

Contents lists available at SciVerse ScienceDirect

International Journal of Greenhouse Gas Control

Post-combustion CO₂ capture by aqueous ammonia: A state-of-the-art review

Bingtao Zhao a,*, Yaxin Sub, Wenwen Tao a, Leilei Lia, Yuanchang Penga

- ^a School of Energy and Power Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- ^b School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China

ARTICLE INFO

Article history: Received 3 October 2011 Received in revised form 2 May 2012 Accepted 6 May 2012 Available online 2 June 2012

Keywords: Carbon capture Chemical absorption Aqueous ammonia Post-combustion Flue gas

ABSTRACT

CO₂ emission by fossil fuel combustion has been considered as a leading contribution to the increasing atmospheric CO₂ concentration and the global greenhouse effect. As a chemical absorption method and technology to control CO₂ from post-combustion flue gas, CO₂ capture by aqueous ammonia is paid more and more attention for its advantages of high efficiency, low investment and convenient operation. In this paper, the advances in fundamental research on post-combustion CO₂ capture by aqueous ammonia, focusing on the process chemistry, effect of reaction parameters on absorption efficiency, absorption process intensification and simultaneous capture with other pollutants, were critically summarized and reviewed. In addition, future potential in research and development of CO₂ absorption by aqueous ammonia were also briefly prospected and discussed.

© 2012 Elsevier Ltd. All rights reserved.

Contents

1.	Intro	Introduction	
2.	Process chemistry		356
	2.1.	General reaction	356
	2.2.	Reaction process and products	357
	2.3.	Reaction kinetics	358
3.	Effect	t of reaction parameters on absorption efficiency	358
	3.1.	Ammonia concentration	358
	3.2.	CO ₂ concentration	363
	3.3.	Liquid and gas flowrates	364
	3.4.	Reaction temperature	364
4.	Impro	Improved methodologies for absorption	
	4.1.	Physical intensification	364
	4.2.	Chemical additives	366
5.	Simultaneous capture with other pollutants		366
	5.1.	Feasibility of multi-pollutants capture	366
	5.2.	Oxidization approach and performance	366
	5.3.	Competing reaction with ammonia	367
6.	Concl	lusions and prospects	368
	6.1.	Conclusions	368
	6.2.	Prospects	369
	Ackn	owledgement	369
	Refer	ences	369

^{*} Corresponding author. Tel.: +86 21 55272740; fax: +86 21 55273704. E-mail address: zhaobingtao@usst.edu.cn (B. Zhao).