1 Fonctions trigonométriques

Par définition on voit sur ce schéma que

- Le point M_{θ} est le point du cercle trigonométrique tel que l'arc $\widehat{OM_{\theta}}$ est de longueur θ en radians en tournant dans le sens trigonométrique
- $\cos(\theta)$ est l'abscisse du point M_{θ}
- $\sin(\theta)$ est l'ordonnée du point M_{θ}

Cela revient à dire que $M_{\theta} = (\cos(\theta), \sin(\theta))$. Par ailleurs:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Exemple 1.1

Le point M_0 est le point I:

Gabriel Soranzo 1 Version: 22.2

On a donc
$$\begin{cases} \cos(0) = 1 \\ \sin(0) = 0 \end{cases}$$
 et donc $\tan(0) = \frac{0}{1} = 0$.

Exemple 1.2

On place d'autres points sur le cercle trigonométrique:

Ce qui donne les cosinus, sinus et tangentes suivants:

rad	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\overline{\deg}$	-90°	0°	90°	180°	270°	360°
cos	0	1	0	-1	0	1
\sin	-1	0	1	0	-1	0
tan	V.I.	0	V.I.	0	V.I.	0

On voit ici que le tableau est periodique de periode 2π (il se répète tout les 2π), ce qui est logique car le point M_{θ} retombe au même endroit.

2 Tracés

2.1 Tracés de base

Voici le tracé de la fonction cosinus:

Version: 22.2

Exercice 2.1 Tracer la fonction sinus.

2.2 Tracés plus complexes

Dans un signal $A\sin(\omega t + \varphi) + B$:

• Le A est l'amplitude du signal et B est la valeur moyenne: l'amplitude est égale à la moitié de la distance crête à crête.

 \bullet Le ω est la **pulsation**: la pulsation est reliée à la fréquence f et à la periode T par les relations

$$\omega = 2\pi f$$
 et $\omega = \frac{2\pi}{T}$

Lorsque l'on augmente la pulsation cela augmente donc la fréquence:

• Le φ est le **déphasage**: le déphasage permet de trouver le retard Δt entre le signal $A\sin(\omega t)$ et le signal $A\sin(\omega t + \varphi)$. Le signal $A\sin(\omega t + \varphi)$ est en **avance de phase** qui lui donne une avance temporel de $\Delta t = \frac{\varphi}{\omega}$ (voir exemple).

Exemple 2.1

Tracé de $1, 4\sin(0, 7t - 1, 1) + 0.4$

- Valeur moyenne de 0,4
- $\bullet\,$ Amplitude de 1,4 donc crêtes entre 0,4 1,4 = -1 et 0,4 + 1,4 = 1,8.
- Pulsation de 0.7 donc 0,7 = $\frac{2\pi}{T}$ donc la periode est égale à

$$T = \frac{2\pi}{0.7} \approx 9s$$

Gabriel Soranzo 4

• Déphasage de -1,1 donc **retard** de

$$\frac{1,1}{0,7} \approx 1,57s$$

 Valeur initiale: en t=0s le signal vaut

$$1, 4\sin(-1, 1) + 0, 4 \approx -0, 84$$

Cela permet de tracer le signal:

2.3 Conséquences

1.
$$\forall x \in \mathbb{R}, \begin{cases} \cos \theta \in [-1; 1] \\ \sin \theta \in [-1; 1] \end{cases}$$

2. $\tan\theta=\frac{\sin\theta}{\cos\theta}$ n'est pas définie pour θ du type $\frac{\pi}{2}+k\pi$ avec $k\in\mathbb{Z}$ car alors $\sin\theta=0$: on le note

$$Def(tan) = \mathbb{R} \setminus \left(\frac{\pi}{2} + \mathbb{Z}\pi\right)$$

3. Les fonctions cos et sin sont 2π -perdiodiques:

$$\forall x \in \mathbb{R}, \begin{cases} \cos(x+2\pi) = \cos(x) \\ \sin(x+2\pi) = \sin(x) \end{cases}$$

La fonction tan est π -periodique:

$$\forall x \in \mathbb{R}, \tan(x+\pi) = \tan(x)$$

4. A partir du scéma suivant:

La fonction cos est une fonction paire:

$$\forall x \in \mathbb{R}, \cos(-x) = \cos(x)$$

Traduction graphique:

La fonction sin est impaire:

$$\forall x \in \mathbb{R}, \sin(-x) = -\sin(x)$$

La fonction tan est impaire:

$$\forall x \in \mathbb{R}, \ \tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin(x)}{\cos(x)} = -\tan(x)$$

- 5. Relation entre cos et sin:
 - Relation de Pythagore: à partir de la figure ci-dessous

On voit à partir du théorème de Pythagore que

$$\forall \theta \in \mathbb{R}, \cos^2 \theta + \sin^2 \theta = 1$$

• Déphasage: d'après la figure ci-dessous

On observe que

$$\forall \theta \in \mathbb{R}, \cos(\theta) = \sin\left(\theta + \frac{\pi}{2}\right)$$

Graphiquement:

6. Valeurs de référence (à connaître par cœur): Les valeurs de référence des foncions trigonométriques sont les suivantes:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	X

3 Formules trigonométriques

Les formules de base sont les suivantes (non démontrées):

$$\begin{array}{ll} \cos(a+b) &= \cos a \cos b - \sin a \sin b \\ \cos(a-b) &= \cos a \cos b + \sin a \sin b \\ \sin(a+b) &= \sin a \cos b + \sin b \cos a \\ \sin(a-b) &= \sin a \cos b - \sin b \cos a \end{array}$$

On en déduit alors

$$cos(2a) = cos(a+a)$$

= $cos a cos a - sin a sin a$

 donc

$$\cos 2a = \cos^2 a - \sin^2 a$$

Comme $\cos^2 + \sin^2 = 1$ alors on peut remplacer $\cos^2 a$ par $1 - \sin^2 a$ dans cette égalité ce qui donne:

$$\cos 2a = 1 - 2\sin^2 a$$

Toujours comme $\cos^2 + \sin 2 = 1$ on peut sinon remplacer $\sin^2 a$ par $1 - \cos^2 a$ ce qui donne:

$$\cos 2a = 2\cos^a -1$$

En isolant les $\cos a$ et $\sin a$ dans ces deux égalités cela donne

$$\boxed{\cos a = \sqrt{\frac{1 + \cos 2a}{2}}} \text{ et } \boxed{\sin a = \sqrt{\frac{1 - \cos(2a)}{2}}}$$

On a également

$$\sin(2a) = \sin(a+a)$$
$$= \sin a \cos a + \sin a \cos a$$

Ce qui donne donc

$$\sin(2a) = 2\sin a \cos a$$

4 Equations trigonométriques

On veut par exemple résoudre des équation comme cos(x) = 0, 7:

Sur cette figure on peut observer 10 solutions, il y en a en fait une infinité.

Méthode:

- (1) Trouver une solution avec les fonctions Arccos et Arcsin.
- (2) On en déduit toutes les solutions avec la parité et la periodicité:
 - Pour le cosinus:

• Pour le sinus:

Exemple 4.1

Résolvons l'équation cos(x) = 0.7.

- (1) Recherche d'une solution: $Arccos(0.7) \approx 0.8$
- (2) On a donc

$$\begin{split} \cos(x) &= 0.7 \\ \iff \cos(x) &= \cos(0.8) \\ \iff x &= 0.8 + 2k\pi \text{ ou } x = -0.8 + 2k\pi \\ \iff x &\in \{0.8; 0.8 + 2\pi; 0.8 + 4\pi; \ldots; -0.8; -0.8 + 2\pi; -0.8 + 4\pi; \ldots\} \end{split}$$

Exemple 4.2

Résolvons l'équation $\sin(3x) = -\frac{\sqrt{2}}{2}$:

$$\sin(3x) = -\frac{\sqrt{2}}{2}$$

$$\iff \sin(3x) = \sin\left(-\frac{\pi}{4}\right)$$

$$\iff 3x = -\frac{\pi}{4} + 2k\pi \text{ ou } 3x = \pi - \left(-\frac{\pi}{4}\right) + 2k\pi$$

$$\iff 3x = -\frac{\pi}{4} + 2k\pi \text{ ou } x = \frac{5\pi}{4} + 2k\pi$$

$$\iff x = -\frac{\pi}{12} + k \times \frac{2\pi}{3} \text{ ou } x = \frac{5\pi}{12} + k \times \frac{2\pi}{3}$$

$$\iff x \in \left\{ \begin{array}{c} -\frac{\pi}{12}; -\frac{\pi}{12} + \frac{2\pi}{3}; -\frac{\pi}{12} + \frac{4\pi}{3}; -\frac{\pi}{12} + 2\pi; \dots; \\ \frac{5\pi}{12}; \frac{5\pi}{12} + \frac{2\pi}{3}; \frac{5\pi}{12} + \frac{4\pi}{3}; \frac{5\pi}{12} + 2\pi; \dots; \end{array} \right\}$$

