Math 110 Homework 12 Tarang Srivastava April 23, 2020

1 Exercises 7.D

Problem 1: First we verify that the given operator

$$\sqrt{T^*T}v = \frac{\|x\|}{\|u\|} \langle v, u \rangle u$$

is indeed positive. Observe that when we calculate

$$\langle \sqrt{T^*T}v, v \rangle = \frac{\|x\|}{\|u\|} |\langle v, u \rangle|^2$$

it is always a non-negative value, thus the operator satisfies the positivity condition. Now we wish to show that it is self adjoint, so observe that

$$\langle \sqrt{T^*T}v, u \rangle = \frac{\|x\|}{\|u\|} \langle v, u \rangle \langle u, u \rangle$$

$$\langle v, \sqrt{T^*T}u\rangle = \frac{\|x\|}{\|u\|}\overline{\langle u,u\rangle}\langle v,u\rangle$$

So the two inner products are the same, thus the given operator is self adjoint. Secondly, we can verify that the square is equal to the following value we will revisit

$$\sqrt{T^*T} \frac{\|x\|}{\|u\|} \langle v, u \rangle u = \frac{\|x\|}{\|u\|} \langle v, u \rangle \sqrt{T^*T} u$$

$$= \frac{\|x\|}{\|u\|} \langle v, u \rangle \frac{\|x\|}{\|u\|} \langle u, u \rangle u$$

$$= \|x\|^2 \langle v, u \rangle u$$

Third, we find the adjoint of T. Define T^* as follows

$$T^*v = \langle v, x \rangle u$$

with the same fixed x and u as for T. This is a valid adjoint since for $v, w \in V$ we have

$$\langle Tv, w \rangle = \langle v, T^*w \rangle$$
$$\langle v, u \rangle \langle x, w \rangle = \langle v, u \rangle \overline{\langle w, x \rangle} = \langle v, u \rangle \langle x, w \rangle$$

For all $v \in V$ we have that

$$T^*Tv = T^*(\langle v, u \rangle x)$$
$$= \langle v, u \rangle \langle x, x \rangle u$$

Then, we can verify that indeed $\sqrt{T^*T}^2 = T^*T$ that we calculated earlier. Therefore, given that it is positive and self-adjiont it must be the unique positive square root of T^*T .

Problem 2: Let T be the operator represented by this 2×2 matrix with the standard basis.

$$T = \left(\begin{array}{cc} -5/2 & 5/2 \\ -5/2 & 5/2 \end{array}\right)$$

The eigenvalues for T are exactly $\lambda = 0$. Then we find T^*T using the adjoint of the matrix provided.

$$T^*T = \begin{pmatrix} 25/2 & -25/2 \\ -25/2 & 25/2 \end{pmatrix}$$

The eigenvalues for which are equal to $\lambda = 25, 0$. So the singular values are equal to $\sigma = 5, 0$.

Problem 4: Consider the polar decomposition for T

$$T = S\sqrt{T^*T}$$

Then let $v \in V$ be such that it is an eigenvector for $\sqrt{T^*T}$ with the associated eigenvalue s. So,

$$Tv = S(sv)$$

$$||Tv|| = ||S(sv)|| = |s|||Sv||$$

Given that S is an isometry we then have

$$||Tv|| = s||v|| = s$$

Since, s is nonnegative and the norm of v is 1. By polar decomposition there always exists $\sqrt{T^*T}$ thus an eigenvector associated with it.

Problem 10: The singular values are the eigenvalues of $\sqrt{T^*T}$. If T is self adjoint then $\sqrt{T^*T} = \sqrt{T^2}$. From previous exercises we know that the eigenvalues for T^2 are just the eigenvalues λ for T squared, that is λ^2 . So we have that for all eigenvectors v of $\sqrt{T^*T}$ $\sqrt{T^2}v = sv$ such that $T^2v = s^2v = \lambda^2v$. Taking the square root on both sides we get that $s = |s| = |\lambda|$.

Problem 11: First observe that the singular values for T^* are the eigenvalues of $\sqrt{TT^*}$. We know that T and T^* have the same eigenvectors, and the associated eigenvalues are λ and $\overline{\lambda}$ respectively. Then for some eigenvector we have

$$T^*Tv = T^*\lambda v = |\lambda|^2 v$$

also

$$TT^*v = T^*\overline{\lambda}v = |\lambda|^2 v$$

Since, TT^* and T^*T have the same positive eigenvalues. Their, singular values are the same, equal to the positive square root of those same eigenvalues.

Problem 12: Consider the vector space $V = \mathbb{F}^2$ and the operator T represented by the following matrix in the standard basis.

$$T = \left(\begin{array}{cc} 0 & 0 \\ -1 & 0 \end{array}\right)$$

Then this operator has the singular values $\sigma = 1, 0$. Observe that, $T^2 = 0$, so it has the singular values $\sigma = 0$ So, the singular values aren't even equal.

Problem 13: \Longrightarrow First note that $\sqrt{0} = 0 = 0^2$. If T is invertible, then

null
$$T^* = (\text{range } T)^{\perp} = V^{\perp} = \{0\}$$

So, T^* is invertible, and then T^*T is invertible. Then from a pervious exercise, T^*T does not have zero as an eigenvalue. Since the singular values are the positive square root of the eigenvalues of T^*T and it has non-zero eigenvalues, then the singular values are all non-zero as well.

 \Leftarrow Consider the polar decomposition of T. If all the singular values are nonzero, then $\sqrt{T^*T}$ has all nonzero eigenvalues. Then, null $\sqrt{T^*T} = \{0\}$ so it is invertible. Since, S is an isometry and we have a composition of invertible operators S and $\sqrt{T^*T}$ which is invertible, Therefore, T is invertible.

Problem 3: wip

We will proceed by induction on j. Consider the subspace null $(T-\lambda I)^j$, and null $(T^{-1}-\frac{1}{\lambda}I)^j$. It holds that each of these subspaces are a subset of $G(\lambda,T)$ and $G(\lambda^{-1},T^{-1})$ respectively. For the base case let j=1. Then for all λ it holds that if $v \in \text{null } (T-\lambda I)$ then

$$Tv = \lambda v$$

So taking the inverse operator to both sides we get

$$T^{-1}Tv = v = \lambda T^{-1}v$$

Which implies that $T^{-1}v = \lambda^{-1}v$, and by the same argument as before this implies $v \in \text{null } (T^{-1} - \frac{1}{\lambda}I)$. Since this holds for all λ and all eigenvectors we have shown that $\text{null } (T - \lambda I) \subseteq \text{null } (T^{-1} - \lambda^{-1}I)$. We proceed with the exact same steps, but for $\text{null } (T^{-1} - \lambda^{-1}I)$ and we get the result $\text{null } (T - \lambda I) \supseteq \text{null } (T^{-1} - \lambda^{-1}I)$. Therefore,

null
$$(T - \lambda I) = \text{null } (T^{-1} - \lambda^{-1} I)$$

Having shown the base case assume the claim holds for some j = k. That is,

null
$$(T - \lambda I)^k = \text{null } (T^{-1} - \lambda^{-1}I)^k$$

Now we take an arbitrary $v \in \text{null } (T - \lambda I)^{k+1}$. Since,

null
$$(T^{-1} - \lambda^{-1}I)^k \subset \text{null } (T^{-1} - \lambda^{-1}I)^{k+1}$$

if we have that $v \in \text{null } (T - \lambda I)^k$, we are done. Suppose the case that $v \notin \text{null } (T - \lambda I)^k$, then it follows

$$(T - \lambda I)^k (T - \lambda I)v = 0 = (T^{-1} - \lambda^{-1}I)^k (T - \lambda I)v$$

Problem 4: Assume for contradiction that the intersection is not empty,

$$G(\alpha, T) \cap G(\beta, T) \neq \{0\}$$

Let v be the eigenvector in the intersection

$$v \in G(\alpha, T) \cap G(\beta, T)$$

Then construct the linearly independent list of eigenvectors as described in 8.13, choosing v to represent both α and β . It is trivial now that that the list is not linearly independent, thus a contradiction.

Problem 6: Assume for contradiction that there exists a $S \in \mathcal{L}(()\mathbb{C}^3)$ such that $S^2 = T$. We can see that $T^3 = 0$, so $S^6 = 0$. But since the dimension of the vector space is 3 we have that

$$\text{null } S^3 = \dots = \text{null } S^6$$

Specifically this means that null $S^4 = \text{null } S^6 = \mathbb{C}^3$. But this is a contradiction since we know that

$$T^2 \neq 0$$

So null $S^4 \neq$ null T^2 .

Problem 8: No! Consider the vector space \mathbb{C}^2 and the operators S and T given by following matrices respectively

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

in the standard basis for \mathbb{C}^2 . It's easy to see that $S^2 = 0$ and $T^2 = 0$, so they both are nilpotent operators. Then it easily follows that the set of nilpotent operators is not closed under vector addition, because for S + T given by the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

We have that $(S+T)^2 = I$. From there it holds that for all $n \in \mathbb{N}$,

$$(S+T)^n = I^{n-1} = I$$

so it is never equal to zero and thus not nilpotent.

Problem 9: We know that ST and TS have the same eigenvalues. Since, ST is nilpotent, there is a diagonal matrix of ST with all zeros on the diagonal. So the one and only eigenvalue of ST is $\lambda = 0$.

Problem 11: Let $n = \dim V$, we know that $(ST)^n = 0$. Then,

$$S = S$$
$$(ST)^n S = 0S = 0$$
$$T(ST)^n S = T0 = 0$$
$$T(ST)(ST)...(ST)(ST)S = 0$$

then we regroup all the operators to get

$$(TS)(TS)...(TS) = 0(TS)^{n+1} = 0$$

Then we know that for any operator raised to a power greater than the dimension it is unchanged, so $(TS)^n = (TS)^{n+1} = 0$. Therefore, TS is nilpotent.

Problem 14: TL;DR: $N \implies 8.19 \implies 6.37$.

By 8.19 N has an upper triangular matrix with all zeros on the diagonal. Then by 6.37, given N has an upper triangular matrix in some basis, N has an upper triangular matrix in an orthonormal basis.