

• Different ways of learning PDEs

Flow snapshots: Cheng et al. (2024). IJMF

Flow snapshots: Cheng et al. (2024). IJMF

Flow snapshots: Cheng et al. (2024). IJMF

4

Recap on Terminology

- Function
 - Mapping from value to value.
 - "The usual ones"
 - For instance,
 - $f(x) = \sin(x)$ maps a scalar to a scalar ($\sin: \mathbb{R} \to \mathbb{R}$)
 - Linear function $\mathbf{y} = A\mathbf{x} + b$ maps a vector $\mathbf{x} \in \mathbb{R}^n$ to a vector $\mathbf{y} \in \mathbb{R}^m$
 - The solution function u(t, x, y) of a PDE maps a given time t and location x, y to a physical quantity u.

Recap on Terminology

- Function
 - Mapping from value to value
 - "The usual ones"
 - For instance,
 - $f(x) = \sin(x)$ maps a scalar to a scalar ($\sin: \mathbb{R} \to \mathbb{R}$)
 - Linear function $\mathbf{y} = A\mathbf{x} + b$ maps a vector $\mathbf{x} \in \mathbb{R}^n$ to a vector $\mathbf{y} \in \mathbb{R}^m$
 - The solution function u(t,x,y) of a PDE maps a given time t and location x, y to a physical quantity u.
- Operator
 - Mapping from function to function.
 - May not be familiar with the term, but you may already know it.
 - For instance,
 - Differential operator d/dx maps the function $f(x) = 3x^2 + 2$ to the function f'(x) = 6x.
 - Integral operator \int maps the function $\sin(x)$ to the function $-\cos(x) + C$, $C \in \mathbb{R}$.
 - Convolution operator T maps a function f(x) to $(Tf)(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$.

• Second order systems, e.g., homogeneous spring-mass-damper system: $m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0$

• Second order systems, e.g., homogeneous spring-mass-damper system: $m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0$

• Convert to first-order system:

$$\frac{d}{dt}\mathbf{u}(t) = \mathbf{A}\mathbf{u}(t)$$

• ... where:
$$\mathbf{u}(t) = \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}$$
, $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix}$

• Second order systems, e.g., homogeneous spring-mass-damper system: $m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0$

• Convert to first-order system:

$$\frac{d}{dt}\mathbf{u}(t) = \mathbf{A}\mathbf{u}(t)$$

• ... where:
$$\mathbf{u}(t) = \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}$$
, $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix}$

• Solution to IVP: $\mathbf{u}(t) = e^{t\mathbf{A}}\mathbf{u}(0)$

• Second order systems, e.g., homogeneous spring-mass-damper system: $m\ddot{x}(t) + c\dot{x}(t) + kx(t) = 0$

• Convert to first-order system:

$$\frac{d}{dt}\mathbf{u}(t) = \mathbf{A}\mathbf{u}(t)$$

• ... where:
$$\mathbf{u}(t) = \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}$$
, $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix}$

• Solution to IVP:
$$\mathbf{u}(t) = e^{t\mathbf{A}}\mathbf{u}(0)$$

Solution operator

Formal Definition

Generic family of PDEs:

$$(L_a u)(x) = f(x), \qquad x \in D,$$

 $u(x) = 0, \qquad x \in \partial D$

- $a \in \mathcal{A}$ where \mathcal{A} is the Banach space* of physics parameters
- $u:D \to \mathbb{R}$: solution function that lives in the Banach space \mathcal{U}
- $f: D \to \mathbb{R}$: source term in the dual \mathcal{U}^* of \mathcal{U} .
- $D \subset \mathbb{R}^d$: a bounded physics domain
- $L_a: \mathcal{A} \to \mathcal{L}(\mathcal{U}; \mathcal{U}^*)$: mapping from the parameter Banach space \mathcal{A} to the space of linear operators that map \mathcal{U} to its dual \mathcal{U}^*

*Banach Space

= complete normed vector space

We have a way to measure the "length" and "distance" of arrows.

If you have a sequence of arrows v_1, v_2, \cdots that get closer and closer to some limit $v = \lim v_i$, the limit v is also an arrow in the same vector space.

Formal Definition

Generic family of PDEs:

$$(L_a u)(x) = f(x), \qquad x \in D,$$

 $u(x) = 0, \qquad x \in \partial D$

- $a \in \mathcal{A}$ where \mathcal{A} is the Banach space* of physics parameters
- $u:D \to \mathbb{R}$: solution function that lives in the Banach space \mathcal{U}
- $f: D \to \mathbb{R}$: source term in the dual \mathcal{U}^* of \mathcal{U} .
- $D \subset \mathbb{R}^d$: a bounded physics domain
- $L_a: \mathcal{A} \to \mathcal{L}(\mathcal{U}; \mathcal{U}^*)$: mapping from the parameter Banach space \mathcal{A} to the space of linear operators that map \mathcal{U} to its dual \mathcal{U}^*
- Solution operator to this PDE $\mathcal{G}: \mathcal{A} \times \mathcal{U}^* \to \mathcal{U}$

*Banach Space

= complete normed vector space

We have a way to measure the "length" and "distance" of arrows.

If you have a sequence of arrows v_1, v_2, \cdots that get closer and closer to some limit $v = \lim v_i$, the limit v is also an arrow in the same vector space.

Formal Definition

Generic family of PDEs:

$$(L_a u)(x) = f(x), \qquad x \in D,$$

 $u(x) = 0, \qquad x \in \partial D$

- $a \in \mathcal{A}$ where \mathcal{A} is the Banach space* of physics parameters
- $u:D \to \mathbb{R}$: solution function that lives in the Banach space \mathcal{U}
- $f: D \to \mathbb{R}$: source term in the dual \mathcal{U}^* of \mathcal{U} .
- $D \subset \mathbb{R}^d$: a bounded physics domain
- $L_a: \mathcal{A} \to \mathcal{L}(\mathcal{U}; \mathcal{U}^*)$: mapping from the parameter Banach space \mathcal{A} to the space of linear operators that map \mathcal{U} to its dual \mathcal{U}^*
- Solution operator to this PDE $\mathcal{G}: \mathcal{A} \times \mathcal{U}^* \to \mathcal{U}$
- Parametrize g with a neural network! i.e. $g \approx g_{\theta}$ (universal approximation theorem of operators says you can do it**)

*Banach Space

= complete normed vector space

We have a way to measure the "length" and "distance" of arrows.

If you have a sequence of arrows v_1, v_2, \cdots that get closer and closer to some limit $v = \lim v_i$, the limit v is also an arrow in the same vector space.

Learning Solution Operators

• (Chen & Chen, 1995) Suppose that σ is a continuous non-polynomial function, X is a Banach space, $K_1 \subset X$, $K_2 \subset \mathbb{R}^d$ are two compact sets in X and \mathbb{R}^d , respectively, V is a compact set in $C(K_1)$, G is a continuous operator, which maps V into $C(K_2)$.

Then for any $\epsilon > 0$, there are positive integers n, p, m, constants c_i^k , ξ_{ij}^k , θ_i^k , $\zeta_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$, $x_j \in K_1$, i = 1, ..., n, k = 1, ..., p, j = 1, ..., m, such that

$$\left| \mathcal{G}(u)(y) - \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma \left(\sum_{j=1}^{m} \xi_{ij}^k u(x_j) + \theta_i^k \right) \sigma(w_k \cdot y + \zeta_k) \right| < \epsilon$$

• (Chen & Chen, 1995) Suppose that σ is an activation function, X is a Banach space, $K_1 \subset X$, $K_2 \subset \mathbb{R}^d$ are two compact sets in X and \mathbb{R}^d , respectively, V is a compact set in $C(K_1)$, G is a continuous operator, which maps V into $C(K_2)$.

Then for any $\epsilon > 0$, there are positive integers n, p, m, constants c_i^k , ξ_{ij}^k , θ_i^k , $\zeta_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$, $x_j \in K_1$, i = 1, ..., n, k = 1, ..., p, j = 1, ..., m, such that

$$\left| \mathcal{G}(u)(y) - \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma \left(\sum_{j=1}^{m} \xi_{ij}^k u(x_j) + \theta_i^k \right) \sigma(w_k \cdot y + \zeta_k) \right| < \epsilon$$

• (Chen & Chen, 1995) Suppose that σ is an activation function, K_1 is an input physical domain (where the input physical quantities u are sampled), K_2 is an output physical domain (where the output physical quantities are sampled), V is a compact set in $C(K_1)$, G is a continuous operator, which maps V into $C(K_2)$.

Then for any $\epsilon > 0$, there are positive integers n, p, m, constants c_i^k , ξ_{ij}^k , θ_i^k , $\zeta_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$, $x_j \in K_1$, i = 1, ..., n, k = 1, ..., p, j = 1, ..., m, such that

$$\left| \mathcal{G}(u)(y) - \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma \left(\sum_{j=1}^{m} \xi_{ij}^k u(x_j) + \theta_i^k \right) \sigma(w_k \cdot y + \zeta_k) \right| < \epsilon$$

• (Chen & Chen, 1995) Suppose that σ is an activation function, K_1 is an input physical domain (where the input physical quantities u are sampled), V is a set of continuous functions (physical quantities u) defined on K_1 , G is a continuous operator, which maps V into $C(K_2)$.

Then for any $\epsilon > 0$, there are positive integers n, p, m, constants c_i^k , ξ_{ij}^k , θ_i^k , $\zeta_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$, $x_j \in K_1$, i = 1, ..., n, k = 1, ..., p, j = 1, ..., m, such that

$$\left| \mathcal{G}(u)(y) - \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma \left(\sum_{j=1}^{m} \xi_{ij}^k u(x_j) + \theta_i^k \right) \sigma(w_k \cdot y + \zeta_k) \right| < \epsilon$$

• (Chen & Chen, 1995) Suppose that σ is an activation function, K_1 is an input physical domain (where the input physical quantities u are sampled), v is a set of continuous functions (physical quantities v) defined on v0 is a solution operator, which maps input physical quantities v1 to output physical quantities evaluated at v2.

Then for any $\epsilon > 0$, there are positive integers n, p, m, constants c_i^k , ξ_{ij}^k , θ_i^k , $\zeta_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$, $x_j \in K_1$, i = 1, ..., n, k = 1, ..., p, j = 1, ..., m, such that

$$\left| \mathcal{G}(u)(y) - \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma \left(\sum_{j=1}^{m} \xi_{ij}^k u(x_j) + \theta_i^k \right) \sigma(w_k \cdot y + \zeta_k) \right| < \epsilon$$

• (Chen & Chen, 1995) Suppose that σ is an activation function, K_1 is an input physical domain (where the input physical quantities u are sampled), v is a set of continuous functions (physical quantities v) defined on v0 is a solution operator, which maps input physical quantities v1 to output physical quantities evaluated at v1.

Then, there exists a neural network that looks like the one in the next slide that can approximate \mathcal{G} with an error bound ϵ .

INPUT 2: $y \approx \{ y_1 \mid y_2 \dots y_n \}$ Locations where you want to evaluate outputs OUTPUT: Approx. to G(u)(y) Output physical quantities

2

INPUT 1: u(x)

Input physical quantities

Sampling Device

A modern twist: Deep-O-Net

Lu et al., Nature Mach Intell, 2021

$$\mathcal{G}(u)(y) \approx \sum_{k=1}^{p} \underbrace{b_k(u)}_{\text{branch trunk}} \underbrace{t_k(y)}_{\text{trunk}}$$

D Unstacked DeepONet

In Simple Terms: Image-to-Image Problem

- "Operator learning can be taken as an image-to-image problem."
 - Zongyi Li website.

- ...where an "Image" could be:
 - A snapshot of the solution function at a given time t.
 - Initial condition/configuration of a physical system. (snapshot at t=0)
 - Boundary geometry.
 - Distribution of system coefficients.
 - Etc.

Image-to-Image Problem

- For instance, a solution operator:
 - Consider the Darcy equation describing the flow of a fluid through a porous medium: $-\operatorname{div}(a\nabla u) = f$
 - ..., where
 - $u \in \mathcal{U}$: temperature or pressure
 - $a \in \mathcal{A}$: conductance or permeability
 - $f \in \mathcal{U}^*$: source term

Image-to-Image Problem

Image-to-Image Problem

Discretization:

$$a_i \coloneqq a(x_i)$$

$$u_i \coloneqq u(y_i)$$

Discretization:

$$a_i \coloneqq a(x_i)$$

$$u_i \coloneqq u(y_i)$$

Discretization:

$$a_i \coloneqq a(x_i)$$
 $a_0 \mid a_1 \mid a_2 \mid a_3 \mid a_4 \mid \cdots \mid a_m \mid a_m$

Discretization:

$$a_i \coloneqq a(x_i)$$
 $a_0 \mid a_1 \mid a_2 \mid a_3 \mid a_4 \mid \cdots \mid a_n$
 $u_i \coloneqq u(y_i)$ $u_0 \mid u_1 \mid u_2 \mid \cdots \mid u_m$

Linear neural network layer

$$u_{j} = \sigma \left(\sum_{i=0}^{n} K_{ji} a_{i} \right) \begin{array}{c|cccc} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots & a_{n} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ K_{j0} & K_{j1} & K_{j2} & K_{j3} & K_{j4} & \cdots & K_{jn} \\ \hline & & & & & & & \\ u_{0} & \cdots & u_{j} & \cdots & u_{m} \end{array}$$

What if the discretization changes?

 K_{j0} K_{j1} K_{j2} K_{j3} K_{j4} ... K_{jn} \rightarrow Are these still useful?

Instead, consider "indexing" the weight K with x_i and y_i

$$u_{j} = \sigma \left(\sum_{i=0}^{n} K_{ji} a_{i} \right)$$

$$u(y_{j}) = \sigma \left(\sum_{i=0}^{n} K(y_{j}, x_{i}) a(x_{i}) \right)$$

Instead, consider "indexing" the weight K with x_i and y_i

$$u_{j} = \sigma \left(\sum_{i=0}^{n} K_{ji} a_{i} \right)$$

$$u(y_{j}) = \sigma \left(\sum_{i=0}^{n} K(y_{j}, x_{i}) a(x_{i}) \right)$$

$$= \sigma \left(\sum_{i=0}^{n} \kappa(y_{j}, x_{i}) a(x_{i}) \Delta x_{i} \right)$$
Riemann Sum

Instead, consider "indexing" the weight K with x_i and y_i

$$u_{j} = \sigma \left(\sum_{i=0}^{n} K_{ji} a_{i} \right)$$

$$u(y_{j}) = \sigma \left(\sum_{i=0}^{n} K(y_{j}, x_{i}) a(x_{i}) \right)$$

$$= \sigma \left(\sum_{i=0}^{n} \kappa(y_{j}, x_{i}) a(x_{i}) \Delta x_{i} \right)$$
Riemann Sum
$$u(y) = \sigma \left(\int \kappa(y, x) a(x) dx \right)$$

Instead, consider "indexing" the weight K with x_i and y_j

$$u_{j} = \sigma \left(\sum_{i=0}^{n} K_{ji} a_{i} \right)$$
 Linear matrix operator acting on fixed discretization
$$u(y_{j}) = \sigma \left(\sum_{i=0}^{n} K(y_{j}, x_{i}) a(x_{i}) \right)$$
 Linear integral operator acting on continuous functions
$$u(y) = \sigma \left(\int \kappa(y, x) a(x) dx \right)$$
 Riemann Sum

Works great in theory, but how?

$$u(y) = \sigma\left(\int \kappa(y, x) a(x) dx\right)$$

- Practically, we need to compute (in each neural network layer):
 - Continuous kernel function $\kappa(y,x)$
 - Continuous integral $\int dx$
- ...which are computationally expensive!

Works great in theory, but how?

• Kovachki, Li, et al. (2022) – Different versions of the linear integral operator

Graph Neural Operator

Operator

Neural Operator Layer

Neural Operator Layer

Neural Operator Layer

Low-rank Neural Operator

Neural Operator Layer $\sum_{j=1}^{r} \langle \psi^{(j)}, \nu \rangle \varphi^{(j)}(x) + b(x)$

Fourier Neural Operator

Images from Kovachki et al. ICML 2022.

- Convolution Theorem:
 - The convolution f * g of two functions f and g is equivalent to a simple element-wise (Hadamard) product \odot in the Fourier (spectral) domain*:

$$\mathcal{F}(f * g) = \mathcal{F}(f) \odot \mathcal{F}(g)$$

- Convolution Theorem:
 - The convolution f * g of two functions f and g is equivalent to a simple element-wise (Hadamard) product ⊙ in the Fourier (spectral) domain*:

$$\mathcal{F}(f * g) = \mathcal{F}(f) \odot \mathcal{F}(g)$$

• If the integral operator was the convolution operator, i.e.:
$$u(y) = \sigma \left(\int \kappa(y, x) a(x) dx \right) \rightarrow u(y) \coloneqq \sigma \left((\kappa * a)(y) \right) = \sigma \left(\int \kappa(y - x) a(x) dx \right)$$

Then by the convolution theorem:

$$(\kappa * a)(y) = \mathcal{F}^{-1}(R \odot \mathcal{F}(a))(y)$$

- $\mathcal{F}(a)$: Fourier transform of the input function a(x)
- $R := \mathcal{F}(\kappa)$: Kernel function learned as Fourier coefficients (no need to evaluate κ directly)

- FNO Layer
 - 1. Fourier transform $\mathcal{F}(a)$
 - 2. Linear transform *R*
 - 3. Inverse Fourier transform \mathcal{F}^{-1}

$$\mathcal{F}^{-1}(R\odot\mathcal{F}(a))(y)$$

46

For a uniform grid, fast Fourier transform is available. Otherwise, discrete Fourier transform (slow).

Images from Kovachki et al. ICML 2022.

• The Fourier Filters

The full architecture of FNO

(a) Fourier layer 1 Fourier layer 2 Fourier layer T (b) Fourier layer v(x)W: Local (point-wise) linear operator (skip connection)

48

Graph Neural Operators

- Message Passing Neural Networks (Gilmer et al. 2017)
 - A graph G with node features $v_i \in V$ and edge features $e_{i,j} \in E$.

Graph Neural Operators

- Message Passing Neural Networks (Gilmer et al. 2017)
 - A graph G with node features $v_i \in V$ and edge features $e_{i,j} \in E$.
 - Message Passing Phase—Runs for K time steps. Update hidden states $h_i^{(k)}$ at each node based on messages $m_i^{(k+1)}$ according to:

$$m_i^{(k)} = \sum_{j \in N(i)} M^{(k)} \left(h_i^{(k-1)}, h_j^{(k-1)}, e_{i,j} \right)$$
$$h_i^{(k)} = U^{(k)} \left(h_i^{(k-1)}, m_i^{(k)} \right)$$

..., where $M^{(k)}$ is a message function (typically a neural net layer), $U^{(k)}$ is vertex update function (again, a neural network layer), and N(i) is the neighbors of v_i in G.

Input Graph

Graph Neural Operator

Graph Neural Operator using Message Passing Graph Networks

$$v_{t+1}(x) = \sigma \left(W v_t(x) + \frac{1}{|N(x)|} \sum_{y \in N(x)} \kappa_{\phi} (e(x, y)) v_t(y) \right)$$

- $\kappa_{\phi}(e(x,y))$: A message passing neural network taking edge features as input.
- Edge features e(x,y): For example, the edge weight can be defined as

$$e(x,y) = (x,y,a(x),a(y))$$

Positions

Coefficients/physics parameters at those positions

Examples & Use Cases

Supervised learning of dynamics

https://zongyi-li.github.io/neural-operator/

Examples & Use Cases

Spherical Fourier Neural Operators (SFNO)

Examples & Use Cases

• Neural operators can be combined with physics-informed loss

https://zongyi-li.github.io/neural-operator/

Takeaways

- Operator learning than solving
 - Learn a family of PDE instead of solving one instance at a time.
 - Doesn't require he explicit form, although a similar physics-loss could also be introduced (e.g. PINO)
- Learning in the function space
 - Map the values to e.g. Fourier space for continuous inputs and outputs.
 - Resolution invariant, mesh-invariant
- More accurate than other deep learning methods (discuss why?)