Chapter 05.03 Newton's Divided Difference Interpolation – More Examples Computer Engineering

Example 1

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15"×10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 1.

Table 1 The coordinates of the holes on the plate.

<i>x</i> (in.)	<i>y</i> (in.)
2.00	7.2
4.25	7.1
5.25	6.0
7.81	5.0
9.20	3.5
10.60	5.0

Figure 1 Location of holes on the rectangular plate.

05.03.2 Chapter 05.03

If the laser is traversing from x = 2.00 to x = 4.25 in a linear path, what is the value of y at x = 4.00 using Newton's divided difference method of interpolation and a first order polynomial?

Solution

For linear interpolation, the value of y is given by

$$y(x) = b_0 + b_1(x - x_0)$$

Since we want to find the value of y at x = 4.00, using the two points x = 2.00 and x = 4.25, then

$$x_0 = 2.00, \ y(x_0) = 7.2$$

 $x_1 = 4.25, \ y(x_1) = 7.1$

gives

$$b_0 = y(x_0)$$

$$= 7.2$$

$$b_1 = \frac{y(x_1) - y(x_0)}{x_1 - x_0}$$

$$= \frac{7.1 - 7.2}{4.25 - 2.00}$$

$$= -0.044444$$

Hence

$$y(x) = b_0 + b_1(x - x_0)$$

= 7.2 - 0.044444(x - 2.00), 2.00 \le x \le 4.25

At x = 4.00

$$x(4.00) = 7.2 - 0.044444(4.00 - 2.00)$$

= 7.1111 in.

If we expand

$$y(x) = 7.2 - 0.044444(x - 2.00),$$
 $2.00 \le x \le 4.25$

we get

$$y(x) = 7.2889 - 0.044444x$$
, $2.00 \le x \le 4.25$

This is the same expression that was obtained with the direct method.

Example 2

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15"×10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 2.

<i>x</i> (in.)	<i>y</i> (in.)	
2.00	7.2	
4.25	7.1	
5.25	6.0	
7.81	5.0	
9.20	3.5	
10.60	5.0	

Table 2 The coordinates of the holes on the plate.

If the laser is traversing from x = 2.00 to x = 4.25 to x = 5.25 in a quadratic path, what is the value of y at x = 4.00 using Newton's divided difference method of interpolation and a second order polynomial? Find the absolute relative approximate error for the second order polynomial approximation.

Solution

For quadratic interpolation, the value of y is given by

$$y(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

Since we want to find the value of y at x = 4.00 and we are using a second order polynomial, we choose the three points as $x_0 = 2.00$, $x_1 = 4.25$, and $x_2 = 5.25$.

Then

$$x_0 = 2.00, \ y(x_0) = 7.2$$

 $x_1 = 4.25, \ y(x_1) = 7.1$
 $x_2 = 5.25, \ y(x_2) = 6.0$

gives

$$b_0 = y(x_0)$$

$$= 7.2$$

$$b_1 = \frac{y(x_1) - y(x_0)}{x_1 - x_0}$$

$$= \frac{7.1 - 7.2}{4.25 - 2.00}$$

$$= -0.044444$$

$$\frac{y(x_2) - y(x_1)}{x_2 - x_1} - \frac{y(x_1) - y(x_0)}{x_1 - x_0}$$

$$b_2 = \frac{6.0 - 7.1}{x_2 - x_0}$$

$$= \frac{6.0 - 7.1}{5.25 - 4.25} - \frac{7.1 - 7.2}{4.25 - 2.00}$$

$$= \frac{-1.1 + 0.044444}{3.25}$$

$$= -0.32479$$

then

05.03.4 Chapter 05.03

$$y(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$= 7.2 - 0.0444444(x - 2.00) - 0.32479(x - 2.00)(x - 4.25), \ 2.00 \le x \le 5.25$$
At $x = 4.00$

$$y(4.00) = 7.2 - 0.044444(4.00 - 2.00) - 0.32479(4.00 - 2.00)(4.00 - 4.25)$$

$$= 7.2735 \text{ in.}$$

The absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first and second order polynomial is

second order polynomial is
$$\left| \in_{a} \right| = \left| \frac{7.2735 - 7.1111}{7.2735} \right| \times 100$$

$$= 2.2327\%$$

If we expand,

$$y(x) = 7.2 - 0.044444(x - 2.00) - 0.32479(x - 2.00)(x - 4.25), \ \ 2.00 \le x \le 5.25$$

we get

$$y(x) = 4.5282 + 1.9855x - 0.32479x^2$$
, $2.00 \le x \le 5.25$

This is the same expression that was obtained with the direct method.

Example 3

A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a 15"×10" rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 3.

I able 3	The C	coordinates	of the hole	es on the plate.
		r (in)	v (in)	

<i>x</i> (in.)	<i>y</i> (in.)
2.00	7.2
4.25	7.1
5.25	6.0
7.81	5.0
9.20	3.5
10.60	5.0

Find the path traversed through the six points using Newton's divided difference method of interpolation and a fifth order polynomial.

Solution

For a fifth order polynomial, the value of y is given by

$$y(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + b_3(x - x_0)(x - x_1)(x - x_2)$$

+ $b_4(x - x_0)(x - x_1)(x - x_2)(x - x_3) + b_5(x - x_0)(x - x_1)(x - x_2)(x - x_3)(x - x_4)$

Using the six points,

$$x_0 = 2.00, \quad y(x_0) = 7.2$$

 $x_1 = 4.25, \quad y(x_1) = 7.1$

$$x_2 = 5.25,$$
 $y(x_2) = 6.0$
 $x_3 = 7.81,$ $y(x_3) = 5.0$
 $x_4 = 9.20,$ $y(x_4) = 3.5$
 $x_5 = 10.60,$ $y(x_5) = 5.0$

gives

$$b_0 = y[x_0]$$

$$= y(x_0)$$

$$= 7.2$$

$$b_1 = y[x_1, x_0]$$

$$= \frac{y(x_1) - y(x_0)}{x_1 - x_0}$$

$$= \frac{7.1 - 7.2}{4.25 - 2.00}$$

$$= -0.044444$$

$$b_2 = y[x_2, x_1, x_0]$$

$$= \frac{y[x_2, x_1] - y[x_1, x_0]}{x_2 - x_0}$$

$$y[x_2, x_1] = \frac{y(x_2) - y(x_1)}{x_2 - x_1}$$

$$= \frac{6.0 - 7.1}{5.25 - 4.25}$$

$$= -1.1$$

$$y[x_1, x_0] = -0.044444$$

$$b_{2} = \frac{y[x_{2}, x_{1}] - y[x_{1}, x_{0}]}{x_{2} - x_{0}}$$

$$= \frac{-1.1 + 0.044444}{5.25 - 2.00}$$

$$= -0.32479$$

$$b_{3} = y[x_{3}, x_{2}, x_{1}, x_{0}]$$

$$= \frac{y[x_{3}, x_{2}, x_{1}] - y[x_{2}, x_{1}, x_{0}]}{x_{3} - x_{0}}$$

$$y[x_{3}, x_{2}, x_{1}] = \frac{y[x_{3}, x_{2}] - y[x_{2}, x_{1}]}{x_{3} - x_{1}}$$

$$y[x_{3}, x_{2}] = \frac{y(x_{3}) - y(x_{2})}{x_{3} - x_{2}}$$

$$= \frac{5.0 - 6.0}{7.81 - 5.25}$$

$$= -0.39063$$

05.03.6 Chapter 05.03

$$y[x_{2},x_{1}] = \frac{y(x_{2}) - y(x_{1})}{x_{2} - x_{1}}$$

$$= \frac{6.0 - 7.1}{5.25 - 4.25}$$

$$= -1.1$$

$$y[x_{3},x_{2},x_{1}] = \frac{y[x_{3},x_{2}] - y[x_{2},x_{1}]}{x_{3} - x_{1}}$$

$$= \frac{-0.39063 + 1.1}{7.81 - 4.25}$$

$$= 0.19926$$

$$y[x_{2},x_{1},x_{0}] = -0.32479$$

$$b_{3} = y[x_{3},x_{2},x_{1}] - y[x_{2},x_{1},x_{0}]$$

$$= \frac{y[x_{3},x_{2},x_{1}] - y[x_{2},x_{1},x_{0}]}{x_{3} - x_{0}}$$

$$= \frac{0.19926 + 0.32479}{7.81 - 2.00}$$

$$= 0.090198$$

$$b_{4} = y[x_{4},x_{3},x_{2},x_{1}] - y[x_{3},x_{2},x_{1},x_{0}]$$

$$= \frac{y[x_{4},x_{3},x_{2},x_{1}] - y[x_{3},x_{2}] - y[x_{3},x_{2},x_{1}]}{x_{4} - x_{0}}$$

$$y[x_{4},x_{3},x_{2}] = \frac{y[x_{4},x_{3}] - y[x_{3},x_{2}]}{x_{4} - x_{2}}$$

$$y[x_{4},x_{3}] = \frac{y(x_{4}) - y(x_{3})}{x_{4} - x_{3}}$$

$$= \frac{3.5 - 5.0}{9.20 - 7.81}$$

$$= -1.0791$$

$$y[x_{3},x_{2}] = -0.39063$$

$$y[x_{4},x_{3},x_{2}] = \frac{y[x_{4},x_{3}] - y[x_{3},x_{2}]}{x_{4} - x_{2}}$$

$$= \frac{-1.0791 + 0.39063}{9.20 - 5.25}$$

$$= -0.17431$$

$$y[x_{3},x_{2},x_{1}] = 0.19926$$

$$\begin{split} y[x_4,x_3,x_2,x_1] &= \frac{y[x_4,x_3,x_2] - y[x_3,x_2,x_1]}{x_4 - x_1} \\ &= \frac{-0.17431 - 0.19926}{9.20 - 4.25} \\ &= -0.075469 \\ y[x_3,x_2,x_1,x_0] &= 0.090198 \\ b_4 &= \frac{y[x_4,x_3,x_2,x_1] - y[x_3,x_2,x_1,x_0]}{x_4 - x_0} \\ &= \frac{-0.075469 - 0.090198}{9.20 - 2.00} \\ &= -0.023009 \\ b_5 &= y[x_5,x_4,x_3,x_2,x_1] - y[x_4,x_3,x_2,x_1,x_0] \\ &= \frac{y[x_5,x_4,x_3,x_2,x_1] - y[x_4,x_3,x_2] - y[x_4,x_3,x_2,x_1]}{x_5 - x_0} \\ y[x_5,x_4,x_3,x_2] &= \frac{y[x_5,x_4,x_3] - y[x_4,x_3,x_2]}{x_5 - x_2} \\ y[x_5,x_4,x_3] &= \frac{y[x_5,x_4] - y[x_4,x_3]}{x_5 - x_3} \\ y[x_5,x_4] &= \frac{5.0 - 3.5}{10.60 - 9.20} \\ &= 1.0714 \\ y[x_4,x_3] &= -1.0791 \\ y[x_5,x_4,x_3] &= \frac{y[x_5,x_4] - y[x_4,x_3]}{x_5 - x_3} \\ &= \frac{1.0714 + 1.0791}{10.60 - 7.81} \\ &= 0.77081 \\ y[x_4,x_3,x_2] &= \frac{y[x_5,x_4,x_3] - y[x_4,x_3,x_2]}{x_5 - x_2} \\ &= \frac{0.77081 + 0.17431}{10.60 - 5.25} \end{split}$$

= 0.17666

05.03.8 Chapter 05.03

$$y[x_4, x_3, x_2, x_1] = -0.075469$$

$$y[x_5, x_4, x_3, x_2, x_1] = \frac{y[x_5, x_4, x_3, x_2] - y[x_4, x_3, x_2, x_1]}{x_5 - x_1}$$

$$= \frac{0.17666 + 0.075469}{10.60 - 4.25}$$

$$= 0.039705$$

$$y[x_4, x_3, x_2, x_1, x_0] = -0.023009$$

$$b_5 = \frac{y[x_5, x_4, x_3, x_2, x_1] - y[x_4, x_3, x_2, x_1, x_0]}{x_5 - x_0}$$

$$= \frac{0.039705 + 0.023009}{10.60 - 2.00}$$

$$= 0.0072923$$

Hence

$$y(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + b_3(x - x_0)(x - x_1)(x - x_2)$$

$$+ b_4(x - x_0)(x - x_1)(x - x_2)(x - x_3)$$

$$+ b_5(x - x_0)(x - x_1)(x - x_2)(x - x_3)(x - x_4)$$

$$= 7.2 - 0.04444(x - 2) - 0.32479(x - 2)(x - 4.25)$$

$$+ 0.090198(x - 2)(x - 4.25)(x - 5.25)$$

$$- 0.023009(x - 2)(x - 4.25)(x - 5.25)(x - 7.81)$$

$$+ 0.0072923(x - 2)(x - 4.25)(x - 5.25)(x - 7.81)(x - 9.2)$$

Expanding this formula, we get

$$y(x) = -30.898 + 41.344x - 15.855x^{2}$$
$$+ 2.7862x^{3} - 0.23091x^{4} + 0.0072923x^{5}, \ 2 \le x \le 10.6$$

This is the same expression that was obtained with the direct method.

Figure 2 Fifth order polynomial to traverse points of robot path (using direct method of interpolation).

INTERPOLATION		
Topic	Newton's Divided Difference Interpolation	
Summary	Examples of Newton's divided difference interpolation.	
Major	Computer Engineering	
Authors	Autar Kaw	
Date	November 23, 2009	
Web Site	http://numericalmethods.eng.usf.edu	