

FIGURA 9

TEC Visual 13.3C mostra como o círculo osculador muda conforme um ponto se move ao longo de uma curva.

$$x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}$$

Para o gráfico da Figura 9 usamos as equações paramétricas do círculo:

$$x = \frac{1}{2}\cos t$$
 $y = \frac{1}{2} + \frac{1}{2}\sin t$

Resumimos aqui as fórmulas para os vetores tangente unitário, normal unitário e binormal e para a curvatura.

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \qquad \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \qquad \mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

Exercícios 13.3

1-6 Determine o comprimento da curva dada.

- 1. $\mathbf{r}(t) = \langle t, \cos t, 3 \sin t \rangle$, $-5 \le t \le 5$ < < t, $3\cos t$, $3\sin t >$
- **2.** $\mathbf{r}(t) = \langle 2t, t^2, \frac{1}{3}t^3 \rangle, \quad 0 \le t \le 1$
- 3. $\mathbf{r}(t) = \sqrt{2}t\,\mathbf{i} + e^t\,\mathbf{j} + e^{-t}\,\mathbf{k}, \quad 0 \le t \le 1$
- **4.** $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + \ln \cos t \mathbf{k}, \quad 0 \le t \le \pi/4$
- **5.** $\mathbf{r}(t) = \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}, \quad 0 \le t \le 1$
- **6.** $\mathbf{r}(t) = 12t \,\mathbf{i} + 8t^{3/2} \,\mathbf{j} + 3t^2 \,\mathbf{k}, \quad 0 \le t \le 1$
- 7-9 Encontre o comprimento da curva com precisão de quatro casas decimais. (Use sua calculadora para aproximar a integral.)
- 7. $\mathbf{r}(t) = \langle \sqrt{t}, t, t^2 \rangle, \quad 1 \le t \le 4$
- **8.** $\mathbf{r}(t) = \langle t, e^{-t}, te^{-t} \rangle, \quad 1 \le t \le 3$
- **9.** $\mathbf{r}(t) = \langle \operatorname{sen} t, \operatorname{cos} t, \operatorname{tg} t \rangle, \quad 0 \le t \le \pi/4$
- **10.** Trace a curva com equações paramétricas x = sen t, y = sen 2t, z = sen 3t. Encontre o comprimento total desta curva com precisão de quatro casas decimais.
 - 11. Seja C a curva de intersecção do cilindro parabólico $x^2 = 2y$ e da superfície 3z = xy. Encontre o comprimento exato de C da origem até o ponto (6, 18, 36).
 - 12. Encontre, com precisão de quatro casas decimais, o comprimento da curva de intersecção do cilindro $4x^2 + y^2 = 4$ com o plano x + y + z = 2.
 - 13-14 Reparametrize a curva com relação ao comprimento de arco medido a partir do ponto onde t = 0 na direção crescente de t.
 - **13.** $\mathbf{r}(t) = 2t \, \mathbf{i} + (1 3t) \, \mathbf{j} + (5 + 4t) \, \mathbf{k}$
 - **14.** $\mathbf{r}(t) = e^{2t} \cos 2t \, \mathbf{i} + 2 \, \mathbf{j} + e^{2t} \sin 2t \, \mathbf{k}$
 - 15. Suponha que você comece no ponto (0, 0, 3) e se mova 5 unidades ao longo da curva x = 3 sen t, y = 4t, z = 3 cos t na direção positiva. Onde você está agora?
 - **16.** Reparametrize a curva

 $\mathbf{r}(t) = \left(\frac{2}{t^2 + 1} - 1\right)\mathbf{i} + \frac{2t}{t^2 + 1}\mathbf{j}$

em relação ao comprimento do arco medido a partir do ponto (1, 0) na direção crescente de t. Expresse a reparametrização em sua forma mais simples. O que você pode concluir sobre a curva?

17-20

- (a) Determine os vetores tangente e normal unitários $\mathbf{T}(t)$ e $\mathbf{N}(t)$.
- (b) Utilize a Fórmula 9 para encontrar a curvatura.
- 17. $\mathbf{r}(t) = \langle t, 3 \cos t, 3 \sin t \rangle$
- **18.** $\mathbf{r}(t) = \langle t^2, \operatorname{sen} t t \cos t, \cos t + t \operatorname{sen} t \rangle, \quad t > 0$
- **19.** $\mathbf{r}(t) = \langle \sqrt{2} t, e^t, e^- t \rangle$
- **20.** $\mathbf{r}(t) = \langle t, \frac{1}{2}t^2, t^2 \rangle$
- 21–23 Utilize o Teorema 10 para encontrar a curvatura.
- **21.** $\mathbf{r}(t) = t^3 \mathbf{j} + t^2 \mathbf{k}$
- **22.** $\mathbf{r}(t) = t \, \mathbf{i} + t \, \mathbf{j} + (1 + t^2) \, \mathbf{k}$
- **23.** $\mathbf{r}(t) = 3t \, \mathbf{i} + 4 \, \text{sen} \, t \, \mathbf{j} + 4 \, \text{cos} \, t \, \mathbf{k}$
- **24.** Encontre a curvatura da curva $\mathbf{r}(t) = \langle e^t \cos t, e^t \sin t, t \rangle$ no ponto (1, 0, 0).
- **25.** Encontre a curvatura de $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ no ponto (1, 1, 1).
- **26.** Trace o gráfico da curva com equações paramétricas $x = \cos t$, y = sen t, z = sen 5t e calcule a curvatura no ponto (1, 0, 0).
 - 27–29 Use a Fórmula 11 para encontrar a curvatura.
 - **27.** $y = x^4$
- **28.** y = tg x
- **29.** $y = xe^x$
- 30–31 Em que ponto a curva tem curvatura máxima? O que acontece com a curvatura quando $x \rightarrow \infty$?
- **30.** $y = \ln x$
- **31.** $y = e^x$
- 32. Determine a equação de uma parábola que tenha curvatura 4 na origem.

- **33**. (a) A curvatura da curva *C* mostrada na figura é maior em *P* ou em *Q*? Explique.
 - (b) Estime a curvatura em P e Q desenhando o círculo osculador nesses pontos.

34–35 Utilize uma calculadora gráfica ou um computador para traçar na mesma tela a curva e sua função curvatura $\kappa(x)$. Esse é o gráfico que você esperava?

34.
$$y = x^4 - 2x^2$$

35.
$$y = x^{-2}$$

SCA 36–37 Trace a curva espacial e sua função curvatura $\kappa(t)$. Comente como a curvatura reflete a forma da curva.

36.
$$\mathbf{r}(t) = \langle t - \sin t, 1 - \cos t, 4 \cos(t/2) \rangle, \quad 0 \le t \le 8\pi$$

37.
$$\mathbf{r}(t) = \langle te^e, e^{-t}, \sqrt{2} t \rangle, \quad -5 \le t \le 5$$

38–39 Dois gráficos, a e b, são mostrados. Um é a curva y = f(x) e o outro é o gráfico da sua função curvatura $y = \kappa(x)$. Identifique cada uma e justifique suas escolhas.

38.

39.

- **40.** (a) Desenhe a curva $\mathbf{r}(t) = \langle \text{sen } 3t, \text{sen } 2t, \text{sen } 3t \rangle$. Em quantos pontos da curva tem-se a impressão de que a curvatura possui um máximo local ou absoluto?
 - (b) Use um SCA para determinar e fazer o gráfico da função curvatura. Esse gráfico confirma sua conclusão na parte (a)?
- SCA 41. O gráfico de $\mathbf{r}(t) = \left\langle t \frac{3}{2} \operatorname{sen} t, 1 \frac{3}{2} \operatorname{cos} t, t \right\rangle$ é mostrado na Figura 12(b) da Seção 13.1. Onde você acha que a curvatura é maior? Use um SCA para determinar e fazer o gráfico da função curvatura. Para quais valores de t a curvatura é maior?
 - **42.** Use o Teorema 10 para mostrar que a curvatura da curva plana parametrizada x = f(t), y = g(t) é

$$\kappa = \frac{|\dot{x}\ddot{y} - \dot{y}\ddot{x}|}{[\dot{x}^2 + \dot{y}^2]^{3/2}}$$

onde os pontos indicam as derivadas em relação a t.

- 43–45 Use a fórmula do Exercício 42 para calcular a curvatura.
- **43.** $x = t^2$, $y = t^3$
- **44.** $x = a \cos \omega t$, $y = b \sin \omega t$
- **45.** $x = e^t \cos t$, $y = e^t \sin t$
- **46.** Considere a curvatura em x = 0 para cada membro da família de funções $f(x) = e^{cx}$. Para quais membros $\kappa(0)$ é maior?
- 47–48 Encontre os vetores T, N e B no ponto indicado.
- **47.** $\mathbf{r}(t) = \langle t^2, \frac{2}{3}t^3, t \rangle, (1, \frac{2}{3}, 1)$

- **48.** $\mathbf{r}(t) = \langle \cos t, \sin t, \ln \cos t \rangle$, (1, 0, 0)
- **49–50** Determine as equações dos planos normal e osculador da curva no ponto indicado.

49.
$$x = 2 \sin 3t$$
, $y = t$, $z = 2 \cos 3t$; $(0, \pi, -2)$

50.
$$x = t$$
, $y = t^2$, $z = t^3$; $(1, 1, 1)$

car e calcular um produto vetorial.]

- **51.** Encontre as equações para o círculo osculador da elipse $9x^2 + 4y^2 = 36$ nos pontos (2, 0) e (0, 3). Utilize uma calculadora gráfica ou computador para traçar a elipse e ambos os círculos osculadores na mesma tela.
- **52.** Encontre as equações para o círculo osculador da parábola $y = \frac{1}{2}x^2$ nos pontos (0, 0) e $(1, \frac{1}{2})$. Trace os dois círculos osculadores e a parábola na mesma tela.
 - **53.** Em qual ponto da curva $x = t^3$, y = 3t, $z = t^4$ o plano normal é paralelo ao plano 6x + 6y 8z = 1?
- SCA 54. Existe um ponto da curva do Exercício 53 onde o plano osculador é paralelo ao plano x + y + z = 1? [Observação: Você precisará de um SCA para derivar, simplifi-
 - **55.** Determine as equações dos planos normais e osculador da curva de interseção dos cilindros parabólicos $x = y^2$ e $z = x^2$ no ponto (1, 1, 1).
 - **56.** Mostre que o plano osculador em cada ponto da curva $\mathbf{r}(t) = \langle t+2, 1-t, \frac{1}{2}t^2 \rangle$ é o mesmo plano. O que você pode concluir sobre a curva?
 - 57. Mostre que a curvatura κ está relacionada com os vetores tangente e normal pela equação

$$\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$$

- **58.** Mostre que a curvatura de uma curva plana é $\kappa = |d\phi/ds|$, onde ϕ é o ângulo entre **T** e **i**, isto é, ϕ é o ângulo de inclinação da reta tangente. (Isso mostra que a definição de curvatura é consistente com a definição dada para curvas planas no Exercício 69 da Seção 10.2.)
- **59.** (a) Mostre que $d\mathbf{B}/ds$ é perpendicular a \mathbf{B} .
 - (b) Mostre que $d\mathbf{B}/ds$ é perpendicular a \mathbf{T} .
 - (c) Deduza das partes (a) e (b) que $d\mathbf{B}/ds = -\tau(s)\mathbf{N}$ para algum número $\tau(s)$ chamado **torção** da curva. (A torção mede quanto a curva é retorcida.)
 - (d) Mostre que para uma curva plana a torção é $\tau(s) = 0$.
- **60.** As fórmulas seguintes, chamadas **fórmulas de Frenet-Serret**, são de fundamental importância em geometria diferencial:

1.
$$d\mathbf{T}/ds = \kappa \mathbf{N}$$

$$2. dN/ds = -\kappa T + \tau B$$

3.
$$d\mathbf{B}/ds = -\tau \mathbf{N}$$

- (A Fórmula 1 é fornecida a partir do Exercício 57 e da Fórmula 3 vem de Exercício 59.) Use o fato de que $\mathbf{N} = \mathbf{B} \times \mathbf{T}$ para deduzir Fórmula 2 a partir das Fórmulas 1 e 3.
- **61.** Utilize as fórmulas de Frenet-Serret para demonstrar cada um dos seguintes itens. (Apóstrofo denota derivadas com relação a *t*. Comece como na demonstração do Teorema 10.)

(a)
$$\mathbf{r}'' = s''\mathbf{T} + \kappa(s')^2\mathbf{N}$$

(b)
$$\mathbf{r}' \times \mathbf{r}'' = \kappa(s')^3 \mathbf{B}$$

(c)
$$\mathbf{r}''' = [s''' - \kappa^2(s')^3] \mathbf{T} + [3\kappa s's'' + \kappa'(s')^2] \mathbf{N} + \kappa \tau(s')^3 \mathbf{B}$$

(d)
$$\tau = \frac{(\mathbf{r}' \times \mathbf{r}'') \cdot \mathbf{r}'''}{|\mathbf{r}' \times \mathbf{r}''|^2}$$

(c)
$$\mathbf{r}'(4) = \lim_{h \to 0} \frac{\mathbf{r}(4+h) - \mathbf{r}(4)}{h}$$
; $\mathbf{T}(4) = \frac{\mathbf{r}'(4)}{|\mathbf{r}'(4)|}$

3. (a), (c)

(b) $\mathbf{r}'(t) = \langle 1, 2t \rangle$

- **5.** (a), (c)
- (b) $\mathbf{r}'(t) = \cos t \,\mathbf{i} 2 \sin t \,\mathbf{j}$

7. (a), (c) _y (b) $\mathbf{r}'(t) = 2e^{2t}\mathbf{i} + e^t\mathbf{j}$

- **9.** $\mathbf{r}'(t) = \langle t \cos t + \sin t, 2t, \cos 2t 2t \sin 2t \rangle$
- **11.** $\mathbf{r}'(t) = 4e^{4t} \mathbf{k}$
- **13.** $\mathbf{r}'(t) = 2te^{t^2}\mathbf{i} + [3/(1+3t)]\mathbf{k}$
- **15.** $\mathbf{r}'(t) = \mathbf{b} + 2t\mathbf{c}$

37. i + j + k

- 17. $\langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle$ 19. $\frac{3}{5}$ **i** $+ \frac{4}{5}$ **k**
- **21.** $\langle 1, 2t, 3t^2 \rangle$, $\langle 1/\sqrt{14}, 2/\sqrt{14}, 3/\sqrt{14} \rangle$, $\langle 0, 2, 6t \rangle$, $\langle 6t^2, -6t, 2 \rangle$
- **23.** x = 3 + t, y = 2t, z = 2 + 4t
- **25.** x = 1 t, y = t, z = 1 t
- **27.** $\mathbf{r}(t) = (3 4t)\mathbf{i} + (4 + 3t)\mathbf{j} + (2 6t)\mathbf{k}$

35. $2 \mathbf{i} - 4 \mathbf{j} + 32 \mathbf{k}$

- **29.** x = t, y = 1 t, z = 2t
- **31.** $x = -\pi t$, $y = \pi + t$, $z = -\pi t$
- **39.** $e^t \mathbf{i} + t^2 \mathbf{j} + (t \ln t t) \mathbf{k} + \mathbf{C}$
- **41.** t^2 **i** + t^3 **j** + $(\frac{2}{3}t^{3/2} \frac{2}{3})$ **k**

33. 66°

47. $2t \cos t + 2 \sin t - 2 \cos t \sin t$ **49**. 35

EXERCÍCIOS 13.3

- **1.** $10\sqrt{10}$ **3.** $e e^{-1}$ **5.** $\frac{1}{27}(13^{3/2} 8)$
- **7.** 15,3841

- **9**. 1,2780
- **13.** $\mathbf{r}(t(s)) = \frac{2}{\sqrt{29}} s \mathbf{i} + \left(1 \frac{3}{\sqrt{29}} s\right) \mathbf{j} + \left(5 + \frac{4}{\sqrt{29}} s\right) \mathbf{k}$
- **15**. (3 sen 1, 4, 3 cos 1)
- **17.** (a) $\langle 1/\sqrt{10}, (-3/\sqrt{10}) \operatorname{sen} t, (3/\sqrt{10}) \cos t \rangle$, $\langle 0, -\cos t, -\sin t \rangle$ (b) $\frac{3}{10}$

- **19.** (a) $\frac{1}{e^{2t}+1} \langle \sqrt{2}e^t, e^{2t}, -1 \rangle, \frac{1}{e^{2t}+1} \langle 1 e^{2t}, \sqrt{2}e^t, \sqrt{2}e^t \rangle$
- (b) $\sqrt{2}e^{2t}/(e^{2t}+1)^2$
- **21.** $6t^2/(9t^4+4t^2)^{3/2}$
- **23.** $\frac{4}{25}$ **25.** $\frac{1}{7}\sqrt{\frac{19}{14}}$

- **27.** $12x^2/(1+16x^6)^{3/2}$
- **29.** $e^x | x + 2 | / [1 + (xe^x + e^x)^2]^{3/2}$
- **31.** $(-\frac{1}{2}\ln 2, 1/\sqrt{2})$; tende a 0
- **33.** (a) *P*
- (b) 1,3, 0,7

35.

37.

- $\kappa(t)$ 0.6 5 t -5
- **39.** $a \notin y = f(x), b \notin y = \kappa(x)$
- **41.** $\kappa(t) = \frac{6\sqrt{4\cos^2 t 12\cos t + 13}}{12\cos^2 t + 13\cos^2 t + 13\cos^2 t + 13\cos^2 t}$ $(17 - 12 \cos t)^{3/2}$

inteiros múltiplos de 2π

- **43.** $6t^2/(4t^2+9t^4)^{3/2}$
- **45.** $1/(\sqrt{2}e^t)$ **47.** $(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}), (-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}), (-\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$
- **49.** $y = 6x + \pi, x + 6y = 6\pi$
- **51.** $(x + \frac{5}{2})^2 + y^2 = \frac{81}{4}, x^2 + (y \frac{5}{3})^2 = \frac{16}{9}$

- **53.** (-1, -3, 1)
- **55.** 2x + y + 4z = 7, 6x 8y z = -3
- **63.** $2/(t^4+4t^2+1)$
- **65.** $2.07 \times 10^{10} \,\text{Å} \approx 2 \,\text{m}$

EXERCÍCIOS 13.4

- **1.** (a) $1.8\mathbf{i} 3.8\mathbf{j} 0.7\mathbf{k}$, $2.0\mathbf{i} 2.4\mathbf{j} 0.6\mathbf{k}$,
- $2.8\mathbf{i} + 1.8\mathbf{j} 0.3\mathbf{k}, 2.8\mathbf{i} + 0.8\mathbf{j} 0.4\mathbf{k}$
- (b) $2.4\mathbf{i} 0.8\mathbf{j} 0.5\mathbf{k}$, 2.58
- **3.** $\mathbf{v}(t) = \langle -t, 1 \rangle$
 - $\mathbf{a}(t) = \langle -1, 0 \rangle$
 - $|\mathbf{v}(t)| = \sqrt{t^2 + 1}$

