ИНСТИТУТ ТРАНСПОРТА И СВЯЗИ

ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ НАУК И ЭЛЕКТРОНИКИ

Домашнее задание

По дисциплине «Численные методы»

Тема: Решение линейного дифференциального уравнения 2-го порядка

Студент: Виктор Выползов

Группа: 4102BD

1. Задание

Решить линейное дифференциальное уравнение второго порядка с постоянными коэффициентами:

$$y''(t)$$
+5 $y'(t)$ + N_s * $y(t)$ = N_g , $y(0)$ =5, $y'(0)$ =10 где N_s —7, а N_g —14

Задачу решить численным методом Рунге-Кутта 4-го порядка. Сравнить полученные результаты, построить график решения.

Примечание:

Для численного метода Рунге-Кутта предварительно требуется рассчитать время переходного процесса, используя найденные ранее корни характеристического уравнения. В качестве интервала наблюдения выбирается временной интервал $T = (3/4) * \tau$, где $\tau = 1/|P_{min}|$. Здесь - P_{min} - есть минимальный по величине (модулю) корень характеристического уравнения $P_{min} = min\{|p_1|,|p_2|\}$.

Рекомендуемая величина шага интегрирования: $h=\Delta t=T/20\,$ для ручного счета, или $h=\Delta t=T/200\,$ при использовании программы метода Рунге-Кутта. Исходное уравнение 2-го порядка $y''=f(y,y')\,$ преобразуется в систему двух уравнений 1-го порядка с помощью замены переменных:

$$\begin{cases} y' = z, & y(0) = y_0 \\ z' = f(y, z), & z(0) = y'(0) = y'_0 \end{cases}$$

Методом Рунге-Кутта решается данная система. Результаты заносятся в таблицу для построения графика решения y(t).

2. Решение

$$y''(t)+5y'(t)+7*y(t)=14$$
, $y(0)=5$, $y'(0)=10$

• Преобразуем исходное уравнение 2- го порядка в систему двух ОДУ 1- го порядка

$$\begin{cases} y' = z, & y(0) = y_0 = 5 \\ z' = 14 - 5z - 7y, & z(0) = y'(0) = y'_0 = 10 \end{cases}$$

• Вычисление корней характеристического уравнения

$$p^2+5$$
 $p+7=0$; $D=25-4*7=-3\Rightarrow$ действительных корней нет $p_{1,2}=-b\pm i\sqrt{(-D)}/2$ а $p\approx 2.6457$

• Расчет интервала времени наблюдения

$$\tau = 1/2.6457 = 0.3779$$

 $T = 4 * 0.3779 = 1.5116$

• Расчет шага дискретизации

$$h = \Delta t = 1.5116/20 = 0.07558$$

• Вычисление значений точек по методу Рунге-Кутта

```
y_{k+1} = y_k + h/6 * (f_1 + 2f_2 + 2f_3 + f_4);
f_1 = z_0;
f_2 = z_0 + h/2 * g_1;
f_3 = z_0 + h/2 * g_2;
f_4 = z_0 + h * g_1;
z_{k+1} = z_k + h/6 * (g_1 + 2g_2 + 2g_3 + g_4);
q_1 = f(y,z);
g_2 = f(y+h/2*f1,f_2)
g_3 = f(y+h/2*f2, f_3)
g_4 = f(y+h/2*f3,f_4)
f_1 = 10
g_1 = 14 - 7 * 5 - 5 * 10 = -71
f_2 = 10 + 0.07558/2 * (-71) = 7.3169
g_2 = 14 - 7*(5 + 0.07558/2*10) - 5*7.3169 = -60.2298
f_3 = 10 + 0.07558/2 * (-60.2298) = 7.7239
g_3 = 14 - 7*(5 + 0.07558/2*7.3169) - 5*7.7239 = -61.555
f_4 = 10 + 0.07558 * (-61.555) = 5.3477
g_3 = 14 - 7*(5 + 0.07558/2*7.7239) - 5*5.3477 = -51.8251
y_1 = 5 + 0.07558/6 * (10 + 2 * 7.3169 + 2 * 7.7239 + 5.3477) = 5.5724
z_1 = 10 + 0.07558/6 * (-71 - 2 * 60.2298 - 2 * 61.555 - 51.8251) = 5.3834
```

• Таблица с результатами

Для расчета остальных точек была реализована программа для занесения их в таблицу:

```
function [y, z, t] = runge_kutta()

y = 5;
z = 10;
a = 0;
b = 2;
h = 0.07558;

t = 0;
i = 1;
while t(1, i) < b

f1 = z(1, i);
g1 = pdu(y(1, i), z(1, i));

f2 = z(1, i) + (h/2)*(g1);
g2 = pdu((y(1, i)+(h/2)*f1), (z(1, i)+(h/2)*g1));

f3 = z(1, i) + (h/2)*(g2);
g3 = pdu((y(1, i)+(h/2)*f2), (z(1, i)+(h/2)*g2));</pre>
```

```
f4 = z(1, i) + (h)*(g3);
g4 = pdu((y(1, i)+(h)*f3), (z(1, i)+(h)*g3));

y = [y (y(1, i) + (h/6)*(f1+2*f2+2*f3+f4))];
z = [z (z(1, i) + (h/6)*(g1+2*g2+2*g3+g4))];

t = [t (t(1, i) + h)];
i = i + 1;
```

end

end

Результаты:

y 5 5.5723 5.8459 5.9057 5.8171 5.6297 5.3808 z 10 5.3846 2.0430 -0.3148 -1.9201 -2.9565 -3.5687	t	0	0.0756	0.1512	0.2267	0.3023	0.3779	0.4535
z 10 5.3846 2.0430 -0.3148 -1.9201 -2.9565 -3.5687	y	5	5.5723	5.8459	5.9057	5.8171	5.6297	5.3808
	Z	10	5.3846	2.0430	-0.3148	-1.9201	-2.9565	-3.5687

t	0.5291	0.6046	0.6802	0.7558	0.8314	0.9070	0.9825
y	5.0981	4.8015	4.5052	4.2191	3.9493	3.6998	3.4723
Z	-3.8697	-3.9476	-38700	-3.6883	-3.4414	-3.1580	-2.8590

t	1.0581	1.1337	1.2093	1.2849	1.3604	1.3460	1.5116
y	3.2676	3.0853	2.9243	2.7833	2.6606	2.5547	2.4637
Z	-2.5592	-2.2688	-1.9945	-1.7403	-1.5084	-1.2994	-1.1130

t	1.5872	1.6628	1.7383	1.8139	1.8895	1.9651	2.0407
y	2.3859	2.3198	2.2639	2.2168	2.1773	2.1444	2.1171
Z	-0.9483	-0.8040	-0.6785	-0.5699	-0.4766	-0.3968	-0.3290

3. Графики решений

