Q-Learning

Hung-yi Lee

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Q-Learning 是一個 Value-Based 的方法 主要是在 Train 一個 Critic

The output values of a critic depend on the actor evaluated.

功能

- A critic does not directly determine the action.
- Given an actor π , it evaluates how good the actor is
- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after visiting state s

 $V^{\pi}(s)$ is large

 $V^{\pi}(s)$ is smaller

Critic

V以前的阿光(大馬步飛) = bad

V變強的阿光(大馬步飛) = good

How to estimate $V^{\pi}(s)$

- Monte-Carlo (MC) based approach
 - The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

After seeing s_b ,

Until the end of the episode, the cumulated reward is G_h

$$s_b \rightarrow V^{\pi} \rightarrow V^{\pi}(s_b) \leftrightarrow G_b$$

How to estimate $V^{\pi}(s)$

Temporal-difference (TD) approach

Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

$$Var[kX] = k^2 Var[X]$$

MC v.s. TD

MC v.s. TD

[Sutton, v2, Example 6.4]

- The critic has the following 8 episodes
 - $s_a, r = 0, s_b, r = 0$, END
 - $s_b, r = 1$, END
 - $s_h, r = 1$, END
 - $s_{h}, r = 1$, END
 - $s_b, r = 0$, END

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_{\alpha}) = ? 0? 3/4?$$

Monte-Carlo:
$$V^{\pi}(s_a) = 0$$

Temporal-difference:

$$V^{\pi}(s_a) = V^{\pi}(s_b) + r$$

3/4 3/4 0

(The actions are ignored here.)

Review: 前面介紹的 Critic 是 State Value Function

Another Critic

- State-action value function $Q^{\pi}(s,a)$
 - When using actor π , the *cumulated* reward expects to be obtained after taking a at state s

for discrete action only

State-action value function

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

Another Way to use Critic: Q-Learning

Q-Learning

- Given $Q^{\pi}(s,a)$, find a new actor π' "better" than π
 - "Better": $V^{\pi'}(s) \ge V^{\pi}(s)$, for all state s

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

- $\succ \pi'$ does not have extra parameters. It depends on Q
- > Not suitable for continuous action a (solve it later)

Q-Learning

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$V^{\pi'}(s) \geq V^{\pi}(s), \text{ for all state s}$$

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$\leq \max_{a} Q^{\pi}(s, a) = Q^{\pi}(s, \pi'(s))$$

$$V^{\pi}(s) \leq Q^{\pi}(s, \pi'(s))$$

$$= E[r_{t+1} + V^{\pi}(s_{t+1}) | s_{t} = s, a_{t} = \pi'(s_{t})]$$

$$\leq E[r_{t+1} + Q^{\pi}(s_{t+1}, \pi'(s_{t+1})) | s_{t} = s, a_{t} = \pi'(s_{t})]$$

$$= E[r_{t+1} + r_{t+2} + V^{\pi}(s_{t+2}) | \dots]$$

$$\leq E[r_{t+1} + r_{t+2} + Q^{\pi}(s_{t+2}, \pi'(s_{t+2})) | \dots] \dots \leq V^{\pi'}(s)$$

Target Network

實際上在 Implement State-Action Value Function 時,會利用兩個 Network 來實作!

Exploration

$$a_1 \quad Q(s,a) = 0$$
 Never explore

$$Q(s,a) = 1$$

$$A_2$$
 $Q(s,a) = 1$ Always sampled

$$a_3$$

$$Q(s,a)=0$$

Q(s,a) = 0 Never explore

The policy is based on Q-function

$$a = arg \max_{a} Q(s, a)$$

This is not a good way for data collection.

Epsilon Greedy

 ε would decay during learning

$$a = \begin{cases} arg \max_{a} Q(s, a), \\ random, \end{cases}$$

with probability $1 - \varepsilon$

otherwise

Boltzmann Exploration

$$P(a|s) = \frac{exp(Q(s,a))}{\sum_{a} exp(Q(s,a))}$$

Replay Buffer

Buffer

Put the experience into buffer.

 π interacts with the environment

exp exp S_t, a_t, r_t, S_{t+1} exp exp

The experience in the buffer comes from different policies.

Drop the old experience if the buffer is full.

$$\pi = \pi'$$

Find a new actor π' "better" than π

Learning $Q^{\pi}(s,a)$

Replay Buffer

Put the experience into buffer.

 π interacts with the environment

$$\pi = \pi'$$

Find a new actor π' "better" than π

Learning $Q^{\pi}(s,a)$

Buffer

 $\begin{array}{c} \text{exp} \\ \text{exp} \\ \text{exp} \end{array}$

exp

In each iteration:

- 1. Sample a batch
- 2. Update Q-function

Off-policy

Typical Q-Learning Algorithm

- Initialize Q-function \hat{Q} , target Q-function $\hat{Q}=Q$
- In each episode
 - For each time step t
 - Given state s_t , take action a_t based on Q (epsilon greedy)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t, a_t, r_t, s_{t+1}) into buffer
 - Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 - Target $y = r_i + \max_{a} \hat{Q}(s_{i+1}, a)$
 - Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)
 - Every C steps reset $\hat{Q} = Q$