

高阶绘图

https://youtu.be/sPC1-7K6qNU?si=TyS4f5hPogrj0bhA

特殊图形绘图

基本函数		
函数	功能	
plot	绘制二维图形, x轴和y轴为线性坐标	
semilogx	绘制二维图形, x轴为对数坐标, y轴为线性坐标	
semilogy	绘制二维图形, x轴为线性坐标, y轴为对数坐标	
loglog	绘制二维图形, x轴和y轴均为对数坐标	
plotyy	绘制二维图形,在图形的左右各有一个y轴	
polar	绘制极坐标图	
grid	在图形窗口添加网格(grid on)或去掉网格(grid off)	
zoom	对图形进行放大缩小操作(zoom on 容许 或zoom off	
	不容许)	
ginput	用鼠标获取图形中点的位置	

logarithm plot

logspace(-1,1,100)

指十的负一次方到十的一次方的区间内,有一百个数。

semilogx () ,semilogy ()

分别将两个图的x轴,y轴设置成以十的次幂为单位的

loglog()

将x,y轴均设置成以十的次幂为单位的。

plotyy()

有左右两个ylabel,用于显示一个自变量对应的两个因变量。

创建左右两侧都有 y 轴的坐标区。基于左侧 y 轴绘制一组数据的图。然后使用 yyaxis right 激活右侧,使后续图形函数作用于该侧。基于右侧 y 轴绘制第二组数据的图,并为右侧 y 轴设置范围。

新版matlab推荐使用**yyaxis**(r2016版开始)

```
x = linspace(0,10);
y = sin(3*x);
yyaxis left
plot(x,y)

z = sin(3*x).*exp(0.5*x);
yyaxis right
plot(x,z)
ylim([-150 150])
```

调用格式为:

plotyy(x1,y1,x2,y2,'fun1','fun2')

其中x1,y1对应一条曲线,x2,y2对应另一条曲线。横坐标的标度相同,纵坐标有两个,左纵坐标用于x1,y1数据对,右纵坐标用于x2,y2数据对。

histogram直方图

```
histogram(X)
histogram(X,nbins)
histogram(X,edges)
histogram('BinEdges',edges,'BinCounts',counts)
histogram(C)
```

```
histogram(C, Categories)
histogram('Categories', Categories, 'BinCounts', counts)
histogram(, Name, Value)
histogram(ax,)
h = histogram(____)

hist(x)
hist(x, nbins)
hist(x, xbins)
hist(ax,)
counts = hist()
[counts, centers] = hist(____)
```

Bar charts 条形图

```
bar(y)
bar(x,y)
bar(___,width)
bar(___,style)
bar(___,color)
bar(___,Name,Value)
bar(ax,___)
b = bar(___)
```

三维条形图: bar3()

Stacked and Horizontal Bar Charts堆叠柱状图和水平条形图

```
堆叠柱状图: bar( ,'stacked')
水平条形图: barh( )
```

• Exercise: stack the horizontal bar chart

```
barh(y,'stacked');
```

pie chart 饼状图

```
pie(X)
pie(X,explode)
pie(X,labels)
pie(X,explode,labels)
pie(ax,)
p = pie()

a = [10 5 20 30];
subplot(1,3,1); pie(a);
%在后面的数组中,0表示两部分之间贴合,1表示两部分之间裂开缝隙
subplot(1,3,2); pie(a, [0,0,0,1]);
%pie3()用来绘制3d饼图
subplot(1,3,3); pie3(a, [0,0,0,1]);
```

polar chart 极坐标图

polar(thrta单位角度,r半径)

stairs and stem charts

Stairs and Stem Charts

```
x = linspace(0, 4*pi, 40); y = sin(x);
subplot(1,2,1); stairs(y);
subplot(1,2,2); stem(y);
8.0
                                 0.8
0.6
                                 0.6
0.4
                                 0.4
0.2
                                 0.2
                                  0
 0
-0.2
                                -0.2
                                -0.4
-0.4
-0.6
                                -0.6
-0.8
                                -0.8
       10
```

boxplot and error bar

Boxplot and Error Bar

```
load carsmall
boxplot(MPG, Origin);
```

```
x=0:pi/10:pi; y=sin(x);
e=std(y)*ones(size(x));
errorbar(x,y,e)
```


fill()

```
t =(1:2:15)'*pi/8; x = sin(t); y = cos(t);
fill(x,y,'r'); axis square off;
text(0,0,'STOP','Color', 'w','FontSize', 80, ...
'FontWeight','bold','HorizontalAlignment', 'center');
```

fill(X,Y,C) 将填充多边形区域绘制为补片,其顶点位于由 X 和 Y 指定的 (x,y) 位置。要绘制一个区域,请将 X 和 Y 指定为向量。

要绘制多个区域,请将X和Y指定为矩阵,其中每列对应一个多边形。

C确定区域的填充颜色。

fill3(X,Y,Z,C) 在三维坐标区上将填充多边形区域绘制为 Patch 对象,其顶点位于由 X、Y 和 Z 指定的 (x,y,z) 位置。

要绘制一个区域,请将X、Y和Z指定为向量。

要绘制多个区域,请将 X、Y 和 Z 指定为矩阵,其中每列对应一个多边形。

C确定区域的填充颜色。

color space

visualizing Data as Animage:imagesc()

imagesc(C) 将数组 C 中的数据显示为一个图像,该图像使用颜色图中的全部颜色。C 的每个元素指定图像的一个像素的颜色。生成的图像是一个m×n 像素网格,其中 m 和 n 分别是 C 中的行数和列数。这些元素的行索引和列索引确定了对应像素的中心。

指令colorbar显示颜色 添加一个

颜色条,显示当前图像的颜色范围和数值对应关系。

colormap map 将当前图窗的颜色图设置为指定的预定义颜色图。例如,colormap hot 将颜色图设置为 hot。

如果您为图窗设置了颜色图,图窗中的坐标区和图将使用相同的颜色图。新颜色图的长度(颜色数)与当前颜色图相同。当您使用此语法时,不能为颜色图指定自定义长度。有关颜色图的详细信息,请参阅详细信息部分。

示例

colormap(map) 将当前图窗的颜色图设置为 map 指定的颜色图。

Built-in Colormaps

Use built-in color maps:

colormap([Name])

 A color map is a matrix of 256X3

a = colormap(prism)

Use a customized color map:

a = ones(256,3);
colormap(a);

3D Plots

3D Plots

Function	Description
plot3	3-D line plot
surf	3-D shaded surface plot
surfc	Contour plot under a 3-D shaded surface plot
surface	Create surface object
meshc	Plot a contour graph under mesh graph
contour	Contour plot of matrix
contourf	Filled 2-D contour plot

函数	功能
plot3	建立三维线条图
mesh*	建立网格图
meshc	建立具有基本等高线的网格图
meshz	建立具有基准平面的网格图
surf	建立表面图
surfc	建立带有基本等高线的表面图
surfl	建立带有指定方向照明的表面图
surface	建立表面图对象的低级函数
fill3	填充三维多边形

▼ meshgrid()——二维和三维网格

 $\{Y \in [X,Y] = \mathsf{meshgrid}(x,y)$ 基于向量 x 和 y 中包含的坐标返回二维网格坐 标。X 是一个矩阵,每一行是 x 的一个副本; Y 也是一个矩阵,每一列 是 y 的一个副本。坐标 X 和 Y 表示的网格有 length(y) 个行和 length(x) 个列。

示例

[X,Y] = meshgrid(x) 与 [X,Y] = meshgrid(x,x) 相同,并返回网格大小 为 length(x)×length(x) 的方形网格坐标。

示例

[X,Y,Z] = meshgrid(x,y,z) 返回由向量 x、y 和 z 定义的三维网格坐 标。X、Y和 Z表示的网格的大小为 length(y)×length(x)×length(z)。

示例

[X,Y,Z] = meshgrid(x) 与 [X,Y,Z] = meshgrid(x,x,x) 相同,并返回网 格大小为 length(x)×length(x)×length(x) 的三维网格坐标。

mesh()——纯网格

surf()——填充颜色的网格

▼ contour——矩阵的等高线图全页折叠

▼ contour(Z) 创建一个包含矩阵 Z 的等值线的等高线图,其中 Z 包含 xy 平面上的高度值。MATLAB® 会自动选择要显示的等高线。Z 的列和 行索引分别是平面中的 x 和 y 坐标。

✓ contour(X,Y,Z) 指定 Z 中各值的 x 和 y 坐标。

💉 contour(___,levels) 将要显示的等高线指定为上述任一语法中的最后一 个参量。将 levels 指定为标量值 n,以在 n 个自动选择的层级(高度) 上显示等高线。要在某些特定高度绘制等高线,请将 levels 指定为单调 递增值的向量。要在一个高度(k)绘制等高线,请将levels指定为二元 素行向量 [k k]。

meshc()、surfc()在mesh和surf基础上在底部画出对应的contour

🡉 light ('position',[....,, ...]) 给指定位置打光

■ sphere函数

[x,y,z]=sphere(n)

产生3个(n+1)阶的方阵,采用这3个矩阵可以绘制出圆心位于原点、半径为1 的单位球体。

L cylinder函数

[x,y,z]=cylinder(R, n)

其中,参数R是一个向量,存放柱面各个等间隔高度上的半径,n表示在圆 柱圆周上有n个间隔点,默认有20个间隔点。

色彩处理

 $c=[0.1 \ 0.6 \ 0.7 \ 0.9 \ 0.8 \ 1.2];$ cmap[c,c,c]

shading faceted:每个网格片用其高度对应的颜色进行着色,网 格线是黑色。这是默认着色方式。

shading flat:每个网格片用同一个颜色进行着色,且网格线也用 相应的颜色。

shading interp: 网格片内采用颜色插值处理。

图片剪裁

```
p = y > 0.5;
y(p)= NaN;
```

bar	竖直条形图
barh	水平条形图
bar3	三维竖直条形图
bar3	三维水平条形图
hist	绘制统计直方图(直角坐 标系)
rose	绘制统计扇形图(极坐标 系)
contour	绘制二维等高线
contour3	绘制三维等高线
contourf	绘制填充的二维等高线

pie	绘制二维饼形图
pie3	绘制三维饼形图
stem	绘制二维的离散图形
stem3	绘制三维的离散图形
stairs	绘制阶梯图形
waterfall	绘制瀑布图
compass	绘制复数的向量图(罗盘 图)