

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID : SSSPTA1623SQS

PASSWORD :

TERMINAL (ENTER 1, 2, 3, OR ?):2

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 18:07:09 ON 25 MAR 2005

=> File Medline EMBASE Biosis CAplus

COST IN U.S. DOLLARS

SINCE FILE ENTRY	TOTAL SESSION
0 21	0 21

FILE 'MEDLINE' ENTERED AT 18:07:17 ON 25 MAR 2005

FILE 'EMBASE' ENTERED AT 18:07:17 ON 25 MAR 2005
COPYRIGHT (C) 2005 Elsevier Inc. All rights reserved

FILE 'BIOSIS' ENTERED AT 18:07:17 ON 25 MAR 2005
Copyright (c) 2005 The Thomson Corporation

FILE 'CAPLUS' ENTERED AT 18:07:17 ON 25 MAR 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

=> s (human or sapiens) (2A) myoD
UNMATCHED RIGHT PARENTHESIS 'MYOD'
The number of right parentheses in a query must be equal to the
number of left parentheses.

=> s (human or sapiens) (2A) (myoD)
3 FILES SEARCHED...
L1 108 (HUMAN OR SAPIENS) (2A) (MYOD)

=> s l1 (8A) ((fusion protein) or tag)
L2 0 L1 (8A) ((FUSION PROTEIN) OR TAG)

=> s (cdk4 binding protein)
L3 19 (CDK4 BINDING PROTEIN)

=> duplicate
ENTER REMOVE, IDENTIFY, ONLY, OR (?) :remove
ENTER L# LIST OR (END) :13
DUPLICATE PREFERENCE IS 'MEDLINE, EMBASE, BIOSIS, CAPLUS'
KEEP DUPLICATES FROM MORE THAN ONE FILE? Y/(N) :n
PROCESSING COMPLETED FOR L3
L4 7 DUPLICATE REMOVE L3 (12 DUPLICATES REMOVED)

=> d 14 1-7 bib ab

L4 ANSWER 1 OF 7 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation on STN
DUPLICATE 1
AN 2004:392230 BIOSIS
DN PREV200400390794
TI A study of interacting proteins with hASB-8.
AU Chen Fu-song [Reprint Author]; Lu Hong; Li Yu-yang
CS Sch Life SciInst GenetState Key Lab Genet Engn, Fudan Univ, Shanghai,
200433, China
honglv@fudan.edu.cn
SO Fudan Xuebao Zirankexueban, (April 2004) Vol. 43, No. 2, pp. 141-146.
print.
ISSN: 0427-7104 (ISSN print).
DT Article
LA Chinese
OS DDBJ-AF398969; EMBL-AF398969; GenBank-AF398969; DDBJ-AF464877;
EMBL-AF464877; GenBank-AF464877; DDBJ-NM005648; EMBL-NM005648;
GenBank-NM005648; DDBJ-NM013376; EMBL-NM013376; GenBank-NM013376
ED Entered STN: 6 Oct 2004
Last Updated on STN: 6 Oct 2004
AB hASB-8 is a human novel gene that has apparent effects on the growth of
tumor cells. It is a new member of human ASB protein family, with a 96%
homology to mouse ASB-8 protein. Conserved domain analysis indicated that
it contained four Ankyrin repeats in its N terminal and one SOCS box in
its C terminal. By using the yeast two-hybrid technology, a human
placenta cDNA library was screened and 2 positive clones named Elongin C
and CDK4 binding protein were obtained.
Their interaction with hASB-8 was also tested in diploid yeasts. These
results indicated that hASB-8 may mediate the interaction between target
proteins and ubiquitination complex, and correlate with the transcription
process of target genes in tumor cells.

L4 ANSWER 2 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN
AN 2004:362984 CAPLUS
DN 141:83922
TI Differentiation of DNA reactive and non-reactive genotoxic mechanisms using gene expression profile analysis
AU Dickinson, Donna A.; Warnes, Gregory R.; Quievry, George; Messer, Joseph; Zhitkovich, Anatoly; Rubitski, Elizabeth; Aubrecht, Jiri
CS Pfizer Global Research and Development, Groton, CT, 06340, USA
SO Mutation Research (2004), 549(1-2), 29-41
CODEN: MUREAV; ISSN: 0027-5107
PB Elsevier Science B.V.
DT Journal
LA English
AB Genotoxic stress triggers a variety of biol. responses including the transcriptional activation of genes regulating DNA repair, cell survival and cell death. Here, the authors investigated whether gene expression profiles can differentiate between DNA reactive and DNA non-reactive mechanisms of genotoxicity. The authors analyzed gene expression profiles and micronucleus levels in L5178Y cells treated with cisplatin and sodium chloride. The assessment of cisplatin genotoxicity (up to six-fold increase in the number of micronuclei) and gene expression profile (increased expression of genotoxic stress-associated genes) was in agreement with cisplatin mode of action as a DNA adduct-forming agent. The gene expression profile anal. of cisplatin-treated cells identified a number of genes with robust up regulation of mRNA expression including genes associated with DNA damage (i.e., members of GADD45 family), early response (i.e., cFOS), and heat shock protein (i.e., HSP40 homolog). The gene expression changes correlated well with DNA damage as measured by DNA-protein crosslinks and platinum-DNA binding. To differentiate the genotoxic stress-associated expression profile of cisplatin from a general toxic stress, the authors have compared the gene expression profile of cisplatin-treated cells to cells treated with sodium chloride, which causes osmotic shock and cell lysis. Although the sodium chloride treatment caused a two-fold induction of micronuclei, the gene expression profile at equitoxic concns. was remarkably distinct from the profile observed with cisplatin. The profile of sodium chloride featured a complete lack of expression changes in genes associated with DNA damage and repair. In summary, the gene expression profiles clearly distinguished between DNA reactive and non-reactive genotoxic mechanisms of cisplatin and sodium chloride. The authors' results suggest the potential utility of gene expression profile anal. for elucidating mechanism of action of genotoxic agents.

RE.CNT 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 3 OF 7 MEDLINE on STN DUPLICATE 2
AN 2003215067 MEDLINE
DN PubMed ID: 12736710
TI Regulation of CREB-mediated transcription by association of CDK4 binding protein p34SEI-1 with CBP.
AU Hirose Takuji; Fujii Ryouji; Nakamura Hiroshi; Aratani Satoko; Fujita Hidetoshi; Nakazawa Minako; Nakamura Kohzo; Nishioka Kusuki; Nakajima Toshihiro
CS Department of Genome Science, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Japan.
SO International journal of molecular medicine, (2003 Jun) 11 (6) 705-12.
Journal code: 9810955. ISSN: 1107-3756.
CY Greece
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200402
ED Entered STN: 20030509

Last Updated on STN: 20040302

Entered Medline: 20040226

AB CREB binding protein (CBP) plays a central role in cell differentiation and proliferation, interacting with a large number of nuclear factors. To find novel nuclear factors associating with CBP, we have carried out yeast two-hybrid screening of human chondrocyte cDNA library using the C/H3 region of CBP as a bait and cloned CDK4 binding protein p34SEI-1, the recently found cell cycle regulator. The association of p34SEI-1 with CBP was confirmed in vitro by GST pull-down assay and in vivo by coimmunoprecipitation. Results of the immunofluorescence assay also supported the association of p34SEI-1 and CBP. In reporter assay using CRE promoter, p34SEI-1 strongly suppressed CREB-mediated transcription, and this suppression was overcome by excess amount of CBP, but not by CBPDeltaCH3. It is suggested that the association of p34SEI-1 and CBP is not only involved in cell cycle regulation by CBP, but also have some effect on other CBP-dependent transcription.

L4 ANSWER 4 OF 7 MEDLINE on STN DUPLICATE 3
AN 2002683818 MEDLINE
DN PubMed ID: 12444543
TI Activation of cyclin D1-kinase in murine fibroblasts lacking both p21(Cip1) and p27(Kip1).
AU Sugimoto Masataka; Martin Nicholas; Wilks Deepti P; Tamai Katsuyuki; Huot Thomas J G; Pantoja Cristina; Okumura Ko; Serrano Manuel; Hara Eiji
CS Cancer Research UK, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester M20 4BX, UK.
SO Oncogene, (2002 Nov 21) 21 (53) 8067-74.
Journal code: 8711562. ISSN: 0950-9232.
CY England: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200212
ED Entered STN: 20021123
Last Updated on STN: 20021227
Entered Medline: 20021223
AB Deregulation of D-type cyclin-dependent kinases (CDK4 and 6) is widely observed in various human cancers, illustrating their importance in cell cycle control. Like other cyclin-dependent kinases (CDKs), assembly with cyclins is the most critical step for activation of CDK4/6. As previously reported elsewhere, we observed that the level of cyclinD1-CDK4 complex and its associated kinase activity were significantly low in asynchronously proliferating mouse embryo fibroblasts lacking both p21(Cip1) and p27(Kip1) (p21/p27-null MEFs). These evidences imply that p21(Cip1) and p27(Kip1) CDK inhibitors are 'essential activators' of cyclin D-kinases. We, however, discovered here that both the assembly and activation of cyclin D1-CDK4 complex occur when quiescent p21/p27-null MEFs were stimulated to re-enter the cell cycle. This mitogen-induced cyclin D1-kinase activity was blocked by overexpression of p16(INK4a) and resulted in the inhibition of S phase entry in p21/p27-null MEFs. Furthermore, ectopic expression of p34(SEI-1), a mitogen-induced CDK4 binding protein, increased the levels of active cyclinD1-CDK4 complex in asynchronously proliferating p21/p27-null MEFs. Together, our results suggest that there are several independent ways to stimulate the assembly of cyclin D1-CDK4 kinases. Although p21(Cip1) and p27(Kip1) play a role in this process, our results demonstrate that additional mechanisms must occur in G0 to S phase transition.

L4 ANSWER 5 OF 7 MEDLINE on STN DUPLICATE 4
AN 2001272340 MEDLINE
DN PubMed ID: 11331592
TI TRIP-Br: a novel family of PHD zinc finger- and bromodomain-interacting

AU proteins that regulate the transcriptional activity of E2F-1/DP-1.
AU Hsu S I; Yang C M; Sim K G; Hentschel D M; O'Leary E; Bonventre J V
CS Renal Unit, Department of Medicine, Massachusetts General Hospital and
Harvard Medical School, Charlestown, MA 02129, USA.
NC DK39773 (NIDDK)
T32 DK07540 (NIDDK)
SO EMBO journal, (2001 May 1) 20 (9) 2273-85.
Journal code: 8208664. ISSN: 0261-4189.
CY England: United Kingdom
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
OS GENBANK-AF366400; GENBANK-AF366401; GENBANK-AF366402; GENBANK-AF366403
EM 200105
ED Entered STN: 20010604
Last Updated on STN: 20010604
Entered Medline: 20010531
AB We report the isolation of TRIP-Br1, a transcriptional regulator that interacts with the PHD-bromodomain of co-repressors of Kruppel-associated box (KRAB)-mediated repression, KRIP-1(TIF1beta) and TIF1alpha, as well as the co-activator/adaptor p300/CBP. TRIP-Br1 and the related protein TRIP-Br2 possess transactivation domains. Like MDM2, which has a homologous transactivation domain, TRIP-Br proteins functionally contact DP-1, stimulating E2F-1/DP-1 transcriptional activity. KRIP-1 potentiates TRIP-Br protein co-activation of E2F-1/DP-1. TRIP-Br1 is a component of a multiprotein complex containing E2F-1 and DP-1. Co-expression of the retinoblastoma gene product (RB) abolishes baseline E2F-1/DP-1 transcriptional activity as well as TRIP-Br/KRIP-1 co-activation, both of which are restored by the adenovirus E1A oncoprotein. These features suggest that TRIP-Br proteins function at E2F-responsive promoters to integrate signals provided by PHD- and/or bromodomain-containing transcription factors. TRIP-Br1 is identical to the cyclin-dependent kinase 4 (cdk4)-binding protein p34(SEI-1), which renders the activity of cyclin D/cdk4 resistant to the inhibitory effect of p16(INK4a) during late G(1). TRIP-Br1(p34(SEI-1)) is differentially overexpressed during the G(1) and S phases of the cell cycle, consistent with a dual role for TRIP-Br1(p34(SEI-1)) in the regulation of cell cycle progression through sequential effects on the transcriptional activity of E2F-responsive promoters during G(1) and S phases.

L4 ANSWER 6 OF 7 MEDLINE on STN DUPLICATE 5
AN 2000047903 MEDLINE
DN PubMed ID: 10580009
TI Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1).
AU Sugimoto M; Nakamura T; Ohtani N; Hampson L; Hampson I N; Shimamoto A; Furuichi Y; Okumura K; Niwa S; Taya Y; Hara E
CS Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester, M20 4BX, UK.
SO Genes & development, (1999 Nov 15) 13 (22) 3027-33.
Journal code: 8711660. ISSN: 0890-9369.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
OS GENBANK-AF117959
EM 200001
ED Entered STN: 20000114
Last Updated on STN: 20000114
Entered Medline: 20000106
AB The p16(INK4a) tumor suppressor inhibits cyclin-dependent kinases (CDK4 and CDK6). Here we report the isolation of a novel gene, SEI-1, whose product (p34(SEI-1)) appears to antagonize the function of p16(INK4a).

Addition of p34(SEI-1) to cyclin D1-CDK4 renders the complex resistant to inhibition by p16(INK4a). Expression of SEI-1 is rapidly induced on addition of serum to quiescent fibroblasts, and ectopic expression of p34(SEI-1) enables fibroblasts to proliferate even in low serum concentrations. p34(SEI-1) seems to act as a growth factor sensor and may facilitate the formation and activation of cyclin D-CDK complexes in the face of inhibitory levels of INK4 proteins.

L4 ANSWER 7 OF 7 CAPLUS COPYRIGHT 2005 ACS on STN
 AN 1996:134123 CAPLUS
 DN 124:195977
 TI Cdk4 binding proteins of mammal, gene cloning, and use in disease diagnosis and treatment
 IN Draetta, Giulio; Gyuris, Jeno
 PA Mitotix, Inc., USA
 SO PCT Int. Appl., 114 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9533819	A2	19951214	WO 1995-US7113	19950602
	WO 9533819	A3	19960321		
	W: AU, CA, JP, KR				
	RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	US 5691147	A	19971125	US 1994-253155	19940602
	AU 9526627	A1	19960104	AU 1995-26627	19950602
PRAI	US 1994-253155	A	19940602		
	WO 1995-US7113	W	19950602		

AB The present invention relates to the discovery of novel proteins of mammalian origin which can associate with the human cyclin dependent kinase 4 (CDK4). Plasmids for producing recombinant **Cdk4-binding protein** are described. Sequences of **Cdk4-binding proteins** and genes are shown, and their use as anti-proliferative agents is discussed. Also, mutation and genetic rearrangement, as well as mRNA splicing variants are suggested as methods to provide further **Cdk4-binding protein** variations.

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	30.46	30.67
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-1.46	-1.46

FILE 'STNGUIDE' ENTERED AT 18:10:14 ON 25 MAR 2005
 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
 COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE
 AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE

FILE CONTAINS CURRENT INFORMATION.
 LAST RELOADED: Mar 18, 2005 (20050318/UP).

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID : SSSPTA1623SQS

PASSWORD :

TERMINAL (ENTER 1, 2, 3, OR ?):2

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 18:45:32 ON 25 MAR 2005

=> File Medline EMBASE Biosis CAplus

COST IN U.S. DOLLARS

SINCE FILE ENTRY	TOTAL SESSION
0 21	0 21

FILE 'MEDLINE' ENTERED AT 18:45:58 ON 25 MAR 2005

FILE 'EMBASE' ENTERED AT 18:45:58 ON 25 MAR 2005

FILE EMBASED ENTERED AT 18:45:38 ON 25 MAR 2005
COPYRIGHT (C) 2005 Elsevier Inc. All rights reserved.

FILE 'BIOSIS' ENTERED AT 18:45:58 ON 25 MAR 2005
Copyright (c) 2005 The Thomson Corporation

FILE 'CAPLUS' ENTERED AT 18:45:58 ON 25 MAR 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

=> s (cdk4 (w) binding (w) protein)
L1 19 (CDK4 (W) BINDING (W) PROTEIN)

=> l1 and (bHLH or (helix (w) loop (w) helix))
L1 IS NOT A RECOGNIZED COMMAND

The previous command name entered was not recognized by the system.
For a list of commands available to you in the current file, enter
"HELP COMMANDS" at an arrow prompt (=>).

=> s l1 and (bHLH or (helix (w) loop (w) helix))
L2 0 L1 AND (BHLH OR (HELIX (W) LOOP (W) HELIX))

ExPASy Home page	Site Map	Search ExPASy	Contact us	PROSITE
Search <input type="text" value="PROSITE"/>		<input type="button" value="▼"/> for <input type="text" value="bHLH"/>	<input type="button" value="Go"/>	<input type="button" value="Clear"/>

NiceSite View of PROSITE: PDOC00038 (documentation)

Myc-type, 'helix-loop-helix' domain profile

PROSITE cross-reference(s)	
PS50888; HLH	Graphical PROSITE domain view of Swiss-Prot/TrEMBL hits to PS50888
Retrieve an alignment of Swiss-Prot true positive hits: Clustal format, color, condensed view [Clustal format, color] [Clustal format, plain text] [Fasta format]	
Retrieve a list of all Swiss-Prot/TrEMBL entries matching PS50888	
Documentation	
<p>A number of eukaryotic proteins, which probably are sequence specific DNA-binding proteins that act as transcription factors, share a conserved domain of 40 to 50 amino acid residues. It has been proposed [1] that this domain is formed of two amphipathic helices joined by a variable length linker region that could form a loop. This 'helix-loop-helix' (HLH) domain mediates protein dimerization and has been found in the proteins listed below [2,3,E1,E2]. Most of these proteins have an extra basic region of about 15 amino acid residues that is adjacent to the HLH domain and specifically binds to DNA. They are referred as basic helix-loop-helix proteins (bHLH), and are classified in two groups: class A (ubiquitous) and class B (tissue-specific). Members of the bHLH family bind variations on the core sequence 'CANNTG', also referred to as the E-box motif. The homo- or heterodimerization mediated by the HLH domain is independent of, but necessary for DNA binding, as two basic regions are required for DNA binding activity. The HLH proteins lacking the basic domain (Emc, Id) function as negative regulators since they form heterodimers, but fail to bind DNA. The hairy-related proteins (hairy, E(spl), deadpan) also repress transcription although they can bind DNA. The proteins of this subfamily act together with co-repressor proteins, like groucho, through their C-terminal motif WRPW.</p> <ul style="list-style-type: none"> - The myc family of cellular oncogenes [4], which is currently known to contain four members: c-myc [E3], N-myc, L-myc, and B-myc. The myc genes are thought to play a role in cellular differentiation and proliferation. - Proteins involved in myogenesis (the induction of muscle cells). In mammals MyoD1 (Myf-3), myogenin (Myf-4), Myf-5, and Myf-6 (Mrf4 or herculin), in birds CMD1 (QMF-1), in Xenopus MyoD and MF25, in Caenorhabditis elegans CeMyoD, and in Drosophila nautilus (nau). - Vertebrate proteins that bind specific DNA sequences ('E boxes') in various immunoglobulin chains enhancers: E2A or ITF-1 (E12/pan-2 and E47/pan-1), ITF-2 (tcf4), TFE3, and TFEB. - Vertebrate neurogenic differentiation factor 1 that acts as differentiation factor during neurogenesis. 	

- Vertebrate MAX protein, a transcription regulator that forms a sequence-specific DNA-binding protein complex with myc or mad.
- Vertebrate Max Interacting Protein 1 (MXI1 protein) which acts as a transcriptional repressor and may antagonize myc transcriptional activity by competing for max.
- Proteins of the bHLH/PAS superfamily which are transcriptional activators. In mammals, AH receptor nuclear translocator (ARNT), single-minded homologs (SIM1 and SIM2), hypoxia-inducible factor 1 alpha (HIF1A), AH receptor (AHR), neuronal pas domain proteins (NPAS1 and NPAS2), endothelial pas domain protein 1 (EPAS1), mouse ARNT2, and human BMAL1. In drosophila, single-minded (SIM), AH receptor nuclear translocator (ARNT), trachealess protein (TRH), and similar protein (SIMA).
- Mammalian transcription factors HES, which repress transcription by acting on two types of DNA sequences, the E box and the N box.
- Mammalian MAD protein (max dimerizer) which acts as transcriptional repressor and may antagonize myc transcriptional activity by competing for max.
- Mammalian Upstream Stimulatory Factor 1 and 2 (USF1 and USF2), which bind to a symmetrical DNA sequence that is found in a variety of viral and cellular promoters.
- Human lyl-1 protein; which is involved, by chromosomal translocation, in T-cell leukemia.
- Human transcription factor AP-4.
- Mouse helix-loop-helix proteins MATH-1 and MATH-2 which activate E box-dependent transcription in collaboration with E47.
- Mammalian stem cell protein (SCL) (also known as tal1), a protein which may play an important role in hemopoietic differentiation. SCL is involved, by chromosomal translocation, in stem-cell leukemia.
- Mammalian proteins Id1 to Id4 [5]. Id (inhibitor of DNA binding) proteins lack a basic DNA-binding domain but are able to form heterodimers with other HLH proteins, thereby inhibiting binding to DNA.
- Drosophila extra-macrochaetae (emc) protein, which participates in sensory organ patterning by antagonizing the neurogenic activity of the achaete-scute complex. Emc is the homolog of mammalian Id proteins.
- Human Sterol Regulatory Element Binding Protein 1 (SREBP-1), a transcriptional activator that binds to the sterol regulatory element 1 (SRE-1) found in the flanking region of the LDLR gene and in other genes.
- Drosophila achaete-scute (AS-C) complex proteins T3 (l'sc), T4 (scute), T5 (achaete) and T8 (asense). The AS-C proteins are involved in the determination of the neuronal precursors in the peripheral nervous system and the central nervous system.
- Mammalian homologs of achaete-scute proteins, the MASH-1 and MASH-2 proteins.

- Drosophila atonal protein (ato) which is involved in neurogenesis.
- Drosophila daughterless (da) protein, which is essential for neurogenesis and sex-determination.
- Drosophila deadpan (dpn), a hairy-like protein involved in the functional differentiation of neurons.
- Drosophila delilah (dei) protein, which plays an important role in the differentiation of epidermal cells into muscle.
- Drosophila hairy (h) protein, a transcriptional repressor which regulates the embryonic segmentation and adult bristle patterning.
- Drosophila enhancer of split proteins E(spl), that are hairy-like proteins active during neurogenesis. also act as transcriptional repressors.
- Drosophila twist (twi) protein, which is involved in the establishment of germ layers in embryos.

- Maize anthocyanin regulatory proteins R-S and LC.

- Yeast centromere-binding protein 1 (CPF1 or CBF1). This protein is involved in chromosomal segregation. It binds to a highly conserved DNA sequence, found in centromeres and in several promoters.
- Yeast INO2 and INO4 proteins.
- Yeast phosphate system positive regulatory protein PHO4 which interacts with the upstream activating sequence of several acid phosphatase genes.
- Yeast serine-rich protein TYE7 that is required for ty-mediated ADH2 expression.
- Neurospora crassa nuc-1, a protein that activates the transcription of structural genes for phosphorus acquisition.
- Fission yeast protein escl which is involved in the sexual differentiation process.

The schematic representation of the helix-loop-helix domain is shown here:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx-----xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 Amphipathic helix 1 Loop Amphipathic helix 2

The profile we developed covers the helix-loop-helix dimerization domain and the basic region.

Description of pattern(s) and/or profile(s)

Sequences known to belong to this class detected by the profile	ALL.
Other sequence(s) detected in Swiss-Prot	NONE.

Last update

August 2003 / Pattern removed.

References

[1]
 Murre C., McCaw P.S., Baltimore D.
Cell 56:777-783(1989).

[2]
 Garrel J., Campuzano S.
BioEssays 13:493-498(1991).

[3]
 Kato G.J., Dang C.V.
FASEB J. 6:3065-3072(1992).

[4]
 Krause M., Fire A., Harrison S.W., Priess J., Weintraub H.
Cell 63:907-919(1990).

[5]
 Riechmann V., van Cruechten I., Sablitzky F.
Nucleic Acids Res. 22:749-755(1994).

[E1]
<http://transfac.gbf-braunschweig.de/cgi-bin/qt/getEntry.pl?C0010>

[E2]
<http://transfac.gbf-braunschweig.de/cgi-bin/qt/getEntry.pl?C0012>

[E3]

<http://bioinformatics.weizmann.ac.il/hotmolecbase/entries/myc.htm>

Copyright

This PROSITE entry is copyright by the Swiss Institute of Bioinformatics (SIB). There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or email to license@isb-sib.ch).

[View entry in original PROSITE document format](#)

[View entry in raw text format \(no links\)](#)

 [ExPASy Home page](#)

[Site Map](#)

[Search ExPASy](#)

[Contact us](#)

[PROSITE](#)

[Hosted by
NCSC US](#)

Mirror
sites:

[Australia](#) [Bolivia](#) [Brazil](#) [Canada](#) [China](#) [Korea](#) [Switzerland](#) [Taiwan](#)

[ExPASy Home page](#)[Site Map](#)[Search ExPASy](#)[Contact us](#)[Swiss-Prot](#)Hosted by
NCSC USMirror
sites:[Australia](#) [Bolivia](#) [Brazil](#) [Canada](#) [China](#) [Korea](#) [Switzerland](#) [Taiwan](#)Search for

Query by cross-reference: PS50888

Database cross-reference

There are 2354 Swiss-Prot and TrEMBL entries with a cross-reference *PS50888*. The following is a list of the first 100 entries, sorted by entry name (ID).

Entries in Swiss-Prot and TrEMBL:

Send selected sequences to

	Entry name	AC	Gene names	Description	Organisms	Length
<input type="checkbox"/>	AHR_HUMAN	P35869	AHR	Aryl hydrocarbon receptor precursor (Ah receptor) (AhR)	Homo sapiens (Human)	848
<input type="checkbox"/>	AHR_MOUSE	P30561	Ahr	Aryl hydrocarbon receptor precursor (Ah receptor) (AhR)	Mus musculus (Mouse)	848
<input type="checkbox"/>	AHR_MUSCR	Q8R4S7	Ahr	Aryl hydrocarbon receptor precursor (Ah receptor) (AhR)	Mus caroli (Wild mouse) (Ricefield mouse)	854
<input type="checkbox"/>	AHR_MUSMC	Q8R4S6	Ahr	Aryl hydrocarbon receptor precursor (Ah receptor) (AhR)	Mus musculus castaneus (Southeastern Asian house mouse)	848
<input type="checkbox"/>	AHR_MUSMM	Q8R4S5	Ahr	Aryl hydrocarbon receptor precursor (Ah receptor) (AhR)	Mus musculus molossinus (Japanese house mouse)	883
<input type="checkbox"/>	AHR_MUSSI	Q8R4S4	Ahr	Aryl hydrocarbon receptor precursor (Ah receptor) (AhR)	Mus spicilegus (Steppe mouse)	854

				receptor) (AhR)		
<input type="checkbox"/>	AHR_MUSSP	Q8R4S2	Ahr	Aryl hydrocarbon receptor precursor (Ah receptor) (AhR)	Mus spretus (Western wild mouse)	854
<input type="checkbox"/>	AHR_RABIT	O02747	AHR	Ah receptor (Aryl hydrocarbon receptor) (AhR)	Oryctolagus cuniculus (Rabbit)	847
<input type="checkbox"/>	AHR_RAT	P41738	Ahr	Aryl hydrocarbon receptor precursor (Ah receptor) (AhR)	Rattus norvegicus (Rat)	853
<input type="checkbox"/>	AMOS_DROME	Q9Y0A7	amos, Roi, rolo, CG10393	Basic helix-loop-helix transcription factor Amos (Reduced olfactory organs protein) (Rough eye protein) (Absent MD neurons and olfactory sensilla protein) (Amos protein)	Drosophila melanogaster (Fruit fly)	198
<input type="checkbox"/>	ARLC_MAIZE	P13526	LC	Anthocyanin regulatory Lc protein	Zea mays (Maize)	610
<input type="checkbox"/>	ARNT2_HUMAN	Q9HBZ2	ARNT2, KIAA0307	Aryl hydrocarbon receptor nuclear translocator 2 (ARNT protein 2)	Homo sapiens (Human)	706
<input type="checkbox"/>	ARNT2_MOUSE	Q61324	Arnt2	Aryl hydrocarbon receptor nuclear translocator 2 (ARNT protein 2)	Mus musculus (Mouse)	712
				Aryl		

<input type="checkbox"/>	ARNT_DROME	O15945	tgo, ARNT, HIF-1-BETA, <i>CG11987</i>	hydrocarbon receptor nuclear translocator homolog (dARNT) (Tango protein) (Hypoxia- inducible factor 1 beta)	Drosophila melanogaster (Fruit fly)	644
<input type="checkbox"/>	ARNT_HUMAN	P27540	ARNT	Aryl hydrocarbon receptor nuclear translocator (ARNT protein) (Dioxin receptor, nuclear translocator) (Hypoxia- inducible factor 1 beta) (HIF-1 beta)	Homo sapiens (Human)	789
<input type="checkbox"/>	ARNT_MOUSE	P53762	Arnt	Aryl hydrocarbon receptor nuclear translocator (ARNT protein) (Dioxin receptor, nuclear translocator) (Hypoxia- inducible factor 1 beta) (HIF-1 beta)	Mus musculus (Mouse)	791
<input type="checkbox"/>	ARNT_RABBIT	O02748	ARNT	Aryl hydrocarbon receptor nuclear translocator (ARNT protein) (Dioxin receptor, nuclear translocator) (Hypoxia- inducible factor 1 beta) (HIF-1	Oryctolagus cuniculus (Rabbit)	790

<input type="checkbox"/>	ARNT_RAT	P41739	Arnt	beta) Aryl hydrocarbon receptor nuclear translocator (ARNT protein) (Dioxin receptor, nuclear translocator) (Hypoxia-inducible factor 1 beta) (HIF-1 beta)	Rattus norvegicus (Rat)	800
<input type="checkbox"/>	ARRS_MAIZE	P13027	R-S	Anthocyanin regulatory R-S protein	Zea mays (Maize)	612
<input type="checkbox"/>	ASCL1_HUMAN	P50553	ASCL1, ASH1	Achaete-scute homolog 1 (HASH1)	Homo sapiens (Human)	236
<input type="checkbox"/>	ASCL1_MOUSE	Q02067	Ascl1, Ash1, Mash-1, Mash1	Achaete-scute homolog 1 (Mash-1)	Mus musculus (Mouse)	231
<input type="checkbox"/>	ASCL1_RAT	P19359	Ascl1, Ash1, Mash-1	Achaete-scute homolog 1	Rattus norvegicus (Rat)	233
<input type="checkbox"/>	ASCL1_XENLA	Q06234	ASCL1, ASH1	Achaete-scute homolog 1	Xenopus laevis (African clawed frog)	199
<input type="checkbox"/>	ASCL2_HUMAN	Q99929	ASCL2	Achaete-scute homolog 2 (HASH2)	Homo sapiens (Human)	193
<input type="checkbox"/>	ASCL2_MOUSE	O35885	Ascl2, Mash2	Achaete-scute homolog 2 (Mash-2)	Mus musculus (Mouse)	263
<input type="checkbox"/>	ASCL2_RAT	P19360	Ascl2, Ash2, Mash-2, Mash2	Achaete-scute homolog 2	Rattus norvegicus (Rat)	260
<input type="checkbox"/>	ASCL3_HUMAN	Q9NQ33	ASCL3, SGN1	Achaete-scute homolog 3 (bHLH transcriptional regulator Sgn-1)	Homo sapiens (Human)	180
<input type="checkbox"/>	ASCL3_MOUSE	Q9JJR7	Ascl3, Mash3, Sgn1	Achaete-scute homolog 3 (bHLH transcriptional regulator Sgn-1)	Mus musculus (Mouse)	174

			(Mash- 3)			
<input type="checkbox"/>	AST3_DROME	P09774	l(1)sc, l'sc, T3, <i>CG3839</i>	Achaete-scute complex protein T3 (Lethal of sc) (Lethal of scute protein)	Drosophila melanogaster (Fruit fly)	257
<input type="checkbox"/>	AST4_DROME	P10084	sc, T4, <i>CG3827</i>	Achaete-scute complex protein T4 (Scute protein)	Drosophila melanogaster (Fruit fly)	345
<input type="checkbox"/>	AST5_DROME	P10083	ac, T5, <i>CG3796</i>	Achaete-scute complex protein T5 (Achaete)	Drosophila melanogaster (Fruit fly)	201
<input type="checkbox"/>	AST8_DROME	P09775	ase, T8, <i>CG3258</i>	Achaete-scute complex protein T8 (Asense)	Drosophila melanogaster (Fruit fly)	486
<input type="checkbox"/>	ATOH1_HUMAN	Q92858	ATOH1, ATH1	Atonal protein homolog 1 (Helix-loop- helix protein hATH-1)	Homo sapiens (Human)	354
<input type="checkbox"/>	ATOH1_MOUSE	P48985	Atoh1, Ath1	Atonal protein homolog 1 (Helix-loop- helix protein mATH-1) (MATH1)	Mus musculus (Mouse)	351
<input type="checkbox"/>	ATOH1_PANTR	Q5IS79	ATOH1	Atonal protein homolog 1	Pan troglodytes (Chimpanzee)	356
<input type="checkbox"/>	ATO_DROME	P48987	ato, <i>CG7508</i>	Atonal protein	Drosophila melanogaster (Fruit fly)	312
<input type="checkbox"/>	BETA3_MESAU	O09029		BETA3 protein	Mesocricetus auratus (Golden hamster)	367
<input type="checkbox"/>	BHLH2_HUMAN	O14503	BHLHB2, DEC1, SHARP2,	Class B basic helix-loop-helix protein 2 (bHLHB2) (Differentially expressed in chondrocytes protein 1)	Homo sapiens (Human)	412

			STR13	(DEC1) (Enhancer-of-split and hairy-related protein 2) (SHARP-2) (Stimulated with retinoic acid 13)		
<input type="checkbox"/>	BHLH2_MOUSE	O35185	Bhlhb2 , Clast5, Stra13	Class B basic helix-loop-helix protein 2 (bHLHB2) (Stimulated with retinoic acid 13) (E47 interaction protein 1) (eipl)	Mus musculus (Mouse)	411
<input type="checkbox"/>	BHLH2_RAT	O35780	Bhlhb2 , Sharp2	Class B basic helix-loop-helix protein 2 (bHLHB2) (Enhancer-of-split and hairy-related protein 2) (SHARP-2)	Rattus norvegicus (Rat)	411
<input type="checkbox"/>	BHLH3_HUMAN	Q9C0J9	BHLHB3 , DEC2, SHARP1	Class B basic helix-loop-helix protein 3 (bHLHB3) (Differentially expressed in chondrocytes protein 2) (hDEC2) (Enhancer-of-split and hairy-related protein 1) (SHARP-1)	Homo sapiens (Human)	482
<input type="checkbox"/>	BHLH3_MOUSE	Q99PV5	Bhlhb3 , Dec2	Class B basic helix-loop-helix protein 3 (bHLHB3) (Differentially expressed in chondrocytes protein 2) (mDEC2)	Mus musculus (Mouse)	410
				Class B basic helix-loop-helix protein 3		

<input type="checkbox"/>	BHLH3_RAT	O35779	Bhlhb3, Sharp1	(bHLHB3) (Enhancer-of-split and hairy-related protein 1) (SHARP-1)	Rattus norvegicus (Rat)	410
<input type="checkbox"/>	BIM1_ARATH	Q9LEZ3	BIM1, EN126, At5g08130, T22D6.70	Transcription factor BIM1 (BES1-interacting Myc-like protein 1) (Transcription factor EN 126) (AtbHLH 46)	Arabidopsis thaliana (Mouse-ear cress)	530
<input type="checkbox"/>	BIM2_ARATH	Q9CAA4	BIM2, EN125, At1g69010, T6L1.19	Putative transcription factor BIM2 (BES1-interacting Myc-like protein 2) (Transcription factor EN 125) (AtbHLH 102)	Arabidopsis thaliana (Mouse-ear cress)	311
<input type="checkbox"/>	BIM3_ARATH	Q9FMB6	BIM3, EN127, At5g38860, K15E6.7, K15E6.40	Putative transcription factor BIM3 (BES1-interacting Myc-like protein 3) (Transcription factor EN 127) (AtbHLH 141)	Arabidopsis thaliana (Mouse-ear cress)	298
<input type="checkbox"/>	BMAL1_HUMAN	O00327	ARNTL, BMAL1, MOP3	Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Brain and muscle ARNT-like 1) (Member of PAS protein 3) (Basic-helix-loop-helix-PAS orphan MOP3) (bHLH-PAS protein JAP3)	Homo sapiens (Human)	626
				Aryl hydrocarbon		

<input type="checkbox"/>	BMAL1_MESAU	<u>O88529</u>	ARNTL, BMAL1	receptor nuclear translocator- like protein 1 (Brain and muscle ARNT- like 1)	Mesocricetus auratus (Golden hamster)	626
<input type="checkbox"/>	BMAL1_MOUSE	<u>Q9WTL8</u>	Arntl, Bmal1	Aryl hydrocarbon receptor nuclear translocator- like protein 1 (Brain and muscle ARNT- like 1) (Arnt3)	Mus musculus (Mouse)	632
<input type="checkbox"/>	BMAL1_RAT	<u>Q9EPW1</u>	Arntl, Bmal1, Tic	Aryl hydrocarbon receptor nuclear translocator- like protein 1 (Brain and muscle ARNT- like 1) (Tic)	Rattus norvegicus (Rat)	626
<input type="checkbox"/>	CBF1_KLULA	<u>P49379</u>	CBF1, CPF1, <i>KLLA0B13761g</i>	Centromere- binding protein 1 (CBP-1) (Centromere- binding factor 1) (Centromere promoter factor 1)	Kluyveromyces lactis (Yeast)	359
<input type="checkbox"/>	CBF1_YEAST	<u>P17106</u>	CBF1, CEP1, CP1, CPF1, <i>YJR060W</i> , <i>J1730</i>	Centromere- binding protein 1 (CBP-1) (Centromere- binding factor 1) (Centromere promoter factor 1)	Saccharomyces cerevisiae (Baker's yeast)	351
<input type="checkbox"/>	CLOCK_DROME	<u>O61735</u>	Clk, CLOCK, jrk, PAS1, <i>CG7391</i>	Circadian locomotor output cycles Kaput protein (dCLOCK) (dPAS1)	Drosophila melanogaster (Fruit fly)	1027

<input type="checkbox"/>	CLOCK_HUMAN	O15516	CLOCK, KIAA0334	Circadian locomoter output cycles kaput protein (hCLOCK)	Homo sapiens (Human)	846
<input type="checkbox"/>	CLOCK_MOUSE	O08785	Clock	Circadian locomoter output cycles kaput protein (mCLOCK)	Mus musculus (Mouse)	855
<input type="checkbox"/>	CYCL_DROME	O61734	cyc, <i>CG8727</i>	Cycle protein (Brain and muscle ARNT- like 1) (BMAL1) (MOP3)	Drosophila melanogaster (Fruit fly)	413
<input type="checkbox"/>	DA_DROME	P11420	da, <i>CG5102</i>	Daughterless protein	Drosophila melanogaster (Fruit fly)	710
<input type="checkbox"/>	DEI_DROME	P41894	dei, <i>CG5441</i>	Helix-loop- helix protein delilah	Drosophila melanogaster (Fruit fly)	360
<input type="checkbox"/>	DPN_DROME	Q26263	dpn, <i>CG8704</i>	Deadpan protein	Drosophila melanogaster (Fruit fly)	435
<input type="checkbox"/>	EGL1_ARATH	Q9CAD0	BHLH002, BHLH2, EGL1, MYC146, <i>Atlg63650</i> , <i>F24D7.16</i>	Transcription factor EGL1 (ENHANCER OF GLABRA3) (Basic helix- loop- helix protein 2) (bHLH2) (AtbHLH002) (AtMyc-146)	Arabidopsis thaliana (Mouse-ear cress)	596
<input type="checkbox"/>	EMC_DROME	P18491	emc, <i>CG1007</i>	Extra- macrochaetae protein	Drosophila melanogaster (Fruit fly)	199
<input type="checkbox"/>	EPAS1_HUMAN	Q99814	EPAS1, HIF2A	Endothelial PAS domain protein 1 (EPAS-1) (Member of PAS protein 2) (MOP2) (Hypoxia-	Homo sapiens (Human)	870

				inducible factor 2 alpha) (HIF-2 alpha) (HIF2 alpha) (HIF-1 alpha-like factor) (HLF)		
<input type="checkbox"/>	EPAS1_MOUSE	P97481	Epas1, Hif2a	Endothelial PAS domain protein 1 (EPAS-1) (Hypoxia- inducible factor 2 alpha) (HIF-2 alpha) (HIF2 alpha) (HIF-1 alpha-like factor) (MHLF) (HIF-related factor) (HRF)	Mus musculus (Mouse)	874
<input type="checkbox"/>	EPAS1_RAT	Q9JHS1	Epas1, Hif2a	Endothelial PAS domain protein 1 (EPAS-1) (Hypoxia- inducible factor 2 alpha) (HIF-2 alpha) (HIF2 alpha)	Rattus norvegicus (Rat)	874
<input type="checkbox"/>	ESC1_SCHPO	Q04635	esc1, SPAC56F8.16	Protein esc1	Schizosaccharomyces pombe (Fission yeast)	413
<input type="checkbox"/>	ESM3_DROME	Q01068	HLHm3, CG8346	Enhancer of split m3 protein (E(spl)m3) (HLH-m3)	Drosophila melanogaster (Fruit fly)	224
<input type="checkbox"/>	ESM5_DROME	P13096	HLHm5, CG6096	Enhancer of split m5 protein (E(spl)m5)	Drosophila melanogaster (Fruit fly)	178
<input type="checkbox"/>	ESM7_DROME	P13097	HLHm7, CG8361	Enhancer of split m7 protein (E(spl)m7)	Drosophila melanogaster (Fruit fly)	186
<input type="checkbox"/>	ESM8_DROHY	Q07291	E(spl), M8	Enhancer of split m8 protein (E(spl)m8)	Drosophila hydei (Fruit fly)	183
<input type="checkbox"/>	ESM8_DROME	P13098	E(spl), m8, CG8365	Enhancer of split m8 protein	Drosophila melanogaster (Fruit	179

<input type="checkbox"/>	ESMB_DROME	Q01069	HLHm-beta, CG14548	(E(spl)m8)	fly)	
<input type="checkbox"/>	ESMC_DROME	Q01070	HLHm-gamma, CG8333	Enhancer of split mgamma protein (E(spl) mgamma) (HLH-mgamma) (Split locus enhancer protein mB)	Drosophila melanogaster (Fruit fly)	195
<input type="checkbox"/>	ESMD_DROME	Q01071	HLHm-delta, CG8328	Enhancer of split mdelta protein (E(spl) mdelta) (HLH- mdelta) (Split locus enhancer protein mC)	Drosophila melanogaster (Fruit fly)	173
<input type="checkbox"/>	FIGLA_HUMAN	Q6QHK4	FIGLA	Factor in the germline alpha (Transcription factor FIGa) (FIGalpha)	Homo sapiens (Human)	219
<input type="checkbox"/>	FIGLA_MOUSE	O55208	Figla	Factor in the germline alpha (Transcription factor FIGa) (FIGalpha)	Mus musculus (Mouse)	194
<input type="checkbox"/>	HAIR_DROME	P14003	h, CG6494	Hairy protein	Drosophila melanogaster (Fruit fly)	337
<input type="checkbox"/>	HAIR_DROVI	P29303	h	Hairy protein	Drosophila virilis (Fruit fly)	378
<input type="checkbox"/>	HAND1_CHICK	Q90691	HAND1, EHAND	Heart- and neural crest derivatives- expressed protein 1 (Extraembryonic tissues, heart, autonomic	Gallus gallus (Chicken)	202

				nervous system and neural crest derivatives- expressed protein 1) (eHAND)		
<input type="checkbox"/>	HAND1_HUMAN	O96004	HAND1, EHAND	Heart- and neural crest derivatives- expressed protein 1 (Extraembryonic tissues, heart, autonomic nervous system and neural crest derivatives- expressed protein 1) (eHAND)	Homo sapiens (Human)	215
<input type="checkbox"/>	HAND1_MOUSE	Q64279	Hand1, Ehand, Hxt, Thing1	Heart- and neural crest derivatives- expressed protein 1 (Extraembryonic tissues, heart, autonomic nervous system and neural crest derivatives- expressed protein 1) (eHAND) (Helix-loop- helix transcription factor expressed in extraembryonic mesoderm and trophoblast) (Thing-1) (Th1)	Mus musculus (Mouse)	216
				Heart- and neural crest derivatives- expressed protein 1		

<input type="checkbox"/>	HAND1_RABIT	<u>P57100</u>	HAND1, EHAND	(Extraembryonic tissues, heart, autonomic nervous system and neural crest derivatives- expressed protein 1) (eHAND)	Oryctolagus cuniculus (Rabbit)	215
<input type="checkbox"/>	HAND1_RAT	<u>P97832</u>	Hand1, Ehand	Heart- and neural crest derivatives- expressed protein 1 (Extraembryonic tissues, heart, autonomic nervous system and neural crest derivatives- expressed protein 1) (eHAND)	Rattus norvegicus (Rat)	216
<input type="checkbox"/>	HAND1_SHEEP	<u>Q28555</u>	HAND1, EHAND, HXT	Heart- and neural crest derivatives- expressed protein 1 (Extraembryonic tissues, heart, autonomic nervous system and neural crest derivatives- expressed protein 1) (eHAND)	Ovis aries (Sheep)	204
<input type="checkbox"/>	HAND1_XENLA	<u>O73615</u>	HAND1, EHAND	Heart- and neural crest derivatives- expressed protein 1 (Extraembryonic tissues, heart, autonomic nervous system and neural crest derivatives-	Xenopus laevis (African clawed frog)	197

				expressed protein 1) (eHAND)		
<input type="checkbox"/>	HAND2_BRARE	P57102	hand2 , dhand	Heart- and neural crest derivatives-expressed protein 2 (Deciduum, heart, autonomic nervous system and neural crest derivatives-expressed protein 2) (dHAND)	Brachydanio rerio (Zebrafish) (Danio rerio)	208
<input type="checkbox"/>	HAND2_CHICK	Q90690	HAND2 , DHAND	Heart- and neural crest derivatives-expressed protein 2 (Deciduum, heart, autonomic nervous system and neural crest derivatives-expressed protein 2) (dHAND)	Gallus gallus (Chicken)	216
<input type="checkbox"/>	HAND2_HUMAN	P61296	HAND2 , DHAND	Heart- and neural crest derivatives-expressed protein 2 (Deciduum, heart, autonomic nervous system and neural crest derivatives-expressed protein 2) (dHAND)	Homo sapiens (Human)	217
				Heart- and neural crest derivatives-expressed protein 2 (Deciduum,		

<input type="checkbox"/>	HAND2_MOUSE	Q61039	Hand2 , Dhand, Hed, Thing2	heart, autonomic nervous system and neural crest derivatives-expressed protein 2) (dHAND) (Helix-loop-helix transcription factor expressed in embryo and deciduum) (Thing-2)	Mus musculus (Mouse)	217
<input type="checkbox"/>	HAND2_RAT	P61295	Hand2 , Dhand	Heart- and neural crest derivatives-expressed protein 2 (Deciduum, heart, autonomic nervous system and neural crest derivatives-expressed protein 2) (dHAND)	Rattus norvegicus (Rat)	217
<input type="checkbox"/>	HAND2_XENLA	P57101	HAND2 , DHAND	Heart- and neural crest derivatives-expressed protein 2 (Deciduum, heart, autonomic nervous system and neural crest derivatives-expressed protein 2) (dHAND)	Xenopus laevis (African clawed frog)	210
<input type="checkbox"/>	HEN1_HUMAN	Q02575	NHLH1 , HEN1	Helix-loop-helix protein 1 (HEN1) (Nescient helix loop helix 1) (NSCL- 1)	Homo sapiens (Human)	133
				Helix-loop-helix protein 1		

<input type="checkbox"/>	HEN1_MOUSE	Q02576	Nhlh1, Hen1	(HEN1) (Nescient helix loop helix 1) (NSCL- 1)	Mus musculus (Mouse)	133
<input type="checkbox"/>	HEN2_HUMAN	Q02577	NHLH2, HEN2	Helix-loop-helix protein 2 (HEN2) (Nescient helix loop helix 2) (NSCL- 2)	Homo sapiens (Human)	135
<input type="checkbox"/>	HEN2_MOUSE	Q64221	Nhlh2, Hen2	Helix-loop-helix protein 2 (HEN2) (Nescient helix loop helix 2) (NSCL- 2)	Mus musculus (Mouse)	135
<input type="checkbox"/>	HES1_CHICK	Q57337	HES1, HAIRY1	Transcription factor HES-1 (C-HAIRY1)	Gallus gallus (Chicken)	290
<input type="checkbox"/>	HES1_HUMAN	Q14469	HES1, HL, HRY	Transcription factor HES-1 (Hairy and enhancer of split 1) (Hairy- like) (HHL) (Hairy homolog)	Homo sapiens (Human)	280
<input type="checkbox"/>	HES1_MOUSE	P35428	Hes1, Hes-1	Transcription factor HES-1 (Hairy and enhancer of split 1)	Mus musculus (Mouse)	282
<input type="checkbox"/>	HES1_RAT	Q04666	Hes1, Hes-1, Hl	Transcription factor HES-1 (Hairy and enhancer of split 1) (Hairy- like) (RHL)	Rattus norvegicus (Rat)	281
<input type="checkbox"/>	HES2_HUMAN	Q9Y543	HES2	Transcription factor HES-2 (Hairy and enhancer of split 2)	Homo sapiens (Human)	173
<input type="checkbox"/>	HES2_MOUSE	Q54792	Hes2	Transcription factor HES-2 (Hairy and enhancer of split	Mus musculus (Mouse)	157

			2)		
<input type="checkbox"/> (+2254 matches)					
SRS Query:					
[libs={swiss_prot trembl}-dbxref: PS50888]					

Only the first 100 matches have been displayed. Please use the button below to get the complete list of 2354 entries.

[View as a taxonomic tree](#)

Perform this query on SRS against Swiss-Prot TrEMBL (From there, you can save the entries in a file)

 [ExPASy Home page](#) [Site Map](#) [Search ExPASy](#) [Contact us](#) [Swiss-Prot](#)

[Hosted by
NCSC US](#) Mirror
sites:

[Australia](#) [Bolivia](#) [Brazil](#) [Canada](#) [China](#) [Korea](#) [Switzerland](#) [Taiwan](#)