Quant III

Lab 4: MLE Application

Junlong Aaron Zhou

October 02, 2020

Outline

- Monte Carlo, Bootstrap
- Model Tests
- Predictive accuracy
- Seperation, Overdispersion

Monte Carlo, Bootstrap Revisited

- What we want: some quantities from a probalisitic distribution.
- Do we have the distribution?
- ullet Yes, then we can do Monte Carlo. E.g. $\hat{eta}^* \sim \mathcal{N}(\hat{eta},\hat{\Sigma}_{eta}^2)$

3 / 18

Monte Carlo, Bootstrap Revisited

- What we want: some quantities from a probalisitic distribution.
- Do we have the distribution?
- ullet Yes, then we can do Monte Carlo. E.g. $\hat{eta}^* \sim \mathcal{N}(\hat{eta},\hat{\Sigma}^2_{eta})$
- No? Bootstap.
- Idea: any estimate we care about is a function of data. E.g. $\hat{\beta} = h(X, Y) = (X'X)^{-1}X'Y$
- If we keep sample $\{X, Y\}$ from population, we have the sampling distribution of $\hat{\beta}$.
- Nonparametric: sample the original data with replacement
- ullet Parametric: sample from $f_{\hat{eta}}(X)$

What quantity do we care?

• Suppose we care SAME:

$$SAME(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial x} \Pr(Y = 1 | x, z_i)$$

- $SA\widehat{M}E(X)$ is also a function of $\hat{\beta}$.
- Note we care about the *SAME* for our given sample, the x we plug in is the x from original sample. However, we add variation from $\hat{\beta}$.

Which approach to choose?

- Do we have a parametric form? Can we sample directly?
- ullet For regression: \hat{eta} and bootstrap has the same convergence rate.
- Recall $\sqrt{N}(\hat{\beta}-\beta)\sim N(0,\sigma^2)$, so root-n rate.
- For empirical distribution, same as $I(x \le t) \to F(t)$. It also has root-n rate.
- n refers to sample size.
- However, monte carlo simulation relies on the asymptotic distribution of $\hat{\beta}$, and problems emerge when Σ is misspecified.

AIC and BIC

- Let k be the number of parameters and n, the number of observations
- AIC = $-2ln L(\hat{\theta}; y) + 2k$ (Akaike information criterion)
- $BIC = -2ln \ L(\hat{\theta}; y) + kln \ n$ (Bayesian information criterion)
- Penalize complicated model

AIC and BIC

\triangle BIC	Evidence against higher BIC
0 to 2	Not worth more than a bare mention
2 to 6	Positive
6 to 10	Strong
> 10	Very Strong

Prediction

- Consider a binary outcome $y_i \in \{0, 1\}$
- Our predicted value $\hat{y_i} \in \{0, 1\}$
- A general algorithm of prediction:

$$\hat{y_i} = egin{cases} 0 & \hat{p_i} < \pi \ 1 & ext{otherwise} \end{cases}$$

Prediction

Table 1: Confusion Matrix

	$\hat{y_i} = 1$	$\hat{y_i} = 0$	Total
$y_i = 1$	a TP	b FN	a+b
$y_i = 0$	c FP	d TN	c+d
Total	a+c	b+d	N

- $\frac{c}{N}$ tells us type 1 error.
- $\frac{b}{N}$ tells us type 2 error.

Prediction, ctd

Table 2: Confusion Matrix

	$\hat{y_i} = 1$	$\hat{y_i} = 0$	Total
$y_i = 1$	a TP	b FN	a+b
$y_i = 0$	c FP	d TN	c+d
Total	a + c	b+d	N

Prediction, ctd

Table 2: Confusion Matrix

	$\hat{y_i} = 1$	$\hat{y_i} = 0$	Total
$y_i = 1$	a TP	b FN	a+b
$y_i = 0$	c FP	d TN	c+d
Total	a + c	b+d	N

- Accuracy: $\frac{\text{Number of correctly classified}}{\text{total number of cases}} = \frac{a+d}{a+b+c+d}$
- **Precision**: $\frac{\text{number of TP}}{\text{number of TP+number of FP}} = \frac{a}{a+c}$

Fraction of the cases predicted to be true, that were in fact true.

Prediction, ctd

Table 2: Confusion Matrix

	$\hat{y_i} = 1$	$\hat{y_i} = 0$	Total
$y_i = 1$	a TP	b FN	a+b
$y_i = 0$	c FP	d TN	c+d
Total	a+c	b+d	Ν

- Accuracy: $\frac{\text{Number of correctly classified}}{\text{total number of cases}} = \frac{a+d}{a+b+c+d}$
- **Precision**: $\frac{\text{number of TP}}{\text{number of TP+number of FP}} = \frac{a}{a+c}$

Fraction of the cases predicted to be true, that were in fact true.

• Recall: $\frac{\text{number of TP}}{\text{number of TP} + \text{number of FN}} = \frac{a}{a+b}$

Fraction of the cases that were in fact true, that method predicted were true.

• **F**:2 precision*recall Harmonic mean of precision and recall.

Prediction ctd

Table 3: Confusion Matrix

	$\hat{y_i} = 1$	$\hat{y_i} = 0$	Total
$y_i = 1$	a TP	b FN	a+b
$y_i = 0$	c FP	d TN	c+d
Total	a+c	b+d	N

- Hit Rate/True Positive Rate: $\frac{\text{number of TP}}{\text{number of TP+number of FN}} = \frac{a}{a+b}$ True Negative Rate: $\frac{\text{number of TN}}{\text{number of FP+number of TN}} = \frac{d}{c+d}$
- False Positive Rate/False Alarm Rate:

$$\frac{\text{number of FP}}{\text{number of FP} + \text{number of TN}} = \frac{c}{c+d} = 1 - \text{True Negative Rate}$$

Receiver Operating Curve (ROC)

Table 4: Confusion Matrix

	$\hat{y_i} = 1$	$\hat{y_i} = 0$	Total
$y_i = 1$	a TP	b FN	a+b
$y_i = 0$	c FP	d TN	c+d
Total	a + c	b+d	Ν

• Recall our algorithm:

$$\hat{y_i} = egin{cases} 0 & \hat{p_i} < \pi \ 1 & ext{otherwise} \end{cases}$$

Receiver Operating Curve (ROC)

Table 4: Confusion Matrix

	$\hat{y_i} = 1$	$\hat{y_i} = 0$	Total
$y_i = 1$	a TP	b FN	a+b
$y_i = 0$	c FP	d TN	c+d
Total	a+c	b+d	Ν

Recall our algorithm:

$$\hat{y_i} = egin{cases} 0 & \hat{p_i} < \pi \ 1 & ext{otherwise} \end{cases}$$

- When model is fixed (therefore $\hat{p}_i = E(y_i|x_i)$), we can only change π .
- ullet We can change π to plot those statistics

Receiver Operating Curve (ROC)

- X-axis: False Alarm Rate
- Y-axis: Hit Rate

Receiver Operating Curve (ROC) ctd.

- Area Under Curve: varies between 0.5 (random draws) to 1 (perfect prediction).
- Larger AUC number means a better fit.

Separation

- Suppose y is binary and $y_i = 1(x_i < \tau)$.
- What would happen if we run glm(y~x, family=binomial(link='logit')?
- Coefficient of x and its variance approach infinity.

Penalized likelihood

• Add a penalty term to the likelihood:

$$L(\theta; y) - P(\theta)$$
,

where P is a penalty function, typically increasing in $|\theta|$.

- Shrinks coefficients towards zero.
- Turns out very useful in prediction problems (relates to parsimony).
- Related: fixed-effects in binary dependent variable?

Over-dispersion

- It's a problem of model mis-specification
- When we use poisson, we impose the assumption that $E(Y) = Var(Y) = \lambda$
- It's might be violated.
- One approach to model the variance.

Over-dispersion ctd.

- Negative Binomial model is one approach
- $y \sim NB(n, p) = \binom{n+y-1}{y} p^y (1-p)^n$
- $E(y) = \frac{np}{1-p}$ $Var(y) = \frac{np}{(1-p)^2}$

17 / 18

Over-dispersion ctd..

- Rewrite: $\mu = \frac{np}{1-p}$
- $Var(y) = \mu + \frac{\mu^2}{\beta}$
- where $\beta = np + (1-p)$
- Degree of dispersion $\phi=1+rac{1}{eta}$
- Intuition: Poisson distribution is a binomial distribution when n approaches $+\infty$ and p is small
- Take away: Model specification is super important.