GR5260 Programming for Quantitative & Computational Finance

Instructor: Ka Yi Ng April 7, 2023

Machine Learning Basics

Machine Learning

- Enables machine to learn from its experience in certain tasks
- eg. Pattern recognition
 - Provide digit images for the machine to 'learn'
 - Ask the machine to predict the digit in a new image

з?

Supervised Learning

- Training dataset:
 - collection of labeled examples
 - input-output pairs:

$$\left(x^{(1)},y^{(1)}\right)$$
, ..., $\left(x^{(m)},y^{(m)}\right)$

- Task: learn a mapping from input to output
- Input: consists of n 'features'

$$\boldsymbol{x^{(i)}} = \left(x_1^{(i)}, \dots, x_n^{(i)}\right)$$

- Label: *y*^(*i*)
 - can be categorical or real-valued
 - $y^{(i)} \in \{1, 2, ..., K\}$ categorical -> classification
 - $y^{(i)}$ real-valued -> regression

Unsupervised Learning

- Training dataset:
 - collection of unlabeled examples

$$x^{(1)}, \dots, x^{(m)}$$

Input: consists of n 'features'

$$\boldsymbol{x}^{(i)} = \left(x_1^{(i)}, \dots, x_n^{(i)}\right)$$

- Task: discover 'interesting patterns', 'knowledge discovery'
 - Eg. data clustering,
 - probability density estimation

Ex 1: Digit image recognition

- Classification task
- Input: image represented by n pixels, each pixel value as a feature, $\mathbf{x}^{(i)} = \left(x_1^{(i)}, \dots, x_n^{(i)}\right)$
- Label: actual digit the image represents
- Task: assign a digit to an image
- Performance measure:
 - evaluate how well a ML algorithm learns the given task
 - Test dataset: separate from training dataset
 - Measure = % of test examples correctly classified

Ex 2: Linear regression

- Supervised Learning example
- Task: model a linear relationship between input vector $x = (x_1, ..., x_n)$ of features and output variable y

$$y = w_0 + w_1 x_1 + \dots + w_n x_n + \varepsilon$$

where ε is noise term, unobserved r.v.

- Training dataset: $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$
- Goal: find $\hat{w} = (\hat{w}_0, \hat{w}_1, ..., \hat{w}_n)$ that minimizes the mean square error (MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} - w_0 - w_1 x_1^{(i)} - \dots - w_n x_n^{(i)} \right)^2$$

Ex 2: Linear regression (cont)

- Prediction:
 - Given an input **x** this simple machine predicts the output as $\hat{y} = \hat{w}_0 + \hat{w}_1 x_1 + \dots + \hat{w}_n x_n$
- Performance:
 - Test dataset $(x^{(\text{test_1})}, y^{(\text{test_1})}), \dots, (x^{(\text{test_r})}, y^{(\text{test_r})})$ $MSE = \frac{1}{r} \sum_{i=1}^{r} (y^{(\text{test_i})} \hat{y}^{(\text{test_i})})^2$
- Closed form solution for $\widehat{w} = (X^T X)^{-1} X^T Y$

$$X = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_n^{(1)} \\ \vdots & & \vdots \\ 1 & x_1^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \qquad Y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

Function estimation

- Estimate the input-output mapping $y = f(x) + \varepsilon$ using a parametrized function $\hat{f}(x; w)$
- Prediction: $\hat{y} = \hat{f}(x; \hat{w})$
- Cost (or loss) function $L(\hat{y}, y)$
 - measure the error of the function estimation
- Training dataset: $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$
- Goal: find an estimate \hat{w} for w that minimizes the average cost function J(w) over the training set.

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{f}(x^{(i)}; \mathbf{w}), y^{(i)})$$
 actual label

Function estimation (cont)

Performance:

- Prediction error on the test dataset $(x^{(\text{test_1})}, y^{(\text{test_1})}), \dots, (x^{(\text{test_r})}, y^{(\text{test_r})})$ $\hat{y}^{(\text{test_i})} = \hat{f}(x^{(\text{test_i})}; \hat{w})$ $PredictionError = \frac{1}{r} \sum_{i=1}^{r} L(\hat{y}^{(\text{test_i})}, y^{(\text{test_i})})$

Key point is to select:

- Model function $\hat{f}(x; w)$ (eg. kernel-based, tree-based)
- Cost function $L(\hat{y}, y)$ (eg. mean squared error)
- Optimization algorithm (eg. gradient-based)

Gradient (or Steepest) Descent

• Suppose we want to find \hat{w} that minimizes a real-valued

function f(w), $w \in \mathbb{R}^n$

Algorithm:

- i. start with a guess w_0 , set k = 0
- ii. find a direction u_k where $f(w_k)$ decreases the fastest
- iii. set $w_{k+1} = w_k + \epsilon u_k$ where ϵ is a small value (learning rate)
- iv. repeat the step ii and iii until some stopping criterion is met (eg. $||\nabla_{\theta} f(\mathbf{w_k})|| < \text{some } \delta$)
- v. $\hat{w} = w_k$ where the stopping criterion for w_k is satisfied

Gradient Descent: Finding u_k

• Find a direction u_k where $f(w_k)$ decreases the fastest

• Let u be a unit vector. Then the directional derivative of

• Therefore, $-\nabla f(w)$ is the steepest gradient along which f(w) decreases the fastest.

is the fastest.
$$f(w + tu) = (f_1(w + tu), w_{k+1} = w_k - \epsilon \nabla f(w_k))$$

$$f(w + tu) = (f_1(w + tu), w_k + tu) = f_1(w + tu)$$

Stochastic Gradient Descent

• Recall: find an estimate \hat{w} for w that minimizes

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{f}(x^{(i)}; \mathbf{w}), y^{(i)})$$

- In each iteration use a smaller set of training data
- Algorithm:
 - i. Start with a guess w_0 . Fix a learning rate ϵ . Set k = 0
 - ii. Select a minibatch of *l* examples from the full training dataset
 - iii. Estimate gradient using $A(\mathbf{w}) = \frac{1}{l} \sum_{i=1}^{l} L(\hat{f}(x^{(s_i)}; \mathbf{w}), y^{(s_i)})$
 - iv. Set $w_{k+1} = w_k \epsilon \nabla A(w_k)$
 - v. Repeat the step ii iv until some stopping criterion is met (eg. $||\nabla A(\mathbf{w_k})|| < \text{some } \delta$)
 - vi. $\hat{w} = w_k$ where the stopping criterion for w_k is satisfied

Stochastic Gradient Descent

- Minibatch selection:
 - Initially shuffle the points in the training dataset
 - Use this ordering to pick the minibatch in each iteration
 - Example: let's say $d_i = (x^{(i)}, y^{(i)})$
 - shuffled: d_{15} , d_4 , d_{300} , d_{101} , d_{72} , d_{26} ,...
 - Iteration 1: first l examples, Iteration 2: next l examples, etc.
- Gradient Descent: $w_{k+1} = w_k \epsilon \nabla J(w)$
- Stochastic Gradient Descent: $w_{k+1} = w_k \epsilon \nabla A(w)$
- The gradient estimate may not reach near zero

Early Stopping

- Stop the iteration when the predictive power is sufficiently good
- Validation set: set aside a subset of training dataset (eg. 20%) $(x^{(\text{val}_1)}, y^{(\text{val}_1)}), \dots, (x^{(\text{val}_p)}, y^{(\text{val}_p)})$
- In each iteration of estimating w_k , compute the validation error

$$VE(\mathbf{w_k}) = \frac{1}{p} \sum_{i=1}^{p} L(\hat{f}(x^{(val_i)}; \mathbf{w_k}), y^{(val_i)})$$

- If the validation error is sufficiently small, stop the iteration loop
- Or if the validation error doesn't improve in several consecutive iterations, stop the iteration loop (Early Stopping)

Stochastic Gradient Descent

Modified algorithm:

- i. Set aside a validation set $(x^{(val_1)}, y^{(val_1)}), ..., (x^{(val_p)}, y^{(val_p)})$
- ii. Randomly shuffle points in the training dataset (remaining ones)
- iii. Start with a guess w_0 . Fix a learning rate ϵ . Set k=0
- iv. Compute validation error $VE(w_k)$
- v. For each iteration k, do the following:
 - If validation error $\leq \delta$ or validation error hasn't improved (stopping criteria), then break the loop
 - Take the kth minibatch D_k of l examples from the shuffled training dataset
 - Estimate gradient using the minibatch D_k
 - $A(\mathbf{w}) = \frac{1}{l} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathbf{D}_k} L(\hat{f}(\mathbf{x}; \mathbf{w}), \mathbf{y})$
 - Set $w_{k+1} = w_k \epsilon \nabla A(w_k)$
- vi. $(\widehat{w}) = w_k$ the last calculated value after iteration stops

Epoch vs Iterations

- Given N = 10000 training data points.
- In each iteration, if we use a minibatch of 50 examples, then all training data points will be used in 200 iterations.
- One epoch: iterate through all training data points in the model parameter optimization procedure
- Multiple epochs are used in the optimization
- Eg. 10 epochs → 2000 iterations

Key steps

- Data preparation:
 - Data cleaning
 - Feature selection
 - Correlation between each feature and the target label
 - Regression
 - Feature engineering (eg. categories → values)
 - Designate a test dataset, separate from training
 - Features scaling:
 - Make features in the same order of magnitude
- Fit a model using training dataset
- Evaluate the trained model using test dataset
- Select best model from many trained models

Feature engineering

- Categorical features
 - Categories → ordinals:
 eg. 'Low' → 1, 'Medium' → 2, 'High' → 3, etc.
 - Categories → one-hot vectors:
 eg. 'Aaa' → (1,0,0,0,0,0,0,0,0), 'Aa' → (0,1,0,0,0,0,0,0,0)
- Binary features: {0,1} or {-1,1}
- Numerical features:
 - In some cases, may want to convert them to categorical values
 - Eg. family income → categories
- Create new features from the features available
 - Eg. historical prices → daily returns
 - Eg. Principal Component Analysis: dimension reduction

Feature scaling

- Recall: model training as optimizing a cost function
- To address the different order of magnitudes in different features, eg. trade volume, price volatility, rate of return
- For each feature: find some function h_k : $x_k \rightarrow z_k = h_k(x_k)$
- Transformed training dataset: $(z^{(1)}, y^{(1)}), ..., (z^{(m)}, y^{(m)})$ where $\mathbf{z}^{(i)} = (z_1^{(i)}, ..., z_n^{(i)})$
- Transformed test data: $(x^{(test_i)}, y^{(test_i)}) \rightarrow (z^{(test_i)}, y^{(test_i)})$
- Use the transformed datasets for training and evaluation
- Training set: $\{(x^{(i)}, y^{(i)})\}_{i=1,\dots,m} \rightarrow \hat{f}(x; w)$ Transformed: $\{(z^{(i)}, y^{(i)})\}_{i=1,\dots,m} \rightarrow \hat{g}_w(z) = \hat{g}_w(h(x))$

Feature scaling

- Two common transformations:
 - Standardization (z-score):
 - $-h_k(x) = \frac{x \mu_k}{\sigma_k} \text{ where } \mu_k \text{ and } \sigma_k \text{ are resp. the mean and}$ standard dev of $x_k^{(1)}, x_k^{(2)}, \dots, x_k^{(m)}$ from training set
 - MinMax scaling:
 - $-h_k(x) = a + \frac{b-a}{M_k m_k} (x m_k) \in [a, b] \text{ where } m_k \text{ and } M_k$ are resp. the min and max of $x_k^{(1)}, x_k^{(2)}, \dots, x_k^{(m)}$ from training set

Model selection

- Machine learning algorithms:
 - Model function $\hat{f}(x; w)$
 - Cost function $L(\hat{y}, y)$
- Classical ML models:
 - Logistic regression models
 - Support Vector Machine (SVM)
 - Decision trees, random forest, ensemble methods
 - K-Nearest Neighbor (KNN)
 - Neural networks

Support Vector Machines

- · Linear vs non-linear method
- Hard vs soft margin
- Binary classification
- Regression
- Multi-class classification
- Detect outliers and anomalies

Binary Classification: linear

 Linear Classifier: use a hyperplane to separate the two classes of points

Binary Classification: linear

- Maximum margin classifier
- Goal: find the hyperplane H which has the greatest distance from the nearest data points

Binary Classification: Linear

- Training set: $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)}), y^{(i)} \in \{-1, 1\}$
- Decision function: $(w)^T x + b = w_1 x_1 + \dots + w_n x_n + b$
- Prediction: $\hat{y} = sign(\mathbf{w}^T \mathbf{x} + b)$

margin =
$$\frac{(p-q) \cdot w}{\|w\|} = \frac{1-b}{\|w\|} = \frac{2}{\|w\|}$$

11W[[

minimize $\frac{1}{2}||w||^2$ subject to:

She
$$= w^T x^{(i)} + b \ge 1$$
 for i with $y^{(i)} = 1$
 $= w^T x^{(i)} + b \le -1$ for i with $y^{(i)} = -1$

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2 \text{ subject to } \boldsymbol{y}^{(i)}(\boldsymbol{w}^T\boldsymbol{x}^{(i)} + b) \ge 1 \text{ for } 1 \le i \le m$$

Binary Classification: Linear

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2 \text{ subject to } \boldsymbol{y}^{(i)}(\boldsymbol{w}^T\boldsymbol{x}^{(i)} + b) \ge 1 \text{ for } 1 \le i \le m$$

<u>Karush-Kuhn-Tucker Theorem</u> (Extended Lagrange Multiplier):

Given an optimization problem (A),

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \leq 0$ for $1 \leq i \leq m$

where f(x) and $g_i(x)$ are convex functions

Then \hat{x} is a solution to (A) \Leftrightarrow (\hat{x} , $\hat{\alpha}$) is a solution to

$$\max_{\alpha \geq \mathbf{0}} \min_{\mathbf{x}} f(\mathbf{x}) + \sum_{i=1}^{m} \alpha_i g_i(\mathbf{x})$$

In particular, $\widehat{\alpha}_i g_i(\widehat{x}) = 0$ for all i

Set
$$f(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2$$
, $g_i(\mathbf{w}) = 1 - \mathbf{y}^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b)$

Binary Classification: Linear

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2 \text{ subject to } \boldsymbol{y}^{(i)}(\boldsymbol{w}^T\boldsymbol{x}^{(i)} + b) \ge 1 \text{ for } 1 \le i \le m$$

$$\max_{\alpha \geq \mathbf{0}} \min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{m} \alpha_i \{1 - \mathbf{y}^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b)\}$$

Thm

$$\widehat{\alpha}_i g_i(\widehat{\mathbf{x}}) = 0 \rightarrow \widehat{\alpha}_i \left\{ 1 - \mathbf{y}^{(i)} (\widehat{\mathbf{w}}^T \mathbf{x}^{(i)} + b) = 0 \right\}$$

For $x^{(i)}$ with $w^T x^{(i)} + b < -1$ or > 1, $y^{(i)}(w^T x^{(i)} + b) > 1$, $\widehat{\alpha}_i$ must be 0

Those with $\widehat{\alpha}_i > 0$ must have $\mathbf{y}^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) = 1$

1->d+xw

They are called support vectors