Precourse SoM+SoED

Lecture notes by Rangi Siebert

October 8, 2023

Contents Definition (informal): A "statement" is an expression that is either true or false. 1 1 Statements And Sets 1.1 Logical Connectives Examples: Negation 1 1. "It is raining" is a statement And 1 1.1.2 1.1.3 Or 2 2. "x = 5" is a statement Implication 2 1.1.4 3. "The Navier-Stokes eq. have a unique solution 2 1.1.5Equivalence in three dimensions." is a statement. 1.2 Quantifiers 2 3 Logical Connectives 1.4 Basic Set-Operations and Relations . . 3 1.1 Disjoint Sets 4 Logical connectives combine / modify simple Calculus Rules for set operations: statements to create new ones. Main examples: Negation, And, Or, Implication, Equivalence 4 2 Functions and Inequalities 2.1 Functions 4 1.1.1 Negation Calculus Rules for Images and Preim-5 If A is a statement, the $\neg A$ is the negation of A. It holds: Mapping Properties 5 Injectivity 5 1. $\neg A$ is true if A is false 5 Surjectivity 2.3.3 Bijectivity 5 2. $\neg A$ is false if A is true 2.3.4 Inverse Function 2.4 Inequalities 6 **Example:** $\neg(x=5)$ means $x \neq 5$ 2.4.1 Order Properties 6 Monotoniety 1.1.2 And If A and B are statements, then " $A \wedge B$ " means "A and B" 1 Statements And Sets 1. $A \wedge B$ is true if both A and B are true. Main Purpose of Mathematics: Formulation of Statements and assessing weather certain state-2. $A \wedge B$ is false if at least one of the statements A

and B is false.

ments are true (t,1) or false (f,0)

Example: If A is the statement " $x \leq 3$ " and B the statement "x is a natural number", then $A \wedge B$ is "x is 1, 2, or 3".

1.1.3 Or

If A and B are statements, then " $A \vee B$ " means "A or B".

It holds:

- 1. $A \vee B$ is true if at least one of the statements A Note: and B is true
- 2. $A \vee B$ is false if both the statements A and B are false

Note: The "or" is not exclusive.

Example: If A is the statement "x is a natural number smaller than 4" and B is the statement "x is a natural number greater than 2", then $A \vee B$ is "x is a natural number".

1.1.4 Implication

" $A \Rightarrow B$ " means "If A is true, then B is true."

- 1. " $A \Rightarrow B$ " means "if both A and B are true of if A is false"
- 2. " $A \Rightarrow B$ " is false, if A is true and B is false.

Example:

 $(m, n \in \mathbb{N} \land m \text{ is even}) \Rightarrow m * n \text{ is even}.$

Proof: Assume m, n are natural numbers. Then m is even

$$\Rightarrow m = 2 * m' \text{ for some } m' \in \mathbb{N}$$

$$\Rightarrow m * n = 2 * m' * n \text{ with } m' \in \mathbb{N}$$

 $\Rightarrow m * n \text{ is even}$

Note:

$$(A \Rightarrow B) \not\Rightarrow (B \rightarrow B).$$

1.1.5 Equivalence

" $A \Leftrightarrow B$ " means "A is true if and only if B is true". It holds:

- 1. " $A \Leftrightarrow B$ " is true if both A and B are true or if both A and B is false.
- 2. " $A \Leftrightarrow B$ " is false if A is false and B is true or vice versa

1.
$$((A \Leftrightarrow B) \Leftrightarrow \{(A \Rightarrow B) \land (B \Rightarrow A)\}$$

2.
$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Example: For m, n natural numbers:

m * n is even \Leftrightarrow $(m \text{ is even} \lor n \text{ is even}).$

Proof: Show: " $B \Rightarrow B$ " and " $A \Rightarrow B$ "

- 1. " $B \Rightarrow A$ " is already proven; see above
- 2. " $A \Rightarrow B$ ":

We show the equivalent " $\neg B \Rightarrow \neg A$ " Suppose m is odd and n is odd, i.e., $m = 2m' + 1, n = 2n' + 1, m', n' \in \mathbb{N}_0$

$$\Rightarrow m*n = 4m'n' + 2(m'+n') + 1 = 2*k + 1;$$
 with $k := 2m'*n' + (m'+n') \in \mathbb{N}_0$

 $\Rightarrow m * n \text{ is odd}$

Quantifiers 1.2

Quantifiers describe quantitative properties:

- 1. \forall : for all
- $2. \exists : exists$
- 3. $\exists_1, \exists!$: there exists precisely one
- 4. $\not\exists$: there does not exist (i.e., $\neg\exists$)

Example:

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x.$$

means:

"For all real numbers x, there exists a natural number n such that n is bigger than x"

Note: The order matters

1.3 Sets

Definition (informal): A collection of well-defined distinct objects is called a set. The objects contained in a set are called elements.

Examples:

- 1. The set of all countries on earth
- 2. The set of all colors

Description of Sets:

1. Explicit definition(write all elements down)

$$A = \{a, b, c, d\}.$$

2. Characterization by property

 $A = \{\text{countries} \mid \text{contains the letter a}\}.$

$$\mathbb{O} := \{ x \in \mathbb{R} \mid \exists q \in \mathbb{N} : q * x \in \mathbb{Z} \}.$$

Examples of Sets:

 $\rightarrow \mathbb{N}$: natural numbers

 $\rightarrow \mathbb{N}_0$: natural numbers and zero

 $\rightarrow \mathbb{Z}$: integers

 $\rightarrow \mathbb{Z}$: rational numbers

 $\rightarrow \ \mathbb{R}$: real numbers

 $\rightarrow \mathbb{P}$: set of all prime numbers

 $\rightarrow \mathbb{C}$: complex numbers

Def.: Intervals: Let $a, b \in \mathbb{R}$. We define:

$$\rightarrow [a, b] := \{ s \in \mathbb{R} \mid a < s < b \}$$

$$\rightarrow (a, b] :=]a, b]. = \{ s \in \mathbb{R} \mid a < s \le b \}$$

$$\rightarrow \mathbb{R}_{>0} := [0, \inf)$$

1.4 Basic Set-Operations and Relations

 $\rightarrow a \in A : a \text{ is an element of } A$

 $\rightarrow a \notin A : a \text{ is not an element of } A$

 $\rightarrow A \subset B : A \text{ is a subset of } B, \text{ i.e., } a \in A \Rightarrow a \in B$

 $\rightarrow A \not\subset B : A \text{ is not a subset of } B, \exists a \in A : a \not\in B$

 $\rightarrow A \subseteq B : A \text{ is equal to } B, \text{ i.e.,}$

 $(A \subset B) \land (\exists b \in B : b \notin A).$

 $\rightarrow A = B : A \text{ is equal to } B, \text{ i.e., } (A \subset B) \land (B \subset A)$

 $\rightarrow A \cup B := \{x \mid x \in A \lor x \in B\} \text{ (union)}$

 $\rightarrow A \cap B := \{x \mid x \in A \land x \in B\} \text{ (intersection)}$

 $\rightarrow A \backslash B = \{x \in A \mid x \notin B\} \ (A \text{ without } B)$

 $\rightarrow C_A(B) := A \backslash B$ in the situation $B \subset A$

 \rightarrow | A | : the cardinality of A, i.e., number of elements

 $\rightarrow A \times B := \{(a,b) \mid a \in A, b \in B\}$ Cartesian product of A and B.

 $\rightarrow \emptyset$: empty set

Example:

$$\emptyset < \mathbb{P} < \mathbb{N} < \mathbb{N}_0 < \mathbb{Z} < \mathbb{R} < \mathbb{C}$$
.

Note: The operation \cup , \cap , \times can be iterated.

$$\bigcup_{i=1}^{n} A_i := A_1 \cup A_2 \cup \dots \cup A_n, \ n \in \mathbb{N}.$$

$$\bigcap_{i=1}^{n} A_i := A_1 \cap A_2 \cap \dots \cap A_n, \ n \in \mathbb{N}.$$

$$\prod_{i=1}^{n} A_1 := A_1 \times A_2 \times \dots \times A_n.$$

Example:

$$A := \{1, 2, 5, 7\}, B := \{n \in \mathbb{N} \mid n \text{ is odd}\},\$$

$$C := \{2, \sqrt{2}, B\}, D := \{1, 5, 7\}$$

 $D \subsetneq B, D \subsetneq A, C \not\subset B, B \in C, B \not\subset C, \{B\} \subset C, B \setminus A = \{3\} \cup \{n \in \mathbb{N} \mid n \text{ is odd and } n \geq 9\},$

$$C \times D = \{(2,1), (2,5), (2,7),$$

$$(\sqrt{2},1), (\sqrt{2},5), (\sqrt{2},7),$$

$$(B,1), (B,5), (B,7)\}$$

$$\mid C \times D \mid = 9 = \mid C \mid * \mid D \mid.$$

1.4.1 Disjoint Sets

Two sets A and B are called disjoint if $A \cap B = \emptyset$

1.4.2 Calculus Rules for set operations:

If A, B, C are sets, then it holds:

- 1. $A \cup B = B \cup A$, $A \cap B = B \cap A$ (commutativity)
- 2. $A \cup (B \cup C) = (A \cup B) \cup C$) $A \cap \dots$ (associativity)
- 3. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap \dots$ (distributivity)
- 4. $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$ $C \setminus (A \cup \dots \text{ (De Morgan)})$
- 5. $|A \times B| = |A| * |B|$
- 6. $|A \cup B| = |A| + |B| |A \cap B|$
- 7. $|A \setminus B| = |A| |A \cap A|$

 $(5.-7. \text{ for } |A|, |B| < \inf)$

2 Functions and Inequalities

2.1 Functions

Definition: Let A and B be nonempty sets. A function f from A to B is a rule that assigns to each element of the set A a unique element of the set B, i.e.,

$$\forall x \in A \exists_1 y \in B : y = f(x).$$

Notation:

$$f: A \to B, x \mapsto f(x).$$

Def.: Let $f:A\to B$ be a function between nonempty sets A and B. Then:

- \rightarrow A is called the domain.
- \rightarrow B is called the codomain.
- \rightarrow The element f(x) that a given $x \in A$ is mapped to by f is called the image of x under f.
- $\rightarrow \text{ For } C \subset A, \ f(C) := \{ y \in B \mid \exists x \in C : f(x) = y \}$
- \rightarrow The set $\{(x,y) \in A \times B \mid y = f(x)\}$ is called the graph of f.

Examples:

1. If $A := \{x \mid x \text{ is a mono-colored car}\}$ and $B := sety \mid y \text{ is a color, then}$

$$f := A \to B$$
, $f(x) := \text{color of } x$.

2. If we consider for $A = \mathbb{R}$, the rule

$$A \ni x \mapsto (-\inf, x]$$

then this does not define a function $f: \mathbb{R} \to \mathbb{R}$. But if we define the so-called power set of \mathbb{R} by

$$\mathbb{P}(\mathbb{R}) := \{ C \mid C \text{ is a subset of } \mathbb{R} \},$$

then $A \ni x \mapsto (-\inf, x]$ defines a function from \mathbb{R} to $\mathbb{P}(\mathbb{R})$.

3. The rule $g(x) := x^2$ defines a function whose domain and codomain is equal to \mathbb{R} , i.e., $g : \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$.

$$\rightarrow g(\mathbb{R}) = [0, \inf)$$

 $\rightarrow \text{ For } C := [-1, 2] , D := [1, 4]:$

 $g(C) = [0, 4].$

Note: In most applications the appearing functions are functions between Euclidean spaces, i.e., $f: \mathbb{R}^n \to \mathbb{R}^m, n, m \in \mathbb{N}$

Example: Minimize air resistance Function from set of shapes to \mathbb{R}

2.2 Calculus Rules for Images and Preimages:

Let $f:A\to B$ be a map between nonempty sets A and B. Then:

$$\rightarrow C_1 \subset C_2 \subset A \Rightarrow f(C_1) \subset f(C_2)$$

$$\rightarrow D_1 \subset D_2 \subset B \Rightarrow f^{-1}(D_1) \subset f^{-1}(D_2)$$

$$\to f(C_1 \cup C_2) = f(C_1) \cup f(C_2), \, \forall C_1, C_2 \subset A$$

$$A \to f^{-1}(C_1 \cap D_2) = f^{-1}(D_1) \cup f^{-1}(D_2), \forall D_1, D_2 \subset A$$

$$\rightarrow f(C_1 \cap C_2) \subset f(C_1) \cap f(C_2), \forall C_1, C_2 \subset A$$

$$\to f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2), \forall D_1, D_2 \subset B$$

$$\begin{array}{ll} \rightarrow & C \subset f^{-1(f(C))}, \, \forall C \subset A \\ & \text{ex.:} \; f : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto 0 \in \mathbb{R} \end{array}$$

$$- C = \{0\}$$

$$- f(C) = \{0\}$$

$$- f^{-1}(f(C)) = \mathbb{R}$$

$$\rightarrow f(f^{-1}(D)) \subset D, \forall D \subset B$$

2.3 Mapping Properties

2.3.1 Injectivity

Let $f: A \to B$ be a function between non-empty sets. Then f is called **injective** if:

$$\forall x_1, x_2 \in A, x_1 \neq x_2 : f(x_1) \neq f(x_2).$$

2.3.2 Surjectivity

Let $f: A \to B$ be a function between non-empty sets. Then f is called **surjective** if:

$$\forall y \in B \exists x \in A : f(x) = y.$$

2.3.3 Bijectivity

Let $f: A \to B$ be a function between non-empty sets. Then f is called **bijective** if f is injective and surjective,

$$\forall y \in B \exists_1 x \in A : f(x) = y.$$

Example: The function $g(x) := x^2$ is neither surjective nor injective as a map from \mathbb{R} to \mathbb{R} . However, g is:

- \rightarrow surjective as a map $g: \mathbb{R} \rightarrow [0, \inf)$
- \rightarrow bijective as a map $g:[0,\inf)\rightarrow[0,\inf)$
- ⇒ choice of domain and co-domain crucial

2.3.4 Inverse Function

If $f:A\to B$ is a bijective map between nonempty sets, then there exists a unique function $f^{-1}:B\to A$ satisfying

$$f^{-1}(f(x)) = x \ \forall x \in A.$$

$$f(f^{-1}(y)) = y \ \forall y \in B.$$

Note: Do not get confused with the notation for preimages here!

$$\Rightarrow \text{ If } f^{-1} \text{ exists, then } f^{-1}(B)$$

$$= \text{ preimage of } B \text{ under } f$$

$$= \text{ image of } B \text{ under } f^{-1}$$

Example: Consider $g:[0,\inf) \to [0,\inf), x \mapsto x^2$ • $(0 < a < b \land 0 < c < d) \Rightarrow ac < bd$

- g bijective, $g^{-1}:[0,\inf) \to [0,\inf)$ given by $(a < b \land c < 0) \Rightarrow ca > cb$ $g^{-1}(y) := \sqrt{y}$
- $\begin{array}{l} \bullet \ \, \forall \in [0,\inf): g^{-1}(g(x)) = \sqrt{x^2} = x \\ \forall y \in [0,\inf): g(g^{-1}(y)) = (\sqrt{y})^2 = y \end{array}$

Inequalities

In addition to identities, inequalities pay an essential role in math, we have:

- 1. x < y, x > y: strict inequalities, "x is strictly smaller / greater than y".
- 2. $x \leq y, x \geq y$: non-strict inequalities
 - \Rightarrow " \leq " defines a total order on \mathbb{R}

2.4.1 Order Properties

- 1. reflexivity: $x \leq x \ \forall x \in \mathbb{R}$
- 2. transitivity: $\forall x, y, z \in \mathbb{R} : (x \leq y \land y \leq z) \Rightarrow$
- 3. antisymmetry: $\forall x, y \in \mathbb{R} : (x \leq y \land z \leq x) \Rightarrow$
- 4. totality: $\forall x, y \in \mathbb{R} : x < y \lor y < x$

Note: The property of antisymmetry is often used to prove identities

$$\rightarrow$$
 Show "=" by proving "\le " and "\ge ".

In practice, one often encounters inequalities of the form $f(x) \leq 0$ involving functions $f: \mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$, and is interested in the solution set:

$$\mathbb{L} := \{ x \in \mathbb{R}^n \mid f(x) \le 0 \}.$$

To solve such inequalities, one uses the following properties:

- $a < b, c \in \mathbb{R} \Rightarrow a + c < b + c$
- $(a < c \land c < d) \Rightarrow a + c < b + d$
- $(a < b \land c > 0) \Rightarrow ac < bc$

- $(a, b > 0 \land a < b) \Rightarrow \frac{1}{\iota} < \frac{1}{\iota}$

2.4.2 Monotoniety

If $D \subset \mathbb{R}$ is a nonempty set and $q: D \to \mathbb{R}$ a function, then q is called non-decreasing on D if

$$(x, y \in D \land x \le y) \Rightarrow g(x) \le g(y).$$

g is called non-increasing if -g is non-decreasing

Example:

- 1. $g:[0,\inf)\to\mathbb{R}, x\mapsto x^2$, is non-decreasing
- 2. $q:[0,\inf)\to\mathbb{R}, x\mapsto\sqrt{x}$, is non-decreasing
- 3. $g:(-\inf,0]\to\mathbb{R}, x\mapsto x^2$, non-increasing $(\Rightarrow domain matters)$

Example: For all $a, b \ge 0$, we have

$$\sqrt{ab} \le \frac{a+b}{2}$$
.

Proof: For $a, b \ge 0$, we have

$$\sqrt{ab} \le \frac{a+b}{2} \Leftrightarrow (\sqrt{ab})^2 \le (\frac{a+b}{2})^2$$

$$\Leftrightarrow ab \le \frac{1}{4}(a^2 + 2ab + b^2)$$

$$\Leftrightarrow 2ab \le a^2 + 2ab + b^2$$

$$\Leftrightarrow 0 \le a^2 - 2ab + b^2 = (a-b)^2$$