Claim: Suppose of satisfies SP, ONTO, ANON, Then $f(P) = median(p_1, ..., p_n, y_1, ..., y_{n-1}).$

Case 1: a is a phantom peak - proved

Case 2: a is an agent peak

We will prove this for 2 players. The general case repeats this argument.

Claim: $N = \{1,2\}$, let P and P' be such that $P_i(1) = P_i'(1)$, $\forall i \in N$. Then f(P) = f(P').

Proof: Let $a = P_1(1) = P_1'(1)$, and $P_2(1) = P_2'(1) = b$.

f(P) = x and $f(P_1', P_2) = y$

Since fis SP, xP, y and yP,'x

Since peaks of P, and P, are The same, if x, y are on The same side of The peak, They must be The same, as The domain is single peaked.

The only other possibility is that a and y fall on different sides of the peak. We show that this is impossible.

WLOG a < a < y and a < b

f is SP+ONTO () f is SP+PE PE requires $f(P) \in [a, b]$, but f(P) = x < anow repeat this argument for $(P_1', P_2) \rightarrow (P_1', P_2')$ Profile: (P,,P2) = P, P,(1)=a, P2(1)=b y, is The phantom peak. by assumption, median (a, b, y,) is an agent peak WLOG assume the median is a. Assume for contradiction $f(P) = c \neq a$. By PE, c must be within a and b. We have two cases to consider: b < a < y, and y, < a < b.

Case 2.1: b<a<y, , by PE c<a construct P_i' 1.t. $P_i'(i) = a = P_i(i)$

and y, P, c (possible since they are on different sides of

by The earlier claim, $f(P)=c \Rightarrow$ $f(P_1,P_2)=C.$ now consider The profile (P, P2)

I peak at The rightmost

 $P_2(1) = b \langle y_1 \langle P_1'(1), \text{ hence The median of } \{b, y_1, P_1'(1)\}$ is y_1 (Which is a phantom peak, hence case 1 applies). $f(P_1', P_2) = y_1.$ But $y_1 \in P_2$ (by construction) and $f(P_1', P_2) = C$

But $y_1 P_1'^c$ (by construction) and $f(P_1', P_2) = c$ agent 1 manipulates $P_1' \rightarrow P_1'$, contradiction to f being SP.

case 2.2: $y_1 < a < b$, $PE \Rightarrow a < c$ construct P_1' s.t. $P_1'(1) = a = P_1(1)$ and $y_1 P_1' c$ $f(P_1', P_2) = c$ (by daim)

Consider (P_1^o, P_2) , $P_1^o(1) \leq y_1 < b \implies f(P_1^o, P_2) = y_1$ but $y_1, P_1'c$, hence manipulable by agent 1.

This completes The proof for two agents (case 2). For The generalization to n players, see Moulin (1980)

"On strategyprogness and single peakedness".