Nome: André Patacas N.º Mec: 93357

AULA 5 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes algoritmos recursivos – sem recorrer a funções de arredondamento (floor e ceil) – e analise o número de chamadas recursivas executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, \text{se } n = 0 \\ T_{1}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + n, \text{se } n > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ T_{2}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{2}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{se } n > 2 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ 2 \times T_{3}\left(\frac{n}{3}\right) + n, \text{se } n \text{ é múltiplo de 3} \end{cases}$$

$$T_{3}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{3}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{caso contrário} \end{cases}$$

Deve utilizar **aritmética inteira**: n/3 é igual a $\left[\frac{n}{3}\right]$ e (n+2)/3 é igual a $\left[\frac{n}{3}\right]$.

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo?

```
O algoritmo T1 tem ordem de complexidade logarítmica O(log(n)).
O algoritmo T2 tem ordem de complexidade linear O(n)
O algoritmo T3 por pertencer a uma classe de complexidade igual ou inferior a T2 também pertence a O(n)
```

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₁(n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de complexidade. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico.

```
C(0) = 0
C(n) = 1 + C(floor(n/3)) = 2 + C(floor(n/9)) = \dots = k + C(floor(n/3^k)),
para k = floor(log3(n))
C(n) = floor(log3(n)) + C(1) = floor(log3(n)) + 1
Resultado igual ao da tabela
```

		Nº de		Nº de		
		Chamadas		Chamadas		Nº de Chamadas
n	T1(n)	Recursivas	T2(n)	Recursivas	T3(n)	Recursivas
0	0	0	0	0	0	0
1	1	1	1	0	1	0
2	2	1	2	0	2	0
3	4	2	5	2	5	1
4	5	2	7	2	7	2
5	6	2	8	2	8	2
6	8	2	10	2	10	1
7	9	2	14	4	14	3
8	10	2	15	4	15	3
9	13	3	19	6	19	2
10	14	3	22	6	22	5
11	15	3	23	6	23	5
12	17	3	26	6	26	3
13	18	3	28	6	28	6
14	19	3	29	6	29	6
15	21	3	31	6	31	3
16	22	3	34	6	34	5
17	23	3	35	6	35	5
18	26	3	38	6	38	2
19	27	3	43	8	43	6
20	28	3	44	8	44	6
21	30	3	49	10	49	4
22	31	3	51	10	51	8
23	32	3	52	10	52	8
24	34	3	54	10	54	4
25	35	3	59	12	59	7
26	36	3	60	12	60	7
27	40	4	65	14	65	3
28	41	4	69	14	69	9

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₂(n). Considere o caso particular n = 3^k e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

```
C(0) = C(1) = C(2) = 0
Para n = 3^k
C(n) = 2 + 2 * C(n/3) = 2 + 2 * (2 + 2 * C(n/9)) = 2 + 4 + 4 * C(n/9) = 2 + 4 + 8 + 8 * C(n/27) = \dots = 2^{(k+1)} - 2 + 8 * C(n/3^k)
Para k = log_3(n)
C(n) = 2 * (2 \land \log_3(n) - 1) + C(1) = 2 * (2 \land \log_3(n) - 1)
Como a^{(\log_b(c))} = c^{(\log_b(a))}
C(n) = 2 * (n \land \log_3(2) - 1)
C(n) = 2 + 2 * C(n/3), \text{ pelo teorema mestre e pela regra da suavidade conclui-se que T2 } \in O(n^{\log_3(2)})
\log_3(2) \sim 0.95
O que concorda com os dados da tabela e com a previsão feita
```

Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

O comportamento da função é "regular" o que permite pela regra da suavidade generalizar a conclusão para todo o n

 Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₃(n).

```
C(n) = 0 , n == 0, 1, 2

1 + C(n/3) , n \% 3 == 0

2 + C(floor(n/3)) + C(ceil(n/3)) , (n != 0, 1, 2 | | n \% 3 != 0)
```

Considere o caso particular n = 3^k e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

```
Para n = 3^k, n % 3 == 0 =>
C(n) = 0 \qquad , n == 0, 1, 2
1 + C(n/3) \qquad , n % 3 == 0
C(n) = 1 + C(n/3) = 2 + C(n/9) = \dots = \log_3(3^k) + C(n/3^k) = \log_3(n) + C(1) = \log_3(n)
\Rightarrow T3 \text{ pertence a } O(\log(n))
Pelo teorema mestre
C(n) = a C(n / b) + f(n) =>
a = 1, b = 3, c = 0, d \in O(n^d) => d = 0, b^d = 1 =>
a == b^d =>
T3 \text{ pertence à classe de complexidade } O(n^d \log(n)) == O(n^0 \log(n)) == O(\log(n))
O desenvolvimento telescópico e o teorema mestre, como esperado, resultaram na mesma classe de complexidade
```

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

A ordem de complexidade foi obtida para um caso especifico da função T3 e o seu comportamento em casos que não n = 3^k é muito distinto não sendo por isso possível generalizar o resultado obtido.

• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidade para $T_3(n)$. Justifique.

Na melhor das hipóteses T2 tem ordem de complexidade igual à de T3, ou seja, utilizando um abuso de linguagem, $O(T3) \le O(T2)$, o que permite concluir que a ordem de complexidade de T3 é, no pior dos casos, igual à de T2, $O(n^{\log}3(2))$