Теорема за съществуване и единственост

Разглеждаме задачата на Коши

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

в правоъгълника

$$\Pi = \{(x, y) : |x - x_0| \le a, |y - y_0| \le b\}.$$

$$\Pi = \{(x, y) : |x - x_0| \le a, |y - y_0| \le b\}.$$

Дефиниция.

Казваме, че f(x,y) е липшицова функция по y (равномерно относно x) в правоъгълника Π , ако съществува константа L, такава че

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

за всеки две точки (x, y_1) и (x, y_2) от Π .

Пример.

fда има ограничена частна производна по y. $K=\sup_{\Pi}|\frac{\partial f}{\partial y}(x,y)|,$ то имаме

$$|f(x, y_1) - f(x, y_2)| = \left| \frac{\partial f}{\partial y}(x, \xi)(y_1 - y_2) \right| \le K|y_1 - y_2|.$$

Теорема на Пикар.

Теорема (Теорема за съществуване и единственост) Heкa $f(x,y) \in C(\Pi)$ е липшицова функция в Π спрямо y. Задачата

$$y' = f(x, y),$$

$$y(x_0) = y_0$$

притежава единствено решение, дефинирано поне при $|x-x_0| \le h$, където $h=\min\left(a,\frac{b}{M}\right)$, а $M=\max_{(x,y)\in\Pi}|f(x,y)|$.

a > b/M

a < b/M

Неподвижна точка на свиващо изображение

Определение. Нека (X, d) е пълно метрично пространство. Изображението $T: X \to X$ се нарича свиващо в X, ако съществува константа $q \in [0, 1)$, такава че

$$d(T(x), T(y)) \le q d(x, y)$$

за всеки два елемента x, y на X.

Теорема. Ако T е свиващо, то съществува единствен елемент x_0 на X, такъв че $T(x_0) = x_0$.

Твърдение. Задачата на Коши

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

е еквивалентна на интегралното уравнение

$$y(x) = y_0 + \int_{x_0}^{x} f(s, y(s)) ds$$

Доказателство. Интегрираме от x_0 до x равенството

$$y'(s) = f(s, y(s))$$

Нека f(x), $g(x) \in C([c, d])$

$$d(f, g) = \max_{x \in [c, d]} |f(x) - g(x)|$$
 (равномерна норма)

Множеството C([c, d]) е затворено спрямо равномерната норма.

Изображението

$$y(x) \longrightarrow y_0 + \int_{x_0}^x f(s, y(s)) ds$$

е свиващо в $C([x_0-\varepsilon,x_0+\varepsilon])$, където $\varepsilon>0$ е достатъчно малко.

Доказателство на теоремата на Пикар.

Построяваме редицата от функции в $C([x_0 - h, x_0 + h])$

$$y_1(x) = y_0 + \int_{x_0}^x f(s, y_0) ds,$$

$$y_{k+1}(x) = y_0 + \int_{x_0}^x f(s, y_k(s)) ds$$

Ще докажем, че редицата $y_k(x)$ е равномерно сходяща в $C([x_0-h,x_0+h])$.

$$y_k(x) = y_0 + (y_1(x) - y_0) + (y_2(x) - y_1(x)) + (y_3(x) - y_2(x)) + \dots + (y_k(x) - y_{k-1}(x))$$

Редът
$$y_0 + \sum_{n=0}^{\infty} [y_n(x) - y_{n-1}(x)]$$
 е равномерно сходящ, защото

$$|y_n(x) - y_{n-1}(x)| \le MK^{n-1} \frac{|x - x_0|^n}{n!}$$

Нека G е област в равнината. Казваме, че G е област на единственост за уравнението y'=f(x,y), ако за всяка точка (x_0,y_0) от G задачата на Коши

$$y' = f(x, y),$$

$$y(x_0) = y_0$$

Казваме, че решението $\varphi(x)$ с дефиниционен интервал Δ_{φ} на уравнението y' = f(x,y) е продължение на решението $\psi(x)$ с дефиниционен интервал Δ_{ψ} на същото уравнение, ако $\Delta_{\psi} \subset \Delta_{\varphi}$ и $\varphi(x) = \psi(x)$ в Δ_{ψ} .

Като "залепим" всевъзможните продължения на решението на задача на Коши, то ще получим решение с *максимален* дефиниционен интервал, което наричаме непродължимо.

Едно решение на уравнението наричаме непродължение, ако съвпада с всяко свое продължение.

Теорема (Глобална теорема за съществуване и единственост)

Hека $f \in C(G)$ и е локално-липшицова функция в G. За всяка точка $(x_0,y_0) \in G$ задачата на Kоши

$$y' = f(x, y),$$

$$y(x_0) = y_0$$

притежава единствено непродължимо решение.

Теорема (Теорема за напускане на компактите) $He \kappa a \ f \in C(G)$

е локално-липшицова функция в G и $\varphi(x)$ с дефиниционен интервал (α, β) е непродължимо решение на уравнението y' = f(x, y). Тогава за всяко компактно подмножество K на G съществува такова число $\varepsilon > 0$, че $(x, \varphi(x)) \not\in K$ за $x \in (\alpha, \alpha + \varepsilon) \cup (\beta - \varepsilon, \beta)$.

Теорема (Принцип за сравняване) $He\kappa a\ (x_0,y_0)\ e\ moч\kappa a\ om$ областта $D,\ a\ функциите\ f(x,y)\ u\ g(x,y)\ ca\ om\ C(D)\ u\ ca\ локално$ липшицови спрямо $y\ в\ D,\ \kappa amo$

$$f(x,y) > g(x,y)$$
 sa $(x,y) \in D$.

Ако $\varphi(x)$ с дефиниционен интервал Δ_{φ} е решението на задачата на Коши

$$y' = f(x, y)$$
$$y(x_0) = y_0,$$

а $\psi(x)$ с дефиниционен интервал Δ_{ψ} е решението на задачата на Коши

$$y' = g(x, y)$$
$$y(x_0) = y_0,$$

то са изпълнени неравенствата

$$\varphi(x) > \psi(x)$$
, sa $x \in \Delta_{\varphi} \cap \Delta_{\psi} \cap \{x > x_0\}$

u

$$\varphi(x) < \psi(x)$$
, sa $x \in \Delta_{\varphi} \cap \Delta_{\psi} \cap \{x < x_0\}$.