Сходимость по мере

Определение. Пусть $f \in \mathfrak{M}(E), \{f_n\}_{n=1}^{\infty} \subset \mathfrak{M}(E)$. Говорят, что последовательность $\{f_n\}_{n=1}^{\infty}$ сходится κ f по мере на E, для любого $\delta > 0$ если

meas
$$E[|f_n - f| > \delta] \to 0$$
 при $n \to \infty$.

Таким образом, $f_n \to f$ по мере на E тогда и только тогда, когда для всякого $\delta > 0$ и всякого $\varepsilon > 0$ существует номер N такой, что

meas
$$E[|f_n - f| > \delta] < \varepsilon$$
 при $n \geqslant N$.

Пример 1. Пусть E = [0,1] и $f_n(x) = x^n$. Тогда $f_n \to 0$ по мере, так как

$$E[|f_n - 0| > \delta] = E[|f_n| > \delta] = \begin{cases} (\delta^{1/n}, 1], & 0 < \delta < 1, \\ \emptyset, & 1 \le \delta \end{cases}$$

и meas $E[|f_n - 0| > \delta] = 1 - \delta^n \to 0$ при $n \to \infty$.

Пример 2. Пусть $E = \mathbb{R}$ и $f_n = \chi_{[n,n+1]}$. Тогда $f_n(x) \to 0$ для всех $x \in \mathbb{R}$, но $f_n \not\to 0$ по мере, так как

$$\max\{x\in\mathbb{R}\mid |f_n(x)|>\delta\}=1
eq 0$$
 для $0<\delta<1.$

Пример 3. ("Бегающая ступенька") Пусть E = [0,1] и $f_n = \chi_{[a_n.b_n]}$, где

$$[a_1, b_1] = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}, \quad [a_2, b_2] = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}, \quad [a_3, b_3] = \begin{bmatrix} 0, \frac{1}{4} \end{bmatrix}, \quad [a_4, b_4] = \begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix},$$
$$[a_5, b_5] = \begin{bmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix}, \quad [a_6, b_6] = \begin{bmatrix} \frac{3}{4}, 1 \end{bmatrix}, \quad [a_7, b_7] = \begin{bmatrix} 0, \frac{1}{8} \end{bmatrix}, \quad [a_8, b_8] = \begin{bmatrix} \frac{1}{8}, \frac{1}{4} \end{bmatrix}, \dots$$

Эта последовательность не сходится ни в одной точке, но сходится к нулю по

