

INSULATED GATE BIPOLAR TRANSISTOR

IRGP4063PbF IRGP4063-EPbF

Features

- Low V_{CE (ON)} Trench IGBT Technology
- · Low switching losses
- Maximum Junction temperature 175 °C
- 5 μS short circuit SOA
- Square RBSOA
- 100% of the parts tested for $I_{LM} \, \oplus$
- Positive V_{CE (ON)} Temperature co-efficient
- Tight parameter distribution
- Lead Free Package

Benefits

- High Efficiency in a wide range of applications
- Suitable for a wide range of switching frequencies due to Low V_{CE (ON)} and Low Switching losses
- Rugged transient Performance for increased reliability
- Excellent Current sharing in parallel operation
- Low EMI

G	С	E
Gate	Collector	Emitter

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	96 ©	
I _C @ T _C = 100°C	Continuous Collector Current	48	
I _{CM}	Pulse Collector Current, V _{GE} = 15V	144	Α
I _{LM}	Clamped Inductive Load Current, V _{GE} = 20V ①	192	Α
V_{GE}	Continuous Gate-to-Emitter Voltage	±20	٧
	Transient Gate-to-Emitter Voltage	±30	
P _D @ T _C = 25°C	Maximum Power Dissipation	330	W
P _D @ T _C = 100°C	Maximum Power Dissipation	170	
T _J	Operating Junction and	-55 to +175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Thermal Resistance

1

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance Junction-to-Case-(each IGBT)			0.45	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface)		0.24		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (typical socket mount)			40	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Ref.Fig
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600	_	_	V	$V_{GE} = 0V, I_{C} = 150\mu A \oplus$	CT6
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.30	_	V/°C	$V_{GE} = 0V, I_{C} = 1mA (25^{\circ}C-175^{\circ}C)$	CT6
		_	1.65	2.14		$I_C = 48A, V_{GE} = 15V, T_J = 25^{\circ}C$	5,6,7
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.0	_	٧	$I_C = 48A$, $V_{GE} = 15V$, $T_J = 150$ °C	8,9,10
		_	2.05	_		$I_C = 48A$, $V_{GE} = 15V$, $T_J = 175$ °C	
V _{GE(th)}	Gate Threshold Voltage	4.0	_	6.5	٧	$V_{CE} = V_{GE}$, $I_C = 1.4 \text{mA}$	8,9
$\Delta V_{GE(th)}/\Delta TJ$	Threshold Voltage temp. coefficient	_	-21	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 1.0 \text{mA} (25^{\circ}\text{C} - 175^{\circ}\text{C})$	10,11
gfe	Forward Transconductance	_	32	_	S	$V_{CE} = 50V$, $I_C = 48A$, $PW = 80\mu s$	
I _{CES}	Collector-to-Emitter Leakage Current	_	1.0	150	μΑ	$V_{GE} = 0V, V_{CE} = 600V$	
		_	450	1000		$V_{GE} = 0V$, $V_{CE} = 600V$, $T_{J} = 175^{\circ}C$	1
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Ref.Fig
Q_g	Total Gate Charge (turn-on)	_	95	140		I _C = 48A	18
Q _{ge}	Gate-to-Emitter Charge (turn-on)	_	28	42	nC	$V_{GE} = 15V$	CT1
Q _{gc}	Gate-to-Collector Charge (turn-on)	_	35	53		V _{CC} = 400V	
Eon	Turn-On Switching Loss ®	_	625	1141		$I_C = 48A$, $V_{CC} = 400V$, $V_{GE} = 15V$	CT4
E _{off}	Turn-Off Switching Loss	_	1275	1481	μJ	$R_{G}=10\Omega$, L= 200 μ H, L _S =150nH, $T_{J}=25^{\circ}$ C	
E _{total}	Total Switching Loss	_	1900	2622		Energy losses include tail & diode reverse recovery	
t _{d(on)}	Turn-On delay time	_	60	78		$I_C = 48A, V_{CC} = 400V, V_{GE} = 15V$	CT4
t _r	Rise time	_	40	56	ns	$R_G = 10\Omega$, L = 200 μ H, L _S = 150nH, T _J = 25°C	
t _{d(off)}	Turn-Off delay time	_	145	176			
t _f	Fall time	_	35	46			
E _{on}	Turn-On Switching Loss ©	_	1625	_		$I_C = 48A, V_{CC} = 400V, V_{GE} = 15V$	12, 14
E _{off}	Turn-Off Switching Loss	_	1585	_	μJ	$R_G=10Ω$, L=200μH, L _S =150nH, $T_J=175$ °C ④	CT4
E _{total}	Total Switching Loss	_	3210	_	1	Energy losses include tail & diode reverse recovery	WF1, WF2
t _{d(on)}	Turn-On delay time	_	55	_		$I_C = 48A$, $V_{CC} = 400V$, $V_{GE} = 15V$	13, 15
t _r	Rise time	_	45	_	ns	$R_G = 10\Omega$, L = 200 μ H, L _S = 150nH	CT4
t _{d(off)}	Turn-Off delay time	_	165	_		T _J = 175°C	WF1
t _f	Fall time	_	45	_			WF2
C _{ies}	Input Capacitance	_	3025	_	pF	$V_{GE} = 0V$	17
C _{oes}	Output Capacitance	_	245	_		$V_{CC} = 30V$	
C _{res}	Reverse Transfer Capacitance	_	90	_	1	f = 1.0Mhz	
			•			$T_J = 175^{\circ}C, I_C = 192A$	4
RBSOA	Reverse Bias Safe Operating Area	FUL	L SQUA	RE		V _{CC} = 480V, Vp =600V	CT2
						Rg = 10Ω , $V_{GE} = +15V$ to $0V$	
SCSOA	Short Circuit Safe Operating Area	5	_	_	μs	V _{CC} = 400V, Vp =600V	16, CT3
						Rg = 10Ω , $V_{GE} = +15V$ to $0V$	WF3

Notes:

- ① $V_{CC} = 80\%$ (V_{CES}), $V_{GE} = 20V$, $L = 200\mu H$, $R_G = 10\Omega$.
- ② This is only applied to TO-247AC package.
- 3 Pulse width limited by max. junction temperature.
- ⑤ Turn-on energy is measured using the same co-pak diode as IRGP4063DPbF.
- © Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 80A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.

2 www.irf.com

International

IRGP4063PbF/IRGP4063-EPbF

Fig. 1 - Maximum DC Collector Current vs.

Case Temperature

Fig. 2 - Power Dissipation vs. Case Temperature

Fig. 3 - Forward SOA $T_C = 25^{\circ}C$, $T_J \le 175^{\circ}C$; $V_{GE} = 15V$

Fig. 4 - Reverse Bias SOA $T_J = 175$ °C; $V_{GE} = 15V$

Fig. 5 - Typ. IGBT Output Characteristics $T_J = -40^{\circ}C; \, tp = 80 \mu s$

Fig. 6 - Typ. IGBT Output Characteristics $T_J = 25^{\circ}\text{C}$; $tp = 80\mu\text{s}$

International TOR Rectifier

Fig. 7 - Typ. IGBT Output Characteristics $T_J = 175^{\circ}\text{C}$; $tp = 80\mu\text{s}$

Fig. 9 - Typical V_{CE} vs. V_{GE} $T_J = 25^{\circ}C$

Fig. 11 - Typ. Transfer Characteristics $V_{CF} = 50V$; tp = 10 μ s

Fig. 8 - Typical V_{CE} vs. V_{GE} $T_J = -40^{\circ}C$

Fig. 10 - Typical V_{CE} vs. V_{GE} $T_J = 175^{\circ}C$

Fig. 12 - Typ. Energy Loss vs. I_C T_J = 175°C; L = 200 μ H; V_{CE} = 400V, R_G = 10 Ω ; V_{GE} = 15V

International

IRGP4063PbF/IRGP4063-EPbF

Fig. 13 - Typ. Switching Time vs. I_C T_J = 175°C; L = 200µH; V_{CE} = 400V, R_G = 10 Ω ; V_{GE} = 15V

Fig. 14 - Typ. Energy Loss vs. R_G T_J = 175°C; L = 200 $\mu H;$ V_{CE} = 400V, I_{CE} = 48A; V_{GE} = 15V

Fig. 15 - Typ. Switching Time vs. R_G T_J = 175°C; L = 200 μ H; V_{CE} = 400V, I_{CE} = 48A; V_{GE} = 15V

Fig. 16 - V_{GE} vs. Short Circuit Time $V_{CC} = 400V$; $T_C = 25^{\circ}C$

Fig. 17 - Typ. Capacitance vs. V_{CE} V_{GE} = 0V; f = 1MHz

Fig. 18 - Typical Gate Charge vs. V_{GE} $I_{CE} = 48A$; $L = 600\mu H$

Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

6 www.irf.com

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.3 - S.C. SOA Circuit

Fig.C.T.5 - Resistive Load Circuit

Fig.C.T.2 - RBSOA Circuit

Fig.C.T.4 - Switching Loss Circuit

Fig.C.T.6 - BVCES Filter Circuit

Fig. WF1 - Typ. Turn-off Loss Waveform @ $T_J = 175^{\circ}$ C using Fig. CT.4

Fig. WF2 - Typ. Turn-on Loss Waveform @ $T_1 = 175^{\circ}$ C using Fig. CT.4

Fig. WF3 - Typ. S.C. Waveform @ T_J = 25°C using Fig. CT.3

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.

2. DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127)

PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

5. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

ØP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 * TO THE TOP OF THE PART WITH A MAXIMUM HOLE
DIAMETER OF .154 INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

	DIMENSIONS					
SYMBOL	INCHES		MILLIN	MILLIMETERS		
	MIN.	MIN. MAX.		MAX.	NOTES	
A	.183	.209	4,65	5.31		
A1	.087	.102	2,21	2.59		
A2	.059	.098	1.50	2.49		
b	.039	.055	0.99	1.40		
ь1	.039	.053	0.99	1.35		
b2	.065	.094	1,65	2.39		
ь3	.065	.092	1.65	2.34		
b4	.102	.135	2.59	3.43		
ь5	.102	.133	2.59	3.38		
С	.015	.035	0.38	0.89		
c1	.015	.033	0.38	0.84		
D	.776	.815	19.71	20.70	4	
D1	.515	-	13.08	-	5	
D2	.020	.053	0.51	1.35		
E	.602	.625	15.29	15.87	4	
E1	.530	-	13.46	-		
E2	.178	.216	4.52	5.49		
e	.215 BSC		5.46			
øk	.010			25		
L	.559	.634	14.20	16,10		
L1	.146	.169	3,71	4.29		
øΡ	.140	.144	3.56	3.66		
øP1	-	.291	-	7,39		
Q	.209 .224		5,31	5.69]	
S	.217 BSC		5.51 BSC			
I					I	

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE 2.- DRAIN 3.- SOURCE

3.- SOURCE 4.- DRAIN

IGBTs, CoPACK

1.- GATE

2.- COLLECTOR

3.- EMITTER 4.- COLLECTOR

DIODES

1.- ANODE/OPEN

2.- CATHODE

3.- ANODE

TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2001
IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AC package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

International IOR Rectifier

TO-247AD Package Outline

Dimensions are shown in millimeters (inches)

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- DIMENSIONS ARE SHOWN IN INCHES.
- CONTOUR OF SLOT OPTIONAL
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005" (0.127)
 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.
- LEAD FINISH UNCONTROLLED IN L1.
- $\ensuremath{\mathrm{oP}}$ to have a maximum draft angle of 1.5 $^{\circ}$ to the top of the part with a maximum hole diameter of .154 inch.
- OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AD.

	DIMENSIONS					
SYMBOL	INC	HES	MILLIN	(ETERS	1	
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	.183	.209	4.65	5.31		
A1	.087	.102	2.21	2,59		
A2	.059	.098	1,50	2,49		
b	.039	.055	0.99	1,40		
ь1	.039	.053	0.99	1.35		
b2	.065	.094	1.65	2.39		
b3	.065	.092	1.65	2.34		
b4	.102	.135	2.59	3.43		
b5	.102	.133	2,59	3,38		
С	.015	.035	0.38	0.89		
c1	.015	.033	0.38	0.84		
D	.776	.815	19,71	20,70	4	
D1	.515	-	13.08	-	5	
D2	.020	.053	0.51	1.35		
E	.602	.625	15.29	15.87	4	
E1	.530	-	13,46	-		
E2	.178	.216	4,52	5.49		
e	,215	BSC	5.46	BSC		
øk	.0	10		25		
L	.780	.827	19.57	21.00	1	
L1	.146	.169	3.71	4.29		
øΡ	.140	.144	3,56	3,66		
øP1	-	.291	-	7,39		
Q	,209	.224	5.31	5,69		
S	.217 BSC		5.51	BSC	1	

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE
- 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER
- 4. COLLECTOR

- 1,- ANODE/OPEN 2,- CATHODE 3,- ANODE

TO-247AD Part Marking Information

EXAMPLE: THIS IS AN IRGP30B120KD-E

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AD package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 06/09