

R Tutorial for Statistical Learning

Qidi Peng

12: Subset selection methods

Code	Comments	Results
#Delete variables having missing data from a data set.		
install.packages("ISLR");	The functions detecting and deleting missing data can	
	be found in the package "ISLR".	
library (ISLR);	Load the package "ISLR".	
fix(Hitters);	Check the data frame "Hitters", which is baseball	
	players' personal information. We observe that there	
	are missing data in the variable "Salary".	
is.na(Hitters\$Salary);	To check which data is missing. True is existing; False	[1] 59
	means missing. R regards True as 1 and False as 0.	[1] 263
sum(is.na(Hitters\$Salary));	Number of existing data in "Salary".	
sum(1-is.na(Hitters\$Salary));	Number of missing data in "Salary".	[1] 0
Hitters =na.omit(Hitters);	Extract the players who have not any missing data.	
sum(is.na(Hitters));	Check the extracted data set. There is no longer	
	missing data.	
#Best subset methods.		
install.packages("leaps");	The best subset methods function can be found in the	
	package "leaps".	
library(leaps);	Load the package.	
help(regsubsets.formula);	The function regsubsets.formula() performs best	
	subset method.	
regfit.full=regsubsets(Salary~.,Hitters);	Let Y=Salary, we perform subset selection among all	
	other variables in the data set Hitters.	
summary(regfit.full);	Print the results. String "*" means the corresponding	
	variable is selected by the method. For instance, this	
	output indicates that the best one-variable model	
	contains only "CRBI" and the best two-variable model	
	contains only "Hits" and "CRBI". In the output,	
	Forced in means whether the variable is contained by	
	all models; Forced out means whether the variable is	
	excluded by all models.	
	By default, regsubsets() only reports results up to the	

regfit.full=regsubsets(Salary~.,data=Hitters,nvmax =19);	best eight-variable model. But the nymax option can	
	be used in order to return as many variables as are	
	desired.	
	Output the results for up to best 19-variable model.	
reg.summary=summary(regfit.full);	·	
Reg.summary;		
2		
#model selection.		
	Show all the statistics (variables) contained in	
names(reg.summary);	reg.summary.	
	Show the Cp statistic for all 19 models, the one which	
reg.summary\$cp;	minimizes the test MSE is the one containing 10	
	variables.	
	Show the BIC, the one containing 6 variables is the	
reg.summary\$bic;	minimizer of BIC.	
-	The R2 statistic is increasing. It is not surprising since	
reg.summary\$rsq;	R2 is a measure for fitting training data. More	
	variables, more accurate.	
	The adjusted R2 chooses the 11-variable model.	
reg.summary\$adjr2;	Unlike R2, It does the job to measure the test error.	
	Open 4 windows of size 2*2. We are going to illustrate	
par(mfrow = c(2,2));	the 4 statistics of all the 19 models: RSS, adjusted R2,	
	Cp and BIC.	
	In Window (1,1), present the plot of RSS. Since RSS	
plot(reg.summary\$rss ,xlab=" Number of Variables	is to measure training error, it is decreasing as number	
",ylab=" RSS", type="l");	of variables increases.	
	In Window (1,2), present the adjusted R2, it has a	
plot(reg.summary\$adjr2 ,xlab =" Number of Variables ",	maximum.	
ylab=" Adjusted RSq",type="l");	Find the maximizer of the adjusted R2.	
which.max(reg.summary\$adjr2);	Paint this maximum in red.	[1] 11
points (11, reg.summary\$adjr2[11], col ="red",cex =2,		
pch =20);	In Window (2,1), present Cp. The best model	
plot(reg.summary\$cp ,xlab =" Number of Variables	minimizes Cp.	
",ylab="Cp", type="l");	Find the minimizer of Cp.	
which.min(reg.summary\$cp);	Paint the minimum value point of Cp in red.	[1] 10
points (10, reg.summary\$cp [10], col ="red",cex =2, pch		
=20);	In Window (2,2), plot BIC VS number of variables.	
plot(reg.summary\$bic ,xlab=" Number of Variables		
",ylab=" BIC", type="l");	Find the minimizer of BIC.	
which.min(reg.summary\$bic);	Add this minimum point in red.	[1] 6
points(6, reg.summary\$bic[6], col ="red",cex=2,pch	We see that all these statistics propose different	
=20);	models. It is reasonable because each statistic has a	
	different statistical point of view.	
	Coefficient estimates of the best 6-variable model.	

coef(regfit.full,6);	
#Forward and backward stepwise selection methods.	
regfit.fwd=regsubsets (Salary~.,data=Hitters,nvmax	In regsubsets(), the argument "method="forward""
=19,method="forward");	can perform forward stepwise selection.
summary(regfit.fwd);	Output the results.
regfit.bwd=regsubsets (Salary~.,data=Hitters,nvmax	The argument "method="backward"" can perform
=19,method="backward");	backward stepwise selection
summary(regfit.bwd);	Output the results
coef(regfit.full,7);	We compare the best subsets, forward and backward
coef(regfit.fwd ,7);	stepwise methods. We observe that they provide the
coef(regfit.bwd,7);	same one to six-variables models, but the
coefficient.bwd,/),	seven-variable models are different. This shows the 3
	methods are quite accurate when dealing with small
	number of predictors.
	number of predictors.
# Cross validation.	
fix(predict.regsubsets);	There is no predict() function for the subsets methods,
#In the separate pad write:	we create one here.
function(object,newdata,id){	
form=as.formula(object\$call[[2]]);	
mat=model.matrix (form,newdata);	
coefi=coef(object,id=id);	
xvars=names(coefi);	
mat[,xvars]%*%coefi}	
k=10;	10-fold cross validation.
set.seed (1);	
folds=sample (1:k,nrow(Hitters),replace =TRUE);	
cv.errors =matrix (NA ,k,19, dimnames =list(NULL ,	
paste (1:19)));	
· · · · · · · · · · · · · · · · · · ·	
for(j in 1:k){best.fit=regsubsets	Compute the test errors for each subset, using best
(Salary~.,data=Hitters[folds !=j,],	subsets method.
nvmax =19);for(i in	
1:19){pred=predict.regsubsets(best.fit,Hitters[folds==j,],	
id≕i);	
cv.errors [j,i]=mean((Hitters\$Salary[folds	
==j]-pred)^2)}};	We use the apply() function to average over the
	columns of this matrix in order to obtain a vector for
mean.cv.errors =apply(cv.errors ,2, mean);	which the jth element is the cross validation error for
mean.cv.errors;	the j-variable model.

which.min(mean.ev.errors);	This function tells you which model does the cross-validation selects. Attention, the result is random.	

13: Ridge regression and the lasso

Codes	Comments	Results
# Ridge regression. We perform a regression y~x.		
x=model.matrix (Salary~.,Hitters)[,-1];	Define predictor set (including all predictors, the salaries of players are declined and the qualitative	
y=Hitters\$Salary;	variables are converted to dummy variables). Define the response y.	
install.packages("glmnet");	Ridge and the lasso are contained in the package	
library (glmnet);	"glmnet". We install it.	
grid =10^ seq (10,-2, length =100);	We choose a grid for the tuning parameter lambda,	
	from 10^10 to 10^-2. The mesh is not equal size.	
ridge.mod =glmnet(x,y,alpha =0,lambda=grid);	Perform a ridge regression for y~x. When the	
	argument alpha=0, we fit ridge regression; when	
	alpha=1, we fit the lasso regression; when 0 <alpha<1,< td=""><td></td></alpha<1,<>	
	we fit a ridge-the lasso mixture model.	
help(glmnet);	To check more information on glmnet().	
coef(ridge.mod)[,50];	The estimates of the coefficients of the 50th lambda	
	value (lambda=11498 in this case.)	[1] 11497.57
ridge.mod\$lambda [50];	The corresponding lambda.	
predict(ridge.mod,s=50,type ="coefficients")[1:20,];	Predict the first 20 estimates of the coefficients for	
	lambda=50.	
#subset validation.		

not good (1).	Sat a good for subset validation	
set.seed (1);	Set a seed for subset validation.	
train=sample (1: $nrow(x)$, $nrow(x)/2$);	Select a training data set index.	
test=(- train);	Define test data set index.	
y.test=y[test];	Define test data set.	
ridge.mod =glmnet (x[train ,],y[train],alpha =0, lambda =grid , thresh	Perform ridge regression using training data set.	
=1e-12);		
ridge.pred=predict (ridge.mod ,s=4, newx=x[test,]);	Predict the regression, using lambda=4 (must be the	
	same length as the test set).	[1] 101036.8
mean((ridge.pred -y.test)^2);	Calculate the test MSE. The result is random.	
# The lasso.		
$lasso.mod = glmnet \ (x[train \ ,],y[train],alpha = 1,\ lambda = grid);$	Perform the lasso on the training data (take alpha=1).	
plot(lasso.mod);		
	Illustrate the results. We see most of the coefficients	
coef(lasso.mod)[,50];	are around 0.	
	Check the coefficients for lambda=11498. Most are	
#Cross validation for choosing lambda; subset validation for	zero.	
#calculating the test MSE.		
set.seed (1);		
help(cv.glmnet);		
<pre>cv.out =cv.glmnet (x[train ,],y[train],alpha =1);</pre>	Check the cross validation function for glmnet.	
	Run a 10-fold (by default) cross validation for the	
	lasso regression on the training data set, in order to	
plot(cv.out);	choose lambda.	
	Illustrate the results. We see how the test MSE	
bestlam =cv.out\$lambda.min;	behaves as log(lambda) increases.	
bestlam;	Return the best lambda among the grid.	
lasso.pred=predict (lasso.mod ,s=bestlam ,newx=x[test ,]);		[1] 32.18284
mean((lasso.pred -y.test)^2);	Make the lasso prediction using the best lambda.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
X	Calculate the test MSE by using subset validation.	[1] 101918.2
	The result is random.	[1] 101710.2
	The result is failuoili.	I

14: Principal component regression (PCR)

Codes	Comments	Results
#Principal component regression.		
install.packages("pls");	Install the package which contains principal	
library(pls);	component regression function pcr().	

pcr.fit=pcr(Salary~.,	One directly performs the PCR.	
data=Hitters ,scale=TRUE ,validation="CV");		
validationplot(pcr.fit ,val.type="MSEP");	Plot the cross validation MSE VS number of	
	components (predictors). Attention, this cross	
	validation method is used to select the principal	
	components.	
summary(pcr.fit);	Output the results. From the summary we see that	
	the best model contains 7 predictors.	
#Calculate the test MSE using subset validation.		
pcr.pred=predict (pcr.fit ,x[test ,], ncomp =7);	Use the 7 principle components, we make prediction	
	using the training data set.	
mean((pcr.pred -y.test)^2);	Calculate the test MSE.	[1] 85199.48
pcr.fit=pcr(y~x,scale =TRUE ,ncomp =7);	Perform the PCR only with 7 components.	
summary(pcr.fit);	Print the results.	

15: Tree-Based Methods

Codes	Comments	Results
#Classification tree		
install.packages("tree");	Install the package which contains tree-based	
	functions for classification and regression.	
library(tree);		
library(ISLR);		
attach(Carseats);	Consider dataset" Carseat"s for classification.	
High=ifelse(Carseats\$Sales <=8,"No","Yes ");	ifelse() function is used to create a variable,	
	which takes on a value of Yes if the Sales	
	variable exceeds 8, and takes on a value of No	
	otherwise. Here we artificially create response	
	labels (2~classes), called High, for each	
	predictor.	
Carseats =data.frame(Carseats ,High);	Create a data matrix of (X,Y), predictors and	
	responses.	
set.seed(2);		
train=sample (1:nrow(Carseats), 200);	Select 200 training data.	
Carseats .test=Carseats[-train ,];	The rest data are for testing. It is validation set.	
High.test=High[-train];	Run classification tree.	
tree.carseats	Output the results.	
=tree(High~Sales ,Carseats ,subset=train);	Plot the results.	
summary(tree.carseats);	Predict the rest data.	
plot(tree.carseats);	Test the prediction by using validation set. Display	

tree.pred=predict(tree.carseats ,Carseats .test ,type="cla	the results by confusion matrix.	High.test tree.pred
ss"); table(tree.pred ,High.test)		No Yes
		No 86 27
		Yes 30 57
#Regression tree		
library(MASS);	Use data "Boston".	
set.seed(1);		
train = sample (1:nrow(Boston), nrow(Boston)/2);	Use half data for fitting, half for validation.	
tree.boston=tree(medv~.,Boston , subset=train) ;	Fit regression tree.	
summary(tree.boston);	Output the results.	
plot(tree.boston);	Plot the results.	
<pre>yhat=predict (tree.boston ,newdata=Boston[-train ,]) ;</pre>	Perform subset validation.	
boston.test=Boston[-train ,"medv"];		
plot(yhat ,boston.test);	Use plot to compare true values and predicted	
abline (0,1);	values.	
mean((yhat -boston.test)^2)	Calculate the test MSE.	[1] 25.05