IME 100 Interdisciplinary Design and Manufacturing

Introduction to Materials Selection

Dr. Abishek Balsamy Kamaraj Summer 2022

Announcements

- Coasters are due in 1 week
 - Drawings
 - Group submission (Upto 8 files)
- Toys are due in 4 Weeks
- Mock robot competition in Week 6

3 little Pigs!

Material Classifications

Material Classifications

Factors Affecting Material Selection

1. Functional Requirements

- Structural
- Dynamic
- Flexible
- Cyclic loading
- Durable
- Lightweight
- Etc.

2. Manufacturing Process 3. Operating Parameters

- Plasticity
- Malleability
- Ductility
- Machinability
- Heat
- Surface finish
- Etc.

Temperature

Pressure

- Flow
- Environment
- Corrosion
- Biocompatibility
- Etc.

Raw materials

4. Cost Considerations

- Processing
- Storage
- Labor
- Inspection
- Inventory
- Etc.

Material Properties

Class	Property	Symbol and Units	
General	Density	ρ	(kg/m ³ or Mg/m ³)
	Price	C_m	(\$/kg)
Mechanical	Elastic moduli (Young's, Shear, Bulk)	E,G,K (GPa)	
	Yield strength	σ_y	(MPa)
	Ultimate strength	σ_u	(MPa)
	Compressive strength	σ_c	(MPa)
	Failure strength		(MPa)
	Hardness	H	(Vickers)
	Elongation	ε	()
	Fatigue endurance limit	σ_e	(MPa)
	Fracture toughness	K_{Ic}	(MPa.m ^{1/2})
	Toughness	G_{Ic}	(kJ/m ²)
	Loss coefficient (damping capacity)	η	()
Thermal	Melting point	T_{m}	(C or K)
	Glass temperature	$T_{\mathbf{g}}$	(C or K)
	Maximum service temperature	T _{max} (C or K)	
	Thermal conductivity	λ	(W/m.K)
	Specific heat	C_p	(J/kg.K)
	Thermal expansion coefficient	α	(°K ⁻¹)
	Thermal shock resistance	ΔT_{S}	(C or K)
Electrical	Electrical resistivity	ρ_e	$(\Omega.m \text{ or } \mu\Omega.\text{cm}))$
	Dielectric constant	ε_d	()
Eco-properties	Energy/kg to extract material	E_f	(MJ/kg)
Environmental resistance	Wear rate constant	K_A	MPa ⁻¹

Ashby Diagrams

Summary of Material Properties by Class

	Ceramic	Metal	Polymer	
Hardness		₽	4	
Elastic modulus	$\langle 1 \rangle$	台	₽	
High temperature strength	企	\Box	ightharpoons	
Thermal expansion	\Box	Ċ	宁	
Ductility	ightharpoons	(·	
Corrosion resistance	企	ightharpoons	₽	
Resistance to wear	宁	\Leftrightarrow	\triangle	
Electrical conductivity	(台	4	
Density	\	¢		
Thermal conductivity	#	企	4	
Tendency to high values Tendency to low values				

Ashby Activity

- Please split up into your toy group
- Consider the following product/part and fill out the worksheet based on your group's product/part...

Kettering University

Breakout Session

- Complete the Ashby material selection activity as a toy group
 - This will be your class participation grade for the day
 - We will discuss the material choice in 20 minutes

Toy Project Begin Design

- Safety
 - Drop Test
 - Chocking Hazard
- Use both wood and 3D printing options unless you have a very compelling reason

Acknowledgements

- Cincinnati State Additive Manufacturing Technician Program
- Prof. Ashley Paz y Puente; University of Cincinnati

Kettering University

