Unit 1

- What is RL
 - big picture:
 - * Agent(AI) will Learn from Environment by Interacting with Environment and receive Rewards (neg/pos) as Feedback for performing Actions
 - * while not done:

```
Environment -> observation -> Agent
Agent -> action -> Environment
Environment -> reward, new observation, done -> Agent
```

- example:

boy learning to play video game

- boy is Agent,
 screen is observation
 buttons is set of possible actions
 game is environment
 rewards is points
- boy observes screen (sees avatar, coin, squid)
- boy presses right button
- game reacts by updating screen -> avatar touches coin, rewards point
 - boy learns getting coin rewards +1
 - boy presses button again and tough
 - game reacts by updating screen -> avatar touches squid and dies, reward:
 - boy learns touching squid rewards dead, and ends game
- formal definition:
 - * RL is **FRAMEWORK** for solving **CONTROL TASKS** (aka decision problems)
 - * by building **AGENTS**
 - * AGENTS that **LEARN** from the **ENVIRONMENT**
 - · LEARN by **INTERACTING** with ENVIRONMENT
 - · LEARN thru TRIAL and ERROR

- LEARN by receiving $\mathbf{REWARDS}(\text{NEGATIVE/POSITIVE})$ as $\mathbf{FEED-BACK}$

• RL Framework

- RL Process
 - * Environment -> (state St, reward Rt) -> Agent -> action At -> Environment -> (state St+1, reward Rt+1) -> Agent (loop)
 - * IOW: $S0 \rightarrow A0 \rightarrow R1,S1 \rightarrow A1 \rightarrow R2, S2 \dots Rn, Sn \rightarrow An \rightarrow Rn+1, Sn+1 \rightarrow \dots$
 - * Agent's GOAL: Maximize its **CUMULATIVE REWARD** aka **EX-PECTED RETURN**
 - * WHY IS THIS (Maximization of EXPECTED RETURN) the Agent's goal? b/c RL is based the REWARD HYPOTHES IS
- the central idea of RL: The reward hypothesis
 - \ast ALL GOALS can be described as the MAXIMIZATION of EXPECTED RETURN
 - · Example?
 - \ast TO HAVE BEST BEHAVIOR, MAXIMIZE the EXPECTED CUMULATIVE REWARD
 - · are EXPECTED CUMULATIVE REWARD same as EXPECTED RETURN? ==> YES!
- ANOTHER NAME for RL Process: MARKOV DECISION PROCESS (MDP)
- Markov property AGENT only needs CURRENT STATE to decide what ACTION to TAKE - CONTRAST with NEEDING HISTORY of ALL STATES and ACTIONS they took before
- Observations/States Space Observations/States information our AGENT gets from the ENVIRONMENT. - Example: videogame, -> Observation/State is a Screenshot (AKA Frame)
- Action Space
- Rewards and the discounting
- Task Types
- Exploration/Exploitation Tradeoff
- Solving RL Problems: 2 main approaches
 - The Policy PI
 - Policy based Methods
 - Value based Methods
- "Deep" in Deep RL

 $z(x) = \sum_{i} ^{n} w_{i}x_{i} + b = w \cdot x + b \cdot n$