EECS 427 Lecture 7: Adders Reading: 11.1 – 11.3.3

EECS 427 F08 Lecture 7

Last Time

- Sizing & Interconnect
- Today:
 - Introduction to Adders.

A	В	$C_{m{i}}$	S	C_{o}	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

EECS 427 F08

Lecture 7

3

The Binary Adder

$$S = A \oplus B \oplus C_{i}$$

$$= A\overline{B}\overline{C}_{i} + \overline{A}B\overline{C}_{i} + \overline{A}\overline{B}C_{i} + ABC_{i}$$

$$C_{0} = AB + BC_{i} + AC_{i}$$

EECS 427 F08

Lecture 7

4

Express Sum and Carry as a function of P, G, D

Define 3 new variables which ONLY depend on A, B WHY?

Generate (G) = AB

Propagate (P) = $A \oplus B$

Delete = \overline{A} \overline{B}

$$C_o(G, P) = G + PC_i$$

$$S(G, P) = P \oplus C_i$$

Can also derive expressions for S and C_o based on D and P

EECS 427 F08 Lecture 7

The Ripple-Carry Adder

Worst case delay linear with the number of bits $t_d = O(N)$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

Goal: Make the fastest possible carry path circuit

Complementary Static CMOS Full Adder

Summary So Far...

- Instruction set and general 2-stage pipeline structure of the baseline processor
 - Covered in discussion last time
- Adders are a critical part of any digital processor
 - Adder design requires an architecture/topology (ex: ripple carry) and a bit cell design (ex: std. static CMOS)
 - More architectures and cell designs...coming up

Next...

- Better full adder design
- Better adder architectures vs. ripple carry adder (RCA)
 - Carry skip adder
 - Linear Carry select adder
 - Square root carry select adder

EECS 427 F08 Lecture 7 9

Inversion Property

$$\begin{split} \bar{S}(A,B,C_{\pmb{i}}) &= S(\bar{A},\bar{B},\overline{C_{\pmb{i}}}) \\ \overline{C_{\pmb{o}}}(A,B,C_{\pmb{i}}) &= C_{\pmb{o}}(\bar{A},\bar{B},\overline{C_{\pmb{i}}}) \end{split}$$

EECS 427 F08 Lecture 7

Minimize Critical Path by Reducing Inverting Stages Along Carry Path

Exploit Inversion Property

Allows us to remove inverter in carry chain → at what cost?

A Better Structure: Mirror Adder

Mirror Adder Details

- NMOS and PMOS chains are completely symmetric.
 Maximum of 2 series transistors in carry generation
- In layout \rightarrow critical to minimize capacitance at node C_o . Reduction of junction capacitances is particularly important
- Capacitance at node $C_{\rm o}$ is composed of 4 junction capacitances, 2 internal gate capacitances, and 6 gate capacitances in connecting adder cell
- Transistors connected to C_i are closest to output
- Only optimize transistors in carry stage for speed Transistors in sum stage can be small

Carry-Bypass Adder

Idea: If (P0 and P1 and P2 and P3 = 1) then $C_{o3} = C_{i,0}$ else "delete" or "generate"

EECS 427 F08 Lecture 7

Carry-Bypass Adder (cont.)

 $t_{adder} = t_{setup} + M_{tcarry} + (N/M-1)t_{bypass} + (M-1)t_{carry} + t_{sum}$

Inner blocks do not contribute to worst-case delay since they have time to compute while bits 0-3 are propagating (assuming they have a generate or delete)

Block sizes can be made non-uniform (HOW?)

Summary

- Many topologies for adders
 - Variants on carry lookahead (not discussed) are dominant today
- For 16-bit addition, complex techniques such as carry lookahead do not offer much benefit
 - Carry select and carry bypass yield good performance in this case
- Adder cells may use mirror structure or transmission gates