Verjetnost 1

Napisal: Jon Pascal Miklavčič

Predgovor

Zapiski v tej skripti so bili osnovanih na rokopisih predavanj iz študijskih let pred letom 2023 in doknčno dopolnjeni z zapiski iz predavanj iz leta 2024.

Kazalo

1	Neformalni uvod v verjetnost	1
2	Aksiomatična definicija verjetnosti	Ę

Poglavje 1

Neformalni uvod v verjetnost

Začetki verjetnosti so v 17. stoletju, iz iger na srečo (kartanje, kockanje, ...):

- 17. stol.: Fermant, Pascal, Bernulli;
- 18./19. stol.: Laplace, Poisson, Čebišev, Markov;
- 20. stol.: Kolmogorov.

Izvajamo poskus in opazujemo določen pojav, ki ga imenujemo *dogodek*. Ta se lahko zgodi ali ne.

Zgled. Poskus je met kocke. Da pade šestica, da pade sodo število pik pa sta dogodka.

Poskus ponovimo n-krat. Opazujemo dogodek A. S $k_n(A)$ označimo frekvenco dogodka A, t.j. število tistih ponovitev poskusa, pri katerih se je dogodek A zgodil. Naj bo $f_n(A) = \frac{k_n(A)}{n}$ relativna frekvenca dogodka A. Dokazati je mogoče, da zporedje $\{f_n(A)\}_n$ konvergira k nekemu številu $p \in [0,1]$; $f_n(A) \xrightarrow{n \to \infty} p$. Dobimo:

Statistično definicijo verjetnosti:

$$P(A) := p$$

Pogosto lahko verjetnost določimo vnaprej in sicer s:

Klasično definicijo verjetnosti:

$$P(A) := \frac{\# \text{ ugodnih izidov za dogodek } A}{\# \text{ vseh izidov}}$$

pri pogoju, da imajo vsi izidi enake možnosti.

Zgled. Met poštene kocke:

$$P(\text{sodo število pik}) = \frac{3}{6} = \frac{1}{2}$$

 \Diamond

Zgled. Kolikšna je verjetnost, da pri metu dveh poštenih kock znaša vsota pik 7? Možne vsote so: $2, 3, 4, \ldots, 12$. Opazimo, da je vseh vsot 11 in od tega 1 ugodna. Ali to pomeni, da $P(A) = \frac{1}{11}$. Ne! Izidi niso enkaoverjetni.

Na primer 2 lahko dobimo samo kot 2 = 1 + 1, 5 pa kot 5 = 2 + 3 = 1 + 4 = 4 + 1 = 3 + 2.

Torej vsi možni izidi, bodo urejeni pari (x, y), kjer $x, y \in [1, 6] \subset \mathbb{N}$

$$(1,1)$$
 $(1,2)$ \cdots $(1,6)$
 $(2,1)$ $(2,2)$ \cdots $(2,6)$
 \vdots \cdots \vdots
 $(6,1)$ $(6,2)$ \cdots $(6,6)$

Vseh izidov je torej 36 in od tega je 6 ugodnih. Torej $P(A) = \frac{6}{36} = \frac{1}{6}$.

Če je izidov neskončno, si lahko pomagamo s **Geometrijsko definicijo verjetno**sti.

Zgled. Osebi se dogovorita za srečanje med 10. in 11. uro. Čas prihoda je slučajen. Vsak od njiju po prihodu čaka največ 20 minut. Če v tem času drugega ni, odide. Najdlje čaka do 11. ure. Kolišna je vrejetnost srečanja?

Čas začnemo šteti ob 10. uri. Vsi izidi so urejeni pari $(x,y) \in [0,1] \times [0,1]$. Ugodni izidi so $|x-y| \leq \frac{1}{3}$. Torej:

1)
$$x \ge y : x - \frac{1}{3} \le y$$

2) $x \le y : y - x \le \frac{1}{3} \iff y \le x + \frac{1}{3}$

Torej je

$$P(\text{srečanja}) = \frac{1 - \left(\frac{2}{3}\right)^2}{1} = \frac{5}{9}$$

 \Diamond

Teorija mere se ukvarja z splošnim zapisom geometrijske definicije.

Zgled. Vzamemo $m, n \in \mathbb{N}$, m > n. n krogljic slučajno razporedimo v m posod. Kolikšna je verjetnost dogodka, da so vse krogljice v prvih n posodah, v vsaki ena?

To je pomankljivo zastavljena naloga. Ne vemo namreč, ali med seboj krogljice razlikujemo, ali ne. Za dodatno predpostavko se ponujajo 3 možnosti:

1) krogljice razlikujemo:

Število vseh izidov v tem primeru je ravno število $variacij\ m$ elementov na n mestih $s\ ponavljanjem$. Za vsako od n-tih kroglic imamo m možnosti, torej je vseh možnosti $m \cdot m \cdots m = m^n$.

Število ugodnih izidov pa je ravno število permutacij n krogljic v prvih n posodah. Torej je ugodnih možnosti $n(n-1)\dots 2\cdot 1=n!$.

Torej je

$$P(A) = \frac{n!}{m^n}$$

2) krogljic ne razlikujemo:

V vsaki posodi je lahko več krogljic. Število vseh izidov je ravno število kombinacij s ponavljanjem. Število kombinacij m elementov s ponavljanjem na n mestih je:

$$\binom{n+m-1}{n} = \binom{n+m-1}{m-1}$$

Postavimo n krogljic in med njih razporedimo m-1 črtic, ki predstavljajo stene posod:

$$\left|\underbrace{\circ \left| \circ \left| \circ \circ \right| \circ \circ \cdots \circ \circ \right|}_{n \text{ krogljic, } m-1 \text{ črtic}}\right|$$

Na n+m-1 mestih moramo določiti n krogljic. Ugoden izid je samo eden:

Torej je

$$P(A) = \frac{1}{\binom{n+m-1}{n}}$$

3) krogljic ne razlikujemo, v vsaki posodi je kvečjemu ena krogljica:

Število vseh izidov je ravno število kombinacij brez ponavljanja $\binom{m}{n}$. Ugoden izid je eden.

Torej je

$$P(A) = \frac{1}{\binom{m}{n}}$$

POGLAVJE 1. NEFORMALNI UVOD V VERJETNOST

Opomba. V fiziki so krogljice delici (atomi, molekule, ...), posode pa fazna stanja, v katerih so lahko delci. Glede na zgornje primere ločimo:

- 1. Maxwell-Boltzmannovo statistika, ki velja za molekule plina.
- 2. Bose-Einsteinovo statistika, ki velja za delce imenovane bozoni.
- 3. Fermi-Diracovo statistika, ki velja za fermione.

Diracovo izključitveno načelo.

Poglavje 2

Aksiomatična definicija verjetnosti