

Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

June 10, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik

Das Auswahlproblem

- gegeben ist ein Array $\mathbf{A} = (A_1, ..., A_n)$ und eine Zahl $1 \le \ell \le n$
- die Elemente sind vergleichbar
- lacksquare das Ziel ist, das ℓ -te Element von $m{A}$ in aufsteigender Reihenfolge zu finden

Lösung via Sortieren

- offenbar könnten wir A in Zeit $O(n \log n)$ sortieren und einfach den ℓ -ten Eintrag des sortierten Arrays ausgeben
- aber für $\ell = 1$ und $\ell = n$ kann das Problem in Zeit O(n) gelöst werden
- **geht** das auch für allgemeine ℓ ?

Definition

Ein Median eines Arrays $\mathbf{A} = (A_1, \dots, A_n)$ ist ein Element A_i von \mathbf{A} , so daß

$$|\{i \in [n] : A_i < m\}| \le \frac{n}{2} \quad \text{und} \quad |\{i \in [n] : A_i > m\}| \le \frac{n}{2}.$$

- wenn wir das Array sortieren, ist das Element in Position $\lceil (n+1)/2 \rceil$ ein Median
- lacktriangle wenn n ungerade ist und alle Elemente verschieden sind, ist der Median eindeutig
- wenn *n* gerade ist, gibt es mindestens zwei Mediane

$Select(A, \ell)$

- **1.** Falls n = 1, gib A_1 aus.
- **2.** Unterteile **A** in $k = \lfloor n/5 \rfloor$ Teilarrays $T_1, \ldots, T_{\lfloor n/5 \rfloor}$ zu je 5 Elementen und, falls n nicht durch 5 teilbar ist, ein weiteres Teilarray $T_{\lfloor n/5 \rfloor + 1}$ auf.
- **3.** Setze $N = \lfloor n/5 \rfloor$, falls n durch 5 teilbar ist, und $N = \lfloor n/5 \rfloor + 1$ sonst.
- **4.** Finde in jedem dieser Teilarray T_i einen Median m_i .

$Select(A, \ell)$

- **5.** Wende Select rekursiv an, um einen Median m von $m = (m_1, \ldots, m_N)$ zu finden.
- **6.** Bestimme $K = (K_1, \dots, K_{n'})$, $M = (M_1, \dots, M_{n''})$, $G = (G_1, \dots, G_{n'''})$, die die Elemente von A kleiner/gleich/größer m enthalten.
- **7.** Falls $n' \geq \ell$, führe Select(K, ℓ) aus;
- **8.** sonst, falls $n' + n'' \ge \ell$, gib m aus;
- **9.** sonst führe Select(G, $\ell n' n''$) aus.

Satz

 $Select(A, \ell)$ hat Laufzeit O(n).

Zusammenfassung

- Select bestimmt das ℓ-te Element in linearer Zeit
- es gibt einen einfacheren randomisierten Algorithmus für dieses Problem
- dieser ähnelt Quicksort, aber "verfolgt nur einen Zweig"