Chapter 10 Diagnostic for Multiple Linear Regression

Instructor: Li C.X.

Outline

- Model Adequacy for a Predictor Variable
 - Added-Variable Plots
- Identifying outlying Y
 - Studentized Residuals
 - Studentized Deleted Residuals
- Identifying outlying X
 - Hat Matrix Leverage Values
- Identifying Influential Cases
 - DFFITS, Cook's Distance, DFBETAS
- Multicollinearity Diagnostic
 - Variance Inflation Factor

10.1 Model Adequacy for a Predictor

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

Coefficient of Partial Determination

$$R_{Y1|2:(p-1)}^{2} = \frac{SSR(X_{1} | X_{2}, \dots, X_{p-1})}{SSE(X_{2}, \dots, X_{p-1})}$$

- Define two variables:
 - residuals of predicting Y as function of X_2, \dots, X_{p-1} $e_i(Y|X_2, \dots, X_{p-1}) = Y_i \widehat{Y}_i(X_2, \dots, X_{p-1})$
 - residuals of predicting X_1 as function of X_2, \dots, X_{p-1} $e_i(X_1|X_2, \dots, X_{p-1}) = X_{i1} \hat{X}_{i1}(X_2, \dots, X_{p-1})$
- $R^2_{Y1|2:(p-1)}$ equals to R^2 for regressing $e_i(Y|X_2,\cdots,X_{p-1})$ on $e_i(X_1|X_2,\cdots,X_{p-1})$
- Slope of the regression through the origin of $e_i(Y|X_2,...,X_{p-1})$ on $e_i(X_1|X_2,...,X_{p-1})$ is the partial regression coefficient b_1

Added-variable plot

- Graphical way to determine partial relation between response and a given predictor, after controlling for other predictors
- Links with Coefficient of Partial Determination
- Algorithm (assume plot for X_1 , given X_2):
 - Fit regression of Y on X_2 , obtain residuals = $e_i(Y | X_2)$
 - Fit regression of X_1 on X_2 , obtain residuals = $e_i(X_1 | X_2)$
 - Plot $e_i(Y | X_2)$ (vertical axis) versus $e_i(X_1 | X_2)$ (horizontal axis)
- The scatter plot of $e_i(Y | X_2)$ and $e_i(X_1 | X_2)$ provides a graphical representation of the strength of the relationship between Y and X_1 , adjusted for X_2 .
- The plot is called Added-Variable Plots or adjusted variable plots

Added-variable plot

• Slope of the regression through the origin of $e_i(Y \mid X_2)$ on $e_i(X_1 \mid X_2)$ is the partial regression coefficient for X_1

Body fat Example

- Y: Body fat percentage
- Predictors
 - 1. triceps skin fold thickness(X1)
 - 2. thigh circumference (X2)
 - 3. midarm circumference (X3)

Subject	Triceps Skinfold Thickness X _{i1}	Thigh Circumference X ₁₂	Midarm Circumference X _{i3}	Body Fat <i>Y</i> i
1	19.5	43.1	29.1	· 11.9
2	24.7	49.8	28.2	22.8
3	30.7	51.9	28.2 37.0	18.7
•••	• • •	•••	***	
18	30.2	58.6	24.6	25.4
19	22,7	48.2	24.6 27.1	14.8
20	22.7 25.2	51.0	27.5	21.1

$$\hat{Y} = -19.174 + .2224X_1 + .6594X_2$$

Variable Regression Coefficient X_1 $b_1 = .2224$ X_2 $b_2 = .6594$

10.2 Outlying Y Observations

Outlying cases

Studentized Residuals

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p} \mathbf{\beta}_{p\times 1} + \mathbf{\varepsilon}_{n\times 1}, \quad \mathbf{\varepsilon}_{n\times 1} \sim N\left(\mathbf{0}, \sigma^2 \mathbf{I}_{n\times n}\right)$$

Model Errors (unobserved): $\varepsilon_i = Y_i - (\beta_0 + \beta_1 X_{i1} + ... + \beta_{p-1} X_{i,p-1})$

Residuals (observed)

$$e_i = Y_i - \hat{Y}_i = Y_i - (b_0 + b_1 X_{i1} + \dots + b_{p-1} X_{i,p-1})$$

$$\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{H}\mathbf{Y} = (\mathbf{I} - \mathbf{H})\mathbf{Y}$$
, where $\mathbf{H}_{n \times n} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$

$$\mathbf{E}\{e\} = \mathbf{E}\{(\mathbf{I} - \mathbf{H})\mathbf{Y}\} = (\mathbf{I} - \mathbf{H})\mathbf{E}\{\mathbf{Y}\} = (\mathbf{I} - \mathbf{H})\mathbf{X}\boldsymbol{\beta} = \mathbf{X}\boldsymbol{\beta} - \mathbf{X}\boldsymbol{\beta} = \mathbf{0}$$

$$\sigma^{2} \{e\} = (I - H)\sigma^{2}I(I - H)' = \sigma^{2}(I - H)$$

$$\mathbf{e}_{n\times 1} \sim N\left(\mathbf{0}, \sigma^2\left(\mathbf{I} - \mathbf{H}\right)\right)$$

Studentized residuals

$$\mathbf{e}_{n\times 1} \sim N\left(\mathbf{0}, \sigma^2\left(\mathbf{I} - \mathbf{H}\right)\right)$$

$$E\left\{e_{i}\right\} = 0; \quad \text{Let } h_{ij} = (i, j)^{th} \text{ element of } \mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

$$\sigma^{2}\left\{e_{i}\right\} = \sigma^{2}\left(1 - h_{ii}\right), \quad \sigma\left\{e_{i}, e_{j}\right\} = -h_{ij}\sigma^{2} \quad \forall i \neq j$$

$$s^{2}\left\{e_{i}\right\} = MSE\left(1 - h_{ii}\right), \quad s\left\{e_{i}, e_{j}\right\} = -h_{ij}MSE \quad \forall i \neq j$$

Studentized residual

$$h_{ii} = \mathbf{x}_i' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_i, \quad h_{ij} = \mathbf{x}_i' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_j,$$
where $\mathbf{x}_i = \begin{bmatrix} 1 & X_{i1} & \cdots & X_{i,p-1} \end{bmatrix}'$

Semi-studentized residual

$$e_i^* = \frac{e_i}{\sqrt{MSE}}$$

Deleted Residual--- (X_i, Y_i) was not used to fit the model

$$d_i = Y_i - \hat{Y}_{i(i)},$$

 $\hat{Y}_{i(i)}$: fitted value when regression is fit on the other n-1 cases

$$\mathbf{b}_{(i)} = \left(\mathbf{X}'_{(i)}\mathbf{X}_{(i)}\right)^{-1}\mathbf{X}'_{(i)}\mathbf{Y}_{(i)} \sim N\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}'_{(i)}\mathbf{X}_{(i)}\right)^{-1}\right)$$

$$\hat{Y}_{i(i)} = b_{0(i)} + b_{1(i)}X_{i1} + \dots + b_{p-1(i)}X_{i,p-1} = \mathbf{x}'_{i}\mathbf{b}_{(i)}$$

$$\text{where } \mathbf{x}'_{i} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{i-1,1} & X_{i-1,2} & \cdots & X_{i-1,p-1} \\ 1 & X_{i+1,1} & X_{i+1,1} & X_{i+1,p-1} \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

$$\mathbf{X_{(i)}}_{(n-1)\times p} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{i-1,1} & X_{i-1,2} & \cdots & X_{i-1,p-1} \\ 1 & X_{i+1,1} & X_{i+1,1} & & X_{i+1,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1} \end{bmatrix}$$

Variance of deleted residuals

$$\operatorname{var}\left\{d_{i}\right\} = \operatorname{var}(Y_{i}) + \operatorname{var}(\hat{Y}_{i(i)}) = \sigma^{2} + \operatorname{var}\left\{\mathbf{x}_{i}'\mathbf{b}_{(i)}\right\}$$

$$= \sigma^{2} + \mathbf{x}_{i}' \operatorname{var}\left\{\mathbf{b}_{(i)}\right\}\mathbf{x}_{i} = \sigma^{2} \left[1 + \mathbf{x}_{i}'\left(\mathbf{X}_{(i)}'\mathbf{X}_{(i)}\right)^{-1}\mathbf{x}_{i}\right]$$

$$s^{2}\left\{d_{i}\right\} = MSE_{(i)} \left[1 + \mathbf{x}_{i}'\left(\mathbf{X}_{(i)}'\mathbf{X}_{(i)}\right)^{-1}\mathbf{x}_{i}\right]$$

• Studentized deleted residual
$$t_i = \frac{d_i}{s \{d_i\}}$$

• Can calculate d_i and t_i in a single model fit $\mathbf{Y}_{n \times 1} = \mathbf{X}_{n \times p} \mathbf{\beta}_{p \times 1} + \mathbf{\varepsilon}_{n \times 1}$,

$$d_{i} = Y_{i} - \hat{Y}_{i(i)} = \frac{e_{i}}{1 - h_{ii}},$$

$$\operatorname{var}(d_{i}) = \frac{\operatorname{var}(e_{i})}{(1 - h_{ii})^{2}} = \frac{\sigma^{2}}{1 - h_{ii}}, \qquad s^{2} \left\{ d_{i} \right\} = \frac{MSE_{(i)}}{1 - h_{ii}},$$

$$SSE_{(i)} = SSE - \frac{e_i^2}{1 - h_{ii}}$$

$$(n - p - 1)MSE_{(i)} = (n - p)MSE - \frac{e_i^2}{1 - h_{..}} \implies MSE_{(i)} =$$

• **PRESS (PRE**diction **S**um of **S**quares) in chapter 9

$$PRESS_{p} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i(i)})^{2} = \sum_{i=1}^{n} d_{i}^{2} = \sum_{i=1}^{n} \left(\frac{e_{i}}{1 - h_{i:}}\right)^{2}$$

Studentized deleted residual

$$t_{i} = \frac{d_{i}}{s \left\{ d_{i} \right\}} = \frac{e_{i}}{(1 - h_{ii}) \sqrt{MSE_{(i)} / (1 - h_{ii})}} = \frac{e_{i}}{\sqrt{MSE_{(i)} \left(1 - h_{ii} \right)}}$$

Comparison with studentized residual

$$t_{i} = \frac{d_{i}}{s\{d_{i}\}} = \frac{e_{i}}{\sqrt{MSE_{(i)}(1 - h_{ii})}} \quad \text{vs} \quad \frac{e_{i}}{s\{e_{i}\}} = \frac{e_{i}}{\sqrt{MSE(1 - h_{ii})}}$$

$$SSE = (n-p)MSE = (n-p-1)MSE_{(i)} + \frac{e_i^2}{1-h_{ii}}$$

$$\Rightarrow t_i = \frac{e_i}{\sqrt{MSE_{(i)}(1-h_{ii})}} = \frac{e_i\sqrt{n-p-1}}{\sqrt{SSE(1-h_{ii})-e_i^2}}$$

• If there are no outlying observations,

$$t_{i} = \frac{d_{i}}{s \left\{ d_{i} \right\}} = \frac{e_{i}}{\sqrt{MSE_{(i)} \left(1 - h_{ii} \right)}} = \frac{e_{i} \sqrt{n - p - 1}}{\sqrt{SSE \left(1 - h_{ii} \right) - e_{i}^{2}}} \sim t \left(n - p - 1 \right)$$

• Adjust for *n* outlier tests using Bonferroni

Outlier if
$$|t_i| \ge t \left(1 - \left(\frac{\alpha}{2n}\right), n - p - 1\right)$$

10.3 Outlying X-Cases

- Hat matrix $\mathbf{H} = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' = (h_{ij})_{n \times n}$
- In simple linear regression with p-1=1,

$$\mathbf{X} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \qquad \mathbf{X'X} = \begin{bmatrix} n & \sum_{i=1}^n X_i \\ \sum_{i=1}^n X_i & \sum_{i=1}^n X_i^2 \\ 1 & X_n \end{bmatrix}, \quad (\mathbf{X'X})^{-1} = \frac{1}{SS_{XX}} \begin{bmatrix} \frac{SS_{XX}}{n} + \overline{X}^2 & -\overline{X} \\ n \\ -\overline{X} & 1 \end{bmatrix}$$

Let
$$\mathbf{x}_i' = \begin{bmatrix} 1 & X_i \end{bmatrix}$$
, then

$$h_{ij} = \mathbf{x}_i' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_j = \begin{bmatrix} 1 & X_i \end{bmatrix} (\mathbf{X}'\mathbf{X})^{-1} \begin{bmatrix} 1 & X_j \end{bmatrix}' = \frac{1}{n} + \frac{(X_i - X)(X_j - X)}{SS_{XX}}$$

$$h_{ii} = \mathbf{x}_i' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_i = \frac{1}{n} + \frac{(X_i - \overline{X})^2}{SS_{xx}} \Longrightarrow h_{ii} > 0 \text{ and } \sum_{i=1}^n h_{ii} = 2, \text{ if } n > 1$$

Hat Matrix

In general

$$\mathbf{H} = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1n} \\ h_{21} & h_{22} & \cdots & h_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1} & h_{n2} & \cdots & h_{nn} \end{bmatrix}, \quad h_{ij} = \mathbf{x}_i' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_j, \quad \mathbf{x}_i = \begin{bmatrix} 1 \\ X_{i1} \\ \vdots \\ X_{i,p-1} \end{bmatrix}$$

• Properties:
$$\sum_{i=1}^{n} h_{ii} = trace(\mathbf{H}) = trace(\mathbf{I}_p) = p$$

$$\mathbf{H}_{n \times n} \mathbf{X} = \mathbf{X}_{n \times p} \implies \sum_{i=1}^{n} h_{ij} = \sum_{i=1}^{n} h_{ij} = 1$$

$$\mathbf{H}_{n\times n} = \mathbf{H}_{n\times n} \mathbf{H} \Longrightarrow h_{ii} = \sum_{j=1}^{n} h_{ij} h_{ji} = \sum_{j=1}^{n} h_{ij}^{2} \ge 0$$

$$(\mathbf{I} - \mathbf{H})^2 = \mathbf{I} - \mathbf{H} \Rightarrow 1 - h_{ii} = \sum_{i=1}^{n} (I_{ij} - h_{ij})^2 \ge 0$$

Hat Matrix Leverage Values

$$\mathbf{H} = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}', \quad h_{ii} = \mathbf{x}_i' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_i,$$

$$0 \le h_{ii} \le 1, \quad \sum_{i=1}^n h_{ii} = trace(\mathbf{H}) = p$$

- h_{ii} known as the leverage of *i*th case. It is a measure of distance between the X_i value and the mean of the X values.
- Cases with X-levels close to the "center" of the sampled X-levels will have small leverages. Cases with "extreme" levels have large leverages
- Large leverage values: $h_{ii} > 2p/n$

Hat Matrix Leverage Values

$$\hat{\mathbf{Y}} = \mathbf{HY} \implies \hat{Y}_i = \sum_{j=1}^n h_{ij} Y_j = h_{i1} Y_1 + h_{i2} Y_2 + \dots + h_{in} Y_n$$

Note that
$$\sum_{i=1}^{n} h_{ij} = 1$$

- Thus h_{ii} is a measure of how much Y_i is contributing to the prediction \hat{Y}_i
- Cases with large leverages have the potential to "pull" the regression equation toward their observed Y-values.

Leverage values for new observations: $h_{\text{new,new}} = \mathbf{X}_{\text{new}}^{'} (\mathbf{X'X})^{-1} \mathbf{X}_{\text{new}}$

New cases with leverage values larger than those in original dataset are extrapolations

10.4 Identifying Influential Cases

- These data are the Davis data in the car package
- It is clear that observation12 is *influential*
- The model including obs.
 observation 12 does a poor
 job of representing the
 trend
- in the data; The model excluding observation 12 does much better

Influence: Davis Data

Model including all cases

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	25.2662	14.9504	1.69	0.0926
height	0.2384	0.0877	2.72	0.0072

Residual standard error: 14.86

Multiple R-Squared: 0.0359

Model excluding observation #12

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-130.7470	11.5627	-11.31	0.0000		
height	1.1492	0.0677	16.98	0.0000		

Residual standard error: 8.523

Multiple R-Squared: 0.594

Types of Unusual Observations

- Figure (a): UnusualY value has little influence.
- Figure (b): High leverage has no influence
- Figure (c): Combination of discrepancy (unusual Y value) and leverage (unusual X value) results in strong influence.

 When this case is deleted both the slope and intercept change dramatically.

Identifying Influential Cases

- After identifying cases as outlying, we would like to ascertain that these cases are influential, i.e., whether its exclusion causes major changes in the fitted regression function. Three measures:
- Influence on Single Fitted Value (Difference between the fitted values, DFFITS).
 - Influential if |DFFITS| larger than 1 for small to medium data sets, or larger than $2\sqrt{p/n}$ for large data sets.

$$DFFITS_{i} = \frac{\hat{Y}_{i} - \hat{Y}_{i(i)}}{\sqrt{MSE_{(i)}h_{ii}}} = t_{i} \left(\frac{h_{ii}}{1 - h_{ii}}\right)^{1/2}$$

$$\Rightarrow \text{Estimated sd of } \hat{Y}_{i}$$
where $t_{i} = \frac{d_{i}}{s\{d_{i}\}} = \frac{e_{i}}{\sqrt{MSE_{(i)}(1 - h_{ii})}} = \frac{e_{i}\sqrt{n - p - 1}}{\sqrt{SSE(1 - h_{ii}) - e_{i}^{2}}}$

Identifying Influential Cases

• Influence on all fitted values (Cook's Distance)

$$D_{i} = \frac{\sum_{j=1}^{n} (\hat{Y}_{j} - \hat{Y}_{j(i)})^{2}}{pMSE} = \frac{(\hat{\mathbf{Y}} - \hat{\mathbf{Y}}_{(i)})'(\hat{\mathbf{Y}} - \hat{\mathbf{Y}}_{(i)})}{pMSE} = \frac{e_{i}^{2}}{pMSE} \left[\frac{h_{ii}}{(1 - h_{ii})^{2}}\right] = \frac{h_{ii}}{p(1 - h_{ii})} \tilde{e}_{i}^{2}$$

where
$$\tilde{e}_i = \frac{e_i}{\sqrt{MSE(1-h_{ii})}}$$
 is studentized residual;

Problem cases are $D_i > F(0.50; p, n-p)$

• Influence on the Regression Coefficients (DFBETAS).

$$(DFBETAS)_{k(i)} = \frac{b_k - b_{k(i)}}{\sqrt{MSE_{(i)}c_{kk}}} \longrightarrow \text{Estimated sd of } b_k$$

where c_{kk} is the k-th diagonal element of $(\mathbf{X'X})^{-1} = (c_{ij})_{p \times p}$

Problem cases are >1 for small to medium sized datasets, $> 2/\sqrt{n}$ for larger ones.

Body fat Example
$$\hat{Y} = -19.174 + .2224X_1 + .6594X_2$$

	(1)	(2)	(3)		F(30.6; 3,17)		DFBETAS	
4:	e_l	h_{il}	t_l	$(DFFITS)_t$		b ₀	b ₁	b ₂
1	-1.683	.201	7 30	366	.046	305	132	.232
2	3.643	.059	1.534	.384	.046	.173	.115	143 .
3	-3.176	.372	-1.656	-1.273	.490	−.847	1.183	1.067
4	-3.158	.111	-1.348	476	.072	102	294	.196
5	.000	.248	.000	.000	.000	.000	.000	,000
6	361	.129	148	057	.001	.040	.040	044
7	.716	.156	.298	.128	.006	−.078	−. 01 6	.054
8	4.015	.096	1.760	.575	.098	.261	.391	3 3 3
8 9	2.655	.115	1.117	.402	.053	151	295	.247
10	-2.475	.110	-1.034	364	.044	.238	.245	269
11	.336	.120	.137	.051	.001	009	.01,7	003
12	2.226	.109	.923	.323	.035	131 .	.023	.070
13	-3.947	.178	-1.825	851	.212	.119	.592	−.390
14	3.447	.148	1.524	.636	.125	.452	.113	298
15	.571	.333	.267	.189	.013	003	125	.069
16	.642	.095	.25.8	.084	.002	.009	.043	025
17	851	.106	.344	118	.005	.080	.055	− <i>.</i> 076
18	783	.197	.335	166	.010	.132	.07.5	116
19	-2.857	.067	-1.176	315	.032	130	004	.064
20	1.040	.050	.409	.094	.003	.010	.002	003
						<u> </u>		***************************************

Body fat Example $D_i = \frac{\left(\hat{\mathbf{Y}} - \hat{\mathbf{Y}}_{(i)}\right)'\left(\hat{\mathbf{Y}} - \hat{\mathbf{Y}}_{(i)}\right)}{pMSE} = \frac{h_{ii}}{p(1 - h_{ii})}\tilde{e}_i^2$

10.5 Multicollinearity - Variance Inflation Factors

- Problems when predictor variables are correlated among themselves
 - Standard Errors of Regression Coefficients increase when predictors are highly correlated
 - Individual Regression Coefficients are not significant, although the overall model is
 - Point Estimates of Regression Coefficients are wrong sign (+/-)

Original Units for
$$X_1,...,X_{p-1},Y: \boldsymbol{\sigma}^2\{\mathbf{b}\} = \sigma^2(\mathbf{X'X})^{-1}$$

Considering the standardized regression model, we have

Correlation Transformed Values:
$$X_{ik}^* = \frac{1}{\sqrt{n-1}} \left(\frac{X_{ik} - \overline{X}_k}{s_k} \right)$$
 $Y_i^* = \frac{1}{\sqrt{n-1}} \left(\frac{Y_i - \overline{Y}}{s_Y} \right)$
$$(X^*)'X^* = r\chi\chi \qquad \sigma^2 \left\{ \mathbf{b}^* \right\} = \left(\sigma^* \right)^2 \mathbf{r}_{yy}^{-1}$$

Variance Inflation Factor

$$\boldsymbol{\sigma}^{2}\left\{\mathbf{b}^{*}\right\} = \left(\boldsymbol{\sigma}^{*}\right)^{2}\mathbf{r}_{\mathbf{x}\mathbf{x}}^{-1} \qquad \boldsymbol{\sigma}^{2}\left\{b_{k}^{*}\right\} = \left(\boldsymbol{\sigma}^{*}\right)^{2}\left(VIF\right)_{k}$$

where $(VIF)_k$ is the k-th diagonal element of \mathbf{r}_{xx}^{-1}

- It's called variance inflation factor (VIF) for b_k^*
- It can be shown

$$\left(VIF\right)_{k} = \frac{1}{1 - R_{k}^{2}}$$

where R_k^2 is the coefficient of determination when X_k is regressed on the p-2 other X variables.

- For only two predictors, $(VIF)_1 = (VIF)_2 = \frac{1}{1 r_1^2}$
- Think about what happens when $R_k = 0$ and when R_k is close to ± 1 .

$$R_k^2 = 0 \Rightarrow (VIF)_k = 1, \quad R_k^2 = 1 \Rightarrow (VIF)_k = \infty,$$
 $0 < R_k^2 < 1 \Rightarrow (VIF)_k > 1$

Variance Inflation Factor

• VIF value measure how large is the variance relative to what the variance would be if the predictor variables were uncorrelated.

if
$$\max((VIF)_1, ..., (VIF)_{p-1}) > 10$$

or $(\overline{VIF}) = \frac{1}{p-1} \sum_{k=1}^{p-1} (VIF)_k$ is much larger than 1

indicates there is serious multicollinearity problem.

Body fat example: regression with three predictors X1~X3

Variable	b_k^*	(VIF) _k
χ_1	4.2637	708.84
X ₂	-2.9287	564.34
X ₃	-1.5614	104:61

Maximum
$$(VIF)_k = 708.84$$
 $(VIF) = 459.26$

Appendix:

Theory for adding variables

Suppose we have the model

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\epsilon}$$

and want to add the r predictors \mathbf{X}_2 .

Then the model containing X_1 and X_2 can be written

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}.$$

• If the new predictors \mathbf{X}_2 are orthogonal to the old ones $\mathbf{X}_1^T \mathbf{X}_2 = \mathbf{0}$ and

$$\mathbf{X}^T \mathbf{X} = \begin{pmatrix} \mathbf{X}_1^T \mathbf{X}_1 & 0 \\ 0 & \mathbf{X}_2^T \mathbf{X}_2 \end{pmatrix}$$
$$(\mathbf{X}^T \mathbf{X})^{-1} = \begin{pmatrix} (\mathbf{X}_1^T \mathbf{X}_1)^{-1} & 0 \\ 0 & (\mathbf{X}_2^T \mathbf{X}_2)^{-1} \end{pmatrix}.$$

The least squares estimates are

$$\begin{pmatrix} \hat{\boldsymbol{\beta}}_1 \\ \hat{\boldsymbol{\beta}}_2 \end{pmatrix} = \begin{pmatrix} (\mathbf{X}_1^T \mathbf{X}_1)^{-1} & 0 \\ 0 & (\mathbf{X}_2^T \mathbf{X}_2)^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{X}_1^T \mathbf{y} \\ \mathbf{X}_2^T \mathbf{y} \end{pmatrix} = \begin{pmatrix} (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T \mathbf{y} \\ (\mathbf{X}_2^T \mathbf{X}_2)^{-1} \mathbf{X}_2^T \mathbf{y} \end{pmatrix}$$

• When the new predictors are not orthogonal to the old ones, $\mathbf{X}_{1}^{T}\mathbf{X}_{2}\neq\mathbf{0}$, the situation is more complicated.

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$$

$$= \mathbf{X}_1 \boldsymbol{\beta}_1 + (\mathbf{H}_1 + \mathbf{I} - \mathbf{H}_1) \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}$$

$$= \mathbf{X}_1 \boldsymbol{\theta} + (\mathbf{I} - \mathbf{H}_1) \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon},$$

where

The matrices \mathbf{X}_1 and $(\mathbf{I} - \mathbf{H}_1)\mathbf{X}_2$ are orthogonal, so estimates of $\boldsymbol{\theta}$ and $\boldsymbol{\beta}_2$ can be obtained separately, as above:

$$\hat{\boldsymbol{ heta}} = (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T \mathbf{y}$$

$$\boldsymbol{\hat{\beta}}_2 = [\mathbf{X}_2^T (\mathbf{I} - \mathbf{H}_1) \mathbf{X}_2]^{-1} \mathbf{X}_2^T (\mathbf{I} - \mathbf{H}_1) \mathbf{y}.$$

we see that $\hat{\beta}_2$ is the result of regressing one set of residuals, $(\mathbf{I} - \mathbf{H}_1)\mathbf{y}$ on another $(\mathbf{I} - \mathbf{H}_1)\mathbf{X}_2$. And

$$\boldsymbol{\hat{\beta}}_1 = \boldsymbol{\hat{\theta}} - (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T \mathbf{X}_2 \boldsymbol{\hat{\beta}}_2 \ = [\mathbf{X}_1^T \mathbf{X}_1]^{-1} \mathbf{X}_1^T (\mathbf{y} - \mathbf{X}_2 \boldsymbol{\hat{\beta}}_2).$$

Derivations for case deletion

- A trick is to delete the *i*th case by adding its indicator, \mathbf{u}_i as a new predictor in the model!
- Let $u_{ij} = 1$ for j = i and $u_{ij} = 0$ for $j \neq i$.

$$Y_{j} = \beta_{0} + \beta_{1}X_{j1} + ... + \beta_{p-1}X_{j,p-1} + \gamma u_{ij} + \varepsilon_{j}, \quad j = 1, 2, \dots, n$$

Consider the expanded model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}_i \boldsymbol{\gamma} + \boldsymbol{\epsilon}.$$

• The sum of squares function is

$$SSE(\beta, \gamma) = \sum_{i \neq i}^{n} (y_i - \mathbf{x}_i^T \beta)^2 + (y_i - \mathbf{x}_i^T \beta - \gamma)^2.$$

- The deleted estimate for β minimizes the first term, and is based on all cases but the *i*th.
- Denote these case deleted estimates $\hat{\beta}_{(i)}$.
- ullet The estimate for γ makes the second term zero, and is

$$\hat{\gamma} = y_i - \mathbf{x_i}^T \hat{\boldsymbol{\beta}}_{(i)}$$

the deleted residual, $e_{(i)}$, formed using the prediction of $E[y_i]$ without case i.

• Using the theory developed for adding variables

$$\hat{\gamma} = [\mathbf{u}_i^T (\mathbf{I} - \mathbf{H}) \mathbf{u}_i]^{-1} \mathbf{u}_i^T (\mathbf{I} - \mathbf{H}) \mathbf{y} = \frac{e_i}{1 - h_{ii}} = e_{(i)}.$$

$$\hat{\beta}_{(i)} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{y} - \mathbf{u}_i \frac{e_i}{1 - h_{ii}}) = \hat{\beta} - (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_i \frac{e_i}{1 - h_{ii}}.$$

• When $\gamma=0$, the model is reduced to

$$Y_{j} = \beta_{0} + \beta_{1}X_{j1} + ... + \beta_{p-1}X_{j,p-1} + \varepsilon_{j}, \quad j = 1, 2, \dots, n$$

Then $SSR(u_i \mid \mathbf{X}) = SSE(\text{Reduced}) - SSE(\text{Full}) = SSE - SSE_{(i)}$

• The partial determination coefficient of

$$R_{u_i|\mathbf{X}}^2 = \frac{\mathbf{u}_i^T(\mathbf{I} - \mathbf{H})\mathbf{Y}}{\sqrt{\mathbf{u}_i^T(\mathbf{I} - \mathbf{H})\mathbf{u}_i \cdot \mathbf{Y}^T(\mathbf{I} - \mathbf{H})\mathbf{Y}}} = \frac{\mathbf{u}_i^T\mathbf{e}}{\sqrt{(1 - h_{ii})SSE}} = \frac{e_i}{\sqrt{(1 - h_{ii})SSE}}$$

where $R_{u_i|X}$ is also the Pearson correlation two set of residuals, $(\mathbf{I} - \mathbf{H})\mathbf{u}_i$ and $(\mathbf{I} - \mathbf{H})\mathbf{Y}$.

$$R_{u_i \mid \mathbf{X}} = \frac{SSR(u_i \mid \mathbf{X})}{SSE(\mathbf{X})} = \frac{SSE - SSE_{(i)}}{SSE}$$

Therefore

$$SSE_{(i)} = SSE - SSR(u_i \mid \mathbf{X}) = SSE - R_{u_i \mid \mathbf{X}}^2 SSE = SSE - \frac{e_i^2}{1 - h_{ii}}$$

R code

```
#####Body fat example
dat = read.table('CH07TA01.txt')
X1 = dat[,1]; X2 = dat[,2]; X3 = dat[,3]; Y = dat[,4]
fit = lm(Y\sim X1+X2); fit
n = nrow(dat)
###Added Variable Plot
par(mfrow=c(1,2))
fit2 = lm(Y \sim X2); fit12 = lm(X1 \sim X2)
fit1 = lm(Y \sim X1); fit21 = lm(X2 \sim X1)
plot(fit12$resi,fit2$resi, main='Added Variable Plot for X1')
abline(lm(fit2$resi~fit12$resi)); lm(fit2$resi~fit12$resi)
plot(fit21$resi,fit1$resi, main='Added Variable Plot for X2')
abline(lm(fit1$resi~fit21$resi)); lm(fit1$resi~fit21$resi)
```

```
###Examine outlying Y observations
par(mfrow=c(1,1)); plot(fit)
p = 3
elist = fit resi; SSE = sum(elist^2)
X = cbind(1,X1,X2)
hlist = diag(X\% *\% solve(t(X)\% *\% X)\% *\% t(X))
tlist = elist*((n-p-1)/(SSE*(1-hlist)-elist^2))^{(1/2)}
cbind(elist,hlist,tlist)
\max(abs(tlist)); qt(0.9975,n-p-1)
###Identifying outlying X observations
2*p/n
hlist ##Case 3 and 15 larger than 2p/n
```

```
###Identifying influential cases
MSE = SSE/(n-p)
DFFITS = tlist * (hlist/(1-hlist))^0.5
Dlist = elist^2 / p / MSE*hlist / ((1-hlist)^2)
clist = diag(solve(t(X)\%*\%X))
b = fit coef; DFBETAS = matrix(0,n,p)
for (i in 1:n) {
   fiti = lm(Y[-i] \sim X1[-i] + X2[-i])
   bi = fiti$coef
   MSEi = sum(fiti\$resi^2)/(n-1-p)
   DFBETAS[i,] = (b-bi)/sqrt(MSEi*clist) }
cbind(Dlist, DFBETAS)
###VIF
Xmat = cbind(X1,X2,X3); VIF3 = diag(solve(cor(Xmat))); VIF3
Xmat = cbind(X1,X2); VIF2 = diag(solve(cor(Xmat))); VIF2
```

Homework

• P415 10.9 (a)~(c), (g) 10.13