ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ

Κεφάλαιο 2: Πραγματικοί αριθμοί

Παράγραφος 2.2: Διάταξη

Ομάδα Α'

Άσκηση 1

Av $1 \le x \le 2$ και $3 \le y < 5$, να βρείτε μεταξύ ποιων αριθμών βρίσκονται οι παραστάσεις:

a)
$$2x + y$$

c)
$$\frac{2x}{y}$$

b)
$$3x - 2y$$

d)
$$2x^2 + y^2$$

Άσκηση 2

Αν είναι 2 < x < 8, να βρείτε μεταξύ ποιων τιμών βρίσκονται οι παραστάσεις

$$A = 2x$$

$$B = -2x$$

$$\Gamma = \frac{1}{2} + 2$$

$$Z = x^2$$

$$\Gamma = \frac{1}{x} + 2$$

$$\Delta = 1 - \frac{1}{1 - x}$$

$$H = 1 - x^3$$

Av $\alpha, \beta \in \mathbb{R}$ με $\alpha < \beta$ να δείξετε ότι: $\alpha < \frac{\alpha + \beta}{2} < \beta$.

Άσκηση 4

Av $x \in \left[-\frac{1}{3},\frac{1}{3}\right]$ και $\frac{1}{2} < y < \frac{5}{4}$, να βρείτε μεταξύ ποιων αριθμών παίρνει τιμές η παράσταση A = -5x + 2y.

Άσκηση 5

Το μήκος χ και το πλάτος γ ενός ορθογωνίου παραλληλογράμμου, κυμαίνεται εντός των ορίων $4 \le x \le 7 \text{ kal } 2 \le y \le 3.$

- i) Να βρείτε τα όρια μεταξύ των οποίων περιέχεται η τιμή της περιμέτρου του παραλληλογράμμου.
- ii) Αν το μήκος μειωθεί κατά μονάδα και το πλάτος τριπλασιαστεί, να βρείτε τα όρια μεταξύ των οποίων περιέχεται η τιμή της περιμέτρου του νέου παραλληλογράμμου.

Ομάδα Β'

Άσκηση 6

Aν $\alpha + \beta = 4$ να δειχθεί ότι $\alpha\beta \le 4$ και $\alpha^2 + \beta^2 \ge 8$.

Άσκηση 7

Aν $\alpha > -1 > \beta$, να αποδείξετε ότι $1 + \alpha + \beta + \alpha \beta < 0$

Άσκηση 8

Να αποδείξετε ότι:

a)
$$2y^2 - 8y + 16 \ge 0$$
, για κάθε $y \in \mathbb{R}$

b)
$$2a^2 + 2a + 1 > 0$$
, για κάθε $\alpha \in \mathbb{R}$

c)
$$(a+b)^2 + 2ab \ge -3b^2$$
, για κάθε $a, b \in \mathbb{R}$

Άσκηση 9

Nα δείξετε ότι $2x^2 + 2x + 1 > 0$, για $x \in \mathbb{R}$.

Άσκηση 10

Αν $x \in (2,3)$ και $y \in [3,4)$ να βρείτε τα όρια μεταξύ των οποίων περιέχεται η τιμή της παράστασης:

i)
$$x + y$$

iii)
$$\frac{1}{r}$$

iii)
$$\frac{1}{x}$$
 iv) $\frac{x}{y}$

Άσκηση 11

Έστω $0 < \alpha < \beta$.

- i) Να διατάξετε από το μικρότερο προς το μεγαλύτερο τους αριθμούς $1, \frac{\alpha}{\beta}, \frac{\beta}{\alpha}$.
- ii) Να δείξετε ότι πάνω στον άξονα των πραγματικών αριθμών ο $\frac{\alpha}{\beta}$ είναι πιο κοντά στον 1 από τον $\frac{\beta}{\alpha}$.

Άσκηση 12

Να συγκρίνετε τους αριθμούς:

$$x^2 + 4y^2 \text{ kat } 4y - 2$$

Άσκηση 13

Aν $\alpha \le -2$, να αποδείξετε ότι $\frac{\alpha^3}{2} + 4 \le \alpha^2 + 2\alpha$.

Άσκηση 14

Av $\alpha > 0$ και $\beta > 0$, να αποδείξετε ότι $(\alpha - \beta) \left(\frac{1}{\alpha} - \frac{1}{\beta}\right) \ge 4$.

Άσκηση 15

Av x, y > 0, να δειχθεί ότι $\frac{x^2 + y^2}{x + y} \ge \frac{x + y}{2}$.

Άσκηση 16

Nα βρείτε τις τιμές των x, y για τις οποίες ισχύει $5x^2 + 4x + y^2 - 2xy + 1 = 0$.

Άσκηση 17

Αν α , β θετικοί αριθμοί, να αποδείξετε ότι $\frac{\alpha\beta}{\alpha+\beta} \leq \frac{\alpha+\beta}{4}$.

Άσκηση 18

Nα δείξετε ότι $\alpha+\frac{1}{\alpha}\geq 2$, για $\alpha\in\mathbb{R}$. Πότε ισχύει η ισότητα;

Άσκηση 19

Δίνονται οι παραστάσεις $A=2x^2+y^2+9$ και B=2x(3-y), όπου $x,y\in\mathbb{R}$. Να δείξετε ότι:

i)
$$A - B = (x^2 + 2xy + y^2) + (x^2 - 6x + 9)$$

- ii) $A \ge B \ \forall x, y \in \mathbb{R}$.
- iii) Πότε ισχύει η ισότητα A = B;

Άσκηση 20

Av x, y > 0, va δείξετε ότι:

$$\frac{x^2 + y^2}{x + y} \ge \frac{x + y}{2}$$