MTH 102 - ANALYSIS IN ONE VARIABLE ASSIGNMENT 2

- **1.** Show that for all $a, b \in \mathbb{R}$,
 - i. $|b| \le a$ if and only if $-a \le b \le a$.
 - ii. $||a| |b|| \le |a b|$.
- **2.** Let $a, b \in \mathbb{R}$. Show if $a \leq b_1$ for every $b_1 > b$, then $a \leq b$.
- **3.** Show:
 - i. Supremum and infimum of a set are uniquely determined when they exist.
 - ii. If S is a finite set, sup S, inf $S \in S$.
 - iii. If S is a nonempty subset of \mathbb{R} and $b \in \mathbb{R}$ is such that b < s for all $s \in S$, then inf $S = -\sup(-S)$.
- 4. Determine supremum and infimum of the following sets if they exist.
- i. $\{1/n 1/m : n, m \in \mathbb{N}\},$ ii. $\{\cos(n\pi/3) : n \in \mathbb{N}\},$ iii. $\{1 (-1)^n/n : n \in \mathbb{N}\}.$
- **5.** Let S be a non-empty bounded subset of \mathbb{R} . If b < 0 and $bS = \{bs : s \in S\}$ prove:
- i. $\inf bS = b \sup S$, ii. $\sup bS = b \inf S$.
- **6.** Let A and B be two set of positive numbers that are bounded above. Let $C = \{xy : x \in A, y \in B\}$. If $a = \sup A$, $b = \sup B$, show that $\sup C = ab$.
 - **7.** Prove :
 - i. If a < 0, then there exists $n \in \mathbb{N}$ such that $-n < a < -\frac{1}{n}$.
 - ii. The set of all negative integers is not bounded below.
 - iii. If y > 0, there exists $n \in \mathbb{N}$ such that $\frac{1}{2^n} < y$.
 - iv. If $a, b \in \mathbb{R}$ are such that $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.
 - **8.** Given a real number x, prove that there exists a unique integer n such that $n-1 \le x < n$.
- **9.** Let S be a non-empty subset of \mathbb{R} . If a number $u \in \mathbb{R}$ has the properties that u 1/n is not an upper bound of S for all $n \in \mathbb{N}$ and u + 1/n is an upper bound of S for all $n \in \mathbb{N}$, prove that $u = \sup S$. Conversely if $u = \sup S$, then show that u 1/n is not an upper bound of S for all $n \in \mathbb{N}$ and u + 1/n is an upper bound of S for all $n \in \mathbb{N}$
 - **10.** Consider $a, b \in \mathbb{R}$ where a < b. Using Denseness of rationals in \mathbb{R} show:
 - i. There are infinitely many rationals between a and b.
 - ii. If I is the set of real numbers that are not rational, then there exists $x \in I$ such that a < x < b.
 - iii. For any real number u > 0, there exists $r \in \mathbb{Q}$ such that a < ru < b.