ESTIMATING ICEBERG DRAG COEFFICIENTS USING BAYESIAN INFERENCE

Aaron Alphonsus, Javier Salazar, Chi Zhang

August 8, 2018

Dartmouth College, Cold Regions Research and Engineering Laboratory (CRREL)

Motivation

Source: Soderman/NLSI Staff

Bayesian Inference Framework

Goal: Infer coefficients $\vec{\theta}$ given data \vec{x}

$$\frac{d\vec{x}}{dt} = \vec{u}$$

$$m\frac{d\vec{u}}{dt} = \vec{F}(\theta)$$

Prior: Reasonable assumptions based on past experience

and knowledge.

Likelihood: A function describing the compatibility of the

observed data with the model.

Posterior: Result of updating the prior given the new data.

Forward Model

$$\vec{F}(\theta) = m\vec{a}$$

$$\vec{F}(\theta) = m \frac{d\vec{u}}{dt}$$

$$\vec{u} = \frac{d\vec{x}}{dt}$$

Damped Harmonic Oscillator:

$$\vec{F}(\theta) = -\theta_1 \vec{F}_{spring} - \theta_2 \vec{F}_{damping}$$

Iceberg Model:

$$\vec{F}(\theta) = \theta_1 \vec{F}_{water} + \theta_2 \vec{F}_{air} + \vec{F}_{coriolis}$$

Prior & Likelihood

Prior: A distribution allowing only non-negative values for

 θ_1 and θ_2 .

Likelihood: A function showing model-data mismatch for each

given θ .

$$\pi(\mathbf{d}|\boldsymbol{\theta}) \propto exp(\mathcal{L}(\|\mathbf{d} - G(\boldsymbol{\theta})\|^2))$$

1

Bayes' Rule

Posterior
$$\propto$$
 Prior \cdot Likelihood $\pi(\theta|d) \propto \pi(\theta)\pi(d|\theta)$

Goal: Generate samples from the posterior distribution

Method: Markov chain Monte Carlo (MCMC) sampling

Markov chain Monte Carlo (MCMC)

Metropolis (1953) & Hastings (1970)

 θ^{t+1} only depends on θ^t

3 step algorithm (for $t = 1 \rightarrow \infty$):

1. Propose new point:

$$\hat{\boldsymbol{\theta}} \sim q(\cdot|\boldsymbol{\theta}^t)$$

2. Compute acceptance rate α :

$$0 \le \alpha(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}) \le 1$$

3. Accept / Reject:

$$\theta^{t+1} = \begin{cases} \hat{\theta} & \text{with probability } \alpha \\ \theta^t & \text{otherwise} \end{cases}$$

MCMC - Visualization

Source: The University of British Colombia, Ricky Chen

Harmonic Oscillator

Recall the forward model:

$$\frac{d\vec{x}}{dt} = \vec{u}$$

$$\vec{F}(\theta) = -\theta_1 \vec{F}_{spring} - \theta_2 \vec{F}_{damping}$$

Data with Additive Noise

Sampled Posterior Distribution

Posterior Predictive Distribution

Real Iceberg Model

Recall the forward model:

$$\frac{d\vec{x}}{dt} = \vec{u}$$

$$m\frac{d\vec{u}}{dt} = \theta_1 \vec{F}_{water} + \theta_2 \vec{F}_{air} + \vec{F}_{coriolis}$$

$$\begin{split} \vec{F}_{air}(x,y,t) &= |\vec{v}_{air} - \vec{v}_{ice}|(\vec{v}_{air} - \vec{v}_{ice}) \\ \vec{F}_{water}(x,y,t) &= |\vec{v}_{water} - \vec{v}_{ice}|(\vec{v}_{water} - \vec{v}_{ice}) \end{split}$$

Source: Mountain(1980)

Sample Forward Model Run

Approximate Prior v/s Posterior Predictive

Simplified Iceberg Model

Data with Additive Noise

Sampled Posterior Distribution

Posterior Predictive Distribution

Conclusion

Damping Ratios of Oscillatory Systems

Source: Stuart Aitken, University of Leeds

Posterior Predictive Distribution

