Gender Bias in Text & Image Embeddings

Yuanbiao Wang yuanbiaowang@fas.harvard.edu

Angel Hsu angelyinhuahsu@g.harvard.edu

Morris Reeves morrisreeves@g.harvard.edu

Xinyi Li xinyi_li@g.harvard.edu

Agenda

- Motivation
- Definition of Bias and Metrics
- Bias in:
 - Training embeddings
 - Existing word embeddings
 - Downstream tasks
 - Image embeddings

Motivation

How do we measure bias?

Gender bias

- male_words = ['he', 'male', 'man', 'father', 'boy', 'husband']
- o female_words = ['she', 'female', 'woman', 'mother', 'girl', 'wife']

2. Mean cosine similarity with offensive words

- If a gender-related word has higher cosine similarity with an offensive word compared to the corresponding word for the opposite gender, then we believe the embedding has a bias against that gender
- Offensive/Profane Word List from CMU: https://www.cs.cmu.edu/~biglou/resources/

$$\frac{\sum_{i=1}^{n}cos(male_word,bad_word_i)}{n}$$
 $\frac{\sum_{i=1}^{n}cos(female_word,bad_word_i)}{n}$

How do we measure bias?

- 3. Bias in association: the WEAT score (Caliskan et al. 2016)
 - Inputs:
 - 2 sets of target words: X, Y (e.g. {math, science}, {art, literature})
 - 2 sets of attribute words: A, B (e.g. {male, man}, {female, woman})
 - Intuitively, are X more similar to A than B, relative to Y?
 - Weaknesses:
 - Dependent on choice of target, attribute words

Avg. within-target difference in avg. cosine similarity (between each attribute word and the target word)

$$\frac{\operatorname{mean}_{x \in X} s(x, A, B) - \operatorname{mean}_{y \in Y} s(y, A, B)}{\operatorname{std-dev}_{w \in X \cup Y} s(w, A, B)}$$

$$s(w, A, B) = \text{mean}_{a \in A} \cos(\vec{w}, \vec{a}) - \text{mean}_{b \in B} \cos(\vec{w}, \vec{b})$$

Where does bias come from?

Experimental setup

Parameters:

⇒ training size ∈ {10000, 15000, 20000, 25000, 30000}

CBOW context window size = 5

Minimum word count = 5

Approach:

- For each dataset, train word2vec model on sample of size s
- Compute WEAT score associated with each dataset/size pairing

Hypothesis:

- More data = more bias
- Datasource bias ordering:

Bias (bad words vs. gender similarity)

Bias: math vs. arts (by gender)

Math: math, algebra, geometry, calculus, equations, computation, numbers, addition

Arts: poetry, art, dance, literature, novel, symphony, drama, sculpture

Male terms: male, man, boy, brother, he, him, his, son

Female terms: female, woman, girl, sister, she, her, hers, daughter

Bias: science vs. arts (by gender)

Science: science, technology, physics, chemistry, Einstein, NASA, experiment, astronomy

Arts: poetry, art, Shakespeare, dance, literature, novel, symphony, drama

Male terms: brother, father, uncle, grandfather, son, he, his, him

Female terms: sister, mother, aunt, grandmother, daughter, she, hers, her

Conclusions and limitations

Conclusions:

- Training set source matters (for embedding bias)
- No obvious effect of training set size on embedding bias

Limitations:

- Training parameters (e.g. context size) set globally
- WEAT results depend on word lists
- Datasets are curated (e.g. Twitter sentiment, reddit TLDR)

Questions raised:

Embedding bias vs. poor embedding / training quality?

Are existing embeddings biased? Overview

Informal corpus → more bias!

gender related words

Shorter embedding \rightarrow more bias!

Shorter embedding \rightarrow more bias!

gender related words

and Applied Sciences

Larger dataset → more bias!

Deeper in ELMo network→ more bias!

gender related words

Yes!

They contain the bias in the context!

Does bias in embeddings diffuse to downstream tasks?

GloVe (Twitter): Side-by-Side Comparison

GloVe (Wikipedia 2014 + Gigaword 5): Side-by-Side Comparison

Sentiment Scoring of Female-Associated vs Male-Associated Words using GloVe (Wiki + Gigaword)

GloVe (Twitter) Sentiment Prediction

Female-Associated Words

Word	Sentiment Score	Sentiment
she	0.43	Negative
female	0.39	Negative
woman	0.45	Negative
mother	0.36	Negative
girl	0.49	Negative
wife	0.37	Negative

Male-Associated Words

Word	Sentiment Score	Sentiment
he	0.66	Positive
male	0.71	Positive
man	0.70	Positive
father	0.84	Positive
boy	0.85	Positive
husband	0.81	Positive

GloVe (Wikipedia 2014 + Gigaword 5) Sentiment Prediction

Female-Associated Words

Word	Sentiment Score	Sentiment
she	0.51	Positive
female	0.49	Negative
woman	0.55	Positive
mother	0.54	Positive
girl	0.60	Positive
wife	0.49	Negative

Male-Associated Words

Word	Sentiment Score	Sentiment
he	0.45	Negative
male	0.50	Positive
man	0.55	Positive
father	0.49	Negative
boy	0.53	Positive
husband	0.46	Negative

Does bias in embeddings diffuse to downstream tasks?

Yes!

Bias in embeddings diffuses to downstream tasks, supporting our conclusions above.

Bias In Image embeddings

CLIP: Contrastive Language Image Pretraining

1. Contrastive pre-training

Co-occurent images and text to bring two modalities together

Credits: https://openai.com/blog/clip/

Demo:

https://colab.research.google.com/ drive/12_-2T-jm1NlmaVxQKpLDMI GQIGwFQmz0?usp=sharing

cute

career

submissive

tough

strong

Demo:

https://colab.research.google.com/

drive/12_-2T-jm1NlmaVxQKpLDMI

GQIGwFQmz0?usp=sharing

family

CLIP Visualization: Extensions

More results about racial, age-related, and stereotype-related disparities in the appendix slides

Demo:

https://colab.research.google.com/drive/12_-2T-jm1NlmaVxQKpLDMIGQIGwFQmz0?usp=sharing

CLIP: Statistics

Dataset: FairFace

FairFace Prediction

race: East Asian race4: Asian gender: Female age: 30-39

FairFace Prediction

race: Latino_Hispanic race4: Asian gender: Female age: 30-39

FairFace Prediction

race: Black race4: Black gender: Male age: 3-9

FairFace Prediction

race: White race4: White gender: Male age: 60-69

CLIP: Statistics

Males / East Asians are more likely to be associated with negative phrases

Demo:

https://colab.research.goo gle.com/drive/16ftNqde0os -jl_sq0UBLaTiPEviON1hW? usp=sharing

CLIP: Statistics

Teenagers /
Middle-aged people
are more likely to be
associated with bad
words

New capabilities by plugging pretrained models together: CLIP+GAN

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

Demo:

https://colab.research.google.c om/drive/1_4PQqzM_0KKytCz Wtn-ZPi4cCa5bwK2F?usp=shar ing

Credits: MIT 6.869 Prof. Philip Isola

Source: Katherine Crowson

A street gang member is accused of gun violence and grand theft

CLIP: Downstream tasks

Learning
Transferable Visual
Models From
Natural Language
Supervision

Alec Radford et. al.

Key Takeaways

What <u>matters</u>?

- a. Training data
- b. Bias evaluation metric (WEAT? Bad words?)
- c. Embedding source and embedding size
- d. Downstream tasks (e.g. sentiment prediction and image analysis)
- 2. Image embeddings are not immune to bias
- 3. Can leverage the above <u>understanding and awareness of bias</u> in computational models to facilitate <u>bias mitigation</u>, reducing bias embedded in the models we train and develop and <u>enabling more fairness</u> in our world of computation

Thank you!

Appendix

Demo:

https://colab.research.google.com/ drive/12_-2T-jm1NlmaVxQKpLDMI GQIGwFQmz0?usp=sharing

- 0.26

- 0.24

- 0.22

-0.20

Demo:

https://colab.research.google.com/ drive/12_-2T-jm1NlmaVxQKpLDMI GQlGwFQmz0?usp=sharing

-0.26

-0.24

-0.22

-0.20

Demo:

https://colab.research.google.com/ drive/12_-2T-jm1NlmaVxQKpLDMI GQlGwFQmz0?usp=sharing

CONTEXT > PERSONAL CHARACTERISTICS!

young joe

1000

200

400

600

1000

1200 1400 1600

Who is conservative, stubborn and does not like technology?

Harvard University student

A beautiful person who does housework

