# Pattern Recognition Assignment 3 Group No - 36

#### ED13D000 Bhargava Sai Ramu CS17S008 Nitesh Methani

October 13, 2017

#### Contents

| 1 | Introduction      | 1 |
|---|-------------------|---|
| 2 | Observations      | 1 |
| 3 | Synthetic Dataset | 1 |
| 4 | Image Dataset     | 4 |
| 5 | Conclusion        | 5 |

### 1 Introduction

We have two datasets to work with. One dataset is synthetic data that contains two classes. Second dataset consists of three classes, each class contains 36x23 images.

### 2 Observations

| Attributes     | Full Covariance | Diagonal Covariance | Image Dataset |
|----------------|-----------------|---------------------|---------------|
| For class 1, K | 7               | 5                   | 10            |
| For class 2, K | 10              | 4                   | 10            |
| For class 3, K | -               | -                   | 10            |
| EM for class 1 | 9               | 15                  | 35            |
| EM for class 2 | 24              | 21                  | 30            |
| EM for class 3 | -               | -                   | 29            |
| Accuracy       | 100%            | 94.5%               | 55%           |

 ${\bf Figure: Summary\ of\ the\ assignment}$ 

# 3 Synthetic Dataset

1) Full Covariance Matrix



Figure 1: Synthetic Data with Full Covariance Matrix

#### 2) Diagonal Covariance Matrix



Figure 2: Synthetic Data with Diagonal Covariance Matrix

# 4 Image Dataset



Figure 3: Plots for Image Dataset

## 5 Conclusion

- 1)As we have 23 features for each image, we ran an inbuilt PCA function to identify dominant features.
- 2) We transformed nx23 to nx6 dimension where 6 feature are able to explain 80% of the data to avoid singularity
- 3)The models accuracy was 55% on test data and 854)For higher cluster values there might not be any point clustered and GMM cannot be constructed
- 5) For Synthetic Data, for reasonal ble K (i.e  ${>}5)$  we are able to fit both diagonal and complete covariance  $\rm GMMs$