What is claimed is:

	1	1.	A system for testing a DUT having a plurality of probe pads, comprising:
	2		a. a forcing probe for contacting and applying a first electrical signal to a first
	3		one of the plurality of probe pads;
	4		b. a sensing probe for contacting said first one of the plurality of probe pads an
	5		sensing a second electrical signal at said first one of said plurality of prob
	6		pads; and
	7		c. a variable power supply in electrical communication with said forcing prob
	8		and said sensing probe, said variable power supply capable of adjusting said
	9		first electrical signal based upon said second electrical signal.
T.	1	2.	A system according to claim 1, further comprising a plurality of forcing probes and
ú	2		a plurality of variable power supplies, each of said forcing probes being in electrical
1	3		communication with a corresponding one of said plurality of power supplies.
U	1	3.	A system according to claim 1, a voltmeter electrically connected between said
U	2		sensing probe and said variable power supply, said voltmeter for measuring said
	3		second electrical signal.
	1	4.	A system according to claim 1, further comprising a probe card, said probe card
	2		supporting said forcing probe and said sensing probe.
	1	5.	A system according to claim 1, further comprising first and second sensing electrodes
	2		and a sensing instrument, said first sensing electrode in electrical communication
	3		with said variable power supply, said second sensing electrode in electrica
	4		communication with said sensing instrument.

	1	7.	A system according to claim 1, further comprising a plurality of forcing probes, a
	2		plurality of variable power supplies and a switching matrix, said plurality of forcing
	3		probes being selectively connectable to said plurality of variable power supplies via
	4		said switching matrix.
	1	8.	A system according to claim 1, further comprising a feedback controller electrically
	2		connected between said sensing probe and said variable power supply.
1			
1	1	9.	A method of testing a DUT having a plurality of probe pads, comprising the steps of
	2		 a. providing a first electrical signal to one of the plurality of probe pads;
Ų	3		b. sensing a second electrical signal at said one of the plurality of probe pads
7	4		and
<u></u>	5		c. adjusting said first electrical signal based upon said second electrical signal.
			•
Õ	1	10.	A method according to claim 9, further comprising the step of measuring a third
]	2		electrical signal at a second one of the plurality of probe pads.
	1	11.	A method according to claim 9, wherein
	-	11.	
	2		a. a plurality of first electrical signals are provided to a number of the plurality
	3		of probe pads;
	4		b. a plurality of second electrical signals are sensed at said number of the
	5		plurality of the probe pads; and
	6		c. each of the first electrical signals is adjusted based upon said plurality of
	7 .		second electrical signals.

A system according to claim 5, wherein said sensing instrument is a current meter.

	2		provided via a plurality of forcing probes and a plurality of power supplies each in electrical communication with a corresponding one of said plurality of forcing
	4		probes.
	1	13.	A method according to claim 12, further comprising the step of selectively coupling
	2		said forcing probes to said power supplies via a switching matrix.
	1	14.	A method according to claim 12, wherein each of said power supplies includes a
	2		feedback controller for adjusting a corresponding one of said plurality of first
A A	3		electrical signals based upon a corresponding one of said plurality of second
	4		electrical signals.
	1	15.	A method according to claim 9, wherein said first electrical signal is provided via a
d.	2		forcing probe and a power supply in electrical communication with said forcing
	3		probe.
)	1	16.	A method according to claim 15, wherein said power supply includes a feedback
å	2		controller for adjusting said first electrical signal based upon said second electrical
	3		signal.
	1	17.	A method according to claim 9, further comprising the step of providing a feedback
	2		signal in proportion to said second electrical signal for adjusting said first electrical
	3		signal.

A method according to claim 11, wherein said plurality of first electrical signals is

1

12.