Tracing the same curve in different ways

Suppose $\vec{r}(t)$ traces a particular space curve. The $\vec{r}(f(t))$ traces the same curve, as long as the range of f is the domain of $\vec{r}(t)$. However, the curve will not be traced at the same pace.

ex

this traces a line through the origin, we can make a table of points on this line by choosing values of t.

+	×(t)	, y(t)	7(t)	
-7	-2	-4	-6	
- 1	- 1	-2	-3	
٥	0	0	0	
1	1	7	3	
2	2	14	16	l
	1	1		

Now, we can trace the same curve at a different pace if we say f(t)=2t and consider $\Gamma(f(t))$.

Now we have the table of values

+ |x(f(x))|, y(f(x))| = (f(x))|

-2 | -4 | -8 | -12 |

-1 | -2 | -4 | -6 |

0 | 0 | 0 | 0

1 | 2 | 4 | 6 |

2 | 4 | 8 | 12

If we compare both tables, we see that the same line is traced, but at a different pace.

	+	×(t)	, y(t)	7(t)	
4 writer of time	-2	-2	-4	-6	
	- 1	- 1	-2	-3	
	٥	0	0	0	
	Ì	1	7	3	
	2	2	14	16	(

in the first table, we traverse the low from (-2,-4,-6) to (2,4,6) in 4 write of time

	+	x (fu)	, y(f(t))	₹(f(+))	
	-2	-4	-8	-12	
	-1	-2	-4	-6	
Zunits 64 time	٥	0	0	0	
	١	2	\ 4	6	
	2	4	8	12	1

in the second table, the same trip takes only 2 units of time

Note how these observations relate to our discussion of Chit review T/F #1 and T/F#12

It we still needed to convince arrielves that $(t^3,2t^3,3t^3)$ defined a line, we can look at three arbitrary points and were our tooks to determine they are an the same line.

 $P(t_1^3, 2t_1^3, 3t_1^3)$ $Q(t_2^3, 2t_2^3, 3t_3^3)$ $R(t_3^3, 2t_3^3, 3t_3^3)$

PQ =(t2-t3, 2(t2-t3), 3(t2-t3)) =(t2-t3)(1,2,3)

 $\overrightarrow{QR} = (t_3^3 - t_2^3) \times ($

Now, PQ x QQ = (t2-63)<1,2,3> x (t3-63)<1,2,3>

6.3.1.2 = $(t_2^3 - t_1^2)(t_3^3 - t_2^3)(\langle 1, 2, 3 \rangle \times \langle 1, 2, 3 \rangle)$ = $(t_2^3 - t_1^2)(t_3^3 - t_2^3)(\langle 1, 2, 3 \rangle \times \langle 1, 2, 3 \rangle)$

So PQ and QR are parallel, and they are in the direction of the line containing P and Q and the line containing Q and R, respectively. $\leq P$, Q, and R are colinear.