SPECIFIC!

Jeu

Une feuille imprimée est distribuée à chaque groupe.

Nombre de joueurs : 2 ou éventuellement 4

Durée du jeu : 20 min

Règle

- > Une feuille imprimée est distribuée à chaque groupe. Sur cette feuille se trouve un tableau avec dans chaque case un mot ou une formule ou une unité en relation avec le chapitre qui vient d'être terminé.
- Le joueur 1 choisit une case dans le tableau sans dire laquelle.
- Le joueur 1 doit faire retrouver au joueur 2 la case qu'il a choisi. Vous pouvez mettre un temps maximum pendant lequel le joueur 1 peut intervenir, par exemple 15 secondes si vous voulez que le jeu soit rapide et pour encourager les élèves à être précis et concis.
- Le joueur 1 gagne un point si le joueur 2 trouve la carte.
- C'est ensuite au joueur 2 de jouer.
- La partie se termine lorsqu'il ne reste plus que deux cases non jouées. Le gagnant est le joueur qui a le plus de point.

Cela peut se jouer aussi avec deux équipes de deux élèves.

Objectifs pédagogiques

Il s'agit pour le professeur de faire comprendre à l'élève que son imprécision l'a fait perdre, que ce n'est pas celui qui a choisi la mauvaise carte qui a perdu mais que c'est celui qui devait donner une description précise qui est mis en cause car il a induit en erreur son camarade. Il est démontré que les élèves à qui on a fait prendre conscience de leur imprécision produisent ensuite des écrits et des interventions orales plus précises et rigoureuses.

Exemple pour le chap C1 en spécialité de 1^{ère} Détermination de la composition du système initial à l'aide de grandeurs physiques

Masse molaire	Quantité de matière	Nombre d'Avogadro	mol	Volume molaire
g/mol	Concentration en masse	Concentration en quantité de matière	Longueur d'onde	Loi de Beer Lambert
g/L	$C = \frac{n}{V}$	mol/L	$M({}_{Z}^{A}X) = A g/mol$	$C_m = \frac{m}{V}$