

Offenlegungsschrift 27 21 955

Aktenzeichen:

Offenlegungstag:

P 27 21 955.2 14. 5.77

Anmeldetag:

23. 11. 78

Ø (3)

30

11)

2

Unionspriorität:

② ③ ①

Bezeichnung:

Azofarbstoffe

0

Anmelder:

BASF AG, 6700 Ludwigshafen

Ø

Erfinder:

Kurtz, Walter, Dipl.-Chem. Dr., 6702 Bad Dürkheim;

Horn, Dieter, Dipl.-Chem. Dr.; Ditter, Walter; 6900 Heidelberg

Unser Zeichen: 0.Z. 32 579 Bg/ah 6700 Ludwigshafen, 11.05.1977

Patentansprüche

1. Azofarbstoffe, die in Form der freien Basen der allgemeinen Formel I

entsprechen, in der

- \mathbb{R}^1 Wasserstoff, Chlor, Brom, Methyl, Trifluormethyl, Methoxy, Nitro oder einen Rest X,
- R² Wasserstoff, Chlor oder Nitro,
- \mathbb{R}^3 Wasserstoff, Chlor, Brom, Methyl, Methoxy, Nitro oder einen Rest X,
- ${
 m R}^4$ Wasserstoff oder ${
 m C}_1$ bis ${
 m C}_3$ -Alkyl,
- R⁵ Cyan, Carbamoyl oder Acetyl,
- ${\tt R}^6$ Wasserstoff, gegebenenfalls substituiertes Alkyl oder Cycloalkyl oder einen Rest X und
- X einen aminogruppenhaltigen Rest bedeuten, wobei das Molekül mindestens einen Rest X enthält.
- 2. Farbstoffe gemäß Anspruch 1 der Formel

226/77

-2-

809847/0274

ORIGINAL INSPECTED

in der

Al Wasserstoff, Chlor, Brom oder Nitro und

 ${\rm A}^2$ Wasserstoff, C₁- bis C₁₂-Alkyl, Cyclohexyl, Benzyl oder einen Rest X bedeuten und

X die angegebene Bedeutung hat.

3. Verfahren zur Herstellung von Farbstoffen gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Diazoniumverbindung von Aminen der Formel II

$$R^2$$
 R^3 R^3

mit Verbindungen der Formel III

kuppelt.

4. Verwendung der Farbstoffe gemäß Anspruch 1 als Zusatz zu Pigmentfarbstoffen zur Verbesserung des Fließverhaltens.

-3-

Azofarbstoffe

Die Erfindung betrifft Verbindungen, die in Form der freien Basen der allgemeinen Formel I

$$R^{1} \stackrel{O-N}{\longrightarrow} R^{3}$$

$$R^{2} \stackrel{N}{\longrightarrow} R^{4}$$

$$R^{5} \stackrel{R^{5}}{\longrightarrow} R^{5}$$

$$R^{6} \stackrel{R^{6}}{\longrightarrow} R^{5}$$

entsprechen, in der

- R¹ Wasserstoff, Chlor, Brom, Methyl, Trifluormethyl, Methoxy, Nitro oder einen Rest X,
- R² Wasserstoff, Chlor oder Nitro,
- R3 Wasserstoff, Chlor, Brom, Methyl, Methoxy, Nitro oder einen Rest X,
- 4 Wasserstoff oder $^{c}_{1}$ bis $^{c}_{3}$ -Alkyl,
- R⁵ Cyan, Carbamoyl oder Acetyl,
- R⁶ Wasserstoff, gegebenenfalls substituiertes Alkyl oder Cycloalkyl oder einen Rest X und
- X einen aminogruppenhaltigen Rest bedeuten,
 wobei das Molekül mindestens einen Rest X enthält.

-4-

Alkylreste R⁴ sind z. B. Propyl oder äthyl und insbesondere Methyl, Reste R⁶ sind neben Wasserstoff und den Resten X z. B. C₁- bis C₁₆-Alkyl, das noch durch Hydroxy oder C₁- bis C₈-Alkoxy substituiert sein kann, Cyclohexyl, Benzyl oder Phenyläthyl. Im einzelnen seien zudem CH₃, C₂H₅, C₃H₇, C₄H₉, C₅H₁₁, C₆H₁₃, C₈H₁₇, C₁₂H₂₅, C₁₆H₃₃, CH₂CH₂OH, CH₂CH₂OCH₃, CH₂CH₂OC₄H₉, (CH₂)₃OH, (CH₂)₃OCH₃, (CH₂)₃OC₂H₅, (CH₂)₃OC₃H₇, (CH₂)₃OC₄H₉, (CH₂)₃OCH₂CH C₄H₉, (CH₂)₃OC₈H₁₇ oder CH₂CHOHCH₃ genannt. Bevorzugte Reste R⁶ sind Wasserstoff, die Reste X sowie CH₃, C₂H₅, C₃H₇, C₄H₉, C₅H₁₇, CH₂CHC₄H₉, C₁₂H₂₅, C₁₃H₂₇, C₂H₅

C₂E₄OCH₃, C₃H₆OC₂H₅, C₃H₆OC₁3^H27,

Reste X sind z. B. Aminoalkyl-, Alkylaminoalkyl-, Dialkylaminoalkyl-,

Cycloalkylaminoalkyl- oder Aralkylaminoalkyl-Gruppen sowie Reste, die

Stickstoff als Ringglied enthalten und Polyaminoalkylreste. Alle diese

Reste können mit Ausnahme von R⁶ auch über das Brückenglied -SO₂NH
oder -CONH- gebunden sein. Die Alkylgruppen der Reste X können dabei

noch z. B. durch Hydroxy-, C₁- bis C₈-Alkoxy oder Phenoxy substituiert

und durch Sauerstoff unterbrochen sein.

Die Reste X haben in der Regel insgesamt 1 bis 18 Kohlenstoffatome, bevorzugt sind 3 bis 15 und insbesondere 3 bis 12 Kohlenstoffatome. Bei Polyaminoalkylresten ist die Alkylkette durch NH-Gruppen unterbrochen, Stickstoff als Ringglied enthaltende Reste sind vorzugsweise gesättigt.

-5-

Einzelne Reste X sind beispielsweise CH_2NH_2 , CH_2NHCH_3 , $CH_2NHC_2H_5$, $CH_2NHC_5H_{13}$, $CH_2NHC_8H_{17}$, CH_2NHCH_2 , CH_2NHCH_3 , CH_3 ,

 $so_2 nec_2 e_4 ne_2$, $so_2 nec_2 e_4 n(ce_3)_2$, $so_2 nec_2 e_4 n(c_2 e_5)_2$, $so_2 nec_3 e_6 nece_3$, $so_2 nec_3 e_6 n(ce_3)_2$, $so_2 nec_3 e_6 n(ce_3)_2$, $so_2 nec_3 e_6 n(ce_3)_2$, $so_2 nece_3 e_6 n(ce_3)_2$

 $\text{SO}_{2}^{\text{NHC}_{3}\text{H}_{6}\text{N}(\text{C}_{4}\text{H}_{9})_{2}}, \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{NHCH}_{3}}, \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{NHC}_{2}\text{H}_{5}}, \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{N}(\text{CH}_{3})_{2}}, \\ \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{N}(\text{C}_{2}\text{H}_{5})_{2}}, \text{SO}_{2}^{\text{NHC}_{3}\text{H}_{6}\text{NH}} \longrightarrow \text{SO}_{2}^{\text{NHC}_{2}\text{H}_{4}} - \text{NOCH}_{3}, \text{SO}_{2} - \text{NOCH}_{3}, \\ \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{N}(\text{C}_{2}\text{H}_{5})_{2}}, \text{SO}_{2}^{\text{NHC}_{3}\text{H}_{6}\text{NH}} \longrightarrow \text{NOCH}_{3}, \\ \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{N}(\text{C}_{2}\text{H}_{5})_{2}}, \text{SO}_{2}^{\text{NHC}_{3}\text{H}_{6}\text{NH}} \longrightarrow \text{NOCH}_{3}, \\ \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{N}(\text{C}_{2}\text{H}_{5})_{2}}, \text{SO}_{2}^{\text{NHC}_{3}\text{H}_{6}\text{NH}} \longrightarrow \text{NOCH}_{3}, \\ \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{N}(\text{C}_{2}\text{H}_{5})_{2}}, \\ \text{SO}_{2}^{\text{NHC}_{3}\text{H}_{6}\text{NH}} \longrightarrow \text{NOCH}_{3}, \\ \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{N}(\text{C}_{2}\text{H}_{5})_{2}}, \\ \text{SO}_{2}^{\text{NHC}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8}\text{N}(\text{C}_{4}\text{H}_{8$

 $co_2 nec_2 e_4 ne_2$, $co_2 nec_2 e_4 n(ce_3)_2$, $co_2 nec_2 e_4 n(c_2 e_5)_2$, $co_2 nec_3 e_6 nece_3$,

 co_2 NHC₃H₆N(CH₃)₂, co_2 NHC₃H₆N(C₂H₅)₂, co_2 NHC₃H₆N(C₃H₇)₂,

 $co_2^{\text{NHC}_3\text{H}_6\text{N}(C_4\text{H}_9)_2}$, $co_2^{\text{NHC}_4\text{H}_8\text{NHCH}_3}$, $co_2^{\text{NHC}_4\text{H}_8\text{NHC}_2\text{H}_5}$, $co_2^{\text{NHC}_4\text{H}_8\text{N}(C\text{H}_3)_2}$,

 co_2 nHc_4H_8 $n(c_2H_5)_2$, co_2 nHc_3H_6 nH - , co_2 nHc_2H_4 - n - cH_3 , co_2 - n - cH_3 ,

-6-

Von den Resten X sind z. B. folgende bevorzugt: CH₂N(CH₃)₂, CH₂N(C₂H₅)₂,

CH₂N(C₃H₇)₂, CH₂N(C₄H₉)₂, CH₂N(C₅H₁₁)₂, CH₂N(C₂H₄OCH₃)₂, C₂H₄N(CH₃)₂,

C₂H₄N(C₂H₅)₂, C₂H₄N(C₄H₉)₂, C₃H₇NHCH₃, C₃H₇NH , C₃H₇N(CH₃)₂,

C₃H₇N(C₂H₅)₂, C₃H₇N(C₃H₇)₂, C₃H₇N(C₄H₉)₂, C₄H₉N(C₂H₅)₂, CH₂NHC₂H₄N(CH₃)₂,

CH₂NHC₃H₇N(CH₃)₂, CH₂NHC₃H₇N(C₂H₅)₂, CH₂NHC₄H₉N(C₂H₅)₂, CH₂-N ,

CH₂-N N-CH₃, CH₂NHC₂H₄-N NH, SO₂NHC₂H₄N(CH₃)₂, SO₂NHC₂H₄N(C₂H₅)₂,

SO₂NHC₃H₆N(CH₃)₂, SO₂NHC₃H₆N(C₂H₅)₂, SO₂NHC₃H₆N(C₄H₉)₂, SO₂NHC₄H₈N(C₂H₅)₂,

SO₂NHC₄H₈N(CH₃)₂, SO₂NHC₂H₄-N N-CH₃, SO₂-N N-CH₃, CO₂NHC₂H₄N(CH₃)₂,

CO₂NHC₄H₈N(CH₃)₂, CO₂NHC₃H₆N(CH₃)₂, CO₂NHC₃H₆N(C₂H₅)₂, CO₂NHC₃H₆N(CH₃)₂,

CO₂NHC₄H₈N(CH₃)₂, CO₂NHC₄H₈N(CH₃)₂, CO₂NHC₃H₆N(CH₃)₂, CO₂NHC₃H₆N(CH₃)₂,

CO₂NHC₄H₈N(CH₃)₂, CO₂NHC₄H₈N(CH₃)₂, CO₂NHC₃H₆N(C₂H₅)₂, CO₂NHC₃H₆N(C₄H₉)₂,

CO₂NHC₄H₈N(CH₃)₂, CO₂NHC₄H₈N(CH₃)₂, CO₂NHC₃H₆NHC₃

Zur Herstellung der Verbindungen der Formel I kann man eine Diazo niumverbindung von Aminen der Formel II

mit Verbindungen der Formel III

kuppeln.

-7-

-8-

Diazotierung und Kupplung verlaufen dabei ohne Besonderheiten, Einzelheiten können den Beispielen entnommen werden, in denen sich Angaben über Teile und Prozente, sofern nicht anders vermerkt, auf das Gewicht beziehen.

Die Reste X sind in den Einzelkomponenten der Formel II und/oder III enthalten. Sie werden in der Regel bei den Resten R¹ und R³ über Halogenverbindungen. bei R⁶ bei der Herstellung der Pyridone nach im Prinzip bekannten Methoden eingeführt. Repräsentative Methoden sind bei den Beispielen angegeben.

Die Verbindungen der Formel I sind vorzüglich zur Verbesserung des Fließverhaltens von Pigmenten geeignet, denen sie in der Regel zu diesem Zweck in Mengen von 0,5 bis 10 % zugesetzt werden. Sie können in Form der freien Basen aber auch als Salze verwendet werden, wobei die Salze teilweise bevorzugt sind. Als Salze kommen insbesondere solche mit organischen Anionen, vorzugsweise langkettige Alkyl- oder Arylsulfonate, in Betracht. Im einzelnen seien als Sulfonsäuren beispielsweise genannt: Methansulfonsäure, Äthansulfonsäure, Butansulfonsäure, Octansulfonsäure, Decansulfonsäure, Dodecansulfonsäure, Tridecansulfonsäure, Hexadecansulfonsäure, Octadecansulfonsäure, Benzolsulfonsäure, α- und 8-Naphthalinsulfonsäure, o- und p-Toluolsulfonsäure, Xylolsulfonsäure, p-tert.-Butylbenzolsulfonsäure, o-Hydroxy-tert.-butylbenzolsulfonsäure, p-Hexylbenzolsulfonsäure, Octylbenzolsulfonsäure, Nonylbenzolsulfonsäure, Dodecylbenzolsulfonsäure, Hexadecylbenzolsulfonsäure, Octadecylbenzolsulfonsäure, o-Hydroxy-m, m'- bis -docylbenzolsulfonsäure, o-Hydroxynonylbenzolsulfonsäure, o-Hydroxydodecylbenzolsulfonsäure, Hydroxy-hexadecylbenzolsulfonsäure, Hydroxyoctadecylbenzolsulfonsäure, Monoalkyl- und Dialkylnaphtholsulfonsäuren, deren Alkyl 1 bis 20 C-Atome aufweisen, 1-Alken-1-sulfonsäuren 809847/0274

mit 8 bis 20 C-Atomen und 2-Hydroxy-Alkan-1-sulfonsäuren mit 8 bis 20 C-Atomen.

Von besonderer technischer Bedeutung sind Verbindungen der Formel Ia

in der

A Wasserstoff, Chlor, Brom oder Nitro und

Masserstoff, C₁- bis C₁₂-Alkyl, Cyclohexyl, Benzyl oder einen Rest Dedeuten und X die angegebene Bedeutung hat.

Im Phenylring steht der Rest X vorzugsweise in p-Stellung und vorzugsweise enthalten die Verbindungen der Formel I einen Rest X.

-9-

Allgemeine Verfahren zur Darstellung von Verbindung der 2721955 Formeln II und III

Verfahren A

151 Teile p-Cyanbenzylchlorid werden in 200 Teile Diäthylamin eingetragen und 2 Stunden am Rückfluß erhitzt. Der Überschuß an Amin wird abdestilliert, der Rückstand in 300 Teilen Wasser und 250 Teilen Isobutanol gelöst und mit 85 Teilen Hydroxylammoniumsulfat unter Zusatz von 58 Teilen techn. Soda und 10 Teilen des Natriumsalzes der Diäthylentriaminopentaessigsäure 5 Stunden erhitzt. Man läßt auf 50° abkühlen, trägt 150 Teile Isatosäureanhydrid ein und stellt danach mit 50prozentiger Natronlauge einen pH-Wert von 11 ein. Das Isobutanol wird durch Einleiten von Dampf quantitativ abdestilliert; danach wird auf 10°C abgekühlt, der Feststoff abgesaugt, mit Wasser gewaschen und getrocknet. Man erhält 280 Teile der Verbindung der Formel

Der Rohschmelzpunkt beträgt 62°C, nach dem Umkristallisieren aus Alkohol/Wasser 69°C.

-10-

Verfahren B

201 Teile 4-Cyanbenzolsulfonsäurechlorid werden langsam in 130 Teile Diäthylaminopropylamin eingetragen, wobei die Temperatur auf 60 °C ansteigt. Das viskose Reaktionsgemisch wird in 250 Teilen Isobutanol und 300 Teilen Wasser gelöst. Danach wird weiter wie bei Verfahren Abeschrieben verfahren. Nach beendigter Reaktion wird mit Salzsäure neutral gestellt, abgesaugt und getrocknet. Man erhält 292 Teile der Verbindung der Formel mit Schmelzpunkt 102°C:

Verfahren C

165 Teile m-Cyanbenzoylchlorid werden unter Kühlen in 260 Teile Diäthylaminopropylamin eingetropft und 3 Stunden bei Raumtemperatur gerührt.

Dann wird mit 300 Teilen Isobutanol versetzt und die organische Phase
zwei mal mit 200 Teilen Wasser gewaschen. Die Isobutanolphase wird
danach mit Hydroxylammoniumsulfat, Wasser und Soda wie in Verfahren A
beschrieben weiter umgesetzt. Man isoliert 310 Teile der Verbindung
der Struktur

Nach Umkristallisation aus Äthanol/Wasser erhält man einen Schmelzpunkt von 160 °C.

-11-

Verfahren D

Zu 226 Teilen Cyanessigsäureäthylester in 300 Teilen Methanol werden bei 35°C 260 Teile Diäthylaminopropylamin zugetropft, dann wird 2 Stunden bei dieser Temperatur nachgerührt; anschließend werden 170 Teile Piperidin und 260 Teile Acetessigester langsam zugegeben und es wird 12 Stunden unter Rückfluß erhitzt. Unter vermindertem Druck werden danach alle flüchtigen Bestandteile abdestilliert. Der Rückstand kristallisiert beim Stehen im Kühlschrank. Man isoliert 520 Teile der Verbindung der Formel mit dem Schmelzpunkt 175°C:

Auf prinzipiell gleiche Weise können auch die bei den folgenden Beispielen aufgeführten Diazo- und Kupplungskomponenten synthetisiert werden.

-12-

Beispiel 1

35 Teile des Amins der Formel

werden in 40 Teilen konz. Salzsäure und 150 Teilen Wasser 30 Minuten bei 60 °C gerührt. Mit Eis wird auf 0 °C gekühlt und durch Zugabe von 30 Volumenteilen Ziroz.NaNO2-Lösung diazotiert. Nach 3 Stunden wird der Nitritüberschuß mit Amidosulfonsäure zerstört und zur Diazoniumsalzlösung eine Lösung von 15 Teilen Dihydroxycyanmethylpyridin in 400 Teilen Wasser/60 Teilen 2n-Natronlauge langsam zugegeben. Mit 2n Natronlauge wird pH 6 eingestellt, 30 Minuten nachgerührt, durch Einleiten von Dampf auf 60 °C erhitzt und mit 33 Teilen Dodecylbenzolsulfonsäure in 100 Teilen Wasser versetzt. Danach wird abgesaugt und mit Wasser gewaschen. Man erhält 83 Teile des Farbstoffs der Formel

-13-

B09847/0274

Beispiel 2

43 Teile des Amins der Formel

werden in 80 Teilen Dimethylformamid gelöst und in ein gut gerührtes Gemisch aus 200 Teilen Wasser, 500 Teilen Eis, 70 Teilen Eisessig und 48 Teilen konz. Salzsäure eingetropft. Danach wird durch Zugabe von 30 Volumenteilen NaNO₂-Lösung diazotiert und nach ca. 3 Stunden überschüssiges Nitrit mit Amidosulfonsäure zerstört.

Dazu werden 15 Teile Dihydroxycyanmethylpyridon, gelöst in 300 Teilen Wasser/60 Teilen 2n Natronlauge, getropft. Dann wird mit 5n Natronlauge pH 7 eingestellt, mit Dampf auf 80 °C erhitzt und 33 Teile Dodecylbenzolsulfonsäure in 100 Teile Wasser zugegeben. Man erhält 88 Teile des Farbstoffs der Formel

-14-

Analog Beispiel 2 erhält man mit den Diazo- und Kupplungskomponenten der folgenden Tabelle gelbe Farbstoffe

Bsp.	Diazokomp.	Kupplungskomp.	Salzbildung mit
3	O-N NH ₂ CH ₂ -N(CH ₃) ₂	HO NOH	Hexadecylbenzolsulfon- säure
4	77	HO TOH	Dodecylbenzolsulfonsäure
5	91	o N OH C'6 H 3	-
6	O-N CH ₂ N(CH ₃) ₂	CH ₃ CN HO OH	Dodecylbenzolsulfon- säure
7	TT .	n	Hexadecylbenzolsulfon- säure
8		O NOH OH	Dodecansulfonsäure

809847/0274

-15-

Bsp.	Diazokomp.	Kupplungskomp.	Salzbildung mit
9	O-N O-N CH ₂ N(CH ₃) ₂	CH ₃ CN	Dodecylbenzoesulfon- säure
10	11	"	Diisobutylnaphthalin- sulfonsäure
11	#	HO NOH NH2	n
12	m	O N OH	-
13	0-N CH2-N(C2H5)2	HO N OH	Nonylbenzolsulfon- säure
14	n	HO N OH	Dodecylbenzolsulfon- säure
15	Ħ	HO NOH	Octansulfonsäure
16	$\underbrace{\begin{array}{c} O-N \\ NH_2 \end{array}}_{NH_2} \underbrace{\begin{array}{c} CH_2N(C_2H_5)_2 \end{array}}_{CH_2N(C_2H_5)_2}$	HO NOH	Dodecylbenzolsulfon- säure
17	**1	HO N OH	n
	809	847/0274	

-16-

Bsp.	. Diazokomp.	Kupplungskomp.	Salzbildung mit
18	0 -N NH ₂ CH ₂ N(C ₂ H ₅) ₂	HO NOH	Dodecylbenzolsulfon- säure
19	н	n	Alkylhexylnaphthalin- 1-sulfonsäure
20	n	HO NOH	Dodecylbenzolsulfon- säure
21	π	CH ₃ CN (cH ₂) ₃ -0-c ₂	- ^H 5
22	*	CH ₃ CN 0 C ₁₆ H ₃₃	-
23	C1	HO NOH	Dodecylbenzolsulfon- säure
24	C1	п	n

Bsp.	Diazokomp.	Kupplungskomp.	Salzbildung mit
25 ⁰ 2	O_N NH ₂ CH ₂ N(C ₂ H ₅) ₂	HO NOH	Dodecylbenzolsulfon- säure
_26 CF	O-N O-N CH ₂ N(C ₂ H ₅) ₂	, "	, TT
27	O ₂ N O ₂ N CH ₂ N(C ₂ H ₅) ₂	**	
28	O_N O_N CH ₂ N(C ₂ H ₅) ₂	n	o-Hydroxynonylbenzol- sulfonsäure
29	0-N CH ₂ N(C ₃ H ₇) ₂	n	Dodecylbenzolsulfon- säure
30	0 - N NH ₂ CH ₂ N(C ₃ H ₇) ₂	**	*

-18-

Bsp.	Diazokomp.	Kupplungskomp.	Salzbildung mit
31	0-N NH ₂ CH ₂ N(C ₃ H ₇) ₂	HO NOH	p-tert-Butylphenol- sulfonsäure
32	n	11	-
33	W	n	Äthylhexylnaphthalin- 1-sulfonsäure
34	π	HO N OH	Dodecylbenzolsulfon- säure
35	, "	OH OH	•
36	•	CH ₃ CN OH (CH ₂) ₃ -N(C ₂)	" ¹¹ 5)2
37	n	п	Dodecylbenzolsulfon- säure
38	m ·	•	2Mol *

Bsp.	Diazokomp.	Kupplungskomp.	Salzbildung mit
39	C1	HO NOH	Dodecylbenzolsulfon- säure
40	C1		w
41	O ₂ N O N CH ₂ -N(C ₃ H ₇) ₂	77	π
42	CF ₃ CH ₂ N(C ₃ H ₇) ₂	n	*
43	Br CH ₂ N(C ₃ H ₇) ₂	п	

-20-

Bsp.	Diazokomp.	Kupplungskomp.	Salzbildung mit
44	O_N CH2N(C4H9)2	HO NOH	Dodecylbensolsulfon- säure
45	C1	n	•
46	Br O_N NH ₂ CH ₂ N(C ₄ H ₉) ₂	Ħ	•
47	CH ₂ N(C ₄ H ₉) ₂	W	n
48	77	HO NO OH	•
49	***	HO NOH	-
50	C1 NH ₂ CH ₂ N(C ₄ H ₉) ₂	•	Dodecylbenzolsulfon- säure
	808	847/0274	-21-

Ввр	Diazokomp.	Kupplungskomp.	Salzbildung mit
51	O-N NH ₂ CH ₂ N(C ₅ H ₁₁) ₂	CH ₃ CN HO N OH	Dodecylbenzolsulfon- säure
52	CH ₂ N(C ₆ H ₁₃)) ₂	π
53	O_N NH ₂ CH ₂ NHC ₁₂ H ₂₅	n	re
54	O_N NH ₂ CH ₂ NH(CH ₂)	3 ^{N(CH} 3)2	•
55	O-N NH ₂ CH ₂ NH(CH ₂) ₃ N	CH ₃ CN ON OH CH ₃	-
56	C1 O-N CH2NH(CH2)	3N(CH ₃) ₂ HO N OH	Dodecylbenzolsulfon- säure

Ввр.	Diazokomp.	Kupplungskomp.	Salzbildung mit
57	O-N NH ₂ CH ₂ N	CH ₃ CN	Dodecylbenzolsulfon- säure
58	O-N NH ₂ CH ₂ N	•	•
59	O_H HH2 CH2NO	•	w
60	O -N CH ₂ CH ₂ M-CH ₃	99	w
61	O_H CH2NH(CH2)2-N_NH	n	•
62	CH2NH(CH2)2N(C2H	• 5 ⁾ 2	•

-23-

Bap.	Diazokomp.	Kupplungskomp.	Salzbildung mit
63	O-N SO2NH(CH2)2N(C2H5 NH2	CH ₃ CN	Dodecylbenzolsulfon- säure
64	O_N SO2NE(CH2)3N(C2H5)2 "	π
65	O-N SO ₂ NH(CH ₂) ₃ N(CH ₃) ₂	CH ₃ CN HO N 0 C ₁₂ H ₂₅	-
66	O_N SO ₂ N N-CH ₃	HO N OH	Dodecylbenzolsulfon- säure
67	SO ₂ NH(CH ₂) ₂ N(CH ₂)N(CH ₂) ₂ N(CH ₂)N(CH ₂)N(CH ₂)N(CH ₂)N(CH ₂ N(CH ₂)N(CH ₂)N(CH ₂)N(CH ₂ N(CH ₂)N(CH ₂)N(CH ₂ N(CH ₂)N(CH ₂	¹ 3 ⁾ 2 "	•
68	O_N NH ₂ 60 ₂ NH(CH ₂) ₃ N(CH ₃	₃) ₂ "	•

Bsp. Diazokomp.

Kupplungskomp.

Salzbildung mit

Dodecylbenzolsulfonsäure

74 "

809847/0274

-25-

Diazokomp.

Kupplungskomp. Salzbildung mit

Dodecylbenzolsulfon-säure

SO2NH(CH2)3N(CH3)2

78

SO2NH(CH2)3N(C2H5)2 HO N OH Säure

O_N CONE(CE₂)₃N(C₂E₅)₂

809847/0274

-26-

Bap.	Diazokomp.	Kupplungskomp.	Salzbildung mit
83	O _N NH ₂ CONH(CH ₂) ₃ N(C ₂ H ₅)	CH ₃ CN HO N OH	Dodecylbenzolsulfon- säure
84	O_N NH ₂ CO-N-CH ₃	77	π
85	O -N CONH(CH ₂) ₃ N(CH ₃)	"	W
86	O-N NH ₂	O N OH (cH ₂) ₂ N(CH ₃) ₂	TT .
87	#	CH ₃ CN OH (CH ₂) ₃ N(CH	- ₃) ₂
88	#	CH ₃ CN OH (cH ₂) ₃ N(C ₂)	- ^H 5 ⁾ 2

809847/0274

-27-

Bsp.	Diazokomp.	Kupplungskomp.	Salzbildung mit
89	NH ₂	CH ₃ CN ON OH (CH ₂) ₂ NH(CH	- 2 ⁾ 2 ^{NH} 2
90	.	CH ₃ CN OH (CH ₂) ₂ NH(CH	Dodecylbenzolsulfon- säure
91	н	O N OH (CH ₂) 3NH(CH	- H ₂) ₃ NH(CH ₂) ₃ NH ₂
92	C1 NH2	**	-
93	· n	O CH ₃ CN OH (CH ₂) ₃ N(C ₃	- ^H 7 ⁾ 2
94	O-N SO ₂ NH(CH ₂) ₃ N(CH ₃))2 #	Dodecylbenzolsulfon- säure

-28-

Bsp. Diazokomp.

Kupplungskomp.

Salzbildung mit

95

O N OH

Dodecylbenzolsulfonsäure

OH (CH₂)₃N(C₃H₇)₂

96

HO N OF

97

BASF Aktiengesellschaft

THIS PAGE BLANK (USPTO)