Examen Lineaire Algebra

2e Bachelor Informatica

January 19, 2009

- 1. Zij V en W eindigdimensionale vectorruimten en $\mathcal{A}:V\to W$ een lineaire afbeelding. Formuleer en bewijs de dimensiestelling voor \mathcal{A} .
- 2. Zij V een eindigdimensionale inproductruimte.
 - (a) Geef en bewijs het orthonormalisatieproces van Gram-Schmidt dat uit een gewone basis van V een orthonormale basis van V construeert.
 - (b) Zij $e_1, ..., e_n$ een orthonormale basis van V en $v, w \in V$. Beschrijf het inproduct $\langle v, w \rangle$ in termen van coördinaten van v en w ten opzichte van $e_1, ..., e_n$.
- 3. Beschouw in \mathbb{R}^3 de verzameling

Beschouw in
$$\mathbb{R}^3$$
 de verzamening $H := \{(x_1, x_2, x_3) \in \mathbb{R}^3 | \sum_{i=1}^3 a_i x_i = 0, \sum_{i=1}^3 b_i x_i = 0\},$ met $a_i, b_i \in \mathbb{R}$ voor elke i .

- (a) Toon aan dat H een lineaire deelverzameling is van \mathbb{R}^3 .
- (b) Toon aan dat dimH strikt positief is.
- (c) Bepaal concrete waarden voor a_i en b_i zodat dim H = 1.
- 4. Zij $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$ een transformatie van een vlak die elk punt loodrecht spiegelt ten opzichte van een recht y = ax + b met $a, b \in \mathbb{R}$.
 - (a) Ga na voor welke waarden van a en b de afbeelding \mathcal{A} lineair is.
 - (b) Bepaal voor die waarden de eigenwaarden en bijhorende eigenruimten van \mathcal{A} .
- 5. Beschouw de lineaire afbeelding $\mathcal{A}_a: \mathbb{R}^3 \to \mathbb{R}^3$ $(x, y, z) \mapsto (ax + z, x + (1 a)y + az, (2a 1)x + (1 a^2)y + a^2z)$ Bespreek $dim\mathcal{A}_a$ in functie van de parameter $a \in \mathbb{R}$
- 6. Zij V, W en U eindigdimensionale vectorruimten en zij $f: V \to W$ en $g: W \to U$ lineaire afbeeldingen.
 - (a) Toon aan dat $dim Im_{(g \circ f)} \ge dim Im_g + dim Im_f dim W$ (Mogelijke tip: beschrijf de beperking van g tot f ten opzichte van het beeld van f.)
 - (b) Stel nu dat V = W = U en g = f. Construeer in dit geval een voorbeeld waarbij voorgaande ongelijkheid strikt is.

- 7. Zijn de volgende uitspraken waar of niet? Bespreek.
 - (a) Neem $n \in \mathbb{N} \setminus \{0\}$. Elke bovendriehoeksmatrix in $\mathbb{R}^{n \times n}$ is diagonaliseerbaar.
 - (b) Neem $n \in \mathbb{N} \setminus \{0\}$ en $\mathcal{L} : \mathbb{R}^n \to \mathbb{R}^n$ is een injectieve lineaire afbeelding. Zij $A \in \mathbb{R}^{n \times n}$ een inverteerbare matrix. Dan bestaat voor elke basis \mathcal{V} van \mathbb{R}^n een basis \mathcal{W} van \mathbb{R}^n zodat de matrix $M_{\mathcal{V},\mathcal{W}}(\mathcal{L})$ (= $\mathcal{L}_{\mathcal{V},\mathcal{W}}$) van \mathcal{L} ten opzichte van basissen \mathcal{V} en \mathcal{W} gegeven wordt door A.