TP 1.3 – Identifier des solides et des liquides

Contexte : Pour pouvoir identifier des espèces chimiques, on peut utiliser trois méthodes :

- Mesurer des propriétés physiques et les comparer à des valeurs de références.
- Réaliser des tests chimiques.
- Réaliser une chromatographie sur couche mince (CCM).

Aujourd'hui on va s'intéresser aux deux premières méthodes d'identification.

On cherche à déterminer expérimentalement, avec la plus grande précision possible, la masse volumique d'échantillons métalliques mis à votre disposition.

→ S'agit-il d'aluminium, de cuivre, de zinc ou de fer?

1 -	Rappeler	la relation	qui permet	de	calculer	la	masse	volumique	d'un	échantillon	de	matière
de masse	m et de v	volume V .										

.....

Document 1 - Propriétés physiques de quelques métaux

Métal	Aspect à $T = 20^{\circ}\text{C}$	Masse volumique (g/cm ³)
Aluminium	Solide gris brillant	2,700
Cuivre	Solide orange brillant	8,960
Zinc	Solide gris sombre	7,150
Fer	Solide gris brillant	7,860

Document 2 - Volume d'un parallélépipède rectangle

Pour calculer le volume d'un parallélépipède rectangle de longueur L, de profondeur p et d'épaisseur e, on utilise la relation suivante :

$$V = L \times p \times e$$

Si L, p et e sont mesurées en cm, le résultat s'exprimera en cm³.

- 🗸 🔑 Mesurer la masse volumique d'un échantillon à l'aide du matériel disponible.
- 2 En utilisant le document 1, déterminer la nature de l'échantillon.

......

Les eaux minérales sont des mélanges homogène contenant plusieurs ions de nature et de masses différentes. Les eaux minérales sont en général impropre à une consommation régulière, mais elles peuvent servir dans des régimes spécifiques.

→ Comment déterminer les ions présents dans des eaux minérales?

Document 3 – Composition de trois eaux minérales

Vichy St Yorre

Mont Roucous

Cristalline

Minéralisation : mg	pour 1L
Bicarbonate CO_3^{2-}	4 368
Chlorure Cl ⁻	322
Sodium Na ⁺	1708
Sulfate SO_4^{2-}	174
Potassium K ⁺	110
Calcium Ca ²⁺	90
Fluorure F ⁻	1
Magnésium Mg ²⁺	11

Minéralisation : mg	pour 1 L
Bicarbonate CO_3^{2-}	1
Chlorure Cl ⁻	2
Sodium Na ⁺	3,2
Sulfate SO ₄ ²⁻	6,9
Fluorure F ⁻	< 0,1
Calcium Ca ²⁺	2,7
Nitrate NO ₃	1,8
Magnésium Mg ²⁺	0,3

Minéralisation : mg	pour 1L
Bicarbonate CO_3^{2-}	228
Chlorure Cl ⁻	15
Sodium Na ⁺	8,4
Sulfate SO ₄ ²⁻	11
Potassium K ⁺	2,3
Calcium Ca ²⁺	549
Nitrate NO ₃	< 1
Magnésium Mg ²⁺	6,9

Document 4 - Tests caractéristiques de certains ions

Ion à tester	Réactif utilisé	Résultat du test positif							
Chlorure Cl ⁻	Solution de nitrate d'argent	Précipité blanc, noircit*							
Sulfate SO_4^{2-}	Solution de chlorure de baryum	Précipité blanc							
Calcium Ca ²⁺	Solution d'oxalate d'ammonium	Précipité blanc							
Magnésium Mg ²⁺	Solution d'hydroxyde de sodium	Précipité blanc							

^{*} Le précipité blanc noircit à la lumière.

On a trois béchers (A, B, C) contenant des eaux minérales, que vous voulez identifier.

▲ Féaliser le protocole suivant :

- Verser dans 4 tubes à essais quelques mL d'eau d'un bécher.
- ▶ Réaliser un test différent dans chaque tube à essais à l'aide des 4 réactifs.
- Noter si un précipité se forme et son abondance dans le tableau suivant (-, +, ++, +++).
- Répéter pour les deux autres bécher.

Test réalisé	Bécher A	Bécher B	Bécher C
Nitrate d'argent			
Chlorure de baryum			
Oxalate d'ammonium			
Hydroxyde de sodium			

3 -	E	ln i	utili	isaı	nt l	les	do	ocı	un	ne:	nt	\mathbf{s}	3 (et	4,	d	or.	me	er	l'∈	eau	ır	niı	né	ra	le	co	$_{ m nt}$	en	ue	d	an	s	cha	aq	ue	b	écl	hei	r.	
				• • •									٠.																												