Zadanie 10. (0-1)

Funkcja liniowa f określona wzorem f(x) = 2x + b ma takie samo miejsce zerowe, jakie ma funkcja liniowa g(x) = -3x + 4. Stąd wynika, że

A.
$$b = 4$$

B.
$$b = -\frac{3}{2}$$
 C. $b = -\frac{8}{3}$ **D.** $b = \frac{4}{3}$

C.
$$b = -\frac{8}{3}$$

D.
$$b = \frac{4}{3}$$

Zadanie 11. (0-1)

Funkcja kwadratowa określona jest wzorem $f(x) = x^2 + x + c$. Jeżeli f(3) = 4, to

A.
$$f(1) = -6$$

B.
$$f(1) = 0$$

C.
$$f(1) = 6$$

D.
$$f(1) = 18$$

Zadanie 12. (0-1)

Ile liczb całkowitych x spełnia nierówność $\frac{2}{7} < \frac{x}{14} < \frac{4}{3}$?

Zadanie 13. (0-1)

W rosnącym ciągu geometrycznym (a_n) , określonym dla $n \ge 1$, spełniony jest warunek $a_4 = 3a_1$. Iloraz q tego ciągu jest równy

A.
$$q = \frac{1}{3}$$

B.
$$q = \frac{1}{\sqrt[3]{3}}$$
 C. $q = \sqrt[3]{3}$ **D.** $q = 3$

C.
$$q = \sqrt[3]{3}$$

D.
$$q = 3$$

Zadanie 14. (0-1)

Tangens kata α zaznaczonego na rysunku jest równy

B.
$$-\frac{4}{5}$$

D.
$$-\frac{5}{4}$$

$$P = (-4, 5)$$

Zadanie 15. (0-1)

Jeżeli $0^{\circ} < \alpha < 90^{\circ}$ oraz $tg\alpha = 2\sin\alpha$, to

$$\mathbf{A.} \quad \cos \alpha = \frac{1}{2}$$

A.
$$\cos \alpha = \frac{1}{2}$$
 B. $\cos \alpha = \frac{\sqrt{2}}{2}$ **C.** $\cos \alpha = \frac{\sqrt{3}}{2}$ **D.** $\cos \alpha = 1$

C.
$$\cos \alpha = \frac{\sqrt{3}}{2}$$

D.
$$\cos \alpha = 1$$