D. Vanya and Treasure

time limit per test: 1.5 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Vanya is in the palace that can be represented as a grid $n \times m$. Each room contains a single chest, an the room located in the i-th row and j-th columns contains the chest of type a_{ij} . Each chest of type $x \le p$ - 1 contains a key that can open any chest of type x + 1, and all chests of type x + 1 are not locked. There is exactly one chest of type x + 1 and it contains a treasure.

Vanya starts in cell (1, 1) (top left corner). What is the minimum total distance Vanya has to walk in order to get the treasure? Consider the distance between cell (r_1, c_1) (the cell in the row r_1 and column c_1) and (r_2, c_2) is equal to $|r_1 - r_2| + |c_1 - c_2|$.

Input

The first line of the input contains three integers n, m and p ($1 \le n$, $m \le 300$, $1 \le p \le n \cdot m$) — the number of rows and columns in the table representing the palace and the number of different types of the chests, respectively.

Each of the following n lines contains m integers a_{ij} ($1 \le a_{ij} \le p$) — the types of the chests in corresponding rooms. It's guaranteed that for each x from 1 to p there is at least one chest of this type (that is, there exists a pair of r and c, such that $a_{rc} = x$). Also, it's guaranteed that there is exactly one chest of type p.

Output

Print one integer — the minimum possible total distance Vanya has to walk in order to get the treasure from the chest of type p.

Examples

```
input

3 4 3
2 1 1 1
1 1 1 1
2 1 1 3

output

5
```

```
input

3 3 9
1 3 5
8 9 7
4 6 2

output

22
```

```
input

3 4 12
1 2 3 4
8 7 6 5
9 10 11 12

output

11
```