Lab 2: Hypothesis Testing

Outline

- 1. Population Proportion Test
 - 1. One population proportion case
 - 2. Two population proportion case
- 2. Hypothesis Testing with Excel
 - 1. One population mean test with Excel
 - 2. Two population means test with Excel
- 3. Hypothesis Testing with python
 - 1. One population mean test with python
 - 2. Two population means test with python
- 4. Nonparametric Testing with Python
 - 1. Sign test with python
 - 2. Mann-Whitney rank test with python
 - 3. Wilcoxon signed rank test with python

Testing Population Proportion: Motivating Example

- Over the past year, the ratio of male students to female students in a student club at SJTU was 4:1.
- A special promotion at the beginning of this term is designed to
- attract female members.
- One month later, the club president wants to know whether the
- proportion of female members had increased.

Testing Population Proportion

- Suppose the population proportion is p, and we want to test whether p is greater than p_0
- Step 1: this is an upper-tailed hypothesis testing:
 - $H_0: p \le p_0$, versus $H_a: p > p_0$
- Steps 2-5 to design test procedures.
 - Specify the significant level, test statistic and the rejection rule.
 - Collect a random sample of n members and count the sample proportion \overline{x} .

Testing Population Proportion

- For the i-th member, let $X_i = 1$ for female and $X_i = 0$ for male. Then
 - $X_i \sim \text{Bernoulli}(p)$, for i = 1, 2, ..., n
- Step 3: We construct a test statistic whose distribution is known
 - $\overline{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$, where $\sum_{i=1}^{n} X_i \sim B(n, p)$.
- Step 2 and 4: Denote the rejection region as [c, 1], and the significance level is $\sup_{p \le p_0} P(\text{Type I error}) = P(\overline{p} \ge c \mid p = p_0) = \sum_{k=nc}^n \binom{n}{k} p_0^k (1 p_0)^{n-k} = \alpha.$
- It is very complicated to solve the critical value c for given α .

Central Limit Theorem

• Recall that the Central Limit Theorem states that for i.i.d. random variables $X_1, ..., X_n$ with mean μ and variance σ^2 , we have:

$$\frac{\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$

• In our case, when $p = p_0, X_i$ ~ Bernoulli (p_0) , and

$$\frac{\overline{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1)$$

• Rule of Thumb: $np_0 \ge 5$ and $n(1-p_0) \ge 5$

Testing Population Proportion: Normal Approximation

- Based on the central limit theorem, we have an easier way to get the critical value c is via normal approximation for large n.
- Step 3: Modify the test statistic to $z = \frac{\overline{p} p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$
- Step 4: Using the Z-test for the upper-tailed hypothesis testing

Reject
$$H_0$$
: $p \le p_0$, if $\frac{\overline{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \ge z_\alpha$

Extensions to Other Hypotheses for Population Proportion

- An overview of the lower tail, upper tail and two-tailed tests is as follows.
- The test statistic is the same, but the rejection regions are not.

	Lower-tailed Test	Upper-tailed Test	Two-tailed Test
Hypotheses	$H_0: p \ge p_0$ $H_a: p < p_0$	$H_0: p \le p_0$ $H_a: p > p_0$	$H_0: p = p_0$ $H_a: p \neq p_0$
Test Statistic	$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}$	$z = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$z = \frac{\bar{\rho} - \rho_0}{\sqrt{\frac{\rho_0(1 - \rho_0)}{n}}}$
Rejection rule: Critical value approach	Reject H_0 if $z \leq -z_{\alpha}$	Reject H_0 if $z \geq z_{\alpha}$	Reject H_0 if $ z \ge -z_{\alpha/2}$
Rejection rule: p-value approach	Reject H_0 if p-value $\leq \alpha$	Reject H_0 if p-value $\leq \alpha$	Reject H_0 if p-value $\leq \alpha$

Testing for Two Proportions: Motivating Example

- A tax preparation firm want to compare the quality of work at two regional offices.
- By randomly sampling tax returns prepared at each office, the firm can estimate the proportion of erroneous returns prepared at each office.
- Step 1: The firm want to test if there is difference between these proportions.

$$H_0: p_1 = p_2$$
, versus $H_a: p_1 \neq p_2$.

- This is a two-tailed test for two (independent) population proportions.
- In general, the test could be two-tailed, upper-tailed and lower-tailed.

Testing the difference between Two Population Proportions

- Intuitively, we would reject H_0 if $|p_1 p_2|$ is sufficiently large.
- To derive a test statistic for the hypothesis tests, we need the sampling distribution of $\overline{p_1} \overline{p_2}$.
- As in the 1-sample tests, we shall use normal approximation.
- Step 3: If H_0 is true and $p_1 = p_2 = p$, then

$$\frac{\overline{p_1} - \overline{p_2}}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1)$$

where p can be estimated by the pooled estimation

$$\overline{p} = \frac{n_1 \overline{p_1} + n_2 \overline{p_2}}{n_1 + n_2}$$

Testing the difference between Two Population Proportions

• Step 1: Hypothesis

$$H_0$$
: $p_1 = p_2$, versus H_a : $p_1 \neq p_2$

- Step 2: Choose level of significance α .
- Step 3: Test Statistic

$$z = \frac{\overline{p_1} - \overline{p_2}}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

• Step 4: Rejection Rule

Reject
$$H_0$$
, if $|z| \ge z_{\frac{\alpha}{2}}$ or p-value $\le \alpha$.

Hypothesis Testing with Excel

- One Population mean z-test with Excel
 - Hyp Sigma Known.xlsx

A	A	В	C	D	E	
1	Yards		Hypothesis Test About a Population Mean:			
2	303		σ Known	Case		
3	282					
4	289		Sample Size	=COUNT(A2:A51)		
5	298		Sample Mean	=AVERAGE(A2:A51)		
6	283					
7	317		Population Standard Deviation	12		
8	297		Hypothesized Value	295		
9	308					
10	317		Standard Error	=D7/SQRT(D4)		
11	293		Test Statistic z	=(D5-D8)/D10		
12	284					
13	290		p-value (Lower Tail)	=NORM.S.DIST(D11,TRUE)		
14	304		p-value (Upper Tail)	=1-D13		
15	290		p-value (Two Tail)	=2*(MIN(D13,D14))		
	444					

Hypothesis Testing with Excel

- One Population mean t-test with Excel
- Hyp Sigma Unknown.xlsx

4	А	В	C	D	E
1	Rating		Hypothesis Tes	st About a Population	Mean
2	5		W	ith σ Unknown	
3	7				
4	8		Sample Size	=COUNT(A2:A61)	
5	7		Sample Mean	=AVERAGE(A2:A61)	
6	8		Sample Std. Deviation	=STDEV.S(A2:A61)	
7	8				
8	8		Hypothesized Value	7	
9	7				
10	8		Standard Error	=D6/SQRT(D4)	
11	10		Test Statistic t	=(D5-D8)/D10	
12	6		Degrees of Freedom	=D4-1	
13	7				
14	8		p-value (Lower Tail)	=IF(D11<0, TDIST(-D11, D12,	1),1-TDIST(D11,[
15	8		p-value (Upper Tail)	=1-D14	
16	9		p-value (Two Tail)	=2*(MIN(D14,D15))	
17	7				

Hyphothesis Testing with Excel

- We use Data analysis module in Excel
 - Installation
- Difference Between Two Population Means: σ_1 and σ_2 Known.
 - ExamScores.xlsx

Hyphothesis Testing with Excel

- Difference Between Two Population Means: σ_1 and σ_2 Unnown.
- SoftwareTest.xlsx

Hyphothesis Testing with Excel

- Difference Between Two Population Means with Matched Samples
- Matched.xlsx

Python Package Needed—— Scipy

- **>** SciPy
- ➤ Scipy is a python open source mathematical computing library, which can be used in mathematics, science and engineering fields. It is a scientific computing library based on numpy.
- ➤ Modules of Scipy:
 - ➤ Special functions (scipy.special)
 - ➤ Integration (scipy.integrate)
 - ➤ Optimization (scipy.optimize)
 - ➤ Statistics (scipy.stats)
 - **>** ...
- ➤ Import scipy
- ➤ Version newer than or equal to 1.6.0 is needed

Python Package Needed—— Statsmodels

- ➤ Introduction statsmodels
- ➤ **statsmodels** is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration.
- ➤ Modules of statsmodels:
 - ➤ Regression and Linear Models
 - ➤ Time Series Analysis
 - > Statistics and Tools
 - ➤ Data Sets

- Examples:
 - ➤ Ordinary Least Squares, Univariate Kernel Density Estimator, Copulas...
- > import statsmodels

Load the data from sklearn.datasets

```
#load the dataset
dataset = sklearn.datasets.load_wine()
#show the document of the dataset
print(dataset['DESCR'])

Python
```

- ➤ Show the info of the dataset from dataset['DESCR']:
 - ➤ Number of Instances: 178 (50 in each of three classes)
 - > Number of Attributes: 13 numeric
 - ➤ Attribute Information:
 - ➤ Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols, Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines, Proline
 - > dataset['target_names']:
 - array(['class_0', 'class_1', 'class_2'], dtype='<U7')</pre>

Form the object with **dataframe** as type:

```
# form the object with dataframe as type
data = pd.DataFrame(dataset['data'],columns = dataset['feature_names'])
data['target'] = dataset['target']
data.head()
```

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	$total_phenols$	flavanoids	$nonflava noid_phenols$	proanthocy
C	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	

• Plot the distribution of attributes of the dataset:

- ➤ We want to know whether the distribution of attributes changes with different classes.
- ➤ Plot the distplot of attribute "alcohol" with three classes respectively:

```
# shows the alcohol content grouped by 'class'
plt.figure(figsize = (12,4),dpi=200)
for i in range(3):
    plt.subplot(1,3,i+1)
    sns.distplot(data[data['target']==i]['alcohol'],kde = True)
    plt.title('class'+str(i))
plt.show()
```


One Population Mean Z-test with python

- > We use function from statsmodels:
- statsmodels.stats.weightstats.ztest(

```
x_1, value=mu, alternative='two-sided')
```

- \triangleright This function checks one population mean z-test H_0 : $\mu_1 = \mu$, H_a : $\mu_1 \neq \mu$.
- ➤ It takes two-sided test when "Alternative" = 'two sided'.
- ➤ To take lower-tailed mean z-test, make sure "Alternative" = 'larger'
- ➤ To take upper-tailed mean z-test, make sure "Alternative" = 'smaller'
- ➤ Return (z,pval)

```
print(data_1['alcohol'].mean())

< 0.3s</pre>
```

12.278732394366198

- ➤ We focus on the alcohol content of class-0 cases and check whether the expectation of alcohol content is 12 with one population mean z-test:
- $> H_0$: $\mu = 12 H_a$: $\mu \neq 12$

One Population Mean Z-test with Python

```
print(data_1['alcohol'].mean())
'''
H_0: the average alcohol content of class_1-wine is 12
H_a: the average alcohol content of class_1-wine is not equal to 12
'''
import statsmodels.stats.weightstats

z,pval = statsmodels.stats.weightstats.ztest(data_1['alcohol'],value = 12,alternative='two-sided')
print(z,pval)

p = 1.2666192509733668e-05 < .05, reject H_0</pre>
```

One Population Mean T-test with Python

- > scipy.stats.ttest_1samp(x_1, popmean, axis=0, nan_policy='propagate', alternative='two-sided)
 - ➤ X 1: data used
 - ➤ Popmean: Expected value in null hypothesis.
 - > Alternative:
 - > 'two-sided' when taking two-sided test
 - > 'less' when taking upper-tailed test.
 - > 'greater' when taking lower-tailed test.
- $> H_0$: $\mu = 12 H_a$: $\mu \neq 12$
- > scipy.stats.ttest_1samp(data_1['alcohol'],popmean=12)
- ➤ Return (t,pval).
- ➤ This function achieves two-sided one population mean t-test.

One Population Mean T-test with Python

```
import scipy.stats
t,pval = scipy.stats.ttest_1samp(data_1['alcohol'],popmean=12)
print(t,pval)

p = 4.287629382972247e-05 < .05, reject H_0</pre>
```

4.3657938005865145 4.287629382972247e-05

Two Population Means t-test with Python

- ➤ We want to check whether the expectation of alcohol content of class-0 cases is the same as that of class-1 cases:
- $> H_0: \mu_1 = \mu_2, H_a: \mu_1 \neq \mu_2.$
- We use function scipy.stats.ttest_ind(x_1,x_2 , equal_var=True, alternative='two-sided')

```
H_0: the alcohol content of class_1-wine is equal to that of class_2-wine
H_a: the alcohol content of class_1-wine differs from that of class_2-wine
import scipy.stats
t,pval = scipy.stats.ttest_ind(data_1['alcohol'],data_2['alcohol'],alternative = 'two-sided')
print(t,pval)

p < 0.05, reject H_0, it is considered that the alcohol content is different between the two
```

✓ 0.3s

Nonparametric Testing with Python

• Sign Test

- H_0 : median = 12, H_a : $median \neq 12$
- We define a function *sign_test* by definition to take the test:

0.000112268646894988

Nonparametric Testing with Python

➤ Mann-Whitney rank test

- \triangleright Again, use dataset wine recognition, H_0 : $\mu_1 = \mu_2$, H_a : $\mu_1 \neq \mu_2$.
- \triangleright scipy.stats.mannwhitneyu(x_1, x_2, alternative='two-sided')

```
scipy.stats.mannwhitneyu(data_1['alcohol'],data_2['alcohol'],alternative='two-sided')

v 0.3s
```

MannwhitneyuResult(statistic=410.0, pvalue=2.4196781051850865e-12)

➤ Wilcoxon signed rank test

> scipy.stats.Wilcoxon(x_1,x_2, correction=False, alternative='two-sided', mode='auto')