

A New Perspective on Material Classification and Ink Identification

George Landon[‡] Sim Heng Ong* Rakesh Shiradkar*

*National University of Singapore

[†]Institute for Infocomm Research

[‡]Eastern Kentucky University

Motivation

Wang et. al [2]

a 2D BRDF (θ_d, θ_h)

Most previous methods on material classification use a headon camera.

Since, Isotropic BRDFs can be approximated by

Rusinkiewicz [3]

Our New Perspective

Experiments on Ink Database

We observe improved classification accuracy!

Application: Ink Identification

> To simplify the setup, we bring the camera and light together

> Although accuracy is a bit compromised, we capture important discriminative information (retro reflectance, specular highlights)

Results

reived: \$10

Conclusions

- 1. A slanted camera increases the sampling region of the 2D BRDF space.
- 2. This enhances the performance of BRDF-based material classification.
- 3. The first work to analyse BRDF for ink identification, an important problem in forensics.
- 4. A simple handheld camera-flashlight device for data capture.

References

- 1. G. Jinwei and C. Liu, "Discriminative illumination: Per-pixel classification of raw materials based on optimal projections of spectral BRDF," in Proc. CVPR, 2012.
- 2. O. Wang, P. Gunawardane, S. Scher, and J. Davis, "Material classification using BRDF slices," in Proc. CVPR, pp. 2805 –2811, 2009.
- 3. S. Rusinkiewicz, "A New Change of Variables for Efficient BRDF Representation," in Eurographics Rendering Workshop, pp. 11 – 22, 1998.

This material is based upon work supported by the National Science Foundation under Grant No. IIS-1008285. Ping Tan is partially supported by the ASTAR PSF project R-263-000-698-305.