Hybridization

Bonds form in the direction of maximum overlap.

(L. Pauling)

Mix n AOs to get n hybrids:

Orthonormal set of Atomic Orbitals equivalent in extent, shape, and energy differ in orientation: to maximize overlap

50% p-character

sp
$$\Psi_{a} = \frac{1}{\sqrt{2}} (s + p_{x})$$

$$\Psi_{b} = \frac{1}{\sqrt{2}} (s - p_{x})$$

$$\int \Psi_a^2 \ d\tau = \frac{1}{2} \int s^2 + 2 \ s p_x + p_x^2 \ d\tau = 1$$

$$\int \Psi_a \Psi_b \, d\tau = \frac{1}{2} \int (s + p_x)(s - p_x) \, d\tau = \frac{1}{2} \int s^2 - p_x^2 \, d\tau = 0$$

$$\int s^2 \ d\tau = \int p_x^2 \ d\tau = 1 \quad \text{atomic normalization} \qquad \int sp_x \ d\tau = 0 \text{ orthogonality}$$

66% p-character

$$sp^{2} \quad \Psi_{a} = \frac{1}{\sqrt{3}} s + \frac{\sqrt{2}}{\sqrt{3}} p_{x}$$

$$\Psi_{b} = \frac{1}{\sqrt{3}} s - \frac{1}{\sqrt{6}} p_{x} + \frac{1}{\sqrt{2}} p_{y}$$

$$\Psi_{c} = \frac{1}{\sqrt{3}} s - \frac{1}{\sqrt{6}} p_{x} - \frac{1}{\sqrt{2}} p_{y}$$

75% p-character

$$\begin{split} sp^3 & \Psi_a = \frac{1}{2} \left(s + p_x + p_y + p_z \right) \\ \Psi_b = \frac{1}{2} \left(s - p_x + p_y - p_z \right) \\ \Psi_c = \frac{1}{2} \left(s + p_x - p_y - p_z \right) \\ \Psi_d = \frac{1}{2} \left(s - p_x - p_y + p_z \right) \end{split}$$

bond angle:	90°	109.5°	120°	180°
hybridization:	p^3	sp^3	sp^2	sp
examples:	PH ₃ (93°)	CH ₄ (109.5°)	BF ₃ (120°)	BeH ₂ (180°)
	H ₂ S (92°)	NH_3 (107°)	CO ₃ ² -(120°)	HC≡CH
		H_2O (104.5°) O_3 (116	6.8°) :CH ₂ (137.8°)	