Métodos Potenciais

Carga horária

Número de aulas: na = 24

Hora/Aula: ha = 2 horas

Créditos: $3\left(\cong \frac{(na \times ha)}{15} = 3,2\right)$

Ementa

Introdução

- Elementos de Teoria do Potencial
- Harmônicos Esféricos

Gravimetria

- Campo de gravidade
- Terra Verdadeira
 - o Potencial Gravitacional
 - o Potencial Centrífugo
 - o Geopes
 - o Superfície Geoidal e Geoide
 - Vertical
 - Gravidade
- Terra Normal
 - o Esferopotencial Gravitacional
 - o Esferopotencial Centrífugo
 - o Esferopes
 - o Superfície Elipsoidal e Elipsoide
 - o Normal
 - Gravidade Normal
- Potencial Anômalo (Perturbador)
- Distúrbio da Gravidade
- Anomalia da Gravidade
 - Reduções gravimétricas
 - Correção Ar-livre
 - Correção Bouguer
 - Correção Isostática
 - Correção de Eötvös
 - Marés Terrestres
 - o Redes Gravimétricas
 - Separação Regional-Residual
- Gradiometria Gravimétrica

Magnetometria

- Campo Geomagnético
- Terra Verdadeira
 - o Campo Principal (Núcleo)
 - o Campo da Litosfera
 - o Campo Externo
- Modelos Globais
 - o IGRF
 - o Comprehensive Model
- Anomalias Magnéticas
 - o Remoção do Campo Externo
 - o Separação Regional-Residual

Interpretação

- Separação Regional-Residual
 - o Ajuste Polinomial Simples
 - o Polinômio Robusto
- Modelagem Direta
 - o Diques
 - o Falhas
 - Contatos
 - o Esferas
 - o Prismas
 - Bacias Sedimentares
 - Corpos Complexos
- Transformações no domínio do número de onda
- Camada Equivalente
- Deconvolução de Euler
- Sinal Analítico
- Redução ao Pólo
- Determinação da direção de magnetização
- Massa Total Anômala
- Tensor Gradiente Gravitacional
 - Invariantes
 - o Autovalores e autovetores
 - o Estimativa do centro de massa
- Relação de Poisson
- Inversão

<u>Avaliação</u>

A avaliação será feita por meio de 2 (dois) trabalhos, que deverão ser entregues até o final do curso. Cada trabalho conterá 10 (questões), todas sobre os tópicos listados na ementa acima.

Pré-requisitos

Não há.

<u>Recomendações</u>

Recomenda-se que os interessados em cursar esta disciplina tenham noções de:

- Cálculo diferencial e integral
- Álgebra linear
- Programação

Em princípio, não é necessário dominar todos os itens listados acima para cursar a disciplina, uma vez que estes serão apresentados ao longo das aulas. Os códigos computacionais utilizados ao longo do curso serão disponibilizados. Na medida do possível, os códigos serão feitos em linguagem Python, na forma de Python notebooks, que serão disponibilizados em um repositório no GitHub.

Referências

Blakely, R. J., 1996, Potential theory in gravity and magnetic applications. Cambridge University Press.

Hofmann-Wellenhof, B. e H. Moritz, 2005, Physical Geodesy. Springer.

Langel, R. A. e W. J. Hinze, 1998, The magnetic field of the Earth's lithosphere: the satellite perspective. Cambridge University Press.

Nabighian, M. N., V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J. W. Peirce, J. D. Phillips e M. E. Ruder, 2005, 75th Anniversary - Historical development of the magnetic method in exploration. Geophysics, 70(6), p. 33ND–61ND. DOI: 10.1190/1.2133784.

Nabighian, M. N., M. E. Ander, V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, W. C. Pearson, J. W. Peirce, J. D. Phillips e M. E. Ruder, 2005, 75th Anniversary - Historical development of the gravity method in exploration. Geophysics, 70(6), p. 63ND–89ND. DOI: 10.1190/1.2133785.

Periódicos da area.