MATH457 - Algebra 4 Representation Theory; Galois Theory

Based on lectures from Winter 2025 by Prof. Henri Darmon. Notes by Louis Meunier

Contents

1 Representation Theory	2
1.1 Introduction	2

§1 Representation Theory

§1.1 Introduction

Definition 1.1 (Linear Representation): A *linear representation* of a group G is a vector space V over a field \mathbb{F} equipped with a map $G \times V \to V$ that makes V a G-set in such a way that for each $g \in G$, the map $v \mapsto gv$ is a linear homomorphism of V.

This induces a homomorphism

$$\rho: G \to \operatorname{Aut}_{\mathbb{F}}(V)$$
,

or, in particular, when $n = \dim_{\mathbb{F}} V < \infty$, a homomorphism

$$\rho: G \to \mathrm{GL}_n(\mathbb{F}).$$

Alternatively, a linear representation V can be viewed as a module over the group ring $\mathbb{F}[G] = \left\{ \sum_{g \in G} : \lambda_g g : \lambda_g \in \mathbb{F} \right\}$ (where we require all but finitely many scalars λ_g to be zero).

 \hookrightarrow **Definition 1.2** (Irreducible Representation): A linear representation *V* of a group *G* is called *irreducible* if there exists no proper, nontrivial *subspace W* \subseteq *V* such that *W* is *G*-stable.

⊛ Example 1.1:

1. Consider $G = \mathbb{Z}/2 = \{1, \tau\}$. If V a linear representation of G and $\rho : G \to \operatorname{Aut}(V)$. Then, V uniquely determined by $\rho(\tau)$. Let p(x) be the minimal polynomial of $\rho(\tau)$. Then, $p(x) \mid x^2 - 1$. Suppose \mathbb{F} is a field in which $2 \neq 0$. Then, $p(x) \mid (x - 1)(x + 1)$ and so p(x) has either 1, -1, or both as eigenvalues and thus we may write

$$V = V_+ \oplus V_-,$$

where $V_{\pm} := \{v \mid \tau v = \pm v\}$. Hence, V is irreducible only if one of V_+, V_- all of V and the other is trivial, or in other words τ acts only as multiplication by 1 or -1.

2. Let $G = \{g_1, ..., g_N\}$ be a finite abelian group, and suppose \mathbb{F} an algebraically closed field of characeristic 0 (such as \mathbb{C}). Let $\rho : G \to \operatorname{Aut}(V)$ and denote $T_j := \rho(g_j)$ for j = 1, ..., N. Then, $\{T_1, ..., T_N\}$ is a set of mutually commuting linear transformations. Then, there exists a simultaneous eigenvector, say v, for $\{T_1, ..., T_N\}$, and so span (v) a G-stable subspace of V. Thus, if V irreducible, it must be that $\dim_{\mathbb{F}} V = 1$.

1.1 Introduction 2