Лабораторная работа 1. Модели структуры систем с использованием теории графов

Задача 1

- 1. Выполнить матричное и множественное описание графа топологии системы;
- 2. Выполнить топологическую декомпозицию системы (рис.17);
- 3. Разработать алгоритм решения задачи топологической декомпозиции на одном из языков программирования. Привести результаты работы программы.

Выполнение:

1. Матричное представление

Таблица 1- Матрица смежности

i\j	1	2	3	4	5	6	7	8	9	10
1	0	0	0	1	1	0	0	0	0	0
2	1	0	1	0	0	0	0	0	0	0
3	1	0	0	0	0	0	0	0	0	0
4	0	0	1	0	0	0	1	0	0	0
5	0	0	0	0	0	1	0	0	0	0
6	0	0	0	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	0
9	0	0	0	0	0	0	0	1	0	1
10	0	0	0	0	0	0	0	0	0	0

Таблица 2- Матрица инциденций

i∖j	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	-1	-1 -1		0	0	0	0	0	0	0	0	0
2	0	1	0	0	1	0	0	0	0	0	0	0	0
3	0	0	1	0	-1	-1	0	0	0	0	0	0	0
4	0	0	0	-1	0	1	1	0	0	0	0	0	0
5	-1	0	0	0	0	0	0	1	0	0	0	0	0
6	0	0	0	0	0	0	0	-1	1	-1	0	0	0
7	0	0	0	0	0	0	-1	0	-1	0	1	0	0
8	0	0	0	0	0	0	0	0	0	1	0	-1	0
9	0	0	0	0	0	0	0	0	0	0	-1	1	1
10	0	0	0	0	0	0	0	0	0	0	0	0	-1

2. Множественное представление

$$G(1)=(4,5);$$
 $G^{-1}(1)=(2,3);$ $G^{-1}(2)=(0);$ $G(3)=(1);$ $G^{-1}(3)=(2,4);$ $G^{-1}(4)=(1);$ $G^{-1}(4)=(1);$ $G^{-1}(5)=(1);$ $G^{-1}(6)=(5,8);$ $G^{-1}(7)=(6,4);$ $G(9)=(8,10);$ $G^{-1}(9)=(7);$ $G^{-1}(10)=(9);$

3. Топологическая декомпозиция системы

Достижимое множество:

$$R(i)=(i)\vee G(i)\vee...\vee G^{\lambda}(i)\vee...$$
, где λ – длинна пути графа; (1)

Контрдостижимое множество:

$$R(i) = (i) \lor G(i)^{-1} \lor \dots \lor G^{\lambda}(i) \lor \dots;$$
(2)

Сильно связный подграф:

$$V_n = R(i) \cap Q(i); \tag{3}$$

$$R(1)=(1)\vee R(1)^{1}\vee R(1)^{2}\vee R(1)^{3}\vee R(1)^{4}=$$

$$=(1)\vee (4,5)^{1}\vee (3,7,6)^{2}\vee (7,9)^{3}\vee (8,10)^{4}=$$

$$=(1,4,5,3,7,6,8,9,10);$$

$$Q(1)=(1)\vee Q(1)^{-1}\vee Q(1)^{-2}=$$

$$=(1)\vee (2,3)^{-1}\vee (2,4)^{-2}=$$

$$=(1,2,3,4);$$

$$V_{1}=R(1)\cap Q(1)=(1,3,4);$$

$$R(5)=(5)\vee R(5)^{1}\vee R(5)^{2}\vee R(5)^{3}\vee R(5)^{4}=$$

$$=(5)\vee (6)^{1}\vee (7)^{2}\vee (9)^{3}\vee (8,10)^{4}=$$

$$=(5,6,7,8,9,10);$$

$$Q(5)=(5);$$

$$V_{2}=R(5)\cap Q(5)=(5);$$

$$R(6)=(6)\vee R(6)^{1}\vee R(6)^{2}\vee R(6)^{3}=$$

$$=(6)\vee (7)^{1}\vee (9)^{2}\vee (8,10)^{3}=$$

$$=(6,7,8,9,10);$$

$$Q(6)=(6)\vee Q(6)^{-1}\vee Q(6)^{-2}\vee Q(6)^{-3}=$$

$$=(6)\vee (8)^{-1}\vee (9)^{-2}\vee Q(7)^{-3}=$$

$$=(6,7,8,9);$$

$$V_{3}=R(6)\cap Q(6)=(6,7,8,9);$$

$$R(10)=(10);$$

$$Q(10)=(10);$$

$$Q(10)=(10);$$

$$V_{4}=R(10)\cap Q(10)=(10);$$

И того имеем:

1.
$$G_1(V_1)=G_1(2);$$

2.
$$G_2(V_2)=G_2(1,3,4);$$

3.
$$G_3(V_3) = G_3(5)$$
;

4.
$$G_4(V_4) = G_4(6,7,8,9);$$

5.
$$G_5(V_5) = G_5(10)$$
.

Вид подграфов:

Вид сильно связных подграфов:

Результат декомпозиции исходного графа:

Задача 2

- 1. Выполнить топологическую декомпозицию одной системы из предложенных ниже вариантов, используя разработанную программу
- 2. Привести результаты работы программы

	Выполнение: Матрица смежности																										
i∖j		1	2		3		4	5	6 7		7		}	9		10	1	1	12)	13		14		15		
1		0 0 0 0		0		0		0)	0	0		C	0		0		(0							
2		1			1		0	1		0		0)	0		0)	0		0		0			
3	(0	1		0		1	0		0		0)	0		0	C)	0		0)	0		
4		0	0		0		0	0		0		0	C	0 0			0	C	0			0		0 (
5	0		1		0		0 0			0		0		0 0		0		C)	0		0		0			
6	0		0	0			0		0 0		0		C)	0	0		C)	0		0		0			
7	0		0	0 1			1	0	0			0	C	0			0	C)	0		0	()	0		
8		0 0			0		1	0	0			1	C)	0		0	C)	1		0	()	0		
9		0 0			0		0	0		1		0	C)	0		0	C)	0		1	()	0		
10	(0 0		0		0	0		1		1	C)	1		0	1	L	0		0	0		0	0		
11	(0 0			0	0 0		0	0 0		1		C	0		0		C	0			0		1 0			
12	(0 0			0		0	0	0			0	C	0			0	1		0		0		0 (
13	(0	0		0		0	0		0		0	C	0			0		0 0		0		(0		0	
14	(0 0			0		0		0			0		0		1 1					1 0		0		1		
15	.5 0		0						0			0			0		0	C	0		0		(0		0	
i/j				2 3			4		5 6		7		8	8		9			11		12		-	14		15	
Mat i\j	риL 1	<u>а</u> ин	нци, 3	дені 4	<u>ции</u> 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	1 •	-1	0	1.	-1.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	0	-1	1	1	0	0	-1,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	-1	0	0	0	-1,	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	-1	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	1	1	0	1	-1	0	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
9	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-1	0	0	-1	1	-1	0	0	0	0	
10	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	-1	0	0	0	
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	-1	-1	0	0	0	0	1	0	0	
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	1	0	0	0	0	0	-1	0	
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	-1	1	1	
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	
i/j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

Выбран вариант 15, результаты работы по $\underline{\text{ссылкe}}$