Análisis Funcional

Primer Cuatrimestre – 2019 Examen Final

Guido Arnone

Índice general

1.	Preliminar	es	2
	1.0.1.	Operadores Compactos	,
		Teoría Espectral	
2.	El teorema espectral, cálculo funcional continuo y aplicaciones		
	2.0.1.	El teorema espectral	3
	2.0.2.	Cálculo Funcional	3
	2.0.3.	Algunas propiedades básicas	3
		Aplicaciones	

Parte 1

Preliminares

Repaso primero algunos resultados que vimos en la materia, y voy a necesitar para la demostración del teorema espectral.

- 1.0.1. Operadores Compactos
- 1.0.2. Teoría Espectral

Parte 2

El teorema espectral, cálculo funcional continuo y aplicaciones

2.0.1. El teorema espectral

Teorema 2.0.1 (espectral para operadores compactos y autoadjuntos). Sea H un espacio de Hilbert separable. Si $A \in \mathcal{L}(H)$ es un operador compacto y autoadjunto, entonces existe una base ortonormal de autovectores $\{e_n\}_{n\geq 1}$ de A.

2.0.2. Cálculo Funcional

Definición 2.0.1. Sea H un espacio de Hilbert separable y $A \in \mathcal{K}(H)$ un operador compacto y autoadjunto. Tenemos entonces una base ortonormal de autovectores $\{e_n\}_{n\geq 1}$ de A con $\sigma(A) = \{\lambda_n\}_{n\geq 1}$. Si $f: \sigma(A) \to \mathbb{R}$ una función acotada, definimos

$$\operatorname{ev}_A(f)(x) := \sum_{n \ge 1} f(\lambda_n)(e_n, x)e_n.$$

Notaremos $f(A) := ev_A(f)$. Observemos que esta función está bien definida, es continua, y no depende de la base elegida. [HACER]

2.0.3. Algunas propiedades básicas

Teorema 2.0.2. Sea H un espacio de Hilbert separable y $A \in \mathcal{L}(H)$ un operador compacto y autoadjunto. Entonces, la aplicación

$$ev_A:B(\sigma(A),\mathbb{R})\to\mathcal{L}(H)$$

$$f\mapsto ev_A(f)$$

es un morfismo de álgebras de Banach continuo que satisface $\|ev_A\| \le 1$. Más aún, se tiene que $ev_A(1) = I$ y $ev_A(id) = A$.

Demostración. content...

Proposición 2.0.1. Sea H un espacio de Hilbert separable y $A \in \mathcal{K}(H)$ un operador compacto y autoadjunto. Si $f : \sigma(A) \to \mathbb{R}$ es una función acotada en, entonces

(i)
$$\sigma(f(A)) = f(\sigma(A))$$
.

Guido Arnone Examen Final

- (ii) f(A) es autoadjunta.
- (iii) $||f(A)|| = ||f|_{\sigma(A)}||_{\infty}$.
- (iv) Si $f \ge 0$ entonces $f(A) \ge 0$.

Demostración. Fijemos una base ortonormal $\{e_n\}_{n\geq 1}$ de autovectores de A con $Ae_n=\lambda_n e_n$ para cada $n\in\mathbb{N}$.

(i) Si $\lambda_i \in \sigma(A)$, es

$$f(A)e_j = \sum_{n \geq 1} f(\lambda_n)(e_n, e_j)e_n = f(\lambda_j)e_j,$$

así que $f(\sigma(A)) \subset \sigma(f(A))$.

Recíprocamente, tomemos $\lambda \notin f(\sigma(A))$. Como esto dice que función $g(t) = (f(t) - \lambda)^{-1}$ está bien definida en $\sigma(A)$ y es allí acotada, está bien definida su evaluación g(A) en A. Como es $g(f - \lambda) = (f - \lambda)g = 1$, aplicando ev $_A$ obtenemos que

$$g(A)(f(A) - \lambda I) = (f(A) - \lambda I)g(A) = I.$$

y en consecuencia λ no pertenece al espectro de f(A),

(ii) Por un cálculo directo, tomando $x, y \in H$ se tiene que

$$(f(A)x,y)=\sum_{n\geq 1}f(\lambda_n)(e_n,x)(e_n,y)=(f(A)y,x)=(x,f(A)y).$$

(iii) Como es $\|ev_A\| \le 1$, ya sabemos que $\|f(A)\| \le \|f_{\sigma(A)}\|_{\infty}$. En vista de (i) tenemos la otra desigualdad, pues acotando inferiormente por los autovectores de norma 1 se tiene que

$$\|f(A)\| = \sup_{\|x\|=1} \|f(A)(x)\| \ge \sup_{\lambda \in \sigma(f(A))} |\lambda| = \sup_{\lambda \in f(\sigma(A))} |\lambda| = \|f|_{\sigma(A)}\|_{\infty}.$$

(iv) Supongamos ahora que $f \ge 0$ y sea $x \in H$. Por definición de f(A) es

$$(f(A)x,x) = \sum_{n\geq 1} f(\lambda_n)(e_n,x)^2 \geq 0$$

pues por hipótesis sabemos que $f(\lambda_n) \geq 0$ para todo $n \geq 1.$

Observación 2.0.1. Lo anteriores resultados también valen cuando f está definida en un dominio que contiene al espectro (mientras esté acotada allí) precomoponiendo ev_A con la restricción de f al $\sigma(A)$. Más aún, el operador f(A) sólo depende de los valores que f toma en su espectro. En particular, esto nos dice que podemos definir f(A) para $f: \mathbb{R} \to \mathbb{R}$ continua o medible Borel.

Más aún, la aplicación $ev_A : \mathcal{C}(\mathbb{R}) \to \mathcal{L}(H)$ es el único morfismo de álgebras de Banach continuo que tiene a I por imagen de 1 y A por imagen de id.

Proposición 2.0.2. Sea H un espacio de Hilbert separable y $A \in \mathcal{K}(H)$ un operador compacto y autoadjunto. Si $f : \mathbb{R} \to \mathbb{R}$ es una función continua, entonces existe un operador compacto $S \in \mathcal{K}(H)$ tal que

$$f(A) = S + f(0)I.$$

Guido Arnone Examen Final

Demostración. Por el teorema de Stone-Weierstraß, sabemos que existe una sucesión de polinomios $(p_n)_{n\geq 1}$ tal que $p_n\to f$ fuertemente y en particular, es $p_n(0)\to f(0)$. Ahora, para cada $n\in\mathbb{N}$ definimos

$$q_n = p_n - p_n(0),$$

y en vista de la observación anterior, se tiene que $q_n \to f - f(0)$. Aplicando e v_A y usando que ésta es continua, es

$$q_n(A) \to (f - f(0))(A) = f(A) - f(0)I.$$
 (2.1)

Fijemos ahora $n \in \mathbb{N}$. Como $q_n(0) = p_n(0) - p_n(0) = 0$, existe $r \in \mathbb{R}[X]$ tal que $q_n = Xr$. Por lo tanto, obtenemos $q_n(A) = (Xr)(A) = ev_A(X) \circ ev_A(r) = A \circ r(A)$. Al ser A un operador compacto, el operador $q_n(A)$ es compacto para cada $n \in \mathbb{N}$. En vista de (2.1), obtenemos finalmente que el operador f(A) - f(0)I es compacto. Resta notar entonces que

$$f(A) = (f(A) - f(0)I) + f(0)I.$$

Corolario 2.0.1. Sea H un espacio de Hilbert separable y $A \in \mathcal{K}(H)$ un operador compacto y autoadjunto. Si $f : \mathbb{R} \to \mathbb{R}$ es una función continua que se anula en 0, el operador f(A) resulta compacto. \square

2.0.4. Aplicaciones

Teorema 2.0.3. Sea H un espacio de Hilbert y $A \in \mathcal{L}(H)$ un operador compacto y autoadjunto. Dado $n \in \mathbb{N}$, se tiene que

- (i) Si n es impar, existe un único operador $B \in \mathcal{L}(H)$ tal que $B^n = A$.
- (ii) Si n es par, existe un operador $B \in \mathcal{L}(H)$ tal que $B^n = A$ sí y solo si $A \ge 0$. En tal caso B es además el único con esta propiedad.

Notaremos $A^{1/n} := B$ en ambos casos. Para cada $n \in \mathbb{N}$ para el cual exista $A^{1/n}$, sabemos tambien que A es compacto sí y sólo si lo es $A^{1/n}$.

Demostración.

Teorema 2.0.4 (Riesz-Markov-Kakutani). Sea X un espacio topológico Hausdorff y localmente compacto. Si $\psi: C(X) \to \mathbb{R}$ es un funcional lineal positivo, existe una única medida Borel regular μ en X tal que

$$\psi(f) = \int_X f d\mu.$$

para toda $f \in C(X)$.

Guido Arnone Examen Final

Definición 2.0.2. Sea H un espacio de Hilbert y A : H \rightarrow H un operador compacto y autoadjunto. Para cada $h \in H$, la aplicación

$$f \in C(\sigma(A)) \mapsto (f(A)h, h) \in \mathbb{R}$$

resulta un funcional lineal positivo. El teorema de Riesz-Markov-Kakutani nos asegura entonces que existe una única medida Borel regular μ_h en $\sigma(A)$ que satisface

$$(f(A)x,y) = \int_{\sigma(A)} f d\mu_h$$

para toda $f : \sigma(A) \to \mathbb{R}$ continua. Llamamos a μ_h la **medida espectral de** A **asociada a** h.

Proposición 2.0.3. Sea H un espacio de Hilbert separable y $A \in \mathcal{K}(H)$ un operador compacto y autoadjunto. Si $(g_n)_{n\geq 1} \subset \mathcal{C}(\sigma(A), \mathbb{R})$ es una sucesión uniformemente acotada que converge puntualmente a cierta función $g: \sigma(A) \to \mathbb{R}$, la sucesión de operadores $\{g_n(A)\}_{n\geq 1} \subset \mathcal{L}(H)$ converge **fuertemente** a g(A).

Demostración.

Teorema 2.0.5 (un caso particular del teorema ergódico de Von Neumann). Sea H un espacio de Hilbert separable. Si $A \in \mathcal{K}(H)$ un operador compacto y autoadjunto tal que $\sigma(A) \subset [-1,1]$, entonces los promedios de A convergen **fuertemente** al proyector π_A del subsepacio de puntos fijos de A. Es decir, si notamos $E_1 = \{x \in H : Ax = x\}$ y $\pi_A := P_{E_1}$, entonces

$$\frac{1}{n}\sum_{i=1}^n A^n \implies \pi_A.$$

Demostración. Para cada $n \in \mathbb{N}$, definimos $g_n(x) := \frac{1}{n} \sum_{i=1}^n x^i$ para cada $x \in [-1,1]$. Tenemos así que $\frac{1}{n} \sum_{i=1}^n A^n = g_n(A)$. Por otro lado, la proyección π_A coincide con la evaluación en A de

$$g(x) = \begin{cases} 1 & \text{si } x = 1 \\ 0 & \text{en caso contrario} \end{cases}$$

En vista de la **Proposición 2.2.3**, basta probar que la sucesión $(g_n)_{n\geq 1}$ está uniformemente acotada y converge puntualmente a g. Lo primero se deduce de que si $x\in [-1,1]$ entonces

$$|g_n(x)| \le \frac{1}{n} \sum_{i=1}^n |x|^i \le \frac{1}{n} \sum_{i=1}^n 1 = 1.$$

Ahora veamos la convergencia puntual. En primer lugar, la sucesión $(g_n(1))_{n\geq 1}$ es constantemente 1 y por lo tanto converge a g(1)=1. Por otro lado, sabemos que $g_n(-1)$ es cero para n par y -1/n para n impar. De aquí se ve que entonces que $g_n(-1)\to 0=g(-1)$. Finalmente, si $\lambda\in (-1,1)$ entonces

$$|g_n(\lambda)| \le \frac{1}{n} \sum_{i=1}^n |x|^i \le \frac{1}{n} \sum_{i>1} |x|^i = \frac{1}{n} \cdot \frac{1}{1-|\lambda|} \to 0.$$

Consecuentemente, debe ser $g_n(\lambda) \to 0 = g(\lambda)$.