Práctica 7 de álgebra 1

Comunidad algebraica

última compilacion: 28/06/2024

Un poco de teoría

• Operaciones:

+: Sean
$$f, g \in \mathbb{K}[X]$$
 con $f = \sum_{i=0}^{n} a_i X^i$ y $g = \sum_{i=0}^{n} b_i X^i$

$$\Rightarrow f + g = \sum_{i=0}^{n} (a_i + b_i) X^i \in \mathbb{K}[X]$$

$$\cdot : \text{ Sean } f, g \in \mathbb{K}[X] \text{ con } f = \sum_{i=0}^{n} a_i X^i \text{ y } g = \sum_{j=0}^{m} b_j X^j$$

$$\Rightarrow f \cdot g = \sum_{k=0}^{n+m} (\sum_{i+j=k} a_i \cdot b_j) X^k \in \mathbb{K}[X]$$

- $(\mathbb{K}[X], +, \cdot)$ es un anillo conmutativo $\to f \cdot (g+h) = f \cdot g + f \cdot h, \ \forall f, g, h \in \mathbb{K}[X]$
- Algoritmo de división: $f, g \in \mathbb{K}[X]$ no nulos, existen únicos q y $R \in \mathbb{K}[X]$ tal que $f = q \cdot g + R$ con gr(()R) < gr(()f) o R = 0
- α es raíz de $f \iff X \alpha \mid f \iff f = q \cdot (X \alpha)$
- Máximo común divisor: Polinomio mónico de mayor grado que divide a ambos polinomios en $\mathbb{K}[X]$ y vale el algoritmo de Euclides.
 - -(f:g) | f y (f:g) | g
 - $-f = (f:g) \cdot k_f y g = (f:g) \cdot k_g \operatorname{con} k_f y k_g \operatorname{en} \mathbb{K}[X]$
 - Dos polinomios son coprimos si $(f:g)=1 \iff f \neq g$
- Raíces múltiples:

Sea $f \in \mathbb{K}[x]$ no nulo, y sea $\alpha \in \mathbb{K}$. Se dice que:

- $-\alpha$ es raíz múltiple de $f \Leftrightarrow f = (x-\alpha)^2 q$ para algún $q \in \mathbb{K}[X]$
- $-\alpha$ es raíz simple de $f \Leftrightarrow x \alpha \mid f$ en $\mathbb{K}[X]$, pero $(X \alpha)^2 \not\mid f$ en $\mathbb{K}[X] \Leftrightarrow f = (X \alpha)q$ para algún $q \in \overline{\mathbb{K}[X]}$ tal que $q(\alpha) \neq 0$.
- Sea $m \in \mathbb{N}_0$. Se dice que α es raíz de multiplicidad (exactamente) m de f, y se nota mult $(\alpha; f) = m \iff (X \alpha)^m \mid f$, pero $(x \alpha)^{m+1} \not\mid f$. O equivalentemente, $f = (X - \alpha)^m q$ con $q \in \mathbb{K}[X]$, pero $q(\alpha) \neq 0$
- Sea $f \in \mathbb{K}[X]$ no nulo $\operatorname{mult}(\alpha; f) \leq \operatorname{gr}(f)$:
- Vale que α es raíz múltiple de $f \iff f(\alpha) = 0$ y $f'(\alpha) = 0 \iff \alpha$ es raíz de $(f:f'), X \alpha \mid (f:f')$
 - $\ \mathrm{mult}(\alpha,f) = m \iff f(\alpha) = 0 \ \mathrm{y} \ \mathrm{mult}(\alpha;f') = m-1$

$$- \operatorname{mult}(\alpha; f) = m \iff \left\{ \begin{array}{l} \operatorname{mult}(\alpha; f) \geq m \\ \operatorname{mult}(\alpha; f) = m \end{array} \right\} \begin{array}{l} f(\alpha) = 0 \\ \vdots \\ f^{(m-1)(\alpha) = 0} \\ f^{m)(\alpha) \neq 0} \end{array}$$

Ejercicios extras:

1.

a) Hallar todos los posibles $\mathbf{c} \in \mathbb{R}$, $\mathbf{c} > 0$ tales que:

$$f = X^6 - 4X^5 - X^4 + 4X^3 + 4X^2 + 48X + \mathbf{c}$$

tenga una raíz de argumento $\frac{3\pi}{2}$

- b) Para cada valor de **c** hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$, sabiendo que tiene al menos una raíz doble.
- a) Si la raíz $\alpha = re^{i\frac{3\pi}{2}} = r(-1)$ Voy a usar que: \star^1 $\begin{cases} (-i)^2 = -1 \\ (-i)^3 = i \\ (-i)^4 = 1 \\ (-i)^5 = -i \end{cases}$

$$f(r(-i)) = (r(-i))^{6} - 4(r(-i))^{5} - (r(-i))^{4} + 4^{3} + 4(r(-i))^{2} + 48(r(-i)) + \mathbf{c} \stackrel{\star^{1}}{=} \\ -r^{6} + 4r^{5}i - r^{4} - 4r^{3}i - 4r^{2} - 48ri + \mathbf{c} = 0 \iff \begin{cases} \operatorname{Re} : -r^{6} - r^{4} - 4r^{2} + \mathbf{c} = 0 \Rightarrow \mathbf{c} = r^{6} + r^{4} + 4r^{2} \\ \operatorname{Im} : r(4r^{4} - 4r^{2} - 48) = 0 \xrightarrow[r^{2} = y \text{ y } r \in \mathbb{R}_{>0}]{\text{bicuadrática}} r^{2} = 3 \end{cases}$$

Por lo tanto si $\mathbf{c} = r^6 + r^4 + 4r^2 = (r^2)^3 + (r^2)^2 + 4r^2 \Rightarrow \boxed{\mathbf{c} = 48}$ con raíces $\pm \sqrt{3}i$ dado que $f \in \mathbb{R}[X]$

b) Debe ocurrir que $(X - \sqrt{3}i)(X + \sqrt{3}i) = X^2 + 3 \mid f$ $X^6 - 4X^5 - X^4 + 4X^3 + 4X^2 + 48X + 48 \mid X^2 + 3$ $- X^6 - 3X^4 \mid X^4 - 4X^3 - 4X^2 + 16X + 16$ $\begin{array}{r}
X - 4X - X + 4X + 4X \\
-X^{6} - 3X^{4} \\
-4X^{5} - 4X^{4} + 4X^{3} \\
4X^{5} + 12X^{3} \\
-4X^{4} + 16X^{3} + 4X^{2}
\end{array}$ $\begin{array}{r}
4X^{4} + 10X^{5} + 4X \\
4X^{4} + 12X^{2} \\
\hline
16X^{3} + 16X^{2} + 48X \\
-16X^{3} - 48X \\
\hline
16X^{2} + 48 \\
-16X^{2} - 48 \\
\hline
0$

 $f=(X^2+3)\underbrace{(X^4-4X^3-4X^2+16X+16)}_q$ como f tiene al menos una raíz doble puedo ver las raíces de la derivada de q:

races de la derivada de
$$q$$
.
$$q' = 4X^3 - 12X^2 - 8X + 16 = 4(X^3 - 3X^2 - 2X + 16) = 0 \xrightarrow{\text{Posibles raices, Gauss : (}} q'(-2) = 0, \text{ pero } f(-2) \neq 0$$

$$\begin{array}{c} \xrightarrow{\text{divido para} \\ \text{bajar grado}} \end{array} \xrightarrow{X^3 - 3X^2} \begin{array}{c} -2X + 16 \\ -X^3 - 2X^2 \\ \hline -5X^2 - 2X \\ \hline -5X^2 + 10X \\ \hline & 8X + 16 \\ \hline & -8X - 16 \\ \hline & 0 \\ \hline \\ \xrightarrow{\text{busco raíces} \\ \text{de}} \end{array} X^2 - 5X + 8 = 0 \\ \Longleftrightarrow \alpha = 5 \pm \dots$$

Algo estoy haciendo mal, esto se hizo eterno

Ejercicios de la guía:

Calcular el grado y el coeficiente principal de los siguientes polinomios en $\mathbb{Q}[X]$:

i)
$$(4X^6 - 2X^5 + 3X^2 - 2X + 7)^{77}$$
,

ii)
$$(-3X^7 + 5X^3 + X^2 - X + 5)^4 - (6X^4 + 2X^3 + X - 2)^7$$
,

iii)
$$(-3X^5 + X^4 - X + 5)^4 - 81X^{20} + 19X^{19}$$
,

- i) coeficiente principal: 4⁷⁷ $grado: 6 \cdot 77$
- ii) coeficiente principal: $(-3)^4 6^7 = -279.855$ grado: 28

coeficiente principal: $(\underbrace{-3X^5 + X^4 - X + 5}_f)^4 + \underbrace{-81X^{20} + 19X^{19}}_g$ Cuando sumo me queda: $\operatorname{cp}(f^4) - \operatorname{cp}(g) = (-3)^4 - 81 = 0 \Rightarrow gr(f^4 + g) < 20 \rightarrow \operatorname{Calculo} \operatorname{el} \operatorname{cp}(f^4 + g) \operatorname{con} \operatorname{gr}(f^4 + g) = 19.$

Laburo a
$$f$$
:
$$\begin{cases}
\frac{\text{para usar}}{\text{fórmula de } f \cdot g} (-3X^5 + X^4 - X + 5)^4 = (-3X^5 + 1X^4 - X + 5)^2 \cdot (-3X^5 + X^4 - X + 5)^2 \\
f^2 \cdot f^2 = \sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \text{ con } a_i \text{ y } b_i \text{ los coeficientes de } f^2 \text{ y el otro } f^2 \text{ respectivamente}
\end{cases}$$

$$\sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \xrightarrow{\text{me interesa solo} \text{el término con } k = 19} \sum_{i+j=19} a_i b_j X^{19} \stackrel{\bigstar}{=} a_9 \cdot b_{10} + a_{10} \cdot b_9 \stackrel{\bigstar}{=} 2 \cdot a_9 \cdot b_{10}$$

$$\begin{cases} \sum_{k=0}^{\infty} \left(\sum_{i+j=k}^{\infty} a_i & \text{of } j \right) & \text{el término con } k = 19 \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{el término con } k = 19 \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{el término con } k = 19 \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{el término con } k = 19 \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{el término con } k = 19 \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{el término con } k = 19 \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{el término con } k = 19 \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{of } j \\ \left(\sum_{i+j=1}^{\infty} a_i & \text{of } j \right) & \text{$$

$$\left(\begin{array}{c}
\frac{a_9 \text{ no tan fácil, volver}}{\text{a usar } \sum f \cdot g \text{ en } k = 9} f \cdot f = \sum_{k=0}^{10} \left(\sum_{i+j=k} c_i \cdot d_j\right) X^k \xrightarrow{k=9} \sum_{i+j=9} c_i \cdot d_j X^9 \stackrel{\bigstar^3}{=} c_4 \cdot d_5 + c_5 \cdot d_4 \stackrel{\bigstar^2}{=} 2 \cdot c_4 \cdot d_5 \\
\left(\begin{array}{c}
d_5 \text{ sale a} \\
d_5 \text{ end}
\end{array}\right) A^k \xrightarrow{k=9} \sum_{i+j=9} c_i \cdot d_j X^9 \stackrel{\bigstar^3}{=} c_4 \cdot d_5 + c_5 \cdot d_4 \stackrel{\bigstar^2}{=} 2 \cdot c_4 \cdot d_5$$

$$\left\{\begin{array}{c}
\text{ojímetro} \\
\frac{c_4 \text{ sale a}}{\text{ojímetro}} \\
c_4 = 1
\end{array}\right\} \rightarrow a_9 = -6$$

$$\left\{ \begin{array}{l} cp(f^4) = 2 \cdot (-6) \cdot (9) = -108 \\ cp(g) = 19 \end{array} \right\} \to \left[cp(f^4 + g) = -89 \right]$$

★¹: Sabemos que el gr $(f^4) = 20 \Rightarrow \text{gr}(f^2) = 10$. Viendo las posibles combinaciones al multiplicar 2 polinomios de manera tal que los exponentes de las X sumen 19, es decir $X^i \cdot X^j = X^{19}$ con $i, j \leq 10$

solo puede ocurrir cuando los exponentes $\left\{ \begin{array}{l} i=10,\,j=9\\ \forall\\ i=9,\,i=10 \end{array} \right\}$

- \star^2 : porque estoy multiplicando el mismo polinomio, $a_i = b_i$. Pero lo dejo distinto para hacerlos visualmente más genérico.
- \star^3 : Idem \star^1 para el polinomio f

grado: 19

2. Hacer!

3. Hacer!

4. Hallar el cociente y el resto de la división de f por g en los casos

i)
$$f = 5X^4 + 2X^3 - X + 4$$
 y $g = X^2 + 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

ii)
$$f = 4X^4 + X^3 - 4$$
 y $g = 2X^2 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/7\mathbb{Z})[X]$,

iii)
$$f = X^n - 1$$
 y $g = X - 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$

Resultado válido para $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$

ii)
$$\begin{array}{c|c}
4X^4 + X^3 & -4 & 2X^2 + 1 \\
-4X^4 & -2X^2 & 2X^2 + \frac{1}{2}X - 1
\end{array}$$

$$-X^3 - 2X^2 - \frac{1}{2}X - 4$$

$$-2X^2 - \frac{1}{2}X - 4$$

$$-2X^2 + 1$$

$$-\frac{1}{2}X - 3$$

Resultado válido para
$$\mathbb{Q}[X]$$
, $\mathbb{R}[X]$, $\mathbb{C}[X]$
En $\mathbb{Z}/p\mathbb{Z} \to 4X^4 + X^3 - 4 = (2X^2 + 1) \cdot \underbrace{(2X^2 + 4X + 6)}_{q[X]} + \underbrace{(3X + 4)}_{r[X]}$

iii) Después de hacer un par iteraciones en la división se asoma la idea de que:

$$X^{n} - 1 = (X - 1) \cdot \sum_{j=0}^{n-1} X^{j} + \underbrace{0}_{r[X]}$$

Inducción: Quiero probar que $p(n): X^n - 1 = (X - 1) \cdot \sum_{j=0}^{n-1} X^j \ \forall n \in \mathbb{N}$

Caso base:
$$p(\mathbf{1}): X^{\mathbf{1}} - 1 = (X - 1) \sum_{j=0}^{\mathbf{1}-1} X^j \Rightarrow p(\mathbf{1})$$
 es Verdadero \checkmark

Paso inductivo:

Paso inductivo:
$$p(k): \underbrace{X^k - 1 = (X - 1) \cdot \sum_{j=0}^{k-1} X^j}_{HI} \text{ es Verdadera} \stackrel{?}{\Rightarrow} p(k+1): X^{k+1} - 1 = (X - 1) \cdot \sum_{j=0}^{k} X^j \text{ es Verdadera}$$

$$(X-1) \cdot \sum_{j=0}^{k} X^{j} = (X-1) \cdot (\sum_{j=0}^{k-1} X^{j} + X^{k}) = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + (X-1) \cdot X^{k} = X^{k} - 1 + X^{k+1} - X^{k} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot \sum_{j=0}^{k-1} X^{j}}_{HI} + \underbrace{(X-1) \cdot X^{k}}_{HI} = \underbrace{(X-1) \cdot X^{k}}_{$$

$$X^{k+1}-1$$

Dado que p(1), p(k) y p(k+1) resultaron verdaderas por el principio de inducción también será verdadera $p(n) \ \forall n \in \mathbb{N}$

Hacer! **5**.

- Definición: Sea K un cuerpo y sea $h \in \mathbb{K}[X]$ un polinomio no nulo. Dados $f, g \in \mathbb{K}[X]$, se dice que f es congruente a g módulo h si $h \mid f - g$. En tal caso se escribe $f \equiv g(h)$.
 - i) Probar que $\equiv (h)$ es una relación de equivalencia en $\mathbb{K}[X]$.
 - ii) Probar que si $f_1 \equiv g_1(h)$ y $f_2 \equiv g_2(h)$ entonces $f_1 + f_2 \equiv g_1 + g_2(h)$ y $f_1 \cdot f_2 \equiv g_1 \cdot g_2(h)$.
 - iii) Probar que si $f \equiv g(h)$ entonces $f^n \equiv g^n(h)$ para todo $n \in \mathbb{N}$.
 - iv) Probar que r es el resto de la división de f por h si y solo si $f \equiv r(h)$ y r = 0 o gr(r) < gr(h).
 - Para probar que esto es una relación de equivalencia pruebo que sea reflexiva, simétrica y i) uff... transitiva,
 - reflexiva: Es f congruente a f módulo h? $f \equiv f(h) \iff h \mid f - f = 0 \iff h \mid 0 \quad \checkmark$
 - sim'etrica: Si $f \equiv g$ (h) $\iff g \equiv f$ (h) $f \equiv g$ (h) $\iff h \mid f g \iff h \mid -(g f) \iff h \mid g f \iff g \equiv f$ (h) \checkmark
 - transitiva: Si $\begin{cases} f \equiv g(h) \\ g \equiv p(h) \end{cases} \iff f \equiv p(h).$

$$\begin{cases} h \mid f - g & \xrightarrow{F_1 + F_2} \\ h \mid g - p & \xrightarrow{F_2} \end{cases} \begin{cases} h \mid f - g \\ h \mid f - p \end{cases} \rightarrow f \equiv p (h) \quad \checkmark$$

Cumple condiciones para ser una relación de equivalencias en $\mathbb{K}[X]$

ii) Si
$$\begin{cases} f_1 \equiv g_1(h) \\ f_2 \equiv g_2(h) \end{cases}$$

$$f_1 \equiv g_1(h) \iff h \mid f_1 - g_1 \Rightarrow h \mid f_2 \cdot (f_1 - g_1) \iff f_1 \cdot f_2 \equiv g_1 \cdot f_2(h) \iff f_1 \cdot f_2 \equiv g_1 \cdot g_2(h)$$

iii) Inducción: Quiero probar p(n): Si $f \equiv g(h)$ entonces $f^n \equiv g^n(h)$ para todo $n \in \mathbb{N}$. Caso base: $p(1): f^1 \equiv g^1(h) \bigstar^2$ Verdadera \checkmark

 $Paso\ inductivo:\ p(k):\underbrace{f^k\equiv g^k\ (h)}_{HI}\ \text{es verdadera} \stackrel{?}{\Rightarrow} p(k+1):f^{k+1}\equiv g^{k+1}\ (h)\ \text{¿También lo es?}$

$$f^{k} \equiv g^{k} (h) \iff h \mid f^{k} - g^{k} \Rightarrow h \mid f \cdot (f^{k} - g^{k}) \iff f^{k+1} \equiv f \cdot g^{k} (h) \iff f^{k+1} \equiv g^{k+1} (h) \quad \checkmark$$

Finalmente p(1), p(k), p(k+1) resultaron verdaderas y por el principio de inducción p(n) es verdaderas $\forall n \in \mathbb{N}$

- iv) Hacer!
- 7. Hallar el resto de la división de f por g para:

i)
$$f = X^{353} - X - 1$$
 y $g = X^{31} - 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

ii)
$$f = X^{1000} + X^{40} + X^{20} + 1$$
 y $q = X^6 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$

iii)
$$f = X^{200} - 3X^{101} + 2$$
, y $g = X^{100} - X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$,

iv)
$$f = X^{3016} + 2X^{1833} - X^{174} + X^{137} + 2X^4 - X^3 + 1$$
, y $g = X^4 + X^3 + X^2 + X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ (Sugerencia ver **4.** iii))).

i)
$$g \mid g \iff X^{31} - 2 \equiv 0 \ (X^{31} - 2) \iff X^{31} \equiv 2 \ (g)$$

$$f = X^{353} - X - 1 = (\underbrace{X^{31}}_{g_2})^{11} X^{12} - X - 1 \stackrel{(g)}{\equiv} 2^{11} X^{12} - X - 1 \rightarrow \boxed{r_g(f) = 2^{11} X^{12} - 1}$$

iii)
$$g \mid g \iff X^{100} - X + 1 \equiv 0 \ (X^{100} - X + 1) \iff X^{100} \equiv X - 1 \ (g)$$

 $f = X^{200} - 3X^{101} + 2 = (X^{100})^2 - 3X^{100}X + 2 \stackrel{(g)}{\equiv} (X - 1)^2 - 3(X - 1)X + 2$
 $\rightarrow r_g(f) = (X - 1)^2 - 3(X - 1)X + 2$

iv) Usando la sugerencia: Del ejercicio 4. iii) sale que
$$X^n - 1 = (X - 1) \cdot \sum_{k=0}^{n-1} X^k$$

$$\frac{n=5}{\text{para el } g} X^5 - 1 = (X - 1) \underbrace{(X^4 + X^3 + X^2 + X + 1)}_{g} \iff X^5 \equiv \underbrace{1}_{r_g(X^5)} (g) \checkmark$$

$$f = (X^5)^{603}X + 2(X^5)^{366}X^3 - (X^5)^{34}X^4 + (X^5)^{27}X^2 + 2X^4 - X^3 + 1$$

$$f \equiv \underbrace{X + 2X^3 - X^4 + X^2 + 2X^4 - X^3 + 1}_{=X^4 + X^3 + X^2 + X + 1 = g} (g) \iff \boxed{f \equiv 0 \ (g)}$$

8. Hacer!

9. Calcular el máximo común divisor entre f y g en $\mathbb{Q}[X]$ y escribirlo como combinación polinomial de f y g siendo:

i)
$$f = X^5 + X^3 - 6X^2 + 2X + 2$$
, $g = X^4 - X^3 - X^2 + 1$,

ii)
$$f = X^6 + X^4 + X^2 + 1$$
, $g = X^3 + X$,

iii)
$$f = 2X^6 - 4X^5 + X^4 + 4X^3 - 6X^2 + 4X + 1$$
, $q = X^5 - 2X^4 + 2X^2 - 3X + 1$,

$$\xrightarrow{\text{Euclides}} (f:g) = (g:3X^3 - 55X^2 + X + 1)$$

$$\xrightarrow{\text{escribo a } f} f = (X+1) \cdot g + 3X^3 - 55X^2 + X + 1$$
en función de g

en funcion de
$$g$$

$$X^{4} - X^{3} - X^{2} + 1 \begin{vmatrix} 3X^{3} - 5X^{2} + X + 1 \\ -X^{4} + \frac{5}{3}X^{3} - \frac{1}{3}X^{2} - \frac{1}{3}X \end{vmatrix} = \frac{1}{3}X + \frac{2}{9}$$

$$\frac{\frac{2}{3}X^{3} - \frac{4}{3}X^{2} - \frac{1}{3}X + 1}{\frac{-\frac{2}{3}X^{3} + \frac{10}{9}X^{2} - \frac{2}{9}X - \frac{2}{9}}{-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}}$$

$$\begin{array}{c|c}
-\frac{2}{9}X^2 - \frac{5}{9}X + \frac{7}{9} & \frac{171}{4}X - \frac{171}{4} \\
\underline{\frac{2}{9}X^2 - \frac{2}{9}X} & -\frac{8}{1539}X - \frac{28}{1539} \\
-\frac{7}{9}X + \frac{7}{9} \\
\underline{\frac{7}{9}X - \frac{7}{9}}
\end{array}$$

$$X^{5} + X^{3} - 6X^{2} + 2X + 2 = \left(X^{4} - X^{3} - X^{2} + 1\right) \cdot \left(X + 1\right) + \left(3X^{3} - 5X^{2} + X + 1\right)$$

$$X^{4} - X^{3} - X^{2} + 1 = \left(3X^{3} - 5X^{2} + X + 1\right) \cdot \left(\frac{1}{3}X + \frac{2}{9}\right) + \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right)$$

$$3X^{3} - 5X^{2} + X + 1 = \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right) \cdot \left(-\frac{27}{2}X + \frac{225}{4}\right) + \left(\frac{171}{4}X - \frac{171}{4}\right)$$

$$-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9} = \left(\frac{171}{4}X - \frac{171}{4}\right) \cdot \left(-\frac{8}{1539}X - \frac{28}{1539}\right) + 0$$

El MCD será el último resto no nulo y mónico $\rightarrow (f:g) = X-1$

ii)
$$X^6 + X^4 + X^2 + 1 = (X^3 + X) \cdot X^3 + (X^2 + 1)$$

 $X^3 + X = (X^2 + 1) \cdot X + 0$

El MCD será el último resto no nulo y mónico \rightarrow $(f:g) = X^2 + 1$

El MCD escrito como combinación polinomial de f y $g \rightarrow X^2 + 1 = f \cdot 1 + g \cdot (-X^3)$

iii)
$$\xrightarrow{\text{Haciendo}}$$

$$2X^{6} - 4X^{5} + X^{4} + 4X^{3} - 6X^{2} + 4X + 1 = \left(X^{5} - 2X^{4} + 2X^{2} - 3X + 1\right) \cdot 2X + \left(X^{4} + 2X + 1\right) \\ X^{5} - 2X^{4} + 2X^{2} - 3X + 1 = \left(X^{4} + 2X + 1\right) \cdot \left(X - 2\right) + 3 \\ X^{4} + 2X + 1 = 3 \cdot \left(\frac{1}{3}X^{4} + \frac{2}{3}X + \frac{1}{3}\right) + 0$$
 El MCD será el último resto no nulo y $m\'onico \rightarrow \boxed{(f:g) = 1}$ El MCD escrito como combinación polinomial de f y $g \rightarrow \boxed{1 = \frac{1}{3}g \cdot (2X^{2} - 4X + 1) - \frac{1}{3}f \cdot (X - 2)}$

10. Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por $X^3 - 2X^2 - X + 2$.

Sea $P \in \mathbb{K}[X] \Rightarrow el \ resto \ de \ dividir \ a \ P \ por \ X - a \ es \ P(a)$.

$$f(X) = q(X) \cdot \underbrace{X^3 - 2X^2 - X + 2}_{g(X)} + r(X)$$
, con $g(X) = (X - 2) \cdot (X - 1) \cdot (X + 1)$ y $r(X) = a^2 + bX + c$, ya

$$que el gr(r) < gr(g) \xrightarrow{\text{evaluar}} \begin{cases}
f(1) = -2 = q(1) \cdot g(2) \xrightarrow{\bullet} r(1) = -2 \\
f(2) = 1 = q(2) \cdot g(2) \xrightarrow{\bullet} r(2) = 1 \\
f(-1) = 0 = q(-1) \cdot g(-1) \xrightarrow{\bullet} r(-1) = 0
\end{cases}$$

$$\begin{cases}
r(1) = a + b + c = -2 \\
r(2) = 4a + 2b + c = 1 \\
r(-1) = a - b + c = 0
\end{cases}$$

$$\begin{pmatrix}
1 & 1 & 1 & | -2 \\
4 & 2 & 1 & | 1 \\
1 & -1 & 1 & | 0
\end{pmatrix}$$

$$\rightarrow \begin{cases}
r(1) = a + b + c = -2 \\
r(2) = 4a + 2b + c = 1 \\
r(-1) = a - b + c = 0
\end{cases}$$

11. Sea $n \in \mathbb{N}$, $n \ge 3$. Hallar el resto de la división de $X^{2n} + 3X^{n+1} + 3X^n - 5X^2 + 2X + 1$ por $X^3 - X$ en $\mathbb{Q}[X]$.

$$\begin{cases} f(X) = X^{2n} + 3X^{n+1} + 3X^n - 5X^2 + 2X + 1 \\ g(X) = X \cdot (X - 1) \cdot (X + 1) \end{cases} \Rightarrow f = q(X) \cdot g(X) + r(X) \text{ con } \operatorname{gr}(\underbrace{aX^2 + bX + c}_{r(X)}) \le 2$$

$$\begin{cases} f(0) = q(0) \cdot \underbrace{g(0)}_{0} + r(0) = 1 \end{cases}$$

$$\begin{cases} f(0) = q(0) \cdot \underbrace{g(0)}_{=0} + r(0) = 1 \\ f(1) = q(1) \cdot \underbrace{g(1)}_{=0} + r(1) = 3 \\ f(-1) = q(-1) \cdot \underbrace{g(-1)}_{=0} + r(-1) = 1 + 3(-1)^{n+1} + 3(-1)^n - 5 - 2 + 1 = \begin{cases} 2 & n \text{ impar} \\ 1 & n \text{ par} \end{cases}$$

$$\underbrace{\frac{\text{sistema de}}{\text{ecuaciones de }r(X)}}_{\text{ecuaciones de }r(X)} \begin{cases} r(0) = c = 1 \\ r(1) = a + b + 1 = 3 \rightarrow a + b = 2 \\ r(-1) = a - b + 1 = \begin{cases} 2 \rightarrow a - b = 1 & n \text{ impar} \\ 1 \rightarrow a - b = 0 & n \text{ par} \end{cases}$$

$$\begin{cases} \frac{n}{\text{impar}} & \begin{pmatrix} 1 & 1 & | & 2 \\ 1 & -1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & \frac{3}{2} \\ 0 & 1 & | & \frac{1}{2} \end{pmatrix} \rightarrow r_{impar}(X) = \frac{3}{2}X^2 + \frac{1}{2}X + 1 \end{cases} \checkmark$$

$$\begin{cases} \frac{n}{\text{par}} & \begin{pmatrix} 1 & 1 & | & 2 \\ 1 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \end{pmatrix} \rightarrow r_{par}(X) = X^2 + X + 1 \end{cases} \checkmark$$

12. Hallar la forma binomial de cada una de las raíces complejas del polinomio $f(X) = X^6 + X^3 - 2$.

El cociente $q(X) = X^5 + X^4 + X^3 + 2X^2 + 2X + 2$ se puede factorizar en grupos como $q(X) = (X^2 + X + 1) \cdot (X^3 + 2)$. Entonces las 5 raíces que me faltan para tener las 6 que debe tener $f \in \mathbb{C}[X]$ salen de esos dos polinomios.

$$X^{2} + X + 1 = 0 \Rightarrow \begin{cases} \alpha_{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2} \\ \alpha_{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2} \end{cases}$$

$$X^{3} + 2 = 0 \xrightarrow{\text{exponencial}} \begin{cases} r^{3} = 2 \rightarrow r = \sqrt[3]{2} \\ 3\theta = \pi + 2k\pi \rightarrow \theta = \frac{\pi}{3} + \frac{2k\pi}{3} \text{ con } k = 0, 1, 2. \end{cases} \end{cases} \rightarrow \begin{cases} \alpha_{4} = \sqrt[3]{2}e^{i\frac{\pi}{3}} = \sqrt[3]{2}(\frac{1}{2} + i\frac{\sqrt{3}}{2}) \\ \alpha_{5} = \sqrt[3]{2}e^{i\pi} = -\sqrt[3]{2} \\ \alpha_{6} = \sqrt[3]{2}e^{i\frac{5\pi}{3}} = \sqrt[3]{2}(\frac{1}{2} - i\frac{\sqrt{3}}{2}) \end{cases}$$

13. Sea $w = e^{\frac{2\pi}{7}i}$. Probar que $w + w^2 + w^4$ es raíz del polinomio $X^2 + X + 2$

Voy a usar que si $w \in G_7 \Rightarrow \sum_{j=0}^6 w^j = 0 \quad (w \neq 1)$ Si $f(X) = X^2 + X + 2$ y $w + w^2 + w^4$ es raíz $\Rightarrow f(w + w^2 + w^4) = 0$ $(w + w^2 + w^4)^2 + w + w^2 + w^4 + 2 = \underbrace{w^8}_{=w} + 2w^6 + 2w^5 + 2w^4 + 2w^3 + 2w^2 + w + 2 = 2 \cdot \sum_{j=0}^6 w^j = 0 \quad \checkmark$

14.

- i) Probar que si $w = e^{\frac{2\pi}{5}i} \in G_5$, entonces $X^2 + X 1 = [X (w + w^{-1})] \cdot [X (w^2 + w^{-2})]$.
- ii) Calcula, justificando cuidadosamente, el valor exacto de $\cos(\frac{2\pi}{5})$.

i) Voy a usar que si
$$w \in G_5 \Rightarrow \begin{cases} \sum_{j=0}^4 w^j = 0 & (w \neq 1)^{-\frac{1}{2}} \\ w^k = w^{r_5(k)} & & \end{cases}$$

$$X^2 + X - 1 = [X - (w + w^{-1})] \cdot [X - (w^2 + w^{-2})] = X^2 - (w^2 + w^{-2})X - (w + w^{-1})X + \underbrace{(w + w^{-1})(w^2 + w^{-2})}_{\bigstar^1} = X^2 - X\underbrace{(w^2 + w^{-2} + w + w^{-1})}_{\bigstar^1} + \underbrace{w + w^2 + w^3 + w^4}_{\bigstar^2} = X^2 - X\underbrace{(w + w^2 + w^3 + w^4)}_{\bigstar^2} + -1 + \underbrace{1 + w + w^2 + w^3 + w^4}_{=0} = X^2 + X - 1$$

ii) Calculando las raíces a mano de
$$X^2+X-1 \to \left\{ \begin{array}{l} \frac{-1+\sqrt{5}}{2} \\ y \\ \frac{-1-\sqrt{5}}{2} \end{array} \right.$$

Pero del resultado del inciso i) tengo que:

Pero del resultado del inciso i) tengo que :
$$w = e^{i\frac{2\pi}{5}} \xrightarrow{\text{sé que una raíz dada}} w + w^{-1} = w + \overline{w} = 2\text{Re}(w) = 2 \cdot \underbrace{\cos(\frac{2\pi}{5})}_{\cos\theta \ge 0, \theta \in [0, 2\pi]} = \frac{-1 + \sqrt{5}}{2}$$

$$\rightarrow \boxed{\cos(\frac{2\pi}{5}) = \frac{-1 + \sqrt{5}}{4}} \quad \checkmark$$

15.

- i) Sean $f, g \in \mathbb{C}[X]$ y sea $a \in \mathbb{C}$. Probar que a es raíz de f y g si y sólo sí a es raíz de (f : g).
- ii) Hallar todas las raíces complejas de $X^4 + 3X 2$ sabiendo que tiene una raíz en común con $X^4 + 3X^3 - 3X + 1.$

i) Hacer!

ii) Busco el
$$(f:g)$$
:
$$X^{4} + 3X - 2 = (X^{4} + 3X^{3} - 3X + 1) \cdot 1 + (-3X^{3} + 6X - 3)$$

$$X^{4} + 3X^{3} - 3X + 1 = (-3X^{3} + 6X - 3) \cdot (-\frac{1}{3}X - 1) + (2X^{2} + 2X - 2)$$

$$-3X^{3} + 6X - 3 = (2X^{2} + 2X - 2) \cdot (-\frac{3}{2}X + \frac{3}{2}) + 0$$

$$(f:g) = X^{2} + X - 1 \xrightarrow{\text{raíces}} \begin{cases} \alpha_{1} = \frac{1 + \sqrt{5}}{2} \\ \alpha_{2} = \frac{1 - \sqrt{5}}{2} \end{cases}$$

$$X^{4} + 3X - 2 = (X^{2} + X - 1) \cdot (X^{2} - X + 2) + 0$$

16. Determinar la multiplicidad de a como raíz de f en los casos

i)
$$f = X^5 - 2X^3 + X$$
, $a = 1$,

ii)
$$f = X^6 - 3X^4 + 4$$
, $a = i$,

iii)
$$f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a = 2,$$

iv)
$$f = (X-2)^2(X^2-4) - 4(X-2)^3$$
, $a = 2$,

i)
$$f = X^5 - 2X^3 + X$$
, $a = 1$,
Pasar

ii)
$$f = X^6 - 3X^4 + 4$$
, $a = i$,
$$X^6 - 3X^4 + 4 | X^2 + 1 | Pasar - X^6 - X^4 | AX^4 - 4X^2 + 4$$
$$-4X^4 - 4X^2 + 4$$
$$-4X^2 - 4$$
$$0$$

Hacer!

iii)
$$f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a = 2,$$
Pasar

iv)
$$f = (X-2)^2(X^2-4) - 4(X-2)^3$$
, $a = 2$,
Pasar

17. Sea $n \in \mathbb{N}$. Determinar todos los $a \in \mathbb{C}$ tales que $f = nX^{n+1} - (n+1)X^n + a$ tiene solo raíces simples en \mathbb{C} .

Pasar

18. Controlar y Pasar

19. Controlar y Pasar

20. Hacer!

21.	Pasar			
22.	Hacer!			
23.	Hacer!			
24.	Hacer!			
 25.	Hacer!			
	Hacer!			
 27.	Hacer!			
 28.	Hacer!			
 29.	Hacer!			
30.	Hacer!			
31.	Hacer!			
32.	Hacer!			
33.	Hacer!			
34.	Hacer!			
 35.	Hacer!			
 36.	Hacer!			

37.	Hacer!	
38.	Hacer!	
39.	Hacer!	