J. Ribault

10 février 2017

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur I. $\sum f_n$ converge simplement sur I si et seulement si

- O Pour tout $n \in \mathbb{N}$, $\sum f_n(x)$ est convergente.
- Aucune réponse n'est correcte

Soient $\sum f_n$ une série d'applications convergeant simplement sur I et (R_n) la suite des restes d'ordre n.

 $\sum f_n$ converge uniformément sur I si et seulement si

- Plusieurs réponses sont correctes

Soit $\sum f_n$ une série d'applications définies sur I.

On suppose que :

- $\forall n \in \mathbb{N}, \ \forall x \in I, \ |f_n(x)| \leq a_n$
- la série numérique $\sum a_n$ est divergente

On peut en déduire que $\sum f_n$ ne converge pas normalement sur I

- VRAI
- FAUX

Si la série d'applications $\sum f_n$ converge normalement sur I alors $f_n \xrightarrow[n \to +\infty]{C.U.} \tilde{0}$ sur I.

- VRAI
- FAUX

La série d'applications $\sum_{i} f_{n}$ converge simplement sur I.

On note (R_n) la suite des restes d'ordre n.

On suppose que :

$$\forall n \geqslant 1, \ \forall x \in I, R_n(x) \leqslant \frac{1}{n}$$

- La série d'applications $\sum f_n$ converge uniformément sur I.
- ② La série d'applications $\sum f_n$ ne converge pas uniformément sur I.
- On ne peut pas conclure sur la convergence uniforme de la série d'applications $\sum f_n$ sur I.

Quelques QCMs...

QCM

On peut utiliser la proposition 5 pour calculer $\lim_{x\to +\infty} \zeta(x)$?

- VRAI
- FAUX

Quelques QCMs...

QCM

On peut utiliser la proposition 5 pour calculer $\lim_{x\to 1}\zeta(x)$?

- VRAI
- FAUX