杭州电子科技大学学生期中试卷

考试课程	大学物理 2		考试日期 2014.11.22		成 绩		
课程号	A0715012	教师号		任课教师姓名			
考生姓名		学号(8 位)		年级		幸 亚	

(请将答案直接写在试卷上,最后两页是草稿纸,不要将答案写在草稿纸上。)

- 一、单项选择题(本大题共27分,每小题3分)
 - 1. 图(a)、(b)、(c)为三个不同的简谐振动系统. 组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同. (a)、(b)、(c)三个振动系统的 ω^2 (ω 为固有角频率)值之比为

- (A) $2:1:\frac{1}{2}$.
- (B) 1:2:4.
- (C) 2:2:1.
- (D) 1:1:2.

[]

2. 两个同周期简谐振动曲线如图所示. x₁的相位比x₂的相位

- (A) 落后π/2.
- (B) 超前π/2.
- (C) 落后π.
- (D) 超前π.

[]

- 3. 在下面几种说法中,正确的说法是:
- (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.
- (B) 波源振动的速度与波速相同.
- (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).
- (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前. (按差值不大于 π 计)

Γ 1

- 4. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中
- (A) 它的势能转换成动能.
- (B) 它的动能转换成势能.
- (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.
- (D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.

]

5. 如图, S_1 、 S_2 是两个相干光源,它们到P点的距离分别为 r_1 和 r_2 . 路径 S_1 P垂直穿过一块厚度为 t_1 ,折射率为 t_2 的分质板,路径 t_2 t_3 0分,于一个质板,其余部分可看作真空,这两条路径的光程差等于

(A)
$$(r_2 + n_2 t_2) - (r_1 + n_1 t_1)$$

(B)
$$[r_2 + (n_2 - 1)t_2] - [r_1 + (n_1 - 1)t_2]$$

(C)
$$(r_2 - n_2 t_2) - (r_1 - n_1 t_1)$$

(D) $n_2 t_2 - n_1 t_1$

[:

- 6. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则
- (A) 干涉条纹的间距变宽.
- (B) 干涉条纹的间距变窄.
- (C) 干涉条纹的间距不变, 但原极小处的强度不再为零.
- (D) 不再发生干涉现象.

-

- 7. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则
- (A) 干涉条纹的宽度将发生改变.
- (B) 产生红光和蓝光的两套彩色干涉条纹.
- (C) 干涉条纹的亮度将发生改变.
- (D) 不产生干涉条纹.

7

8. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻
璃慢慢地向上平移,则干涉条纹
(A) 向棱边方向平移,条纹间隔变小.
(B) 向棱边方向平移,条纹间隔变大.
(C) 向棱边方向平移,条纹间隔不变.
(D) 向远离棱边的方向平移,条纹间隔不变.
(E) 向远离棱边的方向平移,条纹间隔变小. []
9. 在迈克耳孙干涉仪的一条光路中,放入一折射率为 n, 厚度为 d 的透明薄片,放入后,这条光路的光程改变了
(A) $2 (n-1) d$. (B) $2nd$.
(C) $2(n-1)d+\lambda/2$. (D) nd .
(E) $(n-1) d$.
二、填空题(本大题共 25 分) 10. (本题 5 分) 一弹簧振子作简谐振动,振幅为 A, 周期为 T, 其运动方程用余弦函数表示. 若 t = 0 时, (1) 振子在负的最大位移处,则初相为; (2) 振子在平衡位置向正方向运动,则初相为; (3) 振子在位移为 A/2 处,且向负方向运动,则初相为
11. (本题 4分)一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,
其动能是总能量的(设平衡位置处势能为零). 当这物块在平衡位
置时,弹簧的长度比原长长ΔI,这一振动系统的周期为
12. (本题 3 分)一质点同时参与了三个简谐振动,它们的振动方程分别为 $x_1 = A\cos(\omega t + \frac{1}{3}\pi), \ x_2 = A\cos(\omega t + \frac{5}{3}\pi), \ x_3 = A\cos(\omega t + \pi)$ 其合成运动的运动方程为 $x = \frac{1}{3}\pi$

的质元 P_1 与位于 $x_2 = (3/8)$ m处的质元 P_2 的振动相位差为______.

- 三、计算题(本大题共48分,其中第22题和第23题任选1题完成。)
 - 17. (本题 10 分)图示一平面简谐波在 t=0 时刻的波形图,求
 - (1) 该波的波动表达式;
 - (2) P处质点的振动方程.

18. (本题 5 分) 如图所示,两列相干波在 P 点相遇. 一列波在 B 点引起的振动是 $y_{10} = 3 \times 10^{-3} \cos 2\pi t$ (SI); 另 一 列 波 在 C 点 引 起 的 振 动 是 $y_{20} = 3 \times 10^{-3} \cos (2\pi t + \frac{1}{2}\pi)$ (SI); 令 $\overline{BP} = 0.45 \text{ m}$, $\overline{CP} = 0.30 \text{ m}$,两波的传播 速度 u = 0.20 m/s,不考虑传播途中振幅的减小,求 P 点的合振动的振动方程.

19. (本题 8 分)在绳上传播的入射波表达式为 $y_1 = A\cos(\omega t + 2\pi \frac{x}{\lambda})$,入射波在 x = 0 处反射,反射端为固定端. 设反射波不衰减,求驻波表达式.

- 20. (本题 10 分)在双缝干涉实验中,波长 λ =550 nm的单色平行光垂直入射到缝间 距a=2×10⁻⁴ m的双缝上,屏到双缝的距离D=2 m. 求:
 - (1) 中央明纹两侧的两条第 10 级明纹中心的间距;
 - (2) 用一厚度为 $e=6.6\times10^{-5}$ m、折射率为n=1.58 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? (1 nm = 10^{-9} m)

21. (本题 5 分) 在牛顿环实验中,平凸透镜的曲率半径为 3.00 m,当用某种单色 光照射时,测得第k个暗环半径为 4.24 mm,第k+10 个暗环半径为 6.00 mm.求所 用单色光的波长.

- 22. (本题 10 分)用波长为 500 nm (1 nm= 10^9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上. 在观察反射光的干涉现象中,距劈形膜棱边l=1.56 cm 的A处是从棱边算起的第四条暗条纹中心.
 - (1) 求此空气劈形膜的劈尖角 θ ;
 - (2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?
 - (3) 在第(2)问的情形从棱边到 A 处的范围内共有几条明纹? 几条暗纹?

- 23. (本题 10 分) 【本题与第 22 题,任选 1 题完成】
 - (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长, λ_1 =400 nm, λ_2 =760 nm (1 nm=10⁻⁹ m). 已知单缝宽度a=1.0×10⁻² cm,透镜焦距f=50 cm. 求两种光第一级衍射明纹中心之间的距离.
 - (2) 若用光栅常数 $d=1.0\times10^{-3}$ cm的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.