Contents

Pı	refac	e		ix
Ι	Fui	ndame	ental Machinery	1
1	Intr	oducti	ion	1
	1.1	Differe	ential Equations	2
	1.2	Partia	l Differential Equations	5
	1.3	More	Examples	8
	1.4	Impor	tance of the Forward Model	15
2	Bas	ic Mac	chinery	19
	2.1	Backg	round	19
	2.2	Matri	x and Vector Algebra	19
		2.2.1	Matrix Multiplication and Identities	23
		2.2.2	Linear Simultaneous Equations	24
		2.2.3	Matrix Norms	26
		2.2.4	Identities. Differentiation	27
	2.3	Simple	e Statistics. Regression	29
		2.3.1	Probability Densities, Moments	29
		2.3.2	Sample Estimates. Bias	31
		2.3.3	Multivariable Probability Densities. Correlation	32
		2.3.4	Functions and Sums of Random Variables	39
	2.4	Least-	Squares	42
		2.4.1	Basic Formulation	43
		2.4.2	Weighted and Tapered Least-Squares	51
		2.4.3	Underdetermined Systems and Lagrange Multipliers	58
		2.4.4	Interpretation of Discrete Adjoints	68

vi CONTENTS

	2.5	The Si	ingular Vector Expansion	69
		2.5.1	Simple Vector Expansions	70
		2.5.2	Square-Symmetric Problem. Eigenvalues/Eigenvectors	72
		2.5.3	Arbitrary Systems	84
		2.5.4	The Singular Value Decomposition	90
		2.5.5	Some Simple Examples. Algebraic Equations	93
		2.5.6	Simple Examples. Differential and Partial Differential Equations	101
		2.5.7	Relation of Least-Squares to the SVD	105
		2.5.8	Pseudo-Inverses	107
		2.5.9	Row and Column Scaling	107
		2.5.10	Solution and Observation Resolution. Data Ranking	113
		2.5.11	Relation to Tapered and Weighted Least-Squares	115
		2.5.12	Resolution and Variance of Tapered Solutions	118
	2.6	Combi	ined Least-Squares and Adjoints	119
		2.6.1	Exact Constraints	119
		2.6.2	Relation to Green Functions ¹	125
	2.7	Minim	num Variance Estimation & Simultaneous Equations	126
		2.7.1	The Fundamental Result	127
		2.7.2	Linear Algebraic Equations	130
		2.7.3	Testing After the Fact	132
		2.7.4	Use of Basis Functions	134
		2.7.5	Determining a Mean Value	135
	2.8	Impro	ving Recursively	138
	2.9	A Rec	apitulation	144
	2.10	Appen	ndix 1. Maximum Likelihood	147
	2.11	Appen	ndix 2. Differential Operators and Green Functions	148
	2.12	Appen	ndix 3 Recursive Least-Squares and Gauss-Markov Solutions	149
	2.13	Exerci	ses	151
3	Ext	ension	s of Methods	161
	3.1	The G	eneral Eigenvector/Eigenvalue Problem	161
	3.2	Sampl	ing	163
		3.2.1	One-Dimensional Interpolation	167
		3.2.2	Higher Dimensional Mapping	171
		3.2.3	Mapping Derivatives	174

CONTENTS	vi
CONTENTS	VI

	3.3	Inequality Constraints; Nonnegative Least Squares
	3.4	Linear Programming
	3.5	Empirical Orthogonal Functions
	3.6	Kriging and Other Variants of Gauss-Markov Estimation
	3.7	Nonlinear Problems
		3.7.1 Total Least Squares
		3.7.2 Method of Total Inversion
		3.7.3 Variant Nonlinear Methods, Including Combinatorial Ones $\dots \dots 186$
4	Tho	Time-Dependent Inverse Problem: State Estimation 189
4	4.1	Background
	4.2	Basic Ideas and Notation
	4.2	4.2.1 Models
		4.2.2 How to Find the Matrix $\mathbf{A}(t)$
		4.2.3 Observations and Data
	4.3	Estimation
	4.0	4.3.1 Model and Data Consistency
		4.3.2 The Kalman Filter
		4.3.3 The Smoothing Problem
		4.3.4 Other Smoothers
	4.4	Control and Estimation Problems
	1.1	4.4.1 Lagrange Multipliers and Adjoints
		4.4.2 Terminal Constraint Problem: Open Loop Control
		4.4.3 Representers and Boundary Green Functions
		4.4.4 The Control Riccati Equation
		4.4.5 The Initialization Problem
	4.5	Duality and Simplification: The Steady-State Filter and Adjoint
	4.6	Controllability and Observability
	4.7	Nonlinear Models
		4.7.1 The Linearized and Extended Kalman Filter
		4.7.2 Parameter Estimation and Adaptive Estimation
		4.7.3 Nonlinear Adjoint Equations; Searching for Solutions
		4.7.4 Automatic Differentiation, Linearization, and Sensitivity
		4.7.5 Approximate Methods
	4.8	Forward Models
		-

	4.9	A Summary	64
5	Tin	me-Dependent Methods—2	73
	5.1	Monte Carlo/Ensemble Methods	73
		5.1.1 Ensemble Methods and Particle Filters	73
	5.2	Numerical Engineering: The Search for Practicality	77
		5.2.1 Meteorological Assimilation	77
		5.2.2 Nudging and Objective Mapping	78
	5.3	Approximate Filter/Smoother Methods	81
	5.4	Reduced State Methods	85
	5.5	Uncertainty in Lagrange Multiplier Method	87
	5.6	Non-normal Systems	87
		5.6.1 POPs and Optimal Modes	89
	5.7	Adaptive Problems	90
II	${f A}_{]}$	pplications 29	93
6	App	plications to Steady Problems 29	95
	6.1	Steady-State Tracer Distributions	96
	6.2	The Steady Ocean Circulation Inverse Problem	
		6.2.1 Equations of Motion	99
		6.2.2 Geostrophy	99
		6.2.3 Integral Version	
		6.2.4 Discrete Version	04
		6.2.5 A Specific Example	06
		6.2.6 Solution by SVD	11
		6.2.7 Solution by Gauss-Markov Estimate	22
		6.2.8 Adding Further Properties	22
	6.3	Property Fluxes	29
	6.4	Application to Real Oceanographic Problems	31
		6.4.1 Regional Applications	31
		6.4.2 The Columnar Result	39
		6.4.3 Global-Scale Applicationsf	40
		6.4.4 Error Estimates	42
		6.4.5 Finite-Difference Models	46

CONTENTS	ix	

	6.5	Linear Programming Solutions	347
	6.6	The β –Spiral and Variant Methods	349
		6.6.1 The β –Spiral	349
	6.7	Alleged Failure of Inverse Methods	354
	6.8	Applications of EOFs (Singular Vectors)	354
	6.9	Non-linear Problems	356
7	Арр	plications to Time-Dependent Fluid Problems	361
7	Ap ₁ 7.1	plications to Time-Dependent Fluid Problems Time Dependent Tracers	
7		•	362
7	7.1	Time Dependent Tracers	362 362
7	7.1 7.2	Time Dependent Tracers	362 362 370
7	7.1 7.2 7.3	Time Dependent Tracers	362 362 370 372