UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CENTRO DE EDUCAÇÃO SUPERIOR DO ALTO VALE DO ITAJAÍ – CEAVI ENGENHARIA DE SOFTWARE

MATEUS LUCAS CRUZ BRANDT

INCLUSÃO E TECNOLOGIA: DESENVOLVIMENTO DE UMA FERRAMENTA DE AUXÍLIO PARA APLICAÇÕES MÓVEIS ACESSÍVEIS EM FLUTTER

MATEUS LUCAS CRUZ BRANDT

INCLUSÃO E TECNOLOGIA: DESENVOLVIMENTO DE UMA FERRAMENTA DE AUXÍLIO PARA APLICAÇÕES MÓVEIS ACESSÍVEIS EM FLUTTER

Trabalho de conclusão apresentado ao curso de Engenharia de Software do Centro de Educação Superior do Alto Vale do Itajaí (CEAVI), da Universidade do Estado de Santa Catarina (UDESC), como requisito parcial para obtenção do grau de bacharel em Engenharia de Software.

Orientador: Profa. Dra. Marília Guterres Ferreira

Para gerar a ficha catalográfica de teses e dissertações acessar o link: https://www.udesc.br/bu/manuais/ficha

INCLUSÃO E TECNOLOGIA: DESENVOLVIMENTO DE UMA FERRAMENTA DE AUXÍLIO PARA APLICAÇÕES MÓVEIS ACESSÍVEIS EM FLUTTER / Mateus Lucas Cruz Brandt. – Rio do Sul, 2024. 33 p. : il.

Orientador: Profa. Dra. Marília Guterres Ferreira.

Trabalho de Conclusão de Curso (Graduação) – Universidade do Estado de Santa Catarina, Centro de Ciências Tecnológicas, Programa de Pós—Graduação em Engenharia Elétrica, Rio do Sul, 2024.

1. Palavra-chave. 2. Palavra-chave. 3. Palavra-chave. 4. Palavra-chave. 5. Palavra-chave. I., . III., . III. Universidade do Estado de Santa Catarina, Centro de Ciências Tecnológicas, Programa de Pós–Graduação em Engenharia Elétrica. IV. Título.

ERRATA

Elemento opcional.

Exemplo:

Sobrenome, Prenome do Autor. Título de obra: subtítulo (se houver). Ano de depósito. Tipo do trabalho (grau e curso) - Vinculação acadêmica, local de apresentação/defesa, data.

Folha	Linha	Onde se lê	Leia-se
1	10	auto-conclavo	autoconclavo

MATEUS LUCAS CRUZ BRANDT

INCLUSÃO E TECNOLOGIA: DESENVOLVIMENTO DE UMA FERRAMENTA DE AUXÍLIO PARA APLICAÇÕES MÓVEIS ACESSÍVEIS EM FLUTTER

Trabalho de conclusão apresentado ao curso de Engenharia de Software do Centro de Educação Superior do Alto Vale do Itajaí (CEAVI), da Universidade do Estado de Santa Catarina (UDESC), como requisito parcial para obtenção do grau de bacharel em Engenharia de Software.

Orientador: Profa. Dra. Marília Guterres Ferreira

BANCA EXAMINADORA:

Nome do Orientador e Titulação Nome da Instituição

Membros:

Nome do Orientador e Titulação Nome da Instituição

Nome do Orientador e Titulação Nome da Instituição

Nome do Orientador e Titulação Nome da Instituição

Rio do Sul, 01 de maio de 2024

Aos estudantes da Universidade do Estado de Santa Catarina, pela inspiração de sempre!

AGRADECIMENTOS

Agradeço ao meu orientador por aceitar conduzir o meu trabalho de pesquisa. A todos os meus professores do curso de da Universidade do Estado de Santa Catarina – Udesc pela excelência da qualidade técnica de cada um.

Aos meus pais que sempre estiveram ao meu lado me apoiando ao longo de toda a minha trajetória. Sou grato à minha família pelo apoio que sempre me deram durante toda a minha vida.

Como disse Snoop Dog: "Eu quero me agradecer por acreditar em mim mesmo, quero me agradecer por todo esse trabalho duro. Quero me agradecer por não tirar folgas. Quero me agradecer por nunca desistir. Quero me agradecer por ser generoso e sempre dar mais do que recebo. Quero me agradecer por tentar sempre fazer mais o certo do que o errado. Quero me agradecer por ser eu mesmo o tempo inteiro".

Deixo um agradecimento especial ao meu orientador pelo incentivo e pela dedicação do seu escasso tempo ao meu projeto de pesquisa.

RESUMO

Elemento obrigatório que contém a apresentação concisa dos pontos relevantes do trabalho, fornecendo uma visão rápida e clara do conteúdo e das conclusões do mesmo. A apresentação e a redação do resumo devem seguir os requisitos estipulados pela NBR 6028 (ABNT, 2003). Deve descrever de forma clara e sintética a natureza do trabalho, o objetivo, o método, os resultados e

as conclusões, visando fornecer elementos para o leitor decidir sobre a consulta do trabalho no

todo.

Palavras-chave: Palavra 1. Palavra 2. Palavra 3. Palavra 4. Palavra 5.

ABSTRACT

Elemento obrigatório para todos os trabalhos de conclusão de curso. Opcional para os demais trabalhos acadêmicos, inclusive para artigo científico. Constitui a versão do resumo em português para um idioma de divulgação internacional. Deve aparecer em página distinta e seguindo a mesma formatação do resumo em português.

Keywords: Keyword 1. Keyword 2. Keyword 3. Keyword 4. Keyword 5.

LISTA DE ILUSTRAÇÕES

Figura 1	_	Figura 1 - Modelo de metologia	19
Figura 2	_	"Maçanetas pivotantes (à esquerda) só requerem um leve empurrão por cima.	
		Maçanetas esféricas (à direita) necessitam de um movimento de torção com	
		firmeza."	22
Figura 3	_	Tela Principal do VSCode com a extensão ValidWeb	25
Figura 4	_	Interface principal do SonarQube	26
Figura 5	_	Exemplo de retorno do pacote "accessibility_tools" ao detectar uma inconsis-	
		tência de acessibilidade	27

LISTA DE TABELAS

Tabela 1 –	Comparação entre as funcionalidades das ferramentas discutidas e os requisi-	
	tos deste trabalho	28

LISTA DE ABREVIATURAS E SIGLAS

TCC Trabalho de Conclusão de Curso

PCD Pessoa com Deficiência

LBI Lei Brasileira de Inclusão

LISTA DE SÍMBOLOS

@ Arroba

% Porcento

°C Graus Celsius

Ca Cálcio

SUMÁRIO

1	INTRODUÇÃO	16
1.1	PROBLEMA	16
1.1.1	Objetivo Geral	17
1.1.2	Objetivos Específicos	17
1.1.2.1	Revisão da Literatura	17
1.1.2.2	Projeto e Implementação da Extensão	17
1.1.2.3	Testes e Validação	17
1.1.2.4	Documentar e Disseminar	18
1.2	JUSTIFICATIVA	18
1.3	METODOLOGIA	18
1.4	ESTRUTURA DO TRABALHO	20
2	FUNDAMENTAÇÃO TEÓRICA	21
2.1	ACESSIBILIDADE	21
2.1.1	Definição de Acessibilidade	21
2.1.2	Acessibilidade Universal	22
2.1.3	Acessibilidade Digital	22
2.1.4	Legislação Brasileira	22
2.2	PESSOA COM DEFICIÊNCIA	23
2.2.1	Deficiências motoras	23
2.2.2	Deficiências visuais	23
2.2.3	Deficiências auditivas	23
2.3	FLUTTER	23
2.4	ANÁLISE ESTÁTICA DE CÓDIGO	24
2.4.1	Acessibilidade	24
2.4.2	iOS e Android	24
2.5	ANÁLISE ESTÁTICA DE CÓDIGO	24
3	TRABALHOS CORRELATOS	25
3.1	VALIDAWEB: UMA FERRAMENTA PARA SUPORTE AO DESENVOL-	
	VIMENTO DE SOFTWARE ATENDENDO AOS REQUISITOS NÃO FUN-	
	CIONAIS DE ACESSIBILIDADE W3C	25
3.2	SONARQUBE: FERRAMENTA DE AUDITORIA DE CÓDIGO COM SU-	
	PORTE PARA FLUTTER E DART	26
3.3	ACCESSIBILITY_TOOLS: PACOTE PARA VALIDAÇÃO DE ACESSIBI-	
	LIDADE EM APLICAÇÕES FLUTTER	27
3.4	ANÁLISE E COMPRARAÇÃO DE TRABALHOS CORRELATOS	

4	DESENVOLVIMENTO	29
	GLOSSÁRIO	30
	APÊNDICE A - TÍTULO	31
	ANEXO A - TÍTULO	32
	ÍNDICE	33

1 INTRODUÇÃO

Este Trabalho de Conclusão de Curso (TCC) aborda o desenvolvimento de uma extensão Flutter que visa auxiliar os desenvolvedores no processo de criação de aplicações móveis acessíveis em Flutter. A motivação para este trabalho surge da crescente importância da inclusão e da acessibilidade no desenvolvimento de aplicações móveis, bem como da necessidade de simplificar e melhorar o processo de desenvolvimento de soluções acessíveis utilizando tecnologias modernas, como o Flutter.

O TCC foi desenvolvido seguindo uma metodologia baseada nas fases fundamentais da Engenharia de Software, incluindo análise (Engenharia de Requisitos), projeto, programação, testes e validação. Além disso, a execução do trabalho foi gerenciada utilizando a metodologia ágil, garantindo um desenvolvimento iterativo e incremental do projeto.

A introdução detalha o contexto, a problemática, os objetivos geral e específicos, a justificativa e a metodologia adotada no desenvolvimento do trabalho. Em seguida, o TCC é organizado em capítulos que abordam a revisão da literatura, o projeto e a implementação da extensão, os testes e a validação realizados com desenvolvedores e PCDs, e o gerenciamento do projeto. Por fim, as conclusões discutem os principais resultados, limitações e possíveis trabalhos futuros relacionados ao tema da acessibilidade em aplicações móveis.

1.1 PROBLEMA

A acessibilidade tem se tornado cada vez mais relevante no contexto do desenvolvimento de aplicações móveis, uma vez que possibilita a inclusão e a igualdade de oportunidades para pessoas com deficiência (PCDs). As aplicações móveis têm desempenhado um papel essencial no cotidiano das pessoas, e é imprescindível que elas sejam projetadas de forma inclusiva, garantindo uma experiência eficiente e satisfatória para todos os usuários. Neste cenário, o presente TCC se aplica ao desenvolvimento de aplicações móveis acessíveis utilizando o framework Flutter, que tem sido amplamente adotado devido à sua capacidade de criar aplicativos de alta qualidade e com desempenho otimizado para múltiplas plataforma. Contudo, o desenvolvimento de aplicações móveis acessíveis em Flutter ainda enfrenta desafios relacionados à complexidade e à necessidade de conhecimento especializado.

O problema abordado neste TCC é a dificuldade enfrentada pelos desenvolvedores ao implementar recursos de acessibilidade em aplicações móveis criadas com Flutter, em razão das lacunas de conhecimento e da complexidade inerente a essa tarefa. A solução proposta visa simplificar e tornar mais prática a criação de aplicações móveis acessíveis, contribuindo para a melhoria da experiência dos PCDs ao utilizar essas aplicações.

Para abordar este problema, serão investigadas as melhores práticas e técnicas disponíveis na literatura relacionadas à acessibilidade em aplicações móveis. Além disso, será desenvolvida uma aplicação de exemplo que demonstre a aplicabilidade das soluções propostas, servindo como referência para os desenvolvedores Flutter.

1.1.1 Objetivo Geral

O objetivo geral deste trabalho é apoiar o desenvolvimento de aplicativos móveis mais acessíveis. Para isso, visa-se criar uma extensão Flutter que facilite o processo de desenvolvimento de aplicações móveis acessíveis em Flutter para os desenvolvedores através da análise estática de código. A extensão fornecerá orientações e recomendações sobre a utilização de componentes e a aplicação de regras necessárias para cumprir com os requisitos de acessibilidade não funcionais. Através dessa abordagem, a extensão auxiliará os desenvolvedores a criar aplicativos mais inclusivos, melhorando a experiência dos PCDs ao utilizar essas aplicações.

Além disso, este trabalho visa aumentar a conscientização sobre a importância da acessibilidade no desenvolvimento de aplicações móveis. Para isso, serão publicados os requisitos de acessibilidade utilizados durante o desenvolvimento da extensão, a fim de promover uma compreensão mais ampla das melhores práticas e normas aplicáveis a essa área.

Dessa forma, a solução proposta contribui para resolver o problema apresentado ao facilitar a criação de aplicações móveis acessíveis em Flutter, fornecendo aos desenvolvedores as ferramentas e informações necessárias para atender aos requisitos de acessibilidade e, ao mesmo tempo, promovendo uma maior conscientização sobre a importância desse tema no contexto atual.

1.1.2 Objetivos Específicos

1.1.2.1 Revisão da Literatura

Realizar um mapeamentosistemático da literatura para identificar os requisitos não funcionais de acessibilidade necessários para aplicações móveis, permitindo estabelecer uma base sólida para o desenvolvimento da extensão proposta e garantir a aderência às melhores práticas e normas do campo.

1.1.2.2 Projeto e Implementação da Extensão

Desenvolver uma extensão Flutter que analise o código-fonte de aplicações móveis e forneça orientações e recomendações sobre a utilização de componentes e a aplicação de regras de acessibilidade. A extensão deverá ser integrada ao ambiente de desenvolvimento e ser capaz de identificar possíveis problemas de acessibilidade no código, sugerindo soluções e boas práticas para corrigi-los.

1.1.2.3 Testes e Validação

Realizar testes e validações da extensão com desenvolvedores e PCDs para avaliar a eficácia e a usabilidade da ferramenta. Os testes serão conduzidos em um ambiente controlado, permitindo identificar possíveis falhas e melhorias na extensão, bem como coletar feedbacks e sugestões para aprimorar a solução proposta.

1.1.2.4 Documentar e Disseminar

Documentar o processo de desenvolvimento da extensão, incluindo os requisitos de acessibilidade utilizados, as técnicas e as ferramentas empregadas, e os resultados obtidos. Além disso, disseminar os resultados do trabalho por meio de artigos, apresentações e publicações, a fim de promover a conscientização sobre a importância da acessibilidade no desenvolvimento de aplicações móveis.

1.2 JUSTIFICATIVA

Este TCC foi desenvolvido considerando a crescente importância da inclusão e acessibilidade no desenvolvimento de aplicações móveis, bem como a necessidade de simplificar e otimizar o processo de desenvolvimento de soluções acessíveis utilizando Flutter. A escolha do Flutter como tecnologia central deste trabalho se justifica por ser um framework em rápido crescimento, adotado por um número cada vez maior de desenvolvedores, devido à sua capacidade de criar aplicativos de alta qualidade e com desempenho otimizado para múltiplas plataforma. Ademais, o Flutter é mantido e promovido pelo Google, o que reforça sua relevância e potencial no cenário atual de desenvolvimento de aplicações móveis.

A escolha de uma extensão de análise estática de código como solução para o problema proposto se deve à sua capacidade de identificar problemas de acessibilidade no código-fonte e fornecer orientações e recomendações para corrigi-los. A análise estática de código é uma técnica amplamente utilizada no desenvolvimento de software para identificar possíveis falhas e melhorias no código, permitindo detectar problemas de acessibilidade em um estágio inicial do desenvolvimento e facilitar a correção desses problemas.

A justificativa para o desenvolvimento deste TCC, portanto, reside na combinação da importância de promover a acessibilidade e inclusão no desenvolvimento de aplicações móveis com a crescente adoção do Flutter como tecnologia de referência para o desenvolvimento de aplicativos. Ao criar uma extensão que facilite o desenvolvimento de aplicações móveis acessíveis em Flutter, este trabalho visa contribuir para a democratização da acessibilidade e a melhoria da experiência dos PCDs ao utilizar aplicações móveis.

1.3 METODOLOGIA

A metodologia adotada neste TCC foi baseada nas fases fundamentais da Engenharia de Software, incluindo análise (Engenharia de Requisitos), projeto, programação, testes e validação. Além disso, a execução do trabalho foi gerenciada utilizando a metodologia ágil Scrum para garantir um desenvolvimento iterativo e incremental do projeto. A seguir, detalhamos cada uma das fases e ferramentas utilizadas na metodologia:

Engenharia de Requisitos: nesta fase, foi realizada um mapeamento sistemático da literatura para identificar os requisitos não funcionais de acessibilidade necessários para aplicações

móveis. As principais fontes consultadas incluíram artigos científicos, livros e diretrizes de organizações especializadas em acessibilidade. As informações coletadas serviram como base para a definição dos requisitos que orientaram o desenvolvimento da extensão proposta.

Projeto: com os requisitos de acessibilidade definidos, a próxima etapa foi projetar a extensão para Flutter. Nesta fase, foram elaborados os diagramas e especificações técnicas necessárias para detalhar a arquitetura e o funcionamento da extensão, incluindo a definição das funcionalidades e a interação com o ambiente de desenvolvimento.

Programação: após a conclusão do projeto, a extensão foi implementada utilizando as linguagens de programação e as ferramentas compatíveis com o Flutter, como Dart, a extensão custom_lint_builder. O código-fonte foi versionado e gerenciado por meio do Git e hospedado em uma plataforma de repositórios (GitHub), para facilitar a colaboração e o acompanhamento das mudanças realizadas.

Testes e validação: a extensão desenvolvida foi submetida a uma série de testes, envolvendo desenvolvedores e PCDs, a fim de avaliar sua efetividade e garantir que os requisitos de acessibilidade fossem atendidos. Os testes foram realizados em diversas etapas do desenvolvimento e incluíram testes funcionais, de usabilidade e de acessibilidade. Além disso, os requisitos não funcionais coletados na revisão da literatura foram validados por meio de testes estáticos.

Gerenciamento do projeto (Scrum): para garantir um desenvolvimento eficiente e flexível, o projeto foi gerenciado utilizando a metodologia ágil Scrum. O trabalho foi dividido em Sprints, que são períodos de tempo fixos (geralmente de 2 a 4 semanas) nos quais um conjunto específico de tarefas é realizado. As tarefas foram organizadas e priorizadas em um Product Backlog.

2 3 5 4 Mapeamento Modelagem Desenvolvimento Projeto Definição de TDD Diagrama de Arquitetura de Padrões de sequência integração com requisitos Projeto Flutter Definição das Diagrama de Expressões Unidade componentes Utilização de perguntas de regulares pesquisa componentes Mapeamento Arvore Sintática Integração Mapeamento Sistemático da Sistemático da Literatura Literatura Framework Testes dos Análise estática Requisitos não Bibliotecas Funcionais Definição de Linguagens Requisitos não Funcionais para acessibilidade

Figura 1 - Figura 1 - Modelo de metologia

Fonte: Elaborado pelo autor (2024).

A metodologia adotada permitiu um desenvolvimento estruturado e ágil do TCC, garantindo que a extensão proposta fosse construída de acordo com os requisitos de acessibilidade identificados. Além disso, a utilização do Scrum proporcionou flexibilidade e adaptabilidade durante o desenvolvimento, possibilitando ajustes e melhorias contínuas.

1.4 ESTRUTURA DO TRABALHO

O presente trabalho está organizado em capítulos que abordam os principais aspectos relacionados ao desenvolvimento da extensão proposta. A estrutura do trabalho é a seguinte:

- Capítulo 2 Revisão da Literatura: apresenta uma revisão da literatura sobre acessibilidade em aplicações móveis, abordando os principais conceitos, técnicas e ferramentas relacionadas ao tema.
- Capítulo 3 Projeto e Implementação da Extensão: descreve o projeto e a implementação da extensão proposta, detalhando a arquitetura, as funcionalidades e as tecnologias utilizadas.
- Capítulo 4 Testes e Validação: apresenta os testes e validações realizados com desenvolvedores e PCDs para avaliar a eficácia e a usabilidade da extensão.
- Capítulo 5 Gerenciamento do Projeto: discute o gerenciamento do projeto, incluindo a metodologia ágil Scrum, as ferramentas utilizadas e os resultados obtidos.
- Capítulo 6 Conclusões: apresenta as conclusões do trabalho, discutindo os principais resultados, limitações e possíveis trabalhos futuros relacionados ao tema da acessibilidade em aplicações móveis.

2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo, são descritos e detalhados os conceitos fundamentais e as ferramentas utilizadas durante a execução deste estudo. Inicialmente, procurou-se uma compreensão mais profunda das definições de acessibilidade, acessibilidade digital e acessibilidade universal, conceitos essenciais para a compreensão do escopo deste trabalho.

Em seguida, se realiza uma discussão acerca das vantagens advindas da incorporação da acessibilidade digital no processo de desenvolvimento de aplicações destinadas a dispositivos móveis.

Destaca-se a relevância deste aspecto e o impacto positivo que pode exercer sobre a experiência do usuário final. Visando também trazer uma compreensão das definições e impactos legais que a acessibilidade digital tem para os desenvolvedores, são discutidas as principais legislações vigentes no Brasil voltadas a defesa das PCD.

Adicionalmente serão tratados quais as principais deficiências motoras, auditivas e visuais que afetam a população mundial, qual o impacto dela na vida dos portadores e quais os benefícios e relação da acessibilidade digital com a sua inclusão na sociedade.

Posteriormente, são apresentadas as tecnologias que se fizeram necessárias para a condução do desenvolvimento deste projeto. Nesta parte, dá-se ênfase à importância dos testes automatizados, procedimento que se revela fundamental para garantir a qualidade e efetividade das implementações realizadas.

Além disso, são discutidas as tecnologias específicas empregadas na elaboração de uma extensão para o Flutter que permita a análise estática de regras de acessibilidade em aplicações móveis desenvolvidas com este framework.

2.1 ACESSIBILIDADE

Conforme dados do Censo 2010 (IBGE, 2010), aproximadamente 46 milhões de brasileiros declararam ter algum grau de dificuldade em pelo menos uma das seguintes habilidades: enxergar, ouvir, caminhar ou subir degraus. Dessas, a habilidade de enxergar e ouvir são primordiais para a inclusão digital dos usuários. Portanto, se faz necessária a compreensão do conceito de acessibilidade, sua importância no mundo digital, o que pode ser implementado para melhorá-la e as respectivas questões legislativas aplicadas no Brasil.

2.1.1 Definição de Acessibilidade

A acessibilidade é um princípio fundamental que visa garantir a todos os indivíduos, independentemente de suas limitações físicas, sensoriais, intelectuais ou psicossociais, a capacidade de acessar e utilizar adequadamente um produto, serviço ou ambiente. Neste estudo, o foco se volta à acessibilidade no âmbito digital, especialmente em relação aos dispositivos móveis.

Entretanto, é necessário que compreender que a acessibilidade é para todos, e que atos ou

soluções simples, tem um grande impacto na qualidade de vida das pessoas. Assim como define Kalbag (2017) "acessibilidade no mundo físico, é o nível em que um ambiente é utilizável pelo maior número de pessoas possíveis".

Sendo assim, é simples compreender a importância e benefícios da acessibilidade no mundo físico. Kalbag (2017) traz um excelente exemplo de uma mudança de acessibilidade que estamos tendo em nosso mundo e acabamos por nem perceber o seu real impacto. Conforme na figura 2, é possível visualizar que maçanetas pivotantes podem ser abertas facilmente com um movimento vertical para baixo, mesmo que tenham algum grau de deficiência motora, pois podem utilizar seu corpo ou outros objetos como apoio para realizarem a abertura da porta. A princípio, esse exemplo parece não ter muita conexão com o mundo digital, porém podemos utilizá-lo como uma base para refletir a forma que construímos nossa interface, onde adicionamos complicações visando a estética, ou então apenas por decisão de produto, mas que podem ter um impacto negativo na usabilidade de PCD.

Figura 2 – "Maçanetas pivotantes (à esquerda) só requerem um leve empurrão por cima. Maçanetas esféricas (à direita) necessitam de um movimento de torção com firmeza."

2.1.2 Acessibilidade Universal

2.1.3 Acessibilidade Digital

2.1.4 Legislação Brasileira

A Lei Brasileira de Inclusão (LBI), também conhecida como Estatuto da Pessoa com Deficiência (Lei Nº 13.146, de 6 de Julho de 2015), é um marco legal que busca assegurar e promover, em condições de igualdade, o exercício dos direitos e das liberdades fundamentais por pessoa com deficiência, visando à sua inclusão social e cidadania.

A LBI aborda várias áreas importantes para a inclusão, incluindo a acessibilidade, que tem implicações diretas para a concepção e desenvolvimento de dispositivos móveis. Ela define acessibilidade como sendo a possibilidade e condição de alcance para utilização, com segurança e autonomia, de espaços, mobiliários, equipamentos urbanos, edificações, transportes, informação e comunicação, inclusive seus sistemas e tecnologias, bem como de outros serviços e instalações

abertos ao público, de uso público ou privados de uso coletivo, tanto na zona urbana como na rural, por pessoa com deficiência ou com mobilidade reduzida.

Nesse contexto, a LBI define no Art. 3º inciso um que Acessibilidade é a "possibilidade e condição de alcance para utilização, com segurança e autonomia, de espaços, mobiliários, equipamentos urbanos, edificações, transportes, informação e comunicação, inclusive seus sistemas e tecnologias, bem como de outros serviços e instalações abertos ao público, de uso público ou privados de uso coletivo, tanto na zona urbana como na rural, por pessoa com deficiência ou com mobilidade reduzida". (BRASIL, 2015).

Adicionalmente, ela também define o que são tecnologias assistiva sou ajuda técnica no inciso três do Artigo 3 como sendo a "equipamentos, dispositivos, recursos, metodologias, estratégias, práticas e serviços que objetivem promover a funcionalidade, relacionada à atividade e à participação da pessoa com deficiência ou com mobilidade reduzida, visando à sua autonomia, independência, qualidade de vida e inclusão social" (BRASIL, 2015).

O Capítulo II da LBI descreve quais os direitos de pessoas com deficiência. E no contexto das aplicações móveis temos no Art. 9º que a "disponibilização de recursos, tanto humanos quanto tecnológicos, que garantam atendimento em igualdade de condições com as demais pessoas." (BRASIL, 2015). Dessa forma é claro a necessidade de adequar as aplicações móveis para que não haja penalidades conforme descrito no Artigo 88 da LDI aos desenvolvedores no tangente a criação de barreiras para pessoas com deficiência.

Além da LBI, o Brasil conta com outras legislações voltadas à inclusão digital e à garantia dos direitos das pessoas com deficiência. Dentre elas, destacam-se o Decreto Nº 5.296 de 2 de dezembro de 2004, que regulamenta as Leis nº 10.048 e 10.098 e estabelece normas e critérios para a promoção de acessibilidade das pessoas com deficiência, e a Lei Nº 12.965, de 23 de abril de 2014, mais conhecida como Marco Civil da Internet, que estabelece princípios, garantias, direitos e deveres para o uso da Internet no Brasil.

2.2 PESSOA COM DEFICIÊNCIA

2.2.1 Deficiências motoras

2.2.2 Deficiências visuais

2.2.3 Deficiências auditivas

2.3 FLUTTER

Flutter é uma estrutura de desenvolvimento de aplicativo que usa a linguagem de programação Dart. Ela permite a criação de interfaces de usuário altamente personalizáveis e expressivas com um bom desempenho. Ao contrário de outras estruturas de desenvolvimento móvel, como o React Native, Flutter não usa pontes de JavaScript, mas compila o código diretamente no código nativo do sistema operacional, o que melhora o desempenho (Google, 2023).

Sendo assim, segundo a mantenedora o Flutter oferece melhor desempenho, capacidade de "Hot Reload" permitindo que os desenvolvedores experimentem e construam interfaces mais rapidamente, Personalização através de um rico conjunto de "Widgets" — os "blocos de construção" do Flutter — seguindo inicialmente diretrizes do Material Design para Android e Cupertino para iOS mas sem bloquear modificações do desenvolvedor e também, permite o desenvolvimento de aplicativos para diferentes plataformas partindo de uma única fonte de código.

2.4 ANÁLISE ESTÁTICA DE CÓDIGO

Ademais, o Flutter oferece uma série de recursos que ajudam os desenvolvedores a criar aplicativos acessíveis. Ela suporta APIs de acessibilidade para Android e iOS, incluindo a API TalkBack para Android e a API VoiceOver para iOS. Além disso, o Flutter tem suporte para ampliação de tela, fontes maiores, contraste de cores suficiente e navegação por teclado (Flutter, 2023). Entretanto ainda necessitam que o desenvolvedor utilize das ferramentas providas para criar aplicações realmente acessíveis.

2.4.1 Acessibilidade

2.4.2 iOS e Android

2.5 ANÁLISE ESTÁTICA DE CÓDIGO

3 TRABALHOS CORRELATOS

permitido como filho do elemento "button" neste contexto. (Suprimindo mais erros desta subárvore.)

O objetivo desta seção é realizar uma análise comparativa de aplicações que apresentam um contexto similar ao do presente TCC. Para isso, faremos uma descrição sucinta de cada trabalho correlato, seguida de uma comparação dos requisitos que são comumente oferecidos por todas essas aplicações. A intenção é explorar as similaridades e as diferenças entre elas para aprimorar nosso entendimento e guiar o desenvolvimento do nosso projeto.

3.1 VALIDAWEB: UMA FERRAMENTA PARA SUPORTE AO DESENVOLVIMENTO DE SOFTWARE ATENDENDO AOS REQUISITOS NÃO FUNCIONAIS DE ACESSIBILI-DADE W3C

O ValidWeb (2022), é uma ferramenta voltada ao suporte no desenvolvimento de software voltados para a Web, que valida estruturas HTML e CSS com o objetivo de retornar sugestões sobre possíveis melhorias voltadas a acessibilidade. Tem como base os requisitos da W3C para definição de quais as propriedades são necessárias para uma boa acessibilidade do software que está sendo desenvolvido.

valide_1.html 2 × ♦ valide_1.html > ♦ html V 🗟 HTML diretorio1 <meta charset="UTF-8"> diretorio2 <meta http-equiv="X-UA-Compatible" content="IE=edge"> ⊗ valide 3.html <meta name="viewport" content="width=device-width, initial-</pre> ⊗ valide_2.html ⊗ valide_1.html <h1>valide os documentos</h1> </html> 10 ∨ MARCADORES Erro ✓ Informação \bigcirc ◊ ✓ REGRAS ✓ Valor "" inválido para o atributo "nome" no elemento "input": Não deve estar vazio. ☑ O elemento "div" não é

Figura 3 – Tela Principal do VSCode com a extensão ValidWeb.

Fonte: MOHR. P. 59. (2022)

A interface proposta pelo ValidWeb é intuitiva e prática. Por meio de destaques no texto,

os desenvolvedores são notificados sobre inconsistências nas especificações de acessibilidade, que devem ser resolvidas para que esses destaques sejam removidos. Além disso, a ferramenta de MOHR (2022) também permite a geração de relatórios em PDF do estado atual do código, facilitando sua análise e compartilhamento com outros desenvolvedores, especialmente em ambientes de desenvolvimento que envolvem múltiplas equipes com controle de qualidade rigoroso.

Dessa forma, o ValidWeb e o presente TCC compartilham objetivos similares, embora tenham focos tecnológicos distintos.

3.2 SONARQUBE: FERRAMENTA DE AUDITORIA DE CÓDIGO COM SUPORTE PARA FLUTTER E DART

O SonarQube, conforme descrito pela SonarSource (2023), é uma ferramenta robusta de análise estática de código. Seu objetivo é simplificar a padronização de projetos para desenvolvedores. A ferramenta dispõe de uma interface gráfica intuitiva que destaca os principais pontos de atenção na qualidade estática do código. Dentre os indicadores apresentados estão: número de bugs, vulnerabilidades, "Security Hotspots", dívida técnica, "Code Smells", cobertura de testes e linhas de código duplicadas, conforme ilustrado na Figura 4.

Figura 4 – Interface principal do SonarQube.

Fonte: GROUSSET (2023)

Por padrão, a ferramenta não oferece suporte para a linguagem Dart e o framework Flutter. No entanto, graças ao esforço da comunidade, especificamente da InsideApp (2023), uma

empresa focada no desenvolvimento de aplicações móveis, foi criado um plugin que permite a interoperabilidade básica entre Flutter, Dart e SonarQube. Este plugin aproveita as regras padrões estabelecidas pelo Flutter para realizar a análise e fornecer sugestões de melhorias.

Ainda que o foco principal do SonarQube não seja a acessibilidade, a ferramenta, em conjunto com o SonarLint - também desenvolvido pela SonarSource (2023) - oferece sugestões ao desenvolvedor durante o processo de codificação na IDE. Esta funcionalidade se assemelha à proposta do presente TCC, demonstrando a potencialidade de uso dessas ferramentas em conjunto para melhorar tanto a qualidade do código quanto sua acessibilidade.

3.3 ACCESSIBILITY_TOOLS: PACOTE PARA VALIDAÇÃO DE ACESSIBILIDADE EM APLICAÇÕES FLUTTER

Conforme descrito pela Rebel AppStudio, mantenedora do pacote, o accessibility_tools é uma suíte de ferramentas destinadas a melhorar a acessibilidade em aplicações desenvolvidas com Flutter. Troshkov (2023) destaca a importância da acessibilidade em aplicativos, ressaltando que "Criar um aplicativo acessível é extremamente importante. No entanto, é comumesquecer ou adiar essas melhorias. Este pacote garante que seu aplicativo seja acessível desde o primeiro dia, verificando a interface logo que é construída".

A Figura 5 exemplifica o funcionamento da ferramenta durante a fase de desenvolvimento de uma aplicação. A ferramenta opera em tempo de execução, enfatizando possíveis melhorias de acessibilidade por meio de mensagens exibidas diretamente na interface.

Figura 5 – Exemplo de retorno do pacote "accessibility_tools" ao detectar uma inconsistência de acessibilidade.

Fonte: TROSHKOV (2023)

Até maio de 2023, o pacote suporta a validação de áreas mínimas de toque, semântica de botões, sobreposição de textos e descrição de campos de entrada. Embora a ferramenta

cubra apenas alguns aspectos de acessibilidade, ela representa um ponto de partida valioso para desenvolvedores Flutter interessados em melhorar a acessibilidade de suas aplicações.

A abordagem adotada no presente TCC difere em aspectos importantes. Em vez de operar em tempo de execução, o foco está na análise estática de código para fornecer sugestões diretamente na IDE. Isso elimina a necessidade de compilar e executar a aplicação para avaliar as necessidades de acessibilidade, permitindo que os desenvolvedores identifiquem e resolvam problemas de acessibilidade mais rapidamente.

3.4 ANÁLISE E COMPRARAÇÃO DE TRABALHOS CORRELATOS

O universo de ferramentas disponíveis para auxiliar no desenvolvimento de aplicações acessíveis é vasto e diversificado. No entanto, as ferramentas discutidas neste capítulo foram escolhidas por sua relevância e semelhanças com a proposta deste TCC. Cada uma delas utiliza um conjunto de regras ou requisitos não funcionais de acessibilidade para estabelecer padrões e oferecer sugestões de modificações, dependendo do estado da aplicação em desenvolvimento. A identificação desses requisitos será uma etapa crucial na elaboração da proposta deste TCC.

Na Tabela 1 a seguir, é feita uma comparação entre as funcionalidades das ferramentas discutidas e os requisitos deste trabalho. Esta tabela ajuda a identificar áreas para melhoria na proposta deste TCC e também destaca as deficiências das outras ferramentas em comparação com a proposta atual.

Tabela 1 – Comparação entre as funcionalidades das ferramentas discutidas e os requisitos deste trabalho.

Funcionalidade	ValidaWeb	SonarQube	accessibility tools	Proposta Atual
Inspeção contínua	✓	✓	X	√
Análise estática de código	✓	✓	Х	✓
Acessibilidade em Flutter	✓	Х	✓	✓
Sugestão de correção	Х	Х	Х	✓
Disponível em IDE	✓	✓	Х	✓
Suporte para Flutter	Х	Х	✓	√

Fonte: Elaborado pelo autor.

A análise da Tabela 1 revela que, embora quase todas as funcionalidades sejam atendidas por uma ou mais das ferramentas, nenhuma delas oferece todas as funcionalidades em um único pacote. Notavelmente, a funcionalidade de sugestão de correção é uma característica distintiva da proposta atual, potencialmente agilizando o processo de desenvolvimento ao fornecer soluções rápidas para os desenvolvedores assim que identificarem a necessidade de melhorar a acessibilidade de suas aplicações.

4 DESENVOLVIMENTO

Esta seção tem como objetivo apresentar o processo de desenvolvimento da proposta atual, fundamentado nas etapas previamente descritas na seção de metodologia. Serão discutidos também os desafios encontrados durante o processo e possíveis ajustes na direção do projeto à medida que obstáculos emergem.

O processo de desenvolvimento da proposta inicia com a etapa de Mapeamento, na qual serão definidos os requisitos, formuladas as perguntas de pesquisa, realizado o mapeamento sistemático da literatura e estabelecidos os requisitos não funcionais para acessibilidade.

Em seguida, na etapa de Modelagem, serão construídos o Diagrama de Sequência, o Diagrama de Componentes, o Modelo Lógico de Dados e o Diagrama de Classes. Esses diagramas e modelos servirão como alicerce para a próxima fase.

Na fase do Projeto, será projetada a arquitetura de integração com o Flutter e selecionados os frameworks, bibliotecas e linguagens que serão usados no desenvolvimento da ferramenta.

Com a conclusão da etapa de Projeto, o processo de Desenvolvimento será iniciado, onde serão aplicados Padrões de Projeto e Expressões regulares, além de preparar a ferramenta para publicação.

Após a conclusão do desenvolvimento, a etapa de Testes será iniciada. Nela, será adotado o TDD, serão realizados Testes de Unidade e de Integração, bem como Testes dos Requisitos não funcionais de Acessibilidade.

Finalmente, na etapa de Validação, será realizada uma pesquisa com desenvolvedores e pessoas com deficiência, aplicado o SUS e executada uma prova de conceito. Essa etapa final permitirá avaliar a eficácia da ferramenta desenvolvida e identificar áreas de melhoria potencial. Cada uma dessas etapas será discutida em detalhes nas seções subsequentes deste capítulo.

GLOSSÁRIO

Árvore Sintática Abstrata: É uma representação abstrata (simplificada) da estrutura semântica de um código fonte escrito em uma certa linguagem de programação.

Ánalise Estática: Tem por objetivo encontrar vulnerabilidades e demais problemas na aplicação, e normalmente é executada durante a fase de revisão de código dentro do ciclo de vida de desenvolvimento de sistemas. Idealmente, tais ferramentas encontrariam falhas de segurança automaticamente e com alto grau de confiança.

Framework: É um conjunto de bibliotecas, APIs e ferramentas que auxiliam o desenvolvedor a criar aplicações de forma mais rápida e eficiente.

APÊNDICE A - TÍTULO

ANEXO A - TÍTULO

ÍNDICE

Andesito, 22, 50, 73 Argila, 52, 75, 121 Basalto, 25, 230, 235