

					P	rin	ted]	Pag	e: 1	of 3	,
				5	Subj	ect	Coc	le: I	KAS	5402	,
Roll No:											

BTECH (SEM IV) THEORY EXAMINATION 2021-22 MATHS-IV

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ON-A Attempt All of the following Questions in brief Marks (10X2=20)	CO
Q1(a)	Solve the partial differential equation $p + q = 1$	1
Q1(b)	Calculate particular Integral (P.I.) of $(D - 3D' + 2)z = e^{x+2y}$	1
Q1(c)	Tell the classification of the following partial differential equation $5 \frac{\partial^2 u}{\partial x^2} - 9 \frac{\partial^2 u}{\partial x \partial t} + 4 \frac{\partial^2 u}{\partial t^2} = 0$	2
Q1(d)	Write down the two-dimensional wave equation.	2
Q1(e)	Calculate the moment generating function of the negative exponential function $f(x) = \lambda e^{-\lambda x}$; $x, \lambda > 0$	3
	If Regression Coefficients are 0.8 and 0.8, what would be the value of coefficient of correlation?	30
Q1(g)	A die is tossed twice, A success is getting 2 or 3 on a toss. Calculate mean	4
Q1(h)	Write Statement of Baye's theorem.	4
Q1(i)	When we use F-test.	5
Q1(j)	Explain one-way ANOVA classification.	5

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	CO
Q2(a)	Solve the	following partial differential equation by Charpit Method	d: px + qy = pq	1
Q2(b)		the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial t}$ are $u(0,t) = 0$, $u(l,t) = 0$, $(t > 0)$ and the initial contains	l l	2
	u(x,0) = 3	$3\sin\frac{\pi x}{l}$: <i>l being the length of the bar.</i>		
Q2(c)	From the	following data, determine the equations of line of regres	sion of y on x and x on y.	3
		x 6 2 10 4 8 y 9 11 5 8 7		
Q2(d)	distributed bulbs likel	n 2000 electric bulbs, it was found that the life of a partic I with an average life of 2040 hours and S.D of 60 hours y to burn for: (i) More than 2150 hours, (ii) less than 19 s and 2160 hours?	Calculate the number of	4
Q2(e)	Does the 1	ns of a sample have the following values: $45,47,50,52,48$ mean of these values differ significantly from the assumblated value of $t_{0.05}$ =2.31 for 8 d.f]		5

SECTION-C	Attempt ANY ONE following Ouestion	Marks (1X10=10) C	\mathbf{O}
	Auchidi Air I () i i i i i i i i i i i i i i i i i i	IVIAINS LIAIU-IUII C	•

Printed Page: 2 of 3
Subject Code: KAS402
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 MATHS-IV

Q3(a)	Solve the partial differential equation $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = xy$	1
	Use Cauchy's method of characteristics to solve the first order partial differential equation $u_x + u_y = 1 + \cos y$, $u(0, y) = \sin y$	1

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	Solve the	following partial differential equation by method of separ	ation of variables:	2
	$\frac{\partial u}{\partial t} - \frac{\partial u}{\partial x} +$	$2u = 0. \ u(x,0) = 10e^{-x} - 6e^{-4x}.$		
Q4(b)	Determine	the solution of Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject	to the boundary	2
	conditions	u(0,y) = u(l,y) = u(x,0) = 0 and u(x,a) = f(x).		

SECT	ION-C	Attempt ANY	ON	E follo	owing Qu	estion			Marks (1X10=10)	CO
Q5(a)	Compute s	kewness and K	urtos	is,if th	e first fou	ır mom	ents of	a frequ	uency distribution	3
	about the	value 4 of the	varial	ble are	1,4,10 a	nd 45.	\mathcal{O}			d
Q5(b)	Use the me	thod of least so	quare	s to fit	the curve	y = c	$\int_{0}^{\infty} x + \frac{c}{\sqrt{c}}$	$\frac{1}{x}$ for	the following data:	3
			X	0.2	0.3	0.5	1	2	01/2	
			y	16	14	11	6	3	·6.	

								1	
SECT	ION-C	Attem	pt ANY ONE follo	wing (Question			Marks (1X10=10)	CO
Q6(a)	Two urns	contain	4 white ,6 blue and	4 whit	te, 5 blue	e balls respec	ctively. C	One of the urns is	4
	selected at	random	and a ball is drawn	n from	it. If the	ball drawn i	s white.		
	What is the	probab	ility that it was dra	wn fro	m the (i)	first urn (ii)	second	arn.	
Q6(b)	The follwi	ing table	gives the no.of da	ys in a	50 day p	eriod during	which a	utomobile	4
	accidents of	ccured	in a city.	-		-0			
			No. of accidents	0	1	2 3	4		
			No. of days	21	18	7 3	1		
	Fit a Poisso	on distri	bution to the data a	nd cal	culate the	e theoretical	frequenc	ies.	

					OV					
SECTI	ION-C	Attempt ANY C	NE follo	owing Que	estion			Marks (1	X10=10)	CO
Q7(a)	The dema	and for a particula	ır spare p	art in a fa	ctory wa	s found to	vary fro	om day- to	o -day. In	5
	a sample s	tudy the following	g informa	ition was o	obtained					
	_			00		1				
		Days	Mon	Tue	Wed	Thurs	Fri	Sat		
		No. of parts demanded	1124	1125	1110	1120	1126	1115		
		demanded								ļ
	Use χ^2 -1	test to test the hyp	othesis 1	that the nu	ımber of	parts den	nanded d	loes not d	epend on	
	the day of	the week.								
	[The value	e of $\chi_{0.05}^2 = 11.07$	for 5d	f].						

Printed Page: 3 of 3
Subject Code: KAS402
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 MATHS-IV

Sample no.	1	2	3	4	5	6	7	8	9	10
No.of defectives	15	11	9	6	5	4	3	2	7	1

OP22EP2 290
OA.08-2022 \3:30:32 \NT.55.242.32