International Rectifier

PD - 95164

IRF7105PbF

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dual N and P Channel Mosfet
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

	N-Ch	P-Ch
V _{DSS}	25V	-25V
R _{DS(on)}	0.10Ω	0.25Ω
I _D	3.5A	-2.3A

Absolute Maximum Ratings

	Parameter	Ма	Units		
	Parameter	N-Channel	P-Channel	Units	
I _D @ T _A = 25°C	Continuous Drain Current, VGS @ 10V	3.5	-2.3		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	2.8	-1.8	Α	
I _{DM}	Pulsed Drain Current ①	14	-10		
$P_D @ T_C = 25^{\circ}C$	Power Dissipation	2.	W		
	Linear Derating Factor	0.0	16	W/°C	
V_{GS}	Gate-to-Source Voltage	± 2	20	V	
dv/dt	Peak Diode Recovery dv/dt ②	3.0	-3.0	V/nS	
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150			

Thermal Resistance Ratings

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient @			62.5	°C/W

IRF7105PbF

International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

1	_							
	Parameter		Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	N-Ch	25	_	_	V	$V_{GS} = 0V, I_D = 250\mu A$	
- (BI()DOO		P-Ch		_	_	٧	$V_{GS} = 0V$, $I_D = -250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	N-Ch		0.030		V/°C	Reference to 25°C, I _D = 1mA	
—- (BK)D33-—-3		P-Ch		-0.015			Reference to 25°C, I _D = -1mA	
R _{DS(ON)}	Static Drain-to-Source On-Resistance	N-Ch		0.083		Ω	$V_{GS} = 10V, I_D = 1.0A$ ③	
		11-011	_		0.16		V_{GS} = 4.5V, I_{D} = 0.50A ③	
1-03(014)		P-Ch	_		0.25		$V_{GS} = -10V, I_D = -1.0A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
			_	0.30	0.40		$V_{GS} = -4.5V, I_D = -0.50A$ ③	
V _{GS(th)}	Gate Threshold Voltage	N-Ch		_	3.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
- GS(III)	Cate Timesheld Tellage	P-Ch		_	-3.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	
g _{fs}	Forward Transconductance	N-Ch	_	4.3	—	s	$V_{DS} = 15V, I_D = 3.5A$ ③	
91S	T of Ward Transportation	P-Ch	_	3.1	—	3	$V_{DS} = -15V, I_{D} = -3.5A$ ③	
		N-Ch	_	_	2.0		$V_{DS} = 20V, V_{GS} = 0V$	
I _{DSS}	Drain-to-Source Leakage Current	P-Ch	_	_	-2.0		$V_{DS} = -20V, V_{GS} = 0V,$	
יטאי	Brain-to-Oddroc Leakage Current	N-Ch	-	_	25	μA	$V_{DS} = 20V, V_{GS} = 0V, T_{J} = 55^{\circ}C$	
		P-Ch	-	_	-25		$V_{DS} = -20V, V_{GS} = 0V, T_{J} = 55^{\circ}C$	
I_{GSS}	Gate-to-Source Forward Leakage	N-P	-	_	±100		$V_{GS} = \pm 20V$	
Q_q	Total GateCharge	N-Ch	_	9.4	27		N-Channel	
3 g	Total Gateonarge	P-Ch		10	25			
Q _{as}	Gate-to-Source Charge	N-Ch		1.7	_	nC	I _D = 2.3A, V _{DS} = 12.5V, V _{GS} = 10V P-Channel	
G gs	Cate to Course Charge	P-Ch	-	1.9	_			
Q_{ad}	Gate-to-Drain ("Miller") Charge	N-Ch	_	3.1	_		I _D = -2.3A, V _{DS} = -12.5V, V _{GS} = -10V	
∽ ga	Cate to Brain (Willion) Charge	P-Ch	_	2.8	_		1D = -2.5A, VDS = -12.5V, VGS = -10V	
$t_{d(on)}$	Turn-On Delay Time	N-Ch	-	7.0	20		N-Channel	
ra(on)	Tuni Gir Bolay Timo	P-Ch	_	12	40			
t _r	Rise Time	N-Ch		9.0	20	1	$V_{DD} = 25V$, $I_D = 1.0A$, $R_G = 6.0\Omega$,	
r	Tride Time	P-Ch	-	13	40	no	$R_D = 25\Omega$	
t	Turn-Off Delay Time	N-Ch	-	45	90	ns	P-Channel	
t _{d(off)}	Turn-Oil Belay Time	P-Ch	-	45	90		V_{DD} = -25V, I_D = -1.0A, R_G = 6.0Ω,	
t _f	Fall Time	N-Ch	_	25	50		$V_{DD} = -25V$, $I_{D} = -1.0A$, $R_{G} = 0.052$, $R_{D} = 25\Omega$	
ч	T dil Tillio	P-Ch	_	37	50		$R_D = 2502$	
L _D	Internal Drain Inductace	N-P	_	4.0	_	nН	Between lead , 6mm (0.25in.)from	
L _S	Internal Source Inductance	N-P	_	6.0	_	ш	package and center of die contact	
C _{iss}	Input Capacitance	N-Ch	_	330	_		N-Channel	
Oiss	mput Capacitance	P-Ch	_	290	_		$V_{GS} = 0V, V_{DS} = 15V, f = 1.0MHz$	
C _{oss}	Output Capacitance	N-Ch		250	_	- - - -	VGS - UV, VDS - 13V, J - 1.000112	
oss	Output Sapaoitanos	P-Ch	_	210	_		P-Channel	
C _{rss}	Reverse Transfer Capacitance	N-Ch	_	61	_		$V_{GS} = 0V, V_{DS} = -15V, f = 1.0MHz$	
Orss	Neverse Transier Capacitance	P-Ch	_	67	_		VGS - UV, VDS13V, J - 1.01V1172	

Source-Drain Ratings and Characteristics

т							
	Parameter		Min.	Тур.	Max.	Units	Conditions
	0 (0 0 (0 1 0 1)	N-Ch	_	_	2.0		
IS	Continuous Source Current (Body Diode)	ontinuous Source Current (Body Diode)	_	-2.0	Α		
		N-Ch	_	_	14	Α.	
I _{SM}	Pulsed Source Current (Body Diode) ①	P-Ch	_	_	-9.2		
	5: 1 5 11/16	N-Ch	_	_	1.2	V	$T_J = 25$ °C, $I_S = 1.3$ A, $V_{GS} = 0$ V ③
V_{SD}	Diode Forward Voltage	P-Ch	_	_	-1.2	٧	$T_J = 25^{\circ}C$, $I_S = -1.3A$, $V_{GS} = 0V$ ③
4	D	N-Ch	_	36	54	ns	N-Channel
ι _{rr}	Reverse Recovery Time	P-Ch	_	69	100	115	$T_J = 25$ °C, $I_F = 1.3A$, $di/dt = 100A/\mu s$
		N-Ch	_	41	75	nC	P-Channel 3
Q _{rr}	Reverse Recovery Charge	P-Ch	_	90	180		$T_J = 25$ °C, $I_F = -1.3A$, $di/dt = 100A/\mu s$
ton	Forward Turn-On Time	N-P	Intrinsic turn-on time is neglegible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\begin{tabular}{ll} @ N-Channel $I_{SD} \le 3.5A$, $di/dt \le 90A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150°C$ \\ P-Channel $I_{SD} \le -2.3A$, $di/dt \le 90A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150°C$ \\ \end{tabular}$
- 4 Surface mounted on FR-4 board, $t \leq 10 sec.$

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

IRF7105PbF

N-Channel

International Rectifier

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current Vs.
Ambient Temperature

Fig 11a. Gate Charge Test Circuit

Fig 8. Maximum Safe Operating Area

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11b. Basic Gate Charge Waveform www.irf.com

Fig 12. Typical Output Characteristics

Fig 14. Typical Transfer Characteristics

Fig 16. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 13. Typical Output Characteristics

Fig 15. Normalized On-Resistance Vs. Temperature

Fig 17. Typical Gate Charge Vs. Gate-to-Source Voltage

5

IRF7105PbF

P-Channel International IOR Rectifier

Fig 18. Typical Source-Drain Diode Forward Voltage

Fig 20. Maximum Drain Current Vs. Ambient Temperature

Fig 22a. Gate Charge Test Circuit

Fig 19. Maximum Safe Operating Area

Fig 21a. Switching Time Test Circuit

Fig 21b. Switching Time Waveforms

Fig 22b. Basic Gate Charge Waveform

Fig 23. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Peak Diode Recovery dv/dt Test Circuit

- * Reverse Polarity for P-Channel
- ** Use P-Channel Driver for P-Channel Measurements

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 24. For N and P Channel HEXFETS

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information (Lead-Free)

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- NOTES:

 1. CONTROLLING DIMENSION : MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541
 - Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/04

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.