Due: 03/02/24 at 11:59pm

This problem set covers material from Week 3, dates 2/27- 3/01. Unless otherwise noted, all problems are taken from the textbook. Problems can be found at the end of the corresponding subsection.

Instructions: Write or type complete solutions to the following problems and submit answers to the corresponding Canvas assignment. Your solutions should be neatly-written, show all work and computations, include figures or graphs where appropriate, and include some written explanation of your method or process (enough that I can understand your reasoning without having to guess or make assumptions). A general rubric for homework problems appears on the final page of this assignment.

Unless otherwise stated, you must confirm that your critical point is indeed a maximum for full credit!

Tuesday 2/27

- 1. 7.10: Problem 7(a).
- 2. Let $X_1, \ldots, X_n | \theta \stackrel{\text{iid}}{\sim} \text{Poisson}(\theta)$. In class, we showed $\hat{\theta}_{MLE} = \bar{X}$ given X_1, \ldots, X_n . Now define the following random variable:

$$Y_i = \begin{cases} 0 & \text{if } X_i = 0\\ 1 & \text{if } X_i > 0 \end{cases}$$

We seek to find am MLE for θ using the Y_1, \ldots, Y_n .

- (a) Find the PMF for Y_i and the likelihood function for θ given Y_1, Y_2, \ldots, Y_n . (*Hint*: it should have a similar structure to the Bernoulli likelihood function.)
- (b) Show that

$$\hat{\theta}_{MLE} = \log\left(\frac{n}{\sum (1 - y_i)}\right)$$

is the MLE estimate for θ given y_1, \ldots, y_n and provided that not all the y_i 's are equal to 1.

- (c) What does the likelihood function equal if $y_i = 1$ for i = 1, ..., n? Use the likelihood to explain why the MLE for θ does not exist if all of the y_i 's are equal to 1.
- (d) For fixed n, what the probability that all of the y_i 's are equal to 1? What happens to that probability as $\theta \to \infty$? What does that say about the probability that MLE does not exist?
- (e) For a fixed θ , what happens to the probability that the MLE does not exist as $n \to \infty$?
- 3. 7.5: Problem 12 Note: the implied statistical model is a Multinomial. The sum-to-one constraint on the proportions is important! Dig deep into your Calculus classes and try

Due: 03/02/24 at 11:59pm

to re-learn the method of LaGrange Multipliers. Also, you do not need to verify that the critical point is indeed a maximum; believe me that it is!

Due: 03/02/24 at 11:59pm

General rubric

Points	Criteria
5	The solution is correct and well-written. The author leaves no
	doubt as to why the solution is valid.
4.5	The solution is well-written, and is correct except for some minor
	arithmetic or calculation mistake.
4	The solution is technically correct, but author has omitted some key
	justification for why the solution is valid. Alternatively, the solution
	is well-written, but is missing a small, but essential component.
3	The solution is well-written, but either overlooks a significant com-
	ponent of the problem or makes a significant mistake. Alternatively,
	in a multi-part problem, a majority of the solutions are correct and
	well-written, but one part is missing or is significantly incorrect.
2	The solution is either correct but not adequately written, or it is
	adequately written but overlooks a significant component of the
	problem or makes a significant mistake.
1	The solution is rudimentary, but contains some relevant ideas. Al-
	ternatively, the solution briefly indicates the correct answer, but
	provides no further justification.
0	Either the solution is missing entirely, or the author makes no non-
	trivial progress toward a solution (i.e. just writes the statement of
	the problem and/or restates given information).
Notes:	For problems with multiple parts, the score represents a holistic
	review of the entire problem. Additionally, half-points may be used
	if the solution falls between two point values above.
Notes:	For problems with code, well-written means only having lines of
	code that are necessary to solving the problem, as well as presenting
	the solution for the reader to easily see. It might also be worth
	adding comments to your code.