Санкт-Петербургский Политехнический Университет Петра Великого Институт Компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа 6

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Tема: Port-Level IO Protocols

Задание 2

Студент: Ерниязов Т.Е. Гр. 3540901/81501

Преподаватель: Антонов А.П.

Оглавление

Решение 1	3
Решение 2	7
Решение 3	. 11
Решение 4	. 15
Выводы	
• •	

Решение 1

Создание файла с исходным кодом

```
void foo (int *d) {
    static int acc = 0;
    int i = 0;
    acc += d[i];
    d[i] = acc;
}
```

Создание тестового файла

```
#include <stdio.h>
int main()
    int d[1];
    d[0] = 0;
    foo(d);
    int res = 0;
    int pass;
     fprintf(stdout, "Expected Actual\n");
         if (res == d[0]) {
              pass = 1;
          } else {
             pass = 0;
     if (pass) {
         fprintf(stdout, "-----Pass!----\n");
         return 0;
     } else {
         fprintf(stderr, "-----Fail!-----\n");
         return 1;
     }
```

Создание решения с заданными параметрами

Задание интерфейса ap_bus

Моделирование

Результат моделирования успешный, заданное и полученное значения совпадают.

Синтез

Производительность

Performance Estimates

☐ Timing

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00 ns	9.900 ns	0.10 ns

■ Latency

□ Summary

Latency	(cycles)	Latency (absolute)	Interval	(cycles)	
min	max	min	max	min	max	Туре
4	4	40.000 ns	40.000 ns	4	4	none

Detail

∓ Instance

∓ Loop

Полученная величина задержки укладывается в целевое значение.

Использование ресурсов

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	39	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	33	-
Register	-	-	101	-	-
Total	0	0	101	72	0
Available	40	40	16000	8000	0
Utilization (%)	0	0	~0	~0	0

Данное решение потребует на микросхеме 101 регистр и 72 LUT.

Интерфейсы соответствуют заданному ap_bus при создании решения:

Interface

□ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	foo	return value
ap_rst	in	1	ap_ctrl_hs	foo	return value
ap_start	in	1	ap_ctrl_hs	foo	return value
ap_done	out	1	ap_ctrl_hs	foo	return value
ap_idle	out	1	ap_ctrl_hs	foo	return value
ap_ready	out	1	ap_ctrl_hs	foo	return value
d_req_din	out	1	ap_bus	d	pointer
d_req_full_n	in	1	ap_bus	d	pointer
d_req_write	out	1	ap_bus	d	pointer
d_rsp_empty_n	in	1	ap_bus	d	pointer
d_rsp_read	out	1	ap_bus	d	pointer
d_address	out	32	ap_bus	d	pointer
d_datain	in	32	ap_bus	d	pointer
d_dataout	out	32	ap_bus	d	pointer
d_size	out	32	ap_bus	d	pointer

Perform	ance Profile	X E	Resource Profile		'	'
• foo		Latency 4	Iteration Latency	Initiation Interval	Trip count	

Задержка составляет 4 такта, интервал инициализации составляет 5 тактов.

C/RTL моделирование

На временной диаграмме отображен интервал инициализации и задержка.

Решение 2

Создание исходного файла

```
void foo1 (int *d) {
    static int acc = 0;
    for (int i = 0; i < 4; i++) {
        acc += d[i];
        d[i] = acc;
    }
}</pre>
```

Создание тестового файла

```
#include <stdio.h>
int main()
     int d[4] = \{0, 1, 2, 3\};;
     foo1(d);
     int res[4] = \{0, 1, 3, 6\};
     int pass;
     fprintf(stdout, "Expected Actual\n");
     for (int i = 0; i < 4; i++)
           fprintf(stdout, "res[%d]: %d == d[%d]: %d\n", i, res[i], i,
d[i]);
           if (res[i] == d[i]) {
                pass = 1;
           } else {
                pass = 0;
                break;
     }
```

```
if (pass) {
         fprintf(stdout, "------Pass!-----\n");
        return 0;
} else {
         fprintf(stderr, "-----Fail!----\n");
        return 1;
}
```

Настройка решения

Solution Configuration

Create Vivado HLS solution for selected technology

Установка интерфейса

```
✓ ● foo1

● d

% HLS INTERFACE ap_bus depth=4 port=d

S acc

for Statement
```

Моделирование

Синтез

Производительность

Полученное значение задержки укладывается в заданное и соответствует решению 1.

Использование ресурсов

Данное решение потребует на микросхеме 108 регистров и 113 элементов LUT. По сравнению с решением 1 значительно увеличилось число LUT.

Задержка на одной итерации занимает 3 такта, для всего цикла -12 тактов (так как производится 4 итерации). Интервал инициализации занимает 15 тактов.

Интерфейс

terface					
Summary					
RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo1	return value
ap_rst	in	1	ap_ctrl_hs	foo1	return value
ap_start	in	1	ap_ctrl_hs	foo1	return value
ap_done	out	1	ap_ctrl_hs	foo1	return value
ap_idle	out	1	ap_ctrl_hs	foo1	return value
ap_ready	out	1	ap_ctrl_hs	foo1	return value
d_req_din	out	1	ap_bus	d	pointer
d_req_full_n	in	1	ap_bus	d	pointer
d_req_write	out	1	ap_bus	d	pointer
d_rsp_empty_n	in	1	ap_bus	d	pointer
d_rsp_read	out	1	ap_bus	d	pointer
d_address	out	32	ap_bus	d	pointer
d_datain	in	32	ap_bus	d	pointer
d_dataout	out	32	ap_bus	d	pointer
d_size	out	32	ap_bus	d	pointer

Интерфейс соответствуют заданному при настройке проекта ap_bus.

C/RTL моделирование

На временной диаграмме отображена задержка и интервал инициализации.

Решение 3

Создание исходного файла

break;

}

```
void foo2 (int *d) {
     static int acc = 0;
     for (int i = 0; i < 4; i++) {
           acc += *(d+i);
           *(d+i) = acc;
     }
Создание тестового файла
#include <stdio.h>
int main()
     int d[4] = \{0, 1, 2, 3\};;
     foo2(d);
     int res[4] = \{0, 1, 3, 6\};
     int pass;
     fprintf(stdout, "Expected Actual\n");
     for (int i = 0; i < 4; i++)
           fprintf(stdout, "res[%d]: %d == d[%d]: %d\n", i, res[i], i,
d[i]);
           if (res[i] == d[i]) {
                pass = 1;
           } else {
                pass = 0;
```

```
if (pass) {
     fprintf(stdout, "------Pass!-----\n");
     return 0;
} else {
     fprintf(stderr, "-----Fail!----\n");
     return 1;
}
```

Настройка решения

Solution Configuration Create Vivado HLS solution for selected technology Solution Name: solution1 Clock Period: 10 Uncertainty: 0.1 Part Selection Part: xa7a12tcsg325-1q ...

Настройка интерфейса

Моделирование

Моделирование пройдено успешно.

Синтез

Производительность

Полученная величина задержки укладывается в заданное значение и соответствует предыдущим решениям.

Использование ресурсов

ilization Estimates										
Summary										
Name	BRAM_18K	DSP48E	FF	LUT	URAM					
DSP	-	-	-	-	-					
Expression	-	-	0	71	-					
FIFO	-	-	-	-	-					
Instance	-	-	-	-	-					
Memory	-	-	-	-	-					
Multiplexer	-	-	-	42	-					
Register	-	-	108	-	-					
Total	0	0	108	113	0					
Available	40	40	16000	8000	0					
Utilization (%)	0	0	~0	1	0					

Данное решение потребует на микросхеме 108 регистров и 113 элементов LUT. Полученные значения соответствуют значениям в решении 2 так как оба решения определяют множественную запись и чтение.

	Pipelined	Latency	Iteration Latency	Initiation Interval	Trip count
✓ ● foo2	-	14	-	15	-
Loop 1	no	12	3	-	4

Величина задержки для одной итерации составляет 3 такта, количество итераций — 4, полная величина задержки равна 14 тактам, интервал инициализации составляет 15 тактов.

Интерфейс

Summary					
RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo2	return value
ap_rst	in	1	ap_ctrl_hs	foo2	return value
ap_start	in	1	ap_ctrl_hs	foo2	return value
ap_done	out	1	ap_ctrl_hs	foo2	return value
ap_idle	out	1	ap_ctrl_hs	foo2	return value
ap_ready	out	1	ap_ctrl_hs	foo2	return value
d_req_din	out	1	ap_bus	d	pointer
d_req_full_n	in	1	ap_bus	d	pointer
d_req_write	out	1	ap_bus	d	pointer
d_rsp_empty_n	in	1	ap_bus	d	pointer
d_rsp_read	out	1	ap_bus	d	pointer
d_address	out	32	ap_bus	d	pointer
d_datain	in	32	ap_bus	d	pointer
d_dataout	out	32	ap_bus	d	pointer
d_size	out	32	ap_bus	d	pointer

Интерфейс соответствует заданному ap_bus при конфигурировании решения. C/RTL моделирование

На временной диаграмме отображены задержка и интервал инициализации.

Решение 4

Создание исходного файла

```
void foo3 (int *d) {
    int buf1[4], buf2[4];
    int i;

    memcpy(buf1, d, 4*sizeof(int));
    for (i=0; i < 4; i++) {
        buf2[i] = buf1[3-i];
    }
    memcpy(d, buf2, 4*sizeof(int));
}

void * memcpy( void * destptr, const void * srcptr, size_t num );</pre>
```

Функция memcpy копирует num байтов первого блока памяти, на который ссылается указатель srcptr, во второй блок памяти, на который ссылается указатель destptr.

Тип данных объектов, на которые указывают как srcptr так и destptr не имеют никакого значения. Так как эта функция работает с бинарными данными.

Функция не проверяет, есть ли символ завершения в srcptr, она всегда копирует количество байтов, указанное в num.

Чтобы избежать переполнения блока памяти destptr, размер destptr должен быть не менее num байтов. Однако, может возникнуть ситуация, когда destptr и srcptr пересекутся. Поэтому, для перекрытия блоков памяти, функция теттов является более безопасным подходом.

Параметры:

Destptr - Указатель на блок памяти назначения (куда будут копироваться байты данных), имеет тип данных void.

Srcptr - Указатель на блок памяти источник (т. е., откуда будут копироваться байты данных), имеет тип данных void.

Num - Количество копируемых байтов.

Возвращаемое значение - Указатель на блок памяти назначения.

Создание тестового файла

```
#include <stdio.h>
int main()
     int d[4] = \{0, 1, 2, 3\};;
     foo3(d);
     int res[4] = \{3, 2, 1, 0\};
     int pass;
     fprintf(stdout, "Expected Actual\n");
     for (int i = 0; i < 4; i++)
          fprintf(stdout, "res[%d]: %d == d[%d]: %d\n", i, res[i], i,
d[i]);
          if (res[i] == d[i]) {
               pass = 1;
          } else {
               pass = 0;
               break;
          }
     }
     if (pass) {
          fprintf(stdout, "-----Pass!----\n");
          return 0;
     } else {
          fprintf(stderr, "-----Fail!-----\n");
          return 1;
     }
```

Настройка решения

В этот раз директива интерфейса вставлена прямо в исходный код, иначе синтез не будет проходить из за использования тетсру без инициализированного интерфейса шины.

Моделирование

Моделирование выполнено успешно

Синтез

Производительность

Полученная величина задержки укладывается в заданное значение и соответствует предыдущим решениям.

Использование ресурсов

tilization Estimates											
Summary											
Name	BRAM_18K	DSP48E	FF	LUT	URAM						
DSP	-	-	-	-	-						
Expression	-	-	0	88	-						
FIFO	-	-	-	-	-						
Instance	-	-	0	42	-						
Memory	-	-	-	-	-						
Multiplexer	-	-	-	98	-						
Register	-	-	312	-	-						
Total	0	0	312	228	0						
Available	40	40	16000	8000	0						
Utilization (%)	0	0	1	2	0						

Данное решение требует 312 регистров и 228 элементов LUT, что значительно больше по сравнению с предыдущими решениями. Число требуемых регистров и элементов LUT возросло примерно в 3 раза по сравнению с предыдущими решениями.

Задержка одной итерации цикла составляет 1 такт, для всего цикла -4 такта. Задержки для выполнения memcpy по 2 такта. Интервал инициализации составляет 19 тактов.

Интерфейс

erface					
Summary					
RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	foo3	return value
ap_rst	in	1	ap_ctrl_hs	foo3	return value
ap_start	in	1	ap_ctrl_hs	foo3	return value
ap_done	out	1	ap_ctrl_hs	foo3	return value
ap_idle	out	1	ap_ctrl_hs	foo3	return value
ap_ready	out	1	ap_ctrl_hs	foo3	return value
d_req_din	out	1	ap_bus	d	pointer
d_req_full_n	in	1	ap_bus	d	pointer
d_req_write	out	1	ap_bus	d	pointer
d_rsp_empty_n	in	1	ap_bus	d	pointer
d_rsp_read	out	1	ap_bus	d	pointer
d_address	out	32	ap_bus	d	pointer
d_datain	in	32	ap_bus	d	pointer
d_dataout	out	32	ap_bus	d	pointer
d_size	out	32	ap_bus	d	pointer

Интерфейс соответствует заданному в начале решения ap_bus.

C/RTL моделирование

На временной диаграмме отображена задержка и интервал инициализации.

Выводы

В ходе работы были построены четыре решения, одно с одиночным вариантом чтения и записи, два – с множественным и одно с режимом потокового обмена. Был использован интерфейс ap_bus. Применялись следующие порты: D_datain — входные данные, D_req_full_n - активный низкий уровень сигнала указывает что мост полный, D-rsp_empty_n — указывает на готовность принятия данных, D_dataout — выходные данные и другие, например, определяющие адрес и размер, готовность чтения и записи. Временные диаграммы и анализ решений приведены в отчете.