VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

MACHINE LEARNING (20CS6PCMAL)

Submitted by

VEDHAVATHI N L (1BM20CS417)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
May-2022 to July-2022

B. M. S. College of Engineering,

Bull Temple Road, Bangalore 560019(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "MACHINE LEARNING" carried out by **VEDHAVATHI N L (1BM20CS417)** who is bonafide student of **B. M. S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visveswaraya Technological University, Belgaum during the year 2022. The Lab report has been approved as it satisfies the academic requirements in respect of a **Machine Learning - (20CS6PCMAL)** work prescribed for the said degree.

Dr.K. PanimozhiAssistant Professor
Department of CSE
BMSCE, Bengaluru

Dr. Jyothi S NayakProfessor and Head
Department of CSE
BMSCE, Bengaluru

Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

```
import csv
def updatehypothesis(x,h):
if h == []:
      for i in range(0, len(x)):
         h.append("$")
      print("Initial State : ", h)
      return x
    for i in range(0, len(x)):
      if x[i].upper() != h[i].upper() :
         h[i] = "?"
   print("Most Specific Hypothesis: ", h)
    return h
 if___name___== "_main_":
   data = []
   h = []
    with open('findsdataset.csv','r') as file:
      reader = csv.reader(file)
      print("Data Set : ")
      for row in reader:
         data.append(row)
```

```
print(row)

if data:
    for x in data:
    if x[-1].upper() == "YES":
        x.pop()
        h = updatehypothesis(x,h)

print("Maximally Specific Hypothesis: ", h)
```

1	sky	airtemp	humidity	wind	water	forecast	enjoysport
2	sunny	warm	normal	strong	warm	same	yes
3	sunny	warm	high	strong	warm	same	yes
4	rainy	cold	high	strong	warm	change	no
5	sunny	warm	high	strong	cool	change	yes

```
Data Set:

['sunny', 'warm', 'normal', 'strong', 'warm', 'same', 'yes']

['sunny', 'warm', 'high', 'strong', 'warm', 'change', 'no']

['rainy', 'cold', 'high', 'strong', 'warm', 'change', 'no']

['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes']

Initial State: ['$', '$', '$', '$', '$']

Most Specific Hypothesis: ['sunny', 'warm', '?', 'strong', 'warm', 'same']

Most Specific Hypothesis: ['sunny', 'warm', '?', 'strong', '?', '?']

Maximally Specific Hypothesis: ['sunny', 'warm', '?', 'strong', '?', '?']
```

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

Code

```
import csv
a=[]
with open('../input/lab1find-s/Lab1 - Sheet1.csv','r') as csvfile:
  for row in csv.reader(csvfile):
     a.append(row)
  print(a)
  print("")
num_attributes = len(a[0])-1
s=['0']*num_attributes
g=[["?" for i in range(len(s))] for i in range(len(s))]
for i in range(0, len(a)):
  if a[i][num_attributes]=='yes':
     for j in range(0,num_attributes):
        if s[j] == 0' or s[j] == a[i][j]:
           s[j]=a[i][j]
        else:
           s[j]='?'
  else:
     for j in range(0,num_attributes):
        if(s[j] == a[i][j] \text{ or } s[j] == '?'):
           g[j][j]='?'
           continue
```

```
else:
```

$$g[j][j] = s[j]$$

for j in range(0,num_attributes):

indices = [i for i, val in enumerate(g) if val == ['?', '?', '?', '?', '?', '?']]

for i in indices:

print("Specific hypothesis:",s)

print("General hypothesis:",g)

1	sky	airtemp	humidity	wind	water	forecast	enjoysport
2	sunny	warm	normal	strong	warm	same	yes
3	sunny	warm	high	strong	warm	same	yes
4	rainy	cold	high	strong	warm	change	no
5	sunny	warm	high	strong	cool	change	yes

```
[['sky', 'airtemp', 'humidity', 'wind', 'water', 'forcast', 'enjoysport'], ['sunny', 'warm', 'normal', 'strong', 'warm', 'same', 'yes'], ['sunny', 'warm', 'high', 'strong', 'warm', 'same', 'yes'], ['rainy', 'cold', 'high', 'strong', 'warm', 'change', 'no'], ['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes']]

Specific hypothesis: ['sunny', 'warm', '?', 'strong', '?', '?']

General hypothesis: [['sunny', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?', '?']]
```

Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample

```
import math
import csv
def load_csv(filename):
  lines=csv.reader(open(filename,"r"));
  dataset = list(lines)
  headers = dataset.pop(0)
  return dataset, headers
class Node:
  def__init_(self,attribute):
     self.attribute=attribute
     self.children=[]
     self.answer=""
def subtables(data,col,delete):
  dic={}
  coldata=[row[col] for row in data]
  attr=list(set(coldata))
  counts=[0]*len(attr)
  r=len(data)
  c=len(data[0])
  for x in range(len(attr)):
     for y in range(r):
       if data[y][col] == attr[x]:
          counts[x]+=1
```

```
for x in range(len(attr)):
     dic[attr[x]]=[[0 for i in range(c)] for j in range(counts[x])]
     pos=0
     for y in range(r):
       if data[y][col]==attr[x]:
          if delete:
            del data[y][col]
          dic[attr[x]][pos]=data[y]
          pos+=1
  return attr,dic
def entropy(S):
  attr=list(set(S))
  if len(attr)==1:
     return 0
  counts=[0,0]
  for i in range(2):
     counts[i]=sum([1 for x in S if attr[i]==x])/(len(S)*1.0)
  sums=0
  for cnt in counts:
     sums+=-1*cnt*math.log(cnt,2)
  return sums
def compute_gain(data,col):
  attr,dic = subtables(data,col,delete=False)
```

```
total_size=len(data)
  entropies=[0]*len(attr)
  ratio=[0]*len(attr)
  total_entropy=entropy([row[-1] for row in data])
  for x in range(len(attr)):
    ratio[x]=len(dic[attr[x]])/(total_size*1.0)
     entropies[x]=entropy([row[-1] for row in dic[attr[x]]])
     total_entropy-=ratio[x]*entropies[x]
  return total_entropy
def build_tree(data,features):
  lastcol=[row[-1] for row in data]
  if(len(set(lastcol)))==1:
     node=Node("")
    node.answer=lastcol[0]
    return node
  n=len(data[0])-1
  gains=[0]*n
  for col in range(n):
    gains[col]=compute_gain(data,col)
  split=gains.index(max(gains))
  node=Node(features[split])
  fea = features[:split]+features[split+1:]
  attr,dic=subtables(data,split,delete=True)
```

```
for x in range(len(attr)):
     child=build_tree(dic[attr[x]],fea)
     node.children.append((attr[x],child))
  return node
def print_tree(node,level):
  if node.answer!="":
     print(" "*level,node.answer)
     return
  print(" "*level,node.attribute)
   for value,n in node.children:
    print(" "*(level+1),value)
     print_tree(n,level+2)
def classify(node,x_test,features):
  if node.answer!="":
     print(node.answer)
     return
  pos=features.index(node.attribute)
  for value, n in node.children:
     if x_test[pos]==value:
       classify(n,x_test,features)
dataset,features=load_csv("../input/playtennis/ID3.csv")
```

```
node1=build_tree(dataset,features)

print("The decision tree for the dataset using ID3 algorithm is")
print_tree(node1,0)

# testdata,features=load_csv("../input/playtennis/ID3.csv")

# print(features,"\n\n",testdata)

# for xtest in testdata:

# print("The test instance:",xtest)

# print("The label for test instance:",end=" ")

# classify(node1,xtest,features)
```

1	Outlook	Temperature	Humidity	Wind	Answer
2	sunny	hot	high	weak	no
3	sunny	hot	high	strong	no
4	overcast	hot	high	weak	yes
5	rain	mild	high	weak	yes
6	rain	cool	normal	weak	yes
7	rain	cool	normal	strong	no
8	overcast	cool	normal	strong	yes
9	sunny	mild	high	weak	no
10	sunny	cool	normal	weak	yes
11	rain	mild	normal	weak	yes
12	sunny	mild	normal	strong	yes
13	overcast	mild	high	strong	yes
14	overcast	hot	normal	weak	yes
15	rain	mild	high	strong	no

```
Your Notebook is now running in the cloud.
Enter some code at the bottom of this console and press [Enter].
The decision tree for the dataset using ID3 algorithm is
Outlook
  sunny
    Humidity
      normal
        yes
      high
        no
  overcast
    yes
  rain
    Wind
      strong
        no
      weak
        yes
```

Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets

```
import pandas as pd
data = pd.read_csv('../input/playtennisnb/PlayTennis.csv')
data.head()
y = list(data['PlayTennis'].values)
X = data.iloc[:,1:].values
print(f'Target Values: {y}')
print(f'Features: \n{X}')
y_{train} = y[:8]
y_val = y[8:]
X_{train} = X[:8]
X_{val} = X[8:]
print(f"Number of instances in training set: {len(X_train)}")
print(f"Number of instances in testing set: {len(X_val)}")
class NaiveBayesClassifier:
  def__init_(self, X, y):
     self.X, self.y = X, y
```

```
self.N = len(self.X)
      self.dim = len(self.X[0])
      self.attrs = [[] for _ in range(self.dim)]
      self.output_dom = { }
      self.data = []
      for i in range(len(self.X)):
         for j in range(self.dim):
           if not self.X[i][j] in self.attrs[j]:
              self.attrs[j].append(self.X[i][j])
         if not self.y[i] in self.output_dom.keys():
           self.output\_dom[self.y[i]] = 1
         else:
           self.output_dom[self.y[i]] += 1
         self.data.append([self.X[i], self.y[i]])
   def classify(self, entry):
      solve = None
      max\_arg = -1
```

```
for y in self.output_dom.keys():
        prob = self.output\_dom[y]/self.N
        for i in range(self.dim):
          cases = [x \text{ for } x \text{ in self.data if } x[0][i] == \text{entry}[i] \text{ and } x[1] == y]
          n = len(cases)
          prob *= n/self.N
        if prob > max_arg:
          max_arg = prob
          solve = y
     return solve
nbc = NaiveBayesClassifier(X_train, y_train)
total\_cases = len(y\_val)
good = 0
bad = 0
predictions = []
for i in range(total_cases):
  predict = nbc.classify(X_val[i])
  predictions.append(predict)
  if y_val[i] == predict:
```

```
good += 1
else:
    bad += 1

print('Predicted values:', predictions)
print('Actual values:', y_val)
print()
print('Total number of testing instances in the dataset:', total_cases)
print('Number of correct predictions:', good)
print('Number of wrong predictions:', bad)
print()
print('Accuracy of Bayes Classifier:', good/total_cases)
```

1	Outlook	Temperature	Humidity	Wind	Answer
2	sunny	hot	high	weak	no
3	sunny	hot	high	strong	no
4	overcast	hot	high	weak	yes
5	rain	mild	high	weak	yes
6	rain	cool	normal	weak	yes
7	rain	cool	normal	strong	no
8	overcast	cool	normal	strong	yes
9	sunny	mild	high	weak	no
10	sunny	cool	normal	weak	yes
11	rain	mild	normal	weak	yes
12	sunny	mild	normal	strong	yes
13	overcast	mild	high	strong	yes
14	overcast	hot	normal	weak	yes
15	rain	mild	high	strong	no

```
PlayTennis Outlook Temperature Humidity
                                            Wind
        No
              Sunny
                            Hot
                                     High
                                            Weak
              Sunny
                            Hot
                                  High Strong
                            Hot
        Yes Overcast
                                  High
                                            Weak
             Rain
Rain
                           Mild
                                   High
                                            Weak
                           Cool Normal
        Yes
                                            Weak
Target Values: ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No']
Features:
[['Sunny' 'Hot' 'High' 'Weak']
 ['Sunny' 'Hot' 'High' 'Strong']
 ['Overcast' 'Hot' 'High' 'Weak']
 ['Rain' 'Mild' 'High' 'Weak']
 ['Rain' 'Cool' 'Normal' 'Weak']
 ['Rain' 'Cool' 'Normal' 'Strong']
 ['Overcast' 'Cool' 'Normal' 'Strong']
 ['Sunny' 'Mild' 'High' 'Weak']
 ['Sunny' 'Cool' 'Normal' 'Weak']
 ['Rain' 'Mild' 'Normal' 'Weak']
 ['Sunny' 'Mild' 'Normal' 'Strong']
 ['Overcast' 'Mild' 'High' 'Strong']
 ['Overcast' 'Hot' 'Normal' 'Weak']
 ['Rain' 'Mild' 'High' 'Strong']]
Number of instances in training set: 8
Number of instances in testing set: 6
Predicted values: ['No', 'Yes', 'No', 'Yes', 'Yes', 'No']
Actual values: ['Yes', 'Yes', 'Yes', 'Yes', 'No']
Total number of testing instances in the dataset: 6
Number of correct predictions: 4
Number of wrong predictions: 2
Accuracy of Bayes Classifier: 0.6666666666666666
```

Write a program to construct a Bayesian network considering training data. Use this model to make predictions.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('../input/salarydata/salaryData.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
# Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
# Visualizing the Training set results
viz_train = plt
viz_train.scatter(X_train, y_train, color='green')
viz_train.plot(X_train, regressor.predict(X_train), color='black')
viz_train.title('Salary VS Experience (Training set)')
viz_train.xlabel('Year of Experience')
viz_train.ylabel('Salary')
viz train.show()
```

```
# Visualizing the Test set results
viz_test = plt
viz_test.scatter(X_test, y_test, color='green')
viz_test.plot(X_train, regressor.predict(X_train), color='black')
viz_test.title('Salary VS Experience (Test set)')
viz_test.xlabel('Year of Experience')
viz_test.ylabel('Salary')
viz_test.show()
```

1	YearsExperience	Salary
2	1.1	39343
3	1.3	46205
4	1.5	37731
5	2.0	43525
6	2.2	39891
7	2.9	56642
8	3.0	60150
9	3.2	54445
10	3.2	64445
11	3.7	57189
12	3.9	63218
13	4.0	55794
14	4.0	56957
15	4.1	57081
16	4.5	61111
17	4.9	67938
18	5.1	66029
19	5.3	83088
20	5.9	81363
21	6.0	93940
		04700

Apply k-Means algorithm to cluster a set of data stored in a .CSV file.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
from sklearn.cluster import KMeans
data = pd.read_csv("../input/K-Means/Dataset.csv")
data
plt.scatter(data['Satisfaction'],data['Loyalty'])
plt.xlabel('Satisfaction')
plt.ylabel('Loyalty')
plt.show()
x=data.copy()
kmean=KMeans(2)
kmean.fit(x)
clusters=x.copy()
clusters['cluster_pred']=kmean.fit_predict(x)
plt.scatter(clusters['Satisfaction'],clusters['Loyalty'],c=clusters['cluster_pred'],cmap='rainbow')
plt.xlabel('Satisfaction')
plt.ylabel('Loyalty')
plt.ylabel('Loyalty')
plt.show()
```

Satisfaction	Loyalty
4	-1.33
6	-0.28
5	-0.99
7	-0.29
4	1.06
1	-1.66
10	-0.97
8	-0.32
8	1.02
8	0.68
10	-0.34
5	0.39
5	-1.69
2	0.67
7	0.27

Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

CODE

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np
iris = datasets.load iris()
X = pd.DataFrame(iris.data)
X.columns = [Sepal\_Length', Sepal\_Width', Petal\_Length', Petal\_Width']
y = pd.DataFrame(iris.target)
y.columns = ['Targets']
model = KMeans(n_clusters=3)
model.fit(X)
plt.figure(figsize=(14,7))
colormap = np.array(['red', 'lime', 'black'])
# Plot the Original Classifications
plt.subplot(1, 2, 1)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
# Plot the Models Classifications
plt.subplot(1, 2, 2)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[model.labels_], s=40)
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of K-Mean: ',sm.accuracy_score(y, model.labels_))
print('The Confusion matrix of K-Mean:\n',sm.confusion_matrix(y, model.labels_))
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaler.fit(X)
xsa = scaler.transform(X)
```

xs = pd.DataFrame(xsa, columns = X.columns)

```
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=3)
gmm.fit(xs)

y_gmm = gmm.predict(xs)

plt.subplot(2, 2, 3)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y_gmm], s=40)
plt.title('GMM Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')

print('The accuracy score of EM: ',sm.accuracy_score(y, y_gmm))
print('The Confusion matrix of EM:\n',sm.confusion_matrix(y, y_gmm))

OUTPUT
```

```
<Figure size 1008x504 with 0 Axes>
Text(0, 0.5, 'Petal Width')
Text(0, 0.5, 'Petal Width')
The accuracy score of K-Mean: 0.893333333333333333
The Confusion matrixof K-Mean:
 [[50 0 0]
 [ 0 48 2]
 [ 0 14 36]]
Text(0, 0.5, 'Petal Width')
The accuracy score of EM: 0.0
The Confusion matrix of EM:
 [[ 0 50 0]
 [5 0 45]
 [50 0 0]]
```


Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.

```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
Y = iris.target
print('sepal-length', 'sepal-width', 'petal-length', 'petal-width')
print(X)
print('target')
print(Y)
x_train, x_test, y_train, y_test = train_test_split(X,Y,test_size=0.3)
classier = KNeighborsClassifier(n_neighbors=5)
classier.fit(x_train, y_train)
y_pred=classier.predict(x_test)
print('Confusion Matrix')
print(confusion_matrix(y_test,y_pred))
print('Accuracy')
print(classification_report(y_test,y_pred))
```

```
target
2 2]
Confusion Matrix
[[19 0 0]
[ 0 16 1]
[0 0 9]]
Accuracy
           recall f1-score
      precision
                    support
    0
        1.00
            1.00
                 1.00
                      19
        1.00
            0.94
                 0.97
                      17
    2
                      9
        0.90
            1.00
                 0.95
                 0.98
                      45
 accuracy
 macro avg
        0.97
            0.98
                 0.97
                      45
weighted avg
                      45
        0.98
            0.98
                 0.98
```

Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
import numpy as np
import pandas as pd
import csv
import pgmpy
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianNetwork
from pgmpy.inference import VariableElimination
#read Cleveland Heart Disease data
heartDisease = pd.read csv('../input/heartdisease/heartDiseaseDataset.csv')
heartDisease = heartDisease.replace('?',np.nan)
#display the data
print('Sample instances from the dataset are given below')
print(heartDisease.head())
#display the Attributes names and datatypes
print('\n Attributes and datatypes')
print(heartDisease.dtypes)
#Create Model-Bayesian Network
model =
BayesianNetwork([('age', 'heartDisease'), ('sex', 'heartDisease'), ('exang', 'heartDisease'), ('cp', 'heartDisease'), ('pr', '
restecg','heartDisease'),('heartDisease','chol')])
#Learning CPDs using Maximum Likelihood Estimators
print('\n Learning CPD using Maximum likelihood estimators')
model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)
#Inferencing with Bayesian Network
print('\n Inferencing with Bayesian Network:')
heartDiseasetest_infer = VariableElimination(model)
#computing the Probability of heartDisease given restecg
print('\n 1.Probability of heartDisease given evidence= restecg :1')
q1=heartDiseasetest infer.query(variables=['heartDisease'],evidence={'restecg':1})
print(q1)
#computing the Probability of heartDisease given cp
print('\n 2.Probability of heartDisease given evidence= cp:2 ')
q2=heartDiseasetest_infer.query(variables=['heartDisease'],evidence={'cp':2})
print(q2)
```


age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	heartDisease
63			145	233			150		2.3		0	6	0
67		4	160	286			108		1.5		3		2
67		4	120	229			129		2.6		2		1
37			130	250			187		3.5		0		0
41			130	204			172		1.4		0		0
56			120	236			178		0.8		0		0
62		4	140	268			160		3.6		2		3
57		4	120	354			163		0.6		0		0
63		4	130	254			147		1.4		1		2
53		4	140	203			155		3.1		0		1
57		4	140	192			148		0.4		0	6	0
56			140	294					1.3		0		0
56			130	256			142		0.6		1	6	2
44			120	263			173				0		0
52			172	199			162		0.5		0		0
57			150	168			174		1.6		0		0
48			110	229			168				0		1
54		4	140	239			160		1.2		0		0
48			130	275			139		0.2		0		0
49			130	266			171		0.6		0		0
64			110	211			144		1.8		0		0
58	0	1	150	283	1	2	162	0	1	1	0	3	0

Sample instances from the dataset are given below

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	\
0	63	1	1	145	233	1	2	150	0	2.3	3	
1	67	1	4	160	286	0	2	108	1	1.5	2	
2	67	1	4	120	229	0	2	129	1	2.6	2	
3	37	1	3	130	250	0	0	187	0	3.5	3	
4	41	0	2	130	204	0	2	172	0	1.4	1	

	ca	thal	heartDisease
0	0	6	6
1	3	3	2
2	2	7	1
3	0	3	6
4	0	3	6

Attributes and datatypes int64 age sex int64 int64 trestbps int64 int64 chol fbs int64 int64 int64 int64 restecg thalach exang oldpeak float64 int64 slope int64 thal int64 heartDisease int64 dtype: object

Learning CPD using Maximum likelihood estimators Inferencing with Bayesian Network: 1.Probability of heartDisease given evidence= restecg :1 Finding Elimination Order: : 100% 4/4 [00:00<00:00, 81.79it/s] Eliminating: exang: 100% 4/4 [00:00<00:00, 64.63it/s] +----+ | heartDisease | phi(heartDisease) | +========+ | heartDisease(0) | +----+ 0.1970 l | heartDisease(1) | | heartDisease(2) | 0.1976 | heartDisease(3) | 0.1976 | heartDisease(4) | 0.2106 +-----+ 2.Probability of heartDisease given evidence= cp:2 Finding Elimination Order: : 100% 4/4 [00:00<00:00, 69.85it/s] 4/4 [00:00<00:00, 89.18it/s] Eliminating: exang: 100% | heartDisease | phi(heartDisease) | +========+ heartDisease(0) 0.3138 +----+ | heartDisease(1) | +-----| heartDisease(2) | 0.1552 | heartDisease(3) | 0.1633 +-----

0.1527

| heartDisease(4) |

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
from numpy import *
from os import listdir
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np1
import numpy.linalg as np
from scipy.stats.stats import pearsonr
def kernel(point,xmat, k):
  m,n = np1.shape(xmat)
  weights = np1.mat(np1.eye((m)))
  for j in range(m):
    diff = point - X[i]
     weights[i,i] = np1.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point,xmat,ymat,k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat,ymat,k):
  m,n = np1.shape(xmat)
  ypred = np1.zeros(m)
  for i in range(m):
    ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
#load data points
data = pd.read_csv('../input/tipsdata/tips.csv')
bill = np1.array(data.total_bill)
tip = np1.array(data.tip)
#preparing and add 1 in bill
mbill = np1.mat(bill)
mtip = np1.mat(tip)
# mat is used to convert to n dimesiona to 2 dimensional array form
m= np1.shape(mbill)[1] # print(m) 244 data is stored in m
one = np1.mat(np1.ones(m))
X= npl.hstack((one.T.mbill.T)) # create a stack of bill from ONE
```

print(X)	

```
#set k here
ypred = localWeightRegression(X,mtip,2)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add\_subplot(1,1,1)
ax.scatter(bill,tip, color='blue')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
import numpy as np
from bokeh.plotting import figure, show, output_notebook
from bokeh.layouts import gridplot
from bokeh.io import push_notebook
def local_regression(x0, X, Y, tau):
  # add bias term
  x0 = np.r_[1, x0]
  # Add one to avoid the loss in information
  X = np.c_[np.ones(len(X)), X]
  # fit model: normal equations with kernel
  xw = X.T * radial_kernel(x0, X, tau) # XTranspose * W
  beta = np.linalg.pinv(xw @ X) @ xw @ Y #@ Matrix Multiplication or Dot Product
  return x0 @ beta # @ Matrix Multiplication or Dot Product for prediction
def radial_kernel(x0, X, tau):
  return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau))
# Weight or Radial Kernal Bias Function
n = 1000
# generate dataset
X = \text{np.linspace}(-3, 3, \text{num}=n)
print("The Data Set (10 Samples) X:\n",X[1:10])
Y = np.log(np.abs(X ** 2 - 1) + .5)
print("The Fitting Curve Data Set (10 Samples) Y:\n",Y[1:10])
# jitter X
X += np.random.normal(scale=.1, size=n)
print("Normalised (10 Samples) X:\n",X[1:10])
```

```
domain = np.linspace(-3, 3, num=300)
print(" Xo Domain Space(10 Samples) :\n",domain[1:10])
def plot_lwr(tau):
  # prediction through regression
  prediction = [local regression(x0, X, Y, tau) for x0 in domain]
  plot = figure(plot_width=400, plot_height=400)
  plot.title.text='tau=%g' % tau
  plot.scatter(X, Y, alpha=.3)
  plot.line(domain, prediction, line_width=2, color='red')
  return plot
show(gridplot([[plot_lwr(10.), plot_lwr(1.)],
[plot_lwr(0.1), plot_lwr(0.01)]]))
from numpy import *
from os import listdir
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np1
import numpy.linalg as np
from scipy.stats.stats import pearsonr
def kernel(point,xmat, k):
  m,n = np1.shape(xmat)
  weights = np1.mat(np1.eye((m)))
  for j in range(m):
    diff = point - X[i]
    weights[j,j] = np1.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point,xmat,ymat,k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat,ymat,k):
  m,n = np1.shape(xmat)
  ypred = np1.zeros(m)
  for i in range(m):
    ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
```

return ypred

```
# load data points
data = pd.read_csv('../input/tipsdata/tips.csv')
bill = np1.array(data.total_bill)
tip = np1.array(data.tip)
#preparing and add 1 in bill
mbill = np1.mat(bill)
mtip = np1.mat(tip) # mat is used to convert to n dimesiona to 2 dimensional array form
m= np1.shape(mbill)[1]
# print(m) 244 data is stored in m
one = np1.mat(np1.ones(m))
X= np1.hstack((one.T,mbill.T)) # create a stack of bill from ONE
#print(X)
#set k here
ypred = localWeightRegression(X,mtip,0.3)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add\_subplot(1,1,1)
ax.scatter(bill,tip, color='green')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
```

total_bill	tip	sex	smoker	day	time	size
16.99	1.01	Female	No	Sun	Dinner	2
10.34	1.66	Male	No	Sun	Dinner	3
21.01	3.5	Male	No	Sun	Dinner	3
23.68	3.31	Male	No	Sun	Dinner	2
24.59	3.61	Female	No	Sun	Dinner	4
25.29	4.71	Male	No	Sun	Dinner	4
8.77	2.0	Male	No	Sun	Dinner	2
26.88	3.12	Male	No	Sun	Dinner	4
15.04	1.96	Male	No	Sun	Dinner	2
14.78	3.23	Male	No	Sun	Dinner	2
10.27	1.71	Male	No	Sun	Dinner	2
35.26	5.0	Female	No	Sun	Dinner	4
15.42	1.57	Male	No	Sun	Dinner	2
18.43	3.0	Male	No	Sun	Dinner	4
14.83	3.02	Female	No	Sun	Dinner	2
21.58	3.92	Male	No	Sun	Dinner	2
10.33	1.67	Female	No	Sun	Dinner	3
16.29	3.71	Male	No	Sun	Dinner	3
16.97	3.5	Female	No	Sun	Dinner	3
20.65	3.35	Male	No	Sat	Dinner	3
17.92	4.08	Male	No	Sat	Dinner	2

