Отчёт по лаборато	орной работе №1
по дисциплине «Вычисл	
Студент гр. 3530202/90002	Потапова А.М.
Преподаватель	Леонтьева Т.В.

Вариант №13

Постановка задачи:

Для таблично заданной функции f(x)

X	-1.0	-0.9	-0.8	-0.7	-0.6	-0.5
f(x)	0.5440	-0.4121	-0.9894	-0.6570	0.2794	0.9589

построить сплайн-функцию и использовать ее для нахождения корня уравнения $f(x) = 1.8x^2$ на промежутке [-1, -0.5] методом бисекции.

Ход работы

- 1. В первую очередь была получена SPLINE-функция;
- 2. Затем для теста была вызвана функция SEVAL в точках исходной таблицы, результаты которой полностью совпали с табличными.
- 3. После этого стало возможным реализовать метод бисекции, цель которого найти нуль функции $f(x) = 1.8x^2 SEVAL(x)$. Алгоритм данного метода основывается на следствии из теоремы Больцано-Коши, гласящем, что у непрерывной функции, принимающей на концах некоторого отрезка разные знаки, найдется такая точка внутри этого отрезка, что в ней функция будет обращаться в нуль. Разделив отрезок пополам, продолжим работу с той его частью, где функция по-прежнему принимает значения разных знаков. Данную процедуру следует повторять до нахождения точки, являющейся искомым нулем нашей функции.

Текст программы:

```
#include <iostream>
#include "spline.c"
#include "cmathmsg.c"

#define N 6 // количество известных значений полинома
#define EPS 0.00001

double x[N] = { -1.0, -0.9, -0.8, -0.7, -0.6, -0.5 };
double y[N] = { 0.5440, -0.4121, -0.9894, -0.6570, 0.2794, 0.9589 };

double b[N], c[N], d[N];
double xx, S;
int last, flag;

double bisection(double xx)
{
    return 1.8 * xx * xx - seval(N, xx, x, y, b, c, d, &last);
}
```

```
int sign(double xx)
    if (bisection(xx) < 0.0)</pre>
        return -1;
    else if (bisection(xx) > 0.0)
       return 1;
    else
        return 0;
}
int main()
{
    double x1 = -1;
    double x2 = -0.5;
    double xi;
    double dx;
    spline(N, (int)x1, (int)x2, -0.5440, 0.9589, x, y, b, c, d, &flag);
    if (flag == 0)
        printf("\n X: | SPLINE: | Y[X]:\n");
printf("-----\n")
        int i = 5;
        xx = x[i];
        last = 0;
        while (i >= 0)
            S = seval(N, xx, x, y, b, c, d, &last);
printf("%10.4f |%10.4f | %10.4f\n", xx, S, y[i]);
            i--;
            xx = x[i];
        }
    }
    xi = (x1 + x2) / 2;
    dx = x2 - x1;
    printf("\n\n X: | Bisection:\n");
    printf("----\n");
    while (bisection(xi) > EPS || bisection(xi) * (-1) > EPS)
        dx = dx / 2;
        xi = x1 + dx;
        printf("%10.5f | %10.5f\n", xi, bisection(xi));
        if (sign(x1) != sign(xi))
            x2 = xi;
        else
            x1 = xi;
    }
    printf("\nBisection method root of f(x) = 1.8 * x^2:");
    printf("%10.5f\n\n", xi);
    return 0;
}
```

Результаты:

X:	SPLINE:	Y[X]:				
-0.5000 l	0.9589	0.9589				
-0.6000	0.2794	0.2794				
-0.7000	-0.6570	-0.6570				
-0.8000	-0.9894	-0.9894				
-0.9000	-0.4121	-0.4121				
-1.0000	0.5440	0.5440				
·						
X:	Bisection:	:				
-0.75000	1.94843					
-0.62500	0.67003					
-0.56250	-0.04325					
-0.59375	0.29569					
-0.57812	0.12011					
-0.57031	0.03670					
-0.56641	-0.00373					
-0.56836	0.01637					
-0.56738	0.00629					
-0.56689	0.00127					
-0.56665	-0.00123					
-0.56677	0.00002					
-0.56671	-0.00060					
-0.56674	-0.00029					
-0.56676	-0.00013					
-0.56676	-0.00006					
-0.56677	-0.00002					
-0.56677	0.00000					
Bisection method root of $f(x) = 1.8 * x^2: -0.56677$						

Вывод

В результате работы программы мы получили значение x=-0.56677, что является вполне подходящим решением уравнения на заданном промежутке. Решение методом биссекции было получено на 18 шаге. В качестве погрешности было взято значение 10^{-5} .

