

1

Energiesysteme

6. Semester – Dr. A Fuchs, Dr. T Demiray

Autoren: Luca Loop

https://github.com/Luca-ET/EnSys.git

Inhaltsverzeichnis

Wasserkraft	1	1.4 Örtliche Energieverluste
Kontinuitätsgleichung für den Durchfluss	1	1.5 Paihunggyarlugta
1.3 Bernoulli-Höhen-Gleichung für Speicherwasserkraftwerke	1	1.6 Verlusthöhe durch Reibung

1 Wasserkraft

1.1 Kontinuitätsgleichung für den Durchfluss

Q =	$A \cdot v$	
[Q]	Durchflussrate	m
[A]	Querschnittsfläche	m
[v]	Fließgeschwindigkeit	\underline{m}

1.2 Bernoulli-Druck-Gleichung für Speicherwasserkraftwerke

$\frac{1}{2}\rho v^2$	$+\rho gz + p = \text{constant}$	
$\frac{1}{2}\rho v^2$	Kinetische Energie (je Kubikmeter)	$\frac{J}{m^3}$
ρgz	Potentielle Energie	$\frac{J}{m^3}$
p	Druckenergie	$\frac{J}{m^3}$

1.3 Bernoulli-Höhen-Gleichung für Speicherwasserkraftwerke

11 - 2 1	$\rho \cdot g + 2 \cdot g + \angle \Box^{n_{\psi}}$	
[<i>H</i>]	Bruttogefälle	m
[z]	Höhenlage (potenzielle Energie)	m
[<i>p</i>]	Druck	$Pa = \frac{N}{m}$
[ho]	Dichte des Wassers	$\frac{kg}{m^3}$
[g]	Erdbeschleunigung	$\frac{m}{s^2}$
[v]	Geschwindigkeit	$\frac{m}{s}$
$\left[\frac{p}{\rho g}\right]$	Druckhöhe	m
$\begin{bmatrix} \frac{p}{\rho g} \\ \frac{v^2}{2g} \end{bmatrix}$	Geschwindigkeitshöhe	m
$[\sum H_{v}]$	Hydraulische Energieverluste	m

1.4 Örtliche Energieverluste

 $H = z + \frac{p}{w} + \frac{v^2}{w^2} + \sum_{n} H_n$

	2g	
$[h_v]$	Örtliche Energieverlusthöhe	m
$[\zeta]$	Verlustbeiwert (dimensionslos)	_
[v]	Geschwindigkeit	$\frac{m}{s}$
[g]	Erdbeschleunigung	n

1.5 Reibungsverluste

 $[R_h]$

Hydraulischer Radius

1.5.1 Tabelle Rauhigkeitsbeiwert K

Material	Zustand	$K [m^{1/3}/s]$
Stahl	neu	75
Stahl	schlechter Zustand, verrostet, verkrustet	60
Beton	glatt	85
Beton	rauh	60
PE, PVC		100

1.5.2 Hydraulischer Radius

Rechteckqueerschnitt

 	:	
->>>	my.	
1	_	V
1	0	K
1		1

Kreisqueerschnitt

$F = b \cdot h$
$P = b + 2 \cdot h$
$R_h = \frac{b \cdot h}{b + 2 \cdot h}$

$F = \frac{D^2 \cdot \pi}{4}$
$P = D \cdot \pi$
$R_h = \frac{D}{4}$

1.6 Verlusthöhe durch Reibung

$h_{ m v,r} =$	$\lambda \cdot \frac{L}{d_{\text{hy}}} \cdot \frac{v^2}{2 \cdot g} \left[h_{\text{v,r}} = \lambda \cdot \frac{L}{d_i} \cdot \frac{8 \cdot Q^2}{g \cdot \pi^2 \cdot d_i^4} \right] h_{\text{v,r}} = \frac{8 \cdot \lambda \cdot L}{g \cdot \pi^2 \cdot d_i^4}$	$\frac{Q^2}{t_i^5}$
$[h_{\mathrm{v,r}}]$	Verlusthöhe durch Reibung	m
[L]	Länge	m
$[v_m]$	Mittlere Geschwindigkeit	$\frac{m}{s}$
[Q]	Durchfluss	$\frac{m}{s}$ $\frac{m^3}{s}$
$[d_i]$	Innendurchmesser	m
$[d_{\rm hy}]$	Hydraulischer Durchmesser	m
$[l_u]$	Benetzter Umfang	m
[\lambda]	Verlustbeiwert	_
Zusam	menhang des hydraulischen Durchmessers:	

$$d_{\text{hy}} = d_{\text{Kreisrohr}} = d_i = 4R_{\text{hy}} = 4\left(\frac{A}{l_u}\right)$$