Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

COMBINED SCIENCE

5129/02

Paper 2

May/June 2005

2 hours 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use

This document consists of 21 printed pages and 3 blank pages.

1 Fig. 1.1 shows the electronic structure of an atom of chlorine.

Fig. 1.1

(a)	(i)	State the Group of the Periodic Table in which chlorine is placed.	
	(ii)	Use the information in Fig. 1.1 to give a reason for your answer to (a)(i).	
		[2]
(b)		orine exists as a diatomic molecule. Draw a diagram of a chlorine molecule showir outer electrons only.	ng
]	2]
(c)		orine reacts with an aqueous solution of potassium iodide producing potassiun oride and iodine.	m
	(i)	State the type of reaction that takes place.	
	(ii)	Construct an equation for the reaction.	
]	 2]

2 (a) (i) Name a nitrogen-containing ion that is essential to plants.

.....

(ii) State the use of this ion in a growing plant.

[2]

(b) A farmer wants to add the ion named in (a)(i) to the soil.

Name a compound that the farmer could spread on the fields to add this ion.

.....[1]

(c) Suggest how a river flooding a field can remove the ion from the soil.

Fig. 3.1 shows how the displacement of particles in a wave varies with distance along the

Fig. 3.1

- (a) On Fig. 3.1 draw a line to show a wave with the same amplitude and with half the wavelength. [2]
- (b) Name the region of the electromagnetic spectrum with waves of

3

wave.

- (i) the longest wavelength,
- (ii) the shortest wavelength.[2]

4 Fig. 4.1 shows three lamps and switches connected to a cell. All the switches are open.

Fig. 4.1

(a)	State which I	amp or lai	mps, if any,	light when	switch A	only is closed.
-----	---------------	------------	--------------	------------	----------	-----------------

.....[1]

(b) State which switches must be closed to make lamp **Q** light but **not** lamp **R**.

.....[1]

(c) When all the lamps are lit, the current through each lamp is 0.25 A. Calculate the current from the cell.

.....A [1]

(d) An ammeter is used to measure the current from the cell.
On Fig. 4.1, mark with the letter **X** a suitable position for the ammeter. [1]

5		_	estion is caused when too much acid is produced in the stomach. Indigestion may be d by chewing tablets containing magnesium carbonate.					
	(a)		indigestion tablet containing magnesium carbonate is crushed and shaken with er and Universal Indicator solution is added.					
		Stat	e the final colour of the solution[1]					
	(b)		acid present in the stomach is hydrochloric acid. equation for the reaction between magnesium carbonate and hydrochloric acid is					
			$\mathrm{MgCO_3}$ + 2HC l \rightarrow MgC l_2 + CO $_2$ + H $_2$ O					
		(i)	(i) Name the ion that is present in aqueous hydrochloric acid and all other aqueous acids.					
			[1]					
		(ii)	State the type of reaction that occurs between hydrochloric acid and magnesium carbonate.					
			[1]					
		(iii) Describe a test that you could use to prove carbon dioxide is given off in the reaction.						
			test					
			result					

6 Fig. 6.1 shows the human alimentary canal.

Fig. 6.1

(a)	Name the	e parts labelled.
-----	----------	-------------------

(b)

(c) Fig. 6.2 shows some of the bread as it moves down part of the alimentary canal.

Fig. 6.2

(i)	Name the process that causes the movement.	[41
(ii)	State what the muscles of the intestine are doing at point X and at point Y .	[1]
	Υ	[2]

7 Fig. 7.1 shows an electromagnet.

Fig. 7.1

(a)	Name component A [1]
(b)	State one way in which the strength of the electromagnet can be increased.
	[1]
(c)	The core is made of iron rather than steel. State one difference between the magnetic properties of iron and steel.
	[1]

8 A suspended balloon is rubbed with a duster. This produces a negative charge on the balloon.

A charged acetate strip is brought near to the balloon. The balloon moves towards the acetate strip as shown in Fig. 8.1.

Fig. 8.1

Explain why the balloon moves towards the acetate strip.	
[2	۲۱

Peti	roi, n	ydrogen and ethanol are used as fuels for cars.	
(a)	(i)	Name one of these three fuels that produces carbon monoxide as it burns.	
	(ii)	Name one of these three fuels that produces sulphur dioxide as it burns.	
			[2]
(b)		·	duce
	1		
	2		[2]
(c)	Stat	te the gas, present in the air, that is needed for any fuel to burn.	
			[1]
(d)	Sug	gest how the process of respiration is similar to the combustion of fuels.	
			[2]
Amı	moni	a is manufactured by reacting nitrogen with hydrogen in the presence of a cata	ılyst.
(a)	Bala	ance the equation for the reaction.	
		$N_2 + \underline{\hspace{1cm}} H_2 \rightarrow \underline{\hspace{1cm}} NH_3$	[1]
(b)	Stat	te the temperature and the pressure used in the manufacture of ammonia.	
	tem	perature°C	
	pres	ssureatm	[2]
(c)	(i)	Name the catalyst used in the manufacture of ammonia.	
	(ii)	Give a reason why a catalyst is used in the process.	
			[2]
	(a) (b) (c) (d) Am (a) (b)	(a) (i) (b) Who acid 1 2 (c) Star (d) Sug Ammoni (a) Bala (b) Star tem pres (c) (i)	 (ii) Name one of these three fuels that produces sulphur dioxide as it burns. (b) When sulphur dioxide escapes into the environment it dissolves in water to produce acid rain. State two effects of acid rain on the environment. 1

11 Fig. 11.1 shows the male reproductive system.

Fig. 11.1

(a)	Name and	give the	function of	or each	of the	structures	labelled A,	В	and C.

Α	name
	function
В	name
	function
С	name
	function
	[6]

(b)	Cutt	utting both of the tubes shown at the points marked X is a form of contraception.				
	(i)	Explain why this method is effective.				
		[1]				
	(ii)	Suggest one advantage and one disadvantage of this method of contraception.				
		advantage				
		disadvantage				
		[2]				

12 Two plane mirrors are used to reflect a ray of light. The ray of light follows the path shown in Fig. 12.1.

Fig. 12.1

On Fig. 12.1, draw two plane mirrors in the correct positions to reflect the ray along this path.

13	Nuc	clei o	f a radioactive isotope of iodine, $^{131}_{53}I$, emit beta-particles.	
	(a)	Cal	culate the number of neutrons in a nucleus of $^{131}_{\ 53}I.$	
				.[1]
	(b)	Who	en a nucleus of $^{131}_{53}\mathrm{I}$ emits a beta-particle, state the change in	
		(i)	the number of neutrons,	
		(ii)	the number of protons.	 [2]
	(c)	The Sixt	half-life of $^{131}_{53}\mathrm{I}$ is eight days. een days ago, a sample of $^{131}_{53}\mathrm{I}$ emitted 16 000 beta-particles per second.	
		(i)	Calculate the number of half-lives in sixteen days.	
		(ii)	Use your answer to (c)(i) to calculate the number of beta-particles now emitted second by the sample.	per

(a)	Def	ine relative atomic mass.
		[2]
(b)	carl	element, X , is extracted from the oxide of the element, X_2O_3 , by reduction with equation for the reaction is
		$X_2O_3 + 3C \rightarrow 2X + 3CO$
	The	relative molecular mass of X ₂ O ₃ is 160.
	(i)	Calculate the relative atomic mass of X.
		$[A_r: O,16]$
		[1]
	(ii)	Calculate the mass of carbon that reacts with 8.0 g of the oxide, $\rm X_2O_3$.
		$[A_r: C,12]$
		rol

14

15	(a)	Mar	ny human mothers feed their babies on breast milk.
		(i)	State what is in breast milk that helps babies' muscles to develop.
		(ii)	Name the mineral in breast milk that helps babies' haemoglobin to develop.
		(iii)	State what is in breast milk that helps a baby to overcome a disease such as influenza.
			[3]
	(b)	(i)	Suggest two advantages, other than those in (a), of breast milk rather than powdered milk mixed with water.
			1
			2
		(ii)	Suggest a disadvantage of feeding babies on breast milk.
			[3]

16 (a) State the formula used to calculate the moment of a force.

.....[1]

(b) Fig. 16.1 shows a spanner being used to tighten a nut.

Fig. 16.1

Calculate the moment of the 40 N force about the centre of the nut.

[2]

17 A kettle, as shown in Fig. 17.1, has a power rating of 1500 W.

Fig. 17.1

(a)	Explain what is meant by the term <i>power rating</i> .
	[1]
(b)	
	[1]
(c)	The water at the bottom of the kettle is heated. Explain, in detail, how the rest of the water in the kettle is heated by convection.
	[3]

18 Study the reactions shown in Fig. 18.1.

Fig. 18.1

(b) Identify the substances B, C and E.

(c) Draw a diagram to show the structure of ethene.

[1]

19 Fig. 19.1 shows part of the carbon cycle.

Fig. 19.1

- (a) Name a compound containing carbon that is found in the Earth's atmosphere.

 [1]
- **(b)** Name the processes labelled **A**, **B**, **C** and **D**. Choose only words from the list below. You may use the words once, more than once or not at all.

combustion decomposition feeding photosynthesis respiration

Α	
В	
С	

D[4]

20 A ball is thrown horizontally from a tall building and it follows the path shown in Fig. 20.1.

Fig. 20.1

(a) How can you tell from the path of the ball that there is a force acting on it?
[1]
(b) On Fig. 20.1 draw an arrow to show the direction of the force on the ball after it has left the building.
[1]
(c) State the form of energy
(i) lost by the ball as it falls to the ground,

gained by the ball as it falls to the ground.[2]

© UCLES 2005 5129/02/M/J/05

(ii)

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET	The Periodic Table of the Elements
------------	------------------------------------

		0	4 He lium	20 Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon Xenon 54	Radon 86		175 Lu Lutetium
		II/		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine lodine 53	At Astatine 85		173 Yb Ytterbium
				16 Oxygen	32 S Sulphur	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium
		>		14 N itrogen	31 Phosphorus	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium
		2		12 Carbon	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead		165 Ho Holmium
		=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 Tt Thallium		162 Dy Dysprosium
S						65 Zn Zinc 30	112 Cd Cadmium 48			159 Tb Terbium
Element						64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
The Periodic Table of the Elements	dn					59 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
dic Table	Group					59 Co Cobalt	Rh Rhodium	192 Ir Irdium		Samarium
ne Perio			1 Hydrogen			56 Fe Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium
Ė				J		55 Win Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
						51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Ce Cerium
						48 T Ttanium 22	2r Zr Zirconium 40	178 Hf Hafnium		
						Scandium 21	89 ×	139 La Lanthanum 57 *	227 AC Actinium 89	series eries
		=		9 Be Beryllium 4	24 Mg Magnesium	40 Calcium	Sfrontium	137 Ba Barium 56	226 Ra Radium 88	Inthanoid Actinoid s
		_		7 Li Lithium	23 Na Sodium	39 K Potassium	Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 Lanthanoid series †90-103 Actinoid series
200	05					5129/0	2/M/J/05			

175 Lu	Lutetium 71	Lr Lawrencium 103
173 Yb		Nobelium 102
169 Tm	Thulium 69	Md Mendelevium 101
167 Er	Erbium 68	Fm Fermium 100
165 H	67	ES Einsteinium 99
162 Dy	Dysprosium 66	Cf Californium 98
159 Tb	65	BK Berkelium 97
157 Gd	Gadolinium 64	Cm Curium 96
152 Eu	છે	Am Americium 95
150 Sm	Samarium 62	Pu Plutonium 94
Pm	Promethium 61	Np Neptunium 93
144 D	Neodymium 60	238 U Uranium 92
141 Q	Praseodymium 59	Pa Protactinium 91
140 Ce	Cerium 58	232 Th Thorium

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.)

b = proton (atomic) number

a = relative atomic massX = atomic symbol

ω ×

Key