25 Lecture 25: March 29

Last time

- Data transformation
- Collinearity (JF chapter 13, RD 8.3.2)

Today

- lecture on Friday
- Collinearity (JF chapter 13, RD 8.3.2)
- Principal component analysis (JF 13.1.1, RD 8.3.4)
- Biased estimation:
 - Ridge Regression
 - Lasso Regression
- Model selection

Signs and detections of multicollinearity

Some signs for multicollinearity:

- 1. Simple correlation between a pair of predictors exceeds 0.9 or \mathbb{R}^2 .
- 2. High value of the multiple correlation coefficient with some high partial correlations between the explanatory variables.
- 3. Large F-statistics with some small t-statistics for individual regression coefficients

Some approaches for detecting multicollinearity:

- 1. Pairwise correlations among the explanatory variables
- 2. Variance inflation factor
- 3. Condition number

Variance inflation factor

For a multiple linear regression with k explanatory variables. We can regress X_j on the (k-1) other explanatory variables and denote R_j as the coefficient of determination.

Then the variance inflation factor (VIF) is defined as

$$VIF_j = \frac{1}{1 - R_j^2}$$

• $VIF_j \in [1, +\infty)$

- A suggested threshold is 10
- May use the averaged $\overline{\text{VIF}} = \sum_{j=1}^{k} \text{VIF}_j \bigg/ k$.

Condition index and condition number

We first scale the design matrix \mathbf{X} into column-equilibrated predictor matrix \mathbf{X}_E such that $\{X_E\}_{ij} = X_{ij}/\sqrt{\mathbf{X}_j^T\mathbf{X}_j}$.

Let $\mathbf{X}_E = \mathbf{U}\mathbf{D}\mathbf{V}^T$ be the singular-value decomposition (SVD) of the $n \times p$ matrix \mathbf{X}_E where $\mathbf{U}^T\mathbf{U} = \mathbf{V}^T\mathbf{V} = \mathbf{I}_p$ and $\mathbf{D} = diag(d_1, d_2, ..., d_p)$ is a diagonal matrix with $d_j \ge 0$.

The j^{th} condition index is defined as

$$\eta(\mathbf{X}_E) = d_{\text{max}}/d_j, \ j = 1, 2, ..., p$$

The condition number is defined as

$$C = d_{\text{max}}/d_{\text{min}}$$

$$C \geqslant 1, d_{\max} = \max_{1 \leqslant j \leqslant p} d_j$$
 and $d_{\min} = \min_{1 \leqslant j \leqslant p} d_j$

Some properties of the condition number

- Large condition number indicates evidence of multicollinearity
- Typical cutoff values, 10, 15 to 30.

Some problems with the condition number

- practitioners have different opinions of whether X should be centered around their means for SVD.
 - centering may remove nonessential ill conditioning, e.g. $Cor(X, X^2)$
 - centering may mask the role of the constant term in any underlying near-dependencies
- the degree of multicollinearity with dummy variables may be influenced by the choice of reference category
- condition number is affected by the scale of the X measurements
 - By scaling down any column of \mathbf{X} , the condition number can be made arbitrarily large
 - Known as artificial ill-conditioning
 - The condition number of the scaled matrix \mathbf{X}_E is also referred to as the scaled condition number

Recall that $\mathbf{X}_E = \mathbf{U}\mathbf{D}\mathbf{V}^T$ is the singular-value decomposition (SVD) of \mathbf{X}_E , where $\mathbf{U}^T\mathbf{U} = \mathbf{V}^T\mathbf{V} = \mathbf{I}_p$ and $\mathbf{D} = diag(d_1, d_2, ..., d_p)$ is a diagonal matrix with $d_j \ge 0$.

Then

$$\mathbf{X}_{E}^{T}\mathbf{X}_{E} = \mathbf{V}\mathbf{D}\mathbf{U}^{T}\mathbf{U}\mathbf{D}\mathbf{V}^{T}$$
$$= \mathbf{V}\mathbf{D}^{2}\mathbf{V}^{T}$$

is the spectral decomposition of the Gramian matrix $\mathbf{X}_E^T \mathbf{X}_E$ with $\{d_j^2\}$ being the eigenvalues and \mathbf{V} being the corresponding eigen vector matrix. This relationship links the condition numbers to the eigen values of the Gramian matrix.

Variance decomposition method

The variance-covariance matrix of the coefficient

$$Cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}_E^T \mathbf{X}_E)^{-1}$$
$$= \sigma^2 \mathbf{V} \mathbf{D}^{-2} \mathbf{V}^T$$

Its j^{th} diagonal element is the estimated variance of the j^{th} coefficient, $\hat{\beta}_{j}$. Then

$$Var(\hat{\beta}_j) = \sigma^2 \sum_{h=1}^p \frac{v_{jh}^2}{d_h^2}$$

- Let $q_{jh} = \frac{v_{jh}^2}{d_h^2}$ and $q_j = \sum_{h=1}^p q_{jh}$.
- The variance decomposition proportion is $\pi_{jh} = q_{jh}/q_j$.
- π_{jh} denotes the proportion of the variance of the j^{th} regression coefficient associated with the h^{th} component of its decomposition.
- The variance decomposition proportion matrix is $\Pi = \{\pi_{jh}\}.$

In practice, it is suggested to combine condition index and proportions of variance for multicollinearity diagnostic. Identify multicollinearity if

- $\bullet\,$ Two or more elements in the j^{th} row of matrix Π are relatively large
- \bullet And its associated condition index η_j is large too

Principal Components

The method of principal components, introduced by Karl Pearson (1901) and Harold Hotelling (1933), provides a useful representation of the correlational structure of a set of variables. Some advantages of the principal component analysis include

Condition	Proportions of variance			
Index	$Var(\hat{\beta}_1)$	$Var(\hat{\beta}_2)$	•••	$Var(\hat{\beta}_3)$
η_1	π_{11}	π_{12}		π_{1p}
η_2	π_{21}	π_{22}		π_{2p}
:	:	÷		:
η_p	π_{p1}	π_{p2}		π_{pp}

Table 1: Table of condition index and proportions of variance

- more unified
- linear transformation of the original predictors into a new set of orthogonal predictors
- the new orthogonal predictors are called principal components

Principal components regression is an approach that inspects the sample data (\mathbf{Y}, \mathbf{X}) for directions of variability and uses this information to reduce the dimensionality of the estimation problem. The procedure is based on the observation that every linear regression model can be restated in terms of a set of orthogonal predictor variables, which are constructed as linear combinations of the original variables. The new orthogonal variables are called the principal components of the original variables.

Let $\mathbf{X}^T\mathbf{X} = \mathbf{Q}\Delta\mathbf{Q}^T$ denote the spectral decomposition of $\mathbf{X}^T\mathbf{X}$, where $\Delta = diag\{\lambda_1, \dots, \lambda_p\}$ is a diagonal matrix consisting of the (real) eigenvalues of $\mathbf{X}^T\mathbf{X}$, with $\lambda_1 \geqslant \dots \geqslant \lambda_p$ and $\mathbf{Q} = (\mathbf{q_1}, \dots, \mathbf{q_p})$ denotes the matrix whose columns are the orthogonal eigenvectors of $\mathbf{X}^T\mathbf{X}$ corresponding to the ordered eigenvalues. Consider the transformation

$$\mathbf{Y} = \mathbf{X}\mathbf{Q}\mathbf{Q}^{T}\boldsymbol{\beta} + \boldsymbol{\epsilon} = \mathbf{Z}\boldsymbol{\theta} + \boldsymbol{\epsilon},$$

where $\mathbf{Z} = \mathbf{X}\mathbf{Q}$, and $\theta = \mathbf{Q}^T \beta$.

The elements of θ are known as the regression parameters of the principal components. The matrix $\mathbf{Z} = \{\mathbf{z_1}, \dots, \mathbf{z_p}\}$ is called the matrix of principal components of $\mathbf{X}^T\mathbf{X}$. $\mathbf{z}_j = \mathbf{X}\mathbf{q}_j$ is the jth principal component of $\mathbf{X}^T\mathbf{X}$ and $\mathbf{z}_j^T\mathbf{z}_j = \lambda_j$, the jth largest eigenvalue of $\mathbf{X}^T\mathbf{X}$.

Principal components regression consists of deleting one or more of the variables \mathbf{z}_j (which correspond to small values of λ_j), and using OLS estimation on the resulting reduced regression model.

Derivation under standardized predictors, JF 13.1.1

Consider the vectors of standardized predictors, $\mathbf{x}_1^*, \mathbf{x}_2^*, \dots, \mathbf{x}_p^*$ (obtained by subtracting the mean and divided by standard deviation of the original predictor vectors). Because the principal components are linear combinations of the original predictors, we write the first principal component as

$$\mathbf{w}_1 = A_{11}\mathbf{x}_1^* + A_{21}\mathbf{x}_2^* + \dots + A_{p1}\mathbf{x}_p^*$$
$$= \mathbf{X}^*\mathbf{a}_1$$

The variance of the first component becomes

$$S_{w_1}^2 = \frac{1}{n-1} \mathbf{w}_1^T \mathbf{w}_1$$
$$= \frac{1}{n-1} \mathbf{a}_1^T \mathbf{X}^{*T} \mathbf{X}^* \mathbf{a}_1$$
$$= \mathbf{a}_1^T \mathbf{R}_{XX} \mathbf{a}_1$$

where $\mathbf{R}_{XX} = \frac{1}{n-1}\mathbf{X}^{*T}\mathbf{X}^{*}$. We want to maximize $S_{w_1}^2$ under the normalizing constraint $\mathbf{a}_1^T\mathbf{a}_1 = 1$ (otherwise $S_{w_1}^2$ can be arbitrarily large by inflating \mathbf{a}_1). Consider

$$F_1 \equiv \mathbf{a}^T \mathbf{R}_{XX} \mathbf{a}_1 - L_1 (\mathbf{a}_1^T \mathbf{a}_1 - 1)$$

where L_1 is a Lagrange multiplier. By differentiating this equation with respect to \mathbf{a}_1 and L_1 ,

$$\frac{\partial F_1}{\partial \mathbf{a}_1} = 2\mathbf{R}_{XX}\mathbf{a}_1 - 2L_1\mathbf{a}_1$$
$$\frac{\partial F_1}{\partial L_1} = -(\mathbf{a}_1^T\mathbf{a}_1 - 1)$$

Setting the partial derivatives to 0 produces

$$(\mathbf{R}_{XX} - L_1 \mathbf{I}_p) \mathbf{a}_1 = \mathbf{0}$$
$$\mathbf{a}_1^T \mathbf{a}_1 = 1$$

From the first equation, we see that L_1 is an eigenvalue of \mathbf{R}_{XX} such that $\mathbf{R}_{XX}\mathbf{a}_1 = L_1\mathbf{a}_1$ such that

$$S_{w_1}^2 = \mathbf{a}_1^T \mathbf{R}_{XX} \mathbf{a}_1 = L_1 \mathbf{a}_1^T \mathbf{a}_1 = L_1$$

To maximize $S_{w_1}^2$, we only need to pick the largest eigenvalue of \mathbf{R}_{XX} .

Additional reference

- "A First Course in Linear Model Theory" by Nalini Ravishanker and Kipak K. Dey
- Lecture notes by Cedric Ginestet

Ridge Regression

Ridge regression and the Lasso regression are two forms of <u>regularized regression</u>. These methods can be used to alleviate the consequences of multicollinearity.

- 1. When variables are highly correlated, a large coefficient in one variable may be alleviated by a large coefficient in another variable, which is negatively correlated to the former.
- 2. Regularization imposes an upper threshold on the values taken by the coefficients, thereby producing a more parsimonious solution, and a set of coefficients with smaller variance.

Constrained optimization

Ridge regression is motivated by a constrained minimization problem, which can be formulated as

$$\hat{oldsymbol{eta}}^{ridge} = rg \min_{oldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n (y_i - \mathbf{x}_i^T oldsymbol{eta})^2$$

subject to
$$||\boldsymbol{\beta}||_2^2 = \sum_{j=1}^p \beta_j^2 \leqslant t$$

for $t \ge 0$.

Use a Lagrange multiplier, we can rewrite the formula as

$$\hat{\boldsymbol{\beta}}^{ridge} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \{ \sum_{i=1}^n (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^p \beta_j^2 \}$$

for $\lambda \ge 0$ and where there is a one-to-one correspondence between t and λ . λ is an arbitrary constant usually referred to as the "ridge constant".

Analytical solutions

The ridge-regression estimator has analytical solution

$$\hat{\boldsymbol{\beta}}^{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

This is obtained by differentiating the objective function with respect to β and set it to 0:

$$\frac{\partial}{\partial \boldsymbol{\beta}} \{ (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta} \}$$

$$= 2(\mathbf{X}^T \mathbf{X}) \boldsymbol{\beta} - 2\mathbf{X}^T \mathbf{Y} + 2\lambda \boldsymbol{\beta}$$

$$= 0$$

Therefore,

$$(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})\boldsymbol{\beta} = \mathbf{X}^T\mathbf{Y}$$

Since we are adding a positive constant to the diagonal of $\mathbf{X}^T\mathbf{X}$, we are, in general, producing an invertible matrix, $\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}$ even if $\mathbf{X}^T\mathbf{X}$ is singular. Historically, this particular aspect of ridge regression was the main motivation behind the adoption of this particular extension of OLS theory.

The ridge regression estimator is related to the classical OLS estimator, $\hat{\boldsymbol{\beta}}^{OLS}$, in the following manner

 $\hat{\boldsymbol{\beta}}^{ridge} = \left[\mathbf{I} + \lambda (\mathbf{X}^T \mathbf{X})^{-1}\right]^{-1} \hat{\boldsymbol{\beta}}^{OLS},$

assuming $\mathbf{X}^T\mathbf{X}$ is non-singular. This relationship can be verified by applying the definition of $\hat{\boldsymbol{\beta}}^{OLS}$,

$$\hat{\boldsymbol{\beta}}^{ridge} = \left[\mathbf{I} + \lambda (\mathbf{X}^T \mathbf{X})^{-1}\right]^{-1} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$
$$= (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

using the fact $\mathbf{B}^{-1}\mathbf{A}^{-1} = (\mathbf{A}\mathbf{B})^{-1}$.

Moreover, when **X** is composed of orthonormal variables, such that $\mathbf{X}^T\mathbf{X} = \mathbf{I}_p$, it then follows that

 $\hat{oldsymbol{eta}}^{ridge} = rac{1}{1+\lambda}\hat{oldsymbol{eta}}^{OLS}$

Bias and variance of ridge estimator

Ridge estimation produces a biased estimator of the true parameter $\boldsymbol{\beta}$. With the definition of $\hat{\boldsymbol{\beta}}^{ridge}$ and the model assumption $\mathbf{E}(\mathbf{Y}|\mathbf{X}) = \mathbf{X}\boldsymbol{\beta}$, we obtain,

$$\begin{split} \mathbf{E} \left(\hat{\boldsymbol{\beta}}^{ridge} | \mathbf{X} \right) &= (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} \\ &= (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I} - \lambda \mathbf{I}) \boldsymbol{\beta} \\ &= \boldsymbol{\beta} - \lambda (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \boldsymbol{\beta} \end{split}$$

where the bias of the ridge estimator is proportional to λ . The variance of the ridge estimator is

 $\mathbf{Var}\left(\hat{\boldsymbol{\beta}}^{ridge}|\mathbf{X}\right) = \sigma^2(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})^{-1}(\mathbf{X}^T\mathbf{X})(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})^{-1}.$

When λ increases, the inverted term $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}$ is increasingly dominated by $\lambda \mathbf{I}$. The variance of the ridge estimator, therefore, is a decreasing function of λ . This result is intuitively reasonable because the estimator itself is driven toward $\mathbf{0}$.

Variance-bias tradeoff

The mean-squared error of an estimator can be decomposed into the sum of its squared bias and sampling variance.

$$MSE(\hat{\theta}) = \mathbf{E}\left((\hat{\theta} - \theta)^2\right) = \mathbf{E}(\hat{\theta}^2) + \theta^2 - 2\theta\mathbf{E}(\hat{\theta})$$
$$Bias^2(\hat{\theta}) = \left[\mathbf{E}(\hat{\theta}) - \theta\right]^2 = \mathbf{E}^2(\hat{\theta}) + \theta^2 - 2\theta\mathbf{E}(\hat{\theta})$$
$$Var(\hat{\theta}) = \mathbf{E}(\hat{\theta}^2) - \mathbf{E}^2(\hat{\theta})$$

Therefore

$$MSE(\hat{\theta}) = Bias^2(\hat{\theta}) + Var(\hat{\theta})$$

The essential idea here is to trade a small amount of bias in the coefficient estimates for a large reduction in coefficient sampling variance. Hoerl and Kennard (1970) prove that it is always possible to choose a positive value of the ridge constant λ so that the mean-squared error of the ridge estimator is less than the mean-squared error of the least-squares estimator. These ideas are illustrated heuristically in Figure 25.1

Figure 25.1: Trade-off of bias and against variance for the ridge-regression estimator. The horizontal line gives the variance of the least-squares (OLS) estimator; because the OLS estimator is unbiased, its variance and mean-squared error are the same. The broken line shows the squared bias of the ridge estimator as an increasing function of the ridge constant d (i.e. λ in our notes). The dotted line shows the variance of the ridge estimator. The mean-squared error (MSE) of the ridge estimator, given by the heavier solid line, is the sum of its variance and squared bias. For some values of d, the MSE error of the ridge estimator is below the variance of the OLS estimator. JF Figure 13.9.

Lasso regression

We have seen that ridge regression essentially re-scales the OLS estimates. The lasso, by contrast, tries to produce a *sparse* solution, in the sense that several of the slope parameters will be set to zero.

Constrained optimization

Different from the L_2 penalty for ridge regression, the Lasso regression employs L_1 -penalty.

$$\hat{\boldsymbol{\beta}}^{lasso} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg min}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2$$

subject to
$$||\boldsymbol{\beta}||_1 = \sum_{j=1}^p |\boldsymbol{\beta}_j| \leqslant t$$

for $t \ge 0$; which can again be re-formulated using the Lagrangian for the L_1 -penalty,

$$\hat{\boldsymbol{\beta}}^{lasso} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \{ \sum_{i=1}^n (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^p |\beta_j| \}$$

where $\lambda > 0$ and, as before, there exists a one-to-one correspondence between t and λ .

Parameter estimation

Contrary to ridge regression, the Lasso does not have a closed-form solution. The L_1 -penalty makes the solution non-linear in y_i 's. The above constrained minimization is a quadratic programming problem, for which many solvers exist.

Choice of Hyperparameters

Regularization parameter

The choice of λ in both ridge and lasso regressions is more of an art than a science. This parameter can be constructed as a complexity parameter, since as λ increases, less and less effective parameters are likely to be included in both ridge and lasso regressions. Therefore, one can adopt a model selection perspective and compare different choices of λ using cross-validation or an information criterion. That is, the value of λ should be chosen adaptively, in order to minimize an estimate of the expected prediction error (as in cross-validation), for instance, which is well approximated by AIC. We will discuss model selection in more detail later.

Bayesian perspective

The penalty terms in ridge and lasso regression can also be justified, using a Bayesian framework, whereby these terms arise as are sult of the specification of a particular prior distribution on the vector of slope parameters.

1. The use of an L_2 -penalty in multiple regression is analogous to the choice of a Normal prior on the β_j 's, in Bayesian statistics.

$$y_i \stackrel{iid}{\sim} \mathcal{N}(\beta_0 + \mathbf{x}_i^T \boldsymbol{\beta}, \sigma^2), \quad i = 1, \dots, n$$

 $\beta_j \stackrel{iid}{\sim} \mathcal{N}(0, \tau^2), \quad j = 1, \dots, p$

2. Similarly, the use of an L_1 -penalty in multiple regression is analogous to the choice of a Laplace prior on the β_i 's, such that

$$\beta_j \stackrel{iid}{\sim} Laplace(0, \tau^2), \quad j = 1, \dots, p$$

In both cases, the value of the hyperparameter, τ^2 , will be inversely proportional to the choice of the particular value for λ . For ridge regression, λ is exactly equal to the shrinkage parameter of the hierarchical model, $\lambda = \sigma^2/\tau^2$.

Model selection

Model selection is conceptually simplest when our goal is prediction – that is, the development of a regression model that will predict new data as accurately as possible. However, prediction is not often the only desirable characteristic in a statistical model that model interpretation, data summary and explanations are also desired. We discuss several criteria for selecting among m competing statistical models $\mathcal{M} = \{M_1, M_2, \dots, M_m\}$ for n observations of a response variable Y and associated predictors Xs.

Adjsted- \mathbb{R}^2

The squared multiple correlation "corrected" (or "adjusted") for degrees of freedom is intuitively reasonable criterion for comparing linear-regression models with different numbers of parameters. Suppose model M_j is one of the models under consideration. If M_j has s_j regression coefficients (including the regression constant) and is fit to a data set with n observations, then the adjusted- R^2 for the model is

$$R_{adj,j}^2 = 1 - \frac{n-1}{n-s_i} \times \frac{RSS_j}{TSS}$$

Models with relatively large numbers of parameters are penalized for their lack of parsimony. The model with the highest adjusted- R^2 value is selected as the best model. Beyond this intuitive rationale, however, there is no deep justification for using R_{adj}^2 as a model selection criterion.

Cross-validation and generalized cross-validation

The key idea in cross-validation (more accurately, <u>leave-one-out cross-validation</u>) is to omit the *i*th observation to obtain an estimate of $E(Y|x_i)$ based on the other observations as $\hat{Y}_{-i}^{(j)}$ for model M_j . Omitting the *i*th observation makes the fitted value $\hat{Y}_{-i}^{(j)}$ independent of the observed value Y_i . The <u>cross-validation criterion</u> for model M_j is

$$CV_j \equiv \frac{\sum_{i=1}^n \left[\hat{Y}_{-i}^{(j)} - Y_i \right]^2}{n}$$

We prefer the model with the smallest value of CV_i .

In linear least-squares regression, there are efficient procedures for computing the leava-oneout fitted values $\hat{Y}_{-i}^{(j)}$ that do not require literally refitting the model (recall the discussions of standardized residuals). However, in other applications, leave-one-out cross-validation can be computationally expensive (that requires literally refitting the model n times).

An alternative is to divide the data into a relatively small number of subsets of roughly equal size and to fit the model omitting one subset at a time, obtaining fitted values for all observations in the omitted subset. This method is termed as \underline{K} -fold cross-validation where K is the number of subsets. The cross-validation criterion is defined the same way as before.

An alternative criterion is to approximate CV by the generalized cross-validation criterion

$$GCV_j \equiv \frac{n \times RSS_j}{df_{res_j}^2}$$

which however is less popular given the increasing computational power we have in the modern era.

AIC and BIC

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are also popular model selection criteria. Both are members of a more general family of *penalized* model-fit statistics (in the form of "*IC"), applicable to regression models fit by maximum likelihood, that take the form

$$*IC_j = -2\log_e L(\hat{\theta}_j) + cs_j$$

where $L(\hat{\theta}_j)$ is the maximized likelihood under model M_j ; $\hat{\theta}_j$ is the vector of parameters of the model (including, for example, regression coefficients and an error variance); s_j is the number of parameters in $\hat{\theta}_j$; and c is a constant that differs from one model selection criterion to another. The first term, $-2\log_e L(\hat{\theta}_j)$, is the <u>residual deviance</u> under the model; for a linear model with normal errors, it is simply the residual sum of squares.

The model with the smallest *IC is the one that receives most support from the data (the selected model). The AIC and BIC are defined as follows:

$$AIC_j \equiv -2\log_e L(\hat{\theta}_j) + 2s_j$$

$$BIC_j \equiv -2\log_e L(\hat{\theta}_j) + s_j\log_e(n)$$

The lack-of-parsimony penalty for the BIC grows with the sample size, while that for the AIC does not. When $n \ge 8$ the penalty for the BIC is larger than that for the AIC resulting in BIC tends to nominate models with fewer parameters. Both AIC and BIC are based on deeper statistical considerations, please refer to JF 22.1 sections **A closer look at the AIC** and **A closer look at the BIC** for more details.

Sequential procedures

Besides the ranking systems above, there is another class loosely defined as sequential procedures for model selection.

- 1. Forward selection
- 2. Backwards elimination
- 3. Stepwise selection

Forward selection :

- 1. Choose a threshold significance level for adding predictors, "SLENTRY" (SL stands for significance level). For example, SLENTRY = 0.10.
- 2. Initialize with $y = \beta_0 + \epsilon$.
- 3. Form a set of candidate models that differ from the working model by addition of one new predictor
- 4. Do any of the added predictors have $p-value \leq SLENTRY$?
 - Yes: add predictor with smallest p-value to working model + repeat steps 3 to 4.
 - No: stop. Final model = working model.

Backwards elimination

- 1. Choose threshold level for removing predictors. For example, SLSTAY = 0.05.
- 2. Initialize with most general model (biggest possible): $y = \beta_0 + \beta_1 x_1 + \cdots + \epsilon$.
- 3. Form a set of candidate models that differ from working model by deletion of one term
- 4. Do any p-value > SLSTAY (from fitting the current working model)?
 - Yes: remove the term with largest p-value and repeat steps 3 and 4.
 - No: stop. Final model = working model.

Stepwise Alternate forwards + backwards steps. Initialize with $y = \beta_0 + \epsilon$. Stop when consecutive forward + backward steps do not change working model. $(SLENTRY \leq SLSTAY)$

Some examples

- Model selection by AIC
- Model selection by AIC and Lasso