Obliczenia inżynierskie w chmurze Raport

Obliczenia przepływu 2D wokół cylindra wykorzystując Microsoft Azure

Krzysztof Wojtacki 298993

Warszawa 24.01.2023

1. Wprowadzenie

Celem projektu było przeprowadzenie obliczeń w chmurze dla przepływu 2D wokół cylindra rozwiązując równanie Naviera-Stokesa, korzystając z projektu z poprzednich lat, jednakże dokonując zmian parametrów obliczeniowych. Obliczeń dokonano korzystając z chmury Microsoft Azure.

2. Przygotowanie chmury

W ramach projektu przygotowano maszynę wirtualną korzystając z chmury Microsoft Azure.

Rysunek 1 Maszyna wirtualna na koncie Azure

Do połączenia się z maszyną wirtualną wykorzystano program PuTTY. Po połączeniu z maszyną oraz zainstalowaniu odpowiednich bibliotek uruchomiono program otrzymując jako wyniki wizualizacje opływu wokół cylindra:

main.py	vel.126.0.png	vel.163.0.png	vel.21.0.png	vel.62.0.png
main_alt.py	vel.127.0.png	vel.164.0.png		vel.63.0.png
vel.00.0.png	vel.128.0.png	vel.165.0.png	vel.23.0.png	vel.64.0.png
vel.01.0.png	vel.129.0.png	vel.166.0.png	vel.24.0.png	vel.65.0.png
vel.02.0.png	vel.13.0.png	vel.167.0.png	vel.25.0.png	vel.66.0.png
vel.03.0.png	vel.130.0.png			vel.67.0.png
vel.04.0.png	vel.131.0.png	vel.169.0.png	vel.27.0.png	vel.68.0.png
vel.05.0.png			vel.28.0.png	vel.69.0.png
vel.06.0.png	vel.133.0.png	vel.170.0.png	vel.29.0.png	vel.70.0.png
vel.07.0.png	vel.134.0.png	vel.171.0.png	vel.30.0.png	vel.71.0.png
vel.08.0.png	vel.135.0.png	vel.172.0.png	vel.31.0.png	vel.72.0.png
vel.09.0.png	vel.136.0.png	vel.173.0.png	vel.32.0.png	vel.73.0.png
vel.10.0.png	vel.137.0.png	vel.174.0.png	vel.33.0.png	vel.74.0.png
vel.100.0.png	vel.138.0.png	vel.175.0.png	vel.34.0.png	vel.75.0.png
vel.101.0.png	vel.139.0.png		vel.35.0.png	vel.76.0.png
vel.102.0.png	vel.14.0.png	vel.177.0.png	vel.36.0.png	vel.77.0.png
vel.103.0.png	vel.140.0.png	vel.178.0.png	vel.37.0.png	vel.78.0.png
vel.104.0.png	vel.141.0.png	vel.179.0.png	vel.38.0.png	vel.79.0.png
vel.105.0.png	vel.142.0.png			vel.80.0.png
vel.106.0.png	vel.143.0.png	vel.180.0.png	vel.40.0.png	vel.81.0.png
vel.107.0.png	vel.144.0.png	vel.181.0.png	vel.41.0.png	vel.82.0.png
vel.108.0.png	vel.145.0.png	vel.182.0.png	vel.42.0.png	vel.83.0.png
vel.109.0.png	vel.146.0.png	vel.183.0.png	vel.43.0.png	vel.84.0.png
vel.11.0.png	vel.147.0.png	vel.184.0.png	vel.44.0.png	vel.85.0.png
vel.110.0.png	vel.148.0.png		vel.45.0.png	vel.86.0.png
vel.111.0.png	vel.149.0.png	vel.186.0.png	vel.46.0.png	vel.87.0.png
vel.112.0.png		vel.187.0.png	vel.47.0.png	vel.88.0.png
vel.113.0.png	vel.150.0.png	vel.188.0.png	vel.48.0.png	vel.89.0.png
vel.114.0.png			vel.49.0.png	vel.90.0.png
vel.115.0.png	vel.152.0.png	vel.19.0.png	vel.50.0.png	vel.91.0.png
vel.116.0.png				vel.92.0.png
vel.117.0.png	vel.154.0.png	vel.191.0.png	vel.52.0.png	vel.93.0.png
vel.118.0.png			vel.53.0.png	vel.94.0.png
vel.119.0.png	vel.156.0.png	vel.193.0.png	vel.54.0.png	vel.95.0.png
vel.12.0.png	vel.157.0.png	vel.194.0.png		vel.96.0.png
vel.120.0.png	vel.158.0.png	vel.195.0.png	vel.56.0.png	vel.97.0.png
vel.121.0.png	vel.159.0.png	vel.196.0.png	vel.57.0.png	vel.98.0.png
vel.122.0.png	vel.16.0.png	vel.197.0.png	vel.58.0.png	vel.99.0.png
vel.123.0.png	vel.160.0.png	vel.198.0.png	vel.59.0.png	
vel.124.0.png	vel.161.0.png	vel.199.0.png	vel.60.0.png	
vel.125.0.png	vel.162.0.png	vel.20.0.png	vel.61.0.png	

Rysunek 2 Programy oraz wynikowe wizualizacje przepływu w maszynie wirtualnej

3. Obliczenia

Celem obliczeń było stworzenie wizualizacji przepływu 2D korzystając ze skryptu w języku Python. W tym celu skorzystano z projektu Krzysztofa Chodary, modyfikując parametry przepływu.

Otrzymane wyniki prezentują się następująco:

Rysunek 3 Wektory prędkości przepływu płynu w domenie

Rysunek 4 Kontury prezentujące prędkości przepływu dla różnych warstw płynu w domenie

Mając obliczenia domeny przystąpiono do wizualizacji przepływu w obecności cylindra. Obliczenia przeprowadzana są dla różnych momentów przepływu, od początku do osiągnięcia maksymalnej ilości iteracji nadanej w programie:

Rysunek 5 Wizualizacja przepływu w 10 kroku czasowym

Rysunek 6 Wizualizacja przepływu w 50 kroku czasowym

Rysunek 7 Wizualizacja przepływu w 200 kroku czasowym

4. Wnioski

Celem projektu było zapoznanie się z narzędziami służącymi do obliczeń w chmurze, gdyż często komputery osobiste nie są w stanie zapewnić nam odpowiedniej mocy obliczeniowej. Cel udało się zrealizować, czego dowodem są otrzymane wizualizacje przepływu, które zostały pobrane ze porządzonej maszyny wirtualnej. Celem sprawdzenia przeprowadzono obliczenia lokalnie korzystając z oprogramowania PyCharm. Otrzymane były równie wiarygodne, a więc projekt można uznać za poprawny.

Bibliografia

- 1. https://github.com/Krzychu-1/CFD CC
- 2. https://portal.azure.com/#home