

Small Signal MOSFET N-Channel

Features:

*Low On-Resistance : 5Ω *Low Input Capacitance : 60PF *Low Out put Capacitance : 25PF *Low Threshole :1.4V(TYE) *Fast Switching Speed : 10ns

Maximum Ratings (TA=25°C Unless Otherwise Specified)

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current (TA=25°C)	I _D	200	mA
Pulsed Drain Current ⁽¹⁾	I _{DM}	500	mA
Power Dissipation (TA=25°C)	P _D	350	mW
Maximax Junction-to-Ambient	$R_{oldsymbol{ heta}JA}$	357	°C/W
Operating Junction and Storage Temperature Range	T _J ,Tstg	-55 to 150	°C

Device Marking

2N7000=7000

Note 1:

Pulse Width Limited by Maximum Junction Temperature

2N7000

Electrical Characteristics (TA=25°C Unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Static				
Drain-Source Breakdown Voltage V _{GS} =0V, I _D =10 uA	V _{(BR)DSS}	60	-	V
Gate-Threshold Voltage V _{DS} =V _{GS} , I _D =1.0 mA	V _{GS (th)}	0.8	3.0	V
Gate-body Leakage V _{DS} =0V,V _{GS} =15V	I _{GSS}	-	-10	nA
Zero Gate Voltage Drain Current V _{DS} =48V, V _{GS} =0V V _{DS} =48V, V _{GS} =0V, T _j =125 °C	I _{DSS}	- -	1.0 1.0	uA mA
On-State Drain Current (2) V _{GS} =4.5V, V _{DS} =10V	I _{D (on)}	75	-	mA
Drain-Source On-Resistance (2) V _{GS} =10V, I _D =500mA V _{GS} =4.5V, I _D =75mA	r _{DS (on)}	- -	5.0 6.0	Ω
Forward Transconductance (2) V _{DS} =10V, I _D =200mA	g _{fs}	100	-	us
Drain-Source On-Voltage V_{GS} =10V, I_D =500mA V_{GS} =10V, I_D =75mA	V _{SD(on)}	-	2.5 0.45	V

$Dynamic {\small \scriptsize{(1)}}$

Input Capacitance V _{DS} =25V, V _{GS} =0V, f=1MHZ	C _{iss}	-	60	
Output Capacitance V _{DS} =25V, V _{GS} =0V, f=1MHZ	C _{oss}	-	25	рF
Reverse Transfer Capacitance V _{DS} =25V, V _{GS} =0V, f=1MHZ	C _{rss}	-	5.0	

$Switching \ {\tiny (1)\ (3)}$

Turn-On Time $\label{eq:VDD} \begin{array}{l} \text{Turn-On Time} \\ \text{V}_{DD} = 15\text{V}, \text{R}_L = 30\Omega, \text{I}_D = 500\text{mA} \\ \text{V}_{GEN} = 10\text{V}, \text{R}_G = 25\Omega \end{array}$	[‡] d(on)	-	10	nS
Turn-Off Time $\begin{aligned} &V_{DD}\text{=}15V, R_L\text{=}30\Omega, I_D\text{=}500\text{mA} \\ &V_{GEN}\text{=}10V, R_G\text{=}25\Omega \end{aligned}$	^t d(off)	-	10	nS

Note: 1. For Design Aid Only not Subject to Production Testing.

- 2. Pulse Test : PW \leq 300 μ s, Duty Cycle \leq 2%
- ${\it 3. Switching Time is Essentially Independent of Operating Temperature}\;.$

WEITRON

FIG. 1 Ohmic Region

FIG.2 Transfer Characteristics

+ 1.0 VGS(th), THRESHOLD VOITAGE (NORMALIZED) 1.2 1.05 $V_{DS} = V_{GS}$ 1.1 $I_D = 1.0 \text{ mA}$ 1.10 1.0 0.95 0.9 0.85 0.8 0.75 0.7 - 60 + 20 +60 + 100 T, TEMPERATURE (°C)

FIG.3 Temperature versus Static Drain-Source On-Resistance

FIG.4 Temperature versus Gate Threshold Voltage

TO-92 Outline Dimensions

unit:mm

TO-92			
Dim	Min	Max	
A	3.000	5.100	
В	1.100	2.030	
C	0.380	0.600	
D	0.360	1.100	
E	4.400	0.500	
G	3.430	-	
Н	4.300	4.700	
J	1.270TYP		
K	2.440	2.640	
\mathbf{L}	14.100	14.500	