CHAPITRE

33

SÉRIES NUMÉRIQUES

33.1 CONVERGENCE D'UNE SÉRIE

§1 Définitions

Définition 1

Soit $(a_n)_{n\geq 0}$ une suite numérique. Pour $n\in\mathbb{N}$, on pose

$$A_n = a_0 + a_1 + \dots + a_n = \sum_{k=0}^n a_k.$$

- Pour $n \in \mathbb{N}$, A_n est appelée somme partielle d'indice n de la série $\sum_{n \geq 0} a_n$.
- La suite $(A_n)_{n\in\mathbb{N}}$ est la suite des sommes partielles de cette série.

L'expression $\sum_{n\geq 0} a_n$ se lit **série de terme général** a_n et n'a pour l'instant qu'un sens «formel» : nous ne parlons pas de la «valeur» de cette expression.

Définition 2

On dit qu'une série $\sum_{n\geq 0} a_n$ converge ou est convergente si la suite (A_n) de ses sommes partielles converge, c'est-à-dire a une limite finie S.

• Si c'est le cas, S est appelée somme de la série $\sum_{n\geq 0} a_n$, et l'on écrit

$$\sum_{n=0}^{+\infty} a_n = S.$$

• Dans le cas contraire, on dit que la série $\sum_{n\geq 0} a_n$ diverge ou est divergente.

Ainsi, la **nature** (convergente ou divergente) d'une série est la même, par définition, que la nature de la suite de ses sommes partielles. Quant à la somme d'une série *convergente*, ce n'est pas une notion algébrique, comme pour des sommes finies. En effet, elle repose sur la notion de limite d'une suite, notion qui fait partie de l'analyse.

Remarque

Soit (a_n) est définie pour $n \ge n_0$, où $n_0 \in \mathbb{Z}$ est fixé, on apporte les modifications suivantes: On pose $A_n = \sum_{k=n_0}^n a_k$ pour tout $n \ge n_0$ et l'on dit que la série $\sum_{n\ge n_0} a_n$ converge si, et seulement si la suite $(A_n)_{n\ge n_0}$ converge. Dans ce cas, la somme de la série $\sum_{n\ge n_0} a_n$ est, par définition, la limite de la suite

 $(A_n)_{n\geq n_0}$ que l'on note $\sum_{n=n_0}^{+\infty} a_n$.

Exemple 3

La série $\sum_{n\geq 0} 1$ diverge. En effet, pour $n\in\mathbb{N}$, la somme partielle d'ordre n est

$$A_n = \sum_{k=0}^n 1 = n + 1 \xrightarrow[n \to +\infty]{} +\infty.$$

Exemple 4

La série $\sum_{n\geq 0} \frac{1}{2^n}$ converge. En effet, pour $n\in\mathbb{N}$, la somme partielle d'ordre n est

$$A_n = \sum_{k=0}^n \frac{1}{2^k} = 2 - \frac{1}{2^{n+1}} \xrightarrow[n \to +\infty]{} 2.$$

Sa somme vaut donc 2 et on note $\sum_{n=0}^{+\infty} \frac{1}{2^n} = 2$.

§2 Série télescopique

Le théorème suivant permet de ramener l'étude d'une suite à l'étude d'une série.

Théorème 5

Série telescopique

Une suite $(a_n)_{n\in\mathbb{N}}$ est convergente si, et seulement si la série $\sum_{n\geq 0} (a_{n+1}-a_n)$ est convergente. Lorsque c'est le le cas, on a

$$\lim_{n \to +\infty} a_n = a_0 + \sum_{n=0}^{+\infty} (a_{n+1} - a_n).$$

Exemple 6

Pour $n \ge 1$, on pose $u_n = \frac{1}{n(n+1)}$. On a alors $u_n = \frac{1}{n} - \frac{1}{n+1}$ et par télescopage,

$$A_n = \sum_{k=1}^n \frac{1}{k(k+1)} = 1 - \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 1.$$

Ainsi la série $\sum_{n\geq 1} u_n$ converge et sa somme vaut donc 1 et on note $\sum_{n=1}^{+\infty} u_n = 1$.

§3 Premiers résultats

Théorème 7

Soient $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ deux séries convergentes et $\lambda\in\mathbb{C}$. Alors les séries de termes généraux a_n+b_n et λa_n sont convergentes et leur sommes sont données par

$$\sum_{n=0}^{+\infty} (a_n + b_n) = \sum_{n=0}^{+\infty} a_n + \sum_{n=0}^{+\infty} b_n.$$
$$\sum_{n=0}^{+\infty} (\lambda a_n) = \lambda \sum_{n=0}^{+\infty} a_n.$$

Théorème 8

La série $\sum\limits_{n\geq 0}a_n$ converge si, et seulement si les série $\sum\limits_{n\geq 0}\Re e(a_n)$ et $\sum\limits_{n\geq 0}\Im m(a_n)$ convergent.

Théorème 9

Condition nécessaire de convergence

Si une série $\sum_{n\geq 0} a_n$ converge, alors son terme général a_n tend vers 0 lorsque n tend vers $+\infty$.

La réciproque est fausse en général.

Exemple 10

La série $\sum_{n\geq 1} \frac{1}{n}$ est appelé **série harmonique**. Cette série diverge bien que son terme général tende vers 0. De plus, il existe $\gamma \in \mathbb{R}$ tel que lorsque $n \to +\infty$,

$$H_n = \sum_{k=1}^n \frac{1}{k} = \ln(n) + \gamma + o(1)$$

Le réel γ est appelé la constante d'Euler.

Démonstration. On utilise l'inégalité

$$\frac{1}{x+1} \le \ln(x+1) - \ln(x) \le \frac{1}{x}$$

valable pour x > 0 (à montrer avec l'égalité des accroissements finis). Ce qui donne

$$\ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} = H_n$$

Ce qui prouve déjà que $\lim_{n\to +\infty} H_n = +\infty$. De plus,

$$0 \le \ln(n+1) - \ln(n) \le H_n - \ln(n).$$

Ainsi, si l'on pose $v_n = H_n - \ln(n)$, la suite (v_n) est minorée et de plus

$$v_{n+1} - v_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) \le 0,$$

Donc (v_n) décroissante et positive converge: on note $\gamma = \lim_{n \to +\infty} H_n - \ln(n)$.

Définition 11 On dit que la série $\sum_{n\geq 0} a_n$ diverge grossièrement si la suite (a_n) ne tend pas vers 0.

§4 Exemples de référence

Définition 12 On appelle **série géométrique** toute série de la forme $\sum_{n\geq 0} ar^n$, où a et r sont deux nombres complexes fixés ; a le premier terme de cette série, et r en est la **raison**.

Théorème 13 Considérons une série géométrique $\sum_{n\geq 0} ar^n$, où a et r sont deux nombres complexes fixés et $a\neq 0$.

- 1. Si $|r| \ge 1$, alors la série $\sum_{n \ge 0} ar^n$ diverge.
- 2. Si |r| < 1, alors la série $\sum_{n \ge 0} ar^n$ converge, et sa somme est

$$\sum_{n=0}^{+\infty} ar^n = \frac{a}{1-r}.$$

Démonstration. Pour $n \in \mathbb{N}$, la somme partielle de cette série est

$$\begin{cases} S_n = \sum_{k=0}^n ar^n = a \frac{1 - r^{n+1}}{1 - r} & (\text{si } r \neq 1) \\ S_n = (n+1)a & (\text{si } r = 1) \end{cases}$$

Théorème 14 Séries de Riemann

Soit s un nombre réel fixé. Considérons la série suivante, appelée série de Riemann:

$$\sum_{n \ge 1} \frac{1}{n^s} = \sum_{n \ge 1} n^{-s}.$$

Cette série converge si s > 1 et diverge si $s \le 1$.

Démonstration. Admettons ce résultat pour l'instant, il sera démontré page ??, page ?? et page 8.

Théorème 15

Pour $z \in \mathbb{C}$,

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}.$$

§5 Reste d'une série convergente

Proposition 16

Soit $\sum_{n\geq 0} a_n$ une série et $p\in \mathbb{N}^*$. On note S_n sa somme partielle d'ordre n, alors pour tout $n\geq p$, on a

$$S_n = S_{p-1} + \sum_{k=p}^n a_k.$$

Ainsi $\sum_{n\geq 0} a_n$ est convergente si, et seulement si $\sum_{n\geq p} a_n$ est convergente. Dans ce cas, les sommes de ces deux séries sont reliées ainsi

$$\sum_{n=0}^{+\infty} a_n = S_{p-1} + \sum_{n=p}^{+\infty} a_n.$$

Définition 17

Soit $\sum_{n\geq 0} a_n$ une série *convergente*, de somme S. Si $n\in\mathbb{N}$, posons

$$S_n = \sum_{k=0}^n a_k \quad \text{et} \quad R_n = \sum_{k=n+1}^{+\infty} a_k.$$

Le nombre R_n est appelé **reste d'indice** n de la série. Ainsi, pour tout $n \in \mathbb{N}$,

$$S = \sum_{k=0}^{+\infty} a_k = S_n + R_n.$$

Remarque

On a bien sûr $\lim_{n\to\infty} R_n = 0$.

Exemple 18

Si |r| < 1, le reste de rang n de la série $\sum_{n \ge 0} ar^n$ est

$$R_n = \frac{ar^{n+1}}{1-r}.$$

6

33.2 SÉRIES À TERMES POSITIFS

Les séries à terme général réels positifs sont plus simples à étudier que les autres, à cause des deux résultats suivants.

Théorème 19

Soit $\sum a_n$ une série à termes réels positifs.

- 1. La suite (S_n) des somme partielles de cette série est croissante.
- 2. La série $\sum a_n$ à termes réels positif converge si, et seulement si la suite de ses sommes partielles est majorée, c'est-à-dire

$$\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, S_n = a_0 + a_1 + \dots + a_n \leq M.$$

Si cette condition est vérifiée, alors la somme de la série $\sum_{n>0} a_n$ est

$$\sum_{n=0}^{+\infty} a_n = \sup \left\{ \left. S_n \mid n \in \mathbb{N} \right. \right\}.$$

§1 Inégalités

Théorème 20

Critère de comparaison pour les séries à terme général positif

Soient $\sum a_n$ et $\sum b_n$ deux séries à termes réels positifs. On suppose que pour tout $n \in \mathbb{N}$,

$$0 \le a_n \le b_n$$
.

1. Si $\sum b_n$ converge, alors $\sum a_n$ aussi, et l'on a

$$\sum_{n=0}^{+\infty} a_n \le \sum_{n=0}^{+\infty} b_n.$$

2. Si $\sum a_n$ diverge, alors $\sum b_n$ diverge aussi.

Exemple 21

Soit $(\alpha_n)_{n\geq 1}$ une suite dans laquelle $\alpha_k\in[0,9]$. Alors la série $\sum_{n\geq 1}\frac{\alpha_n}{10^n}$ converge. En effet, pour $n\geq 1$,

$$0 \le \frac{\alpha_n}{10^n} \le \frac{9}{10^n}$$
 et $\sum_{n>1} \frac{9}{10^n}$ est convergente.

D'ailleurs, $\sum_{n=1}^{+\infty} \frac{\alpha_n}{10^n}$ est le réel dont l'écriture décimale est $0, \alpha_1 \alpha_2 \alpha_3 \dots$

7

Exemple 22

Séries de Riemann

Soit s un nombre réel fixé. Considérons la série suivante, appelée série de Riemann:

$$\sum_{n\geq 1} \frac{1}{n^s} = \sum_{n\geq 1} n^{-s}.$$

Cette série converge si s > 1 et diverge si $s \le 1$.

Démonstration.

• Si s = 1, c'est la série harmonique, qui diverge.

• Si s < 1, on a pour tout $n \ge 1$,

$$0 \le \frac{1}{n} \le \frac{1}{n^s}.$$

D'après le critère de comparaison des série à terme général positif, la série $\sum_{n\geq 1}\frac{1}{n^s}$ diverge.

• Supposons s > 1. Soit $n \ge 2$. Considérons la fonction $f: x \mapsto \frac{1}{x^{s-1}}$, qui est continue sur [n-1,n] et dérivable sur]n-1,n[avec $f'(x)=\frac{1-s}{x^s}$. D'après l'égalité des accroissements finis, il existe $c \in]n-1,n[$ tel que

$$\frac{1}{n^{s-1}} - \frac{1}{(n-1)^{s-1}} = \frac{1-s}{c^s} \ge \frac{1}{n^s} \ge 0.$$

Or la série télescopique

$$\sum_{n \ge 1} \left(\frac{1}{n^{s-1}} - \frac{1}{(n-1)^{s-1}} \right)$$

converge puisque la suite $\left(\frac{1}{n^{s-1}}\right)_{n\geq 1}$ converge. Ainsi, $\frac{1}{n^s}$ est positif et majoré par le terme général d'une suite convergente, donc la série $\sum_{n\geq 1}\frac{1}{n^s}$ converge.

§2 Équivalence

Théorème 23

Critère d'équivalence pour les séries à terme général positif

Soient $\sum a_n$ et $\sum b_n$ deux séries à termes réels positifs. On suppose que

$$a_n \sim b_n$$
 lorsque $n \to +\infty$.

Alors les séries $\sum a_n$ et $\sum b_n$ ont même nature.

Exemple 24

La série $\sum_{n\geq 0} \sin\left(\frac{\pi}{2^n}\right)$ est convergente.

Exemple 25

8

Séries de Riemann

Soit s un nombre réel fixé. Considérons la série suivante, appelée série de Riemann:

$$\sum_{n\geq 1} \frac{1}{n^s} = \sum_{n\geq 1} n^{-s}.$$

Cette série converge si s > 1 et diverge si $s \le 1$.

Démonstration. • Si s = 1, c'est la série harmonique, qui diverge.

• Si $s \neq 1$. Pour $n \geq 1$,

$$\frac{1}{n^{s-1}} - \frac{1}{(n+1)^{s-1}} = \frac{1}{n^{s-1}} \left(1 - \left(1 + \frac{1}{n} \right)^{1-s} \right) \underset{n \to +\infty}{\sim} \frac{1}{n^{s-1}} \frac{s-1}{n} = \frac{s-1}{n^s}.$$

Ainsi, la série à terme général positif

$$\sum_{n\geq 1}\frac{1}{n^s}$$

converge si, et seulement si la série télescopique

$$\sum_{n \ge 1} \left(\frac{1}{n^{s-1}} - \frac{1}{(n+1)^{s-1}} \right)$$

converge si, et seulement si la suite $\left(\frac{1}{n^{s-1}}\right)_{n\geq 1}$ converge, c'est-à-dire si, et seulement si s>1.

§3 Comparaison série-intégrale

Théorème 26

Critère de comparaison série-intégrale

Soit $p \in \mathbb{N}$ Soient f une fonction continue et décroissante sur un intervalle $I = [p, +\infty[$. Alors la série $\sum_{n \geq p} f(n)$ et la suite $\left(\int_p^n f(t) dt\right)_{n \geq p}$ sont de même nature.

Exemple 27

Séries de Riemann

Soit s un nombre réel fixé. Considérons la série suivante, appelée série de Riemann:

$$\sum_{n\geq 1}\frac{1}{n^s}=\sum_{n\geq 1}n^{-s}.$$

Cette série converge si s > 1 et diverge si $s \le 1$.

Démonstration. • Si s=1, c'est la série harmonique. Considérons la fonction $f:t\mapsto \frac{1}{t}$, qui est continue et strictement décroissante sur $]0,+\infty[$. Soit $n\geq 1$,

$$\int_{1}^{n} \frac{1}{t} dt = \left[\ln(t)\right]_{1}^{n} = \ln(n) \xrightarrow[n \to +\infty]{} + \infty.$$

D'après la proposition précédente, la suite $\left(\int_1^n \frac{1}{t} dt\right)_{n \in \mathbb{N}^*}$ diverge, donc la série $\sum \frac{1}{n}$ diverge.

Supposons s ≠ 1. Considérons la fonction f: t → 1/ts, qui est continue et strictement décroissante sur]0, +∞[. Soit n ≥ 2,

$$\int_{1}^{n} \frac{1}{t^{s}} dt = \left[-\frac{t^{-s+1}}{s-1} \right]_{1}^{n} = \frac{1}{s-1} \left(1 - n^{1-s} \right).$$

Ainsi

$$\lim_{n \to +\infty} \int_{1}^{n} \frac{1}{t^{s}} dt = \begin{cases} \frac{1}{s-1} & \text{si } s > 1\\ +\infty & \text{si } s < 1 \end{cases}$$

D'après la proposition précédente, la série $\sum_{n\geq 1} \frac{1}{n^s}$ converge si, et seulement si la suite $\left(\int_1^n \frac{1}{t^s} \, \mathrm{d}t\right)_{n\geq 1}$ converge si, et seulement si s>1.

33.3 SÉRIES ALTERNÉES

On appelle **série alternée** toute série à termes *réels* dont les termes sont alternativement positifs et négatifs. Le terme général d'une telle série peut donc s'écrire $u_n = (-1)^n a_n$ ou $u_n = (-1)^{n+1} a_n$, où (a_n) est une suite de réels positifs.

Exemple 28

Voici des exemples de séries alternées:

$$1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^{n+1}}{n} + \dots = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n},$$

$$1 - \frac{1}{3} + \frac{1}{5} + \dots + \frac{(-1)^n}{2n+1} + \dots = \sum_{n \ge 1} \frac{(-1)^n}{2n+1}.$$

Théorème 29

Critère spécial des séries alternées

Soit (a_n) une suite de réels positifs, décroissante et convergeant vers 0. La série alternée ci-dessous est alors convergente:

$$\sum_{n>0} (-1)^n a_n.$$

De plus, si on note S sa somme, $S_n = \sum_{k=0}^n (-1)^k a_k$ la somme partielle d'ordre n et $R_n = \sum_{k=n+1}^{+\infty} (-1)^k a_k$ le reste d'ordre n, alors pour tout entier n, on a

$$S_{2n+1} \le S \le S_{2n}$$
 et $|R_n| \le a_{n+1}$ et $(-1)^{n+1}R_n \ge 0$

autrement dit, R_n est du signe de $(-1)^{n+1}a_{n+1}$, le «premier terme négligé».

33.4 SÉRIES ABSOLUMENT CONVERGENTES

§1 Définition

Définition 30

Soit $\sum_{n\geq 0} a_n$ une série à termes réels ou complexes. On dit que cette série est **absolument** convergente si la série des modules $\sum_{n\geq 0} |a_n|$ converge.

La série $\sum_{n\geq 0} |a_n|$ est donc à termes réels positifs.

Notation

Si $\sum_{n\geq 0} a_n$ est une série absolument convergente, on peut noter

$$\sum_{n=0}^{+\infty} |a_n| < +\infty.$$

Théorème 31

Toute série absolument convergente est convergente.

Corollaire 32 Soit $\sum_{n>0} a_n$ une série absolument convergente, alors

$$\left| \sum_{n=0}^{+\infty} a_n \right| \le \sum_{n=0}^{+\infty} |a_n|.$$

Remarque

Certaines séries sont convergentes mais ne sont pas absolument convergentes. Par exemple $\sum_{n\geq 1} \frac{(-1)^n}{n}$ (appelée série harmonique alternée) est convergente mais n'est pas absolument convergente.

Théorème 33

Soit (u_n) une suite complexe et (a_n) une suite d'éléments de \mathbb{R}_+ . On suppose que

$$u_n \underset{n \to +\infty}{=} \mathcal{O}(a_n)$$
 et $\sum_{n \geq 0} a_n$ converge.

Alors la série $\sum_{n\geq 0} u_n$ est absolument convergente, et a fortiori convergente.

§2 Produit de Cauchy

Théorème 34

Soit $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ deux séries absolument convergentes. Posons, pour tout $n\in \mathbb{N}$,

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Alors, la série de terme général c_n est absolument convergente et sa somme est

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right).$$

Exemple 35

Soit $a, b \in \mathbb{C}$. Les série $\sum_{n \geq 0} \frac{a^n}{n!}$ et $\sum_{n \geq 0} \frac{b^n}{n!}$ sont absolument convergentes et

$$\sum_{n=0}^{+\infty} \frac{a^n}{n!} = e^a \quad \text{et} \quad \sum_{n=0}^{+\infty} \frac{b^n}{n!} = e^b.$$

On a alors

$$e^{a} \cdot e^{b} = \sum_{n=0}^{+\infty} \sum_{k=0}^{n} \frac{a^{k} b^{n-k}}{k!(n-k)!} = \sum_{n=0}^{+\infty} \sum_{k=0}^{n} \binom{n}{k} \frac{a^{k} b^{n-k}}{n!} = \sum_{n=0}^{+\infty} \frac{(a+b)^{n}}{n!} = e^{a+b}.$$