Лекция 6

Ilya Yaroshevskiy

6 апреля 2021 г.

Содержание

	омеченные КО и экспоненциальные производящие функции
1.1	Помеченные объекты
1.2	2 Операции
	1.2.1 Дизъюнктное объединение (сумма)
	1.2.2 Пара (произведение)
	1.2.3 Последовательность
	1.2.4 Множества (Set)
	1.2.5 Циклы
1.3	В Обобщение

1 Помеченные KO и экспоненциальные производящие функции

$$a_0 \ a_1 \ a_2 \ \dots \ a_n \ \dots \ A(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n + \dots$$

Определение. Экспоненциальная производящая функция:

$$a(t) = \frac{a_0}{0!} + \frac{a_1}{1!} \cdot t + \frac{a_2}{2!} \cdot t^2 + \dots + \frac{a_n}{n!} \cdot t^n + \dots$$

Обозначение. Мы будет обозначать ЭПФ так-же большой буквой

Пример. 1, 1, 1, 1, 1, 1, 1, 1, 1

OΠΦ
$$\frac{1}{1-t}$$

ЭΠΦ
$$1 + 1 \cdot t + \frac{1}{2!} \cdot t^2 + \frac{1}{3!} \cdot t^3 + \dots = \sum_{n=0}^{+\infty} \frac{1}{n!} \cdot t^n = e^t = \exp(t)$$

Пример. $1, 1, 2, 6, 24, \ldots, n!, \ldots$ $a_n = n!$

O
$$\Pi$$
 Φ 1 + t + 2 · t² + 6 · t³ + · · · + n! · tⁿ + . . .

$$\mathbf{\Theta} \mathbf{\Pi} \mathbf{\Phi} \sum_{n=0}^{+\infty} \frac{n!}{n!} \cdot t^n = \frac{1}{1-t}$$

$$A(t) = \frac{a_0}{0!} + \frac{a_1}{1!} \cdot t + \frac{a_2}{2!} \cdot t^2 + \dots + \frac{a_n}{n!} \cdot t^n + \dots$$
$$B(t) = \frac{b_0}{0!} + \frac{b_1}{1!} \cdot t + \frac{b_2}{2!} \cdot t^2 + \dots + \frac{b_n}{n!} \cdot t^n + \dots$$

Свойство 1.

$$C(t) = A(t) \pm B(t)$$
 $c_n = a_n \pm b_n$

Свойство 2.

$$C(t) = a(t) \cdot B(t)$$

$$\frac{C_n}{n!} = \sum_{k=0}^n \frac{a_k}{k!} \cdot \frac{b_{n-k}}{(n-k)!}$$

$$c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}$$

Свойство 3.

$$C(t) = \frac{A(t)}{B(t)}$$

$$a_n = \sum_{k=0}^n \binom{n}{k} b_k c_{n-k} = \sum_{k=1}^n \binom{n}{k} b_k c_{n-k} + b_0 c_n$$

$$c_n = \frac{a - \sum_{k=1}^n \binom{n}{k} b_k c_{n-k}}{b_0}$$

Далее все производящие функции — экспоненциальные, а объекты помеченые

1.1 Помеченные объекты

Пример. Перестановк. $P_n=n!$ — количество перестановок из n элементов *Пример.* Пустые графы. $E_n=1$ — количество графов с n вершинами $\Im \Pi \Phi : \exp(t)$

 Π ример. Циклы. $C_n = (n-1)!$ — количество циклов из n вершин. Направление обхода фиксировано.

ЭПФ:
$$\sum_{n=1}^{+\infty} \frac{n!}{n} \cdot \frac{1}{n!} \cdot t^n = \sum_{n=1}^{+\infty} \frac{t^n}{n} = \ln \frac{1}{1-t}$$

1.2 Операции

1.2.1 Дизъюнктное объединение (сумма)

- A
- B
- $A \cap B = \emptyset$
- $C = A \cup B$

$$c_n = a_n + b_n$$
 $C(t) = A(t) + B(t)$

1.2.2 Пара (произведение)

- A
- B
- $C = A \times B$

$$C = \{\langle \underbrace{a}_{k \text{ atomob } n-k \text{ atomob}} \rangle\}$$

Получим последовательность $c_1c_2\dots c_n$. Перенумеруем элементы:

Первые k в $d_1d_2\dots d_k$, где $d_i=|\{c_j|1\leq j\leq k,\ c_k\leq c_i\}|.$

А остальные $c_{k+1} \dots c_n$ в $e_1 \dots e_{n-k}$, где $e_i = |\{c_j|k+1 \le j \le n, \ c_j \le c_{i+k}\}|$.

Пусть $d_i = a_i$, а $e_i = b_i$

$$c_n = \sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k} \quad C(t) = A(t) \cdot B(t)$$

 Π ример. Пары перестановок. $C(t) = \frac{1}{(1-t)^2}$. Тогда $c_n = (n+1)n!$

1.2.3 Последовательность

$$C = \operatorname{Seq} A = \emptyset + A \times \operatorname{Seq} A$$

$$C(t) = 1 + A(t) \cdot C(t)$$

$$C(t) = \frac{1}{1 - A(t)}$$

Пример.

- $U = \{ \circ \}$
- U(t) = t
- $\operatorname{Seq} U = P$

$$P(t) = \frac{1}{1-t}$$

1.2.4 Множества (Set)

• $\operatorname{Set}_k A$ — множества, содержащие k обхектов

$$B_k = \operatorname{Seq}_k A = \underbrace{A \times A \times \cdots \times A}_{k} \quad B_k(t) = A(t)^k$$

 $\operatorname{Set}_k A = \operatorname{Seq}_k A /_{\sim}$

$$[x_1x_2\dots x_k]\sim [y_1y_2\dots y_k]$$
. \exists перестановка $\pi:x_i=y_{\pi[i]}$

$$C_k(t) = \frac{1}{k!}$$
 $B_k(t) = \frac{A(t)^k}{k!}$

$$\operatorname{Set} A = \bigcup_{k=0}^{\infty} \operatorname{Set}_{k} A = \sum_{k=0}^{\infty} \frac{A(t)^{k}}{k!} = e^{A(t)}$$

Пример.

- $U = \{ \circ \}$
- U(t) = t

$$Set U = E \quad E(t) = e^t$$

, где E — пустые графы

Пример. Циклы.

- $U = \{ \circ \}$
- U(t) = t
- $B = \operatorname{Set} \operatorname{Cyc} U$

$$B(t) = e^{C(t)} = e^{\ln \frac{1}{1-t}} = \frac{1}{1-t}$$

Набор помеченных циклов являеся престановкой

1.2.5 Циклы

• $\operatorname{Cyc}_k A$ — количество циклов длины k

$$C = \operatorname{Cvc}_k A = \operatorname{Seq}_k A /_{\sim}$$

, где классы эквивалентности с точностью до циклических сдвигов. $[x_1\dots x_k]\sim [y_1\dots y_k].\ \exists i:\ x_j=y_{(i+j)\mod k+1}$

$$\operatorname{Cyc} U = \ln \frac{1}{1 - t}$$

$$C_k(t) = \frac{1}{k} A(t)^k$$

$$C(t) = \sum_{k=1}^{\infty} \frac{1}{k} A(t)^k = \ln \frac{1}{1 - A(t)}$$

$$\operatorname{Set} \operatorname{Cyc} U = P$$

$$\operatorname{Set} \operatorname{Cyc} A \simeq \operatorname{Seq} A$$

1.3 Обобщение

Теорема 1.1 (о подстановке).

- A помеченные KO A(t)
- B помеченные KO B(t)

C = A[B] — вместо каждого атома A подставляем КО B, перенумеруем получившиеся атомы произвольным образом

$$C(t) = A(B(t))$$

 Π ример. $A \times A$ — пара атомов. Их две $B(t) = t^2 = 2 \cdot \frac{1}{2!} \cdot t^2$. Подставляем $B(A(t)) = A(t)^2$