Rings

Sasha Krassovsky

November 21, 2018

Definition. A ring is a triple $(R, +, \times)$, with operations called addition and multiplication. Properties:

- 1. (R, +) is an abelian group with identity 0_R .
- 2. \times is an associative binary operation on R with an identity 1_R .
- 3. Multiplication distributes over addition.

A ring R is **commutative** if \times is commutative.

Definition. The **trivial ring** is the ring with only one element, where $0_R = 1_R$.

Fact. For any ring R with $r \in R$, $r \cdot 0_R$ and $r * (-1_R) = -r$.

Definition. The Gaussian integers are the complex numbers with integer real and imaginary parts.

$$Z[i] = \{a + bi : a, b \in \mathbb{Z}\}\$$

Definition. Let R, S be rings. Then the **product ring**, denoted $R \times S$ is defined as ordered pairs (r, s) with both operations done component-wise.

Definition. A unit of a ring R is an element $u \in R$ which is invertible. That is, for some $x \in R$, $ux = 1_R$.

Definition. A nontrivial commutative ring is a **field** if all of its nonzero elements are units.

Remark. Colloquially, a field is a structure where you can add, subtract, multiply, and divide.

Definition. Let R be a ring and $a, b \in R$ such that ab = 0 and $a, b \ne 0$. Then a and b are the **zero divisors** of R. Example: \mathbb{Z}_{15} has this property, where 3, 5 are the zero divisors because $3 \cdot 5 \equiv 0 \pmod{15}$.

Definition. A nontrivial commutative ring with no zero divisors is an **integral domain**.

Definition. Let $R = (R, +_R, \times_R)$ and $S = (S, +_S, \times_S)$ be rings. A **ring homomorphism** is a map $\phi : R \to S$ such that

- 1. $\forall x, y \in R, \phi(x +_R y) = \phi(x) +_S \phi(y)$.
- 2. $\forall x, y \in R, \phi(x \times_R y) = \phi(x) \times_S \phi(y)$.
- 3. $\phi(1_R) = 1_S$.

If ϕ is a bijection, then ϕ is an **isomorphism** and R and S are **isomorphic**.

Definition. The **kernel** of a ring homomorphism $\phi: R \to S$, denoted ker ϕ , is defined as follows:

$$\ker \phi = \{ r \in R : \phi(r) = 0 \}$$

Fact. If $\phi(x) = \phi(y) = 0$, then $\phi(x + y) = \phi(x) + \phi(y) = 0$, so ker ϕ should be closed under addition.

Fact. If $\phi(x) = 0$, then $\forall r \in R$, $\phi(rx) = \phi(r)\phi(x) = 0$, so for $x \in \ker \phi$ and any $r \in R$, $rx \in \ker \phi$.

Definition. A nonempty subset $I \subseteq R$ is an ideal if it is closed under addition, and $\forall x \in I, \forall r \in R, rx \in I$.

Remark. This definition is true if we assume the ring is commutative. If the ring is not commutative, we must also add the condition that $xr \in I$.

Theorem. Let R be a ring with $I \subset R$. Then I is the kernel of some homomorphism if and only if I is an ideal.

Definition. Let R be a ring and I be an ideal. Then the quotient ring is given by

$$R/I = \{r + I : r \in R\}$$

R/I is when we declare all elements of I are zero, i.e. we "mod out by elements of I".

Theorem. The only ideals of \mathbb{Z} are those of the form $n\mathbb{Z}$ where n is an integer.