

Demo test plan

PROPULSION SYSTEM SIMULATION

FANGZHOU CHEN
JIACONG LI
MARCO HOOGESTEGER
MARTIJN CROMBEEN

Organisation: Solar Boat Sealander

Client: Mr. R. Eijlers
Tutor: Mr. W. Haak
Date: 29-9-2020

Table of content

1.	Aim	& Hypothesis	2	
		Aim		
		Hypothesis		
		ables		
		S		
		Method		
		erted results		

1. Aim & Hypothesis

1.1. Aim

The aim of this test is to let the client use the simulation interface to calculate different aspects of the propulsion system.

1.2. Hypothesis

If we build an user-friendly interface, the client can use this simulation to design a more efficient propulsion system.

2. Variables

After the goals of the test have been determined, we define the variables that we'll adjust to reach the goals.

Limit	Keep constant at
Ambient temperature	Standard indoor temperature with lower and upper limits (20 °C \pm 5°C).
Battery level computer	Constant power source.
Software Excel	Newest version.
All input variables	Real positive numbers & ISO-notation.

Property	Vary and/or measure	
ower input variables		
Motor input rotation speed	Vary	
Motor input torque	Vary	
ower transmission variables		
Shaft material	Vary	
Shaft size	Vary	
Shaft shape	Vary	
Shaft contact friction	Vary	
Gear material	Vary	
Gear size	Vary	
Gear shape	Vary	
Gear contact friction	Vary	
Bearing material	Vary	
Bearing size	Vary	
Bearing shape	Vary	
Bearing contact friction	Vary	
Power output variables		
Propeller material	Vary	
Propeller size	Vary	
Propeller shape	Vary	
Propeller surface smoothness degree	Vary	
(contact friction with water)		
Propeller rotation speed	Vary	
Propeller torque	Vary	

3. Tools

We divide the tools into two types. The first one is "testing tools" which are the tools requires to perform the test. The second one is "measuring tools", which are the tools required to measure the given limits and properties.

Testing tools	Demand
Computer	Windows 10 compatible
Excel	Newest version.
Keyboard	No limit.
Mouse	No limit.

4. Method

This section consists of actions that need to be performed during the test in order to conclude a result. The conditions of the limits stated in chapter: "2. Variables" have to be met before executing the simulation. To execute the simulation, follow the steps stated below.

- 1. Power up laptop and open Excel.
- 2. Load in the: "Propulsion system simulation" file in Excel.
- 3. Type in current values to simulate the present propulsion system.
- 4. Modify the value of the desired properties.
- 5. Perform a simulation for every property value modification
- 6. Compare the results of simulations before and after the modification to figure out their effects on propulsion system.
- 7. Keep the values which improves the propulsion system.
- 8. Print improved values.
- 9. Save changes to new file.
- 10. Close Excel.
- 11.

5. Expected results

This section checks whether our design passes the test or not, by stating the expected results. This demo will have a couple of outcomes:

- The expected result is the first situation, where the client is happy with the simulation and can use this for all his intended uses.
- Secondly, the client could be not satisfied with the simulation and cannot use it how he intends to.
- Lastly, the client could be somewhat satisfied with the simulation but his usage is limited.

If the outcome of this test does not equal the stated expected result, the test is considered as failed. When the user's input variables do not meet the stated limits, the program should notify the user.