				. , .
ชื่อ-นามสกล	รหัสนักศึกษา	ตอนเรียน	ลำดับที่	
q q			กำหนดส่ง	

กระบวนวิชา <u>229223</u>

Lab	
HW	
Until	

การบ้านปฏิบัติการ 13 *n*-Dimensional Lists (20 คะแนน)

ข้อกำหนด

- i. การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข **if** __name__ == '__main__' : เพื่อให้สามารถ import ไปเรียกใช้งานจาก Script อื่น ๆ ได้
- ii. นักศึกษาสามารถสร้างฟังก์ชันย่อยต่าง ๆ เพิ่มเติมได้ตามความเหมาะสม
- iii. ฟังก์ชัน main() ควรอ่าน Input จากไฟล์ด้วยวิธี Command Redirection เพื่อความสะดวกในการทดสอบและหา ข้อผิดพลาด
- 1) **4 คะแนน** (Lab13_1_5XXXXXXXX.py) [Attachment] ให้เขียนฟังก์ชัน matrix_mult(m1, m2) เพื่อทำการ หาผลคูณของเมทริกซ์ m1 และ เมทริกซ์ m2 (wikipedia: https://goo.gl/S0DDZv) โดยฟังก์ชันจะทำงานแบบ Non-destructive กล่าวคือจะ<u>คืนค่า</u>ผลคูณที่ได้โดยไม่เปลี่ยนแปลงเมทริกซ์ m1 และ m2 ที่อยู่ในในรูปแบบ List สองมิติ หากไม่สามารถหาผลคูณได้ให้คืนค่า None

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 \\ \end{bmatrix}$$

<u>Output</u>

[[1, 2, 3],	[[58, 64],
[4, 5, 6]]	[139, 154]]
[[7, 8], [9, 10], [11,12]]	
[[1, 2, 3],	[[58, 64, 17, 29, 56],
[4, 5, 6]]	[139, 154, 41, 83, 131]]
[[7, 8, 5, 9, 3], [9, 10, -3, 7, 13], [11, 12, 6, 2, 9]]	University

• การวิเคราะห์ปัญหา

• Input: จำนวนข้อมูล_____ชนิดข้อมูล______
 • Output: (แสดงค่า) จำนวนข้อมูล_____ชนิดข้อมูล______
 (คืนค่า) จำนวนข้อมูล______ชนิดข้อมูล______

2) **4 คะแนน** (Lab13_2_6XXXXXXXX.py) **[Attachment]** ให้เขียนฟังก์ชัน Boolean is_magic_square(board) เพื่อทดสอบว่า list 2 มิติ board เป็น จัตุรัสกล (Magic Square) หรือไม่

ในทางคณิตศาสตร์ จัตุรัสกล (magic square) ขนาด n คือการนำตัวเลขจำนวนเต็ม<u>ทุกตัว</u> ตั้งแต่ 1 ถึง n^2 (ไม่มี ตัวเลขซ้ำ) มาเรียงลงในตารางรูปสี่เหลี่ยมจัตุรัสขนาด $n \times n$ ซึ่งผลบวกของจำนวนในแต่ละแถว, แต่ละหลัก, แต่ละ แนวทแยงจะเท่ากันทั้งหมด ดังตัวอย่าง Magic Square ที่มี n=3 ในรูปด้านบน

[[2, 7, 6], [9, 5, 1], [4, 3, 8]]	True
[[5, 5, 5], [5, 5, 5], [5, 5, 5]]	False

Output

True

• การวิเคราะห์ปัญหา

[[7, 12, 1, 14],

[2, 13, 8, 11], [16, 3, 10, 5], [9, 6, 15, 4]]

<u>Input</u>

• Input:		จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
	(คืนค่า)	จำนวนข้อมูล	ชนิดข้อมูล	

3) 4 คะแนน (HW13_1_6XXXXXXX.py) [Attachment] ให้เขียนฟังก์ชัน square_matrix(list_x) เพื่อทำให้ List 2 มิติ list_x ที่มีสมาชิกเป็น<u>จำนวนเต็ม</u>กลายเป็น matrix จัตุรัสโดยเติม 0 เพื่อให้มีขนาด row และ column เท่ากัน โดยจะต้องคงทุก element ใน List เดิมไว้ และจำนวน 0 ที่เติมต้องเป็นจำนวนที่น้อยที่สุดที่เป็นไปได้ ทั้งนี้กำหนดให้ ฟังก์ชันทำงานแบบ Destructive และแต่ละ element จะต้องไม่เป็น alias ซึ่งกันและกัน

<u>Input</u>

[[] 2 4]	FF2 2 43
[[2, 3, 4],	[[2, 3, 4],
[1, 2, 3]]	[1, 2, 3],
	[0, 0, 0]]

<u>Input</u>

Output

[[1 2]	[[1 2 0 0 0]
[[1, 2],	[[1, 2, 0, 0, 0],
[1, 2, 3],	[1, 2, 3, 0, 0],
[1, 2],	[1, 2, 0, 0, 0],
[1, 2],	[1, 2, 0, 0, 0],
[1]]	[1, 0, 0, 0, 0]]

• การวิเคราะห์ปัญหา

4) **5 คะแนน** (HW13_2_6XXXXXXXX.py) **[Attachment]** ให้เขียนฟังก์ชัน <u>Destructive</u> simplified_m_sort(*list_x, show_step=False*) เพื่อทำการเรียงลำดับสมาชิกใน Integer List *list_x* ตามลำดับจากน้อยไปมากโดยใช้ Merge Sort Algorithm โดยมี Optional Parameter *show_step* เพื่อแสดง/ไม่ แสดงขั้นตอนในแต่ละ Iteration <mark>ทั้งนี้ไม่อนุญาตให้ใช้ฟังก์ชัน sorted() หรือ method list.sort() ในการ แก้ปัญหา</mark>

Function Call

Output

<pre>list_x = [3, 7, 4, 9, 5, 2, 6] simplified_m_sort(list_x, True) print('') print(list_x)</pre>	[[3], [7], [4], [9], [5], [2], [6]] [[3, 7], [4, 9], [2, 5], [6]] [[3, 4, 7, 9], [2, 5, 6]] [[2, 3, 4, 5, 6, 7, 9]] [2, 3, 4, 5, 6, 7, 9]		
<pre>list_x = [3, 7, 4, 9, 5, 2, 6, 1] simplified_m_sort(list_x) print('') print(list_x)</pre>	[1, 2, 3, 4, 5, 6, 7, 9]		

• การวิเคราะห์ปัญหา

• Input: จำนวนข้อมูล____ชนิดข้อมูล_____
 • Output: (แสดงค่า) จำนวนข้อมูล_____ชนิดข้อมูล_____
 (คืนค่า) จำนวนข้อมูล_____ชนิดข้อมูล_____

5) **4 คะแนน** (HW13_3_6XXXXXXXX.py) **[Attachment]** ให้เขียนฟังก์ชัน sum_d_product(m) เพื่อ<u>คืนค่า</u> ผลบวกของผลคูณทแยงใน matrix m ที่มีขนาด $n \times n$ เมื่อ n สามารถเขียนในรูปของ 2^x (x เป็นจำนวนเต็มบวก)

โดยกรณี matrix m ขนาด 2×2 เช่น $egin{array}{c|c} a & b \\\hline c & d \\\hline \end{array}$ สามารถหาผลลัพธ์ได้จากสูตร a imes d + c imes b

ดังนั้น matrix 3 4 จะมี sum_d_product() = $(1 \times 4) + (3 \times 2) = 10$

2

กรณีต้องการหา sum_d_product() ของ matrix ขนาดใหญ่กว่า 2 × 2 ทำได้โดยการหา sum_d_product() ของ matrix ย่อย ขนาด 2 × 2 ก่อน แล้วหา sum_d_product() ของ matrix ผลลัพธ์อีกที เช่นกรณี matrix ขนาด 4 × 4 จะมีขั้นตอนดังนี้

หรือกรณี matrix 8 × 8

3	4	3	3	0	4 2	4	3 2	16	6	4	17				
5	5	2	3	3	5	5	5	30	Q	20	40	324	500		
1	5	1	3	1	5	3	5	30	9	20	40				408644
3	0	5	1	4	5	3	1	9	17	19	20				400044
5	3	2	3	3	1	5	5					376	681		
2	2	4	1	4	1	4	5	20	4	16	19	07			
5	5	0	1	0	4	3	1		'						

<u>Input</u> Output

[[3, 3, 3, 2], [2, 0, 3, 1], [2, 1, 2, 3], [1, 0, 2, -1]	33
[[1, 1, 5, -1], [12, 2, -2, 0], [4, 8, 8, 12], [4, 12, 12, 15]]	3856
[[0, -1, -1, 3, 2, 3, -1, 3], [3, -1, -1, 2, 0, -1, 2, 1], [3, 0, 1, 2, 3, 1, 3, 1], [2, 2, 1, -1, -1, 2, 0, 3], [1, 3, 2, 1, 3, 2, 2, 1], [1, 2, 2, 1, 3, 3, 1, 3], [2, 2, 2, 2, 2, 2, 3, 3], [1, 3, 2, 3, 1, 1, 2, 2]]	-6290 GIENGE University

• การวิเคราะห์ปัญหา

Input:		จำนวนข้อมูล	ชนิดข้อมูล	
• Output:	(แสดงค่า)	จำนวนข้อมูล	ชนิดข้อมูล	
	(คืนค่า)	จำนวนข้อมล	ชนิดข้อมล	