

Cryptographic Protocols

Sujeet Shenoi
Tandy School of Computer Science
University of Tulsa, Tulsa, OK 74104
sujeet@utulsa.edu

Cryptographic Protocols

Cryptographic Protocol

- Orderly sequence of steps to achieve certain security properties
- Established in advance
- Mutually subscribed
- Unambiguous

Kinds of Protocols

Arbitrated Protocols

- Trusted third party participates in each transaction
- Expensive, slow, vulnerable

Adjudicated Protocols

- Third party judges fairness after the fact
- Address disadvantages of arbitrated protocols
- Detect failure only after the fact

Self-Enforcing Protocols

Guarantee fairness; cheating is immediately obvious

Applications

- Key Distribution
- Certificates
- Digital Signatures
- Clipper Key Exchange
- Mental Poker
- Oblivious Transfer
- Contract Signing

Certified Mail

Key Distribution Protocols

- 1. Symmetric Key Exchange (without Server)
- 2. Symmetric Key Exchange (with Server)
- 3. Asymmetric Key Exchange (without Server)
- 4. Asymmetric Key Exchange (with Server)

Symmetric Key Exchange (No Server)

Requirements

• A & B share K_M (Master Key)

Protocol

1. A: Generates session key: K_S

2. $A \rightarrow B$: $\{K_S\}_{K_M}$

Symmetric Key Exchange (Server)

Needham-Schroeder Protocol

- 1. $A \rightarrow S$: $A \bullet B \bullet I_A$ (I_A : Unique session ID)
- 2. $S \to A$: $\{I_A, B, K_{AB}, \{K_{AB}, A\}_{KB}\}_{KA}$ (new K_{AB})
- 3. $A \rightarrow B : \{K_{AB}, A\}_{KB}$

Asymmetric Key Exchange (No Server)

Important Point

- Asymmetric key encryption is very expensive
- Never encrypt message; transmit encrypted symmetric key

Protocol

1.
$$A \rightarrow B$$
: $\{\{\{K_{AB}\}_{KA}^{priv}\}_{KB}^{pub}\}$

2a.
$$B \rightarrow A$$
: $\{n\}_{K_{AB}}$ (n: Random number)

2b.
$$A \rightarrow B$$
: $\{n+1\}_{K_{AB}}$

Asymmetric Key Exchange (Server)

Protocol

- 1. $A \rightarrow S$: $A \bullet B$
- 2. $S \rightarrow A$: $\{K_B^{\text{pub}}, B\}_{K_S}^{\text{priv}}$
- 3. $A \rightarrow B$: $\{A, I_A\}_{K_B}^{pub}$ (I_A : message reference)
- 4. $B \rightarrow S$: $B \bullet A$
- 5. $S \rightarrow B$: $\{K_A^{pub}, A\}_{K_S}^{priv}$
- 6. $B \rightarrow A$: $\{I_A, I_B\}_{K_A}^{\text{pub}}$ (I_B : message reference)

EDUCATION

7. $A \rightarrow B$: $\{\underline{K}_{\underline{AB}}, I_{\underline{B}}\}_{K_{\underline{B}}}^{pub}$ $(\underline{K}_{\underline{AB}} : message)$

Digital Certificates

Binding an Individual's Identity and Public Key

- A: President and CEO
- B, C: Vice Presidents
- C supervises D and E
- B's Certificate: $\{ID_B, Pos_B, K_B^{pub}, H(.)\}_{K_A}^{priv}$
- C's Certificate: $\{ID_C, Pos_C, K_C^{pub}, H(.)\}_{K_A}^{priv}$
- D's Certificate: $\{ID_D, Pos_D, K_D^{pub}, H(.)\}_{K_C}^{priv}$ C's Certificate

Always need a top-level authority

Digital Signature Protocols

Goals

- Non Forgeable [M, sig(M, P)]
- Authentic
- Non Alterable; Non Reusable
- Non Repudiation
- Symmetric Key Protocol (Arbiter (A) needed)
- Cryptographic Sealing (Arbiter (A) needed)
- *Asymmetric Key Protocol (Self-Enforcing)

Digital Signature (Symmetric Key)

Symmetric Key Protocol

(Non Forgeability, Authenticity, Non Repudiation)

```
• S \rightarrow A: \{M\}_{K_S}
```

• A
$$\rightarrow$$
 R: {M, S, {M}}_{KS}
• R: Unlocks with K_D

$$\bullet$$
 R: Unlocks with K_R

Saves M and
$$\{M\}_{K_S}$$

CYBER SECURITY **EDUCATION CONSORTIUM**

*CSEC Cryptographic Sealing (Digital Signature)

Cryptographic Sealing Function

- $f(M) \rightarrow unique value$
- S and R register f_S and f_R with Arbiter A

Protocol (No Secrecy)

- 1. $S \rightarrow A$: $M \bullet f_S(M)$
- Recomputes f_s(M) 2. A: Compares with f_S(M) received from S

EDUCATION

3. $A \rightarrow R$: $M \bullet S \bullet f_S(M) \bullet f_R(M, S)$

Digital Signature (Asymmetric Key)

Protocol 1

(Non Forgeability, Authenticity, Non Repudiation)

```
• S \to R: \{M\}_{K_S}^{priv}
```

• R: $\{\{M\}_{KS}^{priv}\}_{KS}^{pub} \equiv M \text{ (saves } \{M\}_{KS}^{priv})$

Protocol 2 (Double Encryption: Privacy)

•
$$S \rightarrow R$$
: $\{\{M\}_{KS}^{priv}\}_{KR}^{pub}$

$$\begin{array}{l} \bullet \\ \mathbf{R} \end{array} \hspace{1cm} \left\{ \left\{ \left\{ \left\{ \mathbf{M} \right\}_{\mathbf{KS}}^{\mathbf{priv}} \right\}_{\mathbf{KR}}^{\mathbf{pub}} \right\}_{\mathbf{KS}}^{\mathbf{pub}} \right\}_{\mathbf{KR}}^{\mathbf{priv}} \equiv \mathbf{M} \end{array} \right.$$

Diffie-Hellman Key Exchange

S & R: Agree on a large prime p (1024+ bits)

S & R: Agree on a generator g mod p

S & R: Choose private numbers x (S) & y (R)

Step 1

 $S \to R$: $g^x \mod p$

Step 2

 $R \rightarrow S$: $g^y \mod p$

Step 3

S: Computes $K = (g^y)^x \mod p$

R: Computes $K = (g^x)^y \mod p$

Intruder cannot compute K even with p, g, g^x, g^y Exponentiation (easy); Discrete Logarithm (hard)

Clipper Key Exchange

Seven Step Protocol

- Three steps for key exchange
- Four steps for mutual authentication
- S & R share secret key K_P, symmetric algorithm and asymmetric algorithm

Clipper Key Exchange (contd.)

Step 1

 $S \to R$: $\{K_S^{pub}\}_{K_P}$

Step 2

R: Uses K_P to obtain K_S^{pub}

R: Chooses random session key K_k

 $R \rightarrow S$: $\{\{\{K_k\}_{K_P}\}_{K_S}^{pub}\}$

Step 3

S: Uses K_S^{priv} and K_P to obtain K_k

CSEC Clipper Authentication (contd.)

Step 4

 $S \to R$: $\{M\}_{K_k}$

M: Random string

Step 5

Uses K_k to obtain M

 $R \rightarrow S$: $\{M, N\}_{K_k}$

N: Random string

Step 6

Uses K_k to obtain M & N; Checks M

 $S \to R$: $\{N\}_{KL}$

Step 7

Uses K_k to obtain N; Checks N

*CSEC Mental Poker Protocol (Symmetric Key) EDUCATION CONSORTIUM

•
$$A \to B$$
: $\{ m_1 \}_{K_A} \dots \{ m_{10} \}_{K_A}$

- Locks 5 messages: $\{\{m_i\}_{K\Delta}\}_{KR}$... • B:
- $B \to A$: $\{ m_i \}_{KA} \dots \& \{ \{ m_j \}_{KA} \}_{KB} \dots$
- Unlocks all 10 messages with K_A • A: Keeps 5 messages: $\{\{m_i\}_{K_{\Delta}}\}_{K_{\Delta}} \dots = m_i \dots$
- $A \to B$: $\{\{\{\{m_j\}_{K_A}\}_{K_B}\}_{K_A} \dots = \{\{m_j\}_{K_B}\}_{K_B} \dots$
- Unlocks all 5 messages with K_B • B: Keeps 5 messages: $\{\{\{m_i\}_{KR}\}_{KR}\}_{KR} \dots = m_i \dots$

EDUCATION

CYBER SECURITY

*CSEC Mental Poker Protocol (Asymmetric Key)

•
$$A \rightarrow B$$
: $\{ m_1 \}_{KA}^{\text{pub}} \dots \{ m_{10} \}_{KA}^{\text{pub}}$

- Locks 5 messages: $\{\{m_i\}_{K_A}^{pub}\}_{K_B}^{pub}...$ • B:
- $B \to A$: $\{ m_i \}_{K_A}^{\text{pub}} \dots \& \{ \{ m_j \}_{K_A}^{\text{pub}} \}_{K_B}^{\text{pub}} \dots$
- Unlocks all 10 messages with K_A priv • A:
 - Keeps 5 msgs: $\{\{\mathbf{m}_i\}_{K_{\Delta}}^{\text{pub}}\}_{K_{\Delta}}^{\text{priv}} \dots = \mathbf{m}_i \dots$
- A \rightarrow B: $\{\{\{\{m_j\}_{K_A}^{pub}\}_{K_B}^{pub}\}_{K_A}^{priv} \dots = \{\{m_i\}_{K_B}^{pub}\}_{K_B}^{pub} \dots$
- Unlocks all 5 messages with K_Bpriv • B: Keeps 5 msgs: $\{\{m_i\}_{KR}^{pub}\}_{KR}^{priv} \dots = m_i \dots$

Oblivious Transfer **Protocol**

Eight Step Protocol (Flipping a coin at a distance)

- Picks asymmetric key pairs: (K_I^{priv}, K_I^{pub}) (K_I^{priv}, K_I^{pub}) 1. A:
- 2. B: Picks symmetric key: K_R
- 3. $A \rightarrow B$: $K_{\mathsf{T}}^{\mathrm{pub}} \bullet K_{\mathsf{T}}^{\mathrm{pub}}$
- Picks one key at random: K_H^{pub} 4. B:
 - $B \rightarrow A$: $\{K_B\}_{K_H}^{pub}$
- Picks I or J at random 5. A:

Computes:
$$K_A = \{\{\{K_B\}_{K_H}^{pub}\}_{K_J}^{priv}\}$$

- 6. $A \rightarrow B$: $\{A \text{ loses}\}_{K_A} \bullet J$
- 7. B: $M = \{\{A \text{ loses}\}_{K_A}\}_{K_B}$
 - $B \rightarrow A$: $M \bullet H$
- $8 A \rightarrow B$: $K_{\mathsf{I}}^{\mathsf{priv}} \bullet K_{\mathsf{I}}^{\mathsf{priv}}$

$$(K_A = K_B \text{ if } H = J)$$

- (B loses if $H \neq J$)
- (for verification)

Contract Signing Protocol

- 1. A: Selects 2n symmetric keys: $C_1 ... C_{2n}$
 - Arranges them in pairs: (C_i, C_{n+i}) i = 1 ... n
- 2. $A \rightarrow B$: $X_i = \{S\}_{C_i}$ i = 1 ... 2n (S = Std Msg; X_i : S-puzzle)
- 3. A: Agrees to contract if B produces a pair (C_i, C_{n+i}) for any i (S-puzzle solution)
- 4. B: Repeats Steps 1-3: keys: D_i and S-puzzles: Δ_i
- 5. $A \rightarrow B$: Exchange (C_i, C_{n+i}) ... by Oblivious Transfer Protocol
 - $B \rightarrow A$: Exchange (D_i, D_{n+i}) ... by Oblivious Transfer Protocol
- 6. For j = 1 .. keylength:
 - $A \rightarrow B$: jth bit of C_i i = 1..2n
 - $B \rightarrow A$: jth bit of D_i i = 1...2n

Certified Mail Protocol

1. A: Selects n + 1 symmetric keys: $g_0 ... g_n$

Computes: $g_{n+i} = g_0 \oplus g_i$ i = 1 ... n

- 2. $A \rightarrow B$: $G = \{M\}_{g_0}$ $(g_0 = g_{n+i} \oplus g_i \text{ for all } i)$
- 3. $A \to B$: $G_i = \{SA\}_{g_i}$ i = 1 ... 2n (SA = Std Msg)
- 4. B: Selects 2n symmetric keys: $h_1 ... h_{2n}$

 $B \rightarrow A$: $H_i = \{SB\}_{h_i}$ i = 1 ... 2n (SB = Std Msg)

- 5. B: Agrees to acknowledge receipt of plaintext of G if A can produce any one of (h_i, h_{n+i}) and all g_j (j = 1 ... 2n)
- 6. $A \rightarrow B$: Exchange (g_i, g_{n+i}) ... by Oblivious Transfer Protocol

 $B \rightarrow A$: Exchange (h_i, h_{n+i}) ... by Oblivious Transfer Protocol

7. For j = 1 .. keylength:

 $A \rightarrow B$: jth bit of g_i i = 1..2n

 ${}^{\star}B \rightarrow A$: j^{th} bit of h_i i = 1 ... 2n

