2023-2024-2 DG2011X0S 数电B期末复习

2024.6

1.小明同学在使用卡诺图化简4元逻辑函数F(A,B,C,D)时,错误地将卡诺图中的0按照化简步骤圈了起来,并得到了错误的最简与或式 $F(A,B,C,D)=\overline{BD}+\overline{CD}+ABD$ 。假定小明仅仅只是圈0这一步做错了,其他步骤正确,试写出正确的最简与或式。

AB	00	01	11	10	AB	00	01	11	10
00	0	0		0	00	0	0	1	0
01		0			01	1	0	1	1
11		0	0		11	1	0	0	1
10	0	0		0	10	0	0	1	0

AB	00	01	11	10
00	0	0	1	0
01	1	0	1	1
11	1	0	0	1
10	0	0	1	0

$$F(A,B,C,D) = B\overline{D} + \overline{A}CD + \overline{B}CD$$

2. 分析下图电路的逻辑功能。

- (1) 由逻辑图逐级写出表达式,进行化简与变换;
 - (2) 由表达式列出真值表;
 - (3) 分析逻辑功能。

1) 写表达式

$$\mathbf{F}_1 = \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C}$$
$$\mathbf{F}_2 = \overline{\mathbf{A}}(\mathbf{B} \oplus \mathbf{C}) + \mathbf{B}\mathbf{C}$$

- 2) 列真值表
- 3) 确定逻辑功能

该电路实现1位二进制全减器的功能。A、B、C、 F_1 、 F_2 分别表示被减数、减数、来自低位的借位、本位差、本位向高位的借位。

A	В	C	F_1	F_2
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

- 3. 电话室需对3种电话编码控制,按紧急次序排列优先权高低为:火警电话、急救电话、普通电话,分别编码为11,10,01;当无电话时,编码为00。试用与非门设计编码电路。
- (1) 确定输入输出变量(个数、名称),列出真值表;
- (2) 写出逻辑表达式,并根据所选器件,化简成相应形式的最简表达式;
- (3) 画出逻辑图。

解:令火警电话、急救电话、普通电话分别为A,B,C,编码输出为 D_1 , D_0 。

1) 列真值表

A	В	C	D_1	D_0
1	Ø	Ø	1	1
0	1	Ø	1	0
0	0	1	0	1
0	0	0	0	0

2) 列卡诺图,写最简表达式

3) 画电路图

4.已知BCD码 (A₃A₂A₁A₀.a₃a₂a₁a₀)_{8421BCD}, 设计电路将该数四舍五入。

解: 当小数部分大于4时,整数部分应加1,即

$$\begin{array}{c}
A_{3}A_{2}A_{1}A_{0} \\
+ 1 \\
\hline
CO S_{3}S_{2}S_{1}S_{0}
\end{array}$$

当相加结果 $S_3S_2S_1S_0$ 为1010时,应进行修正。

因为1010不是 $(10)_{10}$ 的8421BCD码表示形式,正确结果应为 $0001\ 0000$,所以:

```
    1010
    非法码

    + 0110
    加6修正

    0001 0000
```


5.分别用一片74151和½ 74153 实现函数 $F = \overline{A}\overline{B}\overline{C} + \overline{A}BC + AB\overline{D} + A\overline{B}D + AC\overline{D}.$

解:这是一个四变量函数,对其一次降维后可用74151实现,两次降维后可用½ 74153实现。

6. 逻辑电路如图所示,已知CP和A的波形,请画出触发器Q端的波形,假设触发器的初始状态为0。

7.分析下图同步计数电路,画出状态转移图并说明能否自启动。

- ①根据电路图写出三组方程
 - a. 激励方程 b. 次态方程 c. 输出方程
- ②作状态转移表或状态转移图或波形图
- ③电路的逻辑功能描述

该电路具有自启动性。

解:激励方程:

$$J_1 = K_1 = 1$$
; $J_2 = Q_1^n \overline{Q}_3^n$, $K_2 = Q_1^n$

$$J_3 = Q_1^n Q_2^n$$
, $K_3 = Q_1^n$

状态方程:

$$Q_1^{n+1} = [\overline{Q}_1^n] \cdot CP \downarrow$$

$$Q_2^{n+1} = [Q_1^n \overline{Q}_3^n \overline{Q}_2^n + \overline{Q}_1^n Q_2^n] \cdot CP^{\downarrow}$$

$$Q_3^{n+1} = [Q_1^n Q_2^n \ \overline{Q}_3^n + \overline{Q}_1^n Q_3^n] \cdot CP \downarrow$$

8.试写出下图各电路的状态转移表。

序号	$Q_3 Q_2 Q_1 Q_0$	
0	0 0 0 0	
1	0 0 0 1	
2	0 0 1 0	
3	0 0 1 1	
4	0 1 0 0	
5	0 1 0 1	
6	0 1 1 0	
7	0 1 1 1	
8	1 0 0 0	
9	1 0 0 1	起跳状态
10	1/0 0 1/0 0	反馈状态

序号	Q_3	Q_2	Q_1	Q_0	
0	0	0	1	1←	
1	0	1	0	0	
2	0	1	0	1	
3	0	1	1	0	
4	0	1	1	1	
5	1	0	0	0	
6	1	0	0	1	
7	1	0	1	0 —	

起跳状态 反馈状态

9. 写出下图中74161输出端的状态编码表及74151输出端产生的序列信号。

解: 74161采用复0法, 实现模M=10的计数器

Q_3	\mathbf{Q}_{2}	\mathbf{Q}_{1}	Q_0	F
0	0	0	0 🗂	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1 —	0
1/0	0	1/0	0	

74151输出端产生的序列信号为: 1111000110, ...

10.写出图中的74194输出端的编码表及数据选择器输出端F处的序列信号。

$$D_{SR} = \overline{Q_2^n \oplus Q_3^n} = Q_2^n Q_3^n + \overline{Q}_2^n \overline{Q}_3^n \qquad M_1 = \overline{Q}_1^n \overline{Q}_2^n Q_3^n$$

序号	$D_{ m SR}$	Q_0	Q_1	Q_2	Q_3	F	M_1
0	1	0	0	0	0 ←	0	0
1	1	1	0	0	0	1	0
2	1	1	1	0	0	1	0
3	0	1	1	1	0	0	0
4	1	0	1	1	1	0	0
5	1	1	0	1	1	1	0
6	0	1	1	0	1	0	0
7	0	0	1	1	0	0	0
8	1	0	0	1	1	1	0
9	1	1	0	0	1—	1	1

F处的序列为: 0110010011。

11. (1) 如图 (a) 所示的PLA阵列,写出 F_1 的逻辑表达式;(2)对F1进行化简后,在图 (b) 中重新表示。

解: $F_1(A,B,C) = \sum m(0,1,3,7)$ 。化简后可得: $F_2 = \bar{A}\bar{B} + BC$ 。用PLA重新表示 F_1 如图 (b) 所示。

与阵列

12. Verilog HDL 描述组合电路、触发器

```
//module half_adder (S, C, x, y); 1995版 //output S, C; //input x,y; module half_adder (output S, C, input x, y); 2001、2005版 xor (S, x, y); and (C, x, y); endmodule
```



```
//D flip-flop with asynchronous reset ( V2001, V2005)
module DFF (output reg Q, input D, CLK, RST);
always @ (posedge CLK , negedge RST)
begin
if (!RST) Q \le 1'b0; //same as: if (RST == 0)
else Q \leq D;
end
endmodule
```

