22-9-18

Japan Patent Office Public Patent Disclosure Bulletin

Public Patent Disclosure Bulletin No.: 55-154925

Public Patent Disclosure Bulletin Date: December 2, 1980

Request for Examination: Made

Number of Inventions: 1

Total Pages: 3

Int. Cl.' Identification Code Internal File

Nos.

C 07 C 19/08 7118-4H

17/38 7118-4H

Title of Invention: Method of purifying

tetrafluoromethane gas

Patent Application No.: 54-62867

Patent Application Date: May 22, 1979

Inventor: Kazuo Takeuchi

16 Ichigaya Hachiman-cho,

Shinjuku-ku, Tokyo

" Susumu Kurihara

6-1-23 Kashiwa-cho, Shiki-shi

Yoshihira Nakane

3-46-11 Denenchofu, Ota-ku, Tokyo

Applicant: Rikagaku Kenkyusho

2-1 Hirozawa, Wako-shi

Agent: (and 4

Minoru Nakamura, Patent Attorney others)

Specifications

1. Title of Invention:

Method of purifying tetrafluoromethane gas

2. Claims:

- (1) A method of purifying tetrafluoromethane gas, characterized in that a laser is shown on the tetrafluoromethane gas and the fluorine compounds are separated.
- (2) A method of purifying tetrafluoromethane gas in accordance with Claim (1), characterized in that the aforementioned fluorine compounds are CF₃Cl and/or CF₂Cl₂.
- (3) A method of purifying tetrafluoromethane gas in accordance with Claim (1), characterized in that helium or argon, etc., is added to the aforementioned tetrafluoromethane gas as a buffer gas.
- (4) A method of purifying tetrafluoromethane gas in accordance with Claim (1), characterized in that hydrogen, chlorine, etc., are added to the aforementioned tetrafluoromethane gas as acceptors.
- (5) A method of purifying tetrafluoromethane gas in accordance with Claim (1), characterized in that the fluorine compounds produced by the laser reaction are separated by adsorption or distillation.

3. Detailed Explanation of Invention:

This invention concerns a method of purifying tetrafluoromethane gas (CF_a).

In recent years, with the progress of semiconductor production techniques, integrated circuits, such as ultra-LSI, have come to be produced by the dry etching method using gas plasma.

 CF_4 is used as an etching gas in this method. In the process of producing CF_4 , CF_3CI , CF_2CI_2CO , etc., come to be contained in it as impurities. Among these, CF_3CI is contained in crude CF_4 in the proportion of several percent to more than 10%, and if it remains in the CF_4 it obstructs stable etching.

Up to now, the CF_3CI and CF_2CI_2 in the CF_4 have been removed by the distillation method. However, this method requires a low-temperature, high-pressure atmosphere, and in cases in which the CF_3CI concentration is 1% or less, a high flow rate is required, which in turn requires a large quantity of energy. For plasma etching, CF_4 with a purity of about 99.99% or higher is desirable, but the proportion of the expense of the purification of CF_4 by the distillation method in its cost becomes very high as the purity is raised.

Theoretically, it is also possible to remove CF_3CI by adsorption, but since it is similar to CF_4 in its chemical properties, no suitable adsorbants have been discovered, and there are no prospects at present for developing this method industrially.

The purpose of this invention is to purify large quantities of CF₄ to high degrees of purity in a simple manner.

This purpose can be accomplished by shining a laser on the tetrafluoromethane gas containing CF₃Cl and CF₂Cl₂, absorbing the photons in the fluorine compounds, and bringing about a chemical reaction, after which the reaction products produced are removed.

The method of purifying tetrafluoromethane gas CF₄ by means of this invention will be explained with reference to Fig. 1. In Fig. 1, 2 is a tube-type laser reactor. The laser 1 is, for example, a CO₂TEA-type pulse laser; it shines in the horizontal direction in the reactor 2. 5 is multiple reflecting mirror; its purpose is to make the use of the laser light more

effective by reflecting back the transmitted laser light.

The crude CF_4 gas which enters the reactor 2 from the opening 3 contains CF_3CI at several percent to more than 10%; it flows in the same direction as the direction the laser light shines, or in the opposite direction. If a suitable linear speed is selected for the crude CF_4 gas, the gas receives the necessary number of laser pulses during its residence time in the reactor, and it is then released from the outlet 7.

In the reactor, the CF₃Cl is transformed to C_2F_6 , etc., primarily by the reactions

Both of these products have properties considerably different from those of CF₄; therefore, they can be easily separated by mans of an ordinary separation device 6. This separation device 6 may be a distillation device, a flash separator, or an adsorption/distillation device.

If a second gas, such as H₂, He, or Ar, is added to the CF₃CI, the rate of the reaction due to the laser light is increased. These gases act as buffers or acceptors.

For example, if H_2 is added at 10 torr to 1 atm of the crude CF_4 , containing 60 torr CF_3CI , the conversion rate dA per pulse reaches as much as 10%. In order to decrease this 7.9% CF_3CI to 0.01%, a conversion rate of 99.9% (7.9/7.9-0.01) is required. From the relationship 1-erp(-dAt) = 0.999, t=69; a 7.9% impurity can be reduced to 0.01% with only 69 pulses.

To produce 99.99% CF₄ from crude CF₄ containing 7.9% CF₃Cl at the rate of 20 tons per year, it is necessary to treat 0.05 g CF₃Cl, contained in 0.6 g crude CF₄, per second. The operating pressure used is 1

atmosphere, and the temperature used is a normal temperature. If the volume flow rate of the crude CF_4 is assumed to be 134 cm³/sec, and the cross sectional area of the reactor is 100 cm², the linear speed will be 1.34 cm/sec. In this case, the rate of repetition of the laser is, for example, 2 Hz, and the tube length used is 45 cm.

In this way, this invention makes it easy to obtain a highly pure CF₄ by using a reactor and a small-scale laser.

4. Simple Explanation of Drawings:

Fig. 1 shows an explanatory drawing of the method of purifying tetrafluoromethane gas of this invention. In the drawing, 1: laser, 2: tube-type reactor, 3: gas inlet; 4: optical window; 5: mirror; 6: separation device; 7: gas outlet.

(9) 日本国特許庁 (JP)

① 特許出願公開

⑩公開特許公報(A)

昭55-154925

⑤ Int. Cl.³C 07 C 19/08 17/38 識別記号・

庁内整理番号 7118-4H 7118-4H ❸公開 昭和55年(1980)12月2日

発明の数 1 審査請求 有

(全 3 頁)

9四フツ化メタンガスの精製方法

②特 願 昭54-62867

②出 願 昭54(1979) 5 月22日

@発 明 者 武内一夫

東京都新宿区市谷八幡町16

加発 明 者 栗原修

志木市柏町 6-1-23

⑫発 明 者 中根良平

東京都大田区田園調布3丁目46

の11

⑪出 願 人 理化学研究所

和光市広沢2番1号

個代 理 人 弁理士 中村稔

外4名

明細額

- 7) 四フッ化メタンガスにレーザを照射してフッ 業化合物を分離することを特徴とする四フッ化 メタンガスの精製方法。
- 2) 前記のフッ衆化合物が CF₃ Cl 及び又は CF₂ Cl₂ であることを特徴とする特許請求の範囲 オ / 項 に配数の方法。
- 3) パッフアガスとしてへりウム又はアルゴン等を前記の四フッ化メタンガスに加えることを特徴とする特許翻求の短囲オノ項に記載の方法。
- ギ) アクセプターとして水索、酸杂等を前配の四フッ化メタンガスに加えることを特徴とする特許弱水の無力/項に配敵の方法。
- 5) レーザー反応によつて生成したフッソ化合物 を吸着又は蒸留によつて分離することを特徴と する特許額求の類囲为/項に配徴の方法。

3. 発明の詳細な説明

本発明は四フッ化メタンガス (CF4)の精製方法に関するものである。

近年、半導体製造技術の向上にともない、ガスプラズマを使用したドライエッチング法による超 LSI等の集積値路の製造が行われるようになつ た。

このエッチングガスとしては CF₄ が使用される。 CF₄ には製造工程上不純物として CF₃Cl, CF₂Cl₂CO 等が含まれている。なかでも CF₃Cl は粗製の CF₄ に数る~十数の含まれておりこのままでは安定したエッチングに懸害となる。

従来この CF4 中に含まれる CF3Cl, CF2Cl2 は蒸留 法によつて除去されていた。しかし蒸留法は低温。 高圧努囲気を娶し、かつ CF3Cl が / 多以下の所では高い湿流比を必要とするため多大のエネルギーが必要である。 プラズマエッチング用の CF4 の純 度は 99.99 の程度以上がのぞましいが蒸留法では 純度を高める程 CF4 の価格に占める精製費は著しく大きくなる。

又吸着による CF₃Cl の除去も理論的には可能であるが化学的性質が CF₄ と類似しているため適当な吸管剤は発見されてからず、現在のところ工築化される見込はない。

本発明の目的は大量の CF4 を簡単に高純度精製することである。

との目的は本発明に従つてフッソ化合物 CF₃Cl, CF₂Cl₂ を含む四フッ化メタンガスにレーザーを照射してフッ素化合物に光子を吸収させて化学反応を起しさせそれにより生じた反応生成物を除去する事により達成される。

オ/図を参照して本発明による四フッ化メタンガス CF4 の稍製方法を説明する。オ/図で2は管型レーザー反応器である。レーザー1は例えば CO2TEA 型パルスレーザーで、反応器2の軸方向にレーザーを照射する。5は多度反射鏡で透過レーザー光を更に折り返してレーザー光を有効に使用するためのものである。

入口 3 から反応器 2 に入る粗製の CF4 ガスは CF3 Cl を数 5 ~ / O 数 5 含んで かり、レーザーの

3

にも避する。この 7.9 まの CF_3Cl を 0.0/ 多迄波少するためには 99.9 ま $\left(\frac{7.9}{7.9}-0.01\right)$ の 医 化 率 を 習 する。 /- $erp(-d_At)=0.999$ よ bt=69 と Δb 、 わ す か 6 9 ペルス で 7.9 まの 不 純 物 を 0.01 まで 下 げる 事 が で きる。

7.9 多の CF₃Cl を含む粗製 CF₄ から 99.99 多の CF₄ を年間 20 ton 生産するとすれば、一秒間に 0.6 g の粗製 CF₄ 中に含まれる CF₃Cl を毎秒 0.05 g 処理する必要がある。操作圧力を / 気圧、温度を常温とする。相製 CF₄ 体 税流 量を /34 cm³ / 8ec とすれば反応器の断面積を /00 cm² として 額速度 /.34 cm / 8ec と と る。この場合 レーザーの 繰返し速度は 例えば 2 Hz にとり、 管長は 4 5 cm のものを 使用する。

この様に本発明によれば、反応器と小規模なレーザーを使用して髙細度の CF4 を容易に得る事ができる。

4 凶面の簡単な説明

オ/図は本発明による四フッ化メタンガスの精製方法の説明図である。(図中1:レーザー、

照射方向と同方向又は反対方向に流す。 粗製 CF₄ ガスの線速度を適当に選べば、反応器中の滞留時 間中に必要なレーザーパルス数をガスが受けて、

その後出口 7 から出て行く様にする。

反応器中では主として、

$$2CF_3C\ell \xrightarrow{\text{nhv}} 2CF_3 \cdot + 2C\ell \cdot \\ 2CF_3 \cdot \longrightarrow C_2F_6$$

の反応によって CF₈Cl は C₂F₆の 物質に変換される。 この他 CF₄, Cl₂ 等が生成する。

このいずれの生成物を CF4 とは物性値がはるかに 異るので、通常の分離装置 6 により容易に分離できる。分離装置 6 は蒸留装置でもフラッシュ分離又は吸着蒸留でもよい。

H₂ や He. Ar 等の氷二のガスを CF₃Cl に加えるとレーザー光による反応速度が増大する。これらのガスはパツファとしてもしくはアクセプターガスとして働く。

例えば 60torr の CF₃Clを含む / atm の相 CF₄ に H₂を /Otorr 添加すれば、 / パルス当りの転化率 dA は /O5

4

)

