!pip install pandas numpy matplotlib seaborn scikit-learn

```
Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (1.5.3)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.23.5)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.7.1)
Requirement already satisfied: seaborn in /usr/local/lib/python3.10/dist-packages (0.12.2)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.2.2)
Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.3.post1)
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.2.0)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.46.0)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4.5)
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (23.2)
Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (9.4.0)
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.1.1)
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.4)
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.3.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->panda
```

List the files in the extracted directory
extracted_files = os.listdir(extracted_dir)
extracted_files

['Train.csv', 'Test.csv']

```
import zipfile
import os
# Define the path to the zip file
zip_file_path = '/content/9961_14084_bundle_archive.zip'
# Define the directory to extract to
extracted_dir = '/content/dataset'
# Create the directory if it doesn't exist
os.makedirs(extracted_dir, exist_ok=True)
# Extract the contents of the zip file
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
    zip_ref.extractall(extracted_dir)
# List the files in the extracted directory
extracted_files = os.listdir(extracted_dir)
extracted_files
     ['Train.csv', 'Test.csv']
```

```
import zipfile
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Define the path to the zip file
zip_file_path = '/content/9961_14084_bundle_archive.zip'
# Define the directory to extract to
extracted_dir = '/content/dataset'
# Create the directory if it doesn't exist
os.makedirs(extracted_dir, exist_ok=True)
# Extract the contents of the zip file
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
    zip ref.extractall(extracted dir)
# List the files in the extracted directory
extracted files = os.listdir(extracted dir)
extracted files
# Assuming the dataset is in CSV format
# Check the extracted files and identify the CSV file
csv_file = [file for file in extracted_files if file.lower().endswith('.csv')][0]
csv_file_path = os.path.join(extracted_dir, csv_file)
# Load the dataset into a Pandas DataFrame
df = pd.read_csv(csv_file_path)
# Display basic information about the dataset
print("Dataset Information:")
print(df.info())
# Summary statistics of numerical features
print("\nSummary Statistics:")
print(df.describe())
```

```
# Check for missing values
print("\nMissing Values:")
print(df.isnull().sum())
# Explore categorical variables
categorical columns = df.select dtypes(include=['object']).columns
if len(categorical columns) > 0:
    print("\nCategorical Variables:")
    for column in categorical columns:
        print(f"\n{column}:\n{df[column].value counts()}")
# Visualize the distribution of numerical features
plt.figure(figsize=(12, 6))
df.select dtypes(include=['int64', 'float64']).hist(bins=20, color='blue', edgecolor='black', grid=False)
plt.suptitle('Distribution of Numerical Features', x=0.5, y=1.02, ha='center', fontsize='x-large')
plt.tight layout(rect=[0, 0, 1, 0.96])
plt.show()
# Visualize relationships between variables using a pair plot
sns.pairplot(df.select_dtypes(include=['int64', 'float64']))
plt.suptitle('Pair Plot of Numerical Features', x=0.5, y=1.02, ha='center', fontsize='x-large')
plt.show()
# Visualize correlation matrix
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
plt.title('Correlation Matrix')
plt.show()
```


<ipython-input-12-00b78e2d179c>:65: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated
 correlation_matrix = df.corr()

Item_Outlet_Sales -	0.01	-0.13	0.57	-0.05	1.00	0.0
	tem_Weight -	ltem_Visibility -	ltem_MRP -	Outlet_Establishment_Year -	ltem_Outlet_Sales -	

```
# Assuming 'df' is the DataFrame containing your dataset
# Step 2.1: Feature Engineering (if needed)
# Example: Extracting information from date columns, creating new features, etc.
# Step 2.2: Encode Categorical Variables
# Example: Using one-hot encoding for categorical columns
df = pd.get dummies(df, columns=['Item Weight', 'Item MRP'], drop first=True)
# Step 2.3: Handle Missing Values
# Example: Impute missing values for numerical columns with mean and for categorical columns with mode
from sklearn.impute import SimpleImputer
# Numerical columns
numerical cols = df.select dtypes(include=['int64', 'float64']).columns
numerical imputer = SimpleImputer(strategy='mean')
df[numerical cols] = numerical imputer.fit transform(df[numerical cols])
# Categorical columns
categorical cols = df.select dtypes(include=['object']).columns
categorical imputer = SimpleImputer(strategy='most frequent')
df[categorical cols] = categorical imputer.fit transform(df[categorical cols])
# Step 2.4: Split the Data
from sklearn.model_selection import train_test_split
# Specify features and target variable
X = df.drop('Item_Outlet_Sales', axis=1)
y = df['Item_Outlet_Sales']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Display the first few rows of the preprocessed DataFrame
print("Preprocessed DataFrame:")
print(X train.head())
```

Prepro	ocessed DataFrame:					
•	Item_Identifier Ite	m_Fat_Content	Item_Visibi	lity	<pre>Item_Type</pre>	\
549	FDW44	 Regular			and Vegetables	
7757	NCF54	Low Fat	0.047	7473	Household	
764	FDY03	Regular	0.076	5122	Meat	
6867	FDQ20	Low Fat	0.029	9845 Fruits	and Vegetables	
2716	FDP34	Low Fat	0.137		Snack Foods	
(Outlet_Identifier	Outlet_Establis	hment_Year (Outlet_Size	\	
549	OUT049	_	1999.0	Medium		
7757	0UT045		2002.0	Medium		
764	0UT046		1997.0	Small		
6867	OUT045		2002.0	Medium		
2716	0UT046		1997.0	Small		
(Outlet_Location_Typ	e Outlet	_Type Item_	_Weight_4.59	\	
549	Tier	1 Supermarket	Type1	0	• • •	
7757	Tier	•	Type1	0	• • •	
764	Tier	1 Supermarket	Type1	0	• • •	
6867	Tier	2 Supermarket	Type1	0	• • •	
2716	Tier	1 Supermarket	Type1	0	• • •	
	Item_MRP_265.5568	Item_MRP_265.6	884 Item_M	RP_265.7884	\	
549	0		0	0		
7757	0		0	0		
764	0		0	0		
6867	0		0	0		
2716	0		0	0		
	Item_MRP_265.8884	Item_MRP_266.0	0226	RP_266.1884	\	
549	0		0	0		
7757	0		0	0		
764	0		0	0		
6867	0		0	0		
2716	0		0	0		
	Item_MRP_266.2884	Item_MRP_266.5	5884 Item <u></u> MF	RP_266.6884	\	
549	0		0	0		
7757	0		0	0		
764	0		0	0		
6867	0		0	0		
2716	0		0	0		

	Item_MRP_266.8884
549	(
7757	(
764	(
6867	(
2716	(

[5 rows x 6360 columns]

```
import zipfile
import os
import pandas as pd
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error, r2 score
# Load the dataset
zip_file_path = '/content/9961_14084_bundle_archive.zip'
extracted dir = '/content/dataset'
os.makedirs(extracted_dir, exist_ok=True)
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
    zip_ref.extractall(extracted_dir)
# Identify the CSV file in the extracted directory
csv_file = [file for file in os.listdir(extracted_dir) if file.lower().endswith('.csv')][0]
csv_file_path = os.path.join(extracted_dir, csv_file)
# Load the dataset into a Pandas DataFrame
df = pd.read csv(csv file path)
# Data Processing
# Assuming 'Item Weight', 'Item MRP', and 'Item Outlet Sales' are relevant columns
selected_columns = ['Item_Weight', 'Item_MRP', 'Item_Outlet_Sales']
df_model = df[selected_columns].dropna()
# Split the data into features (X) and target variable (y)
X = df_model[['Item_Weight', 'Item_MRP']]
y = df_model['Item_Outlet_Sales']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Build a Predictive Model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions on the testing set
```

```
y_pred = model.predict(X_test)

# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("Mean Squared Error:", mse)
print("R-squared (R2) Score:", r2)

# Display the coefficients of the model
print("Model Coefficients:")
print("Intercept:", model.intercept_)
print("Coefficients:", model.coef_)
```

Mean Squared Error: 1453287.2973690468 R-squared (R2) Score: 0.40218538459496067

Model Coefficients:

Intercept: 9.025218670723916

Coefficients: [-2.37575074 15.13098914]

```
import zipfile
import os
import pandas as pd
from sklearn.model selection import train test split, GridSearchCV
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error, r2 score
# Load the dataset
zip_file_path = '/content/9961_14084_bundle_archive.zip'
extracted dir = '/content/dataset'
os.makedirs(extracted_dir, exist_ok=True)
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
    zip_ref.extractall(extracted_dir)
# Identify the CSV file in the extracted directory
csv_file = [file for file in os.listdir(extracted_dir) if file.lower().endswith('.csv')][0]
csv file_path = os.path.join(extracted_dir, csv_file)
# Load the dataset into a Pandas DataFrame
df = pd.read csv(csv file path)
# Data Processing
# Assuming 'Item Weight', 'Item MRP', and 'Item Outlet Sales' are relevant columns
selected_columns = ['Item_Weight', 'Item_MRP', 'Item_Outlet_Sales']
df_model = df[selected_columns].dropna()
# Split the data into features (X) and target variable (y)
X = df_model[['Item_Weight', 'Item_MRP']]
y = df_model['Item_Outlet_Sales']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Build a Predictive Model (Linear Regression)
model = LinearRegression()
# Fine-Tuning and Optimization (GridSearchCV)
# LinearRegression does not have a 'normalize' parameter, so we skip this step
```

```
# Continue with training and evaluation
model.fit(X_train, y_train)

# Make predictions on the testing set
y_pred = model.predict(X_test)

# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("Model - Mean Squared Error:", mse)
print("Model - R-squared (R2) Score:", r2)

Model - Mean Squared Error: 1453287.2973690468
    Model - R-squared (R2) Score: 0.40218538459496067
```