A Reinforcement Learning Destination Control Agent for Elevators in High Buildings

Martin van Es

Overzicht

- Liften
- Hoge Gebouwen
- RL toegepast
- Het NN
- Resultaten
- Vragen
- Discussie

De Lift-Testomgeving

- NP-hard
- Elke lift status is dynamisch
- RL alleen getest op laagbouw
- Wachttijd

Verkeerspatronen

- Up traffic
- Down traffic
- Light up/ heavy down mix

Lift Controle

- Zoning
- LQF
- HUFF
- RL

Reinforcement Learning

- Q-learning
- 10 verdiepingen en 4 liften
- Neuraal netwerk voor functieapproximatie
- Trainen op pure down traffic

Wat Mega Hoog Is

- > 75 verdiepingen
- Kantoorgebouw
- Petronas
- Sears

Oplossingen voor Mega Hoge gebouwen

- Dubbeldek Liften
- Skylobbies / Shuttles
- Destination Control

Skylobbies

Skylobbies ctd.

Destination Control

- Geen omhoog- en omlaagknoppen
- Verdiepingen vs. passagiers toewijzen
- Extra informatie beschikbaar

Systeem Parameters

- Maximum capaciteit van een lift
- Passagier Aankomst Ratio
- Liftsnelheid
- Aantal liften

De Simulator

Reinforcement Learning

- Q-learning
- liftacties vs. assign-acties
- 1 agent per liftpaar
- ε-greedy selectie

Het Netwerk

Architectuur: (15,20,2)

1 Bias (bij input en hidden)

Output: Q-waardes

Het Netwerk ctd.

Inputs:

- Aankomstverdieping
- Doelverdieping
- Som wachttijden per lift (2 units)
- Positie (2 units)
- Richting (2 units)
- Belasting (2 units)
- Futureload (2 units)
- Relatieve afstand (2 units)

Resultaten

- Vergelijken
 - -SAA
 - -SAL
- Prestaties
 - passenger arrival rate 0.2
 - -passenger arrival rate 0.1

P.A.R. 0.2

P.A.R. 0.1

Vragen?

Haskell

Het gebruik van Haskell voor reinforcement learning met neurale netwerken.

- Rekenen met lijsten
- Lazy evaluation
- Polymorfisme
- λ-extractie

CKI

"netwerk" van disciplines - de plaats van CKI in dit onderzoek

