Special Topics on Basic EECS I VLSI Devices Lecture 13

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

PN junction

• Where can we find PN junctions?

Qualitative description (1)

- Built-in electric field
 - Strong diffusion current density
 - At equilibrium, the net flux must vanish.
 - An electric field is required.

Qualitative description (2)

- How to build an electric field
 - We need the net charge density, ρ .
 - Positive charges in the n-type region, negative p-type

These charges can be supplied by the depletion layer. (Eliminating charge carriers)

Direction of E

Energy band diagram at equilibrium

- At thermal equilibrium, the Fermi level must remain flat across the entire pn junction.
 - -Away from the junction, the energy bands are flat.
 - Near the junction, a smooth transition of E_C and E_V

Position (µm)

Built-in potential

- Assume that N_d is the donor density and N_a is the acceptor density.
 - In the n-type boundary,

$$N_d = n_i \exp \frac{\phi}{k_B T/q}$$
, $\phi = \frac{k_B T}{q} \ln \left(\frac{N_d}{n_i}\right)$ Taur, Eq. (2.71)

- In the p-type boundary,

$$N_a = n_i \exp \frac{-\phi}{k_B T/q}$$
, $\phi = -\frac{k_B T}{q} \ln \left(\frac{N_a}{n_i}\right)$ Taur, Eq. (2.72)

–Their difference, the built-in potential (ϕ_{bi}) is

$$\phi_{bi} = \frac{k_B T}{q} \ln \left(\frac{N_d N_a}{n_i^2} \right)$$
 Taur, Eq. (2.73)

Depletion approximation

- Electron and hole densities are assumed to be negligible in the entire band-bending region.
 - Depletion region(/layer) from $-x_p$ to x_n . $N_a x_p = N_d x_n$

Analytic solution

- The Poisson equation in the depletion region
 - In the p-type region,

$$\frac{d^2\phi}{dx^2} = \frac{q}{\epsilon} N_a$$

Taur, Eq. (2.77)

In the n-type region,

$$\frac{d^2\phi}{dx^2} = -\frac{q}{\epsilon} N_d$$

Taur, Eq. (2.76)

– Assuming vanishing electric fields at $-x_p$ and x_n ,

$$\mathcal{E}_m = \left| \frac{d\phi}{dx} \right|_{x=0} = \frac{q}{\epsilon} N_d x_n = \frac{q}{\epsilon} N_a x_p$$

Taur, Eq. (2.78)

Electric field

Negative
 Pushing carriers back to their majority regions

Depletion width

- Calculate the depletion width, W_d .
 - -The maximum electric field is

$$\mathcal{E}_m = \frac{q}{\epsilon} W_d \frac{N_a N_d}{N_a + N_d}$$

– Eliminating \mathcal{E}_m ,

$$W_d = \sqrt{\frac{2\epsilon(N_a + N_d)\phi_{bi}}{qN_aN_d}}$$

Taur, Eq. (2.80)

Example 4-1 of Hu's book

- Assume that $N_d = 10^{20} \text{ cm}^{-3}$ and $N_a = 10^{17} \text{ cm}^{-3}$.
 - -The built-in potential becomes about 1.012 V.
 - The depletion width is about 115 nm.
 - Moreover, $x_p \gg x_n$.

Energy band diagram, again

- Near the junction, a smooth transition of $E_{\it C}$ and $E_{\it V}$
 - Parabolic curves
 - Energy barrier seen by each carrier

Revisiting the depletion approximation

- Numerical solution ($N_d = 10^{20}$ cm⁻³ and $N_a = 10^{17}$ cm⁻³)
 - -The hole density does not drop abruptly. (Length scale: L_D)

Externally biased junctions

- Consider a positive bias applied to the p-type contact. (Forward-bias)
 - Boundary condition for the electrostatic potential

$$\phi(V = V_{app}) = \phi(V = 0) + V_{app}$$

- Boundary condition for the quasi-Fermi potentials

$$\phi_n(V = V_{app}) = V_{app}$$

 $\phi_p(V = V_{app}) = V_{app}$

Energy band diagram

- We cannot define the Fermi level any more.
 - Still, quasi-Fermi potentials are available.
 - –The total potential difference is $\phi_{bi}-V_{app}$ Taur, Eq. (2.81)

Thank you!