Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.12.10

Key words: Combinatorial Nullstellensatz

Recall:

- $0 \neq f \in \mathbb{F}_q[x_1, \dots, x_n]$, $\deg f = d$, then f has $\leq dq^{n-1}$ roots in \mathbb{F}_q^n
- $0 \neq f \in F[x_1, \dots, x_n]$, $\deg f = d$, then f has $\leq d|S|^{n-1}$ roots in S^n

Lemma4: Let $f \in F[x_1, \dots, x_n]$ be a polynomial, and let t_i be the maximum degree of x_i in f. Let $S_i \subset F$ with $|S_i| \geq t_i + 1$. If $f(x) = 0, \forall x \in S_1 \times \dots \times S_n$, then $f \equiv 0$.

proof:

Induction on n. n = 1 is true.

Assume the claim holds for n-1 variables. Write $f=f_0+f_1x_n^1+f_2x_n^2+\cdots+f_{t_n}x_n^{t_n}$, where $f_i\in F[x_1,\cdots,x_{n-1}]$. In each f_i , the maximum degree of x_j is $\leq t_j$, $j\in [n-1]$, $i\in \{0,1,\cdots,t_n\}$. For any given $a\in S_1\times S_2\times\cdots S_{n-1}$. Let $g_a(x_n)=f(a,x_n)$, $\deg(g_a)=t_n$. $\forall x_n\in S_n, g_a(x_n)=f(a,x_n)=0$ and $|S_n|\geq t_n+1\Longrightarrow g_a\equiv 0$ $g_a(x_n)=f_0(a)+f_1(a)x_n^1+\cdots+f_{t_n}(a)x_n^{t_n}\Longrightarrow f_0(a)=f_1(a)=\cdots=f_{t_n}(a)=0, \forall a\in S_1\times S_2\times\cdots S_{n-1}$. By assumption, $f_i=0, i\in [n-1]\Longrightarrow f=0$

<u>**Thm1:**</u>(Nullstellensatz) Let $f \in F[x_1, \dots, x_n]$, and let S_1, \dots, S_n be nonempty subsets of F and $f(x) = 0, \forall x \in S_1 \times \dots \times S_n$, then exist polynomials $h_1, \dots h_n \in F[x_1, \dots x_n]$ such that $deg(h_i) \leq$

$$deg(f) - |S_i| \text{ and } f = \sum_{i=1}^{n} h_i \prod_{s \in S_i} (x_i - s.)$$

proof:

Let
$$t_i = |S_i| - 1$$
, and $g_i(x_i) = \prod_{s \in S_i} (x_i - s) = x_i^{t_i + 1} - \sum_{j=0}^{t_i} a_{ij} x_i^j$.
In f , replace x_1^d $(d \ge t_1 + 1)$ by $x_1^{d - (t_1 + 1)} (g_1(x_1) + \sum_{j=0}^{t_1} a_{1j} x_1^j)$, we get $f = h_1(x_1, \dots, x_n)g_1(x_1) + f_1$, where max deg of x_1 in f_1 is $\le t_1$ and $\deg h_1 \le \deg f - |S_1|$. Repeat this step for $x_i^{t_i + 1}$, $i \in [2, n]$, we get $f = \sum_{i=1}^n h_i g_i + \bar{f}$. In \bar{f} , each x_j has $\deg \le t_j$ and $\bar{f} = f = 0, \forall x \in S_1 \times \dots S_n \Longrightarrow \bar{f} \equiv 0$.

<u>**Thm2:**</u>(Combinatorial Nullstellensatz) Let $f \in F[x_1, \dots, x_n]$ be a polynomial of degree d. Suppose $[x_1^{t_1}x_2^{t_2}\cdots x_n^{t_n}]f \neq 0$ and $\sum_{i=1}^n t_i = d$. If $S_i \subset F$ with $|S_i| \geq t_i + 1, i \in [n]$, then $\exists x \in S_1 \times \cdots S_n$ for which $f(x) \neq 0$.

proof:

By contradiction Assume $|S_i| = t_i + 1, i \in [n]$ and f(x) = 0 for all $x \in S_1 \times \cdots \times S_n$. By **Thm1**, write $f = \sum_{i=1}^n h_i g_i$, where $\deg h_i \leq d - |S_i|$ and $g_i(x_i) = \prod_{s \in S_i} (x_i - s)$, then $f(x) = \sum_{i=1}^n h_i(x) x_i^{t_i + 1} + (\text{terms})$ of degree < d). By assumption, $[x_1^{t_1} x_2^{t_2} \cdots x_n^{t_n}]^T$ on LHS is nonzero, but it is impossible to have such a monomial on RHS.

Application of Combinatorial Nullstellensatz

Thm3: (Chevalley-Warning) Let p be a prime and $f_1, \dots, f_m \in \mathbb{F}_p[x_1, \dots, x_n]$. If $\sum_{i=1}^m \deg f_i < n$, and f_1, \dots, f_m have a common root (c_1, \dots, c_n) , then they have another common root.

proof:

By contradiction. Assume (c_1, \dots, c_n) is the only common root. Define $f(x_1, \dots, x_n) = \prod_{i=1}^m (1 - f_i(x_1, \dots, x_n)^{p-1}) - \delta \prod_{j=1}^n \prod_{c \in F_p, c \neq c_j} (x_j - c),$

where δ is chosen s.t. $f(c_1, \dots, c_n) = 0$. i.e. $\delta = \frac{1}{\prod_{j=1}^n \prod_{c \in F_p, c \neq c_j} (c_j - c)}$

 $\forall (s_1, \dots, s_n) \in \mathbb{F}_p^n \text{ and } (s_1, \dots, s_n) \neq (c_1, \dots, c_n),$

 $\exists i \in [m] \text{ s.t. } f_i(s_1, \dots, s_n) \neq 0 \text{ in } \mathbb{F}_p.$ By Fermat's little Theorem, $f_i(s_1, \dots, s_n)^{p-1} \equiv 1 (mod p) \implies \text{the first product on RHS}$ is zero. It is easy to check that the second term is also zero, so $f_i(x_1, \dots, x_n) = 0, \forall (x_1, \dots, x_n) \in \mathbb{F}_p^n.$

Now check the degree of f. In the first product, the degree $\leq \sum_{i=1}^{m} deg f_i \cdot (p-1) < n(p-1) \implies \deg f = n(p-1)$, and the monomial $x_1^{p-1}x_2^{p-1}\cdots x_n^{p-1}$ has coefficient $-\delta \neq 0$. Let $S_i = \mathbb{F}_p$, then apply Combinatorial Nullstellensatz, $\exists x \in F_p^n, s.t. f(x) \neq 0$, a contradiction.

Recall: $A = (a_{ij})_{n \times n}$, $per(A) = \sum_{(i_1, \dots, i_n)} a_{1,i_1} a_{2,i_2} \cdots a_{n,i_n}$, where (i_1, \dots, i_n) runs over all permutations of [n].

Thm4: (Permanent Lemma) Let $b \in F^n$ and S_1, \dots, S_n be subsets of F, and $|S_i| \ge 2$. If the $per(A) \ne 0$, then there $\exists x \in S_1 \times \dots S_n$ such that Ax differs from b in all coordinates.

proof:

Define $f = \prod_{i=1}^{n} (\sum_{i=1}^{n} a_{ij}x_j - b_i)$, need to show $\exists x, s.t. f(x) \neq 0$. $\deg f = n$ and $[x_1 \cdots x_n] f = per(A) \neq 0$. Since $|S_i| \geq 2, i \in [n]$, then apply Combinatorial Nullstellensatz.

Corollary5: If $per(A) \neq 0$, then for any $b \in F^n$, there is a subset of columns of A whose sum differs from b in all coordinates. **Hint:** Let $S_i = \{0, 1\}$

Thm6: Let G = (V, E) be a graph, no loops but multiple edges allowed. p is a prime, if average degree > 2p-2, max degree $\le 2p-1$, then G contains a p-regular subgraph.

proof:

To be continued.