Design and Development of IoT Applications

Dr. -Ing. Vo Que Son

Email: sonvq@hcmut.edu.vn

☐ Credit: 3

☐ Grading Policy:

❖ Project: **40**%

❖ Final Exam: 60%

☐ References:

[1] Z. Shelby, C. Bormann, 6LoWPAN: the Wireless Embedded Internet, Willey Publisher, 2009

[2] J.P. Vasseur, A. Dunkels, Interconnecting Smart Objects with IP, Morgann Kaufmann Publishers

[3] Antonio Liñán Colina, **IoT in Five days**, IoT Summer School

[4] Agus Kurniawan, Practical Contiki-NG Programming for Wireless Sensor Networks, Apress 2018

[5] Contiki OS: http://www.contiki-os.org

Acknowledgement: The course slides are also prepared in combination with the use of other sources:

- WEI, University of California, Berkeley, USA
- NSWLAN, ComNets, University of Bremen, Germany
- Some content and figures on these slides are taken from http://6lowpan.net/wp-content under the Creative Commons Attribution- Noncommercial-Share Alike 3.0 Unported License.

Course Outcomes

- ☐Students will be able to demonstrate understanding of the following concepts:
 - WPAN and IEEE 802.15.4 Standard
 - Technology and Hardware Architectures in WSNs
 - Embedded Operating Systems for devices
 - MAC protocols in WSNs
 - * Routing Protocols in WSNs
 - Industrial standards for IoT applications
 - Wireless Embedded Internet
 - Rich experiences in designing live IoT applications

- ☐ Chapter 1: Introduction to WSNs
 - Wireless Sensor Networks
 - Applications
 - Challenges
- ☐ Chapter 2: Technologies and Hardware Architecture
 - ❖ Node architecture and HW platforms
 - ❖ RF Technologies and IEEE 802.15.4
 - Embedded processing and Sensing
 - Hardware reference designs

- ☐ Chapter 3: Embedded OS for end-devices
 - Intro to Contiki-OS
 - Programming using Contiki
 - ❖ I/O interfaces
 - ❖ Networking stack
 - Cooja Emulator
- ☐ Chapter 4: MAC protocols for WSNs
 - **❖** Low-power link
 - Robust communication
 - Radio Duty Cycling
 - Synchronized and Asynchronized Protocols

- ☐ Chapter 5: Routing in WSNs
 - Multi-hop communication
 - Link characteristics
 - Collection Tree Protocol/DCP
 - ❖ Trickle algorithm
- ☐ Chapter 6: 6LoWPAN and IPv6
 - Challenges in WSNs and IP
 - ❖ IPv6 addressing
 - Fragmentation
 - 6LoWPAN Header compression
 - Bootstrapping
 - ❖ Border Router

- ☐ Chapter 7: Industrial IoT standards
 - ❖ ZigBee Technology
 - Dynamic Network protocols
 - ❖ Backhaul networks for Home Automation
 - ❖ Sub-1GHz technology
 - Thread protocol stack
- ☐ Chapter 8: Wireless Embedded Internet
 - **❖** ICMPv6
 - Auto-configuration & Neighbor Discovery
 - ❖ IP routing in WSNs: RPL
 - Embedded web REST/CoAP
 - **❖** MQTT-SN
 - Huma-Machine-Interface

- ☐ Chapter 9: 802.15.4 Link-Layer Security
 - Access Control
 - Message Integrity and Confidentiality
 - ❖ 802.15.4 Stack and Protocol
 - Security suites
 - **❖** LLSEC in Contiki OS

☐ Chapter 10: Labs/Demos and Assignments

- **❖** Basic demos:
 - Hello world, LED Blinking
 - RDC and MAC protocols
 - Routing in WSNs: CTP, RPL
 - IPv6/6LoWPAN UDP Echo server
 - IPv6/6LoWPAN Web Server
 - Communication with 6LoWPAN network
 - CoAP and MQTT
- ❖ Advanced demos: (with HW)
 - I/O interfaces
 - Echo-Server for Multiple Platforms (Cooja, CC2530, CC2538)
 - Multicast IPv6
 - LWM2M
 - MQTT
 - Security of IEEE 802.15.4
 - Mobility of nodes
- Assignments

