- - $-x \equiv c_1 \mod m_1$
 - $-x \equiv c_2 \mod m_2$
 - ...
 - $-x \equiv c_n \mod m_n$
- Vorgehensweise
 - $-m_1$ bis m_n sind teilerfremd
 - * ansonsten redundante Kongruenzen eliminieren
 - Produkt berechnen

*
$$M = \prod_{i=1}^{n} a_i$$

- $-M_i = \frac{M}{m_i}$
- euklidischen Alg. anwenden

$$* a_i * m_i + b_i * M_i = 1$$

- Lösung
 - $* x = \sum_{i=1}^{n} x_i * s_i * Ai$
 - * Falls $a\notin\{0,\dots,m-1\}$, $b\in\{0,\dots,m-1\}$ sodass $a\equiv b \mod m$
- Beispiel:
 - gegeben:

$$*\ c_1=1, c_2=2, c_3=3$$

$$*\ m_1=3, m_2=4, m_3=5$$

- -m = 3*4*5 = 60
- euklidische Alg.
 - * l = 1
 - $A_1 = -1$

- * l=2
 - $A_2 = -1$
- * l=3

 $[[{\bf Diskrete\ Mathematik}]]$