Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка алгоритма обработки видеопотока для системы прокторинга

Выполнил: Петров Сергей Андреевич, гр. 7303

Руководитель: Кринкин Кирилл Владимирович, к.т.н., зав. каф. МО ЭВМ

Понятие прокторинга

Прокторинг – это процедура дистанционного сопровождения онлайнэкзаменов и верификации личности испытуемого с целью повысить уровень доверия к результатам

Виды прокторинга

По временному характеру проверки:

- Синхронный
- Асинхронный

По способу проверки:

- Ручной
- Автоматический
- Комбинированный

Цель и задачи

Актуальность: дистанционное обучение активно развивается, необходима автоматическая проверка, поскольку ручная зависит от проверяющих (их количества, навыков, и т.п.). Существующие автоматические решения не всегда учитывают ограничения в оборудовании и не всегда дают возможность настройки.

Цель: создать алгоритм обработки видеопотока для распознавания списывания

Задачи:

- 1. Классифицировать возможные нарушения
- Провести анализ существующих методов обнаружения нарушений
- 3. Разработать алгоритм распознавания нарушений человека на видеопотоке
- 4. Реализовать и протестировать алгоритм

Классификация нарушений

Первичные:

- 1. Наличие посторонних лиц
- 2. Отсутствие тестируемого, или его подмена
- 3. Увод взгляда с экрана
- 4. Использование подсказок на рабочем столе/запрещенных сайтов/ПО

Вторичные:

- 1. Разговор
- 2. Использование смартфона.

Обзор аналогов

Аналог	Нарушения	Устр-ва	Настройка
ProctorEdu	0,9	-	+/-
Экзамус	0,7	+	+/-
Automated Online Exam Proctoring	1,0	-	-
Multi-biometric system for authentication	0,5	+	-
Методика создания системы прокторинга	0,6	+	-

Разработка метода: общие положения

Входные данные представляют из себя два видеопотока -> модуль обработки видеопотоков можно разделить на два независимых модуля:

- модуль обработки видеопотока с веб-камеры, отвечает за:
 - Постоянная верификация личности тестируемого
 - Контроль наличия посторонних лиц
 - Контроль отсутствия тестируемого
 - Распознавание увода взгляда с экрана устройства
- модуль обработки видеопотока с рабочего стола
 - Распознавание запрещенных приложений и вкладок браузера.
 - Распознавание запрещенных слов (подсказок) на рабочем столе

Обработка веб-камеры

Обработка рабочего стола

Реализация

Python, OpenCV

Обработка

с веб-камеры:

- 1. HOG (гистограммы ориент. градиентов)
- 2. распознавание лиц по признакам, полученным с помощью CNN
- 3. отслеживание взгляда по face landmarks

Обработка видеопотока с рабочего стола:

- Tesseract
- Aho-Corasick

Работа алгоритма

Веб-камера

Веб-камера

```
## Stands

| Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands | Stands |
```

```
{
"student_not_detected":false,
  "unknown_persons":false,
  "student_not_looking_on_monitor":true
}
```

```
{
"warn": ["github", "messenger"],
"ok": ["code_editor", "file_manager"]
}
```

Анализ разработанного алгоритма

	Обработка видеопотока с веб-камеры	Обработка видеопотока с рабочего стола
Средняя точность распознавания нарушений	93,04%	89,79%
Среднее время обработки кадра	0,096 c	2,87 c
Оценка времени обработки видепотока	$0,096 \cdot FPS \cdot \frac{L}{S}$	$2,87 \cdot FPS \cdot \frac{L}{S}$

FPS - частота кадров в секунду, L - длительность в секундах, S - skip frames, т.е. шаг пропуска кадров

10

Заключение

- Классифицированы нарушения, возникающие при списывании
- Выявлены требования к решению исходя из обзора аналогов
- Разработан алгоритм обработки видеопотоков с веб-камеры и рабочего стола
- Экспериментальное исследование решения дало следующие результаты:

веб-камера: точность **93,04**%, время обработки $0,096 \cdot FPS \cdot \frac{L}{S}$ рабочий стол: точность **89,79**%, время обработки $2,87 \cdot FPS \cdot \frac{L}{S}$

- Направления дальнейшего исследования:
 - Оптимизация времени обработки кадра с рабочего стола
 - Уменьшение влияния затемнения кадра на распознавание взгляда
 - Более точная настройка словаря нарушений на рабочем столе

Апробация работы

- Алгоритм внедрен в систему прокторинга кафедры МО ЭВМ https://proctoring.cub-it.org/
- Оформлен акт о внедрении, состав комиссии:
 - к.т.н., доцент Лисс А. А. (председатель)
 - д.т.н., профессор Середа А.-В. И.
 - о к.т.н., Заславский М. М.