# FE515 2022A Assignment 2

Yufu Liao 03/11/2023

## Question 1: (50 points)

#### 1.1

Find the attached JPM.csv file. Use as.Date() function to change the first column to Date object.

```
jpm <- read.csv("JPM.csv")
jpm$X <- as.Date(jpm$X, origin = "2023/01/01")
jpm[1:10,]</pre>
```

|    | X<br><date></date> | JPM.Open<br><dbl></dbl> | JPM.High<br><dbl></dbl> | JPM.Low<br><dbl></dbl> | JPM.Close<br><dbl></dbl> | JPM.Volume<br><int></int> | JPM.Adjusted<br><dbl></dbl> |
|----|--------------------|-------------------------|-------------------------|------------------------|--------------------------|---------------------------|-----------------------------|
| 1  | 2023-01-02         | 48.00                   | 48.37                   | 47.59                  | 48.07                    | 14244700                  | 32.52235                    |
| 2  | 2023-01-03         | 48.05                   | 48.55                   | 47.75                  | 48.19                    | 9471500                   | 32.60353                    |
| 3  | 2023-01-04         | 48.17                   | 48.25                   | 47.63                  | 47.79                    | 10760500                  | 32.33291                    |
| 4  | 2023-01-05         | 47.57                   | 48.06                   | 47.32                  | 47.95                    | 8239200                   | 32.44115                    |
| 5  | 2023-01-06         | 47.90                   | 48.11                   | 47.36                  | 47.75                    | 9276700                   | 32.30586                    |
| 6  | 2023-01-07         | 47.47                   | 48.12                   | 47.44                  | 48.10                    | 15597000                  | 32.54265                    |
| 7  | 2023-01-08         | 48.00                   | 48.42                   | 47.94                  | 48.31                    | 8049200                   | 32.68473                    |
| 8  | 2023-01-09         | 48.10                   | 48.26                   | 47.90                  | 47.99                    | 10646700                  | 32.46823                    |
| 9  | 2023-01-10         | 48.16                   | 48.46                   | 48.10                  | 48.39                    | 8696500                   | 32.73885                    |
| 10 | 2023-01-11         | 48.65                   | 48.89                   | 48.12                  | 48.43                    | 16291400                  | 32.76591                    |

#### 1.2

Plot the adjusted close price against the date object (i.e. date object as x-axis and close price as y-axis) in red line (require no points). Set the title as JPM, the label for x-axis as Date and the label for y-axis as Adjusted Close Price.

```
plot(jpm$X, jpm$JPM.Adjusted,
    main = "JPM",
    xlab = "Date",
    type = "l",
    ylab = "Adjusted Close Price",
    col = "red"
)
```





Create a scatter plot of close price against open price (i.e. open prices as x-axis, and close prices as y-axis). Set the x label as "Open Price" and y label as "Close Price".

```
plot(jpm$JPM.Open, jpm$JPM.Close,
    xlab = "Open Price",
    ylab = "Close Price"
)
```



Use cut() function to divide adjusted close price into 4 intervals. Generate a barplot for the frequencies of these intervals.

```
cut_close <- cut(jpm$JPM.Adjusted, 4)
barplot(table(cut_close), xlab = "Adjusted Close Price", ylab = "Frequency")</pre>
```



Generate a boxplot of volume against the 4 intervals of adjusted close prices.

```
boxplot(table(cut_close), ylab = "Frequency")
```



Use par() function to create a picture of 4 subplots. Gather the 4 figures from 1.2 - 1.5 into ONE single picture. Please arrange the 4 subplots into a 2 by 2 frame, i.e. a frame consists of 2 columns and 2 rows. (Hint. par(mfrow = c(1,3)) will create a picture of three subplots. In the picture, the subplots are arranged into a 1 by 3 frame.)

```
par(mfrow = c(2, 2))
plot(jpm$X, jpm$JPM.Adjusted,
    main = "JPM",
    xlab = "Date",
    type = "l",
    ylab = "Adjusted Close Price",
    col = "red"
)
plot(jpm$JPM.Open, jpm$JPM.Close,
    xlab = "Open Price",
    ylab = "Close Price"
)
barplot(table(cut_close), xlab = "Adjusted Close Price", ylab = "Frequency")
boxplot(table(cut_close), ylab = "Frequency")
```



## Question 2

Estimate the volume of the unit sphere (which is just  $4\pi/3$ ) by simulation.

```
seed <- 1
rnd <- function(n){</pre>
  m <- 2 ^ 31 - 1
  a <- 7 ^ 5
  b <- 0
  x \leftarrow rep(NA, n)
  x[1] \leftarrow (a * seed + b) \% m
  for(i in 1:(n - 1)){
    x[i + 1] \leftarrow (a * x[i] + b) \% m
  }
  seed <<-x[n]
  return(x / m)
}
num.total <- 100000
x <- rnd(num.total)</pre>
y <- rnd(num.total)
z <- rnd(num.total)</pre>
num.inner <- sum(x ^ 2 + y ^ 2 + z ^ 2 <= 1)
volume.eighth <- num.inner / num.total</pre>
(volume.sphere <- 8 * volume.eighth)</pre>
```

```
## [1] 4.16512
```

## Question 3

### 3.1

Implement a Linear Congruential Generator (LCG)

```
LCG <- function(n) {
    m <- 244944
    a <- 1597
    b <- 51749

x <- rep(NaN, n)
    x[1] <- (a * 1 + b) %% m

for(i in 1:(n - 1)) {
        x[i + 1] <- (a * x[i] + b) %% m
}

return(x / m)
}</pre>
```

Use the LCG in the previous problem, generate 10000 random numbers from chi-square distribution with 10 degrees of freedom (i.e. df = 10), and assign to a variable. (Hint.: X = qnorm(LCG(10000))) will generate a sample of 10000 numbers X which follows normal distribution. For chi-square case, please consider another function qchisq().)

```
X <- qchisq(LCG(10000), df = 10)
head(X)</pre>
```

```
## [1] 6.382024 3.042432 9.342521 13.756028 11.820942 9.921533
```

#### 3.3

Visualize the resulting sample from 3.2 using a histogram with 40 bins.

hist(X, nclass = 40)

