Recognize Flu-like Symptoms with Deep Learning

CS 231N FINAL PROJECT

Alan Lou, Yechao Zhang June 4, 2021

Contents

- Introduction
- Data Collection
- Models
 - CNN + LSTM (baseline 1)
 - Conv-3D (baseline 1)
 - > VGG-16 Features + LSTM
 - > VGG-16 Features + LSTM + Attention
 - > HRNet Features + LSTM
 - > HRNet Features + LSTM + Attention
- Results
- Future works

Introduction

 Covid-19 has reached almost every country in the world, infecting millions of people

- Video based surveillance can be used to monitor flu-like symptoms such as coughing and sneezing in densely populated areas
- Apply deep learning techniques to predict flu-like symptoms to help detect Covid-19 early and prevent further escalation

Dataset

BII Sneeze-Cough Human Action Video Dataset (BIISC)

- 20 Subjects:
 - 12 Males, 8 Females
- 8 Action Types:
 - answer phone call, cough, drink water, scratch head, sneeze, stretch arms, wave hand, wipe glasses
- 3 Poses:
 - o face to camera, face to the left, face to the right
- 2 Local motions:
 - stand, walk
- Horizontally flipper version generated for each video
- Total number of videos: 20 x 8 x 3 x 2 x 2 = 1920

Snapshots of Sneeze-Cough action recognition videos. From left to right shows eight actions: answer phone call, cough, drink, scratch face, sneeze, stretch arm, wave hand and wipe glasses.

Thi, T.H., Wang, L., Ye, N. et al. Recognizing flu-like symptoms from videos. *BMC Bioinformatics* 15, 300 (2014).

Stanford University

Data Pre-processing

CNN-Based Models:

Data Pre-processing (Cont'd)

Models - CNN + LSTM (baseline 1)

- Categorical cross-entropy loss is used.
- Trained the whole network from scratch using an Adam optimizer.

Stanford University

Models - 3D-Conv (baseline 2)

Example of a 3D convolution performed with 3D kernel and 3D data - https://towardsdatascience.com/9d8f76e29610

Layer (type) Conv1 (Conv3D) (None, 12, 224, 224, 3 pool1 (MaxPooling3D) (None, 12, 112, 112, 3 conv2 (Conv3D) (None, 12, 112, 112, 112, 6 pool2 (MaxPooling3D) (None, 6, 56, 56, 64) conv3a (Conv3D) (None, 6, 56, 56, 128) conv3b (Conv3D) (None, 6, 56, 56, 128)	
pool1 (MaxPooling3D) (None, 12, 112, 112, 3 conv2 (Conv3D) (None, 12, 112, 112, 6 pool2 (MaxPooling3D) (None, 6, 56, 56, 64) conv3a (Conv3D) (None, 6, 56, 56, 128) conv3b (Conv3D) (None, 6, 56, 56, 128)	Param #
conv2 (Conv3D) (None, 12, 112, 112, 6) pool2 (MaxPooling3D) (None, 6, 56, 56, 64) conv3a (Conv3D) (None, 6, 56, 56, 128) conv3b (Conv3D) (None, 6, 56, 56, 128)	32) 2624
pool2 (MaxPooling3D) (None, 6, 56, 56, 64) conv3a (Conv3D) (None, 6, 56, 56, 128) conv3b (Conv3D) (None, 6, 56, 56, 128)	32) 0
conv3a (Conv3D) (None, 6, 56, 56, 128) conv3b (Conv3D) (None, 6, 56, 56, 128)	54) 55360
conv3b (Conv3D) (None, 6, 56, 56, 128)	0
	221312
neel2 (Marrheeling2D) (None 2 20 20 120)	442496
pools (MaxPoolingSD) (None, 3, 26, 26, 126)	0
conv4a (Conv3D) (None, 3, 28, 28, 256)	884992
conv4b (Conv3D) (None, 3, 28, 28, 256)	1769728
pool4 (MaxPooling3D) (None, 1, 14, 14, 256)	0
flatten_2 (Flatten) (None, 50176)	0
fc6 (Dense) (None, 64)	3211328
dropout_2 (Dropout) (None, 64)	0
dense_2 (Dense) (None, 8)	520

Total params: 6,588,360
Trainable params: 6,588,360
Non-trainable params: 0

Models - VGG-16 Features + LSTM

- A pre-trained VGG-16 model is used as feature extractor.
- The parameters in VGG-16 are freezed.
- Explored adding an Attention layer after the LSTM layer.

Stanford University

Models - HRNet Features + LSTM

- A pre-trained HRNet model is used as feature extractor.
- High Resolution Net (HRNet) is a state of the art neural network for human pose estimation.
- Explored adding an Attention layer after the LSTM layer.

Stanford University

Results

Precision, Recall and Accuracy

Prec. = TP / (TP + FP) Rec. = TP / (TP + FN) Acc. = TP / (TP + FP + FN)

Future works

- 3D-Conv + Attention model
- Impact of extra source of information (e.g. sound)
- Other applications of the network architecture