MINIMIZAREA FUNCŢIILOR BOOLEENE

3.3.3. Minimizarea funcţiilor booleene

- Gradul de complexitate al funcţiei booleene ⇔ Gradul de complexitate al circuitului numeric
- În sinteza circuitelor de comutație etapa de minimizare, după etapa de definire
- Scopul minimizării = obţinerea unor forme echivalente mai simple ⇒ forma minimă
- Metode de minimizare (simplificare) ⇒ expresii minimale de forma SAU-uri de ŞI-uri (reuniune minimală) ori ŞI-uri de SAU-uri (intersecţie minimală)

3.3.3. Minimizarea funcţiilor booleene

- Criterii utilizate pentru minimizare:
 - Reducerea numărului de variabile
 - Reducerea numărului de termeni
 - Reducerea pe ansamblu a variabilelor şi termenilor încât suma lor să devină minimă
- Metode de minimizare:
 - Grafice
 - Algebrice

- 1. Diagrama Karnaugh funcții complet definite
- Minimizarea se bazează pe proprietatea de adiacenţă a codului Grey
- Se aleg suprafețe maxime formate din constituenți ai unității, respectiv din constituenți ai lui zero
- Suprafețele au ca dimensiune un număr de compartimente egal întotdeauna cu puteri ale lui 2
- Suprafețele corespund termenilor canonici, termenii vecini fiind adiacenți (diferă printr-un singur bit)

1. Diagrama Karnaugh - funcții complet definite

Prin gruparea termenilor adiacenţi şi aplicarea principiului terţului exclus (x + x = 1) şi a proprietăţii elementului unitate (x • 1 = x) eliminăm o variabilă:

$$\mathbf{x}_1 \bullet \mathbf{x}_2 + \mathbf{x}_1 \bullet \overline{\mathbf{x}}_2 = \mathbf{x}_1$$

- O suprafață cu 2^m compartimente va elimina "m" variabile de intrare
- Un compartiment poate fi membru în mai multe suprafețe $(x + x + ... + x = x \text{ și } x \cdot x \cdot ... \cdot x = x)$ Ol.11.2019

 Curs 4 Proiectare Logica

5

1. Diagrama Karnaugh - funcții complet definite

- Metoda de minimizare:
 - Se realizează grupări de compartimente (numărul compartimentelor egal cu puteri ale lui 2)
 - Se scriu ecuațiile corespunzătoare fiecărei suprafețe ⇒ termenii elementari
 - Se realizează:
 - FDM = forma disjunctivă minimă prin însumarea termenilor elementari obținuți prin gruparea constituenților lui 1
 - FCM = forma conjunctivă minimă prin înmulțirea termenilor elementari obținuți prin gruparea constituenților lui 0 Curs 4 Proiectare Logica

1. Diagrama Karnaugh - funcții complet definite

■ **OBS.** Funcțiile minimale obținute în cele 2 forme de minimizare sunt identice (diferă doar forma de reprezentare)

- 1. Diagrama Karnaugh funcții complet definite
- **Exemplu:** $f(x_1,x_2,x_3,x_4) = \Sigma(3, 7, 8, 9, 12, 13, 15)$
- Minimizarea cu constituenții lui 1 (FDM) are 2 variante, după cum se aleg suprafețele de minimizare

	-	X_4			
X_1X_2 X_3X_4	00	01	11	10	
00	0	0	1	0	
01	0	0	1	0	\mathbf{X}_2
$ \mathbf{x}_1 $ 11	1	1	1	0	
10[1	1	0	0	
·			X	3	

- 1. Diagrama Karnaugh funcții complet definite
- **Exemplu:** $f(x_1,x_2,x_3,x_4) = \Sigma(3, 7, 8, 9, 12, 13, 15)$
- Minimizarea cu constituenții lui 1 (FDM) are 2 variante, după cum se aleg suprafețele de minimizare

$$f_{\text{FDM1}} = x_1 \cdot \overline{x}_3 + \overline{x}_1 \cdot x_3 \cdot x_4 + x_1 \cdot x_2 \cdot x_4 \text{ sau}$$

$$f_{\text{FDM2}} = x_1 \cdot \overline{x}_3 + \overline{x}_1 \cdot x_3 \cdot x_4 + x_2 \cdot x_3 \cdot x_4$$

- 1. Diagrama Karnaugh funcții complet definite
- **Exemplu:** $f(x_1,x_2,x_3,x_4) = \Sigma(3, 7, 8, 9, 12, 13, 15)$
- Implementarea cu porți de tip ŞI-NU utilizează principiul dublei negații și apoi teoremele lui De Morgan
- $f_{FDM1} = \overline{f_{FDM1}} = x_1 \cdot \overline{x}_3 + \overline{x}_1 \cdot x_3 \cdot x_4 + x_1 \cdot x_2 \cdot x_4 = \overline{x_1 \cdot \overline{x}_3} \cdot \overline{\overline{x}_1 \cdot x_3} \cdot \overline{x_1} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_4} = \overline{x_1 \cdot \overline{x}_3} \cdot \overline{\overline{x}_1} \cdot \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_4} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_4} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_4} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_4} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_4} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_4} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_4} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_4} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_4} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_4} = \overline{x_1} \cdot \overline{x_2}$

- 1. Diagrama Karnaugh funcții complet definite
- **Exemplu:** $f(x_1,x_2,x_3,x_4) = \Sigma(3, 7, 8, 9, 12, 13, 15)$
- Minimizarea cu constituenții lui 0 (FCM)

		_	X_4			
X_1X_2	X ₃ X ₄ _	00	01	11	10	
	00	0	0	1	0	
	01	0	0	1	0	X_2
\mathbf{X}_1	11	1	1	1	0	
	10	1	1	0	0	•
•	·					

•
$$f_{FCM} = (x_1 + x_3) \cdot (\overline{x_3} + x_4) \cdot (\overline{x_1} + x_2 + \overline{x_3})$$

2. Diagrama Karnaugh - funcții incomplet definite

- Funcții incomplet definite: în anumite puncte ale domeniului de definiție pot lua valoarea 0 sau 1
- Situaţii:
 - Combinații ale variabilelor de intrare pentru care funcția are valori indiferente (nedefinite)
 - Combinaţii ale variabilelor de intrare care nu pot să apară din punct de vedere fizic - se studiază dacă pot să apară la manevre false sau după defecte de funcţionare

- 2. Diagrama Karnaugh funcții incomplet definite
- Valorile funcției în DK se numesc în aceste situații
 indiferente sau arbitrare sau redundante
- Notaţia acestor valori se face cu "X"
- La minimizare, pentru "X" se dau valori de 1 sau de 0, în funcție de situație, pentru obținerea unei forme minime a funcției
- Observaţie: Funcţia minimizată în FDM nu mai coincide întotdeauna cu funcţia minimizată în FCM

- 2. Diagrama Karnaugh funcții incomplet definite
- Exemplu: funcție incomplet definită reprezentată direct în DK
- Minimizăm în FDM şi alegem "X" cu valoare 1, acolo unde este cazul
- OBSERVAŢIE: NU se grupează în suprafeţe numai valori de "X"!!!

- 2. Diagrama Karnaugh funcții incomplet definite
- Exemplu: funcție incomplet definită reprezentată direct în DK

		$\underline{\hspace{1cm}} X_4$							
	X_1X_2 X_3X_4	00	1	01		11		10	
	X_1X_2 X_3X_4 00			X		1			•
	01	X		1				X	X_2
\mathbf{x}_1	11	1		_1		1			
	10	1		X		1		X	
					_		+X	3	

3. Diagrama Karnaugh - cu expresii înglobate

- Superpoziția funcțiilor booleene
 - Dacă avem F(X), unde $X = (x_1, x_2, ..., x_i, x_{i+1}, ..., x_n)$ şi considerăm $X_1 = (x_1, x_2, ..., x_i)$ şi $X_2 = (x_{i+1}, ..., x_n)$ şi dacă F(X) se poate scrie $F(X) = f_3[f_1(X_1), f_2(X_2)]$ atunci F(X) s-a obținut prin superpoziția funcțiilor $f_1(X_1)$ şi $f_2(X_2)$
- Decompoziția funcțiilor booleene
 - Dacă avem f(X), unde $X = (x_1, x_2, ..., x_n)$ și un set de funcții, decompoziția înseamnă că F(X) se poate scrie:
 - $f(X) = f_m[f_{m-1}(X_{m-1}), f_{m-2}(X_{m-2}), ..., f_1(X_1), X_0] \text{ cu } Xi \subset X$

3. Diagrama Karnaugh - cu expresii înglobate

Exemplu: $f(x_1,x_2,x_3,x_4) = \sum_{x_4} (0, 2, 3, 7, 9, 10, 11, 14)$

	$\widetilde{x_1x_2}$	X ₃ X ₄	00	01	11	10	_
		$0\overline{0}$	1		1	1	-
		01			1		\mathbf{X}_2
\mathbf{X}_1		11				1	
		10		1	1	1	
	•			-	37		

• $f_{\text{FDM}} = \overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_4 + \overline{x}_1 \cdot x_3 \cdot x_4 + x_1 \cdot \overline{x}_3 \cdot \overline{x}_4 + x_1 \cdot \overline{x}_2 \cdot \overline{x}_4 = \overline{x}_2 \cdot (x_1 \cdot x_4) + x_3 \cdot (x_1 \cdot x_4) = \overline{x}_2 \cdot \overline{G} + x_3 \cdot G$

- 3. Diagrama Karnaugh cu expresii înglobate
- **Exemplu:** $f(x_1,x_2,x_3,x_4) = \Sigma(0,2,3,7,9,10,11,14)$
- Folosind decompoziția $f(X) = f_2[f_1(X_1), X_0]$ putem scrie $f = f_2[G(x_1,x_4), x_2, x_3]$
- În continuare facem un artificiu de calcul:

$$f = \overline{x}_{2} \cdot \overline{G} + x_{3} \cdot G = \overline{x}_{2} \cdot \overline{G} \cdot (x_{3} + \overline{x}_{3}) + x_{3} \cdot G \cdot (x_{2} + \overline{x}_{2}) =$$

$$= \overline{x}_{2} \cdot x_{3} \cdot \overline{G} + \overline{x}_{2} \cdot \overline{x}_{3} \cdot \overline{G} + x_{2} \cdot x_{3} \cdot G + \overline{x}_{2} \cdot x_{3} \cdot G = \overline{x}_{2} \cdot x_{3} +$$

$$+ \overline{x}_{2} \cdot \overline{x}_{3} \cdot \overline{G} + x_{2} \cdot x_{3} \cdot G$$

- 3. Diagrama Karnaugh cu expresii înglobate
- **Exemplu:** $f(x_1,x_2,x_3,x_4) = \Sigma(0, 2, 3, 7, 9, 10, 11, 14)$
- DK corespunzătoare este acum:

Prin înglobarea în DK cu număr de compartimente 2ⁿ, a "m" expresii (variabile) rezultă o DK cu 2^{n-m} compartimente

3. Diagrama Karnaugh - cu expresii înglobate

- Paşii pentru minimizarea cu DK cu expresii (variabile) înglobate:
 - 1. Se consideră toate variabilele ca și cum ar fi 0 și se formează suprafețe cu constituenții lui 1 și se minimizează
 - 2. Se consideră toate locațiile cu 1 indiferente și se formează suprafețe cu variabilele înglobate
 - 3. Se consideră intersecția variabilelor înglobate cu grupările obținute prin minimizare la pasul 2

- 3. Diagrama Karnaugh cu expresii înglobate
- Paşii pentru minimizarea cu DK cu expresii (variabile) înglobate:
 - 4. Se face reuniunea termenilor obținuți în pașii 1 și 3
 - 5. Pentru mai multe variabile se repetă pe rând pentru fiecare paşii 1-4 (celelalte variabile se consideră 0), apoi se face reuniunea tuturor termenilor obţinuţi

3. Diagrama Karnaugh - cu expresii înglobate

Exemplu: Să se minimizeze funcția cu variabile înglobate $f(x_1,x_2,x_3,a,b,c)$:

X_1 X_2 X_3	00	01	11	10
0		a+b	1	c
1	1		1	X

Pasul 1

X_1 X_2 X_3	00	01	11	10
0			\bigcap	
<u>1</u>	1		1	X

Se obţine
$$x_2 \cdot x_3 + x_1 \cdot \overline{x_3}$$
Curs 4 Proiectare Logica

3. Diagrama Karnaugh - cu expresii înglobate

- **Exemplu:** Să se minimizeze funcția cu variabile înglobate $f(x_1,x_2,x_3,a,b,c)$:
- Pasul 2 şi 3

X_1 X_2 X_3	00	01	11	10
0		a±b	X	0
1	X		X	X

- Se obţine $c \cdot x_2 + (a+b) \cdot \overline{x}_1 \cdot x_3$
- Pasul 4 se obţine funcţia minimizată:

$$f = x_2 \cdot x_3 + x_1 \cdot \overline{x_3} + c \cdot x_2 + (a+b) \cdot \overline{x_1} \cdot x_3$$
Ol.11.2019 Curs 4 Projectare Logica

- Se bazează pe axiomele şi teoremele algebrei booleene
- Se utilizează pentru funcții booleene cu mai mult de 6 variabile
- Exemplu de metodă de minimizare algebrică:
 Metoda Quine-Mc Cluskey

- Etapele de minimizare:
- 1. Se grupează termenii canonici astfel încât termenii din fiecare grupare să conţină acelaşi număr de 1, respectiv de 0
- 2. Se compară fiecare termen dintr-o grupare cu toți cei din gruparea următoare, aplicând relația de reducere: $x_1 \cdot x_2 + x_1 \cdot \overline{x}_2 = x_1$.
 - Se grupează termenii care diferă printr-o singură variabilă. Termenul obținut prin reducere va conține "-" pe poziția acelei variabile.
 - Pasul se repetă până nu se mai pot face reduceri
- Termenii rezultați în final se numesc implicanți primi IP Curs 4 Proiectare Logica

- Etapele de minimizare:
- 3. Se aleg acei implicanți primi IP care asigură acoperirea minimală a termenilor canonici TC
 - Se construieşte un tabel de acoperire cu TC pe coloane şi IP pe linii
 - În intersecțiile tabelului se notează TC care sunt acoperiți de fiecare IP
 - Unii IP sunt numiți esențiali deoarece acoperă cel puțin un TC care nu este acoperit de nici un alt IP ⇒ IP esențiali fac parte în mod obligatoriu din expresia

- **Exemplu:** $f(x_1,x_2,x_3,x_4) = \Sigma (0, 2, 3, 5, 7, 8, 10, 11, 13, 15)$
 - Etapa 1 gruparea termenilor canonici

	TC	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4
	0	0	0	0	0
	2	0	0	1	0
	8	1	0	0	0
•	3	0	0	1	1
	5	0	1	0	1
	10	1	0	1	0
•	7	0	1	1	1
	11	1	0	1	1
	13	1	1	0	1
01.11.20	15 019	1	¹ c	1 Surs 4 Proie	1 ctare Logica

- **Exemplu:** $f = \Sigma (0, 2, 3, 5, 7, 8, 10, 11, 13, 15)$
 - Etapa 2 compararea termenilor din grupe diferite

_	TC		\mathbf{X}_1	X_2 X	X_4
	0,2		0 () -	0
_	0,8		- () 0	0
	2,3	(0 () 1	-
	2,10		- () 1	0
_	8,10		1 () -	0
	3,7		0 -	. 1	1
	3,11		- () 1	1
	5,7		0	-	1
	5,13		-]	1 0	1
	10,11		1 () 1	-
	7,15		-]	1	1
	11,15		1 -	· 1	1
04.44.04	13,15		1		1
01.11.20)19			Curs 4 Pro	iectare Logica

- **Exemplu:** $f = \Sigma (0, 2, 3, 5, 7, 8, 10, 11, 13, 15)$
 - Etapa 2 continuarea comparării

TC	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X ₄
0, 2, 8, 10	-	0	-	0
2, 3, 10, 11	-	0	1	_
3, 7, 11, 15	-	-	1	1
5, 7, 13, 15	-	1	-	1

- Dacă în urma comparării un termen apare de mai multe ori se trece o singură dată
- IP rezultaţi sunt: $(0,2,8,10) = \overline{x_2} \cdot \overline{x_4}$, $(2,3,10,11) = \overline{x_2} \cdot x_3$, $(3,7,11,15) = x_3 \cdot x_4$, $(5,7,13,15) = x_2 \cdot x_4$

- **Exemplu:** $f = \Sigma (0, 2, 3, 5, 7, 8, 10, 11, 13, 15)$
 - Etapa 3 tabelul de acoperire

IP TC	0	2	3	5	7	8	10	11	13	15
0, 2, 8, 10	X	X				X	X			
2, 3, 10, 11		X	X				X	X		
3, 7, 11, 15			X		X			X		X
5, 7, 13, 15				X	X				X	X

- Implicanții primi esențiali sunt (0,2,8,10) și (5,7,13,15)
- Pentru TC neacoperiți de IP esențiali se pot alege 2 variante de acoperire ⇒ 2 soluții de minimizare

$$\begin{split} f &= (0,\!2,\!8,\!10) + (5,\!7,\!13,\!15) + (2,\!3,\!10,\!11) = \overline{x_2} \bullet \overline{x_4} + x_2 \bullet x_4 + \overline{x_2} \bullet x_3 \text{ sau} \\ f &= (0,\!2,\!8,\!10) + (5,\!7,\!13,\!15) + (3,\!7,\!11,\!15) = \overline{x_2} \bullet \overline{x_4} + x_2 \bullet x_4 + x_3 \bullet x_4 \\ \text{\tiny 01.11.2019} \end{split}$$

3.3.4. Minimizarea sistemelor de funcţii

- Sistemele de funcții booleene se exprimă prin:
 - f: $B^n \rightarrow B^m$ unde $B = \{0,1\}$
- Argumentele funcțiilor pot fi de "n" variabile
- Există mai multe funcții: f₁, f₂, ..., f_m

3.3.4. Minimizarea sistemelor de funcţii

- Se caută implicanţi primi pentru funcţiile individuale şi pentru produsele:
 - f₁, f₂, ..., f_m
 - $\bullet f_1 \bullet f_2, f_1 \bullet f_3, \dots, f_1 \bullet f_m$
 - $f_1 \bullet f_2 \bullet f_3, f_1 \bullet f_2 \bullet f_4, \dots$
 - $f_1 \circ f_2 \circ f_3 \circ f_4, \dots$
 - Exemplu: pentru un sistem de 3 funcții vor rezulta pentru minimizare 7 funcții și produse de funcții
- Soluţia aleasă: cea mai avantajoasă din punct de vedere al circuitelor disponibile şi al preţului