

MASTER THESIS

Optimization of Neural Network

Author: Martin Bulín MSc. Supervisor: Ing. Luboš Šmídl Phd.

A thesis submitted in fulfillment of the requirements for the degree of Engineer (Ing.)

in the

April 7, 2017

Declaration of Authorship

- I, Martin Bulín MSc., declare that this thesis titled, "Optimization of Neural Network" and the work presented in it are my own. I confirm that:
 - This work was done wholly or mainly while in candidature for a research degree at this University.
 - Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
 - Where I have consulted the published work of others, this is always clearly attributed.
 - Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
 - I have acknowledged all main sources of help.

Signed:			
Date:			

 $"Look\ deep\ into\ nature,\ and\ then\ you\ will\ understand\ everything\ better."$

A. Einstein

UNIVERSITY OF WEST BOHEMIA

Abstract

Faculty of Applied Sciences
Department of Cybernetics

Engineer (Ing.)

Optimization of Neural Network

by Martin Bulín MSc.

abstract text...

Acknowledgements

 ${\it acknowledgements\ text...}$

Contents

ΑI	ostra	ect	111
1	Int 1.1 1.2 1.3	State of the Art	1 1 1 1
2	Me	ethods	2
	2.1	Network Pruning	2
	2.2	Feature Selection	2
	2.3	Network Visualization	2
	2.4	Speech Data Gathering	2
3	$\mathbf{E}\mathbf{x}$	amples	3
	3.1	2D-problem 1: XOR function	3
	3.2	2D-problem 2: Unbalanced Features	3
	3.3	2D-problem 3: Rule Plus Exception	3
	3.4	Train Problem	3
	3.5	Handwritten digits (MNIST)	3
	3.6	Phonemes (speech data)	3
4	Di	scussion	4
	4.1	Methods Recapitulation	4
	4.2	Comparison of Pruning Methods	4
5	Co	nclusion and Outlook	5
Bi	bliog	graphy	6
\mathbf{A}	l Stı	ructure of the Workspace	7
A:	2 Im	plementation	8
A:	3 Co	de Documentation	9

List of Figures

List of Tables

List of Abbreviations

AI Artificial IntelligenceANN Artificial Neural Network

Introduction

Introduction text...

1.1 State of the Art

State of the art text... (Rosenblatt, 1958) (Reed, 1993)

1.2 Thesis Objectives

Thesis objectives text...

1.3 Thesis Outline

Thesis outline text...

Methods

Methods intro text...

2.1 Network Pruning

Network pruning text...

2.2 Feature Selection

Minimal network structure text...

2.3 Network Visualization

Graphical user interface text...

2.4 Speech Data Gathering

Speech data classification text...

Examples

results text...

3.1 2D-problem 1: XOR function

XOR data...

3.2 2D-problem 2: Unbalanced Features

Karnin data...

3.3 2D-problem 3: Rule Plus Exception

RPE data...

3.4 Train Problem

RPE data...

3.5 Handwritten digits (MNIST)

MNIST data... (LeCun and Cortes, 1998)

3.6 Phonemes (speech data)

PHONES data...

Discussion

Discussion text...

4.1 Methods Recapitulation

 ${\bf Methods\ recapitulation\ text...}$

4.2 Comparison of Pruning Methods

Comparison of results text...

Conclusion and Outlook

Conclusion text...

Outlook text...

Bibliography

- [1] Frank Rosenblatt. "The perceptron: A probabilistic model for information storage and organization in the brain". In: *Psychological Review* 65 (1958), pp. 386–408.
- [2] R. Reed. "Pruning Algorithms A Survey". In: *IEEE Transactions on Neural Networks (Volume:4, Issue: 5)* (Sept. 1993), pp. 740-747. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=248452.
- [3] Yann LeCun and Corinna Cortes. The MNIST database of handwritten digits. 1998. URL: http://yann.lecun.com/exdb/mnist/.

Appendix A1

Structure of the Workspace

Appendix A2

Implementation

Appendix A3

Code Documentation