

y.aspx?eId=195/

İyi Demetleme

- İyi demetleme yöntemiyle elde edilen demetlerin özellikleri
 - aynı demet içindeki nesneler arası benzerlik fazla
 - farklı demetlerde bulunan nesneler arası benzerlik az
- Oluşan demetlerin kalitesi seçilen benzerlik ölçütüne ve bu ölçütün gerçeklenmesine bağlı
 - Uzaklık / Benzerlik nesnelerin nitelik tipine göre değişir

 - Nesneler arası benzerlik: s(i,j)Nesneler arası uzaklık: d(i,j) = 1 s(i,j)
- İyi bir demetleme yöntemi veri içinde gizlenmiş örüntüleri bulabilmeli
- Veriyi gruplama için uygun demetleme kriteri bulunmalı
 - demetleme = aynı demetteki nesneler arası benzerliği en büyüten, farklı demetlerdeki nesneler arası benzerliği en küçülten fonksiyon
- Demetleme sonucunun kalitesi seçilen demetlerin şekline ve temsil edilme yöntemine bağlı

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Temel Demetleme Yaklaşımları

- Bölünmeli yöntemler: Veriyi bölerek, her grubu belirlenmiş bir kritere göre değerlendirir
- Hiyerarşik yöntemler: Veri kümelerini (ya da nesneleri) önceden belirlenmiş bir kritère göre hiyerarşik olarak ayırır
- Yoğunluk tabanlı yöntemler: Nesnelerin yoğunluğuna göré demetleri oluşturur
- Model tabanlı yöntemler: Her demetin bir modele uyduğu varsayılır. Amaç bu modellere uyan verileri gruplamak

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Konular

- Demetleme işlemleri
 - Demetleme tanımı
 - Demetleme uygulamaları
- Demetleme Yöntemleri
 - Bölünmeli Yöntemler
 - K-means demetleme yöntemi
 - K-medoids demetleme yöntemi
 - Hiyerarşik Yöntemler
 - Yoğunluk Tabanlı Yöntemler
 - Model Tabanlı Yöntemler

http://www.ninova.itu.edu.tr/FgitimDetav.aspx?eId=195/

Bölünmeli Yöntemler

- Amaç: n nesneden oluşan bir veri kümesini (D) k (k≤n) demete ayırmak
 - her demette en az bir nesne bulunmalı
 - her nesne sadece bir demette bulunmalı
- Yöntem: Demetleme kriterini en büyütücek şekilde D veri kümesi k gruba ayırma
 - Global çözüm: Mümkün olan tüm gruplamaları yaparak en iyisini seçme (NP karmaşık)
 - Sezgisel çözüm: k-means ve k-medoids
 - ------ yozum. Kamednis ve Kamedolds kameans (MacQueen'67): Her demet kendi merkezi ile temsil edilir
 - k-medoids veya PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Her demet, demette bulunan bir nesne ile temsil edilir

K-means Demetleme

- Bilinen bir k değeri için k-means demetleme algoritmasının 4 aşaması vardır:
 - veri kümesi *k* altkümeye ayrılır (her demet bir altküme)
 - Her demetin ortalaması hesaplanır: merkez nokta (demetteki nesnelerin niteliklerinin ortalaması)
 - Her nesne en yakın merkez noktanın olduğu demete dahil edilir
 - Nesnelerin demetlenmesinde değişiklik olmayana kadar adım 2'ye geri dönülür.

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

13

k-means Demetleme Yöntemi

- Demet sayısının belirlenmesi gerekir
- Başlangıçta demet merkezleri rasgele belirlenir
 - Her uygulamada farklı demetler oluşabilir
- Uzaklık ve benzerlik Öklid uzaklığı, kosinüs benzerliği gibi yöntemlerle ölçülebilir
- Az sayıda tekrarda demetler oluşur
 - Yakınsama koşulu çoğunlukla az sayıda nesnenin demet değiştirmesi şekline dönüştürülür
- Karmaşıklığı:
 - Yer karmaşıklığı O((n+k) d)
 - Zaman karmaşıklığı O(ktnd)
 - k: demet sayısı, t: tekrar sayısı, n: nesne sayısı, d: nitelik sayısı

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

15

K-Means Demetleme Yöntemini Değerlendirme

- Yaygın olarak kullanılan yöntem hataların karelerinin toplamı (Sum of Squared Error SSE)
 - Nesnelerin bulundukları demetin merkez noktalarına olan uzaklıklarının karelerinin toplamı

$$SSE = \sum_{i=1}^{K} \sum_{i=1}^{K} dist^{2}(m_{i}, x)$$

- x: C_i demetinde bulunan bir nesne, m_i : C_i demetinin merkez noktası
- Hataların karelerinin toplamını azaltmak için k demet sayısı artırılabilir
 - Küçük k ile iyi bir demetleme, büyük k ile kötü bir demetlemeden daha az SSE değerine sahip olabilir.
- Başlangıç için farklı merkez noktaları seçerek farklı demetlemeler oluşturulur
- En az SSE değerini sahip olan demetleme seçilir

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

17

Hiyerarşik Demetleme Yöntemlerinin Özellikleri

- Demetleme kriteri yok
- Demet sayılarının belirlenmesine gerek yok
- Aykırılıklardan ve hatalı verilerden etkilenir
- Farklı boyuttaki demetleri oluşturmak problemli olabilir
- Yer karmaşıklığı O(n²)
- Zaman karmaşıklığı O(n²logn)

n: nesne sayısı

http://www.ninova.itu.edu.tr/FqitimDetay.aspx?eId=195/

Konular

- Demetleme işlemleri
 - Demetleme tanımı
 - Demetleme uygulamaları
- Demetleme Yöntemleri
 - Bölünmeli Yöntemler
 - Hiyerarşik Yöntemler
 - Yoğunluk Tabanlı Yöntemler
 - Model Tabanlı Yöntemler

http://www.ninova.itu.edu.tr/FgitimDetav.aspx?eId=195/

Yoğunluk Tabanlı Yöntemler

- Demetleme nesnelerin yoğunluğuna göre yapılır.
- Başlıca özellikleri:
 - Rasgele şekillerde demetler üretilebilir.
 - Aykırı nesnelerden etkilenmez.
 - Algoritmanın son bulması için yoğunluk parametresinin verilmesi gerekir.
- Başlıca yoğunluk tabanlı yöntemler:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - <u>DENCLUE</u>: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98)

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

DBSCAN

- İki parametre:

 - Eps. En büyük komşuluk yarıçapı
 MinPts. Eps yarıçaplı komşuluk bölgesinde bulunan en az nesne sayısı
- N_{eps}(p): {q∈D | d(p,q)≤Eps}
 Doğrudan erişilebilir nesne: Eps ve MinPts koşulları altında bir q nesnesinin doğrudan erişilebilir bir p nesnesi şu şartları sağlar:

 - p∈N_{eps}(q)
 q nesnesinin çekirdek nesne koşulunu sağlaması

 $N_{eps}(q) \ge MinPts$

MinPts = 5

Eps = 1 cm

DBSCAN

- Erisilebilir nesne:
 - Eps ve MinPts kosulları altında a nesnesinin erişilebilir bir p nesnesi olması icin:
 - p₁,p₂...,p_n nesne zinciri olması,
 - p1=q, pn=p,
 - p_i nesnesinin doğrudan erişilebilir nesnesi: p_{i+1}
- Yoğunluk bağlantılı Nesne:
 - Eps ve MinPts koşulları altında q nesnesinin yoğunluk bağlantılı nesnesi p şu koşulları sağlar:
 - p ve q nesneleri Eps ve MinPts koşulları altında bir o nesnesinin erişilebilir nesnesidir.

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Yoğunluk Tabanlı Yöntemler: DBSCAN

- Veri tabanındaki her nesnenin Eps yarıçaplı komşuluk bölgesi araştırılır.
- Bu bölgede *MinPts*'den daha fazla nesne bulunan *p* nesnesi çekirdek nesne olacak şekilde demetler olusturulur.
- Çekirdek nesnelerin doğrudan erişilebilir nesneleri
- Yoğunluk bağlantılı demetler birleştirilir.
- Hiçbir yeni nesne bir demete eklenmezse işlem sona
- Yer karmaşıklığı O(n)
- Zaman karmaşıklığı O(nlogn) n: nesne savisi

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

44

Konular

- Demetleme işlemleri
 - Demetleme tanımı
 - Demetleme uygulamaları
- Demetleme Yöntemleri
 - Bölünmeli Yöntemler
 - Hiyerarşik Yöntemler
 - Yoğunluk Tabanlı Yöntemler
 - Model Tabanlı Yöntemler

http://www.ninova.itu.edu.tr/FgitimDetay.aspx?eId=195/

Model Tabanlı Demetleme Yöntemleri

- Veri kümesi için öngörülen matematiksel model en uygun hale getiriliyor.
- Verinin genel olarak belli olasılık dağılımlarının karışımından geldiği kabul edilir.
- Model tabanlı demetleme yöntemi
 - Modelin yapısının belirlenmesi
 - Modelin parametrelerinin belirlenmesi
- Örnek EM (Expectation Maximization) Algoritması

http://www.ninova.itu.edu.tr/FgitimDetav.aspx?eId=195/

Model Tabanlı Demetleme Yöntemleri

- K nesneden oluşan bir veri kümesi $D=\{x_{x},x_{2},...,x_{k}\}$ her x_{i} (i=[1,...K]) nesnesi Θ parametre kümesiyle tanımlanan bir olasılık dağılımından oluşturulur.
- Olasılık dağılımının, $c_j \in C = \{c_j, c_2, \dots, c_g\}$ şeklinde G adet bileşeni vardır. Her \mathbf{e}_g $g \in [1, \dots, G]$ parametre kümesi g bileşeninin olasılık dağılımın belirleyen, \mathbf{e} kümesinin ayrışık bir alt kümesidir.
- Herhangi bir x_i nesnesi öncelikle, $p(c_j|\pmb{\theta})=r_{g'}(\varSigma_G r_j=1)$ olacak şekilde) bileşen katsayısına (ya da bileşenin seçilme olasılığına) göre bir bileşene
- Bu bileşen $p(\mathbf{x}_i/c_{o'}; \mathbf{\Theta}_o)$ olasılık dağılımına göre \mathbf{x}_i değişkenini oluşturur.
- Böylece bir x_i nesnesinin bu model için olasılığı bütün bileşenlerin olasılıklarının toplamıyla ifade edilebilir:

$$p(x_i \mid \mathbf{\Theta}) = \sum_{g=1}^{G} p(c_g \mid \mathbf{\Theta}) p(\mathbf{x}_i \mid c_g; \mathbf{\Theta}_g)$$

 $p(x_i \mid \boldsymbol{\Theta}) = \sum_{i=1}^{G} \tau_g \, p(\mathbf{x}_i \mid c_g; \boldsymbol{\Theta}_g)$

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

Model Tabanlı Demetleme Problemi

- Model parametrelerinin belirlenmesi
 - Maximum Likelihood (ML) yaklaşımı

$$\ell_{ML}(\Theta_1, ..., \Theta_G; \tau_1, ..., \tau_G \mid D) = \prod_{i=1}^K \sum_{g=1}^G \tau_g \, p(x_i \mid c_g, \Theta_g)$$

Maximum Aposteriori (MAP) yaklaşımı

$$\ell_{\mathit{MAP}}(\Theta_1, ..., \Theta_G; \tau_1, ..., \tau_G \mid D) = \prod_{i=1}^K \sum_{g=1}^G \frac{\tau_g p(x_i \mid c_g, \Theta_g) p(\Theta)}{p(D)}$$

Uygulamada her ikisinin logaritması

$$L(\Theta_1, ..., \Theta_G; \tau_1, ..., \tau_G \mid D) = \sum_{i=1}^{K} \ln \sum_{j=1}^{G} \left(\tau_g p(x_i \mid c_g, \Theta_g) \right)$$

 $L(\Theta_1, ..., \Theta_G; \tau_1, ..., \tau_G \mid D) = \sum_{k=1}^{K} \ln \sum_{g=1}^{G} \left(\tau_g p(x_i \mid c_g, \Theta_g) \right) + \ln p(\Theta)$ http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

EM Algoritması

- Veri kümesi: $D = \{x_1, x_2, ..., x_k\}$
- Gizli değişkenler $H=\{z_1,z_2,...,z_K\}$ (her nesnenin hangi demete dahil olduğu bilgisi)
- Verinin eksik olduğu durumda, tam verinin beklenen değeri hesaplanır:

$$\begin{split} Q(\Theta, \Theta') &= E[L_{c}(D, H \mid \Theta) \mid D, \Theta') \\ &= \sum_{i=1}^{K} \sum_{g=i}^{G} p(c_{g} \mid x_{i})[\ln p(x_{i} \mid c_{g}) + \ln \tau_{g}] \end{split}$$

- EM Algoritmasının adımları:
 - ullet Θ' için başlangıç değerleri atama
 - (E) Expectation: $Q(\Theta|\Theta')$ hesaplanması
 - (M) Maximization: $argmax Q(\Theta | \Theta')$

http://www.ninova.itu.edu.tr/EgitimDetay.aspx?eId=195/

40