Fairness in CTL

Lecture #21 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 20, 2007

What did we treat so far?

- CTL semantics: for states, paths and transition systems
- CTL equivalence: e.g., expansion laws
- Existential normal form
- Expressivity of CTL versus LTL
- CTL model checking
- CTL*: extended CTL—expressivity and model checking

what about fairness in CTL?

Overview Lecture #21

- ⇒ Repetition: fairness in LTL
 - Fair semantics for CTL
 - CTL model checking with fairness
 - Time complexity
 - Summary of CTL model checking

Summary of action-based fairness

- Fairness constraints rule out unrealistic executions
 - by putting constraints on the actions that occur along infinite executions
- Unconditional, strong, and weak fairness constraints
 - unconditional \Rightarrow strong fair \Rightarrow weak fair
 - weak fairness rules out the least number of runs; unconditional the most
- Fairness assumptions allow distinct constraints on distinct action sets
- (Realizable) fairness assumptions are irrelevant for safety properties
 - important for the verification of liveness properties

LTL fairness constraints

Let Φ and Ψ be propositional logic formulas over *AP*.

1. An unconditional LTL fairness constraint is of the form:

$$ufair = \Box \Diamond \Psi$$

2. A strong LTL fairness condition is of the form:

$$sfair = \Box \Diamond \Phi \longrightarrow \Box \Diamond \Psi$$

3. A weak LTL fairness constraint is of the form:

$$wfair = \Diamond \Box \Phi \longrightarrow \Box \Diamond \Psi$$

 Φ stands for "something is enabled"; Ψ for "something is taken"

LTL fairness assumption

- LTL fairness assumption = conjunction of LTL fairness constraints
 - the fairness constraints are of any arbitrary type
- Strong fairness assumption: $sfair = \bigwedge_{0 < i \leqslant k} \left(\Box \diamondsuit \Phi_i \longrightarrow \Box \diamondsuit \Psi_i \right)$
- ullet General format: $fair = ufair \land sfair \land wfair$
- Rules of thumb:
 - strong (or unconditional) fairness assumptions are useful for solving contentions
 - weak fairness suffices for resolving nondeterminism resulting from interleaving

Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

$$extit{FairPaths}_{fair}(s) = \left\{ \pi \in extit{Paths}(s) \mid \pi \models fair \right\}$$
 $extit{FairTraces}_{fair}(s) = \left\{ extit{trace}(\pi) \mid \pi \in extit{FairPaths}_{fair}(s) \right\}$

For LTL-formula φ , and LTL fairness assumption fair:

$$s\models_{fair} arphi \quad ext{if and only if} \quad \forall \pi \in \textit{FairPaths}_{fair}(s). \ \pi \models arphi \quad ext{and} \ TS\models_{fair} arphi \quad ext{if and only if} \quad \forall s_0 \in I. \ s_0 \models_{fair} arphi$$

 \models_{fair} is the fair satisfaction relation for LTL; \models the standard one for LTL

Randomized arbiter

 $TS_1 \parallel Arbiter \parallel TS_2 \not\models \Box \Diamond crit_1$

But: $TS_1 \parallel Arbiter \parallel TS_2 \models_{fair} \Box \diamondsuit crit_1 \land \Box \diamondsuit crit_2 \text{ with } \underbrace{fair} = \Box \diamondsuit head \land \Box \diamondsuit tail$

© JPK

7

Reducing
$$\models_{fair}$$
 to \models

For:

- transition system TS without terminal states
- LTL formula φ , and
- LTL fairness assumption fair

it holds:

$$TS \models_{fair} \varphi$$
 if and only if $TS \models (fair \rightarrow \varphi)$

verifying an LTL-formula under a fairness assumption can be done using standard LTL model-checking algorithms

Overview Lecture #21

- Repetition: fairness in LTL
- ⇒ Fair semantics for CTL
 - CTL model checking with fairness
 - Time complexity
 - Summary of CTL model checking

Fairness constraints in CTL

- For LTL it holds: $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$
- An analogous approach for CTL is not possible!
- Formulas form $\forall (fair \rightarrow \varphi)$ and $\exists (fair \land \varphi)$ needed
- But: boolean combinations of path formulae are not allowed in CTL
- and: e.g., strong fairness constraints $\Box \diamondsuit b \to \Box \diamondsuit c \equiv \diamondsuit \Box \neg b \lor \diamondsuit \Box c$
 - cannot be expressed in CTL since persistence properties are not in CTL
- Solution: change the semantics of CTL by ignoring unfair paths

CTL fairness constraints

A strong CTL fairness constraint is a formula of the form:

$$sfair = \bigwedge_{0 < i \leq k} (\Box \Diamond \Phi_i \to \Box \Diamond \Psi_i)$$

- where Φ_i and Ψ_i (for $0 < i \leqslant k$) are CTL-formulas over AP
- weak and unconditional CTL fairness constraints are defined analogously, e.g.

$$ufair = \bigwedge_{0 < i \leqslant k} \Box \diamondsuit \Psi_i \quad \text{and} \quad wfair = \bigwedge_{0 < i \leqslant k} (\diamondsuit \Box \Phi_i \to \Box \diamondsuit \Psi_i)$$

- a CTL fairness assumption fair is a combination of ufair, sfair and wfair
- ⇒ a CTL fairness constraint is an LTL formula over CTL state formulas!
 - note that $s \models \Phi_i$ and $s \models \Psi_i$ refer to standard (unfair!) CTL semantics

Semantics of fair CTL

For CTL fairness assumption fair, relation \models_{fair} is defined by:

$$\begin{array}{lll} s \models_{\mathit{fair}} a & & \text{iff} & a \in \mathit{Label}(s) \\ s \models_{\mathit{fair}} \neg \Phi & & \text{iff} & \neg (s \models_{\mathit{fair}} \Phi) \\ s \models_{\mathit{fair}} \Phi \lor \Psi & & \text{iff} & (s \models_{\mathit{fair}} \Phi) \lor (s \models_{\mathit{fair}} \Psi) \\ s \models_{\mathit{fair}} \exists \varphi & & \text{iff} & \pi \models_{\mathit{fair}} \varphi \text{ for } \mathit{some fair} \text{ path } \pi \text{ that starts in } s \\ s \models_{\mathit{fair}} \forall \varphi & & \text{iff} & \pi \models_{\mathit{fair}} \varphi \text{ for } \mathit{all fair} \text{ paths } \pi \text{ that start in } s \end{array}$$

$$\pi \models_{fair} \bigcirc \Phi \quad \text{iff } \pi[1] \models_{fair} \Phi$$

$$\pi \models_{fair} \Phi \cup \Psi \quad \text{iff } (\exists j \geqslant 0. \, \pi[j] \models_{fair} \Psi \, \land \, (\forall \, 0 \leqslant k < j. \, \pi[k] \models_{fair} \Phi))$$

 π is a fair path iff $\pi \models fair$ for CTL fairness assumption fair

Transition system semantics

• For CTL-state-formula Φ , and fairness assumption *fair*, the *satisfaction set* $Sat_{fair}(\Phi)$ is defined by:

$$Sat_{fair}(\Phi) = \{ s \in S \mid s \models_{fair} \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models_{fair} \Phi$$
 if and only if $\forall s_0 \in I. s_0 \models_{fair} \Phi$

- this is equivalent to $I \subseteq Sat_{fair}(\Phi)$

Randomized arbiter

$$TS_1 \parallel Arbiter \parallel TS_2 \not\models (\forall \Box \forall \Diamond crit_1) \land (\forall \Box \forall \Diamond crit_2)$$

But: $TS_1 \parallel Arbiter \parallel TS_2 \models_{fair} \forall \Box \forall \Diamond crit_1 \land \forall \Box \forall \Diamond crit_2$ with $fair = \Box \Diamond head \land \Box \Diamond tail$

Overview Lecture #21

- Repetition: fairness in LTL
- Fair semantics for CTL
- ⇒ CTL model checking with fairness
 - Time complexity
 - Summary of CTL model checking

Fair CTL model-checking problem

For:

- finite transition system *TS* without terminal states
- CTL formula Φ in ENF, and
- CTL fairness assumption fair

establish whether or not:

$$TS \models_{fair} \Phi$$

use bottom-up procedure a la CTL to determine $Sat_{fair}(\Phi)$ using as much as possible standard CTL model-checking algorithms

CTL fairness constraints

- A strong CTL fairness constraint: $sfair = \bigwedge_{0 < i \leqslant k} (\Box \Diamond \Phi_i \to \Box \Diamond \Psi_i)$
 - where Φ_i and Ψ_i (for $0 < i \le k$) are CTL-formulas over AP
- Replace the CTL state-formulas in sfair by fresh atomic propositions:

$$sfair := \bigwedge_{0 < i \leqslant k} (\Box \diamondsuit a_i \to \Box \diamondsuit b_i)$$

- where $a_i \in L(s)$ if and only if $s \in Sat(\Phi_i)$ (not $Sat_{fair}(\Phi_i)!$) - ... $b_i \in L(s)$ if and only if $s \in Sat(\Psi_i)$ (not $Sat_{fair}(\Psi_i)!$)
- (for unconditional and weak fairness this goes similarly)
- Note: $\pi \models fair \text{ iff } \pi[j..] \models fair \text{ for some } j \geqslant 0 \text{ iff } \pi[j..] \models fair \text{ for all } j \geqslant 0$

Results for \models_{fair} (1)

 $s \models_{fair} \exists \bigcirc a$ if and only if $\exists s' \in \textit{Post}(s)$ with $s' \models a$ and $\textit{FairPaths}(s') \neq \varnothing$

 $s \models_{fair} \exists (a \cup a')$ if and only if there exists a finite path fragment

$$s_0 s_1 s_2 \dots s_{n-1} s_n \in Paths_{fin}(s)$$
 with $n \geqslant 0$

such that $s_i \models a$ for $0 \leqslant i < n$, $s_n \models a'$, and FairPaths $(s_n) \neq \emptyset$

Results for \models_{fair} (2)

$$s \models_{\mathit{fair}} \exists \bigcirc a \text{ if and only if } \exists s' \in \mathit{Post}(s) \text{ with } s' \models a \text{ and } \underbrace{\mathit{FairPaths}(s') \neq \varnothing}_{s' \models_{\mathit{fair}} \exists \Box \mathsf{true}}$$

 $s \models_{fair} \exists (a \cup a')$ if and only if there exists a finite path fragment

$$s_0 s_1 s_2 \dots s_{n-1} s_n \in \textit{Paths}_{fin}(s) \quad \text{ with } n \geqslant 0$$

such that
$$s_i \models a$$
 for $0 \leqslant i < n$, $s_n \models a'$, and $\underbrace{\textit{FairPaths}(s_n) \neq \varnothing}_{s_n \models_{\textit{fair}} \exists \Box \mathsf{true}}$

Basic algorithm

- Determine $Sat_{fair}(\exists \Box true) = \{ s \in S \mid FairPaths(s) \neq \emptyset \}$
- Introduce an atomic proposition a_{fair} such that:
 - $a_{fair} \in L(s)$ if and only if $s \in Sat_{fair}(\exists \Box true)$
- Compute the sets $Sat_{fair}(\Psi)$ for all subformulas Ψ of Φ (in ENF) by:

```
egin{array}{lll} 	extstyle 	extst
```

- Thus: model checking CTL under fairness constraints is
 - CTL model checking + algorithm for computing $Sat_{fair}(\exists \Box a)!$

Model checking CTL with fairness

The model-checking problem for CTL with fairness can be reduced to:

- the model-checking problem for CTL (without fairness), and
- the problem of computing $Sat_{fair}(\exists \Box a)$ for $a \in AP$

note that $\exists \Box$ true is a special case of $\exists \Box a$ thus a single algorithm suffices for $Sat_{fair}(\exists \Box a)$ and $Sat_{fair}(\exists \Box$ true)

Core model-checking algorithm

```
(* states are assumed to be labeled with a_i and b_i *)
compute Sat_{fair}(\exists \Box true) = \{ s \in S \mid FairPaths(s) \neq \emptyset \}
forall s \in Sat_{fair}(\exists \Box true) \text{ do } L(s) := L(s) \cup \{ a_{fair} \} \text{ od }
                                                                                                                (* compute Sat_{fair}(\Phi) *)
for all 0 < i \le |\Phi| do
   for all \Psi \in Sub(\Phi) with |\Psi| = i do
      switch(\Psi):
                                 true : Sat_{fair}(\Psi) := S;
                                \begin{array}{lll} \exists \bigcirc a & : & \mathit{Sat}_{fair}(\underline{\Psi}) := \mathit{Sat}(\exists \bigcirc (a \land a_{fair})); \\ \exists (a \cup a') & : & \mathit{Sat}_{fair}(\underline{\Psi}) := \mathit{Sat}(\exists (a \cup (a' \land a_{fair}))); \end{array}
                                 \exists \Box a : compute Sat_{fair}(\exists \Box a)
      end switch
      replace all occurrences of \Psi (in \Phi) by the fresh atomic proposition a_{\Psi}
      forall s \in \mathit{Sat}_{\mathit{fair}}(\Psi) do L(s) := L(s) \cup \{ \ a_{\Psi} \ \} od
   od
od
return I \subseteq Sat_{fair}(\Phi)
```

Characterization of $Sat_{fair}(\exists \Box a)$

$$s \models_{sfair} \exists \Box a \quad \text{where} \quad sfair = \bigwedge_{0 < i \leqslant k} (\Box \diamondsuit \textcolor{red}{a_i} \rightarrow \Box \diamondsuit \textcolor{red}{b_i})$$

iff there exists a finite path fragment $s_0 \dots s_n$ and a cycle $s'_0 \dots s'_r$ with:

- 1. $s_0 = s$ and $s_n = s'_0 = s'_r$
- 2. $s_i \models a$, for any $0 \leqslant i \leqslant n$, and $s'_j \models a$, for any $0 \leqslant j \leqslant r$, and
- 3. $Sat(a_i) \cap \{s'_1, \ldots, s'_r\} = \emptyset \text{ or } Sat(b_i) \cap \{s'_1, \ldots, s'_r\} \neq \emptyset \text{ for } 0 < i \leqslant k$

Proof

Computing $Sat_{fair}(\exists \Box a)$

- Consider only state s if $s \models a$, otherwise *eliminate* s
 - change TS into $TS[a] = (S', Act, \rightarrow', I', AP, L')$ with S' = Sat(a),
 - $-\rightarrow'=\rightarrow\cap(S'\times Act\times S'),\ I'=I\cap S',\ \text{and}\ L'(s)=L(s)\ \text{for}\ s\in S'$
 - \Rightarrow each infinite path fragment in TS[a] satisfies $\Box a$
- $s \models_{fair} \exists \Box a$ iff there is a non-trivial SCC D in TS[a] reachable from s:

$$D \cap Sat(a_i) = \emptyset$$
 or $D \cap Sat(b_i) \neq \emptyset$ for $0 < i \le k$ (*)

- $Sat_{sfair}(\exists \Box a) = \{ s \in S \mid Reach_{TS[a]}(s) \cap T \neq \emptyset \}$
 - T is the union of all non-trivial SCCs C that contain D satisfying (*)

how to compute the set T of SCCs?

Unconditional fairness

$$ufair \equiv \bigwedge_{0 < i \leq k} \Box \diamondsuit b_i$$

Let T be the set union of all non-trivial SCCs C of TS[a] satisfying

$$C \cap Sat(b_i) \neq \varnothing$$
 for all $0 < i \leqslant k$

It now follows:

$$s \models_{\mathit{ufair}} \exists \Box a$$
 if and only if $\mathit{Reach}_{G[a]}(s) \cap T \neq \emptyset$

 $\Rightarrow T$ can be determined by a simple graph analysis (DFS)

Example

 $TS[a] \models_{\mathit{ufair}} \exists \Box a \text{ but } \widehat{TS[a]} \not\models_{\mathit{ufair}} \exists \Box a \text{ with } \mathit{ufair} = \Box \diamondsuit b_1 \land \Box \diamondsuit b_2$

Strong fairness

- $sfair = \Box \diamondsuit a_1 \rightarrow \Box \diamondsuit b_1$, i.e., k=1
- $s \models_{sfair} \exists \Box a \text{ iff } C \text{ is a non-trivial SCC in } TS[a] \text{ reachable from } s \text{ with:}$
 - (1) $C \cap Sat(b_1) \neq \emptyset$, or
 - (2) $D \cap Sat(a_1) = \emptyset$, for some non-trivial SCC D in C
- D is a non-trivial SCC in the graph that is obtained from $C[\neg a_1]$
- For *T* the union of non-trivial SCCs in satisfying (1) and (2):

$$s \models_{sfair} \exists \Box a$$
 if and only if $Reach_{G[a]}(s) \cap T \neq \emptyset$

for several strong fairness constraints (k > 1), this is applied recursively T is determined by standard graph analysis (DFS)

Overview Lecture #21

- Repetition: fairness in LTL
- Fair semantics for CTL
- CTL model checking with fairness
- ⇒ Time complexity
 - Summary of CTL model checking

Time complexity

For transition system TS with N states and M transitions, CTL formula Φ , and CTL fairness constraint fair with k conjuncts, the CTL model-checking problem $\mathit{TS} \models_{\mathit{fair}} \Phi$ can be determined in time $\mathcal{O}(|\Phi| \cdot (N+M) \cdot \mathit{k})$

Overview Lecture #21

- Repetition: fairness in LTL
- Fair semantics for CTL
- CTL model checking with fairness
- Time complexity
- ⇒ Summary of CTL model checking

Summary of CTL model checking (1)

- CTL is a logic for formalizing properties over computation trees
- The expressiveness of LTL and CTL is incomparable
- Fairness constraints cannot be expressed in CTL
 - but are incorporated by adapting the CTL semantics such that quantification is over fair paths
- ullet CTL model checking is by a recursive descent over parse tree of Φ
 - $Sat(\exists(\Phi \cup \Psi))$ is determined using a least fixed point computation
 - Sat(∃□Φ) is determined by a greatest fixed point computation

Summary of CTL model checking (2)

- Time complexity of CTL model-checking $TS \models \Phi$ is:
 - is linear in |TS| and $|\Phi|$ and linear in k for k fairness constraints
- Checking $TS \models_{fair} \Phi$ is $TS \models \Phi$ plus computing $Sat_{fair}(\exists \Box a)$
- Counterexamples and witnesses for CTL path-formulae can be determined using graph algorithms
- CTL* is more expressive than both CTL and LTL
- The CTL* model-checking problem can be solved by an appropriate combination of the CTL and the LTL model-checking algorithm
- The CTL*-model checking problem is PSPACE-complete