主存与Cache的地址映射(2)

主存与cache地址映射

- 组相联映射 (set-associated)
- 组相联映射的特例
 - 直接映射(direct mapped)
 - 全相联映射(fully-associated)

组相联映射(分组方式2)

4路组相联映射

Cache: 256组

每组:四路,即4个数据块

组关联映射cache的地址范围

• 给定一个固定容量的cache

降低关联度:

- 即减少了一组中的路数、增加组数
- 特例:直接映射,每组只有1路

增加关联度:

- 即增加一组中的路数、减少组数
- 特例: 全关联映射,只有1组。

考虑一个2路组关联映射的cache, 总共有四块,分两组,每组两块初始时,cache为空,所有块都被标记上无效(Invalid)

连续访问的内存块地址:

n mice

0(0000) 4(0100) 0 4 0 4 0 4

内存 Ta 地址 X

Tag 组号 XXX X

	U IIIISS
000	Mem(0)

	_
000	Mem(0)
010	Mem(4)

4 miss

000	Mem(0)
010	Mem(4)

o hit

000	Mem(0)
010	Mem(4)

4 hit

8次请求,2次失效

解决了直接映射的乒乓效应问题!

组关联映射的优势

组相联映射应用场合

- Cache的容量
 - 小: 采用组相联映射或全相联映射
 - •大:采用直接映射方式,查找速度快,命中率相对前者稍低
- Cache 的访问速度
 - 要求高的场合采用直接映射
 - 要求低的场合采用组相联或全相联映射

小结

- 组相联映射
- 它的特例
 - ■直接映射
 - 全相联映射

谢谢!

