# GNG 1105E – Engineering Mechanics

CHAPTER S3 - EQUILIBRIUM

#### Assigned readings

3/4 Equilibrium conditions (3-D)

Force Balance: 
$$\sum F = 0$$

$$\sum F_x = 0$$

$$\sum F_y = 0$$

$$\sum F_z = 0$$

Moment Balance: 
$$\sum M = 0$$

$$\sum M_x = 0$$

$$\sum M_{y} = 0$$

$$\sum M_z = 0$$

| Type of Contact and Force Origin                                   | Action on Body to Be Isolated                                                                                                        |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1. Member in contact with smooth surface, or ball-supported member | Force must be normal to the surface and directed toward the member.                                                                  |
| 2. Member in contact with rough surface                            | The possibility exists for a force $F$ tangent to the surface (friction force) to act on the member, as well as a normal force $N$ . |
| 3. Roller or wheel support with lateral constraint                 | A lateral force $P$ exerted by the guide on the wheel can exist, in addition to the normal force $N$ .                               |

| Type of Contact and Force Origin         | Action on Body to Be Isolated       |                                                                                                                                                                                                            |
|------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Ball-and-socket joint                 | $R_x$ $R_y$ $R_z$ $y$               | A ball-and-socket joint free to pivot about the center of the ball can support a force <b>R</b> with all three components.                                                                                 |
| 5. Fixed connection (embedded or welded) | $R_x$ $R_y$ $R_z$ $M_y$ $M_z$       | In addition to three components of force, a fixed connection can support a couple <b>M</b> represented by its three components.                                                                            |
| 6. Thrust-bearing support                | $R_x$ $R_z$ $R_z$ $R_z$ $R_z$ $R_z$ | Thrust bearing is capable of supporting axial force $R_y$ as well as radial forces $Rx$ and $R_z$ . Couples $M_x$ and $M_z$ must, in some cases, be assumed zero in order to provide statical determinacy. |

Complete Fixity (Adequate Constraints)



**Excessive Fixity (Redundant Constraints)** 



Incomplete Fixity (Partial Constraints)

No Moment Resistance about Line AE



Incomplete Fixity (Partial Constraints)

No Force Resistance along y-Axis



The uniform 7-m steel shaft has a mass of 200 kg and is supported by a ball-and-socket joint at A in the horizontal floor. The ball end B rests against the smooth vertical walls as shown. Compute the forces exerted by the walls and the floor on the ends of the shaft.









A 200-N force is applied to the handle of the hoist in the direction shown. The bearing *A* supports the thrust (force in the direction of the shaft axis), while bearing *B* supports only radial load (load normal to the shaft axis). Determine the mass *m* which can be supported and the total radial force exerted on the shaft by each bearing. Assume neither bearing to be capable of supporting a moment about a line normal to the shaft axis.



Dimensions in millimeters



Dimensions in millimeters



Dimensions in millimeters

## Recommended problems

**Chapter S3 Practice Problems** 

Questions 21-38