Corrigé du devoir maison 6.

Exercice 1

- 1°) $u_1 = u_0 + v_0 = 12$; $v_1 = 2u_0 + v_0 = 17$; $u_2 = u_1 + v_1 = 29$; $v_2 = 2u_1 + v_1 = 41$. Ainsi, $u_1 = 12$ $v_1 = 17$ $u_2 = 29$ $v_2 = 41$.
- **2°)** Notons, pour tout $n \in \mathbb{N}$, $H_n : u_n > 0$ et $v_n > 0$.
 - \star H_0 est vraie.
 - ★ Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie i.e. $u_n > 0$ et $v_n > 0$. Alors $u_{n+1} = u_n + v_n > 0$ et $v_{n+1} = 2u_n + v_n > 0$. Donc H_{n+1} est vraie.
 - \star On a montré par récurrence que : $\forall n \in \mathbb{N}, u_n > 0, v_n > 0$
- **3°)** Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = v_n > 0$ et $v_{n+1} v_n = 2u_n > 0$. Ainsi, (u_n) et (v_n) sont strictement croissantes.
- 4°) Supposons que (u_n) converge vers un réel ℓ . Alors (u_{n+1}) converge aussi vers ℓ (en tant que suite extraite de (u_n)).

Donc $v_n = u_{n+1} - u_n \xrightarrow[n \to +\infty]{} 0.$

Or (v_n) est croissante et $v_0 = 7$, donc pour tout $n \in \mathbb{N}$, $v_n \geq 7$. Par passage à la limite, sachant que (v_n) converge vers 0, on obtient $0 \geq 7$: absurde. Ainsi, la suite (u_n) diverge.

Comme elle est croissante, on en déduit que la suite (u_n) diverge vers $+\infty$

5°) Pour tout $n \in \mathbb{N}$, $v_{n+1} - u_{n+1} = u_n > 0$, donc $v_{n+1} > u_{n+1}$. Ainsi, pour tout $n \in \mathbb{N}^*$, $v_n > u_n$. On a aussi $v_0 > u_0$. D'où, pour tout $n \in \mathbb{N}$, $v_n > u_n$.

Comme la suite (u_n) diverge vers $+\infty$, on en déduit que la suite (v_n) diverge aussi vers $+\infty$

- **6°)** Posons, pour tout $n \in \mathbb{N}$, $H_n : 2u_n^2 v_n^2 = (-1)^n$.
 - ★ $2u_0^2 v_0^2 = 2 \times 25 49 = 1 = (-1)^0$ donc H_0 est vraie.
 - \star Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie.

$$2u_{n+1}^{2} - v_{n+1}^{2} = 2(u_{n}^{2} + 2u_{n}v_{n} + v_{n}^{2}) - (4u_{n}^{2} + 4u_{n}v_{n} + v_{n}^{2})$$

$$= -2u_{n}^{2} + v_{n}^{2}$$

$$= -(-1)^{n} \quad \text{par } H_{n}$$

$$= (-1)^{n+1}$$

Donc H_{n+1} est vraie.

- \bigstar Conclusion : $\forall n \in \mathbb{N}, \ 2u_n^2 v_n^2 = (-1)^n$
- **7°)** Soit $n \in \mathbb{N}$.

$$\frac{v_n}{u_n} - \sqrt{2} = \frac{v_n - \sqrt{2}u_n}{u_n}$$

$$= \frac{(v_n - \sqrt{2}u_n)(v_n + \sqrt{2}u_n)}{u_n(v_n + \sqrt{2}u_n)}$$

$$= \frac{v_n^2 - 2u_n^2}{u_n(v_n + \sqrt{2}u_n)}$$

$$= \frac{(-1)^{n+1}}{u_n(v_n + \sqrt{2}u_n)} \text{ par } 6$$

Comme le dénominateur est positif d'après la question 2, on en tire que $\left| \frac{v_n}{u_n} - \sqrt{2} \right| = \frac{1}{u_n(v_n + \sqrt{2}u_n)}$.

Minorons le dénominateur : on a $v_n > u_n$ donc $v_n + \sqrt{2}u_n > u_n(1 + \sqrt{2})$.

Or $1 + \sqrt{2} > 2$ et $u_n > 0$, donc $(1 + \sqrt{2})u_n > 2u_n$, et ainsi $v_n + \sqrt{2}u_n > 2u_n$.

Comme $u_n > 0$, il vient : $u_n(v_n + \sqrt{2}u_n) > 2u_n^2 > 0$.

Par passage à l'inverse, $\frac{1}{u_n(v_n + \sqrt{2}u_n)} < \frac{2u_n^2}{2u_n^2}$.

On a montré : $\left| \forall n \in \mathbb{N}, \ \left| \frac{v_n}{u_n} - \sqrt{2} \right| \le \frac{1}{2u_n^2} \right|$.

8°) Comme $u_n \xrightarrow[n \to +\infty]{} +\infty$, on a $\frac{1}{2u_n^2} \xrightarrow[n \to +\infty]{} 0$.

Donc, par le théorème d'encadrement, $\left| \lim_{n \to +\infty} \frac{v_n}{u_n} = \sqrt{2} \right|$.

9°) Cherchons une valeur de n pour laquelle $\frac{1}{2u_n^2} \le 10^{-3}$, c'est-à-dire $500 \le u_n^2$.

On a $u_1^2 = 144 < 500$ mais $u_2^2 = 29^2 = 841 > 500$. Donc, d'après l'inégalité de la question précédente, $\frac{u_2}{v_2} = \frac{29}{41}$ est une valeur approchée rationnelle de $\sqrt{2}$ à 10^{-3} près.

Exercice 2

- 1°) a) On pose, pour tout $n \in \mathbb{N}$, \mathcal{P}_n : "le réel v_n existe et $v_n \in [0,1]$."
 - v_0 et bien défini, et $v_0 = \alpha \in [0, 1]$, donc \mathcal{P}_0 est vraie.
 - Soit $n \in \mathbb{N}$ fixé. On suppose que \mathcal{P}_n est vraie. Montrons que \mathcal{P}_{n+1} est vraie, i.e. que le réel v_{n+1} existe et qu'il est dans [0,1].

On sait que $v_n \in [0,1]$; comme f est définie sur [0,1], $f(v_n)$ est bien défini, donc $v_{n+1} =$ $2v_n - f(v_n)$ est bien défini.

D'après la propriété (P1), on sait de plus que $v_{n+1} = 2v_n - f(v_n) \in [0,1]$.

Ainsi \mathcal{P}_{n+1} est vraie.

• Conclusion : pour tout $n \in \mathbb{N}$, le réel v_n existe et $v_n \in [0, 1]$.

b)

$$\forall\,n\in\mathbb{N},\ \ v_{n+2}=2v_{n+1}-f(v_{n+1})\\ =2v_{n+1}-f\left(2v_n-f(v_n)\right)\\ \boxed{v_{n+1}=2v_{n+1}-v_n}\quad\text{d'après la propriété $(P2)$}$$

c) Ainsi, on a, pour tout $n \in \mathbb{N}$, $v_{n+2} - 2v_{n+1} + v_n = 0$.

Ainsi $(v_n)_{n\in\mathbb{N}}$ est une suite récurrente linéaire double.

Son équation caractéristique est :

$$r^{2} - 2r + 1 = 0 \iff (r - 1)^{2} = 0$$
$$\iff r = 1$$

Il y a une racine double, donc

$$\exists ! (\lambda, \mu) \in \mathbb{R}^2, \forall n \in \mathbb{N}, \ v_n = (\lambda n + \mu) \, 1^n = \lambda n + \mu$$

Or $v_0 = \alpha$ et $v_1 = 2v_0 - f(v_0) = 2\alpha - f(\alpha)$ ce qui impose :

$$\begin{cases} \mu = \alpha \\ \lambda + \mu = 2\alpha - f(\alpha) \end{cases} \text{ soit } \begin{cases} \mu = \alpha \\ \lambda = \alpha - f(\alpha) \end{cases}$$

Ainsi, pour tout $n \in \mathbb{N}$, $v_n = (\alpha - f(\alpha)) n + \alpha$

- d) Si on avait $\alpha f(\alpha) \neq 0$, alors, d'après cette expression, $(v_n)_{n \in \mathbb{N}}$ divergerait vers $+\infty$ ou vers $-\infty$ (selon le signe de $\alpha f(\alpha)$). Or la suite $(v_n)_{n \in \mathbb{N}}$ est à valeurs dans [0,1], elle ne peut pas diverger vers $+\infty$ ou vers $-\infty$. On en déduit que $\alpha f(\alpha) = 0$ c'est-à-dire $f(\alpha) = \alpha$.
- **2°)** Nous venons de voir que si f définie sur [0,1] est solution au problème, alors pour tout $\alpha \in [0,1], f(\alpha) = \alpha$.
 - Vérifions que la fonction $f: x \mapsto x$ définie sur [0,1] est solution au problème : $\forall x \in [0,1], \ 2x f(x) = 2x x = x \in [0,1]$ $\forall x \in [0,1], f(2x f(x)) = 2x f(x) = 2x x = x$. Ainsi (P1) et (P2) sont bien vérifiées.
 - Conclusion :
 - il y a une unique fonction définie sur [0,1] vérifiant les propriétés (P1) et (P2) : c'est $x\mapsto x$.