

planetmath.org

Math for the people, by the people.

Burnside's Theorem

Canonical name BurnsidesTheorem
Date of creation 2013-03-22 16:38:14
Last modified on 2013-03-22 16:38:14

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 4

Author rm50 (10146) Entry type Theorem Classification msc 20D05 **Theorem 1** (Burnside's Theorem). Let G be a simple group, $\sigma \in G$. Then the number of conjugates of σ is not a prime power (unless σ is its own conjugacy class).

Proofs of this theorem are quite difficult and rely on representation theory. From this we immediately get

Corollary 1. A group G of order p^aq^b , where p,q are prime, cannot be a nonabelian simple group.

Proof. Suppose it is. Then the center of G is trivial, $\{e\}$, since the center is a normal subgroup and G is simple nonabelian. So if C_i are the nontrivial conjugacy classes, we have from the class equation that

$$|G| = 1 + \sum |C_i|$$

Now, each $|C_i|$ divides |G|, but cannot be 1 since the center is trivial. It cannot be a power of either p or q by Burnside's theorem. Thus $pq \mid |C_i|$ for each i and thus $|G| \equiv 1 \pmod{pq}$, which is a contradiction.

Finally, a corollary of the above is known as the http://planetmath.org/BurnsidePQTheoremEp-q Theorem.

Corollary 2. A group of order p^aq^b is solvable.