

Art of Problem Solving

2006 USA Team Selection Test

USA Team Selection Test 2006

Day 1	
1	A communications network consisting of some terminals is called a [i]3-connector[/i] if among any three terminals, some two of them can directly communicate with each other. A communications network contains a $windmill$ with n blades if there exist n pairs of terminals $\{x_1, y_1\}, \{x_2, y_2\}, \ldots, \{x_n, y_n\}$ such that each x_i can directly communicate with the corresponding y_i and there is a hub terminal that can directly communicate with each of the $2n$ terminals $x_1, y_1, \ldots, x_n, y_n$. Determine the minimum value of $f(n)$, in terms of n , such that a 3 -connector with $f(n)$ terminals always contains a windmill with n blades.
2	In acute triangle ABC , segments $AD;BE$, and CF are its altitudes, and H is its orthocenter. Circle ω , centered at O , passes through A and H and intersects sides AB and AC again at Q and P (other than A), respectively.

Find the least real number k with the following property: if the real numbers x; y, and z are not all positive, then

The circumcircle of triangle OPQ is tangent to segment BC at R. Prove that

$$k(x^2 - x + 1)(y^2 - y + 1)(z^2 - z + 1) \ge (xyz)^2 - xyz + 1.$$

Day 2

5

3

Let n be a positive integer. Find, with proof, the least positive integer d_n which cannot be expressed in the form

$$\sum_{i=1}^{n} (-1)^{a_i} 2^{b_i},$$

where a_i and b_i are nonnegative integers for each i.

Let n be a given integer with n greater than 7, and let \mathcal{P} be a convex polygon with n sides. Any set of n-3 diagonals of \mathcal{P} that do not intersect in the interior of the polygon determine a triangulation of \mathcal{P} into n-2 triangles. A triangle in the triangulation of \mathcal{P} is an interior triangle if all of its sides are diagonals of

 $\frac{CR}{BR} = \frac{ED}{FD}$.

Contributors: N.T.TUAN, rrusczyk

Art of Problem Solving

2006 USA Team Selection Test

 \mathcal{P} . Express, in terms of n, the number of triangulations of \mathcal{P} with exactly two interior triangles, in closed form.

6

Let ABC be a triangle. Triangles PAB and QAC are constructed outside of triangle ABC such that AP = AB and AQ = AC and $\angle BAP = \angle CAQ$. Segments BQ and CP meet at R. Let O be the circumcenter of triangle BCR. Prove that $AO \perp PQ$.

These problems are copyright © Mathematical Association of America (http://maa.org).

www.artofproblemsolving.com/community/c4636

Contributors: N.T.TUAN, rrusczyk