Truncated Fourier Transform

Mike Ghesquiere

December 14, 2012

Introduction

\mathcal{R} is a ring for which:

- ▶ $2, 1/2 \in \mathcal{R}$
- ▶ R is effective (there are effective algorithms to compute +, and ×).

If \mathcal{R} has a primitive *n*-th root of unity with $n=2^p$ then the product of $P,Q \in \mathcal{R}[X]$ with $\deg(PQ) < n$ can be computed in $\mathcal{O}(n \log n)$ using the (Discrete) Fast Fourier Transform FFT.

If \mathcal{R} does not contain a primitive n-th root of unity then we require an additional $\mathcal{O}(\log \log n)$ to construct a ring extension to carry out the multiplication.

Fast Fourier Transform (FFT)

Let ω be a primitive *n*-th root of unity with $n=2^p$. Define:

$$FFT_{\omega}: \mathcal{R}^n \to \mathcal{R}^n (a_0, ..., a_{n-1}) \mapsto (\hat{a}_0, ..., \hat{a}_{n-1})$$
 (1)

where

$$\hat{a}_i = \sum_{j=0}^{n-1} a_j \omega^{ij} \tag{2}$$

Fast Fourier Transform (FFT)

Consider the binary splitting:

$$\begin{split} (a_0,a_1,...,a_{n-1}) &= (b_0,c_0,...,b_{n/2-1},c_{n/2-1}). \\ FFT_{\omega^2}(b_0,b_1,...,b_{n/2-1}) &= (\hat{b}_0,...,\hat{b}_{n/2-1}) \\ FFT_{\omega^2}(c_0,c_1,...,c_{n/2-1}) &= (\hat{c}_0,...,\hat{c}_{n/2-1}) \end{split}$$

Then we have:

$$FFT_{\omega}(a_0, ..., a_{n-1}) = \left((\hat{b}_0 + \hat{c}_0), ..., (\hat{b}_{n/2-1} + \hat{c}_{n/2-1}) \omega^{n/2-1} \right)$$
$$(\hat{b}_0 - \hat{c}_0), ..., (\hat{b}_{n/2-1} - \hat{c}_{n/2-1}) \omega^{n/2-1} \right)$$

This gives a natural recursive implementation.

In-place Fast Fourier Transform

In practice, it is more efficient to use an in-place variant.

Figure: The case for $n = 16 = 2^4$

In-place Fast Fourier Transform

$$\begin{pmatrix} x_{s,im_s+j} \\ x_{s,(i+1)m_s+j} \end{pmatrix} = \begin{pmatrix} 1 & \omega^{rev_s(i)m_s} \\ 1 & -\omega^{rev_s(i)m_s} \end{pmatrix} \begin{pmatrix} x_{s-1,im_s+j} \\ x_{s-1,(i+1)m_s+j} \end{pmatrix}$$
 (3)

 $m_s=2^{p-s}$. $rev_s(i)$ is the bitwise reverse of i at length s. $(rev_5(11)=26)$ $i \in \{0,2,...,n/m_s-2\}$ $j \in \{0,...,m_s-1\}$

In-place Fast Fourier Transform

Figure: Schematic representation of a TFT for n = 16.

$$x_{s,im_s+j} = (FFT_{\omega^{m_s}}(a_j, a_{m_s+j}, ...a_{n-m_s+j}))_{rev_s(i)}$$

In particular:

$$x_{p,i} = \hat{a}_{rev_p(i)}$$

Truncated Fourier Transform

However, FFT is only defined for $n = 2^p$. If $a \in \mathbb{R}^l$ for n/2 < l < n then we must carry out FFT at precision n.

We now present the Truncated Fourier Transform (TFT) for vectors in \mathcal{R}^l which reduces to FFT in the case where l is a power of two. However it also behaves more smoothly for intermediate degrees.

Truncated Fourier Transform (TFT)

At stage s it is sufficient to compute $(x_{s,0},...,x_{s,(\lceil l/m_s \rceil m_s)-1})$.

Figure: Schematic representation of a TFT for n = 16 and l = 11.

Our algorithm for inverting the TFT will rely on reconstructing the original graph.

$$\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 1 & \alpha \\ 1 & -\alpha \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = 2^{-1} \begin{pmatrix} 1 & 1 \\ \alpha^{-1} & -\alpha^{-1} \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} \tag{4}$$

$$\begin{pmatrix} c \\ b \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -\alpha^{-1} & \alpha^{-1} \end{pmatrix} \begin{pmatrix} d \\ a \end{pmatrix}$$
 (6)

Equations for (a, c) in terms of (b, d) and vice versa also exist.

More precisely, our algorithm takes two input:

$$\vec{a} = (x_{p,k}, ..., x_{p,l-1})$$

$$\vec{b} = (x_{s,l}, ..., x_{s,(\lceil l/m_s \rceil m_s)-1})$$

and will return:

$$(x_{s,k},...,x_{s,l-1})$$

Case 1: $length(\vec{a}) \ge length(\vec{b})$.

- 1. Using Equation (4) repeatedly, we "push up" the vector $(x_{p,k},...,x_{p,k+2^i-1})$ where i is maximal such that $2^i \leq l-k$.
- 2. Using the newly computed $(x_{p(s+1),k},...,x_{(s+1),k+2^i-1})$ and \vec{b} with Equation (5) we can find
 - $(x_{(s+1),l},...,x_{(s+1),(\lceil l/m_s \rceil m_s)-1})$ and
 - $(x_{s,l-k},...,x_{s,k+2^i-1})$
- 3. We compute $(x_{(s+1),k+2^i},...,x_{(s+1),l})$ by making a recursive call on $(x_{p,k+2^i},...,x_{p,l-1})$ and $(x_{(s+1),l},...,x_{(s+1),(\lceil l/m_{(s+1)}\rceil m_{(s+1)})-1})$

Figure: First recursive call.

Case 2: $length(\vec{a}) < length(\vec{b})$.

- 1. Using Equation (3), push down \vec{b} to $(x_{(s+1),l},...,x_{(s+1),(\lceil l/m_{(s+1)}\rceil m_{(s+1)})-1}).$
- 2. Recurse to calculate $\vec{c} = (x_{(s+1),k},...,x_{(s+1),l-1})$
- 3. Using Equation (5), compute $(x_{s,k},...,x_{s,l-1})$ using \vec{c} and \vec{b} .

Figure: After pushing down, about to make second recursive call.

Figure: length(\vec{a}) \geq length(\vec{b}). We carry out case 1 again.

Figure: Recurse again.

Figure: p = (s + 1) so the push up is trivial.

Figure: \vec{a} and \vec{b} have equal lengths so we return.

Truncated Fourier Transform (TFT)

