Neural Radiance Fields and How To Control Them

Kacper Kania

Human Rendering

Applications

Applications

Problems

Problems

3D Photography with Neural Radiance Fields

CoNeRF: Controllable Neural Radiance Fields

Kacper Kania^{1,2} Kwang Moo Yi¹ Marek Kowalski⁴ Tomasz Trzciński² Andrea Tagliasacchi^{3,5}

University of British Columbia¹ Warsaw University of Technology² University of Toronto³ Microsoft⁴ Google Research⁵

Project webpage: conerf.github.io

Manipulating 3D photography

Proposed method

Video

Annotated samples

Image synthesis

Pipeline

 β – learnable latent

 α – predicted attributes

 \mathbf{x} – coordinates

 \mathcal{K} – canonicalization network

 \mathcal{M} – masking network

 \mathcal{R} – rendering network

Canonicalization

Rendering

Filling the annotations

frowning smiling 19

 Left Eye -1 1
 Left Eye -1 1
 Assembling -1 1
 Pendulum -1 1

 Right Eye -1 1
 Right Eye -1 1

 Mouth -1 1
 Mouth -1 1

40 BPM 48 BPM 120 BPM 0 BPM 2

Method	PSNR ↑	MS-SSIM ↑	LPIPS ↓
NeRF	28.795	0.951	0.210
NeRF + Latent [30]	32.653	0.981	0.182
NeRFies [35]	32.274	0.981	0.180
HyperNeRF [36]	32.520	0.981	0.169
$\overline{ ext{Ours-}\mathcal{M}}$	32.061	0.979	0.167
Ours	32.342	0.981	0.168

	Real (interpolation)			Synthetic (novel view & attr.)		
Model	PSNR ↑	MS-SSIM ↑	LPIPS \	PSNR ↑	MS-SSIM ↑	LPIPS ↓
Base (\mathcal{L}_{recon})	32.457	0.981	0.168	24.407	0.718	0.173
$+\mathcal{L}_{ ext{enc}}$	32.478	0.982	0.167	27.018	0.871	0.164
$+\mathcal{L}_{ ext{enc}}+\mathcal{L}_{ ext{attr}}$	32.254	0.981	0.167	27.322	0.873	0.147
$+\mathcal{L}_{enc}+\mathcal{L}_{attr}+\mathcal{L}_{mask}$	32.342	0.981	0.168	32.394	0.972	0.139

CoNeRF: Controllable Neural Radiance Fields

Kacper Kania^{1,2} Kwang Moo Yi¹ Marek Kowalski⁴ Tomasz Trzciński² Andrea Tagliasacchi^{3,5}

University of British Columbia¹ Warsaw University of Technology² University of Toronto³ Microsoft⁴ Google Research⁵

Project webpage: conerf.github.io

Final remarks

Limitations

Original

0 BPM

40 RPM

Extensions

A-NeRF: Surface-free Human 3D Pose Refinement via Neural Rendering

Neural Radiance Fields and How To Control Them

Kacper Kania