Introdução à Simulação

Introdução à Simulação

- "Imitação" de uma operação ou de um processo do mundo real.
- Independente do uso de computadores
- Geração de uma "história artificial" de um sistema
 - →É usada como uma ferramenta para predizer os efeitos de uma mudança em sistemas existentes e também como uma ferramenta de projeto para avaliar e validar o desempenho de novos sistemas.

Introdução à Simulação

 A simulação é feita através da manipulação de um modelo matemático, e da observação dos resultados.

Modelos

- Formulações matemáticas cálculo diferencial,
 teoria da probabilidades, métodos algébricos, etc.
- "Imitação" do comportamento do sistema num certo intervalo de tempo – quando o sistema é tão complexos que o modelo matemático não pode ser obtido analiticamente

Uso da Simulação

- Estudar as interações internas de um sistema complexo
- Observar efeitos de alterações no comportamento do modelo.
- Adquirir maior conhecimento sobre o modelo
- Identificar as variáveis mais importantes de um modelo.
- Experimentar novos projetos ou novos procedimentos.
- Verificar soluções analíticas validação.

Vantagens

- Estudo de novas políticas, procedimentos, etc. sem interferência no sistema real.
- Teste de novos equipamentos, arranjos físicos, etc. antes de se investir recursos.
- Verificação de hipóteses de como e por que certos fenômenos ocorrem
- Permite que o fenômeno em estudo possa ser acelerado ou retardado.
- Identificação do papel das variáveis no desempenho do sistema
- Identificação de "Gargalos"
- Perguntas do tipo "E se...?" podem ser respondidas.

Desvantagens

- A construção de modelos é considerada uma "arte".
- Os resultados da simulação podem ser difíceis de interpretar.
- A modelagem e a análise da simulação podem consumir muito tempo e muitos recursos

Áreas de aplicação

- Sistemas de Manufatura
 - Sistemas de manipulação e movimentação de materiais; Modelo distribuído para manufatura integrada por computador, programação de atividades com limitação de recursos
- Sistemas de Saúde
 - Otimização do atendimento em ambulatórios;
 Gerenciamento dos recursos hospitalares
- Sistemas envolvendo recursos naturais
 - Gerenciamento de sistemas de coleta de lixo;
 Operação eficiente de plantas nucleares; Atividades de restauração do ambiente

Áreas de aplicação

- Sistemas de Transporte
 - Transferências de cargas; Operações de containers em portos
- Sistemas de restaurantes e entretenimento
 - Análise do fluxo de clientes em fast-foods;
 Determinação do número ideal de funcionários de empresas de serviços
- Reengenharia e processo de negócios
 - Integração de sistemas baseado no fluxo de tarefas ;
 Análise de soluções
- Desempenho de sistemas computacionais
 - Sistemas com arquitetura Cliente/Servidor ; Redes heterogêneas

Sistemas

Sistema

 um grupo de objetos que estão agregados de acordo com uma relação de interdependência para atingir certos objetivos

Fronteira do sistema.

definir a fronteira entre o sistema e seu ambiente.
 Esta definição depende da finalidade do estudo.

Componentes de um sistema

- Entidade um objeto de interesse em um sistema.
- Atributo uma propriedade da entidade.
- Atividade representa uma ação.

Sistemas

- Classificação:
 - Discretos o estado das variáveis é alterado somente em instantes específicos. Exemplo- banco
 - Contínuos o estado das variáveis é alterado continuamente ao longo do tempo. Exemplo - o nível de água em uma represa

Modelos

- O modelo é uma representação de um sistema com o intuito de estuda-lo.
 - É uma simplificação do sistema.
 - Deve ser suficientemente detalhado para permitir conclusões válidas
 - O modelo deve conter somente os componentes que são relevantes para o caso.
- Tipos de modelos
 - Determinísticos não contêm variáveis aleatórias; têm um conjunto conhecido de entradas, os quais resultarão em um único conjunto de saídas.
 - Estocásticos possuem uma ou mais variáveis aleatórias como entrada que levam a saídas aleatórias.

Simulação Monte Carlo

- Precursora dos modernos métodos de simulação
 - Mantem o foco sobre as variáveis de interesse
 - Uma ou mais destas variáveis tem seus valores simulados (gerados artificialmente). São variáveis probabilisticas (podem assumir um conjunto de valores que ocorrem com uma determinada frequencia)
 - É analisado o efeito destes valores simulados sobre as outras variáveis

Simulação de sistemas a eventos discretos

- Análise de sistemas no qual o estado (discreto) das variáveis muda apenas com a ocorrência de eventos (instantâneos). Os modelos de simulação são analisados por métodos numéricos.
 - Métodos analíticos empregam o raciocínio dedutivo/matemático para resolver um modelo
 - Métodos numéricos empregam procedimentos computacionais para resolver modelos matemáticos. Os modelos são executados ao invés de resolvidos.

Simulação de sistemas a eventos discretos

- Toda simulação de eventos discretos descreve (de forma direta ou indireta) situações de fila.
 - Em geral, qualquer modelo de eventos discretos é composto por uma rede de filas inter-relacionadas
 - Toda fila é governada por 2 eventos principais: chegadas e partidas. Apenas nestes instantes é que o sistema deve ser examinado (coleta de dados)

– Uma empresa necessita de uma previsão de demanda de um certo produto para os próximos 10 dias. A demanda é aleatória e sua distribuição de probabilidade é mostrada na figura.

1. Determinar a distribuição acumulada de probabilidade.

Distribuição acumulada

2. Atribuição de etiquetas

Demanda/dia	Etiquetas		
0	00-04		
1	05-14		
2	15-29		
3	30-59		
4	60-84		
5	85-99		

- 3. Execução do modelo, usando números aleatórios para determinação dos valores das variáveis aleatórias
 - Números aleatórios gerados:14,74,24,87,07,45,26,66,26,94

• Padrão de demanda simulado:

Demanda/dia	Etiquetas		
0	00-04		
1	05-14		
2	15-29		
3	30-59		
4	60-84		
5	85-99		

Dia	Num Aleat.	Demanda		
1	14	1		
2	74	4		
3	24	2		
4	87	5		
5	07	1		
6	45	3		
7	26	2		
8	66	4		
9	26	2		
10	94	5		

Observações

- As distribuições de probabilidade são baseadas em históricos e/ou estimativas
- Os valores não necessariamente são inteiros.
- Valores devem ser omitidos, se p = 0.
- Os dígitos das etiquetas devem ser iguais ao número de casas decimais das probabilidades.

 Suponha a função objetivo z= 5x₁ + 2x₂ + x₃ onde as probabilidades para os valores das variáveis são dadas abaixo:

• Distribuições acumuladas de probabilidade

X1	Etiqueta
0	00-09
1	10-29
2	30-54
3	55-79
4	80-94
5	95-99

X2	Etiqueta
2	00-24
3	25-54
4	55-79
5	80-99

X3	Etiqueta
4	0-2
5	3-7
6	8-9

Num	N.A. x ₁	X ₁	N.A. x ₂	X ₂	N.A. x ₃	X ₃	Z
1	43	2	22	2	1	4	18
2	96	5	50	3	8	6	37
3	57	3	13	2	0	4	23
4	53	2	36	3	2	4	20
5	14	1	91	5	7	5	20
6	03	0	58	4	6	5	13
7	33	2	45	3	1	4	20
8	40	2	43	3	3	5	21
•••							
N							

 Podemos encontrar a distribuição de probabilidade para a função objetivo, mostrada abaixo.

- Da distribuição acima, podemos tirar algumas informações, como por exemplo, que a probabilidade do valor da função objetivo ser = 20 é de 30%
- 8 tentativas é um número pequeno para esse tipo de conclusão, mas o propósito aqui é ilustrar o conceito.
- Para um resultado mais seguro, deveríamos ter um grande número de tentativas.

Observações

Para mais de uma variável aleatória

 aleatórios diferentes, para evitar correlação indesejada ou inexistente, mesmo que as variáveis sejam dependentes

 As distribuições de probabilidade podem ser teóricas ou empíricas