Методы оптимизации. Семинар 5. Выпуклые функции.

Корнилов Никита Максимович

Московский физико-технический институт

1 октября 2024г

Выпуклые функции

Definition (Выпуклые функции)

Пусть U - вещественное векторное пространство, Q - непустое выпуклое множество в U. Функция $f:Q\to\mathbb{R}$ называется выпуклой, если для любых $x,y\in Q$ и любого $0\leq \alpha\leq 1$ выполняется

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y). \tag{1}$$

Выпуклые функции

Definition (Выпуклые функции)

Пусть U - вещественное векторное пространство, Q - непустое выпуклое множество в U. Функция $f:Q\to\mathbb{R}$ называется выпуклой, если для любых $x,y\in Q$ и любого $0\leq \alpha\leq 1$ выполняется

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y). \tag{1}$$

Если неравенство (1) выполняется как строгое для всех $x \neq y$ и $0 < \alpha < 1$, то функция f называется строго выпуклой функцией на Q.

Выпуклые функции

Definition (Выпуклые функции)

Пусть U - вещественное векторное пространство, Q - непустое выпуклое множество в U. Функция $f:Q\to\mathbb{R}$ называется выпуклой, если для любых $x,y\in Q$ и любого $0\leq \alpha\leq 1$ выполняется

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y). \tag{1}$$

Если неравенство (1) выполняется как строгое для всех $x \neq y$ и $0 < \alpha < 1$, то функция f называется строго выпуклой функцией на Q.

 $\forall x,y\in Q$ нужно вычислять функцию f в любой точке отрезка [x,y]. Поэтому требуем, чтобы область определения Q функции являлась выпуклым множеством.

H. М. Корнилов 1 октября 2024г 2 / 33

Пример выпуклого множества

Эпиграф

Definition

Пусть U - вещественное векторное пространство, Q - непустое множество в U. Надграфиком (или эпиграфом) функции $f:Q o\mathbb{R}$ называется множество

$$\mathsf{Epi}\,f:=\{(x,t)\in Q\times\mathbb{R}:f(x)\leq t\}\,.$$

Н. М. Корнилов 1 октября 2024г

Альтернативное определение выпуклости

Следующее утверждение можно считать альтернативным определением выпуклости функции.

Theorem

Пусть U — вещественное векторное пространство, Q - непустое выпуклое множество в U. Функция $f:Q\to\mathbb{R}$ является выпуклой тогда и только тогда, когда её надграфик Epi f является выпуклым множеством в пространстве $U\times\mathbb{R}$

5 / 33

Н. М. Корнилов 1 октября 2024г

Альтернативное определение выпуклости

Следующее утверждение можно считать альтернативным определением выпуклости функции.

Theorem

Пусть U — вещественное векторное пространство, Q - непустое выпуклое множество в U. Функция $f:Q\to\mathbb{R}$ является выпуклой тогда и только тогда, когда её надграфик Epi f является выпуклым множеством в пространстве $U\times\mathbb{R}$

Больше теоретическое нежели практическое определение.

Вогнутые функции

Definition

Пусть U — вещественное векторное пространство, Q - непустое выпуклое множество в U. Функция $f:Q\to\mathbb{R}$ называется вогнутой, если для любых $x,y\in Q$ и любого $0\le\alpha\le 1$ выполняется

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y). \tag{2}$$

6 / 33

H. М. Корнилов 1 октября 2024г

Вогнутые функции

Definition

Пусть U — вещественное векторное пространство, Q - непустое выпуклое множество в U. Функция $f:Q\to\mathbb{R}$ называется вогнутой, если для любых $x,y\in Q$ и любого $0\le\alpha\le 1$ выполняется

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y). \tag{2}$$

Если это неравенство (2) выполняется как строгое для всех $x \neq y$ и $0 < \alpha < 1$, то функция f называется строго вогнутой функцией на Q.

|ロト 4回 ト 4 差 ト 4 差 ト 9 Q (C)

Вогнутые функции

Definition

Пусть U — вещественное векторное пространство, Q - непустое выпуклое множество в U. Функция $f:Q\to\mathbb{R}$ называется вогнутой, если для любых $x,y\in Q$ и любого $0\le\alpha\le 1$ выполняется

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y). \tag{2}$$

Если это неравенство (2) выполняется как строгое для всех $x \neq y$ и $0 < \alpha < 1$, то функция f называется строго вогнутой функцией на Q.

Функция f является (строго) выпуклой тогда и только тогда, когда функция -f является (строго) вогнутой.

H. М. Корнилов 1 октября 2024г 6 / 33

Докажем по определению

Example (Афинная функция)

Пусть в пространстве U задано (произвольное) скалярное произведение и $f:Q \to \mathbb{R}$ - аффинная функция

$$f(x) = \langle a, x \rangle + b,$$

где $a \in U$ и $b \in \mathbb{R}$. Проверьте f на выпуклость/вогнутость.

Example (Норма)

Пусть в пространстве U задана (произвольная) норма $||\cdot||$. Функция $f:Q o\mathbb{R}$ задана формулой

$$f(x) = ||x||.$$

Проверьте f на выпуклость/вогнутость.

→□▶→□▶→□▶→□▶ □ ♥Q

Расширение выпуклой функции

Удобно считать, что функция задана не только на своей истинной области определения Q, но так же и за ее пределами, считая, что там функция принимает значение $+\infty$.

Definition

Пусть U - векторное пространство, и $f:U\to\mathbb{R}^*$ - функция, принимающая значения во множестве расширенных вещественных чисел $\mathbb{R}^*=\mathbb{R}\cup\{+\infty\}\cup\{-\infty\}$. Будем называть эффективной областью определения функции f множество всех точек, в которых функция принимает конечные значения:

$$dom f = \{x \in U : |f(x)| < +\infty\}$$

4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q (*)

Расширение выпуклой функции

Definition (Выпуклые расширеннозначные функции)

Пусть U — вещественное векторное пространство и функция $f:U \to \mathbb{R} \cup \{+\infty\}$ задана на всем пространстве и принимает расширенные вещественные значения. Функция f называется выпуклой, если для любых $x,y \in U$ и любого $\alpha \in [0,1]$ выполняется

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Согласно определению выпуклая расширеннозначная функция может принимать только одно расширенное значение - $+\infty$

Расширение выпуклой функции

Definition (Выпуклые расширеннозначные функции)

Пусть U — вещественное векторное пространство и функция $f:U \to \mathbb{R} \cup \{+\infty\}$ задана на всем пространстве и принимает расширенные вещественные значения. Функция f называется выпуклой, если для любых $x,y \in U$ и любого $\alpha \in [0,1]$ выполняется

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Согласно определению выпуклая расширеннозначная функция может принимать только одно расширенное значение - $+\infty$

- $\forall \alpha \in \mathbb{R}^n : \quad \alpha + \infty = +\infty, \quad \alpha \infty = -\infty,$
- 3 $\forall \alpha > 0 \in \mathbb{R}^n$: $\alpha \cdot (+\infty) = +\infty$, $\alpha \cdot (-\infty) = -\infty$.

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 夕久(*)

Пример расширеннозначной выпуклой функции

Example

Функция индикатор множества Q:

$$I_Q(x) = \begin{cases} 1, & x \in Q, \\ +\infty, & x \notin Q. \end{cases}$$

Для выпуклых множеств Q функция I_Q выпуклая.

10 / 33

Критерий выпуклости первого порядка

Theorem (Критерий выпуклости 1-го порядка)

Пусть dom f является открытым множеством и функция f дифференцируема всюду на dom f. Функция f является выпуклой тогда и только тогда, когда dom f является выпуклым множеством и

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$
 (3)

для всех $x, y \in dom f$.

Example

Проверьте критерий на функции $f(x) = ||x||_2, x \in \mathbb{R}^n$.

◆ロト ◆個ト ◆注ト ◆注ト 注 りへぐ

Критерий выпуклости первого порядка

График функции f(x) лежит выше касательной в любой точке dom f

H. М. Корнилов 1 октября 2024г 12 / 33

Оптимальность

Theorem (Дифференциальное условие оптимальности для выпуклой функции)

Пусть $f: U \to \mathbb{R} \cup \{+\infty\}$ - выпуклая функция dom f является открытым множеством, и пусть $x^* \in \text{dom } f$. Тогда x^* является глобальным минимумом функции f, если и только если $\nabla f(x^*) = 0$. Другими словами любая стационарная точка автоматически является глобальным минимумом функции f.

Критерий выпуклости второго порядка

Theorem (Критерий выпуклости 2-го порядка)

Пусть dom f является открытым множеством и функция f дважды дифференцируема на dom f. Функция f является выпуклой тогда и только тогда, когда dom f является выпуклым множеством и

билинейная форма $d^2f(x)$ неотрицательно определена

для всех $x \in dom f$.

В случае $f:\mathbb{R}^n o\mathbb{R}$ условие имеет вид

$$\nabla^2 f(x) \succeq 0.$$

Докажем по критериям

Example

- ullet $f(x) = \exp(ax)$ выпукла на $\mathbb R$ для любого $a \in \mathbb R$,
- \bullet $f(x) = -\ln x$ выпукла на \mathbb{R}_{++} ,
- \bullet $f(x) = x \ln x$ выпукла на \mathbb{R}_+ ,
- ullet $f(x)=x^p$ для $p\geq 1$ или $p\leq 0$ выпукла на \mathbb{R}_{++} и вогнута для 0< p< 1.

Докажем по критериям

Example

Пусть $A \in \mathbb{S}^n, b \in \mathbb{R}^n$. Рассмотрим квадратичную функцию

$$f(x) = \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle.$$

Она является выпуклой в том и только в том случае, когда $A\succeq 0$.

Example

В частности, в \mathbb{R}^2 рассмотрим матрицу $A = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$.

16 / 33

H. М. Корнилов 1 октября 2024г

Докажем по критериям

Example

Функция

$$f(X) = -\ln \det(X)$$

является выпуклой на \mathbb{S}^n_{++} .

Example

Функция

$$f(x) = \ln(e^{x_1} + e^{x_2} + ... + e^{x_n})$$

является выпуклой на \mathbb{R}^n .

Неравенство Йенсена

Theorem

Пусть f(x) — выпуклая функция на выпуклом множестве $X \subseteq \mathbb{R}^n$. Пусть также $x_1,...,x_k$ — точки, принадлежащие множеству X и коэффициенты $\alpha_1,...,\alpha_k$ таковы, что $\alpha_i \geq 0$ и $\sum\limits_{i=1}^k \alpha_i = 1$. Тогда справедливо следующее неравенство:

$$f\left(\sum_{i=1}^{k}\alpha_{i}x_{i}\right)\leq\sum_{i=1}^{k}\alpha_{i}f(x_{i}),\tag{4}$$

причем равенство достигается тогда и только тогда, когда функция f является аффинной или когда все точки x; совпадают.

4□ > 4□ > 4 = > 4 = > = 90

18 / 33

H. М. Корнилов 1 октября 2024г

Следствия

f 0 Для вектора чисел $x\in \mathbb{R}^n_{++}$ верно

$$\frac{x_1+\cdots+x_n}{n}\geq \sqrt[n]{x_1\cdot\cdots\cdot x_n}.$$

Следствия

f 0 Для вектора чисел $x\in \mathbb{R}^n_{++}$ верно

$$\frac{x_1+\cdots+x_n}{n}\geq \sqrt[n]{x_1\cdot\cdots\cdot x_n}.$$

② Неравенство Гельдера в частности Коши-Буняковского: Для векторов $x,y\in\mathbb{R}^d$ и чисел $p\geq 1, \frac{1}{q}+\frac{1}{p}=1$ выполняется неравенство

$$\langle x, y \rangle \le |\langle x, y \rangle| \le ||x||_p ||y||_q.$$
 (5)

Следствия

f 0 Для вектора чисел $x\in \mathbb{R}^n_{++}$ верно

$$\frac{x_1+\cdots+x_n}{n}\geq \sqrt[n]{x_1\cdot\cdots\cdot x_n}.$$

② Неравенство Гельдера в частности Коши-Буняковского: Для векторов $x,y\in\mathbb{R}^d$ и чисел $p\geq 1, \frac{1}{q}+\frac{1}{p}=1$ выполняется неравенство

$$\langle x, y \rangle \le |\langle x, y \rangle| \le ||x||_p ||y||_q. \tag{5}$$

ullet Для выпуклой функции f и случайной величины X верно,

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)].$$

Операции, сохраняющие выпуклость

• Неотрицательная взвешенная сумма

Proposition

Пусть функции $f_1,...f_m:\mathbb{R}^n o\mathbb{R}$ выпуклы, $c_1,...,c_n\in\mathbb{R}_+$ Тогда функция

$$f(x) = \sum_{i=1}^{k} c_i f_i(x)$$

является выпуклой.

Операции, сохраняющие выпуклость

• Неотрицательная взвешенная сумма

Proposition

Пусть функции $f_1,...f_m:\mathbb{R}^n o\mathbb{R}$ выпуклы, $c_1,...,c_n\in\mathbb{R}_+$ Тогда функция

$$f(x) = \sum_{i=1}^{k} c_i f_i(x)$$

является выпуклой.

• Аффинная подстановка аргумента

Proposition

Пусть $f:\mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ - выпуклая функция, $A \in \mathbb{R}^{n \times m}$, и $b \in \mathbb{R}^n$. Тогда

$$g(x) = f(Ax + b),$$

с областью определения $dom g = \{x \mid Ax + b \in domf\}$.

20 / 33

Докажем по сохранению

Example

Пусть $a,b\in\mathbb{R}^k$ и $c\in\mathbb{R}^k_+$. Функция

$$f(x) = \sum_{i=1}^{k} c_i \exp(\langle a_i, x \rangle + b_i)$$

является выпуклой.

Поточечный максимум

Пересекая выпуклые эпиграфы двух выпуклых функций $f_1(x)$ и $f_1(x)$, определенных соответсвенно на множествах X_1 и X_2 , приходим к выпуклому множеству, которое является эпиграфом функции

$$f(x) = max \{f_1(x), f_2(x)\}.$$

Данная функция определена на множестве $X = X_1 \cap X_2$.

22 / 33

H. М. Корнилов 1 октября 2024г

Поточечный максимум

Пересекая выпуклые эпиграфы двух выпуклых функций $f_1(x)$ и $f_1(x)$, определенных соответсвенно на множествах X_1 и X_2 , приходим к выпуклому множеству, которое является эпиграфом функции

$$f(x) = max \{f_1(x), f_2(x)\}.$$

Данная функция определена на множестве $X=X_1\cap X_2$. Пересекая произвольное число выпуклых множеств, мы опять получаем выпуклое множество.

Theorem

Если функция двух аргументов g(x,y) выпукла по $x\in\mathbb{R}^n$ для любого $y\in Y$, то следующая функция

$$f(x) = \sup_{y \in Y} g(x, y)$$

так же выпукла по х.

Примеры на максимум

Example

Кусочно-линейная функция

$$f(x) = \max \left\{ a_1^\top x + b_1, ..., a_m^\top x + b_m \right\},\$$

где $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, $1 \le i \le m$, выпукла на \mathbb{R}^n .

Example (Сумма r максимальных координат)

Обозначим $x_{[i]}$ i-ю максимальную координату вектора $x \in \mathbb{R}^n$, т.е.

$$x_{[1]} \geq x_{[2]} \geq ... \geq x_{[n]}$$

Тогда функция

$$f(x) = \sum_{i=1}^{r} x_{[i]},$$

то есть сумма r максимальных координат, есть выпуклая функция.

Примеры на максимум

Example (Расстояние до наиболее удаленной точки множества)

Пусть $C \subseteq \mathbb{R}^n$, $||\cdot||$ - произвольная норма. Тогда расстояние от точки x до наиболее удаленной точки множества C

$$f(x) = \sup_{y \in C} ||x - y||,$$

выпуклая функция.

Example (Наибольшее собственное число)

Пусть X — симметрическая матрица. Тогда

$$f(X) = \lambda_{\max(X)}$$

является выпуклой.

1 октября 2024г

Монотонная суперпозиция

Definition

Функция $h:\mathbb{R}^m o \mathbb{R}$ неубывающая, если

 $\forall x,y \in \mathbb{R}^m$: покоординатно $x \leq y$ верно то, что

$$h(x) \leq h(y)$$
.

Аналогично обобщаются другие варианты монотонности.

Монотонная суперпозиция

Definition

Функция $h:\mathbb{R}^m o \mathbb{R}$ неубывающая, если

 $\forall x,y \in \mathbb{R}^m$: покоординатно $x \leq y$ верно то, что

$$h(x) \leq h(y)$$
.

Аналогично обобщаются другие варианты монотонности.

Proposition

Пусть $f_i:\mathbb{R}^n \to \mathbb{R}$ — выпуклые функции для $i=\overline{1,m}$, а $h:\mathbb{R}^m \to \mathbb{R}$ - выпуклая неубывающая функция. Тогда композиция этих функции $g(x)=h((f_1(x),\ldots,f_m(x)))$ является выпуклой функцией.

◆ロト ◆個ト ◆重ト ◆重ト 重 めので

Примеры на монотонность

Example

Пусть g(x) выпукла на \mathbb{R}^n . Тогда функция

$$f(x)=e^{g(x)}$$

является выпуклой на \mathbb{R}^n .

Example

Пусть $||\cdot||$ — произвольная норма. Тогда функция

$$f(x) = ||x||^p$$

является выпуклой на \mathbb{R}^n при $p \geq 1$.

Сильная выпуклость

Definition

Пусть дана непрерывно дифференцируемая на \mathbb{R}^d функция $f:\mathbb{R}^n \to \mathbb{R}$. Будем говорить, что она является μ -сильно выпуклой $(\mu>0)$, если для любых $x,y\in\mathbb{R}^n$ выполнено

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||x - y||_2^2.$$

Definition

Будем говорить, что она является сильно выпуклой, если для любых $x,y\in\mathbb{R}^n$ и для любого $\lambda\in[0;1]$ выполнено

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) - \lambda(1-\lambda)\frac{\mu}{2}||x-y||_2^2.$$

H. М. Корнилов 1 октября 2024г 27 / 33

Критерий сильной выпуклости

Theorem

Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ дважды непрерывно дифференцируема на \mathbb{R}^n . Тогда функция f является μ -сильно выпуклой тогда и только тогда, когда для любого $x \in \mathbb{R}^n$ выполнено

$$\nabla^2 f(x) \succeq \mu I$$
.

Гладкость

Definition

Пусть дана непрерывно дифференцируемая на \mathbb{R}^n функция $f:\mathbb{R}^n o\mathbb{R}$. Будем говорить, что данная функция имеет L-Липшицев градиент (говорить, что она является L-гладкой), если для любых $x, y \in \mathbb{R}^n$ выполнено

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2.$$

Theorem

Пусть дана L - гладкая функция $f:\mathbb{R}^n \to \mathbb{R}$. Тогда для любых $x, y \in \mathbb{R}^n$ выполнено

$$|f(y)-f(x)-\langle \nabla f(x),y-x\rangle|\leq \frac{L}{2}||x-y||_2^2.$$

29 / 33

Выпуклые и гладкие функции

Дифференцируемая функция является μ - сильно выпуклой и L гладкой если

$$\frac{\mu}{2} \|x - y\|^2 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{L}{2} \|x - y\|_2^2, \quad x, y \in \mathbb{R}^n,$$

или эквивалентное утверждение

$$\mu I \preceq \nabla^2 f(x) \preceq LI, \quad x \in \mathbb{R}^n,$$

или же через спектр

$$\mu \le \lambda_i(\nabla^2 f(x)) \le L, \quad i = \overline{1, n}, \quad x \in \mathbb{R}^n.$$

Иллюстрация

Рис.: Иллюстрация понятий L-гладкости и (μ -сильной) выпуклости

(ロ) (個) (重) (重) (重) の(で

Выпуклость линии уровней

Definition

Пусть f(x) — функция, определенная на множестве X. Тогда множество

$$\mathfrak{L}_{\beta} = \{ x \in X : f(x) \le \beta \}$$

называется множеством Лебега или множеством подуровня функции f(x).

Proposition

Пусть U — вещественное векторное пространство, Q - непустое множество в U и $f:Q\to\mathbb{R}$ выпуклая функция. Тогда $\forall \beta\in\mathbb{R}$ множество подуровня \mathfrak{L}_{β} выпукло.

Верное ли обратное?

Линии уровня

