2.6: Gradients and directional derivatives (Lec 7)

Asa Royal (ajr74)

February 2, 2024

Definition 1 (gradient). If $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ is differentiable, the **gradient** of f at (x, y, z) is the vector in space given by

 $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$

The gradient is denoted $\nabla f(x, y, z)$. It is really just the matrix of the derivative $\mathbf{D}f$ written as a vector (f is a real-valued function).

Remark. The gradient is a tool for computing directional derivatives.

Definition 2 (directional derivative). $D_{\vec{v}}$ is the directional derivative in a direction \vec{v} . It quantifies how the output of f changes with a nudge in the direction of \vec{v} .

$$D_{\vec{v}}(f) = \nabla f \cdot \vec{v}$$

We can express the same idea using limits:

$$D_{\vec{v}}f(\vec{a}) = \lim_{h \to 0} \frac{f(\vec{a} + h\vec{v}) - f(\vec{a})}{h}$$

The directional derivative is sometimes written as $\nabla_{\vec{v}} f$ or $\frac{\partial f}{\partial \vec{v}}$

Remark. Note that because scaling \vec{v} by c changes the output of our formula for $D_{\vec{v}}f$ by c, to calculate the precise amount f changes with a nudge in \vec{v} , we must ensure \vec{v} is a unit vector.

Remark. For some real-valued function $f: \mathbb{R}^2 \to \mathbb{R}$, we can visualize the directional derivative by slicing the surface of the function along the plane containing v, then looking at the slope of the resulting slice function.

Remark. For some $f(x_1, x_2, \ldots, x_n)$, $\frac{\partial f}{\partial x_1} = D_{\vec{e_1}}$. This tells us how much a nudge in the x_1 direction moves f.

Theorem 3 (Direction of gradient). The gradient points in the direction of steepest ascent.

Proof. Consider some unit vector \vec{v} and real-valued function f.

$$\begin{aligned} D_{\vec{v}}f &= \nabla f \cdot \vec{v} \\ &= \|\nabla f\| \|\vec{v}\| \cos \theta \\ &= \|\nabla f\| \cos \theta \end{aligned}$$

 $D_{\vec{v}}$ is maximized when $\cos \theta = 1$, which occurs when \vec{v} points in the same direction as ∇f . $D_{\vec{v}}$ is minimized when \vec{v} points in the negative gradient direction.

Proposition 4. The magnitude of the gradient tells us how quickly the function increases in the direction of steepest ascent.

Proof. Let f be a real valued function, and let $\vec{w} = \nabla f$.

$$D_{\vec{w}}f = \nabla f \cdot \vec{w}$$

$$= \frac{\nabla f \cdot \nabla f}{\|\nabla f\|}$$

$$= \frac{\|\nabla f\|^2}{\|\nabla f\|}$$

$$= \|\nabla f\|$$

Theorem 5 (Gradient is normal to level curve/surface). Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a map. Consider some x_0, y_0, z_0 on a level surface of f. The tangent vector to the path of the level surface, \vec{v} tells us which direction to go in to follow the level surface. But all points on the level surface have the same value of f(x, y, z) = c, which means $D_{\vec{v}} = 0 = \nabla f \cdot v$, so \vec{v} is orthogonal to ∇f , and thus ∇f is normal to the level surface.

Remark. Think of the graph of $f(x,y) = x^2 + y^2$. $\nabla f = \begin{bmatrix} 2x & 2y \end{bmatrix}$. Vectors in the direction of the gradient will always be orthogonal to the tangent vectors of level curves f(x,y) = c, circles centered at the origin.

Remark. Or think of hiking with a contour map. If you want to reach the highest elevation as quickly as possible, you walk in the direction perpendicular to the contours.

Definition 6 (tangent planes to level surfaces). Let S be the surfacer consisting of (x, y, z) s.t. f(x, y, z) = k for some constant k. The **tangent plane** of S at a point (x_0, y_0, z_0) of S is defined by the equation

$$\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

Remark. Resources:

1. Khan gradient/directional derivative videos: explanation of limit definition, illustration of "steepest" ascent.