Report on the Experiment

No. 10

Subject ディジタル論理回路演習 I:入出力編

Date 2019. 07. 09

Weather 晴れ Temp 25.5 °C Wet 48 %

Class E3

Group 6

Chief

Partner 大橋 りさ

二重谷 光輝

森 和也

DANDAR TUGULDUR

No 15

Name 小畠 一泰

Kure National College of Technology

1 目的

論理回路の入出力について、回路シミュレータ TINA を使用して演習を行うことで、論理回路の基礎とシミュレータの操作方法を習得する.

2 課題

2.1 プルアップ抵抗を用いた入力回路

図1:プルアップ抵抗を用いた入力回路

表 1: 真理值表

SW1	SW2	L1
OFF	OFF	0
ON	OFF	1
OFF	ON	1
ON	ON	1

2.2 プルダウン抵抗を用いた入力回路

図 2: プルダウン抵抗を用いた入力回路

表 2: 真理値表

SW1	SW2	L1
OFF	OFF	1
ON	OFF	1
OFF	ON	1
ON	ON	0

2.3 High-Low スイッチ入力回路

SW-HL1 L3 U5 SN7400 SW-HL2 L3

図 3: High-Low スイッチ入力回路

表 3: 真理値表

SW1	SW2	L1
OFF	OFF	1
ON	OFF	1
OFF	ON	1
ON	ON	0

2.4 ソースロード出力

図 4: ソースロード出力

表 4: 真理值表

SW1	SW2	L1
OFF	OFF	1
ON	OFF	1
OFF	ON	1
ON	ON	0

2.5 シンクロード出力

図 5: シンクロード出力

表 5: 真理值表

SW1	SW2	L1
OFF	OFF	0
ON	OFF	0
OFF	ON	0
ON	ON	1

2.6 オープンコレクタ型

図 6: オープンコレクタ型

表 6: 真理値表

SW1	SW2	L1
OFF	OFF	1
ON	OFF	1
OFF	ON	1
ON	ON	0

2.7 図 1 を NOR ゲートに置き換えた回路

図 7: 図 1 を NOR ゲートに置き換えた回路

表 7: 真理値表

SW1	SW2	L1
OFF	OFF	0
ON	OFF	1
OFF	ON	1
ON	ON	1

2.8 図 ² を NOR ゲートに置き換えた回路

図 8: 図 2 を NOR ゲートに置き換えた回路

表 8: 真理值表

SW1	SW2	L1
OFF	OFF	1
ON	OFF	0
OFF	ON	0
ON	ON	0

2.9 図 3 を NOR ゲートに置き換えた回路

図 9: 図 3 を NOR ゲートに置き換えた回路

表 9: 真理値表

SW1	SW2	L1
OFF	OFF	1
ON	OFF	0
OFF	ON	0
ON	ON	0

2.10 図 4 を NOR ゲートに置き換えた回路

SW-HL11 H U16 SN7402 R12 330 LED4 CQX35A SW-HL12 H

図 10: 図 4 を NOR ゲートに置き換えた回路

表 10: 真理値表

SW1	SW2	L1
OFF	OFF	1
ON	OFF	0
OFF	ON	0
ON	ON	0

2.11 図 5 を NOR ゲートに置き換えた回路

SW-HL13 H U17 SN7402 R13 330 SW-HL14 LED5 CQX35A

図 11: 図 5 を NOR ゲートに置き換えた回路

表 11: 真理値表

SW1	SW2	L1
OFF	OFF	0
ON	OFF	1
OFF	ON	1
ON	ON	1

2.12 7 セグメント LED 回路

図 12: 7セグメント配置

図 13: 7 セグメント LED 回路

表 12: スイッチパターン

a	b	c	d	e	f	g	DP	数字
0	0	0	0	0	0	1	1	0
1	0	0	1	1	1	1	1	1
0	0	1	0	0	1	0	1	2
0	0	0	0	1	1	0	1	3
1	0	0	1	1	0	0	1	4
0	1	0	0	1	0	0	1	5
0	1	0	0	0	0	0	1	6
0	0	0	1	1	0	1	1	7
0	0	0	0	0	0	0	1	8
0	0	0	0	1	0	0	1	9
0	0	0	1	0	0	0	1	A
1	1	0	0	0	0	0	1	b
0	1	1	0	0	0	1	1	\mathbf{C}
1	0	0	0	0	1	0	1	d
0	1	1	0	0	0	0	1	\mathbf{E}
0	1	1	1	0	0	0	1	F

2.13 デコーダ IC を用いた回路

図 14: デコーダ IC を用いた回路

表 13: スイッチパターン

A	В	С	D	数字
0	0	0	0	0
1	0	0	0	1
0	1	0	0	2
1	1	0	0	3
0	0	1	0	4
1	0	1	0	5
0	1	1	0	6
1	1	1	0	7
0	0	0	1	8
1	0	0	1	9

2.14 HEX 表示器

図 15: HEX 表示器

表 14: スイッチパターン

0	1	2	3	表示
0	0	0	0	0
1	0	0	0	1
0	1	0	0	2
1	1	0	0	3
0	0	1	0	4
1	0	1	0	5
0	1	1	0	6
1	1	1	0	7
0	0	0	1	8
1	0	0	1	9
0	1	0	1	A
0	0	1	1	\mathbf{C}
1	0	0	1	d
0	1	1	1	\mathbf{E}
1	1	1	1	\mathbf{F}
1	1	0	1	b

2.15 デコーダ 7442

図 16: デコーダ 7442

表 15: スイッチパターン

A	В	С	D	結果
0	0	0	0	0 のみ消灯
1	0	0	0	1 のみ消灯
0	1	0	0	2 のみ消灯
1	1	0	0	3 のみ消灯
0	0	1	0	4 のみ消灯
1	0	1	0	5 のみ消灯
0	1	1	0	6 のみ消灯
1	1	1	0	7 のみ消灯
0	0	0	1	8 のみ消灯
1	0	0	1	9 のみ消灯

3 研究

7 セグメント LED にはアノードコモンとカソードコモンがある. その理由を説明せよ.

一般的な LED はアノードとカソードの 2 端子からなる. 7 セグメント LED では 7 セグメント +DP 部分で $(7+1)\times 2=16$ となる. しかしアノードコモン (カソードコモン) にするとコモン端子 + 制御端子の 8 ピンとなるので, ピン数が少なくて済み, 効率よく使用できるようになる.

参考文献

• 菅博, 田中誠ほか:増補改訂版-図説電子デバイス, 産業図書 (2011)