Свёрточные нейроные сети

Свёрточный слой (convolution)

$$X' = \begin{bmatrix} \begin{pmatrix} 0.5 & 0 \\ 0.5 & 1 \end{pmatrix} \end{bmatrix} \qquad \Theta = \begin{bmatrix} \begin{pmatrix} \theta_1 & \theta_2 \\ \theta_3 & \theta_4 \end{pmatrix} \end{bmatrix}$$

$$\Theta = \begin{bmatrix} \begin{pmatrix} \theta_1 & \theta_2 \\ \theta_3 & \theta_4 \end{pmatrix} \end{bmatrix}$$

Свёрточный слой (convolution)

0.5	0	1
0.5	1	0
1	0.5	0

1	0.5	0
0	0.5	1
1	0	1

$$X' = \begin{bmatrix} \begin{pmatrix} 0.5 & 0 \\ 0.5 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0.5 \\ 0 & 0.5 \end{pmatrix} \end{bmatrix}$$

$$\Theta = \begin{bmatrix} \begin{pmatrix} \theta_1^{c_1} & \theta_2^{c_1} \\ \theta_3^{c_1} & \theta_4^{c_1} \end{pmatrix}, \begin{pmatrix} \theta_1^{c_2} & \theta_2^{c_2} \\ \theta_3^{c_2} & \theta_4^{c_2} \end{pmatrix} \end{bmatrix}$$

Примеры ядер

Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \left[\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right]$	

Дополнение (padding) и сдвиг (stride)

padding = 1

padding = 1 stride = 2

dilated convolution (l=2)

Слой субдискретизации (pooling)

2	3	2	0			
5	-2	2	8	Pooling	5	8
-1	-6	7	3		-1	7
-4	-5	4	2			01

(a)	Max-Pool	ling

(b) Average-Pooling

Аугментации (augmentations)

Transfer learning

Если мало данных: взять обученную на других изображениях сеть, заменить последний слой → обучить только последний слой

Transfer learning

Если мало данных: взять обученную на других изображениях сеть, заменить последний слой → обучить только последний слой

ImageNet

Задача сегментации изображений

Случай бинарной классификации

Задача сегментации изображений

Задача сегментации изображений

Одномерные свёрточные сети (Conv1D)

В анализе временных рядов: $\hat{y}_T = \theta_1 y_{T-1} + \theta_2 y_{T-2} + \dots + \theta_k y_{T-k}$

В задаче предсказания следующего слова: $y_i, i=1,...,M$ — вектора длины $l \Rightarrow$ например, conv+stride(l)