3000788 Intro to Comp Molec Biol

Lecture 20: RNA and protein structural models

Fall 2025

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Today's agenda

- Importance of RNA and protein structures
- Assay for studying RNA and protein structures
- Computational modeling of RNA and protein structure

RNA and protein structures

- Primary structure = sequence
- Secondary structure*
- Tertiary structure = 3D structure
- Quaternary structure = multi-molecule complex

Secondary structures

Sato, K. et al. Nature Communications 12:941 (2021)

https://old-ib.bioninja.com.au/standard-level/topic-2-molecular-biology/24-proteins/protein-structure.html

Defined by hydrogen bonds between complementary nucleotides or the
 C=O and NH part of nearby peptide bonds

Hydrogen bonds

https://courses.lumenlearning.com/hccswaymakerbiology1/chapter/reading-major-enzymes/

https://lmu.pressbooks.pub/conceptsinbiology/chapter/protein-structure/

Torsion angle in peptide bond

http://www.bioinf.org.uk/teaching/bioc0008/page03.html

 Signature of protein secondary structures, use for QC

Tertiary and quarternary structures

Das, R. Nature Methods 18:439 (2021)

Tetrahymena ribozyme

Discovered: 1980 Structure solved: 2020

Callaway, E. Nature 621:455 (2023)

Regulatory roles of RNA secondary structure

Bose, R. et al. Cell Chemical Biology 31:17-35 (2024)

Secondary structure protects against hybridization and binding by other RNA and proteins

Translation ON Replication OFF

Translation OFF Replication ON

Functional roles of RNA tertiary structure

Guide proteins to target RNA/DNA

- Self-regulation

 controls transcription of genes on same chromosome

 IncRNA

 Chromosome A

 RNA polymerase
 - Tertiary structure: binding
- **Primary structure**: base-pairing
- Self-regulatory: structures in UTR

(B)

UTR optimization for mRNA vaccine development

- Global: structural stability
- **5'UTR**: ribosome loading efficiency
- Learn from highly expressed genes and viral UTRs

Jin, L. et al. Journal of Biological Chemistry 301:108015 (2025)

What can we do with knowledge of structure?

- Visualize
- Predict binding/interaction with other molecules
- Hypothesize effect of mutations on the structure and interaction

Correlating structural and functional changes

Zhou, G. NAR Genomics and Bioinformatics 2:Iqaa015 (2020)

 Structural change → change in binding orientation / dynamics → change in response and downstream functional activity

Assays for RNA and protein structure

X-ray crystallography

- Account for >80% of known protein structures
- Solve for possible electron density from diffraction pattern of x-ray
- Fit most likely amino acids on to electron density
- Median resolution of around 2.0 Å
- Not all proteins can crystalize (not native state)

Other biophysical techniques

- Nuclear magnetic resonance (NMR) spectroscopy
 - Proteins in solution / mixture of possible structures
 - Work for small molecules
 - ~6% of known protein structures
- Cryo-EM (electron microscopy)
 - Protein frozen at 4-77 Kelvin
 - Median resolution of 3.5 Å
 - ~10% of known protein structures
- Small-angle X-ray scattering (SAXS)

Density map for 3.4 Å cryo-EM of a cytochrome

Distance and structural restraints

 Partial structural information help choosing the correct protein structures among possibilities

- Chemical cross-linking
- Hydrogen-deuterium exchange

Computational analysis

- Sequence alignment and evolution
- Mutational scanning experiment

https://salilab.org/modeller/manual/node11.html

Co-evolution

- Structurally linked residues tend to evolve together to maintain the interactions
- Discover by calculating mutual information
 - Deviation of statistical independence
 - Compare P(x, y) to P(x)P(y)

Co-evolution across proteins

- Between direct interaction partners
 - Compensatory mutation to maintain binding
- Between proteins sharing a common target
 - Maintain structural compatibility with the common target

Modeling of protein structure

Anfinsen's Dogma

- Christian B. Anfinsen's experiment on protein folding and re-folding
- Protein structure is deterministic – subject to environmental condition
- Caveat: Cellular conditions can change

Protein folding inside the cell

- Fold in parallel with translation
- Transported to organelle
- Aided by chaperone

https://bio.libretexts.org/Bookshelves/Cell_and_Molecular_Biology/Book

Primary forces driving protein folding

- Global: Hydrophobic force guides early stage of folding
- Local: Hydrogen, ionic, disulfide, and Van der Waals are responsible for maintaining local structures
- Affected by pH and presence of other solvents inside the cell

https://en.wikipedia.org/wiki/Protein_folding

Homology modeling

- Identify proteins with similar amino acid sequences and known structure
- Optimize template structure to fit the new amino acids
- Can utilize multiple templates to generate possibilities

Protein threading (sequence-to-structure)

 Allow different parts of the protein to align with different protein families

 New protein may contain common domains

Leman, J.K. and Bonneau, R. doi.org/10.1101/2020.10.22.351536 (2020)

- Stitch matches into a new contiguous template structure
- Optimize the structure

A pipeline for de novo protein structure prediction

- Start with protein threading
- Generate many structures with low energy
- Cluster and remove outliers
- Repeat the process

Function prediction

TM-align search

PDB library

Structural analogy

EC classification GO vocabulary Binding site

https://zhanggroup.org/I-TASSER/

Distance restraints with de novo prediction

Use distance restrains to rule-out and refine candidate models

Discrepancy between crystal structure and native form

Sriswasdi, S. et al. PNAS 111:1801-1806 (2014)

- Distance restraints determined from chemical cross-linking
 - Expected to occur <12 Å
- Crystal structures show >24 Å
- Update the structure with homology modeling to demonstrate flexibility of native protein conformations

Emergence of AI for protein folding

Critical Assessment of Protein Structure Prediction

- International community promoting research in protein folding prediction
 - Held every 2 years
 - Many tasks: long-range contact, homology, de novo, oligomer
 - Withhold experiment data for evaluating algorithm

AlphaFold's breakthrough in protein folding prediction

- AF1 predicts co-evolutionary signal as distance restraints within the structure and use it to predict 3D structure
- AF2 was able to directly predict 3D structure with as low uncertainty as crystal structure (~2 Å)

Design of AlphaFold version 1

- Perform multiple sequence alignment
- Predict co-evolution → distance restraints
- Predict torsion angle → additional constraints
- Optimize 3D structure using physics-based equations

Lesson learned from AlphaFold version 1

Potential	Bins	TM-score	GDT_TS	lDDT	RMSD (Å)	$-\log_{10}P$
Full + relax	51/64	0.649	65.8	54.2	5.94	7.3
Full	51/64	0.642	65.0	53.9	5.91	-
W/o reference	51/64	0.632	64.3	50.0	6.64	4.0
W/o score2_smooth	51/64	0.641	64.8	53.7	5.93	1.2
W/o torsions	51/64	0.637	64.3	53.6	6.04	8.2
W/o distogram	51/64	0.266	29.1	19.1	14.88 ◀	130

Senior, A.W. et al. Nature 2020

- The ability to learn co-evolution from multiple sequence alignment is the single most important factor for predicting accurate 3D structure

Design of AlphaFold version 2

- Iterative structure prediction and refinement
- Maintaining consistency across MSA, distance restraint, and structure

Lesson learned from AlphaFold version 2

Important factors

- Iterative structural prediction
- Geometric constraint on structure
- Large protein sequence database

Unimportant factors

- Template structures
- Explicit prediction of distance restraints
- Full MSA data (AA frequency is sufficient)

Multimer prediction with AlphaFold version 3

Current limitations of protein folding prediction

- Trained on only crystal structures
 - Not completely representative of native conformations
- One structure per protein / complex
 - Protein structures are dynamics, can change conformation
- No context information
 - Cellular conditions

Computational modeling of RNA structure

RNA secondary structure prediction

Yang, S. et al. https://arxiv.org/pdf/2501.04056 (2025)

- Co-evolutionary pattern of complementary bases
- Free energy estimate based on neighboring bases ← dynamic programming

RNA secondary structure prediction

- Predict base-pairing probabilities for RNA
- Describe RNA secondary structure as a network
 - Edges connecting adjacent nucleotides and base-paired nucleotides

RNA 3d structure prediction

- **Pre 2015**: template-based, rely on secondary structure
- Post 2025: mimic AI for protein folding prediction

Challenges in prediction of RNA 3D structure

- Few known structures (6,000 compared to >200,000 for proteins)
- Identifying similar RNA via sequence alignment is difficult
- Highly flexibility
- Free energy composition is less well-understood

Molecular dynamics simulation

Extend knowledge from static structures

https://cresset-group.com/science/science-resources/membrane-protein-molecular-dynamics/

- Structural flexibility / uncertainty
- Ligand binding stability
- Conformational changes
- Protein folding / unfolding process
- Solvent-accessible surface

Atomistic simulation

- Picosecond-nanosecond scale movement of atoms based on physical forces
- Time-series data

Improper dihedral potential

 U_{Pdihe}

Attractive Van-der-Waals

er-Waals $\propto r^{-6}$

Summary

- Structure determines function of biomolecules
 - Chromatin, RNA, and proteins
- Molecular assays for solving 3D structure
- Emergence of AI for protein folding prediction
- Structure is dynamics and depends on context (cellular states)

Any question?

- See you next time