FORMULA DI TAYLOR

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f(x) = f(x_0) + f'(x_0) (x - x_0) + R_1(x)$$

dove
$$R_1(x)$$
 una funzione $f.c$ lun $\frac{R_1(x)}{x-x_0} = 0$

Possiamo ancora riscrivere con
$$P_1(x) = f(x_0) + f'(x_0)(x-x_0)$$
 (x)

quindi lim
$$\frac{f(x) - P_1(x)}{x - x_0} = 0$$
 $P_1(x)$ approssima $f(x)$ viano x_0 viano

Infatt, per contrurone, P2(x) così contrubo (come in (x)) à l'UNICO polinomio di ordine 1 che soddisfa la proprieta (**)

$$P_{1}(x) = f(x_{0}) + f(x_{0})(x-x_{0}) = x$$

?) Pons trovare, data f, in polinomi's $P_n(x)$ di grado n (intoruo ad x_0) tale the lim $f(x) - P_n(x) = 0$ $x-1x_0$ $(x-x_0)^n$

f(x) = anctg x

 $\int_{1}^{1}(x) = \frac{1}{1+x^2}$

Cominciamo a capire: quando si ha $\frac{H(x)}{x \rightarrow x_0} = 0$?

Lemma Sia H(x) ma finnone derivabile n volte nell'intorno di un pinto xo. Allora $\lim_{X \to X_0} \frac{H(x)}{(x-x_0)^n} = 0 \quad (x)$ $\lim_{X \to X_0} \frac{(x-x_0)^n}{(x-x_0)^n} = 0 \quad (x)$ $\lim_{X \to X_0} \frac{H(x)}{(x_0)} = \dots = H^{(n)}(x_0) = 0$ Notazione Una finisione H che soddisfa (x) si dice un "o-piccolo" di (x-x₅)ⁿ e si scrive $H(x) = o((x-x_0)^n)$ Prui in generale se lim $\frac{f(x)}{g(x)} = 0$ alloca $x \to x_0$ $\frac{f(x)}{g(x)} = 0$ of $\frac{f(x)$ dim [] Suppose $H(x_0) = H'(x_0) = \cdots = H^{(n)}(x_0) = 0$ $\lim_{X\to X_0} \frac{H(x)}{(x-x_0)^n} = \lim_{X\to X_0} \frac{H^1(x)}{n(x-x_0)^{n-1}} = \lim_{X\to X_0} \frac{H^1(x)}{n(n-1)(x-x_0)^{n-2}}$ $\frac{x\rightarrow x^{\circ}}{H_{(w-1)}(x)} = \lim_{x\rightarrow x^{\circ}} \frac{(x-x^{\circ})}{H_{(w)}(x)}$ $= \lim_{x \to x^{\circ}} \frac{u_{i}(x-x^{\circ})}{H_{(u-i)}(x)} = \frac{u_{i}}{1} \frac{H_{(u)}(x)}{h_{(u)}(x)} = \frac{u_{i}}{1} \frac{H_{(u)}(x)}{h_{(u)}($

Suppose of
$$\frac{H(x)}{x \rightarrow x_0} = 0$$
 $x \rightarrow x_0$ $\frac{H(x)}{(x - x_0)^n} = 0$
 $x \rightarrow x_0$ $\frac{H(x)}{(x - x_0)^n} = 0$

Supposition per another the existic $K \leq n$ take the $H(x_0) = H^1(x_0) = \dots = H^{(K-1)}(x_0)$ $\frac{H^{(K)}(x_0) \neq 0}{(x_0)}$

Allora regionands come sopra si vede the $\frac{H(x)}{(x - x_0)^k} = \frac{1}{K!} H^{(K)}(x_0) \neq 0$
 $\frac{H(x)}{(x - x_0)^k} = \frac{1}{K!} H^{(K)}(x_0) \neq 0$

Nicorda $K \leq n$

Of allow particles $\frac{H(x)}{(x - x_0)^k} = \frac{1}{(x - x_0)^k} H^{(K)}(x_0) = 0$.

Teorema (di Taylor) Sia f(n) ma finzione derivabile n volte in in intorno di en pinto xo. Esiste un unico polinomio di grado al

più n, Pm(x), tale che

 $\lim_{X\to X_0} \frac{f(x) - f_m(x)}{(x-x_0)^m} = 0$

ll polinomio Pm(x) detto Pounonio Di TAYON di fall'ordine n e

$$P_{m}(x) = f(x_{0}) + f'(x_{0})(x-x_{0}) + \frac{f''(x_{0})}{2}(x-x_{0})^{2} + \dots + \frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}$$

Sintelicamente

$$P_{n}(x) = P_{n}(x; f, x_{o}) = \sum_{k=0}^{n} \frac{f^{(k)}(x_{o})}{k!} (x - x_{o})^{k}$$

OSS Quindi nelle poteni del teorema $f(x) = f(x_0) + f'(x_0)(x-x_0) + ... + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x)$

con
$$R_n(x) = o((x-x_0)^n)$$
 (=) $\lim_{x\to x_0} \frac{R_n(x)}{(x-x_0)^n} = 0$.

Corollario Se relle poteni precedenti supponiamo e che sia $|f^{(n+1)}(x)| \leq M \quad \forall x \in I$ allow $|f(x) - P_m(x)| \leq \frac{M}{(m+1)!} |x-x_0|^{m+1}$ $|R_m(x)|$ Esemplo $f(x) = e^x$ $x_0 = 0$. Per scriveux el polinomio di Taylor uni servono tite le deivate in 20 pro all'ordire n. $f(x) = e^{x}$ $f'(x) = e^{x}$... $f^{(n)}(x) = e^{x}$ quindi $f^{(K)}(x_0) = 1$ $\forall K \in \mathbb{N}$. $P_{M}(x) = \sum_{k=0}^{K=0} \frac{k!}{k!} (x^{0}) (x-x^{0})^{k} = \sum_{k=0}^{K=0} \frac{k!}{x^{k}}$ $e^{x} - \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots + \frac{x^{n}}{n!}\right) = o(x^{n})$

U corollario

$$| f(x) - P_m(x)| \leq \frac{M}{(m+1)!} |x-x_0|^{m+1}$$

$$|R_m(x)|$$

YXEI

nel caso d'
$$f(x) = e^{x}$$
 $x_0 = 0$ $I = [0, 1]$

$$|e^{x}-(1+x+\frac{x^{2}}{2!}+..+\frac{x^{n}}{n!})| \leq \frac{e}{(n+1)!}|x|^{n+1}$$

$$M = \max_{I} |f^{(n+i)}(x)| = \max_{I} |e^{x}| = e$$

$$M = \max_{X = 1} |f^{(n+1)}(x)| = \max_{X = 0} |e^{x}| = e$$

$$X = 1$$

$$|e^{-\sum_{K=0}^{m} \frac{1}{K!}}| \leq \frac{e}{(n+1)!}$$

dimostraz. (teorema di Taylor)

Cerco en polinomio di grado n della forma $P_{n}(x) = Q_{0} + Q_{1}(x-x_{0}) + Q_{2}(x-x_{0})^{2} + ... + Q_{n}(x-x_{0})^{n}$ che soddisfi $\lim_{x\to x_0} \frac{f(x) - P_n(x)}{(x-x_0)^n} = 0$

Per il lemma $H(x) = f(x) - P_n(x)$ deve soddisfare $H(x_0) = H'(x_0) = \dots = H^{(n)}(x_0) = 0$.

$$H^{(n)}(x_0) = f^{(n)}(x_0) - n! \quad a_n = 0 = 0$$

$$= \frac{1}{n!}$$

ESERPI (1) Polinomio di Taylor di
$$e^{x}$$
 in $x_{0}=0$

$$1+x+\frac{x^{2}}{2!}+\dots+\frac{x^{n}}{n!}$$

2) Molinoni d' Taylor d' sin x, corx in x0=0. Per servere quert polinomi dero calcolare le dervate successe di sni e cos.

$$f(x) = \sin x \qquad x_0 = 0 \qquad f(0) = 0$$

$$f'(x) = \cos x \qquad \qquad f''(0) = 1$$

$$f''(x) = -\sin x \qquad \qquad f'''(0) = 0$$

$$f'''(x) = -\cos x \qquad \qquad f'''(0) = -1$$

$$f^{(4)}(x) = \sin x \qquad \qquad f^{(4)}(x) = \cos x \qquad \qquad f^{($$

$$f(x_0) = \begin{cases} 0 & k \text{ pan'} \\ \pm 1 & k \text{ ohspan} \end{cases}$$

$$\rho_{2n+1}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Per f(x)= cox in x0=0 posso spruttare i calcoli precedenti

$$f(x) = cox \qquad x_0 = 0$$

$$p_{2n}(x) = 1 - \frac{x^{L}}{2!} + \frac{x^{G}}{4!} - \frac{x^{G}}{6!} + \cdots + (-1) \frac{x^{2n}}{(2n)!}$$

3) In maniera del tytto analoga si trovano gli sviluppi di sinhx e coshx

D sinhx = cohx D cohx = sinhx

quindi si trova esattamente la stena formula di prima ma senza alternanza di segni

 $f(x) = \sinh x \qquad x_0 = 0$

$$P_{2n+1}(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots + \frac{x^{2n+1}}{(2n+1)!}$$

 $f(x) = \cosh x$ $x_0 = 0$

$$\rho_{2n}(x) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots + \frac{x^{2n}}{(2n)!}$$

Si vede $\sinh x + \cosh x = e^{x}$ $\left(e^{x} - e^{x}\right) + \left(e^{x} + e^{-x}\right) = e^{x}$

$$\begin{cases} f'(x) = \frac{1}{1+x} & f'(0) = 1 \\ f''(x) = \frac{1}{1+x} & f''(0) = -1 \\ f''(x) = -\frac{1}{(1+x)^2} & f''(0) = -1 \\ f''(x) = +\frac{2}{(1+x)^3} & f''(0) = 2 \\ f''(x) = -\frac{3!}{(1+x)^4} & f''(0) = -3! & D(\frac{1}{1}) = -\frac{1}{12} \\ f''(x) = -\frac{3!}{(1+x)^4} & f''(0) = -3! & D(\frac{1}{1}) = -\frac{1}{12} \\ f''(x) = -\frac{3!}{(1+x)^4} & f''(0) = -3! & D(\frac{1}{1}) = -\frac{1}{12} \\ f''(x) = -\frac{3!}{(1+x)^4} & f''(0) = -\frac{1}{12} \\ f''(x) = -\frac{1}{12} & f''(x) = -\frac{1}{12} \\ f''(x) =$$

Eserevis Servere i polinoni di Taylor all'ordire n delle finnoni

$$f(x) = \frac{1}{1-x} \qquad x_0 = 0$$

$$g(x) = \sqrt{1+x} \qquad x_0 = 0$$