Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

1.

2.

Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

1.

2.

5.

6.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น

HARHIU

หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น A H H I R U.....

H \mathcal{J} \mathcal{H} \mathcal{U} \mathcal{H} \mathcal{L} \mathcal{A}

หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	HHI
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น H เ	H I
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	IHH

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
0.
      BST tree2;
      tree2.insert('G');
1.
      tree2.insert('0');
2.
      tree2.insert('I');
3.
4.
      tree2.insert('N');
      tree2.insert('G');
5.
      tree2.insert('M');
      tree2.insert('E');
7.
      tree2.insert('R');
8.
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```

1,

2

4.

5,

7,

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น EGGINMORTY หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น E Q M N I Y T R O G

GEDIG NM RTY

4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```


5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
      tree3.insert('B');
3.
      tree3.insert('C');
4.
      tree3.insert('D');
5.
      tree3.insert('E');
6.
      tree3.insert('F');
7.
      tree3.insert('G');
      tree3.insert('H');
9.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น ABCDEFGH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น ABCDEFGH
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HGFEDC BA

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```

10

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	EFGH	
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น		
	1) C E E	
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	חטו ו	

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน เนื่องจากอะไร (ขอสั้นๆ)
	แบบ ไร้ polunce เกา ราหวน อาชากับ แก่ คา ไว้เรื่องใ
	લં અલીષા ૧ ૧૧૫ ૧૫૫ છ
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากัง อย่างไร (ขอสั้นๆ) แพ
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
10	. ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ
	unbalance เนื่องจากอะไร (ขอยาวๆ) ง เป็น กุป แพ ซอง ๒๑ไถพ ะ เป็น กุง ลด ที่ๆ แจนที่ปี และ บัป เตน ในกุง
	NIN HOTTHIRATION NIN THAT LOUISING BST
	i I In and mild no rox or nild Balmee my of my nim is is
	M M M 1/12 2014