Lista 2*, Analiza Matematyczna I

- **201.** Szereg $\sum_{n=1}^{\infty} a_n$ o wyrazach dodatnich jest rozbieżny. Oznaczmy $s_n = a_1 + a_2 + \ldots + a_n$. Pokazać, że szereg $\sum_{n=1}^{\infty} \frac{a_n}{s_n}$ jest rozbieżny natomiast $\sum_{n=1}^{\infty} \frac{a_n}{s_n^2}$ jest zbieżny. Co można powiedzieć o zbieżności szeregów $\sum_{n=1}^{\infty} \frac{a_n}{1+na_n}$ i $\sum_{n=1}^{\infty} \frac{a_n}{1+n^2a_n}$?
- **202.** Szereg $\sum_{n=1}^{\infty} a_n$ o wyrazach dodatnich jest zbieżny. Pokazać, że szereg $\sum_{n=1}^{\infty} \frac{a_n}{r_n}$ jest rozbieżny natomiast $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{r_n}}$ jest zbieżny, gdzie $r_n = \sum_{k=n}^{\infty} a_k$.
- **203.** Ciągi a_n i b_n są dodatnie, ściśle malejące oraz szeregi $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=1}^{\infty} b_n$ są rozbieżne. Czy szereg $\sum_{n=1}^{\infty} \min(a_n, b_n)$ może być zbieżny?
- **204.** Szeregi:

$$\sum_{n=1}^{\infty} a_n \quad \text{oraz} \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

są zbieżne. Czy szereg $\sum_{n=1}^{\infty} |a_n|$ musi być zbieżny?

205. Dla ustalonej liczby $0 < \alpha < \frac{1}{2}$ określamy ciąg a_n wzorem $a_1 = a > 0$ oraz

$$a_{n+1} = \alpha a_n + \frac{1-\alpha}{a_n}, \quad n-1, 2, \dots$$

Udowodnić, że ciąg a_n jest zbieżny do 1.

- **206.** Szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny. Czy szereg $\sum_{n=1}^{\infty} a_n^3$ musi być zbieżny?
- **207.** Szeregi $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=1}^{\infty} a_n^3$ są zbieżne. Czy szereg $\sum_{n=1}^{\infty} a_n^5$ musi być zbieżny?
- **208.** Ciąg a_n jest dodatni i malejący oraz $\sum_{n=2}^{\infty} a_n = \infty$. Czy szereg

$$\sum_{n=2}^{\infty} \min\left(a_n, \frac{1}{n \log n}\right)$$

jest zawsze rozbieżny?

$$\frac{a_{m+1}}{s_{m+1}} + \dots + \frac{a_n}{s_n} \ge 1 - \frac{s_m}{s_n}, \quad m < n,$$

$$\frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}.$$

$$\frac{a_m}{r_m} + \dots + \frac{a_{n-1}}{r_{n-1}} \ge 1 - \frac{r_n}{r_m}, \quad m < n,$$

$$\frac{a_n}{\sqrt{r_n}} \le 2(\sqrt{r_n} - \sqrt{r_{n+1}}).$$

¹ Wskazówka:

 $^{^2} Wskaz$ ówka:

209. Zbadaj zbieżność szeregu³

$$\sum_{n=1}^{\infty} \frac{\{en!\}}{n}.$$

210. Pokazać, że jeśli funkcja f(x) określona w $[a, \infty)$ jest ograniczona w każdym skończonym przedziale [a, b], to:

(a)

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} [f(x+1) - f(x)],$$

(b)

$$\lim_{x \to \infty} f(x)^{1/x} = \lim_{x \to \infty} \frac{f(x+1)}{f(x)}, \quad f(x) \ge C > 0,$$

o ile granice po prawej stronie istnieją.

- **211.** Pokazać, że funkcja Riemanna $f(x) = \frac{1}{n}$ jeśli $x = \frac{m}{n}$, gdzie m i n są względnie pierwsze, $n \ge 1$, oraz f(x) = 0, gdy x jest niewymierne jest nieciągła w punktach wymiernych i ciągła w punktach niewymiernych.
- **212.** Skonstruować funkcję ściśle rosnącą, nieciągłą w punktach przeliczalnego ciągu liczb $\{a_n\}_{n=1}^{\infty}$.
- **213.** f jest funkcją ciągłą na przedziale [0,1] oraz f(0)=f(1). Udowodnić, że dla każdego $n\in\mathbb{N}$ istnieje $x,\ 0\le x\le 1$, taki, że $f(x)=f\left(x+\frac{1}{n}\right)$. Czy stwierdzenie to pozostanie prawdziwe jeśli zamiast $\frac{1}{n}$ rozważymy dowolną liczbę $c\in(0,1)$?
- **214.** Udowodnić, że nie istnieje funkcja ciągła na \mathbb{R} przyjmująca każdą swoją wartość dokładnie dwa razy. Zbadać dla jakich $n \in \mathbb{N}$ istnieje funkcja ciągła na \mathbb{R} przyjmująca każdą wartość rzeczywistą dokładnie n razy.
- **215.** f jest funkcją ciągłą i ograniczoną na przedziale $(a, +\infty)$. Pokazać, że dla dowolnej liczby T, istnieje ciąg $x_n \to \infty$ taki, że $\lim_{n \to \infty} \left(f(x_n + T) f(x_n) \right) = 0$.
- **216.** Udowodnić, że funkcja f, która jest ograniczona w pewnym otoczeniu zera spełniająca warunek $f(x+y) = f(x) + f(y), \ x, y \in \mathbb{R}$ jest postaci f(x) = cx.

 $^{^3} Uwaga:~\{x\}$ oznacza część ułamkową liczby x.