Лекция 7

Стандартное дискретное распределение

I. Распределение Бернулли

Распределение Бернулли B_p (с параметром 0)

 ξ - число успехов при одном испытании, p - вероятность успеха при одном испытании

$$\begin{array}{c|cccc} \xi & 0 & 1 \\ \hline p & 1 - P(A) & P(A) \end{array}$$

Матожидание: $E\xi = p$

Дисперсия: $D\xi = p(1-p) = pq$

Ex. Индикатор события $I_A \in B_p$ как раз имеет распределение Бернулли, где p = P(A)

II. Биномиальное распределение

Биномиальное распределение $B_{n,p}$ (с параметрами n,p)

 ξ - число успехов в серии из n испытаний, p - вероятность успеха при одном испытании $p(\xi=k)=C_n^kp^kq^{n-k},\ k=0,1,\ldots,n\Longleftrightarrow \xi\in B_{n,p}$

Заметим, что $\xi=\xi_1+\xi_2+\cdots+\xi_n$, где $\xi_i\in B_p$ - число успехов при i-ой испытании

$$E\xi_i = p;$$
 $D\xi = pq$

$$E\xi = E\xi_1 + \dots + E\xi_n = p + \dots + p = \boxed{np}$$

$$D\xi = D\xi_1 + \dots + D\xi_n = pq + \dots + pq = \boxed{npq}$$

III. Геометрическое распределение

Геометрическое распределение G_p (с параметром p)

 ξ - номер 1-ого успешного испытания в бесконечной серии

$$p(\xi = k) = q^{k-1}p, \ k = 1, 2, 3, \dots \Longleftrightarrow \xi \in G_p$$

Матожидание
$$E\xi = \sum_{k=1}^{\infty} kp(\xi = k) = \sum_{k=1}^{\infty} kq^{k-1}p = p\sum_{k=1}^{\infty} kq^{k-1} = p\sum_{k=1}^{\infty} (q^k)' = p\left(\sum_{k=1}^{\infty} (q^k)\right)' = p\left(\frac{1}{1-q}\right)' = p\sum_{k=1}^{\infty} kq^{k-1}p = p\sum_{k=1}^{\infty} kq^{k-1} = p\sum_{k=1}^{\infty} (q^k)' = p\left(\sum_{k=1}^{\infty} (q^k)\right)' = p\left(\sum_{k=1}^{\infty} (q^k)\right)'$$

$$\frac{p}{p^2} = \frac{1}{p}$$

$$\begin{split} E\xi^2 &= \sum_{k=1}^{\infty} k^2 q_{k-1} p = p \sum_{k=1}^{\infty} k(k-1) q^{k-1} = pq \sum_{k=1}^{\infty} k(k-1) q^{k-2} + E\xi = pq (\sum_{k=1}^{\infty} q^k)'' + \frac{1}{p} = pq \left(\frac{1}{1-q}\right)'' + \frac{1}{p} = 2pq \frac{1}{(1-q)^3} + \frac{1}{p} = 2pq \frac{1}{p^3} + \frac{1}{p} = \frac{2q}{p^2} + \frac{1}{p} \\ D\xi &= E\xi^2 - (E\xi)^2 = \frac{2q}{p^2} + \frac{1}{p} - \frac{1}{p^2} = \frac{q}{p^2} \end{split}$$

IV. Распределение Пуассона

Распределение Пуассона Π_{λ} (с параметром $\lambda > 0$)

Def. Случайная величина ξ имеет распределение Пуассона с параметром $\lambda > 0$, если $p(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \ k = 0, 1, 2, \dots$

Покажем корректность определения - докажем, что сумма нижней строки равна 1:

$$\sum_{k=0}^{\infty} p_k = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \quad \sum_{k=0}^{\infty} \frac{\lambda_k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

ряд Тейлора для e^{x} $E\xi = \sum_{k=0}^{\infty} k \cdot \frac{\lambda^{k}}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{(k-1)!} = \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda = np$ $E\xi^{2} = \sum_{k=0}^{\infty} k^{2} \cdot \frac{\lambda^{k}}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} + e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!} = \lambda^{2} e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda^{2} e^{-\lambda} e^{\lambda} + \frac{\lambda^{k}}{k!} = \lambda^{2} e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{(k-2)!} + \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda^{2} e^{-\lambda} e^{\lambda} + \frac{\lambda^{k}}{k!} = \lambda^{2} e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{(k-2)!} + \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda^{2} e^{-\lambda} e^{\lambda} + \frac{\lambda^{k}}{k!} = \lambda^{2} e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{(k-2)!} + \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda^{2} e^{-\lambda} e^{\lambda} + \frac{\lambda^{k}}{k!} = \lambda^{2} e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{(k-2)!} + \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-2)!} = \lambda^{2} e^{-\lambda} e^{\lambda} + \frac{\lambda^{k}}{k!} = \lambda^{2} e^{-\lambda} e^{\lambda} = \lambda^{2} e^{\lambda} e^{\lambda} e^{\lambda} = \lambda^{2} e^{\lambda} e^{\lambda} e^{\lambda} = \lambda^{2} e^{\lambda} e^{\lambda} = \lambda^{2} e^{\lambda} e^{\lambda} = \lambda^{2} e^{\lambda}$

$$D\xi = E\xi^2 - (E\xi)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Задача о разорении игрока

Постановка задачи: играют 2 игрока, вероятность выигрыша первого игрока в одной игре равна p, q = 1 - p - вероятность его проигрыша (выигрыш второго)

В каждой игре разыгрывается 1 биткоин. Капитал первого игрока - k биткоинов, m-k биткоинов - капитал второго

Найти вероятность разорения первого игрока

Траектория капитала первого игрока будет выглядить как-то так:

Пусть r_k - интересующая нас вероятность разорение игрока при капитале k (то есть достижения оси абсцисс на графике)

$$\begin{split} r_k &= p \cdot r_{k+1} + q r_{k-1} \\ p r_{k+1} - r_k + (1-p) r_{k-1} &= 0, \quad r_0 = 1, r_m = 0 \\ p \lambda^2 - \lambda + (1-p) &= 0 \\ D &= 1 - 4 p (1-p) = 4 p^2 - 4 p + 1 = (2p-1)^2 \\ \lambda_{1,2} &= \frac{1 \pm (2p-1)}{2p}; \quad \lambda_1 = 1; \lambda_2 = \frac{2-2p}{2p} = \frac{q}{p} \\ \text{Обозначим } \lambda &= \frac{q}{p} \end{split}$$

Рассмотрим два случая:

• $p \neq \frac{1}{2}$ Тогда общее решение: $r_k = C_1 \lambda_1^k + C_2 \lambda_2^k = C_1 + C_2 \lambda^k$

Найдем частное решение:

$$\begin{cases} 1 = C_1 + C_2 \\ 0 = C_1 + C_2 \lambda^m \end{cases} \Longleftrightarrow \begin{cases} C_1 = 1 - C_2 \\ 1 - C_2 + C_2 \lambda_m = 0 \end{cases} \Longleftrightarrow \begin{cases} C_1 = 1 - C_2 \\ C_2 (1 - \lambda_m) = 1 \end{cases} \Longleftrightarrow \begin{cases} C_1 = 1 - \frac{1}{1 - \lambda^m} = \frac{-\lambda^m}{1 - \lambda^m} \\ C_2 = \frac{1}{1 - \lambda^m} \end{cases}$$

Посмотрим, что будет происходит при бесконечной игре (то есть когда $m \to \infty$ - капитал неограничен)

1) p < q, то есть $\lambda > 1$. Тогда $\lambda^m \to \infty$, $r_k = \frac{\lambda^k - \lambda^m}{1 - \lambda^m} = \frac{\frac{\lambda^k}{\lambda_m} - 1}{\frac{1}{\lambda^m} - 1} \xrightarrow[n \to \infty]{} 1$ - то есть первый игрок гарантированно разорится

2)
$$p > q$$
, то есть $\lambda < 1$. Тогда $\lambda^m \to 0$, $r_k = \frac{\lambda^k - \lambda^m}{1 - \lambda^m} \xrightarrow[n \to \infty]{} \lambda^k$ - то есть $r_k = \left(\frac{q}{p}\right)^k$

•
$$p = \frac{1}{2} \Longrightarrow D = 0$$

Тогда $\lambda_1 = \lambda_2 = 1$

Общее решение: $r_k = C_1 \lambda^k + C_2 k \lambda_k = C_1 + C_2 k$

Частное решение:

$$\begin{cases} 1 = C_1 \\ 0 = C_1 + C_2 m \end{cases} \iff \begin{cases} 1 = C_1 \\ -1 = C_2 m \end{cases} \iff \begin{cases} 1 = C_1 \\ C_2 = -\frac{1}{m} \end{cases}$$

При бесконечной игре:

 $r_k = 1 - \frac{k}{m} \xrightarrow[m \to \infty]{} 1$ - то есть при равной игре игрок неминуемо разорится

Случайное блуждание на прямой

Пусть в начальный момент времени находимся в начале координат. С вероятностью p идем на единицу вправо, с вероятностью q - влево

При $p = \frac{1}{2}$ мы рано или поздно попадем в любую точку числовой прямой

Можно привести аналогию с орлянкой: рано или поздно каждый игрок будет при сколь угодно большом выигрыше

Посмотрим на орлянку как на распределение Бернулли:

$$\begin{array}{c|cccc} \xi & -1 & 1 \\ \hline p & \frac{1}{2} & \frac{1}{2} \end{array}$$

$$E\xi = 0; \quad D\xi = 1$$

Пусть ξ - выигрыш первого после n игр.

$$E\xi = \sum_{i=1}^{n} E\xi_i = 0$$

$$D\xi = \sum_{i=1}^{n} D\xi_i = n$$

 $\sigma_{\xi} = \sqrt{n}$ - среднее квадратическое отклонение

Это означает, что при большом n СКО поглотит всю числовую прямую $\frac{S_n}{n} \to E \xi$

Закон больших чисел в этой ситуации говорит, что точка останется у 0, однако в то же время она может оказаться на любой точке на числовой прямой

 $\mathit{Ex.}$ По n конвертам случайным образом раскладывается m писем. Случайная величина $\mathit{\xi}$ число писем в своих конвертах

 $\Box A_i$ - число i письма в своем конверте, $\xi_i = I_A = \begin{cases} 0, & i\text{-oe} \text{ письмо} \text{ в не своем конверте} \\ 1, & i\text{-oe} \text{ письмо} \text{ в своем конверте} \end{cases}$

$$\xi = \sum_{i=1}^{n} \xi_i$$

$$E\xi_i = P(A_i) = \frac{1}{n}$$

$$D\xi_i = pq = \frac{1}{n}(1 - \frac{1}{n}) = \frac{n-1}{n^2}$$

 $E\xi = \sum_{i=1}^{n} E\xi_{i} = 1\frac{1}{n} = 1$ - в среднем будет одно письмо в своем конверте

$$D\xi = D(\xi_1 + \dots + \xi_n) = \sum_{i=1}^n D\xi_i + 2\sum_{i < j} \text{cov}(\xi_i, \xi_j)$$

Найдем ковариацию:

$$cov(\xi_i, \xi_j) = E\xi_i\xi_j - E\xi_iE\xi_j = \frac{1}{n(n-1)} - \frac{1}{n}\frac{1}{n} = \frac{n - (n-1)}{n^2(n-1)} = \frac{1}{n^2(n-1)}$$

Найдем ковариацию: $\operatorname{cov}(\xi_i,\xi_j) = E\xi_i\xi_j - E\xi_iE\xi_j = \frac{1}{n(n-1)} - \frac{1}{n}\frac{1}{n} = \frac{n-(n-1)}{n^2(n-1)} = \frac{1}{n^2(n-1)}$ Заметим, что для любых i,j,i < j: $\xi_i\xi_j = \begin{cases} 0, & \text{если хотя бы одно не в своем} \\ 1, & \text{если оба в своем} \end{cases}$

То есть $\xi_i \xi_j \in B_p$ и $E \xi_i \xi_j = P(\text{оба письма в своих}) = \frac{1}{n(n-1)}$

Получаем:
$$D\xi = n\frac{n-1}{n^2} + 2\frac{n(n-1)}{2}\frac{1}{n^2(n-1)} = \frac{n-1}{n} + \frac{1}{n} = 1$$