Chapitre 5

Limite, continuité et différentiabilité des fonctions de plusieurs variables

But: Étandre les notion de livite, entimité, dénivabilité de factions.

5.1 Limites de fonctions

Soit E et F deux \mathbb{R} espaces vectoriels de dimension finie munis des normes $\|\cdot\|$ et $\|\cdot\|'$ respectivement.

5.1.1 Définition

Définition 5.1.1 (Limite de fonction). Soit $f: \mathcal{D} \to F$ une fonction définie sur $\mathcal{D} \subset E$ et $a \in E$ un point adhérent à \mathcal{D} (*i.e.* $a \in \bar{\mathcal{D}}$). On dit que f admet une limite $\ell \in F$ en a si pour tout $\varepsilon > 0$ il existe $\alpha > 0$ tel que $\forall x \in D$, $||x - a|| < \alpha \Rightarrow ||f(x) - \ell||' < \varepsilon$.

Illustration de la limite $\ell \in \mathbb{R}$ d'une fonction $f : \mathbb{R}^2 \to \mathbb{R}$ en a.

Remarque 1. 1. La définition précédente ne dépend pas du choix des normes sur E et F. 2. La limite d'une fonction est unique.

Définition 5.1.2 Notation de Landau. Soient $(E, \|\cdot\|)$ et $(F, \|\cdot\|')$ deux espaces vectoriels normés réels et $f: E \to F$ définie au voisinage de $a \in E$ (c'est à dire au moins sur une boule ouverte $B_r(a) \subset E$) et sauf peut être en a. On dit que $f = o(\|x - a\|^n)$ au voisinage de a si $\frac{\|f(x)\|'}{\|x - a\|^n} \to 0$ quand $x \to a$.

5.1.2 Calculer des limites en pratique

Montrer qu'une fonction n'admet pas de limite en un point

CHAPITRE 5. LIMITE, CONTINUITÉ ET DIFFÉRENTIABILITÉ

Proposition 5.1.1 (Caractérisation séquentielle de la limite). Soit $f: \mathcal{D} \to F$ une fonction définie sur $\mathcal{D} \subset E$ et $a \in E$ un point adhérent à \mathcal{D} (*i.e.* $a \in \overline{\mathcal{D}}$). Les propositions suivantes sont équivalentes :

1. f a pour limite ℓ en a

2. pour toute suite $(u_k)_{k\in\mathbb{N}}$ de \mathcal{D} qui converge vers a, la suite $f(u_k)$ tend vers ℓ .

Démonstration.

Pour montrer qu'une fonction n'admet pas de limite, il suffit de trouver deux suites $(u_k)_{k\in\mathbb{N}}$ et $(v_k)_{k\in\mathbb{N}}$ de même limite $a\in\mathcal{D}$ et telles que $(f(u_k))_{k\in\mathbb{N}}$ et $(f(v_k))_{k\in\mathbb{N}}$ possèdent des limites différentes.

Exemple 5.1.1. Étude de la limite en 0 de $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{si } (x,y) = (0,0) \end{cases}$.

Montrer qu'une fonction admet une limite en un point

Proposition 5.1.2. Soit $f: \mathcal{D} \to F$, $a \in \bar{\mathcal{D}}$ et $\ell \in F$. S'il existe une fonction $s: \mathbb{R}^+ \to \mathbb{R}^+$ avec $\lim_{t\to 0} s(t) = 0$ telle que pour tout $x \in D$

$$\mathbf{0} \leqslant \|f(x) - \ell\|' \leq s(\|x - a\|)$$
 alors on a $\lim_{x \to a} f(x) = \ell$.

Démonstration.

Come an a
$$\delta(H) \longrightarrow 0$$
 quad $t \to 0$
 $\forall \epsilon > 0$, $\exists \alpha > 0$ $t_{\alpha} = \|\alpha - \alpha\| < \alpha = 0$ $\delta(H) = \delta(\|\alpha - \alpha\|) < \epsilon$
 (3)
 $\exists \|\beta(\alpha) - \beta\|^{1} < \epsilon$

Auteurt dit, an a $\beta(\alpha) \longrightarrow \ell$ quad $\alpha \to \alpha$

Remarque 2. Pour les fonctions de $\mathbb{R}^2 \to \mathbb{R}$ cette dernière proposition suggère de passer en coordonnées polaires comme dans l'exemple ci dessous.

Exemple 5.1.2. Calcul de limite en pratique : Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = \frac{6x^2y}{x^2+y^2}$. Montrons de plusieurs manières que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

on a
$$E=\mathbb{R}^2$$
 | 11.11 est la valeu absolve.

$$|f(x,y) - 0| = \left| \frac{6x^{2}y}{n^{2}+y^{2}} \right| \le \left| \frac{6x^{2}y}{x^{2}} \right| = (|y| \le 6(|x|+|y|))$$

$$\le 6 ||(x|+|y|)|$$
et on a $s(t) = 6t$. Ainsi f or we 0 given $\binom{2}{3}$ tad ses $\binom{0}{0}$.

$$|f(x,y)-0| = \left| \frac{6\pi^{2}\cos^{2}\theta \ n \sin \theta}{\pi^{2}} \right| = 6\pi \left| \cos^{2}\theta \sin \theta \right| \leq 6\pi$$
or $\pi = \left| \frac{n^{2}+y^{2}}{2} \right| = \left| \left(\frac{x}{2} \right) \right|_{2}$ at $a(t) = 6t$.

Et f tad as 0 an l argine.

5.2 **Fonctions continues**

Soient E et F deux \mathbb{R} espaces vectoriels de dimension finie munis des normes $\|\cdot\|$ et $\|\cdot\|'$ respectivement. Dans la suite on note \mathcal{D} un domaine de E et \mathcal{U} un ouvert de E.

5.2.1 Définition et propriétés

Définition 5.2.1. Soit $f: \mathcal{D} \to F$ et $a \in \mathcal{D}$. On dit que f est **continue** en a si

$$\lim_{\substack{x \to a \\ x \in \mathcal{D}}} f(x) = f(a).$$

La continuité est une notion **locale**. On dit que f est continue sur \mathcal{D} si f est continue en tout point de \mathcal{D} .

Exemple 5.2.1. Si $E = \mathbb{R}^n$ les fonctions polynômiales sont continues. En particulier si $E = \mathbb{R}^2$, $s(x,y)=x+y \ {
m et} \ p(x,y)=xy \ {
m sont} \ {
m continues} \ {
m sur} \ {
m \mathbb{R}}^2.$ Is a plication line of

Définition - Proposition 5.2.1. Soit $f: \mathcal{D} \to F$ et $a \in \bar{\mathcal{D}} \setminus \mathcal{D}$. Si $\lim_{x \to a} f(x) = \ell$, la fonction \tilde{f} définie sur $\mathcal{D} \cup \{a\}$ par $\tilde{f}(a) = \ell$ et $\tilde{f}(x) = f(x)$ pour tout $x \in \mathcal{D}$ est l'unique fonction continue en a dont la restriction à \mathcal{D} est f. On appelle \tilde{f} le **prolongement par continuité** $f(x_{13}) = \underbrace{\begin{cases} x^{2} & 3 \\ x^{2} + 5 \end{cases}}_{x^{2} + 5} \text{ definite } \sum_{n=1}^{\infty} \frac{n}{n} = \underbrace{\begin{cases} 0 & n & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 & n \\ (n) & n \\ n & n \end{cases}}_{x^{2} + 5} = \underbrace{\begin{cases} 0 &$ $de f à \{a\}.$ Example: 5.1.2

On peut faire le lien entre topologie et continuité :

Théorème 5.2.1. Soit $f: E \to F$ une fonction continue :

- (i) si $\mathcal{O} \subset F$ un ensemble ouvert, alors $f^{-1}(\mathcal{O}) \subset E$ est un ouvert.
- (ii) si $\mathcal{F} \subset F$ un ensemble fermé, alors $f^{-1}(\mathcal{F}) \subset E$ est un fermé.

(iii) si $K \subset E$ un ensemble compact, alors $f(K) \subset F$ est une partie compacte de F.

Démonstration. Admis dans ce cours.

Remarque 3. Si $F = \mathbb{R}$, la propriété (iii) implique que f est bornée (et atteint ses bornes) sur K.

Opérations sur les fonctions continues

La continuité est stable par les opérations algébriques usuelles :

Proposition 5.2.1. Soient E, F, G trois espaces vectoriels normés et $\mathcal{D} \subset E$:

- (i) Addition: $f, g: \mathcal{D} \to F$ continues en $a \in \mathcal{D}$ alors f + g est continue en a
- (ii) Multiplication par un scalaire : $f: \mathcal{D} \to F$ continue en a alors λf est continue en a.
- (iii) Multiplication (cas de $F = \mathbb{R}$): $f, g : \mathcal{D} \to \mathbb{R}$ continues en a alors fg est continue en a.
- (iv) Inverse (cas de $F = \mathbb{R}$): $f: \mathcal{D} \to \mathbb{R}$ continue en a et $f(a) \neq 0$ alors $\frac{1}{f}$ est continue en a.
- (v) Composition: $f: \mathcal{D} \to F$ et $g: F \to G$. Si f est continue en $a \in \mathcal{D}$ et g est continue en $f(a) \in F$, alors $g \circ f : \mathcal{D} \to G$ est continue en a.

Exemple 5.2.2. Sat $f: \mathbb{R}^2 \to \mathbb{R}$ define par $(n,j) \mapsto \begin{cases} ng/n_{+}y^2 & \text{sin}(\frac{x}{y}) \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$ Exemple 5.2.2. Sat $f: \mathbb{R}^2 \to \mathbb{R}$ define par $(n,j) \mapsto \begin{cases} 0 & \text{sin} x = y = 0 \end{cases}$ Par menter que f the cartine on $\mathbb{R}^2 \setminus \{(0)\}$ on range que $(n,g) \mapsto 2y$ art cartine on \mathbb{R}^2 $(n,g) \mapsto 2^2 + y^2$ aff cartine on \mathbb{R}^2 $(n,g) \mapsto 2^2 + y^2$ aff cartine on $\mathbb{R}^2 \setminus \{(0)\}$ par (0).

Fonctions partielles

Soit $\mathcal{B}=(e_1,\cdots,e_n)$ une base de E. Pour tout $a\in E$ on note (a_1,\cdots,a_n) les coordonnées de adans la base \mathcal{B} .

Définition 5.2.2. Soit $f: E \to F$ et $a = (a_1, \dots, a_n) \in E$. On définit la *i*-ème application partielle de f en a par

$$f_a^i:\mathbb{R} o F$$

$$t\mapsto f(a_1,\cdots,a_{i-1},t,a_{i+1},\cdots,a_n) \qquad \text{dist } d^i=\text{ Vect } \{e_i\}+a_i$$
 and $f_a^i=\text{ vect } \{e_i\}$

Proposition 5.2.2. Si f est continue en $a=(a_1,\cdots,a_n)\in E$ chacune de ses applications

partielles
$$f_a^i$$
 est continue en $a = (a_1, \dots, a_n) \in E$ chacune de ses applicat partielles f_a^i est continue en $a_i \in \mathbb{R}$ avec $i = 1, \dots, n$.

Remarque 4. La réciproque est fausse : la fonction $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{si } (x,y) = (0,0) \end{cases}$

On se place en
$$a = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$f_{(0,0)}^{A}(t) = f(t,0) = \frac{t \times 0}{t^{2} + 0} = 0 \quad \text{faction cte nulle.}$$

$$f_{(0,0)}^{L}(t) = f(0,t) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}$$

$$f(0,0) = f(0,t) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}$$

$$f(0,0) = f(0,t) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

$$f(0,0) = \frac{0 \times t}{0 \cdot t^{2}} = 0 \quad \text{faction cte nulle}.$$

5.3 Dérivées partielles

Soit \mathcal{U} un ouvert d'un espace vectoriel normé E.

Définition 5.3.1 (Dérivée suivant un vecteur). Soit $a \in \mathcal{U}$ et $v \in E$ avec $v \neq 0$. On dit que f admet une dérivée en a suivant la direction v si l'application $t \mapsto f(a+tv)$ est dérivable en t=0. Dans ce cas on note :

$$D_v f(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}.$$

Remarque 5. Dans le cas où $F=\mathbb{R}^p$, on a $f=\begin{pmatrix}f_1\\\vdots\\f_p\end{pmatrix}$. Et la limite dans la définition précédente est égale à

$$\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} = \lim_{t \to 0} \frac{1}{t} \begin{pmatrix} f_1(a+tv) - f_1(a) \\ \vdots \\ f_p(a+tv) - f_p(a) \end{pmatrix} \in \mathbb{R}^p$$

Définition 5.3.2. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Étant donné $a \in \mathcal{U}$, la i-ème **dérivée** partielle de f en a est, lorsqu'elle existe, la dérivée de f en a suivant le vecteur e_i avec $i = 1, \dots, n$. On la note $\frac{\partial f}{\partial x_i}(a)$ et on a

$$\frac{\partial f}{\partial x_i}(a) \doteq D_{e_i} f(a)$$

$$= \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t} = \lim_{t \to 0} \frac{f(a_1, \dots, a_i + t, \dots, a_n) - f(a_1, \dots, a_i, \dots, a_n)}{t}.$$

Si, de plus, $\frac{\partial f}{\partial x_i}(a)$ existe en tout point $a \in \mathcal{U}$, on définit la *i*-ème fonction dérivée partielle de f par :

$$\frac{\partial f}{\partial x_i}: \mathcal{U} \to F$$
$$a \mapsto \frac{\partial f}{\partial x_i}(a).$$

Exemple 5.3.1. Calcul des dérivées partielles de la fonction

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{si } (x,y) = (0,0) \end{cases}$$

① Em
$$(x,g) \neq (0,0)$$
, on a:

$$\frac{\partial f}{\partial x}(x,g) = \frac{y(x^2 + y^2) - x^2 y}{(x^2 + y^2)^2} = \frac{y^3 - x^2 y}{(x^2 + y^2)^2} \text{ et } \frac{\partial f}{\partial y}(x,g) = \frac{x^3 - y^2 x}{(x^2 + y^2)^2}$$
② Em $(x,g) = (0,0)$
 $\frac{\partial f}{\partial x}(0,0) = D_e$, $f(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0$ et $\frac{\partial f}{\partial y}(0,0) = D_e$, $f(0,0) = 0$
be application derivers partialle ont be définies on \mathbb{R}^2 tait entire.

5.4 Fonctions différentiables

Exemple 5.4.1. Retour sur les fonctions réelles dérivables.

5.4.1 Définition et propriétés

Soit E et F deux \mathbb{R} espaces vectoriels de dimension finie munis des normes $\|\cdot\|$ et $\|\cdot\|'$ respectivement.

Définition 5.4.1 (Différentiabilité en a). Soit $f: E \to F$ définie sur un ouvert \mathcal{U} et $a \in \mathcal{U}$.

On dit que f est différentiable en a s'il existe une application linéaire $\varphi_a: E \to F$ telle que

$$\frac{\|f(a+h)-f(a)-\varphi_a(h)\|'}{\|h\|} \xrightarrow[h \neq 0_E]{} 0 \qquad \text{f (a+h)-f(a)-Y_a(h)}$$
 of the potition of the state of th

Avec la notation de Landau cela s'écrit :

$$f(a+h) = f(a) + \varphi_a(h) + o(||h||), \text{ quand } h \to 0$$

Contrairement aux dérivée partielles ou directionnelles, la notion de différentiabilité implique la continuité :

Proposition 5.4.1. Si f est différentiable en a alors f est continue en a.

Démonstration. : E ____ F

Par lay poblise, an a:
$$f(a+l_0) - f(a) = f(a) + o(||a||) + o(||a||)$$

$$ai f(a+l_0) - f(a) = f(a) + o(||a||) + o(||a||)$$

$$ai f(a+l_0) - f(a) = f(a) + o(||a||) + o(||a||) + o(||a||)$$

$$et f(a+l_0) - f(a) = f(a) + o(||a||) + o(||a||) + o(||a||)$$

$$et f(a+l_0) - f(a) = f(a) + o(||a||) + o(||a||) + o(||a||)$$

Proposition 5.4.2. Si f est différentiable en a, f admet en a une dérivée suivant tout vecteur $v \neq 0$. De plus, cette dérivée vaut $\varphi_a(v)$.

Démonstration. f: E - F diff. en a et défine en DCE

Par definition:
$$f(a+b) = f(a) + f_a(b) + o(||b||)$$

$$sat v \in E \text{ et } t \in \mathbb{R} \text{ tole que } (vt + a) \in \emptyset$$

$$f(a+tv) = f(a) + f_a(v) + o(||tv||)$$

$$= f(a) + t f_a(v) + o(|t|)$$

$$= f(a+tv) - f(a) = f(a) + f(a)$$

$$= f(a+tv) - f(a) = f(a) + f(a)$$

$$= f(a+tv) - f(a) = f(a) + f(a) + o(||t||)$$

Définition - Proposition 5.4.1. Si f est différentiable en a, l'application linéaire $\varphi_a : E \to F$ est définie de manière unique. Elle est appelée **différentielle** de f en a et est notée $d_a f$.

Démonstration. Mantas l'anicité. an syjose qu'ily en a 2 et a mente qu'ils sent identitique (ile leur différence est 0).

Proposition 5.4.3. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et $h = h_1 e_1 + \dots + h_n e_n \in E$. Soit $f: E \to F$ une application différentiable en $a \in E$, alors $d_a f(h) = h_1 \frac{\partial f}{\partial x_1}(a) + \dots + h_n \frac{\partial f}{\partial x_n}(a)$

Démonstration.

Démonstration.

On a d'epò le définition/prositions perédente: $\frac{\partial f}{\partial x_i}(a) = D_{e_i} f(a) = d_a f(e_i)$ Come $d_a f : E \rightarrow F$ est linear da f (le) = da f (l, e, + brez + ... + ha en) = h, daf (e,) + ... = h, 3+ (a)+...+ 1 3+ (a)

Notation : Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Pour tout $i = 1, \dots, n$, on note $dx_i : E \to \mathbb{R}$ l'application linéaire duale de e_i définie par

$$dx_i(e_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

On a alors $dx_i(h) = h_i$ (en d'autres termes dx_i renvoie la *i*-ème coordonnée de $h \in E$ dans la base $\mathcal{B} = (e_1, \dots, e_n)$). On note alors

$$\mathcal{E} = \frac{\partial f}{\partial x_1}(a)dx_1 + \dots + \underbrace{\frac{\partial f}{\partial x_n}(a)}_{\mathcal{L}(\mathcal{E}, \mathbb{R})}(a)dx_n$$

Proposition 5.4.4 (Cas de $E = \mathbb{R}$). Soit $f : \mathbb{R} \to F$. La fonction f est différentiable en asi et seulement si f est définie par :

$$d_a f(h) = h f'(a)$$

$$d_a f \cdot \mathbb{R} \rightarrow F$$

$$h \mapsto h f'(a)$$

pour tout $h \in \mathbb{R}$.

Démonstration.

les deux définitions sont équivalente dans ce con :
$$f(a+h) = f(a) + h A + o(||h||)$$
 où $A = f'(a) = da f(1)$

Remarque 6. Si
$$F = \mathbb{R}^n$$
 on a alors $f = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$ et $f'(a) = \begin{pmatrix} f'_1(a) \\ \vdots \\ f'_n(a) \end{pmatrix} \in \mathbb{R}^n$

Proposition 5.4.5 (Linéarité de la différentielle). Soient $f, g : E \to F$ différentiables en $a \in E$. Pour tout $\lambda, \mu \in \mathbb{R}$ alors $\lambda f + \mu g$ est différentiable en a avec

$$d_a(\lambda f + \mu g) = \lambda d_a f + \mu d_a g.$$

Démonstration.

5.4.2 Plan tangent

Proposition 5.4.6. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie sur un ouvert $\mathcal{U} \subset \mathbb{R}^{\mathbf{Q}}$ et différentiable en $(x_0, y_0) \in \mathcal{U}$. Le plan tangent à \mathcal{G}_f en $(x_0, y_0, f(x_0, y_0))$ a pour équation :

$$L(x,y) = f(x_0, y_0) + (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0).$$

Remarque 7. L'application L est bien définie sur \mathbb{R}^2 tout entier.

Graphe de la fonction $f(x,y) = x^2 + y^2$ et le plan tangent au point (-1,-1,f(-1,-1)). On représente trois niveau de "zoom" vers ce point.

5.4.3 Vecteur gradient

F=R

Dans cette section, on considère des applications définies sur \mathbb{R}^n et à valeurs réelles. On note aussi \mathcal{U} un ouvert de \mathbb{R}^n .

Définition 5.4.2. Soit $a \in \mathcal{U}$. On appelle gradient de $f : \mathcal{U} \to \mathbb{R}$ en a le vecteur

$$\nabla f(a) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix} \in \mathbb{R}^n.$$

Proposition 5.4.7. Pour tout $a \in \mathcal{U}$ le gradient est l'unique vecteur de \mathbb{R}^n tel que pour tout $h \in \mathbb{R}^n$ on ait

Graphe, lignes de niveau et gradient de la fonction $(x, y) \mapsto xe^{-x^2-y^2}$.

Remarque 8.

① le vectour quodient est \bot aux ligne de miveau:

En effet, suivee la ligne de miveau en a dans E, c'est aller dans le direction le E de le tangente à la ligne de miveau. C'est aussi vote à f = cte. E t donc da f (le) = O = $\langle \nabla f(a), l \rangle$ (=) ∇f (a) \bot direction à la ligne de mixeau à la lique de mixeau à la lique de mixeau à la lique de mixeau da f (le) = O = $\langle \nabla f(a), l \rangle$ (=) ∇f (a) \bot direction à la lique de mixeau de f (le) = O = f (le) =

5.4.4 Matrice jacobienne

Définition 5.4.3. Soit $\mathcal{B}=(e_1,\cdots,e_n)$ une base de E. Soit $\mathcal{B}'=(e'_1,\cdots,e'_p)$ une base de F. On suppose f différentiable en $a \in E$. La matrice de l'application linéaire $d_a f : E \to F$ dans les bases \mathcal{B} et \mathcal{B}' est appelée matrice jacobienne de f en a. On la note $\operatorname{Jac}_f(a)$.

Remarque 9. On a donc $\operatorname{Jac}_f(a) = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(d_a f)$

Proposition 5.4.8. On a avec les notations précédentes :

$$\operatorname{Jac}_{f}(a) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\ \vdots & & \vdots \\ \frac{\partial f_{p}}{\partial x_{1}}(a) & \cdots & \frac{\partial f_{p}}{\partial x_{n}}(a) \end{pmatrix} \in \mathcal{M}_{p,n}(\mathbb{R})$$

où $n = \dim E$ et $p = \dim F$.

Démonstration.

Par dificition,
$$Jac_{f}(a) = MB_{i}B_{i}^{i}$$
 (dat)

Par tent $j=1,...,n$ or a

dat $(e_{ij}) = D_{e_{j}}f(a) = \frac{24}{2\kappa_{i}}(a) \in F$

Dom L base B' or a

 $f(a) = f_{i}(a) e'_{i} + + f_{p}(a) e'_{p}$

et $\frac{24}{2\kappa_{i}}(a) = \frac{24}{2\kappa_{i}}(a) e'_{i} + + \frac{24p}{2k_{i}}(a) e'_{p}$

Définition 5.4.4. On suppose que E = F et $\mathcal{B} = \mathcal{B}'$. Le déterminant de la matrice $\operatorname{Jac}_f(a)$ est alors appelé jacobien de f en a. 3 blue 1 brown

Notation : On note parfaois $\frac{D(f_1, \dots, f_n)}{D(x_1, \dots, x_n)} = \det(\operatorname{Jac}_f(a)).$

Exemple 5.4.2. Changement de coordonnées polaires : On a $E=F=\mathbb{R}^2$ et on pose ψ : $[0, +\infty[\times \mathbb{R} \to \mathbb{R}^2, (r, \theta) \mapsto (r\cos\theta, r\sin\theta)]$. Calcul du jacobien.

=) det
$$\left(\operatorname{Jac}_{\psi}(x,0)\right) = \operatorname{ca}^{2}\theta x + \operatorname{si}^{2}\theta x$$

= $x \cdot \left(\operatorname{ca}^{2}\theta + \operatorname{ci}^{2}\theta\right) = x$.

reague 1): Jacy (1,6) at tij inverible

2): den le dongeret de variable en intégratien : dr dy = 12 dr do