

b) Determine max value for R	
Worst case is when Vi is minimum and Vois maximum.	<u> </u>
R= Vinia - Vo mare = 18-13-61	
Iont + Is 0.04 + 0:01	+ + + + + + + + + + + + + + + + + + + +
<u>R = 87.6</u> R	
Determine power dissipated in M	
For short cct all of Ui applied across 1. Pr = Ui2 = 252 87.6	?
= 7·13W	
For normal conditions l'will be man when voltage across R is max.	
Pr = (Vinmar - Vomin) = (25-6.81) ²	E 0
= 3.77W. D Max power for Ti.	+6
$R_{T_1} = \overline{L_{T_1}} \times U_{T_1} = (\underline{V_i - V_o}) V_o = \underline{\underline{V_i V_o}} - \underline{\underline{V_o}^2}$	
Need to find value of Vo that maximise Pi	

 $\frac{dP_{T_1} = V_1^2 - 2V_0}{cV_0}$

: Vo = Ui, since Pri is mase when Viis

PTI = (Vimax - Vimax (2) Vimax
RTI = (7)

 $= \frac{2S - 12 - S}{\$7.6} \times 12 - S = \frac{1.78W}{=}$

27. Frank N=87.6 Frs O Vo-L = (OV.

Ii = 20-10 - 114-15mA.

Iont = 10 = 20 mA.

Is = Ii- Joul = 114.15-20 = 94-15mA

Pr = Isx Vo= 10x94-15xw-3 = 0.94W

PR = 10² - 1·14W. Poul = 10² = 0.2w. 87.6

Efficiency 1 = Port = 0.2 = 8.77% fout + father 0-2+1-14+8-94

Vezz 0 1 5° working point ideal working point (marle Lor regions -FD-

de The inclusion of the parallel diale resister combination modifier the gate resister value during turn-off. Rgoff = Rg/12 = 4-58 Yoff=Rooff [Cou+ Cas] = 5.9918. Vgs(A)=Vie=to. VTH = Vixe copp +doff = - Coff (a (V+n) - 4-8515. igoff = UTH = COG UDD Rady +soff tsofe = 22.261s

ra alla alla di un un un delle di un avante i i

0 Tm = 4I = 0.15 = 0.071I

$$v = L di$$
, $Vi - E = L \Delta T$
 \overline{dt}

$$Riggle = \Delta I = fon(Ui-E) = \frac{196x (5^{-6}(39-5-14-87))}{3\cdot 4x (5^{-3})}$$

Duty
$$\int = \frac{1}{T} = \frac{E}{V_i} = \frac{7.44}{40} = 0.186$$

$$\frac{V_{i}-E=L\Lambda E}{\sqrt{T}} = \frac{1}{2\cdot 8\times 10^{-4}}$$