	$\sigma_{1^{+}lphaeta}^{\#1}$	$\sigma_{1^{+}lphaeta}^{\!\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1^{-}lpha}^{\sharp1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1}^{#2}\alpha$
$\sigma_{1}^{\#1} \dagger^{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(1+k^2)^2 t_1^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0 0		0	0
$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i\sqrt{2} k}{t_1 + k^2 t_1}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2}$	0	0	0	0
$\sigma_{1}^{\sharp 1}$ † lpha	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	$-\frac{i}{kr_5+2k^3r_5}$
$\sigma_{1}^{#2}$ † $^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k+2 k^3)^2 r_5 t_1}$	0	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\tau_1^{\#1} + \alpha$	0	0	0	0	0	0	0
$ au_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{i}{kr_5+2k^3r_5}$	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$

$f_{1}^{#2} + \alpha$	$f_{1-}^{#1} +^{\alpha}$	$\omega_{1}^{#2} + \alpha$	$\omega_{1^{-}}^{*1} \dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1+}^{\#2} \dagger^{\alpha\beta}$	$\omega_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{i kt_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$k^2 r_5 - \frac{t_1}{2}$	$\omega_{1}^{\#1}{}_{lphaeta}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1+\alpha\beta}^{\#2}f$
0	0	0	0	0	0	$-\frac{ikt_{1}}{\sqrt{2}}$	$f_{1}^{\#1}{}_{lphaeta}$
$-rac{1}{3}ar{l}kt_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 r_5 + \frac{t_1}{6}$	0	0	0	$\omega_{1^-}^{\#1}{}_{lpha}$
$-\frac{1}{3}i\sqrt{2}kt_1$	0	<u>£1</u> 3	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^-}^{\#2}{}_{lpha}$
0	0	0	0	0	0	0	$f_{1^-\alpha}^{\#1}$
2 k ² t ₁	0	$\frac{1}{3}$ i $\sqrt{2}$ kt_1	<u>ikt1</u> 3	0	0	0	$f_{1^-\alpha}^{\#2}$

Lagran	gian	dens	sitv
Lagran	giaii	aciis	Jicy

$-\frac{1}{3}t_1 \omega_i^{\alpha_i} \omega_{\kappa\alpha}^{\kappa} - t_1 \omega_i^{\kappa\lambda} \omega_{\kappa\lambda}^{\prime} - r_5 \partial_i \omega_{\kappa}^{\kappa\lambda} \partial^i \omega_{\lambda\alpha}^{\alpha} + \frac{2}{3}r_2 \partial^{\beta} \omega_{\kappa}^{\theta\alpha} \partial_{\theta} \omega_{\alpha\beta}^{\kappa} -$
· ·
$\frac{1}{3} r_2 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} - \frac{2}{3} r_2 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} +$
$r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} -$
$\frac{1}{2} t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{2} t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{2} t_1 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha \lambda} +$
$\frac{1}{3} t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{,i} + \frac{1}{3} t_1 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{,i} + \frac{2}{3} t_1 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{,i} - \frac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{,i} +$
$2t_1 \omega_{\kappa\theta} \partial^{\kappa} f^{\theta} - \frac{1}{3}t_1 \omega_{\alpha}^{\alpha} \partial^{\kappa} f_{\kappa}^{\prime} - \frac{1}{3}t_1 \omega_{\lambda}^{\lambda} \partial^{\kappa} f_{\kappa}^{\prime} + \frac{1}{2}t_1 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\lambda\alpha}^{\prime} +$
$\frac{1}{2} t_1 \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} + \frac{1}{2} t_1 \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} - \frac{1}{3} t_1 \partial^{\alpha} f_{\alpha}^{\lambda} \partial^{\kappa} f_{\lambda \kappa} +$
$\frac{1}{3} r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \partial^{\beta} \omega_{i}^{\alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}' +$
$\frac{2}{3} r_2 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{I} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}{}_{\theta} \partial^{\lambda} \omega_{\kappa}^{\theta \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\alpha}{}_{\alpha} \partial^{\lambda} \omega_{\kappa}^{\theta \kappa}$
Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$t_1^{\#1\alpha} == 0$	$t_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
17	5	3	3	3	1	1	1	#	

$\sigma_{2^{-}}^{#1} \dagger^{\alpha\beta\chi}$	$\tau_{2+}^{*1} + \alpha \beta$	$\sigma_{2^{+}}^{*1} \uparrow^{\alpha\beta}$	
0	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{2}{(1+2k^2)^2t_1}$	$\sigma_{2}^{\#1}{}_{lphaeta}$
0	$\frac{4k^2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$t_2^{#1} + \alpha \beta$
$\frac{2}{t_1}$	0	0	$\sigma_{2^{-}}^{\#1} \alpha \beta \chi$

$\omega_{2}^{#1} \dagger^{\alpha\beta\chi}$	$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\omega_{2^{+}}^{*1} \dagger^{\alpha\beta}$	
0	$\frac{i k t_1}{\sqrt{2}}$	<u>t1</u> 2	$\omega_{2}^{\#1}{}_{lphaeta}$
0	$k^2 t_1$	$-\frac{ikt_1}{\sqrt{2}}$	$f_{2}^{\#1}_{\alpha\beta}$
$\frac{t_1}{2}$	0	0	$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\sharp 1}$ †	0	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t_1$

$\sigma_{0^{-}}^{\#1}$ †	$\tau_{0^{+}}^{\#2} +$	$\tau_{0^{+}}^{\#1} \dagger$	$\sigma_{0^{+}}^{\#1}$ †	
0	0	0	0	$\sigma_{0^+}^{*1}$
0	0	0	0	$\tau_{0^+}^{\#1}$
0	0	0	0	$\tau_{0^+}^{\#2}$
$\frac{1}{k^2 r_2 - t_1}$	0	0	0	σ_{0}^{*1}

?	$= 0 7$ k^{μ}	? / ——?
?	<i>κ</i> ′ \	?

	Massive particl	e
	Pole residue:	$-\frac{1}{r_2} > 0$
)	Polarisations:	1
	Square mass:	$\frac{t_1}{r_2} > 0$
	Spin:	0
	Parity:	Odd

Unitarity conditions $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0$