МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

ΙΠСА

Кафедра Системного проектування

Лабораторна робота №2 з дисципліни «Цифрова обробка сигналів» на тему:

Перетворення Фур'є.

Виконав: Студент групи ДА-21 Михалько В. Г. Варіант №17

Лабораторная работа № 2. Преобразование Фурье.

- 1. Для импульсного сигнала, вид и параметры которого заданы в таблице 1, выпольнить интегральное преобразование Фурье.
- 2. Построить амплитудный и фазовый спектры импульсного сигнала.
- 3. В той же системе координат построить спектр периодического сигнала, полученный при выполнении лабораторной работы №1. Сравнить спектры.
- 4. Сделать выводы.

Вариант	Номер функции, описывающей сигнал	А,	b,	f, Гц	φ, рад	τ,	T,
		(1/c)	В			c	c
17	6	-	-	1/T	0	0.8T	1

Номер функции	Описание				
6.	$s(t) = \begin{cases} \cos^2(2\pi f t + \varphi) + b, & 0 \le t < +\tau \\ 0, & \tau \le t < T \end{cases}$				

1. Результати з першої лабораторної.

n	B-n	C-n	A-n	phi-n (рад)	phi-n (в градусах)
1	-0,2115	0,1030	0,2352	-1,1176	-64,03
2	0,3722	0,1577	0,4042	1,1700	67,04
3	-0,0445	0,1510	0,1574	-0,2866	-16,42
4	0,0018	0,1086	0,1086	0,0166	0,95
5	0,0089	0,0686	0,0692	0,1290	7,39

2. Результати інтегрального перетворення Фур'є.

2.1 Амплітудний спектр імпульсного сигналу (отриманий за допомогою перетворення) і амплітудний спектр для перших п'яти гармонік аналогічного періодичного сигналу (отриманий в попередній лабораторній роботі) :

2.2 Фазовий спектр імпульсного сигналу (отриманий за допомогою перетворення) і фазовий спектр для перших п'яти гармонік аналогічного періодичного сигналу (отриманий в попередній лабораторній роботі) :

3. Лістинг коду Matlab.

```
function y = fourier transform plotting(func, x1, x2)
number of points = 500;
xx = linspace(0, 10.*pi + 1, number of points);
yy magnitude(1) = 0;
yy phases(1) = 0;
for j=1:number of points
    result = integral(@(t)(func(t).*exp(-1i.*xx(j).*t)), x1, x2);
    yy_magnitude(j) = 2.*abs(result);
    yy phases(j) = pi/2 + angle(result);
    if( yy phases(j) > pi)
        yy phases(j) = yy phases(j) - 2.*pi;
    yy_phases(j) = yy_phases(j).*180./pi;
end
xx chart(1)=0;
for i=1:5
    xx chart(i) = 2.*pi.*i;
end
```

```
magnitude chart(1) = 0.2352;
magnitude chart (2) = 0.4042;
magnitude chart(3) = 0.1574;
magnitude\_chart(4) = 0.1086;
magnitude chart(5) = 0.0692;
phases chart(1) = -64.03;
phases chart (2) = 67.04;
phases chart(3) = -16.42;
phases chart (4) = 0.95;
phases_chart(5) = 7.39;
%plot(xx, yy magnitude);
%grid on;
%hold on;
%for i=1:5
% stem(xx chart(i), magnitude chart(i));
%end
plot(xx, yy phases);
grid on;
hold on;
for i=1:5
    stem(xx_chart(i), phases_chart(i));
end
end
```

Висновок. Отже в ході лабораторної роботи було розібрано і реалізовано в Matlab перетворення Фур'є для імпульсного сигналу. Було побудовано графіки амплітудного і фазового спектрів імпульсного сигналу, а також в тій самій системі координат результати для перших 5 гармонік періодичного сигналу. Результати зійшлись.