参考問題 2024/10/2(水)

質点が一端を固定したバネに水平につながれている。この系の固有振動数を ω_0 とする。質点の平衡位置からの変位を x とする。質点には速度に比例する抵抗力 $-\Gamma v = -2m\gamma v$ が働いているとする。初期条件は $x=0, v=v_0$ とする。 なお、表記が煩雑になる場合は、 $\gamma_1, \gamma_2, \tilde{\omega}$ などを定義して用いてもよい。

- 1. 運動方程式に $x=e^{pt}$ を代入することにより p をもとめよ。ただし、 $\gamma=\Gamma/2m,\,\omega_0=\sqrt{k/m}$ を用いよ。
- 2. 過減衰 $(\omega_0 < \gamma)$ の場合について、 変位の時間依存性 x(t) を求めよ。
- 3. 臨界減衰 $(\omega_0 = \gamma)$ の場合について、
 - (a) $x = te^{-\gamma t}$ も運動方程式を満たすことを示せ。
 - (b) 変位の時間依存性 x(t) を求めよ。
- 4. 減衰振動 $(\omega_0 > \gamma)$ の場合について、
 - (a) 変位の時間依存性 x(t) を求めよ。
 - (b) 運動方程式に dx/dt をかけて積分することによりエネルギーの時間的変化率は抵抗力の仕事による消耗率と等しいことを示せ。 $\left(\frac{d}{dt}\left(\frac{1}{2}mv^2+\frac{1}{2}kx^2\right)=-2m\gamma v\cdot v\right)$ を示せば良い。)

課題

- 1. t が無限大のときの振幅の比を考えることにより、臨界減衰がもっとも早く減衰することを示せ。(ヒント: 過減衰より臨界減衰が早く減衰することを示すには、 $(\gamma-\omega_0)^2-(\gamma^2-\omega_0^2)<0$ を証明すればよい。)
- 2. $\gamma = 0.2\omega_0, \omega_0, 1.2\omega_0$ の場合に、初期条件 $x = 0, v = v_0$ の元での減衰振動を縦軸に x 横軸に t として概形を書いてみよう。(スマホの graph アプリや mathematica, web サイトなどを使っても良い)出来れば3つ同じプロットに。