7) \(\frac{7}{2}\phi = 0\) in cylindrical polar cds (\(\tau, \phi, \pi)\): Jackson Secs. (3.7)-(3.8).

1. Cd. Z = the Z of rect cds, & \varphi = azumnth of sphi cds, and ive use \(\tau \) (instead of Jkn \(\text{p} \)) as the radius in the \(\text{xy-plane} \)

Then, in these (\(\tau \, \varphi , \(\text{Z} \)) cds, \(\text{Laplace' problem is} \)...

Then, in these
$$(\tau, \varphi, z)$$
 che, [aplace' problem is ...

$$\Rightarrow \nabla^2 \phi = \left[\frac{1}{\tau} \frac{\partial}{\partial \tau} \left(\tau \frac{\partial}{\partial \tau}\right) + \frac{1}{\tau^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}\right] \phi = 0; \qquad (27)$$

... put $\phi(r, \varphi, z) = R(r) Q(\varphi) Z(z)$, so $\frac{1}{\phi} \nabla^2 \phi = 0$ yields ...

$$\frac{1}{\gamma^{2}} \left[\frac{r}{R} \frac{d}{dr} \left(r \frac{dR}{dr} \right) + \frac{1}{2} \left(\frac{d^{2}Q}{d\phi^{2}} \right) \right] + \frac{1}{2} \left(\frac{d^{2}Z}{dz^{2}} \right) = 0, \qquad (28)$$

$$= -v^{2}, \text{ ast} \qquad = k^{2}, \text{ ast}$$

$$|fen \phi \text{ only}\rangle \qquad (fen z \text{ only})$$

i.e.,
$$Z'' - h^2 Z = 0 \Rightarrow Z(z) = e^{\pm kz}$$
 (or coshke e snih kz),
$$Q'' + v^2 Q = 0 \Rightarrow Q(\varphi) = e^{\pm iv\varphi} (or \cos v\varphi + \sin v\varphi).$$

As for spherical cds, two sep² costs and two simple extras, followed by $R'' + \frac{1}{r}R' + (k^2 - \frac{v^2}{r^2})R = 0 \leftarrow \text{Bessel's ODE}.$

Which is non-simple. As before, we get one "hand" ODE as the price of separation.

See Arfken "Math. Methods for Physicists" (3rd ed., 1985), Ch. 2. For general curviclinean (orthogonal) cds: $q_k = f_k(x, y, z)$, $w_k = 1, 2, 3$, the line element in $k^{\frac{1}{12}}$ direction is: $dS_k = h_k dq_k$, $w_k h_k^2 = (\partial x/\partial q_k)^2 + (\partial y/\partial q_k)^2 + (\partial z/\partial q_k)^2$. If \hat{e}_k is the unit vector along q_k , then in q-cds the gradient operator is: $\nabla q = \sum_{k=1}^{2} (\hat{e}_k/h_k) \frac{\partial}{\partial q_k}$. The \hat{e}_k is h_k are generally fons of (x, y, z). Calculation shows: $\left[\nabla_q^2 = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{h_3 h_1}{h_2} \frac{\partial}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial}{\partial q_3} \right) \right] \right]$ This general result gives the ∇^2 forms quoted on inside back cover of Jackson.

REMARKS

A: For the φ -variation: $Q(\varphi) = e^{\pm i\nu\varphi}$, and -- for $Q(\varphi)$ to be single-valued when $\varphi \to \varphi + 2\pi$ -- we impose: $\underline{V} = n = 0,1,2,3,...$. No such restriction applies to the k-value in $Z(z) = \{\cosh, \sinh\}\{kz\}$, although usually the each or sinh is selected via B.C. <u>POINT</u>: in Bessels ODE, Eq. (30), V is not free to be an eigenvalue, but k is.

B. The radial variable r in Bessel's ODE is generally defined over $0 \le r \le a$, (where, sometimes, $a \to \infty$). Change variables in Eq. (30), as...

$$\begin{cases} \gamma \to \xi = (\alpha/a)\gamma, \quad a = \gamma_{\text{max}} \xi \alpha = \text{cnst}; \\ sq_{1} \frac{d}{d\xi} \left(\xi \frac{dR}{d\xi}\right) + \left(\lambda \xi - \frac{v^{2}}{\xi}\right)R = 0, \quad \text{neg} \quad \lambda = \left(\frac{ka}{\alpha}\right)^{2} \xi \text{ N=n (usu.).} \quad (31) \end{cases}$$

Bessel's ODE is clearly a Sturm-Liouville type, with $\beta(\xi) = \xi$, $\beta(\xi) = -v^2/\xi$, weighting for $\beta(\xi) = \xi$, and eigenvalues ξ , and eigenval

Eg. (31) must obey S-I B.C.: at the endpts Y=042 of the domain...

-> Rv(x) p(x) Rm(x) | == Rv(x) p(x) Rm(x) | x=0,

$$\Rightarrow \begin{cases} p(\xi) = \xi, \text{ and} \\ R(0) \text{ non-singular} \end{cases} Rv(\alpha) R_{\mu}(\alpha) = 0 \int y \sin s \, ds \, ds = 0.$$
 (32)

Kole of α is now clear: $\alpha \rightarrow \alpha_{vn}$ is the n^{tm} zero of $R_{v}(\alpha)$. The quartization of α this way is similar to: $\sin(\alpha x/a)|_{x=a} = 0 \Rightarrow \alpha = n\pi = \alpha_{n}$.

Define here of Sturm-Tionville theory now prescribes that R_{v}^{ts} belonging to different eigenvalues $\alpha_{vm} \notin \alpha_{vn}$ will be orthogonal, and that the R_{v}^{ts} form a complete set on [0,a]. Details are worked out in Jackson Eqs. [3.93]-[3.97] [or see Mathews & Walker (2nd ed., 1970), pp. 181-3] with the following results:

$$\left[\int_{0}^{a} R_{\nu}(\alpha_{\nu m} \frac{r}{a}) R_{\nu}(\alpha_{\nu m} \frac{r}{a}) r dr = \frac{a^{2}}{2} \left[R_{\nu}(\alpha_{\nu m})\right]^{2} \delta_{mn}\right], \qquad (33)$$
(this is similar to:
$$\int_{0}^{a} \sin(m\pi \frac{x}{a}) \sin(m\pi \frac{x}{a}) dx = \frac{a}{2} \left[\cos n\pi\right]^{2} \delta_{mn}, \quad Also...$$

$$\rightarrow f(r) = \sum_{n=1}^{\infty} A_{\nu n} R_{\nu}(\alpha_{\nu n} \frac{r}{a}) \leftrightarrow A_{\nu n} = \frac{2}{\left[aR_{\nu}(\alpha_{\nu n})\right]^{2}} \int_{0}^{a} f(r) R_{\nu}(\alpha_{\nu n} \frac{r}{a}) r dr. \quad (34)$$

The $R_{\nu}^{13}(\xi)$ to be used here are those which are aegular (non-singular) at $\xi=0$. They are usually denoted by $J_{\nu}(\xi)$.

2. Bessels ODE, Eq. (31), generally has two indept solns Rr(8): usu. one is regular at \$=0, and the other bloos up. A series solution can be developed. Results are:

	fen Rv(x)	name	definition	asymptote: \$<<1	asymptote: 3771
1	工()	Bessel fen (1st kind)	$\left(\frac{\xi}{2}\right)^{\nu}\sum_{n=0}^{\infty}\frac{(-\xi^{2}/4)^{n}}{n!\Gamma(n+\nu+1)}$	1 [(v+1) (x/2)~	$\int \frac{2}{T\xi} \cos \left(\xi - \frac{\pi}{2}(v + \frac{1}{2})\right)$
	$N_{\nu}(\xi)$ $[\omega Y_{\nu}(\xi)]$	Neumann fon	<u> J.(ξ) ωςνπ - J., (ξ)</u> Sώνπ	$(2/\pi)$ $\ln(\xi/2)$, $v=0$; $-\frac{1}{\pi}\Gamma(v)\left(\frac{2}{\xi}\right)^{v}$, $v\neq 0$.	$\sqrt{\frac{2}{\pi \xi}} \sin \left(\xi - \frac{\pi}{2} \left(v + \frac{1}{2}\right)\right)$
	Η ^(*) (ξ)	Hankel fon (128 kind)	J,(3)+iN,(3)		√2/πξ e+i(ξ-π(ν+1)) +[ontgoing wave] >
	H ^{७)} (६)	Hankel fen (21 rd kind)	July) - i Nu (x)		12/πξ e-i(ξ- ½(v+2)) - Linconing ware]+
	Ι _ν (ξ)	modified Bessel (1st kind)	i-^J,(i	1 [(V+1) (\(\xi/2)\)	T 0+ 5 [1+0(1/E)]
	K,(5)	modified Bessel (2nd kind)	T 1 141 H(1) (1)	-ln (5/2)+, v=0; = 1/2 (2/5), v+0.	1 1 . D * 1 1 L 1 T 1 T 1 C 1 1 1

Any of the pairs (Jv, Nv), (H⁽¹⁾, H⁽²⁾), (Iv, Kv) are linearly independent for all v, and—in linear combination [e.g. AJv(8)+BNv(8)]—serve as a complete soln to Bessels Extr. Much more information can be found in Ch. 9 of the NBS Handbook (ed. Abramovitz & Stegum).

3. All this arithmetic gives us a fully separated solution in Cylindrical cds:

$$\begin{cases} \phi(r, q, z) = \sum_{v, k} R_{v}(kr) Q_{v}(\varphi) Z_{k}(z); & (36) \\ W_{v} Q_{v}(\varphi) = \begin{cases} \sin \beta(v\varphi), & v = m = 0, 1, 2, ... \\ v_{v}(v) \end{cases}; \\ Z_{k}(z) = \begin{cases} \sinh \beta(kz), & k \text{ is free}; \\ \cosh \beta(kz), & \text{solutions to Bessel's Egtin, in form:} \\ R_{v}(kr) = \begin{cases} J_{v} \\ N_{v} \end{cases} & \begin{cases} k_{v} + \frac{1}{x} R_{v}^{i} + (1 - \frac{v^{2}}{x^{2}}) R_{v} = 0, x = kr. \end{cases} \end{cases}$$

Now we can do problems like the example cited in Jackson Egg, (3.105) - (3.109)... cylindrical comtemport of the rect box problem in Fig. 2.9.

A conducting cylinder of vadius a and length L is held at potential $\phi = 0$ everywhere but on its top cap, where: $\phi(r, \varphi, z = L) = V(r, \varphi)$. The problem is to find ϕ everywhere inside the (charge-free) eyelinder, i.e. $\phi(r, \varphi, z)$ for $0 \le r \le a$, $0 \le \varphi \le 2\pi$, $0 \le z \le L$. To "sculpt" a solution out of Eq. (36), note...

- (1) Qv(p) single-valued => v=m=0,1,2, & Qv(p)= { cos } mp.
- (2) \$\phi = 0 at z=0 => Zk(z) = sinh kz only.
- (3) \$\phi \tegnlan@ =0 4 \$\phi =0 @ \text{\$v = a => } \text{\$R_v(k_v) = J_m(k_m \text{\$v\$}) only, with \$k \rightarrow \text{\$k_m = alm/a, quantized in terms of zeros alm of Jm [i.e. Jm(alm) =0].
- (4) The series of Eq. (36) assumes the form, for this problem ...

[NOTE: must keep both sin & cos here to accommodate V(r, p)]. The Amn & Bmn are fixed by the B.C.: $V(r, p) = \sum_{m,n} [\sinh k_{mn} L] J_m(k_{mn}r) [A_{mn} sin mp + B_{mn} cos mp],$ using orthogonality in the usual fushion. Results are given in Jk^{n} Eq. (3.109). They are not exceedingly lovely.