EDA

Statistics 139 Teaching Staff

```
# load Packages
require(pacman)
## Loading required package: pacman
p_load(haven, dplyr, corrplot, vioplot, effects, sjPlot, emmeans, tidyverse,
       ggthemes, performance, boot, visreg, vtree,
       glmmTMB, rstanarm, lme4, ggpubr,
       install = TRUE)
data <- read_dta("sec matched teachers & students.dta")</pre>
# overview
# str(data)
table(data$source)
##
## master_secondary_compact
                                   {\tt master\_teacher.dta}
##
                       32561
                                                  1167
table(data$version)
##
##
           4.5
                   5
                        5.5
## 19256
           905 7537 4863
table(data$year)
##
##
  2007 2008 2009
## 13903 17657 1001
# subset data
perception <- data[data$source == "master_secondary_compact" & data$version == 4,]
```

For this project, I will focus on master_secondary_compact data from version 4 (19256 observations).

Some broad characteristics of the subsetted survey dataset: All surveys were conducted on paper. Most observations are from 2007 (13,000 observations), some are from 2008 (6000 observations), and a few from 2009 (250 observations). The data includes 51 schools from 10 states: AZ, CA, IL, MA, MO, NJ, NM, NY, OH, OR.

The data is at the student level (can be aggregated at the class, school, and state levels). The a variables are about how the students perceive themselves in class. The b variables are about how the students perceive the teachers in class. The c variables are about the demographic and social life of students; some are about how race influences the experience of the students. The t variables are from the perspectives of teachers.

```
table(perception$type)
##
## Paper
## 19256
table(perception$year)
##
##
    2007
          2008
                 2009
## 12998
          6001
                  257
table(perception$state)
##
##
     AZ
          CA
                IL
                           MO
                                NJ
                                     NM
                                           NY
                                                OH
                                                      OR.
                     MA
                    290
                                    228 8083 1846 2029
## 1424 3287
               501
                          472 1096
length(unique(perception$schoolid))
## [1] 51
# colSums(is.na(perception))
# student data
student <- perception[,1:310]</pre>
student_subset <- cbind(student[c("year", "state", "schoolid", "classid", "studentid")], student[ ,grep
colSums(is.na(student_subset))
                                          schoolid
##
                                                                          studentid
              year
                             state
                                                           classid
##
                 0
                                 0
                                                 0
                                                                  0
                                                                               2215
##
                              m_a2
                                              m_a3
                                                              m_a4
              m_a1
                                                                               m_a5
##
               594
                               624
                                               820
                                                                830
                                                                                902
##
              m_a6
                              m_a7
                                              m_a8
                                                              m_a9
                                                                              m_a10
##
              1071
                               949
                                               878
                                                               1053
                                                                                898
##
             m_a11
                             m_a12
                                             m_a13
                                                             m_a14
                                                                              m_a15
##
               841
                              1008
                                              1048
                                                               1004
                                                                               1238
##
                             m_a17
                                             m_a18
                                                             m_a19
                                                                              m_a20
             m_a16
              1120
##
                              1023
                                                              1170
                                                                               1201
                                              1158
```

 m_a23

m_a28

 m_a33

1292

1288

m_a24

m_a29

1511

 m_a34

1200

 m_a25

 m_a30

1344

 m_a35

1206

##

##

##

##

##

m_a21

m_a26

1153

m_a31

1281

 m_a22

 m_a27

m_a32

1197

1274

##	1178	1310	1432	1378	1458
##	m_a36	m_a37	m_a38	m_a39	m_a40
##	1466	1495	1348	1534	1441
##	m_a41	m_a42	m_a43	m_a44	m_a45
##	1463	1820	1803	19256	19256
##	m_a46	m_a47	m_b1	m_b2	m_b3
##	19256	19256	1506	1713	1673
##	m_b5	m_b6	m_b8	m_b9	m_b10
##	1903	1768	1865	2014	1886
##	m_b11	m_b12	m_b13	m_b14	m_b15
##	2000	1988	2008	2129	2214
##	m_b16	m_b17	m_b18	m_b19	m_b21
##	2098	2191	2161	2282	2320
##	m_b22	m_b23	m_b24	m_b26	m_b27
##	2391	2413	2303	2483	m_b27 2531
##					
	m_b28	m_b29	m_b30	m_b31	m_b32
##	2512	2420	2668	3070	2453
##	m_b33	m_b34	m_b35	m_b36	m_b37
##	2684	2570	2534	2572	2582
##	m_b39	m_b40	m_b41	m_b42	m_b43
##	2628	2679	2651	2794	2501
##	m_b44	m_b45	m_b46	m_b47	m_b48
##	2490	2608	2635	2731	2734
##	m_b49	m_b50	m_b51	m_b52	m_b54
##	2359	1980	1406	1560	5987
##	m_b55	m_b56	m_b58	m_b59	m_b60
##	1032	1731	2262	2719	2818
##	m_b61	m_b62	m_b63	m_b64	m_b65
##	3017	2327	1994	19256	19256
##	m_b66	m_books	m_c1	m_c2a	m_c2b
##	19256	1166	852	496	502
##	m_c2c	m_c2d	m_c2e	m_c2f	m_c2g
##	505	498	504	503	501
##	m_c3	m_c4	m_c5a	m_c5b	m_c5c
##	987	943	1959	1962	1958
##	m_c5d	m_c5e	m_c5f	m_c5g	m_c5h
##	1955	1958	1955	1955	3144
##	m_c5i	m_c5j	m_c6		m_c8_a_highest
##	3141	3147	1023	1043	2279
##	m_c8_b_highest	m_c12a	m_c12b	m_c12c	m_c12d
##	2754	6350	6354	6349	6364
##	m_c12e	m_c12f	m_c12g	m_c12h	m_c12i
##	6342	6334	6336	6357	6344
##	m_c12j	m_c12k	m_c121	m_c12m	m_c12n
##	6346	6330	6341	6354	6348
##	m_c12o	m_c12p	m_c12q	m_c12r	m_c12s
##	6335	6333	6348	6244	6207
##	m_c12t	m_c12u	m_c12v	m_c12w	m_c12x
##	6346	6328	19256	19256	19256
##	m_c13	m_c14	m_c15	m_c16	m_c17
##	2157	2101	19254	2204	19254
##	m_c18_a	m_c18_b	m_c18_c	m_c19_a	m_c19_b
##	2324	2429	19256	2696	2764
##	m_c19_c	m_c19_e	m_c19_f	m_c19_h	m_c19_i

##	2748	2950	2887	2941	3175
##	m_c19_j	m_c19_k	m_c19_1	m_c19_m	m_c19_n
##	3219	18693	19256	19256	19256
##	m_c20_a	m_c20_ad	m_c20_ae	m_c20_af	m_c20_ag
##	2531	3064	3362	3584	3877
##	m_c20_ah	m_c20_ai	m_c20_aj	m_c20_ak	m_c20_a1
##	18700	18702	18702	18713	19256
##	m_c20_am	m_c20_c	m_c20_d	m_c20_e	m_c20_f
##	19256	2810	2899	2909	2948
##	m_c20_h	m_c20_i	m_c20_k	m_c20_1	m_c20_m
##	3539	3082	3168	3128	3173
##	m_c20_n	m_c20_o	m_c20_p	m_c20_q	m_c20_s
##	3241	3205	3289	3229	3555
##	m_c20_t	m_c20_u	m_c20_v	m_c20_w	m_c20_x
##	3350	3274	3288	3339	3318
##	m_c20_y	m_c20_z	m_c22_a	m_c22_b	m_c23_a
##	3297	3748	2654	3424	4288
##	m_c23_b	m_c24	m_c25	m_c26	m_compu
##	6738	18736	18734	18706	1053
##	${\tt m_fthed}$	${\tt m_grade}$	${\tt m_highsch}$	m_hmlang	${\tt m_male}$
##	7323	581	0	1259	1001
##	${\tt m_mthed}$	${\tt m_partot}$	m_parvar	${\tt m_raceall}$	${\tt m_sibs}$
##	6000	0	14713	0	1150

Question 1: Impact of "Acting White" on GPA Existing research finds that minority students might intentionally perform worse in class if excelling is equated to "acting white" and if slacking academically helps them fit in with their peer group better. I want to verify this claim using this dataset.

The relevant variables are $*m_c20_k$: my friends think it's important to work hard to get high grades $*m_c20_s$: at this school, people like me get accused of acting white

Question 2:

Question 3:

Question 4: