CURS 6

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

LOGICĂ PROPOZIŢIONALĂ

EVALUARE (INTERPRETARE)

Propoziția 6.1

Pentru orice formulă φ și orice evaluări $e_1,e_2:V \to \{0,1\}$,

$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$. (*)

Demonstrație. Definim următoarea proprietate \emph{P} : pentru orice formulă φ ,

 φ are proprietatea P ddacă pentru orice evaluări $e_1, e_2 : V \to \{0, 1\}, \varphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea ${\it P}$ folosind Principiul inducției pe formule. Avem următoarele cazuri:

•
$$\varphi = v$$
. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

3

EVALUARE (INTERPRETARE)

Demonstrație. (continuare)

 $\varphi = (\neg \psi)$ și ψ satisface P. Fie $e_1, e_2 : V \to \{0,1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\varphi) = Var(\psi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$. Aşadar, aplicând P pentru ψ , obţinem că $e_1^+(\psi) = e_2^+(\psi)$. Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface **P**.

EVALUARE (INTERPRETARE)

Demonstrație. (continuare)

 $\varphi = (\psi \to \chi)$ şi ψ, χ satisfac P. Fie $e_1, e_2 : V \to \{0, 1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\psi) \subseteq Var(\varphi)$ şi $Var(\chi) \subseteq Var(\varphi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi) \cup Var(\chi)$. Aşadar, aplicând P pentru ψ şi χ , obţinem că $e_1^+(\psi) = e_2^+(\psi)$ şi $e_1^+(\chi) = e_2^+(\chi)$. Rezultă că

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface P.

5

MODELE. SATISFIABILITATE. TAUTOLOGII

Definiția 6.2

Fie φ o formulă.

- · O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- $\cdot \varphi$ este satisfiabilă dacă admite un model.
- · Dacă φ nu este satisfiabilă, spunem și că φ este nesatisfiabilă sau contradictorie.
- · φ este tautologie dacă orice evaluare este model al lui φ . Notație: $\models \varphi$.

Mulţimea tuturor modelelor lui φ se notează $Mod(\varphi)$.

Propoziția 6.3

- (i) φ este tautologie ddacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă ddacă $\neg \varphi$ este tautologie.

Demonstrație. Exercițiu.

MODELE. SATISFIABILITATE. TAUTOLOGII

Propoziţia 6.4

Există o mulțime numărabilă de formule φ a.î. atât φ cât și $\neg \varphi$ sunt satisfiabile.

Demonstrație. Demonstrăm că mulțimea $V = \{\varphi_n := v_n \mid n \in \mathbb{N}\} \subseteq Form$ satisface condiția din enunț. Fie $n \in \mathbb{N}$. Considerăm interpretările $e_1, e_2 : V \to \{0,1\}$ definite astfel

$$e_1(v_i) = \begin{cases} 1 & \text{dacă } i = n \\ \text{arbitrar} & \text{dacă } i \neq n \end{cases}, \quad e_2(v_i) = \begin{cases} 0 & \text{dacă } i = n \\ \text{arbitrar} & \text{dacă } i \neq n \end{cases}.$$

Atunci

$$e_1^+(\varphi_n) = e_1^+(v_n) = e_1(v_n) = 1,$$

deci $e_1 \vDash \varphi_n$. Pe de altă parte,

$$e_2^+(\neg \varphi_n) = e_2^+(\neg v_n) = \neg e_2^+(v_n) = \neg e_2(v_n) = \neg 0 = 1,$$

deci $e_2 \vDash \neg \varphi_n$.

METODA TABELULUI

Fie φ o formulă arbitrară şi $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$. Pentru orice evaluare $e: V \to \{0, 1\}, e^+(\varphi)$ depinde doar de $e(x_1), \dots, e(x_k)$, conform Propoziției 6.1.

Aşadar, $e^+(\varphi)$ depinde doar de restricţia lui e la $\{x_1, x_2, \dots, x_k\}$:

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt 2^k astfel de funcții posibile $e'_1, e'_2, \dots, e'_{2^k}$. Asociem fiecăreia o linie într-un tabel:

<i>X</i> ₁	<i>X</i> ₂		X_k	\ldots subformule ale lui $arphi \ldots$	φ
$e_1'(x_1)$	$e_1'(x_2)$		$e_1'(x_k)$		$e_1^{\prime+}(\varphi)$
$e_2'(x_1)$	$e_{2}'(x_{2})$		$e_2'(x_k)$		$e_2^{\prime+}(\varphi)$
:	:	٠	:	·	:
$e_{2^k}'(x_1)$	$e_{2^k}'(x_2)$		$e_{2^k}'(x_k)$		$e_{2^k}^{\prime +}(\varphi)$

Pentru orice i, $e_i^{\prime +}(\varphi)$ se defineşte similar cu Teorema 5.7.

 φ este tautologie ddacă $e_i^{\prime +}(\varphi) = 1$ pentru orice $i \in \{1, \dots, 2^k\}$.

METODA TABELULUI

Exemplu.

Fie $\varphi = v_1 \rightarrow (v_2 \rightarrow (v_1 \wedge v_2))$. Vrem să demonstrăm că $\models \varphi$.

$$Var(\varphi) = \{v_1, v_2\}$$

V ₁	V_2	$V_1 \wedge V_2$	$V_2 \rightarrow (V_1 \wedge V_2)$	$V_1 \rightarrow (V_2 \rightarrow (V_1 \land V_2))$
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

TAUTOLOGII

Definiția 6.5

Fie φ, ψ două formule. Spunem că

- \cdot φ este consecință semantică a lui ψ dacă $Mod(\psi) \subseteq Mod(\varphi)$. Notație: $\psi \models \varphi$.
- $\cdot \varphi$ şi ψ sunt (logic) echivalente dacă $Mod(\psi) = Mod(\varphi)$. Notaţie: $\varphi \sim \psi$.

Observație.

Relația \sim este o relație de echivalență pe mulțimea Form a formulelor.

Propoziția 6.6

Fie φ, ψ formule. Atunci

- (i) $\psi \vDash \varphi$ ddacă $\vDash \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ ddacă ($\psi \models \varphi$ şi $\varphi \models \psi$) ddacă $\models \psi \leftrightarrow \varphi$.

Demonstrație. Exercițiu.

TAUTOLOGII, CONSECINȚE SEMANTICE ȘI ECHIVALENȚE

tertul exclus

Propoziția 6.7

Pentru orice formule φ, ψ, χ ,

modus ponens
$$\varphi \land (\varphi \rightarrow \psi) \vDash \psi$$
 (2)
afirmarea concluziei $\psi \vDash \varphi \rightarrow \psi$ (3)
contradicţia $\vDash \neg (\varphi \land \neg \varphi)$ (4)
dubla negaţie $\varphi \sim \neg \neg \varphi$ (5)
contrapoziţia $\varphi \rightarrow \psi \sim \neg \psi \rightarrow \neg \varphi$ (6)
negarea premizei $\neg \varphi \vDash \varphi \rightarrow \psi$ (7)
modus tollens $\neg \psi \land (\varphi \rightarrow \psi) \vDash \neg \varphi$ (8)
tranzitivitatea implicatiei $(\varphi \rightarrow \psi) \land (\psi \rightarrow \chi) \vDash \varphi \rightarrow \chi$ (9)

 $\models \varphi \lor \neg \varphi$

(1)

TAUTOLOGII, CONSECINȚE SEMANTICE ȘI ECHIVALENȚE

legile lui de Morgan
$$\varphi \lor \psi \sim \neg((\neg \varphi) \land (\neg \psi)) \tag{10}$$

$$\varphi \land \psi \sim \neg((\neg \varphi) \lor (\neg \psi)) \tag{11}$$
 exportarea şi importarea
$$\varphi \rightarrow (\psi \rightarrow \chi) \sim \varphi \land \psi \rightarrow \chi \tag{12}$$
 idempotența
$$\varphi \sim \varphi \land \varphi \sim \varphi \lor \varphi \tag{13}$$
 slăbirea
$$\models \varphi \land \psi \rightarrow \varphi \qquad \models \varphi \rightarrow \varphi \lor \psi \tag{14}$$
 comutativitatea
$$\varphi \land \psi \sim \psi \land \varphi \qquad \varphi \lor \psi \sim \psi \lor \varphi \tag{15}$$
 asociativitatea
$$\varphi \land (\psi \land \chi) \sim (\varphi \land \psi) \land \chi \tag{16}$$

$$\varphi \lor (\psi \lor \chi) \sim (\varphi \lor \psi) \lor \chi \tag{17}$$
 absorbţia
$$\varphi \land (\varphi \lor \psi) \sim \varphi \tag{18}$$

$$\varphi \land (\varphi \lor \psi) \sim \varphi \tag{19}$$
 distributivitatea
$$\varphi \land (\psi \lor \chi) \sim (\varphi \land \psi) \lor (\varphi \land \chi) \tag{20}$$

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi) \tag{21}$$

TAUTOLOGII, CONSECINȚE SEMANTICE ȘI ECHIVALENȚE

$$\varphi \wedge \psi \to \chi \sim (\varphi \to \chi) \vee (\psi \to \chi) \tag{24}$$

$$\varphi \vee \psi \to \chi \sim (\varphi \to \chi) \wedge (\psi \to \chi) \tag{25}$$

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi) \tag{26}$$

$$\neg \varphi \sim \varphi \to \neg \varphi \sim (\varphi \to \psi) \wedge (\varphi \to \neg \psi) \tag{27}$$

$$\varphi \to \psi \sim \neg \varphi \vee \psi \sim \neg (\varphi \wedge \neg \psi) \tag{28}$$

$$\varphi \vee \psi \sim \varphi \vee (\neg \varphi \wedge \psi) \sim (\varphi \to \psi) \to \psi \tag{29}$$

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi \tag{30}$$

$$\models (\varphi \to \psi) \vee (\neg \varphi \to \psi) \tag{31}$$

 $\models (\varphi \rightarrow \psi) \rightarrow (((\varphi \rightarrow \chi) \rightarrow \psi) \rightarrow \psi)$

 $\models (\varphi \rightarrow \psi) \lor (\varphi \rightarrow \neg \psi)$

 $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi))$

 $\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi)$

 $\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi)$

Demonstrație. Exercițiu.

13

(32)

(33)(34)

(22)

(23)

EXEMPLU DE DEMONSTRAŢIE

Demonstrăm (1) $\models \varphi \lor \neg \varphi$.

Fie $e: V \to \{0,1\}$ o evaluare arbitrară. Trebuie să arătăm că $e^+(\varphi \vee \neg \varphi) = 1$. Observăm că $e^+(\varphi \vee \neg \varphi) = e^+(\varphi) \vee \neg e^+(\varphi)$. Putem demonstra că $e^+(\varphi) \vee \neg e^+(\varphi) = 1$ în două moduri.

I. Folosim tabelele de adevăr.

$e^+(\varphi)$	$\neg e^+(\varphi)$	$e^+(\varphi) \vee \neg e^+(\varphi)$
0	1	1
1	0	1

II. Raționând direct.

Avem două cazuri:

$$e^+(\varphi) = 1$$
. Atunci $\neg e^+(\varphi) = 0$ şi, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

•
$$e^+(\varphi) = 0$$
. Atunci $\neg e^+(\varphi) = 1$ şi, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

Definiția 6.8

Pentru orice formule φ, χ, χ' , definim

 $\varphi_\chi(\chi')$:= expresia obţinută din φ prin înlocuirea tuturor apariţiilor lui χ cu χ' .

 $\varphi_\chi(\chi')$ se numește substituția lui χ cu χ' în φ . Spunem și că $\varphi_\chi(\chi')$ este o instanță de substituție a lui φ .

Observație.

- $\cdot \varphi_{\varphi}(\chi') = \chi'.$
- · Dacă χ nu este subformulă a lui φ , atunci $\varphi_{\chi}(\chi') = \varphi$.

Exemplu.

Fie
$$\varphi = (v_1 \rightarrow v_2) \rightarrow \neg (v_1 \rightarrow v_2)$$
.

· pentru $\chi = v_1
ightarrow v_2$ și $\chi' = v_4$, obținem

$$\varphi_{\chi}(\chi') = V_4 \rightarrow \neg V_4$$

· pentru $\chi = \mathsf{v_1}$ și $\chi' = \neg \neg \mathsf{v_2}$, obținem

$$\varphi_{\chi}(\chi') = (\neg \neg \mathsf{V}_2 \to \mathsf{V}_2) \to \neg(\neg \neg \mathsf{V}_2 \to \mathsf{V}_2)$$

· pentru $\chi = v_1
ightarrow v_2$ și $\chi' = v_4 \lor v_1$, obținem

$$\varphi_{\chi}(\chi') = (\mathsf{V}_4 \vee \mathsf{V}_1) \to \neg(\mathsf{V}_4 \vee \mathsf{V}_1)$$

Propoziţia 6.9

Pentru orice formule φ, χ, χ' , $\varphi_{\chi}(\chi')$ este de asemenea formulă.

Demonstrație. Demonstrăm prin inducție după formula φ . Avem următoarele cazuri:

 $\cdot \varphi = \mathbf{v} \in \mathbf{V}$. Atunci

$$v_{\chi}(\chi') = \begin{cases} \chi' & \text{dacă } \chi = v \\ v & \text{dacă } \chi \neq v. \end{cases}$$

Prin urmare, $v_{\chi}(\chi')$ este formulă.

- $\varphi = \neg \psi$ şi $\psi_\chi(\chi')$ este formulă. Dacă χ nu apare în φ , atunci $\varphi_\chi(\chi') = \varphi$, deci este formulă. Dacă χ este subformulă a lui φ , atunci avem două cazuri:
- (i) $\chi = \varphi$. Rezultă că $\varphi_{\varphi}(\chi') = \chi'$ este formulă.
- (ii) χ este subformulă a lui ψ . Atunci $\varphi_{\chi}(\chi') = \neg \psi_{\chi}(\chi')$ este formulă.

Demonstrație. (continuare.)

- $\varphi = \psi \to \theta$ şi $\psi_\chi(\chi')$, $\theta_\chi(\chi')$ sunt formule. Dacă χ nu apare în φ , atunci $\varphi_\chi(\chi') = \varphi$. Dacă χ este subformulă a lui φ , atunci avem două cazuri:
- (i) $\chi = \varphi$. Rezultă că $\varphi_{\varphi}(\chi') = \chi'$.
- (ii) χ este subformulă a lui ψ sau θ (e posibil sa apară atât în ψ cât și în θ). Atunci

$$\varphi_{\chi}(\chi') = \psi_{\chi}(\chi') \to \theta_{\chi}(\chi')$$

este de asemenea formulă.

Propoziția 6.10

Pentru orice formule φ, χ, χ' ,

$$\chi \sim \chi' \quad \text{implică} \quad \varphi \sim \varphi_\chi(\chi').$$

Demonstrație. Exercițiu.

Propoziția 6.10 poate fi folosită pentru a arăta că o formulă este tautologie.

Exemplu.

Să se demonstreze că, pentru orice formule φ , ψ , formula $\theta = (\neg \varphi \lor \psi) \lor \neg (\varphi \to \psi)$ este tautologie.

Demonstrație. Conform (28), $\neg \varphi \lor \psi \sim \varphi \to \psi$. Aplicăm Propoziția 6.10 cu $\chi = \neg \varphi \lor \psi$ și $\chi' = \varphi \to \psi$ pentru a obține că $\theta \sim (\varphi \to \psi) \lor \neg (\varphi \to \psi)$. Pe de altă parte, $(\varphi \to \psi) \lor \neg (\varphi \to \psi)$ este tautologie, din (1). Prin urmare, θ este tautologie.

Fie $e: V \to \{0,1\}$ o evaluare și $v \in V$ o variabilă.

Notaţie.

Pentru orice $a \in \{0,1\}$, definim evaluarea $e_{v \leftarrow a} : V \rightarrow \{0,1\}$ prin

$$e_{v \leftarrow a}(x) = \begin{cases} e(x) & \text{daca } x \neq v \\ a & \text{daca } x = v. \end{cases}$$

Propoziția 6.11

Fie θ o formulă și $a:=e^+(\theta)$. Atunci pentru orice formulă φ ,

$$(e_{v\leftarrow a})^+(\varphi)=e^+(\varphi_v(\theta)).$$

Demonstrație. Exercițiu suplimentar.

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leuștean din anul universitar 2017/2018.