ICCS200: Assignment homework-2

Kriangsak Thuiprakhon kriangsak.thi@student.mahidol.edu

1: LSH

- (i) From the given condition, notice that there are two cases to consider:
 - when $|x y| \ge w$ In this case,

$$1 - \frac{1}{w}|x - y| \le 0 \to \mathbf{Pr}[f(x) = f(y)] = 0$$

• when |x - y| < wIf this is the case, then:

$$\Pr[f(x) = f(y)] = \max(0, 1 - \frac{1}{w}|x - y|)$$

Now we need to find that what values of $s \in [0, w]$ would the following statement holds

$$f(x) = \lfloor \frac{x+s}{w} \rfloor = \lfloor \frac{y+s}{w} \rfloor = f(y)$$

From this, we can also make an observation that the above holds if and only if

$$s \notin_R [wx, w|x - y|]$$

Hence,

$$Pr\{s \notin_{R} [wx, w|x - y|]\} = 1 - Pr\{s \in_{R} [wx, w|x - y|]\}$$
$$= 1 - \frac{|x - y|}{w}$$

Now, if we sum up the two cases:

$$Pr[f(x) = f(y)] = max(0, 1 - \frac{1}{w}|x - y|)$$

2: Dual Binary Search and Dual Merge Sort

(i) In the given handout, KTHSMALLEST function is written so that each time, the algorithm halves the array into two arrays of length n/2

From this we can see that the span shrinks by a factor of two each time it recurses, then the work and span will be at most log|A| + log|B|

(ii) New span bound with use of KTH-FUNCTION

mergeFway
$$(A, B, R, f) =$$
% Same base cases
otherwise \Rightarrow

$$l = (|R| - 1)/f(|R|) + 1;$$
parfor i in $[0:f(|R|)]$

$$s = \min(i \times l, |R|);$$

$$e = \min((i+1) \times l, |R|);$$

$$(s_a, s_b) = \text{kth}(A, B, s);$$

$$(e_a, e_b) = \text{kth}(A, B, e);$$
mergeFway $(A[s_a:e_a], B[s_b:e_b], R[s:e]);$
return;

Note that the code is taken from the given handout From this we can derive the span of merge for two sorted sequences with the adoption of KTH-FUNCTION (iii)

• Work with
$$f(n) = \sqrt{n}$$

$$W(n) = \sqrt{n}W(\sqrt{n}) + O(\sqrt{n}logn)$$

• New Span with
$$f(n) = \sqrt{n}$$

$$S(n) = S(\sqrt{n}) + O(\log n)$$

- (v) Upgraded Merge work and span bounds
 - *WorkBound* with $f(n) = \sqrt{n}$

$$W(n) = \sqrt{n}W(\sqrt{n}) + O(\sqrt{n}logn)$$

which solves to O(n)

• New Span Bound with $f(n) = \sqrt{n}$

$$S(n) = S(\sqrt{n}) + O(\log n)$$

which solves to O(logn)

(vi)Upgraded Merge Sort work and span bounds giving O(n) work and $O(log^2n)$ span.

3: Quick Sort Span

Claim 0.1. The span of partitioning an array is O(logn)

Also, from our last assignment and what discussed in class, it has been shown that the depth (span) of a Treap is O(logn) *w.h.p*. Hence,

$$S(n) = \underbrace{O(logn)}_{thespanofaTreap} \times \underbrace{O(logn)}_{*} = O(log^{2}n)$$

* is the span of partitioning an array when recursing on a treap.

4: String Comparison

To do string comparison we will adopt the use of MAP and SCAN functions

- Let array A be a mapped of strings X, Y with the corresponding COMPARE(X,Y) function, do this with pfor
- apply $SCAN(\oplus, 0, A)$ where:

$$\oplus := \begin{cases} A[i+1] & if A[i] = 0 \text{ and return } A[i+1] \\ A[i] & otherwise \end{cases}$$

```
def CP_par(X,Y):

A = an array of length min(X,Y)

pfor i in range(min(X,Y))

A[i] = map(*(X,Y): if x<y => -1, x=y => 0 else 1)

#then apply scan on collection A

if A[i] = 0, look up for A[i+1]

#do this until we find the first A[i+1] != 0 then

return A[i+1]
```

From the above pseudocode, we can see that the algorithm will do:

$$W(n) = min(m, n)$$

as we can only compare up to the smallest length of the two strings

$$S(n) = logmin(m, n)$$

because we will do scan on the array A which is of size min(m,n) 080163

5: Parallel Closest Pair

To analyze the span of Closest pair: we can do divide and conquer and then throw the two n/2 pieces to run recursively in parallel. Let's do try to write a peudocode:

• Compute separation line L such that half the points are on each side.

ICCS481

HWhomework-2

- $(d_1, d_2) \leftarrow$ Closest Pair in the left half || Closest Pair in the right half
- $d \leftarrow min(d1, d2)$
- ullet Delete all points further than d from L o O(1)done by pfor
- Sort points in y-order $\rightarrow O(log^2n)$ by quick sort
- Scan points in y-order and compute distance between each point and next constant number of neighbors, and update d accordingly $\rightarrow O(1)$ done by pfor
- return d

recurrence:

$$S(n) = S(n/2) + O(1) + O(\log^2 n) + O(1) \rightarrow O(\log^3 n)$$