Linear Algebra I

Kon Yi

September 3, 2025

Abstract

The lecture note of Linear Algebra I by professor 余正道.

Contents

1	Introduction	2
	1.1 Vector	2
2	Formal Introduction to Vector Spaces	4
	2.1 Vector Spaces Over \mathbb{R}	4

Chapter 1

Introduction

Lecture 1: First Lecture

1.1 Vector

In high school, our vectors are in \mathbb{R}^2 and \mathbb{R}^3 , and we have define the addition and scalar multiplication of vectors

3 Sep. 10:20

Figure 1.1: Vectors in \mathbb{R}^2

Example. $\mathbb{R}^n = \{(a_1, a_2, \dots, a_n \mid a_n \in \mathbb{R})\}$

With this type of space, we can define addition and multiplication as

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = \{a_1 + b_1, a_2 + b_2, \dots, a_n + b_n\}$$
$$\alpha \cdot (a_1, a_2, \dots, a_n) = (\alpha a_1, \alpha a_2, \dots, \alpha a_n)$$

Also, if we define a space:

Example. $V = \{ \text{function } f : (a, b) \to \mathbb{R} \}, \text{ where } (a, b) \text{ is an open interval.}$

then this can also be a vector space after defining addition and multiplication.

Note. In a vector space, we have to make sure the existence of 0-element, which means 0(x) = 0.

Now we give a more abstract example:

Example. Suppose S is any set, then define $V = \{\text{all functions from } S \text{ to } \mathbb{R}\}$

If we define (f+g)(s)=f(s)+g(s) and $(\alpha \cdot f)(s)=\alpha \cdot f(s)$, and 0(s)=0, then this is also a vector space.

Put some linear conditions

Example. In \mathbb{R}^n , fix $\vec{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$, if we define

$$W = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0\},\,$$

then this is also a vector space.

However, if we have

$$W' = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid a_1 x_1 + \dots + a_n x_n = 1\},$$

then this is not a vector space because it is not close.

Example. In $V = \{(a, b) \to \mathbb{R}\}$ or $W_1 = \{\text{polynomial defined on } (a, b)\}$, these are both vector space.

Remark. In the later course, we will learn that W_1 is a subspace of V.

Example. If we furtherly defined $W_1^{(k)} = \{\text{polynomial degree } \leq k\}$, then this is also a vector space.

Remark. $W_1^{(k)}$ is actually isomorphic to \mathbb{R}^{k+1} since

$$a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k \leftrightarrow (a_0, a_1, a_2, \dots, a_n).$$

Example. $W_2 = \{\text{continuous function on } (a, b)\}$ and $W_3 = \{\text{differentiable functions}\}$ are also both vector spaces.

Example. $W_4 = \left\{ \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} = 0 \right\}$ and $W_5 = \left\{ \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} = -f \right\}$ are both vector spaces.

Proof.

$$W_4 = \{a_0 + a_1 x\}$$

$$W_5 = \{a_1 \cos x + a_2 \sin x\}$$

(*

Chapter 2

Formal Introduction to Vector Spaces

2.1 Vector Spaces Over \mathbb{R}

Definition 2.1.1. Suppose V is a non-empty set equipped with

- addition: $V \times V \to V$, that is, given $u, v \in V$, defining $u + v \in V$
- scalare multiplication: $\mathbb{R} \times V \to V$, that is, given $\alpha \to \mathbb{R}$ and $v \in V$, we need to have $\alpha v \in V$

Also, we need some good properties or conditions

• For addition,

$$-u + v = v + u$$

 $-(u + v) + w = u + (v + w)$

- There exists $0 \in V$ such that u + 0 = u = 0 + u
- Given $v \in V$, there exists $-v \in V$ such that v + (-v) = 0 = (-v) + v
- For scalar multiplication,

$$-1 \cdot v = v \text{ for all } v \in V$$
$$-(\alpha \beta)v = \alpha \cdot (\beta v) \text{ for all } \alpha, \beta \in \mathbb{R} \text{ and } v \in V.$$

• For addition and multiplication,

$$-\alpha(u+v) = \alpha u + \alpha v$$
$$-(\alpha + \beta)u = \alpha u + \beta u$$

Lecture 2: Second Lecture

5 Sep. 10:20

Appendix