Introduction à la géométrie euclidienne

Le mot **géométrie** vient du grec et signifie **mesure de la terre**. Au cours du VI^e siècle avant J.C., la connaissance géométrique des Égyptiens et des Babyloniens a été introduite en Grèce, en particulier par **Thalès** et **Pythagore**. Pendant environ trois siècles, l'étude de la géométrie a progressé en Grèce. L'œuvre d'**Euclide** (III^e siècle avant J.C.) les "Éléments" a constitué le point de départ de l'enseignement de la géométrie au cours des siècles. La géométrie que nous allons étudier est en fait appelée **géométrie euclidienne**.

Les éléments constitutifs de la géométrie euclidienne sont les **points**, les **droites** et les **plans**.

La construction d'Euclide se fonde sur cinq axiomes :

- I. un segment de droite peut être tracé en joignant deux points quelconques distincts ;
- II. un segment de droite peut être prolongé indéfiniment en une ligne droite ;
- III. étant donné un segment de droite quelconque, un **cercle** peut être tracé en prenant ce segment comme rayon et l'une de ses extrémités comme centre ;
- IV. tous les **angles droits** sont **égaux** ;
- V. si deux lignes sont **sécantes** avec une troisième de telle façon que la somme des angles intérieurs d'un côté est strictement inférieure à deux angles droits, alors ces deux lignes sont forcément sécantes de ce côté.

Les angles

L'**angle** est une portion de plan délimitée par deux demi-droites de même origine. L'origine des demi-droites est le **sommet** de l'angle, et les demi-droites ses **côtés**.

Si deux angles sont **égaux**, alors on peut les coder avec des symboles identiques.

Les différents types d'angles

Angle	Nul	Droit	Plat	Plein
Figure	ж В О А	B A	B O A	B O A
Mesure	0°	90°	180°	360°
Position des côtés	confondus	perpendi- culaires	dans le prolongement l'un de l'autre	confondus

Angles opposés

Les angles α et β sont opposés, on a $\alpha = \beta$.

Angles correspondants

Les angles α et β sont correspondants.

Si la droite d_1 est **parallèle** à la droite d_2 alors $\alpha = \beta$:

Angles alternes-internes

Les angles α et β sont alternes-internes.

Si la droite d_1 est **parallèle** à la droite d_2 alors $\alpha = \beta$:

Les triangles

A, B, C: les sommets

a, b, c : les côtés

 α + β + γ =180°

isocèle

équilatéral

rectangle

Théorème de Pythagore

On considère un **triangle rectangle** :

Exercice 1 : Le cric d'une voiture a la forme d'un losange de 21 cm de côté. À quelle hauteur soulève-t-il la voiture lorsque la diagonale horizontale mesure 32 cm ? Arrondir au mm.

Exercice 2 : Pour apprendre son métier, un apprenti maçon a monté un mur en briques de 0,90 m de hauteur. Son patron arrive pour vérifier son travail : il marque un point B sur le mur à 80 cm du sol et un point A à 60 cm du pied du mur. Il mesure alors la distance entre les points A et B et il obtient 1 m. L'apprenti a-t-il bien construit son mur perpendiculaire au sol ? Justifier.

Triangles semblables

Deux **triangles** sont **semblables** s'ils ont les mêmes angles.

Les **côtes correspondants** sont ceux qui sont opposés aux angles de même mesure :

Exercice: Déterminer les triangles semblables et les côtés correspondants dans les cas suivants.

b)

Théorème de Thalès

Premier énoncé

Si deux triangles sont semblables, alors les longueurs de leurs côtés correspondants sont proportionnelles :

$$\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$$
 et aussi $\frac{d}{a} = \frac{e}{b} = \frac{f}{c}$

Second énoncé

Dans les situations si contre :

$$\frac{OA}{OA'} = \frac{OB}{OB'} = \frac{AB}{A'B'}$$

Exercice 1 : Les droites AB, CD et EF sont parallèles.

Déterminer BD et CE. (Conseil : tracer la droite parallèle à AC qui pass par B ...)

Exercice 2 : Les droites BC et DE sont parallèles.

Déterminer BD, CE et BC.