Logistic Regression

Ata Kaban

What is logistic regression?

• It is a linear model for classification (contrary to its name!)

Recall the difference:

- In regression, the targets are real values
- In classification, the targets are categories, and they are called labels

Logistic regression - outline

We will go through the same conceptual journey as before:

- 1) Model formulation
- 2) Cost function
- 3) Learning algorithm by gradient descent

1) Model

- We want to put a boundary between 2 classes
- If x has a single attribute, we can do it with a point
- If x has 2 attributes, we can do it with a line

- If x has 3 attributes, we can do it with a plane
- If x has more than 3 attributes, we can do it with a hyperplane (can't draw it anymore)
- If the classes are linearly separable, the training error will be 0.

Q: Can you plug classification data into linear regression?

A: Yes. But it might not perform very well. No ordering between categories, like there is between real numbers. We need a better model

Model

We change the linear model slightly by passing it through a nonlinearlity

- If x has 1 attribute, we will have

$$h(x; \mathbf{w}) = \sigma(w_0 + w_1 x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

The function $\sigma(u) = \frac{1}{1+e^{-u}}$ is called the sigmoid function or logistic function

Sigmoid function

It is a smoothed version of a step function – note the step function would make optimisation difficult.

Play around with the logistic model

- Go to https://www.desmos.com/calculator
- Type: $y = \frac{1}{1 + \exp(-(w_0 + w_1 x))}$
- Change the values of the free parameters to see their effect
- Imagine how this function could fit this data better than a line did.
- What if your data happens to have class 1 on the left, and class 0 on the right?

• w_1 can be negative, so the same model works.

Model

- If **x** has *d* attributes, that is $\mathbf{x} = (x_1, x_2, ... x_d)$, we will write $h(\mathbf{x}; \mathbf{w}) = \sigma(w_0 + w_1 x_1 + \cdots + w_d x_d) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x})}}, \text{ where:}$ all components of w are free parameters

$$\mathbf{w} = \begin{pmatrix} \mathbf{w_0} \\ \mathbf{w_1} \\ \mathbf{w_2} \\ \dots \\ \mathbf{w_d} \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_d \end{pmatrix} \in R^d$$

Meaning of the sigmoid function

- The sigmoid function takes a single argument (note, $w^T x$ is one number).
- It always returns a value between 0 and 1. The meaning of this value is the **probability that the label is 1**.

$$\sigma(\mathbf{w}^T \mathbf{x}) = P(y = 1 | \mathbf{x}; \mathbf{w})$$

- If this is smaller than 0.5 then we predict label 0.
- if this is larger than 0.5 then we predict label 1.
- There is a slim chance that the sigmoid outputs exactly 0.5. The set of all possible inputs for which this happens is called the decision boundary.

Check your understanding

Can you express the probability that the label is 0 using sigmoid?

$$\sigma(\mathbf{w}^T \mathbf{x}) = P(y = 1 | \mathbf{x}; \mathbf{w})$$

$$\Rightarrow 1 - \sigma(\mathbf{w}^T \mathbf{x}) = 1 - P(y = 1 | \mathbf{x}; \mathbf{w}) = P(y = 0 | \mathbf{x}; \mathbf{w})$$

In fact we can write both in 1 line as:

$$P(y|x;w) = \sigma(w^Tx)^y(1-\sigma(w^Tx))^{1-y}$$
 //y given x has a Bernoulli distribution

Worked example

- Suppose we have 2 input attributes, so our model is $h(x; w) = \sigma(w_0 + w_1x_1 + w_2x_2)$.
- Suppose we know that $w_0 = -1, w_1 = 1, w_2 = 1$.
- When do we predict 1? What is the decision boundary?
 - We predict 1 precisely when P(y = 1 | x; w) > 0.5. That is, when h(x; w) > 0.5.
 - This happens precisely when the argument of the sigmoid is positive!
 - Decision boundary: $-1 + x_1 + x_2 = 0$ This is a line
- Q: Is the decision boundary of logistic regression always linear?
 A: Yes.

2) Cost function

- We need a new cost function, because the Mean Square Error used in linear regression produces a very wiggly function with the new hypothesis function, which would be difficult to optimise.
- But as before we will still have that:
 - each data point contributes a cost, and the overall cost function is the average of these
 - the cost is a function of the free parameters of the model

Logistic cost function

For each (x,y) pair, $Cost(h(x; w), y) = \begin{cases} -\log(h(x; w)), & if y = 1 \\ -\log(1 - h(x; w)), & if y = 0 \end{cases}$

Overall cost:
$$g(\mathbf{w}) = \frac{1}{N} \sum_{n=0}^{N} Cost(h(\mathbf{x}^{(n)}; \mathbf{w}), y^{(n)})$$
 convex (easy to minimise)

Writing the cost function in a single line

$$g(\mathbf{w}) = \frac{1}{N} \sum_{n=0}^{N} Cost(h(\mathbf{x}^{(n)}; \mathbf{w}), y^{(n)})$$

$$Cost(h(\mathbf{x}; \mathbf{w}), y) = \begin{cases} -\log(h(\mathbf{x}; \mathbf{w})), & \text{if } y = 1 \\ -\log(1 - h(\mathbf{x}; \mathbf{w})), & \text{if } y = 0 \end{cases}$$

$$g(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} (y^{(n)} \log h(\mathbf{x}^{(n)}; \mathbf{w}) + (1 - y^{(n)}) \log(1 - h(\mathbf{x}^{(n)}; \mathbf{w})))$$

This is also called the cross-entropy.

Logistic regression – what we want to do

Given training data

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)})$$

Fit the model

$$y = h(x; \mathbf{w}) = \boldsymbol{\sigma}(\mathbf{w}^T \mathbf{x})$$

• By minimising the cross-entropy cost function

$$g(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} (y^{(n)} \log h(\mathbf{x}^{(n)}; \mathbf{w}) + (1 - y^{(n)}) \log(1 - h(\mathbf{x}^{(n)}; \mathbf{w})))$$

3) Learning algorithm by gradient descent

- We use gradient descent (again!) to minimise the cost function, i.e. to find the best weight values.
- The gradient vector is*:

$$\nabla g(\mathbf{w}) = -(\mathbf{y}^{(n)} - \mathbf{h}(\mathbf{x}^{(n)}; \mathbf{w})) \cdot \mathbf{x}^{(n)}$$

$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_d \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_d \end{pmatrix} \in R^d$$

We plug this into the general gradient descent algorithm given last week.

__

^{*} This follows after differentiating the cost function w.r.t. weights – we omit the lengthy math!

Learning algorithm for logistic regression

While not converged

For n = 1,...,N // each example in the training set

$$\mathbf{w} = \mathbf{w} + \alpha(\mathbf{y}^{(n)} - \mathbf{h}(\mathbf{x}^{(n)}; \mathbf{w})) \cdot \mathbf{x}^{(n)}$$

Learning algorithm for logistic regression

The same, written component-wise:

Extensions

- We studied logistic regression for linear binary classification
- There are extensions, such as:
 - Nonlinear logistic regression: instead of linear function inside the exp in the sigmoid, we can use polynomial functions of the input attributes
 - Multi-class logistic regression: uses a multi-valued version of sigmoid
- Details of these extensions are beyond of our scope in this module

Examples of application of logistic regression

- Face detection: classes consist of images that contain a face and images without a face
- Sentiment analysis: classes consist of written product-reviews expressing a positive or a negative opinion
- Automatic diagnosis of medical conditions: classes consist of medical data of patients who either do or do not have a specific disease