Assignment 1 MAT 315

Q2a: Prove (2) \iff (2') \implies "

Let P(n) be the statement $1, \ldots n \in B$. P(1) is true since $1 \in B$. If P(n) is true, then we have that $1, \ldots n \in B$, so $1 \ldots n, n+1 \in B$ and so P(n+1) is true. P(1) is true and $P(n) \Longrightarrow P(n+1)$, so P(n) is true for all $n \in \mathbb{N}$ by (2). Thus $1, \ldots n \in B$ for all $n \in \mathbb{N}$, so $B = \mathbb{N}$.

Given $P(1) \dots P(n)$, take $B = \{n \in \mathbb{N} : P(1) \dots P(n) true\}$. Then we have that $1 \in B$, since P(1) is true, and if $1, \dots n \in B$ then $P(1), \dots P(n)$ is true so P(n+1) is true and so $n+1 \in B$ hence $B = \mathbb{N}$. So P(n) true for all $n \in N$.

Q2b:

Let $B = \{n \in \mathbb{N} : P(1) \dots P(n) \text{ true}\}$. Since P(1) is true by assumption, we have that $1 \in B$. Since $P(n) \Longrightarrow P(n+1)$, by our assumption (2') we know that if $1 \dots n \in B$ then $n+1 \in B$, so $B = \mathbb{N}$. Thus P(n) is true for all $n \in \mathbb{N}$.