Semaine 6

Pomme Bleue

24 janvier 2022

PIERRE-GABRIEL BERLUREAU

Congruences modulo un sous-groupe et Théorème de Lagrange

On a

- i) L'application $f: h \in H \mapsto xh$ est une bijection. En effet, il est clair que $\operatorname{Ker} f = \{e\}$, donc f est injective; la surjectivité est claire, d'où que f est bijective, donc |H| = |xH|.
- ii) On montre que la relation $\mathcal R$ définie par

$$xRy \Leftrightarrow y \in xH$$

est une relation d'équivalence et que la classe d'équivalence de $x \in H$ est xH.

 G/\mathcal{R} est une partition de G de parts toutes égales, donc on a

$$G = \bigcup_{H \in G/\mathcal{R}} H$$

d'où que, en passant au cardinal, $G = \sum_{H \in G/\mathcal{R}} |H| = |G/\mathcal{R}| \times |H|$.

MATTEO DELFOUR

Morphismes de $\mathbb Q$ dans $\mathbb Z$

Analyse Soit $f \in \text{Hom}(\mathbb{Q}, \mathbb{Z})$, alors $f(\mathbb{Z})$ est un sous-groupe de $(\mathbb{Z}, +)$, ainsi il existe $n \in \mathbb{N}$ tel que $f(\mathbb{Z}) = n\mathbb{Z}$. Il en découle qu'il existe $x \in \mathbb{Q}$ tel que f(x) = n, d'où que $2f(\frac{x}{2}) = n$ donc $f(\frac{x}{2}) = \frac{n}{2}$ donc $\frac{n}{2} \in n\mathbb{Z}$, ceci n'est possible que si n = 0, donc f est la fonction nulle.

Syntèse Bla bla...

YANIS GRIGY

Petit Lemme

Méthode 1: la récurrence bizarre.

On que tout élément de G est égal à son inverse, donc, lorsque $x, y \in G$, $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.

On montre à présent par récurrence sur |G| que |G| est une puissance de 2.

Lorsque |G|=1, il n'y a rien à vérifier. Lorsque $|G|\geq 2$, on note H le sous-groupe de G maximal pour l'inclusion tel que $G\neq H$. Soit $a\in G\backslash H$, alors $H\cup aH$ est un groupe, mais $H\cap aH=\emptyset$. D'autre part $|H\cup aH|=2|H|$ d'après la propriété de Pierre-Gabriel, ainsi $H\cup aH$ est un sous-groupe de G ayant un cardinal strictement plus grand que celui de H, donc $H\cup aH=G$, d'où que |G|=2|H|. D'après notre hypothèse de récurrence, |G| est une puissance de 2 puisque |H| est une puissance de 2.

Méthode 2 : la méthode élégante qui utilise de l'algèbre linéaire.

On remarque que G est un $\mathbb{Z}/2\mathbb{Z}$ -ev lorsque que l'on définit la loi de composition externe \cdot telle que $0 \cdot x = 1_G$ et $1 \cdot x = x$; on laissera le soin au lecteur de vérifier les axiomes. On a directement, avec dim G fini,

$$G \simeq (\mathbb{Z}/2\mathbb{Z})^{\dim G}$$

Ce qui conclut.

LOUIS MARCHAL

Groupes dont l'ensemble des sous-groupes est fini

Soit *G* un groupe. On note *E* l'ensemble de ses sous-groupes, on suppose qu'il est fini.

Les éléments de G sont tous d'ordre fini : en effet, si $g \in G$ est tel que ord $(g) = +\infty$, alors on a que $< g > \simeq \mathbb{Z}$ donc < g > a une infinité de sous-groupes, ce qui ne peut arriver puisque E est fini. On note E' l'ensemble des sous-groupes monogènes de G, alors $\bigcup_{H \in E'} H = G$. Ainsi, G est fini puisqu'il est une union finie de groupes finis.

Remarques : $\langle g \rangle$ désigne le plus petit sous-groupe de G contenant g, qui est égal à $g\mathbb{Z}$ lorsque la loi de G est notée additivement; on appelle le plus petit sous-groupe de G contenant une partie X de G, et on note Gr(X), l'intersection de tous les sous-groupes de G contenant X:Gr(X) est le sous-groupe monogène engendré par X. Un sous-groupe est dit homogène s'il est un sous-groupe homogène de lui-même.

LOUIS THEVENET

Cas particulier du Lemme de Cauchy

D'après le théorème de Lagrange, les éléments de G sont soit d'ordre 1, 2, p ou 2p. On suppose par l'absurde qu'il n'existe pas d'éléments d'ordre p: il en découle assez rapidement qu'il n'existe pas non plus d'éléments d'ordre 2p (en effet, si $x \in G$ est d'ordre 2p, x^2 est d'ordre p). On en déduit que tous les éléments sont d'ordre soit 1 ou 2 et $p \ge 3$, d'où

$$\forall g \in G, g^2 = 1_G$$

D'après le Lemme de Yanis, G est une puissance de 2. Or, |G|=2p, qui n'est pas une puissance de 2. Voilà l'absurdité.

ARMAND SANS NOM DE FAMILLE

Existence d'un idempotent

Soit $a \in G$, l'application $f: n \in \mathbb{N} \mapsto a^{2^n}$ ne saurait être injective, puisque E est fini; ainsi, il en découle qu'il existe $p,q \in \mathbb{N}$ deux entiers différents tels que $a^{2^p} = a^{2^q}$, ce qui peut être réécrit : $a^{2^{m+n}} = a^{2^m}$. On pose $b = a^{2^m}$, on a alors $b^{2^n} = b$, ainsi b^{2^n-1} est idempotent : en effet, $(b^{2^n-1})^2 = b^{2^n+2^n-2} = bb^{2^n-2} = b^{2^n-1}$.

SHEMS

Neutre à droite et inverse à droite

On montre que tout élément est inversible : soit $g \in G$, alors g admet un inverse à droite g' qui admet un inverse à droite g'' : ainsi, gg'g'' = eg'' donc g'gg'g'' = g'eg'' donc g'ge = g'g'' donc g'g = e donc g' est inversible à gauche et e est un neutre à gauche ce qui conclut.