Optimization Method homework 5

Qingfu Wen

2015213495

October 22, 2015

CONTENTS

i. Problem 1	2
ii. Problem 2	2
iii. Problem 3	3
iv. Problem 4	3

I. PROBLEM 1

Suppose the original problem is

min
$$4x_1 + 3x_2 + x_3$$

s.t. $x_1 - x_2 + x_3 \ge 1$
 $x_1 + 2x_2 - 3x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$

the optimized solution of the dural problem is $(w_1, w_2) = (\frac{5}{3}, \frac{7}{3})$, solve the original problem using dual property. *Solution:* Dural problem:

max
$$w_1 + 2w_2$$

s.t. $w_1 + w_2 \le 4$
 $-w_1 + 2w_2 \le 3$
 $w_1 - 3w_2 \le 1$
 $w_1, w_2 \ge 0$

Since the optimized solution of the dural problem is $w_1 > 0$, $w_2 > 0$, from the complementary slackness theorem and the constraint on the third inequality in the dural problem is tight, we get

$$\begin{cases} x_1 - x_2 + x_3 = 1 \\ x_1 + 2x_2 - 3x_3 = 2 \\ x_3 = 0 \end{cases}$$

so the optimized solution of the original problem is $x_1 = \frac{4}{3}$, $x_2 = \frac{1}{3}$, $x_3 = 0$, $f_{min} = \frac{19}{3}$

II. PROBLEM 2

Given a linear programming problem:

min
$$5x_1 + 21x_3$$

s.t. $x_1 - x_2 + 6x_3 \ge b_1$
 $x_1 + x_2 + 2x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$

 b_1 is a positive number, and the optimized solution of the problem is $(x_1, x_2, x_3) = (\frac{1}{2}, 0, \frac{1}{4})$.

1. write out the dural problem.

max
$$b_1 w_1 + w_2$$

s.t. $w_1 + w_2 \le 5$
 $-w_1 + w_2 \le 0$
 $6w_1 + 2w_2 \le 21$
 $w_1, w_2 \ge 0$

2. get the optimized solution of the dural problem. using the complementary slackness theorem, since $w_1 > 0$, from $x_1 - x_2 + 6x_3 = b_1$ we get $b_1 = 2$. And the optimized solution $x_1 > 0$, $x_3 > 0$, we get

$$\begin{cases} w_1 + w_2 = 5\\ 6w_1 + 2w_2 = 21 \end{cases}$$

Then, we get the optimized solution $w_1 = \frac{11}{4}$, $w_2 = \frac{9}{4}$, $f_{min} = \frac{31}{4}$

III. PROBLEM 3

Considering the linear problem:

$$min cx$$
s.t. $Ax = b$

$$x \ge 0$$

A is a m*m symmetrical matrix, $c^T = b$. Prove that if $x^{(0)}$ is a feasible solution, it is optimized. **Proof:**

Dural problem:

$$\max wb$$
s.t. $wA \le c$

we can know that $w = x^{(0)}^T$ is a feasible solution and $cx^{(0)} = w^{(0)}b$, so $x^{(0)}$ is optimized.

IV. PROBLEM 4

solve the following LP problem using dual simplex method.

1.

max
$$x_1 + x_2$$

s.t. $x_1 - x_2 - x_3 = 1$
 $-x_1 + x_2 + 2x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$

Solution:

the extended problem:

max
$$x_1 + x_2$$

s.t. $x_1 - x_2 - x_3 = 1$
 $-x_3 + x_4 = -2$
 $x_2 + x_3 + x_5 = M$
 $x_j \ge 0, j = 1, \dots, 5$

$\overline{}$				_	ı		
	x_1	x_2	x_3	x_4	x_5		
x_1	1	-1	-1	0	0	1	
x_4	0	0	-1	1	0	-2	
x_5	0	1	1	0	1	M	
f	0	-2	-1	0	0	1	
x_1	1	0	0	0	1	M+1	
x_4	0	0	(-1)	1	0	-2	
x_2	0	1	1	0	1	M	
f	0	0	1	0	2	2M+1	
x_1	1	0	0	0	1	M+1	
x_3	0	0	1	-1	0	2	
x_2	0	1	0	1	1	M-2	
f	0	0	0	1	2	2M-1	

From the above table, we can see that the optimized solution is (M+1, M-2, 2, 0, 0), $f_{max} = 2M-1$. Since $M \to \infty$, the problem has no upper bound.

2.

min
$$4x_1 + 3x_2 + 5x_3 + x_4 + 2x_5$$

s.t. $-x_1 + 2x_2 - 2x_3 + 3x_4 - 3x_5 + x_6 + x_8 = 1$
 $x_1 + x_2 - 3x_3 + 2x_4 - 2x_5 + x_8 = 4$
 $-2x_3 + 3x_4 - 3x_5 + x_7 + x_8 = 2$
 $x_j \ge 0, j = 1, \dots, 8$

Solution:

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	<i>x</i> ₈	
x_6	-2	1	1	1	(-1)	1	0	0	-3
x_8	1	1	-3	2	-2	0	0	1	4
<i>x</i> ₇	-1	-1	1	1	-1	0	1	0	-2
f	-4	-3	-5	-1	-2	0	0	0	0
x_5	2	-1	-1	-1	1	-1	0	0	3
<i>x</i> ₈	5	-1	-5	0	0	-2	0	1	10
<i>x</i> ₇	1	-2	0	0	0	-1	1	0	1
f	0	-5	-7	-3	0	-2	0	0	6

From the above table, we can get the optimized solution $\mathbf{x}=(0,0,0,0,3,0,1,10), f_{min}=6$.