

Converge to the Truth:

Factual Error Correction via Iterative Constrained Editing

Jiangjie Chen^{1,*}, Rui Xu^{1,*}, Wenxuan Zeng², Changzhi Sun³, Lei Li⁴, Yanghua Xiao¹

¹Fudan University ²University of Electronic Science and Technology of China

³ByteDance AI Lab ⁴University of California, Santa Barbara

Project Homepage

Introduction

Task: Factual Error Correction

Academic writing

Advances in neural information processing systems, 2019, 30. Advances in neural information processing systems, 2017, 30.

Journalism

James Cameron directed Thor 2, which was released in 2022. James Cameron directed Avatar 2, which was released in 2022.

Online content/AIGC

Socrates wrote the Ethics and the Republic. Platos wrote the Ethics and the Republic.

Previous Work

Factual **Errors**

- * **Methods**: Evidence-based Factual Error Correction
- one-pass mask-then-correct generation
- Limitations:
 - Lack fine-grained annotations and high-quality datasets, which are costly
 - Most datasets are synthetically built.

The Motivations of This Work

- * Y Over-erasure: Correct errors via iterative editing
 - Break the correction process into unit-level (token/ entity) to revise more choices.
- * The Missing Validation: Bridge Fact Verification with Factual Error Correction
 - FV offers control and guidance to the correction in each editing
 - Resources for FV are significantly richer than FEC.

Contributions

- We are the first to adopt an iterative text editing method (VENCE) for solving factual error correction without direct supervision, which alleviates the overerasure problem in previous methods
- VENCE enjoys a more powerful error revision ability by effectively integrating external but coarse-grained verification signals during each editing iteration.

The VENCE Framework

* Overview of VENCE

No supervised FEC data? Fact Verification! Helps! 🦮

Corrected Claim

* Desired Properties in FEC: Energy Functions

Desired properties of the target texts

Fluency - Language Modeling $\mathscr{C}_{\text{LM}}(x) = -\sum \log P_{\text{MLM}}(w_i | x_{-i})$ **Truthfulness**

 Fact Verification $\mathscr{E}(x) = \mathscr{E}_{\text{I.M}}(x) + \mathscr{E}_{\text{V}}(x) + \mathscr{E}_{\text{H}}(x)$ Minimal-edits

- Hamming Distance $\mathscr{E}_{H}(x) = \text{HammingDistance}(x, x^{0})$

 $\mathscr{E}_{V}(x) = -\log P_{V}(\text{Supported} \mid x, E)$

* Constrained Text Editing via Metropolis-Hastings Sampling

Stationary distribution

Where we want the sampling to converge

Transition distribution

In the Markov chain, taking the action a to edit position *m*

Acceptance Ratio

Decides the acceptance of each proposal

$$g(x' \mid x) = P_1(m \mid x)P_2(a)P_3(x' \mid x_{-m}, a)$$

 $A(x' \mid x) = \min\{1, \frac{\pi(x')g(x \mid x')}{\pi(x)g(x' \mid x)}\}\$ $= \min\{1, \frac{e^{-\mathcal{E}(x')}g(x \mid x')}{e^{-\mathcal{E}(x)}g(x' \mid x)}$

* The workflow of VENCE

Experiments

Datasets and Metrics

- **Datasets:** FECData for FEC & FEVER for FV
- **Metrics:** SARI scores & Human evaluation (accuracy)

SARI scores evaluate the F1 of words being added/deleted/kept

Baselines

- Supervised Baselines: T5 & EdiT5
- Distantly-Supervised Baselines:
 - DS-1: Train to propose with evidence-based mask-prediction -> MLM 2EntPtr T5MC
 - DS-2: Give a verifier (external discriminative models), e.g., NLI, FV. -> *T5MC-V*

The automatic evaluation results of VENCE compared with baselines

Method	Verifier	SARI (%)				RG-2	
	7011101	Keep	Delete	Add	Final	10-2	
	Ful	ly Supe	rvised				
T5-base	-	79.6	90.2	59.2	76.4	72.7	
EdiT5-base	-	81.8	93.0	63.4	79.4	76.9	
	Dista	ntly Sup	pervised				
MLM	-	56.1	52.9	7.8	38.9	42.7	
2EncPtr	$BERT_b$	34.5	48.1	1.7	28.1	34.8	
T5MC	-	65.2	62.7	15.5	47.8	50.3	
+enumerate	$BERT_b$	66.2	64.3	17.1	49.2	51.2	
T5MC-V	$BERT_b$	61.1	54.3	19.4	44.9	42.0	
+enumerate	$BERT_b$	63.0	55.7	24.1	47.6	45.5	
VENCE	$BERT_b$	66.0	60.1	34.8	53.6	57.7	
	RoBERTa ₁	67.1	61.9	36.0	55.0	59.1	

- VENCE makes better use of the
- VENCE adds more sensical tokens than baselines.
- Still far behind supervised methods.

Analysis on Constraints - How do verification affect correction?

Dataset	Verifier	Acc (%)	SARI (%)				
			Keep	Delete	Add	Final	
MultiNLI	$\frac{\mathrm{BERT}_b}{\mathrm{RoBERTa}_l}$	84.6 90.2	63.9 65.1	57.0 58.9	30.1 32.2	50.3 52.0	
FEVER	BERT _b	71.7	66.0	60.1	34.8	53.6	

- Better verifier leads to better performance.
- Even OOD verifier (NLI) helps VENCE outperform baselines.

Analysis on Editing

- VENCE converges at Iter #15. Performance drop when losing $\mathscr{E}_{V}(x)$ (fact verification)
- Gradient-based sampling accelerates convergence.
- Generative proposal over two spaces greatly surpasses the token-only or entity-only counterparts.

O2: What if we only edit

tokens or entities?

Manual Evaluation

1.Is it **grammatically** correct? 2. Is it **supported** by evidence? *3.Are the original errors corrected?*

- Both VENCE and baselines can recover reasonable results from evidence to the output (supported).
- VENCE better concentrates on the correction of given errors (corrected).