Introduction to

Algorithm Design and Analysis

[14] Minimum Spanning Tree

Jingwei Xu
https://ics.nju.edu.cn/~xjw
Institute of Computer Software
Nanjing University

In the last class...

- Undirected and Symmetric Digraph
 - DFS skeleton
- Biconnected Components
 - Articulation point
 - Bridge
- Other undirected graph problems
 - Orientation for undirected graphs
 - MST based on graph traversal

Greedy Strategy

- Optimization Problem
- Greedy Strategy

- MST Problem
 - Prim's Algorithm
 - Kruskal's Algorithm
- Single-Source Shortest Path Problem
 - Dijkstra's Algorithm

Greedy Strategy for Optimization Problems

Coin change Problem

- [candidates] A finite set of coins, of 1, 5, 10 and 25 units,
 with enough number for each value
- [constraints] Pay an exact amount by a selected set of coins
- [optimization] a smallest possible number of coins in the selected set

Solution by greedy strategy

 For each selection, choose the highest-valued coin as possible

Greedy Fails Sometimes

- We have to pay 15 in total
- If the available types of coins are {1,5,12}
 - The greedy choice is {12,1,1,1}
 - But the smallest set of coins is {5,5,5}
- If the available types of coins are {1,5,10,25}
 - The greedy choice is always correct

Greedy Strategy

- Expanding the partial solution step by step
- In each step, a selection is made from a set of candidates.
 The choice made must be:
 - [Feasible] it has to satisfy the problem's constraints
 - [Locally optimal] it has to be the best local choice among all feasible choices on the step
 - [Irrevocable] the choice cannot be revoked in subsequent steps

```
set greedy(set candidate)
set S=Ø;
while not solution(S) and candidate≠Ø
select locally optimizing x from candidate;
candidate=candidate-{x};
if feasible(x) then S=S∪{x};
if solution(S) then return S
else return ("no solution")
```

Weighted Graph and MST

A weighted graph

The nearest neighbor of vertex *I* is *H*The nearest neighbor of shaded subset of vertex is *G*

Graph Traversal and MST

There are cases that graph traversal tree cannot be minimum spanning tree, with the vertices explored in any order.

BFS tree

in any ordering of vertex

Greedy Algorithms for MST

- Prim's algorithm:
 - Difficult selecting: "best local optimization means no cycle and small weight under limitation"
 - Easy checking: doing nothing
- Kruskal's algorithm:
 - Easy selecting: smallest in primitive meaning
 - Difficult checking: no cycle

Greedy strategy:

For each set of fringe vertex, select the edge with the minimal weight, that is, local optimal.

Greedy strategy:

For each set of fringe vertex, select the edge with the minimal weight, that is, local optimal.

Greedy strategy:

For each set of fringe vertex, select the edge with the minimal weight, that is, local optimal.

Greedy strategy:

For each set of fringe vertex, select the edge with the minimal weight, that is, local optimal.

Greedy strategy:

For each set of fringe vertex, select the edge with the minimal weight, that is, local optimal.

Correctness: How to Prove

Invariance: MST

- Spanning treeMin weight

Definition transformation

Minimum Spanning Tree Property

- A spanning tree T of a connected, weighted graph has MST property if and only if for any non-tree edge uv, T ∪ {uv} contain a cycle in which uv is one of the maximum-weight edge.
- All the spanning trees having MST property have the same weight.

MST Property and Minimum Spanning Tree

 In a connected, weighted graph G={V,E,W}, a tree T is a minimum spanning tree if and only if T has the MST property.

Proof

- => For a minimum spanning tree T, if it doesn't has MST property.
 So, there is a non-tree edge uv, and T ∪ {uv} contain an edge xy with weight larger than that of uv. Substituting uv for xy results a spanning tree with less weight than T. Contradiction.
- <= As claimed above, any minimum spanning tree has the MST property. Since T has MST property, it has the same weight as any minimum spanning tree, i.e. T is a minimum spanning tree as well.

Correctness of Prim's Algorithm

 Let T_k be the tree constructed after the kth step of Prim's algorithm is executed. Then T_k has the MST property in G_k, the subgraph of G induced by vertices of T_k.

than any edges in u₁w_a-path,

and v as well

Key Issue in Implementation

- Maintaining the set of fringe vertices
 - Create the set and update it after each vertex is "selected" (deleting the vertex having been selected and inserting new fringe vertices)
 - Easy to decide the vertex with "highest priority"
 - Changing the priority of the vertices (decreasing key)
- The choice: priority queue

Implementing Prim's Algorithm

return

```
Main Procedure
```

```
Initialize the priority queue pq as empty;
Select vertex s to start the tree;
Set its candidate edge to (-1,s,0);
insert(pq,s,0);
while (pq is not empty)
v=getMin(pq); deleteMin(pq);
add the candidate edge of v to the tree;
updateFringe(pq,G,v);
return
```

getMin(pq) always be the vertex with the smallest key in the fringe set. ADT operation executions:

insert, getMin, deleteMin: n times decreaseKey: m times

```
Updating the Queue
```

```
updateFringe(pq,G,v)
For all vertices w adjcent to v //2m loops
newWgt=w(v,w);
if w.status is unseen then
    Set its candidate edge to (v,w,newWgt);
    insert(pq,w,newWgt)
    else
    if newWgt<getPriorty(pq,w)
        Revise its candidate edge to (v,w,newWgt);
        decreaseKey(pq,w,newWgt)</pre>
```

Complexity

- Operations on ADT priority queue: (for a graph with vertices and m edges)
 - insert: n; getMin: n; deleteMin: n;
 - decreaseKey: m (appears in 2m loops, but execute at most m)
- So,
 - T(n,m)=O(nT(getMin)+nT(deleteMin+insert)+mT(decreaseKey))
- Implementing priority queue using array, we can get Θ(n²+m)

Also Greedy strategy:

From the set of edges not yet included in the partially built MST, select the edge with the minimal weight, that is, local optimal, in another sense.

Also Greedy strategy:

From the set of edges not yet included in the partially built MST, select the edge with the minimal weight, that is, local optimal, in another sense.

Also Greedy strategy:

From the set of edges not yet included in the partially built MST, select the edge with the minimal weight, that is, local optimal, in another sense.

Also Greedy strategy:

From the set of edges not yet included in the partially built MST, select the edge with the minimal weight, that is, local optimal, in another sense.

Also Greedy strategy:

From the set of edges not yet included in the partially built MST, select the edge with the minimal weight, that is, local optimal, in another sense.

Also Greedy strategy:

From the set of edges not yet included in the partially built MST, select the edge with the minimal weight, that is, local optimal, in another sense.

Also Greedy strategy:

From the set of edges not yet included in the partially built MST, select the edge with the minimal weight, that is, local optimal, in another sense.

Also Greedy strategy:

From the set of edges not yet included in the partially built MST, select the edge with the minimal weight, that is, local optimal, in another sense.

Key Issue in Implementation

- How to know an insertion of edge will result in a cycle efficiently?
- For correctness: the two endpoints of the selected edge cannot be in the same connected components.
- For the efficiency: connected components are implemented as dynamic equivalence classes using union-find.

```
kruskalMST(G,n,F) //outline
  int count;
  Build a minimizing priority queue, pq, of edges of G, prioritized by weight.
  Initialize a Union-Find structure, sets, in which each vertex of G is in its own set.
F=Φ;
  while (isEmpty(pq) == false)
     vwEdge = getMin(pq);
     deleteMin(pq);
     int vSet = find(sets, vwEdge.from);
     int wSet = find(sets, vwEdge.to);
     if (vSet ≠ wSet)
        Add vwEdge to F;
        union(sets, vSet, wSet)
  return
```

```
kruskalMST(G,n,F) //outline
  int count;
  Build a minimizing priority queue, pq, of edges of G, prioritized by weight.
  Initialize a Union-Find structure, sets, in which each vertex of G is in its own set.
F=Φ;
  while (isEmpty(pq) == false)
     vwEdge = getMin(pq);
     deleteMin(pq);
     int vSet = find(sets, vwEdge.from);
     int wSet = find(sets, vwEdge.to);
     if (vSet ≠ wSet)
        Add vwEdge to F;
        union(sets, vSet, wSet)
```

return

```
kruskalMST(G,n,F) //outline
  int count;
  Build a minimizing priority queue, pq, of edges of G, prioritized by weight.
  Initialize a Union-Find structure, sets, in which each vertex of G is in its own set.
F=Φ;
  while (isEmpty(pq) == false)
     vwEdge = getMin(pq);
     deleteMin(pq);
     int vSet = find(sets, vwEdge.from);
     int wSet = find(sets, vwEdge.to);
     if (vSet ≠ wSet)
        Add vwEdge to F;
        union(sets, vSet, wSet)
  return
```

- kruskalMST(G,n,F) //outline
- **int** count;

return

- Build a minimizing priority queue, pq, of edges of G, prioritized by weight.
- Initialize a Union-Find structure, sets, in which each vertex of G is in its own set.

```
F=φ;
while (isEmpty(pq) == false)
vwEdge = getMin(pq);
deleteMin(pq);
int vSet = find(sets, vwEdge.from);
int wSet = find(sets, vwEdge.to);
if (vSet ≠ wSet)
Add vwEdge to F;
union(sets, vSet, wSet)
```

Simply sorting, the cost will be Θ(mlogm)

Prim vs. Kruskal

- Lower bound for MST
 - For a correct MST, each edge I the graph should be examined at least once.
 - So, the lower bound is $\Omega(m)$.
- Θ(n²+m) and Θ(mlogm), which is better?
 - Generally speaking, depends on the density of edge of the graph.

Single Source Shortest Paths

The single source

Red labels on each vertex is the length of the shortest path from s to the vertex.

Note:

The shortest [0, 3]-path doesn't contain the shortest edge leaving s, the edge [0,1]

Thank you! Q & A