Álgebra Universal e Categorias

$2^{\underline{o}}$ teste

__ duração: 1h30min | tolerância: 10min _____

- 1. Sejam $\mathcal A$ uma álgebra e $\theta \in \mathrm{Con}\mathcal A$. Considere a aplicação $\alpha:A \to A/\theta$ definida por $\alpha(a)=[a]_{\theta}$, para todo $a \in A$.
 - (a) Mostre que α é um epimorfismo de \mathcal{A} em \mathcal{A}/θ .
 - (b) Mostre que $\ker \alpha = \theta$. Justifique que α é um monomorfismo se e só se $\theta = \triangle_A$.
- 2. (a) Seja A uma álgebra cujo reticulado de congruências pode ser representado pelo digrama de Hasse

e tal que $\theta_1 \circ \theta_4 = \theta_4 \circ \theta_1$.

- i. Justifique que a álgebra ${\mathcal A}$ não é diretamente indecomponível e indique álgebras ${\mathcal B}$ e ${\mathcal C}$ não triviais tais que $A \cong B \times C$.
- ii. Diga, justificando, se os reticulados $Con(A/\theta_1)$ e $Con(A/\theta_3)$ são isomorfos.
- (b) Dê um exemplo de, ou justifique que não existe um exemplo de:
 - i. Uma álgebra subdiretamente irredutível que não seja diretamente indecomponível.
 - ii. Uma álgebra diretamente indecomponível que não seja subdiretamente irredutível.
- 3. Considere os operadores de classes de álgebras H e S. Mostre que:
 - (a) HS é um operador de fecho.
 - (b) HSH = HS.
- 4. Sejam C e D as categorias definidas pelos diagramas seguintes

$$\mathbf{C} \quad h \underbrace{\mathrm{id}_{A} \underbrace{f}_{g}}_{f} \underbrace{h'}_{g} \mathrm{id}_{B}$$

$$\mathbf{D} \quad \mathrm{id}_{X} \underbrace{X}_{g} \underbrace{h'}_{Y} \underbrace{M'}_{Y} \mathrm{id}_{Y}$$

onde $h \neq id_A$ e $h = g \circ f$.

- (a) Justifique que $g \circ f \circ g = g$ e $h \circ h = h$.
- (b) Defina a categoria $C \times D$ por meio de um diagrama.