CS725: OPTIMIZERS

Why do we need more support than what a vanilla SGD learner offers?

Two potential pitfalls:

(A) Complex (non-convex) loss landscapes that could result in gradients
that vary a lot (Soln: Adaptive LR that varies across dimensions)

(B) Can get stuck in flat or plateau regions of the loss function (Soln: Momentum)

New weight update rule; $W_t \leftarrow W_{t-1} - V_t$ for SGD w/ momentum

Expand $V_t = \beta V_{t-1} + \eta g_t$ = $\eta g_t + \beta (\eta g_{t-1} + \beta V_{t-2})$ - 79++ Byg_+,+BY-2 = $\eta g_{t} + \beta \eta g_{t-1} + \dots + \beta^{t} V_{s}$ What happens to V_{t} if $\beta = 0$? Std/vanilla then this term disappears If B is a high value, many past gradients will influence we If B is small ≈ 0 , then very few past gradients will influence ω_{t}

(2) RMS Prop [for a daptive learning rates / Consider weights ω_1, ω_2 where $\omega_1 \leftarrow \omega_1 - \eta \frac{\partial L}{\partial \omega_1}$ $\omega_2 \leftarrow \omega_2 - \eta \frac{\partial L}{\partial \omega_2}$ Say Then W, can diverge

If η is low, then the update to w_2 will be very small

RMS Prop defines a new vector S_t to adaptively change the learning rate across the weight dimensions $S_t \leftarrow \gamma S_{t-1} + (1-\gamma) g_t \circ g_t \quad \text{or Hadamard product}$ Expand $S_{t} = (1 - \gamma) g_{t} \circ g_{t} + \gamma S_{t-1}$ $=(1-\gamma)g_{+}g_{+}+\gamma((1-\gamma)g_{+}g_{+}+\gamma f_{+-2})$ $= (1-\gamma)g_t o g_t + (1-\gamma)\gamma g o g + \dots + \gamma^t S_0$ What do the coefficients in S_t add up to $S_t \sim 1$ for large t

St is an exponentially weighted moving average New weight update rule: $\mathcal{W}_{t} \leftarrow \mathcal{W}_{t-1} - \mathcal{U}_{t-1} \circ g_{t}$ epsilon is added to avoid divide-by-zero errors

(3) ADAM optimizer combines ideas from SGD W/ momentum and RMS Prop Needed to correct bias in St and V. for $V_{t} \leftarrow \beta V_{t-1} + (1-\beta) g_{t}$ 1 Small values of $S_{t} \leftarrow \gamma S_{t-1} + (1-\gamma) g_{t} \circ g_{t}$ St St., Vt // BIAS CORRECTION

CONVOLUTIONAL NEURAL NETWORKS

CNNs are motivated by the visual cortex and aim to satisfy the following desired properties;

(A) Locality or modeling spatial information

B) Translation invariance (model behaviour should be identical regardless of where an Object appears in an image)