A spriby with a mass force of 3.6 N is veguin		, , , , , , , , , , , , , , , , , , ,	
its natural length. The length and veleased. It	he spring is a	stretched 0.8 m force of Felt	bezond Natural
applied to the spring, Fi	nd the pesition	n at time t.	
mx" + cx + kx= F,	-		F=kx
2x" + 14x+ 12x=1	$\mathcal{O}e^{-\mathfrak{t}}$		$k = \frac{k}{\lambda}$
Acxiliary Equation			= 2
2 v 2 + 14 v + 12 =0			
$V^2 + 7v + 6 = C$			
(v+1)(v+6)=	EC		
V=-1 V=-6			
Complementour Equ	ut icv		
x _c (t)= C ₁ e ^{-x} +C	2e-6x		
Assume xp(4) is	expensed		
$x_{p}(t) = Ae^{-t}$			

$$x_{p}(t) = -Ac^{-t}$$
 $x_{p}(t) = Ac^{t}$

Sub and solve

 $2(Ac^{A}) + |4(\cdot Ac^{A}) + |2(Ac^{A}) = |0c^{A}|$
 $C = |0|$

Multiply by t

 $x_{p}(t) = A(t^{-c^{-t}} + c^{-t})$
 $= -A(-tc^{-t} + c^{-t})$
 $= -A(-tc^{-t} + c^{-t}) - Ac^{-t}$
 $= -A(-tc^{-t} + c^{-t}) - Ac^{-t}$
 $= -A(-tc^{-t} - Ac^{-t} - Ac^{-t})$
 $= -A(-tc^{-t} - Ac^{-t} - Ac^{-t})$

		= 2	143																	
,					_															
A	Spr	îns	l'w	h	7 4 -1	kg	MO	SS	wil	5	lu tc	h (2.S _V	n p	cest	vest	- w	ish	a	
40	vve	c¥	121	۷. ا	he	Spi	rivis	S-)01	NS	at	equi	llibi	vun Fi	an	lis	γů	shec		0	
11	e 1	(ign:	- u	,iţ N	av	1 (U	itica		Ja ₄	e of	-) '/s.	Ti	Nd	pos	itiev	૧ લ	F 4	MC	
	M	√ 94 √ 95×	<u>}</u> +	C d	<u> </u>	kx	=0							k	<u>_</u>	=				
	4	አ ″ ት	0	+ 20	1 x =	C									= 2	4				
	A	cxili	avy	Equ	,ati	m														
		4	12+	24	=0															
		Y	2 +	6 = 0)															
		r	2= -	Ь																
		V	= (う 生 .	16	Ī	0	\ = C)	B	=16									
	(·	7 Phe	iei (Sch	Aich	1														
		X	(4)=	e°(G	sin(Γ¢ξ)	\$ -	Czl	'cs A	bt))								
			=	Gsi	nCl	H).	+ C2	(05	Gu!)										
		κ'	(†)=	TVC	i (cs	Ast) - (TbC,	Sin	CVG+)									

$$r = \frac{20^{4}}{400}$$

$$r = \frac{10}{2}$$

$$= -10$$
Complementary Solution
$$Q_{c}(t) = C_{1}e^{iet} * C_{2}te^{iot}$$
Assume the partialon solution is a constant
$$Q_{p}(t) = 0$$

$$Q_{p}(t) = 0$$

$$Q_{p}(t) = 0$$
Sub and solve
$$Q * 0 + A 100 = 19$$

$$A = \frac{19}{100}$$

$$Q_{p}(t) = \frac{17}{100}$$

$$I(x) = -|OC_{1}e^{i\omega t} \cdot C_{2}(-|Ote^{-|Ot} + e^{-|Ot})$$

$$= -|OC_{1}e^{i\omega t} - |OC_{2}te^{-|Ot} + C_{2}e^{-|Ot}$$

$$Initial Condition Q(0) = 0 \text{ and } I(0) = 0$$

$$C = C_{1}e^{0} + \frac{19}{100}$$

$$C = -|OC_{1}e^{0} + C_{2}e^{0}$$

$$C = -|OC_{1} + C_{2}|$$

$$C_{1} = -\frac{19}{100}$$

$$C = -|OC_{1} + C_{2}|$$

$$C_{2} = -\frac{19}{100}$$

$$C = -|OC_{2}te^{-|OC_{2}|} + C_{2}$$

$$C_{3} = -\frac{19}{100}$$

$$C_{4} = -\frac{19}{100} = -\frac{19}{100} + \frac{19}{100} = -\frac{19}{100} + \frac{19}{100} = -\frac{19}{100} = -\frac{19}{100$$

A	5	evie	s C	ivevi	1	(CN	ડાંડનેક	, (c¥	CI	Vesi	sto	Y 1	will	1 R	= 20	Ω	، ر	UV		
įν	idu	ter	W	ith	L:	= H	l, (N	cap	arif	cv	Wi	th	C =	0.0	15,	011	n d	a		
g	cnev i	orter	pro	duci	Ng	a	vol-	ug	$e \wedge$	r T	E	(t) = 1	lbl	9Siv	1/10	t).	L	nitic	el .	1. 4	
f	Иa	rge	av	C	COVI	ceu t	- O	W	V.	liv	d	Chol	vge	OI	n O	CUV	vevi	ታ c	et 1	line	
Ĺ	•																				
	l	et	the	90	nev	al	selv	ich	C¥	- tl	e p	ldou	lm	cobe	ne	he	fle				
_	C	cmp	the Ime	nfa	V	Solu	tier	1			'										
_																					
_			Xel	() -	C ₁ e		<i>U</i> ,	te													
	1	1 Ssw	he	the	. Ipc	urtic	ular	So	luti	ch i	is t	VigV	c <i>W</i> i	c.							
		(Rpl	λ) =	As	in (1	ot)	+ /) (os	llo.	f)										
_			Cp (X	\=	$\cap A$	es l	104)-	MR	C:10	(IN)	\									
			PLA)	(01)	ust				2111	(0))									
		(2" p	(x)	= -	00	Hsiv	ollo)t)-	100	Bco	s ([(yf)								
_						1															
_			nb	an	d	sclu	e														
_		1	-100	Ac	1/100	nF)	-10	OB	ces l	lot))+7	20(1	OA	cs (1	(H)-	1012	sih l	Not) †		
			Wĺ	Asiu	1(10	() + l	Bros	(10+)) =	160	sinl	lot))		.0()	10 10					_
_																					
_			607											ct)	- 20	o Bs	inl	10t)	+		
_		1	601	tsila	HOT	1+	3013	eest	10t)) = [[10si	nll	t)								

$$C_1=\frac{4}{5}$$
 $C=-10(\frac{4}{5}) * C_2$
 $C=-\frac{40}{5} * C_3$
 $C_2=\frac{40}{5}$
 $=8$

Vuique Sobtica

 $C_1=\frac{4}{5}$
 $=8$

Viique Sobtica

 $C_1=\frac{4}{5}$
 $=8$
 $=8$
 $=8$

Viique Sobtica

 $C_1=\frac{4}{5}$
 $=8$
 $=8$
 $=8$
 $=8$
 $=8$
 $=8$
 $=10(\frac{4}{5})e^{-10t} + 8e^{-10t} + \frac{4}{5}e^{-10t} + \frac{4}{5}e^{$

Acxiliary Equation
V + S = C
V=-S
Complumentory Solction
$G_{\epsilon}(f) = C_{\epsilon}e^{-st}$
Assume the particular solution is exponential
$Q_{p}(t) = Ae^{-st}$
$Q_{p}'(t) = -5Ae^{-st}$
Sub end selve
(8/1/251) + S(1/251) = SOOE = 55
0=900
Multiply by x
$Q_p(t) = Ate^{-st}$
G'(t) = A(tSe-st + e-st)