

Урок № 4

Базовые принципы взаимодействия узлов. Классы сетей

Memory line

HTTP, HTTPS, DNS?

Основные протоколы

IP – адрес – единое двоичное число

192.168.14.113

11000000 10101000 00001110 01110001

OSI - 5

OSI - 5

- PPTP / L2TP
- Socks
- Socket`s (Сокеты)

Со́кет (англ. socket — разъём) — программный разъём для обеспечения обмена данными между процессами.

Процессы при таком обмене могут исполняться как на одном устройстве, так и на различных, связанных между собой сетью.

Со́кет (англ. socket — разъём) — программный разъём для обеспечения обмена данными между процессами.

Процессы при таком обмене могут исполняться как на одном устройстве, так и на различных, связанных между собой сетью.

Сокет — абстрактный объект, представляющий конечную точку соединения.

196.168.118.30:8080

IP: Port

Номер порта — целое число в диапазоне от 0 до 65535

Номер порта — целое число в диапазоне от 0 до 65535

Все порты разделены на три диапазона:

- общеизвестные (или системные, 0—1023)
- зарегистрированные (или пользовательские, 1024—49151)
- динамические (или частные, 49152—65535)

В процессе обмена используется два сокета — сокет отправителя и сокет получателя.

Отправитель:

192.168.0.30:1223

Получатель:

62.128.97.7:20

OSI - 4

OSI - 4

- TCP UDP

TCP vs UDP

Transmission Control Protocol

- используется для управления передачей данных, использует модель «тройного» рукопожатия
- запрашивает повторно в случае потери данных и устраняет дубликаты
- гарантирует целостность передаваемых данных и уведомление отправителя о результатах передачи

User Datagram Protocol

- использует простую модель передачи, без неявных «рукопожатий»
- предоставляет ненадёжный сервис, датаграммы могут прийти не по порядку, дублироваться или вовсе потеряться.
- подразумевает, что проверка ошибок и исправление не нужны или исполняются в приложении.

Методы передачи данных

OSI - 3

OSI - 3

- IPv4
- IPv6

```
http://127.0.0.1
http://127.0.0.1
http://127.0.0.1
http://127.0.0.1
```

Internet Protocol (IP, досл. «межсетевой протокол») — маршрутизируемый протокол.

Адрес имеет структуру из двух частей:

- Net ID номер сети
- Host ID номер компьютера в сети

Net ID: Host ID

IPv6 – структура

2001:0DB8:3C4D:7777:0260:3EFF:FE15:9501

IPv6 – структура

Net.id Host.id

2001:0DB8:3C4D:7777:0260:3EFF:FE15:9501

IPv6 – структура

Net.id Host.id

2001:0DB8:3C4D:7777:0260:3EFF:FE15:9501

2001:0DB8:3C4D:7777::

IPv6 — структура

Net.id Host.id

2001:0DB8:3C4D:7777:0260:3EFF:FE15:9501

IPv6 — структура

Net.id Host.id

2001:0DB8:3C4D:7777:0260:3EFF:FE15:9501

IPv6 — структура

Net.id Host.id

2001:0DB8:3C4D:7777:0260:3EFF:FE15:9501

Практика

IPv4 – структура

192.168.14.113

IPv4 – структура

Net.id Host.id

192.168 . 14.113

IPv4 – структура

IPv4 — структура

Α

1.0.0.1

• • •

127.255.255.255

B

128.0.0.1

• • •

191.255.255.255

192.0.0.1

• • •

223.255.255.255

Классы сетей

Класс	Двоичный префикс	Разряды, указывающие на сеть	Начало диапазона	Конец диапазона	Количество сетей	Количество хостов
Α	0	8 - 1 = 7	1.0.0.0	127.255.255.255	127	16 777 214
В	10	16 - 2 = 14	128.0.0.0	191.255.255.255	16 382	65 534
С	110	24 - 3 = 21	192.0.0.0	223.255.255.255	2 097 150	254
D	1110	.0	224.0.0.0	239.255.255.255	зарезервированы	
E	1111		240.0.0.0	247.255.255.255	зарезервированы	

170.111.12.9

170.111.12.9 (B)

170.111.12.9

(B)

10101010 01101111 00001100 00001001

170.111.12.9

(B)

10101010 01101111 00001100 00001001

10101010 01101111 00001100 00001001

> Homep = $00001100\ 00001001\ _2$ Homep = 3081

Практика

