Feuille d'exercices nº 1

Espace probabilisé modélisant des expériences simples

Exercice 1. Une urne contient 10 boules numérotées de 1 à 10. On tire 4 fois de suite une boule avec remise.

- 1) Décrire l'espace probabilisé associé à cette expérience.
- 2) Déterminer les probabilités d'obtenir :
- a) Quatre nombres dans un ordre strictement croissant.
- b) Quatre nombres dans un ordre croissant (au sens large).
- c) Que le nombre 3 apparaisse au moins une fois.
- d) Que la somme des nombres obtenus soit égale à 13.

Exercice 2. 1) Une urne contient N boules numérotées de 1 à N. On tire successivement sans remise n, $(1 \le n \le N)$ boules de l'urne. Quel est l'ensemble Ω des résultats possibles? Calculer $\operatorname{card}(\Omega)$.

- 2) Désormais, on suppose que les résultats possibles sont équiprobables. Les boules numérotées de 1 à M sont rouges (M < N) et les boules numérotées de M+1 à N sont blanches. Soit A_k l'événement {La k-ième boule tirée est rouge}.
- a) Calculer $P(A_k)$.
- b) Calculer $P(A_k \cap A_m)$.

Exercice 3. Une urne contient 20 boules numérotées de 1 à 20. On tire n boules sans remise de cette urne et on note X le plus petit des numéros tirés.

- 1) Décrire l'espace probabilisé associé à cette expérience.
- 2) On suppose que n=3. Calculer P(X=8) et $P(X\geq 8)$.

Exercice 4. Une urne contient trois sacs.

Le sac S_1 contient 2 pièces d'or,

Le sac S_2 contient 2 pièces ordinaires,

Le sac S_3 contient une pièce d'or et une pièce ordinaire.

Le jeu consiste à tirer un sac au hasard (avec probabilité uniforme) puis à tirer une pièce au hasard dans ce sac.

- 1) Quelle est la probabilité de tirer une pièce d'or?
- 2) Supposons que l'on ait tiré une pièce d'or. Quelle est alors la probabilité pour que l'autre soit en or?

Exercice 5. Un document a été perdu. La probabilité pour qu'il se trouve dans un meuble est p, (0 . Ce meuble comporte sept tiroirs. On explore six tiroirs sans trouver le document. Quelle est la probabilité de le trouver dans le septième?

Exercice 6. Soient A et B deux événements d'un espace probabilisé tels que P(A) = P(B) = 3/4. Trouver les valeurs maximales et minimales que peut prendre $P(A \cap B)$. Montrer que la valeur minimale trouvée n'est pas forcément atteinte.

Exercice 7. On considère trois événements A, B et X d'un espace probabilisé tels que $P(A) = 1/2, P(B) = 3/5, P(A \cap B) = 1/5, P(X \mid A) = P(X \mid B) = 1/2$ et $1/P(X) \in \mathbb{N}$. Calculer P(X).

Exercice 8. Soient $A_1, A_2, \dots, A_n, \dots$ des événements d'un espace probabilisé.

1) Montrer que pour tout $n \in \mathbb{N}$,

$$1_{\bigcap_{k=1}^{n} A_k} = \prod_{k=1}^{n} 1_{A_k} .$$

2) Montrer que pour tout $n \in \mathbb{N}$,

$$1_{\bigcup_{k=1}^{n} A_k} = 1 - \prod_{k=1}^{n} (1 - 1_{A_k}).$$

3) On note $p_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k})$. Montrer que

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} (-1)^{k-1} p_k.$$

4) Un facteur répartit au hasard n factures dans n boîtes à lettres, (une par boîte). Calculer la probabilité, p(n), qu'une facture au moins parvienne à son destinataire. Calculer $\lim_{n\to+\infty} p(n)$.

Tribu, mesure et dénombrabilité

Exercice 9. Soit $\Omega = \{a, b, c\}$.

- 1 Donner la liste des tribus que l'on peut définir sur Ω .
- 2 Dire pour chacune d'elles, combien il existe de variables aléatoires à valeurs dans $\{0,1\}$.

Exercice 10. On définit l'univers $\Omega := \{1, 2, 3, 4, 5, 6\}.$

- 1 Donner la liste des 8 parties de Ω qui constituent la plus petite tribu \mathcal{F} contenant les parties $\{1,2,3\}$, $\{4,5\}$ et $\{4,5,6\}$.
- 2 Soit X la fonction de Ω dans \mathbb{R} définie pour tout $\omega \in \Omega$, par $X(\omega) = 1$ si ω est impair et 0 si ω est pair. La fonction X est elle une variable aléatoire pour la tribu \mathcal{F} ?
- 3 Combien existe-t-il de variables aléatoires pour la tribu \mathcal{F} , à valeurs dans $\{0,1\}$?

Exercice 11. Soit Y_n une suite croissante de variables aléatoires réelles.

1) Montrer que $\lim_{n\to+\infty} Y_n$ est une variable aléatoire.

Soit X_n une suite de variables aléatoires réelles.

- 2) Montrer que, pour tout n, la variable $Z_n = \inf_{k \ge n} X_k$ est une variable aléatoire.
- 3) Montrer que la variable $Z_n = \liminf_{n \to +\infty} X_n$ est une variable aléatoire.

Exercice 12. (limites inf et limites sup d'événements)

Soit A_n une suite d'événements d'une tribu. On introduit les deux ensembles,

$$\liminf_n A_n = \bigcup_{n \ge 1} \cap_{k \ge n} A_k, \quad et \quad \limsup_n A_n = \bigcap_{n \ge 1} \bigcup_{k \ge n} A_k.$$

- 1) Montrer que $\liminf_n A_n$ et $\limsup_n A_n$ sont des événements.
- 2) Montrer que

$$P(\liminf_{n} A_n) \le \liminf_{n} P(A_n) \le \limsup_{n} P(A_n) \le P(\limsup_{n} A_n).$$

- 3) Construire un exemple où ces 4 quantités sont toutes différentes.
- 4) Montrer que si $\sum P(A_n)$ est convergente, alors $P(\limsup A_n) = 0$ (lemme de Borel-Cantelli).

Loi d'une variable aléatoire

Exercice 13. Soit U, V des variables aléatoires égales presque sûrement. Montrer qu'elles ont la même loi. Montrer que la réciproque est fausse.

Exercice 14. Soient X, Y, Z trois v.a. qui ont la même loi.

- a) Soit f une fonction mesurable. Montrer que f(X) et f(Y) ont la même loi.
- b) Montrer que XY et XZ n'ont pas nécessairement la même loi.

Théorèmes limite

Exercice 15. Soit X une variable aléatoire positive.

Trouver la limite de $E[\frac{1}{X+\frac{1}{n}}]$. On essaiera d'utiliser tour à tour les 3 théorèmes limite du cours (CV monotone, lemme de Fatou, CV dominée).

Exercice 16. Soit X une variable aléatoire intégrable.

Montrer que $\lim_{n\to\infty} nP(|X| > n) = 0$.

Exercice 17. (Lemme de Scheffé)

Soit X_n une suite de variables aléatoires positives d'espérance 1 et X une variable aléatoire positive d'espérance 1. On suppose que $P(X_n(\omega) \to X(\omega)) = 1$.

Montrer que $E[|X_n - X|] \to 0$.

(Indication : On pourra écrire $|X_n - X| = max(0, X - X_n) + max(0, X_n - X)$, appliquer après justification, le théorème de convergence dominée à $max(0, X - X_n)$, remarquer que $X - X_n = max(0, X - X_n) - max(0, X_n - X)$ prendre l'espérance et conclure.)

Propriétés de l'espérance, inégalités

Exercice 18. (Définition de la variance)

On définit pour une variable aléatoire Z intégrable, sa variance par $\sigma^2(Z) := E[(Z - E[Z])^2]$ (qui peut être éventuellement infinie). Sa racine carrée $\sigma(Z)$ est appelée écart-type de cette variable.

- 1) Montrer que $\sigma^2(Z) = E[Z^2] E[Z]^2$.
- 2) Donner deux justifications du fait que $E[Z] < (E[Z^2])^{1/2}$.

Exercice 19. (Inégalités de Markov, de Bienaymé-Tchebycheff)

Dans cet exercice, on considère une variable aléatoire positive X sur un espace de probabilité une variable aléatoire Z intégrable, et un réel a > 0.

- 1) Montrer que $P(X > a) < \frac{E[X]}{a}$.
- 2) En utilisant, la question 1), montrer que $P(|Z-E[Z]|>a)<\frac{\sigma^2(Z)}{a^2}.$
- 3) Application: Un fabricant de machine à laver affirme que la durée de vie moyenne de ses machines est de 12 ans et que l'écart-type de cette durée est de 3 ans. Donner un majorant de la probabilité qu'une machine dure moins de 5 ans?

Exercice 20. (Inégalité de Jensen)

Soit X une variable positive. Quelles implications logiques existe-t-il entre

- 1) (E[X] > 1) et $(E[\ln(X)] > 0)$
- 2) (E[X] > 1) et $(E[X^2] > 1)$
- 3) (E[X] > 1) et $(E[e^X] > e)$

Feuille d'exercices n° 2 : Variables aléatoires réelles

Exercice 21. Soit X une variable aléatoire dont la fonction de répartition F_X est définie par :

$$\forall t \in \mathbb{R} \qquad F_X(t) = \begin{cases} 0 & \text{si} \quad t < -2, \\ \frac{1}{30} & \text{si} \quad -2 \leqslant t < 0, \\ \frac{1}{12} & \text{si} \quad 0 \leqslant t < 1, \\ \frac{1}{4} & \text{si} \quad 1 \leqslant t < 3, \\ \frac{1}{3} & \text{si} \quad 3 \leqslant t < 5, \\ 1 & \text{si} \quad t \geqslant 5. \end{cases}$$

- 1. Montrer que X est une v.a. discrète et déterminer sa fonction de masse.
- 2. Calculer $\mathbb{P}(-3 \leq X < \frac{1}{2})$.
- 3. Déterminer la fonction de masse de Y = -2X + 1.

Exercice 22. Soit X une variable aléatoire dont la fonction de répartition F_X est définie par :

$$\forall t \in \mathbb{R} \qquad F_X(t) = \left\{ \begin{array}{ll} 0 & \mathrm{si} & t \leqslant 0, \\ \frac{t}{2} & \mathrm{si} & 0 \leqslant t \leqslant 2, \\ 1 & \mathrm{si} & t \geqslant 2. \end{array} \right.$$

- 1. Tracer la courbe représentative de F_X , montrer que X est une v.a. à densité et déterminer cette densité.
- 2. Calculer $\mathbb{P}(\frac{1}{4} < X < \frac{3}{4})$.
- 3. Comment simuler la variable X à l'aide d'une variable uniforme sur [0,1]?

Exercice 23. La densité de la variable aléatoire X qui modélise la durée de vie en heures d'un certain composant électronique est donnée par

$$f(x) = \begin{cases} \frac{10}{x^2} & \text{si } x > 10, \\ 0 & \text{si } x \le 10. \end{cases}$$

- 1. Trouver $\mathbb{P}(X > 20)$.
- 2. Quelle est la fonction de répartition de X?
- 3. Comment simuler la variable X à l'aide d'une variable uniforme sur [0,1]?

Exercice 24. Soit X une variable aléatoire de densité f définie par

$$\forall x \in \mathbb{R} \qquad f(x) = \frac{1}{4} \, \mathbf{1}_{\{0 < x < 1\}} + \frac{3}{8} \, \mathbf{1}_{\{3 < x < 5\}}.$$

- 1. Donner la fonction de répartition de X.
- 2. Calculer $\mathbb{P}(X \in [\frac{1}{2}, 2] \cup [3, 4])$.
- 3. Soit Y = 1/X. Montrer que Y admet une fonction de densité f_Y et en donner une expression. On suivra tour à tour les deux "méthodes" : celle de la fonction de répartition et celle de la fonction muette.

Exercice 25. Soit $F: \mathbb{R} \to \mathbb{R}$ définie par

$$F(x) = 0 \text{ si } x \le 0$$

= $1 - e^{-x/2} \left(1 + \frac{x}{2} \right) \text{ si } x > 0$.

Montrer que F est la fonction de répartition d'une loi de probabilité dont on déterminera la densité si elle existe.

Exercice 26. Soit X une v.a. de loi uniforme sur [0,1] (de densité de probabilité $f(t) = \mathbf{1}_{[0,1]}(t)$). Déterminer la fonction de répartition de la v.a. $Y = \min(X, a)$, $(a \in [0,1])$. Montrer que la loi de Y est une combinaison linéaire d'une loi à densité et d'une mesure de Dirac.

Exercice 27. Soit X une v.a. réelle de fonction de répartition F. Trouver en fonction de F les fonctions de répartition de X^2 , X^3 , aX + b, $(a, b \in \mathbb{R})$, [X], X - [X], (où [X]) est la partie entière de X) et $\exp(X)$.

Exercice 28. Soit une variable aléatoire X de fonction de répartition F. Soit $(a,b) \in \mathbb{R}^2$.

- 1. Exprimer à l'aide de F la fonction de répartition de la variable aléatoire aX + b.
- 2. Sous quelle condition sur le couple (a,b) la fonction $t \mapsto F(at+b)$ est-elle une fonction de répartition? Sous cette condition, de quelle variable aléatoire cette fonction est-elle la fonction de répartition?

Exercice 29. Soit X une variable aléatoire de densité f et de fonction de répartition F, et soit A un intervalle.

- 1. Soit $Y = 1_A(X)$. Donner la fonction de répartition de Y.
- 2. Soit $Z = X1_A(X)$. Donner la fonction de répartition de Z.
- 3. On suppose $\mathbb{P}(X \in A) > 0$. Soit U de loi la loi conditionnelle de X sachant l'événement $\{X \in A\}$. Donner la fonction de répartition de U.

Exercice 30. (Lien Gamma-Poisson) Soit $n \in \mathbb{N}$, et $\beta, t > 0$ deux nombres réels, $X \sim \Gamma(n, \beta)$, et $Y \sim Poisson(\beta t)$.

- 1. Calculer les probabilités des deux événements $\{X \geq t\}$ et $\{Y < n\}$
- 2. Montrer par la méthode de votre choix que ces deux quantités sont égales.
- 3. Que dit l'identité obtenue dans le cas n = 1?

Exercice 31. Soit X une variable aléatoire de loi de Cauchy d'intensité $\frac{1}{\pi} \frac{1}{1+y^2}$. Montrer que 1/X a même loi que X.

Feuille d'exercices nº 3 : Vecteurs de variables aléatoires réelles

Indépendance de variables

Exercice 32. Soit (X, Y) un couple de variables aléatoires de densité :

$$f_{X,Y}(x,y) = 2e^{-x-2y}1]0, +\infty[(x)1]0, +\infty[(y)]$$

- 1. Calculer les lois marginales de X et de Y. En déduire que les variables X et Y sont indépendantes.
- 2. Calculer P(X > 1, Y < 1).
- 3. Calculer P(X < Y).

Exercice 33. Soit (X,Y) un couple de variables aléatoires de densité :

$$f_{X,Y}(x,y) = \begin{cases} 24 xy & \text{si } 0 \leqslant x \leqslant 1 \text{ et } 0 \leqslant y \leqslant 1 \text{ et } 0 \leqslant x + y \leqslant 1, \\ 0 & \text{sinon.} \end{cases}$$

Les variables X et Y sont-elles indépendantes?

Exercice 34. Soit X, Y, Z des variables aléatoires indépendantes de loi Unif(0,1). Calculer $P(X \geq YZ)$.

Exercice 35. Soit X_1, \ldots, X_n des variables aléatoires indépendantes, avec $X_i \sim \text{Exp}(\lambda_i)$ pour tout $i \in \{1, \ldots, n\}$.

- 1. Déterminer la loi de $Y = \min\{X_i, i \in \{1, ..., n\}\}$, reconnaître cette loi.
- 2. Déterminer la loi de $Z = \max\{X_i, i \in \{1, \dots, n\}\}$, et calculer sa densité (si elle existe).

Exercice 36. Soit X, Y indépendantes de loi exponentielle de paramètre $\lambda > 0$.

- 1. Calculer la fonction de répartition de $\frac{X}{Y}$ et en déduire une densité de cette variable aléatoire.
- 2. En déduire la fonction de répartition de $\frac{X}{X+Y}$ et faire le lien avec une loi connue.

Convolution et somme de v.a.

Exercice 37. Soit (X,Y) un couple de variables aléatoires uniforme sur [0,1]. Quelle est la loi de X+Y?

Exercice 38. Soit a > 0, et $b_1, b_2 > 0$). Soit (X, Y) un couple de variables aléatoires de lois respectives $\Gamma(a, b_1)$ et $\Gamma(a, b_2)$. Quelle est la loi de X + Y?

Loi d'une transformation d'un vecteur de variables indépendantes

Exercice 39. Soit L une v.a. positive admettant une densité de probabilité f et X une v.a. de loi uniforme sur [0,1], indépendante de L. On définit deux v.a. L_1 et L_2 par $L_1 = XL$ et $L_2 = (1-X)L$, (cela modélise par exemple la rupture d'une chaîne moléculaire de longueur initiale aléatoire L).

- 1) Déterminer la loi du couple (L_1, L_2) ainsi que les lois de L_1 et L_2 .
- 2) Que peut-on dire du couple (L_1, L_2) lorsque $f(x) = \lambda^2 x \exp(-\lambda x) \mathbb{1}_{[0, +\infty[}(x), (\lambda > 0) ?$
- 3) Déterminer la loi de $Z = \min(L_1, L_2)$ dans ce cas.

Exercice 40. Soient X et Y deux variables aléatoires indépendantes. X suit une loi $\mathcal{N}(0,1)$ et Y une loi $\mathcal{N}(0,\sigma^2)$, où σ désigne un réel positif.

- 1) Écrire la densité de la loi du couple (X, Y).
- 2) On pose U = Y/X. Calculer la densité de la loi du couple (X, U).
- 3) Les variables X et U sont-elles indépendantes?

Exercice 41. Soient X et Y deux variables aléatoires indépendantes. X suit une loi uniforme sur [0,1] et Y une loi exponentielle de paramètre 1. Calculer la loi de $\frac{Y}{X}$.

Exercice 42. (La méthode du rejet)

Soit h une densité de probabilité sur \mathbb{R} et g une fonction réelle sur \mathbb{R} telle que pour tout x on ait 0 < g(x) < 1. On engendre une suite (Y_n, U_n) , $n = 1, 2, \dots, n, \dots$ de couples indépendants de variables aléatoires réelles, tels que pour tout $n \ge 1$, Y_n et U_n sont indépendantes. Les Y_n ont la même loi de densité h et les U_n suivent la loi uniforme sur [0, 1]. Soit τ le premier instant où $U_n \le g(Y_n)$, c'est à dire : $\tau = \inf\{n \ge 1 : U_n \le g(Y_n)\}$ en posant $\tau = +\infty$ au cas où $U_n > g(Y_n)$, pour tout n.

- 1) Exprimer $\rho = P(U_n \leq g(Y_n))$ à l'aide de h et de g. Quelle est la loi de τ en fonction de ρ ? Montrer que $P(\tau < +\infty) = 1$.
- 2) On prend pour X la variable aléatoire $X = Y_{\tau}$, (i.e. $X = Y_n$ pour $\tau = n$). Quelle est la loi de X?

Feuille d'exercices n° 4 : Espérance conditionnelle

Les exercices en rouge sont à considérer comme du cours.

A - Cas de variables discrètes

Exercice 43. Soit A et B deux événements d'un espace de probabilité. On rappelle qu'une variable aléatoire X est mesurable est mesurable par rapport à la tribu engendrée par A notée $\sigma(A)$, si et seulement si il existe deux réels a, b tels que pour tout $\omega \in \Omega$, $X(\omega) = a\mathbf{1}_A(\omega) + b\mathbf{1}_{\overline{A}}(\omega)$.

- 1 Calculer $E[\mathbf{1}_B \mid \sigma(A)]$.
- 2 Vérifier que si A et B sont indépendants, $E[\mathbf{1}_B \mid \sigma(A)] = P(B)$ p.s.

Exercice 44. Soit A, B et C trois événements d'un espace de probabilité.

- 1 Après avoir caractérisé les variables aléatoires mesurables par rapport à la tribu engendrée par les événements A et B, notée $\sigma(A, B)$, (indication dans la figure ci-dessous), calculer $E[\mathbf{1}_C \mid \sigma(A, B)]$.
- 2 Vérifier que si C est indépendant des événements de $\sigma(A,B), E[\mathbf{1}_C \mid \sigma(A,B)] = P(C)$ p.s.

Forme générale des variables $\sigma(A, B)$ -mesurables

B - Indépendance et espérance conditionnelle

Exercice 45. Soit X et Y deux variables aléatoires indépendantes et f une fonction mesurable bornée. Montrer que la fonction mesurable h_f telle que

$$E[f(X,Y) \mid \sigma(X)] = h_f(X)$$

est définie par

$$h_f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto E[f(x,Y)].$

Exercice 46. 1 - Soit U et V deux variables aléatoires indépendantes suivant la loi uniforme sur [0,1]. Calculer :

a - E[UV | U]

b - $E[\frac{1}{U^2+V^2} | U]$

c - $E[\frac{1}{U+V}\,|\,U]$

d - $E[U^2 + 1 | U]$

e - $E[V^2 + 1 | U]$

- 2 Mêmes questions qu'en 1, lorsque les variables sont indépendantes mais que la variable V suit une loi de Bernoulli de paramètre $p \in [0, 1]$.
- 3 Soit U et V deux variables aléatoires indépendantes, suivant respectivement la loi de densité $2x\mathbf{1}_{[0,1]}(x)$ et la loi exponentielle de paramètre 1. Calculer $E[e^{UV} \mid U]$.
- 4 La loi de U intervient-elle dans les réponses données?

C - Densité conditionnelle

Exercice 47. Soit X et Y 2 variables aléatoires dont le couple admet pour densité $f_{(X,Y)}(x,y)$. Montrer que, pour toute fonction g mesurable bornée, la fonction h_g mesurable telle que

$$E[g(Y) \mid \sigma(X)] = h_g(X)$$

est définie par

$$h_g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \int_{\mathbb{R}} g(y) \frac{f_{(X,Y)}(x,y)}{f_{X}(x)} dy.$$

Exercice 48. Soit (X, Y) un couple de variables aléatoires de densité :

$$f_{X,Y}(x,y) = \begin{cases} 24 xy & \text{si } 0 \leqslant x \leqslant 1 \text{ et } 0 \leqslant y \leqslant 1 \text{ et } 0 \leqslant x + y \leqslant 1, \\ 0 & \text{sinon.} \end{cases}$$

Calculer E[X | Y].

Exercice 49. Soit U et V deux variables aléatoires indépendantes de loi uniforme sur [0,1].

- 1 Calculer la loi du couple (U, U + V).
- 2 En déduire l'expression de E[U | U + V].
- 3 Mêmes questions lorsque U et V sont indépendantes de loi exponentielle de paramètre 1.

Feuille d'exercices n° 5 : Convergence de variables aléatoires - Théorèmes limites

A - Convergence de variables aléatoires

Exercice 50. Préciser si les suites $(X_n)_{n\geqslant 1}$ suivantes convergent en loi :

- 1. Pour tout $n \ge 1$, la variable X_n suit la loi de Bernoulli de paramètre $p_n \in]0,1[$ avec $p_n \to 0$.
- 2. Pour tout $n \ge 1$, la variable X_n suit la loi Unif(-1/n, 1/n).
- 3. Pour tout $n \ge 1$, la variable X_n suit la loi Unif(-n, n).

Dans le cas où on a convergence et où la limite est constante, peut-on renforcer ces convergences à des convergences en probabilité et dans L^2 ?

Exercice 51. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées selon la loi Unif(0,1). On pose pour tout $n\geq 1$, $M_n=\min_{1\leqslant i\leqslant n}X_i$.

- 1. Montrer que la suite de variables aléatoires $(M_n)_{n\geq 1}$ converge en probabilité, et identifier sa limite.
- 2. Montrer que la suite de variables aléatoires $(nM_n)_{n\geq 1}$ converge en loi vers une variable exponentielle de paramètre 1.
- 3. Formuler des résultats analogues pour le max au lieu du min.

Exercice 52. (Les trois lois de la théorie des valeurs extrêmes)

On appelle quantile d'ordre $\frac{1}{n}$ d'une variable aléatoire à densité X, l'unique réel x_n tel que $P(X > x_n) = \frac{1}{n}$.

A - La loi de Gumbel On considère $(X_n)_{n\geq 1}$ une suite iid de va de loi exponentielles de paramètre 1, et on note pour tout $n\geq 1, M_n:=\max(X_1,\cdots,X_n)$.

- a Calculer x_n le quantile d'ordre $\frac{1}{n}$ de X_1
- b Montrer que $M_n x_n$ converge vers une loi que l'on caractérisera.
- **B** La loi de Fréchet Soit $\alpha > 0$. On considère $(X_n)_{n \ge 1}$ une suite iid de va de loi de Paréto d'indice α définie par : $\forall x > 1, P(X_1 > x) = \frac{1}{x^{\alpha}}$. On note pour tout $n \ge 1, M_n := \max(X_1, \dots, X_n)$.
- a Calculer x_n le quantile d'ordre $\frac{1}{n}$ de X_1
- b Montrer que $\frac{M_n}{x_n}$ converge vers une loi que l'on caractérisera.
- **C La loi de Weibull** Soit $\alpha > 0$. On considère $(X_n)_{n \geq 1}$ une suite iid de va de loi définie par : $F_{X_1}(x) = 1 (1 x)^{\alpha}$. et on note pour tout $n \geq 1$, $M_n := \max(X_1, \dots, X_n)$.
- a Calculer x_n le quantile d'ordre $\frac{1}{n}$ de X_1
- b Montrer que $\frac{1-M_n}{1-x_n}$ converge vers une loi que l'on caractérisera.

- **Exercice 53.** 1. Soit $(B_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires de Bernoulli indépendantes de paramètre 1/2. Montrer que $(B_n)_{n\in\mathbb{N}}$ converge en loi mais pas en probabilité. ¹.
 - 2. Soit $\alpha > 0$, U une variable Unif(0,1), et pour $n \in \mathbb{N}$, $U_n = n^{\alpha} \mathbf{1}_{U \le 1/n}$. Montrer que $(U_n)_{n \in \mathbb{N}}$ converge en probabilité et identifier sa limite. Soit p > 0. Pour quelles valeurs de α la suite $(U_n)_{n \ge 1}$ converge-t-elle dans L^p ?

Exercice 54. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires qui converge dans L^2 vers une variable aléatoire X.

- 1. Montrer que $\lim_{n\to\infty} \mathbb{E}[X_n^2] = \mathbb{E}[X^2]$. (On pourra utiliser l'inégalité de Cauchy Schwarz, qui énonce que pour des variables aléatoires X et Y de carré intégrable, on a $|\mathbb{E}[XY]|^2 \leqslant \mathbb{E}[X^2]\mathbb{E}[Y^2]$).
- 2. Montrer également que $\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X]$.

B - Loi des grands nombres

Exercice 55. Soit $(X_i)_{i \ge 1}$ une suite de variables aléatoires indépendantes d'espérance 1 qui prennent deux valeurs a et b (0 < a < 1 < b) avec probabilité p et 1 - p respectivement $(0 . On pose <math>Y_n = \prod_{i=1}^n X_i$.

- 1. Vérifier que pour $x \in]0,1[\cup]1,+\infty[$, $\log(x) < x-1$ et en déduire que $\mathbb{E}[\log(X_1)] < 0$. En étudiant le comportement de $\log(Y_n)/n$ lorsque $n \to \infty$, montrer que la suite $(Y_n)_n$ converge en probabilité vers une limite que l'on précisera.
- 2. Calculer $\mathbb{E}[Y_n]$. La suite $(Y_n)_n$ converge-t-elle dans L^1 ?

Exercice 56. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires iid de carré intégrables. On note $m=\mathbb{E}[X_1]$ et $\sigma^2=\operatorname{Var}(X_1)$.

- 1. Étudier la convergence en probabilité de $\frac{X_1^2 + \ldots + X_n^2}{n}$, exprimer sa limite en fonction de m et de σ^2 . On suppose désormais que n est pair.
 - 2. Étudier la convergence en probabilité de $\frac{X_1X_2 + X_3X_4 + \ldots + X_{n-1}X_n}{n}$.
 - 3. En déduire que $\frac{X_1X_2+X_2X_3+\ldots+X_{n-1}X_n}{n}$ converge en probabilité vers m^2 .

Exercice 57. On cherche à montrer le résultat suivant :

$$\lim_{n \to \infty} \int_0^1 \cdots \int_0^1 \sqrt{\frac{n}{n + x_1 + \ldots + x_n}} dx_1 \cdots dx_n = \sqrt{\frac{2}{3}} \cdot$$

Soit $f:[0,1] \to \mathbb{R}$ une fonction continue sur [0,1].

1. Soit $n \ge 1$. Montrer qu'il existe des variables aléatoires X_1, \dots, X_n , dont on donnera la loi, telles que :

$$\int_0^1 \cdots \int_0^1 f\left(\frac{x_1 + \ldots + x_n}{n}\right) dx_1 \cdots dx_n = \mathbb{E}\left[f\left(\frac{X_1 + \ldots + X_n}{n}\right)\right].$$

- 2. Quelle est la limite en probabilité de la suite $\left(\frac{X_1+\ldots+X_n}{n}\right)_{n\in\mathbb{N}^\star}$?
- 3. Montrer que

$$\lim_{n \to \infty} \left| \mathbb{E} \left[f \left(\frac{X_1 + \ldots + X_n}{n} \right) \right] - f \left(\mathbb{E}(X_1) \right) \right| = 0$$

On pourra distinguer par exemple les contributions sur les évènements $\{|\frac{X_1+\ldots+X_n}{n}-\mathbb{E}(X_1)|>\delta\}$ et $\{|\frac{X_1+\ldots+X_n}{n}-\mathbb{E}(X_1)|\leq\delta\}$ pour δ bien choisi.

4. Déduire le résultat annoncé au début de l'exercice.

^{1.} On notera que si $(B_n)_{n\in\mathbb{N}}$ converge en probabilité, alors $(B_{n+1}-B_n)_{n\in\mathbb{N}}$ converge en probabilité vers la variable constante égale à 0

C - Théorème central limite

Exercice 58. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes de loi de Bernoulli de paramètre $p\in]0,1[$. Posons pour tout $n\geqslant 1$,

$$M_n = \frac{X_1 + \ldots + X_n}{n}.$$

- 1. Montrer que $M_n(1-M_n)$ converge en probabilité vers p(1-p).
- 2. Montrer que $\sqrt{n} \frac{M_n p}{\sqrt{M_n(1 M_n)}}$ converge en loi vers une limite à préciser.

Exercice 59. 1. Soit X_1 et X_2 deux va de loi de Poisson de paramètres respectifs λ et μ . Montrer que la variable $X_1 + X_2$ suit une loi de Poisson dont on donnera le paramètre.

2. On définit pour tout entier n, une variable aléatoire Y_n suivant une loi de Poisson de paramètre n. Déterminer la limite en loi de la suite $(Z_n)_{n\geq 1}$ définie pour tout entier n par :

$$Z_n = \left(\frac{Y_n - n}{\sqrt{n}}\right).$$

3. Exprimer la probabilité de l'évènement $\{Z_n \leq 0\}$ et en déduire que la suite $(u_n)_n$ définie pour tout entier $n \in \mathbb{N}$ par

$$u_n = e^{-n} \left(1 + n + \frac{n^2}{2!} + \dots + \frac{n^n}{n!} \right)$$

converge vers une limite que l'on déterminera.

Exercice 60. On modélise l'erreur en millimètre que l'on commet sur une mesure d'une longueur par une variable aléatoire de loi uniforme sur [-1,1]. Déterminer une valeur approchée de la probabilité que l'erreur cumulée sur 100 mesures dépassent 1cm (on explicitera les hypothèses effectuées).