MATH 262 Linear Algebra Lecture Notes of Özgür Kişisel Week 1

Zehra Kaya

February 2024

Contents

1	Introduction	1
2	Free Vector Space Over a Set	1
	2.1 Characteristic Function - Basis for $\mathcal{F}(S)$	1 2
3		2
	3.1 Bilinear Maps	2
	3.2 Universal Property of Tensor Product	2
	3.3 Dimension of a Tensor Product	2
	3.3.1 Theorem	2
	3.4 Symmetric Powers of a Vector Space	2
1		
2	Free Vector Space Over a Set	
-	efinition 2.1: Let S be a set, F be a field. The set $\mathcal{F}(S) \subseteq Fun(S,F)$ sugar	ıch
011	$\mathcal{F}(S) = \{ f \in Fun(S, F) f(s) = 0 \text{ except (possibly) for finitely many } s \}$	
	Then $\mathcal{F}(S)$ is called the free vector space over S	

Proposition 2.1: $\mathcal{F}(S)$ is a subspace of Fun(S, F)

2.1 Characteristic Function - Basis for $\mathcal{F}(S)$

Let S be any finite set with n elements and F a field. Let V = Fun(S, F), the set of functions from S to F, viewed as a vector space over F. For every $s \in S$,

we can define a characteristic function $\mathcal{X}_s \in Fun(S, F)$ so that

$$\mathcal{X}_s = \begin{cases} 0 & \text{if } s \neq s \\ 1 & \text{otherwise} \end{cases}$$

Suppose that $S = \{s_1, s_2, ..., s_n\}$. We claim that $B = \{\mathcal{X}_{s_1}, \mathcal{X}_{s_2}, ..., \mathcal{X}_{s_n}\}$ is a basis for V over F. Let us first show linear independence. Suppose that $c1\mathcal{X}_{s_1} + ... + cn\mathcal{X}_{s_n} = 0$. This is an equality of functions. Applying both sides to s_i gives $c_i = 0$. Since this is true for every i, we deduce that B is linearly independent. Suppose now that $f \in Fun(S, F)$. We claim that $f = f(s_1)\mathcal{X}_{s_1} + f(s_2)\mathcal{X}_{s_2} + ... + f(s_n)\mathcal{X}_{s_n}$

- 2.2 Universal Property of $\mathcal{F}(S)$
- 3 Tensor Product of Two Vector Spaces
- 3.1 Bilinear Maps

Proposition

- 3.2 Universal Property of Tensor Product
- 3.3 Dimension of a Tensor Product
- 3.3.1 Theorem
- 3.4 Symmetric Powers of a Vector Space