9.1.1 The Wave Equation

- General form of wave function
 - f(z,t) = f(z-vt,0) = g(z-vt) describes a wave propagating along z-axis with speed v.
 - Typical wave equation having the above function as solution:

$$\frac{\partial}{\partial z}f(z,t) + \frac{1}{\nu}\frac{\partial}{\partial t}f(z,t) = 0$$

- What is the solution of $\frac{\partial}{\partial z} f(z,t) \frac{1}{v} \frac{\partial}{\partial t} f(z,t) = 0$?
- What is the solution of $\frac{\partial^2}{\partial z^2} f(z,t) \frac{1}{v^2} \frac{\partial^2}{\partial t^2} f(z,t) = 0$?

$$\left(\frac{\partial}{\partial z} - \frac{1}{v}\frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial z} + \frac{1}{v}\frac{\partial}{\partial t}\right)f(z,t) = 0$$

Allows waves along both directions. General form of solution:

$$f(z,t) = g(z - vt) + h(z + vt)$$

9.1.2 Sinusoidal waves

Terminology

- $f(z,t) = A\cos[k(z-vt) + \delta]$
- A: amplitude
- $k(z-vt) + \delta$: phase
- δ : phase constant
- The point whose phase is zero moves to $z = vt \delta/k$ at time t
- k: wave number. When the wavelength is λ , $k = 2\pi/\lambda$.
- At fixed position z_0 , $f(z_0,t)$ is oscillating with the period $T = \frac{2\pi}{kv}$
- The frequency $f = 1/T = kv/2\pi = v/\lambda$
- Angular frequency $\omega = 2\pi f = kv$
- $f(z,t) = A\cos(kz \omega t + \delta)$
- Speed: $v = \omega/k$

Complex notation

- Using Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$
- $f(z,t) = \operatorname{Re} \left[A e^{i(kz \omega t + \delta)} \right]$
- Define **complex wave function** $\tilde{f}(z,t) \equiv \tilde{A}e^{i(kz-\omega t)}$ with complex amplitude $\tilde{A} \equiv Ae^{i\delta}$.
- Then actual wave function is $f(z,t) = \text{Re}[\tilde{f}(z,t)]$

Linear combinations of sinusoidal waves

Any arbitrary wave can be expressed as a linear combination of sinusoidal waves

9.1.4 Polarization

- Longitudinal wave
 - Displacement along the propagation direction
 - Sound wave, wave in spring, ...

- Transverse wave
 - Displacement from equilibrium

 propagation direction
 - Vibration of string, electromagnetic fields, ...
 - There are 2-dimensions ⊥ propagation direction
 - → Two independent states of polarization
- Propagation along z-axis
 - Vertical polarization: $\tilde{\boldsymbol{f}}_{v}(z,t) = \tilde{A}e^{i(kz-\omega t)}\hat{\boldsymbol{x}}$
 - Horizontal polarization: $\tilde{\boldsymbol{f}}_h(z,t) = \tilde{A}e^{i(kz-\omega t)}\hat{\boldsymbol{y}}$
 - Any direction \hat{n} in the xy plane: $\tilde{f}_{v}(z,t) = \tilde{A}e^{i(kz-\omega t)}\hat{n}$
 - $\hat{n} \cdot \hat{z} = 0$ and $\hat{n} = \cos \theta \, \hat{x} + \sin \theta \, \hat{y}$
 - $\tilde{\boldsymbol{f}}_{v}(z,t) = (\tilde{A}\cos\theta)e^{i(kz-\omega t)}\hat{x} + (\tilde{A}\sin\theta)e^{i(kz-\omega t)}\hat{y}$: superposition of $\tilde{\boldsymbol{f}}_{v}\&\tilde{\boldsymbol{f}}_{h}$

9.2 Electromagnetic Waves in Vacuum

- Vacuum: no charge & no current
- Maxwell's equation

(i)
$$\nabla \cdot \mathbf{E} = 0$$
 (ii) $\nabla \cdot \mathbf{B} = 0$
(iii) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ (iv) $\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

Find a decoupled equation for E

Left-hand side: $\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\nabla^2 \mathbf{E}$

□ Right-hand side:
$$\nabla \times \left(-\frac{\partial \mathbf{B}}{\partial t} \right) = -\frac{\partial}{\partial t} (\nabla \times \mathbf{B}) = -\frac{\partial}{\partial t} \left(\mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$

$$-\nabla^2 \mathbf{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} \rightarrow \nabla^2 \mathbf{E} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mathbf{0}$$

9.2 Electromagnetic Waves in Vacuum

- Vacuum: no charge & no current
- Maxwell's equation

(i)
$$\nabla \cdot \mathbf{E} = 0$$
 (ii) $\nabla \cdot \mathbf{B} = 0$ (iii) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ (iv) $\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

Find a decoupled equation for B

$$\nabla \times (\nabla \times \mathbf{B}) = \nabla \times \left(\mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}\right)$$

- Left-hand side: $\nabla \times (\nabla \times \mathbf{B}) = \nabla (\nabla \cdot \mathbf{B}) \nabla^2 \mathbf{B} = -\nabla^2 \mathbf{B}$
- Right-hand side: $\nabla \times \left(\mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}\right) = \mu_0 \epsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathbf{E}) = \mu_0 \epsilon_0 \frac{\partial}{\partial t} \left(-\frac{\partial \mathbf{B}}{\partial t}\right)$

$$-\nabla^2 \mathbf{B} = -\mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} \rightarrow \nabla^2 \mathbf{B} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = \mathbf{0}$$

9.2 Electromagnetic Waves in Vacuum

■ Two decoupled 2nd-order equations

$$\nabla^2 \mathbf{E} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mathbf{0}, \ \nabla^2 \mathbf{B} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = \mathbf{0}$$

- How many equations do we have?
 - Recall $\mathbf{E} = E_x \hat{x} + E_y \hat{y} + E_z \hat{z}$

•
$$\nabla^2 E_x - \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2} = 0$$
, $\nabla^2 E_y - \mu_0 \epsilon_0 \frac{\partial^2 E_y}{\partial t^2} = 0$, ..., $\nabla^2 B_x - \mu_0 \epsilon_0 \frac{\partial^2 B_x}{\partial t^2} = 0$, ...

How many terms in each equation?

•
$$\frac{\partial^2}{\partial x^2} E_x + \frac{\partial^2}{\partial y^2} E_x + \frac{\partial^2}{\partial z^2} E_x - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} E_x = 0 \text{ or } \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) E_x = \vec{0}$$

- Recall one of the simplest solution of $\frac{\partial^2}{\partial z^2} f(z,t) \frac{1}{v^2} \frac{\partial^2}{\partial t^2} f(z,t) = 0$
 - $f(z,t) = A\cos[k(z-vt) + \delta]$
- We will first consider sinusoidal solution for the wave equation

- Simplest solution for $\nabla^2 E_x \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2} = 0$
 - $E_{x} = E_{0} \cos(kz \omega t + \delta)$
 - Assume that $E_y = E_z = 0$
 - $\mathbf{E}(x, y, z, t) = E_x \hat{x} = E_0 \cos(kz \omega t + \delta) \hat{x}$

- Plane wave
 - Waves are travelling in a single direction (here, z direction)
 - No x or y dependency

Plot of sinusoidal wave in yz-plane

Plot of position where the phase of the wave is the same in 3-D space

Complex field notation

$$\mathbf{E}(x, y, z, t) = E_x \hat{x} = E_0 \cos(kz - \omega t + \delta) \hat{x}$$

$$= \operatorname{Re} \left[E_0 e^{i(kz - \omega t + \delta)} \right] \hat{x} = \operatorname{Re} \left[E_0 e^{i\delta} \hat{x} e^{i(kz - \omega t)} \right]$$

$$\widetilde{\boldsymbol{E}}(\boldsymbol{r},t) = (E_0 e^{i\delta} \hat{x}) e^{i(kz - \omega t)} \equiv \widetilde{\boldsymbol{E}}_0 e^{i(kz - \omega t)}$$

• Solution for
$$\nabla^2 \mathbf{B} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = \mathbf{0}$$

- We can also find a simplest solution (monochromatic plane wave) similar to $\widetilde{E}(r,t) = \widetilde{E}_0 e^{i(kz-\omega t)}$.
- $\mathbf{B}(\mathbf{r},t) = \widetilde{\mathbf{B}}_0 e^{i(kz \omega t)}$
- In principle, $\widetilde{\boldsymbol{B}}_0$ also can be any complex vector in 3-d space, BUT there are extra constraints on $\widetilde{\boldsymbol{E}}_0$ and $\widetilde{\boldsymbol{B}}_0$.

- Constraints on $\widetilde{\boldsymbol{E}}_0$ and $\widetilde{\boldsymbol{B}}_0$
 - Gauss law $\nabla \cdot \mathbf{E} = 0$

$$\nabla \cdot \widehat{\mathbf{E}} = \nabla \cdot \left(\widetilde{\mathbf{E}}_0 e^{i(kz - \omega t)} \right)$$

$$= \nabla \cdot \left[\left(\tilde{E}_{0,x} e^{i(kz - \omega t)} \right) \hat{x} + \left(\tilde{E}_{0,y} e^{i(kz - \omega t)} \right) \hat{y} + \left(\tilde{E}_{0,z} e^{i(kz - \omega t)} \right) \hat{z} \right]$$

$$= \partial_x \left(\tilde{E}_{0,x} e^{i(kz - \omega t)} \right) + \partial_y \left(\tilde{E}_{0,y} e^{i(kz - \omega t)} \right) + \partial_z \left(\tilde{E}_{0,z} e^{i(kz - \omega t)} \right)$$

• =
$$\tilde{E}_{0,z}(ik)e^{i(kz-\omega t)} = 0 \implies \tilde{E}_{0,z} = 0$$

- Similar for $\nabla \cdot \mathbf{B} = 0 \Rightarrow \tilde{B}_{0,z} = 0$
- The electric field and the magnetic field should be perpendicular to the direction of propagation
- → Electromagnetic waves should be transverse

- Constraints on $\widetilde{\boldsymbol{E}}_0$ and $\widetilde{\boldsymbol{B}}_0$ (cont'd)
 - Faraday's law $\nabla \times \boldsymbol{E} = -\frac{\partial}{\partial t} \boldsymbol{B}$

•
$$\nabla \times \hat{\mathbf{E}} = \nabla \times (\tilde{\mathbf{E}}_{0}e^{i(kz-\omega t)})$$

 $= \nabla \times \left[(\tilde{E}_{0,x}e^{i(kz-\omega t)})\hat{x} + (\tilde{E}_{0,y}e^{i(kz-\omega t)})\hat{y} \right]$
 $= \hat{x} \left[\partial_{y}(0) - \partial_{z} (\tilde{E}_{0,y}e^{i(kz-\omega t)}) \right] + \hat{y} \left[\partial_{z} (\tilde{E}_{0,x}e^{i(kz-\omega t)}) - \partial_{x}(0) \right]$
 $+ \hat{z} \left[\partial_{x} (\tilde{E}_{0,y}e^{i(kz-\omega t)}) - \partial_{y} (\tilde{E}_{0,x}e^{i(kz-\omega t)}) \right]$
 $= \hat{x} \left[-\partial_{z} (\tilde{E}_{0,y}e^{i(kz-\omega t)}) \right] + \hat{y} \left[\partial_{z} (\tilde{E}_{0,x}e^{i(kz-\omega t)}) \right]$
 $= \hat{x} \left(-\tilde{E}_{0,y}(ik)e^{i(kz-\omega t)} \right) + \hat{y} \left(\tilde{E}_{0,x}(ik)e^{i(kz-\omega t)} \right) = e^{i(kz-\omega t)}(ik) \left[(-\tilde{E}_{0,y})\hat{x} + \tilde{E}_{0,x}\hat{y} \right]$
• $-\frac{\partial}{\partial t} \mathbf{B} = -\frac{\partial}{\partial t} \left(\tilde{\mathbf{B}}_{0}e^{i(kz-\omega t)} \right)$
 $= -\frac{\partial}{\partial t} \left((\tilde{B}_{0,x}e^{i(kz-\omega t)})\hat{x} + (\tilde{B}_{0,y}e^{i(kz-\omega t)})\hat{y} \right)$
 $= (\tilde{B}_{0,x}(i\omega)e^{i(kz-\omega t)})\hat{x} + (\tilde{B}_{0,y}(i\omega)e^{i(kz-\omega t)})\hat{y} = e^{i(kz-\omega t)}(i\omega) \left[\tilde{B}_{0,x}\hat{x} + \tilde{B}_{0,y}\hat{y} \right]$
• $-k\tilde{E}_{0,y} = \omega\tilde{B}_{0,x}$, $k\tilde{E}_{0,x} = \omega\tilde{B}_{0,y}$
 $\omega\tilde{\mathbf{B}}_{0} = \hat{z} \times (k\tilde{\mathbf{E}}_{0}) \Rightarrow \tilde{\mathbf{B}}_{0} = \frac{k}{\omega} (\hat{z} \times \tilde{\mathbf{E}}_{0})$

- Summary of constraints on $\widetilde{\boldsymbol{E}}_0$ and $\widetilde{\boldsymbol{B}}_0$
 - $\tilde{E}_{0,z} = 0$, $\tilde{B}_{0,z} = 0$
 - The electric field and the magnetic field should be perpendicular to the direction of propagation
 - $\mathbf{B}_0 = \frac{k}{\omega} (\hat{z} \times \widetilde{E}_0)$
 - E and B are in phase and mutually perpendicular

$$B_0 = \frac{k}{\omega} E_0 = \frac{1}{c} E_0$$

Example 9.2

$$\ \, \tilde{\pmb{E}}(\pmb{r},t) = \tilde{\pmb{E}}_0 e^{i(kz-\omega t)} = \tilde{E}_0 e^{i(kz-\omega t)} \hat{x} = E_0 e^{i\delta} e^{i(kz-\omega t)} \hat{x}$$

$$\mathbf{\tilde{B}}_0 = \frac{k}{\omega} (\hat{z} \times \mathbf{\tilde{E}}_0) = \frac{k}{\omega} (\hat{z} \times (E_0 e^{i\delta} \hat{x})) = \frac{1}{c} E_0 e^{i\delta} \hat{y}$$

$$\mathbf{E}(\mathbf{r},t) = E_0 \cos(kz - \omega t + \delta) \hat{x} , \mathbf{B}(\mathbf{r},t) = \frac{1}{c} E_0 \cos(kz - \omega t + \delta) \hat{y}$$

- Generalization to an arbitrary propagation direction
 - z-direction is not special
 - Wave vector
 - Recall wave number k appearing $e^{i(kz-\omega t)}$
 - $\mathbf{k} \equiv k\hat{z} \rightarrow kz = \mathbf{k} \cdot \mathbf{r}$
- Monochromatic plane wave propagating along \widehat{k} direction

$$\mathbf{\tilde{E}}(\mathbf{r},t) = \tilde{E}_0 e^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)} \hat{\mathbf{n}}$$

$$\mathbf{B}(\mathbf{r},t) = \frac{1}{c}\widetilde{E}_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} (\widehat{\mathbf{k}}\times\widehat{\mathbf{n}}) = \frac{1}{c}\widehat{\mathbf{k}}\times\widetilde{\mathbf{E}}(\mathbf{r},t)$$

- Derivation using tensor index notation
- $oldsymbol{\widehat{n}}$: polarization vector and $oldsymbol{\widehat{n}}\cdot oldsymbol{\widehat{k}} = oldsymbol{0}$
- Actual (real) components

$$\mathbf{E}(\mathbf{r},t) = E_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \delta) \, \hat{\mathbf{n}}$$

$$\mathbf{B}(\mathbf{r},t) = \frac{1}{c}E_0\cos(\mathbf{k}\cdot\mathbf{r} - \omega t + \delta)\left(\hat{\mathbf{k}}\times\hat{\mathbf{n}}\right)$$

- Energy density stored in EM fields (from ch. 8)
 - $u_{\rm em} = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{1}{u_0} B^2 \right)$ and $\frac{\partial}{\partial t} (u_{\rm mech} + u_{\rm em}) = -\nabla \cdot S$
 - A monochromatic plane wave:

$$\mathbf{E}(\mathbf{r},t) = E_0 \cos(kz - \omega t + \delta) \,\hat{\mathbf{x}} \,,\, \mathbf{B}(\mathbf{r},t) = \frac{1}{c} E_0 \cos(kz - \omega t + \delta) \,\hat{\mathbf{y}}$$

$$u_{\text{em}} = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right)$$
$$= \frac{1}{2} \left(\epsilon_0 E_0^2 \cos^2(kz - \omega t + \delta) + \frac{1}{\mu_0} \frac{1}{C^2} E_0^2 \cos^2(kz - \omega t + \delta) \right)$$

$$= \epsilon_0 E_0^2 \cos^2(kz - \omega t + \delta)$$

- Average energy density over many cycles:
 - Using $\cos 2\theta = 2\cos^2 \theta 1$,

$$\int_{0}^{T} \cos^{2}(kz - \omega t + \delta) dt = \frac{1}{2} \int_{0}^{T} \cos[2(kz - \omega t + \delta)] + 1 dt = \frac{T}{2}$$
$$\langle u_{em} \rangle = \frac{1}{T} \int_{0}^{T} u_{em} dt = \frac{1}{2} \epsilon_{0} E_{0}^{2}$$

 Note that it is the sum of the energy from both the electric field and the magnetic field for monochromatic plane wave

- Energy flux density transported by the EM fields
 - Can you guess flow of energy per unit area, per unit time?
 - What about the direction?
 - Recall Poynting vector $S = \frac{1}{\mu_0} (E \times B)$
 - A monochromatic plane wave:

$$\mathbf{E}(\mathbf{r},t) = E_0 \cos(kz - \omega t + \delta) \,\hat{\mathbf{x}} \,,\, \mathbf{B}(\mathbf{r},t) = \frac{1}{c} E_0 \cos(kz - \omega t + \delta) \,\hat{\mathbf{y}}$$

$$S = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})$$

$$= \frac{1}{\mu_0} [E_0 \cos(kz - \omega t + \delta) \hat{x}] \times \left[\frac{1}{c} E_0 \cos(kz - \omega t + \delta) \hat{y} \right]$$

$$= \frac{E_0^2}{\mu_0 c} \cos^2(kz - \omega t + \delta) \hat{z} = c\epsilon_0 E_0^2 \cos^2(kz - \omega t + \delta) \hat{z} = cu_{em} \hat{z}$$

Average energy flux density over many cycles:

$$\langle \mathbf{S} \rangle = \frac{1}{T} \int_0^T \mathbf{S} dt = \frac{1}{T} \frac{E_0^2}{\mu_0 c} \frac{T}{2} \hat{z} = \frac{1}{2} c \epsilon_0 E_0^2 \hat{z} = c \langle u_{em} \rangle \hat{z}$$

Intensity: the average power per unit area delivered by light

$$I \equiv \langle S \rangle = \frac{1}{2} c \epsilon_0 E_0^2$$

- Momentum density carried by the EM fields
 - From ch. 8, $p_{\rm em} \equiv \epsilon_0 \mu_0 S$
 - A monochromatic plane wave:

$$E(r,t)=E_0\cos(kz-\omega t+\delta)\,\hat{x}$$
, $B(r,t)=rac{1}{c}E_0\cos(kz-\omega t+\delta)\,\hat{y}$ and $S=cu_{em}\hat{z}$

- $\mathbf{p}_{em} \equiv \epsilon_0 \mu_0 \mathbf{S} = \frac{1}{c^2} (c u_{em} \hat{z}) = \frac{1}{c} u_{em} \hat{z}$
- Average momentum density over many cycles:

$$\langle \boldsymbol{p}_{\rm em} \rangle = \frac{1}{T} \int_0^T \boldsymbol{p}_{\rm em} dt = \frac{1}{2c} \epsilon_0 E_0^2 \hat{z} = \frac{1}{c} \langle u_{em} \rangle \hat{z}$$

- Radiation pressure (when absorbed)
 - In Δt , the momentum transfer is $\Delta \boldsymbol{p} = \langle \boldsymbol{p}_{\rm em} \rangle A(c\Delta t) = A\Delta t \langle u_{em} \rangle \hat{z}$.
 - Pressure (average force per unit area): $P = \frac{1}{A} \frac{\Delta p}{\Delta t} = \langle u_{em} \rangle = \frac{I}{c}$
 - For a perfect reflector, pressure?

- Summary
 - lacksquare A monochromatic plane wave propagating along $\widehat{m{k}}$:
 - $E(\mathbf{r},t) = E_0 \cos(\mathbf{k} \cdot \mathbf{r} \omega t + \delta) \hat{\mathbf{n}}$
 - $\mathbf{B}(\mathbf{r},t) = \frac{1}{c}E_0\cos(\mathbf{k}\cdot\mathbf{r} \omega t + \delta)\left(\hat{\mathbf{k}}\times\hat{\mathbf{n}}\right)$
 - $\widetilde{E}(\mathbf{r},t) = \widetilde{E}_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \widehat{\mathbf{n}}, \ \widetilde{\mathbf{B}}(\mathbf{r},t) = \frac{1}{c} \widehat{\mathbf{k}} \times \widetilde{\mathbf{E}}(\mathbf{r},t)$
 - $u_{em} = \epsilon_0 E_0^2 \cos^2(kz \omega t + \delta)$ and $\langle u_{em} \rangle = \frac{1}{2} \epsilon_0 E_0^2$
 - $p_{\rm em} = \frac{1}{c} u_{em} \hat{z}$ and $\langle p_{\rm em} \rangle = \frac{1}{c} \langle u_{em} \rangle \hat{z}$
- In QM, the momentum of a single photon is $\hbar k$.
 - Can you derive this using the fact that the energy of a single photon is $\hbar\omega$, which was experimentally found by photoelectric effect and blackbody radiation combined with Planck's calculation?
- If you need to define operators that will work on a complex wave function, what will be the best guess for the energy and the momentum?