MARKING SCHEME SQP MATHEMATICS (STANDARD)

2020-21

CLASS X

S.NO.	ANSWER	MARKS
	Part-A	
1.	(LCM)(3) =180 LCM=60	1/2 1/2
	OR	
	Four decimal places	1
2.	α+β=k/3 3=k/3	1/2
	K=9	1/2
3.	$ \frac{3}{6} = \frac{1}{k} \neq \frac{3}{8} \\ \frac{3}{6} = \frac{1}{k} $	1/2
	6 k K=2	1/2
4.	Let the cost of 1 chair=Rs.x And the cost of 1 table=Rs. y	1/2
	3x+y=1500 6x+y=2400	1/2
5.	a _n =a+(n-1)d 0=27+(n-1)(-3)	1/2
	30=3n	
	n =10 10 th	1/2
	OR	
	an=a+(n-1)d	
	4=a+6x(-4) a=-28	1/2 1/2
6.	$9x^2+6kx+4=0$	1/
	$(6k)^2$ -4X9X4=0 36k ² =144 K ² =4	1/2
	K==4 K=±2	1/2

		1
7.	$x^2+7x+10=0$	
	$x^2+5x+2x+10=0$	1/2
	(x+5)(x+2)=0	
	X=-5, x= - 2	1/2
	OR	
	3ax ² -6x+1=0	1/2
	$(-6)^2 - 4(3a)(1) < 0$	/2
	(-0) -4(3a) (1)<0	
	12a>36 =>a>3	1/2
	124 00 7470	/2
8.	PQ=PT	
	PL+LQ=PM+MT	
	PL+LN=PM+MN	
	Perimeter(∆PLM)	
	=PL+LM+PM	1/2
	=PL+LN+MN+PM	
	=2(PL+LN)	
	=2(PL+LQ)	
	=2X28=56cm	1/2
9.		
	P 30 0	
	In ADAO	17
	In ∆PAO Tan30°=AO/PA	1/2
	1/√3 =3/PA	1/2
	PA=3√3 cm	/2
	177 3 13 311	
	OR	
	*	
	In $\triangle OPQ$	
	<p+<q+<o=180°< td=""><td>4.</td></p+<q+<o=180°<>	4.
	2 <q+<p=180°< td=""><td>1/2</td></q+<p=180°<>	1/2
	2 <q+90°=180°< td=""><td></td></q+90°=180°<>	
	2 <q=90°< td=""><td>1/</td></q=90°<>	1/
	<q= 45°<="" td=""><td>1/2</td></q=>	1/2

10.	AD_AE	
	\overline{BD} \overline{CE}	
	3 2	1/2
	$\frac{3}{4.5} = \frac{2}{CE}$	1/2
	CE=3cm	/2
11.	8:5	1
12.	Sin30°+cosB=1	
	½+cosB=1	1/2
	CosB=1/2 B=60°	1/2
	B-00	/2
13.	x+y	1/
	$=2\sin^2\Theta + 2\cos^2\Theta + 1$ $=2(\sin^2\Theta + \cos^2\Theta) + 1$	1/2
	= 3	1/2
14.	length of arc=⊖/360°(2∏r)	1/2
	= 60/360(2X22/7X21) =22 cm	1/2
	-22 CIII	/2
15.	$\prod R^2H=12X4/3\prod r^3$	
	1X1x16=4/3Xr ³ X12	1/2
	r ³ =1	/2
	r=1	
	d=2cm	1/2
16.	probability of getting a doublet=1/6	1
	OB	
	OR	
	probability of getting a black queen=2/52=1/26	
17.	(a) iii)(15/2,33/2)	1x4=4
	(b) i) 4	
	(c) iii)16	
	(d) iv)(2.0,8.5)	
18.	(e) ii) x-13=0	1x4=4
10.	(a) iii)15 cm (b) iv)They are not the mirror image of one another	184=4
	(c) ii)Their altitudes have a ratio a:b	
	(d) iv) 5m	
	(e) iii)6m	
19.	(a) ii) (4,-2)	1x4=4
	(b) i) Intersects x-axis	
	(c) iii) parabola	

	(d) ii) $x^2 - 36$	
	(e) iii) 0	
20.	(a) iii)43	1x4=4
	(b) iii)60	
	(c) ii)Median	
	(d) iii)80	
	(e) iii)31	

Part-B	
4=2X2 7=7X1 14=2X7 LCM=2X2X7=28 The three bells will ring together again at 6:28 am	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂
Let P(x,0) be a point on X-axis PA=PB PA ² =PB ² (x-2) ² +(0+2) ² =(x+4) ² +(0-2) ² X ² +4-4x+4=x ² +16+8x+4 -4x+4=8x+16 X=-1 P(-1.0)	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂
PR:QR=2:1 $R(\frac{1(-2)+2(3)}{2+1}, \frac{1(5)+2(2)}{2+1})$ $R(4/3, 3)$	1/ ₂ 1 1/ ₂
Sum of zeroes= $5-3\sqrt{2}+5+3\sqrt{2}=10$ Product of zeroes= $(5-3\sqrt{2})(5+3\sqrt{2})=7$ P(x)= $X^2-10x+7$	1/ ₂ 1 1/ ₂
Q S O B	Line seg=1/2 Circles=1 /2 Tangents =1/2+ ½
	$\begin{array}{c} 4 = 2X2 \\ 7 = 7X1 \\ 14 = 2X7 \\ LCM = 2X2X7 = 28 \\ The three bells will ring together again at 6:28 am \\ \\ Let P(x,0) be a point on X-axis \\ PA = PB \\ PA^2 = PB^2 \\ (x-2)^2 + (0+2)^2 = (x+4)^2 + (0-2)^2 \\ X^2 + 4 - 4x + 4 = x^2 + 16 + 8x + 4 \\ -4x + 4 = 8x + 16 \\ X = -1 \\ P(-1,0) \\ \hline \\ OR \\ \\ PR: QR = 2:1 \\ R(\frac{1(-2) + 2(3)}{2+1}, \frac{1(5) + 2(2)}{2+1}) \\ R(4/3,3) \\ \\ Sum of zeroes = 5 - 3\sqrt{2} + 5 + 3\sqrt{2} = 10 \\ Product of zeroes = (5 - 3\sqrt{2})(5 + 3\sqrt{2}) = 7 \\ P(x) = X^2 - 10x + 7 \\ \end{array}$

25.	tanA=3/4=3k/4k	1/2
25.	sinA=3k/5k=3/5,cosA=4k/5k=4/5	1/2
	1/sinA+1/cosA	/2
	=5/3+5/4	1/2
		1/2
	=(20+15)/12 =25/42	/2
	=35/12	
	OR	
	√3 sin⊖=cos⊖	1/2
	$\sin\Theta/\cos\Theta=1/\sqrt{3}$	1/2
	$\tan \Theta = 1/\sqrt{3}$	1/2
	Θ=30°	1/2
	0-30	/2
26.	<a 90°<="" <opa="<OSA" =="" th=""><th>1/2</th>	1/2
	Hence, <sop=90°< th=""><th></th></sop=90°<>	
	Also, AP=AS	
	Hence, OSAP is a square	
	AP=AS=10cm	1/2
	CR=CQ=27cm	
	BQ=BC-CQ=38-27=11cm	1/2
	BP=BQ=11 cm	
	X=AB=AP+BP=10+11=21 cm	1/2
		,-
07		1/
27.	Let $2-\sqrt{3}$ be a rational number	1/2
	We can find co-prime a and b (b \neq 0) such that $2-\sqrt{3}=a/b$	1/2
	$2-\sqrt{3}-a/b$ $2-a/b=\sqrt{3}$	1/2
		/2
	So we get,(2a-b)/b=√3	
	Since a and b are integers, we get (2a-b)/b is irrational and so	1/
	$\sqrt{3}$ is rational. But $\sqrt{3}$ is an irrational number	1/2
	Which contradicts our statement Therefore 2-√3 is irrational	1/2
	Therefore 2-73 is irrational	1/2
28.	$3x^2+px+4=0$	1/2
	3(2/3)2+p(2/3)+4=0	
	4/3+2p/3+4=0	1/2
	P=-8	1/2
	$3x^2-8x+4=0$	
	$3x^2-6x-2x+4=0$	1/2
	X=2/3 or x=2	1/2
	Hence, x=2	1/2
	, , , , , , , , , , , , , , , , , , ,	
L	1	

	OB	
	OR	1/2
	$\alpha+\beta=5$ (1)	1/2
	α - β =1(2)	/2
	Solving (1) and (2), we get	47
	α =3 and β =2	1/2
	also αβ=6	1/2
	or 3(k-1)=6	1/2
	k-1=2	
	k=3	1/2
29.		
	Area of 1 segment = area of sector –area of triangle	1/2
	$=(90^{\circ}/360^{\circ})\pi r^{2} - \frac{1}{2} \times 7 \times 7$, -
	$=1/4 \times 22/7 \times 7^2 - \frac{1}{2} \times 7 \times 7$	1/2
	$= 14 \text{cm}^2$	1/2
		1/2
	Area of 8 segments=8x14= 112 cm ²	
	Area of the shaded region = 14x14-112	1/2
	=196-112=84cm ²	1/2
	(each petal is divided into 2 segments)	
	LADO ADEE	
30.	∆ABC~∆DEF	
	$\frac{Perimeter(\Delta ABC)}{Perimeter(\Delta ABC)} = \frac{AB+BC+CA}{PR+BR+BR} = \frac{AB}{PR}$	1
	Perimeter (ΔDEF) DE+EF+FD DE 25 9	1/2
	$\frac{25}{15} = \frac{9}{X}$	1/2
	X=5.4cm	1
	DE=5.4cm	
	OR	
	A	
		1/2
	/ /: \	
	/ / i \	
	<u> </u>	
	B D M C	
	Construction-Draw AM <u>I</u> BC	1/2
	BD ⊥ 1/3 BC , BM=1/2 BC	/2
	In ΔABM,	
	$AB^2=AM^2+BM^2$	
		1/2
	$=AM^2+(BD+BM)^2$ $=AM^2+DM^2+DD^2+2DD-DM$	
	$=AM^2+DM^2+BD^2+2BD$. DM	1/2
	$=AD^2+BD^2+2BD(BM-BD)$	
	$=AD^2+(BC/3)^2+2$. BC/3.(BC/2-BC/3)	
	$=AD^2+2BC^2/9$	1/2
	$=AD^2+2AB^2/9$	'-
	Hence,7AB ² =9AD ²	1/2
		/2

	П		<u> </u>	112
31.	Class	Frequency	Cumulative	1
			frequency	
	0-5	12	12	<u> </u>
	5-10	a	12+a	
	10-15	12	24+a	
	15-20	15	39+a	
	20-25	b	39+a+b	
	25-30	6	45+a+b	
	30-35	6	51+a+b	
	35-40	4	55+a+b	
	Total	70		
			·	
				1/
	55+a+b=70			1/2
	a+b=15			
	median= $1+\frac{\frac{N}{2}-cf}{f} \times h$			1,
	median=i+ $\frac{2}{f}$ X h			1/2
	$16 = 15 + \frac{35 - 2}{11}$	$\frac{4-a}{}$ X 5		
		5		
	1=(11-a)/3 A=8			
	A-0			1/
	55+a+b=70			1/ ₂ 1/ ₂
	55+8+b=70			/2
	B=7			
	D-1			
32.				
32.		A		1/2
				/2
		/		
		/ h m		
		/ "i"		
	/130	50° ↓		
	D C	В		1/2
	Let AB=candle			/2
	C and D are coins			
	Tan60°=AB/BC=h/b			
	$\sqrt{3}$ =h/b			
	H=b√3	-(1)		1/2
	Tan30°=AB/BD=h/a	(')		/2
	1/√3=h/a			
	H=a/√3('2 \		1/2
	Multiplying (1) and (2			/2
	$H^2 = b\sqrt{3}X \text{ a}/\sqrt{3}$	-,, we get		1/2
	$H^2 = b \sqrt{3} / (a) \sqrt{3}$			/2
	H=√ab m			1/2
	TI- VAD III			/2

33.	Mode= $I + \frac{f1-f0}{2f1-f2-f0}$ xh $67 = 60 + \frac{15-x}{30-12-x}$ x 10 $7 = \frac{15-x}{18-x}$ x 10 7x(18-x)=10(15-x) 126-7x=150-10x 3x=150-126 3x=24 X=8	1/2 1/2 1/2 1/2 1/2 1/2 1/2
34.	Let BD=river AB=CD=palm trees=h BO=x OD=80-x In \triangle ABO, Tan60°=h/x $\sqrt{3}$ =h/x(1) H= $\sqrt{3}$ X In \triangle CDO, Tan 30°=h/(80-x) 1/ $\sqrt{3}$ = h/(80-x)(2) Solving (1) and (2), we get X=20 H= $\sqrt{3}$ x=34.6 the height of the trees=h=34.6m BO=x=20m DO=80-x=80-20=60m	1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/

	OR	
	Let AB=Building of height 50m	1
	RT= tower of height= h m BT=AS=x m AB=ST=50 m RS=TR-TS=(h-50)m In \(\triangle ARS, \) tan30°=RS/AS	1/2
	$1/\sqrt{3} = (h-50)/x$ (1) In $\triangle RBT$, $\tan 60^\circ = RT/BT$ $\sqrt{3} = h/x$ (2)	1/ ₂ 1/ ₂ 1/ ₂
	Solving (1) and (2), we get h= 75 from (2) $x=h/\sqrt{3}$ =75/ $\sqrt{3}$ =25 $\sqrt{3}$	1/ ₂ 1/ ₂
	Hence, height of the tower=h=75m Distance between the building and the tower=25√3=43.25m	1/2
35.	For pipe, r = 1cm Length of water flowing in 1 sec, h=0.7m=7cm Cylindrical Tank,R=40 cm, rise in water level=H Volume of water flowing in 1 sec= ∏r²h=∏x1x1x70 =70∏ Volume of water flowing in 60 sec=70∏x60	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂
	Volume of water flowing in 30 minutes=70∏x60x30 Volume of water in Tank=∏r²H=∏x40x40xH	1/2
	Volume of water in Tank= Volume of water flowing in 30 minutes ∏x40x40xH = 70∏x60x30 H=78.75cm	1/2 1/2

36.	Let speed of the boat in still water =x km/hr, and Speed of the current =y km/hr	1/2
	Downstream speed =(x+y) km/hr	1/2
	Upstream speed =(x-y) km/hr	1/2
	24 16	1/2
	$\frac{24}{x+y} + \frac{16}{x-y} = 6(1)$	/2
	x+y $x-y$	
	36 . 12	
	$\frac{36}{x+y} + \frac{12}{x-y} = 6 (2)$	1/2
	Let 1 - Hend 1 - W	
	Let $\frac{1}{x+y}$ = u and $\frac{1}{x-y}$ = v	
	Put in the above equation we get,	
	24u+16v=6	1/2
	Or, 12u+8v=3 (3)	
	36u+12v=6	
	Or, 6u+2v=1 (4)	
	Multiplying (4) by 4, we get,	
	24u+8v=4v (5)	
	Subtracting (3) by (5), we get,	1/2
	12u=1	
	⇒u=1/12	1/
	Putting the value of u in (4), we get, v=1/4	1/2
	$\Rightarrow \frac{1}{x+y} = \frac{1}{12}$ and $\frac{1}{x-y} = \frac{1}{4}$	
	$\Rightarrow x+y=12$ and $x-y=4$	
	Thus, speed of the boat in still water = 8 km/hr,	1/2
	Speed of the current = 4 km/hr	1/2
	· ·	/2