

# **Systemy Analagowe i Cyfrowe**

LAB nr 7

# Wzmacniacze tranzystorowe

| Autorzy:                    | Aleksander Łyskawa 275462<br>Kacper Karkosz 275495 |
|-----------------------------|----------------------------------------------------|
| Wydział i kierunek studiów: | W12N, Automatyka i Robotyka                        |
| Termin zajęć:               | pon 13:15-15:30                                    |
| Prowadzący:                 | dr inż. Marek Kukawczyński                         |
| Data:                       | 11.05.2024                                         |

### 1 Temat ćwiczenia

Zadaniem do wykonania było zaprojektowanie wzmacniacza tranzystorowego o zadanych parametrach:

- wzmocnieniu układu  $K_u = 120 \left\lceil \frac{V}{V} \right\rceil$
- rezystancji modelującej impedancję źródła  $R_g=2,7\,[k\Omega]$
- rezystancji obciążenia  $R_L = 3, 3 [k\Omega]$

Następnie na zmontowanym układzie przeprowadzono pomiary w celu wyznaczenia:

- punktu pracy tranzystora
- częstotliwości granicznych układu
- charakterystyki wzmocnienia układu
- rezystancji wyjściowej i wejściowej układu
- charakterystyki wzmocnienia układu  $K_u = f(U_{cc})$
- charakterystyki wzmocnienia układu  $K_u = f(U_{we})$
- charakterystyki przejściowej  $U_{wy} = f(U_{we})$

### 1.1 Projekt w LTSpice

Na Rysunku 1 przedstawiono schemat układu, zaprojektowany w programie LTSpice.



.ac dec 1000 10 1000Meg ;tran 0 100u 0

Rys. 1: Schemat układu w programie LTSpice

### 2 Dobór elementów RC

#### 2.1 Obliczenia

1. Założone zostają parametry punktu pracy tranzystora w układzie:

$$I_{CQ} = 2.5 \text{mA},$$
$$U_{CEQ} = 5 \text{V}$$

Wartość wzmocnienia prądowego użytego tranzystora:  $\beta \approx 100$ .

2. Wyznaczone zostają wartości parametrów małosygnałowych tranzystora T1 -  $r_{ce}$  oraz  $g_m$ :

$$\begin{split} r_{ce} &= \frac{U_Y}{I_{CQ}} = \frac{100V}{2.5mA} = 40k\Omega, \\ g_m &= \frac{I_{CQ}}{\Theta_T} = \frac{2.5mA}{26mV} \approx 96.15mS, \end{split}$$

gdzie:

- U<sub>V</sub> napiecie Early'ego równe 100V dla tranzystorów NPN,
- $\Theta_T$  potencjał termiczny złącza półprzewodnikowego, równy 26mV
- 3. Zostaje obliczona wartość rezystora  $R_3$  ze względu na parametry tranzystora oraz założoną wartość wzmocnienia:

$$R_C = \left(\frac{g_m}{KU} - \frac{1}{r_{ce}} - \frac{1}{R_L}\right)^{-1} = \left(\frac{96.15mS}{120\frac{V}{V}} - 0.025mS - 0.303mS\right)^{-1} \approx 2,2k\Omega$$

4. Założona zostaje wartość napięcia na rezystorze  $R_E$ , będąca wielokrotnością bariery potencjału  $U_{BE}$  tranzystora:

$$U_{RE} \approx 3U_{BE} = 3 \cdot 0.65V = 1.95V \approx 2V$$

5. Obliczone zostaje napięcie zasilania układu  $U_{cc}$ :

$$U_{cc} = I_{CQ} \cdot R_C + U_{CEQ} + U_{RE} = 5V + 2V + 5, 5 = 12.5V$$

6. Obliczona zostaje wartość rezystora  $R_E$ :

$$R_E = \frac{U_{RE}}{I_{CO}} = \frac{2V}{2.5mA} = 800\Omega \approx 820\Omega$$

7. Obliczony zostaje prąd bazy tranzystora T1:

$$I_{BQ} = \frac{I_{CQ}}{\beta} = \frac{2.5mA}{100} = 25\mu A$$

8. Założony zostaje prąd płynący przez rezystor  $R_2$ , będący wielokrotnością obliczonego prądu bazy tranzystora T1:

$$I_{R2} = 10I_{BQ} = 10 \times 25\mu A = 250\mu A$$

9. Za pomocą pierwszego prawa Kirchhoffa obliczony zostaje prąd płynący przez rezystor  $R_1$ :

$$I_{R1} = I_{BQ} + I_{R2} = I_{BQ} + 10I_{BQ} = 11I_{BQ} = 11 \times 25\mu A = 275\mu A$$

10. Obliczone zostają wartości rezystorów  $R_2$  i  $R_1$ :

$$R_2 = \frac{U_{R2}}{I_{R2}} = \frac{U_{BEQ} + U_{R4}}{I_{R2}} = \frac{0.65V + 2V}{250\mu A} = \frac{2.65V}{250}\mu A \approx 11k\Omega,$$

$$R_1 = \frac{U_{R1}}{I_{R1}} = \frac{U_{cc} - U_{R2}}{I_{R1}} = \frac{12,5V - 2.65V}{275\mu A} \approx 35k\Omega$$

11. Założono wartości kondensatorów:

$$C_1=2, 2\mu F,$$
 
$$C_2=4, 7\mu F,$$
 
$$C_E=100\mu F$$

### 2.2 Rzeczywiste wartości elementów RC

Rzeczywiste wartości elementów RC zostały zmierzone przy użyciu multimetru, i wynosiły odpowiednio:

- $R_1 = 35,432 [k\Omega]$
- $R_2 = 10, 8 [k\Omega]$
- $R_C = 2,15 [k\Omega]$
- $R_E = 805 [\Omega]$
- $R_L = 3,224 [k\Omega]$
- $R_q = 3,264 [k\Omega]$
- $C_1 = 641, 7 [nF]$
- $C_2 = 629, 1 [nF]$
- $C_E = 67F [\mu F]$

## 3 Pomiar punktu pracy

### 3.1 Punkt pracy wyznaczony w symulacji

Korzystając z symulacji w LTSpice, zmierzyliśmy:

- napięcie kolektora  $U_{C_{spice}} = 6,6V$
- napięcie emitera  $U_{E_{spice}} = 2,23V$

oraz obliczyliśmy napięcie kolektor-emiter:

$$U_{CE_{spice}} = U_C - U_E = 6, 6 - 2, 23 = 4,37V$$

Następnie obliczyliśmy prąd kolektora:

$$I_{C_{spice}} = \frac{U_{C_{spice}}}{R_C} = \frac{2,23}{805} = 2,77 \, [mA]$$

i wyznaczyliśmy punkt pracy:

$$Q_{spice} = \left(U_{CE_{spice}}, I_{C_{spice}}\right) = \left(4.37V, 2.77mA\right) \tag{1}$$

### 3.2 Punkt pracy wyznaczony na fizycznym układzie

Następnie zmierzyliśmy wartości  $U_{CE}$  oraz  $U_E$  na fizycznym układzie przy pomocy multimetru i uzyskaliśmy:

- $U_E = 2,15V$
- $U_{CE} = 4,33V$

obliczyliśmy wartość prądu emitera:

$$I_E = \frac{U_E}{R_E} = \frac{2,15}{805} = 2,67 [mA]$$

która okazała się zbliżona do wartości uzyskanej w symulacji, więc nie zastosowaliśmy korekty napięcia wejściowego.

Wyznaczyliśmy punkt pracy tranzystora:

$$Q = (U_{CE}, I_E) = (4.33V, 2.67mA)$$
(2)

## 4 Badanie częstotliwości granicznych układu

#### 4.1 Wzmocnienie maksymalne

Na wejście układu podano sygnał sinusoidalny o częstotliwości f = 5kHz. Nastawę amplitudy generatora ustawiono na  $0.1V_{peak-to-peak}$ . Zmierzyliśmy wartość napięcia na wejściu oraz wyjściu układu, i uzyskaliśmy:

- $U_{we} = 70,4mV$
- $U_{wy} = 768mV$

Obliczyliśmy wzmocnienie układu:

$$K_u = \frac{U_{wy} \cdot 10}{U_{we}} = \frac{768 \cdot 10}{70, 4} = 109, 09\frac{V}{V}$$

Standardowe wzmocnienie pomnożyliśmy przez 10, ze względu na dzielnik napięciowy znajdujacy się na wejściu układu. Obliczyliśmy spadek wzmocnienia o 3dB:

$$K_{u_{3dB}} = 0,707 \cdot K_u = 77,13 \frac{V}{V}$$

Następnie, manipulując wartością częstotliwości na generatorze, wyznaczyliśmy częstotliwości graniczne, w których układ osiąga spadek wzmocnienia o 3dB. Wyniki tych pomiarów przedstawia Tabela 2.

Tab. 2: Pomiary częstotliwości granicznych układu

| ze zworą Z1                                                          |      |     |        |       |  |
|----------------------------------------------------------------------|------|-----|--------|-------|--|
| Częstotliwość $U_{we}[mV]$ $U_{wy}[mV]$ $K_{U}[V/V]$ $K_{U3dB}[V/V]$ |      |     |        |       |  |
| f = 5kHz                                                             | 70,4 | 768 | 109,09 |       |  |
| f = fd = 260Hz                                                       | 69,2 | 532 | 76,88  | 77,13 |  |
| f = fg = 710 kHz                                                     | 70,8 | 546 | 77,12  |       |  |

#### 4.2 Wzmocnienie skuteczne

Następnie przystąpiliśmy do wyznaczania częstotliwości granicznych dla wzmocnienia skutecznego. Z układu usunęliśmy zworę Z1, i wykonaliśmy analogiczne kroki jak w punkcie **4.1**. Wyniki pomiarów przedstawia Tabela 3.

Tab. 3: Pomiary częstotliwości granicznych układu bez zwory Z1

| bez zwory Z1     |                      |                      |                        |                           |  |
|------------------|----------------------|----------------------|------------------------|---------------------------|--|
| Częstotliwość    | U <sub>we</sub> [mV] | U <sub>wy</sub> [mV] | K <sub>usk</sub> [V/V] | K <sub>usk3dB</sub> [V/V] |  |
| f = 5kHz         | 70,4                 | 448                  | 63,64                  |                           |  |
| f = fd = 180Hz   | 70,1                 | 315                  | 44,94                  | 44,99                     |  |
| f = fg = 230 kHz | 70,9                 | 318                  | 44,85                  |                           |  |

## 5 Wyznaczenie rezystancji wejściowej i wyjściowej układu

### 5.1 Wyznaczenie rezystancji wejściowej $r_{we}$

Rezystancję wejściową wyznaczono poprzez pomiar napięcia na wejściu i wyjściu układu, manipulując zworą Z1. Wyniki pomiarów przedstawia Tabela 4.

Tab. 4: Pomiary rezystancji wejściowej

| bez                  | z zwory Z1           |                        | 2                    | ze zworą Z1          |                      |
|----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|
| U <sub>we</sub> [mV] | U <sub>wy</sub> [mV] | K <sub>usk</sub> [V/V] | U <sub>we</sub> [mV] | U <sub>wy</sub> [mV] | K <sub>U</sub> [V/V] |
| 70,4                 | 448                  | 63,64                  | 70,4                 | 768                  | 109,09               |

Obliczam  $r_{we}$ :

$$r_{\rm we} = \frac{R_g}{\frac{K_U}{K_{U_{SK}}} - 1} - r_{wy_{dzielnika}} = \frac{2,276}{\frac{109.09}{63.64} - 1} - 10 = 3,15 \left[ k\Omega \right]$$

### 5.2 Wyznaczenie rezystancji wyjściowej $r_{wy}$

Rezystancję wejściową wyznaczono poprzez pomiar napięcia na wejściu i wyjściu układu, manipulując zworą Z3. Wyniki pomiarów przedstawia Tabela 5.

Tab. 5: Pomiary rezystancji wyjściowej

| bez zwory Z3         |                      | ze zworą Z3          |                      |
|----------------------|----------------------|----------------------|----------------------|
| U <sub>we</sub> [mV] | U <sub>wy</sub> [mV] | U <sub>we</sub> [mV] | U <sub>wy</sub> [mV] |
| 30,4                 | 3280                 | 70,4                 | 800                  |

Obliczam  $r_{wy}$ :

$$r_{wy} = R_{:} \cdot \left( \frac{U_{wy_{ze\ zworq}}}{U_{wy_{bez\ zwory}}} - 1 \right) = \left( \frac{3280}{800} - 1 \right) \cdot 3.224 = 9.9944 \left[ k\Omega \right]$$

# 6 Wyznaczenie charakterystyki wzmocnienia $K_u = f(U_{cc})$

Następnie przystąpiliśmy do wyznaczania charakterystyki wzmocnienia układu. W tym celu mierzyliśmy napięcia na wejściu i wyjściu układu, zmieniając wartość napięcia  $U_{cc}$  co 1V na pomiar. Wyniki pomiarów przedstawia Tabela 6. Rysunek 7 przedstawia wykres zależności  $K_u = f(U_{cc})$ .

| $m \cdot c \cdot p \cdot$ | 1 .            | 1 1, , 1.       |                 | 111    |
|---------------------------|----------------|-----------------|-----------------|--------|
| Tab. 6: Pomiary           | do wyznaczenia | charakterystyki | wzmocnienia     | บหรอดบ |
| Tab. O. I omnary          | do wyznaczenia |                 | WZIIIOCIIICIIIA | umaaaa |
|                           |                |                 |                 |        |

| U <sub>cc</sub> | U <sub>we</sub> | $U_{wy}$ | K <sub>U</sub> |
|-----------------|-----------------|----------|----------------|
| [V]             | [mV]            | [mV]     | [V/V]          |
| 0               | 70              | 0        | 0,00           |
| 1               | 70              | 8        | 1,14           |
| 2               | 70              | 8        | 1,14           |
| 3               | 70              | 58       | 8,29           |
| 4               | 70              | 136      | 19,43          |
| 5               | 70              | 218      | 31,14          |
| 6               | 70              | 296      | 42,29          |
| 7               | 70              | 376      | 53,71          |
| 8               | 70              | 450      | 64,29          |
| 9               | 70              | 536      | 76,57          |
| 10              | 70              | 600      | 85,71          |
| 11              | 70              | 672      | 96,00          |
| 12              | 70              | 736      | 105,14         |
| 13              | 70              | 800      | 114,29         |
| 14              | 70              | 856      | 122,29         |
| 15              | 70              | 980      | 140,00         |
| 16              | 70              | 1060     | 151,43         |
| 17              | 70              | 1120     | 160,00         |
| 18              | 70              | 1160     | 165,71         |
| 19              | 70              | 1200     | 171,43         |
| 20              | 70              | 1260     | 180,00         |



Rys. 7: Charakterystyka wzmocnienia  $K_u = f(U_{cc})$ 

## 7 Wyznaczenie charakterystyki przejściowej $U_{wy} = f(U_{we})$

Następnie przystąpiliśmy do wyznaczenia charakterystyki przejściowej. W tym celu mierzyliśmy wartości napięć na wejściu i wyjściu układu przy stałym napięciu  $U_{cc}=12,5V$ , manipulując przy tym napięciem na generatorze. Dla każdej ze zmierzonych wartości napięć obliczyliśmy wzmocnienie układu, aby przedstawić tę wielkość jako funkcję napięcia wejściowego. Wyniki pomiarów i obliczenia znajdują się w Tabeli 8. Rysunek 9 i 10 przedstawiają charakterystyki wyrysowane na podstawie Tabeli 8.

Tab. 8: Pomiary i obliczenia do wyznaczenia charakterystyki przejściowej

| U <sub>generatora</sub> | U <sub>we</sub> | $U_{wy}$ | K <sub>U</sub> |
|-------------------------|-----------------|----------|----------------|
| mV                      | [mV]            | V        | [V/V]          |
| 100                     | 72              | 0,82     | 113,89         |
| 150                     | 108             | 1,20     | 111,11         |
| 200                     | 140             | 1,58     | 112,86         |
| 250                     | 174             | 1,94     | 111,49         |
| 300                     | 204             | 2,34     | 114,71         |
| 350                     | 238             | 2,68     | 112,61         |
| 400                     | 280             | 3,08     | 110,00         |
| 450                     | 312             | 3,44     | 110,26         |
| 500                     | 344             | 3,80     | 110,47         |
| 550                     | 376             | 4,12     | 109,57         |
| 600                     | 408             | 4,48     | 109,80         |
| 650                     | 444             | 4,80     | 108,11         |
| 700                     | 476             | 5,08     | 106,72         |
| 750                     | 520             | 5,44     | 104,62         |
| 800                     | 552             | 5,76     | 104,35         |
| 850                     | 592             | 6,16     | 104,05         |
| 900                     | 624             | 6,40     | 102,56         |
| 950                     | 656             | 6,64     | 101,22         |
| 1000                    | 688             | 6,88     | 100,00         |



Rys. 9: Charakterystyka przejściowa układu



Rys. 10: Charakterystyka wzmocnienia  $K_u=f({\cal U}_{we})$ 

### 8 Wnioski

- Punkt pracy wyznaczony za pomocą pomiarów na fizycznym układzie  $Q = \left(4.33V, 2.67mA\right)$  jest bardzo zbliżony do punktu pracy wyznaczonego symulacyjnie  $Q_{spice} = \left(4.37V, 2.77mA\right)$ , i założonego w obliczeniach  $Q_{założone} = \left(5V, 2.5mA\right)$ . Świadczy to o poprawnym doborze i montażu elementów RC w płytce.
- Zakładane wzmocnienie wynosiło  $120\frac{V}{V}$ , natomiast osiągnięte w praktyce wzmocnienie to około  $113\frac{V}{V}$ . Ta niewielka różnica świadczy o precyzyjnym dobraniu oraz obliczeniach elementów, które są zgodne z oczekiwaniami. Można stwierdzić, że wzmocnienie jest zadowalająco bliskie wartości założonej, co potwierdza prawidłowość wykonanego projektu.
- Działanie wzmacniacza tranzystorowego zostało potwierdzone przez zgodność charakterystyk
  wykreślonych podczas testów z wiedzą teoretyczną. Oznacza to, że wzmacniacz działa zgodnie
  z przewidywaniami teoretycznymi, co jest kluczowe dla potwierdzenia poprawności projektu.
  Analiza charakterystyk pozwoliła na potwierdzenie, że układ działa efektywnie i stabilnie.