Det hiányos VA nyelve: $L(M) = \{w \in \Sigma^* \mid w\text{-t el tudja olvasni és a végén } F\text{-beliben van}\}.$

Nemdet VA nyelve: $L(M) = \{w \in \Sigma^* \mid \text{van } w\text{-hez olyan számítás, amin elolvas végig és elfogad}\}.$

Tetel: Ha L-re van hiányos DVA, akkor van rá teljes DVA is.

Tetel: Ha L-re van nemdet VA, akkor van teljes DVA is.

Reguláris nyelv: L reguláris, ha van rá véges automata.

Tetel: $a^n b^n$ alakú szavak nyelve nem reguláris, azaz nincs rá det, teljes VA.

CF nyelvtan által generált nyelv: $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow ... \Rightarrow w \text{ (azaz van levezetés } w\text{-ig)} \}.$

Amikor azt állítjuk, hogy egy CF nyelvtan egy adott nyelvet generál, akkor meg kell mutatni, hogy **azt és csak azt** a nyelvet generálja. pl:

 $\left\{ \begin{array}{l} L(G) \subseteq \{1. \text{ betű} = \text{utolsó}\} \text{ - (azaz csak ilyen szavakat tud generálni)} \\ L(G) \supseteq \{1. \text{ betű} = \text{utolsó}\} \text{ - (azaz minden ilyen szót generál)} \end{array} \right\}$

CF nyelvtan által generált nyelv: $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow ... \Rightarrow w \text{ (azaz van levezetés } w\text{-ig)} \}.$

Nemdet PDA nyelve: $L(M) = \{w \in \Sigma^* \mid \text{van olyan futás, amire } w\text{-t elolvassa és elfogadó állapotba ér}\}.$

Nemdet PDA nyelve: $L(M) = \{w \in \Sigma^* \mid \text{van olyan futás, amire } w\text{-t elolvassa és elfogadó állapotba ér}\}.$

Tetel: $\{a^nb^nc^n \mid n \ge 1\}$ alakú szavak nyelvére nincs PDA.

Tetel: L-re van G CF nyelvtan: $L(G) = L \iff L$ -re van M nemdet PDA: L(M) = L

CF nyelv: L nyelv CF nyelv ha van rá G CF nyelvtan: L(G) = L (= van rá M nemdet PDA: L(M) = L).

Determinisztikus CF nyelv: L nyelv det CF nyelv ha van rá det PDA.

Tetel: L-re van det PDA \Rightarrow L-re van egyértelmű CF nyelvtan.