Lecture #3, Jan 10th, 2022

- Review Chapter 1 and 2 of Razavi book as needed. Course will start with Chapter 3. Read and Review Chapter 3.1 – 3.5
- Homework #1 & CAD 1 coming.
- Discuss Single-Transistor Amplifier Configurations
 - Common-Source Amplifier
 - Common-Source w/ Active Load
 - Common-Source w/ Degeneration
 - Common-Gate Amplifier
 - Common-Drain Amplifier

Chapter 3: Single-Transistor Amps

Three Basic Amplifier Configurations

Assume devices are properly biased in saturation Region

Common-Source amplifier w/ Resistive load **A Large-Signal Perspective**

- Very high input impedance at low frequencies
- For $V_{in} < V_{TH}$, M_1 is off and $V_{out} = V_{DD}$ $V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{I} (V_{in} - V_{TH})^2$
- When $V_{in} > V_{in1}$, M_1 enters triode region
- At point A, $V_{out} = V_{in1} V_{TH}$

$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

Your oc Vin BIAS POINT BAIN H16H HIBH OUTPUT Nout 5w 106, TRIODS

Common-Source amplifier w/ Resistive load A Large-Signal Perspective

- Very high input impedance at low frequencies
- For V_{in} < V_{TH} , M_1 is off and $V_{out} = V_{DD}$ $V_{out} = V_{DD} R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} V_{TH})^2$
- When $V_{in} > V_{TH}$, M_1 turns on in saturation region, V_{out} falls
- When $V_{in} > V_{in1}$, M_1 enters triode region
- At point A, $V_{out} = V_{in1} V_{TH}$ $V_{in1} V_{TH} = V_{DD} R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} V_{TH})^2$
- Note: The VTC defines the output voltage range or the "Output Swing" of the amplifier. In this example, the amplifier output can swing from $V_{OUT(min)} = V dsat$ to $V_{OUT(MAX)} = V_{DD}$ & M1 will remain in saturation.

Common-Source Small-Signal Gain, R_i and R_o

Step 1) DC Analysis to find DC I_D, V_{GS}-V_{TH}, V_{DS}, DC values used to find small-signal values such as gm, ro, gmb, etc.

Common-Source Small-Signal Signal Analysis

Step 1) DC Analysis to find DC I_D , V_{GS} - V_{TH} , V_{DS} , DC values used to find small-signal values such as gm, ro, gmb, etc.

$$2n = -gm \cdot 120 = -\frac{2I_0}{(V_{65} - V_{4n})} \cdot R_0^{5}$$

$$= -\frac{2}{(V_{65} - V_{4n})} \cdot \frac{2V_{65} - V_{65}}{V_{01746}} \cdot R_0^{5}$$

$$= -\frac{2V_{07}}{V_{01746}} \cdot \frac{2V_{017}}{V_{01746}} \cdot \frac{V_{00}}{V_{01746}} = \frac{V_{00}}{V_{017}} \cdot \frac{2V_{017}}{V_{0174}}$$

$$= -\frac{2V_{017}}{V_{0174}} \cdot \frac{2V_{0174}}{V_{0174}} = \frac{2V_{017}}{V_{0174}} \cdot \frac{2V_{0174}}{V_{0174}} = \frac{2V_{017}}{V_{0174}} \cdot \frac{2V_{0174}}{V_{0174}} = \frac{2V_{0174}}{V_{0174}} = \frac{2V_{0174}}{V_{0174}} \cdot \frac{2V_{0174}}{V_{0174}} = \frac{2V_{0174}}{V_{0174$$

an (mos) = - 400 (Vos-V+n) N:n Te " BJT GAIN IS TYPICALLY 4x-5x

CMOS Intrinsic Gain

MOSFET Gain Limitations

