EEE205 – Digital Electronics (II) Lecture 12

Xiaoyang Chen, Jiangmin Gu, Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Moore and Mealy Sequential Circuits
- State Tables and Graphs
- Derivation of State Tables

General Form of A Sequential Circuit.

- Sequential circuits are called finite state machines (FSM).
- Combinational circuit 1 has inputs from the input W and the state Q of the flip-flops.
- The output Z always depends on the state Q of the flip-flops and possibly on the input W.

General Form of A Sequential Circuit.

- The sequential circuits whose outputs depend only on the state of the circuit are of Moore type.
- Those whose outputs depend on both the state and the inputs are of Mealy type.

 A state table, also called a state transition table, specifies the next state and output of a sequential circuit in terms of its present state and input

Present	Next	Output	
state	w = 0	w = 1	\mathcal{Z}
A	A	В	0
В	A	\mathbf{C}	0
C	A	\mathbf{C}	1

 A state graph is a graphical representation of the state table, in which each node represents a state and the arc joining the nodes is labelled with the input causing the state change.

The method to construct the state table and graph from a given circuit:

A Moore sequential circuit

1. Determine the flip-flop input equations and the output equations from the circuit.

$$D_A = X \oplus B'$$
 $D_B = X + A$ $Z = A \oplus B$

$$D_R = X + A$$

$$Z = A \oplus B$$

D flip flop

D-CE flip flop

T flip flop

$$Q^+ = D$$

$$Q^+ = D \cdot CE + Q \cdot CE'$$

$$Q^+ = T \oplus Q$$

S-R flip flop

<u>S</u>	R	Q+
0	0	Q
1	0	1
0	1	0

$$Q^+ = S + R'Q$$

J-K flip flop

J	K	Q+
0	0	Q
1	0	1
0	1	0
1	1	Q'
Q+ =	= JQ' +	K'Q

2. Derive the next-state equation for each flip-flop from its input equations, using one of the these:

D flip-flop
$$Q^+ = D$$

D-CE flip-flop $Q^+ = D \cdot CE + Q \cdot CE'$

T flip-flop $Q^+ = T \oplus Q$

S-R flip-flop $Q^+ = S + R'Q$

J-K flip-flop $Q^+ = JQ' + K'Q$

The next-state equations for the flip-flops are:

$$A^+ = X \oplus B'$$
 $B^+ = X + A$

3. Form the state table.

$$A^+ = X \oplus B'$$
 $B^+ = X + A$ $Z = A \oplus B$

	\mathcal{A}^+		
AB	X = 0	<i>X</i> = 1	Z
00	10	01	0
01	00	11	1
11	01	11	' O
10	11	01	1

4. Replace each combination of states with a single symbol. Draw the state graph.

Replacing 00 with S_0 , 01 with S_1 , 11 with S_2 , and 10 with S_3 .

Present State	Next $X = 0$	State <i>X</i> = 1	Present Output (<i>Z</i>)
S_0	S_3	S_1	0
S_1	S_0	S_2	1
S_2	S ₁	S_2	0
S_3	S_2	<i>S</i> ₁	1

In a Moore state graph, the output is written with the state.

Another example for a Mealy sequential circuit:

$$J_A = XB$$
 $K_A = X$
 $Z = XB' + XA + X'A'B$

$$J_B = X$$
 $K_B = XA$

The next-state and output equations are:

$$A^{+} = J_{A}A' + K'_{A}A = XBA' + X'A$$
 $B^{+} = J_{B}B' + K'_{B}B = XB' + (AX)'B = XB' + X'B + A'B$
 $Z = X'A'B + XB' + XA$

Recall that Q + = JQ' + K'Q for J-K flip flops

$$J_A = XB$$
 $K_A = X$ $J_B = X$ $K_B = XA$

$$A^{+} = J_{A}A' + K'_{A}A = XBA' + X'A$$
 $B^{+} = J_{B}B' + K'_{B}B = XB' + (AX)'B = XB' + X'B + A'B$
 $Z = X'A'B + XB' + XA$

	A^+B^+		Z	
AB	X = 0	1	X = 0	1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

Present State	Next State $X = 0$ 1		Present Output $X = 0$	
S_0	S_0	S ₁	0	1
S_1	S ₁	S_2	.1	0
S_2	S_2	S_0	0	1
S_3	S ₃	S_1	0	1

	A^+B^+		Z	
AB	X = 0	1	X = 0	1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

Present State	Next State X = 0 1		Preser Outpu X = 0	
S_0	S_0	S ₁	0	1
S_1	S_1	S_2	.1	0
S_2	S_2	S_0	0	1
S ₃	S ₃	S ₁	0	1

- The labels on the arcs are X/Z, where X is the input and Z is the output.
- In a Mealy state graph, the output is written with the transition. 16