Année universitaire : 2013/2014 2ième année Licence – Informatique Module : Logique Mathématique

Examen

(Durée 1h 30mn)

Exercice 1: (4 pts)

Si V(F) désigne la valeur de vérité de la fbf F de la logique des propositions, à l'aide de **min** et **max**, exprimez V(F) dans chacun des cas suivants :

a)
$$F = \neg A$$
; b) $F = (A \land B)$; c) $F = (A \lor B)$; d) $F = (A \rightarrow B)$; e) $F = (A \leftrightarrow B)$.

On considère les formules $\varphi = p \land (\neg q \rightarrow (q \rightarrow p))$ et $\psi = (p \lor q) \leftrightarrow (\neg p \lor \neg q)$.

En utilisant la question précédente, déterminez $V(\varphi)$ et $V(\psi)$, sachant que V(p) = 0 et V(q) = 1.

Exercice 2: (5 pts) On considère les énoncés suivants:

- 1. Si Brahim rate son examen alors il sera déprimé.
- 2. S'il fait beau alors Brahim ira à la piscine.
- 3. A la piscine, Brahim ne travaille pas.
- 4. Si Brahim ne va pas à la piscine alors il sera déprimé.
- 5. Brahim ratera son examen s'il ne travaille pas.

Question 1 : Formalisez le problème en logique propositionnelle, avec : R : « Brahim rate son examen », B : « Il fait beau », P : « Brahim ira à la piscine », T : « Brahim travaille », D : « Brahim déprime ». Question 2 : Montrez que Brahim sera déprimé.

Exercice 3 : (05 pts). Soit l'ensemble de connecteurs $E = \{ \rightarrow, \bot \}$ où \bot représente la constante « faux ».

- 1. Montrez que E est un ensemble complet de connecteurs.
- 2. Montrez que $G = \{ \rightarrow \}$ n'est pas complet. Pour cela, vous prouverez qu'il n'existe pas de formule F, formée à l'aide de variables et du connecteur « \rightarrow » seulement, équivalente à \bot . Raisonnez par récurrence sur le nombre d'occurrences de \rightarrow dans F.

Exercice 4: (06 pts).

1. Montrer, en utilisant le théorème de déduction, que la formule F1 suivante est un théorème.

$$F1 \equiv ((A \rightarrow B) \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow ((A \rightarrow B) \rightarrow C)))$$

2. Montrer, maintenant, que la formule F2 suivante est un théorème ; et cela sans utiliser d'hypothèse.

$$F2 \equiv ((A \rightarrow B) \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

3. Soit SFLP⁺ l'extension du SFLP obtenue an ajoutant la formule suivante (*) comme quatrième axiome :

$$(*) (A \rightarrow \neg B) \rightarrow (\neg A \rightarrow B)$$

À l'aide de la méthode axiomatique, montrer que SFLP⁺ est incohérent (inconsistant).

Bon courage!

Ex. 2: Question 1. Formalisation:

- 1. $R \rightarrow D$
- 2. $B \rightarrow P$
- 3. $P \rightarrow \neg T$
- 4. $\neg P \rightarrow D$
- 5. $\neg T \rightarrow R$.

Question 2. Montrer que Brahim sera déprimé, revient à montrer que la forme d'argument suivante est valide: $1, 2, 3, 4, 5 \mid = D \Leftrightarrow \mid = (1 \land 2 \land 3 \land 4 \land 5) \rightarrow D$. En effet, raisonnons par l'absurde et supposons que $\varphi = ((1 \land 2 \land 3 \land 4 \land 5) \rightarrow D)$ n'est pas une tautologie $\Leftrightarrow \varphi$ possède au moins un contre modèle $I \Leftrightarrow I$ satisfait $(1 \land 2 \land 3 \land 4 \land 5)$ et ne satisfait pas $D. \Leftrightarrow I$ satisfait $(\neg R \lor D) \land (\neg B \lor P) \land (\neg P \lor \neg T) \land (P \lor D) \land (T \lor R))$ et ne satisfait pas $D. \Leftrightarrow I$ satisfait $\neg R$ et T et $\neg P$ et P \Leftrightarrow contradiction . D'où φ est tautologie, c'est à dire P

<u>Ex3</u>: 1. Pour montrer que E est un ensemble complet de connecteurs, il suffit d'exprimer chacun des connecteurs : \neg , \wedge , \vee , \leftrightarrow en fonction des éléments de E.

```
\neg a = a \to \bot; \quad a \land b = \neg \neg (a \land b) = \neg (\neg a \lor \neg b) = \neg (a \to \neg b) = (a \to (b \to \bot)) \to \bot.
(a \lor b) = (\neg \neg a \lor b) = (\neg a \to b) = (a \to \bot) \to b.
(a \leftrightarrow b) = (a \to b) \land (b \to a) = ((a \to b) \to ((b \to a) \to \bot)) \to \bot. D'où E est complet.
```

- 2. Pour montrer que G n'est pas complet, montrons qu'aucune formule construite à l'aide du seul connecteur \rightarrow n'est équivalente à \bot . On le vérifie en prouvant par récurrence que la propriété P(n) suivante est vraie pour tout $n \ge 0$.
 - P(n): » toute formule écrite avec n connecteurs \rightarrow n'est pas équivalente à \perp .
 - Base de récurrence : n=0, une formule sans connecteur est de la forme $\phi=p$ qui n »est pas équivalente à \perp . Donc P(0) est vraie.
 - Hypothèse de récurrence : supposons P(m) vraie pour tout $0 \le m \le n$. Soit ϕ une formule contenant n+1 connecteurs \to . Alors ϕ est de la forme $\phi = \phi_1 \to \phi_2$ où ϕ_1 et ϕ_2 comportent au plus n connecteurs \to . Par hypothèse de récurrence, ϕ_1 et ϕ_2 ne sont pas équivalentes à \bot . Il existe donc une interprétation I telle que I $(\phi_2) = 1$. Par conséquent I $(\phi) = 1$ et ϕ n'est pas à \bot . D'où P(n) est vraie pour tout $n \in N$.

Ex. 4 : 1) Montrons que $F1 \equiv ((A \rightarrow B) \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow ((A \rightarrow B) \rightarrow C)))$ est un théorème en utilisant le théorème de déduction.

- 1. $(A \rightarrow B) \rightarrow (B \rightarrow C)$ Hypothèse.
- 2. A Hypothèse.
- 3. $A \rightarrow B$ Hypothèse.
- 4. B MP (2, 3).
- 5. $B \rightarrow C MP (1, 3)$.
- 6. C MP (4, 5).

D'où
$$\{((A \rightarrow B) \rightarrow (B \rightarrow C)), A, (A \rightarrow B)\} \mid -C \Leftrightarrow$$

- $|-((A \to B) \to (B \to C)) \to (A \to ((A \to B) \to C)))$ par l'application trois fois successives du théorème de déduction.
- 2) Montrons que $F2 \equiv ((A \rightarrow B) \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ est un théorème en utilisant une démonstration pure.
 - 1. $(B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ thm 2, exo 11, série 2
 - 2. $((A \rightarrow B) \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (B \rightarrow C))$ thm f2, exo 14, série 2
 - 3. $(B \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow C)$ thm f1, exo 14, série 2
 - 4. $((A \rightarrow B) \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow C)$ Trans (2,3).
 - $5.((A \rightarrow B) \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ Trans (1, 4).
- 3) Pour montrer que $SFLP^+$ est incohérent, il suffit de supposer que $\neg A$ est un théorème, et montrer que A est aussi un théorème de $SFLP^+$. En effet,
 - 1. ¬A Théorème.
 - 2. $(A \rightarrow \neg A) \rightarrow (\neg A \rightarrow A)$ Axiome (*)
 - 3. $\neg A \rightarrow (A \rightarrow \neg A)$ Axiome 1.
 - 4. $\neg A \rightarrow (\neg A \rightarrow A)$ Trans (3, 2).
 - 5. $(\neg A \rightarrow A)$ MP(1, 4).
 - 6. $\neg A \rightarrow (A \rightarrow \neg (A \rightarrow A))$ Thm e) Exo 12 Série 2.
 - 7. $(\neg A \rightarrow (A \rightarrow \neg (A \rightarrow A))) \rightarrow ((\neg A \rightarrow A) \rightarrow (\neg A \rightarrow \neg (A \rightarrow A)))$ Axiome 2.
 - 8. $((\neg A \rightarrow A) \rightarrow (\neg A \rightarrow \neg (A \rightarrow A)))$ MP (6,7).
 - 9. $(\neg A \rightarrow \neg (A \rightarrow A))$ MP (5, 8).
 - 10. $(\neg A \rightarrow \neg (A \rightarrow A)) \rightarrow ((A \rightarrow A) \rightarrow A)$ Axiome 3.
 - 11. $((A \rightarrow A) \rightarrow A)$ MP (9, 10).
 - 12. $(A \rightarrow A)$ Théorème montré en cours.
 - 13. A MP (11, 12).

D'où dans le SFLP⁺ A et ¬A sont simultanément des théorèmes, d'où son incohérence.