Carefully PRINT	Γ your full name:			
Math 51	Differential Equations Alternate Exam 2 (90 pts.+ 10 bonus pts)		Spring 20)22
(including your part of After finish submission and response your exam). You if you remove the For the part available space it	phones) must be sing your exam, you pload it to Grade should write you e staples from you tial credit problem f possible.	books or notes during the examilenced and put away for the during will submit this exam bookle escope for marking (you do not a name at the top of each page, ar exam booklet). In a sharp show your work. Try The same is a sharp show your work.	ration of the exam. et. We will scan you need to take images as indicated (especia to fit this work in the	our s of ally
0	the pledge below. ed assistance on th	With your signature, you pledge is exam.	that you have neitl	her
Signature:				

- 1. (16 points) True-false and multiple choice. Circle the correct choice.
 - (a) Let $\mathbf{h}_1, \dots, \mathbf{h}_n$ be n solutions of an order-n linear system $D\vec{x} = A\vec{x}$ on an interval I. Is it possible that the Wronkisan $W[\mathbf{h}_1, \dots, \mathbf{h}_n](t)$ is 0 at one point t_0 of I but nonzero at another point t_1 of I?
 - A. Yes
 - B No
 - (b) True or False. An $n \times n$ real matrix must have n linearly independent eigenvectors, some of which may be complex.
 - (c) True or False. Let A be a matrix of real numbers. The linear system $D\vec{x} = A\vec{x}$ must have n linearly independent real solutions.
 - (d) True or False. Let A be a matrix of real numbers. If \vec{x} is a complex solution of $D\vec{x} = A\vec{x}$, then both Re \vec{x} and Im \vec{x} are real solutions of $D\vec{x} = A\vec{x}$.
 - (e) True or False. Five vectors in \mathbb{R}^5 are linearly independent if and only if they generate (span) \mathbb{R}^5 .
 - (f) True or False. Let A be an $n \times n$ matrix with an eigenvalue λ of multiplicity 3. An eigenvector corresponding to λ is also a generalized eigenvector.
 - (g) True or False Let A be an $n \times n$ real matrix. The general solution of $D\vec{x} = A\vec{x}$ can be generated by fewer than n solutions.
 - (h) True or False. For every eigenvalue λ of an $n \times n$ matrix, there must be a corresponding eigenvector.

2. (8 pts) Write down an annihilator of smallest possible order with real coefficients for the function

$$4te^{3t} + t^2e^{2t}\sin t.$$

function annihilator

$$e^{3t}$$
 $D-3$
 te^{3t}
 $(D-3)^2$
 e^{2t} sunt $(D-(2+i))(D-(2-i)) = D^2-4D+5$
 t^2e^{2t} sunt $(D^2-4D+5)^3$
 t^2e^{2t} sint $(D-3)^2(D^2-4D+5)^3$

3. (10 points) Make a simplified guess for a particular solution of the differential equation

$$(D+2)^7(D^2+1)^6x = te^{-2t} + \cos t.$$

Do not solve for the coefficients.

The solutions to the homogeneous equation
$$(D+2)^7 (D^2+1)^6 x = 0$$
 are e^{2t} , te^{2t} , ..., $t^6 e^{2t}$, cost, suit, t cost, traint, ..., $t^5 \cos t$, $t^5 \sin t$.

An annihilator of te^{-2t} is $(D+2)^2$.

An annihilator of cost is $(D+i)(D-i) = D^2+1$.

Therefore, an annihilator of $te^{-2t} + \cos t$ is $(D+2)^2(D^2+1)$.

If x is a particular solution of (N) , then $(D+2)^2(D^2+1)(D+2)^7 (D^2+1)^6 x = (D+2)^2(D^2+1)(te^{-2t} + \cot t)$, $(D+2)^9(D^2+1)^7 x = 0$.

Therefore, $x = e^{2t}$, te^{2t} , ..., $t^8 e^{-2t}$, $cost$, suit, ..., $t^6 cost$, $t^6 e \sin t$.

Crossing out the homogeneous solutions, a simplified guess for a particular solution is $c_1t^7e^{-2t} + c_2t^8e^{-2t} + c_3t^6 \cot t + c_4t^6 \sin t$.

- 4. (14 points)
 - (a) Convert the differential equation

$$x''' - t^2x'' + \pi x' + tx = \sin t$$

into a linear system of three equations in three unknowns x_1, x_2, x_3 .

- (b) Write the linear system in the form $D\vec{x} = A(t)\vec{x} + \vec{E}(t)$ for some matrix A(t)and vector $\vec{E}(t)$.
 - $x_2 = x' = x'$ $x_2 = x'' = x_2'$ $x_{3}' = x''' = t^{2}x'' - \pi x' - tx + sin t$ $= t^{2}x_{3} - \pi x_{2} - tx_{1} + sin t,$

Bring the derivatives to the left:

$$\chi'_1 = \chi_2$$

$$\chi'_2 = \chi_3$$

$$\chi'_3 = -t\chi_1 - \tau\chi_2 + t^2\chi_3 + Rint$$

(b)
$$\nabla \vec{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -t & -\pi & t^2 \end{bmatrix} \begin{bmatrix} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \text{pint} \end{bmatrix}.$$

- 5. (15 points)
 - (a) (10 pts) The matrix $A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$ has eigenvalue $\lambda = 2$ of multiplicity 2. It has an eigenvector $\vec{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and a generalized eigenvector $\vec{u} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$. Using these two vectors, write down two solutions of $D\vec{x} = A\vec{x}$ that generate the general solution.

$$(A - \lambda I) \vec{u} = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

$$e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, e^{2t} \begin{bmatrix} 0 \\ -1 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \end{bmatrix}) = \begin{bmatrix} 2t \begin{bmatrix} t \\ -1-t \end{bmatrix}.$$

(b) (5 pts) Suppose we have found three solutions of a linear system $D\vec{x} = A\vec{x}$:

$$e^{t} \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \frac{1}{2}t^{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}, \quad e^{t} \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix} - t^{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix},$$

$$e^{t} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \frac{1}{2}t^{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}.$$

Explain why these three solutions generate the general solution of $D\vec{x} = A\vec{x}$.

6. (12 points) Suppose i, -i are eigenvalues of the 2×2 matrix A with corresponding eigenvectors $\begin{bmatrix} 1 \\ i \end{bmatrix}, \begin{bmatrix} 1 \\ -i \end{bmatrix}$, respectively. Write down two linearly independent real solutions of $D\vec{\mathbf{x}} = A\vec{\mathbf{x}}$. Show your work and simplify your answers.

A complex solution is
$$e^{it} \begin{bmatrix} 1 \\ i \end{bmatrix}$$

$$= (coot + i sint) (\begin{bmatrix} 0 \\ 0 \end{bmatrix} + i \begin{bmatrix} 0 \\ 1 \end{bmatrix})$$

$$= (coot) \begin{bmatrix} 0 \\ 0 \end{bmatrix} - rant \begin{bmatrix} 0 \\ 1 \end{bmatrix})$$

$$+ i ((coot) \begin{bmatrix} 0 \\ 1 \end{bmatrix} + sint \begin{bmatrix} 1 \\ 0 \end{bmatrix})$$

$$= \begin{bmatrix} coot \\ -sint \end{bmatrix} + i \begin{bmatrix} sint \\ aot \end{bmatrix}.$$
Two linearly independent real solutions are
$$\begin{bmatrix} coot \\ -sint \end{bmatrix} \begin{bmatrix} sint \\ coot \end{bmatrix}.$$

7. (15 points) Find the general solution of the differential equation

$$5x'' - 10x' + 5x = t^{1/5}e^t,$$

given that two independent solutions of the related homogeneous equation are e^t

Solution. First put in standard form: (D2-2D+1) x = 1/5 t et

Solutions to the homogeneous equation:

$$(D^2 - 2D + 1) = (D - 1)^2 = 0$$

General solution: $\vec{h} = qe^t + c_2 te^t$

2) Vary c:

Solve
$$c_1'e^t + c_2'te^t = 0$$

 $c_1'e^t + c_2'(1+t)e^t = \frac{1}{5}t^{5}e^t$

Divide by et:

Need to solve
$$\begin{bmatrix} 1 & t & 0 \\ 1 & 1+t & \frac{1}{5}t^{1/5} \end{bmatrix}$$
.

The determinant of the coefficient matrix is

$$\Delta = \left| \int_{1}^{1} \frac{t}{1+t} \right| = 1$$
.

By Cramer's rule,

ex's rule,

$$c_1' = \begin{pmatrix} 0 & t \\ \frac{1}{5}t^{1/5} & 1+t \end{pmatrix} = -\frac{1}{5}t^{6/5} \Rightarrow c_1' = -\frac{1}{11}t^{11/5}$$

$$c_{2} = \begin{vmatrix} 1 & 0 \\ \frac{1}{5}t^{1/5} \end{vmatrix} = \frac{1}{5}t^{1/5} \implies c_{2} = \frac{1}{6}t^{6/5}.$$

A particular solution is

c, e+ c2 tet = -+ t1/5 e+ + + t1/5 et = 5 t 1/5 et.

General solution:

Cet + cz t e t + 5 t 1/5 e t.

(Continuation of Question 7)

(End of Exam)