$_{86}^{220} \, \mathrm{Rn}_{134}$

1 Decay Scheme

Rn-220 mainly decays by alpha emission to the Po-216 fundamental level. Le radon 220 se désintègre par émission alpha principalement vers le niveau fondamental du polonium 216.

2 Nuclear Data

2.1 α Transitions

	Energy keV	Probability × 100	F
$lpha_{0,1} lpha_{0,0}$	5854,91 (14)	0,118 (15)	3,08
	6404,67 (10)	99,882 (15)	1

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M+$	$lpha_T$
$\gamma_{1,0}(\mathrm{Po})$	549,76 (4)	0,118 (15)	E2	0,0184 (6)	0,0057 (2)	0,00190 (6)	0,0260 (8)

3 Atomic Data

3.1 Po

3.1.1 X Radiations

		Energy keV		Relative probability
${ m X_K}$				
11	$K\alpha_2$	76,864		60
	$K\alpha_1$	79,293		100
	$K\beta_3$	89,256	}	
	$\mathrm{K}eta_1$	89,807	}	
	$\mathrm{K}eta_5''$	90,363	}	34,43
	$\mathrm{K}eta_2$	92,263	}	
	$K\beta_4$	92,618	} } }	10,71
	$KO_{2,3}$	92,983	}	
${ m X_L}$				
	$\mathrm{L}\ell$	$9,\!658$		
	$L\alpha$	$11,\!016-11,\!13$		
	${ m L}\eta$	12,085		
	$\mathrm{L}eta$	12,823 - 13,778		
	${ m L}\gamma$	$15{,}742-16{,}213$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL	58,98 - 65,21	100
KLX KXY	71,90 - 79,29 $84,8 - 93,1$	55 8
Auger L	$5,\!43 - 10,\!93$	3400

4 α Emissions

	Energy keV	Probability × 100
$lpha_{0,1} lpha_{0,0}$	5748,46 (14) 6288,22 (10)	0,118 (15) 99,882 (15)

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
$\mathrm{e_{AL}}$	(Po)	5,43 - 10,93	0,00155 (12)
e _{AK}	(Po) KLL KLX KXY	58,98 - 65,21 71,90 - 79,29 84,8 - 93,1	0,000074 (13) } }

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
$egin{array}{c} XL \ XKlpha_2 \ XKlpha_1 \ \end{array}$	(Po) (Po) (Po)	9,658 - 16,213 $76,864$ $79,293$		0,00096 (7) 0,00060 (8) 0,00100 (14)	} Κα }
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{\prime\prime} \end{array}$	(Po) (Po) (Po)	89,256 89,807 90,363	} } }	0,00034 (5)	$K'\beta_1$
$\begin{array}{c} XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Po) (Po) (Po)	92,263 92,618 92,983	} } }	0,000107 (15)	$K'\beta_2$

6.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$\gamma_{1,0}(Po)$	549,76 (4)	0,115 (15)

7 Main Production Modes

 $Th - 228 \alpha decays()$

8 References

- A.G. WARD. Proc. Roy. Soc. (London) 181A (1942) 183 (Half-life)
- H. SCHMIED, R.W. FINK, B.L. ROBINSON. J. Inorg. Nucl. Chem. 1 (1955) 342 (Half-life)
- L. MADANSKY, F. RASETTI. Phys. Rev. 102 (1956) 464 (Gamma-ray emission probabilities)
- H. RODENBUSCH, G. HERRMANN. Z. Naturforsch. 16a (1961) 577 (Half-life)
- R.J. WALEN. Compt. Rend. Ac. Sci. (Paris) 255 (1962) 1604 (Alpha emission energies, Alpha emission probabilities)
- J.E. GINDLER, D.W. ENGELKEMEIR. Radiochim. Acta 2 (1963) 58 (Half-life)
- H. DIAMOND, J.E. GINDLER. J. Inorg. Nucl. Chem. 25 (1963) 143 (Half-life)
- J.B. HURSH. J. Inorg. Nucl. Chem. 28 (1966) 2771 (Half-life)
- J. DALMASSO. Report FRNC-TH-441 (1972) (Gamma-ray emission probabilities)
- J. DALMASSO. Comp. Rend. Acad. Sci. (Paris) 277B (1973) 467 (Gamma-ray emission probabilities)
- W. KURCEWICZ, N. KAFFRELL, N. TRAUTMANN, A. PLOCHOCKI, J. ZYLICZ, A. MATUL, K. STRYCZNIEWICZ. Nucl. Phys. A289 (1977) 1 (Gamma-ray emission probabilities)
- F. RÖSEL, H.M. FRIES, K. ALDER, H.C. PAULI. At. Data. Nucl. Data Tables 21 (1978) 291 (Internal conversion coefficients)
- R.J. GEHRKE, V.J. NOVICK, J.D. BAKER. Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities)
- G. AUDI, A.H. WAPSTRA. Nucl. Phys. A595 (1995) 409 (Q value)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (K-x ray, L-x ray, Auger electrons)
- A. ARTNA-COHEN. Nucl. Data Sheets 80 (1997) 157 (Nuclear structure, energies)
- E. SCHÖNFELD, G. RODLOFF. PTB Report 6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB Report 6.11-1999-1 (1999) (K-x ray)

 γ Emission probabilities per 100 disintegrations

