LEPTONS

e

$$J=\frac{1}{2}$$

Mass $m=(548.579909070\pm0.000000016)\times10^{-6}$ u Mass $m=0.5109989461\pm0.0000000031$ MeV $\begin{aligned} |m_{e^+}-m_{e^-}|/m<8\times10^{-9}, \ \mathrm{CL}=90\%\\ |q_{e^+}+q_{e^-}|/e<4\times10^{-8} \end{aligned}$ Magnetic moment anomaly $(g-2)/2=(1159.65218091\pm0.00000026)\times10^{-6}$ ($g_{e^+}-g_{e^-}$) / $g_{\mathrm{average}}=(-0.5\pm2.1)\times10^{-12}$ Electric dipole moment $d<0.11\times10^{-28}$ ecm, $\mathrm{CL}=90\%$ Mean life $\tau>6.6\times10^{28}$ yr, $\mathrm{CL}=90\%$ [a]

 μ

$$J=\frac{1}{2}$$

Mass $m=0.1134289257\pm0.0000000025$ u Mass $m=105.6583745\pm0.0000024$ MeV Mean life $\tau=(2.1969811\pm0.0000022)\times10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-}=1.00002\pm0.00008$ $c\tau=658.6384$ m Magnetic moment anomaly $(g-2)/2=(11659209\pm6)\times10^{-10}$ ($g_{\mu^+}-g_{\mu^-}$) / $g_{\rm average}=(-0.11\pm0.12)\times10^{-8}$ Electric dipole moment $d=(-0.1\pm0.9)\times10^{-19}$ e cm

Decay parameters [b]

$$\begin{split} \rho &= 0.74979 \pm 0.00026 \\ \eta &= 0.057 \pm 0.034 \\ \delta &= 0.75047 \pm 0.00034 \\ \xi P_{\mu} &= 1.0009^{+0.0016}_{-0.0007} \ [c] \\ \xi P_{\mu} \delta/\rho &= 1.0018^{+0.0016}_{-0.0007} \ [c] \\ \xi' &= 1.00 \pm 0.04 \\ \xi'' &= 0.98 \pm 0.04 \\ \alpha/A &= (0 \pm 4) \times 10^{-3} \\ \alpha'/A &= (-10 \pm 20) \times 10^{-3} \\ \beta/A &= (4 \pm 6) \times 10^{-3} \\ \beta'/A &= (2 \pm 7) \times 10^{-3} \\ \overline{\eta} &= 0.02 \pm 0.08 \end{split}$$

 μ^+ modes are charge conjugates of the modes below.

μ^- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$e^-\overline{ u}_e u_\mu$	pprox 100%		53
$e^-\overline{ u}_e u_\mu\gamma$	[d] $(6.0\pm0.5)\times10^{-3}$	-8	53
$e^-\overline{ u}_e u_\mu\dot{e}^+e^-$	[e] $(3.4\pm0.4)\times10^{-1}$	-5	53
Lepton Family no	umber (LF) violating	g modes	
$e^- u_e\overline{ u}_\mu$ LF	[f] < 1.2 %	90%	53
$e^-\gamma$ LF	< 4.2 × 10	-13 90%	53
$e^-e^+e^-$ LF	$< 1.0 \times 10^{-1}$	-12 90%	53
$e^-2\gamma$ LF	< 7.2 × 10	-11 90%	53

au

$$J=\frac{1}{2}$$

Mass
$$m=1776.86\pm0.12~{\rm MeV}$$
 $(m_{\tau^+}-m_{\tau^-})/m_{\rm average}<2.8\times10^{-4},~{\rm CL}=90\%$ Mean life $\tau=(290.3\pm0.5)\times10^{-15}~{\rm s}$ $c\tau=87.03~\mu{\rm m}$ Magnetic moment anomaly >-0.052 and $<0.013,~{\rm CL}=95\%$ ${\rm Re}(d_{\tau})=-0.220~{\rm to}~0.45\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$ ${\rm Im}(d_{\tau})=-0.250~{\rm to}~0.0080\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$

Weak dipole moment

$${\rm Re}(d_{_T}^w) <~0.50 \times 10^{-17}~e\,{\rm cm},~{\rm CL} = 95\% \\ {\rm Im}(d_{_T}^w) <~1.1 \times 10^{-17}~e\,{\rm cm},~{\rm CL} = 95\% \\$$

Weak anomalous magnetic dipole moment

$$\begin{array}{l} {\rm Re}(\alpha_{\tau}^{\it w}) < \ 1.1 \times 10^{-3}, \ {\rm CL} = 95\% \\ {\rm Im}(\alpha_{\tau}^{\it w}) < \ 2.7 \times 10^{-3}, \ {\rm CL} = 95\% \\ \tau^{\pm} \rightarrow \ \pi^{\pm} \, {\it K}_{\it S}^{\it 0} \, \nu_{\tau} \ ({\rm RATE \ DIFFERENCE}) \ / \ ({\rm RATE \ SUM}) = \\ (-0.36 \pm 0.25)\% \end{array}$$

Decay parameters

See the τ Particle Listings for a note concerning τ -decay parameters.

$$ho(e ext{ or } \mu) = 0.745 \pm 0.008$$
 $ho(e) = 0.747 \pm 0.010$
 $ho(\mu) = 0.763 \pm 0.020$
 $ho(\mu) = 0.985 \pm 0.030$
 $ho(e) = 0.994 \pm 0.040$
 $ho(\mu) = 1.030 \pm 0.059$
 $ho(e ext{ or } \mu) = 0.013 \pm 0.020$
 $ho(\mu) = 0.094 \pm 0.073$

$$(\delta \xi)(e \text{ or } \mu) = 0.746 \pm 0.021$$

 $(\delta \xi)(e) = 0.734 \pm 0.028$
 $(\delta \xi)(\mu) = 0.778 \pm 0.037$
 $\xi(\pi) = 0.993 \pm 0.022$
 $\xi(\rho) = 0.994 \pm 0.008$
 $\xi(a_1) = 1.001 \pm 0.027$
 $\xi(\text{all hadronic modes}) = 0.995 \pm 0.007$
 $\overline{\eta}(\mu) \text{ PARAMETER} = -1.3 \pm 1.7$
 $\xi_{\kappa}(e) \text{ PARAMETER} = -0.4 \pm 1.2$
 $\xi_{\kappa}(\mu) \text{ PARAMETER} = 0.8 \pm 0.6$

 au^+ modes are charge conjugates of the modes below. " h^\pm " stands for π^\pm or K^\pm . " ℓ " stands for e or μ . "Neutrals" stands for γ 's and/or π^0 's.

 au^- DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 7/16/2019 16:15

Modes with one charged particle

IVIOUCS WILL		c chargea particle	
particle ⁻ ≥ 0 neutrals $\geq 0K^0\nu_{\tau}$		$(85.24 \pm 0.06)\%$	_
("1-prong")			
particle ⁻ \geq 0 neutrals \geq 0 $K_L^0 \nu_{\tau}$		$(84.58 \pm 0.06)\%$	_
$\mu^-\overline{ u}_\mu u_ au$	[g]	$(17.39 \pm 0.04)\%$	885
$\mu^{\dot{-}} \overline{ u}_{\mu} u_{ au} \gamma$	[e]	$(3.67 \pm 0.08) \times 10^{-3}$	885
$e^-\overline{ u}_e \stackrel{\cdot}{ u}_ au$	[g]	$(17.82 \pm 0.04)\%$	888
$\mathrm{e}^-\overline{ u}_\mathrm{e} u_ au\gamma$	[e]	(1.83 ± 0.05) %	888
$h^- \geq 0 K_L^0 \ u_ au$		(12.03 \pm 0.05) %	883
$h^- u_ au$		(11.51 \pm 0.05) %	883
$\pi^- u_ au$	[g]	(10.82 \pm 0.05) %	883
$K^- u_ au$	[g]	$(6.96 \pm 0.10) \times 10^{-3}$	820
$h^- \geq 1$ neutrals $ u_ au$		$(37.01 \pm 0.09)\%$	_
$h^- \geq 1 \pi^0 u_ au(extsf{ex}. extsf{K}^0)$		$(36.51 \pm 0.09)\%$	_
$\mathit{h}^-\pi^0 u_{ au}$		$(25.93 \pm 0.09)\%$	878
$\pi^-\pi^{\dot{0}} u_{_{\mathcal{T}}}$	[g]	$(25.49 \pm 0.09)\%$	878
$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$		$(3.0 \pm 3.2) \times 10^{-3}$	878
$\mathcal{K}^-\pi^0 u_ au$	[g]	$(4.33 \pm 0.15) \times 10^{-3}$	814
$h^- \geq 2\pi^0 u_ au$		(10.81 \pm 0.09) %	_
$h^-2\pi^0 u_ au$		(9.48 ± 0.10) %	862
$h^{-}2\pi^{0} u_{ au}({ m ex.}{\cal K}^{0})$		($9.32~\pm~0.10$) %	862
$\pi^{-}2\pi^{0}\nu_{ au}({\rm ex}.K^{0})$	[g]	(9.26 ± 0.10) %	862
$\pi^- 2\pi^0 u_ au$ (ex. K^0),		$< 9 \times 10^{-3} \text{CL} = 95\%$	862
π^- scalar $\pi^ 2\pi^0 u_ au$ (ex. K^0),		10-361 050/	0.60
		$< 7 \times 10^{-3} \text{CL} = 95\%$	862
Vector $K^-2\pi^0 u_ au$ (ex. K^0)	[g]	$(6.5 \pm 2.2) \times 10^{-4}$	796

$h^- \geq 3\pi^0 u_ au$		(1.34 ± 0.07) %	_
$h^- \geq 3\pi^0 u_ au (ext{ex. } K^0)$		($1.25~\pm~0.07$) %	_
h^- 3 $\pi^0 u_ au$		($1.18~\pm~0.07$) %	836
π^- 3 $\pi^0 u_ au$ (ex. K^0)	[g]	(1.04 ± 0.07) %	836
$K^-3\pi^0 u_ au$ (ex. K^0 ,	[g]	$(4.8 \pm 2.1) \times 10^{-4}$	765
$\eta)$			
$h^{-}4\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$		$(1.6 \pm 0.4) \times 10^{-3}$	800
h^- 4 $\pi^0 u_ au$ (ex. K^0 , η)	[g]	$(1.1 \pm 0.4) \times 10^{-3}$	800
$a_1(1260)\nu_ au ightarrow \pi^- \gamma u_ au$		$(3.8 \pm 1.5) \times 10^{-4}$	_
$K^- \geq 0\pi^0 \geq 0K^0 \geq 0\gamma \ u_ au$		$(~1.552\pm~0.029)~\%$	820
${\cal K}^- \geq 1 \; (\pi^0 \; { m or} \; {\cal K}^0 \; { m or} \; \gamma) \; u_ au$		$(8.59 \pm 0.28) \times 10^{-3}$	_
Mo	dec	with K^0 's	
K_S^0 (particles) $^ u_ au$	ucs	$(9.43 \pm 0.28) \times 10^{-3}$	_
$h^{-}\overline{K}^{0}\nu_{\tau}$		$(9.87 \pm 0.14) \times 10^{-3}$	812
$\pi^{-} \frac{\nu_{\tau}}{K^{0}} \nu_{\tau}$	[~]	$(8.38 \pm 0.14) \times 10^{-3}$	812
$\pi - \frac{\kappa}{K^0}$	[8]	$(5.36 \pm 0.14) \times 10$ $(5.4 \pm 2.1) \times 10^{-4}$	812
$(non\text{-}K^*(892)^-) u_{ au}$		(3.4 ± 2.1) × 10	012
$K^-K^0 u_{ au}$	[4]	$(1.486\pm\ 0.034)\times10^{-3}$	737
$K^-K^0 \geq 0\pi^0 u_{ au}$	[6]	$(2.99 \pm 0.07) \times 10^{-3}$	737
$h^{-} \frac{K^{0}}{K^{0}} \frac{1}{\pi^{0}} \nu_{-}$		$(5.32 \pm 0.13) \times 10^{-3}$	794
$h^- \overline{K}{}^0 \pi^0 u_{ au} onumber o$	[]	$(3.82 \pm 0.13) \times 10^{-3}$	794
$\frac{\kappa}{K^0} \frac{\kappa}{\rho^-} \frac{\nu_\tau}{\nu_\tau}$	[8]	$(2.2 \pm 0.5) \times 10^{-3}$	612
$\kappa^-\kappa^0\pi^0 u_ au$	[\sigma]	$(1.50 \pm 0.07) \times 10^{-3}$	685
$\pi^{-}\overline{K}^{0} \geq 1\pi^{0}\nu_{ au}$	[9]	$(4.08 \pm 0.25) \times 10^{-3}$	_
$\pi^-\overline{K}{}^0\pi^{\overline{0}}\pi^0\nu_{\tau}$ (ex. K^0)	[g]	$(2.6 \pm 2.3) \times 10^{-4}$	763
$\kappa^- \kappa^0 \pi^0 \pi^0 \nu_{\tau}$		$< 1.6 \times 10^{-4} \text{CL} = 95\%$	619
$\pi^- K^0 \overline{K}{}^0 u_ au$		$(1.55 \pm 0.24) \times 10^{-3}$	682
$\pi^ K^0_S$ K^0_S $ u_ au$	[g]	$(2.35 \pm 0.06) \times 10^{-4}$	682
$\pi^{-} K_{5}^{0} K_{1}^{0} \nu_{\tau}$	[g]	3	682
$\pi^- K_L^0 K_L^0 u_ au$	[0]	$(2.35 \pm 0.06) \times 10^{-4}$	682
$\pi^- \mathcal{K}^0 \overline{\mathcal{K}}^0 \pi^0 \overline{\nu}_{ au}$		$(3.6 \pm 1.2) \times 10^{-4}$	614
$\pi^{-}K_{0}^{0}K_{0}^{0}\pi^{0}\nu_{-}$	[\sigma]	$(1.82 \pm 0.21) \times 10^{-5}$	614
$\pi^- K^0_S K^0_S \pi^0 u_ au$ $K^{*-} K^0 \pi^0 u_ au o$	[8]	$(1.08 \pm 0.21) \times 10^{-5}$	_
$\pi^- K_S^0 K_S^0 \pi^0 \nu_{\tau}$		(1.00 ± 0.21) × 10	
$f_1(1285)\pi^-\nu_{ au} ightarrow$		$(6.8 \pm 1.5) \times 10^{-6}$	_
$\pi^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{\tau}$		(0.0 ± 1.3) × 10	
$f_1(1420)\pi^-\nu_{ au} ightarrow$		$(2.4 \pm 0.8) \times 10^{-6}$	_
$\eta_1(1420) \stackrel{\wedge}{\wedge} \stackrel{\nu_{\tau}}{\sim} \rightarrow 0 \stackrel{\wedge}{\kappa} \stackrel{0}{\sim} 0 \stackrel{\wedge}{\kappa} \stackrel{0}{\sim} 0 \stackrel{\vee}{\sim} 0 \stackrel{\vee}$		(2.4 ± 0.8) × 10	
π^{-} κ^{0} κ^{0} π^{0} .	[_1	(22 + 12) \(10-4	611
$\pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0} \nu_{\tau}$ $\pi^{-} K_{S}^{0} K_{L}^{0} \pi^{0} \nu_{\tau}$ $\pi^{-} K_{L}^{0} K_{L}^{0} \pi^{0} \nu_{\tau}$	[g]	$(3.2 \pm 1.2) \times 10^{-4}$	614
$\pi $ $\kappa_L \kappa_L \pi^* \nu_{\tau}$		$(1.82 \pm 0.21) \times 10^{-5}$	614
$\mathcal{K}^-\mathcal{K}^0_\mathcal{S}\mathcal{K}^0_\mathcal{S} u_ au$		$< 6.3 \times 10^{-7} \text{CL} = 90\%$	466

$$K^- K_0^S K_0^S \pi^0 \nu_\tau \\ K^0 h^+ h^- h^- \ge 0 \text{ neutrals } \nu_\tau \\ K^0 h^+ h^- h^- \ge 0 \text{ neutrals } \nu_\tau \\ K^0 h^+ h^- h^- \nu_\tau \\ [g] (2.5 \pm 2.0) \times 10^{-4} \\ [g] (2.7 \pm 0.05) \times 10^{-4} \\ [g] (2.7 \pm$$

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update
$$K^-\pi^+\pi^-\nu_\tau(\text{ex.}K^0,\omega) \quad [g] \quad (2.93 \pm 0.07) \times 10^{-3} \qquad 794 \\ K^-\rho^0\nu_\tau \to \qquad \qquad (1.4 \pm 0.5) \times 10^{-3} \qquad - \\ K^-\pi^+\pi^-\nu_\tau \\ K^-\pi^+\pi^-\nu_\tau \\ K^-\pi^+\pi^-\pi^0\nu_\tau \qquad (1.31 \pm 0.12) \times 10^{-3} \qquad 763 \\ K^-\pi^+\pi^-\pi^0\nu_\tau(\text{ex.}K^0) \qquad (7.9 \pm 1.2) \times 10^{-4} \qquad 763 \\ K^-\pi^+\pi^-\pi^0\nu_\tau(\text{ex.}K^0,\omega) \qquad (3.7 \pm 0.9) \times 10^{-4} \qquad 763 \\ K^-\pi^+\pi^-\pi^0\nu_\tau(\text{ex.}K^0,\omega,\eta)[g] \qquad (3.9 \pm 1.4) \times 10^{-4} \qquad 763 \\ K^-\pi^+\pi^-\pi^0\nu_\tau(\text{ex.}K^0,\omega,\eta)[g] \qquad (3.9 \pm 1.4) \times 10^{-4} \qquad 763 \\ K^-\pi^+K^- \ge 0 \text{ neut.} \quad \nu_\tau \qquad (1.496 \pm 0.033) \times 10^{-3} \qquad 685 \\ K^-K^+\pi^-\nu_\tau \qquad [g] \qquad (1.435 \pm 0.027) \times 10^{-3} \qquad 685 \\ K^-K^+\pi^-\nu_\tau \qquad [g] \qquad (6.1 \pm 1.8) \times 10^{-5} \qquad 618 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+K^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.2 \pm 0.8) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\kappa^-\nu_\tau \qquad (2.8 \pm 1.5) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\nu_\tau \qquad (2.8 \pm 1.5) \times 10^{-5} \qquad 5=5.4 \qquad 472 \\ K^-K^+\nu_$$

$$3h^{-}2h^{+}\nu_{\tau}(\text{ex}.K^{0})$$
 (8.29 ± 0.31)×10⁻⁴ 794
 $3\pi^{-}2\pi^{+}\nu_{\tau}(\text{ex}.K^{0}, \omega)$ (8.27 ± 0.31)×10⁻⁴ 794
 $3\pi^{-}2\pi^{+}\nu_{\tau}(\text{ex}.K^{0}, \omega)$ [g] (7.75 ± 0.30)×10⁻⁴ – $f_{1}(1285)$)

$$K^{-}2\pi^{-}2\pi^{+}\nu_{\tau}(\text{ex}.K^{0})$$
 [g] (6 ±12)×10⁻⁷ 716
 $K^{+}3\pi^{-}\pi^{+}\nu_{\tau}$ < 5.0 ×10⁻⁶CL=90% 716

$$K^{+}K^{-}2\pi^{-}\pi^{+}\nu_{\tau}$$
 < 4.5 $\times 10^{-7}$ CL=90% 528 $3h^{-}2h^{+}\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$ (1.65 \pm 0.11) $\times 10^{-4}$ 746

$$3h^{-}2h^{+}\pi^{0}\nu_{\tau}(\text{ex}.K^{0}) \qquad (1.65 \pm 0.11) \times 10^{-4} \qquad 746$$
$$3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}(\text{ex}.K^{0}) \qquad (1.63 \pm 0.11) \times 10^{-4} \qquad 746$$

$$3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$$
 (1.63 ± 0.11) × 10 - 4 - 46 $3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}(\text{ex.}K^{0}, \eta)$ (1.11 ± 0.10) × 10⁻⁴

$$f_1(1285)$$
) $3\pi^- 2\pi^+ \pi^0 \nu_{\tau} (\text{ex.} K^0, \eta, [g] (3.8 \pm 0.9) \times 10^{-5}$ $\omega, f_1(1285)$)

$$K^{-}2\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$$
 [g] (1.1 ± 0.6)×10⁻⁶

$$K^{+}3\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}$$
 < 8 $\times 10^{-7}$ CL=90% 657 $3h^{-}2h^{+}2\pi^{0}\nu_{\tau}$ < 3.4 $\times 10^{-6}$ CL=90% 687

Miscellaneous other allowed modes

HTTP://PDG.LBL.GOV Page 6 Created: 7/16/2019 16:15

$4h^{-}3h^{+}\pi^{0}\nu_{\tau}$			2.5			,	< 10 ⁻⁷ C	I —Q0%	612
$X^{-}(S=-1)\nu_{\tau}$					0.04			.L—9070	012
$K^*(892)^- \geq 0$ neutrals \geq							6	S—1 4	665
$0K_0^0 \nu_{\tau}$		(1.72	_	0.10	, ,	0	5—1.4	003
$K^*(892)^- \nu_{\tau}$		(1 20	+	0.07) 0	/2	S=1.8	665
$K^*(892)^- \nu_{\tau} \rightarrow \pi^- \overline{K}{}^0 \nu_{\tau}$							< 10 ⁻³	5-1.0	-
$K^*(892)^0 K^- \ge 0$ neutrals ν_{τ}							< 10 ⁻³		542
$K^*(892)^0 K^- \nu_{\tau}$							< 10 ⁻³		542
$\overline{K}^*(892)^0\pi^- \geq 0$ neutrals ν_{τ}							< 10 ^{−3}		655
$\frac{1}{K}$ *(892) ⁰ $\pi^{-}\nu_{\tau}$							< 10 ^{−3}		655
$(\overline{K}^*(892)\pi)^-\nu_{\tau} \rightarrow$							< 10 ⁻³		_
$\hat{\pi}$ π $\hat{\kappa}$ $\hat{\kappa}$ $\hat{\kappa}$ $\hat{\kappa}$		`				,			
$K_1(1270)^- \nu_{\tau}$		(4.7	\pm	1.1) >	< 10 ⁻³		433
$K_1(1400)^- u_ au$		(1.7	\pm	2.6) >	< 10 ⁻³	S=1.7	335
$K^*(1410)^- u_ au$							× 10 ⁻³		326
$K_0^*(1430)^- \nu_{ au}$		<	5			>	< 10 ⁻⁴ C	L=95%	317
$K_2^0(1430)^- \nu_{\tau}$		<	3			>	< 10 ⁻³ C	L=95%	317
$\eta \pi^- \nu_{ au}$		<	9.9				< 10 ⁻⁵ C		797
$\eta \pi^- \pi^0 \nu_{\tau}$	[g]						< 10 ⁻³		778
$\eta\pi^-\pi^0\pi^0 u_ au$							< 10 ⁻⁴		746
$\eta K^- u_{ au}$	[g]						< 10 ⁻⁴		719
$\eta K^*(892)^- \nu_{\tau}$							< 10 ⁻⁴		511
$\eta K^- \pi^0 u_ au$	[g]						< 10 ⁻⁵		665
$\eta K^-\pi^0$ (non- K^* (892)) $ u_ au$		<	3.5			>	$< 10^{-5}$ C	L=90%	_
$\eta \overline{K}^0 \pi^- \nu_{\tau}$	[g]	(9.4	\pm	1.5) >	< 10 ⁻⁵		661
$\eta \overline{K}{}^0 \pi^- \pi^0 \nu_{\tau}$		<	5.0				$< 10^{-5} $ C		590
$\eta K^- K^0 \nu_{ au}$		<	9.0				< 10 ⁻⁶ C		430
$\eta \pi^+ \pi^- \pi^- \geq 0$ neutrals $\nu_{ au}$							< 10 ⁻³ C	L=90%	744
$\eta \pi^- \pi^+ \pi^- \nu_{\tau} (\text{ex.} K^0)$							< 10 ⁻⁴		744
$\eta \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0, f_1(1285))$	5))			\pm	1.6		< 10 ⁻⁵		_
$\eta a_1(1260)^- \nu_\tau \to \eta \pi^- \rho^0 \nu_\tau$			3.9				< 10 ⁻⁴ C		_
$\eta \eta \pi^- \nu_{\tau}$			7.4				< 10 ⁻⁶ C		637
$\eta\eta\pi^-\pi^0\nu_{\tau}$			2.0				< 10 ⁻⁴ C		559
$\eta \eta K^- \nu_{\tau}$			3.0				< 10 ⁻⁶ C		382
$\eta'(958)\pi^-\nu_{\tau}$			4.0				< 10 ^{—6} C < 10 ^{—5} C		620
$\eta'(958)\pi^-\pi^0\nu_{\tau}$			1.2				< 10 °C		591
$\eta'(958) K^- \nu_{\tau}$			2.4		0.6			.L=90%	495
$\phi \pi^- \nu_{\tau}$	ſ1						< 10 ⁻⁵		585
$\phi K^- \nu_{\tau}$ $f_1(1285)\pi^- \nu_{\tau}$	[g]	•				,	< 10 ³ < 10 ⁻⁴	S_1 0	445 408
$f_1(1285)\pi^-\nu_{\tau}$ $f_1(1285)\pi^-\nu_{\tau} \rightarrow$,				,	< 10 · · · · · · · · · · · · · · · · · ·		408
$\eta \pi^- \pi^+ \pi^- \nu_{\tau}$		(1.10	Ξ	0.07	<i>)</i> >	(10 ·	3=1.3	_
$\eta \wedge \wedge \wedge \nu \tau$									

Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes

L means lepton number violation (e.g. $\tau^- \to e^+ \pi^- \pi^-$). Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^- \pi^+ \pi^-$). B means baryon number violation.

$e^-\gamma$	LF	< 3.3	$\times 10^{-8}$ CL=90%	888
$\mu^-\gamma$	LF	< 4.4	$\times 10^{-8}$ CL=90%	885
$e^-\pi^0$	LF	< 8.0	$\times 10^{-8}$ CL=90%	883
$\mu^-\pi^0$	LF	< 1.1	$\times 10^{-7}$ CL=90%	880
$e^{-}K_{S}^{0}$	LF	< 2.6	$\times 10^{-8}$ CL=90%	819
$\mu^- K_S^0$	LF	< 2.3	\times 10 ⁻⁸ CL=90%	815
$e^-\eta$	LF	< 9.2	$\times 10^{-8}$ CL=90%	804
$\mu^- \eta$	LF	< 6.5	$\times 10^{-8}$ CL=90%	800
$e^- ho^0$	LF	< 1.8	$\times 10^{-8}$ CL=90%	719
$\mu^- ho^0$	LF	< 1.2	$\times 10^{-8}$ CL=90%	715
$e^-\omega$	LF	< 4.8	$\times 10^{-8}$ CL=90%	716
$\mu^-\omega$	LF	< 4.7	$\times 10^{-8}$ CL=90%	711
$e^{-}K^{*}(892)^{0}$	LF	< 3.2	$\times 10^{-8}$ CL=90%	665
$\mu^- K^* (892)^0$	LF	< 5.9	$\times 10^{-8}$ CL=90%	659
$e^{-}\overline{K}^{*}(892)^{0}$	LF	< 3.4	$\times 10^{-8}$ CL=90%	665
$\mu^{-}\overline{K}^{*}(892)^{0}$	LF	< 7.0	$\times 10^{-8}$ CL=90%	659
$e^- \eta'(958)$	LF	< 1.6	$\times 10^{-7}$ CL=90%	630
$\mu^- \eta'(958)$	LF	< 1.3	$\times 10^{-7}$ CL=90%	625
$e^- f_0(980) \rightarrow e^- \pi^+ \pi^-$	LF	< 3.2	$\times 10^{-8}$ CL=90%	_
$\mu^- f_0(980) \rightarrow \mu^- \pi^+ \pi^-$	LF	< 3.4	$\times 10^{-8}$ CL=90%	_
$e^-\phi$	LF	< 3.1	$\times 10^{-8}$ CL=90%	596

- 1				10-851 000/	
$\mu^{-} \phi$	LF		8.4	$\times 10^{-8}$ CL=90%	590
e ⁻ e ⁺ e ⁻	LF	<		$\times 10^{-8}$ CL=90%	888
$e^{-}\mu^{+}\mu^{-}$	LF	<		$\times 10^{-8}$ CL=90%	882
$e^{+}\mu^{-}\mu^{-}$	LF	<	1.7	$\times 10^{-8}$ CL=90%	882
$\mu^{-}e^{+}e^{-}$	LF	<		$\times 10^{-8}$ CL=90%	885
$\mu^{+} e^{-} e^{-}$	LF	<		$\times 10^{-8}$ CL=90%	885
$\mu^{-}\mu^{+}\mu^{-}$	LF	<	2.1	$\times 10^{-8}$ CL=90%	873
$e^{-}\pi^{+}\pi^{-}$	LF	<	2.3	$\times 10^{-8}$ CL=90%	877
$e^{+}\pi^{-}\pi^{-}$	L	<	2.0	$\times 10^{-8}$ CL=90%	877
$\mu^{-}\pi^{+}\pi^{-}$	LF	<	2.1	$\times 10^{-8}$ CL=90%	866
$\mu^{+}\pi^{-}\pi^{-}$	L	<	3.9	$\times 10^{-8}$ CL=90%	866
$e^-\pi^+K^-$	LF	<	3.7	$\times 10^{-8}$ CL=90%	813
$e^-\pi^-K^+$	LF	<	3.1	$\times 10^{-8}$ CL=90%	813
$e^+\pi^-K^-$	L	<	3.2	$\times 10^{-8}$ CL=90%	813
$e^{-}K_{S}^{0}K_{S}^{0}$	LF	<	7.1	$\times 10^{-8}$ CL=90%	736
$e^{-}K^{+}K^{-}$	LF	<	3.4	$\times 10^{-8}$ CL=90%	738
$e^+ K^- K^-$	L	<	3.3	$\times 10^{-8}$ CL=90%	738
$\mu^-\pi^+$ K $^-$	LF	<		$\times 10^{-8}$ CL=90%	800
$\mu^{-}\pi^{-}K^{+}$	LF	<		$\times 10^{-8}$ CL=90%	800
$\mu^+\pi^-K^-$	L	<		$\times 10^{-8} CL = 90\%$	800
$\mu^- K_S^0 K_S^0$	LF	<		$\times 10^{-8}$ CL=90%	696
$\mu^{-}K^{+}K^{-}$	LF	<	4.4	$\times 10^{-8}$ CL=90%	699
$\mu^{+} K^{-} K^{-}$	L	<	4.7	$\times 10^{-8}$ CL=90%	699
$e^{-}\pi^{0}\pi^{0}$	LF	<	6.5	$\times 10^{-6}$ CL=90%	878
$\mu^-\pi^0\pi^0$	LF	<		$\times 10^{-5}$ CL=90%	867
$e^-\eta\eta$	LF	<		$\times 10^{-5}$ CL=90%	699
$\mu^-\eta\eta$	LF	<		$\times 10^{-5}$ CL=90%	653
$e^{-\pi^0\eta}$	LF	<		$\times 10^{-5}$ CL=90%	798
$\mu^-\pi^0\eta$	LF	<		$\times 10^{-5}$ CL=90%	784
$p\mu^-\mu^-$	L,B	<		$\times 10^{-7} \text{CL} = 90\%$	618
$\frac{\overline{p}}{\overline{p}}\mu^{+}\mu^{-}$	_,_ L,B		3.3	$\times 10^{-7} \text{CL} = 90\%$	618
$\frac{\overline{p}}{\overline{p}}\gamma$	L,B		3.5	$\times 10^{-6}$ CL=90%	641
$\frac{p}{p}\pi^0$	L,B	<		$\times 10^{-5}$ CL=90%	632
$\frac{p}{p}2\pi^0$	L,B L,B	<		$\times 10^{-5}$ CL=90%	604
$\overline{p}\eta$	L,B L,B	<		$\times 10^{-6}$ CL=90% $\times 10^{-6}$ CL=90%	475
$\frac{p\eta}{p\pi^0\eta}$	L,B L,B	<	2.7	$\times 10^{-5}$ CL=90% $\times 10^{-5}$ CL=90%	360
$\Lambda\pi^-$				$\times 10^{-8} \text{CL} = 90\%$	
$\frac{\Lambda^{\pi}}{\Lambda}\pi^{-}$	L,B	<	7.2	$\times 10^{-7} \text{CL} = 90\%$ $\times 10^{-7} \text{CL} = 90\%$	525
	L,B	<		$\times 10^{-3} \text{CL} = 95\%$ $\times 10^{-3} \text{CL} = 95\%$	525
e light boson	LF	<	2.7		_
μ^- light boson	LF	<	5	$\times 10^{-3}$ CL=95%	

Heavy Charged Lepton Searches

```
L^{\pm} – charged lepton Mass m>100.8 GeV, CL=95\% ^{[h]} Decay to \nu\,W. L^{\pm} – stable charged heavy lepton Mass m>102.6 GeV, CL=95\%
```

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings.

```
Mass m < 2 eV (tritium decay)
Mean life/mass, \tau/m > 300 s/eV, CL = 90% (reactor)
Mean life/mass, \tau/m > 7 \times 10^9 s/eV (solar)
Mean life/mass, \tau/m > 15.4 s/eV, CL = 90% (accelerator)
Magnetic moment \mu < 0.29 \times 10^{-10}~\mu_B, CL = 90% (reactor)
```

Number of Neutrino Types

```
Number \it N=2.984\pm0.008 (Standard Model fits to LEP-SLC data)
Number \it N=2.92\pm0.05 (S = 1.2) (Direct measurement of invisible \it Z width)
```

Neutrino Mixing

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Mass, Mixing, and Oscillations" by K. Nakamura and S.T. Petcov in this *Review*.

```
\begin{array}{l} \sin^2(\theta_{12}) = 0.307 \pm 0.013 \\ \Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ \sin^2(\theta_{23}) = 0.536^{+0.023}_{-0.028} \quad \text{(Inverted order)} \\ \sin^2(\theta_{23}) = 0.512^{+0.019}_{-0.022} \quad \text{(Normal order, octant I)} \\ \sin^2(\theta_{23}) = 0.542^{+0.019}_{-0.022} \quad \text{(Normal order, octant II)} \\ \Delta m_{32}^2 = (-2.55 \pm 0.04) \times 10^{-3} \text{ eV}^2 \quad \text{(Inverted order)} \\ \Delta m_{32}^2 = (2.444 \pm 0.034) \times 10^{-3} \text{ eV}^2 \quad \text{(Normal order)} \\ \sin^2(\theta_{13}) = (2.18 \pm 0.07) \times 10^{-2} \\ \delta, \textit{CP} \text{ violating phase} = 1.37^{+0.18}_{-0.16} \, \pi \text{ rad} \\ \left\langle \Delta m_{21}^2 - \Delta \overline{m}_{21}^2 \right\rangle < 1.1 \times 10^{-4} \text{ eV}^2, \, \text{CL} = 99.7\% \\ \left\langle \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \right\rangle = (-0.12 \pm 0.25) \times 10^{-3} \text{ eV}^2 \end{array}
```

NOTES

- [a] This is the best limit for the mode $e^- \rightarrow \nu \gamma$. The best limit for "electron disappearance" is 6.4×10^{24} yr.
- [b] See the "Note on Muon Decay Parameters" in the μ Particle Listings for definitions and details.
- [c] P_{μ} is the longitudinal polarization of the muon from pion decay. In standard V-A theory, $P_{\mu}=1$ and $\rho=\delta=3/4$.
- [d] This only includes events with energy of e>45 MeV and energy of $\gamma>40$ MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings for the energy limits used in this measurement.
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.