Relation between polar and Cartesian Coordinates The polar coordinates rand o can be converted to the cartesian coordinates or and y by wing the trignometric sine and cosine functions,

The cartesian coordinates x and y can be converted to polar coordinates rand o with r=0 and o in the interval $(-\pi, \pi)$ by relation.

$$\therefore \mathcal{H} = \sqrt{2c^2 + y^2} \quad \mathcal{O} = \tan\left(\frac{y}{x}\right)$$

The polar curves are given by polar coordinates (r,0) and is written as r=f(0) or 0=f(r).

* the points to be taken into consideration while tracing a polar curve r= \$10) are as follows:

- Symmetry: a Acurve is symmetric about the initial line 0=0 (x-axis) if the Egy remains unchanged after replacing oby -0.
 - (b) A curve is symmetric about the line 0= I (line through pole perjondicular to the initial line), if the Eg remains unchanged after replacing oby 71-0.
 - (a) A cutve is symmetric about the pole (opposite quadrant) if the equ remains unchanged when o is replaced by THO(or ris replaced by -r).

- Page No. 26 A curve is Symmetric about the line $0 = \frac{\pi}{4}$, if the Egn remains unchanged after replacing 0 by $\frac{\pi}{2} 0$.
- exists at least one real vulue of O. and that mal value of O, is also tangent at the pole.

 Points of Intersection: Determine the points where the cutve meets initial line 0=0, $0=\frac{\pi}{2}$ and $0=\pi$.
 - Direction of Tangent in Determine ϕ , i.e angle between the radius vector and the tangent at the points of intersection using $tan \phi = \gamma \frac{do}{dr}$. The angle ϕ gives the direction of the tungent at the point of intersection.
- *(v) Region: @ Determine the max" of min" value of r if exists. If min" value of r is a then no part of the curve lies inside the circle with raclius a and centre at pole. If max" value of r is b then the whole curve lies within the circle of radius b and centre at the pole.
 - Determine the range of 0 in which r20, i.e r is imaginary, then curve does not exists in this range.

* (vii) valiation of r:

Trace the variation of r for some suitable values of o. If $\frac{dr}{do} > o$ them r increases as o increases. and if $\frac{dr}{do} < o$ then r decreases as o increases.

If the curve meets the line of symmetry at two points, then a loop exists between these two points.

Note: Curve of the type r = asin no or r = alos no consists of (i) on similar loops, if m is odd, and (ii) an similar loops, if m is even.

If m=1 then the curve becomes a circle.

Page No. (28) Trace the cardioid r= a(1-(00)

Solo Dsymmetry: The curve is symmetric about the initial line 0=0, since when co is replaced by -0, Egn of the curve remains unchanged.

(i) Pole: pole lies on the curve stace when 0=0, r=0...
Tangent at the pole is the initial line 0=0.

(ii) Points of Intersection: Putting $0=\frac{\pi}{2}$, π we get $\ell=a$, 2a respectively. Thus the curve meets the line $0=\frac{\pi}{2}$ and $0=\pi$ at $A(a,\frac{\pi}{2})$ and $B(2a,\pi)$ respectively.

(i) Direction of Tangent: r = a(1-1000) $\frac{dr}{do} = asino : tang = r \frac{dr}{do}$ = a(1-1000) asino

 $= \frac{2\sin^2 \frac{0}{2}}{2\sin \frac{0}{2}} = \frac{4\cos \frac{0}{2}}{2\sin \frac{0}{2}(\cos \frac{0}{2})}$

At point $A(a, \frac{\pi}{2})$; $\phi = \frac{\pi}{4}$, thus, the tangent makes on angle $\frac{\pi}{4}$ with the line $0 = \frac{\pi}{2}$.

At Point B(29, π): $\phi = \frac{\pi}{2}$, thus, the temperat is Perpendicular to the line $0 = \pi$.

Region: Since minimum value of Page No. (29)

coso is -1, the max value of r is 2a. Thus, the whole curve lies within a circle with centre at the pole and radius 2a. [0 < 0 < 27]

Asymptote: there
is no asymptote of
the curve Since r
is finite for all
values of 0

	r.		6)=W2	
				1	(地)
				H	
			4		
		Scr	0	\langle	>
B(29, T)	1	-4	0	1	0=0

(vii) Valiation of r:

	0	0	71/3	11/2	277	π
-	γ	0	2	9	3/2	29

Figure Trace the lemmiscate of Bernoulli $r^2 = a \cos 2 \phi$. So $r = \cos 2 \phi$. So $r = \cos 2 \phi$. The curve is symmetric about the smittal line o = 0 and the line $o = \frac{\pi}{2}$, since when $o = \frac{\pi}{2}$ is replaced by -0 and by $\pi - 0$ respectively, eq^7 of the curve remains unchanged.

* The curve is also Symmetric about the pole since power of

Tangents at the pole are the lines 0= ± 1/4.

(11) Points of Intersection: The curve meets the initial line 0=0 at A(0,0) and B(-0,0). (iv) Direction of Tangent: $\eta^2 = a^2 \cos 20$ $2r \frac{dr}{d\rho} = -2a^2 \sin 2\theta$ $\frac{dr}{do} = -\frac{a^2 \sin 20}{4}$ $= \tan\left(\frac{\pi}{2} + 20\right)$ $\left| a \phi = \frac{\pi}{2} + 20 \right|$ At Point A(9,0), $\phi = \frac{\pi}{2}$. Thus, the tangent is perpendicular to the initial line 0=0. Due to Symmetry, the curve is disussed only between 0=0 to 0=71. (Region: @ Since max' value of cos20 is 1, the max' value of risa. Thus the whole curve lies within a circle with centre at pole and radius a. (b) cos 20 ∠0, if ₹ ∠20∠π i.e # < 0 < 17 [Due to Symmetry] considering o between o and Ty2 Ala,o) Thus r^2 20, when $\frac{\pi}{4}$ <0< $\frac{\pi}{2}$. (4,0) Henre, the curve does not exists in the region \$ < 0< 1/2. X(vi) Asymptotes there is no asymptote of the curve since or is finite for all values of O.

Vi) variation of T: Since the curve meets Page No. (3)
the initial line at two points $O(o, \frac{\pi}{4})$ and A(0,o)and is symmetric about the initial line,
a loop exists between the points o and A.

0	0	11/8	11/6	11/4
E	a	(2) V4	<u>a</u> <u>N2</u>	0

Trace the lemniscate >

Soliv Here n=3 (odd). The curve consists of three Similar loops.

(i) Symmetry: The curve is Symmetric about the line $O=\frac{\pi}{2}$, equation of the curve since on replacing O by π-O, remains unchanged.

(i) Pole: It lies on the cutve since r=0 at 0=0, $\frac{\pi}{3}$, $\frac{2\pi}{3}$, π . Tangents at the pole are the lines 0=0, $0=\frac{\pi}{3}$, $0=\frac{2\pi}{3}$,

(ii) points of Intersection: The curve meets the $O=\pi$.

Time $O=\frac{\pi}{2}$ at $A(-a,\frac{\pi}{2})$.

(i) Direction of Tangent 2 r = asin30 $\frac{dr}{d0} = 3a\cos 30 : tan\phi = k \frac{dk}{d0} = \frac{asin30}{3a\cos 30} = \frac{1}{3}tan30$ At point $A(-9, \frac{\pi}{2})$, temp = $\frac{1}{3}tan3\frac{\pi}{2} \rightarrow \infty$, $\phi = \frac{\pi}{2}$. Thus, the tangent is perpendicular to the line $0 = \frac{\pi}{2}$.

Page No. 32 @ Region on Since, the max value of sinso is

1, the max value of & is a. Thus, the whole curve
lies within a circle of radius a and centre at the

Pole.

X (i) Asymptote - There is no asymptote of the curve since or is finite for all values of O.

Symmetric above the line

0= ± ± and also passes

through the pole 0. Henre

a loop exists between

the points 0 and A.

This curve

of three Similar loops. Henre,

too more similar loops, exists

in the first and second quadrant

A a, - ±

due to symmetry.

0	Ö	1/6	11/3	1/2
7	0	a	0	-a

Hw: Trace the four leaved rose r= a cos 20, a>0.

