650 938 5200

AMENDMENTS TO THE CLAIMS

None of the claims is currently amended.

	1	1. (Original) In a computer network comprising nodes, a method of adminis-
6(7	2	tering sending of teleconference data over the network comprising:
	3	determining an allocated bandwidth corresponding to the sending;
hu,	4	communicating the allocated bandwidth to the nodes;
war war	5	inhibiting use of bandwidth by any of the nodes in excess of the allocated band-
VV*	6	width;
	7	monitoring at least one nodal happiness factor;
•	8	adjusting the allocated bandwidth in response to the at least one nodal happiness
	9	factor;
	10	dynamically measuring bandwidth use of program elements at a node; and
	11	assigning bandwidth among program elements, such that the total of assigned
	12	bandwidth is not greater than said allocated bandwidth.
	1	2. (Original) The method of claim 1, further comprising:
	2	determining for each program element at each node a desired bandwidth, the de-
	3	sired bandwidth being a total minimum bandwidth at which all program
		elements have sufficient bandwidth to operate at maximum speed; and
	4	determining for each program element a happiness factor, the happiness factor be-
	5	ing proportional to the assigned bandwidth and inversely proportional to
	6	
	7	the desired bandwidth.

JUL-22-03

node.

3

1	10.	(Previously added)	The computer network of	claim 5, wherein the allo-
2	cated nodal n	aximum bandwidth	for each node is shared by p	program elements at the
3			ined class of processes.	
1	11.	(Previously added)	The computer network of	claim 10, wherein the prede-
2	termined clas	ss of processes comp	rises the one or more proces	sses involving transmission
3	of large amo	unts of data.		
1	12.			claim 5, wherein the admin-
2	istrator node	is adapted to allocat	te nodal maximum bandwid	ths for all nodes of the net-
3	work.			
1	13.	(Previously added	i) The computer network of	f claim 5, wherein the nodal
2	maximum b		nined based on participation	
3			ving transmission of large at	
1	14.		/	f claim 5, wherein the set of
2	variables re	lated to bandwidth	sage by the one or more pro	cesses involving transmission
3		ounts of data compri		
4	at le	east one variable indi	icating an actual usage of ba	indwidth at a node by the one
5	٠	or more processe		
6	one	or more variables re	elated to a predicted usage o	f bandwidth at a node by the
7		one or more pro	cesses in the immediate fut	ure.
1	15.	(Previously adde	ed) The computer network	of claim 14, wherein the one or
2		1	redicted usage of bandwidth	
3	an	umber of active proc	cesses at the node that are ca	pable of transmitting data; and
	Casa 18602	/ -06524 (P1932R1)	- 5 -	18602/06524/DCC5/1347121.

4	a number of active connections on the	node, wherein each connection requires a
5	separate copy of data being tra	. /
1 .		uter network of claim 5, wherein the client
2	node is further adapted to calculate a nodal h	appiness factor based on the set of variables
3	related to bandwidth usage by the one or mor	
4	maximum bandwidth.	
1		outer network of claim 5, wherein the client
2	node publishes the current values of the set of	of variables related to bandwidth usage at the
3	client node to be accessed by all nodes of the	e network
1		puter network of claim 5, wherein:
2		assign portions of the allocated nodal maxi-
3	mum bandwidth among prog	ram elements at the client node, such that the
4	total of the assigned portions	is not greater than the allocated maximum
5	bandwidth.	
7	19. (Previously added) The con	nputer network of claim 18, wherein the client
. 2	2 node periodically calls a monitoring progra	m for:
3		
4	4 updating variables indicating an act	ual usage and a predicted usage of bandwidth
5	by each program element.	
1	1 20. (Previously added) The con	mputer network of claim 19, wherein the moni-
2	2 toring program comprises:	* .
	<i></i>	•

11:12AM

3	one or	more function sets which, if manipulated by a node other than the adminis-
4		trator node, render the monitoring program unusable.
1	21.	(Previously added) The computer network of claim 19, wherein the moni-
2	toring progran	
3	a hack	er variable which indicates whether or not any node other than the adminis-
4		trator node has attempted to turn off the monitoring program.
I	22.	(Previously added) The computer network of claim 18, wherein the client
2	node periodic	ally calls a bandwidth allocation program for assigning portions of the allo-
3	cated nodal n	naximum bandwidth among program elements.
1	23.	(Previously added) The computer hetwork of claim 22, wherein the
2	bandwidth al	location program is for:
3	deterr	nining a priority and a maximum and minimum requested bandwidth for
4		each program element; and
5	in ord	der of priority, assigning to each program element the minimum requested
6		bandwidth, until the allocated nodal maximum bandwidth is used up; and
7	if the	allocated nodal maximum bandwidth is not used up by the assigning of
8		minimum requested bandwidths, assigning additional bandwidth to each
9		program element in order of priority.
1	24.	(Previously added) The computer network of claim 18, wherein the client
2	node period	ically calls a happiness query program that determines a happiness factor of
3	each progra	m clement.

1		(Previously added) The computer network of claim 24, wherein the hap-
2	piness factor of	a program element is an average score of happiness over all connections
3	to which the pr	ogram element is transmitting data.
1		(Previously added) The computer network of claim 24, wherein the hap-
2	piness factor o	f each program element can be visually displayed using color coding.
1	27.	(Previously added) The computer network of claim 24, wherein the hap-
2	piness factor o	f each program element is published to be accessed by all nodes of the
3	network.	
7	28.	(Previously added) A computer readable medium for administering one or
2	more processe	s involving transmission of large amounts of data in a computer network,
3		readable medium comprising:
4	an adn	ninistrator program, executable on the computer network for allocating
5		nodal maximum bandwidths for one or more nodes of the network and
6		communicating to the one or more nodes the respective allocated nodal
7		maximum bandwidths; and
8	a clien	nt program, executable on the computer network for receiving an allocated
9	•	nodal maximum/bandwidth from the administrator program, and further
10		for determining current values of a set of variables related to bandwidth
11		usage by the one or more processes at the client node and communicating
12		the current values to the administrator program, wherein the administrator
13		program utilizes the current values to adjust the allocated nodal maximum
14	ð.	bandwidths for the one or more nodes.

1	29.	(Previously added) T	he computer readable me	dium of claim 28, wherein.
2	the cli	ent program is further	for assigning portions of	the allocated nodal maxi-
3				client node, such that the
4				n the allocated maximum
5		bandwidth.		
1	30.	(Previously added)	The computer readable m	edium of claim 28, wherein
2		gram further comprises		
3	a mo	nitoring program for ex	changing information wi	th each program element and
4		updating variables in	dicating an actual usage	and a predicted usage of
5		bandwidth by each p	rogram element.	
1	31.	(Previously added)	The computer readable n	nedium of claim 28, wherein
2			s a bandwidth allocation	
3	dete	rmining a priority and a	maximum and minimun	n requested bandwidth for
4		each program eleme	7	
5	in o	rder of priority, assigning	ng to each program eleme	ent the minimum requested
6			1	n bandwidth is used up, and
7	ifth	e allocated nodal maxi	num bandwidth is not us	ed up by the assigning of
8		minimum requested	l bandwidths, assigning a	dditional bandwidth to each
9		program element in	order of priority.	
1	32.	(Previously added)	The computer readable r	nedium of claim 28, wherein
2		ogram further compris	•	
3	a ha	<i>,</i>		ess factor of each program
4		element, wherein th	e happiness factor of a p	rogram element is an average
	Case 18602-	-06524 (P1932R1)	- 9 -	18602/06534/DOCS/1347121

JUL-22-03 11:12AM FROM-Fenwick & West Mountain View

650 938 5200

T-122 P.012/017 F-242

5	score of happiness over all connections through which the program elemen
6	is transmitting data.
	1.1. Adim 65 alaim 32 wherein
1	33. (Previously added) The computer readable medium of claim 32, wherein
2	the happiness query program is further for:
3	visually displaying the happiness factor of each program element using color cod-
4	ing; and
5	publishing the happiness factor of each program element at a node to be accessed
6	by all nodes of the network.