DSA3102: 2023/24 (Sem 1): Solutions to Midterm (Total 30 points)

Name:				
Matriculation	Number: _			
Score: Q1:	Q2:	Q3:	Total:	

You have 1.5 hours (90 mins) for this quiz. There are SIX (6) printed pages. You're allowed 1 sheet of handwritten notes. Please provide *careful explanations* for all your solutions.

- 1. (a) For $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$, $x_{[k]}$ denotes the k-th largest entry of x, so, for example, $x_{[1]} = \max_{1 \le i \le n} x_i$ and $x_{[n]} = \min_{1 \le i \le n} x_i$. For each function, determine whether it is convex, concave, or neither. If you say it is neither convex nor concave, give a counterexample showing it is not convex, and a counterexample showing it is not concave. All functions below have domain \mathbb{R}^n .
 - i. (3 points) The range of values $f(x) = x_{[1]} x_{[n]}$; Solution: We know that the functions $f_{\max}(x) = x_{[1]}$ and $f_{\min}(x) = x_{[n]}$ are convex and concave respectively. Hence, f_{\max} and $-f_{\min}$ are both convex. Since the sum of convex functions is convex, so is $f = f_{\max} f_{\min}$.
 - ii. (3 points) $median(x) = x_{[(n+1)/2]}$ (you may assume n is odd); **Solution:** Consider the points

$$x = [0, 2, 0]^T$$
, $x' = [2, 0, 0]^T$.

Then it is easy to check that

$$median(x) = 0, median(x') = 0.$$

However,

$$median(0.5x + 0.5x') = 1.$$

If $median(\cdot)$ were convex, we would have

$$\mathrm{median}(0.5x + 0.5x') \leq 0.5\mathrm{median}(x) + 0.5\mathrm{median}(x')$$

which is clearly not the case here since $1 \nleq 0$.

Again consider

$$x = [0, -2, 0]^T, \quad x' = [-2, 0, 0]^T.$$

Then it is easy to check that

$$median(x) = 0, median(x') = 0.$$

However,

$$median(0.5x + 0.5x') = -1.$$

If $median(\cdot)$ were concave, we would have

$$median(0.5x + 0.5x') \ge 0.5median(x) + 0.5median(x')$$

which is clearly not the case here since $-1 \ngeq 0$.

(b) (4 points) Find the set of $\alpha \in \mathbb{R}$ such that the following function $f: \mathbb{R}^2 \to \mathbb{R}$ is convex

$$f(x_1, x_2) = \alpha x_1^2 + \frac{1}{4}\alpha x_2^2 + (4 - \alpha)x_1x_2 + 4x_1 + 8x_2 + 5.$$

Solution: Differentiating once yields

$$\nabla f(x_1, x_2) = \begin{bmatrix} 2\alpha x_1 + (4 - \alpha)x_2 \\ \frac{1}{2}\alpha x_2 + (4 - \alpha)x_1 \end{bmatrix}$$

Differentiating again yields

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} 2\alpha & 4 - \alpha \\ 4 - \alpha & \frac{1}{2}\alpha \end{bmatrix}$$

We need $\alpha \geq 0$ for both diagonal entries to be nonnegative. For the determinant, we can calculate that $2\alpha \cdot \frac{1}{2}\alpha - (4-\alpha)^2 \geq 0$. This is the same as $\alpha \geq 2$. Since $\alpha \geq 2$ dominates, the desired set of α such that f is convex is $[2, \infty)$.

2. (a) (5 points) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable convex function. Consider the following problem:

(P)
$$\min_{x} f(x)$$
 s.t. $x \succeq 0$, $\sum_{i=1}^{n} x_{i} = 1$.

Show using the first-order optimality conditions that if $\bar{x} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)^T$ is an optimal solution for problem (P), then

$$\min_{i=1,\dots,n} (\nabla f(\bar{x}))_i = \sum_{i=1}^n \bar{x}_i (\nabla f(\bar{x}))_i,$$

where $(\nabla f(\bar{x}))_i = \frac{\partial f}{\partial x_i}(\bar{x})$ is the *i*-th component of the gradient vector evaluated at \bar{x} . **Solution:** The first-order optimality condition for \bar{x} to be optimal is that it is feasible, i.e., $\bar{x} \geq 0$ and $\sum_{i=1}^n \bar{x}_i = 1$ and

$$\nabla f(\bar{x})^T (y - x) \ge 0$$
 $\forall y \in \mathbb{R}^n$ s.t. $y \ge 0, \sum_{i=1}^n y_i = 1$.

This means that

$$\sum_{i=1}^{n} y_i(\nabla f(\bar{x}))_i \ge \sum_{i=1}^{n} \bar{x}_i(\nabla f(\bar{x}))_i,$$

for all $y \geq 0$, $\sum_{i=1}^n y_i = 1$. Let $i^* = \arg\min_{1 \leq i \leq n} (\nabla f(\bar{x}))_i$. Set $y = e_{i^*}$ which satisfies $y \geq 0$, $\sum_{i=1}^n y_i = 1$. Then the LHS of the above display writes $\min_{1 \leq i \leq n} (\nabla f(\bar{x}))_i$ so that

$$\min_{1 \le i \le n} (\nabla f(\bar{x}))_i \ge \sum_{i=1}^n \bar{x}_i (\nabla f(\bar{x}))_i.$$

Since \bar{x} itself forms a probability distribution, the strict inequality above > is not possible. Hence,

$$\min_{1 \le i \le n} (\nabla f(\bar{x}))_i = \sum_{i=1}^n \bar{x}_i (\nabla f(\bar{x}))_i,$$

as desired.

(b) (5 points) Find the convex conjugate of the function

$$f(x) = \sqrt{1+x^2}$$
 with **dom** $f = \mathbb{R}$.

As usual, denote the convex conjugate as $f^*(y)$.

Hint: First, argue that the domain of f^* is [-a,a] for some a>0. You need to find a.

Solution: Consider

$$f^*(y) = \sup_{x \in \mathbb{R}} \left\{ xy - \sqrt{1 + x^2} \right\}$$

Note that if |y| > 1, the objective is unbounded because $\sqrt{1+x^2}$ behaves as |x| for x large. So the domain of f^* is [-1,1].

Hence, we restrict ourselves to $y \in [-1,1]$. Let $g(x) = xy - \sqrt{1+x^2}$. Then $g'(x) = y - x/\sqrt{1+x^2}$. Setting this to zero yields that $x^* = \text{sign}(y)\sqrt{\frac{y^2}{1-y^2}}$. Substituting this into the objective yields

$$f^*(y) = -\sqrt{1 - y^2}$$
 for $|y| \le 1$.

3. (a) (5 points) Consider the following optimization problem

$$\min_{x \in \mathbb{R}^n} \quad \sum_{i=1}^n c_i |x_i - d_i|$$
s.t. $Ax = b, \quad x \ge 0.$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, and $d \in \mathbb{R}^n$ are given. Assume that $c_i \geq 0$ for all $i = 1, \ldots, n$. As such this is not a linear program since the objective function involves absolute values. Show how this problem can be formulated equivalently as a linear program. Write your answer as a linear optimization problem where the decision variables are in a length-2n vector $y \in \mathbb{R}^{2n}$ of the form

$$\min_{y \in \mathbb{R}^{2n}} \tilde{c}^T y \quad \text{subject to} \quad \tilde{A}y = \tilde{b}, \quad \tilde{G}y \leq \tilde{h}.$$

Identify the vectors \tilde{c}, \tilde{b} and \tilde{h} and the matrices \tilde{A} and \tilde{G} .

Solution: This may be written as

$$\min_{x \in \mathbb{R}^n, t \in \mathbb{R}^n} \quad c^T t$$
s.t. $Ax = b, \quad x \ge 0, \quad t \ge 0, \quad |x_i - d_i| \le t_i, \quad \forall i \in [n].$

Let $y = [x^T, t^T]^T$. Then the objective can be written as

$$\begin{bmatrix} 0 \\ c \end{bmatrix}^T \begin{bmatrix} x \\ t \end{bmatrix} = c^T t.$$

The equality constraints can be written as

$$\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}.$$

The inequality constraints can be written as

$$\begin{bmatrix} -I & 0 \\ 0 & -I \\ I & -I \\ -I & -I \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le \begin{bmatrix} 0 \\ 0 \\ d \\ -d \end{bmatrix}.$$

Hence,

$$\tilde{c} = \begin{bmatrix} 0 \\ c \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} b \\ 0 \end{bmatrix}, \quad \tilde{G} = \begin{bmatrix} -I & 0 \\ 0 & -I \\ I & -I \\ -I & -I \end{bmatrix}, \quad \tilde{h} = \begin{bmatrix} 0 \\ 0 \\ d \\ -d \end{bmatrix}.$$

(b) (5 points) In this problem, the decision variable $x \in \mathbb{R}^n$. The matrix $A \in \mathbf{S}^n_+$ is fixed. Show that the following optimization problem can be written as a semidefinite program (SDP):

$$\min_{x} c^{T}x$$
s.t.
$$x^{T}(A - bb^{T})x \le 0$$

$$b^{T}x \ge 0$$

$$Dx = z$$

by writing the first constraint as

$$\begin{bmatrix} f(x,b,A) & g(x,b,A) \\ g(x,b,A)^T & h(x,b,A) \end{bmatrix} \succeq 0$$

for suitable functions f(x, b, A), g(x, b, A), and h(x, b, A).

Hint: Since $A \in \mathbf{S}_+^n$, it may be written as $A = V^T V$ for some $V \in \mathbb{R}^{r \times n}$. You might want to use the Schur complement lemma.

Solution: Since A is PSD, we may write A as V^TV for some $V \in \mathbb{R}^{r \times n}$. Hence, the first constraint is

$$x^T(V^TV - bb^T)x \le 0 \qquad \Longleftrightarrow \qquad x^TV^TVx \le x^Tbb^Tx.$$

This is the same as

$$||Vx||_2^2 \le (b^Tx)^2.$$

Using the fact that $b^T x \geq 0$, we have that

$$||Vx||_2 \le b^T x.$$

This is a second-order cone constraint. We can use the Schur complement lemma to write this as the following semidefinite constraint:

$$\begin{bmatrix} (b^T x)I & Vx \\ (Vx)^T & b^T x \end{bmatrix} \succeq 0.$$

Hence $f(x, b, A) = (b^T x)I$, g(x, b, A) = Vx and $h(x, b, A) = b^T x$.