10.1 Defining Convergent and Divergent Infinite Series

Calculus

1. Calculator active. Given the infinite series: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \cdots$, find the sequence of partial sums S_1 , S_2 , S_3 , S_4 , and S_5 .

2. Find the *n*th partial sum for the infinite series $\sum_{n=0}^{\infty} \frac{1}{5^n}$.

- 3. The infinite series $\sum_{n=1}^{\infty} \frac{3}{4^{n+1}}$ has *n*th partial sum $S_n = \frac{1}{4} \frac{1}{4^{n+1}}$. What is the sum of the series?
- 4. If the infinite series $\sum_{n=0}^{\infty} a^n$ has nth partial sum $S_n = \frac{4}{3}(4^n 1)$ for $n \ge 1$. What is the sum of the series?
- 5. Does the series $\sum_{n=1}^{\infty} \left(\frac{1}{2n-1} \frac{1}{2n+1} \right)$ converge or diverge? If it converges find its sum.

10.2 Working with Geometric Series

- 1. What is the sum of the infinite geometric series $11 + -\frac{11}{3} + \frac{11}{9} + -\frac{11}{27} + \cdots$?
- 2. What is the value of $\sum_{n=1}^{\infty} \frac{(-e)^{n+1}}{9^n}$?

3. Consider the series $\sum_{n=1}^{\infty} a_n$. If $\frac{a_{n+1}}{a_n} = \frac{1}{5}$ for all integers $n \ge 1$, and $\sum_{n=1}^{\infty} a_n = 50$, then $a_1 = \frac{1}{5}$

4. Calculator active. If $f(x) = \sum_{n=1}^{\infty} \left(\cos^2 \frac{x}{2}\right)^n$, then f(2.4) =

5. For what value of a does the infinite series $\sum_{n=0}^{\infty} a \left(-\frac{3}{5}\right)^n$ equal 15?

- 1. The *n*th-Term Test can be used to determine divergence for which of the following series?

- I. $\sum_{n=1}^{\infty} \frac{(n+1)^3}{3n^3 2n + 1}$ II. $\sum_{n=1}^{\infty} \frac{(n+1)^2}{2n^2 3n^3 + 1}$

- A. III only
- B. I and III only
- C. II and III only
- D. I, II, and III

Use the nth-Term Test for Divergence to determine if the series diverges.

5. Verify that the infinite series $\sum_{n=1}^{\infty} \frac{6^n + 1}{6^{n+1}}$ diverges by using the *n*th-Term Test for Divergence. Show the value of the limit.

5. Diverges by nth-Term Test, $\lim_{n\to\infty}a_n=\frac{1}{6}$	4. Converges, Geometric Series, $\frac{1}{9} = \frac{1}{7}$	3. Diverges by n th-Term Test, $\lim_{n\to\infty}a_n=\frac{2}{3}$	2. Converges, Geometric Series, $\frac{\pi}{7} = \tau$	I. B
--	---	---	--	------

- 1. Use the Integral Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$.
- 2. Confirm the Integral Test can be applied to the series $\frac{3}{2} + \frac{3}{5} + \frac{3}{10} + \cdots$ and use the Integral Test to determine the convergence or divergence of the series.
- 3. Explain why the Integral Test does not apply to the series $\sum_{n=1}^{\infty} \frac{1}{e^{-n}}$.

4. Prove the Integral Test applies to the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^3}$. Determine the convergence or divergence of the series.

5. Use the Integral Test to determine if the series $\sum_{n=1}^{\infty} \frac{4n}{2n^2+1}$ converges or diverges.

Sorries Diverges $\delta = \infty$, Serries Diverges			4. $\int_{1}^{\infty} \int (x) dx = \frac{1}{8}. \text{ Series Converges}$		
$1 \le x$ rof		Converges			
3. $f(x)$ is not a decreasing function	sərises $\frac{\pi}{4}$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) dx = \frac{3}{2}$	1. $\int_{1}^{\infty} f(x) dx = \frac{1}{4}, \text{ Series Converges}$		
TH AJ 4.01 of SISWAIIA					

- 1. Determine the convergence or divergence of the *p*-series $\sum_{n=1}^{\infty} n^{-2}$.
- 2. For what values of p will the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{1-p}}$ converge?
- 3. For what values of p will both infinite series $\sum_{n=1}^{\infty} \left(\frac{3}{p}\right)^n$ and $\sum_{n=1}^{\infty} \frac{1}{n^{5-p}}$ converge?

4. What are all values of p for which $\int_{1}^{\infty} x^{-(3p-2)} dx$ converges?

5. Which of the following is a divergent *p*-series?

- A. $\sum_{n=1}^{\infty} n^{-\pi}$
- B. $\sum_{n=1}^{\infty} \frac{1}{n}$
- C. $\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$
- D. $\sum_{n=1}^{\infty} \frac{1}{n^3}$

1. Which of the following series converges?

(A)
$$\sum_{n=1}^{\infty} \frac{3n}{2n^2 + 1}$$

(B)
$$\sum_{n=1}^{\infty} \frac{3n^2}{n + 2n^2}$$

(C)
$$\sum_{n=1}^{\infty} \left(\frac{\pi}{e}\right)^n$$

$$(D) \qquad \sum_{n=1}^{\infty} \frac{3n^2}{2n^3 + 3n}$$

$$(E) \qquad \sum_{n=1}^{\infty} \frac{n-1}{n4^n}$$

2. Which of the following series can be used with the Limit Comparison Test to determine whether the series $\sum_{n=0}^{\infty} \frac{5^n}{7^n - n^2}$ diverges or converges?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{5^n}$$

$$(C) \qquad \sum_{n=1}^{\infty} \frac{1}{7^n}$$

(D)
$$\sum_{n=1}^{\infty} \left(\frac{5}{7}\right)^n$$

- 3. Use the Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n-2}{n5^n}$. You must identify the series you are using for comparison.
- 4. Use the Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$. You must identify the series you are using for comparison.
- 5. Determine whether the series $\sum_{n=1}^{\infty} \frac{n5^n}{4n^4 3}$ converges or diverges. Identify the test for convergence used.

by nth Term test.	harmonic series.	series.		
5. Diverges by limit comparison with $\sum_{n=1}^{\infty} \frac{5^n}{4n^3}$, which diverges	4. Diverges by limit comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$, a divergent	3. Converges by comparison to $\sum_{n=1}^{\infty} \frac{1}{5n}$, a convergent geometric	7. D	I' E

- 1. Explain why the Alternating Series Test does not apply to the series $\sum_{n=0}^{\infty} \frac{(-1)^n \cos(n\pi)}{n^2}$.
- 2. Determine the convergence or divergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^n n}{\ln(n+1)}$.
- 3. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{4^n}$$

II.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\pi^n}$$

III.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{1+n^2}$$

- A. I only
- B. I and II only
- C. I and III only
- D. I, II, and III
- 4. Which of the following statements are true about the series $\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n-1)!}?$

 - II. $|a_{n+1}| \le |a_n|$ for $n \ge 1$. III. $\lim_{n \to \infty} a_n = 0$

 - A. I only
- B. I and II only
- C. I and III only
- D. I, II, and III

- 5. Which of the following statements is true?
- A. $\sum_{n=0}^{\infty} \frac{(-1)^n (1-n)}{n}$ converges by the Alternating Series Test.
- B. $\sum \frac{(-1)^n(n+1)}{2n}$ converges by the Alternating Series Test.
- C. $\sum_{n=0}^{\infty} \frac{(-1)^n n^2}{4\sqrt{n}}$ converges by the Alternating Series Test.
- D. $\sum_{n=0}^{\infty} \frac{(-1)^n 2\sqrt{n}}{n}$ converges by the Alternating Series Test.

Answers to 10.7 CA #1

1. The Alternating Series Test does not apply because the series is not alternating. 2. The series diverges by the nth Term Test. 3. B 4. D 5. D

- 1. Use the Ratio Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^4}{3^n}$.
- 2. If the Ratio Test is applied to the series $\sum_{n=0}^{\infty} \frac{6^n}{(n+1)^n}$, which of the following inequalities results, implying that the series converges?

- A. $\lim_{n \to \infty} \frac{6^n}{(n+1)^n} < 1$ B. $\lim_{n \to \infty} \frac{6(n+1)^n}{(n+2)^{n+1}} < 1$ C. $\lim_{n \to \infty} \frac{6^{n+1}}{(n+1)^n} < 1$ D. $\lim_{n \to \infty} \frac{6^{n+1}}{(n+1)^{n+1}} < 1$
- 3. If $a_n > 0$ for all n and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 5$, which of the following series converges?
 - A. $\sum_{n=1}^{\infty} \frac{a_n}{n^2}$
- B. $\sum_{n=1}^{\infty} \frac{a_n}{2^n}$
- C. $\sum_{n=1}^{\infty} \frac{a_n}{n^5}$
- D. $\sum_{n=1}^{\infty} \frac{a_n}{7^n}$
- 4. What are all values of x > 0 for which the series $\sum_{n=0}^{\infty} \frac{6n^3}{x^n}$ converges?
- 5. Which of the following series converge?
 - I. $\sum_{n=1}^{\infty} \frac{1}{n!}$

II. $\sum_{n=1}^{\infty} \frac{9^n}{n^5}$

III. $\sum_{n=1}^{\infty} \frac{5n}{2n-1}$

- A. I only
- B. I and II only
- C. I and III only
- D. I, II, and III

1. For what values of x is the series $\sum_{n=0}^{\infty} (-1)^n (5x+1)^n$ absolutely convergent?

2. For what values of x is the series $\sum_{n=1}^{\infty} \frac{(5x-2)^n}{n}$ conditionally convergent?

- A. $x > \frac{3}{5}$ B. $x = \frac{3}{5}$ C. $x = \frac{1}{5}$ D. $x < \frac{1}{5}$
- 3. Which of the following statements is true about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 \sqrt{n}}.$
 - A. The series converges conditionally.
 - B. The series converges absolutely.
 - C. The series converges but neither conditionally nor absolutely.
 - D. The series diverges.
- 4. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+5}$ converges absolutely, converges conditionally, or diverges.

5. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)!}$ converges absolutely, converges conditionally, or diverges.

Answers to 10.9 CA #1

THE WELL TO THE TENT					
1. $-\frac{2}{5} < x < 0$	2. C	3. B	4. Converges Conditionally	5. Converges Absolutely	

1. If the series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1}$ is approximated by the partial sum with 50 terms, what is the alternating series error bound?

2. Approximate and interval for the sum of the convergent alternating series $\sum_{n=1}^{\infty} \frac{(-1)^n 2}{n^2}$ using the Alternating Series Error Bound the first 6 terms.

3. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges to S. Based on the alternating series error bound, what is the least number of terms to guarantee a partial sum that is within 0.02 of S?

4. If the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{5}{n}$ is approximated by $S_k = \sum_{n=1}^k (-1)^{n+1} \frac{5}{n}$, what is the least value of k for which the alternating series error bound guarantees that $|S - S_k| < 0.001$?

- (A) 999
- (B) 1000
- (C) 4999
- (D) 5000
- 5. Determine the least number of terms necessary to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^n 3}{4^n}$ with an error less than 10^{-3} .

Answers to 10.10 CA #1

11110// 410 10 10/10 011//1							
1. $\frac{1}{103}$	2. $-1.656 \le S \le -1.607$	3. 2500	4. D	5. 5			

1. The fourth-degree Maclaurin polynomial for $\cos x$ is given by $1 - \frac{x^2}{2!} + \frac{x^4}{4!}$. Use the Lagrange error bound to estimate the error in using this polynomial to approximate $\cos \frac{\pi}{3}$.

2. The function f has derivatives of all orders for all real numbers and $f^{(4)}(x) = e^{\sin x}$. If the third-degree Taylor Polynomial for f about x = 0 is used to approximate f on [0,1], what is the Lagrange error bound for the maximum error on [0,1]?

3. Assume a third-degree Taylor Polynomial about x = 2 is used for the approximation f and $|f^{(4)}(x)| \le 12$ for all $x \ge 1$. Which of the following represents the Lagrange error bound in the approximation of f(2.5)?

(A) $\frac{1}{4}$

(B) $\frac{1}{2}$

- (C) $\frac{1}{16}$
- (D) $\frac{1}{32}$
- 4. Determine the degree of the Taylor Polynomial about x = 0 for $f(x) = e^x$ required for the error in the approximation of f(0.8) to be less than 0.005.

5.

x	f(x)	f'(x)	f''(x)	f'''(x)	$f^{(4)}(x)$
2	112	164	214	312	345

Let f be a function having derivatives of all orders for x > 0. Selected values for the first four derivatives of f are given for x = 2. Use the Lagrange error bound to show that the third-degree Taylor Polynomial for f about x = 2 approximates f(1.9) with an error less than 0.002.

Answers to 10.12 CA #1

11110// 10/10 10 10/11 011//1					
1. 0.0105	2. 0.0967	3. D	4. $n = 5$	5. $R_3 = 0.0014375 < 0.002$	

10.13 Radius and Interval of Convergence

CA #1

Find the interval of convergence for each power series.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+4)^n}{n}$$

2.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \, n! \, (x-4)^n}{3^n}$$

3. What is the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(x+2)^n}{2^n}$?

4. What is the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{n}{n+1} (-kx)^{n-1}$, where k is a positive integer?

5. If the power series $\sum_{n=0}^{\infty} a_n(x-4)^n$ converges at x=7 and diverges at x=8, which of the following must be true?

- I. The series converges at x = 1.
- II. The series converges at x = 2.
- III. The series diverges at x = 0.
- (A) I only
- (B) II only
- (C) I and II only
- (D) II and III only

Answers to 10.13 CA #1

1	$-5 < x \le -3$	2. $x = 4$	3. 2	$4. -\frac{1}{k} < \chi < \frac{1}{k}$	5. B

10.14 Finding Taylor or Maclaurin Series

1. What is the coefficient of x^6 in the Taylor Series about x = 0 for the function $f(x) = \frac{e^{3x^2}}{4}$?

2. Write the first four non-zero terms for the Taylor Series for the function $f(x) = 2x \cos x$ about x = 0?

- 3. What is the sum of the series $1 \frac{3^2}{2!} + \frac{3^4}{4!} \frac{3^6}{6!} + \dots + \frac{(-1)^n 3^{2n}}{(2n)!}$?
 - (A) ln 3

Calculus

(B) e^{3}

- (C) sin 3
- (D) cos 3
- 4. Write the first four non-zero terms in the Maclaurin Series for the function $f(x) = x \sin 2x$.

5. Which of the following is the Maclaurin Series for the function f defined by $f(x) = 1 + x^2 + \cos x$?

- (A) $2 + \frac{x^2}{2} + \frac{x^4}{24} + \cdots$ (B) $2 + \frac{3x^2}{2} + \frac{x^4}{24} + \cdots$ (C) $1 + x + x^2 \frac{x^3}{6} + \cdots$ (D) $2 + x + \frac{3x^2}{2} + \frac{x^3}{6} + \cdots$

1. What is the coefficient of x^5 in the Taylor series for the function $f(x) = e^x \sin x$ about x = 0?

2. If the function f is defined by $f(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$, then f'(x) = ? Write the first four nonzero terms and the general term of the Taylor series about x = 0.

3. Let f be the function defined by $f(x) = e^{3x}$. Find the Maclaurin series for the derivative f'. Write the first four nonzero terms and the general term.

Find the third-degree Taylor Polynomial for $f(x) = \sin x \cos x$ about x = 0.

5. If $f'(x) = \frac{4}{1+x}$ and f(0) = 0, write the first four nonzero terms and the general term of the Maclaurin series

Answers to 10.15 CA #1

1.
$$-\frac{1}{30}$$
2. $f'(x) = 2x + 2x^3 + x^5 + \frac{x^7}{3} + \dots + \frac{2nx^{2n-1}}{n!}$
3. $f'(x) = 3 + 9x + \frac{27x^2}{2} + \frac{27x^3}{2} + \dots + \frac{3n(3x)^{n-1}}{n!}$
4. $T = x - \frac{2}{3}x^3$
5. $f(x) = 4x - 2x^2 + \frac{4}{3}x^3 - x^4 + \dots + \frac{(-1)^n 4x^{n+1}}{n+1}$