MECHTRON 2MD3

Data Structures and Algorithms for Mechatronics
Winter 2022

32 Graphs Continued, Finite State Automata

Department of Computing and Software

Instructor:

Omid Isfahanialamdari

April 11, 2022

Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - o a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - ∘ j is a self-loop

Terminology (cont.)

Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $_{\circ}$ P₁=(V,b,X,h,Z) is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Terminology (cont.)

Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a,↓) is a simple cycle
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,

) is a

 cycle that is not simple

Properties

Property 1

$$\Sigma_v \deg(v) = 2m$$

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

$$m \le n (n-1)/2$$

Proof: each vertex has degree at most (n-1)

Notation

n

m

deg(v)

number of vertices number of edges degree of vertex *v*

$$= n = 4$$

$$\mathbf{m} = 6$$

$$\bullet \deg(v) = 3$$

Main Methods of the Graph ADT

- Vertices and edges
 - are positions
 - store elements
- Accessor methods
 - e.endVertices(): a list of the two endvertices of e
 - e.opposite(v): the vertex opposite of v on e
 - u.isAdjacentTo(v): true iff u and v are adjacent
 - *v: reference to element associated with vertex v
 - *e: reference to element associated with edge e

- Update methods
 - insertVertex(o): insert a vertex storing element o
 - insertEdge(v, w, o): insert an edge (v,w) storing element o
 - eraseVertex(v): remove vertex v (and its incident edges)
 - eraseEdge(e): remove edge e
- Iterable collection methods
 - incidentEdges(v): list of edges incident to v
 - vertices(): list of all vertices in the graph
 - edges(): list of all edges in the graph

Edge List Structure

- Vertex object
 - element
 - reference to position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence
- Vertex sequence
 - sequence of vertex objects
- Edge sequence
 - sequence of edge objects

Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices

University

Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

Finite State Automata and Language Concepts

Discrete Systems

- Discrete System: A discrete system operates in a sequence of discrete steps or has signals taking discrete values.
- Example: Parking Counting System
 - every time a car enters
 - counter++
 - every time a car leaves
 - counter---

- Each entry departure is a discrete event
 - Occurs at some instant in time, not continuously over time
 - after every event, the system is in a new state

Finite State Automaton

- We use a Finite State Machine (or automaton) (FSM) to model a discrete system
 - Notion of State: System's condition at some point in time
 - The input to automaton is on a tape or comes from an input stream
 - The machine reads the input one value at a time while moving from left to right.
 - Machine's state changes depending on the input and current state of the machine
 - End of input is logically marked with a # sign
 - After reading the final input, the machine reaches a **final state** that is either:
 - accept
 - reject

Finite State Automaton

- We use a Finite State Machine (or automaton) (FSM) to model a discrete system
- An FSM is shown with a graph:
 - nodes are states
 - edges are transitions
 - from one state to another
 - label of edges indicate input
 - A transition from state A to state B after reading input u is represented by an edge from A to B labeled with u.
 - There is always a unique initial state
 - If the machine's final state is an **accept state**, this means that the machines accepts the input, otherwise rejects

Finite State Automaton - Example

 We use a Finite State Machine (or automaton) (FSM) to model a discrete system

- This machine determines if a 1 exists in an input
- It accepts all inputs that have at least a 1
 - 00000100
 - 010101011
 - 00000000 (this will be rejected by the machine)

Finite State Automaton - Example

 We use a Finite State Machine (or automaton) (FSM) to model a discrete system

- This machine determines if there are off number of 1s in an input
- It accepts all inputs that have at least a 1
 - 00000100101
 - 01110101110
- 00000011 (this will be rejected by the machine)

Finite State Automaton - Drawing conventions

 We use a Finite State Machine (or automaton) (FSM) to model a discrete system

Language Concepts

- Alphabet: A finite set of symbols
 - Notation: Σ
 - $_{\circ}$ Example: $\Sigma = \{a, b\}$
- A string (word) over Σ : A finite sequence of symbols from Σ, e.g. {a, b, ab, bb, ...}
- Σ^* (Kleene star): The set of **all finite strings** over an alphabet Σ is the set of lists, each element of which is a member of Σ
 - $_{\circ}$ Σ* = {ε, a, b, aa, ab, ba, bb,...} for Σ = {a,b}
 - ε is a specific symbol representing the Null string
 - \circ {0,1}* = { ϵ , 0, 1, 00, 01, 10, 11, 000, 001, . . . }
- A language is a subset of Σ* for some alphabet Σ

Formal Definition of Finite Automata

- We saw that an FSM can accept/reject strings
 - We use this property to define a language
- A formalism for defining languages
- We define a finite Automata to be a 5-tuple:
 - \circ (Q, Σ , δ , q₀, F)
 - Q: A finite set of states
 - Σ: An input alphabet
 - δ: A transition function
 - $\delta: Q \times \Sigma \rightarrow Q$
 - q₀ in Q: An initial state
 - F: A set of final states (F ⊆ Q, typically)
 - "Final" or "accepting" states.

transition table

state	Input applied	
	0	1
Α	Α	В
В	Α	С
С	С	С

Two Types of FA

- Deterministic Finite Automata (DFA)
 - For each input there is one and only one state to which the automaton can transition from its current state.

- A state from which there is no transition out is called a trap or a dead state.
- Every state in a DFA must have outgoing arrows equal to the number of symbols in alphabet.
- If an arrow is omitted for a state corresponding to a symbol, it is assumed that it leads to a trap state.
- Non-deterministic Finite Automata (NFA)
 - On each input there is a set of states to which the automaton can transition from its current state

Regular Languages

- L(M) is a language recognized by an automaton M.
 - _o {S | S is accepted by M}
 - set of strings that are accepted by M
- A language that is recognized by a finite automaton is called a Regular Language.
- If we can construct a DFA for a given language then the language is called Regular.
- Regular Expression is another way to represent a Regular Language.
 - Example: a(ba)*
 - means "a" followed by zero or more "ba"s
 - abababa
 - o a
- Regular Languages, Finite Automatons, and Regular Expressios are mutually convertible.

Final Words

- Thank you for attending this class
- Hope that I see you in some future classes
- I tried my best, but clearly it was not perfect
 - This was my first experience in McMaster with > 100 students
 - midterm2 location! :(
- I don't remember all your names, but I remember your faces
- Feel free to contact me, if you want to know about my research works
- If you want, you can connect me in LinkedIn:
 - https://www.linkedin.com/in/omid-alamdari
- you can contact me:
 - alamdari@di.unipi.it
 - isfahano@mcmaster.ca

Questions?

Please evaluate this course!

https://evals.mcmaster.ca/

Deadline is tomorrow!

Thank you

