AE 242 Aerospace Measurements Laboratory

Basic digital circuits

AND operation

$$Y = A \cdot B \cdot C \cdot ... N$$

$$Y = ABC...N$$

Standard symbol for AND gate

A,B,C .. N are input variables (possible values only 0 &1) and Y is output. Y will be high only when all the inputs are high (positive logic)

	Inputs	Output
$A = \overline{A}$	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

Truth table for a 2-input AND gate

Basic digital circuits

OR operation

$$C \stackrel{A}{\circ}$$

$$Y = A + B + C + ...N$$

Standard symbol for OR gate

Output of OR gate is 1, if and only if one or more inputs are 1

Inp	outs	Output
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Truth table for a 2-input OR gate

Basic digital circuits

NOT operation

$$Y = \overline{A}$$

Standard symbol for NOT gate

NOT gate also known as inverter. It is one input (A) and one output (Y) device. Output is complement of input. Bubble in the circuit always denotes inversion in digital circuits.

Input A	Output Y
0	1
l	0

Truth table for a NOT gate

NAND operations

NOT-AND operation is known as NAND, it is a AND gate followed by a NOT gate. Complemented output of AND. Standard symbol is AND with bubble.

Inp	uts	Output	
Ā	В	Y	
0	0	1	
0	1	ſ	
1	0	1	
1	1	0	

Truth table for a NAND gate

NOR operations

NOT-OR operation is known as NOR. It is OR gate followed by a NOT gate. Complemented output of OR gate. Standard symbol is OR gate with a bubble.

	Inputs	Output
A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Truth table for a two input NOR gate

Using NOR as universal gate

Using NOR gate, basic digital circuits i.e. AND, OR, NOT can be obtained and this property makes it a universal gate.

Exclusive-OR (EX-OR) operations

It is not a basic gate, and the operation can be performed using the basic gates - AND, OR and NOT. Output is logic one when odd number of inputs are one.

Standard notation

$$Y = A \oplus B$$

$$Y = A \oplus B$$
 $Y = AB + AB$

	Inputs	Output
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Truth table for a EX-OR gate

Exclusive-OR (EX-OR) operations

Truth table for three inputs.

Output is logic one when odd number of inputs are one.

$$z = x \oplus y$$

(a) 2-Input EX-OR Gate

(b) 3-Input EX-OR function derived from Two 2-input-EX-OR gates

	Input		Output
X	У	Z	p
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Truth table for a EX-OR gate

Exclusive-NOR (EX-NOR) operations

It is EX-OR gate followed by a NOT

Standard notation

$$Y = A \circ B$$

$$Y = \overline{AB + AB}$$

$$Y = \overline{AB + AB}$$

NAND as universal gate

Using NAND gate, basic digital circuits i.e. AND, OR, NOT can be obtained and this property makes it a universal gate.

Truth Table			
Inp	Input Output		
A	В	Q	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Components to	Quantity	
7400	2 input quad NAND gate	1
7805	Five volt regulator	1
220 Ω resistance		2
LED		2
Bread board		1
9 V battery		1

Experiment: a) Create NOT Gate using NAND Gate

- b) Create AND Gate using NAND Gate
- c) Create OR Gate using NAND Gate

Half adder

A logic circuit adding two bits is called as half adder. A and B are two inputs. S is sum and C is carry as output.

$$S = A \oplus B$$

Carry
$$C = AB$$

Inp	uts	Out	puts
Α	В	S	\overline{C}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Experiment: a) Create half adder using NAND and AND Gates

Truth Table			
Inp	out	Output	
A	В	Q	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Components to	Quantity	
7400	2 input quad NAND gate	1
7408	2 input AND gate	1
7805	Five volt regulator	1
220 Ω resistance		2
LED		2
Bread board		1
9 V battery		1

Experiment: XOR gate using NAND Gates

Experiment: Give the inputs as shown above and observe the output