Gradient Boosting

-MUKESH KUMAR

Boosting

- Boosting reduces both bias and variance by sequentially training models, where each new model focuses on the mistakes made by the previous ones.
- Models are trained one after the other, and each tries to correct the errors of its predecessor.

How Gradient Boosting works?

For Regression:

$$F(x) = F_0(x) + \eta \cdot h_1(x) + \eta \cdot h_2(x) + \cdots + \eta \cdot h_M(x)$$

Where:

- ullet $F_0(x)$ is the initial guess (like mean of targets),
- Each $h_m(x)$ is a weak learner trained on **residuals** (errors).

Sample data

We are solving a Regression Problem

House Size	NumberOf Bedrooms	HousePrice	Model1 Prediction
1200	3	250000	350000
1500	4	300000	350000
1800	3	350000	350000
2000	4	400000	350000
2200	5	450000	350000

Build a simple Gradient Boosting

Let's say we want to build a GB with 3 models

In Regression Problem:

- Model 1 Pred will simply be an average of all the house prices
- This is just a starting point for the subsequent models

House Size	NumberOf Bedrooms	HousePrice	Model1 Prediction	Residual Model1
1200	3	250000	350000	-100000
1500	4	300000	350000	-50000
1800	3	350000	350000	0
2000	4	400000	350000	50000
2200	5	450000	350000	100000

Residual for Model1

Calculate the Residual for model 1:

Actual minus predicted

$$r^{(1)} = y - \hat{y}^{(0)}$$
: residuals after Model 0

House Size	NumberOf Bedrooms	HousePrice	Model1 Prediction	Residual Model1
1200	3	250000	350000	-100000
1500	4	300000	350000	-50000
1800	3	350000	350000	0
2000	4	400000	350000	50000
2200	5	450000	350000	100000

Model2: Build a Decision Tree

Model 2 is built on X and residual of model 1

Features = [HouseSize, NoOfBedrooms]

Labels = Residuals from model 1

Model 2

Model 2 predictions

Model 2 will predict residuals

House Size	NumberOf Bedrooms	HousePrice	Model1 Prediction	Residual Model1	Model2 Prediction
1200	3	250000	350000	-100000	-100000
1500	4	300000	350000	-50000	-50000
1800	3	350000	350000	0	0
2000	4	400000	350000	50000	50000
2200	5	450000	350000	100000	100000

GRADIENT BOOST MODEL Residual Residual R1 **R2 Predict** Predict Model1 Model2 Train **Train** (X,R1) (X,y)

If there were only two models in our Gradient boosting then the final prediction at this point will be:

Final Pred = (M1 Pred + M2 Pred)

House Size	NumberOf Bedrooms	HousePrice	Model1 Prediction	Residual Model1	Model2 Prediction	Updated Prediction Model2
1200	3	250000	350000	-100000	-100000	250000
1500	4	300000	350000	-50000	-50000	300000
1800	3	350000	350000	0	0	350000
2000	4	400000	350000	50000	50000	400000
2200	5	450000	350000	100000	100000	450000

Calculate Model2 Residuals

M2 Residuals = actual price – (M1 Pred + M2 Pred)

HouseSize	NumberOf Bedrooms	HousePrice	Model1 Prediction	Residual Model1	Model2 Prediction	Updated_Pred iction_Model2	Residual Model2
1200	3	250000	350000	-100000	-100000	250000	0
1500	4	300000	350000	-50000	-50000	300000	0
1800	3	350000	350000	0	0	350000	0
2000	4	400000	350000	50000	50000	400000	0
2200	5	450000	350000	100000	100000	450000	0

To avoid overfitting, we use learning rate

M2 Residuals = actual price – (M1 Pred + (LR*M2 Pred))

Residuals with LearningRate

 So, after using learning rate residuals are not zero but they are smaller than previous model's residuals

HouseSize	NumberOfBe drooms	HousePrice	Model1_Prediction	Residual_Mo del1	Model2_Predi ction	Updated_Pre diction_Mode I2	Residual_Mo del2_overfit	Residual Model2
1200	3	250000	350000	-100000	-100000	340000	0	-90000
1500	4	300000	350000	-50000	-50000	345000	0	-45000
1800	3	350000	350000	0	0	350000	0	0
2000	4	400000	350000	50000	50000	355000	0	45000
2200	5	450000	350000	100000	100000	360000	0	90000

Model 3: Build another Tree

Features = [HouseSize, NoOfBedrooms]

Labels = Residuals from model 2

Model 3

Decision Tree - Model 3

Model3 Prediction

HouseSize	NumberOfBe drooms	HousePrice	Model1_Prediction	Residual_Mo del1	Model2_Prediction	Updated_Pre diction_Mode I2	Residual_Mo del2_overfit	Residual Model2	Model3 Prediction
1200	3	250000	350000	-100000	-100000	340000	0	-90000	-90000
1500	4	300000	350000	-50000	-50000	345000	0	-45000	-45000
1800	3	350000	350000	0	0	350000	0	0	0
2000	4	400000	350000	50000	50000	355000	0	45000	45000
2200	5	450000	350000	100000	100000	360000	0	90000	90000

Final Prediction Formula

Simply add the output of all the models

For Regression:

$$F(x) = F_0(x) + \eta \cdot h_1(x) + \eta \cdot h_2(x) + \cdots + \eta \cdot h_M(x)$$

Where:

- $F_0(x)$ is the initial guess (like mean of targets),
- Each $h_m(x)$ is a weak learner trained on **residuals** (errors).

Final Prediction of GB

Final Pred = M1 Pred + (LR* M2 Pred) + (LR* M3 Pred)

We can see that errors are reducing with each newly added model

House Size	NumberOf Bedrooms	HousePrice	Model1 Prediction	Residual Model1	INIOGEL Pre		Residual_M odel2_overfi t	Residiai	Model3 Prediction	Final Prediction
1200	3	250000	350000	-100000	-100000	340000	0	-90000	-90000	331000
1500	4	300000	350000	-50000	-50000	345000	0	-45000	-45000	340500
1800	3	350000	350000	0	0	350000	0	0	0	350000
2000	4	400000	350000	50000	50000	355000	0	45000	45000	359500
2200	5	450000	350000	100000	100000	360000	0	90000	90000	369000

Summary

- We started with mean of house prices which is model1 output
- Calculate Residuals for M1
- Train M2 on X, R1
- M2 Predicts residuals, calculate M2 residuals
- Train M₃ on X, R₂
- M3 predicts Residuals
- Calculate the final prediction from GB

GRADIENT BOOSTING FOR CLASSIFICATION

Sample Data

ID	Glucose	Weight	Diabetic
1	185	82	1
2	89	65	0
3	120	70	1
4	130	72	1
5	150	78	1
6	95	60	0
7	140	75	1
8	100	66	0

Build a simple Gradient Boosting

Let's say we want to build a GB with 3 models

Model 1

 In gradient boost we start with a simple model , in regression we took mean

In classification we calculate log(odds)

• Log(odds) = log(p/1-p)

Log base e is used

Glucose	Weight	Diabetic	pred1 (log-odds)
185	82	1	0.510826
89	65	0	0.510826
120	70	1	0.510826
130	72	1	0.510826
150	78	1	0.510826
95	60	0	0.510826
140	75	1	0.510826
100	66	0	0.510826

Calculate Residuals

- To calculate residuals we need to do:
 - Actual predicted value
- But actual value is a prob and we have log(odds) form model 1
- First we need to convert log(odds) to probability using sigmoid function

Looking at the pred1 probablity:

- all the values are above 0.5 which means all the records are classified as class 1 > diabetic
- This is a very basic model hence the predictions are not great but it's a good starting point

Glucose	Weight	Diabetic	pred1 (log- odds)	pred1 (probabili ty)
185	82	1	0.510826	0.625
89	65	0	0.510826	0.625
120	70	1	0.510826	0.625
130	72	1	0.510826	0.625
150	78	1	0.510826	0.625
95	60	0	0.510826	0.625
140	75	1	0.510826	0.625
100	66	0	0.510826	0.625

Calculate Residuals of M1

Residuals = Actual – Predicted

In our case = Diabetic - Pred1(Prob)

Glucose	Weight	Diabetic	pred1 (log-odds)	pred1 (probability)	res1
185	82	1	0.510826	0.625	0.375
89	65	0	0.510826	0.625	-0.625
120	70	1	0.510826	0.625	0.375
130	72	1	0.510826	0.625	0.375
150	78	1	0.510826	0.625	0.375
95	60	0	0.510826	0.625	-0.625
140	75	1	0.510826	0.625	0.375
100	66	0	0.510826	0.625	-0.625

Model 2: Build Regression Tree

Features = [Glucose, Weight]

Label = residual M1

Model 2

```
node #0
Weight <= 68.0
squared_error = 0.234
samples = 8
value = 0.0
```

True

node #1
squared_error = 0.0
samples = 3
value = -0.625

False

```
node #2
squared_error = 0.0
samples = 5
value = 0.375
```

Model at this point

- We have two models ready
- So final output will be the output of M1 +M2

- M1 output is log(odds)
- But the tree we create at each leaf node give us probability , so we need to transform probabilities to log(odds)
- This way we can add both log(odds) from M1 and M2 and obtain the final output

Why logodds over probabilities

• If we have 3 models, final output:

Using logodds

- F = 0.4 + 0.3 + 0.5 = 1.2
- p = sigmoid(1.2) = 0.768

– Using Prob:

• $p = 0.598 + 0.574 + 0.622 = 1.794 \leftarrow not valid!$

- 3 sample in node1 and 5 samples in node 2
- We need to findout which records fall in which node so that for individual records we can use these prob value to get log (odds)

 $\frac{\sum Residual}{\sum [PreviousProb*(1-PreviousProb)]}$

- Sklearn provides a direct formula to find which node each record belongs to
- Leaf_entry1 shows the information

Glucose	Weight	Diabetic	pred1 (log-odds)	pred1 (probability)	res1	leaf_entry1
185	82	1	0.510826	0.625	0.375	2
89	65	0	0.510826	0.625	-0.625	1
120	70	1	0.510826	0.625	0.375	2
130	72	1	0.510826	0.625	0.375	2
150	78	1	0.510826	0.625	0.375	2
95	60	0	0.510826	0.625	-0.625	1
140	75	1	0.510826	0.625	0.375	2
100	66	0	0.510826	0.625	-0.625	1

Calculate of log odds of left node

$$\frac{\sum Residual}{\sum [PreviousProb*(1-PreviousProb)]}$$

Glucose	Weight	Diabetic	pred1 (log-odds)	pred1 (probability)	res1	leaf_entry 1
185	82	1	0.510826	0.625	0.375	2
89	65	0	0.510826	0.625	-0.625	1
120	70	1	0.510826	0.625	0.375	2
130	72	1	0.510826	0.625	0.375	2
150	78	1	0.510826	0.625	0.375	2
95	60	0	0.510826	0.625	-0.625	1
140	75	1	0.510826	0.625	0.375	2
100	66	0	0.510826	0.625	-0.625	1

Log(odds) calculation for each node


```
node #0
Weight <= 68.0
squared_error = 0.234
samples = 8
value = 0.0

True
False
```

node #1
squared_error = 0.0
samples = 3
value = -0.625

-2.66

node #2 squared_error = 0.0 samples = 5 value = 0.375

1.6

After log(odds) calculation of combined M1 + M2

Glucose	Weight	Diabetic	pred1 (log-odds)	pred1 (probability)	res1	leaf_entry1	pred2 (log-odds)
185	82	1	0.510826	0.625	0.375	2	2.110826
89	65	0	0.510826	0.625	-0.625	1	-2.159174
120	70	1	0.510826	0.625	0.375	2	2.110826
130	72	1	0.510826	0.625	0.375	2	2.110826
150	78	1	0.510826	0.625	0.375	2	2.110826
95	60	0	0.510826	0.625	-0.625	1	-2.159174
140	75	1	0.510826	0.625	0.375	2	2.110826
100	66	0	0.510826	0.625	-0.625	1	-2.159174

Calculate Residuals M2

- Convert log(odds) to probab and then actual minus predicted
- Diabetic Pred2Probab

Glucose	Weight	Diabetic	pred1 (log-odds)	pred1 (probability)	res1	leaf_entry 1	pred2 (log-odds)	pred2 (probability)	res2
185	82	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
89	65	0	0.510826	0.625	-0.625	1	-2.159174	0.103477	-0.103477
120	70	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
130	72	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
150	78	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
95	60	0	0.510826	0.625	-0.625	1	-2.159174	0.103477	-0.103477
140	75	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
100	66	0	0.510826	0.625	-0.625	1	-2.159174	0.103477	-0.103477

 Reading pred2Prob column its clear that the probability values are now getting closer to actual values

Glucose	Weight	Diabetic	pred1 (log-odds)	pred1 (probability)	res1	leaf_entry 1	pred2 (log-odds)	pred2 (probability)	res2
185	82	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
89	65	0	0.510826	0.625	-0.625	1	-2.159174	0.103477	-0.103477
120	70	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
130	72	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
150	78	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
95	60	0	0.510826	0.625	-0.625	1	-2.159174	0.103477	-0.103477
140	75	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049
100	66	0	0.510826	0.625	-0.625	1	-2.159174	0.103477	-0.103477

GRADIENT BOOST MODEL Residual Residual R1 **R2** Log odds Log odds Model1 Model2 Train **Train** (X,R1) (X,y)

Model3: Decision Tree

Repeating the same process we get Log(odds)>Prob

Glucose	Weight	Diabetic	pred1 (log-odds)	pred1 (probability)	res1	leaf_entry 1	pred2 (log-odds)	pred2 (probability)	res2	leaf_entry 2	pred3 (log-odds)	pred3 (probability)
185	82	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049	2	3.741651	0.976834
89	65	0	0.510826	0.625	-0.625	1	-2.159174	0.103477	-0.103477	1	-2.768349	0.059059
120	70	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049	2	3.741651	0.976834
130	72	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049	2	3.741651	0.976834
150	78	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049	2	3.741651	0.976834
95	60	0	0.510826	0.625	-0.625	1	-2.159174	0.103477	-0.103477	1	-2.768349	0.059059
140	75	1	0.510826	0.625	0.375	2	2.110826	0.891951	0.108049	2	3.741651	0.976834
100	66	0	0.510826	0.625	-0.625	1	-2.159174	0.103477	-0.103477	1	-2.768349	0.059059

-1.116 1.12

Glucose =
$$95$$
, weight = 80

$$.510 + (1.6) + (-1.116)$$

GB Advantages

- High Predictive Accuracy
- Handles Different Data Types
- Robust to Outliers and Noise
 - Boosting builds models sequentially and focuses on hard-to-predict instances, making it more resilient to noise than bagging methods like Random Forest.

Disadvantages of Gradient Boosting

- Computationally Intensive
- Sensitive to Hyperparameters
- Not Easily Interpretable
- Memory Usage