

The use of mixture distributions in a Bayesian linear mixed effects model

Anirudh TOMER

Supervisor: Prof. Emmanuel Lesaffre L-BioStat, KU Leuven

Thesis presented in fulfillment of the requirements for the degree of Master of Science in Statistics

Academic year 2015-2016

© Copyright by KU Leuven Without written permission of the promotors and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promotor is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests.

Preface

Write something in todo

Summary

Summary yet to be done. Following is copied from Professor Lesaffre's proposal document for sake of not leaving this section empty.

In this master thesis we wish to explore Bayesian methods to model finite mixture random effects distributions in a Bayesian linear mixed effects model. By assuming that the random effects are a finite mixture of normal distributions, we can account for random effects that are not normally distributed. We wish to address two problems: finding the correct number of mixture components and checking the fit of the mixture distribution. The master thesis involves fitting finite mixture linear mixed models to real longitudinal data, such as blood donor data. The proposed approaches for choosing the number of components in the random effects distribution (e.g. marginal likelihood, posterior predictive checks, DIC, etc) will be evaluating using simulation studies. The analyses will programmed in WinBUGS or JAGS, but also in combination with R.

Contents

Pr	reface	i
Sı	Summary	iii
1	Introduction 1.1 Mixture distribution	1 1 1 2 2 3
2	Bayesian paradigm2.1 The Bayesian motivation: A toy example2.2 Bayes theorem	5 5 6
3	Bayesian linear mixed effects model 3.1 Introduction to linear mixed model 3.1.1 LMM definition 3.2 Motivation for Bayesian linear mixed model 3.3 Motivation for mixture of random effects 3.3.1 Mathematical notation 3.4 Parametrization in BLMM 3.5 Likelihood: Complete data vs Mixture 3.6 Mixture model identifiability: Label switching 3.7 Mixture model identifiability: Equal or empty components 3.8 Choosing the right number of mixture components 3.8.1 Information criteria based methods 3.8.2 Trans Dimensional Bayesian inference 3.8.3 Posterior predictive checks 3.8.4 Other methods	7 7 7 8 8 9 9 10 11 12 12 13 13
4	Data set	15
5	Analysis of data	17
6	Conclusion	10

Introduction

1.1 Mixture distribution

A mixture distribution is a probability distribution of a random variable formed from a group of other random variables. The formation of a mixture distribution can be seen as a two step process in which firstly a particular random variable is selected from a collection of random variables based on a certain probability of selection. In the second step a value is sampled for the selected random variable from its probability distribution. For e.g. The following random variable Y has a mixture density formed from 3 normally distributed random variables.

$$Y \sim \frac{1}{6}N(-10,3) + \frac{1}{2}N(0,1) + \frac{1}{3}N(4,2)$$

Figure 1.1 shows the density function for Y. The density is trimodal with each mode corresponding to one of the components in the mixture. Mixtures like Y which are formed from a finite sum of components are called finite mixtures. The components are also known as mixture components and their densities are called component densities. The constants multiplying their densities are called mixture weights. The mixture weights also represent the probability of selection of each component density. Each mixture weight should be positive and the sum of all mixture weights should be equal to 1. In our example all the mixture components were having the same parametric family i.e. Normal distribution, but it is also possible to have mixture components from different parametric families (Frühwirth-Schnatter, 2013, pg. 4). A mixture model where it is assumed that all data points are generated from a mixture of normally distributed component densities is called Gaussian mixture model (GMM).

1.1.1 Formal definition for finite mixture distribution

Given a finite set of probability density functions $p_1(y), p_2(y), \dots, p_K(y)$ and weights $\eta_1, \eta_2, \dots, \eta_K$, a random variable Y is said to have a finite mixture distribution if

$$p(y) = \sum_{i=1}^{K} \eta_i p_i(y)$$

The vector of the weights $\eta=(\eta_1,\eta_2,\dots,\eta_K)$ is called the weight distribution. The k^{th} weight η_k corresponds to selection probability of the k^{th} density while sampling for Y. It can only take values from the K dimensional positive real coordinate space \mathbb{R}^{+K} with an additional constraint,

$$\sum_{i=1}^{K} \eta_i = 1$$

Figure 1.1: Mixture density of $Y\sim \frac{1}{6}N(-10,3)+\frac{1}{2}N(0,1)+\frac{1}{3}N(4,2)$

1.1.2 Challenges

One of the biggest challenges while modeling a mixture density for an observed random variable is that the number of mixture components (K), weight distribution η and the corresponding parameters for component densities might not be known in advance. Another issue is that from a sample of N observations y_1, y_2, \ldots, y_N sampled from the mixture density p(y) one may not know which observation belongs to which component density. Formally, an allocation vector $\mathbf{S} = (S_1, S_2, \ldots, S_N)$ represents the allocation of observations to mixture components. i.e. $S_i = k$ represents that i^{th} observation belongs to k^{th} component density. Estimating the allocation vector is in fact solving the clustering problem, albeit using parametric methods in our case. Rephrase the last line

1.1.3 Applications of mixture distribution

Mixture models have found usage in a variety of domains. Some of the examples are:

- Spike sorting of neural data: Both GMM and mixture of multivariate t-distributions have been used.(Lewicki, 1994; Shoham, Fellows, and Normann, 2003).
- Speaker recognition as well as speech to text conversion algorithms have used mixture models (Povey et al., 2011; Simancas-Acevedo et al., 2001; Xiang and Berger, 2003).
- Image processing: GMM have been used to find features in an image like objects, boundaries etc (Fu and Wang, 2012). For e.g. Yang (1998) have used GMM to model the distribution of skin color pixels. Many authors have also proposed using GMM for face recognition and use it as a biometric identification mechanism.

- Finance: Brigo and Mercurio (2002) propose to use a lognormal mixture distribution for pricing of financial assets.
- Biology: Mixture models have found usage in genetics and cell biology.(Gianola et al., 2007; Sim et al., 2012)

The example applications we cited involved usage of mixture model to adjust for a hidden attribute in the data which could not be collected. However mixtures have also been used as supplementary methodology in various models, a list of which can be found in Frühwirth-Schnatter (2013, pg. 238). One such usage in linear mixed models has been proposed by Verbeke and Lesaffre (1996) and it also forms the theme of this thesis.

1.2 Goal of master thesis

Verbeke and Lesaffre (1996) proposed to use a finite mixture distribution of normally distributed components for the prior distribution of random effects in a linear mixed effects model (see section 3.1 for LMM). This particular linear mixed effects model is also known as Heterogeneity model. For the scope of this thesis our focus will be on the Bayesian version of the linear mixed effects model(BLMM), where all parameters involved are assigned a probability distribution (see chapter 3). However in both types of models one has to tackle the issues described in section 1.1.2. The aim of this master thesis is to evaluate existing Bayesian approaches such as deviance information criterion (DIC), marginal likelihood, posterior predictive checks etc. for selecting the right number of mixture components for random effects distribution. Since we will be following the Bayesian paradigm, we will use MCMC methods instead of the frequentist point estimation methods. While we will use the longitudinal data set [name of the data set here] to fit Bayesian linear mixed effect model. We will also simulate data sets to compare various approaches for choosing the number of components.

Bayesian paradigm

2.1 The Bayesian motivation: A toy example

To explain the motivation behind the Bayesian paradigm, we will use an informal approach via the following toy example. Suppose there are three people A,B and C of whom A and B each are captains of a cricket team and C is the refree who tosses the coin. Given the importance of the toss in this sport each side would like to win the toss. Let us assume that based on experiences of an old friend captain B gets to know that the referee purposefully attempts at getting a heads on the toss. However given the nature of this problem, it is hard to quantify this belief in a single real number. Instead a belief that there is a 70 to 90% chance that the result will be a heads is more likely than a belief that there is exactly an 80% chance for the same. One might also have a slightly vague belief that there is more than 50% chance that the toss will result into a heads.

While subjective, these beliefs represent the prior probability distribution of a random variable in Bayesian paradigm. In our toy problem the random variable is probability π of getting a heads. For e.g. in figure 2.1a we can see one such prior distribution corresponding to the belief that the chance of getting a heads on toss is more than tails and it is more likely to be somewhere between 70 to 90%. This is in contrast to the frequentist paradigm where parameters do not have a distribution but are rather constants. Also the point and interval estimation in frequentist paradigm do not take prior beliefs into account and rely completely on the data at hand. While a detailed discussion of Bayesian vs. Frequentist approaches can be found in Lesaffre and Lawson (2012), we will present a brief overview of Bayes theorem and its usage in Bayesian parameter estimation.

Figure 2.1: Prior and posterior PDF for π ; the probability of getting heads.

2.2 Bayes theorem

To understand the use of Bayes theorem in parameter estimation let us first look at one of the frequentist approach Maximum likelihood estimation to estimate the probability of getting heads (π) . Suppose after 10 matches captain B observed that 6 times out 10 the toss resulted in heads. Assuming that conditions in each toss were such that the tosses were independent, then based on the likelihood function $L(\pi|\boldsymbol{y})$ the MLE of π will be $\hat{\pi}=0.6$. In contrast, the Bayes rule provides the framework to estimate the entire distribution of π based on the data and the prior beliefs. The bayes rule for the continuous parameter π is given by

$$p(\pi|\mathbf{y}) = \frac{L(\pi|\mathbf{y})p(\pi)}{p(\mathbf{y})} = \frac{L(\pi|\mathbf{y})p(\pi)}{\int_0^1 L(\pi|\mathbf{y})p(\pi)d\pi}$$
(2.1)

The result $p(\pi|y)$ is called the posterior distribution of the parameter based on which statistical inference about the parameter can be done. An intuitive way to get the motivation behind the bayes theorem is that the denominator can be seen as marginal probability of y based on the law of total probability. This is more evident in the categorical case though. In figure 2.1b we can see the posterior PDF for the probability of getting heads that we obtained after applying Bayes rule. The mean value of this distribution is 0.7 which if you compare with the MLE of 0.6 you can see that Bayesian posterior mean is influenced by the prior as well.

The intuition part is needed to be expanded upon, and shall I talk of CI at this moment????

2.3 Bayesian software

We can see in equation 2.1 that the computation of posterior involves solving the integral in the denominator. While the calculations are simple in certain cases, for e.g. in exponential family the choice of conjugate prior leads to a posterior belonging to the same family. However it also depends on the prior beliefs. For e.g. if the prior belief for π in our toy example is that it is trimodal then we may have to use numerical approximation for calculation of the posterior. The most widely used algorithms for posterior approximation are Markov chain monte carlo (MCMC) techniques like Gibbs sampling, Slice sampling, Metropolis hastings and their variants etc.

The software tools we will use are from the BUGS family like JAGS or WinBUGS. While Win-BUGS provides its own integrated development environment it definitely lacks the usability and visualization capabilities offered in R. JAGS on the other hand relies on third party tools completely for visualization and analysis of MCMC chains. There are R packages namely R2jags, R2WinBUGS which allow users to execute JAGS/WinBUGS code via R. For Bayesian linear mixed models the R package blme will be used. For bayesian mixture models we will evaluate the R package bayesmix. The R package coda provides a rich array of functions to do analysis and diagnosis of MCMC chains.

Bayesian linear mixed effects model

3.1 Introduction to linear mixed model

A linear mixed effects model, also known as linear mixed model(LMM) is a statistical model for data which is hierarchical in structure. The specialty of the models is that apart from the fixed effects, they also model the correlation between the observations falling in the same group at a certain level in the hierarchy. The correlation is modeled with the help of random effects and the response is modeled as a linear function of both fixed and random effects.

There are many synonymous terminologies for data sets which are hierarchical in nature albeit with subtle nuances differentiating them. In this thesis our focus will be on Longitudinal data sets. A longitudinal data set is the one where multiple observations are collected from subjects at different points in time. For e.g. measurement of Hemoglobin of 20 patients with observations taken every month for a period of 24 months. Since the observations collected from a subject will be correlated a linear model will not be useful because of the restrictions it imposes on the covariance structure.

Should I mention that Laird and Ware proposed the model?

3.1.1 LMM definition

Following the notations from Lesaffre and Lawson (2012), the LMM for the observations of the i^{th} subject among the n subjects is given by

$$y_i = X_i \beta + Z_i b_i + \varepsilon_i$$

where $1 \leq i \leq n$,

 $\mathbf{y}_i = (y_{i1}, y_{i2}, \dots, y_{im_i})^T$ is a vector of observations for the i^{th} subject taken at m_i time points,

 $m{X}_i = (m{x}_{i1}^T, m{x}_{i2}^T, \dots, m{x}_{im_i}^T)^T$ is the $m_i imes (d+1)$ design matrix for the i^{th} subject,

 $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_d)^T$ is \mathbf{a} $(d+1) \times 1$ vector of fixed effects with β_0 being the intercept,

 $m{Z}_i = (m{z}_{i1}^T, m{z}_{i2}^T, \dots, m{z}_{im_i}^T)^T$ is the $m_i imes q$ design matrix of covariates varying for a subject at each observation,

 $m{b}_i = (b_{0i}, b_{1i}, \dots, b_{(q-1)i})^T$ is a $q \times 1$ vector of random effects with b_{0i} being the random intercept. The random effects $m{b}_i \sim N_q(\mathbf{0}, G)$ with G being the $q \times q$ covariance matrix,

 $\boldsymbol{\varepsilon}_i = (\varepsilon_{i1}, \varepsilon_{i2}, \dots, \varepsilon_{im_i})^T$ is a $m_i \times 1$ vector of measurement errors. The errors $\boldsymbol{\varepsilon}_i \sim N_{m_i}(\mathbf{0}, R_i)$

with R_i being the $(m_i \times m_i)$ covariance matrix of errors,

The errors ε_i and the random effects b_i are assumed to be independent. R_i is usually a diagonal matrix of the form $\sigma^2 I_{m_i}$. While one might only model the correlation between the observations of a subject using random effects, it is also possible to model the serial correlation component. For this and an in depth coverage of LMM we refer the reader to Verbeke and Molenberghs (2009).

3.2 Motivation for Bayesian linear mixed model

One of issues with the frequentist LMM is that while the parameters in matrices G and R_i are estimated using ML/REML only a point estimate is further used in estimation of fixed effects(see Verbeke and Molenberghs, 2009, chap. 5). Hence the uncertainty in estimation of random effects is ignored. Although frequentist inference approaches try to mitigate this issue by modifying the distributional assumptions of the test statistic (Verbeke and Molenberghs, 2009, pg. 56), a bayesian approach considers the variability in parameter estimates in the first place. A similar problem occurs in the estimation of b_i . The frequentist strategy is to use Empirical bayes estimates where the posterior distribution of random effects uses point estimates of parameters in matrices G and R_i . Thus the uncertainty in estimation is ignored. On the other hand the bayesian approach averages out over the entire posterior distribution of the hyperparameters to obtain the posterior $p(b_i|y)$. In light of these reasons, in this thesis we will model our data using Bayesian linear mixed models.

The Bayesian linear mixed model or BLMM can be obtained by assigning a distribution to all the parameters involved in a LMM. This means that for the model presented in section 3.1.1 we will have a prior distribution for the following:

- $\sigma^2 \sim p(\sigma^2)$
- $\boldsymbol{\beta} \sim p(\boldsymbol{\beta})$
- $G \sim p(G)$

3.3 Motivation for mixture of random effects

As we saw above the random effects are assumed to be multivariate normally distributed. It could be too strong an assumption though in certain cases. A classical example of it are the longitudinal studies where at any time point we would like to categorize subjects in groups. For e.g. group with a high risk of having a certain disease in future vs. group with a low risk. While in retrospective studies it is quite easy as we know exactly which patients were diagnosed with the disease and which were not. However in a study where we would like to categorize patients into different groups well before diagnosis this could be difficult. Here is a toy example for it. Imagine that in longitudinal study we are measuring a response Y which is an indicator of a disease. Assume that from a previous study it is known that patients which are in high risk group for the disease tend to have a higher response Y during all times. Also assume that the trend of Y over time remains the same for both groups otherwise. Figure 3.1 shows individual profiles of subjects from a simulated dataset. Looking at this plot we can say that a random intercept component will be enough to model individual profiles. Since we will not be knowing which patient belongs to which group, this heterogeneity can be appropriately modeled by considering

Figure 3.1: Individual profiles of 30 subjects from each group.

that the random intercept is a mixture of two normal components.

In a LMM is quite common to use histogram of Empirical Bayes estimates of random effects to detect groups of individuals. However Verbeke and Lesaffre (1996) have shown that if the prior is misspecified(for e.g. if in our example we use a single normal distribution), then it is possible that the histogram of estimates of random effects will be shrunk towards the prior distribution. This means that in our case we may not see a histogram with two distinct modes. The model where a mixture of Gaussian components were used to specify the random effects distribution is called a Heterogeneity model. Various applications of the heterogeneity model can be found in Frühwirth-Schnatter (2013, pg. 264).

3.3.1 Mathematical notation

Since the random effects are having a Gaussian mixture distribution we will use the following notation to express it mathematically.

$$oldsymbol{b}_i \sim \sum_{k=1}^K \eta_k N_q(oldsymbol{b}_k^C, G_k)$$

where \boldsymbol{b}_k^C and G_k are the mean vector and covariance matrices for the k^{th} component in the mixture distribution respectively. The vector $\boldsymbol{\eta}=(\eta_1,\eta_2,\ldots,\eta_K)$ is the weight distribution for the component densities. Since we are following the bayesian paradigm, in addition to prior distribution for $\boldsymbol{\beta}$ and σ^2 we will now have prior for $(\boldsymbol{b}_1^C,\boldsymbol{b}_2^C,\ldots,\boldsymbol{b}_K^C,\boldsymbol{\eta},G_1,G_2,\ldots,G_K)$.

3.4 Parametrization in BLMM

The random effects b_i in a mixed model could be seen as random deviations from the fixed effects(β) with a mean 0. For a longitudinal data set, it means that the overall effect of a covariate

like time for a subject should be the sum of both fixed and random effects. In this case matrices X and Z both share columns corresponding to the variable time. To enforce the mean 0 on the random effects in a mixture distribution the following condition should be satisfied.

$$E(\boldsymbol{b}_i|\boldsymbol{\phi}) = \sum_{k=1}^K \eta_k N_q(\boldsymbol{b}_k^C, G_k) = 0$$

where ϕ is the vector $(\boldsymbol{b}_1^C, \boldsymbol{b}_2^C, \dots, \boldsymbol{b}_K^C, \boldsymbol{\eta}, G_1, G_2, \dots, G_K)$. This further means that $E(\boldsymbol{y}_i|\phi) = \boldsymbol{X}_i\beta$. This parametrization which was also used in the original paper on Heterogeneity model (Verbeke and Lesaffre, 1996) is called noncentralized parametrization. The centralized parametrization assumes that the random effects are not deviations from the fixed effects and are centred around a non zero mean. The choice of parametrization has an effect on the rate of convergence while estimating parameters using MCMC. The non-centralized parametrization could be used when within subject heterogeneity is considerably smaller than the heterogeneity due to random effects. Otherwise a centralized parametrization is preferred. We refer the reader to Frühwirth-Schnatter, Tüchler, and Otter (2004) for further details.

3.5 Likelihood: Complete data vs Mixture

The likelihood function in a mixture distribution depends on how much we know about the data. If we know both the data and the allocation vector S then the following likelihood function of parameters is called a complete data likelihood function.

$$p(\boldsymbol{y}, \boldsymbol{S} | \boldsymbol{\nu}) = \prod_{i=1}^{N} \prod_{k=1}^{K} (p(\boldsymbol{y}_i | \boldsymbol{\theta}_k) \eta_k)^{I_{S_i = k}}$$

where $\nu=(\theta_1,\theta_2,\dots,\theta_K,\eta)$ is a vector of weight distribution and parameters of component densities. It is possible to write this complete data likelihood function in ${}^K\!P_K=K!$ equivalent ways by permuting the order of components. Each order of components is called a Labeling scheme. Although this idea seems trivial we will see ahead that it creates a problem during estimation called label switching. While this likelihood function is valid conditional on knowing the allocation vector S, the following likelihood function called Mixture likelihood function applies when we are not aware of the allocations.

$$p(\boldsymbol{y}|\boldsymbol{\nu}) = \prod_{i=1}^{N} (\sum_{k=1}^{K} p(\boldsymbol{y}_i|\boldsymbol{\theta}_k)\eta_k)$$

It is interesting to note that the mixture likelihood function is symmetrical and has K! modes. We refer readers to Frühwirth-Schnatter (2013, pg. 45-46) for the review of geometric presentation of this likelihood function.

3.6 Mixture model identifiability: Label switching

After running a MCMC procedure to estimate the posterior distributions of the parameters involved, we will be interested in knowing the parameters for the component densities. In most cases we will also be interested in classification of observation using allocation probabilities

 $P(S_i = k | \mathbf{y})$. Now let us imagine that we fitted exactly the true number of components (K^{true} from which the mixture density was formed. At this point it is possible that the posterior densities of parameters do not reflect the true posterior distribution due to label switching.

To idea of label switching could be explained with this simple example. Suppose we have a mixture distribution 0.5N(5,1)+0.5N(7,1) of two components C_1 and C_2 and we sampled a few observations from it. The MCMC procedure we will estimate parameters using data augmentation. i.e. we begin with some random allocation vector \mathbf{S}^0 and estimate parameters using complete data likelihood. For MCMC labels μ_1 and μ_2 exist rather than μ_{C1} and μ_{C2} and it does not associate labels with actual components. We begin with a vague joint prior for these parameters $p(\mu_1,\mu_2)=p(\mu_1)*p(\mu_2)=p(\mu_1)*p(\mu_1)=p(\mu_2)*p(\mu_2)$.

Assume that the allocation vector we began with assigns all observations from component C_1 to label 1 and all observations from component C_2 to label 2. Under such a scheme $(\mu_1, \mu_2) = (5,7)$ is likely. However if we take a conjugate of this allocation vector $(\mu_1, \mu_2) = (7, 5)$ will also be accepted. This because we have a mixture likelihood function which is bimodal. Now let us imagine a scenario where because of our initial allocation vector, parameter estimates are $(\mu_1, \mu_2) = (5.5, 6.5)$. So far it seems μ_1 represents μ_{C1} and μ_2 represents μ_{C2} . Now we estimate allocation vector conditional on these estimates in MCMC. Supposing that an observation with value 6.5 originally from component C_2 gets allocated to component C_1 and similarly an observation with value 5.5 from component C_1 gets allocated to C_2 . Unless we impose some constraint like $\mu_1 < \mu_2$, under the current situations even $(\mu_1, \mu_2) = (6.5, 5.5)$ could be sampled by MCMC. This because under the mixture likelihood it is also likely. However this scenario could've been unlikely if the true means were very far apart. In our scenario the issue is that posterior for μ_1 will have a multiple modes. Not only that but if the sampler kept on arbitrarily switching between the two equivalent posterior regions then both regions will be partially explored. Thus any inference based on this posterior will be useless. Frühwirth-Schnatter (2013, pg. 82) suggest to use a balanced label switching, which gives multimodal posterior albeit with a full exploration.

It is interesting that if our prior for the parameters was not vague, but exactly equal to the true distribution of parameters then label switching might not have happened. However the problem with a strong prior is that an incorrect strong prior could also inadvertently cause label switching or it might not allow a complete exploration of the posterior. Other techniques to stop label switching are imposing an identifiability constraint, which in our case was $\mu_1 < \mu_2$. However in higher dimensions it could become difficult to find a constraint which imposes a unique labeling scheme. For more details we refer the reader to Stephens (2000).

3.7 Mixture model identifiability: Equal or empty components

A mixture model will also be unidentified if we have an empty component or two components with the same parameters. Suppose the true number of components is K^{true} and we fit $K = K^{true} + 1$ components. In the MCMC sampler suppose one of the components is assigned any observation. Thus the posterior for the parameters will remain the same as the prior. Assuming that the prior for weight distribution η was a Dirichlet prior $\mathcal{D}(0.5, 0.5, \dots, 0.5)$, then we will have a posterior for η such that the K^{th} component will always have an almost 0 weight in the mixture distribution. This means that at the end of MCMC sampling the component density's posterior will be same as its prior and no observations will be allocated to the component. In such cases the true number of components could be estimated by the count of components with non zero number of allocations. However this situation could be avoided with a stronger prior on the weight distribution which forces the posterior distribution of η to be such that no components are

empty at the end of MCMC sampling. Identification of number of components in such case is explained in the next section.

Gosh! I should explain it in terms of pulling away the posterior eta from the boundary where components of eta are linearly dependent..

Should I also discuss the choice of prior?

3.8 Choosing the right number of mixture components

In most cases we do not know the right number of mixture components in advance unless we have some expert knowledge available or we know them from a previous/similar study. As part of this thesis we will compare many of the existing methods for finding the right number of mixture components.

3.8.1 Information criteria based methods

Information criteria are used to select models with parimony and good predictive power. Some of information criteria proposed in the literature are AIC proposed by Akaike, BIC (a minor modification of Schwarz's original criteria), DIC. While AIC and BIC are primarily used in frequentist statistics as they use point estimates of the parameters, DIC follows a more bayesian approach. Following are the definitions of the three criteria:

```
• AIC = -2log(p(\boldsymbol{y}|\boldsymbol{\hat{\theta}})) + 2p
```

•
$$BIC = -2log(p(\boldsymbol{y}|\boldsymbol{\hat{\theta}})) + log(N)p$$

•
$$DIC = -2log(p(\boldsymbol{y}|\bar{\boldsymbol{\theta}})) + 2p_{DIC}$$

where $\bar{\boldsymbol{\theta}} = E(\boldsymbol{\theta}_{post}|\boldsymbol{y})$,
 $p_{DIC} = -2(E(log(p(\boldsymbol{y}|\boldsymbol{\theta}_{post}))) - log(p(\boldsymbol{y}|\bar{\boldsymbol{\theta}})))$ is the penalty for model complexity.

It is interesting to mention that the hierarchical nature of the mixture model implies a marginal model as well, which can be found by integrating out the random effects. Verbeke and Lesaffre (1996) in their paper on heterogeneity model estimate the fixed effects and all covariance components using this marginal model. In our case y has a marginal model given by:

$$oldsymbol{y_i} \sim \sum_{k=1}^K \eta_k N(oldsymbol{X_i}oldsymbol{eta} + oldsymbol{Z_i}oldsymbol{b_k}^C, oldsymbol{Z_i}G_{oldsymbol{S_i}}oldsymbol{Z}_i^T + R_i)$$

If our likelihood function is based on the marginal model then DIC could be used to select models which have good predictive power for an observation which is not necessarily from a subject who is in the current study. The total number of terms which will be penalized by AIC is equal to $dim(\eta) + dim(\beta) + dim(b_1^C) + \ldots + dim(b_K^C) + dim(G_1) + \ldots + dim(G_K) + 1(for\sigma^2)$, where dim is the total number of elements in the vector or matrix. On the other hand if we stick to the hierarchical interpretation, then DIC could be used to select models which have good predictive power for an observation which has to be from the current set of subjects. The total number of terms which will be penalized by AIC is equal to $dim(\beta) + dim(b_1) + \ldots + dim(b_n) + 1(for\sigma^2)$. A model.

3.8.2 Trans Dimensional Bayesian inference

To compare a set of competing models $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_{K_{max}}$ each with their own set of parameters $\nu_1, \nu_2, \ldots, \nu_{K_{max}}$ trans dimensional MCMC methods can be used. For e.g. Product space MCMC methods try to simultaneously sample the posterior probability $p(\mathcal{M}_k, \nu_1, \nu_2, \ldots, \nu_{K_{max}}, y)$ for all K_{max} models. The idea is that during each run a model indicator \mathcal{M} which could follow for e.g. a multinomial distribution, is sampled. Suppose the model indicator is M=2 then all the parameters ν_2 are sampled whereas parameters for other models are kept what they were. The marginal posterior probability $p(\mathcal{M}_k|y)$ of the k^{th} model is found by integrating out the parameters from the joint posterior. These could be further compared to select one of the K models.

Marginal likelihood

The ratio of marginal posterior could also be expressed as a Bayes Factor (assuming the prior probabilities for both models are equal) which is a ratio of Marginal likelihoods $\frac{p(\boldsymbol{y}|\mathcal{M}_i)}{p(\boldsymbol{y}|\mathcal{M}_j)}$ for the models. However Johannes Berkhof (2003) also suggest to use goodness of fit measures to be used along with Bayes factor. This because bayes factor is a relative measure. Relying on it completely could lead to selection of a model which is relatively better but overall does not provide a good fit. They also suggest using posterior predictive checks which is our next subsection.

3.8.3 Posterior predictive checks

The idea of the posterior predictive checks is to evaluate the model fit using simulations from the posterior predictive distribution(PPD) $p(\tilde{y}|y)$. As an informal check one could sample 1000 values from the PPD 20 times and make 20 histograms to show the density. If the histograms do not match with the histogram of the original sample one could say that the model did not fit the data well.

A formal way to do this is using Posterior predictive p-values(PPP) or Bayesian p-values. In the frequentist paradigm after fitting a model based on parameter $\hat{\theta}$ one could test the model using test statistic. Let us represent that test statistic value for original sample to be T(y). Now based on the sampling distribution of $T(\tilde{y})$ we could check the probability $P(T(\tilde{y}) > T(y))$. In the bayesian paradigm the parameter θ has a posterior distribution and so we find the same probability like before albeit averaged over the entire posterior $p(\theta|y)$. A small PPP value indicates bad fit of model to the data. For a complete interpretation of this p-value we refer the readers to Gelman (2012).

3.8.4 Other methods

We will also explore other graphical methods or informal methods like method of moments in this thesis. For further reading on them we refer the reader to Frühwirth-Schnatter (2013, pg. 107-114)

Data set

Write something here

Analysis of data

Write something here

Conclusion

Write something here

Bibliography

- Brigo, Damiano and Fabio Mercurio (2002). "Lognormal-mixture dynamics and calibration to market volatility smiles." In: *International Journal of Theoretical and Applied Finance* 05.04, pp. 427–446. DOI: 10.1142/S0219024902001511.
- Frühwirth-Schnatter, Sylvia (2013). *Finite Mixture and Markov Switching Models*. English. 2006 edition. Springer.
- Frühwirth-Schnatter, Sylvia, Regina Tüchler, and Thomas Otter (2004). "Bayesian Analysis of the Heterogeneity Model." In: *Journal of Business & Economic Statistics* 22.1, pp. 2–15. DOI: 10.1198/073500103288619331.
- Fu, Zhaoxia and Liming Wang (2012). "Color Image Segmentation Using Gaussian Mixture Model and EM Algorithm." en. In: *Multimedia and Signal Processing*. Ed. by Fu Lee Wang et al. Communications in Computer and Information Science 346. Springer Berlin Heidelberg, pp. 61–66.
- Gelman, Andrew (2012). Understanding posterior p-values.
- Gianola, Daniel et al. (2007). "Mixture models in quantitative genetics and applications to animal breeding." In: *Revista Brasileira de Zootecnia* 36, pp. 172–183. DOI: 10.1590/S1516–35982007001000017.
- Johannes Berkhof, Iven Van Mechelen (2003). "A Bayesian approach to the selection and testing of mixture models." In: *Statistica Sinica* 13.2, pp. 423–442.
- Lesaffre, Emmanuel and Andrew B. Lawson (2012). *Bayesian Biostatistics*. English. 1 edition. Chichester. West Sussex: Wilev.
- Lewicki, Michael S. (1994). "Bayesian Modeling and Classification of Neural Signals." In: *Neural Computation* 6.5, pp. 1005–1030. DOI: 10.1162/neco.1994.6.5.1005.
- Povey, Daniel et al. (2011). "The subspace Gaussian mixture model—A structured model for speech recognition." In: *Computer Speech & Language*. Language and speech issues in the engineering of companionable dialogue systems 25.2, pp. 404–439. DOI: 10.1016/j.csl. 2010.06.003.
- Shoham, Shy, Matthew R. Fellows, and Richard A. Normann (2003). "Robust, automatic spike sorting using mixtures of multivariate t-distributions." In: *Journal of Neuroscience Methods* 127.2, pp. 111–122. DOI: 10.1016/S0165-0270(03)00120-1.
- Sim, Adelene Y. L. et al. (2012). "EVALUATING MIXTURE MODELS FOR BUILDING RNA KNOWLEDGE-BASED POTENTIALS." In: *Journal of bioinformatics and computational biology* 10.2, p. 1241010. DOI: 10.1142/S0219720012410107.
- Simancas-Acevedo, Eric et al. (2001). "Speaker Recognition Using Gaussian Mixtures Models." en. In: *Bio-Inspired Applications of Connectionism*. Ed. by José Mira and Alberto Prieto. Lecture Notes in Computer Science 2085. Springer Berlin Heidelberg, pp. 287–294.
- Stephens, Matthew (2000). "Dealing with label switching in mixture models." en. In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 62.4, pp. 795–809. DOI: 10.1111/1467-9868.00265.
- Verbeke, Geert and Emmanuel Lesaffre (1996). "A Linear Mixed-Effects Model With Heterogeneity in the Random-Effects Population." In: *Journal of the American Statistical Association* 91.433, pp. 217–221.

- Verbeke, Geert and Geert Molenberghs (2009). *Linear Mixed Models for Longitudinal Data.* en. Springer Science & Business Media.
- Xiang, Bing and T. Berger (2003). "Efficient text-independent speaker verification with structural Gaussian mixture models and neural network." In: *IEEE Transactions on Speech and Audio Processing* 11.5, pp. 447–456. DOI: 10.1109/TSA.2003.815822.
- Yang, Narendra Ahuja Ming-hsuan (1998). "Gaussian Mixture Model for Human Skin Color and Its Applications in Image and Video Databases." In: *Proc SPIE* 3656. DOI: 10.1117/12.333865.

Leuven Statistics Research Centre (LStat)
Celestijnenlaan 200 B bus 5307
3001 HEVERLEE, BELGIË
tel. + 32 16 32 88 75
fax + 32 16 32 28 31
www.kuleuven.be