Министерство образования и науки Украины Национальный технический университет «Харьковский политехнический институт»

Кафедра компьютерной математики и анализа данных

ЛАБОРАТОРНАЯ РАБОТА №5

КВАЗИ-НЬЮТОНОВСКИЕ МЕТОДЫ

ст. гр. КН-118

Тепляков А. Д.

Задачи

- 1. Изучить класс квазиньютоновских методов
- 2. Реализовать методы
- метод Дэвидона-Флетчера-Пауэлла (ДФП)

$$\Delta Q_k = \frac{\Delta x_k (\Delta x_k)^T}{(\Delta g_k, \Delta x_k)} - \frac{(Q_k \Delta g_k) (Q_k \Delta g_k)^T}{(Q_k \Delta g_k, \Delta g)},$$

$$\Delta x_k = x_{k+1} - x_k,$$

$$\Delta g_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$

• метод Бройдена-Флетчера-Шенно (БФШ)

$$\Delta Q_{k} = \frac{\left(\Delta x_{k} - Q_{k} \Delta g_{k}\right)\left(\Delta x_{k}\right)^{2} + \Delta x_{k}\left(\Delta x_{k} - Q_{k} \Delta g_{k}\right)^{T}}{\left(\Delta g_{k}, \Delta x_{k}\right)} - \frac{\left(\Delta x_{k} - Q_{k} \Delta g_{k}, \Delta g_{k}\right)\Delta x_{k}\left(\Delta x_{k}\right)^{T}}{\left(\Delta g_{k}, \Delta x_{k}\right)^{2}},$$

• метод Пауэлла

$$\Delta Q_k = -\frac{\Delta y_k (\Delta y_k)^T}{(\Delta g_k, \Delta y_k)},$$

$$\Delta y_k = (\Delta x_k + Q_k \Delta g_k)$$

• метод Мак-Кормика

$$\Delta Q_k = -\frac{(\Delta x_k + Q_k \Delta g_k)(\Delta x_k)^T}{(\Delta g_k, \Delta x_k)}.$$

- 3. Найти с помощью данных методов экстремум функций (параметр шага находится по правилу одномерной минимизации):
- а) Квадратичная форма

$$f(x) = (Ax, x) + (b, x),$$

где $x, b \in \mathbb{R}^2, A \in \mathbb{R}^{2 \times 2}$ — положительно определена;

b) Функция Химмельблау

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + 100(x_1 + x_2^2 - 7)^2;$$

с) Функция Розенброка

$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 + x_1^2)^2.$$

- 4. Сравнить скорость сходимости квазиньютоновских методов для каждой из функций, представленных в п. 3.
- 5. Сравнить скорость сходимости оптимального квазиньютоновского метода с модифицированным методом Ньютона и методом наискорейшего спуска.
- 6. Сравнить скорость сходимости квазиньютоновских методов и метод Ньютона для квадратичной формы большой размерности $\dim x = \{10, 50, 100\}$.

Результаты работы программы

На рисунках ниже представлены результаты работы программы для функции Химмельблау:

$$x_0 = (3; -3)$$

Метод ДФП:

Рис.1 – ДФП для функции Химмельблау

Iteration	Lambda	X1	X2	F_x	norm_X
	Himmelbla	u			
0		3	-3		
1	0,013581	3,679061	-2,04931	1,00857	1,168301
2	0,014671	3,56294	-1,94207	0,173201	0,15807
3	1,482458	3,587173	-1,85119	0,000474	0,09405
4	1,089143	3,584384	-1,84831	6,53E-07	0,00401
5	1,051241	3,584428	-1,84813	3,47E-13	0,000189
6	1,001576	3,584428	-1,84813	2,72E-21	1,08E-07
	Extremum	3,584428	-1,84813	2,72E-21	

Таблица $1 - Д\Phi\Pi$ для Химмельблау

Метод БФШ:

Рис.2 – БФШ для Химмельблау

Iteration	Lambda	X1	X2	F_x	norm_X
	Himmelbla	u			
0		3	-3		
1	0,013581	3,679061	-2,04931	1,00857	1,168301
2	0,014414	3,563158	-1,94227	0,173202	0,157773
3	1,48019	3,587098	-1,85107	0,000447	0,094284
4	1,084224	3,584386	-1,8483	6,10E-07	0,003876
5	1,050241	3,584428	-1,84813	2,81E-13	0,000183
6	1,001544	3,584428	-1,84813	6,87E-22	9,82E-08
	Extremum	3,584428	-1,84813	6,87E-22	

Таблица 2 – БФШ для Химмельблау

Метод Пауэла:

Рис.3 – метод Пауэла для Химмельблау

Iteration	Lambda	X1	X2	F_x	norm_X
	Himmelbla	u			
0		3	-3		
1	0,013581	3,679061	-2,04931	1,00857	1,168301
2	0,014671	3,562941	-1,94201	0,173019	0,158109
3	-1,47617	3,587171	-1,85119	0,000474	0,093995
4	-1,07675	3,584384	-1,84831	6,52E-07	0,004008
5	-1,0304	3,584428	-1,84813	3,31E-13	0,000189
6	-1,00158	3,584428	-1,84813	3,44E-21	1,05E-07
	Extremum	3,584428	-1,84813	3,44E-21	

Таблица 3 – метод Пауэла для Химмельблау

Метод МакКормика:

Рис.4 – метод МакКормика для Химмельблау

Iteration	Lambda	X1	X2	F_x	norm_X
	Himmelblau				
0		3	-3		
1	0,013581	3,679061	-2,04931	1,00857	1,168301
2	0,012908	3,565006	-1,96782	0,25811	0,140177
3	0,015761	3,609331	-1,90542	0,072423	0,076545
4	0,013483	3,579203	-1,88402	0,021945	0,036956
5	0,016177	3,59202	-1,86595	0,00679	0,02215
6	0,013642	3,582833	-1,85943	0,002143	0,011265
7	0,016299	3,58683	-1,8538	0,000682	0,006904
8	0,013703	3,583922	-1,85174	0,000218	0,003566
9	0,016299	3,585195	-1,84995	6,99E-05	0,002195
10	0,013703	3,584266	-1,84929	2,25E-05	0,001139
11	0,016336	3,584676	-1,84871	7,25E-06	0,000707
12	0,013703	3,584376	-1,8485	2,34E-06	0,000367
13	0,016336	3,584508	-1,84832	7,52E-07	0,000227
14	0,013703	3,584411	-1,84825	2,43E-07	0,000118
15	0,016299	3,584454	-1,84819	7,85E-08	7,33E-05
	Extremum	3,584454	-1,84819	7,85E-08	

Таблица 4 – метод МакКормика для Химмельблау

Для функции Розенброка:

$$x_0 = (-2; 2)$$

Метод ДФП:

Рис.5 – ДФП для Розенброка

Iteration	Lambda	X1	X2	F_x	norm_X
	Rosenbro	k			
0		-2	2		
1	0,00033	-1,465	2,13325	6,09305	0,55135
2	0,10052	-1,452	2,08311	6,07675	0,05179
3	9,59031	-1,246	1,49252	5,40459	0,62551
4	32,2176	-0,8966	0,74774	3,91141	0,82268
5	6,4129	-0,9013	0,81064	3,61509	0,06307
6	9,95531	-0,6948	0,44057	3,04952	0,42379
7	10,1345	-0,5295	0,22215	2,67827	0,2739
8	20,012	-0,4427	0,21414	2,11435	0,08721
9	9,16406	-0,2872	0,05417	1,73705	0,22306
10	4,3463	-0,1967	-0,0058	1,62998	0,10851
11	47,5079	0,13311	-0,0125	0,84294	0,32992
12	3,74965	0,12155	0,0109	0,77317	0,02612
13	9,70449	0,2822	0,05492	0,57632	0,16658
14	14,5181	0,44577	0,16961	0,39189	0,19977
15	8,80703	0,46013	0,21419	0,29207	0,04684
16	6,93945	0,57976	0,32057	0,20078	0,16008
17	6,51452	0,67355	0,43248	0,1515	0,14602
18	11,325	0,71397	0,5145	0,08407	0,09144
19	4,99599	0,79497	0,62356	0,04912	0,13584
20	4,10945	0,85635	0,72133	0,03503	0,11544
21	8,91087	0,89114	0,79691	0,01263	0,08321
22	3,15899	0,93952	0,87928	0,00483	0,09553
23	3,85115	0,98149	0,95959	0,00174	0,09062
24	2,4857	0,9832	0,96676	0,00028	0,00737
25	1,98621	0,99886	0,99742	9,85E-06	0,03443
26	1,2027	0,99958	0,99917	1,88E-07	0,00189
27	0,96804	1	1	5,25E-11	0,00093
28	1,00932	1	1	6,24E-16	4,68E-06
	Extremum	1	1	6,24E-16	

Таблица 5 – ДФП для Розенброка

Метод БВШ:

Рис.6 – БФШ для Розенброка

Iteration	Lambda	X1	X2	F_x	norm_X
	Rosenbro	k			
0		-2	2		
1	0,00033	-1,465	2,13325	6,09305	0,55135
2	0,10052	-1,452	2,08311	6,07675	0,05179
3	6,31092	-1,246	1,49258	5,40472	0,62544
4	4,06246	-0,8967	0,74792	3,91193	0,82254
5	0,2159	-0,9014	0,81082	3,61545	0,06307
6	1,45345	-0,6949	0,44072	3,04987	0,42381
7	1,84452	-0,5296	0,22227	2,67865	0,27391
8	0,76438	-0,4427	0,21421	2,11461	0,08724
9	0,63443	-0,2873	0,05422	1,73726	0,22308
10	1,09924	-0,1968	-0,0057	1,63022	0,1085
11	3,88712	0,1329	-0,0126	0,84338	0,32982
12	0,2135	0,12134	0,01086	0,77354	0,02614
13	2,05356	0,282	0,05481	0,57663	0,16656
14	2,80188	0,44554	0,16939	0,39221	0,19968
15	0,36046	0,45992	0,21401	0,29229	0,04688
16	1,19768	0,57955	0,32033	0,20096	0,16005
17	1,8178	0,67332	0,43216	0,15169	0,14594
18	0,79176	0,71381	0,51429	0,08417	0,09157
19	0,83726	0,79482	0,62332	0,04919	0,13583
20	1,68947	0,85618	0,72105	0,03509	0,1154
21	1,10973	0,89106	0,79678	0,01265	0,08338
22	0,82001	0,93945	0,87914	0,00484	0,09552
23	2,33943	0,98141	0,95941	0,00175	0,09058
24	0,63574	0,98315	0,96667	0,00028	0,00746
25	1,53453	0,99884	0,99739	1,00E-05	0,0345
26	1,13157	0,99957	0,99916	1,91E-07	0,00192
27	0,94389	1	1	5,48E-11	0,00094
28	1,00922	1	1	6,56E-16	4,81E-06
	Extremun	1	1	6,56E-16	

Таблица 6 – БФШ для Розенброка

Метод Пауэла:

Рис.7 – метод Пауэла для Розенброка

Iteration	Lambda	X1	X2	F_x	norm_X
	Himmelblau				
0		-2	2		
1	0,000333	-1,465	2,133251	6,093048	0,551345
2	0,046401	-1,45941	2,110009	6,088142	0,023904
3	-8,94339	-1,24984	1,50442	5,394517	0,640825
4	-0,88845	-0,95654	0,852072	4,223596	0,715251
5	-3,35162	-0,94718	0,899932	3,792292	0,048766
6	0,059283	-0,74625	0,515413	3,221476	0,433852
7	-1,50421	-0,60135	0,302128	2,918212	0,257853
8	40,62503	0,08145	-0,00824	0,865865	0,750027
9	-0,05511	0,076281	0,001119	0,855466	0,010694
10	-4,00247	0,233059	0,028185	0,656487	0,159097
11	-1,04023	0,401664	0,130699	0,451856	0,197324
12	14,56338	0,415971	0,175566	0,341733	0,047093
13	-0,58464	0,539625	0,274639	0,239358	0,158448
14	-2,73525	0,635731	0,381428	0,184337	0,143668
15	1,899271	0,680749	0,468908	0,104933	0,098383
16	-0,5566	0,76522	0,576441	0,063441	0,136744
17	-2,17743	0,827261	0,671043	0,047577	0,113131
18	3,078476	0,873648	0,767152	0,01748	0,106718
19	-0,49871	0,924678	0,851278	0,00708	0,098393
20	-2,50402	0,966455	0,929158	0,003505	0,088377
21	0,579418	0,974698	0,950437	0,000656	0,022821
22	-1,2121	0,995267	0,9899	6,56E-05	0,044501
23	-0,78428	0,99927	0,998584	7,15E-07	0,009562
24	-0,8381	0,999977	0,99995	1,77E-09	0,001538
25	-1,0798	1	1	1,58E-15	5,49E-05
	Extremum	1	1	1,58E-15	

Таблица 7 – метод Пауэла для Розенброка

Метод МакКормика:

Рис.8 — метод МакКормика для Розенброка

Iteration	Lambda	X1	X2	F_x	norm_X
	Rosenbrok	(_	_
0		-2	2		
1	0,000333	-1,465	2,133251	6,093048	0,551345
2	0,04569	-1,4595	2,110364	6,088268	0,023538
3	0,000511	-1,45108	2,112387	6,012354	0,008661
4	0,052903	-1,43128	2,029909	5,945964	0,08482
5	0,000567	-1,42247	2,032024	5,875762	0,009058
6	0,052117	-1,4028	1,950141	5,804857	0,084212
7	0,000567	-1,39445	1,952149	5,739255	0,008593
8	0,046447	-1,37681	1,878729	5,677724	0,075509
9	0,000567	-1,36885	1,880642	5,616201	0,008187
10	0,041724	-1,35293	1,814303	5,562206	0,068223
11	0,000622	-1,34458	1,816306	5,50413	0,008581
1877	0,001545	0,960873	0,923059	0,001536	0,000101
1878	0,003534	0,960857	0,923211	0,001532	0,000153
1879	0,001545	0,960957	0,923222	0,001529	0,000101
1880	0,003534	0,960941	0,923374	0,001526	0,000153
1881	0,001545	0,961042	0,923384	0,001522	0,000101
1882	0,003534	0,961026	0,923536	0,001519	0,000152
1883	0,001545	0,961126	0,923547	0,001516	0,000101
1884	0,003534	0,96111	0,923698	0,001513	0,000152
1885	0,001545	0,96121	0,923708	0,001509	0,000101
1886	0,003559	0,961194	0,92386	0,001506	0,000153
1887	0,001503	0,961291	0,92387	0,001503	9,77E-05
	Extremum	0,961291	0,92387	0,001503	

Таблица 8 – метод МакКормика для Розенброка

Для квадратичной формы:

$$x_0 = (0; 0)$$

Метод ДФП:

Рис.9 – ДФП для формы

Iteration	Lambda	X1	X2	F_x	norm_X
	x^2 + 2y^2	- 2x + y			
0		0	0		
1	0,416661	0,833323	-0,41666	-1,04167	0,931683
2	0,333358	1,000005	-0,24998	-1,125	0,235721
3	1,000174	1	-0,25	-1,125	1,64E-05
	Extremum	1	-0,25	-1,125	

Таблица 9 — ДФП для формы

Метод БФШ:

Рис.10 – БФШ для формы

Iteration	Lambda	X1	X2	F_x	norm_X
	$x^2 + 2y^2 - 2x + y$				
0		0	0		
1	0,416661	0,833323	-0,41666	-1,04167	0,931683
2	0,3	0,999993	-0,25	-1,125	0,235704
3	1,001359	1	-0,25	-1,125	8,32E-06
	Extremum	1	-0,25	-1,125	

Таблица $10 - Б\Phi Ш$ для формы

Метод Пауэла:

Рис.11 – метод Пауэла для формы

Iteration	Lambda	X1	X2	F_x	norm_X
	x^2 + 2y^2 - 2x + y				
0		0	0		
1	0,416661	0,833323	-0,41666	-1,04167	0,931683
2	0,323552	0,999998	-0,24998	-1,125	0,235718
3	-0,99944	1	-0,25	-1,125	1,90E-05
	Extremum	1	-0,25	-1,125	

Таблица 11 – метод Пауэла для формы

Метод МакКормика:

Рис.12 – метод МакКормака для формы

Iteration	Lambda	X1	X2	F_x	norm_X
	x^2 + 2y^2	- 2x + y			
0		0	0		
1	0,416661	0,833323	-0,41666	-1,04167	0,931683
2	0,277758	0,925906	-0,23149	-1,11882	0,207029
3	0,416744	0,987662	-0,26235	-1,12454	0,069038
4	0,277758	0,994517	-0,24863	-1,12497	0,015335
5	0,416703	0,999087	-0,25091	-1,125	0,005108
6	0,277758	0,999594	-0,2499	-1,125	0,001135
7	0,416636	0,999932	-0,25007	-1,125	0,000378
8	0,277846	0,99997	-0,24999	-1,125	8,41E-05
	Extremum	0,99997	-0,24999	-1,125	

Таблица 12 – метод МакКормака для формы

Сравнение квази-ньютоновских методов

Сравнение скорости сходимости (кол-во итераций)

	ДФП	БФШ	Пауэл	МакКормак
Химмельблау	6	6	6	15
Розенброк	28	28	25	1887
Форма	3	3	3	8

Таблица 13 – сравнение скорости сходимости

Из представленных экспериментальных данных можно сделать вывод, что методы ДФП, БФШ и Пауэла ведут себя для рассмотренных функций практически одинаково, когда метод МакКормака показывает себя гораздо хуже.

Сравнение скорости сходимости оптимального квазиньютоновского метода с ММН и МНС

Исходя из пункта выше, за оптимальный был принят метод Пауэла.

	MHP	МНС	Пауэл
Химмельблау	4	15	6
Розенброк	14	1777	25
Форма	2	6	3

Таблица 14 – сравнение методов

Из приведенных данных можно сделать вывод, что МНС – наихудший, так как требует больше всего итераций, особенно для функции Розенброка. Метод Пауэла так же показывает себя несколько хуже метода Ньютона, однако не требует вычисления обратной матрицы.

Сравнение скорости сходимости квази-ньютоновских методов и МН для квадратичной формы большой размерности

Так как квази-ньютоновские методы ведут себя похожим образом для квадратичной формы, проведём сравнение одного из $\text{них}(\text{Д}\Phi\Pi)$ с МН для квадратичной формы большой размерности.

Итерации	МН	ДФП
10	3	13
50	4	54
100	4	103

Таблица 15 – сравнение методов

Рис.13 – сравнение методов.

Представленные результаты лишний раз подтверждают теоретические сведения о скорости сходимости квази-ньютоновских методов и МН.

Выводы

В данной лабораторной работе были рассмотрены и реализованы такие квази-ньютоновские как метод Дэвида-Флетчера-Пауэла, Бройдена-Флетчера-Шенно, Пауэла и Мак-Кормика, а так же проведено их сравнение друг с другом и другими методами многомерной оптимизации. Методы были протестированы на функциях Химмельблау, Розенброка и положительно определённой квадратичной формы.

Было проведено сравнение скорости сходимости этих методов, и выбран оптимальный из них — метод Пауэла.

Было проведено сравнение этого метода с другими методами многомерной оптимизации – MHC и MHP.

Так же было проведено сравнение метода ДФП с классическим методом Ньютона для квадратичной формы больших размерностей.

В работе представлены результаты работы программы всех четырёх методов для исследуемых функций.

Следует отметить, что на практике для поиска минимума чаще всего используют один из квази-ньютоновских методов, так как они позволяют уйти от вычисления обратной матрицы (Гессиана), заменив её на итерационный процесс.

Приложение. Дополнительный анализ метода Мак-Кормика

В связи с большим количеством итераций метода Мак-Кормика для функции Розенброка был проведён его дополнительный анализ и доработка.

Так, было выяснено, что частота рестарта может оказывать значительное влияние на количество итераций метода, причем для различных начальных точек оптимальная частота рестарта может отличаться. Так же для некоторых значений частоты рестарта и начальных точек невязка решения может быть существенной.

Данные, полученные в ходе дополнительного исследования:

Таблица 16 – количество итераций метода для различных начальных условий

Начальная точка\частота рестарта	4	5	6
(-1; 2)	97 (0,34)	80	64 (0,2)
(-2; 2)	105	59	152 (0,34)
(3; -4)	29 (0,34)	34	21

Примечание. Для точек, где невязка превосходит точность, она указана в скобках.

Так же следует отметить, что в результаты работы метода так же могут различаться при изменении некоторых других условий — точности, начального значения матрицы Q. Подбор последнего осуществлялся вручную для некоторых точек, что позволяло сократить количество итераций метода.

Более того, в ходе изучения результатов метода следует отметить, что в некоторых случаях он делает слишком маленький шаг, что приводит к преждевременной остановке работы и, как следствие, большой невязке решения.

Теоретически, улучшение метода для избегания подобных случаев позволит добиться ещё более лучших результатов.

Следует учитывать, что подобные особенности были замечены лишь для функции Розенброка, и для других исследуемых функций не наблюдались.