Equitable Equations: Confidence intervals and sample size

Problem 1

A fast-food restaurant needs to estimate the mean carbohydrate count in a new sandwich to within 15 grams. How large a sample is needed if the population standard deviation is $\sigma = 25g$? Use 95% confidence.

Problem 2

How many sandwiches would the restaurant need to test to estimate the mean carbohydrate count to within 5g?

Problem 3

Suppose the restaurant realizes that they've underestimated σ , the amount of variability in the carbs of their sandwiches. Would the sample sizes in problems 1 and 2 be increased or decreased?

$$7 = 1.960$$

$$7 = 1.960$$

$$7 = 1.960 =$$

2)
$$7 * \frac{\sigma}{rn} = 5 = 1.960 \frac{25}{rn}$$

 $(1.960125)^2 = n = 96.04 = 95$ sandwiches

3) The sample size will increase as o increases