$\{s(\phi_{\lambda})\}\$ is the boundary spectrum $\sigma_b(\phi_{\lambda})$ (see C-III, Cor.2.12) of ϕ_{λ} . Moreover, $s(\phi_{\lambda})$ is a pole of the resolvent with residue of finite rank. Such spectral sets vary continuously under smooth perturbations of ϕ_{λ} (see [Dunford-Schwartz (1958),VII.6, Thm.9]), thus $\lambda \to s(\phi_{\lambda})$ is continuous.

For the operators ${\rm A}_{\rm O}$ and ${\rm A}$ as defined in the beginning of this section we obtain an explicit representation of their resolvents.

 $\underline{\text{Lemma}}$ 3.5. For the resolvents of the operators A_{O} , resp. A , on E the following statements hold.

- (a) For every $\lambda \in \mathbb{C}$ we have $\lambda \in \rho(A_O)$ and $R(\lambda,A_O)g(t) = \int_t^0 e^{\lambda(t-s)} g(s) ds , g \in E.$
- (b) For $\lambda \in \mathbb{C}$ satisfying $1 \in \rho(\phi_{\lambda})$ we have $\lambda \in \rho(A)$ and $R(\lambda,A)g = R(\lambda,A_{0})g + \epsilon_{\lambda} \otimes R(1,\phi_{\lambda}) \Phi R(\lambda,A_{0})g , g \in E.$

<u>Proof.</u> (a) $\rho(A_O) = \mathbb{C}$ follows directly from $(T_O(t))_{t \ge 0}$ being nilpotent (see A-III, Prop.1.1). For $g \in E$ we obtain $R(\lambda, A_O)g = f$ where f is a solution of $\lambda f - f' = g$.

Thus $R(\lambda, A_0)g(t) = \int_t^0 e^{\lambda(t-s)} g(s)ds + e^{\lambda t} \cdot x$ for some $x \in F$. The condition $f \in D(A_0)$ now implies x = 0 and Formula (3.7).

(b) The assertion $\lambda \in \rho(A)$ means that for every $g \in E$ the equation $\lambda f - f' = g$ has exactly one solution f in D(A). As in case (a) we have $f(t) = \int_t^0 e^{\lambda(t-s)} g(s) ds + e^{\lambda t} \cdot x$ for some $x \in F$ and hence $R(\lambda,A)g = f = R(\lambda,A_O)g + \varepsilon_{\lambda} 0 x$. The condition $R(\lambda,A)g \in D(A)$ implies $x - \phi_{\lambda}(x) = \Phi R(\lambda,A_O)g$. Hence $x = R(1,\phi_{\lambda})\Phi R(\lambda,A_O)g$ if $1 \in \rho(\phi_{\lambda})$ and thus (3.8) follows.

Proposition 3.6. For each $\lambda \in \mathbb{C}$ the following implications hold.

- (a) If $\lambda \in \sigma(A)$, then $1 \in \sigma(\Phi_{\lambda})$.
- (b) If $1 \in P_{\sigma}(\Phi_{\lambda})$, then $\lambda \in P_{\sigma}(A)$.

If, in addition, $\Phi(D(A_0)) = F$ or if Φ_{λ} is compact for all $\lambda \in \mathbb{C}$, then the following equivalence holds:

(c) $\lambda \in \sigma(A)$ if and only if $1 \in \sigma(\Phi_{\lambda})$.

<u>Proof</u>. (a) This implication follows immediately from Lemma 3.5(b).

- (b) If $x \neq 0$ satisfies $x \Phi_{\lambda}(x) = 0$, then $f := \epsilon_{\lambda} \Theta x \in D(A)$ and $\lambda f f' = 0$.
- (c) If $\Phi(D(A_0)) = F$, then the equation $x \Phi_{\lambda}x = \Phi R(\lambda, A_0)g$ has a