数处重点公式总结

序列的卷积:
$$x(n) * h(n) = \sum_{m=-\infty}^{\infty} x(m) h(n-m)$$

线性卷积的性质

交换律: x(n)*h(n)=h(n)*x(n)

结合律: x(n)*[h₁(n)*h₂(n)]=[x(n)*h₁(n)]*h₂(n)

分配律: $x(n)*[h_1(n)+h_2(n)]=x(n)*h_1(n)+x(n)*h_2(n)$

模拟频率与数字频率间的关系: $\omega = \Omega T$

叠加定理: $T[a_1x_1(n)] + T[a_2x_2(n)] = a_1y_1(n) + a_2y_2(n)$

时不变特性: $T[x(n-n_0)] = y(n-n_0)$

Z 变换: $X(z) = ZT[x(n)] = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$

逆 Z 变换: $x(n) = IZT[X(z)] = \frac{1}{2\pi i} \oint_{\mathcal{C}} X(z) z^{n-1} dz$

Z变换的性质

线性: ZT[ax(n) + by(n)] = aX(z) + bY(z)

移位: $ZT[x(n-m)] = z^{-m}X(z)$

尺度变换: $ZT[a^nx(n)] = X\left(\frac{z}{a}\right)$

微分: $ZT[nx(n)] = -z \cdot \frac{d}{dz}X(z)$

共轭: $ZT[x^*(n)] = X^*(z^*)$

翻褶: $ZT[x(-n)] = X\left(\frac{1}{z}\right)$

离散时间傅里叶变换(DTFT): $X\left(e^{j\omega}\right)=DTFT[x(n)]=\sum_{n=-\infty}^{\infty}x(n)e^{-j\omega n}$

离散时间逆傅里叶变换(IDTFT): $x(n) = \mathrm{IDTFT}\big[X\big(e^{j\omega}\big)\big] = \frac{1}{2\pi}\int_{-\pi}^{\pi}X\big(e^{j\omega}\big)\cdot e^{j\omega n}d\omega$

离散时间傅里叶变换的性质

线性: $ax(n) \pm by(n) \Leftrightarrow aX(e^{j\omega}) \pm bY(e^{j\omega})$

时移: $x(n-m) \Leftrightarrow e^{-j\omega m}X(e^{j\omega})$

频移: $e^{j\omega_0 n}x(n) \Leftrightarrow X(e^{j(\omega-\omega_0)})$

时域卷积: $x(n) * h(n) \Leftrightarrow X(e^{j\omega})H(e^{j\omega})$

频域卷积: $x(n) \cdot h(n) \Leftrightarrow \frac{1}{2\pi} X(e^{j\omega}) * H(e^{j\omega})$

帕塞瓦尔定理: $\sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$

周期序列离散傅里叶级数(DFS): $\tilde{X}(k) = DFS[\tilde{x}(n)] = \sum_{n=0}^{N-1} \tilde{x}(n)e^{-j\frac{2\pi}{N}kn}$

IDFS:
$$\tilde{x}(n) = IDFS[\tilde{X}(k)] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) e^{j\frac{2\pi}{N}kn}$$

离散傅里叶变换(DFT): $X(k) = DFT[x(n)] = \sum_{n=0}^{N-1} x(n) W_N^{nk}$

离散傅里叶逆变换(IDFT): $x(n) = IDFT[X(k)] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-nk}$

离散傅里叶变换的性质

线性: $DFT[ax_1(n) + bx_2(m)] = aX_1(k) + bX_2(k)$

时域圆周移位: $X_m(k) = DFT[x((n+m))_N R_N(n)] = W_N^{-mk} X(k)$

频域圆周移位: $IDFT[X((k+l))_N R_N(k)] = W_N^{nl} x(n) = e^{-j\frac{2\pi}{N}nl} x(n)$

DFT 形式的帕帕塞瓦尔定理: $\sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$

FFT 中复数乘法运算次数: $C_M = \frac{N}{2} \bullet M = \frac{N}{2} \log_2 N$

FFT 中复数加法次数为: C_A =N \bullet M=N $\log_2 N$ (N= 2^M , 共有 M 级蝶形)

FIR 系统频率采样结构: $H(z) = (1 - z^{-N}) \frac{l}{N} \sum_{k=0}^{N-l} \frac{H(k)}{1 - W_N^{-k} z^{-1}}$

脉冲响应不变法: $H_a(s) = \sum_{k=1}^N \frac{A_k}{s - s_k}$, $H(z) = \sum_{k=1}^N \frac{TA_k}{1 - e^{s_k T} Z^{-1}}$

脉冲响应不变法边界频率转换关系

$$\Omega_p = \frac{\omega_p}{T}$$
 , $\Omega_s = \frac{\omega_s}{T}$

双线性变换法边界频率转换关系

$$\Omega_p = \frac{2}{T} tan\left(\frac{\omega_p}{2}\right)$$
 , $\Omega_s = \frac{2}{T} tan\left(\frac{\omega_s}{2}\right)$

模拟低通—数字低通双线性变换: $s=\frac{2}{T}\cdot\frac{1-z^{-1}}{1+z^{-1}}$, $\Omega=\frac{2}{T}\tan\left(\frac{\omega}{2}\right)$

模拟低通—数字高通双线性变换:
$$S = \frac{T}{2} \cdot \frac{1+z^{-1}}{1-z^{-1}}$$
 , $\Omega = \frac{2}{T} cot(\frac{\omega}{2})$

模拟低通—数字带通双线性变换:
$$s=\frac{1-2\cos _0z^{-1}+z^{-2}}{1-z^{-2}}$$
 , $\Omega=\frac{\cos \omega_0-\cos \omega}{\sin \omega}$

$$\cos\omega_0 = \frac{\sin(\omega_1 + \omega_2)}{\sin\omega_1 + \sin\omega_2}$$
, $\Omega_c = \frac{\cos_{0} - \cos\omega_2}{\sin\omega_2}$

模拟低通—数字带阻双线性变换:
$$s=\frac{1-z^{-2}}{1-2\cos\omega_0z^{-1}+z^{-2}}$$
 , $\Omega=\frac{\cos\omega_0-\cos\omega\sin\omega}{\cos\omega-\cos\omega_0}$

$$\cos \omega_0 = \frac{\sin(\omega_1 + \omega_2)}{\sin \omega_1 + \sin \omega_2} \ , \ \Omega_c = \frac{\sin \omega_1}{\cos \omega_1 - \cos \omega_0}$$

理想低通滤波器的单位脉冲响应:

$$h_d(n) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} H_d(e^{j\omega}) e^{j\omega n} d\omega = \begin{cases} \frac{\sin[\omega_n(n-\alpha)]}{\pi(n-\alpha)} & n \neq \alpha \\ \frac{\omega_n}{\pi} & n = \alpha \end{cases}$$

频率采样法的频率采样值:

$$H_{\rm d}(k) = H(k)e^{j\theta(k)} = H(k)e^{-j(\frac{N-1}{2})(\frac{2\pi}{N})k}, \ \theta(k) = -\frac{N-1}{2} \cdot \frac{2\pi}{N}k = -\frac{N-1}{N}\pi k$$