

N THE UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF MAILING 37 C.F.R. 1.8

I hereby certify that this correspondence is being deposited with the U.S. Postal Service as First Class Mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231, on the date below:

Sept 1, 1996

Richard A. Nakashima

DECLARATION UNDER RULE 131

I, CAROL A. WESTBROOK, HEREBY DECLARE AS FOLLOWS:

- 1. I am the named inventor of the subject matter claimed in the referenced U.S. patent application, Serial No. 07/784,222, filed October 28, 1991.
- 2. I understand that the Patent and Trademark Office Examiner in charge of examining this application has cited against my application the following publication:

Tkachuk *et al.*, "Detection of *bcr-abl* Fusion in Chronic Myelogeneous Leukemia by in Situ Hybridization," *Science* 250: 559-562, 1990.

- 3. The invention of claims 1-3 and 5-35 was made and tested in the United States prior to October 26, 1990, and therefore prior to publication of the cited article by Tkachuk *et al*.
- 4. The fact that the invention of claims 1-3 and 5-35 was made and tested in this country prior to October 26, 1990 is evidenced by studies set forth in the attached notebook extracts (Exhibit A). Among other things, this Exhibit sets forth the following studies which exemplify the practice of my invention:
 - a) Possession and use of the c-Hu-ABL, PEM12 and MSB-1 probes in *in situ* hybridization experiments for detection of chromosomal aberrations in leukemic cell lines and in blood cells from patients with leukemia (Pages 1-2 and 5-43 of Exhibit A).
 - b) Identification of doublets in the chromosomal DNA of leukemic cell lines and blood cells from patients with leukemia using distinguishably labeled probes specific for the c-H-abl and bcr genes. (Pages 1-2, 5-6 and 21-24 of Exhibit A).
 - c) A detailed protocol for detection of the c-H-abl/bcr fusion gene, using distinguishably labeled probes specific for the c-H-abl and bcr genes. (Pages 5, 7-11, 13-22, 24, 26-31, 33-43 of Exhibit A).

Each of items a) through c) as represented in the attached Exhibit were carried out in this country prior to October 26, 1990.

5. All statements made in this Declaration of my own knowledge are true and all statements made in this Declaration on information and belief are believed to be true, and these statements are made with the knowledge that willful false statements and the like are punishable by fine or imprisonment, or both under 18 U.S.C. §1001 and may jeopardize the validity of this application or any patent issuing thereon.

My 3 198

Date

- Lak Dag in Library
- Fluorescence + imaging book from library Flow cytometry paper- ? nuclear suspension
- Flow Offormery fager- " nuclear Sugarano
- Dropped 4 sets of Slides:
TK control Slides -
J Smith - periphiral blood ALL
POrzell - Sone marrow ALL
Davis - bone marrow, frozen ALL
Davis - pone morrow) 110 con 1100
20-25 Slides each, Still some cells in fix 4°.
Rare mature pMNS or bands, but present in
Swith + Orzell Stide and anality
Smith + Orzell Slides good quality Davis - poor cell "quality" Freezing artifact
apparent:
- Thawed cells from Varga Anne ALL Pht, ber
to fest 50 ×10° cells
Incubated 1/2 g/n
" 1/2 3° to allow cells to
recover from freezing
Over

!>

	Dr. Grieme & Susan McKibben - Senior student 5-5723 Discussed objective of my analyses attenuth -
	Discussed objective of my analyses attempth - trial run Thurs. AM.
	veds: Worked on Grant application
	Trus AM: Dr. Grieme & Susen McKibben 3-57
	Took 319-5cope down to lab- images captured fuzzy, had problem's a focus used double-hyb-d SUPB13 from
	Also, amount of light camera is sensitive too may be too much for the fluorescent gessay? too much "junk"?
fi	Uncertain, but worth pursuing at least until son fluorescence is perfected - then decide.
1	Turis PM -
	Honvested cells from Tues from Varga Good yield - did metaphase harvest.

	Throws PM) Hybridize	Patient SuPB13	Vanga:	MSB-1, c	Hu-abl, + d - double	aubli
MSB Abl MSB/AB	1st. 1- 1/5 1st / 30 1/0	Plac DNA 1 2	SS DNA I I 1 2	KOAc 2 1	FTOH 200 160 500	Dext/for 5/5 5/5 10/10
	Used "new" Into -70° 5° at + Slide pref. Slides on wa	Abl x 30° - 70° -	Spin, a into 3	- almost dry, rec	gone ronst.	
(2) (3) (4) (3)		<i>37</i> °	, y			
© 6	Dehydrate 4 o Profeinase K Dehydrati 4 o	lry 7,5' lry 90° x5	37°			

Results: Sperific signals sun on all, i many doublets High pactground
ChW suggests the following: Try & one color only; technical aspects of 2-color too much for most labs
··· ·

Detector #1:	Avidin Tx Red 11 Oigh Fo	n Sheep alb. 37. n 2 Slides: 0	(200 - V200 p 200 - V200 p 20 }	I 4X/Trito I SSA 32 AVTXL & Dig.X
For one Slide Avid a Dig	in Text - serbeton	400 pl	4 x Triton 5 SA Digli Fluores	Num
Avidin TexR	for: MSB-07 Det.# # 6	+ 2		
a Avidin - bio	(good) ALSB Dele Det		100 V500 V500 V500	00 3% SS
d'Shup (vableit)	pettolor#2	35lidy 600pl 900	30 p Ab	1 4x/tr/

	9	
_		
	DigX-label probes: PEM12, MSBI, KK5.33 (cos	mid 5
	* Nick translate kits "pilfered". No Stop Buy	llan no
	reaction buffer left, Vials	Well mixel
		or kits
		s no new k
		-> ordered thur
	1:500 2" IN 8	
	11 0.10 1100	11500
	Expt ONA ING 10xRB dNTP'S Digx-dUTP water	Delase De
MSB		4
PEM	LIM.	4
KK5.	5.33 10 WH 45 5 5 17	1 4
	Combined - 14° x2°	
	Made 200mM EDTA: 20 µl 500 mM EDTA	
	30 pl H20	
	5 \ " " + (5-8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	Ran out on gel:	EM 12
	KK 5.33 + WSB1	
	ned more cutting; PEM 12 OK)	
	(? MSB concentration loss	
· :	I PEM 12 more than that	
	calculated by O.D. readings?)	
For	or AM:	
(j)	D Will add MgAc (2 > IM) to MSB + KK + re-run them tomorrow when I nick	5.33 tupes
	+ re-run them tomorrow when I nick	- Trwna/(ba
<u> </u>	more MSB-1x PEM-12 = bio-dUTP.	out.
	Dest DNase of new Kit - old on running of Order 2 new Nick-transl. Kils + HIDE TH	IE M! (Fnio LK
	1) " MAN disparcemin - dUTP (Boehringer Mannhe)	Van 1093 08
(5)	1 more digoxigenin-dUTP (Boehringer Mannher) order meshes for soft tissue work. \$100	for 25 nm

I Re-do nick transl. of \$8 + KK5,33 I Test DNase dil. of new nick transl. kits Ti TI Ppt DNA for a hypr. run II. Nubr. 6 slides - single color. I. Malee more RNASA Re-start nick-trans. for MSB-1 + KK5.33 - digk IIV. New dilutión DNase -1:500 9 BB into = 1:10 9 DB = 1:100 1110 into into = 1:500 Add prase tube 4x Ova Pol. to each Mg Ac -1:1000 KK 5,3= not OK from polo MSB - ? 500kblittle DNA Probably cause of p New DVAS 1:500 a Test dilutions for new DNase: 1:500, 1:800, 1:1060 1 of 1:10 into 9 = 1:100 1:100 into 1:500 1:800 : 1000 Into DNa Pot DNase Control DNA RB ante HZO TTP 13 1:500 5 13 1:80D VS VS 13 1:1000 Stop p 2°

III. Make mou stock RNAse -> 10	5 ml aliquots.
IV Test digk-labeled probes from PEM 12 + AD MSB -1	И
ashol do double-lakeling C	single color
Sup B13 MSB-1/ PEM12	- 2 s'heles
3 MSB-1/PEM12/ABI	,
- BV 173 1- PEM-12	
2. MSB-1/PEM-12	
3. MSB-1/ PEM 12/ ABL MSB PEM ABL PlacONA	
	SSONA KOAC ETOH DEXTS.
PEM-12 (Tslide) - V15 -	1 2 200 5/5
MSB/PEM (Tislia) V15 V15 - 1 -MSB/PEM/ABL (Tislia) V15 N15 500 1	1 3 300 10/10
-MSB/PEN/ABL(Ti Slids) V15 V15 SP8 1	4 400 10/10
Combined - Freez- ppt- reconst.	
D'into RNasi 1°	Nick translation results: * PEM 12 OK but a lot
(3) 4x Wash 2x 55°. 2'	of DNA-(will begin hyb's
(4) Delydrate + dry: 3' (5) . 70% formd 70% 2'	2 10) instead of (5)
16 Dehydrate +dry 77 Ports ware 1 75'	* MSB-1 very little - next nick trans. will double as
(1) THE MARCINE	nick trans will double as
B Dehydrati + dry D Hybridige + seal 90° &' → 37° 0/N	* KK5.33 Still didnt cut well
$90^{\circ} \ \mathcal{L}' \rightarrow 37^{\circ} \ 0/\mathcal{N}$	* Drase dil for 2nd Kit at last
· · · · · · · · · · · · · · · · · · ·	1:500

weds:
Make 4x55e fo.1% Triton Make 50% formamide/4x55c -> into water books
Make 4x55C. Lab meeting! Dev. 5/1cles:— = cone round amplification.
No mayor problems.
Thurs Guest lecturer · * Worked on proposal

FR	
Many rock hamilation like a sind.	
New nick translation kits arrived: Taped one shut, c my name & into	FORDAN Holy
Offen one "A" - will test DNase dilutions	The got the
1:500 1:1000 + 1:1300	
$1 \text{ in } 9 \Rightarrow 1:10 \text{ . } 1 \text{ in } 9 = 1:100 \text{ .}$	
1 in 4 = 1:500)
1 in 9 = 1:1000 K	
Tim In a paract	
	are DNA PC
1:500 5 15 14 14 14 124	1
1:1000 5 5 4 4 14 24	4
added Mg Ac to rxn as our DNA	1:500
is dissolve in TE - may be part of	1:1000
problem à past Nick-transis.	1;50
Didn't add enough at 1st, so	1:100.
To so of whit was cal a some of reaction min adde	d more Mg#
Mon- to rest, ran x1' more,	J
Will use 1:500:	
O O	u more this
PEM 12 é dig X	
Abl ē biotin Acom KK5.33 ē digk	
	1:500 DNASI W
	i i
MSB NG X 2 V5 00 V5 V5 2018	u L
ABL 15) 2 15 105 15 20	4 ü
MARKADO V2) 2 3 0 5 5 23	1 4

Will a Modern	tol in	165 1:5	10 0 560	ock e-clean	
Will a Modern	4 in 445 Reaction top buffer n gel in larl	165 1;5	560	őck e-clean	
Will a Modern	445 Reaction top buffer n gel in larl	Rum.		ick e-clean	
Will a Modern	top buller n gel in earl	Run. 10' 1 y AM.	heating blo gen	øck e-clean	
Mode Sx In AM:		10' 1 y AM.	heating bloggen	ock e-clean	
Mode Sx In AM:		y AM.	≠ gen	e-clean	
In AM:	igents of				
In AM:	aggress ref.				
1 D Hy					
J	oridize Datien	t Slides	- direct	preps from	a ALL,
	oridize patien	Katsika	w		
	using pri	obes nick	:-translate	d today	if they are (
<u> </u>	$\lambda \omega = \alpha s I$			•	
2) Mak	reagents -	4x55c, 2x	1550, Q 4X	55C/0-12/0	riton
(3) Prej	reagents — " are MSB-1	Drage 1	UNA YOU	Shipping	c roce.
<u> </u>	Iron, Ma				
	Jan Jon	7W·W.	(1)/(1) /40	7/2 05 1/000	sare cary of
					·

	15
	E.
	17
	1/0-/1
	Worked on Am Ca Society Grant Proposal
	Turned in Fed Ex'd FRI 5PM.
	/ TO THE PART OF T
	M15.15
\	
	last week. (1) MSB
	and of old of one
	Only MH3.15 aid well, a wind 67
	about right
	MSB-1: Still alight on the DNA (not emough) but better
	TEM 12 STILL MUVY (too MUCK)
	Only MH5.15 did well, a tot of ONA wind 6 h about right MSB-1: Still mary (too much) Problem c Abl- ? don't know.
	THE WAS CONTRACTED TO SERVICE OF THE
	Plan: 1. Re start runs of Abl, MSB, PEMIZ 2 Concurrently run New ones - will need lots of probe for ALL Study Still need digk - PEM 1 MSB
	2 Concurrently run New ones - will need
	lots of probe for All study
	Still need digk - PEM & MSB.
	<i>y</i>
	For the "re start" - 1:500 MgOA 250mM DNA dNTP dig X biodUTP DNASS DNAS
//	
-/(PEM12
1	MSB-1 1 1 2 2 0 1 4 4
	10tal voi ~54)
1	
	Need to aid MgAC to 5mM in 50i
	would be 1) of a 250 mM solution
	250 mM = (.250 M) (15 ml) = (1 M MgAc) Stock x X
	3.75 m1 = X
	3.75 ml MOAC
	111,25 M N2U1
	For the "Fresh start" in AM
	EXPONA RXIBUFF dINTP MORE BIODUTF digy H20 DNASE DINA poi
	Abl 72 5 5 1 5 8 19 4 4
	7MSB-1 5 5 1 \$ 5 21 4 4
	PEN12 5) 5 5 1 8 5 21 4 4
	Need 24 1 of DNA32 dil
	MALA DAD.

	2.105
A . A	4 14 16
DNA se dil cition	6-11-24
1 in 9 = 1:10 1 of 1:10 in 9 = 1:100	8 in 3
(4)	
MY PAINE	
130	
(5 of 1:100 into 20)	
STACK AM	
CAW suggests withholding	g
DNA pol. until DNase is	done -
will try & run in AM	
In the meantime: Will run gel (0.8%) to a self of 8/2/90 phage preposite with both Hind III cut & A and uncut & A	/ concentration/purit
2 i Den 10	When WSB I
3 À PEM 12	10
6 X MSB	
I me uncut & x	
Ing HinDIII Øx	
I MG NINUTH WX	
Conclusión.	
Competition of .	=

CME 942 7499 Vicki OSull 7119 1:500

-	Exp. DNA	RxnB	JNTP	(bioUI	Digk	AR H20	1:50 DNA		
Abl	15	V5	15	15	Ø	22	4		
M58-1	16	1/5	V5	_	15	21	4		
PEM-12	(3)	15	1/5		5	24	1 4		
	LANO	it enough	use	42					
Reaction	n Stante	d:	733AM	<u> </u>	-> 14°	Ras	1° 10	,	
(1) 11 04	d 411	PAG BLAL	at	10 ⁹³ A	,				
Hode	a inh	Oul	<u>at 11</u>	_A_	run	<u> </u>	reated	to 65°	×10
retu	rned to	140	XIn	we he	m.				
	d 5)				. to	stop_			
DNASe	dil:	1 in	9 = 1	:10					
<u> </u>	i	(of 1:10)	in	7 = 1	1:100				
		3 in 1	2 =	1:5	500	for 3	tubes		
				dord _		MSB-1			
:				ind III	Abl -	1-F	EM 12		
	mini m								
~	for cu	tting	:						
	U	U		1			3		
Conclus	uons: O	atting	good	-	- .	is.			
2) Amt	of MSE	3-1 (67)	15 900		=				
of PEN	1-12(3)) not	enoug	h.			(ME) (ME)		
Will	of MSK 1-12(3) use 4	-> ru	xt Fi	ne.					
					· 1/a	/ 1	0	000.	
For	I hurs:	(Wea	A. 15	remn	u/MUJ/	Coleman	<u>Canc</u>	er Contc	. 0.
10-	hybrides	r <u>Si</u> ¥	norm	nal Si	ides,	Compo	ring,	The f	nove
1	from	$\frac{\gamma}{\gamma}$	uck tra	mslati	on to	those	of 10	<u>day</u> ,	
(2)	get fre	73en 7	rimor	-fr	em Lo	u,			
	Thurs: hybridis from get fre try	Colla	genal	e c	xugest i	071,	Λ		
	<u> </u>					$-\mathcal{J}$	H		

1							1	4
$-\frac{1}{\tau}$	Hubrid	īse 6	nl slides	to c	ampour	Probles ~ 5	500800 É P1	0645<500
	- J	cp'I DNA	Plac DNA s	SONA	KOAC	I EtOH	Formd/D	
Abl	10/1	5	1		1	100	5/5	
Abl	10/2	5)	<u> </u>		100	5/5	
_MSB-	1 10/1	15			1.5	200	5/5	
MSB-	10/2	13			115	200	5/5	
PEM 12	10/1	13		1	1.5	200	5/5	
PEMIZ	2 10/2	15		. 1	1.5	200	5/5	
I	fres Tumo	h reas dige	gents, ni stion:) pi	oblims.	bove. day#/ pri	tocol;	
e and to which the second of	- Co	llager	rase dilu	ted to	2000 0	i/ml, a	liquots o	f/m/frozen
:	- 10	((wed 10 m	g 8	f collag	nase)	× -189	
	<u> </u>	- 20 1	nadia	JYO7	m Lorry	mAn i	25ml	collagenace
	<u> </u>	$\frac{5 mc}{m}$	ubation.	t jiwi	ruley in	TIWL "T	000 ma (magnuce
	- 0/	11 1100	-00 of(10 / 1 h					
								1
	For AM	;						
		Develop	s Slides,	Ō O	ne am	plification	step	
	2	~	colon	tumor	digest	plification		
				<u> </u>				
		······································		 -				

I. Colon tumor digestion
Transfersed cells + media + collagenage
to tube - allowed 19 fragments to settle
Significant cells in suspension, returned large
Transferred cells + media + collagengel to tube — allowed /g fragments to settle Spenoved cells in suspension, returned large pieces of tissue to flask à more rollagendse
Spun suspended cells - ? hopefully smalls cells Hypotonic KCL + fix 3:1 Bropped a test slide -> Bacteria! No ep. cells
This approach work - ? fix first then digest Need to find new protocol
II. Detection steps for hybridized slides: 50% formamide x3, 4x55C x3, serum block x1°, then:
A. For biotin-Abl slides Avidin Texas Red in a 56B5A /4xTriton X 200/401 amplified c -
Avidin Texas Red in a 36B5A /4x/8iton X 200/401
amplified c-
10 A bio- a-Avidin (in goat)in: 400, 4x55C/Tritonx
200 x 372 SSA
+ another round of Avidin Texas Red as above
B. For DigX - MSB-1 & DigX-PEM-12 15) \(\alpha \) digX (inshup) in 800 4x5C/TintX 400 30% 55A
15 h & dight (inshup) in 800 4xSC/Tinth
400 39% SSA
than amplity:
FITC-ashelp (in rubbit) in 800
Washed 3' x2 in 4x55c/j76 Triton & between 1'+ ambilication stres.
amphilication strips.

Resub	All Slider Show	s cignal by	into close smallic
	711 AUGU AUGU PFM 12	_ buti	ight, clear, specific Le excellent et usable
	MSB-L	= OK b	et usable
	M <k -1<="" td=""><td></td><td></td></k>		
	Abl.	ok_	but
		Slides hazy	but Proplem a BSA?
I-ack		•	
- Back	- may held to a	add vallet s	enum to blocking stex
	- Wash X3 14	v. between	slides erum to blocking step 1° Ab + amplification
Conce	lusions:	1 0	difference,
	DAII probes	usable.	Size seems to be
	fortant for 1	1SB-1 Only	, & then only a lul
	(2) Delle Wolle &	n by back gru	Size seems to be 4 thin only a little und
	_		
FOR	NEXT WEEK:	0.4	ells from Toronto disaggregation pri
	D Hybridize par	tient slides	10 0 7 1
(2) " CN	11 colony c	ells from bronto
(3) Try again	c another	disaggregation fru

<u> </u>								
,	PEM12	M28-1	ABL	PlacDA	IA SS DNA	KOAC		Form/des
PEMABL X	5 60 h		25 x	5	<i>_</i>	7		25/2"
MSB/ABL X	3 45 à	451	15	3	2	6.5	200	15/15
M31	3 15/slide							
PE	u 12/slid	ι						
Pp	t +	reco	notete	etc DNA	1			
Slid	u to	be do	ne: (8	3)				. ১ Ո
	BV. 1	73 :	Control	for Pi	EM-12 Abl	* (5 PEM 1	2-ABL
	To	<u>vonto</u> C	ML S	olide :	PEM12-Abl	x2 /		
	JS	mith : AL	L.PB	(unknown)	; h "	XI)		
*	Sup &	313 C	ontrol	for M	SB-Abl	xl		
	J3	Smith 1	ALL-PB	(unknown)	MSBADI	<u> </u>	MSB-Ab1	
	Va	uga A	ILL-PB	(known)	MSB-Abl	xl /		
	Va	λζα ,	ALL-PB	(Known)) PEM12-A	16/ X/-		· · · · · · · · · · · · · · · · · · ·
		O						
V () S	sl'ide u	varmi	(50	X4°				
_ V2 K	WASE	37° x	(/*					
	Dx SSC	x4_	2'_					
- LG /	Dehydra	te 4 a	lsy,					
~37	10% fo	mamia	01/4xs	SC x2	70'			
6	Dehydra Profesna	te + a	ly					
	roteina	se K_	<i>J</i>					
_ NO 1)ehydr	ati *d	ry					
- 19 h	lybride	ize 4	seal					
	90° x2							
		<u>,</u>						
Fo	z ton	norrou	2 - بر ح	Tide de	tection	Steps		
	· · · · · · · · · · · · · · · · · · ·		P	reparl	journal	Club-	1.,	<u>/</u> (^)
			- Ta	relie to	Journal Tony M	ontog r	<u>e: Slide</u>	(it any);
1				(1) Opm		11MAh TA	MIACUAS -	tikkul Dri

I. Detection steps
1. Formamide 50% wash x351
12 4450 1205hea
13 Rlacking 5% BSA/SSA/3% Rabbit 10A
12. 4x55c washes 13. Blocking 5% BSA/SSA/3% Rabbit 10A 14. Octector #1 (see 14 sept 90)
Av Ticked) for 8 slides: 1600 + 200 for filter = 1800
Biotin 1200 4xssc/Trit)
600 SSA
20 m & AVTEXR
Nush x3 20 m x AVTexk
N show in rabbit Serum 1 1200 4x55C/Trit
Sheep in rabbit soum! 1200 4x55c/trit 600 sh Rabbit soum; 2010 sheep
wash x3
6. Detector #3
his of Aviden (got) in Sheep 1200 4x/Trit
600 SSA
/ wash x3
V7. Detector # 4 Avidin Tex Red 1200 4x55c/Trit
600 SSA
wash x3
8. DAK X3' 9. Wash 4xSSC X/
10. DAPCO/coverslip
Will examine slides in AM,
do counts
take photos.

Cells were intact, unlike Varga who had been frozen. Preparation fairly clean, moderate background.

3. Positive control slides. SupB13-MSB/ABL had very yellow nuclear background staining, poor hybridization and no doublets seen. Bad prep for unclear reasons. But the high yellow nuclear background is similar to the first succussful run - may be a property of the cell line, or may need different treatment. Will think it over!

BV173-PEM/ABL with good hybridization, little background, multiple clear doublets in the majority of cells.

"RULES OF THE ROAD" FOR INTERPRETING AND COUNTING PREPS:

- 1. Count only intact nuclei with clearly visible rim. Skip smudged, partly smashed, or fractured nuclei.
- 2. Count only nuclei which have instantly obvious red and green signals. If one of the colors is missing from the first sight of the nucleus, skip it.
- 3. Score only obvious doublets. If inconclusive, look carefully for other single signals in other parts of nucleus. If still not sure and no single signals seen, skip it. If other single signals seen, count as "no doublet".
- 4. Do not count in areas of high background or debris on the slide, or in areas where nuclei are clumped and obscure the individual nuclear borders.

PROBLEMS WITH COUNTING:

- 1. Can only count one or two nuclei in a field at a time before the red fades, so in fields with lots of nuclei, only a few get counted. May circumvent this somewhat by partially closing down the first diaphragm along the tube, just outside the lamp housing.
- 2. Difficult sometimes to define what is a doublet: how close must be a translocation and how close by chance? More than the diameter of the signal away? Not a constant number! Need to hybridize and count some normals (oops, no negative controls!).
- 3. Signals in slightly different planes of focus means will miss several if not constantly playing with fine focus.
 - 4. Tiring! Need to set up scope on a more comfortable table!

Took 32 photos, ASA 800, will develop at 800. Exposure times were around 7-10 seconds, tried to expose until the red faded.

X Still need more amplification, more blocking, and better washing.

In Situ Amplification Steps and Reagents

Thurs -

Not in Lab- ACS luncheon

FRI.

Dropped pt Slides

Made touch preps of Colon case 90-11690

-tumor

- adenoma

-nl mucosa

2 slides of each fixed in 95% and anti-glacial acetic acid rest in 95% adoled

$\mathcal{L}\Lambda$
M. I. Hybridization
II. Colon tissue disaggn.
III. Microscope
I. Call A. keating I. Drup rest of patient slidle.
V. Eng rest of parum scides.
I. Hybridization - will do following cases:
1. Varga, 48° culture (dropped this AM) & PEM/ABL
2. Vorga 48° culture " MSB/ABL
to / results à better cells - last prep
was a recently thawed cells
3. Sup813 & MSB/ABL ?
3. SupB13 & MSB/ABL ? pos 4. ALH normal & MSB/ABL ? reg controls 5. ALH normal & PEM/ABL - reg control for
5. ALH normal & PEM/ABL - may control for
double
colon cello:
6. 90-11690 tumor touch prep 95% alc:
7 90 1/(90 nl muchon 9507 a/c · ? no ex
8. ALH normal 4'3: control (in not hopet
case # 7 is no good and for this
control for probe.
Precipitation /reconst. of probes
DIA
PEN MSB ABL MASIS PRODNA SS DNA KOACI ETOH dutto/fo
Pera (2) 24 12 - 10 = 1/1 /2 /200 10/10
ABL
$\frac{M58(3) - 36}{M15.15(3) 1861} - \frac{1.5}{1.5} - 1$
(MSB+PEM: 12/51) (MHS.15 6/51) (Abl 51/81)
Reconstitute à destran/formamide + 70° x 5 min, thun 37°.
- The conditione of allowing to ming wants

Probes used: MSB-Digy	
PEM12. DigX	
Abli - bio	
MH 5.15	
Steps:	
6 Warmer 65" x 4" (6) Dehy	drate + dry visas K 7,5' 37°
@RVASe X1° 37° v@ Proto	inaid K 7,5' 37°
6 Warmer 65" x 4" & Dehy O RYASE X1" 37" Dehy O Wash 2X58C X42' & Dehy	drat + dry
Delehydrati & dry D Hybr	edizi + Seal
B'70° L' formanide 70° x2' (1) Dena	edize + seal ture 90° 12′, 0/N 37°. → 3PM
II. Colon tissille: acquired / more 1 90-11726 (Gray, Arlene) Law	case colon tissue -
1) 90-11726 (Gray, Arlene) Law	ant, res - colon ca.
fung ating centrally	, ulcerated polypoid tumor.
Touch preps made of tur	non - into 95% alc. alone
Normal mucosa inte	MEM à pen/strep, refrigerated
several hours. Trans	ferred to 42 paraforma Idehude at.
.290-11690 nl mucosa fresh in	fridge over weekend.
.2)90-11690 nl mucosa fresh in Cut off strips of mucosa	, minced it as fine as possible
117111 1111111111111111111111111111111	Man IM (a All II)
a. 1/2 of cells: 4 ml ME/	1 + 0.5 ml Collagenase 200 u/m,
into 25 ml flask	: into incubator o/n.
- b. 1/2 of cells: transferre	d to parafor maldehyde.
Will do a collagenas	1 + 0.5 ml Collagenase 200 u/m. : Into incubator o/n. d to parafor maldehyde. e digestion \(\tilde{p} \) o/n fixation.
1 1.6 gm paraforn a Idehuc	the into 20 ml H20 > heat 60" to
2. add equal vol. buffer - I	used Na H2 PO4 (pH 6), 0.2M
Paraformalde hyde prep per Mo 1. 1.6 gm paraform e Idehye 2. add equal Vol. buffer - I 3. adjustdpH & NaOH to	6.8-7.2 (6.93)
II Microscope: Zeiss rep. not in	office - will try tomorrow
TI Talmmed Do linting of unsucces	sfull results on 15th try C CUL colo

TUES. 1 Ly

I. Detection steps, yesterday's run.

J II. Begin new hybridization run w/ PEM/ABL

III. Colon tumor disaggregation, cont'd.

I. Detection steps:

- A. Remove coverslips, wash X3 50% formd. at 40 C.
- B. Wash X3 for 3 min, 4X SSC, 40C.
- C. Blocking: used 50/50 5% BSA/SSA.
- D. Detection/amplification: see diagram page.

II. New hybridization run. Will use following slides:

- 1. CML colony slide W-150, Day 0, 7,8
- 2. CML colony slide W-150, Day 0, 9.10.

3. BV 173, pos. control.

- 4. ALH 8/13, neg. control.
- 5. Vargos, ALL BM
- 6. Lord, ALL PB
- 7. J Smith, ALL
- 8. Orzell, ALL

All to be done with Pem/ABL.

DNA preparation: Probes used, PEM-12-digX : __all used ABL-biotin _.

	PEM12	ABL p	olacDNA	ssDNA	KOAC	EtOH	Dex/Form
#1	/44	√20	√ ₄	√4	√7	500	20/20
#2	/44	√20	<i>A</i>	√4	√1	500	20/20

Combine, -70 X30 min, spin, dry, reconstitute.

+70 X5 min, then 37 until use.

Slide prep:

Slide warmer 65 C X4 hr.

√2. RNAse X1 hr, 37 C.

3. Wash 2X SSC X4 2 min.

4. Dehydrate & dry.

15. 70% formd. 70 C X2min.

Fall stides Except ALH neg control were

6. Dehydrate & dry.

√7. Proteinase K 37 C 7.5 min.

√8. Dehydrate & dry.

9. Apply probe & seal.

∠10. 90 C x2 min, then 37 C o/n.

III. Colon tumor disaggregation:

contid incubation à collagenaire. Will seive in AM, pass into PBS, ? frypsinize?

In Situ Amplification Steps and Reagents

Yaremko

Detection reagent #4
/1200 \ 4x/trit.
/600 \ 3%558
/20 \ AvTxR

Will examine + photograph Thurs. AM à the results of tomonous cases.

For weds
1. Detection steps on slides

2. Colon disaggr.

3. ? review keating Slides?

4. V for fax sheets from Zeizs rep.

- Completed at 3PM.

- JSM PEN/ABL Slide cracked when folottad mounted + taped it to a 2nd Slide - may not be able to view It.

I. Look at slides from last two runs.

Luuis.

- Start hybridization on same pts. as before, MSB/ABL
- III. Nick-translate more probes.
- Order materials for colon disaggregation and rhodamine 600.

I. Slide: !!!Background very bad! In all slides except colon tumor slides, a fine green "snowstorm" of nonspecific fluorescence. Probably because of reconstitution of anti-digX (rabbit) in sheep rather than rabbit by mistake. Otherwise probes worked well, but slides of leukemia pt. and cell lines not evaluable because of background.

Colon tumor slides with not enough penetration of probes, and not enough single cells. Will try these again with stronger and longer proteinase K digestion.

II. New hybridization run. Will use following slides:

W. CML colony slide W-150, Day 0, 11,12

A XIL colony slide W-150, Day 0, 17,18

1&\sqrt{to be done with

3. SUPB13, pos. control. 4. ALH 8/13, neg. control.

5. Vargos, ALL BM

- 6. Lord, ALL PB
- 7. J Smith, ALL
- 8. Orzell, ALL

3-8 to be done with MSB/ABL.

DNA preparation: Probes used, MSB-digX 10/1/90: 10 ul/slide ABL-biotin 10/1/90: 5ul/sli/de PEM12-DigX 9/18/90: 10 v1/slide

ssDNA KOAC EtOH Dex/Form MSB1 ABL placDNA <500 30/30 10 M/A **3**00 12/stide

Combine, -70 X30 min, spin, dry, reconstitute. +70 X5 min, then 37 until use.

Slide prep:

V. Slide warmer 65 C X4 hr.

Z. RNAse X1 hr, 37 C.

- 3. Wash 2X SSC X4 2 min.
- 4) Dehydrate & dry.
- 5. 70% formd. 70 C X2min.
- 6. Dehydrate & dry.
- 7. Proteinase K 37 C 7.5 min.
- 8. Dehydrate & dry.
- 9. Apply probe & seal.
- 10. 90 C x2 min, then 37 C o/n.

Not enough probe to cont. so will do tomorrow

14 cont'd

III.	Nick trans Exp.DNA	late. <u>Rxn</u> l	B dNTP	DigX-UTP or bio-UTP	<u>H2O</u>	<u>DNase</u>	DNApol.
Abl	,4	√5	5,5	5 (bio)	123	14	4
MSB	6,	√5		5 (DigX)	121	14	4
Pem	4	√8		5 (DigX)	123	14	4

DNase dilution 1 in 9= 1:10 1 of 1;10 into 9 = 1:100 3 of 1:100 into 12 = 1:500.

Combined all but DNA pol. Reaction started: 2230. DNA pol added at: 3:196. Reaction stopped w/ 5 ul 200mM EDTA, 10' at 65 C. Will run on minigel in A.M.

IV. Order supplies, 2 of each:

- 1. Sigma D5527 Dulbecco's PBS 500ml \$8.50
- 2. Sigma H 8389 CMF-Hank's BSS 500ml \$9.25
- 3. Vector: Rhodamine-600-Avidin D A-2005 \$50 5 mg.

Make: V4x55C 4x55C/0.1% Triton 3% Rabbit serum 5% SSA RNAse Soln.

In AM

1. Screen all slides - discard all bad ones

Keep good ones.

2. Rum Gel

3. complete hybr. if probes OK.

I. Ran gel- first one Asterndand then ABL MSB

No cutting at all! So, did not complete ISH run.

Amounts, however, seem OK. (4, Abl) (6,MSB) (4) PEM12) Will proceed as follows:

Another nick translation reaction

1. ONASE 1° 2. ONApol + DNASE 1°

3. DNa pol 1º

Run gel: if ok, gene cleans + prepare for a run Mon. + Tues. with all slides.

- II. Colon disaggreg. -i) working out steps of disaggr. from Jakoby & pastan, cell culture, (see printouts)
 - 2) Asked T. Montag to have blocks cut from recent colon ca case ... as per accompanying diagram. Will include these cells in runs & fresh and briefly fixed tissue.
 - 3) Materials ordered.

LY

90-11690 COLON TUMOR AND ADENOMA Blocks number: C , \mathcal{E} , \mathcal{G} .

40-50 microns 4-6 microns 4-6 microns Unstained Unstained STAIN H&E STAIN H&E UNSTAINED for extraction of nuclei for "mapping" to in for through consitericy through the sections Will save unstained slides - ? factor VIII stains to look for resuling ? Bruner

LY

- I. Nick translate
- II. Make enzyme solutions and paraformaldehyde, Tris quencher
- III. Pick up slides from T. Montag
- IV. Acquire tissue from pathology.

ek translat	e.		DigX-UTP			
Exp.DNA	Rxn]	B dNTP	or bio-UTP	<u>H2O</u>	DNase	DNApol.
4	5	5	5 (bio)	23	4	4
6	5	5	5 (DigX)	21	4	4
4	5	5	5 (DigX)	23	4	4
	4 6	4 5 6 5	Exp.DNA RxnB dNTP 4 5 5 6 5 5	Exp.DNA RxnB dNTP or bio-UTP 4 5 5 5 (bio) 6 5 5 (DigX)	Exp.DNA RxnB dNTP or bio-UTP H2O 4 5 5 5 (bio) 23 6 5 5 5 (DigX) 21	Exp.DNA RxnB dNTP or bio-UTP H2O DNase 4 5 5 5 (bio) 23 4 6 5 5 (DigX) 21 4

DNase dilution 1 in 9= 1:10

1 of 1:10 into 9 = 1:100

3 of 1:100 into 12 = 1:500.

Combined all but DNA pol. Reaction started: 8:35 AM

DNA pol added at: 935A

DNAse stopped w/ 10' at 65 C at: 10^{35} A

DNA pol. cont'd x1 hr, stopped w/ 5 ul 200mM EDTA at:

Ran gel:

1- Ab1- MSB-PEM12) labelled all & good cutting.

Success! So repeated reaction with more Pem12 & MSB 1:

Nick translate.

	Exp.DN	A Rxn	B dNTP	DigX-dUTP	<u>H2O</u>	<u>DNase</u>	DNApol.
MSB	6	5	5	5 (DigX)	2 1	4	4
Pem	4	5	5	5 (DigX)	23	4	4
*(pre	pared 2	reaction	tubes o	f each)			

DNase dilution 1 in 9= 1:10

1 of 1:10 into 9 = 1:100

4 of 1:100 into 16 = 1:500.

Combined all but DNA pol. Reaction started: 1:50 PM

DNA pol added at: 2 50 P

DNAse stopped w/ 10' at 65 C at: 3⁵⁰ pM

450 PM DNA pol. cont'd x1 hr, stopped w/ 5 ul 200mM EDTA at:

Ran gel:

All OK. will Gene Clean.

Amts?

PEM 12 into 120+ 100x of TE

MSB into 75) each

 \mathbb{L} . Made 500 ec 0.1 M Tris pH 7.2 50 ml 1 M Tris + 450 H20 Autoclave in AM.

combined, for 150% MSB

will make rest of eng solns in AM.

as well as 3+4.

220) PEMI

abeled

Called Rush immunology, asked for why disaggrey, protocols for parather schools

Ti

LY I. Hybridization run

Paraffin tissue disaggregation protocol II.

Prepare enzyme solutions III.

Will use following slides: Hybridization run.

1. CML colony slide W-150, Day 0, 11,12 2. CML colony slide W-150, Day 0, 17,18

3. BV173, pos. control.

4. ALH 8/13, neg. control.

√5. Vargos, ALL BM ×2

6. Lord, ALL PB ×7

7. J Smith, ALL x 2

-8. Orzell, ALL × 2

9. SUPB13, pos. control.

10. ALH neg. control.

1-4 to be done with PEM/ABL.

9-10 to be done with MSB/ABL.

5-8 w/ both.

Total of 14 slides. 8 for PEM/ABL, 6 for MSB/ABL.

DNA preparation: Probes used, MSB-digX 10/22/90: 12 ul/slide

ABL-biotin 10/22/90: 5ul/slide

PEM12-DigX 9/22/90: 12 ul/slide -, all wed!

	MSB1	PEM	ABL	placDNA	ssDNA	KOAC	EtOH	Dex/Form
•		94 -	40 30	8	8 8 8	15 11	500 500	40/40 30/30

Combine, -70 X30 min, spin, dry, reconstitute. +70 X5 min, then 37 until use.

Slide prep:

1. Slide warmer 65 C X4 hr.

2. RNAse X1 hr, 37 C.

3. Wash 2X SSC X4 2 min.

4. Dehydrate & dry.

5. 70% formd. 70 C X2min.

- 6. Dehydrate & dry.
- 7. Proteinase K 37 C 7.5 min.
- 8. Dehydrate & dry.
- 9. Apply probe & seal.
- 10. 90 C x2 min, then 37 C o/n.

II. Tissue disaggregation.

Dren.

Fissue Disaggi. Rec'd nl colon mucosa case 90-12079. pt # 1956909 Divided & minced into > CMF - B55. Kept at 37° while mixed + filtere Fresh 4% paraformald. fixed 2° trypsin/co O.IM TRIS X1° added double vol. FCS-Spun refrigerated 0/N. PBS é sodium azirde Trypsin collagenase Some tube alone trypsin BSS/FCS Weds ×45 For AM. Trypsin soln. disågregg, per Mixed small gry 85m, ant 5.01-0.039 Try 85m, protocol, collactural (2000 ymi) PFIX hypotonic KCl 3:1 fix F Fix me. 451 37 paraformald. Trypsin protocol Tris PBS.

I. Detection steps for hybridizaton run. Cont. disaggregation protocol on fixed tissue. Order pepsin & materials for paraffin disagg. III. Order supplies. \$8.50 -> 4 500ml Sigma D5527 Dulbecco's PBS \$9.25 --- 2 * 2. Sigma H 8389 CMF-Hank's BSS 500ml 3. Sigma: Trypsin inhibitor T 6522 100 mg. \$27.15 4. Sigma: Pepsin 1:60,000 P7102 5g \$49.30 5. Sigma Collagenase C 9407 100mg \$31.60 -> 1 6. Sigma Cell dissociation kit CD-1 \$69.50 II. Summary of disaggregation steps: Normal mucosa, minced into 2-3mm pieces. Placed in CMF-BSS Fixed in fresh 4% paraformaldehyde for 2 hr. room temp. Kept at 37 C til enz. ready Incubated with combined Quench with 0.1 M Tris X1 hr. collagenase/trypsin soln. 45 min, 37 C. Wash PBS X3. Trypsin soln. (37 C) and pipetting Added double volume several times. FCS. Trypsin soln. alone (37 C) Several rounds of pipetting. Stored 4 C. Spin, divided pellet. Wash PBS X3. Fixed in fresh Hypotonic KCl 4% paraform. 3:1 fix. Quench in Tris. Reconstitute in PBS. Fresh, combo, post-fix paraform. Fixed, trypsin (2) Fixed, combo

4 tubes of disaggs. cells

enz. tx.

alone

Fresh, combo, post-fix 3:1.

Fast wash 4x55C DABCO + coverslip. Will examine in AM. **T**:

- I. Evaluate colon disagg. samples.
- II. Hybridize colon sample if O.K.
 - III. Collect more colon: Tumor + normal.
 - IV. Evaluate slides from last run.
- I. Colon samples:
- A. Fixed, trypsin alone: good dispersion of cells, but still many clumps. Cytoplasm still largely intact. Nuclear detail good!
- B. Fixed, combo collagenase/trypsin followed by trypsin: good dispersion of cell, better than trypsin alone. Cytoplasm often stripped from cells. Nuclear detail remains good.
 - C. Fresh, combo treatment, post-fixed in 3:1 fix: No cells.
- D. Fresh, combo treatment, post-fixed paraformaldehyde: Cells destroyed, poor detail, poor staining, but disaggregated.

Conclusion: Fixed cells give better preservation with adequate dispersion. Will hybridize some from both the fixed preps to compare.

- Hybridization: Eight slides to be done with MH5.15-bistin. $D_{Q} \chi$
 - Fixed trypsin alone with glue solution on slides.
 - 2.
 - 3. Fixed trypsin alone, no glue.
 - Fixed, combo enzyme treatment, with glue-treated slides
 - 5.
 - Fixed combo treatment, no glue.
 - 7. Touch prep, 90-11760, 95% alcohol fixed.
 - 8. JK control normal lymphocytes.

Plac. DNA ssDNA KoAC & X **EtOH** Dextr/ Formam. MH5.15 4 40/40

Combine, -70 X30 min, spin. Reconstitute, 5 min at 70 C. 37 C til use.

Slide prep:

e prep:

1. Slide warmer 65 C X4 hr.

2. RNAse X1 hr, 37 C.

3. Wash 2X SSC X4 2 min.

4. Dehydrate & dry.

4. Dehydrate & dry.

5. 70% formd. 70 C X2min.

5. 10. 90 C x2 min, then 37 C o/n.

III. Collect mou colon eno resictions on schidule today