Algoritmos e Estruturas de Dados 1 (AED1) Recursão, exponencial, Fibonacci, análise de desempenho

Estrutura geral de um programa recursivo

```
se a instância em questão é pequena,
resolva-a diretamente;
senão
reduza-a a instâncias menores do mesmo problema,
aplique o método a essas
e use suas soluções para resolver a instância original.
```

Exponencial

Queremos projetar um algoritmo que recebe inteiros positivos k e n e devolve k^n.

```
Como k^n = k * k * k * ... * k (n vezes)
```

podemos projetar o seguinte algoritmo iterativo:

```
int expI(int k, int n)
{
   int i, exp = 1;
   for (i = 0; i < n; i++)
       exp *= k; // exp = exp * k
   return exp;
}</pre>
```

Invariante e corretude:

- A corretude do algoritmo iterativo expl depende
 - da correta identificação de seu invariante de laço.
- O invariante principal,
 - o que vale no início de cada iteração do laço,
 - é exp = k¹i.
- Para verificar que o invariante está correto,
 - o observe que ele vale antes da primeira iteração
 - o e continua valendo de uma iteração para outra.
- Demonstração por indução:
 - Primeiro verificamos que o invariante vale
 - no início da primeira iteração (caso base).
 - Antes da primeira iteração temos exp = 1 e i = 0.
 - Como exp = 1 = $k^0 = k^i$, o invariante vale.
 - Então, supomos que o invariante vale
 - no início de uma iteração qualquer, ou seja, exp = k^i,
 - e mostramos que no início da iteração seguinte
 - ele continua valendo.

- Chamamos exp' e i' as variáveis no início da iteração seguinte.
 - Pelo comportamento do algoritmo dentro do laço, temos
 - $\exp' = \exp * k = k^i * k = k^i + 1$
 - i' = i + 1
- o Portanto, exp' = $k^{(i + 1)} = k^{(i)}$, e o invariante vale.
- Para verificar que o algoritmo está correto,
 - o note que ao final do laço i = n,
 - caso em que o invariante garante que exp = k^n.

Eficiência de tempo:

- Número de operações proporcional a n, i.e., O(n),
 - o já que o laço tem n iterações
 - o e em cada iteração é realizado um número constante de operações.

Eficiência de espaço:

- Memória auxiliar utilizada é constante, i.e., O(1),
 - o pois o número de variáveis locais independe de n.

Também podemos descrever k^n usando a seguinte regra recursiva:

```
k^n = \{ k * k^n (n - 1), se n > 0, 
1, se n = 0. \}
```

Essa regra induz o seguinte algoritmo recursivo:

```
int expR(int k, int n)
{
   if (n == 0)
      return 1;
   return k * expR(k, n - 1);
}
```

Corretude:

- No caso de expR, como é comum com algoritmos recursivos,
 - o sua corretude deriva diretamente da implementação
 - da regra em que este se baseia,
 - o podendo ser verificada usando uma prova por indução.

Eficiência de tempo:

- O cálculo da eficiência de um algoritmo recursivo depende
 - da resolução de uma função de recorrência que captura
 - a ordem do número de operações que tal algoritmo realiza.
- No caso do algoritmo expR temos a recorrência
 - T(n) = T(n 1) + 1, já que cada chamada da função
 - desencadeia apenas uma outra chamada,
 - com n decrementado de 1,
 - e realiza uma quantidade constante de operações localmente.
 - \circ T(0) = 1, pois o caso base da função recursiva ocorre quando n = 0.

- Identificada a recorrência, podemos resolvê-la por substituição:
 - \circ T(n) = T(n 1) + 1
 - \circ T(n 1) = T(n 2) + 1
 - \circ T(n 2) = T(n 3) + 1
 - \circ T(n 3) = T(n 4) + 1
 - o ...
- Substituindo
 - \circ T(n) = T(n 1) + 1
 - \circ T(n) = (T(n 2) + 1) + 1 = T(n 2) + 2
 - \circ T(n) = (T(n 3) + 2) + 1 = T(n 3) + 3
 - \circ T(n) = (T(n 4) + 3) + 1 = T(n 4) + 4
 - 0
- Generalizando

$$\circ$$
 T(n) = T(n - i) + i

No final (caso base da recursão) temos

$$\circ$$
 n-i=0 \Rightarrow i=n

Portanto,

$$\circ$$
 T(n) = T(n - n) + n = T(0) + n = n + 1.

- Ou seja, o número total de operações é da ordem de n,
 - o i.e., O(n).

Eficiência de espaço:

- A quantidade de memória auxiliar utilizada é igual à eficiência de tempo,
 - o i.e., O(n).
- Isso acontece porque cada nova chamada recursiva
 - utiliza algumas variáveis auxiliares locais,
 - que só começam a ser liberadas
 - depois que a última chamada é resolvida.

Nossos dois algoritmos levam tempo proporcional a n.

• Será que conseguimos fazer melhor?

Pensando no caso especial em que n é múltiplo de 2,

- podemos calcular k^n com a seguinte regra:
 - \circ k^n = k^(n / 2) * k^(n / 2)

Note que, os dois termos multiplicados são iguais,

- o que sugere um algoritmo recursivo em que cada chamada da função
 - o realiza apenas uma chamada recursiva, com n dividido por 2,
 - e depois multiplica o resultado desta chamada por ele próprio.
- Essa ideia parece interessante, pois n está diminuindo mais rapidamente
 - do que nos nossos algoritmos anteriores.

Claro que, o algoritmo tem que tomar algum cuidado quando n não é par.

- Lembrando que a operação n / 2 corresponde ao piso da divisão,
 - o para n ímpar temos a regra:
 - $k^n = k^n / 2 k^n / 2 k^n / 2 k$

Por fim, o caso base continua ocorrendo quando n = 0.

• Assim, temos o algoritmo:

```
int expR2(int k, int n) {
   int exp;
   if (n == 0)
       return 1;
   if (n % 2 == 0) {
       exp = expR2(k, n / 2);
       exp *= exp;
   }
   else { // n % 2 == 1
       exp = expR2(k, n / 2);
       exp *= exp;
       exp *= exp;
       exp *= exp;
       exp *= exp;
       exp *= k;
   }
   return exp;
}
```

Como a parte inicial das regras é comum,

• podemos implementar a seguinte versão mais curta do algoritmo:

```
int expR3(int k, int n) {
    int exp;
    if (n == 0)
        return 1;
    exp = expR3(k, n / 2);
    exp *= exp;
    if (n % 2 == 0)
        return exp;
    return k * exp;
}
```

Corretude:

- A corretude deste algoritmo deriva diretamente
 - o da corretude da regra que o motivou.

Eficiência de tempo:

- A eficiência de tempo deste algoritmo guarda uma grata surpresa,
 - o que deriva do fato dele dividir n por 2 a cada chamada recursiva.

- Para calcular a ordem do número de operações que ele realiza
 - o vamos usar a recorrência:
 - T(n) = T(n/2) + 1
 - o já que cada chamada da função desencadeia apenas
 - uma outra chamada, com n dividido por 2.
 - T(0) = 1, pois o caso base da função recursiva ocorre quando n = 0.
- Resolução da recorrência por substituição:

$$\circ$$
 T(n) = T(n / 2) + 1

$$\circ$$
 T(n/2) = T(n/4) + 1

$$\circ$$
 T(n/4) = T(n/8) + 1

$$\circ$$
 T(n/8) = T(n/16) + 1

$$\circ$$
 T(n / 16) = T(n / 32) + 1

- 0 ...
- Substituindo

$$\circ$$
 T(n) = T(n / 2) + 1

$$\circ$$
 T(n) = (T(n/4) + 1) + 1 = T(n/4) + 2

$$\circ$$
 T(n) = (T(n/8) + 1) + 2 = T(n/8) + 3

$$\circ$$
 T(n) = (T(n / 16) + 1) + 3 = T(n / 16) + 4

$$\circ$$
 T(n) = (T(n / 32) + 1) + 4 = T(n / 32) + 5

- 0 ...
- Sucessivas divisões por 2 nos sugerem ficar atentos
 - o ao aparecimento de funções logarítmicas e exponenciais.
- Observe que

$$\circ$$
 T(n) = T(n / 2) + 1 = T(n / 2^1) + 1

$$\circ$$
 T(n) = T(n / 4) + 2 = T(n / 2^2) + 2

$$\circ$$
 T(n) = T(n / 8) + 3 = T(n / 2^3) + 3

$$\circ$$
 T(n) = T(n / 16) + 4 = T(n / 2⁴) + 4

$$\circ$$
 T(n) = T(n / 32) + 5 = T(n/2^5) + 5

o ...

- Generalizando
 - \circ T(n) = T(n / 2ⁱ) + i
- No final (caso base da recursão) temos n / 2ⁱ = 0,
 - o que pode causar estranheza, já que
 - o resultado de uma divisão não deveria ser 0.
 - Isso se explica por se tratar de uma divisão inteira,
 - que devolve o piso do resultado da divisão.
 - Assim, conseguimos inferir que se n / 2^i = 0,
 - então n / 2^(i 1) = 1,
 - já que a divisão inteira de 1 por 2 é 0.
 - Resolvendo n / $2^{(i-1)} = 1 \Rightarrow i = \lg n + 1$.
- Portanto,
 - \circ T(n) = T(n / 2^(lg n + 1)) + (lg n + 1)
 - \circ T(n) = T(n / 2n) + lg n + 1
 - \circ T(n) = T(0) + lg n + 1
 - \circ T(n) = 1 + lg n + 1
 - \circ T(n) = lg n + 2.
- Ou seja, o número de operações realizadas por expR3(n)
 - o é da ordem de lg n, i.e., O(log n).
- Note que, este algoritmo é muito mais eficiente
 - o que os anteriores para valores grandes de n.

Eficiência de espaço:

- A quantidade de memória auxiliar utilizada é igual à eficiência de tempo,
 - o i.e., O(log n).
- Isso acontece porque cada nova chamada recursiva
 - o utiliza algumas variáveis auxiliares locais,
 - que só começam a ser liberadas
 - depois que a última chamada é resolvida.

Vale destacar que esse algoritmo é um exemplo de uso

- da técnica de divisão e conquista, que é largamente usada
 - o para obter algoritmos mais eficientes para diversos problemas.

Desafio/Quiz: Por fim, fica o seguinte exercício:

- projetar um algoritmo iterativo
 - o que seja igualmente eficiente para o cálculo da exponencial.

Comentários sobre corretude e eficiência de algoritmos

Corretude de algoritmos:

- Em algoritmos recursivos costuma ser uma análise direta, bastando:
 - Mostrar que o algoritmo devolve o valor correto no caso base e,
 - Supondo que o algoritmo encontra o valor correto quando a entrada é menor que n, mostrar que ele devolve o valor correto para n.
- Em algoritmos iterativos é necessário identificar propriedades invariantes:
 - Um invariante é uma relação que depende dos valores das variáveis do algoritmo e se mantém válida ao longo das iterações de um laço.
 - Encontrando os invariantes corretos, a análise de corretude é semelhante a de algoritmos recursivos.

Eficiência de algoritmos:

- Em algoritmos iterativos costuma ser bem direta,
 - bastando somar operações realizadas dentro de um laço e
 - multiplicar o resultado pelo número de iterações do laço.
- Em algoritmos recursivos é necessário usar uma fórmula de recorrência:
 - Por exemplo, a recorrência T(n) = T(n 1) + 1 e T(0) = 1, captura
 - a ordem de operações realizada por um algoritmo que, em cada chamada recursiva, realiza um número constante de operações e faz uma chamada recursiva com a entrada reduzida de um,
 - e que faz um número constante de operações no caso base.
 - Outro exemplo, a recorrência T(n) = 2 T(n / 2) + 1 e T(1) = 1, captura
 - a eficiência de um algoritmo que, em cada chamada recursiva, realiza um número constante de operações e faz duas chamadas recursivas com a entrada reduzida pela metade,
 - e que faz um número constante de operações no caso base.
- De posse da recorrência, pode-se simular seu comportamento, para
 - o encontrar uma função (n, n^2, log n, 2^n, etc) que descreva o comportamento da mesma conforme o tamanho da entrada n varia.
 - Esta função descreve a ordem do número de operações realizada pelo algoritmo recursivo.

(Bônus) Soluções para o exercício/quiz deixado no final:

```
int expI2(int k, int n)
{
   if (n == 0)
      return 1;
  // invariante: exp = k^i
  int i = 1, exp = k;
  while (i \le n / 2)
   {
       exp *= exp; // exp = exp * exp
       i = 2 * i;
   }
   if (i < n)
       exp *= expI2(k, n - i);
   return exp;
int expI3(int k, int n)
{
   int exp_acum = 1, n_falt = n;
  while (n_falt > 0)
   {
       // invariante: exp = k^i
       int i = 1, exp = k;
       while (i <= n_falt / 2)</pre>
       {
           exp *= exp; // exp = exp * exp
           i = 2 * i;
       }
       exp_acum *= exp; // exp_acum = exp_acum * exp;
       n_falt -= i;  // n_falt = n_falt - i;
   }
   return exp_acum;
}
```

Fibonacci

Números de Fibonacci:

- F0 = 0
- F1 = 1
- Fn = Fn-1 + Fn-2

Sequência:

- n 0123456789
- Fn 0112358132134

Algoritmo recursivo para Fn

```
long long int fibonacciR(int n) {
  if (n == 0) return 0;
  if (n == 1) return 1;
  return fibonacciR(n - 1) + fibonacciR(n - 2);
}
```

Algoritmo iterativo para Fn

```
long long int fibonacciI(int n) {
  int i;
  long long int proximo, anterior, atual;
  if (n == 0) return 0;
  if (n == 1) return 1;
  anterior = 0; // Fi-1
  atual = 1; // Fi
  for (i = 1; i < n; i++) {
    proximo = anterior + atual;
    anterior = atual;
    atual = proximo;
  }
  return atual;
}</pre>
```

Corretude:

- Como de costume, a corretude do algoritmo recursivo deriva
 - o diretamente da corretude da relação de recorrência que o inspirou.
- Sobre o algoritmo iterativo, qual o invariante principal
 - o para demonstrar que ele obteve o resultado correto?
- Ou seja, que propriedade/relação se mantém verdadeira
 - o ao longo de todas as suas iterações?
- Resp: no início de cada iteração i as variáveis atual e anterior
 - o possuem, respectivamente, os valores Fi e Fi-1.

Eficiência:

- Como de costume, a eficiência do algoritmo iterativo
 - o deriva do número de vezes que o laço é executado,
 - e neste caso é da ordem de n.
- Já o algoritmo recursivo depende do número total de chamadas recursivas.
 - o Vamos obter intuição deste número usando uma árvore de recorrência.

- Note que, ela lembra a árvore com crescimento exponencial base 2,
 - o mas desbalanceada para um lado.
- Observe também o grande número de subproblemas recalculados,
 - o sugerindo ineficiência.
- Para obter a ordem do número de chamadas recursivas,
 - vamos analisar a seguinte recorrência, que descreve tal número?

■
$$T(n) = T(n-1) + T(n-2) + 2$$
 para $n > 1$, $T(0) = T(1) = 0$.

- Um limitante inferior para T(n)
 - T(n) = T(n-1) + T(n-2) + 2 >= 2 T(n-2) + 2.
 - Assim,

$$T(n) = 2 T(n-2) + 2$$

 $T(n-2) = 2 T(n-4) + 2$
 $T(n-4) = 2 T(n-6) + 2$
 $T(n-6) = 2 T(n-8) + 2$

■ Logo,

$$T(n) = 2 T(n - 2) + 2$$

$$= 2 (2 T(n - 4) + 2) + 2 = 4 T(n - 4) + 6$$

$$= 4 (2 T(n - 6) + 2) + 6 = 8 T(n - 6) + 14$$

$$= 8 (2 T(n - 6) + 2) + 14 = 16 T(n - 8) + 30$$

■ Observando o padrão,

$$T(n) = 2^{1} T(n - 2) + 2^{2} - 2$$

$$= 2^{2} T(n - 4) + 2^{3} - 2$$

$$= 2^{3} T(n - 6) + 2^{4} - 2$$

$$= 2^{4} T(n - 8) + 2^{5} - 2$$

Chegamos a,

$$T(n) = 2^i T(n - 2i) + 2^i (i + 1) - 2$$

■ Escolhendo i = n / 2,

$$T(n) = 2^{n}(n/2) T(n-n) + 2^{n}((n/2)+1) - 2$$

= $2^{n}(n/2+1) - 2$

- Portanto, o número de chamadas recursivas cresce
 - pelo menos como uma exponencial de base 2 e expoente n/2.