PCS5024 Atividade 2

Previsão de receita de um norte-americano baseado na base adult

Aluno: Filipe Assis Mourão

Número Usp: 8988914

Neste segundo exercício foi pedido para se analisar a base de dados "Adult Census Income" que possui 15 colunas, 14 sendo features como idade, nível de escolaridade e estado civil, além de uma coluna dizendo se o descrito cidadão americano ganhava mais ou menos de 50 mil dólares anualmente.

A base de dados está amplamente disponível no site de competições kaggle, onde também é possível discutir possíveis soluções para o problema. As melhores acuracidades para este problema variam entre 84% e 88%, utilizando algoritmos para redução de dimensionalidade como pca e algoritmos como random forest. Para este exercício nos foi solicitado que utilizássemos apenas os algoritmos k-nearest neighbors (KNN) e Naive Bayes(NB).

Inicialmente notou-se que a base possuía dados faltantes em 3 das 14 colunas, eram estas "workclass" que aparecia em cerca de 5.64% das linhas, "occupation" que aparecia em cerca de 5.66% das linhas e "native.country" que aparecia em cerca de 1.79% das linhas. Para simplificar o problema foi decidido que todas as linhas que possuíam dados faltantes seriam excluídas do problema, nisso o número total de 32561 linhas se reduziu para 30162 uma perda de 7.4% dos dados disponíveis.

Após a remoção dos dados a coluna "income" foi convertida em uma coluna com dados binários em que 1 significaria que o cidadão descrito pela linha ganha mais de 50 mil dólares e 0 que ele não ganha. Após isso, foi notado que 7 colunas possuíam valores discretos, dessa forma, foi necessário decompor essas colunas em colunas com indicadores, através da função get\_dummies() da biblioteca pandas. Em seguida, foi feita uma normalização de todas as colunas entre os valores 0 e 1, utilizando a função preprocessing.MinMaxScaler() da biblioteca sklearn, para que a ordem de grandeza dos valores não influenciasse na construção do nosso modelo classificador.

Após a decomposição e normalização foi feita um mapa de calor com a correlação entre cada uma das colunas e a coluna "income" com o objetivo de escolher as colunas com maior relevância para criar o modelo classificador. Um mapa de calor contendo as 10 variáveis mais significativas é apresentado no verso desta folha.

Foram então finalmente criados diferentes modelos utilizando um diferente número de variáveis significativas (3,5,10 e 20), os dados foram divididos em 80% para treinamento e 20% para teste e randomizados usando a seed 42. Os melhores resultados obtidos tanto para o NB quanto o KNN estão apresentados no verso desta folha, com a ressalva que para o algoritmo KNN também foram variados o número de vizinhos próximos para se fazer uma classificação.

O melhor resultado obtido para estes dois algoritmos foi utilizando o KNN com 30 vizinhos e 20 variáveis mais significativas, foi-se obtida uma acuracidade de 83.5% o que está bem próximo dos melhores resultados obtidos pela competição no Kagle. Infelizmente não foi encontrado dados sobre a precisão, recall e f1-score para comparação.



Imagem 1: Mapa de calor com a correlação das 10 variáveis mais relevantes

| number of relevant variables | number of neighbors | accuracy    | precision   | recall      | f1-score    |
|------------------------------|---------------------|-------------|-------------|-------------|-------------|
| 20                           | 30                  | 0,834576496 | 0,71826087  | 0,550666667 | 0,623396226 |
| 20                           | 50                  | 0,830764131 | 0,704177323 | 0,550666667 | 0,618032174 |
| 8                            | 30                  | 0,830929886 | 0,708695652 | 0,543333333 | 0,61509434  |
| 8                            | 20                  | 0,830598376 | 0,708551483 | 0,541333333 | 0,613756614 |
| 20                           | 20                  | 0,829769601 | 0,706190061 | 0,54        | 0,6120136   |
| 10                           | 30                  | 0,828940825 | 0,703478261 | 0,539333333 | 0,610566038 |
| 10                           | 20                  | 0,82877507  | 0,703930131 | 0,537333333 | 0,609451796 |

Imagem 2: Resultados obtidos com o algoritmo KNN variando alguns parâmetros

| number of relevant variables | accuracy    | precision   | recall      | f1-score    |
|------------------------------|-------------|-------------|-------------|-------------|
| 20                           | 0,812199569 | 0,600437876 | 0,731333333 | 0,659452961 |
| 8                            | 0,765456655 | 0,51866491  | 0,787333333 | 0,625364046 |
| 10                           | 0,734957732 | 0,480442513 | 0,810666667 | 0,603324237 |
| 5                            | 0,723520636 | 0,467161845 | 0,796666667 | 0,588960079 |
| 3                            | 0,734626222 | 0,477802198 | 0,724666667 | 0,57589404  |

**Imagem 3**: Resultados obtidos com o algoritmo NB variando o número de variáveis principais