1

NCERT Physics 12.7 Q19

EE23BTECH11212 - MANUGUNTA MEGHANA SAI*

Question: Suppose the circuit in Exercise 7.18 (in Figure Fig. 1)has a resistance of 15 Ω . Obtain the average power transferred to each element of the circuit, and the total power absorbed.

Fig. 1. LCR Circuit

Solution: In Figure Fig. 1 the following information is provided:

Symbol	Value	Description
L	80m H	Inductance
С	60 μF	Capacitance
R	15 Ω	Resistance
V	230 V	Voltage
f	50 Hz	Frequency

TABLE I GIVEN PARAMETERS

Angular frequency of signal,

$$\omega = 2\pi f = 2\pi \cdot (50) = 100\pi$$

Applying Kirchoff's Voltage Law:

$$V(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$
 (1)

$$\Rightarrow V(s) = I(s) \left(R + Ls + \frac{1}{sC} \right) \tag{2}$$

Fig. 2. LCR Circuit

$$\Rightarrow I(s) = \frac{V(s)}{\left(R + Ls + \frac{1}{sC}\right)} \tag{3}$$

Average Power transferred to the resistor is given by:

$$P_R = I^2(s) \cdot R \tag{4}$$

Average Power transferred to the inductor is given by:

$$P_L = I^2(s) \cdot \text{Re}(Z_L(s)) \tag{5}$$

Average Power transferred to the capacitor is given by :

$$P_C = I^2(s) \cdot \text{Re}(Z_C(s)) \tag{6}$$

Since the reactive components of inductor and capacitor have imaginary impedances,

$$Re(Z_L) = 0 (7)$$

$$Re(Z_C) = 0 (8)$$

Average power transferred to the capacitor, P_C = Average power transferred to the inductor, P_L = 0

$$H(s) = \frac{V(s)}{I(s)} \tag{9}$$

$$H(s) = R + sL + \frac{1}{sC} \tag{10}$$

Substituting s with 1ω

$$H(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$
 (11)

$$\Rightarrow |H(j\omega)| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 (12)

Impedence Z is obtained by sustituting the numerical values from the Table I:

$$Z = 31.728 \ \Omega \tag{13}$$

Current flowing through the circuit *I* is :

$$I = \frac{V}{Z} = \frac{230}{31.728} \tag{14}$$

$$= 7.25 A$$
 (15)

Average power transferred to resistance is given by :

$$P_R = I^2 \cdot R = (7.25)^2 \times 15 \tag{16}$$

$$= 788.44 W$$
 (17)

Total power absorbed by circuit:

$$= P_R + P_C + P_L \tag{18}$$

$$= 788.44 + 0 + 0 \tag{19}$$

$$= 788.44 \ W$$
 (20)

Total power absorbed by circuit is 788.44W

Fig. 3. Impedance vs ω