Homework 4 zl9901

- a) It is not data mining task, because the classification is not based on linear regression or SVM. We can't say it's data mining according to gender.
 - b) It is data mining because it has made predictions.
 - c) It is data mining because it has trained data which is earthquake activities and use the trained data to make predictions.
 - d) It is not data mining because extract sample only can not be defined as data mining.

2 a)
$$\cos \theta = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}} = 1.0$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{0}{0}$$

In this case, we can't get the actual value of r

$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = 2$$

b)
$$\cos \theta = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}} = 0$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}} = -1$$

$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = 2$$

$$J = \frac{M_{11}}{M_{01} + M_{10} + M_{11}} = 0$$

c)
$$\cos \theta = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}} = 0$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}} = 0$$

$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = 2$$

d)
$$\cos \theta = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}} = \frac{3}{4}$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{1}{4}$$

$$J = \frac{M_{11}}{M_{01} + M_{10} + M_{11}} = \frac{3}{5}$$

e)
$$\cos \theta = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}} = 0$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}} = 0$$

Values	
cylinders	Factor w/ 5 levels "3","4","5","6",: 5 5 5 5 5 5 5 5 5
sepalLength	num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9
sepalmean	5.8433333333333
sepalmedian	5.8
sepalpercentile	Named num [1:5] 4.3 5.1 5.8 6.4 7.9
sepalrange	num [1:2] 4.3 7.9
sepalvariance	0.685693512304251

> summary(iris)

V1	V2	V3	V4	V5
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100	Length:150
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300	Class :character
Median :5.800	Median :3.000	Median :4.350	Median :1.300	Mode :character
Mean :5.843	Mean :3.054	Mean :3.759	Mean :1.199	
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800	
Max. :7.900	Max. :4.400	Max. :6.900	Max. :2.500	

Histogram of v1

Histogram of v2

Histogram of v3

Histogram of v4

Box Plot of v1

Box Plot of v2

Box Plot of v3

Box Plot of v4

Pie Chart of the Distribution of the types of Iris flowers

correlogram of mydata intercorrelations


```
require(data.table)
iris <-as.data.frame(fread("iris.data", quote = ""))</pre>
sepalLength <-iris[,1]
sepalmean <-mean(sepalLength)</pre>
print(mean)
sepalmedian <-median(sepalLength)
print(sepalmedian)
sepalrange <-range(sepalLength)</pre>
print(sepalrange)
sepalvariance <-var(sepalLength)</pre>
print(sepalvariance)
sepalpercentile <-quantile(sepalLength)
print(sepalpercentile)
summary(iris)
v1 <-iris[,1]
hist(v1)
v2 <-iris[,2]</pre>
hist(v2)
v3 <-iris[,3]
hist(v3)
v4 <-iris[,4]
hist(v4)
v5 <-iris[,5]
boxplot(v1)
boxplot(v2)
boxplot(v3)
boxplot(v4)
test <-table(v5)
num <-as.numeric(test)</pre>
pie(num,names(test))
library(corrgram)
corrgram(iris[,1:4], order=TRUE, lower.panel=panel.shade,
          upper.panel=panel.pie,text.panel=panel.txt,
          main='correlogram of mydata intercorrelations',
          diag.panel=panel.minmax
pairs (~V1+V2+V3+V4, iris)
```