

INTEGRABLE FUNCTION SPACES

Why

We have seen that the integrable functions form a vector space. How about the square integrable functions? And so on.¹

Definition

The integrable function spaces are a collection of function spaces, one for each real number $p \geq 1$, for which the pth power of the absolute value of the function is integrable.²

Notation

Let (X, \mathcal{A}, μ) be a measure space. Let $p \geq 1$. We denote the integrable function space corresponding to p by $\mathcal{L}^p(X, \mathcal{A}, \mu, \mathbf{R})$. We have defined it by

$$\mathcal{L}^p(X, \mathcal{A}, \mu, \mathbf{R}) = \left\{ \text{ measurable } f: X \to R \ \middle| \ \int |f|^p d\mu < \infty \right\}$$

Let **C** denote the set of complex numbers. Similarly for complexvalued functions, we denote the pth space by $\mathcal{L}^p(X, \mathcal{A}, \mu, \mathbf{C})$.

¹Future sheets are likely to being with L^2 .

²Future editions will include the case where $p = \infty$.

