ISFA - M2 Actuariat | Techniques Numériques Projet à rendre pour le 19 février 2023 (avant 23h00)

Dans ce projet on considère un contrat d'épargne qui mature dans T ans. Dans cet exemple, on s'intéresse un seul contrat et nous nous focalisons sur le risque financier sous-jacent. On fait les hypothèses simples suivantes :

- La maturité du contrat est T=2;
- Le marché est caractérisé par un seul actif risqué $(S_t)_{t\geq 0}$, avec $S_0=1$, dont la volatilité implicite (en environnement risque neutre) est $\sigma_i=25\%$, la volatilité historique est $\sigma_r=15\%$, le rendement escompté (en environnement historique) est $\mu=2\%$;
- Le sous-jacent $(S_t)_{t\geq 0}$ suit un processus de Black-Scholes (mouvement Brownien géométrique);
- Le taux sans risque est fixé à r = 1%;
- Le taux technique (garanti) est fixé à $r_g=0.5\%$
- La valeur initiale du fond (valeur du marché) est de VM₀ = 110, l'assureur choisit d'investir une proportion x = 30% du fond en actif risqué $(S_t)_{t>0}$, la partie restante est investit en taux sans risque;
- Le contrat d'épargne est caractérisé par une garantie de capital à terme, l'assureur s'engage à rembourser au minimum le montant investi par l'assuré en date t = 0, $PM_0 = 100$ rémunéré au taux technique r_g , c.-à-d. $e^{r_g T} PM_0$. La garantie s'écrit donc :

$$\max \left(e^{r_g T} \mathrm{PM}_0, \ R \times \mathrm{VM}_T\right),$$

où la quote-part de l'assuré dans le fond est $R = PM_0/VM_0$.

Le contrat ainsi décrit présente deux composante (à la maturité)

- Une partie garantie : $BE_T = R \times VM_0 \times (xS_T + (1-x)e^{rT})$
- Une partie optionnelle (put européen) : $O_T = (K S_T)^+$ avec un *strike* K sur un sous-jacent dont la valeur initiale est $x \times PM_0$.

L'objectif de ce projet est de calculer le montant du capital de solvabilité (SCR) en utilisant les méthodes vues en cours. Le besoin de capital réglementaire pour ce contrat est définie de la façon suivante :

$$SCR = NAV_0 - V@R_{99.5\%} \left(\frac{NAV_1}{1 + r_1} \right),$$

où NAV_t est la net asset value (valeur nette des actifs) à la date t et r_t est le taux d'intérêt à la même date. Le calcul du SCR nécessite la connaissance (estimation) de la distribution (empirique) de la variable aléatoire NAV_1 . En effet, cette dernière est définie de la façon suivante :

$$NAV_t = \underbrace{e^{-r(T-t)} \mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}} \left[V M_T | S_t \right]}_{\text{actif}} - \underbrace{e^{-r(T-t)} \mathbb{E}_{\mathbb{P} \otimes \mathbb{Q}} \left[BE_T + O_T | S_t \right]}_{\text{passif}}.$$

Nota Bene: Les simulations sur [0,1] se font en environnement historique, puis en environnement risque neutre à partir de t=1.

Calcul de la NAV₀. En implémentant un schéma numérique simple pour calculer la valeur de la net asset value à date t = 0.

Dans la suite on s'intéresse à la distribution de la variable aléatoire NAV_1 .

Simulations dans les Simulations (SdS). Ici, nous allons déterminer la distribution de la variable aléatoire NAV_1 . Il s'agit d'une espérance conditionnelle. Cette dernière doit être estimée de la façon suivante :

- Simuler N trajectoires du sous-jacent à la date t=1, notées S_1^k , pour $k=1,\cdots,N$
- Pour chaque simulation k, estimer par Monte-Carlo NAV $_1^k$ (le sous-jacent part de S_1^k)

$$NAV_1^k = \frac{1}{M}e^{-r(T-1)} \sum_{i=1}^{i=M} \left(VM_T^{k,i} - BE_T^{k,i} - O_T^{k,i} \right).$$

— Estimer la value-at-risk à 99.5% de la NAV $_1$ actualisée à partir de ces N simulations

Méthode LSMC. Ici, on utilisera la méthode de *Least-Square Monte-Carlo* (LSMC) pour caractériser la distribution de NAV_1 . L'idée consiste en l'utilisation de la méthode SdS avec moins de simulations secondaire (M), puis utiliser une régression linéaire sur une base orthonormée afin de déterminer d'une façon plus précise l'évolution de NAV_1 :

- Simuler N trajectoires du sous-jacent à la date t=1, notées S_1^k , pour $k=1,\cdots,N$
- Pour chaque simulation k, estimer par Monte-Carlo NAV₁^k (le sous-jacent part de S_1^k)

$$NAV_1^k = \frac{1}{M}e^{-r(T-1)} \sum_{i=1}^{i=M} \left(VM_T^{k,i} - BE_T^{k,i} - O_T^{k,i} \right).$$

— Utiliser une base orthonormée $(P_j(X))_{j=0,\dots,d}$ (avec $P_j(X)$ est un polynôme de degré j) et estimer par moindres carrées la régression linéaire suivante :

$$NAV_1 = \alpha_0 \times P_0(S_1) + \dots + \alpha_d \times P_d(S_1).$$

1

Ici, les $\widehat{\alpha}_i$ optimaux minimisent :

$$\sum_{k=1}^{k=N} \left(\text{NAV}_1^k - \sum_{j=1}^{j=d} \alpha_j \times P_j(S_1^k) \right)^2.$$

- Nous utilisons $\sum_{j=1}^{j=d} \widehat{\alpha}_j \times P_j(S_1^k)$ en lieu et place de NAV₁ pour déterminer la distribution de NAV₁ Pour cette méthode, il faut proposer une base de polynomes orthonormés P_j et tester l'impact (voir le package orthopolynom

Questions:

- 1 Nombre de simulations secondaires Étudier les estimations précédentes du SCR en fonction de N, M et d (nombre de polynômes).
- 2 Comparaison En utilisant ces deux méthodes comparez :
 - les estimations puis commenter l'efficacité de chacune de ces méthodes;
 - les temps de calcul;

pour différentes valeurs de N, M et d.

Que peut-on dire de la précision (intervalles de confiance)?

- 3 Sensibilités En se basant sur la méthode LSMC, calculer la sensibilité du SCR par rapport à :
 - au taux garanti r_q
 - au taux sans risque r

Consignes: Le rendu doit comporter les éléments suivants:

- Un rapport structuré détaillant les résultats pour chaque méthode avec des tests de sensibilité et une comparaison des méthodes
- Un fichier source avec les codes qui ont permis de produire les résultats

Le projet est à rendre avant le 19/02/2023 à 23h00 à l'adresse suivante : yahia.salhi@univ-lyon1.fr. Aucun projet rendu en retard ne sera corrigé.

L'objet de votre mail de rendu devra être : [Projet TM 2022/2023]. Le code et le rapport doivent être envoyés dans un dossier compressé (.zip) avec le nom :

GX NOM1 NOM2 NOM3 NOM4

GX renvoie au numéro de votre groupe (G1, G2, etc).