Mechanical and Civil Engineering Department Purdue University Northwest

ME/CE 271 -Basic Mechanics- Fall 2023 Exam #1

Instructor: Dr. Kimia Mortezaei

Student name:			

Time: 75 minutes

Important Notes:

- 1- The exam is closed book, closed notes.
- 2- You may use a formula sheet and calculator.
- 3- Turn in your formula sheet with your exam.
- 4- Clearly show your calculation steps and underline/box your final answers.
- 5- Carefully read each problem and its pertinent questions. Make sure that you exactly answer to what you are asked for.
- 6- Present your equations and drawings as clean and clear as possible. *Neatness* matters.

Total:		out of 100			
Problem 4:		out of 10			
Problem 3:		out of 30			
Problem 2:		out of 30			
Problem 1:		out of 30			
Grade:					

Problem 1)

a) Determine the magnitude of the two towing forces \mathbf{F}_A and \mathbf{F}_B if the resultant force has a magnitude $\underline{F_R} = 10 \text{ kN}$ and is directed along the positive x axis. Set $\theta = 70^\circ$.

Problem 2)

Determine the unstretched length of *DB* to hold the 40-kg crate in the position shown. Take k = 180 N/m. $\theta = 40^{\circ}$.g = 9.81 N kg⁻² m²

(Draw the FBD for the system.)

Problem 3)

Find the resultant moment (ΣM) about O for the two forces on the bracket.

Ignore the reactions at O.

Problem 4) (10 points)	
1) The magnitude of a unit vector is	_
2) The dot product of two vectors results in a	quantity.
3 If you know only u_A , you can determine the	$\underline{\hspace{1cm}}$ of A uniquely.
a) Magnitude	
b) angles $(\alpha, \beta$ and $\gamma)$	
c) components of A	
d) All of the above.	
4) If a dot product of two non-zero vectors is 0, then the	ne two vectors must be to
each other.	