Bio 201B: Biochemistry Study Guide

Huge thanks to Jun Kim for making this!

Inorganic and Organic Molecules

- Organic relates to anything in living organisms while inorganic is for non-living matter
- Organic compounds MUST contain carbon and hydrogen and MUST be found in a living organism
- Approximately 10000 different molecules contain the carbon/hydrogen necessary to qualify as an organic compound
- Hydrocarbons, carbonates, and oxides of carbon are exceptions and are not organic compounds

Metabolism

- Metabolism is the combination of anabolism and catabolism
- Anabolism: the building of polymers from monomers using condensation reactions
- Catabolism: the breakdown of polymers to monomers using hydrolysis
- All reactions are enzyme-catalyzed reactions (in cells or organisms)
- Condensation reactions create a water molecule leaving an oxygen atom to link the two monomers together (called a glycosidic link)
- Hydrolysis is the breakdown of two monomers by using a water molecule to separate them (thus hydro = water, lysis = breaking, hydrolysis = breaking with water)

Water Cycle Summary

- 97% of water on Earth is liquid but only 3% of that is fresh water
- Water in the atmosphere results from evaporation and transpiration
- 86% of evaporation occurs from oceans
- Water vapour is a greenhouse gas (obviously just isn't as bad as CFCs or CO₂)
- Ocean and air currents transfer and carry heat (because of water's high heat capacity)

Water Properties

- Water looks like this and the dipoles (pointing towards the slightly negative side) prove that it is polar
- Water is the universal solvent because of its polarity, meaning it is slightly negative and slightly positive on opposite sides (occurs because of its bent shape)

- Special properties include a high boiling and melting point, cohesion/adhesion, and high heat capacity
- **Cohesion:** attraction of water molecules to each other due to hydrogen bonding; cohesion is what creates surface tension and allows organic debris to float on top
- Adhesion: attraction of water molecules to other polar surfaces; capillary action is an
 example of this, so is the presence of a meniscus in beakers because the water attracts
 to the sides of the glass
- High heat capacity: basically means that it takes more heat/energy to heat up water, because it can absorb or lose a large amount of energy before temperature changes
- This helps organisms like us to maintain a constant temperature, and it regulates environmental temperature (like oceans for aquatic life)

Blood Solubility

Molecule	Polarity/Solubility	Method of Blood Transport
Glucose	Polar and soluble	Dissolved in plasma
Amino Acids	Partially polar and soluble	Dissolved in plasma
Cholesterol	Non-polar, with small hydrophilic region and insoluble	Inside lipoprotein complex
Fats	Non-polar and insoluble	Inside lipoprotein complex
Oxygen	Non-polar but slightly soluble due to small size	Hemoglobin (very little dissolved in warm blood)
Sodium Chloride	lonic and soluble	The ions are dissolved in plasma (Na ⁺ & Cl ⁻)

Nutrients

- Nutrients are necessary for live to survive and grow; there are two types: macronutrients and micronutrients
- Macronutrients: carbohydrates, lipids, and proteins; they provide most of the energy and building blocks and therefore are required in large amounts
- **Micronutrients:** vitamins and minerals; they provide necessary cofactors for metabolism (to control body processes), and are essential in small amounts
- **Essential Nutrients:** nutrients that cannot be created by the body and must be consumed in the diet (such as iron)

- Vitamins are organic carbon compounds and are essential, for example lack of vitamin
 D or calcium affects bone mineralization and causes rickets or osteomalacia
- Essential Fatty Acids such as omega-3 are necessary for "good health" because they help with processes (does not provide energy tho)
- 9 out of 20 amino acids cannot be synthesized by our bodies and are called **essential amino acids**; a lack of essential amino acids affects the production of proteins

Carbohydrates

- Built from monosaccharides/simple sugars to create polysaccharides
- Produced by plants, used for energy, structure, and storage
- Always contain **carbon, hydrogen, and oxygen** in a 1:2:1 ratio (ex. C₆H₁₂O₆)
- **Monosaccharides:** ex. glucose, fructose, and galactose are all isomers (alternate forms of bonding $C_6H_{12}O_6$, meaning they have the same atoms just different configuration)
- **Disaccharides:** ex. sucrose (glucose & fructose), lactose (glucose & galactose), and maltose (glucose & glucose)
- **Polysaccharides:** more than 2 sugar units such as cellulose, starch (amylose and amylopectin), and glycogen

Roles of Carbohydrates

• In animals:

Glucose: used to make ATP

Lactose: sugar in milk, used to give energy to newborns

Glycogen: energy storage in the liver

• In plants:

• Fructose: makes fruits taste sweet so animals eat them and disperse the seeds

Sucrose: energy source

Cellulose: component of cell walls

Starch: short term energy storage for plants

 Alpha-glucose makes starches and beta-glucose makes cellulose

- The OH on the right and left hand sides of the glucose are used in condensation reactions
- The hydroxyl group (OH) separates completely from one and removes just H from the other leaving just one oxygen atom connecting the two molecules

- In hydrolysis, H₂O is added to the connected molecules and separates them creating two separate hydroxyl groups
- Testing for carbohydrates: Benedict's test for reducing sugars will test for all
 monosaccharides and disaccharides excluding sucrose, blue is a negative result (no
 sugars), red is a positive result (yes sugars)
- **lodine test for starch**: when iodine get stuck in the branches of the starch it will change colours

<u>Lipids</u>

- Hydrophobic, non-polar, and insoluble in water
- Are high energy, found in fats and oils, more than twice the energy per gram compared to carbs due to the number of chemical bonds (efficient for storing energy)
- Lipids are made up of glycerol and fatty acid molecules
- FUNCTIONS OF LIPIDS: Energy storage, insulation, component of cell membranes (phospholipid), protects organs, carries for fat-soluble vitamin absorption (A, D, E, K), steroid hormone synthesis (ex. testosterone)
- Triglycerides are made from 1 glycerol and 3 fatty acid chains, each chain connects to the glycerol with a condensation reaction, meaning 3 water molecules are created when producing 1 triglyceride
- Fatty acid chains can be either **unsaturated or saturated**
- Unsaturated fatty acids: have at least one double bond between carbon atoms
 - Monounsaturated have 1 double bond while polyunsaturated have more than 1 double bond
 - They are oils and are usually liquid (from plants)
 - They are reactive and easier to breakdown and therefore, thought as healthier
 - Hydrogenating: making an oil into a fat by adding a hydrogen; for example hydrogenation of a cis unsaturated fatty acids creates trans unsaturated fatty acids
- Saturated fatty acids: have no double bonds between carbon atoms
 - They are animal fats and hard to break down; also somewhat solid at room temperature

Since they are hard to break down, they can block arteries

Tests for fats: Translucence test: basically light shines through the paper bag if fats are present **Nomograms:** use a ruler from weight to height to determine the BMI (example here)

Proteins

• living organisms can synthesize many different types

• USES OF PROTEINS:

o **enzymes:** as biological catalysts

o **antibodies**: found in immunoglobulins

o **hormones**: insulin

o **pigments**: such as rhodopsin in vision

o **structure**: ex. spider silk or collagen in skin

• 50% of the dry weight of organisms is made up of proteins

• they are synthesized as polypeptides on ribosomes

• Proteomics: the study of the structure, function, and interaction of cellular proteins

• the entire collection of a species' proteins is the proteome, and each individual has a unique proteome

• The "R" group is what makes the amino acid different

 These amino acids are the building blocks of proteins; there are 20 kinds of human proteins and 9 are essential

 Also use hydrolysis and condensation reactions (shown below)

- Protein 3D conformation process
 - Primary Structure: there are huge varieties and are coded by genes (DNA), determines the next structures
 - o amino acid sequence (including size of polypeptide and types of amino acids)

- Secondary Structure: interactions between functional groups with hydrogen bonds to create alpha helix or beta sheets
- Tertiary Structure: interactions of R groups and uses hydrogen, ionic, and covalent bonding to cause additional folding of the secondary structure
- Quaternary Structure: interactions of polypeptides, more than one tertiary polypeptide makes a protein

Protein Tests

Biuret test: they test for peptide bonds; blue is negative, purple is positive

PKU (Phenylketonuria)

- Genetic metabolic disorder where the enzyme that turns phenylalanine into tyrosine is not present
- This makes phenylalanine build up to a toxic level which could cause brain damage
- Babies are tested to ensure their diets are low in phenylalanine to prevent long-term effects (they avoid aspartame)

Starvation/Malnutrition

- **Starvation:** result of severe or total lack of nutrients and energy needed for the maintenance of life
- Malnutrition: can be caused by too little or too much of a particular nutrient

Denaturation of Proteins

- Proteins only work due to their 3D structure and will have an optimal pH and temperature
- **Denaturation:** when proteins change shape and lose their function due to a change in conditions (this is usually irreversible even when conditions are turned back to optimal)
 - Temperature: too much heat/energy causes hydrogen bonds (and other bonds)
 to break and changes the protein's shape
 - pH: acidic and basic conditions affect the hydrogen bonding and result in proteins changing shape

Enzymes

- They are crucial because body temperature is too cold for most reactions to occur efficiently on their own, and high body temperatures would denature proteins
- Therefore, catalysts in the form of enzymes speed up the reactions
- Enzymes lower the amount of energy required by reactants (activation energy)
- All enzymes have an active site where substrates bind

- **Substrate**: the reactants in an enzyme-catalyzed reaction
- Active site: the location of the enzyme where the reaction takes place
- Metabolic pathways in the body consist of chains and cycles of enzyme-catalyzed reactions (so several enzymes are required to accomplish one thing usually)

• Induced-Fit model of Enzymes:

- o each active site is suited for a particular substrate
- multiple reactions can be catalyzed by some enzymes
- once the substrate binds to the active site, the enzyme changes very slightly to completely fit the substrate and after the reaction, the enzyme returns to its original conformation

Denaturation Rates

• Temperature:

- Enzyme catalysis involves molecular motion and collision of substrates with the active site
- When temperature is too high, enzymes denature due to broken bonds
- When temperature is too low, enzymes lose flexibility and motion
- Both result in lower reaction rates

pH:

- Acids and bases affect the amount of hydrogen that is bonded to amino acids and will affect the hydrogen bonding and shape of proteins
- Enzyme activity will decrease because shape of proteins will change
- o ex. Human blood plasma has a very narrow pH range for health

• Other Factors:

- Substrate concentration: if there is more substrate than active sites available, eventually the reaction rate will level off
- Enzyme concentration: if there is too many enzymes in relation to substrate, the reaction rate will eventually decrease

- Examples in industry: Lactose-free milk is made with the enzyme lactase
- "lactose + water -> glucose + galactose" reaction is catalyzed with lactase and makes a sweeter milk that contains no lactose and also means less sugar needs to be added

Enzyme Inhibition

• Competitive Inhibition:

o certain things block the enzyme active sites and compete with the substrate

• Non-competitive Inhibition:

attach to the enzyme at a different site **not** at the active site but it makes the
active site change shape, meaning the substrate can no longer fit

• End-product Inhibition:

 Since metabolic pathways can be controlled, the final product in a reaction inhibits the action of the initial enzyme to stop the product from being overproduced