LU3IN013: Initiation à la recherche

Thématique Bioinformatique:

Recherche d'information dans les génomes des organismes vivants

Le génome, une information à la base du fonctionnement des êtres vivants

Les cellules, unite de bases des êtres vivants

Cellule procaryote

Cellule eucaryote

Cours 1

Qu'est-ce qu'un génome?

Support de l'information génétique?

Structure de l'information contenu dans les génome?

La découverte de l'ADN comme support de l'information génétique

Expérience de transformation de Griffith (1928)

Purification du facteur transformant par Avery (1943)

La molécule d'ADN (structure élucidée en 1953 par Watson et Crick)

Support et Organisation de l'information des génomes

1 chromosome= 1 molécule d'ADN = 2 brins d'ADN avec des séquences complémentaires

La réplication semi-conservative de la molécule d'ADN

Les protéines

polaires mais non-chargé

CHa

thréonine

asparagine

HaN-C-H

cystéine

glutamine

phénylalanine tyrosine

aromatiques

tryptophane

Les 20 acides aminés

Acide glutamique	Glu	E
Acide aspartique	Asp	D
Alanine	Ala	Α
Arginine	Arg	R
Asparagine	Asn	Ν
Cystéine	Cys	С
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	lle	1

Leucine	Leu	L	
Lysine	Lys	K	
Méthionine	Met	М	
Phénylalanine	Phe	F	
Proline	Pro	Р	
Sérine	Ser	S	
Thréonine	Thr	Т	
Tryptophane	Trp	W	
Tyrosine	Tyr	Υ	
Valine	Val	V	

çoo-	coo.
H ₃ N-C-H	H_3N-C-H
CH_2	CH_2
coo-	CH_2
	coo
aspartate	glutama

Le code génétique

					Secon	d Letter			150		
	30 S	ι	J	(2		A		3		25.
	U	UUU UUC UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	UCAG	
1st letter	С	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gln	CGU CGC CGA CGG	Arg	UCAG	3rd
	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser	UCAG	lette
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp	GGU GGC GGA GGG	Gly	UCAG	

La transcription

La traduction

Cours 2: Recherche d'information dans les génomes

De la séquence du génome à son annotation

- 1) A la recherche des séquences codants
- 2) Les motifs d'activation des séquences codantes

Entrée de la biologie dans l'ère du Big Data: Les programmes de séquençage des génomes

Entrée de la biologie dans l'ère du Big Data: Une augmentation exponentielle des données de génomique

1) Recherche des séquences codantes

Exemple 1: le génome du sarv-co2

https://viralzone.expasy.org/30

Un génome particulier:

- ➤ Compact: 29 903 nucléotide
- ➤ Un unique brin d'ARN
- Séquence au format Fasta (ID: NC_045512.2):

https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2?report=fasta

ORF MAP du genome du sarvcov-2

ORF (Open reading Frame): Région située entre deux codon STOP CDS (Coding Séquence) Région située entre un START et un STOP incuse dans une ORF et codant potentiellement une protéine.

ORF MAP du genome du sarvcov-2

Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome

ORF Finder

Label	Strand	Frame •	Start	Stop	Length (nt aa)
ORF1	+	1	13768	21555	7788 2595
ORF2	+	1	25393	26220	828 275
ORF3	+	1	27394	27759	366 121
ORF4	+	2	266	13483	13218 4405
ORF5	+	2	21536	25384	3849 1282
ORF6	+	2	28274	29533	1260 419
ORF7	+	3	26523	27191	669 222
ORF8	+	3	27894	28259	366 121

ORF MAP du genome du sarvcov-2

Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome

|8 K

10 K

14 K

ORF Finder

> 6 K 12 K 16 K 18 K × Genes ORF1ab YP_009724397.2 >>>> ORF3a ORF10 YP_009724391.1 ->== YP_009725255.1 YP_009724393.1 =>= ORF7a YP_009724395.1 [22] YP_009724390.1 YP_009724396.1 [23] YP_009724392.1 = YP_009724394.1 = ORF7b YP_009725318.1 2 K |4 K 6 K |8 K 10 K 12 K 14 K 16 K 18 K 20 K 22 K 24 K 26 K 28 K 29,903

|24 K

26 K

28 K

29,903

22 K

20 K

Annotation biologique dans sequence viewer

|2 K

4 K

1) Recherche des séquences codantes

Exemple 2: Recherche dans le génome de la levure S. cerevisiae

Une base de donnée très détaillée: SGD (Saccharomyces Genome Database) https://www.yeastgenome.org/genomesnapshot#genome-inventory

- > 17 molécules d'ADN: 16 chromosome nucléaire + 1 chromosome mitochondrial
- ➤ Taille total du génome nucléaire: 12 071 326 paire de bases (pb)

Un génome très bien annoté

ORF MAP d'un fragment de chromosome de *S. cerevisiae*

ORF MAP d'un fragment de chromosome de *S. cerevisiae*

Bilan

1 chromosome= 1 molécule d'ADN = 2 brins d'ADN avec des séquences complémentaires => des centaines/milliers de séquences codant des protéines (CDS)

<u>Détail d'une CDS</u>

Les gènes codants ne sont pas les seules information contenues dans les génomes

Différents types de séquences annotées dans le génome de S. cerevisiae

2) Les motifs d'activation des séquences codantes

1 chromosome= 1 molécule d'ADN = 2 brins d'ADN avec des séquences complémentaires ⇒des centaines/milliers de séquences codant des protéines (CDS)

⇒Une activation variable des CDS en fonction des conditions cellulaire et environnementale

Le promoteur des CDS: le site d'activation de la transcription des CDS

Détail d'une CDS avec son promoteur

Détail de la structure globale de la régions promotrice d'un gène eucaryote

Exemple de recherche de motifs: Recherche de la TATA box dans le génome de la levure *S. cerevisiae*

Consensus du motif TATA box : TATA(A/T)A(A/T)(A/G) \rightarrow IUPAC nucleotide code: TATAWAWR Position de la TATA box:

20 à 40 bases avant le site initiation de la transcription, ie 50 à 200 base avant l'ATG initiateur

→ Utilisation d'un outil en ligne de recherche de motif: http://rsat.sb-roscoff.fr/genome-scale-dna-pattern.cgi

1477 occurrence sur 6604 CDS: ~ 20% des CDS

Le promoteur des CDS: une région régulatrice de l'activation génique

Exemple de motifs régulateur:Le motif de recrutement du facteur de transcription Gal4

→ Utilisation d'un outil en ligne de recherche de motif: http://rsat.sb-roscoff.fr/genome-scale-dna-pattern.cgi Motif code IUPAC: CGGNNNNNNNNNNNNNCCG 189 occurrence sur 6604 CDS (2%) dont 13 dans des gènes du métabolisme du galactose

Répartition des motifs régulateurs dans les génome et co-régultation des gènes impliqués dans un même processus

FT: Facteur de transcription

Projet: comment découvrir les motifs régulateurs de FT dans un génome?