

MSML610: Advanced Machine Learning

Reasoning Over Time

Instructor: GP Saggese, PhD - gsaggese@umd.edu

References: - AIMA 14: Probabilistic reasoning over time

Reasoning over time

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
- Dynamic Bayesian networks
- State space model
- Variational Inference

Reference

• AIMA: 14

Agents

- Agents in partially observable environments track the current state using sensor information
 - 1. Belief state
 - Store possible world states (by enumeration or logical formulas)
 - Use probability theory to quantify belief
 - Belief state is the posterior distribution of the current state given all evidence so far
 - 2. Belief state + Transition model
 - Predict how the world might evolve in the next step
 - 3. Sensor model + Percepts
 - Update belief state
- Time is handled by making each quantity a function of time

Static vs dynamic probabilistic reasoning: example

Static probabilistic reasoning

- Each random variable has a single fixed value over time
- E.g., when repairing a car:
 - Whatever is broken stays broken during the diagnosis
 - · Observed evidence remains fixed

Dynamic probabilistic reasoning

- Random variables change over time
- E.g.,
 - Tracking the location of a plane
 - Tracking the economic activity of a nation
- E.g., treating a diabetic patient
 - Goal: assess the state of the patient and decide on insulin dose
 - Evidence: previous insulin doses, food intake, blood sugar (which change over time)
 - Dependency on time (e.g., metabolic activity and time of day)

Model components

- 1. State of the world: X_t
- 2. Prior probability of the state at time 0: $\underline{\mathbf{X}}_0$
- 3. Evidence variables: $\underline{\boldsymbol{E}}_t$
- 4. Transition model: $Pr(\underline{X}_t | \underline{X}_{0:t-1})$
 - How the world evolves
 - Specifies the probability distribution of the state <u>X</u>_t, given all previous values
- 5. Sensor model: $Pr(\underline{\boldsymbol{E}}_t|\underline{\boldsymbol{X}}_{0:t},\underline{\boldsymbol{E}}_{0:t-1})$
 - How the evidence variables $\underline{\boldsymbol{E}}_t$ are generated

Discrete vs continuous time models

Discrete time models

- View the world as a series of time slices ("snapshots")
 - Assume time intervals are equal, so samples are equispaced
 - Label times t = 0, 1, 2, ...
- Each time slice contains random variables:
 - Some RVs are not observable \underline{X}_t (hidden)
 - Other RVs are observable $\underline{\boldsymbol{E}}_t$ (evidence)
 - $\underline{X}_{a:b}$ represents variables in [a, b]

Continuous time models

- Uncertainty over continuous time can be modeled by stochastic differential equations (SDEs)
- Discrete time models can be discrete approximations to SDEs

Markov property

• In general, the current state \underline{X}_t depends on a growing number of past states:

$$\Pr(\underline{\boldsymbol{X}}_t|\textit{history}) = \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_0,\underline{\boldsymbol{X}}_1,...,\underline{\boldsymbol{X}}_{t-1})$$

• **Markov property**: the current state (conditionally) depends only on a finite fixed number of *k* previous states:

$$\Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_0,\underline{\boldsymbol{X}}_1,...,\underline{\boldsymbol{X}}_{t-k-1},\underline{\boldsymbol{X}}_{t-k},...,\underline{\boldsymbol{X}}_{t-1}) = \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{t-1:t-k})$$

Markov process

Markov processes (aka Markov chains) have the Markov property

$$\Pr(\underline{\boldsymbol{X}}_t|history) = \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{t-1:t-k})$$

• **First-order Markov process**: the current state depends only on the previous state (and no other earlier state):

$$\Pr(\underline{\boldsymbol{X}}_t|history) = \Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{t-1})$$

- E.g., the probability of rain today depends only on what happened yesterday $Pr(R_t|R_{t-1}) \ \forall t$
- The Bayesian network for a first-order Markov process looks like:

• **Second-order Markov process**: the current state \underline{X}_t is conditionally dependent only on \underline{X}_{t-1} and \underline{X}_{t-2} and no other earlier state

Time-homogeneous process

- Even with the Markov assumption, there are infinite probability distributions $Pr(\underline{X}_t | \underline{X}_{t-1})$, one for every value of t
- Stationarity: the transition probability doesn't change over time

$$\Pr(\underline{X}_t | \underline{X}_{0:t-1}) = \Pr(\underline{X}_{t-k} | \underline{X}_{0:t-k-1}) \ \forall k, t$$

- The process evolves over time, but the governing laws don't change
- First-order time-homogeneous: only one conditional probability table is needed

$$\Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{X}}_{t-1}) = \Pr(\underline{\boldsymbol{X}}_{t-k}|\underline{\boldsymbol{X}}_{t-k-1}) \ \forall k,t$$

• E.g., the probability of rain depends on what happened yesterday and is the same every day: $\Pr(R_t|R_{t-1}) = f(R_{t-1}) \ \forall t$

Sensor model

- Aka "observation model"
- In general, the evidence variables $\underline{\boldsymbol{E}}_t$ could depend on previous $\underline{\boldsymbol{X}}$ (state of the world) and $\underline{\boldsymbol{E}}$ (sensor value) variables:

$$\Pr(\underline{\boldsymbol{E}}_t|\underline{\boldsymbol{X}}_{0:t},\underline{\boldsymbol{E}}_{0:t-1})$$

- Sensor Markov property
 - We assume that the sensor value <u>E</u>_t depends only on the current state of the world <u>X</u>_t, not on previous sensor values

$$\Pr(\underline{\boldsymbol{\mathcal{E}}}_t|\underline{\boldsymbol{\mathcal{X}}}_{0:t},\underline{\boldsymbol{\mathcal{E}}}_{0:t-1}) = \Pr(\underline{\boldsymbol{\mathcal{E}}}_t|\underline{\boldsymbol{\mathcal{X}}}_t)$$

• In a Bayesian network, even if vX_t and $\underline{\boldsymbol{E}}_t$ are contemporaneous in the time step, the arrow goes from the state of the world $\underline{\boldsymbol{X}}_t$ to the sensor value $\underline{\boldsymbol{E}}_t$, i.e., $\underline{\boldsymbol{X}}_t \to \underline{\boldsymbol{E}}_t$ since the world causes the sensor to take on particular values

Sensor model: rain example

- In a Bayesian network, $\underline{X}_t \to \underline{E}_t$ since the world causes the sensor to take on particular values
 - E.g., the rain "causes" the umbrella to appear
 - The inference goes in the other direction: we see the umbrella and need to guess if it's raining
- E.g.,
 - The transition model is $Pr(Rain_t|Rain_{t-1})$
 - $Pr(R_t|R_{t-1}=T)=0.7$
 - $Pr(R_t|R_{t-1}=F)=0.3$
 - The sum doesn't have to be 1 since it's a conditional probability
 - The sensor model is $Pr(Umbrella_t|Rain_t)$
 - $\Pr(U_t|R_t=T)=0.9$
 - $Pr(U_t|R_t = F) = 0.2$

Prior probability

- To complete the system specification, we need the prior probability of the state variables at time 0, $Pr(\underline{X}_0)$
 - Represents the initial belief about the state of the system before any observations are made
 - It is crucial for initializing the state estimation process
- E.g.,
 - X_0 represents the position and velocity of a moving object
 - $Pr(\underline{X}_0)$ could be a Gaussian distribution centered around an initial guess of the object's position and velocity with some uncertainty

First-order Markov process: Joint Distribution

- Model a sequence of states $\underline{X}_0, \underline{X}_1, ..., \underline{X}_t$ and observations $\underline{E}_1, ..., \underline{E}_t$ over time, with the simplifying assumptions:
 - First-order Markov assumption: $Pr(\underline{X}_i | \underline{X}_{0:i-1}) = Pr(\underline{X}_i | \underline{X}_{i-1})$
 - Sensor model: $\Pr(\underline{\boldsymbol{E}}_i|\underline{\boldsymbol{X}}_{0:i},\underline{\boldsymbol{E}}_{1:i-1}) = \Pr(\underline{\boldsymbol{E}}_i|\underline{\boldsymbol{X}}_i)$
- The joint distribution of *n* random variables:

$$\Pr(X_1,...,X_n) = \prod_{i=1}^n \Pr(X_i|parents(X_i))$$

• The joint distribution probability can be written for any t:

$$\Pr(\underline{\boldsymbol{X}}_{0:t},\underline{\boldsymbol{E}}_{1:t}) = \Pr(\underline{\boldsymbol{X}}_{0}) \prod_{i=1}^{t} \Pr(\underline{\boldsymbol{X}}_{i} | \underline{\boldsymbol{X}}_{i-1}) \Pr(\underline{\boldsymbol{E}}_{i} | \underline{\boldsymbol{X}}_{i})$$

$$= \operatorname{prior} \times \prod_{i} \operatorname{transition model} \times \operatorname{sensor model}$$

First-order Markov process: intuition

 The joint distribution probability for a time-homogeneous first-order Markov process can be written, for any t:

$$\Pr(\underline{\boldsymbol{X}}_{0:t},\underline{\boldsymbol{E}}_{1:t}) = \Pr(\underline{\boldsymbol{X}}_{0}) \prod_{i=1}^{t} \Pr(\underline{\boldsymbol{X}}_{i} | \underline{\boldsymbol{X}}_{i-1}) \Pr(\underline{\boldsymbol{E}}_{i} | \underline{\boldsymbol{X}}_{i})$$

$$= \operatorname{prior} \times \prod_{i} \operatorname{transition model} \times \operatorname{sensor model}$$

- Intuition:
 - Each observation depends only on the current state (sensor model)
 - The state evolves probabilistically from the previous state (transition model)
 - This structure reduces complexity and enables tractable inference
- How to represent this process?
 - A Bayesian network can represent a temporal model by modeling time with indices t, i.e., "unrolling the model"
 - Problem: There are infinite t, even assuming the Markov property

Improving approximation of real-world systems

- A first-order Markov process can be reasonable or not, e.g.,
 - A particle following a random walk is well represented by Markov process (by definition)
 - In the umbrella example the rain depends only on what happened the previous day
- How to improve the approximation
 - 1. Increase the order of the Markov process model
 - E.g., to model "rarely rains more than two days in a row", we need a second-order Markov model Pr(Rain_t|Rain_{t-1}, Rain_{t-2})
 - 2. Increase the set of state variables
 - E.g., add Seasont to incorporate the historical records
 - This makes the transition model more complicated
 - 3. Increase the number of sensor variables
 - E.g., Locationt, Temperaturet, Humidityt, Pressuret
 - This can simplify modeling of the state

Inference tasks in temporal models

• There are several possible applications that we will consider in details

Task	Description	Estimate
Filtering Prediction	Estimate <i>current</i> state given past / current obs Estimate <i>future</i> state given past / current obs	$\Pr(\underline{X}_t \underline{E}_{1:t}) $ $\Pr(\underline{X}_t + k \underline{E}_{1:t})$ for $k > 0$
Smoothing	Estimate past state given past, current, and future obs	$\Pr(\overline{\underline{X}}_{k} \underline{\underline{E}}_{1:T}) \text{ for } k < T$
Most Likely Explanation	Find most probable sequence of states given the evidence	$argmax_{\underline{\mathbf{x}}_{1:T}} Pr(\underline{\boldsymbol{X}}_{1:t} \underline{\boldsymbol{E}}_{1:t})$
Learning	Learn model parameters or structure from data	heta of a model

Task 1: Filtering

- Aka "state estimation"
- Filtering computes the posterior distribution of the current state (belief state) given all evidence to date:

$$\Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{E}}_{1:t}=\underline{\boldsymbol{e}}_{1:t})$$

- E.g., estimate the probability of rain today, given all umbrella observations so far Pr(Raint | Umbrella1:t)
- Filtering is needed by a rational agent to track the current state of the world
 - The agent has a belief about the current state $\Pr(\underline{X}_{t-1})$ at time t-1
 - New evidence \underline{e}_t arrives for time t
 - ullet The agent updates its belief about the current state $\Pr(\underline{X}_t)$ at time t
- The term "filtering" refers to the problem in signal processing of filtering out noise in a signal by estimating system parameters

Task 2: Prediction

• **Prediction** involves predicting the posterior distribution over a *future* state, given all evidence to date:

$$\Pr(\underline{\boldsymbol{X}}_{t+k}|\underline{\boldsymbol{e}}_{1:t})$$
 with $k>0$

• E.g., compute the probability of rain three days from now:

$$Pr(Rain_{t+3}|Umbrella_{0:t})$$

 Prediction helps a rational agent evaluate possible actions based on expected outcomes

Task 3: Smoothing

• **Smoothing** is the task of computing the posterior distribution over a *past* state given *all* the past, present, and future evidence:

$$\Pr(\underline{\boldsymbol{X}}_{k}|\underline{\boldsymbol{e}}_{1:t})$$
 with $0 \leq k < t$

- Note: you have information about the "future" of the evidence, but you
 don't know the state
- Smoothing provides a better estimate of the state since it incorporates more evidence about the future
- E.g., compute the probability that it rained last Wednesday, given all the observations made up to today
- The name "smoothing" refers to the fact that the state estimate is smoother than filtering

Task 4: Most-likely explanation

• Most-likely explanation finds the sequence of states $\underline{x}_{1:t}$ most likely to have generated observations $\underline{e}_{1:t}$:

$$\mathsf{argmax}_{\underline{\pmb{x}}_{1:t}} \mathsf{Pr}\big(\underline{\pmb{x}}_{1:t} | \underline{\pmb{e}}_{1:t} \big)$$

- E.g.,
 - Umbrella appeared on 3 days, not on the fourth
 - Most likely explanation: rained for 3 days, then stopped
- Applications
 - Speech recognition: most likely sequence of words given sounds
 - Digital processing: reconstruct bit strings over a noisy channel

Task 5: Learning

• Learning involves estimating the transition model $\Pr(\underline{X}_t|\underline{X}_{0:t-1})$ and the sensor model $\Pr(\underline{E}_i|\underline{X}_i)$ from observations

Learning:

- Can be a byproduct of inference
- Requires smoothing rather than filtering for better state estimates
 - Smoothing uses all available data to estimate states, leading to more accurate models
 - E.g., in a weather prediction system, smoothing might use past, present, and future data to better estimate the current weather state

Task 1: Recursive filtering: goal

- Aka "recursive state estimation"
- A practical filtering algorithm updates the current state estimate $\underline{\boldsymbol{X}}_{t+1}$ using the previous state $\underline{\boldsymbol{X}}_t$ and the new evidence $\underline{\boldsymbol{e}}_{t+1}$, rather than recomputing it by going over the entire history of the percepts

$$\Pr(\underline{X}_{t+1}|\underline{e}_{1:t+1}) = f(\Pr(\underline{X}_t|\underline{e}_{1:t}),\underline{e}_{t+1})$$
 $NextState = f(PreviousState, e_{t+1})$

- Why?
 - Time and space requirements for updating must be constant if a (finite) agent needs to keep track of current state indefinitively
- Is it possible?
 - What is the formula f(...)?

Task 1: Recursive filtering: update formula

- Compute the state at time t+1 with all the evidence up to that time
- Assume that state and evidence are scalar and not vector: $Pr(X_{t+1}|e_{1:t+1})$

$$\begin{array}{ll} \text{Divide up the evidence} &= \Pr(X_{t+1}|e_{1:t},e_{t+1}) \\ \text{Bayes rule given } e_{1:t} &= \alpha \Pr(e_{t+1}|X_{t+1},e_{1:t}) \Pr(X_{t+1}|e_{1:t}) \\ \text{Markov sensor assumption} &= \alpha \Pr(e_{t+1}|X_{t+1}) \Pr(X_{t+1}|e_{1:t}) \\ \text{Condition on current state} &= \alpha \Pr(e_{t+1}|X_{t+1}) \sum_{x_t} \Pr(X_{t+1}|x_t,e_{1:t}) \Pr(x_t|e_{1:t}) \\ \text{Markov assumption} &= \alpha \Pr(e_{t+1}|X_{t+1}) \sum_{x_t} \Pr(X_{t+1}|x_t) \Pr(x_t|e_{1:t}) \end{array}$$

$$Pr(X_{t+1}|e_{1:t+1}) = f(Pr(X_t|e_{1:t}), e_{t+1})$$

- The next state is "Sensor model x Transition model x Recursive state"
 - Sensor model: $Pr(e_{t+1}|X_{t+1})$
 - Transition model: $Pr(X_{t+1}|x_t)$
 - Recursive term: $Pr(x_t|e_{1:t})$

Task 1: Recursive filtering: intuition

 Recursive state estimation updates in two steps the belief about a system's state over time as new evidence arrives

$$\Pr(X_{t+1}|e_{1:t+1}) = \alpha \Pr(e_{t+1}|X_{t+1}) \sum_{x_t} \Pr(X_{t+1}|x_t) \Pr(x_t|e_{1:t})$$

 Prediction step: Use the transition model to predict the next state based on the current belief

$$\Pr(X_{t+1}|e_{1:t}) = \sum_{x_t} \Pr(X_{t+1}|x_t) \Pr(x_t|e_{1:t})$$

- Intuition: Project the current belief forward using the model of system evolution
- 2. Update step: Incorporate the new observation to refine the prediction

$$\Pr(X_{t+1}|e_{1:t+1}) = \alpha \Pr(e_{t+1}|X_{t+1})\Pr(X_{t+1}|e_{1:t})$$

- Intuition: Correct the prediction using the likelihood of the new evidence
- Maintain $Pr(X_t|e_{1:t})$, the probability of the current state given all past evidence
 - E.g., in a weather model, if it was likely to rain today and rain usually continues, the prediction leans toward rain tomorrow
 - Seeing an umbrella supports this and updates the belief accordingly

Task 1: Forward update

• We achieved:

$$Pr(\underline{\boldsymbol{X}}_{t+1}|\underline{\boldsymbol{e}}_{1:t+1}) = \alpha Pr(\underline{\boldsymbol{e}}_{t+1}|\underline{\boldsymbol{X}}_{t+1}) \sum_{\boldsymbol{x}_t} Pr(\underline{\boldsymbol{X}}_{t+1}|\underline{\boldsymbol{x}}_t) Pr(\underline{\boldsymbol{x}}_t|\underline{\boldsymbol{e}}_{1:t})$$

$$= f(Pr(\underline{\boldsymbol{X}}_t|\underline{\boldsymbol{e}}_{1:t}),\underline{\boldsymbol{e}}_{t+1})$$

• The filtered estimate $\underline{f}_{1:t} = \Pr(\underline{X}_t | \underline{e}_{1:t})$ is propagated forward and updated by each transition and new observation

$$\underline{\mathbf{f}}_{1:t+1} = Forward(\underline{\mathbf{f}}_{1:t}, \underline{\mathbf{e}}_{t+1})$$

starting with the initial condition $\underline{\boldsymbol{f}}_{1:0} = \Pr(\underline{\boldsymbol{X}}_0)$

- This is called "forward update"
- This process allows efficient online inference without storing the full history
 - Time and space requirements for updating is constant
 - A (finite) agent can keep track of current state indefinitively

Task 2: Prediction: update formula

- Prediction is equivalent to filtering without updating the state with new evidence (since we lack evidence)
 - Only the transition model is needed, not the sensor model
- The rule predicting state \underline{X}_{t+k+1} given state \underline{X}_{t+k} and evidence $\underline{E}_{1:t}$ is:

$$\Pr(\underline{\boldsymbol{X}}_{t+k+1}|\underline{\boldsymbol{e}}_{1:t}) = \sum_{\underline{\boldsymbol{x}}_{t+k}} \Pr(\underline{\boldsymbol{X}}_{t+k+1}|\underline{\boldsymbol{x}}_{t+k}) \Pr(\underline{\boldsymbol{x}}_{t+k}|\underline{\boldsymbol{e}}_{1:t})$$

- This equation can be used recursively to advance over time
 - Predicting even a few steps ahead generally incurs large uncertainty

Task 3: Smoothing: intuition

 We want to calculate the probability distribution over the hidden state at time k, given all evidence up to time t (in the future!)

$$\Pr(X_k | e_{1:t})$$
 where $0 \le k < t$

- Filtering gives $Pr(X_k|e_{1:k})$ using past and present evidence
- Smoothing refines the estimate of past states using later evidence
- E.g.,
 - You're tracking whether it was raining yesterday
 - You had some evidence up to yesterday (e.g., a cloudy sky)
 - Today you see puddles on the ground
 - That new observation supports the idea that it was raining

Task 3: Smoothing: update formula

 Using the same math as for filtering and the two key assumptions of Markov process and Markov sensor

Forward Pass (aka filtering):

Move forward through time, using the filtering algorithm to compute:

$$f_{1:k} = \Pr(X_k|e_{1:k})$$

 This gives you a "best guess" of the state at time k, based only on evidence up to k

Backward Pass (aka smoothing):

Move backward through time from time t, computing:

$$b_{k+1:t} = P(e_{k+1:t}|X_k)$$

ullet This captures how likely the future evidence is, given a particular value of X_{k}

Combine them:

Multiply forward and backward messages to get:

$$P(X_k|e_{1:t}) \propto f_{1:k} \times b_{k+1:t}$$

Task 4: Most likely explanation: Intuition 1/2

- You are tracking the weather (sunny or rainy) based on whether someone carries an umbrella
- You can't see Weather directly (hidden state), but you observe umbrellas (which is a noisy observation)
 - You have 5 observations Umbrella = [T, T, F, T, T]
- Question: what is the most likely sequence of Weather states that explains the Umbrella observations?
 - You know something about the transition model (i.e., "it tends to rain several days in a row") and the sensor model (i.e., "people often forget the umbrella")
- Mathematically

$$\operatorname{argmax}_{X_{1:t}} \Pr(X_{1:t}|e_{1:t}) = \operatorname{argmax}_{\operatorname{Weather}_{1:t}} \Pr(\operatorname{Weather}_{1:t}|\operatorname{Umbrella}_{1:t})$$

Task 4: Most likely explanation: Intuition 2/2

- Naive approach: Use smoothing to choose the most likely state at each time step
 - Cons
 - Might lead to an implausible overall path
 - Suboptimal since the question addresses joint probability and we are not using all the information (only one step at the time!)

Viterbi algorithm:

- Constructs a path through a state-time graph with states as nodes and transitions as edges
- Finds the most likely entire path through the hidden states

Key difference:

- E.g., in speech recognition, find the most likely word sequence behind a noisy audio signal
- Smoothing: Best guess per time step (may not find words that are not English and / or suboptimal sequence)
- Viterbi: Best overall path (maximizes joint probability of the entire sequence)

Viterbi algorithm: Intuition

- Objective: Find the most likely sequence of hidden states given observations
- 1. Initialization
 - At t = 1, estimate the probability of starting in each state using the initial state distribution and observation likelihood
- 2. Recursion via dynamic programming
 - At each time t > 1, for each state x_t :
 - Compute the maximum probability path to x_t from any previous state
 - Use:
 - $Pr(x_t|x_{t-1})$: transition model
 - $Pr(e_t|x_t)$: sensor model
 - Best path probability to x_{t-1} from prior step
 - Store the probability and the corresponding back-pointer to x_{t-1}
- 3. Termination and backtrace
 - At final time t = T, identify the state with the highest final probability
 - Trace back through the stored pointers to reconstruct the optimal path

Viterbi algorithm: Example 1/2

- You observe a friend carrying an umbrella over 3 days: Umbrella = [Yes, Yes, No]
- You want to infer the most likely sequence of hidden Weather states
 - States: $S = \{Sunny, Rainy\}$ (weather)
 - Observations: $O = \{Yes, No\}$ (umbrella)
- Initial Probabilities:

$$Pr(Sunny) = 0.6$$
, $Pr(Rainy) = 0.4$

Transition Probabilities:

$$\begin{aligned} & \mathsf{Pr}(\mathsf{Sunny} \to \mathsf{Sunny}) = 0.7, & \mathsf{Pr}(\mathsf{Sunny} \to \mathsf{Rainy}) = 0.3 \\ & \mathsf{Pr}(\mathsf{Rainy} \to \mathsf{Sunny}) = 0.4, & \mathsf{Pr}(\mathsf{Rainy} \to \mathsf{Rainy}) = 0.6 \end{aligned}$$

• Observation (Emission) Probabilities:

$$\begin{split} & \text{Pr}(\text{Yes}|\text{Sunny}) = 0.1, \quad \text{Pr}(\text{No}|\text{Sunny}) = 0.9 \\ & \text{Pr}(\text{Yes}|\text{Rainy}) = 0.8, \quad \text{Pr}(\text{No}|\text{Rainy}) = 0.2 \end{split}$$

Viterbi algorithm: example 2/2

Viterbi table

Day	State	Probability	Backpointer
1	Sunny	$0.6 \times 0.1 = 0.06$	_
	Rainy	$0.4 \times 0.8 = 0.32$	_
2	Sunny	$max(0.06 \times 0.7, 0.32 \times 0.4) \times 0.1 = 0.0128$	Rainy
	Rainy	$\max(0.06 \times 0.3, \ 0.32 \times 0.6) \times 0.8 = 0.1536$	Rainy
3	Sunny	$\max(0.0128 \times 0.7, \ 0.1536 \times 0.4) \times 0.9 = 0.0553$	Rainy
	Rainy	$\max(0.0128 \times 0.3, \ 0.1536 \times 0.6) \times 0.2 = 0.0184$	Rainy

- Final most probable state: Sunny (Day 3)
- Find the most likely sequence:
 Rainy → Rainy → Sunny

HMMs

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
- Dynamic Bayesian networks
- State space model
- Variational Inference

Algorithms for Specific Models

- General temporal probabilistic reasoning makes minimal assumptions:
 - Markov property for transitions
 - Sensor model depends only on current state
 - No constraints on:
 - Mathematical form of transition/sensor models
 - Nature of state and evidence variables (discrete or continuous)
- Efficiency and accuracy can improve by exploiting specific model structures:
 - Hidden Markov Models (HMMs):
 - State is a single discrete variable
 - Transition and observation models are discrete probability tables
 - Enables fast algorithms like the Viterbi algorithm, forward-backward, etc
 - Kalman Filters (for continuous domains):
 - State variables are continuous and normally distributed
 - Linear-Gaussian models for transitions and observations
 - · Allows exact, efficient updates using matrix operations
- Tailored algorithms can be orders of magnitude faster and more accurate than general methods

Hidden Markov Model: State and Transition Model

- Hidden Markov Model (HMM): A temporal model with simplified structure for efficiency
 - State model:
 - The system state at time t is a discrete random variable $X_t \in \{1, \dots, S\}$
 - E.g., in the umbrella domain, $X_t = Rain_t$ with states {rain, no rain}
 - Generality: Multiple variables can be combined into one "mega-state" variable
 - Transition model $Pr(X_t|X_{t-1})$:
 - Described by a transition matrix \underline{T} of size $S \times S$
 - Entry $T_{ij} = \Pr(X_t = j | X_{t-1} = i)$: probability of transitioning from state i to j
 - Sensor model:
 - Defined as $Pr(E_t|X_t=i)$ for each state i
 - Representable as a vector (discrete observations) or a diagonal matrix \underline{O} (for convenience)
 - No assumptions about the number or type (discrete / continuous) of observation variables
- Benefit
 - This structure enables efficient algorithms like forward, backward, and Viterbi

Hidden Markov Model: umbrella example

• E.g., if Rain = T is state 1 and Rain = F is state 2, then the transition matrix for the umbrella world

$$R_{t-1}$$
 $Pr(R_t|R_{t-1})$
T 0.7
F 0.3

becomes the transition model

$$\underline{\underline{\mathbf{T}}} = \begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$$

• On day 1 we observe $U_1 = T$ and on day 3, $U_3 = F$, we have the observation matrices

$$\underline{\mathbf{O}}_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix} \quad \underline{\mathbf{O}}_3 = \begin{pmatrix} 0.1 & 0 \\ 0 & 0.8 \end{pmatrix}$$

Hidden Markov Model: algorithms

 Using the matrix representation all the forward / backward computations become matrix operations:

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t} \qquad \qquad \mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$$

- So all the inference tasks (e.g., filtering, smoothing) can be expressed as matrix multiplication which are typically efficient
- There are several improvements that can be done to reduce time and space complexity
 - Baum-Welch
 - Special case of Expectation-Maximization (EM) algorithm
 - Pros: Converge to a local maximum of the likelihood
 - Cons: Only point-estimation of params, no uncertainty estimation
 - Viterbi
 - · Find the most likely sequence of hidden states
 - Pros: Fast approximation of BW
 - Cons: returns a local optimum
 - Gradient-based methods
 - For more complex models with differentiable form
 - Use gradient descent to optimize parameter

Hidden Markov Model: applications

- HMMs are very versatile to model systems that have hidden states which produce observable outputs
- Audio / speech
 - Speech recognition: map audio to phonemes, words
 - Speaker identification: model vocal traits to recognize a speaker
 - Music generation and transcription
- Biology / genomics
 - Gene prediction: find regions of DNA
 - Protein structure prediction
- Finance / economics
 - Market regime detection: e.g., bull/bear markets, volatility regimes
 - Credit scoring: observe purchases and estimate financial health (hidden variable)
- Security / anomaly detection
 - User behavior modeling: detect anomalous login patterns or usage activities
 - Intrusion detection: model normal traffic natterns to snot attacks.

HMMs: limitations

- Short memory
 - Markov assumption, i.e., current state depends only on the previous state
 - Inefficient for capturing long-range dependencies or context
- Predefined and fixed number of states
 - Underestimating / overestimating the number of states can lead to underfitting or overfitting
- Stationarity assumption
 - Transition and sensor probabilities are assumed to be constant over time
- Use an atomic representation
 - The states have no internal structure and are simply labels
- Training is computationally expensive for large datasets
- Struggles with sparse data
- Hard to interpret when there is a lot of states or states don't have a clean meaning

Alternatives

41/86

Markov random fields

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
- Dynamic Bayesian networks
- State space model
- Variational Inference

Markov logic network

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
- Dynamic Bayesian networks
- State space model
- Variational Inference

State space models and Kalman filter

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
 - g-h filter
 - Discrete Bayes filter
- Dynamic Bayesian networks
- State space model
- Variational Inference

Reference

 $\bullet \ https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python$

Tracking objects

- Many problems can be formulated as "tracking objects", e.g.,
 - Navigation of aircraft, drones, autonomous cars
 - Robotics: arm kinematics to predict the position of joints
 - Sensor fusion: merge multiple sensor readings
 - Finance: predict economic variables (e.g., stock prices)
 - Computer vision: track moving objects across video
 - Aerospace: radar tracking, missile, satellite
- Kalman filter is widely used for state estimation in dynamic systems, when measurements are noisy and uncertain
 - Track something over time using a combination of predictions (i.e., a model) and observations

Some guiding principles

- Sensors are noisy
 - E.g., kitchen scale gives different readings when you weigh the same object twice
- World is noisy
 - A car might have swerved around a pothole or have braked for a pedestrian
 - Wind or ice might change the path of the car
- Knowledge is uncertain
 - We alter our beliefs based on the strength of the evidence
- Use past information and the knowledge of a system to estimate future information
 - ullet E.g., if a car is moving at a certain speed at time t, the speed at time t+1 is probably close to the previous speed
- Never throw information away, no matter how poor it is
 - Two sensors, even if one is less accurate than the other, is better than one
 - Include all the possible sources of information to form the best estimate possible
- Data is better than a guess, if it's noisy

g-h filter

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
 - g-h filter
 - Discrete Bayes filter
- Dynamic Bayesian networks
- State space model
- Variational Inference

Blending predictions and measurements

- We want to track the position of a car on a drag race track (1 dimensional)
- We measure velocity with sensors
 - Based on physics equation we should know exactly the position of the car
- Imagine we measure also the position
 - The prediction of the position doesn't match the measurement of the position
 - This is expected since:
 - velocity sensor is noisy
 - the wheels lose grip
 - there is air attrition
- If we form estimates from the measurements, then the predictions are useless
- If we only form estimates from the prediction, then the measurements will be ignored
- We need to blend prediction and measurement

Example of weight: correct gain_rate

- We have a noisy scale
- We estimate the change of weight from one day to another based on the calories consumed
 - Assume that we gain 1lb / day
- At time t-1 our last estimate $\hat{x}_{t-1} = 158$
- At time *t*:
 - we measure 164 with a scale
 - we estimate $\hat{x}_{t|t-1} = 159$ based on the calories intake
- Assume we blend the estimates like:

estimate
$$= 0.6$$
 prediction $+ (1 - 0.6)$ measurement

 This means that we believe that the prediction is more likely to be correct than the measurement

Algorithm

- 0. Start with an initial guess (assume it's correct for now)
- 1. Predict the next weight based on the model
- 2. Measure the weight
- 3. Estimate the next weight by merging different values:
 - The prediction is always between the prediction and the measurement
- 4. Go back to 1)

Code

- The code in Python is here /// TODO
- The initial guess is 160 lbs
- The red line is the prediction from previous day's weight
- The **measurements** are the circles
- The blue line is the **estimate** from the filter
 - They always fall between measurement and prediction
- The black line is the actual weight, i.e., ground truth
- It's not very impressive since the prediction model describes exactly the ground truth, so we don't really need the measurements

Example of weight: incorrect gain_rate

- Consider the case where the model predicts a gain of -1lb / day, which is incorrect
- The estimates diverge from the measurements
- The filter needs a correct guess of the rate of weight change
 - The problem is that the rate of change can change over time
 - The filter will adjust but just not fast enough

Example of weight: learning gain_rate

- A solution is to estimate the rate of change from the measurements
 - Data is better than a guess, even if it's noisy
 - The idea is to refine the estimate of the gain rate:

```
new gain = old gain + 0.3 (measurement - prediction) / 1 day
```

- Note that now the state is given by weight and gain_rate, so we need to predict and update both
- The code in Python is here /// TODO

g-h filter

- The previous algorithm is called g-h filter
 - g: scaling used to blend predicted state and measurement
 - h: scaling used to update the parameter of the system model based on the measurements
- g-h filters have different values of g and h to achieve different properties
 - E.g., pick g to minimize the transient error when the derivative of the signal has a step (i.e., a discontinuity of the slope)
- Many filters (including Kalman filter) are just generalization of a g-h filter

Control theory nomenclature

- system = object we want to estimate / track
- ullet state of the system x = current values we are interest in
 - E.g., weight
 - Part of the state might be hidden (i.e., not observable)
 - We cannot observe the entire state directly, we can only measure it indirectly
- measurement z = the measured value of the system
 - It can be inaccurate
 - E.g., 99.3kg instead of 100kg
 - It is observable
- state estimate x_est = our filter estimate of the state
- system model = mathematical model of the system
 - E.g., "weight today = weight yesterday + weight gain"
 - The system model is typically imperfect
- system error = error in the specification of the model
- system propagation = predict step using the system model to form a new state estimate x_pred
 - Because of system error, the estimate is imperfect
- measurement update = update step

g-h filter algorithm: pseudo-code

- 0. Initialization
- initialize the state of the filter
- initialize our belief in the state
- 1. Predict
- use system model to predict state at next time step
- adjust belief to account for uncertainty in prediction
- 2. Update
 - get measurement and associated belief about its accuracy
- use as estimate of the next state a point between estimated state and measurement

Interpretation of g

- If g = 0, the filter follows the system model, ignoring the measurements
- If g increases, the filter follows the measurements more and more, ignoring the prediction
 - This is useful when the measurements are accurate and the system model inaccurate
- ullet If g=1, the filter follows only the measurements, ignoring the system model

Interpretation of *h*

- The system model can be parameterized and we might need to estimate some model parameters from data, e.g.,
 - in g-h models the rate of change of the measurements
 - the change of weight
 - the speed of the car on different terrains
- If h = 0, the filter follows the previous values of the rate of change of the underlying model
 - I.e., it adapts slowly to the change of the signals
- If h = 1, the filter reacts to the transient rapidly if the signal varies a lot with respect to the time step
- Note that incorrect initial state (e.g., initial value / rate of change) is similar to a changing state

Discrete Bayes filter

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
 - g-h filter
 - Discrete Bayes filter
- Dynamic Bayesian networks
- State space model
- Variational Inference

Tracking a dog: example

- There is a dog wandering in a circular hallway connecting offices with doors
 - There are 10 positions in the hallway numbered 0 to 9
 - Because of the circular hallway after position 9 there is 0
- The dog has a sensor that can:
 - detect if the dog is in front of an open door or not (e.g., we get signals like door, hall, hall)
 - report in which direction the dog has moved
- Updates are reported every second
- When we start listening to the sensor we don't know where the dog is
 - The prior is uniform over the 10 positions
 - ullet We assign a probability equal to 1/10 to each door
- Prior is the probability before incorporating measurements or other information
- Posterior distribution is the probability distribution after seeing the data

Tracking a dog

- Initially let's assume that the sensor is always correct
- Before the signal we believed that the dog could have been anywhere
 - Uniform belief over the 10 locations
- We receive the signal door
 - There are 3 doors
 - Now we know that the dog is in front on one of the doors
- If we receive a sequence of signals like door, move_right, door we
 might be able to conclude where exactly the dog is
 - E.g., if there are only two doors close to each other

Noisy sensors

- No sensor is rare
- To account for that we need to assign a probability for the dog to be in other positions to account for the noisy sensors

Convolution and PDF

- You have a certain PMF of where the dog can be in [0, 9] position X
- The sensor reporting how many positions the dog moved is noisy
 - ullet The PMF of the sensor has a certain shape centered around the correct value (unbiased) d
- Computing the "update" of the position of the dog, after a reading of the movement of the dog from the sensor is:
 - X + d (normalized to 1)
 - equivalent to a convolution between the two PMFs
- Note that after the convolution the PMF becomes more spread
 - This represents the fact that uncertainty increases

Dynamic Bayesian networks

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
- Dynamic Bayesian networks
- State space model
- Variational Inference

Dynamic Bayesian Networks (DBNs)

- DBNs extend Bayesian networks to model temporal processes
- Main idea
 - "Unroll" the model over time
 - Capture intra-slice (within time) and inter-slice (across time) dependencies
- Each time slice includes:
 - State variables X_t
 - Evidence variables E_t
- Assumptions
 - First-order Markov process: current state depends only on the previous state
 - First-order sensor Markov process: evidence depends only on current state
 - Stationarity: each time slice is the same, both structure and parameters do not change over time
 - Structure and CPTs (Conditional Probability Tables) are the same across slices (time-homogeneous model)
 - No Gaussian distribution

DBNs vs HMMs

- DBNs generalize Hidden Markov Models (HMMs)
- HMMs are a special case with a single hidden and evidence variable per time step
- DBNs model more complex systems than HMMs by:
 - Using multiple state variables
 - Enables modeling large systems like robot localization with many state components
 - Exploiting sparse connections among variables yielding compact model
 - HMM: transition matrix of size $O(d^{2n})$
 - DBN: size $O(nd^k)$ with k bounded parents per variable

DBNs vs Kalman filters

- DBNs generalize Kalman filters
- Every Kalman filter can be represented in a DBN with:
 - Continuous variables
 - Linear / Gaussian conditional distributions
- Not every DBN can be represented by a Kalman filter, since:
 - DBN variables can mix discrete/continuous and non-Gaussian
 - Allow arbitrary conditional dependencies among variables
- Pros of DBNs
 - DBNs are applicable to broader domains including:
 - Fault diagnosis in networks
 - Complex system monitoring
- Pros of Kalman filters:
 - Optimal for linear systems with Gaussian noise
 - Support exact inference, DBNs often require approximate methods

Constructing a DBN

- Key components of a DBN
 - Prior distribution of state $Pr(X_0)$
 - Transition model $Pr(X_{t+1}|X_t)$
 - Sensor model $Pr(E_t|X_t)$
 - Transition and sensor models are time-homogeneous
- Network topology includes:
 - Intra-slice topology
 - Inter-slice links

DBN example: Tracking a robot (1/3)

- Problem:
 - Tracking a robot moving randomly on a line X over time
- Initial model:
 - Position X_t and velocity X_t as state variables
 - Update via Newton's laws
 - Easy to generalize for 2d or 3d by using a \underline{X}_t
- Issue:
 - Velocity changes over time
 - Battery exhaustion affects velocity systematically
 - Effect depends on cumulative energy use
 - Violates the Markov property (future depends on full history)
- Solution:
 - Include battery level $Battery_t$ in the state X_t
 - Restores the Markov assumption
 - Allows motion prediction considering energy constraints
 - Enables coherent reasoning about motion and power consumption over time
- New requirement for state:
 - $S_t = (X_t, \dot{X}_t, \mathsf{BatteryLevel}_t)$
 - $E_t = (GPS_t, BMeter_t)$

DBN example: Tracking a robot (2/3)

- The DBN structure models both intra-slice (within time) and inter-slice (across time) dependencies
- Intra-slice dependencies:
 - Position X_t influences velocity \dot{X}_t
 - BatteryLevel_t influences velocity \dot{X}_t
 - Battery_{t+1} depends on Battery_t and \dot{X}_t
 - BMeter_t depends on Battery_t
 - GPS $_t$ depends on X_t
- Inter-slice dependencies:
 - Position X_{t+1} depends on Position X_t and velocity \dot{X}_t
 - Velocity \dot{X}_{t+1} depends on \dot{X}_t and Battery,

DBN example: Tracking a robot (3/3)

Replicate for Multiple Time Slices:

- Create slices for t = 0, 1, 2, ... with the above variables and dependencies
- Group each time slice vertically or horizontally for clarity

Unrolling:

 Visualize the full DBN by unrolling these slices over the desired number of time steps (e.g., three slices for t = 0, 1, 2)

Inference in DBNs

- DBNs are Bayesian networks and we can use the same inference algorithms
 - "Unroll" the DBN over time (i.e., replicate slices for each time step) and apply standard BN inference
 - We can't unroll "forever", but we limit to a certain number of slices to approximate a fixed amount of time dependency
- Use recursive methods to get a constant time and space update complexity
 - Variable elimination with temporal ordering
 - At time step t+1 add slice t+2 and remove slice t so one has always two slices to do inference
 - Maintains constant memory by keeping only two slices at a time
- Complexity:
 - Exponential in number of state variables $(O(nd^{n+k}))$
 - More efficient than full HMM representation $(O(d^{2n}))$
- Even though we can use DBNs to represent very complex temporal processes with many sparsely connected variables, we cannot reason efficiently and exactly about those processes
 - The prior joint distribution over all the variables is factorizable into its constituents CPTs
 - The posterior joint distribution conditioned on observation sequence is not^{72/86}

Approximate Inference in DBNs

- Particle Filtering:
 - Represent belief state with weighted samples (particles)
 - Steps: propagate, weight, resample
- Benefits:
 - Focuses computation on high-probability regions
 - Maintains manageable memory and time per step
- Challenges:
 - Approximation error
 - Sensitive to transition and observation model assumptions
- Used when exact inference is computationally impractical
- Real-world application: robot localization, speech recognition

DBN to represent changing model

- We can model the fact that the system can change over time
 - Transient failure: a sensor reads wrong measures
 - Persistent failure model: we can model it with additional variables (e.g., SensorBroken)

DBN: inference

 We can unroll the DBN and get a BayesNet and then perform exact or approximate inference with the known methods (e.g., MCMC)

DBN: optimization for inference

- Many optimizations are possible, e.g.,
 - Instead of running each sample through the entire DBN one can run all the samples evaluating one slice at a time to compute the posterior distribution

State space model

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
- Dynamic Bayesian networks
- State space model
- Variational Inference

Variational Inference

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
- Dynamic Bayesian networks
- State space model
- Variational Inference
 - Expectation-Maximization (EM) Algorithm

Expectation-Maximization (EM) Algorithm

- Reasoning over time
- HMMs
- Markov random fields
- Markov logic network
- State space models and Kalman filter
- Dynamic Bayesian networks
- State space model
- Variational Inference
 - Expectation-Maximization (EM) Algorithm

EM Algorithm: Intuition and Applications

- Expectation-Maximization (EM) is a method for learning with hidden or missing data
 - Useful when some variables influencing the data are not directly observed
 - Works by iteratively improving parameter estimates
 - Alternates between estimating missing data and optimizing parameters
- Two main steps:
 - E-step (Expectation): Estimate distribution over hidden variables using current parameters
 - M-step (Maximization): Update parameters to maximize expected log-likelihood from the E-step
- Used in diverse settings:
 - Unsupervised clustering (e.g., Gaussian Mixture Models)
 - Learning with incomplete data in Bayesian networks
 - Hidden Markov Models (HMMs)
- Key property: EM increases data likelihood at each iteration
- Converges to a local maximum of the likelihood function
- No need for a step size parameter unlike gradient descent

EM Algorithm: Mechanics and Example in Gaussian Mixture Models

- Goal: Recover parameters of Gaussian components from unlabeled data
- E-step:
 - Compute $p_{ij} = P(C = i \mid x_i)$ using Bayes' rule
 - $p_{ij} \propto P(x_i \mid C = i)P(C = i)$
 - Calculate effective count: $n_i = \sum_i p_{ij}$
- M-step:
 - Update means: $\mu_i \leftarrow \sum_j p_{ij} x_j / n_i$
 - Update covariances: $\Sigma_i \leftarrow \sum_i p_{ij} (x_j \mu_i) (x_j \mu_i)^T / n_i$
 - Update weights: $w_i \leftarrow n_i/N$
- Intuition: Softly assign points to components, then re-estimate the components
- Example scenario:
 - 500 data points from a mix of 3 Gaussians
 - EM reconstructs original distribution closely after iterations
- Limitations:
 - Sensitive to initialization
 - May converge to poor local optima
 - Component collapse or merging can occur

Introduction to the Expectation–Maximization (EM) Algorithm

Purpose of EM Algorithm

- Iterative method for finding maximum likelihood or maximum a posteriori (MAP) estimates in statistical models with latent variables
- Particularly useful when data is incomplete or has missing values

Key Concepts

- Observed Data (X): The data we can directly observe
- Latent Variables (Z): Hidden or unobserved variables that influence the observed data
- Parameters (θ): Unknown parameters to be estimated

Challenge Addressed

• Direct maximization of the likelihood function $p(X|\theta)$ is often intractable due to the presence of latent variables

EM Algorithm Overview

 Alternates between estimating the expected value of the log-likelihood (E-step) and maximizing this expectation (M-step)

Applications

 Widely used in clustering (e.g., Gaussian Mixture Models), natural language processing, and image reconstruction

The EM Algorithm: Step-by-Step

- Initialization
 - Start with initial guesses for the parameters $heta^{(0)}$
- E-Step (Expectation Step)
 - Compute the expected value of the log-likelihood function, with respect to the conditional distribution of the latent variables given the observed data and current parameter estimates:
 - $Q(\theta|\theta^{(t)}) = \mathbb{E}_{\mathbf{Z}|\mathbf{X},\theta^{(t)}}[\log p(\mathbf{X},\mathbf{Z}|\theta)]$
- M-Step (Maximization Step)
 - Maximize the expected log-likelihood found in the E-step to update the parameters:
 - $\theta^{(t+1)} = \operatorname{arg\,max}_{\theta} Q(\theta|\theta^{(t)})$
- Iteration
 - Repeat E and M steps until convergence, i.e., until the parameters stabilize or the increase in likelihood is below a threshold

Mathematical Foundation of EM

Likelihood with Latent Variables

- The marginal likelihood of the observed data is:
 - $p(X|\theta) = \int p(X, Z|\theta) dZ$

Intractability

 The integral is often difficult to compute due to the complexity introduced by the latent variables

EM Solution

 EM circumvents this by iteratively applying the E and M steps to find parameter estimates that locally maximize the likelihood

Convergence

 Each iteration of EM is guaranteed to increase the likelihood function, ensuring convergence to a local maximum

Example: Gaussian Mixture Models (GMM)

Problem Setup

 Data is assumed to be generated from a mixture of Gaussian distributions, each with its own mean and covariance

Latent Variables

 Each data point is associated with a latent variable indicating the Gaussian component from which it was generated

• E-Step in GMM

 Compute the posterior probabilities (responsibilities) that each data point belongs to each Gaussian component

M-Step in GMM

 Update the parameters (means, covariances, and mixing coefficients) of each Gaussian component using the responsibilities computed in the E-step

Iteration

Repeat E and M steps until the parameters converge

Properties and Limitations of EM

Advantages

- Can handle missing or incomplete data effectively
- Provides a framework for parameter estimation in complex models

Limitations

- Converges to a local maximum, which may not be the global maximum
- Sensitive to initial parameter estimates; poor initialization can lead to suboptimal solutions

Extensions and Variants

- Variational Bayes: Provides a fully Bayesian approach by estimating distributions over parameters
- Generalized EM (GEM): Relaxes the requirement of fully maximizing the expected log-likelihood in the M-step
- Expectation Conditional Maximization (ECM): Breaks the M-step into several conditional maximization steps

Practical Considerations

- Multiple runs with different initializations can help in finding better solutions
- Monitoring the increase in likelihood can help in determining convergence