Lyapunov Stability

Reading: Robot Modeling and Control 8.1, Appendix D

This Lecture

- How do we determine if a dynamical system is stable?
- Introducing Lyapunov stability analysis
- What is multivariable control for robot arms?

Let's use Lyapunov stability analysis to show this mass-spring-damper is stable.

$$m\ddot{\theta} + b\dot{\theta} + k\theta = 0$$

Let's use Lyapunov stability analysis to show this mass-spring-damper is stable.

$$v(t) = \frac{1}{2}m\dot{\theta}(t)^{2} + \frac{1}{2}k\theta(t)^{2}$$

Total energy as a function of time. Note that this is always nonnegative.

Let's use Lyapunov stability analysis to show this mass-spring-damper is stable.

$$v(t) = \frac{1}{2}m\dot{\theta}(t)^{2} + \frac{1}{2}k\theta(t)^{2}$$

$$\dot{v}(t) = m\ddot{\theta}(t)\dot{\theta}(t) + k\theta(t)\dot{\theta}(t)$$

Rate of change of the total energy

 $\dot{v} > 0$ increasing energy,

 \dot{v} < 0 decreasing energy,

Let's use Lyapunov stability analysis to show this mass-spring-damper is stable.

$$m\ddot{\theta} = -b\dot{\theta} - k\theta$$

$$\dot{v} = m\ddot{\theta}\dot{\theta} + k\theta\dot{\theta}$$

$$\dot{v} = (-b\dot{\theta} - k\theta)\dot{\theta} + k\theta\dot{\theta}$$

$$\dot{v}(t) = -b\dot{\theta}(t)^{2}$$

Let's use Lyapunov stability analysis to show this mass-spring-damper is stable.

$$\dot{v}(t) = -b\dot{\theta}(t)^2$$

Since b > 0, energy always leaving the system until it comes to rest $(\dot{\theta} = 0)$

Let's use Lyapunov stability analysis to show this mass-spring-damper is stable.

$$\dot{v}(t) = -b\dot{\theta}(t)^{2}$$
$$m\ddot{\theta} + b\dot{\theta} + k\theta = 0$$

At rest $\dot{\theta} = 0$ and $\ddot{\theta} = 0$, leaving us with $k\theta = 0$. Energy decreases until $\theta = 0$.

Let's use Lyapunov stability analysis to show this mass-spring-damper is stable.

$$\dot{v}(t) = -b\dot{\theta}(t)^2$$

Conclusion. For any initial conditions, the mass-spring-damper will always come to rest at equilibrium $\theta = 0$.

Lyapunov Stability Analysis

Given a dynamical system:

$$\dot{x} = f(x)$$

To show this system is stable, find a generalized energy function v(x) such that:

- v(x) > 0 for all values of $x \neq 0$, and v(0) = 0
- v(x) has continuous first partial derivatives
- $\dot{v}(x) \le 0$ (e.g., energy decreases over time)

Lyapunov Stability Analysis

Example. Consider the dynamical system:

$$\dot{x} = -Ax$$

where x is a $n \times 1$ vector and A is a positive definite $n \times n$ matrix. Try:

$$v(x) = \frac{1}{2}x^Tx$$
 $v(x) > 0$ for all values of $x \neq 0$, and $v(0) = 0$ Partial derivative $\frac{\partial v}{\partial x} = x$ is continuous

Lyapunov Stability Analysis

Example. Consider the dynamical system:

$$\dot{x} = -Ax$$

$$\dot{v}(x) = \frac{d}{dt} \left(\frac{1}{2} x^T x \right) = x^T \dot{x} = -x^T A x$$

 $\dot{v}(x) \leq 0$ because *A* is positive definite.

Energy decreases until we reach stability at x = 0, the system is **stable**.

One industry-standard multivariable robot controller is:

$$\tau = K_P(\theta_d - \theta) - K_D \dot{\theta} + g(\theta)$$

- K_P is a positive definite matrix of proportional gains
- K_D is a positive definite matrix of derivative gains
- $g(\theta)$ is the gravity vector

One industry-standard multivariable robot controller is:

$$\tau = K_P(\theta_d - \theta) - K_D \dot{\theta} + g(\theta)$$

Often diagonal gain matrix

$$K_P = \begin{bmatrix} k_{p,1} & & \\ & k_{p,2} & \\ & \ddots & \end{bmatrix}$$

Gravity compensation. Remove steady-state error due to gravity.

Often diagonal gain matrix

$$K_{P} = \begin{bmatrix} k_{p,1} & & & \\ & k_{p,2} & \\ & & \ddots \end{bmatrix} \qquad K_{D} = \begin{bmatrix} k_{d,1} & & \\ & k_{d,2} & \\ & & \ddots \end{bmatrix}$$

Plugging this controller into the robot's dynamics:

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + g(\theta) = \tau = K_P(\theta_d - \theta) - K_D\dot{\theta} + g(\theta)$$

$$M(\theta)\ddot{\theta} = -C(\theta,\dot{\theta})\dot{\theta} - K_D\dot{\theta} + K_P(\theta_d - \theta)$$

Is this closed-loop system **stable**? Will the robot converge to $\theta = \theta_d$?

Consider the dynamical system and generalized energy function:

$$M(\theta)\ddot{\theta} = -C(\theta,\dot{\theta})\dot{\theta} - K_D\dot{\theta} + K_P(\theta_d - \theta)$$

$$v(\theta,\dot{\theta}) = \frac{1}{2}\dot{\theta}^T M(\theta)\dot{\theta} + \frac{1}{2}(\theta_d - \theta)^T K_P(\theta_d - \theta)$$

We know that M and K_P are positive definite matrices, so $v(\theta, \dot{\theta}) > 0$ for all values of $\theta \neq \theta_d$, $\dot{\theta} \neq 0$, and v(0,0) = 0

Take the time derivative to see whether energy is decreasing:

$$\dot{v} = \frac{1}{2}\dot{\theta}^T \dot{M}(\theta)\dot{\theta} + \dot{\theta}^T M(\theta)\ddot{\theta} - \dot{\theta}^T K_P(\theta_d - \theta)$$

$$\dot{v} = \dot{\theta}^T \left(\frac{1}{2} \dot{M}(\theta) \dot{\theta} + M(\theta) \ddot{\theta} - K_P(\theta_d - \theta) \right)$$

Plug in closed-loop dynamics here:

$$M(\theta)\ddot{\theta} = -C(\theta,\dot{\theta})\dot{\theta} - K_D\dot{\theta} + K_P(\theta_d - \theta)$$

Take the time derivative to see whether energy is decreasing:

$$\dot{v} = \dot{\theta}^T \left(\frac{1}{2} \dot{M}(\theta) \dot{\theta} - C(\theta, \dot{\theta}) \dot{\theta} - K_D \dot{\theta} \right)$$

Property. $\dot{M} - 2C$ is skew symmetric, and therefore $\frac{1}{2}\dot{\theta}^T(\dot{M} - 2C)\dot{\theta} = 0$

$$\dot{v} = -\dot{\theta}^T K_D \dot{\theta}$$

Complete stability analysis.

- The time derivative of our energy function is $\dot{v} = -\dot{\theta}^T K_D \dot{\theta}$
- This function is negative definite; energy decreases until $\dot{\theta} = 0$
- If $\dot{\theta} = 0$ is constant, then $\ddot{\theta} = 0$ and the dynamics become:

$$0 = K_P(\theta_d - \theta)$$

- Since K_P is positive definite (nonsingular), we have $\theta_d = \theta$ at equilibrium

Takeaways

Lyapunov's method examines stability of dynamical systems.

To show a system is stable, find a generalized energy function v(x) such that:

- v(x) > 0 for all values of $x \neq 0$, and v(0) = 0
- v(x) has continuous first partial derivatives
- $\dot{v}(x) \le 0$ (e.g., energy decreases over time)

One stable multivariable controller for robot arms is:

$$\tau = K_P(\theta_d - \theta) - K_D \dot{\theta} + g(\theta)$$

This Lecture

- How do we determine if a dynamical system is stable?
- Introducing Lyapunov stability analysis
- What is multivariable control for robot arms?

Next Lecture

- We've focused on controlling the robot to reach a desired position...
 - ... what are some other things we might want to control for?