(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 October 2003 (30.10.2003)

PCT

(10) International Publication Number WO 03/089583 A2

(51) International Patent Classification7:

C12N

(21) International Application Number: PCT/US03/11497

(22) International Filing Date: 15 April 2003 (15.04.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

riivitty Data.		
60/372,669	16 April 2002 (16.04.2002)	US
60/374,823	24 April 2002 (24.04.2002)	US
60/376,558	1 May 2002 (01.05.2002)	US
60/381,366	20 May 2002 (20.05.2002)	US
60/403,648	16 August 2002 (16.08.2002)	US
60/411,882	20 September 2002 (20.09.2002)	US
60/424,336	7 November 2002 (07.11.2002)	US

(71) Applicant (for all designated States except US): ORI-GENE TECHNOLOGIES, INC. [US/US]; Suite 100, 6 Taft Court, Rockville, MD 20850 (US). (72) Inventors; and

- (75) Inventors/Applicants (for US only): JAY, Gilbert [US/US]; 5801 Nicholson Lane, North Bethesda, MD 20852 (US): LEROVITZ, Richard, M. [US/US]; 3800 North Fairfax Drive, Arlington, VA 22203 (US): LIU, Xuan fUS/US]; 14213 Dav Road, Rockville, MD 20850 (US): SHU, Youmin [US/US]; 2508 Chilham Place, Potomac, MD 20854 (US): SUN, Zairen [CN/US]; 1083 Copperstone Court, Rockville, MD 20852 (US): WU, Meng [PG/US]; 18016 Rockingham Place, Germantown, MD 20874 (US).
- (74) Agent: LEBOVITZ, Richard, M.; Origene Technologies, Inc., Suite 100, 6 Taft Court, Rockville, MD 20850 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Continued on next page]

(54) Title: TISSUE SPECIFIC GENES AND GENE CLUSTERS

(57) Abstract: The present invention relates to genes and genes clusters which are expressed in a tissue specific manner. For example, the invention relates to a group of genes encoding GPCR-like receptors that are involved in the function and activity of the immune system. These genes are organized into a discrete cluster at chromosomal location 1q22 (the "immune gene complex") and span about 700 kb of DNA. The region closest to the centromere comprises genes that are expressed predominantly in the thymus, while the distal region comprises genes which are expressed predominantly and other in the bone marrow hematopoietic cells. Another cluster of GPCR genes is located at chromosomal band 11q24. These genes are expressed predominantly in pancreatic tissue, establishing this region of chromosome 11 as a unique gene complex involved in

pancreatic function. A cluster of transmembrane and GPCR-type receptor genes is also located at chromosomal band 11q12.2. These genes are expressed predominantly in the spleen (hence, "spleen gene" cluster), as well as other tissues of the immune and reticuloendothelial system (RES), indicating that establishing this region of the chromosome is involved is spleen, lymphoid, and/or reticuloendothelial function. Finally, genes coding for membrane proteins have been identified which are expressed selectively in bone marrow, kidney, pancreas, and retina.

70 03/080583

WO 03/089583 A2

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- of inventorship (Rule 4.17(iv)) for US only

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

10

15

20

25

30

TISSUE SPECIFIC GENES AND GENE CLUSTERS

This application claims the benefit of U.S. Application Serial Nos. 60/372,669 April 16, 2002, 60/374,823 filed April 24, 2002, 60/376,558 filed May 1, 2002, 60/381,366 filed May 20, 2002, 60/403,648 filed August 16, 2002, 60/411,882 filed September 20, 2002, and 60/424,336 filed November 7, 2002, which are hereby incorporated by reference in their entirety.

DESCRIPTION OF THE DRAWINGS

Figs. 1 and 2 show a physical map of the immune system gene complex. Sequence-tagged site ("STS") markers are used to characterize the chromosomal regions. An STS is defined by two short synthetic sequences (typically 20 to 25 bases each) that have been designed from a region of sequence that appears as a single-copy in the human genome (the reference numbers, and the sequences which they represent, are hereby incorporated by reference in their entirety). These sequences can be used as primers in a polymerase chain reaction (PCR) assay to determine whether the site is present or absent from a DNA sample.

Fig. 3 shows the expression pattern of transmembrane proteins homologous to the olfactory G-protein-coupled receptor ("GPCR") family in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 5 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Fig. 4 shows the expression pattern of two olfactory G-protein-coupled receptor ("GPCR") family members in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 6 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Figs. 5 (a and b) and 6 show the expression pattern in human tissues of genes selectively expressed in kidney tissue. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 11 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Fig. 7 (a-b) show organization of pancreatic gene complex on chromosome 11q24.

10

15

20

25

30

Fig. 8 is a schematic drawing of five of the pancreatic olfactory G-protein-coupled receptor ("GPCR") family members located in the gene complex showing regions of overlap. The numbering underneath the lines indicates amino acid position.

Fig. 9 (a and b) show the expression pattern of TMD0986, XM_061780 (TMD0987), XM_061781 (TMD0353), XM_061784 (TMD0989), and XM_061785 (TMD058) in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 12 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Fig. 10 shows the expression pattern of TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), and TMD0621 (XM_166205) in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 17 indicates the SEQ ID NO for each primer ("F-oligo" is the forward primer and "R-oligo" is the reverse primer).

Fig. 11 shows the organization of the spleen gene complex on chromosome 11q12.2.

Fig. 12 (a-c) shows the expression of the pancreas genes in human tissues. To detect gene expression, PCR was carried out on aliquots of the normalized tissue samples using a forward and reverse gene-specific primers. Table 23 indicates the SEQ ID NO for each primer ("FOR" is the forward primer and "REV" is the reverse primer).

Expression patterns were analyzed as described below. A twenty-four tissue panel was used (lanes from left to right): 1, adrenal gland; 2, bone marrow; 3, brain; 4, colon; 5, heart; 6, intestine; 7, pancreas; 8, liver; 9, lung; 10, lymph node; 11, lymphocytes; 12, mammary gland; 13, muscle; 14, ovary; 15, pancreas; 16, pituitary; 17, prostate; 18, skin; 19, spleen; 20, stomach; 21, testis; 22, thymus; 23, thyroid; 24, uterus. The lane at the far left of each panel contains molecular weight standards. Polyadenylated mRNA was isolated from tissue samples, and used as a template for first-strand cDNA synthesis. The resulting cDNA samples were normalized using beta-actin as a standard. For the normalization procedure, PCR was performed on aliquots of the first-strand cDNA using beta-actin specific primers. The PCR products were visualized on an ethidium bromide stained agarose gel to estimate the quantity of beta-actin cDNA present in each sample. Based on these estimates, each sample was diluted with buffer until each contained the same quantity of beta-actin cDNA per unit volume. PCR was carried out using the primers described above, and reaction

10

15

20

25

30

products were loaded on to an agarose (e.g., 1.5-2%) gel and separated electrophoretically.

DESCRIPTION OF THE INVENTION

The present invention relates to tissue-selective genes and tissue-selective gene clusters. The polynucleotides and polypeptides are useful in variety of ways, including, but not limited to, as molecular markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, determining predisposition to, etc., diseases and conditions, associated with genes of the present invention. The identification of specific genes, and groups of genes, expressed in pathways physiologically relevant to particular tissues, permits the definition of functional and disease pathways, and the delineation of targets in these pathways which are useful in diagnostic, therapeutic, and clinical applications. The present invention also relates to methods of using the polynucleotides and related products (proteins, antibodies, etc.) in business and computer-related methods, e.g., advertising, displaying, offering, selling, etc., such products for sale, commercial use, licensing, etc.

Immune Gene Complex

The present invention relates to a group of genes involved in the function and activity of the immune system. These genes are organized into a discrete cluster at chromosomal location 1q22 (the "immune gene complex") and span hundreds of kb of DNA, e.g., about 700 kb of DNA. See, Figs. 1 and 2. The region closest to the centromere comprises genes that are expressed predominantly in the thymus, while the distal region comprises genes which are expressed predominantly in the bone marrow and other hematopoietic cells.

The present invention relates to a composition consisting essentially of the 1q22 immune gene complex, comprising TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) genes, or a fragment thereof comprising at least two said genes. As discussed in more detail, the composition can comprise or consist essentially of the chromosome region between STS markers that define the genomic DNA, e.g., between SHGC-81033 and SHGC-145403, or a fragment thereof comprising at least two said genes.

10

15

20

25

30

The CD1 family, a cluster of genes previously identified as coding for proteins involved in antigen presentation (Sugita and Brenner, Seminars in Immunology, 12:511-516, 2000), are located at the proximal boundary of the immune gene complex. The expression of CD1a, b, and c genes are restricted to professional antigen-presenting cells, including dendritic cells and some B-cell subsets (Sugita and Brenner, ibid). CD1d is present on other cell types, in addition to hematopoietic cells, such as intestinal cells (Sugita and Brenner, ibid).

Adjacent to the CD1 family, is a cluster of genes coding for transmembrane proteins homologous to the olfactory G-protein-coupled receptor ("GPCR") family. These genes include XM_060945 (TMD0024), XM_060346 (TMD1779), XM_060947 (TMD0884), and XM_060948 (TMD0025), and are expressed predominantly in thymus tissues (e.g., thymocytes). XM_089421 (TMD1781) is also expressed in thymus, but it is present in much higher amounts in lymphocytes ("PBL"). This chromosomal region can be defined by STS markers, e.g., between SHGC-81033 and D1S3249, G15944, GDB:191077, GDB:196442, RH68459, RH102597, RH69635, or RH65132, or fragments thereof, such as fragments which comprise two or more genes.

The gene for human erythroid alpha spectrin (SPTA1) is distal to the GPCR thymus-restricted family. It is expressed in bone marrow cells, and is localized to the red cell membrane (Wilmotte et al., Blood, 90(10):4188-96, 1997). Next to it, is another cluster of genes coding for proteins that resemble the olfactory GPCR family. These include XM_060956 (TMD0304), XM_060957 (TMD0888), and XM_060959 (TMD089), and are expressed predominantly in the bone marrow, although other sites of expression are observed as well. See, e.g., Table 1. This chromosomal region can be defined by STS markers, e.g., between GDB:181583 or RH118729, and D1S2577 or SHGC-145403.

The gene for myeloid cell nuclear differentiation antigen ("MNDA") is next. MNDA is also expressed in bone marrow cells, particularly in normal and neoplastic myelomonocytic cells and a subset of normal and neoplastic B lymphocytes (Miranda et al., Hum. Pathol., 30(9):1040-9, 1999).

The phrase "immune system" indicates any processes and cells which are involved in generating and carrying out an immune response. Immune system cells includes, but are not limited to, e.g., stem cells, pluripotent stem cell, myeloid progenitor, lymphoid progenitor,

10

15

20

25

30

lymphocytes, B-lymphocytes, T-lymphocytes (e.g., naive, effector, memory, cytotoxic, etc.), thymocytes, natural killer, erythroid, megakaryocyte, basophil, eosinophil, granulocytemonocyte, accessory cells (e.g., cells that participate in initiating lymphocyte responses to antigens), antigen-presenting cells ("APC"), mononuclear phagocytes, dendritic cells, macrophages, alveolar macrophages, etc., and any precursors, progenitors, or mature stages thereof.

Table 1 is a summary of the genes and their expression patterns in accordance with the present invention. The genes and the polypeptides they encode can be used as diagnostic, prognostic, therapeutic, and research tools for any conditions, diseases, disorders, or applications associated with the tissues and cells in which they are expressed.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

In view of their selectivity and display on the cell surface, the olfactory GPCR family members of the present invention are a useful target for histological, diagnostic, and therapeutic applications relating to the cells in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies to identify bone marrow and thymus tissue, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc.

Useful antibodies or other binding partners include those that are specific for parts of the

10

15

20

25

30

polypeptide which are exposed extracellularly as indicated in Table 2. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo (e.g., bone marrow cells or peripheral blood lymphocytes can be treated ex vivo and then returned to the body).

The expression patterns of the selectively expressed polynucleotides disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by a tissue. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of expressed sequences disclosed herein provides an example of such a tissue expression profile. It can be used as a point of reference to compare and characterize samples. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue, to determine the origin of metastatic cells, to assess the physiological status of a tissue, to determine the effect of a particular treatment regime on a tissue, to evaluate the toxicity of a compound on a tissue of interest, etc.

For example, the tissue-selective polynucleotides disclosed herein represent the configuration of genes expressed by a normal tissue. To determine the effect of a toxin on a tissue, a sample of tissue can be obtained prior to toxin exposure ("control") and then at one or more time points after toxin exposure ("experimental"). An array of tissue-selective probes can be used to assess the expression patterns for both the control and experimental samples. As discussed in more detail below, any suitable method can be used. For instance, a DNA microarray can be prepared having a set of tissue-selective genes arranged on to a small surface area in fixed and addressable positions. RNA isolated from samples can be labeled using reverse transcriptase and radioactive nucleotides, hybridized to the array, and then expression levels determined using a detection system. Several kinds of information can be extracted: presence or absence of expression, and the corresponding expression levels. The normal tissue would be expected to express substantially all the genes represented by the tissue-selective probes. The various experimental conditions can be compared to it to determine whether a gene is expressed, and how its levels match up to the normal control.

While the expression profile of the complete gene set represented by the sequences disclosed here may be most informative, a fingerprint containing expression information from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify

10

15

20

25

30

the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, because of heterogeneity of the population, as well differences in the particular physiological state of the tissue, a tissue's "normal" expression profile is expected to differ between samples, albeit in ways that do not change the overall expression pattern. As a result of these individual differences, each gene although expressed selectively in spleen, may not on its own 100% of the time be adequately enough expressed to distinguish said tissue. Thus, the genes can be used in any of the methods and processes mentioned above and below as a group, or one at a time.

Binding partners can also be used as to specifically deliver therapeutic agents to a tissue of interest. For example, a gene to be delivered to a tissue can be conjugated to a binding partner (directly or through a polymer, etc.), in liposomes comprising cell surface, and then administered as appropriate to the subject who is to be treated. Additionally, cytotoxic, cytostatic, and other therapeutic agents can be delivered specifically to the tissue to treat and/or prevent any of the conditions associated with the tissue of interest.

The present invention relates to methods of detecting immune system cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene selected from Table 1, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 3, 4, 8, 9, 14, 15, 22, 23, 27, 28, 35, 36, 42, 43, 49, 50, 57, and 58 (see, Table 5), and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting an immune system cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by gene selected from Table 1, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be

10

15

20

25

30

accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 2.

As indicated above, binding partners can be used to deliver agents specifically to the immune system, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to an immune cell can comprise, e.g., contacting an immune cell with an agent coupled to binding partner specific for a gene selected from Table 1 (i.e., TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM 060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959)), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the immune system can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

The maturation of the immune system can also be modulated in accordance with the

10

15

20

25

30

present invention, e.g., by methods of modulating the maturation of an immune system cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 1, or a mammalian homolog thereof, whereby the maturation of an immune cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

The phrase "immune system cell maturation" includes indirect or direct effects on immune system cell maturation, i.e., where modulating the gene directly effects the maturational process by modulating a gene in a immune system cell, or less directly, e.g., where the gene is expressed in a cell-type that delivers a maturational signal to the immune system cell. Immune system maturation includes B-cell maturation, T-cell maturation, such as positive selection, negative selection, apoptosis, recombination, expression of T-cell receptor genes, CD4 and CD8 receptors, antigen recognition, MHC recognition, tolerization, RAG expression, differentiation, TCR expression, antigen expression, etc. See also below and, e.g., Abbas et al., *Cellular and Molecular Immunology*, 4th Edition, W.B. Saunders Company, 2000, e.g., Pages 149-160. Process include reception of a signal, such as cytokinin or other GPCR ligand. Any suitable agent can be used, e.g., agents that block the maturation, such as an antibody to a GPCR of Table 1, or other GPCR antagonist.

The interactions between lymphoid and non-lymphoid immune system cells can also be modulated comprising, e.g., contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 1, or a mammalian homolog thereof, whereby the interaction is modulated. Lymphoid cells, includes, e.g., lymphocytes (T- and B-), natural killer cells, and other progeny of a lymphoid progenitor cell. Non-lymphoid cells include accessory cells, such as antigen presenting cells, macrophages, mononuclear phagocytes dendritic cells, non-lymphoid thymocytes, and other cell types which do not normally arise from lymphoid progenitors. Interactions that can be modulated included, e.g., antigen presentation, positive selection, negative selection, progenitor cell differentiation, antigen expression, tolerization, TCR expression, apoptosis. See, also above and below, for other immune system processes.

Promoter sequences obtained from GPCR genes of the present invention can be utilized to selectively express heterologous genes in immune system cells. Methods of

expressing a heterologous polynucleotide in immune system cells can comprise, e.g., expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected from Table 5. In addition to the cell lines mentioned below, the construct can be expressed in primary cells, such as thymocytes, bone marrow cells, stem cells, lymphoid progenitor cells, myeloid progenitor cells, monocytes, antigen presenting cells, macrophages, and cell lines derived therefom, cell lines such as JHK3 (CRL-10991), KG-1 (CCL-246), KG-1a (CCL-246.1), U-937 (CRL-1593.2), VA-ES-BJ (CRL-2138), TUR (CRL-2367), ELI (CRL-9854), 28SC (CRL-9855), KMA (CRL-9856), THP-1 (TIB-2002), WEHI-274.1 (CRL-1679), M-NFS-60 (CRL-1838), MH-S (CRL-2019), SR-4987 (CRL-2028),NCTC 3749 (CCL-461), AMJ2-C8 (CRL 2455), AMJ2-C11 (CRL2456), PMJ2-PC (CRL-2457), EOC2 (CRL-2467), as well as any primary and established immune system cell lines.

15 Thymus

5

10

20

25

30

The thymus is the site of T-cell lymphocyte maturation. Immature lymphocytes migrate into the thymus from the bone marrow and other organs in which they are generated. The selection process that shape the antigen repertoire of T-cells takes place in the thymus organ. Both positive and negative selection processes take place. For a review, see, e.g., Abbas et al., Cellular and Molecular Immunology, 4th Edition, W.B. Saunders Company, 2000, e.g., Pages 126-130 and 149-160.

There are various diseases and disorders related to thymus tissue, including, but not limited to, thymic carcinoma, thymoma, Omenn syndrome, autoimmune diseases, allergy, Graves disease, Myasthenia gravis, thymic hyperplasia, DiGeorge syndrome, Good syndrome, promoting immune system regeneration after bone marrow transplantation, immuno-responsiveness, etc. The thymic selective genes and polypeptides encoded thereby can be use to treat or diagnose any thymic condition. For instance, chemotherapeutic and cytotoxic agents can be conjugated to thymic selective antibodies and used to ablate a thymoma or carcinoma. They can be used alone or in combination with other treatments. See, e.g., Graeber and Tamin, Semin. Thorac. Cardiovasc. Surg., 12:268-277, 2000; Loehrer, Ann. Med., 31 Suppl. 2:73-79, 1999.

Bone marrow

5

10

15

20

25

30

All circulating blood cells in the adult, including all immature lymphocytes, are produced in the bone marrow. In addition, the bone marrow is also the site of B-cell maturation. The marrow consists of a spongelike reticular framework located between long trabeculae. It is filled with fat cells, stromal cells, and precursor hematopoietic cells. The precursors mature and exit through the vascular sinuses

All the blood cells are believed to arise from a common stem cell. Lineages that develop from this common stem cell include, e.g., myeloid and lymphoid progenitor cells. The myeloid progenitor develops into, erythrocytes (erythroid), platelets (megokaryocytic), basophils, eosinophils, granulocytes, neutrophils, and monocytes. The lymphoid progenitor is the precursor to B-lymphocytes, T-lymphocytes, and natural killer cells.

There are various diseases and disorders related to bone marrow, including, not limited to, e.g., red cell diseases, aplastic anemia (e.g., where there is a defect in the myeloid stem cell), pure red cell aplasia, white cell diseases, leukopenia, neutropenia, reactive (inflammatory) proliferation of white cells and nodes such as leukocytosis and lymphadenitis, neoplastic proliferation of white cells, malignant lymphoma, Non-Hodgkin's Lymphomas, Hodgkins disease, acute leukemias (e.g., acute lymphoblastic leukemia, acute myeloblastic leukemia, myelodysplatic snydrome), chromic myeloid leukemia, chronic leukemia. hairy cell leukemia, myeloproliferative disorders, plasma cell disorders, multiple myeloma, histiocytoses, etc.

Immune System Selective Genes

The present invention relates to genes involved in the function and activity of the immune system. XM_062147 (TMD0088) and XM_061676 (TMD0045) code for seven membrane spanning polypeptides which are homologous to members of the olfactory G-protein-coupled receptor ("GPCR") family. XM_062147 is expressed predominantly in bone marrow tissue, with no detectable expression in other tissues. XM_061676 is also expressed predominantly in bone marrow tissue, but it is detected in peripheral blood lymphocytes, as well. As discussed in more detail below, XM_062147 (TMD0088), XM_061676 (TMD0045), and the polypeptides they encode, can be used as diagnostic, prognostic, therapeutic, and research tools for any conditions, diseases, disorders, or applications

associated with the immune system and the cells in which they are expressed.

5

10

15

20

25

30

In view of their selectivity and display on the cell surface, the GPCR family members of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., B-cells and B-cell progenitors) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies to identify bone marrow, lymphocytes, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 2. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo (e.g., bone marrow cells or peripheral blood lymphocytes can be treated ex vivo and then returned to the body). Ex vivo methods can be used to eliminate cancerous cells from the bone marrow, to modulate bone marrow cells, to prime bone marrow cells for an immune response, to expand a particular class of cells expressing XM_062147 (TMD0088) or XM 061676 (TMD0045), to transfer genes into said cells (e.g., Banerjee and Bertino, Lancet Oncol., 3:154-158, 2002), etc.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The phrase "immune system" indicates any processes and cells which are involved in

10

15

20

25

30

generating and carrying out an immune response. Immune system cells includes, but are not limited to, e.g., stem cells, pluripotent stem cell, myeloid progenitor, lymphoid progenitor, lymphocytes, B-lymphocytes, T-lymphocytes (e.g., naive, effector, memory, cytotoxic, etc.), thymocytes, natural killer, erythroid, megakaryocyte, basophil, eosinophil, granulocytemonocyte, accessory cells (e.g., cells that participate in initiating lymphocyte responses to antigens), antigen-presenting cells ("APC"), mononuclear phagocytes, dendritic cells, macrophages, etc., and any precursors, progenitors, or mature stages thereof.

XM_062147 contains seven transmembrane segments. It is located on chromosomal band 11q12 within proximity to the locus for an inherited form of atopic hypersenstivity (OMIM 147050, e.g., associated with asthma, hay fever, and eczema). It has been suggested that the condition is a result of defect in the regulation of immunoglobulin E. XM_061676 also is seven membrane spanning polypeptide. The chromosomal locus, 11p15, to which it maps is rich in genes associated with immune disorders, including Fanconi anemia, nucleoporin, myeloid leukemia, and T-cell lymphoblastic leukemia. Arthrogryposis multiplex congenita (distal type IIB) also maps closely to this chromosomal location.

The present invention relates to methods of detecting immune system cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene selected from Table 6, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 67, 68, 76, and 77 (see, Table 6), and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting an immune system cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by gene selected from Table 6, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be

10

15

20

25

30

accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 7.

As indicated above, binding partners can be used to deliver agents specifically to the immune system, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to an immune cell can comprise, e.g., contacting an immune cell with an agent coupled to binding partner specific for a gene selected from Table 6, whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the immune system can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos. 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

The maturation of the immune system can also be modulated in accordance with the present invention, e.g., by methods of modulating the maturation of an immune system cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 6, or a mammalian homolog thereof,

10

15

20

25

30

PCI

whereby the maturation of an immune cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

The phrase "immune system cell maturation" includes indirect or direct effects on immune system cell maturation, i.e., where modulating the gene directly effects the maturational process by modulating a gene in a immune system cell, or less directly, e.g., where the gene is expressed in a cell-type that delivers a maturational signal to the immune system cell. Immune system maturation includes B-cell maturation, T-cell maturation, such as positive selection, negative selection, apoptosis, recombination, expression of T-cell receptor genes, CD4 and CD8 receptors, antigen recognition, MHC recognition, tolerization, RAG expression, differentiation, TCR expression, antigen expression, etc. See also below and, e.g., Abbas et al., Cellular and Molecular Immunology, 4th Edition, W.B. Saunders Company, 2000, e.g., Pages 149-160. Processes include reception of a signal, such as cytokinin or other GPCR ligand. Any suitable agent can be used, e.g., agents that block the maturation, such as an antibody to a GPCR of Table 6, or other GPCR antagonist.

The interactions between lymphoid and non-lymphoid immune system cells can also be modulated comprising, e.g., contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from Table 6, or a mammalian homolog thereof, whereby the interaction is modulated. Lymphoid cells, includes, e.g., lymphocytes (T- and B-), natural killer cells, and other progeny of a lymphoid progenitor cell. Non-lymphoid cells include accessory cells, such as antigen presenting cells, macrophages, mononuclear phagocytes dendritic cells, non-lymphoid thymocytes, and other cell types which do not normally arise from lymphoid progenitors. Interactions that can be modulated included, e.g., antigen presentation, positive selection, negative selection, progenitor cell differentiation, antigen expression, tolerization, TCR expression, apoptosis. See, also above and below, for other immune system processes.

Promoter sequences obtained from GPCR genes of the present invention can be utilized to selectively express heterologous genes in immune system cells. Methods of expressing a heterologous polynucleotide in immune system cells can comprise, e.g., expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said

promoter sequence is selected from Table 6. In addition to the cell lines mentioned below, the construct can be expressed in primary cells, such as thymocytes, bone marrow cells, stem cells, lymphoid progenitor cells, myeloid progenitor cells, monocytes, B-cells, antigen presenting cells, macrophages, and cell lines derived therefrom.

5

10

15

20

25

30

Kidney Selective Genes

The present invention relates to genes and polypeptides which are selectively expressed in kidney tissues: TMD0049 (XM 057351), TMD0190 (XM 087157), TMD0242 (XM 088369), TMD0335 (XM 089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM 059548), TMD0731 (XM 059703), TMD0785 (XM 060310), TMD0841 (XM 060623), TMD1114 (NM 019841), and/or TMD 1148 (XM_087108). These genes and polypeptides are expressed predominantly in kidney tissues, making them, and the polypeptides they encode, useful as selective markers for kidney tissue and function, as well as diagnostic, prognostic, therapeutic, and research tools for any conditions, diseases, disorders, or applications associated with the kidney and the cells in which they are expressed. TMD0049 (XM 057351), TMD0190 (XM 087157), TMD0242 (XM 088369), TMD0335 (XM 089960), TMD0371, TMD0374, TMD0469 (XM 038736), TMD0719 (XM 059548), TMD0731 (XM 059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM 019841), and/or TMD 1148 (XM 087108) includes both human and mammalian homologs of it. SEQ ID NOS 78-103 represent particular alleles, but the present invention relates to other alleles, including naturally-occurring polymorphisms (i.e., a polymorphism in the nucleotide sequence which is identified in populations of mammals) and homologs thereof. More information on these genes is summarized in Tables 8-11.

In view of their selectivity and display on the cell surface, the polypeptides and polynucleotides of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., juxtaglomerular cells which secrete renin, peritubular cells, endothelial cells, e.g., of the cortex and outer medulla, mesangial cells which secrete inflammatory mediators including NO and products of cyclooxygenase, visceral epithelial cells, parietal epithelial cells, podocytes, early proximal tubule cells which secrete, e.g., angiotensin converting enzyme and neutral endopeptidase, late distal tubule

10

15

20

25

30

cells that produce, e.g., prolyl endopeptidase, serine endopeptidase, carboxypeptidase, and neutral endopeptidase, renomedullary interstitial cells, etc) in which they are expressed.

Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited

to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies, to identify kidney, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the

polypeptide which are exposed extracellularly as indicated in Table 9. Any of the methods

described above and below can be accomplished in vivo, in vitro, or ex vivo.

etc., or more) in that tissue when compared to other tissue-types.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold,

The present invention relates to methods of detecting kidney cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below,

10

15

20

25

30

such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 104, 105, 107, 108, 111, 112, 115, 116, 119, 120, 122, 123, 126, 127, 131, 132, 135, 136, 138, 139, 142, 143, 145, 146, 149, 150, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a kidney cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 9.

As indicated above, binding partners can be used to deliver agents specifically to the kidney, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a kidney cell can comprise, e.g., contacting a kidney cell with an agent coupled to binding partner specific for TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the kidney can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target),

10

15

20

25

30

present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108) can be targeted, including, e.g., juxtaglomerular, peritubular, endothelial, mesangial, visceral epithelial, parietal epithelial, podocytes, early proximal tubule, late distal tubule, renomedullary interstitial, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

A kidney cell (see above for examples of kidney cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a kidney cell, comprising, e.g., contacting said cell with an agent effective to modulate TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), or the biological activity of a polypeptide encoded thereby, or a mammalian homolog thereof, whereby said kidney cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

10

15

20

25

30

An activity or function of the kidney cell can be modulated, including, e.g., glomerular filtration rate, filtration pressure, renal autoregulation (including via myogenic mechanism and tubuloglomerular feedback mechanism), tubular reabsorption, tubular secretion, and renal clearance. In addition, the transcription, translation, synthesis, degradation, expression, etc., of any secretory or polypeptide produced by a kidney cell can be modulated, including, but not limited to, renin-angiotensin activity, production and secretion of prostaglandins, nitric oxide, kallikrein, adenosine, endothelin, erythropoietin, and other hormones, enzymes, and other secretory and intracellular factors. The response of a kidney cell to stimuli can also be modulated, including, but not limited to, ligands to TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM 089960), TMD0371, TMD0374, TMD0469 (XM 038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108), oxygen levels, blood pressure, etc.

The present invention also relates to polypeptide detection methods for assessing kidney function, e.g., methods of assessing kidney function, comprising, detecting a polypeptide coded for by TMD0049 (XM 057351), TMD0190 (XM_087157), TMD0242 (XM 088369), TMD0335 (XM 089960), TMD0371, TMD0374, TMD0469 (XM 038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM 060623), TMD1114 (NM 019841), and/or TMD 1148 (XM_087108), fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of kidney function. Kidney function tests are usually performed to determine whether the kidney is functioning normally as a way of diagnosing kidney disease. Various tests are commonly used, including, e.g., BUN (blood urea nitrogen), serum creatinine, estimated GFR, ability to concentrate urine, BUN/creatine ratio, urine sodium and other electrolytes, urine NAG (N-acetyl-beta-glucosaminidase, adenosine deaminase, urinary alkaline phosphatase, serum and urine beta-2-microglobulin, serum uric acid, isotope scans, Doppler sonogram, positron emission tomography, specific gravity of urine, microalbumin, total protein, etc. Detection of TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM 038736), TMD0719 (XM 059548), TMD0731 (XM_059703), TMD0785 (XM 060310), TMD0841 (XM 060623), TMD1114 (NM 019841), and/or TMD 1148

(XM_087108) provides an additional assessment tool, especially in diseases such as chromic renal failure, urinary tract infections, kidney stones, nephrotic syndrome, nephritic syndrome, kidney disease due to diabetes or high blood pressure, etc., As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired kidney function. Values can be determined routinely, as they are for other kidney function markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc.

Promoter sequences obtained from genes of the present invention can be utilized to selectively express heterologous genes in kidney cells. Methods of expressing a heterologous polynucleotide in kidney cells can comprise, e.g., expressing a nucleic acid construct in kidney cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NOS 106, 109, 110, 113, 114, 117, 118, 121, 124, 125, 128-130, 133, 134, 137, 140, 141, 144, 147, 148, and 151. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

Kidney

5

10

15

20

25

30

The kidney maintains the constancy of fluids in an organism's internal environment, and is therefore of great importance in maintaining health and vitality. Each day, the kidney filters the blood, removing and concentrating toxins, metabolic wastes, and excess ions, allowing them to be excreted by the body in the form of urine. The excretory function of the kidney is performed by over one million blood units called nephrons, each a miniature blood filtering and processing unit. A nephron consists of a glomerulus, a tuft of capillaries, and a renal tubule. In addition to their excretory function, kidneys produce a number of different hormones, enzymes, and other secreted molecules, including the enzyme renin and the hormone erythropoietin. The kidney also is responsible for metabolizing vitamin D into its active form, calcitriol. For a full description of the kidney's function and structure, see, e.g., *Human Anatomy and Physiology*, Marieb, E.N., 3rd Edition, Benjamin/Cummings Publishing Company, Inc., 1995, pp 896-923.

The glomerulus is a high pressure capillary bed which filters out most substances smaller than large plasma proteins across the fenestrated glomerular epithelium, the

10

15

20

25

30

intervening basement membrane, and the podocyte-containing visceral membrane of the glomerulus capsule. The external layer of the glomerulus is called the parietal layer, consisting predominally of a squamous epithelium. This layer is structural. Underneath it, is the visceral layer which consists of the modified branching epithelial cells called podocytes. These sit on top of the fenestratrated glomerular endothelium. The glomerulus is connected to the renal tubule, a highly differentiated and long tube, having three major elements: the proximal convoluted tubule, the loop of Henel, and the distal convoluted tubule. Different

regions of the tubule have different functions in absorption and secretion.

Renal cells produce a variety of different hormones and chemicals, including, prostaglandins, nitric oxide, kallikrein family, adenosine, endothelin family, renin, erythropoietin, aldosterone, antidiuretic hormone (vasopressin), natriuretic hormones, etc. Renin is involved in modulating blood pressure. It cleaves angiotensinogen, a plasma peptide, splitting off a fragment containing 10 amino acids called angiotensin I. Angiotensin I is cleaved by a peptidase secreted by blood vessels called angiotensin converting enzyme (ACE), producing angiotensin II, which contains 8 amino acids. Angiotensin II has many direct effects on blood pressure. Erythropoietin stimulates red blood cell production in the bone marrow.

TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108) can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the kidney. These include, but are not limited to, diseases that affect the four basic morphologic components, glomeruli, tubules, interstitium, and blood vessels. Diseases include, e.g., acute nephritic syndrome, nephritic syndrome, renal failure, urinary tract infections, renal stones, cystic diseases of the kidney, e.g., cystic renal dysplasia, polycystic disease (autosomal dominant and recessive types), medullary cystic disease, acquired cystic disease, renal cysts, parenchymal cysts, perihilar renal cysts (pyelocalyceal cysts, hilar lymphangitic cysts), glomerular diseases, diseases of tubules, tubulointerstitial diseases, tumors of the kidney, such as benign tumors (cortical adenoma, renal fibroma, renomedullary interstitial cell tumor), malignant tumors (renal cell carcinoma, hypernephroma,

adenocarcinoma of kidney, Wilms' tumor, nephroblastoma, urothelial carcinoma), renal coloboma, nephorblastoma, clear cell sarcoma of kidney (CCSK), rhabdoid tumor of kidney (RTK), von Hippel-Lindau disease, oncocytoid renal cell carcinoma (RCC), renal leiomyoblastoma, etc. TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108) can also be used for staging and classifying conditions and diseases of the present invention, alone, or in combination with conventional staging and classification schemes.

10

15

20

25

30

5

Pancreatic Gene Complex

The present invention relates to a cluster of olfactory GPCR (G-protein coupled) receptor genes located at chromosomal band 11q24. These genes are expressed predominantly in pancreatic tissue, establishing this region of chromosome 11 as a unique gene complex involved in pancreatic function. See, Table 12. Because of their exquisite selectivity for pancreatic tissues, the pancreatic gene complex ("PGC"), and the genes which comprise it, are useful to assess pancreas tissue and function for diagnostic, prognostic, therapeutic, and research purposes.

The spatial organization of the pancreatic gene complex ("PGC") is illustrated in Fig. 7. It spans several hundred kilobases of chromosome 11, e.g., from about LOC160205 to LOC119954, from about LOC119944-LOC119954, and any part thereof. Within this region, is a cluster of genes coding for polypeptides which share sequence identity with the olfactory GPCR family. These include, but are not limited to, TMD0986, XM_061780 (TMD0987), XM_061781 (TMD0353), XM_061784 (TMD0989), XM_061785 (TMD058). Fig. 8 illustrates the relationship between the lengths of the different coding sequences. As shown in the figure, XM_061784 is shorter at its C-terminus than the other family members.

As members of the GPCR family, the PGC genes all share a degree of amino acid sequence identity and similarity. See, Table 14 for values (% sequence identity is the first place; % sequence similarity is in parenthesis in the second place; calculations were performed using the publicly-available BLASTP pair-wise alignment program). TMD0986, XM_061780, XM_061781, and XM_061785 each share about 40% sequence identity.

BLAST searching of publicly available sequences indicates that these polypeptides share less amino acid sequence identity with each other than they do with other olfactory GPCR homologs located elsewhere in the genome. Significantly higher amino acid sequence identity – 81% – is observed between the adjacent genes XM_061784 and XM_061785. These genes appear to be part of a sub-cluster within PGC that share high polypeptide similarity between them.

The phrase "a gene of Table 12" which is used throughout the description include the specific sequences for the listed XM numbers as well as other human alleles, and mammalian homologs, such as murine homologs. For example, Table 14 lists several of the mouse homologs that are included in the present invention. While SEQ ID NOS. 152, 153, 162, 163, 167, 168, 171, 172, 175, and 176 may represent particular alleles, the present invention relates to other alleles, as well, including naturally-occurring polymorphisms (i.e., a polymorphism in a nucleotide sequence which is identified in populations of mammals).

TMD0986 (SEQ ID NO 152 and 153) is a full-length sequence of the previously identified XM_061779. It contains an additional 117 amino acids not present in XM_061779. The present invention relates to nucleic acids comprising or consisting essentially of this sequence in its entirety (e.g., amino acids 1-314), comprising or consisting essentially of nucleic acids coding for amino acids 1-117, and comprising or consisting essentially of fragments of nucleic acids coding for amino acids 1-117. Polypeptides encoded by these nucleic acids are also claimed, including polypeptide fragments of 1-117, such as 1-23, 79-97, 164-198, 261-274, and other extracellularly exposed peptides. In addition, the present invention relates to binding partners, such as antibodies, that bind to epitopes within amino acids 1-117 (e.g., SEQ ID NO 153).

25 Pancreas

5

10

15

20

30

Diabetes and other pancreatic disorders are a major health concern. Worldwide, it is estimated that 5-10% of the population suffers from some form of diabetes. Pancreatic cancer is the fifth leading cause of cancer-related mortality. In 2002, it was estimated that about 30,000 Americans would be diagnosed with pancreatic cancer, and 90% would die within 12 months. Despite the prevalence of pancreatic disease, the genetics and physiology of normal pancreatic function and pancreatic disease is still poorly understood.

5

10

15

20

25

30

The pancreas is a mixed gland comprised of exocrine and endocrine tissues. The exocrine portion comprises about 80-85% of the organ. It is divided into lobes by connective tissue septa, and each lobe is divided into several lobules. These lobules are composed of grape-like clusters of secretory cells that form sacs known as acini. An acinus is a functional unit of the pancreatic exocrine gland. All acini drain into interlobular ducts which merge to form the main pancreatic duct. It, in turn, joins together with the bile duct from the liver to form the common bile duct that empties into the duodenum. Pancreatic acinar cells make up more than 80% of the total volume of the pancreas and function in the secretion of the various enzymes that assist digestion in the gastrointestinal tract. Scattered among the acinar cells are approximately a million pancreatic islets ("islets of Langerhans") that secrete the pancreatic endocrine hormones. These dispersed islets comprise approximately 2% of the total volume of the pancreas.

The basic function of the pancreatic endocrine cells is to secrete certain hormones that participate in the metabolism of proteins, carbohydrates, and fats. The hormones secreted by the islets include, e.g., insulin, glucagon, somatostatin, pancreatic polypeptide, amylin, adrenomedullin, gastrin, secretin, and peptide-YY. See, also, Shimizu et al., *Endocrin.*, 139:389-396, 1998. The islets contain about four major and two minor cell types. The major cell types are alpha (glucagon producing), beta (insulin and amylin producing), delta (somatostatin producing which suppresses both insulin and glucagon release), and F (pancreatic polypeptide and adrenomedullin producing) cells. The minor cell types are D1 (produce vasoactive intestinal peptide or VIP) and enterochromaffin (produce serotonin) cells. The cells can be distinguished, e.g., by their morphology, hormonal content, and polynucleotide expression patterns.

The ability of the pancreas to respond to a wide variety of metabolic signals is conferred by an expression profile comprising a rich assortment of receptor proteins. G-protein coupled receptors have been previously identified in the pancreas, including, e.g., receptors for glucagon, secretin, CCK (e.g., Roettger et al., *J. Cell Biol.*, 130:579-590, 1995), purines (e.g., P2 purinoreceptors), gastrin, KiSS-1 peptides (e.g., Kotani et al., *J. Biol. Chem.*, 276:34631-6, 2001), adrenomedullin (Martinez et al., *Endocrin.*, 141:406, 2000), and interleukins. G-protein subunits have also been localized to the pancreas, including G-proteins which were previously associated with the olfactory epithelium. See, e.g., Zigman et

10

15

20

25

30

al., *Endocrin.*, 133:2508-2514, 1993. In addition, pancreatic cells express neurotropin, neurotensin, and interleukin receptors.

As mentioned, the pancreas is sensitive to a variety of metabolic, soluble and hormonal signals involved in regulating blood sugar, modulating synthesis and release of pancreatic digestive enzymes, and other physiologically important processes involved in pancreas function. In analogy to the ability of olfactory receptors to detect odors and pheromones in the environment, the pancreatic GPCRs of the present invention can be used to "sniff" out and respond to various ligands in the blood which pass through the pancreas, including peptides, metabolites, and other biologically-active molecules. Biological activities include, but are not limited to, e.g., regulation of blood sugar, modulation of all aspects of the various secreted polypeptides (hormones, enzymes, etc.) produced by the pancreas, ligand-binding, exocytosis, amylase (and any of the other 20 or so digestive enzymes produced by the pancreas) secretion, autocrine responses, apoptosis (e.g., in the survival of beta-islet cells), zymogen granule processing, G-protein coupling activity, etc.

The polynucleotides, polypeptides, and ligands thereto, of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of pancreas. These include, but are not limited to, e.g., disorders associated with loss or mutation to 11q24, such as Jacobsen syndrome (OMIM #147791), cystic fibrosis, acute and chronic pancreatitis, pancreatic abscess, pancreatic pseudocyst, nonalcoholic pancreatitis, alcoholic pancreatitis, classic acute hemorrhagic pancreatitis, chronic calcifying pancreatitis, familial hereditary pancreatitis, carcinomas of the pancreas, primary (idiopathic) diabetes (e.g., Type I (insulin dependent diabetes mellitus, IDDM) [insulin deficiency, beta cell depletion], Type II (non-insulin dependent diabetes mellitus, NIDDM) [insulin resistance, relative insulin deficiency, mild beta cell depletion]), nonobese NIDDM, obese NIDDM, maturity-onset diabetes of the young (MODY), islet cell tumors, diffuse hyperplasia of the islets of Langerhans, benign adenomas, malignant islet tumors, hyperfunction of the islets of Langerhans, hyperinsulinism and hypoglycemia, Zollinger-Ellison syndrome, beta cell tumors (insulinoma), alpha cell tumors (glucagonoma), delta cell tumors (somatostatinoma), vipoma (diarrheogenic islet cell tumor), pancreatic cancers, pancreatic carcinoid tumors, multihormonal tumors, multiple endocrine neoplasia (MEN), MEN I (Wermer syndrome), MEN II (Sipple syndrome), MEN III or IIb, pancreatic endocrine tumors, etc.

5

10

15

20

25

30

In view of its selectivity and display on the cell surface, the olfactory GPCR family members of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., pancreatic progenitor, exocrine, endocrine, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells, in biopsies to identify bone marrow, lymphocytes, etc. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 14. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

The present invention relates to methods of detecting pancreas cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene of Table 12, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and

10

15

20

25

30

technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 154, 155, 164, 165, 169, 170, 173, 174, 177, and 178, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a pancreas cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by a polypeptide of Table 12, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface as indicated in Table 14.

As indicated above, binding partners can be used to deliver agents specifically to the pancreas, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a pancreas cell can comprise, e.g., contacting a pancreas cell with an agent coupled to a binding partner specific for a polypeptide coding for a gene of Table 12, whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the pancreas can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by a gene of Table 12 can be targeted, including, e.g., pancreatic progenitor, exocrine, endocrine, secretory, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body.

Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose. See, Bruehlmeier et al., *Nucl. Med. Biol.*, 29:321-327, 2002, for imaging pancreas using labeled receptor ligands. Antibodies and other ligands to receptors of the present invention can be used analogously.

5

10

15

20

25

30

A pancreas cell (see above for examples of pancreas cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a pancreas cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene of Table 12, or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NO 153, 163, 168, 172, or 176), or a mammalian homolog thereof, whereby said pancreas cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

An activity or function of the pancreas cell can be modulated, including, e.g., regulation of blood sugar, modulation of all aspects of the various secreted polypeptides (hormones, enzymes, etc.) produced by the pancreas, ligand-binding, exocytosis, amylase (and any of the other 20 or so digestive enzymes produced by the pancreas) secretion, autocrine responses, apoptosis (e.g., in the survival of beta-islet cells), etc.

The present invention also relates to polypeptide detection methods for assessing pancreas function, e.g., methods of assessing pancreas function, comprising, detecting a polypeptide coded for by a gene of Table 12, fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of pancreas function. Pancreas function tests are usually performed to determine whether the pancreas is functioning normally as a way of diagnosing pancreas disease. Various tests are commonly used, including, e.g., assays for the presence of pancreatic enzymes in body fluids (e.g.,

PCT/US03/11497

WO 03/089583

5

10

15

20

25

30

amylase, serum lipase, serum trypsin-like immuoreactivity), studies of pancreatic structure (e.g., using x-ray, sonography, CT-scan, angiography, endoscopic retrograde cholangiopancreatography), and tests for pancreatic function (e.g., secretin-pancreozymin (CCK) tst, Lundh meal test, Bz-Ty-PABA test, chymotrypsin in feces, etc). Detection of a polypeptide coded for by a gene of Table 12 provides an additional assessment tool, especially in diseases such as pancreatitis and pancreatic cancer where pancreatic markers can appear in the blood, stool, urine, and other body fluids. As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired pancreas function. Values can be determined routinely, as they are for other markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc., in analogy to the tests for pancreatic enzymes in body fluids.

Promoter sequences obtained from GPCR genes of the present invention can be utilized to selectively express heterologous genes in pancreas cells. Methods of expressing a heterologous polynucleotide in pancreas cells can comprise, e.g., expressing a nucleic acid construct in pancreas cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NOS 156-161, 166, 179, or 180. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

The genes and polypeptides of Table 12 can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the pancreas as mentioned above. The present invention relates to methods of identifying a pancreatic disease or pancreatic disease-susceptibility, comprising, e.g., determining the association of a pancreatic disease or pancreatic disease-susceptibility with a nucleotide sequence present within the pancreatic gene complex. An association between a pancreas disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target.

Any region of the pancreatic gene complex can be used as a source of the DNA marker (e.g., a nucleotide sequence present with PGC), including, e.g., TMD0986,

XM_061780 (TMD0987), XM_061781 (TMD0353), XM_061784 (TMD0989), XM_061785 (TMD058), and any part thereof, introns, intergenic regions, any DNA from about 29160-29310 kb of 11q24, NT 009215, etc.

Human linkage maps can be constructed to establish a relationship between a region within 11q24 and a pancreatic disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the various individual molecular markers. Maps can be produced individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype.

Retina Selective Gene

5

10

15

20

25

30

The present invention relates to NM 013941 (GPCR181 or OR10C1), a multiple transmembrane spanning polypeptide which shares sequence identity with the olfactory Gprotein coupled receptor (GPCR) family. Like other GPCR, NM_013941 has seven transmembrane domains, at about amino acid positions 20-42, 54-76, 91-113, 134-156, 190-212, 233-255, and 265-287, of SEQ ID NO 182. It is located at about chromosomal band 6p21.31-22.2. There are several other GPCRs located nearby (e.g., OR2B3, AL022727; OR2J3, AL022727). NM_013941 is highly expressed in brain tissue, at lower levels in heart, pituitary, and skin, and at minimally detectable levels in colon, small intestine, kidney, lymphocytes, and mammary gland. In the neuronal tissue, it was selectively expressed in the retina, but was not detected in any other brain tissue regions. The selective expression of NM 013941 in the retina makes it useful as a marker for retinal tissue, e.g., in stem cell cultures and biopsy samples, as well as a diagnostic, prognostic, therapeutic, and research tool for any conditions, diseases, disorders, or applications associated with the retina and the cells in which it is expressed. NM 013941 includes both human and mammalian homologs of it (e.g., mouse XM 111729 which is similar to olfactory receptor MOR263-6). SEQ ID NOS. 181 and 182 represent a particular allele of NM 013941; the present invention relates to other alleles, as well, including naturally-occurring polymorphisms (i.e., a polymorphism in the nucleotide sequence which is identified in populations of mammals).

Thus, this region appears to be important in eye function.

5

10

15

20

25

30

The chromosomal region within which NM_013941 is located comprises a number of genes involved in retinal function. These include, e.g., retinal cone dystrophy (OMIM 602093) which appears to be a result of mutation in guanylate cyclase activator-1A (e.g., Payne et al., *Human Molec. Genet.*, 7:273-277, 1998), retinal degeneration slow (OMIM 179605) which appears to be a defect in specific retinal protein homologous to rod outer segment protein-1, retinitis pigmentosa-7, retinitis pigmentosa-14 (OMIM 600132) which is associated with a mutation in the tubby-like protein TULP1 (e.g., Banerjee et al., *Nature Genet.*, 18:177-179, 1998; Hagstrom et al., *Nature Genet.*, 18:174-176, 1998), and others.

In view of its selectivity and display on the cell surface, the olfactory GPCR family members of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to retinal cells. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat retinal carcinomas (e.g., retinoblastoma) in analogy to how c-erbB-2 antibodies are used to breast cancer. See, e.g., Hayashi et al., *Invest. Ophthalmol. Vis. Sci.*, 40:265-72, 1999 for an example treating retinoblastoma using HSV-TK. Transfer of the gene into the retinal cells can be achieved by incorporating the gene into liposomes which have been made cell-selective by incorporating a NM_013941 specific antibody into its bilayer. See, also, Wu and Wu, *J. Biol. Chem.*, 262: 4429-4432, 1987.

The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule

PCT/US03/11497 WO 03/089583 -33-

comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

5

10

15

20

25

30

The present invention relates to methods of detecting retinal cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for NM_013941 (e.g., SEQ ID NOS 181), or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 183 and 184, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a retinal cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by NM 013941 (e.g., SEQ ID NO 182), or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface.

As indicated above, binding partners can be used to deliver agents specifically to the retina, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a retinal cell can comprise, e.g., contacting a retinal cell with an agent coupled to binding partner specific for NM 013941 (SEQ ID NO 182), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the retinal can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent

10

15

20

25

30

is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by NM_013941 can be targeted, including, e.g., pigmented epithelial cells, photoreceptor cells, cones, rods, bipolar cells, ganglion cells, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose.

A retinal cell (see above for examples of retinal cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a retinal cell, comprising, e.g., contacting said cell with an agent effective to modulate NM_013941, or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NO 182), or a mammalian homolog thereof, whereby said retinal cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

Any activity or function of the retinal cell can be modulated, including, e.g., light reception, phototransduction, excitation of rods, excitation of cones, metabolism of vitamin A, retinal, rhodopsin, and other functional molecules, cGMP binding and hydrolysis, sodium channel flux, membrane potential, phosphodiesterase activity, G-protein activity and coupling, vitamin A processing, sodium pump activity, calcium flux, etc. The response of a retinal cell to stimuli can also be modulated, including, but not limited to, ligands to

NM 013941, light, ion levels, second messenger levels, etc.

Promoter sequences can be utilized to selectively express heterologous genes in retinal cells. Methods of expressing a heterologous polynucleotide in retinal cells can comprise, e.g., expressing a nucleic acid construct in retinal cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is obtained from NM_01394, e.g., on genomic NT_007592. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

10 Retina

5

15

20

25

30

The retina is a two-layered structure located on the back of the eye. It is the primary organ responsible for vision. The outer pigmented layer is comprised of pigmented epithelial cells that absorb light, preventing it from scattering in the eye, and store vitamin A needed by the photoreceptor cells. The inner neural layer is comprised of three main cell types: photoreceptor cells, bipolar cells, and ganglion cells. The local currents generated by a light stimulus spreads from the photoreceptor cells to the bipolar cells, and then on to the innermost ganglion cells. The optic disc is the exit site of the retinal ganglion axons which then bundle into the optic nerve

Photoreceptors consist of rods and cones which are the photosensitive cells of the retina. Each rod and cone elaborates a specialized cilium, called the outer segment, that contains the phototransduction machinery. The rods contain a specific light-absorbing visual pigment, rhodopsin. In humans, there are three classes of cones, each characterized by the expression of distinct visual pigments: the blue cone, green cone and red cone pigments. Each type of visual pigment protein is tuned to absorb light maximally at different wavelengths. The rod rhodopsin mediates scotopic vision (in dim light), whereas the cone pigments are responsible for photopic vision (in bright light). The red, blue and green pigments also form the basis of color vision.

NM_013941 can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the retinal. These include, but are not limited to, diseases that affect the basic morphologic components as mentioned above, e.g., the outer and inner cell layers, and the optic nerve the retina. Diseases include, e.g.,

10

15

20

25

30

PCT/US03/11497

retinal degeneration, retinal degenerations such as retinitis pigmentosa, Bardet-Biedl syndrome, Bassen-Kornzweig syndrome (abetalipoproteinemia), Best disease (vitelliform dystrophy), choroidemia, gyrate atrophy, congenital amaurosis, Refsum syndrome, Stargardt disease, Usher syndrome, macular degeneration (dry and wet forms), diabetic retinopathy, peripheral vitreoretinopathies, photic retinopathies, surgery-induced retinopathies, viral retinopathies (such as HIV retinopathy related to AIDS), ischemic retinopathies, retinal detachment, traumatic retinopathy, optic neuropathy, optic neuritis, ischemic optic neuropathy, Leber optic neuropathy, diseases of Bruch's membrane, glaucoma, cancer, retinoblastoma, cancer- associated retinopathy syndrome (CAR syndrome), melanomaassociated retinopathy (MAR), etc. NM_013941 can also be used for staging and classifying conditions and diseases of the present invention, alone, or in combination with conventional staging and classification schemes.

Spleen Gene Cluster

The present invention relates to a cluster of transmembrane and GPCR-type receptor genes located at chromosomal band 11q12.2. The genes of the present invention are expressed predominantly in the spleen (e.g., Fig. 10, lane 19) (hence, "spleen gene" cluster), as well as other tissues of the immune and reticuloendothelial system (RES), establishing this region of the chromosome as a unique gene complex involved in spleen, lymphoid, and/or reticuloendothelial function. TMD1030 and TMD0621 are highly expressed in spleen tissue, with insignificant levels in other tissues. In addition to spleen. TMD1029 and TMD1029 show significant expression in the liver and lymphocytes, as well. Because of their selectivity for spleen, lymphoid, and/or reticuloendothelial tissues, the gene complex, and the chromosomal region which comprises it, are useful to assess spleen, lymphoid, and/or reticuloendothelial tissue function and for diagnostic, prognostic, therapeutic, and research purposes. Information on the genes is summarized in Tables 15-19.

The spatial organization of the gene complex is illustrated in Fig. 11. The complex spans about at least 100 kb, from about EST markers G62658, SHGC-82134, etc. (located at the end closest to the centromere and TMD1030) to SHGC-154002, SHGC-9433, etc. (located at the end furthest from the centromere and TMD0621). All the genes have the same orientation of transcription. TMD1799 (XM_166849) (SEQ ID NO 193-194), located at the

10

15

20

25

30

PCT/US

upper region, shows very high expression in lymphocytes, but only marginal expression in spleen, indicating that expression in lymphocytes may predominate at the boundaries of the gene complex. In the lower region, TMD1027 (XM_166856) (SEQ ID NO 195-196), spleen expression virtually disappears, while lymph node expression becomes very high. The present invention includes this entire region, and any parts thereof. For instance, the present invention includes any DNA fragments within it which confer the observed tissue specificities described herein.

The gene complex is involved in spleen, immune, and RES functions. The spleen is located in the left upper region of the abdomen. In the adult, it weights about 90-180 grams, and is about 15 by 7.5 cm in size. The spleen is anatomically and functionally compartmentalized into two distinct regions, the red and white pulp. The red pulp comprises blood vessels interwoven with connective tissue ("pulp cords") that is lined with reticuloendothelial cells. It possesses a blood filtering function, removing opsonized cells and trapping abnormal red blood cells. It also is a storage reservoir for platelets and other blood cells. In the fetus, the red pulp has a hematopoietic function. Inside the red pulp, is lymphoid tissue know as the white pulp. Antibodies are made inside the white pulp. Similar to other lymphatic tissues, B- and T-cell's mature inside the white pulp, where they are involved in antigen presentation and lymphocyte maturation. The white pulp is clustered around the periarteriolar lymphoid sheath, and is comprised of follicles and marginal zone.

Naive B-cells are located in the primary follicle, memory cells, macrophages, and dendritic cells in the secondary follicle, and macrophages and B-cells in the marginal zone. The integrins LFA-1 and alpha4-beta1 are involved in localization of the B-cells to the marginal zone of the white pulp (Lu and Cyster, Science, 297:409, 2002).

The reticuloendothelial system (RES) is a multi-organ phagocytic system involved in removing particulates from the blood. It is comprised of the spleen and liver. It has the ability to sequester inert particles and dyes. Cells of the RES system include, macrophages, liver Kuppfer cells, endothelial cells lining the sinusoids of the liver, spleen, and bone marrow, and reticular cells of lymphatic and bone marrow tissues.

The polynucleotides, polypeptides, and ligands thereto, of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of spleen, lymphoid, and/or reticuloendothelial tissues. These include, but are not limited to, splenomegaly, hypersplenism, hemolytic anemis, hereditary

spherocytosis, hereditary eliptocytosis, thalassemia minor and major, autoimmune hemolytic anemia, thrombocytopenia, idiopathic thrombocytopenic purpura, immunologic thrombocytopenia associated with chronic lymphocytic leukemia or systemic lupus erythematosis, TTP, leukemia, lymphoma, primary and metastatic tumors, splenic cysts, infection, inflammatory diseases, anemias, blood cancers, etc. See, Table 19 for other examples.

5

10

15

20

25

30

In view of their selectivity and display on the cell surface, the genes of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., reticuloendothelial cells, macrophages, Kupffer cells, monocytes, B-lymphocytes, T-lymphocytes, etc) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to treat breast cancer. They can also be used to detect metastatic cells in biopsies. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly. See, Table 16. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types. TMD1030 and TMD0621 are predominantly and selectively expressed in spleen tissue.

10

15

20

25

30

PCT/US03/11497

The expression patterns of the selectively expressed polynucleotides disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by a tissue. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of expressed sequences disclosed herein provides an example of such a tissue expression profile. It can be used as a point of reference to compare and characterize samples. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue, to determine the origin of metastatic cells, to assess the physiological status of a tissue, to determine the effect of a particular treatment regime on a tissue, to evaluate the toxicity of a compound on a tissue of interest, etc.

For example, the tissue-selective polynucleotides disclosed herein represent the configuration of genes expressed by a normal tissue. To determine the effect of a toxin on a tissue, a sample of tissue can be obtained prior to toxin exposure ("control") and then at one or more time points after toxin exposure ("experimental"). An array of tissue-selective probes can be used to assess the expression patterns for both the control and experimental samples. As discussed in more detail below, any suitable method can be used. For instance, a DNA microarray can be prepared having a set of tissue-selective genes arranged on to a small surface area in fixed and addressable positions. RNA isolated from samples can be labeled using reverse transcriptase and radioactive nucleotides, hybridized to the array, and then expression levels determined using a detection system. Several kinds of information can be extracted: presence or absence of expression, and the corresponding expression levels. The normal tissue would be expected to express substantially all the genes represented by the tissue-selective probes. The various experimental conditions can be compared to it to determine whether a gene is expressed, and how its levels match up to the normal control.

While the expression profile of the complete gene set represented by the sequences disclosed here may be most informative, a fingerprint containing expression information from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, because of heterogeneity of the population, as well differences in the particular physiological state of the tissue, a tissue's "normal" expression profile is expected to differ

10

15

20

25

30

between samples, albeit in ways that do not change the overall expression pattern. As a result of these individual differences, each gene although expressed selectively in spleen, may not on its own 100% of the time be adequately enough expressed to distinguish said tissue.

Thus, the genes can be used in any of the methods and processes mentioned above and below as a group, or one at a time.

The present invention relates to methods of detecting spleen, lymphoid, and/or reticuloendothelial cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include SEQ ID NOS 197-204 listed in Table 17, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g., monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a spleen, lymphoid, and/or reticuloendothelial cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by a polypeptide of the present invention, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface. Detection can be useful for assessing spleen integrity, e.g., when it is suspected that the spleen is damaged and undergoing deterioration. The appearance of polypeptides of the present invention in body fluids, such as blood, can indicate spleen damage, including neoplastic and/or apoptotic changes.

As indicated above, binding partners can be used to deliver agents specifically to the spleen, lymphoid, and/or reticuloendothelial tissues, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a spleen, lymphoid, and/or

10

15

20

25

30

reticuloendothelial cell can comprise, e.g., contacting a spleen, lymphoid, and/or reticuloendothelial cell with an agent coupled to a binding partner specific for a polypeptide coding for TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM 166205), whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the spleen, lymphoid, and/or reticuloendothelial tissue can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parenterally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by TMD1030 (XM 166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205) can be targeted, including, e.g., reticuloendothelial cells, macrophages, Kupffer cells, lymphocytes, B-lymphocytes, T-lymphocytes, etc.

Antibodies (alone or conjugated to active agents) can be used to ablate spleen and other tissues. For instance, in diseases where splenectomy is indicated (e.g., immune thrombocytopenic purpura, autoimmune hemolytic anemia, blood cell disorders, myeloproliferative disorders, tumors, hypersplenism, etc.), antibodies to TMD1030 and TMD0621 can be used to ablate spleen tissue, or block spleen function.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintiographic imaging. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917, 6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The

5

10

15

20

25

30

liver enzymes, etc.

methods described therein can be used generally to associate a partner with an agent for any desired purpose. See, Bruehlmeier et al., *Nucl. Med. Biol.*, 29:321-327, 2002, for imaging using labeled receptor ligands. Antibodies and other ligands to receptors of the present invention can be used analogously.

A cell (see above for examples of spleen, lymphoid, and/or reticuloendothelial cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a spleen, lymphoid, and/or reticuloendothelial cell, comprising, e.g., contacting said cell with an agent effective to modulate TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NOS 185-192), or a mammalian homolog thereof, whereby said spleen, lymphoid, and/or reticuloendothelial cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

Any activity or function of the spleen, lymphoid, and/or reticuloendothelial tissues

can be modulated, including, e.g., immune modulation (e.g., modulating antigen presentation, antibody production and secretion, humoral and cellular responses, etc.), sequestration and removal of red blood cells, clearance of microorganisms and particular antigens from blood, migration into the marginal zone or other immune and RES compartments, etc.

The present invention also relates to polypeptide detection methods for assessing spleen, lymphoid, and/or reticuloendothelial tissue function, e.g., methods of assessing spleen, lymphoid, and/or reticuloendothelial function, comprising, detecting a polypeptide coded for by TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of spleen, lymphoid, and/or reticuloendothelial function. spleen, lymphoid, and/or reticuloendothelial function tests are usually performed to determine whether the spleen, lymphoid, and/or reticuloendothelial tissue is functioning normally as a way of diagnosing spleen, lymphoid, and/or reticuloendothelial disease. Various tests are commonly used, including, e.g., 99Tc-colloid liver-spleen scan, computed tomography, ultrasound scanning of left upper quandrant, MRI,

10

15

20

25

30

Detection of a polypeptide coded for by TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), provides an additional assessment tool, especially in diseases or disorders, such as splenomegaly, hypersplenism, or ruptured spleen, where said polypeptides can appear in the blood, stool, urine, and other body fluids. As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired spleen, lymphoid, and/or reticuloendothelial function. Values can be determined routinely, as they are for other markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc., in analogy to the tests for enzymes and other proteins in body fluids.

Promoter sequences obtained from genes of the present invention can be utilized to selectively express heterologous genes in cells. Methods of expressing a heterologous polynucleotide in cells, e.g., spleen, lymphoid, and/or reticuloendothelial cells can comprise, e.g., expressing a nucleic acid construct in spleen, lymphoid, and/or reticuloendothelial cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NOS 205-213. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

The genes and polypeptides of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the spleen, lymphoid, and/or reticuloendothelial tissues mentioned above. The present invention relates to methods of identifying a genetic basis for a disease or disease-susceptibility, comprising, e.g., determining the association of a spleen, lymphoid, and/or reticuloendothelial disease or spleen, lymphoid, and/or reticuloendothelial disease-susceptibility with the gene complex of the present invention, e.g., a nucleotide sequence present in the gene complex at 11q12.2. An association between a spleen, lymphoid, and/or reticuloendothelial disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target.

Any region of the gene can be used as a source of the DNA marker, exons, introns,

10

15

20

25

30

intergenic regions, or any DNA from the gene cluster of the present invention at chromosomal region 11q12.2, etc.

Human linkage maps can be constructed to establish a relationship between a gene and a spleen, lymphoid, and/or reticuloendothelial disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the various individual molecular markers. Maps can be produced for an individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype.

The present invention also relates to methods of expressing a polynucleotide in spleen, lymphoid, and/or reticuloendothelial tissue, comprising, e.g., inserting a polynucleotide, which is operably linked to an expression control sequence, into the spleen, lymphoid, and/or reticuloendothelial gene complex at chromosomal location 11q12.2 of a target cell, and growing said cell under conditions effective to express said polynucleotide.

The polynucleotide of interest can be inserted into the target chromosomal region by any suitable method, including, e.g., by gene targeting methods, such as homologous recombination, or by random insertion methods where transformed cells are subsequently screened for insertion into the desired chromosomal site. Chromosome engineering methods are discussed in more detail below, e.g., in the section on transgenic animals. By the phrase "spleen, lymphoid, and/or reticuloendothelial gene complex," it is meant the region of the chromosome in which the cluster of genes, e.g., TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), and TMD0621 (XM_166205), of the present invention are located. Inserting an expressible polynucleotide (e.g., a polynucleotide operably linked to a promoter sequence) into this region confers the tissue expression selectivity which is characteristic of the gene cluster. Any polynucleotide of interest can be inserted into the chromosomal region, including, e.g., polynucleotides encoding polypeptides, antisense polynucleotides, etc.

A cell comprising a polynucleotide inserted into the target chromosomal location can be utilized in vitro or in vivo, e.g., in a transgenic animal. The cell is grown under conditions

PCT/US03/11497

which are suitable to achieve polynucleotide expression. These conditions depend upon the cell's environment, e.g., tissue culture cell, or in the form of a transgenic animal.

-45-

Pancreas membrane protein genes

5

10

15

20

25

30

The present invention relates to all facets of pancreas membrane protein genes, polypeptides encoded by them, antibodies and specific binding partners thereto, and their applications to research, diagnosis, drug discovery, therapy, clinical medicine, forensic science and medicine, etc. The polynucleotides and polypeptides are useful in variety of ways, including, but not limited to, as molecular markers, as drug targets, and for detecting, diagnosing, staging, monitoring, prognosticating, preventing or treating, determining predisposition to, etc., diseases and conditions, such as pancreatic cancer, diabetes, pancreatitis, and other disorders especially relating to the pancreas and the functions its performs. The identification of specific genes, and groups of genes, expressed in pathways physiologically relevant to pancreas tissue permits the definition of functional and disease pathways, and the delineation of targets in these pathways which are useful in diagnostic, therapeutic, and clinical applications. The present invention also relates to methods of using the polynucleotides and related products (proteins, antibodies, etc.) in business and computer-related methods, e.g., advertising, displaying, offering, selling, etc., such products for sale, commercial use, licensing, etc.

The function, structure, and diseases of the pancreas were described previously. The polynucleotides, polypeptides, and ligands thereto, of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of pancreas. These include, but are not limited to, e.g., acute and chronic pancreatitis, pancreatic abscess, pancreatic pseudocyst, nonalcoholic pancreatitis, alcoholic pancreatitis, classic acute hemorrhagic pancreatitis, chronic calcifying pancreatitis, familial hereditary pancreatitis, carcinomas of the pancreas, primary (idiopathic) diabetes (e.g., Type I (insulin dependent diabetes mellitus, IDDM) [insulin deficiency, beta cell depletion], Type II (non-insulin dependent diabetes mellitus, NIDDM) [insulin resistance, relative insulin deficiency, mild beta cell depletion]), nonobese NIDDM, obese NIDDM, maturity-onset diabetes of the young (MODY), islet cell tumors, diffuse hyperplasia of the islets of Langerhans, benign adenomas, malignant islet tumors, hyperfunction of the islets of Langerhans, hyperinsulinism and hypoglycemia, Zollinger-Ellison syndrome, beta cell

tumors (insulinoma), alpha cell tumors (glucagonoma), delta cell tumors (somatostatinoma), vipoma (diarrheogenic islet cell tumor), pancreatic cancers, pancreatic carcinoid tumors, multihormonal tumors, multiple endocrine neoplasia (MEN), MEN I (Wermer syndrome), MEN II (Sipple syndrome), MEN III or IIb, pancreatic endocrine tumors, etc.

5

10

15

20

25

30

For example, five different pancreatic tumor samples were examined (Nos. 1, 2, 3, 4, and 5). TMD0639 was up-regulated in about 1/5 pancreatic cancers (No. 4), TMD0645 was up-regulated in about 3/5 pancreatic cancers (Nos. 2, 3, and 5), and TMD1127 was up-regulated in about 2/5 pancreatic cancers (Nos. 1 and 4). These results indicate that the probes can be used in combination in order to maximize the detection of different types of pancreatic cancers and tumors. Thus, a sample from a patient can be assesses for expression of both TMD0645 and TMD1127 to increase the probability that the pancreas cancer will be detected.

In view of their selectivity and display on the cell surface, the membrane proteins of the present invention are useful targets for histological, diagnostic, and therapeutic applications relating to the cells (e.g., pancreatic progenitor, exocrine, endocrine, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.) in which they are expressed. Antibodies and other protein binding partners (e.g., ligands, aptamers, small peptides, etc.) can be used to selectively target agents to a tissue for any purpose, included, but not limited to, imaging, therapeutic, diagnostic, drug delivery, gene therapy, etc. For example, binding partners, such as antibodies, can be used to treat carcinomas in analogy to how c-erbB-2 antibodies are used to breast cancer. They can also be used to detect metastatic cells in biopsies and other tissue samples. The genes and polypeptides encoded thereby can also be used in tissue engineering to identify tissues as they appear during the differentiation process, to target tissues, to modulate tissue growth (e.g., from starting stem cell populations), etc. Useful antibodies or other binding partners include those that are specific for parts of the polypeptide which are exposed extracellularly as indicated in Table 21. Any of the methods described above and below can be accomplished in vivo, in vitro, or ex vivo.

When expression is described as being "predominantly" in a given tissue, this indicates that the gene's mRNAs levels are highest in this tissue as compared to the other tissues in which it was measured. Expression can also be "selective," where expression is observed. By the phrase "selectively expressed," it is meant that a nucleic acid molecule

10

15

20

25

30

comprising the defined sequence of nucleotides, when produced as a transcript, is characteristic of the tissue or cell-type in which it is made. This can mean that the transcript is expressed only in that tissue and in no other tissue-type, or it can mean that the transcript is expressed preferentially, differentially, and more abundantly (e.g., at least 5-fold, 10-fold, etc., or more) in that tissue when compared to other tissue-types.

Table 20 is a summary of the genes of the present invention which are expressed selectively and/or predominantly in pancreas tissue. Fig. 12 is an illustration of these expression patterns. Each gene is associated with a Clone ID and Accession Number ("ACCN"). The Clone ID is an arbitrary identification number for the clone, and the accession number is the number by which it is listed in GenBank. Although specific sequences are disclosed herein, and listed in GenBank by an accession number), the present invention includes all forms of the gene, including polymorphisms, allelic variations, SNPs, splice variants, and any full-length versions when the disclosed or Genbank version is partial. For convenience, these genes, and their homologs in other species, are referred to throughout the disclosure in shorthand as "the genes of Table 20," "a gene of Table 20," "polynucleotides of Table 20," "polypeptides of Table 20," etc..., because Table 20 contains a listing of the genes by accession number and clone ID.

The expression patterns of the selectively and/or predominantly expressed polynucleotides disclosed herein can be described as a "fingerprint" in that they are a distinctive pattern displayed by pancreas tissue. Just as with a fingerprint, an expression pattern can be used as a unique identifier to characterize the status of a tissue sample. The list of expressed sequences disclosed herein provides an example of such a tissue expression profile. It can be used as a point of reference to compare and characterize samples. Tissue fingerprints can be used in many ways, e.g., to classify an unknown tissue, to determine the origin of metastatic cells, to assess the physiological status of a tissue, to determine the effect of a particular treatment regime on a tissue, to evaluate the toxicity of a compound on a tissue of interest, etc.

For example, the pancreas-selective polynucleotides disclosed herein represent the configuration of genes expressed by a normal pancreas tissue. To determine the effect of a toxin on a tissue, a sample of tissue can be obtained prior to toxin exposure ("control") and then at one or more time points after toxin exposure ("experimental"). An array of pancreas-

selective probes can be used to assess the expression patterns for both the control and experimental samples. As discussed in more detail below, any suitable method can be used. For instance, a DNA microarray can be prepared having a set of pancreas-selective genes arranged on to a small surface area in fixed and addressable positions. RNA isolated from samples can be labeled using reverse transcriptase and radioactive nucleotides, hybridized to the array, and then expression levels determined using a detection system. Several kinds of information can be extracted: presence or absence of expression, and the corresponding expression levels. The normal tissue would be expected to express substantially all the genes represented by the tissue-selective probes. The various experimental conditions can be compared to it to determine whether a gene is expressed, and how its levels match up to the normal control.

5

10

15

20

25

30

While the expression profile of the complete gene set represented by the sequences disclosed here may be most informative, a fingerprint containing expression information from less than the full collection can be useful, as well. In the same way that an incomplete fingerprint may contain enough of the pattern of whorls, arches, loops, and ridges, to identify the individual, a cell expression fingerprint containing less than the full complement may be adequate to provide useful and unique identifying and other information about the sample. Moreover, because of heterogeneity of the population, as well differences in the particular physiological state of the tissue, a tissue's "normal" expression profile is expected to differ between samples, albeit in ways that do not change the overall expression pattern. As a result, a complete match with a particular tissue expression profile, as shown herein, is not necessary.

The present invention relates to methods of detecting pancreas cells, comprising one or more of the following steps, e.g., contacting a sample comprising cells with a polynucleotide specific for a gene of Table 20, or a mammalian homolog thereof, under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization. Detecting can be accomplished by any suitable method and technology, including, e.g., any of those mentioned and discussed below, such as Northern blot and PCR. Specific polynucleotides include the primer sequences shown in Table 23, and complements thereto.

Detection can also be achieved using binding partners, such as antibodies (e.g.,

10

15

20

25

30

monoclonal or polyclonal antibodies) that specifically recognize polypeptides coded for by genes of the present invention. Thus, the present invention relates to methods of detecting a pancreas cell, comprising, one or more the following steps, e.g. contacting a sample comprising cells with a binding partner (e.g. an antibody, an Fab fragment, a single-chain antibody, an aptamer) specific for a polypeptide coded for by a polypeptide of Table 20, or a mammalian homolog thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding. Protein binding assays can be accomplished routinely, e.g., using immunocytochemistry, ELISA format, Western blots, etc. Useful epitopes include those exposed to the surface.

As indicated above, binding partners can be used to deliver agents specifically to the pancreas, e.g., for diagnostic, therapeutic, and prognostic purposes. Methods of delivering an agent to a pancreas cell can comprise, e.g., contacting a pancreas cell with an agent coupled to a binding partner specific for a polypeptide coding for a gene of Table 20, whereby said agent is delivered to said cell. Any type of agent can be used, including, therapeutic and imaging agents. Contact with the pancreas can be achieved in any effective manner, including by administering effective amounts of the agent to a host orally, parentally, locally, systemically, intravenously, etc. The phrase "an agent coupled to binding partner" indicates that the agent is associated with the binding partner in such a manner that it can be carried specifically to the target site. Coupling includes, chemical bonding, covalent bonding, noncovalent bonding (where such bonding is sufficient to carry the agent to the target), present in a liposome or in a lipid membrane, associated with a carrier, such as a polymeric carrier, etc. The agent can be directly linked to the binding partner, or via chemical linkers or spacers. Any cell expressing a polypeptide coded for by a gene of Table 20 can be targeted, including, e.g., pancreatic progenitor, exocrine, endocrine, secretory, acinar, islet, alpha, beta, delta, F, D1, enterochromaffin, etc.

Imaging of specific organs can be facilitated using tissue selective antibodies and other binding partners that selectively target contrast agents to a specific site in the body. Various imaging techniques have been used in this context, including, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic. A reporter agent can be conjugated or associated routinely with a binding partner. Ultrasound contrast agents combined with binding partners, such as antibodies, are described in, e.g., U.S. Pat. Nos, 6,264,917,

10

15

20

25

30

6,254,852, 6,245,318, and 6,139,819. MRI contrast agents, such as metal chelators, radionucleotides, paramagnetic ions, etc., combined with selective targeting agents are also described in the literature, e.g., in U.S. Pat. Nos. 6,280,706 and 6,221,334. The methods described therein can be used generally to associate a partner with an agent for any desired purpose. See, Bruehlmeier et al., *Nucl. Med. Biol.*, 29:321-327, 2002, for imaging pancreas using labeled receptor ligands. Antibodies and other ligands to receptors of the present invention can be used analogously.

A pancreas cell (see above for examples of pancreas cell types) can also be modulated in accordance with the present invention, e.g., by methods of modulating a pancreas cell, comprising, e.g., contacting said cell with an agent effective to modulate a gene of Table 20, or the biological activity of a polypeptide encoded thereby (e.g., SEQ ID NO 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, and 255), or a mammalian homolog thereof, whereby said pancreas cell is modulated. Modulation as used throughout includes, e.g., stimulating, increasing, agonizing, activating, amplifying, blocking, inhibiting, reducing, antagonizing, preventing, decreasing, diminishing, etc.

An activity or function of the pancreas cell can be modulated, including, e.g., regulation of blood sugar, modulation of all aspects of the various secreted polypeptides (hormones, enzymes, etc.) produced by the pancreas, ligand-binding, exocytosis, amylase (and any of the other 20 or so digestive enzymes produced by the pancreas) secretion, autocrine responses, apoptosis (e.g., in the survival of beta-islet cells), etc.

The present invention also relates to polypeptide detection methods for assessing pancreas function, e.g., methods of assessing pancreas function, comprising, detecting a polypeptide coded for by a gene of Table 20, fragments thereof, polymorphisms thereof, in a body fluid, whereby the level of said polypeptide in said fluid is a measure of pancreas function. Pancreas function tests are usually performed to determine whether the pancreas is functioning normally as a way of diagnosing pancreas disease. Various tests are commonly used, including, e.g., assays for the presence of pancreatic enzymes in body fluids (e.g., amylase, serum lipase, serum trypsin-like immuoreactivity), studies of pancreatic structure (e.g., using x-ray, sonography, CT-scan, angiography, endoscopic retrograde cholangiopancreatography), and tests for pancreatic function (e.g., secretin-pancreozymin

10

15

20

25

30

(CCK) tst, Lundh meal test, Bz-Ty-PABA test, chymotrypsin in feces, etc). Detection of a polypeptide coded for by a gene of Table 20 provides an additional assessment tool, especially in diseases such as pancreatitis and pancreatic cancer where pancreatic markers can appear in the blood, stool, urine, and other body fluids. As with the other tests, elevated levels of said polypeptide in blood, or other fluids, can indicate impaired pancreas function. Values can be determined routinely, as they are for other markers, such as those mentioned above. Detecting can be performed routinely (see below), e.g., using an antibody which is specific for said polypeptide, by RIA, ELISA, or Western blot, etc., in analogy to the tests for pancreatic enzymes in body fluids.

Promoter sequences obtained from genes of the present invention can be utilized to selectively express heterologous genes in pancreas cells. Methods of expressing a heterologous polynucleotide in pancreas cells can comprise, e.g., expressing a nucleic acid construct in pancreas cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NO 258, 261, 262, 265-267, 270-272, 275, 278, 279, 282-284, 287, 290-293, 296, 297, 303, 306, 309-314, 317-320, 323-326, 329, 332-333, 336-338, 341, and 344 as shown in Table 23. In addition to the cell lines mentioned below, the construct can be expressed in primary cells or in established cell lines.

The genes and polypeptides of Table 20 can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions of the pancreas as mentioned above. The present invention relates to methods of identifying a pancreatic disease or pancreatic disease-susceptibility, comprising, e.g., determining the association of a pancreatic disease or pancreatic disease-susceptibility with a nucleotide sequence present within the pancreatic gene complex. An association between a pancreas disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target.

Human linkage maps can be constructed to establish a relationship between the cytogenetic locus as shown in Table 22 and a pancreatic disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified

within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the various individual molecular markers. Maps can be produced individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype.

Nucleic acids

5

10

15

20

25

30

A mammalian polynucleotide, or fragment thereof, of the present invention is a polynucleotide having a nucleotide sequence obtainable from a natural source. When the species name is used, e.g., a human, it indicates that the polynucleotide or polypeptide is obtainable from a natural source. It therefore includes naturally-occurring normal, naturally-occurring mutant, and naturally-occurring polymorphic alleles (e.g., SNPs), differentially-spliced transcripts, splice-variants, etc. By the term "naturally-occurring," it is meant that the polynucleotide is obtainable from a natural source, e.g., animal tissue and cells, body fluids, tissue culture cells, forensic samples. Natural sources include, e.g., living cells obtained from tissues and whole organisms, tumors, cultured cell lines, including primary and immortalized cell lines. Naturally-occurring mutations can include deletions (e.g., a truncated amino- or carboxy-terminus), substitutions, inversions, or additions of nucleotide sequence. These genes can be detected and isolated by polynucleotide hybridization according to methods which one skilled in the art would know, e.g., as discussed below.

A polynucleotide according to the present invention can be obtained from a variety of different sources. It can be obtained from DNA or RNA, such as polyadenylated mRNA or total RNA, e.g., isolated from tissues, cells, or whole organism. The polynucleotide can be obtained directly from DNA or RNA, from a cDNA library, from a genomic library, etc. The polynucleotide can be obtained from a cell or tissue (e.g., from an embryonic or adult tissues) at a particular stage of development, having a desired genotype, phenotype, disease status, etc.

The polynucleotides described herein can be partial sequences that correspond to full-length, naturally-occurring transcripts. The present invention includes, as well, full-length polynucleotides that comprise these partial sequences, e.g., genomic DNAs and polynucleotides comprising a start and stop codon, a start codon and a polyA tail, a

transcription start and a polyA tail, etc. These sequences can be obtained by any suitable method, e.g., using a partial sequence as a probe to select a full-length cDNA from a library containing full-length inserts. A polynucleotide which "codes without interruption" refers to a polynucleotide having a continuous open reading frame ("ORF") as compared to an ORF which is interrupted by introns or other noncoding sequences.

Polynucleotides and polypeptides can be excluded as compositions from the present invention if, e.g., listed in a publicly available databases on the day this application was filed and/or disclosed in a patent application having an earlier filing or priority date than this application and/or conceived and/or reduced to practice earlier than a polynucleotide in this application.

As described herein, the phrase "an isolated polynucleotide which is SEQ ID NO," or "an isolated polynucleotide which is selected from SEQ ID NO," refers to an isolated nucleic acid molecule from which the recited sequence was derived (e.g., a cDNA derived from mRNA; cDNA derived from genomic DNA). Because of sequencing errors, typographical errors, etc., the actual naturally-occurring sequence may differ from a SEQ ID listed herein. Thus, the phrase indicates the specific molecule from which the sequence was derived, rather than a molecule having that exact recited nucleotide sequence, analogously to how a culture depository number refers to a specific cloned fragment in a cryotube.

As explained in more detail below, a polynucleotide sequence of the invention can contain the complete sequence as shown herein, degenerate sequences thereof, anti-sense, muteins thereof, genes comprising said sequences, full-length cDNAs comprising said sequences, complete genomic sequences, fragments thereof, homologs, primers, nucleic acid molecules which hybridize thereto, derivatives thereof, etc.

Genomic

5

10

15

20

25

30

The present invention also relates genomic DNA from which the polynucleotides of the present invention can be derived. A genomic DNA coding for a human, mouse, or other mammalian polynucleotide, can be obtained routinely, for example, by screening a genomic library (e.g., a YAC library) with a polynucleotide of the present invention, or by searching nucleotide databases, such as GenBank and EMBL, for matches. Promoter and other regulatory regions (including both 5' and 3' regions, as well introns) can be identified

upstream or downstream of coding and expressed RNAs, and assayed routinely for activity, e.g., by joining to a reporter gene (e.g., CAT, GFP, alkaline phosphatase, luciferase, galatosidase). A promoter obtained from a tissue selective gene can be used, e.g., in gene therapy to obtain tissue-specific expression of a heterologous gene (e.g., coding for a therapeutic product or cytotoxin). 5' and 3' sequences (including, UTRs and introns) can be used to modulate or regulate stability, transcription, and translation of nucleic acids, including the sequence to which is attached in nature, as well as heterologous nucleic acids.

Constructs

5

10

15

20

25

30

A polynucleotide of the present invention can comprise additional polynucleotide sequences, e.g., sequences to enhance expression, detection, uptake, cataloging, tagging, etc. A polynucleotide can include only coding sequence; a coding sequence and additional non-naturally occurring or heterologous coding sequence (e.g., sequences coding for leader, signal, secretory, targeting, enzymatic, fluorescent, antibiotic resistance, and other functional or diagnostic peptides); coding sequences and non-coding sequences, e.g., untranslated sequences at either a 5' or 3' end, or dispersed in the coding sequence, e.g., introns.

A polynucleotide according to the present invention also can comprise an expression control sequence operably linked to a polynucleotide as described above. The phrase "expression control sequence" means a polynucleotide sequence that regulates expression of a polypeptide coded for by a polynucleotide to which it is functionally ("operably") linked. Expression can be regulated at the level of the mRNA or polypeptide. Thus, the expression control sequence includes mRNA-related elements and protein-related elements. Such elements include promoters, enhancers (viral or cellular), ribosome binding sequences, transcriptional terminators, etc. An expression control sequence is operably linked to a nucleotide coding sequence when the expression control sequence is positioned in such a manner to effect or achieve expression of the coding sequence. For example, when a promoter is operably linked 5' to a coding sequence, expression of the coding sequence is driven by the promoter. Expression control sequences can include an initiation codon and additional nucleotides to place a partial nucleotide sequence of the present invention in-frame in order to produce a polypeptide (e.g., pET vectors from Promega have been designed to permit a molecule to be inserted into all three reading frames to identify the one that results

10

15

25

30

in polypeptide expression). Expression control sequences can be heterologous or endogenous to the normal gene.

A polynucleotide of the present invention can also comprise nucleic acid vector sequences, e.g., for cloning, expression, amplification, selection, etc. Any effective vector can be used. A vector is, e.g., a polynucleotide molecule which can replicate autonomously in a host cell, e.g., containing an origin of replication. Vectors can be useful to perform manipulations, to propagate, and/or obtain large quantities of the recombinant molecule in a desired host. A skilled worker can select a vector depending on the purpose desired, e.g., to propagate the recombinant molecule in bacteria, yeast, insect, or mammalian cells. The following vectors are provided by way of example. Bacterial: pQE70, pQE60, pQE-9 (Qiagen), pBS, pD10, Phagescript, phiX174, pBK Phagemid, pNH8A, pNH16a, pNH18Z, pNH46A (Stratagene); Bluescript KS+II (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR54 0, pRIT5 (Pharmacia). Eukaryotic: PWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene), pSVK3, PBPV, PMSG, pSVL (Pharmacia), pCR2.1/TOPO, pCRII/TOPO, pCR4/TOPO, pTrcHisB, pCMV6-XLA, etc. However, any other vector, e.g., plasmids, viruses, or parts thereof, may be used as long as they are replicable and viable in the desired host. The vector can also comprise sequences which enable it to replicate in the host whose genome is to be modified.

20 Hybridization

Polynucleotide hybridization, as discussed in more detail below, is useful in a variety of applications, including, in gene detection methods, for identifying mutations, for making mutations, to identify homologs in the same and different species, to identify related members of the same gene family, in diagnostic and prognostic assays, in therapeutic applications (e.g., where an antisense polynucleotide is used to inhibit expression), etc.

The ability of two single-stranded polynucleotide preparations to hybridize together is a measure of their nucleotide sequence complementarity, e.g., base-pairing between nucleotides, such as A-T, G-C, etc. The invention thus also relates to polynucleotides, and their complements, which hybridize to a polynucleotide comprising a nucleotide sequence as set forth herein and genomic sequences thereof. A nucleotide sequence hybridizing to the latter sequence will have a complementary polynucleotide strand, or act as a template for one

10

15

20

25

30

-56-

in the presence of a polymerase (i.e., an appropriate polynucleotide synthesizing enzyme). The present invention includes both strands of polynucleotide, e.g., a sense strand and an anti-sense strand.

Hybridization conditions can be chosen to select polynucleotides which have a desired amount of nucleotide complementarity with the nucleotide sequences set forth in herein and genomic sequences thereof. A polynucleotide capable of hybridizing to such sequence, preferably, possesses, e.g., about 70%, 75%, 80%, 85%, 87%, 90%, 92%, 95%, 97%, 99%, or 100% complementarity, between the sequences. The present invention particularly relates to polynucleotide sequences which hybridize to the nucleotide sequences set forth in the attached sequence disclosure or genomic sequences thereof, under low or high stringency conditions. These conditions can be used, e.g., to select corresponding homologs in non-human species.

Polynucleotides which hybridize to polynucleotides of the present invention can be selected in various ways. Filter-type blots (i.e., matrices containing polynucleotide, such as nitrocellulose), glass chips, and other matrices and substrates comprising polynucleotides (short or long) of interest, can be incubated in a prehybridization solution (e.g., 6X SSC, 0.5% SDS, 100 µg/ml denatured salmon sperm DNA, 5X Denhardt's solution, and 50% formamide), at 22-68°C, overnight, and then hybridized with a detectable polynucleotide probe under conditions appropriate to achieve the desired stringency. In general, when high homology or sequence identity is desired, a high temperature can be used (e.g., 65 °C). As the homology drops, lower washing temperatures are used. For salt concentrations, the lower the salt concentration, the higher the stringency. The length of the probe is another consideration. Very short probes (e.g., less than 100 base pairs) are washed at lower temperatures, even if the homology is high. With short probes, formamide can be omitted. See, e.g., Current Protocols in Molecular Biology, Chapter 6, Screening of Recombinant Libraries; Sambrook et al., Molecular Cloning, 1989, Chapter 9.

For instance, high stringency conditions can be achieved by incubating the blot overnight (e.g., at least 12 hours) with a polynucleotide probe in a hybridization solution containing, e.g., about 5X SSC, 0.1-0.5% SDS, 100 µg/ml denatured salmon sperm DNA and 50% formamide, at 42°C, or hybridizing at 42°C in 5X SSPE, 0.1-0.5% SDS, and 50%

10

15

20

25

30

formamide, 100 μ g/ml denatured salmon sperm DNA, and washing at 65°C in 0.1% SSC and 0.1% SDS.

Blots can be washed at high stringency conditions that allow, e.g., for less than 5% bp mismatch (e.g., wash twice in 0.1% SSC and 0.1% SDS for 30 min at 65°C), i.e., selecting sequences having 95% or greater sequence identity.

Other non-limiting examples of high stringency conditions includes a final wash at 65°C in aqueous buffer containing 30 mM NaCl and 0.5% SDS. Another example of high stringent conditions is hybridization in 7% SDS, 0.5 M NaPO₄, pH 7, 1 mM EDTA at 50°C, e.g., overnight, followed by one or more washes with a 1% SDS solution at 42°C. Whereas high stringency washes can allow for, e.g., less than 10%, less than 5% mismatch, etc., reduced or low stringency conditions can permit up to 20% nucleotide mismatch. Hybridization at low stringency can be accomplished as above, but using lower formamide conditions, lower temperatures and/or lower salt concentrations, as well as longer periods of incubation time.

Hybridization can also be based on a calculation of melting temperature (Tm) of the hybrid formed between the probe and its target, as described in Sambrook et al.. Generally, the temperature Tm at which a short oligonucleotide (containing 18 nucleotides or fewer) will melt from its target sequence is given by the following equation: Tm = (number of A's and T's) x 2°C + (number of C's and G's) x 4°C. For longer molecules, Tm = 81.5 + 16.6 log₁₀[Na⁺] + 0.41(%GC) - 600/N where [Na⁺] is the molar concentration of sodium ions, %GC is the percentage of GC base pairs in the probe, and N is the length. Hybridization can be carried out at several degrees below this temperature to ensure that the probe and target can hybridize. Mismatches can be allowed for by lowering the temperature even further.

Stringent conditions can be selected to isolate sequences, and their complements, which have, e.g., at least about 90%, 95%, or 97%, nucleotide complementarity between the probe (e.g., a short polynucleotide of the sequences disclosed herein or genomic sequences thereof) and a target polynucleotide.

Other homologs of polynucleotides of the present invention can be obtained from mammalian and non-mammalian sources according to various methods. For example, hybridization with a polynucleotide can be employed to select homologs, e.g., as described in Sambrook et al., *Molecular Cloning*, Chapter 11, 1989. Such homologs can have varying

amounts of nucleotide and amino acid sequence identity and similarity to such polynucleotides of the present invention. Mammalian organisms include, e.g., mice, rats, monkeys, pigs, cows, etc. Non-mammalian organisms include, e.g., vertebrates, invertebrates, zebra fish, chicken, Drosophila, C. elegans, Xenopus, yeast such as S. pombe, S. cerevisiae, roundworms, prokaryotes, plants, Arabidopsis, artemia, viruses, etc. The degree of nucleotide sequence identity between human and mouse can be about, e.g. 70% or more, 85% or more for open reading frames, etc.

Alignment

5

10

15

20

25

30

Alignments can be accomplished by using any effective algorithm. For pairwise alignments of DNA sequences, the methods described by Wilbur-Lipman (e.g., Wilbur and Lipman, Proc. Natl. Acad. Sci., 80:726-730, 1983) or Martinez/Needleman-Wunsch (e.g., Martinez, Nucleic Acid Res., 11:4629-4634, 1983) can be used. For instance, if the Martinez/Needleman-Wunsch DNA alignment is applied, the minimum match can be set at 9, gap penalty at 1.10, and gap length penalty at 0.33. The results can be calculated as a similarity index, equal to the sum of the matching residues divided by the sum of all residues and gap characters, and then multiplied by 100 to express as a percent. Similarity index for related genes at the nucleotide level in accordance with the present invention can be greater than 70%, 80%, 85%, 90%, 95%, 99%, or more. Pairs of protein sequences can be aligned by the Lipman-Pearson method (e.g., Lipman and Pearson, Science, 227:1435-1441, 1985) with k-tuple set at 2, gap penalty set at 4, and gap length penalty set at 12. Results can be expressed as percent similarity index, where related genes at the amino acid level in accordance with the present invention can be greater than 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more. Various commercial and free sources of alignment programs are available, e.g., MegAlign by DNA Star, BLAST (National Center for Biotechnology Information), BCM (Baylor College of Medicine) Launcher, etc. BLAST can be used to calculate amino acid sequence identity, amino acid sequence homology, and nucleotide sequence identity. These calculations can be made along the entire length of each of the target sequences which are to be compared.

After two sequences have been aligned, a "percent sequence identity" can be determined. For these purposes, it is convenient to refer to a Reference Sequence and a

10

15

20

25

30

Compared Sequence, where the Compared Sequence is *compared* to the Reference Sequence. Percent sequence identity can be determined according to the following formula: Percent Identity = 100 [1-(C/R)], wherein C is the number of differences between the Reference Sequence and the Compared Sequence over the length of alignment between the Reference Sequence and the Compared Sequence where (i) each base or amino acid in the Reference Sequence that does not have a corresponding aligned base or amino acid in the Compared Sequence, (ii) each gap in the Reference Sequence, (iii) each aligned base or amino acid in the Reference Sequence that is different from an aligned base or amino acid in the Compared Sequence, constitutes a difference; and R is the number of bases or amino acids in the Reference Sequence over the length of the alignment with the Compared Sequence with any gap created in the Reference Sequence also being counted as a base or amino acid.

Percent sequence identity can also be determined by other conventional methods, e.g., as described in Altschul et al., *Bull. Math. Bio.* 48: 603-616, 1986 and Henikoff and Henikoff, *Proc. Natl. Acad. Sci.* USA 89:10915-10919, 1992.

Specific polynucleotide probes

A polynucleotide of the present invention can comprise any continuous nucleotide sequence described herein, sequences which share sequence identity thereto, or complements thereof. The term "probe" refers to any substance that can be used to detect, identify, isolate, etc., another substance. A polynucleotide probe is comprised of nucleic acid can be used to detect, identify, etc., other nucleic acids, such as DNA and RNA.

These polynucleotides can be of any desired size that is effective to achieve the specificity desired. For example, a probe can be from about 7 or 8 nucleotides to several thousand nucleotides, depending upon its use and purpose. For instance, a probe used as a primer PCR can be shorter than a probe used in an ordered array of polynucleotide probes. Probe sizes vary, and the invention is not limited in any way by their size, e.g., probes can be from about 7-2000 nucleotides, 7-1000, 8-700, 8-600, 8-500, 8-400, 8-300, 8-150, 8-100, 8-75, 7-50, 10-25, 14-16, at least about 8, at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, or more, etc. The polynucleotides can have non-naturally-occurring nucleotides, e.g., inosine, AZT, 3TC, etc. The polynucleotides can have mismatches or identity or complementarity to a sequence disclosed herein, or it can have mismatches or

nucleotide substitutions, e.g., 1, 2, 3, 4, or 5 substitutions. The probes can be single-stranded or double-stranded.

In accordance with the present invention, a polynucleotide can be present in a kit, where the kit includes, e.g., one or more polynucleotides, a desired buffer (e.g., phosphate, tris, etc.), detection compositions, RNA or cDNA from different tissues to be used as controls, libraries, etc. The polynucleotide can be labeled or unlabeled, with radioactive or non-radioactive labels as known in the art. Kits can comprise one or more pairs of polynucleotides for amplifying nucleic acids specific for tissue selective genes, e.g., comprising a forward and reverse primer effective in PCR. These include both sense and anti-sense orientations. For instance, in PCR-based methods (such as RT-PCR), a pair of primers are typically used, one having a sense sequence and the other having an antisense sequence.

5

10

15

20

25

30

Another aspect of the present invention is a nucleotide sequence that is specific to, or for, a selective polynucleotide. The phrases "specific for" or "specific to" a polynucleotide have a functional meaning that the polynucleotide can be used to identify the presence of one or more target genes in a sample and distinguish them from non-target genes. It is specific in the sense that it can be used to detect polynucleotides above background noise ("non-specific binding"). A specific sequence is a defined order of nucleotides (or amino acid sequences, if it is a polypeptide sequence) which occurs in the polynucleotide, e.g., in the nucleotide sequences of the present invention, and which is characteristic of that target sequence, and substantially no non-target sequences. A probe or mixture of probes can comprise a sequence or sequences that are specific to a plurality of target sequences, e.g., where the sequence is a consensus sequence, a functional domain, etc., e.g., capable of recognizing a family of related genes. Such sequences can be used as probes in any of the methods described herein or incorporated by reference. Both sense and antisense nucleotide sequences are included. A specific polynucleotide according to the present invention can be determined routinely.

A polynucleotide comprising a specific sequence can be used as a hybridization probe to identify the presence of, e.g., human or mouse polynucleotide, in a sample comprising a mixture of polynucleotides, e.g., on a Northern blot. Hybridization can be performed under high stringent conditions (see, above) to select polynucleotides (and their complements which

10

15

20

25

30

can contain the coding sequence) having at least 90%, 95%, 99%, etc., identity (i.e., complementarity) to the probe, but less stringent conditions can also be used. A specific polynucleotide sequence can also be fused in-frame, at either its 5' or 3' end, to various nucleotide sequences as mentioned throughout the patent, including coding sequences for enzymes, detectable markers, GFP, etc, expression control sequences, etc.

A polynucleotide probe, especially one that is specific to a polynucleotide of the present invention, can be used in gene detection and hybridization methods as already described. In one embodiment, a specific polynucleotide probe can be used to detect whether a particular tissue or cell-type is present in a target sample. To carry out such a method, a selective polynucleotide can be chosen which is characteristic of the desired target tissue. Such polynucleotide is preferably chosen so that it is expressed or displayed in the target tissue, but not in other tissues which are present in the sample. For instance, if detection of pancreas, or kidney, it may not matter whether the selective polynucleotide is expressed in other tissues, as long as it is not expressed in cells normally present in blood, e.g., peripheral blood mononuclear cells. Starting from the selective polynucleotide, a specific polynucleotide probe can be designed which hybridizes (if hybridization is the basis of the assay) under the hybridization conditions to the selective polynucleotide, whereby the presence of the selective polynucleotide can be determined.

Probes which are specific for polynucleotides of the present invention can also be prepared using involve transcription-based systems, e.g., incorporating an RNA polymerase promoter into a selective polynucleotide of the present invention, and then transcribing antisense RNA using the polynucleotide as a template. See, e.g., U.S. Pat. No. 5,545,522.

Polynucleotide composition

A polynucleotide according to the present invention can comprise, e.g., DNA, RNA, synthetic polynucleotide, peptide polynucleotide, modified nucleotides, dsDNA, ssDNA, ssRNA, dsRNA, and mixtures thereof. A polynucleotide can be single- or double-stranded, triplex, DNA:RNA, duplexes, comprise hairpins, and other secondary structures, etc. Nucleotides comprising a polynucleotide can be joined via various known linkages, e.g., ester, sulfamate, sulfamide, phosphorothioate, phosphoramidate, methylphosphonate, carbamate, etc., depending on the desired purpose, e.g., resistance to nucleases, such as

10

15

20

25

30

RNAse H, improved in vivo stability, etc. See, e.g., U.S. Pat. No. 5,378,825. Any desired nucleotide or nucleotide analog can be incorporated, e.g., 6-mercaptoguanine, 8-oxo-guanine, etc.

Various modifications can be made to the polynucleotides, such as attaching detectable markers (avidin, biotin, radioactive elements, fluorescent tags and dyes, energy transfer labels, energy-emitting labels, binding partners, etc.) or moieties which improve hybridization, detection, and/or stability. The polynucleotides can also be attached to solid supports, e.g., nitrocellulose, magnetic or paramagnetic microspheres (e.g., as described in U.S. Pat. No. 5,411,863; U.S. Pat. No. 5,543,289; for instance, comprising ferromagnetic, supermagnetic, paramagnetic, superparamagnetic, iron oxide and polysaccharide), nylon, agarose, diazotized cellulose, latex solid microspheres, polyacrylamides, etc., according to a desired method. See, e.g., U.S. Pat. Nos. 5,470,967, 5,476,925, and 5,478,893.

Polynucleotide according to the present invention can be labeled according to any desired method. The polynucleotide can be labeled using radioactive tracers such as ³²P, ³⁵S, ³H, or ¹⁴C, to mention some commonly used tracers. The radioactive labeling can be carried out according to any method, such as, for example, terminal labeling at the 3' or 5' end using a radiolabeled nucleotide, polynucleotide kinase (with or without dephosphorylation with a phosphatase) or a ligase (depending on the end to be labeled). A non-radioactive labeling can also be used, combining a polynucleotide of the present invention with residues having immunological properties (antigens, haptens), a specific affinity for certain reagents (ligands), properties enabling detectable enzyme reactions to be completed (enzymes or coenzymes, enzyme substrates, or other substances involved in an enzymatic reaction), or characteristic physical properties, such as fluorescence or the emission or absorption of light at a desired wavelength, etc.

Nucleic acid detection methods

Another aspect of the present invention relates to methods and processes for detecting tissue selective genes. Detection methods have a variety of applications, including for diagnostic, prognostic, forensic, and research applications. To accomplish gene detection, a polynucleotide in accordance with the present invention can be used as a "probe." The term "probe" or "polynucleotide probe" has its customary meaning in the art, e.g., a polynucleotide

10

15

20

25

30

which is effective to identify (e.g., by hybridization), when used in an appropriate process, the presence of a target polynucleotide to which it is designed. Identification can involve simply determining presence or absence, or it can be quantitative, e.g., in assessing amounts of a gene or gene transcript present in a sample. Probes can be useful in a variety of ways, such as for diagnostic purposes, to identify homologs, and to detect, quantitate, or isolate a polynucleotide of the present invention in a test sample.

Assays can be utilized which permit quantification and/or presence/absence detection of a target nucleic acid in a sample. Assays can be performed at the single-cell level, or in a sample comprising many cells, where the assay is "averaging" expression over the entire collection of cells and tissue present in the sample. Any suitable assay format can be used, including, but not limited to, e.g., Southern blot analysis, Northern blot analysis, polymerase chain reaction ("PCR") (e.g., Saiki et al., Science, 241:53, 1988; U.S. Pat. Nos. 4,683,195, 4,683,202, and 6,040,166; PCR Protocols: A Guide to Methods and Applications, Innis et al., eds., Academic Press, New York, 1990), reverse transcriptase polymerase chain reaction ("RT-PCR"), anchored PCR, rapid amplification of cDNA ends ("RACE") (e.g., Schaefer in Gene Cloning and Analysis: Current Innovations, Pages 99-115, 1997), ligase chain reaction ("LCR") (EP 320 308), one-sided PCR (Ohara et al., Proc. Natl. Acad. Sci., 86:5673-5677, 1989), indexing methods (e.g., U.S. Pat. No. 5,508,169), in situ hybridization, differential display (e.g., Liang et al., Nucl. Acid. Res., 21:3269-3275, 1993; U.S. Pat. Nos. 5,262,311, 5,599,672 and 5,965,409; WO97/18454; Prashar and Weissman, Proc. Natl. Acad. Sci., 93:659-663, and U.S. Pat. Nos. 6,010,850 and 5,712,126; Welsh et al., Nucleic Acid Res., 20:4965-4970, 1992, and U.S. Pat. No. 5,487,985) and other RNA fingerprinting techniques, nucleic acid sequence based amplification ("NASBA") and other transcription based amplification systems (e.g., U.S. Pat. Nos. 5,409,818 and 5,554,527; WO 88/10315), polynucleotide arrays (e.g., U.S. Pat. Nos. 5,143,854, 5,424,186; 5,700,637, 5,874,219, and 6,054,270; PCT WO 92/10092; PCT WO 90/15070), Qbeta Replicase (PCT/US87/00880), Strand Displacement Amplification ("SDA"), Repair Chain Reaction ("RCR"), nuclease protection assays, subtraction-based methods, Rapid-Scan™, etc. Additional useful methods include, but are not limited to, e.g., template-based amplification methods, competitive PCR (e.g., U.S. Pat. No. 5,747,251), redox-based assays (e.g., U.S. Pat. No. 5,871,918), Taqmanbased assays (e.g., Holland et al., Proc. Natl. Acad, Sci., 88:7276-7280, 1991; U.S. Pat. Nos. WO 03/089583

5

10

15

20

25

30

5,210,015 and 5,994,063), real-time fluorescence-based monitoring (e.g., U.S. Pat. 5,928,907), molecular energy transfer labels (e.g., U.S. Pat. Nos. 5,348,853, 5,532,129, 5,565,322, 6,030,787, and 6,117,635; Tyagi and Kramer, *Nature Biotech.*, 14:303-309, 1996). Any method suitable for single cell analysis of gene or protein expression can be used, including in situ hybridization, immunocytochemistry, MACS, FACS, flow cytometry, etc. For single cell assays, expression products can be measured using antibodies, PCR, or other types of nucleic acid amplification (e.g., Brady et al., *Methods Mol. & Cell. Biol.* 2, 17-25, 1990; Eberwine et al., 1992, *Proc. Natl. Acad. Sci.*, 89, 3010-3014, 1992; U.S. Pat. No. 5,723,290). These and other methods can be carried out conventionally, e.g., as described in the mentioned publications.

Many of such methods may require that the polynucleotide is labeled, or comprises a particular nucleotide type useful for detection. The present invention includes such modified polynucleotides that are necessary to carry out such methods. Thus, polynucleotides can be DNA, RNA, DNA:RNA hybrids, PNA, etc., and can comprise any modification or substituent which is effective to achieve detection.

Detection can be desirable for a variety of different purposes, including research, diagnostic, prognostic, and forensic. For diagnostic purposes, it may be desirable to identify the presence or quantity of a polynucleotide sequence in a sample, where the sample is obtained from tissue, cells, body fluids, etc. In a preferred method as described in more detail below, the present invention relates to a method of detecting a polynucleotide comprising, contacting a target polynucleotide in a test sample with a polynucleotide probe under conditions effective to achieve hybridization between the target and probe; and detecting hybridization.

Any test sample in which it is desired to identify a polynucleotide or polypeptide thereof can be used, including, e.g., blood, urine, saliva, stool (for extracting nucleic acid, see, e.g., U.S. Pat. No. 6,177,251), swabs comprising tissue, biopsied tissue, tissue sections, cultured cells, etc.

Detection can be accomplished in combination with polynucleotide probes for other genes, e.g., genes which are expressed in other disease states, tissues, cells, such as brain, heart, kidney, spleen, thymus, liver, stomach, small intestine, colon, muscle, lung, testis, placenta, pituitary, thyroid, skin, adrenal gland, pancreas, salivary gland, uterus, ovary,

10

15

20

25

30

prostate gland, peripheral blood cells (T-cells, lymphocytes, etc.), embryo, breast, fat, adult and embryonic stem cells, etc.

Polynucleotides can be used in wide range of methods and compositions, including for detecting, diagnosing, staging, grading, assessing, prognosticating, etc. diseases and disorders associated with tissue selective genes, for monitoring or assessing therapeutic and/or preventative measures, in ordered arrays, etc. Any method of detecting genes and polynucleotides can be used; certainly, the present invention is not to be limited how such methods are implemented.

Along these lines, the present invention relates to methods of detecting polynucleotides of the present invention in a sample comprising nucleic acid. Such methods can comprise one or more the following steps in any effective order, e.g., contacting said sample with a polynucleotide probe under conditions effective for said probe to hybridize specifically to nucleic acid in said sample, and detecting the presence or absence of probe hybridized to nucleic acid in said sample, wherein said probe is a polynucleotide which is described herein, a polynucleotide having, e.g., about 70%, 80%, 85%, 90%, 95%, 99%, or more sequence identity thereto, effective or specific fragments thereof, or complements thereto. The detection method can be applied to any sample, e.g., cultured primary, secondary, or established cell lines, tissue biopsy, blood, urine, stool, cerebral spinal fluid, and other bodily fluids, for any purpose.

Contacting the sample with probe can be carried out by any effective means in any effective environment. It can be accomplished in a solid, liquid, frozen, gaseous, amorphous, solidified, coagulated, colloid, etc., mixtures thereof, matrix. For instance, a probe in an aqueous medium can be contacted with a sample which is also in an aqueous medium, or which is affixed to a solid matrix, or vice-versa.

Generally, as used throughout the specification, the term "effective conditions" means, e.g., the particular milieu in which the desired effect is achieved. Such a milieu, includes, e.g., appropriate buffers, oxidizing agents, reducing agents, pH, co-factors, temperature, ion concentrations, suitable age and/or stage of cell (such as, in particular part of the cell cycle, or at a particular stage where particular genes are being expressed) where cells are being used, culture conditions (including substrate, oxygen, carbon dioxide, etc.). When hybridization is the chosen means of achieving detection, the probe and sample can be

combined such that the resulting conditions are functional for said probe to hybridize specifically to nucleic acid in said sample.

5

10

15

20

25

30

The phrase "hybridize specifically" indicates that the hybridization between single-stranded polynucleotides is based on nucleotide sequence complementarity. The effective conditions are selected such that the probe hybridizes to a preselected and/or definite target nucleic acid in the sample. For instance, if detection of a polynucleotide set forth herein is desired, a probe can be selected which can hybridize to such target gene under high stringent conditions, without significant hybridization to other genes in the sample. To detect homologs of a polynucleotide set forth in herein, the effective hybridization conditions can be less stringent, and/or the probe can comprise codon degeneracy, such that a homolog is detected in the sample.

As already mentioned, the methods can be carried out by any effective process, e.g., by Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, in situ hybridization, etc., as indicated above. When PCR based techniques are used, two or more probes are generally used. One probe can be specific for a defined sequence which is characteristic of a selective polynucleotide, but the other probe can be specific for the selective polynucleotide, or specific for a more general sequence, e.g., a sequence such as polyA which is characteristic of mRNA, a sequence which is specific for a promoter, ribosome binding site, or other transcriptional features, a consensus sequence (e.g., representing a functional domain). For the former aspects, 5' and 3' probes (e.g., polyA, Kozak, etc.) are preferred which are capable of specifically hybridizing to the ends of transcripts. When PCR is utilized, the probes can also be referred to as "primers" in that they can prime a DNA polymerase reaction.

In addition to testing for the presence or absence of polynucleotides, the present invention also relates to determining the amounts at which polynucleotides of the present invention are expressed in sample and determining the differential expression of such polynucleotides in samples.. Such methods can involve substantially the same steps as described above for presence/absence detection, e.g., contacting with probe, hybridizing, and detecting hybridized probe, but using more quantitative methods and/or comparisons to standards.

10

15

20

25

30

The amount of hybridization between the probe and target can be determined by any suitable methods, e.g., PCR, RT-PCR, RACE PCR, Northern blot, polynucleotide microarrays, Rapid-Scan, etc., and includes both quantitative and qualitative measurements. For further details, see the hybridization methods described above and below. Determining by such hybridization whether the target is differentially expressed (e.g., up-regulated or down-regulated) in the sample can also be accomplished by any effective means. For instance, the target's expression pattern in the sample can be compared to its pattern in a known standard, such as in a normal tissue, or it can be compared to another gene in the same sample. When a second sample is utilized for the comparison, it can be a sample of normal tissue that is known not to contain diseased cells. The comparison can be performed on samples which contain the same amount of RNA (such as polyadenylated RNA or total RNA), or, on RNA extracted from the same amounts of starting tissue. Such a second sample can also be referred to as a control or standard. Hybridization can also be compared to a second target in the same tissue sample. Experiments can be performed that determine a ratio between the target nucleic acid and a second nucleic acid (a standard or control), e.g., in a normal tissue. When the ratio between the target and control are substantially the same in a normal and sample, the sample is determined or diagnosed not to contain cells. However, if the ratio is different between the normal and sample tissues, the sample is determined to contain, e.g., kidney, pancreas, or immune cells. The approaches can be combined, and one or more second samples, or second targets can be used. Any second target nucleic acid can be used as a comparison, including "housekeeping" genes, such as beta-actin, alcohol dehydrogenase, or any other gene whose expression does not vary depending upon the disease status of the cell.

Methods of identifying polymorphisms, mutations, etc.

Polynucleotides of the present invention can also be utilized to identify mutant alleles, SNPs, gene rearrangements and modifications, and other polymorphisms of the wild-type gene. Mutant alleles, polymorphisms, SNPs, etc., can be identified and isolated from subjects with diseases that are known, or suspected to have, a genetic component. Identification of such genes can be carried out routinely (see, above for more guidance), e.g., using PCR, hybridization techniques, direct sequencing, mismatch reactions (see, e.g.,

10

15

20

25

30

above), RFLP analysis, SSCP (e.g., Orita et al., Proc. Natl. Acad. Sci., 86:2766, 1992), etc., where a polynucleotide having a sequence selected from the polynucleotides of the present invention is used as a probe. The selected mutant alleles, SNPs, polymorphisms, etc., can be used diagnostically to determine whether a subject has, or is susceptible to a disorder associated with tissue selective genes disclosed herein, as well as to design therapies and predict the outcome of the disorder. Methods involve, e.g., diagnosing a disorder or determining susceptibility to a disorder, comprising, detecting the presence of a mutation in a gene represented by a polynucleotide selected from the sequences disclosed herein. The detecting can be carried out by any effective method, e.g., obtaining cells from a subject, determining the gene sequence or structure of a target gene (using, e.g., mRNA, cDNA, genomic DNA, etc), comparing the sequence or structure of the target gene to the structure of the normal gene, whereby a difference in sequence or structure indicates a mutation in the gene in the subject. Polynucleotides can also be used to test for mutations, SNPs, polymorphisms, etc., e.g., using mismatch DNA repair technology as described in U.S. Pat. No. 5,683,877; U.S. Pat. No. 5,656,430; Wu et al., Proc. Natl. Acad. Sci., 89:8779-8783, 1992.

The present invention also relates to methods of detecting polymorphisms in tissue selective genes, comprising, e.g., comparing the structure of: genomic DNA comprising all or part of a tissue selective gene, mRNA comprising all or part of a tissue selective gene, cDNA comprising all or part of a tissue selective gene, or a polypeptide comprising all or part of a tissue selective gene, with the structure the polynucleotides set forth herein. The methods can be carried out on a sample from any source, e.g., cells, tissues, body fluids, blood, urine, stool, hair, egg, sperm, cerebral spinal fluid, biopy samples, serum, etc.

These methods can be implemented in many different ways. For example, "comparing the structure" steps include, but are not limited to, comparing restriction maps, nucleotide sequences, amino acid sequences, RFLPs, Dnase sites, DNA methylation fingerprints (e.g., U.S. Pat. No. 6,214,556), protein cleavage sites, molecular weights, electrophoretic mobilities, charges, ion mobility, etc., between standard and a test genes. The term "structure" can refer to any physical characteristics or configurations which can be used to distinguish between nucleic acids and polypeptides. The methods and instruments used to accomplish the comparing step depends upon the physical characteristics which are to be

compared. Thus, various techniques are contemplated, including, e.g., sequencing machines (both amino acid and polynucleotide), electrophoresis, mass spectrometer (U.S. Pat. Nos. 6,093,541, 6,002,127), liquid chromatography, HPLC, etc.

To carry out such methods, "all or part" of the gene or polypeptide can be compared. For example, if nucleotide sequencing is utilized, the entire gene can be sequenced, including promoter, introns, and exons, or only parts of it can be sequenced and compared, e.g., exon 1, exon 2, etc.

Mutagenesis

5

10

15

20

25

30

Mutated polynucleotide sequences of the present invention are useful for various purposes, e.g., to create mutations of the polypeptides they encode, to identify functional regions of genomic DNA, to produce probes for screening libraries, etc. Mutagenesis can be carried out routinely according to any effective method, e.g., oligonucleotide-directed (Smith, M., Ann. Rev. Genet. 19:423-463, 1985), degenerate oligonucleotide-directed (Hill et al., Method Enzymology, 155:558-568, 1987), region-specific (Myers et al., Science, 229:242-246, 1985; Derbyshire et al., Gene, 46:145, 1986; Ner et al., DNA, 7:127, 1988), linkerscanning (McKnight and Kingsbury, Science, 217:316-324, 1982), directed using PCR, recursive ensemble mutagenesis (Arkin and Yourvan, Proc. Natl. Acad. Sci., 89:7811-7815, 1992), random mutagenesis (e.g., U.S. Pat. Nos. 5,096,815; 5,198,346; and 5,223,409), sitedirected mutagenesis (e.g., Walder et al., Gene, 42:133, 1986; Bauer et al., Gene, 37:73, 1985; Craik, Bio Techniques, January 1985, 12-19; Smith et al., Genetic Engineering: Principles and Methods, Plenum Press, 1981), phage display (e.g., Lowman et al., Biochem. 30:10832-10837, 1991; Ladner et al., U.S. Pat. No. 5,223,409; Huse, WIPO Publication WO 92/06204), etc. Desired sequences can also be produced by the assembly of target sequences using mutually priming oligonucleotides (Uhlmann, Gene, 71:29-40, 1988). For directed mutagenesis methods, analysis of the three-dimensional structure of the polypeptide can be used to guide and facilitate making mutants which effect polypeptide activity. Sites of substrate-enzyme interaction or other biological activities can also be determined by analysis of crystal structure as determined by such techniques as nuclear magnetic resonance, crystallography or photoaffinity labeling. See, for example, de Vos et al., Science 255:306-312, 1992; Smith et al., J. Mol. Biol. 224:899-904, 1992; Wlodaver et al., FEBS Lett.

309:59-64, 1992.

5

10

15

20

25

30

In addition, libraries of genes and fragments thereof can be used for screening and selection of genes variants. For instance, a library of coding sequences can be generated by treating a double-stranded DNA with a nuclease under conditions where the nicking occurs, e.g., only once per molecule, denaturing the double-stranded DNA, renaturing it to for double-stranded DNA that can include sense/antisense pairs from different nicked products, removing single-stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting DNAs into an expression vector. By this method, expression libraries can be made comprising "mutagenized" tissue selective genes. The entire coding sequence or parts thereof can be used.

Polynucleotide expression, polypeptides produced thereby, and specific-binding partners thereto.

A polynucleotide according to the present invention can be expressed in a variety of different systems, in vitro and in vivo, according to the desired purpose. For example, a polynucleotide can be inserted into an expression vector, introduced into a desired host, and cultured under conditions effective to achieve expression of a polypeptide coded for by the polynucleotide, to search for specific binding partners. Effective conditions include any culture conditions which are suitable for achieving production of the polypeptide by the host cell, including effective temperatures, pH, medium, additives to the media in which the host cell is cultured (e.g., additives which amplify or induce expression such as butyrate, or methotrexate if the coding polynucleotide is adjacent to a dhfr gene), cycloheximide, cell densities, culture dishes, etc. A polynucleotide can be introduced into the cell by any effective method including, e.g., naked DNA, calcium phosphate precipitation, electroporation, injection, DEAE-Dextran mediated transfection, fusion with liposomes, association with agents which enhance its uptake into cells, viral transfection. A cell into which a polynucleotide of the present invention has been introduced is a transformed host cell. The polynucleotide can be extrachromosomal or integrated into a chromosome(s) of the host cell. It can be stable or transient. An expression vector is selected for its compatibility with the host cell. Host cells include, mammalian cells, e.g., COS, CV1, BHK, CHO, HeLa, LTK, NIH 3T3, insect cells, such as Sf9 (S. frugipeda) and Drosophila, bacteria, such as E.

10

15

20

25

30

coli, Streptococcus, bacillus, yeast, such as Sacharomyces, S. cerevisiae, fungal cells, plant cells, embryonic or adult stem cells (e.g., mammalian, such as mouse or human),

immune system cell lines, HH (ATCC CRL 2105), MOLT-4 (ATCC CRL 1582), MJ (ATCC CRL-8294), SK7 (ATCC HB-8584), SK8 (ATCC HB-8585), HM1 (HB-8586), H9 (ATCC HTB-176), HuT 78 (ATCC TIB-161), HuT 102 (ATCC TIB-162), Jurkat,

B-cell lines, B-cell precursor lines, NALM-36, B-cell and other lymphocyte lines immortalized with Epstein-Barr virus (transformed B lymphoblastoid), stromal cell lines, myelomas, HBM-Noda, WEHI231,

reticuloendothelial cells, endothelial cells, white blood cells, macrophages, antigenresenting cells, lymphocytes, GDM-1 (ATCC CRL-2627), THP-1 (ATCC TIB-202), HL-60 (ATCC CCL-240), and derivatives thereof, including primary and established cell lines thereof,

kidney cell lines, 293, G-402 (ATCC CRL-1440), ACHN (ATCC CRL-1611), Vero (ATCC CCL-81), 786-O (ATCC CRL-1932), 769-P (ATCC CRL-1933), CCD 1103 KIDTr (ATCC CRL-2304), CCD 1105 KIDTr (ATCC CRL-2305), Hs 835.T (ATCC CRL-7569), Hs 926.T (ATCC CRL-7678), Caki-1 (ATCC HTB-46), Caki-2 (ATCC HTB-47), SW 839 (ATCC HTB-49), LLC-MK2 (ATCC CCL-7), BHK-21 (ATCC CCL-10), MDCK, CV-1, (ATCC CRL-1573), KNRK (ATCC CRL-1569), NRK-49F (ATCC CRL-1570), A-704 (ATCC HTB-45), etc., established and primary kidney cells,

pancreas cell lines, , insulinoma cell lines, INS-H1, MIN6N8, RIN 1046-38, RIN-5AH, RIN-A12, RINm5F, capan-1, capan-2, MIA PaCa-2 (ATCC CRL-1420), PANC-1 (ATCC CRL-1469), AsPC-1 (ATCC CRL-1682), SU-86.86 (ATCC CRL-1837), CFPAC-1 (ATCC CRL-1918), HPAF-II (ATCC CRL-1937), TGP61 (ATCC CRL-2135) and other TGP lines, SW 1990 (ATCC CRL-2172), Mpanc-96 (ATCC CRL-2380), MS1 VEGF (ATCC CRL-2460), Beta-TC-6 (ATCC CRL-11506), LTPA (ATCC CRL-2389), 266-6 (ATCC CRL-2151), MS1 (ATCC CRL-2779), SVR (ATCC CRL-2280), NIT-2 (ATCC CRL-2364), alphaTC1 Clone 9 (ATCC CRL-2350), ATCC CRL-1492, BxPC-3 (ATCC CRL-1687), HPAC (ATCC CRL-2119), U.S. Pat. Nos. 6,110743, 5,928,942, 5,888,816, 5,888,705, and 5,723,333, etc., established and primary pancreas cells (e.g., according to Hellerstrom et al., *Diabetes*, 28:769-76, 1979),

10

15

20

25

30

retinal cell lines, RF/6A (CRL 1780), ARPE-19 (CRL-2302), ARPE-19/HPV-16 (CRL-2502), Y79 (HTB-18), WERI-Rb-1 (HTB-169), RPE-J (CRL-2240), SO-Rb50 (retinoblastoma cell line), RBL, HER-Xho1-CC2, WERI-Rb24 (Sery et al., *J. Pediatr. Ophthalmol. Strabismus*, 4:212-217, 1990), WERI-Rb27 (Sery et al., *J. Pediatr. Ophthalmol. Strabismus*, 4:212-217, 1990), HXO-Rb44, fetal retina cells, retinoblastoma cells, choroidal endothelial cells (e.g., Chor 55), etc., established and primary retinal cells (For other cell lines and methods thereof, see, also, Griege et al, *Differentiation*, 45:250-7, 1990; Bernstein et al., *Invest. Ophthalmol. Vis. Sci.*, 35:3931-3937, 1994; Howes et al., *Invest. Ophthalmol. Vis. Sci.*, 35:342-351, 1994).

Expression control sequences are similarly selected for host compatibility and a desired purpose, e.g., high copy number, high amounts, induction, amplification, controlled expression. Other sequences which can be employed include enhancers such as from SV40, CMV, RSV, inducible promoters, cell-type specific elements, or sequences which allow selective or specific cell expression. Promoters that can be used to drive its expression, include, e.g., the endogenous promoter, MMTV, SV40, trp, lac, tac, or T7 promoters for bacterial hosts; or alpha factor, alcohol oxidase, or PGH promoters for yeast. RNA promoters can be used to produced RNA transcripts, such as T7 or SP6. See, e.g., Melton et al., *Polynucleotide Res.*, 12(18):7035-7056, 1984; Dunn and Studier. *J. Mol. Bio.*, 166:477-435, 1984; U.S. Pat. No. 5,891,636; Studier et al., *Gene Expression Technology, Methods in Enzymology*, 85:60-89, 1987. In addition, as discussed above, translational signals (including in-frame insertions) can be included.

When a polynucleotide is expressed as a heterologous gene in a transfected cell line, the gene is introduced into a cell as described above, under effective conditions in which the gene is expressed. The term "heterologous" means that the gene has been introduced into the cell line by the "hand-of-man." Introduction of a gene into a cell line is discussed above. The transfected (or transformed) cell expressing the gene can be lysed or the cell line can be used intact.

For expression and other purposes, a polynucleotide can contain codons found in a naturally-occurring gene, transcript, or cDNA, for example, e.g., as set forth in herein or it can contain degenerate codons coding for the same amino acid sequences. For instance,

10

15

20

30

it may be desirable to change the codons in the sequence to optimize the sequence for expression in a desired host. See, e.g., U.S. Pat. Nos. 5,567,600 and 5,567,862.

A polypeptide according to the present invention can be recovered from natural sources, transformed host cells (culture medium or cells) according to the usual methods, including, detergent extraction (e.g., non-ionic detergent, Triton X-100, CHAPS, octylglucoside, Igepal CA-630), ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxyapatite chromatography, lectin chromatography, gel electrophoresis. Protein refolding steps can be used, as necessary, in completing the configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for purification steps. Another approach is express the polypeptide recombinantly with an affinity tag (Flag epitope, HA epitope, myc epitope, 6xHis, maltose binding protein, chitinase, etc) and then purify by anti-tag antibody-conjugated affinity chromatography.

The present invention also relates to specific-binding partners. These include antibodies which are specific for polypeptides encoded by polynucleotides of the present invention, as well as other binding-partners which interact with polynucleotides and polypeptides of the present invention. Protein-protein interactions between polypeptides and binding partners can be identified using any suitable methods, e.g., protein binding assays (e.g., filtration assays, chromatography, etc.), yeast two-hybrid system (Fields and Song, Nature, 340: 245-247, 1989), protein arrays, gel-shift assays, FRET (fluorescence resonance energy transfer) assays, etc. Nucleic acid interactions (e.g., protein-DNA or protein-RNA) can be assessed using gel-shift assays, e.g., as carried out in U.S. Pat. No. 6,333,407 and 5,789,538.

Antibodies, e.g., polyclonal, monoclonal, recombinant, chimeric, humanized, single-25 . . chain, Fab, and fragments thereof, can be prepared according to any desired method. Antibodies, and immune responses, can also be generated by administering naked DNA See, e.g., U.S. Pat. Nos. 5,703,055; 5,589,466; 5,580,859. Antibodies can be used from any source, including, goat, rabbit, mouse, chicken (e.g., IgY; see, Duan, W0/029444 for methods of making antibodies in avian hosts, and harvesting the antibodies from the eggs). An antibody specific for a polypeptide means that the antibody recognizes a defined sequence of

10

15

20

25

30

amino acids within or including the polypeptide. Other specific binding partners include, e.g., aptamers and PNA. Antibodies can be prepared against specific epitopes or domains.

Antibodies can also be humanized, e.g., where they are to be used therapeutically. Methods for obtaining human antibodies, e.g., from transgenic mice are described, e.g., in Green et al., Nature Genet. 7:13 (1994); Lonberg et al., Nature 368:856 (1994); and Taylor et al., Int. Immunol. 6:579 (1994). Antibody fragments of the present invention can be prepared by any suitable method, Fab and Fc fragments. sinbgle-chain antibodies can also be used. Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest.

The term "antibody" as used herein includes intact molecules as well as fragments thereof, such as Fab, F(ab')2, and Fv which are capable of binding to an epitopic determinant present in Bin1 polypeptide. Such antibody fragments retain some ability to selectively bind with its antigen or receptor. The term "epitope" refers to an antigenic determinant on an antigen to which the paratope of an antibody binds. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Antibodies can be prepared against specific epitopes or polypeptide domains.

Antibodies which bind to polypeptides of the present invention can be prepared using an intact polypeptide or fragments containing small peptides of interest as the immunizing antigen. For example, it may be desirable to produce antibodies that specifically bind to the N- or C-terminal domains of the tissue selective polypeptides of the present invention. The polypeptide or peptide used to immunize an animal which is derived from translated cDNA or chemically synthesized which can be conjugated to a carrier protein, if desired. Such commonly used carriers which are chemically coupled to the immunizing peptide include keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA), and tetanus toxoid.

Methods of detecting polypeptides

10

15

20

25

30

Polypeptides coded for by genes of the present invention can be detected, visualized, determined, quantitated, etc. according to any effective method. useful methods include, e.g., but are not limited to, immunoassays, RIA (radioimmunassay), ELISA, (enzyme-linked-immunosorbent assay), immunoflourescence, flow cytometry, histology, electron microscopy, light microscopy, in situ assays, immunoprecipitation, Western blot, etc.

Immunoassays may be carried in liquid or on biological support. For instance, a sample (e.g., blood, serum, stool, urine, cells, tissue, cerebral spinal fluid, body fluids, etc.) can be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support that is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled specific antibody. The solid phase support can then be washed with a buffer a second time to remove unbound antibody. The amount of bound label on solid support may then be detected by conventional means.

A "solid phase support or carrier" includes any support capable of binding an antigen, antibody, or other specific binding partner. Supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, and magnetite. A support material can have any structural or physical configuration. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads

One of the many ways in which gene peptide-specific antibody can be detectably labeled is by linking it to an enzyme and using it in an enzyme immunoassay (EIA). See, e.g., Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)," 1978, Diagnostic Horizons 2, 1-7, Microbiological Associates Quarterly Publication, Walkersville, Md.); Voller, A. et al., 1978, J. Clin. Pathol. 31, 507-520; Butler, J. E., 1981, Meth. Enzymol. 73, 482-523; Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, Fla.. The enzyme which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety that can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Enzymes that can be used to detectably label the antibody include, but are not limited to, malate

10

15

20

25

30

dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, .alpha.-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, .beta.-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. The detection can be accomplished by colorimetric methods that employ a chromogenic substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect peptides through the use of a radioimmunoassay (RIA). See, e.g., Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986. The radioactive isotope can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.

It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine. The antibody can also be detectably labeled using fluorescence emitting metals such as those in the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of

PCT/US03/11497 WO 03/089583 -77-

luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

Diagnostic

5

10

15

20

25

30

The present invention also relates to methods and compositions for diagnosing a disorder, or determining susceptibility to a disorder, using polynucleotides, polypeptides, and specific-binding partners of the present invention to detect, assess, determine, etc., a tissue selective gene. In such methods, the gene can serve as a marker for the disorder, e.g., where the gene, when mutant, is a direct cause of the disorder; where the gene is affected by another gene(s) which is directly responsible for the disorder, e.g., when the gene is part of the same signaling pathway as the directly responsible gene; and, where the gene is chromosomally linked to the gene(s) directly responsible for the disorder, and segregates with it. Many other situations are possible. To detect, assess, determine, etc., a probe specific for the gene can be employed as described above and below. Any method of detecting and/or assessing the gene can be used, including detecting expression of the gene using polynucleotides, antibodies, or other specific-binding partners.

The phrase "diagnosing" indicates that it is determined whether the sample has the disorder. A "disorder" means, e.g., any abnormal condition as in a disease or malady. "Determining a subject's susceptibility to a disease or disorder" indicates that the subject is assessed for whether s/he is predisposed to get such a disease or disorder, where the predisposition is indicated by abnormal expression of the gene (e.g., gene mutation, gene expression pattern is not normal, etc.). Predisposition or susceptibility to a disease may result when a such disease is influenced by epigenetic, environmental, etc., factors. Diagnosing includes prenatal screening where samples from the fetus or embryo (e.g., via amniocentesis or CV sampling) are analyzed for the expression of the gene.

By the phrase "assessing expression of a gene or polynucleotide," it is meant that the functional status of the gene is evaluated. This includes, but is not limited to, measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene. Thus, the term "assessing expression" includes evaluating the all aspects of the transcriptional and translational machinery of the gene. For

10

15

20

25

30

PCT/US03/11497

instance, if a promoter defect causes, or is suspected of causing, the disorder, then a sample can be evaluated (i.e., "assessed") by looking (e.g., sequencing or restriction mapping) at the promoter sequence in the gene, by detecting transcription products (e.g., RNA), by detecting translation product (e.g., polypeptide). Any measure of whether the gene is functional can be used, including, polypeptide, polynucleotide, and functional assays for the gene's biological activity.

In making the assessment, it can be useful to compare the results to a normal gene, e.g., a gene which is not associated with the disorder. The nature of the comparison can be determined routinely, depending upon how the assessing is accomplished. If, for example, the mRNA levels of a sample is detected, then the mRNA levels of a normal can serve as a comparison, or a gene which is known not to be affected by the disorder. Methods of detecting mRNA are well known, and discussed above, e.g., but not limited to, Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, etc. Similarly, if polypeptide production is used to evaluate the gene, then the polypeptide in a normal tissue sample can be used as a comparison, or, polypeptide from a different gene whose expression is known not to be affected by the disorder. These are only examples of how such a method could be carried out.

The genes and polypeptides of the present invention can be used to identify, detect, stage, determine the presence of, prognosticate, treat, study, etc., diseases and conditions as mentioned above. The present invention relates to methods of identifying a genetic basis for a disease or disease-susceptibility, comprising, e.g., determining the association of a disease or disease-susceptibility with a gene of the present invention. An association between a disease or disease-susceptibility and nucleotide sequence includes, e.g., establishing (or finding) a correlation (or relationship) between a DNA marker (e.g., gene, VNTR, polymorphism, EST, etc.) and a particular disease state. Once a relationship is identified, the DNA marker can be utilized in diagnostic tests and as a drug target. Any region of the gene can be used as a source of the DNA marker, exons, introns, intergenic regions, etc.

Human linkage maps can be constructed to establish a relationship between a gene and a disease or condition. Typically, polymorphic molecular markers (e.g., STRP's, SNP's, RFLP's, VNTR's) are identified within the region, linkage and map distance between the markers is then established, and then linkage is established between phenotype and the

10

15

20

25

30

various individual molecular markers. Maps can be produced for an individual family, selected populations, patient populations, etc. In general, these methods involve identifying a marker associated with the disease (e.g., identifying a polymorphism in a family which is linked to the disease) and then analyzing the surrounding DNA to identity the gene responsible for the phenotype. See, e.g., Kruglyak et al., Am. J. Hum. Genet., 58, 1347-1363, 1996; Matise et al., Nat. Genet., 6(4):384-90, 1994.

Assessing the effects of therapeutic and preventative interventions (e.g., administration of a drug, chemotherapy, radiation, etc.) on disorders is a major effort in drug discovery, clinical medicine, and pharmacogenomics. The evaluation of therapeutic and preventative measures, whether experimental or already in clinical use, has broad applicability, e.g., in clinical trials, for monitoring the status of a patient, for analyzing and assessing animal models, and in any scenario involving disease treatment and prevention. Analyzing the expression profiles of polynucleotides of the present invention can be utilized as a parameter by which interventions are judged and measured. Treatment of a disorder can change the expression profile in some manner which is prognostic or indicative of the drug's effect on it. Changes in the profile can indicate, e.g., drug toxicity, return to a normal level, etc. Accordingly, the present invention also relates to methods of monitoring or assessing a therapeutic or preventative measure (e.g., chemotherapy, radiation, anti-neoplastic drugs, antibodies, etc.) in a subject having a disorder, or, susceptible to such a disorder, comprising, e.g., detecting the expression levels of one or more tissue selective genes. A subject can be a cell-based assay system, non-human animal model, human patient, etc. Detecting can be accomplished as described for the methods above and below. By "therapeutic or preventative intervention," it is meant, e.g., a drug administered to a patient, surgery, radiation, chemotherapy, and other measures taken to prevent, treat, or diagnose a disorder.

The present invention also relates to methods of using binding partners, such as antibodies, to deliver active agents to the tissue (e.g., kidney or pancreas or an immune cells) for a variety of different purposes, including, e.g., for diagnostic, therapeutic, and research purposes. Methods can involve delivering or administering an active agent to the tissue, comprising, e.g., administering to a subject in need thereof, an effective amount of an active agent coupled to a binding partner specific for a tissue selective polypeptide, wherein said binding partner is effective to deliver said active agent specifically to the target tissue.

PCT/US03/11497 WO 03/089583

-80-

Any type of active agent can be used in combination with it, including, therapeutic, cytotoxic, cytostatic, chemotherapeutic, anti-neoplastic, anti-proliferative, anti-biotic, etc., agents. A chemotherapeutic agent can be, e.g., DNA-interactive agent, alkylating agent, antimetabolite, tubulin-interactive agent, hormonal agent, hydroxyurea, Cisplatin, Cyclophosphamide, Altretamine, Bleomycin, Dactinomycin, Doxorubicin, Etoposide, Teniposide, paclitaxel, cytoxan, 2-methoxy-carbonyl-amino-benzimidazole, Plicamycin, Methotrexate, Fluorouracil, Fluorodeoxyuridin, CB3717, Azacitidine, Floxuridine, Mercapyopurine, 6-Thioguanine, Pentostatin, Cytarabine, Fludarabine, etc. Agents can also be contrast agents useful in imaging technology, e.g., X-ray, CT, CAT, MRI, ultrasound, PET, SPECT, and scintographic.

An active agent can be associated in any manner with a binding partner which is effective to achieve its delivery specifically to the target. Specific delivery or targeting indicates that the agent is provided to the tissue, without being substantially provided to other tissues. This is useful especially where an agent is toxic, and specific targeting to the tissue enables the majority of the toxicity to be aimed at the tissue, with as small as possible effect on other tissues in the body. The association of the active agent and the binding partner ("coupling") can be direct, e.g., through chemical bonds between the binding partner and the agent, or, via a linking agent, or the association can be less direct, e.g., where the active agent is in a liposome, or other carrier, and the binding partner is associated with the liposome surface. In such case, the binding partner can be oriented in such a way that it is able to bind to tissue selective polypeptide, e.g., exposed on the cell surface. Methods for delivery of DNA via a cell-surface receptor is described, e.g., in U.S. Pat. No. 6,339,139.

Identifying agent methods

5

10

15

20

25

30

The present invention also relates to methods of identifying agents, and the agents themselves, which modulate tissue selective genes. These agents can be used to modulate the biological activity of the polypeptide encoded for the gene, or the gene, itself. Agents which regulate the gene or its product are useful in variety of different environments, including as medicinal agents to treat or prevent disorders associated with genes and as research reagents to modify the function of tissues and cell.

composition of the agent, etc.

5

10

15

20

25

30

Methods of identifying agents generally comprise steps in which an agent is placed in contact with the gene, its transcription product, its translation product, or other target, and then a determination is performed to assess whether the agent "modulates" the target. The specific method utilized will depend upon a number of factors, including, e.g., the target (i.e., is it the gene or polypeptide encoded by it), the environment (e.g., in vitro or in vivo), the

For modulating the expression of tissue selective genes, a method can comprise, in any effective order, one or more of the following steps, e.g., contacting a gene (e.g., in a cell population) with a test agent under conditions effective for said test agent to modulate the expression of tissue selective genes, and determining whether said test agent modulates said genes. An agent can modulate expression of a tissue selective gene at any level, including transcription (e.g., by modulating the promoter), translation, and/or perdurance of the nucleic acid (e.g., degradation, stability, etc.) in the cell.

For modulating the biological activity of polypeptides, a method can comprise, in any effective order, one or more of the following steps, e.g., contacting a polypeptide (e.g., in a cell, lysate, or isolated) with a test agent under conditions effective for said test agent to modulate the biological activity of said polypeptide, and determining whether said test agent modulates said biological activity.

Contacting a gene or polypeptide with the test agent can be accomplished by any suitable method and/or means that places the agent in a position to functionally control expression or biological activity. Functional control indicates that the agent can exert its physiological effect through whatever mechanism it works. The choice of the method and/or means can depend upon the nature of the agent and the condition and type of environment in which the gene or polypeptide is presented, e.g., lysate, isolated, or in a cell population (such as, *in vivo*, *in vitro*, organ explants, etc.). For instance, if the cell population is an *in vitro* cell culture, the agent can be contacted with the cells by adding it directly into the culture medium. If the agent cannot dissolve readily in an aqueous medium, it can be incorporated into liposomes, or another lipophilic carrier, and then administered to the cell culture. Contact can also be facilitated by incorporation of agent with carriers and delivery molecules and complexes, by injection, by infusion, etc.

Agents can be directed to, or targeted to, any part of the polypeptide which is

effective for modulating it. For example, agents, such as antibodies and small molecules, can be targeted to cell-surface, exposed, extracellular, ligand binding, functional, etc., domains of the polypeptide. Agents can also be directed to intracellular regions and domains, e.g., regions where the polypeptide couples or interacts with intracellular or intramembrane binding partners.

5

10

15

20

25

30

After the agent has been administered in such a way that it can gain access, it can be determined whether the test agent modulates expression or biological activity. Modulation can be of any type, quality, or quantity, e.g., increase, facilitate, enhance, up-regulate, stimulate, activate, amplify, augment, induce, decrease, down-regulate, diminish, lessen, reduce, etc. The modulatory quantity can also encompass any value, e.g., 1%, 5%, 10%, 50%, 75%, 1-fold, 2-fold, 5-fold, 10-fold, 100-fold, etc. To modulate expression means, e.g., that the test agent has an effect on its expression, e.g., to effect the amount of transcription, to effect RNA splicing, to effect translation of the RNA into polypeptide, to effect RNA or polypeptide stability, to effect polyadenylation or other processing of the RNA, to effect posttranscriptional or post-translational processing, etc. To modulate biological activity means, e.g., that a functional activity of the polypeptide is changed in comparison to its normal activity in the absence of the agent. This effect includes, increase, decrease, block, inhibit, enhance, etc.

A test agent can be of any molecular composition, e.g., chemical compounds, biomolecules, such as polypeptides, lipids, nucleic acids (e.g., antisense), carbohydrates, antibodies, ribozymes, double-stranded RNA, aptamers, etc. For example, if a polypeptide to be modulated is a cell-surface molecule, a test agent can be an antibody that specifically recognizes it and, e.g., causes the polypeptide to be internalized, leading to its down regulation on the surface of the cell. Such an effect does not have to be permanent, but can require the presence of the antibody to continue the down-regulatory effect. Antibodies can also be used to modulate the biological activity of a polypeptide in a lysate or other cell-free form.

Additional cell-based test systems suitable for the analysis of GPCR polypeptides are summarized in Marchese et al. (1999, Trends in Pharmacol. Sci. 20: 370-375) and comprise so-called "ligand screening assays." For example in yeast cells the pheromon receptor can be replaced by a GPCR according to the invention. The effect of test substances on the receptor

can be determined upon modulation of histidine synthesis, i.e. by growing in histidine-free medium. In addition using cells transfected with nucleic acids according to the invention it can be analyzed whether test substances mediate translocation of a detectable arrestins, for example of a arrestin-GFP-fusion protein. Moreover, it can be analyzed whether test substances mediate GPCR-mediated dispersion or aggregation of Xenopus laevis melanophores. Another test system utilizes the universal adapter G-protein G alphal6, which mobilizes Ca.sup.2+. Other screening test systems are described in Lemer et al., supra; WO96/41169; U.S. Pat. No. 5,482,835; WO99/06535; EP 0 939 902; WO99/66326; WO98/34948; EP 0 863 214; U.S. Pat. No. 5,882,944 and U.S. Pat. No. 5,891,641.

10 Therapeutics

5

15

20

25

30

Selective polynucleotides, polypeptides, and specific-binding partners thereto, can be utilized in therapeutic applications, especially to treat diseases and conditions described herein. Useful methods include, but are not limited to, immunotherapy (e.g., using specific-binding partners to polypeptides), vaccination (e.g., using a selective polypeptide or a naked DNA encoding such polypeptide), protein or polypeptide replacement therapy, gene therapy (e.g., germ-line correction, antisense), etc.

Various immunotherapeutic approaches can be used. For instance, unlabeled antibody that specifically recognizes a tissue-specific antigen can be used to stimulate the body to destroy or attack a cancer or other diseased tissue, to cause down-regulation, to produce complement-mediated lysis, to inhibit cell growth, etc., of target cells which display the antigen, e.g., analogously to how c-erbB-2 antibodies are used to treat breast cancer. In addition, antibody can be labeled or conjugated to enhance its deleterious effect, e.g., with radionuclides and other energy emitting entitities, toxins, such as ricin, exotoxin A (ETA), and diphtheria, cytotoxic or cytostatic agents, immunomodulators, chemotherapeutic agents, etc. See, e.g., U.S. Pat. No. 6,107,090.

An antibody or other specific-binding partner can be conjugated to a second molecule, such as a cytotoxic agent, and used for targeting the second molecule to a tissue-antigen positive cell (Vitetta, E. S. et al., 1993, Immunotoxin therapy, in DeVita, Jr., V. T. et al., eds, Cancer: Principles and Practice of Oncology, 4th ed., J. B. Lippincott Co., Philadelphia, 2624-2636). Examples of cytotoxic agents include, but are not limited to, antimetabolites, alkylating agents, anthracyclines, antibiotics, anti-mitotic agents, radioisotopes and

10

15

20

25

30

chemotherapeutic agents. Further examples of cytotoxic agents include, but are not limited to ricin, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin D, 1-dehydrotestosterone, diptheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, elongation factor-2 and glucocorticoid. Techniques for conjugating therapeutic agents to antibodies are well.

In addition to immunotherapy, polynucleotides and polypeptides can be used as targets for non-immunotherapeutic applications, e.g., using compounds which interfere with function, expression (e.g., antisense as a therapeutic agent), assembly, etc. RNA interference can be used in vitro and in vivo to silence a gene when its expression contributes to a disease (but also for other purposes, e.g., to identify the gene's function to change a developmental pathway of a cell, etc.). See, e.g., Sharp and Zamore, *Science*, 287:2431-2433, 2001; Grishok et al., *Science*, 287:2494, 2001.

Delivery of therapeutic agents can be achieved according to any effective method, including, liposomes, viruses, plasmid vectors, bacterial delivery systems, orally, systemically, etc. Therapeutic agents of the present invention can be administered in any form by any effective route, including, e.g., oral, parenteral, enteral, intraperitoneal, topical, transdermal (e.g., using any standard patch), intravenously, ophthalmic, nasally, local, non-oral, such as aerosal, inhalation, subcutaneous, intramuscular, buccal, sublingual, rectal, vaginal, intra-arterial, and intrathecal, etc. They can be administered alone, or in combination with any ingredient(s), active or inactive.

In addition to therapeutics, per se, the present invention also relates to methods of treating a disease showing altered expression of a tissue selective gene, comprising, e.g., administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of said gene and/or which is effective in treating said disease. The term "treating" is used conventionally, e.g., the management or care of a subject for the purpose of combating, alleviating, reducing, relieving, improving the condition of, etc., of a disease or disorder. By the phrase "altered expression," it is meant that the disease is associated with a mutation in the gene, or any modification to the gene (or corresponding product) which affects its normal function. Thus, expression refers to, e.g., transcription, translation, splicing, stability of the mRNA or protein product, activity of the gene product, differential

expression, etc.

Any agent which "treats" the disease can be used. Such an agent can be one which regulates the expression of a tissue selective gene. Expression refers to the same acts already mentioned, e.g. transcription, translation, splicing, stability of the mRNA or protein product, activity of the gene product, differential expression, etc. For instance, if the condition was a result of a complete deficiency of the gene product, administration of gene product to a patient would be said to treat the disease and regulate the gene's expression. Many other possible situations are possible, e.g., where the gene is aberrantly expressed, and the therapeutic agent regulates the aberrant expression by restoring its normal expression pattern.

10

15

20

25

30

5

Antisense

Antisense polynucleotide (e.g., RNA) can also be prepared from a polynucleotide according to the present invention. Antisense polynucleotide can be used in various ways, such as to regulate or modulate expression of the polypeptides they encode, e.g., inhibit their expression, for in situ hybridization, for therapeutic purposes, for making targeted mutations (in vivo, triplex, etc.) etc. For guidance on administering and designing anti-sense, see, e.g., U.S. Pat. Nos. 6,200,960, 6,200,807, 6,197,584, 6,190,869, 6,190,661, 6,187,587, 6,168,950, 6,153,595, 6,150,162, 6,133,246, 6,117,847, 6,096,722, 6,087,343, 6,040,296, 6,005,095, 5,998,383, 5,994,230, 5,891,725, 5,885,970, and 5,840,708. An antisense polynucleotides can be operably linked to an expression control sequence. A total length of about 35 bp can be used in cell culture with cationic liposomes to facilitate cellular uptake, but for *in vivo* use, preferably shorter oligonucleotides are administered, e.g. 25 nucleotides.

Antisense polynucleotides can comprise modified, nonnaturally-occurring nucleotides and linkages between the nucleotides (e.g., modification of the phosphate-sugar backbone; methyl phosphonate, phosphorothioate, or phosphorodithioate linkages; and 2'-O-methyl ribose sugar units), e.g., to enhance in vivo or in vitro stability, to confer nuclease resistance, to modulate uptake, to modulate cellular distribution and compartmentalization, etc. Any effective nucleotide or modification can be used, including those already mentioned, as known in the art, etc., e.g., disclosed in U.S. Pat. Nos. 6,133,438; 6,127,533; 6,124,445; 6,121,437; 5,218,103 (e.g., nucleoside thiophosphoramidites); 4,973,679; Sproat et al., "2'-O-Methyloligoribonucleotides: synthesis and applications," Oligonucleotides and Analogs A

WO 03/089583 PCT/US03/11497

Practical Approach, Eckstein (ed.), IRL Press, Oxford, 1991, 49-86; Iribarren et al., "2'O-Alkyl Oligoribonucleotides as Antisense Probes," Proc. Natl. Acad. Sci. USA, 1990, 87, 7747-7751; Cotton et al., "2'-O-methyl, 2'-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event," Nucl. Acids Res., 1991, 19, 2629-2635.

Arrays

5

10

15

20

25

30

The present invention also relates to an ordered array of polynucleotide probes and specific-binding partners (e.g., antibodies) for detecting the expression of tissue selective genes or polypeptides encoded thereby, in a sample, comprising, one or more polynucleotide probes or specific binding partners associated with a solid support or in separate receptacles, wherein each probe is specific for a tissue selective gene or a specific-binding partner which is specific for a polypeptide.

The phrase "ordered array" indicates that the probes are arranged in an identifiable or position-addressable pattern, e.g., such as the arrays disclosed in U.S. Pat. Nos. 6,156,501, 6,077,673, 6,054,270, 5,723,320, 5,700,637, WO09919711, WO00023803. The probes are associated with the solid support in any effective way. For instance, the probes can be bound to the solid support, either by polymerizing the probes on the substrate, or by attaching a probe to the substrate. Association can be, covalent, electrostatic, noncovalent, hydrophobic, hydrophilic, noncovalent, coordination, adsorbed, absorbed, polar, etc. When fibers or hollow filaments are utilized for the array, the probes can fill the hollow orifice, be absorbed into the solid filament, be attached to the surface of the orifice, etc. Probes can be of any effective size, sequence identity, composition, etc., as already discussed.

Transgenic animals

The present invention also relates to transgenic animals comprising tissue selective genes, and homologs thereof. (Methods of making transgenic animals, and associated recombinant technology, can be accomplished conventionally, e.g., as described in *Transgenic Animal Technology*, Pinkert et al., 2nd Edition, Academic Press, 2002.) Such genes, as discussed in more detail below, include, but are not limited to, functionally-disrupted genes, mutated genes, ectopically or selectively-expressed genes, inducible or

10

15

20

25

30

regulatable genes, etc. These transgenic animals can be produced according to any suitable technique or method, including homologous recombination, mutagenesis (e.g., ENU, Rathkolb et al., *Exp. Physiol.*, 85(6):635-644, 2000), and the tetracycline-regulated gene expression system (e.g., U.S. Pat. No. 6,242,667). The term "gene" as used herein includes any part of a gene, i.e., regulatory sequences, promoters, enhancers, exons, introns, coding sequences, etc. The nucleic acid present in the construct or transgene can be naturally-occurring wild-type, polymorphic, or mutated. Where the animal is a non-human animal, its homolog can be used instead. Transgenic animals can have structural and/or functional defects in any of the tissues described herein, e.g., pancreas, kidney, retina, and immune cells, as well as having or being susceptible to any of the associated disorders or diseases mentioned herein.

Along these lines, polynucleotides of the present invention can be used to create transgenic animals, e.g. a non-human animal, comprising at least one cell whose genome comprises a functional disruption of one or tissue selective genes, or homologs thereof (e.g., a mouse homolog when a mouse is used). By the phrases "functional disruption" or "functionally disrupted," it is meant that the gene does not express a biologically-active product. It can be substantially deficient in at least one functional activity coded for by the gene. Expression of a polypeptide can be substantially absent, i.e., essentially undetectable amounts are made. However, polypeptide can also be made, but which is deficient in activity, e.g., where only an amino-terminal portion of the gene product is produced.

The transgenic animal can comprise one or more cells. When substantially all its cells contain the engineered gene, it can be referred to as a transgenic animal "whose genome comprises" the engineered gene. This indicates that the endogenous gene loci of the animal has been modified and substantially all cells contain such modification.

Functional disruption of the gene can be accomplished in any effective way, including, e.g., introduction of a stop codon into any part of the coding sequence such that the resulting polypeptide is biologically inactive (e.g., because it lacks a catalytic domain, a ligand binding domain, etc.), introduction of a mutation into a promoter or other regulatory sequence that is effective to turn it off, or reduce transcription of the gene, insertion of an exogenous sequence into the gene which inactivates it (e.g., which disrupts the production of a biologically-active polypeptide or which disrupts the promoter or other transcriptional

10

15

20

25

30

machinery), deletion of sequences from the gene (or homolog thereof), etc. Examples of transgenic animals having functionally disrupted genes are well known, e.g., as described in U.S. Pat. Nos. 6,239,326, 6,225,525, 6,207,878, 6,194,633, 6,187,992, 6,180,849, 6,177,610, 6,100,445, 6,087,555, 6,080,910, 6,069,297, 6,060,642, 6,028,244, 6,013,858, 5,981,830, 5,866,760, 5,859,314, 5,850,004, 5,817,912, 5,789,654, 5,777,195, and 5,569,824. A transgenic animal which comprises the functional disruption can also be referred to as a "knock-out" animal, since the biological activity of its gene has been "knocked-out." Knock-outs can be homozygous or heterozygous.

For creating functionally disrupted genes, and other gene mutations, homologous recombination technology is of special interest since it allows specific regions of the genome to be targeted. Using homologous recombination methods, genes can be specificallyinactivated, specific mutations can be introduced, and exogenous sequences can be introduced at specific sites. These methods are well known in the art, e.g., as described in the patents above. See, also, Robertson, Biol. Reproduc., 44(2):238-245, 1991. Generally, the genetic engineering is performed in an embryonic stem (ES) cell, or other pluripotent cell line (e.g., adult stem cells, EG cells), and that genetically-modified cell (or nucleus) is used to create a whole organism. Nuclear transfer can be used in combination with homologous recombination technologies. For example, a gene locus can be disrupted in mouse ES cells using a positive-negative selection method (e.g., Mansour et al., Nature, 336:348-352, 1988). In this method, a targeting vector can be constructed which comprises a part of the gene to be targeted. A selectable marker, such as neomycin resistance genes, can be inserted into a an exon present in the targeting vector, disrupting it. When the vector recombines with the ES cell genome, it disrupts the function of the gene. The presence in the cell of the vector can be determined by expression of neomycin resistance. See, e.g., U.S. Pat. No. 6,239,326. Cells having at least one functionally disrupted gene can be used to make chimeric and germline animals, e.g., animals having somatic and/or germ cells comprising the engineered gene. Homozygous knock-out animals can be obtained from breeding heterozygous knockout animals. See, e.g., U.S. Pat. No. 6,225,525.

The present invention also relates to non-human, transgenic animal whose genome comprises recombinant tissue selective nuccleic acid (and homologs thereof) operatively linked to an expression control sequence effective to express said coding sequence in a target

10

15

20

25

30

tissue. Such a transgenic animal can also be referred to as a "knock-in" animal since an exogenous gene has been introduced, stably, into its genome. "Operable linkage" has the meaning used through the specification, i.e., placed in a functional relationship with another nucleic acid. When a gene is operably linked to an expression control sequence, as explained above, it indicates that the gene (e.g., coding sequence) is joined to the expression control sequence (e.g., promoter) in such a way that facilitates transcription and translation of the coding sequence. As described above, the phrase "genome" indicates that the genome of the cell has been modified. In this case, the recombinant gene has been stably integrated into the genome of the animal. The nucleic acid (e.g., a coding sequence) in operable linkage with the expression control sequence can also be referred to as a construct or transgene.

Any expression control sequence can be used depending on the purpose. For instance, if selective expression is desired, then expression control sequences which limit its expression can be selected. These include, e.g., tissue or cell-specific promoters, introns, enhancers, etc. For various methods of cell and tissue-specific expression, see, e.g., U.S. Pat. Nos. 6,215,040, 6,210,736, and 6,153,427. These also include the endogenous promoter, i.e., the coding sequence can be operably linked to its own promoter. Inducible and regulatable promoters can also be utilized.

The present invention also relates to a transgenic animal which contains a functionally disrupted and a transgene stably integrated into the animals genome. Such an animal can be constructed using combinations any of the above- and below-mentioned methods. Such animals have any of the aforementioned uses, including permitting the knock-out of the normal gene and its replacement with a mutated gene. Such a transgene can be integrated at the endogenous gene locus so that the functional disruption and "knock-in" are carried out in the same step.

In addition to the methods mentioned above, transgenic animals can be prepared according to known methods, including, e.g., by pronuclear injection of recombinant genes into pronuclei of 1-cell embryos, incorporating an artificial yeast chromosome into embryonic stem cells, gene targeting methods, embryonic stem cell methodology, cloning methods, nuclear transfer methods. See, also, e.g., U.S. Patent Nos. 4,736,866; 4,873,191; 4,873,316; 5,082,779; 5,304,489; 5,174,986; 5,175,384; 5,175,385; 5,221,778; Gordon et al., Proc. Natl. Acad. Sci., 77:7380-7384, 1980; Palmiter et al., Cell, 41:343-345, 1985; Palmiter

WO 03/089583

5

10

15

20

25

et al., Ann. Rev. Genet., 20:465-499, 1986; Askew et al., Mol. Cell. Bio., 13:4115-4124, 1993; Games et al. Nature, 373:523-527, 1995; Valancius and Smithies, Mol. Cell. Bio., 11:1402-1408, 1991; Stacey et al., Mol. Cell. Bio., 14:1009-1016, 1994; Hasty et al., Nature, 350:243-246, 1995; Rubinstein et al., Nucl. Acid Res., 21:2613-2617,1993; Cibelli et al., Science, 280:1256-1258, 1998. For guidance on recombinase excision systems, see, e.g., U.S. Pat. Nos. 5,626,159, 5,527,695, and 5,434,066. See also, Orban, P.C., et al., "Tissueand Site-Specific DNA Recombination in Transgenic Mice," Proc. Natl. Acad. Sci. USA, 89:6861-6865 (1992); O'Gorman, S., et al., "Recombinase-Mediated Gene Activation and Site-Specific Integration in Mammalian Cells," Science, 251:1351-1355 (1991); Sauer, B., et al., "Cre-stimulated recombination at loxP-Containing DNA sequences placed into the mammalian genome," Polynucleotides Research, 17(1):147-161 (1989); Gagneten, S. et al. (1997) Nucl. Acids Res. 25:3326-3331; Xiao and Weaver (1997) Nucl. Acids Res. 25:2985-2991; Agah, R. et al. (1997) J. Clin. Invest. 100:169-179; Barlow, C. et al. (1997) Nucl. Acids Res. 25:2543-2545; Araki, K. et al. (1997) Nucl. Acids Res. 25:868-872; Mortensen, R. N. et al. (1992) Mol. Cell. Biol. 12:2391-2395 (G418 escalation method); Lakhlani, P. P. et al. (1997) Proc. Natl. Acad. Sci. USA 94:9950-9955 ("hit and run"); Westphal and Leder (1997) Curr. Biol. 7:530-533 (transposon-generated "knock-out" and "knock-in"); Templeton, N. S. et al. (1997) Gene Ther. 4:700-709 (methods for efficient gene targeting, allowing for a high frequency of homologous recombination events, e.g., without selectable markers); PCT International Publication WO 93/22443 (functionally-disrupted).

A polynucleotide according to the present invention can be introduced into any non-human animal, including a non-human mammal, mouse (Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1986), pig (Hammer et al., Nature, 315:343-345, 1985), sheep (Hammer et al., Nature, 315:343-345, 1985), cattle, rat, or primate. See also, e.g., Church, 1987, Trends in Biotech. 5:13-19; Clark et al., Trends in Biotech. 5:20-24, 1987); and DePamphilis et al., BioTechniques, 6:662-680, 1988. Transgenic animals can be produced by the methods described in U.S. Pat. No. 5,994,618, and utilized for any of the utilities described therein.

30 Database

The present invention also relates to electronic forms of polynucleotides,

10

. 15

20

25

30

polypeptides, etc., of the present invention, including computer-readable medium (e.g., magnetic, optical, etc., stored in any suitable format, such as flat files or hierarchical files) which comprise such sequences, or fragments thereof, e-commerce-related means, etc. Along these lines, the present invention relates to methods of retrieving nucleic acid and/or polypeptide sequences from a computer-readable medium, comprising, one or more of the following steps in any effective order, e.g., selecting a cell or gene expression profile, e.g., a

profile that specifies that said gene is differentially expressed in a tissue as described herein,

and retrieving said differentially expressed nucleic acid or polypeptide.

A "gene expression profile" means the list of tissues, cells, etc., in which a defined gene is expressed (i.e, transcribed and/or translated). A "cell expression profile" means the genes which are expressed in the particular cell type. The profile can be a list of the tissues in which the gene is expressed, but can include additional information as well, including level of expression (e.g., a quantity as compared or normalized to a control gene), and information on temporal (e.g., at what point in the cell-cycle or developmental program) and spatial expression. By the phrase "selecting a gene or cell expression profile," it is meant that a user decides what type of gene or cell expression pattern he is interested in retrieving, e.g., he may require that the gene is differentially expressed in a tissue, or he may require that the gene is not expressed in blood, but must be expressed in pancreas. Any pattern of expression preferences may be selected. The selecting can be performed by any effective method. In general, "selecting" refers to the process in which a user forms a query that is used to search a database of gene expression profiles. The step of retrieving involves searching for results in a database that correspond to the query set forth in the selecting step. Any suitable algorithm can be utilized to perform the search query, including algorithms that look for matches, or that perform optimization between query and data. The database is information that has been stored in an appropriate storage medium, having a suitable computer-readable format. Once

For instance, the user may be interested in identifying genes that are differentially expressed in a pancreas or kidney. He may not care whether small amounts of expression occur in other tissues, as long as such genes are not expressed in peripheral blood lymphocytes. A query is formed by the user to retrieve the set of genes from the database

results are retrieved, they can be displayed in any suitable format, such as HTML.

having the desired gene or cell expression profile. Once the query is inputted into the system, a search algorithm is used to interrogate the database, and retrieve results.

Advertising, licensing, etc., methods

The present invention also relates to methods of advertising, licensing, selling, purchasing, brokering, etc., genes, polynucleotides, specific-binding partners, antibodies, etc., of the present invention. Methods can comprises, e.g., displaying tissue selective polynucleotide or polypeptide sequences, or antibody specific thereto, in a printed or computer-readable medium (e.g., on the Web or Internet), accepting an offer to purchase said gene, polypeptide, or antibody.

Other

5

10

15

20

25

30

A polynucleotide, probe, polypeptide, antibody, specific-binding partner, etc., according to the present invention can be isolated. The term "isolated" means that the material is in a form in which it is not found in its original environment or in nature, e.g., more concentrated, more purified, separated from component, etc. An isolated polynucleotide includes, e.g., a polynucleotide having the sequenced separated from the chromosomal DNA found in a living animal, e.g., as the complete gene, a transcript, or a cDNA. This polynucleotide can be part of a vector or inserted into a chromosome (by specific gene-targeting or by random integration at a position other than its normal position) and still be isolated in that it is not in a form that is found in its natural environment. A polynucleotide, polypeptide, etc., of the present invention can also be substantially purified. By substantially purified, it is meant that polynucleotide or polypeptide is separated and is essentially free from other polynucleotides or polypeptides, i.e., the polynucleotide or polypeptide is the primary and active constituent. A polynucleotide can also be a recombinant molecule. By "recombinant," it is meant that the polynucleotide is an arrangement or form which does not occur in nature. For instance, a recombinant molecule comprising a promoter sequence would not encompass the naturally-occurring gene, but would include the promoter operably linked to a coding sequence not associated with it in nature, e.g., a reporter gene, or a truncation of the normal coding sequence.

WO 03/089583

5

10

15

20

The term "marker" is used herein to indicate a means for detecting or labeling a target. A marker can be a polynucleotide (usually referred to as a "probe"), polypeptide (e.g., an antibody conjugated to a detectable label), PNA, or any effective material.

-93-

The topic headings set forth above are meant as guidance where certain information can be found in the application, but are not intended to be the only source in the application where information on such topic can be found. Reference materials

For other aspects of the polynucleotides, reference is made to standard textbooks of molecular biology. See, e.g., Hames et al., <u>Polynucleotide Hybridization</u>, IL Press, 1985; Davis et al., <u>Basic Methods in Molecular Biology</u>, Elsevir Sciences Publishing, Inc., New York, 1986; Sambrook et al., <u>Molecular Cloning</u>, CSH Press, 1989; Howe, <u>Gene Cloning and Manipulation</u>, Cambridge University Press, 1995; Ausubel et al., <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons, Inc., 1994-1998.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. The entire disclosure of all applications, patents and publications, cited above and in the figures are hereby incorporated by reference in their entirety, including U.S. Application Serial Nos. 60/372,669 April 16, 2003, 60/374,823 filed April 24, 2002, 60/376,558 filed May 1, 2002, 60/381,366 filed May 20, 2002, 60/403,648 filed August 16, 2002, 60/411,882 filed September 20, 2002, and 60/424,336 filed November 7, 2002.

(Hand (D) (Hand Coole)	ACCX:	िरसंक्षाम्बर्गासीका । विकास समिति । विकास समिति ।	@heropossimales	Gyperatichers
TMD0024	XM_060945	thymus	none	1q22
TMD1779	XM_060946	thymus and PBL	none	1q22
TMD0884	XM_060947	thymus	skin and ovary	1q22
TMD0025	XM_060948	thymus	none	1q22
TMD1780	XM_089422	thymus	none	1q22
TMD1781	XM_089421	PBL	thymus	1q22
TMD0304	XM_060956	bone marrow and muscle	testis	1q22
TMD0888	XM_060957	bone marrow	lung, muscle and testis	1q22
TMD0890	XM_060959	bone marrow	lung and PBL	1q22

TABLE 2

5				
	Clone ID (gene code)	ACCN	Protein seq length	Domain Description
	TMD1779	XM_060946	264	Transmembrane domain: 26 - 48 Transmembrane domain: 55 - 77
10				Transmembrane domain: 92 - 114
10				Transmembrane domain: 134 - 156
				Transmembrane domain: 197 - 219
	TMD0024	XM_060945	268	Transmembrane domain: 16 - 38
15				Transmembrane domain: 53 - 75
				Transmembrane domain: 96 - 118 Transmembrane domain: 156 - 178
				Transmembrane domain: 190 - 176 Transmembrane domain: 191 - 213
20				Transmembrane domain: 228 - 246
20	TMD0025	XM 060948	313	Transmembrane domain: 29 - 51
		_		Transmembrane domain: 58 - 77
				Transmembrane domain: 92 - 114
25				Transmembrane domain: 135 -157 Transmembrane domain: 197 - 219
25				Transmembrane domain: 240 - 262
				Transmembrane domain: 272 - 294
	TMD0304	XM 060956	319	Transmembrane domain: 28 - 50
30		_		Transmembrane domain: 63 - 82
				Transmembrane domain: 102 - 124
				Transmembrane domain: 144 - 166 Transmembrane domain: 205 - 227
				Transmembrane domain: 240 - 262
35				Transmembrane domain: 272 - 294
	TMD0884	XM 060947	299	Transmembrane domain: 20 - 42
		_		Transmembrane domain: 54 - 76
				Transmembrane domain: 91 - 113
40				Transmembrane domain: 126 - 148

WO 03/089583			PCT/US03/11497
		-95-	
			Transmembrane domain: 183 - 205
			Transmembrane domain: 226 - 248
			Transmembrane domain: 258 - 277
TMD0888	XM 060957	312	Transmembrane domain: 25 - 47
11/12/0000			Transmembrane domain: 59 - 78
			Transmembrane domain: 98 - 120
			Transmembrane domain: 141 - 163
			Transmembrane domain: 207 - 229
			Transmembrane domain: 241 - 260
			Transmembrane domain: 270 - 292
TMD0890	XM 060959	280	Transmembrane domain: 26 - 48
2.1.22 0070			Transmembrane domain: 122 - 144
	·		Transmembrane domain: 180 - 202
			Transmembrane domain: 215 - 237
			Transmembrane domain: 252 - 269
TMD1780	XM 089422	491	Transmembrane domain: 20 - 42
			Transmembrane domain: 54 - 76
			Transmembrane domain: 91 - 113
			Transmembrane domain: 137 - 159
			Transmembrane domain: 190 - 212
			Transmembrane domain: 231 - 253
			Transmembrane domain: 266 - 283
			Transmembrane domain: 304 - 326
			Transmembrane domain: 336 - 358
			Transmembrane domain: 379 - 401
			Transmembrane domain: 437 - 459
TMD1781	XM_089421	91	Transmembrane domain: 63 - 85
	TMD0888 TMD0890 TMD1780	TMD0888 XM_060957 TMD0890 XM_060959 TMD1780 XM_089422	TMD0888 XM_060957 312 TMD0890 XM_060959 280 TMD1780 XM_089422 491

TMD0888 XM_060957								المعالية.	84%(39nt)
TMD0304 XM_060956 3								73%(241nt)	no significant similarity
TMD1781 XM_089421						**************************************	no significant similarity	no significant similarity	no significant similarity
TMD1780 XM_089422					Con Professional Control	77%(179nt) 82%(46nt)	84%(39nt)	no significant similarity	no significant similarity
IMD0025 XM_060948					80%(84nt)	no significant similarity	no significant similarity	84% (38nt)	no significant similarity
XM_060947			The second secon	83%(54nt)	78%(90nt)	no significant similarity	no significant similarity	no significant similarity	no significant similarity
XM_060946			no significant similarity	90%(605nt)	83%(71nt)	no significant no significant similarity similarity	no significant no significant significant similarity similarity similarity	no significant no significant no significant similarity similarity similarity	no significant no significant no significant similariy similariy similariy
TMD0024 XM_060945		no significant similarity	74%(371nt)	71%(222nt) 80%(73nt)	81%(114nt) 74%(186nt) 79%(113nt) 77%(99nt)	91%(35nt) 77%(80nt)	no significant similarity	no significant similarity	no significant similarity
	TMD0024 XM_060945	TMD1779 XM_060946	TMD0884 XM_060947	TMD0025 XM_060948	TMD1780 XM_089422	TMD1781 XM_089421	TMD0304 XM_060956	TMD0888 XM_060957	TMD0890 XM_060959

TABLE 3

									e
TMD0888 XP_060957									46%(196aa)
TMD0304 XP_060956								50%(301aa)	36%(196aa)
TMD1781 XP_089421						n en e	34%(89aa)	41%(82aa)	38%(72aa)
TMD1780 XP_089422						51%(93aa) 49%(77aa)	39%(300aa)	45%(304aa) 43%(189aa)	42%(200aa)
TMD0025 XP_060948					52%(300aa)	37%(94aa)	39%(299aa)	40% (305aa)	36%(179aa)
TMD0884 XP_060947				46%(166aa)	55%(165aa) 47%(111aa)	52%(40aa)	36% (163aa)	41%(157aa)	32%(156aa)
TMD1779 XP_060946			36%(92aa)	73%(233æ)	46%(227aa) 46%(169aa)	35%(82aa)	37%(229aa)	37%(239aa)	32%(132aa)
TMD0024 XP_060945		47%(200aa)	62%(171aa)	53%(252aa)	59%(261aa) 59%(181aa)	40%(94aa)	40%(257aa)	49%(251aa)	41%(196)
	TMD0024 XP_060945	TMD1779 XP_060946	TMD0884 XP_060947	TMD0025 XP_060948	TMD1780 XP_089422	TMD1781 XP_089421	TMD0304 XP_060956	TMD0888 XP_060957	TMD0890 XP_060959

-97-

			ı	
•	¢		į	
1	ć	Ì	١	
			1	

	-44-		
@15(0)(b)	୍ର ବ୍ୟୁଦ୍ଧ ବ୍ୟୁ	@3/I(\$/\$)//	一次 一次 (日の高大の) 三式
TMD1779 (SEQ ID NO	SACTGTGG ICATCT	CAGTGTGGAA	CTCTTTCAGATTTAAATGGGCCAGACTTAGTTTTATGTGGTGCAGACATT (SEQ ID NO 5)
1-2)	_		
TMD0024	CCACCTGCTCTCAGACA	GGCACCATAATTACCAGGAT	GAGTGCCAAATATATAAAGAGGTATGTTCAATGCAACATGTTAAATGCAA
(2-9)	(SEQ ID NO 8)	(SEQ ID NO 9)	ACTCCTTAGATAAAAAAGGGCAGATTTATTAAAGAACCCTGATTTAATCA
TMD0025	ACTCTGGGCA	CTGGTTGGAGGAGTGGAAG	TAATACTATGTAAAAATCCACTGGACTAGAATCAGCTGTCCTCATGTGCC
(SEQ ID NO		GGCAG	(SEQ ID NO 19)
12-13)	(SEQ ID NO 14)	(SEQ ID NO 15)	IACCITICIGIATATAAAAACATATAACIAATACACACACACACICATACAC
			CTTCAGAAGTATATAAATGAAGACTGGATACCAGCAAGACATACTGGATG
			SECTION 177 (SECTION 177 (SECTION 18) (SECTION 18)
TMD0304	TTCCCGCATGC		AGACAGACGTTAAAAAATGACCAAACCTACAGAAAATATTTCCAGATAAT
(SEQ ID NO 20-21)	GCACAG (SEQ ID NO 22)	ATCTCAG (SEQ ID NO 23)	(SEQ ID NO 24)
TMD0884	сететт.	CATCTACCCAGAACCTTTCT	GTCACTGGTGTATAAGCACGCAGTGCAAAGGAAATATTAAAACTAGAACC
(SEQ ID NO	CAGTGTGCTCC	CAGAGCCATC	(SEQ ID NO 29) TITICATITATAACATGAGGGGCTTGGCTAGATATTTAACAGCCTGC (SEQ
<u> </u>			ID NO 30)
			GCTAGATATTTAACAGCCTGCCTGTATTGACCACTTATGCATCAGGAAAT
			(SECTION 51) SECTION STATEMENT OF SECTION STATEMENT (SECTION 52)
TMD0888	GGAACTGGAGCCAGGTA	_	ACACTGCAGTTATATAGGGTGGCCCAGGTAGTTGAGCTGGTGAAATTTGA
(SEQ ID NO 33-34)	GCAGAATTCATC (SEQ ID NO 35)	AAGGTG (SEQ ID NO 36)	(SEC ID NO 37) GCACTIGTGACATTAAAAGGATGGGCATGGAGGAGAACTAAAGTTGGAG
			(SEQ ID NO 38) ATTCAATATATATATATTINGTINCAGTACGGTATCAATATATTATCAGTA (SEQ)
			ID NO 39)
TMD0890	TCACCACCACTGGGACC	_	
(SEQ ID NO	CTACAACCT	CAT (SEQ ID NO 43)	ID NO 44) GTTCTCTTTTTATAAAAGGCTATGTGGGACTTGCAAAACTTCTAGTGGCC (SEQ
<u></u>			ID NO 45)
			GAACATGAAATATAAGTAGGGGAGTATCTTGGGGTAGAAAGGATGCCGAAG (SEQ ID NO 46)
TMD1780	CTCTGAAATCTTCTACAC		ATCAATATTGTTAAAATGGCCGTACTGTCAAAAGCAATTTACAGATTCAA
(SEQ ID NO 47-48)	(SEQ ID NO 49)	(SEQ ID NO 50)	(SECTION OF ST) ATTGAAACCCAAAAAAGCCCTCAAATAGCCCAAGTAACCCTAAAGAAAAA
			(SECUTATICAATAAATGGTGTGGGAATAGCTGGCTAGCCATCTGCAGAA
			(SEQ ID NO 53)
			CATANGOTICITAAAATTOOGAAAATCAGAAAATCAAAAAATCAAAAAAAAAA
TMD1781	ATGACAGTTTATGATTCC		
(SEQ ID NO 55-56)	(SEQ ID NO 57)	(SEQ ID NO 58)	(SECTION 39)
			(SEWID NO NO) AATGGCGATCATTAAAAAGTCAGGAAACAACAGGTGCTGGAGAGGATGTG
			(SEQ ID NO 61) COCAGAGATTATAAATCATGCTGCTGTAAAGACACATGCCCACGTATGT
			(SEG ID NO 82)

SEQ	GENE	GENBANK	GENBANK PREDOMINANT PROMOTER	PROMOTER (SEC) IN MON	PRIMER
3 8	NOMBER	NOWINGER IDENTIFIER	EXPRESSION	(SEQ ID NO)	(SEQ ID NO)
63,64	TMD0785	33,64 TMD0785 XM 060310	kidney	65-68	69,70

	XM_062147	XM_061676
outside	1-27	1-28
TM (1)	28-50	29-51
inside	51-61	52-62
TM (2)	62-84	63-85
outside	86-58	66-98
TM (3)	99-121	100-122
inside	122-140	123-133
TM (4)	141-163	134-156
outside	164-203	157-201
TM (5)	204-226	202-224
inside	227-237	225-236
TM (6)	238-260	237-259
outside	261-274	260-273
TM (7)	275-293	274-296
inside	294-313	297-314

TABLE 7

	_
_	
-	

		The state of the s	the same of the sa	and the second s
			 -भद्भःबीकाम्। भ्रद्भानां	
මුලෙන් ලේකා ලේකා	AGGN	Genci Nemero Resentation and the second seco	নাচন্ত ব্য হত্যেকেন্ডাট্য	මුබාදැ ගැනැදෑන්න සියි
TMD0049	XM 057351	Homo sapiens similar to organic anion transpoter 4 like protein (LOC116085) mRNA	kidney	none
TMD0190	XM 087157	Homo sapiens similar to sodium-coupled ascorbic acid transporter 2(LOC151295), mRNA.	kidney	colon and liver
TMD0242	XM 088369	Homo sapiens similar to unnamed protein product (LOC157724) mRNA	kidney	none
TMD0335	096680_MX	Homo sapiens similar to sodium lodide symporter (LOC159963) mRNA	kidney	adrenal gland, heart, intestine(small), liver, muscle, testis
TMD0371 (new)	XM 089732	Homo saplens similar to CG8271 gene product (LOC196023), mRNA.	kidney	pancreas and testis
TMD0374 (new)	XM 085595	Homo sapiens similar to unnamed protein product (LOC146802) mRNA	kidney	brain, muscle, ovary, skin, testis
TMD0469	XM 038736	Homo saplens solute carrier family 4 sodium bicarbonate cotransporter member 9 (SLC4A9) mRNA	kidney	none
TMD0719	XM 059548	Homo sapiens hypothetical gene supported by XM_059548 (LOC131920) mRNA	kidney	none
TMD0731	XM_059703	Homo sapiens similar to putative (H. sapiens) (LOC134288) mRNA	kidney	adrenal gland, muscle, thyroid
TMD0785	XM_060310	Homo sapiens similar to olfactory receptor MOR275-2 (LOC127069), mRNA	kidney	попе
TMD0841	XM_060623	Homo sapiens similar to KIAA0711 gene product (H. sapiens) (LOC127707) mRNA	kidney	lung
TMD1114	NM_019841	Homo sapiens transient receptor potential cation channel subfamily V member 5 (TRPV5) mRNA	kidney	попе
TMD1148	XM 087108	Homo sapiens similar to calcium channel voltage-dependent gamma subunit 6 (LOC151151) mRNA	kidney	none

TABLE 8

TABLE 9

্ৰাজ্য বিজ্ঞানী বিহুণ্ডৰাত্তিক শিক্ষা	Sugar (and other) transporter: 2 - 302	Transmembrane domain: 12 - 34	Transmembrane domain: 39 - 58	Transmembrane domain: 131 - 133 Transmembrane domain: 157 - 179	Transmembrane domain: 186 - 205	Transmembrane domain: 215 - 237	Permease family: 91 - 224		AA-permease: 27 - 356	Transmembrane domain: 13 - 35	Transmembrane domain: 50 - 72	Transmembrane domain: 93 - 115	Transmembrane domain: 137 - 154	Transmembrane domain: 161 - 183	Transmembrane domain: 207 - 229	Transmembrane domain: 242 - 264	Transmembrane domain: 286 - 308	Transmembrane domain: 335 - 357	Transmembrane domain: 362 - 379	Transmembrane domain: 392 - 414	Transmembrane domain: 420 - 442
ි පැවැති (පැමැතිණ පුදනු (පොමුගිසි((පෙක්)	332						243		470												
SES ON ON	2						4		9												
මූපාල ලැබෙ	TMD0049						TMD0190		TMD0242												

۹	۰	2
e	-	2
_		
۰	٠,	
	-	ı

	_		
TMD0335	8	178	Sodium solute symporter family: 41 - 172
		į	
TMD0371	5	516	Transmembrane domain: 45 - 67
			Transmembrane domain: 87 - 109
			Transmembrane domain: 116 - 138
			Transmembrane domain: 143 - 165
			Transmembrane domain: 174 - 196
			Transmembrane domain: 201 - 223
			Transmembrane domain: 283 - 305
			Transmembrane domain: 320 - 339
			Transmembrane domain: 351 - 370
			Transmembrane domain: 375 - 397
			Transmembrane domain: 404 - 426
			Transmembrane domain: 441 - 463
TMD0374	12	566	Transmembrane domain: 31 - 53
			Transmembrane domain: 68 - 90
			Transmembrane domain: 116 - 138
			Transmembrane domain: 153 - 171
			Transmembrane domain: 184 - 206
			Transmembrane domain: 211 - 233
			Transmembrane domain: 254 - 273
			Transmembrane domain: 288 - 310
			Transmembrane domain: 331 - 353
			Transmembrane domain: 373 - 395
			Transmembrane domain: 404 - 426
			Transmembrane domain: 431 - 453
			Transmembrane domain: 542 - 564

4	
•	

16 146 20 312 22 1161	TMD0469	14	983	HCO3- transporter family: 108 - 891
16 146 18 218 20 312				Transmembrane domain: 413 - 435
16 146 18 218 20 312				Transmembrane domain: 447 - 469
16 146 18 218 20 312 22 1161				Transmembrane domain: 498 - 520
16 146 18 218 20 312 22 1161				Transmembrane domain: 532 - 554
16 146 18 218 20 312 22 1161				Transmembrane domain: 623 - 645
16 146 18 218 20 312 22 1161				Transmembrane domain: 665 - 684
16 146 18 218 20 312 22 1161				Transmembrane domain: 712 - 731
16 146 18 218 20 312 22 1161				Transmembrane domain: 751 - 773
16 146 18 218 20 312 22 1161				Transmembrane domain: 813 - 832
16 146 18 218 20 312 22 1161				Transmembrane domain: 839 - 858
16 146 18 218 20 312 22 1161				Transmembrane domain: 897 - 919
16 146 18 218 20 312 22 1161				
18 218 20 312 22 1161	TMD0719	16		Transmembrane domain: 7 - 29
20 312				Transmembrane domain: 49 - 71
20 312				
20 312	TMD0731	18		Transmembrane domain: 38 - 60
20 312				Transmembrane domain: 70 - 92
20 312				
22 1161	TMD0785	20		7 transmembrane receptor (rhodopsin family): 58 - 290
22 1161				Transmembrane domain: 29 - 51
22 1161				Transmembrane domain: 61 - 83
22 1161				Transmembrane domain: 140 - 162
22 1161				Transmembrane domain: 197 - 219
22 1161				Transmembrane domain: 240 - 262
22 1161				Transmembrane domain: 272 - 294
1161				
Kelch motif: 897 - 938	TMD0841	22		Kelch motif: 850 - 895
				Kelch motif: 897 - 938

u	ŕ	5
Č		Š
	_	_

TMD1114	24	729	Transmembrane domain: 327 - 349
			Transmembrane domain: 383 - 405
			Transmembrane domain: 420 - 438
			Transmembrane domain: 451 - 473
			Transmembrane domain: 493 - 512
			Transmembrane domain: 519 - 541
			Transmembrane domain: 554 - 576
TMD1148	26	103	Transmembrane domain: 7 - 24
			Transmembrane domain: 39 - 61
			Transmembrane domain: 68 - 90

ල්කෙ ෙල (ලෙක කෙවෝ සිලලා)	KOOKI	Overenetieleevis 1	Organistic locals decision and the second se
TMD0049	XM_057351	11q12.1	osteoporosis-pseudoglioma syndrome; spastic paraplegia 1 7
TMD0190	XM_087157	2q36.2	none
TMD0242	XM_088369	8q21.2	none
TMD0335	XM_089960	11p14.2	none
TMD0371A	XM_089732	10q23.33	epilepsy, partial, with auditory features; spastic paraplegia 9, autosomal dominant
TMD0374	XM_085595	17p11.2	smith-magenis syndrome
TMD0469	XM_038736	5q31	paget disease of bone 4
TMD0719	XM_059548	3929	none
TMD0731	XM 059703	5q13.2	spastic paraplegia 11, autosomal recessive; corpus callosum, agenesis of, with neuronopathy
TMD0785	XM_060310	1q44-tel	familial cold urticaria (FCU); Muckle-Wells syndrome (MWS); prostate cancer susceptibility
TMD0841	XM 060623	1036.13	breast cancer, ductal, 2; prostate cancer/brain cancer susceptibility; melanoma, cutaneous
TMD1114	NM 019841	7935	glaucoma 1, open angle, f
TMD1148	XM_087108	2q14.1	motor neuronopathy, distal hereditary, with vocal cord paralysis; cardiomyopathy, dilated, 1h

TABLE 1(

(6003 (836) 100 NO))	original (Second of the Notice of Control	Bittovermine (1890 in Mode)
TMD0049	GCGCTTCCGGACCTGTATCTCCAC (104)	AAAGAGCCTCTAAAGAAGGGTTCCAGACTACCAGGAGCTCACTGGAAATA (106)
(18, 79)	CAAGCTCTGGGTCTCGGGCAGAAG (105)	
TMD0190	ACCATCCTGCAAACTTGGATGGGC (107)	GCTTTATGTATATGAAAACCCTGTTTATCTGAGCCTAGAACTGTCTTTGC (109)
(80,81)	AAGGAGCCGGAAGACAGGGAGAGG (108)	AGTGATAGTTTTAAATGGGAGGGAATAAAGTCTGCAAAATTTCCCCATAT (110)
TMD0242	GAGTCTCCCTGTGCGTTTGGGCTG (111)	AGTCCCAGCTTAAAAAAGAGACAGACAGAGAGAGAGAGAG
(82,83)	AAGTGTAAAGCATGCCCCGCCTGA (112)	TTAGTGATTTAAAAAAATGTGAAGAAGAGAGTCAAGGCAGTAAAAGGA (114)
TMD0335	GITCGCIATGCTGCCACGGTCATC (115)	GATACAATAATAATAAAGGCCCAGGTTAAGGTAAATATATAAAGACCAAG (117)
(84,85)	AGTCCTGGCAGTCCTGGCATTGTG (116)	ATCTCACGAATTAAAAATGCTGAGGTGGTAAATTGTTATCAATTCTATGT (118)
TMD0371	CAGGATTACGCACAACGGCATGG (119)	CTAGACTATTTAAAAAACCCCTGGCTTGCACAGGCTCAAGCCTGTAA (121)
(86,87)	TGGGAGGCAGAGATAGCAGAGCCC (120)	
TMD0374	creerccreecccrearaacc (122)	AGCTGTCCTCATTAAAAGTGACCTGGAGTGAATGGATTCTTCTGCCTAT (124)
(88,89)	cccaggrergerrgcagrecrer (123)	CCAATTCTTCTGAAAACGGGAGTCACTGTGGGCACCATCACGCCCGGGT (125)
TMD0469	creassrerccreceasser (126)	TAAACAAATACATAAATGAGGCAGTTACTAGTAGTGGTAACTGCTAGGAA (128)
(16,06)	TACGGCCGAGAAGCACTGGAGATG (127)	ACTAAAATATAAAAATCAGCCAGGCCTGGTGGCACATGTCTGTAATCTC (129)
		GGGATGCATTATAAATGCAACCAGGCCCAGAGGCCCCTGGCTTCAGAACCT (130)
TMD0719	GTCACCTCAGCGATCTCAACGATAGGG (131)	ATATACCTTGTTTAAAAGAGGGGTATTATCACAATAAAACAAGGAAAGCT (133)
(92,93)	rggagcaggaacaggatataggtcaggg (132)	ACCCCTACTTTAAAGGCCTTGACAAACAGTGCTAAAGTTCTCACCTTAA (134)
TMD0731	GGGTGGGAAGCAGGGAAGAG (135)	TTATTGGGCATAAAAATATGAAGAGGTCCCAGAGAGTCCCTAGGTTCT (137)
(94,95)	CCAGCTAGTTCATGCTTGGCGCAG (136)	- 1
TMD0785 (96,97)	CTGTTGGGAATCTTCAGCCAGATCTCACAC (138) ATGGAGGTTTCTGCACGCTCAGCA (139)	AAGCAATTIGITAAAAACIGGCATTACITITACICITAIGCITICIGIGIC (140) ACITIAATITIAIAAAGAAGGIICACAICAAGAAAIICCAAGIGAGGIIC (141)
TMD0841	GGCCACTCCACAGACAGC (142)	AAGGCTTCTTCAAAAAAGCGGGCTTGTTCTGGGCCAGAAATCAGAGTG (144)
(68, 99)	TGGCCTGAGAGGTAGATTCCACATAGTAGTCGT (143)	
TMD1114	CTCCTTTCTGGTCAGAGAACAAGACTGGGAC (145)	CAGCGAGGCAGAAAATGTCCCACAAGTTGAGCCCTCCCCACTCCCAGTG (147)
(100,101)	GTGATGTCTCGAGAATGAGTGCGGTTG (146)	TAATATAAAATATAAAATAGGGGAACATTACTTATTCCTCCTGGTGTT (148)
TMD1148	GCAGATGACCGGACCTGACTGTTCTTC (149)	GCCAGAGAGITTAAATGAAGCCCTACTTTGGGGCAGGAGGGGGGGAGGAAAC (151)
(102, 103)	TGGCTGTGCAGCTAGGTACCAG (150)	

TABLE 11

ر از از ا									
FRIMER (FOR, REV)	154,155	164,165		169,170		173,174		177,178	
PROMOTER (SEQ ID NO)	156-161	166						179,180	
OTHER SITES OF EXPRESSION	low levels in	testis low levels in	testis					low levels in	testis
PREDOMINANT SITES OF EXPRESSION	pancreas	pancreas		pancreas		pancreas		pancreas	
GENBANK IDENTIFIER	XM_061779	XM_061780		XM_061781		XM_061784		XM_061785	
GENE	TMD0986	TMD0987		TMD0353		TMD0989		TMD058	
SEQ ID	152,	153 162,	163	167,	168	171,	172	175,	176

TABLE 12

	WX 061779	XM_061780 XM_061781	XM_061781	XM_061784 XM_061785	XM_061785
outside 1-23	1-23	1-25	1-22		1-24
TM (1)	24-46	26-48	23-45		25-47
inside	47-58	49-60	46-65		48-59
TM (2)	59-78	61-83	66-88		60-82
outside 79-97	79-97	84-97	26-68		83-96
TM (3)	98-120	98-120	98-120		97-119
inside	121-140	121-139	121-140		120-139
TM (4)	141-163	140-162	141-163		140-162
outside	164-198	163-202	164-203		163-201
TM (5)	199-221	203-25	204-226		202-224
inside	222-240	226-237	227-237		225-236
1M (6)	241-260	238-260	238-260		237-259
outside	261-274	261-269	261-272		260-268
TM (7)	75-292	270-289	273-292		269-291
inside	293-314	290-318	293-323		292-311

TABLE 13

GENBANK IDENTIFIER	MOUSE HOMOLOG	061779	061780	061781	061784	061785
WX 061779			42% (63%)	36% (57%)	42% (63%) 36% (57%) 43% (64%) 40% (61%)	40% (61%)
XM_061780	MOR239-6 (AY073489) 90% (93%)	42% (63%)		41% (60%)	44% (62%)	46% (67%)
XM 061781		36% (57%) 41% (60%)	41% (60%)		43% (63%) 40% (61%)	40% (61%)

MOR223
40% (61%)

TABLE 14

TABLE 15

	82.	d Presonning		The state of the s
Gene (Gene cota)	AGGN	المستعدد هل	Other expression elles	Cytegenetle leave
10 4000 (SEC) 10 40E	1 24 N			I The state of the
186)	XM_166853	spieen	liver	11q12.2
TMD1029 (SEQ ID NO 187- XM_166854 188)	XM_166854	spleen, lymphocytes, liver	brain, heart, lung, lymph node 11q12.2	11q12.2
TMD1028 (SEQ ID NO 189- XM_166855 190)	XM_166855	spleen, lymphocytes	liver	11q12.2
TMD0621 (SEQ ID NO 191- XM_166205 192)	XM_166205	spleen	brain, heart, liver, lung and pancreas	11912.2

TABLE 16

Protein length (ee) Tomeln desenoton 🔅 🐇 .	Transmembrane domain; 27 - 49 Transmembrane domain: 98 - 120 Transmembrane domain: 140 - 162 Transmembrane domain: 175 - 197
ACCN Proteil	/_166853
] (Jewe)	TMD1030 XM_166853

			Transmembrane domain: 238 - 260 Transmembrane domain: 275 - 292
TMD1029	XM_16684	308	Transmembrane domain: 26 - 48 Transmembrane domain: 61 - 78 Transmembrane domain: 98 - 120 Transmembrane domain: 140 - 162 Transmembrane domain: 136 - 218 Transmembrane domain: 238 - 260 Transmembrane domain: 275 - 292
TMD1028	TMD1028 XM_166855	173	Transmembrane domain: 18 - 40 Transmembrane domain: 61 - 83 Transmembrane domain: 103 - 125 Transmembrane domain: 137 - 156
TMD0621	TMD0621 XM_166205	109	Transmembrane domain: 9-31 Transmembrane domain: 69 - 91

TABLE 17

			-	
Rodin the	GAGCCTATAATATATGAGCCAGCTACGAGTTGGA (SEQ ID NO 198)	AAACCIGTTIGIACAGAGGCATTTATTGAGCC (SEQ ID NO 200)	CTCCAACCCAGTGAACATCAAGTTAAATCCCAC (SEQ ID NO 202)	CTCATTAATACGATGGCATAGATACATGTAAGAGAG (SEQ ID NO 204)
ાં-ભોજી ક	TMD1030 XM_166853 GGGATTTGGTCTCCAACACGAATTTCA (SEQ ID NO 197)	XM_166854 GTCACTGAATTCTATCTTCTGGGATTTGGTGC (SEQ ID NO 199)	TMD1028 XM_166855 GATATCATTTTGGGCTGCATGATACAATTATTGG (SEQ ID NO 201)	TMD0621 XM_166205 TTAAGCTATTAGTTAGTTCATATGTCATGGGTTTCC (SEQ ID NO 203)
KGGN	XM_166853	XM_166854	ХМ_166855	хм_166205
(Clare ID	TMD1030	TMD1029	IMD1028	TMD0621

TABLE 18

<u> </u>	ACCIN ¹⁵		onentess enjoinens.	(Hrehinderen)	***		Æ.	
TMD1030	ХМ_166853	TMD1030 KM_166853 ATGTTCCATCTARAATGAAGCCTGAGAACCCAGCACTACCACCATGTTAG (0.94) (SEQ ID NO 205) ACATCCATTATATAACAGGGTTAATATACTTGTAAAGAATAGCACCTAGA (0.95) (SEQ ID NO 206)	TGAGAACCCAGCAC. TAATATACTTGTAAA(TACCCACTTGTTAG SAATAGCACCTAGA	(0.94) (0.95)	(SEQ (SEQ	ID NO 205) ID NO 206)	205)
TMD1029	XM_166854	TMD1029 KM_166854 AAATGTATAAATTCTGCATGAAATTGGGGGTGGGGCTTGTACTTTTG (0.98) (SEQ ID NO 207)	AATTGGGGGGTGGGGC	TTGTACTACTTTTG	(0.98)	(SEQ	ID NC	207)
TMD1028	хм_166855	TMD1028 XM_166855 ATGTTCCATCTAAATGAAGCCTGAGAAACCCAGCACTACCCACTTGTTAG (0.94) (SEQ ID NO 208) ACATCCATTATAACAGGGTTAATATACTTGTAAAGAATAGCACCTAGA (0.95) (SEQ ID NO 209)	TGAGAAACCCAGCAC TAATATACTTGTAAA	TACCCACTTGTTAG	(0.94)	(SEQ (SEQ	ID NC ID NC	208)

(SEQ ID NO ZIU)	(SEQ ID NO 211)	(SEQ ID NO 212)	(SEQ ID NO 213)		
(0.99)	(0.97)	(1.00)	(0.91)		
TMD0621 XM 166205 AAATATATATATTTAAATTGGCCAGGCGCGGTGGCTCACGCCTATAATCCC (0.99) (SEQ ID NO ZIU)	GCCTCACGCCTATAATCCCAGCACTTTGGGAGGCCGAGGCAGGTGGATCA (0.97) (SEQ ID NO 211)	TCCCAAATATATATATATATACACACACACACACACACA	CACACACACATATATATACACACATATATTATAATCATTTAACAAC		
XM 166205	1				
TMD0621					

TABLE 19
(from Principles of Internal Medicine, Volume 1, Page 357, 12th Edition, McGraw-Hill Inc.)

Table 20

Cione ID	ACCH	දැල්ලාබ පෙමු (පොල්)බ (ලෙක්)	විතාව්ය ලෙස අවර්මා
TMD0077	XM 166914	310	7 transmembrane receptor (rhodopsin family)
			Transmembrane domains: 27 - 49
			Transmembrane domains: 61 - 83
			Transmembrane domains: 98 - 120
			Transmembrane domains: 141 - 163
			Transmembrane domains: 202 - 224
			Transmembrane domains: 237 - 259
			Transmembrane domains: 274 - 291
TMD0233	XM 069616	310	7 transmembrane receptor (rhodopsin family)
			Transmembrane domain: 26 - 48
			Transmembrane domain: 60 - 77
			Transmembrane domain: 97 - 119
			Transmembrane domain: 140 - 162
			Transmembrane domain: 196 - 218
			Transmembrane domain: 239 - 261
			Transmembrane domain: 272 - 291
TMD0256	XM_066725	308	7 transmembrane receptor (rhodopsin family)
-			Transmembrane domain: 27 - 49
			Transmembrane domain: 61 - 83
			Transmembrane domain: 98 - 120
			Transmembrane domain: 140 - 162
			Transmembrane domain: 196 - 218
			Transmembrane domain: 239 - 258
			Transmembrane domain: 273 - 291
TMD0258	XM 066873	335	7 transmembrane receptor (rhodopsin family)
	7		Transmembrane domain: 10 - 32
			Transmembrane domain: 39 - 61
			Transmembrane domain: 79 - 101
			Transmembrane domain: 121 - 143
			Transmembrane domain: 163 - 185
			Transmembrane domain: 226 - 248
			Transmembrane domain: 263 - 282
TMD0267	XM_089550	324	Integral membrane protein DUF6: 49-161
			Transmembrane domain: 59 - 78
			Transmembrane domain: 91 - 110
			Transmembrane domain: 115 - 137
			Transmembrane domain: 146 - 168
			Transmembrane domain: 183 - 201
			Transmembrane domain: 214 - 236
			Transmembrane domain: 246 - 265

		-	Transmembrane germani. ee . 1
I WILDUT ZO	VINI_028028	90	Transmembrane domain: 13 - 33 Transmembrane domain: 50 - 72
TMD0726	XM_059639	96	Transmembrane domain: 13 - 35
TMD0677	XM_059140	182	Transmembrane: 49 - 71
TMD0675	XM_059134	206	Transmembrane domain: 15 - 37
TMD0674	XM_059132	134	Transmembrane domain: 5 - 22
			Transmembrane domain: 176 - 198
			Transmembrane domain: 150 - 169
TMD0645	XM_085376	248	Transmembrane domain: 113 - 135
			Transmissions contains 44 00
LIVIDOUS	VIN 020020	141	Transmembrane domain: 44 - 66
TMD0630	XM 058690	127	Transmembrane domain: 12 - 34
TMD0608	XM_058332	105	Transmembrane domain: 13 - 35
	 		Transmembrane domain: 621 - 643
			Leucine rich repeat C-terminal domain: 529-579
TMD0574	XM_055514	696	Leucine rich repeat C-terminal domain: 212-262
			Transmembrane domain. 311 - 333
	 		Transmembrane domain: 511 - 533
1 เงเบบองบ	XM_048304	100	Immunoglobulin domain: 139-200
TMD0530	VM 049304	708	Immunoglobulin domain: 139-206
			Transmembrane domain: 221 - 243
			Transmembrane domain: 162 - 184
			Transmembrane domain: 128 - 150
			Transmembrane domain: 96 - 118
			Transmembrane domain: 61 - 83
TMD0290	XM_065813	245	Transmembrane domain: 24 - 46
			Transmembrane domain: 249 - 271
			Transmembrane domain: 220 - 239
			Transmembrane domain: 190 - 207
	<u> </u>		Transmembrane domain: 163 - 185
			Transmembrane domain: 120 - 142
			Transmembrane domain: 83 - 105
			Transmembrane domain: 56 - 78
NIDUZII	VIAI 00 10 12		Transmembrane domain: 29 - 51
FMD0274	XM 061815	291	7 transmembrane receptor (rhodopsin family)
			Transmembrane domain: 297 - 316
			Transmembrane domain: 270 - 292

			Transmembrane domain: 145 - 164
			Transmembrane domain: 171 - 193
			Transmembrane domain: 229 - 251
			Transmembrane domain: 264 - 286
			Transmembrane domain: 314 - 336
			Transmembrane domain: 421 - 443
			Transmembrane domain: 453 - 475
			Transmembrane domain: 580 - 602
			Transmembrane domain: 668 - 690
			Organic Anion Transporter Polypeptide (OATP) family, C-terminus: 125-473
			Organic Anion Transporter Polypeptide (OATP) family, N-terminus: 558-717
TMD0739	XM_059812	265	Transmembrane domain: 126 - 148
			Transmembrane domain: 185 - 207
TMD0753	XM_059954	161	Transmembrane domain: 26 - 48
TMD1111	NM_014386	609	lon transporter domain: 284-490
			Transmembrane domain: 34 - 56
			Transmembrane domain: 274 - 296
			Transmembrane domain: 315 - 337
			Transmembrane domain: 364 - 386
			Transmembrane domain: 407 - 429
			Transmembrane domain: 469 - 491
 TMD1127	NM_054020	528	Ion transporter domain: 172-340
			Transmembrane domain: 113 - 132
			Transmembrane domain: 147 - 169
			Transmembrane domain: 176 - 198
			Transmembrane domain: 241 - 263
			Transmembrane domain: 276 - 295
			Transmembrane domain: 315 - 337

(disue)[5,	ACCH	Cylegenelisies	diseasalidisege
TMD0077	XM_166914	11q12.2	angioedema, hereditary; spastic paraplegia 17; osteoporosis-
111100077	_	•	pseudoglioma syndrome ; pancreatic tumor
TMD0233	XM_069616	7q35	glaucoma 1, open angle, f;
TMD0256	XM_066725	Xq26.1	x inactivation, familial skewed, 2; panhypopituitarism; thoracoabdominal syndrome; dandy-walker malformation with mental retardation, basal ganglia disease, and seizures; split-hand/foot malformation 2; mental retardation with optic atrophy, deafness
TMD0258	XM_066873	Xq26.1	x inactivation, familial skewed, 2; panhypopituitarism; thoracoabdominal syndrome; dandy-walker malformation with mental retardation, basal ganglia disease, and selzures; split-hand/foot malformation 2; mental retardation with optic atrophy, deafness
TMD0267	XM_089550	10q24.1	comeal dystrophy of bowman layer, type ii; alzheimer disease 6
TMD0271	XM_061815	11p15.4	charcot-marie-tooth disease, type 4b, form 2; deafness, neurosensory, autosomal recessive 18;
TMD0290	XM_065813	2p23.1	none
TMD0530	XM_048304	19q13.13	hypocalciuric hypercalcemia, familial, type iii; deafness, autosomal dominant nonsyndromic sensorineural 4:
			microcephaly, primary autosomal recessive, 2
TMD0574	XM_055514	13q31.1	microcoria, congenital; schizophrenia 7;
TMD0608	XM_058332	10q26.3	endometrial carcinoma
TMD0639	XM_058690	15q22.32	cataract, central saccular, with sutural opacities; obesity syndrome
TMD0645	XM_085376	16q23.1	dehydrated hereditary stomatocytosis; pancreatic acinar cancer '
TMD0674	XM_059132	1p36.11	breast cancer, ductal, 2; prostate cancer/brain cancer susceptibility; melanoma, cutaneous malignant; inflammatory bowel disease 7;
TMD0675	XM_059134	1p33	carcinoma of pancreas
TMD0677	XM_059140	1p34.2	deafness, autosomal dominant nonsyndromic sensorineural 2; porphyria cutanea tarda; hypercholesterolemia, familial, ptosis, hereditary congenital 1;
TMD0726	XM_059639	10q11.22	none
TMD0727	related to XM_059654	5q21.1	anemia, dyserythropoietic congenital, type ili; dyslexia, specific, 1; colorectal cancer, hereditary nonpolyposis, type 7; cataract, central saccular, with sutural opacities
TMD0739	XM_059812	7q11.23	autism, susceptibility to, 1; muscular dystrophy, limb-girdle, type 1d; aneurysm, intracrania l
TMD0753	XM_059954	9q21.12	hemophagocytic lymphohistiocytosis, familial, 1; amyotrophic lateral sclerosis with frontotemporal dementia
TMD1111	NM_014386	5q31	none
TMD1127	NM_054020	15q13-q15	nanophthalmos 2; spastic paraplegia 11, autosomal recessive; corpus callosum, agenesis of, with neuronopathy; pancreatic acinar carcinoma
1	1		

23	
뉙	
3	
⊻.	
•	

CODE	ACCN	PRIMERS	PROMOTER
TMD0077 (SEQ ID NO 214-215)	XM_166914	TCATGGATCACCACCCACCCTC (Forward) (SEQ ID NO 256) CACCAAGATCACCACCATGGAAGCA (Reverse) (SEQ ID NO 257)	GGATTCAGGCCTTTTAAACCCCACTCAGTGGTGCATGGCAGGCTTTGA (0.88) (SEQ ID NO 258)
TMD0233 (SEQ ID NO 216-217)	XM_069616	TGCTGACGAATCTTATGAACCAGG (Forward) (SEQ ID NO259) TCACGTCAGCCTCTCCTCCTCAGTG (Reverse) (SEQ ID NO 260)	TCACAAATCATAAAATTAGGGGAAAGAGAGGGGGGGTATACTCTAAAA (0.96) (SEQ ID NO 261) AATTICTTATTTAAAAGACCTCAGAAATGTCACCATGCTTAGTTATTTA (0.95) (SEQ ID NO 262)
TMD0256 (SEQ ID NO 218- 219)	XM_066725	GGCCATGGACAATGTCACAGCAG (Forward) (SEQ ID NO 263) AGCAGACACATACTGGGCCATTCATAACCAC (Reverse) (SEQ ID NO 264)	GGTACTATTCTATATTTTGGGCACACAGCAATGAAGAAACAGAAAACC (0.93) (SEQ ID NO 265) CTGGGTTTCATAAATATGGAGCAGAAAGTTTTTACAAATATAGAACAGCA (0.92) (SEQ ID NO 266) TAGAATGTTATAAAAAATGAAGCAGGGCTAGGGGAAAGAGATGGTGA (0.91) (SEQ ID NO 267)
TMD0288 (SEQ ID NO 220-221)	XM_066873	CCTCATTGGCTTCCTCCCACTCG (Forward) (SEQ ID NO 268) GCCATCAAACTCTGAGCTGGAGATAGTGAC (Reverse) (SEQ ID NO 269)	CCAAGGAACTITTAAAACTCCCATTGCACAGTTACCACCCAGAATAATTA (0.97) (SEQ ID NO 270 CATCCTGGAATATTTTGCGTCCAACTCTGCACCTTGCTCTCTATTCCCT (0.96) (SEQ ID NO 271 CTGGGGCCCTCAAAAAGCTCACCTTCCCTCACTTCCACTTGAT (0.91) (SEQ ID NO 272)
TMD0267 (SEQ ID NO 222- 223)	XM_089550	TGGCCTCGTTGAAAGTGTCATCATCC (Forward) (SEQ ID NO 2/3 TTGGTACCATTTACGAATGGCCGC (Reverse) (SEQ ID NO 2/4)	AAACGGCATTTTAAAAATGCAGGTTTAAATTGTTATCCTCATCTATGGTT (0.98) (SEQ ID NO 275)
TMD0271 (SEQ ID NO 224- 225)	XM_061815	CTGGACTTGAGCAGTACCACGTCTGGATC (Forward) (SEQ ID NO 276) CATATTCCCACAGCAATTTTGACAATGG (Reverse) (SEQ ID NO 277)	ATTTTGGTTATATAGAGGAGTCTAGGAAAAGACTCGTGGGTCTGATTC (0.97) (SEQ ID NO 278) TACTCATATTTATAGCAGCAACTTACATTGACCCAGGGAGAACTCAGT (0.94) (SEQ ID NO 279)
TMD0290 (SEQ ID NO 226- 227)	XM_065813	GTTACCCACCCACCGTCACGACC (Forward) (SEQ ID NO 280) CAGGCGATGCCAGAGAAGACGATG (Reverse) (SEQ ID NO 281)	CTAGAATTTACATAAAAAGGACTGGAGGGCTTTTGCAGCAACTTTGCAT (SEQ ID NO 282) TTTTCTTCTTTTAAAAAACCGCTTTCACTCTCAAAACAGCAGGAGTGAA (0.98) (SEQ ID NO 283) AACTGGGGTCTATAAGAGGCCAGGGCACTTATTCATCCAAGGGCAGATG (0.99) (SEQ ID NO 284)
TMD0530 (SEQ ID NO 228- 229)	XM_048304	CTATGACTTCAACCCACCTGGGCA (Forward) (SEQ ID NO 285) AAGGTCGCCAACTTGTCCTGGCTC (Reverse) (SEQ ID NO 286)	GGGCGGAGTAAAAGGCAGAGTCCAATTCCACCGGCCCCCAGIGIGGGIG (0.86) (SEQ ID NO 287)

CODE	ACCN	PRIMERS	PROMOTER
TMD0574 (SEQ ID NO 230- 231)	XM_055514	TCAATGCCATGCCCAAACTGAGGA (Forward) (SEQ ID NO 288) CAACACCGAGATGGACACCCTGCT (Reverse) (SEQ ID NO 289)	CTTTTAAGGTTAAAAATGTGGGTTTTAGATGATTGTCCTTTCTAAACAGC (0.99) (SEQ ID NO 290) TCAGGATGTCTAAAAAAGATCTCTCTAGTGTACACACGTGCACACACA
			(SEQ ID NO 291) AGTAACTCTATITIAAAAGACCTAAAAATTTCAAATCCTAAAATGATCTAT (0.90) (SEO ID NO 292)
			AATAAATGTTTTAAAAGCACTCCTTTCCGAATGGTGGAGCTGGTGGGGGC (0.91) (SEQ ID NO 293)
TMD0608	XM_058332	CTCAGGACGAAGATCATGATCGGCATC (Forward) (SEQ ID NO	TATTCTCACTTATAAGTGGGAGCTAAGCCATGAGGGCACCAAGGCATAAG (0.99)
(SEQ ID NO 232- 233)		294) GAAGATTTTTGTGCCCAGCTTTCCCAAG (Reverse) (SEQ ID NO 295)	(SEQ ID NO 297)
TMD0639	069850_MX	TCCATGCTCAGCTTCATCTCAGCTACC (Forward) (SEQ ID NO	AAATAACCCCATTAAAAAGTGGGCAAAGGGCATGAACACTTTTCAAAAGA (1.00) (SEO ID NO 300)
(3EQ ID NO 234- 235)		250) TCCATCTCAGACCTTGGCCCTTCA (Reverse) (SEQ ID NO 299)	
TMD0645	XM_085376	AGGACGGTAAGGAGCCATCGGACA (Forward) (SEQ ID NO	TCTTTTGTCTATAAATAGGACTTTGATTTTCTGGACTAGAGAATTGTAT (0.54)
(SEŲ ID NO 230- 237)		CTTGCCAGGTTCTGGTGGCTTGG (Reverse) (SEQ ID NO 302)	
TMD0674	XM_059132	ACGACTCCAAGAACAGCAAGGCCG (Forward)	GCTAGCATTTTTTAAAAGCTGATGTCTTCACTGGGCACGGGGACTCACAC (0.94)
(SEQ ID NO 238- 239)		(SEQ ID NO 304) AAGGTAACATCGGCAGAGGCCAGC (Reverse) (SEQ ID NO 305)	
TMD0675	XM_059134	CGGCCAGGTACCAAAGCTCAGCTG (Forward)	TGATCTACTTTTAAAAGGATCATGCTGGCTGCTGGTGGGATTTAGGATA (0.91)
(SEQ ID NO 240- 241)	-	(SEQ ID NO 307) GCCAGATTCAGGAGGGAATGGAAGAGAAC (Reverse)	(SEQ ID NO 309) TGATAGTGATAAAAAAAAAGTGGCCAGATTTTGGTTATATTTTGAAATAAA (0.99)
		(SEQ ID NO 308)	(SEQ ID NO 310) TATAGTGATATITAAAGCCAGGGGTCTGGGTGAGATAACTGATGAATGA (0.93)
			(SEQ ID NO 311)
			ATTOCARCIA LAWA ON CONTRACT TO SECURE CONTRACT C
			AGAGGGGAGTCATTAAAATGGTGCTAAGAAGCTGAGCTACAAGCAGTGGT (0.97)
			(SEQ ID NO 313) GACATTCCACCCAAAAAATGCCACTGGATGAAGTCCCCTCCTTCCATTAA (0.92)
			(SEQ ID NO 314)

ĺ	D

CODE	NOOV	PRIMERS	PROMOTER
CODE	100 S	TTCCCACACTACTCCACCTCACCTCACCTCACCTCACC	AAAAGTGCTTTTAAACAGGGGGGGGGGGGGCTTATGAGAAGGGGACCA (1.00)
(SEQ ID NO 242-	09160 WY	(SEQ ID NO 315)	(SEQ ID NO 317)
243)		GAGCAATCCCTCTTCGTGGCAGGT (Reverse)	CCATTICIACIAAAAAIGCAAAAAICAACCAAGCAIGGCACGIGGC (9.53)
		(SEC ID NO SIG)	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
			(SEQ ID NO 319) AAAATAAAAATAAAAAATAAAAAATCCCATCCCTCACATTTCCATTCAACCTCAAT (0.93)
		I the Charles in Charles in the Char	(SEQ ID NO 320)
TMD0726	XM_059639	ACTICCAAACATCTACAACTCCTCAGAGICICATI (Forward)	(SEO ID NO 323)
(SEQ ID NO 244- 245)		TGCAGCACCATCATGTAAGGGACAA (Reverse)	GTATATGCTATATATCAGGATTCACTTTAATGGCATTGAGTTCCAGGA (0.98)
		(SEQ ID NO 322)	(SEQ ID NO 324) ATAAACAATITTAAAAATITAGCCCACCATGGTGGTACACACCTGTCGTTCT (0.99)
			(SEO ID NO 325)
			AAAAAGTGAAAAAAAAGGTGAGGGAGACTTTAACTTTCTGAAATATATT (0.92) (SEQ ID NO 326)
TMD0727	XM_059654	CCAAGAAGCCGGGAGAAGTGGATG (Forward)	CTAAAGAGCTTATATATCAGCCTAAGAAAAGAAAACCAATAAGAAGTTGC (0.96)
(SEQ ID NO 246-	(related to)	(SEQ ID NO 327)	(SEC ID NO 329)
247)		TGACAGAGCI AGGCAI A GAGCACI GGA (REVESE) (SEQ ID NO 328)	
TMD0739	XM_059812	GCAGTTGGTTCAGAACCGAGATCACC (Forward)	ACTAAAAATACAAAAAGTAGCCGGGTATGGTGGTAGGCGCCTATAATCC (0.93)
(SEQ ID NO 248-		(SEQ ID NO 330)	(SEQ ID NO 332) GGTA GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
249)		GGCAGATGGGGATACATTTATTCTCTGGG (Reverse) (SEO ID NO 331)	(SEQ ID NO 333)
			(b) () And (Job () () () () () () () () () (
TMD0753	XM_059954	TCGGCTTGGAAATCAGAATGAGAAGG (Forward)	AAAAGGCTTATATAAAAGGGTTTTGTTTTGTTTTGTTTT
(SEQ ID NO 250-		(SEQ ID NO 334) TGCACAAAGAATGATTGCAGCAGTGAGTAG (Reverse)	GGCCAACTTATATAAAAGGTTTATGTTTTTGTTCTGATAATTTCGTTTCT (0.91)
ì		(SEQ ID NO 335)	(SEQ ID NO 337)
_			(SEQ ID NO 338)
TMDIIII	NM_014386	GGGCGGTGTAGTGCAGGTCCG (Forward)	AATTCAAATATTTAAAACGGACTGTCTCCTCTTCACAAAGTCTAGATCT (0.92)
(SEQ ID NO 252-		(SEQ ID NO 339)	(SEC 12 NO 31)
253)		(SEQ ID NO 340)	
	000730	(Formand)	ATTIGRETICATATATATATAGGATAGTTAGCTCTTCTTGTTGAATTGATC (0.89)
(SEO ID NO 254-	0204020 WN_024020	(SEQ ID NO 342)	(SEQ ID NO 344)
255)		CTCCTCTGGATGATCTGCCGCTTG (Reverse)	
		(פרכ פרו פון אינויים)	

PCT/US03/11497

CLAIMS:

5

15

20

A method of detecting an immune system cell, comprising:
 contacting a sample comprising cells with a polynucleotide specific for TMD0024
 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025
 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304
 (XM_060956), TMD0888 (XM_060957), or TMD0890 (XM_060959) of claim 28, under conditions effective for said polynucleotide to hybridize specifically to said gene, and

-126-

- A method of claim 1, wherein said detecting is performed by:
 Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,
 RACE PCR, or in situ hybridization.
 - 3. A method of detecting an immune system cell, comprising:

detecting specific hybridization.

- contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), or TMD0890 (XM_060959) of claim 28, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.
 - 4. A method of claim 3, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 5. A method of delivering an agent to an immune cell, comprising:
 contacting an immune cell with an agent coupled to binding partner specific for a
 polypeptide coded for by TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884
 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781
 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), or TMD0890
 30 (XM_060959) of claim 28, whereby said agent is delivered to said cell.
 - 6. A method of claim 5, wherein the agent is a therapeutic agent or an imaging agent.

WO 03/089583 PCT/US03/11497

7. A method of claim 5, wherein the agent is cytotoxic.

5

10

15

20

25

30

- 8. A method of claim 5, wherein the binding partner is an antibody.
- A method of modulating the maturation of an immune system cell, comprising:
 contacting said cell with an agent effective to modulate a gene, or polypeptide
 encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946),
 TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781
 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890
 (XM_060959) of claim 28, whereby the maturation of an immune cell is modulated.
- 10. A method of modulating interactions between lymphoid and non-lymphoid immune system cells, comprising:
- contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28, whereby the interaction is modulated.

11. A method of expressing a heterologous polynucleotide in immune system cells, comprising:

expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected from SEQ ID NOS 5, 10, 11, 16-19, 29-32, 37-39, 44-46, 51-54, and 59-62.

12. A method of treating an immune system disease, comprising:

administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of a gene, or polypeptide encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025

5

10

25

30

(XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28.

- 13. A method of claim 12, wherein said agent is an antibody or an antisense which is effective to inhibit translation of said gene.
- 14. A method of diagnosing an immune disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:

assessing the expression of a gene, or polypeptide encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28 in a tissue sample comprising immune system cells.

15 15. A method of claim 14, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

20 16. A method of claim 14, wherein said assessing detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization, and

using a polynucleotide probe having a sequence selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28, or a polynucleotide probe having 95% sequence identity or more to a sequence set forth in SEQ ID NOS 1, 6, 12, 20, 25, 33, 40, 47, or 55, effective specific fragments thereof, or complements thereto.

17. A method of assessing a therapeutic or preventative intervention in a subject having an

PCT/US03/11497

5

10

15

20

25

30

immune system disease, comprising,

determining the expression levels of a gene, or polypeptide encoded thereby, selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM 060948), TMD1780 (XM 089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM 060957), and TMD0890 (XM 060959) of claim 28 in a tissue sample comprising immune system cells.

- 18. A method of claim 17, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 19. A method for identifying an agent that modulates the expression of a gene or polypeptide in the immune system gene complex, comprising,

contacting an immune system cell with a test agent under conditions effective for said test agent to modulate the expression of a gene selected from TMD0024 (XM_060945), TMD1779 (XM 060946), TMD0884 (XM 060947), TMD0025 (XM 060948), TMD1780 (XM 089422), TMD1781 (XM 089421), TMD0304 (XM 060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28, or the biological activity of a polypeptide encoded thereby, in said immune system cell, and

determining whether said test agent modulates said gene or polypeptide.

- 20. A method of claim 19, wherein said agent is an antisense polynucleotide which is effective to inhibit translation of said gene or an antibody specific for said polypeptide.
- 21. A method of detecting polymorphisms in a gene in the immune system gene complex, comprising: comparing the structure of:

genomic DNA or RNA or cDNA or a polypeptide comprising all or part of a gene selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM 060959) of claim 28 with the structure of SEQ ID NOS 1, 6, 12, 20, 25, 33, 40, 47, or 55.

20

- 22. A method of claim 20, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
- 5 23. A method of identifying a genetic basis for an immune disease or disease-susceptibility, comprising:

determining the association of an immune disease or disease-susceptibility with a nucleotide sequence present in a genome comprising the gene complex of claim 28.

- 24. A method of claim 23, wherein determining is performed by producing a human-linkage map of said complex.
 - 25. A method of claim 23, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having an immune system disease.
 - 26. A non-human, transgenic mammal, or a cell thereof, whose genome comprises a functional disruption of a gene selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) of claim 28, or a mouse homolog thereof, and which has a defect in immune system function.
 - 27. A method of selecting a gene predominantly expressed in immune system cells from a database comprising polynucleotide sequences for genes, comprising:

10

25

30

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for a gene selected from TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959), or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 28. A composition consisting essentially of the 1q22 immune gene complex, comprising TMD0024 (XM_060945), TMD1779 (XM_060946), TMD0884 (XM_060947), TMD0025 (XM_060948), TMD1780 (XM_089422), TMD1781 (XM_089421), TMD0304 (XM_060956), TMD0888 (XM_060957), and TMD0890 (XM_060959) genes, or a fragment thereof comprising at least two said genes.
- 29. A composition of claim 28, wherein said complex consists essentially of the chromosome region between STS markers SHGC-81033 and SHGC-145403, or a fragment thereof comprising at least two said genes.
- 30. A composition of claim 28, wherein said complex consists essentially of the
 20 chromosome region between STS markers SHGC-81033 and D1S3249, G15944,
 GDB:191077, or GDB:196442, or a fragment thereof comprising at least two said genes.
 - 31. A composition of claim 28, wherein said complex consists essentially of the chromosome region between STS markers RH118729 and D1S2577 or SHGC-145403, or a fragment thereof comprising at least two said genes.
 - 32. A method of detecting an immune system cell, comprising: contacting a sample comprising cells with a polynucleotide specific for a XM_062147 (SEQ ID NO 63) or XM_061676 (SEQ ID NO 69) of claim 59 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.

33. A method of claim 32, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

5 34. A method of detecting an immune system cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for XM_062147 (SEQ ID NO 64) or XM_061676 (SEQ ID NO 70) of claim 59 under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.

10

- 35. A method of claim 34, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 36. A method of delivering an agent to an immune cell, comprising:

contacting an immune cell with an agent coupled to binding partner specific for XM_062147 (SEQ ID NO 64) or XM_061676 (SEQ ID NO 70) of claim 59, whereby said agent is delivered to said cell.

37. A method of claim 36, wherein the agent is a therapeutic agent or an imaging agent.

20

- 38. A method of claim 36, wherein the agent is cytotoxic.
- 39. A method of claim 36, wherein the binding partner is an antibody.
- 25 40. A method of modulating the maturation of an immune system cell, comprising: contacting said cell with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59, whereby the maturation of an immune cell is modulated.
- 30 41. A method of modulating interactions between lymphoid and non-lymphoid immune system cells, comprising:

contacting said cells with an agent effective to modulate a gene, or polypeptide encoded thereby, selected from XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59, whereby the interaction is modulated.

5 42. A method of expressing a heterologous polynucleotide in immune system cells, comprising:

expressing a nucleic acid construct in immune system cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is SEQ ID NOS 65, 66, 72, 73, 74, or 75.

10

43. A method of treating an immune system disease, comprising:

administering to a subject in need thereof a therapeutic agent which is effective for regulating expression of a gene, or polypeptide encoded thereby, selected from XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59.

15

20

- 44. A method of claim 43, wherein said agent is an antibody or an antisense which is effective to inhibit translation of said gene.
- 45. A method of diagnosing an immune disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:

assessing the expression of a gene, or polypeptide encoded thereby, selected from XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59 in a tissue sample comprising immune system cells.

25 46. A method of claim 45, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

30 47. A method of claim 45, wherein said assessing detecting is performed by:
Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,

15

20

25

30

RACE PCR, or in situ hybridization, and

using a polynucleotide probe having a sequence selected from SEQ ID NOS 67, 68, 76, and 77.

5 48. A method of assessing a therapeutic or preventative intervention in a subject having an immune system disease, comprising,

determining the expression levels of a gene, or polypeptide encoded thereby, selected from XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59 in a tissue sample comprising immune system cells.

- 49. A method of claim 48, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 50. A method for identifying an agent that modulates the expression of a gene or polypeptide in the immune system gene complex, comprising,

contacting an immune system cell with a test agent under conditions effective for said test agent to modulate the expression of XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59, or a polypeptide encoded thereby, in said immune system cell, and

determining whether said test agent modulates said gene.

- 51. A method of claim 50, wherein said agent is an antisense polynucleotide to a target polynucleotide sequence selected from SEQ ID NOS 63 or 69 and which is effective to inhibit translation of said gene.
- 52. A method of detecting polymorphisms in a gene in the immune system gene complex, comprising:

comparing the structure of: genomic DNA or RNA or cDNA comprising all or part of an allele of XM_062147 or XM_061676 with SEQ ID NOS 63 or 69 of claim 59.

53. A method of claim 52, wherein said polymorphism is a nucleotide deletion, substitution,

PCT/US03/11497

WO 03/089583

inversion, or transposition.

5

10

15

20

30

- 54. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by XM_062147 (SEQ ID NO 63) or XM_061676 (SEQ ID NO 69) of claim 59, and which has a defect in immune system function.
- 55. A mammalian immune system cell whose genome comprises a functional disruption of a gene represented by XM_062147 (SEQ ID NO 63) or XM_061676 (SEQ ID NO 69) of claim 59, and which has a defect in immune system function.
- 56. A mammalian cell of claim 55, wherein said cell is a mouse cell.
- 57. A non-human, transgenic mammal, or a cell thereof, comprising a gene operatively linked to an expression control sequence effective to express said gene in immune system, wherein said sequence is SEQ ID NOS 65, 66, 71, 72, 73, 74, or 75.
- 58. A method of selecting a gene predominantly expressed in immune system cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for XM_062147 (SEQ ID NO 63 or 64) or XM_061676 (SEQ ID NO 69 or 70) of claim 59, or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

25 59. A composition comprising:

bone marrow specific genes consisting essentially of XM_062147 (SEQ ID NO 63 or 64) and XM_061676 (SEQ ID NO 69 or 70), or polypeptides thereof.

60. A method of detecting a kidney cell, comprising:

contacting a sample comprising cells with a polynucleotide specific for a polynucleotide, or a naturally-occurring polymorphisms thereof, of claim 81 under conditions effective for said polynucleotide to hybridize specifically to said gene, and

10

15

20

25

30

detecting specific hybridization.

61. A method of claim 60, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

62. A method of detecting an kidney cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.

- 63. A method of claim 62, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 64. A method of delivering an agent to a kidney cell, comprising:

contacting a kidney cell with an agent coupled to binding partner specific for polypeptide coded for by a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, whereby said agent is delivered to said cell.

- 65. A method of claim 64, wherein the agent is a therapeutic agent, a cytotoxic agent, or an imaging agent.
- 66. A method of claim 64, wherein the binding partner is an antibody.
- 67. A method of modulating a kidney cell, comprising:

contacting said cell with an agent effective to modulate a polynucleotide, or polypeptide encoded thereby, or a naturally-occurring polymorphism thereof, of claim 81, whereby the kidney cell is modulated.

68. A method of assessing kidney function, comprising:

10

15

20

25

30

detecting a polypeptide coded for by a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of kidney function.

- 5 69. A method of claim 68, wherein said detecting is performed using an antibody which is specific for said polypeptide.
 - 70. A method of claim 69, wherein said detecting is performed by RIA, ELISA, or Western blot.
 - 71. A method of expressing a heterologous polynucleotide in kidney cells, comprising:
 expressing a nucleic acid construct in kidney cells, said construct comprising a
 promoter sequence operably linked to said heterologous polynucleotide, wherein said
 promoter sequence is selected from SEQ ID NOS. 106, 109, 110, 113, 114, 117, 118, 121,
 124, 125, 128-130, 133, 134, 137, 140, 141, 144, 147, 148, and 151.
 - 72. A method of diagnosing a kidney disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:
 - assessing the expression of a polynucleotide of claim 81, or a polypeptide encoded thereby, or naturally-occurring polymorphisms thereof, in a tissue sample comprising kidney cells.
 - 73. A method of claim 72, wherein assessing is:
 - measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.
 - 74. A method of assessing a therapeutic or preventative intervention in a subject having a kidney disease, comprising,
 - determining the expression levels of a polynucleotide of claim 81, a naturallyoccurring polymorphism thereof, or polypeptide encoded thereby, in a tissue sample

PCT/US03/11497

comprising kidney cells.

75. A method of claim 74, further comprising assessing the expression levels of a plurality of said genes or polypeptides.

5

10

15

20

76. A method for identifying an agent that modulates the expression of a polynucleotide or polypeptide selectively expressed in kidney cells, comprising,

contacting an kidney cell with a test agent under conditions effective for said test agent to modulate the expression of a polynucleotide of claim 81, or a naturally-occurring polymorphism thereof, or the biological activity of a polypeptide encoded thereby, in said kidney cell, and

determining whether said test agent modulates said gene or polypeptide.

- 77. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by a polynucleotide of claim 81, or a homolog thereof, and which has a defect in kidney function.
- 78. A mammalian kidney cell whose genome comprises a functional disruption of a gene represented by a polynucleotide of claim 81, or a homolog thereof, and which has a defect in kidney function.
- 79. A mammalian cell of claim 78, wherein said cell is a mouse cell.
- 80. A method of selecting a gene predominantly expressed in kidney cells from a database comprising polynucleotide sequences for genes, comprising: 25

displaying, in a computer-readable medium, a polynucleotide sequence, or a polypeptide encoded thereby, of claim 81, or complements to the polynucleotides sequence, wherein said displayed sequences have been retrieved from said database upon selection by a user.

5

10

15

81. A composition comprising two or more of the following polynucleotides expressed selectively in kidney:

TMD0049 (XM_057351), TMD0190 (XM_087157), TMD0242 (XM_088369), TMD0335 (XM_089960), TMD0371, TMD0374, TMD0469 (XM_038736), TMD0719 (XM_059548), TMD0731 (XM_059703), TMD0785 (XM_060310), TMD0841 (XM_060623), TMD1114 (NM_019841), and/or TMD 1148 (XM_087108).

82. A method of detecting a pancreas cell, comprising:

contacting a sample comprising cells with a polynucleotide specific for TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, of claim 113 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.

- 83. A method of claim 82, wherein said detecting is performed by:
- Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.
 - 84. A method of detecting a pancreas cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, of claim 113 under conditions effective for said binding partner bind specifically to said polypeptide, and, detecting specific binding.

85. A method of claim 84, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.

30

25

86. A method of delivering an agent to a pancreas cell, comprising: contacting a pancreas cell with an agent coupled to binding partner specific for

PCT/US03/11497

WO 03/089583

5

25

30

-140-

TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, of claim 113, whereby said agent is delivered to said cell.

- 87. A method of claim 86, wherein the agent is a therapeutic agent or an imaging agent.
- 88. A method of claim 86, wherein the agent is cytotoxic.
- 89. A method of claim 86, wherein the binding partner is an antibody.
- 10 90. A method of modulating a pancreas cell, comprising: contacting said cell with an agent effective to modulate TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or the biological activity of a polypeptide encoded thereby, of claim 113, whereby the pancreas cell is modulated.
- 91. A method of assessing pancreas function, comprising: detecting a polypeptide coded for TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of pancreas function.
- 20 92. A method of claim 91, wherein said detecting is performed using an antibody which is specific for said polypeptide.
 - 93. A method of claim 91, wherein said detecting is performed by RIA, ELISA, or Western blot.
 - 94. A method of expressing a heterologous polynucleotide in pancreas cells, comprising: expressing a nucleic acid construct in pancreas cells, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is SEQ ID NOS 156-161, 166, 179, or 180.
 - 95. A method of diagnosing a pancreas disease associated with abnormal gene expression,

or determining a subject's susceptibility to such disease, comprising:

assessing the expression of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or polypeptide encoded thereby, of claim 113 in a tissue sample comprising pancreas cells.

5

96. A method of claim 95, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

10

15

20

97. A method of claim 95, wherein said assessing is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization, and

using a polynucleotide probe having a sequence selected from SEQ ID NOS 154, 155, 164, 165, 169, 170, 173, 174, 177, 178, or a complement thereto.

98. A method of assessing a therapeutic or preventative intervention in a subject having a pancreas disease, comprising,

determining the expression levels of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or a polypeptide encoded thereby, of claim 113 in a tissue sample comprising pancreas cells.

99. A method of claim 98, further comprising assessing the expression levels of a plurality of said genes or polypeptides.

25

30

100. A method for identifying an agent that modulates the expression of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, or the biological activity of a polypeptide encoded thereby, comprising,

contacting a pancreas cell with a test agent under conditions effective for said test agent to modulate the expression of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785 of claim 113, or the biological activity of a polypeptide encoded thereby, in said

pancreas cell, and

5

15

20

determining whether said test agent modulates said gene or polypeptide.

- 101. A method of claim 100, wherein said agent is an antisense polynucleotide to a target polynucleotide sequence selected from SEQ ID NO 152, 162, 167, 171, or 175 and which is effective to inhibit translation of said gene.
 - 102. A method of detecting polymorphisms in TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, comprising,
- comparing the structure of: genomic DNA or RNA or cDNA comprising all or part of an allele of TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785, with SEQ ID NOS 152, 153, 162, 163, 167, 168, 171, 172, 175, or 176 of claim 113.
 - 103. A method of claim 102, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
 - 104. A method of identifying a pancreatic disease or pancreatic disease-susceptibility, comprising:

determining the association of a pancreatic disease or pancreatic disease-susceptibility with a nucleotide sequence present within the pancreatic gene complex of claim 113.

- 105. A method of claim 104, wherein the pancreatic gene complex is from LOC160025-LOC119954.
- 106. A method of claim 104, wherein determining is performed by producing a human-linkage map of said complex.
 - 107. A method of claim 104, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having a pancreas disorder.
- 108. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by TMD0986, XM 061780, XM_061781, XM_061784, or XM_061785

15

20

of claim 113, and which has a defect in pancreas function.

- 109. A mammalian pancreas cell whose genome comprises a functional disruption of a gene represented by TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785 of claim 113, and which has a defect in pancreas function.
- 110. A mammalian cell of claim 109, wherein said cell is a mouse cell.
- 111. A pancreas cell, comprising a gene operatively linked to an expression control sequence effective to express said gene in pancreas, wherein said sequence is SEQ ID NOS 156-161, 179, or 180.
 - 112. A method of selecting a gene predominantly expressed in pancreas cells from a database comprising polynucleotide sequences for genes, comprising:
 - displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for TMD0986, XM_061780, XM_061781, XM_061784, or XM_061785 of claim 113, or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 113. A composition comprising: a pancreas specific gene consisting essentially of TMD0986, XM_061780, XM_061781, XM_061784, and/or XM_061785, or a polypeptide encoded thereby.
- 25 114. An isolated polynucleotide comprising a polynucleotide sequence which codes without interruption for a human TMD0986 having an amino acid sequence set forth in SEQ ID NO 153, or a complement thereto.
 - 115. An isolated polynucleotide comprising,
- a human TMD0986 polynucleotide sequence having 90% or more nucleotide sequence identity to the polynucleotide sequence set forth in SEQ ID NO 152 along its entire

WO 03/089583 PCT/US03/11497

length, which codes without interruption for human TMD0986, or a complement thereto, and which has G-protein coupling activity.

- 116. An isolated humansTMD0986 polypeptide comprising the amino acid sequence of a human TMD0986 as set forth in SEQ ID NO 153.
 - 117. An isolated human TMD0986 polypeptide consisting essentially of amino acids 1-117 of a human TMD0986 as set forth in SEQ ID NO 153.
- 118. An isolated polypeptide which is human TMD0986 having 90% or more amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO 153, and which has protein binding activity.
 - 119. An antibody specific for an epitope selected from the polypeptide of claim 117.
- 120. A method of detecting an retinal cell, comprising:

 contacting a sample comprising cells with a polynucleotide specific for NM_013941

 (SEQ ID NO 181), or a naturally-occurring polymorphisms thereof, of claim 142 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.
 - 121. A method of claim 120, wherein said detecting is performed by:

 Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,

 RACE PCR, or *in situ* hybridization.

122. A method of detecting an retinal cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by NM_013941 (SEQ ID NO 182), or a naturally-occurring polymorphism thereof, of claim 142 under conditions effective for said binding partner bind specifically to said polypeptide, and

detecting specific binding.

5

15

25

30

WO 03/089583

10

- 123. A method of claim 122, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 124. A method of delivering an agent to a retinal cell, comprising:
- contacting a retinal cell with an agent coupled to binding partner specific for by NM_013941 (SEQ ID NO 182), or naturally-occurring polymorphism thereof, of claim 142, whereby said agent is delivered to said cell.
 - 125. A method of claim 124, wherein the agent is a therapeutic agent or an imaging agent.
 - 126. A method of claim 124, wherein the agent is cytotoxic.
 - 127. A method of claim 124, wherein the binding partner is an antibody.
- 15 128. A method of modulating a retinal cell, comprising:

contacting said cell with an agent effective to modulate NM_013941 (SEQ ID NO 181 or 182), or the biological activity of a polypeptide encoded thereby, of claim 142, whereby the retinal cell is modulated.

20 129. A method of diagnosing a retinal disease associated with abnormal gene expression, or determining a subject's susceptibility to such disease, comprising:

assessing the expression of NM_013941, a polymorphism thereof, or polypeptide encoded thereby, of claim 142 in a tissue sample comprising retinal cells.

25 130. A method of claim 129, wherein assessing is:

measuring expression levels of said gene, determining the genomic structure of said gene, determining the mRNA structure of transcripts from said gene, or measuring the expression levels of polypeptide coded for by said gene.

30 131. A method of claim 129, wherein said assessing detecting is performed by:
Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR,

15

RACE PCR, or in situ hybridization, and

using a polynucleotide probe having a sequence selected from SEQ ID NOS 183 or 184, or a complement thereto.

5 132. A method of assessing a therapeutic or preventative intervention in a subject having an retinal disease, comprising,

determining the expression levels of NM_013941, a polymorphism thereof, or polypeptide encoded thereby, of claim 142 in a tissue sample comprising retinal cells.

- 133. A method of claim 132, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 134. A method for identifying an agent that modulates the expression of NM_013941 or the biological activity of a polypeptide encoded thereby, comprising,

contacting an retinal cell with a test agent under conditions effective for said test agent to modulate the expression of NM_013941 or a polymorphism thereof, of claim 142, or the biological activity of a polypeptide encoded thereby, in said retinal cell, and determining whether said test agent modulates said gene or polypeptide.

- 135. A method of claim 134, wherein said agent is an antisense polynucleotide to a target polynucleotide sequence selected from SEQ ID NO 181 and which is effective to inhibit translation of said gene.
- 136. A method of detecting polymorphisms in NM_013941, comprising:
 comparing the structure of: genomic DNA or RNA or cDNA comprising all or part
 of an allele of NM_013941, with SEQ ID NOS 181 or 182 of claim 142.
 - 137. A method of claim 136, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
- 30 138. A non-human, transgenic mammal whose genome comprises a functional disruption of a gene represented by NM_013941 (SEQ ID NO 181) of claim 142, and which has a defect in

retinal function.

- 139. A mammalian retinal cell whose genome comprises a functional disruption of a gene represented by NM_013941 (SEQ ID NO 181) of claim 142, and which has a defect in retinal function.
- 140. A mammalian cell of claim 139, wherein said cell is a mouse cell.
- 141. A method of selecting a gene predominantly expressed in retinal cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for NM_013941 (SEQ ID NO 181 or 182) of claim 142, or complements to the polynucleotides sequence,

wherein said displayed sequences have been retrieved from said database upon selection by a user.

142. A composition comprising:

a retinal specific gene consisting essentially of NM_013941 (SEQ ID NO 181 or 182), or a polypeptide encoded thereby.

20

25

5

10

15

143. A method of detecting a spleen cell, comprising:

contacting a sample comprising cells with a polynucleotide specific for TMD1030 (XM_166853) or TMD0621 (XM_166205) of claim 170 under conditions effective for said polynucleotide to hybridize specifically to said gene, and

detecting specific hybridization.

144. A method of claim 143, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

30

145. A method of detecting a spleen cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide

WO 03/089583 PCT/US03/11497

coded for by TMD1030 (XM_166853) or TMD0621 (XM_166205) of claim 170 under conditions effective for said binding partner bind specifically to said polypeptide, and detecting specific binding.

- 5 146. A method of claim 145, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 147. A method of delivering an agent to a spleen cell, comprising:

 contacting a spleen with an agent coupled to binding partner specific for TMD1030

 (XM_166853) or TMD0621 (XM_166205) of claim 170, whereby said agent is delivered to said cell.
 - 148. A method of claim 147, wherein the agent is a therapeutic agent or an imaging agent.
- 15 149. A method of claim 148, wherein the agent is cytotoxic.
 - 150. A method of claim 147, wherein the binding partner is an antibody.
- 151. A method of modulating a spleen, immune, or reticuloendothelial cell, comprising:

 20 contacting said cell with an agent effective to modulate TMD1030 (XM_166853),

 TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), or the

 biological activity of a polypeptide encoded thereby, of claim 170, whereby the cell is

 modulated.
- 25 152. A method of assessing spleen function, comprising: detecting a polypeptide coded for by TMD1030 (XM_166853) or TMD0621 (XM_166205) of claim 170, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of spleen function.
- 30 153. A method of claim 152, wherein said detecting is performed using an antibody which is specific for said polypeptide.

WO 03/089583

15

- 154. A method of claim 152, wherein said detecting is performed by RIA, ELISA, or Western blot.
- 5 155. A method of expressing a heterologous polynucleotide in spleen cells, comprising: expressing a nucleic acid construct in spleen cell, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is SEQ ID NO 205-213.
- 156. A method of assessing a therapeutic or preventative intervention in a subject having a spleen or lymphoid disease, comprising,

determining the expression levels of TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), or a polypeptide encoded thereby, of claim 170 in a tissue sample comprising spleen, lymphoid, or reticuloendothelial cells.

- 157. A method of claim 156, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 158. A method for identifying an agent that modulates the expression of TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), comprising,

contacting a spleen, lymphoid, or reticuloendothelial cell, with a test agent under conditions effective for said test agent to modulate the expression of TMD1030

25 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), of claim 170, and

determining whether said test agent modulates said gene.

159. A method of claim 158, wherein said agent is an antisense which is effective to inhibit translation of said gene.

WO 03/089583 PCT/US03/11497

160. A method for identifying an agent that modulates the expression of a polypeptide coded for by TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), comprising,

contacting a polypeptide coded for by TMD1030 (XM_166853), TMD1029

(XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205) of claim 170, with a test agent under conditions effective for said test agent to modulate said polypeptide, and determining whether said test agent modulates said polypeptide.

161. A method of detecting polymorphisms in comprising, comparing the structure of: genomic DNA or RNA or cDNA comprising all or part of an allele of TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205), with SEQ ID NOS 185, 187, 189, or 191 of claim 170.

10

15

20

- 162. A method of claim 161, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
- 163. A method of identifying a genetic basis for a spleen, lymphoid, and/or reticuloendothelial disease or disease-susceptibility, comprising: determining the association of a spleen, lymphoid, and/or reticuloendothelial disease or disease-susceptibility with a nucleotide sequence present in the gene complex of claim 170.
- 164. A method of claim 163, wherein determining is performed by producing a human-linkage map of said complex.
- 25 165. A method of claim 163, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having a spleen, lymphoid, and/or reticuloendothelial disease.
- 166. A non-human, transgenic mammal, or a cell thereof. whose genome comprises a functional disruption of a gene represented by TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205) of claim 170, and

WO 03/089583 PCT/US03/11497

which has a defect in spleen, lymphoid, and/or reticuloendothelial disease function.

167. A mammalian cell of claim 166, wherein said cell is a mouse cell.

10

15

20

- 5 168. A spleen, lymphoid, and/or reticuloendothelial cell, comprising a gene operatively linked to an expression control sequence effective to express said gene in spleen, lymphoid, and/or reticuloendothelial, wherein said sequence is SEQ ID NO 205-213.
 - 169. A method of selecting a gene predominantly expressed in spleen, lymphoid, and/or reticuloendothelial cells from a database comprising polynucleotide sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), or TMD0621 (XM_166205) of claim 170, or complements to the polynucleotides sequence, wherein said displayed sequences have been retrieved from said database upon selection by a user.

- 170. A composition consisting essentially of the 11q12.2 spleen gene complex, comprising TMD1030 (XM_166853), TMD1029 (XM_166854), TMD1028 (XM_166855), and TMD0621 (XM_166205).
- 171. A composition of claim 170, wherein said complex consists essentially of the chromosome region between STS markers G62658 and SHGC-154002.
- 25 172. A method of detecting a pancreas cell, comprising:
 contacting a sample comprising cells with a polynucleotide specific TMD0077,
 TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530,
 TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677,
 TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199
 under conditions effective for said polynucleotide to hybridize specifically to said gene, and detecting specific hybridization.

173. A method of claim 172, wherein said detecting is performed by:

Northern blot analysis, polymerase chain reaction (PCR), reverse transcriptase PCR, RACE PCR, or *in situ* hybridization.

5 174. A method of detecting a pancreas cell, comprising:

contacting a sample comprising cells with a binding partner specific for a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or

10 TMD1127

30

of claim 199 under conditions effective for said binding partner bind specifically to said polypeptide, and

detecting specific binding.

- 15 175. A method of claim 174, wherein said detecting is performed by: immunocytochemistry, immunoprecipitation, or Western blot.
- 176. A method of delivering an agent to a pancreas cell, comprising:
 contacting a pancreas with an agent coupled to binding partner specific for
 20 TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290,
 TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675,
 TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of
 claim 199, whereby said agent is delivered to said cell.
- 25 177. A method of claim 176, wherein the agent is a therapeutic agent or an imaging agent.
 - 178. A method of claim 176, wherein the agent is cytotoxic.
 - 179. A method of claim 176, wherein the binding partner is an antibody.
 - 180. A method of modulating a pancreas, immune, or reticuloendothelial cell, comprising:

PCT/US03/11497

WO 03/089583

contacting said cell with an agent effective to modulate TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, or the biological activity of a polypeptide encoded thereby, of claim 199, whereby the cell is modulated.

181. A method of assessing pancreas function, comprising:

detecting a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199, or fragments thereof, in a body fluid, whereby the amount of said polypeptide in said fluid is a measure of pancreas function. 182. A method of claim 181, wherein said detecting is performed using an antibody which is specific for said polypeptide.

15

10

5

183. A method of claim 181, wherein said detecting is performed by RIA, ELISA, or Western blot.

20

184. A method of expressing a heterologous polynucleotide in pancreas cells, comprising: expressing a nucleic acid construct in pancreas cell, said construct comprising a promoter sequence operably linked to said heterologous polynucleotide, wherein said promoter sequence is selected SEQ ID NO 258, 261, 262, 265-267, 270-272, 275, 278, 279, 282-284, 287, 290-293, 296, 297, 300, 303, 306, 309-314, 317-320, 323-326, 329, 332-333, 336-338, 341, and 344.

25

30

185. A method of assessing a therapeutic or preventative intervention in a subject having a pancreas or lymphoid disease, comprising,

determining the expression levels of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, or a polypeptide encoded thereby, of claim 199 in

10

15

25

30

a tissue sample comprising pancreas, lymphoid, or reticuloendothelial cells.

- 186. A method of claim 185, further comprising assessing the expression levels of a plurality of said genes or polypeptides.
- 187. A method for identifying an agent that modulates the expression of TMD0077,
 TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530,
 TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677,
 TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, comprising, contacting a pancreas, lymphoid, or reticuloendothelial cell, with a test agent under conditions effective for said test agent to modulate the expression of TMD0077, TMD0233,
 TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574,
 TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726,
 TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, of claim 199, and determining whether said test agent modulates said gene.
 - 188. A method of claim 187, wherein said agent is an antisense which is effective to inhibit translation of said gene.
- 189. A method for identifying an agent that modulates the expression of a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, comprising,
 - contacting a polypeptide coded for by TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127 of claim 199, with a test agent under conditions effective for said test agent to modulate said polypeptide, and
 - determining whether said test agent modulates said polypeptide.

15

- 190. A method of claim 189, wherein said test agent is an antibody.
- 191. A method of detecting polymorphisms in comprising, comparing the structure of : genomic DNA or RNA or cDNA comprising all or part of an allele of TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, with SEQ ID NOS of Table 23 of claim 199.
- 10 192. A method of claim 191, wherein said polymorphism is a nucleotide deletion, substitution, inversion, or transposition.
 - 193. A method of identifying a genetic basis for a pancreas disease or disease-susceptibility, comprising: determining the association of a pancreas disease or disease-susceptibility with a gene of claim 199.
 - 194. A method of claim 193, wherein determining is performed by producing a humanlinkage map of said gene.
- 20 195. A method of claim 193, wherein determining is performed by comparing the nucleotide sequences between normal subjects and subjects having a pancreas disease.
- 196. A non-human, transgenic mammal, or a cell thereof. whose genome comprises a functional disruption of a gene represented by TMD0077, TMD0233, TMD0256, TMD0258,
 25 TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, of claim 199, and which has a defect in pancreas, lymphoid, and/or reticuloendothelial disease function.
- 30 197. A mammalian cell of claim 196, wherein said cell is a mouse cell.
 - 198. A method of selecting a gene predominantly expressed in pancreas tissue from a

10

database comprising polynucleotide and amino acid sequences for genes, comprising:

displaying, in a computer-readable medium, a polynucleotide sequence or polypeptide sequence for TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127, of claim 199, or complements to the polynucleotides sequence, wherein said displayed sequences have been retrieved from said database upon selection by a user.

199. A composition comprising genes and/or polypeptide which are expressed predominantly in pancreas tissue comprising:

TMD0077, TMD0233, TMD0256, TMD0258, TMD0267, TMD0271, TMD0290, TMD0530, TMD0574, TMD0608, TMD0639, TMD0645, TMD0674, TMD0675, TMD0677, TMD0726, TMD0727, TMD0739, TMD0753, TMD1111, and/or TMD1127.

Fig. 2

Fig. 3

XM_062147

XM_061676

FIG. 4

WO 03/	(089583										PCT/	US03/:	11497	
., •	}	24		24		24		24		24		24		24
		23		23		23		23		23		23		23
		22		22		22		22		22		22		22
		21		21		21		21		21		21		21
	1	20		50				70		70		20		20
	I	19		19 2	•	19 2		19 2		19 2		61		19
	1	18				<u> </u>					1	18		∞
	*	17 1		7 18		7 18		7 18		7 18	All .	17 1		17 1
		16		17		17		5 17		5 17		16 1		16 1
				16	gen I	16		16	1	16				
		15		15		15		15	ļ	15	4	15		15
		14		14		14		14		14		14		13 14
	1	13		13		13		13		13		13		13
	:	12		12		12		12		12		12		12
		11		=		=		=		Ξ		11		11
5 a		10		10		01		10		10		10		10
Fig. 5a	İ	6		6	-	6		6		6		6		6
F18	*	∞	i 1:	∞		∞		∞		· ∞		∞	1	∞
	1 7	7		7	1	7		7		7	1	7		7
		9		9		9		9	•	. 9		9		9
	1	2		2		2		2	•	2		.		2
	1	4		4		4		4		4		4		4
	Ž *	т		3		3		3		3	1	3		3
	1	7		7		2		2		2		7		7
	i i	-		-		-				-		_		_
	11]]		9	1	
	#11		0		2									
	90)19)24		333)37	7	ر اک)46 	
	Ã		TMD0190		TMD0242		TMD0335		TMD0371	É	I ND03/4	}	IMD0469	
	TMD0049		Ţ		TA		I			É		É		

Fig. 5b

Fig. 6

FigIA

Fig1B

XM_061779	XM_061780	XM_061781	XM_061784	XM_061785	
314	318	323		311	
			149		; <u>∓</u>

PCT/US03/11497

Fig. 9A

Fig. 9B

Fig. 10

Fig. 11

22 23 20 21 <u>8</u> <u>8</u> 16 17 15 16 15 16 13 14 15 13 14 10 · 11 12 ~ TMD0256 TMD0077 TMD0233

FIG. 12

PCT/US03/11497

FIG. 12

						;
1	42	. 24	24	24	24	42 42
	53	23	23	23	73	23 23
	7	72	77	2	22	22 23
22.0	7	21 2	12	7	21	5 5 5
-C-C	20	20 2	20	22	28	2 8
Research	2	19 2	19	19	19	61
	2	18	82	8	∞	<u>\$</u>
		17 1	7	17	17	17
	<u>o</u>	16 1	9	91	91	16
5	2	2	5 1	15	15	15
	4			4	4	7 4
100	2	7	3 14	် <u>ဌ</u>	<u>~</u>	13
	12	H	12 1	8	2	12 12
		12	_		-	
		=	Ξ	0	0 1	10 1
	2	10	10	.	. —	
	2	6	6	6	5	6
	×	∞	∞	¹ ∞	∞	∞
		7	7	7	L	
	0	9	9	•	9:	9 9
		ν,	9		S	
		4	4	. T :	4	4
	7	m	2 3	رب ا	2 3	m m
	7	7	7	7	7	7
		-				
	MIII				- Wi	
TMD0530	TIMD0574	TMD0608	TMD0639	1 2 TMD0645	TMD0674	TMD0675

TMD0677								÷	4			•		ŧ		.	å	*lose		1					
	-	7	(m)	4	-	5 6	7	∞	6	10		12	13		14 15		16 1	17 1	18 1	19 2	20 2	21 2	22 23		24
TMD0726	1	. •				•		•		.*.				٠	3.	1	•				*				
TMD0727	1111		7	en e	4	v	•		∞		2		7	2	4	\sim	9	17 1	<u>∞</u>	9 2	0	22	2 23		24
	Ì		7	m	4	8	9	∞	6		0		12	ω 	14	15	16	17 1	18 1	19 2	20	21 2	22 23		24
TMD0739	111!																7 P								
	. — :	7	. "	~		. 6	7	, 00		. 7	. 0	. —	7	3	4	5 1	9	7	. — . ∞	19 2	20 2		2 23		4
TMD0753	nii	•					4			4				4				*							
			7	ຕີ	4	S.	9	00		6	10 1	11 1	12	13	41 :	15	16	17	18	19 2	20 21		22 23		74
TMD1111	Dill																				Tanggar.				
		_	7	e	4	S	9	رم ھ	∞ ∞	6	9	-		13	4	<u>.</u>	16	17	— ∞	19 2	ი გ	77	22 2	23	24
TMD1127			; · · ·		:		٠.				. •							V	· ·						
	•	. 🗝	7	3	. 4	\$	9		. 00	6	10.	Ξ	12	13	. 4 1	15	91	17	. 8	19	20	71	22	23	24

10/511538

DT04 Rec'd PCT/PT0 1 8 OCT 2004

15U 200 PCT FINAL.ST25 SEQUENCE LISTING

120	<110>	Ori	Gene	Tec	hnol	Logie	23, 1	nc										
130									SENE	CLUS	STERS	5						
150																		
150		US 200	60/3 2-04	372,6 1-16	69													
1500		US 200	50/4 12-09	111,8 9-20	82													
1500 US 60/376.558	<150> <151>	us 200	60/4 2-1	124, 1-07	336							•						
150	<150> <151>	US 200	60/: 12 - 0	374,1 4-24	823													
<pre><151> 2002-08-20 </pre> <pre><150> US 60/403,648 </pre> <pre><151> 2002-08-16 </pre> <pre><160> 344 </pre> <pre><170> PatentIn version 3.1 </pre> <pre><210> 1</pre>	<150> <151>	US 200	60/ 02-0	376, 5-01	558													
<pre>151> 2002-08-16 160> 344 170> PatentIn version 3.1 210> 1 211> 795 212> DNA 213> Homo sapiens 220> 221> CDS 222> (1)(795) 2223> 400> 1 atg gag cgg gtc aat gag act gtg gtg aga gag gtc act ttc ctc ggc atg atg arg gag cag cag cag cag cag cag cag cag ca</pre>		US 200	60/ 02-0	381, 5-20	366						-							
<pre><170> PatentIn version 3.1 <210> 1</pre>										٠								
<pre> <210> 1 <211> 795 <212> DNA </pre> <pre> <221> Elmon sapiens </pre> <pre> <220> <221> CDS </pre> <pre> <221> CDS </pre> <pre> <221> CDS </pre> <pre> <222> (1)(795) </pre> <pre> <223> </pre> <pre> <pre> <400> 1</pre></pre>	<160>																	
<pre> 211> 795 212> DNA 221> CDS 222> (1)(795) 222> (400> 1 atg gag cgg gtc aat gag act gtg gtg aga gag gtc atc ttc ctc ggc</pre>	<170>	Pa	tent	In .v	ers:	ion 3	3.1		•									
<pre> <221> CDS <222> (1)(795) <222> <400> 1 atg gag cgg gtc aat gag act gtg gtg gtg aga gag gtc atc ttc ctc ggc Met Glu Arg Val Asn Glu Thr Val Val Arg Glu Val Ile Phe Leu Gly 10 ttc tca tcc ctg gcc agg ctg cag cag ctg ctc ttt gtt atc ttc ctg Phe Ser Ser Leu Ala Arg Leu Gln Gln Leu Leu Phe Val Ile Phe Leu 20 ctc ctc tac ctg ttc act ctg ggc acc aat gca atc atc atc tcc acc Ileu Leu Tyr Leu Phe Thr Leu Gly Thr Asn Ala Ile Ile Ile Ser Thr 45 att gtc ctg gac agg gcc ctc cat atc ccc atg tac ttc ttc ctt gcc Ile Val Leu Asp Arg Ala Leu His Ile Pro Met Tyr Phe Phe Leu Ala 50 atc ctc tct tgc tct 55 atc ctc tct tgc tct 55 atc ctc tct tgc tct 61</pre>	<211><212>	79 DN	A	api	ens													
atg gag cgg gtc aat gag act gtg gtg aga gag gtg atg gag gag gtg atg gag ga	<221> <222>	CD (1	s .} !	(795))						-							
Phe Ser Ser Leu Ala Arg Leu Gln Gln Leu Leu Phe Val Ile Phe Leu 30 Ctc ctc tac ctq ttc act ctg ggc act aat gca at at at at tcc acc law file lie lie Val Leu Ala Ser Gln Ile Cys Tyr Thr Phe Ile Ile Val Pro Lys 80 atc ctc tct tct tct tct tct ctq ctq file leu Ser Gln Lys Leu Val Asp Leu Leu Ser Gln Lys Leu Ser Phe Leu Gly 90 ttt ctq ctq gca atc caa atd ttt tcc ctc ctc ctc ctc ctc ctc ctc c	Met G	ag c	gg (vaı	ASI	gag Glu	act Thr	gtg Val	gtg Val	aga Arg 10	gag Glu	gtc (Val	atc Ile	ttc (ctc Leu 15	GT Å ddc	48	
CTC CTC Tac CTG TTC Leu Phe Thr Leu Gly Thr Asn Ala IIe IIe IIe Ser Thr att gtc ctg qac aqq gcc ctt cat atc ccc atg tac ttc ctt qcc IIe Val Leu Asp Arg Ala Leu His IIe Pro Met Tyr Phe Phe Leu Ala atc ctc tct tgc tct gag att tgc Yr Thr Phe IIe IIe Val Pro Lys 70 atg ctg gtt qac ctg ctg tcc cag aag acg acg atg tac ttc ttc ttc ctg qgc Met Leu Val Asp Lau Leu Ser Gln Lys Lys Lys Thr Phe IIe Ser Phe Leu Gly 85 tgt gcc atc caa atg ttt tcc cag aag acg acg acg tac ttc ggc tct ggc Ala IIe Gln Met Phe Ser Phe Leu Phe Leu Gly Cys Ser His Ser 110 ttt ctg ctg gca gca gtc atg ggt tat gat cgt tac atg ggt tat gat cgt tac atc tgt acc acg acg acg acg acg tac tac tgt acg		ca ter s	ser	Ļeu	gcc Ala	agg Arg	ctg Leu	cag Gln		ctg Leu	ctc Leu	ttt Phe	gtt Val	atc Ile 30	ttc Phe	ctg Leu	96	
att gtc ctg gac agg gcc ctt cat atc ccc atg tac ttc ttc ctt gcc lev Ala Lev Al	ctc c	eu :	tac Tyr		ttc Phe	act Thr	ctg Leu	4- 7	acc Thr	aat Asn	gca Ala	atc Ile	atc Ile 45	att Ile	tcc Ser	acc Thr	144	
atc ctc tct tgc tct gag att tgc tac acc ttc acc att gta ccc aaq 240 Ile Leu Ser Cys Ser Glu Ile Cys Tyr Thr Phe Ile Ile Val Pro Lys 80 atg ctg gtt gac ctg ctg tcc cag aag acc att tct ttc ctg ggc 288 Met Leu Val Asp Leu Leu Ser Gln Lys Lys Thr Ile Ser Phe Leu Gly 95 tgt gcc atc caa atg ttt tcc ttc ctc ttc ctt ctc ctt ggc tgc t	Ile '	rc (gac Asp	agg Arg		200		acc Ile	ccc Pro	acg Met	tac Tyr 60	ttc ?he	ttc Phe	ctt	gcc Ala	192	
atg ctg gtt gac ctg ctg tcc cag aag acg att tct ttc ctg ggc 288 tgt gcc atc caa atg ttt tcc ttc ctc ttc ctc ggc tgc tct cac tcc Cys Ala Ile Gln Mer Phe Ser Phe Leu Phe Leu Gly Cys Ser His Ser 110 ttt ctg ctg gca gca gtc atg ggt tat gat cgt tac ata gcc atc tgt aac Phe Leu Phe Leu Tyr Asp Arg Tyr Ile Ala Ile Cys Asn 125 cca ctg cgc tac tca gtg cta atg gga cat ggg gtg tgt atg gg gtg tgt atg gga cta Arg gga cta Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu 130	atc (tct Ser	tgc Cys	tct Ser	GIU	att Ile	cys Cys	`tac Tyr	acc Thr	ttc Phe 75	atc Ile	att Ile	gta Val	510 CCC	aag Lys 80	240	
ttt ctg ctg gca gtc atg ggt tat gat cgt tac ata gcc atc tgt aac Phe Leu Leu Ala Val Met Gly Tyr Asp Arg Tyr Ile Ala Ile Cys Asn 115 Cca ctg cgc tac tca gtg cta atg gga cat ggg gtg tgt atg atg gga cta Pro Leu Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu 130 110 105 110 384 384 384 384		ctg Leu	gtt Val	gac Asp	neu	ctg Leu	tcc Ser	cag Gln	aag Lys	aag Lys 90	acc Thr	att Ile	tct Ser	ttc Phe	ctg Leu 95	gly Gly	288	
tit ctg ctg qca qtc atg qgt tat gat cqt tac ata qcc atc tqt aac Phe Leu Leu Ala Val Met Gly Tyr Asp Arg Tyr Ile Ala Ile Cys Asn 11S Cca ctg cqc tac tca qtg cta atg qga cat qgg qtg tqt atg qga cta Pro Leu Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu 130 136 384	CAa	Ala	Ile	100	atg Met	FILE	362		105					110			. 336	i
cca ctg cgc tac tca gtg cta atg gga cat ggg gtg tgt atg gga cta 432 Pro Leu Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu 130 135	Phe	Leu	115	AIA	Val	Mec	721	120		_			125	•			384	ŀ
	CCA Pro	Leu		tac Tyr	tca Ser	gtg Val			gga Gly	cat His	ggg Gly	gtg Val 140	tgt Cys	atg Met	gga Gly	cta Leu	432	2

16U 200 PCT FINAL.ST25

										160	200	PCT	FINA	L.S1	:25		
٧al	gct Ala	gct Ala	gcc Ala	tgt Cys	gcc Ala 150	tgt Cys	ggc Gly	ttc Phe	acc The	gtt Val 155	gca Ala	cag Gln	atc Ile	atc Ile	aca Th: 160	a . 5 0	430
145 tcc Ser	ttg Leu	gta Val	ttt Phe	cac His 165	ctg Leu	cct Pro	ttt Phe	tat Tyr	ser 170	ser	aat Asn	caa Gln	cta Leu	cat His 175	ca Hi	c s	528
t t c Phe	t t c Phe	tgt Cys	gac Asp 180		gct Ala	cct Pro	gtc Val	ctc Leu 185		ctg Leu	gca Ala	tct Ser	cac His 190	·cat His	aa As	c n	.576
cac His	tcc Phe	agt Ser 195	cag Gln	att Ile	gtc Val	atc Ile	ttc Phe 200		c t c	tgt Cys	aca Thr	Leu 205	gtc Val	ctg Leu	gc Al	t .a	624
atc Ile	CCC Pro 210	tta Leu		ttg Leu	atc	ttg Leu 215		Sec	Ty:	gtt Val	cac His 220	ato Ile	: ctc : Leu	tct Sez	gc Al	a.	672
Ile	ctt		g tto L Phe	cct Pro	tcc Ser 230		ctg Leu	gga Gly	gt: Va	; ata 1 116 23	gca Ala	aaa Lys	agg Arg	Lys	g Et s Ph 24	ie 10	720
cac His		agt Se	gat Asp	gat Asp 245	ttc Phe		cat His	tat Ty	aa : As 25	c tc n Se 0	t tti r Phe	ca e Gl	a gat n Asp	25	a C0 5 P1	=t =a	768
gto Val	aai	aaa Ly:	a age s Se: 260	cto Let	ctq a Lev	att Ile	gat Asi	ta:	3								795
<2: <2: <2: <4 Me 1		2 u Az	o sa	l As S su Al	n Gl				n L	eg Gl				:			
Le	u Le	- eu Ty 35	yr Le	eu Ph	ie Th	r Le	u G1	y Tì	ır A	sn A	la I	le II 45	le II	e Se	er 1	Thr	
11	.e 78	al Le)	eu As	sp Aı	cg Al	.a Le 55	iu Ki i	s I	le P	ro M	et T	yr 21	ne`Pl	ne L	eu i	Ala	
<u>I</u>]	le L	eu S	er C	ys So	er Gl 70	lu II	Le C	ys T	yr 1	nr P 7	ne I S	le I	le V	al ?	ro	Lys 80	
Me	et L	eu V	al A	J qe 8	eu Lo 5	eu S	er G	ln L	ys I	ys T O	'hr ·I	le S	er P	he L	eu 5	GΓλ	•
c	ys A	la I	le G	ln M 00	et P	he S	er P	he L	eu ! .05	?he I	eu G	ily C	ys S	er 8	lis	Ser	
P	he L	eu L	.eu A .15	la-V	al M	et G	ly T 1	yr 2 .20	ge.	Arg 1	tyr 1	lle A	la 1 125	le C	:ys	Asn	
Ş	ro L	eu / 130	Arg T	yr S	er V	al L	eu M .35	et (Sly	His (Gly '	Val (Cys (iet (3ly	Leu	
v 1	al 4	Ala A	Ala A	Ala (Iys A	la 0 .50	ys (Sly :	Phe	Thr	Val 155		Sln :		Ile	Thr 160	

16U 200 PCT FINAL.ST25

Ser	Leu	Val	Phe	ніs 165	Leu	Pro	Phe	Tyr	Ser 170	Ser	Asn	Gln	Leu	His 175	His	s	
Phe	Phe	Cys	Asp 180	Ile	Ala	Pro	Val	Leu 135	Lys	Leu	Ala	Ser	His 190	His	Ası	n	
	Phe	195															
	Pro 210					213											
225					230												
His	Asn	Ser	Asp	Asp 245	Phe	Ser	His	Туг	250	Se:	: Phe	Glr	Asp	255	P	:0	
Val	. Asn	Lys	Ser 260	: Leu	ı Lev	Ile	: As	•				ė					
<21 <21		32 DNA	sag	piens	5												
<41 gg	30> tcaa	3 Egag	acto	gtgg:	tga (gaga	ggtc	at C	t								32
<2 <2 <2	11> 12>		o sa			ggaa	acto	aa q									31
<2	atca 10> 11>	-s	cag	tgtg	gaa	ggaa			•								
<2 <2	12> 13>	Hom	o sa														50
	100>		ttt	aaat	ggg	ccaq	ract1	ag t	ttta	tgt	gg to	gcaga	icat:	•			•-
<2 <2	210> 211> 212> 213>	6 807 DN2 HQ2		apies	ns												·
<: <:	220> 221> 222> 223>	CD:	s) (¹	807)													
M:	400> tg g et A	La V	al i	18 A 5	rg r	ne -			1	0			•	1	.5		48
t	tt c he L	eu P	he 1 2	o Te r	isir a	CT .		2	.5				3	10			96
a	tc c le P	±0 €	ag c ln L 5	tg C	tg g .eu V	tc c	-	tg C Leu I	eu S	ca q	ac a	•	ag a Lys 1 15 Page	_	itc [le	Ser	144
												t	aye	-			

16U 200 PCT FINAL.ST25

										160	200	PCT I	INA	L.ST	25	
Phe	Met 50	Ala	Cys	ALA	1111	55					60	ggc Gly				192
Thr 65	Asn	Cys	Leu	Leu	70	AI G			•	75		Arg			80	240
Ile	Cys	His	bio	85	wid	ry-			90			aaa Lys		95		288
Leu	Glu	Leu	100	267	ne a		,	105				ttt Phe	110			
Val	Ala	Thr 115	ASI	Leu	116	Cys	120		•			ggc Gly 125				384
Val	Asn 130	His	Tyt	FILE	Cys	135					140	aag Lys				432
Th:	Asp	Thr	RIS	Val	150	0.0				155		ctc Leu			160	430
Val	. Ile	Met	· vai	165		200			170					175	Ile	528
Va!	Asn	Thi	180	, rec	L Lys			185	i				190	•	ttt Phe	576
Va.	LThi	19	S AL	1 26:		. 500	200	i				205	i		tgt Cys	624
Al	a Se: 210	C IT	e II	e ry	_ #e/	21	,	•			220	٥		٠.	aag Lys	672
As 22	p G1: 5	n Le	u va	1 24.	23	5		_		23	5				t aat 1 Asn 240	720
ÇC	t ct o Le	t gt u Va	c ta l Ty	c ag r Se 24	r re	g age	g aad g Asi	c aa n Ly:	a ga s G1 25	g gt. u Va O	a aa 1 Ly	a act	c Al	a tt a Le 25	g aaa u Lys S	768
aq Ar	a gt g Va	t ct l Le	t 99 u Gl 26	y we	t Br	t gt o Va	g gc	a ac a Th 26	,	g at s Me	g ag t Se	c ta	a			807
	10> 11>	7 268	3													

<211> 268 <212> PRT <213> Homo sapiens

<400> 7

Met Ala Val Ile Arg Phe Ser Trp Thr Leu His Thr Pro Met Tyr Gly 1 10 15

Phe Leu Phe Ile Leu Ser Phe Ser Glu Ser Cys Tyr Thr Phe Val Ile 20

Ile Pro Gln Leu Leu Val His Leu Leu Ser Asp Thr Lys Thr Ile Ser 35 40 45

Phe Met Ala Cys Ala Thr Gln Leu Phe Phe Phe Leu Gly Phe Ala Cys 50 55

										160	200	PCT	FINA	L.ST	25		
											_		_				
Thr 65	Asn	Cys	Leu	Leu	11e 70	Ala	Val	Met	Gly	Tyr 75	Asp	Arg	Tyr	vai	80		
Ile	СЛа	Ris	Pro	Leu 85	Arg	Tyr	Thr	Leu	Ile 90	Ile	Asn	Lуз	Arg	Leu 95	Gly		
Leu	Glu	Leu	Ile 100	Ser	Leu	Ser	GLY	Ala 105	Thr	Gly	Phe	Phe	Ile 110	Ala	Leu		
Val	Ala	Thr 115	Asn	Leu	Ile	Cys	Asp 120	Met	Arg	Phe	Суз	Gly 125	Pro	neA	Arg		
Val	Asn 130	His	Tyr	Phe	Cys	Asp 135	Met	Ala	Pro	Val	Ile 140	Lys	Leu	Ala	Cys		
Thr 145		The	His	Val	Lys 150	Glu	Leu	Ala	Leu	Phe 155	Ser	Leu	Ser	Ile	Leu 160		
Val	Ile	Met	Val	Pro 165	Phe	Leu	Leu	Ile	Leu 170	Ile	Ser	Туг	Gly	2he 175	Ile		
Val	Asn	Thr	Ile 180	Leu	Lys	Ile	Pro	Ser 185	Ala	Glu	Gly	Lys	Lys 190	Ala	Phe		
Val	Thr	Cys 195	Ala	Ser	His	Leu	Thr 200	Val	Val	Phe	Val	His 205	Tyr	Gly	Cys		
Ala	Ser 210	Ile	Ile	Tyr	Leu	Arg 215	Pro	Lys	Ser	ГÀЗ	Ser 220	Ala	Ser	Asp	Lys		
Asp 225		Leu	Val	Ala	Val 230	Thr	туг	The	val	Val 235	The	Pro	Leu	Leu	Asn 240		
Pro	Leu	Val	Tyr	Sec. 245	Leu	Arg	Asn	. Lys	Glu 250	Val	Lys	: Thz	Ala	Leu 255	Lys		
Arg		. Leu	Gly 260	Met	Pro	val	. Ala	Thr 265	Lys i	Met	Ser	•					
<21	0> 1> 2> 3>	DNA	sap	niens	ì												
<40 cca	0> cctq	8 CCC	tcag	acac	ca a	ıgacı	=										25
<21 <21 <21 <21	1> 2>	9 27 DNA Homo	sap	iens	3												
<40 ggc	0> acca	9 ICaa	ttac	cag	gat (getg	agg										27
<21 <21 <21 <21	.1> .2>	10 50 DNA Homo	saç	oien:	5											,	
<40 gag	10> stgc:	10 :aaa	tata	ataa	aga d	ggta	tgtt	са а	tgca.	acat	g tt	aaat	gcaa				50

<210> 11 <211> 50					•	
<212> DNA						•
<213> Homo sa	iptens	•				
<400> 11 actccttaga taa	aaaaggg ca	gatttatt a	aaagaaccct	gatttaatca		50
<210> 12			•	•		
<211> 4982 <212> DNA						
<213> Homo sa	apiens		••			
<220> <221> CDS <222> (2019) <223>	(2960)		•			
					tastaticac	60
<400> 12 gtactccttc ag	aatcagag aa	ittccagct	tccatggttt	acattattca	Ecataticay	120
tcaagtgagg gc	ctagtggc gg	gttaaaggt	tgattagttg	aaagaagatt	caaatgaaag	
tcttttggga aa	gcaatgag go	caaggctaa	gcaatgacca	taagtttaga	tttcctcatt	130
gttttgaata ga	caggaaat ca	atttgtcca	gaaggaggta	ttatqtaggg	aaacttttac	240
ctttctgtat at	aaaaacat at	taactaata	cacacacact	catacacaaa	tatcaatgga	300
ggtatacatt gt	gtttactt t	tctatgtt	tațgtacaat	agtaatatct	ttatagttat	360
actaacgtta tt	aaaataag ta	actatatt	aactaagttt	aggaccagtt	tctagtaagt	420
aagaaagaaa aa	aaatcatc to	ccaaattct	atgaatagat	ataatgaatt	tcaagaatgc	480
ctgatgaatt aa	cttaggat to	caggaaaca	aaaaaagttg	ctattgaata	gaaaaatgga	540
aaagtaacag Ca	acaaaant Ci	ragtagcag	atgccaataa	tttcccaaga	caaaatgatg	600
tagtaacttc ag	angratat a	aatgaagac	tggataccag	caagacatac	tggatgattt	660
tagtaacttc ag	angenere ti	rracttatt	aggttgggtt	attgaaaaat	gttccagtga	720
aaaaaattag go		++++aga44	taatttgtaa	tggcagtttg	caaaatattt	780
ttagtggcag aa	ccaagacy a	anneter ta	rtaacataac	aacatacaaa	agatacaaag	840
ttagtggcag aa	itgttcaaa a	gaaateeta	again an atto	ccaagtgtgG	cattetetet	900
cctatggttt ac	agcaggag a	ggggaaacc	990000000	artroronga	gtttctccaa	960
cacactotgt ac	caagetet g	tcatttcta	Caaaaccccc	200000092	greatette	1020
gttagctcag ca	itggaaaag t	gaagtgtgt	tacaaaatgo	Cacaaagcca	**********	1080
tttaccaccc to	ggtgactat t	ctcttcctg	aaagaagaat			1140
actaatgtta t	tattttta t	tttatttta	tttatttatt	tttgagacag	acticicates	1200
tgtcacccag to	tggagtgc a	igaggcacaa	tcttggctca	ctgcaacctc	cdcccccaa	1260
gctcaagtga a	totcatgos t	cageetees	gagtagctgg	gattacaggt	gtgtgctgcc	
atacctggct a	atttttgta c	ttttagtaa	agaccaggtt	ttgccatgtt	gccgaggctg	1320
gtcttgaacc c	ctggcctca a	agcaatccac	ccaccttggc	tteteaaagt	gctgggatta	1380
caggtgtgag c	caccacate t	ggctaatgt	tattttttgt	ttcactgttg	actcaatgtt	1440
tcaacttgtg g	aacttccaa t	tagtatttct	tattgttcc	: ttggagatat	aaaaagttcc	1500
cagtaaatag a	tgtgtgctc &	acatottac	: ttagagacs	tggaatactt	tateteettt	1560
ctcatttcat g	gttggataa a	actgaagtco	acatgatta	t gtctgaatat	tattcattct	1620
ttogttotat a	ttotqatca o	gcttcaggta	gctgaagtt	a acqttttcc3	ctttggagag	1680
tgagttgcct t	nogittata o	gtaagtgaca	aaaacaaca	a totototgti	: acataagaag	1740
egagingeen i	444 ;			Page 6	i	

~338	actal	rt a	ocaaa	atti	ct.	aatc	cttg	gtc	agag	aga i	taac	ctgti	c t	tcac	actag	1300
															cttt	1860
															ccacc	1920
															c ttct	1980
															t aag n Lys	2036
acct	ctgt	cc c	tgac	ECTC	ב ננ	caca	yaay	490		Me 1	É GI	u Gl	n Va	1 As 5	n Lys	
										-	rc	tee i	cra	acc	agg	2084
act Thr.	gtg Val	gtg Val	aga (gag Glu	ttc Phe	gtc Vai	AGT	Tie a	Gly	Phe	Ser		Leu 20	Ala	Arg	
			10					12								2132
ctg	cag	caç Gln	ctg Leu	ctc Leu	ttt Phe	gtt Val	atc Ile	ttc Phe	Ctg Leu	Leu			Leu	Phe	Thr	
		25					30					•-				2180
ctg	ggc	acc Thr	aat Asn	gca Ala	atc Ile	atc Ile	att Ile	tcc Ser	acc Thr			ctg Leu	gac Asp	aga Arg	Ala	2100
	40					43					•					
ctt	cat	act	ccc pro	atg	tac	ttc Phe	ttc Phe	ctt Leu	gcc Ala	atc Ile	ctt Leu	tct Ser	tgc Cys	tct Ser	gag Glu	2228
55					60					-				•		
att	tgc	tat	acc Thr	ttt	gtc	att	gta	CCC	aag	atg Met	ctg Leu	gtt Val	gac Asp	ctg Leu	ctg Leu	2276
Ile	CAa	Tyr	Tar	75	AGI	116	*41		80				-	85		
tcc	cag	aag	aag	acc	att	tct	ttc	ctg	ggc	tgt	gcc	atc	caa Gln	atg Met	ttt . Phe	2324
Ser	Gln	Lys	aag Lys 90	The	Ile	ser	Pne	95	GLY	4,4			100			
tcc	ttc	ctc	ttc	ttt	ggc	tcc	tct	cac	tcc	ttc	ctg	ctg	gca	gcc	atg Met	2372
Ser	Phe	Leu 105	Phe	Phe	Gly	Ser	Ser 110	HIS	3er	rne	Leu	115	n_u			٠
aac	tat	gat	cgc	tat	atg	gcc	atc	tgt	aac	cca	ctg	cgc	tac	tca	gtg	2420
Gly	Tyr 120	Asp	Arg	Tyr	Met	Ala 125	Ile	Cys	Asn	Pro	130	Arg	TÀT	361	Vai	
cra		aaa	cat	aaa	ata	tgt	atg	gga	cta	atg	gct	gct	gcc	tgt	gcc	2468
Leu 135	Met	CŢĀ	His	ĞΟ	Val 140	Cys	Met	GLy	Leu	Met 145	Ala	Ala	Ala	cys	150	
	-		act	atc		cta	atc	acc	acc	tcc	cta	gta	ttt	cat	ctg	2516
Cys	Gly	Phe	act Th <i>r</i>	Val 155	Ser	Leu	Ϋal	Thr	Thr 160	Ser	Leu	Val	Phe	His 165	Leu	
			tcc		320	cag	ctc	cat	cac	ttc	ttc	tgt	gac	atc	tcc	2564
5 to	2he	His	Se:	Ser	neA	Gln	Leu	His 175	His	Phe	Phe	Cys	Asp 180	Ile	Ser	
			170 aaa				cad	-	tcc	aac	ttc	agt	cag	ctg	gtc	2612
Pro	gtc Val	Leu	Lys	Leu	Ala	Ser	GTI	nii3	Ser	Gly	Phe	Ser 195	Gln	Leu	Val	
		185					190		arc	3 F F	cct		cta	ctt	atc	2660
ata Ile	ttc Phe	atg Met	ctt Leu	ggt	gta Val	Pne	Ala	Leu	Val	Ile	Pro 210		Leu	Leu	Ile	
	200				-	205										2708
cta Leu	gtc Val	tcc Ser	tac Tyr	atc Ile	cgc Arg	atc	Ile	: tct :Ser	Ala			Lys	Ile	Pro	ser 230	,
215					220											2756
tcc	gtt V=1	gga	aga Ard	tac Tvr	aag Lvs	acc Thr	t t c	tcc Ser	acc Thr	tgt Cys	gcc Ala	Ser	cat His	Leu	Ile	4/30
				235					270							2021
gcg	gta	act	gtt	cac	tac	agt	t gt	gc:	tct Ser	tto Phe	ato	tac Tyr	tta Leu	agg Arg	ecc Pro	2804
			250					433	•				-			
aag	act	aat	tac	act	Eca	ago	caa	gac	acc	cta Leu	aca Ile	tct Ser	geg	Ser	tac Tyr	2852
Lys	Thr	Asn	. тут	int	ger	Jel	نبدي .	·				_	_		-	

· ·	
16U 200 PCT FINAL.ST25 265 270 275	
acc atc ctt acc cca ttg ttc aat cca atg att tat agt ctg aga aat Thr Ile Leu Thr Pro Leu Phe Asn Pro Met Ile Tyr Ser Leu Arg Asn 290	2900
aag gaa ttc aaa tca gcc cta cga aga aca atc ggc caa act ttc tat Lys Glu Phe Lys Ser Ala Leu Arg Arg Thr Ile Gly Gln Thr Phe Tyr	2948
295	3000
cct ctt agt taa agagctattt tttaaactac taatgcctag tacatgccag Pro Leu Ser	
gragaacgtg tgttttatac atttttttc atttaattgt ccagetccac tgtaacataa	3060
gaacatitta catatgagaa gaatgaggot cacagaagtt aagacagtot ggottictac	3120
refreatgat actitaacaa gactaatcag atatgggaac agagcacaca gitecataac	3180
agarrraatt atattttact gotttaaata ttgotaattt aaaaactaat atgagagdaa	3240
agargcatot aaactgatga gagotgtgto ttgaagtaga gagottggat acatoaggaa	3300
agaaaagatg tatccaaaaa aaaaaaaaga aagaaaaaag aaaaaaaaaa	3360
aggaeatoca totatoogta ottitottit ootaaagaca acagaaaact tiggtoocac	3420
acattetget acaaatettg gtggteettt ttgteeccaa tteattteet taacetacat	3480
attgaaatat cttggccttt acttggggtt gttttgttct tcctttgttt gaggtggaac	3540
cactitatgg trefetteet gargeaeatg tatgteette acatactagt gtgtettage	3600
coccacattt gttcctgaga caccatacta atttgctctc ttcaaggaag ctactagcat	3660
tgcctacttg ctgaaatatc tcaagtaatt ccaagcaaag ggcttgagtt aatattaata	3720
gaaggctaga ttcctagaat gaccagaaaa ctcatggaaa accctccagt gactcccttt	3780
gaaggctaga ttoctagaat gadddyssa gccctacaag ataatgccaa gggtccttca ttgtcatgaa tctatcatct agtttccacc	3840
gecetacaaq ataatgetaa gyyttöötötä taeetettea gtattateat ttetaatttt gttattetee attttetata tgeettttgt	3900
acactetgaa getaaceaac tatttgettg ttttaaaaca aataaatgtg atgaacaaaa	3960
taaatgtggt ctctgcctc ataggcctta ttgcctggtt caagatagtc ccagtaaaca	4020
gaaaaatgag ggaaaatacc ttaccagttt aagttgattc tctgaagaaa aagtgcatgc	4080
gaaaaatgag ggaaaatacc ttaccagttt aagttyooda atcgaatggc atagggttgg	4140
aggegataga ggagagaata etaagatada eetaatata agggtaatta aaagtettea	4200
tttcccagag aaactgagag ttaacctgca tgtaacctga agggtaatta aaagtcttca	4260
ggtaaagggg atatccttta ggacagaaga aacaatgtgt acaaaacccc tgaagcaaga	4320
actggatgag tiggagacaa gcaaagaagg ccigtataaa tgctgtttta aaaatgcttt	4380
tcaattgaca aaattatata tatttatggt gtaaaacatg atattttctc ccatcetgta	4440
ggttgcctgt tcactctgat ggtattttct tttgctgtgc agaagctctt tagtttaatt	4500
agateceatt tgteaatttt ggettttgtt geeattgeet ttggtgttta gacatgaagg	4560
cottgeceat gentatgeed tgaatggtad tgentaggtt ttettetagg gtttttatgg	4620
ttttaggtct aacatgtaag tcttttatcc atctggaata aatttttgta taaggtgtaa	4680
ggaagggate cagttteage tttetacata tggetageca gtttteecag caccatttat	
taaataggga atcettteee catttettgt ttttgteaga caaagggeta atateeagaa	
totacaatga actcaaacaa atttacaaga aaaaaacaaa caaccccatc aaaaagtggg	4860
calangatat gaacagacac ttctcaaaag aagacattta tgcagccaga aaacacatga	400
agatactate atcactggcc atcagagaaa tgcaaatcaa aaccacaatg agatactate	, 1344
tcacaccagt tagaatggcg atcattaaaa agtcaggaaa caacaggtgc gggagaaga	. 4360
Page 8	•

4982

<210> PRT Homo sapiens <400> 13 Met Glu Gln Val Asn Lys Thr Val Val Arg Glu Phe Val Val Leu Gly
1 10 15 Phe Ser Ser Leu Ala Arg Leu Gln Gln Leu Leu Phe Val Ile Phe Leu 20 25 30 Leu Leu Tyr Leu Fhe Thr Leu Gly Thr Asn Ala Ile Ile Ile Ser Thr $35 \hspace{1cm} 40 \hspace{1cm} 45$ Ile Val Leu Asp Arg Ala Leu His Thr Pro Met Tyr Phe Phe Leu Ala .50 55 60 Ile Leu Ser Cys Ser Glu Ile Cys Tyr Thr Phe Val Ile Val Pro Lys 65 70 75 80 Met Leu Val Asp Leu Leu Ser Gln Lys Lys Thr Ile Ser Phe Leu Gly 85 90 95 Cys Ala Ile Gln Met Phe Ser Phe Leu Phe Phe Gly Ser Ser His Ser 100 105 110 Phe Leu Leu Ala Ala Met Gly Tyr Asp Arg Tyr Met Ala Ile Cys Asn 115 120 125 Pro Leu Arg Tyr Ser Val Leu Met Gly His Gly Val Cys Met Gly Leu 130 135 140 Met Ala Ala Ala Cys Ala Cys Gly Phe Thr Val Ser Leu Val Thr Thr 145 - 150 155 160 Ser Leu Val Phe His Leu Pro Phe His Ser Ser Asn Gln Leu His His 175 Phe Phe Cys Asp Tle Ser Pro Val Leu Lys Leu Ala Ser Gln His Ser 180 185 190 Gly Phe Ser Glm Leu Val Ile Phe Mec Leu Gly Val Phe Ala Leu Val 195 200 205 Ile Pro Leu Leu Leu Ile Leu Val Ser Tyr Ile Arg Ile Ile Ser Ala 210 215 220

Cys Ala Ser His Leu Ile Val Val Thr Val His Tyr Ser Cys Ala Ser 245 250 255

Ile Leu Lys Ile Pro Ser Ser Val Gly Arg Tyr Lys Thr Phe Ser Thr 225 230 235 240

Phe Ile Tyr Leu Arg Pro Lys Thr Asn Tyr Thr Ser Ser Gln Asp Thr 260 265 270

16U 200 PCT FINAL.ST25	
Leu Ile Ser Val Ser Tyr Thr Ile Leu Thr Pro Leu Phe Asn Pro Met 275	
Ile Tyr Ser Leu Arg Asn Lys Glu Phe Lys Ser Ala Leu Arg Arg Thr 290 295 300	
Ile Gly Gln Thr Phe Tyr Pro Leu Ser 305	
<210> 14 <211> 24 <212> ONA <213> Homo sapiens	
<400> 14 cctgttcact ctgggcacca atgc	24
<210> 15 <211> 24 <212> DNA <213> Homo sapiens	٠
<400> 15 ctggttggag gagtggaagg gcag	24
<210> 16 <211> 50 <212> DNA <213> Homo sapiens	
<400> 16 tacctttctg tatataaaaa catataacta atacacacac actcatacac	50
<210> 17 <211> 50 <212> DNA <213> Homo sapiens	
<400> 17 cttcagaagt atataaatga agactggata ccagcaagac atactggatg	50
<210> 18 <211> 50 <212> DNA <213> Homo sapiens	
<400> 18 cccttggaga tataaaaagt tcccagtaaa tagatgtgtg ctcacatctt	50
<210> 19 <211> 50 <212> DNA <213> Homo sapiens	
<400> 19 taatactatg taaaaatcca ctggactaga atcagctgtc ctcatgtgcc	50
<210> 20 <211> 960 <212> UNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(960) <223>	
<400> 20 atg aca cag ttg acg gcc agt ggg aat cag aca atg gtg act gag ttc Atg aca cag ttg acg gcc agt ggg aat cag aca atg gtg act gag ttc Met Thr Gln Leu Thr Ala Ser Gly Asn Gln Thr Met Val Thr Glu Phe gage 10	48

1				5					10	160	200	PCT	FINA	L.ST	25	
ctc Leu	ttc Phe	tct Ser	atg Met 20	ttc Phe	510 CCd	cat His	gcg Ala	cac His 25	aga Arg	ggt Gly	ggc	ctc Leu	tta Leu 30	ttc, Phe	ttt Phe	96
att Ile	ecc Pro	ctg Leu 35	ctt Leu	ctc Leu	atc Ile	tac Tyr	gga Gly 40	ttt Phe	atc Ile	cta Leu	act Thr	gga Gly 45	aac Asn	cta · Leu	ata Ile	144
atg Met	ttc Phe 50	att Ile	gtc Val	atc Ile	cag Gln	gtg Val 55	ggc Gly	atg Met	gcc Ala	ctg Leu	cac His 60	acc Thr	cct Pro	ttg Leu	tat Tyr	192
Phe 65	Phe	Ile	Ser	Val	ctc Leu 70	Ser	206	Leu	Gria	75	-1.5	-,-	••••		80	240
The	Ile	Pro	Lys	85	ctg Leu	261	Cys	nea	90					95		288
Ser	Val	Ala	GLA GLA	Cys	ctc Leu	Leu	GILL	105					110		_	336
Ile	Thr	Glu -115	Ser	CÀR	vai.	Leu	120	ALG				125	•	-		384
Ala	11e 130	Cys	Asn	Pro	ctc Leu	135	TYL	FLO	1	110	140			-		432 a
Cys 145	Ile	Gln	Leu	Thr	gtt Val 150	GIĀ	Ser			155					160	480
Leu	Pro	Glu	. Ile	165		ire	261	1111	170			- 4	•	175		528
Gln	lle	His	Gln 180	Ile	ttc Phe	Cys	АЗР	185	1111		,,,,		190	-	•	576
Cys	Thr	195	TRE	Pne	cta Leu	V 0.1	200					205	i		٠.	624
Glu	11e	val	. Ala	. Şer	?ne	215	Val	. 116	, ALG		220			_	att Ile	672
11e 225	: Ile i	val	. ILe	Leu	230	Met		361		235				_	gcc Ala 240	720
Phe	e Sei	Thi	c Cys	245	a Ala	HLS	reu	LALO	250)				255	ggc Gly	768
Se	· Val	LAL	260	. Met	ryı	Let	ı nış	265	5			•	270)	ttt Phe	816
Tr) Ası	27:	r Ala S	a Ile	e Ald	ı va.	290)				28	5		ttc ?he	864
Ası	1 PE))	e Ile	e Ty:	r Sex	29	; ; ;	3 M31	ı uy.	, ,,	30	0 -,			act Ile	912
gg: G1: 30:	y Ar	g Ct	t tto u Phe	cae Hi:	c tat s Tyr 310	GI	g aad n Ly:	g ago	g gct	c gg a G1 31	,	g gc p Al	t ggg a Gl	g aaa y Ly:	a tag s	. 960

<	2	1	0	>	21
	-				719

<212> PRT <213> Homo sapiens

Met Thr Gln Leu Thr Ala Ser Gly Asn Gln Thr Met Val Thr Glu ?he 1 5 . . .

Leu Phe Ser Met Phe Pro His Ala His Arg Gly Gly Leu Leu Phe Phe 20 25 30

Ile Pro Leu Leu Ile Tyr Gly Phe Ile Leu Thr Gly Asn Leu Ile 35 40

Met Phe Ile Val Ile Gln Val Gly Met Ala Leu His Thr Pro Leu Tyr 50 60

Phe Phe Ile Ser Val Leu Ser Phe Leu Glu Ile Cys Tyr Thr Thr Thr 65 70 80

Thr Ile Pro Lys Met Leu Ser Cys Leu Ile Ser Glu Gln Lys Ser Ile 85 90 95

Ser Val Ala Gly Cys Leu Leu Gln Met Tyr Phe Phe His Ser Leu Gly 100 105 110

Ala Ile Cys Asn Pro Leu Arg Tyr Pro Thr Ile Net Ile Pro Lys Leu 130 135 140

Cys Ile Gln Leu Thr Val Gly Ser Cys Phe Cys Gly Phe Leu Leu Val 145 150 150

Leu Pro Glu Ile Ala Trp Ile Ser Thr Leu Pro Phe Cys Gly Ser Asn 165 170 175

Gln Ile His Gln Ile Phe Cys Asp Phe Thr Pro Val Leu Ser Leu Ala 180 185 190

Cys Thr Asp Thr Phe Leu Val Val Ile Val Asp Ala Ile His Ala Ala 195 200 205

Glu Ile Val Ala Ser Phe Lau Val Ile Ala Leu Ser Tyr Ile Arg Ile 210 215 220

Ile Ile Val Ile Leu Gly Met His Ser Ala Glu Gly His His Lys Ala 225 230 235 240

Phe Ser Thr Cys Ala Ala His Leu Ala Val Phe Leu Leu Phe Phe Gly 255

Ser Val Ala Val Met Tyr Leu Arg Phe Ser Ala Thr Tyr Ser Val Phe 260 265 270

Trp Asp Thr Ala Ile Ala Val Thr Phe Val Ile Leu Ala Pro Phe Phe 275 280 285

Solution of the life Tyr Ser Leu Lys Asn Lys Asp Met Lys Glu Ala Tie 290 City Arg Leu Phe His Tyr Gln Lys Arg Ala Gly Trp Ala Gly Lys 315 City 22 City 24 City 24 City 24 City 26 City 27 City									•									
210 21 22 22 23 24 24 24 24 24			e Il	le Ty	r Se	r Le 29	eu Ly 95	s As	sn Ly	16 3 As	p Me	t Ly	T FI	NAL. u Al	ST25 La Il	.e		
2112		j Le	u Pi	ne Ki	is Ty 31	/r G	ln Ly	/s A	rg Al	La G1 31	.y T:	Ep Al	a G	Ly L	ys			
Coccatgute cogastage acag C210> 23 C212> ONA C213> Homo sapiens C400> 23 Gaaggtgga aatccatgca atotcag C210> 24 C210> S0A C211> 50 C212> ONA C213> Homo sapiens C400> 24 agacagacgt tasaaaaatga ccaaacctac agaaaatatt tocagataat C210> 25 C211> 900 C212> DNA C213> Bomo sapiens C210> 25 C211> 900 C212> DNA C213> Bomo sapiens C220> C212> DNA C213> Bomo sapiens C220> C220> C212> DNA C213> Bomo sapiens C220> C220> C221> CDS C222> C11(900) C223> C23> C31 C31 Bomo sapiens C220> C220> C212> DNA C213> Bomo sapiens C220> C220> C212> DNA C213> Bomo sapiens C220> C220> C212> DNA C213> Bomo sapiens C220> C220> C220> C320> C32	<211> <212>	24 DN2		apie:	ns				•									
2212> ONA 2213> Homo sapiens <400> 23	<400> ctctat	22 gtt	: cc	gcat	qcqc	aca	g										2	4
qcaaggtgga aatccatgca atctcag <210> 24 <211> 50 <212> DNA <213> Homo sapiens <400> 24 agacagacgt taaaaaatga ccaaacctac agaaaatatt tccagataat 50 <210> 25 <211> DNA <212> DNA <212> DNA <212> CDS <222> (1)(900) <221> CDS <222> (1)(900) <222> (1)(900) <222> (1)(900) <222> (21)(900) <221> CDS <222> (1)(900) <222> (21)(900) <222> (21)(900) <222> (21)(900) <222> (21)(900) <222> (22)(1)(900) <222> (21)(900) <222> (22)(1)(900) <222> (21)(900) <222> (22)(1)(900) <2210	<211> <212>	27 ON:		apie	ns													
<pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre< td=""><td><400> gcaagg</td><td>23 tgg</td><td>a aa</td><td>tcca</td><td>tgca</td><td>ato</td><td>tcag</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>7</td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	<400> gcaagg	23 tgg	a aa	tcca	tgca	ato	tcag			-							2	7
agacagacgt taaaaaatga ccaaacctac agaaatatt teedgataat <210> 25 <211> 900 <212> DNA <211> Homo sapiens <220> (221> CDS <222> (1)(900) <222> (22) (1)(900) <222> (1)(900) <222> (1)(900) <222> (1)(900) <223> (1)(900) <223> (1)(900) <224 Met fle Thr Glu Phe Ita Leu Ita Gly Phe Ser Asn Leu Gly Asp Leu Ita	<211> <212>	50 0N	A	sapie	ens.										<i>(</i> -			
<pre> 221> 900 212> DNA 2213> Homo sapiens 220> 221> CDS 222> (1)(900) 223> 2400> 25 acg atc acc gag ttc atc ctt ata ggc ttc tca aac ctg ggg gat ctg Amet Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 1</pre>	<400> agacac	24 gacg	it ta	aaaa	aatga	, cca	aaaco	tac	agaa	aata	tt t	ccaq	jataa	ı t			5	60
<pre> <221> CDS <222> (1)(900) <223> <400> 25 atg atc acc gag ttc atc ctt ata ggc ttc tca aac ctg ggg gat ctg Ag atc acc gag ttc atc ctt ata ggc ttc for the file file file file file file file fil</pre>	<211> <212>	90	IA	, sapi	ens													
atg atc acc gag, ttc atc ctt ata ggc ttc Eta aac Cty gyg Asp Leu Net Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 15 cag atc ctt ctc ttt atc ttc cta tta gtc tac ctg acc act ctg Gln Ile Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Leu 10 atg gcc aac acc acc atc atg aca gtc att cac ctg gac agg gct ttg Asp Arg Ala Leu Asp Arg Ala Leu Asp Arg Ala Leu Asp Arg Ala Leu Phe Phe Leu Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr So cac act cct atg tac ttc ttc ctc ttt gtc ctt tca tgt ctg acc acc ctg gas acc 192 His Thr Pro Met Tyr Phe Phe Leu Phe Leu Phe Val Leu Ser Cys Ser Glu Thr So tgc tac acc ttg gtc att gta ccc aaa atg ctt acc aca ctg cta tcc Cys Tyr Thr Leu Val Ile Val Pro Lys Met Lau Thr Asn Leu Leu Ser Cys Tyr Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu gS gca att cca acc act att tct ttc tct gga tgt gtg gtc cag ctc tat tca 298 ttt gtg ggc ttg gct tg gct tg acc acc acc acc acc acc acc acc acc ac	<221> <222>			(900)													
cag atc ctt ctc ttc ttc ttc ctc cta atc ctc c	Met I	Z: tc : le :	s acc Thr	GIA	Suc	atc Ile	ctt Leu	ata Ila	,		tca Ser	aac (Asn)	ctg Leu	GT A ggg	gat Asp 15	ctg Leu		48
At a ser acc acc acc acc acc acc acc acc acc ac		tc (Leu	ctc Leu		ttt Phe	atc Ile	ttc Phe		tta Leu	gtc Val	tac Tyr	ctg Leu	acc Thr 30	act Thr	ctgʻ Leu		96
Cac act cct atg tac ttc ttc ctc ttt gtc ctt tca tgt tca gas acc His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 tgc tac acc ttg gtc att gta ccc aaa atg ctt acc aac ctg cta tcc Cys Tyr Thr Leu Val Ile Val Pro Lys Met Lau Thr Asn Leu Leu Ser 65 gca att cca act att tct tct tct gga tgt gtc gtg gtc cag ctc tat tca Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 95 ttt gtg ggc ttg gct tgt acc acc tgt ttt ctc att gtg gcg gtc cag ctc tat tca 298 ttt gtg ggc ttg gct tgt acc acc tgt ttt ctc att gcg atg gtg gtg gtg gtg gtg gtg atg gg gtg gt	atg g Met A	la	aac Asn		acc The	atc Ile	atg Met		gtc Val	att Ile	cac His	ctg Leu	gac Asp 45	agg Arg	gct Ala	ttg Leu	1	. 4 4
tgc tac acc ttg gtc att gta ccc aaa atg ctt acc aac ctg cta tcc 240 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 80 gca att cca act att tct ttc tct gga ttg gtg gtc cag ctc tat tta 298 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 95 ttt gtg ggc ttg gct tgt acc acc tgt ttt ctc ttt ctc tct gg atc gtg gtg gtc gtg gtg gtc gag atc ggc 336 Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 110 tac gat cgc tat gtt gcc atc tgc acc ccc ctt acc acc acc tgt acc acc tyr Asp Arg Tyr Val Ala Ile Cys Asn Pro Leu Asn Tyr Thr Leu Ile 125 ctg gtt cta gcc tcc agc ttt tgt ggc ttc ctg acc tct gtg act gtg 432	His T	ict Thr		atg Met	tac Tyr	ttc Phe	£ 11C	ctc Leu	ttt Phe	gtc Val	ctt Leu	tca Ser 60	tgt Cys	tct Ser	gaa Glu	acc Thr	1	.92
gca att cca act att tct tct gga tgt gtg gtc cag ctc tat tta 298 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu g5 ttt gtg ggc ttg gct tgt acc aac tgt ttt ctc att gct gtg atg ggc 336 Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 105 tac gat cgc tat gtt gcc atc tgc aac ccc ctt aac tac aca ctc att Tyr Asp Arg Tyr Val Ala Ile Cys Asn Pro Leu Asn Tyr Thr Leu Ile 125 ctg gtt cta gcc tcc agc ttt tgt ggc ttc ctg acc tct gtg att gtc 432	tgc t	_	acc Thr	ttg Leu	gtc Val	175	gta Val	.ccc	aaa Lys	atg Met		acc Thr	aac Asn	ctg Leu	cta Leu	ser 80	7	240
Phe Val Gly Led Ala Cys Int 105 110 tac gat cgc tat gtt gcc atc tgc aac ccc ctt aac tac aca ctc att Tyr Asp Arg Tyr Val Ala Ile Cys Asn Pro Leu Asn Tyr Thr Leu Ile 125 ctg gtt cta gcc tcc agc ttt tgt ggc ttc ctg act tct gtg att gtc 432	gca a	att [le	cca Pro	act Thr	Tie	tct Ser	ttc Phe	tct Ser	gga Gly	tgt Cys 90	gtg Val	gtc Val	cag Gln	ctc Leu	tat Tyr 95	tta Leu	:	298
Tyr Asp Arg Tyr Val Ala 112 tys 120 125 ctg gtt cta gcc tcc agc ttt tgt ggc ttc ctg acc tct gtg att gtc 432	tit (Phe '	gtg Val	ggc Gly	Leu	ALG	tgt Cys	acc Thr	aac Asn	-,-	ttt Phe	ctc Leu	att Ile	gct Ala	gtg Val 110	atg Met	Gly		336
ctg gtt cta gcc tcc agc ttt tgt ggc ttc ctg act tct gtg att gtc 432	tac (gat Asp	yrd	Tyr	gtt Val	gcc Ala	atc Ile	Cy C		510 CCC	ctt Leu	aac Asn	tac Tyr 125	aca Thr	ctc Leu	act Ile		384
	ctg	gtt			tcc	agc			. gg c	ttc	ctg	act	tct Page	gtg . 13	att	gtc		432

as at act ctg gtg the agt gtg gtc at at act act at a gtt to gtg gtc cat tat agt to gtg gtc agt gtg gtg gtg gtg gtg gtg gtg gtg gtg	16U ZOO PCT FINAL.ST25	
As not be been varied as the second of the s	130	480
Cac tit tit tit tit tit tit tit tit tit ti	Asn The Leu val Phe Sel val 155	
acc asc ctg aag gag atg gtc atc ttt ttc ctc agc att ctg gta ttg Thr Asn Leu Lys Glu Met Val Ile Phe Phe Leu Ser Ile Leu Val Leu Ileo Ctg gtt ccc ctt gtg ttg ata ttc atc tcc tac atc ttc ata gtt tcc Leu Val Pro Leu Val Leu Ile Phe Ile Ser Tyr Ile Phe Ile Val Ser 195 acc atc ctc aag atc tcc tca gtg gaa gga cag tgc asa gcc ttc gcc Thr Ile Leu Lys Ile Ser Ser Val Glu Gly Gln Cys Lys Ala Phe Ala 210 acc tct gct tcc cac ctc aca gtg gtc gtc gtc gtc cac tat ggc tgc chr Cys Ala Ser His Leu Thr Val Val Val Val His Tyr Gly Cys Ala 220 ccc ttt atc tac ttg agg ccc aca tcc ctg tac tct tca gat agg ac Ser Phe Ile Tyr Leu Acg Pro Thr Ser Leu Tyr Ser Ser Asp Lys Aap 255 cgg ctc gtg gca gtg att at act gtg att act cat cca cac acc cac Arg Leu Val Ala Val Tyr Thr yal Ile Thr Pro Leu Leu Asn Pro 265 ctt gtc tat aca ctg aga aat aaa gaa gta aga gtg ctt gac acc cac acc cac Arg Leu Val Ala Val Tyr Thr Lys Glu Val Lys Met Ala Leu Arg Pro 277 gtt ctg gct aga tgc tta aat ccc aaa cct gta tgc Val Leu Gly Arg Cys Leu Aan Ser Lys Thr Val 280 ctt gtc tat aca ctg aga ast cac acc cac acc gta tyr Gt ctg gct aga aga gac Leu Val Tyr Thr Leu Arg Asn Lys Glu Val Lys Met Ala Leu Arg Lys 280 gt ctg ggt aga tgc tta aat ccc aaa act gta tga Val Leu Gly Arg Cys Leu Aan Ser Lys Thr Val 295 ctl gct tat aca ctg aga ast cac acc acc acc cac cac cac 210 > 26 ctl gct tat for the Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Leu 20 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu 35 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 65 Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 100	cac ttt ttc tgt gac att tcc cct gtc ata aaa ctg ggc tgc aca gac His Phe Phe Cys Asp Ile Ser Pro Val Ile Lys Leu Gly Cys Thr Asp	
Cty gtt ccc ctt gtg ttg ata ttc atc tcc tac atc ttc ata gtt tcc Leu Val Pro Leu Val Leu IIe Phe IIe Ser Tyr 12 acc atc ctc aag atc tcc tca gtg gaa gga cag tgc aaa gcc ttc gcc Thr IIe Leu Lys IIe Ser Ser Val Glu Gly Glc Gyz Lys Ala Phe Ala 220 acc tgt get tcc cac ctc aca gtg gtc gtc gtc cac tat ggc gtc gtc Acc tgt get tcc cac ctc aca gtg gtc gtc gtc cac tat ggc gtc gtc Acc tgt get tcc cac ctc aca gtg gtc gtc gtc gtc gtc gtc Ccc ttt atc tac ttg agg ccc aca tcc ctg tac tct tca gat aag gac Ccg ctc gtg gca gtg act tat act gtg att act cta cac act acc cta aca gtg gtc gtc Acg ctc gtg gca gtg act tat act gtg att act cca cta acc acc acc acc act act	acc aac ctg aag gag atg gtc atc ttt ttc ctc agc att ctg gta ttg Thr Asn Leu Lys Glu Met Val Ile Phe Phe Leu Ser Ile Leu Val Leu 185	576
acc atc ctc asg atc tcc tcs gtg gea ggs cag tgc sas gcc tcc gcc atc ctc atc a	ctg gtt ccc ctt gtg ttg ata ttc atc tcc tac atc ttc ata gtt tcc ctg gtt ccc ctt gtg ttg ata ttc atc tcc tac atc ttc ata gtt tcc Leu Val Pro Leu Val Leu Ile Phe Ile Ser Tyr Ile Phe Ile Val Ser Leu Val Pro Leu Val Leu Ile Phe Ile Ser Tyr Ile Phe Ile Val Ser	624
acc tgt gct tec cac ctc aca gtg gtc gtc gtc cac tat ggc tgt gct 225 The Cys Ala Ser His Leu Thr Val Val Val Val His Tyr Giy Cys Ala 226 Ecc ttt atc tac ttg agg ccc aca tcc ctg tac tct tca gat aag gac 245 Ecg ctc gtg gca gtg act tat act gtg att act ctca cta ctc acc acc 250 Ecg ctc gtg gca gtg act tat act gtg att act ccc act act acc acc Arg Leu Val Ala Val Thr Tyr Thr Val Ile Thr Pro Leu Leu Asn Pro 265 Ect gtc tat aca ctg aga aat aaa gaa gta aag atg gcc tcg aga aag Leu Val Tyr Thr Leu Arg Asn Lys Glu Val Lys Met Ala Leu Arg Lys 285 gtt ctg ggt aga tgc tta aat tcc aaa act gta tga ctg arg arg Lys 285 gtt ctg ggt aga tgc tta aat tcc aaa act gta tga 285 gtt ctg ggt aga tgc tta aat tcc aaa act gta tga 290 val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 1 290 ctl gtc tat aca ctg aga aga tgc ta aat tcc aaa act gta tga 290 val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 1 Gln Ile Leu Leu Phe Phe Ile Phe Lau Leu Val Tyr Leu Thr Thr Leu 20 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu 40 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 85 Phe Val Gly Lau Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 110	acc atc ctc aag atc tcc tca gtg gaa gga cag tgc aaa gcc ttc gcc acc atc ctc aag atc tcc tca gtg gaa gga cag tgc aaa gcc ttc gcc	672
tot tit atc tac tig agg coc aca toc cig tac tot toa gat aag gac Ser Phe Ile Tyr Leu Arg Pro Thr Ser Leu Tyr Ser Ser Asp Lya Asp 250 cgg ctc gig goa gig act tat act gig aft act coc cata cic aac coc Arg Leu Val Ala Val Thr Tyr Thr Val Ile Thr Pro Leu Leu Asn Pro 265 ctt gic tat aca cig aga aat aaa gaa gia aag at gic cig aga aag Leu Val Tyr Thr Leu Arg Asn Lys Giu Val Lys Met Ala Leu Arg Lys 275 git cig git aga tig cid aat toc aaa act gia tig Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 c210> 26 c211> 293 c212> PRT c213> Homo sapiens c400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 10 Gin Ile Leu Lau Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Leu 20 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Lau Asp Arg Ala Leu 45 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 85 Phe Val Gly Lau Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 100 100 110 110 110 110 110 11	210	720
cgg ctc gtq gtq act tat act gtq att act cca cta ctc aac ccc Arg Leu Val Ala Val Thr Tyr Thr Val Ile Thr Pro Leu Lau Asn Pro 250 ctt gtc tat aca ctg aga aat aaa gaa gta aag atg gct ctg aga aag Leu Val Tyr Thr Leu Arg Asn Lys Glu Val Lys Met Ala Leu Arg Lys 275 gtt ctq ggt aga tgc tta aat tcc aaa act gta tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 c210> 26 c211> 299 c212> PRT c213> Romo sapiens c400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 1	225	768
Ctt gtc tat aca ctq aga aat aaa gaa gta aag atg gtc tq aga aag aag gta leu Val Tyr Thr Leu Arg Asn Lys Glu Val Lys Met Ala Leu Arg Lys 285 gtt ctq gqt aga tgc tta aat tcc aaa act gta tga 285 gtt ctq gqt aga tgc tta aat tcc aaa act gta tga 285 2210> 26 <2210> 26 <2210> 275 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu Bro Leu Gly Asp Leu 295 260 270 270 270 270 270 270 270	243	816
get ctq ggt aga tgc tta aat tcc aaa act gta tga yal Leu Gly Arg Cya Leu Aan Ser Lys Thr Val 290 <pre> 210> 26</pre>	Zou	864
Val Leu Gly Arg Cys 200 295 (210> 26 (211> 299 (212> PRT (213> Romo sapiens) (400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 10 Gln Ile Leu Lau Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Leu 20 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Lau Asp Arg Ala Leu 40 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 90 Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 100	Len Val Tyr Thr Leu Arg Ash 200 285	
211> 299 212> PRT 213> Homo sapiens <400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 10 Gln Ile Leu Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Leu 20 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Lau Asp Arg Ala Leu 45 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 95 Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 100	275	
<pre> <211> 299 <212> PRT <213> Homo sapiens <400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 10</pre>	gtt ctg ggt aga tgc tta aat tcc aaa act gta tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 295	
Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Leu 15 Gln Ile Leu Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Leu 20 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Lau Asp Arg Ala Leu 45 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 75 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 95 Phe Val Gly Lau Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 100	gtt ctg ggt aga tgc tta aat tcc aaa act gta tga yal Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 295	
Gin Ile Leu Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Leu 25 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Lau Asp Arg Ala Leu 45 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 75 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 95 Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 100	gtt ctg ggt aga tgc tta aat tcc aaa act gta tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 <210> 26 <211> 299 <212> PRT	
Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Leu 40 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 95 Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 100	gtt ctg ggt aga tgc tta aat tcc aaa act gta tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 2210> 26 <211> 299 <212> PRT <213>_ Homo sapiens <400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Le	900
His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Thr 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 80 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 95 Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 110	gtt ctg qgt aga tgc tta aat tcc aaa act gta tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 C210> 26 C211> 299 C212> PRT C213> Homo sapiens C400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Le 1	900
Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 30 65 70 70 75 80 85 85 86 86 86 87 88 85 86 86 86 86 86 86 86 86 86 86 86 86 86	gtt ctg qgt aga tgc tta aat tcc aaa act gta tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 <pre> <210> 26 <211> 299 <212> PRT <213> Homo sapiens <400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Le 1</pre>	900 u
Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 95 Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Ala Val Met Gly 100	gtt ctg ggt aga tgc tta aat tcc aaa act gta tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 C210> 26 C211> 299 C212> PRT C213> Homo sapiens C400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Le 1 1 5 Gln Ile Leu Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Le 20 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Le 40 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Leu Asp Arg Ala Le 40	900 u u
Phe Val Gly Leu Ala Cys Thr Asn Cys Phe Leu Ile Aia Val Met Gly 105 110	get ctg ggt aga tgc tta aat tcc aaa act gta tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 <pre> <210> 26 <211> 299 <212> PRT <213> Homo sapiens <400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Le 1</pre>	900 u u
	get cet gget aga tge tea aat tee aaa act gea tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 C210> 26 C211> 299 C212> PRT C213> Homo sapiens C400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Le 10 Gln Ile Leu Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Le 20 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Lau Asp Arg Ala Le 35 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Th 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Se 65	900 u u eu er 0
	get cet ggt aga tgc tta aat tcc aaa act gta tga Val Leu Gly Arg Cys Leu Asn Ser Lys Thr Val 290 C210> 26 C211> 299 C212> PRT C213> Homo sapiens C400> 26 Met Ile Thr Glu Phe Ile Leu Ile Gly Phe Ser Asn Leu Gly Asp Le 10 Gln Ile Leu Leu Phe Phe Ile Phe Leu Leu Val Tyr Leu Thr Thr Le 20 Met Ala Asn Thr Thr Ile Met Thr Val Ile His Lau Asp Arg Ala Le 35 His Thr Pro Met Tyr Phe Phe Leu Phe Val Leu Ser Cys Ser Glu Th 50 Cys Tyr Thr Leu Val Ile Val Pro Lys Met Leu Thr Asn Leu Leu Ser 65 Ala Ile Pro Thr Ile Ser Phe Ser Gly Cys Val Val Gln Leu Tyr Leu 85	900 u u eu er 0

30 50 DNA

Homo sapiens

•																
										150	200	PCT	FINA	L.ST	25	
Tyr	Asp	Arg	Tyr	Val	Ala	Ile	Cys	neA	Pro	Leu	Asn	Tyr	Thr	Leu	Ile	
•		115					120				-	123				
					_		٠	<u>د، د د</u>	Dh o	Len	The	Ser	Val	Ile	Val	
Leu	Val 130	Leu	Ala	Ser	Ser	Phe 135	Cys	GIY	Suc	Deu	140		Val			
	130											•				
_	-1.		st a l	Dha	Ser	Val	Leu	Leu	Cys	Ala	Ser	Asn	Arg	Ile	Asn	
Asn 145	He	Leu	Val	FILE	150					155					160	
uie	Phe	Phe	Cys	Asp	Ile	Ser	Pro	Val	Ile	Lys	Leu	Gly	Суз	Thr	Asp	
			-	165					170					1,3	•	
			•							•	c	TIA	T out	Val	7.211	
The	Asn	Leu	Lys	Glu	Met	Val	Ile	Phe 185	Sue	Leu	267	ILE	Leu 190			
			190													
			_	7	7	710	Ohe	Tie	Ser	TVE	Ile	Phe	Ile	Val	Ser	
Leu	Val	9ro 195	Leu	vai	rea	716	200					205				
		_														
The	[] a	f.eu	Lvs	Ile	Ser	Ser	Val	Glu	Gly	Gln	Cys	Lys	Ala	Phe	Ala	
1111	210		•-			215					220					
													. c1	C	212	
Thr	Cys	Ala	Ser	His	Leu	The	Val	Val	Val	Val 235	. Hls	TYI	GLy	CA2	240	
225					230											
				_	.		The-	Sar	Len	Tyr	Ser	Ser	Asp	Lys	Asp	
Ser	Phe	Ile	Туг	Leu 245	Arg	SEO	LILL	367	250)			_	255		
3		. v.i	Ala	Val	The	Tyr	Thr	Val	Ile	Thr	Pro	Lev	Leu	Asn	Pro	
AEG	Leu	, ,,,,	260					265					270			
												_ •				
Leu	. Val	. Tyr	Thi	Leu	Arg	Asn	Lys 280	Glu	(Val	Lys	Met	285	. Leu	. Arg	Lys	
		275	i				280	,						• :		
								7.175	Th	- Val	1					
Val	Let 290	i Gľý	Arg	g Cys	Let	295	, 361	. = /-			-					
/21	LO> -	- 27									.*					
<21	L1>	29	•													
		DNA	sa:	piens	5											
< 40	30> rcaa1	27 tatc	ctq	gcgti	ca q	gtgt	gctc	: .		•						29
• • •				-												
<2	10>	28	•													
<2	11>	30														
	12> 13>	ONA		pien.	3											
				-												
<41	00> ccta	28 ccca	gaa	cctt	tct ·	caga	gcca	tc								30
-a	4		,			-										
12	10>	29														
₹2	11>	50														
<2	12>	DNA		pien	3											
			.,	, 	-											
<4	00>	29 aata	rat	aaac	aco	cagt	ącaa	ag g	aaat	atta	a aa	ctac	aacc			50
gτ	ع عمب	ggeg					-									

<400> 30 cttcttcatt tataacatga gggggcttgg ctagatattt aacagcctgc	50
<pre><210> 31 <211> 50</pre>	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 31 gctagatatt taacagcetg cetgtattga ceaettatge atcaggaaat	50
<210> 32	
<211> 50	
<213> Homo sapiens	
<400> 32	50
<400> 12 atttgagtta tgtatatgag agactgggta catcactttt tacttgtttt	
<210> 33 <211> 5086	
<212> DNA	
<213> Homo saplens	
<220> <221> CDS	
<222> (2034)(2972)	
<223>	
<400> 33 tatccaaatg gtgaaagaga ttctagaaca aggaaagagc tacagcaaag gttttaaatg	60
atatgtcact gaacacattt gatcgatgga aacgcagaac ctaatttaga atttaacagg	120
atcactctgg tgtgttgaga tgaggctaca agtgaacaaa tgcaagtagg gagatctgtt	180
atcactctgg tgtgttyaga tgaggottot = , allegagact tggaccgagg tggtcaaaca	240
aggagtcaat tacagtaaga ggggagagat aaaagtgact tggaccgagg tggtcaaaca	300
tagtcagttc ctggatatat gagagaaaga tagaaacaag gatgactgca ggagtttagc	360
ttgtcagttg aaagattgca attgccatca tttgtgatgg ggaagactag gggtagagac	420
cccaggagtt cagtttgaga tggctcttcg actcccaaga ggagatgtga gtaggcagtg	480
aaatatatga gtotggagta goagagaaaa atatogootg agatatggat ttagatgtot	540
tcaacacatt tatagtgttt aaagctctgg tattggatgg tatagagcag aggagttgag	
tttatataga agagaaaaaa aaaagattaa acactgacca tgggcactgt gacattaaaa	600
ggatggggca tggaggagaa actaaagttg gagaatgaga aggaatgact aataagatag	660
aaagtaacca aaagtatagt accccgagaa tcaagtcaag	. 720
ataaatcaat actgtcaaga aacagatagt ccaagtaagc tgaggaatga gaaatgacca	780
ttggatccag gaaatcttag ataattaatg tctatgagaa aggaggtttt aatggagtgg	840
tggtagtata aatctaatta gagtgggttt aagaagaaac ttaaagagag gcattaaagg	900
caatgcgtat agccgactot tggaagagtt ttottttagg gacatagaaa gaaatagago	960
agtggctgtg ggatgagtaa agagaaagaa tttaaggctc ttgctttttt gtttgtttag	1020
tagatgagaa taatagcatg tttttacatt gatagagtat tccatgaaag agctgtataa	1080
tagatgagaa taatagcatg teeteadat yaray	1140
tagttagttg titototata ototgtatta caatattagt tigitaacat caggigocac	1200
atttattig titagicoci gilotaagia taalgoocag agiacigaaa ataalcaati	1260
attigttacat tigaccicaac acagtagago atigtatatit aatatotaca gaagcaataa	1320
accagaaaag agcatttgaa gttgatagag ggggaaatgg caggaagaac tgatgaagtg	1380
gccacagtet gaaqttgaaa tgcagaaaga tagatttgcc teetgtettt etttqgettt	

tttatttact ctaac											1440
taaattotga ootao											1500
aggagggagc agaag											1560
caaattaaaa tgaga											1620
tatcaatata ttatc											1580
gttaatatat acctt											1740
agaaagtcaa ctggg											1800
ggaagactaa acata	aaggt gaa	tagtotg	aag	gaggo	tg	ttgac	agga	a g	ggca	gggag	1860
ggatggaatt gaaat	gttga cct	cccaaag	cati	ttact	ta	gaggg	ctt	a c	tctg	gaggt	1920
gagagaaggg agggc											1980
actttctttc ctate	ettee aca	acttcaca	tct	aggga	aca	tgaat	ggt	ga go	ca a M 1	tg et	2036
gac aca ggg aac Asp Thr Gly Asn 5	tgg agc (Trp Ser (ag gta Sin Val	gca Ala 10	gaa t Glu i	ttc Phe	atc a Ile 1	itc Le	ttg (Leu (ggc Gly	ttc Phe	2084
ccc cat ctc cag Pro His Leu Gln 20	ggt gtc (Gly Val (cag att Sin Ile 25	tat Tyr	ctc i Leu i	ttc Phe		ttg Leu 30	ttg Leu	ctt Leu	ctc Leu	2132
att tac ctc atg Ile Tyr Leu Met 35	Thr Val	ttg gga Leu Gly 40	aac Asn	ctg (Leu	ctg Leu	ata Ile 45	ttc (Phe :	ctg Leu	gtg Val	gtc Val	2180
tgc ctg gac tcc Cys Leu Asp Ser SO	cgg ctt (Arg Leu) SS	cac aca His Thr	610 CCC	.,	tac Tyr 60	cac His	ttt Phe	gtc Val	agc Ser	att Ile 65	2229
ctc tcc ttc tca Leu Ser Phe Ser	gag ctt (Glu Leu (ggc tat Gly Tyr	aca Thr	gct Ala 75	gcc Ala	acc i	atc Ile	Pro Pro	aag Lys 80:	atg Met	2276
ctg gca aac ttg Let Ala Asn Leu 85	ctc agt Leu Ser	gag aaa Glu Lys	aag Lys 90	acc Thr	att Ile	tca Ser		tct Ser 95	GJ À ààà	tgt Cys	2324
ctc ctg cag atc Leu Leu Gln Ile 100	tat ttc Tyr Phe	ttt cac Phe His 105	tcc Ser	ctt Leu	gga Gly	~~~	act Thr 110	gag Glu	tgc Cys	tat Tyr	2372
ctc ctg aca gct Leu Leu Thr Ala 115	atg gcc Met Ala	tac gat Tyr Asp 120	agg Arg	tat Tyr	tta Leu	gcc Ala 125	atc Ile	tgc Cys	Arg Arg	Pro CCC	2420
ctc cac tac cca Leu His Tyr Pro 130	acc ctc Thr Leu 135	atg acc Met Thr	eca Pro	aca Thr	ctt Leu 140	tgt Cys	gca Ala	gag Glu	att Ile	gcc Ala 145	2468
att ggc tgt tgg Ile Gly Cya Trp	ttg gga Leu Gly 150	ggc ttg Gly Leu	gct Ala	ggg Gly 155	cca Pro	gta Val	gtt Val	gaa Glu	att Ile 160	tcc Ser	2516
ttg att tca cgc Leu Ile Ser Arg 165	Leu Fro	ttc tgt Phe Cys	ggc Gly 170	Pro	aat Asn	ege Arg	att Ile	cag Gln 175	cac His	gtc Val	2564
ttt tgt gac tto Phe Cys Asp Phe 180	cct cct	gtg ctg Val Leu 185	362	ttg Leu	gct Ala	-3-	act Thr 190	gat Asp	acg Thr	tct Ser	2612
ata aat gtc cta Ile Asn Val Leu 195	gta gat Val Asp	ttt gtt Phe Val 200	ata Ile	aat Asn	tcc Ser	tgc Cys 205	aag Lys	atc Ile	cta Leu	gcc Ala	2660
acc ttc ctg ctg Thr Phe Leu Leu	atc ctc	tgc tcc Cys Ser	tat Tyr	gtg Val	cag Gln	atc Ile	atc Ile	tgc Cys	aca Thr	gtg	2708

16U 200 PCT FINAL.ST25 225 220 225	
210 and are the are that 2	756
Leu Arg IIe Pro Ser Ara 112 275 240	
230 and ago ato ott too 2	804
245	2852
atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Atg tat gtg cag ctg aag aag agc tac tca ctg gac tat gac cag gcc Atg tat gtg cag ctg aag aag aag agc tac tca ctg gac tat gac cag gcc	•
260 atc	2900
ctg gca gtg gtc tac tca gtg ctc aca ccc ttc ctc aac ccc ttc atc ctg gca gtg gtc tac tca gtg ctc aca ccc ttc ctc aac ccc ttc atc Leu Ala Val Val Tyr Ser Val Leu Thr Pro Phe Leu Asn Pro Phe Ile Leu Ala Val Val Tyr Ser Val Leu Thr 200 Phe Leu Asn Pro Phe Ile 280 285	
775	2948
tac age ttg ege aac aag gag ate aag gag get gtg agg agg eag eta tyr Ser Leu Arg Asn Lys Glu Ile Lys Glu Ala Val Arg Arg Gln Leu Tyr Ser Leu Arg Asn 295 300 305	
200	3002
and art dog ata tig goa tga gitigggoig agagtaggoi aaggoogggo	300-
Lys Acg Tie Gry Tie Bes 110	3062
ctgaggatat ggtggcccca gggatcaaca gtggccagag acgagaaact aaaaattcag	3122
Profittera totogoging togagetoca gealginging actoactice agricultural	3182
annearical actifiction ggagocacat tiggottgag accagagact agggaaagtu	-
	3242
correger rettaaaat cegegeetta cotattatac gettatagge acceletada	3302
bracettae ttaatataaa tatagteagg catgteetaa acaaaatgtg atteatgatg	3362
beattering cacttocaat catttoatgt ggagaagact ggtacagtag aaaaaageat	3422
anatericae cicatatata totggattta aatoatgtti tattoagtoa otegotaaco	3482
cortaatott ragaaagtaa ottagoatot otgagtotta atttoattat togadaacyg	3542
protected aagagtottt togaatattaa cottaagatt togtaaaccac agegcacby	3602
processary taggigatag taaataaata aggactigit titattiatt tiattigeg	3662
aggacticac atcattacto tgggtottag aacaatatot agtaaaacat aaatuuddu	3722
and the condition of th	3782
paragraphic addragatacta tacttgaaaa gtatagtttg tcacagttct gttctyacaa	3842
congression constituted typicotaat atotatggoo agtataatgt atyaaayest	
reserving transportation and the second seco	3962
control of the tattic cigalactic transacta tictalactic tageactic	4022
regarding daticaatta atagotaata tratgitatic titatgitate citteatqua	4082
bongston antattaact acaagaaatc trigaatict atagaactto claagaaga	4142
toganiatar tritaatacc acactitiaa aggiaticat ccatccatge actedaatta	4202
Tragetetta ctatatatea gatgeagtgt caactetaca aaageaatgu	4262
agagasta tatatoteca goteetaeet ttaggotott ttaaaagagt eyaqaatata	4322
contrary fragatize titateetia gitateetta attateetig tygyadytug	4382
acatgcatt etectitit ticactigic titgaagiti aligagaact	
tattaagata aacatgeett tottoo	4502
traagragat aaatgittit abattiin atatgtagra tictatitat aaatatatit traaaatggga acttgaattg tictatitat atatgtagra tictatitat aaatatatit	4562
cattragtgt treatetaga araaaaarga caagaaaraa aarrarraaa aacaagrrgt	4 622
cattragtgt ttcatcraga accounts	

	•					
gtttgacttt	tggtaaaatt	ttttgtcctg	gacatttttg	atgactaagt	atcactaaat	4682
ctatgctagg	taaatttgcc	cctattattt	tctttttat	tttattttat	tttatttcat	4742
tattatttta						4802
					totoctaatg.	4862
					tccccttctc	4922
aatatcatac	tgaatgggca	aaaactggaa	gcattccctt	tgaaaacggg	cacaagacag	4982
ggatgccctc	tctcaccact	cctattcaac	atagtgtttg	atgttctggc	cagggcaatc	5042
			ttaggaaaag			5086
<210> 34 <211> 312						

<212> PRT <213> Homo sapiens

Met Asp Thr Gly Asn Trp Ser Gln Val Ala Glu Phe Ile Ile Leu Gly
1 10 15

Phe Pro His Leu Glm Gly Val Glm Ile Tyr Leu Phe Leu Leu Leu Leu 25 30

Leu Ile Tyr Leu Met Thr Val Leu Gly Asn Leu Leu Ile Phe Leu Val 35 40 45

Val Cys Leu Asp Ser Arg Leu His Thr Pro Met Tyr His Phe Val Ser 50 55 60

Ile Leu Ser Phe Ser Glu Leu Gly Tyr Thr Ala Ala Thr Ile Pro Lys 65 70 75 80

Met Leu Ala Asn Leu Leu Ser Glu Lys Lys Thr Ile Ser Phe Ser Gly 85 90 95

Cys Leu Leu Gln Ile Tyr Phe Phe His Ser Leu Gly Ala Thr Glu Cys 100 105 110

Tyr Leu Leu Thr Ala Met Ala Tyr Asp Arg Tyr Leu Ala Ile Cys Arg 115 120 125

Pro Leu His Tyr Pro Thr Leu Met Thr Pro Thr Leu Cys Ala Glu Ile 130 135 140

Ala Ile Gly Cys Trp Leu Gly Gly Leu Ala Gly Pro Val Val Glu Ile 145 150 150 155

Ser Leu Ile Ser Arg Leu Pro Phe Cys Gly Pro Asn Arg Ile Gln His 165 170 175

Val Phe Cys Asp Phe Pro Pro Val Leu Ser Leu Ala Cys Thr Asp Thr 180 185 190

Ser Ile Asn Val Leu Val Asp Phe Val Ile Asn Ser Cys Lys Ile Leu 195 200 205

Ala Thr Phe Leu Leu Ile Leu Cys Ser Tyr Val Gln Ile Ile Cys Thr 210 215 220

Val 225	Leu	Arg	Ile	Pro	Ser 230	Ala	Ala	Gly	ГЛ2	Arg 235	Lys	Ala	Ile	Ser	Thr 240		
Cys	Ala	Ser	His	Phe 245	Thr	Val	Val	Leu	11e 250	Phe	Tyr	Gly	Ser	11e 255	Leu		
Ser	Met	Tyr	Val 260	Gln	Leu	Lys	Lys	Ser 265	туг	Ser	Leu	Asp	Туг 270	Дsp	Gln		
Ala	Leu	Ala 275	Val	Val	Tyr	Ser	Val 280	Leu	Thr	Pro	Phe	Leu 285	Asn	Pro	Phe		
Ile	Tyr 290	Ser	Leu	Arg	Asn	Lys 295	Glu	Ile	Lys	Glu	Ala 300	Val	λεg	Arg	Gln		
Leu 305	Lys	Arg	Ile	Gly	Ile 310	Leu	Ala										
	0> 1>																
	2>	DNA	sap	iens								,					
		- -															
<40 gga	u> actg	35 gag	ccag	gtag	ca g	aatt	cato	:									29
•																	
<21	Q>	36															
<21	_	25			•									•			
<21 <21	_	DNA Homo	sap	iens							•						
	۵.	36															
<40 gga	u> .gcag	agg a	atca	gcag	ga a	ggtg	1										25
•	-																
<21	0>	37															
<21		50 DNA															
			sap	iens	i												
< 40	.0.>	37															50
aca	ictgo	agt	tata	tage	gt g	dccc	aggt	a gt	tgaq	ctg	g tga	aatt	tga				30
	.0>	38															
<21 <21		50 DNA															
	3>	_	sag	piens	3												
< 40	0>	38								. .		:					50
gca	ctgt	gac	atta	aaaq	gga t	gggg	gcat	gg aq	ggag	aaac	. 44	agery	yyay				
	10>	39 50															
	l1> l2>	DNA															
<23	13>	Homo	sa _l	pien	s												
<40	10>	39										===C:	agta				50
at	caa	atta	tat	atat'	ttg (gtcc.	agta	cđ đ	تاناها	ua 44	_ a.						
	10> 11>	40 848														•	
<2	12>	DNA			_				•								
<2	13>	Hom	sa:	brew	3												
	20>																
	21> 22>	CDS	(a	48)													
		,															

<22:	3>
------	----

<pre><400> 40 gaatc atg gat cac gtc agt cat aac tgg act cag agt ttt atc ctt gct met Asp His Val Ser His Asn Trp Thr Gln Ser Phe Ile Leu Ala</pre>	50
ggt ttc acc act ggg acc cta caa cct ctt gcc ttc ttg ggg acc Gly Phe Thr Thr Gly Thr Leu Gln Pro Leu Ala Phe Leu Gly Thr 20 25	98
cta tgc atc tat ctc ctc aca ctt qca ggg aac att ctc atc att gtc Leu Cys Ile Tyr Leu Leu Thr Leu Ala Gly Asn Ile Leu Ile Ile Val 35 40	146
ctg agg tgt ggt atg tca gca cca cag tgc cca tgc tgc tgc aca cct Leu Arg Cys Gly Met Ser Ala Pro Gln Cys Pro Cys Cys Cys Thr Pro 50 55 60	. 194
tgc tcc aag ggt gtt cac ccg tct cat cag ctg tat gct tta ttc agc Cys Ser Lys Gly Val His Pro Ser His Gln Leu Tyr Ala Leu Phe Ser 65 70 75	242
tat gtc ttt cat tcc tta ggg atg act gag tgc tac ctg ctg ggt gtc Tyr Val Phe His Ser Leu Gly Met Thr Glu Cys Tyr Leu Leu Gly Val 95 80	290
atg gca ctg gat agc tac ctt atc atc tgc cac cca ctc cac tac cac atg gca ctg gat agc tac ctt atc atc tgc cac cca ctc cac tac cac atg gca ctg gat agc tac ctt atc atc tgc cac cca ctc cac tac cac atg gca ctg gat agc tac ctt atc atc tgc cac cca ctc cac tac cac atg gca ctg gat agc tac ctt atc atc tgc cac cca ctc cac tac cac atc cac ctc cac tac cac atc cac ctc cac tac cac c	338
gca ctc atg agc aga cag gta cag tta cga cta gct ggg gcc agt tgg Ala Leu Met Ser Arg Gin Val Gin Leu Arg Leu Ala Gly Ala Ser Trp 115 120 125	386
gtg gct ggc ttc tca gct gca ctt gtg cca gcc acc ctc act gcc act Val Ala Gly Phe Ser Ala Ala Leu Val Pro Ala Thr Leu Thr Ala Thr 130 135	434
ctg ccc ttc tgc ttg aaa gag gtg gcc cat tac ttt tgt gac ttg gca Leu Pro Phe Cys Leu Lys Glu Val Ala His Tyr Phe Cys Asp Leu Ala 145 150	482
cca cta atg cgg ttg gca tgt gtg gac aca agc tgg cat gct agg gcc Pro Leu Met Arg Leu Ala Cys Val Asp Thr Ser Trp His Ala Arg Ala 165 170	530
cat ggc aca gtg att ggt gtg gcc act ggt tgc aac ttt gtg ctc att His Gly Thr Val Ile Gly Val Ala Thr Gly Cys Asn Phe Val Leu Ile 180 185	579
ttg gga ctc tat gga ggt atc ctg aat gct gtg ctg aag cta ccc tca Leu Gly Leu Tyr Gly Gly Ile Leu Asn Ala Val Leu Lys Leu Pro Ser 195 200 . 205	626
gct gcc agt agt gcc aag gcc ttc tct acc tgt tcc tcc cac gta act Ala Ala Ser Ser Ala Lys Ala Phe Ser Thr Cys Ser Ser His Val Thr 210 215	674
gtg gtg gca cta ttc tat gct tct gcc ttc aca gta tat gtg ggc tca Val Val Ala Leu Phe Tyr Ala Ser Ala Phe Thr Val Tyr Val Gly Ser 225 230 235	722
cct ggg agt cga cct gag agc aca gac aag ctt gtt gcc ttg gtt tat Pro Gly Ser Arg Pro Glu Ser The Asp Lys Leu Val Ala Leu Val Tyr 255	770
gcc ctt att acc cct ttc ctc aat cct atc atc	813
aag gag ctc ctc tat tgc ttc ctc tgc tga Lys Glu Leu Leu Tyr Cys Phe Leu Cys 275 280	848

<210> 41 <211> 280 <212> PRT

<213> Homo sapiens

<400> 41

Met Asp His Val Ser His Asn Trp Thr Gln Ser Phe Ile Leu Ala Gly 1 . 5 10 15

Phe Thr Thr Gly Thr Leu Gln Pro Leu Ala Phe Leu Gly Thr Leu 20 25 30

Cys Ile Tyr Leu Leu Thr Leu Ala Gly Asn Ile Leu Ile Ile Val Leu 35 40 45

Arg Cys Gly Met Ser Ala Pro Gln Cys Pro Cys Cys Cys Thr Pro Cys 50 60

Ser Lys Gly Val His Pro Ser His Gln Leu Tyr Ala Leu Phe Ser Tyr 65 70 80

Val Phe His Ser Leu Gly Met Thr Glu Cys Tyr Leu Leu Gly Val Met 85 90 95

Ala Leu Asp Ser Tyr Leu Ile Ile Cys His Pro Leu His Tyr His Ala 100 105 110

Leu Met Ser Arg Gln Val Gln Leu Arg Leu Ala Gly Ala Ser Trp Val 115 120 125

Ala Gly Phe Ser Ala Ala Leu Val Pro Ala Thr Leu Thr Ala Thr Leu 130 135 140

Pro Phe Cys Leu Lys Glu Val Ala His Tyr Phe Cys Asp Leu Ala Pro 145 150 156

Leu Met Arg Leu Ala Cys Val Asp Thr Ser Trp His Ala Arg Ala His 165 170 175

Gly Thr Val Ile Gly Val Ala Thr Gly Cys Asn Phe Val Leu Ile Leu 180 185 190

Gly Leu Tyr Gly Gly Ile Leu Asn Ala Val Leu Lys Leu Pro Ser Ala . 195 200 205

Ala Ser Ser Ala Lys Ala Phe Ser Thr Cys Ser Ser His Val Thr Val 210 215 220

Val Ala Leu Phe Tyr Ala Ser Ala Phe Thr Val Tyr Val Gly Ser Pro 225 230 240

Gly Ser Arg Pro Glu Ser Thr Asp Lys Leu Val Ala Leu Val Tyr Ala 250 255

Leu Ile Thr Pro Phe Leu Asn Pro Ile Ile Tyr Ser Leu Arg Asn Lys 260 270

Glu Lau Lau Tyr Cys Phe Leu Cys 275 280

<210> · 42 <211> 25

										1	6U 2	00 5	CI E	THYT	.512	3	
	<213>	Ноше	o s	apie	ns										-		
•	c400> Ecacca	42	rai	agac	ccta	caa	acct										26
	ccacca	CCUC	-9	9900													
	<210>	43															
	<211> <212>	23 0NA												•			
	<212>			apie	ns												
	12137	•		•													
	<400>	43					_										23
	ggccac	acca	at	Cact	gege	Cai											
	<210>	44															
	<211>	50															
	<212>	ONA		:													
	<213>	Hom	O 5	apie	:112												
	<400>	44															50
	<400> caatct	gtta	tt	tata	acgg	c ct	ctaca	atcc	atc	cagt	acc 3	tgct	atg	ca			-
		45															
	<210> <211>	45 50															
	<212>	DNA															
	<213>	Hon	o s	apie	ens												
	<400> gttctc	45	. F a	Faai	aadd	c ta	tata	ggac	ttg	caaa	act	tcta	gtgg	cc			50
	getete			.caa.	4499	• ••	-5-3	,,									
	<210>	46															
	<211>	50															
	<212><213>	DNA		api	ens												
	(2137	1100															
	<400>	45								ataa	222	ggat	acca	аσ			50
	<400> gaacat	gaaa	ı ta	taa	gtag	g gg	agta	CCCL	999	gcag		99	,,	-,			
	<210>	47						•							•		
	<211>		76												•		
	<212>														-		
	<213>	HOI	20 3	sapi	ens												
	<220>																
	<221>					•											
	<222>	(1)		(147	6)												
	<223>																
	<400>	47															48
			cc (gaa	ttc	ctg	ttg	ctg	ggt	ttt	CCC	agc	CEE	ggt	Glu	Tie	70
	atg g Met V	al T	hr (Glu	2ne	Leu	Leu	Leu	GLY	Phe 10	Ser	261	Lea	Giy	15	110	
	1 .				2												
	cag c	+	(ctc	EEE	στa	att	ttt	ctt	ttt	ctg	tat	cta	gtc	att	ctt	96
	cag c	eu A	la	Leu	Phe	Val	Val	Phe	Lau	Phe	Leu	Tyr	Leu		Ile	Leu	
	01		:	20-					25					30			
	agt g								a+ c	arc	cac	cta	gat	aaa	agc	ctc	144
	agt g Ser G	gc a	at i	gtc	The	rle	Ile	Ser	Val	Ile	His	Leu	Ásp	Lys	Ser	Leu	
	Ser G	7 A W		741	LILL			40					45				
									·						a3a	300	192
	cac a	сас	ca	atg	tac	ttc	ttc	ctt	ggc	att	TAU	Ser	Thr	Ser	Glu	Thr	
	His T	hr P	TO :	Mec	Tyr	Phe	Phe 55	red	GTÄ	116	200	60			_		
		a					-										240
	tto t	ac a	cc	ttt	qtc	att	cta	ccc	aag	atg	ctc	atc	aat	cta	ctt	tet	240
	ttc t	yr T	hr	Phe	٧al	TTE	Leu	Pro	ГÀЭ	Met		ITe	Aan	Leu	Leu	80 Ser	
	65					/4									-		
	gtg g			26-	2**	*~~	btc.	aac	tat	tgt	gct	ctt	caa	acg	ttc	ttc	288 \
	gtg g Val A	cc a la a	99 ro	Thr	Ile	Ser	Phe	Asn	Cys	-,-	Ala	Leu	Gln	Met	Phe	Phe	
	144	A			85					90					33		
	ttc c								tac	ara	cta	tta	gat	gta	atg	ggt	336
	ttc c	tt g	gt	ttt	gcc	rla	Thr	Asn	CVS	Leu	Leu	Leu	ĞÎy	val	Met	GLy	
	Fue F	eu G	тА	rne	utq	-12	~ * * *		.,				9200				
													4300				

-	-
4	
•	

16U 200 PCT FINAL.ST25 tat gat cgc tat gct gcc att tgt cac cct ctg cat tac ccc act ctt Tyr Asp Arg Tyr Ala Ala Ile Cys His Pro Leu His Tyr Pro Thr Leu 115 120 125 334 atg agc tgg cag gtg tgt gga aaa ctg gca gct gcc tgt gca att ggt Met Ser Trp Gln Val Cys Gly Lys Leu Ala Ala Ala Cys Ala Ile Gly 130 135 ggc ttc ttg gcc tct ctt aca gta gta aat tta gtt ttc agc ctc cct Gly Phe Leu Ala Ser Leu Thr Val Val Asn Leu Val Phe Ser Leu Pro ttt tgt agc gcc aac aaa gtc aat cat tac ttc tgt gac atc tca gca Phe Cys Ser Ala Asn Lys Val Asn His Tyr Phe Cys Asp Ile Ser Ala 528 gtc att ctt ctg gct tgt acc aac aca gat gtt aac gaa ttt gtg ata Val Ile Leu Leu Ala Cys Thr Asn Thr Asp Val Asn Glu Phe Val Ile 576 tic att tgt gga gtt ctt gta ctt gtg gtt ccc ttt ctg ttt atc tgt Phe Ile Cys Gly Val Leu Val Leu Val Val Pro Phe Leu Phe Ile Cys 195 200 205 624 gtt tot tat oto tgo att otg agg act atc otg aag att oco toa got val Ser Tyr Leu Cys Ile Leu Arg Thr Ile Leu Lys Ile Pro Ser Ala gag ggc aga cgg aaa gcg ttt tcc acc tgc gcc tct cac ctc agt gtt Glu Gly Arg Arg Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Val 225 230 240 get act get cat tat ggc tgt gct tcc ttc atc tac ctg agg cct aca Val Ile Val His Tyr Gly Cys Ala Ser Phe Ile Tyr Leu Arg Pro Thr 255 245 gca aac tat gtg tcc aac aaa gac agg ctg gtg acg gtg aca tac acg Ala Asn Tyr Val Ser Asn Lys Asp Arg Leu Val Thr Val Thr Tyr Thr 260 265 270 att gtc act cca tta cta aac ccc atg gtt tat agc ctc aga aac aag Ile Val Thr Pro Leu Leu Asn Pro Met Val Tyr Ser Leu Arg Asn Lys 275 280 280 864 gat gtc caa ctt gct atc aga aaa gtg ttg ggc aag aaa ggt att ctt Asp Val Gln Leu Ala Ile Arg Lys Val Leu Gly Lys Lys Gly Ile Leu tot ato tot gaa ato tto tac aca act gtt att otg occ aag atg ott Ser Ile Ser Glu Ile Phe Tyr Thr Thr Val Ile Leu Pro Lys Met Leu Ser Ile Ser Glu Ile Phe Tyr Thr Thr Val Ile Leu Pro Lys Met Leu atc aac tta ttc tct gta ttc agg aca ctc tcc ttt gtg agt tgt gcc lee Asn Leu Phe Ser Val Phe Arg Thr Leu Ser Phe Val Ser Cys Ala 1008 ace caa atg ttd ttd ttd ctd ggt ttt gct gtd act aac tgt ctg ctt Thr Gln Met Phe Phe Phe Leu Gly Phe Ala Val Thr Asn Cys Leu Leu 340 1056 ctg gga gtg atg ggt tat gat cgt tat gct gcc atc tgt cag cct ttg Leu Gly Val Met Gly Tyr Asp Arg Tyr Ala Ala Ile Cys Gln Pro Leu 355 360 1104 caa tac gct gtt ctc atg agc tgg aga gta tgt gga caa ctg ata gca Gln Tyr Ala Val Leu Met Ser Trp Arg Val Cys Gly Gln Leu Ile Ala 370 375 1152 act tgt att att agt ggc ttc cta ata tct ctg gtg gga aca act ttt Thr Cys Ile Ile Ser Gly Phe Leu Ile Ser Leu Val Gly Thr Thr Phe 1200 gtc ttt agc ctc cct ttc tgt ggc tcc aac aag gtc aac cac tac ttt Val Phe Ser Lau Pro Phe Cys Gly Ser Asn Lys Val Asn His Tyr Phe tgt gat att toa coa gtt atc cgt ctc gcc tgt gct gac agc tac atc

Cys	Asp	Ile	: S	er E 20	Pro	Val	Ile	Arg	Leu 425	Ala	160 Cy:	J 20 s Al	0 P	CT :	FINA Ser 430	L.ST Tyr	25 Ile	:		
agt Ser	gaa Glu	ctq Lev	J G		atc [le	ttc Phe	atc Ile	ttc Phe 440	er A dad	gcc Val	t to	g gt u Va	ig o	ctt Leu 445	gtt Val	gtg Val	Pro	= 3	13	44
ttg Leu	ata Ile 450	ttt Phe	: a	tc i	tgc Cys	att Ile	tcc Ser 455	tat Tyr	Gly	ttc Phe	at Il	t gt e Va 46	tc d al i	egc Arg	acc Thr	atc Ile	cto Le] 1	13	92
aag Lys 465	atc Ile	CC:	a to S	ca e	gct Ala	gaa Glu 470	ggc Gly	aaa Lys	caa Gln	aaa Lys	gc Al 47	c ti a Pi S	tc he	tcc Ser	acc Thr	Cys	gc Ala	t a O	14	
tcc Ser	cat His	ct: Le	c a u I	.le	gta Val 485	gtc Val	act Ile	gtc Val	cat His	tat Tyr 490		t t	ga						14	76
<21: <21: <21: <21:	1> 2>	48 491 PRT Hom		sapi	ens.															
	0> Val	48 Th	ır (Glu	Phe 5	Leu	Leu	Lev	ı Gly	Phe 10	e Sé	er S	er	Leu	Gly	Glu 15	ıı	.e		•
Gln	Leu	ı Al	.a	Leu 20		. Val	. Val	Phe	Le: 25	ı Ph	e Le	eu T	yr	Leu	Val	Ile	Le	eu	•	
Ser	· Gl	/ As	in S	Vaİ	Thr	: Ile	: Ile	Se:	c Vai	l Il	e H	is I	Çeu	Asp 45	ГÀз	s Ser	: Le	eu		
His	Th: 50	r Pi	co	Met	туг	Phe	2 Ph	. Le	u Gl	y Il	e L	eu S	ser 60	The	: Sei	Gl:	ı Tì	ır		
Ph 6	: Ту	r Tl	hr	?he	Val	1 Ile 70	e Le	ı Pr	o Ly	s Me	t L 7	eu : 5 .	Ile	Asn	ı Lei	ı Let	8 L	er O		
Val		a A. -	rg	Thr	11¢	e Se	e Ph	e As	n Cy	s Cy 90	s A	la :	Leu	Glr	ı Me	95	e Pi	he		
Pho	e Le	u G	Ly	?he	Ala	a Il	e Th	r As	n Cy 10	s Le IS	u I	.eu	Leu	Gl	y Va 11	1 Me 0	t G	ly		
ту	r As	p A 1	rg 15	туг	: A1	a Al	a Il	e Cy 12	rs Hi	.s 91	o I	.eu	His	12	r Pr S	o Th	r L	en		
Ме	t Se	E T	,rþ	Gla	ı Va	l Că	s G1	y L;	/s Le	eu Al	La I	Ala	A140	а Су)	s Al	a Il	e G	ТY		
G1 14	y 21 5	ie C	.eu	Ala	a Se	r Le 15	u Th	ır Va	al Va	al A	sn l	Leu 155	Va.	l Ph	e Se	r Le	u E	Pro 160		
Ph	e C	/s s	er	Ala	a As 16	n Ly i5	ys Va	il A	sn H	is T l	yr 70	Phe	Cy:	s As	p Il	.e Se	er 1 75	Ala		
Va	ı I	Le I	Leu	Le:	u Al O	la Cy	/s Ti	ır A	sn T	hr A 85.	sp	Val	Asi	n Gl	.u P!	ne Va 30	al :	Ile		•
en	e I	le (Cys 195	Gl	y Va	al Le	eu V	al L 2	eu V OO	al V	al	510	Ph	e La 20	eu Pl 15	ne I	le (CÀa		

Val Ser Tyr Leu Cys Ile Leu Arg Thr Ile Leu Lys Ile Pro Ser Ala 210 215 220

Glu Gly Arg Arg Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Val 225 230 235 240

Val Ile Val His Tyr Gly Cys Ala Ser Phe Ile Tyr Leu Arg Pro Thr 255 250 255

Ala Asn Tyr Val Ser Asn Lys Asp Arg Leu Val Thr Val Thr Tyr Thr 260 265 270

Ile Val Thr Pro Leu Leu Asn Pro Met Val Tyr Ser Leu Arg Asn Lys 275 280 285

Asp Val Gln Leu Ala Ile Arg Lys Val Leu Gly Lys Lys Gly Ile Leu 290 295 300

Ser Ile Ser Glu Ile Phe Tyr Thr Thr Val Ile Leu Pro Lys Met Leu 305 310 315 320

Ile Asn Leu Phe Ser Val Phe Arg Thr Leu Ser Phe Val Ser Cys Ala 325 330 335

Thr Gln Met Phe Phe Phe Leu Gly Phe Ala Val Thr Asn Cys Leu Leu 340 345 350

Leu Gly Val Met Gly Tyr Asp Arg Tyr Ala Ala Ile Cys Gln Pro Leu 355 360 365

Gln Tyr Ala Val Leu Met Ser Trp Arg Val Cys Gly Gln Leu Ile Ala 370 380

Thr Cys Ile Ile Ser Gly Phe Leu Ile Ser Leu Val Gly Thr Thr Phe 385 390 395

Val Phe Ser Leu Pro Phe Cys Gly Ser Asn Lys Val Asn His Tyr Phe 405 410 415

Cys Asp Ile Ser Pro Val Ile Arg Leu Ala Cys Ala Asp Ser Tyr Ile 420 425 430

Ser Glu Leu Val Ile Phe Ile Phe Gly Val Leu Val Leu Val Val Pro 435

Leu Ile Phe Ile Cys Ile Ser Tyr Gly Phe Ile Val Arg Thr Ile Leu 450 455 460

Lys Ile Pro Ser Ala Glu Gly Lys Gln Lys Ala Phe Ser Thr Cys Ala 465 .470 475 480

Ser His Leu Ile Val Val Ile Val His Tyr Gly 485 490

(210> 49

<212> DNA

<213> Homo sapiens

<400> 49 ctctgaaacc ttctacacaa ctgttattct gccca

35

<210> 50 <211> 27 <212> DNA <213> Homo sapiens	27
<400> 50 acgagatggg aagcacaggt ggagaag	21
<210> 51 <211> 50 <212> DNA <213> Homo sapiens	
<400> 51 atcaatattg ttaaaatggc cgtactgtca aaagcaattt acagattcaa	50
<210> 52 <211> 50 <212> DNA <213> Homo sapiens <400> 52 atatgaaacc aaaaaagccc teaaatagcc caagtaaccc taaagaaaaa	50
<210> S3 <211> S0 <212> DNA <213> Homo sapiens	
<400> 53 cgccctattc aataaatggt gtgggaatag ctggctagcc atctgcagaa	50
<210> 54 <211> 50 <212> DNA <213> Homo sapiens	
<400> 54 cataagggtt cttaaaattg ggagagagaa tcagaaagtc agagaaagag	50
<210> 55 <211> - 276 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(276) <223>	
<400> SS atg aca gtt tat gat too tat gtt gcc atc tgc cat cca ctt cac atg aca gtt tat gat too tat gtt gcc atc tgc cat cca ctt cac Met Thr Val Tyr Asp Ser Tyr Val Ala Ile Cys His Pro Leu His 1 1 5	tac 48 Tyr
cct gtc ctt acg agc tgg cag ata tgc tcc ttc tta gat ttt cag Pro Val Leu Thr Ser Trp Gln Ile Cys Ser Phe Leu Asp Phe Gln 20 25 30	ctg 96 Leu
ctt ttc tgt ggc cca aac aag atc aac cac tac ttc tgt gac atc Leu Phe Cys Gly Pro Asn Lys Ile Asn His Tyr Phe Cys Asp Ile 35 40	tca 144 Ser
ctg ctt att cag ctt gcc tgt act gat acc tac atc agg gag cta Leu Leu Ile Gln Leu Ala Cys Thr Asp Thr Tyr Ile Arg Glu Leu 50 55	
atc ttc att ggt gga att cta gca ctt acg gtt cct ctg att tta Ile Phe Ile Gly Gly Ile Leu Ala Leu Thr Val Pro Leu Ile Leu 65 75	ttt 240 Phe 80
gca tot cot atg got toa tig tic aca coa too tga Page 27	276

160 200 PCT FINAL.ST25 Ala Ser Pro Met Ala Ser Leu Phe Thr Pro Ser 85

<210> 56

<211> 91 <212> PRT

<213> Homo sapiens

<400> 56

Met Thr Val Tyr Asp Ser Tyr Val Ala Ile Cys His Pro Leu His Tyr
1 5 10 15

Pro Val Leu Thr Ser Trp Gln Ile Cys Ser Phe Leu Asp Phe Gln Leu 20 25 30

Leu Phe Cys Gly Pro Asn Lys Ile Asn His Tyr Phe Cys Asp Ile Ser 40.

Leu Leu Ile Gln Leu Ala Cys Thr Asp Thr Tyr Ile Arg Glu Leu Val 50

Ile Phe Ile Gly Gly Ile Leu Ala Leu Thr Val Fro Leu Ile Leu Phe 65 70 80

Ala Ser Pro Met Ala Ser Leu Phe Thr Pro Ser 85 90

<210>

<211> 33 <212> DNA

<213> Homo sapiens

<400> 57 atgacagttt atgattccta tgttgccatc tgc

<210> 58 29 <211>

<212> DNA

<213> Homo sapiens

<400> -58 tcaggatggt gtgaacaatg aagccatag 29

<210> 59

<211> 50

<212> DNA Homo sapiens <213>

ttccctattt aataaatggt gctgggaaaa ctggctagcc atatgtagaa

50

<210>

<211> 50

<212> DNA

<213> Homo sapiens

aacaacccca tcaaaaagtg ggccaaagat atgaacagac acttctcaaa

50

<210>

<211> 50

<212> DNA Homo sapiens

aatggcgatc attaaaaagt caggaaacaa caggtgctgg agaggatgtg

50

160 200 PCT FINAL ST25

<210> <211> <212> <213>	62 50 DNA Homo	sapiens	•				
<400> cccagag	62 ggat	tataaatcat	gctgctgtaa	agacacatgc	ccacgtatgt		50
<210> <211> <212> <213>	63 5269 DNA Homo	sapiens					
<220> <221> <222> <223>	CDS (221	1)(3152)					•
<400>	63 caaa	aataacaact	aaattcaaaa	ggagataaac	tataggaaag	aagatttcat	60
ctatca	tatt	tcggggattc	aaatatttaa	agcattatta	cctattttat	agttacgttt	120
tggaca	caaa	ggccattatg	taaaatgtaa	cattagttta	aaataaaatt	taaatgcctt	180
agataa	ataa	aatgcagtgt	taagaaaaaa	atgtgctgtc	caggcatttt	ggctcatgcc	240
totaat	ctca	gctactcagg	aggctgaggc	aggagaatct	cttgaaccca	ggaggcggga	300
í. ddcdda	ıggtt	acagtgagcc	ataatcacgc	cactgcactc	cagtctgggc	gacagagcaa	360
gattct	gtct	ccaaaaaaaa	aaaaggaaag	aaagaaagag	aaaagaaaaa	atatgctaat	420
taggat	atct	gggtttgtga	tggattgtct	tttgaggttg	totattttt	tttgagacgg	480
agtoto	actc	tgtcgcccag	gctggagtgc	agtggcgcgg	ggtctctgct	tactggaagc	540
tccaca	tcct	gggttcactg	ggttcacgcc	attetectge	ctcagcctcc	tgagtagctg	600
ggacta	acagg	cgcctgccac	tacqcccggg	taattttttg	tattttttt	ttagtagaga	660
cagagt	tttca	ccgtgttagc	caggatggtc	tcaatctctt	gacctcgtga	tccacccgcc	720
tetata	ctccc	aaagtgctgg	gattacagtc	gtgagccacc	dedeceddec	ttgaggttgt	780
ctttaa	ataca	caaattcatg	agtataggaa	gagagggccc	ttgaatatgt	tggtcttgca	840
tataa	aťtaa	catctttctt	gataggeegt	ctaaaaattt	gggtgggtta	tgtgaataga	900
tataa	tatat	attatgatag	agaaagagat	tacagatatg	atagcatctg	agaggtgttg	960
gacac	taatt	agagcaatat	: aatgattott	tectattatt	gttttctgtt	ttctcatgaa	1020
arcta:	ttcat	gttgctgtag	: tatctcaagt	tttagttct	teteetteat	aggtaataga	1080
tagac	acaat	gaatatataa	Lgtgtcttga	agggagaga	aagaaataga	catggagaca	1140
gggat	acaca	gagaggacct	: agaagaaaag	ggaagtttg	: aagtcagact	cttacactag	1200
rratt	tetad	gtaaaaagat	: tttcctcaat	cccattctca	tgtgtttät	cttgatgctg	1260
ctttc	taaca	ratctttqt	gcagtaacto	tcactggact	: atgtagatto	tctagtctgc	1320
	32550	, aaagtatgg	tattaatgaa	gggaatgtgt	tagtatotog	acctagataa	1380
	cadao	retaataca	g qtaaagggtt	acatgtctad	gagttcaagg	atcaaaaccc	1440
tanto	2020	tatataaat	t ggeettest	g ggcataccg:	a taggaaatto	: aaagcttctc	1500
eaget		- tetatoaco	t atagaataaa	gaataaaca	a gggtatctgt	attgactatt	1560
costs		ratttetea	a gcaatgagga	a aggattgat	a attagtacaç	g cctgattttg	1620
cyaca		tetmaaaca	a ttagttcag	= tgtattttg	a agtcaaatt	tctgggtcag	1680
gagca	الإناماء	andretat	a togaattaa	c aataaaggc	a caaatgtta	gegttaggge	1740
acaaa	Catt	a adulytian					

															_	
totto	atag	t ta	atgt	.catc	gta	taaa	caa	atta	1 tgtg	60 2 jaa a	00 PC	CT E attt	inal a tg	.STZ aaat	tttg	1800
atttq	tata	a ct	gatt	ataa	gat	ttac	эса	atca	gcca	tc a	stact	atac	g ag	gaaq	atca	1860
tttat	rotao	a at	acti	aagg	agg	cctg	aaa	ttat	tato	jta a	attt	ttaa	t tt	aaaa	taat	1920
cacaa		. . .	atot	catt	tto	ctat	att	tgga	aata	att a	aaaa	ttac	a gt	tact	aact	1980
cacaa	14.0				ota	ttt	tct	taag	raaat	ta d	aaaa	catt	a ca	gtgt	etet	2040
tacto	SEEE	acc	.caa		. 950		aca	acaa	acto	cat	agatt	ccgg	a ag	gagat	attt	2100
acat	gttaq	ga Ca	LEECA	agad				caat	caco	cat	totta	tttt	c to	atto	ccct	2160
gctt	catco	it to	agga	agec	taa	iagg i				202	aacad	aago	o at	.g C1	tg	2216
taac	attt	tt gt	ינננ	cagaa	a cta	acti	tca	gac	_Cya	aya	aacag		Me 1	et L	eu	
																2254
ctg Leu	The	gat a Asp a	aga a Arg a	aat (Asn '	aca a Thr S	er,	999 517 10	acc a	ecq Ch <i>c</i>	ttc Phe	acc o Thr I	tc t Leu 1 15	teu (ggc 5ly	ttc Phe	2264
Ser	gat Asp 20	tac (Tyr	cca (Pro	gaa Glu	rea ,	caa q Gln '	gtc Val	cca (Pro 1	ctc Leu	ttc Phe	ctg (Leu \ 30	gtt : Val	ttt (Phe l	ctg Leu	gcc Ala	2312
		aat Asn	gtc Val	Ing	gtg (Val :	cta (Leu (gg y	aat Asn	att Ile	999 Gly 45	ttg : Leu :	att (gtg (Val	atc Ile	atc Ile 50	2360
	atc Ile	aac Asn	CCC PIO	aaa Lys 55	ctg Leu	cat His	acc Thr		atg Met 60	tac Tyr	ttt : Phe :	ttc Phe	ctc . Leu	agc Ser 65	caa Gln	2408
ctc Leu	tcc Ser	Phe	gtg Val 70	gat Asp	ttc Phe	tgc Cys	tat Tyr	tcc Ser 75	tcc Ser	atc Ile	att : Ile :	gct Ala	ecc Pro 80	aag Lys	atg Met	2456
t t g Leu	gtg Val	aac Asn 85	ctt Leu	gtt Val	gtc Val	aaa Lys	gac Asp 90	aga Arg	acc Thr	att Ile	tca Ser	ttt Phe 95	tta Lau	gga Gly	tgc Cys	2504
gta Val	gta Val 100	caa Gln	ttc Phe	ttt Phe	ttC Phe	ttc Phe 105	tgt Cys	acc Thr	ttt Phe	gtg Val	gtc Val 110	act Thr	gaa Glu	tcc Ser	ttt Phe	2552
tta Leu 115	tta Leu	gct Ala	gtg Val	atg Met	gcc Ala 120	tat Tyr	gac Asp	cgc Arg	ttc Phe	gtg Val 125	gcc Ala	att Ile	tgc Cys	aac Asn	Pro 130	2600
		tac Tyr	aca Thr	gtt Val 135	áac Asn	atg Met	tcc Ser	_Gln	aaa Lys 140	ctc Leu	tgc Cys	gtg Val	ctg Leu	ctg Leu 145	gtt Val	2648
gtg Val	gga Gly	tcc Ser	tat Tyr 150	ALA	tgg Trp	gga Gly	gtc Val	tca Ser 155	Cys	tcc Ser	ttg Leu	gaa Glu	ctg Lau 160	acg Thr	tgc Cys	2696
tct Ser	gct Ala	tta Leu 165	Lys	tta Leu	Cya	ttt Phe	cat His	·	ttc Phe	aac Asn	aca Thr	atc Ile 175	aat Asn	cac His	ttc Phe	2744
tto Phe	tgt Cys 180	Glu	ttc Phe	tcc Ser	tca Ser	cta Leu 185	пес	tcc Ser	ctt Leu	tct Ser	tgc Cys 190	tct Ser	gat Asp	act	tac Tyr	2792
atc []e 195	: Asn	cag Gln	tgg Trp	ctg Leu	cta Leu 200	FIIG	ttt Phe	ctt Leu	gcc	205	ttt Phe	aat Asn	gaa Glu	ato	: agc : Ser 210	2940
aca Thi	cta Lev	ı Leu	Ile	215	Lau			,-	220)				225	atc Ile	2888
Let	ı Lys	s Met	230	l ser	, AGT	, JC1		235					240	3	tgt Cys	
g c t	c tc	cac	: ctq	act	gc:	atc	ac	c atc	tt:	с са	t ggd	acc	ato	ct	ttc	2984
													e 30			

16U 20O PCT FINAL.ST25 Ala Ser His Leu Thr Ala Ile Thr Ile Phe His Gly Thr Ile Leu Phe 245 250 255	
Ctt tac tgt gtg ccc aac tcc aaa aac tcc agg cac aca gtc aaa gtg Leu Tyr Cys Val Pro Asn Ser Lys Asn Ser Arg His Thr Val Lys Val	. 3032
gcc tct gtg ttt tac acc gtg gtg atc ccc atg ttg aat ccc ctg atc	3080
275 250 acc gag ata Gtg	3123
Tyr Ser Leu Arg Ash Lys Asp 101 275 300 305	2102
gac acc aaa gtc ttc tct tac tga gcctgttact ttcatggagt ttgtcacaca Asp Thr Lys Val Phe Ser Tyr 310	3182
tataaataaa ttotgtocat aaatattgat ottaaagata totttacaaa taaacaaag	t 3242
tagggttgta caactcaacg asatggattt tottttcaac agactaaact tagctctgt	c 3302
tagggttgta caactcaacg adatggates totalettt aatatttcat ttatgaaat	t 3362
tettaettte tyggaageat cagtaatees tottaataat aaaatataat ggacaeett	a 3422
agtatagtat gggttagatc atagtctgat tgtgaagatt aaaatataat ggacacctt	a 3482
cgtaagtcaa tggatattaa tttcatgtcc tttccttata agataccggg aatagacta	t 3542
gtgcttagga aacatatgaa tttcttttat aaatgtgcaa aataagttaa aagaagaaa	τ 3602
agtoctcato ticaaggatg aaaactgtgt tgataatagg acaatgaaga agtggccat	t 3662
gtgtaaggca gaaattaata tgtaccaaag agagtttgag agaagagaaa gttcaaatc	a 3722
acttagggat titagaagga tgtcttaatg aaataggtat tgtttgaaac cggcttttg	
aaaggaaatg ggcggagttt atgagataca ttccagggag aaaggagttt tcttctgga	ac 3842
aaaacaatgt gaataaaacc aattaggtaa gaatgtaata cctagtcaaa gatctaata	t 3902
ttgttttatt gagctaacat aatataatgt gtgtttgtgt gtgtgtgtgt gtgttgtgt	
atgtatacgg gttacttgac atgaactgaa attttaatat gatatgggct acatcctga	at 4022
tgtgttttca aaggagetee agtgtgaeea tetgataaac cataatagae tteaccag	1002
gotgatgaat aatggatoag atottagaaa atootatgta ccaaattagg gatgatga	4082
acctgcccaa cctgtatgtc atactgttag acatcacaaa ctttatcaat ccattatg	at 4142
ttttttatga gcatggaaat aatototgaa toottotoaa cagaattooo aacaacot	tt 4202
ataaaaaggt atttggagta gtottaagtg ttgaaagoto tttggotgca taaactta	tt 4262·
casastasat assastcagg tastcattas tatcasquec tetttascae ageasatt	aa 4322
aaatgctagc tctttcttac cttaataact cactttcatt cgaataaatt gtataccc	tt 4382
ctccttttca atgtgtctag atacagttcc aaacaaatca tcaatatagt ggaagaag	ta 4442
aatttccagg tgttttgtta agggagaaaa aataaactgg ggaacaattt tatataaa	ct 4502
tottaaattt atttagaatg ttoatattat tttgacotta tgatgattat taaagtta	tg 4562
ataattatta aagtgattca tottacatat attatttgat aaagaatcca otaaataa	tc 4622
cttgtaatag aaaaattttt caaaatgtaa ggaacagtgt tttagatatt aaatgcct	ga 4682
ggagggaata ettitetet tgatatetgt atetecaggt atteaaacat ttateett	tg 4742
tacacatotg gractiatac aattittaat titotoagaa gitgggacat tgittiaa	ta 4802
tacacatotg gractiatad additional total and additional a	aa 4862
ttaaatcgaa tactgaattt caccatcttt tgaaatcctg aaaagctgcc atgggaac	tt 4922
gcataaaata ggatattiga taatgaggaa aattagccca tatccccatc acaaggg	agc 4982
ttetetggea acctaceaga ettgagtgtg aagecetgtg agatgatetg acetgeea	-

WO 03/089583	
16U 200 PCT FINAL.ST25	5042
tgacagtata cacacaagca agacaagcca agatcagcca tgccagggac atgtgagcag	5102
aaccacctgg atgatecatg caatagagte acaggeaata agaggttgtt gtgtttagee	5162
ggaatgctac caaaaaaact tcacgatgtt ttattatgta ataattcacc atcttctact	5222
attocacatt gaggaaacat titaaaataa taaaatgtgt taaattt	5269
<210> 64 <211> 313 <212> PRT <213> Homo sapiens	
<400> 64	
Met Leu Leu Thr Asp Arg Asn Thr Ser Gly Thr Thr Phe Thr Leu Leu 10 15	
Gly Phe Ser Asp Tyr Pro Glu Leu Gin Val Pro Leu Phe Leu Val Phe 20 25 30	
Leu Ala Ile Tyr Asn Val Thr Val Leu Gly Asn Ile Gly Leu Ile Val 35	
Ile Ile Lys Ile Asn Pro Lys Leu His Thr Pro Met Tyr Phe Phe Leu 50 60	
Ser Gln Leu Ser Phe Val Asp Phe Cys Tyr Ser Ser Ile Ile Ala Pro 65 70 75 80	
Lys Met Leu Val Asn Leu Val Val Lys Asp Arg Thr Ile Ser Phe Leu 95 85	
Gly Cys Val Val Glm Phe Phe Phe Phe Cys Thr Phe Val Val Thr Glu 100 105	
Ser Phe Leu Leu Ala Val Met Ala Tyr Asp Arg Phe Val Ala Ile Cys 115 120 125	
Asn Pro Leu Leu Tyr Thr Val Asn Met Ser Gln Lys Leu Cys Val Leu 130 135 140	
Leu Val Val Gly Ser Tyr Ala Trp Gly Val Ser Cys Ser Leu Glu Leu 145 150 160	
Thr Cys Ser Ala Leu Lys Leu Cys ?he His Gly Phe Asn Thr Ile Asn 175	
His Phe Phe Cys Glu Phe Ser Ser Leu Leu Ser Leu Ser Cys Ser Asp	

His Phe Phe Cys Glu Phe Ser Ser Leu Leu Ser Leu Ser Cys Ser Asp 190 135 Thr Tyr Ile Asn Gln Trp Leu Leu Phe Phe Leu Ala Thr Phe Asn Glu 200 205 lie Ser Thr Leu Leu Ile Val Leu Thr Ser Tyr Ala Phe Ile Val Val 210 220 Thr Ile Leu Lys Met Arg Ser Val Ser Gly Arg Arg Lys Ala Phe Ser 235 Thr Cys Ala Ser His Leu Thr Ala Ile Thr Ile Phe His Gly Thr Ile Page 32

15U 200 PCT FINAL.ST25 5 250 255

Leu Phe Leu Tyr Cys Val Pro Asn Ser Lys Asn Ser Arg His Thr Val Lys Val Ala Ser Val Phe Tyr Thr Val Val Ile Pro Asn Pro 285

Leu Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Asp Thr Val Thr Glu 290

270

Ile Leu Asp Thr Lys Val Phe Ser Tyr 305 .

<210> 65
<211> 50
<212> DNA
<213> Homo sapiens
<400> 65
ataggcours taaaaattta gatagattat ataatqto

<400> 65
ataggccgtc taaaaatttq ggtgggttat gtgaatagat ataatgtcta 50

<210> 66
<211> 50
<212> DNA
<213> Homo sapiens
<400> 66
acacaatgaa tatataatgt gtcttgaagg gagagaaaag aaatagacat

<400> 66
acacaatgaa tatataatgt gtcttgaagg gagagaaaag aaatagacat 50
<210> 67
<211> 32
<212> DNA

<213> Homo sapiens
<400> 67 32
atgctgctga ctgatagaaa tacaagtggg ac :

<210> 68
<211> 29
<212> DNA
<213> - Homo sapiens
<400> 68
29

gactttggtg tccagtatct cggtgactg
<210> 69
<211> 4558

<212> DNA <213> Homo sapiens <220> <221> CDS <222> (1822)..(2766) <223>

<400> 69gggaactcagagtaqaagctagacagttgagcattccctqaatattgatttctcttggca60ttttaccacctaaqagagcacctagagaagtatgagaaaaaagggcaacaaaaaaggggag120agagaaaagaagagagagagaggggaattacacaaagcaatgataaagatcatataaaggggag180tagaattactcaacttttcaacaaacattgttgtgaaggaaaacagttgcgggtgtttaga300tggaaggagatataaaggccaaggaatggggaatttgtcaaaacacttta360aaaaaagggggcagatttgtgtgggaqggggaatattgtaatgacaaataacagttttaca420

160 200 PC1 F10AD:010	
argetitaca gittacaggg acteticica igatititate itticcicate argaagcagi	480
Adaactgtca tggaagatat ggttatgcct tcatctatag gtgaggaacc taaatcttta	240
aaaatttcag tgattaatac tagtttctat tggtaggctg atggctcaat cattacttaa	600
acccaagtot tragattora attititito ctatatoatg ataatgagti tgagttatat	660
ttctgttaac ttgaatatgc tggatttata cttcttagga agcaatgagg tagaagcaga	720
agagtgtagt gatttaagac attggattgg gaggcagcaa accagagttc tcgaagctca	780
agattcatct ttgacgtttt ccaactgttc tgattgttag tgacttagtc ttttgttttc	840 .
tcaattcata agtgtccacg tttactgago actgtttcaa gatttgtgct aagtgtttta	900
aaagatotoa aaatooccaa aagaaagtti ttaggoagga gotgaaaaaa aaggtggoac	960
aaagatotoa aaatoocodaa aagaaagutt tooggaaatga aacagaaggt	1020
aggtcaaaaa tattgcaagg aaatgtttaa acgttttcaa gggaaatgac aacagaaggt	1080
ggaaaaagat agaatgataa ggatcccaga tggaaaaata gtgtgaaggg aataggtcag	1140
tottgcaaaa aggtaagtgt ggggcatoto ttotgaatgt catgaagtoo aggaaggaag	1200
aagcacgtag agatgaaggt taaactacag ttaggcaaaa gagaacaaca aaagggcttc	1260
tcatgttctc aagttacctg gaggtagggc tttagttgga gggatttctg agtgtcaaac	
aaggacctac gaaaccctgc tagaadaaaa atctaaagaa cttgtaggga agtgaattac	1320
tagaaagtgc taactacatt tatttttcat atgaccaaga tcgacatttc agggcagaaa	1380
cretricata attoggagig tagittigaat tigaaaggeaa taggaagaea gigaeggiaa	1440
argritudg qtatqatitq aattaagcag caatcigtat tatttacaaa gtigcittig	1500
gecacatgea goccacaaaa ggetetteet ecaettgatt teteaataag getgettigt	1560
appactaget trattggaat taaatgteet gageacecag tgtttttata aacagettaa	1620
gggcaaggat catgcataat atitcatgat acatatgatt atittctcat tictittcat	1580
grotaaaaat gggtotaaga actaatotto toacaagaat gatoagagtt tgaatgogay	1740
CAFEGRAATE CEGCEGATAE EGAATAETECE CEGGAAGGGC CCEGEGGAAG CAGATAAGGA	1800
ggaagagaat toocaggago o atg toa goo too aat ato aco tta aca cat Met Ser Ala Ser Asn Ile Thr Leu Thr His 10	1851
cca act gcc ttc ttg ttg gtg ggg att cca ggc ctg gaa cac ctg cac Pro Thr Ala Phe Leu Leu Val Gly Ile Pro Gly Leu Glu His Leu His 25	1899
atc tgg atc tcc atc cct ttc tgc tta gca tat aca ctg gcc ctg ctt Ila Trp Ile Ser Ile Pro Phe Cys Leu Ala Tyr Thr Leu Ala Leu Leu 30 35	1947
gga aac tgc act ctc ctt ctc atc atc cag gct gat gca gcc ctc cat Gly Asn Cys Thr Leu Leu Leu Ile Ile Gln Ala Asp Ala Ala Leu His 50 55	1995
gaa occ atg tac otc tit otg god atg tig god acc atc gad otg gid Glu Pro Met Tyr Leu Phe Leu Ala Met Leu Ala Ala Ile Asp Leu Val 60 65 70	2043
ctt too too toa goa otg ooc aaa atg ott goo ata tto tgg tto agg Lau Ser Ser Ala Leu Pro Lys Met Leu Ala Ile Phe Trp Phe Arg 90	2091
gat cgg gag ata aac ttc ttt gcc tgt ctg gcc cag atg ttc ttc ctt Asp Arg Glu Ile Asn Phe Phe Ala Cys Leu Ala Gln Met Phe Phe Leu 95	2139
cac too too too ato atg gag toa goa gtg otg otg goo atg goo ttt His Ser Phe Ser Ile Met Glu Ser Ala Val Leu Leu Ala Met Ala Phe 110 115 .	. 2187

9	ac .sp	cgc Arg	tat Tyr 125	gtg Val	gct Ala	atc Ile	tgc Cys	aag Lys 130	cca Pro	ctg Leu	cac	tac	acc	aaq	L.ST gtc Val	ctg	2235
a	hr	ggg Gly 140	tcc Ser	ctc Leu	atc Ile	acc Thr	aag Lys 145	att Ile	ggc Gly	atg Met	gct Ala	gct Ala 150	gtg Val	gcc Ala	cgg Arg	gct Ala	2283
1	/al .55	Thr	Leu	Met	Thr	160	Leu	Pro	\$ue	reu	165	ALG	cys	6110	cac His	170	2331
Ċ	gc 'ys	cga Acg	ggc Gly	cca Pro	gtg Val 175	atc Ile	gct Ala	cac His	tgC Cys	tac Tyr 180	tgt Cys	gaa Glu	cac His	atg Met	gct Ala 185	gtg Val	2379
Ş	ral	agg Acg	ctg Leu	gcg Ala 190	tgt Cys	ggg Gly	gāc Asp	act Thr	agc Ser 195	ttc Phe	aac Asn	aat Asn	atc Ile	tac Tyr 200	ggc Gly	atc Ile	2427
Ş	ict la	gtg Val	gcc Ala 205	atg Met	ttt Phe	att Ile	gtg Val	gtg Val 210	ttg Leu	gac Asp	ctg Leu	ctc Leu	ctt Leu 215	gtt Val	atc Ile	ctg Leu	2475
t	ct	tat Tyr 220	acc Ile	ttt Phe	att Ile	ctt Leu	cag Gln 225	gca Ala	gtt Val	cta Leu	ctg Leu	ctt Leu 230	NT0	tct Ser	cag Gln	gag Glu	2523
I	icc Ala 235	cac His	tac Tyr	aag Lys	gca Ala	ttt Phe 240	GJÅ ådå	aca Thr	tgt Cys	gtc Val	ser 245	cat His	ata Ile	ggt Gly	gcc Ala	atc Ile 250	2571
t	ta Leu	gcc Ala	ttc Phe	tac Tyr	aca Th: 255	act Thr	gtg Val	gtc Val	atc Ile	tct Ser 260	tca Ser	gtc Val	atg Met	cac His	Arg 265	gta Val	2619
Į	jcc Ala	Arg CgC	cat His	gct Ala 270	gcc Ala	cct	cat His	gtc Val	cac His 275	atc Ile	ctc Leu	ctt Leu	gcc Ala	aat Asn 280	t t c Phe	tat Tyr	2667
1	eu Leu	ctc Leu	ttc Phe 285	Pro	CCC	atg Met	gtc Val	aat Asn 290	Pro	ata Ile	atc Ile	tat	ggt Gly 295	gtc Val	aag Lys	acc Thr	2715
ì	aag Lys	caa Gln 300	Ile	cgt Arg	gag Glu	agc Ser	acc Ile 305	ttg Leu	gga Gly	gta Val	ttc Phe	cca Pro 310	w.r.d	aag Lys	gat Asp	atg Met	2763
1	taσ	agg	gtga	ggt	ggag	aaag	aa t	gggt	tggc	t tg	tctg	ctgg	agt	tgga	gac		2816
																ggaaaa	2876
																tetgtg	2936
																cctcac	2996
																gaaaga	3056
																TTCTT	3116
																acagta	3176
																gaaaca	3236
																ctatgc	3296
																tttacc	3356
																tetgge	3415
																aatgag	3476
																atatac	3536
																aactat	3596
																agcaag	3656
																acttac	3716
		-											D				

		aatootgaca	acacagetaa	gcttttcaca	caagccctgt	3/16
ctactacata	accountact		·	ttcctcagat	attattgctt	3836
ataaatacat	tgttctgctg	ttatcttctg	acccacttgt	C.C.C.C.C.G.G.G.G.		3896
agaaattata	tatototttt	gctatcactg	tatotttctc	tatttaccta	tctatattat	
	220252attt	ccaagcctat	ttcaggtggg	gtgtagaagg	ttggaagctg	3956
ttagccttga	aagacaaccc		andteteact	recettata	ttccacctct	4016
tccaggaggg	aagagtatag	caagaaccta	gagttttact			4076
octottacaa	ticcctttga	cacaaaaaca	aataccccag	agaaataatg	tattacataa	
,	catoctagat	atatatatt	ttggagtata	tgtgatattc	tgatatattc	4136
aaaattgcta	Cacycoagus		ttogaatato	catgacetta	aatgtttctt	4196
atataataga	taatgatcaa	accadgacaa		- 	agragatigi	4256
ttatgctagg	aacattaaaa	ttattctctt	ctagctattt	cyacacacac	agtagattgt	
-LeatatagE	ccctactgat	ttcttgaaca	ctacatettg	ttatttttta	tatctagctg	4316
EEECCACAG		a=c=tatcct	ccctgcctcc	cttcccagcc	cccaataacc	4376
tatttttata	ctcaattaat	Coccacco		. cacatgagig	agaaatacaa	4436
accaatctgo	: tototattt	: catgagetgt	: acttagcatc	Cacacyages	agaaatacaa	4496
	tototaccto	gcttgtttca	ı cttaacttaa	tgacctacag	ttttattat	•
Cancey		· rrcattott	: cttatgacta	atattocato	; tgtatcatat	4556
gttgctgcaa	grgacagya					4558
tt						

314 <212> PRT <213> Homo sapiens

Met Ser Ala Ser Asn Ile Thr Leu Thr His Pro Thr Ala Phe Leu Leu 10 15

Val Gly Ile Pro Gly Leu Glu His Leu His Ile Trp Ile Ser Ile Pro 20 25 30

Phe Cys Leu Ala Tyr Thr Leu Ala Leu Leu Gly Asn Cys Thr Leu Leu 40 45

Leu Ile Ile Gln Ala Asp Ala Ala Leu His Glu Pro Met Tyr Leu Phe 50 55

Leu Ala Met Leu Ala Ala Ile Asp Leu Val Leu Ser Ser Ser Ala Leu 65 70 75 80

Pro Lys Met Leu Ala Ile Phe Trp Phe Arg Asp Arg Glu Ile Asn Phe 90 95

Phe Ala Cys Leu Ala Glm Met Phe Phe Leu His Ser Phe Ser Ile Met 105

Glu Ser Ala Val Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile 120 125

Cys Lys Pro Leu His Tyr Thr Lys Val Leu Thr Gly Ser Leu Ile Thr 130

Lys Ile Gly Met Ala Ala Val Ala Arg Ala Val Thr Leu Met Thr Pro 150 155 150

Leu Pro	Phe	Leu	Leu 165	Arg	Cys	Phe	His	Tyr 170	C	200 Arg	PCT Gly	FINA Pro	L.ST Val 175	25 Ile	
Ala His	Cys	Туг 130	Суз	Glu	His	Met	Ala 185	Val	Val	Arg	Leu	Ala 190	Cys	Gly	
Asp The	Ser 195	Phe	neA	пея	Ile	Tyr 200	GŢĀ	Ile	Ala	Val	Ala 205	Met	Phe	Ile	
Val Val 210					213		•								
Gln Ala 225				230											
Gly Thi			245												
Val Va		260					200								
His Va	275					200									
Val As 29	n Pro	o Ile	: Ile	Tyr	Gly 295	Val	. Lys	Thr	. Lys	300	. Ile	e Arg	Glu	. Ser	
Ile Le 305	u Gl	y Val	. Phe	910 310	Arg	Lys	, Asp	Met	:						
<210> <211> <212> <213>	50 DNA	o sap	oien:										. :		
<400> gaaaaa	71 catt	ttaa	aaaa	agg q	ggca	gati	ct g1	tgtgq	gage	g gg	gaat	attg			50
<210> <211> <212> <213>	50 DNA	10 54	pien	3											
<400> gctaaq	72 Itgtt	tta	aaag	atc 1	tcaa	aatc	cc c	aaaa	gaaa	g tt	ttta	ggca			50
<210> <211> <212> <213>	50 DNA	l 10 sa	pien	s											
<400> gcagg	73 ag c 2	, aaa	aaaa	agg	tggc	acag	gt c	aaaa	atat	it go	aagg	aaat			50
<210> <211> <212> <213>	50 DNZ Hor	ι _	, pien	.											
<400> cccag	74 tgt=1	t tta	taaa	icag	ctta	.aggg	jca a	ıggat	catq	gc at	aata	ttt	:		50
<210> <211> <212>	50		•						•		Pa	ge 3	7		

16U 200 PCT FINAL.ST25	
<213> Homo sapiens	
<400> 75 ttttcatgtc taaaaatggg totaagaact aatottotoa caagaatgat	50
<210> 76	
<pre><211> 29 <212> DNA</pre>	
<213> Homo sapiens	
<400> 76 cagootocaa tatoacotta acacatoca	29
cagedectaa tactacesta cestores	
<210> 77	
<211> 25 <212> ONA	
<pre></pre> <pre>C213> Homo sapiens</pre>	
<400> 77	25
caccacaata aacatggcca cagcg	
<210> 79	
<211> 2520	
<212> ONA <213> Homo sapiens	
<220>	
<221> CDS	
<222> (727)(1722) <223>	
<400> 79	60
attaaagtet teagteteea caeteteeae teteedaata dagattata yyyayy	
gageagetge etetetgggg agardeegga ggeeceggaa ecadatorry ryyters.	20
$egin{array}{lll} egin{array}{lll} egin{arra$	80
eggeocegag tetetgaage etageegety ggeeggagaa geeategegg geenen	40
gggggaaaca ggcccgttgc cctggcctct ttgccctggg ccagcctttg tgaagtgggc 3	00
coctottoty ggoccottga agoatgotgg agaacttoto ggoogoogtg cocagooaco 3	60
getgetggge acceptectg gacaacagea eggeteagge cageatecta gggagettga 4	20
gtcctgaggc cctcctggct atttccatcc cgccgggccc caaccagagg ccccaccagt 4	80
geogeogett eegecageca cagtggeage tettggaeee caatgecaeg gecaceaget 5	40
ggagcgaggc cgacacggag ccgtgtgtgg atggctgggt ctatgaccgc agcatcttca 6	00
·	60
	20
The same tag acq acq acq acq acc acq acc ttq gtq atq acc	68
Met Glu Trp Thr Ala Ala Arg Ala Arg Pro Leu Val Met Thr	
-	16
Leu Asn Ser Leu Gly Phe Ser Phe Gly His Gly Leu Inr Ala Ala Ala	
15 20 25	٠.
get tac ggt gtg egg gac tgg aca etg etg eag etg gtg gte teg gtc 8 Ala Tyr Gly Val Arg Asp Trp Thr Leu Leu Gln Leu Val Val Ser Val	64
35 40 45	
	12
Pro Phe Phe Leu Cys Phe Leu Tyr Ser Trp Trp Leu Ala Glu Ser Ala 50 55 60	
and and and and cin gat top doc city cap gap city	.60
Arg Trp Leu Leu Thr Thr Gly Arg Leu Asp Trp Gly Leu Gin Gid Leu	
65 /0	

tgg Trp	Arg	gtg Val	gct Ala	gcc Ala	atc Ile	aac Asn 85	gga Gly	aag Lys	ggg ggg	003	ata	CAG	FINA gac Asp	acc	ctg	1008
Thr	80 cct Pro	gag Glu	gtc Val	ttg Leu	ctt Leu 100	361	gcc Ala	atg Met	Arg cgg	gag Glu 105	gag Glu	ctg Leu	agc Ser	atg Met	ggc Gly 110	1056
95 cag Gln	cct Pro	cct Pro	gcc Ala	agc Ser 115	ctg Leu	ggc Gly	acc Thr	ctg Leu	ctc Leu 120	cgc Arg	atg Met	SLO	gga Gly	ctg Leu 125	Arg CGC	1104
ttc Phe	cgg Arg	acc Thr	tgt Cys 130	atc	tcc Ser	acg Thr	ttg Leu	tgc Cys 135	tgg Trp	t t c Phe	gcc Ala	ttt Phe	ggc Gly 140	ttc Phe	acc Thr	1152
Phe	Phe	GLy 145	Leu	ALG	rea	Mah	150	•	gcc Ala			155				1200
Leu	Leu 160	Glr	Met	Pne	ire	165	,,,,		gac Asp	•	170	1				1248
Ala 175	Leu	Lei	Leu	Leu	130			•	Arg	185					190	1296
tcc	ctq Lev	tte Le	g cto 1 Leu	g gca 1 Ala 199	GLY	ctc Leu	tgo Cys	att Ile	ctg Leu 200	gcc	aac Asc	acg Thr	ctg Leu	gtg Val 205	Pro	1344
cac His	gaa Glu	a ato	g ggg E Gly 210	A WT	ctq Lev	cgc Arg	tca Sea	a gcc 215		gcc Ala	y Val	j cto L Lei	9 999 1 Gly 220	ctg Leu	Gly	1392
ggq	g gto	g gg 1 Gl 22	g gc		tto a Phe	acc Thi	: tg:	-	e Thi	ato	ta Ty	c ago r Sei 235	c ago c Ser S	gag Glu	rctc Leu	1440
t to	c cc e Pr 24	c ac		g ct	c ago	g ato		g gc. r Al	a gto a Val	l GL	tty Le 25	g gg: u Gl: 0	c caq	ato Met	g gca : Ala	1488
gc Al 25	c cg		a gg y Gl	a gc y Al	c ato a Il 26	- 11	g gg 1 Gl	g cc y Pr	t cto d Leo	g gto u Va. 26:	c cg L Ac S	g Ct	g cto u Leo	g ggi	t gtc y Val 270	1536
		ç cc Ş Pr	c tg	g ct p Le 27	u FL	c tt o Le	g ct u Le	g gt u Va	g ta 1 Ty 28	t gg r Gl 0	g ac y Th	g gt ir Va	g cc.	a gt o Va 28	g ctg l Leu S	1584
ag Se	t gg	jc ct .y Le	:g gc au Al 29	a Al	a ct a Le	g ct u Le	t ct u Le	g cc u 21 29	-	g ac u Th	c ca r Gl	ng ag In Se	c tt c Le 30	g cc u Pr O	g ctg o Leu	1632
CC Pr	c ga	sp Ti			ia ga In As	t gt p Va	g cz 1 Gl		nc ca sn Gl	g gc n Al	a gt .a Va	ta aa al Ly 31	g aa /s Ly LS	g gc s Al	a aca a Thr	1680
ca Hi	.s G			eu G	gg aa Ly As	ic to		ec ci	ta aa eu Ly	a to rs Se	c ac	ca ca hr Gl 30	ig tt In Ph	:t ie		1722
• :			a aa	raac:	ctqc	gate	gga	eg g	tcaga	ıggaa	ag a	gacti	tette	: tgt	tetetgg	1782
ac	Taaq	qcag	g ag	gaaa	gcaa	agad	ctc	cat	ttcca	agago	jc c	caga	ggcz	3 000	tctgagg	1842
t		actc	ב ככ	ccca	gggc	tgc	cct	cca	ggtga	agcc	t g	cccc	tctca	a caç	gtccaagg	1502
a.	acce	cctt	c aa	tact	gaag	ggg	aaaa	gga	cagt	ttgai	tt g	gcag	gaggi	c gad	ccagtgc	1902
a	ccat	cacc	e ta	ccst	gece	tcg	tggc	ttc	ggag	agca	ga g	gggt	cagg	c cc	aggggaac	2022
a	aget	gacc	= 59	ccaa	ccst	ctg	cttg	act	ccgc	actg	cc a	cttg	tccc	C CC	acacccgu	2002
ے	caco	Eaco	c aq	agct	caga	gct	aacc	300	atcc	atgg	tc a	agac	ctct	c ct	agetecae	2142
. a	caag	cagt	a ga	gtst	cagc	tcc	acag	ctt	tacc	caga	ag c	cctg :e	rtaag age 3	e et 19	ggesestg	, 2402

									1	6U 2	00 20	T FI	NAL.	. ST 25	i	
gcccc	۰۰ حددا	c at	atcc	ctcc	agg	cctc	agc	cacc	tgcc	cg c	caca	tcct	= tg	cctgo	stgt	2262
cccct	+	a cc	ctca	tccc	tga	ccga	ctc	cact	taac	cc c	caaa	ccca	g cc	cccci	ttcc	2322
agggg		a aa	ccaq	ccta	aga	tgcc	cgt	gaaa	ctcc	ta c	ccac	agtt	а са	gcca	caag	2382
cctgo		t cc	cacc	ctac	cag	ccta	tga	gttc	ccag	ag g	gttg	gggc	a gt	ссса	tgac	2442
cccat		c ad	ctcc	ccac	aca	igege	tgg	gcca	gaga	igg c	attg	gtgc	g ag	ggat	tgaa	2502
taaag																2520
caaa	Jaaa			-												
<210: <211: <212: <213:	> 33 > PF	12	sapie	ens												
<400	> 79							_			1 h	40 F T	יאר ז	eu A	lsn	
Met l	Glu 1	(rp	Thr I	Ala i	Ala A	Arg /	Ala	Arg !	IQ SEO	Leu	AST 6	iec :	.111	15		
Ser	Leu (Gly	Phe : 20	Ser	Phe '	Gly i	His	Gly : 25	Leu '	Thr	Ala i	Ala (/al /	Ala 1	CAL	
Gly	Val .	Arg 35	Asp	Trp	Thr	Leu	Leu 40	Gln	Leu	Val	Val .	Ser '	Val	Pro i	Phe	
2he	Leu 50	Суз	Phe	Leu	Tyr	Ser 55	Trp	Trp	Leu	Ala	Glu 60	Ser .	Ala	Arg '	Trp	
Leu 65	Leu	The	Thr	Gly	Arg 70	Leu	Asp	Trp	Glγ	Leu 75	Gln	Glu	Leu	Trp	Arg 80	
Val	Ala	Ala	Ile	Asn 85	Gly	Lys	Gly	Ala	Val 90	Gln	Asp	Thr	Leu	Thr 95	Pro	
GΓα	Val	Leu	Leu 100	Ser	Ala	Met	Arg	Glu 105	Glu	Leu	Ser	Met	Gly 110	GÎn	SLO	
Pro	Alā	Ser 115	Leu	Gly	Thr	Leu	Leu 120	Arg	Met	Pro	Gly	Leu 125	Arg	Phe	Arg	
Thr	Cys 130	Ile	Ser	The	Leu	Cys 135	Trp	Phe	Ala	Phe	Gly 140	Phe	Thr	Phe	Phe	
Gly 145	, Leu	Ala	Leu	Asp	Leu 150	Gln	Ala	Leu	GLy	Ser 155	Asn	Ile	Phe	Leu	Leu 160	
Glr	ı Met	Phe	Ile	Gly 165	val	Val	Ası	, Ile	270 170	Ala	Lys	Met	Gly	Ala 175	Leu	
Lev	ı Ləv	. Leu	Ser 180	His	Leu	. Gly	r Ar	g Arg 189	p Pro	Thi	. Leu	Ala	Ala 190	Ser	Leu	
Lei	u Lev	1 Ala 195	Gly	Let	і Су	3 Ile	20	u Ala O	a Ası	ı Thi	c Let	val 205	Pro	His	Glu	

Met Gly Ala Leu Arg Ser Ala Leu Ala Val Leu Gly Leu Gly Gly Val 215 Ser Gly Ala Ala Phe Thr Cys 11e Thr Ile Tyr Ser Ser Glu Leu Phe Pro 240

Thr Val Leu Arg Met Thr Ala Val Gly Leu Gly Gln Met Ala Ala Arg Gly Gly Ala Ile Leu Gly Pro Leu Val Arg Leu Leu Gly Val His Gly Pro Trp Leu Pro Leu Leu Val Tyr Gly Thr Val Pro Val Leu Ser Gly Leu Ala Ala Leu Leu Leu Pro Glu Thr Gln Ser Leu Pro Leu Pro Asp 290 295 300 Thr Ile Gln Asp Val Gln Asn Gln Ala Val Lys Lys Ala Thr His Gly 305 310 315 Thr Leu Gly Asn Ser Val Leu Lys Ser Thr Gln Phe <210> 80 <211> 2250 <212> DNA Homo sapiens <221> CDS <222> (10)..(738) <223> caaggcage atg age ega tea eee etc aat eee age caa etc ega tea gtg Met Ser Arg Ser Pro Leu Asn Pro Ser Gln Leu Arg Ser Val ggc tcc cag gat gcc ctg gcc ccc ttg cct cca cct gct ccc cag aat Gly Ser Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn 99 ccc tcc acc cac tct tgg gac cct ttg tgt gga tct ctg cct tgg ggc Pro Ser Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly 35 40 147 ctc age tgt ctt ctg gct ctg cag cat gtc ttg gtc atg gct tct ctg Leu Ser Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu 195 ctc tgt gtc tcc cac ctg ctc ctg ctt tgc agt ctc tcc cca gga gga Leu Cys Val Ser Ris Leu Leu Leu Cys Ser Leu Ser Pro Gly Gly 65 70 75 ctc tot tac toc cot tot cag otc ctg god toc age ttd ttt toa tgt Leu Ser Tyt Ser Pro Ser Gln Leu Leu Ala Ser Ser Phe Phe Ser Cys ggt atg tot acc atc org caa act tgg atg ggc agc agg org cot oft Gly Met Ser Thr Ile Leu Gln Thr Trp Met Gly Ser Arg Leu Pro Leu 339 gtc cag gct cca tcc tta gag ttc ctt atc cct gct ctg gtg ctg acc Val Gln Ala Pro Ser Lau Glu Phe Leu Ile Pro Ala Leu Val Leu Thr 115 120 125 387 ago cag aag cta ccc cgg gcc atc cag aca cct gga aac tcc tcc ctc Ser Gln Lys Leu Pro Arg Ala Ile Gln Thr Pro Gly Asn Ser Ser Leu 130 135 140 435 atg ctg cac ctt tqt agg gga cct agc tgc cat ggc ctq ggg cac tqg Met Leu His Leu Cys Arg Gly Pro Ser Cys His Gly Leu Gly His Trp 145 483 aac act tot oto cag gag gog too ggg goa gtg gta gta tot ggg ctg Asn Thr Ser Leu Gln Glu Val Ser Gly Ala Val Val Ser Gly Leu 531

16U 200 PCT FINAL.ST25	
160	579
ctg cag ggc atg atg ggg ctg ctg ggg agt ccc ggc cac gtg ttc ccc Leu Gln Gly Met Met Gly Leu Leu Gly Ser Pro Gly Ris Val Phe Pro 180	
cac tgt ggg ccc ctg gtg ctg gct ccc agc ctg gtt gtg gca ggg ctc His Cys Gly Pro Leu Val Leu Ala Pro Ser Leu Val Val Ala Gly Leu 200 205	627
tot god cac agg gag gta god cag tto tgo tto aca cac tgg ggg ttg Ser Ala His Arg Glu Val Ala Gln Phe Cys Phe Thr His Trp Gly Leu 210 215	675
gcc ttg ctg tac gtg agt cct gag agg cgt ggg atg gtg ccc agt ggg Ala Leu Leu Tyr Val Ser Pro Glu Arg Arg Gly Met Val Pro Ser Gly 235 230 235	723
ggt gta tgg ggg gac taggggaggg cagaactgct ggtcctatca gattcagcag	778
Gly Val Trp Gly Asp	
cgactggaat agggacatat tttatatttg gaatccaaga cttttccttg attcatctgg	838
teteettgaa titeacaetg tittetgetg teecceaagg teactteeta tteetteeat	898
gggagtitee ttetetggta teacceceeg etettatgat attetgecea eteccacete	958
ctttcccatc cctcaggata cccactgcct cttgctccta aagccttctg tctcctaggg	1018
ttateetget catggtggte tgtteteage acetgggete etgeeagttt catgtgtgee	1078
cottggaggeg agenticateg teatcaacte acactectet contigtente eggeteetti	1138
cctggadgcg agctctadag to cqgtcatgadg ggctggcctg gagtgctcac	1198
tecatecect acettitgge tretgretae ecetgeaagg etggeteaga aggitetggg	1258
ggaggagtte ttttctcagt etegeceete aggtgetgat eccagtggee tgtgtgtgga	1318
ggaggagtte tittettagg treagtgtta teccecagga actgtetgee eccaccaagg	1378
caccatggat ttggctgcct cacccaggtg agtggaattg gcctttgctg acgcccagag	1438
caccatggat trygorydd arggeettgg cageetecae cagtteeetg ggergetatg	1498
ccctgtgtgg ccggctgctg catttgcctc ccccacctcc acatgcctgc agtcgagggc	1558
tgageetgga ggggetggge agtgtgetgg cegggetget gggaageeec atgggeaetg	1618
catecagest ceceaaegtg ggeaaagtgg gtestateea ggtaegtgga eetgggatgg	1678
gagtggggta ggatggaget agaggggaag aagaaggaca ggaacttaca cogattgatt	1738
gagtggggta ggatggaget cacatcaact atcttacttg gggaggtgcc taagattaga	1798
ctttgggcta agagagtggg gaagtgaaca aatcaccacg gaactcctgt gcatgaggca	1358
ctgtatcaag gctagggcaa agaaccagtc acataaagtt ctgctctctt ggggacttca	1913
tagagggaga ggcagacagt tgaaggaaaa aagtatcttt ttaaaaaagt gggccaggca	1978
tagagggaga ggcagatagt tyl-yy	2038 -
ctaggaattc aagaccagec tggccaacat ggtgaaacec tgtctctact aaaaatacaa	2098
aaattagetg ggcatggtgt tgtgcaceta taattecage tactcaggag getgaggcag	2158
gagaatcqct tgaqcctggg aggcagaggt tgctgtgagc cgagaccgca ccactgcact	2213
	2250
ccagcotggg cgacagageg agactecate to	

<210> 81 <211> 243 <212> PRT <213> Homo sapiens

<400> 81

Met Ser Arg Ser Pro Leu Asn Pro Ser Gln Leu Arg Ser Val Gly

Gln Asp Ala Leu Ala Pro Leu Pro Pro Pro Ala Pro Gln Asn Pro Ser 20 25 30

Thr His Ser Trp Asp Pro Leu Cys Gly Ser Leu Pro Trp Gly Leu Ser 35 40 45

Cys Leu Leu Ala Leu Gln His Val Leu Val Met Ala Ser Leu Leu Cys 50 55 60

Val Ser His Leu Leu Leu Cys Ser Leu Ser Pro Gly Gly Leu Ser 65 70 75 80

Tyr Ser Pro Ser Gln Leu Leu Ala Ser Ser Phe Phe Ser Cys Gly Met 85 90 95

Ser Thr Ile Leu Gln Thr Trp Met Gly Ser Arg Leu Pro Leu Val Gln 100 105 110

Ala Pro Ser Leu Glu Phe Leu Ile Pro Ala Leu Val Leu Thr Ser Gln 115 120 125

Lys Leu Pro Arg Ala Ile Gln Thr Pro Gly Asn Ser Ser Leu Met Leu 130 135 140

His Leu Cys Arg Gly Pro Ser Cys His Gly Leu Gly His Trp Asn Thr 145 150 150 155 160

Ser Leu Gln Glu Val Ser Gly Ala Val Val Val Ser Gly Leu Leu Gln 165 170 175

Gly Met Met Gly Leu Leu Gly Ser Pro Gly His Val Phe Pro His Cys 180 180 190

Gly Pro Leu Val Leu Ala Pro Ser Leu Val Val Ala Gly Leu Ser Ala 195 200 205

His Arg Glu Val Ala Gln Phe Cys Phe Thr His Trp Gly Leu Ala Leu 210 215 220

Leu Tyr Val Ser Pro Glu Arg Arg Gly Met Val Pro Ser Gly Gly Val 225 230 240

Trp Gly Asp

<210> 82

<211> 1865

<212> DNA Homo sapiens <213>

<220>

<221> CDS

(99) .. (1508) <222>

<400> 82 attitattic aggaatccat caacatcctt tgcagctaca taggcaggaa aatctagaaa

ttgtaattta tatagaattt taaaactctt caattaca atg gat aga ggg gag aaa

60 115

160 200 PCT FINAL.ST25 Met Asp Arg Gly Glu Lys 1 5

		1		3	
ata cag ctc aag ag Ile Gln Leu Lys Ar 10	a gtg ttt gga g val Phe Gly	tat tgg tgg Tyr Trp Trp 15	ggc aca agt to Gly Thr Ser Ph 20	t ttg ne Leu	154
ctt att aat atc at Leu Ile Asn Ile Il 25	t ggt gca gga e Gly Ala Gly 30	att ttt gtg Ile Phe Val	toc coc aaa g Ser Pro Lys G 35	gt gtg Ly Val	212
ttg gca tac tct tg Leu Ala Tyr Ser Cy	45		50		260
ggc tgt gcc ata ct Gly Cys Ala Ile Le	60	65		70	308
agt ata agc ttc co Ser Ile Ser Phe 9:	i cys ser er	80	8	5	356
tac ttt ggc tcc a Tyr Phe Gly Ser T 90	IT AST WIR IN	95	100 .		404
ctg ggg tca ggg g Leu Gly Ser Gly V 105	11	ó	115		452
agc atc cag cct t Ser Ile Gln Pro P 120	125	2-	130		500
aaa tgt ctg gca t Lys Cys Lau Ala I	140	145	S	120	548
cgt ggt gtg aaa g Arg Gly Val Lys (.55	160		165	596
; aaa gtg tcc ata c Lys Val Ser Ile : 170	eu ser rue -	175	180		644
ata aga ggg aaa Ile Arg Gly Lys 185	7A2 GTG	ta gaa cga tt al Glu Arg Ph 90	t cag aat gct e Gln Asn Ala 195	ttt gat Phe Asp	692
gct gaa ctt cca Ala Glu Leu Pro 200	gat atc tct c Asp Ile Ser H . 205	ac ctt ata ca is Leu Ile Gl	na gcc atc ttc .n Ala Ile Phe 210	caa gga Gln Gly	740 .
tat tit gca tat Tyr Phe Ala Tyr	220	22	25	230	798
ctg aag aag ccc Leu Lys Lys ?ro	235	240		245	836
cct ctg gtg act Pro Leu Val Thr 250	AGT 107 11-	255	260		884
gtt ctg aca ccc Val Leu Thr Pro 265	Ary Gra 110	270	275		932
tgg gct gat cga Trp Ala Asp Arg 280	285		290		980
att tot acc toa fle Ser Thr Ser 295	tta tit agc Leu ?he Ser 300	aac ctt ctg a Asn Leu Leu I	att tot ata tt [le Ser Ile Pho 305	t aaa tca e Lys Ser 310	1028

tcg Ser	aga Arg	cca Pro	ata Ile	tat Tyr 315	ctt Leu	gca Ala	agc Ser	caa Gln			~ ~ ~	cra	FINA cct Pro	tta	cta	1076
ttt Phe	aat Asn	aca Thr	ctt Leu 330		agt Ser	cac His	tct Ser	tct Ser 335	cca Pro	ttt Phe	aca Thr	gct Ala	gtg Val 340	cta Leu	cta Leu	1124
ctt Leu	gtc Val	act Thr 345		gga Gly	tcc Ser	ctt Leu	gca Ala 350	att Ile	atc Ile	tta Leu	aca Thr	agt Ser 355	cta Leu	att Ile	gat Asp	1172
Leu	ata Ile 360	aac Asn	TYI	ITE	ruc	365	•				370					1220
Met 375	ata Ile	GΤÀ	TTE	Leu	380		,	•		385					390	1268
Pro	Tys	Lys	var	395	Leu	362			400					405	gac Asp	1316
Val	Gly	Leu	410	, vai				415					420	t	tat Tyr	1364
Va:	Тут	val 425	Let	Let	ı Leu		430)				435	i		Pro	1412
Le	ı Ile 440	e His O	Phe	∍ rA:	2 TTE	445	5				45	0			tgc Cys	1460
Ty 45	r Lei 5	u Gli	a Lei	ı Le	460)		,		46	S				ggaa Glu 470	1508
⊢ a	aata	tcaa	aag	tgca	aac i	tctt	aaaa	aa t	tggc	cttc	t aa	aaaa	cata	tate	agatto	1568
			tra	aaca	cat (gata	gaac	at t	catg	gtga	a at	tcct	atgg	taa	atatttt	1628
Çā	aacc	aayy			ata .	, atot	atac	aa a	agtg	ccta	a ga	cagt	acct	ggc	ttcagaç	1688
tt	tctc	aaac	gaa	acaa				בר מ	rato	ctaa	a aa	actt	aagt	cct	ggtttgd	1748
to	acta	agaa	act	gcta	ada	gece				crca	c tt	tttt	tttc	tgt	atcccad	1808
gt	agct	tgat	aga	gtga	tta	taca	acti	a			.t a:	arga	ctaa	aaa	atcccad tttt	1865
co	cttt	tcta	ctg	aact	tgt	gggg	atco	ta t	aaca	aaay	ic de	,			tttt	
< c	10> 111> 212> 213>	470 PRI		pier	13											
<	100>	83												_		
1				J											r Trp	
τ	г р G:	Ly Ti	nr Se 20	er Pi O	ne Le	eu L	eu I.	Le A	sn I S	le I	le G	ly A	la G: 31	ly II	Le ?he	
v	al S	er P 3	ro L S	ys G	ly V	al L	eu A 4	la T O	yr S	er C	ys M	let A 4	sn V S	al G	ly Val	
s	er L 5	eu C O	ys V	al T	rp A	la G 5	ly C 5	ys A	la I	le L	eu A	la M	et T	nr S	er Thr	

Leu Cys Ser Ala Glu Ile Ser Ile Ser Phe Pro Cys Ser Gly Ala Gln 65 75 90

Tyr Tyr Phe Leu Lys Arg Tyr Phe Gly Ser Thr Val Ala Phe Leu Asn 85 90 95

Leu Trp Thr Ser Leu Phe Leu Gly Ser Gly Val Val Ala Gly Gln Ala 100 105 110

Leu Leu Leu Ala Glu Tyr Ser Ile Gln Pro Phe Phe Pro Ser Cys Ser 115 120 125

Val Pro Lys Leu Pro Lys Lys Cys Leu Ala Leu Ala Met Leu Trp Ile 130 135 140

Val Gly Ile Leu Thr Ser Arg Gly Val Lys Glu Val Thr Trp Leu Gln 145 150 150 155 160

Ile Ala Ser Ser Val Leu Lys Val Ser Ile Leu Ser Phe Ile Ser Leu 165 170 175

Thr Gly Val Val Phe Leu Ile Arg Gly Lys Lys Glu Asn Val Glu Arg 180 185 : 190

Phe Gln Asn Ala Phe Asp Ala Glu Leu Pro Asp Ile Ser His Leu Ile 195 . 200 205

Gln Ala Ile Phe Gln Gly Tyr Phe Ala Tyr Ser Gly Gly Ala Cys Phe 210 215 220

Thr Leu Ile Ala Gly Glu Leu Lys Lys Pro Arg Thr Thr Ile Pro Lys 225 230 235

Cys Ile Phe Thr Ala Leu Pro Leu Val Thr Val Val Tyr Leu Leu Val 255

Asn Ile Ser Tyr Leu Thr Val Leu Thr Pro Arg Glu Ile Leu Ser Ser 260 265 270

Asp Ala Val Ala Ile Thr Trp Ala Asp Arg Ala Phe Pro Ser Leu Ala 275 280 285

Trp Ile Met Pro Phe Ala Ile Ser Thr Ser Leu Phe Ser Asn Leu Leu 290 295 300

Ile Ser Ile Phe Lys Ser Ser Arg Pro Ile Tyr Leu Ala Ser Gln Glu 305 310 315 320

Gly Gln Leu Pro Leu Leu Phe Asn Thr Leu Asn Ser His Ser Ser Pro 325 330 335

Phe Thr Ala Val Leu Leu Leu Val Thr Leu Gly Ser Leu Ala Ile Ile 340 345 350

Leu Thr Ser Leu Ile Asp Leu Ile Asn Tyr Ile Phe Phe Thr Gly Ser 355

Leu Trp Ser Ile Leu Leu Met Ile Gly Ile Leu Arg Arg Tyr Gln 370 375 380

Glu Pro Asn Leu Ser Ile Pro Tyr Lys Val Phe Leu Ser Phe Pro Leu 385 390 395 400

Ala Thr Ile Val Ile Asp Val Gly Let	u Val Val Ile Pro Leu Val Lys
405	410 415
Ser Pro Asn Val His Tyr Val Tyr Va	l Leu Leu Leu Val Leu Ser Gly
420 42:	5 430
Leu Leu Phe Tyr Ile Pro Leu Ile Hi	s Phe Lys Ile Arg Leu Ala Trp
435 440	445
Phe Glu Lys Met Thr Cys Tyr Leu Gl.	n Leu Leu Phe Asn Ile Cys Leu
450 455	460
Pro Asp Val Ser Glu Glu 465 470	•
<210> 84 <211> 1046 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (319)(852) <223>	
<400> 84 gaacacatct gaatteette tetgtggeat a	
gctagggtca gatttcaaat totcatotot t	ggtgccaat accaccacca gattcttctt 120
tgaagtcaac ttttgagatc ttcactaagt a	cacgttggt gtctgaagat tcacacgagt 180
gentetggta atcattttet teagggaate a	
gtactgaact tigcttttgg aaacatcttc t	tcctgagac ctcgttgaaa gaaactctct 300
ggtgtcatac tttccaat atg gag gtg aa	ng aac tit gca git tgg gat tat 351
Met Glu Val Ly	rs Asn Phe Ala Val Trp Asp Tyr
1	5 10
gtt gta ttt gca gcc ctc ttt ttc at Val Val Phe Ala Ala Leu Phe Phe Il 15	'6 261 261 drà 115 drà 100
ttt gcc att aag gag aga aaa aag gc	ta act too oga gag tto otg gtt 447
Phe Ala: Ile Lys Glu. Arg Lys Lys Al	a Thr Ser Arg Glu Phe Leu Val
30	40
ggg gga agg caa atg agc ctt ggc cc	et gto ggo ttg tot otg aca goo 495
Gly Gly Arg Gln Met Ser Phe Gly Pr	o Val Gly Leu Ser Leu Thr Ala
45	55
ago tto atg toa got gto acg gto ot	gggg acc cct tct gaa qtc tac 543
Ser Phe Met Ser Ala Val Thr Val Le	eu Gly Thr Pro Ser Glu Val Tyr
60 65	70 75
cgc ttt ggg gca tcc ttc cta gtc tt	to the att get tac chaitt ghe 591
Arg Phe Gly Ala Ser Phe Leu Val Ph	he Phe Ile Ala Tyr Leu Phe Val
80	85 90
atc ctc tta aca tca gag ctc ttt ct	to cot gtg tto tac aga tot ggt 639
Ile Leu Leu Thr Ser Glu Leu ?he Le	Bu Pro Val Phe Tyr Arg Ser Gly
95.	105
atc acc age act tat gag tac tta ca	aa cta cga ttc aac aaa cca gtt 687
lle Thr Ser Thr Tyr Glu Tyr Leu Gl	In Leu Arg Phe Asn Lys Pro Val
110	120
ege tat get get acg gtt att tat at	tt gta cag acg att ctc tac aca 735
Arg Tyr Ala Ala Thr Val Ile Tyr I	le Val Gln Thr Ile Leu Tyr Thr
125 130	135

gga gtg gtg tat gct cct gcc ctg gca ctc aat caa gtg act ggg Gly Val Val Val Tyr Ala Pro Ala Leu Ala Leu Asn Gln Val Thr Gly 145 150 155	783
ttt gat ctc tgg ggc tct gtg ttt gca aca gga att gtt tgc aca ttc ttt gat ctc tgg ggc tct gtg ttt gca aca gga att gtt tgc aca ttc ttt gat ctc tgg ggc tct gtg ttt gca aca gga att gtt tgc aca ttc ttt gat ctc tgg ggc tct gtg ttt gca aca gga att gtt tgc aca ttc ttt gat ctc tgg ggc tct gtg ttt gca aca gga att gtt tgc aca ttc ttt gat ctc tgg ggc tct gtg ttt gca aca gga att gtt tgc aca ttc ttt gat ctc tgg ggc tct gtg ttt gca aca gga att gtt tgc aca ttc ttt gat ctc tgg ggc tct gtg ttt gca aca gga att gtt tgc aca ttc	931
tac tgt acc ctg gta tgt atc tagctgtgaa gaagtattta acactacctc Tyr Cys Thr Leu Val Cys Ile	882
ctaatatggg ataagggcaa atctccagca ataggcatct aattatagca gaattcgtta	942
ctaatatggg ataagggcaa atctccages to 33	1002
ttgtttaaca ttctttcat taccaacctt taggagaatt taat	1046
- Control of the Cont	
<210> 85 <211> 178 <212> PRT <213> Homo sapiens	
<400> 85	
Met Glu Val Lys Asn Phe Ala Val Trp Asp Tyr Val Val Phe Ala Ala 10 15	
Leu Phe Phe Ile Ser Ser Gly Ile Gly Val Phe Phe Ala Ile Lys Glu 20 25 30	
Arg Lys Lys Ala Thr Ser Arg Glu Phe Leu Val Gly Gly Arg Gln Met 35 40 45	
Ser Phe Gly Pro Val Gly Leu Ser Leu Thr Ala Ser Phe Met Ser Ala 50 55	
Val Thr Val Leu Gly Thr Pro Ser Glu Val Tyr Arg Phe Gly Ala Ser 65 70 75 : 80	
Phe Leu Val Phe Phe Ile Ala Tyr Leu Phe Val Ile Leu Leu Thr Ser 95	
Glu Leu Phe Leu Pro Val Phe Tyr Arg Ser Gly Ile Thr Ser Thr Tyr 100 105	
Glu Tyr Leu Gln Leu Arg Phe Asn Lys Pro Val Arg Tyr Ala Ala Thr 115 120 125	
Val Ile Tyr Ile Val Gln Thr Ile Leu Tyr Thr Gly Val Val Val Tyr 130 135	
Ala Pro Ala Leu Ala Leu Asn Gln Val Thr Gly Phe Asp Leu Trp Gly 145 150 150	
Ser Val The Ala Thr Gly Ile Val Cys Thr Phe Tyr Cys Thr Leu Val 175 170 175	
Cys Ile	
<210> 86 <211> 4751 <212> DNA <213> Homo sapiens	

180 200 FCT (1882-51-5	
<220> <221> CDS <222> (382)(1929) <223>	
<400> 86 cccggcggag ctgaatgagcc ggtgcatttc gaaggccgag cactgggatt	60
proceedia egetteeete teeeggegtt geeagetagg eeeeeggeee eageetegee	120
ggogostocg cocagteogo toccogocoo acogaagogo ggatogogoa gootggggoo	180
canalanga ccaciqcqca gggacgcqqc tcqqcqqqtq cqccccqqqq qcaiqtccqc	240
generacing canning attractive characteristics	300
rendiciate agrittacta ecctaaggae etcacatgge gagtaaccea tgggecaggt	360
agogttotat godaacottg a atg coa toa gga agt cac tgg aca gca aac Met Pro Ser Gly Ser His Trp Thr Ala Asn 10	411
tot too aag ato ata act tgg ctg ttg gag caa cot gga aaa gaa gaa Ser Ser Lys Ile Ile Thr Trp Leu Leu Glu Gln Pro Gly Lys Glu Glu 15 20 25	459
aaa aga aaa acc atg gca aaa gta aat aga gct cgg tct acc tcc cct Lys Arg Lys Thr Met Ala Lys Val Asn Arg Ala Arg Ser Thr Ser Pro 30 35	507
cca gat gga ggc tgg ggc tgg atg att gtg gct ggc tgt ttc ctt gtt Pro Asp Gly Trp Gly Trp Met Ile Val Ala Gly Cys Phe Leu Val 45 50	555
acc atc tgc aca cgg gca gtc aca aga tgt atc tca att ttt ttt gtg Thr Ile Cys Thr Arg Ala Val Thr Arg Cys Ile Ser Ile Phe Phe Val 60 65	603
gag ttc cag aca tac ttc act cag gat tac gca caa acg gca tgg atc Glu Phe Gln Thr Tyr Phe Thr Gln Asp Tyr Ala Gln Thr Ala Trp Ile 90 85 90	651
cat too att gta gat tgt gtg acc atg otc tgt got coa ott ggg agt His Ser Ile Val Asp Cys Val Thr Met Leu Cys Ala Pro Leu Gly Ser	699
gtt gtc agt aac cat tta tcc tgt caa gtg gga atc atg ctg ggt ggc Val Val Ser Asn His Leu Ser Cys Gln Val Gly Ile Met Leu Gly Gly 110 115	747
ttg ctt gca tct act gga ctc atc ctg agc tca ttt gcc acg agt ctg Leu Leu Ala Ser Thr Gly Leu Ile Leu Ser Ser Phe Ala Thr Ser Leu 125 130	795
aag cat ctc tac ctc act ctg gga gtt ctt aca ggt ctt gga ttt gca Lys His Leu Tyr Leu Thr Leu Gly Val Leu Thr Gly Leu Gly Phe Ala	843
ctt tgt tac tct cca gct att gcc atg gtt ggc aag tac ttc agc aga Leu Cys Tyr Ser Pro Ala Ile Ala Met Val Gly Lys Tyr Phe Ser Arg 155 160	891
cgg aaa gcc ctt gct tat ggt atc gcc atg tca gga agt ggc att ggc Arg Lys Ala Leu Ala Tyr Gly Ile Ala Met Ser Gly Ser Gly Ile Gly 175 180 185	939
acc ttc atc ctg gct cct gtg gtt cag ctc ctt att gaa cag ttt tcc Thr Phe Ile Leu Ala Pro Val Val Gln Leu Leu Ile Glu Gln Phe Ser 190 195	987
tgg cgg gga gcc tta ctc att ctt ggg ggc ttt gtc ttg aat ctc tgt Trp Arg Gly Ala Leu Leu Ile Leu Gly Gly Phe Val Leu Asn Leu Cys 205 210	1035
gta tgt ggt gcc ttg atg agg cca att act ctt aaa gag gac cac aca Val Cys Gly Ala Leu Met Arg Pro Ile Thr Leu Lys Glu Asp His Thr 220 225	1083
act cca gag cag aac cat gtg tgt aga act cag aaa gaa gac att aag	1131
Page 49	

16U 200 PCT FINAL.ST25	
The Pro Glu Gln Asn His Val Cys Arg The Gln Lys Glu Asp Ile Lys 250 245	
cgg gtg tct ccc tat tca tct ttg acc aaa gaa tgg gca cag act tgc Arg Val Ser Pro Tyr Ser Ser Leu Thr Lys Glu Trp Ala Gln Thr Cys 255 260 265	1179
ctc tgt tgc tgt ttg cag caa gag tac agt ttt tta ctc atg tca gac Leu Cys Cys Cys Leu Gln Gln Glu Tyr Ser Phe Leu Leu Met Ser Asp 270 280	1227
ttt gtt gtg tta gcc gtc tcc gtt ctg ttt atg gct tat ggc tgc agc Phe Val Val Leu Ala Val Ser Val Leu Phe Met Ala Tyr Gly Cys Ser 295 290 295	1275
cct ctc ttt gtg tac ttg gtg cct tat gct ttg agt gtt gga gtg agt Pro Leu Fhe Val Tyr Leu Val Pro Tyr Ala Leu Ser Val Gly Val Ser 300 305	1323
cat cag caa gct gct ttt ctt atg tcc ata ctt gga gtg att gac att His Gln Gln Ala Ala Phe Leu Met Ser Ile Leu Gly Val Ile Asp Ile 320 325 330	1371
act ggc aat atc aca ttt gga tgg ctg acc gac aga agg tgt ctg aag att ggc aat atc aca ttt gga tgg ctg acc gac aga agg tgt ctg aag lee Gly Asn Ile Thr Phe Gly Trp Leu Thr Asp Arg Cys Leu Lys 345	1419
aat tac cag tat gtt tgc tac ctc ttt gcc gtg gga atg gat ggg ctc Asn Tyr Gln Tyr Val Cys Tyr Leu Phe Ala Val Gly Met Asp Gly Leu	1467
tgc tat ctc tgc ctc cca atg ctt caa agt ctc cct ctg ctc gtg cct Cys Tyr Leu Cys Leu Pro Met Leu Gln Ser Leu Pro Leu Leu Val Pro	1515
tto tot tgt acc ttt ggc tac tit gat ggt gcc tat gtg act ttg atc Phe Ser Cys Thr Phe Gly Tyr Phe Asp Gly Ala Tyr Val Thr Leu Ile	1563
cca gta gtg acc aca gag ata gtg ggg acc acc tct ttg tca tca gcg cca gta gtg acc aca gag ata gtg ggg acc acc tct ttg tca tca gcg cca gta gtg acc aca gag ata gtg ggg acc acc tct ttg tca tca gcg cca gta gtg acc aca gag ata gtg ggg acc acc tct ttg tca tca gcg cca gta gtg acc acc tct ttg tca tca gcg 400 400 400 400 400	1611
ctt ggt gtg gta tac ttc ctt cac gca gtg cca tac ttg gtg agc cca ctt ggt gtg gta tac ttc ctt cac gca gtg cca tac ttg gtg agc cca Leu Gly Val Val Tyr Phe Leu His Ala Val Pro Tyr Leu Val Ser Pro 425	1659
ccc atc gca gga cgg ctg gta gat acc acc ggc agc tac act gca gca Pro Ite Ala Gly Arg Leu Val Asp Thr Thr Gly Ser Tyr Thr Ala Ala 430 435	1707
tto oto oto tgt gga tot toa ang and tot agt tot gng tng out ggg the Leu Leu Cys Gly Phe Ser Met Ile Phe Ser Ser Val Leu Leu Gly 450 455	: 1755 /
ttt get aga ett ata aag aga atg aga aaa ace eag ttg eag tte at: Phe Ala Arg Leu Ile Lys Arg Met Arg Lys Thr Gln Leu Gln Phe Ile 465 470	t 1803 e
gcc aaa gaa tot gat cot aag otg cag ota tgg acc aat gga toa gt Ala Lys Glu Ser Asp Pro Lys Leu Gln Leu Trp Thr Asn Gly Ser Va	g 1851 1 0
qct tat tct gtg gca aga gaa tta gat cag aaa cat ggg gag cct gt gct tat tct gtg gca aga gaa tta gat cag aaa cat ggg gag cct gt Ala Tyr Ser Val Ala Arg Glu Leu Asp Gln Lys His Gly Glu Pro Va 495 500	g- 1899 1
gct aca gca gtg cct ggc tac agc ctc aca tgaccaaagg ccttgagccc Ala Thr Ala Val Pro Gly Tyr Ser Leu Thr 510	1949
cagaatotto aggittgaga gaggiggggo caccagatto ticatgitto igaaact	TEE 2009
ratttiggca qaaggattgc cttccsagga aattattatt attgtttigt taacata	1663 2009
ararreataa gggaaaacag cacataataa ggaaagetgg actageecag ageette	itca 2123
tttgggattt gtgctcataa ctgaactcgt atcttttggt caatgggcat agctct	gtaa 2189

16U 200 PCT FINAL.ST25 gaaatgtaag gacacagctg atataattag ctgtaattag ggataatttc aaagcataac	2249
caaagcagat gacactgggc agcagetitg ticcagtete aggeeettea tgtteeetee	2309
tcagaaagaa aatggaaaca ttaacgtgta gctttgctta ccttgttctg gttagagaag	2369
ggaggtcagc ttgggtgtgg tggtgaagag tgaagatgcc atactttttc atggtggagt	2429
tteteattag ggttttaett gggattgtta aagaataett gagattette aaaaagtggt	2489
gattaatata gaaagaaact cttatttttt ttttctctta gtcttccagc cagcccttgc	2549
ctctgcccaa gggtagacac cactatgaga atccaaataa tcatggaatg ccatggttgg	2609
aatagatett aaagggeate tggtaagate catttgaaat tgtecaetgg aaacegaaag	2669
antagatett adagggedet tygenege cacatttgtt accateacat ataataetta	2729
ctctaaattt agcagaacac acttagtcac aaggacaacc tctcaatctt acctgaaatg	2789
tcaacaacac caaaacttcc cgtcttttac cttcagagaa gaagctctta cttagactgc	2849
agacqcattc ctgttaggtt ggaaaaatgt tggcagtatt ccaattgggc aggaactgaa	2909
agacqcattc ctgttaggtt ggaaaaddy tyssay tttctttgca gatcagacat ttagttttat ttctttgaatc agcaggtctc tggtgagagt tttctttgca gatcagacat ttagttttat	2969
cattacccaa aagaggattg gagggagtca qttqtctgaa aaatattatc ctagagatat	3029
cattacccaa aagaggatty gaggggggtt particity tecactatec actgetette tetaaaggtg agatteettt eteeetgtgt taattettgt tecactatee actgetette	3089
attetettat agataataat tagaaateta eteattggat tataagttta tteattetea	3149
attactccac ttttctatgg tttgggataa tttctgagtc ttcagattga agagggaagg	3209
catggagga agaaaaagtc cagatccccc agcttgtttc caaccatttt aagtccaaag	3269
aattataatc ctgaatctca cagtgtgtca cacctgtaat aggagtaaat tatgcaatca	3329
attitaatta ccaggagttt aaaatccaaa tgtcaaggaa etgttttgac eetgaagget	3389
atttaatta ccaggagtti aaaatttaa tyssa 13	3449
ggatgatect gagttaatgt gratgeteeg caagagaget tgeetatace tigattattt	3509
ggatgatect gagttaatg grangetete agaatgaaat actgaettga tetgatagga	3569
gaaaatggta atatttcata gttgttttcc aaagacaaat ttaaatgttg tctgttatct	3629
gaaaatggta atatticata gittittaa coccattgac titgicatti gcaattitaa	3689
aaatatttgg gactgggcat ggtcgctcac gcctgtaatc ccagcacttt gggaggctga	3749
ggcgggtgga tcatgaggtc aggagatcaa gaccatectg gctaacatcg tgaaactccg	3809
ggcgggtgga tcatgaggte agyagateda yeers tctctactaa aaatgcaaaa gattagccag gcgtggtggc gggcgcctgt agtcccagct	3869
acticated additional decident described detailed decided decid	3929
acticating cantiguate cancering an acadegram acticates casasasas	3989
aaaatcatgc cactgcactc tactctgggd yeery y	4049
cactityccc taaatatcat tictigaatt ticaagccta aagatgitta aaaatatgaa	4109
tagttacaaa tattottata catattitit atcatgatca caacaaaatt tigittatgt	4169
ggttetgeaa tataatttet gtgaagtatt acaagtattt atgaaaaata agcatagtga	4229
ggttotgcaa tataatttot gtgaagtatt doorgaaga titgacttta tacatgcata tccagaaattt taaagatttt gtataaaaac atttgggaga titgacttta tacatgcata	4289
gatttgcatt ttactttccc ttttgaggca gcatttttag aaaatcagta agaaaaatgt	4349
gattigcatt tractiticic tilligaggia geattions, and a tottccatgi	4409
acatettaag gtetaetatt ttaeattill acategoria tootgatattt tgtggaatea	4469
gtctatactg tttatttcaa aactgagaaa ttcatgggaa tgatgtattt tgtggaatca agaacaaaat tatagtgga taattttaca tcttaaatat ttctttctac tactgtaagc	4529
agaacaaaat tatagtggga taattttaca tottaaatta tottaacttt gtagatacac	4589
totactttgg aattatotga gtagaaaato agaagacatt atotaacttt gtagatacac Page 51	
• •	

		rcagattgta	atttcattaa	tagatgaaat	atttatgcta	4649
tgtatgattg	ggcttttgt	ccagara				4709
		caaaataaaa	tgaatttatt	gtcctgtgta	aaaaaaaaa	,,,,,
atattttctt	atttcadady	Cadada	•			475
		aaaaaaaaa	aaaaaaaaa	aa		
	aacacaaaa					

<210>	87	
<211>	516	
<212>	PRT	
<213>	Homo	sapien

<400> 87

Met Pro Ser Gly Ser His Trp Thr Ala Asn Ser Ser Lys Ile Ile Thr 10 15

Trp Leu Leu Glu Gln Pro Gly Lys Glu Glu Lys Arg Lys Thr Met Ala 25

Lys Val Asn Arg Ala Arg Ser Thr Ser Pro Pro Asp Gly Gly Trp Gly 35

Trp Met Ile Val Ala Gly Cys Phe Leu Val Thr Ile Cys Thr Arg Ala 50 55

Val Thr Arg Cys Ile Ser Ile Phe Phe Val Glu Phe Gln Thr Tyr Phe 80

Thr Gln Asp Tyr Ala Gln Thr Ala Trp Ile His Ser Ile Val Asp Cys 90 95

Val Thr Met Leu Cys Ala Pro Leu Gly Ser Val Val Ser Asn His Leu 100 105 110

Ser Cys Gln Val Gly Ile Met Leu Gly Gly Leu Leu Ala Ser Thr Gly 115 120 125

Leu Ile Leu Ser Ser Phe Ala Thr Ser Leu Lys His Leu Tyr Leu Thr 130 140

Leu Gly Val Leu Thr Gly Leu Gly Phe Ala Leu Cys Tyr Ser Pro Ala 160

Ile Ala Met Val Gly Lys Tyr Phe Ser Arg Arg Lys Ala Leu Ala Tyr
165 170 175

Gly Ile Ala Met Ser Gly Ser Gly Ile Gly Thr Phe Ile Leu Ala Pro 180 185

Val Val Gln Leu Leu Ile Glu Gln Phe Ser Trp Arg Gly Ala Leu Leu 195 200 205

The Leu Gly Gly Phe Val Leu Asn Leu Cys Val Cys Gly Ala Leu Met 210 210

Arg Pro Ile Thr Leu Lys Glu Asp His Thr Thr Pro Glu Gln Asn His 235

Val Cys Arg Thr Gln Lys Glu Asp Ile Lys Arg Val Ser Pro Tyr Ser 255 255

16U 200 PCT FINAL.ST25 Ser Leu Thr Lys Glu Trp Ala Gln Thr Cys Leu Cys Cys Cys Leu Gln 260 265 270

Gln Glu Tyr Ser Phe Leu Leu Met Ser Asp Phe Val Val Leu Ala Val 275 280 285

Ser Val Leu Phe Met Ala Tyr Gly Cys Ser Pro Leu Phe Val Tyr Leu 290 295 300

Val Pro Tyr Ala Leu Ser Val Gly Val Ser His Gln Gln Ala Ala ?he 310 315

Leu Met Ser Ile Leu Gly Val Ile Asp Ile Ile Gly Asn Ile Thr Phe 325 330 335

Gly Trp Leu Thr Asp Arg Arg Cys Leu Lys Asn Tyr Gln Tyr Val Cys 340 345 350

Tyr Leu Phe Ala Val Gly Met Asp Gly Leu Cys Tyr Leu Cys Leu Pro 355 360

Met Leu Gln Ser Leu Pro Leu Leu Val Pro Phe Ser Cys Thr Phe Gly 370 380

Tyr Phe Asp Gly Ala Tyr Val Thr Leu Ile Pro Val Val Thr Thr Glu 385 390 395 400

Ile Val Gly Thr Thr Ser Leu Ser Ser Ala Leu Gly Val Val Tyr Phe 405 410 415

Leu His Ala Val Pro Tyr Leu Val Ser Pro Pro Ile Ala Gly Arg Leu 420 425 430

Val Asp Thr Thr Gly Ser Tyr Thr Ala Ala Phe Leu Leu Cys Gly Phe 435 440 445

Ser Met Ile Phe Ser Ser Val Leu Leu Gly Phe Ala Arg Leu Ile Lys 450 455 460

Arg Met Arg Lys Thr Gln Leu Gln Phe Ile Ala Lys Glu Ser Asp Pro 465 470 475 480

Lys Leu Gln Leu Trp Thr Asn Gly Ser Val Ala Tyr Ser Val Ala Arg 485 490 495

Glu Leu Asp Gln Lys His Gly Glu Pro Val Ala Thr Ala Val Pro Gly 500 505 510

Tyr Ser Leu Thr 515

<210>

2150

<212> DNA <213> Homo sapiens

<220>

<221> CDS <222> (63)..(1760)

<400> 88

16U 200 PCT FINAL.ST25 gctggacaaa gctggccgtg caggcgctca ggcgtgcagg gtagccagtg ccccggccag	60
ga atg gac agc ctc cag gac aca gtg gcc ctg gac cat ggg ggc tgc Met Asp Ser Leu Gln Asp Thr Val Ala Leu Asp His Gly Gly Cys 10 15	107
tgc cct gcc ctc agg agg ctg gtt ccc aga ggc ttt ggg act gag atg tgc cct gcc ctc agg agg ctg gtt ccc aga ggc ttt ggg act gag atg Cys Pro Ala Leu Ser Arg Leu Val Pro Arg Gly Phe Gly Thr Glu Met 20 25 30	155
tgg act ctc ttt gcc ctt tct gga ccc ctg ttc ctg ttc cag gtg ctg Trp Thr Leu Phe Ala Leu Ser Gly Pro Leu Phe Leu Phe Gln Val Leu Trp Thr Lou Phe Ala Leu Ser Gly Pro Leu Phe Leu Phe Gln Val Leu	203
act ttt atg atc tac atc gtg agc act gtg ttc tgc ggg cac ctg ggc Thr Phe Met Ile Tyr Ile Val Ser Thr Val Phe Cys Gly His Leu Gly 50 50	251
aag gtg gag ctg gca tcg gtg acc ctc gcg gtg gcc ttt gtc aat gtc Lys Val Glu Leu Ala Ser Val Thr Leu Ala Val Ala Phe Val Asn Val	299
tgc gga gtt tct gta gga gtt ggt ttg tct tcg gca tgt gac acc ttg tgc gga gtt tct gta gga gtt ggt ttg tct tcg gca tgt gac acc ttg tgc gga gtt tct gta gga gtt ggt ttg tct tcg gca tgt gac acc ttg tgc gga gtt tct gta gga gtt ggt ttg tct tcg gca tgt gac acc ttg tgc gga gtt tct gta gga gtt ggt ttg tct tcg gca tgt gac acc ttg tgc gga gtt tct gta gga gtt ggt ttg tct tcg gca tgt gac acc ttg tgc gga gtt tct gta gga gtt ggt ttg tct tcg gca tgt gac acc ttg tgc gga gtt tct gta gga gtt ggt ttg tct tcg gca tgt gac acc ttg	347
atg tot cag ago tto ggo ago coo aac aag aag cac gtg ggo gtg ato atg tot cag ago tto ggo ago coo aac aag aag cac gtg ggo gtg ato atg tot cag ago tto ggo ago coo aac aag aag cac gtg ggo gtg ato atg tot cag ago tto ggo ago coo aac aag aag cac gtg ggo gtg ato	395
ctg cag cgg ggc gcg ctg gtc ctg ctc ctc tgc tg	443
gcg ctc ttc ctc aac acc cag cac atc ctg ctg ctc ttc cgg cag gac Ala Leu Phe Leu Asn Thr Gln His Ile Leu Leu Phe Arg Gln Asp 135	491
ccg gac gtg tcc agg ttg acc cag gac tat gta atg att ttc att cca Pro Asp Val Ser Arg Leu Thr Gln Asp Tyr Val Met Ile Phe Ile Pro	539
gga ctt ccg gtg att ttt ctt tac aat ctg ctg gca aaa tat ttg caa gga ctt ccg gtg att ttt ctt tac aat ctg ctg gca aaa tat ttg caa Gly Leu Pro Val Ile Phe Leu Tyr Asn Leu Leu Ala Lys Tyr Leu Gln 175	587
aat cag aag atc acc tgg ccc caa gtc ctc agt ggt gtg gtg ggc aac Asn Gln Lys Ile Thr Trp Pro Gln Val Leu Ser Gly Val Val Gly Asn 190	635
tgt gtc aac ggt gtg gcc aac tat gcc ctg gtt tct gtg ctg aac ctg tgt gtc aac ggt gtg gcc aac tat gcc ctg gtt tct gtg ctg aac ctg Cys Val Asn Gly Val Ala Asn Tyr Ala Leu Val Ser Val Leu Asn Leu Cys Val Asn Gly Val Ala Asn Tyr Ala Leu Val Ser Val Leu Asn Leu 195	683
ggg gtc agg ggc tcc gcc tat gcc aac atc atc tcc cag ttt gca cag Gly Val Arg Gly Ser Ala Tyr Ala Asn Ile Ile Ser Gln Phe Ala Gln 210 215	731
acc gtc ttc ctc ctc tac att gtg ctg aag aag ctg cac ctg gag Thr Val Phe Leu Leu Tyr Ile Val Leu Lys Lys Leu His Leu Glu 225 230	779
acg tgg gca ggt tgg tcc agc cag tgc ctg cag gac tgg ggc ccc ttc acg tgg gca ggt tgg tcc agc cag tgc ctg cag gac tgg ggc ccc ttc The TTP Ala Gly TTP Ser Ser Gln Cys Leu Gln Asp TTP Gly Pro Phe TAR 250 255	827
tto too otg got goo ooc ago atg otc atg ato tgt gat tgg tgg the Ser Leu Ala Val Pro Ser Met Leu Met Ile Cys Val Glu TIP TIP Phe Ser Leu Ala Val Pro Ser Met Leu Met Ile Cys Val Glu TIP TIP 250 270	875
gcc tat gag atc ggg agc ttc ctc atg ggg ctg ctc agt gtg gtg gat Ala Tyr Glu Ile Gly Ser Phe Leu Met Gly Leu Leu Ser Val Val Asp 275 280 280	923
ctc tot god cag got gtc atc tac gag gtg god act gtg acc tac atg Leu Ser Ala Gln Ala Val Ile Tyr Glu Val Ala Thr Val Thr Tyr Met 290 295	971
att eee tig ggg ete age ate ggg gte tgi gie ega gig ggg atg get page 54	1019

16U 200 PCT FINAL.ST25	
Ile Pro Leu Gly Leu Ser Ile Gly Val Cys Val Arg Val Gly Met Ald	
ctg ggg gct gcg gat act gtg cag gcc aag cgc tcg gcc gtc tcg ggc 1067	
320 gtg ctc agc ata gtt ggc att tcc ctg gtc ctg ggc acc ctg ata agc 1115 gtg ctc agc ata gtt ggc att tcc ctg gtc ctg ggc acc ctg ata agc 1115 val Leu Ser Ile Val Gly Ile Ser Leu Val Leu Gly Thr Leu Ile Ser Val Leu Ser 1240 345	
val Leu Ser 11e val day 345 345 345 1163	
atc ctg aaa aat cag ctg ggg cat att ttt acc aat gat gaa gat gtc 1163 Ile Leu Lys Asn Gln Leu Gly His Ile Phe Thr Asn Asp Glu Asp Val 360 360	
att god otg gtg ago cag gto ttg cog gtt tat agt gto ttt cac gtg 1211 Ala Leu Val Ser Gin Val Leu Pro Val Tyr Ser Val Phe His Val 11e Ala Leu Val Ser Gin Val Ser Sin 375	
ttt gag gcc atc tgt tgt gtc tat ggc gga gtt ctg aga gga act ggg 1259 ttt gag gcc atc tgt tgt gtc tat ggc gga gtt ctg aga gga act ggg 1259 Phe Glu Ala Ile Cys Cys Val Tyr Gly Gly Val Leu Arg Gly Thr Gly Phe Glu Ala Ile Cys Cys 390	•
385 1307	1
aag cag gcc ttt ggt gcc gct gtg aat gcc atc aca tat tac atc atc 130 aag cag gcc ttt ggt gcc gct gtg aat gcc atc aca tat tac atc atc atc 130 aag cag gcc ttt ggt gcc gct gtg aat gcc atc aca tat tac atc atc atc 130 aag cag gcc ttt ggt gcc gct gtg aat gcc atc aca tat tac atc atc atc atc atc a	
ggc cta cca ctg ggc atc ctt ctg acc ttt gtg gtc aga atg aga atc 135: ggc cta cca ctg ggc atc ctt ctg acc ttt gtg gtc aga atg aga atc 135: ggc cta cca ctg ggc atc ctt ctg acc ttt gtg gtc aga atg aga atc 135: ggc cta cca ctg ggc atc ctt ctg acc ttt gtg gtc aga atg aga atc 135: ggc cta cca ctg ggc atc ctt ctg acc ttt gtg gtc aga atg aga atc 135: ggc cta cca ctg ggc atc ctt ctg acc ttt gtg gtc aga atg aga atc 135: ggc cta cca ctg ggc atc ctt ctg acc ttt gtg gtc aga atg aga atc 135: ggc cta cca ctg ggc atc ctt ctg acc ttt gtg gtc aga atg aga atc 135:	5
ata ata aca act gct 140	3
Met Gly Leu 11p Leu 31 440	
gcc ttt gtt gct tat act gcc cgg ctg gac tgg aag ctt gct gca gag 145 Ala Phe Val Ala Tyr Thr Ala Arg Leu Asp Trp Lys Leu Ala Ala Glu 455 460	L
gag gct aag aaa cat toa ggc cgg cag cag cag aga gca gag agc 149	99
470 465 470 465 act gca acc aga cct ggg cct gag aaa gca gtc cta tct tca gtg gct act gca acc aga cct ggg cct gag aaa gca gtc cta tct tca gtg gct 15- 470 470 470 470 470 470 470 470 470 470	47
The Ala The Alg 120 485	95
aca ggc agt too cot ggc att acc ttg aca acg tat toa agg tot gag 15 aca ggc agt too cot ggc att acc ttg aca acg tat toa agg tot gag 15 Thr Gly Ser Ser Pro Gly Ile Thr Leu Thr Thr Tyr Ser Arg Ser Glu Thr Gly Ser Ser Pro Gly Ile Thr Leu Thr Thr Tyr Ser Arg Ser Glu 500	
tgc cac gtg gac ttc ttc agg act cca gag gag gcc cac gcc ctt tca le Cvs His Val Asp Phe Phe Arg Thr Pro Glu Glu Ala His Ala Leu Ser	i43
get cet ace age aga eta tea gtg aaa eag etg gte ate ege egt ggg 16 get eet ace age aga eta tea gtg aaa eag etg gte ate ege egt ggg 16 get eet ace age aga eta tea gtg aaa eag etg gte ate ege egt ggg 16	591
530 and against acq gic 1	739
Ala Ala Leu Giy Azu 1550	790
agg atc cta gcc acc agg cac tagcaaagaa gcttggaaat agaaagccag Arg Ile Leu Ala Thr Arg His	,,,,
560 language of the control of the c	.850
consider togaccacte etcaaaaaa gaacttegge tgaataa	1910
and cargagage Equacagact tgacaattet gttetggeta tgacagact	L970
pertgracing etetacagaa gacatcaged aactgcacha goody	2030
ataatqtaaa tqqcttcaaa tqqqatactq day-ta-	2090
agggattgtc actactacta to against acattroctg ggaaaaaaaa aaaaaaaaaa cacaaaaaaaaaaa	2150

<210> 89

(212) PRT

<213> Homo sapiens

<400> 89

Met Asp Ser Leu Gln Asp Thr Val Ala Leu Asp His Gly Gly Cys Cys 10 10 15

Pro Ala Leu Ser Arg Leu Val Pro Arg Gly Phe Gly Thr Glu Met Trp 20 25 30

Thr Leu Phe Ala Leu Ser Gly Pro Leu Phe Leu Phe Gln Val Leu Thr 35

Phe Met Ile Tyr Ile Val Ser Thr Val Phe Cys Gly His Leu Gly Lys 50 55

Val Glu Leu Ala Ser Val Thr Leu Ala Val Ala Phe Val Asn Val Cys 65 70 75 80

Gly Val Ser Val Gly Val Gly Leu Ser Ser Ala Cys Asp Thr Leu Met 95 90 95

Ser Gln Ser Phe Gly Ser Pro Asn Lys Lys His Val Gly Val Ile Leu 100 105 110

Gln Arg Gly Ala Leu Val Leu Leu Leu Cys Cys Leu Pro Cys Trp Ala 115 120 125

Leu Phe Leu Asn Thr Gln His Ile Leu Leu Leu Phe Arg Gln Asp Pro 130 135 140

Asp Val Ser Arg Leu Thr Gln Asp Tyr Val Met Ile Phe Ile Pro Gly 145 150 150

Leu Pro Val Ile Phe Leu Tyr Asn Leu Leu Ala Lys Tyr Leu Gln Asn 165 170 175

Gln Lys Ile Thr Trp Pro Gln Val Leu Ser Gly Val Val Gly Asn Cys 180 185 190

Val Asn Gly Val Ala Asn Tyr Ala Leu Val Ser Val Leu Asn Leu Gly 195 200 205

Val Arg Gly Ser Ala Tyr Ala Asn Ile Ile Ser Gln Phe Ala Gln Thr 210 215 220

Val Phe Leu Leu Leu Tyr Ile Val Leu Lys Lys Leu His Leu Glu Thr 225 230 240

Trp Ala Gly Trp Ser Ser Gln Cys Leu Gln Asp Trp Gly Pro Phe Phe 245 250 255

Ser Leu Ala Val Pro Ser Met Leu Met Ile Cys Val Glu Trp Trp Ala 260 265 270

Tyr Glu Ile Gly Ser Phe Leu Met Gly Leu Leu Ser Val Val Asp Leu 275 280 285

Ser Ala Gln Ala Val Ile Tyr Glu Val Ala Thr Val Thr Tyr Met Ile 290 295 300

Pro Leu Gly Leu Ser Ile Gly Val Cys Val Arg Val Gly Met Ala Leu 305 310 315 320

Gly Ala Ala Asp Thr Val Gln Ala Lys Arg Ser Ala Val Ser Gly Val 325 330 335

Leu Ser Ile Val Gly Ile Ser Leu Val Leu Gly Thr Leu Ile Ser Ile 340

Leu Lys Asn Gln Leu Gly His Ile Phe Thr Asn Asp Glu Asp Val Ile 355 360 365

Ala Leu Val Ser Gln Val Leu Pro Val Tyr Ser Val Phe His Val Phe 370 380

Glu Ala Ile Cys Cys Val Tyr Gly Gly Val Leu Arg Gly Thr Gly Lys 395 390 395

Gln Ala Phe Gly Ala Ala Val Asn Ala Ile Thr Tyr Tyr Ile Ile Gly 405 410 415

Leu Pro Leu Gly Ile Leu Leu Thr Phe Val Val Arg Met Arg Ile Met 420 425 430

Gly Leu Trp Leu Gly Met Leu Ala Cys Val Phe Leu Ala Thr Ala Ala 435 440

Phe Val Ala Tyr Thr Ala Arg Leu Asp Trp Lys Leu Ala Ala Glu Glu 450 450

Ala Lys Lys His Ser Gly Arg Gln Gln Gln Gln Arg Ala Glu Ser Thr 480

Ala Thr Arg Pro Gly Pro Glu Lys Ala Val Leu Ser Ser Val Ala Thr 485 490 495

Gly Ser Ser Pro Gly Ile Thr Leu Thr Thr Tyr Ser Arg Ser Glu Cys 500 500

His Val Asp Phe Phe Arg Thr Pro Glu Glu Ala His Ala Leu Ser Ala 515 520 525

Pro Thr Ser Arg Leu Ser Val Lys Gln Leu Val Ile Arg Arg Gly Ala 530 535

Ala Leu Gly Ala Ala Ser Ala Thr Leu Met Val Gly Leu Thr Val Arg 550 555 560

Ile Leu Ala Thr Arg His 565

<210> 90

(211> 3067

<220>

160 200 PCT FINAL.ST25	
<221> CDS <222> (36)(2984) <223>	
<400> 90 ggactgtact ggttctgaga ttctgtgcaa gcctc atg gaa atg aag ctg cca Met Glu Met Lys Leu Pro 1 5	53
ggc cag gaa ggg ttt gaa gcc tcc agt gct cct aga aat att cct tca Gly Gln Glu Gly Phe Glu Ala Ser Ser Ala Pro Arg Asn Ile Pro Ser 10 20	101
ggg gag ctg gac agc aac cct gac cct ggc acc ggc ccc agc cct gat Gly Glu Leu Asp Ser Asn Pro Asp Pro Gly Thr Gly Pro Ser Pro Asp 25 30	149
ggc ccc tca gac aca gag agc aag gaa ctg gga gta ccc aaa gac cct Gly Pro Ser Asp Thr Glu Ser Lys Glu Leu Gly Val Pro Lys Asp Pro 40	197
ctg ctc ttc att cag ctg aat gag ctg ctg ggc tgg ccc cag gcg ctg Leu Leu Phe Ile Gln Leu Asn Glu Leu Leu Gly Trp Pro Gln Ala Leu 55 60 65	245
gag tgg aga gag aca ggc agc tcc tct gca tct ctg ctc ctg gac atg Glu Trp Arg Glu Thr Gly Ser Ser Ala Ser Leu Leu Leu Asp Met 85	293
gga gaa atg ccc tca ata aca ctg tct acc cac ctt cat cac agg tgg Gly Glu Met Pro Ser Ile Thr Leu Ser Thr His Leu His His Arg Trp 95 100	389
qta ctg ttt gag gag aag ttg gag gtg gct gca ggc cgg tgg agt gcc Val Leu Phe Glu Glu Lys Leu Glu Val Ala Ala Gly Arg Trp Ser Ala 105	437
ccc cac gtg ccc acc ctg gca ctg ccc agc ctc cag aag ctc cgc agc Pro His Val Pro Thr Leu Ala Leu Pro Ser Leu Gln Lys Leu Arg Ser 120 125	485
ctg ctg gcc gag ggc ctt gta ctg ctg gac tgc cca gct cag agc ctc Leu Leu Ala Glu Gly Leu Val Leu Leu Asc Cys Pro Ala Gln Ser Leu Leu Leu Ala Glu Gly Leu Val Leu Leu Asc Cys Pro Ala Gln Ser Leu 150 135	533
ctg gag ctc gtg gag cag gtg acc agg gtg gag tcg ctg agc cca gag ctg gag ctc gtg gag cag gtg acc agg gtg gag tcg ctg agc cca gag Leu Glu Leu Val Glu Gln Val Thr Arg Val Glu Ser Leu Ser Pro Glu 165	581
ctg aga ggg cag ttg cag gcc ttg ctg ctg cag aga ccc cag cat tac Leu Arg Gly Gin Leu Gln Ala Leu Leu Gln Arg 2ro Gln His Tyr 170 175	629
aac cag acc aca ggc acc agg ccc tgc tgg ggc tct act cat cca aga Asn Gln Thr Thr Gly Thr Arg Pro Cys Trp Gly Ser Thr His Pro Arg 195 185	677
aag get tet gae aat gag gaa gee eee etg agg gaa eag tgt eag aac Lys Ala Ser Asp Asn Glu Glu Ala Pro Leu Arg Glu Gln Cys Gln Asn 200 205	725
ccc ctg aga cag aag cta cct cca gga gct gag gca ggg act gtg ctg Pro Leu Arg Gln Lys Leu Pro Pro Gly Ala Glu Ala Gly Thr Val Leu 210 220 225 230	773
gca ggg gag ctg ggc ttc ctg gca cag cca ctg gga gcc ttt gtt cga Ala Gly Glu Leu Gly Phe Leu Ala Gln Pro Leu Gly Ala Phe Val Arg 245	821
ctg cgg aac cct gtg gta ctg ggg tcc ctt act gag gtg tcc ctc cca Leu Arg Asn Pro Val Val Leu Gly Ser Leu Thr Glu Val Ser Leu Pro 250 255 260	969
agc agg ttt ttc tgc ctt ctc ctg ggc ccc tgt atg ctg gga aag ggc Ser Arg Phe Phe Cys Leu Leu Gly Pro Cys Met Leu Gly Lys Gly 275 265 270 275	917
tac cat gag atg gga cgg gca gct gtc ctc ctc agt gac ccg caa Tyr His Glu Met Gly Arg Ala Ala Ala Val Leu Leu Ser Asp Pro Gln	

	280					285				160	200 290	PCT	FINA	L.ST	25	
ttc Phe 295	cag Gln	tgg Trp	tca Ser	gtt Val	cgt Arg 300	cgg Arg	AT 9 dcc	agc Ser	aac Asn	ctt Leu 305	cat His	gac Asp	ctt Leu	ctg Leu	gca Ala 310	965
gcc Ala	ctg Leu	gat Asp	gca Ala	ttc Phe 315	cta Leu	gag Glu	gag Glu	gtg Val	aca Thr 320	gtg Val	cct Leu	ccc Pro	cca Pro	ggt Gly 325	Arg Cgg	1013
tgg Trp	gac Asp	cca Pro	aca Thr 330	gcc Ala	cgg Arg	att Ile	CCC Pro	ccg Pro 335	CCC Pro	aaa Lys	tgt Cys	ctg Leu	cca Pro 340	tct Ser	cag Gln	1061
cac His	aaa Lys	agg Arg 345	ctt Leu	PT0 CCC	tcg Ser	caa Gln	cag Gln 350	cgg Arg	gag Glu	acc Ile	aga Arg	ggt Gly 355	ccc Pro	gcc Ala	gtc Val	1109
ccg Pro	cgc Arg 360	ctg Leu	acc Thr	tcg Ser	gct Ala	gag Glu 365	gac Asp	agg Arg	cac His	cgc Arg	cat His 370	ggg ggg	cca Pro	cac His	gca Ala	1157
cac His 375	agc Ser	ccg	gag Glu	ttg Leu	cag Gln 380	Arg Cgg	acc Thr	ggc Gly	agg Arg	ctg Leu 385	ttt Phe	ggg Gly	gg⊂ Gly	ctt Leu	acc Ile 390	1205
cag Gln	gac Asp	gtg Val	cgc Arg	agg Arg 395	aag Lys	gtc Val	ccg Pro	tqg Trp	tac Tyr 400	CCC Pro	agc Ser	gat Asp	ttc Phe	ttg Leu 405	gac Asp	1253
gcc Ala	ctg Leu	cat His	ctc Leu 410	cag Gln	tgc Cys	ttc Phe	tcg Ser	gcc Ala 415	gta Val	ctc Leu	tac Tyr	att Ile	tac Tyr 420	ctg Leu	gcc Ala	1301
act Thr	gtc Val	act Thr 425	aat Asn	gcc Ala	atc Ile	act Thr	ttt Phe 430	Gly	ggt Gly	ctg Leu	ctg Leu	gga Gly 435	gat Asp	gcc Ala	act Thr	1349
gat Asp	ggt Gly 440	Ala	cag Gln	gga Gly	gtg Val	ctg Leu 445	gaa Glu	açt Ser	ttc Phe	ctg Leu	ggc Gly 450	aca Thr	gca Ala	gtg Val	gct Ala	1397
gga Gly 455	gct Ala	gcc Ala	ttc Phe	tgc Cys	ctg Leu 460	atg Met	gca Ala	ggc	cag Gln	CCC Pro 465	ctc Leu	acc Thr	att Ile	ctg Leu	agc Ser 470	1445
agc Ser	acg Thr	Gly	cca Pro	gtg Val 475	ctg Leu	gtc Val	ttt Phe	gag Glu	cgc Arg 480	ctg Leu	ctc Leu	ttc Phe	tct Ser	ttc Phe 485	agc Ser	1493
aga Arg	gat Asp	tac Tyr	agc Se <i>r</i> 490	ctg Leu	gac Asp	tac Tyr	ctg Leu	CCC Pro 495	rtc Phe	yrg	cta Leu	tgg Trp	gtg Val 500	ggc	atc Ile	1541
tgg Trp	gtg Val	gct Ala 505	acc Thr	ttt Phe	E Ç Z	ctg Leu	gtg Val 510	ctg Leu	gtg Val	gcc Ala	aca Thr	gag Glu 515	gcc Ala	agt Ser	gtg Val	1589
ctg Leu	gtg Val 520	Arg	tac Tyr	ttc Phe	acc Thr	cgc Arg 525	ttc Phe	act Th <i>c</i>	gag Glu	gaa Glu	ggt Gly 530	File	tgt Cys	gcc Ala	ctc Leu	1637
atc Ile 535	Ser	ctc	atc Ile	ttc Phe	atc Ile 540	Tyr	gat Asp	gct Ala	gtg Val	ggc Gly 545	aaa Lys	atg Met	ctg Leu	aac Asn	Leu 550	1685
acc	cat His	acc Thr	tat Tyr	cct Pro 555	atc Ile	cag Gln 	aag Lys	CCT Pro	999 Gly 560	251	tst Ser	gcc	tac Tyr	999 Gly 565	-,-	1733
Leu	Cys	Gln	Tyr 570	Pro	GLY	Pro	GLY	575	ASII	GILL	,361	GIN	580			1781
aca Thr	agg Arg	. cca Pro 585	Lys	gac Asp	aga Arg	gac Asp	gac Asp 590	ile	gta Val	agc Ser	atg Met	gac Asp S95		ggc	ctg Leu	1829
acc	aat	gca	tcc	ttg	ctg	ccq	сса	cct	gag	tgc	acc	cgg	cag	gga	ggc	1877

Ile i	Asn	Ala	Se	r L	eu l	Leu	Pro 605	P10	Pro	Gl	1: u C	6U 7 ys	200 Thr 610	PCT Arg	FI Gl	NAL n G	ST2	25 Gl ₃	/ .	
cac (600				ct (303			_				277	. nc	- t	ī.C	CCC	=	1925
615 tcc Ser	ctt Leu	cto Lev	ct Le	u P			act Thr	tct Ser	ttc Phe	tt Ph 64		tt he	gćt Ala	ato	g go	c c la L	eu 45	aa Ly:	g s	1973
tgt Cys	gta Val	aaq Ly:	g ac s Th	c a		cgc Arg	ttc Phe	ttc Phe	CCC Pro 655	Se	יב יב ע	gtg 7al	gtg Val	Ar o	c aa g Ly 6	aa ç ys C	gg Ly	ct Le	c u	2021
agC Ser	gac Asp	tti Ph	c to		ca Ser.	gtc Val	ctg Leu	gcc Ala 670		ct Le	g d	ctc Leu	ggc Gly	67	t g s G S	gc (ly 1	tt Leu	ga As	t p	2069
	Phe 680	ct Le	g go	ry .	Leu		685		-				690)						2117
Lys	ecc	ac Th	ır L	en	510	700		9 -1	•			705						7.2		2165
		c tq	g t	rb dd	tgg Trp 715	agt Ser	gto Val	gca . Ala	gc Ala	t g a A 7	cc la 20	ctg Leu	ec.	o Al	a I	tg .eu	ctg Leu 725	L	Eg eu	2213
tct Ser	at Il	c ct	su 1	. 1 =		ato Met	gad : Asi	Gl:	a ca n G1 73	ga n I	tc le	aca Thi	gc Al	agt aVá	ic a	itc [le [40	ctc Leu	a A	ac sn	2261
aga Arg	ac Me	t G	aa t	ac Tyr	aga Arg	cto Lei	g car	g aaq n Ly: 75	_	a g	ict la	ggo Gly	e tt / Ph	с са е Н: 7:	ac (is)	ctg Leu	gac	L	tc eu	2309
t t c	tg Cy 76	t g	45 tg (gct Ala	gtç Val	j ct	g at u Me 76		a Ct u-Le	.c a	hr Thr	tca Sea	a go c Al 77	g c a L	tt (gga Gly	ct q Lev	1 P	ro	2357
tgg Trg	g ta		tc al	tca Ser	gca	ac a Th 78	t gt r Va O	c at 1 Il	c to e Se	ec (tg Leu	gc: Al: 78:	t ca a Hi S	c a .s M	tg et	gac Asp	aġi Sei	r I	tt eu 190	2405
CG:	g aq	cg G	ilu	ser	79	5	c tg a Cy		-		800						80	5		2453
Gl	γI:	le F	arg	810)	11 774	g ct		8	15						820				2501
gg G1	a g y A	1a :	tcc Ser B25	ato	: tt	c ct	g go		st g ro V 30	tg al	cto Leu	aa LLy	g t	tc a	itt Lle 335	eca Pro	at Me	g E	ect Pro	2549
g t V a	al L			ggc Gl	e at	c t e Pl	te en	eu T 45	at a yr M	tg	gg9	g gt Y Va	.g g	ca (la /	gcg Ala	Leu	: aç	jc er	agc Ser	2597
[] 99	it c	ag Un	Pne	TH.	E A	3	eo gg g		•			8	65						a / u	2645
G.	ag o	, LO	Asp	Le	8.	75 75	tc t eu L	·			88	0					83	85		2693
L	eu	Phe	Thr	89	0	15 6				895						90	0		atc Ile	2741
a L	ag ys	tct Ser	acc Thr 905	PI	t g	ca q la A	jes a Na 1		atc Ile 910	tts Phe	Pr	:c c	tc eu	atg Met	Let 913	g ct 1 Le 5	g g	gc 1y	ctt Leu	2789

gtg Val	ggg Gly 920	gtc Val	Ar Ar	jaa :gL	ag q ys i	HIQ :	ctg q Leu C 925	iag a	rd A		60 20 tc t he S	C2 C	ca c	ac a	aa c	tc	2837
		ctg Leu	ga L As	it g ip G	Tu :	ctg Leu 940	atg d Met 1	ca e	gag g Glu (gag a Glu A 945	ga a irg S	gc a er I	tc c le P	ct q	ag 11 u 150	2885
	GTÀ ààà	ctq	ga G	Lu P	ca Pro	gaa Glu	cac (ca Ser		egt (Ser (gga a Gly S	igt g ier A	ac a	gt g er G	jaa 9 31u <i>1</i> 965	lat Isp	2933
Ser	Glu	Leu	9. 1 W	ec 1	Ϋ́	GIN	PIG.	wys .	975		gaa a Glu I		9	08		gtg /al	2981
aat Asn	tag	ctg	gag	t aç	ggag	tctg	g ga	gtgg	agac	ccc	aggaa	aac a		gag	gt		3034
gage	ggtg	tga	дg	gaaq	gtgc	:כ ככ	tgat	gttg	agg								3067
<210 <21 <21 <21	1> 2>	91 983 PRT Hom		api	ens												
<40	٥>	91							٠.			•					
Met 1	Glu	ı Me	t L	ys	Leu S	Pro	Gly	Gln	Glu	GLy 10	Phe	Glu i	Ala	Ser	Ser 15	Ala	
Pro	Arc	j As	in I	11e 20	Pro	Ser	Gly	Glu	Leu 25	Ąsp	Ser	Asn	Pro	Asp 30	Pro	Gly ·	
Thr	GL	y 'Pr 35	:o \$	Ser	Pro	Asp	Gly	Pro 40	Ser	Asp	Thr	Glu	Ser 45	ŗàa	Glu	Leu	
Gly	, Va 50	l Pi	:o `]	Lys	Asp	Pro	Leu 55	Leu	Phe	Ile	Gln	Leu 60	Aşn	G1u	Leu	Leu	
Gl y 65	TE	p Pi	:0 (GLn	Ala	Leu 70	Glu	Trp	Arg	Glu	Thr 75	Gly	Ser	Ser	Ser	Ala 80	
Se	c Le	u L	eu	Leu	Asp 85	Met	Gly	Glu	Met	90 90	Ser	Ile	Thr	Leu	Ser 95	The	
His	s Le	u H	is	His 100	Arg	Tep	val	Leu	Phe 105	Glu	Glu	Lys	Leu	Glu 110	Val	Ala	
Al.	a Gl	.y A 1	<i>r</i> g 15	Trp	Ser	- Ala	a Pro	His 120	Val	. Pro	Thr	Leu	Ala 125	Leu	Pro	Ser	
Le	u G! 1:	in L 30	ys	Leu	Arq	g Se:	r Lev 135	Lev	ı Ala	Glu	. Gly	Leu 140	Val	Leu	Leu	dek	
Су 14	3 P1 5	co A	la	Gln	Se	r Le	u Lev O	ı Glu	ı Leı	ı Val	l Glu 155	Gln	Val	The	Arg	Val 160	
Gl	.ນ S	er I	sa	Ser	Pro 16	o Gl 5	u Lei	ı Ar	g Gl	y GL: 170	n Leu D	Gln	Ala	Leu	175	Leu i	
G1	n A	rg E	?=0	Gln 180	Hi:	s Ty	r Ası	n Gl	n Th	r Th. 5	r GL)	, Thr	: Arg	Pro 190	cýs I	ı Tıp	
G1	Ly S	er 1	rhr	His	; Pr	o Ar	g Ly	s Al	a Se	r As	p Ası	n Glu	ı Glu Page	Ala 2 61	a Pro	, Leu	

0

200

16U 200 PCT FINAL.ST25 205

Arg Glu Gln Cys Gln Asn Pro Leu Arg Gln Lys Leu Pro Pro Gly Ala 210 215 220

Glu Ala Gly Thr Val Leu Ala Gly Glu Leu Gly Phe Leu Ala Gln Pro 225 230 235 240

Leu Gly Ala Phe Val Arg Leu Arg Asn Pro Val Val Leu Gly Ser Leu 255 250 255

Thr Glu Val Ser Leu Pro Ser Arg Phe Phe Cys Leu Leu Gly Pro 260 265 270

Cys Met Lau Gly Lys Gly Tyr His Glu Met Gly Arg Ala Ala Ala Val 275 280 285

Leu Leu Ser Asp 2ro Gln Phe Gln Trp Ser Val Arg Arg Ala Ser Asn 290 295 300

Leu His Asp Leu Leu Ala Ala Leu Asp Ala Phe Leu Glu Glu Val Thr 305 310 315 320

Val Leu Pro Pro Gly Arg Trp Asp Pro Thr Ala Arg Ile Pro Pro 335

Lys Cys Leu Pro Ser Gln His Lys Arg Leu Pro Ser Gln Gln Arg Glu 340 345 350

Ile Arg Gly Pro Ala Val Pro Arg Leu Thr Ser Ala Glu Asp Arg His 355 360 365

Arg His Gly Pro His Ala His Ser Pro Glu Leu Gln Arg Thr Gly Arg 370 375 380

Leu Phe Gly Gly Leu Ile Gln Asp Val Arg Arg Lys Val Pro Trp Tyr 385 390 395

Pro Ser Asp Phe Leu Asp Ala Leu His Leu Gln Cys Phe Ser Ala Val 405 410 415

Leu Tyr Ile Tyr Leu Ala Thr Val Thr Asn Ala Ile Thr Phe Gly Gly 420 425 430

Leu Leu Gly Asp Ala Thr Asp Gly Ala Gln Gly Val Leu Glu Ser Phe 435 440 445

Leu Gly Thr Ala Val Ala Gly Ala Ala Phe Cys Leu Met Ala Gly Gln 450 460

Pro Leu Thr Ile Leu Ser Ser Thr Gly Pro Val Leu Val Phe Glu Arg
480

Leu Leu Phe Ser Phe Ser Arg Asp Tyr Ser Leu Asp Tyr Leu Pro Phe 485 490 495

Arg Leu Trp Val Gly Ile Trp Val Ala Thr Phe Cys Leu Val Leu Val 500 505 510

16U 200 PCT FINAL.ST25
Ala Thr Glu Ala Ser Val Leu Val Arg Tyr Phe Thr Arg Phe Thr Glu
515
520
525

Glu Gly Phe Cys Ala Leu Ile Ser Leu Ile Phe Ile Tyr Asp Ala Val 530 535 540

Gly Lys Met Leu Asn Leu Thr His Thr Tyr Pro Ile Gln Lys Pro Gly 545 550 560

Ser Ser Ala Tyr Gly Cys Leu Cys Gln Tyr Pro Gly Pro Gly Asn 565 570 575

Glu Ser Gln Trp Ile Arg Thr Arg Pro Lys Asp Arg Asp Asp Ile Val 580 585 590

Ser Met Asp Leu Gly Leu Ile Asn Ala Ser Leu Leu Pro Pro Pro Glu 595 600 605

Cys Thr Arg Glm Gly Gly His Pro Arg Gly Pro Gly Cys His Thr Val 610 620

Pro Asp Ile Ala Phe Phe Ser Leu Leu Leu Phe Leu Thr Ser Phe Phe 625 630 635 640

Phe Ala Met Ala Leu Lys Cys Val Lys Thr Ser Arg Phe Phe Pro Ser 645 650 655

Val Val Arg Lys Gly Leu Ser Asp Phe Ser Ser Val Leu Ala Ile Leu 660 665 670

Leu Gly Cys Gly Leu Asp Ala Phe Leu Gly Leu Ala Thr Pro Lys Leu 675 685

Met Val Pro Arg Glu Phe Lys Pro Thr Leu Pro Gly Arg Gly Trp Leu 690 695 700

Val Ser Pro Phe Gly Ala Asn Pro Trp Trp Trp Ser Val Ala Ala Ala 705 710 715 720

Leu Pro Ala Leu Leu Leu Ser Ile Leu Ile Phe Met Asp Gln Gin Ile 725 730 735

Thr Ala Val Ile Leu Asn Arg Met Glu Tyr Arg Leu Gln Lys Gly Ala 740 745 750

Gly Phe His Leu Asp Leu Phe Cys Val Ala Val Leu Met Leu Leu Thr 755 760 765

Ser Ala Leu Gly Leu Pro Trp Tyr Val Ser Ala Thr Val Ile Ser Leu 770 780

Ala His Met Asp Ser Leu Arg Arg Glu Ser Arg Ala Cys Ala Pro Gly 785 790 795 800

Glu Arg Pro Asn Phe Leu Gly Ile Arg Glu Gln Arg Leu Thr Gly Leu 805 810 815

Val Val Phe Ile Leu Thr Gly Ala Ser Ile Phe Leu Ala Pro Val Leu 820 830

Lys Phe Ile Pro Met Pro Val Leu Tyr Gly Ile Phe Leu Tyr Met Gly

Val Ala Ala Leu Ser Ser Ile Gln Phe Thr Asn Arg Val Lys Leu Leu 850 855 860

Leu Met Pro Ala Lys His Gln Pro Asp Leu Leu Leu Leu Arg His Val 865 870 870 875

Pro Leu Thr Arg Val His Leu Phe Thr Ala Ile Gln Leu Ala Cys Leu 885 890 895

Gly Leu Leu Trp Ile Ile Lys Ser Thr Pro Ala Ala Ile Ile Phe Pro 900 905 910

Leu Met Leu Gly Leu Val Gly Val Arg Lys Ala Leu Glu Arg Val 915

Phe Ser Pro Gln Glu Leu Leu Trp Leu Asp Glu Leu Met Pro Glu Glu 930 940

Glu Arg Ser Ile Pro Glu Lys Gly Leu Glu Pro Glu His Ser Phe Ser 945 950 955 960

Gly Ser Asp Ser Glu Asp Ser Glu Leu Met Tyr Gln Pro Lys Ala Pro 965 970 975

Glu Ile Asn Ile Ser Val Asn . 980

<210> 92

<211> 700 DNA

<212> Homo sapiens <213>

<220>

<221> CDS <222> (60)..(497)

<223> -

gaaagaagga aataaacaca ggcaccaaac cactatccta agttgactgt cetttaaat

ggg atc ttg tgt ttg ccg cta ttc cag ttg gtg ctc tcg gac cta cca Gly Ile Leu Cys Leu Pro Leu Phe Gln Leu Val Leu Ser Asp Leu Pro 20 25

tgc gaa gaa gat gaa atg tgt gta aat tat aat gac caa cac cct aat Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln His Pro Asn 35 40

ggc tgg tat atc tgg atc ctc ctg ctg ctg gtt ttg gtg gca gct ctt ctg Trp Tyr Ile Trp Ile Leu Leu Leu Val Leu Val Ala Ala Leu 50 55

ctc tgt gga gct gtg gtc ctc tgc ctc cag tgc tgg ctg agg aga ccc Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys Trp Leu Arg Arg Pro 65 70 80

cga att gat tot cac agg cgc acc atg gca gtt ttt gct gtt gga gac Arg Ile Asp Ser His Arg Arg Thr Met Ala Val Phe Ala Val Gly Asp 85 90 95

ttg gac tot att tat ggg aca gaa gca gct, gtg agt cca act gtt gga

395

203

251

299

347

CDS (44)..(772)

443

491

547

607 667 700

Leu Asp Ser Ile Tyr Gly Thr Glu Ala Ala Val Ser Pro Thr Val	Gly
att cac ctt caa act caa acc cct gac cta tat cct gtt cct gct lle His Leu Gln Thr Gln Thr Pro Asp Leu Tyr Pro Val Pro Ala	CCA Pro
tgt ttt ggc cct tta ggc tcc cca cct cca tat gaa gaa att gta Cys Phe Gly Pro Leu Gly Ser Pro Pro Pro Tyr Glu Glu Ile Val 130	-•
aca acc tgattttagg tgtggattat caatttaaag tattaacgac atctgta Thr Thr 145	
ccaaaacatc aaatttagga atagttattt cagttgttgg aaatgtccag agat	
atatagtotg aggaaggaca attogacaaa agaatggatg ttggaaaaaa tttt	ggtcat
ggagatgttt aaatagtaaa gtagcaggct ttt	
<210> 93 <211> 146 <212> PRT <213> Homo sapiens	
<pre><400> 93 Met Ser Arg Ser Arg Leu Phe Ser Val Thr Ser Ala Ile Ser Thr 1</pre>	r Ile
Gly Ile Leu Cys Leu Pro Leu Phe Gin Leu Val Leu Ser Asp Leu 20 25 30	1 bro
Cys Glu Glu Asp Glu Met Cys Val Asn Tyr Asn Asp Gln His Pro 35 40 45	a Asn
Gly Trp Tyr Ile Trp Ile Leu Leu Leu Leu Val Leu Val Ala Ala 50 55 60	a Leu
Leu Cys Gly Ala Val Val Leu Cys Leu Gln Cys Trp Leu Arg Arc 65 70 75	80 Pro
Arg Ilê Asp Ser His Arg Arg Thr Met Ala Val Phe Ala Val G1 85 90 95	y Asp
Leu Asp Ser Ile Tyr Gly Thr Glu Ala Ala Val Ser Pro Thr Va 100 105 110	l Gly
Ile His Leu Gln Thr Gln Thr Pro Asp Leu Tyr Pro Val Pro Al 115 120 125	a Pro
Cys Phe Gly Pro Leu Gly Ser Pro Pro Pro Tyr Glu Glu Ile Va 130 135	l Lys
The The	
<210> 94 <211> 1324 <212> DNA <213> Homo sapiens	٠

16U 200 PCT FINAL.ST25	
<400> 94 ctttgcagtg gatgcccttg gcagggtgag cccacaagga gca atg gag cag ggc Met Glu Gln Gly 1	\$5
ago ggo cgo ttg gag gao tto cot gto aat gtg tto too gto act cot lago ggo cgo ttg gag gao tto cot gto act cot lago ggo ggo cgo ttg gag gao tto cot gto aat gtg tto tco gto act cot lago ggo ggo ggo gao tto cot gto act cot lago ggo ggo ggo ggo ggo ggo ggo ggo ggo	.03
tac aca ccc agc acc gct gac atc cag gtg tcc gat gat gac aag gcg tac aca ccc agc acc gct gac atc cag gtg tcc gat gat gac aag gcg Tvr Thr Pro Ser Thr Ala Asp Ile Gln Val Ser Asp Asp Asp Lys Ala Tvr Thr Pro Ser Thr Ala Asp Ile Gln Val Ser Asp Asp Asp 35	151
ggg gcc acc ttg ctc tca ggc atc ttt ctg gga ctg gtg ggg atc Gly Ala Thr Leu Leu Phe Ser Gly Ile Phe Leu Gly Leu Val Gly Ile 40 45	199
aca tto act gto atg ggo tgg ato aaa tao caa ggt gto too cao ttt Thr Phe Thr Val Met Gly Trp Ile Lys Tyr Gln Gly Val Ser His Phe	247
gaa tgg acc cag ctc ctt ggg ccc gtc ctg ctg tca gtt ggg gtg aca Glu Trp Thr Gln Leu Leu Gly Pro Val Leu Leu Ser Val Gly Val Thr 75	295
ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg ttc atc ctg att gct gtg tgc aag ttc aaa atg ctc tcc tgc cag ttg	343
tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gtc ccg gac tcg gaa cag aca cca gga tgc aaa gaa agt gag gaa agg gac tcg gaa tcg ga	391
gga cca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca tca ttt gtt ttc act ggc atc aac caa ccc atc acc ttc cat gga cca tca tca tca tca tca tca tca tca tc	439
ggg gcc act gtg gtg cag tac atc cct cct tat ggt tct cca gag Gly Ala Thr Val Val Gln Tyr Ile Pro Pro Pro Tyr Gly Ser Pro Glu 145	487
cct atg ggg ata aat acc agc tac ctg cag tct gtg gtg agc ccc tgc	535
ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct ggc ctc ata acc tot gga ggg gca gca gcc gcc atg tca agt cct ggc ctc atg tca agt cct cct ggc ct	583
caa tac tac acc atc tac cct caa gat aac tct gca ttt gtg gtt gat caa tac tac acc atc tac cct caa gat aac tct gca ttt gtg gtt gat Gln Tyr Tyr Thr Ile Tyr Pro Gln Asp Asn Ser Ala Phe Vai Val Asp	631
gag ggc tgc ctt tct ttc acg gac ggt gga aat cac agg ccc aat cct glu Gly Cys Leu Ser Phe Thr Asp Gly Gly Asn His Arg Pro Asn Pro Glu Gly Cys Leu Ser Phe Thr Asp Gly Gly Asn His Arg Pro 210	679
gat gtt gac cag cta gaa gag aca cag ctg gaa gag gac tgt gcc gat gtt gac cag cta gaa gag aca cag ctg gaa gag gcc tgt gcc Asp Val Asp Gln Leu Glu Glu Hr Gln Leu Glu Glu Glu Ala Cys Ala 220 225	727
tgc ttc tct cct ccc tat gaa gaa ata tac tct ctc cct cgc tgc ttc tct cct ccc tat gaa gaa ata tac tct ctc cct cgc	772
270	832
tagaggetat tetgatataa taacacaatg etcagetcag ggagcaagtg ttteegtcat	892
tgttacctga caaccqtggt gttctatgtt gtaaccttca gaagttacag cagcgcccag	952
geageetgae agagateatt caagggggga aaggggaagt gggaggtgea attteteaga	1012
triggramma traggerigg crigginal refrectering macaginates and accepted	1072
ggtaagaaat ctcctgtata aggttcagga gcaggaattt cactttttca tccaccacct tcccccttct ctgtaggaag gcattggtgg ctcaatttta accccagcag ccaatggaaa	1132
tececettet etgragaag geattggtgg eterateter as	1192
aatcacqact totqaqactt tqqqaqtttt totalagay	

			160	200 PCT FIN	AL.ST25	1252
cagggaagag	aaagcaggcc	cagctggaga	tttcctggtg	gctgtccttg	gccccaaagc	1232
						1312
_						1324
ttaaagacta.	ta					

<210> 95 <211> 243 <212> PRT <213> Homo sapiens

<400> 95

Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro Val Asn Val Phe 10 15

Ser Val Thr Pro Tyr Thr Pro Ser Thr Ala Asp Ile Gln Val Ser Asp 20 25 30

Asp Asp Lys Ala Gly Ala Thr Leu Leu Phe Ser Gly Ile Phe Leu Gly 35 40 45

Leu Val Gly Ile Thr Phe Thr Val Met Gly Trp Ile Lys Tyr Gln Gly 50 60

Val Ser His Phe Glu Trp Thr Gln Leu Leu Gly Pro Val Leu Leu Ser 65 70 80

Val Gly Val Thr Phe Ile Leu Ile Ala Val Cys Lys Phe Lys Met Leu 85 90 95

Ser Cys Gln Leu Cys Lys Glu Ser Glu Glu Arg Val Pro Asp Ser Glu 100 105 110

Gln Thr Pro Gly Gly Pro Ser Phe Val Phe Thr Gly Ile Asn Gln Pro 115 120 125

Ile Thr Phe His Gly Ala Thr Val Val Gln Tyr Ile Pro Pro Pro Tyr 130 135 140

Gly Ser Pro Glu Pro Met Gly Ile Asn Thr Ser Tyr Leu Gln Ser Val 145 150 155 160

Val Ser Pro Cys Gly Leu Ile Thr Ser Gly Gly Ala Ala Ala Ala Met 165 170 175

Ser Ser Pro Pro Gln Tyr Tyr Thr Ile Tyr Pro Gln Asp Asn Ser Ala 180 185 190

Phe Val Val Asp Glu Gly Cys Leu Ser Phe Thr Asp Gly Gly Asn His 195 200 205

Arg Pro Asn Pro Asp Val Asp Gln Leu Glu Glu Thr Gln Leu Glu Glu 210 215 220

Glu Ala Cys Ala Cys Phe Ser Pro Pro Pro Tyr Glu Glu Ile Tyr Ser 225 230 235 240

Leu Pro Arg

<210> 96

<211> 5350 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (2275)..(3213)

<223>

gtccaggcgt accatgactc tcacattttg cagttgtttt atttgacggg acagacattg 60 actgacagtg gctggagcag ggctgatagt gaarttetga aacggtttae ctgattetet 120 getttetgag ttettggata tetgagagae agggeeteta tgetgtttea etgetggata 180 tatgetteat tettggacea taatetettt tecaaatett tetagatgat gttgetteat 240 tgtcttttgg aatctactaa ataattccac tgaattzttg aagtttattg ggaattattt 300 attitgccit tatacitaga aaattacitt cigciccagg aaaatatagt tiattagict 360 agtaatttat taattgacta aaatctacca titgttatgg ccaatgacat gtttatttac 420 tgaaaataca ttaagtcccc tttggtttta agtctcttaa cataagaaag caatttgtta 480 aaaactggca ttactttact cttatgcttt ctgtgtcctt tgctaagtat ttctaaaaca 540 aaatgaaaac ccacgagttt agtcttggcc agggcaagat atttgaaata aaaaaggaaa 500 taatatgacc aattgcaata attcttattt ataaatttta agttaatgat aaaaaatata 660 aagtgtacat tacaatgtaa aaggttacat aagaaaagct gcaatataaa aaggatgaat 720 atgtgtctga tttaaataaa catttgacac gttattaata tattgaacat taatgatatc 780 taaaactatt cattttataa aggatatgca ttttctttaa gtagagaata ataataatga 840 gcatccatat gtaaatcaca gaattetgaa caagagaaag atagtgctat caacgggaaa 900 gggctgacca gcaccactga ccccccaaaa tagccaggta gaagaagagt cctacagcct 960 attacaaggt gattaattga ctagatgctc tgagaagaaa ttggaacttg gatgatctga 1020 agatagttat ctcaattgat tgttcacagc cagttacaga tagaattcct tgttctacat 1080 tttcctccct tctcactagt gcacttgagt agtctttaaa aaaaattgca acttcagaga 1140 cccccarget tgaaccactg ggagaagaaa cettaggatg acctacetge atacaataaa 1200 tatgttggat gtcacgataa gataagtata aartgaggca aactttctct caccaaaatt 1260 ctacaggcaa aatggggaga ttggaagaaa agatgtgggc ttgtaaaatc caattacatt 1320 ttactttaat tttataaaga aggttcacat caagaaattc caagtgaggt tcagaccaat 1380 cacctcagaa taaactgatt qgatqataat qctqattcct aaagcatcat tgatctqaqa 1440 tagccataat tittittiga tatcitigaaa gattggcaga aacacaacgg attagaacat 1500 ctigatggaa attatgaaaa tatgaataaa taactcacaa gattaatgtc tttgtaatag 1560 gttaagtgga agtataaaaa tacattttat aaatcacata tgtgtaaaag taaatcattt 1620 tagagaaatt tacaagttgt actagtgtet ttaatacatt taaagaaatt tgactaaatt 1680 tgtaacgtta tataagggtt tggaatttta tgtttaaaat gtttacaatt actggtggct 1740 taatatattq cttttaagta tigaaaaatt gtatgttegt agatitgtaa egagatitaa 1800 gaaacacaag tattactaat cottttttgc agacatgact cttgagggtc aaatatatag 1860 aaatatotat attggttatt agototgtaa aacoocatgg gaatgggatt,tgggcaatao 1920 aggaacatgc aactataaga tactaacaca cacaaaatgt gaacatatat aagtaaaaat 1980 aactattagt gactatataa totataggaa ataatttaat ticagttgta tggacctott 2040 cattgagaat ataaatattt cattcccatt ctagatgggg aatcagattc acaatctaat 2100

160 200 PCT = TARE. 3123	
gtgctgtctc titttagtgc aaattcacag ttcatgttgg aaatacactc tgattttcac	2160
attgattttt aaaaggtaaa gtgaagcaaa catactttta cgtggtacac acatgattat	2220
attgattiti adadggetta y y a agccacttca gccgatcata cagc atg aaataaagtt tacttttgtc ctccaggtaa agccacttca gccgatcata cagc atg Met 1	2277
cgg ctg gcc aac cag acc ctg ggt ggt gac ttt ttc ctg ttg gga atc Arg Leu Ala Asn Gln Thr Leu Gly Gly Asp Phe Phe Leu Leu Gly Ile 10	2325
ttc agc cag atc tca cac cct ggc cgc ctc tgc ttg ctt atc ttc agt the ser Gln Ile Ser His Pro Gly Arg Leu Cys Leu Leu Ile Phe Ser Phe Ser Gln Ile Ser His Pro Gly Arg Leu Cys Leu Deu Ile Phe Ser	2373
ata tit tig atg get gig tet tigg aat att aca tig ata ett etg atc ata tit tig atg get gig tet tigg aat att aca tig ata ett etg atc ata tit tig atg get gig tet tigg aat att aca tig ata ett etg atc ata tit tig atg get gig tet tigg aat att aca tig ata ett etg atc ata tit tig atg ett etg atc ata tit aca tig ata ett etg ata ett etg ata ata tit aca tig atg etg atc ata tit aca tig ata ett etg ata ett etg ata ata ett aca tig atg etg etg etg etg etg etg etg etg etg e	2421
cac att gac too tot otg cat act occ atg tac tto ttt ata aac cag His Ile Asp Ser Ser Leu His Thr Pro Met Tyr Phe Phe Ile Asn Gln SS 60 65	2469
ctc tca ctc ata gac ttg aca tat att tct gtc act gtc ccc aaa atg ctc tca ctc ata gac ttg aca tat att tct gtc act gtc ccc aaa atg Leu Ser Leu Ile Asp Leu Thr Tyr Ile Ser Val Thr Val Pro Lys Met Leu Ser Leu Ile Asp Leu Thr Tyr Ile Ser Val Thr Val Pro Lys Met 70 75	2517
ctg gtg aac cag ctg gcc aaa gac aag acc atc tcg gtc ctt ggg tgt Leu Val Asn Gin Leu Ala Lys Asp Lys Thr Ile Ser Val Leu Gly Cys 95	2565
ggc acc cag atg tac ttc tac ctg cag ttg gga ggt gca gag tgc tgc Gly Thr Gln Met Tyr Phe Tyr Lau Gln Leu Gly Gly Ala Glu Cys Cys	2613
ctt cta gcc gcc atg gcc tat gac cgc tat gtg gct atc tgc cat cct ctt cta gcc gcc atg gcc tat gac cgc tat gtg gct atc tgc cat cct ctt cta gcc gcc atg gcc tat gac cgc tat gtg gct atc tgc cat cct ctt cta gcc gcc atg gcc tat gac cgc tat gtg gct atc tgc cat cct ctt cta gcc gcc atg gcc tat gtg gct atc tgc cat cct ctc cta gcc gcc atg gcc tat gtg gct atc tgc cat cct ctc cta gcc gcc atg gcc tat gtg gct atc tgc cat cct ctc cta gcc gcc atg gcc tat gtg gct atc tgc cat cct ctc cta gcc gcc atg gcc tat gtg gct atc tgc cat cct ctc cta gcc gcc atg gcc tat gtg gct atc tgc cat cct ctc cta gcc gcc atg gcc tat gtg gct atc tgc cat cct ctc cta gcc gcc atg gcc tat gtg gct atc tgc cat cct ctc cta gcc gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc tat gcc tat gtg gct atc tgc cat cct ctc cta gcc gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc atg gcc tat gcc cat cct ctc cta gcc gcc atg gcc atg gcc tat gcc gcc atg gc	2661
ctc cgt tac tot gtg ctc atg agc cat agg gta tgt ctc ctc ctg gca ctc cgt tac tot gtg ctc atg agc cat agg gta tgt ctc ctc ctg gca Leu Arg Tyr Ser Val Leu Met Ser His Arg Val Cys Leu Leu Leu Ala Leu Arg Tyr Ser Val Leu Met Ser His Arg 140	2709
tca ggc tgc tgg ttt gtg ggc tca gtg gat ggc ttc atg ctc act ccc tca ggc tgc tgg ttt gtg ggc tca gtg gat ggc ttc atg ctc act ccc tca ggc tgc tgg ttt gtg ggc tca gtg gat ggc ttc atg ctc act ccc tca ggc tgc tgg ttt gtg ggc tca gtg gat ggc ttc atg ctc act ccc tca ggc tgc tgc tgg ttt gtg ggc tca gtg gat ggc ttc atg ctc act ccc tca ggc tgc tgc tgg ttc atg ctc act ccc tca ggc tgc tgc atg ggc tca gtg gat ggc ttc atg ctc act ccc	2757
atc gcc atg agc ttc ccc ttc tgc aga tcc cat gag att cag cac ttc Ile Ala Met Ser Phe Pro Phe Cys Arg Ser His Glu Ile Gln His Phe 165 170 175	2905
tto tgt gag gto cot got gtt ttg aag oto tot tgc toa gac aco toa Phe Cys Glu Val Pro Ala Val Leu Lys Leu Ser Cys Ser Asp Thr Ser	2953
ctt tac aag att ttc atg tac ttg tgc tgt gtc atc atg ctc ctg ata ctt tac aag att ttc atg tac ttg tgc tgt gtc atc atg ctc ctg ata Leu Tyr Lys Ile Phe Met Tyr Leu Cys Cys Val Ile Met Leu Leu Ile 200 205	2901
cct gtg acg gtc att tca gtg tct tac tac tat atc atc ctc acc atc ect gtg acg gtc att tca gtg tct tac tac tat atc atc ctc acc atc cct gtg acg gtc att tca gtg tct tac tac tat atc atc ctc acc atc cct gtg acg gtc att tca gtg tct tac tac tat atc atc ctc acc atc cct gtg acg gtc att tca gtg tct tac tac tat atc atc atc ctc acc atc cct gtg acg gtc att tca gtg tct tac tac tat atc atc atc atc atc atc	2949
cat aag atg aac toa gtt gag ggt cgg aaa aag gcc ttc acc acc tgc cat aag atg aac toa gtt gag ggt cgg aaa aag gcc ttc acc acc tgc cat aag atg aac toa gtt gag ggt cgg aaa aag gcc ttc acc acc tgc cat aag atg atg aac toa gtt gag ggt cgg aaa aag gcc ttc acc acc tgc cat aag stg atg acc acc tgc 235 240	2997
tcc tcc cac att aca gtg gtc agc ctc ttc tat gga gct gct att tac tcc tcc cac att aca gtg gtc agc ctc ttc tat gga gct gct att tac Ser Ser His Ile Thr Val Val Ser Leu Phe Tyr Gly Ala Ala Ile Tyr 245 245	3045
aac tac atg ctc ccc agc tcc tac caa act cct gag aaa gat atg atg Asn Tyr Met Leu Pro Ser Ser Tyr Gln Thr Pro Glu Lys Asp Met Met 270 265	3093
tca tcc ttt ttc tac act atc ctt aca cct gtc ttg aat cct atc att ser Ser Ser Phe Phe Tyr Thr Ile Leu Thr Pro Val Leu Asn Pro Ile Ile Page 69	3141

	16U ZOO PCT FINAL.ST25
280	285

16U 200 PCT FINAL.5123	
275 280 203 tac agt ttc agg aat aag gat gtc aca agg gct ttg aaa aaa atg ctg 318 tac agt ttc agg aat aag gat gtc aca agg gct ttg aaa aaa atg ctg 318 Tyr Ser Phe Arg Asn Lys Asp Val Thr Arg Ala Leu Lys Lys Met Leu Tyr Ser Phe Arg Asn Lys Asp Val Thr Arg Ala Leu Lys Lys Met Leu 205 300 305	9
290 224	3
Ser Val Gln Lys Pro Pro Tyr 310 tettagagte tetetteact traggtgtee trecaceasa casteagest attgtggtag 330	3
tgtctgactc cctgagttgt ccttcagggg gattcagccc agtgttcttc cctcctataa 336	i3
teacactiga gatgatete actiatecce eceticecte giageatiga tetetagice 342	!3
agteettegg ggccaatggt cetttttta gattacagtg gagaaatatg aaaataaatg 348	33
agtecticgg ggccaatggt cottetetta gattataggs 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13
tgtttatgac cottgageat testesses gaggatect cagcatecac tetgtgetaa 36	03
attgatgagt atgaaataac accatattca gagtgttcct cagcatccac tetgtgctaa 36 acgetttteg ttcaccacct cattegacct teaccetetg tggetgagge taaggtcacc 36	63
acgettteg tteaceacet cattlyacet tablatana tractiques caageaggg 37	23
cacatttcac aaatgacaaa acagcetttg aggetteece tgaettgeee caagcagggg 37	83
abortrange acaaqqqqqt trattrator ataqqratit qqaqataaac acattoody	
corcagagar gotadatgta cagtigagat tittottoca toagaattio tagaatgigt	
neterational attettatti tetigtigagea tataagaagt caaacctccc aaaattagag	·03 `
annuagety goctatocag tagacatggg ctacaacatg titggagtat aattggttta 32	123
arcatagact taaccagaga aatatggaag tttcgcacac ttctccctgt tcaagccaa	183
artgacacar acttagaata taatttcaaa tcacagtttt acgtatgtgc atggttytat	
tropartrae caeetaacat aataactata acgtottgtg tgattattat gatotygodo	143
continued occidents tanggaacac tittattite acageetatt accageetat	203
thoracagit datitaacig aaacccatgg gittgagtaa catgaacaaa agggigigia	263
gorraraag toctcaacag ggatttaagc ccaggcaggc aggccggagt ccctycccc.	323 383
gaccactgca totoccacgt cttgtggagt ctgtggcctt ttccacactg cartgcccc	443
accretagga addecatact ecaacettgg aaacactata gttettteea tacceaatge .	503
producting etticoctor ettoggaatg tettettate tgraagtaca aggalacyaa	563
caractite catgactaca taatetteet ttaggeecca agteatteat teatteada	623
	1683
bracessac agatagagat cttcatcttt tttagcactt agagggtgta tacagagagat	1743
antinggra attgagaaga agacatggag tattatcaga agaaaagtgt tggaaaacca	1803
reaggaggag aggggtottg gagtgtgtag gggtcacgtt ttatgtaggg atttaggeta	4863
accertacts oftataging agcaaagang togagintac aagitaanga godacanga	4923
rattgggaga aatgotttea agacagagca tagggacato taccagoong teaatcaaga	4983
stocagtagg accatgioto agtaataggg atgaactaga tgtagattga geolaacee	5043
TARRARAA AAEGAEAGTA AAAEGAEAGTEE EECCAACAAA CAAAAGTEGGA CAAAACECCC	5103
anggaraga aaaattatot caaaagtaaa otcagaaata taagcaaaaa tgacaaacat	5163
anagercaes gagtaatatg taaatgagto ataatcaata ttgacttago aataatttu	5223
argraera cagettagat tegegcaada cetaaatgta egaadaatca egetydagae	5283
anabasatar Egatgtagta qaggtagtaa attgtgttaa accttagtaa atcaaqayta	5343
catgotgtaa tgtttatagt aaacgocaaa accagtttat aaaatgaaaa aatgatagat Page 70	-
take in	

5350

16U 200 PCT FINAL.ST25

בבב.	aca														
<210 <211 <212 <213	> 3 > F	7 12 RT	sapi	ens											
<400		7													
Met 1	Arg	Leu	Ala	Asn S	Gln 1	The 1	Leu (Gly (Gly 10	Asp	Phe	Phe	Leu	Leu 15	Gly
Ile	Phe	Ser	Gln 20	Ile	Ser l	dis '	Pro (Gly 25	Arg	Leu	Cys	Leu	Leu 30	Ile	?he
Ser	Ile	Phe 35	Leu	Met	Ala '	Val	Ser 40	Trp	Ásn	Ile	Thr	Leu 45	Ile	Leu	Leu
Ile	His 50	Ile	Asp	Ser	Ser	Leu 55	His	Thr	ēza	Met	Tyr 60	₽ħe	Phe	Ile	Asn
Gln 65	Leu	Ser	Leu	Ile	Asp 70	Cen	The	Tyt	Ile	Ser 75	Vaļ	The	Val	Pro	Lys 80
Met	Leu	Val	Asn	Gln 85	Leu	Ala	Lya _.	Asp	Lys 90	The	Ile	Ser	Val	Leu 95	Gly
Çys		Thr	Gln 100	. Met	Tyr	Phe	Tyr	Leu 105	Gln	Leu	Gly	Glγ	Ala 110	Glu	CÃa
Cys	Lev	Lev 115	ı Ala	Ala	Met	Ala	Туг 120	Asp	Arg	Tyc	Val	Ala 125	Ile	Cys	His
PEC	130	ı Arq	д Туг	: Ser	Val	Leu 135	Met	Ser	His	Arg	Val 140	Суз	Leu	Leu	Leu
AL6	s Se	e GL	у Суз	TIP	Phe 150	Val	Gly	Ser	Val	. Asp 155	Gly	, Phe	Met	: Leu	160
Pr	o Iʻr	e Al	a Mei	165	Phe	Pro	Phe	Cys	Arg 170	g Ser	Hi:	s Glu	Ile	: Glr 175	His ;
Ph	e Ph	e Cy	s Gl	u Val	l Pro	Ala	. Val	Leu 185	Ly:	s Le	ı Se	с Суз	190	c Asg	The
Se	r Le	u Ty 19	r Ly	s Il	e Phe	Met	775 200	: Leu	ı Cy	s Cy:	g Va.	1 Ile 205	Me!	t Le	ı Leu
11	e P:	o Va .0	l Th	r Va	l Ile	215	z Val	. Se	c Ty	r Ty	r Ty 22	r Ile O	e Il	e Le	u Thr
11 22	.e Hi :5	.s Ly	rs Me	t As	n Ser 230	va!	1 G1 1	ı Gl	y AI	g Ly 23	s Ly 5	s Al	a Ph	e Th	r Thr 240
Cy	/S S	er Se	er Hi	.s Il 24	e Thi 5	c Va.	l va.	L Se	r Le 25	u Pb O	ie Ty	r Gl	y Al	a Al 25	a Ile 5
						_			1	- T	. Pr	:o G1	u Lu	s As	o Mec

Met Ser Ser Phe Phe Tyr Thr Ile Leu Thr Pro Val Leu Asn Pro Ile 275

The Tyr Ser Phe Arg Asn Lys Asp Val Thr Arg Ala Leu Lys Lys Met 290 295

Leu Ser Val Gln Lys Pro Pro Tyr 305 310

305	10		
<pre><210> 98 <211> 3486 <212> DNA <213> Homo sapiens</pre>			
<220> <221> CDS <222> (1)(3483) <223>			
<pre><400> 98 atg ggg cca cct gaa t Met Gly Pro Pro Glu i .</pre>	itc atg tat gaa o	cag cag gac aat tca Gln Gln Asp Asn Ser 10	acg cac 48 The His 15
ctg cag cca ctt aag a Leu Gln Pro Leu Lys 1	aca tgc ccc gtg Thr Cys Pro Val 25	gca agg cag cta atc Ala Arg Gln Leu Ile 30	cga ggg 96 Arg Gly
gtg ctg cgg gca cct val Leu Arg Ala Pro	gat gga gcc aag Asp Gly Ala Lys 40	cca gga gag gac agg Pro Gly Glu Asp Arg 45	ggc cag 144 Gly Gln
gcc cgc tgc aat gga Ala Arg Cys Asn Gly	cgt gta tgt gga Arg Val Cys Gly 55	gag aaa tca aaa caa Glu Lys Ser Lys Gln 60	cct att 192 Pro Ile
Glu Ala Phe Lys Plo	gtc tgc tac aaa Val Cys Tyr Lys 70	ccc caa ttt atg tcc Pro Gln Phe Met Ser 75	cac att 240 His Ile 80
att ccc ctt tac tcc Ile Pro Leu Tyr Ser 85		cag agt tcc agc caa Gln Ser Ser Ser Gln 90	tcc aag 288 Ser Lys 95
ctg cct gca cat ctc Lau Pro Ala His Lau	cat ttg gac ccc His Leu Asp Pro	tta ggc tgt gcc agt Leu Gly Cys Ala Ser 110	ctc agc 336 Leu Ser
	ccc tca cca cct Pro Ser Pro Pro	tat tac cca ggg ttg Tyr Tyr Pro Gly Leu 125	gta cta 384 Val Leu
gga tgc agc aag cag Gly Cys Sec Lys Gln	aat act gga ggt Asn Thr Gly Gly 135	gca aaa tgt cag aac Ala Lys Cys Gln Lys 140	cca ctc . 432 pro Leu
The Arg Arg the Gru	cac ttg gga aca His Leu Gly Tho	gca aag aag ccc aag Ala Lys Lys Pro Lys 155	g aaa tca 480 a Lys Ser 160 .
gtc tgg cca ctg cag Val Trp Pro Leu Glr 165	1 367 20	a aga gat ttg aag ct n Acg Asp Leu Lys Le 170	g gtc aat 528 u Val Asn 175
	,	a agg acc tgg ggt gc o Arg Thr Trp Gly Al 5	a gca acc 576 a Ala Thr O
•	t gaa gag gcc aa o Glu Glu Ala As 200	c agc ggt cag cag aa n Ser Gly Gln Gln As 205	c ata aag 624 n Ile Lys
	t gtc tct ctg gg g Val Ser Leu Gl 215	g aac aac act ggt to y Asn Asn Thr Gly Se 220	er cor trg 672 er Pro Lau
			_

tgt tcc acg gag gtg aac ttt ggc agc agg cag cag ggc aag ctg aat Cya Ser Thr Glu Val Asn Phe Gly Ser Arg Gln Gln Gly Lys Leu Asn 230 235 240	720
aga acc acc agg gaa gca tgg aag gac agc cgc tgg gat ctg cca aga Thr Thr Arg Glu Ala Trp Lys Glu Ala Ser Arg Trp Asp Leu Pro Arg Thr Thr 245 245 250 255	7 68
gct ctg ggc ccc agc ggc cac cct ctg cag ctc aaa gtc acc ttt gct Ala Leu Gly Pro Ser Gly His Pro Leu Gln Leu Lys Val Thr Phe Ala 250 265 270	816
cct ctc ctc tcc tcg gct ggc cag cca gaa cca gcc cag aac tcc ctc Pro Leu Leu Ser Ser Ala Gly Gln Pro Glu Pro Ala Gln Asn Ser Leu 275 280 285	864.
ccc tcc gct cag cag gac cca gga act ggt ccc tac tgg gca att att Pro Ser Ala Gln Gln Asp Pro Gly Thr Gly Pro Tyr Trp Ala Ile Ile 290 300	912
aat cag att ctt gac att cct cag ccc cag gtt ggc tgg aga agc atg Asn Gln Ile Leu Asp Ile Pro Gln Pro Gln Val Gly Trp Arg Ser Met 310 315	960
ttc ccc aga gga gca gag gcc cag gac tgg cat ttg gat atg cag ctg Phe Pro Arg Gly Ala Glu Ala Gln Asp Trp His Leu Asp Met Gln Leu 325 330 335	1008
acc ggc aag gtg gtg ctg tca gcc gct gcc ctg ctc ctg gtg act gtg Thr Gly Lys Val Val Leu Ser Ala Ala Ala Leu Leu Leu Val Thr Val 340	1056
gcc tac agg ctg tac aag tcg agg cct gcc cca gcc cag cgg tgg ggt Ala Tyr Arg Leu Tyr Lys Ser Arg Pro Ala Pro Ala Gln Arg Trp Gly 365 360 365	1104
ggg aat ggc cag gca gaa gcc aag gag gca gag ggc tca ggg cag Gly Asn Gly Gln Ala Glu Ala Lys Glu Glu Ala Glu Gly Ser Gly Gln	1152
cct gct gta cag gag gct tct cct ggg gtg ctc ctg agg ggg cca aga Pro Ala Val Gln Glu Ala Ser Pro Gly Val Leu Leu Arg Gly Pro Atg 390 395	1200
cgt cgg agg agc agc cgg gct gaa gca cca cag ggc tgc agc tgt cgt cgg agg agc agc agg cgg gct gaa gca cca cag ggc tgc agc tgt Arg Arg Arg Ser Ser Lys Arg Ala Glu Ala Pro Gln Gly Cys Ser Cys Arg Arg Arg Ser Ser Lys Arg Ala Glu Ala Pro Gln Gly Cys Ser Cys Arg Arg Arg Ser Ser Lys Arg Ala Glu Ala Pro Gln Gly Cys Ser Cys Arg Arg Arg Arg Ala Glu Ala Pro Gln Gly Cys Ser Cys	1248
gag aat cca aga ggc ccc tat gtc ctg gtc acg ggg gcc act tcc aca Glu Asn Pro Arg Gly Pro Tyr Val Leu Val Thr Gly Ala Thr Ser Thr 420 425 430	1296
gac agg aag ccc cag aga aaa ggc tca ggt gag gag cgg ggg ggg cag Asp Arg Lys Pro Gln Arg Lys Gly Ser Gly Glu Glu Arg Gly Gln 445	1344
gge tog gae tot gag cag gtg cot cot tge tge coe age cag gaa ace Gly Ser Asp Ser Glu Gln Val Pro Pro Cys Cys Pro Ser Gln Glu Thr 450 460	1392
aga aca get gtt gge agt aac cet gae det dec dat tte dec ege teg Arg Thr Ala Val Gly Ser Asn Pro Asp Pro Pro His Phe Pro Arg Leu 470 475	1440
ggc agc gaa ccg aag agc tcc cca gct gga ctc att gca gca gcc gac Gly Ser Glu Pro Lys Ser Ser Pro Ala Gly Leu Ile Ala Ala Ala Asp 495 485	1488
ggc agc tgt gcc ggt ggt gag cct tct cca tgg cag gac agt aaa ccc Gly Ser Cys Ala Gly Gly Glu Pro Ser Pro Trp Gln Asp Ser Lys Pro 500 505	1536
cgt gag cat cca gga ctg ggg caa cta gaa cct ccc cac tgt cac tac Arg Glu His Pro Gly Leu Gly Gln Leu Glu Pro Pro His Cys His Tyr 525 520	1584
gtg gct ccc ttg caa ggc agc agt qac atg aac cag agc tgg gtc ttc val Ala Pro Leu Gln Gly Ser Ser Asp Met Asn Gln Ser Trp Val Phe 530 535 Page 73	1632

											rou	200		• •					•	
acc Thr 545	cgt Arg	gtg Val	ata	ggg	gtc Val 550	Se	c a	ga (gaa Glu	gag Glu	gct Ala 555	ggg Gly	gct Alá	i ci	tc d	gag Glu	90 Al 56	:t .a 50	168	0
gcc Ala	tcc Ser	gat Asp	gtt Val	gac Asp 565	rec	ac Th	c c	tg eu	1173	cag Gln 570	cag Gln	gag Glu	G1;	g g	cc (ccc Pro 575	a a As	ac in	172	8 .
tcc Ser	tcc Ser	tat Tyr	acc Thi	tto Phe	-	tc Se	c a r I	LE	gcc Ala 585	yrd cdc	gtc Val	cga Arg	ato Me	g g t G 5	ag 1u 90	gag Glu	C a	at is	177	6
ttc Phe	ata Ile	cag Gln 595	aaq Lys		g gad a Glu	g gg ı Gl	у ,	al co	gag Glu	CCC Pro	cgg Arg	ctc	aa Ly 60	g g s G S	gc ly	aag Lys	g t Va	tg al	182	:4
tac Tyr	Asp	tac Tyr		gt: Va	g gad 1 Gl	a to u Se 61		icc Thr	tct Ser	cag Gln	gcc Ala	atc Ile 620	e e e Ph	c c e G	ag Ln	G TÀ dàc	a A	zd dd	137	12
Leu	Ala		age Are	g ac g Th	a gc = Al 63	a go a Al		ctg Leu	act Thr	gag Glu	gtt Val 635	CCA	tc Se	c c r P	ct	agg Arg	6 6	ca ro 40	192	20
625 ccg Pro		gg Gl	tc Se	c ct r Le 64	g gg u Gl		a q	gly ggg	gct Ala	gcc Ala 650	-	gga Gl;	gg Gl	c c	aa In	gcc Ala 655	g	gt Ly	196	68
gac Asp	aca Thi	aad Ly:	g gg s Gl 66	t gc y Al		c ga a Gi	ia a	aga Arg	gcc Ala 665	gcc Ala	tcc Ser	ecq	g ca Gl	.g a	ca Thr 570	GLY	, p	cg	20	16
tgg Trp	210	s Se	c ac	_	a gg g Gl	y Pi		agc Ser 680	yrd Cdd	aag Lys	gaq Glu	ago Se:	c ct Le	t (ctg Leu	Gln	ı a	ta le	20	64
gcg Ala	Gl	ı As		a ga o Gl	g ct u Le	u G			cag Gln	cca Pro	gat Asp	gg G1:	s to y Pt	ic o	egg Arg	c t c Lev	: C	cc	21	12
Ala	e e c		c to	c co	OAS			G1 y	gcc Ala	ctg Leu	7 CC1	_	c ti y Le	a e	ggc Gly	aga Arg	a a	igc Ser 720	21	60
705 ago Ser		g ga g Gl	g, co u Pi	:O A.			ag ln	ecg 210	gtg Val	730		g ac	c aa r Au	at sn	ttc Phe	Pho 73	e 1	at His	22	80
ato Ile	e Pr	q ct	u Ti			et t la S	ca er	gcc Ala	CC4		g gte 1 Va.	c cg l Ar	g L	tg eu	gat Asp 750	Le	g d	ggc Gly	22	!56
aa1 Asi	t tg n Cy	c ta	it g		tg c	tg a eu T	cc hr	ttq Leu 760	gco Ala	aac Ly:	g ag	g ca g Gl	ga n A 7	ac sn 65	ctg Leu	ga Gl	g (gcc Ala	2.3	304
ct: Le	gaa u Ly 77	a ga		cg g La A	cc t la T	yr r	ag .ys !75	gtç Val	ato L Me	g age	c ga r Gl	a aa u As 78	ic t	ąς	ct q Leu	ca Gl	g n	gtg Val	23	352
ct Le 78	g Cq		er b	cg g ro A	sp r	tc t le 1	ac 'yr	gg G1	g tgo y Cy:	c ct s Le	g ag u Se 79	c gq r G1	y A	ca la	gaç Glu	g cg	c g	gag Glu 800	2	400
		ic c	tg c eu G	TU W	gc c rg A 05	rd :	tc Leu	CG!	g gg	c cg y Ar 81	,	g ta n Ty	ac c	tg .eu	gt: Val	g gt L Va 81	.g 11 15	gct Ala	2	448
ga As	e gt	ig t	ys s	-		aa lu	gac Asp	cc Se	c gg r Gl 82		c ct y Le	:c	gt t ys C	gc 'ys	ta: Ty:	t ga t As O	sp	gat Asp	2	496
ga G1	ıg cı	Ln A			gg (red :dc	ccq Pro	ct Le	و م م کا م	t cg	rc at	g c	cc o	200 200 345	ga Gl	g go	cc la	gtg Val	2	544
to Se	c c			gt q	ges a Na 1	itc (le	tgc Cys	: ag Se	t ct	c tt	c aa ne As	at t sn T	-		tt Ph		tg al	gtg Val	2	1592

160 200 PCT FINAL.ST25 855 860	
tcc ggc tgc cag ggg ccc ggg cac cag ccc tcc agc cgc gtc ttc tgc tcc ggc tgc cag ggg ccc ggg cac cag ccc tcc agc cgc gtc ttc tgc tcc ggc tgc cag ggg ccc ggg cac cag ccc tcc agc cgc gtc ttc tgc tcc ggc tgc cag ggg ccc ggg cac cag ccc tcc agc cgc gtc ttc tgc tcc ggc tgc cag ggg cac cag ccc tcc agc cgc gtc ttc tgc tcc ggc tgc tgc tgc tgc tgc tgc tgc tgc	2640
tac aac ccg ctc acg ggg atc tgg agc gag gtg tgc ccg ctg aac cag tac aac ccg ctc acg ggg atc tgg agc gag gtg tgc ccg ctg aac cag tac aac ccg ctc acg ggg atc tgg agc gag gtg tgc ccg ctg aac cag tac aac ccg ctc acg ggg atc tgg agc gag gtg tgc ccg ctg aac cag	2688
gcc cgg ccg cac tgc cgg ctg gtg gcc ctg gac ggg cac ctg tat gcc Ala Arg Pro His Cys Arg Leu Val Ala Leu Asp Gly His Leu Tyr Ala 905 910	2736
atc ggc gga gag tgt ctg aac tcg gtg gag cgt tac gac ccc cgc ctg atc ggc gga gag tgt ctg aac tcg gtg gag cgt tac gac ccc cgc ctg atc ggc gga gag tgt ctg aac tcg gtg gag cgt tac gac ccc cgc ctg atc ggc gga gag tgt ctg aac tcg gtg gag cgt tac gac ccc cgc ctg	2784
gac cgc tgg gac ttt gcc ccg ccg ctc ccc agt gac acg ttc gcc ctg Asp Arg Trp Asp Phe Ala Pro Pro Leu Pro Ser Asp Thr Phe Ala Lau Asp Arg Trp Asp Phe Ala 915 940	2832
gcg cac acg gcc acg gtg cgt gcc aag gaa atc ttc gtc acc ggc ggc gcg cac acg gcc acg gtg Gly Glu IIe Phe Val Thr Gly Gly Ala His Thr Ala Thr Val Arg Ala Lys Glu IIe Phe Val Thr Gly Gly 950	2880
tog otg ogo tto otg otg tto ogo tto tot gog oag gag oag ogo tgg tog otg otg otg tto otg otg tto ogo tto tot gog oag gag oag ogo tgg tog otg otg otg otg otg otg otg otg otg	2928
tgg gec ggc ccc acc ggg ggc agc aag gac cgc acg gcc gag atg gtg Trp Ala Gly Pro Thr Gly Gly Ser Lys Asp Arg Thr Ala Glu Met Val	2976
gcg gtc aac ggc ttt ctc tac cgc ttt gac ctc aac cgc agc ctg ggc Ala Val Asn Gly Phe Leu Tyr Arg Phe Asp Leu Asn Arg Ser Leu Gly 1000 1005	3024
atc gcc gtg tac cgc tgc agc gcc agc acc cgg ctc tgg tac gag atc gcc gtg tac cgc tgc agc gcc agc acc cgg ctc tgg tac gag Ile Ala Val Tyr Arg Cys Ser Ala Ser Thr Arg Leu Trp Tyr Glu 1015 1020	3069
tgc gcc acg tac cgg acg cct tac ccg gat gcc ttc cag tgc gcc tgc gcc acg tac cgg acg cct tac ccg gat gcc ttc cag tgc gcc Tyr Pro Asp Ala Phe Gln Cys Ala Cys Ala Thr Tyr Arg Thr Pro Tyr Pro Asp Ala Phe Gln Cys Ala 1035	3114
gtg gtg gac aac ctc atc tac tgc gtg gga cqc cgg agc acc ctc Val Val Asp Asn Leu Ile Tyr Cys Val Gly Arg Arg Ser Thr Leu 1040 1045	3159
tgc ttc cta gca gac tct gtc tca ccc aga tct gta gcc gtc ttc tgc ttc cta gca gac tct gtc tca ccc aga tct gta gcc gtc ttc Cys Phe Leu Ala Asp Ser Val Ser Pro Arg Ser Val Ala Val Phe 1055 1060 1065	3204
ctg tot gga ago tgg ggo aac cac cac cag toa gca ott cag ggt ctg tot gga ago tgg ggo aac cac cac cag toa gca ott cag ggt Leu Ser Gly Ser Trp Gly Asn His His Gln Ser Ala Leu Gln Gly 1070 1075	3249
gac agc ata att tgc cct cct tgt gcc agg tgg tcc cag cta gat Asp Ser Ile Ile Cys Pro Pro Cys Ala Arg Trp Ser Gin Leu Asp 1085 1090	3294
cet gtg tee acg gaa get get ggt gee cag get gtg ggt ett gtt Pro Val Ser Thr Glu Ala Ala Gly Ala Gln Ala Val Gly Leu Val 1100 1105	3339
gga aga agc agg act gga aca aag gat gaa aag gag gtt ggc atg Gly Arg Ser Arg Thr Gly Thr Lys Asp Glu Lys Glu Val Gly Met 1115	3384
gac ata aga gga gag ctt gca ctg gac cac cga aga cca cca tcc Asp Ile Arg Gly Glu Leu Ala Leu Asp His Arg Arg Pro Pro Ser 1130 1135	3429
ctg gtc tgg gct ctg gca cca ggc tct gcc agt ggc agc tca gag Leu Vai Trp Ala Leu Ala Pro Gly Ser Ala Ser Gly Ser Ser Glu 1150 1155	3474
gcc aca ggg tga	3486

Ala Thr Gly 1160

<210> 99

<211> 1161 <212> PRT

<213> Homo sapiens

<400> 99

Met Gly Pro Pro Glu Phe Met Tyr Glu Gln Gln Asp Asn Ser Thr His 1 10 15

Leu Gln Pro Leu Lys Thr Cys Pro Val Ala Arg Gln Leu Ile Arg Gly 20 25 30

Val Leu Arg Ala Pro Asp Gly Ala Lys Pro Gly Glu Asp Arg Gly Gln 40 45

Ala Arg Cys Asn Gly Arg Val Cys Gly Glu Lys Ser Lys Gln Pro Ile 50 55 60

Glu Ala Phe Lys Pro Val Cys Tyr Lys Pro Gln Phe Met Ser His Ile 65 70. 75

Ile Pro Leu Tyr Ser Ile His Ala Ser Gln Ser Ser Gln Ser Lys 85 90 95

Leu Pro Ala His Leu His Leu Asp Pro Leu Gly Cys Ala Ser Leu Ser . 100 105 110

Phe Ser Ser Thr Gln Pro Ser Pro Pro Tyr Tyr Pro Gly Leu Val Leu 115

Gly Cys Ser Lys Gln Asn Thr Gly Gly Ala Lys Cys Gln Lys Pro Leu 130 135 140

Thr Arg Arg Phe Glu His Leu Gly Thr Ala Lys Lys Pro Lys Lys Ser 145 150 155 160

Val Trp Pro Leu Gln Ser Leu Pro Gln Arg Asp Leu Lys Leu Val Asn 165 170 175

Ala Arg Ser Gln Ala Cys Trp Asn Pro Arg Thr Trp Gly Ala Ala Thr 180 185 190

Pro Asp Thr Asp Pro Glu Glu Ala Asn Ser Gly Gln Gln Asn Ile Lys 195 200 205

Glu Gln Gln Tyr Arg Val Ser Leu Gly Asn Asn Thr Gly Ser Pro Leu 210 215 220

Cys Ser Thr Glu Val Asn Phe Gly Ser Arg Gln Gln Gly Lys Leu Asn 225 230 235 240

Arg Thr Thr Arg Glu Ala Trp Lys Glu Ala Ser Arg Trp Asp Leu Pro $245 \hspace{1cm} 250 \hspace{1cm} 255$

Ala Leu Gly Pro Ser Gly His Pro Leu Gln Leu Lys Val Thr Phe Ala 260 265 270

- Pro Leu Leu Ser Ser Ala Gly Gln Pro Glu Pro Ala Gln Asn Ser Leu 275 280 285
- Pro Ser Ala Gln Gln Asp Pro Gly Thr Gly Pro Tyr Trp Ala Ile Ile 290 295 300
- Asn Gln Ile Leu Asp Ile Pro Gln Pro Gln Val Gly Trp Arg Ser Met 305 310 315 320
- Phe Pro Arg Gly Ala Glu Ala Gln Asp Trp His Leu Asp Met Gln Leu 325 330 335
- Thr Gly Lys Val Val Leu Ser Ala Ala Ala Leu Leu Leu Val Thr Val 340 345 350
- Ala Tyr Arg Leu Tyr Lys Ser Arg Pro Ala Pro Ala Gln Arg Trp Gly 355 360 . 365
- Gly Asn Gly Gln Ala Glu Ala Lys Glu Glu Ala Glu Gly Ser Gly Gln 370 375 380
- Pro Ala Val Glu Glu Ala Ser Pro Gly Val Leu Leu Arg Gly Pro Arg 385 390 395 400
- Arg Arg Arg Ser Ser Lys Arg Ala Glu Ala Pro Gln Gly Cys Ser Cys 405 410 415
- Glu Asn Pro Arg Gly Pro Tyr Val Leu Val Thr Gly Ala Thr Ser Thr 420 425 430
- Asp Arg Lys Pro Gln Arg Lys Gly Ser Gly Glu Glu Arg Gly Gln 435
- Gly Ser Asp Ser Glu Gln Val Pro Pro Cys Cys Pro Ser Gln Glu Thr 450 455 460
- Arg Thr Ala Val Gly Ser Asn Pro Asp Pro Pro His Phe Pro Arg Leu 465 - 470 475 480
- Gly Ser Glu Pro Lys Ser Ser Pro Ala Gly Leu Ile Ala Ala Ala Asp 495 490 495
- Gly Ser Cys Ala Gly Gly Glu Pro Ser Pro Trp Gln Asp Ser Lys Pro 500 505 510
- Arg Glu His Pro Gly Leu Gly Gln Leu Glu Pro Pro His Cys His Tyr 515 520 525
- Val Ala Pro Leu Gin Gly Ser Ser Asp Met Asn Gln Ser Trp Val Phe 530 535 540
- Thr Arg Val Ile Gly Val Ser Arg Glu Glu Ala Gly Ala Leu Glu Ala 545 550 560
- Ala Ser Asp Val Asp Leu Thr Leu His Gln Gln Glu Gly Ala 9ro Asn 565 570 575
- Ser Ser Tyr Thr Phe Ser Ser Ile Ala Arg Val Arg Mec Glu Glu His 580 585 590

Phe Ile Glm Lys Ala Glu Gly Val Glu Pro Arg Leu Lys Gly Lys Val 595 600 '605

Tyr Asp Tyr Tyr Val Glu Ser Thr Ser Gln Ala Ile Phe Gln Gly Arg 610 615 620

Leu Ala Pro Arg Thr Ala Ala Leu Thr Glu Val Pro Ser Pro Arg Pro 625 630 640

Pro Pro Gly Ser Leu Gly Thr Gly Ala Ala Ser Gly Gly Gln Ala Gly 655

Asp Thr Lys Gly Ala Ala Glu Arg Ala Ala Ser Pro Gln Thr Gly Pro 660 665 670

Trp Pro Ser Thr Arg Gly Phe Ser Arg Lys Glu Ser Leu Leu Gln Ile 675 680 685

Ala Glu Asn Pro Glu Leu Gln Leu Gln Pro Asp Gly Phe Arg Leu Pro 690 695 700

Ala Pro Pro Cys Pro Asp Pro Gly Ala Leu Pro Gly Leu Gly Arg Ser 705 710 715 720

Ser Arg Glu Pro His Val Gln Pro Val Ala Gly Thr Asn Phe Phe His 725 730 735

Ile Pro Leu Thr Pro Ala Ser Ala Pro Gln Val Arg Leu Asp Leu Gly 740 745 750

Asn Cys Tyr Glu Val Leu Thr Leu Ala Lys Arg Gln Asn Leu Glu Ala 765 765

Leu Lys Glu Ala Ala Tyr Lys Val Met Ser Glu Asn Tyr Leu Gln Val 770 780

Leu Arg Ser Pro Asp Ile Tyr Gly Cys Leu Ser Gly Ala Glu Arg Glu 785 790 795 800

Leu Ile Leu Glm Arg Arg Leu Arg Gly Arg Glm Tyr Leu Val Val Ala 805 810 815

Asp Val Cys Pro Lys Glu Asp Ser Gly Gly Leu Cys Cys Tyr Asp Asp 820 825 830

Glu Gln Asp Val Trp Arg Pro Leu Ala Arg Met Pro Pro Glu Ala Val 835 840 845

Ser Arg Gly Cys Ala Ile Cys Ser Leu Phe Asm Tyr Leu Phe Val Val 850 855 860

Ser Gly Cys Gln Gly Pro Gly His Gln Pro Ser Ser Arg Val Phe Cys 865 870 876

Tyr Asn Pro Leu Thr Gly Ile Trp Ser Glu Val Cys Pro Leu Asn Gln 885 890 895

Ala Arg Pro His Cys Arg Lau Val Ala Leu Asp Gly His Leu Tyr Ala 900 905 910

Ile Gly Glu Cys Leu Asn Ser Val Glu Arg Tyr Asp Pro Arg Leu 915 920 925

Asp Arg Trp Asp Phe Ala Pro Pro Leu Pro Ser Asp Thr Phe Ala Leu 930. 935 940

Ala His Thr Ala Thr Val Arg Ala Lys Glu Ile Phe Val Thr Gly Gly 945 950 950 955 960

Ser Leu Arg Phe Leu Leu Phe Arg Phe Ser Ala Gin Glu Gln Arg Trp 965 970 975

Trp Ala Gly Pro Thr Gly Gly Ser Lys Asp Arg Thr Ala Glu Met Val 980 985 990

Ala Val Asn Gly Phe Leu Tyr Arg Phe Asp Leu Asn Arg Ser Leu Gly 995 1000 1005

Ile Ala Val Tyr Arg Cys Ser Ala Ser Thr Arg Leu Trp Tyr Giu 1010 1015 1020

Cys Ala Thr Tyr Arg Thr Pro Tyr Pro Asp Ala Phe Gln Cys Ala 1025 1030 1035

Val Val Asp Asn Leu Ile Tyr Cys Val Gly Arg Arg Ser Thr Leu 1040 1045 1050

Cys Phe Leu Ala Asp Ser Val Ser Pro Arg Ser Val Ala Val Phe 1055 1060 1065

Leu Ser Gly Ser Trp Gly Asn His His Gln Ser Ala Leu Gln Gly 1070 1075 1080

Asp Ser Ile Ile Cys Pro Pro Cys Ala Arg Trp Ser Gln Leu Asp 1095

Pro Val Ser Thr Glu Ala Ala Gly Ala Gln Ala Val Gly Leu Val 1100 1105 1110

Gly Arg Ser Arg Thr Gly Thr Lys Asp Glu Lys Glu Val Gly Met 1115 1120 1125

Asp Ile Arg Gly Glu Leu Ala Leu Asp His Arg Arg Pro Pro Ser 1130 1135 1140

Leu Val Trp Ala Leu Ala Pro Gly Ser Ala Ser Gly Ser Ser Glu 1145 1150 1155

Ala Thr Gly 1160

<210> 100

<211> 2953

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (350) .. (2536)

<223>

<400> 100 ctcagctctg caa						60
tcagtcccct cag	gegeacet geat	gcacac a	acaccacc	tc acaaccac	ac actgcatgca	120
cacacataca cca	acagocaci acad	etgtgca i	tacacgca	ca ccccacaa	cc cacatacigc	130
atgcacacac aca	acacctac aag	ctgcatg (ctgcatac	ac aagtcata	ca ggagataaac	240
tcagagtccc ago	ccccaaat aga	cccatc	tcttgctc	ag ttgctgtc	at cctagacctg	300
tttctttcgc ca	catttcta taa	tetgeca	gtgtctgc	aa ggagaaga	c atg ggg ggt Met Gly Gly 1	358
tt: cta cct a Phe Leu Pro L S	ys Ala Giu G	0	,	15		406
ccc tcc ttt c Pro Ser Phe L 20	eu vai Aig G	14 91		10	35	454
ctt cat atg c Leu His Met L	eu Gin Gin i 40	igo mag -	45		50	502
	is is	.60 302	60	•	65	550
tgc acc tgt of Cys Thr Cys 7	Asp var Arg	75		80		598
cac ata gca (His Ile Ala) 85	Ala Leu Tyr	90	200 000	95		646
gag gct gcc g Glu Ala Ala 1	Pro Glu Leu 105	Val		110	. 115	694
gca ggt cag	The Ala Leu 120	HI3 IIC	125		130	742
ctg gtg cgt Leu Vai Arg	gcc ctg ctc Ala Leu Leu 135	acc cgc	agg gcc Arg Ala 140	agt gtc tct Ser Val Ser	gcc aga gcc Ala Arg Ala 145	790
The Gly The	Ala Phe Arg	155		, 160	tac ttt ggg Tyr Phe Gly	938
gag cac cct Glu His Pro 165	ttg tcc ttt Leu Ser Phe	gct gcc Ala Ala 170	tgt gtg Cys Val	aac agc gag Asn Ser Glu 175	gag atc gtg Glu Ile Val	886
Arg Leu Leu 180	ile Giu his	GI) ALL		190	gac tcc ctg 1 Asp Ser Leu 195	934
Gly Asn Thr	. 200	TTG DCG	205		aaa acc ttt Lys Thr ?he 210	982
Ala Cys Gln	215	Dea Dea	220	•	a cat ggg gac y His Gly Asp 225	
His Leu Gln 230	SIO PSR Wah	235		24	t ctc acc ccc y Leu Thr Pro O	
ttc aag ctg Phe Lys Leu 245	gct gga gtg Ala Gly Val	gag ggt Glu Gly 250	aac act Asn The	gtg atg tt Val Met Ph 255	c cag cac ctg e Gln His Leu	1126

atg Met	cag Gln	aaq Lys	cg Ar	gaq gA:	rg r	ac lis	atc Ile	cag Gln	tgg Trp	ac Th	g t .r T	at (gga Gly	CCC Pro	ctq	ac T	ic nr	tc: Se: 27:	= = 5	1174
260				c c	tc a	eca Thr					c t		aa 2	cac	gac	. c	tσ	tc	c	1222
ttc Phe	ctg	gad	ı Le	t g	tg (gtc Val	tcc Ser	tct Ser	gat Asp 300			ga Arg	gag Glu	gct Ala	. cgc	= G g G	aa lo	at Il	t e	1270
ctg Leu	gaa Glu	I GL	n T		ca	gtg Val	aag Lys	gag Glu 315	ctg Leu	gt Vä	al:	agc Ser	ttc Phe	aaq Lys 320	tg: Tr:	ga pA	ac sn	aa Ly	g s	1318
tat Tyr	gg(G1:	/ Ar		cg t	ac Tyr	ttc Phe	tgc Cys 330	atc Ile	ctg Leu	G A	ct la	gcc Ala	ttg Leu 335	tac Ty	c Le	g c u L	tc eu	ta Ty	c r	1366
atg Met	ate		c t	tt a	icc Thr	acg Thr 345	tgc Cys	egc Cys	gto Val	t T	ac yr	cgc Arg 350	Pro	Le	t aa u Ly	g t	tt he	Ar 35	rc :g . :5	1414
		c aa y As	ic c	rg	act Thr 360	cat His	cct Ser	cga	gac Asp	: a	tc Le 65	acc Thr	ato	ct Le	c ca u Gl	g c	aa 51 n 370	a a	\a a	1462
Let	ı Le	u G	Ln G	75	Ala	tat Tyr	910		380	á		-			38	35				1510
GL	y Gl	u L 3	eu V 90	aı	261	atc Ile	76.	39	5					40	0					1558
Ιl	e Pr 40	co A IS	sp .	rie	tue	agg Arg	410)	•				41	5						1606
I1	e Le O	eu G	TÀ	эīУ	SIO	phe 425	;		_			430)				:	4	72	1654
gt Va	g ci	au V	al	rnr	440			•	,		445						45	U		1702
Va	ıl P	ro ?	et.	5er 455	Pne	gco Al	1 50		4 (50	_				4	65			•	1750
Pt	le T	hr 1	170	GLY	Put	ca Gl:	i iic	47	5	-•				4	80					1798
L	ys M 4	et 85	Ile	Phe	G.L.	a ga y As	49)a				·	4 :	95						1846
∀ . 5	al I 00	le.	Leu	GIY	, 50	t gc e Al 50	5		-		-	51	۰ 0,		-				273	1894
A	ap i	ro	The	261	52		, y			•	52	5					5.	30		1942
Ţ	hr '	Thr	Phe	53	ı Le S	t tt u Pi	16 H		- 5	40						545	•			1990
. 7	gp '	Val	Asp 550	Le.	u er	c ti	16 11	5	55						560					2038
. j	itc (le	att Ile	gcc Ala	ac Th	a ct r Le	ig C	cc a eu M	tg c	tc a	aac neA	Le Le	g t	tc a		gcc Ala			tg ec	ggc Gly	2086

	ŞV	O 0:	3/089	583		ı										
	565					570				160	200 575	PCT	FINA	L.ST	25	
		cac His	tgg Trp	agg Arg	gtg Val 585	gcc Ala	cag Gln	gag Glu	agg Arg	gat Asp 590	gag Glu	ctc Leu	tgg Trp	agg Arg	gcc Ala 595	2134
	gtc Val	gtg Val	gcc Ala	acc Thr 600	aca The	gtg Val	atg Met	ctg Leu	gag Glu 605	cgg Arg	aag Lys	ctg Leu	510 CC£	cgc Arg 610	Cys Cys	2182
ctg Leu	tgg Trp	cct	cgc Arg 615	tcc Ser	G] À ddd	atc Ile	tgt Cys	ggg Gly 620	tgc Cys	gaa Glu	ttc Phe	ggg Gly	ctg Leu 625	ej à Bàà	Asp	2230
cgc Arg	tgg Trp	ttc Phe 630	reu	Yid	gtt Val	gag Glu	aac Asn 635		aat Asn	gat Asp	cag Gln	aat Asn 640	510 CCE	ctg Leu	Arg	2278
gtg Val	ctt Leu 645	Arg	tat Tyr	gtg Val	gaa Glu	gtg Val 650	•	aag Lys	aac Asn	tca Ser	gac Asp 655	aag Lys	gag Glu	gat Asp	gac Asp	2326
cag Gln 660	gag Glu		cca Pro	tct Sec	gag Glu		cag	CCC Pro	tct Ser	999 Gly 670	gct Ala	gaq Glu	agt Ser	Gly	thr 675	2374
		aga aga	geo Ala	tct Ser	Lec	gct Ala	ctt Leu	cca Pro	act The 685	Sei	tco Sei	ctq Lev	tcc Ser	Arc 690	thr	2422
gc9	tco Sei	caq Glu	ago Sei 695	361	agt Se	c cac	cga Arg	g G1:		g gad	j ate	cti e Le	c eqt 1 Arq 705	Gl:	a aac n Asn	2470
acc Thi	cto	g gg u G1: 71:	g cad		g aa a As	t cti	gg : G1: : 71:	,	g aad u Asi	ct Le	t ag u Se	t gad r G1: 72	0 n GJ g gg	gat / As	gga Gly	2518
gaq Gl	g ga u Gl	gʻgt u Va		c ca r Hi	t tt s Ph	t tg e	atta	acat	cgc	tatc	act	cttg	acct	ta		2566
		3 arta	acc	raad	aac	9 999	acag	ag a	cgga	gacc	t ct	gcct	atgc	aag	tgtctaa	2626
-	****	+	tat	taat	cat	ggga	gggt	ga g	acag	aaca	a to	ccta	aagg	gtc	atgeete	2686
	2009	caca	tca	caat	ttc	tggc	aatg	gg c	aatg	gtca	כ ככ	actg	tctc	acg	tattttc	. 2746
-	aact	ctto	caa	gtca	CCC	atct	cagg	aa a	aagg	aggt	יב קק	caac	taaa	gac	atgagge	2000
3.0	ggat	act.	aat	caat	gtc	agga	ccca	itt t	ctct	נכני	וכ כי	cacç	cago	. כככ	cagaaag	2000
ra ra	gtaa	acto	: tga	ggct	att	ctgg	ctcc	:cc 4	19990	ttac	g to	gggaā	qago	caç	gcatggc	2340
			gtg													2953
<2 <2	210> 211> 212> 213>	72: PR	9	apies	ns				-							
<	100>	10	ı			•							_	, ,	Cla	
1				3									•		eu Gln 5	
				U					-						ln His	
L	eu A	sp I	.ys L IS	eu H	is &	let I	eu G	ln G	in L	ys P	rd :	ile i	.eu G 15	lu S	er Pro	

Leu Leu Arg Ala Ser Lys Glu Asn Asp Leu Ser Val Leu Arg Gln Leu 50 55

Leu Leu Asp Cys Thr Cys Asp Val Arg Gln Arg Gly Ala Leu Gly Glu 65 70 75 80

Thr Ala Leu His Ile Ala Ala Leu Tyr Asp Asn Leu Glu Ala Ala Leu 90 95

Val Leu Met Glu Ala Ala Pro Glu Leu Val Phe Glu Pro Thr Thr Cys 100 105 110

Glu Ala Phe Ala Gly Gln Thr Ala Leu His Ile Ala Val Val Asn Gln 115 120 125

Asn Val Asn Leu Val Arg Ala Leu Leu Thr Arg Arg Ala Ser Val Ser 130 135 140

Ala Arg Ala Thr Gly Thr Ala Phe Arg Arg Ser Pro Arg Asn Leu Ile 145 150 150 160

Tyr Phe Gly Glu His Pro Leu Ser Phe Ala Ala Cys Val Asn Ser Glu 165 170 175

Glu Ile Val Arg Leu Leu Ile Glu His Gly Ala Asp Ile Arg Ala Gln 130 195 190

Asp Ser Leu Gly Asn Thr Val Leu His Ile Leu Ile Leu Gln Pro Asn 195 200 205

Lys Thr Phe Ala Cys Gln Met Tyr Asn Leu Leu Ser Tyr Asp Gly 210 215 220

His Gly Asp His Leu Gln Pro Leu Asp Leu Val Pro Asn His Gln Gly 225 230 235

Leu Thr Pro Phe Lys Leu Ala Gly Val Glu Gly Asn Thr Val Met Phe 245 250 255

Gln His Leu Met Gln Lys Arg Arg His Ile Gln Trp Thr Tyr Gly Pro 260 265 270

Leu Thr Ser Ile Leu Tyr Asp Leu Thr Glu Ile Asp Ser Trp Gly Glu 275 280 295

Glu Leu Ser Phe Leu Glu Leu Val Val Ser Ser Asp Lys Arg Glu Ala 290 295 300

Arg Gln Ile Leu Glu Gln Thr Pro Val Lys Glu Leu Val Ser Phe Lys 305 310 315 320

Trp Asn Lys Tyr Gly Arg Pro Tyr Phe Cys Ile Leu Ala Ala Leu Tyr 325 330 335

Leu Leu Tyr Met Ile Cys Phe Thr Thr Cys Cys Val Tyr Arg Pro Leu 340 345 350

Lys Phe Arg Gly Gly Asn Arg Thr His Ser Arg Asp Ile Thr Ile Leu 355 360 365

Gln Gln Lys Leu Leu Gln Glu Ala Tyr Glu Thr Arg Glu Aso Ile Ile 370 375 380

Arg	Leu	val	Gly	Glu	Leu	Val	Ser	Ile	Val	Gly	Ala	Val	Ile	Ile	Leu
385					390					395					400

- Leu Leu Glu Ile Pro Asp Ile Phe Arg Val Gly Ala Ser Arg Tyr Phe 405 410 415
- Gly Lys Thr Ile Leu Gly Gly Pro Phe His Val Ile Ile Ile Thr Tyr 420 425 430
- Ala Ser Leu Val Leu Val Thr Met Val Met Arg Leu Thr Asn Thr Asn 435 440 445
- Gly Glu Val Val Pro Met Ser Phe Ala Leu Val Leu Gly Trp Cys Ser 450 450 460
- Val Met Tyr Phe Thr Arg Gly Phe Gln Met Leu Gly Pro Phe Thr Ile 465 470 475 480
- Met Ile Gln Lys Met Ile Phe Gly Asp Leu Met Arg Phe Cys Trp Leu 485 490 495
- Mer Ala Val Val Ile Leu Gly Phe Ala Ser Ala Phe Tyr Ile Ile Phe 500 500 510
- Gln Thr Glu Asp Pro Thr Ser Leu Gly Gln Phe Tyr Asp Tyr Pro Met 515 520 525
- Ala Leu Phe Thr Thr Phe Glu Leu Phe Leu Thr Val Ile Asp Ala Pro 530 535 540
- Ala Asn Tyr Asp Val Asp Leu Pro Phe Met Phe Ser Ile Val Asn Phe 545 550 555 560
- Ala Phe Ala Ile Ile Ala Thr Leu Leu Met Leu Asn Leu Phe Ile Ala 565 570 575
- Met Met Gly Asp Thr His Trp Arg Val Ala Gln Glu Arg Asp Glu Leu 580 595 590
- Trp Arg Ala Glm Val Val Ala Thr Thr Val Met Leu Glu Arg Lys Leu 595 600 605
- Pro Arg Cys Leu Trp Pro Arg Ser Gly Ile Cys Gly Cys Glu Phe Gly 610 615 620
- Leu Gly Asp Arg Trp Phe Leu Arg Val Glu Asn His Asn Asp Gln Asn 625 630 635 640
- Pro Leu Arg Val Leu Arg Tyr Val Glu Val Phe Lys Asn Ser Asp Lys 645 650 655
- Glu Asp Asp Gln Glu His Pro Ser Glu Lys Gln Pro Ser Gly Ala Glu 660 665 670
- Ser Gly Thr Leu Ala Arg Ala Ser Leu Ala Leu Pro Thr Ser Ser Leu 675 680 685
- Ser Arg Thr Ala Ser Gln Ser Ser Ser His Arg Gly Trp Glu Ile Leu

690

695

Arg Gln Asn Thr Leu Gly His Leu Asn Leu Gly Leu Asn Leu Ser Glu 720

Gly Asp Gly Glu Glu Val Tyr His Phe 725

<210> 102 <211> 1545 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (130)(438) <223>	
<400> 102 atttgtgatg ggcactggct cetggetgag gaccgcetet tegggetetg geaettetge	60
accaccacca accagacgat etgetteaga gacetgggee aggeceatgt geeegggetg	120
gccgtgggc atg ggc ctg gta cgc agc gtg ggc gcc ttg gcc gtg gtg gcc Met Gly Leu Val Arg Ser Val Gly Ala Leu Ala Val Val Ala 10	171
gcc att ttt ggc ctg gag ttc ctc atg gtg tcc cag ttg tgc gag gac Ala Ile Phe Gly Leu Glu Phe Leu Met Val Ser Gln Leu Cys Glu Asp 25 30	219
aaa cac tca cag tgc aag tgg gtc atg ggt tcc atc ctc ctc ctg gtg aaa cac tca cag tgc aag tgg gtc atg ggt tcc atc ctc ctc ctg gtg Lys His Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Leu Val Lys His Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Leu Val 15 45	267
tot the green tee tee gge ggg endering ggt the green at end end ser Ser Ser Gly Gly Leu Leu Gly Phe Val Ile Leu Leu Ser She Val Leu Ser So 60	315
agg aac caa gtc aca ctc atc ggc ttc acc cta atg ttt tgg tgc gaa Arg Asn Gln Val Thr Leu Ile Gly Phe Thr Leu Met Phe Trp Cys Glu 70 75	363
ttc act gcc tcc ttc ctc ttc ctg aac gcc atc agc ggc ctt cac Phe Thr Ala Ser Phe Leu Leu Phe Leu Asn Ala Ile Ser Gly Leu His 80 85	411
atc aac agc atc acc cat ccc tgg gaa tgaccgtgga aattttaggc Ile Asn Ser Ile Thr His Pro Trp Glu os 100	458
cccctccagg gacatcagat tecacaagaa aatatggtca aaatgggact tttccagcat	513
gradesteta graggastag gritagacaag gacetraaaa egactaceta triacegara	579 638
actification of the same and th	
angecaggag ggtgcctcag tgccaccaac tgcacaggct tagccagatg ttgattttag	698
aggaagaaaa aaacatttta aaactccttc ttgaattttc ttccctggac tggaatacag	758
ttggaagcac aggggtaact ggtacctgag ctagctgcac agccaaggat agttcatgcc	813 878
tgtttcattg acacgtgctg ggataggggc tgcagaatcc ctgggggctcc cagggttgtt	938
aggaatggat cattottoca gotaagggto caatcagtgo ctaggactit citcoaccag	998
creasagge cttegtatgt atgreectgg etteagettt ggteatgeea aagaggeaga	1058
gricagnati eccicagaar gecetgeaea cagraggiti ecaaaceati igaeteggit	1118
tgcctccctg cccgttgttt aaaccttaca aaccctggat aaccccatct tctagcagct	1179
ggctgtgcct ctgggagctc tgcctatcag aaccetacct taaggtgggt ttccttccga	1238
gaagagttet tgagcaaget eteccaggag ggeecacetg actgetaata cacageeete	

<210> 107 <211> 24 <212> DNA

160 200 PCT FINAL.ST25										
cocaaggood gegegegoat gegeoegeee teegggoado	1298									
attituate ceagaacaca titeaaagag caegtateta gaeetgetgg actetgeagg	1358									
gggtgagggg gaacagcgag agcttgggta atgattaaca cccatgctgg ggatgcatgg	1418									
aggtgaaggg ggccaggaac cagtggagat ttccatcett gccagcacgt ctgtacttet	1478									
gttcattaaa gtgctccctt tctagtcgat gtgtcactgc tgtatcatac ttttatgcta	1538									
	1545									
CACAACC										
<210> 103 <211> 103 <212> PRT <213> Homo sapiens	-									
<400> 103										
Met Gly Leu Val Arg Ser Val Gly Ala Leu Ala Val Val Ala Ala Ile 15 1										
Phe Gly Leu Glu Phe Leu Met Val Ser Gln Leu Cys Glu Asp Lys His 20 25 30										
Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Val Ser Phe 35 40 45										
Val Leu Ser Ser Gly Gly Leu Leu Gly Phe Val Ile Leu Leu Arg Asn 50 55										
Gln Val Thr Leu Ile Gly Phe Thr Leu Met Phe Trp Cys Glu Phe Thr 65 70 75 80										
Ala Ser Phe Leu Leu Phe Leu Asn Ala Ile Ser Gly Leu His Ile Asn 90 95										
Ser Ile Thr His Pro Trp Glu 100										
<210> 104										
<211> 24 <212> DNA										
<213> Homo sapiens	24									
<400> 104 gegetteegg acetgtatet eeac	24									
<210> 105 <211> 24 <212> DNA <213> Homo sapiens										
<400> 105 caagctctgg gtctcgggca gaag	24									
<210> 106 <211> 50 <212> DNA <213> Homo sapiens										
<400> 106 aaagagcete taaagaaggg tteeagacta eeaggagete aetggaaata	50									

WO 03/089583

	100 200 ect ettera	. • • • •	
<213>	Homo sapiens		
<400>	107 ctgc aaacttggat gggc		24
accato	Crdr gaggerddag 3444		
<210>	108		
<211>	24		
<212>	ONA		
<213>	Homo sapiens		

<400>	108 .		24
aaggag	CCdd gadacaddda 1-11		
<210>	109		
<211>	50		
<212>	DNA		
<213>	Homo sapiens		
	•		
<400>	109 atgta tatgaaaacc ctgtttatct gagcctagaa ctgtctttgc		50
gcttt	etgta tatgaaaacc ctgtttatt gagaaaa		
<210>	110		
<211>	50		
<212>	DNA		
<213>			
<400>	110 propagator totocaaaat ttccccatat		50
agtga	110 tagtt ttaaatggga gggaataaag totgcaaaat ttocccatat		
.010	111		
<210>			
<211>			
<213>			
(213/	110000		
<400>	111	-	24
gagto	tecet gtgegtttgg getg		
•			
<210		•.	
<2112 <2122		÷	
<213	•		
14.23			
<400	. 112		24
aagto	taaag catgoocoge otga		
<210			
<211			
<212:	•		
(213	Wome abbases		
<400	113		50
agto	> 113 caget taaaaaagag acagacagae agagagagag agagacagag		
•	-		
<210			
<211			
<212			
<213	> Homo sapiens		
<400	> 114		50
ttag	> 114 tgattt aaaaaaatgt gaagaagaga gagtcaaggc agtaaaagga		30
		-	
<210			
<211			
<212			
<213	> Homo sapiens		•
	. 116		24
<400	> 115 gctatg ctgccacggt catc		24
gtto	geraty engeneration and an arministration		• .
<210	> 116		

	•	230 200 000	
<211>	24		
	ONA		
<212>			
<213>	Homo sapiens	•	
<400>	116		24
agreete	gca gtcctggcat	tgtg	
ageout	3 3		
	•		
<210>	117		•
<211>	50		
<212>	DNA		
<213>	Homo sapiens		
(213)		•	
	117		
<400>	117	caggttaagg taaatatatt aaagaccaag	50
gatacaa	sata attaaaagcc	caddicaadd caaacacaca	
	-		
<210>	118	•	
	50		•
<211>			
<212>	DNA		
<213>	Homo sapiens		
<400>	118		50
	-cas ressanator	tgaggtggta aattgttatc aattctatgt	30
acccca	cyaa ccaaaaaa	.,	
<210>	119		
<211>	24		
<212>	DNA		
<213>	Homo sapiens		
<400>	119		. 24
caggat	tacg cacaaacggc	atgg	
<210>	120	•	
			,
<211>	24		
<212>	DNA		
<213>	Homo sapiens		
<400>	120		24
haaa aa	gcag agatagcaga	, gccc	
cadaaa	geag against	•	
		<i>j</i>	
<210>	121		
<211>	50		
<212>	DNA		
<213>	Homo sapiens		
<400>	-121		
C4002	121	cctggcttgc acagtggctc aagcctgtaa	50
ctagac	Catt taaaaaaact	, cocygonago	
			•
<210>	122		
<211>	24		
<212>	DNA		
	Homo sapiens	•	
<2133	"Omo sehrom		
<400>	122		24
ctggto	ctgg gcaccctgat	aayc	
		•	
<210>	123		
<211>			
<212>	UNA		
<213>	Homo sapiens		
<400>	123		24
cccace	rctg gttgcagtg	tctc	4.
	,		
<210>			
<211>	50	•	
<212>			
<213>			
	124		
<400>	124	g acctggagtg agatggattc ttctgcctat	50

<210>	125		
<211>	50		
<212>	DNA	•	
<213>	Homo sapiens		
(213)			
<400>	125		50
CCAAFFO	ttc tgaaaaacgg gagtcactgt gggcaccatc	acgcccgggt	50
CCaacc			
		•	
<210>	126		
<211>	24		
<212>	DNA		
<213>	Homo sapiens		
1223	•		
<400>	126		24
CEGAGG	gtc cctcccaagc aggt		۷,
	•		
		•	
<210>	127 .		
<211>	24		
<212>	DNA	•	
<213>	Homo sapiens		
<400>	127		24
tacggc	gag aagcactgga gatg		
		•	
<210>	128	•	
<211>	50		
<212>	DNA		
<213>	Homo sapiens		
	120		
<400>	128 aata cataaatgag gcagttacta gtagtggtaa	ctgctaggaa	50
taaaca	aata Cacaaacyay yeeysteessa 3. 3.		
47105	129	•	
<210> <211>	50		
<211>	АИД .		
	Homo sapiens		
44117	nome adjusted		
<400>	129	•	50
actaaa	aata taaaaatcag ccaggcctgg tggcacatgt	ctgtaatctc	30
40,444		•	
		•	
<210>	130		
<211>	50		
<212>	_DNA		
<213>	Homo sapiens		
<400>	130	- trcagaacct	50
gggatg	catt ataaatgcaa ccagccagag ggcccctgg	. cccagaacc	
_			
		•	
<210>	131		
<211>	=		
<212>	DNA		
<213>	Homo sapiens	The state of the s	
	111	•	
<400>	131		27
gtcacc	tcag cgatctcaac gataggg		
<210>	132		
<211>	28		
<211>	DNA	•	
<213>	Homo sapiens		
14447	rame asharin		
<400>	132		20
	agga acaggatata ggtcaggg	•	28
cyyayi			
<210>	133		
<211>	50		
<212>	DNA .		
<213>	Homo sapiens		
<400>	133		

		160	200 PCT FINAL.	ST25	50
atataccttg ttta	aaagag gggtattatc	acaataaaac	aayyaaaycc		
<210> 134					
<211> 50					
<212> DNA					
<213> Homo sag	piens				
<400> 134 acccctactt ttaa	aaggcet tgacaaacag	tgctaaagtt	ctcaccttaa		50
<210> 135	•				
<211> 24					
<212> DNA <213> Homo sa	piens				
(213) 1.0.20					
<400> 135					24
gggtgggaag gaa	ycaggga agag			,	
	•		•		
<210> 136					
<211> 24					
<212> DNA <213> Homo sa	piens				
	•				
<400> 136	htago gcag				24
ccagctagtt cat	decedde dead				
•					
<210> 137					
<211> 50					
<212> DNA <213> Homo sa	niens				
(213)	·)				
<400> 137 ttattgggca taa	aaatatg aagagaggto	ccagagagto	cctaggttct		50
<210> 138					
<211> 30 <212> DNA					
<213> Homo 56	piens				
<400> 138	ttcageca gateteaca	c			30
ecderaddag co.					
• • •					
<210> 139		-	,		
<211> 24 <212> DNA					
<213> Homo s	apiens				
<400> 139	grandete adea				24
atggaggttt ct	yeaey				
<210> 140 <211> 50					
<211> 50 <212> DNA	•				
<213> Homo s	apiens				
<400> 140	aaaaactg gcattactt	t actcttato	c tttctgtgtc		50
adjudatity to					
		j			
<210> 141 <211> 50		•			
<212> DNA					
<213> Homo s	apiens				
<400> 141					50
actttaattt ta	taaagaag gttcacat	ca agaaattc	a agtgaggttc		-
-					
<210> 142					
<210> 142 <211> 24					
<212> DNA					
<213> Homo 5	apiens				
			Page 90	_	

<400> 142 gggccacttc cacagacage	, g aagc	24
<210> 143 <211> 33 <212> DNA <213> Homo sapiens	,	
<400> 143 tggcctgaga ggtagattco	c acatagtagt Cgt	33
<210> 144 <211> 50 <212> DNA <213> Homo sapiens	•	
<400> 144 aaggcttett caaaaaaag	gggcttgttc tgggccagaa aatcagagtg	50
<210> 145 <211> 31 <212> DNA <213> Homo sapiens	•.	
<400> 145 ctcctttctg gtcagagaad	aagactggga c	31
<210> 146 <211> 27 <212> DNA <213> Homo sapiens		
<400> 146 gtgatgtctc gagaatgagt	gcggttg	27
<210> 147 <211> 50 <212> DNA <213> Homo sapiens		
<400> 147 cagcgaggca gaaaaatgtc	ccacaagttg ageceteece acteccagtg	50
<210> 148 <211> 50 <212> DNA <213> Homo sapiens		
<400> 148 taatataaaa tatataaaat	agtgcaacat tacttattcc tcctggtgtt	50
<210> 149 <211> 27 <212> DNA <213> Homo sapiens		
<400> 149 gcagatgacc cgacctgact	gttcttc	27
<210> 150 <211> 27 <212> DNA <213> Homo sapiens		
<400> .150 tggctgtgca gctagctcag	gtaccag	27
<210> 151 <211> 50		

									1	.6U 2	100 E	CT E	INAL	ST2	.5	
<212> <213>		NA omo s	apie	ens												
<400> gccag	> 1 gaga	51 gt ti	aaat	gaaq	gcc	ctact	tttg	gggd	agg	agc (ggga	ggaaa	ıc			50
<2102 <2112 <2122 <2132	> 9 > 0	52 45 NA omo :	sapi	ens									٠			
<220 <221 <222 <223	> C	os 1)	(945)												
<400 atg Met	Gly	Val	Lys	ASR 5	urs	361			10	-				15		48
tta Leu	act Thr	gaa Glu	caa Gln 20	gca Ala	gag Glu	ctt Leu	cag Gln	ctg Leu 25	Pro	ctc Leu	ttc Phe	tgc Cys	ctc Leu 30	TTC Phe	tta Leu	96
gga Gly	att Ile	tac Tyr 35	aca Thr	gtt Val	act Thr	gtg Val	gtg Val 40	gga Gly	aac Asn	ctc Leu	agc Ser	atg Met 45	atc Ile	tca Ser	acc Ile	144
att Ile	Arg	ctg Leu	aat Asn	cgt Arg	caa Gln	ctt Leu 55	cat His	acc Thr	SLO.	atg Met	tac Tyr 60	tat Tyr	ttc Phe	ctg Leu	agt Ser	192
agt Ser 65	50 ttg Leu	tct Ser	ttt Phe	tta Leu	gat Asp 70		tgc Cys	tat Tyr	tct Ser	tct Ser 75	gtc Val	att Ile	acc Thr	cct Pro	aaa Lys 80	240
	cta Leu	tca Ser	GJ Y ggg	ttt Phe 85	tta Leu	tgc Cys	aga Arg	gat Asp	aga Arg 90	tcc Ser	atc Ile	tcc Ser	tat Tyr	tct Ser 95	gga Gly	. 288
tgc Cys	atg Met	att Ile	cag Gln 100	ctg Leu	ttt Phe	ttt Phe	ttc Phe	tgt Cys 105	gtt Val	tgt Cys	gtt Val	att Ile	tct Ser 110	gaa Glu	tgc Cys	336
tac Tyr	atg Met	ctg Leu 115		gcc Ala	atg Met	gcc Ala	tgc Cys 120	wab	cgc Arg	tac Tyr	gtg Val	gcc Ala 125	atc Ile	Cys Cys	agc Ser	384
cca Pro	ctg Leu 130	ctc Leu	tac Tyr	agg Arg	gtc Val	atc Ile 135	atg Met	tcc Ser	cct Pro	agg	gtc Val 140	-	tct Ser	ctg Leu	ctg Leu	432
gtg Val 145			gtc Val	ttc Phe	tca Ser 150	AGT	ggt	ttc Phe	act Thr	gat Asp 155		gtg Val	atc Ile	cat His	gga Gly 160	480
	tgt Cys	ata Ile	ctc Leu	agg Arg 165	Leu	tct Ser	tto Phe	tgt Cys	gga Gly 170		aac Asn	atc Ile	att	aaa Lys 175	cat His	528
tat Tyr	tto Phe	tgt Cys	gac Asp	att		cct Pro	ctt Lev	att Ile 185	□ 1~	cto Lev	tcc Ser	tgc Cys	tcc Ser 190	ago Ser	act	576
tat Tyr	ati	t gat a Asp 195	gaq Glu		ttq Lev	y act	tt:		att Ile	ggt Gly	gga Gly	ttt Phe 205	Asn	atq Met	gtg Val	624
gcc Ala	Th:	a ago		a aca	ato	att		tca Ser	tat	get Ala	t ttt a Phe 220	ato E Ile	cto Lev	acc Thi	agc Ser	672
Ile	re		ato	cac His	tci Sei	t aad		g ggc s Gly	ago Aro	g tgi g Cy: 23:		a gcq s Ala	tti Phe	age Ser	t acc thr 240	720
225 tgt		c tc	c ca	ct;			t gt	t cti	: aC	g tt	t ta	t ggg	; tc: e 92	t ct	g atg	763

										16U	200	PCT	FINA	L.ST	25	
Cys	Ser	Ser	His	Leu 245	Thr	Ala	Val	Leu	Met 250	Phe	Tyr	Gly	Ser	255	met	•
					cct	act	tot	age	aqt	tca Ser	ctc	acc	cag	gag	aaa	816
Ser	Met	Tyr	Leu 260	Lys	Pro	Ala	Ser	Ser 265	Ser	Ser	Leu	Thr	G1n 270	Glu	Lys	
					-		255	ata	art	ctc	ato	tta	aat	ccc	ttg	864
gta Val	tcc Ser	Ser 275	yal Val	Phe	Tyr	Thr	Thr 280	Val	Ile	Leu	Met	Leu 285	Asn	Pro	Leu	
							-	or a	aga	aat Asn	act	cta	atg	aaa	ctt	912
ata Ile	tat Tyr 290	agt Ser	Leu	agg	Asn	Asn 295	Glu	Val	Arg	Asn	Ala 300	Leu	Met	Lys	Leu	
					+ = +	++2	tct	сса	gga	taa						945
tta Leu 305	aga Arg	Arg	Lys	Ile	Ser 310	Leu	Ser	Pro	ĠĹy							

<210> 153 <211> 314 <212> PRT <213> Homo sapiens

400× 153

Met Gly Val Lys Asn His Ser Thr Val Thr Glu Phe Leu Leu Ser Gly 10 15

Leu Thr Glu Gln Ala Glu Leu Gln Leu Pro Leu Phe Cys Leu Phe Leu 20 25 30 .

Gly Ile Tyr Thr Val Thr Val Val Gly Asn Leu Ser Met Ile Ser Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ile Arg Leu Asn Arg Gln Leu His Thr Pro Met Tyr Tyr Phe Leu Ser 50 55

Ser Leu Ser Phe Leu Asp Phe Cys Tyr Ser Ser Val Ile Thr Pro Lys 65 70 75 80

Met Leu Ser Gly Phe Leu Cys Arg Asp Arg Ser Ile Ser Tyr Ser Gly 85 90 95

Cys Met Ile Gln Leu Phe Phe Phe Cys Val Cys Val Ile Ser Glu Cys 100 105 110

Tyr Met Leu Ala Ala Met Ala Cys Asp Arg Tyr Val Ala Ile Cys Ser 115 120 125

Pro Leu Leu Tyr Arg Val Ile Met Ser Pro Arg Val Cys Ser Leu Leu 130 ' 135 140

Val Ala Ala Val Phe Ser Val Gly Phe Thr Asp Ala Val Ile His Gly 145 150 160

Gly Cys Ile Leu Arg Leu Ser Phe Cys Gly Ser Asn Ile Ile Lys His 165 170 175

Tyr Phe Cys Asp Ile Val Pro Leu Ile Lys Leu Ser Cys Ser Ser Thr

Tyr Ile Asp Glu Leu Leu Ile Phe Val Ile Gly Gly Phe Asn Met Val 195 200 205

<400> 159

Ala Thr	Ser Leu	Thr	Ile	Ile 215	Ile	Ser	Tyr	16U Ala	200 Phe 220	PCT Ile	FINA Leu	L.SI Thr	25 Ser	
ile Leu i 225	Arg Ile	His	Ser 230	Lys	Lys	Gly	Arg	Cys 235	Lys	Ala	Phe	Ser	Thr 240	
Cys Ser	Ser His	Leu 245	Thr	Ala	Val	Leu	Met 250	Phe	Tyr	Gly	Ser	Leu 255	Met	٠
Ser Met	Tyr Leu 260	Lys	Pro	Ala	Ser	Ser 265	Ser	Ser	Leu	Thr	Gln 270	Glu	Lys	
Val Ser	Ser Val 275	Phe	туг	Thr	Thr 280	Val	Ile	Leu	Met	Leu 285	Asn	Pro	Leu	
Ile Tyr 290	Ser Leu	Arg	Asn	Asn 295	Glu	Val	Arg	Asn	Ala 300	Leu	Met	Lys	Leu	
Leu Arg	Arg Lys	Ile	Ser 310	Leu	Ser	Pro	Gly							
<210> 1 <211> 3 <212> D <213> H	4 NA	iens												
<400> 1 ctgtgatc	54 ca tgga	ggttq	gt a	tacto	:agg	t tg	tc							34
<210> 1 <211> 3 <212> D <213> H	6 NA	iens												
<400> 1 tcatcaga	55 gc attt	cttac	et t	catto	gttc	c tc	agac					•,		36
<210> 1 <211> 5 <212> - D <213> H	0 NA	iens												
<400> 1 caggagaa	56 tt aaat	ataaq	ga gi	tggto	cagt	g tg	cttg	taac	act	cagg	aca			50
<211> 5 <212> D	57 0 NA lomo sap	iens				•								
<400> 1 aaaacatg	.57 ct ttaa	aaaa	cc c	atgai	tatt	a aa	gaca	aaaa	act	gagc	ata			50
<211> 5 <212> D	.58 0 NA lomo sap	ilens												
<400> l atgaacag	.58 jet tatt	aaata	ag c	cagg	tagc	t gg	gcag	aatg	aga	aaat	gca			50
<211> 5 <212> D	.59 0 NA lomo sap	iens								-				

16U 200 PCT FINAL.ST25 gcccaacact aaataaaggg tcagctttct cagagataag gccatgattg	50
<210> 160 <211> 50 <212> DNA <213> Homo sapiens	
<400> 160 tgctataaaa tgtttttaaa aagtgtgaag ttggcctatc accaagtaag .	50
<210> 161 <211> 50 <212> DNA <213> Homo sapiens	
<400> 161 taaatattgt atttatatag toottoagga ggaotgaggo atcotocagt	50
<210> 162 <211> 957 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(957) <223>	
<pre><400> 162 atg aat cca gca aat cat tcc cag gtg gca gga ttt gtt cta ctg ggg Met Asn Pro Ala Asn His Ser Gln Val Ala Gly Phe Val Leu Leu Gly 1</pre>	48
Ctc tct cag gtt tgg gag ctt cgg ttt gtt ttc ttc act gtt ttc tct Leu Ser Gln Val Trp Glu Leu Arg Phe Val Phe Phe Thr Val Phe Ser 20 25 30	96
gct gtg tat ttt atg act gta gtg gga aac ctt ctt att gtg gtc ata Ala Val Tyr Phe Met Thr Val Val Gly Asn Leu Leu Ile Val Val Ile 35	144
gtg acc tcc gac cca cac ctg cac aca acc atg tat ttt ctc ttg ggc Val Thr Ser Asp Pro His Leu His Thr Thr Met Tyr Phe Leu Leu Gly 50 55 60	192
Asn Leu Ser Phe Leu Asp Phe Cys Tyr Ser Ser Ile Thr Ala Pro Arg 65 70 80	240
atg ctg gtt gac ttg ctc tca ggc aac cct acc att tcc ttt ggt gga Met Leu Val Asp Leu Leu Ser Gly Asn Pro Thr Ile Ser Phe Gly Gly 85 90 95	288
tgc ctg act caa ctc ttc ttc ttc cac ttc att gga ggc atc aag atc Cys Leu Thr Gln Leu Phe Phe Phe His Phe Ile Gly Gly Ile Lys Ile 100 105 110	336
Phe Leu Leu Thr Val Met Ala Tyr Asp Arg Tyr Ile Ala Ile Ser Gln 115 120 125	384
CCC Ctg Cac tac acg ctc att atg aat cag act gtc tgt gca ctc ctt Pro Leu His Tyr Thr Leu Ile Met Asn Gln Thr Val Cys Ala Leu Leu 130 . 135 140	432
atg gca gcc tcc tgg gtg ggg ggc ttc atc cac tcc ata gta cag att Met Ala Ala Ser Trp Val Gly Gly Phe Ile His Ser Ile Val Gln Ile 145 150 160	480
gca ttg act atc cag ctg cca ttc tgt ggg cct gac aag ctg gac aac Ala Leu Thr Ile Gln Leu Pro Phe Cys Gly Pro Asp Lys Leu Asp Asn 165 170 175	528
Phe Tyr Cys Asp Val Pro Gln Leu Ile Lys Leu Ala Cys Thr Asp Thr 180	576

										200						
ttt Phe	gtc Val	tta Leu 195	gag Glu	ctt Leu	tta Leu	wec	gtg Val 200	tct Ser	aac Asn	aat Asn	G1 y ggc	ctg Leu 205	gtg Val	acc Thr	ctg Leu	624
atg Met	tgt Cys 210	ttt Phe	ctg Leu	gtg Val	ctt Leu	ctg Leu 215	gga Gly	tcç Ser	tac Tyr	aca Thr	gca Ala 220	ctg Leu	cta Leu	gtc Val	atg Met	672
ctc Leu 225	cga Arg	agc Ser	cac His	tca Ser	cgg Arg 230	gag Glu	ggc Gly	cgc Arg	agc Ser	aag Lys 235	gcc Ala	ctg Leu	tct Ser	acc Thr	tgt Cys 240	720
	tct Ser	cac His	att Ile	gct Ala 245	gtg Val	gtg Val	acc Thr	tta Leu	atc Ile 250	ttt Phe	gtg Val	cct Pro	tgc Cys	atc Ile 255	tac Tyr	768
gtc Val	tat Tyr	aca Th <i>r</i>	agg Arg 260	cct Pro	ttt Phe	cgg Arg	aca Thr	ttc Phe 265	Pro Pro	atg Met	gac Asp	aag Lys	gcc Ala 270	gtc Val	tct Ser	816
gtg Val	cta Leu	tac Tyr 275	aca Th <i>r</i>	att Ile	gtc Val	acc Thr	ccc Pro 280	atg Met	ctg Leu	aat Asn	cct Pro	gcc Ala 285	atc Ile	tat Tyr	acc Thr	864
ctg Leu	aga Arg 290	aac Asn		gaa Glu	gtg Val	atc Ile 295	atg Met	gcc Ala	atg Met	aag Lys	aag Lys 300	ctg Leu	tgg Trp	agg Arg	agg Arg	912
aaa Lys 305	aag Lys		cct Pro	att Ile	ggt Gly 310	PLO	ctg Leu	gag Glu	cac His	aga Arg 315	CCC Pro	tta Leu	cat His	tag		957
<21 <21 <21 <21	1> 2>	163 318 PRT Homo	sap	iens				-								
< 40	0>	163														
		Pro	Ala	Asn 5	His	Ser	Gln	Val	Ala 10	Gly	Phe	Val	Leu	Leu 15	GJA	
Leu	ı Ser	Glr	val 20		Glu	Leu	Arg	Phe 25	val	Phe	Phe	The	7al 30	Phe	e Ser	
Ala	ı Val	. Tyi	e Phe	Met	The	Val	val 40	. Gly	r Asn	Leu	. Leú	11e 45	val	. Val	Ile	
Val	1 Th:	: Se	c Asp	ero	His	Leu 55	His	Th:	Th:	Met	: Ty:	Phe	Let	ı Le	ı Gly	
As:	ı Le	ı Se	r Phe	e Lev	1 Asg 70	Phe	Cys	ту:	s Sei	5 Se 1	: Ile	Th:	: Ala	a Pro	80 80	
Me	t Le	u Va	l Ası	p Let 85	ı Let	ser	Gl	reA y	n Pro	Thi	r Ile	e Se	e Ph	e G1: 95	y Gly	
СУ	s Le	u Th	r G1:	n Lev O	ı Phe	e Phe	Phe	e Hi: 10:	s Pho S	e Ilo	e G1;	y Gl	y Il 11	e Ly O	s Ile	
ВP	e Le	u Le 11		r Va	L Me	t Ala	12:	r Ası	p Ar	g Ty:	r Il	e Al 12	a 11 5	e Se	r Gln	
Pr	o Le 13		s Ty	r Th.	r Le	u Ile 13	e Me	t As	n Gl	n Th	r Va 14	1 Cy 0	s Al	a Le	u Leu	
Ме 14		a Al	a Se	r Tr	p Va 15	1 G1; 0	, Gl	y Ph	e Il	e Hi 15	s Se 5				n Ile 160	
	•											Pag	je 96	5		

<220>
<221> CDS
<222> (1)..(972)
<223>

										160	200	PCT	FINA	L.ST	25		
Ala	Leu	Thr	Ile	Gln 165	Leu	Pro	Phe	Cys	Gly 170	Pro	Asp	Lys	Leu	Asp 175	Asn		
Phe	Tyr	Cys	Asp 180	Val	Pro	Gln	Leu	Ile 185	Lys	Leu	Ala	Cys	Thr 190	Asp	Thr		
Phe	Val	Leu 195	Glu	Leu	Leu	Met	Val 200	Ser	Asn	Asn	Gly	Leu 205	Val	Thr	Leu		
Met	Cys 210	Phe	Leu	Val	Leu	Leu 215	Gly	Ser	Tyr	Thr	Ala 220	Leu	Leu	Val	Met		
Leu 225	Arg	Ser	His	Ser	Arg 230	Glu	Gly	Arg	Ser	Lys 235	Ala	Leu	Ser	Thr	Суз 240		
Ala	Ser	His	Ile	Ala 245	Val	Val	Thr	Leu	11e 250	Phe	Val	Pro	Cys	Ile 255	Tyr		
val	туг	Thr	Arg 260	Pro	Phe	Arg	Thr	Phe 265	Pro	Met	Asp	Lys	Ala 270	Val	Ser	•	
Val	Leu	Tyr 275	Thr	Ile	. Val	Thr	280	Met	Leu	Asn	Pro	285	Ile	Tyr	Thr		
Leu	Arg 290	Asn	Lys	Glu	Val	11e 295	Met	. Ala	Met	Lys	300	Leu)	. Trp	Arg	Arg		
Lys 305		Asp	PIC	Ile	Gly 310	Pro	Leu	. Glu	ı His	315	Pro	Leu	ı His	i			
<21 <21	2>	26 DNA	sar	oiens	3									•		-	
<40 gaa	0> tcc	164 gca	aato	atto	cc a	ıggtç	1 9										26
<21 <21 <21 <21	.2>	165 29 DNA Home	sa)	pien:	s												
<40 cta	0> atg	165 Laag	ggt	ctgt	gct (cage	gggad	c .									29
<2: <2:	11> 12>	166 50 DNA Home	o sa	pien	3												
						gggg	gcag	tg a	tttc	ttt	c tt	ttct	tttt				50
<2: <2:	10> 11> 12> 13>	157 972 DNA Hom		pien	s		-										

															_	
<400 atg Met 1	-	67 CCT Pro	gaa Glu	aac Asn 5	tgg Trp	act Thr	cag Gln	gta Val	aca Thr 10	agc Ser	ttt Phe	gtc Val	ctt Leu	ctg Leu 15	ggt Gly	48
ttc Phe	ccc Pro	agt Ser	agc Ser 20	cac His	ctc Leu	ata Ile	cag Gln	ttc Phe 25	ctg Leu	gtg Val	ttc Phe	ctg Leu	30 GJ Å aaa	tta Leu	atg Met	96
Val	Thr	Tyr 35	Ile	Val	Thr	Ala	40	Grà	пуэ	дец		att Ile 45				144
Ser	Trp 50	Ile	Asp	Gln	Arg	S5	HIS	116	GIM	1120	60	ttc Phe	•		•	192
Asn 65	Phe	Ser	Phe	Leu	70	rea	rea	rea	497	75		gtg Val			80	240
Met	Leu	Val	Val	85	Leu	Int	GIY	vəħ	90			tca Ser		95		288
Cys	Ile	Ile	Gln 100	Ser	Tyz	ren	ryr	105	FIIC	200	01,	acc Thr	110	•		336
Phe	Leu	Leu 115	Ala	Val	Met	ser	120	ASP	ALY	*1-		gca Ala 125			-	. 384
Pro	Leu 130	Arg	Tyr	Glu	Thr	135	mec	ASII	Gij		140					432
Val 145	Leu	Ala	Ser	Trp	150	ALA	GIY	File	Dec	155	,,,,	ctt Leu	-,		160	480
Val	Leu	Met	Ala	165	Leu	PIO	File	Cys	170			ggt Gly		175		528
Phe	Phe	Arg	180	Ser	rrp	510	Leu	185	ary	200	-	-4-	190	•		576
cac	cti Le	ctq Leu 195	i Lys	ctg Leu	gtg Val	gct Ala	ttc Phe 200	116 6	ctc Leu	tct Ser	acg Thi	Leu 205		tta Leu	ctg Leu	624
ggc Gly	Sei 210	Let	g gct 1 Ala	ctg Leu	acc Thr	tca Ser 215	Agr	tcc Ser	tat Tyr	gcc	Cys 220		ctt Leu	gcc Ala	act Thr	672
gtt Val 225	Lei	ago 1 Aro	g gco g Ala	cct Pro	aca Thr 230	770	gct Ala	gaq Glu	g cga	agg Arg 235	-	gcg Ala	Phe	tcc Ser	Thr 240	720
tgc Cys	gc: Al	tcq Sei	g cat c His	ctt Leu 249	ı Tnı	gto Val	g gto L Val	gto Val	: ato : Ile : 250		tat Tyr	ggc Gly	e agt	Ser 255	atc Ile	768
tt: Phe	ct: Le	c tac u Ty	c at c Ile 260	a Arq	ato Met	tca Sea	a gaq	g gct 1 Ala 265		tco Ser	aaa Lys	a cto s Lev	cto Let 270	aac Asr	aaa Lys	816
ggt Gl	gc Al	c tco a Se. 27:	r Va.	c cto	g ago	tgo Cys	280	2 776	aca Thi	Pro	cto Le	ttq Lev 285		cca Pro	ttc [.] Phe	864
ato Ilo	: tt : Ph : 29	e Th	t ct	c cgo	c aat g Asr	gae 1 As 29	b rà:	g gto s Vai	g caq L Gl:	g caa n Glr	gca Ala 30		g aga	a gaa g Glu	a gcc ı Ala	912
tt: Le:			p Pr	c ago	g cto	act	t gc r Al	t gte a Va.	g ato	aaa Ly:	cts Le	g agg			a agt r Ser	960

310

16U 200 PCT FINAL.ST25 315 320

305

caa agg aaa tga Gln Arg Lys

<210> 168

<211> 323 <212> PRT

<212> PRT <213> Homo sapiens

<400> 168

Met Asn Pro Glu Asn Trp Thr Gln Val Thr Ser Phe Val Leu Leu Gly

Phe Pro Ser Ser His Leu Ile Gln Phe Leu Val Phe Leu Gly Leu Met 20 30

Val Thr Tyr Ile Val Thr Ala Thr Gly Lys Leu Leu Ile Ile Val Leu 35 40

Ser Trp Ile Asp Gln Arg Leu His Ile Gln Met Tyr Phe Phe Leu Arg 50 55 60

Asn Phe Ser Phe Leu Glu Leu Leu Leu Val Thr Val Val Pro Lys 80

Met Leu Val Val Ile Leu Thr Gly Asp His Thr Ile Ser Phe Val Ser 85 90 95

Cys Ile Ile Gin Ser Tyr Leu Tyr Phe Phe Leu Gly Thr Thr Asp Phe 100 105 110

Phe Leu Leu Ala Val Met Ser Leu Asp Arg Tyr Leu Ala Ile Cys Arg 115 120 125

Pro Leu Arg Tyr Glu Thr Leu Met Asn Gly His Val Cys Ser Gln Leu 130 135 140

Val Leu Ala Ser Trp Leu Ala Gly Phe Leu Trp Val Leu Cys Pro Thr 145 150 150

Val Leu Met Ala Ser Leu Pro Phe Cys Gly Pro Asn Gly Ile Asp His 165 170 175

Phe Phe Arg Asp Ser Trp Pro Leu Leu Arg Leu Ser Cys Gly Asp Thr 180 185 190

His Leu Leu Lys Leu Val Ala Phe Met Leu Ser Thr Leu Val Leu Leu 195 200 205

Gly Ser Leu Ala Leu Thr Ser Val Ser Tyr Ala Cys Ile Leu Ala Thr 210 215 220

Val Leu Arg Ala Pro Thr Ala Ala Glu Arg Arg Lys Ala Phe Ser Thr 225 230 235 240

Cys Ala Ser His Leu Thr Val Val Val Ile Ile Tyr Gly Ser Ser Ile 245 250 255

Phe Leu Tyr Ile Arg Met Ser Glu Ala Gln Ser Lys Leu Leu Asn Lys Page 99 972

260

16U 200 PCT FINAL.ST25 270

Gly Ala Ser Val Leu Ser Cys Ile Ile Thr Pro Leu Leu Asn Pro Phe 275 280 285

Ile Phe Thr Leu Arg Asn Asp Lys Val Gln Gln Ala Leu Arg Glu Ala 290 295 300

Leu Gly Trp Pro Arg Leu Thr Ala Val Met Lys Leu Arg Val Thr Ser 305 310 315 320

Gln Arg Lys

<210> <211> <212> <213>	169 25 DNA Homo	sapie	ns													
<400> tgtgct	169 cagc to	ggatā	gaco	aac	ege									• ••.	25	
<210> <211> <212> <213>	170 30 DNA Homo	sapie	ens											•		
<400> ctgaga	170 acag t	ggca	agaat	t gʻc	aggc	atag									30	
<210> <211> <212> <213>	171 450 DNA Homo	sapi	ens													
<220> <221> <222> <223>	CDS (1)	(450) .										·			
<400> atg ga Met A: 1	171 ac ctt sp Leu	Pro	cat His 5	gtc Val	cca Pro	gct Ala	ctg Leu	gac Asp 10	gcc Ala	cca Pro	ctc Leu	ttt Phe	gga Gly 15	gtc Val	48	
Phe L	tg gtg eu Val	20 20	Tyr	Val	Deu	1111	25		•			30			96	
ccg g Leu V	tg atc al Ile 35	agg Arg	gtg Val	tac Tyr	tct Ser	cac His 40	ctc Leu	cac His	acc Thr	6L0 CCC	aag Lys 45	tac Tyr	tac Tyr	ttc Phe	. 144	
Lau T	cc aat hr Asn O	ctg Leu	tcc Ser	ttc Phe	att Ile 55	gac Asp	ttg Leu	tgg Trp	ttc Phe	ttc Phe 60	act Thr	gtc Val	atg Met	gtg Val	192	!
ccc a Pro L 65	aa atg ys Met	ccg Pro	agg Arg	acc Thr 70	ttg Leu	ttg Leu	tcc Ser	ctg Leu	tgt Cys 75	ggc Gly	aag Lys	gct Ala	gtg Val	tcc Ser 80	240)
	ac agt lis Ser	tgt Cys	atg Met 85	acc Thr	caa Gln	ctc Leu	tat Tyr	ttc Phe 90	ttc Phe	tac Tyr	ttc Phe	ctg Leu	GTA GTA	agc Ser	. 288	3
Thr G	ag tgt Slu Cys	100	Leu	171			105		-			110			33:	
aat a Asn T	nct cag Thr Glo 115	HIS	ttc Phe	cca Pro	ggt	agt Ser 120		aac Asn	act Thr		125			agc Ser	38	4
											Page	100				

Page 100

						•		
caa atg ct Gln Met Le 130	gtg gcc (cgg ggg ġ Arg Gly A: 135	ca cac la His	ggg ctc Gly Leu	cca ctc Pro Leu 140	atc atc Ile Ile	ctg 432 Leu	
gca gat ct Ala Asp Le 145	g agt ggg ı Ser Gly	taa					450	
<210> 172 <211> 149 <212> PRT <213> Hom	sapiens							
<400> 172						•		
Met Asp Le	Pro His	Val Pro A	la Leu	Asp Ala 10	Pro Leu	Phe Gly 15	Val	
Phe Leu Va	l Val Tyr 20	Val Leu T	hr Val 25	Leu Gly	Asn Leu	Leu Ile 30	Leu	
Leu Val II 35	a Arg Val	Tyr Ser H	is Leu O	His Thr	Pro-Lys 45	Tyr Tyr	Phe	
Leu Thr As	n Leu Ser	Phe Ile A	sp Leu	Trp Phe	Phe Thr 60	Val Met	Val	
Pro Lys Me 65	t Pro Arg	Thr Leu Lo	eu Ser	Leu Cys 75	Gly Lys	Ala Val	Ser 80	
Phe His Se	Cys Met '	Thr Gln L	eu Tyr	Phe Phe 90	Tyr Phe	Leu Gly 95	Ser	
Thr Glu Cy	s Leu Leu 100	Tyr Thr V	al Met 105	Ser Tyr	Asp Arg	Tyr Arg 110	Gly	
Asn Thr Gl		Pro Gly So	er Glu 20	Asn Thr	Pro His 125	Glu Val	Ser	
Gln Met Le	ı Val Ala	Arg Gly A. 135	la His	Gly Leu	Pro Leu 140	Ile Ile	Leu	
Ala Asp Le	ı Ser Gly			•				
<210> 173 <211> 23 <212> DNA <213> Hom	sapiens							
<400> 173		t ttg					23	
<210> 174 <211> 27 <212> DNA								
<213> Hom	sapiens							
<400> 174 acccactcag	atctgccag	g atgatga					27	
<210> 175		·•						
<211> 936 <212> DNA								
	sapiens							

<220 <221 <222	.> C	DS 1)	(936	i)													
<223	, ,																
<400 atg Met 1		75 aac Asn	gcc Ala	agc Ser S	ctc Leu	gtg Val	aca Thr	gca Ala	ttc Phe 10	atc Ile	ctc Leu	aca Thr	ggc Gly	ctt Leu 15	ccc Pro	•	48
cat His	gcc Ala	cca Pro	999 Gly 20	ctg Leu	gac Asp	gcc Ala	ctc Leu	ctc Leu 25	ttt Phe	gga Gly	atc Ile	ttc Phe	ctg Leu 30	gtg Val	gtt Val		96
Tyr	val	Leu 35	Thr	Vai	Leu	GIY	40	ctc Leu	Deu	110		45					144
Val	Asp 50	Ser	His	Leu	HIS	55	PLO	atg Met	LYL	. 7 .	60		•				192
Ser 65	Phe	Ile	Asp	Met	Trp 70	Pne	Ser	act Thr	Val	75	***	110	2,0		80		240
atg Met	acc Thr	ttg Leu	gtg Val	tcc Ser 85	cca Pro	agc Ser	ggc Gly	agg Arg	gct Ala 90	atc Ile	tcc Ser	ttc Phe	cac His	agc Ser 95	Cya		288
gtg Val	gct Ala	cag Gln	ctc Leu 100	tat Tyr	ttt Phe	ttc Phe	cac His	ttc Phe 105	ctg Leu	Gl y	agc Ser	acc Thr	gag Glu 110	tgt Cys	ttc Phe		336
ctc Leu	tac Tyr	aca Thr 115	gtc Val	atg Met	tcc Ser	tat Tyr	gat Asp 120	cgc Arg	tac Tyr	ttg Leu	~~~	atc Ile 125	agt Ser	tac Tyr	Pro		384
ctc Leu	agg Arg 130	tac Tyr	acc Thr	agc Ser	atg Met	atg Met 135	agt Ser	ggg Gly	agc Ser	agg Arg	tgt Cys 140	gcc Ala	ctc Leu	ctg Leu	gcc Ala		432
acc Thr 145	Gly	act Thr	tgg Trp	ctc Leu	agt Ser 150	Gly	tct Ser	ctg Leu	cac His	tct Ser 155	gct Ala	gtc Val	cag Gln	acc	ata Ile 160		480
ttg Leu	act Thr	ttc Phe	cat His	ttg Leu 165	Pro	tac Tyr	tgt Cys	gga Gly	ccc Pro 170	Wali	cag Gln	atc Ile	cag Gln	cac His 175	- 3 -		528
tt <i>c</i> Phe	tgt Cys	gac Asp	Ala	,ccg Pro	CCC	atc Ile	ctg Leu	aaa Lys 185	ctg Leu	gcc Ala	tgt Cys	gca Ala	gac Asp 190		tca Ser		576
gcc	aac Asn	gtg Val 195	Met	gtc Val	atc	Pne	gtg Val 200	gac Asp	att Ile	G1 y ggg	ata Ile	gtg Val 205		tca Ser	Gly		624
tgc Cys	ttt Phe 210	Val	ctg Leu	ata Ile	gtg Val	ctg Leu 215	261	tat Tyr	gtg Val	tcc Ser	Ile 220		tgt Cys	ser	atc		672
ctg Leu 225	Arg	atc Ile	cgc	acc	tca Ser 230	ASP	ggg Gly	agg Arg	Arg	aga Arg 235	744	ttt Phe	cag Gln	acc	Cys 240		720
gcc Ala	tcc Ser	cac	Cys	att []e 245	. var	gtc	Leu	tgc Cys	Phe 250	2110	gtt Val	Pro	tgt Cys	gtt Val 255	gcc Val		768
att Ile	tat Tyr	ctg	agg Arg 260	Pro	ggc Gly	tcc Ser	atg Met	gat Asp 265	NI a	atg Met	gat Asp	gga Gly	yal 270		gcc Ala		816
att	ttc Phe	tac Tyr 275	Thr	gtg Val	ctg Leu	acg Thr	280	, Leu	cto Leu	aac Asr	cct Pro	gtt Val 285		tac Tyr	acc Thr		864

WO 03/089583

912

936

ctg aga aac Leu Arg Asn 290	Lys Glu Val	Lys Lys 295	Ala Vai	ttc aaa	Leu Arg	gac aaa
gta gca cat Val Ala His 305	Pro Gln Ard	Lys				
<210> 176 <211> 311 <212> PRT <213> Homo	sapiens					
<400> 176						
Met Ser Asn 1	Ala Ser Lei S	val Thr	Ala Phe 10	Ile Leu	Thr Gly	Leu Pro 15
His Ala Pro	Gly Leu Asp 20	Ala Leu	Leu Phe 25	Gly Ile	Phe Leu 30	Val Val
Tyr Val Leu 35	Thr Val Let	ı Gly Asn 40	Leu Leu	Ile Leu	Leu Val 45	Ile Arg
Val Asp Ser 50	His Leu His	55 Thr Pro	Met Tyr	Tyr Phe	Leu Thr	Asn Leu
Ser Phe Ile 65	Asp Met Tr;	phe Ser	Thr Val	Thr Val	Pro Lys	Met Leu 80
Met Thr Leu	Val Ser Pro	Ser Gly	Arg Ala 90	Ile Ser	Phe His	Ser Cys 95
Val Ala Gln	Leu Tyr Pho	e Phe His	Phe Leu 105	Gly Ser	Thr Glu	Cys Phe
Leu Tyr Thr 115		r Tyr Asp 120	Arg Tyr	Leu Ala	Ile Ser 125	Tyr Pro
Leu Arg Tyr 130	Thr Ser Me	t Met Ser 135	: Gly Ser	Arg Cys	Ala Leu	Leu Ala
Thr Gly Thr	Trp Leu Se	c Gly Ser	: Leu His	Ser Ala 155	Val Glo	Thr Ile 160
Leu Thr Phe	His Leu Pr 165	Tyr Cys	i Gly Pro 170	Asn Glr	lle Glr	His Tyr 175
Phe Cys Asp	Ala Pro Pr 180	o Ile Leu	Lys Leu 185	ı Ala Cys	a Ala Asç 190	Thr Ser
Ala Asn Val 195	Mec Val Il	e Phe Val 200	Asp Ile	Gly Ile	val Ala 205	Ser Gly
Cys Phe Val	. Leu Ile Va	l Leu Sei 215	Tyr Val	Ser Ile 220	e Val Cys)	Ser Ile
Leu Arg Ile 225	Arg Thr Se 23	r Asp Gly	/ Arg Arg	g Arg Ala 235	a Phe Glr	Thr Cys 240
Ala Ser His	Cys Ile Va 245	l Val Le	ı Cys Phe 250	e Phe Val	L Pro Cys	Val Val 255

16U 200 PCT FINAL.ST25 Ile Tyr Leu Arg Pro Gly Ser Met Asp Ala Met Asp Gly Val Val Ala Ile Phe Tyr Thr Val Leu Thr Pro Leu Leu Asn Pro Val Val Tyr Thr 275 280 295 Leu Arg Asn Lys Glu Val Lys Lys Ala Val Leu Lys Leu Arg Asp Lys Val Ala His Pro Gln Arg Lys 305 <210> 177 <211> 29 <212> DNA <213> Homo sapiens <400> 177 29 caaccagate cagcactact tetgtgacg <210> 178 <211> 33 <212> DNA <213> Homo sapiens <400> 178 33 ttatttcctc tgaggatgtg ctactttgtc tct <210> 179 <211> 50 <212> DNA <213> Homo sapiens <400> 179 taggagaage cetttaaaag caggeaatag taaggacate agtaacaata <210> 180 <211> 50 <212> DNA <213> Homo sapiens <400> 180 gctgggtgct ctttatatcc ccagagggag agagaccaag ggtgagaaga <210> 191 <211> 921 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(921) <400> 181 atg gtg act gag ttt ctt ctt ctc ggc ttc tcc cac ctg gcc gac ctc met Val Thr Glu Phe Leu Leu Gly Phe Ser His Leu Ala Asp Leu 1 . . 5 48 cag ggc ttg ctc ttc tct gtc ttt ctc act atc tac ctg ctg acc gtg Gln Gly Leu Leu Phe Ser Val Phe Leu Thr Ile Tyr Leu Leu Thr Val 96 gca ggc aat ttc ctc att gtg gtg ctg gtc tcc act gat gct gcc ctc Ala Gly Asn Phe Leu Ile Val Val Leu Val Ser Thr Asp Ala Ala Leu 144

cag too cot atg tac tto tto otg ogo acc otc tog goo ttg gag att Gln Ser Pro Met Tyr Phe Phe Leu Arg Thr Leu Ser Ala Leu Glu Ile

Page 104

192

Gly 65	tat Tyr	Thr	Ser	Vai	70	vai	SLO	Leu	Leu	75			Deu	200	80	240
ggc Gly	cgg Arg	cgC Arg	cac His	atc Ile 85	tct Ser	cgc Arg	tct Ser	gga Gly	tgt Cys 90	gct Ala	ctc Leu	cag Gln	atg Met	ttc Phe 95	ttc Phe	288
ttc Phe	ctc Leu	ttc Phe	ttt Phe 100	ggc Gly	gcc Ala	acg Thr	gaç Glu	tgc Cys 105	tgc Cys	ctc Leu	ctg Leu	gca Ala	gcc Ala 110	atg Met	gcc Ala	336
tat Tyr	gac Asp	cgc Arg 115	tat Tyr	gca Ala	gcc Ala	atc Ile	tgt Cys 120	gaa Glu	Pro CCC	ctc Leu	cgc Arg	tac Tyr 125	cca Pro	ctg Leu	ctg Leu	384
ctg Leu	agc Ser 130	cac His	cgg Arg	gtg Val	tgt Cys	cta Leu 135	cag Gln	cta Leu	gct Ala	GŢÀ âââ	tcg Ser 140	gcg Ala	tgg Trp	gcc Ala	tgt Cys	432
ggg Gly 145	gtg Val	ctg Leu	gtg Val	GJY GGG	ctg Leu 150	GI Y	cac His	acc Thr	cct Pro	ttc Phe 155	atc Ile	ttc Phe	tct Ser	ttg Leu	ccc Pro 160	480
ttc Phe	tgc Cys	ggc Gly	CCC Pro	aat Asn 165	acc Thr	atc Ile	ccg Pro	cag Glņ	ttc Phe 170	ttc Phe	tgt Cys	gag Glu	atc Ile	cag Gln 175	Pro	528
gtc Val	ctg Leu	cag Gln	ctg Leu 180	Val	tgt Cys	gga Gly	gac Asp	acc Thr 185	tcg Ser	ctt Leu	aat Asn	gaa Glu	ctg Leu 190	cag Gln	att Ile	576
atc Ile	ctg Leu	gca Ala 195	Thr	gcc Ala	ctc Leu	ctc Leu	atc Ile 200	_ctc Leu	tgc Cys	Pro CCC	ttt Phe	ggc Gly 205	ctc Leu	atc Ile	ctg Leu	624
ggc Gly	tcc Ser 210	Tyr	ggg Gly	cgt	atc	ctc Leu 215	gtt Val	acc Thr	atc Ile	ttc Phe	cgg Arg 220		cca Pro	tct Ser	gtt Val	672
gcg Ala 225	Gly	cgc	cgc	aag Lys	gcc Ala 230	ttc Phe	tcc Ser	acc Thr	tgc Cys	tcc Ser 235		cac His	ctg Leu	atc	gtg Val 240	720
gto Val	tcc Ser	ctc	ttc Phe	tat Tyr 245	GTA	acc Thr	gca Ala	ctc Leu	ttt Phe 250	110	tat	att : Ile	cgc	Pro 255	aag Lys	768
Ala	Ser	Tyr	260	Pro	Ala	THE	Asp	265	Dea	, ,,,,	• • • • •		270	•	gct Ala	816
Val	. Val	275	Pro) Ile	e Leu	ASN	280	1 116		• • • •		285			aca Thr	864
gaq Glu	g gto val 290	. Ly:	gct Ala	gco Ala	cta Leu	Lys 295	ALY	acc Thr	: atc	cag Gln	Lys 300		gtg Val	Pro	atg Met	912
	g att u Ile S		1													921
<2: <2:	10> 11> 12> 13>	132 306 PRT Homo	o saj	oien:	3											
	20>	182														
1				5					10) Leu	
GL	n Gly	y Lei	u Lei 20	ı Ph	e Sei	: Val	L Pho	e Lev 25	1 Thi	r Ile	е Ту:		u Let 30		r Val	
												- 49		•		

Ala Gly Asn Phe Leu Ile Val Val Leu Val Ser Thr Asp Ala Ala Leu 35 40 45

Gln Ser Pro Met Tyr Phe Phe Leu Arg Thr Leu Ser Ala Leu Glu Ile 50 55 60

Gly Tyr Thr Ser Val Thr Val Pro Leu Leu Leu His His Leu Leu Thr 65 70 80

Gly Arg Arg His Ile Ser Arg Ser Gly Cys Ala Leu Gln Met Phe Phe 85 90 95

Phe Leu Phe Phe Gly Ala Thr Glu Cys Cys Leu Leu Ala Ala Met Ala 100 105 110

Tyr Asp Arg Tyr Ala Ala Ile Cys Glu Pro Leu Arg Tyr Pro Leu Leu 115 120 125

Leu Ser His Arg Val Cys Leu Gln Leu Ala Gly Ser Ala Trp Ala Cys 130 135 140

Gly Val Leu Val Gly Leu Gly His Thr Pro Phe Ile Phe Ser Leu Pro 145 150 155 . 160

Phe Cys Gly Pro Asn Thr Ile Pro Gln Phe Phe Cys Glu Ile Gln Pro 165 170 175

Val Leu Gln Leu Val Cys Gly Asp Thr Ser Leu Asn Glu Leu Gln Ile 180 185 190

Ile Leu Ala Thr Ala Leu Leu Ile Leu Cys Pro Phe Gly Leu Ile Leu 195 200 205

Gly Ser Tyr Gly Arg Ile Leu Val Thr Ile Phe Arg Ile Pro Ser Val 210 215 220

Ala Gly Arg Arg Lys Ala Phe Ser Thr Cys Ser Ser His Leu Ile Val 225 230 235 240

Val Ser Leu Phe Tyr Gly Thr Ala Leu Phe Ile Tyr Ile Arg Pro Lys 245 250 255

Ala Ser Tyr Asp Pro Ala Thr Asp Pro Leu Val Ser Leu Phe Tyr Ala 260 265 270

Val Val Thr Pro Ile Leu Asn Pro Ile Ile Tyr Ser Leu Arg Asn Thr 275 280 285

Glu Val Lys Ala Ala Leu Lys Arg Thr Ile Gln Lys Thr Val Pro Met. 290 295

Glu Ile

210> 183

211> 20

<212> DNA <213> Homo sapiens

160 200 FC1 F1RAD.3123	
<400> 183 ctcggcttct cccacctggc	20
<210> 184 <211> 23 <212> DNA <213> Homo sapiens	
<400> 184 ggcgccaaag aagaggaaga aga	23
<210> 185 <211> 897 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(897) <223>	
<pre><400> 185 atg ggt cga gga aac agc act gaa gtg act gaa ttc cat ctt ctg gga Met Gly Arg Gly Asn Ser Thr Glu Val Thr Glu Phe His Leu Leu Gly 1</pre>	48
ttt ggt gtc caa cac gaa ttt cag cat gtc ctt ttc att gta ctt ctt Phe Gly Val Gln His Glu Phe Gln His Val Leu Phe Ile Val Leu Leu 20 25 30	96
ctt atc tat gtg acc tcc ctg ata gga aat att gga atg atc tta ctc Leu Ile Tyr Val Thr Ser Leu Ile Gly Asn Ile Gly Met Ile Leu Leu 35 40 45	144
atc aag acc gat tcc aga ctt caa aca ccc atg tac ttt ttt cca caa Ile Lys Thr Asp Ser Arg Leu Gln Thr Pro Met Tyr Phe Phe Pro Gln 50 60	192
cat ttg gct ttt gtt gat atc tgt tat act tct gct atc act ccc aag His Leu Ala Phe Val Asp Ile Cys Tyr Thr Ser Ala Ile Thr Pro Lys 65 70 75 80	240
atg ctc caa agc ttc aca gaa gaa aat aat ttg ata aca ttt cgg ggc Met Leu Gln Ser Phe Thr Glu Glu Asn Asn Leu Ile Thr Phe Arg Gly 85 90 95	288
tgt gtg ata caa ttc tta gtt tat gca aca ttt gca acc agt gac tgt Cys Val Ile Gln Phe Leu Val Tyr Ala Thr Phe Ala Thr Ser Asp Cys 100 105 110	336
tac ctc cta gct att atg gca atg gat tgt tat gtt gcc atc tgt aag Tyr Leu Leu Ala Ile Met Ala Met Asp Cys Tyr Val Ala Ile Cys Lys 115 120 125	384
ccc ctt cgc tat ccc atg atc atg tcc caa aca gtc tac atc caa ctc Pro Leu Arg Tyr Pro Met Ile Met Ser Gln Thr Val Tyr Ile Gln Leu 130 135 140	432
gta gct ggc tca tat att ata ggc tca ata aat gcc tct gta cat aca Val Ala Gly Ser Tyr Ile Ile Gly Ser Ile Asn Ala Ser Val His Thr 145 150 155	480
ggt ttt aca ttt tca ctg tcc ttc tgc aag tct aat aaa atc aat cac Gly Phe Thr Phe Ser Lau Ser Phe Cys Lys Ser Asn Lys Ile Asn His 165 170 175	528
Phe Phe Cys Asp Gly Leu Pro Ile Leu Ala Leu Ser Cys Ser Asn Ile 180 185 190	576
gac atc aac atc att cta gat gtt gtc ttt gtg gga ttt gac ttg atg Asp Ile Asn Ile Ile Leu Asp Val Val Phe Val Gly Phe Asp Leu Met 195 200 205	624
ttc act gag ttg gtc atc atc ttt tcc tac atc tac att atg gtc acc Phe Thr Glu Leu Val Ile Ile Phe Ser Tyr Ile Tyr Ile Met Val Thr 210 215 220	672

											160	200	PCT	FINA	٠. ٦٠	23	
	11e 225	Leu	Lys	Met	Ser	230	Thr	Ala	ggg Gly	ALG	235	-,-				240	720
•	tgt Cys	gcc Ala	tcc Ser	cac His	ctg Leu 245	aca Thr	gca Ala	gta Val	acc Thr	att Ile 250	ttc Phe	tat Tyr	ggg Gly	aca Thr	ctc Leu 255	tct Ser	768
	tac Tyr	atg Met	tac Tyr	tta Leu 260	cag Gln	CCt	cag Gln	tct Ser	aat Asn 265	aat Asn	tct Ser	cag Gln	gag Glu	aat Asn 270	atg Met	aaa Lys	816
	gta Val	gcc Ala	tct Ser 275	ata Ile	ttt Phe	tat Tyr	ggc Gly	act Thr 280	gtt Val	att Ile	510 CCC	atg ·Met	ttg Leu 285	aat Asn	cct Pro	tta Leu	864
	atc Ile	tat Tyr 290	Ser	ttg Leu	aga Arg	aat Asn	aag Lys 295	gaa Glu	gga Gly	aaa Lys	taa				-		897
	<21 <21 <21	1> 2>	186 298 PRT	6.35	ione												

..... 106

<213> Homo sapiens

Met Gly Arg Gly Asn Ser Thr Glu Val Thr Glu Phe His Leu Leu Gly 15

Phe Gly Val Glm His Glu Phe Glm His Val Leu Phe Ile Val Leu Leu 20 30

Leu Ile Tyr Val Thr Ser Leu Ile Gly Asn Ile Gly Met Ile Leu Leu 35 40 45

Ile Lys Thr Asp Ser Arg Leu Gln Thr Pro Met Tyr Phe Phe Pro Gln 50 55

His Leu Ala Phe Val Asp Ile Cys Tyr Thr Ser Ala Ile Thr Pro Lys 65 70 75 80

Met Leu Gl
n Ser Phe Thr Glu Glu Asn Asn Leu Ile Thr Phe Arg Gly
 85 90 95

Cys Val Ile Gln Phe Leu Val Tyr Ala Thr Phe Ala Thr Ser Asp Cys

Tyr Leu Leu Ala Ile Met Ala Met Asp Cys Tyr Val Ala Ile Cys Lys 115 120 125

Pro Leu Arg Tyr Pro Met Ile Met Ser Gln Thr Val Tyr Ile Gln Leu 130 135 140

Val Ala Gly Ser Tyr Ile Ile Gly Ser Ile Asn Ala Ser Val His Thr 145 150 150 155

Gly Phe Thr Phe Ser Leu Ser Phe Cys Lys Ser Asn Lys Ile Asn His 165 170 175

Phe Phe Cys Asp Gly Leu Pro Ile Leu Ala Leu Ser Cys Ser Asn Ile 180 185 190

Asp Ile Asn Ile Ile Leu Asp Val Val Phe Val Gly Phe Asp Leu Met 195 200 205

Phe	Thr 210	Glu	Leu	Val	Ile	Ile 215	Phe	Ser	туr	Ile	Tyr 220	Ile	Met	Val	Thr	
Ile 225	Leu	Lys	Met	Ser	Ser 230	Thr	Ala	Gly	Arg	Lys 235	Lys	Ser	Phe	Ser	Thr 240	
Суз	Ala	Ser	His	Leu 245	Thr	Ala	Val	Thr	Ile 250	Phe	Tyr	Gly	Thr	Leu 255	Ser	
			260					203				Glu				
Val	Ala	Ser 275	Ile	Phe	туг	Gly	Thr 280	Val	Ile	Pro	Met	Leu 285	neA	Pro	Leu	
Ile	Tyr 290		Leu	Arg	Asn	Lys 295	Glu	Gly	Lys							
<21 <21 <21 <21	1> 2>	187 930 DNA Homo	sap:	iens												
<22	1>	CDS (1).	. (93	0)		-										
Met 1	aca Th <i>r</i>	Leu	Gly	Asn 5	Ser	THE	GIU	Vai	10	014		tat Tyr		15	-	48
ttt Phe	ggt Gly	Ala	Gl n 20	ніз	Glu	Pne	115	25		200		att	30	•		96
Leu	Ile	Tyr 35	Val	The	Ser	ITE	40	GTÅ	, AJI			ata Ile 45				144
Ile	50	The	Asp	Ser	: Arg	55	GIN	1111	. Leu		60	ttt Phe				192
His 65	Leu	Ala	Phe	Val	70	ile	Cys	LYL		75	. /120					
Met	Leu	Gl:	Sec	85	e Thi	GIU	GIU	гра	90			g tta : Leu		95	-	288
Cys	Val	. Ile	100	Phe	e Leu	I A97	. 171	105	5			a acc	110	•	•	336
Ty	Let	Let 115	ı Ala	Me	z met	. Alc	120)	,			125		•	aag Lys	384
510	130	ı His)	ту:	: Th	r va.	135	i de	_ 36.	L 61-4	,	14	5			ttg Leu	432
Va. 14:	l Ala 5	a Gly	/ Se	с ту:	150)	GL	y 36.	1 1-	15	5				aca Thr 160	480
gg Gl	t tt: y Phi	t aca	a tgi c Cy:	t tc. s Se	a cto	g tco 1 Se	t tte	e Cy	c aad s Ly:	g tc s Se	c aa r As	page Dage		-	cac His	528

																•
				165					170	160 2	200	PCT	FINA	L.ST 175	25	
ttt Phe	ttc Phe	tgt Cy s	gat Asp 180	gtt Val	CCC Pro	cct Pro	att Ile	ctt Leu 185	gct Ala	ctt Leu	tca Ser	tgc Cys	tcc Ser 190	aat Asn	gtt Val	576
gac Asp	atc Ile	aac Asn 195	atc Ile	atg Met	cta Leu	ctt Leu	gtt Val 200	gtc Val	ttt Phe	gtg Val	gga Gly	tct Ser 205	aac Asn	ttg Leu	ata Ile	624
ttc Phe	act Thr 210	G1 y ggg	ttg Leu	gtc Val	gtc Val	atc Ile 215	ttt Phe	tcc Ser	tac Tyr	110	tac Tyr 220	atc Ile	atg Met	gcc Ala	acc Thr	672
atc Ile 225	ctg Leu	aaa Lys	atg Met	tct Ser	tct Ser 230	agt Ser	gca Ala	gga Gly	agg Arg	aaa Lys 235	aaa Lys	tcc Ser	ttc Phe	tca Ser	aca Thr 240	720 .
Cys	Ala	Ser	His	Leu 245	The	Ald	Val	1115	att Ile 250		-,-	1		255		768
Tyr	Met	Tyr	Leu 260	GIn	Ser	HIS	261	265	aat Asn	•		•	270	•	-	816
Val	Ala	275	Ile	Pne	Tyt	GTÀ	280	Va.	att Ile			285				864
atc Ile	tat Tyr 290	Ser	ttg Leu	aga Arg	aat Asn	aag Lys 295	gaa Glu	gta Val	aaa Lys	gaa Glu	gct Ala 300		aaa Lys	gtg Val	aca	912
ggg Gly 305	Lys	aag Lys	tta Leu	ttt Phe	taa											930
<21 <21 <21 <21	1> 2>	188 309 PRT Homo	sap	iens	ı											
<40	0>	188												-		
Met 1	Thi	Lev	GL y	Asn 5	ser	Thr	Glu	Val	Thr 10	Glu	Phe	туг	Leu	15	ı Gly	
Phe	Gl _y	/ Ala	Glr 20	His	Glu	. Phe	Trp	Cys 25	: Ile	Leu	Phe	: Ile	9 Val	. Phe	e Leu	•
Lev	ı Ile	ту: 35	e Val	l Thi	s Se	: Ile	40	; Gly	/ Asn	Sez	Gl	/ Ile 45	e Ile	e Le	u Leu	
116	9 Ası 50	n Thi	c Ası	Se:	r Ar	Phe 55	: Glr	n Thi	Lev	1 The	ту: 60	e Pho	e Phe	e Le	u Gln	
ні: 65	s Le	u Ala	a Phe	e Vai	1 Ası 70	p Ile	е Суз	ту:	r Thi	75	Al	a Il	e Thi	. Pr	o Lys 80	
Me	t Le	u Gl	n Se:	85	e Th	r Glu	ı Glı	ı Ly:	90	ı Lev	ı Me	t Le	u Ph	e Gl 95	n Gly	,
Сy	s Va	1 11	e Gl:	n Ph	e Le	u Val	1 T y	r Al 10	a Thi	r Phe	e Al	a Th	r Se 11	r As O	p Cys	i.
Тy	r Le	u Le 11	u Al 5	a Me	t Me	t Ala	a Va 12	1 As 0	p Pr	o Ty	c Va	1 Al 12	a Il 5	e Cy	s Ly:	3
81	o Le	u Hi	s Ty	r Th	r Va	1 11	e Me	t Se	r Ar	g Th	c Va		s Il e 11		g Lei	1

16U 200 PCT FINAL.ST25 135 130 Val Ala Gly Ser Tyr Ile Met Gly Ser Ile Asn Ala Ser Val Gln Thr Gly Phe Thr Cys Ser Leu Ser Phe Cys Lys Ser Asn Ser Ile Asn His 165 170 175 Phe Phe Cys Asp Val Pro Pro Ile Leu Ala Leu Ser Cys Ser Asn Val 180 185 190 Asp Ile Asn Ile Met Leu Leu Val Val Phe Val Gly Ser Asn Leu Ile 195 200 205 Phe Thr Gly Leu Val Val Ile Phe Ser Tyr Ile Tyr Ile Met Ala Thr 210 215 220 Ile Leu Lys Met Ser Ser Ser Ala Gly Arg Lys Lys Ser Phe Ser Thr 225 230 240 Cys Ala Ser His Leu Thr Ala Val Thr Ile Phe Tyr Gly Thr Leu Ser 245 250 255 Tyr Met Tyr Leu Gln Ser His Ser Asn Asn Ser Gln Glu Asn Met Lys 260 265 270 Val Ala Phe Ile Phe Tyr Gly Thr Val Ile Pro Met Leu Asn Pro Leu 275 290 285 Ile Tyr Ser Leu Arg Asn Lys Glu Val Lys Glu Ala Leu Lys Val Ile 290 295 300 Gly Lys Lys Leu Phe 305 <210> 189 <211> 522 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(522) <223> <400> 189 atg ctc caa age ttc acg gaa gaa aag aat ttg ata tca ttt tgg ggc Met Leu Gln Ser Phe Thr Glu Glu Lys Asn Leu Ile Ser Phe Trp Gly 1 5 10 tgc atg ata caa tta ttg gtt tat gca aca ttt gca acc agt gac tgt Cys Met Ile Gln Leu Leu Val Tyr Ala Thr Phe Ala Thr Ser Asp Cys 20 25 30 96 tat ctc ctg gct atg ata gca gtg gac cat tat gtt gca atc tgt aag Tyr Leu Leu Ala Met Ile Ala Val Asp His Tyr Val Ala Ile Cys Lys 35 40

ccc ctt cac tat acc gta atc acg tcc caa aca gtc tgc atc cat ttg Pro Leu His Tyr Thr Val Ile Thr Ser Gln Thr Val Cys Ile His Leu 50 55 60 gta gct ggt tca tac atc atg ggc tca ata aat gcc tct gta cat aca Val Ala Gly Ser Tyr Ile Met Gly Ser Ile Asn Ala Ser Val His Thr 65 70 80 240

ggt tit gca tit toa cig tot tic igc aag too aat aac atc aac cac

Page 111

192

Gly	Phe	Ala	Phe	Ser 85	Leu	Ser	Phe	Cys	նչs 90	16U Ser	200 Asn	PCT Asn	FINA Ile	L.ST Asn 95	25 His		
ttt Phe	ttc Phe	tgt Cys	gat Asp 100	ggt Gly	ccc Pro	cca Pro	att Ile	ctt Leu 105	gcc Ala	ctt Leu	tca Ser	tgc Cys	tcc Ser 110	aat Asn	att Ile	3	36
gac Asp	atc Ile	aac Asn 115	atc Ile	atg Met	cta Leu	ctt Leu	gtt Val 120	gtc Val	ttt Phe	gtg Val	gga Gly	ttt Phe 125	aac Asn	ttg Leu	atg Met	3	384
ttc Phe	act Thr 130	ggg ggg	ttg Leu	gag Glu	aat Asn	atg Met 135	aaa Lys	gtg Val	gcc Ala	tct Ser	ata Ile 140	ttt Phe	tat Tyr	ggc	act Thr	4	432
gtt Val 145	att Ile	ccc	atg Met	t t g Leu	aat Asn 150	510	tta Leu	atc Ile	tat Tyr	agc Ser 155	ttg Leu	aga Arg	aat Asn	aag Lys	gaa Glu 160		480
gta Val	aaa Lys	gaa Glu	gct Ala	tta Leu 165	rys	t t g Leu	ata Ile	ggg	aaa Lys 170	-,-	ttc Phe	ttt Phe	taa				522

<210> 190 <211> 173 <212> PRT <213> Homo sapiens

<400> 190

Met Leu Gln Ser Phe Thr Glu Glu Lys Asn Leu Ile Ser Phe Trp Gly
1 10 15

Cys Met Ile Gln Leu Leu Val Tyr Ala Thr Phe Ala Thr Ser Asp Cys 20 25 30

Tyr Leu Leu Ala Met Ile Ala Val Asp His Tyr Val Ala Ile Cys Lys 35 40 45

Pro Leu His Tyr Thr Val Ile Thr Ser Gln Thr Val Cys Ile His Leu 50 55 60

Val Ala Gly Ser Tyr Ile Met Gly Ser Ile Asn Ala Ser Val His Thr 65 70 75 80

Gly Phe Ala Phe Ser Leu Ser Phe Cys Lys Ser Asn Asn Ile Asn His 85 90 95

Phe Phe Cys Asp Gly Pro Pro Ile Leu Ala Leu Ser Cys Ser Asn Ile 100 105 110

Asp Ile Asn Ile Met Leu Leu Val Val Phe Val Gly Phe Asn Leu Met 115 120 125

Phe Thr Gly Leu Glu Asn Met Lys Val Ala Ser Ile Phe Tyr Gly Thr 130 135

Val Ile Pro Met Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn Lys Glu 145 150 155 160

Val Lys Glu Ala Leu Lys Leu Ile Gly Lys Lys Phe Phe 165 170

<210> 191

<211> 499

<212> ONA <213> Homo sapiens

<221: <222: <223:	> (DS 43).	. (37:	2)												
<400 cgtt	> 1 atgt	91 gg c	cttc	tgta	a cc	cact	ccat	tat	ccag	ggg	tt a M 1		cc c er G	ag a ln A	ga rg	54
ctc Leu 5	tgc Cys	att Ile	aag Lys	Leu	tta Leu 10	gtt Val	agt Ser	tca Ser	tat Tyr	gtc Val 15	atg Met	ggt Gly	ttc Phe	cta Leu	aat Asn 20	102
	Ser	Ile	Asn	11e 25	ser	Fue	III	FIIC	30				•	35		150
Lys	Thr	Ile	Asn 40	His	Pne	Pne	Суз	45	010	cct Pro			50			198
Pro	Cys	Ser 55	Asn	Ile	Asp	Leu	60	ITE	nec	tta Leu	200	65				246
GLy	Leu 70	neA	Leu	met	CA2	75	Val	Mec	•••	gtc Val	80			-		294
Tyr 85	Val	Leu	Val	Ala	90	Leu	ALG	116	561	95			•	-		
Lys	Val	Ser	Leu	105	vai	PIO	210	1112		cago						392
9999	itte	tct (-ttac	-atgi	ta to	ctato	cca	t ca	tatta	ato	agt	ctca	aaa o	acaa	gaaaaa	452
gtg										ttaa				٠.		499
<210 <211 <211 <211	gcct 0> 1> 2>		tgtti	ttat										• .		
<210 <211 <211 <211)> 1> 2> 3>	192 109 PRT Homo	sap	ttato iens	gg c	atta	ttat	t cc	catg	ttaa	acc	cctt		• .		
<21(<21)<<21;<21;<400	3cct 0> 1> 2> 3> 0>	192 109 PRT Homo 192 Gln	sap Arg	iens Leu S	gg c	Ile	Lys	t cc	Leu 10	ttaa Val	ser	cctt ser	Tyr	Val 15	Met	
<21(<21)<<21;<21;<400	3cct 0> 1> 2> 3> 0>	192 109 PRT Homo 192 Gln	sap Arg	iens Leu S	gg c	Ile	Lys	t cc	Leu 10	ttaa Val	ser	cctt ser	Tyr	Val 15		
<210 <211 <211 <211 <400 Met -1	oct. oct. l> 2> 3> ser Phe	192 109 PRT Homo 192 Gln	sap Arg Asn 20	iens Leu S	Cys Ser	Ile	Lys	Leu Ile 25	Leu 10 Ser	Val Phe	Ser	cctt Ser	Tyr Ser 30	Val 15 Leu	Met	
<21(<21:<21:<21:<400 Met 1 Gly	gcct >> 1> 2> 3> Ser Phe	192 109 PRT Homo 192 Gln Leu Lys 35	sap Arg Asn 20	iens Leu S Ala	Cys Ser	Ile - Ile	Lys Asn 40	Leu Ile 25	Leu 10 Ser	Val Phe	Ser Thr	Ser Phe	Tyr Ser 30	Val 15 Leu	Met	
<210 <211 <211 <211 <400 Met -1 Gly	cys	192 109 PRT Homo 192 Gln Leu Lys 35	sap Arg Asn 20 Ser	Leu 5 Ala	Cys Ser Thr	Ile	Lys Asn 40	Leu Ile 25	Leu 10 Ser	Val Phe Phe	Ser Thr Cys	Ser Phe	Tyr 30 Glu	Val 15 Leu	Met Asn Pro	
<211<211<211<11<11<11<11<11<11<11<11<11<	gcct)> i> 2> 3> Ser Phe Cys Ile 50	192 109 PRT Homo 192 Gln Leu Lys 35	sap Arg Asn 20 Ser	Leu 5 Ala Lys	Cys Ser Thr	Ile Ile Ser 55	Lys Asn 40 Asn	Leu Ile 25 His	Leu 10 Ser Phe	Val Phe Phe Leu	Ser Thr. Cys	Ser Phe 45	Tyr Ser 30 Glu	Val 15 Leu Pro	Met Asn Pro Leu	

<400> 194

										160 4	(00)	PCT	TNA	51	23	
<210 <211 <212 <213	> 61 > DI	93 81 NA omo	sapi	ens												
<220 <221 <222 <223	> C > (DS 1)	(681	1												
Met 1	gct Ala	Tyr	Asp	Arg 5	Tyr	wec	W.T.G	116	10	aag Lys				15		48
Arg cgg	gcc Ala	aca Thr	ttc Phe 20	cca Pro	gag Glu	tta Leu	Cys	gcc Ala 25	agt Ser	ctt Leu	gtt Val	gag Glu	gct Ala 30	tca Ser	cac His	96
ctt Leu	ggc Gly	ggc Gly 35	ttt Phe	gta Val	aac Asn	tca Ser	acc Thr 40	atc Ile	atc Ile	acc Thr	agt Ser	gag Glu 45	aca Thr	cct Pro	acc Thr	144
ttg Leu	agc Ser 50	ttc Phe	tgt Cys	ggc Gly	agc Ser	aat Asn 55	atc Ile	att Ile	gat Asp	gat Asp	ttc Phe 60	ttc Phe	tgt Cys	gat Asp	ctg Leu	192
ccc Pro 65	cca Pro	ctt Leu	gta Val	aag Lys	ttg Leu 70	gtg Val	tgt Cys	gat Asp	gtg Val	aag Lys 75	gag Glu	cgc Arg	tac Tyr	cag Gln	gct Ala 80	240
	ctg Leu	cat His	ttt Phe	atg Met 85	ctt Leu	gcc Ala	tcc Ser	aat Asn	cat His 90	cac His	tcc Ser	cac His	tgc Cys	act Thr 95	tat Tyr	288
tct Ser	tgc Cys	gtc Val	cat His 100	ctc Leu	ttc Phe	atc Ile	att Ile	gca Ala 105	gcc Ala	atc Ile	tcg Ser	aag Lys	atc Ile 110	cgt Arg	tcc Ser	336
att Ile	aag Lys	ggc Gly 115	Arg	ctc Leu	cag Gln	gtc Val	ttc Phe 120	tcc Ser	act Thr	Cys Cys	ggg Gly	tct Ser 125	ccc	ctg Leu	acg Thr	384
gct Ala	ctc Leu 130	Thr	ttg Leu	tac Tyr	tat Tyr	ggt Gly 135	gca Ala	atc Ile	ttc Phe	ttt Phe	att Ile 140	tac Tyr	tcc Ser	caa Gln	CCA '	432
aga Arg 145	Thr	agc Ser	tat Tyr	gcc Ala	tta Leu 150	rya	atg Met	gat Asp	aaa Lys	ttg Leu 155	ggg Gly	tca Se <i>r</i>	gtg Val	ttc Phe	Tyr 160	480
_		gtg Val	att Ile	cca Pro	mec	cta Leu	aac Asn	Pro	ttg Leu 170		tat Týr	ago Ser	tta Leu	aga Arg 175	aat Asn	528
aaq Lys	gat Asp	gto Val	aaa Lys	Asp	gcc Ala	ttg Leu	aag Lys	aaa Lys 185		tta Leu	gat Asp	aga Arg	Ctt Leu 190	caq Glr	ttt Phe	576
ctt	aaa Lys	gaa Glu	r raa	tat Tyr	tgt Cys	aga Arg	tat Tyr 200	,	ctç Lev	gcc Ala	tgt Cys	agt Ser 205	gaç Glu	a Arg	tac Tyr	624
CTC Lev	ctq Lev 210	Ala	gco Ala	atq Mei	ggt Gly	tat Tyr 215	. wai	tgo Cys	tat Tyr	gaq Glu	gca Ala 220	a ato a Ile)	c tco	aad Ly:	g CCC s Pro	672
	j ctt 1 Leu		a													681
<2: <2:	10> 11> 12> 13>	194 226 PRT Home	o sai	pien.	s											

16U 200 PCT FINAL.ST25 Met Ala Tyr Asp Arg Tyr Met Ala Ile Ser Lys Pro Leu Leu Tyr Ser 10 15 Arg Ala Thr Phe Pro Glu Leu Cys Ala Ser Leu Val Glu Ala Ser His 20 25 30 Leu Gly Gly Phe Val Asn Ser Thr Ile Ile Thr Ser Glu Thr Pro Thr 35 40 45Leu Ser Phe Cys Gly Ser Asn Ile Ile Asp Asp Phe Phe Cys Asp Leu 50 55 Pro Pro Leu Val Lys Leu Val Cys Asp Val Lys Glu Arg Tyr Gln Ala 65 70 80 Val Leu His Phe Met Leu Ala Ser Asn His His Ser His Cys Thr Tyr 85 90 95 Ser Cys Val His Leu Phe Ile Ile Ala Ala Ile Ser Lys Ile Arg Ser 100 105 110 Ile Lys Gly Arg Leu Gln Val Phe Ser Thr Cys Gly Ser Pro Leu Thr 115 120 125 Ala Leu Thr Leu Tyr Tyr Gly Ala Ile Phe Phe Ile Tyr Ser Gln Pro 130 135 140 Arg Thr Ser Tyr Ala Leu Lys Met Asp Lys Leu Gly Ser Val Phe Tyr 145 . 150 155 160 Thr Val Val Ile Pro Met Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn 165 170 175 Lys Asp Val Lys Asp Ala Leu Lys Lys Met Leu Asp Arg Leu Gln Phe 180 185 190 Leu Lys Glu Lys Tyr Cys Arg Tyr Gly Leu Ala Cys Ser Glu Arg Tyr 195 200 205 Leu Leu Ala Ala Met Gly Tyr Asp Cys Tyr Glu Ala Ile Ser Lys Pro 210 215 220 Leu Leu 225 195 <210> 1095 <211> DNA <212> Homo sapiens <220> <221> CDS (1)..(1095) <222> <223> atg gcc tct gag acc ttc aac act gaa gac cca gcc ggg ttg atg cac atg gcc tct gag acc ttc aac act gaa gac cca gcc ggg ttg atg cac Met Ala Ser Glu Thr Phe Asn Thr Glu Asp Pro Ala Gly Leu Met His 15 tog gat god ggd acc ago tgd occ gtd ott tgd aca tgd ogt aac cag Ser Asp Ala Gly Thr Ser Cys Pro Val Leu Cys Thr Cys Arg Asn Gln

gtg Val	Val	gat Asp 35	tgt Cys	agc Ser	agc Ser	GIN	cgg Arg 40	cta Leu	ttc	tcc	ata	PCT CCC Pro 45	cca	gac	ctq	144
cca Pro	atg Met 50	gac Asp	acc Thr	cga Arg	aac Asn	ctc Leu 55	agc Ser	ctg Leu	gcc Ala	cac His	aac Asn 60	cgc Arg	atc Ile	aca Thr	gca Ala	192
Val 65	Pro	Pro	GŢĀ	Tyr	70	THE	cys	ığı	nec	75		cag Gln			80	240
Leu	His	Asn	Asn	Ser 85	Leu	Met		Leu	90	ALG	J-7	ctc Leu		95		288
gcc Ala	aag Lys	Arg	ttg Leu 100	gca Ala	cac His	ttg Leu	gac Asp	ctg Leu 105	agc Ser	tac Tyr	aac Asn	aat Asn	ttc Phe 110	agc Ser	cat His	336
gtg Val	cca Pro	gcc Ala 115	gac Asp	atg Met	ttc Phe	cag Gln	gag Glu 120	gcc Ala	cat His	ggg Gly	cta Leu	gtc Val 125	cac Kis	atc Ile	gac Asp	384
ctg Leu	agc Ser 130	cac His	aac Asn	CCC Pro	tgg Trp	ctg Leu 135	cgg Arg	agg Arg	gtg Val	cat His	Pro 140	cag Gln	gcc Ala	ttt Phe	cag Gln	432
ggc Gly 145	ctc Leu	atg Met	cag Gln	ctc Leu	cga Arg 150	gac Asp	ctg Leu	gac Asp	ctc Leu	agt Ser 155	- 4 -	Gly	Gly	ctg Leu	gcc Ala 160	480
ttc	ctc Leu	agc Ser	ctg Leu	gag Glu 165	gct Ala	ctt Leu	gag Glu	ggc Gly	cta Leu 170		ggg Gly	ctg Leu	gtg Val	acc Thr 175	ctg Leu	528
cag Gln	atc Ile	Gly	ggc Gly 180	Asn	ccc Pro	tgg Trp	gtg Val	tgt Cys 185	Gly	tgc Cys	Thi	atg Met	gaa Glu 190		ctg Leu	576
ctg Leu	aag Lys	tgg Trp 195	Leu	cga Arg	aac Asn	egg Arg	atc Ile 200	GTII	cgc	tgt Cys	aca Thi	gca Ala 205		tca Ser	ggt Gly	624
tct Ser	ggc Gly 210	Leu	ccg Pro	gaa Glu	gag Glu	tca Ser 215	gaa Glu	cct Pro	gag Glu	Sez	Tr:		ggc Gly	Gln	agg Arg	672
gct Ala 225	Ala	gta Val	gag Glu	tto Phe	cag Gln 230	ASP	CtC	atg Met	cag Gln	Let 235		a gad n Asp	ctg Leu	gat Asp	Leu 240	720
ago Se:	tac Tyr	gaq Glu	g aac ı Asr	Cto Leu 245	1 Ala	ttc Phe	ctc Leu	aaa Lys	Cto Leu 250		g gc	c ctq a Lev	ago Ser	: agt : Ser 255	gta Val	768
aac Ast	ttt 1 Phe	gg Gly	g cad y His 260	Arc	g Caa	gcg Ala	gtt Val	gtq Val 265		gga Gl	a ct / Le	t tco u Sei	270	CCC Pro	ctc Leu	816
tc: Se:	tto Phe	27	o GL	tac Ty	cto Lev	acc Thr	Lev 280		ggo Gly	Pho	e Cy	t gt: s Vai 28:		a gat	t tct p Ser	864
Ga Gl:	g cto n Let 290	ı Al	t gad a Gli	g tgo	cgc	299 G G L Y	PEC	ect Pro	gaa Glu	a gt 1 Va	c ga 1 G1 30		g gco y Ala	e cc	g ctc o Leu	912
tt Pho 30:	e Se	a ct	c act	t gad c Glo	g gaq u Gl: 310	1 2e1	tto Phe	aaq Lys	g gco	e tg a Cy 31		c ct s Le	g aco u Th	c ct	g acc u Thr 320	960
		t ga p As	t ta p Ty:	c ct c Le	u Pn	ati e Ile	gce Ala	g tto a Phe	gte 2 Va. 330		c tt y Ph	c gt le Va	g gt 1 Va	c tc 1 Se 33	c att r Ile S	1008
gc Al	t tc a Se	t gt r Va	g gc 1 Al 34	a Th	c aa r As	s tto n Pho	ct: Le	c cto u Leo 34		c at y Il	c ac e Th	t gc ir Al	c aa a As 35		c tgc s Cys	1056

cac cgc tgg agc aag gcc agt gaa gag gaa gag atc tga His Arg Trp Ser Lys Ala Ser Glu Glu Glu Glu Ile

1095

<210> 364

<212> PRT <213> Homo sapiens

<400> 196

Met Ala Ser Glu Thr Phe Asn Thr Glu Asp Pro Ala Gly Leu Met His 1 10 15

Ser Asp Ala Gly Thr Ser Cys Pro Val Leu Cys Thr Cys Arg Asn Gln 20 25 30

Val Val Asp Cys Ser Ser Gln Arg Leu Phe Ser Val Pro Pro Asp Leu 35 40 45

Pro Met Asp Thr Arg Asn Leu Ser Leu Ala His Asn Arg Ile Thr Ala 50 55 60

Val Pro Pro Gly Tyr Leu Thr Cys Tyr Met Glu Leu Gln Val Leu Asp 65 70 75 80

Leu His Asn Asn Ser Leu Met Glu Leu Pro Arg Gly Leu Phe Leu His 85 90 95

Ala Lys Arg Leu Ala His Leu Asp Leu Ser Tyr Asn Asn Phe Ser His 100 105 110

Val Pro Ala Asp Met Phe Gln Glu Ala His Gly Leu Val His Ile Asp 115 120 125

Leu Ser His Asn Pro Trp Leu Arg Arg Val His Pro Gln Ala Phe Gln 130 135 140

Gly Leu Met Gln Leu Arg Asp Leu Asp Leu Ser Tyr Gly Gly Leu Ala 145 150 155 160

Phe Leu Ser Leu Glu Ala Leu Glu Gly Leu Pro Gly Leu Val Thr Leu 165 170 175

Gln Ile Gly Gly Asn Pro Trp Val Cys Gly Cys Thr Met Glu Pro Leu 180 185 190

Leu Lys Trp Leu Arg Asn Arg Ile Gln Arg Cys Thr Ala Glu Ser Gly 195 200 205

Ser Gly Leu Pro Glu Glu Ser Glu Pro Glu Ser Trp Thr Gly Gln Arg 210 215 220

Ala Ala Val Glu Phe Gln Asp Leu Met Gln Leu Gln Asp Leu Asp Leu 225 230 240

Ser Tyr Glu Asn Leu Ala Phe Leu Lys Leu Lys Ala Leu Ser Ser Val 245 250 255

Asn Phe Gly His Arg Gln Ala Val Val Gly Gly Leu Ser Asn Pro Leu 260 265 270

Ser	Phe	Pro 275	Gly	Tyr	Leu	Thr	Leu 280	Pro	Gly	Phe	Cys	Val 285	The	Asp	Ser	
Gln	Leu 290	Ala	Glu	Суз	Arg	Gly 295	Pro	Pro	Glu	Val	Glu 300	Gly	Ala	Pro	Leu	
Phe 305	Ser	Leu	Thr	Glu	Glu 310	Ser	Phe	Lys	Ala	Cys 315	His	Leu	Thr	Leu	320	
Leu	Asp	Asp	туг	Leu 325	Phe	Ile	Ala	Phe	Val 330	Gly	Phe	val	Val	Ser 335	Ile	
Ala	Ser	Val	Ala 340	Thr	Asn	Phe	Leu	Leu 345	Gly	Ile	Thr	Ala	Asn 350	Суз	Суз	
His	Arg	Trp 355	Ser	Lys	Ala	Ser	Glu 360	Glu	Glu	Glu	Ile					-
<21)> L> 2>	27 DNA	sap	iens					•							
<40 999)> attt	197 ggt	gtcc	aaca	cg a	attt	ca									27
<21 <21 <21 <21	1 > 2 >	198 34 DNA Homo	sap	iens	•											
<40 gag	0> ccta	198 taa	tata	itgag	cc a	gcta	cgag	t tg	ga							34
<21 <21	2>	32 DNA	sac	oiens										••		
<40	n>	199		•	ct g	ıggat	ttgg	it go	:							32
<21 <21 <21 <21	1> 2>	200 32 DNA Homo	sap	oiens	ı									-		
<40	0>	200			igc a	itttä	nttga	ig co	=							32
<21 <21	0> 1> 2> 3>	35 DNA	o sag	piens	5											
<40 gat	0> atc	201 attt	tgg:	ggcto	gca t	gata	acaat	tt al	ttgg							35
<21 <21	.0> .1> .2> .3>	202 33 DNA Home	o say	piens	3											
- 41	10.5	202	gtg	aaca	tca a	agtt	aaat	בכ כ:	ac							33

<210><211><211><212><213>	203 36 DNA Homo sapiens					
<400> ttaagc	203 tatt agttagttca	tatgtcatgg	gtttcc			36
<210> <211> <212> <213>	204 36 DNA Homo sapiens					
<400> ctcatt	204 aata cgatggcatá	gatacatgta	agagag			36
<210> <211> <212> <213>	205 50 DNA Homo sapiens			-		
<400> atgttc	205 catc taaatgaagc	ctgagaaacc	cagcactacc	cacttgttag		50
<210> <211> <212> <213>	206 50 DNA Homo sapiens					
<400> acatcc	206 atta tataacaggg	ttaatatact	tgtaaagaat	agcacctaga		50
<210> <211> <212> <213>	207 50 DNA Homo sapiens	•				
<400> aaatgt	207 ataa attotgoatg	aaattggggg	tggggcttgt	actacttttg	· :	50
<210> <211> <212> <213>	208 50 DNA Homo sapiens					
<400> atgttc	208 catc taaatgaagc	ctgagaaacc	cagcactacc	cacttgttag	•	50
<210> <211> <212> <213>	209 50 DNA Homo sapiens					
<400> acatcca	209 atta tataacaggg	ttaatatact	tgtaaagaat	agcacctaga		50
<211> <212>	210 50 DNA Homo sapiens		·			
<400> aaatata	210 itat tttaaattgg	ccaggcgcgg	tgqctcacgc	ctataatccc		50
<210> <211> <212> <213>	211 50 DNA Homo sapiens					
<400>	211					

	,, ,	, ,,,,	,			•										
ggctc	acgc	c ta	taat	.ccca	gca	ctt	ggg	aggc	1 cgaç	6U 2 ;g⊂ a	00 Pi	CT F gato	INAL a	.ST2	5	50
<210><211><211><212><213>	5 O O N	A	apie	ens												
<400> tccca	21 aata	.2 it at	atat	atac	aca	acaca	acac	acac	acad	cac a	cata	tata	t			50
<210><211><211><212><213>	. 50) JA	sapi:	ens												
<4002 cacac	acac	l3 ca ta	itat	ataca	a ca	caca	tata	ttta	ataa	tca 1	ttaa	ıçaaı	ca			50
<210: <211: <212: <213:	> 91 > DI	33 NA	sapi	ens												
<220 <221 <222 <223	> C:	DS 1)	(930)	•											
<400: atg : Met : 1	_	14 gag Glu	Met	aa⊂ Asn 5	ctc Leu	acc Thr	ttg Leu	• 44.1	acc Thr 10	gag Glu	ttc Phe	ctc Leu	ctt Leu	att Ile 15	gca Ala	48
ttc Phe	act Thr	Glu	tat Tyr 20	cct Pro	gaa Glu	tgg Trp	gca Ala	ctc Leu 25	cct Pro	ctc Leu	ttc Phe	ctc Leu	ttg Leu 30	ttt Phe	tta Leu	96
ttt Phe	atg Met	tat Tyr 35	ctc Leu	atc Ile	acc Thr	gta Val	ttg Leu 40	GJ À ada	aac Asn	tta Leu	gag Glu	atg Met 45	att Ile	att Ile	ctg Leu	144
atc Ile	ctc Leu		gat Asp	cac His	cag Gln	ctc Leu 55	cac Kis	gct Ala	cca Pro	atg Met	tat Tyr 60	ttc Phe	ctt Leu	ctg Leu	agt Ser	192
cac His 65	-	gct Ala	ttc Phe	atg Met	gac Asp 70	gtc Val	tgc Cys	tac Tyr	tca Ser	tct Ser 75	atc Ile	act Th <i>r</i>	gtc Val	ecc Pro	cag Gln 80	240
	ctg Leu	gca Ala:	gtg Val	ctg Leu 85	ctg Leu	gag Glu	cat His	ggg Gly	gca Ala 90	gct Ala	tta Leu	tct Ser	tac Tyr	aca Thr 95	cgc	288
tgt Cys	gct Ala	gct Ala	cag Gln 100		ttt Phe	ctg Leu	ttc Phe	acc Thr 105	ttc Phe	ttt Phe	ggt Gly	tcc Ser	atc Ile 110	gac Asp	tgc Cys	336
tac Tyr	ctc Leu	ttg Leu 115		CTC Leu	atg Met	gcc Ala	tat Tyr 120	rap	cgc Arg	tac Tyr	ttg Leu	gct Ala 125	gtg Val	CÀa	cag	384
CCC Pro	Leu		tat Tyr	gtc Val	acc Thr	atc Ile 135	rea	aca Thr	cag Gln	cag Gln	gcc Ala 140	cgc	ttg Leu	agt Ser	ctt Leu	432
Val	gct Ala	ggg Gly	gct Ala	tac Tyr	gtt Val 150	gct Ala		ctc Leu	atc	agt Ser 155		ttg Leu	gtg Val	cgg Arg	aca Thr 160	480
145 gtc Val	tca Ser	gcc Ala	ttc Phe	act Thr 165	ctc		ttc Phe	tgt Cys	gga Gly 170		agt Ser	gag Glu	att	gac Asp 175	ttt Phe	528
att Ile	ttc Phe	tgt Cys	gac Asp 180	ctc		cct Pro	ctq Leu	tta Leu 185	-,-	, ttg Leu	acc Thr	cgt Cys	999 Gly 190	gaç Glu	agc Ser	576

										160	200	PCT	FINA	L. 31	23	
tac Tyr	act Thr	caa Gln 195	gaa Glu	gtg Val	ctg Leu	att Ile	att Ile 200	atg Met	ttt Phe	gcc Ala	att Ile	ttt Phe 205	gtc Val	atc Ile	cct Pro	624
gct Ala	tcc Ser 210	atg Met	gtg Val	gtg Val	atc Ile	ttg Leu 215	gtg Val	tcc Ser	tac Tyr	ctg Leu	ttt Phe 220	atc Ile	atc Ile	gtg Val	gcc Ala	672
atc Ile 225	atg Met	G1 y ggg	atc Ile	cct Pro	gct Ala 230	gga Gly	agc Ser	cag Gln	gcc Ala	aag Lys 235	acc Thr	ttc Phe	tcc Ser	acc Thr	tgc Cys 240	720
acc Thr	tcc Ser	cac His	ctc Leu	act Thr 245	gct Ala	gtg Val	tca Ser	ctc Leu	ttc Phe 250	t.t.t Phe	ggt Gly	acc Thr	ctc Leu	atc Ile 255	ttc. Phe	768
atg Met	tac Tyr	ttg Leu	aga Arg 260	ggt Gly	aac Asn	tca Ser	gat Asp	cag Gln 265	tct Ser	tcg Ser	gag Glu	aag Lys	aat Asn 270	cgg Arg	gta Val	816
gtg Val	tct Ser	gtg Val 275	ctt Leu	tac Tyr	aca Thr	gag Glu	gtc Val 280	atc Ile	Pro CCC	atg Met	ttg Leu	aat Asn 285	ccc Pro	ctc Leu	atc Ile	864
tac Tyr	agc Ser 290	ctg Leu	agg Arg	aac Asn	aag Lys	gaa Glu 295	gtg Val	aag Lys	gag Glu	gcc Ala	ctg Leu 300	aga Arg	aaa Lys	att Ile	ctc Leu	912
aat Asn 305	aga Arg	gcc Ala	aag Lys	ttg Leu	tcc Ser 310	taa										933
<210 <210 <210 <210	l> : 2> :	215 310 PRT Homo	sap	iens												
<400)> :	215	•													
Met 1	Ala	Glu	Met	Asn 5	Leu	Thr	Leu	Val	Thr 10	Glu	Phe	Leu	Leu	Ile 15	Ala	
Phe	The	Glu	Tyr 20	Pro	Glu	Trp	Ala	Leu 25	Pro	Leu	Phe	Leu	Leu 30	Phe	Leu	
Phe	Met	Tyr 35	Leu	Ile	The	Val	Leu 40	Gly	Asn	Leu	Glu	Met 45	Ile	Ile	Leu	
Ile	Leu 50	Met	Asp	His	Gln	Leu 55	His	Ala	Pro	Met	Туг 60	Phe	Leu	Leu	Ser	
His 65	Leu	Ala	₽he	Met	Asp 70	Val	Cys	Tyr	Ser	Ser 75	Ile	Thr	Val	Pro	Gln 80	
Met	Leu	Ala	Val	Leu 85	Leu	Glu	His	Gly	Ala 90	Ala	Leu	Ser	Tyr	Thr 95	Arg	
Суз	Ala	Ala	Gln 100		Phe	Leu	Phe	Thr 105	Phe	Phe	Gly	Ser	Ile 110	Ąsp	Cys	
туг	Leu	Leu 115	Ala	Leu	. Met	Ala	Tyr 120	Asp	Arg	туг	Leu	Ala 125	Val	СЛа	Gln	
Pro	Leu 130		Tyr	Val	Thr	Ile 135	Leu	Thr	Gln	Gln	Ala 140	Arg	Leu	Ser	Leu	
Val 145		Gly	Ala	туг	Val 150	Ala	Gly	Leu	Ile	Ser 155		Leu	Val	Arg	Thr 160	

Val	Ser	Ala	Phe	Thr 165	Leu	Ser	Phe	Cys	Gly 170	The	Ser	Glu	Ile	Asp 175	Phe	
Ile	Phe	Cys	Asp 180	Leu	Pro	Pro	Leu	Leu 185	Lys	Leu	The	Суз	Gly 190	Glu	Ser	
Tyr	Thr	Gln 195	Glu	Val	Leu	Ile	Ile 200	Met	Phe	Ala	Ile	Phe 205	Val	Ile	Pro	
Ala	Ser 210		Val	Val	Ile	Leu 215	Val	Ser	Tyr	Leu	Phe 220	Ile	Ile	Val	Ala	
11e 225		Gly	Ile	Pro	Ala 230	Gly	Ser	Gln	Ala	Lys 235	Thr	Phe	Ser	Thr	Cys 240	
Thr	Ser	His	Leu	Thr 245	Ala	Val	Ser	Leu	Phe 250	Phe	GLy	Thr	Leu	11e 255	Phe	•
Met	туг	Leu	Arg 260	GIĀ	Asn	Ser	Asp	Gln 265	Ser	ser	Glu	Lys	Asn 270	Arg	Val	
Val	. Ser	Val 275	Leu	туг	Thr	Glu	Val 280	Ile	Pro	Met	Leu	Asn 285	Pro	Leu	Ile	
Tyr	: Ser 290	: Leu	Arg	Asn	Lys	Glu 295	Val	Lys	Glu	Ala	Leu 300	Arg	Lys	Ile	Leu	
Asr 305		, Ala	Lys	Leu	Ser 310											
<21 <21	10> 11> 12> 13>	933 DNA	sap	oiens												
<27 <27	20> 21> - 22> 23>	CDS (1).	. (93	10)												
	30> g ga c Gl	216 a ggd u Gly	aac Asc	aaq Lys 5	aca Thr	tgg Trp	atc Ile	aca Thr	gac Asp 10	atc	acc Thr	ttg Leu	ccg Pro	cga Arg 15	ttc Phe	48
	g gt n Va	t ggt l Gly	20	a gca o Ala	ctg Leu	gag Glu	att	cto Leu 25	ctc Leu	tgt Cys	gga Gly	ctt Leu	ttc Phe 30	tct Ser	gcc Ala	96
t t Ph	c ta e Ty	t acar Thi	a cto c Leo	acc Thi	ctg Leu	ctg Leu	ggg Gly 40	aat Asn	Gly Gly	gto Val	ato Ile	ttt Phe 45	ggg Gly	att Ile	atc	144
tg Cy	c ct s Le 50	u Ası	= tgt p Cy:	aaq Lys	g ctt s Lev	cac His	aca Thi	e ccc	atq Met	tac Tyr	Phe 60	tto Phe	cto Leu	tca Ser	cac His	192
ct Le 65	u Al	c at	t gti e Val	t gad L Asp	: ata : 116 : 70	tco Ser	tat Ty	t gct	tco Ser	aac Ast 75	tat Yı	gto Val	Pro	aaq Lys	atg Met 80	240
		g aa r As	t cti n Lei	L ACO	g aad Asi	caç ı Glr	g gaa 1 Gli	ı Sei	acc Thi	ato Ile	tco e Sei	ttt Phe	ttt Phe	95	Cys Cys	288
at Il	a at e Me	g ca t Gl	g ac	a tto r Pho	c tto	g tat 1 Tyr	tto Le	g gct u Ala	t tt:	gct Ala	cac a His	,			ctg Leu	336
												Page	122			

	_
4	

										1 611	200	DC:T	FINA	t., st	25	
			100					105		1.00	200		110	2.51		
att Ile	t t g Leu	gtg Val 115	gtg Val	atg Met	tcc Ser	tat Tyr	gat Asp 120	yrd cdc	tat Tyr	gcg Ala	gac Asp	atc Ile 125	tgc Cys	cac His	ccc Pro	384
tta Leu	cgt Arg 130	tac Tyr	aat Asn	agc Ser	ctc Leu	atg Met 135	agc Ser	tgg Trp	aga Arg	gtg Val	tgc Cys 140	act Thr	gtc Val	ctg Leu	gct Ala	432
gtg Val 145	gct Ala	tcc Ser	tgg Trp	gtg Val	ttc Phe 150	agc Ser	ttc Phe	ctc Leu	ctg Leu	gct Ala 155	ctg Leu	gtc Val	cct Pro	tta Leu	gtt Val 160	480
	atc Ile	ctg Leu	agc Ser	ctg Leu 165	CCC Pro	ttc Phe	C ya f g c	G1 y ggg	cct Pro 170	cat His	gaa Glu	atc Ile	aac Asn	cac His 175	ttc Phe	528
ttc Phe	tgt Cys	gaa Glu	atc Ile 180	ctg Leu	tct Ser	gtc Val	ctc Leu	aag Lys 185	ttg Leu	gcc Ala	tgt Cys	gct Ala	gac Asp 190	acc Thr	tgg Trp	576
ctc Leu	aac Asn	cag Gln 195	gtg Val	gtc Val	atc Ile	ttt Phe	gca Ala 200	gcc Ala	tgc Cys	gtg Val	ttc Phe	atc Ile 205	ctg Leu	gtg Val	Gly ggg	624
cca Pro	ctc Leu 210	tgc Cys	ctg Leu	gtg Val	ctg Leu	gtc Val 215	tcc Şer	tac Tyr	ttg Leu	CGC Vid	atc Ile 220		gcc Ala	gcc Ala	atc Ile	672
ttg Leu 225	agg Arg	atc Ile	cag Gln	tct Ser	ggg Gly 230	gag Glu	ggc Gly	cgc Arg	aga Arg	aag Lys 235	gcc Ala	etc Phe	tcc Ser	acc Thr	tgc Cys 240	720
tcc Ser	tcc Ser	cac His	ctt Leu	tgc Cys 245	gtg Val	gtg Val	gga Gly	ctc Leu	ttc Phe 250	FILE	ggc	agc Ser	gcc Ala	att Ile 255	gtc Val	768
acg Thr	tac Tyr	atg Met	gcc Ala 260	Pro	aag Lys	tcc Ser	cgc Arg	cat His 265	610	gag Glu	gag Glu	cag Gln	cag Gln 270	aaa Lys	gtt Val	816
ctt Leu	tcc Ser	ctg Leu 275	Phe	tac Tyr	agc Ser	ctt Leu	ttc Phe 280	ASI	cca Pro	atg Met	Ctg Lev	aac Asn 285		ctg Leu	ata Ile	864
tat Tyr	ago Ser 290	Leu	agg Arg	aat Asn	gca Ala	gag Glu 295	gtc Val	aag Lys	ggc	gcc Ala	Leu 300		agg Arg	gca Ala	ctg Leu	912
agg Arg 305	Lys	gag	agg Arg	ctg Leu	acg Thr 310											933
<21 <21 <21 <21	1> 2>	217 310 PRT Homo	saç	oiens	1											
<40	0>	217														
Met 1	Glu	Gly	ASI	Lys 5	The	Trp	Ile	th:	10	Ile	Th:	r Lei	ı Pro	Arg 15	Phe	
Gln	va]	Gly	20	Ala	Leu	Glu	Ile	25	ı Let	ı Çys	G1;	y Lei	30	: Ser	: Ala	
Phe	туі	Th:	: Let	Thi	Leu	Let	40	/ Asi	ı Gly	y Val	l Il	e Pho 45	e Gly	/ Ile	: Ile	
Cys	Lei 50	ı Ası	су:	s Ly≲	s Lev	His 55	Thi	r Pro	Me	Ту	e Pho 60	e Ph	e Lev	ı Sei	His	
Leu	ı Ala	a Ile	e Val	l Ası	ıle	se:	Ту	r Ala	a Se	r Ası	п Ту	r Va	l Pro	Lys	: Met	

16U 200 PCT FINAL.ST25 75 80

Leu Thr Asn Leu Met Asn Gln Glu Ser Thr Ile Ser Phe Phe Pro Cys 85 90 95

Ile Met Gln Thr Phe Leu Tyr Leu Ala Phe Ala His Val Glu Cys Leu 100 105 110

Ile Leu Val Val Met Ser Tyr Asp Arg Tyr Ala Asp Ile Cys His Pro 115 120 125

Leu Arg Tyr Asn Ser Leu Met Ser Trp Arg Val Cys Thr Val Leu Ala 130 135 140

Val Ala Ser Trp Val Phe Ser Phe Leu Leu Ala Leu Val Pro Leu Val 145 150 155 160

Leu Ile Leu Ser Leu Pro Phe Cys Gly Pro His Glu Ile Asn His Phe 165 170 175

Phe Cys Glu Ile Leu Ser Val Leu Lys Leu Ala Cys Ala Asp Thr Trp 180 185 190

Leu Asn Gln Val Val Ile Phe Ala Ala Cys Val Phe Ile Leu Val Gly 195 200 205

Pro Leu Cys Leu Val Leu Val Ser Tyr Leu Arg Ile Leu Ala Ala Ile 210 215 220

Leu Arg Ile Glm Ser Gly Glu Gly Arg Arg Lys Ala Phe Ser Thr Cys 225 230 235 240

Ser Ser His Leu Cys Val Val Gly Leu Phe Phe Gly Ser Ala Ile Val 255

Thr Tyr Met Ala Pro Lys Ser Arg His Pro Glu Glu Gln Gln Lys Val 260 265 270

Leu Ser Leu Phe Tyr Ser Leu Phe Asn Pro Met Leu Asn Pro Leu Ile 275 280 285

Tyr Ser Leu Arg Asn Ala Glu Val Lys Gly Ala Leu Arg Arg Ala Leu 290 295 300

Arg Lys Glu Arg Leu Thr 305 310

<210> 218

<211> 527

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(924)

<223>

<400> 218
atg gcc atg gac aat gtc aca gca gtg ttt cag ttt ctc ctt att ggc
Met Ala Met Asp Asn Val Thr Ala Val Phe Gln Phe Leu Leu Ile Gly
1 5

att tot aac tat cot caa tgg aga gac acg tot tto aca tta gtg otg

48

96

	٧	VO ()3/08	39583	3											
Ile	Ser	Asn	туг 20	Pro	Gln	Trp	Arg	Asp 25	Thr	160 Phe	200 Phe	PCT Thr	FINA Leu 30	L.ST Val	25 Leu	
ata Ile	att Ile	tac Tyr 35	ctc Leu	agc Ser	aca Thr	ttg Leu	ttg Leu 40	ggg Gly	aat Asn	gga Gly	ttt Phe	atg Met 45	atc Ile	ttt Phe	ctt Leu	144
att Ile	cac His 50	ttt Phe	gac Asp	ccc Pro	aac Asn	ctc Leu 55	cac His	act Thr	cca Pro	atc Ile	tac Tyr 60	ttc Phe	ttc Phe	ctt Leu	agt Ser	192
aac Asn 65	ctg Leu	tct Ser	ttc Phe	tta Leu	gac Asp 70	ctt Leu	tgt Cys	tat Tyr	gga Gly	aca Thr 75	gct Ala	tcc Ser	atg Met	SEQ SEQ	cag Gln 80	240
gct Ala	ttg Leu	gtg Val	cat His	tgt Cys 85	ttc Phe	tct Ser	acc Thr	cat His	ccc Pro 90	tac Tyr	ctc Leu	tct Ser	tat Tyr	ccc Pro 95	cga Arg	298
tgt Cvs	ttg Leu	gct Ala	caa Gln	acg Thr	agt Ser	gtc Val	tcc Ser	ttg Leu	gct Ala	ttg Leu	gcc Ala	aca Thr	gca Ala	gag Glu	tgc Cys	336

Cys	Leu	Ala	Gln 100	Thr	Ser	Val	Ser	Leu 105	Ala	Leu	Ala	Thr	Ala 110	Glu	Суз	
ctc Leu	1.011	1.011	Ala	Ala	Met	Ala	tat Tyr	ASP	AIG	var	ATT	ALG	TTE	agc Ser	aat Asn	384

		115					120					125					
CCC	ctg	cgt	tat Tvr	tca Ser	gtg Val	gtt Val	atg Met	aat Asn	ggc Gly	cca Pro	gta Val	tgt Cys	gtc Val	tgc Cys	ttg Leu	43	32

PLO	130	na g	- , -			135					140					
gtt Val 145	gct Ala	acc Thr	tca Ser	tgg Trp	ggg Gly 150	aca Thr	tca Ser	ctt Leu	gtg Val	ctc Leu 155	act Thr	gcc Ala	atg Met	ctc Leu	atc Ile 160	480

cta	tcc ctg	agg	ctt	cac	ttc	tgt	ggg	gct	aat	gtc	atc	aac	cat	ttt	528
Leu	Ser Leu	Arg	165	HIS	Fue	Cys	GLY	170	7311				175		

gcc tgt gag Ala Cys Gl	att ctc tcc Ile Leu Ser 180	ctc att aag Leu Ile Lys 185	ctg acc tgt tct Leu Thr Cya Ser	gat acc agc 576 Asp Thr Ser 190
---------------------------	-----------------------------------	-----------------------------------	------------------------------------	---------------------------------------

ctc aa Leu As	gaa Glu 195	ttt Phe	atg Met	atc Ile	ctc Leu	atc Ile 200	Thr	agt Ser	atc Ile	ttc Phe	acc Thr 205	ctg Leu	ctg Leu	cta Leu	624
------------------	-------------------	------------	------------	------------	------------	-------------------	-----	------------	------------	------------	-------------------	------------	------------	------------	-----

cca Pro	ttt Phe 210	ggg ggg	ttt Phe	gtt Val	ctc Leu	ctc Leu 215	tcc Ser	tac Tyr	ata Ile	cga Arg	att Ile 220	gct Ala	atg Met	gct Ala	atc Ile	
------------	-------------------	------------	------------	------------	------------	-------------------	------------	------------	------------	------------	-------------------	------------	------------	------------	------------	--

ata Ile 225	agg Arg	att Ile	cgc	tca Ser	ctc Leu 230	cag Gln	GJ À ādc	agg Arg	ctc Leu	aag Lys 235	gcc Ala	ttt Phe	acc Thr	aca Thr	cys 240	720
-------------------	------------	------------	-----	------------	-------------------	------------	-------------	------------	------------	-------------------	------------	------------	------------	------------	------------	-----

ggc Gly	tct Ser	cac His	ctg Leu	acc Thr 245	gtg Val	gtg Val	aca Thr	atc Ile	ttc Phe 250	tat Tyr	GTÅ ååå	tca Ser	gcc Ala	atc Ile 255	tcc Ser	768
------------	------------	------------	------------	-------------------	------------	------------	------------	------------	-------------------	------------	------------	------------	------------	-------------------	------------	-----

atg Met	tat Tyr	atg Met	aaa Lys 260	act Thr	cag Gln	tcc Ser	aag Lys	tcc Ser 265	tac Tyr	CCT PIO	gac Asp	cag Gln	gac Asp 270	aag Lys	ttt Phe	816
------------	------------	------------	-------------------	------------	------------	------------	------------	-------------------	------------	------------	------------	------------	-------------------	------------	------------	-----

atc tca gtg ttt tat gga Ile Ser Val Phe Tyr Gly 275	ALA Leu Thr Pro Met Leu Asn Pro Leu Ile 280 285	864

		213														
tat Tyr	agc Ser 290	ctg Leu	aga Arg	aaa Lys	aaa Lys	gat Asp 295	gtt Val	aaa Lys	cgg Arg	gca Ala	ata Ile 300	agg Arg	aaa Lys	gtt Val	atg Met	912

<210>	219
<211>	308
<212>	PRT

672

<213> Homo sapiens

<400> 219

Met Ala Met Asp Asn Val Thr Ala Val Phe Gln Phe Leu Leu Ile Gly 1 10 15

Ile Ser Asn Tyr Pro Gln Trp Arg Asp Thr Phe Phe Thr Leu Val Leu 20 25 30

Ile Ile Tyr Leu Ser Thr Leu Leu Gly Asn Gly Phe Met Ile Phe Leu 35 40 45

Ile His Phe Asp Pro Asn Leu His Thr Pro Ile Tyr Phe Phe Leu Ser 50 55 60

Asn Leu Ser Phe Leu Asp Leu Cys Tyr Gly Thr Ala Ser Met Pro Gln 65 70 80

Ala Leu Val His Cys Phe Ser Thr His Pro Tyr Leu Ser Tyr Pro Arg 85 90 95

Cys Leu Ala Gln Thr Ser Val Ser Leu Ala Leu Ala Thr Ala Glu Cys 100 105 110

Leu Leu Leu Ala Ala Met Ala Tyr Asp Arg Val Val Ala Ile Ser Asn 115 120 125

Pro Leu Arg Tyr Ser Val Val Met Asn Gly Pro Val Cys Val Cys Leu 130 135 140

Val Ala Thr Ser Trp Gly Thr Ser Leu Val Leu Thr Ala Met Leu Ile 145 150 150 160

Leu Ser Leu Arg Leu His Phe Cys Gly Ala Asn Val Ile Asn His Phe 165 170 175

Ala Cys Glu Ile Leu Ser Leu Ile Lys Leu Thr Cys Ser Asp Thr Ser 180 185 190

Leu Asn Glu Phe Met Ile Leu Ile Thr Ser Ile Phe Thr Leu Leu Leu 195 200 205

Pro Phe Gly Phe Val Leu Leu Ser Tyr Ile Arg Ile Ala Met Ala Ile 210 215 220

Ile Arg Ile Arg Ser Leu Gln Gly Arg Leu Lys Ala Phe Thr Thr Cys 225 230 235

Gly Ser His Leu Thr Val Val Thr Ile Phe Tyr Gly Ser Ala Ile Ser 245 250 255

Met Tyr Met Lys Thr Gln Ser Lys Ser Tyr Pro Asp Gln Asp Lys Phe 260 265 270

Ile Ser Val Phe Tyr Gly Ala Leu Thr Pro Met Leu Asn Pro Leu Ile 275 280 285

Tyr Ser Leu Arg Lys Lys Asp Val Lys Arg Ala Ile Arg Lys Val Met 290 295 300

Leu 305	Lys	Arg	Thr														
<210 <211 <212 <213	> 1 2> [20 .008 NA Iomo	sapi	ens													
<220 <221 <222 <223	L> C 2> (DS	. (100)5)													
<400 atg Met 1		20 tca Ser	Ser	ttc Phe 5	tca Ser	ttt Phe	gga Gly	gtg Val	atc Ile 10	ctt Leu	gct Ala	gtc Val	ctg Leu	gcc Ala 15	tcc Ser		48
ctc Leu	atc Ile	att Ile	gct Ala 20	act Thr	aac Asn	aca Thr	cta Leu	gtg Val 25	gct Ala	gtg Val	gct Ala	gtg Val	ctg Leu 30	ctg Leu	ttg Leu		96
atc Ile	cac His	aag Lys 35	aat Asn	gat Asp	ggt Gly	gtc Val	agt Ser 40	ctc Leu	tgc Cys	ttc Phe	acc Thr	ttg Leu 45	aat Asn	ctg Leu	gct Ala		144
gtg Val	gct Ala 50	gac Asp	acc Thr	ttg Leu	att Ile	ggt Gly 55	gtg Val	gcc Ala	atc Ile	tct Ser	ggc Gly 60	cta Leu	ctc Leu	aca Thr	gac Asp		192
cag Gln 65	ctc Leu	tcc Ser	agc Ser	cct Pro	tct Ser 70	cgg Arg	CCC Pro	aca Thr	cag Gln	aag Lys 75	acc Thr	ctg Leu	tgc Cys	agc Ser	ctg Leu 80		240
cgg Ar g	atg Met	gca Ala	ttt Phe	gtc Val 85	act Thr	tcc Ser	tcc Ser	gca Ala	gct Ala 90	gcc Ala	tct Ser	gtc Val	ctc Leu	acg Thr 95	gtc Val		288
atg Met	ctg Leu	atc Ile	acc Thr 100	ttt Phe	gac Asp	agg Arg	tac Tyr	ctt Leu 105	gcc Ala	atc Ile	aag Lys	cag Gln	ccc Pro 110	ttc Phe	Arg		336
tac Tyr	ttg Leu	aag Lys 115	atc Ile	atg Met	agt Ser	GJ À āāā	ttc Phe 120	gtg Val	gcc Ala	GTÅ ååå	gcc Ala	tgc Cys 125	att Ile	gcc Ala	gly ggg		384
ctg Leu	tgg Trp 130	tta Leu	gtg Val	tct Ser	tac Tyr	ctc Leu 135	att Ile	ggc Gly	ttc Phe	ctc Leu	cca Pro 140	ctc Leu	gga Gly	atc Ile	Pro		432
atg Met 145	ttc Phe	cag Gln	cag Gln	act Thr	gcc Ala 150	tac Tyr	aaa Lys	ggg Gly	cag Gln	tgc Cys 155	agc Ser	ttc Phe	ttt Phe	gct Ala	gta Val 160		480
ttt Phe	cac His	cct Pro	cac His	ttc Phe 165	gcg Val	ctg Leu	acc Thr	ctc Leu	tcc Ser 170	tgc Cys	gtt Val	ggc Gly	ttc Phe	ttc Phe 175	cca Pro	•	528
gcc Ala	atg Met	ctc Leu	ctc Leu 180	ttt Phe	gtc Val	ttc Phe	ttc Phe	tac Tyr 185	Cys	gac Asp	atg Met	ctc Leu	aag Lys 190	att Ile	gcc Ala		576
tcc Ser	atg Met	cac His 195	agc Ser	cag Gln	cag Gln	att Ile	cga Arg 200	aag Lys	atg Met	gaa Glu	cat His	gca Ala 205	gga Gly	gcc Ala	atg Met		624
gct Ala	gga Gly 210	ggt Gly	tat Tyr	cga Arg	tcc Ser	cca Pro 215	cgg Arg	act Thr	Pro	agc Ser	gac Asp 220	ttc Phe	aaa Lys	gct Ala	ctc Leu		672
cgt Arg 225	act Thr	gtg Val	tct Ser	gtt Val	ctc Leu 230	att Ile	ggg ggg	agc Ser	ttt Phe	gct Ala 235	cta Leu	tcc Ser	tgg Tzp	acc Thr	Pro 240		720
ttc Phe	ctt Leu	atc Ile	act Thr	ggc Gly 245	att Ile	gtg Val	cag Gln	gtg Val	gcc Ala 250	tgc Cys	cag Gln	gag Glu	tgt Cys	cac His 255	ctc Leu		768

										150	200	PCT	FINA	L.ST	25	
tac Tyr	cta Leu	gtg Val	ctg Leu 260	gaa Glu	cgg Arg	tac Tyr	reu	tgg Trp 265	ctg Leu	ctc Leu	ggc Gly	gtg Val	ggc Gly 270	aac Asn	tcc Ser	816
ctg Leu	ctc Leu	aac Asn 275	cca Pro	ctc Leu	atc Ile	tat Tyr	gcc Ala 280	tat Tyr	tgg Trp	cag Gln	aag Lys	gag Glu 285	gtg Val	cga Arg	ctg Leu	864
Gln	Leu 290	Tyr	His	мес	Ala	295	Grā	101	412	_,_	300					
Leu 305	Leu	Pne	rea	261	310	n-y		-,,-		315			ccc Pro		320	960
agt Ser	tcc Ser	tgt Cys	cac His	atc Ile 325	gtc Val	act Thr	atc Ile	tcc Ser	agc Ser 330	tca Ser	gag Glu	ttt Phe	gat Asp	ggc Gly 335	taa	100
<210 <211 <212 <212	> ?>	221 335 PRT Homo	sap	iens												
<400		221													0	
Met 1	Glu	Ser	Ser	Phe 5	Ser	Phe	Gly	Val	Ile 10	Leu	Ala	Val	Leu	15	Ser	
Leu	Ile	Ile	Ala 20	The	Asn	Thr	Leu	Val 25	Ala	Val	Ala	val	Leu 30	Leu	Leu	
Ile	His	Lys 35	Asn	Asp	Gly	Val	Ser 40	Leu .·	Cys	Phe	Thr	45	a Asn	Leu	Ala	
Val	Ala SO	Asp	Thr	Lev	Ile	Gly S5	Val	Ala	Ile	Ser	60 Gly	, Let	. Leu	Thr	: Asp	
Gln 65	Leu	. Ser	: Ser	Pro	Ser 70	Arg	Pro	Thr	Glr	1 Lys 75	s Thi	r Le	ı Cys	Ser	: Leu 80	
Arg	Met	Ala	Phe	e Val 85	. Thr	: Sei	Ser	Ala	Ala 90	a Ala	a Sei	r Vai	l Lev	95	: Val	
Met	Lev	ıIle	Th:	r Phe	e Asp	A Z	туг	105	Ala	a Ile	e Ly:	s Gl	n Pro 110	Phe	e Arg	
Tyr	: Le	1 Lys	s Ilo	e Me	: Sei	Gl;	y Phe 120	e Val	Ala	a Gl	y Al	a Cy 12	s Ile S	e Ala	a Gly	
Leu	13:	p Lev	ı Va	l Se	г Ту	13:	u Ile S	GL _y	y Ph	e Le	u Pr 14	o Le O	u Gl	y Il	e Pro	

Phe His Pro His Phe Val Leu Thr Leu Ser Cys Val Gly Phe Phe Pro 165 170 175

Met Phe Gln Gln Thr Ala Tyr Lys Gly Gln Cys Ser Phe Phe Ala Val 145 150 155 160

Ala Met Leu Leu Phe Val Phe Phe Tyr Cys Asp Met Leu Lys Ile Ala 180 185 190

Ser Met His Ser Gln Gln Ile Arg Lys Met Glu His Ala Gly Ala Met 195 200 205

Ala	Gly 210	Gly	туг	Arg	Ser	Pro 215	Arg	Thr	Pro	Ser	Asp 220	Phe	Lys	Ala	Leu	
Arg 225	Thr	Val	Ser	Val	Leu 230	Ile	Gly	Ser	Phe	Ala 235	Leu	Ser	Trp	Thr	Pro 240	
Phe	Leu	Ile	Thr	Gly 245	Ile	Val	Gln	Val	Ala 250	Суз	Gln	Glu	Суз	His 255	Leu	
Tyr	Leu	Val	Leu 260	Glu	Arg	Tyr	Leu	Trp 265	Leu	Leu	Gly	Val	Gly 270	Asn	Ser	
Leu	Leu	Asn 275	Pro	Leu	Ile	Tyr	Ala 280	Tyr	Trp	Gln	Lya	Glu 285	Val	Arg	Leu	
Gln	Leu 290	Tyr	His	Met	Ala	Leu 295	Gly	Val	Lys	Lys	Val 300	Leu	Thr	Ser	Phe	
Leu 305		Phe	Leu	Ser	Ala 310	Arg	Asn	Сла	Gly	Pro 315	Glu	Arg	Pro	Arg	Glu 320	
Ser	Ser	Cys	His	Ile 325	Val	Thr	Ile	Ser	Ser 330	Ser	Glu	Phe	Asp	335		
<21 <21		975 DNA	sap:	iens												
<22°		DS.														
	2>	(1).	. (97	2)							-			:.		
<22 <22 <40	2> 3> 0>	222		- 226	agc Ser	acc Thr	g1y ggg	gtc Val	gcg Ala 10	gag Glu	ctc Leu	cag Gln	gag Glu	ccc Pro 15	gly ggg	48
<22: <22: <40: atg Met 1	2> 3> 0> : cgg Arg	222 cct Pro	cag Gln	gac Asp 5	Ser	Thr	GTÅ	cca	Ala 10	GLu	act	gaq	gag	15 ccg	dcd	48
<22: <22: <40: atg Met I ctg Leu	2> 3> 0> : cgg Arg	222 cct Pro	cag Gln acg Thr 20	gac Asp 5 gac Asp	Ser	gca Ala	ccc	ceg Pro 25	Ala 10 ggc Gly	gec Ala	act Thr	gag Glu	gag Glu 30	15 ccg Pro	gcg Ala	
<22: <22: <40: atg Met 1 ctg Leu gcc Ala	2> 3> 0> cgg Arg ccg Pro	222 cct Pro cta Leu gag Glu 35	cag Gln acg Thr 20 gca Ala	gac Asp 5 gac Asp gct Ala	gat Asp	Thr gca Ala gcg Ala	ccc Pro	ccg Pro 25 gac Asp	ggc Gly cgc Arg	gcc Ala gtg Val	act Thr ggc Gly	gag Glu tct Ser 45	gag Glu 30 tta Leu	ccg Pro ttt Phe	gcg Ala gtt Val	96
<22: <222 <400 Met 1 ctg Leu gcc Ala aaa Lys yal 65	2> 3> 0> cgg Arg ccgp Pro gcc Ala aaaa Lys 50 ttc Phe	cta Leu gag Glu 35 gtg Val	cag Gln acg Thr 20 gca Ala caa Gln	gac Asp gac Asp gct Ala gac Asp	gat Asp ggg Gly gtc Val gtt Val	gca Ala gcg Ala cat His 55 gtt Val	ccc Pro cca Pro 40 gct Ala	ccg Pro 25 gac Asp gta val	ggc Gly cgc Arg gag Glu tgc	gcc Ala gtg Val att Ile tta Leu 75	act Thr ggc Gly agt Ser 60 ata	gag Glu tct Ser 45 gcg Ala	gag Glu 30 tta Leu ttt Phe	ccg Pro ttt Phe cga Arg	gcg Ala gtt Val tgt Cys	96
<222 440 atg Met 1 ctg Leu gcc Ala aaaa Lys gtg Val 65 ggg Gly	2>> 3> Cogg Arg - Cogg Pro gcc Ala aaaa Lys 50 ttc Phe	222 cctt Pro cta Leu gag Glu 35 gtg Val	cag Gln acg Thr 20 gca Ala caa Gln atg Met	gac Asp gac Asp gct Ala gac Asp cta Leu cca Pro 85	gat Asp ggg Gly gtc Val gtt Val 70 aaa Lys	gca Ala cat His 55 gtt Val ggt Gly	ccca Pro cca Pro 40 gct Ala atc Ile	ccg Pro 25 gac Asp gta Val cct Pro	alia 10 ggc Gly cgc Arg gag Glu tgc Cys att 11e 90	gcc Ala gtg Val att Ile tta Leu 75 ttc Phe	act Thr ggc Gly agt Ser 60 ata Ile	gag Glu tct Ser 45 gcg Ala tac Tyr	gag Glu 30 tta Leu ttt Phe aga Arg	ccg Pro ttt Phe cga Arg aaa Lys	gcg Ala gtt Val tgt Cys act Thr 80 gga Gly	96 144 192
<222 <222 <400 atg Met 1 ctg Leu gcc Ala aaa Lys gtg gdly gtal gtg gtg gtg gtg gtg gtg gtg gtg gtg gtg gtg gtal	2>> 3> Cogg Arg - Cogg Pro gcc Ala aaaa Lys 50 ttc Phe ttt Phe ctt Leu	222 cct Pro cta Leu gag Glu 35 gtg Val caa Gln ata Ile ggt Gly	cag Gin acg Thr 20 gca Ala caa Gin atg Met	gac Asp 5 gac Asp gct Ala gac Asp cta Leu cca Pro 85 acc	gat Asp ggg Gly gtc Val gtt Val 70 aaa Lys gcc Ala	gca Ala gcg Ala cat His 55 gtt Val ggt Gly	ccc Pro cca Pro 40 gct Ala atc Ile caa Gln	ccg Pro 25 gac Asp gta Val cct Pro cga Arg ctt Leu 105	Ala 10 ggc Gly cgc Arg gag Glu tgc Cys att 11e 90 ata 11e	gcc Ala gtg Val att fle tta Leu 75 ttc Phe	act Thr ggc Gly agt Ser 60 ata Ile ctc Leu tat Tyr	gag Glu tct Ser 45 gcg Ala tac Tyr att Ile	gag Glu 30 tta Leu ttt Phe aga Arg ctc Leu	ccg Pro ttt Phe cga Arg aaa Lys aga Gln	gcg Ala gtt Val tgt Cys act Thr 80 gga Gly	96 144 192 240
<222 <222 <400 atg Met 1 ctg Leu gcc Ala aaaa Lys gtg Gly gtl Gly gtl g	2> 3> Cggg Arg ccgg Pro ccgg Pro tccg Pro tttcPhe tttt Phe tttc	222 cct Pro cta Leu gag Glu 35 gtg Val caa Gln ata Ile Gly ctc Leu 115	cag Gin acg Thr 20 gca Ala caa Gin atg Met cay Yet Ser 100 gct Ala	gac Asp 5 gac Asp gct Ala gac Asp cta Leu cca Pro 85 acc Thr	gat Asp ggg Gly gtc Val gtt Val 70 aaa Lys	gca Ala gcg Ala cat His S5 gtt Val ggt Gly atg Met	Gly CCC Pro CCCA Pro 40 gct Ala atc Ile Caaa Gln atg Met Val 120	ccg Pro 25 gac Asp gta Val cct Pro cga Arg ctt Leu 105 atc Ile	alia 10 ggc Gly cgc Arg gag Glu tgc Cys att Ile 90 ata Ile	gcc Ala gtg Val att fle tta Leu 75 ttc Phe	act Thr ggc Gly agt Ser 60 ata Ile tat Tyr agc Ser	gag Glu tct Ser 45 gcg Ala tac Tyr att Ile gct Ala agt Ser 125	gag Glu 30 tta Leu ttt Phe aga Arg ctc Leu tac Tyr 110 cca Pro	ccg Pro ttt Phe cga Arg aaaa Lys aga Arg g5	gcg Ala gtt Val tgt Cys act Thr 80 gga Gly aca Thr	96 144 192 240

	•	NO (03/08	9583	3											
	130					135					200 140	PCT	FINA	L.ST	25	
gat Asp 145		ctt Leu	ttc Phe	acc Thr	gtg Val 150	ttc Phe	aca Thr	atc Ile	act Thr	gga Gly 155	gtg Val	atc Ile	ctt Leu	atc Ile	gtg Val 160	480
aga Arg	cca Pro	cca Pro	ttt Phe	ttg Leu 165	ttt Phe	ggt Gly	tcc Ser	gac Asp	act Thr 170	tcg Ser	ggg Gly	atg Met	gaa Glu	gaa Glu 175	agc Ser	528
tat Tyr	tca Ser	ggc Gly	cac His 180	ctt Leu	aag Lys	gga Gly	aca Thr	ttc Phe 185	gca Ala	gca Ala	att Ile	gga Gly	agt Ser 190	gcc Ala	gta Val	576
Phe	Ala	Ala 195	Ser	Thr	Leu	gtt Val	200	Leu	ALG	212		205	-,-			624
Asp	Tyr 210	Phe	Leu	ser	116	tgg Trp 215	LyL	-1.			220	•				672
Ser 225	Val	Ile	Ile	Leu	230	gta Val	Leu	Gry	GLU	235			•	•	240	720
Gly	Leu	Asp	Arg	245	FILE	ctc Leu	110		250	,			-	255		768
Gly	Gln	Ile	260	IIe	Thr	aaa Lys	HIG	265	9111			-1-	270	•	•	816
Val	Ala	11e 275	Met	rys	Thr	atg Met	280	142	***			285				864
Ile	Ile 290	Phe	Phe	ASn	ASI	gtg Val 295	FLU	1			300		-			912
ctc Leu 305	Cys	gta Val	gta Val	gcc Ala	agt Ser 310	aat Asn	gtt Val	gga Gly	gcg Ala	gcc Ala 315	110	cgt Arg	aaa Lys	tgg Trp	Tyr 320	960
caa Gln	agt Ser	tcc Ser	aaa Lys	tga												975
<21 <21 <21 <21	.1>	223 324 PRT Homo	sap	iens		ş •										
<40		223	, G1 m	Asn	Ser	· Thr	· Glw	· Val	. Ala	Glu	Let	ı Gln	Glu	Pro	GLY	
Met	AIG	, LIC	וובניייי	asp	261		J- 1		10					15		

Leu Pro Leu Thr Asp Asp Ala Pro Pro Gly Ala Thr Glu Glu Pro Ala 20 25 30

Ala Ala Glu Ala Ala Gly Ala Pro Asp Arg Val Gly Ser Leu Phe Val 35

Lys Lys Val Glm Asp Val His Ala Val Glu Ile Ser Ala Phe Arg Cys 50 55 60

Val Phe Gln Met Leu Val Val Ile Pro Cys Leu Ile Tyr Arg Lys Thr 65 75 80

Gly Phe Ile Gly Pro Lys Gly Gln Arg Ile Phe Leu Ile Leu Arg Gly

16U 200 PCT FINAL.ST25 5 90 95

Val Leu Gly Ser Thr Ala Met Met Leu Ile Tyr Tyr Ala Tyr Gln Thr 100 105 110

Met Ser Leu Ala Asp Ala Thr Val Ile Thr Phe Ser Ser Pro Val Phe 115 120 125

Thr Ser Ile Phe Ala Trp Ile Cys Leu Lys Glu Lys Tyr Ser Pro Trp 130 135 140

Asp Ala Leu Phe Thr Val Phe Thr Ile Thr Gly Val Ile Leu Ile Val 145 150 160

Arg Pro Pro Phe Leu Phe Gly Ser Asp Thr Ser Gly Met Glu Glu Ser 165 170 175

Tyr Ser Gly His Leu Lys Gly Thr Phe Ala Ala Ile Gly Ser Ala Val

Phe Ala Ala Ser Thr Leu Val Ile Leu Arg Lys Met Gly Lys Ser Val 195 200 205

Asp Tyr Phe Leu Ser Ile Trp Tyr Tyr Val Val Leu Gly Leu Val Glu 210 215 220

Ser Val Ile Ile Leu Ser Val Leu Gly Glu Trp Ser Leu Pro Tyr Cys 225 230 235 240

Gly Leu Asp Arg Leu Phe Leu Ile Phe Ile Gly Leu Phe Gly Leu Gly 245 250 255

Gly Gln Ile Phe Ile Thr Lys Ala Leu Gln Ile Glu Lys Ala Gly Pro 260 265 270

Val Ala Ile Met Lys Thr Met Asp Val Val Phe Ala Phe Ile Phe Gln - 275 280 285

Ile Ile Phe Phe Asn Asn Val Pro Thr Trp Trp Thr Val Gly Gly Ala 290 295 300

Leu Cys Val Val Ala Ser Asn Val Gly Ala Ala Ile Arg Lys Trp Tyr 305 310 315

Gln Ser Ser Lys

<210> 224

<211> 876

<212> ONA <213> Homo sapiens

<220>

<221> CDS

<222> (1)..(873)

<223>

<400> 224

atg tac aac atg agt gac cat ggt aca ggc ctg ttc atc ctt ttg ggt met Tyr Asn Met Ser Asp His Gly Thr Gly Leu Phe Ile Leu Leu Gly 1 15

ato cot gga cot gag cag tao cao gto tgg ato ago ato coa too tgo

-

96

	V	VO (3/08	9583	3												
Ile	Pro	Gly	Leu 20	Glu	Gln	Tyr	His	Val 25	Trp	15U Ile	200 Ser	PCT Ile	FINA Pro 30	L.ST Phe	25 Cys		
tta Leu	atc Ile	tat Tyr 35	ctc Leu	atg Met	gct Ala	gtc Val	gtg Val 40	gcc Ala	aat Asn	agt Ser	atc Ile	ctt Leu 45	ctc Leu	tac Tyr	ctc Leu	144	
att Ile	gtg Val SO	gta Val	gag Glu	cac His	agt Ser	ctt Leu 55	cat His	gca Ala	ccc Pro	atg Met	ttc Phe 60	ttt Phe	ttc Phe	ctt Leu	tcc Ser	192	
atg Met 65	ctg Leu	gcc Ala	att Ile	act Thr	gat Asp 70	ctc Leu	ata Ile	ttg Leu	tcc Ser	acc The 75	aca Thr	tgt Cys	gtc Val	CCC Pro	aaa Lys 80	240	
aca Thr	ctt Leu	agc Ser	atc Ile	ttc Phe 85	tgc Cys	ttt Phe	gtg Val	ttg Leu	gac Asp 90	tca Ser	gct Ala	ata Ile	ctg Leu	ctg Leu 95	gcc Ala	288	
atg Met	gca Ala	ttt Phe	gac Asp 100	cgc Arg	tat Tyr	atg Met	gcc Ala	att Ile 105	tgc Cys	tca Ser	Pro	ttg Leu	aga Arg 110	tac Tyr	act Thr	336	
act Thr	att Ile	ctg Leu 115	act Thr	CCC Pro	aaa Lys	acc Thr	att Ile 120	gtc Val	aaa Lys	att Ile	gct Ala	gtg Val 125	gga Gly	ata Ile	tgt Cys	384	
?he	Arg 130	Ser	Phe	Cys	Val	135	Val	PIO	Cys	447	140	200	gtg Val		•	432	;
Leu 145	Pro	Phe	Cys	Arg	150	HIS	TIE	116	361	155		-1-	tgt Cys		160	480	
Ile	Glγ	Val	Ala	Gln 165	Leu	Ala	Cys	ALA	170	110	502		aat Asn	175	•	528	
Суз	Gly	Phe	Cys 180	Val	Pro	ITe	Met	185	Val	nec			gtg Val 190			576	
Ile	Ala	Val 195	Ser	Tyr	Thr	Leu	200	Leu	Cys	, Ala		205	-,-	•	Pro	624	
Ser	Gln 210	Asp	Ala	Arg	GIR	215	ALG	, Dea	٠,٠	001	220	,			gtc Val	673	
Cys 225	Val	ile	Leu	ire	230	171	110			235					gcc Ala 240	720	
His	Cys	Phe	e Gly	245	ASI	vaı	PLO	, HT3	250)				255		76	
Asn	Leu	ТУ	260	. Ile	: Ile	PIC	PLC	265	i net				270		aga Arg	81	
ata Ile	aag Lys	275	Lys	caa Glr	atc Ile	Glr	aac Asr 280	, wra	ato , Ile	ctt Let	t te	j cto i Let 285		Pro	aag Lys	. 87	

ggg tcc cag tga Gly Ser Gln 290

<210> 225 <211> 291 <212> PRT <213> Homo sapiens

<400> 225

Ile Pro Gly Leu Glu Gln Tyr His Val Trp Ile Ser Ile Pro Phe Cys 20 25 30

Leu Ile Tyr Leu Met Ala Val Val Ala Asn Ser Ile Leu Leu Tyr Leu 35 40 45

Ile Val Val Glu His Ser Leu His Ala Pro Mec Phe Phe Leu Ser 50 55 60

Met Leu Ala Ile Thr Asp Leu Ile Leu Ser Thr Thr Cys Val Pro Lys 65 70 75 . 80

Thr Leu Ser Ile Phe Cys Phe Val Leu Asp Ser Ala Ile Leu Leu Ala 85 90 95

Met Ala Phe Asp Arg Tyr Met Ala Ile Cys Ser Pro Leu Arg Tyr Thr 100 105 110

Thr Ile Leu Thr Pro Lys Thr Ile Val Lys Ile Ala Val Gly Ile Cys 115 120 125

Phe Arg Ser Phe Cys Val Phe Val Pro Cys Val Phe Leu Val Asn Arg 130 135 140

Leu Pro Phe Cys Arg Thr His Ile Ile Ser His Thr Tyr Cys Glu His 145 150 150 155 160

Ile Gly Val Ala Gln Leu Ala Cys Ala Asp Ile Ser Ile Asn Ile Trp
165 170 175

Cys Gly Phe Cys Val Pro Ile Met Thr Val Met Thr Asp Val Ile Leu 180 185 190

Ile Ala Val Ser Tyr Thr Leu Ile Leu Cys Ala Val Phe Cys Leu Pro 195 200 205

Ser Gln Asp Ala Arg Gln Lys Ala Leu Cys Ser Cys Gly Ser His Val 210 215 220

Cys Val IIe Leu Ile Phe Tyr Ile Pro Ala Phe Phe Ser Ile Leu Ala 225 230 240

His Cys Phe Gly His Asn Val Pro His Thr Phe His Ile Met Phe Ala 250 255

Asn Leu Tyr Val Ile Ile Pro Pro Ala Leu Asn Ser Ile Val Tyr Arg 260 265 270

Ile Lys Thr Lys Gln Ile Gln Asn Arg Ile Leu Leu Phe Pro Lys 275 280 285

Gly Ser Gln 290

<210> 225
<211> 1949

160 200 PCT FINAL.5125	
<213> Homo sapiens	
<220> <221> CDS <222> (430)(1164) <223>	
<400> 226 agagggggg gacttetecg ggtcaaggee aggtetette cetgeteggt getatgttee	60
tgttccacgg ggtggcgggt cctgggaggg agaagcccag acccagtgga cactgacatt	120
gteteteget gtteceagee tittecagge gtgtgaetta atcegtttee acagecagae	180
cttttctccg tgagttcctc agecaggact gctgccatgc cggtgactgt tacccaccca	240
accytcacga ccaccatycy ytcccccacc ytcytaggyt cctctaggyc cctgatccag	300
eccetgggce tectecgeet getgeagetg gtgtecacet gegtggeett gteactggtg	360
gccagcgtgg gcgcctggaa ggggcctatg ggtaactggt ccatgttcac ctagtgtttc	420
tgctttgcc atg acc ctg gtc atc ctc ctc gtg gag ctg ggc ggc tcc cag Met Thr Leu Val Ile Leu Leu Val Glu Leu Gly Gly Ser Gin 1	471
gcc cgc ttc ccc ttg ttt tgg cgc aac ttc ccc atc acc ttt gcc tgc Ala Arg Phe Pro Leu Phe Trp Arg Asn Phe Pro Ile Thr Phe Ala Cys 15 20 25 30	519
tat gcg gcc ctc ttg tgc ctc tcg gcc tcc atc atc tac ccc acc acc Tyr Ala Ala Leu Leu Cys Leu Ser Ala Ser Ile Ile Tyr Pro The The 35 40 45	567
tac ttg cag ttc ctg tcc cac ggc cgt tcc cgc gac cac gcc atc gcc Tyr Leu Gln Phe Leu Ser His Gly Arg Ser Arg Asp His Ala Ile Ala 50 55 60	615
gcc atc gtc ttc tct ggc atc gcc tgt gtg gct tac gcc acc gaa gta Ala Ile Val Phe Ser Gly Ile Ala Cys Val Ala Tyr Ala Thr Glu Val 65 70 75	663
acc tgg acc cgg gcc cgg ccc ggc gag atc act gac tac atg gcc tcc Thr Trp Thr Arg Ala Arg Pro Gly Glu Ile Thr Asp Tyr Met Ala Ser 80 85 90	711
gag ctg ggg ctg ctg aag gtg ctg gag acc ttc gtg gcc tgc ctc atc Glu Leu Gly Leu Leu Lys Val Leu Glu Thr Phe Val Ala Cys Leu Ile 95 100 105 110	759
ttc gtg ttc atc aat agc ccc tac gtg tac cac aac cgg ccg gcc ctg Phe Val Phe Ile Asn Ser Pro Tyr Val Tyr His Asn Arg Pro Ala Leu : 115 120 125	807
gag tgg tgg gtg gtg tac gcc ctc tgc ttc gtc ctg gcg gcc ctc Glu Trp Trp Val Ala Val Tyr Ala Leu Cys Phe Val Leu Ala Ala Leu 130 135 140	855
act atc ctg ctg agc ctg ggg cac tgc acc aac atg ctg ccc atc cgc Thr Ile Leu Leu Ser Leu Gly His Cys Thr Asn Met Leu Pro Ile Arg 145 150 155	903
ttc ccc agt ttc ctg ttg ggg ctg gcc ttg ctg tcc gtc ctc c	951
gcc act gcc ctt gtc ctc tgg ccc ctc tac cag ttc aac gag aag tat Ala Thr Ala Leu Val Leu Trp Pro Leu Tyr Gln Phe Asn Glu Lys Tyr 175 180 185 190	999
ggt gtc cag ccc tgg cag acg aga gat gtg agc tgc agc gac aga aac Gly Val Gln Pro Trp Gln Thr Arg Asp Val Ser Cys Ser Asp Arg Asn 195 200 205	1047
cec tac ctt gtg tgt atc tgg gac cgc cga ctg gct gtg acc aac ctg Pro Tyr Leu Val Cys Ile Trp Asp Arg Arg Leu Ala Val Thr Asn Leu 210 215 220	1095
acg gcc gtc aac ttg ctg gcc tat gtg ggc gac ctg gtg tac tct gcc	1143
. Page 134	

WO 03/089583

540	val 225	Asn Lev	ı Leu	Ala 1	Tyr V 230	al C	ly A	6U 2	Leu '	PCT E Val 1 235	inal Tyr	L.ST2 Ser l	25 Ala	
cac cto	ı Val	ttt gto Phe Val	aag L Lys	gtc t Val 245	aaga	ctco	c aa	agg	gccc	= gt	ttgc	ctct		1194
ccaacc	ctt c	atcctg		gctga	agtt	ttct	ttat	tg	agta	ttca	tt t	cctg	ggttt	1254
tcctct														1314
agttct	ctga t	gtatgt	tct to	cctt	tect	ctgo	tgtt	tc	cttc	ttgt	tt t	gttc	tgttg	1374
cccaca	acct ç	ttttca	ccc gt	ttct	ctt	ttc	acto	:tc	tctt	ttgt	tt c	tttc	ctctc	1434
aattct														1494
tatttc														1554
gagctc														1614
gcccgc														1674
		cccttt												1734
		atgtat												1794
		gtcccta												1854
		cttaca						cca	tctt	aaag	ga a	igcaa	tggat	1914
ggatco	cttt (atccca	act gt	tctt	cgcg	gta	tc							1949
<210> <211> <212> <213>	227 245 PRT Homo	sapien	3		•						٠,			
<400>	227													
Met Th 1	r Leu	Val II S	e Leu	Leu	Val (Glu i	Leu (10	Gly	Gly	Ser	Gln	Ala 15	Arg	
Phe Pr	o Leu	Phe Tr	p Arg	Asn	Phe	Pro	Tle '		Phe	Ala	Cys	Tvr	Ala	
		20				25		Int			30	-,-		
Ala Le	u Leu 35			Ala		25					30			
	35 se Leu	20	eu Ser		Ser 40	Z5 Ile	Ile	Tyr	Pro	Thr 45	Thr	Tyr	Leu	
Gln Ph	35 se Leu	20 Cys Le	u Ser	Arg SS	Ser 40 Ser	Ile Arg	Ile Asp	Tyr His	Pro Ala 60	Thr 45	Thr	Tyr Ala	Leu Ile	
Gln Ph 50 Val Ph 65	35 le Leu l. le Ser	20 Cys Le Ser Hi	eu Ser s Gly e Ala 70	Arg SS Cys	Ser 40 Ser Val	Ile Arg Ala	Ile Asp Tyr	Tyr His Ala 75	Pro Ala 60 Thr	Thr 45 Ile Glu	Thr Ala	Tyr Ala Thr	Leu Ile Trp 80	-
Gin Ph 50 Val Ph 65	35 te Leu	Cys Le Ser Hi Gly II	su Ser s Gly e Ala 70	Arg S5 Cys	Ser 40 Ser Val	Ile Arg Ala	Ile Asp Tyr Asp	Tyr His Ala 75	Pro Ala 60 Thr	Thr 45 Ile Glu Ala	Thr Ala Val	Tyr Ala Thr Glu 95	Leu Ile Trp 80 Leu	
Gin Ph 50 Val Ph 65 Thr Ar	35 le Leu le Ser leg Ala	Cys Le Ser Hi Gly II Arg Pr 85 Lys Va 100 Ser P:	s Gly e Ala 70 Gly	Arg 55 Cys Glu	Ser 40 Ser Val Ile	Ile Arg Ala Thr	Ile Asp Tyr Asp 90	Tyr His Ala 75 Tyr	Pro Ala 60 Thr Met	Thr 45 Ile Glu Ala Leu	Thr Ala Val Ser	Tyr Ala Thr Glu 95	Leu Ile Trp 80 Leu Val	
Gin Ph 50 Val Ph 65 Thr Ar Gly Le	35 e Leu de Ser eu Leu de Asn 115	Cys Le Ser Hi Gly II Arg Pr 85 Lys Va 100 Ser P:	s Gly e Ala 70 Gly i	Arg 55 Cys Glu Glu Val	Ser 40 Ser Val Ile Thr	Ile Arg Ala Thr Phe 105	Asp Tyr Asp 90 Val	Tyr His Ala 75 Tyr Ala	Pro Ala 60 Thr Met Cys	Thr 45 Ile Glu Ala Leu Ala 125	Thr Ala Val Ser Ile 110	Tyr Ala Thr Glu 95 Phe	Leu Ile Trp 80 Leu Val	

160 200 PCT FINAL.ST25	
Ser Phe Leu Leu Gly Leu Ala Leu Leu Ser Val Leu Leu Tyr Ala Thr 165 170 175	
Ala Leu Val Leu Trp Pro Leu Tyr Gln Phe Asn Glu Lys Tyr Gly Val 180 185 190	
Gln Pro Trp Gln Thr Arg Asp Val Ser Cys Ser Asp Arg Asn Pro Tyr 195 200 205	
Leu Val Cys Ile Trp Asp Arg Arg Leu Ala Val Thr Asn Leu Thr Ala 210 215 220	
Val Asn Leu Leu Ala Tyr Val Gly Asp Leu Val Tyr Ser Ala His Leu 225 230 235 240	
Val Phe Val Lys Val 245	
<210> 228 <211> 2980 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (213)(2336) <223>	
<400> 228 cccagagacc caggeegegg aactggeagg egttteagag egteagagge tgeggatgag	60
cccagagacc caggeegegg aaccageagg egeterating of the same and the same	
cagacttgga ggactccagg ccagagacta ggctgggcga agagtcgagc gtgaaggggg	120
	120 180
cagacttgga ggactccagg ccagagacta ggctgggcga agagtcgagc gtgaaggggg	
cagacttgga ggactccagg ccagagacta ggctgggcga agagtcgagc gtgaaggggg ctccgggcca gggtgacagg aggcgtgctt gagaggaaga agttgacggg aaggccagtg cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro	180
cagacttgga ggactccagg ccagagacta ggctgggcga agagtcgagc gtgaaggggg ctccggggcaa gggtgacagg aggcgtgctt gagaggaaga agttgacggg aaggccagtg cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro 1 5 gcc ctc ctc gtc ctc ctc ttc tgc ttc aga ggg aga gca ggc ccg tcg Ala Leu Leu Val Leu Phe Cys Phe Arg Gly Arg Ala Gly Pro Ser	180 233
cagacttgga ggactccagg ccagagacta ggctgggcga agagtcgagc gtgaaggggg ctccgggcca gggtgacagg aggcgtgctt gagaggaaga agttgacggg aaggccagtg cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro 1 5 gcc ctc ctc gtc ctc ctc ttc tgc ttc aga ggg aga gca ggc ccg tcg Ala Leu Leu Val Leu Leu Phe Cys Phe Arg Gly Arg Ala Gly Pro Ser 10 15 20 ccc cat ttc ctg caa cag cca gag gac ctg gtg gtg ctg ctg ggg gag Pro His Phe Leu Gln Gln Pro Glu Asp Leu Val Val Leu Leu Gly Glu	180 233 281
cagacttgga ggactccagg ccagagacta ggctgggcga agagtcgagc gtgaaggggg ctccgggcca gggtgacagg aggcggctt gagaggaaga agttgacggg aaggccagtg cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg ccg gtc ccc Met Leu Arg Met Arg Val Pro 1	180 233 281 329
cagacttgga ggactccagg ccagagacta ggctggccga agagtcgagc gtgaaggggg ctccgggcca gggtgacagg aggcggctt gagaggaaga agttgacggg aaggccagtg cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro Scr Ala Leu Leu Val Leu Leu Phe Cys Phe Arg Gly Arg Ala Gly Pro Scr 10 ccc cat ttc ctg caa cag cca gag gac ctg gtg ctg Glu Asp Leu Val Leu Leu Gly Glu Asp Leu Val Leu Leu Gly Glu Ala Tyr Trp Gly Leu Val Gln Scr Ala Arg Leu Pro Cys Ala Leu Gly Ala Tyr Trp Gly Leu Val Gln Scr Trp Scr Arg Tyr Trp Ile Scr Gly Asn Ala Ala Asn Gly Gln His Asp Scr Arg Tyr Trp Ile Scr Gly Asn Ala Ala Asn Gly Gln His Asp	180 233 281 329
cagacttgga ggactccagg ccagagacta ggctgggcga agagtcgagc gtgaagggggcctcccgggcca gggtgacagg aggcggcgctc gagaggaaga agttgacggg aaggccagtgcgacgggacgacgggacaaa tctcgtgaac cttgggggac ga atg ctc agg atg ccg gtc ccc Ala Leu Leu Val Leu Leu Phe Cys Phe Arg Gly Arg Ala Gly Pro Ser 15 Ccc cat ttc ctg caa cag cca gag gac ctg gtg gtg gcc gg gg gg gg gg gcc cg tcg flu Asp Leu Val Leu Pro Cys Ala Leu Gly Ala Tyr Trp Gly Leu Val Gln Son Trp Thr Lys Ser Gly Leu Ala Leu Gly Asp Son Arg Gly Arg Asp Leu Pro Gly 70 tgg tcc cgg tac tgg ata tgg ata tca ggg gac cta ggg ggc caa agg gac cta ggg ggg flu Asp Leu Gly Gly Gln Arg Asp Leu Pro Gly 70 tgg tcc cgg tac tgg ata tca ggg ata tca ggg gac caa agg gac cta ggg gac cta ggg ggc caa agg gac cta ggg gac cta gac cta ggg gac cta gac cta ggg gac cta gac cta ggg gac cta gac gac at gac cta ggg gac cta gac gac at gac gac at gac cta gac gac at gac gac at gac cta gac gac at gac gac at gac gac at gac gac at gac gac at gac gac at gac gac at gac gac at gac gac at gac gac at gac gac gac gac gac tac gac gac gac gac gac gac gac gac gac g	180 233 281 329 377 425 473
cagacttgga ggactccagg ccagagacta ggctgggcga agagtcgagc gtgaaggggg ctccgggcca gggtgacagg aggcggctt gagaggaaga agttgacggg aaggccagtg cgacggcaaa tctcgtgaac cttgggggac ga atg ctc agg atg cgg gtc ccc Met Leu Arg Met Arg Val Pro 1	180 233 281 329 377 425

										16U	200	PCT	FINA	L.ST	25	
ctg Leu	gtt Val	gct Ala	gga Gly	gtt Val 140	cct Pro	gcg Ala	aac Asn	ctg Leu	aca Thr 145	tgt Cys	cgg Arg	agc Ser	cgt Arg	ggg Gly 150	gat Asp	665
gcc Ala	cgc Arg	cct Pro	acc Thr 155	cct Pro	gaa Glu	ttg Leu	ctg Leu	tgg Trp 160	ttc Phe	cga Arg	gat Asp	G] À dàà	gtc Val 165	ctg Leu	ttg Leu	713
gat Asp	gga Gly	gcc Ala 170	acc Thr	ttc Phe	cat His	cag Gln	acc Thr 175	ctg Leu	ctg Leu	aag Lys	gaa Glu	ggg Gly 180	acc Thr	cct Pro	gly ggg	761
tca Ser	gtg Val 185	gag Glu	agc Ser	acc Thr	tta Leu	acc Thr 190	ctg Leu	acc Thr	cct Pro	ttc Phe	agc Ser 195	cat His	gat Asp	gat Asp	gga Gly	809
gcc Ala 200	acc Thr	ttt Phe	gtc Val	tgc Cys	cgg Arg 205	gcc Ala	cgg Arg	agc Ser	cag Gln	gcc Ala 210	ctg Leu	Pro Pro	aca Thr	gga Gly	aga Arg 215	857
gac Asp	aca Thr	gct Ala	atc Ile	aca Thr 220	ctg Leu	agc Ser	ctg Leu	cag Gln	tac Tyr 225	CCC	cca Pro	gag Glu	gtg Val	act Thr 230	ctg Leu	905
tct Ser	gct Ala	tcg Ser	cca Pro 235	cac His	act Thr	gtg Val	cag Gln	gag Glu 240	gga Gly	gag Glu	aag Lys	gtc Val	att Ile 245	ttc Phe	ctg Leu	953
tgc Cys	cag Gln	gcc Ala 250	aca Thr	gcc Ala	cag Gln	cct Pro	cct Pro 255	gtc Val	aca Thr	Gly Ggc	tac Tyr	agg Arg 260	tgg Trp	gca Ala	aaa Lys	1001
ggg Gly	ggc Gly 265	tct Ser	ccg Pro	gtg Val	ctc Leu	999 Gly 270	gcc Ala	cgc Arg	ggg Gly	CCa Pro	agg Arg 275	tta Leu	gag Glu	gtc Val	gtg Val	1049
gca Ala 280	Asp	gcc Ala	tcg Ser	ttc Phe	ctg Leu 285	act Thr	gag Glu	CCC	gtg Val	tcc Ser 290	CÃZ	gag Glu	gtc Val	agc Ser	aac Asn 295	1097
gcc Ala	gtg Val	ggt Gly	agc Ser	gcc Ala 300	aac Asn	cgc Arg	agt Ser	act Thr	gcg Ala 305	ctg Leu	gat Asp	gtg Val	ctg Leu	Phe 310	Gly ggg	1145
ccg	att Ile	ctg Leu	cag GLn 315	gca Ala	aag Lys	ccg Pro	gag Glu	CCC Pro 320	gtg Val	tcc Ser	gtg Val	gac Asp	gtg Val 325	ggg Gly	gaa Glu	1193
gac Asp	gct Ala	tcc Ser 330	Phe	agc Ser	tgc Cys	gcc Ala	tgg Trp 335	cgc	ggg Gly	aac Asn	Pro	ctt Leu 340	ELU	cgg Arg	gta Val	1241
acc Thr	tgg Trp 345	Thr	cgc	cgc Arg	Gly	ggc Gly 350	AIA	cag Gln	gtg Val	ctg Leu	ggc Gly 355	267	gga Gly	gcc Ala	aca Thr	1289
ctg Leu 360	Arg	ctt Leu	ccg Pro	tcg Ser	gtg Val 365	G1 y ggg	CCC	gag Glu	gac Asp	gca Ala 370	GTA	gac Asp	tat Tyr	gtg Val	tgc Cys 375	1337
aga Arg	gct Ala	gag Glu	gct Ala	380 61 A 888	Leu	tcg Ser	ggc	ctg Leu	cgg Arg 385	CTA	Gly	gcc Ala	gcg Ala	gag Glu 390	gct Ala	1385
cgg	ctg Leu	act Thr	gtg Val 395	Asn	gct Ala	CCC	CCa Pro	gta Val 400	gtg Val	acc	gcc Ala	CEG Leu	Cac His 405	tct Ser	gcg Ala	1433
cct Pro	gcc Ala	ttc Phe 410	Leu	agg Arg	ggc Gly	cct Pro	gct Ala 415	cgc Arg	ctc Lau	cag Gln	tgt Cys	ctg Leu 420	101	ttc Phe	gcc Ala	1481
tct Ser	Pro 425	Ala	cca Pro	gat Asp	gcc Ala	gtg Val 430	Val	tgg T r p	tct Ser	tgg	gat Asp 435	GLU	ggc	ttc Phe	ctg Leu	1529
gag Glu 440	Ala	999 Gly	tcg Ser	cag Gln	ggc Gly 445	Arg	ttc Phe	ctg Leu	gcg Val	gag Glu 450	1 1111	ttc Phe	ect Pro	gcc	cca Pro 455	1577
												Dage	137			

gag Glu	agc Ser	cgc Arg	ggg Gly	gga Gly 460	ctg Leu	ggt Gly	ccg Pro	ggc Gly	ctg Leu 465	atc Ile	tct Ser	gtg Val	cta Leu	cac His 470	att Ile	1625
tcg Ser	ggg Gly	acc Thr	cag Gln 475	gag Glu	tct Ser	gac Asp	ttt Phe	agc Ser 480	agg Arg	agc Ser	ttt Phe	aac Asn	tgc Cys 485	agt Ser	gcc Ala	1673
cgg	aac Asn	cgg Arg 490	ctg Leu	ggc Gly	gag Glu	gga Gly	ggt Gly 495	gcc Ala	cag Gln	gcc Ala	agc Ser	ctg Leu 500	ggc Gly	cgt Arg	aga Arg	1721
gac Asp	ttg Leu 505	ctg Leu	ccc Pro	act Thr	gtg Val	cgg Arg 510	ata Ile	gtg Val	gcc Ala	gga Gly	gtg Val 515	gcc Ala	gct Ala	gcc Ala	acc Thr	1769
aca Thr 520	act Thr	ctc Leu	ctt Leu	atg Met	gtc Val 525	atc Ile	act Thr	ggg Gly	gtg Val	gcc Ala 530	ctc Leu	tgc Cys	tgc Cys	tgg Trp	cgc Arg 535	1817
cac His	agc Ser	aag Lys	gcc Ala	tca Ser 540	gcc Ala	tct Ser	ttc Phe	tcc Ser	gag Glu 545	caa Gln	aag Lys	aac Asn	ctg Leu	atg Met 550	cga Arg	1865
atc Ile	cct Pro	ggc Gly	agc Ser 555	agc Ser	gac Asp	Gly ggc	tcc Ser	agt Ser 560	tca Ser	cga Arg	ggt Gly	cct Pro	gaa Glu 565	gaa Glu	gag Glu	1913
gag Glu	aca Thr	ggc Gly 570	agc Ser	Arg CgC	gag Glu	gac Asp	cgg Arg 575	ggc Gly	ccc Pro	att Ile	gtg Val	cac His 580	act Thr	gac Asp	cac His	1961
agt Ser	gat Asp 585	ctg Leu	gtt Val	ctg Leu	gag Glu	gag Glu 590	aaa Lys	ggg Gly	act Thr	ctg Leu	gag Glu 595	acc Thr	aag Lys	gac Asp	cca Pro	2009
acc Thr 600	aac Asn	ggt Gly	tac Tyr	tac Tyr	aag Lys 605	gtc Val	cga Arg	gga Gly	gtc Val	agt Ser 610	gtg Val	agc Ser	ctg Leu	agc Ser	ctt Leu 615	2057
ggc Gly	gaa Glu	gcc Ala	cct Pro	gga Gly 620	gga Gly	ggt Gly	Ctc	ttc Phe	ctg Leu 625	cca Pro	cca Pro	ccc Pro	tcc Ser	CCC Pro 630	ctt Leu	2105
ggg Gly	ccc Pro	cca Pro	ggg Gly 635	acc Thr	CCT Pro	acc Thr	t tc Phe	tat Tyr 640	gac Asp	ttc Phe	aac Asn	cca Pro	cac His 645	ctg Leu	ggc Gly	2153
atg Met	gtc Val	ccc Pro 650	ccc Pro	tgc Cys	aga Arg	ctt Leu	tac Tyr 655	aga Arg	gcc Ala	agg Arg	gca Ala	Gly 660	tat Tyr	ctc Leu	acc Thr	2201
aca Thr	ccc Pro 665	cac His	cct Pro	cga Arg	gct Ala	ttc Phe 670	acc Thr	agc Ser	tac Tyr	atc Ile	aaa Lys 675	CCC Pro	aca Thr	tcc Ser	tct Phe	2249
ggg Gly 680	Pro Pro	cca Pro	gat Asp	ctg Leu	gcc Ala 685	ccc Pro	ggg Gly	act Thr	Pro	ccc Pro 690	ttc Phe	cca Pro	tat Tyr	gct Ala	gcc Ala 695	2297
ttc Phe	ccc Pro	aca Th:	cct Pro	agc Ser 700	cac His	ccg Pro	cgt	ctc Leu	cag Gln 705	act Thr	cac His	gtg Val	tga	catc [,]	ctt	2346
cca	atgga	aag a	agto	ctgg	ga to	ctcc	aact	t gc	cata	atgg	att	gttc	tga	tttc	tgagga	2406
															agatca	2466
															aagtgg	2526
															agatgg	2586
															gggccg	2646
															attgag	2706
agga	aaago	gta (gcat	agga	ta g	atga	agatı	g aad	gage	atac	cag	gece	cac	cctg	gctctc	2766

cetgagggga actttgeteg gccaatggaa atgcagcaa gatggecata tacteectag 2826
gaacccaaga tggccaccat ettgattta etteettaa agactcagaa agacttggae 2886
ecaaggagtg gggatacagt gagaattace actgttgggg caaaatattg ggataaaaat 2946
atttatgttt aataataaaa aaaagtcaaa gagg 2980

<210> 229 <211> 708 <212> PRT

<213> Homo sapiens

<400> 229

Met Leu Arg Met Arg Val Pro Ala Leu Leu Val Leu Leu Phe Cys Phe 1 10 15

Arg Gly Arg Ala Gly Pro Ser Pro His Phe Leu Gln Gln Pro Glu Asp 20 25 30

Leu Val Val Leu Leu Gly Glu Glu Ala Arg Leu Pro Cys Ala Leu Gly 35 40

Ala Tyr Trp Gly Leu Val Gln Trp Thr Lys Ser Gly Leu Ala Leu Gly
50 60

Gly Gln Arg Asp Leu Pro Gly Trp Ser Arg Tyr Trp Ile Ser Gly Asn 65 70 75 80

Ala Ala Asn Gly Gln His Asp Leu His Ile Arg Pro Val Glu Leu Glu 85 90 95

Asp Glu Ala Ser Tyr Glu Cys Gln Ala Thr Gln Ala Gly Leu Arg Ser 100 105 110

Arg Pro Ala Gln Leu His Val Leu Val Pro Pro Glu Ala Pro Gln Val 115 120 125

Leu Gly Gly Pro Ser Val Ser Leu Val Ala Gly Val Pro Ala Asm Leu 130 135 140

Thr Cys Arg Ser Arg Gly Asp Ala Arg Pro Thr Pro Glu Leu Leu Trp 145 150 155 160

Phe Arg Asp Gly Val Leu Leu Asp Gly Ala Thr Phe His Gln Thr Leu 165 170 175

Leu Lys Glu Gly Thr Pro Gly Ser Val Glu Ser Thr Leu Thr Leu Thr 180 185 190

Pro Phe Ser His Asp Asp Gly Ala Thr Phe Val Cys Arg Ala Arg Ser 195 200 205

Gln Ala Leu Pro Thr Gly Arg Asp Thr Ala Ile Thr Leu Ser Leu Gln 210 215 220

Tyr Pro Pro Glu Val Thr Leu Ser Ala Ser Pro His Thr Val Gln Glu 225 235 240

Gly Glu Lys Val Ile Phe Leu Cys Gln Ala Thr Ala Gln Pro Pro Val 245 250 255

- Thr Gly Tyr Arg Trp Ala Lys Gly Gly Ser Pro Val Leu Gly Ala Arg 260 265 270
- Gly Pro Arg Leu Glu Val Val Ala Asp Ala Ser Phe Leu Thr Glu Pro 275 280 285
- Val Ser Cys Glu Val Ser Asn Ala Val Gly Ser Ala Asn Arg Ser Thr 290 295 300
- Ala Leu Asp Val Leu Phe Gly Pro Ile Leu Gln Ala Lys Pro Glu Pro 305 310 315 320
- Val Ser Val Asp Val Gly Glu Asp Ala Ser Phe Ser Cys Ala Trp Arg 325 330 335
- Gly Asn Pro Leu Pro Arg Val Thr Trp Thr Arg Arg Gly Gly Ala Gln 340 345
- Val Leu Gly Ser Gly Ala Thr Leu Arg Leu Pro Ser Val Gly Pro Glu 355 360 365
- Asp Ala Gly Asp Tyr Val Cys Arg Ala Glu Ala Gly Leu Ser Gly Leu 370 375 380
- Arg Gly Gly Ala Ala Glu Ala Arg Leu Thr Val Asn Ala Pro Pro Val 385 390 395 400
- Val Thr Ala Leu His Ser Ala Pro Ala Phe Leu Arg Gly Pro Ala Arg 405 410 415
- Leu Gln Cys Leu Val Phe Ala Ser Pro Ala Pro Asp Ala Val Val Trp
 420 425 430
- Ser Trp Asp Glu Gly Phe Leu Glu Ala Gly Ser Gln Gly Arg Phe Leu 435 440 445
- Val Glu Thr Phe Pro Ala Pro Glu Ser Arg Gly Gly Leu Gly Pro Gly 450 460
- Leu Ile Ser Val Leu His Ile Ser Gly Thr Gln Glu Ser Asp Phe Ser 465 470 475 480
- Arg Ser Phe Asn Cys Ser Ala Arg Asn Arg Leu Gly Glu Gly Gly Ala 485 490 495
- Gln Ala Ser Leu Gly Arg Arg Asp Leu Leu Pro Thr Val Arg Ile Val 500 505 510
- Ala Gly Val Ala Ala Ala Thr Thr Thr Leu Leu Met Val Ile Thr Gly
 515 520 525
- Val Ala Leu Cys Cys Trp Arg His Ser Lys Ala Ser Ala Ser Phe Ser 530 540
- Glu Gln Lys Asn Leu Met Arg Ile Pro Gly Ser Ser Asp Gly Ser Ser 545 550 555 560
- Ser Arg Gly Pro Glu Glu Glu Glu Thr Gly Ser Arg Glu Asp Arg Gly 565 570 575

Pro Ile Val His Thr Asp His Ser Asp Leu Val Leu Glu Glu Lys Gly 580 585 590

Thr Leu Glu Thr Lys Asp Pro Thr Asn Gly Tyr Tyr Lys Val Arg Gly 595 600 605

Val Ser Val Ser Leu Ser Leu Gly Glu Ala Pro Gly Gly Gly Leu Phe 610 620

Leu Pro Fro Pro Ser Pro Leu Gly Pro Pro Gly Thr Pro Thr Phe Tyr 625 630 635 640

Asp Phe Asn Pro His Leu Gly Met Val Pro Pro Cys Arg Leu Tyr Arg 645 650 655

Ala Arg Ala Gly Tyr Leu Thr Thr Pro His Pro Arg Ala Phe Thr Ser 660 665 670

Tyr Ile Lys Pro Thr Ser Phe Gly Pro Pro Asp Leu Ala Pro Gly Thr 675 680 685

Pro Pro Phe Pro Tyr Ala Ala Phe Pro Thr Pro Ser His Pro Arg Leu 690 695 700

Gln Thr His Val

<210> 230

<211> 5188 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (887)..(2974)

223>

egegetetet tectecetea gacaactege ecceegecet ecgeececet ecaegtaatt 60 ccgaaagagc agaagaaaga gaaggagaac aggaaaagaa gagctagtaa gcgagagcga 120 gagcacagaa aagaaaaaaa aaagccttaa gaggaccgaa ggggaggaaa ggaaaaggat 180 ggacaaccac aaaacgcagc gattgcggaa attttccagc gccattggct gggcagcgtg 240 agtccttcgg tcgggcgtga tttcagcacc gggggaactg gacagcacct cggggggact 300 tctgggcaac ccgcaaccac agcaagaact ccaccagcag cctcaacaac agaagccgcg 360 gaaaaccctg ctttgtatca gagaggcaag gtcagtccga cgcacagcca tgcacaggca 420 gtgcgcctgt actacgctgc aaaccctctg cttgtttctc taacatgcac ttgcttctaa 480 ttactagcat tgtttcattt ctgatcagtg aagatcagta gatgagattc tgtaagggtg 540 tacttttaat ttatatgtat atatttaact tetttttetg ttattttaa agtgttgtgg 600 gggagtgggg tittiticct actititit tittititi tictitgett gccttgcact 660 acgrgcctqg aragtrrgtg gataraarta trgactggcg tcrgggctat tgcagrgcgg 720 gggggttagg gaggaaggaa tecaceeea ecceccaaa ecetttett eteettteet ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtqgcgag caggatggtc 840 getgttaett tgtgatgaga teggggatga attgeteget ttaaaa atg etg ett 895 Met Lau Lau

												1				
tgg Trp	att Ile 5	ctg Leu	t t g Leu	ctg Leu	gag Glu	acg Thr 10	tct Ser	ctt Leu	tgt Cys	ttt Phe	gcc Ala 15	gct Ala	gga Gly	aac Asn	gtt Val	943
aca Thr 20	ggg Gly	gac Asp	gtt Val	tgc Cys	aaa Lys 25	gag Glu	aag Lys	atc Ile	tgt Cys	tcc Ser 30	tgc Cys	aat Asn	gag Glu	ata Ile	gaa Glu 35	. 991
ggg Gly	gac Asp	cta Leu	cac His	gta Val 40	gac Asp	tgt Cys	gaa Glu	aaa Lys	aag Lys 45	ggc Gly	ttc Phe	aca Thr	agt Ser	ctg Leu 50	cag Gln	1039
cgt Arg	ttc Phe	act Thr	gcc Ala 55	ccg Pro	act Thr	tcc Ser	cag Gln	ttt Phe 60	tac Tyr	cat His	tta Leu	ttt Phe	ctg Leu 65	cat His	ggc Gly	1087
neA	Ser	Leu 70	Thr	Arg	ctt Leu	Pne	75	ASII	Giu			80	•	•		1135
Ala	vai 85	Ser	Leu	HIS	atg Met	90	ASII	na.			95					1183
ggg Gly 100	gct Ala	ttt Phe	ctg Leu	G1 y ggg	ctg Leu 105	cag Gln	ctg Leu '	gtg Val	aaa Lys	agg Arg 110	ctg Leu	cac His	atc Ile	aac Asn	aac Asn 115	1231
Asa	Lys	Ile	Lys	Ser 120	ttt Phe	Arg	гåз	GIII	125	2110	200	,		130	•	1279
Leu	Glu	Tyr	Leu 135	Gin	gct Ala	ASP	File	140	neu		,		145	•		1327
Gly	Ala	Phe 150	Gln	Asp	ttg Leu	ASR	155	Dea	4.4	V		160				1375
neA	Leu 165	Ile	Ser	Thr	Leu	170	ALA	ASII	401	1110	175					1423
Thr 180	His	Leu	Asp	Leu	cgg Arg 185	CTÀ	ASI	, ALG	реч	190				-	195	1471
Glu	Val	Leu	Glu	200	1	Pro	GLY	116	205	. 010				210	1	1519
Asn	Pro	Trp	215	Cya	Thr	Cys	ASP	220)				225	i	ctg Leu	1567
G1 t	l Asi	230	Pro	Lys	Asn	Ala	235	;	. Gr	, 477	, , ,	240)		gcc Ala	1615
Pro	245	Arq	, Lei	ı Glr	r Gră	250)) re	, no.	. 010	255	5	-		g gac n Asp	1663
Le:	1 Cys)	s Pro	Le	тру	265	i	, , ,		,	270)				275	1711
Ala	ı Glı	ı Glı	1 G1:	280)	AL A	1 210	, G.	28	5				29		1759
Th.	c Ası	a Gl	y G1: 29:	n Gli 5	ı Asţ) HI	S AL	30	0	, G.	,		30:	5	c gga n Gly	
gg.	t ac	a aa	gat	c cci	a ggo	aa a	c tg	g ca	g at	c aa	a at		a cc		a gca	1855

										1 611	200	DCT	FINA	t. ST	25	
•		310					315		Ile	Lys	Ile	Arg 320	Pro	Thr	Ala	
Ala	11e 325	Ala	Thr	Gly	Ser	330	Arg	Asn	aaa Lys	PIG	335	Ala	Wall	361	peu	1903
ccc Pro 340	Ey3	cct Pro	G1 y ggg	ggc Gly	tgc Cys 345	agc Ser	tgc Cys	gac Asp	cac His	atc Ile 350	cca Pro	G1 y	tcg Ser	ggt Gly	tta Leu 355	1951
aag Lys	atg Met	aac Asn	tgc Cys	aac Asn 360	aac Asn	agg Arg	aac Asn	gtg Val	agc Ser 365	agc Ser	ttg Leu	gct Ala	gat Asp	ttg Leu 370	aag Lys	1999
CCC Pro	aag Lys	ctc Leu	tct Ser 375	aac Asn	gtg Val	cag Gln	gag Glu	ctt Leu 380	ttc Phe	cta Leu	cga Arg	gat Asp	aac Asn 385	aag Lys	atc Ile	2047
cac His	agc Ser	atc Ile 390	cga Arg	aaa Lys	tcg Ser	cac His	ttt Phe 395	gtg Val	gat Asp	tac Tyr	aag Lys	aac Asn 400	ctc Leu	att Ile	ctg Leu	2095
ttg Leu	gat Asp 405	ctg Leu	ggc Gly	aac Asn	aat Asn	aac Asn 410	atc Ile	gct Ala	act Thr	gta Val	gag Glu 415	aac Asn	aac Asn	act Thr	ttc Phe	2143
aag Lys 420	aac Asn	ctt Leu	ttg Leu	gac Asp	ctc Leu 425	agg Arg	tgg Trp	cta Leu	tac Tyr	atg Met 430	gat Asp	agc Ser	aat Asn	tac Tyr	ctg Leu 435	2191
gac Asp	acg Thr	ctg Leu	tcc Ser	cgg Arg 440	gag Glu	aaa Lys	ttc Phe	gcg Ala	ggg Gly 445	ctg Leu	caa Gln	aac Asn	cta Leu	gag Glu 450	tac Tyr	2239
ctg Leu	aac Asn	gtg Val	gag Glu 455	tac Tyr	aac Asn	gct Ala	atc Ile	cag Gln 460	ctc Leu	atc Ile	ctc Leu	ccg Pro	ggc Gly 465	act Thr	ttc Phe	2287
aat Asn	gcc Ala	atg Met 470	CCC Pro	aaa Lys	ctg Leu	agg Arg	atc Ile 475	ctc Leu	att Ile	ctc Leu	aac Asn	aac Asn 480	aac Asn	ctg Leu	ctg Leu	2335
agg Arg	tcc Ser 485	ctg Leu	cct Pro	gtg Val	gac Asp	gtg Val 490	ttc Phe	gct Ala	GIY	gtc Val	tcg Ser 495	ctc Leu	tct Ser	aaa Lys	ctc Leu	2383
agc Ser 500	ctg Leû	cac His	aac Asn	aat Asn	tac Tyr 505	Phe	atg Met	tac Tyr	ctc Leu	ecg Pro 510	gtg Val	gca Ala	ela aaa	gtg Val	ctg Leu 515	2431
gac Asp	cag Gln	tta Leu	acc Thr	tcc Ser 520	atc Ile	atc	cag Gln	ata Ile	gac Asp 525	ctc Leu	cac His	gga Gly	aac Asn	Pro 530	tgg Trp	2479
gag Glu	tgc Cys	tcc Ser	tgc Cys 535	aca Thr	att Ile	gtg Val	ect Pro	ttc Phe 540	aag Lys	caq Gln	tgg Trp	gca Ala	gaa Glu 545	cgc Arg	ttg Leu	2527
ggt Gly	tcc Ser	gaa Glu 550	Val	ctg Leu	atg Met	agc Ser	gac Asp 555	CtC	aag Lys	tgt Cys	gag Glu	acg Thr 560	510 CCd	gtg Val	aac Asn	2575
ttc Phe	ttt Phe 565	aga Arg	aag Lys	gat Asp	ttc Phe	atg Met 570	ctc Leu	CtC Leu	tcc Ser	aat Asn	gac Asp 575	gag Glu	atc Ile	tgc Cys	Pro	2623
cag Gln 580	ctg Leu	tac Tyr	gct Ala	agg Arg	atc Ile 585	tcg Ser	Pro	acg Thr	tta Leu	act Thr 590	tcg Ser	cac His	agt Ser	aaa Lys	aac Asn 595	2671
agc Ser	act Thr	Gly	ttg Leu	gcg Ala 600	GLu	acc Thr	ggg Gly	acg Thr	cac His 605	tcc Ser	aac Asn	tcc Ser	tac Tyr	cta Leu 610	p	2719
acc Thr	agc Ser	agg Arg	gtg Val 615	Ser	atc Ile	tcg Ser	gtg Val	ttg Leu 620	gtc Val	Pro	gga Gly	ctg Leu	ctg Leu 625	ctg Leu	gtg Val	2767

16U 200 PCT FINAL.ST25	
and are are are are are are tet atc Ctg	2815
ttt gtc acc tcc gcc ttc acc gcg ggg ggg Met Leu Val Phe Ile Leu Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val Phe Ile Leu 630 635	
and and aga aga gat acc aac too too gog too	2863
Ard Ash Ard Lys Ard Ser Lys Ard Ard Ard Ard Ard Ard Ard Ard Ard Ard	
645	2911
gag att aat too ota cag aca gto tgt gad tot too tac tgg cac aat Glu Ile Asn Ser Leu Gin Thr Val Cys Asp Ser Ser Tyr Trp His Asn 675	
660 665	
ggg cot tac aac gca gat ggg gcc cac aga gtg tat gac tgt ggc tct	2959
ggg cct tac aac gca gat ggg gct cac ags Val Tyr Asp Cys Gly Ser Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp Cys Gly Ser 680 685	
cac tog oto toa gao taagaccoca accocaatag gggagggcag agggaaggog	3014
His Ser Leu Ser Asp	
695	3074
atacatectt ceccacegea ggcacecegg gggetggagg ggcgtgtace caaateceeg	3134
cgccatcagc ctggatgggc ataagtagat aaataactgt gagctcgcac aaccgaaagg	3194
gcctgacccc ttacttagct ccctccttga aacaaagagc agactgtgga gagctgggag	
agogoagoca gotogotott tgotgagago coottttgac agaaagocca goacgaccot	3254
gctggaagaa ctgacagtgc cctcgccctc ggccccgggg cctgtggggt tggatgccgc	3314
ggttctatac atatacat atatccacat ctatatagag agatagatat ctatttttcc	3374
cctgtggatt agccccgtga tggctccctg ttggctacgc agggatgggc agttgcacga	3434
aggcatgaat gtattgtaaa taagtaactt tgacttctga caaaaaacaa aaagtgctgc	3494
atggetegea tggaatecae gegeteeagg gaetetgeee geeceegega etggagaegg	3554
catetegtic acageaceca coetettace tgataagtte categtatea aactitetat	3614
	3674
aaacaaaata cagtataatc agaaagtgcc atttcgccat tatttgtgat cggtaggcag	3734
ttcagagcat aagttaactg tgaaaaaaat gtaaaggttt tatttaggac atttgcatgg	3794
ctagtcatca gtccatttta tgagttaaca atgtattttg ttgagggaag tttttagggg	3854
ttgttttggg ttcttttatt ttgatggtga tgttttattt tattttattt ttttcagggg	3914
gtottttttt taatacatat ccaataatgo ottocatotg aatgtaaaat aagtaccoat	
gatttctatt atagtatcag tgtaattatt taaaaaatga ttttgaggca gttaagcatg	3974
accaattaat gtcactctag tgcttagget gcgatcctat ggtagcaatt ctgtgctggt	4034
ataaatotta ottataaagt aggaaaagag aaccgaggaa gcacgtgaaa ottactaatt	4094
ctattcgagg attttataat ggcatatttt ttcagtatta aagcgaaaat gttttcaact	4154
ctgggtcctt accttttcc agcttcatat ttgcaagtgg taaattggat ttgcggtgga	4214
agagacaggg gagggaaacg gttggggtta gatcccttcc tgagctacat taaggctctt	4274
tototaatog cettacttag ettittacce titaagtage teetetteee tegeocceae	4334
cototaccoc accoccacot togetcagae totaccogget theoccagte cataaaggte	4394
ttgccccaac acteaccet tettetete ecetetecaa atgcagcagt gaatecettt	4454
ttgccccaac actcacccct tettettete destates tgcccacact gcagatatat	4514
attaatactg gaaatccctc tctgctgctt ttgttggtgc tgcccacact gcagatatat	4574
taaggatgtt aggagagatt tgatttaatt gactttgcct agataggtct cattaaacag	4634
agtggagatt tcattggtca gcactcctca atgaaagaca gacctaatga ctggcatttg	4694
agatgetget ggcattttga atteaacate tgetgaaaae ggtaaaacta attagtgeee	
acceaecete eccgececag caactgeata tigaaattig tiaaageact catetitatg	4754
gaaattaatc attateetaa agaagtgttt eteteceate atceggattt etggttgtgg	4814
Page 144	

WO 03/089583

16U 200 PCT FINAL.ST25

cccagcaatt	aacaaaaca	gcttcaactg	ttcgaatttt	atgaaccaat	gtaactctgg	4874
-		•	cagcagttaa			4934
			cacatatcca			4994
			taggattata			5054
-					agtgatttct-	5114
					ataaaatctt	5174
tattataaaC						5188

<212> PRT

<213> Homo sapiens

Met Leu Leu Trp Ile Leu Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala 1 5 10 15

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn 20 25 30

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr 35 40 45

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe 50 55 60

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn 65 70 75 80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu 85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His 100 105 110

Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly 115 120 125

Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 130 135 140

Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile 145 150 150 155 160

Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr 165 170 175

Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu 130 185 190

Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu 195 200 205

Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys 210 215 220

													SIMP		
Glu 225	Trp	Leu	Glu	Asn	11e 230	Pro	ГÅЗ	Asn	Ala	Leu 235	Ile	Gly	Arg	Val	Val 240

- Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr 245 250 255
- Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro 260 265 270
- Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr 275 280 285
- Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala 290 295 300
- Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg 305 310 320
- Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala 325 330 335
- Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly 340 345 350
- Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala 355 . 360 . 365
- Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp 370 375 380
- Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn 385 390 395
- Leu Ile Leu Leu Asp Leu Gly Asn Asn Asn Ile Ala Thr Val Glu Asn 405 410 415
- Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser 420 425 430
- Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn 435 440 445
- Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro 450 455 460
- Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn 465 470 475 480
- Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu 485 490 495
- Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala 500 510
- Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly 515 520 525
- Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala 530 535 540

				1	160 200	PCT F	INAL.ST	25
Glu Arg Leu 545	Gly Ser	Glu Va 550	l Leu Me	t Ser	Asp Leu 555	Lys (ys Glu	Thr 560
Pro Val Asn	Phe Phe 565		Asp Ph	e Met : 570	Leu Leu	Ser A	Asn Asp 575	Glu
Ile Cys Pro	Gln Leu 580	Tyr Al	a Arg Il 58	e Ser : 5	Pro Thr	Leu T	hr Ser 190	His
Ser Lys Asn 595	Ser Thr	Gly Le	a Ala G1 600	u Thr	Gly Thr	His S 605	ier Asn	Ser
Tyr Leu Asp 610	Thr Ser	Arg Va. 61	l Ser Il	e Ser '	Val Leu 620	Val F	Pro Gly	Leu
Leu Leu Val 625	Phe Val	Thr Se.	Ala Ph	e Thr	Val Val 635	Gly N	let Leu	Val 640
Phe Ile Leu	645			650			633	
Ser Ala Ser	660		66	5		6	. 70	
Trp His Asn 675			680	p Gly i	Ala His	Arg V 685	al Tyr	Asp
Cys Gly Ser 690	His Ser	Leu Sei 69	: Asp					
<210> 232 <211> 506 <212> DNA <213> Homo	sapiens		-				·	
<220> <221> CDS <222> (32). <223>	. (346)							
<400> 232 ttcatctagc t	ctggatg	gt tgaad	tgtag c	atg go Met Al	ca aag a la Lys N	acg tt det Ph 5	t gat c e Asp L	itc 52 .eu
agg acg aag Arg Thr Lys 10	atc atg Ile Met	atc ggg	atc gg Ile Gl 15	a agc a y Ser S	agc tta Ser Leu	ctg g Leu V 20	tt gcc al Ala	gcg 100 Ala
atg gtg ctc Met Val Leu 25	cta agt Leu Ser	gtt gtc Val Val 30	ttc tg Phe Cy	t ctt (s Leu 1	tac ttc Tyr Phe 35	aaa g Lys V	ta gct al Ala	aag 148 Lys
gca cta aaa Ala Leu Lys 40	gct gca Ala Ala	aag gad Lys Asg 45	cct ga	p Ala \	gtg gct Val Ala 50	gta a Val L	aa aat ys Asn	cac 196 His 55
				7 220 2	anc can	acc a	aa gcc	acc 244
aac cca gac Asn Pro Asp	Lys Val 60	Cys Tr	Ala Th	e Asn S 65	ser Gin	ALA L	70 70	Inr
aac cca gac Asn Pro Asp acc atg gag Thr Met Glu	Lys Val 60	Cys Trp	Ala Th	r Asn S 65 g tgc S	ser Gin tgt gaa	ggt t	70 gt aga	atg 292

Gly	Leu 105		ttgg													396
taat	agaa	itg t	ttta	ttat	t ca	agtc	aagt	tct	agag	tgt	ttac	atac	ta t	tata	taatg	456
taca	gtgt	ta t	tttc	tgta	c tt	ctga	ataa	atg	tgca	ata	ttgg	aaat	aa			506
<210 <211 <212 <213	> 1 > 8	33 105 PRT Homo	sapi	ens												
<400	-	233														
Met 1	Ala	Lys	Met	Phe 5	Asp	Leu	Arg	Thr	10 Гуз	Ile	Met	Ile	Gly	Ile 15	Gly	
Ser	Ser	Leu	Leu 20 .	Val	Ala	Ala	Met	Val 25	Leu	Leu	Ser	Val	Val 30	Phe	Cys	
Leu	Tyr	Phe 35	Lys	Val	Ala	Lys	Ala 40	Leu	Lys	Ala	Ala	Lys 45	Asp	Pro	Asp	
Ala	Val 50	Ala	Val	Lys	Asn	His 55	neA	Pro	Asp	Lys	Val 60	Cys	Trp	Ala	Thr	
Asn 65	Ser	Gln	Ala	Lуз	Ala 70	Thr	Thr	Met	Glu	Ser 75	Суз	Pro	Ser	Leu	Gln 80	
Cys	Cys	G1 u	Gly	Cys 85	Arg	Met	His	Ala	Ser 90	Şer	Asp	Ser	Leu	Pro 95	Pro	
Cys	Cys	Суз	Asp 100	Ile	Asn	Glu	Gly	Leu 105								
<21 <21 <21 <21	1> 2>	234 1037 DNA Homo	sap	iens							-			•		
<22 <22 <22 <22	1> 2>	CDS (180)(560)												
<40	0>	234		+++a	ac c	ttga	cttt	.c ca	cagt	cctg	agg	ttcc	caa	aata	aagggg	60
gag	cgaa	1999	acca	aagg	at t	atct	ccaa	t at	tcca	gggc	ctt	cttt	ctc	atct	ctgtct	120
***	ccat	act	tact	aacc	tt q	gctg	gcto	t tc	agct	cttg	gat	cctt	aat	cgaç	gaagc	179
							3.20	, ota	tcc	ato	ctc	адо	tto	ato	tca Ser	227
	aco Th	c Cys	ttg Leu 20	ctc Lev	ctc Leu	tgc Cys	Lev	aac Asn 25	ctg Leu	ttt Phe	gtg Val	gca Ala	Gl: 30	g get n Val	cac His	275
tgg	cai Hi:	t act s Thi 35	agg Arg	gat Asp	gcc Ala	atg Met	gaq Glu	g tca 1 Ser	gat Asp	cto Lev	cta 1 Leu	tgg Tru 45	act Th	r Ty	tat Tyr	323
ctt Lev	aa Ası 50	a TI	g tgo p Cys	agt Ser	gac Asp	ato 11e 55	tti Phe	tac e Tyr	acq Met	tti Phe	get Ala 60	ggq Gly	g ato	e Ilo	tct Ser	371
ctt	ct	c aa	c tac	: tta	a act	tco	: aga	a to	g cct	g gc	e tgt		ga.	_	gtc	419

Leu Leu	Asn	Tyr	Leu	Thr 70	Ser	Arg	Ser	Pro					AL.ST Asn		
65													ata	act.	467
act gtg Thr Val	att Ile	Pro	aca Thr 85	gag Glu	aga Arg	Ser	Arg	Leu 90	Gly	Val	Gly	Pro	Val 95	Thr	
aca gta Thr Val	t <i>c</i> a Ser	cct gro	gct Ala	aaa Lys	gat Asp	gaa Glu	ggg Gly 105	cca Pro	agg Arg	tct Ser	gag Glu	atg Met 110	gaa Glu	tct Ser	515
cta agt Leu Ser	gtg Val 115	aga Arg	gag Glu	aaa Lys	aat Asn	tta Leu 120	cca Pro	aag Lys	tca Ser	gga Gly	ctg Leu 125	tgg Trp	tgg Trp		5 60
tgatagg	_	accta	acta	at ac	actto	tcti	t aaa	aagca	aggg	gaga	aagc	tga (gttg	ggaatg	620
gtcacat															680
-															740
ttaaago															800
agtaaat															
aatgaaa	gaa	acta	gtga	aa g	atgc	agtg	t gt	agac	caga	gac	ctct	ttg	ggta	tcaggg	860
atctcat															920
tttatta															980
atctgaa															1037
<210> <211>	235 127														

PRT

Homo sapiens

Met Thr Thr Asn Leu Asp Leu Lys Val Ser Met Leu Ser Phe Ile Ser 1 5 10 15

Ala Thr Cys Leu Leu Cys Leu Asn Leu Phe Val Ala Gln Val His 20 25 30

Trp His Thr Arg Asp Ala Met Glu Ser Asp Leu Leu Trp Thr Tyr Tyr - 35 40 45

Leu Asn Trp Cys Ser Asp Ile Phe Tyr Met. Phe Ala Gly Ile Ile Ser 50 60

Leu Leu Asn Tyr Leu Thr Ser Arg Ser Pro Ala Cys Asp Glu Asn Val 65 70 75 80

Thr Val Ile Pro Thr Glu Arg Ser Arg Leu Gly Val Gly Pro Val Thr 85 90 95

Thr Val Ser Pro Ala Lys Asp Glu Gly Pro Arg Ser Glu Met Glu Ser 100 105 110

Leu Ser Val Arg Glu Lys Asn Leu Pro Lys Ser Gly Leu Trp Trp 115 120 125

<210> 236

1054 DNA

<212> Homo sapiens

<220>

<221> CDS <222> (152)..(895)

<400> 236 gttggcattc ggtggtcctg gcagttagct gagcacgccc tctgagccgc tcggtggaca 60											
ccaggcactc tagtaggcct ggcctaccca gaaacagcag gagagagaag aaacaggcca	120										
gctgtgagaa gccaaggaca ccgagtcagt c atg gca cct aag gcg gca aag Met Ala Pro Lys Ala Ala Lys 1 5	172										
ggg gcc aag cca gag cca gca cca gct cca cct cca ccc ggg gcc aaa Gly Ala Lys Pro Glu Pro Ala Pro Ala Pro Pro Pro Gly Ala Lys 10 15 20	220										
ccc gag gaa gac aag aag gac ggt aag gag cca tcg gac aaa cct caa Pro Glu Glu Asp Lys Lys Asp Gly Lys Glu Pro Ser Asp Lys Pro Gln 25 30 35	268										
aag gcg gtg cag gac cat aag gag cca tcg gac aaa cct caa aag gcg Lys Ala Val Gln Asp His Lys Glu Pro Ser Asp Lys Pro Gln Lys Ala 40 55 55	316										
gtg cag ccc aag cac gaa gtg ggc acg agg agg ggg tgt cgc cgc tac val Gln Pro Lys His Glu Val Gly Thr Arg Arg Gly Cys Arg Arg Tyr 60 65 70	364										
cgg tgg gaa tta aaa gac agc aat aaa gag ttc tgg ctc ttg ggg cac Arg Trp Glu Leu Lys Asp Ser Asn Lys Glu Phe Trp Leu Leu Gly His 75 80 85	412										
gct gag atc aag att cgg agt ttg ggc tgc cta ata gct gca atg ata Ala Glu Ile Lys Ile Arg Ser Leu Gly Cys Leu Ile Ala Ala Met Ile 90 95 100	4 50										
ctg ttg tcc tca ctc acc gtg cac ccc atc ttg agg ctt atc acc Leu Leu Ser Ser Leu Thr Val His Pro Ile Leu Arg Leu Ile Ile Thr 105 110	508										
atg gag ata tcc ttc ttc agc ttc ttc atc tta ctg tac agc ttt gcc Met Glu Ile Ser Phe Phe Ser Phe Phe Ile Leu Leu Tyr Ser Phe Ala 120 125 130	556										
att cat aga tac ata ccc ttc atc ctg tgg ccc att tct gac ctc ttc lle His Arg Tyr Ile Pro Phe Ile Leu Trp Pro Ile Ser Asp Leu Phe 140 145	604										
aac gac ctg att gct tgt gcg ttc ctt gtg gga gcc gtg gtc ttt gct Asn Asp Leu Ile Ala Cys Ala Phe Leu Val Gly Ala Val Val Phe Ala 155 160 165	652										
gtg aga agt cgg cga tcc atg aat ctc cac tac tta ctt gct gtg atc Val Arg Ser Arg Arg Ser Met Asn Leu His Tyr Leu Leu Ala Val Ile 170 175 180	700										
Ctt att ggt gcg gct gga gtt ttt gct ttt atc gat gtg tgt ctt caa Leu Ile Gly Ala Ala Gly Val Phe Ala Phe Ile Asp Val Cys Leu Gln 185 190 195	748										
aga aac cac ttc aga ggc aag aag gcc aaa aag cat atg ctg gtt cct Arg Asn His Phe Arg Gly Lys Lys Ala Lys Lys His Met Leu Val Pro 200 205 210 215	796										
CCT CCA gga aag gaa aaa gga CCC CAG CAG GGC AAG GGA CCC Pro Pro Gly Lys Glu Lys Gly Pro Gln Gln Gly Lys Gly Pro Glu Pro 220 225 230	844										
gcc aag cca cca gaa cct ggc aag cca cca ggg cca gca aag gga aag Ala Lys Pro Pro Glu Pro Gly Lys Pro Pro Gly Pro Ala Lys Gly Lys 235 240 245	892										
aaa tgacttggag gaggctcctg gtgtctgaaa cggcagtgta ttttacagca Lys	945										
atatgittee actetetice tigteticit teiggaatgg tittetitte cattiteati	1005										
accacettig etiggaaaag aatggattaa tggattetaa aageetaaa	1054										

<2	1	U	>		J	
12	1	7	>	2	4	į

<212> PRT

<213> Homo sapiens

<400> 237

Met Ala Pro Lys Ala Ala Lys Gly Ala Lys Pro Glu Pro Ala Pro Ala 1 5 10 15

Pro Pro Pro Gly Ala Lys Pro Glu Glu Asp Lys Lys Asp Gly Lys 20 25 30

Glu Pro Ser Asp Lys Pro Gln Lys Ala Val Gln Asp His Lys Glu Pro 35 40 45

Ser Asp Lys Pro Gln Lys Ala Val Gln Pro Lys His Glu Val Gly Thr 50 60

Arg Arg Gly Cys Arg Arg Tyr Arg Trp Glu Leu Lys Asp Ser Asn Lys 65 70 75 80

Glu Phe Trp Leu Leu Gly His Ala Glu Ile Lys Ile Arg Ser Leu Gly 85 90 95

Cys Leu Ile Ala Ala Met Ile Leu Leu Ser Ser Leu Thr Val Kis Pro 100 105 110

Ile Leu Arg Leu Ile Ile Thr Met Glu Ile Ser Phe Phe Ser Phe Phe 115 120 125

Ile Leu Leu Tyr Ser Phe Ala Ile His Arg Tyr Ile Pro Phe Ile Leu 130 135 140

Trp Pro Ile Ser Asp Leu Phe Asn Asp Leu Ile Ala Cys Ala Phe Leu 145 150 155 160

Val Gly Ala Val Val Phe Ala Val Arg Ser Arg Arg Ser Met Asn Leu 165 170 175

His Tyr Leu Leu Ala Val Ile Leu Ile Gly Ala Ala Gly Val Phe Ala 180 185 190

Phe Ile Asp Val Cys Leu Gln Arg Asn His Phe Arg Gly Lys Lys Ala 195 200 205

Lys Lys His Met Leu Val Pro Pro Pro Gly Lys Glu Lys Gly Pro Gln 210 215 220

Gln Gly Lys Gly Pro Glu Pro Ala Lys Pro Pro Glu Pro Gly Lys Pro 225 230 235 240

Pro Gly Pro Ala Lys Gly Lys Lys 245

<210> 238

<211> 487

<213> Homo sapiens

<220>

<221> CDS

(17) .. (418) <222> <223>

<400 agtg)> 2 Igcaç	:38 jct t	:ggct	ig at Me 1	g ag	ıc ta r Ty	it aa vr Ly	ig co rs Pi 5	a go o Al	c tt	g tt	it go le Gl	ig th Ly Ph 10		a tto u Phe	52
ctt Leu	ctg Leu	ctg Leu 15	ttg Leu	ctt Leu	agc Ser	aac Asn	tgg Trp 20	ttg Leu	gtc Val	aag Lys	tat Tyr	gaa Glu 25	cac His	aag Lys	ctc Leu	100
acc Thr	ctc Leu 30	cca Pro	gag Glu	Pro Pro	cag Gln	cag Gln 35	gag Glu	gaa Glu	gag Glu	aaa Lys	cca Pro 40	aag Lys	act Thr	tct Ser	gaa Glu	148
Asn 45	Asp	Ser	Lys	Asn	Ser 50	Lys	AIA	vai	ASII	55	шyз	Giu	*42	aat Asn	60	196
Thr	His	Ala	CAa	Phe 65	Ala	Leu	GIN	Asp	70	116	Leu	GIII	my	ctg Leu 75		244
Phe	Ser	Glu	Met 80	ГÀЗ	Met	Lys	·vaı	85	GIU	ASII	GIII	nec	90	atc Ile		292
tgg Trp	aat Asn	aaa Lys 95	atg Met	aat Asn	cac His	cac His	100 ცებ მმმ	cgg Arg	tca Ser	agc Ser	aga Arg	cat His 105	Arg	aat Asn	Phe	340
CCC	atg Met 110	aaa Lys	aaa Lys	cac His	aga Arg	atg Met 115	agg Arg	agg Arg	cat His	gag Glu	tca Ser 120	att Ile	tgc Cys	510 CCC	acc Thr	388
ctg Leu 125	tct Ser	gac	tgt Cys	Thr	tcg Ser 130	agt Ser	tcc Ser	CCC Pro	agc Ser	taai	tgag	gcc (gagg	cggg	ct	436
ggc	ctct	gcc	gatg	ttac	ct t	ttac	ctca	g ta	aaac	ccag	tca	cagc	ct			487

<210>	239	
<211>	134	
<212>	PRT	
<213>	Homo	sapiens

Met Ser Tyr Lys Pro Ala Leu Phe Gly Phe Leu Phe Leu Leu Leu 1 10 15

Leu Ser Asn Trp Leu Val Lys Tyr Glu His Lys Leu Thr Leu Pro Glu 20 25 30

Pro Gln Glu Glu Glu Lys Pro Lys Thr Ser Glu Asn Asp Ser Lys 35 40 45

Asn Ser Lys Ala Val Asn Thr Lys Glu Val Asn Arg Thr His Ala Cys 50 55 60

Phe Ala Leu Gln Asp Glu Ile Leu Gln Arg Leu Leu Phe Ser Glu Met 65 70 75 80

Lys Met Lys Val Leu Glu Asn Gln Met Phe Ile Ile Trp Asn Lys Met 95 90 95 .

Asn His His Gly Arg Ser Ser Arg His Arg Asn Phe Pro Met Lys Lys 100 105 110

His Arg Met Arg Arg His Glu Ser Ile Cys Pro Thr Leu Ser Asp Cys Page 152

120

16U 200 PCT FINAL.ST25 125

115

Thr Ser Ser Ser Pro Ser 130

	130															
<210 <211 <212 <213	> 8 > D	40 46 NA omo	sapi	ens												
<220 <221 <222 <223	> C > (DS 108)	(7	25)								-				
<400	> 2 tgga	40 ga c	cctg	attg	g ct	gggc	agat	ggg	ctga	ctg	gctg	ggca	ga t	gggt	gggtg	60
			ccca									tgt	atg		tcc	116
caa Gln	cag Gln 5	gag Glu	gac Asp	ctg Leu	Arg	ttc Phe 10	cct Pro	Gly ggg	atg Met	tgg Trp	gtc Val 15	tca Ser	ttg Leu	tac Tyr	ttt Phe	164
gga Gly 20	atc Ile	ctg Leu	GJ Å ååå	ctg Leu	tgt Cys 25	tct Ser	gtg Val	ata. Ile	act Thr	gga Gly 30	ej à gga	tgc Cys	att Ile	atc Ile	ttt Phe 35	212
ctg Leu	cac His	tgg Trp	agg Arg	aag Lys 40	aac Asn	ttg Leu	agg Arg	Arg cgg	gaa Glu 45	gag Glu	cat His	gcc Ala	cag Gln	cag Gln 50	tgg Trp	260
gtg Val	gag Glu	gtg Val	atg Met 55	aga Arg	gct Ala	gcc Ala	Int	ttc Phe 60	acc Thr	tac Tyr	agc Ser	cca Pro	ttg Leu 65	ttg Leu	tac Tyr	308
tgg Trp	att Ile	aac Asn 70	aag Lys	cga Arg	cgg Arg	cgc AIG	tac Tyr 75	Gly ggc	atg Met	aat Asn	gca Ala	gcc Ala 80	atc Ile	aac Asn	acg Thr	356
ggc Gly	cct Pro 85	gcc Ala	cct Pro	gct Ala	gtc Val	acc Thr 90	aag Lys	act Thr	gag Glu	act Thr	gag Glu 95	gtc Val	cag Gln	aat Asn	cca Pro	404
gat Asp 100	gtt Val	ctg Leu	tgg Trp	gat Asp	ttg Leu 105	gac Asp	atc Ile	CCC Pro	gaa Glu	ggc Gly 110	agg Arg	agc Ser	cat His	gct Ala	gac Asp 115	452
caa Gln	gac Asp	agc Ser	aac Asn	ccc Pro 120	aag Lys	gcg Ala	gaa Glu	gcc Ala	cct Pro 125	gct Ala	CCC Pro	ctg Leu	caa Gln	ect Pro 130	gca Ala	500
ctg Leu	cag Gln	ctg Leu	gct Ala 135	cca Pro	cag Gln	cag Gln	CCC Pro	cag Gln 140	gcc Ala	aga Arg	tcc Ser	cca Pro	ttc Phe 145	cca Pro	Ctt Leu	548
ccc Pro	atc Ile	ttt Phe 150	cag Gln	gag Glu	gtg Val	CCC Pro	ttt Phe 155	gcc Ala	cca Pro	ccc Pro	ttg Leu	tgc Cys 160	aac Asn	cta Leu	Pro	596
CCC Pro	ctg Leu 165	Leu	aac Asn	cac His	tct Ser	gtc Val 170	265	tat Tyr	cct Pro	ttg Leu	gcc Ala 175		tgt Cys	cct Pro	gaa Glu	644
agg Arg 180	Asn	gtt Val	ctc Leu	ttc Phe	cat His 185	tcc Ser	ctc Leu	ctg Leu	aat Asn	ctg Leu 190		cag Gln	gaa Glu	gac Asp	cat His 195	692
agc Ser	ttc Phe	aat Asn	gcc Ala	aag Lys 200	CCT Pro	ttt Phe	cct Pro	tca Ser	gaa Glu 205	ne a	tag	cctc	ctc	tcac	tgaagg	745
tgg	gagc	tgc	agga	atca	gg t	gcag	agta	g ga	aatg	gaac	taa	ccto	agg	aagg	tggtat	805
			садд													846
												Page	153			

<210> 206 <211> <212> Homo sapiens <213> <400> 241 Met Asp Ser Gln Gln Glu Asp Leu Arg Phe Pro Gly Met Trp Val Ser Leu Tyr Phe Gly Ile Leu Gly Leu Cys Ser Val Ile Thr Gly Gly Cys 20 25 30 Ile Ile Phe Leu His Trp Arg Lys Asn Leu Arg Arg Glu Glu His Ala 35 40 45 Gln Gln Trp Val Glu Val Met Arg Ala Ala Thr Phe Thr Tyr Ser Pro 50 60Leu Leu Tyr Trp Ile Asn Lys Arg Arg Arg Tyr Gly Met Asn Ala Ala 65 70 80 Ile Asn Thr Gly Pro Ala Pro Ala Val Thr Lys Thr Glu Thr Glu Val 85 90 95 Gln Asn Pro Asp Val Leu Trp Asp Leu Asp Ile Pro Glu Gly Arg Ser 100 105 110 His Ala Asp Gln Asp Ser Asn Pro Lys Ala Glu Ala Pro Ala Pro Leu 115 120 125 Gln Pro Ala Leu Gln Leu Ala Pro Gln Gln Pro Gln Ala Arg Ser Pro 130 135 140 Phe Pro Leu Pro Ile Phe Gln Glu Val Pro Phe Ala Pro Pro Leu Cys 145 150 155 Asn Leu Pro Pro Leu Leu Asn His Ser Val Ser Tyr Pro Leu Ala Thr 165 170 175 Cys Pro Glu Arg Asn Val Leu Phe His Ser Leu Leu Asn Leu Ala Gln 180 185 190 Glu Asp His Ser Phe Asn Ala Lys Pro Phe Pro Ser Glu Leu 195 200 205 <210> 242 <211> 663 <212> ONA Homo sapiens <220> CDS <221> <222>

<221> CDS (222> (40)..(585) (223> 242)

gac aac ctc tta gag tct ctc tct ctc agc aca gta tgg aat tgg ata Asp Asn Leu Leu Glu Ser Leu Ser Leu Ser Thr Val Trp Asn Trp Ile 10 15 20 54

102

ça G1	a gc n Al	a .a	agt Ser	ttt Phe 25	ttg Leu	gga Gly	gag Glu	act Thr	agt Ser 30	gca Ala	ect Pro	cag Gln	caa Gln	aca Thr 35	agt Ser	ttg Leu	150
G1	a ct y Le	a u	tta Leu 40	gat Asp	aat Asn	ctt Leu	gct Ala	cca Pro- 45	gct Ala	gtg Val	caa Gin	atc Ile	atc Ile 50	t tg Leu	agg Arg	att Ile	198
tc Se	t tt r Ph 55	e	ttg Leu	att Ile	tta Leu	t tg Leu	gga Gly 60	ata Ile	gga Gly	ata Ile	tat Tyr	gcc Ala 65	tta Leu	tgg Trp	aaa Lys	·cga Arg	246
ag Se 70	r Il	t e	cag Gln	tca Ser	att Ile	cag Gln 75	aaa Lys	aca Thr	t t g Leu	ttg Leu	ttt Phe 80	gta Val	atc Ile	aca Thr	ctc Leu	tac Tyr 85	294
aa Ly	a ct	t	tac Tyr	aag Lys	aag Lys 90	ggc Gly	tca Ser	cat His	att Ile	ttt Phe 95	gag Glu	gct Ala	ttg Leu	cta Leu	gcc Ala 100	aac Asn	342
Pr	a ga o Gl	a u	gga Gly	agt Ser 105	ggt Gly	ctc Leu	cga Arg	act Ile	caa Gln 110	gac Asp	aat Asn	aat Asn	aat Asn	ctt Leu 115	ttc Phe	ctg Leu	390
tc Se	c tt r Le	g u	ggt GLy 120	ctg Leu	caa Gln	gag Glu	aaa Lys	att Ile 125	ttg Leu	aaa Lys	aaa Lys	ctt Leu	aag Lys 130	aca Thr	gtg Val	gaa Glu	438
aa As	c aa n Ly 13	S	atg Met	aag Lys	aac Asn	cta Leu	gaa Glu .140	Gly ggg	ata Ile	atc Ile	gtt Val	gct Ala 145	caa Gln	aaa Lys	Pro	gcc Ala	486
ac Th 15	r Ly	g	agg Arg	gat Asp	tgc Cys	tcc Ser 155	tct Ser	gag Glu	Pro	tac Tyr	tgc Cys 160	agc Ser	tgc Cys	tct Ser	gac Asp	tgc Cys 165	534
ca Gl	g ag n Se	t	ccc Pro	ttg Leu	tcc Ser 170	aca Thr	tca Sèr	G1 y ggg	ttt Phe	act Thr 175	tcc Ser	Pro	att	tga	aat Asn	gtg Val 180	582
at Me		Ct	ccaa	atc t	ttt	cag	ga aa	gcac	tgtt	tco	ctca	tgt	gtgc	agto	3g c		635
gt	atca	at	aa a	igatā	agaga	aa c	gctat	tg									663
<2 <2	10> 11> 12> 13>	1 P	43 78 RT	sapi	.ens												
< 4	00> -	2	43														
Se. I	r Se	r	Ser	Ser	Trp 5	Asp	Asn	Leu	Leu	Glu 10	Ser	Leu	Ser	Leu	Ser 15	The	•
Va.	l Tr	p	Asn	Trp 20	Ile	Gln	Ala	Ser	Phe 25	Leu	Gly	Glu	Thr	ser 30	Ala	Pro	
Gli	s G1		The 35	Ser	Leu	GLY	Leu	Leu 40	Asp	neA	Leu	Ala`	Pro 45	Ala	Val	Gln	
11	3 Il 50	e	Leu	Arg	Ile	Ser	Phe 55	Leu	Ile	Leu	Leu	Gly 60	Ile	G1 y	Ile	Tyr	
Ala 65	a Le	י בי	Trp	Lys	Arg	Ser 70	ſle	Gln	Ser	Ile	Gln 75	Lys	Thr	Leu	Leu	Phe 80	
Va.	III	e 1	Thr	Leu	Tyr 85	Lys	Leu	Tyr	Lys	Lys 90	Gly	Ser	His	Ile	Phe 95	Glu	

WO 03/089583 16U 200 PCT FINAL.ST25 Ala Leu Leu Ala Asn Pro Glu Gly Ser Gly Leu Arg Ile Gln Asp Asn 100 105 110 Asn Asn Leu Phe Leu Ser Leu Gly Leu Gln Glu Lys Ile Leu Lys Lys Leu Lys Thr Val Glu Asn Lys Met Lys Asn Leu Glu Gly Ile Ile Val Ala Gln Lys Pro Ala Thr Lys Arg Asp Cys Ser Ser Glu Pro Tyr Cys 150 . Ser Cys Ser Asp Cys Gln Ser Pro Leu Ser Thr Ser Gly Phe Thr Ser 165 170 175 Pro Ile <210> 244 <211> 541 <212> DNA <213> Homo sapiens <220> <221> CDS (62)..(349) <222> <223> catatotgtt gocactotga gtttggcatt atgtgttcga attttaacca catatotatt g atg tgc ttt gct ggt ttt agt ttt aag gag aaa ata ttt att gct tta Met Cys Phe Ala Gly Phe Ser Phe Lys Glu Lys Ile Phe Ile Ala Leu gca tgg atg ccc aaa gct aca gta cag gct gtg tta ggt cct ctg gct Ala Trp Met Pro Lys Ala Thr Val Gln Ala Val Leu Gly Pro Leu Ala Cta gaa aca gca aga gtc tct gca ccc cac ttg gaa cca tat gcg aag Leu Glu Thr Ala Arg Val Ser Ala Pro His Leu Glu Pro Tyr Ala Lys

<223>
<400> 244
Catatctgtt gccactctga gtttggcatt atgtgttcga attttaacca catatctatt 60
g atg tgc ttt gct ggt ttt agt ttt aag gag aaa ata ttt att gct tta Met Cys Phe Ala Gly Phe Ser Phe Lys Glu Lys Ile Phe Ile Ala Leu 10
gca tgg atg ccc aaa gct aca gta cag gct gtg tta ggt cct ctg gct 157
Ala Trp Met Pro Lys Ala Thr Val Gln Ala Val Leu Gly Pro Leu Ala 20
Cta gaa aca gca aga gtc tct gca ccc cac ttg gaa cca tat gcg aag 205
Leu Glu Thr Ala Arg Val Ser Ala Pro His Leu Glu Pro Tyr Ala Lys 40
gat gtg atg tca gta gca ttt tta gcc atc tcg atc aca gct cca aat 253
Asp Val Met Ser Val Ala Phe Leu Ala Ile Ser Ile Thr Ala Pro Asn 50
gga gct cta ctt atg ggc att ctg ggg cct aaa atg ctt aca cgc cat 301
Gly Ala Leu Leu Met Gly Ile Leu Gly Pro Lys Met Leu Thr Arg His 80
tat gat cca agc aaa ata aaa ctg caa ttg tca aca tta gaa cat cat 349
Tyr Asp Pro Ser Lys Ile Lys Leu Gln Leu Ser Thr Leu Glu His His His 90
agaattttaa agtagaaata tgtagggact ttctttaat gaattatttc acatgacaga 409
tgatttcagt acagggcttt tcttggactt tttactccaa agttaattta ataaaaataa 529
tgatttcagt acagggcttt tcttggactt tttactccaa agttaattta ataaaaataa 529

<210> 245 <211> 96 <212> PRT <213> Homo sapiens

tattaaatgg aa

<400> 245

Met Cys Phe Ala Gly Phe Ser Phe Lys Glu Lys Ile Phe Ile Ala Leu 1 5 10

										160	200	PCT	FIN	AL.ST	725	
Ala	Trp	Met	Pro 20	Lys	Ala	Thr	Val	Gln 25	Ala	Val	Leu	Gly	Pro 30	Leu	Ala	
Leu	Glu	Th <i>r</i> 35	Ala	Arg	Val	Ser	Ala 40	Pro	His	Leu	Glu	Pro 45	Tyr	Ala	Lys	
Asp	Val 50	Met	Ser	Val	Ala	Phe 55	Leu	Ala	Ile	Ser	Ile 60	The	Ala	Pro	Asn	
Gly 65	Ala	Leu	Leu	Met	Gly 70	Ile	Leu	Gly	Pro	Lys 75	Met	Leu	Thr	Arg	His 80	
Tyr	Asp	Pro	Ser	Lys 85	Ile	Lys	Leu	Gln	Leu 90	Ser	Thr	Leu	Glu	His 95	His	
<210 <211 <211 <211	1> 2> 3>	246 2499 DNA Homo		iens												
<221 <221 <221	1> (2>	CDS (128)(2284)											
<400 gcaa	O> :	246 gcc (cctt	gtgg	cc a	ccga	gtcci	t cc	gacgo	ccet	cgc	cagge	stą (gcctt	tgggt	60
tgg	cca	ggc .	agga	cggg	ct g	ccga	gagc	a ct	eggge	cgc	gtc	gcca	gga (gccg	ccagg	120
gtga	agcc	atg Met 1	ttc Phe	gta Val	ggc Gly	gtc Val 5	gcc Ala	cgg Arg	cac His	tct Ser	999 Gly 10	agc Ser	cag Gln	gat Asp	gaa Glu	169
gtc Val 15	tca Ser	agg Arg	gga Gly	gta Val	gag Glu 20	510 CCd	ctg Leu	gag Glu	gcc Ala	gcg Ala 25	egg Arg	gcc Ala	cag Gln	ect Pro	gct Ala 30	217
aag Lys	gac Asp	agg Arg	agg Arg	gcc Ala 35	aag Lys	gga Gly	acc Thr	ecg Pro	aag Lys 40	tcc Ser	tcg Ser	aag Lys	Pro	ggg Gly 45	aaa Lys	265
.aaa Lys	cac His	cgg Arg	tat Tyr 50	ctg Leu	aga Arg	cta Leu	ctt Leu	cca Pro 55	gag Glu	gcc Ala	ttg Leu	ata Ile	agg Arg 60	ttc Phe	ggc Gly	313
ggt Gly	ttc Phe	cga Arg 65	aaa Lys	agg Arg	aaa Lys	aaa Lys	gcc Ala 70	aag Lys	tcc Ser	tca Ser	gtt Val	tcc Ser 75	aag Lys	aag Lys	ccg Pro	361
gga Gly	gaa Glu 80	gtg Val	gat Asp	gac Asp	agt Ser	ttg Leu 85	gag Glu	cag Gln	CCC Pro	tgt Cys	ggt Gly 90	ttg Leu	ggc Gly	tgc Cys	tta Leu	409
gtc Val 95	agc Ser	acc Thr	tgc Cys	tgt Cys	gag Glu 100	tgt Cys	tgc Cys	aat Asn	nek	att Ile 105	cgc. Arg	tgc Cys	ttc Phe	atg Met	att Ile 110	457
ttc Phe	tac Tyr	CAa	atc Ile	ctg Leu 115	ctc Leu	ata Ile	tgt Cys	caa Gln	ggt Gly 120	gtg Val	gtg Val	ttt Phe	ggt Gly	ctt Leu 125	ata Ile	505
gat Asp	gtc Val	agc Ser	att Ile 130	ggc Gly	gat Asp	ttt Phe	cag Gln	aag Lys 135	gaa Glu	tat Tyr	caa Gln	ctg Leu	aaa Lys 140	acc Thr	att Ile	553
gag Glu	aag Lys	ttg Leu 145	gca Ala	ttg Leu	gaa Glu	aag Lys	agt Ser 150	tac Tyr	gat Asp	att Ile	tca Ser	tct Ser 155	Gly ggc	ctg Leu	gta Val	601
gca Ala	ata Ile	ttt Phe	ata Ile	gca Ala	ttc Phe	tat Tyr	gga Gly	gac Asp	aga Arg	aaa Lys	Lys	gta Val	TTE	tgg Trp	ttt Phe	649
											P	ade	111			

						165				1 6U	200 170	PCT	FINA	L.ST	25	
	160													`		607
gta Val 175	gct Ala	tcc Ser	tcc Ser	ttt Phe	tta Leu 180	ata Ile	gga Gly	ctt Leu	GIY	tca Ser 185	ctt Leu	tta Leu	tgt Cys	gct Ala	Phe 190	697
cca Pro	tcc Ser	att Ile	aat Asn	gaa Glu 195	gaa Glu	aat Asn	aaa Lys	caa Gln	agt Ser 200	aag Lys	gta Val	gga Gly	att Ile	gaa Glu 205	gat Asp	745
att Ile	tgc Cys	gaa Glu	gaa Glu 210	ata Ile	aag Lys	gtt Val	gtc Val	agt Ser 215	ggt Gly	tgc Cys	cag Gln	agc Ser	agt Ser 220	ggt Gly	ata Ile	793
tca Ser	ttc Phe	caa Gln 225	tca Ser	aaa Lys	tac Tyr	ctg Leu	tct Ser 230	ttc Phe	ttc Phe	atc Ile	ctt Leu	ggg Gly 235	cag Gln	act Thr	gtg Val	841
cag Gln	gga Gly 240	ata Ile	gca Ala	Gly gga	atg Met	cct Pro 245	ctt Leu	tat Tyr	atc Ile	ctt Leu	gga Gly 250		acc Thr	ttt Phe	att Ile	889
gat Asp 255		aat Asn	gtt Val	.gct Ala	aca Thr 260	cac His	tca Ser	gct Ala	ggt Gly	atc Ile 265	tat Tyr	tta Leu	ggt Gly	att Ile	gca Ala 270	937
	tgt Cys	aca Thr	tca Ser	atg Met 275	att Ile	gga Gly	tat Tyr	gct Ala	ctg Leu 280	ggt Gly	tat Tyr	gtg Val	cta Leu	gga Gly 285	gca Ala	985
cca Pro	cta Leu	gtt Val	aaa Lys 290	var	cct Pro	gag Glu	aat Asn	act Thr 295	act Thr	tct Ser	gca Ala	aca Thr	aac Asn 300	act Thr	aca	1033
gtc Val	aat Asn	aat Asn 305	Gly	agt Ser	cca Pro	gaa Glu	tgg Trp 310	cta Leu	tgg Trp	act Thr	tgg	tgg Trp 315	att Ile	aat Asn	ttt Phe	1081
ctt Leu	ttt Phe 320	gcc Ala		gtc Val	gtt Val	gca Ala 325	tgg Trp	tgt Cys	aca Thr	tta Leu	ata Ile 330		ttg Leu	tca Ser	tgc Cys	1129
ttt Phe 335	cca Pro		aat	atg Met	cca Pro 340	CTÀ	tca Ser	aca Thr	cgg	ata Ile 345	-,-	gct Ala	agg Arg	aaa Lys	cgt Arg 350	1177
		ctt Leu	cat His	ttt Phe	Pne	gac Asp	agc Ser	aga Arg	ctt Leu 360		gat Asi	cto Lev	aaa Lys	ctt Leu 365	gga	1225
act	aat Asn	ato Ile	 : aag : Lys	Asp	tta Leu	tgt Cys	gct Ala	gct Ala 375		tgg Trp	rati	t ctq e Le	atg Met 380	agg Arg	aat Asn	1273
CC2	gtg Val	cto Lev	ı Ile	tgo Cys	cta Leu	gct Ala	ctg Leu 390	Jer	aaa Lys	gct Ala	ac Th	a gaa r Glu 399	tat Tyr	tta Leu	gtt Val	1321
att Ile	att	GL	gct Ala	tct Ser	gaa Glu	ttt Phe 405	ישני	cct Pro	ata Ile	tal	tt Le		a aat u Asn	cag Glr	ttt Phe	1369
ata 114 415	a tta		e CCC	act Thi	gtg : Val	. Ala	act Thi	aca Thi	cti Lei	gca 1 Ala 425		a ct y Le	t gtt u Val	tta Lev	att Ile 430	1417
		gg:	t gca y Ala	a cti a Lei 43!	r GT	caç Gli	g ctt Let	cto Let	g gg 1 Gl; 440	,	t gt y Va	c at 1 Il	t gtt e Val	t 501 1 Se1 445	aca Thr	1465
tt: Le:	a gaa u Glu	a at	g tci t Se: 450	t tg:		gco Ala	e éti Lei	t ato 1 Mei 45		a tt g Ph	t at e Il	a at e Me	g gt1 t Vai 460	t aca l Thi	a tct r Ser	1513
gt Va	g ata 1 Ile	tc. Se.	a ct		a cto e Leo	g cti 1 Lei	t gto u Va. 470	_ E11	t at e Il	t at e Il	t tt e Ph	t gt e Va 47	a cgo 1 Aro 5	c tg: g Cy:	t aat s Asn	1561
CC	a gt	-		t gc	t gg	g at	c aa	t ga	a ga	t ta	t ga	it gg	a ac	a ag	g aag	1609

Pro	Val 480	Gln	Phe	Ala	Gly	Ile 485	Asn	Glu	Asp	16U Tyr	200 Asp 490	PCT Gly	FINA Thr	L.ST Arg	25 Lys	
ttg Leu 495	gga Gly	aac neA	ctc Leu	acg Thr	gct Ala 500	cct Pro	tgc Cys	aat Asn	gaa Glu	aaa Lys 505	tgt Cys	aga Arg	tgc Cys	tca Ser	tct Ser 510	1657
tca Ser	att Ile	tat Tyr	tct Ser	tct Ser 515	ata Ile	tgt Cys	gga Gly	aga Arg	gat Asp 520	gat Asp	att Ile	gaa Glu	tat Tyr	ttt Phe 525	tct Ser	1705 .
gcc Ala	tgc Cys	ttt Phe	gca Ala 530	GTÀ ààà	tgt Cys	aca Thr	tat Tyr	tct Ser 535	aaa Lys	gca Ala	caa Gln	aac Asn	caa Gln 540	aaa Lys	aag Lys	1753
atg Met	tac Tyr	tac Tyr 545	aat Asn	tgt Cys	tct Ser	cya cya	att Ile 550	aaa Lys	gaa Glu	gga Gly	tta Leu	ata Ile 555	act Thr	gca Ala	gat Asp	1801
gca Ala	gaa Glu 560	ggt Gly	gat Asp	ttt Phe	att Ile	gat Asp 565	gcc Ala	aga Arg	CCC Pro	ej à aaa	aaa Lys 570	tgt Cys	gat Asp	gca Ala	aag Lys	1849
tgc Cys 575	tat Tyr	aag Lys	tta Leu	cct Pro	ttg Leu 580	ttc Phe	att Ile	gct Ala	ttt Phe	atc Ile 585	ttt Phe	tct Ser	aca Thr	ctt Leu	ata Ile 590	1897
ttt Phe	tct Ser	ggt Gly	ttt Phe	tct Ser 595	ggt Gly	gta Val	cca Pro	atc	gtc Val 600	ttg Leu	gcc Ala	atg Met	acg Thr	cgg Arg 605	gtt Val	1945
gta Val	CCT Pro	gac Asp	aaa Lys 610	ctg Leu	cgt	tct Ser	ctg Leu	gcc Ala 615	ttg Leu	ggt Gly	gta Val	agc Ser	tat Tyr 620	gtg Val	att Ile	1993
ttg Leu	aga Arg	ata Ile 625	Phe	ggg	act Thr	att Ile	cct Pro 630	gga Gly	cca Pro	tca Ser	atc Ile	ttt Phe 635	aaa Lys	atg Met	tca Ser	2041
gga Gly	gaa Glu 640	Thr	tct Ser	tgt Cys	att Ile	tta Leu 645	Arg	gat Asp	gtt Val	aat Asn	aaa Lys 650	-7-	gga Gly	cac His	aca Thr	2089
gga Gly 655	Arg	tgt Cys	tgg Trp	ata Ile	tat Tyr 660	ASI	aag Lys	aca Thr	aaa Lys	atg Met 665	****	t t c Phe	tta Leu	ttg Leu	gta Val 670	2137
gga Gly	ata Ile	tgt Cys	ttt Phe	ctt Leu 675	tgc Cys	aaa Lys	cta Leu	tgc Cys	act Thr 680	IIC	ato	t t c	act Thr	act Thr 685	att Ile	2185
gca Ala	ttt Phe	ttc Phe	ata Ile 690	TYE	aaa Lys	cgt	rgt cgt	cta Leu 695		gaq Glu	aac Asn	act Thr	gac 3. Asp 700		CCA Pro	2233
gat Asp	gta Val	act The 705	· Val	aag	aat Asn	CCa Pro	aaa Lys 710	Val	aag Lys	aaa Lys	aaa Lys	gaa Glu 719		act Thr	gac Asp	2281
t t g Leu		ctgg	atc	atca	ttgt	ga t	tgca	gato	a tt	tgag	gato	: aga	ıgtgt	gaa		2334
															gaagag	2394
													jtga	cctg	cattt	2499
cat	aata	aag	tgto	ctat	tg t	gaaa	caaa	a aa	aaaa	aaaa	da d	add				1
<21 <21	2>	247 719 PRT Homo		iens	ı	•										
	10>														•	
Met 1	: Phe	e Val	l Gly	y Vai 5	. Alá	Arq	y His	Se:	10	/ Sei	GL:	n Ası	p Glu	1 Val	Ser	

- Arg Gly Val Glu Pro Leu Glu Ala Ala Arg Ala Gln Pro Ala Lys Asp 20 25 30
- Arg Arg Ala Lys Gly Thr Pro Lys Ser Ser Lys Pro Gly Lys Lys His 35 40 45
- Arg Tyr Leu Arg Leu Leu Pro Glu Ala Leu Ile Arg Phe Gly Gly Phe 50 60
- Arg Lys Arg Lys Lys Ala Lys Ser Ser Val Ser Lys Lys Pro Gly Glu 65 70 75 80
- Val Asp Asp Ser Leu Glu Gln Pro Cys Gly Leu Gly Cys Leu Val Ser 85 90 95
- Thr Cys Cys Glu Cys Cys Asn Asn Ile Arg Cys Phe Met Ile Phe Tyr 100 105 110
- Cys Ile Leu Leu Ile Cys Gln Gly Val Val Phe Gly Leu Ile Asp Val 115 120 125
- Ser Ile Gly Asp Phe Gln Lys Glu Tyr Gln Leu Lys Thr Ile Glu Lys 130 135 140
- Leu Ala Leu Glu Lys Ser Tyr Asp Ile Ser Ser Gly Leu Val Ala Ile 145 150 155 160
- Phe Ile Ala Phe Tyr Gly Asp Arg Lys Lys Val Ile Trp Phe Val Ala 165 170 175
- Ser Ser Phe Leu Ile Gly Leu Gly Ser Leu Leu Cys Ala Phe Pro Ser 180 185 190
- Ile Asn Glu Glu Asn Lys Gln Ser Lys Val Gly Ile Glu Asp Ile Cys 195 200 205
- Glu Glu Ile Lys Val Val Ser Gly Cys Gln Ser Ser Gly Ile Ser Phe 210 215 220
- Gln Ser Lys Tyr Leu Ser Phe Phe Ile Leu Gly Gln Thr Val Gln Gly 225 235 240
- Ile Ala Gly Met Pro Leu Tyr Ile Leu Gly Ile Thr Phe Ile Asp Glu 245 250 255
- Asn Val Ala Thr His Ser Ala Gly Ile Tyr Leu Gly Ile Ala Glu Cys 260 265 270
- Thr Ser Met Ile Gly Tyr Ala Leu Gly Tyr Val Leu Gly Ala Pro Leu 275 280 285
- Val Lys Val Pro Glu Asn Thr Thr Ser Ala Thr Asn Thr Thr Val Asn 290 295 300
- Asn Gly Ser Pro Glu Trp Leu Trp Thr Trp Trp Ile Asn Phe Leu Phe 305 310 315
- Ala Ala Val Val Ala Trp Cys Thr Leu Ile Pro Leu Ser Cys Phe Pro

160 200 PCT FINAL ST25 330 335

Asn Asn Met Pro Gly Ser Thr Arg Ile Lys Ala Arg Lys Arg Lys Gln 340 345 350

Leu His Phe Phe Asp Ser Arg Leu Lys Asp Leu Lys Leu Gly Thr Asn 355 360 365

Ile Lys Asp Leu Cys Ala Ala Leu Trp Ile Leu Met Arg Asn Pro Val 370 375 380

Leu Ile Cys Leu Ala Leu Ser Lys Ala Thr Glu Tyr Leu Val Ile Ile 385 390 395 400

Gly Ala Ser Glu Phe Leu Pro Ile Tyr Leu Glu Asn Gln Phe Ile Leu 405 415

Thr Pro Thr Val Ala Thr Thr Leu Ala Gly Leu Val Leu Ile Pro Gly 420 425 430

Gly Ala Leu Gly Gln Leu Leu Gly Gly Val Ile Val Ser Thr Leu Glu 435 440 445

Met Ser Cys Lys Ala Leu Met Arg Phe Ile Met Val Thr Ser Val Ile 450 455 460

Ser Leu Ile Leu Leu Val Phe Ile Ile Phe Val Arg Cys Asn Pro Val 465 470 475 480

Gln Phe Ala Gly Ile Asn Glu Asp Tyr Asp Gly Thr Arg Lys Leu Gly 485 490 495

Asn Leu Thr Ala Pro Cys Asn Glu Lys Cys Arg Cys Ser Ser Ser Ile 500 505 510

Tyr Ser Ser Ile Cys Gly Arg Asp Asp Ile Glu Tyr Phe Ser Ala Cys 515 520 525

Phe Ala Gly Cys Thr Tyr Ser Lys Ala Gln Asn Gln Lys Lys Met Tyr 530 540 540

Tyr Asn Cys Ser Cys Ile Lys Glu Gly Leu Ile Thr Ala Asp Ala Glu 545 550 555 560

Gly Asp Phe Ile Asp Ala Arg Pro Gly Lys Cys Asp Ala Lys Cys Tyr 565 570 575

Lys Leu Pro Leu Phe Ile Ala Phe Ile Phe Ser Thr Leu Ile Phe Ser 580 585 590

Gly Phe Ser Gly Val Pro Ile Val Leu Ala Met Thr Arg Val Val Pro 595 600 605

Asp Lys Leu Arg Ser Leu Ala Leu Gly Val Ser Tyr Val Ile Leu Arg 610 615 620

Ile Phe Gly Thr Ile Pro Gly Pro Ser Ile Phe Lys Met Ser Gly Glu 625 630 635 640

aga Arg	cgt Arg	Leu	tat Tyr	tgg Trp	tgg Trp	var	gag Glu 190	act Thr	ato	act	acc	ctc	FINA acc Thr	tcc	tgg	630
cac His	ctg Leu 200	185 gcc Ala	tat Tyr	ctc Leu	atç Ile		***	acc Thr	acc. Thr	tgc Cys	ctg Leu 210	gcc Ala	tcc Ser	cac His	ctg Leu	678
ctg Leu 215		gct Ala	gcc Ala	ttt Phe	gag Glu 220	cac His	acg Thr	acc Thr	cag Gln	ctg Leu 225	gcc Ala	gag Glu	gcc Ala	cag Gln	gag Glu 230	726
gtt Val	gaa Glu	ccc Pro	cag Gln	gag Glu 235	gtc Val	tca Ser	ggg ggg	tct Ser	tcc Ser 240	ttg Leu	ctg Leu	CCC Pro	tca Ser	ctg Leu 245	tct Ser	774
gcg Ala	tcc Ser	tcg Ser	gac Asp 250	tca Ser	gag Glu	tct Ser	gga Gly	aca Thr 255	Val	ttg Leu	cca Pro	gag Glu	caa Gln 260	gaa Glu	act Thr	822
CCC	aga Arg	gaa Glu 265	taa	atgta	atc o	ccai	ctgo	c .								851
<210 <210 <210 <210	1 > 2 >	249 265 PRT Homo	sap	iens												
<40	0>	249														
Met 1	Glu	Ala	Leu	Pro 5	510	Val	Arg	Ser	Ser 10	Leu	Leu	Gly	Ile	Leu 15	Leu	
Gln	Val	Thr	Arg 20	Leu	Ser	Val	Leu	Leu 25	Val	Gln	Asn	Arg	Asp 30	His	Leu	
Tyr	Asn	Phe 35	Leu	Leu	Leu	Lys	Ile 40	Asn	Leu	Phe	Asn	His 45	Trp	Val	Ser	
Gly	Leu 50	Ala	Gln	Glu	Ala	Arg 55	Gly	Ser	Суз	Asn	17.0 60	Gln	Ala	His	Leu	
Pro 65	Leu	. Gly	Ala	Ala	Ala 70	Суз	Pro	Leu	Gly	Gl n 75	Ala	Leu	Trp	Ala	Gly 80	
Leu	Ala	. Lev	ı Ile	Gln 85	Val	Pro	Val	Trp	Leu 90	Val	. Leu	Gln	Gly	Pro 95	Arg	
Leu	Met	Tr	Ala 100	Gly	Met	TIP	Gly	Ser 105	Thr	Lys	Gly	, Leu	Gly 110	Leu I	Ala	
Leu	Leu	1 Ser	ala S	ı Teş	Glu	Glr	120	Gly	Leu	Sei	Va]	125	ı Ile	: Trp	Thr	
Asp	Let 130	1 -Pho)	e Lev	ı Sei	Cys	135	His	Gly	Leu	Me1	Let 140	ı Val	L Alá	Lev	ı Leu	
Leu 145		l Va	L Val	L Thi	150	Arq	y Val	. Суз	Glr	Ly: 15	s Se:	e His	s Cys	Fhe	Arg 160	
Lei	Gl	y Ar	g Gli	n Lei 1:6:	ı Sex	. Ly	s Ala	ı Lev	170	ı Va.)	l Ası	n Cyt	s Vai	175	L Arg	
Lys	s Le	u Le	u Va.	l Gla	n Lei	ı Ar	g Arq	Let 185	ı Ty	TE	p Tr	p Va.	1 Gl:	ı Thi	. Met	

Thr Ala Leu Thr Ser Trp His Leu Ala Tyr Leu Ile Thr Trp Thr Thr 195 200 205

Cys Leu Ala Ser His Leu Leu Gln Ala Ala Phe Glu His Thr Thr Gln 210 215 220

Leu Ala Glu Ala Gln Glu Val Glu Pro Gln Glu Val Ser Gly Ser Ser 225 230 235 240

Leu Leu Pro Ser Leu Ser Ala Ser Ser Asp Ser Glu Ser Gly Thr Val 245 250 255

Leu Pro Glu Gln Glu Thr Pro Arg Glu 260 265

	260	265	-	
<210> 250 <211> 784 <212> DNA <213> Homo	sapiens			
<220> <221> CDS <222> (97) <223>	(579)			
<400> 250 gettteagtt	gtaacggact tcatcacato	c acaaattgta	ctcgttctca tcct	tttaag 60
aaagttcaga	cccaggaaaa tttccatagt	t acctta atg Met 1	aaa aag ata gaa Lys Lys Ile Glo 5	atc 114
agt ggg acg Ser Gly Thr	tgt ctt tcc ttt cat Cys Leu Ser Phe His 10	ctc ctt ttc Leu Leu Phe 15	ggc ttg gaa ato Gly Leu Glu Ile 20	aga 162 Arg
atg aga agg Met Arg Arg 25	g att gtt ttt gct ggt g Ile Val Phe Ala Gly 30	gtt atc tta Val Ile Leu	ttc cgc ctc ttc Phe Arg Leu Leu 35	ggt 210 Gly
			the eec coc tt	a ggt 258

gtt Val	atc Ile 40	tta Leu	ttc Phe	cgc Arg	ctc Leu	tta Leu 45	ggt Gly	gtt Val	atc Ile	tta Leu	Phe 50	Gly	Arg	Leu	Gly	230
gac Asp	ctg Leu	Gly	Thr	Cys	cag Gln	Thr	rÃa	PEO	Grå	cag Gln 65	tac Tyr	tgg Trp	aaa Lys	gaa Glu	gag Glu 70	30 (

55 55	Seu	G.J.		-,-	60		-			65					70	
gtc Val	cac His	att Ile	caa Gln	gat Asp	gtt Val	gga GLy	ggt Gly	ttg Leu	att Ile 80	tgc Cys	aga Arg	gca Ala	tgc Cys	aat Asn 85	ctt Leu	354

				12												
tca Ser	ctg Leu	ccc Pro	ttc Phe	cat His	gga Gly	tgt Cys	ctt Leu	tta Leu 95	gac Asp	ctg Leu	gga Gly	acc	tgc Cys 100	cag Gln	gca Ala	402

•.	•															450
gaa Glu	cct Pro	ggt Gly 105	cag Gln	tac Tyr	tgt Cys	aaa Lys	gaa Glu 110	gag Glu	gtc Val	cac His	Ile	Gln 115	Gly	GTA	Ile	

															498
caa tgg Gln Trp 120	Tyr	tca Ser	gtc Val	Lys	ggc Gly 125	CAR	THE	aag Lys	4211	Thr 130	ser	gag Glu	Cys	Spe	430
										_			~+ a	200	541

aag Lys	agt Ser	act Thr	ctc Leu	gtc Val	aag Lys 140	aga Arg	att Ile	ctg Leu	caa Gln	ctg Leu 145	cat His	gaa Glu	ctt Leu	gta Val	act Thr 150	546
------------	------------	------------	------------	------------	-------------------	------------	------------	------------	------------	-------------------	------------	------------	------------	------------	-------------------	-----

act cac tgc tgc aat cat tct ttg tgc.aat ttc tgagt. Thr His Cys Cys Asn His Ser Leu Cys Asn Phe 155 160	cagtg goccatatot 599

adaatgettg geagateaat eagtetegaa geetgaeetg getateacaa aatgatgget 65

719

attgtcaatt agcccacttc agaaacctca gacccttyta gytagaagya accttyatet	
gaaattgact ttggttttca atattcccaa tatctccccc accacctcca actcatctga	779
gaaat	784
<210> 251 <211> 161 <212> PRT <213> Homo sapiens	
<400> 251	
Met Lys Lys Ile Glu Ile Ser Gly Thr Cys Leu Ser Phe His Leu Leu 10 15	
Phe Gly Leu Glu Ile Arg Met Arg Arg Ile Val Phe Ala Gly Val Ile 20 25 30	
Leu Phe Arg Leu Leu Gly Val Ile Leu Phe Arg Leu Leu Gly Val Ile 35 40 45	
Leu Phe Gly Arg Leu Gly Asp Leu Gly Thr Cys Gln Thr Lys Pro Gly 50 55 60	
Gln Tyr Trp Lys Glu Glu Val His Ile Gln Asp Val Gly Gly Leu Ile 65 70 75 80	
Cys Arg Ala Cys Asn Leu Ser Leu Pro Phe His Gly Cys Leu Leu Asp 85 90 95	
Leu Gly Thr Cys Gln Ala Glu Pro Gly Gln Tyr Cys Lys Glu Glu Val 100 105 110	
His Ile Gln Gly Gly Ile Gln Trp Tyr Ser Val Lys Gly Cys Thr Lys 115 120 125	
Asn Thr Ser Glu Cys Phe Lys Ser Thr Leu Val Lys Arg Ile Leu Gln 130 135 140	
Leu His Glu Leu Val Thr Thr His Cys Cys Asn His Ser Leu Cys Asn 145 150 155 160	
Phe	
<210> 252 <211> 2205 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (24)(1850) <223>	
<400> 252 gggcggtgta gtgcaggtcc gcc atg gct gag gcg tca cgg tgg cac cga ggc Met Ala Glu Ala Ser Arg Trp His Arg Gly 1	53
ggg gct tcg aaa cat aag ttg cat tac aga aag gaa gta gaa att aca Gly Ala Ser Lys His Lys Leu His Tyr Arg Lys Glu Val Glu Ile Thr 15 20 25	101
acc aca ctt cag gaa ttg tta ctc tac ttt att ttt tta ata aac cta Page 165	149

attgtcaatt agcccacttc agaaacctca gacccttgta ggtagaagga attttgatct

Thr	Thr	Leu	Gln 30	Glu	Leu	Leu	Leu	Tyr 35	Phe	16U Ile	200 Phe	PCT Leu	FINA Ile 40	L.ST Asn	25 Leu	
tgt Cys	ata Ile	ttg Leu 45	act Thr	ttt Phe	GJ À G G G	met	gta Val 50	aac Asn	cca Pro	cat His	atg Met	tat Tyr 55	tac Tyr	tta Leu	aac Asn	197
aag Lys	gtt Val 60	atg Met	tca Ser	tct Ser	cta Leu	ttt Phe 65	ttg Leu	gac Asp	act Thr	tct Ser	gtg Val 70	cct Pro	ggt Gly	gaa Glu	gaa Glu	245
aga Arg 75	acc Thr	aac Asn	ttt Phe	aag Lys	tcc Ser 80	att Ile	ege Arg	agc Ser	ata Ile	act Thr 85	gat Asp	ttt Phe	tgg Trp	aag Lys	ttt Phe 90	293
atg Met	gaa Glu	gga Gly	ccc Pro	ctt Leu 95	ttg Leu	gaa Glu	ggt Gly	ctg Leu	tac Tyr 100	tgg Trp	gat Asp	tca Ser	tgg Trp	tac Tyr 105	aat Asn	341
aac Asn	cag Gln	cag Gln	ctg Leu 110	tat Tyr	aat Asn	tta Leu	aag Lys	aac Asn 115	agc Ser	agt Ser	Arg	atc Ile	tac Tyr 120	tat Tyr	gaa Glu	389
Asn	Ile	Leu 125	Leu	GTĀ	gtt Val	Pro	130	101	ara			135				437
Asn	Thr 140	Cys	Lys	vai	tat Tyr	145	364				150					485
Tyr 155	Gly	Lys	Tyr	Thr	tct Ser 160	Ala	ASII	GLG	n., p	165		•			170	533
Gln	Ile	Asn	The	175		Arg	LYL	361	180			-		185		581
Trp	His	Trp	190	Phe	. rea	GLY	Val	195	••••			•	200		ttc Phe	629
Thr	Let	205	: Lys	Ser	- rās	Ser	210)	2,0			215	j		ctt Leu	677
Arg	220	ı Ası)	ı Sei	rrı) IIe	225	AL	, Gry	••••		230	0			gat Asp	725
235	e Sei	r Le	ı Tyı	ASI	240	ASI	va.	L ASI	, mer	24	5				ttg Leu 250	773
.Va.	L Ala	a Gl	u Phe	25	S Ala	i ini	. 61	7 (1)	260	5	•		·	269	ttt n Phe	821
Ty	c Se	r Va	1 Ly:	s Le	u Lat	1 AFÇ	1 ra	275	5	- • ,	1		280	0	t att	
A1	a Se	r Cy 28	s Gl	n II	e Thi	Pne	29	0	=			29	5		a aca r Thr	917
ca G1:	a ga n Gl 30	u Va	c aa l Ly	a aa s Ly	a at	a aa e Ly: 30:	3 92	a tt: u Pho	t aad e Ly:	g tc s Se	t gc r Al 31		t tt r Ph	c aa e Ly	a agt s Ser	965
at [1 31	e Tr	g aa p As	c tg n Tr	g ct p Le	a ga u Gl 32	u re	g ct u Le	a ct u Le	t tt u Le	g ct u Le 32		g tg n Cy	t tt s Ph	t gt e Va	g gct 1 Ala 330	1013
gt Va	t to 1 Se	c tt r Ph	c aa e As	c ac n Th 33	ir Ty	c ta r Ty	t aa r As	t gt n Va	a ca 1 G1 34		t tt e Ph	t ct ne Le	c tt	a ct u Le 34	t gga u Gly S	. 1061

cag Gln	ctg Leu	ttg Leu	aaa Lys 350	agt Ser	act Thr	gaa Glu	aaa Lys	tat Tyr 355	tca	σat	ttc	PCT tat Tyr	ttt	ctt	gça	1109
tgc Cys	tgg Trp	cac His 365	att Ile	tat Tyr	tac Tyr	aat Asn	aat Asn 370	ata Ile	att Ile	gct Ala	att Ile	acc Thr 375	atc Ile	ttt Phe	ttt Phe	1157
gca Ala	tgg Trp 380	ata Ile	aag Lys	ata Ile	ttc Phe	aaa Lys 385	ttc Phe	ata Ile	agc Ser	ttt Phe	aac Asn 390	aag Lys	aca Thr	atg Met	tct Ser	1205
cag Gln 395	ctg Leu	tca Ser	tca Ser	acc	ttg Leu 400	tcc Ser	cgt Arg	tgt Cys	gtt Val	aaa Lys 405	gac Asp	ata Ile	gta Val	gga Gly	ttt Phe 410	1253
gcc Ala	atc Ile	atg Met	ttt Phe	ttt Phe 415	ata Ile	ata Ile	ttc Phe	ttt Phe	gct Ala 420	tat Tyr	gcc Ala	cag Gln	tta Leu	gga Gly 425	ttt [,] Phe	1301
ctt Leu	gtt Val	ttt Phe	gga Gly 430	tca Ser	caa Gln	gtt Val	wab	gac Asp 435	ttt Phe	tcc Ser	act Thr	ttt Phe	cag Gln 440	aat Asn	tcc Ser	1349
ata Ile	ttt Phe	gca Ala 445	caa Gln	ttt Phe	cga Arg	att Ile	gtt Val 450	ctt Leu	gga Gly	gat Asp	t t t Phe	aat Asn 455	ttt Phe	gct Ala	ggt Gly	1397
att Ile	cag Gln 460	Gln	gcc Ala	aat Asn	cct Pro	atc Ile 465	ttg Leu	gga Gly	EL0	att Ile	Tyr 470	ttc Phe	atc	act Thr	ttc Phe	1445
ato Ile 475	Phe	ttt Phe	gtg Val	ttc Phe	ttt Phe 480	Vai	ctg Leu	ctg Leu	aat Asn	atg Met 485		ttg Leu	gca Ala	att Ile	att Ile 490	1493
aat Ran	gat Asp	acc Thr	tat Tyr	tct Ser 495	GIU	gtg Val	aaa Lys	gct Ala	gac Asp 500	tat Tyr	tca Ser	ata Ile	Gly	aga Arg 505	agg	1541
cca Pro	gat Asp	Phe	gaa Glu 510	Leu	ggc Gly	aaa Lys	atg Met	att Ile 515	aaa Lys	cag Gln	agt Sei	t tac	Lys 520	aat Asn :	gtt Val	1589
cto Let	gaç ıGlu	aaa Lys 529	: Phe	aga Arg	ctg Leu	aag Lys	aaa Lys 530	· ALG	caa Gln	aaa Lys	gai Asi	t gaa p Glu 535	-	aaq Lys	aaa Lys	1637
acc	aaa Lys S40	G1)	ago / Ser	: gga	gat Asp	ttg Lev 545	WTG	gaa Glu	caa Gln	gco Ala	aga Are SS	,	gaa Glu	ggo Gly	ttt Phe	1685
gad Ası 55	c gaa		t gaç n Glu	g att	caa Glr 560	1 W21	gca Ala	gaq Glu	cag Gln	ato Met 563	,	a aaa s Lys	tgq Trp	aaa Lys	gag Glu 570	1733
		t gad u Glu	g aaa u Lys	a aaq s. Ly: 57!	2 TA	t tat	tct Sei	atq Met	gaa : Glu 580		t ca e Gl	a gat n Ast	gae Asp	585	c cag c Gln 5	1781
ÇC.	t gt o Va	c act	c caa r Gl:	a GI	a gaa u Gli	a tti u Phe	e Arg	gat J Asp 595	,	t ace	c ac r Th	a aco	- aaq - Lys - 600	g tac g Ty: D	c aaa · r Lys	1829
at Me	g ag	a tte g Phe 60	e Se	t ct	g ag u Se	t gco r Ala	: tga	acaaa	acg	aat	ttaa	gta	ccag	ccaa	gt	1880
30	acac		-	actt	caa	ggaa:	taca	ac to	gacti	tat	gat	atga	attt	tca	aggaacg	1940
															ctaagct	2000
															tcttct	2060
															aaaaag	2120
																21.00
	ccaa	aagt	tgt	ctta	ata	tgag	acat	ac t	gtta	ctaa	a cz	taag	ttca	aat	aaaaagt	2180

<210> 253 <211> 609 <212> PRT

<213> Homo sapiens

<400> 253

Met Ala Glu Ala Ser Arg Trp His Arg Gly Gly Ala Ser Lys His Lys

Leu His Tyr Arg Lys Glu Val Glu Ile Thr Thr Thr Leu Gln Glu Leu 20 25 30

Leu Leu Tyr Phe Ile Phe Leu Ile Asn Leu Cys Ile Leu Thr Phe Gly 35 40 45

Met Val Asn Pro His Met Tyr Tyr Leu Asn Lys Val Met Ser Ser Leu 50 60

Phe Leu Asp Thr Ser Val Pro Gly Glu Glu Arg Thr Asn Phe Lys Ser 65 70 75 80

Ile Arg Ser Ile Thr Asp Phe Trp Lys Phe Met Glu Gly Pro Leu Leu 85 90 95

Glu Gly Leu Tyr Trp Asp Ser Trp Tyr Asn Asn Gln Gln Leu Tyr Asn 100 105 110

Leu Lys Asn Ser Ser Arg Ile Tyr Tyr Glu Asn Ile Leu Leu Gly Val 115 120 125

Pro Arg Val Arg Gln Leu Lys Val Arg Asn Asn Thr Cys Lys Val Tyr 130 135 140

Ser Ser Phe Gln Ser Leu Met Ser Glu Cys Tyr Gly Lys Tyr Thr Ser 145 150 155 160

Ala Asn Glu Asp Leu Ser Asn Phe Gly Leu Gln Ile Asn Thr Glu Trp 165 170 175

Arg Tyr Ser Thr Ser Asn Thr Asn Ser Pro Trp His Trp Gly Phe Leu 180 185 190

Gly Val Tyr Arg Asn Gly Gly Tyr Ile Phe Thr Leu Ser Lys Ser Lys 195 200 205

Ser Glu Thr Lys Asn Lys Phe Ile Asp Leu Arg Leu Asn Ser Trp Ile 210 215 220

Thr Arg Gly Thr Arg Val Ile Phe Ile Asp Phe Ser Leu Tyr Asn Ala 225 230 235 240

Asn Val Asn Leu Phe Cys Ile Ile Arg Leu Val Ala Glu Phe Pro Ala 245 250 255

Thr Gly Gly Ile Leu Thr Ser Trp Gln Phe Tyr Ser Val Lys Leu Leu 260 265 270

Arg Tyr Val Ser Tyr Tyr Asp Tyr Phe Ile Ala Ser Cys Glu Ile Thr 275 280 285

Phe Cys Ile Phe Leu Phe Val Phe Thr 290 295	Thr Gln Glu Val Lys 300	raz IIe
--	-------------------------	---------

- Lys Glu Phe Lys Ser Ala Tyr Phe Lys Ser Ile Trp Asn Trp Leu Glu 305 310 315 320
- Leu Leu Leu Leu Leu Cys Phe Val Ala Val Ser Phe Asn Thr Tyr 325 330 335
- Tyr Asn Val Gln Ile Phe Leu Leu Leu Gly Gln Leu Leu Lys Ser Thr 340 345 350
- Glu Lys Tyr Ser Asp Phe Tyr Phe Leu Ala Cys Trp His Ile Tyr Tyr 355 360 365
- Asn Asn Ile Ile Ala Ile Thr Ile Phe Phe Ala Trp Ile Lys Ile Phe 370 375 380
- Lys Phe Ile Ser Phe Asn Lys Thr Met Ser Gln Leu Ser Ser Thr Leu 385 390 395 400
- Ser Arg Cys Val Lys Asp Ile Val Gly Phe Ala Ile Met Phe Phe Ile 405 410 415
- Ile Phe Phe Ala Tyr Ala Gln Leu Gly Phe Leu Val Phe Gly Ser Gln 420 425 430
- Val Asp Asp Phe Ser Thr Phe Gln Asn Ser Ile Phe Ala Gln Phe Arg 435 440 445
- Ile Val Leu Gly Asp Phe Asn Phe Ala Gly Ile Gln Gln Ala Asn Pro
 450 455 460
- Ile Leu Gly Pro Ile Tyr Phe Ile Thr Phe Ile Phe Phe Val Phe Phe 465 470 475 480
- Val Leu Leu Asn Met Phe Leu Ala Ile Ile Asn Asp Thr Tyr Ser Glu 485 490 . 495
- Val Lys Ala Asp Tyr Ser Ile Gly Arg Arg Pro Asp Phe Glu Leu Gly 500 505 510
- Lys Met Ile Lys Gln Ser Tyr Lys Asn Val Leu Glu Lys Phe Arg Leu 515 520 525
- Lys Lys Ala Gln Lys Asp Glu Asp Lys Lys Thr Lys Gly Ser Gly Asp 530 540
- Leu Ala Glu Gln Ala Arg Arg Glu Gly Phe Asp Glu Asn Glu Ile Gln 545 · 550 555 560
- Asn Ala Glu Gln Met Lys Lys Trp Lys Glu Arg Leu Glu Lys Lys Tyr 565 570 575
- Tyr Ser Met Glu Ile Gln Asp Asp Tyr Gln Pro Val Thr Gln Glu Glu 580 585 590
- Phe Arg Asp Gly Thr Thr Thr Lys Tyr Lys Met Arg Phe Ser Leu Ser

595.

16U 200 PCT FINAL.ST25 600 605

Ala

<210 <211 <212 <213	> >	254 1615 DNA Homo	sapi	iens												
<220 <221 <222 <221	l> (?>	CDS (1).	. (158	34)												
	gcc Ala	~~=	tac Tyr	caa Gln 5	caa Gln	gaa Glu	gag Glu	cag Gln	atg Met 10	cag Gln	ctt Leu	CCC Pro	cga Arg	gct Ala 15	gat Asp	48
gcc Ala	att Ile	cgt Arg	tca Ser 20	cgt	ctc Leu	atc Ile	gat Asp	act Thr 25	ttc Phe	tct Ser	ctc Leu	att Ile	gag Glu 30	cat His	ttg Leu	96.
caa Gln	G1 y	ttg Leu 35	agc Ser	caa Gln	gct Ala	gtg Val	ccg Pro 40	egg Arg	cac His	act Thr	atc Ile	agg Arg 45	gag Glu	tta Leu	ctt Leu	144
gat Asp	cct Pro 50	tcc Ser	cgc Arg	cag Gln	aag Lys	aaa Lys 55	ctt Leu	gta Val	ttg Leu	gga Gly	gat Asp 60	caa Gln	cac His	cag Gln	cta Leu	192
gtg Val 65	cgt	ttc Phe	tct Ser	ata Ile	aag Lys 70	cct Pro	cag Gln	cgt Arg	ata Ile	gaa Glu 75	cag Gln	att Ile	tca Ser	cat His	gcc Ala 80	· 240
cag Gln	agg Arg	ctg Leu	ttg Leu	agc Ser 85	agg Arg	ctt Leu	cat His	gtg Val	cgc Arg 90	tgc Cys	agt Ser	cag Gln	agg Arg	cca Pro 95	cct Pro	288
Leu	Ser	Leu	Trp 100	Ala	Gly	Trp	Val	Leu 105	GLu	tgt Cys	PIO	ren	110	гуз	ASII	336
ttc Phe	atc Ile	atc Ile 115	ttc Phe	ctg Leu	gtc Val	ttt Phe	t tg Leu 120	aat Asn	acg Thr	atc Ile	ata Ile	ttg Leu 125	atg Met	gtt Val	gaa Glu	384
ata Ile	gaa Glu 130	ttg Leu	ctg Leu	gaa Glu	tcc Ser	aca Thr 135	aat Asn	acc Thr	aaa Lys	cta Leu	tgg Trp 140	Pro	ttg Leu	aag Lys	ctg Leu	432
acc Thr 145	ttg Leu	gag Glu	gtg Val	gca Ala	gct Ala 150	tgg Trp	ttt Phe	atc Ile	ttg Leu	ctt Leu 155	att Ile	ttc Phe	atc Ile	ctg Leu	gag Glu 160	480
atc Ile	ctt Leu	ctt Leu	aag Lys	tgg Trp 165	cta Leu	tcc Ser	aac Asn	ttt Phe	tct Ser 170	gtt Val	ttc Phe	tgg Trp	Lys	agt Ser 175	gcc Ala	528
tgg Trp	aat Asn	gtc Val	ttt Phe 180	gac Asp	ttt Phe	gtt Val	gtt Val	acc Thr 185	atg Met	ttg Leu	tcc Ser	ctg Leu	ctt Leu 190	Pro	gag Glu	576
gtt Val	gtg Val	gta Val 195	Leu	gta Val	GTÅ∙ ååå	gta Val	aca Thr 200	ggc Gly	caa Gln	tcg Ser	gtg Val	tgg Trp 205	ctt Leu	cag Gln	ctt Leu	624
ctg Leu	agg Arg 210	atc Ile	tgc Cys	Arg	gtg Val	ctg Leu 215	agg Arg	tct Ser	ctc Leu	aaa Lys	ctc Leu 220	ctt Leu	gca Ala	caa Gln	ttc ?he	672
egt Arg 225	caa Gln	att Ile	caa Gln	att	att Ile 230	att Ile	ttg Leu	gtc Val	ctg Leu	gtc Val 235	agg Arg	gcs Ala	ctc Leu	aag Lys	agc Ser 240	720
acg	acc	ttc	ctc	ttg	atg	ttg	ctg	ctc	atc	ttc	ttc	tac	att	ttt	gct	768

WO 03/089583

4-	
4	·
- 4	

										1.00	200	200	CTNS	1 07	25	
Met	The	Phe	Leu	Leu 245	Met	Leu	Leu	Leu	Ile 250	Phe	Phe	Tyr	Ile	L.ST Phe 255	Ala	
gtg Val	act Thr	ggt Gly	gtc Val 260	tac Tyr	gtc Val	ttc Phe	tca Ser	gag Glu 265	tac Tyr	acc Thr	cgt Arg	tca Ser	cct Pro 270	cgt Arg	cag Gln	816
gac Asp	ctg Leu	gag Glu 275	tac Tyr	cat His	gtg Val	ttc Phe	ttc Phe 280	tcg Ser	gac Asp	ctc Leu	ccg Pro	aat Asn 285	tcc Ser	ctg Leu	gta Val	864
aca Thr	gtg Val 290	ttc Phe	att Ile	ctc Leu	ttc Phe	acc Thr 295	ttg Leu	gat Asp	cat His	tgg Trp	tat Tyr 300	gca Ala	ctg Leu	ctt Leu	cag Gln	912
Asp 305	Val	Trp	Lys	Val	cct Pro 310	Glu	Val	Ser	AEG	315	Pne	ser	Set	116	320	960
Phe	Ile	Leu	Trp	Leu 325	ttg Leu	Leu	GIA	Ser	330	IIe	Pne	Arg	Ser	335	116	1008
Val	Ala	Met	Met 340	Val	act Thr	Asn	Phe	345	Asn	ITE	Arg	րդե	350	Leu		1056
Glu	Glu	Met 355	Ala	Arg	.cgg Arg	Glu	360	Gin	Leu	тÀ2	ALG	365	nec	FILE	пуз	1104
Arg	Gln 370	Ile	Ile	Gln	agg Arg	Arg 375	Lys	Asn	met	ser	380	GIU	MIG	Leu	1111	1152
Ser 385	Ser	His	Ser	Lys	ata Ile 390	Glu	Asp	Arg	GIÀ	395	ser	GIN	GIII	MLG	400	1200
Ser	Leu	Asp	Leu	Ser 405	gaa Glu	Val	Ser	Glu	410	GIU	Ser	ASII	TYL	415	ALG	1248
Thr	Glu	Glu	Asp 420	Leu	ata Ile	Thr	Ser	425	ser	Lys	THE	GIU	430	III	Leu	1296
Ser	Lys.	Lys 435	Arg	Glu	tac Tyr	GIn	Ser 440	Ser	ser	Cys	AGT	445	267	1111	367	1344
Ser	Ser 450	Tyr	Ser	Ser	tct Ser	Ser 455	Glu	ser	Arg	rne	460	GLU	261	116	GLY	1392
Arg 465	Leu	Asp	Trp	Glu	act Thr 470	Leu	Val	nıs	GIU	475	rea	110	dry	200	480	1440
Glu	Met	Asp	Gln	Asp 485	gac Asp	Arg	Val	Trp	490	Arg	дел	ser	nen	495	ary	1488
Tyr	Phe	Glu	Leu 500	Leu	gaa Glu	Lys	Leu	505	туг	ASI	ren	GTIT	510	nry	Lys	1536
aag Lys	Leu	caa Gln 515	gag Glu	ttt Phe	gca Ala	gtg Val	cag Gln 520	gca Ala	ctg Leu	atg Met	aac Asn	ttg Leu 525	gaa Glu	gac Asp	aag Lys	1584
taa	agca	atg (gatgo	jctt	a at	atco	ttg	3 9								1615

(210>	255

<211> 528 <212> PRT <213> Homo sapiens

<400> 255

Met Ala Ala Tyr Gln Gln Glu Glu Gln Met Gln Leu Pro Arg Ala Asp 1 10 15

Ala Ile Arg Ser Arg Leu Ile Asp Thr Phe Ser Leu Ile Glu His Leu 20 25 30

Gln Gly Leu Ser Gln Ala Val Pro Arg His Thr Ile Arg Glu Leu Leu 35 40 45

Asp Pro Ser Arg Gln Lys Lys Leu Val Leu Gly, Asp Gln His Gln Leu 50 60

val Arg Phe Ser Ile Lys Pro Gln Arg Ile Glu Gln Ile Ser His Ala 65 70 75 80

Gln Arg Leu Leu Ser Arg Leu His Val Arg Cys Ser Gln Arg Pro Pro 85 90 95

Leu Ser Leu Trp Ala Gly Trp Val Leu Glu Cys Pro Leu Phe Lys Asn 100 105 110

Phe Ile Ile Phe Leu Val Phe Leu Asn Thr Ile Ile Leu Met Val Glu 115 120 125

Ile Glu Leu Leu Glu Ser Thr Asn Thr Lys Leu Trp Pro Leu Lys Leu 130 135 140

Thr Leu Glu Val Ala Ala Trp Phe Ile Leu Leu Ile Phe Ile Leu Glu 145 150 150 155 160

Ile Leu Leu Lys Trp Leu Ser Asn Phe Ser Val Phe Trp Lys Ser Ala 165 170 175

Trp Asn Val Phe Asp Phe Val Val Thr Met Leu Ser Leu Leu Pro Glu 180 185 190

Val Val Leu Val Gly Val Thr Gly Gln Ser Val Trp Leu Gln Leu 195 200 205

Leu Arg Ile Cys Arg Val Leu Arg Ser Leu Lys Leu Leu Ala Gln Phe 210 215 220

Arg Gln Ile Gln Ile Ile Ile Leu Val Leu Val Arg Ala Leu Lys Ser 225 230 235 240

Met Thr Phe Leu Leu Met Leu Leu Leu Ile Phe Phe Tyr Ile Phe Ala 245 250 255

Val Thr Gly Val Tyr Val Phe Ser Glu Tyr Thr Arg Ser Pro Arg Gln 260 265 270

Asp Leu Glu Tyr His Val Phe Phe Ser Asp Leu Pro Asn Ser Leu Val 275 280 285

Thr Val Phe Ile Leu Phe Thr Leu Asp His Trp Tyr Ala Leu Leu Gln 290 295 300

Asp Val Trp Lys Val Pro Glu Val Ser Arg Ile Phe Ser Ser Ile Tyr

WO 03/089583

CT/US03/11497

		16U	200	PCT	FINAL.ST25
305	310	315			320

Phe Ile Leu Trp Leu Leu Gly Ser Ile Ile Phe Arg Ser Ile Ile 325 330 335

Val Ala Met Met Val Thr Asn Phe Gln Asn Ile Arg Lys Glu Leu Asn . 340 345 350

Glu Glu Met Ala Arg Arg Glu Val Gln Leu Lys Ala Asp Met Phe Lys 355 360 365

Arg Gln Ile Ile Gln Arg Arg Lys Asn Met Ser His Glu Ala Leu Thr 370 375 380

Ser Ser His Ser Lys Ile Glu Asp Arg Gly Ala Ser Gln Gln Arg Glu 385 390 395 400

Ser Leu Asp Leu Ser Glu Val Ser Glu Val Glu Ser Asn Tyr Gly Ala 405 410 415

Thr Glu Glu Asp Leu Ile Thr Ser Ala Ser Lys Thr Glu Glu Thr Leu 420 425 430

Ser Lys Lys Arg Glu Tyr Gln Ser Ser Ser Cys Val Ser Ser Thr Ser 435 440 445

Ser Ser Tyr Ser Ser Ser Ser Glu Ser Arg Phe Ser Glu Ser Ile Gly
450 455 460

Arg Leu Asp Trp Glu Thr Leu Val His Glu Asn Leu Pro Gly Leu Met 465 470 475 480

Glu Met Asp Gln Asp Asp Arg Val Trp Pro Arg Asp Ser Leu Phe Arg 485 490 495

Tyr Phe Glu Leu Leu Glu Lys Leu Gln Tyr Asn Leu Glu Glu Arg Lys

Lys Leu Gln Glu Phe Ala Val Gln Ala Leu Met Asn Leu Glu Asp Lys 515 525

<210> 256 <211> 24

<212> DNA

<213> Homo sapiens

<400> 256

tcatggatca ccagctccac gctc

257 <210>

<211> 25

DNA <213> Homo sapiens

<400> 257

caccaagatc accaccatgg aagca

<210> 258

<211> 50

DNA

Homo sapiens

<400> 258

			160	200 PCT FINA	L.ST25	
ggattca	ggc cttttaaacc	ccactcagtg				50
,,						
<210>	259			-		
<211>	24					
<212>	DNA					
<213>	Homo sapiens					
<400>	259				4	24
ractaa	gaa tottatgaac	cagg				24
09009-					•	
.010.	260					
<210>	260 26					
<211> <212>	DNA					
<213>	Homo sapiens					
<400>	260 cagc ctctccttcc	tcagtg				26
Ecacgu	gage ecception	,-,		•		
				*		
<210>	261					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
<400>	261					50
tcacaa	atca tataaattag	gggaaagaga	gaggcaggta	tactctaaaa		-
<210>	262 .	•				
<211>	50					
<212>	DNA			•		
<213>	Homo sapiens			•		
	262					
<400>	ttat ttaaaagacc	tcagaaatgt	caccatgctt	agttatttta		50
20000						
<210>						
<211>	23 DNA					
<212> <213>	Homo sapiens					
<400>	263	414				23
ggccat	ggac aatgtcacag	cag				
•	•					
<210>	264					
<211>	31					
<212>	DNA					
<213>	Homo sapiens					
<400>	264					` 31
agcaga	caca tactgggcca	ttcataacca	C			31
<210>	265					
<211>	50					
<212>		•				
<213>	Homo sapiens					
<400>	765					
ggtact	attc tatattttgg	gcacacagca	atgaagaaaa	cagaaaaacc		50
7,7-3-						
40.20	266					
<210> <211>	266 50					
<211>						
<213>						
	-		- 1			
<400>	256 :ttca taaatatgga	gcagaaagtt	tttacaaata	a tagaacagca		50
cragaat	.cca taaacacyya	. 4049444		-		
<210>	267					
<211>	50				•	
<212> <213>	DNA Homo sapiens					

<400> 267	
<400> 267 tagaatgtgt tataaaaaat gaagcagggc taggggaaag agatgggtga	50
Cagaacycyc cacadaaaa yaayaa 313	
<210> 268	
<211> 23	
<212> DNA	•
<213> Homo sapiens	
(213) Rolls Septeme	
<400> 268	22
cotcattggc ttcotcocac tog	23
CCCCacadda	
<210> 269	
<211> 30	
<212> DNA	
<213> Homo sapiens	
<400> 269	30
gccatcaaac tctgagctgg agatagtgac	
<210> 270	
· <211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 270	50
ccaaggaact titaaaactc ccattgcaca gitaccaccc agaataatta	
<210> 271	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 271	
<400> 271 catectggaa tatatttgcg tecaactetg cacettgete tetatteeet	50
Catcolygae catacolygy toosassass	
<210> 272	
<211> 50	
<211> 50 <212> DNA	· · · · ·
<211> 50	
<211> 50 <212> DNA <213> Homo sapiens	
<211> 50 <212> DNA <213> Homo sapiens	
<211> 50 <212> DNA <213> Homo sapiens	
<211> 50 <212> DNA <213> Homo sapiens <400> 272 ctgggggccc tcaaaaagct caccttccct cacttcccac ttcaactgat	
<211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat	
<211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat </pre> <pre><210> 273 <211> 26 <212> DNA</pre>	
<211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct cacettccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273</pre>	50
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct cacettccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc</pre> <pre><210> 273 <212> DNA <213> Homo sapiens</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc</pre> <pre><210> 274 <211> 24</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct cacettccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc</pre> <pre><210> 274 <211> 24 <212> DNA</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc</pre> <pre><210> 274 <211> 24</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens</pre>	. 26
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 <211> 24 <212> DNA <213> Homo sapiens</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens</pre>	. 26
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 <211> 24 <212> DNA <213> Homo sapiens</pre>	. 26
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 <211> 24 <212> DNA <213> Homo sapiens</pre>	. 26
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 tggtaccat ttacgaatgg ccgc</pre>	. 26
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 tggtaccat ttacgaatgg ccgc</pre>	. 26
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 tggtaccat ttacgaatgg ccgc</pre> <pre><210> 274 <211> 24 <212> DNA <213> Homo sapiens</pre>	. 26
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 tcatccat ttacgaatgg ccgc <210> 274 tggtaccat ttacgaatgg ccgc</pre>	. 26
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 tcgtaccat ttacgaatgg ccgc <210> 274 ttggtaccat ttacgaatgg ccgc</pre>	26
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 tc21> DNA <213> Homo sapiens <400> 274 c212> DNA <213> Homo sapiens <400> 274 ttggtaccat ttacgaatgg ccgc</pre>	24
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 tcgtaccat ttacgaatgg ccgc <210> 274 ttggtaccat ttacgaatgg ccgc</pre>	24
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 tcgtaccat ttacgaatgg ccgc <210> 274 ttggtaccat ttacgaatgg ccgc <210> 275 <211> 50 <212> DNA <213> Homo sapiens <400> 275 aaacggcatt ttaaaaaatgc aggtttaaat tgttatcctc atctatggtt</pre>	24
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 272 ctggggcccc tcaaaaaagct caccttccct cacttcccac ttcaactgat <210> 273 <211> 26 <212> DNA <213> Homo sapiens <400> 273 tggcctcgtt gaaagtgtca tcatcc <210> 274 <211> 24 <212> DNA <213> Homo sapiens <400> 274 tcgtaccat ttacgaatgg ccgc <210> 274 ttggtaccat ttacgaatgg ccgc</pre>	24

<212>		
	DNA	
<213>	Homo sapiens	
<400>	276	29
croaact	ega gcagtaccac gtctggatc	23
ccggaoi		
<210>	277	
<211>	28	
<212>	DNA Saniens	
<213>	Homo sapiens	
<400>	217	28
catatio	cca cagcaatttt gacaatgg	
<210>	278	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	278	50
artttq	gtta tatatagagg agtotaggaa aagactogtg ggtotgatto	30
acces,		
<210>	279	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
- 400>	279	50
<400>	tatt tatatagcag caacttacat tgacccaggg agaactcagt	50
tactca	Catt datas, and	
<210>	280	
<211>	24	
<212>	ONA	
<213>	Homo sapiens	
<400>	280	24
<400> gttacc	280 cacc caaccgtcac gacc	24
<400> gttacc	280 cacc caaccgtcac gacc	24
gttacc	cacc caaccgtcac gacc	24
<210>	280 cacc caaccgtcac gacc 281 24	24
gttacc	cacc caaccgtcac gacc	24
<210><211>	281 24	24
<210> <211> <212> <213>	281 24 DNA Homo sapiens	
<210> <211> <212> <213> <400>	281 24 DNA Homo sapiens	24
<210> <211> <212> <213> <400>	281 24 DNA Homo sapiens	
<210> <211> <212> <213> <400>	281 24 DNA Homo sapiens	
<210> <211> <212> <213> <400> caggcg	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg	
<210> <211> <212> <213> <400> caggcg	281 24 DNA Homo sapiens 281 patgc cagagaagac gatg	
<210> <211> <212> <213> <400> caggcg	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg	
<pre></pre>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50	
<pre><210> <211> <212> <213> <400> caggcg</pre> <210> <211> <212> <213>	281 24 DNA Homo sapiens 281 ratgc cagagaagac gatg 282 50 ONA Homo sapiens	24
<pre><210> <211> <212> <213> <400> caggcg</pre> <210> <2110> <2110> <2112> <212> <213>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50 DNA Homo sapiens	
<pre><210> <211> <212> <213> <400> caggcg</pre> <210> <2110> <2110> <2112> <212> <213>	281 24 DNA Homo sapiens 281 ratgc cagagaagac gatg 282 50 ONA Homo sapiens	24
<pre><210> <211> <212> <213> <400> caggcg</pre> <210> <2110> <2110> <2112> <212> <213>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50 DNA Homo sapiens	24
<pre><210> <211> <212> <213> <400> caggcg <211> <212> <213> <400 caggcg <211> <212> <213> <400</pre>	281 24 DNA Homo sapiens 281 patgc cagagaagac gatg 282 50 DNA Homo sapiens 282 satta cataaaaagg actggaggag cttttgcagc aactttgcat	24
<pre><210> <211> <212> <213> <400> caggcg <211> <211> <210> <211> <211> <212> <213> <400> <211> <212> <213> <400> <211> <212> <213> <400> <210> !--210--> <210><!--210--></pre>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50 DNA Homo sapiens 292 attta cataaaaagg actggaggag cttttgcagc aactttgcat 283	24
<pre><210> <211> <212> <213> <400> caggcg <211> <212> <213> <400 caggcg <211> <212> <213> <400</pre>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50 DNA Homo sapiens 282 50 Lona Homo sapiens 282 50 Lona Homo sapiens 283 50	24
<pre><210> <211> <212> <213> <400> caggcc <210> <211> <212> <213> <400</pre>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50 DNA Homo sapiens 282 50 Lona Homo sapiens 282 50 Lona Homo sapiens 283 50	24
<pre><210> <211> <212> <213> <400> caggcg <211> <212> <213> <400> <211> <212> <213> <400> ctagac</pre>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50 ONA Homo sapiens 282 atta cataaaaagg actggaggag cttttgcagc aactttgcat 283 50 DNA Homo sapiens	50
<pre><210> <211> <212> <213> <400> caggcg <211> <212> <213> <400 < 211> <212> <213> <400 < 211> <212> <213> </pre>	281 24 DNA Homo sapiens 281 patgc cagagaagac gatg 282 50 DNA Homo sapiens 282 atta cataaaaagg actggaggag cttttgcagc aactttgcat 283 50 DNA Homo sapiens	24
<pre><210> <211> <212> <213> <400> caggcg <211> <212> <213> <400 < 211> <212> <213> <400 < 211> <212> <213> </pre>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50 ONA Homo sapiens 282 atta cataaaaagg actggaggag cttttgcagc aactttgcat 283 50 DNA Homo sapiens	50
<pre><210> <211> <212> <213> <400> caggcg <211> <212> <213> <400 < 211> <212> <213> <400 < 211> <212> <213> </pre>	281 24 DNA Homo sapiens 281 patgc cagagaagac gatg 282 50 DNA Homo sapiens 282 atta cataaaaagg actggaggag cttttgcagc aactttgcat 283 50 DNA Homo sapiens	50
<pre><210> <211> <212> <213> <400> caggco <211> <212> <213> <400 caggco <211> <212> <213> <400 ctagac <210> <2112 <212> <213> <400 ctagac <2110 <212> <213> <400 ctagac <2110 <212> <2112 <212> <213</pre>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 292 50 ONA Homo sapiens 282 attta cataaaaagg actggaggag cttttgcagc aactttgcat 283 50 DNA Homo sapiens 283 tctt ttaaaaacac gctttcactc tcaaaacagc agagaatgaa	50
<pre> <210> <211> <212> <213> <400> caggcg <211> <212> <213> <400> ttttc <210> <211> <212> <213> <400> ttttc <210> <211> <210> <211> <210> <211> <210> <211> <210> <210> <211> <210> <211> <210> <210<!--21--> <210> <210> <210> <210> <210> <210> <210> <210> <210<!--21--> <210> <210<!--21--> <210> <210<!--21--> <210> <210<!--21--> <210> <210<!--21--> <210> <210<!--21--> <210> <210<!--21--> <210<!--21--> <210<!--21--> <210> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--> <210<!--21--></pre>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50 ONA Homo sapiens 292 attta cataaaaagg actggaggag cttttgcagc aactttgcat 283 50 DNA Homo sapiens 283 50 DNA Homo sapiens 283 50 DNA Homo sapiens 283 50 DNA Homo sapiens	50
<pre> <210> <211> <212> <213> <400> caggcc <210> <211> <212> <2133 <400> ctagac <210> <211> <212> <213> <400> ctagac <210> <211> <212> <213> <400> <211 </pre>	281 24 DNA Homo sapiens 281 jatge cagagaagae gatg 282 50 DNA Homo sapiena 292 attta cataaaaagg actggaggag ettetgeage aactttgeat 283 50 DNA Homo sapiens 283 50 DNA Homo sapiens 283 50 CNA Homo sapiens 283 50 CNA Homo sapiens 284 50	50
<pre> <210> <211> <212> <213> <400> caggcc <210> <211> <212> <213> <400> ctagac <210> <211> <212> <213> <400> ctagac <210> <211> <212> <213> <400> <211> <212> <213<!--21--> <400> <211> <212> <213<!--21--> <400> <211> <212> <213<!--21--> <400> <211> <212<!--21--> <211> <212<!--21--> <211> <211<!--21--> <212> <211> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21</td--><td>281 24 DNA Homo sapiens 281 patgc cagagaaqac gatg 282 50 ONA Homo sapiens 282 attta cataaaaagg actggaggag cttttgcagc aactttgcat 283 50 DNA Homo sapiens 283 tctt ttaaaaacac gctttcactc tcaaaacagc agagaatgaa 284 50 DNA</td><td>50</td></pre>	281 24 DNA Homo sapiens 281 patgc cagagaaqac gatg 282 50 ONA Homo sapiens 282 attta cataaaaagg actggaggag cttttgcagc aactttgcat 283 50 DNA Homo sapiens 283 tctt ttaaaaacac gctttcactc tcaaaacagc agagaatgaa 284 50 DNA	50
<pre> <210> <211> <212> <213> <400> caggcc <210> <211> <212> <213> <400> ctagac <210> <211> <212> <213> <400> ctagac <210> <211> <212> <213> <400> <211> <212> <213<!--21--> <400> <211> <212> <213<!--21--> <400> <211> <212> <213<!--21--> <400> <211> <212<!--21--> <211> <212<!--21--> <211> <211<!--21--> <212> <211> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21--> <211<!--21</td--><td>281 24 DNA Homo sapiens 281 jatge cagagaagae gatg 282 50 DNA Homo sapiena 292 attta cataaaaagg actggaggag ettetgeage aactttgeat 283 50 DNA Homo sapiens 283 50 DNA Homo sapiens 283 50 CNA Homo sapiens 283 50 CNA Homo sapiens 284 50</td><td>50</td></pre>	281 24 DNA Homo sapiens 281 jatge cagagaagae gatg 282 50 DNA Homo sapiena 292 attta cataaaaagg actggaggag ettetgeage aactttgeat 283 50 DNA Homo sapiens 283 50 DNA Homo sapiens 283 50 CNA Homo sapiens 283 50 CNA Homo sapiens 284 50	50
<pre><210> <211> <212> <213> <400> caggco <211> <212> <213> <400 caggco <211> <212> <213> <400 ctagac <210> <211> <212> <213> <400 ctagac <210> <211> <212> <213> <400 ctagac <211> <212> <213</pre>	281 24 DNA Homo sapiens 281 gatgc cagagaagac gatg 282 50 DNA Homo sapiens 292 attta cataaaaagg actggaggag cttttgcagc aactttgcat 283 50 DNA Homo sapiens 283 ttctt ttaaaaacac gctttcactc tcaaaacagc agagaatgaa 284 50 DNA Homo sapiens	50

	160 200 PCT FINAL.5125	
<210> <211> <212> <213>	285 26 pNA Homo sapiens	
<400>	285 ettc aacccacacc tgggca	26
<210> <211> <212> <213>	286 24 DNA Homo sapiens	
<400> aaggto	286 gcca acttgtcctg gctc	24
<210><211><211><212><213>	287 50 DNA Homo sapiens	
<400> gggcgg	287 ggagt aaaaggcaga gtccaattcc accggccccc agtgtgggtg	50
<210> <211> <212> <213>	288 24 DNA Homo sapiens	
<400> tcaat	288 gccat gcccaaactg agga	24
<210> <211> <212> <213>	24 DNA	
<400> caaca	289 ccgag atggacaccc tgct	24
<211>	- DNA	
<400> cttt	. 290 aaggt taaaaatgtg ggttttagat gattgtcctt tctaaacagc	50
<2102 <2112 <2122 <2132	50 DNA	
<400 tcag	 291 gatgtc taaaaaagat etetetagtg tacacacgtg cacacacaca 	5 0
<210: <211: <212: <213:	> 50 > DNA	
<400 agta	> 292 actota tttaaaagac otaaaaattt caaatootaa aatgatotat	50
<211	> DNA	
<400 aata	> 293 aatgtt traaaagcac teettteega atggtggage tggtggggge Page 177	50 [°]

<210> <211> <212> <213>	294 27 DNA Homo sapiens	
<400>		27
<210> <211> <212>	295 28 DNA Homo sapiens	
<213> <400> gaagat	295 Ettt gtgcccagct ttcccaag	28
<210> <211> <212>	296. 50 DNA	
<213>	Homo sapiens	50
<210> <211>	•	
<212> <213>	DNA Homo sapiens	. ,
ttacat	tatgt atacatgtgc catgctggtg tgctgcaccc attaactcgt	50
<210> <211> <212> <213>		
<400> tccatg	298 getea getteatete agetace	27
<210> <211> <212> <213>	- 24 DNA	
<400>	299 etcag accttggccc ttca	24
<210> <211> <212> <213>		
<400>	•	50
<210> <211> <212> <213>	24 DNA	
<400>		24
<210> <211> <212> <213>	23 DNA	

<400> 302 cttgccaggt tctggtggct	tgg	23
<210> 303 <211> 50 <212> DNA <213> Homo sapiens		
<400> 303 cctttttgtc tataaatagg	actttgattt tctggactag agaattgtat	50
<210> 304 <211> 24 <212> DNA <213> Homo sapiens	· *	
<400> 304 acgactccaa gaacagcaag	gccg	24
<210> 305 <211> 24 <212> DNA		
<213> Homo sapiens <400> 305 aaggtaacat cggcagaggc	cage	24
<210> 306 <211> 50		
<212> DNA <213> Homo sapiens <400> 306	gatgtettea etgggeaegg ggaeteaeae	50
<210> 307	gacycecca coyyganogy yynnonen	
<211> 24 <212> DNA <213> Homo sapiens <400> 307		
<400> 307 cggccaggta ccaaagctca - <210> 308	gctg	24
<211> 29 <212> DNA <213> Homo sapiens	•	
<400> 308 gccagattca ggagggaatg	gaagagaac	29
<210> 309 <211> 50 <212> DNA <213> Homo sapiens	•	
<400> 309	tcatgctggc tgctggtggg atttaggata	50
<210> 310 <211> 50 <212> DNA <213> Homo sapiens	·	
<400> 310 tgatagtgat aaaaaaaagt	ggccagattt tggttatatt ttgaaataaa	50
<210> 311 <211> 50 <212> DNA	170	

			1 6U	200 PCT FINAL	.ST25	
<213>	Homo sapiens					
<400>	311					
tatact	gata tttaaagcca	ggggtctggg	tgagataact	gatggaatga		50
•	•					
<210>	312					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
	_					
<400>	312			2202200102		50
attgga	ggac tataaagagg	ggagtcatta	aaacggcgcc	aayaayccya		30
	212					
<210>	313					
<211>	50			•		
<212>	DNA					
<213>	Homo sapiens					
	117					
<400>	313 gagt cattaaaatg	aracraagaa	actgagetae	aagcagtggt		50
agaggg	gage cattadadiy	gegeenagaa	geegageeae			
<210>	314					
<211>	50					
<211>	DNA					
<213>	Homo sapiens					
<400>	314					
マュウンナヤ	cac ccaaaaaatg	ccactggatg	aagtcccctc	cttccattaa		50
gacacc	cac crossadary					
<210>	315	•				
<211>	26					
<212>	DNA					
<213>			· .			
(213)	Homo sapiens					
<400>	315					
	gaga ctagtgcacc	tcagca				26
ccygya	yaya ccaycycacc	,				
					•	
<210>	316					
<211>	24				:,	
<212>	DNA				•	
<213>	Homo sapiens					
<400>	316					
gagcaal	ccc tcttcgtggc	aggt .				24
• •						
<210>	317					
<211>	50			•		
<212>	ONA					
<213>	Homo sapiens					
<400>	317					50
aaaagt	ctt ttaaacaggg	ggggtggagg	ggcttatgag	aayyyyacca	•	
-2105	710 .					
<210>	318					
<211>						
	DNA Homo saniens				•	
<213>	Homo sapiens			•		
<400>	318					
ccatttc	tac taaaaatgca (ragatcagcc	aggcgtggca	cgtgcctgta	5	50
	.cac caaaaacyca (<u></u>		
<210>	319					
<211>	50					
	DNA					
	Homo sapiens					
	orbition			•		
<400>	319					
aaaaaaa	aaa aaaaaaagcc o	ctgtttatat	cctacctcct	tgctgggtgc	5	50
		•				
<210>	320			•		

	·	
	50 DNA Homo sapiens	
<400> aaaata	320 aaaa taaaaaatco catotootoa catttooatt caacotoaat	50
<210> <211> <212> <213>	321 35 DNA Homo sapiens	
<400> acttcc	321 aaac atctacaact cctcagagto tcatt	35
<210> <211> <212> <213>	322 25 DNA Homo sapiens	
<400> tgcage	322 acca tcatgtaagg gacaa	25
<210> <211> <212> <213>	323 50 DNA Homo sapiens	
<400> ttttt	323 aaac tataaaaagt ggggatcaga aaacacagtc ataagggaaa	50
<210> <211> <212> <213>	321 50 DNA Homo sapiens	
<400> gtatat	324 gcta tatatatcag gattcacttt aatggcattg agttccagga :	50
<210> <211> <212> <213>	50	
<400> ataaac	325 aatt taaaaattag cccaccatgg tggtacacac ctgtcgttct	50
<210> <211> <212> <213>	326 50 DNA Homo sapiens	
<400> aaaaag	326 ytgaa aaaaaaaggt gagggagact ttaactttct gaaatatatt	50
<210> <211> <212> <213>	24 DNA	
<400> ccaaga	327 Bagcc gggagaagtg gatg	24
<210> <211> <212> <213>	28 DNA	
<400>	,	28

CT/US03/11497

<210>					
	329				
	50				
<211>					
<212>	DNA				
<213>	Homo sapiens				
			•		
<400>	329				5.0
ctaaaga	gct tatatatcag	cctaagaaaa (gaaaaccaat	aagaagttgC	50
<210>	330				
<211>	26				
<212>	DNA	•		•	
<213>	Homo sapiens				
	•				
<400>	330				
~400>	gtt cagaaccgag	atracc			26
geagere	gee cagaacegag				
<210>	331	•			
<211>	29				
<212>	DNA				
<213>	Homo sapiens				
(213/	Homo septeme				
<400>	331				29
ggcagat	ggg gatacattta	ttetetggg			
<210>	332				
	50				
<211>					
<212>	DNA				
<213>	Homo sapiens				•
	•			•	
<400>	332				50
actaaaa	ata caaaaaagta	gccgggtatg	gtggtaggcg	CCEACAACCC	30
<210>	333				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<213>	Homo sapiens				
<400×	777				
<400×	777	qctacttqgq	aggctgaggc	aggagaattg	50
<400×		gctacttggg	aggctgaggc	aggagaattg	50
<400×	777	gctacttggg	aggctgaggc	aggagaattg	. 50
<400> ggtagg	333 gcc tataatccca	gctacttggg	aggetgagge	aggagaattg	.: 50
<400> ggtaggo	333 gcc tataatccca 334	gctacttggg	aggctgagg c	aggagaattg	50
<400> ggtaggo <210> <211>	333 cgcc tataatccca 334 26	gctacttggg	aggctgaggc	aggagaattg	50
<400> ggtaggo	333 cgcc tataatccca 334 26	gctacttggg	aggctgaggc	aggagaattg	.: 50
<400> ggtaggo <210> <211>	333 cgcc tataatccca 334 26	gctacttggg	aggctgaggc	aggagaattg	. 50
<400> ggtagge <210> <211> <212> -	333 egcc tataatccca 334 26 DNA	gctacttggg	aggctgaggC	aggagaattg	.: 50
<400> ggtaggg <210> <211> <212> <213>	333 cgcc tataatccca 334 26 DNA Homo sapiens	gctacttggg	aggctgaggc	aggagaattg	<u>.</u>
<400> ggtaggg <210> <211> <212> <213> <400>	333 gcc tataatccca 334 26 DNA Homo sapiens 334	·	аддстдаддс	aggagaattg	50
<400> ggtaggg <210> <211> <212> <213> <400>	333 cgcc tataatccca 334 26 DNA Homo sapiens	·	aggctgaggC	aggagaattg	<u>.</u>
<400> ggtaggg <210> <211> <212> <213> <400>	333 gcc tataatccca 334 26 DNA Homo sapiens 334	·	aggctgaggc	aggagaattg	<u>.</u>
<400> ggtaggg <210> <211> <212> <213> <400> tcggcti	333 cgcc tataatccca 334 26 DNA Homo sapiens 334 cgga aatcagaatg	·	aggctgaggc	aggagaattg	<u>.</u>
<400> ggtaggg <210> <211> <211> <212> <213> <400> tcggcti	333 cgcc tataatccca 334 26 DNA Homo sapiens 334 cga aatcagaatg	·	aggctgaggc	aggagaattg	<u>.</u>
<400> ggtaggg <210> <211> <212> <213> <400> tcggcti	333 cgcc tataatccca 334 26 DNA Homo sapiens 334 cgga aatcagaatg	·	aggctgaggc	aggagaattg	<u>.</u>
<400> ggtaggg <210> <211> <211> <212> <213> <400> tcggcti	333 cgcc tataatccca 334 26 DNA Homo sapiens 334 cga aatcagaatg	·	aggctgaggc	aggagaattg	<u>.</u>
<400> ggtaggd <210> <211> <212> <212> <213> <400> tcggcti <210> <211> <210>	333 cgcc tataatccca 334 26 DNA Homo sapiens 334 cgga aatcagaatg 335 30 DNA	·	aggctgaggC	aggagaattg	<u>.</u>
<400> ggtaggd <210> <211> <212> <212> <213> <400> tcggcti <210> <211> <210>	333 gcc tataatccca 334 26 DNA Homo sapiens 334 gga aatcagaatg 335 30	·	aggctgaggc	aggagaattg	<u>.</u>
<400> ggtaggd <210> <211> <212> <213> <400> tcggcti <211> <213>	333 ggc tataatccca 334 26 DNA Homo sapiens 334 gga aatcagaatg 335 30 DNA Homo sapiens	·	aggctgaggc	aggagaattg	26
<400> ggtaggd <210> <211> <212> <212> <213> <400> tcggcti <210> <211> <210> <211> <210> <400>	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335	agaagg	aggctgaggC	aggagaattg	<u>.</u>
<400> ggtaggd <210> <211> <212> <212> <213> <400> tcggcti <210> <211> <210> <211> <210> <400>	333 ggc tataatccca 334 26 DNA Homo sapiens 334 gga aatcagaatg 335 30 DNA Homo sapiens	agaagg	aggctgaggc	aggagaattg	26
<400> ggtaggd <210> <211> <212> <212> <213> <400> tcggcti <210> <211> <210> <211> <210> <400>	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335	agaagg	aggctgaggc	aggagaattg	26
<400> ggtaggd <210> <211> <212> <212> <213> <400> tcggcti <211> <211> <210> <211> <210> <211> tggcaca	333 agac tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aga atgattgcag	agaagg	aggctgaggc	aggagaattg	26
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <212> tcggcti <210> <211> <211> <210> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aga atgattgcag 336	agaagg	aggctgaggc	aggagaattg	26
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <212> tcggcti <210> <211> <211> <210> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211	333 agac tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aga atgattgcag	agaagg	aggctgaggc	aggagaattg	26
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <212> tcggcti <210> <211> <211> <210> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aga atcagaatg 335 aga atcagaatg	agaagg	aggctgaggC	aggagaattg	26
<410> ggtaggd <210> <211> <212> <212> <213> <400> tcggcti <210> <211> <211> <211> <211> <211> <212> <213>	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aga atcagaatg 335 30 DNA Homo sapiens 335 aga atgattgcag 336 50 DNA	agaagg	aggctgaggc	aggagaattg	26
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <210> <211> <210> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211>	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aga atcagaatg 335 aga atcagaatg	agaagg	aggctgaggc	aggagaattg	26
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <211> <211> <211> <211> <211> <211> <211> <211> <212> <213> <400> tgcacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	333 agac tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aaga atgattgcag 336 50 DNA Homo sapiens	agaagg Cagtgagtag			
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <211> <211> <211> <211> <211> <211> <211> <211> <212> <213> <400> tgcacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	333 agac tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aaga atgattgcag 336 50 DNA Homo sapiens	agaagg Cagtgagtag			26
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <211> <211> <211> <211> <211> <211> <211> <211> <212> <213> <400> tgcacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	333 agcc tataatccca 334 26 DNA Homo sapiens 334 335 30 DNA Homo sapiens 335 30 DNA Homo sapiens 335 aga atgattgcag 336 50 DNA Homo sapiens	agaagg Cagtgagtag			
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <211> <211> <211> <211> <211> <211> <211> <211> <212> <213> <400> tgcacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	333 agac tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aaga atgattgcag 336 50 DNA Homo sapiens	agaagg Cagtgagtag			
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <212> <211> <211> <212> <211> <212> <213> <400> tgcacaa <210> <211> <212> <213> <400> aaaaggd	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aaga atgattgcag 336 50 DNA Homo sapiens 336 50 DNA Homo sapiens 336 50 CONA Homo sapiens 336 51 CONA Homo sapiens 336 52 CONA Homo sapiens 336 CONA Homo sapiens 336 CONA Homo sapiens	agaagg Cagtgagtag			
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <211> <211> <211> <211> <211> <211> <211> <211> <212> <213> <400> tgcacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	333 agac tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aaga atgattgcag 336 50 DNA Homo sapiens	agaagg Cagtgagtag			
<400> ggtaggd <210> <211> <212> -<213> <400> tcggcti <211> <212> <211> <211> <212> <211> <212> <213> <400> tgcacaa <210> <211> <212> <213> <400> aaaaggd	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aaga atgattgcag 336 50 DNA Homo sapiens 336 50 DNA Homo sapiens 336 50 CONA Homo sapiens 336 51 CONA Homo sapiens 336 52 CONA Homo sapiens 336 CONA Homo sapiens 336 CONA Homo sapiens	agaagg Cagtgagtag			
<410> ggtaggd <210> <211> <211> <212> <10> <tool> tcggcti <210> <211> <211> <211> <211> <400> tcggcti <211> <211> <400> tgcacaa <400> c211> <212> <213> <400> c211> <211> <212> <213> <400> c211> <211> /tool>	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 agga atgattgcag 336 50 DNA Homo sapiens 336 taga atgattgcag 336 50 DNA Homo sapiens 337 50	agaagg Cagtgagtag			
<400> ggtaggd <210> <211> <211> <212> <213> <400> tcggcti <210> <211> <211> <211> <211> <211> <211> <211> <211> <211> <211> <212> <213> <400> tgcacaaaaaagga <210> <210> <211> <212> <213>	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 aaga atgattgcag 336 50 DNA Homo sapiens 336 tataaaaaggg 337 50 DNA	agaagg Cagtgagtag			
<410> ggtaggd <210> <211> <211> <212> <10> <tool> tcggcti <210> <211> <211> <211> <211> <400> tcggcti <211> <211> <400> tgcacaa <400> c211> <212> <213> <400> c211> <211> <212> <213> <400> c211> <211> /tool>	333 agcc tataatccca 334 26 DNA Homo sapiens 334 agga aatcagaatg 335 30 DNA Homo sapiens 335 agga atgattgcag 336 50 DNA Homo sapiens 336 taga atgattgcag 336 50 DNA Homo sapiens 337 50	agaagg Cagtgagtag			

WO 03/089583

			160	200 PCT FINAL.	ST25	
ggccaa	ctta tataaaaggt	ttatgtttt	gttctgataa	tttcgtttct	50	
•						
	220		-			
<210>	338 50					
<211>	AND					
<212>						
<213>	Homo sapiens					
<400>	338					
aagtta	agtt ttaaaaagaa	caggetacaa	agttatagct	atggggtgat	50	
- ugu-						
		·				
<210>	339				•	
<211>	21					
<212>	DNA					
<213>	Homo sapiens					
<400>		~			21	
gggcgg	tgta gtgcaggtcc	y				
<210>	340					
<211>	24					
<212>	DNA					
<213>	Homo sapiens					
<400>	340					
cctcca	gttg cagggaattc	tgcc			24	
	-					
<210>	341					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
<400>	341					
aattca.	aata tttaaaacgg	actototot	cttcacaaaa	gtctagatct	50	
auctiqu	,	•				
<210>	342					
<211>	24	•				
<212>	DNA					
<213>	Homo sapiens			;	•	
	2.0			•		
<400>	342	at ac			24	
ggctgt	tgag caggetteat	grąc				
<210>	343					
<211>	24					
<212>	DNA					
<213>	Homo sapiens		-			
<400>	343				24	
ctcctc	tgga tgatctgccg	cttg			-1	
				•		
<210>	344					
<210> <211>	344 50					
<211>	DNA					
<212>	Homo sapiens					
16137	zopatina					
<400>	344					
attggg	tgca tatatattta	ggatagttag	ctcttcttgt	tgaactgacc	50	
	-					