School of Mathematical and Computational Sciences

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Problem Set 1

Basic Properties of the Integers

(Lesson 1)

- **1.** For each of the following pairs of integers a and b, determine their greatest common divisor, their least common multiple, and write their greatest common divisor in the form ax + by for some integers x and y.
 - (a) a = 792, b = 275
 - (b) a = 507885, b = 60808
- **2.** Prove that if *n* is composite then there are integers *a* and *b* such that *n* divides *ab* but *n* does not divide either *a* or *b*.
- **3.** If p is a prime, prove that there do not exist nonzero integers a and b such that $a^2 = pb^2$. (Why this proves \sqrt{p} is not a rational number.)
- **4.** Write down explicitly all the elements in the residue classes of $\mathbb{Z}/18\mathbb{Z}$.
- 5. Suppose $a = a_n 10^n + a_{n-1} 10^{n-1} + \cdots + a_1 10 + a_0$ is any positive integer. Show that $a \equiv a_n + a_{n-1} + \cdots + a_1 + a_0 \pmod{9}$. (Note that this is the usual arithmetic rule that the remainder after division by 9 is the same as the sum of the decimal digits mod 9. In particular, an integer is divisible by 9 if and only if the sum of its digits is divisible by 9).
- **6.** Compute the remainder when 37^{100} is divided by 29.
- 7. Prove that the squares of the elements in $\mathbb{Z}/4\mathbb{Z}$ are just $\overline{0}$ and $\overline{1}$.
- **8.** Let $a, b \in \mathbb{Z}$. Prove that $a^2 + b^2$ never leaves a remainder of 3 when divided by 4. (Hint: use the previous exercise.)
- **9.** Prove that the equation $x^2 + y^2 = 3z^2$ has no solutions for $x, y, z \in \mathbb{Z}$.
- **10.** Prove that if $\bar{a}, \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then $\bar{a} \cdot \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- **11.** Let $n \in \mathbb{Z}$, n > 1, and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Prove if a and n are not relatively prime, there exists an integer b with $1 \le b < n$ such that $ab \equiv 0 \pmod{n}$ and deduce that there cannot be an integer c such that $ac \equiv 1 \pmod{n}$.
- **12.** Let $n \in \mathbb{Z}$, n > 1, and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Prove that if a and n are relatively prime then there is an integer c such that $ac \equiv 1 \pmod{n}$. (Use the fact that the g.c.d. of two integers is a \mathbb{Z} -linear combination of the integers.)
- **13.** Conclude from the previous two exercises that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the set of elements \bar{a} of $\mathbb{Z}/n\mathbb{Z}$ with (a, n) = 1 and hence prove Proposition 4 . Verify this directly in the case n = 12.
- **14.** (a) Prove that if n is squarefree (i.e., n > 1 and n is not divisible by the square of any prime), then \sqrt{n} is irrational.

- (b) Prove that $\sqrt[3]{2}$ is irrational.
- **15.** Let a and b be nonzero integers and let d = (a, b). Prove that a/d and b/d are relatively prime.
- **16.** Let $m, r, r' \in \mathbb{Z}$. Prove that if (r, m) = 1 = (r', m), then (rr', m) = 1.
- **17.** Assume that d = sa + tb is a \mathbb{Z} -linear combination of integers a and b. Find infinitely many pairs of integers (s_k, t_k) with $d = s_k a + t_k b$.
- **18.** If *a* and *b* are relatively prime and if each divides an integer *n*, then their product *ab* also divides *n*.
- **19.** Let $a, b, c \in \mathbb{Z}$ with a > 0. Prove that a(b, c) = (ab, ac). (One must assume that a > 0 lest a(b, c) be negative.)
- **20.** A Pythagorean triple is a 3-tuple (a, b, c) of positive integers for which

$$a^2 + b^2 = c^2.$$

A Pythagorean triple is called primitive if gcd(a, b, c) = 1. (*Definition*. A common divisor of nonzero integers $a_1, a_2, ..., a_n$ is an integer c such that $c \mid a_i$ for all $i \in \{1, ..., n\}$. The largest of the common divisors is called its greatest common divisor.)

(a) Consider a complex number z = q + ip, where q > p are positive integers. Prove that

$$(q^2 - p^2, 2qp, q^2 + p^2)$$

is a Pythagorean triple by showing that $|z^2| = |z|^2$. (One can prove that every primitive Pythagorean triple (a, b, c) is of this type.)

- (b) Show that the Pythagorean triple (9, 12, 15) (which is not primitive) is not of the type given in part (a).
- **21.** Let *X* and *Y* be finite sets. Show that there is a bijection $f: X \to Y$ if and only if |X| = |Y|. (By definition, a set is finite if it is empty or if it can be put in a one-to-one correspondence with $[k] = \{1, 2, ..., k\}$, for some integer $k \ge 1$.)
- **22.** (Pigeonhole Principle) If X and Y are finite sets with the same number of elements, show that the following conditions are equivalent for a function $f: X \to Y$.
 - (a) *f* is bijective
 - (b) *f* is injective
 - (c) *f* is surjective
- **23.** (a) Let $f: X \to Y$ be a function, and let $(S_i)_{i \in I}$ be a family of subsets of X. Prove that

$$f\left(\bigcup_{i\in I}S_i\right) = \bigcup_{i\in I}f\left(S_i\right)$$

(b) If S_1 and S_2 are subsets of a set X, and if $f: X \to Y$ is any function, prove that $f(S_1 \cap S_2) \subseteq f(S_1) \cap f(S_2)$. Give an example in which $f(S_1 \cap S_2) \neq f(S_1) \cap f(S_2)$.

- (c) If S_1 and S_2 are subsets of a set X, and if $f: X \to Y$ is an injection, prove that $f(S_1 \cap S_2) = f(S_1) \cap f(S_2)$.
- **24.** Let $f: X \to Y$ be a function.
 - (a) If $(B_{\lambda})_{{\lambda} \in \Lambda}$ is a family of subsets of Y, prove that

$$f^{-1}\left(\bigcup_{\lambda\in\Lambda}B_{\lambda}\right)=\bigcup_{\lambda\in\Lambda}f^{-1}\left(B_{\lambda}\right)\quad\text{and}\quad f^{-1}\left(\bigcap_{\lambda\in\Lambda}B_{\lambda}\right)=\bigcap_{\lambda\in\Lambda}f^{-1}\left(B_{\lambda}\right).$$

- (b) If $B \subseteq Y$, prove that $f^{-1}(B^{\complement}) = f^{-1}(B)^{\complement}$, where B^{\complement} denotes the complement of B respect to Y.
- **25.** Let $f: X \to Y$ be a function. Define a relation on X by $x \equiv x'$ if f(x) = f(x'). Prove that \equiv is an equivalence relation. (If $x \in X$ and f(x) = y, the equivalence class [x] is usually denoted by $f^{-1}(y)$, the inverse image of $\{y\}$.)