Graphes

6. Coloration

Solen Quiniou

solen.quiniou@univ-nantes.fr

IUT de Nantes

Année 2021-2022 - Info 1 (Semestre 2)

[Mise à jour du 31 janvier 2022]

Plan du cours

- Introduction
- Stables et cliques
- Coloration des sommets
- Coloration des arêtes
- 5 Théorème des quatre couleurs

Coloration de graphes : exemples

- Organisation d'une session d'examens en un minimum de jours et sans créer de conflits pour des étudiants inscrits à plusieurs examens
 - Sommets: examens
 - Arête entre x et y si les examens x et y ne peuvent pas avoir lieu le même jour
 - → Couleurs : jours des examens

Allocation de fréquences GSM

- Sommets : émetteurs radio
- ► Arête entre *x* et *y* si le signal de *x* perturbe *y* ou réciproquement
- → Couleurs : fréquences radio

Plan du cours

- Introduction
- Stables et cliques
- Coloration des sommets
- Coloration des arêtes
- 5 Théorème des quatre couleurs

Stables et cliques

Définitions : stable et nombre de stabilité

Soit G = (S, A) un graphe non-orienté

- Stable de G : sous-ensemble V ⊂ S qui ne comporte que des sommets non adjacents entre eux
- → V : sous-graphe sans arête
- Nombre de stabilité de G: cardinal du plus grand stable, noté $\alpha(G)$

Stables et cliques

Définitions : stable et nombre de stabilité

Soit G = (S, A) un graphe non-orienté

- Stable de G : sous-ensemble $V \subset S$ qui ne comporte que des sommets non adjacents entre eux
- ightarrow V : sous-graphe sans arête
- Nombre de stabilité de G: cardinal du plus grand stable, noté $\alpha(G)$

Définitions : clique et ordre de la plus grande clique

Soit G = (S, A) un graphe non-orienté

- Clique d'ordre k de G : sous-graphe simple et complet composé de k sommets
- → Tous les sommets sont adjacents entre eux
 - Ordre de la plus grande clique de G : noté $\omega(G)$

Exemple

- Exemples de stables : {1,2}, {2,4}, {2,5}, {3}...
- \longrightarrow Nombre de stabilité : $\alpha(G) = 2$

Exemple

- Exemples de stables : {1,2}, {2,4}, {2,5}, {3}...
- \longrightarrow Nombre de stabilité : $\alpha(G) = 2$
 - Exemples de cliques d'ordre 3 : {1,3,4} et {1,4,5}
- \longrightarrow Ordre de la plus grande clique : $\omega(G) = 3$

Plan du cours

- Introduction
- Stables et cliques
- 3 Coloration des sommets
- Coloration des arêtes
- Théorème des quatre couleurs

Coloration des sommets d'un graphe

Définitions : coloration de sommets et nombre chromatique

- Coloration des sommets d'un graphe G : affectation d'une couleur à chaque sommet du graphe de telle sorte que deux sommets adjacents aient des couleurs différentes
- \rightarrow Coloration avec k couleurs \Leftrightarrow partition de l'ensemble des sommets en k stables
 - Nombre chromatique de G: nombre minimal de couleurs nécessaires pour colorier les sommets du graphe (noté $\gamma(G)$)

Coloration des sommets d'un graphe

Définitions : coloration de sommets et nombre chromatique

- Coloration des sommets d'un graphe G : affectation d'une couleur à chaque sommet du graphe de telle sorte que deux sommets adjacents aient des couleurs différentes
- \rightarrow Coloration avec k couleurs \Leftrightarrow partition de l'ensemble des sommets en k stables
 - Nombre chromatique de G: nombre minimal de couleurs nécessaires pour colorier les sommets du graphe (noté $\gamma(G)$)

Encadrement du nombre chromatique

Soit G = (S, A) un graphe

On a alors l'encadrement suivant :

$$\omega(G) \leq \gamma(G) \leq n + 1 - \alpha(G)$$

Exemple

• Partition des sommets en 3 stables : {1,2}, {3,5} et {4}

Exemple

• Partition des sommets en 3 stables :

 $\{1,2\}, \{3,5\} \text{ et } \{4\}$

- Remarques
 - Comme l'ordre de la (des) plus grandes cliques est ω(G) = 3, on ne peut pas utiliser moins de 3 couleurs
 - On aurait aussi pu colorier le sommet 2 en rouge; ainsi, il n'existe pas forcément une coloration minimale unique

Algorithme de coloration des sommets

Remarque

- Coloration des sommets d'un graphe : « problème difficile »
- → Nombre de sommets grand et graphe avec beaucoup d'arêtes ⇒ pas d'algorithme performant pour déterminer la solution minimale
- Algorithme de Welsh et Powell : solution satisfaisante mais pas forcément minimale

Algorithme de coloration des sommets

Remarque

- Coloration des sommets d'un graphe : « problème difficile »
- → Nombre de sommets grand et graphe avec beaucoup d'arêtes ⇒ pas d'algorithme performant pour déterminer la solution minimale
- Algorithme de Welsh et Powell : solution satisfaisante mais pas forcément minimale

Algorithme 2 : Algorithme de Welsh et Powell

```
Données : Graphe non-orienté G = (S, A)
```

- 1 Classer les sommets dans l'ordre décroissant de leur degré; // Initialisation
- 2 Attribuer à chacun des sommets son numéro d'ordre dans la liste précédente;

3 tant que tous les sommets du graphe ne sont pas coloriés faire

- En parcourant la liste dans l'ordre, attribuer une couleur c_i non encore utilisée au premier sommet non encore colorié;
 - Attribuer cette couleur c_i aux sommets non encore coloriés et non adjacents à un sommet de cette couleur;

6 fin tq

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre								
Couleur								

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre		1						
Couleur								

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre		1		2				
Couleur								

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre		1		2		3		
Couleur								

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre		1		2		3		4
Couleur								

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1		2		3		4
Couleur								

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2		3		4
Couleur								

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3		4
Couleur								

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1						

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1						

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1						

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1						

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1						

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1						

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1			1			

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1			1		1	

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1			1		1	

1 Itération 2 : attribution de la couleur 2

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1			1		1	

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1			1		1	

1 ltération 2 : attribution de la couleur 2

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1		2	1		1	

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1			1		1	

1 Itération 2 : attribution de la couleur 2

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1		2	1		1	

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1			1		1	

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1		2	1		1	

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1			1		1	

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1		2	1		1	

Initialisation de l'algorithme

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur								

Itération 1 : attribution de la couleur 1

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur		1			1		1	

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1		2	1		1	

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1		2	1		1	

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1		2	1	3	1	

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1		2	1	3	1	

So	mmet	1	2	3	4	5	6	7	8
De	gré	2	5	2	5	2	5	2	5
Ord	dre	5	1	6	2	7	3	8	4
Co	uleur	2	1	3	2	1	3	1	

Itération 3 : attribution de la couleur 3

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1	3	2	1	3	1	

1 Itération 4 : attribution de la couleur 4

	Sommet	1	2	3	4	5	6	7	8
ſ	Degré	2	5	2	5	2	5	2	5
ſ	Ordre	5	1	6	2	7	3	8	4
ſ	Couleur	2	1	3	2	1	3	1	

12/17

Itération 3 : attribution de la couleur 3

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1	3	2	1	3	1	

1 Itération 4 : attribution de la couleur 4

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1	3	2	1	3	1	4

12/17

Itération 3 : attribution de la couleur 3

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1	3	2	1	3	1	

Itération 4 : attribution de la couleur 4

Sommet	1	2	3	4	5	6	7	8
Degré	2	5	2	5	2	5	2	5
Ordre	5	1	6	2	7	3	8	4
Couleur	2	1	3	2	1	3	1	4

→ Remarque

La coloration obtenue est également une coloration minimale puisque la plus grande clique est {2,4,6,8}. D'après la formule de l'encadrement du nombre chromatique, comme ω(G) = 4, il faut au minimum 4 couleurs pour colorier ce graphe.

Plan du cours

- Introduction
- Stables et cliques
- Coloration des sommets
- Coloration des arêtes
- 5 Théorème des quatre couleurs

Coloration des arêtes d'un graphe

Définitions : coloration des arêtes, indice chromatique...

- Coloration des arêtes d'un graphe G: affectation d'une couleur à chaque arête du graphe de telle sorte que deux arêtes adjacentes aient des couleurs différentes
- Indice chromatique de G: nombre minimal de couleurs nécessaires pour colorier les arêtes du graphe (noté i(G))
- Graphe aux arêtes de G (ou graphe adjoint), noté G', défini par :
 - ▶ sommet de G' : arête de G
 - arête de G' entre deux sommets ssi les deux arêtes de G (correspondant aux sommets de G') sont adjacentes dans G

Coloration des arêtes d'un graphe

Définitions : coloration des arêtes, indice chromatique...

- Coloration des arêtes d'un graphe G : affectation d'une couleur à chaque arête du graphe de telle sorte que deux arêtes adjacentes aient des couleurs différentes
- Indice chromatique de G: nombre minimal de couleurs nécessaires pour colorier les arêtes du graphe (noté i(G))
- Graphe aux arêtes de G (ou graphe adjoint), noté G', défini par :
 - ▶ sommet de G' : arête de G
 - arête de G' entre deux sommets ssi les deux arêtes de G (correspondant aux sommets de G') sont adjacentes dans G

Algorithme de coloration des arêtes

- Utilisation de l'algorithme de coloration des sommets sur le graphe aux arêtes G', pour colorier ses sommets
- \rightarrow Une fois la coloration des sommets réalisée sur G', il suffit de colorier les arêtes de G de la même couleur que les sommets correspondants de G'

Exemple

• Graphe aux arêtes colorié

Graphe initial avec arêtes coloriées

Exemple

• Graphe aux arêtes colorié

• Graphe initial avec arêtes coloriées

15/17

Exemple

• Graphe aux arêtes colorié

Graphe initial avec arêtes coloriées

Plan du cours

- Introduction
- Stables et cliques
- Coloration des sommets
- Coloration des arêtes
- 5 Théorème des quatre couleurs

Théorème des quatre couleurs

Définition : graphe planaire

Graphe planaire : graphe que l'on peut dessiner sans que ses arêtes ne se croisent

Théorème des quatre couleurs

Définition : graphe planaire

Graphe planaire : graphe que l'on peut dessiner sans que ses arêtes ne se croisent

Théorème

- On peut colorier les sommets d'un graphe planaire (et sans boucle) en utilisant au plus quatre couleurs
- → Les arêtes auront toutes des extrémités de couleurs différentes

Théorème des quatre couleurs

Définition : graphe planaire

Graphe planaire : graphe que l'on peut dessiner sans que ses arêtes ne se croisent

Théorème

- On peut colorier les sommets d'un graphe planaire (et sans boucle) en utilisant au plus quatre couleurs
- → Les arêtes auront toutes des extrémités de couleurs différentes

http://commons.wikimedia.org/wiki/File:
Carte France geo 4 couleurs.png

- Théorème formulé par Guthrie en 1852 pour colorier une carte d'Angleterre
- Preuve du théorème faite en 1976, par Appel et Haken, à partir de 1 478 cas critiques
- → Preuve faite en utilisant un ordinateur, pour la première fois