1、实验名称及目的

基于 Python 数据分析实验: 在进行软件在环和硬件在环仿真时, 飞机的飞行日志通常是我们需要进行导出分析处理的, RflySim 平台具有丰富的飞行日志获取和分析功能。本实验将基于 Python 实现飞行日志的实时获取并进行存储分析。

2、实验原理

本实验中 Python 接口文件 "PX4MavCtrlV4.py"也会从 30100 系列端口实时读取真值数据,并存储在 true**系列数据中,请搜索 "getTrueDataMsg(self)"字段来查看代码。例如:欧拉角 trueAngEular、角速度 trueAngRate、速度 trueVelNED、位置 truePosNED,这些数据可以实时绘制轨迹或存储分析。其中关键点是调用 "mav.InitTrueDataLoop()"来启用真值数据监听,最后调用 "mav.EndTrueDataLoop()"来结束监听,中间可以用变量 self.true***来读取真值数据。

3、实验效果

启动软件或硬件在环脚本,然后再运行 DataAnalysisDemo.py 文件,即可在获取到飞机的飞行日志。

4、文件目录

文件夹/文件名称	说明
NoPX4SITL4Swarm.bat	启动仿真配置文件
NoPX4SITL4Swarm.py	实现功能主文件
PX4MavCtrlV4.py	程序运行接口文件

5、运行环境

序号	*************************************	硬件要求	
11, 4	秋日安 本	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版		

① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

双击运行 DataAnalysisDemo.bat 文件。将会启动 1 个 QGC 地面站, 2 个 CopterSim 软件,等待 CopterSim 左下侧日志栏打印出 GPS 3D fixed & EKF initialization finished 字样代表 初始化完成,并且 RflySim3D 软件内显示有 2 架飞机。如下图所示:

Step 2:

用 VScode 打开到本实验路径文件夹,运行 NoPX4SITL4Swarm.py 文件开始仿真。即可看到飞机起飞再前飞,同时在程序输出栏观察到真值的输出结果。

7、参考文献

[1]. 无

8、常见问题

Q1: 无

A1: 无