Лекция 07.02.22

Note 1

b84aca6df42d4d74ad1fea51970c01d9

Пусть $\{(c3):W-$ линейное пространство, $V\subset W$. $\|$ Тогда V называется $\{(c2):$ линейным подпространством $\|$, если $\{(c1):$

- 1. $\forall v \in V, k \in \mathbb{R} \implies kv \in V$,
- $2. \ \forall v_1, v_2 \in V \implies v_1 + v_2 \in V.$

Note 2

---490-2d12-4079966-99620b-12-72

Пусть W — линейное пространство, $V\subset W$ — линейное подпространство в W. Тогда V — $\{(c)\}$ тоже линейное пространство $\{(c)\}$.

Note 3

3c2988d9ae174eb4aa377f43ebd61f74

Является ли прямая проходящая через начало координат подпространством в \mathbb{R}^n ?

Да, поскольку любая линейная комбинация векторов на прямой тоже лежит на этой прямой.

Note 4

18b402a364da457aaaf95095b9113dcd

Пусть $W=\mathbb{R}^n, A\sim m\times n.$ Является ли множество

$$V = \{ x \in W \mid Ax = 0 \}$$

линейным подпространством?

Да, поскольку $\forall u,v\in V,\quad \alpha,\beta\in\mathbb{R}\quad A(\alpha u+\beta v)=0.$

Note 5

a5081684e6014eeb8d4cd352f7dfd46l

Пусть V — подпространство в \mathbb{R}^n . Тогда всегда существует $A \in \mathbb{R}^{\{\!\{ c2::m \times n \}\!\}}$ такая, что $\{\!\{ c4::m \times n \}\!\}$

$$V = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$$

}}

Пусть $W = \mathbb{R}^n$, $a_1, a_2, \dots a_n \in W$. Является ли

$$\mathcal{L}(a_1, a_2, \dots a_n)$$

подпространством в W?

Да, является, поскольку любая линейная комбинация линейных комбинаций $a_1, a_2, \dots a_n$ тоже является их линейной комбинацией.

Note 7

d633780bbade46968c2bcb66d05be478

Пусть $W=\mathbb{R}^n, \quad V_1,V_2\subset W$ — два линейных подпространства в W. Всегда ли $V_1\cap V_2$ — тоже линейное подпространство в W?

Да, всегда.

Note 8

9c714ab9fa4b457f993438ef25421061

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Всегда ли $V_1\cup V_2$ — тоже линейное подпространство в W?

Нет, не всегда.

Note 9

2b9216d113914ad98cbc81b055dc174b

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Тогда

$$\{v_1 + V_2\} \stackrel{\text{def}}{=} \{\{v_1 + v_2 \mid v_1 \in V_1, v_2 \in V_2\}.\}$$

Note 10

cd25e86c13c141be80e3673edfece8d2

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Тогда

$$\dim(V_1 + V_2) = \{\{\text{cli}: \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2).\}\}$$

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Всегда ли V_1+V_2 — тоже линейное подпространство в W?

Да, всегда.

Note 12

fe58542dc0ee4e48ab330cd68be1fd77

Пусть $W=\mathbb{R}^n,\ V$ — линейное подпространство в W и e_1,e_2,\ldots,e_k — «ез» базис в V.» Тогда в W существует базис вида «ел» $e_1,e_2,\ldots,e_k,e_{k+1},\ldots,e_n$.»

Семинар 09.02.22

Note 1

3fd21160928849f8acbc526a60229e49

Пусть e_1,e_2,\ldots,e_n и e'_1,e'_2,\ldots,e'_n — два базиса в линейном пространстве V. Тогда патрицей перехода от базиса e к базису e' называют патрицу C такую, что для любого $v\in V$, если

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n,$$

$$v = \mu_1 e'_1 + \mu_2 e'_2 + \dots + \mu_n e'_n,$$

то

$$C \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

Note 2

88fab27df46a451190278cbc1d38698f

 $\{\{e^{2\pi}\}\}$ Матрицу перехода от базиса e к базису $e'\}$ обычно обозначают $\{e^{1\pi}\}\}$

Пусть e_1, e_2, \ldots, e_n и e'_1, e'_2, \ldots, e'_n — два базиса в линейном пространстве. Как в явном виде задать матрицу $C_{e \to e'}$?

Столбцы $C_{e \to e'}$ — это координаты векторов e'_1, e'_2, \dots, e'_n в базисе e_1, e_2, \dots, e_n .