Prototyping

Faezeh Pasandideh

E-Mail: <u>faezeh.pasandideh@hshl.de</u>

Gido Wahrmann

E-Mail: gido.wahrmann@hshl.de

Stefan Henkler

E-Mail: stefan.henkler@hshl.de

Use Case

Autonomous Driving

- ► https://www.youtube.com/watch?v=vfirAm1ITMo
- ► Enabler for the future of driving
- ► Autonomous routing, obstacle detection, parking, ...

[https://www.forbes.com/sites/enriquedans/2021/06/11/the-future-of-autonomous-vehicles-product-orservice/?sh=5ed0a2f5892f, March 28, 2023]

Use Case

Autonomous Driving

- ▶ Develop an autonomous vehicle that can drive autonomously on a given track
 - ▶ Based on line detection
- ▶ Being able to detect obstacles
 - ▶ Remove and driving around based on identifying the colour.
- Optimizing the speed
- ▶ Different routings
 - Driving in oval
 - ▶ Drive an eight
- Parking
- ▶ ... and even more

Prerequisite

- Create a team git
- ► Add all team members
- ► Add all lectures!
- Upload continuously your results to git
 - ► These includes the responsibilities
 - ► (Pre-) final version are uploaded within of the specified deadlines
- ▶ Divide the overall task into separate parts for each teammember in the following way, like:

			Name1		Name2		Name
			Todo (incl.	Done (incl.			
#	Task	Short summary	Deadline)	Finishing date	Todo	Done	
1	Task1						
2	Task2						
	Task						

Systems Engineering

Task 1 & 2

Task 1

- Develop a first system engineering model based on the Systems Engineering lecture
 - ► This includes all parts of the analysis
 - Outcomes are SysML Diagrams
 - ► Focus on requirements, including Requirements Diagrams, Use Case Diagrams, ...

Task 2

- Refine your system engineering model and develop a first prototype
 - ▶ Being able to follow a line and detect obstacles
 - First version is simulated in tinkercad
 - ▶ Prerequisite for task 3 using prototyping HW
 - System specification with SysML (pre final version)
 - ▶ Deadline: 27.04.25 eob

Systems Engineering

Task 3

- Task 3 Milestone 1 (relevant outcome for evaluation)
- Refine your system engineering model and refine your protoype
 - ▶ Outcome: final version of Systems Engineering Diagrams
 - Realization of simulated prototype in HW
 - Algorithm is based model based specification well defined mapping of state machines to code (switch case pattern)
 - First sketch of overall prototype (paper prototype)
 - ▶ Deadline: 04.05.05 eob.

Relevant criteria

- Quality of solution
 - Originality
 - ► Completeness
 - ► Integrity
- ► Usage of methods and techniques
 - ▶ Usage of process specific tools like github, trello, ...
 - ▶ SysML/UML Diagrams like
 - ▶ Requirements, Use Cases, Scenarios, Constraints, Block-Diagrams,