第七节 对偶理论——原规划和对偶规划最优解 之间的关系

- 弱对偶定理
 - 强对偶定理
 - ■松紧定理

一. 弱对偶定理:

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

定理1-7:

设X 和 λ 分别是(P)和(D)的可行解,则有 $CX \geq \lambda b$. 证明:

$$\therefore \lambda A \leq C, \quad X \geq 0$$

$$\therefore \lambda \underline{AX} \leq CX \qquad \therefore \lambda b \leq CX \blacksquare$$

$$\therefore \lambda b \leq CX$$

推论1:

若 X^0 和 λ^0 分别是(P)和(D)的可行解,且 $CX^0 = \lambda^0 b$, 则 X^0 和 λ^0 分别是(P)和(D)的最优解。

弱对偶定理:

$$(P) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(D) \max Z = \lambda b$$
$$\lambda A \le C$$

定理1-7:

设X和 λ 分别是(P)和(D)的可行解,则有 $CX \ge \lambda b$. 推论1:

若 X^0 和 λ^0 分别是(P)和(D)的可行解,且 $CX^0 = \lambda^0 b$,则 X^0 和 λ^0 分别是(P)和(D)的最优解。

证明:

设X是(P)的任意可行解,由定理1-7知:

 $CX \ge \lambda^0 b = CX^0$ 所以 $X^0 \ne (P)$ 的最优解。

线性规划1-7

第七节 对偶理论——原规划和对偶规划解之间 的关系

- ✓弱对偶定理
- **强对偶定理**
 - ■松紧定理

二. 强对偶定理:
$$(P)$$
 $\min S = CX$ (D) $\max Z = \lambda b$ $\lambda A \le C$ 定理1-8: $X \ge 0$

(P)有有限的最优解 X^* ⇔ (D)有有限的最优解 λ^* ,且相应的目标函数值相等,即 $CX^* = \lambda^*b$ 。

证明: \Rightarrow :: X^* 是(P)的最优解,:: 可设 X^* 是最优基本可行解。

$$\text{II}X^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} = \begin{pmatrix} X_B^* \\ 0 \end{pmatrix}.$$

$$C - C_B B^{-1} A \ge 0 \longrightarrow C_B^{\lambda^*} B^{-1} A \le C$$

 $\longrightarrow \lambda^* A \le C$ $\lambda^* \mathbb{B}(D)$ 的可行解

强对偶定理:

 $(P) \min S = CX$

 $(D) \max Z = \lambda b$

AX = b

 $\lambda A \leq C$

定理1-8:

 $X \ge 0$

(P)有有限的最优解 $X^* \Leftrightarrow (D)$ 有有限的最优解 λ^* ,且相应的目标函数值相等,即 $CX^* = \lambda^*b$ 。

推论3:

若 X^* 是(P)的最优基本可行解,B是相应的最优基,则单纯形乘子 $\pi = C_R B^{-1}$ 是(D)的最优解。

二. 强对偶定理:
$$(P)$$
 $\min S = CX$ (D) $\max Z = \lambda b$ $\lambda A \le C$ 定理1-8: $X \ge 0$

(P)有有限的最优解 X^* ⇔ (D)有有限的最优解 λ^* ,且相应的目标函数值相等,即 $CX^* = \lambda^*b$ 。

证明: \Rightarrow :: X^* 是(P)的最优解, :: X^* 是最优基本可行解。

$$\text{II}X^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} = \begin{pmatrix} X_B^* \\ 0 \end{pmatrix}.$$

$$C - C_B B^{-1} A \ge 0 \longrightarrow C_B^{\lambda^*} B^{-1} A \le C$$

$$\longrightarrow \lambda^* A \leq C$$
 $\lambda^* \mathbb{B}(D)$ 的可行解

线性规划1-7

$$(P) \quad \min S = CX$$

 $(D)\max Z=\lambda b$

$$AX = b$$

 $\lambda A \leq C$

定理1-8:

 $X \ge 0$

(P)有有限的最优解 $X^* \Leftrightarrow (D)$ 有有限的最优解 λ^* ,且相应的目标函数值相等,即 $CX^* = \lambda^*b$ 。

推论3:

若 X^* 是(P)的最优基本可行解,B是相应的最优基,则单纯形乘子 $\pi = C_B B^{-1}$ 是(D)的最优解。

推论1:

若(P)和(D)中有一个有可行解,但没有有限的最优解,则另一个问题无可行解。

线性规划1-7

强对偶定理:

(P) $\min S = CX$ (D) $\max Z = \lambda b$

AX = b

 $\lambda A \leq C$

定理1-8:

 $X \ge 0$

(P)有有限的最优解 $X^* \Leftrightarrow (D)$ 有有限的最优解 λ^* , 且相应的目标函数值相等,即 $CX^* = \lambda^*b$ 。

推论1:

 $\dot{z}(P)$ 和(D)中有一个有可行解,但没有有限的最优 解,则另一个问题无可行解。

证明: 反证法:

设(P)有可行解 X^0 ,但没有有限的最优解,

即 $\min CX = -\infty$, 则(D)没有可行解。 若(D) 有可行解 λ^0 ,

则由定理1-7, $CX \ge \lambda^0 b \implies -\infty = \min CX \ge \lambda^0 b$, 矛盾。

所以(D)没有可行解。■

第七节 对偶理论——原规划和对偶规划解之间 的关系

- ✓弱对偶定理
- ✓强对偶定理
- 松紧定理

三. 松紧定理:

$$(P) \min S = CX$$

$$(D) \max Z = \lambda b$$

$$AX = b$$

 $\lambda A \leq C$

定理1-9:

$$X \ge 0$$

$$C - \lambda^0 A \ge 0$$

设
$$X^0$$
, λ^0 分别是 (P) 和 (D) 的可行解,

$$c_j - \lambda^0 p_j \ge 0$$

则 X^0 , λ^0 分别是(P)和(D)的最优解 $\longrightarrow \overline{(C-\lambda^0 A)X^0=0}$

证明:

$$\sum_{j=1}^{n} (c_{j} - \lambda^{0} p_{j}) x_{j}^{0} = 0 \longrightarrow (c_{j} - \lambda^{0} p_{j}) x_{j}^{0} = 0$$

$$j = 1, 2, \dots, n$$

一设 X^0 , λ^0 分别是(P)和(D)的最优解,由定理1-8有

$$CX^0 = \lambda^0 b = \lambda^0 AX^0 \longrightarrow (C - \lambda^0 A)X^0 = 0$$

$$(C - \lambda^0 A)X^0 = 0 \longrightarrow CX^0 = \lambda^0 AX^0 = \lambda^0 b$$

由定理1-7的推论1, X^0 , λ^0 分别是(P)和(D)的最优解。

第七节 对偶理论——原规划和对偶规划解之间 的关系

- ✓弱对偶定理
- ✓强对偶定理
- ✓松紧定理