CH563 评估板说明书

简介

版本: 1.2

http://wch.cn

目 录

1、	硬件部分	1
	1.1. 开发板	1
	1.2. 模块说明	1
	1.3. 跳线说明	1
	1.4. 开发板主芯片及功能说明	2
2,	创建工程编译工具 KEIL4	
	2.1. 运行编译器	2
	2. 2. CPU 选择	3
	2.3. 修改工程名	4
	2.4. 配置选择	5
	2. 4. 1. DEVICE 选择	5
	2.4.2. Target 选择	6
	2. 4. 3. OUTPUT 选择	6
	2.4.4. 路径选择	7
	2.4.5. LINKER 选择	8
	2.5. 编译	10
3、	程序下载	11
	3.1. 运行软件	11
	3.2. 设备上电	11
	3.3. 选择下载文件	12
	3.4. 下载	13
4、	例程实验说明	14
	4.1. CH563 芯片	14
	4.2. 外扩 RAM	14
	4.3. 串行 FLASH	14
	4. 4. SD 卡	14
	4. 5. USB	15
	4. 6. 网口	15
	4.7. 音频	15
	4.8. 串口	15
	4.9. AD 转换	15
	4.10. 被动并口	15
	4.11. LED 灯	15
	4.12. 按键	15
	4.13. 复位	15
	4.14. 下载	16
	4. 15. 电源	16
	4.16. 串口 0/1	16

1、硬件部分

1.1. 开发板

1.2. 模块说明

(1),	主芯片—CH563	(9),	AD 接口
(2),	外扩 RAM	(10),	被动并口
(3),	串行 FLASH	(11),	LED 灯
(4),	SD 卡槽	(12),	按键
(5),	USB 接口	(13),	复位按钮
(6),	网络接口	(14),	下载按钮
(7),	音频接口	(15),	电源接口
(8)'	RS232 接口	(16),	串口 0/1

1.3. 跳线说明

(8)、 RS232 接口

J1	•••••	RS232 接口与串口 0/1 连接选择
J2	•••••	AD 参考电压选择(0-3.3V),可通过1、2 脚改变参考值
J3	•••••	音频输出口1,对应 PB2 口输入
J4	•••••	音频输出口 2,对应 PBO 口输入
15		并口操作外扩 RAM 片洗

R5 ····· SPIO 操作串行 FLASH 片选。

1.4. 开发板主芯片及功能说明

CH563 是一款类似 ARM9 的 32 位 RISC 精简指令集 CPU, 指令集兼容 ARM/5TE, 支持 16 位 Thumb 指令和增强 DSP 指令。默认系统主频为 100MHZ, 最高可达 130MHZ。高度集成的外设以及高性能, 使其可以广泛的应用于各种嵌入式应用。

CH563 的外设组件包含 480K 的 FLASH 闪存、128K 可动态分配的 SRAM、28K 的 EEPROM、百兆以太 网、高速/全速 USB 主机/从机接口、2 个 SPI 接口、2 个 UART 接口、3 通道 10 位 ADC、4 个通用定时器、8 位被动并行接口、8/16/32 位 Intel 时序的总线接口、在系统编程 ISP 接口和多达 74 个通用 I/0 管脚。

开发板配有 32K 外扩 RAM、2M串行 FLASH、SD 卡座子、USB 接口、网口(内置网络变压器)、音 频电路、RS232 接口、3 路 10 位 AD、8 位被动并口、4 个 LED 灯、 2×4 矩阵按键、电源支持 9V/5V 供电,可通过 USB 口,串口 1 下载代码。

各部分功能说明参考第4部分。

2、创建工程--编译工具 KEI L4

2.1. 运行编译器

左键点击 Project ,如下图 2.1.1,选择 New μVision Project... ,弹出一对话框,如下图 2.1.2 所示,选择创建工程的目录。输入工程名,点击 保存 (Σ) 。

图 2.1.1

图 2.1.2

2.2. CPU 选择

图 2.2.1

图 2.2.2

图 2.2.3

2.3. 修改工程名

配置选择完成后,左键点击 修改名字,然后右键点击弹出如下图 2.8.1 对话框,选择 Add Group... , 双击工程组可弹出如下图 2.8.2 对话框,找到源代码目添加相应文件即可。如下图 2.8.3 所示。sys 工程组为 CH563 配置文件,User 工程组添加的为用户代码。

图 2.3.1

图 2.3.2

2.4. 配置选择

点击人,进入配置选择界面,设置编译器参数。

2.4.1. DEVICE 选择

如前面 CPU 选择错误,或者需更换 CPU 型号,可进行此操作。前面已选择 ARM 系列 ARM966E-S(Little-End),点击 Device ,如下图 2.4.1。

图 2.4.1

2.4.2. Target 选择

如需串口调试调用 printf 函数,则点击 Target 勾选 ✓ Use MicroLIB ,如下图 2.4.2。

图 2.4.2

2.4.3. OUTPUT 选择

点击 Output ,如下图 2.4.3 (A)。勾选 Create HE⊠ File ,点击 Select Folder for Objects... 弹 出如下图 2.4.3 (B)所示对话框。选择 Obj 目录,点击 OK 。

图 2.4.3 (A)

图 2.4.3 (B)

2.4.4. 路径选择

Ⅲ 按钮, 弹出下图 2.4.4 (B), 选择需要加载源代码的文件目录, 点击 OK 。

图 2.4.4 (A)

图 2.4.4 (B)

2.4.5. LINKER 选择

点击 Linker , 去掉 Use Memory Layout from Target Dialog 勾选。对话框如下图 24.5 (A); 点击 按钮, 弹出如下图 2.4.5 (B), 找到 CH563 的配置目录 (SRC), 点击进去, 出现如下图 2.4.5 (C) 所

च्च CH563D32 च्चे CH563D64

示对话框,有 \Box CH563D96 三种选择,分别对应数据空间大小 32 K/64 K/96 K。代码区域空间大小为 128 K - 数据空间大小。

图 2.4.5 (A)

图 2.4.5 (B)

图 2.4.5 (C)

2.4.6. 芯片宏定义

点击 Asm ,在 Define: 里输入芯片的宏定义,宏定 义如下: CH561: STARTUP_0F_CH561 CH562: STARTUP_0F_CH562 CH563: STARTUP_0F_CH563 如图所示: Define: STARTUP_OF_CH561

2.5. 编译

点击 按钮编译,如下图 2.9,工程创建完毕。详见 CH563 例子程序。

图 2.5

3、程序下载

3.1. 运行软件

isfTool563 运行 setup. exe , 按照步骤安装软件, 安装完成后, 运行isfTool583 , 如下图 3.1。

图 3.1

3.2. 设备上电

按住开发板 S2-DLOAD 按键, 然后用 USB 线连接 PC 与 CH563 开发板的 USB 接口,连接后可松开按键,下载软件检测到有设备插入,如下图 3.2.1。此时设备管理器出现外部接口设备 USB Module,如下图 3.2.2。

图 3.2.1

图 3.2.2

3.3. 选择下载文件

点击文件右侧的 按钮, 弹出如下图 3.3 对话框, 选择下载文件弹出如下对话框, 选择需要下载的文件, 然后点击打开或双击此文件。

图 3.3

3.4. 下载

到如下图 3.4.1 所示对话框时,点击 文件下载 即可下载代码。下载成功如下图 3.4.2。

₿ ISPToo1563 - ¥1.1	
文件(图) 功能(图) 查看(图) 帮助(图) 经验	
Flash 下载	
bin文件长度: 3872字节 	
共计: 0 剩余: 0 集計数 失败:	
戏绪 USB模式	

图 3.4.1

图 3.4.2

4、例程实验说明

4.1. CH563 芯片

详见 CH563DSO、CH563DS1 和 CH563 例子程序。

4.2. 外扩 RAM

CH563 芯片带有一个外部总线控制器,该接口支持 8 位、16 位和 32 位总线宽度,该接口支持静态存储器映射器件,包括 RAM、ROM、Flash 和一些外部 I/O 器件,可动态修改读写信号脉宽以及地址和数据的建立和保持时间。动态调整并口 HOLD 位以及 SETUP 位操作 62256。详见例子程序 PARA/HOST。

4.3. 串行 FLASH

SPIO 使用查询方式操作 FLASH, 擦除 FLASH, 写 1K 数据后读出来, 详见例子程序 SPI/SPIO FLASH。

4.4. SD 卡

电路采用了大的 SD 卡座封装形式, SPI1 操作 SD 卡, 读第 0 扇区, 写第三扇区。详见 SPI/SPI0_SDCARD。

4.5. USB

CH563 中的 USB 控制器是一款 USB2. 0 控制器,它具有 USB 主机控制器和 USB 设备控制器双重角色。可分别参考例子程序 USB/HOST、USB/DEVICE 部分

当它作为主机控制器时,能操作低速、全速和高速的设备。当它作为设备控制器时,除端点 0 之外的所有端点,可以灵活的设置为高速或全速以适应各种应用。另可通过 USB 下载程序。

4.6. 网口

CH563 芯片自带以太网 MAC 和 PHY, 支持 10/100M、全双工、半双工、自动协商、线路自动转换等功能,可以直接和网络终端如 PC、嵌入式设备进行数据交互。

CH563NET. LIB 提供了TCP/IP 子程序库,集成了TCP、UDP、ICMP、ARP、RARP、ICMP、IGMP等以太网协议栈。可以同时支持TCP、UDP和IPRAW三种模式,最大支持31个socket同时通讯。详见例子程序NET部分。

4.7. 音频

支持两路音频数据输出,利用 CH563 的 PWM(PWM_DMA) 功能可进行数模转换,播放音乐文件。详见例子程序 TIM/PWM WAVE、USB/DEVICE/AUDIO。

4.8. 串口

CH563 芯片拥有 2 个全双工的异步串口, UARTO 和 UART1。支持全双工和半双工串口通讯,提供发送状态引脚用于切换 RS485。UARTO 支持 MDDEM 调制解调器信号 CTS、DSR、RI、DCD、DTR、RTS。开发板串口 0 数据芯片采用了 MAX3243 的转接芯片,转接 TTL 电平和 232 电平,另串口 1 支持下载。串口操作详见例子程序 UART 部分。

4.9. AD 转换

CH563 芯片具有 $1 \land 10$ 位逐次逼近型模拟数字转换器。该模拟数字转换器具有 $3 \land 10$ 个通道 (开发板 JP2),每个通道转换均具有 DMA 功能,默认选择通道 2 进行 ADC 转换。AD 参考电压默认为(0-3.3V),可通过 1.2 脚改变参考值。ADC 使用详见例子程序 ADC 部分。

4.10. 被动并口

CH563 芯片具有一个 8 位的被动并口 (开发板 JP4)。该被动并口包括中断输出引脚(SLVI#)、命令数据选择输入引脚(SLVA)、片选输入引脚(SLVCS#)、读信号输入引脚(PRD#)、写信号输入引脚(PWR#)和 8 位输入输出数据引脚。详见例子程序 PARA/SLAVE。

4.11. LED 灯

开发预留四个 LED, 其中一个为电源指示灯(上电灯亮), 另三个灯分别接 PB3/PB4/PB5, 低电平驱动。

4.12. 按键

开发板配有 2×4 矩阵按键,可设置 PD18/PD19 为输出, PD20/PD21/PD/22/PD23 输入,检测按键扫描。

4.13. 复位

CH563 支持 4 种复位形式,分别为电源上电复位,外部手工复位(S1-RST),内部软件复位和看门狗复位。按键复位,连接 CH563 外部复位输入引脚,内置上拉电阻,低电平有效。复位后使 I/0 口和外围功能恢复默认状态,处理器从地址 0 开始执行。

4.14. 下载

按键 S2-DLOAD 为下载程序时使用,参考文档第3部分下载说明。

4.15. 电源

P5 为电源插孔, 支持 9-12V 电压输入, 输出为 5V、3.3V, 另可直接通过 JP1 9V、5V 供电。

4.16. 串口 0/1

JP8 共 9 个引脚, 从上往下, 从左往右, 依次为 TXD1、RXD1、GND(串口 1), TXD、RXD、NC, TXD0、RXD0、GND(串口 0)。左侧为串口 1, 中间为 RS232 芯片 TTL 端接口, 右侧为串口 0。通过 JP8 (J1) 可选择 RS232 接口连接串口 0/1, 如图所示 RS232 接口与串口 0 相连。