वास्तव संख्या

चला, शिकूया.

- परिमेय संख्यांचे गुणधर्म
- अपरिमेय संख्यांचे गुणधर्म
- करणी

- वर्गकरणींची तुलना
- वर्गकरणींवरील क्रिया
- वर्गकरणींचे परिमेयीकरण

जरा आठवूया.

मागील इयत्तांमध्ये आपण नैसर्गिक संख्या, पूर्णांक संख्या आणि वास्तव संख्या यांचा अभ्यास केला आहे.

= नैसर्गिक संख्यासंच $= \{1, 2, 3, 4, ...\}$

 $W = yv f \dot{x} = \{0, 1, 2, 3, 4,...\}$

 $I = पूर्णांक संख्यासंच = {..., -3, -2, -1, 0, 1, 2, 3...}$

Q = परिमेय संख्यासंच = $\{\frac{p}{q}, | p, q \in I, q \neq 0\}$

R = वास्तव संख्यासंच

 $N \subseteq W \subseteq I \subseteq Q \subseteq R$.

परिमेय संख्यांमधील क्रमसंबंध : $\frac{p}{q}$ आणि $\frac{r}{s}$ या परिमेय संख्या असून q>0, s>0

(i) जर
$$p \times s = q \times r$$
 तर $\frac{p}{q} = \frac{r}{s}$

(i)
$$\exists x \ p \times s = q \times r$$
 $\exists x \ \frac{p}{q} = \frac{r}{s}$ (ii) $\exists x \ p \times s > q \times r$ $\exists x \ \frac{p}{q} > \frac{r}{s}$

(iii) जर
$$p \times s < q \times r$$
 तर $\frac{p}{q} < \frac{r}{s}$

जाणून घेऊया.

परिमेय संख्यांचे गुणधर्म (Properties of rational numbers)

a, b, c या परिमेय संख्या असतील तर

गुणधर्म	बेरीज	गुणाकार
1. क्रमनिरपेक्षता	a + b = b + a	$a \times b = b \times a$
2. साहचर्य	(a+b)+c=a+(b+c)	$a \times (b \times c) = (a \times b) \times c$
3. अविकारक	a + 0 = 0 + a = a	$a \times 1 = 1 \times a = a$
4. व्यस्त	a + (-a) = 0	$a \times \frac{1}{a} = 1$ $(a \neq 0)$

जरा आठवूया.

कोणत्याही परिमेय संख्येचे दशांश अपूर्णांकी रूप खंडित किंवा अखंड आवर्ती असते.

खंडित रूप

$$(1)$$
 $\frac{2}{5}$ = 0.4

$$(1) \quad \frac{17}{36} = 0.472222... = 0.472$$

(2)
$$-\frac{7}{64} = -0.109375$$

(2)
$$\frac{33}{26} = 1.2692307692307... = 1.2\overline{692307}$$

(3)
$$\frac{101}{8} = 12.625$$

(3)
$$\frac{56}{37} = 1.513513513... = 1.\overline{513}$$

जाणून घेऊया.

अखंड आवर्ती दशांश रूपातील परिमेय संख्या $rac{p}{q}$ या रूपात मांडणे.

उदा (1) 0.777... हा आवर्ती दशांश अपूर्णांक $\frac{p}{q}$ रूपात लिहा.

उकल : समजा x = 0.777... = 0.7

$$\therefore 10 x = 7.777... = 7.7$$

$$\therefore 10x - x = 7.7 - 0.7$$

$$\therefore 9x = 7$$

$$\therefore x = \frac{7}{9}$$

$$\therefore 0.777... = \frac{7}{9}$$

उदा (2) 7.529529529... हा आवर्ती दशांश अपूर्णांक $\frac{p}{q}$ रूपात लिहा.

उकल : समजा, $x = 7.529529... = 7.\overline{529}$

$$\therefore$$
 1000 $x = 7529.529529... = 7529.\overline{529}$

$$\therefore$$
 1000 $x - x = 7529.\overline{529} - 7.\overline{529}$

$$\therefore 999 \ x = 7522.0 \qquad \therefore x = \frac{7522}{999}$$

$$\therefore$$
 7. $\overline{529} = \frac{7522}{999}$

विचार करूया.

2.43 ही संख्या $\frac{p}{q}$ रूपात लिहिण्यासाठी काय कराल ?

- (1) दिलेल्या संख्येत दशांश चिन्हानंतर लगेच किती अंक आवर्ती आहेत हे पाहून त्याप्रमाणे त्या संख्येला 10, 100, 1000 यांपैकी योग्य संख्येने गुणावे. उदा. 2.3 या संख्येत 3 हा एकच अंक आवर्ती आहे. म्हणून $2.\dot{3}$ ही संख्या $\frac{p}{q}$ रूपात आणण्यासाठी तिला 10 ने गुणावे.
 - $1.\overline{24}$ या संख्येत 2, 4 हे दोन अंक आवर्ती आहेत. म्हणून $1.\overline{24}$ ला 100 ने गुणावे.
 - $1.\overline{513}$ या संख्येत 5, 1, 3 हे तीन अंक आवर्ती आहेत. म्हणून $1.\overline{513}$ ला 1000 ने गुणावे.
- (2) परिमेय संख्येच्या छेदाचे मूळ अवयव तपासा. त्यांत 2 आणि 5 यांच्या व्यतिरिक्त मूळसंख्या नसतील तर त्या परमेय संख्येचे दशांश रूप खंडित असते. 2 व 5 व्यतिरिक्त मूळसंख्या ही छेदाचा अवयव असेल तर त्या संख्येचे दशांश रूप अखंड आवर्ती असते.

सरावसंच 2.1

- खालीलपैकी कोणत्या परिमेय संख्यांचे दशांश रूप खंडित असेल आणि कोणत्या संख्येचे दशांश रूप अखंड आवर्ती असेल ते लिहा.
 - (i) $\frac{13}{5}$
- (ii) $\frac{2}{11}$ (iii) $\frac{29}{16}$
- (iv) $\frac{17}{125}$
- (v) $\frac{11}{6}$

- खालील परिमेय संख्या दशांश रूपात लिहा.
- (i) $\frac{127}{200}$ (ii) $\frac{25}{99}$ (iii) $\frac{23}{7}$
- (iv) $\frac{4}{5}$

- 3. खालील परिमेय संख्या $\frac{p}{q}$ रूपात लिहा.
 - (i) 0.6
- (ii) $0.\overline{37}$
- (iii) $3.\overline{17}$
- (iv) $15.\overline{89}$
- $(v)2.\overline{514}$

खालील संख्यारेषेवर दाखवलेल्या $\sqrt{2}$ व $\sqrt{3}$ ह्या संख्या परिमेय नाहीत, म्हणजेच त्या अपरिमेय आहेत.

या संख्यारेषेवर OA = 1 एकक अंतर आहे. O च्या डावीकडे B बिंद्ही 1 एकक अंतरावर आहे. B बिंद्चा निर्देशक -1 आहे. P बिंदूचा निर्देशक $\sqrt{2}$ असून त्याची विरुद्ध संख्या C या बिंदूने दर्शवली आहे. C बिंदूचा निर्देशक $-\sqrt{2}$ आहे. त्याप्रमाणे $\sqrt{3}$ ची विरुद्ध संख्या – $\sqrt{3}$ दर्शवणारा बिंदू D आहे.

अपरिमेय आणि वास्तव संख्या (Irrational and real numbers)

 $\sqrt{2}$ ही संख्या अपरिमेय आहे हे अप्रत्यक्ष सिद्धता देऊन सिद्ध करता येते.

 $\sqrt{2}$ ही परिमेय संख्या आहे हे गृहीत धरू. ती $\frac{p}{q}$ मानू.

 $\frac{p}{q}$ हे त्या परिमेय संख्येचे संक्षिप्त रूप आहे म्हणजेच p व q मध्ये 1 पेक्षा वेगळा सामाईक विभाजक नाही, असे मानू.

$$\sqrt{2} = \frac{p}{q}$$

$$\therefore 2 = \frac{P^2}{q^2} \qquad (दोन्ही बाजूंचा वर्ग करून)$$

$$\therefore 2q^2 = p^2$$

 \therefore p^2 ही समसंख्या आहे.

 \therefore p सुद्धा समसंख्या आहे, म्हणजेच 2 हा p चा विभाजक आहे.(I)

$$\therefore p = 2t$$

$$\therefore p^2 = 4t^2 \qquad t \in$$

 $\therefore 2q^2 = 4t^2 \ (\because p^2 = 2q^2) \ \therefore \ q^2 = 2t^2 \ \therefore \ q^2$ ही सम संख्या आहे. $\therefore q$ ही सम संख्या आहे.

 \therefore 2 हा q चा सुद्धा विभाजक आहे.

.... (II)

विधान (I) व (II) वरून 2 हा p आणि q यांचा सामाईक विभाजक आहे.

ही विसंगती आहे. कारण $\frac{p}{q}$ मध्ये p आणि q चा 1 व्यतिरिक्त एकही सामाईक विभाजक नाही.

 \therefore $\sqrt{2}$ ही परिमेय संख्या आहे हे गृहीत चुकीचे आहे. \therefore $\sqrt{2}$ ही अपरिमेय संख्या आहे.

याच पद्धतीने $\sqrt{3}$, $\sqrt{5}$ या अपरिमेय संख्या आहेत हे दाखवता येते. त्यासाठी 3 किंवा 5 हा, n चा विभाजक असेल तरच तो n^2 चा ही विभाजक असतो या नियमाचा उपयोग करा.

 $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ अशा संख्या, संख्यारेषेवर दाखवता येतात.

जी संख्या संख्यारेषेवर बिंद्ने दाखवता येते, ती वास्तव संख्या आहे असे म्हणतात.

थोडक्यात, संख्यारेषेवरील प्रत्येक बिंदूचा निर्देशक ही वास्तव संख्या असते आणि प्रत्येक वास्तव संख्येशी निगडित असणारा बिंदू संख्यारेषेवर असतो.

आपल्याला माहीत आहे, की प्रत्येक परिमेय संख्या वास्तव संख्या असते. परंतु $\sqrt{2}$, $\sqrt{3}$, $-\sqrt{2}$, π , $3+\sqrt{2}$ अशा वास्तव संख्या परिमेय नाहीत. म्हणून प्रत्येक वास्तव संख्या ही परिमेय असतेच असे नाही हे लक्षात ठेवा.

अपरिमेय संख्यांची दशांश रूपात मांडणी

आपण 2 व 3 या संख्यांची वर्गमुळे भागाकार पद्धतीने काढू.

2 चे वर्गमूळ

$$\therefore \sqrt{2} = 1.41421...$$

3 चे वर्गमूळ

$$\therefore \sqrt{3} = 1.732...$$

येथे भागाकारातील दशांश चिन्हापुढील अंकांची संख्या कधीही संपत नाही. म्हणजेच अनंत अंकांचा क्रम मिळतो. हा क्रम काही अंकांच्या गटाच्या आवर्तनाने तयार होत नाही. म्हणून हे संख्येचे दशांशरूप अखंड अनावर्ती असते.

 $\sqrt{2}$, $\sqrt{3}$ या संख्या अपिरमेय संख्या आहेत. म्हणजेच 1.4142... आणि 1.732... यासुद्धा अपिरमेय संख्या आहेत. यावरून लक्षात घ्या, की अखंड अनावर्ती दशांश रूपातील संख्या अपिरमेय असते.

संख्या π

कृती I

जाड कार्डबोर्डवर वेगवेगळ्या त्रिज्यांची वर्तुळे काढा. तीन, चार वर्तुळाकृती चकत्या कापा. प्रत्येक चकतीच्या कडेवरून दोरा फिरवून प्रत्येक वर्तुळाकृती चकतीचा परीघ मोजा. खालील सारणी पूर्ण करा.

अ. क्र.	त्रिज्या	व्यास (<i>d</i>)	परीघ (<i>c</i>)	गुणोत्तर = $\frac{c}{d}$
1	7 सेमी			
2	8 सेमी			
3	5.5 सेमी			

शेजारील सारणीवरून $\frac{c}{d}$ हे गुणोत्तर प्रत्येक वेळी 3.1 च्या जवळपास येते. म्हणजे स्थिर असते हे लक्षात येईल. ते गुणोत्तर π या चिन्हाने दर्शवतात.

कृती II

 π ची अंदाजे किंमत काढण्यासाठी 11 सेमी, 22 सेमी व 33 सेमी लांबीचे तारेचे तुकडे घ्या. प्रत्येक तारेपासून वर्तुळ तयार करा. त्या वर्तुळांचे व्यास मोजा व खालील सारणी पूर्ण करा.

			- 1
वर्तुळ क्र.	परीघ	व्यास	परीघ व व्यास यांचे
			गुणोत्तर
1	11 सेमी		
2	22 सेमी		
3	33 सेमी		

परीघ व व्यास यांचे गुणोत्तर $\frac{22}{7}$ च्या जवळपास आले का याचा

वर्तुळाचा परीघ व व्यास यांचे गुणोत्तर ही स्थिर संख्या असते, ती अपरिमेय असते. ती संख्या π या चिन्हाने दर्शवली जाते. π ची अंदाजे किंमत $\frac{22}{7}$ किंवा 3.14 घेतात.

थोर भारतीय गणिती आर्यभट यांनी इ. स. 499 मध्ये π ची किंमत $\frac{62832}{20000} = 3.1416$ अशी काढली होती.

 $\sqrt{3}$ ही अपरिमेय संख्या आहे हे आपण पाहिले आहे. आता 2 + $\sqrt{3}$ ही संख्या अपरिमेय आहे का ते पाहू.

समजा, $2 + \sqrt{3}$ ही संख्या अपरिमेय नाही असे मानू. म्हणजेच ती परिमेय असायला हवी.

जर $2 + \sqrt{3}$ परिमेय असेल तर $2 + \sqrt{3} = \frac{p}{q}$ आहे असे मानू.

$$\therefore \sqrt{3} = \frac{p}{q} - 2$$
 हे समीकरण मिळते.

येथे डावी बाजू अपरिमेय संख्या आणि उजवी बाजू परिमेय संख्या अशी विसंगती येते.

म्हणजेच $2 + \sqrt{3}$ ही परिमेय संख्या नसून ती अपरिमेय संख्या आहे, हे सिद्ध होते.

त्याचप्रमाणे $2\sqrt{3}$ अपरिमेय आहे हे दाखवता येते.

दोन अपरिमेय संख्याची बेरीज किंवा गुणाकार परिमेय असू शकतो हे पुढीलप्रमाणे पडताळता येते.

जसे,
$$2 + \sqrt{3} + (-\sqrt{3}) = 2$$
, $4\sqrt{5} \div \sqrt{5} = 4$, $(3 + \sqrt{5}) - (\sqrt{5}) = 3$, $2\sqrt{3} \times \sqrt{3} = 6$ $\sqrt{2} \times \sqrt{5} = \sqrt{10}$, $2\sqrt{5} - \sqrt{5} = \sqrt{5}$

$$4\sqrt{5} \div \sqrt{5} = 4,$$

$$(3 + \sqrt{5}) - (\sqrt{5}) = 3$$

$$2\sqrt{3} \times \sqrt{3} = 6$$

$$\sqrt{2} \times \sqrt{5} = \sqrt{10}$$
.

$$2\sqrt{5}-\sqrt{5}=\sqrt{5}$$

हे लक्षात ठेवूया.

अपरिमेय संख्यांचे गुणधर्म

- (1) परिमेय संख्या व अपरिमेय संख्या यांची बेरीज किंवा वजाबाकी ही अपरिमेय संख्या असते.
- (2) शून्येतर परिमेय संख्या व अपरिमेय संख्या यांचा गुणाकार किंवा भागाकार हीसुद्धा एक अपरिमेय संख्या असते.
- (3) दोन अपरिमेय संख्यांची बेरीज, वजाबाकी, गुणाकार व भागाकार हे मात्र परिमेय किंवा अपरिमेय असू शकतात.

वास्तव संख्यांवरील क्रमसंबंधाचे गुणधर्म

- 1. जर a आणि b या दोन वास्तव संख्या असतील तर त्यांच्यामध्ये a = b िकंवा a < b िकंवा a > b यांपैकी कोणता तरी एकच संबंध असतो.
- 2. जर a < b आणि b < c तर a < c

3. जर a < b तर a + c < b + c

4. जर a < b आणि जर c > 0 तर ac < bc आणि जर c < 0 तर ac > bc परिमेय व अपरिमेय संख्या घेऊन वरील नियम पडताळून पाहा.

ऋण संख्येचे वर्गमूळ

जर $\sqrt{a} = b$ तर $b^2 = a$ हे आपल्याला माहीत आहे.

यावरून जर $\sqrt{5} = x$ तर $x^2 = 5$ हे आपल्याला समजते.

तसेच आपल्याला हे माहीत आहे, की कोणत्याही वास्तव संख्येचा वर्ग ही नेहमी ऋणेतर संख्या येते. म्हणजे कोणत्याही वास्तव संख्येचा वर्ग कधीही ऋण नसतो. पण ($\sqrt{-5}$) $^2 = -5$... $\sqrt{-5}$ ही वास्तव संख्या नाही. म्हणजेच ऋण वास्तव संख्येचे वर्गमूळ वास्तव संख्या नसते.

सरावसंच 2.2

- (1) $4\sqrt{2}$ ही संख्या अपिरमेय आहे हे सिद्ध करा.
- (2) $3 + \sqrt{5}$ ही संख्या अपरिमेय संख्या आहे हे सिद्ध करा.
- (3) $\sqrt{5}$, $\sqrt{10}$ या संख्या संख्यारेषेवर दाखवा.
- (4) खाली दिलेल्या संख्यांच्या दरम्यानच्या कोणत्याही तीन परिमेय संख्या लिहा.
 - (i) 0.3 आणि -0.5
- (ii) -2.3 आणि -2.33
- (iii) 5.2 आणि 5.3
- (iv) -4.5 आणि -4.6

धन परिमेय संख्येचे मूळ (Root of positive rational number)

जर $x^2=2$ तर $x=\sqrt{2}$ किंवा $x=-\sqrt{2}$, असते. $\sqrt{2}$ आणि $-\sqrt{2}$ ह्या अपिरमेय संख्या आहेत हे आपल्याला माहीत आहे. $\sqrt[3]{7}$, $\sqrt[4]{8}$, यांसारख्या संख्या सुद्धा अपिरमेय असतात.

n धन पूर्णांक संख्या असून व $x^n = a$ असेल, तर x हे a चे n वे मूळ आहे असे म्हणतात. हे मूळ परिमेय किंवा अपरिमेय असते.

उदा. $2^5 = 32$... 2 हे 32 चे 5 वे मूळ परिमेय आहे, पण $x^5 = 2$ तर $x = \sqrt[5]{2}$ ही अपरिमेय संख्या आहे.

करणी (Surds)

आपल्याला माहीत आहे की 5 ही परिमेय संख्या आहे परंतु $\sqrt{5}$ ही परिमेय नाही. ज्याप्रमाणे वास्तव संख्येचे वर्गमूळ िकंवा घनमूळ परिमेय िकंवा अपरिमेय असू शकते त्याचप्रमाणे n वे मूळ देखील परिमेय िकंवा अपरिमेय असू शकते.

जर n ही 1 पेक्षा मोठी पूर्णांक संख्या असेल आणि a या धन वास्तव संख्येचे n वे मूळ x ने दाखवले तर $x^n=a$ किंवा $\sqrt[n]{a}=x$ असे लिहितात.

जर a ही धन परिमेय संख्या असेल आणि a चे n वे मूळ x ही अपरिमेय संख्या असेल तर x ही करणी (अपरिमेय मूळ) आहे असे म्हणतात.

 $\sqrt[n]{a}$ ही करणी संख्या असेल तर $\sqrt{}$ या चिन्हाला **करणी चिन्ह** (radical sign) म्हणतात. n या संख्येला त्या **करणीची कोटी** (order of the surd) म्हणतात आणि a ला करणीस्थ संख्या (radicand) असे म्हणतात.

- (1) समजा a = 7, n = 3, तर $\sqrt[3]{7}$ ही करणी आहे. कारण $\sqrt[3]{7}$ ही अपिरमेय आहे.
- (2) समजा a = 27 आणि n = 3 असेल तर $\sqrt[3]{27} = 3$ ही अपिरमेय संख्या नाही म्हणून $\sqrt[3]{27}$ ही करणी नाही.
- (3) $\sqrt[3]{8}$ ही करणी आहे का?

समजा $\sqrt[3]{8} = p$ $p^3 = 8$. कोणत्या संख्येचा घन 8 आहे? आपल्याला माहीत आहे की, 2 या संख्येचा घन 8 आहे.

 $\sqrt[3]{8}$ मध्ये a=8 ही परिमेय संख्या आहे. येथे n=3 ही धन पूर्णांक संख्या आहे. परंतु $\sqrt[3]{8}$ ही संख्या अपिरमेय नाही कारण 8 चे घनमूळ 2 आहे. $\therefore \sqrt[3]{8}$ ही करणी नाही.

(4) आता $\sqrt[4]{8}$ चा विचार करू,

येथे a=8, करणीची कोटी n=4; परंतु 8 ही संख्या कोणत्याही परिमेय संख्येचा चौथा घात नाही. म्हणजे $\sqrt[4]{8}$ ही अपरिमेय संख्या आहे. $\therefore \sqrt[4]{8}$ ही करणी आहे.

आपण फक्त कोटी 2 असणाऱ्या म्हणजे $\sqrt{3}$, $\sqrt{7}$, $\sqrt{42}$ इत्यादी करणींचा विचार करणार आहोत. कोटी 2 असणाऱ्या करणींना **वर्ग करणी** म्हणतात.

करणीचे सोपे रूप

कधी कधी करणी संख्यांना सोपे रूप देता येते. जसे (i) $\sqrt{48} = \sqrt{16 \times 3} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$

(ii)
$$\sqrt{98} = \sqrt{49 \times 2} = \sqrt{49} \times \sqrt{2} = 7\sqrt{2}$$

 $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ अशा काही करणी सोप्या रूपातील करणी आहेत. त्यांना आणखी सोपे रूप देता येत नाही.

सजातीय करणी (Similar or like surds)

 $\sqrt{2}$, $-3\sqrt{2}$, $\frac{4}{5}\sqrt{2}$ या काही सजातीय करणी आहेत. जर p आणि q या परिमेय संख्या असतील तर $p\sqrt{a}$, $q\sqrt{a}$ या सजातीय करणी आहेत असे म्हणतात. **दोन करणी सजातीय असण्यासाठी त्यांची कोटी समान** असावी लागते. तसेच करणीस्थ संख्याही समान असाव्या लागतात.

 $\sqrt{45}$ व $\sqrt{80}$ या करणींची कोटी 2 आहे, म्हणजे यांची कोटी समान आहे, परंतु करणीस्थ संख्या समान नाहीत. म्हणून या करणी सजातीय नाहीत असे दिसते. या करणींना सोपे रूप देऊ.

$$\sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}$$
 आणि $\sqrt{80} = \sqrt{16 \times 5} = \sqrt{16} \times \sqrt{5} = 4\sqrt{5}$

 $3\sqrt{5}$ a $4\sqrt{5}$ या करणी सजातीय आहेत

म्हणजे $\sqrt{45}$ व $\sqrt{80}$ या करणींची सोपी रूपे सजातीय करणी आहेत.

हे लक्षात ठेवूया.

सोप्या रूपातील करणींची कोटी व करणीस्थ संख्या समान होत असतील तर त्या करणींना सजातीय करणी म्हणतात.

जाणून घेऊया.

करणींची तुलना (Comparison of surds)

समजा a,b,k या धनवास्तव संख्या असल्या तर

a < b यावरून ak < bk मिळते. $\therefore a^2 < ab < b^2$

म्हणजे a < b तर $a^2 < b^2$

उलट $a^2 < b^2$ असेल तर a = b, a > b आणि a < b या शक्यता पाहू.

a = b वरून $a^2 = b^2$, a > b वरून $a^2 > b^2$ मिळते परंतु हे अशक्य

 $\therefore a < b$ मिळते. म्हणजे $a^2 < b^2$ तर a < b

येथे a आणि b या वास्तव संख्या असल्याने त्या परिमेय संख्या किंवा करणी असू शकतात.

याचा उपयोग करून दोन करणींमधील लहान-मोठेपणा तपासू.

(i)
$$6\sqrt{2}$$
, $5\sqrt{5}$
 (ii) $8\sqrt{3}$, $\sqrt{192}$
 $\sqrt{36} \times \sqrt{2}$? $\sqrt{25} \times \sqrt{5}$ $\sqrt{64} \times \sqrt{3}$? $\sqrt{192}$
 $\sqrt{72}$? $\sqrt{125}$ $\sqrt{192}$? $\sqrt{192}$? $\sqrt{192}$
 $\sqrt{72}$? $\sqrt{125}$ $\sqrt{192}$? $\sqrt{192}$? $\sqrt{192}$
 $\sqrt{72}$? $\sqrt{192}$?

$$\therefore 6\sqrt{2} \quad \boxed{<} \quad 5\sqrt{5}$$

(ii) $8\sqrt{3}$, $\sqrt{192}$

$$\sqrt{64} \times \sqrt{3} \quad ? \quad \sqrt{192}$$

$$\sqrt{192} \quad ? \quad \sqrt{192}$$

परंतु 192
$$=$$
 192 $\therefore \sqrt{192} = \sqrt{192}$

$$\therefore 8\sqrt{3} = \sqrt{192}$$

(iii)
$$7\sqrt{2}$$
, $5\sqrt{3}$

$$\sqrt{49} \times \sqrt{2} \stackrel{?}{?} \sqrt{25} \times \sqrt{3}$$

$$\sqrt{98} \stackrel{?}{?} \sqrt{75}$$

$$\text{uvig } 98 \stackrel{>}{>} 75$$

$$\therefore 7\sqrt{2} \stackrel{>}{>} 5\sqrt{3}$$

किंवा

$$(6\sqrt{2})^2 \boxed{(5\sqrt{5})^2},$$

$$72 < 125$$

$$\therefore 6\sqrt{2} \boxed{<} 5\sqrt{5}$$

$$(7\sqrt{2})^{2} \boxed{(5\sqrt{3})^{2}},$$

$$98 > 75$$

$$\therefore 7\sqrt{2} > 5\sqrt{3}$$

सजातीय करणींवरील क्रिया (Operations on like surds)

सजातीय करणींवर बेरीज, वजाबाकी, गुणाकार, भागाकार या क्रिया करता येतात.

उदा (1) सोपे रूप द्या : $7\sqrt{3} + 29\sqrt{3}$

उकल :
$$7\sqrt{3} + 29\sqrt{3} = (7 + 29)\sqrt{3} = 36\sqrt{3}$$

उदा (2) सोपे रूप द्या : $7\sqrt{3} - 29\sqrt{3}$

उकल :
$$7\sqrt{3} - 29\sqrt{3} = (7 - 29)\sqrt{3} = -22\sqrt{3}$$

उदा (3) सोपे रूप द्या : $13\sqrt{8} + \frac{1}{2}\sqrt{8} - 5\sqrt{8}$

उकल :
$$13\sqrt{8} + \frac{1}{2}\sqrt{8} - 5\sqrt{8} = \left(13 + \frac{1}{2} - 5\right)\sqrt{8} = \left(\frac{26 + 1 - 10}{2}\right)\sqrt{8}$$
$$= \frac{17}{2}\sqrt{8} = \frac{17}{2}\sqrt{4 \times 2}$$
$$= \frac{17}{2} \times 2\sqrt{2} = 17\sqrt{2}$$

 $\frac{?}{=} \sqrt{9} + \sqrt{16}$

 $\sqrt{100+36} \ \frac{-}{?} \sqrt{100} + \sqrt{36}$

उदा (4) सोपे रूप द्या :
$$8\sqrt{5} + \sqrt{20} - \sqrt{125}$$

उकल :
$$8\sqrt{5} + \sqrt{20} - \sqrt{125} = 8\sqrt{5} + \sqrt{4 \times 5} - \sqrt{25 \times 5}$$

= $8\sqrt{5} + 2\sqrt{5} - 5\sqrt{5}$
= $(8 + 2 - 5)\sqrt{5}$
= $5\sqrt{5}$

उदा (5) करणींचा गुणाकार करा : $\sqrt{7} \times \sqrt{42}$

उकल :
$$\sqrt{7} \times \sqrt{42} = \sqrt{7 \times 42} = \sqrt{7 \times 7 \times 6} = 7\sqrt{6}$$
 ($7\sqrt{6}$ ही अपरिमेय संख्या आहे.)

उदा (6) करणींचा भागाकार करा : $\sqrt{125} \div \sqrt{5}$

उकल :
$$\frac{\sqrt{125}}{\sqrt{5}} = \sqrt{\frac{125}{5}} = \sqrt{25} = 5$$
 (5 ही परिमेय संख्या आहे.)

उदा (7)
$$\sqrt{50} \times \sqrt{18} = \sqrt{25 \times 2} \times \sqrt{9 \times 2} = 5\sqrt{2} \times 3\sqrt{2} = 15 \times 2 = 30$$

दोन करणींचा गुणाकार किंवा भागाकार ही परिमेय संख्या असू शकते, हे वरील उदाहरणांवरून लक्षात घ्या.

करणीचे परिमेयीकरण (Rationalization of surd)

दोन करणींचा गुणाकार परिमेय संख्या येत असेल तर त्यांपैकी कोणत्याही एका करणीस दसऱ्या करणीचा परिमेचीकरण गुणक (Rationalizing Factor) म्हणतात.

उदा (1) $\sqrt{2}$ या करणीला $\sqrt{2}$ ने गुणले असता $\sqrt{2 \times 2} = \sqrt{4}$ मिळतात. $\sqrt{4} = 2$ ही परिमेय संख्या आहे.

 $\therefore \sqrt{2}$ चा परिमेयीकरण गुणक $\sqrt{2}$ आहे.

उदा (2) $\sqrt{2} \times \sqrt{8}$ हा गुणाकार करा.

 $\sqrt{2} \times \sqrt{8} = \sqrt{16} = 4$ ही परिमेय संख्या आहे.

 $\therefore \sqrt{2}$ चा $\sqrt{8}$ हा परिमेयीकरणाचा गुणक आहे.

त्याप्रमाणे तर $8\sqrt{2}$ ही करणीसुद्धा $\sqrt{2}$ या करणीचा परिमेयीकरण गुणक आहे.

कारण $\sqrt{2} \times 8\sqrt{2} = 8\sqrt{2} \times \sqrt{2} = 8 \times 2 = 16$.

 $\sqrt{6}$, $\sqrt{16}$ $\sqrt{50}$ हे $\sqrt{2}$ चे परिमेयीकरण गुणक आहेत का हे पडताळा.

हे लक्षात ठेवूया.

दिलेल्या करणीचा परिमेयीकरण गुणक एकमेव नसतो. एखादी करणी दिलेल्या करणीचा परिमेयीकरण गुणक असेल तर तिला शून्येतर परिमेय संख्येने गुणून येणारी करणीसुद्धा दिलेल्या करणीचा परिमेयीकरण गुणक असते.

उदा (3) $\sqrt{27}$ चा परिमेयीकरण गुणक लिहा.

उकल : $\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$... $3\sqrt{3} \times \sqrt{3} = 3 \times 3 = 9$ ही परिमेय संख्या आहे.

 $\therefore \sqrt{3}$ हा $\sqrt{27}$ या करणीचा परिमेयीकरण गुणक आहे.

लक्षात घ्या की, $\sqrt{27} = 3\sqrt{3}$ म्हणजे $3\sqrt{3} \times 3\sqrt{3} = 9 \times 3 = 27$.

म्हणजे $\sqrt{27}$ या दिलेल्या करणीचा $3\sqrt{3}$ हा सुद्धा परिमेयीकरण गुणक असेल. या व्यतिरिक्त $4\sqrt{3}$, $7\sqrt{3}$ असे अनेक गुणक मिळतील. यांपैकी $\sqrt{3}$ हा सर्वांत सोप्या मांडणीतील परिमेयीकरण गुणक आहे.

उदा (4) $\frac{1}{\sqrt{5}}$ च्या छेदाचे परिमेयीकरण करा.

उकल : $\frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{5}$ अंशाला व छेदाला $\sqrt{5}$ ने गुणू.

उदा (5) $\frac{3}{2\sqrt{7}}$ च्या छेदाचे परिमेयीकरण करा.

उकल: $\frac{3}{2\sqrt{7}} = \frac{3}{2\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{3\sqrt{7}}{2\times 7} = \frac{3\sqrt{7}}{14}$ (येथे $2\sqrt{7}$ ला $\sqrt{7}$ ने गुणणे पुरेसे आहे.)

छेदाचे परिमेयीकरण करण्यासाठी परिमेयीकरण गुणकाचा उपयोग होतो. कोणत्याही संख्येचा छेद परिमेय संख्या असणे सोईचे असते म्हणून छेदांचे परिमेयीकरण करतात.

सरावसंच 2.3

(1) पुढील करणींच्या कोटी सागा.	
--------------------------------	--

(i) $\sqrt[3]{7}$

(ii) $5\sqrt{12}$ (iii) $\sqrt[4]{10}$ (iv) $\sqrt{39}$ (v) $\sqrt[3]{18}$

(2) पढीलपैकी कोणत्या संख्या करणी आहेत हे सांगा.

(i) $\sqrt[3]{51}$

(ji) ⁴√16

(iii) $\sqrt[5]{81}$ (iv) $\sqrt{256}$ (v) $\sqrt[3]{64}$ (vi) $\sqrt{\frac{22}{7}}$

(3) खालील जोड्यांपैकी कोणत्या करणींच्या जोड्या सजातीय व कोणत्या विजातीय आहेत हे ओळखा.

(i) $\sqrt{52}$, $5\sqrt{13}$ (ii) $\sqrt{68}$, $5\sqrt{3}$ (iii) $4\sqrt{18}$, $7\sqrt{2}$

(iv) $19\sqrt{12}$, $6\sqrt{3}$ (v) $5\sqrt{22}$, $7\sqrt{33}$ (vi) $5\sqrt{5}$, $\sqrt{75}$

(4) खालील करणींना सोपे रूप द्या.

(i) $\sqrt{27}$ (ii) $\sqrt{50}$ (iii) $\sqrt{250}$ (iv) $\sqrt{112}$ (v) $\sqrt{168}$

(5) खालील संख्यांमधील लहानमोठेपणा ठरवा.

(i) $7\sqrt{2}$, $5\sqrt{3}$ (ii) $\sqrt{247}$, $\sqrt{274}$ (iii) $2\sqrt{7}$, $\sqrt{28}$

(iv) $5\sqrt{5}$, $7\sqrt{2}$ (v) $4\sqrt{42}$, $9\sqrt{2}$ (vi) $5\sqrt{3}$, 9 (vii) 7, $2\sqrt{5}$

(6) सोपे रूप द्या.

(i) $5\sqrt{3} + 8\sqrt{3}$

(ii) $9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$

(iii) $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ (iv) $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$

(7) गुणाकार करा आणि तो सोप्या रूपात लिहा.

(i) $3\sqrt{12} \times \sqrt{18}$ (ii) $3\sqrt{12} \times 7\sqrt{15}$

(iii) $3\sqrt{8} \times \sqrt{5}$ (iv) $5\sqrt{8} \times 2\sqrt{8}$

(8) भागाकार करा आणि तो सोप्या रूपात लिहा.

(i) $\sqrt{98} \div \sqrt{2}$ (ii) $\sqrt{125} \div \sqrt{50}$ (iii) $\sqrt{54} \div \sqrt{27}$ (iv) $\sqrt{310} \div \sqrt{5}$

(9) छेदाचे परिमेयीकरण करा.

(i) $\frac{3}{\sqrt{5}}$ (ii) $\frac{1}{\sqrt{14}}$ (iii) $\frac{5}{\sqrt{7}}$ (iv) $\frac{6}{9\sqrt{3}}$ (v) $\frac{11}{\sqrt{3}}$

आपल्याला हे माहीत आहे, की

जर
$$a > 0$$
, $b > 0$ तर $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
 $(a+b)(a-b) = a^2 - b^2$; $(\sqrt{a})^2 = a$; $\sqrt{a^2} = a$

गुणाकार करा.

उदा (1)
$$\sqrt{2} (\sqrt{8} + \sqrt{18})$$

= $\sqrt{2 \times 8} + \sqrt{2 \times 18}$
= $\sqrt{16} + \sqrt{36}$
= $4 + 6$
= 10

उदा (2)
$$(\sqrt{3} - \sqrt{2})(2\sqrt{3} - 3\sqrt{2})$$

= $\sqrt{3}(2\sqrt{3} - 3\sqrt{2}) - \sqrt{2}(2\sqrt{3} - 3\sqrt{2})$
= $\sqrt{3} \times 2\sqrt{3} - \sqrt{3} \times 3\sqrt{2} - \sqrt{2} \times 2\sqrt{3} + \sqrt{2} \times 3\sqrt{2}$
= $2 \times 3 - 3\sqrt{6} - 2\sqrt{6} + 3 \times 2$
= $6 - 5\sqrt{6} + 6$
= $12 - 5\sqrt{6}$

वर्ग करणीचे द्विपद रूप (Binomial quadratic surd)

• $\sqrt{5} + \sqrt{3}$; $\frac{3}{4} + \sqrt{5}$ ही वर्ग करणीची द्विपद रूपे आहेत; तसेच $\sqrt{5} - \sqrt{3}$; $\frac{3}{4} - \sqrt{5}$ ही सुद्धा करणींची द्विपद रूपे आहेत.

खालील गुणाकार अभ्यासा.

•
$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = (\sqrt{a})^2 - (\sqrt{b})^2 = a - b$$

•
$$(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3}) = (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2$$

•
$$(\sqrt{3} + \sqrt{7})(\sqrt{3} - \sqrt{7}) = (\sqrt{3})^2 - (\sqrt{7})^2 = 3 - 7 = -4$$

•
$$\left(\frac{3}{2} + \sqrt{5}\right)\left(\frac{3}{2} - \sqrt{5}\right) = \left(\frac{3}{2}\right)^2 - \left(\sqrt{5}\right)^2 = \frac{9}{4} - 5 = \frac{9 - 20}{4} = -\frac{11}{4}$$

 $(\sqrt{5} + \sqrt{3})$ व $(\sqrt{5} - \sqrt{3})$ या दिवपद करणींच्या जोडीचा गुणाकार परिमेय संख्या आहे. अशा दिवपद करणींच्या जोड्यांना **अनुबद्ध जोड्या** म्हणतात.

द्विपद करणी व तिची अनुबद्ध जोडी या दोन्ही संख्या परस्परांचे परिमेयीकरणाचे गुणक असतात.

 $\sqrt{5} - \sqrt{3}$ िकंवा $\sqrt{3} - \sqrt{5}$ यांपैकी प्रत्येक द्विपद करणी ही $\sqrt{5} + \sqrt{3}$ या द्विपद करणीची अनुबद्ध जोडी आहे.

तसेच $7 + \sqrt{3}$ ची अनुबद्ध जोडी $7 - \sqrt{3}$ आहे.

द्विपद करणींच्या अनुबद्ध जोडीतील पदांचा गुणाकार नेहमी परिमेय संख्या येतो.

छेदाचे परिमेयीकरण (Rationalization of the denominator)

द्विपद करणी व तिची अनुबद्ध जोडी यांचा गुणाकार परिमेय असतो, या गुणधर्माचा उपयोग करून, छेद दिवपद करणी असणाऱ्या संख्यांच्या छेदांचे परिमेयीकरण करता येते.

उदा.(1) $\frac{1}{\sqrt{5}\sqrt{2}}$ या संख्येच्या छेदाचे परिमेयीकरण करा.

 $\sqrt{5}$ – $\sqrt{3}$ या दिवपद करणींची अनुबद्ध जोडी $\sqrt{5}$ + $\sqrt{3}$ आहे

$$\frac{1}{\sqrt{5}-\sqrt{3}} = \frac{1}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} = \frac{\sqrt{5}+\sqrt{3}}{(\sqrt{5})^2-(\sqrt{3})^2} = \frac{\sqrt{5}+\sqrt{3}}{5-3} = \frac{\sqrt{5}+\sqrt{3}}{2}$$

उदा (2) $\frac{8}{3\sqrt{2}+\sqrt{5}}$ या संख्येच्या छेदाचे परिमेयीकरण करा.

उकल : $3\sqrt{2} + \sqrt{5}$ या द्विपद करणीचीअनुबद्ध जोडी $3\sqrt{2} - \sqrt{5}$ आहे.

$$\frac{8}{3\sqrt{2} + \sqrt{5}} = \frac{8}{3\sqrt{2} + \sqrt{5}} \times \frac{3\sqrt{2} - \sqrt{5}}{3\sqrt{2} - \sqrt{5}}$$

$$= \frac{8(3\sqrt{2} - \sqrt{5})}{(3\sqrt{2})^2 - (\sqrt{5})^2}$$

$$= \frac{8 \times 3\sqrt{2} - 8\sqrt{5}}{9 \times 2 - 5} = \frac{24\sqrt{2} - 8\sqrt{5}}{18 - 5} = \frac{24\sqrt{2} - 8\sqrt{5}}{13}$$

सरावसंच 2.4

(1) गुणाकार करा

(i)
$$\sqrt{3} (\sqrt{7} - \sqrt{3})$$

(ii)
$$(\sqrt{5} - \sqrt{7})\sqrt{2}$$

(i)
$$\sqrt{3}(\sqrt{7} - \sqrt{3})$$
 (ii) $(\sqrt{5} - \sqrt{7})\sqrt{2}$ (iii) $(3\sqrt{2} - \sqrt{3})(4\sqrt{3} - \sqrt{2})$

(2) खालील संख्यांच्या छेदांचे परिमेयीकरण करा.

(i)
$$\frac{1}{\sqrt{7} + \sqrt{2}}$$

(ii)
$$\frac{3}{2\sqrt{5}-3\sqrt{2}}$$

(iii)
$$\frac{4}{7+4\sqrt{3}}$$

(ii)
$$\frac{3}{2\sqrt{5}-3\sqrt{2}}$$
 (iii) $\frac{4}{7+4\sqrt{3}}$ (iv) $\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$

केवलमूल्य (Absolute value)

x ही वास्तव संख्या असेल तर x चे केवलमूल्य (Absolute Value) किंवा संख्या रेषेवरील शून्यापासूनचे तिचे अंतर |x| असे लिहितात. |x| चे वाचन x चे केवलमूल्य असे करतात.

केवलमूल्याची व्याख्या पुढीलप्रमाणे करतात.

जर
$$x > 0$$
 तर $|x| = x$

जर x > 0 तर |x| = x जर x धन असेल तर x चे केवलमूल्य x असते.

जर
$$x = 0$$
 तर $|x| = 0$

जर x = 0 तर |x| = 0 जर x शून्य असेल तर x चे केवलमूल्य शून्यच असते.

जर
$$x < 0$$
 तर $|x| = -x$

जर x < 0 तर |x| = -x जर x ऋण असेल तर x चे केवलमूल्य x च्या विरुद्ध संख्येएवढे असते.

$$|-3| = -(-3) = 3$$

$$|0| = 0$$

कोणत्याही वास्तवसंख्येचे केवलमूल्य ऋण नसते.

उदा (2) खालील किंमत काढा.

(i)
$$|9-5| = |4| = 4$$

(ii)
$$|8-13| = |-5| = 5$$

(iii)
$$|8| - |-3| = 5$$

(iv)
$$|8| \times |4| = 8 \times 4 = 32$$

उदा (3) सोडवा |x-5|=2

उकल :
$$|x-5|=2$$

∴
$$x - 5 = +2$$
 किंवा $x - 5 = -2$

$$x = 2 + 5$$

∴
$$x = 2 + 5$$
 किंवा $x = -2 + 5$

$$\therefore x = 7$$
 किंवा $x = 3$

सरावसंच 2.5

(1) किंमत काढा.

i)
$$|15 - 2|$$
 (ii) $|4 - 9|$ (iii) $|7| \times |-4|$

(2) सोडवा

(i)
$$|3x-5|=1$$

(ii)
$$|7-2x| = 3$$

(i)
$$|3x-5|=1$$
 (ii) $|7-2x|=5$ (iii) $\left|\frac{8-x}{2}\right|=5$ (iv) $\left|5+\frac{x}{4}\right|=5$

(iv)
$$|5 + \frac{x}{4}| = 5$$

 $2\sqrt{5}$ 12 कृती (I): शेजारील कार्डांवर काही वास्तवसंख्या लिहिल्या आहेत. त्यांचा उपयोग करून बेरीज, -11 $3\sqrt{11}$ $9\sqrt{2}$ वजाबाकी, गुणाकार व भागाकाराची दोन दोन उदाहरणे तयार करा व सोडवा. $-3\sqrt{2}$ कृती (Ⅱ): सुरुवात $+10\sqrt{6}$

०००००००००००००००००००० संकीर्ण प्रश्नसंग्रह २ ०००००

- (1) खालील प्रश्नांच्या बहुपर्यायी उत्तरांपैकी योग्य पर्याय निवडा
 - (i) खालीलपैकी अपरिमेय संख्या कोणती?
 - (A) $\sqrt{\frac{16}{25}}$ (B) $\sqrt{5}$ (C) $\frac{3}{9}$ (D) $\sqrt{196}$
 - (ii) खालीलपैकी अपरिमेय संख्या कोणती?
- (A) 0.17 (B) $1.\overline{513}$ (C) $0.27\overline{46}$ (D) 0.101001000...
- (iii) खालीलपैकी कोणत्या संख्येचे दशांशरूप अखंड आवर्ती असेल ?

- (A) $\frac{2}{5}$ (B) $\frac{3}{16}$ (C) $\frac{3}{11}$ (D) $\frac{137}{25}$
- (iv) संख्या रेषेवरील प्रत्येक बिंदू काय दर्शवितो?
- (A) नैसर्गिक संख्या (B) अपरिमेय संख्या (C) परिमेय संख्या (D) वास्तव संख्या.
- (v) 0.4 या संख्येचे परिमेय रुप कोणते?

 - (A) $\frac{4}{9}$ (B) $\frac{40}{9}$
- (C) $\frac{3.6}{9}$
- (D) $\frac{36}{9}$

	(vi) जर n ही पूर्ण वर्ग संख्या नसेल तर \sqrt{n} ही खालीलपैकी कोणती संख्या असेल?
	(A) नैसर्गिक संख्या (B) परिमेय संख्या
	(C) अपरिमेय संख्या (D) A, B, C हे तिन्ही पर्याय असू शकतात.
	(vii) खालीलपैकी कोणती संख्या करणी नाही?
	(A) $\sqrt{7}$ (B) $\sqrt[3]{17}$ (C) $\sqrt[3]{64}$ (D) $\sqrt{193}$
	(viii) $\sqrt[3]{\sqrt{5}}$ या करणीची कोटी किती?
	(A) 3 (B) 2 (C) 6 (D) 5
	(ix) $2\sqrt{5} + \sqrt{3}$ या द्विपद करणीची अनुबद्ध जोडी कोणती?
	(A) $-2\sqrt{5} + \sqrt{3}$ (B) $-2\sqrt{5} - \sqrt{3}$ (C) $2\sqrt{3} - \sqrt{5}$ (D) $\sqrt{3} + 2\sqrt{5}$
	(x) $12 - (13+7) \times 4$ ची किंमत किती?
	(A) -68 (B) 68 (C) -32 (D) 32 .
(2)	खालील संख्या $\frac{p}{q}$ रूपात लिहा.
	(i) 0.555 (ii) $29.\overline{568}$ (iii) $9.315\ 315\ \dots$ (iv) $357.417417\dots$ (v) $30.\overline{219}$
(3)	खालील संख्या दशांश रूपात लिहा.
	(i) $\frac{-5}{7}$ (ii) $\frac{9}{11}$ (iii) $\sqrt{5}$ (iv) $\frac{121}{13}$ (v) $\frac{29}{8}$
(4)	$5+\sqrt{7}$ ही संख्या अपरिमेय आहे हे दाखवा.
(5)	खालील करणी सोप्या रूपात लिहा.
	(i) $\frac{3}{4}\sqrt{8}$ (ii) $-\frac{5}{9}\sqrt{45}$
	खालील करणींचा सोपा परिमेयीकरण गुणक लिहा.
	(i) $\sqrt{32}$ (ii) $\sqrt{50}$ (iii) $\sqrt{27}$ (iv) $\frac{3}{5}\sqrt{10}$ (v) $3\sqrt{72}$ (vi) $4\sqrt{11}$
. ,	सोपे रूप द्या.
	(i) $\frac{4}{7}\sqrt{147} + \frac{3}{8}\sqrt{192} - \frac{1}{5}\sqrt{75}$ (ii) $5\sqrt{3} + 2\sqrt{27} + \frac{1}{\sqrt{3}}$ (iii) $\sqrt{216} - 5\sqrt{6} + \sqrt{294} - \frac{3}{\sqrt{6}}$
	(iv) $4\sqrt{12} - \sqrt{75} - 7\sqrt{48}$ (v*) $2\sqrt{48} - \sqrt{75} - \frac{1}{\sqrt{3}}$
	छेदाचे परिमेयीकरण करा.
	(i) $\frac{1}{\sqrt{5}}$ (ii) $\frac{2}{3\sqrt{7}}$ (iii) $\frac{1}{\sqrt{3}-\sqrt{2}}$ (iv) $\frac{1}{3\sqrt{5}+2\sqrt{2}}$ (v) $\frac{12}{4\sqrt{3}-\sqrt{2}}$
	⋄⋄