

Berufs Bildung Baden

Fach: Automation

Thema: Aktuator-Sensor-Interface

Kapitel: Bussysteme

Inhaltsverzeichnis

1	Ein	leitung	. 3
		-i-Slaves an der BFS BBB	
		Übersicht Slaves/Adressen	
		Bit-Adressen der einzelnen Slaves	
		Weitere Beisniele	

Beruf:

AU3

1 Einleitung

Feldbusse sind die Schlüsseltechnologie für die Automatisierung. Durch den Einsatz der Feldbusse werden durchschnittlich 40 % der Kosten im Vergleich zur konventionellen Verkabelung (Parallelverkabelung) eingespart. Es gibt heute zahlreiche Feldbusse, die sich hinsichtlich ihrer technischen Funktionen, Einsatzgebiete und Anwendungshäufigkeit grundsätzlich voneinander unterscheiden.

Aktuator Sensor Interface (AS-i) ist die einfachste Art der industriellen Vernetzung. AS-i ist besonders für die Kommunikation zwischen einer industriellen Steuerung (SPS) und den dezentralen Aktoren und Sensoren geeignet. AS-Interface ist das einfachste und günstigste Bussystem in der Automatisierungstechnik. Es wurde auf die schnelle Übertragung weniger binärer I/O-Signale optimiert. Die Nutzdatenlänge eines Telegrammes beträgt je nach Version 4 resp. 8 Bit. Dies führt zu einer sehr schnellen und konstanten Buszykluszeit. Dabei erfolgt die Daten- und Energieübertragung auf einer gemeinsamen, ungeschirmten 2-Draht-Leitung.

Bezüglich der Topologie bestehen bei AS-Interface praktisch keine Einschränkungen. Es sind Bus-, Stern-, Ring- und Baum-Strukturen realisierbar.

Bei einer Vernetzung mit AS-Interface können fast alle Kabelarten verwendet werden. Spezielle Buskabel sind nicht notwendig. Von Vorteil ist jedoch die Verwendung des gelben AS-Interface-Kabels, da dieses viele Vorteile in der Kontaktierung und Anschlusstechnik bietet. Dieses Kabel ist eine kodierte und somit verpolsicher anschliessbare Flachleitung, an dem die Slaves an beliebiger Stelle über eine einfache Durchdringungstechnik (Piercing Technologie) angeschlossen werden können. Dieses Kabel ist selbstheilend, d. h. nach Ent-

Thema:

AS-Interface - Bussysteme

Beruf:

AU3

fernen der Anschlussmodule ist die Schutzart IP67 wieder gegeben. Das macht die Möglichkeiten der Verkabelung und des Anschlusses der Busteilnehmer unschlagbar einfach gegenüber praktisch allen anderen Bussystemen.

Jedem Slave wird durch ein **Adressiergerät** (siehe Abbildung) eine eindeutige Adresse zugewiesen. Es können maximal 62 Teilnehmer (ab Version 2.1) angeschlossen werden, ursprünglich waren nur 31 Teilnehmer adressierbar (Version 2.0). Die Adresse 0 darf nicht verwendet werden, da alle Slaves im Auslieferungszustand diese Adresse besitzen. Slaves verfügen in der Regel über vier Ein- oder Ausgänge für Aktoren oder Sensoren, wodurch 124 Ein- oder Ausgänge (bei Version 2.0), bzw. 248 Eingänge und 186 Ausgänge (bei Version 2.1) ansteuerbar sind. Bei Version 3 können sogar 496 Eingänge und 496 Ausgänge angesteuert werden.

Leistungsvergleich:

	Version 2.0	Version 2.1	Version 3.0	
Anzahl Slaves	max. 31	max. 62	max. 62	
Anzahl I/O	124 I + 124 O	248 I + 186 O	496 I + 496 O	
Signale	Daten und Versor- gung bis 8 A (ab- hängig vom Netz- teil)	Daten und Versor- gung bis 8 A (ab- hängig vom Netz- teil)	Daten und Versor- gung bis 8 A (ab- hängig vom Netz- teil)	
Medium	ungeschirmtes, unverdrilltes Kabel	ungeschirmtes, unverdrilltes Kabel	ungeschirmtes, unverdrilltes Kabel	
max. Zykluszeit	5 ms	10 ms	40 ms	
Analogwertübertragung	über Funktionsblock	im Master integriert	im Master integriert	
Anzahl Analogwerte	16 Byte für Binär- und Analogwerte	124 Analogwerte	248 Analogwerte	
Zugriffsverfahren	Master/Slave	Master/Slave	Master/Slave	
Kabellänge	100 m, Verlänge- rung über Repea- ter auf max. 300 m	100 m, Verlänge- rung über Repea- ter auf max. 300 m	100 m, Verlänge- rung über Repea- ter auf max. 600 m	

Typischer Aufbau eines AS-Interface-Systems mit einer SPS als Master:

Das AS-Interface ist ein Single-Master-System, d.h. ein Master pollt [=abfragen] zyklisch (polling) alle projektierten Slaves und tauscht mit ihnen die Ein- und Ausgangsdaten aus. Der Master kommuniziert mit einem seriellen Übertragungsprotokoll mit den Teilnehmern.

Thema:

AS-Interface - Bussysteme

Beruf:

AU3

2 AS-i-Slaves an der BFS BBB

An der BFS BBB verfügen wir über die AS-i Version 2.0 und können somit max. 31 Teilnehmer adressieren. Folgende Slaves stehen zur Verfügung:

6 Stk. ASi-Signalsäulen 10 Stk. LOGO!-Trainer

Im Weiteren sind an der MPS-Anlage "Norwegen" verschiedene Slaves im Einsatz.

Ein Slave kann nicht direkt mit dem Master (SPS S7-300) kommunizieren. Es braucht ein Interface, den sogenannten **Kommunikationsprozessor** (CP 343-2, siehe Abbildung), welcher auf dem SPS-Trainer über den Rückwandbus mit der CPU verbunden ist. Durch die Harwarekonfiguration erhält die CP einen Adressbereich zugesprochen:

Slot		Module	Order number	Firmware	MP	Laddress	Q addr	Comment
1		PS 307 5A	6ES7 307-1EA00-0AA0					
2	M	CPU 314C-2 PN/DP	6ES7 314-6EH04-0AB0	V3.3				
27		MPI/DP				2047**		
X2		PN-10				2046*		
X2 A		Port1				2045*		
X2 A		Port2				2044**		
2.5		DI24/DO16				124126	124125	
2.6		AI5/AO2				752767	752755	
27		Zählen				768783	768783	
2.8		Positionieren				784799	784799	
3								
4	#	CP 343-2	6GK7 343-2AH00-0XA0			7691	7691	
5		***************************************						

Den Eingängen sollen die E-Bytes 76 ... 91 zugeordnet werden, den Ausgängen die A-Bytes 76 ... 91.

2.1 Übersicht Slaves/Adressen

Eingänge	IN / OUT			IN / OUT			Ausgänge		
	7	6	5	4	3	2	1	0	
Byte	In4	ln3	ln2	ln1	In4	ln3	ln2	ln1	Byte
	Out4	Out3	Out2	Out1	Out4	Out3	Out2	Out1	
76	belegt				MPS-Nor-A4 (1V1) (Adr. 1)			dr. 1)	76
77	MP	S-Nor-C	PV (Adr	. 2)	MPS-N	Nor-Sen	sor B4 (Adr. 3)	77
78	MPS-Fin-A4 (1V1) (Adr. 4)			MPS-Fin-CPV (Adr. 5)			78		
79	MPS-Fin-Sensor B4 (Adr. 6)			MPS-Aus-A4 (1V1) (Adr. 7)			dr. 7)	79	
80	MPS-Aus-CPV (Adr. 8)				MPS-Aus-Sensor B4 (Adr. 9)			80	
81	LOGO!-Trainer 1 (Adr. 10)				LOGO!-Trainer 2 (Adr. 11)			81	
82 LOGO!-Trainer			er 3 (Ad	r. 12)	LOGO!-Trainer 4 (Adr. 13)			82	
83	LOGO!-Trainer 5 (Adr. 14)			LOGO!-Trainer 6 (Adr. 15)			r. 15)	83	
84	LOGO!-Trainer 7 (Adr. 16)			LOG	LOGO!-Trainer 8 (Adr. 17)			84	
85	85 LOGO!-Trainer 9 (Adr. 18)			LOGO!-Trainer 10 (Adr. 19)			dr. 19)	85	
86	86 Signalsäule 1 (Adr. 20)			20)	Signalsäule 2 (Adr. 21)			21)	86
87	Signalsäule 3 (Adr. 22)				Signalsäule 4 (Adr. 23)			87	
88	Sig	Signalsäule 5 (Adr. 24)			Signalsäule 6 (Adr. 25)			88	
89	89 Reserve Slave 26			Reserve Slave 27			89		
90	90 Reserve Slave 28				Reserve Slave 29			90	
91	91 Reserve Slave 30					Reserve	Slave 3	1	91

Datum: 30.06.17 / © by Roman Moser Datei: AUF3.4.7_AS-Interface.docx

AU3

2.2 Bit-Adressen der einzelnen Slaves Erklärung am Beispiel von Slave 12 ...

Dem **LOGO!-Trainer 3** ist die Slave-Adresse **12** zugeordnet worden. Die AS-i Ausgänge des LOGO!-Trainers 3 sind im Prozessabbild der Eingänge der S7-300 CPU folgendermassen zugeordnet:

Qa1 → E 82.4

Qa2 → E 82.5

 $Qa3 \rightarrow E82.6$

Qa4 → E 82.7

Die AS-i Eingänge des LOGO!-Trainers 3 sind im Prozessabbild der Ausgänge der S7-300 CPU folgendermassen zugeordnet:

 $Ia1 \rightarrow A82.4$

Ia2 → A 82.5

Ia3 → A 82.6

 $Ia4 \rightarrow A82.7$

Ein Ausgang am Slave wird beim Master zum Eingang. Ein Eingang am Slave ist am Master ein Ausgang.

2.3 Weitere Beispiele

Dem **LOGO!-Trainer 8** ist die Slave-Adresse **17** zugeordnet worden. Die AS-i Ausgänge des LOGO!-Trainers 8 sind im Prozessabbild der Eingänge der S7-300 CPU folgendermassen zugeordnet:

 $Qa1 \rightarrow E 84.0$ $Qa2 \rightarrow E 84.1$ $Qa3 \rightarrow E 84.2$ $Qa4 \rightarrow E 84.3$

Die AS-i Eingänge des LOGO!-Trainers 8 sind im Prozessabbild der Ausgänge der S7-300 CPU folgendermassen zugeordnet:

 $\begin{array}{c} \text{Ia1} \rightarrow \text{A 84.0} \\ \text{Ia2} \rightarrow \text{A 84.1} \\ \text{Ia3} \rightarrow \text{A 84.2} \\ \text{Ia4} \rightarrow \text{A 84.3} \\ \end{array}$

Der **Signalsäule 3** ist die Slave-Adresse **22** zugeordnet worden. Die AS-i Eingänge der Signalsäule 3 sind im Prozessabbild der Ausgänge der S7-300 CPU folgendermassen zugeordnet:

Lampe weiss \rightarrow A 87.4 Lampe grün \rightarrow A 87.5 Lampe gelb \rightarrow A 87.6 Lampe rot \rightarrow A 87.7

Der MPS-Station Verteilen an der Anlage "Norwegen" sind folgende Adressen zugeordnet:

MPS-Nor-A4 (1V1) (Adr. 1)

	-	
Adresse	Symbol	Kommentar
E 76.1	1B2	Ausschiebezylinder ausgefahren
E 76.2	1B1	Ausschiebezylinder eingefahren
A 76.0	1M1	Ausschiebezylinder Werkstück ausschieben

MPS-Nor-CPV (Adr. 2)

Adresse	Symbol	Kommentar
E 77.4	3S1	Schwenkzylinder in Position Magazin
E 77.5	3S2	Schwenkzylinder in Position Folgestation
E 77.6	2B1	Sensor Werkstück angesaugt
E 77.7	IP_FI	Folgestation frei
A 77.4	3M1	Schwenkzylinder zu Position Magazin
A 77.5	3M2	Schwenkzylinder zu Position Folgestation
A 77.6	2M1	Vakuum ein
A 77.7	2M2	Ausstossimpuls Vakuum

MPS-Nor-Sensor B4 (Adr. 3)

Adresse	Symbol	Kommentar
E 77.0	B4	Sensor Magazin leer