ЗАДАЧИ

к коллоквиуму по математическому анализа (3 семестр)

- 1. Привести примеры рядов, для которых признак Раабе неприменим.
- 2. Привести примеры рядов, для которых признак Даламбера неприменим.
- 3. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ сходится неабсолютно для любого $x \in (0, \pi)$. 4. Доказать, что если ряд $\sum_{n=1}^{\infty} a_n \ (a_n \ge 0)$ сходится, то ряд $\sum_{n=1}^{\infty} a_n^2$ также сходится, а обратное неверно.
- 5. Члены сходящегося ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ переставить так, чтобы он стал расходящимся. 6. Пусть $b_n > 0$ и $b_n \to 0$ при $n \to \infty$. Можно ли утверждать, что ряд $(-1)^{n+1}b_n$ сходится? 7. Доказать, что если сходятся ряды $\sum_{n=1}^{\infty} a_n^2$ и $\sum_{n=1}^{\infty} b_n^2$, то сходится ряд $\sum_{n=1}^{\infty} |a_n b_n|$.

- 8. Доказать, что если для ряда с положительными членами существует предел $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$, то существует $\lim_{n\to\infty} \sqrt[n]{a_n} = q$, а обратное неверно.
- 9. Пусть S сумма ряда Лейбница $\sum_{n=1}^{\infty} (-1)^{n+1} b_n \ (b_n \ge 0)$ и S_n его n-ая частичная сумма. Доказать,
- 10. Доказать, что если ряд $\sum_{n=1}^{\infty} a_n$ с положительными и монотонно убывающими членами сходится, то $\lim_{n\to\infty} na_n = 0.$
 - 11. Сколько членов ряда $\sum_{n=1}^{\infty} \frac{1}{n^2}$ нужно взять, чтобы найти его сумму с точностью до 10^{-5} ?
- 12. Пусть ряды с неотрицательными членами $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ расходятся. Что можно сказать о сходимости ряда $\sum_{n=1}^{\infty} \min(a_n, b_n)$?
- 13. Привести пример рядов $\sum_{n=1}^{\infty}a_n$ и $\sum_{n=1}^{\infty}b_n$ таких, что $\lim_{n\to\infty}\frac{a_n}{b_n}=1$, один из рядов сходится, а другой — расходится.
 - 14. Найти

v.p.
$$\int_0^{+\infty} \frac{dx}{x^2 - 3x + 2}$$
.

- 15. Показать, что если $\int_0^{+\infty} f(x) \, dx$ сходится и f монотонна, то $f(x) = O(x^{-1}), \, x \to +\infty$.
- 16. Привести пример функции f такой, что f(x) не стремится к нулю при $x \to \infty$, но интеграл $\int_a^{+\infty} f(x) dx$ сходится.
 - 17. Привести пример интеграла, который в смысле главного значения по Коши не существует.
- 18. Доказать, что если интегралы $\int_0^{+\infty} f^2(x) \, dx$ и $\int_0^{+\infty} g^2(x) \, dx$ сходятся, то интеграл $\int_0^{+\infty} f(x) g(x) \, dx$ также
- 19. Пусть функция f монотонна на (0,1] и не ограничена в окрестности точки x=0. Доказать, что если существует $\int_0^1 f(x) dx$, то

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) dx.$$

20. Доказать, что если ϕ — непрерывно дифференцируемая функция на [a,b], то для любого $c\in(a,b)$ существует

$$v.p. \int_{a}^{b} \frac{\phi(x) dx}{x - c} = \int_{a}^{b} \frac{\phi(x) - \phi(c) dx}{x - c} + \phi(c) \ln \frac{b - c}{c - a},$$

где интеграл в правой части сходится как обычный несобственный интеграл.

- 21. Может ли произведение множеств на прямой, одно из которых неизмеримо, быть измеримым на плоскости?
 - 22. Будут ли измеримы множества A и B, если $A \cup B$ измеримо?
 - 23. Привести пример неизмеримого множества в \mathbb{R}^2 .
- 24. Пусть A нуль-множество по Жордану в \mathbb{R}^m , а B множество в \mathbb{R}^n . При каких условиях на B произведение $A \times B$ является нуль-множеством в \mathbb{R}^{m+n} ?