(I) Give a formal definition with any notations for the following:

### - DFA as a 5 tuple

- Deterministic Finite Accepter
- M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0 F$ ) where
  - Q = Set of states
  - $\Sigma$  = input alphabet
  - $-\Delta$  = transition function
  - q<sub>0</sub> = initial state
  - F = set of finite states  $F \subseteq Q$

### - Language accepted by automaton

- Let M be an Automaton
- L(M) is accepted by M if it contains all input strings accepted by M
- L(M) = {  $w \in \Sigma^*$ :  $\delta(q_0, w) \in F$  } for a DFA M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0 F$ )

#### - Regular language

- A language is regular if there is a DFA M such that L = L(M)

# (II) Given the alphabet as {0, 1}, write a DFA for the following three regular languages. (Give the complete description of the DFA, and also as a transition graph)

(i) L = {w | w is a string of even length}

$$\Xi = \{0,1\}$$

$$\longrightarrow (90) (91)$$

| $\mathcal{W}$ | [w] | 8     |
|---------------|-----|-------|
| 人             | 0   | 90    |
| 0             | 1   | 9,    |
| )             | )   | 91    |
| 01            | 2   | 90    |
| 10            | 2   | $q_o$ |
| 010           | 3   | 91    |

(ii) 
$$L = \{w \mid |w| \mod 3 = 0\}$$



| W         | $ \omega $ | 8  |
|-----------|------------|----|
| $\sqrt{}$ | 0          | 90 |
| O         | 1          | 91 |
| [0        | 2          | 92 |
| 010       | 3          | 90 |
| 1010      | 4          | 9, |

### (iii) L = {w | w contains the string 001 as a substring}



| 8       | 0  |    |
|---------|----|----|
| 90      | 91 | 90 |
| $q_{l}$ | 92 | 90 |
| 92      | 92 | 93 |
| 93      | 93 | 93 |

### (iv) L = {w | w does not contain two consecutive 1's}



(III)Describe the extended transition function on a string recursively using transitions one symbol at a time for the automaton of following problems.

## (i) A string (of length >=4) that belongs to the language

i) 
$$L = \{ w \mid |w| \text{ is even } \}$$

0000
$$S^*(q_0,000),0)$$

$$S(S(S^*(q_0,00),0),0)$$

$$S(S(S(S(q_0,\lambda),0),0),0),0)$$

$$S(S(S(S(q_0,\lambda),0),0),0),0)$$

$$S(S(S(q_0,0),0),0)$$

$$S(S(q_0,0),0)$$

$$S(q_1,0) = q_0 \in F$$

ii) 
$$L = \{ w \mid |w| \% 2 = 0 \}$$
 $001100$ 
 $S * (q_0, 001100, 0)$ 
 $S(S(S(S), 0011), 0), 0)$ 
 $S(S(S(S), 0011), 0), 0)$ 
 $S(S(S(S(S), 001), 1), 0), 0)$ 
 $S(S(S(S(S), 000), 1), 1), 0), 0)$ 
 $S(S(S(S(S), 000), 0), 0)$ 
 $S(S(S(S), 000), 0)$ 
 $S(S(S(S), 000), 0)$ 
 $S(S(S(S), 000), 0)$ 
 $S(S(S(S), 000), 0)$ 

iii) W contains 001

0001

$$\delta^*(q_0,0001)$$
 $\delta(\delta^*(q_0,000),1)$ 
 $\delta(\delta(\delta^*(q_0,00),0),1)$ 
 $\delta(\delta(\delta(\delta(q_0,\lambda),0),0),0),1)$ 
 $\delta(\delta(\delta(\delta(q_0,\lambda),0),0),0),1)$ 
 $\delta(\delta(\delta(q_1,0),0),0),1)$ 
 $\delta(\delta(q_2,1)=q_3\in F$ 

iv) W does not contain 2 consecutive 1's 
$$1010$$
 $S * (90,1010)$ 
 $S(S * (90,101),0)$ 
 $S(S(S * (90,10),1),0)$ 
 $S(S(S(S * (90,1),0),1),0)$ 
 $S(S(S(S (90,1),0),1),0)$ 
 $S(S(S(90,1),0),1),0)$ 
 $S(S(S(90,1),0)$ 
 $S(S(90,1),0)$ 
 $S(90,1),0$ 

(II) A string (of length >=4) that does not belong to the language

i) 
$$00000$$
 $S^*(q_0,00000)$ 
 $S(S^*(q_0,0000),0)$ 
 $S(S(S(S^*(q_0,000),0),0)$ 
 $S(S(S(S(S^*(q_0,00),0),0),0),0)$ 
 $S(S(S(S(S(S(q_0,\lambda),0),0),0),0),0)$ 
 $S(S(S(S(S(q_0,\lambda),0),0),0),0)$ 
 $S(S(S(S(q_0,0),0),0),0)$ 
 $S(S(S(S(q_0,0),0),0),0)$ 
 $S(S(S(q_0,0),0),0)$ 
 $S(S(g(q_0,0),0),0)$ 
 $S(g(g,0)=g_1 \notin F$ 

ii) 
$$001/0$$
 $S^*(q_0,00110)$ 
 $S(S^*(q_0,0011),0)$ 
 $S(S(S^*(q_0,001),1),0)$ 
 $S(S(S(S(S^*(q_0,0),0),1),1),0)$ 
 $S(S(S(S(S(q_0,\lambda),0),0),1),1),0)$ 
 $S(S(S(S(S(q_0,\lambda),0),0),1),1),0)$ 
 $S(S(S(S(q_0,1),0),0)$ 
 $S(S(q_0,1),0)$ 
 $S(S(q_0,1),0)$ 
 $S(S(S^*(q_0,010),1)$ 
 $S(S(S^*(q_0,010),1))$ 
 $S(S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(q_0,\lambda),0),1),0),1)$ 
 $S(S(S(q_0,\lambda),0),1),0),1)$ 

iv) 
$$0110$$

$$S^*(q_0, 0110)$$

$$S(S^*(q_0, 011), 0)$$

$$S(S(S^*(q_0, 01), 1), 0)$$

$$S(S(S(S^*(q_0, 0), 1), 1), 0)$$

$$S(S(S(S(q_0, \lambda), 0), 1), 1), 0)$$

$$S(S(S(q_0, 1), 1), 0)$$

$$S(S(q_1, 1), 0)$$

$$S(S(q_1, 1), 0)$$

$$S(q_1, 0) = q_2 \notin F$$