# BOOLEAN ALGEBRA

AND

LOGICAL

CURCUITS

#### USWAL ALGEBRA

$$C = \alpha + b$$

BOOLEAN ALGEBRA

$$C = a + b$$
 $0,1$ 
 $0,1$ 

Numerical representation of voltage changes, is the most commonly usage of the boolean algebra.

Suchas

$$0 \longrightarrow 0-2.5 \ \lor$$

$$1 \longrightarrow 2.51-5 \ \lor$$

# BASIC BOOLEAN ALGEBRA OPERATIONS & GATES

AND OR NOT

## AND OPERATOR and GATE

 $X = A \cdot B$  X = AB

X, A and B are Boolean Variables.
Their values can be only

1 or 0.

If both A and B is 1 the result is 1, in all other cases result is 0.

All possible results of a Boolen equation are showed on the truth table.

| A |   | B | X = A.B |                                           |
|---|---|---|---------|-------------------------------------------|
| - | ) | 0 | 0       |                                           |
| ( | 0 | 1 | 0       | it looks like                             |
|   | 1 | 0 | 0       | multiplication operation in usual algebra |
|   | 1 | 1 | 1       | usual algebra                             |

Truth Table of X= A.B

$$A \longrightarrow X = A.B$$

AND operation looks like



X = ABC

| A   | B    | _     | X=ABC |                                                       |
|-----|------|-------|-------|-------------------------------------------------------|
| 000 | 001  | 1     | 0 0   |                                                       |
| 0 1 | 0001 | 0 1 0 | 0 0 0 | $ \begin{array}{c} A \\ C \end{array} $ $ (X = ABC) $ |
| \   | 1    | 1     | 1     |                                                       |

If there are N variables in a boolean equation, there are  $2^N$  possible result.

$$N=3$$
  $2^3 - 8$ 

# OR OPERATOR and GATE

$$X = A + B$$

|       | A | B | X=A+B |
|-------|---|---|-------|
|       | 0 | 0 | 0     |
|       | 0 | 1 | 1     |
| Truth | 1 | 0 | 1     |
| X=A+B | 1 | 1 | 1     |

like addition in usual algebra

$$A \longrightarrow X$$
 $(X = A + B)$ 

OR Gate



| A    | B      | $\subset$ | X=A+B+C |         |        |
|------|--------|-----------|---------|---------|--------|
| 0000 | 001100 | 0-0-0-    | 0       | A X     |        |
| (    | 1      | 0         |         | (X = A) | ++B+C) |

#### NOT Operator & GATE

NOT OPERATOR REVERSE A BOOLEAN VALUE. IF IT IS I WITH NOT OPERATOR IT BECOMES O. OR IF O ITIS 1.

$$X = \overline{A}$$

$$A | X = \overline{A}$$

$$0 | 1 | 0$$

$$(x = \overline{A})$$

NOT GATE HAS ALWAYS ONE INPUT, AND OUTTPUT IS REVERSE OF IT.

### RULES OF BOOLEAN ALGEBRA

A Boolean Algebra equation/function is made up AND, DR and NOT. There can be any number of boolean variables.

When a lot of variables are used, there are some simplification rules to get small but equivalant equations instead of long equations.

a) Rules for Single Variable

$$0 \times 0 = 0$$

2) 
$$X.1 = X$$

3) 
$$X.X = X$$

6) 
$$X+1=1$$

$$7) \times + \times = \times \times \longrightarrow \times$$

8) 
$$X + \overline{X} = 1$$
  $X + \overline{X} = 1$ 

9) 
$$\bar{X} = X$$
  $\times \longrightarrow X$ 

They can be tested with giving of and I. Also, these rules can be used for more than variables. Example:

AB. (AB) X= AB -> X.X-> O (4. Rule)