Temporal GNN

I. Makarov & V. Pozdnyakov & D. Kiselev

BigData Academy MADE from Mail.ru Group

Graph Neural Networks and Applications

I. Makarov et al. (MADE) Lecture 8 02.12.2021

Topics

- Categorization
- Temporal Graph Embeddings
- Temporal & Spatial Aggregation and Attention

I. Makarov et al. (MADE) Lecture 8 02.12.2021

Taxonomy of Temporal Models

I. Makarov et al. (MADE) Lecture 8 02.12.2021

Foundations and modeling of dynamic networks using dynamic graph neural networks

Statistical, Representation Learning, Stochastic Agent-based

from Musial et al., 2021

Foundations and modeling of dynamic networks using dynamic graph neural networks

Network type, and Discrete or Continuous models

from Musial et al., 2021

Simple Models

Temporal Node2vec: Temporal Node Embedding in Temporal Networks

- ullet Compute PPMI (Positive Pointwise Mutual Information) over temporal window ω
- Factorize PPMI with regularization tricks and temporal consistency

$$PPMI_{t}(v_{1}, v_{2}) = max \left(0, log \left(\theta \frac{|v_{1}, v_{2}|_{t}^{w} \cdot |V|}{|v_{1}|_{t} \cdot |v_{2}|_{t}}\right)\right)$$

$$\forall (v_{1}, v_{2} \neq v_{1}, t) \in V^{2} \times [1, T]$$

$$L = L_{St} + \tau L_{Sm} + \lambda L_{LR}$$

$$= \sum_{t=1}^{T} \|PPMI_{t} - U_{t} U_{t}^{T}\|_{F}^{2} + \tau \sum_{t=2}^{T} \|U_{t} - U_{t-1}\|_{F}^{2} + \lambda \sum_{t=1}^{T} \|U_{t}\|_{F}^{2}$$

from Bedart et al., 2019

7 / 44

I. Makarov et al. (MADE) Lecture 8 02.12.2021

Node Embedding over Temporal Graphs

- Recurrent snapshot model
- Initialization by node2vec

$$f_{t+1}(v) = \sigma(Af_t(v) + BR_tQ_tv)$$

$$-\sum_{t} \sum_{v_t \in V_t} \log Pr(N(v_t)|Q_tv_t)$$

$$\sum_{t} \|R_{t+1}Q_{t+1} - Q_t\| + \lambda \|R_{t+1}^T R_{t+1} - I\|$$

$$R_{t+1} = \operatorname{argmin}_{R \text{ s.t. } R^T R = I} \|RQ_{t+1} - Q_t\|$$

from Radinsky et al., 2019

8 / 44

I. Makarov et al. (MADE) Lecture 8 02.12.2021

DynGEM: Deep Embedding Method for Dynamic Graphs

- Extension of SDNE graph autoencoders
- Retraining with parameters from previous snapshots

from Liu et al., 2019

Recommender Systems

I. Makarov et al. (MADE) Lecture 8 02.12.2021

Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks

- JODIE adapts user positions along sessions adapting current recommendations
- 2 RNN updates for user and item embeddings, while predicting user position for next point.

from Leskovec et al., 2019

11 / 44

I. Makarov et al. (MADE) Lecture 8 02.12.2021

Highly Liquid Temporal Interaction Graph Embeddings

- Used-based and frequency-based windows for priority of updates
- Oynamic and static embeddings, frequent previous nodes window, time decay and frequency factors.

from Yu et al., 2021

General Framework

Temporal graph networks for deep learning on dynamic graphs

- Universal framework for temporal graph processing
- 2 Embedding incorporates memory updates

from Bronstein et al., 2020

Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks

Example: three 3-step walks (t_x , X are the default timestamp and the default node when no historical links can be found)

Count number of b's in different positions:

(0, 2, 1, 0)^T (0, 0, 0, 1)^T
$$I_{CAW}(b; S_u, S_v) = \{g(b; S_u), g(b; S_v)\}$$
 (Relative node identity)

Anonymize
$$(u) \xrightarrow{6} (b) \xrightarrow{3} (a) \xrightarrow{1} (c)$$

$$I_{CAW}(u) \xrightarrow{6} I_{CAW}(b) \xrightarrow{3} I_{CAW}(a) \xrightarrow{1} I_{CAW}(c)$$

from Li et al., 2021

Temporal Graph Network Embedding with Causal Anonymous Walks Representations

- Efficient integration of CAW for LP and TGN for NC
- Temporal Network Embedding benchmarking

from Babaev et al., 2021

Decomposition-based Models

I. Makarov et al. (MADE) Lecture 8 02.12.2021

Decoupling GCN with DropGraph Module for Skeleton-Based Action Recognition

 Decoupling aggregation patterns may help decomposing dynamic and static patterns

from Lu et al., 202

18 / 44

I. Makarov et al. (MADE) Lecture 8 02.12.2021

DyGCN: Dynamic Graph Embedding with Graph Convolutional Network

- Iteratively propagate updates from temporal changes
- Use historic and update decomposition in model training

from Ai et al., 2021

I. Makarov et al. (MADE) Lecture 8 02.12.2021 19 / 44

DyGCN: Dynamic Graph Embedding with Graph Convolutional Network

Algorithm 1 DyGCN

```
Input: \mathcal{G}^t = \{\mathcal{V}^t, \mathcal{E}^t\}, G^{t+1} = \{\mathcal{V}^{t+1}, \mathcal{E}^{t+1}\}: the graph at time t and t + 1;
      Z_t = \{z_v^t, v \in \mathcal{V}^t\}: the node embeddings at time t;
      \{W_0, W_1, W_2, ..., W_K\}: the transformation matrices.
Output: Z^{t+1} = \{z_v^{t+1}, v \in \mathcal{V}^t\}, the node embeddings at time t + 1.
  1: // The update of first-order influenced nodes
  2: for v \in \mathcal{V}_1^t do
  3: \Delta a_n^t = \sum_{u \in \mathcal{N}^{t+1}(n) \cup n} z_u^t - \sum_{u \in \mathcal{N}^t(n) \cup n} z_u^t;
  4: z_n^{t+1} = \sigma(W_0 z_n^t + W_1 \Delta a_n^t);
  5: end for
  6: // The update of high-order influenced nodes
  7: for k \in [2, ..., K] do
  8: for v \in \mathcal{V}_{L}^{t} do
      \Delta a_n^t = \sum_{u \in N^{t+1}(n) \cup n} (z_u^{t+1} - z_u^t);
       z_n^{t+1} = \sigma(W_0 z_n^t + W_k \Delta a_n^t).
         end for
 12: end for
```

from Ai et al., 2021

TI-GCN: A Dynamic Network Embedding Method with Time Interval Information

- Pink backgrounds are network snapshots
- @ Green are the changed networks
- O Orange lines mean edges appear during t and t + 1 , purple ones means edges appear during t + 1 and t + 2

from Zhu et al., 2020

I. Makarov et al. (MADE) Lecture 8 02.12.2021 21 / 44

K-Core based Temporal Graph Convolutional Network for Dynamic Graphs

- Preserving local proximity and global similarity
- Peature transformation and feature aggregation for temporal case

from Song et al., 2020

I. Makarov et al. (MADE) Lecture 8 02.12.2021 22 / 44

Combinations of GCN and LSTM

I. Makarov et al. (MADE) Lecture 8 02.12.2021

Dynamic Graph Convolutional Networks

Combine Long Short-Term Memory networks and Graph Convolutional Networks to learn long short-term dependencies together with graph structure.

from Manzo et al., 2020

I. Makarov et al. (MADE) Lecture 8 02.12.2021 24 / 44

EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs

- Left is a recurrent architecture; Middle is the graph convolution unit; Right is the evolving graph convolution unit.
- Red region denotes information input to the unit and blue region denotes output information.

Generative Models

DynGAN: Generative Adversarial Networks for Dynamic Network Embedding

- GAN instead of temporal VGAE
- Stacked LSTMs

from Ramakrishnan et al., 2019

I. Makarov et al. (MADE) Lecture 8 02.12.2021 27 / 44

GCN-GAN: A Non-linear Temporal Link Prediction Model for Weighted Dynamic Networks

- GCN-GAN temporal link prediction model
- Generator is GCN stacked with LSTM and ourput FC
- Oiscriminator is FC feedforward network.

from Yang et al., 2019

Attention-based Models

A Generalization of Transformer Networks to Graphs

from Bresson et al., 2020

DyREP: Learning representations over dynamic graphs

- Deep temporal point process
- 2 Temporal-attentive representation network

from Zha et al., 2019

Learning Temporal Attention in Dynamic Graphs with Bilinear Interactions

- Temporal attention drives between-node feature propagation
- Bilinear transformation layer for pairs of node features instead of concatenation

from Taylor et al., 2020

I. Makarov et al. (MADE) Lecture 8 02.12.2021 32 / 44

Modeling Dynamic Heterogeneous Network for Link Prediction using Hierarchical Attention with Temporal RNN

- Hierarchical Attention model
- Temporal Attentive RNN model
- Oynamic Link Prediction

from Lin et al., 2020

TemporalGAT: Attention-Based Dynamic Graph Representation Learning

- Decomposition into Snapshots with Spatial Attention
- Temporal Convolutions for Dynamics

from Li et al., 2020

34 / 44

I. Makarov et al. (MADE) Lecture 8 02.12.2021

- Skardinga, J., Gabrys, B. and Musial, K., 2021. Foundations and modelling of dynamic networks using dynamic graph neural networks: A survey. IEEE Access.
- Haddad, M., Bothorel, C., Lenca, P. and Bedart, D., 2019, December. Temporalnode2vec: temporal node embedding in temporal networks.
 In International Conference on Complex Networks and Their Applications (pp. 891-902). Springer, Cham.
- Singer, U., Guy, I. and Radinsky, K., 2019. Node embedding over temporal graphs. arXiv preprint arXiv:1903.08889.
- https://github.com/benedekrozemberczki/pytorch_ geometric_temporal
- https://github.com/HSE-DynGraph-Research-team/ DynGraphModelling

I. Makarov et al. (MADE) Lecture 8 02.12.2021

References

- Goyal, P., Kamra, N., He, X. and Liu, Y., 2018. Dyngem: Deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273.
- Huang, S., Bao, Z., Li, G., Zhou, Y. and Culpepper, J.S., 2020, April. Temporal network representation learning via historical neighborhoods aggregation. In 2020 IEEE 36th International Conference on Data Engineering (ICDE) (pp. 1117-1128). IEEE.
- Kumar, S., Zhang, X. and Leskovec, J., 2019, July. Predicting dynamic embedding trajectory in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD (pp. 1269-1278).
- Chen, H., Xiong, Y., Zhu, Y. and Yu, P.S., 2021, April. Highly Liquid Temporal Interaction Graph Embeddings. In Proceedings of the Web Conference 2021 (pp. 1639-1648).
- Zhang, Z., Bu, J., Ester, M., Zhang, J., Yao, C., Li, Z. and Wang, C., 2020, April. Learning temporal interaction graph embedding via coupled memory networks. In Proceedings of The Web Conference 2020 (pp. 3049-3055).

- Ma, Y., Guo, Z., Ren, Z., Tang, J. and Yin, D., 2020, July.
 Streaming graph neural networks. In Proceedings of the 43rd International ACM SIGIR Conference (pp. 719-728).
- Cui, Z., Li, Z., Wu, S., Zhang, X., Liu, Q., Wang, L. and Ai, M., 2021. DyGCN: Dynamic Graph Embedding with Graph Convolutional Network. arXiv preprint arXiv:2104.02962.
- Mahdavi, S., Khoshraftar, S. and An, A., 2019. Dynamic joint variational graph autoencoders. arXiv preprint arXiv:1910.01963.
- Du, L., Wang, Y., Song, G., Lu, Z. and Wang, J., 2018, July.
 Dynamic Network Embedding: An Extended Approach for Skip-gram based Network Embedding. In IJCAI (Vol. 2018, pp. 2086-2092).
- Liu, J., Xu, C., Yin, C., Wu, W. and Song, Y., 2020. K-core based temporal graph convolutional network for dynamic graphs. IEEE Transactions on Knowledge and Data Engineering.

I. Makarov et al. (MADE) Lecture 8 02.12.2021 37 / 44

References

- Cheng, K., Zhang, Y., Cao, C., Shi, L., Cheng, J. and Lu, H., 2020.
 Decoupling gcn with dropgraph module for skeleton-based action recognition. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK. (pp. 536-553). Springer International Publishing.
- Lu, Y., Wang, X., Shi, C., Yu, P.S. and Ye, Y., 2019, November.
 Temporal network embedding with micro-and macro-dynamics. In Proceedings of the 28th ACM CIKM (pp. 469-478).
- Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E. and Kim, S., 2018, April. Continuous-time dynamic network embeddings. In Companion Proceedings of the The Web Conference 2018 (pp. 969-976).
- Bonner, S., Brennan, J., Kureshi, I., Theodoropoulos, G., McGough, A.S. and Obara, B., 2018, December. Temporal graph offset reconstruction: Towards temporally robust graph representation learning. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 3737-3746). IEEE.

38 / 44

I. Makarov et al. (MADE) Lecture 8 02.12.2021

- Bonner, S., Atapour-Abarghouei, A., Jackson, P.T., Brennan, J., Kureshi, I., Theodoropoulos, G., McGough, A.S. and Obara, B., 2019, December. Temporal neighbourhood aggregation: Predicting future links in temporal graphs via recurrent variational graph convolutions. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 5336-5345). IEEE.
- Knyazev, B., Augusta, C. and Taylor, G.W., 2019. Learning temporal attention in dynamic graphs with bilinear interactions. arXiv preprint arXiv:1909.10367.
- Trivedi, R., Farajtabar, M., Biswal, P. and Zha, H., 2019, May. Dyrep: Learning representations over dynamic graphs. In International conference on learning representations.
- Sankar, A., Wu, Y., Gou, L., Zhang, W. and Yang, H., 2018.
 Dynamic graph representation learning via self-attention networks.
 arXiv preprint arXiv:1812.09430.

I. Makarov et al. (MADE) Lecture 8 02.12.2021 39 / 44

References

- Venkatakrishnan, S.B., Alizadeh, M. and Viswanath, P., 2018. Graph2seg: Scalable learning dynamics for graphs. arXiv preprint arXiv:1802.04948.
- Lei, K., Qin, M., Bai, B., Zhang, G. and Yang, M., 2019, April. Gcn-gan: A non-linear temporal link prediction model for weighted dynamic networks. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 388-396). IEEE.
- Maheshwari, A., Goyal, A., Hanawal, M.K. and Ramakrishnan, G., 2019. DynGAN: Generative Adversarial Networks for Dynamic Network Embedding. In Graph Representation Learning Workshop at NeurIPS.
- Chen, J., Xu, X., Wu, Y. and Zheng, H., 2018. Gc-Istm: Graph convolution embedded lstm for dynamic link prediction. arXiv preprint arXiv:1812.04206.
- Li, Y., Yu, R., Shahabi, C. and Liu, Y., 2017. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. 40 / 44

References

- Li, J., Han, Z., Cheng, H., Su, J., Wang, P., Zhang, J. and Pan, L., 2019, July. Predicting path failure in time-evolving graphs. In Proceedings of the 25th ACM SIGKDD (pp. 1279-1289).
- Taheri, A., Gimpel, K. and Berger-Wolf, T., 2019, May. Learning to represent the evolution of dynamic graphs with recurrent models. In Companion Proceedings of The 2019 World Wide Web Conference (pp. 301-307).
- Liu, Z., Huang, C., Yu, Y. and Dong, J., 2021, April.
 Motif-Preserving Dynamic Attributed Network Embedding. In Proceedings of the Web Conference 2021 (pp. 1629-1638).
- Chen, J., Zhang, J., Xu, X., Fu, C., Zhang, D., Zhang, Q. and Xuan, Q., 2019. E-Istm-d: A deep learning framework for dynamic network link prediction. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
- Xue, H., Yang, L., Jiang, W., Wei, Y., Hu, Y. and Lin, Y., 2020.
 Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal rnn. arXiv preprint

- Fathy, A. and Li, K., 2020. Temporalgat: Attention-based dynamic graph representation learning. Advances in Knowledge Discovery and Data Mining, 12084, p.413.
- Dwivedi, V.P. and Bresson, X., 2020. A generalization of transformer networks to graphs. arXiv preprint arXiv:2012.09699.
- Xu, D., Ruan, C., Korpeoglu, E., Kumar, S. and Achan, K., 2020. Inductive representation learning on temporal graphs. arXiv preprint arXiv:2002.07962.
- Seo, Y., Defferrard, M., Vandergheynst, P. and Bresson, X., 2018, December. Structured sequence modeling with graph convolutional recurrent networks. In International Conference on Neural Information Processing (pp. 362-373). Springer, Cham.

42 / 44

I. Makarov et al. (MADE) Lecture 8 02.12.2021

References

- Xiang, Y., Xiong, Y. and Zhu, Y., 2020, December. TI-GCN: A Dynamic Network Embedding Method with Time Interval Information. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 838-847). IEEE.
- Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., Kaler, T., Schardl, T. and Leiserson, C., 2020, April. Evolvegcn: Evolving graph convolutional networks for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5363-5370).
- Wang, X., Lyu, D., Li, M., Xia, Y., Yang, Q., Wang, X., Wang, X., Cui, P., Yang, Y., Sun, B. and Guo, Z., 2021, June. APAN:
 Asynchronous Propagation Attention Network for Real-time Temporal Graph Embedding. In Proceedings of the 2021 International Conference on Management of Data (pp. 2628-2638).
- Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F. and Bronstein, M., 2020. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637.

- Wang, Y., Chang, Y.Y., Liu, Y., Leskovec, J. and Li, P., 2021. Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks. arXiv preprint arXiv:2101.05974.
- Makarov, I., Savchenko, A., Korovko, A., Sherstyuk, L., Severin, N., Kiselev, D., Mikheev, A. and Babaev, D., 2021. Temporal Graph Network Embedding with Causal Anonymous Walks Representations. arXiv preprint arXiv:2108.08754.

I. Makarov et al. (MADE) Lecture 8 02.12.2021