Programme de colle : semaine 13

I	Suites	numériques	1
	I.1	Questions de cours	1
		Enoncer et démontrer la caractérisation séquentielle de la borne supérieure	1
		Enoncer et démontrer le théorème de la limite monotone	1
		Démontrer que deux suites adjacentes convergent vers la même limite	2
	I.2	Exercices types	2
II	Limites et continuité		3
	II.1	Questions de cours	3
		Enoncer et démontrer le théorème de caractérisation séquentielle de la limite d'une fonction	3
		Enoncer et démontrer le théorème de Heine	3
		Démontrer que l'image continue d'un compact est compact. Démontrer qu'une fonction continue sur un intervalle est injective si et seulement si elle est strictement	
		monotone	4
	II.2	Exercices types	5

I Suites numériques

I.1 Questions de cours

Enoncer et démontrer la caractérisation séquentielle de la borne supérieure

Théorème 14.41

Soit A une partie non vide de \mathbb{R} et soit $M \in \mathbb{R}$. Alors M est la borne supérieure (resp. inférieure) de A si et seulement si M majore (resp. minore) A et s'il existe une suite d'éléments de A qui converge vers M.

 \Rightarrow

On suppose que $M = \sup A$. Donc M majore A. On rappelle que :

$$\forall \epsilon > 0, \exists a \in A, M - \epsilon < a$$

Donc:

$$\forall n \in \mathbb{N}, \exists a \in A, M - \frac{1}{n+1} < a_n \leq M \ (M \text{ est un majorant})$$

D'après la suite $(a_n) \in A^{\mathbb{N}}$ étant ainsi définie, d'après le théorème d'encadrement :

$$a_n \xrightarrow[n \to +\infty]{} M$$

$$a_n \underset{n \to +\infty}{\longrightarrow} M$$
 (majorant de A)

Soit $\epsilon > 0$. On choisit $a_n \in A$ tel que :

$$a_n \in]M - \epsilon, M + \epsilon[$$

Donc $M - \epsilon$ ne majore pas A.

Donc:

$$M = \sup A$$

Enoncer et démontrer le théorème de la limite monotone

Théorème 14 50

Si u est une suite croissante et majorée (resp. décroissante et minorée), alors u converge vers $\sup_{n\in\mathbb{N}}(u_n)$ (resp. vers $\inf_{n\in\mathbb{N}}(u_n)$).

Si u est une suite croissante et non majorée (resp. décroissante et non minorée) alors u tend vers $+\infty$ (resp. vers $-\infty$).

— On suppose u croissante et majorée.

L'ensemble $A = \{u_n | n \in \mathbb{N}\}$ est non vide et majoré. Cet ensemble possède une borne supérieure notée l (propriété fondamentale de \mathbb{R}).

Soit $\epsilon >$. Comme $l - \epsilon < u_n$ ne majore pas A, on choisit $N \in \mathbb{N}$ tel que $l - \epsilon < u_n$.

Or (u_n) est croissante donc :

$$\forall n \ge N, l - \epsilon < u_N \le u_n \le l$$

Donc:

$$\forall n \ge N, u_n \in]l - \epsilon, l + \epsilon[$$

Soit:

$$u_n \underset{n \to +\infty}{\longrightarrow} l$$

— On suppose u croissante et non majorée.

Soit $A \in \mathbb{R}_+$. Soit $N \in \mathbb{N}$ tel que :

$$u_N > A$$
 (u non majorée)

Donc:

$$\forall n \geq N, A \leq u_N \leq u_n \ (u \text{ croissante})$$

Soit:

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

Démontrer que deux suites adjacentes convergent vers la même limite

Théorème 14.55

Deux suites adjacentes convergent vers une limite commune.

Soit u et v deux suites adjacentes avec u croissante et v décroissante.

Soit w = v - u. Par opération, w est décroissante.

Par hypothèse:

$$w_n \xrightarrow[n \to +\infty]{} 0$$

Donc $w \leq 0$, soit $u \leq v$.

La suite u est donc majorée par v_0 , et croissante donc convergente d'après le théorème de la limite monotone. Pour les mêmes raisons, v converge.

Or, par théorème d'opérations :

$$\lim_{n \to +\infty} v_n - \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (v_n - u_n) = 0$$

I.2 Exercices types

Exercice 1

Déterminer l'expression explicite de la suite de Fibonnaci, définie par

$$\begin{cases} \phi_0 = 0 \text{ et } \phi_1 = 1 \\ \forall n \in \mathbb{N}, \phi_{n+2} = \phi_{n+1} + \phi_n \end{cases}$$

Exercice 2

On pose pour tout $n \in \mathbb{N}$, $u_n = \sqrt{n} - |\sqrt{n}|$.

- 1. Etudier $\lim_{n \to +\infty} u_{n^2+n}$. En déduire que la suite (u_n) n'a pas de limite.
- 2. Soit $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$ avec $a \leq b$. Etudier $\lim_{n \to +\infty} u_{n^2b^2+2an}$.
- 3. Montrer que tout élément de [0,1] est la limite d'une certaine suite extraite de (u_n) .

Exercice 3

- 1. Montrer que $[3, +\infty[$ est stable par $x \mapsto \frac{2x^2-3}{x+2}$. On note alors (x_n) la suite définie par $x_0 = 5$ et pour tout $n \in \mathbb{N}, x_{n+1} = \frac{2x_n^2-3}{x_n+2}$.
- 2. (a) Etudier la monotonie de (x_n) .
 - (b) En déduire $\lim_{n \to +\infty} x_n$.

II Limites et continuité

II.1 Questions de cours

Enoncer et démontrer le théorème de caractérisation séquentielle de la limite d'une fonction

Théorème 15 34

Soit $f: X \to \mathbb{R}$ une fonction et $a \in \overline{X}$ et $\ell \in \overline{\mathbb{R}}$. Sont équivalentes :

- 1. $\lim_{a} f = \ell \Leftrightarrow \forall u_n \to a, \lim_{n \to a} f(u_n) = \ell \ (= f(\lim_{n \to a} u_n))$
- 2. Pour toute suite (u_n) de limite a à valeurs dans X, la suite $(f(u_n))$ a pour limite ℓ .

$$1 \Rightarrow 2$$

On suppose que $\lim_{n \to \infty} f = \ell$.

Soit $(u_n) \in X^{\mathbb{N}}$ avec $u_n \underset{n \to +\infty}{\longrightarrow} a$.

Soit $V \in \mathcal{V}(\ell)$. On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U \cap X) \subset V \ (\lim_{a} f = \ell)$$

Comme $u_n \xrightarrow[n \to +\infty]{} a$, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n \geq N, u_n \in U \cap X$$

Donc:

$$\forall n \geq N, f(u_n) \in V$$

Donc:

$$f(u_n) \underset{n \to +\infty}{\longrightarrow} \ell$$

Programme de colle Axel Montlahuc

$$1 \Leftarrow 2$$

Par contraposée. On suppose que f n'admet pas ℓ comme limite en a. Pour tout $n \in \mathbb{N}$, on note :

$$V_n = \begin{cases} \left[a - \frac{1}{n+1}, a + \frac{1}{n+1}\right] & \text{si } a \in \mathbb{R} \\ \left[n, +\infty\right] & \text{si } a = +\infty \\ \left[-\infty, -n\right] & \text{si } a = -\infty \end{cases}$$

Par définition, il existe $W \in \mathcal{V}(\ell)$ tel que pour tout $V \in \mathcal{V}(a)$, il existe $x \in V \cap X$ et $f(x) \neq W$. Pour tout $n \in \mathbb{N}$, on choisit $x_n \in V_n \cap X$ tel que $f(x_n) \neq W$.

Par construction:

$$(x_n) \in X^{\mathbb{N}}, x_n \xrightarrow[n \to +\infty]{} a \text{ et } f(x_n) \xrightarrow[n \to +\infty]{} \ell$$

Enoncer et démontrer le théorème de Heine

Théorème 15.65

Une fonction continue sur un segment est uniformément continue sur ce segment.

Rappel:

$$C^{0}(I): \forall x \in I, \forall \epsilon > 0, \exists \eta > 0, \forall y \in I, |x - y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$
$$Cu(I): \forall \epsilon > 0, \exists \eta > 0, \forall (x, y) \in I^{2}, |x - y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$

On raisonne par l'absurde. Soit f continue sur [a,b] mais non uniformément continue sur [a,b]. On choisit ϵ tel que :

$$\forall \eta > 0, \exists (x, y) \in [a, b]^2, |x - y| < \eta \text{ et } |f(x) - f(y)| \ge \epsilon$$

Ainsi, pour tout $b \in \mathbb{N}^*$, on choisit un couple $(x_n, y_n) \in [a, b]^2$ tel que :

$$|x_n - y_n| < \frac{1}{n} \text{ et } \underbrace{|f(x_n) - f(y_n)|}_{(*)} \ge \epsilon$$

En particulier (x_n) est bornée donc d'après le théorème de Bolzano-Weierstrass, on en extrait $(x_{\varphi(n)})$ suite convergente vers ℓ .

D'après le TCILPPL, $\ell \in [a, b]$.

Comme:

$$\forall n \in \mathbb{N}, |x_{\varphi(n)} - y_{\varphi(n)}| < \frac{1}{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} 0$$

Alors:

$$y_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} \ell$$

Par continuité:

$$f(x_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(\ell) \text{ et } f(y_{\varphi(n)}) \underset{n \to +\infty}{\longrightarrow} f(\ell)$$

Donc par opération:

$$|f(x_{\varphi(n)}) - f(y_{\varphi(n)})| \underset{n \to +\infty}{\longrightarrow} 0$$

Absurde d'après (*).

Démontrer que l'image continue d'un compact est compact. Démontrer qu'une fonction continue sur un intervalle est injective si et seulement si elle est strictement monotone

Lemme 15.68

L'image continue d'un compact est compact.

Soit I un segment, donc un intervalle.

Comme f est continue sur I, f(I) est un intervalle (TVI v3).

Montrons que f(I) est compact.

Soit $(y_n) \in f(I)^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, soit $x_n \in I$ tel que :

$$y_n = f(x_n)$$

Or I est compact (15.67), on choisit :

$$x_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} \ell \in I$$

 $y_{\varphi(n)} \xrightarrow[n \to +\infty]{} f(\ell)$ car f est continue sur I.

Théorème 15.72

Soit I un intervalle et f une fonction continue sur I. Alors f est injective si et seulement si f est strictement monotone.

 \Rightarrow

Supposons f non strictement monotone.

On peut supposer qu'il existe alors :

tels que f(x) < f(y) et f(z) < f(y).

Soit:

$$\lambda = \frac{f(y) + \max(f(y), f(z))}{2} \in]f(x), f(y)[$$

$$\in]f(z), f(y)[$$

Par continuité de f sur les intervalles]x,y[et]y,z[, il existe $\alpha\in]x,y[$ et $\beta\in]y,z[$ tels que :

$$f(\alpha) = \lambda = f(\beta)$$

Donc f n'est pas injective.

II.2 Exercices types