

Sèries i criteris de convergència

Àlex Arenas, Sergio Gómez

Universitat Rovira i Virgili, Tarragona

Sèries i criteris de convergència

- Sèries
 - □ Definicions
 - Donada una successió $\{a_n\}_{n\geq 1}$ s'anomena sèrie a la suma de tots els termes de la successió

$$S = a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$

Per a donar sentit matemàtic a la sèrie cal definir la successió $\{s_n\}_{n\geq 1}$ de sumes parcials

$$s_n = \sum_{k=1}^n a_k$$

de manera que la successió $\{a_n\}_{n\geq 1}$ és sumable si

$$S = \lim_{n \to \infty} s_n$$

□ Observacions

- Una sèrie només té sentit si la successió de sumes parcials és convergent, i es diu que la sèrie és convergent
- Quan una successió és no sumable es diu que és divergent
- Per definició: a_n sumable \iff s_n convergent
- Es compleix: $a_n = s_n s_{n-1} \quad \forall n > 1$
- Per qualsevol $p \in \mathbb{N}$ es compleix

$$\sum_{n=1}^{\infty} a_n \text{ convergent } \iff \sum_{n=p}^{\infty} a_n \text{ convergent}$$

És dir, per a saber la sumabilitat no importa el terme d'inici

□ Exemples

■ La sèrie formada per la successió aritmètica de terme inicial a_1 i diferència d és divergent (llevat si $a_1 = d = 0$)

$$a_n = a_1 + (n-1)d$$

$$s_n = \sum_{k=1}^n a_k = \frac{n(a_1 + a_n)}{2}$$

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \left(a_1 n + \frac{n(n-1)}{2} d \right) = \lim_{n\to\infty} \frac{n^2}{2} \left(d + \frac{2a_1 - d}{n} \right) = \infty$$

□ Exemples

■ La sèrie formada per la successió geomètrica de terme inicial $a_1 \neq 0$ i raó r és convergent si |r| < 1

$$a_{n} = a_{1}r^{n-1}$$

$$s_{n} = \sum_{k=1}^{n} a_{k} = \begin{cases} \frac{a_{1}(1-r^{n})}{1-r}, & r \neq 1\\ a_{1}n, & r = 1 \end{cases}$$

$$\lim_{n \to \infty} s_{n} = \begin{cases} \frac{a_{1}}{1-r}, & |r| < 1\\ \infty, & |r| \geq 1 \end{cases}$$

Per tant, la sèrie geomètrica (per |r| < 1) s'escriu

$$1 + r + r^2 + r^3 + \dots = \sum_{n=0}^{\infty} r^n = \frac{1}{1 - r}$$

Exemples

Cas particular

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2\left(1 - \frac{1}{2}\right)} = 1$$

Exemples

La sèrie harmònica és divergent

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots \qquad \text{amb } a_n = \frac{1}{n}$$

Es demostra pel criteri de comparació de límits:

$$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots \longrightarrow \infty$$

Teorema

- \square Siguin a_n i b_n dues successions sumables. Aleshores
 - La successió $a_n + b_n$ és sumable i el seu valor és

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

■ La successió c a_n és sumable per tot $c \in \mathbb{R}$ i el seu valor és

$$\sum_{n=1}^{\infty} (c \ a_n) = c \sum_{n=1}^{\infty} a_n$$

- Observacions
 - La demostració es basa en les propietats aritmètiques dels límits de successions
 - De moment no hem definit el producte de sèries

Teorema

 $\square \ a_n$ sumable $\implies a_n$ convergeix a zero, és a dir, $\lim_{n\to\infty} a_n = 0$

□ Demostració

- Sigui $S = \lim_{n \to \infty} a_n$
- Sabem $a_n = s_n s_{n-1}$
- Aleshores

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = S - S = 0$$

Observació

 La implicació recíproca no és certa en general, per exemple, per la sèrie harmònica

- Teorema: criteri de Cauchy
 - $\square a_n$ sumable $\Leftrightarrow \lim_{m,n\to\infty} (a_{n+1} + \dots + a_m) = 0$
 - □ Demostració
 - Es basa en l'aplicació teorema de Cauchy a la successió de sumes parcials, i utilitzar que $a_{n+1} + \cdots + a_m = s_m s_n$

- Teorema: criteri de fitament
 - □ Sigui a_n no negativa $(a_n \ge 0)$. Aleshores a_n sumable $\iff s_n$ fitada
 - □ Demostració
 - Com a_n és no negativa, $s_1 \le s_2 \le s_3 \le \cdots$, i per tant s_n és monòtona creixent
 - Només cal recordar que, per les successions monòtones, són fitades si, i només si, són convergents

- Teorema: criteri de comparació
 - □ Siguin a_n i b_n no negatives, tals que $0 \le a_n \le b_n \ \forall n$. Aleshores

 b_n sumable \Rightarrow a_n sumable

- □ Demostració
 - Siguin s_n i t_n les successions de sumes parcials de a_n i b_n , respectivament
 - Sabem $s_n \le t_n \ \forall n$
 - Com b_n sumable, aleshores t_n és fitada, i per tant, s_n també és fitada
 - Pel criteri de fitament, tenim que a_n és sumable

- Teorema: criteri de comparació
 - □ Siguin a_n i b_n no negatives, tals que $0 \le a_n \le b_n \ \forall n$. Aleshores

 b_n sumable \Rightarrow a_n sumable

□ Observació

 a_n no sumable $\implies b_n$ no sumable

- Teorema: criteri de comparació
 - □ Siguin a_n i b_n no negatives, tals que $0 \le a_n \le b_n \ \forall n$. Aleshores

$$b_n$$
 sumable \Rightarrow a_n sumable

- □ Exemple
 - La sèrie

$$\sum_{n=2}^{\infty} \frac{\sin^2 n}{2^n + n^2}$$

convergeix ja que

$$0 \le \frac{\sin^2 n}{2^n + n^2} \le \frac{1}{2^n + n^2} \le \frac{1}{2^n}$$

i ja hem vist que 2^{-n} és sumable

- Teorema: criteri de comparació en el límit
 - \square Siguin a_n i b_n positives $(a_n, b_n > 0 \ \forall n)$, tals que

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c, \qquad \text{amb } c > 0$$

Aleshores

 a_n sumable \Leftrightarrow b_n sumable

- □ Demostració
 - Per la definició de límit, $\forall \epsilon > 0 \; \exists N : \forall n \geq N \Rightarrow \left| \frac{a_n}{b_n} c \right| < \epsilon$
 - Prenent $\epsilon = c$ tenim $a_n < 2cb_n \ \forall n \geq N$, i per tant, pel criteri de comparació, si b_n sumable aleshores a_n sumable
 - Per a la implicació recíproca només cal utilitzar que

$$\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{1}{c} > 0$$

- Teorema: prova del quocient de d'Alembert
 - \square Sigui a_n positiva $(a_n > 0 \ \forall n)$ tal que

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r$$

Aleshores

$$r < 1 \implies a_n$$
 sumable $r > 1 \implies a_n$ no sumable

- □ Observacions
 - Aquest és un criteri molt útil i directe per a saber si una sèrie és convergent
 - Si r = 1 aquest criteri no és concloent

- Teorema: prova del quocient de d'Alembert
 - \square Demostració cas r < 1
 - Per la definició de límit, $\forall \epsilon > 0 \; \exists N : \forall n \geq N \Rightarrow \left| \frac{a_{n+1}}{a_n} r \right| < \epsilon$
 - Prenem un nombre s tal que r < s < 1
 - Si seleccionem $\epsilon = s r$ tenim $a_{n+1} < sa_n \ \forall n \ge N$

$$a_{N+1} < sa_N$$
 $a_{N+2} < sa_{N+1} < s^2a_N$
 $a_{N+k} < sa_{N+k-1} < \dots < s^ka_N$

Queda

$$0 < \sum_{k=0}^{\infty} a_{N+k} < a_N (1 + s + s^2 + \dots) = \frac{a_N}{1 - s}$$

Per tant, el costat dret és sumable, i pel criteri de comparació, la sèrie a_n és sumable

- Teorema: prova del quocient de d'Alembert
 - \square Demostració cas r > 1
 - Per la definició de límit, $\forall \epsilon > 0 \; \exists N : \forall n \geq N \Rightarrow \left| \frac{a_{n+1}}{a_n} r \right| < \epsilon$
 - Prenem un nombre s tal que 1 < s < r
 - Si seleccionem $\epsilon = r s$ tenim $a_{n+1} > sa_n \ \forall n \geq N$

$$a_{N+1} > sa_N$$

 $a_{N+2} > sa_{N+1} > s^2a_N$
 $a_{N+k} > sa_{N+k-1} > \dots > s^ka_N$

 Queda que a_n no està fitada superiorment, i per tant és divergent (per a ser sumable és necessari que el límit de a_n sigui zero)

- Teorema: prova del quocient de d'Alembert
 - □ Exemple
 - La sèrie

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

convergeix $\forall x \in \mathbb{R}$ ja que, pel criteri del quocient,

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} = \lim_{n \to \infty} \frac{x}{n+1} = 0 < 1$$

- Teorema: prova del quocient de d'Alembert
 - □ Exemple
 - La sèrie

$$\sum_{n=1}^{\infty} nx^n$$

convergeix si x < 1 ja que, pel criteri del quocient,

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)x^{n+1}}{nx^n} = \lim_{n \to \infty} \frac{(n+1)x}{n} = x < 1$$

- Teorema: prova del quocient de d'Alembert
 - □ Exemple
 - La sèrie

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

convergeix però el criteri del quocient no és concloent

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1$$

- Teorema: prova de l'arrel de Cauchy
 - □ Sigui a_n positiva $(a_n > 0 \ \forall n)$ tal que

$$\lim_{n\to\infty} \sqrt[n]{a_n} = r$$

Aleshores

 $r < 1 \implies a_n$ sumable $r > 1 \implies a_n$ no sumable

- □ Observació
 - Si r = 1 aquest criteri no és concloent

- Teorema: prova de l'arrel de Cauchy
 - \square Demostració cas r < 1
 - Per la definició de límit, $\forall \epsilon > 0 \; \exists N : \forall n \geq N \Rightarrow \left| a_n^{1/n} r \right| < \epsilon$
 - Prenem un nombre s tal que r < s < 1
 - Si seleccionem $\epsilon = s r$ tenim $a_n^{1/n} < s \ \forall n \ge N$, és a dir, tenim $0 < a_n < s^n$
 - Com s^n és sumable si |s| < 1 (és la sèrie geomètrica), pel criteri de comparació queda demostrat que a_n és sumable

- Teorema: prova de l'arrel de Cauchy
 - \square Demostració cas r > 1
 - Per la definició de límit, $\forall \epsilon > 0 \; \exists N : \forall n \geq N \Rightarrow \left| a_n^{1/n} r \right| < \epsilon$
 - Prenem un nombre s tal que 1 < s < r
 - Si seleccionem $\epsilon = r s$ tenim $a_n^{1/n} > s \ \forall n \ge N$, és a dir, tenim $a_n > s^n$
 - Com s^n no és sumable si |s| > 1 (és la sèrie geomètrica), pel criteri de comparació queda demostrat que a_n no és sumable

- Teorema: prova de l'arrel de Cauchy
 - □ Exemple
 - La sèrie

$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n}$$

convergeix ja que, pel criteri de l'arrel,

$$\lim_{n \to \infty} \left(\frac{1}{(\ln n)^n} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{\ln n} = 0 < 1$$

Definició

 \Box Una successió a_n és absolutament sumable si la successió de valors absoluts $|a_n|$ és sumable

□ Observació

 És més difícil que una sèrie convergeixi si tots els seus termes són positius que si hi ha barreja de positius i negatius

Teorema

 $\square a_n$ absolutament sumable $\implies a_n$ sumable

□ Demostració

- Donat que $0 \le a_n + |a_n| \le 2|a_n|$, i que a_n és absolutament sumable, pel criteri de comparació, $a_n + |a_n|$ és sumable
- Utilitzant les propietats aritmètiques, la següent sèrie és convergent

$$\sum_{n=1}^{\infty} (a_n + |a_n|) - \sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n$$

- Teorema: criteri de Leibniz
 - □ Sigui a_n una successió no negativa i monòtona decreixent, $a_1 \ge a_2 \ge a_3 \ge \cdots \ge 0$, convergent a zero

$$\lim_{n\to\infty} a_n = 0$$

Aleshores, la successió alternada $(-1)^{n+1}a_n$ és sumable, és a dir, la següent sèrie convergeix

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$$

- Teorema: criteri de Leibniz
 - □ Esquema de la demostració
 - Les sumes parcials segueixen la següent ordenació

$$s_1 \ge s_3 \ge s_5 \ge \cdots$$

 $s_2 \le s_4 \le s_6 \le \cdots$
 $s_p \le s_q \quad \text{si } p \text{ parell i } q \text{ senar}$

- Com són monòtones i fitades, les subseqüències de termes parells i senars convergeixen a α i β respectivament, i $\alpha \leq \beta$
- Com $a_n = s_n s_{n-1}$, i a_n convergeix a zero, aleshores

$$\alpha = \beta = \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

- Teorema: criteri de Leibniz
 - Exemple
 - La sèrie harmònica alternada és convergent

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$$

La convergència es dedueix del teorema de Leibniz, ja que

$$\lim_{n\to\infty}\frac{1}{n}=0$$

El càlcul del valor requereix tècniques més avançades

- Teorema: criteri de la integral
 - □ Sigui $f:[N,+\infty) \to \mathbb{R}$ una funció monòtona decreixent, amb N un enter positiu. Aleshores

$$\sum_{n=N}^{\infty} f(n) \text{ convergent } \iff \int_{N}^{\infty} f(x) dx \text{ convergent}$$

□ Addicionalment, si és convergent, es satisfà

$$\int_{N}^{\infty} f(x)dx \le \sum_{n=N}^{\infty} f(n) \le f(N) + \int_{N}^{\infty} f(x)dx$$

- Teorema: criteri de la integral
 - \square Interpretació (cas N=1)

$$\left(\sum_{n=1}^{\infty} f(n)\right) - f(1) \le \int_{1}^{\infty} f(x) dx$$

$$\int_{1}^{\infty} f(x)dx \le \sum_{n=1}^{\infty} f(n)$$

- Teorema: criteri de la integral
 - Exemple
 - La sèrie

$$\sum_{n=1}^{\infty} \frac{1}{n^r}$$

convergeix sii r > 1 ja que, pel criteri de la integral,

$$\int_{1}^{\infty} \frac{1}{x^{r}} dx = \left[\frac{x^{1-r}}{1-r} \right]_{1}^{\infty} = \frac{1}{1-r} \lim_{A \to \infty} (A^{1-r} - 1) = \begin{cases} +\infty, & r < 1 \\ \frac{1}{r-1}, & r > 1 \end{cases}$$
$$\int_{1}^{\infty} \frac{1}{x} dx = [\ln x]_{1}^{\infty} = \lim_{A \to \infty} (\ln A - \ln 1) = +\infty$$