- \bigcirc \neg
- $\bigcirc \land, \lor, \uparrow, \downarrow, \dot{\lor}$
- \bigcirc \rightarrow
- \bigcirc \leftrightarrow

All binary operators are assumed to be right-associative.

Subformulae

Definition

- O A substring ψ of φ is a subformula of φ if ψ is a well-formed propositional formula itself.
- \bigcirc The set of all subformulae of φ is denoted by Sub(φ).

Subformulae

Definition

- O A substring ψ of φ is a subformula of φ if ψ is a well-formed propositional formula itself.
- \bigcirc The set of all subformulae of φ is denoted by Sub(φ).

Notice that each subformula ψ of φ is associated with a subtree of φ 's parse tree.

Height of a Formula

Definition

The height of a well-formed formula is the length of the longest path from the root to a leaf in its parse-tree plus one.

