Estudio de Estrellas de Planck

Alejandro Hernández A.

Asesor: Pedro Bargueño.

Universidad de los Andes, Bogotá, Colombia

Abril 7, 2015

1 / 15

Contenidos

- Introducción y motivación
- Preliminares
 - Condiciones de energía
 - Procedimiento General
- Métricas relevantes
 - Métrica de Bardeen
 - Métrica de Vaidya
- Métrica de Hayward
 - Métrica de Hayward estática
 - Métrica de Hayward dinámica
- Métrica de Hayward modificada
- 6 Conclusiones
- Anexos
- Referencias

Introducción

- Soluciones estáticas y esféricamente simétricas de las ecuaciones de campo de Einstein (Agujeros negros).
- ullet Problemas de las singularidades en el espaciotiempo \leftrightarrow Fallas de la relatividad general.
- Agujeros negros regulares.

Motivación

- Obtener un comocimiento más profundo de la relatividad general.
- Conocer las limitaciones y fallas de la teoría general de relatividad.
- Entender la regularización de agujeros negros y los conceptos físicos detrás de esto.
- Conocer un poco acerca de teoría cuántica de campos efectiva en relatividad general.

Condiciones de energía

Las condiciones de energía son [1]

- NEC: $\rho \geq 0$
- **WEC:** $\rho \ge 0$, $\rho + p_i \ge 0$ para $i \in \{1, 2, 3\}$.
- **DEC:** $\rho \ge 0$, $\rho + p_i \ge 0$, $\rho \ge |p_i|$ para $i \in \{1, 2, 3\}$.
- **SEC:** $\rho + p_i \ge 0$ y $\rho + 3p_i \ge 0$.

Para el estudio de agujeros negros regulares, la única condición de energía que nos interesa es la WEC.

Procedimiento general

Forma general del elemento de línea esféricamente siméetrico y estático:

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\Omega^{2}, \qquad (2.1)$$

$$f(r) = 1 - \frac{2m(r)}{r}. (2.2)$$

En términos de m(r) la WEC se expresa como [2]

$$\frac{1}{r^2} \frac{dm(r)}{dr} \ge 0,$$

$$\frac{2}{r} \frac{dm(r)}{dr} \ge \frac{d^2 m(r)}{dr^2}.$$
(2.3)

4□ > 4□ > 4 = > 4 = > = 900

La métrica de Bardeen está dada por [3]

$$ds^{2} = -\left(1 - \frac{2mr^{2}}{(r^{2} + g^{2})^{3/2}}\right)dt^{2} + \left(1 - \frac{2mr^{2}}{(r^{2} + g^{2})^{3/2}}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}, \quad (3.1)$$

$$f_{bardeen}(r) \underset{r \to 0}{\sim} 1 - \frac{2mr^2}{g^3} + \mathcal{O}(r^4),$$
 (3.2)

$$f_{bardeen}(r) \underset{r \to \infty}{\sim} 1 - \frac{2m}{r} + \frac{3mg^2}{r^3} + \mathcal{O}\left(\frac{1}{r^5}\right).$$
 (3.3)

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ⟨≡⟩ ⟨□⟩ ⟨□⟩

Para la interpretación física de la métrica de Bardeen, se requiere acoplar RG con electrodinámic no-lineal [4]

$$S = \int dv \left(\frac{1}{16\pi} R - \frac{1}{4\pi} \mathcal{L}(F) \right), \tag{3.4}$$

$$\mathcal{L}(F) = \frac{3}{2sg^2} \left(\frac{\sqrt{2g^2 F}}{1 + \sqrt{2g^2 F}} \right)^{5/2}, \ s = \frac{|g|}{2m}$$
 (3.5)

Con el ansatzs $F_{\mu\nu}=2\delta^{ heta}_{\;[\mu}\delta^{arphi}_{\;\;
u]}B(r, heta)$,

$$\frac{1}{4\pi} \int_{S^{\infty}} \mathbf{F} = \frac{g}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} \sin(\theta) d\theta d\varphi = g$$

 \rightsquigarrow g corresponde a la carga de monopolo autogravitante.

4 □ → 4 同 → 4 豆 → 4 豆 → 9 Q ○

Para la interpretación del carácter regular de la métrica de Bardeen

Figura: Estructura global de una porción del agujero negro de Bardeen. Imagen tomada de [5].

Theorem (Borde, 1996)

Suponga que una espaciotiempo ${\mathcal M}$ satisface que

- I contiene una superficie eventualmente futuramente atrapada \mathcal{T} ,
- II obedece la condición de convergencia nula,
- III el cojunto de geodésicas nulas futuras es completo,
- IV su futuro causal es simple, con $E^+(X) \neq \emptyset$, $\forall X \subset \mathcal{M}$.

Entonces hay una sección espacial compacta en el futuro de \mathcal{T} .

4□ > 4□ > 4 = > 4 = > □
9

Métrica de Vaidya

En la métrica de Schwarzschild, considerar

$$dt = du + \frac{dr}{(1 - 2m/r)}, \tag{3.6}$$

y al generalizar m = m(u), se obtiene

$$ds^{2} = -\left(1 - \frac{2m(u)}{r}\right)du^{2} - 2dudr + r^{2}d\Omega^{2}.$$
 (3.7)

Diferencia crucial con Schwarzschild: r = 2m(u) deja de ser un horizonte de eventos y se convierte en un horizonte aparente.

Definition (Horizonte aparente)

Un horizonte aparente es una hipersuperficie que separa las regiones que poseen superficies atrapadas de las regiones que no contienen este tipo de superficies.

Métrica de Hayward estática

La métrica de Hayward está dada por

$$ds^{2} = -\left(1 - \frac{mr^{2}}{r^{3} + 2ml^{2}}\right)dt^{2} + \left(1 - \frac{mr^{2}}{r^{3} + 2ml^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}, (4.1)$$

$$f_{hayward}(r) \underset{r \to 0}{\sim} 1 - \frac{r^2}{l^2} + \mathcal{O}(r^5),$$
 (4.2)

$$f_{hayward}(r) \underset{r \to \infty}{\sim} 1 - \frac{2m}{r} + \frac{4l^2m^2}{r^4} + \mathcal{O}(r^{-5}),$$
 (4.3)

¿Interpretación física del parámetro /?

¿Cómo aplica el teorema de Borde en este caso?

Trabajo por realizar

- Entender profundamente el teorema de Borde y sus múltiples aplicaciones en este trabajo.
- Completar el estudio de la métrica de Hayward estática y dinámica.
- Estudiar en detalle la métrica de Hayward modificada.
- Interpretar físicamente la métrica de Hayward modificada.
- Entender, en la medida de lo posible, el carácter regular de la métrica de Bardeen en términos del teorema de Borde (Anexos).
- Entender, en la medida de lo posible, la derivación de las correcciones de teoría cuántica de campos efectiva del potencial Newtoniano (Anexos).

Referencias

- [1] Sean M Carroll.
 - Spacetime and geometry: An introduction to general relativity, volume 1.

Addison Wesley, 1st edition, 2004.

- [2] L. Balart and E. C. Vagenas.
 - Regular black hole metrics and the weak energy condition.

Physics Letters B, 730:14–17, March 2014.

- [3] J. M. Bardeen.
 - Non-singular general-relativistic gravitational collapse.

In Proceedings of International Conference GR5, page 174, Tbilisi, 1968.

- [4] Ayón-Beato, E. and García, A.
 - The Bardeen model as a nonlinear magnetic monopole.

Physics Letters B, 493:149-152, November 2000.

- [5] A. Borde.
 - Open and closed universes, initial singularities, and inflation.

Phys. Rev. D, 50:3692-3702, September 1994.

Gracias por su atención!

