제1장 항공우주공학 소개

1.1. 인간의 활동 영역 확장

- 1880년대에 이르러서야 인간의 비행에 대해 확신을 갖고 본격적인 연구가 진행됨.
- 항공기 개발은 기술을 선도하며 최고를 향해 정열을 불태우는 사람들에 의해 이루어짐.
- 인간 활동 영역의 확장 : 2차원 → 3차원

1.2 항공우주의 영역

1.2.1 우주공간의 구분

(1) 지구 기준

우주(space) 대기권(atmosphere) : 지구표면~1,000km

- 외계(outer space) : 1,000km 이상

(2) 지구와 행성과의 관계 고려 지구인접 공간, 달까지 공간, 행성 공간, 태양계 공간, 태양-은하계 공간

1.2.2 대기권의 구분

- (1) 대기권 구분 기관
 - 국제민간항공기구 ICAO(International Civil Aviation Organization): 성층권까지 규정
 - •미 공군 : 성층권 이상의 대기권 규정
- (2) 대기권 구분

대류권-----성흥권------중간권------열권------극외권
(troposphere) (stratosphere) (mesosphere) (thermosphere) (exosphere)
대류권계면 성흥권계면 중간권계면 열권계면
(tropopause) (stratopause) (mesopause) (thermopause)
11km 50km 80km 300km

- ※ 계면의 높이는 대략적인 것이며, 지역에 따라 다르다.
 - ① 대류권
 - 끊임없이 대류가 발생하여 기상현상이 나타남.
 - 제트기류
 - 대류권계면 부근(고도 약 10km)에 존재하는 100km/h 정도의 서풍
 - 항공기 순항에 이용
 - ② 성층권 하부성층권과 상부성층권으로 구분
 - 하부성층권 (10~30km) : 등온층 (여름 -52°C, 겨울 -58°C 정도)
 - 상부성층권 (30~50km)
 - 오존의 농도가 높음 → 오존층
 - 고도가 높을수록 오존의 농도는 희박해짐.

- 고도가 높아짐에 따라 온도 상승
- ③ 중간권 고도가 높아짐에 따라 온도가 낮아짐.
- ④ 열권
 - 기체가 이온화되어 전리 현상이 발생 → 전리층
 - 지상에서의 단파 전파는 전리층에서 반사됨 → 대기층을 관통하는 전파는 반드시 초단파나 극초단파여야 함.
 - 고도가 높아짐에 따라 온도가 -30°C에서 700°C까지 상승
- ⑤ 극외권
 - 공기입자의 평균 자유운동 거리가 대단히 커지며 분자 입자간의 충돌이 없어짐.

1.2.3 표준대기

(1) 표준대기의 필요성

항공기의 성능은 대기의 온도, 압력, 밀도와 같은 물리적 상태량에 따라 좌우됨.

- → 물리적 상태량은 장소, 고도에 따라 시시각각 변화
- → 항공기의 성능을 비교하기 위해서는 표준이 필요
- → 표준대기 (standard atmosphere)
- (2) 국제표준대기 (ISA: International Standard Atmosphere)
 - 국제민간항공기구(ICAO)에서 제정
 - 해면고도에서의 표준대기

온도 : 15°C = 288.16K = 59°F = 519°R

압력: 760mmHg = 1013.25mb = 14.7psi

밀도: 1.225kg/m³ = 0.002378slug/ft³

음속: 340.43m/s = 1116ft/sec

점성계수: 1.783×10⁻⁵kg/m·s = 3.72×10⁻⁵slug/ft·s

•고도에 따른 표준대기의 변화 : 표 1-1 참조

< 고도에 따른 온도의 변화 >

1.3 운행체와 항공기의 분류

1.3.1 운행체의 분류

● 운행체(vehicle) — 우주선 (space vehicle) — 우주왕복선 — 우주선 — 비행체 (air vehicle) — 항공기 — 미사일 — 지표 운행체 (surface vehicle) : 자동차, 선박 — 지중 운행체 (undersurface vehicle) : 잠수함

1.3.2 항공기의 분류

- ※ 항공기(airplane)와 비행기(aircraft)의 차이점 항공기는 넓은 개념으로 사용되며, 비행기는 동력을 가진 고정익 항공기라는 좁은 범위를 뜻한다.
- 공기보다 무거운 항공기를 이륙거리에 따라 분류
 - 일반항공기
 - 수직이착륙기 (VTOL, vertical take-off and landing)
 - 단거리이착륙기 (STOL, short take-off and landing)

1.3.3 비행기의 분류

- (1) 날개
- ① 형태 외팔보식 단엽날개
 - 지주를 갖는 외팔보식 단엽날개
 - 복엽날개
- ② 수직위치 고익 (high wing)
 - 중익 (middle wing)
 - 저익 (low wing)
- ③ 날개의 접힌 형태 접힌 부분이 없는 일반형
 - 갈매기형 (gull wing)
 - 뒤집힌 갈매기형 (inverted gull wing)
- ④ 평면 모양 직사각형 테이퍼형
 - 타원형 삼각형
 - 후퇴형 전진형

< canard >

- ※ 수평꼬리날개 | 대부분 날개의 뒤쪽 동체 끝부분에 있음.
 - └─귀날개(canard) : 삼각형 또는 후퇴날개의 경우 날개 앞쪽에 장착한 작은 수평날개
- (2) 동력장치
- ① 개수 단발기, 쌍발기, 다발기
- ② 종류 프로펠러기(왕복기관), 터보프롭기(터보축기관+프로펠러)

 - 제트기 터보 제트기, 터보팬 제트기 등
- (3) 용도 군용기 전투기, 폭격기, 정찰기, 초계기, 수송기

-민간기 - 크기 : 소형기, 중형기, 대형기

- 항속거리: 단거리기, 중거리기, 장거리기
- 속도 : 아음속기, 고아음속기, 초음속기, 극초음속기

1.4 항공 우주 역사

1.4.1 비행 기계의 꿈

- (1) 레오나르도 다빈치 (1452~1519)
 - "새는 수학적 법칙에 따라 작동하는 기계이며, 그의 모든 운동을 인간 능력으로 구체화시킬 수 있다." (1505)
- (2) 조바니 알폰소 브렐리
 - 근력과 체중과의 관계를 인간과 비교 → 인력만으로의 비행은 불가능하다.
- (3) 조지 케일리 (1773~1857)
 - 「공중 비행에 대하여」(1809, 1810)
 - → 양력, 항력의 개념 정립 → 고정익을 이용한 비행 가능성 제시
- (4) 오토 릴리엔탈 (1848~1896)
 - 「항공기술의 기초로서의 새의 비행」(1889)
 - 1890년부터 본격적인 활공실험, 2000회 이상 활공, 평균 활공거리 400m
 - → 1896년 사고로 사망
- (5) 옥타브 샤누트, 랭글리...

1.4.2 기구와 비행선

- ※ 기구와 비행선의 차이점 기구(동력×) : 비행선(동력○)
- (1) 몽골피에 형제
 - 기구 (1783) : 가열된 공기 이용
- (2) 앙리지파르
 - •비행선 (1852) : 증기기관과 프로펠러를 유선형 기구에 장착
- (3) 페르디난트 폰 제플린
 - •골조, 여러 개의 공기 자루로 이루어진 비행선 발명
 - 1차대전 중 런던 공습 → 비행기 발달로 효용가치 상실
 - 1차대전 후에도 대양 횡단에 이용
 - → 활성 기체인 수소 폭발 사고가 빈번해 자취를 감춤
 - ※ 현재의 비행선
 - 광고. 장시간 공중 관측 등에 이용
 - 수소 대신 불활성 기체인 헬륨 사용
 - 뜨거운 공기를 이용하는 초기 열기구도 스포츠용으로 널리 사용

1.4.3 비행기의 발명

- (1) 라이트 형제
 - 동력 비행 (1903.12.17) : 59초. 260m
 - 안정성에 대한 개념 부족, 조종성에 치중
 - 카나드 형태의 엘리베이터와 날개 전체를 비트는 방법으로 조종
 - ●최초의 비행기 상품화 (1908) : 미군, 유럽
- (2) 샹투스 듀몽
 - 유럽 최초의 동력비행 (1906.10) : 21초, 220m
- (3) 글렌 커티스 (1908, 300m이상 비행), 볼레리에 (1909, 영불해협 횡단) 등

1.4.4 제1차 세계대전의 영향

- (1) 제1차 세계대전
 - 목재골조에 천이나 합판을 붙인 형태 (1915)
 - <u>복엽기</u>가 주류 : 날개면적이 넓고, 운동성이 좋다. ※ 당시에는 단엽기로는 충분한 양력을 발생시키는 튼튼한 구조를 만들지 못함
 - •국가적인 대규모 연구 시작
 - ※ 미국: NACA (National Advisory Committee for Aeronautics, 1915)
 - 항공기 성능의 전반적 향상
 - 전투기, 폭격기, 정찰기 등으로 용도에 따라 비행기가 확실히 구분됨
- (2) 1920년대 ~ 1930년대
 - 대서양 횡단 (1927), 'Spirit of St. Louis'
 - 금속제의 응력외피구조 (모노코크 구조)
 - 복엽기 → 단엽기
 - 가변피치 프로펠러
 - 착륙장치

< Spirit of St. Louis >

- 플랩 : 수동조작을 대신하는 유압작동 장치의 발달로 실용화
- 과급기(supercharger) : 공기를 압축하여 기관에 공급 → 고공성능 향상
- •기밀<u>여압실</u> : 여객기 객실
- •보잉 247 (1933), 더글라스 DC-2 (1934) : 근대화 여객기의 시초

1.4.5 제2차 세계대전의 영향

- (1) 제2차 세계대전
 - 아음속이나 천음속 영역의 항공기를 개발하기 위한 모든 기술요소 확립
 - 전투기- 2차대전 초기 독일의 Messerschmitt, 영국의 Spitfire, 미국의 Hellcat, 일본의 Zero
 - 2차대전 후기 미국의 P-38 Lightening, F-51 Mustang, Corsair - 소련의 La-5
 - 독일의 Messerschmitt Bf 109, Junkers Ju-87

미국의 F6F Hellcat

일본의 Zero

미국의 P-38 Lightening

미국의 F-51 Mustang

미국의 Corsair

독일의 Bf109

독일의 He-111

독일의 Ju-88

영국의 Avro Lancaster

미국의 B-17

미국의 B-29

- 전략폭격기 독일의 Heinkel He-111, Junkers Ju-88
 - 영국의 Avro Lancaster, Handley Page HP-42
 - 미국의 B-17. B-29
- 제트기관
 - 영국의 프랭크 휘틀 특허 취득 (1920)
 - 독일의 Heinkel He-179 (1939, 제트기관을 장착한 최초의 비행기)
 - 2차대전 말기에 전선에 배치되었으나 실전무기로 보편화되지는 못함
- •레이더 영국 개발. 미국 실용화
- (2) 제2차 세계대전 이후
 - •미국, 소련 : 독일의 항공기술을 전리품으로 획득
 - 최초의 초음속 비행 : 미국의 벨 X-1 (1947)

미국의 X-1

autogyro, gyrocopter, gyroplane

- 장거리 수송기, 여객기
- 영국의 Comet 제트기관을 장착한 최초의 민간 수송기 (1952)
- (3) 현대 군용기 기술
 - 전방상향시현기 HDU (Head Up Display)
 - 헬멧장착영상장비 HMD (Helmet Mounted Display)
 - 다기능시현기 MFD (Multi-Function Display)
 - 후기연소기 AB (After Burner)
 - 초음속순항 Super Cruise
 - 추력편향 Thrust Vectoring
 - 스텔스 Stealth
 - FBW (Fly by Wire)

1.4.6 헬리콥터의 개발

- •조지케일리 시계테엽구동 모형 헬리콥터, 30m높이까지 비행 (1796)
- 에밀 & 헨리 버리너 동축로터 헬리콥터 (1909)
- 후앙 드 라 시에르바 오토자이로(자이로콥터)
 - ※ 오토자이로 로터에 동력을 가하지 않고 작은 전진속도만으로 회전날개의 자동회전에 의해 양력 발생
- •독일의 포커 양측로터 헬리콥터, 실용화에 접근 (1937)

- •미국의 시코르스키 단일로터와 꼬리로터를 채용한 VS-300 (1941) → XR-4 (최초의 실용 헬리콥터)
- 미국의 K-225 최초의 가스터빈엔진 장착 헬리콥터 (1951)

1.4.7 우주비행

- •소련의 스푸트니크 1호 (1957) 최초의 인공위성
- •미국의 NASA(National Aeronautics and Space Administration) 설립 (1958)
 - 소련과의 우주비행 경쟁을 위해 NACA를 별도 기구로 독립 승격시킴.
- 보스토크 1호 (소련, 1961)
 - 유리 가가린을 태우고 지구궤도를 한 바퀴 돌고 무사 귀화
 - 최초의 유인 우주비행
- ●루나 9호 (소련, 1966) 최초의 달 착륙, 무인 탐사
- 아폴로11호 (미국. 1969)
 - 암스트롱과 올드린 달착륙 성공
- 태양계 탐사 금성호(소련)
 - 매리너, 바이킹, 파이어니어, 보이저 (미국)
- 릴레이 1호 (미국, 1962) 최초의 실용위성, 미-일 통신
- 신콤 3호 (미국, 1964) 정지위성궤도에 진입한 최초의 통신위성
- 인텔셋 1호 (미국, 1965) 최초의 상업통신위성
- 컬럼비아호 (미국, 1981) 최초의 우주왕복선

1.4.8 한국의 항공우주 발달사

• "교과서"참조 <생략>

대한민국의 우주 개발 계획 (2017. 8. 28. 기준)	
개발기관	.KARI·대한항공·KAI ·KAIST ·ADD
우주센터	나로 우주센터
로켓 엔진	.과학로켓 1호(KSR-1)·과학로켓 2호(KSR-2)·과학로켓 3호(KSR-3)·30톤급 로켓 엔진 ·75톤급 로켓 엔진
우주 로켓	.나로호(KSLV-I) · KSLV-II (한국형 발사체, 2018년-2020년)
우리별/과학기술위성	우리별1호(1992년 8월 11일 대한민국 최초 인공위성 우리별1호가 기아나 우주센터에서 아리안4호로켓으로 발사), 우리별2호 ·우리별3호 ·과학기술위성 1호(우리별4호) ·과학기술위성 2A·2B호(나로1차,2차 실패, 2013.1.30, 나로호 3차 발사 성공)·과학기술위성 3호, 2013년 11월 21일 러시아 발사체 이용)
아리랑/다목적실용 위성	.아리랑 1호 .아리랑 2호 .아리랑 3호 (12.05.18, 01:39경 일본 다네가시마 발사장 발사 , 70cm 해상도) .아리랑 5호 (20개월 지연 후, 13.8.23, 러시아 발사체 이용, SAR 관측 가능) .아리랑 3A호 (15.3.26,러시아 아스니 발사장, 국내 최초 적외선 관측 가능) .아리랑 6호 (2020년, 譯 상업위성, 앙가라, 발사체, 탑재, 예정) .아리랑 7호 (2021년, 계획, 주야, 전천후, 지상 탐색 가능)
방송통신위성	.무궁화 1호·무궁화 2호 ·무궁화 3호 ·무궁화 5호·올레1호 (무궁화 6호)
통신해양기상위성	.천리안1호·천리안 2호
검증위성	.나로 과학위성 (13.1.30, 한국형 발사체 KSLV-1 발사 성공)
기타	.한국 우주인 배출 사업·대한민국의 인공위성 목록·대한민국의 로켓 개발 -우주 과학관