

into equivalence changes

 $g_1 \sim g_2$ if $\exists h \in H$ 5. $\exists e_1 = g_2 h$ (some left conet) $\left(\phi_0^1 = g_1 \phi_0 + h_{en} \phi_0^1 = g_2 h \phi_0 = g_2 \phi_0 + h_{en} \phi_0^1 + h_{en} \phi_0^1 + h_{en} \phi_0^1 = g_1 \phi_0 = g_2 \phi_0 + h_{en} \phi_0^1 +$

 $\bar{\Phi}_0 \simeq G/H$ (if H is a world subgroup then $\bar{\Phi}_0$ is a group).

Consider in finitestimal trustant, $g\phi = \phi \rightarrow J\phi$, $J\phi = a^i\alpha a + a \phi$ where a = 1,..., din G, to are generators of the algebra of G in nep of ϕ , and a^i are small params. Givenoused means that $V(\phi + J\phi) = V(\phi)$ or expanding to tient order,

 $V(\phi+\delta\phi)=V(\phi)=i_{\alpha}\alpha^{\alpha}(t^{\alpha}\phi)_{r}\frac{\partial V}{\partial \phi_{r}}=0$ (+) where v=1,...,N indexed component of ϕ in its eq. If ϕ_{0} is a minimum of V, $V(\phi_{0}+\delta\phi)=V(\phi)=\frac{1}{2}\delta\phi_{r}\frac{\partial^{2}V}{\partial\phi_{r}\partial\phi_{s}}\delta\phi_{5}$ $=w_{re}^{2}$

Differentiate (x),