Math 231b Problem Set 10

Lev Kruglyak

Due: April 30, 2023

Problem 1. Using the splitting principle, prove the *Wu formula* for the action of the Steenrod squares on the mod 2 reduction of the Chern classes:

$$\operatorname{Sq}^{2i}(c_j) = \sum_{k} {j+k-i-1 \choose k} c_{i-k} c_{j+k}.$$

The splitting principle tells us that we only need to check this formula for Chern classes of sums of line bundles. First, let's prove a helpful lemma, which further reduces the scope of proof.

Claim. Suppose the Wu formula holds for classes $c_k^{(1)}(\zeta_1)$ and $c_k^{(n)}(\zeta_2)$ over X, where ζ_1 is a line bundle and ζ_2 is a general bundle. Then it holds for $c_k^{(p+1)}(\zeta_1 \oplus \zeta_2)$.

Proof. We know by assumption that

$$\operatorname{Sq}^{2i}(c_j(\zeta_i)) = \sum_{k} {j+k-i-1 \choose k} c_{i-k}(\zeta_i) \smile c_{j+k}(\zeta_i).$$

Using the Whitney sum formula for Chern classes, Cartan formula, and properties of Steenrod squares, we can simplify

$$\operatorname{Sq}^{2i}(c_j^{(p+q)}(\zeta_1 \oplus \zeta_2)) = \operatorname{Sq}^{2i} \left(\sum_{a+b=j} c_a(\zeta_1) \smile c_b(\zeta_2) \right) = \sum_{a+b=j} \operatorname{Sq}^{2i} \left(c_a(\zeta_1) \smile c_b(\zeta_2) \right)$$
$$= \sum_{a+b=j} \sum_{c+d=2i} \operatorname{Sq}^c(c_a(\zeta_1)) \smile \operatorname{Sq}^d(c_b(\zeta_2))$$

At this point I became a bit stuck and was unable to get unstuck, I'm still fairly sure that the inductive step holds. \Box

So now we only need to prove the Wu formula for line bundles. However this follows from the base relation

$$\operatorname{Sq}^2(c_1) = c_1 \smile c_1$$

This forms a base case for the Wu relation.

Problem 2. Let $n = 2^m(2s+1)$ denote a positive integer which is divisible by 2 exactly m times. In this problem, you will use Steenrod operations to prove that S^{n-1} does not admit 2^m vector fields which are linearly independent at every point of S^{n-1} .

Let $V_k(\mathbb{R}^n)$ denote the space of k orthonormal vectors in \mathbb{R}^n . Then $V_1(\mathbb{R}^n)$ may be identified with S^{n-1} .

a. Consider the map $p_{k+1}: V_{k+1}(\mathbb{R}^n) \to V_1(\mathbb{R}^n) = S^{n-1}$ which sends (v_1, \dots, v_{k+1}) to v_{k+1} . Prove that S^{n-1} admits k linearly independent vector fields if and only if p_{k+1} admits a section $S^{n-1} \to V_{k+1}(\mathbb{R}^n)$.

First suppose p_{k+1} admits a section $s: S^{n-1} \to V_{k+1}(\mathbb{R}^n)$. We have projection maps $\pi_i: V_{k+1}(\mathbb{R}^n) \to \mathbb{R}^n$ which send (v_1, \ldots, v_{k+1}) to v_i . Then $\pi_i \circ s$ for $i \leq k$ is a set of k linearly independent vector fields on S^{n-1} . In the opposite direction, given k linearly independent vector fields v_i on S^{n-1} , we can apply the Gram-Schmidt formula

$$u_k = v_k - \sum_{i=1}^{k-1} \mathbf{proj}_{u_j}(v_k)$$

to each tuple $(v_1(x), \ldots, v_k(x), x)$. These adjusted orthonormal vector fields are thus still continuous, and can be called \widetilde{v}_i . We then define a map $S^{n-1} \to V_{k+1}(\mathbb{R}^n)$ which sends x to $(\widetilde{v}_1(x), \ldots, \widetilde{v}_k(x), x)$.

b. There is a map $\mathbb{RP}^{n-1} \to O(n) \cong V_n(\mathbb{R}^n)$ which sends a line in \mathbb{R}^n to the reflection across its normal hyperplane. Prove that the composition of this map with the map $V_n(\mathbb{R}^n) \to V_k(\mathbb{R}^n)$ taking (v_1, \ldots, v_n) to (v_{n-k+1}, \ldots, v_n) factors through a map $\mathbb{RP}^{n-1}/\mathbb{RP}^{n-k-1} \to V_k(\mathbb{R}^n)$. When k = 1, prove that $\mathbb{RP}^{n-1}/\mathbb{RP}^{n-2} \cong V_1(\mathbb{R}^n)$ is a homemorphism.

The map $\mathbb{RP}^{n-1} \to O(n)$ sends a line ℓ to the matrix reflecting across it's normal hyperplane. In a basis where $\ell/|\ell|$ is the first vector, this is a diagonal matrix with first coordinate -1 and the others set to 1. In $\mathbb{RP}^{n-1}/\mathbb{RP}^{n-k-1}$, this would be the identity matrix, so the map factors through.

c. There is a commutative diagram

$$S^{n-k} \longrightarrow \mathbb{RP}^{n-1}/\mathbb{RP}^{n-k-1} \longrightarrow \mathbb{RP}^{n-1}/\mathbb{RP}^{n-k}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S^{n-k} \longrightarrow V_k(\mathbb{R}^n) \longrightarrow V_{k-1}(\mathbb{R}^n)$$

where the top tow is a cofiber sequence and the bottom row is a fiber sequence. Using the Serre long exact sequence, prove by induction on k that $\mathbb{RP}^{n-1}/\mathbb{RP}^{n-k-1} \to V_k(\mathbb{R}^n)$ is a (2n-2k)-equivalence.

Not sure.

d. When $2k \leq n$, prove that S^{n-1} admits (k-1) everywhere linearly independent vector fields if and only if the map $\mathbb{RP}^{n-1}/\mathbb{RP}^{n-k-1} \to \mathbb{RP}^{n-1}/\mathbb{RP}^{n-2} \simeq S^{n-1}$ admits a section up to homotopy.

Not sure.

e. Using the action of the Steenrod operations on $H^*(\mathbb{RP}^{n-1}/\mathbb{RP}^{n-k-1}; \mathbb{F}_2)$, prove that S^{n-1} does not admit 2^m linearly independent sections, where $n=2^m(2s+1)$.

Not sure.