Höhere Mathematik 2

Jil Zerndt FS 2025

Numerische Lösung nicht linearer Gleichungssysteme

LGS = lineares Gleichungssystem, NGS = nichtlineares Gleichungssystem

Skalarwertige Funktionen $f: D \subset \mathbb{R}^n \to W \subset \mathbb{R}$

$$(x_1, x_2, \dots, x_n) \mapsto y = f(x_1, x_2, \dots, x_n)$$

f mit n unabhängigen Variablen x_1, \ldots, x_n und einer abhängigen Variablen y, die jedem (x_1, x_2, \ldots, x_n) aus Definitionsmenge $D \subset \mathbb{R}^n$ genau ein $y \in W \subset$ \mathbb{R} zuordnet. Ergebnis: $y \in \mathbb{R} = \mathsf{Skalar}$ (eine Zahl)

Vektorwertige Funktion gibt einen Vektor zurück (statt Skalar) Sei $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ eine Funktion mit n Variablen.

$$\mathbf{f}(x_1 \dots, x_n) = \begin{pmatrix} y_1 = f_1(x_1, x_2, \dots, x_n) \\ y_2 = f_2(x_1, x_2, \dots, x_n) \\ \dots \\ y_m = f_m(x_1, x_2, \dots, x_n) \end{pmatrix}$$

wobei die m Komponenten $f_i:\mathbb{R}^n\to\mathbb{R}$ für $i=1,2,\ldots,n$ von \mathbf{f} wieder skalarwertige Funktionen sind.

Nichtlineares Gleichungssystem (NGS)

Lösungen des NGS sind Nullstellen der Funktion:

$$\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2 \quad \mathbf{f}(x) = \begin{pmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Ein solches System lässt sich nicht in die Form Ax=b bringen. Geometrisch lassen sich die Lösungen als Schnittpunkte der beiden Funktionen interpretieren.

Lineare Funktionen von LGS

$$\mathbf{A}\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{b}} \Rightarrow \underbrace{\mathbf{A}\overrightarrow{\mathbf{x}} - \overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{0}}}_{\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}})} \Rightarrow \overrightarrow{\mathbf{f}}(x_1, x_2, x_3) = 0 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{x}}\right) = \mathbf{A}\overrightarrow{\mathbf{x}} - \overrightarrow{\mathbf{b}} = \left(\begin{smallmatrix} 4 & -1 & 1 \\ -2 & 5 & 1 \\ 1 & -2 & 5 \end{smallmatrix} \right) \left(\begin{smallmatrix} x_1 \\ x_2 \\ x_3 \end{smallmatrix} \right) - \left(\begin{smallmatrix} 5 \\ 11 \\ 12 \end{smallmatrix} \right), \quad \mathbf{f}(x_1, x_2, x_3) = \left(\begin{smallmatrix} f_1 = 4x_1 - x_2 + x_3 - 5 \\ f_2 = -2x_1 + 5x_2 + x_3 - 11 \\ f_3 = x_1 - 2x_2 + 5x_2 + 2 - 11 \\ f_3 = x_1 - 2x_2 + 5x_3 - 12 \end{smallmatrix} \right)$$

Analytische Darstellung

- Explicite Darstellung: $u = f(x_1, \dots, x_n)$
- Implizite Darstellung: F(x, y) = 0
- Parameterdarstellung: x = x(t), y = y(t)

Darstellung durch Wertetabelle Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ eine Funktion. In z = f(x, y) Werte von x und y einsetzen (der Reihe nach):

$$\left(\begin{array}{cccc} z_{11} & z_{12} & \dots & z_{1m} \\ z_{m1} & z_{m2} & \dots & z_{mn} \end{array}\right)$$

Funktion als Fläche im Raum

f ordnet jedem Punkt $(x, y) \in D$ in Ebene Wert z = f(x, y) zu (→ Höhenkoordinate)

Schnittkurvendiagramm

Fläche z = f(x, y) bei konstanten Höhe z schneiden: Schnittkurve. Diese in (x, y)-Ebene projizieren: Höhenlinie

Partielle Ableitungen -

Partielle Ableitung
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{(f(x_0 + \Delta x) - f(x_0))}{\Delta x}$$

Ableitung nach x:
$$f_x = \frac{\partial f}{\partial x}(x,y) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x,y) - f(x,y)}{\Delta x}$$

Ableitung nach y:
$$f_y = \frac{\partial f}{\partial y}(x,y) = \lim_{\Delta y \to 0} \frac{f(x,y+\Delta y) - f(x,y)}{\Delta y}$$

Partielle Ableitungen berechnen

- 1. Variable identifizieren: nach welcher Variable ableiten?
- 2. Alle anderen Variablen während Ableitung nur Konstanten
- 3. Standardableitungsregeln anwenden und Ergebnis korrekt notieren

Jacobi-Matrix $f: \mathbb{R}^n \to \mathbb{R}^m$ mit y = f(x) und $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$ Jacobi-Matrix enthält alle partiellen Ableitungen 1. Ordnung von f:

$$f(x) = \begin{pmatrix} y_1 = f_1(x) \\ y_2 = f_2(x) \\ \vdots \\ y_m = f_m(x) \end{pmatrix} \rightarrow Df(x) := \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{bmatrix}$$

Linearisierung Die verallgemeinerte Tangentengleichung

$$g(x) = f(x^{(0)}) + Df(x^{(0)}) \cdot (x - x^{(0)})$$

beschreibt lineare Funktion, $f(x) \approx g(x)$ in Umgebung von $x^{(0)} =$ $(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})^T \in \mathbb{R}^n$. Man spricht von der **Linearisierung** der Funktion y = f(x) in einer Umgebung von $x^{(0)}$ ($x^{(k)}$ bezeichnet Vektor aus \mathbb{R}^n nach k-ter Iteration).

Tangentialebene $f: \mathbb{R}^2 \longrightarrow \mathbb{R}, y = f(x_1, x_2), x^{(0)} = (x_1^{(0)}, x_2^{(0)})^T \in \mathbb{R}^2$ Spezielle Jacobi-Matrix (nur ein Zeilenvektor mit zwei Elementen):

$$Df(x^{(0)}) = \left(\frac{\partial f}{\partial x_1}(x_1^{(0)}, x_2^{(0)}), \frac{\partial f}{\partial x_2}(x_1^{(0)}, x_2^{(0)})\right)$$

Linearisierung $q(x_1, x_2)$ die Gleichung der Tangentialebene:

$$= f(x_1^{(0)}, x_2^{(0)}) + (\frac{\partial f}{\partial x_1}(x_1^{(0)}, x_2^{(0)}), \frac{\partial f}{\partial x_2}(x_1^{(0)}, x_2^{(0)})) \cdot {x_1 - x_1^{(0)} \choose x_2 - x_2^{(0)}}$$

$$= f(x_1^{(0)}, x_2^{(0)}) + \frac{\partial f}{\partial x_1}(x_1^{(0)}, x_2^{(0)}) \cdot (x_1 - x_1^{(0)}) + \frac{\partial f}{\partial x_2}(x_1^{(0)}, x_2^{(0)}) \cdot (x_2 - x_2^{(0)})$$

Sie enthält sämtliche im Flächenpunkt $\overset{ullet}{P}=(x_1^{(0)},x_2^{(0)},f(x_1^{(0)},x_2^{(0)}))$ an die Bildfläche von $y=f(x_1,x_2)$ angelegten Tangenten.

Jacobi-Matrix berechnen und linearisieren

Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ mit y = f(x) und $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$.

- 1. Identifiziere die Komponentenfunktionen $f_1, f_2, ..., f_m$ und Variablen $x_1, x_2, ..., x_n$.
- 2. Berechne partielle Ableitungen $\frac{\partial f_i}{\partial x_j}$ für $i=1,...,m,\ j=1,...,n.$
- 3. Stelle die Jacobi-Matrix Df(x) auf
- 4. Werte Jacobi-Matrix an Entwicklungspunkt $x^{(0)}$ aus (Werte für $x_1, x_2, ..., x_n$ einsetzen)
- 5. Berechne Linearisierung g(x) mit Tangentengleichung

 $\mathsf{Struggle} \in \mathbb{R}$

Jacobi-Matrix und Linearisierung
$$f(x,y,z) = \begin{pmatrix} e^{xy} + z^2 - 3 \\ \sin(x+y) - z \\ x^2 + y^2 + z^2 - 6 \end{pmatrix}$$
 Jacobi-Matrix: $Df(x,y,z) = \begin{bmatrix} ye^{xy} & xe^{xy} & 2z \\ \cos(x+y) & \cos(x+y) & -1 \\ 2y & 2z & 2z \end{bmatrix}$

Jacobi-Matrix:
$$Df(x, y, z) = \begin{bmatrix} ye^{xy} & xe^{xy} & 2z \\ \cos(x+y) & \cos(x+y) & -1z \\ 2x & 2y & 2z \end{bmatrix}$$

$$f(1,0,1) = \begin{pmatrix} e^0 + 1 - 3\\ \sin(1) - 1\\ 1 + 0 + 1 - 6 \end{pmatrix} = \begin{pmatrix} -1\\ \sin(1) - 1\\ -4 \end{pmatrix}, \quad Df(1,0,1) = \begin{bmatrix} 0 & 1 & 2\\ \cos(1) & \cos(1) & -1\\ 2 & 0 & 2 \end{bmatrix}$$

Linearisierung:
$$g(x,y,z)=f(1,0,1)+Df(1,0,1)\cdot\begin{pmatrix}x-1\\y-0\\z-1\end{pmatrix}$$

Geometrische Bedeutung: Linearisierung approximiert nichtlineare Funktion f nahe des Punktes $(1,0,1)^{T}$ durch lineare Funktion. Entspricht der Tangentialebene an die durch f=0 definierte Fläche im 3D Raum.

Nullstellenbestimmung für NGS -

Problemstellung zur Nullstellenbestimmung

Gegeben: $n \in \mathbb{N}$, $f : \mathbb{R}^n \to \mathbb{R}^n$ Gesucht: Vektor $\bar{x} \in \mathbb{R}^n$ mit $f(\bar{x}) = 0$ Komponentenweise: Gegeben: n Funktionen $f_i:\mathbb{R}^n\to\mathbb{R}$ (Komponenten von f) Gesucht: Vektor $\bar{x} \in \mathbb{R}^n$ mit $f_i(\bar{x}) = 0$ für i = 1, ..., n.

Newton-Verfahren für NGS (Quadratische Konv.)

Gesucht: Nullstellen von $f: \mathbb{R}^n \to \mathbb{R}^n$

 $x^{(0)} = \mathsf{Startvektor} \ \mathsf{nahe} \ \mathsf{einer} \ \mathsf{Nullstelle}$

Vorbereitung: definiere f(x) = 0, berechne Df(x), wähle $x^{(0)}$ Für jede Iteration n:

- 1. Linearisierung um x^n : Berechne $f(x^{(n)})$ und $Df(x^{(n)})$
- 2. Nullstellen der Linearisierung: $\delta^{(n)}$ als Lösung des LGS $Df(x^{(n)}) \cdot \delta^{(n)} = -f(x^{(n)})$
- 3. Setze $x^{(n+1)} := x^{(n)} + \delta^{(n)}$ (nächste Iteration)
- 4. Weiterführen bis: $\|f(x^{(n+1)})\|_2 < {\sf TOL} \ {\sf oder} \ \|x^{(n+1)} x^{(n)}\|_2 < {\sf TOL}.$ Interpretation: Konvergierte Lösung $x^{(n)} = {\sf N\"aherung} \ {\sf f\"ur} \ {\sf Nullstelle} \ {\sf von} \ f$

Vereinfachtes Newton-Verfahren (Lineare Konvergenz)

Lösung von f(x) = 0 mit $f: \mathbb{R}^n \to \mathbb{R}^n$ für $n = 0, 1, 2, \dots$

- 1. Berechne $f(x^{(n)})$ und $Df(x^{(0)})$
- 2. Berechne $\delta^{(n)}$ als Lösung des LGS $Df(x^{(0)}) \cdot \delta^{(n)} = -f(x^{(n)})$
- 3. Setze $x^{(n+1)}:=x^{(n)}+\delta^{(n)}$ 4. Weiterführen bis: $\|f(x^{(n+1)})\|_2 < {\sf TOL}$ oder $\|x^{(n+1)}-x^{(n)}\|_2 < {\sf TOL}$

- $||f(x)||_2 = \sqrt{\sum_{i=1}^n f_i(x)^2}$: Euklidische Norm
- $||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$: Euklidische Norm für Vektoren
- $\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2$: Operatornorm für Matrizen

Newton-Verfahren
$$f(x_1, x_2) = \begin{pmatrix} 20 - 18x_1 - 2x_2^2 \\ -4x_2(x_1 - x_2^2) \end{pmatrix}, x^{(0)} = (1.1, 0.9)^T$$

Jacobi-Matrix:
$$Df(x_1, x_2) = \begin{bmatrix} -18 & -4x_2 \\ -4x_2 & -4(x_1 - 3x_2^2) \end{bmatrix}$$

Erste Iteration:
$$(k = 0)$$
 $f(1.1, 0.9) = \begin{pmatrix} -1.42 \\ -0.036 \end{pmatrix}$

$$Df(1.1, 0.9) = \begin{bmatrix} -18 & -3.6 \\ -3.6 & -5.32 \end{bmatrix}$$

LGS lösen:
$$\begin{bmatrix} -18 & -3.6 \\ -3.6 & -5.32 \end{bmatrix} \delta^{(0)} = \begin{pmatrix} 1.42 \\ 0.036 \end{pmatrix} \Rightarrow \delta^{(0)} = \begin{pmatrix} -0.0822 \\ 0.0178 \end{pmatrix}$$

$$x^{(1)} = \begin{pmatrix} 1.1\\0.9 \end{pmatrix} + \begin{pmatrix} -0.0822\\0.0178 \end{pmatrix} = \begin{pmatrix} 1.0178\\0.9178 \end{pmatrix}$$

Weitere Iterationen führen zur Konvergenz.

Dämpfung für bessere Konvergenz Für schlecht konditionierte Jacobi-Matrix $Df(x^{(n)})$ kann Standard Newton-Verfahren divergieren. Dämpfung = variable Schrittweite: $x^{(n+1)} = x^{(n)} + \frac{\delta^{(n)}}{2p}$ $p = \text{kleinstes Element aus } \{0, 1, ..., p_{\text{max}}\}$ für das gilt:

 $||f(x^{(n)} + \frac{\delta^{(n)}}{2^n})||_2 < ||f(x^{(n)})||_2$

Gedämpftes Newton-Verfahren

Nur in der Nähe der Nullstelle ist Konvergenz des Verfahrens garantiert!

- 1. Berechne $f(x^{(n)})$ und $Df(x^{(n)})$
- 2. Berechne $\delta^{(n)}$ als Lösung des lin. GS $Df(x^{(n)})\cdot\delta^{(n)}=-f(x^{(n)})$
- 3. Finde das minimale $p \in \{0, 1, \dots, p_{\max}\}$ mit:

$$||f(x^{(n)} + \frac{\delta^{(n)}}{2^k})||_2 < ||f(x^{(n)})||_2$$

Kein minimales k gefunden $\rightarrow k = 0$

4. Setze $x^{(n+1)} := x^{(n)} + \frac{\delta^{(n)}}{2k}$

Ausgleichsrechnung

Ausgleichsproblem ('Polyfit')

Gegeben: *n* Wertepaare (x_i, y_i) , i = 1, ..., n mit $x_i \neq x_i$ für $i \neq j$. Gesucht: stetige Funktion $f: \mathbb{R} \to \mathbb{R}$, die die Wertepaare bestmöglich annähert (es soll gelten) $f(x_i) \approx y_i$ für alle i = 1, ..., n

Fehlerfunktional und kleinste Fehlerguadrate

Eine Ausgleichsfunktion f minimiert das **Fehlerfunktional**:

$$E(f) := \|y - f(x)\|_{2}^{2} = \sum_{i=1}^{n} (y_{i} - f(x_{i}))^{2}$$

Gefundenes f optimal im Sinne der kleinsten Fehlerquadrate (least squares fit).

Lineare Ausgleichsprobleme

Lineares Ausgleichsproblem

Gegeben: n Wertepaare (x_i, y_i) und m Basisfunktionen $f_1, ..., f_m$

Ansatzfunktion: $f(x) = \lambda_1 f_1(x) + \lambda_2 f_2(x) + \cdots + \lambda_m f_m(x)$

Fehlerfunktional: $E(f) = ||y - A\lambda||_2^2$

$$\text{wobei } A \text{ die } n \times m \text{ Matrix ist: } A = \begin{bmatrix} f_1(x_1) \ f_2(x_1) \ \cdots \ f_m(x_1) \\ f_1(x_2) \ f_2(x_2) \ \cdots \ f_m(x_2) \\ f_1(x_n) \ f_2(x_n) \ \cdots \ f_m(x_n) \end{bmatrix}$$

Normalgleichungen Die Lösung des linearen Ausgleichsproblems ergibt sich aus dem Normalgleichungssystem: $A^T A \lambda = A^T y$

Nach Lösung des Normalgleichungssystems erhält man die Koeffizienten für die optimale Ausgleichsfunktion.

Für bessere numerische Stabilität:

QR-Zerlegung A = QR verwenden! $R\lambda = Q^T u$

Lineare Ausgleichsrechnung durchführen

- Basisfunktionen bestimmen $f_1(x), f_2(x), ..., f_m(x)$
- Matrix A Berechne $A_{ij} = f_i(x_i) \ \forall \ i = 1,...,n$ und j = 1,...,m
- Normalgleichungssystem Berechne A^TA und A^Ty
- LGS lösen Löse $A^T A \lambda = A^T y$
- Ausgleichsfunktion $f(x) = \lambda_1 f_1(x) + \lambda_2 f_2(x) + \cdots + \lambda_m f_m(x)$
- Fehlerfunktional Berechne $E(f) = ||y A\lambda||_2^2$
- Konvergenz Prüfe, ob E(f) klein genug ist (z.B. $< 10^{-6}$)

Lineare Ausgleichsrechnung Ausgleichsgerade f(x) = ax + b für:

x_i	1	2	3	4	Racicfun	ktione	n.	f.	$f_{2}(x) = x f_{2}(x) = 1$
y_i	6	6.8	10	10.5	Dasisiuii	KLIUIIC	žII.	J.	$f_1(x) = x, f_2(x) = 1$
					\				

Matrix
$$A: A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix}, \quad y = \begin{pmatrix} 6 \\ 6.8 \\ 10 \\ 10.5 \end{pmatrix}$$

Normalgleichungen: $A^T A = \begin{bmatrix} 30 & 10 \\ 10 & 4 \end{bmatrix}$, $A^T y = \begin{pmatrix} 91.6 \\ 33.3 \end{pmatrix}$

LGS lösen: $\begin{bmatrix} 30 & 10 \\ 10 & 4 \end{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 91.6 \\ 33.3 \end{pmatrix}$ Lösung: a = 1.67, b = 4.15

Die Ausgleichsgerade lautet: f(x) = 1.67x + 4.15

Residuen berechnen: $r_i = y_i - f(x_i)$

i	y_i	$f(x_i)$	r_i				
1	6	5.82	0.18				
2	6.8	7.49	-0.69				
3	10	9.16	0.84				
4	10.5	10.83	-0.33				

Residuenvektor:
$$r = \begin{pmatrix} 0.18 \\ -0.69 \\ 0.84 \\ -0.33 \end{pmatrix}$$

 $r^2 = 0.0324, 0.4761, 0.7056, 0.1089$

Fehlerfunktional: (Summe der Residuenquadrate) $E(f) = \|y - A\lambda\|_2^2 = \sum_{i=1}^n r_i^2 = 1.323$

$$E(f) = \|y - A\lambda\|_2^2 = \sum_{i=1}^n r_i^2 = 1.323$$

Nichtlineare Ausgleichsprobleme

Allgemeines Ausgleichsproblem Gegeben: n Wertepaare (x_i, y_i) und nichtlineare Ansatzfunktion $f_p(x, \lambda_1, ..., \lambda_m)$ mit m Parametern Allgemeines Ausgleichsproblem: bestimme Parameter $\lambda_1, ..., \lambda_m$ so dass das Fehlerfunktional minimal wird:

$$E(\lambda) = \sum_{i=1}^{n} (y_i - f_p(x_i, \lambda_1, ..., \lambda_m))^2$$

Gauss-Newton-Verfahren

löst nichtlineare Ausgleichsprobleme durch Linearisierung:

$$g(\lambda) := y - f(\lambda)$$

 \rightarrow Problem äquivalent zur Minimierung von $||q(\lambda)||_2^2$.

In jeder Iteration $g(\lambda)$ linearisieren:

$$g(\lambda) \approx g(\lambda^{(k)}) + Dg(\lambda^{(k)}) \cdot (\lambda - \lambda^{(k)})$$

Gauss-Newton-Verfahren

Funktionen definieren $q(\lambda) := y - f(\lambda)$ und $Dq(\lambda)$ berechnen **Iterationsschleife** Für k = 0, 1, ...:

• Löse das lineare Ausgleichsproblem:

$$\min \|g(\lambda^{(k)}) + Dg(\lambda^{(k)}) \cdot \delta^{(k)}\|_2^2$$

• Das ergibt:

$$Dg(\lambda^{(k)})^T Dg(\lambda^{(k)})\delta^{(k)} = -Dg(\lambda^{(k)})^T g(\lambda^{(k)})$$

• Setze $\lambda^{(k+1)} = \lambda^{(k)} + \delta^{(k)}$

Dämpfung (optional)

Bei Konvergenzproblemen: $\lambda^{(k+1)} = \lambda^{(k)} + \frac{\delta^{(k)}}{2p}$ mit geeignetem p.

Konvergenzprüfung

Abbruch wenn $\|\delta^{(k)}\| < \mathsf{TOL}$ oder $\|q(\lambda^{(k+1)})\| < \mathsf{TOL}$.

Wahl zwischen linearer und nichtlinearer Ausgleichsrechnung:

- Linear: Wenn die Ansatzfunktion linear in den Parametern ist
- Nichtlinear: Wenn Parameter "verwoben"mit der Funktionsgleichung
- Stabilität: Gedämpfte Verfahren sind robuster, aber aufwendiger

Gauss-Newton-Verfahren

Aufgabe: Fitten Sie die Funktion $f(x) = a \cdot e^{-bx} + c$ an die Datenpunkte:

x	0	1	2	3
y	5.2	3.8	3.1	2.9

Funktionen definieren:
$$g(\lambda)=y-f(\lambda)=\begin{pmatrix}5.2\\3.8\\3.1\\2.9\end{pmatrix}-\begin{pmatrix}ae^{-b\cdot0}+c\\ae^{-b\cdot1}+c\\ae^{-b\cdot2}+c\\ae^{-b\cdot3}+c\end{pmatrix}$$

Jacobi-Matrix von g: $\frac{\partial g_i}{\partial a} = -e^{-bx_i}$, $\frac{\partial g_i}{\partial b} = ax_i e^{-bx_i}$, $\frac{\partial g_i}{\partial c} = -1$

$$Dg(\lambda) = \begin{bmatrix} -e^{-b \cdot 0} & a \cdot 0 \cdot e^{-b \cdot 0} & -1 \\ -e^{-b \cdot 1} & a \cdot 1 \cdot e^{-b \cdot 1} & -1 \\ -e^{-b \cdot 2} & a \cdot 2 \cdot e^{-b \cdot 2} & -1 \\ -e^{-b \cdot 3} & a \cdot 3 \cdot e^{-b \cdot 3} & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -1 \\ -e^{-b} & ae^{-b} & -1 \\ -e^{-2b} & 2ae^{-2b} & -1 \\ -e^{-3b} & 3ae^{-3b} & -1 \end{bmatrix}$$

Gauss-Newton-Schritt mit $\lambda^{(0)} = (2, 0.5, 2.5)^T$:

$$f(\lambda^{(0)}) = \begin{pmatrix} 2+2.5 \\ 2e^{-0.5} + 2.5 \\ 2e^{-1} + 2.5 \\ 2e^{-1.5} + 2.5 \end{pmatrix} = \begin{pmatrix} 4.5 \\ 3.71 \\ 3.24 \\ 2.95 \end{pmatrix}$$

$$g(\lambda^{(0)}) = \begin{pmatrix} 5.2 \\ 3.8 \\ 3.1 \\ 2.9 \end{pmatrix} - \begin{pmatrix} 4.5 \\ 3.71 \\ 3.24 \\ 2.95 \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.09 \\ -0.14 \\ -0.05 \end{pmatrix}$$

$$Dg(\lambda^{(0)}) = \begin{bmatrix} -1 & 0 & -1 \\ -0.606 & 1.213 & -1 \\ -0.368 & 1.472 & -1 \\ -0.223 & 1.340 & -1 \end{pmatrix}$$

Normalgleichungssystem: $Dq^{T}Dq\delta = -Da^{T}a$

Nach Lösung:
$$\delta^{(0)}=\left(\begin{smallmatrix}0.32\\-0.18\\0.61\end{smallmatrix}\right)\,\lambda^{(1)}=\lambda^{(0)}+\delta^{(0)}=\left(\begin{smallmatrix}2.32\\0.32\\0.31\end{smallmatrix}\right)$$

Physikalische Interpretation: Die Funktion $f(x) = ae^{-bx} + c$ beschreibt einen exponentiellen Abfall mit:

- a = 2.32: Anfangsamplitude des abfallenden Anteils
- b = 0.32: Abfallkonstante (je größer, desto schneller der Abfall)
- c = 3.11: Asymptotischer Grenzwert für $x \to \infty$

Dies könnte z.B. einen Abkühlungsprozess, radioaktiven Zerfall oder Entladung eines Kondensators beschreiben.

Interpolation ---

Interpolation: Spezialfall der linearen Ausgleichsrechnung. Suche zu einer Menge von vorgegebenen Punkten eine Funktion, die exakt durch diese Punkte verläuft.

Interpolationsproblem Gegeben: n+1 Wertepaare (x_i, y_i) i = 0, ..., n, mit $x_i \neq x_j$ für $i \neq j$.

Gesucht: stetige Funktion a mit Eigenschaft $a(x_i) = u_i \ \forall i = 0, ..., n$. Stützpunkte: n+1 (x_i, y_i) , Stützstellen: x_i , Stützwerte: y_i

Interpolation vs. Ausgleichsrechnung

- Interpolation: Gesuchte Funktion geht exakt durch alle Datenpunkte
- · Ausgleichsrechnung:
 - Funktion approximiert die Datenpunkte möglichst gut
- Interpolation: Spezialfall der Ausgleichsrechnung (m = n, E(f) = 0)

Lagrange Interpolationsformel

Durch n+1 Stützpunkte mit verschiedenen Stützstellen \exists genau ein Polynom $P_n(x)$ vom Grade $\leq n$, das alle Stützpunkte interpoliert. $P_n(x)$ lautet in der Lagrangeform: $P_n(x) = \sum_{i=0}^n l_i(x) y_i$ $l_i(x)$ (Lagrangepolynome vom Grad n): $l_i(x) = \prod_{j=0}^n \frac{x-x_j}{x_i-x_j}$

Fehlerabschätzung

 $y_i = \text{Funktionswerte einer genügend oft stetig differenzierbaren Funk-}$ tion f (also $y_i = f(x_i)$), dann Interpolationsfehler an Stelle x:

$$\left| f(x) - P_n(x) \right| \le \frac{\left| (x - x_0)(x - x_1) \dots (x - x_n) \right|}{(n+1)!} \max_{x_0 \le \xi \le x_n} f^{(n+1)}(\xi)$$

Lagrange-Interpolation durchführen

Gegeben: $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$ und gesuchter Punkt x. **Lagrangepolynome** $l_i(x)$: Für i = 0, 1, ..., n berechne:

$$l_i(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

Interpolationspolynom: $P_n(x) = y_0 \cdot l_0(x) + y_1 \cdot l_1(x) + \cdots + y_n \cdot l_n(x)$ **Funktionswert berechnen**: Setze gewünschten x-Wert ein:

 $P_n(x) = \text{gesuchter Interpolationswert}$

Lagrange-Interpolation Bestimme Atmosphärendruck bei 3750m:

Höhe [m]	0	2500	5000	10000
Druck [hPa]	1013	747	540	226

Stützpunkte (0, 1013), (2500, 747), (5000, 540) für x = 3750. Lagrangepolynome:

$$l_0(3750) = \frac{(3750 - 2500)(3750 - 5000)}{(0 - 2500)(0 - 5000)} = \frac{1250 \cdot (-1250)}{(-2500) \cdot (-5000)} = -0.125$$

$$l_1(3750) = \frac{(3750 - 0)(3750 - 5000)}{(2500 - 0)(2500 - 5000)} = \frac{3750 \cdot (-1250)}{2500 \cdot (-2500)} = 0.75$$

$$l_2(3750) = \frac{(3750 - 0)(3750 - 2500)}{(5000 - 0)(5000 - 2500)} = \frac{3750 \cdot 1250}{5000 \cdot 2500} = 0.375$$

Interpolationswert:

$$P(3750) = 1013 \cdot (-0.125) + 747 \cdot 0.75 + 540 \cdot 0.375 = 636.0 \text{ hPa}$$

Splineinterpolation

Probleme der Polynominterpolation Polynome mit hohem Grad oszillieren stark, besonders an den Rändern des Interpolationsintervalls. Für viele Stützpunkte ist Polynominterpolation daher ungeeignet. Lösung: Spline-Interpolation verwendet stückweise kubische Polynome mit glatten Übergängen.

Natürliche kubische Splinefunktion

Natürliche kubische Splinefunktion S(x) ist in jedem Intervall $[x_i, x_{i+1}]$ durch kubisches Polynom dargestellt:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

mit den Randbedingungen $S_0''(x_0) = 0$ und $S_{n-1}''(x_n) = 0$.

Natürliche kubische Splinefunktion berechnen

Parameter initialisieren: $a_i = y_i$ und $h_i = x_{i+1} - x_i$ **Randbedingungen setzen:** $c_0 = 0$ und $c_n = 0$ (natürliche Spline). Gleichungssystem für c_i lösen Für i = 1, ..., n-1:

$$h_{i-1}c_{i-1} + 2(h_{i-1} + h_i)c_i + h_i c_{i+1} = 3(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}})$$

Restliche Koeffizienten:
$$b_i=\frac{y_{i+1}-y_i}{h_i}-\frac{h_i}{3}(c_{i+1}+2c_i),\ d_i=\frac{1}{3h_i}(c_{i+1}-c_i)$$

Kubische Splinefunktion Stützpunkte:

x_i	4	6	8	10
y_i	6	3	9	0

Parameter: $a_0 = 6$, $a_1 = 3$, $a_2 = 9$, $h_0 = h_1 = h_2 = 2$

Randbedingungen: $c_0 = 0$, $c_3 = 0$ (natürliche Spline)

Gleichungssystem: für c_1, c_2 :

$$2 \cdot 8 \cdot c_1 + 2 \cdot c_2 = 3(3 - (-1.5)) = 13.5$$

$$2 \cdot c_1 + 2 \cdot 8 \cdot c_2 = 3((-4.5) - 3) = -22.5$$

Lösung: $c_1 = 1.2, c_2 = -1.8$

Restliche Koeffizienten:

 $b_0 = -2.8, b_1 = 2.2, b_2 = -7.2, d_0 = 0.6, d_1 = -1.5, d_2 = 0.9$ Die Splinefunktionen sind:

$$S_0(x) = 6 - 2.8(x - 4) + 0.6(x - 4)^3$$

$$S_1(x) = 3 + 2.2(x - 6) + 1.2(x - 6)^2 - 1.5(x - 6)^3$$

$$S_2(x) = 9 - 7.2(x - 8) - 1.8(x - 8)^2 + 0.9(x - 8)^3$$

Numerische Integration

Numerische Integration (Quadratur)

Für $f: \mathbb{R} \to \mathbb{R}$ soll das bestimmte Integral $I(f) = \int_a^b f(x) dx$ auf einem Intervall [a, b] numerisch berechnet werden.

Quadraturverfahren allgemeine Form: $I(f) = \sum a_i f(x_i)$

wobei $x_i =$ Stützstellen oder Knoten und $a_i =$ Gewichte

Newton-Cotes Formeln -

Einfache Rechteck- und Trapezregel

Die Rechteckregel (Mittelpunktsregel) und die Trapezregel zur Approximation von $\int_a^b f(x)dx$ sind definiert als:

Rechteckregel:
$$Rf = f(\frac{a+b}{2}) \cdot (b-a)$$

Trapezregel:
$$Tf = \frac{f(a) + f(b)}{2} \cdot (b - a)$$

Geometrische Interpretation

- Rechteckregel:
- Approximiert die Fläche durch ein Rechteck mit Höhe $f(\frac{a+b}{2})$
- Trapezregel: Approximiert die Fläche durch ein Trapez zwischen (a, f(a)) und (b, f(b))

Summierte Rechteck- und Trapezregel $f:[a,b] \to \mathbb{R}$ stetig

- $n \in \mathbb{N} = \mathsf{Anzahl} \; \mathsf{Subintervalle}$

Summierte Rechteckregel:
$$Rf(h) = h \cdot \sum_{i=0}^{n-1} f(x_i + \frac{h}{2})$$

Summierte Trapezregel:
$$Tf(h) = h \cdot (\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i))$$

Trapezregel für nicht-äquidistante Stützstellen

$$Tf_{neq} = \sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2} \cdot (x_{i+1} - x_i)$$

Simpson-Regel approximiert f(x) durch Polynom 2. Grades an den Stellen $x_1 = a$, $x_2 = \frac{a+b}{2}$ und $x_3 = b$.

Einfache Simpson-Regel:
$$Sf = \frac{b-a}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b))$$

Summierte Simpson-Regel:

$$Sf(h) = \frac{h}{3} \left(\frac{1}{2} f(a) + \sum_{i=1}^{n-1} f(x_i) + 2 \sum_{i=1}^{n} f(\frac{x_{i-1} + x_i}{2}) + \frac{1}{2} f(b) \right)$$

Simpson-Regel als gewichtetes Mittel

Die summierte Simpson-Regel kann als gewichtetes Mittel der summierten Trapez- und Rechteckregel interpretiert werden:

$$Sf(h) = \frac{1}{3}(Tf(h) + 2Rf(h))$$

Fehlerabschätzung für summierte Quadraturformeln

Für genügend glatte Funktionen gelten folgende Fehlerabschätzungen:

Rechteckregel:
$$\left| \int_a^b f(x) dx - Rf(h) \right| \le \frac{h^2}{24} (b-a) \cdot \max_{x \in [a,b]} |f''(x)|$$

Trapezregel:
$$\left| \int_a^b f(x) dx - Tf(h) \right| \le \frac{h^2}{12} (b-a) \cdot \max_{x \in [a,b]} |f''(x)|$$

Simpson-Regel:
$$\left|\int_a^b f(x)dx - Sf(h)\right| \leq \frac{h^4}{2880}(b-a) \cdot \max_{x \in [a,b]} |f^{(4)}(x)|$$

Schrittweite für gewünschte Genauigkeit bestimmen

Maximaler absoluter Fehler: ϵ

Höchste Ableitung abschätzen:

Berechne $\max_{x \in [a,b]} |f^{(k)}(x)|$ für entsprechendes k.

Schrittweite berechnen:

Für Trapezregel:
$$h \leq \sqrt{\frac{12\epsilon}{(b-a)\max|f''(x)|}}$$
 Für Simpson-Regel: $h \leq \sqrt[4]{\frac{2880\epsilon}{(b-a)\max|f^{(4)}(x)|}}$

Anzahl Intervalle bestimmen: $n = \frac{b-a}{b}$ (aufrunden auf ganze Zahl)

Anwendung Newton-Cotes Formeln

Aufgabe: Ein Teilchen mit Masse $m=10~{\rm kg}$ bewegt sich durch eine Flüssigkeit mit Widerstand $R(v) = -v\sqrt{v}$. Für die Verlangsamung von $v_0 = 20$ m/s auf v = 5 m/s gilt:

$$t = \int_{5}^{20} \frac{m}{R(v)} dv = \int_{5}^{20} \frac{10}{-v\sqrt{v}} dv$$

Berechnen Sie das Integral mit n=5

Parametrisation: $h = \frac{20-5}{5} = 3$, Stützstellen: 5, 8, 11, 14, 17, 20Rechteckregel:

$$Rf(3) = 3 \cdot \sum_{i=0}^{4} f(x_i + 1.5)$$

Mittelpunkte: 6.5, 9.5, 12.5, 15.5, 18.5

$$Rf(3) = 3 \cdot (-0.154 - 0.108 - 0.090 - 0.081 - 0.076) = -1.527$$

Trapezregel:

$$Tf(3) = 3 \cdot (\frac{f(5) + f(20)}{2} + \sum_{i=1}^{4} f(x_i))$$

$$Tf(3) = 3 \cdot \left(\frac{-0.179 - 0.056}{2} + \left(-0.125 - 0.096 - 0.082 - 0.072\right)\right) = -1.477$$

Simpson-Regel:

$$Sf(3) = \frac{1}{3}(Tf(3) + 2Rf(3)) = \frac{1}{3}(-1.477 + 2(-1.527)) = -1.510$$

Exakter Wert:
$$\int_{5}^{20} \frac{-10}{v^{3/2}} dv = \left[\frac{20}{\sqrt{v}}\right]_{5}^{20} = -1.506$$

Absolute Fehler:

- Rechteckregel: |-1.527 (-1.506)| = 0.021
- Trapezregel: |-1.477 (-1.506)| = 0.029
- Simpson-Regel: |-1.510 (-1.506)| = 0.004

Schrittweite für gewünschte Genauigkeit

Aufgabe: Bestimmen Sie die Schrittweite h, um $I=\int_0^{0.5}e^{-x^2}dx$ mit der summierten Trapezregel auf einen absoluten Fehler von maximal 10^{-5} genau zu berechnen.

Parameter: $\epsilon = 10^{-5}$, a = 0, b = 0.5

Zweite Ableitung bestimmen: für $f(x) = e^{-x^2}$

$$f'(x) = -2xe^{-x^2}$$

$$f''(x) = -2e^{-x^2} + 4x^2e^{-x^2} = e^{-x^2}(4x^2 - 2)$$

Auf
$$[0,0.5]$$
: $\max |f''(x)| = \max |e^{-x^2}(4x^2-2)| = 2$ (bei $x=0$)

Schrittweite berechnen:

$$h \le \sqrt{\frac{12 \cdot 10^{-5}}{0.5 \cdot 2}} = \sqrt{0.00012} \approx 0.011$$

Anzahl Intervalle: $n = \frac{0.5}{0.011} \approx 46$ Intervalle

Romberg-Extrapolation —

Idee der Romberg-Extrapolation

Die Romberg-Extrapolation verbessert systematisch die Genauigkeit der Trapezregel durch Verwendung mehrerer Schrittweiten und anschließen-

Basis: Trapezregel mit halbierten Schrittweiten $h_j = \frac{b-a}{2i}$ für j =

Romberg-Extrapolation

Für die summierte Trapezregel Tf(h) gilt:

Sei $T_{j0} = Tf(\frac{b-a}{2j})$ für j = 0, 1, ..., m. Dann sind durch die Rekursion

$$T_{jk} = \frac{4^k \cdot T_{j+1,k-1} - T_{j,k-1}}{4^k - 1}$$

für k = 1, 2, ..., m und j = 0, 1, ..., m-k Näherungen der Fehlerordnung 2k+2 gegeben.

Die verwendete Schrittweitenfolge $h_j = \frac{b-a}{2i}$ heißt Romberg-Folge.

Romberg-Extrapolation durchführen

Berechne T_{i0} mit der summierten Trapezregel

für $h_j = \frac{b-a}{2j}$, j = 0, 1, ..., m.

T_{00}			
T_{10}	T_{01}		
T_{20}	T_{11}	T_{02}	
T_{30}	T_{21}	T_{12}	T_{03}

$$T_{jk} = \frac{4^k \cdot T_{j+1,k-1} - T_{j,k-1}}{4^k - 1}$$

Schritt 4: Genaueste Näherung

Der Wert rechts unten im Schema ist die genaueste Approximation.

Romberg-Extrapolation anwenden

Berechne $\int_0^{\pi} \cos(x^2) dx$ mit Romberg-Extrapolation für m=4(d.h. j = 0, 1, 2, 3, 4).

Schritt 1: Erste Spalte berechnen $T_{00} = Tf(\pi)$ mit $h_0 = \pi$ (1 Intervall) $T_{10} = Tf(\pi/2)$ mit $h_1 = \pi/2$ (2 Intervalle) $T_{20} = Tf(\pi/4)$ mit $h_2 = \pi/4$ (4 Intervalle) $T_{30} = Tf(\pi/8)$ mit $h_3 = \pi/8$ (8 Intervalle) $T_{40} = Tf(\pi/16) \text{ mit } h_4 = \pi/16 \text{ (16 Intervalle)}$

Beispielrechnung für T_{00} :

$$T_{00} = \pi \cdot \frac{\cos(0) + \cos(\pi^2)}{2} = \frac{\pi}{2} (1 + \cos(\pi^2))$$

Schritt 2: Extrapolationsschema:

T_{00}				
T_{10}	T_{01}			
T_{20}	T_{11}	T_{02}		
T_{30}	T_{21}	T_{12}	T_{03}	
T_{40}	T_{31}	T_{22}	T_{13}	T_{04}

Der Wert T_{04} liefert die beste Approximation des Integrals.

Gauss-Formeln

Optimale Stützstellen

Bei Newton-Cotes Formeln sind die Stützstellen äguidistant gewählt. Gauss-Formeln wählen sowohl Stützstellen x_i als auch Gewichte a_i optimal, um die Fehlerordnung zu maximieren.

Gauss-Formeln für n = 1, 2, 3

Die Gauss-Formeln für $\int_a^b f(x) dx \approx \frac{b-a}{2} \sum_{i=1}^n a_i f(x_i)$ lauten:

$$n = 1$$
: $G_1 f = (b - a) \cdot f(\frac{b+a}{2})$

$$n = 2: G_{1}f = (b - a) f\left(\frac{2}{2}\right)$$

$$n = 2: G_{2}f = \frac{b-a}{2} \left[f\left(-\frac{1}{\sqrt{3}} \cdot \frac{b-a}{2} + \frac{b+a}{2}\right) + f\left(\frac{1}{\sqrt{3}} \cdot \frac{b-a}{2} + \frac{b+a}{2}\right) \right]$$

$$n = 3: G_{3}f = \frac{b-a}{2} \left[\frac{5}{9}f(x_{1}) + \frac{8}{9}f\left(\frac{b+a}{2}\right) + \frac{5}{9}f(x_{3}) \right]$$
wobei $x_{1} = -\sqrt{0.6} \cdot \frac{b-a}{2} + \frac{b+a}{2}$ und $x_{3} = \sqrt{0.6} \cdot \frac{b-a}{2} + \frac{b+a}{2}$.

Erdmasse berechnen mit der nicht-äquidistanten Dichteverteilung: $m=\int_0^{6370}\rho(r)\cdot 4\pi r^2 dr$

$$m = \int_0 \rho(r) \cdot 4\pi r^2 dr$$

r [km]	0	800	1200	1400	2000	
ho [kg/m ³]	13000	12900	12700	12000	11650	

Stützstellen nicht äquidistant

→ speziell summierte Trapezregel für nicht-äquidistante Daten:

$$\int_0^{6370} \rho(r) \cdot 4\pi r^2 dr \approx \sum_{i=0}^{n-1} \frac{\left[\rho(r_i) \cdot 4\pi r_i^2\right] + \left[\rho(r_{i+1}) \cdot 4\pi r_{i+1}^2\right]}{2} \cdot (r_{i+1} - r_i)$$

Wichtig: Umrechnung der Einheiten: r in km \rightarrow m, ρ in kg/m³

Ergebnis: $m_{Erde} \approx 5.94 \times 10^{24} \text{ kg}$

Vergleich mit Literaturwert: 5.97×10^{24} kg Relativer Fehler: $\approx 0.5\%$

Wahl des Integrationsverfahrens:

- Trapezregel: Einfach, für glatte Funktionen ausreichend
- Simpson-Regel: Höhere Genauigkeit (polynomähnliche Funktionen!)
- Romberg-Extrapolation: Sehr hohe Genauigkeit (systematische Verbesserung)
- Gauss-Formeln: Für begrenzte Anzahl von Funktionsauswertungen
- Nicht-äquidistante Daten: Spezielle Trapezregel

Kombinierte Anwendung mit DGL

Bewegungsgleichung einer Rakete:
$$a(t)=h''(t)=v_{rel}\cdot\frac{\mu}{m_A-\mu\cdot t}-g$$

mit $v_{rel} = 2600 \text{ m/s}, m_A = 300000 \text{ kg}, m_E = 80000 \text{ kg}, t_E = 190 \text{ s}.$ Berechne Geschwindigkeit und Höhe als Funktion der Zeit.

Parameter:
$$\mu = \frac{m_A - m_E}{t_E} = \frac{220000}{190} = 1158 \text{ kg/s}$$

System 1. Ordnung:

$$z_1'=z_2$$
 (Höhe)

$$z_2' = 2600 \cdot \frac{1158}{300000 - 1158t} - 9.81$$
 (Geschwindigkeit)

Anfangsbedingungen: $z_1(0) = 0$, $z_2(0) = 0$

Numerische Lösung mit Trapezregel:

$$v(t) = \int_0^t a(\tau) d\tau \text{ und } h(t) = \int_0^t v(\tau) d\tau$$

Ergebnisse nach 190s: Geschwindigkeit: ≈ 2500 m/s, Höhe: ≈ 180 km, Beschleunigung: $\approx 2.5q$

Differentialgleichungen

Differentialgleichung n-ter Ordnung ist eine Gleichung, in der Ableitungen einer unbekannten Funktion y=y(x) bis zur n-ten Ordnung auftreten. Explizite Form:

$$y^{(n)}(x) = f(x, y(x), y'(x), ..., y^{(n-1)}(x))$$

Gesucht sind die Lösungen y = y(x) dieser Gleichung, wobei die Lösungen y auf einem Intervall [a,b] definiert sein sollen.

Implizite Form: nicht nach $y^{(n)}$ aufgelöst, sondern in Form $F(x, y, y', y'', \dots, y^{(n)}) = 0$ gegeben.

Arten von DGL

- Separierbar: $y' = q(x) \cdot h(y)$ $\rightarrow F(x,y)$ kann als Produkt eines x- & y-Anteils geschrieben werden
- Autonom: $y' = f(y) \to F(x,y)$ hängt nur von y ab
- Linear: falls die Variabel welche abgeleitet wird, nur in der ersten Potenz vorkommt und nicht multipliziert miteinander oder mit der unabhängigen Variabel wird.

Homogenität von DGL

- Homogene DGL: $F(x, y, y', y'', ..., y^{(n)}) = 0$
- Inhomogene DGL: $F(x, y, y', y'', \dots, y^{(n)}) = q(x) \rightarrow q(x)$ ist die Störfunktion

Allgemeine Lösung der inhomogenen DGL y' + f(x)y = q(x) $y = e^{-F(x)} \cdot \int g(x)e^{F(x)} dx$

wobei F(x) eine Stammfunktion von f(x) ist.

Anfangswertproblem (AWP) für Differentialgleichung n-ter Ordnung werden der Lösungsfunktion y = y(x) noch n Werte vorgeschrieben: DGL 1. Ordnung:

Gegeben ist y'(x) = f(x, y(x)) und der Anfangswert $y(x_0) = y_0$.

DGL 2. Ordnung: Gegeben ist y''(x) = f(x, y(x), y'(x)) und Anfangswerte $y(x_0) = y_0$, $y'(x_0) = y'_0$.

DGL n-ter Ordnung: Gegeben ist

 $y^{(n)}(x) = f(x,y(x),y'(x),...,y^{(n-1)}(x))$ und die Anfangswerte $y(x_0) = y_0,\,y'(x_0) = y_1,\,...,\,y^{(n-1)}(x_0) = y_{n-1}.$

Lösen von Separierbaren DGL $\frac{dy}{dx} = g(x) \cdot h(y)$

$$\begin{array}{llll} \text{F\"{u}r } g(x), \ h(y) \ \text{stetige Funktionen und} & \left\{ \begin{array}{lll} y' & = & g(x)h(y) \\ (x_0,y_0) \in \mathbb{R}^2 \ \text{mit} \ h(y_0) \neq 0 \ \text{ist AWP:} & \left\{ \begin{array}{lll} y(x_0) & = & y_0 \end{array} \right. \end{array}$$

Trennung aller x- und y-Terme: $\frac{1}{h(u)} \cdot \mathrm{d} y = g(x) \cdot \mathrm{d} x$

Integration beider Seiten, auflösen nach y: $\int \frac{1}{h(y)} dy = \int g(x) dx$

Anfangsbedingungen einsetzen: $\int_{y_0}^{y} \frac{1}{h(s)} ds = \int_{x_0}^{x} g(t) dt$

Spezialfall: $h(y_0) = 0 \rightarrow y = y_0$ eine Lösung der DGL.

Radioaktiver Zerfall: $\frac{dn}{dt} = -\lambda n \rightarrow \text{DGL } 1$. Ordnung, Lösung: $n(t) = n_0 e^{-\lambda t}$ Freier Fall: $s''(t)=-g \to {\rm DGL}$ 2. Ordnung, Lösung: $s(t)=-\frac{1}{2}gt^2+v_0t+s_0$ Harmonische Schwingung (Federpendel): $mx'' = -cx \Rightarrow x'' + \frac{c}{m}x = 0$ DGL 2. Ordnung, Lösung: $x(t) = A\sin(\omega_0 t + \varphi)$ mit $\omega_0 = \sqrt{\frac{c}{m}}$

Richtungsfelder

Richtungsfeld = geometrisches Verständnis von expliziten DGL 1. Ordnung, d.h. DGL der Form: y' = f(x, y)

- y' =Steigung der Lösungskurve am Punkt (x, y(x))
- Richtungsfeld = Pfeil an jedem Punkt (x, y), der die Steigung f(x, y)
- Jeder Punkt ist somit die Tangente einer spezifischen Lösungskurve (verläuft tangential zu den Pfeilen)

Richtungsfelder von Speziellen DGL

Unbestimmtes Integral: y' = f(x)unabhängig von y, Verschiebung in u-Richtung durch Konstante C

Autonome DGL:y' = f(y)

unabhängig von x, Verschiebung

Richtungsfeld zeichnen und interpretieren

Steigungen $f(x_i, y_i)$ für verschiedene Punkte (x_i, y_i) berechnen **Richtungspfeile** zeichnen: $\forall (x_i, y_i)$, Steigung $f(x_i, y_i)$

Lösungskurven: Von Anfangspunkt (x_0, y_0) ausgehend folge Richtungspfeilen, um Lösungskurve zu approximieren.

Python-Implementierung Verwende numpy.meshgrid() und pyplot.quiver() zur automatischen Darstellung.

Numerische Lösungsverfahren

Idee des Euler-Verfahrens

Euler-Verfahren folgt Tangente im Punkt (x_i, y_i) mit Steigung $f(x_i, y_i)$ um Schrittweite h. \rightarrow einfachstes Einschrittverfahren mit Konvergenzordnung p = 1.

Eulerverfahren Findet Geraden mit Steigung $f(x_i, y_i)$ für Punkte (x_i, y_i)

DGL am Punkt (x_i, y_i) : $y' = f(x_i, y_i) \rightarrow y = y_i + f(x_i, y_i) \cdot (x - x_i)$

AWP: y' = f(x, y) mit $y(a) = y_0$ auf dem Intervall [a, b]

Euler-Verfahren mit Schrittweite $h = \frac{b-a}{a}$:

$$x_{i+1} = x_i + h$$

$$y_{i+1} = y_i + h \cdot f(x_i, y_i)$$

Gegebene Anfangswerte: $x_0 = a$, $x_i = a + ih$ für i = 0, ..., n - 1 und y₀ Problem: Steigung wird nur am linken Ende des Intervalls berücksichtigt!

Anfangswerte berechnen Für i = 0 und $x = x_0$:

$$\underbrace{y_1}_{\approx y(x_1)} = y_0 + f(x_0, y_0) \cdot \underbrace{(x_1 - x_0)}_{=h} \to x_i = x_0 + i \cdot h$$

Euler-Verfahren anwenden AWP $y' = f(x, y), y(a) = y_0$, Intervall

Parameter: $n = \text{Anzahl Schritte, berechne: } h = \frac{b-a}{a}$

Startwerte: $x_0 = a$, $y_0 = gegebener Anfangswert$ **Iteration** für i = 0, 1, ..., n - 1:

• Berechne $f(x_i, y_i)$

• Setze $x_{i+1} = x_i + h$ und $y_{i+1} = y_i + h \cdot f(x_i, y_i)$

Absoluter Fehler: $|y(x_n) - y_n|$ $(y(x_n) = \text{exakte L\"osung an Stelle } x_n)$ Interpretation: Punkte (x_i, y_i) approximieren Lösung y(x) an den Stützstellen

Euler-Verfahren $\frac{dy}{dx}=\frac{x^2}{y}$ mit y(0)=2 auf Intervall [0,1.4] Parameter: $n=2,\ h=0.7$

- i=0: $x_0=0$, $y_0=2 \to f(0,2)=\frac{0^2}{2}=0$ $x_1=0+0.7=0.7$ und $y_1=2+0.7\cdot 0=2$

- i=1: $x_1=0.7, \ y_1=2 \rightarrow f(0.7,2)=\frac{0.7^2}{2}=0.245$ $x_2=0.7+0.7=1.4$ und $y_2=2+0.7\cdot 0.245=2.1715$

Exakte Lösung:
$$y(x) = \sqrt{\frac{2x^3}{3} + 4} \ y(1.4) = \sqrt{\frac{2 \cdot 1.4^3}{3} + 4} = 2.253$$

Absoluter Fehler: $|2.253 - 2.1715| = 0.0815$

Verbesserte Euler-Verfahren -

Mittelpunkt-Verfahren berechnet Steigung in der Mitte des Intervalls:

$$x_{h/2} = x_i + \frac{h}{2} \text{ und } y_{h/2} = y_i + \frac{h}{2} \cdot f(x_i, y_i)$$

$$x_{i+1} = x_i + h \text{ und } y_{i+1} = y_i + h \cdot f(x_{h/2}, y_{h/2})$$

Konvergenzordnung: p=2

Modifiziertes Euler-Verfahren (Heun-Verfahren)

verwendet den Durchschnitt zweier Steigungen:

$$k_1 = f(x_i, y_i)$$
 und $k_2 = f(x_i + h, y_i + h \cdot k_1)$

$$x_{i+1} = x_i + h \text{ und } y_{i+1} = y_i + h \cdot \frac{k_1 + k_2}{2}$$

Konvergenzordnung: p=2

Vergleich der Euler-Verfahren AWP aus vorigem Bsp

Mittelpunkt-Verfahren:

- $x_{1/2} = 0.35$, $y_{1/2} = 2$, f(0.35, 2) = 0.061
- $y_1 = 2 + 0.7 \cdot 0.061 = 2.043$
- $\begin{array}{l} \bullet \ \ x_{3/2} = 1.05, \, y_{3/2} = 2.128, \, f(1.05, 2.128) = 0.518 \\ \bullet \ \ y_2 = 2.043 + 0.7 \cdot 0.518 = 2.406 \end{array}$

Modifiziertes Euler-Verfahren:

- $k_1 = 0$, $k_2 = f(0.7, 2) = 0.245$ $y_1 = 2 + 0.7 \cdot \frac{0 + 0.245}{2} = 2.086$
- $k_1 = 0.245, k_2 = f(1.4, 2.257) = 0.866$ $y_2 = 2.086 + 0.7 \cdot \frac{0.245 + 0.866}{2} = 2.475$

Fehlervergleich bei x = 1.4:

- Exakt: y(1.4) = 2.253
- Euler: |2.253 2.172| = 0.081
- Mittelpunkt: |2.253 2.406| = 0.153
- Modifiziert: |2.253 2.475| = 0.222

Runge-Kutta Verfahren Das klassische Runge-Kutta Verfahren verwendet vier Steigungen und hat Konvergenzordnung p=4: Steigungen berechnen:

$$k_1 = f(x_i, y_i), \quad k_2 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_1)$$

 $k_3 = f(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_2), \quad k_4 = f(x_i + h, y_i + hk_3)$

Gewichtetes Mittel bilden: Steigung = $\frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ Nächsten Punkt berechnen: $x_{i+1} = x_i + h$ und $y_{i+1} = y_i + h$ Steigung Iteration fortsetzen: Wiederhole bis zum Ende des Intervalls.

Butcher-Schema Charakterisiert Runge-Kutta Verfahren:

$0 \\ \frac{1}{2} \\ \frac{1}{2} \\ 1$	$\frac{1}{2}$ 0	$\frac{1}{2}$	1	
_	0	U		
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

Interpretation: Die erste Spalte gibt die Stufen c_i , die zweite Spalte die Koeffizienten a_{ij} für die Steigungen k_j und die letzte Zeile die Gewichtung der Steigungen für die nächste Iteration an.

 $\begin{array}{ll} \text{Vergleich numerischer Verfahren} & \text{AWP: } \frac{dy}{dx} = x + y^2, \quad y(0) = 0 \text{ auf dem IntervalI } [0,1] \text{ mit Schrittweite } h = 0.2. \end{array}$

$$\begin{array}{l} f(x,y)=x+y^2,\ h=0.2,\ n=5\\ \textbf{Iteration 0} \rightarrow \textbf{1:}\ x_0=0, y_0=0\ f(0,0)=0+0^2=0\\ x_1=0.2, y_1=0+0.2\cdot 0=0\\ \textbf{Iteration 1} \rightarrow \textbf{2:}\ x_1=0.2, y_1=0\ f(0.2,0)=0.2+0^2=0.2\\ x_2=0.4, y_2=0+0.2\cdot 0.2=0.04\\ \textbf{usw...}\ \textbf{Euler-Ergebnis:}\ y(1)\approx 0.4150 \end{array}$$

Runge-Kutta Verfahren

$$\begin{array}{l} \textbf{Schritt 0} \rightarrow \textbf{1:} \ x_0 = 0, y_0 = 0 \\ k_1 = f(0,0) = 0, \ k_2 = f(0.1,0) = 0.1 \\ k_3 = f(0.1,0.01) = 0.1 + 0.01^2 = 0.1001 \\ k_4 = f(0.2,0.02002) = 0.2 + 0.02002^2 = 0.2004 \\ y_1 = 0 + \frac{0.2}{6}(0 + 2 \cdot 0.1 + 2 \cdot 0.1001 + 0.2004) = 0.0200 \\ \textbf{Schritt 1} \rightarrow \textbf{2:} \ x_1 = 0.2, y_1 = 0.0200 \\ k_1 = f(0.2,0.0200) = 0.2 + 0.0004 = 0.2004 \\ k_2 = f(0.3,0.0400) = 0.3 + 0.0016 = 0.3016 \\ k_3 = f(0.3,0.0502) = 0.3 + 0.0025 = 0.3025 \\ k_4 = f(0.4,0.0805) = 0.4 + 0.0065 = 0.4065 \\ y_2 = 0.0200 + \frac{0.2}{6}(0.2004 + 2 \cdot 0.3016 + 2 \cdot 0.3025 + 0.4065) = 0.0801 \\ \end{array}$$

Runge-Kutta Ergebnisse:

$$y_1 = 0.0200, y_2 = 0.0801, y_3 = 0.1806, y_4 = 0.3214, y_5 = 0.5027$$
 Runge-Kutta-Ergebnis: $y(1) \approx 0.5027$

Genaue Lösung: $y(1) \approx 0.5463$

Fehler:

usw...

- Euler: |0.5463 0.4150| = 0.1313
- Runge-Kutta: |0.5463 0.5027| = 0.0436

Das Runge-Kutta Verfahren ist etwa 3-mal genauer.

- Euler-Verfahren: Konvergenzordnung p=1
- Runge-Kutta 4: Konvergenzordnung p=4

Bei Halbierung der Schrittweite erwarten wir:

- Euler: Fehler halbiert sich
- RK4: Fehler wird um Faktor 16 kleiner

Systeme von Differentialgleichungen -

DGL höherer Ordnung → System 1. Ordnung

Jede DGL n-ter Ordnung kann in ein System von n DGL 1. Ordnung umgewandelt werden durch Einführung von Hilfsvariablen für die Ableitungen.

DGL höherer Ordnung auf System 1. Ordnung zurückführen

Nach höchster Ableitung auflösen:

Bringe die DGL in die Form $y^{(n)} = f(x, y, y', ..., y^{(n-1)}).$

Hilfsvariablen einführen

$$z_1(x) = y(x)$$
 $z'_1 = z_2$
 $z_2(x) = y'(x)$... $z'_{n-1} = z_n$
 $z_n(x) = y^{(n-1)}(x)$ $z' = f(x, z_1, z_2, ..., z_n)$

$$z_2(x) = y'(x) \qquad \qquad \dots \\ z_{n-1}' = z_n \\ z_n(x) = y^{(n-1)}(x) \qquad \qquad z_n' = f(x,z_1,z_2,...,z_n)$$
 Vektorielle Schreibweise: $\mathbf{z}' = \mathbf{f}(x,\mathbf{z}) \text{ mit } \mathbf{z}(x_0) = \begin{pmatrix} y(x_0) \\ y'(x_0) \\ y^{(n-1)}(x_0) \end{pmatrix}$

Landende Boeing - DGL 2. Ordnung Eine Boeing 737-200 landet mit $v_0=100$ m/s und erfährt die Bremskraft $F=-5\dot{x}^2-570000$. Die Bewegungsgleichung ist: $mx'' = -5x'^2 - 570000$ mit m = 97000 kg. Formen Sie in ein System 1. Ordnung um.

Nach
$$x''$$
 auflösen: $x'' = \frac{-5x'^2 - 570000}{97000}$

Hilfsvariablen:

 $z_1(t) = x(t) = Position$

 $z_2(t) = x'(t) = v(t) = Geschwindigkeit$

System 1. Ordnung:
$$z_1'=z_2$$
 und $z_2'=\frac{-5z_2^2-570000}{97000}$

Anfangsbedingungen: $\mathbf{z}(0) = \begin{pmatrix} 0 \\ 100 \end{pmatrix}$

Das System kann nun mit Runge-Kutta gelöst werden.

Kombinierte Anwendung mit Ausgleichsrechnung

Umsatzentwicklung modelliert durch DGL: $\frac{dU}{dt} = 0.1U(100-U) - S(t)$ U(t) = Umsatz in Millionen $\mathbf{\in}$, $S(t) = 20\sin(2\pi t) = \text{saisonale Schwander}$ kungen

Klassifikation:

- Nichtlineare DGL 1. Ordnung (wegen U(100 U) Term)
- Zeitabhängiger Störterm S(t)

Gleichgewichtspunkte für S=0: $\frac{dU}{dt}=0.1U(100-U)=0$

Lösungen: $U^* = 0$ oder $U^* = 100$

Stabilität: $\frac{d}{dU}(0.1U(100-U)) = 0.1(100-2U)$

- Bei $U^*=0$: $\frac{df}{dU}=10>0 o {\rm instabil}$
- Bei $U^* = 100$: $\frac{df}{dU} = -10 < 0 \rightarrow \text{stabil}$

Numerische Lösung:

Mit Runge-Kutta (h = 0.1): $\frac{dU}{dt} = 0.1U(100 - U) - 20\sin(2\pi t)$ $\frac{dS}{dt} = 20\cos(2\pi t)$

0	30.0	0	210.0
1	45.2	0	247.6
2	62.8	0	233.9
3	76.1	0	182.0
4	85.3	0	125.4
5	91.1	0	81.2

 $t \mid U(t) \mid S(t) \mid \frac{dU}{dt}$

Typische Ergebnisse (Tabelle):

Ausgleichsrechnung: Fitten der numerischen Daten mit logistischer Funktion: $U(t) = \frac{K}{1 + Ae^{-rt}}$

Linearisierung durch: $\ln(\frac{K-U}{U}) = \ln(A) - rt$ Nach linearer Regression: $K \approx 100, \ A \approx 2.33, \ r \approx 0.693$

Güte des Fits: $R^2 > 0.98$

(sehr gute Anpassung an ungestörtes Wachstum)

Stabilität

Bei der numerischen Lösung von DGL kann es vorkommen, dass der numerische Fehler unbeschränkt wächst. Dies führt zu instabilen Lösungen. Tipp: beginne mit einer kleinen Schrittweite und prüfe die Stabilität der Lösung.

Stabilitätsfunktion

Für DGL $y' = -\alpha y$ (mit $\alpha > 0$) kann die numerische Lösung in der Form $y_{i+1} = q(h\alpha) \cdot y_i$ geschrieben werden.

Die Funktion g(z) heißt **Stabilitätsfunktion** des Verfahrens.

Das offene Intervall $z \in (0, \alpha)$, in dem |q(z)| < 1 gilt, bezeichnet man als Stabilitätsintervall.

Stabilität des Euler-Verfahrens y' = -2.5y mit y(0) = 1.

Euler-Verfahren: $y_{i+1} = y_i - h \cdot 2.5y_i = y_i(1 - 2.5h)$

Stabilitätsfunktion: q(z) = 1 - z mit z = 2.5h

Stabilitätsbedingung: $|1 - 2.5h| < 1 \Rightarrow 0 < 2.5h < 2 \Rightarrow 0 < h < 0.8$

- h = 0.2: Stabile Lösung (exponentieller Abfall)
- h=0.85: Instabile Lösung (Oszillation mit wachsender Amplitude)

Exakte Lösung: $y(x) = e^{-2.5x}$ (streng monoton fallend)

Fehlerordnung und Konvergenz -

Lokaler und globaler Fehler

Lokaler Fehler: Fehler nach einer Iteration $\varphi(x_i, h) := y(x_{i+1}) - y_{i+1}$ **Globaler Fehler:** Der Fehler nach n Iterationen $y(x_n) - y_n$

Konsistenzordnung p:

Ein Verfahren hat Konsistenzordnung p, falls $|\varphi(x_i,h)| \leq C \cdot h^{p+1}$

Konvergenzordnung p:

Ein Verfahren hat Konvergenzordnung p, falls $|y(x_n) - y_n| \leq C \cdot h^p$

Konvergenzordnungen der Verfahren

- Euler-Verfahren: Konvergenzordnung p=1
- Mittelpunkt-Verfahren: Konvergenzordnung p=2
- Modifiziertes Euler-Verfahren: Konvergenzordnung p=2
- Klassisches Runge-Kutta: Konvergenzordnung p=4

Praktische Bedeutung: Bei Halbierung der Schrittweite h reduziert sich der Fehler um den Faktor 2^p

Konvergenzverhalten für $\frac{dy}{dx} = \frac{x^2}{y}$ mit y(0) = 2 auf [0, 10]

Exakte Lösung: $y(x) = \sqrt{\frac{2x^3}{3} + 4}$ Fehler bei x = 10 für verschiedene h:

h	Euler	Mittelpunkt	Mod. Euler	Runge-Kutta
0.1	10^{-1}	10^{-2}	10^{-2}	10^{-5}
0.05	5×10^{-2}	2.5×10^{-3}	2.5×10^{-3}	6×10^{-7}
0.025	2.5×10^{-2}	6×10^{-4}	6×10^{-4}	4×10^{-8}

Beobachtung: Bei Halbierung von *h*:

- Euler: Fehler halbiert sich (Ordnung 1)
- Mittelpunkt/Mod. Euler: Fehler viertelt sich (Ordnung 2)
- Runge-Kutta: Fehler wird um Faktor 16 kleiner (Ordnung 4)

Wann welches Verfahren?

- Euler: Einfachste Implementierung, Lernzwecke, grobe Näherungen
- Mittelpunkt/Modifiziert:

Bessere Genauigkeit als Euler, moderater Aufwand

• Runge-Kutta 4: Standard für die meisten Probleme, gute Balance zwischen Genauigkeit und Aufwand

Mitternachtsformel
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Polynomdivision ! Vorzeichen von Nullstellen umdrehen

$$\frac{P(x)}{q(x)} = S(x) + \frac{r(x)}{q(x)} \qquad P, q, S$$

P, q, S, r Polynome

Komposition/Verkettung
$$(g \circ f)(x) = g(f(x))$$

Stetigkeit Funktion ist stetig, falls Kurve keine Sprünge macht und man Graphen der Funktion zeichnen kann, ohne Stift abzusetzen.

Gleichmässige Konvergenz $\forall x$ Linksseitiger Grenzwert = Rechtsseitiger GW

Symmetrie gerade f(-x) = f(x), ungerade f(-x) = -f(x)

 $\tan x = \frac{\sin x}{\cos x}$ und $\cot x = \frac{\cos x}{\sin x}$

Differential rechnung

Ableitungsregeln Seien $f, g: D \to \mathbb{R}$ differenzierbar. Dann gelten:

- Summe/Differenz: (f+g)'(x) = f'(x) + g'(x)
- Faktor: $f(x) = a \cdot g(x) \rightarrow f'(x) = a \cdot g'(x)$
- Produkt: $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$
- Quotient: (f g)'(x) = f'(x)g(x) f(x)g'(x)• Quotient: $(f g)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$ Kettenregel: $(g \circ f)'(x) = g'(f(x))f'(x)$ Umkehrfunktion: $(f^{-1})'(y_0) = \frac{1}{f'(x)}$

- Potenz/Logarithmus 1: $(a^{f(x)})' = ln(a) \cdot a^{f(x)} \cdot f'(x)$ $(f(x)^{g(x)})' = f(x)^{g(x)} \cdot (\ln(f(x)) \cdot q(x))' = f(x)^{g(x)} \cdot (\ln(f(x)) \cdot q(x) \cdot \frac{f'(x)}{f(x)})$

Sekanten-Steigung/Differentialquotient $\frac{\Delta f}{\Delta x} = \frac{f(x_0 + h) - f(x_0)}{h}$

Krümmung Zusammenhang zwischen 2. Ableitung und Krümmung:

- $f''(x_0) > 0$ Konvex (Nach links/oben gekrümmt)
- $f''(x_0) < 0$ Konkav (Nach rechts/unten gekrümmt)
- $f''(x_0) = 0$ Keine eindeutige Krümmung

Bmk: Die Summe zweier konvexer Funktionen ist konvex. (konkav analog)

Kurvendiskussion f(x) = y

- $f'(x) = 0 \Rightarrow x$ lokales Extremum (NST)
- Bestimme f''(x) (Zweite Ableitung)
 - $-f''(x) = 0 \Rightarrow$ siehe Vorgehen Wende- und Sattelpunkte
 - $-f''(x) < 0 \Rightarrow$ relatives Maximum
- $-f''(x) > 0 \Rightarrow$ relatives Minimum

Vorgehen Wende- und Sattelpunkte:

- Wendepunkt: $f^{(3)}(x_0) \neq 0$
- Sattelpunkt: zusätzlich $f'(x_0) = 0$

Punkt bestimmen: In Gleichung f(x) = y einsetzen $\rightarrow P(x, y)$

Integralrechnung

Integralregeln $(\lambda_1, \lambda_2 \in \mathbb{R})$

- Addition/Subtraction: $\int f(x-k)dx = F(x-k) + C$
- Multiplikation: $\int f(x \cdot k) dx = \frac{1}{k} F(x \cdot k) + C$
- Skalarmultiplikation: $\int \lambda_1 f(x) + \lambda_2 g(x) dx = \lambda_1 F(x) + \lambda_2 G(x) + C$
- Linearkombination: $\int (\lambda_1 f(x) + \lambda_2 g(x)) = \lambda_2 F(x) + \lambda_2 G(x) + C$
- Verschiebung um k in x-Richt.: $\int f(x-k)dx = F(x-k) + C$
- Streckung um k in x-R.: $\int f(k \cdot x) dx = \frac{1}{h} F(k \cdot x) + C(k \neq 0)$

Partielle Integration

 $\int_{a}^{b} f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) dx$ Unbestimmte: $\int (f(x) \cdot g'(x)) dx = f(x) \cdot g(x) - \int (f'(x) \cdot g(x)) dx$

Substitution $\int_{a(b)}^{g(a)} f(x) dx = \int_{a}^{b} f(g(t))g'(t) dt$

Unbestimmte Integrale: $\int f(g(t)) \cdot g'(t) dt = \int f(x) dx \Big|_{x=a(t)}$

Nützliche Regeln Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig. $\int_{a+c}^{b+c} f(x) dx = \int_a^b f(t+c) dt \text{ und } \int_a^b f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$

Substitution $u = g(x), \quad \frac{\mathrm{d}u}{\mathrm{d}x} = g'(x), \quad \mathrm{d}x = \frac{\mathrm{d}u}{g'(x)}$

- Durchführen der Substitution u = g(x) und $dx = \frac{du}{g'(x)}$ $\int f(x) dx = \int r(u) du$ bzw. $\int_a^b f(x) dx = \int_{a(a)}^{a(b)} r(u) du$
- Berechnen des Integrals mit Variable u:

$$\int r(u)\mathrm{d}u = R(u) + C \text{ bzw. } \int_{g(a)}^{g(b)} r(u)\mathrm{d}u = R(u) + C \bigg|_{g(a)}^{g(b)}$$

$$R(u) + C = R(g(x)) + C \text{ bzw. } R(u) + C \bigg|_{g(a)}^{g(b)} = R(g(x)) + C \bigg|_{g(a)}^{g(b)}$$

Uneigentliche Integrale

- $\begin{array}{l} \textbf{Uneigentliche integrale} \\ \bullet \ I = \int_a^\infty f(x) \mathrm{d}x = \lim_{\lambda \to \infty} I(\lambda) = \lim_{\lambda \to \infty} (\int_a^\lambda f(x) \mathrm{d}x) \\ \bullet \ I = \int_{-\infty}^\infty f(x) \mathrm{d}x = \int_{-\infty}^c f(x) \mathrm{d}x + \int_c^\infty f(x) \mathrm{d}x = \lim_{\lambda \to -\infty} I(\lambda) + \lim_{\lambda \to -\infty$
- $I = \int_a^b f(x) dx = \lim_{\epsilon \to 0} I(\epsilon) = \lim_{\epsilon \to 0} (\int_{a+\epsilon}^b f(x) dx)$

Flächeninhalt zwischen zwei Kurven f(x) und g(x)

$$\left| \int_{a}^{x_{1}} (f(x) - g(x)) dx \right| + \left| \int_{x_{1}}^{x_{2}} (f(x) - g(x)) \right| + \dots + \left| \int_{x_{n}}^{b} (f(x) - g(x)) \right|$$

Mittelwert einer Funktion $\mu = \frac{1}{b-a} \int_a^b f(x) dx$

 \rightarrow Höhe des Rechtecks mit l = b - a und Flächeninhalt $A = \int_a^b f(x) dx$.

Wichtige Integrale

- Rotationsvolumen: $V = \pi \int_a^b (f(x))^2 dx$
- Bogenlänge: $L = \int_a^b \sqrt{1 + (f'(x))^2} dx$
- Mantelfläche: $M = 2\pi \int_a^b f(x) \cdot \sqrt{1 + (f'(x))^2} dx$

Trick Ungerade Funktionen $\int_{a}^{+a} f(x) dx = 0$

- Summe/Komposition: ungerade und ungerade → ungerade
- Produkt/Quotient: ungerade und gerade → ungerade
- Ableitung: gerade → ungerade

Ungerade: f(x) = -x, x, sin(x), tan(x), Polynomfunkt. (ungerader Exponent) Gerade: 1, x^2 , cos(x), sec(x), Polynomfunkt. mit geradem Exponent

Gerade und Ungerade: f(x) = 0, f(x) = C (Konstante)

Ableitung $ f'(x)$	Funktion f(x)	Integral F(x)
0	C	x + C
1	x	$\frac{1}{2}x^2 + C$
$-\frac{1}{x^2}$	$\frac{1}{x}$	$\ln x + C$
ax^{a-1}	$x^a \text{ with } a \in \mathbb{R}$	$\frac{x^{a+1}}{a+1} + C$
$x^x \cdot (1 + \ln x) x > 0$	x^x	
$\frac{1}{2\sqrt{x}}$	\sqrt{x}	$\frac{2}{3}x^{\frac{3}{2}}$
$\frac{\frac{1}{2\sqrt{x}}}{\frac{1}{n}x^{\frac{1}{n}-1}}$	$\sqrt[n]{x}$	$\frac{n}{n+1}x^{\frac{1}{n}+1}$
$\ln(a) \cdot a^x$	a^x	$\frac{a^x}{\ln(a)} + C$
$a^{bx} \cdot c \ln a$	a^{bx}	$\frac{1}{b \ln a} a^{bx}$
e^x	e^x	$e^x + C$
$\frac{1}{x}$	ln(x)	$x \ln(x) - x + C$
$\frac{1}{x \ln(a)}$	$\log_a(x)$	$x \log_a(x) - \frac{x}{\ln(a)} + C$
$\cos(x)$	$\sin(x)$	$-\cos(x) + C$
$-\sin(x)$	$\cos(x)$	$\sin(x) + C$
$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	tan(x)	$-\ln \cos(x) + C$
$-1 - \cot^2(x) = -\frac{1}{\sin^2(x)}$	$\cot(x)$	$\ln(\sin(x)) + C$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$x \arcsin(x) + \sqrt{1-x^2} + C$
$-\frac{1}{\sqrt{1-x^2}}$	arccos(x)	$x \arccos(x) - \sqrt{1 - x^2} + C$
$\frac{1}{1+x^2}$	$\arctan(x)$	$x \arctan(x) - \frac{1}{2}\ln(1+x^2) + C$
$\sin^2(x)$	$\frac{1}{2}(x - \sin(x)\cos(x))$	$\sin(x)\cos(x) + C$
$\cos^2(x)$	$\frac{1}{2}(x+\sin(x)\cos(x))$	$\cos(x)\sin(x) + C$
$\tan^2(x)$	tan(x) - x	$\tan(x) + C$
$\cot^2(x)$	$-\cot(x) - x$	$\cot(x) + C$
$\frac{f'(x)}{f(x)}$	$\ln f(x) $	$x \cdot (\ln x - 1) + C$
$\frac{-f'(x)}{(f(x))^2}$	$\frac{1}{f(x)}$	
$(ax+b)^n$	$\frac{1}{a \cdot (n+1)} (ax+b)^{n+1}$	
Approximations- und Rundu	ngsfehler	

Approximations- und Rundungsfehler -

Fehlerarten Sei \tilde{x} eine Näherung des exakten Wertes x:

Absoluter Fehler:

$$|\tilde{x} - x|$$

$$\left|\frac{\tilde{x}-x}{x}\right|$$
 bzw. $\frac{|\tilde{x}-x|}{|x|}$ für $x \neq 0$

Konditionierung Die Konditionszahl K beschreibt die relative Fehlervergrösserung bei Funktionsauswertungen:

$$K := \frac{|f'(x)| \cdot |}{|f(x)|}$$

- $K:=\frac{|f'(x)|\cdot |x|}{|f(x)|} \\ \bullet \quad K\leq 1: \text{ gut konditioniert} \\ \bullet \quad K>1: \text{ schlecht konditioniert} \\ \bullet \quad K\gg 1: \text{ sehr schlecht konditioniert}$

Fehlerfortpflanzung Für f (differenzierbar) gilt näherungsweise:

Absoluter Fehler:

$$|f(\tilde{x}) - f(x)| \approx |f'(x)| \cdot |\tilde{x} - f(x)|$$

Absoluter reinler: Relativer reinler:
$$|f(\tilde{x}) - f(x)| \approx |f'(x)| \cdot |\tilde{x} - x| \qquad \frac{|f(\tilde{x}) - f(x)|}{|f(x)|} \approx K \cdot \frac{|\tilde{x} - x|}{|x|}$$

Fehlerabschätzung für Nullstellen

So schätzen Sie den Fehler einer Näherungslösung ab:

- 1. Sei x_n der aktuelle Näherungswert
- 2. Wähle Toleranz $\epsilon > 0$
- 3. Prüfe Vorzeichenwechsel: $f(x_n \epsilon) \cdot f(x_n + \epsilon) < 0$
- 4. Falls ja: Nullstelle liegt in $(x_n \epsilon, x_n + \epsilon)$
- 5. Damit gilt: $|x_n \xi| < \epsilon$

Vektoren Eigenschaften und Formeln

- Länge/Betrag: $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$
- Einheitsvektor/Normierung: $\vec{e_a} = \frac{1}{a} \cdot \vec{a} = \frac{\vec{d}}{|\vec{d}|}$
- Orthogonal (Senkrecht): $\overrightarrow{a} \cdot \overrightarrow{b} = 0 \rightarrow \text{orthogonal } (90^{\circ} \text{ Winkel})$ Vektoraddition: $\binom{a_x + b_x}{a_y + b_y}$ und Skalarmultiplikation: $\binom{\lambda \cdot a_x}{\lambda \cdot a_y}$ Skalarprodukt: $\overrightarrow{a} \cdot \overrightarrow{b} = a_x \cdot b_x + a_y \cdot b_y = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos(\varphi)$ Kreuzprodukt: $\overrightarrow{a} \times \overrightarrow{b}$ ist orthogonal zu \overrightarrow{a} und \overrightarrow{b} $\overrightarrow{a} \times \overrightarrow{b} = \begin{pmatrix} \csc a_y \cdot b_z a_z \cdot b_y \\ a_z \cdot b_y a_y \cdot b_z \end{pmatrix}$

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{pmatrix} ccca_y \cdot b_z - a_z \cdot b_y \\ a_z \cdot b_x - a_x \cdot b_z \\ a_x \cdot b_y - a_y \cdot b_x \end{pmatrix}$$

Matrix Tabelle mit m Zeilen und n Spalten: $m \times n$ -Matrix A a_{ij} : Element in der *i*-ten Zeile und *j*-ten Spalte

Addition und Subtraktion $A + B = C \rightarrow c_{ij} = a_{ij} + b_{ij}$

Skalarmultiplikation $k \cdot A = B \rightarrow b_{ij} = k \cdot a_{ij}$

Bedingung: A n Spalten. B n Zeilen. Resultat: C hat m Zeilen und k Spalten.

• $A \cdot B = C$

•
$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \ldots + a_{in} \cdot b_{nj}$$

• $A \cdot B \neq B \cdot A$

Transponierte Matrix $A^{m \times n} \rightarrow (A^T)^{n \times m}$

- A^T : Spalten und Zeilen vertauscht $(A^T)_{ij} = A_{ji}$ und $(A \cdot B)^T = B^T \cdot A^T$

Spezielle Matrizen

- Symmetrische Matrix: $A^T = A$
- Einheitsmatrix: E mit $e_{ij} = 1$ für i = j und $e_{ij} = 0$ für $i \neq j$
- Diagonalmatrix: $a_{ij} = 0$ für $i \neq j$
- **Dreiecksmatrix**: $a_{ij} = 0$ für i > j (obere Dreiecksmatrix) oder i < j (untere Dreiecksmatrix)

Permutationsmatrix P ist eine Matrix, die aus der Einheitsmatrix durch Zeilenvertauschungen entsteht.

Für die Vertauschung der i-ten und j-ten

Zeile hat P_k die Form:

- $p_{ii} = p_{ij} = 0$
- $p_{ij} = p_{ji} = 1$
- Sonst gleich wie in E_n

Wichtige Eigenschaften:

- $P^{-1} = P^T = P$
- Mehrere Vertauschungen:

 $P = P_1 \cdot ... \cdot P_1$

Quadratische Matrizen

Eigenschaften invertierbarer Matrizen

•
$$A \cdot A^{-1} = A^{-1} \cdot A = E \text{ und } (A^{-1})^{-1} = A$$

- $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$ Die Reihenfolge ist relevant!
- $\begin{array}{l} \bullet \ \ A \ \text{und} \ B \ \text{invertierbar} \Rightarrow AB \ \text{invertierbar} \\ \bullet \ \ (A^T)^{-1} = {(A^{-1})}^T \qquad A \ \text{invertierbar} \Rightarrow A^T \ \text{invertierbar} \\ \end{array}$

Inverse einer 2 \times 2-Matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ mit det(A) = ad - bc

$$A^{-1} = \frac{1}{\det(A)} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \to \text{NUR Invertierbar falls } ad - bc \neq 0$$

Inverse berechnen einer quadratischen Matrix $A^{n \times n}$

$$A \cdot A^{-1} = E \rightarrow (A|E) \rightsquigarrow \text{Zeilenoperationen} \rightsquigarrow (E|A^{-1})$$

Lineare Gleichungssysteme (LGS) -

Lineares Gleichungssystem (LGS) Matrixform $A \cdot \vec{x} = \vec{b}$:

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \quad \begin{matrix} A : \text{ Koeffizientenmatrix} \\ \frac{x}{b} : \text{ Vektor der Unbekannten} \\ \frac{x}{b} : \text{ Vektor der Konstanten} \\ \begin{matrix} \vdots \\ \vdots \\ \vdots \\ \end{matrix}$$

Rang einer Matrix rg(A) =Anzahl Zeilen - Anzahl Nullzeilen ⇒ Anzahl linear unabhängiger Zeilen- oder Spaltenvektoren

Zeilenstufenform (Gaussii)

- Alle Nullen stehen unterhalb der Diagonalen, Nullzeilen zuunterst
- Die erste Zahl $\neq 0$ in ieder Zeile ist eine führende Eins
- Führende Einsen, die weiter unten stehen → stehen weiter rechts

Zeilenperationen erlaubt bei LGS (z.B. Gauss-Verfahren)

- Vertauschen von Zeilen
- Multiplikation einer Zeile mit einem Skalar
- Addition eines Vielfachen einer Zeile zu einer anderen

Lösbarkeit von linearen Gleichungssystemen

- Lösbar: rq(A) = rq(A|b)
- · unendlich viele Lösungen:
- genau eine Lösung: rg(A) = n
- ra(A) < n

Parameterdarstellung bei unendlich vielen Lösungen

Führende Unbekannte: Spalte mit führender Eins Freie Unbekannte: Spalten ohne führende Eins

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ \begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{pmatrix} & 5 \end{pmatrix}$$

Homogenes LGS $\vec{b} = \vec{0} \rightarrow A \cdot \vec{x} = \vec{0} \rightarrow rq(A) = rq(A \mid \vec{b})$

- eine Lösung $x_1 = x_2 = \cdots = x_n = 0$, die sog. triviale Lösung.
- · unendlich viele Lösungen

Koeffizientenmatrix. Determinante, Lösbarkeit des LGS

Für $n \times n$ -Matrix A sind folgende Aussagen äquivalent:

- $det(A) \neq 0$
- Spalten von A sind linear unabhängig.
- rg(A) = n
- Zeilen von A sind linear unabhängig. • LGS $A \cdot \vec{x} = \vec{0}$
- A ist invertierbar
 - hat eindeutige Lösung $x = A^{-1} \cdot 0 = 0$

Fehleranalyse -

1-Norm:
$$\|x\|_1 = \sum_{i=1}^n |x_i|, \|A\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$$
 2-Norm: $\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}, \|A\|_2 = \sqrt{\rho(A^TA)}$

$$\text{∞-Norm: } \|x\|_2 = \sqrt{\sum_{i=1}^n x_i}, \|A\|_2 = \sqrt{\rho(A^*A)}$$

$$\text{∞-Norm: } \|x\|_{\infty} = \max_i |x_i|, \|A\|_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$$

Fehlerabschätzung für LGS

Sei $\|\cdot\|$ eine Norm, $A \in \mathbb{R}^{n \times n}$ regulär und Ax = b, $A\tilde{x} = \tilde{b}$

Absoluter Fehler:
$$||x - \tilde{x}|| < ||A^{-1}|| \cdot ||b - \tilde{b}|$$

Mit der Konditionszahl cond $(A) = ||A|| \cdot ||A^{-1}||$

Konditionierung

Die Konditionszahl beschreibt die numerische Stabilität eines LGS:

- $cond(A) \approx 1$: gut konditioniert
- $cond(A) \gg 1$: schlecht konditioniert
- $\operatorname{cond}(A) \to \infty$: singulär

Determinante -

Determinante $det(A) \neq 0 \rightarrow A$ ist invertierbar

Geometrische Interpretation der Determinante:

Fläche im \mathbb{R}^2 und Volumen im \mathbb{R}^3 durch eine Matrix A aufgespannt: $A = |\vec{a} \times \vec{b}| =$

Eigenschaften von Determinanten mit $A, B \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{R}$

- $\det(A \cdot B) = \det(A) \cdot \det(B)$
- $\det(E) = 1$
- $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$
- $\det(A^T) = \det(A)$

•
$$\det(A) = 0 \Leftrightarrow A$$
 ist singulär • $\det(A^{-1}) = \frac{1}{\det(A)}$

 $E = \mathsf{Einheitsmatrix}$

Determinante 1×1 -Matrix $det(A) = A_{11}$

Determinante 2 \times **2-Matrix** $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \det(A) = |A| = a \cdot d - b \cdot c$

Determinante
$$3 \times 3$$
-Matrix $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$
$$|A| = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - c \cdot e \cdot g - b \cdot d \cdot i - a \cdot f \cdot h$$

$$|A| = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - c \cdot e \cdot g - b \cdot d \cdot i - a \cdot f \cdot h$$

Determinante $n \times n$ -Matrix

$$\det(A) = |A| = \sum_{i=1 \text{ oder } j=1}^n (-1)^{i+j} \cdot a_{ij} \cdot |A_{ij}|$$
 Tipp: Entwickeln nach Spalte oder Zeile mit den meisten Nullen!

Tricks und Tipps

- hat A eine Nullzeile oder -spalte, so ist det(A) = 0
- hat A zwei gleiche Zeilen oder Spalten, so ist det(A) = 0
- $det(A) \neq 0 \Rightarrow Spalten/Zeilen sind linear unabhängig$

Determinante mit Gauss Spezialfall Dreiecks- /Diagonalmatrix

Wende Gauss-Algorithmus an, um A in Dreiecksform zu bringen. Es gilt für jede Dreiecksmatrix oder Diagonalmatrix D:

$$\det(D) = (-1)^k \prod_{i=1}^n d_{ii}$$

k = Anzahl der Zeilen-Vertauschungen

Bei Skalarmultiplikationen ändert sich det(A) um den Skalierungsfaktor

Matrix-Zerlegungen ----

$\textbf{LR-Zerlegung} \quad (E|A|E) \underbrace{\quad \leadsto \quad} (P|R|L)$

Vorwärtseinsetzen: Lu = bRückwärtseinsetzen: Rx = u

QR-Zerlegung (noch genauer erklären)

- $A = Q \cdot R$ mit Q orthogonal und R obere Dreiecksmatrix
- $Q^T = Q^{-1}$
- R ist eindeutig, Q nicht