Analysis of Algorithms

Table of Contents

- What analysis measures
- Running time
- Orders of Growth
- Efficiencies
- Asymptotic Notations
- · Comparing Orders of Growth
 - L'Hopital's rule
 - Stirling's Formula
- Efficiency Classes

What analysis measures

- time complexity/efficiency: how fast an algorithm runs
- **space complexity/efficiency**: amount of space needed to run an algorithm and space required for input/output
- most algorithms run longer on longer inputs, so consider efficiency as a function of input size n
- when input is a single number, and n is a magnitude (e.g. checking if n is prime), you measure size using b, the number of bits in n's binary representation:

$$b = \lfloor \log_2 n \rfloor + 1$$

Running time

- counting all operations that run is usually difficult and unnecessary
- instead identify **basic operation** that has highest proportion of running time and count number of times this is executed
 - usually most time-consuming operation on innermost loop
 - e.g. sorting: basic operation is key comparison
 - arithmetic: (least time consuming) addition ~ subtraction < multiplication < division (most time consuming)
- time complexity analysis: determine number of times basic operation is executed for input size n

Orders of Growth

- small n: differences between algorithms are in the noise
- large n: the order of growth of the time complexity dominates and differentiates between algorithms

Some functions

$$\log_2 n < n < n \log_2 n < n^2 < n^3 < 2^n < n!$$

- log grows so slowly you would expect an algorithm with basic-operation to run practically instantaneously on inputs of all realistic size
- change of base results in multiplicative constant, so you can simply write $\log n$ when you are only interested in order of growth

$$\log_a n = \log_a b \log_b n$$

• 2^n and n! are both exponential-growth functions. Algorithms requiring an exponential number of operations are practical for solving only problems of very small size

Efficiencies

Algorithm run-time can be dependent on particulars of input e.g. sequential search

Efficiency can be: - **worst-case**: algorithm runs longest among all possible inputs of size n - **best-case**: algorithm runs fastest among all possible inputs of size n - **average-case**: algorithm runs on typical/random input; typically more difficult to assess and requires assumptions about input - **amortized**: for cases where a single operation could be expensive, but remainder of operations occur much better than worst-case efficiency - amortize high cost over entire sequence

Asymptotic Notations

Notations for comparing orders of growth: - O: big-oh; \leq order of growth - O(g(n)): set of all functions with lower/same order of growth as g(n) as $n \to \infty$ - Ω : big-omega; \geq order of growth - Θ : big-theta; = order of growth

e.g.

$$n \in O(n^2)$$

$$\frac{n}{2}(n-1) \in O(n^2)$$

$$n^3 \not\in O(n^2)$$

Definition: A function $t(n)\in O(g(n))$ if $\exists c\in\mathbb{R}^+, n_0\in\mathbb{Z}^+$ s.t. $\forall n\geq n_0$:

$$t(n) \leq cg(n)$$

Figure 1: big_o

Big O

Definition: A function $t(n)\in\Omega(g(n))$ if $\exists c\in\mathbb{R}^+, n_0\in\mathbb{Z}^+$ s.t. $\forall n\geq n_0$:

$$t(n) \ge cg(n)$$

Definition: A function $t(n) \in \Theta(g(n))$ if $\exists c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{Z}^+$ s.t. $\forall n \geq n_0$:

$$c_1g(n) \le t(n) \le c_2g(n)$$

Figure 2: big_theta

$Big \Theta$

Theorem: If $t_1(n) \in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$:

$$t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

Analogous assertions also hold for Ω , Θ

- This implies that an algorithm comprised of two consecutively executed components has an overall efficiency determined by the part with a higher order of growth (the least efficient part)
- e.g.: check if an array has equal elements by first sorting, then checking consecutive items for equality

- part 1 may take no more than $\frac{n}{2}(n-1)$ comparisons, i.e. $\in O(n^2)$
- part 2 may take no more than n-1 comparisons, i.e. $\in O(n)$
- overall efficiency: ${\cal O}(n^2)$

Comparing Orders of Growth

• to directly compare two functions, compute the limit of their ratio:

$$\lim_{n \to \infty} \frac{t(n)}{g(n)}$$

- This could be: (∼: order of growth)

1.
$$0 :\sim t(n) < \sim g(n)$$

2.
$$c :\sim t(n) = \sim g(n)$$

3.
$$\infty : \sim t(n) > \sim g(n)$$

- Case a, b $\Rightarrow t(n) \in O(g(n))$
- Case b, $c \Rightarrow t(n) \in \Omega(g(n))$
- Case $b \Rightarrow t(n) \in \Theta(g(n))$

L'Hopital's rule

$$\lim_{n\to\infty}\frac{t(n)}{g(n)}=\lim_{n\to\infty}\frac{t'(n)}{g'(n)}$$

Stirling's Formula

For large n

$$n! \approx \sqrt{2\pi n} \frac{n}{e}^n$$

Efficiency Classes

Class	Name	Comments
1	constant	very few algorithms fall in this class
$\log n$	logarithmic	results from cutting problem's size by constant factor
n	linear	scan a list of size n e.g. sequential search
$n \log n$	linearithmic	divide-and-conquer e.g. mergesort; quicksort

Class	Name	Comments
n^2	quadratic	two embedded loops e.g. basic sorting; $n \times n$ matrix operations
n^3	cubic	three embedded loops; e.g. often used in linear algebra
2^n	exponential	generate all subsets of n -element set
n!	factorial	generate all permutations of n -element set