برقی ادوار

خالد خان يوسفز کی کامسيٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

V	کاد بیاچ	ی پہلی کتاب م	ميرأ
1	رساده تفرقی مساوات	•	1
	نمونه کثی		
	$y'=f(x,y)$ کاجیو میٹریائی مطلب میدان کی سمت اور تر کیب پولر۔ $\dots\dots\dots$		
22	قابل عليحد گى ساده تفرقی مساوات	1.3	
15		سوال س	2

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال ستعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور کمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

28 اكتوبر 2011

باب 1

در جهاول ساده تفرقی مساوات

عموماً طبعی تعلقات کو تفرقی مساوات کی صورت میں لکھا جا سکتا ہے۔اسی طرح عموماً انجنیئر نگ مسائل تفرقی مساوات کی صورت میں پیش آتے ہیں۔اسی لئے اس کتاب کی ابتدا تفرقی مساوات اور ان کے حل سے کی جاتی ہے۔

سادہ تفرق مساوات اسے مراد ایس تفرق مساوات ہے جس میں ایک عدد آزاد متغیرہ پایا جاتا ہو۔اس کے برعکس جزوی تفرق مساوات کا حل نسبتاً مشکل خابت ہوتا ہے۔ جزوی تفرق مساوات کا حل نسبتاً مشکل خابت ہوتا ہے۔

کسی بھی حقیقی صورت حال یا مشاہدے کی نقشہ کشی کرتے ہوئے اس کا ریاضی نمونہ 3 حاصل کیا جا سکتا ہے۔ سائنس کے مختلف میدان مثلاً انجنیئر نگ، طبیعیات، علم کیمیا، حیاتیات، کمپیوٹر وغیرہ میں در پیش مسائل کی صحیح تفرتی مساوات کا حصول اور ان کے حل پر تفصیلاً غور کیا جائے گا۔

باب-20 میں سادہ تفرقی مساوات کا حل بذریعہ کمپیوٹر پیش کیا جائے گا۔ یہ باب بقایا کتاب سے مکمل طور پر علیحدہ رکھا گیا ہے۔ یوں کتاب کے پہلے دو باب کے بعد باب-20 پڑھا جا سکتا ہے۔

پہلے باب کا آغاز درجہ اول کے سادہ تفرقی مساوات کے حصول، مساوات کے حل اور حل کی تشریح سے کیا جاتا ہے۔ایس ہے۔پہلے درجے کی سادہ تفرقی مساوات میں صرف ایک عدد نا معلوم تفاعل کا ایک درجی تفرق پایا جاتا ہے۔ایس

ordinary differential equation¹ partial differential equation²

mathematical model³

مساوات میں ایک سے زیادہ در ہے کا تفرق نہیں پایا جاتا۔ نا معلوم تفاعل کو y(x) یا y(x) سے ظاہر کیا جائے گا جہال غیر تابع متغیرہ t وقت کو ظاہر کرتی ہے۔ باب کے اختتام میں تفرقی مساوات کے حل کی وجودیت t اور یکتائی t پکتائی t پر غور کیا جائے گا۔

تفرقی مساوات سجھنے کی خاطر ضروری ہے کہ انہیں کاغذ اور قلم سے حل کیا جائے البتہ کمپیوٹر کی مدد سے آپ حاصل جواب کی درنگی دیکھنا چاہیں تو اس میں کوئی حرج نہیں ہے۔

1.1 نمونه کشی

شکل 1.1 کو دیکھیے۔ انجنیئر نگ مسلے کا حل تلاش کرنے میں پہلا قدم مسلے کو مساوات کی صورت میں بیان کرنا ہے۔ مسلے کو مختلف متغیرات اور تفاعل کے تعلقات کی صورت میں لکھا جاتا ہے۔ اس مساوات کو ریاضی نمونہ ⁶ کہا جاتا ہے۔ نمونہ جاتا ہے۔ ریاضی نمونے کا ریاضیاتی حل اور حل کی تشریح کے عمل کو نمونہ کشمی ⁷ کہا جاتا ہے۔ نمونہ کشی کی صلاحیت تجربے سے حاصل ہوتی ہے۔ کسی بھی نمونہ کی حل میں کمپیوٹر مدد کر سکتا ہے البتہ نمونہ کشی میں کمپیوٹر عموماً کوئی مدد فراہم نہیں کر پاتا۔

عموماً طبعی مقدار مثلاً اسراع اور رفتار در حقیقت میں تفرق کو ظاہر کرتے ہیں لہذا بیشتر ریاضی نمونے مختلف متغیرات اور تفاعل کے تفرق پر مشمل ہوتے ہیں جنہیں تفرق مساوات 8 کہا جاتا ہے۔ تفرقی مساوات کے حل سے مراد ایسا تفاعل ہے جو اس تفرقی مساوات پر پورا اترتا ہو۔ تفرقی مساوات کا حل جانتے ہوئے مساوات میں موجود متغیرات اور تفاعل ہے جو اس تفرق مساوات پر غور سے پہلے چند بنیادی تصورات تفاعل کے ترسیم کھنچے جا سکتا ہے اور ان پر غور کیا جا سکتا ہے۔ تفرقی مساوات پر غور سے پہلے چند بنیادی تصورات تفکیل دیتے ہیں جو اس باب میں استعال کی جائیں گی۔

existence⁴

uniqueness⁵

 $mathematical model^6$

modeling⁷

differential equation⁸

1.1. نمونه کثی

سادہ تفوقی مساوات سے مراد ایک مساوات ہے جس میں نا معلوم تفاعل کی ایک درجی یا بلند درجی تفرق پائے جاتے ہوں۔نا معلوم تفاعل کو y(t) یا y(t) یا جائے گا جہاں غیر تابع متغیر t وقت کو ظاہر کرتی ہیں۔درج ہے۔اس مساوات میں نا معلوم تفاعل y اور غیر تابع متغیرہ x (یا t) کے تفاعل بھی پائے جا سکتے ہیں۔درج ذیل چند سادہ تفرقی مساوات ہیں

$$(1.1) y' = \sin x$$

$$(1.2) y' + \frac{6}{7}y = 4e^{-\frac{3}{2}x}$$

$$(1.3) y''' + 2y' - 11y'^2 = 0$$

جہال
$$y'' = \frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$$
 ، $y' = \frac{\mathrm{d} y}{\mathrm{d} x}$ جہال جہاں ہیں۔

دو یا دو سے زیادہ متغیرات کے تابع تفاعل کے تفرق پر مشتمل مساوات کو جزوی تفرقی مساوات کہتے ہیں۔ان کا حل سادہ تفرقی مساوات سے زیادہ مشکل ثابت ہوتا ہے۔ جزوی تفرقی مساوات پر بعد میں غور کیا جائے گا۔غیر تابع متغیرات میں اور سی پر مخصر تابع تفاعل (u(x,y) کی جزوی تفرقی مساوات کی مثال درج ذیل ہے۔

(1.4)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = u$$

n درجی تفرقی مساوات سے مراد الی مساوات ہے جس میں نا معلوم نفاعل y کی بلند تر تفرق n درجے کی ہو۔ یوں مساوات 1.1 اول درجے کی مساوات y مساوات y مساوات y مساوات ہے۔ کی مساوات ہے۔

اس باب میں پہلے درجے کی سادہ تفرقی مساوات پر غور کیا جائے گا۔الی مساوات میں اکائی درجہ تفرق سن کی علاوہ نا معلوم نقاعل ہی اور غیر تابع متغیرہ کا کوئی بھی نقاعل پایا جا سکتا ہے۔ایک درجے کی سادہ تفرقی مساوات کو

$$(1.5) F(y,y',x) = 0$$

یا

$$(1.6) y' = f(x,y)$$

کھا جا سکتا ہے۔ مساوات 1.5 خفی 9 صورت کہلاتی ہے جبکہ مساوات 1.6 صویع 10 صورت کہلاتی ہے۔ یوں خفی مساوات $y'=2\frac{y^3}{x^2}$ کی صرح صورت کہاتی ہے۔

implicit⁹ explicit¹⁰

حل كاتصور

ایک تفاعل

$$(1.7) y = h(x)$$

یہاں کھلے وقفے سے مراد ایسا وقفہ ہے جس کے آخری سر a اور b وقفے کا حصہ نہ ہوں۔کھلا وقفہ لا متناہی ہو سکتا ہے مثلاً میں $-\infty \leq x \leq \infty$ یا $a \leq x \leq \infty$ اور یا $a \leq x \leq \infty$ یعنی حقیقی محور۔

مثال 1.1: ثابت کریں کہ وقفہ $\infty \leq x \leq \infty$ پر تفاعل y = cx تفرقی مساوات y = y'x کا حل y = y'x کا حل جہاں z ایک اختیاری مستقل z ہے۔

حل: پورے وقفے پر بیا جاتا ہے۔ان طرح اس کا تفرق y'=c بھی پورے وقفے پر بیا جاتا ہے۔ان بنیادی شرائط پر پورا اتر نے کے بعد تفاعل اور تفاعل کے تفرق کو دیے گئے تفرقی مساوات میں پر کرتے ہیں۔

$$y = cx$$
$$(cx) = (c)x$$

مساوات کے دونوں اطراف برابر ہیں للذا y=cx ویے گئے تفرقی مساوات کا حل ہے۔

open interval¹¹

defined¹²

solution curve¹³

 $^{{\}rm arbitrary\ constant}^{14}$

1.1. نمونه کشي

شکل 1.2: مثال 1.2 کے خط۔

y=cost مثال 1.2: عل بذریعہ کمل: مساوات y'=cost عاصل بزریعہ کمل عاصل کیا جا سکتا ہے لینی y'=cost عاصل ہوتا ہے جو نسل حل t=c-t جس سے t=c-t عاصل ہوتا ہے جو نسل حل t=c-t جس سے t=c-t عاصل میں t=c-t بر کرتے t=c=t علی کی ہر انفرادی قیت تفرقی مساوات کا ایک منفر د حل دیتا ہے۔ یوں t=c=t عاصل عل ہوتا ہے۔ شکل 1.2 میں t=c=t عاصل عل جو نہیں۔

مثال 1.3: قوت نمائی تفاعل $y=ce^{kt}$ کے تفرق سے درج ذیل تفرق مساوات حاصل ہوتی ہے۔ $y'=rac{\mathrm{d}y}{\mathrm{d}t}=kce^{kt}=ky$

یوں $y = ce^{kt}$ تو تو تمائی y' = ky کی صورت میں $y = ce^{kt}$ توت نمائی اضافے کی نمونہ کثی کرتی ہے۔ جر سوموں کی تعداد اس کلیے کے تحت بڑھتی ہے۔ وسیع رقبے کے ملک میں کم انسانی solution family 15

y' = -0.15ر الف) قوت نمائی گھٹاو۔مساوات

(الف) قوت نما کی اضافہ۔مساوات y'=0.15y کا حل۔

شكل 1.3: قوت نمائى تفرقى مساوات كى نسل حل_

آبادی اس کلیے کے تحت بڑھتی ہے جہاں اس کو قانون مالتُھس 16 کہا 17 جاتا ہے۔ متعقل c کے مختلف مثبت قیمتوں اور k=0.15 کے خطوط کو شکل 1.3-الف میں دکھایا گیا ہے۔

منفی k کی صورت میں $y=ce^{kt}$ توت نمائی گھٹاہ مثلاً تابکاری تعلیل $v=ce^{kt}$ کو ظاہر کرتی ہے۔ متنقل k کتنف مثبت قیتوں اور $v=ce^{kt}$ کے خطوط کو شکل $v=ce^{kt}$ کے مسلے پر مزید غور کیا گیا ہے۔ $v=ce^{kt}$ کے مسلے پر مزید غور کیا گیا ہے۔

درج بالا مثالوں میں ہم نے دیکھا کہ درجہ اول سادہ تفرقی مساوات کے حل میں ایک عدد اختیاری مستقل c پایا جاتا ہے۔ تفرقی مساوات کا ایبا حل جس میں اختیاری مستقل c پایا جاتا ہو عمومی حلc کہلاتا ہے۔

(بعض او قات c کمل طور اختیاری مستقل نہیں ہوتا بلکہ اس کی قیت کو کسی وقفے پر محدود کرنا لازم ہوتا ہے۔)

ہم یکتا 20 عمومی حل حاصل کرنے کی تراکیب سیکھیں گے۔

Malthus' law¹⁶

¹⁷ يه قانون انگلتاني ماهر معاشيات طامس روبرث مالتھس (1834-1766) كے نام ہے۔

radioactive decay 18

general solution 19

 $[\]mathrm{unique}^{20}$

1.1. نمونه کثی

جیومیٹریائی طور پر سادہ تفرقی مساوات کا عمومی حل لا متناہی حل کے خطوط پر مشتمل ہوتا ہے جہاں کی ہر انفرادی تیمت منفر د خط دیتی ہے۔ عمومی حل میں c=0 یا c=-3.501 تیمت منفر د خط دیتی ہے۔ عمومی حل میں کوئی اختیاری مستقل نہیں پایا جاتا۔

عام طور عمومی حل قابل حصول ہوتا ہے جس میں c کی مخصوص قیت پر کرتے ہوئے درکار جبری حل حاصل کیا جا سکتا ہے۔ بعض او قات تفر قی مساوات ایبا حل بھی رکھتا ہے جس کو عمومی حل سے حاصل نہیں کیا جا سکتا۔ایسے حل کو نادر²² حل کہتے ہیں۔صفحہ 12 پر سوال 1.16 میں نادر حل کی مثال دی گئی ہے۔

ابتدائي قيمت سوال

عام طور پر عمومی حل میں ابتدائی قیمتی x_0 x_0 اور y_0 پر کرنے سے جبری حل حاصل کیا جاتا ہے جہاں x_0 عام طور پر اس کا مطلب ہے کہ خط حل نقطہ (x_0,y_0) سے گررتا ہے۔سادہ تفرقی مساوات اور مساوات کے ابتدائی قیمتوں کو ابتدائی قیمت سوال x_0 کہا جاتا ہے۔ یوں صرح سادہ تفرقی مساوات کی صورت میں ابتدائی قیمت سوال درج ذیل کھا جائے گا۔

(1.8)
$$y' = f(x, y), y(x_0) = y_0$$

مثال 1.4: ابتدائی قیمت سوال: درج ذیل ابتدائی قیمت سوال کو حل کریں۔ $y'=5y, \qquad y(0)=3.2$

حل: تفرقی مساوات کو $y = ce^{5x}$ کھتے ہوئے دونوں اطراف کا کمل لینے سے $v = ce^{5x}$ عمومی حل حاصل ہوتا ہے جس میں v = 0 کھا جائے گا جس سے ہوتا ہے جس میں v = 0 کھا جائے گا جس سے v = 0 کھا جائے گا جس سے v = 0 ماتا ہے۔ یوں ابتدائی قیمت سوال کا جبری حل $v = 3.2e^{5x}$ ہے۔

particular solution²¹

singular solution²² initial values²³

initial value problem²⁴

نمونه کشی پر مزید بحث

نمونہ کئی کو مثال کی مدد سے بہتر سمجھا جا سکتا ہے للذا ایسا ہی کرتے ہیں۔ایسا کرتے ہوئے پہلی قدم پر مسئلے کو تفرقی مساوات کا جامہ پہنایا جائے گا۔دوسری قدم پر تفرقی مساوات کا عمومی حل حاصل کیا جائے گا۔ تیسرے قدم پر ابتدائی معلومات استعال کرتے ہوئے جبری حل حاصل کیا جائے گا۔ آخر میں چوتھا قدم حاصل جواب کی تشریح ہوگی۔

مثال 1.5: تابکار مادے کی موجودہ کمیت 2 mg ہے۔اس کی کمیت مستقبل میں دریافت کریں۔

طبعی معلومات: تجربے سے معلوم کیا گیا ہے کہ کسی بھی کمھے پر تابکاری تحلیل کی شرح اس کمھے پر موجود تابکار مادے کی کمیت کے راست تناسب ہے۔

• پہلا قدم: مسئلے کو مساوات کی صورت ہیں لکھتے ہیں۔ کمیت کو y سے ظاہر کرتے ہیں۔ یوں کسی بھی لمجے پر تابکاری کی شرح سے مراد $\frac{\mathrm{d}y}{\mathrm{d}t} = y' = \frac{\mathrm{d}y}{\mathrm{d}t}$ تابکاری کی شرح سے مراد $y' = \frac{\mathrm{d}y}{\mathrm{d}t}$ ہوت کہ تابکاری کی شرح سے مراد $y' = \frac{\mathrm{d}y}{\mathrm{d}t}$ ہوت کہ تابکاری کی شرح سے عراض معلومات کو درج ذیل تفرقی مساوات کی صورت میں لکھا جائے گا جہاں تناسی مستقل x مثبت قیمت ہے۔

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -ky$$

مثال 1.3 میں آپ نے دیکھا کہ تفرقی مساوات میں منفی کی علامت سے تفرقی مساوات کا قوت نمائی گھٹتا ہوا حل حاصل ہوتا ہے۔ چونکہ تابکاری سے تابکار مادے کی کمیت گھٹتی ہے المذا درج بالا مساوات میں منفی کی علامت استعال کی گئی ہے۔ تابکار اشیاء کے مستقل k کی قیستیں تجربے سے حاصل کئے جاتے ہیں مثلاً دیٹیم $k=1.4\times 10^{-11}\,\mathrm{s}^{-1}$ کے جاتے ہیں مثلاً دیٹیم $k=1.4\times 10^{-11}\,\mathrm{s}^{-1}$

ابتدائی کمیت y(0)=2 mg ہے۔ابتدائی وقت کو t=0 لیتے ہوئے ابتدائی معلومات y(0)=2 mg ابتدائی کمیت y(0)=2 mg ہوئے گی۔ (غیر تابع متغیر وقت t کی بجائے کچھ اور مثلاً x ہونے کی صورت میں بھی $y(x_0,y_0)$ یا $y(x_0)=y_0$ کو ابتدائی معلومات ہی کہا جاتا ہے۔اسی طرح تابع متغیرہ y کی قیمت $t\neq 0$ پر معلوم

 $radium^{25}$

1.1. نمونه کثی

ہو کتی ہے مثلاً $y(x_n)=y_n$ اور الی صورت میں $y(x_n)=y_n$ ابتدائی معلومات کہلاتی ہے۔ یوں دیے مسلے سے درج ذیل ابتدائی قیمت سوال حاصل ہوتا ہے۔

(1.10)
$$y' = -ky, \qquad y(0) = 2 \,\mathrm{mg}$$

• دوسرا قدم: ابتدائی قیت سوال کا عمومی حل درج ذیل ہے جہاں c اختیاری مستقل جبکہ k کی قیت تابکار مادے پر مخصر ہے۔

$$(1.11) y = c^{-kt}$$

ابتدائی معلومات کے تحت t=0 پر $y=2\,\mathrm{mg}$ ہے جس کو درج بالا مساوات میں پر کرتے ہوئے c=2 حاصل ہوتا ہے۔

$$(1.12) y = 2e^{-kt} (k > 0)$$

جبری حل کو واپس تفرقی مساوات میں پر کرتے ہوئے ثابت کریں کہ حاصل حل درست ہے۔اسی طرح جبری حل سے ابتدائی معلومات حاصل کریں۔

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -kce^{-kt} = -ky$$
$$y(0) = 2e^{-0} = 2$$

• حاصل جبری حل کی تشریخ: مساوات 1.12 کو شکل 1.4 میں دکھایا گیا ہے جہاں k=2.5 لیا گیا ہے۔ کمحہ $y(\infty)=y$ پر بیہ مساوات تابکار مادے کی درست کمیت دیتا ہے۔ کمحہ لا متناہی پر تابکار مادے کی کمیت t=0 $2e^{-k\infty}=0$

سوالات

سوالات 1.1 تا 1.8 کے جوابات بذریعہ تکمل حاصل کریں باکسی تفاعل کی تفرق سے جواب حاصل کریں۔

k=2.5 جبال 1.5 منتخی تابکاری تحلیل $k=2e^{-kt}$ جبال 1.5 منتخی تابکاری تحلیل 1.5 بیا ہے۔

$$y' + 3\sin 2\pi x = 0$$
 :1.1 $y' + 3\sin 2\pi x = 0$

$$y = \frac{3}{2\pi}\cos 2\pi x + c \quad : \mathcal{P}$$

$$y' + xe^{-x^2} = 0$$
 :1.2 سوال

$$y = \frac{e^{-x^2}}{2} + c \quad : \mathfrak{g}$$

$$y' = 4e^{-x}\cos x \quad :1.3$$

$$y = 2e^{-x}(\cos x - \sin x) + c \quad : \mathfrak{S}$$

$$y' = y$$
 :1.4 سوال

$$y = ce^x$$
 : e^x

$$y'=-y$$
 :1.5 سوال

$$y = ce^{-x}$$
 : $g(x) = ce^{-x}$

$$y' = 2.2y$$
 :1.6

$$y = ce^{2.2x}$$
 :واب

1.1. نمونه کثی

$$y' = 1.5 \sinh 3.2x$$
 :1.7

$$y = \frac{15}{32}\cosh 3.2x + c \quad : \mathcal{P}$$

$$y'' = -y$$
 :1.8

$$y = c_1 \cos x + c_2 \sin x \quad : \mathcal{L}$$

سوال 1.9 تا سوال 1.15 ابتدائی قیمت سوالات ہیں جن کے عمومی عل دیے گئے ہیں۔انہیں تفرقی مساوات میں پر کرتے ہوئے ثابت کریں کہ یہی عمومی جوابات ہیں۔عمومی جواب سے جبری جواب عاصل کریں۔جبری جواب کا خط کھینیں۔

$$y' + 2y = 0.8$$
, $y = ce^{-2x} + 0.4$, $y(0) = 1.2$:1.9

$$y = 0.8e^{-2x} + 0.4$$
 :واب:

$$y' + x + y = 0$$
, $y = ce^{-x} - x + 1$, $y(0) = \pi$:1.10

$$y = \pi e^{-x} - e^{-x} - x + 1$$
 بواب:

$$y' = 2x + e^x$$
, $y = e^x + x^2 + c$, $y(0) = 1$:1.11 $y' = 2x + e^x$

$$y = e^x + x^2 : \mathfrak{glip}$$

$$y' + 4xy = 0$$
, $y = ce^{-2x^2}$, $y(0) = 2$:1.12

$$y = 2e^{-2x^2}$$
 : $= 2e^{-2x^2}$

$$yy' = 2x$$
, $y^2 = 2x^2 + c$, $y(1) = 6$:1.13

$$y^2 = 2x^2 + 34$$
 :واب

$$y' = y + y^2$$
, $y = \frac{c}{e^{-x} - c}$, $y(0) = 0.1$:1.14 $y(0) = 0.1$

$$y = \frac{1}{e^{(-x+23.98)}-1}$$
 جواب:

$$y' \tan x = y - 4$$
, $y = c \sin x + 4$, $y(\frac{\pi}{2}) = 0$:1.15

 $y = 4 - 4\sin x \quad : equation$

سوال 1.16: نادر حل: لبعنے او قات سادہ تفر قی مساوات کا ایبا حل بھی پایا جاتا ہے جس کو عمومی حل سے حاصل نہیں $y=cx-c^2$ کیا جا سکتا۔ ایسیے حل کو نادر حل 2^6 کہا جاتا ہے۔ مساوات $y=cx-c^2$ کا عمومی حل کی نادر حل $y=\frac{x^2}{4}$ ہوئے تفر تی مساوات میں پر کرتے ہوئے ثابت کریں کہ یہ تفر قی مساوات کے حل ہیں۔ کریں کہ یہ تفر قی مساوات کے حل ہیں۔

سوال 1.17 تا سوال 1.21 نقشہ کشی کے سوالات ہیں۔

سوال 1.17: تابکار مادے کی نصف زندگی $t_{\frac{1}{2}}$ سے مراد وہ دورانیہ ہے جس میں تابکار مادے کی کمیت نصف ہو جاتی ہے۔ مثال 1.5 میں ریڈ یم $\frac{266}{88}$ کی نصف زندگی دریافت کریں۔

جواب: تابکاری تحلیل کی مساوات $y=y_0e^{-kt}$ میں لمحہ t=0 پر (ابتدائی) کمیت $y=y_0e^{-kt}$ مستقبل $y=\frac{y_0}{2}$ میں کہت نصف رہ جائے یعنی جب $y=\frac{y_0}{2}$ میں کمیت نصف رہ جائے یعنی جب $y=\frac{y_0}{2}$ میں کمیت نصف رہ جائے یعنی جب $y=\frac{y_0}{2}$ کی میں کمیت نصف رہ جائے گا جس سے $y=\frac{y_0}{2}$ کی میں میں کہت نصف رہ جائے۔ تابکاری مساوات میں $y=\frac{y_0}{2}$ بہر کرتے ہوئے $y=y_0e^{-kt}$ کی مقدار $y=\frac{y_0}{2}$ کی مقدار $y=\frac{y_0}{2}$ میں نصف رہ جائے گا۔ جب میں میں کمیٹ کے میں نصف رہ جائے گا۔

سوال 1.18: ریڈیم ہم جا²²⁴Ra کی نصف زندگی تقریباً 3.6 دن ہے۔دو گرام (2 g) ریڈیم ہم جاکی کمیت ایک دن بعد کتنی رہ جائے گی۔دو گرام ریڈیم ہم جاکی کمیت ایک سال بعد کتنی رہ جائے گی۔

 $6 \times 10^{-31}\,\mathrm{g}$ ، $1.65\,\mathrm{g}$ جوابات:

سوال 1.19: ایک جہاز کی رفتار مستقل اسراع a سے مسلسل بڑھ رہی ہے۔رفتار کی تبدیلی کی شرح $\frac{\mathrm{d}v}{\mathrm{d}t}$ کو اسراع کہتے ہیں۔ان معلومات سے تفرقی مساوات لکھتے ہوئے کھھ t پر رفتار v کی مساوات ماصل کریں۔اگر t=0

v = u + at ، v = at + c جوابات:

singular solution²⁶ isotope²⁷

سوال 1.20: رقتار سے مراد وقت کے ساتھ فاصلے کی تبدیلی کی شرح $\frac{\mathrm{d}x}{\mathrm{d}t}$ ہے۔ سوال 1.19 میں رقبار کی مساوات v=u+at پر v=u+at کے برابر پر کرنے سے تفرقی مساوات حاصل ہوتی ہے۔ کمحہ v=u+at ابتدائی فاصلہ v=u+at کی مساوات حاصل کریں۔

 $x = ut + \frac{1}{2}at^2$ جوابات:

سوال 1.21: آواز سے کم رفتار پر پرواز کرنے والے جہاز کی کار گزاری ہوا کے دباو پر منحصر ہوتی ہے۔ان کی کار گزاری اس 10500 m کی 10500 m کی اونچائی پر بہترین حاصل ہوتی ہے۔آپ سے گزارش ہے کہ 10500 m کی اونچائی پر ہوا کا دباو دریافت کریں۔طبعی معلومات:اونچائی کے ساتھ دباو میں تبدیلی کی شرح اور ہوا کے دباو اور کی نصف کے راست تناسب ہوتی ہے۔تقریباً سے 5500 کی اونچائی پر ہوا کا دباو سمندر کی سطح پر ہوا کے دباو اور کی نصف ہوتا ہے۔

جواب: 0.27y₀ يعنى تقريبًا ايك چوتھائى

کاجیومیٹریائی مطلب۔میدان کی سمت اور ترکیب یولرہ y'=f(x,y)

درجه اول ساده تفرقی مساوات

$$(1.13) y' = f(x,y)$$

سادہ معنی رکھتی ہے۔آپ جانتے ہیں کہ y' سے مراد y کی ڈھلوان ہے۔یوں مساوات 1.13 کا وہ حل جو نقطہ (x_0,y_0) ہو گا کو درج بالا مساوات کے تحت اس نقطے پر (x_0,y_0) ہو گا کو درج بالا مساوات کے تحت اس نقطے پر (x_0,y_0) قیمت کے برابر ہو گا۔

$$y'(x_0) = f(x_0, y_0)$$

اس حقیقت کو استعال کرتے ہوئے ہم مساوات 1.13 کو حل کرنے کے توسیمی 28 یا اعدادی 29 طریقے دریافت کر سکتے ہیں۔ تفرقی مساوات کو حل کرنے کے ترسیمی اور اعدادی طریقے اس لئے بھی اہم ہیں کہ کئی تفرقی مساوات کا کوئی تحلیلی 30 حل نہیں پایا جاتا جبکہ ہر قشم کے تفرقی مساوات کا ترسیمی اور اعدادی حل حاصل کرنا ممکن ہے۔

graphical²⁸ numerical²⁹

analytic³⁰

میدان کی سمت: ترسیمی طریقه

جم xy سطح پر جلّه جلّه مساوات 1.13 سے حاصل ڈھلوان کی چھوٹی لمبائی کی سیدھی لکیریں تھینی سکتے ہیں۔ ہر نقطے پر ایک لکیر اس نقطے پر میدان کی سمت دیتی ہے۔اس میدانِ سمت³¹ یا میدانِ ڈھال³² میں تفرقی مساوات کا منحنی حل ³³ کینی جا سکتا ہے۔

منحنی حل کو تھینچنے کی ترکیب کچھ یوں ہے۔ کسی بھی نقطے پر ڈھلوان کی سمت میں چھوٹی لکیر کھینیں۔اس لکیر کو آہستہ آہستہ یوں موڑیں کہ لکیر کے اختتامی نقطے پر لکیر کی ڈھلوان عین اس نقطے کی ڈھلوان برابر ہو۔اسی طرح آگے بڑھتے رہیں۔ڈھال میدان میں نقطے جتنے قریب قریب ہوں تفرقی مساوات کا منحنی حل اتنا درست ہو گا۔

شكل 1.5 ميں

(1.14) y' = x - y

کا ڈھال میدان د کھایا گیا ہے۔ساتھ ہی ساتھ چند منحیٰ حل بھی د کھائے گئے ہیں۔

آئیں اب اعدادی طریقہ سیکھیں۔سادہ ترین اعدادی طریقہ ترکیب یولو کہلاتا ہے۔پہلے اسی پر بحث کرتے ہیں۔

يولر كى اعدادى تركيب

ورجہ اول تفرقی مساوات y'=f(x,y) اور ابتدائی معلومات $y(x_0)=y_0$ کو استعمال کرتے ہوئے توکیب یولو $x_0=y_0$ ناصلہ نقطوں y'=f(x,y) واصلہ نقطوں y'=f(x,y) واصلہ نقطوں y'=f(x,y) ویا ہے درست قیمتیں دیتا ہے یونی

$$y_1 = y_0 + hf(x_0, y_0)$$

 $y_2 = y_1 + hf(x_1, y_1)$
 $y_3 = y_2 + hf(x_2, y_2)$

direction field³¹ slope field³² solution curve³³ Euler's method³⁴

شكل 1.5: در جه اول ساده تفرقی مساوات y'=x-y كاڈھال ميدان اور منحنی حلy'=x-y

یا

$$(1.15) y_n = y_{n-1} + hf(x_{n-1}, y_{n-1})$$

h کو قدم کہتے ہیں۔ شکل 1.6-الف میں y_1 کا حصول دکھایا گیا ہے جہاں ابتدائی نقطہ y_0 اور ترکیب یولر سے حاصل کردہ y_1 کو چھوٹے دائروں سے ظاہر کیا گیا ہے۔ شکل-ب میں y_1 کی قیمت کم کرنے کا اثر دکھایا گیا ہے۔ آپ دکھ سکتے ہیں کہ چھوٹا قدم لینے سے اصل حل $y(x_1)$ اور یولر سے حاصل y_1 میں فرق (غلطی) کم ہو جاتا ہے۔ یوں قدم کو چھوٹا سے چھوٹا کرتے ہوئے زیادہ سے زیادہ درست حل دریافت کیا جا سکتا ہے۔

 $y=y=ce^{-x}+x-1$ کا عمومی حل $y=ce^{-x}+x-1$ کا عمومی حل $y=ce^{-x}+x-1$ کا عمومی حل اثنا ضروری ہے کہ آپ $e^{-x}+x-1$ ماتا ہے۔اس طرح کے حل ہم جلد حاصل کر پائیں گے۔اس وقت صرف اثنا ضروری ہے کہ آپ ویے گئے حل کو تفر قی مساوات میں پر کرتے ہوئے ثابت کر سکیں کہ یہی درست حل ہے۔

جدول 1.1 میں قدم h=0.1 کیتے ہوئے نقطہ h=0.0 سے گزرتا ہوا مساوات 1.14 کا ترکیب یولر (مساوات 1.15) سے حل حاصل کیا گیا ہے۔آئیں اس جدول کو حاصل کریں۔

ابتدائی نقطہ $(x_0,y_0)=(x_0,y_0)=(x_0,y_0)$ ہے جس کا اندراج جدول $(x_0,y_0)=(x_0,y_0)=(x_0,y_0)$

شكل 1.6: تركيب يولر كايبلا قدم۔

استعال کرتے ہوئے (x_1,y_1) حاصل کرتے ہیں۔

$$x_1 = x_0 + h = 0 + 0.1 = 0.1$$

 $y_1 = y_0 + hf(x_0, y_0) = y_0 + h(x_0 - y_0) = 0 + 0.1(0 - 0) = 0$

جدول (x_2,y_2) حاصل کرتے ہیں۔ جن سے (x_2,y_2) حاصل کرتے ہیں۔ جدول $x_2=x_1+h=0.1+0.1=0.2$

$$y_2 = y_1 + hf(x_1, y_1) = y_1 + h(x_1 - y_1) = 0 + 0.1(0.1 - 0) = 0.01$$

ی بین جی جدول میں درج ہیں۔ ای طرح (x_3,y_3) حاصل کرتے ہوئے جدول میں درج کئے گئے ہیں۔ $x_3=x_2+h=0.2+0.1=0.3$ $y_3=y_2+hf(x_2,y_2)=y_2+h(x_2-y_2)=0.01+0.1(0.2-0.01)=0.029$

حدول کی آخری صف حاصل کرتے ہیں۔

$$x_4 = x_3 + h = 0.3 + 0.1 = 0.4$$

 $y_4 = y_3 + hf(x_3, y_3) = y_3 + h(x_3 - y_3) = 0.029 + 0.1(0.3 - 0.029) = 0.0561$

شکل 1.7-الف میں ترکیب یولر سے حاصل حل اور ریاضیاتی حل y(x) کا موازنہ کیا گیا ہے۔شکل-الف میں یولر علی سے حاصل نقطوں کو سیدھی لکیروں سے ملاتے ہوئے مسلسل حل حاصل کیا جا سکتا ہے جسے شکل-ب میں y_n میں حاصل کیا گیا ہے۔شکل-ب میں y(x) مجمی دکھایا گیا ہے۔ساتھ ہی ساتھ y(x) استعال کرتے ہوئے سے ظاہر کیا گیا ہے۔شکل-ب میں y(x) مجمی دکھایا گیا ہے۔ساتھ ہی ساتھ

جدول 1.1: ترکیب پولر۔

غلطي	y(x)	y_n	x_n	n
0	0	0	0	0
0.00484	0.00484	0.0	0.1	1
0.00873	0.01873	0.01	0.2	2
0.01182	0.04082	0.029	0.3	3
0.01422	0.07032	0.0561	0.4	4

ما کو کھی وکھایا گیا ہے جو y(x) اور y_n کے تھے میں پایا جاتا ہے۔ آپ دیکھ سکتے ہیں کہ y(x) تھیت کم کرنے سے زیادہ درست جواب حاصل ہوتا ہے۔

سوال 1.22 تا سوال 1.28 کے میدان ڈھال کو قلم و کاغذ سے کھینچتے ہوئے دیے ابتدائی نقطوں سے گزرتے منحنی حل حاصل کریں۔چند ڈھال میدان شکل 1.8 اور شکل 1.9 میں دیے گئے ہیں۔

سوالات

 $y' = 1 + y^2$, $(\frac{\pi}{4}, 1)$:1.22

 $y' = 1 - y^2$, (0,0) :1.23

yy' + 8x = 0, (1,1) :1.24

 $y' = y - y^2$, (1,0) :1.25

 $y' = x + \frac{1}{y}$, (0,1) :1.26

 $y' = \sin^2 x$, (0,1) :1.27

 $y' = \sin^2 y$, (0,0) :1.28

ڈھال میدان کے استعال سے تفرقی مساوات کے تمام حل سامنے آ جاتے ہیں۔ بعض اوقات تفرقی مساوات کا تحلیلی حل کا حل صاصل کرنا ممکن ہی نہیں ہوتا۔ درج ذیل دو سوالات میں ڈھال میدان سے اخذ حل اور دیے گئے تحلیلی حل کا موازنہ کرتے ہوئے ڈھال میدان سے حاصل حل کی در سکی کا اندازہ لگایا جا سکتا ہے۔

 $y' = \sin x$, $(\frac{\pi}{2}, 0)$, $y = -\cos x$:1.29

 $y' = 3x^2$, (0,0), $y = x^3$:1.30

شكل 1.8: سوال 22. اور سوال 1.23 كے ڈھال ميدان۔

شكل 1.9: سوال 24.1 اور سوال 1.25 كے ڈھال ميدان۔

سوال 1.31: سوال 1.23، سوال 1.25، سوال 1.25 اور سوال 1.28 میں بے قابو متغیرہ x صریحاً ظاہر نہیں کیا گیا ہے۔ایک مساوات جن میں بے قابو متغیرہ کو صریحاً ظاہر نہ کیا جائے خود مختار 35 سادہ تفرقی مساوات کہلاتے ہیں۔ خود مختار سادہ تفرقی مساوات کے ہم میلان 36 حل f(x,y)=c کی شکل و صورت کیا ہو گی؟

جواب: چونکہ y' کا دارومدار x پر نہیں ہے لہذا x تبدیل کرنے سے y کا میلان تبدیل نہیں ہو گا اور f(x,y)=c

ایک جسم y محدد پر حرکت کرتی ہے۔ لمحہ t پر نقطہ y=0 سے جسم کا فاصلہ y(t) ہے۔ سوالات 1.32 تا سوال 1.34 میں دیئے شرائط کے مطابق جسم کی رفتار کی نمونہ کشی کریں۔ ریاضی نمونے کی ڈھال میدان بناتے ہوئے دیے ابتدائی معلومات پر پورا اثرتا منحنی خط کیپنیں۔

سوال 1.32: جسم کی رفتار ضرب فاصلہ y(t) مستقل ہے جو t کے برابر ہے جبکہ y(0)=4 کے برابر ہے۔ y(0)=4 کے برابر ہے۔

y = 8t + 16 ، yy' = 4 جوابات:

سوال 1.33: رفتار ضرب وقت فاصلے کے برابر ہے۔ کمحہ t=1 پر فاصلہ y(1)=2

y=2t ، y=y't جوابات:

سوال 1.34: مربع رفتار منفی مربع فاصلہ اکائی کے برابر ہے۔ابتدائی فاصلہ اکائی کے برابر ہے۔

 $\sinh^{-1}y=t+\sinh^{-1}1$ ، $y'=\sqrt{1+y^2}$: آبات

سوال 1.35: ہوائی جہاز سے چھلانگ لگا کر زمین تک خیریت سے بذریعہ چھتری اترا جا سکتا ہے۔ گرتے ہوئے شخص پر آپس میں الٹ، دو عدد قوتیں عمل کرتی ہیں۔ پہلی قوت زمین کشش m اس شخص کی کمیت اور $g = 9.8 \, \mathrm{m \, s}^{-2}$ تقلی اسراع ہے۔ یہ قوت انسان کو زمین کی طرف اسراع دیتی ہے۔ دوسری قوت چھتری پر ہوا کے رگڑ سے جو اس شخص کی رفتار کو بڑھنے سے روکتی ہے۔ چھتری پر ہوا کے رگڑ سے

autonomous ordinary differential equations³⁵ isoclines³⁶

رفار کے مربع کے متناسب قوت $F_2=cv^2$ پیدا ہوتی ہے۔ نیوٹن کی مساوات حرکت کہتی ہے کہ کسی بھی جسم پر قوت، اس جسم کی کمیت ضرب اسراغ کے برابر ہوتی ہے۔ چھتری سے زمین پر اترتے شخص کی نمونہ کشی کرتے ہوئے رفتار v کی سادہ تفرقی مساوات حاصل کریں۔ کمیت کو m=1 اور مستقل کو v=1 لیتے ہوئے دُھال میدان کھیجیں۔ تصور کریں کہ چھتری اس لمحہ کھلتی ہے جب شخص کی رفتار $v=15\,\mathrm{m\,s^{-1}}$ ہو۔ایسی صورت میں منحتی حل حاصل کریں۔ اس شخص کی اختتامی رفتار کیا ہو گی؟ کیا چھتری پر قوت رفتار کے راست متناسب ہونے کی صورت میں بھی چھتری کے ذریعہ ہوائی جہاز سے زمین تک خیریت سے چھلانگ لگائی جا سکتی ہے؟

جوابات: $mg-cv^2=m\frac{\mathrm{d}v}{\mathrm{d}t}$: شرنے کی رفتار اس قیت پر رہتی ہے جہاں نیجے جانب قوت $mg-cv^2=m\frac{\mathrm{d}v}{\mathrm{d}t}$: جوابات: $mg-cv^2=m\frac{\mathrm{d}v}{\mathrm{d}t}$: جوہار کی روفار تبدیل نہیں ہوتی یعنی کی رکاوٹی اوپر جانب قوت cv^2 برابر ہوں۔الی صورت میں گرتے شخص کی رفتار تبدیل نہیں ہوتی یعنی $v(t=\infty)=0$ کی مساوات میں $v(t=\infty)=3.13\,\mathrm{m\,s^{-1}}$ ماصل ہوتی ہے۔

سوال 1.36. گول دائرے کی مساوات $x^2 + y^2 = r^2$ ہوئے دائرے کی مساوات کا تفرق لیے ہوئے ڈھال میدان کی تفرق مساوات کا تفرق لیے ہوئے ڈھال میدان کی تفرق مساوات حاصل کریں۔ ڈھال میدان کی خوال میدان کی مساوات کی دھال میدان کو دیکھ کر کہہ سکتے ہیں کہ منحنی حل گول دائرے ہیں؟ ای طرح $x^2 + 9y^2 = c$ کا تفرق لیتے ہوئے سادہ تفرقی مساوات کی ڈھال میدان کھیجیں۔ کیا ڈھال میدان کو دیکھ کر کہا جا سکتا ہے منحنی حل بیضوی ہو گا؟

 $y'=-rac{x}{9y}$ ، $y'=-rac{x}{y}$ جوابات:

سوال 1.37 تا سوال 1.40 کو ترکیب یولر سے حل کریں۔کل پانچ ہم فاصلہ نقطوں پر حل حاصل کریں۔ایک ہی کارتیسی محدد پر حاصل y_1 تا y_2 اور سوال میں دیے گئے حل y(x) کا خط کھینجیں۔ سوال y_3 اور سوال میں دیے گئے حل

$$y' = -y$$
, $y(0) = 1$, $h = 0.1$, $y(x) = e^{-x}$

 $y_5=0.59049$ ، $y_4=0.6561$ ، $y_3=0.729$ ، $y_2=0.81$ ، $y_1=0.9$. بابات:

سوال 1.38:

$$y' = -y$$
, $y(0) = 1$, $h = 0.01$, $y(x) = e^{-x}$

شكل 1.10: سوال 1.36 كي دُهال ميدان-

$$y' = 1 + 3x^2$$
, $y(1) = 2$, $h = 0.1$, $y(x) = x^3 + x$

$$y' = 2xy$$
, $y(0) = 2$, $h = 0.01$, $y(x) = e^{x^2 - 4}$

$$y_5 = 1.2190$$
 ، $y_4 = 1.1712$ ، $y_3 = 1.1255$ ، $y_2 = 1.0818$ ، $y_1 = 1.04$.

1.3 قابل عليحد گي ساده تفرقي مساوات

متعدد اہم سادہ تفرقی مساوات کو الجبرائی ترتیب دیتے ہوئے درج ذیل صورت میں لکھا جا سکتا ہے
$$g(y)y'=f(x)$$

جس کو مزید یوں

$$g(y)\frac{\mathrm{d}y}{\mathrm{d}x}\,\mathrm{d}x = f(x)\,\mathrm{d}x$$

ليعني

$$g(y) \, \mathrm{d} y = f(x) \, \mathrm{d} x$$

کھا جا سکتا ہے۔اس مساوات کے بائیں جانب صرف y متغیرہ اور دائیں جانب صرف x متغیرہ پایا جاتا ہے للذا اس کا تکمل لیا جا سکتا ہے۔

(1.17)
$$\int g(y) \, \mathrm{d}y = \int f(x) \, \mathrm{d}x + c$$

اگر g(y) اور f(x) قابل کمل تفاعل ہوں تب مساوات 1.17 سے مساوات 1.16 کا حل حاصل کیا جا سکتا ہے۔ اس ترکیب کو ترکیب علیحدگی متغیرات 38 کہتے ہیں۔ مساوات 1.16 کو قابل علیحدگی مساوات 38 کہتے ہیں۔ 38 بیں۔ 38

مثال 1.6: مساوات $y'=1+y^2$ قابل علیحدگی مساوات ہے چونکہ اس کو $rac{\mathrm{d}y}{1+y^2}=\mathrm{d}x$

لکھا جا سکتا ہے جس کے دونوں اطراف کا تکمل لیتے ہوئے

$$\tan^{-1} y = x + c$$

لعيني

$$y = \tan(x + c)$$

حاصل ہوتا ہے جو تفرقی مساوات کا در کار حل ہے۔حاصل حل کو واپس تفرقی مساوات میں پر کرتے ہوئے تسلی کر لیں کہ یہی صحیح حل ہے۔

variable separation technique³⁷ separable equation³⁸

مثال 1.7: قابل علیحد گی تفرقی مساوات $y'=xe^{-x}y^3$ کو علیحده کرتے ہوئے دونوں اطراف کا تکمل لے کر حل کرتے ہیں۔

$$y^{-3} dy = xe^{-x} dx$$

$$\frac{y^{-2}}{-2} = c - (x+1)e^{-x}$$
 $y^2 = \frac{1}{2(x+1)e^{-x} - 2c}$

مثال 1.8: درج ذیل ابتدائی قیمت تفرقی مساوات کو حل کریں۔ $y'=-2xy, \quad y(0)=1$

 $- \sqrt{\frac{dy}{y}} = - \int 2x \, dx + c$ $\int \frac{dy}{y} = - \int 2x \, dx + c$ $\ln y = -x^2 + c_1$ $y = ce^{-x^2}$

ابتدائی معلومات پر کرتے ہوئے c=0 لینی $c=c^{c_1}=1$ ملتا ہے للذا تفرقی مساوات کا جبری حل $y=e^{-x}$ میں وکھایا گیا ہے اور جو گھنٹی نما $y=e^{-x^2}$

شكل 1.11:مثال 1.8 كأكهنشي نماحل-

 64 C مثال 1.9: کاربن سے عمر دریافت کرنے کا طریقہ طبعی معلومات: کائناتی شعاعیں 40 فضا میں تابکار کاربن 41 مثال 41 C بناتی ہیں۔ یہ عمل زمین کی پیدائش سے اب تک ہوتا آ رہا ہے۔ وقت کے ساتھ فضا میں 64 C اور 62 C ہم جا کی تناسب ایک مخصوص قیمت حاصل کر چکی ہے۔ کوئی بھی جاندار سانس لے کر یا خوراک کے ذریعہ فضا سے کاربن کی تناسب وہی ہو گی جو فضا میں جذب کرتا ہے۔ یوں جب تک جانور زندہ رہے اس کی جسم میں دونوں ہم جاکاربن کی تناسب وہی ہو گی جو فضا میں ان کی تناسب ہے۔ البتہ مرنے کے بعد جسم میں تابکار کاربن کی مقدار تابکاری تحلیل کی بنا گھٹتی ہے جبکہ غیر تابکار کاربن کی مقدار تبدیل نہیں ہوتی۔ تابکار کاربن 64 C کی نصف زندگی 5715 سال ہے۔

اہرام مصر میں دفن مومیائی ہوئی فرعون کی لاش میں 14 C اور 12 C کا تناسب فضا کے تناسب کا % 56.95 کے اہرام مصر میں دریافت کریں۔

حل: تابکار کاربن کی نصف زندگی سے تابکاری تحلیل کا مستقل k دریافت کرتے ہیں۔

$$y_0 e^{-k(5715)} = \frac{y_0}{2}, \quad e^{-k(5715)} = \frac{1}{2}, \quad -k = \frac{\ln(\frac{1}{2})}{5715}, \quad k = 0.0001213$$

 $[\]begin{array}{c} {\rm cosmic~rays}^{40} \\ {\rm isotopes}^{41} \end{array}$

شكل 1.12: مثال 1.10 ميں مركب بنانے كاعمل ـ

 $e^{-0.0001213t}=0.5695$, $e^{-0.0001213t}=\ln 0.5695$, t=4641 ول فرعون کی لاش t=4641 سال پرانی ہے۔

مثال 1.10: مرکب بنانے کا عمل کیمیائی صنعت میں مرکب بنانے کا عمل عام ہے۔ شکل 1.12-الف میں پانی کی شینگی دکھائی گئی ہے جس میں ابتدائی طور پر 1000 کٹر پانی پایا جاتا ہے۔ اس پانی میں کل 100 kg نمک ملایا گیا ہے۔ پانی کو مسلسل ہلانے سے ٹینکی میں کثافت کیساں رکھی جاتی ہے۔ ٹینکی میں 40 کٹر فی منٹ کی شرح سے تمکین پانی مان کیا جاتا ہے۔ اس پانی میں نمک کی مقدار 1-0.5 kg اس میں منگ کے مقدار بالقابل وقت دریافت کریں۔

حل: چونکہ ٹیکی میں پانی شامل ہونے کی شرح اور پانی خارج ہونے کی شرح برابر ہے یں للذا ٹینکی میں پانی کی مقدار تبدیل نہیں ہوتی۔ ٹینکی میں شامل کرتا ہے۔ یوں تبدیل نہیں ہوتی۔ ٹینکی میں شامل کرتا ہے۔ یوں

 $40 \times 0.5 = 20 \, \mathrm{kg \, min^{-1}}$ کو کرتا ہے۔ کسی بھی لیجہ ٹینکی میں کل خمک کو گرام فی لٹر کھا جا سکتا ہے۔ یوں میں کل خمک کو $\frac{v}{1000}$ کو گرام فی لٹر کھا جا سکتا ہے۔ یوں خارج ہوتا پانی $\frac{v}{1000}$ کو گرام فی منٹ خمک خارج کرتا ہے۔ اس طرح نمک میں اضافے کی شرح $\frac{\mathrm{d} y}{\mathrm{d} t}$ کو خارج ہوتا پانی

$$y'=0$$
 متوازن مساوات) نمک خارج ہونے کی شرح – نمک شامل ہونے کی شرح = $20-\frac{40y}{1000}$

لعني

$$(1.18) y' = 0.04(500 - y)$$

کھا جا سکتا ہے جو قابل علیحد گی مساوات ہے لہٰذا اس میں متغیرات کو علیحدہ کرتے ہوئے تکمل کے ذریعہ حل کرتے ہیں۔

$$\frac{dy}{y - 500} = -0.04 dt$$
, $\ln|y - 500| = -0.04t + c_1$, $y = 500 + ce^{-0.04t}$

ٹینکی میں ابتدائی نمک کی کل مقدار 100 kg ہے۔اس معلومات کو درج بالا میں پر کرتے ہوئے مساوات کا مستقل c

$$100 = 500 + c^{-0.04(0)}, \quad c = -400$$

یوں کسی بھی کمحے ٹینکی میں کل نمک کی مقدار درج زیل ہے جس کو شکل-ب میں و کھایا گیا ہے۔

$$y(t) = 500 - 400e^{-0.04t}$$

شکل-ب کے مطابق ٹینکی میں آخر کار کل kg نمک پایا جائے گا۔ یہی جواب بغیر کسی مساوات لکھے بھی حاصل کیا جائے گا۔ یہی جواب بغیر کسی مساوات لکھے بھی حاصل کیا جا سکتا ہے۔اگر ٹینکی میں لگاٹار نمکین پانی شامل کیا جائے اور اس سے پرانا پانی خارج کیا جائے تو آخر کار ٹینکی میں صرف نیا شامل کردہ پانی ہی پایا جاتا ہے لہذا 1000 صرف نیا شامل کردہ پانی ہیں کل نمک پایا جاتا ہے لہذا 2000 موگا۔

لٹر کی ٹینکی میں کل نمک 500 kg نے 2000 میں کل میں کل نمک پایا جاتا ہے لہذا 2000 میں کل میں کل نمک پایا جاتا ہے لہذا 2000 موگا۔

مثال 1.11: نیوش قانون گھنڈک گرمیوں میں ایک و فتر کا درجہ حرارت ایئر کنڈشنر کی مدد ہے $^{\circ}$ 21 پر رکھا جاتا ہے۔ ضبح سات ہجے ایئر کنڈشنر چالو کیا جاتا ہے اور شام نو ہجے اس کو بند کر دیا جاتا ہے۔ ایک مخصوص دن کو شام نو ہجے ہیرونی درجہ حرارت $^{\circ}$ 40 ہوتا ہے جبکہ صبح سات ہجے ہیرونی درجہ حرارت $^{\circ}$ 30 تک گر چکا ہوتا ہے۔ و فتر کے اندر درجہ حرارت $^{\circ}$ 26 ہوتا ہے۔ صبح سات ہجے د فتر کے اندر درجہ حرارت معلوم کریں۔

طبعی معلومات: تجربے سے معلوم کیا گیا ہے کہ حرارتی توانائی کو با آسانی منتقل کرتے جسم (مثلاً لوہا) کے درجہ حرارت میں تبدیلی کی شرح جسم اور اس کے گرد ماحول کے درجہ حرارت میں فرق کے راست تناسب ہوتا ہے۔اس کو نیوٹن کا قانون گھنڈکے 42 کہا جاتا ہے۔

حل: پہلا قدم: سب سے پہلے نمونہ کشی کرتے ہیں۔ دفتر کے اندرونی حرارت کو T سے ظاہر کرتے ہیں جبکہ بیرونی حرارت کو T_b سے ظاہر کرتے ہیں۔ یوں نیوٹن کا قانون ٹھنڈک کی ریاضیاتی صورت درج ذیل ہو گی۔

$$\frac{\mathrm{d}T}{\mathrm{d}t} = k(T - T_b)$$

دوسرا قدم: عومی حل کی تلاش: اگرچہ دفتر کی دیواریں اور حجبت حرارتی توانائی با آسانی منتقل نہیں کرتی ہم اسی کلیے کا سہارا لیتے ہوئے مسئلہ حل کریں گے۔ یہاں ہیر ونی درجہ حرارت مستقل قیمت نہیں ہے للذا درج بالا مساوات کو حل کرنا مشکل ہو گا۔ انجنیرُ نگ کے شعبے میں عموماً لیی ہی مشکلات کا سامنہ کرنا ہوتا ہے۔ ہمیں مسئلے کی سادہ صورت حل کرنا مواق ہے۔ اگر ہم تصور کریں کہ T_b مستقل قیمت ہے تب درج بالا مساوات کے متغیرات علیحدہ کئے جا سکتے ہیں۔ چونکہ ہیرونی درجہ حرارت 00 کی مسئلے کو حل کرتے ہیں۔ مساوات کے متغیرات علیحدہ کرتے ہوئے حکمل لے کر اس کو حل کرتے ہیں۔ مساوات کے متغیرات علیحدہ کرتے ہوئے حکمل لے کر اس کو حل کرتے ہیں۔ مساوات کے متغیرات علیحدہ کرتے ہوئے حکمل لے کر اس

$$\frac{dT}{T-35} = k dt$$
, $\ln|T-35| = kt + c_1$, $T-35 = ce^{kt}$

تیسرا قدم: جبری حل کا حصول: اگر شام نو بجے کو لمحہ t=0 لیا جائے اور وقت کو گھنٹوں میں ناپا جائے تب T(0)=21 کیا جائے گا جبے درج بالا میں پر کرتے ہوئے t=0 حاصل ہوتا ہے۔ یوں جبری حل T(0)=21

$$T = 35 - 14e^{kt}$$

Newton's law of cooling⁴²

شكل 1.13: مثال 1.11: دفتر كااندروني درجه حرارت بالمقابل وقت ـ

$$26 = 35 - 14e^{5k}$$
, $k = -0.088$, $T = 35 - 14e^{-0.088t}$

آخری قدم: صبح سات بجے اندرونی درجہ حرارت کا تخمینہ لگاتے ہیں لیعنی t=10 پر درجہ حرارت در کار ہے۔

$$T = 35 - 14e^{-0.088(10)} = 29.2 \, ^{\circ}\text{C}$$

پوری رات میں اندرونی ورجہ حرارت °C 8.2 بڑھ گیا ہے۔ شکل 1.13 میں اندرونی ورجہ حرارت بالمقابل وقت و کھایا گیا ہے۔

 $r=0.5\,\mathrm{cm}$ مثال 1.12: پانی کا انخلا: پانی کی ٹینکی کا رقبہ عمود کی تراش $B=2\,\mathrm{m}^2$ ہے۔ ٹینکی کی تہہ میں مثال 1.12: پانی کا انخلا: پانی نکل رہا ہے۔ ٹینکی میں پانی کی ابتدائی گہرائی $h_1=1.5\,\mathrm{m}$ ہے۔ ٹینکی کتنی ویر میں خالی ہوگی۔

طبعی معلومات: پانی کی سطح پر m کمیت پانی کی مخفی توانائی mgh ہے جہاں $g=9.8\,\mathrm{m\,s^{-2}}$ میں تبدیل ہو جاتی ہے جہاں پانی کی گہرائی ہے۔ سوراخ سے خارج ہوتے وقت یہ مخفی توانائی حرکی توانائی کر کی توانائی ہو جاتی ہے جہاں v رفتار کو ظاہر کرتی ہے۔ مخفی توانائی اور حرکی توانائی کو برابر لکھتے ہوئے v کے لئے حل کرتے ہیں۔

$$\frac{mv^2}{2} = mgh, \quad v = \sqrt{2gh}$$

شکل 1.14-الف میں پانی کی دھار دکھائی گئی ہے۔جیسا کہ آپ دیکھ سکتے ہیں دھار سوراخ کے قریب سکڑتا ہے۔اگر سوراخ کا رقبہ a ہوت ہے۔یوں سوراخ سے نکلا سوراخ کا رقبہ a ہوت ہے۔یوں سوراخ سے نکلا متمام پانی رقبہ a ہوت ہے۔ اور یہی وہ مقام ہے جہال پانی کا ہر ذرہ ایک ہی سمت میں رفتار a سے حرکت کرتا ہے۔

 n شکل 1.14- بر میں ایک نالی دکھائی گئی ہے جس میں پانی کی رفتار v ہے۔ نالی کا رقبہ عمود کی تراش A ہے۔ لمحہ v مقام m پر موجود پانی کا ذرہ وقت Δt میں Δv فاصلہ طے کرتے ہوئے مقام m تک n تک n گئے جائے گا۔ یوں Δt کے دوران مقام m سے گزرا ہوا پانی نالی کو m تا m بحرے گا۔ اس پانی کی مقدار Δt ہوگی۔ اس کلے کو استعال کرتے ہوئے شکل 1.14-الف میں Δt دورانے میں کل Δt مقدار Δt بینی خارج ہوگا۔ یوں پانی کی شرح انخلا درج ذیل ہوگی۔ Δt فی خارج ہوگا۔ یوں پانی کی شرح انخلا درج ذیل ہوگی۔

$$\frac{\mathrm{d}M}{\mathrm{d}t} = 0.6a\sqrt{2gh}$$

اس مساوات کو قانون ٹاری سلی⁴³ کہتے ہیں۔

حل: دورانیہ dt میں پانی کی انخلا کے بنا ٹینکی میں پانی کی گہرائی dh کم ہو گی جو Bdh جم کی کمی کو ظاہر کرتی ہے جہاں B ٹینکی کا رقبہ عمودی تراش ہے۔ چونکہ پانی کے انخلا سے ٹینکی میں پانی کم ہوتا ہے لہذا درج ذیل کھا جا سکتا ہے جو دیے گئے مسکلے کا تفرقی مساوات ہے۔

$$(1.21) 0.6a\sqrt{2gh}\,dt = -B\,dh$$

متغیرات کو علیحدہ کرتے ہوئے حل کرتے ہیں۔

$$\frac{\mathrm{d}h}{\sqrt{h}} = -\frac{0.6a\sqrt{2g}}{B}\,\mathrm{d}t, \quad 2\sqrt{h} = -\frac{0.6a\sqrt{2g}}{B}t + c$$

Torricelli's law⁴³

شكل 1.14: مثال 1.12: ياني كاانخلااورياني كے دھار كاسكر نا۔

ابتدائی کھے $c=2h_1$ پر پانی کی گہرائی h_1 ہے۔ان معلومات کو درج بالا میں پر کرتے ہوئے t=0 ملتا ہے لہذا تفر تی مساوات کا جبر می حل درج ذیل ہے۔

(1.22)
$$2\sqrt{h} = -\frac{0.6a\sqrt{2g}}{B}t + 2\sqrt{h_1}$$

خالی ٹینکی سے مراد h=0 ہے۔ جبری عل میں h=0 پر کرتے ہوئے ٹینکی خالی کرنے کے لئے درکار وقت حاصل کرتے ہیں۔

$$2\sqrt{0} = -\frac{0.6a\sqrt{2g}}{B}t + 2\sqrt{h_1}, \quad t = \frac{2\sqrt{h_1}B}{0.6a\sqrt{2g}}$$
$$t = \frac{2\sqrt{1.5} \times 2}{0.6\pi \cdot 0.005^2 \cdot \sqrt{2 \times 9.8}} = 23482 \sec \approx 6.52 \,\text{h}$$

عليحد گي متغيرات کي جامع تر کيب

بعض او قات نا قابل علیحدگی تفرقی مساوات کے متغیرات کو تبدیل کرتے ہوئے مساوات کو قابل علیحدگی بنایا جا سکتا ہے۔ اس ترکیب کو درج ذیل عملًا اہم قسم کی مساوات کے لئے سیکھتے ہیں جہاں $f(\frac{y}{x})$ قابل تفرق تفاعل ہے مثلاً $\frac{y}{y}$ وغیرہ۔

$$(1.23) y' = f\left(\frac{y}{x}\right)$$

شكل 1.15

مساوات کی صورت دیکھتے ہوئے
$$u = \frac{y}{x} = u$$
 کی صورت دیکھتے ہوئے $u = u$ کی صورت دیکھتے ہوئے $y = ux$, $y' = u + xu'$

جنہیں y' = f(u) - u ملتا ہے۔اگر u + xu' = f(u) ملتا ہے۔اگر $y' = f(\frac{y}{x})$ ہوئے درج ذیل کھا جا سکتا ہے۔ $f(u) - u \neq 0$

$$\frac{\mathrm{d}u}{f(u) - u} = \frac{\mathrm{d}x}{x}$$

مثال 1.13: تفاعل xy' - y = 2x کو حل کریں۔

حل: تفاعل کو $y'=rac{y}{x}+2$ کھا جا سکتا ہے۔ یوں $\frac{y}{x}=u$ لیتے ہوئے مساوات 1.24 کے استعال سے ورج ذیل ملتا ہے۔

$$u + xu' = u + 2$$
, $du = 2\frac{dx}{x}$, $u = 2\ln|x| + c$

اس میں
$$u$$
 کی جگہ واپس $\frac{y}{x}$ پر کرتے ہوئے جواب حاصل ہوتا ہے۔

$$\frac{y}{x} = 2\ln|x| + c, \quad y = 2x\ln|x| + cx$$

سوالات

سوال 1.41 تا سوال 1.49 کے عمومی حل حاصل کریں۔حاصل حل کو واپس تفرقی مساوات میں پر کرتے ہوئے اس کی در نظی ثابت کریں۔

$$y^2y' + x^2 = 0:1.41$$
 سوال

$$x^3 + y^3 = c : \mathfrak{S}$$

$$yy' + x = 0:1.42$$

$$x^2 + y^2 = c$$
 : $x^2 + y^2 = c$

$$y' = \sec^2 y : 1.43$$

$$y = \tan x + c$$
 :واب

$$y'\cos x = y\sin x : 1.44$$

$$y = c \sec x$$
 جواب:

$$y' = ye^{x-1}:1.45$$
 سوال

$$\ln|y| = e^{x-1} + c : \mathfrak{S}$$

$$-$$
 يوك يركت $y'=y+x^2\sin^2\frac{y}{x}$ يوكت $y=\frac{y}{x}$:1.46 سوال

$$\frac{\cos\frac{y}{x}-1}{\cos\frac{y}{x}+1}=ce^{2x}$$
:

$$u=2x+y$$
 کو حل کریں۔ایباکرنے کی خاطر $u=2x+y$ پر کرنا ہو گا۔ $y'=(2x+y)^2$:1.47

$$y = -2x + \sqrt{2}\tan(\sqrt{2}x + c)$$
 جواب:

$$-$$
 سوال $xy'=y^2+y$ پر کرتے ہونے $u=rac{y}{x}$:1.48 سوال

$$y=-\frac{x}{x+c}$$
 :واب

$$xy'=x-y$$
 کو حمل کریں۔ $u=rac{y}{x}$:1.49 سوال

$$xy - x^2 = c$$
 :واب

سوال 1.50:

$$xy' + y = 0$$
, $y(2) = 8$

$$y=\frac{16}{x}$$
 :واب

$$y' = 1 + 9y^2$$
, $y(1) = 0$

$$y = \frac{1}{3} \tan[3(x-1)]$$
 :براب:

$$y'\cos^2 x = \sin^2 y$$
, $y(0) = \frac{\pi}{4}$

$$\tan y = \frac{1}{1 - \tan x} : \mathcal{P}$$

سوال 1.53:

$$y' = -4xy, \quad y(0) = 5$$

$$y = 5e^{-2x^2}$$
: جواب

سوال 1.54:

$$y' = -\frac{2x}{y}, \quad y(1) = 2$$

$$2x^2 + y^2 = 6$$
 :جواب

سوال 1.55:

$$y' = (x + y - 4)^2$$
, $y(0) = 5$

$$x+y-4=\tan(x+\frac{\pi}{4})$$
 جواب:

سوال 1.56:

$$xy' = y + 3x^4 \cos^2 \frac{y}{x}, \quad y(1) = 0$$

جواب: اس میں
$$u=\frac{y}{x}$$
 $u=\frac{y}{x}$ برکرنے سے $u=\frac{y}{x}$