102: Mathematics

Unit -3 Mathematical Logic & Boolean Algebra					
118	Define logical connectives; give examples of at least two.	02	D15		
119	Define value of Boolean Expression with example	02	D15		
120	Show that D_{12} is a Boolean Algebra where $\forall a, b \in D_{12}$	05	D15		
120	a + b = LCM of a, b	0.5	D10		
	$a \cdot b = GCD \text{ of } a, b$				
	4				
	$a' = \frac{12}{a}$				
121	Prove that the argument in the following example is not logically valid (3 times)	05	D15		
	Hypothesis: $S_1: p^{\wedge}(\sim q) \rightarrow r$ Conclusion: $S: r$				
	S_2 : $p v q$		-		
	$S_3: q \to p$				
122	Using truth table, prove that	05	D15		
122	i) $(p \rightarrow q) = [(\sim q) \rightarrow (\sim p)]$		D13		
	ii) $\sim (p \rightarrow q) = [(\sim q) \rightarrow (\sim p)]$				
123	Construct input/output table for	05	D15		
123	· ·	03	D13		
	i) $f(x) = (x_1, x_2, x_3) = (x_1 \cdot x_2)' + x_3$				
101	ii) $f(x) = (x_1, x_2) = (x_1 \cdot x_2) + x_2$	0.5	D15		
124	In a Boolean Algebra B, prove that $x + 1 = 1$ and $x \cdot 0 = 0$; $\forall x \in B$	05	D15		
125	Find the product sum canonical form of $f(x_1, x_2) = x_1 \cdot x_2 + x_1' \cdot x_2 + x_1 \cdot x_2'$	05	D15		
126	Show that D_{21} is a Boolean Algebra where $\forall a, b \in D_{21}(4 \text{ times})$	05	D15		
	$a + b = LCM \ of \ a, b$				
	$a \cdot b = GCD \ of \ a, b$				
	$a' = \frac{21}{a}$				
127	Define Duality in Boolean Algebra (2 times)	02	M15		
128	Define critical raw	02	M15		
129	Show that D_{15} is a Boolean Algebra where $\forall a, b \in D_{15}$	05	M15		
	a + b = LCM of a, b				
	$a \cdot b = GCD \text{ of } a, b$				
	$a' = \frac{15}{a}$				
	74				
130	Let $B = \{0,1\}$. Prepare an input/output table for the Boolean function $f: B^2 \to B$,	05	M15		
130	$f(x) = x_1 \cdot x_2'$	03	14113		
131	Using truth table, prove that $(p \to q)^{n}[p \to r] = p \to (q^{n})$ (3 times)	05	M15		
132		05	M15		
134	i) $f(x) = (x_1, x_2, x_3) = (x_1 \cdot x_2)' + x_3$	03	WIIJ		
`					
100	ii) $f(x) = (x_1, x_2) = x'_1 \cdot x_2$	0.5	3.615		
133	Using truth table, prove that $p^{(q v r)} = (p^{q} v (p^{r}))$ (2 times)	05	M15		
134	Show that D_9 is a Boolean Algebra where $\forall a, b \in D_9$ (3 times)	05	M15		
	a + b = LCM of a, b				
	$a \cdot b = GCD \ of \ a, b$				

Mohamedsohel M. Shaikh Page 7

135	Define Boolean Algebra (4 times)	02	D14
136	Check the validity of the following argument	05	D14
	Hypothesis: $S_1: p \to (\sim q)$ Conclusion: $S: (\sim p)$		
	$S_2: r \to q$		
	$S_3:r$		
137	prove the validity of the following argument (2 times)	05	D14
	Hypothesis: $S_1: p \to q$ Conclusion: $S_1: p \to r$	h.	
	$S_2: q \to r$		
138	Show that D_8 is a not Boolean Algebra where $\forall a, b \in D_8$ (3 times)	05	D14
	$a + b = LCM \ of \ a, b$	4	
	$a \cdot b = GCD \ of \ a, b$		
	$a' = \frac{8}{a}$		
	OR		
	Let $D_8 = \{1, 2, 4, 8\}$. Define +, · and ' on D_8 by		
	$x + y = LCM \ of \ x, y$		
	$x \cdot y = GCD \ of \ x, y$		
	$x' = \frac{8}{x}$.		
	Verify that $(D_8, +, \cdot, ', 1, 8)$ is not Boolean Algebra		
139	Construct truth table for $p \rightarrow q$ and $p \leftrightarrow q$	01	M14
140	Define Tautology and Contradiction	01	M14
141	Show that D_{10} (Divisor of 10) is a Boolean Algebra where $\forall a, b \in D_{10}$ (3 times)	05	M14
	$a + b = LCM \ of \ a, b$		
	$a \cdot b = GCD \ of \ a, b$		
	$a' = \frac{10}{a}$		
142	Using truth table, prove that $(p \ v \ q) \rightarrow r = (p \rightarrow r) \land (q \rightarrow r)$	05	M14
143	In a Boolean Algebra, show that $(XY'Z' + XY'Z + XYZ + XYZ')(X + Y) = X$	05	M14
144	Simplify Boolean Expression using Boolean Algebra (X+Y+XY)(X+Y)	05	M14
145	Prove that $p^{\wedge}(p \ v \ q) = p$ and $p \ v(p^{\wedge}q) = p \ (2 \text{ times})$	02	D13
146	Prove the following using truth table: (3 times)	05	D13
	i) $p^{\wedge}(q^{\wedge}r) = (p^{\wedge}q)^{\wedge}r$		
	ii) $p^{\wedge}(q \vee r) = (p^{\wedge}q)\nu(p^{\wedge}r)$	0.5	D 10
147	Construct input/output table for	05	D13
4	i) $f(x_1, x_2, x_3) = (x_1 \cdot x_2') \cdot x_3$ (3 times)		
4	ii) $f(x_1, x_2) = x_1 \cdot x_2$ (2 times)		
148	In a Boolean Algebra show that $0' = 1$ and $1' = 0$	02	M13
149	Define principle of Duality in Boolean Algebra	02	M13
150	$\forall x, y \in B$ where B is a Boolean Algebra, prove that $(x \cdot y)' = x' + y'$ and	05	M13
1.71	$(x+y)' = x' \cdot y' \text{ (2 times)}$	0.7	1.610
151	In a Boolean Algebra, prove that the compliment of any element is unique.	05	M13
152	Find the product sum canonical form of $f(x_1, x_2) = x_1' \cdot x_2 + x_1' \cdot x_2' + x_1 \cdot x_2'$	05	M13
152	(3 times)	05	N/12
153	Prove the following laws: (2 times)	05	M13

Mohamedsohel M. Shaikh Page 8

102: Mathematics

i) $\sim (p \ v \ q) = (\sim p)^{\wedge}(\sim q)$ ii) $\sim (p \land q) = (\sim p)v(\sim q)$ 154 Define Boolean Expression 02 D12 155 For any element x, y of a Boolean algebra, prove that $x \cdot y' = 0 \leftrightarrow x \cdot y = x$ 05 D12 156 Define contradiction 02 M12 Find the value of $((x_1 \cdot x_2') + x_3) \cdot x_2'$ if 157 05 M12 i) $x_1 = 0, x_2 = 1, x_3 = 1$ ii) $x_1 = 0, x_2 = 0, x_3 = 1$ 158 Simplify the Boolean expression $x + x' \cdot (x + y) + y \cdot z$ M12 If t is tautology and p is a statement then prove that p v t = t159 01 **D**11 160 In a Boolean Algebra, prove that x + x = x01 D11 In a Boolean Algebra, prove that $x + (x \cdot y) = x$ and $x \cdot (x \cdot y) = x$ 161 05 D11 162 Prepare truth table for the following statements: D11 i) (p v q)v rii) $(\sim p)vq$ 163 Explain idempotent law in Boolean Algebra 01 M11Give truth table of $(p \rightarrow q)$ and $(p \leftrightarrow q)$ 164 01 M11 Is the argument in the following example valid? 165 05 M11 Conclusion: $S: p \rightarrow r$ Hypothesis: $S_1: p \rightarrow q$ $S_2: q \rightarrow r$ (Use truth table) 166 Is the argument in the following example valid? 05 M11 Hypothesis: S_1 : pConclusion:S:r $S_2: (p \land q) \rightarrow (r \ v \ s)$

Remarks:-

