

금융 AI 스터디

정기 스터디 현황 발표

발표자: 김휘중

스터디 인증 및 팀원 소개

스터디원1:권예진

스터디원2:김희중

스터디원3:전현민

매주월요일 PM8정기스터디!

스터디 현황

현재ch.1~ch.7까지의스터디완료함.

주차	날짜	학습진도
1	03/20	Ch1: 전현민 발표 Ch2: 권예진 발표 Ch3: 전현민 발표 Ch4: 김휘중 발표
2	03/27	Ch5 : 전현민 발표 Ch6 : 김휘중 발표 Ch7 : 권예진 발표

3/20 - 스터디 목차

CHAPTER 1 시계열의 개요와 역사

1.1 다양한 응용 분야의 시계열 역사 ·····	·· 26
1.1.1 시계열 문제로서의 의학·····	·· 26
1.1.2 일기예보·····	30
1.1.3 경제성장 예측	··32
1.1.4 천문학·····	34
1.2 시계열 분석의 도약	35
1.3 통계적 시계열 분석의 기원····································	37
1.4 머신러닝 시계열 분석의 기원·······	··38
1.5 보충 자료	39

CHAPTER 2 시계열 데이터의 발견 및 다루기

2.1 시계열 데이터는 어디서 찾는가	····44
2.1.1 미리 준비된 데이터셋	····44
2.1.2 발견된 시계열·····	····51
2.2 테이블 집합에서 시계열 데이터 집합 개선하기	52
2.2.1 작업의 예: 시계열 데이터 집합 조립하기 ·····	53
2.2.2 발견된 시계열을 구성하기	
2.3 타임스탬프의 문제점·	····64
2.3.1 무엇에 대한 타임스탬프인가	····64
2.3.2 타임스탬프를 추측하여 데이터 이해하기	····66
2.3.3 의미 있는 시간 규모란·····	····69
2.4 데이터 정리	····70
2.4.1 누락된 데이터 다루기	····70
2.4.2 업샘플링과 다운샘플링 ····	····84
2.4.3 데이터 평활	····88
2.5 계절성 데이터	····94
2.6 시간대	····98
2.7 사전관찰의 방지	103
2.8 보충 자료	105

3/20 - 스터디 목차

CHAPTER 3 시계열의 탐색적 자료 분석

3.1	친숙한 방법 109
	3.1.1 도표 그리기
	3.1.2 히스토그램······ 114
	3.1.3 산점도 115
3.2	시계열에 특화된 탐색법 118
	3.2.1 정상성 이해하기 119
	<u>3.2.2 윈도 함수 적용</u> 124
	3.2.3 지체상관의 파악과 이해····································
	3.2.4 허위상관····································
3.3	유용한 시각화 144
	3.3.1 1차원시각화
	3.3.2 2차원 시각화
	3.3.3 3치원 시각화
3.4	보충 자료 158

CHAPTER 4 시계열 데이터의 시뮬레이션

4.1 시계열 시뮬레이션의 특별한 점	162
4.1.1 시뮬레이션과 예측	163
4.2 코드로 보는 시뮬레이션	163
4.2.1 스스로 직접 만들어보기	
4.2.2 스스로 실행하는 시뮬레이션 세계 구축·	171
4.2.3 물리적인 시뮬레이션	179
4.3 시물레이션에 대한 마지막 조언	
4.3.1 통계적인 시뮬레이션	
4.3.2 딥러닝 시뮬레이션	188
4.4 보충 자료	

3/27 - 스터디 목차

CHAPTER 5 시간 데이터 저장

5.1 요구 사항 정의	194
5.1.1 실시간 데이터와 저장된 데이터	195
5.2 데이터베이스 솔루션	198
5.2.1 SQL과 NoSQL·····	199
5.2.2 인기 있는 시계열 데이터베이스와 파일 솔루션	203
5.3 파일 솔루션	208
5.3.1 넘파이	210
5.3.2 팬더스·····	210
5.3.3 표준 R에 동등한 것·····	211
5,3,4 Xarray·····	211
5.4 보충 자료 ·····	212

CHAPTER 6 시계열의 통계 모델

6.1 선형회귀를 사용하지 않는 이유········ 218	3
6.2 시계열을 위해 개발된 통계 모델 220	0
6.2.1 자기회귀 모델	0
6.2.2 이동평균 모델····································	7
6.2.3 자기회귀누적이 동평균 모델····································	3
6.2.4 벡터자기회귀 255	5
6.2.5 통계 모델의 변형 259	9
6.3 시계열 통계 모델의 장단점 261	1
6.4 보충 자료 262	2

3/27 - 스터디 목차

CHAPTER 7 시계열의 상태공간 모델

7.1 상태공간 모델의 장단점	267
7.2 칼만 필터	268
7.2.1 개요····	268
7.2.2 코드로 표현한 칼만 필터	271
7.3 은닉 마르코프 모형	276
7.3.1 모델의 동작 방식	277
7.3.2 모델을 적합시키는 방법·····	279
7.3.3 코드로 보는 HMM의 적합 과정 ·········	283
7.4 베이즈 구조적 시계열·····	289
7.4.1 코드로 살펴보는 bsts ··································	289
7.5 보충 자료	294

Q&A