Homework 6

MATH 301 October 8, 2020

Kevin Evans ID: 11571810

1. **Proposition.** Let n be an integer. Then n is odd if and only if 3n + 6 is odd.

Proof. Suppose n is an odd integer. Then n can be represented as

$$n = 2k + 1$$

for some $k \in \mathbb{Z}$. Then the expression 3n+6 can be written as

$$3n + 6 = 3(2k + 1) + 6$$

= $6k + 9 = 2k' + 1$

where k' = 3k + 4 and $k' \in \mathbb{Z}$. Therefore, if n is odd, then 3n + 6 is also odd. Next, we will show the converse is also true. Suppose 3n + 6 is odd, then

$$3n + 6 \equiv 1 \pmod{2}$$

And since $6 \equiv 0 \pmod{2}$, we can subtract this out and

$$3n \equiv 1 \pmod{2}$$

For an even n, the expression becomes $2(3j) \equiv 0 \pmod{2}$ for $j \in \mathbb{Z}$. For an odd n = 2j' + 1, it equals $2(3j' + 1) \equiv 1 \pmod{2}$ for $j' \in \mathbb{Z}$. Therefore, the converse is only true for odd n.

2. **Proposition.** Let $n \in \mathbb{Z}$, then

$$n^2 \equiv 0 \pmod{4}$$
 or $n^2 \equiv 1 \pmod{4}$

Proof. Suppose n is an integer. By the division algorithm, n can be expressed as

$$n = 2q + r$$

where $q, r \in \mathbb{Z}$ and $0 \le r < 2$, or $r \in \{0, 1\}$. If we square n, then

$$n^2 = \begin{cases} 4q^2 & r = 0\\ 4(q^2 + q) + 1 & r = 1 \end{cases}$$

Since $q^2, (q^2+q) \in \mathbb{Z}$, n^2 will either have a remainder of 0 or 1 when divided by 4. Therefore, it holds true that $n^2 \equiv 0 \pmod 4$ or $n^2 \equiv 1 \pmod 4$.

3. **Proposition.** If $a, b \in \mathbb{Z}$ and $a^2 + b^2$ is a perfect square, then a and b are not both odd.

Proof. Here, we will show the contrapositive. Suppose $a, b \in \mathbb{Z}$ and both a and b are odd, then using the previous problem,

$$a^2 \equiv 1 \pmod{4}$$

 $b^2 \equiv 1 \pmod{4}$

Then, $(a^2 + b^2) \equiv 2 \pmod{4}$. However, this sum cannot be a perfect square, as we have shown in Problem 2: any integer n, $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

4. **Proposition.** Suppose the division algorithm applied to a and b yields a = qb + r, then

$$\gcd(a,b) = \gcd(r,b)$$

Proof. Suppose $a, b, q, r \in \mathbb{Z}$ and a = qb + r, where $0 \le r < b$. Then let d be a divisor of a and b. Then it must hold true that d also divides r,

$$a = dx_1$$

$$b = dx_2$$

$$r = d(x_1 - x_2q)$$

where $x_i \in \mathbb{Z}$. Since the set of divisors are equal between a, b and r, b, then there is one greatest common divisor and $\gcd(a, b) = \gcd(r, b)$.