ตัวอย[่]างการคำนวณ Word2Vec

มี 2 วิธีที่สามารถใช้เทรน Word2vec embeddings

- 1. continuous bag-of-words (CBOW)
- 2. skip-gram

1. Continuous bag-of-words (CBOW)

ให้ w_t เป็น target word หรือ center word ให้ $w_{t\text{-}2}$, $w_{t\text{-}1}$, $w_{t\text{+}1}$, $w_{t\text{+}2}$ เป็น context หรือ surrounding words

CBOW ใช้ context หรือ surrounding words เป็น input ตัวอย่างถ้าให้ C (context window) กำหนดให้ C=5 จะได้ input เป็นคำในตำแหน่งที่ w_{t-2} , w_{t-1} , w_{t+1} และ w_{t+2} จากนั้นทำนาย target word

ในการเทรน Word2vec model จะมีการ sliding window ไปตามข้อความ ตัวอย่างเช่น เรามีข้อความ "จอห์น บอก ว่า ข้าว ร้าน นี้ อร่อย มาก" กำหนดให้ C=5 ก็จะ slide จากซ้ายไปขวา ตามรูปด้านล่าง

สีแดง เป็น target word สีฟ้า เป็น context words

	\mathbf{w}_{t}	$w_{t+1} \\$	W_{t+2}					
#1	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#2	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#3	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#4	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#5	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#6	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#7	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#8	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
						W _{t-2}	W_{t-1}	W _t

เนื่องจากเราไม่สามารถแปลงข้อความเป็น matrix ได้โดยตรง เราจึงต้องแปลงข้อความด้วย one hot encoding ก่อน

ข้าว
จอห์น
นี้
บอก
มาก
ร้าน
ว่า
อร่อย

1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1

เมื่อเรา encoding ข้อความ เป็น one hot แล้ว ต่อมาสร้าง feature และ target matrices

#	
1	
2	
3	
4	
5	
6	
7	
8	

Feature						
บอก	ว่า					
จอห์น	ว่า	ข้าว				
จอห์น	บอก	ข้าว	ร้าน			
บอก	ว่า	ร้าน	นี้			
ว่า	ข้าว	นี้	อร่อย			
ข้าว	ร้าน	อร่อย	มาก			
ร้าน	นี้	มาก				
นี้	อร่อย					

Target
จอห์น
บอก
ว่า
ข้าว
ร้าน
นี้
อร่อย
มาก

#	
1	
2	
3	
4	
5	
6	
7	
8	

			Feat	ture				
ข้าว	จอห์น นี้ บอก มาก ร้าน ว่า อร่อย							
0	0	0	1	0	0	1	0	
1	1	0	0	0	0	1	0	
1	1	0	1	0	1	0	0	
0	0	1	1	0	1	1	0	
1	0	1	0	0	0	1	1	
1	0	0	0	1	1	0	1	
0	0	1	0	1	1	0	0	
0	0	1	0	0	0	0	1	

Target									
ข้าว	จอห์น	จอห์น นี้ บอก มาก ร้าน ว่า อร่อย							
0	1	0	0	0	0	0	0		
0	0	0	1	0	0	0	0		
0	0	0	0	0	0	1	0		
1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0		
0	0	1	0	0	0	0	0		
0	0	0	0	0	0	0	1		
0	0	0	0	1	0	0	0		

เมื่อได้ feature และ target matrices มาแล้ว ก็นำไปเทรนด้วย Neural network (1 hidden layers, 3 nodes) หลังจากเทรนไป 1000 iterations ได้ผลลัพธ์ดังนี้

	ข้าว	จอห์น	นี้	บอก	มาก	ร้าน	ว่า	อร่อย
จอห์น	0.0392	0.0961	0.2108	0.0479	0.0429	0.1844	0.2653	0.1133
บอก	0.3193	0.2013	0.0806	0.0063	0.1769	0.0909	0.1035	0.0212
ว่า	0.1661	0.0184	0.1168	0.0032	0.1944	0.1512	0.0127	0.3371
ข้าว	0.0345	0.1903	0.0623	0.112	0.2348	0.0965	0.0482	0.2214
ร้าน	0.0277	0.2135	0.1863	0.007	0.2748	0.0044	0.0723	0.214
นี้	0.1085	0.074	0.1391	0.0612	0.0832	0.0963	0.4125	0.0252
อร่อย	0.1727	0.2398	0.3143	0.0664	0.0015	0.1396	0.0034	0.0623
มาก	0.0989	0.1725	0.0412	0.0753	0.1354	0.285	0.0084	0.1833

2. Skip-gram

ให้ w_t เป็น target word หรือ center word

ให้ $w_{t\text{-}2}$, $w_{t\text{-}1}$, $w_{t\text{+}1}$, $w_{t\text{+}2}$ เป็น context หรือ surrounding words

skip-gram จะตรงข้ามกับ CBOW ก็คือจะใช้ target word เป็น input และทำนาย context words

ในการเทรน Word2vec model จะมีการ sliding window ไปตามข้อความ ตัวอย่างเช่น เรามีข้อความ "จอห์น บอก ว่า ข้าว ร้าน นี้ อร่อย มาก" กำหนดให้ C=5 ก็จะ slide จากซ้ายไปขวา ตามรูปด้านล่าง

สีแดง เป็น target word สีฟ้า เป็น context words

	\mathbf{w}_{t}	$w_{t+1} \\$	W_{t+2}					
#1	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#2	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#3	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#4	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#5	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#6	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#7	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
#8	จอห์น	บอก	ว่า	ข้าว	ร้าน	นี้	อร่อย	มาก
						W _{t-2}	W_{t-1}	W _t

เนื่องจากเราไม่สามารถแปลงข้อความเป็น matrix ได้โดยตรง เราจึงต้องแปลงข้อความด้วย one hot encoding ก่อน

ข้าว
จอห์น
นี้
บอก
มาก
ร้าน
ว่า
อร่อย

1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1

เมื่อเรา encoding ข้อความ เป็น one hot แล้ว ต่อมาสร้าง feature และ target matrices

#	Feature
1	จอห์น
2	บอก
3	ว่า
4	ข้าว
5	ร้าน
6	นี้
7	อร่อย
8	มาก

Target							
บอก	ว่า						
จอห์น	ว่า	ข้าว					
จอห์น	บอก	ข้าว	ร้าน				
บอก	ว่า	ร้าน	นี้				
ว่า	ข้าว	นี้	อร่อย				
ข้าว	ร้าน	อร่อย	มาก				
ร้าน	นี้	มาก					
นี้	อร่อย						

#	
1	
2	
3	
4	
5	
6	
7	
8	

Feature									
ข้าว	จอห์น	นี้	บอก	มาก	ร้าน	ว่า	อร่อย		
0	1	0	0	0	0	0	0		
0	0	0	1	0	0	0	0		
0	0	0	0	0	0	1	0		
1	0	0	0	0	0	0	0		
0	0	0	0	0	1	0	0		
0	0	1	0	0	0	0	0		
0	0	0	0	0	0	0	1		
0	0	0	0	1	0	0	0		

Target									
ข้าว	จอห์น	นี้	บอก	มาก	ร้าน	ว่า	อร่อย		
0	0	0	1	0	0	1	0		
1	1	0	0	0	0	1	0		
1	1	0	1	0	1	0	0		
0	0	1	1	0	1	1	0		
1	0	1	0	0	0	1	1		
1	0	0	0	1	1	0	1		
0	0	1	0	1	1	0	0		
0	0	1	0	0	0	0	1		

เมื่อได้ feature และ target matrices มาแล้ว ก็นำไปเทรนด้วย Neural network (1 hidden layers, 3 nodes) หลังจากเทรนไป 1000 iterations ได้ผลลัพธ์ดังนี้

	ข้าว	จอห์น	นี้	บอก	มาก	ร้าน	ว่า	อร่อย
จอห์น	0.0587	0.0983	0.279	0.0701	0.3777	0.0385	0.0058	0.072
บอก	0.1617	0.147	0.1355	0.1749	0.0107	0.1864	0.0042	0.1796
ว่า	0.533	0.176	0.0334	0.0986	0.0313	0.0598	0.0076	0.0603
ข้าว	0.1073	0.2535	0.1043	0.1201	0.0673	0.1214	0.1312	0.0948
ร้าน	0.0055	0.0098	0.1339	0.5338	0.0743	0.0655	0.1053	0.0719
นี้	0.0859	0.0309	0.1603	0.0222	0.5098	0.089	0.0692	0.0327
อร่อย	0.0735	0.032	0.2	0.0703	0.1315	0.1055	0.2547	0.1325
มาก	0.0265	0.3224	0.1247	0.085	0.0597	0.0803	0.187	0.1143