

Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados.

E aí, vestibulando?

Desespero batendo na reta final para o Enem? Achando que vai chutar a prova de Ciências da Natureza inteirinha? Calma! Respira, inspira e não pira!

A melhor estratégia faltando tão pouco tempo para o Enem é focar naquelas matérias que caem todo ano, que você pode ter certeza que vai encontrar assim que pegar a prova. E, para você estudar os temas mais importantes de Química, selecionamos as fórmulas que você precisa saber de cor e salteado até o dia da prova!

No e-book **Fórmulas de Química para o Enem**, você encontra as matérias essenciais para mandar bem em Química e as principais fórmulas de cada uma delas!

Partiu colocar sua nota em Ciências da Natureza lá em cima? Vem estudar Química com a gente! :D

Índice

01	Atomística	5
02	Cinética Química	6
03	Distribuição eletrônica	7
04	Equilíbrio Químico	8
05	Eletroquímica	9
06	Funções Inorgânicas	11
07	Isomeria óptica	12
08	Número de Oxidação	13
09	рН е рОН	14
10	Radioatividade	15
11	Reações inorgânicas	14
12	Relações numéricas (massa, mol, volume)	15
13	Solução tampão	15
14	Soluções	15
15	Termoquímica	15
16	Unidades de Concentração	15

Atomística

A = n + Z

 $p = e^{-} = Z$ (quando a espécie é neutra)

Neutro: p = e

Íon: p ≠ e-

Cátions: p > e

Ânions: p < e

A = Número de massa

Z = número atômico

n = número de nêutrons

p = número de prótons

e = número de elétrons

Cinética Química

Reação

$$aA + bB \rightleftharpoons cC + dD$$

Velocidade média da reação

$$V_{m}$$
 reação = $\frac{\Delta[]}{x}$

X = coeficiente do seu balanceamento

Velocidade média

$$V_m = \frac{\Delta[]}{t}$$

V[] = velocidade média, ΔV = [] inicial – [] final t = tempo

Lei da velocidade

$$V = k \cdot [reagentes]^{x}$$

V = velocidade, k = constante de velocidade [reagentes] = concentração dos reagentes, x = coeficientes estequiométrico (para reações elementares)

Condições para a ocorrência de uma reação

Contato entre os reagentes

Afinidade química

Colisão efetiva

Fatores que alteram a velocidade de reação

Superfície de contato: quanto maior a superfície de contato maior a velocidade

Temperatura: aumento da temperatura favorece o sentido endotérmico, redução na temperatura favorece o sentido exotérmico. (Fator de Van't Hoff – um aumento de 10°C na temperatura do sistema, irá duplicar a velocidade da reação)

Concentração: aumento na concentração aumenta a velocidade

Catalisador: diminui a energia de ativação e aumenta a velocidade da reação

Distribuição Eletrônica

Distribuição por nível

Distribuição em subníveis

Diagrama de Pauling

*As setas indicam o sentido das energias crescentes.

Quantidade de elétrons que cada subnível suporta:

s= 2

p= 6

d= 10

f= 14

Equilíbrio Químico

Fatores que deslocam o equilíbrio

Concentração

Aumento da concentração desloca o equilíbrio para o lado oposto. Diminuição da concentração desloca o equilíbrio para o mesmo sentido de quem está diminuindo a concentração.

Temperatura

Aumento da temperatura desloca o equilíbrio para o sentido endotérmico. Diminuição da temperatura desloca o equilíbrio para o sentido exotérmico.

Pressão

Aumento da pressão desloca o equilíbrio para o lado de menor volume molar. Diminuição da pressão desloca o equilíbrio para o lado de maior volume molar.

Kc (constante de equilíbrio em relação a concentração)

$$Kc = \frac{[produtos]^{x}}{[reagentes]^{y}}$$

x e y = coeficientes estequiométricos

Kp (constante de equilíbrio em relação a pressão parcial)

$$Kp = \frac{(p \text{ produtos})^x}{(p \text{ reagentes})^y}$$

p = pressão parcial, x e y = coeficientes estequiométricos

Relação entre Kp e Kc

$$Kc = Kp . (R . T)^{-\Delta n}$$

 $Kp = Kc . (R . T)^{\Delta n}$

R = constante geral dos gases = 0,082, T = temperatura (Kelvin), n = variação do número de mols

$$Ka = \frac{[produtos]^{x}}{[reagentes]^{y}}$$

x e y = coeficientes estequiométricos

Kb (constante de basicidade)

$$Kb = \frac{[produtos]^{x}}{[reagentes]^{y}}$$

x e y = coeficientes estequiométricos

Formas alternativas de se encontrar Ka e o Kb:

Lei de diluição de Ostwald

Para ácidos e bases moderados e fortes

$$Ka = \frac{M \cdot \alpha^2}{(1 - \alpha)} e \quad Kb = \frac{M \cdot \alpha^2}{(1 - \alpha)}$$

Para ácidos e bases fracas

$$K\alpha = M \cdot \alpha^2 = Kb = M \cdot \alpha^2$$

M = molaridade (mol/L), α = grau de ionização do ácido ou α = grau de dissociação da base

Kw (constante de ionização da água)

$$Kw = 10^{-14}$$

Valor em condições normais de temperatura e pressão

Kps (constante de produto de solubilidade)

x = coeficiente estequiométrico

Kh (constante de hidrólise)

$$Kh = \frac{Kw}{Ka}$$
 para um sal básico

$$Kh = \frac{Kw}{Kb}$$
 para um sal ácido

$$Kh = \frac{Kw}{Ka. Kb}$$
 para Sal formado por Ácido fraco e base fraca.

Eletroquímica

Pilha

Processo espontâneo Gera corrente elétrica

Cátodo (pólo positivo) Ocorre a redução

Ânodo (pólo negativo) Ocorre a oxidação

DDP (diferença de potencial sempre $\Delta E^{o} = E^{o} \text{ red} + E^{o} \text{ oxi}$

positiva) $\Delta E^{o} = (E^{o} \text{ red maior}) - (E^{o} \text{ red menor})$

Eletrólise

Processo não espontâneo Precisa do fornecimento de uma corrente

elétrica para acontecer

Cátodo (pólo negativo) Ocorre a redução

Ânodo (pólo positivo) Ocorre a oxidação

DDP (diferença de potencial sempre ΔΕ°=(E°red menor) – (E°red maior)

negativa)

Obs: Em ambos, o sentido do fluxo de elétrons é sempre

do ânodo pro cátodo.

Funções Inorgânicas

Base Me(OH)_x

Me = metal ou NH_{L}^{+} , NaOH, Ca(OH)₂, Al(OH)₃

X = nox do metal

Tipo de Ácido Hidrácido (sem Oxigênio)

Hidrácido (sem Oxigênio)

H.A. exemplos: HCl, HF, HCN

Oxiácido (com Oxigênio) $H_xA_yO_z$ exemplos: H_2SO_4 , H_3PO_4 , H_2CO_3

Sal $C_x A_y$ exemplos: NaCl, CaSO₄, K_2CO_3

 $\acute{\text{O}}$ xido $X_yO_z^{-2}$ exemplos: CO_2 , CO, NaO

Peróxido $X_yO_z^{-1}$ exemplos: H_2O_2 , Na_2O_2 , K_2O_2

Superóxido $X_yO_z^{-1/2}$ exemplos: Na₂O₄, CaO₄

X = metal, ametal ou hidrogênio

Obs: não pode ser o F, porque ele é uma ametal também.

Isomeria óptica

Isômeros opticamente ativos 2ⁿ

Isômeros opticamente inativos 2ⁿ⁻¹

n = número de carbonos quirais ou assimétricos

Número de Oxidação

Nox Fixo

Grupo 1 e Ag = +1

Grupo 2, Zn e Cd = +2

Al = +3

F = -1

Nox Variável

Hg e Cu = +1 ou +2

Fe, Co e Ni = +2 ou +3

Au = +1 ou +3

Pb, Pt e Sn = +2 ou +4

Para substância simples: o NOX é igual a zero.

Para substâncias neutras: a soma do NOX é igual a zero.

pH e pOH

pH (potencial hidrogeniônico)

 $pH = - log [H^{\dagger}]$

pOH (potencial hidroxiliônico)

 $pOH = -log[OH^{-}]$

 $[H^*]$ = concentração de H^*

[OH⁻] = concentração de OH⁻

[H⁺]

 $[H^{\dagger}] = M \cdot Xa \cdot \alpha$

[OH-]

 $[OH^{-}] = M \cdot Xb \cdot \alpha$

M = molalidade (mol/L), Xa = quantidade de hidrogênios ionizáveis do ácido, Xb = quantidade de hidroxilas dissociáveis da base, α = grau de ionização do ácido ou α = grau de dissociação da base

Radioatividade

Partículas subatômicas

Alfa =
$$\frac{1}{2}\alpha$$

Beta =
$$\frac{0}{1}\beta$$

Neutron =
$$\frac{1}{0}$$
n

Meia-vida

$$Q_{i} = Q_{i} / 2^{P}$$

Qf e Qi = pode ser mf e mi, se a quantidade for em massa; nf e ni, se for em número de mols. P = números de meias-vida.

Fusão nuclear

União de dois núcleos menores em átomos maiores

Fissão nuclear

Quebra de um núcleo maior em núcleos menores

Reações inorgânicas

Adição ou síntese

$$R_1 + R_2 + R_n \rightarrow Produto$$

Decomposição ou análise

Reagente
$$\rightarrow P_1 + P_2 + P_n$$

Simples troca ou deslocamento

$$AB + C \rightarrow CB + A$$

Dupla troca ou permutação

Série de reatividade dos cátions

IA > IIA > Metais comuns > H > Metais nobres

Aumenta a reatividade: aumenta a tendência dos metais para sofrer oxidação

Série de reatividade dos ânions

F > O > Cl > Br > I > S

Aumenta a reatividade: aumenta a tendência dos metais para sofrer oxidação

Relações Numéricas

Cálculo da massa atômica a partir dos seus isótopos

$$MA = \frac{(A1.\%1)(A2.\%2) + ... + (An.\%n)}{100}$$

MA = massa atômica, A = massa do isótopo , % = ocorrência do isótopo em %

Massa molecular

Massa molecular = ΣMA

ΣMA = somatória da massa dos átomos componentes

Número de mol

$$n = \frac{m}{MM}$$

n = número de mols (mol), m = massa (gramas) MM = massa molar (gramas)

Densidade

d = densidade, m = massa, V = volume

Número de avogadro

1 mol = 6,02 x 10²³ unidades elementares

Volume molar

Nas CNTP, 1 mol = 22,4L

Nas CATP, 1 mol = 25L

CNTP = Condições normais de temperatura e pressão CATP = Condições ambientais de temperatura e pressão

Volume molar fora das CNTP e CATP (Equação de Clayperon)

P.V = n.R.T

P = pressão (atm), V = volume (litros), n = número de mol, R = constante dos gases (valor = 0,082), T = temperatura (Kelvin)

Solução de Tampão

pH de um tampão ácido

pOH de um tampão básico

pKa

pKb

pH = pKa + log[sal] / [ácido]

pOH = pKb + log[sal] / [base]

pKa = - log Ka

pKb = - log Kb

Soluções

Diluição

Ci. Vi = Cf. Vf

Mi. Vi = Mf. Vf

Ci = concentração inicial (g/L), Cf = concentração final (g/L), Mi = molaridade inicial (mol/L), Mf = molaridade final (mol/L), Vi = volume inicial (todos em litros ou todos em mililitro), Vf = volume final (todos em litros ou todos em mililitro)

Mistura de solutos iguais

Ci1. Vi1 + Ci2. Vi2 + ... + Cin. Vin = Cf. Vf

Mi1. Vi1 + Mi2. Vi2 + ... + Min. Vin = Mf. Vf

Mistura de solutos diferentes que não reagem (cada composto que não reage sofre uma diluição) Ci. Vi = Cf. Vf

Mi.Vi = Mf.Vf

Titulação

Ma. Va. Xa = Mb. Vb. Xb

Ma = molaridade do ácido (mol/L), Mb = molaridade da base (mol/L), Va = volume do ácido (todos em litros ou todos em mililitro), Vb = volume da base (todos em litros ou todos em mililitro), Xa = quantidade de hidrogênio ionizáveis do ácido, Xb = quantidade de hidroxilas dissociáveis da base

Termoquímica

 $\Delta H > 0$ Endotérmica (absorve calor)

ΔH < 0 Exotérmica (libera calor)

Obs: 1 cal = 4,186 J

Cálculo da variação de entalpia $\Delta H = H$ produtos – H reagentes

Entalpia de ligação $\Delta H = H \text{ reagentes} - H \text{ produtos}$

Ligação dos reagentes é quebrada = absorve calor, sinal positivo; Ligação dos produtos é formada = libera calor, sinal negativo

Lei de Hess

Unidades de concentração

Concentração comum (C)

$$C = \frac{m}{V}$$

C = concentração comum (g/L), m = massa do soluto (gramas) V = volume (litros)

Concentração molar (M)

$$M = \frac{n}{V}$$
 $M = \frac{m}{MM \cdot V}$

M = concentração molar (mol/L), n = número de mols (mol), V = volume (litros), m = massa do soluto (gramas), MM = massa molar do soluto (gramas)

Porcentagem em massa = X % (m/m)

X gramas soluto em 100 gramas de solução

Porcentagem em volume = X % (V/V)

X mililitros soluto em 100 mililitros de solução

Porcentagem em massa/volume = X% (m/V)

X gramas de soluto em 100 mililitros de solução

Ppm (parte por milhão)

$$ppm = \frac{mg \text{ soluto (massa)}}{kg \text{ solução (massa)}} = \frac{mg \text{ soluto (massa)}}{litros \text{ (volume)}}$$

Ppb (parte por bilhão)

ppb =
$$\frac{\text{mg soluto (massa)}}{\text{ton solução (massa)}} = \frac{\text{mg soluto (massa)}}{\text{m}^3 \text{ (volume)}}$$

mg = miligrama, kg = kilograma, ton = tonelada m³ = metros cúbicos (1m³ = 1000 litros)

Relação entre as unidades (molaridade, densidade, título e massa molar)

C= Concentração comum (g/L) M = Molaridade (mol/L) MM = massa molar (g/mol) % = título em massa d = densidade (g/mL)