3. $\bar{x}(x^7+x^6+1)$ 关于模 $m(x)=x^8+x^4+x^3+x+1$ 的乘法逆元。←

条件:是在
$$F_2[X]$$
中, $a_n\equiv a'_n\pmod 2$
 $f(x)=x^7+x^6+1, m(x)=x^8+x^4+x^3+x+1,$ 欲求 $f(x)$ 逆元 $f^{-1}(x)$
即 $f(x)f^{-1}(x)=1+k(x)m(x)$,即寻找 $f^{-1}(x)f(x)+k(x)m(x)=1$
多项式欧几里得除法, $m(x)$ 是不可约多项式
 $m(x)=x^8+x^4+x^3+x+1=(x+1)(f(x)=x^7+x^6+1)+(x^6+x^4+x^3)$
 $x^7+x^6+1=(x+1)(x^6+x^4+x^3)+(x^5+x^3+1)$ 以上经过模2处理
 $x^6+x^4+x^3=x(x^5+x^3+1)+(x^3+x)$
 $x^5+x^3+1=x^2(x^3+x)+1$
反向计算得:
 $1=(x^5+x^3+1)-x^2(x^6+x^4+x^3)-x(x^5+x^3+1))$
 $=(1+x^3)(x^5+x^3+1)-x^2(x^6+x^4+x^3)$
 $=(1+x^3)(x^7+x^6+1)-(x+1)(x^6+x^4+x^3))-x^2(x^6+x^4+x^3)$
 $=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$
 $=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$
 $=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$
 $=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$
 $=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$
 $=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3+x+1)(x^6+x^4+x^3+x+1)$
 $=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3+x+1)-(x+1)(x^7+x^6+1)]$
 $=[1+x^3+(x^4+x^3+x+1)(x+1)](x^7+x^6+1)-(x^4+x^3+x+1)(x^8+x^4+x^3+x+1)$
因此, $f(x)$ 乘法逆元 $f^{-1}(x)=1+x^3+(x^4+x^3+x+1)(x+1)=1+x^3+x^5+1=x^3+x^5$