Colles série 7 : Intervalles de confiance

pour les sujets 1-2-3 : données apnee

Sujet 1:

- 1. Extraire du data frame apnee l'échantillon des poids des femmes et l'affecter à poidsf. Extraire celui du poids des hommes et le nommer poidsh.
- 2. Calculer l'intervalle de confiance au niveau 90% et l'estimation du poids moyen d'une femme. De même pour le poids moyen d'un homme. Comparer les deux intervalles obtenus. Qu'en conclure ? (on utilisera t.test)

Sujet 2:

- 1. Extraire du data frame apnee l'échantillon des poids des femmes et l'affecter à poidsf. Extraire celui du poids des hommes et le nommer poidsh.
- 2. Calculer l'estimation sans biais de la variance du poids d'une femme, celle de son écart-type, et calculer un intervalle de confiance de niveau 95% pour la variance puis en déduire l'intervalle de confiance pour l'écart-type. Commentaire.

Sujet 3:

- 1. Soit p la probabilité inconnue qu'une personne souffre d'apnée du sommeil. Calculer l'estimation de p obtenue à l'aide de l'échantillon observé.
- 2. Calculer l'intervalle de confiance de niveau approximatif 95% pour p, à la main (avec la formule du cours) et à l'aide de la fonction prop.test. Comparer.

pour les sujets 4-5-6 : modèle uniforme

Dans les exercices suivants, on étudie les propriétés de biais de trois estimateurs de a obtenus avec un échantillon de taille n du modèle uniforme sur [0,a]. On etudie aussi deux intervalles de confiance asymptotiques basés sur deux des estimateurs proposés.

Rappelons que si X suit une uniforme sur [0, a], f(x) = 1/a si $x \in [0, a]$ et 0 sinon. De plus (exo de TD) on sait montrer que E(X) = a/2 et $V(X) = a^2/12$. On pose $T_1 = 2\bar{X}_n$ et $T_2 = \max X_i = X_{(n)}$.

Sujet 4: Biais de T_2 et T_3

- 1. Choisir trois valeurs pour a, N et n. Tirer N réplications d'échantillons de taille n de X (uniforme sur [0,a]) qui seront stockées dans une matrice à N lignes et n colonnes. Calculer les N réalisations de T_2 obtenues et les affecter à un vecteur de taille N qu'on pourra nommer echT2. Faire de même pour $T_3 = (n+1)T_2/n$.
- 2. Proposer une expérience numérique qui montre que T_2 est biaisé (i.e. $E(T_2) a \neq 0$) alors que T_3 est sans biais (i.e. $E(T_3) a = 0$). Lequel des deux retiendra t-on?

Sujet 5: Intervalle de confiance construit avec T_2 ou T_3

- 1. Choisir trois valeurs pour a, N et n. Tirer N réplications d'échantillons de taille n de X (uniforme sur [0,a]) qui seront stockées dans une matrice à N lignes et n colonnes. Calculer les N réalisations de T_2 obtenues et les affecter à un vecteur de taille N qu'on pourra nommer echT2.
- 2. On définit à présent $T_3 = (n+1)T_2/n$. Calculer les N réalisations de T_3 ainsi que les N réalisations de l'intervalle $[T_3n/(n+1); T_3n\alpha^{(-1/n)}/(n+1)]$. Montrer ensuite numériquement que cet intervalle est de niveau de confiance $1-\alpha$ pour tout n même petit.

Sujet 6: Intervalle de confiance construit avec T_1

- 1. Choisir trois valeurs pour a, N et n. Tirer N réplications d'échantillons de taille n de X (uniforme sur [0,a]) qui seront stockées dans une matrice à N lignes et n colonnes. Calculer les N réalisations de T_1 obtenues et les affecter à un vecteur de taille N qu'on pourra nommer ech T_1 .
- 2. Montrer numériquement que $I(a,\alpha) = [\sqrt{3n}T_1/(\sqrt{3n} + u_{1-\alpha/2}); \sqrt{3n}T_1/(\sqrt{3n} u_{1-\alpha/2})]$ pour n grand est un intervalle de confiance pour a de niveau de confiance approximatif 1α .