$(-\nabla^2 + \xi^{-2}(t))G_c(\vec{\mathbf{r}} - \vec{\mathbf{r}}') = \frac{k_B T}{k}\delta(\vec{\mathbf{r}} - \vec{\mathbf{r}}')$ (1)

Let us try to do the Fourier transform. Let us define

$$\vec{\mathbf{x}} \equiv \vec{\mathbf{r}} - \vec{\mathbf{r}}' \tag{2}$$

e let us call $\widetilde{G}(q)$ the Fourier transform of the function G

$$\widetilde{G}(q) = \int_{-\infty}^{+\infty} d|\vec{\mathbf{x}}| G_c(|\vec{\mathbf{x}}|) e^{-iq|\vec{\mathbf{x}}|}$$
(3)

we get

$$\widetilde{G}(q) = \frac{k_B T}{k} \frac{1}{q^2 + \xi^{-2}}$$
 (4)

At $T = T_c$, we have $\xi \to \infty$ and $\widetilde{G}(q) \simeq \frac{1}{q^2}$. We have

$$G_c(|\vec{\mathbf{x}}|) = |\vec{\mathbf{x}}|^{2-D} \tag{5}$$

In this case we see immediately that $\eta = 0$. Go back and find why we have this.

$$G(\vec{\mathbf{x}}) = \int d^D \vec{\mathbf{q}} \, \frac{1}{(2\pi)^D} \frac{1}{q^2 + \xi^{-2}} e^{i\vec{\mathbf{q}} \cdot \vec{\mathbf{x}}}$$
 (6)

Let us do it for D=3:

$$\Rightarrow G(|x|) = \frac{4\pi}{(2\pi)^3} \int_0^\infty dq \, \frac{q^2}{q^2 + \xi^{-2}} \int_{-1}^{+1} d(\cos\theta) \, e^{iq|\vec{\mathbf{x}}|\cos\theta} \tag{7}$$

we get

$$= \frac{4\pi}{(2\pi)^3} |\vec{\mathbf{x}}| \int_0^\infty dq \, \frac{q \sin(q|\vec{\mathbf{x}}|)}{q^2 + \xi^{-2}}$$
 (8)

At the end

$$\Rightarrow G(|\vec{\mathbf{x}}|) = \frac{1}{2\pi} \frac{e^{-\frac{|\vec{\mathbf{x}}|}{\xi}}}{|\vec{\mathbf{x}}|} \tag{9}$$

Can we rich the simple level of fluctuation? The simple level is the one that follow gaussian distribution. Let us introduce fluctuations at the Gaussian level.

Lecture 18.
Friday 13th
December, 2019.
Compiled: Friday
13th December,
2019.