Project

March 18, 2025

1 Credit Risk Modeling

1.1 Introduction

Credit risk modeling is a crucial aspect of financial analysis that helps assess the likelihood of a borrower defaulting on their credit obligations. This Python notebook applies machine learning techniques, including decision trees and SMOTE (Synthetic Minority Over-sampling Technique), to analyze and predict credit risk based on historical financial data.

1.2 Import libraries

To begin, we import essential Python libraries for data manipulation, visualization, machine learning, and handling imbalanced datasets: - pandas, numpy: Data handling and numerical operations - matplotlib: Data visualization - sklearn: Machine learning utilities, including classification models and metrics - imblearn: Oversampling technique (SMOTE) for balancing classes

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import itertools
from matplotlib import gridspec
from matplotlib.ticker import PercentFormatter

from sklearn.model_selection import train_test_split, cross_validate, KFold
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics, tree
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import classification_report, accuracy_score,u
confusion_matrix, roc_curve, auc

from imblearn.over_sampling import SMOTE
```

1.3 Import data

Import the data into a Pandas dataframe.

```
[2]: data = pd.DataFrame(pd.read_csv('credit.csv'))
```

1.4 Data exploration

Key statistics of the dataset are computed to understand its structure, including: - Mean, standard deviation, and range of numerical variables - Distribution of categorical variables

[3]: print(data.describe()) data.head()

	OBS#	CHK_ACCT	DURATION	HISTORY	NEW_CAR	\
count	1000.000000	-			1000.000000	•
mean	500.500000	1.577000	20.903000	2.54500	0.234000	
std	288.819436	1.257638	12.058814	1.08312	0.423584	
min	1.000000	0.000000	4.000000	0.00000	0.000000	
25%	250.750000	0.000000	12.000000	2.00000	0.000000	
50%	500.500000	1.000000	18.000000	2.00000	0.000000	
75%	750.250000	3.000000	24.000000	4.00000	0.000000	
max	1000.000000	3.000000	72.000000	4.00000	1.000000	
			D.4.D.T.O.T.V			,
	USED_CAR	FURNITURE	RADIOTV	EDUCATION	RETRAINING	\
count	1000.000000			1000.000000	1000.000000	•••
mean	0.103000	0.181000	0.280000	0.050000	0.097000	•••
std	0.304111	0.385211	0.449224	0.218054	0.296106	•••
min	0.000000	0.000000	0.000000	0.000000	0.000000	•••
25%	0.000000	0.000000	0.000000	0.000000	0.000000	•••
50%	0.000000	0.000000	0.000000	0.000000	0.000000	•••
75%	0.000000	0.000000	1.000000	0.000000	0.000000	•••
max	1.000000	1.000000	1.000000	1.000000	1.000000	•••
	AGE	OTHER_INSTALL	RENT	OWN_RE	S NUM_CREDIT	TS \
count	AGE 1000.000000	OTHER_INSTALL	RENT	OWN_RE	_	
count mean		-		_	0 1000.00000	00
	1000.000000	1000.000000	1000.000000	1000.00000	0 1000.00000 0 1.40700	00 00
mean	1000.000000 35.546000	1000.000000 0.186000	1000.000000 0.179000	1000.00000	0 1000.00000 0 1.40700 8 0.5776	00 00 54
mean std	1000.000000 35.546000 11.375469	1000.000000 0.186000 0.389301	1000.000000 0.179000 0.383544	1000.00000 0.71300 0.45258	0 1000.00000 0 1.40700 8 0.57769 0 1.00000	00 00 54 00
mean std min	1000.000000 35.546000 11.375469 19.000000	1000.000000 0.186000 0.389301 0.000000	1000.000000 0.179000 0.383544 0.000000	1000.00000 0.71300 0.45258 0.00000	0 1000.00000 0 1.40700 8 0.57769 0 1.00000	00 00 54 00
mean std min 25%	1000.000000 35.546000 11.375469 19.000000 27.000000	1000.000000 0.186000 0.389301 0.000000 0.000000	1000.000000 0.179000 0.383544 0.000000 0.000000	1000.00000 0.71300 0.45258 0.00000 0.00000	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000	00 00 54 00 00
mean std min 25% 50%	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000	1000.000000 0.186000 0.389301 0.000000 0.000000	1000.000000 0.179000 0.383544 0.000000 0.000000	1000.000000 0.71300 0.45258 0.00000 0.00000 1.00000	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000	00 00 54 00 00 00
mean std min 25% 50% 75%	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000 42.000000 75.000000	1000.000000 0.186000 0.389301 0.000000 0.000000 0.000000 1.000000	1000.000000 0.179000 0.383544 0.000000 0.000000 0.000000 1.000000	1000.00000 0.71300 0.45258 0.00000 0.00000 1.00000 1.00000	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000 0 4.00000	00 54 00 00 00 00 00
mean std min 25% 50% 75% max	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000 42.000000 75.000000	1000.000000 0.186000 0.389301 0.000000 0.000000 0.000000 1.000000 NUM_DEPENDENTS	1000.000000 0.179000 0.383544 0.000000 0.000000 0.000000 1.000000 TELEPHONI	1000.00000 0.71300 0.45258 0.00000 1.00000 1.00000 1.00000 1.00000	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000 0 4.00000	00 00 54 00 00 00 00 00
mean std min 25% 50% 75% max	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000 42.000000 75.000000	1000.000000 0.186000 0.389301 0.000000 0.000000 0.000000 1.000000 NUM_DEPENDENTS 1000.000000	1000.000000 0.179000 0.383544 0.000000 0.000000 0.000000 1.0000000 TELEPHONI	1000.00000 0.71300 0.45258 0.00000 1.00000 1.00000 1.00000 E FOREI	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000 0 4.00000 GN RESPON	00 00 54 00 00 00 00 00 00 NSE
mean std min 25% 50% 75% max count mean	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000 42.000000 75.000000 JOB 1000.0000000 1.904000	1000.000000 0.186000 0.389301 0.000000 0.000000 0.000000 1.0000000 NUM_DEPENDENTS 1000.0000000 1.155000	1000.000000 0.179000 0.383544 0.000000 0.000000 0.000000 1.000000 TELEPHONI 1000.000000 0.404000	1000.00000 0.71300 0.45258 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.0370	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000 0 2.00000 0 4.00000 GN RESPOI 00 1000.0000 0 0.7000	00 54 00 00 00 00 00 00 MSE 000
mean std min 25% 50% 75% max count mean std	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000 42.000000 75.000000 JOB 1000.000000 1.904000 0.653614	1000.000000 0.186000 0.389301 0.000000 0.000000 0.000000 1.000000 NUM_DEPENDENTS 1000.000000 1.155000 0.362086	1000.000000 0.179000 0.383544 0.000000 0.000000 0.000000 1.000000 TELEPHONI 1000.000000 0.404000 0.490943	1000.000000 0.71300 0.45258 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.0370 0.1888	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000 0 2.00000 GN RESPON 00 1000.0000 00 0.7000 56 0.4584	00 00 54 00 00 00 00 00 NSE 000 000
mean std min 25% 50% 75% max count mean std min	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000 42.000000 75.000000 JOB 1000.000000 1.904000 0.653614 0.000000	1000.000000 0.186000 0.389301 0.000000 0.000000 0.000000 1.000000 1.0000000 1.155000 0.362086 1.000000	1000.000000 0.179000 0.383544 0.000000 0.000000 0.000000 1.000000 TELEPHONI 1000.000000 0.404000 0.490945 0.000000	1000.000000 0.71300 0.45258 0.00000 1.00000 1.00000 1.00000 E FOREI 0 1000.0000 0 0.3700 3 0.1888 0 0.0000	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000 0 4.00000 GN RESPON 00 1000.0000 00 0.7000 56 0.4584 00 0.0000	00 00 54 00 00 00 00 00 NSE 000 000 487
mean std min 25% 50% 75% max count mean std min 25%	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000 42.000000 75.000000 JDB 1000.000000 1.904000 0.653614 0.000000 2.000000	1000.000000 0.186000 0.389301 0.000000 0.000000 0.000000 1.000000 1.000000 1.155000 0.362086 1.000000 1.000000	1000.000000 0.179000 0.383544 0.000000 0.000000 0.000000 1.0000000 1.0000000 0.404000 0.490943 0.00000000 0.000000000000000000000000	1000.000000 0.71300 0.45258 0.00000 0.00000 1.00000 1.00000 1.000000 0.0370 3 0.1888 0 0.00000 0 0.00000	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000 0 4.00000 GN RESPOI 00 1000.0000 0 0.7000 56 0.4584 00 0.0000	00 00 54 00 00 00 00 00 MSE 000 000 487
mean std min 25% 50% 75% max count mean std min 25% 50%	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000 42.000000 75.000000 JOB 1000.000000 1.904000 0.653614 0.000000 2.000000	1000.000000 0.186000 0.389301 0.000000 0.000000 0.000000 1.000000 1.000000 1.155000 0.362086 1.000000 1.000000 1.0000000	1000.000000 0.179000 0.383544 0.000000 0.000000 0.000000 1.0000000 1.0000000 0.404000 0.490943 0.0000000 0.00000000 0.00000000000000	1000.00000 0.71300 0.45258 0.00000 1.00000 1.00000 1.00000 1.00000 0.0370 3.0.1888 0.00000 0.00000 0.00000 0.00000	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000 0 2.00000 0 4.00000 GN RESPON 00 0.7000 00 0.4584 00 0.0000 00 0.0000 00 0.0000 00 0.0000 00 0.0000	00 00 54 00 00 00 00 00 MSE 000 000 487 000 000
mean std min 25% 50% 75% max count mean std min 25%	1000.000000 35.546000 11.375469 19.000000 27.000000 33.000000 42.000000 75.000000 JDB 1000.000000 1.904000 0.653614 0.000000 2.000000	1000.000000 0.186000 0.389301 0.000000 0.000000 0.000000 1.000000 1.000000 1.155000 0.362086 1.000000 1.000000	1000.000000 0.179000 0.383544 0.000000 0.000000 0.000000 1.0000000 1.0000000 0.404000 0.490943 0.0000000 0.0000000 0.000000000000000	1000.000000 0.71300 0.45258 0.00000 1.00000 1.00000 1.00000 1.000000 0.0370 3 0.1888 0 0.0000 0 0.0000 0 0.0000 0 0.0000	0 1000.00000 0 1.40700 8 0.57769 0 1.00000 0 1.00000 0 2.00000 0 4.00000 GN RESPON 00 1000.0000 00 0.7000 00 0.0000 00 0.0000 00 0.0000 00 1.0000 00 1.0000	00 00 54 00 00 00 00 00 000 487 000 000 000

[8 rows x 32 columns]

[3]:	OBS#	CHK_	ACCT	DURAT	'ION	HISTO	DRY	NEW_C	AR (JSED_CA	R FURNIT	URE	RADIOTV	\
0	1		0		6		4		0		0	0	1	
1	2		1		48		2		0		0	0	1	
2	3		3		12		4		0		0	0	0	
3	4		0		42		2		0		0	1	0	
4	5		0		24		3		1		0	0	0	
	EDUCATION RETRAINING		AGE	ОТНІ	ER_INS	ТАТ.Т.	RENT	OWN_RES	MIIM	_CREDITS	\			
0	дроо	0	101110	C		67	01111		0	0	1	11011	2	`
1		0		C		22			0	0	1		1	
2		1		C		49			0	0	1		1	
3		0		C	•••	45			0	0	0		1	
4		0		•	·	53			0	0	0		2	
-		v			•••	00			Ů	Ü	Ü		2	
	JOB	OB NUM_DEPENDENTS TELEI		PHONE	FOI	REIGN	RESF	PONSE						
0	2			1		1		0		1				
1	2			1		0		0		0				
2	1			2		0		0		1				
3	2			2		0		0		1				
4	2			2		0		0		0				

[5 rows x 32 columns]

1.5 Data visualization

The response variable (RESPONSE), indicating whether a borrower defaults, is visualized: - Absolute frequency bar chart - Normalized frequency distribution

```
ax0 = plt.text(['Yes'], counts[1]/2, counts[1]) #add text box with count of_{\square}
 ⇔fraudulent cases
# Normalized values
ax1 = plt.subplot(gs[1])
ax1 = plt.bar(['Data'], [counts norm[0]], label='No', color = "royalblue")
ax1 = plt.bar(['Data'], [counts_norm[1]], bottom=counts_norm[0], label='Yes',__
 ⇔color = "lightblue")
ax1 = plt.legend(bbox_to_anchor=(1, 1))
ax1 = plt.title('No vs. Yes:\n Relative distribution\n RESPONSE target_
 ⇔variable')
ax1 = plt.ylabel('frequency')
ax1 = plt.text(['Data'],counts_norm[0]/2, '{}%'.format((counts_norm[0]*100).
 \rightarrowround(1)))
ax1 = plt.text(['Data'],(counts_norm[1]/2)+counts_norm[0], '{}%'.

¬format((counts_norm[1]*100).round(1)))

plt.tight_layout()
plt.show()
```


1.6 Data preprocessing

Before training the models: - The response variable is separated from feature variables - Non-relevant columns are removed

```
[5]: FM = data.iloc[:, 1:-1] # Selecting all features except the first and last_
column

TV = data.iloc[:, -1] # Selecting the target variable
```

1.7 Data split

Data is split into training (70%) and test (30%) sets

```
[6]: X_train, X_test, y_train, y_test = train_test_split(FM, TV, test_size=0.3,__
     →random_state=1234)
     #normalize absolute count values for plotting
     train_dist = y_train.value_counts() / len(y_train)
     test_dist = y_test.value_counts() / len(y_test)
     data_dist = data['RESPONSE'].value_counts() / len(data)
     fig, ax = plt.subplots()
     ax.barh(['Test','Train','Data'], [test_dist[0], train_dist[0], data_dist[0]],
      ⇔color='lightblue', label='Bad')
     ax.barh(['Test','Train','Data'], [test_dist[1], train_dist[1], data_dist[1]],
      ⇔left=[test_dist[0], train_dist[0], data_dist[0]], color='royalblue', □
     →label='Good')
     ax.set title('Split visualization\n RESPONSE target variable')
     ax.legend(loc='upper left')
     plt.xlabel('Proportion')
     plt.ylabel('Partition')
     for part, a, b in zip(['Test', 'Train', 'Data'], [test_dist[0], train_dist[0],

data_dist[0]], [test_dist[1], train_dist[1], data_dist[1]]):

         plt.text(a/2, part, str(np.round(a, 2)))
         plt.text(b/2+a, part, str(np.round(b, 2)));
```


1.8 Build an (unbalanced) Decision Tree model

A Decision Tree classifier is built on the original unbalanced dataset using: - DecisionTreeClassifier() with parameters: - criterion='gini' - $\max_{depth=3}$ - $\min_{samples_{dest}=3}$

Accuracy of the model is calculated using accuracy_score()

```
[7]: clf = tree.DecisionTreeClassifier(criterion = "gini", random_state = 100, clf.fit(X_train, y_train)

DecisionTreeClassifier(max_depth=3, min_samples_leaf=3, random_state=100)

y_pred = clf.predict(X_test)

y_pred_probs = clf.predict_proba(X_test)

print ("Accuracy is: ", (accuracy_score(y_test,y_pred)*100).round(2))
```

Accuracy is: 69.67

1.9 Rebalancing with SMOTE

To address the imbalance in the dataset: - SMOTE is applied to generate synthetic minority class samples - A new Decision Tree model is trained on the balanced dataset - Accuracy of the SMOTE-based model is evaluated

```
[8]: sm = SMOTE(random_state=42, sampling_strategy='minority')
X_res, y_res = sm.fit_resample(X_train, y_train)
```

1.9.1 Build a balanced Decision Tree model

Accuracy is: 63.67

1.10 Model evaluation

1.10.1 1.Confusion Matrix

Confusion matrices are plotted for both models (with and without SMOTE) to assess performance: - True Positives (TP), False Positives (FP) - True Negatives (TN), False Negatives (FN)

```
[10]: # WITHOUT SMOTE
      def plot_confusion_matrix(cm, classes,
                                normalize=False,
                                title='Confusion matrix',
                                cmap=plt.cm.Blues):
          if normalize:
              cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
              #print("Normalized confusion matrix")
          #else:
               print('Confusion matrix, without normalization')
          #print(cm)
          plt.imshow(cm, interpolation='nearest', cmap=cmap)
          plt.title(title)
          plt.colorbar()
          tick_marks = np.arange(len(classes))
          plt.xticks(tick_marks, classes, rotation=45)
          plt.yticks(tick_marks, classes)
```

```
fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
    plt.tight_layout()
    plt.ylim([1.5, -0.5])
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
class_names = ['Bad', 'Good']
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
plt.figure(figsize=(13, 5))
plt.subplot(121)
plot_confusion_matrix(cnf_matrix, classes=class_names,
                      title='Confusion matrix, without normalization without ⊔
 SMOTE')
# Plot normalized confusion matrix
plt.subplot(122)
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
                      title='Normalized confusion matrix without SMOTE')
plt.show()
#WITH SMOTE
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        #print("Normalized confusion matrix")
    #else:
        print('Confusion matrix, without normalization')
    #print(cm)
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
```

```
plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
    plt.tight_layout()
    plt.ylim([1.5, -0.5])
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
class_names = ['Bad', 'Good']
cnf_matrix = confusion_matrix(y_test, y_pred_1)
np.set_printoptions(precision=2)
plt.figure(figsize=(13, 5))
plt.subplot(121)
plot_confusion_matrix(cnf_matrix, classes=class_names,
                      title='Confusion matrix, without normalization with⊔
 SMOTE')
plt.subplot(122)
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
                      title='Normalized confusion matrix with SMOTE')
plt.show()
```


1.10.2 2.ROC and AUC

The ROC curve and AUC score are computed for both models: - roc_curve() generates False Positive Rate (FPR) and True Positive Rate (TPR) - auc() computes the Area Under the Curve (AUC) - Higher AUC values indicate better classification performance

```
[11]: #AUC WITHOUT SMOTE
      fpr_1, tpr_1, thresholds_1 = roc_curve(y_test, y_pred_probs[:,1])
      roc_auc_1 = auc(fpr_1, tpr_1)
      print("AUC score on Testing: " + str(roc_auc_1))
      #AUC WITH SMOTE
      fpr 2, tpr 2, thresholds 2 = roc_curve(y test, y_pred_probs 1[:,1])
      roc_auc_2 = auc(fpr_2, tpr_2)
      print("AUC score on Testing: " + str(roc_auc_2))
      #ROC WITHOUT SMOTE
      fig, axs = plt.subplots(1,1, figsize=(10,8))
      plt.title('ROC (Receiver Operating Characteristic) WITHOUT SMOTE')
      plt.plot(fpr_1, tpr_1, 'royalblue', label='AUC = %0.4f'% roc_auc_1)
      plt.legend(loc='best')
      plt.plot([0,1],[0,1],color='black', linestyle='--')
      plt.xlim([0,1])
      plt.ylim([0,1])
      plt.ylabel('True Positive Rate (TPR)')
      plt.xlabel('False Positive Rate (FPR)');
      #ROC WITH SMOTE
      fig, axs = plt.subplots(1,1, figsize=(10,8))
      plt.title('ROC (Receiver Operating Characteristic) WITH SMOTE')
      plt.plot(fpr_2, tpr_2, 'royalblue', label='AUC = %0.4f'% roc_auc_2)
```

```
plt.legend(loc='best')
plt.plot([0,1],[0,1],color='black', linestyle='--')
plt.xlim([0,1])
plt.ylim([0,1])
plt.ylabel('True Positive Rate (TPR)')
plt.xlabel('False Positive Rate (FPR)');
```

AUC score on Testing: 0.7089960751910762 AUC score on Testing: 0.6867382772154516

1.11 Results

Based on confusion matrix, ROC, and AUC, both models perform quite similarly. Therefore, there is no clear outperformer model.

Using MS Excel, I calculated expected values for both models with test set priors:

Without SMOTE: 5.67 € (per customer) With SMOTE: 47.67 € (per customer)

This is creates a much larger gap between the performance of these two models. Hence, the misclassification costs do changes our preferred model to the one with SMOTE.

1.12 CONCLUSION

Both models perform similarly in accuracy, ROC and AUC. In their confusion matrices, model without SMOTE has a lot of false positives, and model with SMOTE has only a small amount of false positives. Taking into account misclassification costs, these false negatives are the most expensive. Therefore after calculating expected values for these two similarly performing models, the 8.4 times greated expected value resolves my choise of model to deploy to be the model with Smote.