

X2X: Efficient A2B & B2A Conversions for d+1 Shares in Hardware

with Application to Lattice-based PQC

CASCADE '25

Q. Norga, S. Kundu, JP. D'Anvers, I. Verbauwhede

COSIC, KU Leuven April 3, 2025

Outline

- 1 Introduction to PQC & Masking
- 2 Algorithmic Improvements
- 3 Implementation & Evaluation
- 4 Conclusion

Outline

- 1 Introduction to PQC & Masking
- 2 Algorithmic Improvements
- 3 Implementation & Evaluation
- 4 Conclusion

Post-Quantum Cryptography

SOURCE: ORF, Getty

Lattice-based PQC

ML-KEM & ML-DSA

Performance, security and bandwidth

FIPS 203

Federal Information Processing Standards Publication

Module-Lattice-Based Key-Encapsulation Mechanism Standard

Category: Computer Security Subcategory: Cryptography
FIPS 204

Federal Information Processing Standards Publication

Module-Lattice-Based Digital Signature Standard

Category: Computer Security Subcategory: Cryptography

Lattice-based PQC

ML-KEM & ML-DSA

Performance, security and bandwidth

Real-world deployment:

(Protection against) Physical attacks

FIPS 203

Federal Information Processing Standards Publication

Module-Lattice-Based

Key-Encapsulation Mechanism Standard

Category: Computer Security

Subcategory: Cryptography

FIPS 204

Federal Information Processing Standards Publication

Module-Lattice-Based Digital Signature Standard

Category: Computer Security

Subcategory: Cryntography

Side-Channel Attacks

SOURCE: Secure-iC

Masking

Masking ML-KEM. Decaps

Masking ML-DSA.Sign

Masking Lattice-based PQC

Masking Lattice-based PQC requires a mix of arithmetic and Boolean sharing.

- Polynomial arithmetic (e.g., PolMult): $x = \sum_{i=0}^{d} x^{\{i\}}$
- ▶ Bitwise arithmetic (e.g., Hashing): $x = \bigoplus_{i=0}^{d} x^{\{i\}}$

Need A2B and B2A!

This Work: X2X

Full ML-KEM. Decaps or ML-DSA. Sign requires:

- ► **ANY** protection order *d*
- ► **ANY** modulus *p* or *q*
- ► **ANY** operation (A2B or B2A)
- Low cost (randomness, area)
- High performance (throughput)

Outline

- Introduction to PQC & Masking
- 2 Algorithmic Improvements
- 3 Implementation & Evaluation
- 4 Conclusion

Secure Addition: SecADD

$$s^{\{0:d\}} = x^{\{0:d\}} + y^{\{0:d\}} \mod q = \bigoplus_{i=0}^{d} x^{\{i\}} + \bigoplus_{i=0}^{d} y^{\{i\}} \mod q$$

"Arithmetic addition on Boolean shares"

Secure Addition: SecADD

$$s^{\{0:d\}} = x^{\{0:d\}}$$
 + $y^{\{0:d\}}$ mod $q = \bigoplus_{i=0}^{d} x^{\{i\}} + \bigoplus_{i=0}^{d} y^{\{i\}}$ mod q

"Arithmetic addition on Boolean shares"

SecADD_q: Typical Approach

SecADD_q: Typical Approach

Step 1:
$$s^{\{0:d\}} = \bigoplus_{i=0}^{d} x^{\{i\}} + \bigoplus_{i=0}^{d} y^{\{i\}}$$

$$\xrightarrow{-q} \qquad 0 \qquad \qquad q \qquad \qquad 2*q-1$$

SecADD_q: Typical Approach

▶ SecMUX [1] or 2 × SecADD [2]

A₂B

▶ A2B \approx SecADD(SecADD(\cdots))

$$B^{\{0:d\}} = z^{\{0\}} + z^{\{1\}} + \dots + z^{\{d\}}$$

$$ightharpoonup \uparrow d
ightharpoonup \uparrow \# \operatorname{SecADD}$$

 $ightharpoonup 1 imes ext{SecADD}$

Step 2:
$$s'^{\{0:d\}} = s^{\{0:d\}} - q$$

- ightharpoonup 1 imes SecADD
- Interleave 2 options

B₂A

▶ B2A \approx A2B & SecADD^d

$$\overset{\longleftarrow}{\blacksquare} : R^0, \quad R^1 \quad \cdots \quad R^{d-1}$$

B2A

▶ B2A \approx A2B & SecADD^d

$$\overset{\longleftarrow}{\blacksquare} : R^0, \quad R^1 \quad \cdots \quad R^{d-1}$$

$$B^{\{0:d\}} = R^{\{0\}} + R^{\{1\}} + \dots + 0$$

B2A

▶ B2A \approx A2B & SecADD^d

$$\stackrel{\longleftarrow}{\blacksquare} : \mathbb{R}^0, \quad \mathbb{R}^1 \quad \cdots \quad \mathbb{R}^{d-1}$$

$$B^{\{0:d\}} = R^{\{0\}} + R^{\{1\}} + \dots + 0$$

$$z^{\{0:d\}} = B^{\{0:d\}} + x^{\{0:d\}}$$

B2X2A & X2B

▶ B2X2A \approx X2B

$$\stackrel{\longleftarrow}{\blacksquare}: R^0, \quad R^1 \quad \cdots \quad R^{d-1}$$

B2X2A & X2B

▶ B2X2A \approx X2B

$$\stackrel{\longleftarrow}{\blacksquare} : \mathbb{R}^0, \quad \mathbb{R}^1 \quad \cdots \quad \mathbb{R}^{d-1}$$

$$z^{\{0:d\}} = R^{\{0\}} + R^{\{1\}} + \dots + x^{\{0:d\}}$$

B2X2A & X2B

▶ B2X2A \approx X2B

$$\stackrel{\longleftarrow}{\blacksquare}$$
: R^0 , R^1 ··· R^{d-1}

$$z^{\{0:d\}} = R^{\{0\}} + R^{\{1\}} + \dots + x^{\{0:d\}}$$

- ► X2B ≈ SecADD'(SecADD'(···))
- ▶ Pre- and post-processing: see full paper!

Operation Cost: SecADDChain $_q^d$ & B2X2A

		# SecADD							# SecMUX					
	Order	1	2	3	d	Total	1	2	3	d	Total			
[1]	1	4	-	-	-	4	2	-	-	-	2			
	2	2	4	-	-	6	1	2	-	-	3			
	3	4	-	4	-	8	2	-	2	-	4			
	d	-	-	-	4	2(d+1)	-	-	-	2	d+1			
[3]	1	2	-	-	-	2	-	-	-	-	-			
[2]	1	2	-	-	-	2	-	-	-	-	-			
	2	2	5	-	-	7	-	-	-	-	-			
	3	4	0	6	-	10	-	-	-	-	-			
	d	-	-	-	5 or 6 ^a	$3d \text{ or } 3d + 1^{a}$	-	-	-	-	-			
B2X2A	1	2	-	-	-	2	-	-	-	-	-			
	2	2	2	-	-	4	-	-	-	-	-			
	3	2	0	4	-	6	-	-	-	-	-			
	d	-	-	-	$2 \cdot \lceil \log_2(d) \rceil$	2d	-	-	-	-	-			

Table: Detailed B2A_a Operation Cost Comparison (d + 1 shares, k-bit words).

^a For *complete* or *incomplete* tree-structure.

Outline

- Implementation & Evaluation

Masking Techniques

Approach 1: Universal Composability

- Masked Gadgets 💞
- (Over)conservative RND & REG

Approach 2: Manual Masking

- Masked Gates X
- Error-prone

Masking Techniques

Approach 1: Universal Composability

- Masked Gadgets
- (Over)conservative RND & REG

Approach 2: Manual Masking

- Masked Gates
- Error-prone

Masking Techniques: Cost Comparison

Masking Technique	RND [bits]	Latency [cycles]	Verification
HPC1 (PINI)	228	18	Low
$\overline{DOM\;(t-NI) + SecREF\;(t-SNI)}$	176	11	High
DOM (t-NI)	114	9	High

Table: Comparison of first-order masking techniques of a Brent-Kung SecADD (k = 13).

Half-cycle datapath: see full paper!

Performance Comparison

Table 4: Mask Conversion Hardware Implementation: Performance Comparison.

Design	Mask. Tech.	Device	k	d	Util.	Freq.	OP	mod	Rand.a	Lat.	TP
					[LUT/FF]	[MHz]			[bits]	[cycles]	[coeff/cycle]
[SMG15]	TI	Spartan-6	32	1	937/1,330	62	SecADD	2^k	32	6	0.167
			32	2	4,223/5,509	63			128	12	0.083
[FVBBR+21]	TI	Artix-7	32	1	2,464/1,323	454	SecADD	2^k	-	6	-
[BG22]	PINI (HPC)	_c	32	1	-	-	SecADD	2^k	122	10	1
				2	-	-			366	10	1
[CGM ⁺ 23]	PINI (HPC)	Spartan-6	32	1	1,588/4,317	173	SecADD	2^k	74	18	1
				2	1,666/7,122	158			222	18	1
[CGTV15]b	PINI (HPC)	Artix-7	32	2	13,064/17,952	351	A2B	2^k	1,280	24	1
[BC22]b	PINI (HPC)	Artix-7	32	2	2,234/20,423	512	A2B	2^k	124	124	0.008
[LZP ⁺ 24]	PINI (HPC)	Artix-7	32	2	11,196/14,550	370	A2B	2^k	1,056	14	1
This Work (Full-cycle)	DOM	Kintex-7 ^d	13	1	1,150/3,335	176	A2B	2^k	140	10	2
								3329	255	20	1
							B2A	2^k	140	11	2
								3329	255	21	1
				2	3,128/16,774	144	A2B	2^k	534	20	2
								3329	993	40	1
							B2A	2 ^k	534	21	2
								3329 2 ^k	993	41	1
This Work (Half-cycle)	DOM	Kintex-7 ^d	13	1	1,133/2,170	139	A2B	3329	140 255	5 10	2
								2k	140	5	1 2
							B2A	3329	255	10	1
				_	3,105/9,376	130	A2B	2 ^k	534	10	2
				2				3329	993	20	1
							B2A	2 ^k	534	10	2
								3329	993	20	1

Security Evaluation: TVLA in Lab

Security Evaluation: TVLA in Lab

Outline

- Introduction to PQC & Masking
- Algorithmic Improvements
- 3 Implementation & Evaluation
- 4 Conclusion

X2X: Summary

Full ML-KEM. Decaps or ML-DSA. Sign requires:

- ► **ANY** protection order *d*
- ► **ANY** modulus *p* or *q*
- ► ANY operation (A2B or B2A) ✓
- ► Low cost (randomness, area) ✓ (up to 62%, 45-60%)
- ► High performance (throughput, latency) <a> ✓ (29-92%)

Future Work

SOURCE: PQShield

Thank you. Questions?

6 The End

- [1] Gilles Barthe et al. "Masking the GLP Lattice-Based Signature Scheme at Any Order". In: Advances in Cryptology EUROCRYPT 2018. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Cham: Springer International Publishing, 2018, pp. 354–384. ISBN: 978-3-319-78375-8.
- [2] Gaëtan Cassiers. "Composable and efficient masking schemes for side-channel secure implementations". PhD thesis. École polytechnique de Louvain and Université catholique de Louvain, 2022.
- [3] Tim Fritzmann et al. "Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography". In: *IACR Transactions on Cryptographic Hardware and Embedded Systems* 2022.1 (Nov. 2021), pp. 414–460. DOI: 10.46586/tches.v2022.i1.414-460. URL: https://tches.iacr.org/index.php/TCHES/article/view/9303.

