

# 데이터베이스 정규화 기법

### 학습내용

- 정규화의 필요성
- 정규화 기법

### 학습목표

- 정규화의 필요성을 설명할 수 있다.
- 정규화 기법을 이해하고, 정규화를 수행할 수 있다.

## 정규화의 필요성

# 1 정규화 모델의 특징

- 1 개체 관계의 정확성
- 2 데이터의 일치성
- 3 데이터 모델의 단순성
- 4 개체에 존재하는 속성의 비중복성

## 정규화의 필요성

## 2 관계형 DB 설계의 가이드라인

- 1 서로 다른 개체 타입(Entity Type)들을 하나로 혼합하지 말 것
- 2 중복이나 갱신 부작용이 발생하지 않게 할 것
- 3 널 값(Null Value) 발생을 될 수 있는 한 피할 것
- 4 위조 튜플(Spurious Tuple)들의 발생을 피할 것

# 1 제 1 정규형

### 정의

- 어떤 릴레이션 R에 속한 모든 도메인이 원자 값(Atomic Value) 만으로 구성
- 모든 정규화 릴레이션은 제 1 정규형에 속함
- 제 1 정규형에서 이상 현상의 원인은 기본 키에 부분 함수 종속된 애트리뷰트가 존재하기 때문임

# 11 제 1 정규형



- 수강지도 (학번, 지도교수, 학과, <u>과목번호</u>, 성적)
  - 기본 키 : (학번, 과목번호)
  - 함수 종속: (학번, 과목번호) → 성적

학번 → 지도교수

학번 → 학과

지도교수 → 학과



# 11 제 1 정규형

수강지도

| 학번  | 지도교수 | 학과  | 과목번호 | 성적 |
|-----|------|-----|------|----|
| 100 | P1   | 컴퓨터 | C413 | Α  |
| 100 | P1   | 컴퓨터 | E412 | Α  |
| 200 | P2   | 전기  | C123 | В  |
| 300 | Р3   | 컴퓨터 | C312 | Α  |
| 300 | Р3   | 컴퓨터 | C324 | С  |
| 300 | Р3   | 컴퓨터 | C413 | Α  |
| 400 | P1   | 컴퓨터 | C312 | Α  |
| 400 | P1   | 컴퓨터 | C324 | Α  |
| 400 | P1   | 컴퓨터 | C413 | В  |
| 400 | P1   | 컴퓨터 | E412 | С  |

#### 삽입 이상

학생의 지도교수 삽입 시 과목번호 필요

### 삭제 이상

과목 취소 시 지도교수 정보 연쇄 삭제

### 갱신 이상

400번 학생 지도교수 변경 시 4번 변경

# 2 제 2 정규형

### 정의

- 어떤 릴레이션 R이 1NF이고, 키(기본)에 속하지 않은 애트리뷰트 모두가 기본 키에 완전 함수 종속 (부분 함수 종속 제거)
- 제 2 정규형은 부분 함수 종속을 제거하여 완전 함수 종속만 남도록 하는 것
- 2NF에서는 함수 종속 관계 A→B, B→C이면 A→C가 성립하는 이행적 함수 종속(Transitive FD)이 존재하는데, 이는 이상 현상의 원인이 됨

## 2 제 2 정규형



- 지도(<u>학번</u>, 지도교수, 학과)
  - 학번 → 지도교수
  - 학번 → 학과
  - 지도교수 → 학과
- 수강 (<u>학번, 과목번호,</u> 성적)
  - (학번, 과목번호) → 성적



# 2 제 2 정규형

지도

| 학번  | 지도교수 | 학과  |
|-----|------|-----|
| 100 | P1   | 컴퓨터 |
| 200 | P2   | 전기  |
| 300 | Р3   | 컴퓨터 |
| 400 | P1   | 컴퓨터 |

수강

| 학번  | 과목번호 | 성적 |
|-----|------|----|
| 100 | C413 | Α  |
| 100 | E412 | Α  |
| 200 | C123 | В  |
| 300 | C312 | Α  |
| 300 | C324 | С  |
| 300 | C413 | Α  |
| 400 | C312 | Α  |
| 400 | C324 | Α  |
| 400 | C413 | В  |
| 400 | E412 | С  |
|     |      |    |

### 삽입 이상

교수정보 삽입 시 학번 필요

### 삭제 이상

학생 정보삭제 시 교수 정보 연쇄 삭제

### 갱신 이상

P1 교수정보 변경 시 2번 변경

# 3 제 3 정규형

### 정의

- 어떤 릴레이션 R이 2NF이고, 키(기본)에 속하지 않은 모든 애트리뷰트들이 기본 키에 이행적 함수 종속이 아닌 경우(이행 종속 제거)
- 제 3 정규형은 이행 함수 종속 제거



## 3 제 3 정규형



- 지도(<u>학번</u>, 지도교수, 학과)
  - 기본 키 : {학번}, 외래 키 : {지도교수}, 참조 : 지도교수학과
  - 학번 → 지도교수
- 지도교수학과 (지도교수, 학과)
  - 기본 키 : {지도교수}
  - 지도교수 → 학과



#### 학생지도

| 학번  | 지도교수 |
|-----|------|
| 100 | P1   |
| 200 | P2   |
| 300 | Р3   |
| 400 | P1   |

지도교수 학과

| <u>지도교수</u> | 학과  |
|-------------|-----|
| P1          | 컴퓨터 |
| P2          | 전기  |
| Р3          | 컴퓨터 |

# 3 제 3 정규형

 제 1 정규형부터 제 3 정규형까지는 Codd의 원본적 정의로서 모두 하나의 후보 키, 즉 하나의 기본 키만 가진 것으로 가정

### 릴레이션: 3NF를 만족하면서 BCNF를 만족하지 않는 경우

- 복수의 후보 키를 가지고 있고
- 후보 키들이 두 개 이상의 애트리뷰트들로 구성되고
- 후보 키의 애트리뷰트가 서로 중첩되는 경우에는 적용할 수가 없음
- 이런 경우를 위해서 보이스/코드 정규형 (Boyce/Codd Normal Form : BCNF)이 제안됨

# BCNF (Boyce Codd Normal Form)

### 정의

릴레이션 R의 모든 결정자(Determinant)가 후보 키(Candidate Key)로 지정

- 1NF, 2NF, 기본 키, 이행 종속 등의 개념을 이용하지 않고 직접 후보 키를 이용하여 정의될 수 있기 때문에 개념적으로 3NF보다 간단
- 제 3 정규형보다 강력하다고 볼 수 있으므로 "강한 제 3 정규형(Strong 3NF)"이라고도 함

# BCNF (Boyce Codd Normal Form)



• 3NF이지만 BCNF가 아닌 경우



# 4 BCNF (Boyce Codd Normal Form)

### 수강과목

| 학번  | 과목    | 교수 |
|-----|-------|----|
| 100 | 프로그래밍 | P1 |
| 100 | 자료구조  | P2 |
| 200 | 프로그래밍 | P1 |
| 200 | 자료구조  | Р3 |
| 300 | 자료구조  | Р3 |
| 300 | 프로그래밍 | P4 |

변경 이상의 원인은 사실상 애트리뷰트 교수가 결정자이지만 <mark>후보 키로 취급하고 있지 않기 때문</mark>임

#### 삽입 이상

교수정보 삽입 시 학번 필요

#### 삭제 이상

학생 정보삭제 시 교수 정보 연쇄 삭제

#### 갱신 이상

P1 교수정보 변경 시 2번 변경

# 4 BCNF (Boyce Codd Normal Form)



# 5 제 4 정규형

### 정의

- 릴레이션 R에 MVD A \* B를 만족하는 애트리뷰트 부분집합 A, B가 존재할 때 R의 모든 애트리뷰트들이 이 A에 함수 종속
- R의 모든 애트리뷰트 X에 대해 A → X이고 A가 후보 키
- 다치 종속 제거

# 5 제 4 정규형

### 다치 <del>종속</del>(MVD : Multivalued Dependency)

A,B,C를 릴레이션 R의 애트리뷰트의 부분집합이라 할 때
 애트리뷰트 쌍(A, C)값에 대응되는 B값의 집합이
 A값에만 종속되고 C값에는 독립이면 B는 A에
 다치 종속이라 하고 A\*B로 표기

# 5 제 4 정규형

## $\left\langle 1 ight angle$ 다치 종속 예시

| 개설과 <del>목</del> | 과목     | 교수 | 교재 | BCNF |
|------------------|--------|----|----|------|
|                  | 자료구조   | P1 | T1 |      |
|                  | 자료구조   | P1 | T2 |      |
|                  | 자료구조   | P2 | T1 |      |
|                  | 자료구조   | P2 | T2 |      |
|                  | 데이터베이스 | P1 | T1 |      |
|                  | 데이터베이스 | P1 | T3 |      |
|                  | 데이터베이스 | P1 | T4 |      |

(∵키는 모든 애트리뷰트를 포함한 {과목, 교수, 교재}가 되어 이외에는 어떤 결정자도 없음) 기본 키 : (과목, 교수, 교재)

- 과목\*교수에서 과목의 자료구조는 교수 애트리뷰트 값의 집합 {P1,P2}와 대응하고,
- 과목→교재에서 과목의 자료구조는 교재 애트리뷰트 값의 집합 {T1,T2}와 대응한다는 의미

# 5 제 4 정규형

## $\left\langle 1 ight angle$ 다치 종속 예시

개설과목

| 과목     | 교수 | 교재 |
|--------|----|----|
| 자료구조   | P1 | T1 |
| 자료구조   | P1 | T2 |
| 자료구조   | P2 | T1 |
| 자료구조   | P2 | T2 |
| 데이터베이스 | P1 | T1 |
| 데이터베이스 | P1 | T3 |
| 데이터베이스 | P1 | T4 |

이상 현상은 교수와 교재가 무관한데 <mark>하나의</mark> 릴레이션에 표현했기 때문임

#### 삽입 이상

데이터베이스 과목을 P4 교수가 담당한다면 교재수만큼 입력

#### 갱신 이상

교수 정보 변경 시 교재 수만큼 변경

# 5 제 4 정규형

## **2** 제 4 정규형 예시

개설과목

| - | 과목     | 교소 | 교재 |
|---|--------|----|----|
|   | 자료구조   | P1 | T1 |
|   | 자료구조   | P1 | T2 |
|   | 자료구조   | P2 | T1 |
|   | 자료구조   | P2 | T2 |
|   | 데이터베이스 | P1 | T1 |
|   | 데이터베이스 | P1 | T3 |
|   | 데이터베이스 | P1 | T4 |



4NF

과목 교수

| $\cdot  $ | 과목     | 교수 |
|-----------|--------|----|
|           | 자료구조   | P1 |
|           | 자료구조   | P2 |
|           | 데이터베이스 | P1 |

과목 교재

| 과목     | 교재 |
|--------|----|
| 자료구조   | T1 |
| 자료구조   | T2 |
| 데이터베이스 | T1 |
| 데이터베이스 | T3 |
| 데이터베이스 | T4 |

# 6 제 5 정규형

### 정의

 릴레이션 R에 존재하는 모든 조인 종속이 릴레이션 R의 후보 키를 통해서만 성립, PJ/NF(Projection - Join Normal Form), (조인 종속 제거)

# 6 제 5 정규형

### 조인 종속(JD: Join Dependency)

- 어떤 릴레이션 R의 애트리뷰트 부분 집합 A,B,...,Z가 있는 경우
  - 이때 만일 릴레이션 R이 그의 프로젝션 A,B,…,Z를 모두 조인한 것과 똑같다면 R은 조인 종속\*(A,B,....,Z)을 만족시킴

# 6 제 5 정규형





# 7 정규화 순서



### 학습정리

## 1. 정규화의 필요성

- 정규화 모델의 특징
  - 개체 관계의 정확성, 데이터의 일치성, 데이터 모델의 단순성, 개체에 존재하는 속성의 비중복성
- 관계형 DB 설계의 가이드라인
  - 서로 다른 개체 타입(Entity Type)들을 하나로 혼합하지 말 것, 중복이나 갱신 부작용이 발생하지 않게 할 것, 널 값(Null Value) 발생을 될 수 있는 한 피할 것, 위조 튜플(Spurious Tuple)들의 발생을 피할 것

### 학습정리

### 2. 정규화 기법

#### • 제 1 정규형

- 어떤 릴레이션 R에 속한 모든 도메인이 원자 값(Atomic Value) 만으로 구성

#### • 제 2 정규형

- 어떤 릴레이션 R이 1NF이고, 키(기본)에 속하지 않은 애트리뷰트 모두가 기본 키에 완전 함수 종속 (부분 함수 종속 제거)

#### • 제 3 정규형

- 어떤 릴레이션 R이 2NF이고, 키(기본)에 속하지 않은 모든 애트리뷰트들이 기본 키에 이행적 함수 종속이 아닌 경우 (이행 종속 제거)

#### BNCF

- 릴레이션 R의 모든 결정자(Determinant)가 후보키(Candidate Key)로 지정

#### • 제 4 정규형

- 릴레이션 R에 MVD A\*B를 만족하는 애트리뷰트 부분집합 A,B가 존재할 때 R의 모든 애트리뷰트들이 이 A에 함수 종속(즉, R의 모든 애트리뷰트 X에 대해 A→X이고, A가 후보 키)(다치 종속 제거)

### 학습정리

### 2. 정규화 기법

- 다치 종속(MVD : Multivalued Dependency)
  - A,B,C를 릴레이션 R의 애트리뷰트의 부분집합이라 할 때 애트리뷰트 쌍 (A, C)값에 대응되는 B값의 집합이 A값에만 종속되고, C값에는 독립이면 B는 A에 다치 종속이라 하고 A\*B로 표기
- 제 5 정규형
  - 릴레이션 R에 존재하는 모든 조인 종속이 릴레이션 R의 후보 키를 통해서만 성립,
     PJ/NF (Projection - Join Normal Form), (조인 종속 제거)
- 조인 종속(JD: Join Dependency)
  - 어떤 릴레이션 R의 애트리뷰트 부분 집합 A,B,...,Z가 있다고 하자. 이때 만일 릴레이션 R이 그의 프로젝션 A,B,...,Z를 모두 조인한 것과 똑같다면 R은 조인 종속\*(A,B,...,Z)을 만족시킴