Wstęp do programowania, potok imperatywny (Info, I rok) 16/17, laboratorium

Moja strona domowa ▶ Informatyka ▶ Informatyczne studia I stopnia ▶ I rok ▶ WPI.LAB.INFO.I.16/17 ► Zadanie 3 ► Zadanie 3: Liliczby

NAWIGACJA

Moja strona domowa

Strona główna

一个

Strony Bieżący

> przedmiot WPI.LAB.INFO .1.16/17

> > Uczestnicy

Odznaki

Główne

składowe

Zadanie 0

(treningowe

Zadanie 1

Zadanie 2

Zadanie 3

Liliczby

poprawn

ość

Zadanie 4

(poprawkow

e)

Moje kursy

Zadanie 3: Liliczby

Wprowadzenie

Liliczba (ang. nunumber) to rekurencyjna reprezentacja nieujemnej liczby całkowitej za pomocą ciągu cyfr, które również są liliczbami. Reprezentacja ta, sformułowana w nieco inny ale równoważny sposób, była rozważana przez Donalda Knutha.

Wartością liliczby jest suma potęg dwójki o wykładnikach będących wartościami cyfr tej liliczby. Powiemy, że liliczba jest znormalizowana, jeśli jej cyfry są znormalizowanymi liliczbami i są uporządkowane rosnąco według wartości.

Tekstowym zapisem liliczby jest słowo języka z poniższą gramatyką w rozszerzonej notacji BNF:

```
<liliczba> ::= { "Y" <cyfra> } "Z"
<cyfra> ::= <liliczba>
```

Można zauważyć, że jest to język słów powstałych przez dopisanie symbolu z na koniec wyrażenia nawiasowego, w którym Y pełni role nawiasu otwierającego a z to nawias zamykający.

Wszystkie liliczby, których zapisem są poniższe słowa

YZYZYZYZYZYZYZYZZ

YZYZYZYYZZYYZZYZYZZZ

YZYZYZYYYZZZYZYYZZZ

YYYZZZYZYZYZYZYYZZZ

YYY777Y7Y7Y77Y777

YYYZZZYZYZYYYYZZZZ

YYYZZZYYYZZZYZYZZ

YYZZYYYZZZYYYZZZZ

YYZZYYYZZYZZZ

YYZZYYZYYZZZZ

Zadanie

ADMINISTRACJA

- <

Administracja kursem Inne przykłady znormalizowanអូម្រាន់!i/ក្រាស់ខ្លាំ២ paniższe tapel prod/assign/view.p...

Wartość	Liliczba
0	Z
1	YZZ
2	YYZZZ
3	YZYYZZZ
4	YYYZZZZ
5	YZYYYZZZZ
6	YYZZYYYZZZZ
7	YZYYZZYYYZZZZ
8	YYZYYZZZZ
9	YZYYZYYZZZZ
10	YYZZYYZYYZZZZ
11	YZYYZZYYZYYZZZZ
12	YYYZZZYYZYYZZZZ
13	YZYYYZZZYYZYYZZZZ
14	YYZZYYYZZYYZYYZZZZ
15	YZYYZZYYYZZYYZYYZZZZ
16	YYYYZZZZZ
17	YZYYYYZZZZZ
18	YYZZYYYYZZZZZ
19	YZYYZZYYYYZZZZZ
20	YYYZZZYYYYZZZZZ
50	YYZZYYYYZZZZYYZYYYZZZZZ
64	YYYZZYYYZZZZZ
100	YYYZZZYYZYYYZZZYYYZZYYYZZZZZ
127	YZYYZZYYYZZYYZYYZZZYYYYZZZZYYZZYYYZZYYYZ
128	YYZYYZZYYYZZZZZ
144	YYYYZZZZYYZYYZZYYYZZZZZ
199	YZYYZZYYYZZYYYZZYYYZZZYYZYYZZYYYZZZZZ
256	YYYZYYZZZZZ 14.01.2017 02:2

Wartość	Liliczbattps://moodle.mimuw.edu.pl/mod/assign/view.p
1000	YYZYYZZYYYZYYYZZZYYYZZYYYZZZYYZYYZZYYYZZZYYY
1009	YZYYYYZZZZYYZYYYZZZYYYZZYYYZZZYYZZYYZZYYZZZYY
1024	YYYZZYYZYYZZZZZ
10000	YYYYZZZZYYYZYYZZYYZYYZYYZZYYZYYZZYYZ
65536	YYYYYZZZZZZ
200791	YZYYZZYYYZZZYYYYZZZYYYZZZYYYYZZZYYYYZZZ
2^65536	YYYYYZZZZZZZ
2^65537	YYZYYYYYZZZZZZZ
2^(2^65536)	YYYYYYZZZZZZZZ
2^(2^(2^65536))	YYYYYYYZZZZZZZZ
5+2^(2^(2^65536))	YZYYYZZZYYYYYYYYZZZZZZZZZ

Zwracamy uwagę, że pozycyjny zapis binarny trzech ostatnich wymienionych wartości miałby więcej bitów, niż jest atomów na Ziemi.

Polecenie

Napisz program, który wczyta dwie, nie koniecznie znormalizowane, liliczby zapisane na wejściu i wypisze ich iloczyn jako znormalizowaną liliczbę.

Postać danych

Na wejściu programu są dwa wiersze. W każdym z nich jest zapisana jedna liliczba. Oprócz liter Y i Z nie ma tam żadnych innych znaków, nawet spacji.

Postać wyniku

Program wypisuje jeden, prawidłowo zakończony za pomocą '\n', wiersz z zapisem znormalizowanej liliczby.

Przykłady

- Dla danych przyklad1.in wynikiem programu powinno być przyklad1.out (3 * 6 = 18).
- Dla danych przyklad2.in wynikiem programu powinno być przyklad2.out (12 * 12 = 144).
- Dla danych przyklad3.in wynikiem programu powinno być przyklad3.out (1009 * 199 = 200791).

Uwagi i wskazówki

Wolno założyć, że dane są poprawne.

- 14.01.2017 02:28
- Program nie powinien nakładać żadnych ograniczeń na rozmiar danych i

wyniku. Wolno tylko założ หลับสู่ รู้ ะ สุกาเอรสนะ กล่าก แนะ ชนา ค.ภาโคตี่d/assign/view.p...

- Oczekujemy rozwiązania o koszcie wielomianowym względem rozmiaru danych.
- Przyjmujemy, że wynik funkcji main() inny niż 0 informuje o błędzie wykonania programu.
- Do treści zadania dołączone są pliki .in z danymi przykładowymi i pliki .out z wynikami wzorcowymi.
- Poprawność wyniku można sprawdzić, przekierowując na wejście programu zawartość pliku z przykładowymi danymi i porównując rezultat, za pomocą programu diff, z plikiem zawierającym wynik wzorcowy, np.:

```
< przyklad.in ./liliczby | diff - przyklad.out</pre>
```

Wynik uznajemy za poprawny tylko, jeśli jest identyczny z wynikiem wzorcowym.

Program, który zarezerwował pamięć funkcjami malloc, realloc itp. ma obowiązek zwolnić ją funkcją free. Jeśli tego nie zrobi, występuje zjawisko wycieku pamięci, które uznajemy za błąd. W wykryciu tego i innych błędów może pomóc program valgrind. By z niego skorzystać, kompilujemy swój program z dodatkową opcją -g, np. poleceniem:

```
gcc -std=c89 -pedantic -Wall -Wextra -Werror -g liliczby.c -
o liliczby
```

Spowoduje to dołączenie do programu wykonywalnego informacji pomagających w lokalizacji błędu. Tak skompilowany program uruchamiamy pod kontrolą valgrind poleceniem:

```
valgrind --leak-check=full ./liliczby
```

Opcja --leak-check=full wskazuje, że chcemy, między innymi, wykryć wycieki pamięci i znaleźć ich źródło.

Na zakończenie wykonania programu przez valgrind, na wyjście diagnostyczne wypisywany jest raport. Jeżeli nie wykryto błędu, może on mieć postać np.

4 z 7 14.01.2017 02:28

```
==46974== Memcheck, ahttps://moodle.mimuw.edu.pl/mod/assign/view.p...
==46974== Copyright (C) 2002-2015, and GNU GPL'd, by Julian
Seward et al.
==46974== Using Valgrind-3.11.0 and LibVEX; rerun with -h fo
r copyright info
==46974== Command: ./liliczby
==46974==
==46974==
==46974== HEAP SUMMARY:
==46974==
              in use at exit: 0 bytes in 0 blocks
==46974== total heap usage: 97 allocs, 97 frees, 9,712 byt
es allocated
==46974==
==46974== All heap blocks were freed -- no leaks are possibl
==46974==
==46974== For counts of detected and suppressed errors, reru
n with: -v
==46974== ERROR SUMMARY: 0 errors from 0 contexts (suppresse
d: 0 from 0)
```

Wartość inna niż 0 po <code>ERROR SUMMARY</code> informuje, że wykryto błąd. W raporcie będą też wskazówki pomagające w lokalizacji błędu.

Rozwiązania do testów będą kompilowane poleceniem:

```
gcc -std=c89 -pedantic -Wall -Wextra -Werror -g nazwa.c -o n
azwa
```

Wszystkie wymienione opcje kompilatora są obowiązkowe i nie wolno dodawać do nich żadnych innych.

- Podczas testów rozwiązania będą uruchamiane pod kontrolą programu
 valgrind. Jeżeli wykryje on błąd, np. wyciek pamięci, to przyjmiemy, że
 program testu nie przeszedł nawet, jeśli jego wynik będzie prawidłowy.
- Tekstowy zapis liliczby można przekształcić na wyrażenie arytmetyczne, zastępując kończące Z przez -0, każdą parę znaków YZ przez Y0Z, parę ZY przez Z+Y a następnie każdy znak Y przez 2^(i każdy znak Z przez).

Za pomocą programu sed zastępującego wzorce w tekście oraz kalkulatora wyrażeń arytmetycznych bc możemy poznać dziesiętny zapis wartości liliczby. Np. polecenie:

```
echo YYZZYYYYZZZZYYZYYYZZZZZ | sed 's:Z$:-0:g; s:YZ:Y0Z:g; s
:ZY:Z+Y:g; s:Y:2^(:g; s:Z:):g' | bc
```

wypisze:

```
50
```

mogą one pomóc w testowarju.//moodle.mimuw.edu.pl/mod/assign/view.p...

- Rozwiązanie zadania wymaga zastosowania rekursji i dynamicznych struktur danych.
- Iloczyn dwóch liliczb można wyznaczyć, korzystając ze wzoru:

$$\left(\sum_{i=0}^m 2^{a_i}
ight)\left(\sum_{j=0}^n 2^{b_j}
ight) = \sum_{i=0}^m \sum_{j=0}^n 2^{a_i+b_j}$$

Będzie do tego potrzebne dodawanie.

Obliczenie sumy znormalizowanych liliczb wymaga scalenia uporządkowanych rosnąco list cyfr. W przypadku, gdy ta sama cyfra występuje w obu dodawanych liliczbach, realizujemy przeniesienie.

By scalić listy cyfr potrzebujemy porównania. Cyfry liliczb porównujemy w kolejności od najbardziej znaczących.

Pracę nad rozwiązaniem proponujemy zacząć od programu, który czyta i wypisuje liliczbę. Następnie zmieniamy go, kolejno, w program czytający dwie liliczby i wypisujący wynik ich porównania, ich sumę i na koniec ich iloczyn.

przyklad1.in
przyklad1.out
przyklad2.in
przyklad2.out
przyklad3.in
przyklad3.out

przesłanego

zadania

Status przesłanego zadania

Numer próby	To jest próba nr 1.
Status przesłanego zadania	Przesłane do oceny
Stan oceniania	Nie ocenione
Termin oddania	środa, 11 styczeń 2017, 10:00
Pozostały czas	Zadanie zostało złożone 17 godz. 50 min. przed terminem
Ostatnio modyfikowane	wtorek, 10 styczeń 2017, 16:09
Przesyłane pliki	PIOTR_SZUBERSKI_ZADANIE3_LILICZBY.c
Komentarz do	▶ Komentarze (0)

Jesteś zalogowany(a) jako Piotr Szuberski (Wyloguj) WPI.LAB.INFO.I.16/17

Moodle, wersja 3.1.1 | moodle@mimuw.edu.pl

7 z 7 14.01.2017 02:28