F. Pétrélis (cours) T. Jules (TD), theo.jules@ens.fr

TD $N^{o}2$: Correction

1 Interprétation géométrique des contraintes

1. Invariants:

$$\operatorname{Tr}(\underline{\underline{\sigma}}) = \sigma_1 + \sigma_2$$

$$\operatorname{Det}(\underline{\underline{\sigma}}) = \sigma_1 \sigma_2$$

$$2. \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} = \begin{bmatrix} (\sigma_1 + \sigma_2)/2 & 0 \\ 0 & (\sigma_1 + \sigma_2)/2 \end{bmatrix} + \begin{bmatrix} (\sigma_1 - \sigma_2)/2 & 0 \\ 0 & -(\sigma_1 - \sigma_2)/2 \end{bmatrix}$$

$$a) \qquad \qquad b) \qquad \qquad b$$

Figure 1: a) Partie symétrique. b) Partie antisymétrique.

3.

$$\underline{n} = \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix}
\underline{t} = \begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix}
\underline{T} = \underline{\underline{\sigma}} \cdot \underline{n} = \begin{pmatrix} \sigma_1 \cos(\alpha) \\ \sigma_2 \sin(\alpha) \end{pmatrix}
\sigma_n = \underline{T} \cdot \underline{n} = \sigma_1 \cos(\alpha)^2 + \sigma_2 \sin(\alpha)^2 = \frac{(\sigma_1 + \sigma_2)}{2} + \frac{(\sigma_1 - \sigma_2)}{2} \cos(2\alpha)
\underline{\tau} = \underline{T} \cdot \underline{t} = (\sigma_2 - \sigma_1) \sin(\alpha) \cos(\alpha) = (\sigma_2 - \sigma_1) \frac{\sin(2\alpha)}{2}$$

4.
$$\tau^2 + (\sigma_n - \frac{(\sigma_1 + \sigma_2)}{2})^2 = (\frac{\sigma_1 - \sigma_2}{2})^2$$

5. τ sera maximum pour $\alpha = \pi/4$.

Figure 2: Rouge: Compression uniaxiale. Bleu: Traction uniaxiale. Vert: Charge hydrostatique

7. Pour un cisaillement pur, on aura:

$$\underline{T} = \begin{pmatrix} \tau \sin(\alpha) \\ \tau \cos(\alpha) \end{pmatrix}$$
$$\sigma_n = \tau \sin(2\alpha)$$
$$\tau = \tau \cos(2\alpha)$$

2 Application du diagramme de Mohr

- 1. On a $\sigma_1 + \sigma_2 = -24$ MPa et $|\sigma_1 \sigma_2| = 10$ MPa. Donc si on prend $\sigma_1 > \sigma_2$: $\sigma_1 = -7$ MPa et $\sigma_2 = -17$ MPa.
- 2. Après calculs, on a
: $\sigma_n=-9.5$ M Pa et $\tau=4.3$ M Pa.
- 3. Après calculs, on trouve $\alpha^{\prime\prime}=36^{\circ}.$ Cela donne $\tau=4.8$ MPa.

3 Les critères de rupture

Figure 3: Critère de Tresca.

Figure 4: Critère de Mohr-Coulomb.