COMPLEMENTS OF GEOMETRY - SEMINAR 6

- 1. Let $\triangle ABC$ be an equilateral triangle with side length l. Consider M a point inside the triangle $\triangle ABC$ and let D, E, F be the projections of M on the sides BC, CA and AB, respectively. Prove that

 - a) $MF + MD + ME = \frac{l\sqrt{3}}{2}$; b) $\frac{1}{MD} + \frac{1}{ME} + \frac{1}{MF} \ge \frac{6\sqrt{3}}{l}$; c) $\frac{1}{MD+ME} + \frac{1}{ME+MF} + \frac{1}{MF+MD} \ge \frac{3\sqrt{3}}{l}$.

Show that in every convex quadrilateral ABCD the following inequality holds:

$$AC \cdot BD \le AB \cdot CD + AD \cdot BC$$

and that equality holds if and only if ABCD is cyclic.

Problems for presentation

Presentation 1. Let ABC be a triangle and let C be a circle intersecting the sides BC, CA, AB in the points A_1 , A_2 , B_1 , B_2 , C_1 , C_2 . Show that the lines AA_1 , BB_1 , CC_1 are concurrent if and only if AA_2 , BB_2 , CC_2 are concurrent.

Presentation 2.

- (a) Let $\triangle ABC$ be an equilateral triangle. Let P be a point on minor arc AB of its circumcircle. Prove that PC = PA + PB.
 - (b) In a regular heptagon ABCDEFG, prove that: $\frac{1}{AB} = \frac{1}{AC} + \frac{1}{AD}$.

Date: April 14, 2024.