

FOR NATIONAL PHASE SUBMISSION

CLAIM AMENDMENTS

WHAT IS CLAIMED IS:

This listing of the claims will replace all prior versions, and listing, of claims in the application:

1. (Currently Amended) ~~Method A method~~ for commutating ~~the~~ at least one phase— (P_i) of an electric motor— (1) , in which ~~the—a~~ commutation angle— (α) of the at least one phase or of each phase— (P_i) is continuously varied as a function of ~~the—a~~ rotary frequency— (f) of ~~the—an~~ electromagnetic energizing field— (F) of the electric motor— (1) and/or of an adjustable variable— (S) for the drive power,

~~characterized in that wherein~~ a full cycle— (10) of the energizing field— (F) is divided into a number— (n) of zones— (z_i) and the at least one phase or each phase— (P_i) is commutated in accordance with a control pattern— $(12, 12')$ stored depending on these zones— (z_i) with ~~the—an~~ angular extent— (δ_1, δ_2) of at least two zones— (z_i) being varied for setting the commutation angle— (α) .

2. (Currently Amended) ~~Method A method~~ in accordance with claim 1, ~~characterized in that wherein~~ the full cycle— (1) is divided into alternating consecutive zones— (z_1) of a first group and zones— (z_m) of a second group, with zones— (z_1, z_m) of the same group each featuring the same angular extent— (δ_1, δ_2) .

FOR NATIONAL PHASE SUBMISSION

3. (Currently Amended) Method A method in accordance with claim 2, ~~characterized in that wherein the at least one~~ phase or each phase— (P_i) is activated via an odd number— (m) of consecutive zones— (Z_i) .

4. (Currently Amended) A method in accordance with claim 1, wherein Method in accordance with one of the Claims 1 to 3, characterized in that the commutation angle— (a) is varied between a minimum value corresponding to a low speed— (f) and/or power and maximum value corresponding to a high speed— (f) and/or power.

5. (Currently Amended) A method in accordance with claim 1, wherein Method in accordance with one of the Claims 1 to 4, characterized in that the characteristic variable— (s) for the power (Φ) included for adjusting the commutation angle— (a) is derived on the basis of the rotary frequency— (f) and an associated required value— (f_0) .

6. (Currently Amended) A method in accordance with claim 1, wherein Method in accordance with one of the Claims 1 to 5, characterized in that, the phase at least one or each phase— (P_i) is activated pulse-width modulated depending on the rotary frequency— (f) of the energizing field— (F) and/or the adjustable variable— (s) .

FOR NATIONAL PHASE SUBMISSION

7. (Currently Amended) A method in accordance with
claim 6, wherein Method in accordance with claim 6,
~~characterized in that~~, in a low-performance range (1)
identified by a low value of the rotary frequency (f) or
adjustable variable (s) with a constant commutation angle (a)
the phase or each phase (Pi) is activated pulse-width
modulated and in a mid performance range (21) identified by a
high value of the rotary frequency (f) or adjustable variable
(s) the commutation angle (a) is varied.

8. (Currently Amended) A method in accordance with
claim 1, wherein Method in accordance with one of the Claims 1
~~to 7, characterized in that~~ the phase or each phase (Pi) is
activated in a unipolar manner.

9. (Currently Amended) A method in accordance with
claim 1, wherein Method in accordance with one of the Claims 1
~~to 8, characterized in that~~ the phase or each phase (Pi) is
activated in a bipolar manner.

10. (Currently Amended) DA device (9) for commutating
the at least one phase (Pi) of an electric motor (1), with a
converter (5) and a control unit (6) for the converter (5),
~~which is embodied the control unit being operable~~ to execute
the method in accordance with ~~one of the claims 1 to 9~~claim 1.

FOR NATIONAL PHASE SUBMISSION

11. (Currently Amended) ~~DA~~ device ~~(9)~~ in accordance with Claim 10, ~~characterized by~~ further comprising a sensor ~~(8)~~ which determines the orientation and/or the rotary frequency ~~(f)~~ of the energizing field ~~(F)~~ feeds it to the control unit ~~(6)~~ as an input variable.