COMP3670/6670: Introduction to Machine Learning

Question 1

Properties of Eigenvalues

(5+5=10 credits)

Let \mathbf{A} be an invertible matrix.

1. Prove that all the eigenvalues of **A** are non-zero.

Solution. If $\lambda = 0$ is an eigenvalue of **A**, then the equation $\mathbf{A}\mathbf{x} = \mathbf{0}$ has non-trivial solutions. But, multiplying by \mathbf{A}^{-1} , we obtain

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{0}$$
$$\mathbf{x} = \mathbf{0}$$

a contradiction.

2. Prove that for any eigenvalue λ of \mathbf{A} , λ^{-1} is an eigenvalue of \mathbf{A}^{-1} .

Solution. Let λ be an eigenvalue of **A**. Then there exists $\mathbf{x} \neq \mathbf{0}$ such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\lambda \mathbf{x}$$

$$\mathbf{x} = \lambda \mathbf{A}^{-1}\mathbf{x}$$

$$\frac{1}{\lambda}x = \mathbf{A}^{-1}\mathbf{x}$$

$$\mathbf{A}^{-1}\mathbf{x} = \lambda^{-1}\mathbf{x}$$

where the second to last step is justified by 1, as $\lambda \neq 0$.

Question 2

Properties of Eigenvalues II

(10 credits)

Let **B** be a square matrix. Let **x** be an eigenvector of **B** with eigenvalue λ . Prove that for all integers $n \geq 1$, **x** is an eigenvector of **B**ⁿ with eigenvalue λ^n .

Solution. We proceed by induction on n.

Base case, n=1 is trivial, as we are already given that λ is an eigenvalue of **B**. Step case. Assume that λ^n is an eigenvalue of \mathbf{B}^n . Let \mathbf{x} be the corresponding eigenvector for λ^n . Then,

$$\mathbf{B}^{n+1}\mathbf{x} = \mathbf{B}\mathbf{B}^n\mathbf{x} = \mathbf{B}(\mathbf{B}^nx) = \mathbf{B}\lambda^nx = \lambda^n(\mathbf{B}x) = \lambda^n\lambda\mathbf{x} = \lambda^{n+1}x$$

and hence λ^n is an eigenvalue of \mathbf{B}^n for all $n \geq 1$.

Question 3 Distinct eigenvalues and linear independence

(20+5 credits)

Let **A** be a $n \times n$ matrix.

1. Suppose that **A** has *n* distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, and corresponding non-zero eigenvectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$. Prove that $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ is linearly independent.

Hint: You may use without proof the following property: If $\{\mathbf{y}_1, \dots, \mathbf{y}_m\}$ is linearly dependent then there exists some p such that $1 \leq p < m$, $\mathbf{y}_{p+1} \in \text{span}\{\mathbf{y}_1, \dots, \mathbf{y}_p\}$ and $\{\mathbf{y}_1, \dots, \mathbf{y}_p\}$ is linearly independent.

Solution. Suppose for a contradiction that $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ is linearly dependent. Then, by the hint, there exists p such that $1 \leq p < n$, $\mathbf{x}_{p+1} \in \text{span}\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ and $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ is linearly independent. So,

$$\mathbf{x}_{n+1} = c_1 \mathbf{x}_1 + \ldots + c_n \mathbf{x}_n \tag{1}$$

for some collection of scalars c_1, \ldots, c_p . Apply A to both sides of the above equation, (noting that $\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$) and obtain

$$\lambda_{p+1}\mathbf{x}_{p+1} = c_1\lambda_1\mathbf{x}_1 + \ldots + c_p\lambda_p\mathbf{x}_p \tag{2}$$

We can also multiply both sides of the first equation by λ_{p+1} , and obtain

$$\lambda_{p+1}\mathbf{x}_{p+1} = c_1\lambda_{p+1}\mathbf{x}_1 + \ldots + c_p\lambda_{p+1}\mathbf{x}_p \tag{3}$$

Equations (2) and (3) are equal to each other.

$$c_1\lambda_1\mathbf{x}_1 + \ldots + c_p\lambda_p\mathbf{x}_p = c_1\lambda_{p+1}\mathbf{x}_1 + \ldots + c_p\lambda_{p+1}\mathbf{x}_p$$
$$c_1(\lambda_1 - \lambda_{p+1})\mathbf{x}_1 + \ldots + c_p(\lambda_1 - \lambda_{p+1})\mathbf{x}_p = 0$$

Since each of the eigenvalues are distinct, $\lambda_i - \lambda_{p+1} \neq 0$ for all $1 \leq i \leq p$. Since $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ are linearly independent, the only way that $c_1(\lambda_1 - \lambda_{p+1})\mathbf{x}_1 + \dots + c_p(\lambda_1 - \lambda_{p+1})\mathbf{x}_p = 0$ could be true is if $c_1 = \dots = c_p = 0$. Therefore, by Equation (1), $\mathbf{x}_{p+1} = 0$, a contradiction.

2. Hence, or otherwise, prove that for any matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$, there can be at most n distinct eigenvalues for \mathbf{B} .

Solution. Suppose not. Then **B** has m distinct eigenvalues $\{\lambda_1, \ldots, \lambda_m\}$ with m > n. Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$ denote the corresponding eigenvectors. Then $\{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$ is linearly independent by the previous theorem. But that would mean we have m many linearly independent vectors in \mathbb{R}^n with m > n, a contradiction.

Question 4

Properties of Determinants

(10+15=25 credits)

1. Prove $det(A^T) = det(A)$.

Solution. For a given square matrix A of larger dimension, the **minor** M_{ij} of entry a_{ij} is the determinant of the submatrix obtained by deleting the i^{th} row and the j^{th} column from A. Let $C_{ij} := (-1)^{i+j} M_{ij}$ denote the cofactor of a_{ij} . By choosing any row i or column j of A, the determinant is defined recursively, by cofactor expansion along that row or column.

$$\det A = \sum_{k} a_{kj} C_{kj} = \sum_{k} a_{ik} C_{ik}$$

By the definition of the determinant, we get the same answer whether we cofactor expand along a row or a column, and cofactor expanding along the first row of A is equivalent to cofactor expanding along the first column of A^T , so it must be the case that

$$\det(A) = \det(A^T)$$

2. Prove $det(I_n) = 1$ where I_n is the $n \times n$ identity matrix.

Solution. Proof by induction. Trivial for n = 1. Assume true for some n. Then by cofactor expanding along the first column of I_{n+1} ,

$$\det I_{n+1} = \sum_{k=1}^{n+1} I_{1k} C_{1k} = I_{11} C_{11} + \sum_{k=2}^{n+1} I_{1k} C_{1k}$$

All off diagonals terms of I_{n+1} are zero, all diagonal terms are one. Therefore,

$$\det I_{n+1} = 1 \times C_{11} = (-1)^{1+1} M_{11} = \det I_n = 1$$

Hence result follows by induction.

1. Let **A** be a symmetric matrix. Let \mathbf{v}_1 be an eigenvector of **A** with eigenvalue λ_1 , and let \mathbf{v}_2 be an eigenvector of **A** with eigenvalue λ_2 . Assume that $\lambda_1 \neq \lambda_2$. Prove that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. (Hint: Try proving $\lambda_1 \mathbf{v}_1^T \mathbf{v}_2 = \lambda_2 \mathbf{v}_1^T \mathbf{v}_2$. Recall the identity $\mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a}$.)

Solution.

$$\lambda_1 \mathbf{v}_1^T \mathbf{v}_2$$

$$= \lambda_1 \mathbf{v}_2^T \mathbf{v}_1$$

$$= \mathbf{v}_2^T (\lambda_1 \mathbf{v}_1)$$

$$= (\mathbf{A} \mathbf{v}_1)^T \mathbf{v}_2$$

$$= (\mathbf{v}_1^T \mathbf{A}^T) \mathbf{v}_2$$

$$= \mathbf{v}_1^T (\mathbf{A}^T \mathbf{v}_2)$$

$$= \mathbf{v}_1^T (\mathbf{A} \mathbf{v}_2)$$

$$= \mathbf{v}_1^T (\lambda_2 \mathbf{v}_2)$$

$$= \lambda_2 \mathbf{v}_1^T \mathbf{v}_2$$

Hence $\lambda_1 \mathbf{v}_1^T \mathbf{v}_2 = \lambda_2 \mathbf{v}_1^T \mathbf{v}_2$, and therefore

$$(\lambda_1 - \lambda_2) \mathbf{v}_1^T \mathbf{v}_2 = 0$$

Since, $\lambda_1 \neq \lambda_2$, $\lambda_1 - \lambda_2 \neq 0$, and thus $\mathbf{v}_1^T \mathbf{v}_2 = 0$. Hence, \mathbf{v}_1 and \mathbf{v}_2 are orthogonal.

Question 6

Computations with Eigenvalues

(3+3+3+3+3=15 credits)

Let
$$\mathbf{A} = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

1. Compute the eigenvalues of **A**.

Solution. We set up the characteristic polynomial, and solve.

$$\det(\mathbf{A} - \lambda \mathbf{I})$$

$$= \det \begin{bmatrix} -1 - \lambda & 2 \\ 3 & 4 - \lambda \end{bmatrix}$$

$$= (-1 - \lambda)(4 - \lambda) - 6$$

$$= \lambda^2 - 3\lambda - 10$$

$$= (\lambda + 2)(\lambda - 5)$$

So
$$\lambda = -2$$
 or $\lambda = +5$.

2. Find the eigenspace E_{λ} for each eigenvalue λ . Write your answer as the span of a collection of vectors.

Solution. For the case of $\lambda = -2$, we form the equation $\mathbf{A}\mathbf{x} = -2\mathbf{x}$, or $(\mathbf{A} + 2\mathbf{I})\mathbf{x} = \mathbf{0}$, and solve using gaussian elimination.

$$\begin{bmatrix} -1+2 & 2 & 0 \\ 3 & 4+2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 0 \end{bmatrix}$$

So $x_1 = -2x_2$ and x_2 is free, so the eigenspace E_{-2} is given by

$$E_{-2} = \operatorname{span}\left\{ \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$$

For the case of $\lambda = 5$, we form the equation $\mathbf{A}\mathbf{x} = 5\mathbf{x}$, or $(\mathbf{A} - 5\mathbf{I})\mathbf{x} = \mathbf{0}$, and solve using gaussian elimination.

$$\begin{bmatrix} -1 - 5 & 2 & 0 \\ 3 & 4 - 5 & 0 \end{bmatrix} \sim \begin{bmatrix} -6 & 2 & 0 \\ 3 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} -3 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So x_2 free, and $x_1 = x_2/3$, so the eigenspace E_5 is given by

$$E_5 = \operatorname{span}\begin{bmatrix} 1/3\\1 \end{bmatrix} = \operatorname{span}\begin{bmatrix} 1\\3 \end{bmatrix}$$

3. Verify the set of all eigenvectors of **A** spans \mathbb{R}^2 .

Solution. The set of all eigenvectors is given by

$$\operatorname{span}\begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix}]$$

Clearly, the two vectors are linearly independent, as one is not a multiple of the other. Since we have two linearly independent vectors, they must span \mathbb{R}^2 .

4. Hence, find an invertable matrix **P** and a diagonal matrix **D** such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.

Solution. We form \mathbf{P} from two linearly independant eigenvectors (we can use the vectors that span \mathbb{R}^2 in 3) and we form \mathbf{D} by a diagonal matrix, with the eigenvalues of \mathbf{A} on the diagonal, in the same order as the eigenvectors in \mathbf{P} .

$$\mathbf{P} = \begin{bmatrix} -2 & 1\\ 1 & 3 \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} -2 & 0\\ 0 & 5 \end{bmatrix}$$

We compute the inverse using the closed form equation for 2x2 matricies.

$$\mathbf{P}^{-1} = \frac{1}{7} \begin{bmatrix} -3 & 1\\ 1 & 2 \end{bmatrix}$$

We can then verify $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ holds via matrix multiplication.

5. Hence, find a formula for efficiently ¹ calculating \mathbf{A}^n for any integer $n \geq 0$. Make your formula as simple as possible.

Solution. From the week 8? tutorials, we proved that if $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, then $\mathbf{A}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$. Since \mathbf{D} is a diagonal matrix, we have

$$\mathbf{D}^n = \begin{bmatrix} (-2)^n & 0\\ 0 & (5)^n \end{bmatrix}$$

Hence,

$$\mathbf{A} = \begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} (-2)^n & 0 \\ 0 & (5)^n \end{bmatrix} \frac{1}{7} \begin{bmatrix} -3 & 1 \\ 1 & 2 \end{bmatrix} = \frac{1}{7} \left(\begin{bmatrix} 5^n - 3(-2)^{n+1} & (-2)^{n+1} + 2 \times 5^n \\ 3 \times 5^n - 3(-2)^n & (-2)^n + 6 \times 5^n \end{bmatrix} \right)$$

¹That is, a closed form formula for \mathbf{A}^n as opposed to multiplying \mathbf{A} by itself n times over.