

Apprentissage statistique sur données longitudinales de grande taille et applications au design des jeux vidéo

Soutenance de thèse

Thibault Allart

Déroulement

- Contexte
- Données issues des jeux vidéo
- Problématique
- Optimisation
- Modèle statistique
- Simulations
- Applications au design des jeux vidéo
 - Influence du design sur le temps de jeu des joueurs
 - Lien entre Difficulté et motivation du joueur
- Conclusion

Contexte

Encadrants de thèse

Les données

Télémétrie

Il est possible de mesurer toutes les interactions entre le joueur et le jeu. En pratique, pour différentes raisons (coût du stockage, bande passante) seuls certains éléments sont conservés.

Un grand nombre d'individus et des variables

Soit on essaye des résumer l'information temporelle pour la faire rentrer dans une matrice et utiliser les modèles classiques...

... suivies dans le temps.

Soit on utilise toute l'information temporelle et on adapte nos modèles.

Tenseur

Le nombre d'observations au cours du temps dépend de l'individu et de la variable

De l'importance des données longitudinales

Problématique

L'importance du temps de jeu

Jeu conçu pour être joué 10h

Les joueurs n'y jouent que 2h

Problème

Joueurs

S'attendaient à une expérience / un divertissement de 10h

Éditeur et développeurs

Ont dépensé leurs ressources dans la création de 8h de contenu qui ne seront pas jouées par les joueurs

Différentes mesures du temps

On peut mesurer l'activité des joueurs de différentes manières

Image: Michel Pierfitte

Le temps de jeu (playtime) est la durée que le joueur passe en jeu, i.e le temps cumulé de chacune de ses sessions de jeu.

Objectif

On cherche à comprendre pourquoi certains joueurs arrêtent de jouer avant la fin du jeu.

Évènement d'intérêt : arrêt définitif du jeu par le joueur

On peut calculer la proportion de joueurs encore en jeu après xx heures, c'est la courbe de survie ou rétention.

Rétention

Far Cry 4 retention

Soit T la variable aléatoire positive associée au temps de jeu des joueurs.

$$S(t) = \mathbb{P}(T > t)$$

Mesure la proportion de joueurs restant dans le jeu à un temps de jeu donné.

Rétention au cinéma

Objectif: Comprendre pourquoi certains joueurs quittent le jeu rapidement.

Taux de risque instantané

Soit *T* la variable aléatoire positive associée au temps de jeu des joueurs.

$$S(t) = \mathbb{P}(T > t)$$

Taux de risque instantané:

$$\frac{\lambda(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\mathbb{P}(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

Remarque:

$$S(t) = \exp\left(-\int_0^t \lambda(u)du\right)$$

Par la suite on cherchera à modéliser l'influence des variables sur $\lambda(t)$.

Modèle de Cox dépendant du temps

Comment estimer les coefficients du modèle?

Optimisation

Comment estimer les paramètres du modèle ?

Optimisation

Soit $f(\beta)$ une fonction paramétrique convexe de $\mathbb{R}^p \to \mathbb{R}$ On cherche les coefficients β qui minimisent la valeur de la fonction.

Idée : Utiliser un algorithme itératif, qui, à chaque étape, nous rapproche de la solution

Descente de gradient

DESCENTE DE GRADIENT

```
Entrées : \beta^0 un point de départ (\mu^k) une suite de pas de descente Sortie : \beta^k while on n'a pas convergé do \beta^{k+1} = \beta^k - \mu^k \nabla f(\beta^k) end while
```

Inconvénient : Chaque évaluation du gradient demande de parcourir tout le jeu de données $\sim o(n)$

Descente de gradient stochastique

DESCENTE DE GRADIENT STOCHASTIQUE

```
Entrées : \beta^0, (\mu^k) une suite de pas de descente
Sortie : \beta^k
while on n'a pas convergé do
choisir aléatoirement i parmi 1..n
\beta^{k+1} = \beta^k - \mu^k \nabla f_i(\beta^k)
end while
```

Avantage : Chaque itération se fait à partir des données d'un seul individu $\sim o(1)$

Optimisation

En pratique, pour les grands jeux de données, la descente de gradient stochastique est plus rapide que la descente de gradient.

Vraisemblance partielle de Cox

Habituellement utilisée pour estimer les coefficients du modèle de Cox. Pour simplifier : ni les variables ni les coefficients ne dépendent du temps. D: l'ensemble des individus ayant réalisé l'évènement terminal (quitté le jeu) R_i : les individus à risque (encore en jeu) au moment où l'individu i réalise son évènement terminal (le joueur i quitte le jeu)

$$L(\beta) = \frac{1}{n} \prod_{i \in D} \frac{\exp(x_i^T \beta)}{\sum_{j \in R_i} \exp(x_j^T \beta)}$$

Avantage : pas besoin d'estimer la baseline $\lambda_0(t)$

Inconvénient : pas du tout adaptée à la descente de gradient stochastique

Problème

Le calcul d'un gradient individuel fait intervenir tous les individus à risque au moment où i quitte le jeu.

$$\Delta f_i(\beta) = -x_i + \sum_{j \in R_i} \frac{x_j \exp(x_j^T \beta)}{\sum_{k \in R_i} \exp(x_k^T \beta)}$$

Conclusion: On ne peut pas exploiter pleinement les avantages de la descente de gradient stochastique sur la vraisemblance partielle de Cox.

Complexité d'une itération

	Descente de gradient	Descente de gradient stochastique
Régression linéaire	O(np)	O(p)
Régression logistique	O(np)	O(p)
Régression de Cox Vraisemblance partielle	O(np)	O(np)

Problématique

Problématique statistique :

- On cherche à modéliser des temps d'évènement
- Données longitudinales
- Coefficients dépendant du temps
- Interprétable
- Grand nombre d'observations
- Sélection de variables

Problématique jeu vidéo:

- Peut-on extraire de l'analyse de l'activité des joueurs des recommandations de design spécifiques au jeu étudié ?
- Est-il possible d'extraire des recommandations de design plus larges, sur des variables partagées entre plusieurs jeux ?

Modèle statistique

Modèle de Cox dépendant du temps

Proposition

Remplacer la vraisemblance partielle par la vraisemblance complète, issue des processus de comptage, voir [Martinussen et Scheike (2007)]. L'opposé de la log-vraisemblance s'écrit :

$$\ell_n(\beta) = -\frac{1}{n} \sum_{i=1}^n \left\{ \int_0^{\tau} \sum_{j=0}^p X_{i,j}(t) \beta_j(t) dN_i(t) - \int_0^{\tau} Y_i(t) \exp\left(\sum_{j=0}^p X_{i,j}(t) \beta_j(t)\right) dt \right\}$$

Complexité d'une itération

	Descente de gradient	Descente de gradient stochastique
Régression linéaire	O(np)	O(p)
Régression logistique	O(np)	O(p)
Régression de Cox Vraisemblance partielle	O(np)	O(np)
Régression de Cox Vraisemblance complète	O(np)	O(p)

Quelle forme pour les $\beta(t)$?

- Suffisamment simples pour calculer l'intégrale rapidement
- Capable de s'adapter à des formes complexes
- Avec peu de paramètres pour éviter l'explosion du nombre de dimensions

Coefficients constants par morceaux

Soit $(I_l)_{l \in \{0,L\}}$ une partition de $[0,\tau]$.

$$\beta_j(t) = \sum_{l=1}^{L} \beta_{j,l} \mathbb{1}_{(I_l)}(t)$$

Coefficients constants par morceaux

Soit $(I_l)_{l \in \{0,L\}}$ une partition de $[0,\tau]$.

$$\beta_j(t) = \sum_{l=1}^{L} \beta_{j,l} \mathbb{1}_{(I_l)}(t)$$

Si de plus les $X_{i,j}(t)$ sont constants sur de petits intervalles.

$$\ell_n(\beta) = -\frac{1}{n} \sum_{i=1}^n \left\{ \int_0^{\tau} \sum_{j=0}^p X_{i,j}(t) \beta_j(t) dN_i(t) - \int_0^{\tau} Y_i(t) \exp\left(\sum_{j=0}^p X_{i,j}(t) \beta_j(t)\right) dt \right\}$$

$$\ell_n(\beta) = -\frac{1}{n} \sum_{i=1}^n \sum_{l=1}^L \left\{ \sum_{j=1}^p \sum_s X_{i,s}^j \beta_{j,l} N_i(I_s) - \sum_s Y_i(I_s) \exp\left(\sum_{j=1}^p X_{i,s}^j \beta_{j,l}\right) |I_s| \right\}$$

Variation totale

Pour éviter l'explosion du nombre de dimensions, on utilise la variation totale (ou Fused Lasso), qui pénalise la hauteur de sauts.

$$\|\beta\|_{\text{TV}} = \sum_{l=2}^{L} |\beta_{j,l} - \beta_{j,l-1}|$$

Pénalité

1) On veut sélectionner les variables les plus pertinentes

$$\sum_{j=1}^{p} \beta_j \qquad \mathsf{Lasso}$$

2) Et que le nombre de changements au cours du temps soit réduit (ce qui réduit le nombre de coefficients)

$$\sum_{j=2}^{L} |\beta_j - \beta_{j-1}|$$
 Variation totale

On combine les deux sous la forme d'une pénalité par groupe

$$\|\beta\|_{\text{gTV},\hat{\gamma}} = \lambda \sum_{j=0}^{p} \left(\hat{\gamma}_{j,1} |\beta_{j,1}| + \sum_{l=2}^{L} \hat{\gamma}_{j,l} |\beta_{j,l} - \beta_{j,l-1}| \right)$$

Modèle pénalisé

On cherche donc les coefficients qui minimisent l'opposé de la log-vraisemblance et la pénalité.

$$\underset{\beta}{\operatorname{argmin}} \, \ell_n(\beta) + \|\beta\|_{\operatorname{gTV},\hat{\gamma}}$$

Où:

$$\ell_n(\beta) = -\frac{1}{n} \sum_{i=1}^n \left\{ \int_0^{\tau} \sum_{j=0}^p X_{i,j}(t) \beta_j(t) dN_i(t) - \int_0^{\tau} Y_i(t) \exp\left(\sum_{j=0}^p X_{i,j}(t) \beta_j(t)\right) dt \right\}$$

$$\|\beta\|_{\text{gTV},\hat{\gamma}} = \lambda \sum_{j=0}^{p} \left(\hat{\gamma}_{j,1} |\beta_{j,1}| + \sum_{l=2}^{L} \hat{\gamma}_{j,l} |\beta_{j,l} - \beta_{j,l-1}| \right)$$

Simulations

vrai sans pénalité pénalisé

vrai sans pénalité pénalisé

vrai sans pénalité pénalisé

vrai sans pénalité pénalisé

Comparaison avec timereg

timereg: Flexible Regression Models for Survival Data

Programs for Martinussen and Scheike (2006), 'Dynamic Regression Models for Survival Data'

Différence:

 L'optimisation repose sur une inversion matricielle et des itérés de lissage par noyaux

Limitations:

- Fonctionne uniquement sur les « petits » jeux de données.
- Pas de sélection de variables
- Retourne les coefficients cumulés, il faut ajouter un estimateur à noyaux pour obtenir les coefficients.

Résultats (n=1 000)

Résultats (n=10 000)

Résultats sur 100 répétitions Monté-Carlo

Temps de calcul

	CoxTV + On supp.	Timereg
n = 1000 and p = 10	1.63	49.36
n = 1000 and p = 50	4.61	160.96

Implémentation

Applications

Sur le design des jeux vidéo

Far Cry 4

Jeu de tir en vue à la première personne et monde ouvert. On s'intéresse à l'effet de l'utilisation des armes sur la rétention.

Résultats: l'arc

Interprétation:

Effet négatif (sous la ligne rouge) signifie :

- Moins de départ des joueurs
- Meilleure rétention

Les plus positives

Négative

Recommandations

- Modifier le design de l'arbalète : la visée est trop sensible pour être efficace de loin.
- Capte peut être une partie de l'effet « explorer » : Pour la débloquer il faut débloquer toutes les tours du jeu. Les joueurs uniquement intéressés par l'exploration quittent peut être naturellement le jeu à ce moment là. Le modèle permettrait de différencier ces hypothèses en intégrant comme variable le taux d'exploration

Théorie du flow

Difficulté absolue et relative

Source: Levieux

Estimation de la difficulté

Estimée à partir des données de l'activité des joueurs.

Difficulté : probabilité d'échouer à un challenge sachant les caractéristiques du personnage, du challenge et les capacités du joueur

Exemple de caractéristique du personnage et du challenge au temps t :

- Santé
- Dommages par seconde
- Type de mission

- Endurance
- Niveau des compétences

Pour prendre en compte la variabilité des compétence de chaque joueur, nous avons utilisé un modèle mixte.

Exemple de difficulté estimée pour un joueur de Rayman Legends

Difficulté estimée

La difficulté augmente rapidement dans les premières heures de jeu, puis atteint un plateau de 25% dans Rayman Legends et 33% dans The Division.

Résultat

Interprétation : Lorsque le challenge est plus élevé les joueurs ont tendance à jouer plus longtemps. Cependant une augmentation brutale de la difficulté au début de l'expérience est liée à une hausse du départ des joueurs.

Exemple quantitatif

Joueur A : difficulté 20% Joueur B : difficulté 40%

Toute chose égale par ailleurs, après 12h de jeu.

Le joueur B a 15% de chances en plus de rester dans le jeu que le joueur A

$$\frac{\lambda_B(t=12)}{\lambda_A(t=12)} = e^{(0.4-0.2)*(-0.7)} = 0.86 = \frac{1}{1.15}$$

Résultat

Interprétation : Une difficulté plus élevée est corrélée avec une plus grande rétention. Les variations de difficulté n'ont pas de lien avec la rétention.

Conclusion

Conclusion 1/2

Nous proposons un modèle statistique

- Prenant en compte les données longitudinales
- Avec des coefficients dépendants du temps
- Pénalisé par variation totale
- Optimisé pour les grands jeux de données (SGD et données > RAM)
- Implémenté dans un package R (développé en C++)

Conclusion 2/2

Appliqué au design des jeux vidéo, il permet :

- D'extraire des éléments de design qui ont un lien négatif avec la rétention sur n'importe quel jeu
- De quantifier l'impact de la difficulté sur la rétention

Ouverture

Le modèle mathématique et son implémentation permettent déjà de modéliser des évènements répétés, par exemple :

L'influence du design sur la monétisation.

Références

- Martinussen, T., & Scheike, T. H. (2007). Dynamic regression models for survival data. Springer Science & Business Media.
- Scheike, T., Martinussen, T., & Silver, J. (2010). Timereg: timereg package for flexible regression models for survival data. *R package version*, 1-3.

Merci de votre attention

Soit t_i le temps de réalisation de l'évènement pour l'individu i et τ le temps de fin d'observation, alors la vraisemblance se décompose comme suit :

Probabilité que les évènements aient eu lieu au moment où on les a observés, conditionnellement au passé du processus Probabilité qu'il n'y ait pas d'évènement aux autres temps, conditionnellement au passé du processus

$$\mathcal{L}_n(\beta) = \left\{ \prod_{t_i \le \tau} \lambda(t_i) \right\} S(\tau)$$

Soit t_i le temps de réalisation de l'évènement pour l'individu i et τ le temps de fin d'observation, alors la vraisemblance se décompose comme suit :

Probabilité que les évènements aient eu lieu au moment où on les a observés, conditionnellement au passé du processus Probabilité qu'il n'y ait pas d'évènement aux autres temps, conditionnellement au passé du processus

$$\mathcal{L}_n(\beta) = \left\{ \prod_{t_i \le \tau} \lambda(t_i) \right\} \left(\exp\left(-\int_0^{\tau} \lambda(s) ds \right) \right)$$

Soit t_i le temps de réalisation de l'évènement pour l'individu i et τ le temps de fin d'observation, alors la vraisemblance se décompose comme suit :

Probabilité que les évènements aient eu lieu au moment où on les a observés, conditionnellement au passé du processus Probabilité qu'il n'y ait pas d'évènement aux autres temps, conditionnellement au passé du processus

$$\mathcal{L}_n(\beta) = \left\{ \prod_{t_i \le \tau} \lambda(t_i) \right\} \left(\exp\left(-\int_0^\tau \lambda(s) ds \right) \right.$$

$$\mathcal{L}_n(\beta) = \left\{ \prod_{t_i \le \tau} \exp\left(X^T(t_i) \beta(t_i) \right) \right\} \cdot \exp\left(-\int_0^\tau Y(s) \exp\left(X^T(s) \beta(s) \right) ds \right)$$

Soit t_i le temps de réalisation de l'évènement pour l'individu i et τ le temps de fin d'observation, alors la vraisemblance se décompose comme suit :

Probabilité que les évènements aient eu lieu au moment où on les a observés, conditionnellement au passé du processus Probabilité qu'il n'y ait pas d'évènement aux autres temps, conditionnellement au passé du processus

$$\mathcal{L}_n(\beta) = \left\{ \prod_{t_i \le \tau} \lambda(t_i) \right\} \left(\exp\left(- \int_0^\tau \lambda(s) ds \right) \right)$$

$$\mathcal{L}_n(\beta) = \left\{ \prod_{t_i \le \tau} \exp\left(X^T(t_i) \beta(t_i) \right) \right\} \cdot \exp\left(- \int_0^\tau Y(s) \exp\left(X^T(s) \beta(s) \right) ds \right)$$

La log vraisemblance s'écrit :

$$\ell_n(\beta) = \left\{ \sum_{t_i \le \tau} X^T(t_i) \beta(t_i) \right\} - \int_0^\tau Y(s) \exp\left(X^T(s)\beta(s)\right) ds$$

$$\ell_n(\beta) = -\frac{1}{n} \sum_{i=1}^n \left\{ \int_0^\tau X_i^T(t) \beta(t) dN_i(t) - \int_0^\tau Y_i(t) \exp\left(X_i^T(t) \beta(t)\right) dt \right\}$$

- Integrale
- Quelle forme pour les $\beta(t)$?

Certaines trajectoires sont censurées

$$T = \min(T^*, C)$$

$$\delta = \mathbb{1}(T^* \le C)$$

Évènement observé

$$N(t) = \mathbb{1}(T \le t, \delta = 1)$$

Évènement censuré

$$Y(t) = \mathbb{1}(T \ge t)$$

Notations

Nombre de réalisation de l'évènement

L'individu est il toujours à risque?

Can be done with TV. But the new penalty will also set distant coefficients equal.

Number of coefs	TV	cTV
Linear	5+5	2+2
Non-linear	25	2

TV use only adjacent pixels

	P2		
P8	P	P4	
	P6		

Figure 2

cTV use a fully connected graph

Publications

- Allart, T., Levieux, G., Pierfitte, M., Guilloux, A., & Natkin, S. (2016).
 Design influence on player retention: A method based on time varying survival analysis. In *Computational Intelligence and Games (CIG)*, 2016 IEEE Conference on (pp. 1-8). IEEE.
- Allart, T., Levieux, G., Pierfitte, M., Guilloux, A., & Natkin, S. (2017, August). Difficulty influence on motivation over time in video games using survival analysis. In *Proceedings of the 12th International Conference on the Foundations of Digital Games*(p. 2). ACM.

 $n \ obs \approx 50 * n$ 100 répétitions Monte-Carlo

$$\lambda(t)\,dt = \mathbb{P}(t \leq T < t + dt\,|\,T \geq t) = rac{f(t)\,dt}{S(t)} = -rac{S'(t)\,dt}{S(t)}$$

$$S(t) = \exp(-\Lambda(t))$$
 $\Lambda(t) = \int_0^t \lambda(u) \ du$

De l'importance du temps de jeu

Objectif: Améliorer le jeu pour qu'il soit plus « FUN » pour le joueur.

Problème : On ne peut pas mesurer l'intensité du fun à partir des données

Hypothèse : On dispose d'une mesure approximative de la durée du fun : le temps de jeu du joueur.

Proximal Gradient Descent

Optimisation sous contraintes

$$x^{(k)} = P_C(x^{(k-1)} - t_k \nabla f(x^{(k-1)}))$$

Proximal TV algorithm is linear in practice (Condat)

$$\mathcal{L}_n(\beta) = \left\{ \prod_{t_i \le \tau} \exp\left(X^T(t_i)\beta(t_i)\right) \right\} \cdot \exp\left(-\int_0^\tau Y(s) \exp\left(X^T(s)\beta(s)\right) ds\right)$$

$$\hat{\gamma}_{j,l} = \mathcal{O}\left(\sqrt{\frac{\log pL}{n}}\hat{V}_{j,l}\right), \text{ avec } \hat{V}_{j,l} = \frac{1}{n}\sum_{i=1}^{n}\sum_{u=l}^{L}\int_{I_u}(X_i^j(t))^2dN_i(t).$$