

IN THE CLAIMS

Below is a complete listing of all claims upon entry of this amendment.

1-11 (Cancelled).

13-26 (Cancelled).

27. (New) A compound of Formula (I):

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

the lactam ring of Formula (I) is substituted with 0-2 R^b;

X is selected from the group: B(OH)₂, BY¹Y², and C(=O)C(=O)NHR^{1a};

Y¹ and Y² are independently selected from:

- a) -OH,
- b) -F,
- c) -NR¹⁸R¹⁹,
- d) C₁-C₈ alkoxy, or

when taken together, Y¹ and Y² form:

- e) a cyclic boron ester comprising from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;
- f) a cyclic boron amide comprising from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O; or

g) a cyclic boron amide-ester comprising from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;

R^1 is selected from the group:

C_{1-10} alkyl substituted with 0-3 R^a ;
 C_{2-10} alkenyl substituted with 0-3 R^a ;
 C_{2-10} alkynyl substituted with 0-3 R^a ; and
 C_{3-6} cycloalkyl substituted with 0-3 R^a ;

R^{1a} is selected from the group:

C_{1-10} alkyl substituted with 0-3 R^a ;
 C_{2-10} alkenyl substituted with 0-3 R^a ;
 C_{2-10} alkynyl substituted with 0-3 R^a ; and
 C_{3-6} cycloalkyl substituted with 0-3 R^a ;

R^a is selected at each occurrence from the group:

C_{1-3} alkyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CF_3 , OH, =O, C_{1-6} alkoxy, SH, $-S-C_{1-6}$ alkyl;
phenyl substituted with 0-3 R^b ;
naphthyl substituted with 0-3 R^b ;
 $-O-(CH_2)_q$ -phenyl substituted with 0-3 R^b ;
 $-O-(CH_2)_q$ -naphthyl substituted with 0-3 R^b ; and
5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, and substituted with 0-3 R^b ;

R^b is selected at each occurrence from the group:

C₁₋₆ alkyl, Cl, F, Br, I, OH, C₁₋₆ alkoxy, -CN, -NO₂, C(O)OR⁷, NR^dRD, CF₃, OCF₃, and C₃₋₆ cycloalkyl;

R² is H;

alternatively, R¹ and R² combine to form a C₃₋₅ cycloalkyl group;

R³ is selected from the group:

C₁₋₆ alkyl substituted with 0-2 R^a;

C₂₋₆ alkenyl substituted with 0-2 R^a;

C₂₋₆ alkynyl substituted with 0-2 R^a;

-(CH₂)_q-C₃₋₆ cycloalkyl substituted with 0-2 R^a;

-(CH₂)_q-phenyl substituted with 0-2 R^a;

-(CH₂)_q-naphthyl substituted with 0-2 R^a; and

-(CH₂)_q-5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, and substituted with 0-2 R^a;

R⁴ is selected from the group: H,

C₁₋₆ alkyl substituted with 0-3 R^b;

phenyl substituted with 0-3 R^b;

benzyl substituted with 0-3 R^b; and

phenethyl substituted with 0-3 R^b;

R⁵ is H or Q-R^{5a};

Q is 0, 1, 2, or 3 amino acids;

R^{5a} is selected from the group: $-S(O)R^6$, $-S(O)_2R^6$, $-C(O)R^6$, $-C(O)OR^8$, $-C(O)NHR^6$, C₁₋₃ alkyl- R^{6a} , C₂₋₆ alkenyl- R^{6a} , and C₂₋₆ alkynyl- R^{6a} ;

R^6 is selected from the group:

C₁₋₆ alkyl substituted with 0-3 R^C ;
phenyl substituted with 0-3 R^C ;
naphthyl substituted with 0-3 R^C ;
benzyl substituted with 0-3 R^C ; and
5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, substituted with 0-3 R^C ;

R^{6a} is selected from the group:

phenyl substituted with 0-3 R^C ;
naphthyl substituted with 0-3 R^C ;
benzyl substituted with 0-3 R^C ; and
5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, substituted with 0-3 R^C ;

R^C is selected at each occurrence from the group:

C₁₋₄ alkyl, C₁₋₄ alkoxy, CF₃, OCF₃, Cl, F, Br, I, =O, OH, phenyl, C(O)OR⁷, NR^dR^d, -CN, and NO₂;

R^d is selected at each occurrence from the group: H and CH₃;

R^7 is selected at each occurrence from the group: H and C₁₋₆ alkyl;

R^8 is selected from the group: C1-6 alkyl, benzyl, and C3-6 cycloalkyl-methyl;

R^{18} and R^{19} at each occurrence are independently selected from H, C1-C4 alkyl, aryl(C1-C4 alkyl)-, and C3-C7 cycloalkyl;

n is selected from the group: 1, 2, and 3; and

q is selected from the group: 0, 1, and 2.

28. (New) A compound according to Claim 27 of Formula (I):

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

the lactam ring of Formula (I) is substituted with 0-2 R^b ;

X is selected from the group: $B(OH)_2$, BY^1Y^2 , and $C(=O)C(=O)NHR^{1a}$;

Y^1 and Y^2 are independently selected from:

- a) -OH,
- b) -F,
- c) -NR¹⁸R¹⁹,
- d) C1-C8 alkoxy, or

when taken together, Y^1 and Y^2 form:

- e) a cyclic boron ester comprising from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;

- f) a cyclic boron amide comprising from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O; or
- g) a cyclic boron amide-ester comprising from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;

R^1 is selected from the group:

C_{1-6} alkyl substituted with 0-3 R^a ;
 C_{2-6} alkenyl substituted with 0-3 R^a ;
 C_{2-6} alkynyl substituted with 0-3 R^a ; and
 C_{3-6} cycloalkyl substituted with 0-3 R^a ;

R^{1a} is selected from the group:

C_{1-10} alkyl substituted with 0-3 R^a ;
 C_{2-10} alkenyl substituted with 0-3 R^a ;
 C_{2-10} alkynyl substituted with 0-3 R^a ; and
 C_{3-6} cycloalkyl substituted with 0-3 R^a ;

R^a is selected at each occurrence from the group:

C_{1-3} alkyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CF_3 , OH, =O, C_{1-6} alkoxy, SH, $-S-C_{1-6}$ alkyl;
phenyl substituted with 0-3 R^b ;
naphthyl substituted with 0-3 R^b ;
 $-O-(CH_2)_q$ -phenyl substituted with 0-3 R^b ;
 $-O-(CH_2)_q$ -naphthyl substituted with 0-3 R^b ; and
5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, and substituted with 0-3 R^b ;

R^b is selected at each occurrence from the group:

C₁₋₆ alkyl, Cl, F, Br, I, OH, C₁₋₆ alkoxy, -CN, -NO₂, C(O)OR⁷, NR^dRD, CF₃, OCF₃, and C₃₋₆ cycloalkyl;

R² is H;

alternatively, R¹ and R² combine to form a C₃₋₅ cycloalkyl group;

R³ is selected from the group:

C₁₋₆ alkyl substituted with 0-2 R^a;

C₂₋₆ alkenyl substituted with 0-2 R^a;

C₂₋₆ alkynyl substituted with 0-2 R^a;

-(CH₂)_q-C₃₋₆ cycloalkyl substituted with 0-2 R^a;

-(CH₂)_q-phenyl substituted with 0-2 R^a;

-(CH₂)_q-naphthyl substituted with 0-2 R^a; and

-(CH₂)_q-5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, and substituted with 0-2 R^a;

R⁴ is selected from the group: H,

C₁₋₆ alkyl substituted with 0-3 R^b;

phenyl substituted with 0-3 R^b;

benzyl substituted with 0-3 R^b; and

phenethyl substituted with 0-3 R^b;

R⁵ is H or Q-R^{5a};

Q is 0, 1, 2, or 3 amino acids;

R^{5a} is selected from the group: $-S(O)R^6$, $-S(O)_2R^6$, $-C(O)R^6$, $-C(O)OR^8$, $-C(O)NHR^6$, C₁₋₃ alkyl- R^{6a} , C₂₋₆ alkenyl- R^{6a} , and C₂₋₆ alkynyl- R^{6a} ;

R^6 is selected from the group:

C₁₋₆ alkyl substituted with 0-3 R^C ;

phenyl substituted with 0-3 R^C ;

naphthyl substituted with 0-3 R^C ;

benzyl substituted with 0-3 R^C ; and

5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, substituted with 0-3 R^C ;

R^{6a} is selected from the group:

phenyl substituted with 0-3 R^C ;

naphthyl substituted with 0-3 R^C ;

benzyl substituted with 0-3 R^C ; and

5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, substituted with 0-3 R^C ;

R^C is selected at each occurrence from the group:

C₁₋₄ alkyl, C₁₋₄ alkoxy, CF₃, OCF₃, Cl, F, Br, I, =O, OH,

phenyl, C(O)OR⁷, NR^dRD, -CN, and NO₂;

R^d is selected at each occurrence from the group: H and CH₃;

R^7 is selected at each occurrence from the group: H and C₁₋₆ alkyl;

R^8 is selected from the group: C₁-6 alkyl, benzyl, and C₃-6 cycloalkyl-methyl;

R^{18} and R^{19} at each occurrence are independently selected from H, C₁-C₄ alkyl, aryl(C₁-C₄ alkyl)-, and C₃-C₇ cycloalkyl;

n is selected from the group: 1, 2, and 3; and

q is selected from the group: 0, 1, and 2.

29 (New). A compound according to Claim 28 of Formula (I):

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

the lactam ring of Formula (I) is substituted with 0-2 R^b ;

X is selected from the group: $B(OH)_2$ and BY^1Y^2 ;

Y^1 and Y^2 are independently selected from:

- a) -OH,
- b) C₁-C₈ alkoxy, or

when taken together, Y^1 and Y^2 form:

- c) a cyclic boron ester comprising from 2 to 20 carbon atoms;

R^1 is selected from the group:

C₁-6 alkyl substituted with 0-3 halogen; and

C₂-6 alkenyl substituted with 0-3 halogen;

R^a is selected at each occurrence from the group:

C₁-3 alkyl, C₃-6 cycloalkyl, Cl, F, Br, I, CF₃, OH, =O, C₁-6 alkoxy, SH, -S-C₁-6 alkyl;

phenyl substituted with 0-3 R^b;

naphthyl substituted with 0-3 R^b;

-O-(CH₂)_q-phenyl substituted with 0-3 R^b;

-O-(CH₂)_q-naphthyl substituted with 0-3 R^b; and

5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, and substituted with 0-3 R^b;

R^b is selected at each occurrence from the group:

C₁-6 alkyl, Cl, F, Br, I, OH, C₁-6 alkoxy, -CN, -NO₂, C(O)OR⁷, NR^dR^d, CF₃, OCF₃, and C₃-6 cycloalkyl;

R² is H;

R³ is selected from the group:

C₁-6 alkyl substituted with 0-2 R^a;

C₂-6 alkenyl substituted with 0-2 R^a;

C₂-6 alkynyl substituted with 0-2 R^a;

-(CH₂)_q-C₃-6 cycloalkyl substituted with 0-2 R^a;

-(CH₂)_q-phenyl substituted with 0-2 R^a;

-(CH₂)_q-naphthyl substituted with 0-2 R^a; and

-(CH₂)_q-5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, and substituted with 0-2 R^a;

R^4 is selected from the group: H,
C₁₋₆ alkyl substituted with 0-3 R^b ;
phenyl substituted with 0-3 R^b ;
benzyl substituted with 0-3 R^b ; and
phenethyl substituted with 0-3 R^b ;

R^5 is H or Q- R^{5a} ;

Q is 0, 1, 2, or 3 amino acids;

R^{5a} is selected from the group: -S(O) R^6 , -S(O)₂ R^6 , -C(O) R^6 ,
-C(O)OR⁸, -C(O)NHR⁶, C₁₋₃ alkyl- R^{6a} , C₂₋₆ alkenyl- R^{6a} , and C₂₋₆ alkynyl- R^{6a} ;

R^6 is selected from the group:

C₁₋₆ alkyl substituted with 0-3 R^c ;
phenyl substituted with 0-3 R^c ;
naphthyl substituted with 0-3 R^c ;
benzyl substituted with 0-3 R^c ; and
5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, substituted with 0-3 R^c ;

R^{6a} is selected from the group:
phenyl substituted with 0-3 R^c ;
naphthyl substituted with 0-3 R^c ;
benzyl substituted with 0-3 R^c ; and

5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, substituted with 0-3 R^C;

R^C is selected at each occurrence from the group:

C₁₋₄ alkyl, C₁₋₄ alkoxy, CF₃, OCF₃, Cl, F, Br, I, =O, OH, phenyl, C(O)OR⁷, NR^DR^D, -CN, and NO₂;

R^D is selected at each occurrence from the group: H and CH₃;

R⁷ is selected at each occurrence from the group: H and C₁₋₆ alkyl;

R⁸ is selected from the group: C₁₋₆ alkyl, benzyl, and C₃₋₆ cycloalkyl-methyl;

n is selected from the group: 1, 2, and 3; and

q is selected from the group: 0, 1, and 2.

30 (New). A compound according to Claim 29, wherein the compound is of Formula (II):

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

X is a boronic acid or a boron ester of formula BY¹Y²;

Y¹ and Y² are independently selected from:

a) C₁-C₆ alkoxy, or

when taken together, Y¹ and Y² form:

b) a cyclic boron ester comprising from 2 to 16 carbon atoms;

R¹ is selected from the group: ethyl, n-propyl, n-butyl, allyl, 2,2,2-trifluoroethyl, 2,2-difluoroethyl, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, and 3-butenyl;

R^a is selected at each occurrence from the group:

C₁-3 alkyl, C₃-6 cycloalkyl, Cl, F, Br, I, CF₃, OH, =O, C₁-6 alkoxy, SH, -S-C₁-6 alkyl;

phenyl substituted with 0-3 R^b;

naphthyl substituted with 0-3 R^b;

-O-(CH₂)_q-phenyl substituted with 0-3 R^b;

-O-(CH₂)_q-naphthyl substituted with 0-3 R^b; and

5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, and substituted with 0-3 R^b;

R^b is selected at each occurrence from the group:

C₁-6 alkyl, Cl, F, Br, I, OH, C₁-6 alkoxy, -CN, -NO₂, C(O)OR⁷, NR^dRD, CF₃, OCF₃, and C₃-6 cycloalkyl;

R² is H;

R³ is selected from the group:

C₁-6 alkyl substituted with 0-2 R^a;

C₂-6 alkenyl substituted with 0-2 R^a;

C₂-6 alkynyl substituted with 0-2 R^a;

- $(CH_2)_q$ -C3-6 cycloalkyl substituted with 0-2 R^a;
- $(CH_2)_q$ -phenyl substituted with 0-2 R^a;
- $(CH_2)_q$ -naphthyl substituted with 0-2 R^a;
- $(CH_2)_q$ -5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, and substituted with 0-2 R^a;

R⁴ is selected from the group: H, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl; phenyl substituted with 0-3 R^b; benzyl substituted with 0-3 R^b; and phenethyl substituted with 0-3 R^b;

R⁵ is H or Q-R^{5a};

Q is 0, 1, or 2 amino acids;

R^{5a} is selected from the group: -S(O)R⁶, -S(O)₂R⁶, -C(O)R⁶, -C(O)OR⁸, -C(O)NHR⁶, C₁₋₃ alkyl-R^{6a}, C₂₋₆ alk enyl-R^{6a}, and C₂₋₆ alkynyl-R^{6a};

R⁶ is selected from the group:

- C₁₋₆ alkyl substituted with 0-3 R^c;
- phenyl substituted with 0-3 R^c;
- naphthyl substituted with 0-3 R^c;
- benzyl substituted with 0-3 R^c; and
- 5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, substituted with 0-3 R^c;

R^{6a} is selected from the group:

phenyl substituted with 0-3 R^C ;

naphthyl substituted with 0-3 R^C ;

benzyl substituted with 0-3 R^C ; and

5-10 membered heteroaryl consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, substituted with 0-3 R^C ;

R^C is selected at each occurrence from the group:

C_{1-4} alkyl, C_{1-4} alkoxy, CF_3 , OCF_3 , Cl, F, Br, I, =O, OH,

phenyl, $C(O)OR^7$, NR^dR^d , -CN, and NO_2 ;

R^d is selected at each occurrence from the group: H and CH_3 ;

R^7 is selected at each occurrence from the group: H and C_{1-6} alkyl;

R^8 is selected from the group: C_{1-6} alkyl, benzyl, and C_{3-6} cycloalkyl-methyl;

n is 1 or 2; and

q is selected from the group: 0, 1, and 2.

31 (New). A compound according to Claim 30, wherein the compound is of Formula (II):

(II)

or a stereoisomer or pharmaceutically acceptable salt form thereof,
wherein;

X is a boronic acid or boron ester, wherein the ester is a diol selected from the group: pinanediol, pinacol, 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 2,3-butanediol, 1,2-diisopropylethanediol, 5,6-decanediol, and 1,2-dicyclohexylethanediol;

R^1 is selected from the group: ethyl, n-propyl, n-butyl, allyl, 2,2,2-trifluoroethyl, 2,2-difluoroethyl, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, and 3-butenyl;

R^2 is H ;

R^3 is selected from the group: n-propyl, n-butyl, i-butyl, n-pentyl, neo-pentyl, cyclohexylmethyl, cyclopentylmethyl, phenyl, t-butoxymethyl, benzyloxymethyl, hydroxymethyl, methoxymethyl, ethoxymethyl, propoxymethyl, and i-propoxymethyl;

R^4 is selected from the group: methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, phenyl, benzyl, and phenethyl;

R^5 is H or Q- R^{5a} ;

Q is 0, 1, or 2 amino acids;

R^{5a} is selected from the group: $-S(O)2R^6$, $-C(O)R^6$, $-C(O)OR^8$,
 $-C(O)NHR^6$, and $-CH_2-R^{6a}$;

R^6 is selected from the group:

methyl substituted with 0-3 R^C ;
ethyl substituted with 0-3 R^C ;
propyl substituted with 0-3 R^C ;
butyl substituted with 0-3 R^C ;
phenyl substituted with 0-3 R^C ;
naphthyl substituted with 0-3 R^C ;
benzyl substituted with 0-3 R^C ; and
quinolinyl substituted with 0-3 R^C ;

R^{6a} is selected from the group:

phenyl substituted with 0-3 R^C ;
naphthyl substituted with 0-3 R^C ;
benzyl substituted with 0-3 R^C ; and
quinolinyl substituted with 0-3 R^C ;

R^C is selected at each occurrence from the group:

methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl,
methoxy, ethoxy, propoxy, i-propoxy, CF_3 , OCF_3 , Cl, F, Br, I,
 OH , phenyl, $C(O)OH$, NH_2 , $-CN$, and NO_2 ;

R^8 is methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl,
phenyl, and benzyl; and

n is 1 or 2.

32 (New). A compound according to Claim 30, wherein the compound is of Formula (II):

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

X is a boronic acid or a boron ester of formula BY¹Y²;

Y¹ and Y² are individually selected from C₁-C₆ alkoxy, or when taken together, Y¹ and Y² form a cyclic boron ester where said chain or ring contains from 2 to 14 carbon atoms;

R¹ is selected from the group: ethyl, n-propyl, n-butyl, allyl, 2,2,2-trifluoroethyl, 2,2-difluoroethyl, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, and 3-butenyl;

R² is H;

R³ is selected from the group: i-butyl, neo-pentyl, cyclohexylmethyl, t-butoxymethyl, benzyloxymethyl, hydroxymethyl, and phenyl;

R⁴ is selected from the group: ethyl, n-propyl, i-propyl, R-2-butyl, S-2-butyl, phenyl, benzyl, and phenethyl;

R^5 is selected from the group: H,
benzyl,
m-methylphenylsulfonyl,
m-trifluoromethylphenylsulfonyl,
p-i-propylphenylsulfonyl,
p-propylphenylsulfonyl,
p-t-butylphenylsulfonyl,
p-carboxylphenylsulfonyl;
4-(1,1')biphenylsulfonyl,
1-naphthylsulfonyl,
2-naphthylsulfonyl,
8-quinolinylsulfonyl,
pyrazin-2-ylcarbonyl,
n-butylsulfonyl,
N-phenylaminocarbonyl,
N-(p-n-butyphenyl)aminocarbonyl,
benzyloxycarbonyl,
methoxycarbonyl,
t-butyloxycarbonyl,
benzoyl,
methanesulfonyl,
phenylsulfonyl,
o-nitrophenylsulfonyl,
m-nitrophenylsulfonyl, and
m-aminophenylsulfonyl; and

n is 1 or 2.

33 (New). A compound according to Claim 32, wherein;

X is a boronic acid or boron ester, wherein the ester is a diol selected from the group: pinanediol, pinacol, 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 2,3-butanediol, 1,2-diisopropylethanediol, 5,6-decanediol, and 1,2-dicyclohexylethanediol;

R¹ is selected from the group: ethyl, n-propyl, n-butyl, allyl, 2,2,2-trifluoroethyl, 2,2-difluoroethyl, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, and 3-butenyl;

R² is H;

R³ is selected from the group: i-butyl, neo-pentyl, cyclohexylmethyl, t-butoxymethyl, benzyloxymethyl, hydroxymethyl, and phenyl;

R⁴ is selected from the group: ethyl, n-propyl, i-propyl, R-2-butyl, S-2-butyl, phenyl, benzyl, and phenethyl;

R⁵ is selected from the group: H, benzyl, m-methylphenylsulfonyl, m-trifluoromethylphenylsulfonyl, p-i-propylphenylsulfonyl, p-propylphenylsulfonyl, p-t-butylphenylsulfonyl, p-carboxylphenylsulfonyl, 4-(1,1')biphenylsulfonyl, 1-naphthylsulfonyl,

2-naphthylsulfonyl,
8-quinolinylsulfonyl,
pyrazin-2-ylcarbonyl,
n-butylsulfonyl,
N-phenylaminocarbonyl,
N-(p-n-butyphenyl)aminocarbonyl,
benzyloxycarbonyl,
methoxycarbonyl,
t-butyloxycarbonyl,
benzoyl,
methanesulfonyl,
phenylsulfonyl,
o-nitrophenylsulfonyl,
m-nitrophenylsulfonyl, and
m-aminophenylsulfonyl; and

n is 1 or 2.

34 (New). A compound according to Claim 27, wherein the compound is selected from the group:

(1R)-1-((2S)-3-cyclohexyl-2-(3-isopropyl-3-((2S)-3-methyl-2-((2-pyrazinylcarbonyl)amino)butanoyl)amino)-2-oxo-1-pyrrolidinylpropanoyl)amino)-3-butenylboronic acid (+)-pinanediol ester;

(1R)-1-((2S)-3-cyclohexyl-2-(3-isopropyl-3-((2S)-3-methyl-2-((2-pyrazinylcarbonyl)amino)butanoyl)amino)-2-oxo-1-piperidinylpropanoyl)amino)-3-butenylboronic acid (+)-pinanediol ester;

(1R)-1-((3-((methylsulfonyl)amino)-2-oxohexahydro-1H-azepin-1-yl)acetyl)amino)propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((2*S*)-2-(3-amino-3-isopropyl-2-oxo-1-pyrrolidinyl)-3-cyclohexylpropanoyl)amino}propylboronic acid (+)-pinanediol ester hydrochloride;

1*R*-1-((2*S*)-2-{3-((1,1'-biphenyl)-4-ylsulfonyl)amino}-3-isopropyl-2-oxo-1-pyrrolidinyl)-3-cyclohexylpropanoyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((2*S*)-3-cyclohexyl-2-(3-isopropyl-2-oxo-3-{(4-propylphenyl)sulfonyl)amino}-1-pyrrolidinyl)propanoyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((2*S*)-3-cyclohexyl-2-{3-isopropyl-3-((1-naphthylsulfonyl)amino)-2-oxo-1-pyrrolidinyl)propanoyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((2*S*)-2-{3-((anilinocarbonyl)amino)-3-isopropyl-2-oxo-1-pyrrolidinyl)-3-cyclohexylpropanoyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((2*S*)-3-cyclohexyl-2-(3-isopropyl-3-{(3-methylphenyl)sulfonyl)amino}-2-oxo-1-pyrrolidinyl)propanoyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((2*S*)-3-cyclohexyl-2-(3-isopropyl-3-{(3-methylphenyl)sulfonyl)amino}-2-oxo-1-pyrrolidinyl)propanoyl)amino}propylboronic acid

(1*R*)-1-{{((3-{{(benzyloxy)carbonyl}amino}-3-isopropyl-2-oxo-1-pyrrolidinyl)(phenyl)acetyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-{{((3-amino-3-isopropyl-2-oxo-1-pyrrolidinyl)(phenyl)acetyl)amino}propylboronic acid (+)-pinanediol ester hydrochloride;

(1*R*)-1-{{((3-isopropyl-3-((methylsulfonyl)amino)-2-oxo-1-pyrrolidinyl)(phenyl)acetyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-{{((3-isopropyl-2-oxo-3-{{(4-propylphenyl)sulfonyl}amino}-1-pyrrolidinyl)(phenyl)acetyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-{{((2*S*)-2-(3-{{(benzyloxy)carbonyl}amino}-3-isopropyl-2-oxo-1-pyrrolidinyl)-4-methylpentanoyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-{{((2*S*)-2-(3-amino-3-isopropyl-2-oxo-1-pyrrolidinyl)-4-methylpentanoyl)amino}propylboronic acid (+)-pinanediol ester hydrochloride;

(1*R*)-1-{{((2*S*)-2-{3-isopropyl-3-((methylsulfonyl)amino)-2-oxo-1-pyrrolidinyl)-4-methylpentanoyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-{{((2*S*)-2-(3-isopropyl-2-oxo-3-{{(4-propylphenyl)sulfonyl}amino}-1-pyrrolidinyl)-4-methylpentanoyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((2*S*)-3-cyclohexyl-2-(3-ethyl-3-((2*S*)-3-methyl-2-((2-pyrazinylcarbonyl)amino)butanoyl)amino)-2-oxo-1-pyrrolidinyl)propanoyl)amino)-3-butenylboronic acid (+)-pinanediol ester;

(1*R*)-1-((2*S*)-2-(3-((benzyloxy)carbonyl)amino)-3-isopropyl-2-oxo-1-piperidinyl)-3-cyclohexylpropanoyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((3-((tert-butoxycarbonyl)amino)-3-isopropyl-2-oxo-1-piperidinyl)(phenyl)acetyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((3-amino-3-isopropyl-2-oxo-1-piperidinyl)(phenyl)acetyl)amino}propylboronic acid hydrochloride (+)-pinanediol ester;

(1*R*)-1-((3-isopropyl-3-((methoxycarbonyl)amino)-2-oxo-1-piperidinyl)(phenyl)acetyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((3-(benzoylamino)-3-isopropyl-2-oxo-1-piperidinyl)(phenyl)acetyl)amino}propylboronic acid (+)-pinanediol ester;

(1*R*)-1-((3-isopropyl-3-((methylsulfonyl)amino)-2-oxo-1-piperidinyl)(phenyl)acetyl)amino}propylboronic acid (+)-pinanediol ester; and

(1*R*)-1-((3-isopropyl-3-((3-methylphenyl)sulfonyl)amino)-2-oxo-1-piperidinyl)(phenyl)acetyl)amino}propylboronic acid (+)-pinanediol ester;

or a pharmaceutically acceptable salt form thereof.

35 (New). A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 27 or pharmaceutically acceptable salt form thereof.

36 (New). A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 28 or pharmaceutically acceptable salt form thereof.

37 (New). A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 29 or pharmaceutically acceptable salt form thereof.

38 (New). A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 30 or pharmaceutically acceptable salt form thereof.

39 (New). A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 31 or pharmaceutically acceptable salt form thereof.

40 (New). A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 32 or pharmaceutically acceptable salt form thereof.

41 (New) . A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 33 or pharmaceutically acceptable salt form thereof.

42 (New) . A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 34 or pharmaceutically acceptable salt form thereof.

43 (New) . A method of inhibiting HCV NS3 protease which comprises contacting HCV NS3 protease with a therapeutically effective amount of a compound of Claim 27 or pharmaceutically acceptable salt form thereof.

44 (New) . A method of inhibiting HCV NS3 protease which comprises contacting HCV NS3 protease with a therapeutically effective amount of a compound of Claim 28 or pharmaceutically acceptable salt form thereof.

45 (New) . A method of inhibiting HCV NS3 protease which comprises contacting HCV NS3 protease with a therapeutically effective amount of a compound of Claim 29 or pharmaceutically acceptable salt form thereof.

46 (New) . A method of inhibiting HCV NS3 protease which comprises contacting HCV NS3 protease with a therapeutically effective amount of a compound of Claim 30 or pharmaceutically acceptable salt form thereof.

47 (New). A method of inhibiting HCV NS3 protease which comprises contacting HCV NS3 protease with a therapeutically effective amount of a compound of Claim 31 or pharmaceutically acceptable salt form thereof.

48 (New). A method of inhibiting HCV NS3 protease which comprises contacting HCV NS3 protease with a therapeutically effective amount of a compound of Claim 32 or pharmaceutically acceptable salt form thereof.

49 (New). A method of inhibiting HCV NS3 protease which comprises contacting HCV NS3 protease with a therapeutically effective amount of a compound of Claim 33 or pharmaceutically acceptable salt form thereof.

50 (New). A method of inhibiting HCV NS3 protease which comprises contacting HCV NS3 protease with a therapeutically effective amount of a compound of Claim 34 or pharmaceutically acceptable salt form thereof.

51 (New). A method of treating HCV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 27 or pharmaceutically acceptable salt form thereof.