

- 2. Aprendizado Supervisionado e Regressão Linear

Após fazer os exercícios deste laboratório responda ao questionário correspondente da aula no Moodle

Caso: Estimando a emissão de gases CO2 de veículos

Neste Lab você vai empregar modelos de regressão simples e múltipla para estimar as emissões de CO2 de veículos a partir de suas características como consumo de combustível, marca ou tamanho do motor.

Dados: https://meusite.mackenzie.br/rogerio/TIC/FuelConsumptionCo2.csv

▼ Exercício. Acesse e Explore os dados.

Acesse e explore os dados antes de contruir os seus modelos. Verifique as quantidades e tipos de dados envolvidos, a qualidade dos dados etc. é fundamental conhecer os dados antes de se construir modelos sobre eles.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

df = pd.read_csv("https://meusite.mackenzie.br/rogerio/TIC/FuelConsumptionCo2.csv")
df.head()

	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	TRANSMISSION	FUELTYPE	FUELCONSUMPTION_CITY	FUELCONSUM
0	2014	ACURA	ILX	COMPACT	2.0	4	AS5	Z	9.9	
1	2014	ACURA	ILX	COMPACT	2.4	4	M6	Z	11.2	
2	2014	ACURA	ILX HYBRID	COMPACT	1.5	4	AV7	Z	6.0	
3	2014	ACURA	MDX 4WD	SUV - SMALL	3.5	6	AS6	Z	12.7	
4	2014	ACURA	RDX AWD	SUV - SMALL	3.5	6	AS6	Z	12.1	
4										.

```
# seu código
df.shape
df.dtypes
df.describe(include='all')
df.isnull().sum()

MODELYEAR 0
```

MAKE 0
MODEL 0
WEHTCLECLASS 0
ENGINESIZE 0
CYLINDERS 0
FUELTYPE 0
FUELCONSUMPTION_CITY 0
FUELCONSUMPTION_COMB 0
GOZEMTSSIONS 0
dtype: int64

Exercício. Faça um gráfico de dispersão entre todos os pares de variáveis

Isso irá permitir você visualizar as relações de cada par de variáveis dos dados.

Dica: Empregue sns.pairplot(df)

seu código
sns.pairplot(df)
plt.plot()

Exercício. Modelo Regressão Simples

Crie um modelo de regressão simples para estimar valores CO2EMISSIONS com base nos dados de consumo combinado dos veículos FUELCONSUMPTION_COMB. Encontre os coeficientes, seus p-values, e o R2 do modelo.

```
# seu código
import statsmodels.formula.api as sm
model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION_COMB', data=df)
result = model.fit()
print(result.summary())
      /usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing i import pandas.util.testing as tm

OLS Regression Results
                                  CO2EMISSIONS
                                                    R-squared:
                                                                                          0.796
      Dep. Variable:
                                                    Adj. R-squared:
F-statistic:
Prob (F-statistic):
      Model:
                                            OLS
                                                                                          0.796
     Method:
Date:
                              Least Squares
Wed, 09 Mar 2022
                                                                                            0.00
                                                                                         -5092.7
      Time:
                                       18:31:22
                                                    Log-Likelihood:
     No. Observations:
Df Residuals:
                                            1067
1065
                                                                                      1.019e+04
1.020e+04
      Df Model:
      Covariance Type:
                                      nonrobust
                                    coef
                                              std err
                                                                          P>|t|
                                                                                       [0.025
                                                                                                     0.975]
      FUELCONSUMPTION_COMB
                                 16.2200
                                                 0.252
                                                            64.443
                                                                          0.000
                                                                                       15.726
                                                                                                     16.714
      Omnibus:
                                                    Durbin-Watson
                                                                                        2.195
240.073
      Prob(Omnibus):
                                          0.000
                                                    Jarque-Bera (JB):
      Skew:
                                          -0.954
                                                    Prob(JB):
                                                                                       7.39e-53
      Kurtosis:
                                           4.325
                                                    Cond. No.
      [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

- Exercício. Predição

A partir do seu modelo empregue a função result.predict(x) para estimar a emissão de gases por veículos que apresentam consumo de combustível com valores 4 e 28.

```
# seu código

X_novo = pd.DataFrame()
X_novo['FUELCONSUMPTION_COMB'] = [4,28]
result.predict(X_novo)

0 133.267015
1 522.546301
dtype: float64
```

- Exercício. Regressão Múltipla

Faça agora um modelo de regressão múltipla para estimar as emissões de CO2 a partir de FUELCONSUMPTION_COMB e ENGINESIZE. Em seguida faça a predição de emissões para um veículo com FUELCONSUMPTION COMB = 10 e ENGINESIZE = 2.

```
# seu código
# define o modelo
model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION_COMB + ENGINESIZE', data=df)
# calcula o modelo e mostra os resultados
result = model.fit()
print(result.summary())
# faz a previsão
X_novo = pd.DataFrame()
X_novo['FUELCONSUMPTION_COMB'] = [10]
X_novo['ENGINESIZE'] = [2]
print(result.predict(X_novo))
```

OLS Regression Results										
Dep. Variable: CO2EMISSIONS R-squared: 0.858										
Dep. Variable:	COZEMISS					0.858				
Model:				R-squared:		0.858				
Method:	Least Squ					3220.				
	Wed, 09 Mar				:):	0.00				
Time:	18:3	1:22	Log-	Likelihood:		-4898.4				
No. Observations:		1067	AIC:			9803.				
Df Residuals:		1064	BIC:			9818.				
Df Model:		2								
Covariance Type: nonrobust										
						[0.025				
						73.246				
FUELCONSUMPTION_COMB	9.7300	0.	366	26.569	0.000	9.011	10.449			
ENGINESIZE										
Omnibus:	60	.372	Durb	in-Watson:		1.740				
Prob(Omnibus):	0.000		Jarque-Bera (JB):			91.765				
Skew:	-0.462		Prob(JB):			1.18e-20				
Kurtosis:	4.101		Cond. No.			44.9				

Warnings

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. 0 214.598964

dtype: float64

Covariance Type:

▼ Exercício. Regressão com Atributos Categóricos (RESOLVIDO)

Faça agora um modelo de Regressão Múltipla adicionando o atributo categórico VEHICLECLASS ao modelo anterior. Sendo um atributo categórico o statsmodel fará automaticamente o hot encode desse atributo (o hot encode é uma importante técnica para tornar numérico atributos categóricos e é importante para uma série de modelos que requerem dados numéricos como a regressão. Se você não conhece, pesquise ou pergunte ao professor sobre esta transformação)

```
model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION_COMB + ENGINESIZE + VEHICLECLASS', data=df)
result = model.fit()
print(result.summary())
```

```
OLS Regression Results
0
     Dep. Variable:
Model:
                                      CO2EMISSIONS
                                                         R-squared:
                                                                                                     0.870
0.868
                                                 OLS
                                                         Adj. R-squared:
                                     Least Squares
     Method:
                                                         F-statistic:
                                                                                                     414.5
     Date:
Time:
                                 Wed, 09 Mar 2022
18:31:22
                                                         Prob (F-statistic):
Log-Likelihood:
                                                                                                   0.00
-4850.3
     No. Observations:
Df Residuals:
Df Model:
                                                1067
                                                         ATC:
                                                                                                     9737.
                                                1049
                                                         BIC:
```

nonrobust

	coef	std err	t	P> t	[0.025	0.975]			
Intercept	85.1547	3.314	25.694	0.000	78.652	91.658			
VEHICLECLASS[T.FULL-SIZE]	-1.1773	3.158	-0.373	0.709	-7.375	5.020			
VEHICLECLASS[T.MID-SIZE]	-4.5891	2.482	-1.849	0.065	-9.460	0.282			
VEHICLECLASS[T.MINICOMPACT]	0.7377	3.801	0.194	0.846	-6.720	8.196			
VEHICLECLASS[T.MINIVAN]	0.8707	6.444	0.135	0.893	-11.774	13.516			
VEHICLECLASS[T.PICKUP TRUCK - SMALL]	27.1642	6.916	3.928	0.000	13.593	40.735			
VEHICLECLASS[T.PICKUP TRUCK - STANDARD]	1.4902	3.745	0.398	0.691	-5.858	8.839			
VEHICLECLASS[T.SPECIAL PURPOSE VEHICLE]	18.1171	8.881	2.040	0.042	0.690	35.544			
VEHICLECLASS[T.STATION WAGON - MID-SIZE]	-5.8249	9.569	-0.609	0.543	-24.601	12.952			
VEHICLECLASS[T.STATION WAGON - SMALL]	7.4700	4.217	1.771	0.077	-0.804	15.744			
VEHICLECLASS[T.SUBCOMPACT]	7.6220	3.381	2.255	0.024	0.988	14.256			
VEHICLECLASS[T.SUV - SMALL]	11.4515	2.580	4.439	0.000	6.390	16.513			
VEHICLECLASS[T.SUV - STANDARD]	9.9109	3.148	3.148	0.002	3.734	16.088			
VEHICLECLASS[T.TWO-SEATER]	10.3299	3.306	3.125	0.002	3.843	16.817			
VEHICLECLASS[T.VAN - CARGO]	13.0886	5.854	2.236	0.026	1.601	24.576			
VEHICLECLASS[T.VAN - PASSENGER]	33.0287	5.860	5.636	0.000	21.530	44.528			
FUELCONSUMPTION_COMB	8.0833	0.435	18.600	0.000	7.231	8.936			
ENGINESIZE	21.7192	0.924	23.495	0.000	19.905	23.533			

Omnibus: 44 735 Durbin-Watson: 1 679 Prob(Omnibus): 59.488 0.000 Jarque-Bera (JB): Skew: -0.408 Prob(JB): 1.21e-13 Kurtosis 3 820 Cond. No

Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified

result.params

85.154742 VEHICLECLASS[T.FULL-SIZE]
VEHICLECLASS[T.MID-SIZE]
VEHICLECLASS[T.MINICOMPACT]
VEHICLECLASS[T.MINIVAN] -1.177255 -4.589137 0.737737

21/09/2022 11:27

result.params.index

O modelo acima é ainda melhor que os modelos anteriores. Ele apresenta, além do R2, um R2-Ajustado melhor (que inclui uma penalidade para o aumento do número de variáveis preditoras).

Colab paid products - Cancel contracts here

_ .