Theorem

If
$$\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$$
 then

$$area(\textbf{v}_1,\textbf{v}_2) = \begin{vmatrix} det \left[\begin{array}{cc} \textbf{v}_1 & \textbf{v}_2 \end{array} \right] \end{vmatrix}$$

Idea of the proof.

$$\mathbf{v}_1 = \left[\begin{array}{c} a \\ b \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} c \\ d \end{array} \right]$$

Example.

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Determinants and linear transformations

<u>Recall:</u> If A is a 2×2 matrix then it defines a linear transformation

$$T_A \colon \mathbb{R}^2 \to \mathbb{R}^2 \qquad T_A(\mathbf{v}) = A\mathbf{v}$$

Note. T_A maps parallelograms to parallelograms:

Theorem

If A is a 2×2 matrix and $\mathbf{v}_1, \mathbf{v}_1 \in \mathbb{R}^2$ then

$$\operatorname{area}(T_A(\mathbf{v}_1), T_A(\mathbf{v}_2)) = |\det A| \cdot \operatorname{area}(\mathbf{v}_1, \mathbf{v}_2)$$

Generalization:

Theorem

If A is a 2×2 matrix then for any region S of \mathbb{R}^2 we have:

$$area(T_A(S)) = |det A| \cdot area(S)$$

Idea of the proof.

The area of S can be approximated by the sum of small squares covering S.

Sign of the determinant

Example.

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 3 \end{array} \right]$$

Example.

$$A = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$$

Theorem

If A is a 2×2 matrix then the linear transformation $T_A \colon \mathbb{R}^2 \to \mathbb{R}^2$ preserves orientation if $\det A > 0$ and reverses orientation if $\det A < 0$.

Linear Algebra

$$\mathbb{R}^n = \begin{pmatrix} \text{set of all column vectors} \\ \text{with } n \text{ entries} \end{pmatrix}$$

Column vectors can be added and multiplied by real numbers.

Linear transformation is a function

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
, $T(\mathbf{v}) = A\mathbf{v}$

It satisfies:

- $\bullet \ T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- $T(c\mathbf{v}) = cT(\mathbf{v})$

Tupical problem: given a vector **b** find all vectors \mathbf{x} such that

$$T(\mathbf{x}) = \mathbf{b}$$

(i.e solve the equation $A\mathbf{x} = \mathbf{b}$).

Fact: Such vectors x are of the form

$$x = v_0 + n$$

where:

- \mathbf{v}_0 is some distinguished solution of Ax = b;
- \bullet $n \in \text{Nul}(A)$ (i.e. n is a solution of $A\mathbf{x} = \mathbf{0}$).

Calculus

$$C^{\infty}(\mathbb{R}) = \begin{pmatrix} \text{set of all smooth} \\ \text{functions } f \colon \mathbb{R} \to \mathbb{R} \end{pmatrix}$$

Functions can be added and multiplied by real numbers.

Differentiation is a function

$$D \colon C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \quad D(f) = f'$$

It satisfies:

- D(f + g) = D(f) + D(g)• D(cf) = cD(f)

Typical problem: given a function qfind all functions f such that

$$D(f) = g$$

(i.e find antiderivatives of q).

Fact: Such functions *f* are of the form

$$f = F + C$$

where:

- F is some distinguished antiderivative of q;
- C is a constant function (i.e. C is a solution of D(f) = 0).