Recursión EST-1132 / Estructuras Discretas

Juan Zamora O.

Otoño 2023

Introducción

Introducción

- En ocasiones es dificil definir una función u objeto de manera explícita
- Alternativa: Definición en función de sí mismo
- Siempre tiene dos partes: Base y parte recursiva
 - La base está compuesta por casos simples explícitamente definidos
 - La parte recursiva generaliza sobre nuevos casos definidos en función de otros anteriores

Secuencias definidas recursivamente

Secuencias definidas recursivamente

- Es una lista inifinita de objetos enumerados en algún orden
- lacktriangle Denominemos al k-ésimo objeto como S(k)

$$S(1), S(2), \dots S(k), \dots$$

Una secuencia definida recursivamente cuando S(k) se define en función de alguno(s) de lo(s) k-1 previos objetos

Ejemplo

Considere la siguiente secuencia definida recursivamente

1.
$$S(1) = 1$$

2.
$$S(n) = 2 \cdot S(n-1)$$
, para $n \ge 2$

▶ Podemos verificar que S(2) = 2, S(3) = 4 y luego 8, 16, 32...

Actividad

1.
$$T(1) = 1$$

2. $T(n) = T(n-1) + 3$, para $n \ge 2$

Escriba los primeros 5 valores de la secuencia T

Actividad: Fibonacci

Sugerencia: Revise el siguiente video

- 1. F(1) = 1
- 2. F(2) = 1
- 3. F(n) = F(n-2) + F(n-1), para n > 2
- Escriba los primeros 8 valores de la secuencia F
- Calcule el cuociente entre varios valores sucesivos de F y averigue acerca de la razón dorada

Conjuntos definidos recursivamente

Conjuntos definidos recursivamente

- Previamente, los objetos tenían un orden
- Los conjuntos **no** tienen este ordenamiento
- Se especifican algunos elementos iniciales
- Se provee de una regla para construir nuevos elementos a partir de los ya existentes

Ejemplo

Considere el subconjunto S de los enteros, que se define como

- 1. Paso base: $4 \in S$
- 2. Paso recursivo: Si $x \in S$ e $y \in S$, entonces $x + y \in S$
- Así entonces el conjunto S estará conformado por 4+4=8; 4+8=12; 8+8=16...
- Será el de los múltiplos de 4

Actividad

Considere el conjunto A^* de todas las palabras de largo finito sobre un alfabeto A. Luego, se define recursivamente siguiendo las reglas:

- 1. La palabra sin símbolos (vacía) λ pertenece a A*
- 2. Cualquier símbolo de A pertenece a A*
- 3. Si x e y son palabras en A*, entonces también lo será xy, es decir la concatenación de las palabras x e y
- Sea A = $\{0, 1, \lambda\}$. Si x = 1101 e y = 001, **escriba** las palabras xy, yx y $yx\lambda x$.

Actividad

Entregue una definición recursiva para el conjunto de todas las palabras binarias que se leen de igual manera de derecha a izquierda, que de izquierda a derecha. Por ejemplo, 1001 y 11011.

Solución.

Sea $A = \{0, 1, \lambda\}.$

- 1. λ , 0, 1 \in A*
- 2. Si $x \in A^*$, entonces también 0x0 y 1x1

Operaciones definidas recursivamente

- Ciertas operaciones sobre objetos pueden ser definidas recursivamente
- Por ejemplo, la exponenciación sobre un número real distinto de 0

1.
$$p^0 = 1$$

2. $p^n = (p^{n-1}) \cdot p, \forall n \ge 1$

O la multiplicación de dos enteros m y n

$$1. \quad m(1) = m$$

2.
$$m(n) = m(n-1) + m, \forall n \ge 1$$

Ejemplo

Sea x una palabra en un alfabeto (no es relevante qué alfabeto específico se use para este problema). Entregue una definición recursiva para la operación x^n que representa la concatenación de x con sí misma n veces para $n \geq 1$.

Ejemplo (solución)

Sea x una palabra en un alfabeto (no es relevante qué alfabeto específico se use para este problema). Entregue una definición recursiva para la operación x^n que representa la concatenación de xcon sí misma *n* veces para n > 1.

1.
$$x^0 = x$$

1.
$$x^0 = x$$

2. $x^n = x^{n-1}x, \forall n \ge 1$

Algoritmos definidos recursivamente

- ► En palabras simples, es un programa que en su cuerpo tiene llamadas a sí mismo
- Recordemos la secuencia

1.
$$S(1) = 2$$

2.
$$S(n) = 2 \cdot S(n-1)$$
, para $n \ge 2$

► Calcule S(2), S(3), S(4) y S(5).

ightharpoonup Considere un programa que evalua S(n)

```
Procedimiento S(n un nro entero)$
 Si n = 1 entonces
    retornar 2
 Sino
    i = 2
   val = 2
   mientras i <= n hacer
      val = 2 * val
      i = i + 1
    fin de bloque mientras
```

retornar val fin de bloque Si fin de procedimiento

 Otro enfoque consiste en una definición mucho más corta (Observe)

```
Procedimiento S(n un nro entero)$
  Si n = 1 entonces
    retornar 2
  Sino
    retornar 2 * S(n-1)
  fin de bloque Si
fin de procedimiento
```

Analice como se calcula S(3) con este código.

Ventajas relativas en algoritmos recursivos e iterativos

- Recursividad ofrece (en ocasiones) una manera más natural para muchos problemas
- Recursividad genera procedimientos más cortos
- Operación de alg. recursivo es más compleja
- Ejecución de Alg. recursivo consume más memoria

Actividad

Recuerde la secuencia antes vista y escriba una función recursiva para calcular $\mathcal{T}(n)$

1.
$$T(1) = 1$$

2.
$$T(n) = T(n-1) + 3$$
, para $n \ge 2$

Actividad

Recuerde la operación recursiva par multiplicar dos números y construya un pseudocódigo para ella.

Conclusiones

- Muchos problemas pueden ser analizados más naturalmente bajo una perspectiva recursiva
- ► El "secreto" de una recursividad efectiva está en entregarle a cada llamada una versión más pequeña o simple del problema
- Nunca olvidar la definición del caso base... todo depende de ello!

Relaciones de Recurrencia

Imagine que una persona deposita \$10.000 en una cuenta de ahorro de un banco con un %11 de interés anual compuesto. ¿Cuanto se habrá reunido en la cuenta después de 30 años?

Anteriormente, construímos procedimientos para calcular

1.
$$S(1) = 2$$

1.
$$S(1) = 2$$

2. $S(n) = 2 \cdot S(n-1)$, para $n \ge 2$

Luego, al calcular otros valores de la función

1.
$$S(1) = 2^1$$

2.
$$S(2) = 2^2$$

1.
$$S(1) = 2^1$$

2. $S(2) = 2^2$
3. $S(3) = 2^3$

4.
$$S(4) = 2^4$$

$$n. \quad S(n) = 2^n$$

Ahora vemos que basta con calcular S(n) para cualquier número **sin** necesidad de tener que obtener los n-1 pasos previos.

```
Caso base: S(4) = 2

Supernamos: S(k) = 2^{kk}

bego pobar que S(k+1) = 2^{kk+1}

c: S(k+1) = \lambda \cdot S(k) reade definició = 2 \cdot 2^{kk} reade his indifferent S(k+1) = 2^{k+1}
```

Soluciones cerradas

- Soluciones como la del ejemplo permiten obtener directamente cualquier valor
- Se denominan soluciones cerradas de una relación de recurrencia
- ► Entonces, para nuestro ejemplo, la solución $S(n) = 2^n$ resuelve la relación de recurrencia $S(n) = 2 \cdot S(n-1)$

Relaciones lineales de 1er orden

Una relación S(n) es lineal si sus valores tienen la forma

$$S(n) = f_1(n)S(n-1) + f_2(n)S(n-2) + \ldots + f_k(n)S(n-k) + g(n)$$

Las fs y g son expresiones que involucran solamente a n más otras constantes

Caracterizando las relaciones lineales de 1er orden

- Revisaremos ahora qué condiciones considerar para
 - ► Las fs
 - ightharpoonup La dependencia de S(n) de sus valores anteriores (orden)
 - ▶ g
- ▶ Dependiendo de estas condiciones estudiaremos ciertos tipos de soluciones para cada tipo de relación

Relaciones de 1er orden con coefs. constantes

- La relación tendrá coeficientes constantes si todas las fs lo son
- ▶ Será de 1er orden si S(n) solo depende de S(n-1)
- Entonces, podemos continuar caracterizando de manera general una relación lineal de 1er orden con coeficientes constantes como

$$S(n) = cS(n-1) + g(n)$$

Por último, la relación será **homogenea** si g(n) = 0 para cualquier valor de n.

- Primer orden \Rightarrow Se requiere de un valor inicial para la base S(1) u otro.
- ▶ Entonces, de manera general para este tipo de relaciones

$$S(n) = cS(n-1) + g(n)$$

$$= c[cS(n-2) + g(n-1)] + g(n)$$

$$= c^2S(n-2) + cg(n-1) + g(n)$$

$$= c^2[cS(n-3) + g(n-2)] + cg(n-1) + g(n)$$

$$= c^3S(n-3) + c^2g(n-2) + cg(n-1) + g(n)$$

$$\vdots$$

Luego de k expansiones queda

$$S(n) = c^{k}S(n-k) + c^{k-1}g(n-(k-1)) + \ldots + cg(n-1) + g(n)$$

Si esta secuencia tiene un valor base en 1, entonces la expansión terminará cuando n-k=1 o k=n-1

$$S(n) = c^{n-1}S(1) + c^{n-2}g(2) + \dots + c^{1}g(n-1) + c^{0}g(n)$$
$$S(n) = c^{n-1}S(1) + \sum_{i=2}^{n} c^{n-i}g(i)$$

Estamos muy cerca de una solución, pero deberemos **siempre** encontrar una expresión para la sumatoria

- Por ejemplo, cuando g(n) = 0 queda solamente la primera parte de la solución (caso más simple denominado **homogeneo**)
- ► Ejemplo, volvamos a

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1)$, para $n \ge 2$

- Es lineal, de primer orden y con coefs. ctes.
- Entonces.

$$S(n) = 2^{n-1}(2) + \sum_{i=2}^{n} 0 = 2^{n}$$

En síntesis

- 1. Caracterizar la relación y verificar calce con expresión general
- 2. Encontrar el valor para c usando el valor inicial S(1)
- 3. Encontrar (si fuera necesario) un valor sintetizado para la sumatoria y obtener la expresión final de la solución

$$S(n) = c^{n-1}S(1) + \sum_{i=2}^{n} c^{n-i}g(i)$$

$$C - S(n-1) + a_{j}(n)$$
Enumber $C - \gamma - q(n)$

Ejercicio:

Encuentre una solución para la relación

$$S(n)=2S(n-1)+3, \ \forall n\geq 2$$

sujeta al paso base S(1) = 4.

Con la forma general vemos que
$$C = 2$$
 y $g(m) = 3$

liego sustituyendo en forma general: $S(n) = 2^{m-1} \cdot 4 + \sum_{i=2}^{m} 2^{m-i} \cdot 3$

Recorder identidad vista en Inducción:
$$1 + 2^{1} + 2^{2} + 2^{3} + ... + 2^{m} = 2^{m+1} - 1$$
 $i = 2^{m+1} + 3 \left[2^{m-2} + 2^{m-3} + ... + 2^{m} + 2^{m-3} + ... + 2^{m} + 2^{m-3} + ... + 2^{m} + 2^{m}$

Apricando ...
$$S(5) = 2^{6} + 3(2^{4} - 1)$$

$$= 64 + 45 = 109,$$
36

Encontrar solución cerrade para · T(n) = T(n-1) + (n+1), pare n > 2 con T(1) = 2 c=1 y g(m) = m+1 $= 2 + \sum_{i=1}^{n} (i+1) = 2 + (3+4+...+(n+1))$ $= \frac{(n+1)(n+2)}{2} - 1$ • $A(n) = 2 \cdot A(n-1) + 1$, n > 1 cm A(2) = 1C=2, g(n)=1. $\rightarrow A(n)=2^{n-1}*A(1)+\sum_{i=2}^{m}2^{n-i}*g(n)$ $= 2^{m-1} + \left(2^{m-2} + 2^{m-3} + ... + 1\right)$ Torres de Hanai $A(n) = 2^{n-1} + (2^{n-1} - 1) = 2^{n} - 1$ Ville VIII VIII

> No pre le haber un disco mas Fine mente, se Nevan los (n-s) discus de @ a @ an grante encima de otro mas pequemo. A(n-1) movidas. Entoncan, se tienen [A(n-1) + A(n-1)+1]

S:
$$A(n)$$
 as la pobleción en $\frac{\pi}{n}$ años:
$$A(n) = 1,01 \ A(n-1) + 100,000 , m > 0 , A(0) = 100,000.000$$

$$A(n) = 1,01 \ A(n-1) + 100.000 \ , n > 0 \ , A(0) = 100.000$$

$$C = 1,01 \ g(n) = 100.000$$

$$A(n) = 1,01 \ , A(0) + \sum_{i=1}^{m} 1.01^{m-i} + 100.000 \ , a = 0$$

$$C = 1,01$$
 $g(n) = 100.000$
 $A(n) = 1,01$, $A(0) + \sum_{i=1}^{m} 1.01^{m-i} = 100.000$ $g^{(n)} \cdot \frac{C}{C}$

= 110 462 317 //

$$C = 1,01$$
 $g(n) = 100.000$
 $A(n) = 1,01$, $A(0) + \sum_{i=1}^{m} 1.01^{m-i} + 100.000$ $g(n) = \frac{1}{2}$

= 1.01^{-1} $(0) + 100.000 \times 100^{-1}$ $= 1_{10} r^{m} \cdot 100.000 + 100.000 \cdot \left(\frac{1-1_{10} r^{m}}{r}\right)$ $A(n) = 1.01^n \cdot 1.00.000 + 1.000.7(1-0.0^n)$ = \ A(10) = 1,010 * 100,0000 + 1000 = (1-1,010) = 110462212,5+005

Relaciones lineales de 2do orden

- ► En una relación de 2do orden el término *n*-ésimo depende de los dos términos anteriores.
- Por lo tanto, este tipo de relaciones tiene la forma

$$S(n) = f_1(n)S(n-1) + f_2(n)S(n-2) + g(n)$$

 Consideraremos aquellas relaciones lineales homogeneas y con coeficientes constantes.

$$S(n) = c_1 S(n-1) + c_2 S(n-2)$$

Soluciones

Buscamos soluciones de la forma

ciones de la forma
$$S(n) = r^n \text{ , con } r \text{ constante}$$

$$S(n) = r^n = c_1 r^{n-1} + c_2 r^{n-2}$$
Stará dada por $r^n - c_1 r^{n-1} - c_2 r^{n-2} = 0$ y

- Por lo tanto $S(n) = r^n = c_1 r^{n-1} + c_2 r^{n-2}$
- Esta solución estará dada por $r^n c_1 r^{n-1} c_2 r^{n-2} = 0$ y luego de dividir ambos lados por r^{n-2} queda

$$r^2 - c_1 r - c_2 = 0$$

A esta expresión se le denomina **Ecuación característica** de la relación

- Esta ecuación tendrá 2 raices: r₁ y r₂
- ➤ A las raices de esta ecuación se le denominan raíces características

Estrategia propuesta:

Lograremos caracterizar La solución cerrada de la relación mediante r₁ y r₂

$$C_0 S_n - c_1 S_{n-1} - c_2 S_{n-2} = 0$$

1.
$$S(n) = c_1 S(n-1) + c_2 S(n-2)$$

$$2. S(n) = r^n$$

3. Luego,
$$r^n=c_1r^{n-1}+c_2r^{n-2}$$
4. Finalmente, hay que resolver $r^2-c_1r-c_2=0$

- 5. Podemos agregar que $r_1^2 = (c_1r_1 + c_2)$ y $r_2^2 = (c_1r_2 + c_2)$

Luego, la solución tendrá la forma

$$S(n) = \alpha_1 r_1^{n-1} + \alpha_2 r_2^{n-2}$$

(probaremos informalmente esto a continuación...)

Acabamos de afirmar que $S(n) = \alpha_1 r_1^n + \alpha_2 r_2^n$

$$c_{1}S(n-1) + c_{2}S(n-2) = c_{1}(\alpha_{1}r_{1}^{n-1} + \alpha_{2}r_{2}^{n-1}) + c_{2}(\alpha_{1}r_{1}^{n-2} + \alpha_{2}r_{2}^{n} + \alpha_{2}r_{2}^{n} + \alpha_{2}r_{2}^{n-1}) + c_{2}(\alpha_{1}r_{1}^{n-2} + \alpha_{2}r_{2}^{n} + \alpha_{2}r_{2}^{n-2}r_{2}) + c_{2}(\alpha_{1}r_{1}^{n-2} + \alpha_{2}r_{2}^{n-2} + \alpha_{2}r_{2}^{n} + \alpha_{2}r_{2}^{n} + \alpha_{2}r_{2}^{n} + \alpha_{2}r_{2}^{n}$$

Por lo tanto

$$S(n) = c_1 S(n-1) + c_2 S(n-2) = \alpha_1 r_1^n + \alpha_2 r_2^n$$

Ojo Hemos supuesto hasta ahora que $r_1 \neq r_2$

La descomposición anterior también puede hocergo si se considera la solvión que si se parece ala relación flomo. Le 1er orden: $S(n) = C^{n-2}$. S(1) $S(m) = \alpha \cdot r^{m-1}$ $S(M-1) = C \cdot L_{M-2} \cdot \cdots$ donde dary Cy~S(1) $S(m) = c_{1} \left(d_{1} \gamma_{1}^{m-1} + d_{2} \gamma_{2}^{m-1} \right) + c_{2} \left(d_{1} \gamma_{1}^{m-2} + d_{2} \gamma_{2}^{m-2} \right)$ de esta forma $= d_1 c_1 f_1^{n-1} + d_2 c_1 v_2^{n-1} + d_1 c_2 f_1^{n-2} + d_2 c_2 f_2^{n-2}$ $= d_1 \left(c_1 Y_1^{m-1} + c_2 Y_1^{m-2} \right) + d_2 \left(c_1 Y_2^{m-1} + c_2 Y_2^{m-2} \right)$

$$= d_{1} \left(C_{1} r_{1}^{n-1} + C_{2} r_{1}^{n-2} \right) + d_{2} \left(C_{1} r_{2}^{n-1} + C_{2} r_{2}^{n-2} \right)$$

$$= d_{1} r_{1}^{n-2} \cdot r_{1} \right) + d_{2} r_{2}^{n-2} \left(C_{1} r_{2}^{n-2} \cdot r_{2} \right)$$

$$= d_{1} r_{1}^{n} \left(C_{1} r_{1} + C_{2} \right) + d_{2} r_{2}^{n-2} \left(C_{1} r_{2} + C_{2} \right)$$

$$r_{1}^{n} \qquad r_{2}^{n}$$

$$S(n) = d_{1} r_{1}^{n} + d_{2} r_{2}^{n}$$
To relevante as la department of the same label of the s

del exponente respecto del π . $S(n) = c r^n$ or $S(n) = C r^{n-1}$

da igual.

Ahora solamente nos queda establecer un mecanismo para encontrar α_1 y α_2 .

- 1. Se identifican c_1 y c_2 a partir de la relación entregada.
- 2. Se obtienen las soluciones para $r^2 c_1 r c_2 = 0$
- 3. Se obtienen α_1 y α_2 usando las dos casos iniciales. . . S(0) y S(1)

¿Como?

Reemplazando n=0 y n=1 en $S(n)=\alpha_1r_1^n+\alpha_2r_2^n$

$$S(0) = \alpha_1 + \alpha_2$$

$$S(1) = \alpha_1 r_1 + \alpha_2 r_2$$

Sustituyendo, se llega a que

$$\alpha_1 = \frac{S(1) - S(0)r_2}{r_1 - r_2}$$

У

$$\alpha_2 = S(0) - \frac{S(1) - S(0)r_2}{r_1 - r_2}$$

Mutiplicidad de raíces

Considere la ecuación característica

$$r^2 - c_1 r - c_2 = 0$$

con raíces $r = r_1 = r_2$.

La solución para $S(n) = c_1 S(n-1) + c_2 S(n-2)$ tendrá la forma

$$S(n) = \alpha_1 r^n + \alpha_2 \cdot n \cdot r^n$$

► Los coeficientes se calculan siguiendo el esquema para el caso sin multiplicidad.

► Los coeficientes se calculan siguiendo el esquema para el caso sin multiplicidad. Es decir:

$$S(0) = \alpha_1 r^0 + \alpha_2 \cdot 0 \cdot r^0 = \alpha_1$$

$$S(1) = \alpha_1 r^1 + \alpha_2 \cdot 1 \cdot r^1 = \alpha_1 r + \alpha_2 r$$

Finalmente (verifique el desarrollo):

$$\alpha_1 = S(0) ; \alpha_2 = \frac{S(1) - S(0)r}{r}$$

Resolver la cc. de rec. Lincol, Homogenea y con wef. constantes

(1)
$$S(n) = 2 \cdot S(n-1) + 3 \cdot S(n-2)$$
, $\forall n \geqslant 3$ sujeto a que $S(1) = 3$ y $S(2) = 1$

a) Identificar etes. $C_1 = 2$, $C_2 = 3$ b) Escribbrer, de 2º grado: $\gamma^2 - 2\gamma - 3 = 0$ y revolver

$$\Delta = b^2 - 4ac = e^2 - 4(1\cdot 3) = 4 + 12 = 16 > 0$$

$$\Rightarrow \text{Solutions distintary } \mathbb{R}.$$

$$\therefore \ \ \gamma_1 = \frac{6}{2} = \frac{3}{2}, \qquad \ \ \gamma_2 = -\frac{2}{2} = -1$$

Solvain tendrá forma:
$$\stackrel{*}{=} 5(n) = d_1 \cdot \stackrel{n}{3} + d_2 \cdot \binom{n}{2}$$

c) User cases iniciales en # para determinar d, y dz

$$S(1) = 3 \cdot d_1 - d_2 = 3$$

$$S(2) = 9 \cdot d_1 + d_2 = 1$$

$$\Delta_1 \setminus c_1 \cdot d_1 = \frac{d_1}{2} 3^n - 2 \cdot (-1)^n = 3^{n-1} - 2(-1)^n = 1$$

$$d_2 = 3 \cdot d_1 - 3 \implies 9 \cdot d_1 + 3 \cdot d_1 - 3 = 1$$

$$d_2 = -2 \cdot d_1 = 4$$

$$d_3 = -2 \cdot d_1 = 4$$