Computations on Graphs: Partitioning, Load Balancing, and Algorithms

John Mellor-Crummey

Department of Computer Science Rice University

johnmc@rice.edu

Topics for Today

- Partitioning and load balancing of irregular problems
 - —mostly about graphs, but applies more broadly
- Computing on graphs

Partitioning and Load Balancing

- Broad class of problems have irregular structure
- Map application data to processors for computing in parallel
- Apply to grid points, elements, matrix rows, particles

Figure credit: Erik Boman, Cedric Chevalier, Karen Devine. The Zoltan Toolkit – Partitioning, Ordering, and Coloring. Dagstuhl Tutorial. 2009.

Computational Approach

- Distributed memory model
- Data decomposition + "owner computes"
 - —distribute data among the processors
 - —owner performs all computation on its data
 - —data distribution defines work assignment
 - —data dependencies among data items owned by different processors require communication

Kinds of Partitionings

Static

—all information available before computation starts

-alternatively, could be run as an off-line preprocessing step

Dynamic

—information not known until runtime, work changes during computation (e.g., adaptive methods), or locality of objects changes (e.g., particles move)

Figure credit: Erik Boman, Cedric Chevalier, Karen Devine. The Zoltan Toolkit – Partitioning, Ordering, and Coloring. Dagstuhl Tutorial. 2009.

Graph Models

- Graphs model the structure of a problem
- Node graph (mesh nodes compute)
 - -vertices = mesh nodes
 - —edges = communication between nodes
- Dual graph (mesh elements compute)
 - -vertices = mesh elements
 - —edges = communication between mesh elements
 - exchanges take place for every face between adjacent elements

2D irregular mesh

Node graph

Dual graph

Adjacency Matrix for Graph G = (V,E)

- |V| x |V| matrix
 - —matrix element $a_{i,i} = 1$ if nodes i and j share an edge; 0 otherwise
 - —for a weighted graph, $a_{i,j} = w_{i,j}$, the edge weight
- Requires Θ(|V|²) space

A = 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1

Adjacency matrix representation

adjacency matrix is symmetric about the diagonal for undirected graphs

Undirected graph

Adjacency List for Graph G = (V,E)

- An array Adj[1..|V|] of lists
 - —each list Adj[v] is a list of all vertices adjacent to v
- Requires $\Theta(|E|)$ space

Figure Credit: A. Grama et al. Graph Algorithms. Slides accompanying Introduction to Parallel Computing, Second Edition. Addison Wesley, 2003.

Adjacency list

Partitioning using an Adjacency Matrix

- Can reorder rows and columns of the matrix
 - —non-zeros outside of blocks require communication
- An optimal partition of the graph for parallel computation has
 - —equal number of vertices in subdomains
 - —lowest number of edges between subdomains

Finite Element Mesh Example

NASA airfoil finite-element mesh, 4253 grid points

Image source: MATLAB 7.5 NASA airfoil demo

Adjacency Matrix and Reverse Cuthill-McKee Reordering

Image source: MATLAB 7.5 NASA airfoil demo

- E. Cuthill and J. McKee. *Reducing the bandwidth of sparse symmetric matrices* In Proc. 24th Nat. Conf. ACM, pages 157–172, 1969.
- J. A. George and J. W-H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981

Reverse Cuthill-McKee

Cuthill-McKee

- —begin with a peripheral vertex
- —partition vertices into levels until all nodes are exhausted
 - level set K contains all vertices adjacent to all nodes in level K-1
- —list nodes in each level in increasing degree
 - only difference with conventional breadth-first search
- Reverse order of the above

—reduces fill-in when using GE

Figure credit: Marsha Berger and Andreas Klöckner. Lecture 12: Load balancing and partitioning. G63.2011.002/G22.2945.001. NYU. November 16, 2010.

- E. Cuthill and J. McKee. *Reducing the bandwidth of sparse symmetric matrices* In Proc. 24th Nat. Conf. ACM, pages 157–172, 1969.
- J. A. George and J. W-H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981

Tree Edges ———
Horizontal Edges ———
Interlevel Edges ———

Cuthill-McKee vs. Reverse Cuthill-McKee Ordering

Figure credit: https://en.wikipedia.org/wiki/Cuthill-McKee_algorithm

Goals of Partitioning

- Balance constraint
 - —balance computational load such that each processor has the same execution time
 - —balance storage such that each processor has the same storage requirements
- Minimum edge cut
 - —minimize communication volume between subdomains, along edges of the mesh
- Note: communication to computation ratio comes from both partitioning and the algorithm

Example 3-way partition with edge-cut = 9

Figure credit: Robert Van Engelen. Graph Partitioning for High Performance Scientific Simulations. Slides. Spring 2009.

Graph Partitioning Problem

- Let G = (V,E) be a weighted undirected graph with weight functions w_V: V → R⁺, w_E: E → R⁺
- K-way graph partitioning problem
 - —split V into K disjoint subdomains S_i j = 1, ..., k such that
 - balance constraint
 $\sum v \in S_j$ w_V(v) is roughly equal, for all j = 1, ..., k
- Weight functions are defined that
 - —w_V models computational work
 - —w_E models communication
- Can add subdomain weights to improve mapping to heterogeneous nodes or processors

Static Graph Partitioning

- Geometric techniques
 - —recursive coordinate bisection
 - —recursive inertial bisection
 - —space filling curves
- Combinatorial techniques
 - —Kernighan-Lin
- Multi-level schemes
 - —multilevel recursive bisection
 - —multilevel k-way partitioning

Geometric Partitioning Techniques

- Goal: group together vertices that are nearby in space
- When are these methods applicable
 - —when coordinate system exists or can be constructed
- How:
 - —partition based on coordinate information
 - may consider vertex weights as well
 - —recursively bisect mesh into increasingly smaller subdomains
- Properties
 - —typically fast
 - —have no concept of edge cut, so no communication optimization
 - —may suffer from disconnected meshes in complex subdomains

Recursive Coordinate Bisection (RCB)

- Geometric method
 - —compute centers of mass of mesh elements
 - —project onto axis of longest dimension
 - —bisect the list of centers
 - —repeat recursively
- Strength: fast, easy to parallelize
- Weakness: low quality partitionings

Recursive Coordinate Bisection (RCB)

- Bisect mesh normal to the longest dimension
 - —yields smaller subdomain boundaries
 - —typically reduces communication volume

Bisected normal to the x-axis

Bisected normal to the y-axis

Recursive Intertial Bisection (RIB)

- Orient bisection to minimize the subdomain boundary
- Mesh elements are converted into point masses
 - —compute principal inertial axis of the mass distribution
 - —bisect orthogonal to the principal inertial axis
 - —repeat recursively
- Fast and better quality than recursive coordinate bisection

Figure Credit: K. Schloegel, et al. Graph Partitioning for High Performance Scientific Simulations. In CRPC Parallel Computing Handbook. Morgan Kauffman, 2000.

Space-filling Curves

- RCB and RIB only consider a single dimension at a time
- Space-filling curve techniques linearly order a multidimensional mesh (nested hierarchically, preserves locality)

Peano-Hilbert curve

Morton / Z-order curve

Space-filling Curves (SFC)

Applies even to adaptively refined meshes and particles

3	5	6	11	12	15	16
	4	7	10	13	14	17
2	8		9		19	18
2					20	21
1			26		25	22
					24	23
			27		28	

Figure credit: Figure Credit: K. Schloegel, et al. Graph Partitioning for High Performance Scientific Simulations. In CRPC Parallel Computing Handbook. Morgan Kauffman, 2000. Marsha Berger and Andreas Klöckner. Lecture 12: Load balancing and partitioning. G63.2011.002/G22.2945.001. NYU. November 16, 2010.

Space-filling Curve Properties

Strengths

- —broadly applicable: particles, adaptive mesh refinement, ...
- —generalizes to uneven workloads incorporate weights
- —dynamic on-the-fly partitioning for any number of nodes
- —good for cache performance

Weaknesses

- —need coordinates
- —partitions may not be compact

Figure credit: Marsha Berger and Andreas Klöckner. Lecture 12: Load balancing and partitioning. G63.2011.002/G22.2945.001. NYU. November 16, 2010.

Combinatorial Partitioning Techniques

- Geometrical techniques group vertices that are spatially close, whether they are connected or not
- Combinatorial partitioning techniques use adjacency information to group together vertices that are highly connected
- Properties
 - —smaller edge cuts
 - -reasonably fast
 - —harder to parallelize

Levelized Nested Dissection (LND)

- Select initial vertex v₀, preferably a peripheral vertex
- For each vertex, compute the distance to v₀ using a breadth first search starting from v₀
- When half of the vertices have been assigned, split the graph into two parts: assigned and unassigned
- Can repeat with different vertices as v₀ to improve edge cut

Min-cut LND-cut

Kernighan-Lin (KL) Partition Refinement

- Given: partition of vertices into two disjoint sets A and B
- Idea: find X⊆A and Y⊆B such that swapping X to B and Y to A yields the greatest reduction in edge cut
- Finding optimal X and Y is intractable
- Kernighan-Lin performs multiple passes over V
- Each pass swaps two vertices, one from A and one from B

Before KL pass

Edge cut 6

Edge cut 3

After KL pass

Figure Credit: K. Schloegel, et al. Graph Partitioning for High Performance Scientific Simulations. In CRPC Parallel Computing Handbook. Morgan Kauffman, 2000.

Multi-level Schemes

Strategy

- —recursively coarsen graph in downward pass
- —partition the coarsest graph
- —refine the partition when unwinding each level of the recursion

If the graph is already partitioned, take that into account

Multi-level Schemes

- Coarsening collapses pairs of vertices
- Different coarsening strategies
 - —pick random pairs
 - —pick heavy edge pairs
- Partition coarsest (smallest) graph using recursive bisection
- Use refinement, e.g. Kernighan-Lin on uncoarsened graph

Repartitioning Methods

- Partition from scratch
- Incremental repartition methods
 - —cut and paste
 - -diffusion-based methods

Imbalanced partitioning (vertex weights=1)

Repartitioning from scratch

Figure credit: Robert Van Engelen. Graph Partitioning for High Performance Scientific Simulations. Slides. Spring 2009.

Cut-and-paste repartitioning

Diffusive repartitioning

Comparing Repartitioning Methods

- Scratch-remap results in higher distribution costs compared to incremental methods that use local perturbations
- Incremental partitioning with cut-and-paste
 - —moves fewest vertices between subdomains to restore balance
- Incremental diffusion-based methods Imbalanced Incremental partitioning partitioning

Scratch-remap partitioning

Diffusion-based Methods

- Address two questions
 - —how much work should be transferred
 - —which tasks should be transferred
- Attempt to minimize the difference between original and final repartitioning by making incremental changes
- Global diffusion schemes consider entire graph
 - —recursive bisection diffusion partitioners
 - —adaptive space-filling curve partitioners

Figure credit: M Berger et al. Lecture 12: Load balancing and partitioning. G63.2011.002/G22.2945.001. NYU. November 16, 2010. E. Boman et al. The Zoltan Toolkit – Partitioning, Ordering, and Coloring. Dagstuhl Tutorial. 2009.

Computing on Graphs

- Precompute your communication schedule
 - —what has to be communicated to whom
- Locally partition data into separate parts
 - —elements that can be computed with local information only
 - —elements that require non-local elements to compute
- Begin communicating your data to neighbors
 - —post non-blocking receives
 - —issue non-blocking sends
- Perform your local computation
- Wait for communication from neighbors
- Perform computation on non-local data

Sandia's Zoltan Library

- Dynamic load-balancing and parallel partitioning tools that distribute data over sets of processors
- Data migration tools for redistribution
- Parallel graph/matrix ordering algorithms
- Parallel graph coloring algorithms
- Distributed data directories that efficiently locate offprocessor data
- An unstructured communication package that greatly simplifies interprocessor communication
- A dynamic memory debugging package for use on parallel systems

http://www.cs.sandia.gov/zoltan/

Sandia's Zoltan Library

http://www.cs.sandia.gov/zoltan/

References

- Kirk Schloegel, George Karypis, and Vipin Kumar. Graph Partitioning for High Performance Scientific Simulations. CRPC Parallel Computing Handbook. Dongarra, Foster, Kennedy, Torczon, White, editors. Morgan Kauffman, 2000.
- Zoltan: Parallel Partitioning, Load Balancing and Data-Management Services. http:// www.cs.sandia.gov/zoltan
- Erik Boman, Cedric Chevalier, Karen Devine. The Zoltan Toolkit Partitioning, Ordering, and Coloring. http://www.cs.sandia.gov/~kddevin/papers/ zoltan_tutorial_dagstuhl09.pdf
- Robert Van Engelen. Graph Partitioning for High Performance Scientific Simulations.
 Slides. Spring 2009. https://www.cs.fsu.edu/~engelen/courses/HPC-adv/ GraphPartitioning.pdf
- Marsha Berger and Andreas Klöckner. Lecture 12: Load balancing and partitioning. G63.2011.002/G22.2945.001. NYU. November 16, 2010. http://www.cs.nyu.edu/courses/fall10/G22.2945-001/slides/lect12.pdf
- E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proc. 24th Nat. Conf. ACM, pages 157–172, 1969.
- J. A. George and J. W-H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981
- A. Grama et al. Graph Algorithms. Slides accompanying Introduction to Parallel Computing, Second Edition. Addison Wesley, 2003.