Module LU2IN003 Parcours génériques Exercices de Base semaine 10

Exercice(s)

Exercice 1 – Parcours génériques d'un graphe non orienté

On considère le graphe non orienté $G_0 = (V_0, E_0)$:

Question 1

Le graphe G_0 admet-il un parcours ? Justifier la réponse.

On considère le graphe non orienté $G_1 = (V_1, E_1)$:

Ouestion 2

Donner trois parcours génériques de G_1 , l'un partant du sommet 1, un autre du sommet 9 et un troisième du sommet 5.

Question 3

La liste (1, 2, 5, 3, 4, 6, 7, 8, 9) est-elle un parcours générique de G_1 ? Justifier la réponse.

Exercice 2 – Graphe de liaison associé à un parcours

Soit G=(V,E) un graphe non orienté et L un sous-parcours d'origine $s\in V$. On rappelle que $\mathcal{A}(L)=(V(L),H(L))$ est un graphe de liaison associé au parcours L si tout sommet $v\in V(L)\setminus\{s\}$ a pour prédécesseur un sommet $u\in V(L)$ tel que u est situé avant v dans L et $\{u,v\}\in E$.

Question 1

On considère le graphe non orienté G_1 défini dans l'exercice 1. Dessiner un graphe de liaison associé au parcours (6, 8, 5, 7, 4, 2, 3, 1, 9). Est-il unique?

Une arborescence est un graphe orienté G tel que :

- le graphe non orienté associé à G est un arbre,
- -G possède une racine.

Un sommet r est une racine d'un graphe orienté G si, pour tout sommet x de G, il existe un chemin de r à x.

Question 2

Soit G=(V,E) un graphe non orienté et $L=(s_1,\ldots,s_n)$ un parcours d'origine $s_1\in V$. Démontrer que tout graphe de liaison associé à L est une arborescence de racine s.

Exercice 3 - Algorithme de calcul d'un parcours d'un graphe non orienté

On rappelle l'algorithme de calcul d'un parcours vu en cours :

```
Require: Un graphe non orienté G = (V, E), un sommet s Ensure: Un parcours L des sommets L := (s), \mathcal{B} = \mathcal{B}(L) while \mathcal{B} \neq \emptyset do Choisir un sommet u \in \mathcal{B} L := L + (u) \mathcal{B} := \mathcal{B}(L) end while
```

Question 1

Appliquer cet algorithme au graphe G_1 défini dans l'exercice 1, en partant du sommet 7. Préciser, à chaque itération, le sommet u choisi dans \mathcal{B} (s'il y a plusieurs choix possibles, on prendra le sommet de plus petit numéro), le sousparcours L, la valeur de la bordure \mathcal{B} de L. Les valeurs de L et \mathcal{B} sont celles obtenues à chaque itération en fin du corps de boucle.

Question 2

À faire à la maison. Appliquer l'algorithme au graphe G_1 en partant d'un autre sommet ou en suivant une autre stratégie lorsque plusieurs choix sont possibles dans \mathcal{B} (par exemple, prendre le sommet de plus grand numéro, ou choisir le premier sommet qui a été ajouté à \mathcal{B} , ou le dernier ajouté, etc.).

Exercice 4 – Complexité du calcul d'un parcours générique

On considère un graphe non orienté connexe G=(V,E) ayant n sommets et m arêtes. Le but de cet exercice est d'évaluer la complexité du calcul d'un parcours générique. On suppose que :

- L est stocké dans une liste circulaire doublement chaînée;
- la bordure \mathcal{B} est stockée dans un tableau $B[1 \dots n]$ à valeurs dans $\{0,1\}$ et tel que B[u]=1 si $u \in \mathcal{B}$;
- le graphe non orienté est représenté par une matrice sommet-sommet, une matrice sommet-arête ou des listes d'adjacences. On notera par la suite V une liste simplement chaînée contenant tous les voisins d'un sommet $u \in V$.

Question 1

Décrire un algorithme qui permet de calculer la bordure $\mathcal{B}(L)$ d'un sous-parcours L. On pourra utiliser V pour stocker les voisins d'un sommet $u \in V$.

Question 2

On note cv(u) la complexité pour calculer et stocker dans V l'ensemble des sommets adjacents à u. Que vaut cv(u) en fonction de la représentation de G?

Question 3

Calculez la complexité du calcul de la bordure $\mathcal{B}(L)$ pour un sous-parcours L de k éléments en fonction de cv.

Question 4

En déduire la complexité du calcul d'un parcours générique $L=(v_1,\ldots,v_n)$ en fonction de cv.

Question 5

En déduire la complexité en fonction de la représentation.

Exercice 5 - Parcours génériques d'un graphe orienté

On considère le graphe orienté $G_2 = (V_2, A_2)$:

© 20 avril 2020

Question 1

Le graphe G_2 admet-il un parcours ? Justifier la réponse.

On considère le graphe orienté $G_3 = (V_3, A_3)$:

Question 2

Quelles sont les racines du graphe G_3 ? Pour chaque racine, donner un parcours générique de G_3 .

Question 3

La liste (1, 2, 5, 3, 4, 6, 7, 8, 9) est-elle un parcours générique de G_3 ? Justifier la réponse.

Exercice 6 – Graphes orientés particuliers

Question 1

Soit G = (V, A) un graphe orienté ayant n sommets.

- 1. On suppose que G est composé d'un unique circuit élémentaire. Combien G admet-il de parcours ? Les décrire.
- 2. On suppose que G est composé d'un unique chemin élémentaire. Combien G admet-il de parcours? Les décrire.

Exercice 7 – Algorithme de calcul d'un parcours d'un graphe orienté

Soit G = (V, A) un graphe orienté.

Question 1

Comment faut-il définir la bordure d'un sous-parcours L dans le cas d'un graphe orienté pour que l'algorithme de calcul rappelé dans l'exercice 2 reste valable pour un graphe orienté?

Ouestion 2

Appliquer l'algorithme du cours au graphe G_3 défini dans l'exercice 3 en utilisant la définition de la bordure étendue aux graphes orientés. L'origine à considérer est le sommet 4. Préciser, à chaque itération, le sommet u choisi dans \mathcal{B} (s'il y a plusieurs choix possibles, on prendra le sommet de plus petit numéro), le sous-parcours L et la valeur de la bordure \mathcal{B} de L. Les valeurs de L et \mathcal{B} sont celles obtenues à chaque itération en fin du corps de boucle.

Question 3

1. Quelle est la définition du graphe de liaison associé à un parcours générique dans le cas d'un graphe orienté G?

© 20 avril 2020

2. Donnez un graphe de liaison pour le parcours L = (3, 4, 2, 1, 5, 6, 7, 8, 9) du graphe G_3 . Est-il unique?

Question 4

À faire à la maison. Appliquer l'algorithme au graphe G_3 en partant d'un autre sommet ou en suivant une autre stratégie lorsque plusieurs choix sont possibles dans \mathcal{B} (par exemple, prendre le sommet de plus grand numéro, ou choisir le premier sommet qui a été ajouté à \mathcal{B} , ou le dernier ajouté, etc.).

Exercice 8 – Existence d'un parcours d'un graphe orienté

Soit G = (V, A) un graphe orienté.

Question 1

Soit G un graphe orienté de parcours $L=(s_1,\ldots,s_n)$. Montrez qu'il existe un chemin de s_1 à s_i pour tout $i\in\{1,\ldots,n\}$. Cette démontration peut se faire par récurrence sur i.

Question 2

Montrer par l'absurde que, si r est une racine d'un graphe orienté G l'algorithme de construction d'un parcours générique permet de construire un parcours L de G.

Question 3

Démontrez que, pour tout graphe non orienté G, G possède un parcours si et seulement si G possède une racine.

© 20 avril 2020