Vibrational Spectra of Some Heterocyclic Boron Compounds

Part 2.—2-Chloro- and 2-Phenyl-1,3,2-Dithiaborolans

By Arthur Finch, J. Pearn and D. Steele

Dept. of Chemistry, Royal Holloway College, Englefield Green, Surrey

Received 28th September, 1965

The infra-red and Raman spectra of 2-chloro- and 2-phenyl-1,3,2-dithiaborolans have been measured. Evidence is presented for non-planarity (C_2 symmetry) of the thiaborolan rings. A partial vibrational assignment, consistent with the computations of part 1 and with assignments of similar molecules, is proposed.

In part 1,¹ computations of vibrational frequencies and modes of 5- and 6-membered cyclic boron compounds were presented. In addition to the general frequency pattern is was demonstrated that severe mixing of B—Cl stretching modes with other vibrational modes occurred where this was permissible on symmetry grounds. The extent of mixing was such as to make the label B—Cl stretching vibration inappropriate for any real mode in these systems. Lack of experimental data other than liquid phase infra-red data made detailed comparisons between calculations and observations inappropriate.

In this paper experimental data are presented on the (I) 2-chloro- and (II) 2-phenyl-1,3,2-dithiaborolans. This system is characterized by considerable pyrolytic

stability.^{2a} Molecular weight studies ^{2b} have shown that, unlike the oxygen analogues, there is no association in dilute benzene solution; assuming that this is also true in the pure phase, then the complications of the effects of dimerization and polymerization on the vibrational spectra are avoided. The 2-chloro-1,3,2-dioxaborolans and borinans proved too unstable for their Raman spectra to be obtained under normal conditions.

EXPERIMENTAL

The infra-red spectra were run in the pure liquid phase on a Unicam SP 100 with grating accessories over the range 2000-400 cm⁻¹, and at lower frequencies on a grating spectrometer designed and built in the department.³ Raman spectra were recorded on a Cary 81 spectrograph utilizing slit widths of 8 cm⁻¹ and the mercury 4358 Å line for excitation. Polarization measurements were made using the method of Edsall and Wilson.⁴ The observed values were corrected from calibration curves for the instrument determined using the true polarization ratios of carbon tetrachloride evaluated by Rank, Pfister and Grimm⁵. Observed spectra and frequencies are shown in tables 2 and 3 respectively.

Compounds were prepared by established procedures 2^a and manipulated in dry, oxygen-free enclosures. Satisfactory characterization was made by analysis and checking physical constants.

2-CHLORO-1,3,2-DITHIABOROLAN.—B.p. 25-26°C/0·05 mm, $n_D^{25} = 1.5776$ (lit. values, b.p. 24-25/0·1 mm, $n_D^{25} = 1.5778$); found % Cl, 25.5; % B, 7.78; C₂H₄S₂BCl requires Cl, 25.6; B, 7.82.

2-PHENYL-1,3,2-DITHIABOROLAN.—B.p. 90-92/0·05 mm, $n_D^{25} = 1.6348$ (lit. values, b.p. 90-92/0·05 mm, $n_D^{25} = 1.6346$); found B, 5·39; $C_8H_9S_2B$ requires B, 5·56.

ASSIGNMENTS *

It was assumed 1 that the 5-membered boron heterocyclic rings were planar. Following Mulliken 6 (recommendations 3 and 5a lead to z-axis as symmetry axis and x-axis as perpendicular to plane of molecular skeleton) the fundamental vibrational modes of 1 classify as

$$5a_1+4b_2+2b_1+a_2$$
 (skeletal modes),
+ $3a_1+3b_2+3a_2+3b_1$ (CH₂ modes).

Two possible structures of lower symmetry exist. First, if the skeleton exists in the envelope form the molecular symmetry is C_S and the a_1 and b_1 and the a_2 and b_2 classes coalesce. In the puckered ring configuration the symmetry is C_2 and the a_1 and a_2 and the b_1 and b_2 classes coalesce.

TABLE 1.—POTENTIAL ENERGY DISTRIBUT	TION IN C_2S_2BCl
-------------------------------------	---------------------

	sym	BCl	BS	C-S	CC	SBS	BSC	SCC	CIBS
1381	a_1	26	22	5	21	16	9	1	0
1258	b_2^-	0	80	5	0	0	3	5	7
1218	a_1	15	14	12	49	5	0	4	0
1158	b_2	0	23	16	0	0	1	53	7
951	a_1	1	0	76	18	0	0	4	0
604	b_2	0	3	20	0	0	23	54	0
577	a_1	20	47	0	7	9	11	6	0
368	a_1	40	1	1	4	34	18	1	0
245	b_2	0	12	0	0	0	1	0	87

2-CHLORO-1,3,2-DITHIABOROLAN (I)

There is a striking agreement between the frequencies and intensities of the bands above 600 cm⁻¹ of compound (I) and of the non-phenyl vibrations of the phenyl analogue (II). The only appreciable differences occur near 950 cm⁻¹, the distribution of intensity amongst the components of the intense absorption complex being a little different in the two cases, and the frequencies of the chloro-compound being a little above those of the phenyl derivative. Corresponding Raman lines are strongly polarized. The band complex of the phenyl derivative is naturally assigned as due to the phenyl boron stretching mode by analogy with corresponding mass-sensitive bands of other phenyl derivatives.⁷ Two arguments refute such a simple explanation. In the first case the computations presented in part 1 showed how considerably the B—Cl stretching mode mixed with other modes. Indeed, for the dioxa-analogue the band near 1000 cm⁻¹ was computed to have a relatively low B—Cl contribution. The mass changes inherent in substituting sulphur for oxygen could seriously affect the potential energy distribution, so this has been

^{*} The subsequent discussion relates only to frequencies below ca. 2000 cm⁻¹.

computed for (1) (table 1). This indicates an even smaller B—Cl contribution. However, the cause of the mixing is the kinetic condition of momentum conservation more than the force field effects. The second argument is based on the spectra. It is difficult to estimate the effective mass of the phenyl ring but it ought to be less than that of the chlorine atom; first, the vibrational frequencies of the aromatic ring are close to the frequency of the band in question. Coupling of the modes will therefore occur rather than the phenyl unit vibrating as an entity. This indicates that the effective mass should probably be within twice that of an isolated carbon atom. Further, the B-Cl force constant is less than that of the B-C force constant in boron trimethyl.8 This, in turn, should be less than that of the B-phenyl due to the π electron contributions to the bonding. This again will tend to reduce the "natural" B-Cl frequency as compared to the "natural" B-phenyl. The experimental evidence is that the frequency of the complex is higher for (I) than for (II). By the rule of mass effects 9 this indicates that the natural B-phenyl frequency lies above 920 cm⁻¹ and the natural B—Cl frequency lies below 970 cm⁻¹. Mixing of modes then depresses the frequency of the intense complex in (II) but increases it in (I). It is believed that the principal contributing mode to both these complexes is the B—S stretching mode.

For a planar ring skeleton there are five a_1 skeletal modes and two a_1 CH₂ modes, a wag and a scissoring deformation. By analogy with the 1,2 disubstituted ethanes 10 the wag and scissoring modes are expected near 1250 and 1430 cm⁻¹. The calculations of part 1 predict that the two highest skeletal modes are near 1380 and 1220 cm⁻¹. These points show that the five strong polarized Raman bands at 996, 948, 668, 477 and 338 cm⁻¹ and the less strong 841 cm⁻¹ band are to be associated with the three remaining a_1 fundamentals. The 996, 948 cm⁻¹ pair are readily explained as a fundamental in Fermi resonance with a combination band. The 840 cm⁻¹ band might be 2×420 cm⁻¹, though an alternative explanation is noted later. It seems unlikely that any of the other polarized bands arise from Fermi resonance and it is necessary to deduce that the skeleton is non-planar. The obvious mode possible for the additional band is the low-frequency rock. Other CH₂ modes occur at too high frequencies to be responsible for the observed bands. The low-frequency rock belongs to the A class of gauche XCH₂CH₂X systems and is thus the out-of-phase mode. This would belong to the fully symmetric class of group C_2 but not C_8 showing that a thiaborolan ring is puckered and does not have the "envelope" configuration. The B-class rock is to be expected between 900 and 800 cm⁻¹. Strong infra-red absorption occurs at 840 cm^{-1} but a Raman band with this frequency shift is polarized. For the B rock to be polarized the ring must assume the envelope configuration but this is inconsistent with the previous analysis leading to a puckered ring unless the C—S—B angles are non-equivalent. This seems unlikely. The polarization of the Raman band is consistent with it being the overtone of a 420 cm⁻¹ fundamental. strength of the infra-red absorption may be due either to some acquired intensity for the 1010-920 cm⁻¹ complex or from overlapping with the *B*-type rock.

In the trans and in the gauche 1,2 disubstituted ethanes, the CH₂ scissoring deformations all occur in the range 1460 to 1410 cm⁻¹. In the gauche halogeno ethanes, the A and B deformations are not resolved and the Raman bands are depolarized. The 1430 cm⁻¹ bands are consequently identified with these modes. Four ring modes and four twisting and wagging modes remain to be located at frequencies above 1000 cm⁻¹. On the present evidence they cannot be identified with certainty. The assignment presented in table 2 is based on the results of the computations as given in part 1 on the basis of a planar ring structure and on the expected ranges for the CH₂ modes based on the analogous frequencies of the

ethylene dihalides.⁸ These lead to the following approximate anticipated frequencies: A modes (skeletal) 1380, 1220 (CH₂), 1325 and 1200 cm⁻¹; B modes (skeletal) 1260, 1160 (CH₂), 1350-1250, 1250-1100 cm⁻¹. Clearly it is possible to identify all the major unassigned bands with the skeletal modes alone or with the CH₂ modes alone. A comparison of intensities with those of the ethylene dihalides would favour slightly the asterisked assignments.

2-PHENYL-1,3,2-DITHIABOROLAN (II)

A comparison of the observed spectra with those of phenyl boron dichloride leads to a classification of all absorption bands as phenyl vibrations or as alicyclic vibrations. The correspondence of frequencies and intensities is excellent throughout. We note the extreme weakness of the characteristic phenyl vibrations at $1500 \, \mathrm{cm}^{-1}$ which is due to an $a_1 \, \mathrm{C-C}$ stretching mode. This band is also very weak in the spectra of the corresponding borinan, but not in the -1,3,2-dioxaborolans and -borinans. It thus appears that this characteristic might

of other characteristic phenyl vibrations. It is to be expected that the $B-\phi$ stretch will be near 1200 cm⁻¹ and it is certain that the very intense polarized Raman complex near this frequency is largely due to this mode probably interacting through Fermi resonance with the a_1 CH deformation. Of the remaining five mass-sensitive vibrations of the phenyl group ⁷ only three can be assigned with any degree of assurance. The a_1 vibration labelled r by Randle and Whiffen ⁷ and the low frequency vibration x have not been identified, but by comparison with other aromatics can be expected near 800 cm⁻¹ and near 200 cm⁻¹ respectively.

Table 2.—Observed vibrational frequencies of 2-chloro-1,3,2-dithiaborolan and their assignments

Raman		infra-red	assignments ring modes	CH ₂ modes
	_		ring modes	
1433 vs	dp	1428 s		$A, B(\delta)$
1360 w	$(\sim 0.1_5)$	1378 m	a_1 (calc. 1381)	
1291 m	(0.4_1)	1282 s		$A(\mathbf{W})$
1262 mw	dp	1258 m	b ₂ (calc. 1258) *	B(W)
1215 w	(~ 0.8)	1197 w		A(T) *
1173 s	(0.6_1)	1162 w	a ₁ (calc. 1218) *	
1128 ms	dp	1118 m	b ₂ (calc. 1158) *	B(T)
996 s	(0.7_3)	1010 vs	a_1 (calc. 951)	
977 sh		970 vvs (a_1 (care. 931) +(2×477)	
948 m	(0.1_{9})	942 vvs		
		920 vs	+(338+668)	
841 m	(0.6_0)	840 s-vs	2×420	B(R)
760 vw		755 w		
		669 w-m		
668 vvs	(0.27)	664 s	" (cclc 577) I	4(D)
477 vvs	(0.01_1)	}	a_1 (calc. 577)+	$A(\mathbf{R})$
460 sh		457 w		
420 m	dp	410 m	b ₂ (calc. 604)	
338 vs	(0.4_1)	326 m	<i>a</i> ₁ (calc. 368)	
	<u>-</u> ,	294 vw		
220 s	dp		b_2 (calc. 245)	

^{*} preferred assignments

dp measured ratios 0.8-0.9

The non-aromatic bands above 600 cm^{-1} are explained in a similar manner to their counterparts in the chloro-compound. The low-frequency spectra of the two ring compounds do not agree, showing that the low-frequency modes are much more sensitive to the ring substituent. This is as expected but renders assignments more difficult. As a result of the increased restoring force on the inter-ring bridging carbon atom as compared with that on the chlorine, and as a result of the higher mass of the chlorine atom, it is to be expected that the phenyl substituent frequencies will be appreciably higher than those of the chloro compound. In particular, it seems reasonable that the 477 cm^{-1} band of the chloro derivatives should be increased to above 600 cm^{-1} and it is proposed that the two intense polarized Raman lines at $675 \text{ and } 642 \text{ cm}^{-1}$ are due to two a_1 fundamentals in resonance. However, it is disconcerting to have a strong polarized Raman band at 260 cm^{-1} which must be compared with the 338 cm^{-1} band of C_2S_2BCl . Other low-frequency assignments are difficult to justify and are listed as tentative proposals.

Table 3.—Observed vibrational frequencies of 2-phenyl-1,3,2-dithiaborolan and their assignments, together with the relevant data for phenyl boron dichloride

S—(CH ₂) ₂ — infra-red	-S-B ϕ Raman	ϕ BCl $_2$ infra-red	Raman	present in S—(CH ₂) ₂ —S—B—Cl	assignment
1597 ms	1641 m 1600 vvs dp	1592 s			$\phi a_1 v_{\text{CC}},$ $b_2 v_{\text{CC}}$
1495 vw	1548 w dp 1499 ms (0·5 ₇)	1488 w			$\phi a_1 v_{\rm CC}$
1436 s 1427 m	1439 s dp	1433 ms		yes	$\phi b_2 v_{\rm CC}$ Ac ring mixed
1336 w	1345 w	4044			$a_1 (1381) + $ CH ₂ def
1313 vw 1284 m	1289 ms	1311 w 1271 m		yes	Ac ring? or CH ₂ twist
1263 ms 1248 m	1261 sh	1244 s		yes	Ac ring? or CH ₂ twist
1236 vs	1238 vvs (0·3 ₆)	1233/1221 vs			$\phi a_1 v_{\mathbf{B} - \phi}$
1188 w 1164 m.w 1114 w	1193 s (0·4 ₁) 1163 vs (0·6 ₆) 1117 m dp	1188 m.s 1160 v.w		yes	$\phi a_1 \beta_{\text{CH}}$ $\phi b_2 \beta_{\text{CH}}$ Ac ring
1075 v.w	1074 m (0·4 ₁)			, 0.5	b_2v_{CS}
1034 vw 1002 m sharp 990 mw	1036 vs (0·3 ₂) 1000 vs (0·4)	1001 m	1005		$\phi a_1 \beta_{\mathrm{CH}} \ \phi a_1 v \ \mathrm{ring}$
955 ms 936 m	957 w dp	968 m 953 s		yes	Ac. ring a_1 v_{CS}
913 vs	908 w dp	920 vs }			rcs

TABLE 3,—contd.

φBCl₂ present in -(CH₂)₂—S—Bassignment S—(CH₂)₂—S—B—Cl infra-red Raman infra-red Raman 904 vs 899 vs $v_{\rm CC} + {\rm CH_2}$ 842 ms 854 w rocks 803 w dp 751 s 758 m dp 757 s $\phi b_1 \gamma_{CH}$ $\phi b_1 \gamma_{CH}$ 694 s 691 s 665 m 675 vs (0.6_7) yes} $\phi b_1 \gamma_{\hat{\phi} \mathbf{B}} \operatorname{ring}$ 640 m 632 s 642 vs (0.5₅) 633 m 618 w 626 s dp 618 w 626 $\phi b_2 \alpha_{\rm CC}$ 579 vw 597 v.w 547 m 543 dp 565, 551 m ϕ vib. 535 s ϕ vib. y 454 w 462 m dp 445 vw 435 443 vs dp yes Ac $\delta \hat{c}_{CS}$ 407 w 402 w $\phi a_2 \phi_{CC}$ 392 m 347 vw 304 s Ac ring buckle 268 s 260 s (0·4₁) Ac a₁ ring def. 234 182 s Ac torsion 142

ABBREVIATIONS

Ac = acyclic, ϕ = phenyl, vib. = vibration, s = strong, m = moderate, etc.

Numbers in parentheses refer to measured polarization ratios where these differ from 6/7. Due to experimental conditions, these values are not as reliable as for chloro analogue and little weight is to be attached to second significant figure.

- ¹ Finch and Steele, Trans. Faraday Soc., 1964, 60, 2125.
- ² (a) Finch and Pearn, Tetrahedron, 1964, 20, 173. (b) Finch and Gardner, J. Inorg. Nucl. Chem., 1963, 25, 927.
- ³ Hendra, Lane and Smethurst, J. Sci. Instr., 1963, 40, 457.
- ⁴ Edsall and Wilson, J. Chem. Physics, 1938, 6, 124.
- ⁵ Rank, Pfister and Grimm, J. Opt. Soc. Amer., 1943, 33, 31.
- 6 Mulliken, J. Chem. Physics, 1955, 23, 1997.
- ⁷ Randle and Whiffen in *Report of the Molecular Spectroscopy Conference* (London, 1954) (Institute of Petroleum, 1955), p 111.
- ⁹ Ladd, Orville-Thomas and Cox, Spectrochim. Acta, 1963, 19, 1911.
- ⁹ (i) Rayleigh's rule—see Wilson, Decius and Cross, *Molecular Vibrations* (McGraw-Hill, London, 1955), p. 190. (ii) Steele and Whiffen, *Trans. Faraday Soc.*, 1959, 55, 369.
- ¹⁰ Brown and Sheppard, Trans. Faraday Soc., 1952, 48, 128.