Tabella 1: Riassunto dei modelli di distribuzione

Modello	Parametri	F. di massa o di densità	Funzione di ripartizione	$Valore\ atteso$	Varianza
Bernoulli	$X \sim B(p)$	$p^{x}(1-p)^{(1-x)}I_{\{0,1\}}(x)$	$(1-p)I_{[0,1)}(x) + I_{(1,+\infty)}(x)$	p	p(1-p)
Binomiale	$X \sim B(n, p)$	$\binom{n}{x} p^x (1-p)^{n-x} I_{\{1, \dots, n\}}(x)$	$\sum_{i=0}^{\lfloor x \rfloor} \binom{n}{i} p^{i} (1-p)^{n-i} I_{[0,n]}(x) + I_{(n,+\infty)}(x)$	np	np(1-p)
Uniforme discreto	$X \sim U(n)$	$\frac{1}{n}I_{\{1,\ldots,n\}}(x)$	$\frac{\lfloor x \rfloor}{n} I_{[0,n)} + I_{[n,+\infty)}(x)$	$\frac{1}{n}\frac{n(n+1)}{2}$	$\left(\frac{n^2-1}{12}\right)^2$
Uniforme continuo	$X \sim U(a, b)$	$\frac{1}{b-a}I_{[a,b]}(x)$	$\frac{x-a}{b-a}I_{[a,b]}(x) + I_{[b,+\infty)}(x)$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$
Geometrico	$X \sim G(p)$	$p(1-p)^x I_{\mathbb{N}\cup\{0\}}(x)$	$(1-(1-p)^{\lfloor x\rfloor+1})I_{\mathbb{R}^+}(x)$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Poisson	$X \sim P(\lambda)$	$e^{-\lambda} \frac{\lambda^x}{x!} I_{\mathbb{N} \cup \{0\}}(x)$	$[non\ vista]$	λ	λ
Ipergeometrico	$X \sim \mathcal{H}(n, M, N)$	$\frac{\binom{N}{x}\binom{M}{n-x}}{\binom{n+M}{n}}$	$[non\ vista]$	$n\frac{M}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$
Esponenziale	$X \sim E(\lambda)$	$\lambda e^{-\lambda x}$	$(1 - e^{-\lambda x})I_{\mathbb{R}^+(x)}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gauss	$X \sim G(\mu, \sigma)$	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	μ	σ^2