Théorème de Rolle

EXERCICE 1.

Soit P un polynome réel non-constant dont les racines sont réelles et simples.

- 1. Montrer que les racines de P' sont aussi réelles et simples.
- 2. En déduire que pour tout $\alpha > 0$ les racines de $P^2 + \alpha$ sont simples.

Exercice 2.★

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivable admettant une limite ℓ en $+\infty$ et en $-\infty$. Prouver l'existence de $c \in \mathbb{R}$ tel que f'(c) = 0.

Exercice 3.★

Soient $n \in \mathbb{N}^*$, $a, b \in \mathbb{R}$, a < b et f une fonction de classe \mathbb{C}^{n-1} sur [a, b], n fois dérivable sur [a, b]. Soient

$$a_0 = a < a_1 < \cdots < a_n = b$$

et supposons que

$$f(a_0) = f(a_1) = \cdots = f(a_n).$$

Montrer qu'il existe alors $c \in]a, b[$ tel que $f^{(n)}(c) = 0$.

Exercice 4.

Soient f dérivable sur un intervalle I à valeurs dans \mathbb{R} , A et B deux points distincts de sa courbe représentative \mathscr{C} tels que B est sur la tangente à \mathscr{C} en A. Montrer qu'il existe un point M de \mathscr{C} , distinct de A, tel que A est sur la tangente à \mathscr{C} en M.

Théorème des accroissements finis

EXERCICE 5.

En utilisant le théorème des accroissement finis, montrer les inégalités suivantes :

- 1. $\forall x \in \mathbb{R}, |\sin(x)| \leq |x|$;
- 2. $\forall x \ge 0, \ 0 \le \ln(1+x) \le x$.

Exercice 6.★

Etudier la limite en $+\infty$ de l'expression

$$(x+1)e^{\frac{1}{x+1}}-xe^{\frac{1}{x}}.$$

Exercice 7.★★

Soient $(a, b) \in \mathbb{R}^2$, a < b, f et g deux fonctions de [a, b] dans \mathbb{R} continues sur [a, b] et dérivables sur [a, b].

1. Montrer qu'il existe $c \in [a, b]$ tel que

$$g'(c)(f(b)-f(a)) = f'(c)(g(b)-g(a)).$$

2. Soient I un intervalle de \mathbb{R} , $x_0 \in I$, f et g deux fonctions définies et continues sur I, dérivables sur $I \setminus \{x_0\}$ telles que $\forall x \in I \setminus \{x_0\}$, $g'(x) \neq 0$ et telles que le rapport

$$\frac{f'(x)}{g'(x)}$$

tende vers $\ell \in \mathbb{R} \cup \{\pm \infty\}$ lorsque x tend vers x_0 . Montrer que le rapport

$$\frac{f(x)-f(x_0)}{g(x)-g(x_0)}$$

est défini pour tout $x \neq x_0$ et qu'il tend vers ℓ lorsque x tend vers x_0 . Le résultat démontré s'appelle la *règle de l'Hospital*.

3. Retrouver, en utilisant la règle de l'Hospital, les développements limités suivants au point 0,

$$\sin(x) = x + o(x), \quad \cos(x) = 1 - \frac{1}{2}x^2 + o(x^2),$$

 $\sin(x) = x - \frac{1}{6}x^3 + o(x^3).$

Exercice 8.★

Démontrer que :

- 1. $\forall \ 0 < x < 1$, $\arcsin(x) < \frac{x}{\sqrt{1 x^2}}$;
- 2. $\forall x > 0$, $\arctan(x) > \frac{x}{1 + x^2}$.

Exercice 9.★★

Soit f, une application dérivable de [a, b] dans \mathbb{R} . On ne suppose pas que la dérivée f' est Soit f, une application de \mathbb{R}_+ dans \mathbb{R}_+ , telle que f(0) = 0 et vérifiant continue sur [a, b].

1. On considère les fonctions définies par

$$\phi(x) = \begin{cases} f'(a) & \text{si } x = a, \\ \frac{f(x) - f(a)}{x - a} & \text{si } a < x \le b. \end{cases}$$

et

$$\psi(x) = \begin{cases} f'(b) & \text{si } x = b, \\ \frac{f(b) - f(x)}{b - x} & \text{si } a \le x < b. \end{cases}$$

Démontrer que ϕ et ψ sont continues sur [a, b].

2. Démontrer que l'application dérivée f' vérifie le théorème des valeurs intermédiaires : si f'(a) < 0 et f'(b) > 0, alors il existe a < c < b tel que f'(c) = 0.

Variations

EXERCICE 10.

Soient p et q, deux nombres réels et n, un entier strictement positif. Démontrer que le polynôme $X^n + pX + q$ ne peut avoir plus de trois racines réelles distinctes.

Exercice 11.★★

Soit f une fonction de $\mathbb R$ dans $\mathbb R$ dérivable telle que $f^2 + (1 + f')^2 \le 1$. Montrer que f est **Dérivées successives** nulle.

EXERCICE 12.

Soit f une application dérivable de [a, b] dans \mathbb{R} . On ne suppose pas que la dérivée f' est continue. On va cependant montrer que f' vérifie le théorème des valeurs intermédiaires. Soit y un réel strictement compris entre f'(a) et f'(b). On souhaite donc montrer que f'prend la valeur y sur l'intervalle]a, b[. Pour simplifier, on supposera dans un premier temps f'(a) < f'(b).

- 1. On pose g(x) = f(x) xy pour $x \in [a, b]$. Justifier que g admet un minimum sur [a, b].
- 2. Montrer que ce minimum ne peut être atteint ni en a ni en b.
- 3. Conclure.
- **4.** Traiter le cas où f'(a) > f'(b).

EXERCICE 13.

$$\forall x \ge 0, \quad f'(x) \le f(x).$$

En étudiant les variations de la fonction $g: x \mapsto e^{-x} f(x)$, démontrer que la fonction f est identiquement nulle.

Equations fonctionnelles

Exercice 14.

Déterminer les fonctions $f: \mathbb{R}^*_{\perp} \to \mathbb{R}$ dérivables vérifiant

$$\forall x, y \in \mathbb{R}_+^*, f(xy) = f(x) + f(y)$$

Exercice 15.

Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 telles que

$$\forall (x, y) \in \mathbb{R}^2, f(x+y) = e^x f(y) + e^y f(x)$$

Exercice 16.★★

Déterminer les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivables telles que

$$\forall x \in \mathbb{R}, \ f(2x) = 2f(x).$$

Exercice 17.★

On pose pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$,

$$f_n(x) = x^{n-1}e^{1/x}$$

On pose $g_n = f_n^{(n)}$ pour tout $n \in \mathbb{N}^*$.

1. Soit $n \in \mathbb{N}^*$. Justifier l'existence de g_n et prouver que,

$$\forall x \in \mathbb{R}_{+}^{*}, g_{n+1}(x) = x g'_{n}(x) + (n+1)g_{n}(x)$$

2. Montrer que pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$,

$$g_n(x) = \frac{(-1)^n}{x^{n+1}} e^{1/x}$$

EXERCICE 18.

Calculer la dérivée n-ième de la fonction de \mathbb{R} dans \mathbb{R} définie par $\forall x \in \mathbb{R}$, $f(x) = (x^2 + 1)e^x$.

Exercice 19.★★

Soient $(a, b) \in \mathbb{R}^2$ et P_n la fonction polynôme définie sur \mathbb{R} par

$$x \longmapsto P_n(x) = (x-a)^n (x-b)^n$$
.

- **1.** Calculer à l'aide de la formule de Leibniz $P_n^{(n)}(x)$ pour tout x dans \mathbb{R} .
- **2.** Calculer d'une autre manière $P_n^{(n)}(x)$ pour tout $x \in \mathbb{R}$ lorsque a = b.
- 3. En déduire la formule de Vandermonde

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

EXERCICE 20.

Soit f la fonction à valeurs réelles définie sur I =]-1,1[par

$$f: x \in I \longrightarrow \frac{1}{\sqrt{1-x^2}}$$
.

1. Montrer que f est de classe \mathscr{C}^{∞} sur I et que , pout tout $n\in\mathbb{N}$, sa dérivée n-ème s'écrit

$$f^{(n)}(x) = \frac{P_n(x)}{(1-x^2)^{n+\frac{1}{2}}},$$

où P_n est un polynôme réel.

- 2. Montrer que le monôme de plus haut degré de P_n est $n!x^n$.
- **3.** Prouver que $\forall x \in I$:

$$(1-x^2)f'(x)-xf(x)=0.$$

4. Prouver , en utilisant la formule de Leibniz , que pour tout $n \ge 1$ et $\forall x \in I$,

$$P_{n+1}(x) = (2n+1)xP_n(x) + n^2(1-x^2)P_{n-1}(x).$$

- **5.** En déduire la valeur de $P_n(0)$ pour tout $n \in \mathbb{N}$ (On distinguera les cas n pair et n impair et on exprimera le résultat sous la forme d'un quotient de factorielles).
- **6.** Prouver que pour tout $n \ge 1$ et tout $x \in I$,

$$P'_n(x) = n^2 P_{n-1}(x).$$

7. En déduire une technique de calcul des polynômes P_n . A titre d'exemple , expliciter $f^{(5)}(x)$ pour tout x réel.

Exercice 21.

Soit $f: x \mapsto \arctan(x)$.

- **1.** Démontrer que pour tout $n \in \mathbb{N}^*$, il existe un unique polynôme P_{n-1} tel que $\forall x \in \mathbb{R}$, $f^{(n)}(x) = \frac{P_{n-1}(x)}{(1+x^2)^n}$.
- 2. Préciser le degré, la parité et le coefficient dominant de \mathbf{P}_n
- 3. Déterminer les limites de $f^{(n)}$ en $-\infty$ et $+\infty$ pour $n \ge 1$.
- 4. Montrer que pour tout $n \in \mathbb{N}$, toutes les racines de P_n sont réelles et simples. Raisonner par récurrence en utilisant le théorème de Rolle.

EXERCICE 22.

Soit $n \in \mathbb{N}$. On considère l'équation différentielle d'inconnue γ suivante :

(E):
$$y' - (nx - 1)y = 0$$

- **1.** Résoudre (E) et déterminer la solution f_n telle que $f_n(0) = 1$.
- **2.** Trouver l'extremum de cette fonction. On note (u_n, v_n) les coordonnées du point correspondant sur le graphe de f_n .
- 3. Déterminer les limites u et v des suites (u_n) et (v_n) et donner un équivalent de $v_n v$.
- 4. En utilisant la formule de Leibniz, montrer que $f_n^{(2n+1)} \left(\frac{1}{n}\right) = 0$.

EXERCICE 23.

Soit f la fonction définie sur $\mathbb R$ par

$$\forall t \in \mathbb{R}, f(t) = \begin{cases} e^{-\frac{1}{t}} & \text{si } t > 0 \\ 0 & \text{si } t \le 0 \end{cases}$$

1. Montrer que pour tout $n \in \mathbb{N}$, il existe $P_n \in \mathbb{R}[X]$ tel que

$$\forall t \in \mathbb{R}_{+}^{*}, f^{(n)}(t) = \frac{P_n(t)e^{-\frac{1}{t}}}{t^{2n}}$$

2. Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R} .

Exercice 24.

- **1.** Soient p et q deux fonctions continues sur \mathbb{R} telles que $p \le q$ sur \mathbb{R} . Soient u et v deux fonctions de classe \mathscr{C}^2 telles que u'' + pu = 0 et v'' + qv = 0. On suppose que u s'annule en des réels a et b avec a < b mais qu'elle ne s'annule pas sur a.
 - **a.** On pose W = u'v uv'. Déterminer W'.
 - **b.** En déduire que v s'annule sur [a, b].
- **2.** Application. Soient r une fonction continue sur \mathbb{R} , f de classe \mathscr{C}^2 sur \mathbb{R} telle que f'' + rf = 0 et $M \in \mathbb{R}_+^*$.
 - a. On suppose $r \ge \mathrm{M}^2$. Montrer que tout intervalle fermé de longueur $\frac{\pi}{\mathrm{M}}$ contient au moins un zéro de f.
 - **b.** On suppose $r \leq \mathrm{M}^2$. On suppose que f s'annule en des réels a et b tels que a < b mais qu'elle ne s'annule pas sur]a, b[. Montrer que $b a \geqslant \frac{\pi}{\mathrm{M}}$.

Formules de Taylor

Exercice 25.★★

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ de classe \mathscr{C}^{∞} tel que f(0) = 1 et $\forall x \ge \frac{1}{2}$, f(x) = 0.

- **1.** Montrer que $\forall n \in \mathbb{N}$, $\sup_{\mathbb{R}_+} |f^{(n)}| \ge 2^n n!$.
- **2.** Montrer que pour $n \ge 1$, $\sup_{\mathbb{R}_+} |f^{(n)}| > 2^n n!$.

Exercice 26.★★

Soit $f:\mathbb{R}\to\mathbb{R}$ de classe \mathscr{C}^{∞} telle que $\forall n\in\mathbb{N}, f^{(n)}(0)=0$. On suppose de plus que :

$$\exists \lambda > 0, \forall n \in \mathbb{N}, \sup_{\mathbb{R}} |f^{(n)}| \leq \lambda^n n!$$

Montrer que f est nulle sur $\left] -\frac{1}{\lambda}; \frac{1}{\lambda} \right[$ puis sur \mathbb{R} .

EXERCICE 27.

Soit f une fonction de classe C^n sur [a,b] et n+1 fois dérivable sur]a,b[. Montrer qu'il existe $c \in]a,b[$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}$$

On appliquera le théorème de Rolle à la fonction φ définie par

$$\varphi(x) = f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b-x)^{k} + A \frac{(b-x)^{n+1}}{(n+1)!}$$

avec une constante A bien choisie.

Remarque. La formule établie plus haut s'appelle formule de Taylor-Lagrange. ■

EXERCICE 28.

On pose $u_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$ pour $n \ge 1$.

- **1.** Soit $f: x \mapsto \ln(1+x)$. Déterminer par récurrence une expression de $f^{(n)}$ pour tout $n \in \mathbb{N}^*$.
- 2. En appliquant l'inégalité de Taylor-Lagrange entre 0 et 1, montrer que $|u_n \ln(2)| \le \frac{1}{n+1}$ pour tout $n \in \mathbb{N}^*$.
- 3. En déduire la convergence et la limite de (u_n) .

Exercice 29.

Soit f une fonction de classe \mathscr{C}^2 sur \mathbb{R} . On suppose que f, f' et f'' sont bornées sur \mathbb{R} et on pose

$$\mathbf{M}_0 = \sup_{t \in \mathbb{R}} |f(t)| \qquad \qquad \mathbf{M}_1 = \sup_{t \in \mathbb{R}} |f'(t)| \qquad \qquad \mathbf{M}_2 = \sup_{t \in \mathbb{R}} |f''(t)|$$

On souhaite montrer que $M_1 \le 2\sqrt{M_0M_2}$.

- **1.** Démontrer l'inégalité demandée dans le cas où $M_0 = 0$ ou $M_2 = 0$. Dans la suite de l'énoncé on supposera M_0 et M_2 strictement positifs.
- **2.** Soient $x \in \mathbb{R}$ et h > 0. Justifier que

$$|f(x+h)-f(x)-f'(x)h| \le \frac{M_2h^2}{2}$$

3. En déduire que

$$|f'(x)| \le \frac{2M_0}{h} + \frac{M_2h}{2}$$

- **4.** Soient a et b deux réels strictement positifs. On pose $g: t \in \mathbb{R}_+^* \mapsto \frac{a}{t} + bt$. Étudier les variations de g sur \mathbb{R}_+^* . En déduire que g admet un minimum sur \mathbb{R}_+^* et calculer celui-ci en fonction de a et b.
- **5.** Conclure.

EXERCICE 30.

Soient R > 0 et $f: I \to \mathbb{R}$ de classe \mathscr{C}^{∞} avec I =]-R, R[. On suppose que

$$\forall n \in \mathbb{N}, \forall x \in I, f^{(n)}(x) \ge 0$$

Pour $n \in \mathbb{N}$ et $x \in I$, on pose $S_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$ et $R_n(x) = f(x) - S_n(x)$.

- 1. Soit $r \in]0, \mathbb{R}[$ et $x \in]-r, r[$. Montrer que $|\mathbb{R}_n(x)| \leq \frac{|x|^{n+1}}{r^{n+1}} \mathbb{R}_n(r)$ pour tout $n \in \mathbb{N}$.
- **2.** En déduire que pour tout $x \in I$, $(S_n(x))_{n \in \mathbb{N}}$ converge vers f(x).

Exercice 31.

Soit f une fonction de classe \mathscr{C}^2 sur [0,1] nulle en 0. On pose $S_n = \sum_{k=0}^n f\left(\frac{k}{n^2}\right)$ pour $n \ge 1$. Etudier la limite de (S_n) . On pourra utiliser l'inégalité de Taylor-Lagrange.

EXERCICE 32.

On dit qu'une fonction $f:\mathbb{R}\longrightarrow\mathbb{R}$ admet une dérivée symétrique en $a\in\mathbb{R}$ lorsque le rapport

$$\frac{f(a+h)-f(a-h)}{2h}$$

admet une limite lorsque h tend vers 0.

- **1.** Prouver que la dérivabilité en a est une condition suffisante de dérivabilité symétrique en a.
- 2. Est-ce une condition nécessaire ?

EXERCICE 33.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathscr{C}^2 . Soit $x_0 \in \mathbb{R}$. Déterminer la limite en 0 du quotient

$$\frac{f(x_0+h)+f(x_0-h)-2f(x_0)}{h^2}.$$

Exercice 34.★

Etablir que

$$\forall x \in \mathbb{R}, \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$$

EXERCICE 35.

Etablir que

$$\forall x \le 0, \quad 1 + x \le e^x \le 1 + x + \frac{x^2}{2}.$$

Familles de polynômes

Exercice 36.

On considère la fonction f définie par :

$$f(x) = \frac{1}{1+x^2}.$$

- **1.** Montrer que f est indéfiniment dérivable sur \mathbb{R} .
- **2.** Soit *n* un entier naturel. On pose

$$P_n(x) = (1+x^2)^{n+1} f^{(n)}(x)$$

où $f^{(n)}$ désigne la dérivée n-ième de f.

a. Montrer que l'on a :

$$(1+x^2)P'_n(x) = 2(n+1)xP_n(x) + P_{n+1}(x).$$

- **b.** Etablir que P_n est un polynôme dont le terme de plus haut degré est égal à $(-1)^n(n+1)!x^n$.
- 3. Soit a un réel et g une fonction continue sur l'intervalle $[a, +\infty[$, dérivable sur l'intervalle $]a, +\infty[$ et qui vérifie

$$g(a) = 0$$
 et $\lim_{x \to +\infty} g(x) = 0$.

a. On considère la fonction G définie sur l'intervalle [0,1] par :

G:
$$x \mapsto \begin{cases} g(1/x + a - 1) & \text{si} \quad x \in]0, 1] \\ 0 & \text{si} \quad x = 0 \end{cases}$$

Montrer que G est continue sur [0,1] et dérivable sur]0,1[.

- **b.** Montrer que G' s'annule en un point de]0,1[. En déduire que g' s'annule en un point de]a, $+\infty$ [.
- **4.** Soit h une fonction qui est continue sur l'intervalle $]-\infty,a]$, dérivable sur l'intervalle $]-\infty,a[$, telle que

$$h(a) = 0$$
 et telle que $\lim_{x \to -\infty} h(x) = 0$.

Montrer que la fonction h' s'annule en un point de l'intervalle $]-\infty, a[$.

5. Montrer par récurrence sur n que le polynôme \mathbf{P}_n admet n racines réelles distinctes.

EXERCICE 37.

Soit $P \in \mathbb{R}[X]$ scindé sur \mathbb{R} à racines simples.

- **1.** Montrer qu'il en est de même de P'.
- 2. Montrer que le polynôme $P^2 + 1$ n'a que des racines simples dans \mathbb{C} .

EXERCICE 38.

Pour tout $n \in \mathbb{N}$, on note $Q_n = (X^2 - 1)^n$ et $P_n = \frac{1}{2^n n!} Q_n^{(n)}$. On pourra confondre polynôme et fonction polynomiale associée.

- **1.** Calculer P_0 , P_1 , P_2 et P_3 .
- **2.** Quel est le degré de P_n ?
- 3. Montrer que P_n a la parité de n. En déduire $P_n(0)$ pour n impair et $P_n'(0)$ pour n pair.
- **4.** En utilisant la formule du binôme de Newton, calculer $P_n(0)$ pour n pair et $P'_n(0)$ pour n impair. On exprimera les résultats à l'aide de factorielles.
- 5. a. Vérifier que

$$\forall n \in \mathbb{N}, (X^2 - 1)Q'_n = 2nXQ_n$$

b. En dérivant n+1 fois cette relation, montrer que

$$\forall n \in \mathbb{N}, (X^2 - 1)P''_n + 2XP'_n = n(n+1)P_n$$

- **6. a.** Montrer que $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$ pour tout $k \in [0, n-1]$.
 - **b.** En appliquant le théorème de Rolle et à l'aide d'une récurrence, montrer que P_n admet exactement n racines réelles distinctes dans]-1,1[.

Etude de suites

Exercice 39.

Étudier la suite définie par la relation de récurrence

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{2 - u_n}$.

Exercice 40.

Étudier la suite définie par

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{4 + 3u_n}$$

EXERCICE 41.

Étudier la suite définie par

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{4} \sin\left(\frac{1}{u_n}\right) + 1.$$

Divers

EXERCICE 42.

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = x^2 \sin \frac{1}{x}$$
 si $x \neq 0$ et $f(0) = 0$.

Montrer que f est dérivable mais n'est pas de classe \mathscr{C}^1 sur \mathbb{R} .

Exercice 43.★

Calculer les dérivées des fonctions définies par les expressions suivantes. On précisera systématiquement sur quelle partie de \mathbb{R} ces fonctions sont dérivables.

1.
$$f(x) = \ln(\ln(x));$$

5.
$$f(x) = (\cos^2(x) + \frac{3}{2})\sin(2x)$$
;

- 2. $f(x) = \arctan(\ln(x))$;
- 3. $f(x) = \ln(\sqrt{1 2\sin^2(x)})$;

4.
$$f(x) = \frac{\cos(x) + x \sin(x)}{\sin(x) - x \cos(x)}$$
;

$$6. \ f(x) = \arctan\left(\sqrt{\frac{1-x}{1+x}}\right).$$

Exercice 44.

Soit $f:]0, +\infty[\longrightarrow \mathbb{R}$ une fonction n fois dérivable sur \mathbb{R}_+ $(n \ge 1)$.

- **1.** On suppose dans cette question que n=1 et que f admet une limite finie en $+\infty$. Prouver à l'aide d'un contre-exemple que f' peut n'admettre aucune limite en $+\infty$.
- **2.** On suppose que

$$\lim_{x\to+\infty}f'(x)=+\infty.$$

Etablir que

$$\lim_{x\to+\infty} f(x) = +\infty.$$

3. L'entier n est désormais quelconque. On suppose que f et $f^{(n)}$ admettent des limites finies en $+\infty$. Etablir que

$$\lim_{x\to+\infty}f^{(n)}(x)=0.$$