Toshiba Matsushita Display Technology Co., Ltd

39cm COLOUR TFT-LCD MODULE (15.4 WIDE TYPE)

LTD154EX0S (Z) (p-Si TFT)

PRODUCT INFORMATION

### **FEATURES**

- (1) 15.4WIDE-XGA(1280x800 pixels) display size for notebook PC
- (2) LVDS interface system (H-Sync, V-Sync)

**TENTATIVE** 

### **MECHANICAL SPECIFICATIONS**

| Item                       | Specifications                            |
|----------------------------|-------------------------------------------|
| Dimensional Outline (typ.) | 344.5max(W) x 222.5max (H) x 6.5max(D) mm |
| Number of Pixels           | 1280(W) x 800(H) pixels                   |
| Active Area                | 332.2 (W) x 207.6(H) mm                   |
| Pixel Pitch                | 0.2595(W) x 0.2595(H)                     |
| Weight (approximately)     | 585 g(Max)                                |
| Backlight                  | Single CCFL, Sidelight type               |

### **ABSOLUTE MAXIMUM RATINGS**

| Item                            | Symbol           | Min. | Max.                 | Unit  | Checked Terminal   |
|---------------------------------|------------------|------|----------------------|-------|--------------------|
| Supply Voltage                  | $V_{ m DD}$      | -0.3 | +4.0                 | V     | $V_{\rm DD}$ – GND |
| Input Voltage of Signals        | $V_{IN}$         | -0.3 | V <sub>DD</sub> +0.3 | V     | LVDS interface     |
| Operating Ambient Temperature   | $T_{OP}$         | 0    | 50                   | °C    |                    |
| Operating Ambient Humidity      | HOP              | 10   | 90                   | %(RH) |                    |
| Storage Temperature             | $T_{ m STG}$     | -20  | +60                  | °C    |                    |
| Storage Humidity                | H <sub>STG</sub> | 10   | 90                   | %(RH) |                    |
| Operating Temperature for Panel | -                | 0    | +60                  | °C    |                    |

**ELECTRICAL SPECIFICATION(T.B.D)** 

| Item                                     | Symbol            | Min. | Тур.  | Max.                      | Unit     | Remarks               |
|------------------------------------------|-------------------|------|-------|---------------------------|----------|-----------------------|
| Supply Voltage 1)                        | $V_{ m DD}$       | 3.0  | 3.3   | 3.6                       | V        |                       |
|                                          | $V_{FL}$          |      | (920) |                           | V(rms)   | $I_{FL}$ =6.0mA(rms)  |
| FL Start Voltage (Ta=0°C)                | $V_{\rm SFL}$     | TBD  |       | TBD                       | V(rms)   |                       |
| Differential Input Voltage <sup>2)</sup> | $V_{ID}$          | 100  | -     | 600                       | mV       |                       |
| Common Mode Input Voltage 2)             | $V_{\rm CM}$      | 1.0  | -     | 2.4 -(V <sub>ID</sub> )/2 | <b>V</b> |                       |
| Current Consumption                      | $I_{\mathrm{DD}}$ | -    | (335) |                           | mA       |                       |
|                                          | I <sub>FL</sub>   |      | 6.0   | 6.0                       | mA(rms)  |                       |
| Power Consumption                        |                   |      | (6.6) |                           | W        | $I_{FL}$ =6.0 mA(rms) |

<sup>\*1)</sup> The module should be always operated within these ranges. The "Typ." shows the recommendable value.

OPTICAL SPECIFICATION (Ta=25°C)(T.B.D)

| Item                |                    | Min.  | Тур.  | Max. | Unit              | Remarks              |
|---------------------|--------------------|-------|-------|------|-------------------|----------------------|
| Contrast Ratio (CR) |                    | (150) | (400) |      |                   |                      |
| Response Time       | $(t_{ON}+t_{OFF})$ |       |       | 40   | ms                | @25deg               |
|                     |                    |       |       |      |                   | Brack <=> White      |
| Luminance (L)       |                    | (150) | (190) |      | cd/m <sup>2</sup> | $I_{FL}$ =6.0mA(rms) |

<sup>\*2)</sup> Recommended LVDS transmitter: DS90CF365

<sup>\*</sup>The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Toshiba Matsushita Display Technology or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Toshiba Matsushita Display Technology or others.

<sup>\*</sup>The information contained herein may be changed without prior notice. It is therefore advisable to contact Toshiba Matsushita Display Technology before proceeding with the design of equipment incorporating this product.

**DIMENSIONAL OUTLINE** 

**TENTATIVE** 

Unit: mm

Standard tolerance: ±0.5

(Front side)



## DIMENSIONAL OUTLINE

# **TENTATIVE**

(Back side) Unit : mm

Standard tolerance: ±0.5



### **BLOCK DIAGRAM**





## TIMING CHART(T.B.D)



## TIMING SPECIFICATION 1) 2) 3) 4) 5) 6)

(T.B.D)

| Item                    | Symbol | min. | typ. | max. | unit   |
|-------------------------|--------|------|------|------|--------|
| Horizontal Active pixel | -      | -    | 1280 | -    | Pixels |
| H Sync Front Porch      | HSO    | -    | 4    | -    | Pixels |
| H Sync Pulse Width      | HSPW   | -    | 4    | -    | Pixels |
| H Sync Back Porch       | HBO    | -    | 112  | •    | Pixels |
| Horizontal Total Pixels | -      | -    | 1400 | -    | Pixels |
| Horizontal Blank Pixel  | -      | -    | 120  | -    | Pixels |
| Horizontal Total Time   | -      | -    | 20   | -    | Us     |
| Horizontal Blank Time   | -      | -    | 1.7  | -    | Us     |
| Vertical Active Line    | -      | -    | 800  | -    | Lines  |
| V Sync Front Porch      | VSO    | -    | 1    | -    | Lines  |
| V Sync Pulse Width      | VSPW   | -    | 2    | -    | Lines  |
| V Sync Back Porch       | VBO    | -    | 30   | -    | Lines  |
| Vertical Total Line     | -      | -    | 833  | -    | Lines  |
| Vertical Blank Line     | -      | -    | 33   | -    | Lines  |
| Vertical Total Time     | -      | -    | 16.7 | -    | Ms     |
| Vertical Blank Time     | -      | -    | 0.7  | -    | Ms     |
| Pixel Clock             | -      | -    | 70   | -    | MHz    |
| Frame Rate              | -      | -    | 60   | -    | Hz     |

Note 1) Refer to "Timing Chart" and LVDS specifications by chip vendor.

Note 2) If NCLK is fixed to "H" or "L" level for certain period while  $V_{\rm DD}$  is supplied, the panel may be damaged.

Note 3) Please adjust LCD operating signal timing and FL driving frequency, to optimize the display quality. There is a possibility that flicker is observed by the interference of LCD operating signal timing and FL driving condition (especially driving frequency), even if the condition satisfies above timing specifications.

Note 4) Do not make tv, tvhd and tvds fluctuate.

If tv, tvhd, and tvds are fluctuate, the panel displays black.

Note 5) In case of using the long frame period, the deterioration of display quality, noise etc. may be occurred.

Note 6) NCLK count of each Horizontal Scanning Time should be always the same.

V-Blanking period should be "n" X "Horizontal Scanning Time". (n: integer) Frame period should be always the same.

### **CONNECTOR PIN ASSIGNMENT FOR INTERFACE**

### CN1 INPUT SIGNAL

Connector: FI-XB30SR-HF11(Locking Type) / JAPAN AVIATION ELECTRONICS INDUSTRY,LTD.

Mating Connector:

Wire Type:FI-X30H (Housing), FI-XC3-A-15000 (Contact)

FPC Type:FI-X30M or FI-X30M R, Coax Type:FI-X30C or FI-X30C2(Housing), FI-X30CH-7000(Shell)

| Terminal No. | Symbol      | Function                                                      |
|--------------|-------------|---------------------------------------------------------------|
| 1            | GND         |                                                               |
| 2            | <i>V</i> DD | Power Supply: +3.3V                                           |
| 3            | <i>V</i> DD | Power Supply: +3.3V                                           |
| 4            | NC          | Non-Connection                                                |
| 5            | NC          | Non-Connection                                                |
| 6            | NC          | Non-Connection                                                |
| 7            | NC          | Non-Connection                                                |
| 8            | RxOIN0-     | Odd Negative LVDS differential data input (R0-R5,G0)          |
| 9            | RxOIN0+     | Odd Positive LVDS differential data input (R0-R5,G0)          |
| 10           | GND         |                                                               |
| 11           | RxOIN1-     | Odd Negative LVDS differential data input (G1-G5, B0-B1)      |
| 12           | RxOIN1+     | Odd Positive LVDS differential data input (G1-G5, B0-B1)      |
| 13           | GND         |                                                               |
| 14           | RxOIN2-     | Odd Negative LVDS differential data input (B2-B5, HS, VS, DE) |
| 15           | RxOIN2+     | Odd Positive LVDS differential data input (B2-B5, HS, VS, DE) |
| 16           | GND         |                                                               |
| 17           | OCLK-       | Odd Clock Signal(-)                                           |
| 18           | OCLK+       | Odd Clock Signal(+)                                           |
| 19           | GND         |                                                               |
| 20           | NC          | Non-Connection                                                |
| 21           | NC          | Non-Connection                                                |
| 22           | NC          | Non-Connection                                                |
| 23           | NC          | Non-Connection                                                |
| 24           | NC          | Non-Connection                                                |
| 25           | NC          | Non-Connection                                                |
| 26           | NC          | Non-Connection                                                |
| 27           | NC          | Non-Connection                                                |
| 28           | NC          | Non-Connection                                                |
| 29           | NC          | Non-Connection                                                |
| 30           | NC          | Non-Connection                                                |

Note 1) Please connect GND pin to ground. Don't use it as no-connect nor connection with high impedance.

### CN2 CCFL POWER SOURCE

Connector: BHSR-02VS-1/JAPAN SOLDERLESS TERMINAL MFG CO., LTD.

Mating Connector: SM02B-BHS-1 / JAPAN SOLDERLESS TERMINAL MFG CO., LTD.

| Terminal No. | Symbol       | Function                          |
|--------------|--------------|-----------------------------------|
| 1            | <b>V</b> FLH | CCFL Power Supply ( high voltage) |
| 2            | <b>V</b> FLL | CCFL Power Supply (low voltage)   |

### **RECOMMENDED TRANSMITTER (DS90CF365)** TO LTD154LX0S INTERFACE ASSIGNMENT

## Case1: 6bit Transmitter

| (DS90CF365) |            |        |                                     |                | LTM154I        | XOS (Z)          |  |
|-------------|------------|--------|-------------------------------------|----------------|----------------|------------------|--|
| Input Te    | rminal No. |        | Input Signal                        | Output         |                | rface            |  |
|             |            |        | (Graphics controller output signal) | Signal         |                | (CN1)            |  |
| Symbol      | Terminal   | Symbol | Function                            | Symbol         | Terminal       | Symbol           |  |
| TA0         | 44         | R0     | Red Pixels Display Data (LSB)       |                |                |                  |  |
| TA1         | 45         | R1     | Red Pixels Display Data             |                |                |                  |  |
| TA2         | 47         | R2     | Red Pixels Display Data             | TA-            | No.5           | RxIN0-           |  |
| TA3         | 48         | R3     | Red Pixels Display Data             | TA+            | No.6           | RxIN0+           |  |
| TA4         | 1          | R4     | Red Pixels Display Data             |                |                |                  |  |
| TA5         | 3          | R5     | Red Pixels Display Data (MSB)       |                |                |                  |  |
| TA6         | 4          | G0     | Green Pixels Display Data (LSB)     |                |                |                  |  |
| TB0         | 6          | G1     | Green Pixels Display Data           |                |                | RxIN1-<br>RxIN1+ |  |
| TB1         | 7          | G2     | Green Pixels Display Data           |                | No.8<br>No.9   |                  |  |
| TB2         | 9          | G3     | Green Pixels Display Data           | TB-            |                |                  |  |
| TB3         | 10         | G4     | Green Pixels Display Data           | TB+            |                |                  |  |
| TB4         | 12         | G5     | Green Pixels Display Data (MSB)     |                |                |                  |  |
| TB5         | 13         | B0     | Blue Pixels Display Data (LSB)      |                |                |                  |  |
| TB6         | 15         | B1     | Blue Pixels Display Data            |                |                |                  |  |
| TC0         | 16         | B2     | Blue Pixels Display Data            |                |                |                  |  |
| TC1         | 18         | B3     | Blue Pixels Display Data            |                |                |                  |  |
| TC2         | 19         | B4     | Blue Pixels Display Data            | TC-            | No.11          | RxIN2-<br>RxIN2+ |  |
| TC3         | 20         | B5     | Blue Pixels Display Data (MSB)      | TC+            | No.12          |                  |  |
| TC4         | 22         | HSYNC  | Horizontal Synchronization Signal   |                |                |                  |  |
| TC5         | 23         | VSYNC  | Vertical Synchronization Signal     |                |                |                  |  |
| TC6         | 25         | DE     | Compound Synchronization Signal     |                |                |                  |  |
| CLK IN      | 26         | CLK    | Data Sampling Clock                 | TCLK-<br>TCLK+ | No.14<br>No.15 | CLK-<br>CLK+     |  |



## 256k (k=1024) COLORS COMBINATION TABLE

|                  |              |                   |                   |                   | Gray Scale |
|------------------|--------------|-------------------|-------------------|-------------------|------------|
|                  | Display      | R5 R4 R3 R2 R1 R0 | G5 G4 G3 G2 G1 G0 | B5 B4 B3 B2 B1 B0 | Level      |
|                  | Black        | LLLLL             | LLLLL             | LLLLL             | -          |
|                  | Blue         | LLLLL             | LLLLL             | н н н н н         | -          |
|                  | Green        | LLLLL             | ннннн             | LLLLL             | -          |
| Basic            | Light Blue   | LLLLL             | н н н н н н       | н н н н н н       | -          |
| Color            | Red          | н н н н н н       | LLLLLL            | LLLLLL            | -          |
|                  | Purple       | н н н н н н       | LLLLLL            | н н н н н         | -          |
|                  | Yellow       | н н н н н н       | н н н н н         | L L L L L L       | =          |
|                  | White        | н н н н н н       | н н н н н         | н н н н н         | -          |
|                  | Black        | L L L L L L       | L L L L L L       | L L L L L L       | L 0        |
| 0                |              | LLLLLH            | LLLLL             | LLLLL             | L 1        |
| Gray<br>Scale of | Dark         | LLLLHL            | LLLLLL            | L L L L L L       | L 2        |
| Red              | $\downarrow$ | :                 | :                 | :                 | L3         |
| rtou             | ↓<br>Light   | :                 | :                 | :                 | L60        |
|                  | Ligiti       | H H H H L H       | LLLLLL            | LLLLLL            | L61        |
|                  |              | ннннн             | LLLLLL            | LLLLLL            | L62        |
|                  | Red          | н н н н н н       | L L L L L L       | L L L L L L       | Red L63    |
|                  | Black        | LLLLLL            | LLLLLL            | L L L L L L       | L 0        |
|                  |              | L L L L L L       | LLLLLH            | L L L L L L       | L 1        |
| Gray<br>Scale of | Dark         | L L L L L L       |                   | LLLLL             | L 2        |
| Green            | <b>↑</b>     | :                 | :                 | :                 | L3         |
| Croon            | ↓<br>Light   | :                 | :                 | :                 | L60        |
|                  | Ligiti       | LLLLL             | н н н н L н       | LLLLLL            | L61        |
|                  |              | L L L L L L       | н н н н н L       | L L L L L L       | L62        |
|                  | Green        | LLLLLL            | н н н н н         | L L L L L L       | Green L63  |
|                  | Black        |                   | LLLLLL            | L L L L L L       | L 0        |
| 0                |              | LLLLL             | LLLLLL            | LLLLLH            | L 1        |
| Gray<br>Scale of | Dark         | LLLLL             | L L L L L L       | L L L L H L       | L 2        |
| Blue             | $\downarrow$ | :                 | :                 | :                 | L3         |
| 5.40             | ↓<br>Light   | :                 | :                 | :                 | L60        |
|                  | Ligiti       | LLLLL             | L L L L L L       | H $H$ $H$ $L$ $H$ | L61        |
|                  |              | L L L L L L       | L L L L L L       | H H H H H L       | L62        |
|                  | Blue         | L L L L L L       | L L L L L L       | н н н н н н       | Bl ue L63  |
|                  | Black        |                   | LLLLLL            | LLLLL             | L 0        |
| Gray             |              | LLLLLH            | LLLLLH            | LLLLLH            | L 1        |
| Scale of White & | Dark         | LLLLHL            | LLLLHL            | LLLLHL            | L 2        |
| Black            | $\downarrow$ | :                 | :                 | :                 | L3         |
| 2.301            | ↓<br>Light   | :                 | :                 | :                 | L60        |
|                  | Ligit        | ннннк             | ннннгн            | H H H H L H       | L61        |
|                  |              | ннннн             | нининь            | H H H H H L       | L62        |
|                  | White        | н н н н н         | н н н н н         | н н н н н         | White L63  |

### **DISPLAY QUALITY SPECIFICATION**

| Item                       | Description / Specifications             |                                     | Class |
|----------------------------|------------------------------------------|-------------------------------------|-------|
| Function                   | No display, Malfunction                  |                                     | Major |
| Display Quality 1)2)3)     | Missing line                             | Major                               |       |
|                            | Missing Sub-Pixels                       |                                     | Minor |
|                            | 1) Bright defects                        | : 15pcs. maximum                    |       |
|                            | 2) Dark defects                          | : 15pcs. maximum                    |       |
|                            | 3) Total sub-pixel defects               | : 20pcs. maximum                    |       |
|                            | Various uniformity (mura) : n            | eglect                              | -     |
|                            | Inconspicuous flicker, crosstalk neglect | , Newton's ring and other defects : | -     |
| Black and White Spots/line | Inconspicuous defects : neglec           | t                                   | -     |
| Backlight                  | Missing (Non-operating)                  |                                     | Major |

Note 1) Defects of both color filter and black matrix are counted as bright or dark defects. Inspection area should be within the active area.

Note 2) Bright defect means a bright spot(sub-pixel) on the display pattern of gray scale L0.

Dark defect means a dark spot(sub-pixel) on the display pattern of gray scale L63.

Note 3) Bright spot which can not be found by using 5%ND-Filter shall not be counted as a defect.



LCD module is generally designed with precise parts to achieve light weighted thin mechanical dimensions.

In using our Modules, make certain that you fully understand and put into practice the warnings and safety precautions detailed in Engineering Information No.EE-N001,"CAUTIONS AND INSTRUCTIONS FOR TOSHIBA LCD MODULES".

Refer to individual specifications and TECHNICAL DATA sheets (hereinafter called "TD") for more detailed technical information.

### 1) SPECIAL PURPOSES

- A) Toshiba Matsushita Display Technology's Standard LCD Modules have not been customized for operation in extreme environments or for use in applications where performance failures could be life-threatening or otherwise catastrophic.
- B) Since Toshiba Matsushita Display Technology's Standard LCD Modules have not been designed for operation in extreme environments, they must never be used in devices that will be exposed to abnormally high levels of vibration or shock which exceed Toshiba Matsushita Display Technology's published specification limits.
- C) In addition, since Toshiba Matsushita Display Technology's Standard LCD Modules have not been designed for use in applications where performance failures could be life-threatening or catastrophic, they must never be installed in aircraft navigation control systems (such as, but not limited to Traffic Collision Avoidance System and Air Traffic Indicator), in military defense or weapons systems, in critical industrial process-control systems (e.g., those involved in the production of nuclear energy), or in critical medical device or patient life-support systems.

### 2) DISASSEMBLING OR MODIFICATION

DO NOT DISASSEMBLE OR MODIFY the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display.

Toshiba Matsushita Display Technology doses not warrant the module, if customer disassembled or modified it.

### 3) BREAKAGE OF LCD PANEL

DO NOT INGEST liquid crystal material, DO NOT INHALE this material, and DO NOT CONTACT the material with skin, if LCD panel is broken and liquid crystal material spills out.

If liquid crystal material comes into mouth or eyes, rinse mouth or eyes out with water immediately.

If this material contact with skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.

### 4) GLASS OF LCD PANEL

BE CAREFUL WITH CHIPS OF GLASS that may cause injuring fingers or skin, when the glass is broken.

### 5) ELECTRIC SHOCK

DISCONNECT POWER SUPPLY before handling LCD module.

DO NOT TOUCH the parts inside LCD module and the fluorescent lamp's connector or cables in order to prevent electric shock, because high voltage is supplied to these parts from the inverter unit while power supply is turned on.

### 6) ABSOLUTE MAXIMUM RATINGS AND POWER PROTECTION CIRCUIT

DO NOT EXCEED the absolute maximum rating values under the worst probable conditions caused by the supply voltage variation, input voltage variation, variation in parts' constants, environmental temperature, etc., otherwise LCD module may be damaged.

Employ protection circuit for power supply, whenever the specification or TD specifies it.

Suitable protection circuit should be applied for each system design.

### 7) DISPOSAL

When dispose LCD module, obey to the applicable environmental regulations.