1 Lezione del 13-11-24

Avevamo visto il concetto di **bipolo**, cioè un componente circuitale con due *punti di* contatto col resto del circuito (**morsetti**), su cui passa una certa **corrente** I e su cui si trova una certa **tensione**, cioè una differenza di potenzale V. Potremmo avere anche un **tripolo**, cioè un componente con morsetti, su cui passano (propriamente, da cui escono o entrano), anzichè una, 3 correnti, e su cui individuiamo 3 tensioni (A, B e C) e 3 **cadute** di tensione su ogni percorso che attraversa il bipolo. Una possibile rappresentazione di un tripolo è la seguente:

le cui equazioni sono:

$$\begin{cases} I_A + I_B + I_C = 0 \\ V_{AB} = V_A - V_B \\ V_{AC} = V_A - V_C \\ V_{BC} = V_B - V_C \end{cases}$$

Notiamo che, dalle equazioni ai potenziali, si possono ricavare le relazioni (piuttosto scontate):

$$\begin{cases} V_{AB} + V_{BC} = V_{AC} \\ V_{BA} + V_{AC} = V_{BC} \\ V_{AC} + V_{CB} = V_{AB} \end{cases}$$

con $V_{BA} = -V_{AB}$ e $V_{CB} = -V_{BC}$ (e anche se non si è usata, $V_{CA} = -V_{AC}$).

1.1 Porte

Definiamo una **porta** come una coppia di poli di un circuito dove la corrente entrante è uguale a quella uscente. Rappresentiamo una porta come segue:

Notiamo che per n poli si hanno al massimo $\frac{n}{2}$ porte (ammesso un numero pari di poli).

Ciò che ci è di interesse sono i circuiti a **due porte** (o equivalentemente a *quattro poli*):

Possiamo immaginare che un segnale *entra* da una porta, viene *elaborato* all'interno del circuito, e *esce* dalla porta opposta.

Per convenzione, scegliamo le due correnti $I_1(t)$ e $I_2(t)$ come rivolte nello stesso senso, e le due tensioni $V_1(t)$ e $V_2(t)$ come con la stessa polarità:

1.1.1 Rappresentazione in impedenza di circuiti a due porte

Una coppia di **induttori mutuamente accoppiati** rappresenta effettivamente un circuito a due porte, in quanto la stessa corrente entra e esce da ogni induttore (cioè si formano due porte). Avevamo rappresentato questi circuiti come:

$$\begin{cases} \dot{V}_1 = j\omega L_1 \dot{I}_1 + j\omega M \dot{I}_2 \\ \dot{V}_2 = j\omega L_2 \dot{I}_2 + j\omega M \dot{I}_1 \end{cases}$$

Analogamente, decidiamo di rappresentare un circuito a due porte attraverso equazioni che legano la tensione su una porta alla corrente su entrambe le porte:

$$\begin{cases} \dot{V}_1 = \overline{z_{11}} \dot{I}_1 + \overline{z_{12}} \dot{I}_2 \\ \dot{V}_2 = \overline{z_{21}} \dot{I}_1 + \overline{z_{22}} \dot{I}_2 \end{cases}$$

Per esprimere queste relazioni in forma più compatta, possiamo sfruttare il calcolo matriciale:

$$\dot{V} = \overline{Z}\dot{I}$$

dove \dot{V} e \dot{I} sono matrici:

$$\begin{pmatrix} \dot{V}_1 \\ \dot{V}_2 \end{pmatrix} = \overline{Z} \begin{pmatrix} \dot{I}_1 \\ \dot{I}_2 \end{pmatrix}$$

e \overline{Z} sarà l'**impedenza** in forma matriciale:

$$\overline{Z} = \begin{pmatrix} \overline{z_{11}} & \overline{z_{12}} \\ \overline{z_{21}} & \overline{z_{22}} \end{pmatrix}$$

Date le equazioni riportate sopra che legano voltaggio a corrente, possiamo ricavare il valore di ogni componente di \overline{Z} come:

$$\begin{cases} \overline{z_{11}} = \frac{\dot{V}_1}{\dot{I}_1} \Big|_{\dot{I}_2 = 0} \\ \overline{z_{12}} = \frac{\dot{V}_1}{\dot{I}_2} \Big|_{\dot{I}_1 = 0} \\ \overline{z_{21}} = \frac{\dot{V}_2}{\dot{I}_1} \Big|_{\dot{I}_2 = 0} \\ \overline{z_{22}} = \frac{\dot{V}_2}{\dot{I}_2} \Big|_{\dot{I}_1 = 0} \end{cases}$$

dove la notazione $a \Big|_{b}$ significa "a quando b".

Si ha, attraverso queste relazioni, che basta misurare la tensione sulle porte in due stati ($\dot{I}_1=0$ e $\dot{I}_2=0$) per ricavare completamente le variabili \overline{Z} del circuito.

1.1.2 Rappresentazione in ammettenza di circuiti a due porte

Possiamo usare, anzichè l'impedenza \overline{Z} , l'ammettenza \overline{Y} : se avevamo espresso il comportamento del circuito come $\begin{pmatrix} \dot{V}_1 \\ \dot{V}_2 \end{pmatrix} = \overline{Z} \begin{pmatrix} \dot{I}_1 \\ \dot{I}_2 \end{pmatrix}$, infatti, possiamo trovare l'inverso:

$$\begin{pmatrix} \dot{I}_1 \\ \dot{I}_2 \end{pmatrix} = \overline{Z}^{-1} \begin{pmatrix} \dot{V}_1 \\ \dot{V}_2 \end{pmatrix}$$

dove la matrice $\overline{Z}^{-1}=\overline{Y}$ è effettivamente l'**ammettenza** in forma matriciale del circuito:

$$\overline{Y} = \begin{pmatrix} \overline{y_{11}} & \overline{y_{12}} \\ \overline{y_{21}} & \overline{y_{22}} \end{pmatrix}$$

Questo, in forma sistema, ha l'aspetto:

$$\begin{cases} \dot{I}_1 = \overline{y_{11}} \dot{V}_1 + \overline{y_{12}} \dot{V}_2 \\ \dot{I}_2 = \overline{y_{21}} \dot{V}_1 + \overline{y_{22}} \dot{V}_2 \end{cases}$$

Date le equazioni riportate sopra, possiamo ricavare il valore di ogni componente di \overline{Y} come:

$$\begin{cases} \overline{y_{11}} = \frac{\dot{I}_1}{\dot{V}_1} \Big|_{\dot{V}_2 = 0} \\ \overline{y_{12}} = \frac{\dot{I}_1}{\dot{V}_2} \Big|_{\dot{V}_1 = 0} \\ \overline{y_{21}} = \frac{\dot{I}_2}{\dot{V}_1} \Big|_{\dot{V}_2 = 0} \\ \overline{y_{22}} = \frac{\dot{I}_2}{\dot{V}_2} \Big|_{\dot{V}_1 = 0} \end{cases}$$

1.2 Circuiti equivalenti di circuiti a due porte

Ciò che può interessarci quando studiamo circuiti a due porte è ricavare **circuiti equivalenti**, cioè che si comportano in maniera equivalente agli effetti esterni. L'idea è, come sempre, quella di prendere circuiti arbitrariamente complessi e ridurli a circuiti equivalenti relativamente semplici.

1.2.1 Sintesi a parametri Z

Sfruttando la rappresentazione in impedenza dei circuiti a due porte, un circuito equivalente potrebbe essere il seguente:

dove si inseriscono i termini di impedenza $\overline{z_{11}}$ e $\overline{z_{22}}$ semplicemente come impedenze in serie alle porte 1 e 2, e i termini "associati" $\overline{z_{12}}$ e $\overline{z_{21}}$ come generatori di tensione pilotati (che generano, appunto, cadute di tensione pilotate, rispettivamente in \dot{I}_2 per la porta 1 e in \dot{I}_1 per la porta 2).

Il metodo naturale di analisi per questo circuito è correnti di maglia, che possiamo applicare alle due porte per poi eguagliare con la matrice delle impedenze. Si ha, quindi, rispetto alle due porte:

$$\begin{cases} \dot{V}_1 = \overline{z_{11}} \dot{I}_1 + \overline{Z_{12}} \dot{I}_2 \\ \dot{V}_2 = \overline{z_{22}} \dot{I}_2 + \overline{Z_{21}} \dot{I}_1 \end{cases}$$

che combacia con quanto definito sulla rappresentazione in impedenza.

In particolare, nel caso $\overline{z_{12}} = \overline{z_{21}}$ si dice che la rete è **reciproca** e si può formare il circuito equivalente come:

Anche qui, applicando correnti di maglia, si ha:

$$\begin{cases} \dot{V}_1 = \overline{z_a} \dot{I}_1 + \overline{z_b} \left(\dot{I}_1 + \dot{I}_2 \right) = (\overline{z_a} + \overline{z_b}) \dot{I}_1 + \overline{z_b} \dot{I}_2 \\ \dot{V}_2 = \overline{z_c} \dot{I}_2 + \overline{z_b} \left(\dot{I}_1 + \dot{I}_2 \right) = (\overline{z_c} + \overline{z_c}) \dot{I}_2 + \overline{z_b} \dot{I}_1 \end{cases}$$

che rappresenta la rete reciproca, ponendo:

$$\begin{cases} \overline{z_{11}} = \overline{z_a} + \overline{z_b} \\ \overline{z_{12}} = \overline{z_{21}} = \overline{z_b} \\ \overline{z_{22}} = \overline{z_c} + \overline{z_b} \end{cases} \Leftrightarrow \begin{cases} \overline{z_a} = \overline{z_{11}} - \overline{z_{12}} \\ \overline{z_b} = \overline{z_{12}} = \overline{z_{21}} \\ \overline{z_c} = \overline{z_{22}} - \overline{z_{12}} \end{cases}$$

Notiamo che, per circuiti a due porte generici, non è detto che i potenziali dei morsetti di uscita di entrambe le porte siano allo stesso potenziale: per modellizzare questo comportamento si usa una *mutua induttanza ideale*, cioè un **trasformatore ideale**.

1.2.2 Sintesi a parametri Y

Come si è fatta la sintesi a parametri Z, si può fare la sintesi a parametri Y, cioè secondo le ammettenze:

dove stavolta si inseriscono i termini di ammettenza $\overline{y_{11}}$ e $\overline{y_{22}}$ semplicemente ammettenze in parallelo alle porte 1 e 2, e i termini "associati" $\overline{y_{12}}$ e $\overline{y_{21}}$ come generatori di corrente pilotati (che generano, appunto, cadute di tensione pilotate, rispettivamente in \dot{I}_2 per la porta 1 e in \dot{I}_1 per la porta 2).

Il metodo naturale di analisi per questo circuito è tensioni di nodo, che possiamo applicare alle due porte per poi eguagliare con la matrice delle ammettenze. Si ha, quindi, rispetto alle due porte:

$$\begin{cases} \dot{I}_1 = \overline{y_{11}} \dot{V}_1 + \overline{y_{12}} \dot{V}_2 \\ \dot{I}_2 = \overline{y_{22}} \dot{V}_2 + \overline{y_{21}} \dot{V}_1 \end{cases}$$

che combacia con quanto definito sulla rappresentazione in ammettenza.

In particolare, vediamo il caso **reciproco** $\overline{y_{11}} = \overline{y_{21}}$:

Anche qui, applicando tensioni di nodo, si ha:

$$\begin{cases} \dot{I}_1 = (\overline{y_a} + \overline{y_b})\dot{V}_1 - \overline{y_b}\dot{V}_2\\ \dot{I}_2 = (\overline{y_b} + \overline{y_c})\dot{V}_2 - \overline{y_b}\dot{V}_1 \end{cases}$$

che rappresenta la rete reciproca, ponendo:

$$\begin{cases} \overline{y_{11}} = \overline{y_a} + \overline{y_b} \\ \overline{y_{12}} = \overline{y_{21}} = -\overline{y_b} \end{cases} \Leftrightarrow \begin{cases} \overline{y_a} = \overline{y_{11}} + \overline{y_{12}} \\ \overline{y_b} = -\overline{y_{12}} = -\overline{y_{21}} \\ \overline{y_c} = \overline{y_{22}} + \overline{y_{12}} \end{cases}$$

Notiamo che ancora che il circuito più generale si ottiene disaccoppiando i potenziali sul ramo in basso attraverso un trasformatore ideale.