CLAIMS

What is claimed is:

1	1.	A process for manufacturing a coil structure for a magnetic head, comprising:
2		dépositing an insulating layer;
3		depositing a photoresist layer on the insulating layer;
4		depositing a silicon dielectric layer on the photoresist layer;
5		masking the silicon dielectric layer;
6	•	reactive ion etching at least one channel in the silicon dielectric layer;
7		reactive ion etching at least one channel in the photoresist layer and the silicon
8	dielec	tric layer, wherein the channel includes a first segment defining a first angle and a
9	second	d segment defining a second angle;
0		depositing a conductive seed layer in the channel;
1		filling the channel with a conductive material to define a coil structure; and
2		chemical-mechanical polishing the conductive material and the conductive seed
3	layer f	or the planarizing thereof.
1	2.	The process as recited in claim 1, wherein the first segment of the channel is
2	•	positioned below the second segment of the channel.
1	3.	The process as recited in claim 2, wherein the first segment defines a beveled

angle.

2

- 1 4. The process as recited in claim 3, wherein the first segment defines an angle
- between 70 and 85 degrees.
- 1 5. The process as recited in claim 2, wherein the second segment defines an angle
- 2 that is substantially vertical.
- 1 6. The process as recited in claim 5, wherein the second segment defines an angle
- 2 between 80 and 90 degrees.
- 1 7. The process as recited in claim 6, wherein the first segment defines an angle
- between 70 and 85 degrees.
- 1 8. The process as recited in claim 1, wherein the reactive ion etching includes
- 2 H₂/N₂/CH₃F/C₂H₄ reducing chemistry.
- 1 9. The process as recited in claim 8, wherein the reducing chemistry includes
- $H_2/N_2/CH_3F/C_2H_4$ gas ratios of 50-100/100-200/1-3/1-10.
- 1 10. The process as recited in claim 8, wherein the reducing chemistry includes a
- 2 pressure range of 5 to 20mTorr.

- 1 11. The process as recited in claim 8, wherein the reducing chemistry includes a
- 2 temperature range of -30 to 0°C.
- 1 12. The process as recited in claim 8, wherein the reactive ion etching is carried out
- by an inductively coupled plasma system with a coil power including 900 to 1500
- watts.
- 1 13. The process as recited in claim 1, wherein the reactive ion etching is carried out
- by an inductively coupled plasma system with a radio frequency (RF) power
- 3 including 100 to 200 watts.
- 1 14. The process as recited in claim 1, wherein the reactive ion etching is carried out
- by an inductively coupled plasma system with a magnitude of a radio frequency
- 3 (RF) bias including about 120V.
- 1 15. The process as recited in claim 1, wherein the photoresist is hard-baked.
- 1 16. The process as recited in claim 1, wherein the conductive seed layer includes at
- 2 least one of Cu, Ta, and TaN.
- 17. The process as recited in claim 1, wherein the conductive material includes Cu.

- 1 18. The process as recited in claim 1, wherein the silicon dielectric layer includes at
 2 least one of SiO₂ and Si₃N₄.
- 1 19. The process as recited in claim 1, wherein an aspect ratio of the channel is at least 2 2.5.
- 1 20. The process as recited in claim 1, wherein the masking includes depositing 2 another photoresist layer including an imaging photoresist layer.
- 1 21. The process as recited in claim 1, and further comprising removing at least part of the silicon dielectric layer.
- The process as recited in claim 21, wherein the silicon dielectric layer is removed by chemical-mechanical polishing (CMP).
- The process as recited in claim 1, and further comprising depositing an adhesion promoter layer between the silicon dielectric layer and the imaging photoresist layer.
- 1 24. The process as recited in claim 1, wherein the reactive ion etching includes
 2 CF₄/CHF₃ chemistry.

- 1 25. A magnetic head, comprising:
- 2 an insulating layer;
- a photoresist layer positioned adjacent the insulating layer for defining at least one
- 4 channel; and
- 5 a coil structure defined by a conductive material situated in the channel;
- 6 wherein a profile of the channel includes a first segment defining a first angle and
- 7 a second segment defining a second angle.
- 1 26. The magnetic head as recited in claim 25, wherein the first segment of the channel
- 2 is positioned below the second segment of the channel.
- 1 27. The magnetic head as recited in claim 26, wherein the first segment defines a
- 2 beveled angle.
- 1 28. The magnetic head as recited in claim 27, wherein the first segment defines an
- 2 angle between 70 and 85 degrees.
- 1 29. The magnetic head as recited in claim 26, wherein the second segment defines an
- 2 angle that is substantially vertical.

- 1 30. The magnetic head as recited in claim 29, wherein the second segment defines an
- angle between 80 and 90 degrees.
- 1 31. The magnetic head as recited in claim 30, wherein the first segment defines an
- angle between 70 and 85 degrees.
- 1 32. The magnetic head as recited in claim 25, wherein the reactive ion etching
- 2 includes H₂/N₂/CH₃F/C₂H₄ reducing chemistry.
- 1 33. The magnetic head as recited in claim 25, wherein the photoresist is hard-baked.
- 1 34. The magnetic head as recited in claim 25, wherein the conductive material
- 2 includes Cu.
- 1 35. The magnetic head as recited in claim 25, wherein an aspect ratio of the channel
- and coil structure is at least 2.5.
- 1 36. A magnetic head manufactured utilizing a process, comprising:
- 2 depositing an insulating layer;
- depositing a photoresist layer on the insulating layer;
- 4 depositing a silicon dielectric layer on the photoresist layer;
- 5 masking the silicon dielectric layer;

O	reactive ion etcning a plurality of channels in the sincon diejectric layer using
7	CF ₄ /CHF ₃ chemistry;
8	reactive ion etching a plurality of channels in the photoresist layer and the silicon
9	dielectric layer, wherein the channels each include a first segment defining a first angle
0 .	and a second segment defining a second angle, wherein a H ₂ /N ₂ /CH ₃ F/C ₂ H ₄ reducing
1,	chemistry is utilized in channel formation;
2	depositing a conductive seed layer in the channels;
3	electroplating the channels with a conductive material to define a coil structure;
4	and
5	chemical-mechanical polishing the conductive material and the conductive seed
6	layer for the planarizing thereof.
1	37. A disk drive system, comprising:
2 .	a magnetic recording disk;
3	a magnetic head including:
4	an insulating layer,
5	a photoresist layer positioned adjacent the insulating layer for defining at
6	least channel, and
7 .	a coil structure defined by a conductive material situated in the channel,
8	wherein the channel and coil structure include a first segment defining a
9	first angle and a second segment defining a second angle:

- an actuator for moving the magnetic head across the magnetic recording disk so
- 11 the magnetic head may access different regions of the magnetic recording disk; and
- a controller electrically coupled to the magnetic head.