Unit 2: Prime Time

Paul Ycay MATH 409- Athabasca University

December 13, 2019

The following theorems are ones to be marked. There is a seperate file of handwritten notes for the rest of the theorems in this chapter

Theorem 2.3. A natural number n > 1 is prime if and only if for all primes $p \le \sqrt{n}$, p does not divide n.

Proof. We want to prove two statements:

- (a) n is prime if and only if $p \leq \sqrt{n}$, $p \nmid n$.
- $\textcircled{b} \quad p \leq \sqrt{n} \text{ and } p \nmid n \text{ if and only if } n \text{ is prime}$

Proof of ⓐ: Suppose n is not prime, i.e. $\exists x,y \in \mathbb{Z}$ such that n=xy, where 1 < x < n and 1 < y < n. Now if n is not prime, then $x \le y$, for example. Moreover, since $x \in \mathbb{Z}$, x has a prime divisor p such that $p \le x \le y$. Now, assume $p > \sqrt{n} \implies p^2 > n \implies p^2 > xy$. This is a contradction since we assumed p is at least smaller than x, which is at least smaller than y. Then p cannot be a divisior of x or y. Thus, $p \nmid n$ and n is prime, based on these inequalities.

Proof of b: Suppose p|n and $p>\sqrt{n}$. By the Fundamental Theorem of Arithmetic, $n=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}$, for some $k\in \mathbb{N}$. Since $p>\sqrt{n}$, denote $p=p_1$. Then $p_1p_1>n \implies p_1p_1>p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}$, a contradiction. Thus, n is prime.

Theorem 2.20. There do not exist natural numbers m and n such that $7m^2 = n^2$

Proof. Assume $m=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$ and $n=q_1^{b_1}q_2^{b_2}\cdots q_s^{b_s}$. Then $7m^2=7p_1^{2a_1}p_2^{2a_2}\cdots p_j^{2a_j}\cdots p_k^{2a_k}$, for some $1\leq j\leq k$. Since 7 is prime, assume $p_j=7$. Then $7p_j^{2a_j}=7\cdot 7^{2a_j+1}$, where $2a_j+1$ is even. However, $n^2=q_1^{2b_1}q_2^{2b_2}\cdots q_s^{2b_s}$, and all of its factors are even, since $2b_i$ is even for some $1\leq i\leq s$. Thus, there are no such factors in $7m^2$ that divides any factors in n^2 , and vice versa. Therefore, $7m^2\neq n^2$.

Theorem 2.23. Show that $7^{\frac{1}{3}}$ is irrational

Proof. Assume that $\sqrt[3]{7}$ is rational, i.e., $\exists x, y \in \mathbb{Z}$ such that

$$\sqrt[3]{7} = \frac{x}{y}$$

$$7 = \frac{x^3}{y^3}$$

Then $gcd(x^3, y^3) = 1$, since $\frac{x^3}{y^3}$ still has to be rational. Then $7y^3 = x^3 \implies 7|x^3 \implies 7|x$. In other words, $\exists a \in \mathbb{Z}$ such that x = 7a

$$7y^3 = (7a)^3$$

$$7y^3 = 7 \cdot 7 \cdot 7 \cdot a^3$$

$$y^3 = 7 \cdot 7 \cdot a^3$$
 (by dividing both sides by 7)

Then $7|y^3 \implies 7|y$. Therefore $7|x, 7|y, 7|x^3, \& 7|y^3$. But we claimed that $gcd(x^3.y^3) =$ 1, a contradiction. Thus $\sqrt[3]{7}$ is irrational.

Theorem 2.27. Let p be a prime and let $a, b \in \mathbb{Z}$. If p|a, then p|a or p|b.

Proof. By contrapositition.

Sps $p \nmid a$ and $p \nmid b$. In other words, gcd(p, a) = 1 = gcd(p, b) Then $\exists x, y, t, s \in \mathbb{Z}$ such that

Thus, gcd(ab, p) = 1. In other words, $p \nmid ab$, which is what we want satisfied for the contrapositive of this theorem.

Theorem 2.37. If r_1, r_2, \ldots, r_m are natural numbers and each one is congruent to 1 modulo 4, then the product $r_1r_2\cdots r_m$ is also congruent to 1 modulo 4.

Proof. Suppose for integers $a_1, a_2, a_3 \ldots, a_m$

$$r_1 = 1 + 4a_1$$

 $r_2 = 1 + 4a_2$
:
:
:
:

Then

$$\begin{split} r_1 r_2 &\cdots r_m \\ &= \prod_{i=1}^m (1+4a_i) \\ &= (1+4a_1)(1+4a_2) \cdots (1+4a_m) \\ &= 1+ \left[4(a_1+a_2+\cdots+a_m) + 4^2(a_1a_2+a_2a_3+\cdots+a_{m-1}a_m) + \right. \\ &\left. 4^3(a_1a_2a_3+a_2a_3a_4+\cdots+a_{m-2}a_{m-1}a_m) + \cdots + 4^m(a_1a_2\cdots a_m) \right] \\ &= 1+4t \quad \text{(The above in square brackets is a multiple of 4 and can be expressed as some integer t)} \end{split}$$

Thus, $r_1 r_2 \cdots r_m$ has a remainder 1 when divided by 4.

Theorem 2.38. There are infinitely many prime numbers that are congruent to 3 modulo 4.

Proof. By contrary, suppose that there are finitely many prime numbers that are congruent to 3 modulo 4. Moreover, consider the set of primes denoted by $A = \{p_1, p_2, \ldots, p_m\}, m < \infty$. Here, we fix p_1 to be 3, since 2 is never congruent to 3 modulo 4. Let d := 4n + 3 be some integer, $n \in \mathbb{Z}$. Since n is an integer, it can be expressed as a product of primes. More precisely, assume that n is a product of all primes in A, subtracted by 1, to maintain its prime property. Then $d = 4(p_1p_2\cdots p_m - 1) + 3$. Now arise two cases.

Suppose d is not prime. Then $\exists x \in \mathbb{Z}$ such that x is a divisor of $d \implies x = 4k + 3, k \in \mathbb{Z}$.

Suppose d is prime. Then d has to be some element in set A, which is impossible. Clearly, $4(p_1p_2\cdots p_m-1)+3$ is greater than p_i for any $p_1=3\leq p_i\leq p_m$ contained in A.

A contradiction, and thus no p_i can divide d. Therefore, there are infinitely many primes congruent to 3 modulo 4.