Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017780

International filing date: 30 November 2004 (30.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-421762

Filing date: 19 December 2003 (19.12.2003)

Date of receipt at the International Bureau: 04 February 2005 (04.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

03.12.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月19日

出 願 番 号

特願2003-421762

Application Number: [ST. 10/C]:

[JP2003-421762]

出 願 人 Applicant(s):

太陽化学株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 1月21日

1/E

【物件名】

【書類名】 特許願 P031219-01 【整理番号】 平成15年12月19日 【提出日】 特許庁長官殿 【あて先】 【発明者】 三重県四日市市赤堀新町9番5号 太陽化学株式会社内 【住所又は居所】 尹 先柱 【氏名】 【発明者】 三重県四日市市赤堀新町9番5号 太陽化学株式会社内 【住所又は居所】 【氏名】 紀平 智彦 【発明者】 三重県四日市市赤堀新町9番5号 太陽化学株式会社内 【住所又は居所】 伊藤 俊宏 【氏名】 【特許出願人】 000204181 【識別番号】 【住所又は居所】 三重県四日市市赤堀新町9番5号 太陽化学株式会社 【氏名又は名称】 【代表者】 山崎 長宏 0593 (47) 5413 【電話番号】 【手数料の表示】 【予納台帳番号】 055594 【納付金額】 21,000円 【提出物件の目録】 特許請求の範囲 1 【物件名】 【物件名】 明細書 1

要約書 1

【請求項1】

アムラーの果実、果汁又はそれらの抽出物を含有することを特徴とする抗血小板凝集組成物。

【請求項2】

アムラーの果実又は果汁の抽出物が、アムラー果実又は果汁から水、塩基、酸の群より選ばれる1種以上を用いて抽出されたものであることを特徴とする請求項1記載の抗血小板 凝集組成物。

【請求項3】

アムラーの果実又は果汁の抽出物、又は果汁からエタノールにより分画された可溶性画分であることを特徴とする請求項1又は2記載の抗血小板凝集組成物。

【請求項4】

請求項1~3いずれか記載の抗血小板凝集組成物を含有することを特徴とする飲食品。

【発明の名称】抗血小板凝集組成物

【技術分野】

[0001]

本発明は、アムラーの果実、果汁又はそれらの抽出物を含有する抗血小板凝集組成物及びそれを含有する飲食品に関する。

【背景技術】

[0002]

血栓は、フィブリノーゲンというタンパク質が活性化され、フィブリンに転換されながら、血小板、白血球等と共に、不溶性の重合体となって血管の内壁に固まってできる。身体が正常なときには、この血栓のもととなるフィブリンを溶かす働きをする線溶酵素が血栓予防をするが、線溶酵素が不足するとフィブリンを溶解できなくなり、血栓ができるようになる。

形成された血栓は血管に沈着し、血管の断面積を減少させ、血液の循環を阻害し、その結果、血液が細胞及び組職で栄養分と酸素を正常に供給することができず、また、細胞及び組織の老廃物を排出できなくなり、毒性物質が蓄積される等の問題点が発生するようになる。

血管の中で、血栓といわれる血液の固まりが引き起こす症状を広義の血栓症(以下、単に「血栓症」と記載した場合は、広義の血栓症をいう)と呼び、血栓が原因になって起こる病態は狭義の血栓症と塞栓症に分けられる。狭義の血栓症は血栓が形成個所で血流を部分的に又は完全に閉塞することによる症状で、塞栓症は血栓が形成個所から剥がれて血流によって移動し、他の個所で血流を部分的に又は完全に閉塞することによって起こる病態のことを指す。

このような血栓症は血栓が生じた血管の部位によって多様な疾病を誘発するようになる。その中でも特に脳血管や心臓血管に生じた場合には脳卒中、脳出血、脳梗塞、心不全症、心筋梗塞、心臓麻痺等深刻な症状が発生し、半身不随を引き起こし、ひどい場合には死亡することもある。

[0003]

現在、血栓症を解決するために、血栓の生成を抑制する抗血栓剤及び血栓形成予防剤と、生成された血栓を溶解させる血栓溶解剤の研究開発が主に行われている。

抗血栓剤又は血栓形成予防剤としては、血管壁への血小板の付着を阻害することで血液の凝固を阻害するアスピリンと、体内の内因性血液凝固経路を遮断するヘパリン(Heparin)、クマリン(Coumarin)等が現在臨床で使われている。また最近はエイコサペンタエン酸(EPA)、プロスタサイクリン(Prostacycolor) では1 2)誘導体等が商品化されている。しかし、これら薬剤は特異性がないため、生体内においては血栓以外の部分にも影響を及ぼし、生体内に残存した場合、出血等を引き起こす可能性がある。その他に、ヒルジン(Hirudin)、合成抗トロンビン(Synthetacycolor) がある。その他に、ヒルジン(Hirudin)、合成抗トロンビン(Synthetacycolor) がある。その他に、ヒルジン(Ticlopidin)等の抗血栓活性も報告されているが、まだ実用化には至っていない。

血栓溶解剤としては、ストレプトキナーゼ(Streptokinase)、ウロキナーゼ(Urokinase)のようなプラスミノゲンアクチベーター(Plasminogenactivator)を血栓が生成された患者に静脈注射して、体内の血栓溶解系を活性化する治療法が一般的に使われている。これらが血栓を溶解させる効果は、幾多の臨床実験で立証されたが、抗血栓剤又は血栓形成予防剤と同様、血栓に対する特異性が無く、血栓を治療する間に全身出血する等の副作用がある。また組職型プラスミノゲンアクチベーター(tissue-type plasminogen activator, tPA)は血栓に対する選択性が高く、理想的な血栓溶解剤と考えられたが、実際に臨床治療に適用した結果、程度の差はあるが相変らず全身出血等の副作用があった。また血液内での半減期が非常に短く、薬効の持続時間が短いため、体内で薬効を維持するためには投与量が多くなければならず、そのため治療費用が従来の血栓溶解剤に比べ非常に高い

[0004]

このような医薬品が血栓の生成予防に使用されてはいるものの、血栓除去にあまり著しい効果を現わすことが無く、深刻な副作用を誘発する場合があるため、最近では、医薬品による治療よりは食生活を通じて病気を予防し、体質を調節又は活性化させる機能を持った成分又は食品成分に対する研究も注目されるようになってきている。

食品成分としては、ナットウキナーゼや多価不飽和脂肪酸、グルコサミン、タマネギの 薄皮(例えば、特許文献1参照。)等の素材が知られているが、風味や性状等に問題があ り、幅広く食品に応用できなかった。

また、最近では、キウイフルーツ抽出物(例えば、特許文献2参照。)についての特許 が公開されたが、中性域での活性が弱いという欠点がある。

[0005]

【特許文献1】特開2002-171934号公報(第2頁)

【特許文献2】特開2003-171294号公報(第2頁-5頁)

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明の課題は、幅広い飲食品に使用可能な抗血小板凝集組成物及びそれを含有する飲食品を提供することにある。

【課題を解決するための手段】

[0007]

本発明者らは様々な天然植物を利用して抗血小板凝集成分を捜す目的で、多角的に研究 検討した結果アムラーの果実、果汁、それらの抽出物に優れた抗血小板活性があることを 見出し、本発明を完成させた。

【発明の効果】

[0008]

本発明で得られたアムラーの果実、果汁又はそれらの抽出物を含有する抗血小板凝集組成物は、血小板凝集試験の結果から、血小板凝集物の生成を抑制する効果が高いことがわかった。

アムラーは、昔から人間が日常食生活に使用してきた天然植物由来なので、従来使用していた薬剤とは違い、体内で出血を起こす副作用が無く安全である。

本発明はアムラーの果実、果汁又はそれらの抽出物を含有する抗血小板凝集組成物を各種飲食品及び医薬品等に利用して、血小板凝集物の生成を抑制することで脳出血、脳梗塞、心筋梗塞、動脈硬化及び冠状動脈症のような心血関係疾患を予防することができる。

【発明を実施するための最良の形態】

[0009]

本願発明に用いるアムラーとは、学名:エンビリカ・オフィシナル(Emblica officinale)又は、フィランサス・エンブリカ(Phyllanthus embilica)といい、トウダイグサ科コミカンソウ属に属する落葉の亜高木であり、インドからマレーシア地域及び中国南部にかけて分布しており、インドが原産地と考えられている。また、各地方又は言語により、各々固有の名称があり、余柑子、油甘、奄摩勒、エンブリック・ミロバラン、アーマラキー、マラッカノキ、マラッカツリー、インディアングーズベリー、アロンラ、アミラ、アミラキ、アミラキャトラ、ネリカイ、ネルリ、タシャ、カユラカ、ケムラカ、ナックホンポン等とも称されている。

[0010]

本発明において用いられるアムラーの部位としては特に限定されるものではないが、果 実が挙げられる。その形態は、特に限定するものではなく、未熟果実、完熟果実、乾燥果 実、果汁、果汁粉末等のいずれでも良い。

果汁又は果汁粉末を用いる場合は、そのままでも使用できるが、生果実又は乾燥果実等 、水不溶性成分を含む物を使用する場合は、抽出により、水不溶性成分が除去されている ことが好ましい。

抽出の際、生果実を使用する場合は、種子を除去した後、水を添加又は無添加で、抽出 効率を高めるためにミキサー等により破砕、均質化したものを用いることが好ましい。

乾燥果実を使用する場合は、抽出効率を高めるために40メッシュ以下の粒度になるよ うに粉砕されていることが好ましい。

[0011]

抽出方法は、抽出溶媒、抽出温度等、特に限定されるものではなく、抽出溶媒としては 、水、塩基、酸、その他食塩水等の非有機溶媒を使うことができ、好ましくは、水、塩基 、酸の群より選ばれる1種以上である。

酸又は塩基を抽出溶媒で使う場合、抽出物を中和させることが好ましい。中和反応によ って生成された塩は、透析法やゲル濾過等、公知の方法により、取り除くことができる。 水を抽出溶媒として用いた場合には、上記のような中和反応は必要なく、生成された塩を 取り除く必要もないため、水を用いることが更に好ましい。

この時使用する酸としては、特に限定するものではなく、大部分の酸を使うことができ るが、好ましくは、塩酸、硫酸より選ばれる1種又は両者の併用である。

また、塩基としては、特に限定するものではなく、大部分の塩基を使うことができるが 、好ましくは、水酸化ナトリウム、水酸化カリウムより選ばれる1種又は両者の併用であ る。

抽出に使用される酸又は塩基の濃度は、特に限定するものではなく、酸又は塩基の強さ によって変化するが、0.01~0.5モルの濃度を使用することが好ましい。

[0012]

上記の抽出において、本願出願人が先に出願した特願2003-209542で示した ペクチナーゼの他、セルラーゼ等の酵素を併用することも可能である。

更に、上記の抽出において、抽出残渣に対して再度抽出工程を1回又はそれ以上繰り返 すことで、抽出率が向上し、収率が向上するので、好ましい。この場合の抽出に用いる溶 媒は、同じでも良いし、別の溶媒を用いても良い。

$[0\ 0\ 1\ 3\]$

上記の果汁又は抽出物は、そのままでも使用できるが、濾過や遠心分離により、不溶性 物質を取り除くことにより、抗血小板活性が高くなり、応用範囲も広がるので好ましい。

不溶性物質を取り除いた後、果汁又は抽出液をそのまま又は濃縮した後にエタノールを 加えて得られる上澄みを回収したものは、更に抗血小板活性が高くなるので好ましい。エ タノールの濃度としては、特に限定するものではないが、効果の点より、10~90%が 好ましく、10~30%が更に好ましい。

抽出物はそのままでの使用も可能だが、必要であれば噴霧乾燥や凍結乾燥等の手段によ り乾燥粉末化させて使用することも可能である。

$[0\ 0\ 1\ 4]$

本願発明において抗血小板凝集とは、血小板の凝集を抑制することをいい、単に抗血小 板(Antiplatelet)ともよばれる。抗血小板活性は、例えば、血小板凝集測 定機(Aggregometer)を使用して、血小板の浮遊液(Platelet ich plasma)に、凝集を惹起させる物質(ADP、エピネフリン、コラーゲン 、アラキドン酸等)を加えた時の血小板凝集率を測定する方法により確認することができ る。

[0015]

本願発明の抗血小板凝集組成物は、飲食品、医薬品、飼料等に応用でき、好ましくは、 人が手軽に摂食できる飲食品が好ましい。

本願発明における飲食品とは溶液、懸濁物、粉末、固体成形物等経口摂取可能な形態で あれば良く特に限定するものではない。より具体的には、即席麺、レトルト食品、缶詰、 電子レンジ食品、即席スープ・みそ汁類、フリーズドライ食品等の即席食品類、清涼飲料 、果汁飲料、野菜飲料、豆乳飲料、コーヒー飲料、茶飲料、粉末飲料、濃縮飲料、栄養飲 料、アルコール飲料等の飲料類、パン、パスタ、麺、ケーキミックス、から揚げ粉、パン

[0016]

本願発明において、抗血小板凝集組成物又は、飲食品等に加工する際に、各種栄養成分を強化することができる。

強化できる栄養成分としては、ビタミンA、ビタミンB₁、ビタミンB₂、ビタミンB₆、ビタミンB₁ 2、ビタミンC、ビタミンD、ビタミンE、ナイアシン(ニコチン酸)、パントテン酸、葉酸等のビタミン類、リジン、スレオニン、トリプトファン等の必須アミノ酸類や、カルシウム、マグネシウム、鉄、亜鉛、銅等のミネラル類及び、例えば、 α -リノレン酸、EPA、DHA、月見草油、オクタコサノール、カゼインホスホペプチド(CPP)、カゼインカルシウムペプチド(CCP)、水溶性食物繊維、不溶性食物繊維、オリゴ糖等の人の健康に寄与する物質類、その他の食品や食品添加物として認可されている有用物質の1種又は2種以上が使用できる。

[0017]

以下本発明を、実施例にて詳細に説明するが、次の実施例は、本発明の範囲を限定する ものではない。

【実施例】

[0018]

(実施例1) 抗血小板凝集組成物の調製1

アムラー乾燥果実を40メッシュ以下に粉砕し、その粉末80グラムに、蒸溜水2リットルを入れ、55℃で3時間抽出した。その後、遠心分離し、その上清を濾過し、抽出物と残渣を分離した。その残渣に蒸溜水2リットルを入れ、同条件でもう1回繰り返し抽出し、それぞれの抽出液をあわせた後、凍結乾燥し、本願発明の抗血小板凝集組成物Aを359得た。

[0019]

(試験例1) 抗血小板活性の確認

本願発明の抗血小板凝集組成物の抗血小板活性を、血小板凝集測定機(Aggregometer)を使用して、健常人の血小板の浮遊液(platelet rich plasma) 400μ 1に、試料 80μ 1を添加したのち、凝集を惹起させる物質として ADP(1mg/m1溶液) 20μ 1を加え、5分後の血小板凝集率を測定した。

別途、対照として水(試料濃度0 m g/m 1)を添加して、同じ方法で血小板凝集率を測定した。測定された血小板凝集率から、下記の数式によって、対照に対する抗血小板活性(%)を計算した。

抗血小板活性(%)=(対照の血小板凝集率-試料添加時の血小板凝集率)/対照の血 小板凝集率×100

試料濃度として、2.5、5.0、7.5 m g/m l で測定した結果を、表 l に示す。

[0020]

【表1】

試料濃度	抗血小板活性(%)
2.5 mg/ml	24.4
5.0 mg/ml	37.8
7.5 mg/ml	53.7

上記表1の結果により、本願発明の抗血小板凝集組成物が高い抗血小板活性を示すことが確認できた。また抽出物の濃度を増加させることによって比例的に抗血小板活性も増加することが確認できた。

[0022]

(実施例2) 抗血小板凝集組成物の調製2

アムラー乾燥果実を 40メッシュ以下に粉砕し、その粉末 80グラムに、蒸溜水 2リットルを入れ、55 $\mathbb C$ で 3 時間抽出した。その後、遠心分離し、その上清を濾過し、抽出物と残渣を分離した。その残渣に蒸溜水 2 リットルを入れ、同条件でもう 1 回繰り返し抽出し、それぞれの抽出液をあわせて、減圧濃縮し、200 ミリリットルとした。この濃縮液にエタノールを加え、250 ミリリットルになるように調製(最終エタノール濃度 20%)した後、4 $\mathbb C$ $\mathbb C$

同様にして、エタノールの終濃度を40%,60%,80%にして、本願発明の抗血小板凝集組成物C,D,Eを、それぞれ、27g,26g,25g得た。

[0023]

(試験例2) 抗血小板活性の確認

実施例2で得られた抗血小板凝集組成物B~Eについて、5.0mg/mlの試料濃度で、試験例1と同様にして抗血小板活性を測定した。

また、実施例2における、80%エタノールでの沈殿画分についても同様にして試料を調製し、抗血小板活性を測定した。

その結果を表2に示した。

[0024]

【表 2】

試料	抗血小板活性(%)
抗血小板凝集組成物B	52.4
(20%エタノール可溶画分)	52.4
抗血小板凝集組成物C	29.3
(40%エタノール可溶画分)	20.0
抗血小板凝集組成物D	42.7
(60%エタノール可溶画分)	72.1
抗血小板凝集組成物E	39.0
(80%エタノール可溶画分)	
80%エタノール沈殿画分	1.2

[0025]

上記表2の結果により、抗血小板活性画分はエタノール可溶性画分に含まれ、20%エタノールで沈殿を除去した画分が最も活性が高いことがわかった。

[0026]

(実施例3) 抗血小板凝集組成物含有食品(錠菓)の調製

実施例2で得られた抗血小板凝集組成物B 50g、乳糖30g、DHA含有粉末油脂(サンコートDY-5;太陽化学株式会社製)12g、ショ糖脂肪酸エステル4g、ヨーグルト香料4gを混合し、1錠が300mgになるように打錠して、本願発明の抗血小板凝集組成物含有飲食品(錠菓)を得た。

[0027]

(実施例4) 抗血小板凝集組成物含有飲料(野菜果汁混合飲料)の調製

[0028]

本発明の実施態様ならびに目的生成物を挙げれば以下の通りである。

- (1) アムラーの果実、果汁又はそれらの抽出物を含有することを特徴とする抗血小板 凝集組成物。
- (2) アムラーの果実又は果汁の抽出物が、アムラー果実又は果汁から水、塩基、酸のいずれかにより抽出されていることを特徴とする前記(1)記載の抗血小板凝集組成物。
- (3) アムラーの果実又は果汁の抽出物が、アムラー果実又は果汁から水により抽出されていることを特徴とする前記(1)又は(2)記載の抗血小板凝集組成物。
- (4) アムラーの果実又は果汁の抽出物、又は果汁から、エタノールにより分画されていることを特徴とする前記(1)~(3)いずれか記載の抗血小板凝集組成物。
- (5) アムラーの果実又は果汁の抽出物、又は果汁から、エタノールにより可溶性成分として分画されていることを特徴とする前記(1) \sim (4) いずれか記載の抗血小板凝集組成物。
- (6) エタノールで分画する際のエタノール濃度が、10~90%であり、その可溶性 画分であることを特徴とする前記(5)記載の抗血小板凝集組成物。
- (7) エタノールで分画する際のエタノール濃度が、10~30%であり、その可溶性画分であることを特徴とする前記(5)又は(6)記載の抗血小板凝集組成物。
- (8) 前記(1)~(7)いずれか記載の抗血小板凝集組成物を含有することを特徴とする飲食品。
- (9) 前記(1)~(7)いずれか記載の抗血小板凝集組成物を含有することを特徴とする医薬品。
- (10) 前記(1)~(7)いずれか記載の抗血小板凝集組成物を含有することを特徴とする飼料。

【産業上の利用可能性】

[0029]

本発明で得られたアムラーの果実、果汁又はそれらの抽出物を含有する抗血小板凝集組成物は、血管壁への血小板の付着を阻害し、血小板凝集物の生成を抑制する抗血小板活性が高く、各種飲食品及び医薬品等に利用して、血小板凝集物の生成を抑制することで脳出血、脳梗塞、心筋梗塞、動脈硬化及び冠状動脈症のような心血関係疾患を予防することができる。

【要約】

【課題】 現在、血栓症を解決するために、血栓の生成を抑制する抗血栓剤及び血栓形成 予防剤と、生成された血栓を溶解させる血栓溶解剤の研究開発が主に行われているが、特 異性がないため、生体内においては血栓以外の部分にも影響を及ぼし、生体内に残存した 場合、出血等を引き起こす可能性がある。そこで最近では、医薬品による治療よりは食生活を通じて病気を予防し、体質を調節又は活性化させる機能を持った成分又は食品成分に 対する研究も注目されているが、風味や性状等に問題があるために幅広い飲食品に使用できなかったり、実用域の活性が弱い等の問題があった。本発明は、幅広い飲食品に使用可能な抗血小板凝集組成物及びそれを含有する飲食品を提供することを目的とする。

【解決手段】 アムラーの果実、果汁又はそれらの抽出物を含有することにより、上記課題を解決する。

【選択図】 なし

出願人履歴情報

識別番号

[000204181]

1. 変更年月日 [変更理由]

1990年 8月22日 新規登録

住所

三重県四日市市赤堀新町9番5号

氏 名 太陽化学株式会社