Juan Antonio Maldonado

Final

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

Primera parte

Rodea con un círculo la opción correcta en cada prefunta.

■ Respuesta correcta: +0.5 puntos.

■ Respuesta incorrecta: -0.2 puntos.

Respuesta en blanco: 0 puntos.

1. A partir de la siguiente tabla de distribución:

x_i	f_i	N_i	
0	0.5		
1	0.2	7	
2	0.3		

Se puede afirmar que:

- El valor 1 se repite siete veces.
- Existe un total de diez obsevaciones.
- La media aritmética es 0.5.
- El valor medio es x_2 .
- 2. El coeficiente de determinación:
 - Tiene por rango de variación [-1, 1].
 - Indica la proporción de la varianza de la variable dependiente, explicada por la regresión.
 - En el caso del ajuste lineal coincide con el coeficiente de correlación lineal.
 - Indica la proporción de la varianza de la variable dependiente debida a la varianza residual.
- 3. Dados dos sucesos cualesquiera A y B, ¿cuál de las siguientes afirmaciones es falsa?
 - $P(A \cap B) \ge P(A) + P(B) 1$
 - $P(A \cap \overline{B}) = P(A)P(\overline{B})$
 - \blacksquare Si A y \overline{B} son independientes, entonces \overline{A} y B lo son.
 - $P(A \cap \overline{B}) = P(A) P(A \cap B)$
- 4. Sea X una variable aleatoria discreta y considérese la nueva v.a. Y = g(X), donde g es una función continua estrictamente decreciente. Si $h = g^{-1}$, entonces la función de distribución de Y es:
 - $F_Y(y) = 1 F_X(h(y))$
 - $F_Y(y) = F_X(h(y))$

- $F_Y(y) = 1 F_X(h(y)) + P(Y = y)$
- $F_Y(y) = [1 F_X(h(y))]|h'(y)|$
- 5. Indica la afirmación correcta:
 - La varianza de la distribución binomial es siempre inferior a su esperanza.
 - La distribución de Poisson es un caso particular de la binomial cuando n es grande y p pequeño.
 - En sucesivos experimentos independientes éxito/fracaso, con probabilidad de éxito p constante, el número de realizaciones hasta encontrar el r-ésimo éxito sigue una distribución binomial negativa.
 - La distribución hipergeométrica toma valores entre cero y n con probabilidades no nulas.
- 6. Indica la afirmación correcta:
 - Si A y B están contenidos en C, entonces $P(\overline{C}) < P(\overline{A}) + P(\overline{B})$.
 - Si A y B son dos sucesos independientes, entonces $P(A \cup B) = P(A) + P(B)$
 - Si $\{B_i\}_{i=1,2,3,...}$ son sucesos incompatibles, exhaustivos y de probabilidades no nulas, entonces, para un suceso arbitrario A se tiene:

$$P(A \backslash B_i) = \frac{P(B_i \backslash A)P(A)}{\sum_{i=1}^{n} P(B_i \backslash A)P(A)}$$

Todas las anteriores son falsas.

Segunda parte

1. Un grupo de cien yupies deciden invertir en Bolsa. Se toman datos sobre el tiempo de inversión en meses, X, y los beneficios obtenidos en millones de dólares, Y. Las frecuencias obtenidas para los datos obtenidos figuran en la siguiente tabla:

X	\	Y	0.1	0.15	0.2	0.25
	0 - 2		0.05	0.1	0.05	0.05
	2 - 5		0.08	0.1	0.08	0.04
	5 - 10		0.1	0.15	0.1	0.1

- Determina el tiempo de inversión más frecuente para obtener 0.2 millones de dólares de beneficio.
- ¿Cuál es el beneficio máximo del 25 por ciento con menos beneficios de entre los que han invertido en un periodo de entre cero y cinco meses.
- ¿Qué es más representativo: el tiempo de inversión o el beneficio medio obtenido?
- Estimar linealmente el beneficio que se obtendría si el período de inversión fuese de siete meses. Estudiar la fiabilidad de dicha estimación.
- 2. El error de medición de cierto aparato, medido en milésimas, es una variable aleatoria continua con función de densidad dada por:

$$f(x) = \begin{cases} k(x^2 + 1) & 0 \le x < 1 \\ \frac{1}{x^2} & 1 \le x \le 2 \\ 0 & x > 2 \end{cases}$$

Si el error de medición es inferior a 0.5 aw produce un desajuste de tipo 1, si éste oscila entre 0.5 y 1.5 se produce un desajuste de tipo 2 y si el error excesde de 1.5 el desajuste será de tipo 3. La probabilidad de ddetectar el desajuste, supuesto que este sea de tipo i, es 0.25i.

- Determina el valor de la constante k. Calculas la función de distribución de X.
- Determina el error medio de medición.
- Supuesto que se ha detectado el desajuste, ¿cuál es la probabilidad de que éste sea de tipo 2?
- 3. La longitud de unos pernos en centímetros es una variable aleatoria continua X con función de distribución constante en el intervalo [4,14]. Atendiendo a la longitud del perno, el fabricante establece tres categorías:

$$A: X < 6$$
 $B: 6 \le X \le 8$ $C: X > 8$

- Si se pide una remesa de 2 000 pernos, ¿cuántos esperan recibir de cada categoría?
- Si se extrae con reemplazamiento una muestra de diez pernos, ¿cuál es la probabilidad de que, al menos, tres de ellos sean A?
- Si el fabricante extrae con reemplazamiento pernos hasta encontrar tres pernos de la categoría C, calcula la probabilidad de que haya tenido que extraer un total de ocho pernos.

Examen EDIP (2012)

El ejercicio 1 no lo he hecho porque sale repetido en el examen del 18-19 y ese lo hice antes

2. X = eur de medición de un aparato en milesimas

$$\mathcal{J}(x) = \begin{cases} 0 & x > 5 \\ \frac{x}{7} & 7 < x < 5 \\ \frac{x}{7} & 0 < x < 7 \end{cases}$$

Error < 0.5 aw = Doesajuste tipo 1

0.5 € Error = 3.5 = 0" "tipo 2

Error > 1.5 aw = 0 " tipo 3

P (Detector desajuste) = 0.25i

a) Hallar k y la función de distribución de X.

$$\int_{0}^{x} k(t^{2}+t) dt = \left[\frac{kt^{3}}{3} + kt \right]_{0}^{x} = \frac{kx^{3}}{3} + kx$$

$$\int_{0}^{x} k(t^{2}+t) dt + \int_{0}^{x} dt = \left[\frac{kt^{3}}{3} + kt \right]_{0}^{x} + \left[-\frac{1}{2} \right]_{3}^{x} = \frac{kx^{3}}{3} + kx$$

(Cont. en x=1) = 0 1/3+ 1/2 = 0 1/3 = 0 1/3 = 0 Secumple

$$F(x) = \begin{cases} 3 - \frac{1}{4} & \text{Si } \times > 0 \\ \frac{3}{4} - \frac{1}{4} & \text{Si } 0 \leq \times < 1 \\ \frac{3}{4} - \frac{1}{4} & \text{Si } 1 \leq \times < 2 \end{cases}$$

$$E[X] = \int_{-\infty}^{+\infty} x f(x) = \int_{0}^{1} \left(\frac{x^{\frac{1}{4}}}{8} + \frac{3}{8}x^{2}\right) dx + \int_{0}^{2} \left(\frac{3x}{8} + \frac{1}{8}x^{2}\right) dx$$

$$= \left[\frac{x^{5}}{40} + \frac{x^{3}}{8}\right]_{0}^{1} + \left[\frac{3x^{2}}{4} - x\right]_{0}^{2} = \frac{1}{40} + \frac{1}{8} + 3 - 2 - \frac{3}{4} + 1 = \frac{1}{40} + \frac{1}{40} +$$

c) Si se ha detectado el desajuste, i prob. de que éste sea de tipo Q?

See de apo v:

$$P(Desajuste) = P(X < 0.5) \cdot P(Desajuste) + P(0.5 \le X \le 1.5) \cdot P(Desaj) + P(0.5 \le X \le 1.5) \cdot P(Desajuste) + P(0.$$

$$P(Desajuste) = \frac{13}{256} + 0.3151 + 0.125 = 0.4909$$

$$P(Desajuste) = \frac{10.5 \le x \le 1.5}{0.5 \le x \le 1.5} \cdot P(Desajuste) = \frac{10.5 \le x \le 1.5}{0.5 \le x \le 1.5} =$$

$$= \frac{0.6302083.0.5}{0.4909} = 0.64189$$

3. X= longitud pernos en certimetros.

Co Función de distribución constante en [4,34].

3 categorías: A: X<6 B: GEXE8 C: X>8

Remera de 2000 pernos, à cuantos se esperan recibir de cada categoria? $[kx]_{4}^{24} = 1 = D[k = \frac{1}{20}]$

(b) Con reemplatamiento 10 pervos, ¿prob. de que al menos 3 sean A? Como se hace reemplatamiento, las probabilidades no varian.

X = Nº perus A en una muestra de 10

 $b(X = 3) = 7 - b(X = 5) = 7 - {\binom{0}{70}}0.6.0.7_{70} - {\binom{7}{70}}0.6.0.7_{3}$ $\times \sim 98(70', 0.6)$

+ (30) 0.62.073= 0.08417

c) Con reemplazamiento se extraen pernos hasta encontras 3 de la categoria Ciprob de que se hayan tenido que extraez 8 pernos?

X=nº fracasos (extraer pernos A o B) hasta el 3el éxito (extraer perno C)

Como es la prob. de extraor 8 pernos, se habran extraïdo

5 que no son c y 3 que si, por la que la prob.

pedida es P(x=5) con x ~ BN(3,0.2):

$$P(X=5) = {7 \choose 5} \cdot 0.8^5 \cdot 0.2^3 = 0.05505$$