Kamstrup OmniPower wm-bus metering

Release development

Team 3, E5PRO5 2020, Aarhus Uni., School of Engineering

TABLE OF CONTENTS

1	Omr	niPower implementation	1
	1.1	Parse Kamstrup OmniPower wm-bus telegrams	1
	1.2	The C1 Telegram class	4
	1.3	The OmniPower class	4
2	Imp	lementation of generic measurements	5
	2.1	Generic class for measurements and measurement frames	5
	2.2	The Measurement class	5
	2.3	The MeterMeasurement class	5
3	Indi	ces and tables	7
Рy	thon	Module Index	9
In	dex		11

OMNIPOWER IMPLEMENTATION

1.1 Parse Kamstrup OmniPower wm-bus telegrams

platform Python 3.5.10 on Linux, OS X

synopsis Implements parsing functionality for C1 telegrams and log handling for data series

author Janus Bo Andersen

date 14 October 2020

1.1.1 Overview

- This module implements parsing for the Kamstrup OmniPower meter, single-phase.
- The meter sends wm-bus C1 (compact one-way) telegrams.
- Telegrams on wm-bus are little-endian, i.e. LSB first.
- The meter sends 1 long and 7 short telegrams, and then repeats.
- Long telegrams include data record headers (DRH) and data, that is DIF/VIF codes + data.
- Short telegrams only include data.

1.1.2 Telegram fields

In a telegram C1 telegram, the data fields are:

#	Byte#	Byte	s M-bus	Description	Expected value (little-endian)
			field		
0	0	1	L	Telegram length	0x27 (39 bytes, short frame), or
					0x2D (45 bytes, long frame)
1	1	1	C	Control field (type and purpose of mes-	0x44 (SND_NR)
				sage)	
2	2-3	2	M	Manufacturer ID (official ID code)	0x2D2C (KAM)
3	4-7	4	A	Address (meter serial number)	0x57686632 (big-
					endian:32666857)
4	8	1	Ver.	Version number of the wm-bus firmware	0x30
5	9	1	Medium	Type / medium of meter	0x02 (Electricity)
6	10	1	CI	Control Information	0x8D (Extended Link Layer 2)
7	11	1	CC	Communication Control	0x20 (Slow response sync.)
8	12	1	ACC	Access field	Varies
9	13-16	4	AES	AES counter	Varies, used for decryption
			CTR		
10	17-39	23	Data	Contains AES-encrypted data frame,	Encrypted data
	17-45	29		varying for short and long frames	
11		2	CRC16	CRC16 check	

The fields 0-9 of the telegram can be unpacked using the little-endian format < BBHIBBBBB, where

- < marks little-endian,
- *B* is an unsigned 1 byte (char),
- *H* is an unsigned 2 byte (short),
- *I* is an unsigned 4 byte (int)

1.1.3 Telegram examples

Encrypted short telegrams:

L	С	М	Α	Ver	Med	CI	CC	ACC	AES	Encrypted payload	CRC
									CTR		16
27	44	2D	5768	30	02	8D	20	2E	2187	D3A4F149 B1B8F578 3DF7434B	XXXX
		2C	6632						0320	8A66A557 86499ABE 7BAB59	
27	44	2d	5768	30	02	8d	20	63	60dd	c42b87f4 6fc048d4 2498b44b	3d9c
		2c	6632						0320	5e34f083 e93e6af1 617631	
27	44	2d	5768	30	02	8d	20	8e	11de	188851bd c4b72dd3 c2954a34	494e
		2c	6632						0320	1be369e9 089b4eb3 858169	

Encrypted long telegrams:

L	С	M	Α	Ver	Med	CI	CC	ACC	AES	Encrypted p	oayload		CRC
									CTR				16
2D	44	2D	5768	30	02	8D	20	64	61DD	38931d14	b405536e	0250592f	0e7d
		2C	6632						0320	8b908138	d58602ec	a676ff79	
										e0caf0b1 4d			

1.1.4 Decryption

The AES-128 Mode CTR (or CBC-IV) decryption prefix is built from some of the fields (m-bus mode 8). See EN 13757-7:2018. It can be packed using the format *<HIBBBIB*.

M		Α	Ver	Med	CC	AES CTR	Pad
2D	2C	57686632	30	02	20	21870320	00

1.1.5 Decrypted payload examples

The interpretation of the fields in the OmniPower are

Field	Kamstrup name	Data fmt (DIF)	Value type (VIF/E)	VIF/E meaning	DIF VIF/E
Data 1	A+	32-bit uint	Energy, 10 ¹ Wh	Consumption from grid, accum.	04 04
Data 2	A-	32-bit uint	Energy, 10 ¹ Wh	Production to grid, accum.	04 84 3C
Data 3	P+	32-bit uint	Power, 10^0 W	Consumption from grid, instantan.	04 2B
Data 4	P-	32-bit uint	Power, 10^0 W	Production to grid, instantan.	04 AB 3C

Decrypted short telegram

CRC16	TPL-CI	Data fmt. sign.	CRC16 data	Data 1	Data 2	Data 3	Data 4
1170	79	138C	4491	CE000000	00000000	03000000	00000000

Measurement data starts at byte 7, and can easily be extracted using < IIII little-endian format.

In this example, 206 10¹ Wh (2.06 kWh) have been consumed, and the current power draw is 3 10⁰ W (0.003 kW).

Decrypted long telegram

In this kind of telegram, the DRHs are included.

CRC16	TPL-	DIF/VIF	Data 1	DIF/VIF/VIFE	Data 2	DIF/VIF	Data 3	DIF/VIF	Data 4
	CI	1		2		3		4	
9831	78	04 04	D7000000	04 84 3C	00000000	04 2B	03000000	04 AB	00000000
								3C	

Extraction is slightly more complex, requiring either a longer parsing pattern or perhaps a regex.

In this example, 215 10¹ Wh (2.15 kWh) have been consumed, and the current power draw is 3 10⁰ W (0.003 kW).

1.2 The C1 Telegram class

```
class OmniPower.OmniPower.ClTelegram (telegram: bytes)
Implements capture of data fields for a C1 telegram from OmniPower
```

decrypt_using (*meter*: OmniPower.OmniPower.OmniPower) → bool

Decrypts a telegram using the key from the specified meter. Updates the decrypted field of self. Requires instantiated OmniPower meter with valid AES-key.

1.3 The OmniPower class

```
class OmniPower.OmniPower.OmniPower (name: str = 'Kamstrup OmniPower one-phase', meter_id: str = '32666857', manufacturer_id: str = '2C2D', medium: str = '02', version: str = '30', aes_key: str = '9A25139E3244CC2E391A8EF6B915B697')

Implementation of our OmniPower single-phase meter Passed values are hex encoded as string, e.g. '2C2D' for value 0x2C2D.

add_measurement_to_log (measurement: OmniPower.MeterMeasurement.MeterMeasurement) → None

Pushes a new measurement to the tail end of the log

decrypt (telegram: OmniPower.OmniPower.C1Telegram) → bytes

Decrypt a telegram. Requires:

• the prefix from the telegram (telegram.prefix), and

• the encryption key from the meter.

Decrypts the data stored telegram.encrypted

dump_log_to_json() → str
```

Returns a JSON object of all measurement frames in log, with an incremented number for each observation

is this my (telegram: OmniPower.C1Telegram) → bool

Check whether a given telegram is from this meter by comparing meter setting to telegram

```
process_telegram (telegram: OmniPower.OmniPower.C1Telegram) → bool
```

Does entire processing chain for a telegram, including adding to log

```
classmethod unpack_long_telegram_data(data: bytes) \rightarrow Tuple[int,...]
```

Long C1 telegrams contain DIF/VIF information and field data values

```
classmethod unpack_short_telegram_data(data: bytes) → Tuple[int,...]
```

Short C1 telegrams only contain field data values, no information about DIF/VIF

IMPLEMENTATION OF GENERIC MEASUREMENTS

2.1 Generic class for measurements and measurement frames

```
platform Python 3.5.10 on Linux, OS X
synopsis This module implements classes for generic measurements taken from a meter.
authors Janus Bo Andersen, Jakob Aaboe Vestergaard
date 13 October 2020
```

2.2 The Measurement class

```
class OmniPower.OmniPower.Measurement (value: float, unit: str)
    Single physical measurement. A single measurement of a physical quantity pair, consisting of a value and a
    unit.
```

2.3 The MeterMeasurement class

```
class OmniPower.OmniPower.MeterMeasurement (meter_id: str, timestamp: datetime.datetime)

A single measurement collection based on one frame from the meter. Will contain multiple measurements of physical quantities taken at the same time.

add_measurement (name: str, measurement: OmniPower.MeterMeasurement.Measurement) →

None

Store a new measurement in the collection.

as_dict() → dict

Serializes and dumps the Measurement frame as a dict. Make an object similar to {

"Meter ID: ": "3232323", "Timestamp:": "2020-10-13T17:36:53", "Measurements": {

"A+": { "unit": "kWh", "value": 7
}, "A-": {

"unit": "kWh", "value": 8
}, "P+": {

"unit": "kW", "value": 9
}, "P-": {

"unit": "kW", "value": 10
```

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

Kamstrup OmniPower wm-bus metering, Release development								

PYTHON MODULE INDEX

0

OmniPower.MeterMeasurement,5 OmniPower.OmniPower,1

Kamstrup	OmniPower	wm-bus	metering.	Release	develo	pment

10 Python Module Index

INDEX

```
Α
                                                   OmniPower.OmniPower, 1
                                         (Om-
add_measurement()
                                               O
       niPower.OmniPower.MeterMeasurement
                                               OmniPower (class in OmniPower.OmniPower), 4
       method), 5
                                               OmniPower.MeterMeasurement
add_measurement_to_log()
                                         (Om-
                                                   module, 5
                                      method),
       niPower.OmniPower.OmniPower
                                               OmniPower.OmniPower
as_dict()(OmniPower.OmniPower.MeterMeasurement
                                                   module, 1
       method), 5
                                               Р
                                               process_telegram()
                                                                                         (Om-
                                                       niPower.OmniPower.OmniPower
                                                                                      method),
ClTelegram (class in OmniPower.OmniPower), 4
                                               U
                (OmniPower.OmniPower.OmniPower
decrypt()
                                               unpack_long_telegram_data()
                                                                                         (Om-
       method), 4
                                                       niPower.OmniPower.OmniPower
                                                                                         class
decrypt_using()
                                         (Om-
                                                       method), 4
       niPower.OmniPower.C1Telegram
                                      method),
                                                                                         (Om-
                                               unpack_short_telegram_data()
                                                       niPower.OmniPower.OmniPower
                                                                                         class
dump_log_to_json()
                                         (Om-
                                                       method), 4
       niPower.OmniPower.OmniPower
                                      method),
Ε
                                         (Om-
extract_measurement_frame()
       niPower.OmniPower.OmniPower
                                      method),
is_this_my() (OmniPower.OmniPower.OmniPower
       method), 4
J
json_dump() (OmniPower.OmniPower.MeterMeasurement
       method), 6
М
Measurement (class in OmniPower.OmniPower), 5
MeterMeasurement
                        (class
                                   in
                                          Om-
       niPower.OmniPower), 5
module
    OmniPower.MeterMeasurement, 5
```