SERIA 10

Twierdzenie. Dla dowolnego szeregu potęgowego $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ istnieje $R \in [0,\infty]$ takie, że

- (1) szereg ten jest zbieżny bezwzględnie, jeśli $|x-x_0| < R$, a jeśli $|x-x_0| > R$, to jest rozbieżny,
- (2) $R = \sup\{r \in [0, \infty) : \text{ciag } \{|a_n|r^n\} \text{ jest ograniczony}\},$
- (3) $\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$, przy czym przyjmujemy, że $\frac{1}{0} = +\infty$ i $\frac{1}{\infty} = 0$.

Liczbę R nazywamy promieniem zbieżności szeregu potęgowego $\sum_{n=0}^{\infty} a_n (x-x_0)^n$.

Zadanie 1. Wyznaczyć zbiór punktów zbieżności następujących szeregów:

- (a) $\sum_{n=1}^{\infty} n^3 x^n$, (b) $\sum_{n=1}^{\infty} (2 + (-1)^n)^n x^n$, (c) $\sum_{n=1}^{\infty} 2^n x^{n^2}$, (d) $\sum_{n=1}^{\infty} 2^n x^{n!}$, (e) $\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{2^n n^3}$, (f) $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{2x+1}{x}\right)^n$, (g) $\sum_{n=1}^{\infty} \sqrt{n} (\lg x)^n$

Zadanie 2. Załóżmy, że promień zbieżności szeregu $\sum_{n=0}^{\infty} a_n x^n$ wynosi R, przy czym $0 < \infty$ $R < \infty$. Znaleźć promień zbieżności szeregów:

- (a) $\sum_{n=1}^{\infty} n^n a_n x^n$, (b) $\sum_{n=0}^{\infty} a_n^2 x^n$.

Zadanie 3. Znaleźć promień zbieżności R szeregu

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!!}$$

oraz wykazać, że jego suma spełnia równanie f'(x) = 1 + xf(x) dla $x \in (-R, R)$.

Zadanie 4. Niech $S_n(x) = \sum_{k=0}^n a_k x^k$, n = 0, 1, 2, ... i niech R > 0 będzie promieniem zbieżności szeregu potęgowego $f(x) = \sum_{n=0}^{\infty} a_n x^n$. Wykazać, że jeśli $x_0 \in (-R, R)$ jest takim punktem, że dla każdego n = 0, 1, 2, ... spełniona jest nierówność $S_n(x_0) < f(x_0)$, to $f'(x_0) \neq 0$.

1