Estimating Evolutionary Parameters for Protein Low Complexity Regions using an Approximate Bayesian Computation

Alexander Turco

December 5, 2022

Overview

Background Information

Research Questions/Explorations

Experimental Approach

Future Work

What are Low Complexity Regions?

Saccharomyces cerevisiae SRP40 Protein LCRs

>CAA82171.1(298-316) complexity=2.18 (15/1.90/2.20) tpassnestpsasssssan

LCRs Present in Unique Ways

Homorepeats

Consecutive iterations of a single residue

LCRs Present in Unique Ways

Homorepeats

Consecutive iterations of a single residue

Direpeats

Consecutive iterations of two ordered, different residues

LCRs Present in Unique Ways

Homorepeats

Consecutive iterations of a single residue

Direpeats

Consecutive iterations of two ordered, different residues

Tandem Repeats

Sequence of residues which are repeated a number of times

LCRs are Hypermutable

mam domain	Size (bp)	Amino Acid Substitutions	Amino Acid/ Total Substitutions
Unique	933	26	0.15
Repetitive	810	47	0.42

¹Newfeld, Smoller, and Yedvobnick, 1991

Proposed Mechanisms of LCR Evolution

1. Polymerase Slippage/Slipped Strand Mispairing

Polymerase Slips Forward

Polymerase Slips Backwards

²Levinson and Gutman, 1987; Sehn, 2015

Proposed Mechanisms of LCR Evolution

2. Unequal Recombination

³Mirkin, 2007

Why Care about LCRs and their Evolution?

Huntington's Disease

Genetic Recombination

Neisseria meningitidis

What will this Study Explore?

- Estimation of evolutionary parameters (mutation rate, indel rates)
- Various models of insertions and deletions
- Summary statistics which best explain data

What Approach will be Taken?

Bayesian Statistics: Model-based statistical inference

$$p(D|\theta) \tag{1}$$

Likelihood

What Approach will be Taken?

Bayesian Statistics: Model-based statistical inference

$$p(D|\theta) \tag{1}$$

Likelihood

$$p(\theta|D)$$

(2)

Posterior

Why use an ABC-MCMC

► The increasing complexity and magnitude of available data can make the likelihood difficult to calculate

$$p(D|\theta)$$

Why use an ABC-MCMC

Calculation of the likelihood is replaced with a simulation step

MCMC for ABC

- **①** Propose a move from θ to θ' according to a transition kernel $q(\theta, \theta')$.
- ② Generate simulated dataset D' using θ' and calculate S'.
- **3** If $\rho(S', S) \leq \epsilon$ continue to 4, otherwise remain at θ and go to 1.
- Calculate

$$\alpha(\theta, \theta') = min(1, \frac{\pi(\theta')q(\theta', \theta)}{\pi(\theta)q(\theta, \theta')})$$

- **5** Accept θ' with probability α , otherwise stay at θ .
- Return to 1.

⁴Marjoram et al., 2003

 ${\bf 0}$ Propose a move from θ to θ' according to the normal distribution

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'
- lacktriangle Calculate summary statistics for simulated dataset D'

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'
- lacktriangle Calculate summary statistics for simulated dataset D'
- If $d(S', S) \leq \epsilon$, go to next step, otherwise stay at θ and return to 1

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'
- lacktriangle Calculate summary statistics for simulated dataset D'
- **1** If $d(S',S) \leq \epsilon$, go to next step, otherwise stay at θ and return to 1
- Accept θ'

- **①** Propose a move from θ to θ' according to the normal distribution
- ② Create a random protein sequence and mutate over many generations using θ' to generate simulated Dataset D'
- lacktriangle Calculate summary statistics for simulated dataset D'
- **1** If $d(S',S) \leq \epsilon$, go to next step, otherwise stay at θ and return to 1
- \bullet Accept θ'
- Return to step 1

Future Work

- Graphical representations of simulation iteration versus parameter values
- ▶ Implementation of weighted summary statistics in distance calculation
- Adjustment of values such as mean and standard deviation of the proposal distribution

Acknowledgements

- Dr. Brian Golding
- Sam Long
- Zachery Dickson
- ▶ Johanna Enright