Concepts of Regular Languages 40

. . .

Hi up449856@ms.uporto.pt, when you submit this form, the owner will be able to see your name and email address.

1.	The Pumping Lemma for regular languages can be used to prove that a language is: (1 Point)
	A regular language
	A non-regular language or a regular language
	A non-regular language
2.	If L is a regular language, it satisfies the pumping lemma for regular languages: (1 Point)
	○ TRUE

FALSE

whi	nsidering the existence of the proof that the language 0^n1^n is a non-regular language, ich closure property you suggest to prove that a^nb^n is a non-regular language? Point)
\bigcirc	Intersection
\bigcirc	Homomorphism
\bigcirc	Complement
\bigcirc	Reverse
\bigcirc	Union
	Submit

This content is created by the owner of the form. The data you submit will be sent to the form owner. Never give out your password.

Powered by Microsoft Forms | Privacy and cookies | Terms of use