

 $9c, f(x) = \int 2 - x^2, \quad x < -2$ $\begin{cases} -2, & |x| \le 2 \end{cases}$ $2x - 6, \quad x > 2$

 $f(-2) = \lim_{\Delta x \to 0} \frac{(x + \Delta x) - (-2)}{(1)x} = \lim_{\Delta x \to 0} \frac{-2 - (-2)}{(-2)} = 0$

 $f'(2) = \lim_{\Delta t \to 0} -2 - (-2) = 0$

f(2)=2.2-6=1-2111612 -4

f(2+10x)=2.(2+0x)-6=4+20x-6-20x-2

f(2)= lim 21x-2-1-2) = 21x - 2 12x+0 12x 12x 2x 2x 2x

18x, $f(x) = \ln \left(\frac{\text{are sin}(x)}{\text{arc cos}(x)} \right) = \frac{\text{arc sen}(x)}{\text{arc cos}(x)} = u$
(arc as (x) / arc ess (x)
$h'(\pi) = f'(\pi)g(\pi) - f(\pi)g'(\pi) \text{ arc sen}(\pi) =$
$\frac{(g(x))^2}{\sqrt{1-x^2}}$
V1-262
$h'(t) = \frac{1}{\sqrt{1-x^2}} \cdot \text{arc cos } x - \text{arc sen}(x) \cdot -1 / \text{arc cos}(x)$
our c oor2 (20) / 11-22
$h'(\pi) = \frac{1}{\sqrt{1-\pi^2}} \cdot \left(\operatorname{arc} \cos \pi - \operatorname{arc} \operatorname{sin}(\pi) - 1 \right)$ $\operatorname{arc} \cos^2(\pi)$
dt-df. du du du
$df = \frac{1}{\sqrt{1-x^2}}$, (arc easy + arc sen(x)). I $du = \sqrt{1-x^2}$ (arc easy + arc sen(x)) arc sen(x)
du $\sqrt{1-x^2}$ arc $\cos^2(\pi)$ / arc $\sin(\pi)$ are $\cos(\pi)$
off _ 1 , are con(x) + are sen (x), are con(x)
du Ji-x2 orc Oss2(x) arc sen(x)
cl f = arc cos(x) + arc sen(x)
du VI-x2 (one cos (2)) (one sen (2))

$$y = 6(x+1) + 0$$

 $y = 6x + 6$ e $m_n = 7$ ((mover so do oporto)

$$Y = \frac{7}{6}(x+1) = \frac{7}{6}x - \frac{7}{6}$$

4-40=m(x-20)=1 4=m(2c-20)+40