Computabilità e Algoritmi 15 Settembre 2015

Esercizio 1

Definire l'operazione di ricorsione primitiva e dimostrare che l'insieme \mathcal{C} delle funzioni URM-calcolabili è chiuso rispetto a tale operazione.

Esercizio 2

Si dica che una funzione $f: \mathbb{N} \to \mathbb{N}$ è quasi costante se esiste un valore $k \in \mathbb{N}$ tale che l'insieme $\{x \mid f(x) \neq k\}$ è finito. Esiste una funzione quasi costante non calcolabile? Motivare adeguatamente la risposta.

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid \mathbb{P} \subseteq W_x\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Sia $f: \mathbb{N} \to \mathbb{N}$ una funzione totale calcolabile fissata. Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : f(x) \in E_x\}$, ovvero dire se $B \in \overline{B}$ sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il secondo teorema di ricorsione ed utilizzarlo per dimostrare che esiste un indice $n \in \mathbb{N}$ tale che $\varphi_{p_n} = \varphi_n$, dove p_n è l'n-mo numero primo.