Algebra liniowa dla opornych

czyli Skrypt przygotowawczy do 2. kolokwium

Materiały zamieszczone w skrypcie pochodzą z wykładów z K. Krupińskim, ćwiczeń z E. Kierońskim i Wikipedii :) Skrypt został oczyszczony z "niepotrzebnych" twierdzeń i traktuje z grubsza o praktycznym rozwiązywaniu zadań, jest tam też trochę niezbędnej teorii.

W razie jakichkolwiek uwag, proszę o kontakt: o.rosik.rosinska@gmail.com

Olga Rosik-Rosińska

ALGEBRA LINIOWA

1. Przestrzeń liniowa

def. Zbiór U nazywamy <u>przestrzenią liniową</u> (wektorową) nad ciałem K, jeśli zdefiniowane są dwa działania: $+: V \times V \to V$ $i \cdot : K \times V \to V$ oraz $\forall \alpha, \beta \in K$, $u, v \in V$ zachodzi:

- (a) (V, +) jest grupą przemienną
- (b) $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$
- (c) $\alpha \cdot (v+u) = \alpha \cdot v + \alpha \cdot u$
- (d) $(\alpha \cdot \beta) v = \alpha(\beta \cdot v)$
- (e) $1 \cdot v = v$ (gdzie 1 to el. neutralny działania multiplikatywnego w K)

NOTACJA: $\vec{0}$ - wektor zerowy

Elementy ciała K nazywane są <u>skalarami</u>, a zbioru V – <u>wektorami</u>.

Żeby najprościej wyobrazić sobie przestrzeń liniową, można rozważyć zbiór \mathbb{R} jako ciało K oraz zbiór \mathbb{R}^2 jako V. Wtedy przestrzeń liniowa to po prostu cała płaszczyzna dwuwymiarowa, wektory (elementy zbioru V) to zwykłe wektory znane z liceum, zaś skalary to liczby rzeczywiste. Dodawanie par (\mathbb{R},\mathbb{R}) to zwykłe składanie wektorów, zaś działanie · to mnożenie wektora przez jakaś stała $(\alpha \in \mathbb{R})$.

Zasadniczo nie bardzo obchodzi nas, że K to ciało, do samego faktu tak naprawdę odwołujemy się jedynie w dowodach.

Fakt: Niech V – przestrzeń liniowa nad K. Wtedy $\forall \alpha \in K$, $v \in V$ mamy:

- a) $0 \cdot v = \vec{0}$
- b) $\alpha \cdot \vec{0} = \vec{0}$
- c) $\alpha \cdot v = \vec{0} \Leftrightarrow \alpha = 0 \lor v = \vec{0}$
- d) $(-1)\cdot v = -v$ (tzn. wektor przeciwny)

def. Niech V – przestrzeń liniowa nad K. Mówimy, że $U \subseteq V$ jest podprzestrzenią V \Leftrightarrow $(a) \land (b) \land (c)$, gdzie:

- (a) $\vec{0} \in U$
- (b) $\forall u, v \in U \ u + v \in U$
- (c) $\forall \alpha \in K \ \forall u \in U \ \alpha \cdot u \in U$

def. Niech V – przestrzeń liniowa nad K.

- (1) <u>kombinacjami liniowymi</u> wektorów v_1, \dots, v_k nazywamy wszystkie wektory postaci $\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \dots + \alpha_k \cdot v_k dla \alpha_1, \dots, \alpha_k \in K$
- (2) dla dowolnego $A \subseteq V$ zbiór $Lin(A) := \{\alpha_1 \cdot v_1 + ... + \alpha_k \cdot v_k : k \in \mathbb{N}, v_1, ..., v_k \in A, \alpha_1, ..., \alpha_k \in K\}$ nazywamy podprzestrzenią generowaną (rozpiętą) przez A. (otoczką liniową zbioru A).

Fakt: Jeśli V – przestrzeń liniowa nad K i $A \subseteq V$, to $Lin(A) \le V$ Lin(A) jest najmniejszą (w sensie inkluzji) podprzestrzenią V zawierającą A.

def. Niech V – przestrzeń liniowa nad ciałem K. Układ wektorów $v_1, v_2, ..., v_k \in V$ nazywamy liniowo niezależnym, gdy $\forall \alpha_1, ..., \alpha_k \in K$ $\alpha_1 \cdot v_1 + ... + \alpha_k \cdot v_k = \vec{0} \Rightarrow \alpha_1 = ... = \alpha_k = 0$. Układ wektorów, który nie jest liniowo niezależny, nazywamy liniowo zależnym.

Terminologia: Mówiąc "układ wektorów v_1, \dots, v_k " mamy na myśli wektory $v_1, \dots v_k$ tworzące ciąg o kolejności zgodnej z indeksami wektorów, tzn: kolejność jest ważna oraz wektory mogą się powtarzać (chociaż w praktyce powtarzanie tych samych wektorów w danym układzie nie ma zbyt wielkiego sensu).

Zbiór wektorów (nie mylić z układem wektorów!) jest liniowo niezależny, gdy układ jego (parami różnych) elementów jest liniowo niezależny. Innymi słowy, jeśli dostaniemy zbiór wektorów i ułożymy je w ciąg tak, by każdy wektor wystąpił dokładnie raz i zgodnie z definicją udowodnimy, że układ (ciąg) ten jest liniowo niezależny, to wtedy cały zbiór wektorów jest liniowo niezależny.

Uwaga: W przestrzeni K^n układ wektorów $v_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{nl} \end{pmatrix}, \dots, v_k = \begin{pmatrix} a_{1k} \\ a_{2k} \\ \dots \\ a_{nk} \end{pmatrix}$ jest liniowo niezależny

wtedy i tylko wtedy, gdy jedyne rozwiązanie układu równań:

$$a_{11}x_1 + ... + a_{1k}x_k = 0$$

$$a_{nl}x_1 + \dots + a_{nk}x_k = 0$$

to $x_1 = x_2 = ... = x_k = 0$.

Fakt: Wektory $v_1, v_2, ..., v_k$ są liniowo zależne $\Leftrightarrow \exists i \in \{1, ..., k\}$ takie, że v_i jest liniową kombinacją $v_1, ..., v_{i-1}, v_{i+1}, ..., v_k$ (tzn. $v_i \in Lin(\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_k\})$)

Innymi słowy, jeśli dowolny wektor z układu wektorów można przedstawić jako sumę pozostałych, gdzie każdy przemnożony jest przez jakąś stałą, to układ jest liniowo zależny. Wnioskowanie jest oczywiste, bo jeśli wektor v_i da się przedstawić jako sumę $\alpha_1 \cdot v_1 + \ldots + \alpha_{i-1} \cdot v_{i-1} + \alpha_{i+1} \cdot v_{i+1} + \ldots + \alpha_k \cdot v_k = a$, to wtedy $a - v_i = \vec{0}$.

Lemat: Każdy skończony zbiór wektorów $\{v_1, ..., v_k\}$ (zawierający wektor niezerowy) zawiera liniowo niezależny podzbiór $\{v_{il}, ..., v_{ij}\}$ taki, że $Lin(v_1, ..., v_k) = Lin(v_{il}, ..., v_{ij})$.

To dość naturalny lemat: każdy zbiór wektorów generuje jakąś przestrzeń, zatem z dowolnego (skończonego) zbioru wektorów można wybrać jakiś liniowo niezależny podzbiór, który wygeneruje dokładnie tę samą przestrzeń. W szczególności jeśli wyjściowy zbiór jest niezależny, to jego niezależnym podzbiorem jest on sam.

Fakt: Niech V – przestrzeń liniowa, A, $B \subseteq V$. Wtedy

- 1) $A \subseteq Lin(A)$
- 2) $A \subseteq B \Rightarrow Lin(A) \subseteq Lin(B)$
- 3) Lin(Lin(A)) = Lin(A)

Powyższy fakt może przydać się przy jakichś dowodach w zadaniach. Punkt pierwszy jest dość trywialny. Oczywiście A to zbiór wektorów, Lin(A) to zbiór wszystkich wektorów, które da się wygenerować z A (przemnażając każdy wektor z A przez jakieś stałe i dodając je do siebie), oczywiście każdy wektor v_i z A jest liniową kombinacją A: $v_i = 0 \cdot v_1 + ... + 1 \cdot v_i + ... + 0 \cdot v_k$, zatem A jest podzbiorem Lin(A).

Punkt drugi dość łatwo wynika z powyższego lematu. Jeśli A zawiera się w B, to znaczy, że Lin(B) = Lin(A) + C, gdzie C to zbiór wektorów, których nie da się wygenerować tylko z A, ale da się wygenerować z B. Oczywiście C może być zbiorem pustym.

Punkt trzeci jest dość naturalny do zrozumienia przy znajomości definicji Lin(A). Jeżeli weźmiemy zbiór wektorów A i stworzymy zbiór B wszystkich możliwych wektorów powstałych z A poprzez wymnożenie każdego wektora z A przez dowolny skalar i dodanie ich do siebie, to jeśli w ten sam sposób stworzymy zbiór C wszystkich możliwych wektorów powstałych z wszystkich możliwych wektorów z A, to zbiory B i C będą sobie równe.

def. Podzbiór (układ) B przestrzeni liniowej V nazywamy bazą V, gdy jest on liniowo niezależny i generuje V (tzn. Lin(B) = V).

Oczywiście może istnieć więcej niż jedna baza przestrzeni liniowej, np. dla przestrzeni \mathbb{R}^2 bazami mogą być $\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ (baza standardowa) oraz $\left\{ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\}$.

def. Przestrzeń liniowa V jest skończenie wymiarowa, gdy $V = Lin(v_1, ..., v_k)$ dla pewnych skończenie wielu $v_1, ..., v_k \in V$.

Innymi słowy przestrzeń V jest skończenie wymiarowa, gdy ma skończoną bazę.

Twierdzenie: Każda przestrzeń liniowa ma bazę.

Wniosek: Każde dwie bazy danej przestrzeni liniowej V są równoliczne.

def. Wymiarem przestrzeni liniowej V nazywamy moc jej dowolnej bazy i oznaczamy go przez dim(V).

W praktyce ta definicja jest nieco skomplikowana, jednakże w większości przypadków dość łatwo ocenić wymiar danej przestrzeni – \mathbb{R}^2 jest wymiaru 2, \mathbb{R}^3 – wymiaru 3, \mathbb{R}^n – wymiaru n. Sama definicja przydaje się raczej w dowodach. Oczywiście korzystając z definicji możemy od razu wywnioskować, że dowolna baza \mathbb{R}^n będzie miała dokładnie n elementów.

Fakt:

- a) Każdy podzbiór A przestrzeni liniowej V generujący V zawiera bazę V
- b) Każdy liniowo niezależny podzbiór A przestrzeni liniowej V rozszerza się do bazy V

Wniosek: Każdy podzbiór generujący V ma moc większą lub równą dim(V). Każdy liniowo niezależny podzbiór V ma moc mniejszą lub równą dim(V).

Powyższy fakt razem z wnioskiem jest dość ważny i dobre zrozumienie go pomaga w rozwiązywaniu zadań (najczęściej dowodowych). Jeśli rozważymy dowolny podzbiór V generujący V, to z pewnością zawiera on (dowolną) bazę V, być może zawiera też jakieś inne wektory, które nie są niezależne z pozostałymi. Jako że baza V jest zbiorem wektorów niezależnych generujących V, to jest po prostu najmniejszym zbiorem generującym V. Oczywiście jeżeli podzbiór V zawiera bazę V, to jego moc jest większa lub równa mocy bazy V = dim(V).

Rozważmy B - dowolny liniowo niezależny podzbiór A. Są 2 możliwości: albo B jest (dowolną) bazą V, albo zawiera mniej elementów. Nie może zawierać więcej, ponieważ baza V jest liniowo niezależna i generuje V, przez co jeśli dodalibyśmy do niej jakikolwiek wektor z V który do niej nie należy, to przestałaby być liniowo niezależna. Jeśli B jest bazą V, to oczywiście B rozszerza się do bazy V przez dodanie 0 elementów. Jeśli B zawiera mniej elementów niż dowolna baza V (wszystkie są równoliczne!), to rozważmy C - dowolną bazę V, która zawiera B (taka na pewno istnieje, bo baza V to zbiór dowolnych niezależnych wektorów, które generują V). Wtedy B rozszerza się do C poprzez dodanie do B wszystkich wektorów ze zbioru $C \setminus B$. Oczywiście wtedy moc B jest mniejsza (lub jeśli B = C - równa) mocy C.

Twierdzenie: Każdy wektor w przestrzeni liniowej V zapisuje się jednoznacznie jako kombinacja liniowa z ustalonej bazy przestrzeni V.

NOTACJA: wektor współrzędnych wektora
$$v$$
 w bazie B to $[v]_B := \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} \in K$

Przykład: Rozważmy wektor
$$v = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
, $B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \subseteq \mathbb{R}^{2}$. Wtedy $v = \alpha_{1} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \alpha_{2} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \alpha_{1} + \alpha_{2} \\ \alpha_{1} + 2\alpha_{2} \end{pmatrix}$ $\alpha_{1} + \alpha_{2} = 2$ $\alpha_{1} + 2\alpha_{2} = 3$ zatem $\alpha_{1} = 1$, $\alpha_{2} = 1$, $[v]_{B} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Wniosek: Niech V – przestrzeń liniowa nad K wymiaru n, B – baza V. Wtedy funkcja $\Phi: V \to K^n$ zadana wzorem $\Phi(v)=[v]_B$ jest bijekcją.

Innymi słowy: dla każdego wektora v z przestrzeni V istnieje dokładnie jedno przedstawienie v w bazie B (jego konstrukcja pokazana jest w przykładzie wyżej) oraz dla każdego przedstawienia wektora w bazie B istnieje dokładnie jeden wektor, który jest przez to przedstawienie reprezentowany.

Fakt: Niech E będzie bazą przestrzeni V nad ciałem K, $v, u \in V, \alpha \in K$. Wtedy $[v+u]_E = [v]_E + [u]_E$ oraz $[v]_E = [v]_E$.

2. Przekształcenia liniowe

def. Niech V, U – przestrzenie liniowe nad K. Wtedy funkcja $F: V \to U$ jest <u>przekształceniem liniowym</u> (funkcją liniową), gdy:

- (a) $\forall v_1, v_2 \in V \quad F(v_1 + v_2) = F(v_1) + f(v_2)$
- (b) $\forall \alpha \in K \ \forall v \in V \ F(\alpha \cdot v) = \alpha \cdot F(v)$

Przekształcenie liniowe dla przestrzeni liniowych jest dokładnie tym samym, co homomorfizm dla grup: funkcją zachowującą działania.

Fakt: $F: V \rightarrow U$ – przekształcenie liniowe. Wtedy:

- (a) $ker(F) := \{v \in V : F(v) = \vec{0}_U\} \le V$
- (b) $Im(F) := \{u \in U : \exists v \in V \ F(v) = u\} \le U$

Tak samo podobnie jak w przypadku homomorfizmu – jądro przekształcenia liniowego to zbiór tych elementów, które są przekształcane na wektor zerowy. Obraz przekształcenia liniowego to zbiór wartości, które osiąga.

Uwaga: Jeśli $F: U \to V$ jest przekształceniem liniowym, to $F(\vec{0}_U) = \vec{0}_V$. (a zatem jądro F nigdy nie jest puste)

def. Rzędem przekształcenia liniowego F nazywamy dim(Im(F)) i czasami oznaczamy go przez dim(F).

Innymi słowy rząd przekształcenia F to wymiar obrazu, np. dla funkcji "na" $F: \mathbb{R}^2 \to \mathbb{R}^3$ dim(F)=3

Fakt: Niech F: $V \rightarrow U$, G: $V \rightarrow U$ – przekształcenia liniowe. Wtedy:

- (a) F + G liniowe
- (b) $\alpha \cdot F$ liniowe dla każdego $\alpha \in K$

Liniowość (czyli dokładniej: zachowywanie działań) nie psuje się nawet przy wykonywaniu działań na funkcjach.

3. Macierze

def. <u>Macierzą</u> o wymiarach m na n (o m wierszach i n kolumnach) nad ciałem K nazywamy każdą funkcję typu $[1, \dots m] \times [1, \dots n] \to K$. Zbiór macierzy oznacza się $M_{m \times n}(K)$ lub $M_{m \times n}$ (jeśli ciało K jest domyślne).

NOTACJA: Wektory zapisujemy w formie tabel:

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}$$

Przy patrzeniu na macierz jak na funkcję, $a_{i,j}$ to wartość zwracana dla pary (i,j).

Typy macierzy:

- (a) <u>macierz zerowa</u> złożona z samych zer
- (b) <u>macierze kwadratowe</u> rozmiaru n na n (wtedy n <u>stopień macierzy</u>)
 - macierz przekątniowa złożona z samych zer, za wyjątkiem co najwyżej elementów na głównej przekątnej (elementów postaci $a_{1,1}, a_{2,2}, \dots a_{n,n}$)
 - <u>macierz jednostkowa</u> (identycznościowa) macierz przekątniowa, która ma na głównej przekątnej same jedynki
 - <u>macierz trójkatna górna</u> ma pod główną przekątną same zera
 - <u>macierz trójkatna dolna</u> ma nad główną przekątną same zera
 - <u>macierz trójkątna</u> górna lub dolna

Dodawanie macierzy:

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} + \begin{bmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,n} \\ b_{2,1} & b_{2,2} & \dots & b_{2,n} \\ \dots & \dots & \dots & \dots \\ b_{m,1} & b_{m,2} & \dots & b_{m,n} \end{bmatrix} = \begin{bmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} & \dots & a_{1,n} + b_{1,n} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} & \dots & a_{2,n} + b_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{m,1} + b_{m,1} & a_{m,2} + b_{m,2} & \dots & a_{m,n} + b_{m,n} \end{bmatrix}$$

Aby dodać do siebie dwie macierze (tych samych rozmiarów!) wystarczy dodać wartości na odpowiednich współrzędnych.

Mnożenie macierzy przez skalary:

$$\alpha \cdot \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} = \begin{bmatrix} \alpha a_{1,1} & \alpha a_{1,2} & \dots & \alpha a_{1,n} \\ \alpha a_{2,1} & \alpha a_{2,2} & \dots & \alpha a_{2,n} \\ \dots & \dots & \dots & \dots \\ \alpha a_{m,1} & \alpha a_{m,2} & \dots & \alpha a_{m,n} \end{bmatrix}$$

Pomnożenie macierzy przez skalar to pomnożenie każdego elementu tej macierzy przez skalar.

Mnożenie macierzy:

$$\begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix} = \begin{bmatrix} a_1b_1 + a_2b_2 + \dots + a_nb_n \end{bmatrix}$$

$$\begin{bmatrix} A_1 \\ A_2 \\ \dots \\ A_m \end{bmatrix} \cdot \begin{bmatrix} B_1 & B_2 & \dots & B_k \end{bmatrix} = \begin{bmatrix} A_1B_1 & A_1B_2 & \dots & A_1B_k \\ A_2B_1 & A_2B_2 & \dots & A_2B_k \\ \dots & \dots & \dots & \dots \\ A_mB_1 & A_mB_2 & \dots & A_mB_k \end{bmatrix}$$

Jak wiadomo, każda macierz da się przedstawić zarówno w postaci kolumn, jak i wierszy (powstają wtedy wektory). Jeśli chcemy obliczyć macierz będącą iloczynem macierzy A i B, trzeba podzielić macierz A na wiersze, zaś macierz B na kolumny (uwaga: muszą być tej samej długości!). Element o współrzędnych i,j w macierzy AB powstaje z pomnożenia i-tego wiersza macierzy A przez j-tą kolumnę macierzy B. Iloczyn wiersza przez kolumnę to suma iloczynów poszczególnych elementów – patrz: pierwszy wzór.

Przykład: Rozważmy macierze
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$
 oraz $B = \begin{bmatrix} 0 & 7 \\ 4 & 2 \end{bmatrix}$

$$A \cdot B = \begin{bmatrix} 1 \cdot 0 + 3 \cdot 4 & 1 \cdot 7 + 3 \cdot 2 \\ 2 \cdot 0 + 5 \cdot 4 & 2 \cdot 7 + 5 \cdot 2 \end{bmatrix} = \begin{bmatrix} 12 & 13 \\ 20 & 24 \end{bmatrix}$$

Uwaga: Mnożenie macierzy NIE jest przemienne! (jeżeli mnożenie AB jest wykonalne, to mnożenie BA również – jeśli obie macierze są wymiarów n na n, ale to nie gwarantuje przemienności)

Fakt: Mnożenie macierzy jest łaczne.

Fakt: Niech A,B,C oznaczają macierze nad ciałem K, I_n jest macierzą jednostkową stopnia n, a α elementem ciała K. O ile poniższe działania są wykonalne, to:

- (a) $I_n A = A$, $AI_n = A$
- (b) A(B+C)=AB+AC
- (c) (B+C)A = BA+CA
- (d) $\alpha(AB) = (\alpha A)B = A(\alpha B)$

Innymi słowy: macierz jednostkowa (identycznościowa) jest elementem neutralnym mnożenia macierzy. Mnożenie macierzy jest rozdzielne względem dodawania, i odwrotnie: dodawanie względem mnożenia. Ponadto mnożenie razy skalar jest przemienne.

def. Niech U, V – przestrzenie liniowe nad ciałem K. Niech $A=(a_1,\ldots,a_n)$ – baza U, $B=(b_1,\ldots,b_m)$ – baza V, zaś $T:U\to V$ – przekształcenie liniowe. Macierzą przekształcenia liniowego T w bazach A, B nazywamy taką macierz $M_{AB}(T)=[t_{i,j}]$ rozmiaru $m\times n$ o współczynnikach z K, że dla każdego j = 1,...,n zachodzi

$$T(a_j) = \sum_{i=1}^{m} t_{ij} b_i$$

tzn. w j-tej kolumnie macierzy wynikowej znajdują się współrzędne wektora $T(a_j)$ w bazie B

Przykład: Zadanie 4 Lista 10

Znaleźć macierz przekształcenia $L: \mathbb{R}^2 \to \mathbb{R}^2$ zadanego wzorem $L((x,y)^T) = (x+2y,-y)^T$ w bazach $B = \{(1,1)^T, (2,0)^T\}, C = \{(1,2)^T, (2,1)^T\}.$

Rozwiązanie: Po pierwsze – czym jest to tajemnicze " T "? Otóż oznacza to <u>macierz transponowaną</u>, czyli z odwróconymi współrzędnymi (wiersze zamienione z kolumnami). W naszym przypadku oznacza to tylko tyle, że zamiast wiersza (x,y) rozpatrujemy kolumnę $\begin{bmatrix} x \\ y \end{bmatrix}$.

Następnym krokiem jest znalezienie wartości funkcji L od poszczególnych elementów bazy B:

$$L\begin{pmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1+2\cdot1\\-1 \end{bmatrix} = \begin{bmatrix} 3\\-1 \end{bmatrix}$$
$$L\begin{pmatrix} \begin{bmatrix} 2\\0 \end{bmatrix} = \begin{bmatrix} 2+2\cdot0\\-0 \end{bmatrix} = \begin{bmatrix} 2\\0 \end{bmatrix}$$

Teraz, kiedy mamy już wartości elementów, musimy znaleźć ich przedstawienie w bazie C:

$$\begin{bmatrix} 3 \\ -1 \end{bmatrix}_{C} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

$$1 \cdot \alpha + 2 \cdot \beta = 3$$

$$1 \cdot \alpha + 1 \cdot \beta = -1$$

$$\begin{bmatrix} 2 \\ 0 \end{bmatrix}_{C} = \begin{bmatrix} \gamma \\ \delta \end{bmatrix}$$

$$1 \cdot \gamma + 2 \cdot \delta = 2$$

$$2 \cdot \gamma + 1 \cdot \delta = 0$$

Po rozwiązaniu układów równań wychodzi nam $\alpha = \frac{-5}{3}$, $\beta = \frac{7}{3}$, $\gamma = \frac{-2}{3}$, $\delta = \frac{4}{3}$

Zatem
$$M_{BC}(L) = \begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} = \begin{bmatrix} \frac{-5}{3} & \frac{-2}{3} \\ \frac{7}{3} & \frac{4}{3} \end{bmatrix}$$

Jak widać założenia definicji macierzy przekształcenia liniowego są spełnione, tzn. kolejne kolumny macierzy są reprezentacją kolejnych wektorów z bazy B w bazie C.

Fakt:

- (a) Macierzą przekształcenia L+M w bazach E , F jest macierz $A_{\it EF}(L)+A_{\it EF}(M)$
- (b) Macierzą przekształcenia αL w bazach E, F jest macierz $\alpha \cdot A_{EF}(L)$

Twierdzenie: Niech $A_{EF}(L)$ będzie macierzą przekształcenia L w bazach $E\,iF$. Wtedy $A_{EF}(L)\cdot [\nu]_E = [L(\nu)]_F$

Lemat: Macierz złożenia przekształceń L i M jest iloczynem macierzy L i M: $A_{FG}(L)A_{FF}(M) = A_{FG}(LM)$

W tym przypadku mnożenie macierzy przekształceń jest nieco analogiczne do składania funkcji.

Twierdzenie: Jeżeli $L:V\to U$ – przekształcenie liniowe, B_1,B_2 – bazy V, C_1,C_2 – bazy U, wtedy

$$M_{B,C_2}(L)=M_{C_1C_2}(id)\cdot M_{B_1C_1}(L)\cdot M_{B,C_1}(id)$$

Wniosek: Niech
$$L: V \to V$$
 – przekształcenie liniowe, B_1, B_2 – bazy V. Wtedy $M_{B_1B_2}(L) = M_{B_1B_2}(id) \cdot M_{B_1B_1}(L) M_{B_2B_1}(id)$

Powyższe twierdzenie przydaje się przy szybkim wyliczaniu macierzy – macierz przekształcenia będącego identycznością to po prostu reprezentacja wektorów z jednej bazy za pomocą drugiej bazy, macierz przekształcenia z bazy B w nią samą to po prostu macierz której kolumny to wektory z bazy B przekształcone przez funkcję L. Dzięki zastosowaniu tego wzoru możemy uniknąć naprawdę sporo niepotrzebnych obliczeń. Dodatkowo warto zauważyć, że $m_{BC}(id)^{-1} = m_{CB}(id)$ dla dowolnych baz B.C.

Jednakże żeby w pełni to wykorzystać, trzeba nauczyć się szukać macierzy odwrotnych, a o tym za chwile.

Ogólnie istnieją dwie metody szukania macierzy odwrotnych – metoda wyznaczników oraz metoda Gaussa, znajomość obu jest wymagana na kolokwium.

4. Wyznaczniki

def. Wyznacznikiem macierzy nazywamy funkcję $det: m_{n \times n}(K) \rightarrow K$ spełniającą następujące aksjomaty (aksjomaty wyznacznika):

- $\det(A_1, ..., A_i + A_i', ..., A_n) = \det(A_1, ..., A_i, ..., A_n) + \det(A_1, ..., A_i', ..., A_n)$
- 2) $det(A_1, \dots, t \cdot A_i, \dots, A_n) = t \cdot det(A_1, \dots, A_i, \dots, A_n) dla t \in K$
- 3) $\exists i \ A_i = A_{i+1} \Rightarrow det(A_1, \dots, A_n) = 0$
- 4) $det(I_n)=1$ (wyznacznik macierzy identycznościowej)

Fakt: Załóżmy, że funkcja det spełnia aksjomaty wyznacznika. Wtedy:

- a) jeśli $A_i = \vec{0}$, to $det(A_1, ..., A_n) = 0$
- b) dla $i \neq j$ i $t \in K$ $det(A_1, ..., A_i + t \cdot A_j, ..., A_n) = det(A_1, ..., A_n)$
- c) dla $\sigma \in S_n$ $det(A_{\sigma(1)}, \dots, A_{\sigma(n)}) = sgn(\sigma) \cdot det(A_1, \dots, A_n)$
- d) jeśli dla pewnych $i \neq j$ $A_i = A_j$, to $det(A_1, ..., A_n) = 0$

Twierdzenie: Załóżmy, że funkcja det spełnia aksjomaty wyznacznika. Wtedy
$$det(B) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot b_{\sigma(1)1} \cdot \ldots \cdot b_{\sigma(n)n}$$

Uwaga: powyższy wzór definiuje jedyną funkcję spełniającą aksjomaty wyznacznika. Niestety, powyższy wzór jest dość mało intuicyjny i na pierwszy rzut oka wygląda naprawdę skomplikowanie. Na szczęście w praktyce nie jest aż tak źle – aby obliczyć wyznacznik macierzy kwadratowej rzędu n bierzemy wszystkie możliwe permutacje z S_n i dla każdej takiej permutacji

σ obliczamy iloczyn: znak permutacji (czyli 1 dla permutacji z parzystą liczbą inwersji lub -1 dla permutacji z nieparzystą liczbą inwersji) razy element z pierwszej kolumny i $\sigma(1)$ wiersza, element z drugiej kolumny i $\sigma(2)$ wiersza, ..., element z n-tej kolumny i $\sigma(n)$ wiersza. Wyznacznik jest suma wszystkich takich iloczynów.

Korzystanie z takiego wzoru jest dość niewygodne, zważając że jest n! permutacji, a my musimy korzystać z nich wszystkich. Jednakże korzystając jedynie z niego możemy udowodnić

powszechnie znany wzór na wyznacznik macierzy 2×2 : $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - c \cdot b$ Otóż w S_2 są

tylko 2 permutacje: $\sigma_1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ oraz $\sigma_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, zatem:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = sgn(\sigma_1) \cdot a \cdot d + sgn(\sigma_2) \cdot c \cdot b = 1 \cdot a \cdot d + (-1) \cdot c \cdot b = a \cdot d - c \cdot b$$

Twierdzenie Cauchy'ego:

Jeśli det spełnia aksjomaty wyznacznika, to $det(A \cdot B) = det(A) \cdot det(B)$

Fakt:

a)
$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot a_{1\sigma(1)} \cdot ... \cdot a_{n\sigma(n)}$$

b)
$$det(A^T) = det(A)$$

c)
$$det(A^{-1}) = \frac{1}{det(A)} dla A - odwracalnej$$

def. <u>Minorem</u> macierzy A nazywamy wyznacznik macierzy kwadratowej powstałej z A przez usunięcie pewnej liczby wierszy i kolumn.

Dla
$$A \in M_{n \times n}(K)$$
 $M_{bc} := det \begin{bmatrix} a_{11} & \dots & a_{\overline{1c}} & \dots & a_{1n} \\ \dots & \dots & | & \dots & \dots \\ a_{\overline{b1}} & - & a_{\overline{bc}} & - & a_{\overline{bn}} \\ \dots & \dots & | & \dots & \dots \\ a_{n1} & \dots & a_{\overline{nc}} & \dots & a_{nn} \end{bmatrix}$

 $\underline{Dopełnieniem \ algebraicznym} \ wyrazu \quad a_{i \ j} \quad nazywamy \quad A_{i \ j} := (-1)^{i+j} M_{i \ j}.$

Twierdzenie (Rozwinięcie Laplace'a)

Dla dowolnego $i \in \{1, ..., n\}$:

- 1) $det(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in}$ (rozwinięcie względem i-tego wiersza)
- 2) $det(A) = a_{1j} A_{1j} + a_{2j} A_{2j} + ... + a_{nj} A_{nj}$ (rozwinięcie względem j-tej kolumny)

Przykład: Zadanie 4 lista 11

Obliczyć wyznaczniki
$$\begin{vmatrix} a & a & a \\ -a & a & a \\ -a & -a & a \end{vmatrix}$$
 oraz $\begin{vmatrix} 2 & -1 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 4 & 2 \end{vmatrix}$

Rozwiązanie: Skorzystamy z rozwinięcia Laplace'a. Co prawda przy pierwszym wyznaczniku można użyć reguły Sarrusa (wzór na obliczanie macierzy 3×3), jednakże dla pokazania reguły obliczania wyznaczników chwilowo pominiemy gotowe wzory. Rozwińmy wyznacznik względem pierwszego wiersza:

$$\det \begin{bmatrix} a & a & a \\ -a & a & a \\ -a & -a & a \end{bmatrix} = a \cdot A_{11} + a \cdot A_{12} + a \cdot A_{13} = a \cdot (-1)^{1+1} \cdot \begin{vmatrix} a & a \\ -a & a \end{vmatrix} +$$

$$a \cdot (-1)^{1+2} \cdot \begin{vmatrix} -a & a \\ -a & a \end{vmatrix} + a \cdot (-1)^{1+3} \cdot \begin{vmatrix} -a & a \\ -a & -a \end{vmatrix} = (\text{korzystamy ze wzoru na wyznacznik}$$

$$\text{macierzy } 2 \times 2) = a \cdot (a^2 + a^2) - a \cdot (-a^2 + a^2) + a \cdot (a^2 + a^2) = 2a^3 + 2a^3 = 4a^3$$

Teraz drugi wyznacznik (też względem pierwszego wiersza):

$$det \begin{bmatrix} 2 & -1 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 4 & 2 \end{bmatrix} = 2 \cdot A_{11} + (-1) \cdot A_{12} + 0 \cdot A_{13} + 0 \cdot A_{14} = 2 \cdot (-1)^{1+1} \cdot \begin{vmatrix} 3 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 4 & 2 \end{vmatrix} +$$

$$(-1)\cdot(-1)^{1+2}\cdot\begin{vmatrix} -2 & 0 & 0\\ 0 & 3 & 2\\ 0 & 4 & 2 \end{vmatrix}$$

Teraz oczywiście możemy obliczyć wyznaczniki mniejszych macierzy tak jak w pierwszym przykładzie, jednakże wygodne będzie użycie <u>reguły Sarrusa</u>:

Aby obliczyć wyznacznik macierzy 3×3 należy z prawej strony dopisać dwie pierwsze kolumny:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{31} & a_{32} \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{33} \end{vmatrix}$$

Następnie mnożymy elementy wzdłuż przekątnych:

Każda czerwona strzałka jest liczona ze znakiem +, każda niebieska – z minusem. Wymnażamy każdą strzałkę i dodajemy je do siebie;

formalny wzór:
$$a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} - a_{13} \cdot a_{22} \cdot a_{31} - a_{11} \cdot a_{23} \cdot a_{32} - a_{12} \cdot a_{21} \cdot a_{33}$$

Znając już regułę Sarrusa z łatwością możemy obliczyć brakujące wyznaczniki:

$$\begin{vmatrix} 3 & 0 & 0 & 3 & 0 \\ 0 & 3 & 2 & 0 & 3 = 18 - 24 = -6 \\ 0 & 4 & 2 & 0 & 4 \end{vmatrix}$$

$$\begin{vmatrix} -2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 4 & 2 \end{vmatrix} \begin{vmatrix} -2 & 0 \\ 0 & 3 = -12 + 16 = 4 \end{vmatrix}$$

$$det \begin{bmatrix} 2 & -1 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 4 & 2 \end{bmatrix} = 2 \cdot (-6) + 4 = -8$$

Przykład: Zadanie 5 lista 11

Obliczyć wyznacznik (Wskazówka: Obliczyć wyznacznik macierzy AA^T i skorzystać z twierdzenia Cauchy'ego)

$$A = \begin{bmatrix} a & b & c & d \\ b & -a & d & -c \\ c & -d & -a & b \\ d & c & -b & -a \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a & b & c & d \\ b & -a & -d & c \\ c & d & -a & -b \\ d & -c & b & -a \end{bmatrix}$$

$$A \cdot A^{T} = \begin{bmatrix} a^{2} + b^{2} + c^{2} + d^{2} & 0 & 0 & 0 \\ 0 & a^{2} + b^{2} + c^{2} + d^{2} & 0 & 0 \\ 0 & 0 & a^{2} + b^{2} + c^{2} + d^{2} & 0 \\ 0 & 0 & 0 & a^{2} + b^{2} + c^{2} + d^{2} \end{bmatrix}$$

Zauważmy: powyższa macierz jest trójkątna, zatem jej wyznacznik jest iloczynem wyrazów z przekatnej:

$$det(A \cdot A^T) = (a^2 + b^2 + c^2 + d^2)^4$$
 (fakt ten znajduje się poniżej)

Jednocześnie wiemy, że $det(A) = det(A^T)$ oraz z twierdzenia Cauchy'ego $det(A \cdot B) = det(A) \cdot det(B)$

Zatem
$$det(A \cdot A^T) = det(A \cdot A) = det(A) \cdot det(A) = det(A)^2$$
.

$$(a^2+b^2+c^2+d^2)^4 = det(A)^2$$

$$|det(A)| = (a^2 + b^2 + c^2 + d^2)^2$$

Teraz wystarczy rozstrzygnąć, czy wyznacznik jest dodatni, czy ujemny. Spójrzmy na główną przekątną. Rozważając definicję wyznacznika (ten skomplikowany wzór z permutacjami), główna przekątna to po prostu iloczyn wyrazów dla permutacji identycznościowej. Jak wiadomo permutacja identycznościowa jest parzysta, czyli sgn(id) = 1. Jednocześnie jest to jedyna permutacja tej macierzy, w której po przemnożeniu występuje czynnik a^4 . Dodatkowo jeśli próbowalibyśmy obliczyć det(A) z definicji, to $\det(A) = 1 \cdot a \cdot (-a) \cdot (-a) \cdot (-a) + X = -a^4 + X$, gdzie X – suma pozostałych iloczynów (dla reszty permutacji).

Widzimy, że współczynnik przy najwyższej potędze a jest ujemny, zatem cały nasz wyznacznik będzie ujemny. W końcu: $det(A) = -(a^2+b^2+c^2+d^2)^2$

Wniosek: Macierz A jest odwracalna wtedy i tylko wtedy, gdy $det(A) \neq 0$.

$$A^{-1} = \frac{1}{\det(A)} \cdot A^{D}$$

Przykład: Zadanie6 lista 11

Korzystając ze wzoru na macierz odwrotną w terminach macierzy dopełnień algebraicznych wyznaczyć macierze odwrotne do macierzy:

$$\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \quad \text{oraz} \quad \begin{bmatrix} 2 & 2 & -3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix}$$

Rozwiązanie: zasadniczo całe rozwiązanie opiera się na żmudnych obliczeniach, niemalże bezmyślnych.

Korzystamy ze wzoru $A^{-1} = \frac{1}{\det(A)} \cdot A^D$, gdzie A^D jest <u>macierzą dołączoną</u>, czyli transponowaną <u>macierzą dopełnień</u> A. W przypadku macierzy 2×2 zadanie jest dość proste i odpowiedź można podać na pierwszy rzut oka. Najpierw obliczmy $\det(A) = \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = 5 - 4 = 1$, zatem $A^{-1} = A^D$

Teraz zajmijmy się macierzą dopełnień A. Powstaje ona w ten sposób, że element a_{ij} macierzy dopełnień to wyznacznik macierzy powstałej z macierzy A po wykreśleniu i-tego wiersza i j-tej kolumny przemnożony przez $(-1)^{i+j}$. W praktyce:

$$[A_{ij}] = \begin{bmatrix} (-1)^{1+1} |5| & (-1)^{1+2} |2| \\ (-1)^{2+1} |2| & (-1)^{2+2} |1| \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}$$

Teraz naszą macierz dopełnień trzeba przetransponować, czyli zamienić wiersze na kolumny (przy macierzach kwadratowych sprowadza się to tak naprawdę do odbicia macierzy względem przekątnej)

$$\begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}^T = \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}$$
 (w tym przypadku transpozycja niewiele zmienia)

Zatem
$$A^{-1} = A^{D} = [A_{ij}]^{T} = \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}$$

Teraz druga macierz. Oczywiście zaczynamy od wyznacznika, przyda nam się reguła Sarrusa:

$$\begin{vmatrix} 2 & 2 & 3 & 2 & 2 \\ 1 & -1 & 0 & 1 & -1 & = -2 + 6 - 3 - 2 = -1 \\ -1 & 2 & 1 & -1 & 2 & 2 \end{vmatrix}$$

Zatem $A^{-1} = -A^{D}$. Zajmijmy się macierzą dopełnień:

$$[A_{ij}] = \begin{bmatrix} -1 & 0 \\ 2 & 1 \\ -|2 & 3 \\ 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{vmatrix} 1 & 0 \\ -1 & 1 \\ -1 & 1 \end{vmatrix} \begin{vmatrix} 1 & -1 \\ -1 & 2 \\ -1 & 1 \end{vmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 4 & 5 & -6 \\ 3 & 3 & -4 \end{bmatrix}$$

Po przetransponowaniu:

$$\begin{bmatrix} -1 & -1 & 1 \\ 4 & 5 & -6 \\ 3 & 3 & -4 \end{bmatrix}^{T} = \begin{bmatrix} -1 & 4 & 3 \\ -1 & 5 & 3 \\ 1 & -6 & -4 \end{bmatrix}$$

$$A^{-1} = -A^{D} = -\begin{bmatrix} A_{ij} \end{bmatrix}^{T} = \begin{bmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{bmatrix}$$

Twierdzenie:

- 1. Następujące operacje nie zmieniają wyznacznika macierzy $A = [A_1, \dots, A_n] = \begin{bmatrix} W_1 \\ \dots \\ W_n \end{bmatrix}$
 - a) Dodanie wektora $t \cdot A_i$ do i-tej kolumny (dla $i \neq j$)
 - **b)** Dodanie wektora $t \cdot W_j$ do i-tego wiersza (dla $i \neq j$)
- 2. Zamiana miejscami dwóch kolumn lub dwóch wierszy zmienia znak wyznacznika
- 3. Wyznacznik macierzy trójkatnej to iloczyn współrzędnych z głównej przekatnej.

Powyższe twierdzenie jest kluczowe dla metody eliminacji Gaussa.

5. Metoda eliminacji Gaussa

Metoda eliminacji Gaussa to ogół algorytmów do obliczania m.in. rzędu macierzy, wyznacznika macierzy, macierzy odwrotnej, których cechą wspólną jest wykorzystanie operacji elementarnych na macierzach.

def. <u>Rząd macierzy</u> to maksymalna liczba liniowo niezależnych wektorów tworzących kolumny (wiersze) danej macierzy.

Aby wyliczyć rząd macierzy, należy przy pomocy operacji elementarnych na wierszach sprowadzić macierz do postaci schodkowej.

<u>Macierz schodkowa</u> to macierz, której pierwsze niezerowe elementy kolejnych niezerowych wierszy, znajdują się w coraz dalszych kolumnach, a powstałe wiersze zerowe umieszcza się jako ostatnie.

Przykładem macierzy schodkowej jest np.:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ lub } \begin{bmatrix} 3 & 2 & 0 & 5 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Mamy do dyspozycji operacje elementarne na wierszach, czyli możemy

- a) dodać do danego wiersza dowolną wielokrotność innego wiersza,
- b) przemnożyć dowolny wiersz przez stałą (różną od 0) lub
- c) zamienić miejscami dwa wiersze.

Kiedy już dojdziemy do postaci schodkowej, wystarczy policzyć wszystkie niezerowe wiersze – jako że są one wzajemnie liniowo niezależne, ich liczba to rząd macierzy. Innymi słowy liczba "schodków" w macierzy schodkowej to jej rząd.

Aby przy pomocy eliminacji Gaussa wyliczyć wartość wyznacznika macierzy A, wystarczy sprowadzić macierz do postaci trójkątnej. Wtedy jak wiadomo wyznacznik A jest równy iloczynowi elementów na głównej przekątnej. Dobrym przykładem jest wyznacznik z zadania 4 z listy 11:

$$\begin{vmatrix} a & a & a \\ -a & a & a \\ -a & -a & a \end{vmatrix} = (\text{do drugiego wiersza dodajemy pierwszy, do trzeciego wiersza dodajemy}$$

pierwszy) =
$$\begin{vmatrix} a & a & a \\ 0 & 2a & 2a \\ 0 & 0 & 2a \end{vmatrix} = a \cdot 2a \cdot 2a = 4a^3$$

Kolejnym przykładem zastosowania metody eliminacji Gaussa jest wyznaczanie macierzy odwrotnej. Aby znaleźć macierz odwrotną do macierzy A, wystarczy stworzyć macierz $[A \mid I]$ (gdzie I – macierz identycznościowa) i za pomocą operacji elementarnych na wierszach doprowadzić macierz do postaci $[I \mid B]$. Wtedy $B = A^{-1}$. Oczywiście ten sposób zadziała pod warunkiem, że macierz jest odwracalna, tzn jej wyznacznik jest różny od 0.

Przykład:

$$A = \begin{bmatrix} 7 & 4 \\ 3 & 2 \end{bmatrix}$$
 $det(A) = 14 - 12 = 2 \neq 0$, zatem A – odwracalna.

$$[A|I] = \begin{bmatrix} 7 & 4 & | & 1 & 0 \\ 3 & 2 & | & 0 & 1 \end{bmatrix} \sim \text{ (od pierwszego wiersza odejmujemy podwojony drugi)}$$

$$\sim \begin{bmatrix} 7-6 & 4-4 & | & 1 & -2 \\ 3 & 2 & | & 0 & 1 \end{bmatrix} \sim \text{ (od drugiego wiersza odejmujemy trzykrotność pierwszego)}$$

$$\sim \begin{bmatrix} 1 & 0 & | & 1 & -2 \\ 3-3 & 2-0 & | & -3 & 7 \end{bmatrix} \sim \text{ (wiersz drugi mnożymy razy } \frac{1}{2} \text{)}$$

$$\sim \begin{bmatrix} 1 & 0 & | & 1 & -2 \\ 0 & 1 & | & \frac{-3}{2} & \frac{7}{2} \end{bmatrix}$$

Zatem
$$A^{-1} = \begin{bmatrix} 1 & -2 \\ -3 & \frac{7}{2} \end{bmatrix}$$

Wniosek: Macierz A rozmiaru n jest odwracalna wtedy i tylko wtedy, gdy rząd(A) = n

6. Układy równań liniowych

Ogólnie układ równań zapisujemy w postaci:

$$\begin{array}{lll} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ & \ldots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \end{array}, \text{ gdzie } a_{i,j} \in K, \quad b_i \in K, \quad x_1, \ldots, x_n \text{ - niewiadome.}$$

Równoważną postacią jest macierz układu równań:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

oraz macierz rozszerzona układu równań:

$$A' = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

Układ można też zapisać w postaci $A \cdot \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix}$ lub bardziej ogólnie $A\vec{x} = \vec{b}$

def. Dwa układy równań liniowych są <u>równoważne</u>, gdy mają ten sam zbiór rozwiązań.

Fakt: Jeśli macierze rozszerzone dwóch układów równań są <u>wierszowo równoważne</u> (z jednej do drugiej da się przejść robiąc operacje elementarne na wierszach), to dane układy są równoważne.

Twierdzenie: Niech A' – macierz rozszerzona układu (*) (m równań, n niewiadomych), A" – macierz schodkowa wierszowo równoważna z A'. Wtedy:

- 1) Jeśli A" ma wiersz postaci (0, ..., 0, b), gdzie $b \neq 0$, to układ (*) jest sprzeczny.
- 2) Jeśli A" nie ma wiersza postaci (0, ..., 0, b), gdzie $b \neq 0$, to układ (*) jest niesprzeczny i:
 - a) jeśli ilość niezerowych wierszy macierzy A" jest równa liczbie niewiadomych, to układ ma dokładnie jedno rozwiązanie
 - b) jeśli ilość niezerowych wierszy macierzy A" jest mniejsza od n, to układ ma nieskończenie wiele rozwiązań (przy założeniu, że K ciało, do którego należą współczynniki, jest nieskończone) i można je dokładnie opisać, używając A" (a jeszcze szybciej, używając A" w postaci zredukowanej)

Przykład: Rozważmy układ równań (*):

$$x_{1}-x_{2}+2x_{3}-x_{4}=1$$

$$2x_{1}-3x_{2}-x_{3}+x_{4}=-1$$

$$x_{1}+7x_{3}-4x_{4}=4$$

$$A' = \begin{bmatrix} 1 & -1 & 2 & -1 & 1 \\ 2 & -3 & -1 & 1 & -1 \\ 1 & 0 & 7 & -4 & 4 \end{bmatrix} \rightarrow \text{(od trzeciego wiersza odejmujemy pierwszy, od drugiego)}$$

odejmujemy dwukrotność pierwszego) $\rightarrow \begin{bmatrix} 1 & -1 & 2 & -1 & 1 \\ 0 & -1 & -5 & 3 & -3 \\ 0 & 1 & 5 & -3 & 3 \end{bmatrix} \rightarrow$ (do trzeciego wiersza

dodajemy drugi)
$$\rightarrow \begin{bmatrix} 1 & -1 & 2 & -1 & 1 \\ 0 & -1 & -5 & 3 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = A''$$

W macierzy A" nie ma wiersza postaci ($0, \ldots, 0$, b), gdzie $b \neq 0$, zatem układ jest niesprzeczny. Liczba niezerowych wierszy jest mniejsza niż liczba niewiadomych, zatem układ ma nieskończenie wiele rozwiązań.

Teraz rozpisujemy nasz układ równań zgodnie z macierzą A" (która jest równoważna macierzy początkowej) i obliczamy wyrazy ze współczynnikami wiodącymi (dla każdego wiersza współczynnik wiodący to pierwszy niezerowy współczynnik) w zależności od pozostałych niewiadomych.

$$(*) \Leftrightarrow \begin{array}{c} x_1 - x_2 + 2x_3 - x_4 - 1 \\ -x_2 - 5x_3 + 3x_4 = -3 \end{array} \Leftrightarrow \begin{array}{c} x_1 = x_2 - 2x_3 + x_4 + 1 \\ x_2 = -5x_3 + 3x_4 + 3 \end{array} \Leftrightarrow \begin{array}{c} x_1 = -7x_3 + 4x_4 + 4 \\ x_2 = -5x_3 + 3x_4 + 3 \end{array}$$

Po rozwiązaniu układu zostaje nam tylko zapisać odpowiedź (lepiej o tym nie zapomnieć, bo bez odpowiedzi zadanie nie jest w pełni zrobione i analogicznie na egzaminie / kolokwium parę punktów może zostać odjętych)

Zbiór rozwiazań (*) to:

$$\left\{ \begin{bmatrix} -7\alpha + 4\beta + 4 \\ -5\alpha + 3\beta + 3 \\ \alpha \\ \beta \end{bmatrix} : \alpha, \beta \in K \right\} = \left\{ \alpha \cdot \begin{bmatrix} -7 \\ -5 \\ 1 \\ 0 \end{bmatrix} + \beta \cdot \begin{bmatrix} 4 \\ 3 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 3 \\ 0 \\ 0 \end{bmatrix} : \alpha, \beta \in K \right\}$$

W zapisie powyżej wektory pionowe oznaczają tylko zbiór rozwiązań $\begin{bmatrix} x_1 \\ \dots \\ r \end{bmatrix}$ - pod x_3

podstawiamy dowolne α z K, pod x_4 – dowolne β z K. Uwaga: wystarczy użyć tylko jednej z powyższych dwóch postaci zapisu, przy czym druga postać może bardziej przydać się w dalszych obliczeniach.

Nieco łatwiejsze i szybsze jest wyznaczenie rozwiązań ze zredukowanej postaci macierzy schodkowej.

Macierz schodkowa zredukowana charakteryzuje się tym, że

- a) jej pierwszym niezerowym elementem kolejnych wierszy (współczynnikiem wiodącym) jest jedynka,
- b) jeśli wyraz a_{ij} znajduje się w tej samej kolumnie, co pewien współczynnik wiodący i w wierszu powyżej tego współczynnika, to $a_{i,j} = 0$.

Doprowadźmy więc naszą macierz schodkową A" do postaci zredukowanej A":

$$\begin{bmatrix} 1 & -1 & 2 & -1 & 1 \\ 0 & -1 & -5 & 3 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow (drugi \text{ wiersz mnożymy razy -1}) \rightarrow \begin{bmatrix} 1 & -1 & 2 & -1 & 1 \\ 0 & 1 & 5 & -3 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow (do$$
pierwszego wiersza dodajemy drugi)
$$\rightarrow \begin{bmatrix} 1 & 0 & 7 & -4 & 4 \\ 0 & 1 & 5 & -3 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = A'''$$

pierwszego wiersza dodajemy drugi)
$$\rightarrow \begin{bmatrix} 1 & 0 & 7 & -4 & 4 \\ 0 & 1 & 5 & -3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = A'''$$

Z tej postaci bezpośrednio odczytujemy rozwiązanie:

$$x_1 = -7x_3 + 4x_4 - 4$$

 $x_2 = -5x_3 + 3x_4 - 3$ (uwaga, nie zapominamy o zapisaniu odpowiedzi!)

Twierdzenie Kroneckera – Capellego:

Układ liniowy jest niesprzeczny wtedy i tylko wtedy, gdy rzad(A) = rzad(A').

Wniosek: Układ ma dokładnie 1 rozwiązanie wtedy i tylko wtedy, gdy rzad(A) = rzad(A') = liczbaniewiadomych.

def. Układ jednorodny to układ postaci:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

...
 $a_{ml}x_1 + \dots + a_{mn}x_n = 0$

Twierdzenie: Niech S – zbiór rozwiązań układu jednorodnego (**). Wtedy S jest podprzestrzenią

$$K^n$$
 oraz $dim(S) = n - rzad(A)$. W szczególności $\vec{0} = \begin{bmatrix} 0 \\ \dots \\ 0 \end{bmatrix}$ jest rozwiązaniem (**).

Powyższe twierdzenie nie jest jakieś znaczące z perspektywy studenta uczącego się do kolokwium, jednakże daje dość ważną intuicję – zbiór rozwiązań układu jednorodnego jest przestrzenią liniową. Oczywiście zbiór rozwiązań układu innego niż jednorodny nie może być przestrzenią liniową, gdyż wektor zerowy nie należy do takiego zbioru.

Przykład: Weźmy układ jednorodny postaci:

$$x_1-x_2+2x_3-x_4=0$$
 $2x_1-3x_2-x_3+x_4=0$ (zauważmy, że jest to układ powstały z poprzedniego przykładu) $x_1+7x_3-4x_4=0$

Wtedy jego zbiór rozwiązań to:

$$S = \left\{ \alpha \cdot \begin{bmatrix} -7 \\ -5 \\ 1 \\ 0 \end{bmatrix} + \beta \cdot \begin{bmatrix} 4 \\ 3 \\ 0 \\ 1 \end{bmatrix} : \alpha, \beta \in K \right\} \text{, a baza S to } \left\{ \begin{bmatrix} -7 \\ -5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Twierdzenie: Niech \vec{c} będzie dowolnym rozwiązaniem układu $A\vec{x}=\vec{b}$. Wtedy zbiorem rozwiązań układu $A\vec{x}=\vec{b}$ jest zbiór $\ker(L_A)+\vec{c}$, czyli zbiór rozwiązań układu jednorodnego $A\vec{x}=\vec{0}$ przesunięty o wektor \vec{c} .

Innymi słowy żeby rozwiązać układ niejednorodny wystarczy znaleźć tylko jedno jego rozwiązanie i dodać je do wszystkich rozwiązań układu jednorodnego.

A jest macierzą tego układu.

Twierdzenie: Układ Cramera ma dokładnie jedno rozwiązanie i jest ono zadane wzorami Cramera:

$$x_{1} = \frac{\det\left(A_{1}\right)}{\det\left(A\right)}$$

$$\dots$$

$$x_{n} = \frac{\det\left(A_{n}\right)}{\det\left(A\right)},$$
gdzie A_{j} - macierz powstała przez zastąpienie j-tej kolumny A kolumną
$$\begin{bmatrix}b_{1}\\ \dots\\ b_{n}\end{bmatrix}$$

Przykład:

$$\begin{array}{cccc}
 x - 2y + 3z = -7 \\
 3x + y + 4z = 5 \\
 2x + 5y + z = 18
 \end{array}
 \quad
 A = \begin{bmatrix}
 1 & -2 & 3 \\
 3 & 1 & 4 \\
 2 & 5 & 2
\end{bmatrix}$$

Rozwiązanie: $det(A)=10\neq 0$

$$det(A_1) = \begin{vmatrix} -7 & -2 & 3 \\ 5 & 1 & 4 \\ 18 & 5 & 2 \end{vmatrix} = 20 \implies x_1 = 2$$

$$det(A_2) = \begin{vmatrix} 1 & -7 & 3 \\ 3 & 5 & 4 \\ 2 & 18 & 2 \end{vmatrix} = 30 \quad \Rightarrow \quad x_2 = 3$$

$$det(A_3) = \begin{vmatrix} 1 & -2 & -7 \\ 3 & 1 & 5 \\ 2 & 5 & 18 \end{vmatrix} = -10 \implies x_3 = -1$$

Zatem rozwiązanie układu to $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$.

def. Macierze A, $B \in M_{n \times n}(K)$ są podobne, gdy istnieje macierz odwracalna $P \in M_{n \times n}(K)$ taka, że $B = P^{-1}AP$.

Fakt: Relacja podobieństwa macierzy jest relacja równoważności.

Twierdzenie: Niech V – przestrzeń liniowa wymiaru n nad ciałem K; B, $C \in M_{n \times n}(K)$. Wówczas B i C są podobne wtedy i tylko wtedy, gdy istnieje przekształcenie liniowe L: V \rightarrow V i istnieją B, C – bazy V takie, że $B = M_{BB}(L) \wedge C = M_{CC}(L)$