Georgialnstitute of Technology

Dr. Tucker Balch Associate Professor School of Interactive Computing

Computational Investing, Part I

142: CAPM For Portfolios: Removing Market Risk

Find out how modern electronic markets work, why stock prices change in the ways they do, and how computation can help our understanding of them. Learn to build algorithms and visualizations to inform investing practice.

School of Interactive Computing

Recall CAPM for Portfolios

$$h_i = 1/2$$
 holdings in i
 $r_p(t) = \sum_i h_i r_i(t)$
 $r_i(t) = \beta_i r_m(t) + \infty_i$

Suppose we have info on 2 stocks

- Stock 1:
 - Will go down relative to market
 - Has a Beta of 2.0
- Stock 2:
 - Will go up relative to market
 - Has a Beta of 1.0
- Plan:
 - -50% Stock 1
 - +50% Stock 2

Example: Long Short

Case 1: Market is Flat: We win!

Case 2: Market Goes Down We win!

Case 3: Market Goes Up: We LOSE

Why did we lose?

- We have skill: Our alpha bets were right
- But we shorted high beta stock
- Market overwhelmed our "skill"

CAPM can help

CAPM can help

Solution

- Find weightings h_i so that portfolio beta is zero
- "Removes" market risk!

$$h_1 = 7.33$$
, $h_2 = 1.66$
 $\theta_1 = 2.0$, $\theta_2 = 1.0$

$$h_1 = 7.33$$
 $h_2 = 1.66$
 $\beta_1 = 2.0$ $\beta_2 = 1.0$
 $\beta_1 = -33.2 + 1.66.1$

$$h_1 = 7.33$$
 $h_2 = 1.66$
 $\beta_1 = 2.0$ $\beta_2 = 1.0$
 $\beta_P = -33.2 + .66.1$
 $\beta_P = 33.2 + .66.1$

$$h_1 = -.33$$
 $h_2 = .66$
 $\beta_1 = 2.0$ $\beta_2 = 1.0$
 $\beta_P = -.33 \cdot 2 + .66 \cdot 1$
 $\gamma_P = \beta_P \gamma_M - .33 \propto 1 + .66 \propto 2$
 $\gamma_P = \beta_P \gamma_M - .33 \propto 1 + .66 \propto 2$
 $\gamma_P = \beta_P \gamma_M - .33 \propto 1 + .66 \propto 2$
 $\gamma_P = \beta_P \gamma_M - .33 \propto 1 + .66 \propto 2$

Summary

- Can reduce market risk by zeroing out beta
- This is core concept for hedge funds
- Portfolio optimizers do this

Next: The Fundamental Law