CRC - Cyclic Redundancy Check

TÓPICOS

Introdução

CRC – Cyclic Redundancy Check

Conclusão

INTRODUÇÃO

História

- William Wesley Peterson e D. T. Brown;
- W. W. Peterson e D. T. Brown, "Cyclic Codes for Error Detection", Proceedings of the IRE, vol. 49, p. 228-235, Jan 1961;

Objetivo

 Identificar a ocorrência de erros ocasionados por ruídos durante o processo de transmissão (controle de erros);

Ruído

- Fenômeno aleatório capaz de perturbar a transmissão de dados;
- EletroMagnectic Interference (EMI);
- RadioFrequency Interference (RFI).

CRC – Cyclic Redundancy Check

- Produz um valor expresso em poucos bits que é anexado à mensagem original:
 - CRC-64 64 bits:
 - CRC-32 32 bits;
 - CRC-16 16 bits.

- Propriedades:
 - Todos os bits da mensagem são utilizados no cálculo do valor do CRC;
 - Mudança de um único bit é refletida no valor do CRC;
 - Probabilidade de valores uniforme.

CRC - Cyclic Redundancy Check

Cálculo do CRC:

- Resto da divisão polinomial (divisão módulo 2) entre os dados e o polinômio gerador. Exemplo.
 - Polinômio gerador de grau 16 ($x^{16} + x^{15} + + x^2 + x^1 + x^0$)
 - Resto de grau 15 (16 bits)

Divisão Módulo 2:

- Acrescentar, à direita da mensagem, uma quantidade de zeros equivalente ao grau do polinômio gerador;
- A partir do bit mais significativo da mensagem
 - Bit 1
 - Acrescentar o bit 1 ao quociente;
 - Aplicar um XOR entre o divisor e o polinômio gerador;
 - Bit 0
 - Acrescentar o bit 0 ao quociente;
 - Aplicar um XOR entre o divisor e zeros;
- Efetuar uma rotação à esquerda (excluir bit + a esquerda).

CRC – Cyclic Redundancy Check

CRC - Cyclic Redundancy Check

- Verificação de Erros:
 - Dividir a mensagem recebida pelo polinômio gerador e analisar o resto
 - Resto = 0 => mensagem correta;
 - Resto ≠ 0 => mensagem com erro.
 - Separar a mensagem recebida do CRC
 - Acrescentar N (grau do polinômio gerador) zeros à mensagem original;
 - Calcular o CRC da mensagem;
 - Comparar o CRC calculado com o CRC recebido.
 Se o valor for idêntico, a mensagem está correta.

CRC – Cyclic Redundancy Check

• CRCs Padronizados:

Aplicação	Polinômio
CRC-1 (Paridade)	x + 1
CRC-8-ATM	$x^8 + x^2 + x + 1$
CRC-16-CCITT	$x^{16} + x^{12} + x^5 + 1$
CRC-32-MPEG2 CRC-32-IEEE 802.3	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$
CRC-64-ISO	$x^{64} + x^4 + x^3 + x + 1$

Conclusão

- Excelente algoritmo para detecção de erros provocados por ruídos em canais de comunicação;
- Implementação simples e eficiente em hardware binário;
- Amplamente utilizado.

EXERCÍCIO

 Faça o estudo da transmissão e recepção para o caractere "a" em código ASCII numa rede local de computadores que utiliza o padrão ETHERNET.