x265 命令行参数教程精简版 c

欢迎阅读! 本教程精简了科普,强烈建议先看懂有科普的<u>完整版,入门先看 x264 视频压缩教程综合版</u>。有什么不会的可以直接加群 691892901,现在要压视频就去拿急用版吧($\hat{\cdot}\cdot\omega\cdot\hat{\cdot}$) $\stackrel{\checkmark}{}$

ffmpeg, VapourSynth, avs2yuv 传递参数

ffmpeg -i 〈源〉-an -f yuv4mpegpipe -strict unofficial - | x265 --y4m - --output

ffmpeg -i 〈源〉-an -f rawvideo - | x265.exe --input-res 〈分辨率〉--fps 〈整/小/分数〉- --output

-f 格式, -an 关音频, -strict unofficial 关格式限制, --y4m 对应"YUV for MPEG", 两个"-"是 Unix pipe 串流

VSpipe.exe 〈脚本〉.vpy --y4m - | x265.exe - --y4m --output

VSpipe/avs2yuv 〈脚本〉.vpy - | x265.exe --input-res〈宽 x 高〉--fps〈整/小/分数〉- --output

avs2yuv.exe 〈脚本〉.avs -raw - | x265.exe --input-res〈宽 x 高〉--fps〈整/小/分数〉- --output

ffmpeg 查特定色度采样 ffmpeg -pix fmts | findstr 〈或 grep 关键字〉

检查/选择色深,版本,编译 x265. exe -V, -D 8/10/12 调整色深

多字体+艺术体+上下标.ass 字幕 ffmpeg -filter_complex "ass='F\:/字幕.ass' "滤镜

命令行报错直达桌面,无错则照常运行[命令行] 2>[桌面]\报错.txt

中途正常停止压制, 封装现有帧为视频 输入 Ctrl+C, x265. exe 自带功能

Bash 报错自动导出+命令窗里显示 x265. exe [参数] 2>&1 | tee C:\x265 报错. txt

8bit 还是 10bit 色深 x265 缩小了精度误差,8-10 差距比 x264 小,但 10bit 仍可减轻色带

分块

- --ctu<64/32/16, 默认 64>指定编码树单元最大大小的参数. CTU 越大,有损压缩效率越高+平面涂抹越高+速度越慢. 一般建议保持默认,但考虑到动画的大平面建议辅以低量化. 考虑画质优先时建议设<32>, 当分辨率特别小时建议设<16>且调整下面的参数(^-^*)/
- --min-cu-size<32/16, 默认 8>限制最小 cu 大小,简化计算步骤,因为这使往后步骤 pu,tu 的划分也会更大。用多一点码率换取编码速度的参数。建议日常环境使用 16 或快速编码环境使用 32
- --rect<开关,已关>启用 pu 的对称划分方法,用更多编码时间换取码率的参数. 只建议有比较充足时间,

分辨率大于 1440x810 或通篇颗粒的视频用 --amp<开关,已关,须 rect>启用 pu 的不对称划分. 用更多 更多编码时间换取码率的参数. 只建议通篇有大量粒子/噪点, 动漫源等分块高收益的视频用

变换-量化

- **--limit-tu**〈整数 $0^{\sim}4$, 要求 tu-intra/inter-depth〉1,默认 0 关〉早退 tu 分块以量化/残差编码质量为代价提. tu 大则更容易出现量化涂抹而限码,不利于暂停画质. 1 一般,画质编码,取分裂/跳过中花费最小的, 2 以同 ctu 内的首个 tu 分裂次数为上限, 3 快速编码取帧内帧间附近 tu 分裂平均次数为上限, 4 不推荐,将 3 作为未来 tu 的分裂上限,相比 0+20%速度
- --rdpenalty<整数,默认 0 关,tu-intra-depth 1 时失效;2 则 32×32 帧内 cu 可用;3 才支持 64×64 帧内 cu〉强制 tu 分块以提高细节保留降低涂抹.1 提高率失真代价而减少 32×32 tu,或设 2 强制 32×32 tu 分块.用途与 1imit-tu 相反,但可理解为 tu 分块的下限,例如高 1imit-tu,高 crf 时用 rdpenalty 2 避免 32×32 tu 造成比 x264 16×16 mb 涂抹还要烂的结果
- --tu-intra-depth, --tu-inter-depth〈整数 1~4,配合 limit-tu,默认 1〉空间域 tu 分裂次数上限,默认只在 cu 基础上分裂一次.决定量化质量所以建议开高.建议日常编码设在 2,提升画质设 3~4
- --max-tu-size<32/16/8/4, 默认 32>更大的 tu 大小能提高压缩, 但也造成了计算量增加和瑕疵检测能力变差. 码率换时间+画质. 建议不如直接设 ctu, 因为也可减少 32×32tu

帧间-动态搜索

于帧间逐块地找最小失真朝向 dir. of min. distortion, 组成一张张帧间矢量表的计算. 若不到位, 参考帧建立就欠缺基础. 六边形 hexagonal 搜索将 LDSP8 外点换成 6 个, SDSP 细规则不变, 相比 LS-dia 和 SSSP-LDSP-SDSP(四角星形 star 搜索)在 merange 16 的范围里效率更高

- --me<hex~full>搜索方式,从左到右依次变得复杂,umh 平衡,star 之后收益递减.star 四角星搜索,sea 优化过的 esa 穷举; --merange<整数搜索范围,据动搜算法选>简单说 hex 选 16,umh-star 选>=32;一般推荐 me umh merange 48. 精致一些需要 DIY 测量距离. 太大会同时降低画质和压缩率,因为找不到更好的,找到也是错的),所以 48 左右顶天,同时建议用 8 的倍数
- --analyze-src-pics〈开关〉已关,允许动态搜索直接搜索片源帧,用更多时间换取码率的参数
- --hme-search<hex~full,关mee,待查>三份异分辨率原画分别宏-微观的搜索动态信息;--hme-range<三个整数,默认 16,32,48>对应 1/16,1/4 和完整分辨率三个画面;建议 16,24,40

帧间-时域架网

motion-compensated temporal filter 基于快而简单的提升式小波变换 lifting-scheme. 只需前后信息通过 1-2 之差来预测 2-3 的区别,出现残差则更新到高频分区,没预测错的更新到低频分区. 视频编码中就是照奇-偶-奇帧推演,从 gop 开始的 0-1-2 帧, 2-3-4, 4-5-6,直到末尾组成第零层网络,通过分离低频段预测 L 和高频段残差 H 得到第一层网络. 该结构能做到迭代 n 次即分离 2ⁿ 帧的动静态,以及所有的预测与残差,故不像传统动态搜索一样受分辨率大小的缩放性 scalability 限制. 是 svc 中的核心算法

--mctf<开关,等待官方发布>mctf 帧上应用双边滤镜,是迭代到最后的 L 帧?

双阈滤镜 bilateral filter 是改自高斯模糊,在 Photoshop, GIMP, Python cv2 模块可用的滤镜. 相比仅靠范围内核调整模糊直径的高斯模糊多了空间内核来限制最小纹理强度,唯小于空间内核阈值的像素才会被越小越强的平滑滤镜模糊. 所以高斯模糊是单阈滤镜

帧间-子像素运动补偿

motion compensation 将动搜所得信息做块-帧插值,让帧间连贯起来. 防止畸变相对复杂的动态信息让块脱离参考压缩. 冲激响应滤镜 imp. response filter 对超阈值的输入模拟信号出 1, 否则出 0 的滤镜. 冲激~响应与音符~波形的关系所同. hevc 标准要求使用 7-tap 精度(1/4 像素补偿), avc 要求 6-tap. 影响模式决策和率失真优化. SAD, SATD 计算见 x264 教程完整版

--subme〈整数默认 2,范围 1° 7,24fps=4,48fps=5,60fps=6,+=7〉根据片源的帧率判断.分四个范围.由于动漫片源制于 24° 30fps, 因此可调低;但同是动漫源的 60fps 虚拟主播则异. 由于性能损耗大, 所以不建议一直开满.由于 x264 中 rdo 选项直接塞进了 subme, 所以相比 x265 偏高

推荐范围	值	HPel 迭代	HPel 搜索方向	QPel 迭代	QPel 搜索方向	算法
不推荐	<1>	1次	4	1	4	SAD
低算力	<2>	1次	4	1	4	SATD
30fps 搭配 rdo	<3>	2次	4	1	4	SATD
48fps 搭配 rdo	<4>	2次	4	2	4	SATD
60fps 搭配 rdo	<5>	1次	8	1	8	SATD
90fps 搭配 rdo	<6>	2次	8	1	8	SATD
144fps 搭配 rdo	<7>	2 次	8	2	8	SATD

加权预测 weighted prediction

x264 首发, 修复了少数淡入淡出过程中部分 pu 误参考, 亮度变化不同步的瑕疵. 分为 P, B 条带用的显

加权 explict WP<编码器直接从原画和编码过的参考帧做差>与 B 条带用的隐加权 implicit WP<用参考帧 的距离插值>插值计算在帧内编码板块有说明

--weightb〈开关,默认关〉启用 B 条带的显, 隐加权预测. 在条带所在 SPS 中可见 P, B 加权开关状态,及显加权模式下解码器须知的权重值. 光线变化和淡入淡出在低成本/早期动漫很少见

溯块向量搜索

与帧内编码并行,给动态搜索提供溯块向量(cu 帧内/帧间朝向,大小)的步骤.由于移动的物件会跨越多个pu. 所以将涉及同物件的块匹配到一起就能冗余一大批 pu 的动态向量了、(———;) /

- **--ref**〈整数 $-0.01 \times$ 帧数+3.4,范围 $1^{\sim}16$ 〉向量溯块前后帧数半径,一图流设 1. 要在能溯全所有块的情况下降低参考面积,所以一般设 3 就不管了
- --max-merge \langle 整数 0^{\sim} 5,默认 $2\rangle$ 重设 merge mode 被选数量. 用更多时间换取质量的参数. 建议高压编码设 \langle 4 \rangle ,其它可设 \langle 2, $3\rangle$ (+_+)
- --early-skip〈开关默认关,暂无建议〉先查 2nx2n merge 被选, 找不到就关 AMVP

GOP 结构建立,参数集

给视频帧分段并最终整合成 gop 内树叉状的参考结构后,将其中的关键帧递给下一步帧内编码.一来冗余,二来防止参考错误蔓延,照顾丢包人士,三来搭建 NALU 为基础传输 ss 的网络串流架构

- --opt-qp-pps<开关,默认关>据上个 GOP 改动当前 PPS 中默认的 qp 值. --opt-ref-list-length-pps<开关,默认关>据前 GOP 改当前 ref 值,而且是前后帧独立改动. 〈暂停推荐:播放器默认 PPS 跨 GOP 不变,造成解码兼容性错误. 应该用 hev1 min hev1 min hev1 min hev1 min hev1 min hev1 h
- --repeat-headers<开关,已关>在流未封装的情况下提供 SPS,PPS 等信息,正常播放 hevc 源码
- --scenecut<整数>设 x264/5 设 I 帧的敏感度
- **--hist-scenecut**〈开关,默认关,推荐开〉亮度平面边缘+颜色直方图 SAD 阈值触发转场. 在 x265v3.5+69 后在彩色视频中超越了近 20%,尤其是 HDR 源比 scenecut 降低了正误判(设 I 帧)和负误判(不设 I 帧),因

关键帧

idr 刷新解码帧 instant decoder refresh; cra 净任意访问 clean rand. access; dra 脏任意访问 dirty rand. access ; bla 断链访问帧 broken link access

参考帧

rap/随机访问点 random access point "访问"代表播出画面前读数据的过程; "任意"代表拖进度条, 打开直播, 进度条任意一点都要解得出视频的需求, 增加码率提升体验

rasl 任访略前导, radl 任仿解前导 random access skiping/decoding lead

- 正常播过来没它们事,但进度条落在 cra 附近(缺参考)时指定解码/略过的前导帧. 防止拖进度条让 gop 崩坏
- --no-open-gop〈开关,默认关,建议长 gop 用〉不用 cra/bla,增加码率增加兼容
- --radl \langle 整数默认 0,小于连续 B 帧,建议 $2^{\sim}3\rangle$ 原理见上
- --min-keyint<整数>指定最小 IDR 帧间隔. 防止编码器在 closed-gop 里将两个 IDR 帧挨太近,导致 P和 B 帧参考距离受限而设计的. 两种选择,而它们给出的画质都一样:
 - 设 5 或更高,省了设立一些 IDR 帧拖慢速度.快速编码/直播环境直接设=keyint ~(>_<~)
 - 设 1 来增加 IDR 帧,一帧被判做转场本来就意味着前后溯块的价值不高。而 P/B 帧内可以放置 I 宏块,x264 会倾向插 P/B 帧,好处是进度条落点在激烈的动作场面更密集,画质编码用

若 VBV 开启则不成立。 VBV 反而会开高量化将码率尖峰干掉,画质反降

- --keyint〈整数〉指定最大的 IDR 帧间隔,单位为帧. 由于 min-keyint 有设立 IDR 帧的能力,建议照不精确索引下拖动进度条的偏移延迟 vs 码率设置. --keyint -1 即 infinite. 在长度短到不需要拖动进度条,或者用户一定不会拖动进度条的视频可以使用以降低码率
- --fades〈开关,默认关〉找出画面虚→实渐变(fade-in),小到帧间条带(slice,一组横向 ctu),大到帧间范围的区域改用 I 条带,并根据渐变后最亮的帧重设码率控制历史记录,解决转场致模糊的问题
- --pbratio<浮点,默认 1.3>P 与 B 帧的 qp 值待遇差(如 B 块 qp 值至少是 P 块 1.3 倍). 由于 B 帧的双向参考能从更远的 I, P 帧中定位参考信息,所以 qp 更高也能通过参考来达到相同画质. 真人录像片源中保持默认即可. 动漫片源中 B 帧的出现几率增多,导致很多 B 帧因找不到合适的参考信息损失画质. 所以编码画质的动漫时要通过降低 B 帧的 qp 值分配来保护其画质,通常使用<1.2>或更激进
- --bframes〈整数,范围 $0^{\sim}16$ 〉最多可连续插入的 B 帧数量. $(3^{\sim}9)$ 快速,(12 左右)正常,若播放设备配置

帧内编码

类 jpg, png 的单图编码. hevc 标准下可略作补块, 平滑和编码三步

- --fast-intra<开关,默认 rd 大于 4 则关>5 个夹角地跳着判断夹角模式从而节省时间. 理论上在复杂画面中能提供有效加速, --b-intra<开关默认关>开启对 B 分片的帧内格式搜索. 会减速, 建议高压编码开
- --no-strong-intra-smoothing〈开关,推荐默认开〉32x32 的 PB 禁用强力平滑滤镜,改用 3-tap. 因筛 选条件苛刻,同时平滑的是参考源而非 pu,所以难以影响画质.没 64x64 是因为 pu 最大仅 32x32
- --constrained-intra<实验性,默认关>帧内条带不参考帧间像素. 高压下减少误参考

量化-码率质量控制模式

`cplxSum<迭代值 0.5 cplxSum[上帧] + SATD[上帧],初始=半数宏块/CTU >当前 SATD+=旧 SATD, 没人说为什么要:2 所以翻文献翻不出来

`cplxCount〈迭代值 0.5 cplxCount[上帧] + 1,初始 0〉当前帧数+=1,用于逐帧对 cplxBlur 加权, $\div 2$ 是为与 cplxSum 同步,加权是为了推演越往后参考冗余越好,压缩越强的规律

`**cplxBlur**<迭代值 cplxSum ÷ cplxCount,初始—cplxblur 20>据帧位置推演加权后的 SATD. 接近 100%则说明推演的当前帧复杂度应当越高,说明画面复杂度处于上升趋势。可以扭转 cplxCount 的趋势

`qScale〈迭代值 85% (2^((qp - 12) ÷ 6))〉已编码帧的 qp 算回到 qScale 并不断更新

`ABR_rate_factor<迭代值,初始 target_rate_window ÷ cplxSum>平均码率模式下做 qScale 转 qp 逆运算所用,以实现质量-码率控制的值

`ABR_qScale_new<qscale×overflow÷ABR_rate_factor>据 abr 控制更新一遍 qScale

`**cplxBase**<ctu_count × (bframes ? 120:80)>crf 模式设为默认恒定值/常数的复杂度. 设--bframes 参数则宏块/CTU 数量乘以 120,否则乘以 80. a?b:c 是 C++ if a:b else:c 缩写

CRF_rate_factor<多参数值 cplxBase^(1-qcomp)÷(qScale×(--crf + cutree_offs + bframe_offs))>此^(1-qcomp)是为和 CRF_qScale 对齐,因为运算单在 cplxBase,cplxBlur 上而非整个算式中发生.最终经 cutree,b 帧偏移再乘进 qScale 后得到实现质量—码率控制的值

`CRF qScale new < cplxBlur (1-qcomp) ÷ CRF_rate_factor > 据 crf 控制更新一遍 qScale

`qp<目标值 6log₂ (qscale_new ÷ 85%) + 12>qScale 经调整后算出当前帧 qp

CRF 上层模式

--crf<浮点范围 $0^{\circ}69$,默认 23为据"cp1xBlur,cutree,B 帧偏移"给每帧分配各自 qp 的固定目标质量模式,或简称质量呼应码率模式,统称 crf. 素材级画质设在 $16^{\circ}18$,收藏 高压画质设在 $19^{\circ}20.5$,YouTube 是 23. 由于动画和录像的内容差距,动画比录像要给低点

虽然相比于 x264 的量化一样. 但 crf 越高,率失真优化的需求也越高,速度越慢

- --**qpmin**〈整数, 范围 $0^{\sim}51$ 〉最小量化值. 由于画质和优质参考帧呈正比, 所以仅在高压环境建议设 $14^{\sim}18(" \nabla ")$; --**qpmax**〈同上〉在要用到颜色键, 颜色替换等需要清晰物件边缘的滤镜时, 可以设一qpmax 26 防止录屏时物件的边缘被压缩的太厉害,其他情况永远不如关 $mbtree(*^{\sim}\nabla^{\sim})$
- --rc-grain〈开关,tune grain 时开启〉通过 cplxBlur 抑制过噪,搭配画面噪点,胶片颗粒片源使用
- --cplxblur<浮点 0~100, 默认 20>第-1 帧不存在,无法算出第 0 帧的 cp1xBlur 所以直接指定
- --qcomp<浮点范围 0.5~1,一般建议默认 0.6>cplxBlur 迭代值每次能迭代范围的曲线缩放. 越小则复杂度迭代越符合实际状况,crf,mb-cutree,bframes 越有用,搭配高 crf 能使直播环境可防止码率突增. 越大则 crf,mb-cutree,bframes 越没用,越接近 cqp. 曲线缩放原理见 desmos 互动示例
- --rc-lookahead〈整数,范围 1^2250 〉指定 cutree 的检索帧数,通常设在帧率的 2.5^3 倍,若通篇的画面场景非常混乱则可以设在帧率的 4 到 5 倍通常在 180 之后开始增加计算负担
- --no-cutree〈开关〉关闭少见 CTU 量化增强偏移. 只有近无损,可能 crf 小于 17 才用的到
- --rceq〈仅 x264, 字串默认'cplxBlur^(1-qComp)'>可以少算一步 qcomp, cplxBase 还需 qcomp, 但不写 qcomp 就是推荐的 0.6, 所以不用写也行

CQP 上层模式

- --**qp**<整数,范围 $0^{\sim}69>$ 恒定量化。每±6 可以将输出的文件大小减倍/翻倍。直接指定 qp 会关 crf,影响其后的模式决策,综合画质下降或码率暴涨,所以除非 yuv4:4:4 情况下有既定目的,都不建议
- --ipratio<浮点,默认 1. 4>P 帧相比 IDR/i 帧; --pbratio<浮点,默认 1. 3>B/b 帧相比 P 帧的偏移. 例: 指定 IDR/I qp17, P qp20, B/b qp22 时填写--qp 17 --ipratio 1. 1765 --pbratio 1. 1

ABR 上层模式

编码器自行判断量化程度, 尝试压缩到用户定义的平均码率 average bitrate 上, 速度最快

--bitrate〈整数 kbps〉平均码率. 若视频易压缩且码率给高,就会得到码率更低的片子; 反过来低了会不照顾画质强行提高量化,使码率达标. 如果给太低则会得到码率不达标,同时画质**的片子. 平均码率模式,除 2pass 分隔,一般推流用的"码率选项"就是这个参数,速度快但同时妥协了压缩. 因此算力够的直播建议用 crf~vbr 模式,码率〉画质,但画质也抓的压片用 1pass-crf+2pass-abr

VBR 下层模式

- --vbv-bufsize〈整数 kbps,小于 maxrate〉编码器解出原画的每秒最大码率缓存. bufsize ÷ maxrate=编码与播放时解出每 gop 原画帧数的缓冲秒数,值的大小关联编完 GOP 平均大小. 编码器用到是因为模式决策要解码出每个压缩步骤中的内容与原画作对比用
- **--vbv-maxrate**〈整数 kbps,bufsize 的 x 倍〉峰值红线. 防止多个〉bufsize GOP 连续累积,给出缓帧启用高压的参数. 对画质的影响越小越好. 当入缓帧较小时,出缓帧就算超 maxrate 也会因缓存有空而不被压缩. 所以有四种状态,需经验判断 GOP 大小(" ∇ ")
 - 大: GOPsize=bufsize=2×maxrate, 超限后等缓存满再压, 避开多数涨落, 适合限平均率的串流
 - 小: GOPsize=bufsize=1×maxrate, 超码率限制后直接压, 避开部分涨落, 适合限峰值的串流
 - 超: GOPsize \ bufsize=1~2 x maxrate, 超码率限制后直接压, 但因视频小/crf 大所以没起作用
 - 欠: GOPsize>bufsize=1~2×maxrate, 超码率限制后直接压, 但因视频大/crf 小所以全都糊掉
 - 由于gop 多样,4种状态常会出现在同一视频中. buf~max 实际控制了这些状态的出现概率
- --crf-max〈整数〉防止 vbv 把 crf 拉太高, 可能适合商用视频但会导致码率失控; --crf-min〈整数〉用途不明,可能是西方人的反留白习惯所致,目前--qpmin 足以[-_-] ┡

2pass-ABR 双层模式

先用 crf 模式分析整个视频总结可压缩信息,后根据 abr 模式的码率限制统一分配量化值.有 pass 2 给特别高的平均码率,输出最小损失的最小体积近无损模式,以及 pass2 给码率硬限的全局整体压缩模式

- --pass 1<导出 stats>; --pass 2<导入 stats>; --stats<文件名>默认在 x265 所在目录下导出/入的 qp 值逐帧分配文件,一般不用设置
- --slow-firstpass<开关>pass1里不用 fast-intra no-rect no-amp early-skip ref 1 max-merge 1 me dia subme 2 rd 2,也可以手动覆盖掉

Analysis-2pass-ABR 模式

在普通 2pass 基础上让 pass1 的帧内帧间分析结果 pass 到 pass2, 减少计算量

--analysis-save; --analysis-load 〈"文件名"〉指定导入/出 analysis 信息文件的路径,文件名

- --analysis-save-reuse-level; --analysis-load-reuse-level〈整数 1~10, 默认 5>指定 analysis-save 和 load 的信息量,配合 pass1 的动态搜索,帧内搜索,参考帧等参数. 建议 8/9
 - <1>储存 lookahead
 - 〈2==4〉+同时储存帧内/帧间向量格式+参考
 - <5==6>+rect/amp 分块
 - <7>+8x8cu 分块优化
 - <8==9>+完整 8x8cu 分块信息
 - <10>+所有 cu 分析信息(^... ^)/
- --dynamic-refine<开关,已关闭>自动调整--refine-inter, x265 官方文档中建议搭配 refine-intra 4 使用,相比手动设定提高了压缩率,建议关闭
- --refine-inter \langle 整数默认 0,范围 0 $\hat{\ }$ 3 \rangle 限制帧间块的向量格式,取决于 pass1 分析结果是否可信
 - <0>完全遵从 pass1 的分块深度和向量格式
 - <1>分析所有 pass2 中与 pass1 相同分块的向量格式,除 2pass 中比 1pass 更大的分块
 - 〈2〉一旦找出最佳的动态向量格式就应用于全部的块,2Nx2N 块的 rect/amp 分块全部遵从 pass1,仅对 merge 和 2Nx2N 划分的块的动态向量信息进行分析
 - 〈3〉保持使用 pass1 的分块程度,但搜索向量格式
- --refine-intra \langle 整数默认 0,范围 0 $^{\sim}$ 4 \rangle 限制帧内块的向量格式,取决于 pass1 分析结果是否可信
 - <0>完全遵从 pass1 的分块深度和向量格式
 - 〈1〉分析所有 pass2 中与 pass1 相同分块的向量格式,除 2pass 中比 1pass 更大的分块
 - <2>pass1 找最佳分块程度/向量格式的话 pass2 就跳过
 - 〈3〉保持使用 pass1 的分块程度,但优化动态向量;〈4〉=pass1 丢弃不用
- --refine-mv (1^3) 优化分辨率变化情况下 pass2 的最优动态向量,1 仅搜索动态向量周围的动态,2 增加 搜索 AMVP 的顶级候选块,3 再搜索更多 AMVP 候选($(^\circ-^\circ; ^\circ)$))
- --scale-factor<开关,要求 analysis-reuse-level 10>若 1pass 和 2pass 视频的分辨率不一致,就使用这个参数
- --refine-mv-type avc 读取 api 调用的动态信息,目前支持 avc 大小,使用 anamyse-reuse 模块就用这个参数+avc (原文解释的太模糊,且未测试)
- --refine-ctu-distortion<0/1>0 储存/1 读取 ctu 失真(内容变化)信息, 找出 pass2 中可避的失真

2pass 转场优化

--scenecut-aware-qp〈整数,默认关,2 仅转后,1 仅转前,推荐3 前后降低, $\frac{Q}{Q}$ pass2 用〉转场前/后拉低默认5 qp 以增加画质。原理是转场本身就缺参考源,所以提高已有参考源的画质

- --masking-strength<逗号分隔整数>于 sct-awr-qp 基础上定制 qp 偏移量. 建议根据低~高成本动漫, 真人录像三种情况定制参数值. scenecut-aware-qp 的三种方向决定了 masking-strength 的三种方向. 所谓的非参考帧就是参考参考帧的帧,包括 B, b, P 三种帧...大概
- sct-awr-qp=1 时写作〈转前毫秒(推 500)〉,〈参考±qp〉,〈非参±qp〉
- sct-awr-qp=2 时写作〈转后毫秒(荐 500)〉,〈参考 ± qp〉,〈非参 ± qp〉
- sct-awr-qp=3 时写作〈转前毫秒〉,〈参考±qp〉,〈非参±qp〉,〈转后毫秒〉,〈参考±qp〉,〈非参±qp〉
- scenecut-window, max-qp-delta, qe-delta-ref, qp-delta-nonref<被 x265 v3.5 移除>
- --analysis-reuse-file<文件名 默认 x265_analysis. dat>若使用了 2pass-ABR 调优,则导入 multi-pass-opt-analysis/distortion 信息的路径,文件名

Analysis-Npass 间调优

在 Analysis-pass1~2 之间加一步优化计算. 实现比普通 2pass 更精细的码率控制, 1~N 也行

- --multi-pass-opt-analysis〈开关,默认生成 x265_analysis. dat〉储存/导入每个 CTU 的参考帧/分块/向量等信息. 将信息优化,细化并省去多余计算. 需关闭 pme/pmode/analysis-save load
- --multi-pass-opt-distortion<开关,进一步分析 qp>根据失真(编码前后画面差). 需关闭 pme/pmode/analysis-save|load
- --multi-pass-opt-rps<开关,已关>将 pass1 常用的率参数集保存在序列参数集 SPS 里以加速

Analysis-pass2-ABR 天梯

--abr-ladder<实验性的苹果 TN2224/据说整出一堆 bug,文件名. txt>编码器内部实现 analysis 模式 2pass abr 多规格压制输出. 方便平台布置多分辨率版本用. 可以把不变参数写进 pass1+2,变化的写进 txt. 格式为"[压制名:analysis-load-reuse-level:analysis-load] 〈参数 1+输出文件名〉"

x265.exe --abr-ladder 1440p8000_2160p11000_2160p16000.txt --fps 59.94 --input-depth 8 --input-csp i420 --min-keyint 60 --keyint 60 --no-open-gop --cutree

1440p8kb 2160p11kb 2160p16kb.txt {

[1440p:8:Anld 存档 1] --input 视频.yuv --input-res 2560x1440 --bitrate 8000 --ssim --psnr --csv 9.csv --csv-log-level 2 --output 1.hevc --scale-factor 2

[2160p1:0:nil] --input 视频.yuv --input-res 3840x2160 --bitrate 11000 --ssim --psnr --csv 10.csv --csv-log-level 2 --output 2.hevc --scale-factor 2

[2160p2:10:Anld 存档 3] --input 视频. yuv --input-res 3840x2160 --bitrate 16000 --ssim --psnr --csv 11.csv --csv-log-level 2 --output 3.hevc --scale-factor 0

} analysis-load 填 nil(不是 nul)代表略过

率失真优化-码率质量控制调优

存在原因见"量化-码率质量控制模式"版块

- --rdoq-level<0/1/2>率失真优化控制量化的分块深度. 0=关闭; 1=tu; 2=4x4, 很慢
- --psy-rdoq<浮点 $0^{\sim}50$,默认 0 关>心理视觉优化偏移率失真优化的程度, 提高能量 J 以改变 rdoq 的用途,使其更不愿消除系子,避免模式决策遇到差选项.类似 crqpoffs

1080p 高码率下设〈2.3².8〉给动漫,〈3^{4.8}〉给电影.分辨率高低,画面颗粒影响了系子数量和密度,所以要改参数值

- 常用: psy-rdog和 psy-rd 功能冲突,所以保留 rdog-level 1,关 psy-rdog,开 psy-rd
- 高码: 有颗粒的情况下同时用低强度的 psy-rdoq 和 psy-rd, rdoq-level 2
- 少用:目前 x265 psy-rd 还没写 cpu 指令集(慢, 待跟进), 所以关 psy-rd, 开 psy-rdoq

自适应量化

根据源图像的复杂度来判断 qp 值分配的计算, 防止 x265 往细节分配太多码率而造成平面的质量亏损. 对防止图像变得模糊有一定作用 (̄~ ̄;)

- --aq-mode<范围 0^{-4} ,0 关>aq 只在码率不足以还原原画时启动,建议<1>标准(简单平面); <默认 2>+启用 variance 调整 aq-strength,适合录像; <3>+欠码时码率多给暗场些; <4>+让不足以还原原画情况的码率多给边缘些(高锐多线条多暗场少平面)
- --hevc-aq〈开关默认关,关 aq〉基于 1/4-tile 而非边缘调整量化。据测试<u>比 aq 4 快且适合动漫,而 aq</u> 4 更适合录播(?) 目前学术方-官方-第三方间信息较为割裂,所以暂无适解
- --aq-strength<浮点>自适应量化强度. 据 VCB-s 建议, 动漫的值太高则浪费码率. 动漫中 aq-mode / strength 给<1 对 0.8>,<2 应 0.9>,<3 和 0.7>较为合理,在真人录像上可以再增加 $0.1^{\circ}0.2$,画面越混乱就给的越高,在 aq-mode 2 或更高下可以更保守的设置此参数
- --aq-motion<开关,实验性>根据动态信息微调自适应量化的效果 mode 和强度 strength(;*△*;)
- --**qg-size**<64/32/16/8>实验性参数. 自适应量化能影响到的最小 cu 边长/最大分裂深度. 默认 64 可换取更多速度,减少可略增优化效果. 高画质/平衡都建议设在 32 $^{\sim}$ 16. 用途不明的<最浅,最深>格式能自定义范围,如 32, 8 代表只在 32, 16 和 8px 的 cu 上起作用 $(\bullet \omega \bullet \acute{}) \sigma$

--cbqpoffs, --crqpoffs 〈整数〉调整蓝,红色平面相比亮度平面的 qp 值差异,负值降低量化。若当前版本 x265 的算法把色度平面的量化变高,可以用这两个参数补偿回来。由于编码器一直不擅长处理红色,而人眼又对红光敏感可能因为祖先晚上生火所以为了画质建议比 cb 面设更低(△-3 左右)的值

模式决策

mode decision 整合搜到的信息,在各种选项中给 ctu 定制如何分块,参考,跳过,编码,量化的优化.率 失真优化是核心,关闭的话模式决策就只用码率最小,复杂动态下全糊的方案集

- --rd<1/2/3/5,默认 3>率失真优化参与 md 的程度,越大越慢.<1>优化帧内参考,并块/跳过决策<2+分块决策><3+帧间决策><5+向量/帧间方向预测决策>.建议快速编码用 1, 2; 日常/高压使用 3, 其他情况(包括高画质高压编码)使用 3, 5. 码率 vs 速度 vs 画质的参数
- --limit-modes〈开关〉用附近的 4 个子 CU 以判断用 merge 还是 AMVP, 会大幅减少 rect/amp 块的存在感,明显提速.会+或-体积,微降画质但难以察觉
- --limit-refs<0/1/2/3, 默认 3>限制分块用信息可参考性. <0 不限>压缩高且慢; <1>用 cu 分裂后的信息+差异信息描述自身(推荐); <2>据单个 cb 的差异信息建立 pu; <3=1+2> ヾ(-_-;)

--rskip<0/1/2/3>找不到残余向量/宏观上出现 cu 再分块被跳过时,判断后面 cu 接着搜索分块还是提前退出的参数. 和

merge/AMVP 的区别是管辖 cu 内部的再分块. <0 不跳>费时费电换一点压缩; $<rd=0^{^{\circ}}4$ 下 1> 看附近 cu 是不是也分不了; $<rd=5^{^{\circ}}6$ 下 1> 看附近 2Nx2N cu 分块难度,推荐; <2>统计 cu 内纹理决定分块,推荐; <3>在 2 基础上直接跳过底部块

--rskip-edge-threshold<百分比 0~100, 默认 5, rskip 大于 1>用 sobel 算子检测 cu 内纹理密度 edge density, 纹理面积和块面积的百分比. 若密度超过值就分块, rskip 需大于 1

--tskip-fast<开关,已关>跳过 4x4 tu 的变换,忽略部分系子 跳过? coefficients 来加速,CbCr-tu 也取决于 Y 块是否被跳过。在全屏小细节的视频中有显著加速效果。建议除高压以外的任何环境使用

率失真优化 RDO 控制

--psy-rd〈浮点 $0^{\sim}50$ 默认 2,需 rd〉3,0 关闭〉心理视觉优化影响率失真优化的程度,增加量化块的能量,抗拒帧内搜索,使模式决策 mode decision 遇不到差选项. 注意搭配 psy-rdoq 使用. <0.2>高压,动漫据纹理设 $<0.5^{\sim}2>$. 录像设 $<1.5^{\sim}2.5>$,星空与 4k+级别的细节量设<2.8>或更高

参数值随分辨率大小变化. 注意噪声和细节都是高频信息, 所以开太高会引入画面问题. 图: 复杂度对真人录像优化的重要性, 但这些点点毛刺在低成本/大平面动漫里就很难看了(* > ω <)

--rd-refine<开关,建议开,需rd 5>率失真优化分析完成帧内搜索 cu 的最佳量化和分块结果,耗时换压缩率和画质. x264 中直接嵌入 subme 8 中,还多一个最优动态向量分析

--dynamic-rd<整数,范围 0~4>给 VBV 限码的画面调高率失真优化以 止损. 1~4 对应 VBV 限码画面的 rd 搜索面积倍数,越大越慢

--splitrd-skip〈开关,已关〉启用以在"所有当前 CU 分割致失真程度之总和"大于"任意同帧 CU 分割致失真程度之总和"时,不跟随当前 CU 分割之结果来独立计算 rd 值以加速

信号电压声音强度都用分贝表示,因为分贝通过信号值越大/越小,电平增长 越弱的对数线 y=log(x)显示.功率转 dB 的算式即 PSNR=10log₁₀(最大/当前).最大/当前就是最大像素值÷MSE; 8bit 下即 256/MSE

环路滤波-去块滤镜

- 平滑 4: a 与 1 皆为帧内块,且边界位于 CTU/宏块间,最强滤镜值
- 平滑 3: a 或 1 皆为帧内块,但边界不在 CTU/宏块间
- 平滑 2: a 与 1 皆非帧内块,含一参考源/已编码系子
- 平滑1: a 与 1 皆非帧内块,皆无参考源/已编码系子,溯异帧或动态向量相异
- 平滑 0: a 与 1 皆非帧内块,皆无参考源/已编码系子,溯同帧或动态向量相同,滤镜关
- --deblock<滤镜力度:搜索精度,默认 1:0>两值干原有强度上增减. 一般推荐 0:0, -1:-1, -2:-1

平滑强度勿用以压缩(大于 1),推荐照源视频的锐度设〈 $-2^{\circ}0$ 〉.设〈 $-3^{\circ}-2$ 〉代表放任块失真以保锐度,仅适合高码动画源.设〈小于-1〉会导致复杂画面码率失控;**搜索精度**〈大于 2〉易误判,〈小于-1〉会遗漏,建议保持〈 $0^{\circ}-1$ 〉,除非针对高量化 qp>26 时设〈1〉

环路滤波-取样迁就偏移

sample adaptive offset 滤镜. 逐 CTB 划分. **界偏移 eo** 可缓解纹理边缘因"高频波形的遮盖因强量化或去块丢失"的问题. 算法略像帧内搜索的趋平滤镜, 但是是强制的. 适合修复纹理量化出振铃的损失

带偏移 bo 是一种对比源+补偿编码差异的平面 CTB 滤镜. 适合修复平面量化的损失

参数融合 merge 将相邻两个 CTB 的 sao 信息(补偿方案, 平面补偿开关等)根据参数决定直接用上/左块, 还是对比像素趋势更接近哪个. 和选择 bo, eo 具体的偏移值一样由率失真优化决定

- --no-sao〈关闭--sao,默认开 sao〉由于针对的是强量化环境,所以高画质源+crf<17的情况下可以关
- --sao-non-deblock〈开关〉启用后,未经由 deblock 分析的内容会被 sao 分析●. ●
- --no-sao-non-deblock<默认>sao 分析跳过视频右边和下边边界(/)u(\)
- --limit-sao<开关,默认关>对一些计算采用提前退出策略,不是改善画质的,但 crf≈18, cutree 和 bframes 16 下可以开,以保留一定影响
- **--selective-sao** $<0^{\sim}4$,默认 0>从条带(横向一组 CTU)角度调整 sao 参数,1 启用 I 条带 sao,2 增加 P 条带,3 增加 B 条带,4 所有条带.可看作新的 sao 控制方式,或搭配 1 imit-sao 的新方法

熵编码/残差编码-CABAC

游程编码将降维后的块/条带丢给熵编码,是最后的文本压缩(率失真优化要解码检查每道压缩,所以要经历多次熵编码). x264/5 中使用了 context adapt. binary arithmetic coding. 相比于 cavlc 与霍夫曼编码, cabac 是现代编码器(压缩包到音视频)的核心算法之一

SEI 维稳优化消息

supplemential enhance info. 记录每帧特殊信息的功能. 主要有正确方式打开新 gop 用的缓冲 sei, 以及解码卡时间的 pic timing sei. (其实还有让显示主控切边的 sei, cc 字幕 sei, hdr-sei 等等)

缓冲 sei 记录对应 sps 的号; 待解码图像缓冲 coded picture buffer/cpb 的延迟安全区; 时戳 sei 记录哪些帧上/下场优先的变化; 连帧/三连帧的位置等信息

--hrd〈开关,默认关,开 vbv〉开启后将假设对照解码参数 hypothetical ref. decoder param. 在无丢包和延迟的假想下算好瞬间码率,写在每段序列参数集 sps 及辅助优化信息 sei 里, 对专门配置了网络串流,NAS 播放自动缓冲的播放器有好处?但应该没啥用

- --hash<md5, crc, checksum, 默认无>sei 里加效验码,播放时可用以对图像重建纠错来减少失真,三种方式中md5播放时所需算力较高,checksum 最快但有忽略概率,crc 平衡
- --single-sei<开关>只写一个装全部 sei 信息的大 NALU 而非每 gop 都写,提高很小一点压缩率
- --film-grain<文件名>將如 <u>libfgm</u>提取的纹理细节模型 film grain model 写进 SEI,将编码压缩掉的细节另存档,兼容解码器播放时恢复的功能
- --idr-recovery-sei<开关>sei 里写进 idr 帧,串流时防止整个 gop 都找不到参考帧而崩坏的机制
- --frame-dup〈开关默认关,必须开 vbr 和 hrd,有 bug〉将 2^{\sim} 3 面近似的连续帧换成同一帧
- --dup-threshold〈整数 $1^{\circ}99$,默认 70〉相似度判定值,默认达 70%重复就判为相似

线程节点控制

参自 pugetsystems.com: Cinebench,虚幻 5 上 5800X 比 5800X3D 快近 10%反映了持续计算下 5800X 频率更高的优势; Lightrooms 等单图处理上 5800X3D 跑过了 5800X, Photoshop 上 5900X, X3D, X 同时打平(优化?);剪辑视频并非持续高负载,因此 AfterFX,Premiere,DaVinci 上 X3D 和 X 打成平手.所以选择时首先看生产力软件的优化,其次看任务类型. 3D 缓存处理器比同型号更慢的原因是目前视频编码对内存带宽需求不大,更高频率才是优势.因此压制的视频越长性价比越低.但中间若有一堆内存读写间歇,3D 缓存处理器就能用低延迟读写赢回速度

--pools〈整数/加减符,,,,默认+,+,+,+〉x264 中—threads 的升级版.如—pools +,-,-,-表明 pc 有 4 个节点, 仅占用第一个. +代表全部处理器线程. 这样能防止多处理器系统上跑一个 x265 时, 所有处理器 访问第一个节点的内存而造成延迟等待. 应该是跑和节点一样多的 x265, 每个节点各自运行.单 cpu 系统直接作—threads 用,如—pools 8 指该 pc 有 1 个节点,占用该节点上处理器的 8 个线程

不要企图设置大于实际线程数的 pools/threads 提速. 会因为处理器随机并发的特性从任务数量上冲淡参考帧建立等要之前的步骤算完才能开始的时间窗口. 否则编码器只能跳过参考压缩, 造成处理器占用降低, 码率增加以及压制变慢的副作用

TR1000~2000 系处理器是用多个节点拼出来的,所以单处理器的内部要按多个节点分开算,特例是2990WX,2970WX,核心组1和3没有内存控制器,0和2有内存控制器,所以1,3不能用

--pme〈开关〉使用平行动态搜索 parallel motion estimation,已关. 多开几个动态搜索,榨干所有剩余的 CPU 算力(如 frame-threads 1 时). 若已占用 100%则别用($@=\Pi=@$;)

--pmode〈开关〉使用平行帧内搜索,目前出现了难以应付噪点,会造成画质下降,码率提高的问题

--asm<avx512>avx512 was a mistake - Intel engineer

多线程 vs 多参考

用多线程一次编码多帧来占满算力,还是一次只编一帧,确保所有参考画面可用的决策.确保所有帧同时 吞吐○(·x·). 虽然 x265 有 tile 这种集合多个分片的并行化.造成多线多参考帧困难的原因有:

- 1. ctu 比宏块大, 相似性降低了
- 2. 参考前要等环路滤波和率失真优化,还有已编码信息的依赖,使得很多参考,特别是高 ref 设定下来不及找就跳过
- 3. 参考帧的波前编码 wavefront parrallel process (压制/播放的多线程改进版)因一行参考 ctu 的存在而卡死,重启波前编码等没了多余算力
- **--frame-threads**〈整数 $0^{\sim}16^{\sim}$ 线程数 /2,默认 0 自动〉同时压多少帧,设 1 能让前后整帧可参考,非 1 就只给 ctu 下方的一行 ctu,但代价是 cpu 占用显著降低,压制减速 (-,-)
- --lookahead-threads〈整数 0~16~线程数/2,默认 0(关闭)〉分出多少个线程专门找参考,而非与帧编码一同占用线程,可能只有在开启 frame-threads 1 时手动启用以增加 cpu 占用,pme 和 pmode 同理

色彩空间转换, VUI 信息, HDR 视频, 黑边跳过

纯元数据,写错或忘写也可以改.hdr应用早期因制定方猜不出元数据主次,所以制定主 master-display,次 maxcll. 但现在...hdr 电视只读取"次要"的 maxcll 和 maxfall,并且忽略"主要"的 master-display. 另外光强/光压的单位是 candela (1cd=1nit)

由于 bt601, bt709, HDR-PQ, HLG 标准所重用的亮度范围不一(偏亮或偏暗), 所以在编码, 心理学优化算法,编码器参数上其实都要调整适配, 所以出现了适配不当的可能

--master-display (G(x,y)B(,)R(,)WP(,)L(,)) 写进 SEI 信息里,告诉解码端色彩空间/色域信息用,搞得这么麻烦大概是为了支持暂且未知的新标准,默认未指定. 绿蓝红 GBR 和白点 WP 指马蹄形色域的三角+白点 4 个位置的值 \times 50000. 光强 L 单位是 candela \times 10000

SDR 视频的 L 是 1000,1. 压 HDR 视频前一定要看视频信息再设 L, 见下

DCI-P3 电影业内/真 HDR: G(13250, 34500)B(7500, 3000)R(34000, 16000)WP(15635, 16450)L(?, 1) bt709: G(15000, 30000)B(7500, 3000)R(32000, 16500)WP(15635, 16450)L(?, 1)

RGB 原信息(对照小数格式的视频信息,然后选择上面对应的参数):

G(x0.265, y0.690), B(x0.150, y0.060), R(x0.680, y0.320), WP(x0.3127, y0.329)DCI-P3: G(x0.30, y0.60), B(x0.150, y0.060), R(x0.640, y0.330), WP(x0.3127, y0.329)bt709: bt2020: G(x0.170, y0.797), B(x0.131, y0.046), R(x0.708, y0.292), WP(x0.3127, y0.329)

--max-cll<最大内容光强,最大平均光强>压 HDR 一定照源视频信息设,找不到不要用,例子见下

--hdr10<自动开关>当 master-display 和 max-cll 启用就直接在 sei 中指示 hdr10 相关参数,原本参数 名叫--hdr (和 hdr-opt 一样), 改名是为了指明它能优化新的 hdr10, 而非旧的 hdr

: 10 bits Bit depth

Bits/(Pixel*Frame) : 0.120 图: max-cll 1000,640. master-display 由 G(13250…开头,

: 21.3 GiB (84%) Stream size

L(10000000, 1)结尾 Default

Forced

Color range : Limited

Color primaries : BT.2020 数据密度【码率/(像素×帧率)】: 0.251

Transfer characteristics: PQ 流大小: 41.0 GiB (90%)

Matrix coefficients : BT.2020 non-constant 编码函数库: ATEME Titan File 3.8.3 (4.8.3.0) Mastering display color primaries: R: x=0.680000 y=0.320000,

G: x=0.265000 y=0.690000, B: x=0.150000 y=0.060000, White point: x=0.329000 y=0.329000

Mastering display luminance: min: 0.0000 cd/m2, max: 1000.0000 cd/m2ced:否

Maximum Content Light Level: 1000 cd/m2 色彩范围: Limited Maximum Frame-Average Light Level: 640 cd/m2 基色: BT.2020

传输特质: PQ 图: max-cll 1655, 117/L(40000000, 50)/colorprim 矩阵系数: BT.2020 non-constant bt2020/colormatrix bt2020nc/transfer smpte2084 控制显示基色: Display P3

--hdr10-opt<开关, 己关>逐块为 10bit bt2020, smpte2084 视

频做亮度色度优化, 其它视频无效

控制显示亮度: min: 0.0050 cd/m2, max: 4000 cd/m2

最大内容亮度等级: 1655 cd/m2 最大帧平均亮度等级: 117 cd/m2

位深: 10 位

--display-window〈←, ↑, →, ↓〉指定黑边宽度以跳过这块编码,或者用--overscan crop 直接裁掉

- --colorprim〈字符〉播放用基色,指定给和播放器默认所不同的源,查看视频信息可知: bt470m bt470bg smpte170m smpte240m film bt2020 等, 如→图的 bt. 2020
- --colormatrix<字符>播放用矩阵格式/系数: GBR bt709 fcc bt470bg smpte170m smpte240m YCgCo bt2020nc bt2020c smpte2085 ictcp, 如上图的bt2020 non-constant
- --transfer<字符>传输特质 transfer characteristics: bt709 bt470m smpte170m smpte240m linear log100 log316 bt2020-10 bt2020-12 smpte2084 smpte428, 卜图 PQ 是 smpte st. 2084 的标准, 所以写 smpte2084

ffprobe 会将三个信息并在一行写: Stream #0:0(und): Video: prores (XQ) (ap4x / 0x78347061), vuv444p12le (tv. bt2020nc/bt2020/smpte2084, progressive)

IO(input-output, 输入输出)

- **--seek**〈整数, 默认 0〉从第 x 帧开始压缩, 从第 0 帧开始数(。 ω ')
- --frames < 整数,默认全部 > 一共压缩 x 帧,frames 12 即处理 12 帧,从 0 号到 11 号
- --output〈字符串,两边带双引号〉例: --output "输出文件地址+文件名" "输入文件地址+文件名"
- --input-csp<i400/i422/i444/nv12/nv16>在输入非默认 i420 视频时需要的参数, rgb 色彩空间需转换
- --dither<开关>使用抖动功能以高质量的降低色深(比如 10bit 片源降 8bit),避免出现斑点和方块
- --allow-non-conformance<开关>不写入 profile 和 level,绕过 h. 265 标准的规定,只要不是按照 h. 265 规定写的命令行参数值就必须使用这个参数
- --field〈开关〉输入分行扫描视频时用,自动获取分场视频的帧率+优先场,替代了--interlaced参数
- --input-res<宽×高>在使用 x265 时必须指定源视频的分辨率,例如 1920x1080
- --fps〈整数/浮点/分数〉在使用 x265 时必须指定源视频的帧率,小数帧勿做四舍五入
- **--chunk-start --chunk-end**〈开关,no-open-gop〉chunk-start 允许跨 GOP 制作数据包(?),改由 chunk-end 参数将数据包结尾和剩下的视频帧断开(?). 据描述看,由于数据包接收顺序一定会被打乱,所以只可参考其之前,而不可参考之后的内容,跟 http 的数据包编码协议有关 Σ (- \circ \circ

下载 附录与操作技巧

<u>LigH</u>	.hevc GCC10 [单文件 8-10-12bit] 附 x86, Windows XP x86 版 附 libx265.dll				
<u>Rigaya</u>	.hevc GCC 9.3 [8-10-12bit] 附 x86 版				
<u>Patman</u>	.hevc GCC 11+MSVC1925 [8-10-12bit]				
<u>ShortKatz</u>	arm64~64e 加 x86 版 [?] 需 macOS 运行编译命令文件 ?				
DJATOM-aMod	opt-Intel 架构与 zen1~2 优化 [10bit], opt-znver3 代表 zen3 优化 [10-12bit] GCC 10.2.1+GCC10.3				

MeteorRain-yuuki

Ismash.mkv/mp4 或.hevc [能封装, 但传说 lavf 不如 pipe 可靠] GCC 9.3+ICC 1900+MSVC 1916 [8][10][12bit]+[8-10-12bit]

ffmpeg 多系统兼容,备用地址 ottverse.com/ffmpeg-builds

mpv 播放器 比 Potplayer 好在没有音频滤镜,不用手动关;没有颜色偏差,文件体积小

x265GuiEx (Rigaya) 日本語, auto-setup 安装, 教程点此

Voukoder; V-Connector 免费 Premiere/Vegas/AE 插件,直接用 ffmpeg 内置编码器,不用帧服务器/导无损再压/找破解.只要下两个压缩包,放 Plug-Ins\Common 文件夹就行了

gcc 是什么,为什么同版同参的速度不一

把源码编成程序的软件即编译器. x265 有 mingw(gcc 套件), 套件版本新旧影响编出程序的效率, msvc 体积更小, 但需要 VCRUNTIME140_1.dll; icc 需要 libmmd.dll; Clang 需要...?

速度不一样还可能源自内建函数. 函数即等待变量输入的算式. 由于 8bit x265 中有大量开发组手动编写的内建函数, 所以不同编译者给出的程序速度也大不相同. 而 10bit x265 完全没有手动编写的内建函数, 所以编译者只有尽可能地优化 c++源码. 同样, 速度测试应该以 10bit x265 为基准

rc指 release candidate

有的 x265 文件名上有 rc, 指已修复所有被提出的问题 且作者认为 ok 的版本

windows 优化

win 系统降低 cpu0 的负载可以加速大型多线程任务,任务管理器--右键任务--转到详细信息--设置相关性--取消勾选 cpu0. 原理是 win 系统的线程分配功能没优化,一旦有任务就丢给 cpu0 造成的

CMD 操作技巧 color 08

将原本黑景白字改成黑景灰字的单行命令, 有助于降低眼睛疲劳

cmd 窗口操作技巧%~dp0

"%~"是填充字的命令(不能直接用于 CMD). d/p/0 分别表示 drive 盘/path 路径/当前的第 n 号文件/盘符/路径,数字范围是 0~9 所以即使输入 "%~dp01.mp4" 也会被理解为命令 dp0 和 1.mp4

这个填充展开后可能是"C:\"+"...\"+1.mp4, 路径取决于当前.bat 所处的位置, 这样只要.bat 和视频在同一目录下就可以省去写路径的功夫了

若懒得改文件名参数,可以用%~dpn0,然后直接重命名这个.bat, n 会将输出的视频,例子: 文件名 = S.bat → 命令=--output %~dpn01.mp4 → 结果=1.mp4 转输出"S.mp4" $(/\cdot\omega\cdot)/\dot{}$

.bat 文件操作技巧

.bat 中, 命令之后加回车写上 pause 可以不直接关闭 cmd, 可以看到原本一闪而过的报错

cmd for 循环批量压制(确保文件名无重复, 预先分离出音频, 预先将视频套滤镜渲染好)

给出 bat 文件所在目录下完整 pdf 路径+文件名: for %%a in ('*.pdf') do echo '%~dp0%%a'

批量压 mkv: chep 65001

@ for %%1 in ('*.mkv') do (x265 [参数] --output 'D:\文件夹\%\^n1.mp4' '%\^dp0\%1' & qaac [参数] --o 'D:\文件夹\\%\^n1.aac' '\^dp0\%\^n1.flac')

ffmpeg 批量压 mp4, 音频拷到新文件: chcp 65001

@ for %%3 in ('*.mp4') do (ffmpeg -i '%%3' -c:v copy -i '%%~n3.aac' -c:a copy '%%~n3.mp4')

chcp 65001 会让 cmd 以 unicode 形式读取, @是不打出输了什么命令进去, %%~n1 是%%1 去掉了文件后缀 o(-_^)

Worm effect 瑕疵

原因未知, x265 低码+no-sao 可复现的噪点横向拉伸效果

预设

tune zerolatency 去延迟		tune animation 动画片		
连续 B 帧 0		心理率失真优化程度 psy-rd	0.4	
B帧筛选		自适应量化强度	0.4	
cu 树	关	去块	1:1	
转场	关	cu 树	关	
多线程压制帧数	1	B 帧数量	<pre><pre><pre><pre>< +2</pre></pre></pre></pre>	
tune grain 最高画质		tune fastdecode 解码加速		
自适应量化	0	B 帧权重	关	
cu 树开关	关	P 帧权重	¥	
I-P 帧压缩比	1.1	去块	¥	
P-B 帧压缩比	1	取样迁就偏移	关	

QP 赋值精度 qp-step 取样迁就偏移	1 关	tune psnr 峰值信噪比	
心理率失真优化程度 psy-rd	4	自适应量化	关
心率失优可用 psy-rdoq	10	率失真优化 rd	关
cu 再分裂跳过 rskip	0	cu 树	关
	1		l
