M53 - Partie 1

septembre 2015

La définition d'un espace affine

Définition (heuristique)

«Un espace affine est un espace vectoriel dont on a oublié l'origine.»

La définition d'un espace affine

Définition

Soit $\vec{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\vec{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

qui satisfait les deux conditions :

- $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles)
- $\forall A \in \mathcal{E}, \vec{v} \in \overrightarrow{\mathcal{E}}, \exists ! B \in \mathcal{E} \text{ t.q. } \overrightarrow{AB} = \vec{v} \ (B = A + \vec{v})$

La dimension d'un espace affine

Définition

L'espace affine $\mathcal E$ est de dimension n si sa direction, l'espace vectoriel $\overrightarrow{\mathcal E}$, est de dimension n.

Les espaces vectoriels

Tout espace vectoriel $\overrightarrow{\mathcal{E}}$ peut être muni naturellement d'une structure d'espace affine, avec direction lui-même, via l'application :

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(\overrightarrow{A}, \overrightarrow{B}) \mapsto \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

Convention

Dans la suite, tous les espaces vectoriels vont être considérés munis de cette structure naturelle d'espace affine.

Les droites (sous-espaces) affines

Le sous-ensemble de \mathbb{R}^2 , $\mathcal{E} = \{(x,y) \mid x+y=1\}$ est un espace affine de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$, via l'application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB} = B - A$$

Question

Comment peut-on généraliser cet exemple?

Les solutions des équations différentiels linéaires

L'ensemble des solutions S de l'équation différentielle $y'+y=\sin(x)$ est un espace affine avec direction S^* , l'ensemble des solutions de l'équation homogène (y'+y=0) via :

$$S \times S \longrightarrow S^*$$

 $(f_1, f_2) \mapsto f_2 - f_1$

Question

Comment peut-on généraliser cet exemple?

Vectorialisé d'un espace affine

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- **1** L'origine de \mathcal{E}_{Ω} est le point Ω .
- 2 Avec l'écriture $\Omega + \vec{v}$, les opérations sont :
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$
 - $\lambda(\Omega + \vec{v}) = \Omega + \lambda \vec{v}.$

Produit d'espaces affines

Soient \mathcal{E} et $\overrightarrow{\mathcal{F}}$ deux espaces affines, sur le même corps, de directions respectives $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

On définit la structure d'espace affine *produit* sur $\mathcal{E} \times \mathcal{F}$ de direction $\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{F}}$ par :

$$\overrightarrow{(A,B)(C,D)} := (\overrightarrow{AC},\overrightarrow{BD}).$$

Propriétés calculatoires

Soit $\mathcal E$ un $\mathbb K$ -espace affine de direction $\overrightarrow{\mathcal E}$.

$$\mathbf{1} \ A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = \overrightarrow{0} \ \text{et} \ A + \overrightarrow{0} = A.$$

$$\exists A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \text{ (ABCD est un parallélogramme)}.$$

$$\overrightarrow{(A+\overrightarrow{v})(B+\overrightarrow{w})} = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}.$$

7 Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

■ Si
$$\sum_{i=1}^k \lambda_i = 0$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B - A)$.

■ Si
$$\sum_{i=1}^{k} \lambda_i = 1$$
 alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie.

■ Si
$$\sum_{i=1}^k \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^k \lambda_i A_i$ «n'est pas bien définie».

Définition du barycentre

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$\forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA}_i.$$

$$\sum_{i=1}^k \mu_i \overrightarrow{GA_i} = 0.$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{k}$, ou à 1).

Propriétés des barycentres

- I Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- 2 Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- 3 Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1,B_1),\mu_1),\dots,((A_k,B_k),\mu_k)\}$ est $G=(G_A,G_B)$, où G_A est le barycentre de $\{(A_1,\mu_1),\dots,(A_k,\mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1,\mu_1),\dots,(B_k,\mu_k)\}$ dans \mathcal{F} .

Associativité du barycentre

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I.

Soit une partition $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in J_k} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

On note G_k le barycentre de $\{(A_i, \mu_i)\}_{i \in J_k}$.

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

Définition d'un repère

Soit (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

Définition-Proposition

On dit que (A_0, \ldots, A_n) est un repère affine de \mathcal{E} s'il satisfait une des conditions équivalentes :

- $(\overrightarrow{A_0A_1},\ldots,\overrightarrow{A_0A_n}) \text{ est une base de } \overrightarrow{\mathcal{E}}.$
- 2 Pour tout point B de \mathcal{E} il existe un unique (n+1)-uplet de poids (μ_0, \dots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

Coordonnées affines

Soit $A = (A_0, \dots, A_n)$ un repère affine de \mathcal{E} .

Définition

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_{\mathcal{A}}$ sont les coordonnées cartésiennes de B dans le repère \mathcal{A} , si $\overrightarrow{A_0B} = \sum_{i=1}^n x_i \overrightarrow{A_0A_i}$.

Définition

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_{\mathcal{A}}$ sont les coordonnées barycentriques de B dans le repère \mathcal{A} , si $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=0}^n \mu_i A_i$.

La relation entre ces deux systèmes de coordonnées est :

$$\mu_i = x_i, \forall i = 1, \dots, n \text{ et } \mu_0 = 1 - \sum_{i=1}^n x_i.$$

Définition d'un sous-espace affine

Soit ${\mathcal E}$ un espace affine.

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F}\subset\mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1 Il existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}, \mathcal{F} \text{ est un sous-espace vectoriel de } \mathcal{E}_{\Omega}.$
- \mathfrak{F} est stable par barycentres.

Un sous-espace affine $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$ est un espace affine de direction $\overrightarrow{\mathcal{F}}$, via la restriction de l'application $(A, B) \mapsto \overrightarrow{AB}$.

Sous-espaces affines et dimensions

Soit \mathcal{E} un espace affine de dimension n.

- **1** Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- 2 Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- **13** Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- 4 Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

Soient A et B deux points distincts de \mathcal{E} . On note AB ou $\langle A, B \rangle$ la droite affine qui passe par A et B.

Les sous-espaces affines d'un espace vectoriel

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{G}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{G}})$ une application linéaire.

Proposition

Pour tout $\overrightarrow{v} \in \operatorname{Im} \overrightarrow{\phi} \subset \overrightarrow{\mathcal{G}}$, l'image réciproque $\overrightarrow{\phi}^{-1}(\overrightarrow{v})$ est un sous-espace affine de $\overrightarrow{\mathcal{E}}$ de direction $\operatorname{Ker} \overrightarrow{\phi}$.

- I En particulier, en prenant $\overrightarrow{\phi}(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\overrightarrow{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- 2 L'ensemble \mathcal{S} des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble \mathcal{S}^* des solutions homogènes AX = 0. Et $\mathcal{S} = X_0 + \mathcal{S}'$, où X_0 est une solution particulière.

Les sous-espaces affines d'un espace vectoriel

Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- **1** \mathcal{F} est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- 2 \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- **3** Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

Parallélisme

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

Proposition

- Deux sous-espaces parallèles sont disjoints ou confondus.
- 2 Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Intersection de sous-espaces affines

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est :

- vide, ou
- lacksquare un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G}$,

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$
.

Sous-espace engendré

Définition-Proposition

Soit A un sous-ensemble non vide d'un espace affine \mathcal{E} . Le sous-espace affine $\langle A \rangle$ engendré par A est défini par une des conditions équivalentes :

- $lacktriangledown \langle \mathcal{A} \rangle$ est le plus petit sous-espace affine contenant \mathcal{A} .
- $\langle A \rangle$ est l'ensemble des barycentres de points de A.
- **4** $\forall (\exists) \Omega \in \mathcal{A}$, $\langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Somme de sous-espaces affines

Proposition

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine engendré par $\mathcal{F} \cup \mathcal{G}$.

- 1 Si $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et $\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right)$.
- 2 Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et $\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right) + 1.$

Familles affinement libres et génératrices

Soit $\mathcal F$ un sous-espace affine d'un espace affine $\mathcal E.$

Définition

Soient $\{A_0, \ldots, A_k\}$ des points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

Définition

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement libre si dim $\langle A_0, \ldots, A_k \rangle = k$.

Caractérisation d'un repère

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

Le (k+1)-uplet (A_0, \ldots, A_k) est un repère affine pour $\mathcal F$ si il satisfait une des trois conditions équivalentes :

- **1** $\{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille libre maximale de \mathcal{F} .

Définition d'une application affine

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}}) \text{ telle que } \forall A, B \in \mathcal{E},$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}.$$

 $(\overrightarrow{\phi}$ est unique et est appelée partie linéaire de ϕ .)

 ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=0}^k \mu_i = 1$

$$\phi(\sum_{i=0}^k \mu_i A_i) = \sum_{i=0}^k \mu_i \phi(A_i).$$

L'ensemble des applications affines est noté $\mathsf{Aff}(\mathcal{E},\mathcal{F})$.

Exemples d'applications affines

- **I** Les applications constantes sont affines, de partie vectorielle 0.
- **2** Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Is Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X\mapsto AX+B$, où $M\in\mathcal{M}_{m,n}$ et $B\in\mathbb{R}^m$.
- 4 Les applications affines de \mathbb{C} dans \mathbb{C} , vu comme \mathbb{R} -espace vectoriel, sont de la forme $z \mapsto az + b\overline{z} + c$, où $a, b, c \in \mathbb{C}$.
- Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- 6 Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = \mathcal{T}_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}$ est linéaire.

Premières propriétés

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E}, \mathcal{F})$, $\mathcal{A} \subset \mathcal{E}$ et $\mathcal{B} \subset \mathcal{F}$.

- \bullet $\phi(\mathcal{A})$ est un s.e.a. de \mathcal{F} de direction $\overrightarrow{\phi}(\overrightarrow{\mathcal{A}})$.

Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner :

- I la partie linéaire et l'image d'un point,
- 2 ou l'image d'un repère.

Les translations (définition)

Définition-Proposition

Une translation est une application affine $T \in \mathsf{Aff}(\mathcal{E})$ qui satisfait une des conditions équivalentes :

- **1** elle est de la forme $T = T_{\vec{v}} : M \mapsto M + \vec{v}$, où $\vec{v} \in \vec{\mathcal{E}}$,
- **2** sa partie linéaire est $\overrightarrow{\phi} = \operatorname{Id} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$.

Les translations (propriétés)

- 1 Une translation qui fixe un point est l'identité.
- 2 $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{u}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- **3** Les translations de $\mathbb C$ sont de la forme $z\mapsto z+c$, pour $c\in\mathbb C$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

Homothéties affines (définition)

Définition-Proposition

Une homothétie affine de rapport λ et de centre Ω est une application affine de $H \in \mathsf{Aff}(\mathcal{E})$ qui satisfait une des conditions équivalentes :

- H est une homothétie vectorielle de \mathcal{E}_{Ω} de rapport λ ;
- H fixe Ω et $\overrightarrow{H} = \lambda \mathrm{Id} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$;
- elle est de la forme $H = H_{\Omega,\lambda} : M \mapsto \lambda M + (1 \lambda)\Omega$.

Homothéties affines (propriétés)

- Une homothétie qui fixe deux points est l'identité.
- 2 Si $\widetilde{H} = \lambda \operatorname{Id}$ avec $\lambda \neq 1$, alors H est une homothétie affine.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - Une translation, si $\lambda \mu = 1$.
- 4 Les homothéties $h_{\omega,\lambda}$ du \mathbb{R} -espace vectoriel \mathbb{C} sont de la forme $z \mapsto \lambda z + (1-\lambda)w$, pour $\lambda \in \mathbb{R}, \omega \in \mathbb{C}$.
- 5 Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

Les points fixes

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi ϕ possède un unique point fixe (forcément $0 \in \vec{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\vec{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$:
- $\mathbf{2}$ si ϕ n'a pas de points fixes, et

$$\operatorname{\mathsf{Ker}}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{\mathsf{Im}}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors il existe un unique $\vec{v} \in \vec{\mathcal{E}}_1$ tel que $T_{\vec{v}} \circ \phi$ possède un point fixe. Par ailleurs $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$.

Le groupe affine

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de $\mathcal E$ dans lui-même forment un groupe, le groupe affine $GA(\mathcal E)$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal E) \twoheadrightarrow GL(\overrightarrow{\mathcal E})$, de noyau le sous-groupe abélien des translations de $\mathcal E$.

Définition d'un convexe

Définition

Soient A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \mid \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appelé le segment [AB].

Définition

On dit que C est un ensemble *convexe*, si pour tous deux points $A, B \in C$ le segment [AB] est entièrement contenu dans C.

Proposition

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

Propriétés

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un point sont convexes.
- 3 Un sous-espace affine est convexe.
- 4 Les demi-espaces (ouverts, fermés) sont convexes.
- **5** L'image d'un convexe par une application affine est convexe.
- **6** L'image réciproque d'un convexe par une application affine est convexe.
- Une fonction réelle est convexe ssi la partie au-dessus du graphe est convexe.

Enveloppe convexe

Définition-Proposition

Soit A une partie d'un espace affine. L'enveloppe convexe, noté [A], est :

- **11** Le plus petit convexe contenant A.
- **2** L'intersection de tous les convexes contenant A.
- \blacksquare L'ensemble de barycentres de points de $\mathcal A$ de poids positifs.

Ainsi par exemple le segment [AB] est l'enveloppe convexe de $\{A, B\}$.