

> plot3d(f(x,y), x=-2..2, y=-2..2, axes=BOX,
 shading=ZHUE, scaling=constrained);

> plot(f(x,0),x=-2..2,scaling=constrained); # xz-plane cross
section

> plot(f(0,y),y=-2..2,scaling=constrained); # yz-plane cross section

> plot3d(f(x,y), x=-2..2, y=-2..2, axes=BOX, shading=ZHUE,
style=patchcontour);

> plot3d(f(x,y), x=-2..2, y=-2..2, axes=BOX, shading=ZHUE,
 style=contour); #right click on the graph to change these option

> implicit plot(f(x,y)=1,x=-2..2,y=-2..2); # The level curve f = 1. Relate to the above graph

> display({p0,g});

> implicit plot(f(x,y)=0,x=-2..2,y=-2..2); # The level curve f = 0. Relate to the above graph

> contourplot(f(x,y), x=-2..2, y=-2..2, scaling=constrained);
#level curves

> plot3d(x*y/(x^2 + y^2),x=-2..2,y=-2..2,grid=[30,30],axes=boxed);
#change the grid values to get a finer grid

> plot3d($x^3/(x^2 + y^2), x=-1..1, y=-1..1, grid=[30,30], axes=boxed);$ # the limit as $(x,y) \rightarrow (0,0)$ exists.


```
> plot3d(2*x^2*y/(x^4 +
    y^2),x=-1..1,y=-1..1,grid=[80,80],axes=boxed);
```


> contourplot(2*x^2*y/(x^4 + y^2),x=-1..1,y=-1..1,grid=[80,80]);
#Note that all the contours approach (0,0)

