Exercice 1. Description des machines thermiques

- 1- Donner le nom de chaque installation. Préciser si c'est une machine motrice ou réceptrice. Expliciter ce qu'elles permettent de réaliser.
- 2- Donner les noms des composants constituant chaque installation et expliquer brièvement leur rôle?
- 3- Décrire l'état du fluide traversant chaque machine
- 4- Préciser les fonctionnalités mises en jeu

Installation A

1

Installation D

Exercice 2.

1- Compléter les textes à partir des figures ci-dessous

A-

B-

L'air ambiant est aspiré par pression comprise dans les machine	A, généralement centrifuge ou axial, qui le porte à une s modernes entre 10 et 30 bar environ.	
Il entre ensuite dans avec l'air préalablement comprimé (c	B, dans laquelle un combustible injecté sous pression est be dernier en fort excès afin de limiter la température des gaz brûlés).	ûlé
Les gaz à haute température (1000- généralement axiale.	1200 °C) sont alors détendus dans C,	
Une partie significative (60 à 70 %)	u travail récupéré sur l'arbre de sert à entraîn	er

C-

Le fluide frigorigène est évaporé dans VD en		
contact avec l'enceinte froide. Pour cela, il doit être à basse		
pression pour que sa température soit à		
celle de l'enceinte.		
Le fluide est ensuite porté à haute pression par		
A afin que sa température de condensation		
Tcond soit		
est alors refroidi dans B par échange		
thermique avec l'air ambiant (ou un fluide frigoporteur), jusqu'à ce		
qu'il devienne liquide.		
La pression du liquide est ensuite diminuée dans		

- 2- Complétez le texte suivant par les expressions correspondantes:
- Ambiante ; compresseur ; Détendeur ; de l'enceinte froide ; du fluide à haute pression ; s'évaporant ; se condensant

Exercice 3.

- 1- Mode général de fonctionnement d'un moteur alternatif à combustion interne Complétez le texte suivant par les expressions correspondantes:
- Arbre à came ; chambre de combustion ; combustion ; culasse ; cylindre ; piston ; point mort bas ; point mort haut ; soupapes ; volumétrique

Un moteur alternatif à combustion interne fonctionne sur le principe suivant :				
n volume variable est délimité par un cylindre, l'une de ses bases qui est fixe, appelée,				
t l'autre qui est un mobile dans l'alésage du cylindre, entraîné par un système bielle-				
nanivelle.				
Dans un moteur à quatre temps, les organes qui commandent le refoulement ou l'admission sont des				
✓ actionnées par des poussoirs couplés à l'arbre moteur par un				
<u>∨</u> .,				
e diverses manières, on fait en sorte, dans la phase d'admission, que soit introduit dans le cylindre du gaz frais.				
e piston étant à une certaine distance du fond du cylindre, l'orifice d'admission est alors fermé.				
Le piston, se rapprochant du fond du cylindre, comprime cette charge dans le volume v de la				
v, c'est-à-dire l'espace restant lorsque le piston atteint la fin de sa course, appelé				
ou PMH.				
Le facteur essentiel de fonctionnement est le rapport de compression ν ρ = V/ν,				
caractéristique géométrique du cylindre.				
La réaction de est alors déclenchée, et elle se déroule pendant un temps relativement court, alors que le poursuit sa course.				
Le piston continuant à s'éloigner du fond du, les gaz brûlés se détendent jusqu'à la fin				
de la course (vacués et remplacés par une nouvelle charge de gaz				
frais.				

2- Notion de rendement de cycle

Complétez le texte suivant par les expressions correspondantes:

- coefficient de performance (COP) ; de la chaleur en puissance mécanique
- l'énergie payante mise en jeu ; l'énergie utile représente
- l'effet énergétique utile; produites et consommées en son sein

La notion de rendement, ou d'efficacité , est employée pour	
caractériser les performances globales d'un cycle, lors de	
l'établissement de son bilan énergétique. Pour une machine	
thermique destinée à transformer	
✓, il s'agit du rapport entre	
la puissance produite et la chaleur fournie à la machine : η = τ/Q.	
De manière générale, lorsque l'on a affaire à des cycles relativement	
complexes, on est conduit à adopter une définition élargie du	
rendement ou de l'efficacité : il s'agit du rapport de	
✓ à	
✓.	
η = (énergie utile)/(énergie payante)	
de toutes les énergies que l'on a dû fournir au cycle en provenance	
de l'extérieur ;	
- Le bilan net des	
énergies utiles du cycle, c'est-à-dire la somme algébrique des	
énergies v participant à	
l'effet énergétique utile ;	
Cette manière de faire présente l'avantage de rester valable dans	
tous les cas, tant pour les cycles moteurs que pour les cycles	
récepteurs. Dans ce dernier cas, on ne parle plus de rendement car	
sa valeur devient généralement supérieure à 1, mais plutôt de	
~ .	