IDENTIFICATION OF MUSICAL INSTRUMENTS FROM AUDIO SAMPLE USING MACHINE LEARNING ALGORITHMS

Lyric Khare (20D170022)
Pranav Limaye (20D170028)
Shivam Ambokar (200100145)
Sneha Kulkarni (200100090)

GitHub Repository: https://github.com/lyrickhare/CS419 I ns cla.git

Objectives

- 1. To identify the type of instrument playing in a 4 sec .wav file using various ML and DL algorithms.
- 2. Using Mel-frequency cepstral coefficients as the parameter to identify the type of instrument.
- 3. To compare the accuracy of various algorithms for this task.

Data-set (Google-NSynth)

- 1. Large dataset having 305,979 wav files.
- 2. Each file contains sound of an instrument for 4 sec duration
- Each instrument file is with a unique pitch, timbre, and envelope
- 4. All the labels are in a .json file format.

Data-set (Google-NSynth)

Imbalanced Dataset

Balanced Dataset

Python Libraries used

- IPython, os, and librosa (for file handling, and feature extraction)
- numpy, pandas, scipy (for data handling)
- matplotlib (for data visualisation)
- sklearn, tensorflow (for employing machine learning algorithms)

Results, ranked by accuracy

#	Algorithm Used	Accuracy (training)	Accuracy (validation)
1.	Random Forest Classifier	1.0	0.72
2.	Decision Tree Classifier	1.00	0.56
3.	KNeighbors Classifier (KNN)	0.68	0.52
4.	Neural Network	0.44	0.47
5.	Linear Discriminant Analysis	0.38	0.37
6.	Logistic Regression	0.39	0.38

Algorithms employed

1.	Artificial Neural Networks	(ANN)	<tensorflow.keras></tensorflow.keras>
2.	Logistic Regression Classification	on	<sklearn></sklearn>
3.	Linear Discriminant Analysis	(LDA)	<sklearn></sklearn>
4.	Decision Tree Classification		<sklearn></sklearn>
5.	Random Forests Classifier		<sklearn></sklearn>

Contribution of Team Members

Lyric Khare	Data Pre-processing, Logistic Regression, Compiling the work
Pranav Limaye	Exploratory Data Analysis, Feature Extraction, Linear Discriminant Analysis
Shivam Ambokar	Feature Extraction and Processing, Random Forest Classifier, K-Nearest Neighbours
Sneha Kulkarni	Data Preprocessing, Decision Tree Classifier, Neural Network

Sources of Code used

- 1. https://github.com/krishnaik06/Audio-Classification Reference used for feature extraction
- 2. https://machinelearningmastery.com/display-deep-learning-model-training-history-in-k eras/ Displaying the training and validation accuracy for neural networks
- 3. https://towardsdatascience.com/solving-a-simple-classification-problem-with-python-fr uits-lovers-edition-d20ab6b071d2 Employing various machine learning algorithms

THANK YOU

Roll Numbers:

Lyric (20D170022)

Pranav (20D170028)

Shivam (200100145)

Sneha (200100090)