

STUDENT ID NO									
									1 1

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2017/2018

EMF2016 ELECTROMAGNETIC THEORY

(All Sections / Groups)

24 OCT 2017 02:30 P.M – 4:30 P.M. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 10 pages including this cover page with 4 questions only. Common constants for air are listed on Page 5.
- 2. Attempt all four questions. All questions carry equal marks and the distribution of marks for each question is given.
- 3. Please print all your answers in the answer booklet provided.
- 4. Please tie and submit worked Smith charts together with the answer booklet.

- (a) A 2 GHz source is connected to a load Z_L with impedance $(30 + j30)\Omega$ via a 1 m 50 Ω lossless coaxial cable filled with polyethylene (dielectric constant $\varepsilon_r = 2.25$). Without using Smith chart, compute the following parameters.
 - (i) The phase constant.

[3 marks]

(ii) The reflection coefficient at the load.

[3 marks]

(iii) The location of the first voltage maximum from the load.

[4 marks]

- (b) Using Smith charts (provided at the end of this question paper), design a single stub tuner (use 50 Ω shunt short-circuited stub) to match a (30 + j30) Ω antenna to a 50 Ω transmission line, by finding
 - (i) the shortest electrical distance between the stub and the antenna and [8 marks]
 - (ii) the stub electrical length.

[7 marks]

(You need to submit the worked Smith charts. Write all markings and labels clearly. Detach them from the question paper and tie them to your answer booklet.)

2/10

(a) Write down the four Maxwell equations in differential form and the physical laws they represent.

[8 marks]

- (b) Show that $\underline{\nabla} \cdot \underline{\mathbf{J}} = -\frac{\partial \rho_{\nu}}{\partial t}$ is consistent with the principle of conservation of charges which states, "no charge can be spontaneously created or destroyed". $\underline{\mathbf{J}}$ and ρ_{ν} are conduction current density and volume charge density, respectively.

 [6 Marks]
- (c) Using Ampere's law, show that the magnetic flux density due to an infinitely long straight wire carrying a current *I* is given by

$$\underline{\mathbf{B}} = \hat{\mathbf{\phi}} \frac{\mu I}{2\pi\rho}.$$

[4 marks]

(d) A conducting rod AB moves in air at a constant velocity of 2 m/s in parallel to an infinitely long straight wire carrying a constant current of 9 A, as shown in Fig. Q2. Determine the potential difference V_{AB} developed in the rod AB. Take note the polarity of V_{AB}.

[7 marks]

Fig. Q2

The electric field of a plane wave propagating in a nonmagnetic medium is given by

$$\underline{\mathbf{E}} = \hat{\mathbf{x}} 3 \sin(\pi \times 10^7 t - 0.3\pi y) + \hat{\mathbf{z}} 4 \cos(\pi \times 10^7 t - 0.3\pi y) \text{ (V/m)}.$$

- (a) Determine the following:
 - (i) The frequency.

[2 marks]

(ii) The phase velocity.

[2 marks]

(iii) The dielectric constant of the medium, ε_r .

[2 marks]

(iv) The wave impedance.

[2 marks]

(v) The magnetic field intensity vector, $\underline{\mathbf{H}}$.

[5 marks]

- (b) The plane wave impinges on a plane medium interface at y = 0 at normal incidence. The medium at y > 0 is air. Determine
 - (i) the reflected electric field intensity vector, and

[6 marks]

(ii) the transmitted electric field intensity vector.

[6 marks]

(a) Explain the fundamental differences between transverse electric (TE), transverse magnetic (TM) and transverse electromagnetic (TEM) waves.

[3 marks]

(a) Define the terms "cutoff frequency" and "dominant mode" in a waveguide.

[4 marks]

(b) A rectangular waveguide with dimensions 2.5 cm \times 1 cm is to operate at 15 GHz. Given that the waveguide is filled with a medium characterized by conductivity $\sigma = 0$, relative permittivity $\varepsilon_r = 4$, and relative permeability $\mu_r = 1$, calculate for TE₁₀ mode,

(i) the cutoff frequency,

[4 marks]

(ii) the phase constant,

[3 marks]

(iii) the guide wavelength,

[2 marks]

(iv) the phase velocity,

[3 marks]

(v) the group velocity, and

[3 marks]

(vi) the wave impedance.

[3 marks]

Common constants for air

Speed of light, $c = 3 \times 10^8 \text{ m/s}$

Permittivity, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$

Permeability, $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$

Intrinsic impedance, $\eta_0 = 377 \Omega$

THIS PAGE IS INTENTIONALLY LEFT BLANK

Continued ...

TCH/MR/TJJ/AT

6/10

EMF2016

The Complete Smith Chart

Black Magic Design

http://www.sss-mag.com/pdf/smithchart.pdf

Continued ...

TCH/MR/TJJ/AT 7/10

The Complete Smith Chart

Black Magic Design

Continued ...

TCH/MR/TJJ/AT 8/10

The Complete Smith Chart

Black Magic Design

http://www.sss-mag.com/pdf/smithchart.pdf

Continued ...

TCH/MR/TJJ/AT 9/10

The Complete Smith Chart

Black Magic Design

End of Paper

TCH/MR/TJJ/AT 10/10