SEGMENTOS DIRIGIDOS VECTORES LIBRES

Segmento

Definición

Un segmento es una porción de recta determinada por sus dos puntos extremos. Un segmento de extremos Py Q se denota \overline{PQ} .

Ejemplo Segmento PQ:

Segmento dirigido

Definición

Un segmento dirigido es un segmento con sus extremos dados en un cierto orden: el primero es el origen y el otro es el segundo extremo. Un segmento dirigido de origen *P* y segundo extremo *Q* se denota \overrightarrow{PQ} .

Ejemplo

Segmento dirigido \overrightarrow{PQ} :

Los segmentos dirigidos quedan caracterizados por:

- Longitud: tamaño del segmento.
- Dirección: está dada por la recta en la que está contenido.
- Sentido: dos segmentos dirigidos de igual dirección tienen igual sentido o sentidos opuestos según se defina, o no, al unir los orígenes y los segundos extremos, un cuadrilátero.

Ejemplo

 \overrightarrow{RS} , \overrightarrow{TM} y \overrightarrow{ON} tienen igual dirección pues pertenecen a rectas paralelas.

 \overrightarrow{RS} y \overrightarrow{TM} tienen igual sentido. \overrightarrow{TM} y \overrightarrow{ON} tienen sentidos opuestos.

Segmento dirigido nulo

Es un segmento dirigido cuyo origen coincide con el segundo extremo.

- •Longitud: 0
- Dirección: tiene la misma dirección que todo otro segmento dirigido.
- Sentido: no se le asigna.

Ejemplo

El segmento dirigido nulo y el segmento dirigido \overrightarrow{PQ} tienen la misma dirección pues pertenecen a rectas paralelas.

Segmentos dirigidos equipolentes

Definición

Dos segmentos dirigidos no nulos son equipolentes si tienen igual longitud, dirección y sentido.

Los segmentos dirigidos nulos son equipolentes entre sí.

Si \overrightarrow{PQ} es equipolente a \overrightarrow{RS} se escribe: $\overrightarrow{PQ} \sim \overrightarrow{RS}$.

Ejemplo

Segmentos dirigidos equipolentes al segmento dirigido \overrightarrow{PQ} . En cada punto del plano o del espacio es posible dibujar un segmento dirigido equipolente a uno dado.

Propiedades de la relación de equipolencia

- 1. $\overrightarrow{PQ} \sim \overrightarrow{PQ}$ Reflexividad
- $2. \overrightarrow{PQ} \sim \overrightarrow{RS} \Rightarrow \overrightarrow{RS} \sim \overrightarrow{PQ}$

Simetría

3. $\overrightarrow{PQ} \sim \overrightarrow{RS} \wedge \overrightarrow{RS} \sim \overrightarrow{TU} \Rightarrow \overrightarrow{PQ} \sim \overrightarrow{TU}$ Transitividad

Números de dirección de un segmento dirigido

Sean los puntos del plano

$$P = (p_1, p_2) \text{ y } Q = (q_1, q_2)$$

 \overrightarrow{PQ} segmento dirigido.

Entonces

$$Q-P=(q_1-p_1,q_2-p_2)$$

es el par ordenado de los
números de dirección de \overrightarrow{PQ} .

Ejemplo

$$P = (3,2); \quad Q = (6,4)$$

Números de dirección del

segmento dirigido \overrightarrow{PQ} :

$$Q - P = (3,2)$$

Dos segmentos dirigidos son equipolentes si y solo si tienen los mismos números de dirección.

Ejemplo

Números de dirección de los segmentos dirigidos \overrightarrow{PQ} y \overrightarrow{RS} :

$$Q - P = (3,2)$$
 $S - R = (3,2)$

Puesto que los números de dirección son iguales, los segmentos dirigidos son equipolentes.

Vector libre u asociado a un segmento dirigido \overrightarrow{AB}

Definición

Es el conjunto de todos los segmentos dirigidos equipolentes a \overrightarrow{AB} .

$$u = \{ \overrightarrow{PQ} / \overrightarrow{PQ} \sim \overrightarrow{AB} \}$$

Ejemplo

Cualquier segmento dirigido $\overrightarrow{PQ} \in u$ es un representante del vector u.

En todo punto del plano o del espacio existe un segmento dirigido que representa al vector \boldsymbol{u} .

Los vectores libres quedan caracterizados por:

- Módulo: longitud de uno cualquiera de sus representantes (segmentos dirigidos). Módulo del vector u se escribe ||u||.
- Dirección: está dada por la dirección de sus representantes. El vector nulo tiene la misma dirección que todo otro vector.
- Sentido: está dado por el sentido de sus representantes. Al vector nulo no se le asigna sentido.

Vectores colineales

Son vectores de igual dirección. También se dice que son vectores paralelos.

Todo vector, junto con el vector nulo, constituye un sistema de vectores colineales.

Ejemplo

$$u = (3,2)$$
 $v = (6,4)$

u y *v* son vectores colineales

Vectores coplanares

Son vectores cuyos representantes con igual origen están contenidos en el mismo plano.

Todo par de vectores junto con el vector nulo constituye un sistema de vectores coplanares.

Ejemplo

u, v y w son vectores coplanares

Componentes de un vector

Sea
$$u = \{\overrightarrow{PQ} / \overrightarrow{PQ} \sim \overrightarrow{AB} \}$$
,

vector.

$$Q - P = (q_1 - p_1, q_2 - p_2)$$

$$u_1 = q_1 - p_1$$
 y $u_2 = q_2 - p_2$

son las componentes del

vector u.

Se escribe $u = (u_1, u_2)$

$$P = (3,2)$$
 $Q = (6,4)$
 $A = (8,4)$
 $A = (11,6)$

$$u = Q - P = B - A = (3,2)$$

En
$$\mathbb{R}^2$$
: $u = Q - P = (u_1, u_2)$

En
$$\mathbb{R}^3$$
: $u = Q - P = (u_1, u_2, u_3)$

Operaciones con vectores

Suma de vectores

Definición

Sean u y v vectores. Si en un punto cualquiera A se dibuja un representante de u, \overrightarrow{AB} , y en B se dibuja un representante de v; \overrightarrow{BC} , entonces el segmento dirigido \overrightarrow{AC} representa al único vector u + v, llamado suma de u y v.

Suma de vectores

Sean
$$u = (u_1, u_2),$$

 $v = (v_1, v_2)$ vectores de $\mathbb{R}^2;$
 $u + v = (u_1 + v_1, u_2 + v_2).$
Sean $u = (u_1, u_2, u_3),$
 $v = (v_1, v_2, v_3)$ vectores de $\mathbb{R}^3;$
 $u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3).$

$$u = (3,2)$$

$$v = (-2,2)$$

$$u + v = (1,4)$$

Propiedades

Sean u, v, w vectores.

1.
$$u + (v + w) = (u + v) + w$$

Asociatividad

2.
$$u + v = v + u$$

Conmutatividad

3.
$$u + 0 = u$$

Existe elemento neutro, el vector nulo, 0.

4.
$$u + (-u) = 0$$

Para cada vector u, existe elemento opuesto, — u.

Sean
$$u = (3,2)$$
; $v = (4,-1)$; $w = (-2,-2)$

1.
$$u + (v + w) = (3,2) + [(4,-1) + (-2,-2)] = (5,-1) =$$

= $[(3,2) + (4,-1)] + (-2,-2) = (u + v) + w$

2.
$$u + v = (3,2) + (4,-1) = (7,1) = (4,-1) + (3,2) = v + u$$

3.
$$u + o = (3,2) + (0,0) = (3,2) = u$$

4.
$$u + (-u) = (3,2) + (-3,-2) = (0,0) = 0$$

Multiplicación de un vector por un escalar

Definición

Sea $u \neq 0$ un vector, $k \neq 0$ un número real.

El producto ku es un vector tal que

- $\bullet ||ku|| = |k|||u||.$
- *u* y *ku* tienen la misma dirección.
- Si k > 0, u y ku tienen el mismo sentido.

Si k < 0, u y ku tienen sentidos opuestos.

Si u = 0, entonces ku = 0.

Si k = 0, entonces ku = 0.

Multiplicación de un vector por un escalar

Sean $u=(u_1,\ u_2)$ un vector de \mathbb{R}^2 , $k\in\mathbb{R}$;

entonces $ku = (ku_1, ku_2)$.

Sean $u=(u_1, u_2, u_3)$ vector de $\mathbb{R}^3, k \in \mathbb{R}$;

entonces $ku = (ku_1, ku_2, ku_3)$.

Ejemplo

1) Sean u = (-3,4); k = 5.

$$ku = 5(-3,4) = (-15,20)$$

2) Sean u = (-1,2,3);

$$k = -3$$
.

$$ku = -3(-1,2,3) =$$

$$=(3,-6,-9)$$

$$u = (3, -1)$$

$$k = 2$$

$$k' = -1$$

$$ku = (6, -2)$$

$$k'u = (-3,1)$$

- $ku \begin{cases} \cdot ||ku|| = 2||u|| \\ \cdot u || ku \\ \cdot u y ku \text{ tienen} \\ \text{igual sentido} \end{cases}$

$$|\cdot||k'u|| = ||u||$$

- $\overrightarrow{x} \begin{cases} \cdot ||k'u|| = ||u|| \\ \cdot u || k'u \\ \cdot u y k'u \text{ tienen} \end{cases}$ sentidos opuestos

Ejemplo

$$u \parallel v \Leftrightarrow u = kv$$

1) Sean
$$u = (-2,1)$$

$$y v = (6, -3).$$

¿Son $u y v$ paralelos?
 $u \parallel v \Leftrightarrow u = kv$
 $(-2,1) = k(6, -3)$

$$\begin{cases} 6k = -2 \\ -3k = 1 \end{cases}$$

Solución:
$$k = -\frac{1}{3}$$

El sistema tiene solución, los vectores son colineales.

2) Sean
$$u = (2, -1)$$

y $v = (1,3)$.
¿Son u y v
paralelos?

$$u \parallel v \Leftrightarrow u = kv$$

$$(2,-1) = k(1,3)$$

$$\begin{cases} k = 2 \\ 3k = -1 \end{cases}$$

El sistema es incompatible, por tanto, los vectores no son colineales.

Propiedades

Sean u, v vectores; $k, k_1, k_2 \in \mathbb{R}$.

- 1. k(u + v) = ku + kvDistributividad con respecto a la suma de vectores.
- 2. $(k_1 + k_2)u = k_1u + k_2u$ Distributividad con respecto a la suma de escalares.
- 3. $k_1(k_2u) = (k_1k_2)u = k_2(k_1u)$ Homogeneidad.
- 4. 1u = uExiste elemento identidad, 1.

Ejemplo

Sea x = v + 3x; v = (2, -3). Halle el vector x.

$$x - 3x = v$$

$$(1 - 3)x = v Propiedad 2$$

$$-2x = v$$

$$x = -\frac{1}{2}v$$

$$x = -\frac{1}{2}(2, -3) = \left(-1, \frac{3}{2}\right)$$

Módulo de un vector

Sea u vector y \overrightarrow{OP} un representante de u.

El módulo del vector u, ||u||, es la longitud de \overrightarrow{OP} .

En
$$\mathbb{R}^2$$
: Si $u = (u_1, u_2)$; entonces $||u|| = \sqrt{u_1^2 + u_2^2}$.

En
$$\mathbb{R}^3$$
: Si $u = (u_1, u_2, u_3)$; entonces $||u|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$.

Deducción de la fórmula del módulo de un vector

En \mathbb{R}^2 :

Por el teorema de Pitágoras:

$$||u|| = \sqrt{u_1^2 + u_2^2}$$

$$||Q - O||^2 = u_1^2 + u_2^2$$

$$||u|| = \sqrt{||Q - O||^2 + u_3^2}$$

$$||u|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Ejemplo

Sean los vectores

$$u = (2,3)$$
 y $v = (2,3,3)$. Halle los módulos de u y de v .

$$||u|| = \sqrt{2^2 + 3^2} = \sqrt{13}$$
$$||v|| = \sqrt{2^2 + 3^2 + 3^2} = \sqrt{22}$$

Ángulo entre vectores

Sean u, v vectores no nulos.

El ángulo entre u y v es el ángulo θ , $0 \le \theta \le \pi$, definido por los representantes de u y de v con igual origen.

$$\overrightarrow{OP} \in u$$

$$\overrightarrow{OQ} \in v$$

