Exame de Biomecânica: Época Recurso 30/01/2020 Eng^a Biomédica (2019/2020) Duração: 2h30

NOME	N^{o}	

- RESPONDA A UM MÁXIMO DE 10 ALÍNEAS TENDO EM CONTA QUE SE RESPONDER PARA 16 VALORES OU MAIS, TEM DE RESPONDER OBRIGATORIAMENTE A DUAS ALÍNEAS DE CADA PERGUNTA.
- EM CADA ALÍNEA, APENAS UMA DAS OPÇÕES ESTÁ CORRECTA.
- ASSINALE NESTA FOLHA A RESPOSTA CORRECTA COM UMA CRUZ.
- CADA RESPOSTA CORRECTA É COTADA COM 2,00 VALORES.
- CADA RESPOSTA ERRADA É COTADA COM -0,50 VALORES.
- RESPOSTAS EM BRANCO OU COM MAIS DO QUE UMA OPÇÃO ASSINALADA SÃO COTADAS COM 0 VALORES.
- Considere a aceleração da gravidade igual a 9,8 ms⁻².

FOLHA DE RESPOSTAS

ъ	417]	Resposta	a		***
Pergunta	Alínea	A	В	С	D	E	Versão
	a)		X				
1)	b)	X					
	c)				X		
	a)		X				
2)	b)	X					
	c)			X			
	a)		X				
3)	b)			X			
	c)				X		
	a)				X		
4)	b)	X					
	c)			X			

NOME: _____ N°: ____

[6] 1. Considere o sistema de forças $(\vec{F_1}, \vec{F_2}, \vec{F_3} \text{ e } \vec{F_4})$ e binário $\vec{M_1}$ da figura. As forças $\vec{F_1}, \vec{F_2}, \vec{F_3}$ e $\vec{F_4}$ têm intensidades iguais a 200 N, 100 N, 150 N e 50 N, respectivamente. Todas as forças têm as direcções e sentidos indicados na figura, sendo que o ângulo θ é igual a 30°. O binário representado por $\vec{M_1}$ tem componentes apenas segundo o eixo dos ZZ, sendo o sentido representado arbitrário.

[2] a) Se o momento resultante do sistema de forças e binários em relação ao ponto C for igual $+113,4\,\hat{k}\,(N\,m)$, qual dos seguintes vectores representa o momento do binário \vec{M}_1 ?

A)	$+250 \hat{k} (N m)$	B)	+300 k̂ (Nm)	C)	$+350 \hat{k} (N m)$	D	+400 k̂ (Nm)
E)	E) Nenhuma das anteriores						_

[2] b) Se o momento resultante do sistema de forças e binários em relação ao ponto C for igual a $+313,4\,\hat{k}\,(N\,m)$, qual o momento resultante do sistema de forças e binários em relação ao ponto A?

A)	$+400 \hat{k} (N m)$	B)	+250 k̂(Nm)	C)	+300 k (Nm)	D	+350 k̂ (N m)
E)	E) Nenhuma das anteriores						_

- [2] c) Nas condições da alínea b), qual das seguintes opções está correcta, no que respeita à possibilidade de redução do sistema de forças a outro mais simples, <u>aplicado no objecto</u>? (Considere que a espessura do objecto é desprezável.)
- A) O sistema de forças e binários não pode ser reduzido a um sistema mais simples.
- B) O sistema de forças e binários pode ser reduzido apenas à resultante.
- C) O sistema de forças e binários não pode ser reduzido à resultante e um binário não nulo.
- D) O sistema de forças e binários não pode ser reduzido apenas à resultante.
- E) Nenhuma das anteriores

ame de Biomecânica: Época de Recurso	30/01/2020
g ^a Biomédica (2019/2020)	Duração: 2h30

NOME: N°:

[3,5] 4. Considere o sistema em equilíbrio, representado na figura. A barra é homogénea, tem 2 m de comprimento, peso igual a 100 N, faz um ângulo θ igual a 30° com a horizontal, e é suportada no ponto A por um pino. No ponto D, a uma distância L/4 da extremidade E da barra, encontra-se ligada uma corda que passa por uma roldana, e à qual está ligado o corpo com peso P_1 que está assente numa superfície horizontal. Um corpo com peso P_2 está suspenso por outra corda ligada à extremidade livre da barra, ponto E. A roldana é ideal e as cordas são inextensíveis e de massas desprezáveis.

a) Se o peso P_2 for igual a 25,00 N qual o valor mínimo do peso P_1 para que a barra possa estar em [2] equilíbrio?

A)	175 N	B)	100 N	C)	150 N	D)	125 N	
E)	Nenhuma	teriores						

b) Se o peso P_2 e tensão na corda forem iguais a 226,93 e 369,24 N, respectivamente, qual a [2] intensidade da reacção exercida pelo apoio A sobre a barra?

A)	350 N	B)	375 N	C)	300 N	D)	325 N	
E)	Nenhuma	eriores						

[2] c) Nas condições da alínea b), qual a força exercida pelo peso P_1 sobre a superfície horizontal, se o valor de P_1 for igual a 500,32 N?

	1 0							
A)	159,11 N	B)	187,17 N	C)	131,08 N	D)	103,09 N	
E) Nenhuma das anteriores								

Exame de Biomecânica: Época de Recurso Eng^a Biomédica (2019/2020)

30/01/2020 Duração: 2h30

NOME: ______ N°: _____

[6] 3. Um material isotrópico e linearmente elástico, com módulo de elasticidade $E = 180 \,\text{GPa}$ e razão de Poisson v = 0,3, está submetido ao estado de tensão bidimensional representado na figura, com $|\sigma_x| = 50 \,\text{MPa}$, $|\sigma_y| = 100 \,\text{MPa}$ e $|\tau_{xy}| = |\tau_{yx}| = 50 \,\text{MPa}$.

[2] a) Qual a tensão de corte máxima a que o material está sujeito?

A)	81,30 MPa	B)	55,90 MPa	C)	90,14 MPa	D)	68,42 MPa	
E)	E) Nenhuma das anteriores							

[2] b) Qual o tensor de tensões quando a orientação dos planos de análise é tal que a tensão de corte é igual à tensão de corte máxima? (Na resposta, τ_{máx} representa o valor da tensão de corte máxima.)

A) $\begin{bmatrix} -25 & \tau_{max} & 0 \\ \tau_{max} & -25 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$	B) $\begin{bmatrix} -75 & \tau_{m\acute{a}x} & 0 \\ \tau_{m\acute{a}x} & -75 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$
C) $\begin{bmatrix} 75 & \tau_{max} & 0 \\ \tau_{max} & 75 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$	D) $\begin{bmatrix} 25 & \tau_{m\acute{a}x} & 0 \\ \tau_{m\acute{a}x} & 25 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{MPa}$
E) Nenhuma das anteriores	

[2] c) De quanto é preciso rodar os planos dados para se obterem os planos para os quais a tensão de corte é máxima?

A)	-28,15°	B)	-13,28°	C)	+28,15°	D)	+13,28°
E) Nenhuma das anteriores							

NOME: _____ N°: ____

[6] 4. Considere uma barra horizontal de massa desprezável, com comprimento L = 1,2 m, e secção recta quadrada com uma área de 4 cm². A barra encontra-se suportada no ponto A por um pino, e no ponto B por uma corda que faz um ângulo θ igual a 60° com a horizontal. Sobre a barra encontra-se aplicada a carga distribuída p(x) representada na figura, com x a distância ao ponto A.

[2] a) Se $p(x) = 150[\text{N m}^{-1}]$, qual a intensidade da força \vec{T}_B exercida pela corda sobre a barra?

A)	41,57 N	B)	39,26 N	C)	36,95 N	D)	34,64 N	
E)	E) Nenhuma das anteriores							

[2] b) Se $p(x) = 340 \left[\text{N m}^{-1} \right]$, e a intensidade da força \vec{T}_B exercida pela corda sobre a barra for igual a 78,52 N, qual a tensão de corte no ponto C do plano situado a uma distância de 0,7 m do apoio A?

A)	127,5 kPa	B)	112,5 kPa	C)	120,0 kPa	D)	135,0 kPa	
E)	E) Nenhuma das anteriores							

[2] c) Se $p(x) = 420 \left[\text{N m}^{-1} \right]$, qual a tensão axial no ponto C do plano situado a uma distância de 0,5 m do apoio A? (Se necessário, considere que a força de corte a uma distância de 0,5 m do apoio A é igual a e a força de corte a uma distância de 0,5 m do apoio A for igual a $-42 \hat{j} \left[\text{N} \right]$.)

A)	127,0 kPa	B)	115,5 kPa	C)	121,2 kPa	D)	132,8 kPa	
E)	Nenhuma das anteriores							