آمار و احتمال مهندسی

نیمسال اول ۱۳۹۹–۱۴۰۰ مدرس: سید ابوالفضل مطهری

پاسخ تمرین چهارم

سوال اول)

ابه طور کلی می توانیم تشخص دهیم که تابع توزیع Z تنها برای مقادیر

$$R_Z = \{1, 2, 3, 4\}$$

ناصفر است.

حالا تابع توزیع Z را در هر یک از این مقادیر محاسبه می کنیم.

:برای z = 1 داریم

$$P_Z(1) = \sum_{y \in R_y} P_X(1 - y) P_Y(y)$$

$$= P_X(1 - 1) P_Y(1) + P_X(1 - 2) P_Y(2)$$

$$= \frac{1}{3} \times \frac{1}{3} + 0 \times \frac{2}{3}$$

$$= \frac{1}{9}$$

برای z = 2 داریم:

$$P_Z(2) = \sum_{y \in R_Y} P_X(2 - y) P_Y(y)$$

$$= P_X(2 - 1) P_Y(1) + P_X(2 - 2) P_Y(2)$$

$$= \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{3}$$

$$= \frac{1}{3}$$

در حالت z = 3 داريم:

$$P_Z(3) = \sum_{y \in R_Y} P_X(3 - y) P_Y(y)$$

$$= P_X(3 - 1) P_Y(1) + P_X(3 - 2) P_Y(2)$$

$$= \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{3}$$

$$= \frac{1}{3}$$

و در حالت z = 4 داريم:

$$P_Z(4) = \sum y \in R_Y P_X(4 - y) P_Y(y)$$

$$= P_X(4 - 1) P_Y(1) + P_X(4 - 2) P_Y(2)$$

$$= 0 \times \frac{1}{4} + \frac{1}{3} \times \frac{2}{3} = \frac{2}{9}$$

بنابراین، تابع توزیع متغیر تصادفی Z عبارتست از:

$$P_{Z}(z) = \begin{cases} \frac{1}{9} & z = 1\\ \frac{1}{3} & z = 2\\ \frac{1}{3} & z = 3\\ \frac{2}{9} & z = 4\\ 0 & \text{otherwise} \end{cases}$$

سوال دوم

$$\int_{-\infty}^{\infty} g_i(x_i) dx_i = k_i$$

ابتدا نشان می
دهیم به ازای هر n در معادله $f(x_1,...,x_n)=\prod_{i=1}^n g_i(x_i)$ داریم:

$$\prod_{i=1}^{n} k_i = 1$$

اثبات:

$$1 = \int_{-\infty}^{\infty} f(x_1, ..., x_n) dx_1 ... dx_n = \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} g_1(x_1) ... g_n(x_n) dx_1 ... dx_n = \prod_{i=1}^{n} k_i$$

سپس برای اثبات حکم روی n استقرا میزنیم.

یایه استقرا: برای n=2 میدانیم، اگر x_1 و x_2 مستقل باشند، آنگاه:

$$f(x_1, x_2) = f_1(x_1) f_2(x_2)$$

است. در نتیجه توزیع توام این دو متغیر به شکل $g_1(x_1)g_2(x_2)$ قابل بیان است.

اریم: $f(x_1, x_2) = g_1(x_1)g_2(x_2)$ داریم:

$$\begin{split} f_2(x_2) &= \int_{-\infty}^{\infty} f(x_1, x_2) dx_1 = \int_{-\infty}^{\infty} g_2(x_2) g_1(x_1) dx_1 = g_2(x_2) \times \int_{-\infty}^{\infty} g_1(x_1) dx_1 = k_1 \times g_2(x_2) = g_2(x_2)/k_2 \\ f_1(x_1) &= \int_{-\infty}^{\infty} f(x_1, x_2) dx_2 = \int_{-\infty}^{\infty} g_2(x_2) g_1(x_1) dx_1 = g_1(x_1) \times \int_{-\infty}^{\infty} g_2(x_2) dx_2 = k_2 \times g_1(x_1) = g_1(x_1)/k_1 \\ &\to f(x_1, x_2) = g_1(x_1) g_2(x_2) = k_1 k_2 f_1(x_1) f_2(x_2) = f_1(x_1) f_2(x_2) \end{split}$$

بنابراین دو متغیر x_1 و x_2 مستقلند.

قسمت اول: گام استقرا: ثابت می کنیم اگر برای n متغیر مستقل $x_1,...,x_n$ داشته باشیم $f(x_1,...,x_n)=\prod_{i=1}^n f_i(x_i)$ آنگاه برای $f(x_1,...,x_n)=\prod_{i=1}^n f_i(x_i)$ داریم: $f(x_1,...,x_n,x_{n+1})=\prod_{i=1}^{n+1} f_i(x_i)$ داریم:

$$f(x_1, ..., x_n, x_{n+1}) = f(x_1, ..., x_n | x_{n+1}) f_{n+1}(x_{n+1}) = f(x_1, ..., x_n) f_{n+1}(x_{n+1}) = \prod_{i=1}^n f_i(x_i) f_{n+1}(x_{n+1}) = \prod_{i=1}^{n+1} f_i(x_i)$$

.(($f_i=g_i$)). همانطور که مشاهده می شود فرم مذکور در صورت سوال قابل مشاهده است

قسمت دوم: گام استقرا: می خواهیم ثابت کنیم اگر: $f(x_1,...,x_n,x_{n+1})=\prod_{i=1}^{n+1}g_i(x_i)$ آنگاه متغیرهای $x_1,...,x_n,x_{n+1}$ او هم مستقلند.

با انتگرالگیری روی x_{n+1} به دست می آید:

$$f(x_1, ..., x_n) = k_{n+1} \prod_{i=1}^n g_i(x_i)$$

بنابراین باتوجه به فرض استقرا متغیرهای $x_1, ..., x_n$ از یکدیگر مستقلند(عدد ثابت k_{n+1} را میتوان به هرکدام از توابع نسبت داد.) بنابراین اکنون کافیست استقلال x_{n+1} را از بقیه متغیرها ثابت کنیم:

$$f_{n+1}(x_{n+1}) = \int_{-\infty}^{\infty} f(x_1, ..., x_n, x_{n+1}) dx_1 ... dx_n = \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} g_1(x_1) ... g_n(x_n) g_{n+1}(x_{n+1}) dx_1 ... dx_n = k_1 k_2 ... k_n g_{n+1}(x_{n+1}) = g_{n+1}(x_{n+1})/k_{n+1} \ (*)$$

$$f(x_1, ..., x_n) = \int_{-\infty}^{\infty} f(x_1, ..., x_n, x_{n+1}) dx_{n+1} = \int_{-\infty}^{\infty} g_1(x_1) ... g_n(x_n) g_{n+1}(x_{n+1}) dx_{n+1} = k_{n+1} \prod_{i=1}^n g_i(x_i) \ (**)$$

$$(*), (**) \to f(x_1, ..., x_n, x_{n+1}) = \prod_{i=1}^{n+1} g_i(x_i) = \prod_{i=1}^n g_i(x_i) \times g_{n+1}(x_{n+1}) = f(x_1, ..., x_n) f_{n+1}(x_{n+1})$$

در نتیجه همهی متغیرهای مستقلند.

سوال سوم

الف) مانند حالت دو بعدی که توزیع یکنواخت به معنی این است که احتمال با مساحت متناسب است، در سه بعد، نقش مساحت را حجم ایفا میکند:

$$Volume(A) = \frac{4\pi}{3}r^3 \tag{1}$$

بنابراین تابع توزیع PDF توأم این سه متغیر برابر است با:

$$f(x,y,z) = \begin{cases} \frac{1}{Volume(A)} & (x,y,z) \in Volume(A) \\ 0 & o.w. \end{cases} = \begin{cases} \frac{3}{4\pi r^3} & x^2 + y^2 + z^2 \le r^2 \\ 0 & o.w. \end{cases}$$

ب) در اینجا توزیع توأم سه متغیر را داریم و به دنبال توزیع دوتای آنها هستیم. بنابراین باید توزیع حاشیهای را در حالتی که می خواهیم Z را از توزیع توأم حذف کنیم، محاسبه کنیم.

$$f_{X,Y}(x,y) = \int_{-\infty}^{\infty} f(x,y,z) \, dz = \frac{3}{4\pi r^3} \int_{-\sqrt{r^2 - x^2 - y^2}}^{\sqrt{r^2 - x^2 - y^2}} \, dz = \frac{3}{2\pi r^3} \sqrt{r^2 - x^2 - y^2}$$

X و X از تابع چگالی توأم X و تابع چگالی حاشیه یا تابع چگالی توأم X از تابع چگالی توأم X و برابر است با:

$$f_X(x) = \frac{3}{2\pi r^3} \int_{-\sqrt{r^2 - x^2}}^{\sqrt{r^2 - x^2}} \sqrt{r^2 - x^2 - y^2} \, dy$$

سوال چهارم

١.

$$\operatorname{cov}(X,Y|Z) = \mathbb{E}[(X - \mathbb{E}[X|Z])(Y - \mathbb{E}[Y|Z])|Z] =$$

$$\mathbb{E}[(XY - X\mathbb{E}[Y|Z] - Y\mathbb{E}[X|Z] + \mathbb{E}[X|Z]\mathbb{E}[Y|Z])|Z] =$$

$$\mathbb{E}[XY|Z] - \mathbb{E}[X\mathbb{E}[Y|Z]|Z] - \mathbb{E}[Y\mathbb{E}[X|Z]|Z] + \mathbb{E}[\mathbb{E}[X|Z]\mathbb{E}[Y|Z]|Z] =$$

$$\mathbb{E}[XY|Z] - \mathbb{E}[X|Z]\mathbb{E}[Y|Z] - \mathbb{E}[Y|Z]\mathbb{E}[X|Z] + \mathbb{E}[X|Z]\mathbb{E}[Y|Z] = \mathbb{E}[XY|Z] - \mathbb{E}[X|Z]\mathbb{E}[Y|Z]$$

$$\operatorname{cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$
 د از عبارت ۱ نسبت به Z امید می گیریم. همچنین می دانیم که Z

$$\mathbb{E}[\operatorname{cov}(X,Y|Z)] = \mathbb{E}[\mathbb{E}[XY|Z]] - \mathbb{E}[\mathbb{E}[X|Z]\mathbb{E}[Y|Z]] = \mathbb{E}[XY] - \mathbb{E}[\mathbb{E}[X|Z]\mathbb{E}[Y|Z]]$$

$$\begin{aligned} \operatorname{cov}(\mathbb{E}[X|Z],\mathbb{E}[Y|Z]) &= \mathbb{E}[\mathbb{E}[X|Z]\mathbb{E}[Y|Z]] - \mathbb{E}[\mathbb{E}[X|Z]]\mathbb{E}[\mathbb{E}[Y|Z]] = \mathbb{E}[\mathbb{E}[X|Z]\mathbb{E}[Y|Z]] - \mathbb{E}[X]\mathbb{E}[Y] \\ \Rightarrow \mathbb{E}[\operatorname{cov}(X,Y|Z)] + \operatorname{cov}(\mathbb{E}[X|Z],\mathbb{E}[Y|Z]) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \operatorname{cov}(X,Y) \end{aligned}$$

X می دانیم که Y قرار دهیم X کافیست در عبارت ۲ به جای X قرار دهیم X می دانیم که X .

$$\operatorname{var}(X) = \operatorname{cov}(X, X) = \mathbb{E}[\operatorname{cov}(X, X|Z)] + \operatorname{cov}(\mathbb{E}[X|Z], \mathbb{E}[X|Z]) = \mathbb{E}[\operatorname{var}(X|Z)] + \operatorname{var}[\mathbb{E}[X|Z]]$$

سوال پنجم

٠١

$$\mathbb{E}[\mathbb{E}[Y|X,Z]|Z=z] = \Sigma_x \mathbb{E}[Y|X=x,Z=z] P(X=x|Z=z) =$$

$$\Sigma_x \Sigma_y y \times P(Y=y|X=x,Z=z) P(X=x|Z=z) =$$

$$\Sigma_{x,y} y \times \frac{P(Y=y,X=x,Z=z) P(X=x,Z=z)}{P(X=x,Z=z) P(Z=z)} =$$

$$\Sigma_{x,y} y \times \frac{P(Y=y,X=x,Z=z)}{P(Z=z)} = \Sigma_y y \times \frac{P(Y=y,Z=z)}{P(Z=z)} = \Sigma_y y \times P(Y=y|Z=z) = \mathbb{E}[Y|Z=z]$$

۲.

$$\mathbb{E}[XY|X=x] = \mathbb{E}[xY|X=x] = x\mathbb{E}[Y|X=x]$$
$$\mathbb{E}[XY] = \mathbb{E}[\mathbb{E}[XY|X]] = \mathbb{E}[X\mathbb{E}[Y|X]]$$

سوال ششم

:متغیر می نظر می تغییر نظر می کیریم: (تغییر تعداد) باکتری k در هر مرحله تغییر نسل در نظر می کیریم:

$$a_k = \begin{cases} +1 & probability = p \\ 0 & probability = q \\ -1 & probability = 1 - p - q \end{cases}$$

به دست می آید:

$$\mathbb{E}[a_k] = p + 0 - (1 - p - q) = 2p + q - 1$$

$$\mathbb{E}[a_k^2] = p + 0 + (1 - p - q) = 1 - q$$

$$\implies \operatorname{var}(a_k) = \mathbb{E}[a_k^2] - \mathbb{E}[a_k]^2 = 1 - q - (2p + q - 1)^2 = v$$

حال برای سادگی محاسبات، امید و واریانس تعداد باکتریها در هر مرحله را به صورت شرطی نسبت به مرحله قبل به دست میآوریم:

$$\mathbb{E}[X_{i}|X_{i-1}] = \mathbb{E}[X_{i-1} + \Sigma_{k=1}^{X_{i-1}} a_{k} | X_{i-1}] = X_{i-1} + \mathbb{E}[\Sigma_{k=1}^{X_{i-1}} a_{k}] = X_{i-1} + \Sigma_{k=1}^{X_{i-1}} \mathbb{E}[a_{k}] = X_{i-1} + \Sigma_{k=1}^{X_{i-1}} (2p + q - 1) = X_{i-1} + (2p + q - 1)X_{i-1} = (2p + q)X_{i-1}$$

$$\operatorname{var}[X_{i}|X_{i-1}] = \operatorname{Var}[X_{i-1} + \Sigma_{k=1}^{X_{i-1}} a_{k} | X_{i-1}] = X_{i-1} + \sum_{k=1}^{X_{i-1}} a_{k} | X_{i-1} = X_{i-1} + \sum_{k=1}^{X_{i-1}} a_{k} | X_{i-1} = X_{i-1} + \sum_{k=1}^{X_{i-1}} a_{k} | X_{i-1} = X_{i-1} + \sum_{k=1}^{X_{i-1}} x_{i-1} +$$

حال برای محاسبه امید ریاضی و واریانس X_i (به صورت غیر شرطی) داریم:

$$\mathbb{E}[X_{i}] = \mathbb{E}[\mathbb{E}[X_{i}|X_{i-1}]] = \mathbb{E}[(2p+q)X_{i-1}] = (2p+q)\mathbb{E}[X_{i-1}] \implies \mathbb{E}[X_{i}] = (2p+q)^{i}\mathbb{E}[X_{0}] = (2p+q)^{i}X_{0}$$

$$\operatorname{Var}(X_{i}) = \operatorname{Var}(\mathbb{E}[X_{i}|X_{i-1}]) + \mathbb{E}[\operatorname{var}(X_{i}|X_{i-1})] =$$

$$\operatorname{Var}((2p+q)X_{i-1}) + \mathbb{E}[vX_{i-1}] = (2p+q)^{2}\operatorname{Var}(X_{i-1}) + v(2p+q)^{i-1}X_{0}$$

$$\Rightarrow \operatorname{Var}(X_{i}) = (2p+q)^{2}\operatorname{Var}(X_{i-1}) + v(2p+q)^{i-1}X_{0}$$

با حل رابطه بازگشتی بالا به دست می آید:

$$\operatorname{var}(X_i) = (2p+q)^{(2i)}\operatorname{var}(X_0) + vX_0\sum_{j=i-1}^{2i-2}(2p+q)^j = vX_0\sum_{j=i-1}^{2i-2}(2p+q)^j = vX_0(2p+q)^{i-1}\frac{1-(2p+q)^i}{1-2p-q}$$

موفق باشید.