Chapitre 7

Complément sur la dérivation

Approfondissement sur les dérivées

1) Fonction composée

Définition:

Soit u une fonction définie et dérivable sur un intervalle I, à valeurs dans un intervalle J, et g une fonction définie et dérivable sur J.

La fonction composée des fonctions u et g, notée $g \circ u$, est définie sur I par :

$$g \circ u(x) = g(u(x))$$
.

Exemples:

Soit *u et* g les fonctions suivantes :

$$u: I = [0; +\infty[\rightarrow J = [0; +\infty[$$
 et $g: J = [0; +\infty[\rightarrow \mathbb{R}]$
 $x \mapsto x^2 + x$ $x \mapsto \sqrt{x}$

La fonction composée est la fonction $g \circ u : I \to \mathbb{R}$

$$x \mapsto g(u(x)) = \sqrt{x^2 + x}$$

Remarques:

Sur l'exemple précédent, $u \circ g$ est définie par : $u \circ g : [0; +\infty[\to [0; +\infty[$

$$x \mapsto x + \sqrt{x}$$

Les propriétés précédentes sont des cas particuliers :

$$\circ$$
 Pour $f(x) = \sqrt{u(x)}$

$$u: E \rightarrow]0;+\infty[$$

$$g:]0; +\infty[
ightarrow \mathbb{R}$$

$$x \mapsto u(x)$$

$$x \mapsto \sqrt{x}$$

La fonction f peut s'écrire $f = g \circ u : E \to \mathbb{R}$

$$x \mapsto \sqrt{u(x)}$$

$$\circ$$
 Pour $f(x)=(u(x))^n$

$$u: E \to \mathbb{R}$$
 et

$$g:\mathbb{R} o\mathbb{R}$$

$$x \mapsto u(x)$$

$$x \mapsto x^n$$

La fonction f peut s'écrire $f = g \circ u : E \to \mathbb{R}$

$$x \mapsto (u(x))^n$$

$$\circ$$
 Pour $g(x)=f(ax+b)$

$$u: E \to \mathbb{R}$$
 et

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto ax + b$$

$$x \mapsto f(x)$$

La fonction g peut s'écrire $g = f \circ u : E \to \mathbb{R}$

$$x \mapsto f(ax+b)$$

Propriété: associativité de la composition de fonctions

La composée de fonctions est associative.

Soit u, v et w trois fonctions vérifiant les conditions de définition requises alors :

$$w \circ (v \circ u) = (w \circ v) \circ u$$

Exemple:

Soit trois functions u, v et w définies par $u: x \mapsto x^2 - 2$, $v: x \mapsto e^x$, $w: x \mapsto 1 - x$

• $w \circ v(x) = w(v(x)) = w(e^x) = 1 - e^x$

et donc
$$(w \circ v) \circ u(x) = w \circ v(u(x)) = w \circ v(x^2 - 2) = 1 - e^{x^2 - 2}$$

• $v \circ u(x) = v(u(x)) = v(x^2 - 2) = e^{x^2 - 2}$

et donc
$$w \circ (v \circ u)(x) = w \circ (v \circ u(x)) = w(e^{x^2-2}) = 1 - e^{x^2-2}$$

Propriété: non commutativité de la composition de fonctions

La composée de fonctions n'est pas commutative.

Exemple:

Soit trois fonctions u, v et w définies par $u: x \mapsto x^2 - 2$, $v: x \mapsto e^x$

- $u \circ v(x) = u(v(x)) = u(e^x) = (e^x)^2 2 = e^{2x} 2$
- $v \circ u(x) = v(u(x)) = v(x^2 2) = e^{x^2 2}$

Donc $u \circ v(x) \neq v \circ u(x)$.

2) <u>Dérivée d'une fonction composée</u>

Propriété:

Soit u une fonction définie et dérivable sur un intervalle E, à valeurs dans un intervalle F et g une fonction définie et dérivable sur F.

La fonction $f: x \mapsto g(u(x))$ est dérivable en tout nombre réel x de E et sa dérivée est la fonction :

$$(g \circ u)' : x \mapsto g'(u(x)) \times u'(x)$$
.

Démonstration:

Soit x_0 , un réel de l'intervalle I. On veut montrer que $g \circ u$ est dérivable en x_0 donc que $\frac{(g \circ u)(x) - (g \circ u)(x_0)}{x - x_0}$ admet une limite finie lorsque x tend vers x_0 .

$$\frac{(g \circ u)(x) - (g \circ u)(x_0)}{x - x_0} = \frac{u(x) - u(x_0)}{x - x_0} \times \frac{(g \circ u)(x) - (g \circ u)(x_0)}{u(x) - u(x_0)}$$

D'une part, u étant dérivable en x_0 , on sait que $\frac{u(x)-u(x_0)}{x-x_0}$ tend vers $u'(x_0)$ quand x tend vers x_0 .

D'autre part, lorsque x tend vers x_0 , u(x) tend vers $u(x_0)$ car u est continue en x_0 . (puisqu'elle est dérivable sur I).

De plus, comme g est dérivable en $u(x_0)$, $\frac{g(u(x))-g(u(x_0))}{u(x)-u(x_0)}$ tend vers $g'(u(x_0))=(g'\circ u)(x_0)$.

Donc:

$$\frac{(g \circ u)(x) - (g \circ u)(x_0)}{x - x_0} = \frac{u(x) - u(x_0)}{x - x_0} \times \frac{(g \circ u)(x) - (g \circ u)(x_0)}{u(x) - u(x_0)} \text{ tend vers } u'(x_0) \times g'(u(x_0)) \text{ pour tout } x_0 \text{ de I.}$$

Exemple:

La fonction f définie sur $]0;+\infty[$ par $f(x)=\frac{1}{\sqrt{x}}$ est la composée de la fonction $u:x\mapsto \sqrt{x}$ définie et dérivable sur $]0;+\infty[$, à valeurs dans $]0;+\infty[$, et de la fonction $g:x\mapsto \frac{1}{x}$ définie et dérivable sur $]0;+\infty[$.

On sait que
$$u'(x) = \frac{1}{2\sqrt{x}}$$
 et $g'(x) = -\frac{1}{x^2}$.

La fonction f est dérivable et sa dérivée est donnée par :

$$u'(x) \times g'(u(x)) = \frac{1}{2\sqrt{x}} \times -\frac{1}{(\sqrt{x})^2} = \frac{-1}{2x\sqrt{x}}$$

Cas particuliers:

- La fonction f, définie sur I par $f(x) = e^{u(x)}$, est dérivable sur I et $f'(x) = u'(x)e^{u(x)}$.
- Si, pour tout x de I, u(x) > 0, alors la fonction f définie sur I par $f(x) = \sqrt{u(x)}$ est dérivable sur I et $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$.
- Soit n, un entier relatif non nul, et f la fonction définie sur I par $f(x) = (u(x))^n$.
 - Si $n \ge 1$, alors f est dérivable sur I et $f'(x) = n u'(x) (u(x))^{n-1}$.
 - Si $n \le -1$ et si u ne s'annule pas sur I, alors f est dérivable sur I et

$$f'(x) = n u'(x) (u(x))^{n-1}$$
.

Monotonie d'une fonction composée

Propriétés:

- Si g et u sont de **même monotonie** alors la fonction $g \circ u$ est **croissante**.
- Si g et u sont de **monotonie contraire** alors la fonction $g \circ u$ est **décroissante**.

Démonstration:

La fonction dérivée de la fonction $g \circ u$ est la fonction notée $(g \circ u)'(x) = (g'(u(x)) \times u'(x))$.

- Si u et g sont croissantes alors u et g sont positives et $(g \circ u)$ l'est aussi.
 - Si u et g sont décroissantes alors u et g sont négatives et $(g \circ u)$ est positive.
 - Dans les deux cas, $g \circ u$ est croissante.
- Si u est croissante et g est décroissante alors u' est positive et g' est négative donc $(g \circ u)$ ' est négative.

Si u est décroissante et g est croissante alors u' est négative et g' est positive donc $(g \circ u)$ ' est négative.

Dans les deux cas, $g \circ u$ est décroissante.

3) <u>Dérivée seconde</u>

Définitions:

Soient f une fonction dérivable sur un intervalle I et f' sa fonction dérivée.

La fonction f est **deux fois dérivable** sur I si f' est elle-même dérivable sur I.

On note f'' la dérivée de f'. Elle est appelée **dérivée seconde** de f.

Exemple:

Soit f, la fonction définie sur \mathbb{R} par $f(x) = x^3 + 5x + e^x$.

f est dérivable sur \mathbb{R} comme somme de fonctions dérivables sur \mathbb{R} et on a $f'(x) = 3x^2 + 5 + e^x$.

f' est dérivable sur \mathbb{R} comme somme de fonctions dérivables sur \mathbb{R} et on a $(f')'(x) = 6x + e^x$.

f est donc deux fois dérivable sur \mathbb{R} et sa dérivée seconde est définie par $f''(x) = 6x + e^x$.

II. Convexité : approche graphique

1) Fonctions convexes et concaves

Définition:

Soit f une fonction définie sur un intervalle I et \mathcal{C} sa courbe représentative dans un repère.

- f est **convexe** sur I si, pour tous réels a et b de I, la portion de la courbe $\mathscr C$ située entre les points A(a; f(a)) et B(b; f(b)) est **en dessous** de la sécante (AB).
- f est **concave** sur I si, pour tous réels a et b de I, la portion de la courbe \mathscr{C} située entre les points A(a; f(a)) et B(b; f(b)) est **au-dessus** de la sécante (AB).

Exemples:

• La fonction représentée ci-dessous est convexe :

• La fonction représentée ci-dessous est concave :

- La fonction carré et la fonction exponentielle sont convexes sur \mathbb{R} .
- La fonction racine carrée est concave sur [0; +∞[.
- La fonction inverse est concave sur]- ∞ ; 0[et convexe sur]0; + ∞ [.
- La fonction cube est concave sur $]-\infty$; 0] et convexe sur $[0; +\infty[$.

Remarque:

Étudier la convexité d'une fonction revient à déterminer sur quel(s) intervalle(s) elle est convexe et sur quel(s) intervalle(s) elle est concave.

Propriétés:

• Si f est une fonction **convexe** sur un intervalle I alors, pour tous réels x et y de I et pour tout t∈ [0; 1]:

$$f(t x + (1 - t) y) \le t f(x) + (1 - t) f(y)$$

• Si f est une fonction **concave** sur un intervalle I alors, pour tous réels x et y de I et pour tout t ∈ [0; 1]:

$$f(t x + (1 - t) y) \ge t f(x) + (1 - t) f(y)$$

Démonstration :

Soient deux réels x et y et soit t un réel de [0; 1].

Soient A(x; f(x)) et B(y; f(y)).

Alors le point M(t x + (1 - t) y ; t f(x) + (1 - t) f(y)) appartient au segment [AB], sécante de \mathcal{C}_f .

f étant convexe, cette sécante est située au-dessus de \mathcal{C}_f .

M est donc située au-dessus du point N de coordonnées

$$(t x + (1 - t) y ; f(t x + (1 - t) y)).$$

D'où
$$f(t x + (1 - t) y) \le t f(x) + (1 - t) f(y)$$
.

Propriété:

f est convexe sur I si et seulement si -f est concave sur I.

2) Point d'inflexion

Définition:

Soit f une fonction définie sur un intervalle I, $\mathscr C$ sa courbe représentative et A un point de $\mathscr C$.

A est un **point d'inflexion** de \mathscr{C} si \mathscr{C} admet une tangente en A et si \mathscr{C} traverse cette tangente en A.

Exemples:

Remarque:

En l'abscisse d'un point d'inflexion A de la courbe représentative de f, la fonction f change de convexité.

III. Convexité des fonctions dérivables

1) Caractérisation de la convexité

Propriétés:

Soit f une fonction définie et deux fois dérivable sur un intervalle I.

On note f' sa dérivée et f" sa dérivée seconde.

Les propositions suivantes sont équivalentes :

- f est convexe sur l'intervalle I.
- f" est positive sur l'intervalle I.
- f'est croissante sur I.

Exemple:

On considère la fonction polynôme f, définie sur \mathbb{R} par $f(x) = 3x^2 - 5x + 1$.

La fonction f est deux fois dérivable sur \mathbb{R} . On a f''(x) = 6.

La fonction f" est positive sur \mathbb{R} , donc la fonction f est convexe sur \mathbb{R} .

2) Convexité et tangente

Propriétés:

Soit f une fonction définie et \mathcal{C}_f sa courbe représentative dans un repère.

Soit I un intervalle sur lequel f est dérivable.

- Sur l'intervalle I, f est convexe si et seulement si \mathcal{C}_f est au-dessus de toutes ses tangentes.
- Sur l'intervalle I, f est concave si et seulement si \mathcal{C}_f est en dessous de toutes ses tangentes.

Démonstration:

On suppose f convexe sur I. Soit $x_0 \in I$.

• L'équation de la tangente T_{x_0} à \mathcal{C}_f au point d'abscisse x_0 est :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Soit Φ la fonction définie sur I par la différence entre la fonction et sa tangente.

$$\Phi(x) = f(x) - (f'(x_0)(x - x_0) + f(x_0)) = f(x) - f'(x_0)x + f'(x_0)x_0 - f(x_0).$$

Alors Φ est dérivable comme somme de fonctions dérivables et, en notant Φ ' sa dérivée, on obtient :

$$\Phi'(x) = f'(x) - f'(x_0) + 0 - 0 = f'(x) - f'(x_0).$$

• La fonction f est convexe sur I, donc la fonction f' est croissante sur I, donc la fonction Φ ' l'est aussi.

Or $\Phi'(x_0) = 0$, donc pour tout réel x de I:

- $\operatorname{si} x \leq x_0$, alors $\Phi'(x) \leq 0$
- $\operatorname{si} x \ge x_0$, alors $\Phi'(x) \ge 0$

Donc, la fonction Φ est décroissante sur $]-\infty$; $x_0] \cap I$ et croissante sur $]x_0$; $+\infty$ [\cap I.

De plus, $\Phi(x_0) = 0$, donc 0 est le minimum de Φ sur I, donc la fonction Φ est positive sur I.

Donc, pour tout réel x appartenant à $I, f(x) - (f'(x_0)(x - x_0) + f(x_0)) \ge 0$.

Donc \mathcal{C}_f est au-dessus de T_{x_0} sur l'intervalle I.

• En conclusion, sur I, la courbe \mathcal{C}_f est au-dessus de toutes ses tangentes.

Exemple:

La fonction f représentée ci-dessous est convexe.

La fonction g représentée ci-dessous est concave.

Remarque:

Une fonction croissante et convexe sur un intervalle I est une fonction qui croît « de plus en plus vite » sur I. Si elle est dérivable sur I, les pentes des tangentes à sa courbe représentative augmentent quand les abscisses augmentent.

Pour une fonction croissante et concave, c'est le contraire : elle croît « de moins en moins vite ».

3) Point d'inflexion

Propriétés:

Soit f une fonction définie et deux fois dérivables sur un intervalle I, \mathcal{C}_f sa courbe représentative et a un réel appartenant à I.

- Si f' change de sens de variation en a, alors \mathcal{C}_f admet un point d'inflexion au point d'abscisse a.
- Si f" s'annule et change de signe en a, alors \mathcal{C}_f admet un point d'inflexion au point d'abscisse a.