

#### UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2014-2015

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

### INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder a las cuestiones de la opción elegida. Para la realización de esta prueba se puede utilizar calculadora científica, siempre que no disponga de capacidad de representación gráfica o de cálculo simbólico.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos.

TIEMPO: 90 minutos.

## **OPCIÓN A**

Ejercicio 1. (Calificación máxima: 2 puntos)

Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} 3x + y - z = 8 \\ 2x + az = 3 \\ x + y + z = 2 \end{cases}$$

- a) Discútase en función de los valores del parámetro a.
- b) Resuélvase para a = 1.

Ejercicio 2. (Calificación máxima: 2 puntos)

Sabiendo que la derivada de una función real de variable real f es

$$f'(x) = 3x^2 + 2x$$

- a) Calcúlese la expresión de f(x) sabiendo que su gráfica pasa por el punto (1,4).
- b) Calcúlese la ecuación de la recta tangente a la gráfica de la función f en el punto (1, 4).

Ejercicio 3. (Calificación máxima: 2 puntos)

Sean las funciones reales de variable real

$$f(x) = x^2 - 6x$$
 y  $g(x) = x - 10$ 

- a) Represéntense gráficamente las funciones f y g.
- b) Calcúlese el área del recinto plano acotado por las gráficas de las funciones f y g.

Ejercicio 4. (Calificación máxima: 2 puntos)

En una bolsa hay cuatro bolas rojas y una verde. Se extraen de forma consecutiva y sin reemplazamiento dos bolas. Calcúlese la probabilidad de que:

- a) Las dos bolas sean del mismo color.
- b) La primera bola haya sido verde si la segunda bola extraída es roja.

Ejercicio 5. (Calificación máxima: 2 puntos)

El tiempo de reacción ante un obstáculo imprevisto de los conductores de automóviles de un país, en milisegundos (ms), se puede aproximar por una variable aleatoria con distribución normal de media  $\mu$  desconocida y desviación típica  $\sigma$  = 250 ms.

- a) Se toma una muestra aleatoria simple y se obtiene un intervalo de confianza (701; 799), expresado en ms, para  $\mu$  con un nivel del 95 %. Calcúlese la media muestral y el tamaño de la muestra elegida.
- b) Se toma una muestra aleatoria simple de tamaño 25. Calcúlese el error máximo cometido en la estimación de  $\mu$  mediante la media muestral con un nivel de confianza del 80 %.

## **OPCIÓN B**

### Ejercicio 1. (Calificación máxima: 2 puntos)

Una fábrica de piensos para animales produce diariamente como mucho seis toneladas de pienso del tipo A y como máximo cuatro toneladas de pienso del tipo B. Además, la producción diaria de pienso del tipo B no puede superar el doble de la del tipo A y, por último, el doble de la fabricación de pienso del tipo A sumada con la del tipo B debe ser como poco cuatro toneladas diarias. Teniendo en cuenta que el coste de fabricación de una tonelada de pienso del tipo A es de 1000 euros y el de una tonelada del tipo B de 2000 euros, ¿cuál es la producción diaria para que la fábrica cumpla con sus obligaciones con un coste mínimo? Calcúlese dicho coste diario mínimo.

### Ejercicio 2.(Calificación máxima: 2 puntos)

Sea la matriz

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 3 & 2 \\ -1 & k & 2 \end{pmatrix}$$

- a) Estúdiese el rango de A según los valores del parámetro real k.
- b) Calcúlese, si existe, la matriz inversa de A para k = 3.

#### Ejercicio 3.(Calificación máxima: 2 puntos)

Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} \frac{x^2 - 4}{x^2 - 5x + 6} & \text{si } x < 2\\ 3x + m & \text{si } x \ge 2 \end{cases}$$

- a) Calcúlese el valor del parámetro real m para que la función f sea continua en x = 2.
- b) Calcúlense  $\lim_{x \to -\infty} f(x)$  y  $\lim_{x \to +\infty} f(x)$

#### Ejercicio 4. (Calificación máxima: 2 puntos)

Sean *A* y *B* sucesos de un experimento aleatorio tales que  $P(A \cap B) = 0, 3$ ;  $P(A \cap \overline{B}) = 0, 2$  y P(B) = 0, 7. Calcúlese:

- a)  $P(A \cup B)$ .
- b)  $P(B|\overline{A})$ .

Nota: S denota el suceso complementario del suceso S.

#### Ejercicio 5. (Calificación máxima: 2 puntos)

La duración de cierto componente electrónico, en horas (h), se puede aproximar por una variable aleatoria con distribución normal de media  $\mu$  desconocida y desviación típica igual a 1000 h.

- a) Se ha tomado una muestra aleatoria simple de esos componentes electrónicos de tamaño 81 y la media muestral de su duración ha sido  $\bar{x}$  = 8000 h. Calcúlese un intervalo de confianza al 99 % para  $\mu$ .
- b) ¿Cuál es la probabilidad de que la media muestral esté comprendida entre 7904 y 8296 horas para una muestra aleatoria simple de tamaño 100 si sabemos que  $\mu$  = 8100 h?

# Matemáticas Aplicadas a las Ciencias Sociales

## ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.



| z            | ,00    | ,01    | ,02    | ,03    | ,04     | ,05    | ,06    | ,07    | ,08    | ,09    |
|--------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|
| <del>-</del> | ,,,,,  | ,,,,   | ,,,,   | ,,,,,  | , , , , | ,,,,,  | ,,,,   | ,,,,   | ,,,,,  | ,00    |
| 0,0          | 0,5000 | 0,5040 | 0,5080 | 0,5120 | 0,5160  | 0,5199 | 0,5239 | 0,5279 | 0,5319 | 0,5359 |
| 0,1          | 0,5398 | 0,5438 | 0,5478 | 0,5517 | 0,5557  | 0,5596 | 0,5636 | 0,5675 | 0,5714 | 0,5753 |
| 0,2          | 0,5793 | 0,5832 | 0,5871 | 0,5910 | 0,5948  | 0,5987 | 0,6026 | 0,6064 | 0,6103 | 0,6141 |
| 0,3          | 0,6179 | 0,6217 | 0,6255 | 0,6293 | 0,6331  | 0,6368 | 0,6406 | 0,6443 | 0,6480 | 0,6517 |
| 0,4          | 0,6554 | 0,6591 | 0,6628 | 0,6664 | 0,6700  | 0,6736 | 0,6772 | 0,6808 | 0,6844 | 0,6879 |
| 0,5          | 0,6915 | 0,6950 | 0,6985 | 0,7019 | 0,7054  | 0,7088 | 0,7123 | 0,7157 | 0,7190 | 0,7224 |
| 0,6          | 0,7257 | 0,7291 | 0,7324 | 0,7357 | 0,7389  | 0,7422 | 0,7454 | 0,7486 | 0,7517 | 0,7549 |
| 0,7          | 0,7580 | 0,7611 | 0,7642 | 0,7673 | 0,7703  | 0,7734 | 0,7764 | 0,7794 | 0,7823 | 0,7852 |
| 0,8          | 0,7881 | 0,7910 | 0,7939 | 0,7967 | 0,7995  | 0,8023 | 0,8051 | 0,8078 | 0,8106 | 0,8133 |
| 0,9          | 0,8159 | 0,8186 | 0,8212 | 0,8238 | 0,8264  | 0,8289 | 0,8315 | 0,8340 | 0,8365 | 0,8389 |
| 1,0          | 0,8413 | 0,8438 | 0,8461 | 0,8485 | 0,8508  | 0,8531 | 0,8554 | 0,8577 | 0,8599 | 0,8621 |
| 1,1          | 0,8643 | 0,8665 | 0,8686 | 0,8708 | 0,8729  | 0,8749 | 0,8770 | 0,8790 | 0,8810 | 0,8830 |
| 1,2          | 0,8849 | 0,8869 | 0,8888 | 0,8907 | 0,8925  | 0,8944 | 0,8962 | 0,8980 | 0,8997 | 0,9015 |
| 1,3          | 0,9032 | 0,9049 | 0,9066 | 0,9082 | 0,9099  | 0,9115 | 0,9131 | 0,9147 | 0,9162 | 0,9177 |
| 1,4          | 0,9192 | 0,9207 | 0,9222 | 0,9236 | 0,9251  | 0,9265 | 0,9279 | 0,9292 | 0,9306 | 0,9319 |
| 1,5          | 0,9332 | 0,9345 | 0,9357 | 0,9370 | 0,9382  | 0,9394 | 0,9406 | 0,9418 | 0,9429 | 0,9441 |
| 1,6          | 0,9452 | 0,9463 | 0,9474 | 0,9484 | 0,9495  | 0,9505 | 0,9515 | 0,9525 | 0,9535 | 0,9545 |
| 1,7          | 0,9554 | 0,9564 | 0,9573 | 0,9582 | 0,9591  | 0,9599 | 0,9608 | 0,9616 | 0,9625 | 0,9633 |
| 1,8          | 0,9641 | 0,9649 | 0,9656 | 0,9664 | 0,9671  | 0,9678 | 0,9686 | 0,9693 | 0,9699 | 0,9706 |
| 1,9          | 0,9713 | 0,9719 | 0,9726 | 0,9732 | 0,9738  | 0,9744 | 0,9750 | 0,9756 | 0,9761 | 0,9767 |
| 2,0          | 0,9772 | 0,9778 | 0,9783 | 0,9788 | 0,9793  | 0,9798 | 0,9803 | 0,9808 | 0,9812 | 0,9817 |
| 2,1          | 0,9821 | 0,9826 | 0,9830 | 0,9834 | 0,9838  | 0,9842 | 0,9846 | 0,9850 | 0,9854 | 0,9857 |
| 2,2          | 0,9861 | 0,9864 | 0,9868 | 0,9871 | 0,9875  | 0,9878 | 0,9881 | 0,9884 | 0,9887 | 0,9890 |
| 2,3          | 0,9893 | 0,9896 | 0,9898 | 0,9901 | 0,9904  | 0,9906 | 0,9909 | 0,9911 | 0,9913 | 0,9916 |
| 2,4          | 0,9918 | 0,9920 | 0,9922 | 0,9925 | 0,9927  | 0,9929 | 0,9931 | 0,9932 | 0,9934 | 0,9936 |
| 2,5          | 0,9938 | 0,9940 | 0,9941 | 0,9943 | 0,9945  | 0,9946 | 0,9948 | 0,9949 | 0,9951 | 0,9952 |
| 2,6          | 0,9953 | 0,9954 | 0,9956 | 0,9957 | 0,9959  | 0,9960 | 0,9961 | 0,9962 | 0,9963 | 0,9964 |
| 2,7          | 0,9965 | 0,9966 | 0,9967 | 0,9968 | 0,9969  | 0,9970 | 0,9971 | 0,9972 | 0,9973 | 0,9974 |
| 2,8          | 0,9974 | 0,9975 | 0,9976 | 0,9977 | 0,9977  | 0,9978 | 0,9979 | 0,9979 | 0,9980 | 0,9981 |
| 2,9          | 0,9981 | 0,9982 | 0,9982 | 0,9983 | 0,9984  | 0,9984 | 0,9985 | 0,9985 | 0,9986 | 0,9986 |
| 3,0          | 0,9987 | 0,9987 | 0,9987 | 0,9988 | 0,9988  | 0,9989 | 0,9989 | 0,9989 | 0,9990 | 0,9990 |

# CRITERIOS ESPECÍFICOS DE CORRECCIÓN

# ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

## OPCIÓN A

| Ejercicio 1. (Puntuación máxima: 2 puntos).                                  |
|------------------------------------------------------------------------------|
| Apartado (a): 1 punto.                                                       |
| Determinación correcta del valor crítico                                     |
| Discusión correcta                                                           |
| Apartado (b): 1 punto.                                                       |
| Solución correcta del sistema                                                |
| Ejercicio 2. (Puntuación máxima: 2 puntos).                                  |
| Apartado (a): 1 punto.                                                       |
| Procedimiento correcto                                                       |
| Cálculo correcto de la expresión de la función0,50 puntos.                   |
| Apartado (b): 1 punto.                                                       |
| Fórmula correcta de la ecuación de la recta tangente0,25 puntos.             |
| Cálculo correcto de la pendiente de la recta tangente0,25 puntos.            |
| Cálculo correcto de la ecuación de la recta tangente0,50 puntos.             |
| Calculo correcto de la cedación de la recta tangente,30 pantos.              |
| Ejercicio 3. (Puntuación máxima: 2 puntos).                                  |
| Apartado (a): 1 punto.                                                       |
| Representación correcta de la función <i>f</i> 0,50 puntos.                  |
| Representación correcta de la función g                                      |
| Apartado (b): 1 punto.                                                       |
| Expresión correcta de la integral definida para calcular el área0,25 puntos. |
| Cálculo correcto de una primitiva                                            |
| Cálculo correcto del área del recinto                                        |
|                                                                              |
| <b>Ejercicio 4.</b> (Puntuación máxima: 2 puntos).                           |
| Cada apartado resuelto correctamente: 1 punto.                               |
| Planteamiento correcto                                                       |
| Cálculo correcto de la probabilidad pedida0,50 puntos.                       |
| Final F (Ponton i form of the control                                        |
| <b>Ejercicio 5.</b> (Puntuación máxima: 2 puntos).                           |
| Apartado (a): 1 punto.                                                       |
| Cálculo correctode la media muestral                                         |
| Cálculo correcto de Z <sub>0/2</sub>                                         |
| Cálculo correcto del tamaño muestral0,50 puntos.                             |
| Apartado (b): 1 punto.                                                       |
| Cálculo correcto de Z <sub>α/2</sub>                                         |
| Expresión correcta de la fórmula del error0,25 puntos.                       |
| Cálculo correcto del error máximo                                            |

NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.

# OPCIÓN B

| <b>Ejercicio 1.</b> (Puntuación máxima: 2 puntos).  Planteamiento correcto del problema de programación lineal                        |
|---------------------------------------------------------------------------------------------------------------------------------------|
| Ejercicio 2. (Puntuación máxima: 2 puntos).  Apartado (a): 1 punto.  Procedimiento correcto                                           |
| <b>Ejercicio 3.</b> (Puntuación máxima: 2 puntos).<br>Apartado (a): 1 punto.<br>Planteamiento correcto de la condición de continuidad |
| Ejercicio 4. (Puntuación máxima: 2 puntos).  Cada apartado resuelto correctamente: 1 punto.  Planteamiento correcto                   |
| Apartado (a): 1 punto.  Cálculo correcto de $Z_{\alpha/2}$                                                                            |

NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.