

Dye-terminator DNA sequencing V.2

Diep R. Ganguly¹

¹The Australian National University

dx.doi.org/10.17504/protocols.io.baq5idy6

Pogson Genomics Group

This protocol (based on the BigDye® Terminator v3.1 Cycle Sequencing Kit) is for performing terminator cycling sequencing reactions for Sanger sequencing of amplified PCR products or plasmid DNA on the 3130X genetic analyser (Applied Biosystems).

BigDye Terminator v3.1.pdf

MATERIALS

NAME Y	CATALOG #	VENDOR V
Antarctic Phosphatase - 1,000 units	M0289S	New England Biolabs
96 well PCR Plate Non-skirted	MPS-499	Phenix Research
Nuclease-free water (e.g. MilliQ or HPLC grade water)		
primers		
EDTA		
10 mM dNTPs	10297-018	Life Technologies
Ethanol	100983	Merck Millipore
BigDye™ Terminator v3.1 Cycle Sequencing Kit	4337454	Thermo Fisher
Exonuclease I (E. coli)	M0293S	NEB
Hi-Di™ Formamide	4311320	Thermo Fisher Scientific

BEFORE STARTING

Optimize PCR cycling (if sequencing amplified PCR products) to ensure your reaction produces a single product. Perform gel excision or PCR clean-up with the potential inclusion of incubating with Antarctic phosphatase and Exonuclease 1 to dephosporylate and degrade unincorporated dNTPs in PCR reactions to prepare templates for DNA sequencing.

Terminator cycling reaction

30m Perform sequencing reaction in PCR tubes (or 96-well plate) with BigDye Terminator cycling kit and forward or reverse primers.

Component	Volume (µI)
2.5X Reaction Ready Mix	1
5X BigDye Sequencing buffer	2
20 μM F/R Primer	0.5
Template (plasmid or cleaned PCR product)	150 ng dsDNA
Nuclease-free water	to 10 µl

BigDye Terminator Cycling reaction

5x reaction buffer: 400 mM TRIS, 10 mM MgCl₂

- 2 Run the following thermal cycling protocol:
 - 1. 1 min at 96 °C
 - 2. 30-40 cycles: 96 °C for 10 seconds, 50 °C for 5 seconds, and 60 °C for 4 min.
 - 3. Hold at 4-12 °C.

Purification 1h 30m

3 Transfer PCR reaction to eppendorf tube. To the reaction, add 2.5 μL of 125 mM EDTA (make sure it touches bottom of tube).

4h

- 4 Add 30 μl of 100% ethanol, mix well (inversion).
- 5 Incubate at room temperature for 15 minutes.
- 6 Centrifuge at 4 °C at max speed for 30 minutes.
- 7 Discard supernatant and add 50 μl of ice-cold 70% ethanol.
- 8 Centrifuge at 4 °C at max speed for 5 minutes.
- 9 Discard supernatant and allow to air-dry in the dark for >15 minutes.

Prepare for sequencing

- Resuspend the pellet (likely transparent) in $7.5 \,\mu\text{L}$ HiDi Formamide (add to any empty wells). Incubate at RT for $5 \,\text{minutes}$ then transfer to plate. Spin down briefly.
- 11 Incubate plate at 95 °C for 3 minutes (denature) then place immediately on ice. Spin down briefly.
- 12 Submit for sequencing on 3130X genetic analyser (Applied Biosystems). Keep samples on ice.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited