

Fast and Robust Bootstrap

Salibián-Barrera, Van Aelst, Willems (2008)

Antonio Panico, Ivo Bonfanti

Department of Statistical Sciences University of Bologna

May 29, 2025

Introduction

- Inference based on robust estimators' asymptotic distribution require assumptions such as symmetric or elliptical distribution of the data.
- Solution → bootstrap! Does not require stringent assumptions.
- However classical bootstrap has two problems:
 - 1 Numerical instability (# of oursiers)
 - 2 Computational cost (ROB.ESTIMARES NO NON-CONVEX OFT. PROB. (LOSS KINCTION))
- Goal: introduce a faster and more stable method → Fast and Robust Bootstrap (FRB).
- Applications: robust regression, PCA, discriminant analysis.

BURDEN DRASTICALLY
/NCREASES WITH
THE # OF DITTENSION

BOWNS INF. FUNCTION

FRB General Framework

To Dn Represented as a Solution of fixed - Point Equations

• Robust estimator computed on the original dataset:

$$\hat{\theta}_n = \mathbf{g}_n(\hat{\theta}_n) \tag{1}$$

Bootstrap robust estimate has problems 1 and 2.

$$\hat{\theta}_n^* = \mathbf{g}_n^*(\hat{\theta}_n^*) \tag{2}$$

• One step approximation solves 2, however it is not consistent.

$$\hat{\theta}_n^{1*} = \mathbf{g}_n^*(\hat{\theta}_n) \tag{3}$$

• The **FRB** is the corrected approximation. Now also **1** is solved and the estimator is consistent.

Let Comes from the Taylor Expansion About \$\hat{G}_{\text{LIMINUM}}\$ LIMINUM.

$$\hat{\theta}_n^{R^*} := \hat{\theta}_n + \left[\mathbf{I} - \nabla g_n(\hat{\theta}_n)\right]^{-1} (\hat{\theta}_n^{1^*} - \hat{\theta}_n).$$

Robust Regression

Linear reciression model: $y_i=\mathbf{x}_i^t eta_0+\sigma_0 \widehat{\epsilon}_0, \quad i=1,\dots,n,$

where $\mathcal{Z}_n = \{(y_1, \mathbf{z}_1^t)^t, \dots, (y_n, \mathbf{z}_n^t)^t\}$ is a sample of independent random vectors and $\mathbf{x}_i = (1, \mathbf{z}_i^t)^t \in \mathbb{R}^p$.

DIFFERENTIABL $\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \mathbf{x}_i^t \boldsymbol{\beta}}{\hat{\sigma}_n(\boldsymbol{\beta})} \right) = \mathbf{0}$

2 Compute **MM-estimate** $\hat{\beta}_n^{\ \prime}$ by solving:

$$f.0.2. \qquad \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathcal{O}}_{i} \left(\frac{y_{i} - \mathbf{x}_{i}^{t} \hat{\beta}_{n}}{\widehat{\mathcal{O}}_{n}} \right) \mathbf{x}_{i} = \mathbf{0}$$

$$\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathcal{O}}_{i} \left(\frac{y_{i} - \mathbf{x}_{i}^{t} \hat{\beta}_{n}}{\widehat{\mathcal{O}}_{n}} \right) \mathbf{x}_{i} = \mathbf{0}$$

$$(6)$$

SCALE S-ESPINOTE

FRB MM-Regression

Compute, for each bootstrap sample \mathcal{Z}_n^* , the one-step approximation estimate $\hat{\theta}_{n}^{1*} = (\hat{\beta}_{n}^{1*}, \tilde{\beta}_{n}^{1*}, \hat{\sigma}_{n}^{1*}) = \mathbf{g}_{n}^{*}(\hat{\theta}_{n})$: $\boldsymbol{\xi}_{n}$. (3)

$$\hat{\beta}_{n}^{1*} = \left(\sum_{i=1}^{n} \omega_{i}^{*} \mathbf{x}_{i}^{*} \mathbf{x}_{i}^{*}\right)^{-1} \sum_{i=1}^{n} \omega_{i}^{*} \mathbf{x}_{i}^{*} \mathbf{y}_{i}^{*}, \qquad \begin{array}{c} \mathbb{N} & \mathbb{S} \\ \mathbb{Q} \\ \hat{\sigma}_{n}^{1*} = \sum_{i=1}^{n} \nu_{i}^{*} \left(y_{i}^{*} - \mathbf{x}_{i}^{*} \tilde{\beta}_{n}\right), \qquad \begin{array}{c} \mathbb{N} & \mathbb{S} \\ \mathbb{Q} \\ \mathbb{Q}$$

where residuals and weights are defined as follow:

$$r_{i}^{*} = y_{i}^{*} - \mathbf{x}_{i}^{*t} \widehat{\boldsymbol{\beta}}_{n}, \qquad \qquad \omega_{i}^{*} = \rho_{1}' (r_{i}^{*}/\hat{\sigma}_{n}) / f_{i}^{*}, \qquad \widetilde{\boldsymbol{W}}_{i}^{*r} = f_{0}' (\widetilde{\boldsymbol{i}}_{i}^{*}/\boldsymbol{\delta}_{n}) / \widetilde{\boldsymbol{r}}_{i}^{*}, \qquad \qquad \widetilde{\boldsymbol{\nu}}_{i}^{*} = \frac{\widehat{\boldsymbol{\sigma}}_{n}}{nh} \rho_{0} (\widetilde{\boldsymbol{r}}_{i}^{*}/\hat{\sigma}_{n}) / \widetilde{\boldsymbol{r}}_{i}^{*}.$$

Finally, calculate the correction to obtain the FRB estimate:

$$\hat{\boldsymbol{\beta}}_{n}^{R^{*}}=\hat{\boldsymbol{\beta}}_{n}+\boldsymbol{M}_{n}\left(\hat{\boldsymbol{\beta}}_{n}^{1^{*}}-\hat{\boldsymbol{\beta}}_{n}\right)+\boldsymbol{d}_{n}\left(\hat{\boldsymbol{\sigma}}_{n}^{1^{*}}-\hat{\boldsymbol{\sigma}}_{n}\right)+\tilde{\boldsymbol{M}}_{n}\left(\tilde{\boldsymbol{\beta}}_{n}^{1^{*}}-\tilde{\boldsymbol{\beta}}_{n}\right),$$

where M_n, d_n and \tilde{M}_n are computed only once on the original dataset. (LOWER COMPLEADING LOWE)

• Under certain regularity conditions the FRB estimate is **consistent**:

$$\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{n}^{R*}-\hat{\boldsymbol{\beta}}_{n}\right)\sim\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right).$$

• Confidence intervals based on FRB MM-estimator:

seed of TNB Will-estimator. By the expiner compress on the expiner
$$(\hat{\beta}_n) \pm z_{\alpha/2} \hat{\sigma}_j / \sqrt{n},$$
 bosons

where the standard error estimate $\hat{\sigma}_j$ is provided by the empirical standard deviation of $\hat{\beta}_{n,j}^{R*}$. Higher Borof the limit books of

Mean Response C.I. and Prediction Interval

-DATA fixed point

• Similarly, the confidence interval for the mean response is:

$$x_0^\top \hat{\beta}_n \pm z_{\alpha/2} \sqrt{x_0^\top \hat{\Sigma} x_0} \qquad \text{(1-a) ?. confidence}$$
 where $\hat{\Sigma}$ is a bootstrap estimate of the covariance matrix of $\hat{\beta}_n$. γ

• While the prediction interval: (for order from the INCLUDE well from the out. former)

$$x_0^{\top} \hat{\beta}_n \pm z_{\alpha/2} \sqrt{x_0^{\top} \hat{\Sigma} x_0 + \hat{\sigma}_n^2}$$

where $\hat{\sigma}_n$ is the scale S-estimate.

Spikense

from the sumb concrete of the Replaces Bra(:)

Both well chauseaux

t RANDH hoise

Performance assessed through a simulation study:

• Symmetric outliers: High coverage in all settings. → OR JIM DOCK W

 Asymmetric outliers: High coverage except in challenging situations (at the edge of the predictor space with high contamination).

FRB Score Hypothesis Test

- Test $H_0: \beta_{0,2} = 0$ vs $H_a: \beta_{0,2} \neq 0$, where $\beta_0 = (\beta_{0,1}^t, \beta_{0,2}^t)^t$ with $\beta_{0,1} \in \mathcal{R}^q$ and $\beta_{0,2} \in \mathcal{R}^{p-q}$ is a partition of the coefficients vector.
- Partition in a similar way the covariates $x_i = (x_{i(1)}^t, x_{i(2)}^t)$, define the residuals $r_i^{(a)} = y_i \mathbf{x}_i^t \hat{\boldsymbol{\beta}}_n^{(a)}$, $r_i^{(0)} = y_i \mathbf{x}_{i(1)}^t \hat{\boldsymbol{\beta}}_n^{(0)}$ and the estimates $\hat{\boldsymbol{\beta}}_n^{(0)} \in \mathcal{R}^{p-q}$ and $\hat{\boldsymbol{\beta}}_n^{(a)} \in \mathcal{R}^p$.
- The score test statistic is defined as follow:

$$W_n^2 = n^{-1} \left[\Sigma_n^{(0)} \right]^{\mathsf{T}} \hat{\mathbf{U}}^{-1} \left[\Sigma_n^{(0)} \right] \tag{7}$$

where $\Sigma_n^{(0)} = \sum_{i=1}^n \rho_1' \left(\frac{r_i^{(0)}}{\hat{\sigma}_n^{(a)}} \right) \mathbf{x}_{i(2)}$ and $\hat{\mathbf{U}}$ is a robust estimate of the covariance.

• If the errors are symmetric, for large n we have $W_n^2 \sim \chi_q^2$.

If the errors are not symmetric, we cannot rely on the statistic's asymptotic distribution. However we can exploit FRB to estimate it:

• First we have to draw bootstrap samples from data that follow H_0 :

$$\tilde{y}_i = x_i^t \hat{\beta}_n^{(0)} + f_i^{(a)}$$

- ② Compute the MM-estimates $\ddot{\beta}_n^{(0)}$ and $\ddot{\beta}_n^{(a)}$ on (\tilde{y}, x) null data.
- **③** For each bootstrap sample (\tilde{y}^*, x^*) compute FRB estimates under both the null and the alternative $\ddot{\beta}_n^{R*(0)}$ $\ddot{\beta}_n^{R*(a)}$.
- The FRB score test statistic is, for each sample:

$$W_n^{2R^*} = n^{-1} \Sigma_n^{R^*} (\ddot{\beta}_n^{R^*(0)})^t \mathbf{U}^{R^*-1} \Sigma_n^{R^*} (\ddot{\beta}_n^{R^*(0)})$$
(8)

where $\Sigma_n^{R*}(\beta) = \sum_{i=1}^n \rho_1' \left(\frac{\tilde{y}_i^* - \hat{\beta}_n^{(0)t} \mathbf{x}_i}{\ddot{\sigma}_n^{(a)}} \right) \mathbf{x}_{i(2)}$ and \mathbf{U}^{R*} the corresponding matrix.

Finally compute the p-value as:

$$\hat{p} = \# \left\{ W_n^{2R*} > W_n^2 \right\} / \mathcal{B} \tag{9}$$

where \mathcal{B} is the number of bootstrap samples. If $\hat{p} < 0.05$ it means that the observed statistic W_n^2 is rare under H_0 . Reject it!

Robust PCA and Fast and Robust Bootstrap (FRB)

Robust PCA:

- Classical PCA is based on eigenvalues/eigenvectors of the sample covariance matrix, sensitive to outliers.
- Robust PCA replaces the sample scatter matrix with a robust estimator, e.g., an S-estimator:

$$\min_{T,C} |C|$$
 s.t. $\frac{1}{n} \sum_{i=1}^{n} \rho ((x_i - T)^{\top} C^{-1} (x_i - T)) = b$

• $\rho(\cdot)$ is a loss function satisfying robustness properties (bounded, non-decreasing); $T \in \mathbb{R}^p$, $C \in PDS(p)$, and b is a constant chosen as

$$b = \mathbb{E}_{\phi}\left[\rho(||\mathbf{X}||)\right]$$

• The robust PCA is then based on the eigen-decomposition of the estimated scatter matrix $\hat{\Sigma}_n$.

Robust PCA and Fast and Robust Bootstrap (FRB)

• Bootstrap estimates are computed starting from an S-estimates of location μ_n and scatter Σ_n .:

$$\widehat{\theta}_n = \left(\mu_n^{\top}, \mathsf{vec}(\Sigma_n)^{\top}\right)^{\top}$$

FRB replicates:

$$\hat{\theta}_n^{R^*} = \hat{\theta}_n + \left[I - \nabla g_n(\hat{\theta}_n)\right]^{-1} \left(\hat{\theta}_n^{1^*} - \hat{\theta}_n\right)$$

where $\hat{\theta}_n^{1*}$ is a one-step update from bootstrapped sample.

- Allows construction of:
 - CI for eigenvalues λ_i .
 - Stability of eigenvectors via angle distribution.
 - CI for proportion of variance explained:

$$p_k = \frac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^p \lambda_i}$$

Swiss Bank Notes Example

- n = 100 forged Swiss 1000-franc notes.
- \bullet p=6 measurements: length, height, and other distances.
- Analyzed using robust PCA based on 50% breakdown S-estimators.

Figure: Swiss bank notes data; Left: robust distances based on S; Right: weights in the first PC, with FRB histograms.

Bootstrap Stability of PC1

To compare variability, compute: $\theta = \arccos(|\mathbf{v}_1^{\mathsf{T}}\mathbf{v}_1^*|)$

Figure: Bootstrap angle distributions: Classical vs FRB

Explained Variance and Confidence Intervals

• Proportion of variance:

$$p_1 = 72.0\%, \quad p_2 = 84.5\%, \quad p_3 = 91.6\%, \dots$$

- FRB used to construct BCa 95% confidence intervals.
- Criteria: choose smallest k such that p_k exceeds cutoff.

Figure: Left: FRB vs asymptotic intervals; Right: 95% one-sided CI

Classical & Robust Discriminant Analysis

Goal: Classify $x \in \mathbb{R}^p$ into π_1 or π_2 with means μ_1, μ_2 , covariances Σ_1, Σ_2 . Linear Discriminant Rule (LDA): if $\Sigma_1 = \Sigma_2 = \Sigma$

$$d_j^L(x) = \mu_j^T \Sigma^{-1} x - \frac{1}{2} \mu_j^T \Sigma^{-1} \mu_j$$
 $j = 1, 2$

Assign x to class π_1 if $d_1^L(x) > d_2^L(x)$

Classical Limitation: Empirical estimates μ_j, Σ_j are sensitive to outliers.

Robust Approach:

- Use **S-estimators** μ_{jn}, Σ_{jn} .
- Robust LDA: $\Sigma_n = \frac{1}{2}(\Sigma_{1n} + \Sigma_{2n})$ or **two-sample S-estimators**:

$$\arg \min_{T_1, T_2, C} |C| \quad \text{s.t.} \quad \frac{1}{n_1} \sum \rho(d_{1i}) + \frac{1}{n_2} \sum \rho(d_{2i}) = b$$
$$d_{ii} = (x_i^j - T_i)^T C^{-1} (x_i^j - T_i)$$

Error Estimation: FRB and Comparison

Problem: Estimate misclassification error for robust rules.

- Cross-validation (CV) and classical bootstrap: accurate, slow.
- Train/validation split: faster, less stable.

FRB (Fast and Robust Bootstrap):

- Efficiently applies to S-estimates.
- Each bootstrap sample:
 - Recalculate robust estimates $\mu_1^{R^*}, \mu_2^{R^*}, \Sigma_1^{R^*}, \Sigma_2^{R^*}$.
 - Build rule, evaluate on out-of-bootstrap data.
- Average misclassification error:

$$err_{boot} = \frac{1}{B} \sum_{b=1}^{B} error \text{ on out-of-bootstrap data}$$

Efron's 0.632 Estimator:

$$\mathsf{err}_{0.632} = 0.632 \cdot \mathsf{err}_{boot} + 0.368 \cdot \mathsf{err}_{resub}$$

FRB Advantages: Faster, more stable, avoids full retraining.

Hemophilia Data Application

Data:

• $n_1 = 30$ normal women (×), $n_2 = 45$ hemophilia A carriers (•)

Hemophilia Data Application

Results:

- FRB and classical bootstrap errors ≈ 0.162 (B = 100).
- FRB faster and more stable under contamination.
- Robustness to 10–15 outliers; classical bootstrap becomes variable after 15 outliers.