10.12 Unit Exam: Volume, density, trig, & review

1. Find the area of a semi-circle diameter of 10. Round your answer to the nearest tenth.

2. A cylindrical pipe with radius r = 6 inches has a volume of 15.7 cubic feet. Find the length of the pipe, to the nearest foot.

3. A box in the shape of a rectangular prism must have a volume of 30 cubic feet. It's length is 4 feet and width 3 feet. How tall must it be?

4. The area of $\triangle ABC$ is 120.7 square inches. The altitude h of the triangle is 8.5 inches. Find the length of the base AB.

- 5. Which three-dimensional figure will result when a right triangle 8 inches tall and 3 inches wide is continuously rotated about the longer side?
 - (a) a cone with a height of 6 inches and radius of 8 inches
 - (b) a cone with a height of 8 inches and diameter of 6 inches
 - (c) a cylinder with a radius of 8 inches and a height of 6 inches
 - (d) a cylinder with a diameter of 6 inches and a height of 8 inches
- 6. A right cylinder is cut perpendicular to its base. The shape of the cross section is a
 - (a) circle
 - (b) cylinder
 - (c) rectangle
 - (d) triangular prism
- 7. A bakery sells hollow chocolate spheres. The larger diameter of each sphere is 4 cm. The thickness of the chocolate of each sphere is 0.5 cm. Determine and state, to the nearest tenth of a cubic centimeter, the amount of chocolate in each hollow sphere.

Name:

8. $\triangle ABC$ is shown with $m\angle C=90^\circ$ and the lengths of the triangle's sides are BC=8, AC=6, and AB=10.

- (a) State, as a decimal, the value of $\sin A$.
- (b) Find the measure of $\angle A$, to the nearest degree.
- (c) Find the degree measure of $\angle B$. Justify your answer.

9. A sailor observes the top of a lighthouse with an angle of elevation of 4° . She knows the lighthouse is 100 feet tall. Determine and state the distance x between the sailor and the lighthouse, to the *nearest foot*.

10. Solve for the value of x.

$$\frac{1}{5}(2x+3) = 1$$

11. Given $f(x) = \frac{1}{4}x + 4$. Solve for x such that for f(x) = 6.

- 12. Given $g(x) = 3x^2 7x + 5$. Simplify g(0).
- 13. Given f(x) = 5x 22. Solve for x such that for f(x) = 3.

14. Given $h(x) = x^2 + 6x + 5$. Solve h(x) = 0.

- 15. A translation maps $A(3,5) \to A'(-2,7)$. What is the image of B(-4,1) under the same translation?
- 16. The line l has the equation $y = -\frac{3}{5}x + 4$. To each line below, circle whether l is parallel, perpendicular, or neither.
 - (a) parallel perpendicular neither $y = \frac{3}{5}x 2$
 - (b) parallel perpendicular neither 3x 5y = -15

- 17. Simplify each expression. (Leave it in radical form if necessary, not a decimal.)
 - (a) $\sqrt{20}$

- (b) $\sqrt{\frac{16}{49}}$
- 18. Given $m\angle R = 40$ and $m\angle U = 80$. Find $m\angle UST$.

- 19. Write down the center and radius of each circle.
 - (a) $(x-1)^2 + (y+3)^2 = 81$
- (b) $x^2 + y^2 = 49$

20. In the diagram below, \overline{AC} has endpoints with coordinates A(-4,5) and C(5,2).

If B is a point on \overline{AC} and AB:BC = 1:2, what are the coordinates of B?

21. Triangle ABC is dilated with a scale factor of k centered at A, yielding $\triangle ADE$, as shown. Given AB = 9, BC = 12, AC = 15, and DE = 16.

Find BD, AE, and k (the scale factor).

22. What is the smallest non-zero angle of rotation about its center that would map the octagon onto itself?

23. What transformation maps $\triangle ABC$ onto $\triangle DEF$, shown below? Fully specify the transformation.

24. In a right triangle, the acute angles have the relationship $\sin(2x) = \cos(70)$. What is the value of x?

25. If $\sin(8x-8)^{\circ} = \cos(7x+8)^{\circ}$, what is the value of x?

- 26. Write an equation of the line that is perpendicular to the line whose equation is 3y = 2x + 6 and passes through the point (-1,7).
- 27. Find the distance between (1,9) and (6,-3).

28. The secants \overline{ABC} and \overline{ADE} intersect the circle O, as shown in the diagram. Given $\widehat{mBD}=30^\circ$ and $\widehat{mCE}=150^\circ$. Find the $m\angle A$.

29. Given circle Z with inscribed $\triangle XYZ$. $m\angle Z=100$. Find $m\angle Y$.

Early finishers

30. A monument in the shape of a pyramid with a square base has a volume of 24 cubic feet. If its height measures 20 feet what is the length of the side of the base, to the nearest cubic foot?

31. A staircase riser is cut as a series of congruent triangles with each step's "rise" equal to 8 inches, and the "run" of each step is 10 inches, as shown below. (AB=8 and BC=10) Find the diagonal length of the two-step riser, the distance AE, to the nearest inch.

What is the angle of inclination of the staircase, x?

32. Given circle O with inscribed $\triangle SLO$. $m \angle S = x + 7$. Find $m \angle O = 2x - 2$. Find x. For full credit, check your answer.

33. From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is 11.87°. To the nearest foot, what is the height of the monument?

34. A homeowner is building three steps leading to a deck, as modeled by the diagram below. All three step rises, \overline{HA} , \overline{FG} , and \overline{DE} , are congruent, and all three step runs, \overline{HG} , \overline{FE} , and \overline{DC} , are congruent. Each step rise is perpendicular to the step run it joins. The measure of $\angle CAB = 36^{\circ}$ and $\angle CBA = 90^{\circ}$.

If each step run is parallel to \overline{AB} and has a length of 10 inches, determine and state the length of each step rise, to the nearest tenth of an inch.

Determine and state the length of \overline{AC} , to the nearest inch.

35. The secants \overline{PQR} and \overline{PST} intersect the circle O, as shown in the diagram. Given $m \angle P = 40^\circ$ and $m\widehat{RT} = 140^\circ$. Find the $m\widehat{QS}$.

