Transferring and Copying Files

scp command line utilities:

- \$ scp source destination
 - Copy source to destination.

Scenario-1:

- scp /a/abc.txt user@server2:/tmp
- which copies the /a/abc.txt from source to destination /tmp directory

Scenario-2:

- scp user@server2:/a/abc.txt /tmp
- which copies the /a/abc.txt from remote to current system /tmp directory

ssh server communication:

• Use the following commands to connect from the source system to the Remote system

\$ ssh user@ipaddress -p port

\$ ssh -l user ipaddress -p port

Password Less Login:

- 1) Login to the Src System
- 2) \$ ssh-keygen
- → This utility generates ssh Keys (Public and private) in the ~/.ssh/folder
 - id rsa(private key) and id rsa.pub(public key)
- 3) \$ ssh-copy-id user@ipaddress
- → which copies the public key of the src system user to dest system user account
- 4) test the connection
 - \$ ssh user@dest ip

Networking

TCP/IP

What You WillLearn

- TCP/IP
- Classful networks
- Subnet masks
- Broadcast addresses
- CIDR
- Private address space Rise 'n' Shine Technologies

TCP/IP:

- TCP/IP
 - Used for network communications
 - TCP = Transmission Control Protocol
 - IP = Internet Protocol
- TCP controls data exchange
- IP sends data from one device to another
- Hosts
 - devices on a network that have an IP address

IP Networking:

- IP address
 - Example: 199.83.131.186
- subnet mask
 - Example: 255.255.25.0
- broadcast address
 - Example: 199.83.131.255
- octet.octet.octet
 - octet values can be from 0 to 255

IP Networking:

- Network Address
- Host Address
- Each must be unique for proper routing
- Address Classes
 - Used to determine the network address and host address

Classful Networks:

Class	Network	Hosts Allowed
Α	1.0 -> 127.0 Ex: 17.24.88.9	16,777,216
В	128.0 -> 191.255 Ex: 183.194.46.31	65,536
С	192.0.0 -> 233.255.255 Ex: 199.83.131.186	255

Rise 'n' Shine Technologies

Subnet Masks:

Class	Subnet Mask
A	255.0.0.0
В	255.255.0.0
С	255.255.255.0

255	255	0	0
183	194 'n' Shine	46	31

Classless Inter-Domain Routing / CIDR:

- IP: 121.67.198.94/8
 - Class A network: 121.0.0.0
 - Class A subnet: 255.0.0.0
 - Class A broadcast: 121.255.255.255

- IP: **121.67.198.94/24** Subnet: 255.255.255.0
 - CIDR network: 121.67.198.0
 - CIDR subnet: 255.255.255.0
 - CIDR broadcast: 121.67.198.255

Reserved Private Address Space:

Class	Range	Private Address Space
A	1.0.0.0 - 127.255.255.255	10.0.0.0 - 10.255.255.255
В	128.0.0.0 - 191.255.255.255	172.16.0.0 - 172.31.255.255
С	192.0.0.0 - 233.255.255.255	192.168.0.0 - 192.168.255.255

Rise 'n' Shine Technologies

Broadcast Addresses:

Class	Network	Subnet Mask	Broadcast
A	17.0.0.0	255.0.0.0	17.255.255.255
В	183.194.0.0	255.255.0.0	183.194.255.255
С	199.83.131.0	255.255.255.0	199.83.131.255

Rise 'n' Shine Technologies

Understanding CIDRs Subnet Masks

- The subnet masks basically allows part of the underlying IP to get additional next values from the base IP
 - /32 allows for 1 IP = 2^0
 - /31 allows for 2 IP = 2^1
 - /30 allows for 4 IP = 2^2
 - /29 allows for 8 IP = 2^3
 - /28 allows for $16 \text{ IP} = 2^4$
 - /27 allows for 32 IP = 2^5
 - /26 allows for 64 IP = 2^6
 - /25 allows for $128 \text{ IP} = 2^7$
 - /24 allows for 256 IP = 2^8
 - /16 allows for 65,536 IP = 2^16
 - /0 allows for all IPs = 2^32

- Quick memo:
- /32 no IP number can change
- /24 last IP number can change
- /16 last IP two numbers can change
- /8 last IP three numbers can change
- /0 all IP numbers can change

<u>Understanding CIDR - IPv4 (Classless Inter-Domain Routing)</u>

Source (i) 0.0.0.0/0 122.149.196.85/32

- They help to define an IP address range
 - WW.XX.YY.ZZ/32 == one IP
 - $0.0.0.0/0 == all \, \text{IPs}$
 - But we can define for ex: 192.168.0.0/26: 192.168.0.0 192.168.0.63 (64 IP)

Understanding CIDR

- A CIDR has two components:
 - The base IP (XX.XX.XX.XX)
 The Subnet Mask (/26)
- The base IP represents an IP contained in the range
- The subnet masks defines how many bits can change in the IP
- The subnet mask can take two forms. Examples:
 - 255.255.255.0 (less common)
 - (more common) • /24

Understanding CIDRs Little exercise

- 192.168.0.0/24 = ... ?
 192.168.0.0 192.168.0.255 (256 IP)
- $192.168.0.0/16 = \dots$?
 - 192.168.0.0 192.168.255.255 (65,536 IP)
- 134.56.78.123/32 = ... ?
 - Just 134.56.78.123
- 0.0.0.0/0
 - All IP!
- When in doubt, use this website: https://www.ipaddressguide.com/cidr

Private vs Public IP (IPv4) Allowed ranges

- The Internet Assigned Numbers Authority (IANA) established certain blocks of IPV4 addresses for the use of private (LAN) and public (Internet) addresses.
- Private IP can only allow certain values
 - 10.0.0.0 10.255.255.255 (10.0.0.0/8) \leq in big networks
 - 172.16.0.0 172.31.255.255 (172.16.0.0/12) <= default AWS one
 - 192.168.0.0 192.168.255.255 (192.168.0.0/16) <= example: home networks
- All the rest of the IP on the internet are public IP

Summary:

- TCP/IP
- Classful networks
- Subnet masks
- Broadcast addresses
- CIDR
- Private Address Space

Networking

What You WillLearn

- Determining your IP address
- ip and ifconfig utilities
- hostnames
- DNS and name resolution
- /etc/hosts
- Network ports
- DHCP
- Static IP addresses

Determining Your IP Address

- ip address
 - ip addr
 - o ip a
 - ip address show or ip a s
- ifconfig

hostnames

- human-readable name for an IP address
 - webprod01 =10.109.155.174

DNS hostnames

- FQDN = fully qualified domain name
 - webprod01.mycompany.com
- TLD
 - o .com, .net, .org, etc.
- Domains
 - below (to the left of) TLD
- sub-domain
 - below (to the left of) the domain
 - webprod01.ny.us.mycompany.com Rise 'n' Shine Technologies

Displaying the hostname

- \$ hostname
- webprod01
- \$ uname -n
- webprod01
- \$ hostname -f
- webprod01.mycompany.com

Setting the hostname

hostnamectl set-hostname webprod1

#/etc/hostname

vi /etc/sysconfig/network

HOSTNAME=webprod01

Resolving DNS Names

- host
- dig
- \$ host_www.mycompany.com
- webprod01.mycompany.com has address 1.2.1.6
- \$ host 1.2.1.6
- 6.1.2.1.in-addr.arpa domain name pointer www.mycompany.com.

\$

The /etc/hosts file

- Format:
 - IP FQDN alias(es)
 - o 10.11.12.13 webprod02.mycorp.com webprod02
- Now you can refer to the host by name.
 - webprod02.mycorp.com OR webprod02
- /etc/hosts is local to your linux system. It does not propagate to the rest of the network.

Sample /etc/hosts file

127.0.0.1	localhost	
1.2.1.6	webprod01.mycompany.com	webprod01
10.11.12.14	webprod02.mycompany.com	webprod02
10.11.12.15	webprod03.mycompany.com	webprod03
10.11.13.7	dbcluster	

Network Ports

- When a service starts it binds itself to a port.
- Ports 1 1,023 are well-known ports.
 - 22 SSH
 - 25 SMTP

 - 143 IMAP
 - o 389 LDAP
 - 443 HTTPS

/etc/services

Maps port names to port numbers

```
ssh 22/tcp # SSH Remote Login Protocol
smtp 25/tcp # SMTP
https 80/tcp # http
ldap 389/tcp # LDAP
https 443/tcp # http protocol over TLS/SSL
```

DHCP

- Dynamic Host Configuration Protocol
- DHCP servers assign IP address to DHCP clients
 - IP Address
 - netmask
 - gateway
 - DNS servers

DHCP

- Each IP is "leased" from the pool of IP addresses the DHCP server manages.
 - The lease expiration time is configurable on the DHCP server. (1hr, 1day, 1 week, etc.)
 - The client must renew the lease if it wants to keep using the IP address. If no renewal is received, the IP is available to other DHCP clients.

Configuring a DHCP Client - RHEL

ifconfig -a or ip link

/etc/sysconfig/network-scripts/ifcfg-DEVICE /etc/sysconfig/network-scripts/ifcfg-eth0 /etc/sysconfig/network-scripts/ifcfg-enp5s2 BOOTPROTO=dhcp

Assigning a Static IP Address - RHEL

/etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0 BOOTPROTO=static IPADDR=10.109.155.174 NETMASK=255.255.255.0 NETWORK=10.109.155.0 BROADCAST=10.109.155.255 GATEWAY=10.109.155.1 ONBOOT=yes

Rise 'n' Shine Technologies

Summary

- Determining your IP address
- ip and ifconfig utilities
- hostnames
- DNS and name resolution
- /etc/hosts

Summary

- Network ports
 - well-known / privileged
 - unprivileged
- DHCP
- Static IP addresses

Network Troubleshooting

What You WillLearn

- ping
- traceroute / tracepath
- netstat
- telnet

Testing Connectivity with Ping

Format:

ping HOST ping -c COUNT HOST

Example:

ping -c 3 google.com

\$ ping -c 3 google.com

PING google.com (216.58.2.7) 56 bytes of data.

64 bytes from 216.58.2.7: icmp_seq=1 ttl=53 time=20.1 ms
64 bytes from 216.58.2.7: icmp_seq=2 ttl=53 time=20.2 ms
64 bytes from 216.58.2.7: icmp_seq=3 ttl=53 time=23.9 ms

- --- google.com ping statistics ---
- 3 packets transmitted, 3 received, 0% packet loss, time 2004ms

rtt min/avg/max/mdev = 21.489/22.924/24.154/1.111 ms

\$ ping -c 3 google.com

PING google.com (216.58.2.7) 56 bytes of data.

From 216.58.2.7 icmp_seq=1 Destination Host Unreachable

From 216.58.2.7 icmp_seq=2 Destination Host Unreachable

From 216.58.2.7 icmp_seq=3 Destination Host Unreachable

--- google.com ping statistics --3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 2002ms
pipe 3

traceroute -n google.com

traceroute to google.com (216.58.2.7), 30 hops max, 60 byte packets

Diagnosing Network Connections 413

- 1 10.0.2.2 0.296 ms 0.178 ms 0.220 ms
- 2 192.168.1.1 2.529 ms 2.713 ms 2.630 ms
- 3 72.14.237.231 23.750 ms 22.087 ms
- 12.122.132.137 22.701 ms
- 4 216.58.216.78 20.549 ms 12.250.16.30 22.904 ms 216.58.216.78 20.724 ms

Rise 'n' Shine Technologies

\$ tracepath -n google.com

```
1?: [LOCALHOST] pmtu 1500
```

• • •

The netstatCommand

- -n Display numerical addresses and ports.
- -i Displays a list of network interfaces.
- -r Displays the route table. (netstat -rn)
- -p Display the PID and program used.
- -1 Display listening sockets. (netstat -nlp)
- -t Limit the output to TCP (netstat -ntlp)
- -u Limit the output to UDP (netstat -nulp)

Rise 'n' Shine Technologies

\$ netstat -i Kernel Interface

table

Iface	MTU	RX-OK	RX-ERR	RX-DRP	RX-OVR	TX-OK	TX-ERR	TX-DRP	TX-OVR	Flg
eth0	1500	3975	0	0	0	2627	0	0	0	BMRU
10	65536	8	0	0	0	8	0	0	0	LRU

\$ netstat -rn Kernel IP

routing table

Destination	Gateway	Genmask	Flags	MSS Window	irtt Iface	
0.0.0.0	10.0.2.2	0.0.0.0	UG	0 0	0 eth0	
10.0.2.0	0.0.0.0	255.255.255.0	U	0 0	0 eth0	
S sudo netsi	tat -ntlp	Active Internet				

connections (only servers)

Proto	Recv-Q	Send-Q	Local	Address	Foreign Address	State	PID/Program
name							
tcp	0	0	0.0.0.	.0:22	0.0.0.0:*		
tcp	0	0	127.0.	. Risė ²⁵ ' Sł	nine Technologies		

telnet HOST_OR_IP PORT_NUMBER

\$ telnet google.com 80

Trying 216.58.2.7...

Connected to google.com. Escape

character is '^]'. GET /

HTTP/1.0 200 OK

^]

telnet> quit

closed.

Summary

- ping
- traceroute / tracepath
- netstat
- . telnet