15-210 Library Documentation

Draft Last Compiled: 16th January 2013

Contents

Ι	Beh	navioural Specifications	4
1	Conv	ventions	5
2	2.1 (2.2 § 2.2 § 2.3] 2.4] 2.4] 2.4] 2.4] 2.4] 2.4] 2.4] 2.5] 2	RITY_QUEUE Signature Overview 2.1.1 Priority Queues Signature Definition Details of Types 2.3.1 key . 2.3.2 αpq Details of Values 2.4.1 empty: $unit \rightarrow \alpha pq$. 2.4.2 isEmpty: $\alpha pq \rightarrow bool$. 2.4.3 singleton: $key \times \alpha \rightarrow \alpha pq$ 2.4.4 insert: $(key \times \alpha) \rightarrow \alpha pq \rightarrow \alpha pq$ 2.4.5 meld: $\alpha pq \rightarrow \alpha pq \rightarrow \alpha pq$ 2.4.6 findMin: $\alpha pq \rightarrow (key \times \alpha)$ option	6 6 6 6 6 6 7 7 7 7 7 7 7
3		2.4.7 deleteMin: $\alpha pq \to (key \times \alpha) \ option \times \alpha pq$	7 8
	3.1 (3.3) 3.2 (3.3) 3.3) 3.4) 3.5) 3.	Overview 3.1.1 Abstract Sequences Signature Definition Details of Types 3.3.1 α seq 3.3.2 α treeview 3.3.3 α listview 3.3.4 α ord Details of Exceptions 3.4.1 Range 3.4.2 Size Details of Values 3.5.1 empty: $unit \rightarrow \alpha$ seq 3.5.2 singleton: $\alpha \rightarrow \alpha$ seq 3.5.3 length: α seq \rightarrow int 3.5.4 nth: α seq \rightarrow int \rightarrow α 3.5.5 rev: α seq \rightarrow α seq 3.5.6 enum: α seq \rightarrow (int \times α) seq	8 8 10 10 10 10 10 10 10 10 11 11 11 11 11
		3.5.7 tabulate: $(int \to \alpha) \to int \to \alpha \ seq \ \dots$	11

		3.5.9	$ exttt{toList: } lpha \hspace{0.1cm} seq ightarrow lpha \hspace{0.1cm} list \hspace{0.1cm} \ldots \hspace{0.1cm}$	11
		3.5.10	collate: $lpha \ ord ightarrow lpha \ seq \ ord$	11
		3.5.11 r	map: $(\alpha o eta) o lpha \ seq o eta \ seq$	11
		3.5.12 r	map2: $((\alpha \times \beta) \to \gamma) \to \alpha \ seq \to \beta \ seq \to \gamma \ seq$	12
		3.5.13	reduce: $((\alpha \times \alpha) \to \alpha) \to \alpha \to \alpha \ seq \to \alpha \ \dots \dots \dots \dots \dots \dots$	12
				13
				13
				13
				13
				13
				14
				14
				14
				14
			5 () 1 1 1	14
				15
				15
				15
				$15 \\ 15$
				15
				$15 \\ 15$
				$15 \\ 15$
				15 15
				16
			- · · · · · · · · · · · · · · · · · · ·	16
			α in α in α in α and α sequences α in α . The α in α is α in α	1 ()
		3.5.34	showl: $\alpha \; seq o lpha \; listview$	16
		3.5.34	showl: $lpha \ seq ightarrow lpha \ listview$	
4	SET	3.5.34 s 3.5.35 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16
4		3.5.34 s 3.5.35 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 1 7
4	4.1	3.5.34 3 3.5.35 1 Signatu Overvie	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 16 1 7 17
4	$4.1 \\ 4.2$	3.5.34 s 3.5.35 l Signatu Overvie Signatu	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 16 1 7 17
4	4.1	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 16 1 7 17
4	$4.1 \\ 4.2$	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 1 7 17 17 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 d	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 17 17 18 18
4	$4.1 \\ 4.2$	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 d Details	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 17 17 17 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 1 Signatu Overvie Signatu Details 4.3.1 s 4.3.2 d Details 4.4.1 e	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 17 17 17 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 d Details 4.4.1 c 4.4.2 s	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 17 17 17 18 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 l Details 4.4.1 c 4.4.2 s 4.4.3 s	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 17 17 17 18 18 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 d 4.4.1 s 4.4.2 s 4.4.3 s 4.4.4 s	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 17 17 18 18 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 l Details 4.4.1 s 4.4.2 s 4.4.3 s 4.4.4 s 4.4.5 s	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 17 17 17 18 18 18 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 l Details 4.4.1 c 4.4.2 s 4.4.3 s 4.4.4 c 4.4.5 s 4.4.6 s	$\begin{array}{lll} \text{showl: } \alpha \ seq \rightarrow \alpha \ listview & \\ \text{nidel: } \alpha \ listview \rightarrow \alpha \ seq & \\ \text{are} & \\ \text{w} & \\ \text{re Definition} & \\ \text{of Types} & \\ \text{set} & \\ \text{key} & \\ \text{of Values} & \\ \text{empty: } set & \\ \text{singleton: } key \rightarrow set & \\ \text{size: } set \rightarrow int & \\ \text{equal: } set \times set \rightarrow bool & \\ \text{iter: } (\beta \times key \rightarrow \beta) \rightarrow \beta \rightarrow set \rightarrow \beta & \\ \text{filter: } (key \rightarrow bool) \rightarrow set \rightarrow set & \\ \end{array}$	16 16 17 17 18 18 18 18 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 d 4.4.2 s 4.4.3 s 4.4.4 s 4.4.5 s 4.4.6 s 4.4.7 s	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 17 17 18 18 18 18 18 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 s 4.4.1 s 4.4.2 s 4.4.3 s 4.4.4 s 4.4.5 s 4.4.6 s 4.4.7 s 4.4.8 s	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16 16 17 17 18 18 18 18 18 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 d 4.4.2 s 4.4.3 s 4.4.4 s 4.4.5 s 4.4.6 s 4.4.7 s 4.4.8 s 4.4.9 s	showl: $\alpha \ seq \rightarrow \alpha \ listview$ nidel: $\alpha \ listview \rightarrow \alpha \ seq$ The sequence of Types set key of Values sempty: set singleton: $key \rightarrow set$ size: $set \rightarrow int$ sequal: $set \times set \rightarrow bool$ iter: $(\beta \times key \rightarrow \beta) \rightarrow \beta \rightarrow set \rightarrow \beta$ filter: $(key \rightarrow bool) \rightarrow set \rightarrow set$ find: $set \rightarrow key \rightarrow bool$ minon: $(set \times set) \rightarrow set$ intersection: $(set \times set) \rightarrow set$ intersection: $(set \times set) \rightarrow set$	16 16 17 17 17 18 18 18 18 18 18 18 18 18
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 s 4.4.1 s 4.4.2 s 4.4.3 s 4.4.4 s 4.4.5 s 4.4.6 s 4.4.7 s 4.4.8 s 4.4.9 s 4.4.10 s	showl: $\alpha \ seq \rightarrow \alpha \ listview$ and $\alpha \ listview \rightarrow \alpha \ seq$ and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Types and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of Values and $\alpha \ listview \rightarrow \alpha \ seq$ by the sequence of $\alpha \ listvie$	16 16 17 17 18 18 18 18 18 18 18 18 18 19
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 l Details 4.4.1 s 4.4.2 s 4.4.3 s 4.4.4 s 4.4.5 s 4.4.6 s 4.4.7 s 4.4.8 s 4.4.9 s 4.4.10 s 4.4.11 s	showl: $\alpha \ seq \rightarrow \alpha \ listview$ and $\alpha \ seq$ and $\alpha \ listview \rightarrow \alpha \ seq$	16 16 17 17 18 18 18 18 18 18 18 18 19 19
4	4.1 4.2 4.3	3.5.34 s 3.5.35 1 Signatu Overvie Signatu Details 4.3.1 s 4.3.2 s Details 4.4.1 s 4.4.2 s 4.4.3 s 4.4.4 s 4.4.5 s 4.4.6 s 4.4.7 s 4.4.8 s 4.4.9 s 4.4.10 s 4.4.11 s 4.4.12 s	showl: α $seq \rightarrow \alpha$ $listview$ and eq eq eq eq eq eq eq eq	16 16 17 17 17 18 18 18 18 18 18 18 18 19 19
4	4.1 4.2 4.3	3.5.34 s 3.5.35 1 Signatu Overvie Signatu Details 4.3.1 s 4.3.2 s Details 4.4.1 s 4.4.2 s 4.4.3 s 4.4.4 s 4.4.5 s 4.4.6 s 4.4.7 s 4.4.8 s 4.4.9 s 4.4.10 s 4.4.11 s 4.4.12 s 4.4.13 s	showl: α $seq \rightarrow \alpha$ $listview$ and eq eq eq eq eq eq eq eq	16 16 17 17 17 18 18 18 18 18 18 18 18 19 19
4	4.1 4.2 4.3	3.5.34 s 3.5.35 l Signatu Overvie Signatu Details 4.3.1 s 4.3.2 s 4.4.1 s 4.4.2 s 4.4.3 s 4.4.4 s 4.4.5 s 4.4.6 s 4.4.7 s 4.4.8 s 4.4.9 s 4.4.10 s 4.4.11 s 4.4.12 s 4.4.13 s 4.4.14 s	showl: α $seq \rightarrow \alpha$ $listview$ and eq eq eq eq eq eq eq eq	16 16 17 17 17 18 18 18 18 18 18 18 18 19 19

5	ST_S	EQUENCE Signature 20
	5.1	Overview
		5.1.1 Abstract Sequences
	5.2	Signature Definition
	5.3	Details of Types
	5.4	Details of Exceptions
		5.4.1 Range
	5.5	Details of Values
		5.5.1 nth: $\alpha st \ seq \rightarrow int \rightarrow \alpha$
		$5.5.2$ update: $(int \times \alpha) \rightarrow \alpha st \ seq \rightarrow \alpha st \ seq$
		5.5.3 inject: $(int \times \alpha)$ $seq \rightarrow \alpha st$ $seq \rightarrow \alpha st$ seq
6	TARI	LE Signature 23
Ü	6.1	Overview
	6.2	Signature Definition
	6.3	Details of Types
	0.0	6.3.1 α table
		$6.3.2$ αt
		6.3.3 key
	6.4	Details of Values
	0.1	6.4.1 empty: $unit \rightarrow \alpha \ table$
		6.4.2 singleton: $key \times \alpha \rightarrow \alpha \ table$
		$6.4.3$ size: α table \rightarrow int
		6.4.4 map: $(\alpha \to \beta) \to \alpha \ table \to \beta \ table$
		6.4.5 mapk: $(key \times \alpha \rightarrow \beta) \rightarrow \alpha \ table \rightarrow \beta \ table \dots \dots$
		$6.4.6$ tabulate: $(key \rightarrow \alpha) \rightarrow set \rightarrow \alpha \ table \dots \dots$
		$6.4.7$ domain: $\alpha \ table ightarrow set$
		6.4.8 range: $\alpha \ table \rightarrow \alpha \ seq$
		6.4.9 reduce: $(\alpha \times \alpha \to \alpha) \to \alpha \to \alpha \ table \to \alpha \ \dots \$
		6.4.10 filter: $(key \times \alpha \rightarrow bool) \rightarrow \alpha \ table \rightarrow \alpha \ table \dots \dots$
		6.4.11 iter: $(\beta \times (key \times \alpha) \rightarrow \beta) \rightarrow \beta \rightarrow \alpha \ table \rightarrow \beta \dots \dots$
		6.4.12 iterh: $(\beta \times (key \times \alpha) \rightarrow \beta) \rightarrow \beta \rightarrow \alpha \ table \rightarrow (\beta \ table \times \beta) \dots $
		$6.4.13$ find: α table \rightarrow key \rightarrow α option
		6.4.14 merge: $(\alpha \times \alpha \to \alpha) \to (\alpha \ table \times \alpha \ table) \to \alpha \ table \dots \dots$
		6.4.15 mergeOpt: $(\alpha \times \alpha \to \alpha \ option) \to (\alpha \ table \times \alpha \ table) \to \alpha \ table \dots \dots$
		6.4.16 extract: $\alpha \ table \times set \rightarrow \alpha \ table$
		6.4.17 extractOpt: $(\alpha \times \beta \rightarrow \gamma \ option) \rightarrow \alpha \ table \times \beta \ table \rightarrow \gamma \ table \dots \dots$
		6.4.18 erase: α table \times set $\rightarrow \alpha$ table
		6.4.19 insert: $(\alpha \times \alpha \to \alpha) \to (key \times \alpha) \to \alpha \ table \to \alpha \ table \dots \dots$
		$6.4.20$ delete: $key \rightarrow \alpha \ table \rightarrow \alpha \ table$
		$6.4.21$ from Seq: $(key \times \alpha)$ $seq \rightarrow \alpha$ $table$
		$6.4.22$ toSeq: α table \rightarrow $(key \times \alpha)$ seq
		$6.4.23$ collect: $(key \times \alpha)$ $seq \rightarrow \alpha$ seq $table$

Part I Behavioural Specifications

Conventions

For concision, the specifications in this document are typically phrased as implications so that they only apply to expressions that terminate. It is not the case that all expressions terminate. If a higher order function is applied to arguments including a function and input for that function on which it does not terminate, then the application will likely not terminate.

The specifications in this document often contain data type definitions and code fragments in SML-like syntax. These fragments exist to clearly and carefully specify the behaviour of the value being documented, not to restrict its possible implementations. Structures do *not* need to implement the signature with exactly these code fragments; they are typically extremely inefficient. They also contain a mixture of SML syntax and notation from the abstractions in play, and therefore do not immediately compile.

Two functions f and g are said to be *logically equivalent* if they give equal results on equal arguments. It follows that if f is logically equivalent to g, and f does not terminate on some input, then g does not terminate on that input.

We use math and monospace fonts to indicate the difference between the abstraction implemented by an abstract type and SML representations of that abstract notion, respectively. If the same letter or identifier appears in both fonts, it should be understood to mean either the abstraction or representation of the same object.

Types are always typeset in a math font for readability, corresponding to the typical pronunciation of concrete SML syntax. For example, the type of a function

will be written

$$f: \alpha \to \alpha * \beta \to \gamma$$

When talking about a polymorphic expressions in prose, we will often omit the type variable that they are polymorphic over. For example, we may say that "1 is a list" to mean "1 has type α list".

The specifications often use the phrase "x is a t value", where t is some type. For example, when we say "i is an int value" we mean that i is an expression with type int that cannot be evaluated further, like 7 but not like ((fn x => x) 7).

Combining combing the above two conventions, the statement

"s is a sequence value"

should be taken to mean

"s has type α seq, and s is a value"

or, more specifically,

"s has type α seg, and for every valid index i into s, s_i is a value"

PRIORITY_QUEUE Signature

2.1 Overview

2.1.1 Priority Queues

The *priority queue* abstract data type is a multiset of key-value pairs, where the keys belong to a total ordering. The operations are constrained so that relatively simple data structures can be used to implement them. Since it is treated as a multiset, insertion will always increase the size by one, and deleting the minimum value will decrease the size by one unless the queue is empty.

2.2 Signature Definition

```
signature PRIORITY_QUEUE =
sig
  structure Key : ORDERED
  type key = Key.t
  type 'a pq
  type 'a t = 'a pq
  val empty : unit -> 'a pq
  val isEmpty : 'a pq -> bool
  val singleton : key * 'a -> 'a pq
  val insert : (key*'a) -> 'a pq -> 'a pq
  val meld : 'a pq -> 'a pq -> 'a pq
  val findMin : 'a pq -> (key*'a) option
  val deleteMin : 'a pq -> (key*'a) option * 'a pq
end
```

2.3 Details of Types

2.3.1 *key*

This indicates that the type of keys in a priority queue has to have type key.

2.3.2 αpq

This is the abstract type representing a priority queue with key type key (see below) and value type α .

2.4 Details of Values

2.4.1 empty: $unit \rightarrow \alpha pq$

empty represents the empty collection \emptyset .

2.4.2 is Empty: $\alpha pq \rightarrow bool$

Returns true if the priority queue is empty.

2.4.3 singleton: $key \times \alpha \rightarrow \alpha pq$

If k is a value of type key and v is a value of type α , the expression singleton (k,v) evaluates to the priority queue including just $\{(k,v)\}$.

2.4.4 insert: $(key \times \alpha) \rightarrow \alpha pq \rightarrow \alpha pq$

For a a key-value pair (k, v), and a priority queue Q, insert (k, v) Q evaluates to $Q \cup \{(k, v)\}$. Since the priority queue is treated as a multiset, duplicate keys or key-value pairs are allowed and kept separately.

2.4.5 meld: $\alpha pq \rightarrow \alpha pq \rightarrow \alpha pq$

Takes the union of two priority queues. Since the priority queue is treated as a multiset, duplicate keys or key-value pairs are allowed and kept. Therefore the size of the result will be the sum of the sizes of the inputs.

2.4.6 findMin: $\alpha pq \rightarrow (key \times \alpha)$ option

Given a priority queue findMin Q if Q is empty, it returns NONE. Otherwise it returns SOME(k,v) where $(k,v) \in Q$ and k is the key of minimum value in Q. If multiple elements have the same minimum valued key, then an arbitrary one is returned.

2.4.7 deleteMin: $\alpha pq \rightarrow (key \times \alpha) \ option \times \alpha pq$

This is the same as findMin but also returns a priority queue with the returned (key,value) pair removed (if the input queue is non-empty) or an empty Q (if the input queue is empty).

SEQUENCE Signature

3.1 Overview

3.1.1 Abstract Sequences

We define an abstract mathematical notion of a sequence. The documentation for the signature that follows states the behaviour of implementations in terms of this abstraction.

- A sequence is an ordered finite list of elements of some type, indexed by the natural numbers.
- The *length* of a sequence is the number of elements in that sequence. If s is a sequence, its length is denoted |s|.
- A natural number i is said to be a valid index into the sequence s if and only if $0 \le i < |s|$.
- If s is any sequence and i is a valid index into s, then s_i denotes the i^{th} element of s.
- ullet If s is a particular sequence with n elements, we may denote s with the notation

$$\langle s_0, s_1, \ldots, s_{n-1} \rangle$$

For example,

 $\langle \rangle$

denotes the empty sequence and

 $\langle 4, 2, 3 \rangle$

denotes a particular sequence of natural numbers with length three.

- A sequence s' is said to be a *subsequence* of a sequence s if there is a strictly increasing, possibly empty, sequence I of valid indices into s such that $s'_i = s_{I_i}$.
- Sequences can only be ordered if their elements can be ordered. If that condition is met, sequences are ordered lexicographically.

3.2 Signature Definition

signature SEQUENCE =
sig
 type 'a seq

Figure 3.1: Reduce tree structure for any sequence s with |s| = 7

```
datatype 'a treeview = EMPTY
                     | ELT of 'a
                     | NODE of ('a seq * 'a seq)
datatype 'a listview = NIL
                     | CONS of ('a * 'a seq)
type 'a ord = 'a * 'a -> order
exception Range
exception Size
val empty : unit -> 'a seq
val singleton : 'a -> 'a seq
val length : 'a seq -> int
val nth : 'a seq -> int -> 'a
val rev : 'a seq -> 'a seq
val enum : 'a seq -> (int * 'a) seq
val tabulate : (int -> 'a) -> int -> 'a seq
val fromList : 'a list -> 'a seq
val toList : 'a seq -> 'a list
val collate : 'a ord -> 'a seq ord
val map : ('a -> 'b) -> 'a seq -> 'b seq
val map2 : (('a * 'b) -> 'c) -> 'a seq -> 'b seq -> 'c seq
val reduce : (('a * 'a) -> 'a) -> 'a -> 'a seq -> 'a
val argmax : 'a ord -> 'a seq -> int
val scan : (('a * 'a) -> 'a) -> 'a seq -> ('a seq * 'a)
val scani : (('a * 'a) -> 'a) -> 'a -> 'a seq -> 'a seq
val filter : ('a -> bool) -> 'a seq -> 'a seq
val iter : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b
val iterh : ('b * 'a -> 'b) -> 'b -> 'a seq -> ('b seq * 'b)
val flatten : 'a seq seq -> 'a seq
val zip : 'a seq -> 'b seq -> ('a * 'b) seq
val inject : (int*'a) seq -> 'a seq -> 'a seq
val append : 'a seq * 'a seq - 'a seq
val take : 'a seq * int -> 'a seq
```

```
val drop : 'a seq * int -> 'a seq
val rake : 'a seq -> (int * int * int) -> 'a seq
val subseq : 'a seq -> (int * int) -> 'a seq
val sort : 'a ord -> 'a seq -> 'a seq
val merge : 'a ord -> 'a seq -> 'a seq -> 'a seq
val collect : 'a ord -> ('a * 'b) seq -> ('a * 'b seq) seq
val toString : ('a -> string) -> 'a seq -> string
val showt : 'a seq -> 'a treeview
val showti : 'a seq -> (int -> int) -> 'a treeview
val hidet : 'a treeview -> 'a seq
val showl : 'a seq -> 'a listview
val hidel : 'a listview -> 'a seq
val % : 'a list -> 'a seq
end
```

3.3 Details of Types

3.3.1 α seq

This is the abstract type that represents the notion of a sequence described in section 3.1.1.

3.3.2 α treeview

 α treeview provides a view of the abstract α seq type as a binary tree.

3.3.3 α listview

 α listiew provides a view of the abstract α seq type as a list.

3.3.4 α ord

The type α ord represents an ordering on the type α as a function from pairs of elements of α to order.

3.4 Details of Exceptions

3.4.1 Range

Range is raised whenever an invalid index into a sequence is used. The specifications for the individual functions state when this will happen more precisely.

3.4.2 Size

Size is raised whenever a function is given a negative size. The specifications for the individual functions state when this will happen more precisely.

3.5 Details of Values

3.5.1 empty: $unit \rightarrow \alpha \ seq$ (empty ()) evaluates to $\langle \rangle$.

3.5.2 singleton: $\alpha \rightarrow \alpha \ seq$

If x is a value, then (singleton x) evaluates to $\langle x \rangle$.

3.5.3 length: $\alpha \ seq \rightarrow int$

If s is a sequence value, then (length s) evaluates to |s|.

3.5.4 nth: α seq \rightarrow int $\rightarrow \alpha$

If s is a sequence value and i is an int value and i is a valid index into s, then (nth s i) evaluates to s_i . This application raises Range if i is not a valid index.

3.5.5 rev: $\alpha seq \rightarrow \alpha seq$

If s is a sequence value, then rev s will return the sequence in the reverse order i.e. rev (1,2,3) = (3,2,1).

3.5.6 enum:
$$\alpha \ seq \rightarrow (int \times \alpha) \ seq$$

If s is a sequence value, then rev s will return the sequence where each element is paired with its index in the sequence starting from 0 i.e. enum $\langle "a","b","c" \rangle = \langle (0,"a"), (1,"b"), (2,"c") \rangle$.

3.5.7 tabulate:
$$(int \rightarrow \alpha) \rightarrow int \rightarrow \alpha \ seq$$

If f is a function and n is an int value, then (tabulate f n) evaluates to a sequence s such that |s| = n and, for all valid indicies i into s, s_i is the result of evaluating (f i).

Note that the evaluation of this application will only terminate if f terminates on all valid indices into the result sequence s.

3.5.8 from List: α list $\rightarrow \alpha$ seq

If 1 is a list value, then (fromList 1) evaluates to the index preserving sequence representation of l. That is to say, fromList is logically equivalent to

3.5.9 toList: $\alpha \ seq \rightarrow \alpha \ list$

converts a sequence to its logically equivalent list form i.e. toList (1,2,3) = [1,2,3]. This function should be used carefully as lists have very different performance than sequences.

3.5.10 collate: α ord $\rightarrow \alpha$ seg ord

If ord is an ordering on the type α , collate ord evaluates to an ordering on the type α seq derived lexicographically from ord.

3.5.11 map:
$$(\alpha \rightarrow \beta) \rightarrow \alpha \ seq \rightarrow \beta \ seq$$

If f is a function and s is a sequence value such that |s| = n, then (map f s) evaluates to the sequence r such that |r| = n and, for all valid indicies i into s, r_i is the result of evaluating (f s_i).

Note that the evaluation of this application will only terminate if f terminates on s_i for all valid indicies i.

3.5.12 map2:
$$((\alpha \times \beta) \to \gamma) \to \alpha \ seq \to \beta \ seq \to \gamma \ seq$$

If f is a function and s_1 and s_2 are sequence values, then (map2 f s_1 s_2) evaluates to the sequence r such that r_i is the result of evaluating $f(s_{1i}, s_{2i})$ for all i that are valid indices into both s_1 and s_2 .

It follows from the definition of a valid index and the above specification that

$$|r| = \min(|s_1|, |s_2|)$$

Note that the evaluation of this application will only terminate if f terminates on (s_{1i}, s_{2i}) for all $0 \le i < |r|$.

3.5.13 reduce:
$$((\alpha \times \alpha) \to \alpha) \to \alpha \to \alpha \text{ seg} \to \alpha$$

To define the behaviour of reduce, we'll first define a type of non-empty binary trees, then a mapping from non-empty sequences to those trees, then an analog to reduce on trees, and finally reduce on sequences.

The type of non-empty trees we'll use is

Assume that prevpow2 is a function with type int \rightarrow int such that if x is an int value then prevpow2 x evaluates to the maximum element of the set

$$\{y|y < x \land \exists i \in \mathbb{N}. y = 2^i\}$$

With these two assumptions, we define a mapping from non-empty sequences to trees as

```
fun toTree s =  \begin{array}{c|c} {\rm case} \ |s| \\ {\rm of} \ 1 \Rightarrow {\rm Leaf}(s_0) \\ {\rm |} \ n \Rightarrow {\rm Node}({\rm toTree} \ ({\rm take} \ ({\rm s, \ prevpow2} \ |s|)), \\ {\rm toTree} \ ({\rm drop} \ ({\rm s, \ prevpow2} \ |s|))) \end{array}
```

The result of this is a nearly-balanced tree where the number of leaves to the left of any internal node is the greatest power-of-two less than the total number of leaves below that node. The structure of such trees depends only on the length of the input sequence. An example tree is shown in Figure 3.1.

We'll now define the function reducet for the tree type. reducet has type

$$((\alpha \times \alpha) \to \alpha) \to \alpha \ tree \to \alpha$$

and is defined as

Finally, if f is a function, b a value, and s a sequence value, there are two cases:

- If |s| = 0 then (reduce f b s) evaluates to b.
- If |s| > 0, and (reducet f (toTree s)) evaluates to some value v, then (reduce f b s) evaluates to f(b, v).

Note that this definition does *not* require that f is associative. The transformation to trees and reduce on trees are both well-defined without respect to any associativity of f. The tree structure defined by toTree defines a particular association of f on any sequence: if we use \oplus as infix notation for f, the tree corresponds to exactly one of the many ways to parenthesize the expression

$$b \oplus (s_0 \oplus s_1 \oplus \ldots \oplus s_{|s|-1})$$

If f happens to be associative, all of the possible ways to parenthesize this expression result in the same computation.

It follows that if f is associative and b is a value such that b is the identity of f, reduce f b is logically equivalent to iter f b.

3.5.14 argmax: α ord $\rightarrow \alpha$ seq \rightarrow int

If S is a sequence of type alpha and f defines a total ordering on the elements of type α , then argmax f S returns an index (location in the sequence) of a maximal value in S. Maximal is defined with respect to f.

This function raises Range if the S is empty.

3.5.15 scan:
$$((\alpha \times \alpha) \to \alpha) \to \alpha \to \alpha \ seq \to (\alpha \ seq \times \alpha)$$

If f is an associative function, and b a value such that b is an identity of f, (scan f b) is logically equivalent to

```
fn s =>
  (tabulate (fn i => reduce f b (take(s,i))) (length s),
  reduce f b s)
```

3.5.16 scani: $((\alpha \times \alpha) \to \alpha) \to \alpha \to \alpha \ seq \to \alpha \ seq$

If f is an associative function, and b a value such that b is an identity of f, (scani f b) is logically equivalent to

```
fn s =>
  tabulate (fn i => reduce f b (take(s,i+1))) (length s)
```

3.5.17 filter: $(\alpha \rightarrow bool) \rightarrow \alpha \ seq \rightarrow \alpha \ seq$

If p is a predicate and s is a sequence value, then (filter p s) evaluates to the longest subsequence s' of s such that p holds for every element of s'.

3.5.18 iter:
$$(\beta \times \alpha \to \beta) \to \beta \to \alpha \ seq \to \beta$$

iter is logically equivalent to the following code.

Less formally, if f is a function, b is a value, and s is a sequence value, then (iter f b s) computes the iteration of f on s with left-association and b as the base case. We can write this iteration as

$$f(f(\dots f(b, s_0), \dots s_{|s|-2}), s_{|s|-1})$$

or, using \oplus as infix notation for f,

$$(\dots(((b\oplus s_0)\oplus s_1)\oplus s_2)\oplus\dots\oplus s_{|s|-1})$$

3.5.19 iterh:
$$(\beta \times \alpha \to \beta) \to \beta \to \alpha \ seq \to (\beta \ seq \times \beta)$$

iterh is a generalization of iter that also computes the sequence of all partial results produced by the iterated application of the functional argument. Specifically, (iterh f b) is logically equivalent to

fn s => (tabulate (fn i => iter f b (take (i,s))) (
$$|s|$$
), iter f b s)

3.5.20 flatten: $\alpha \ seq \ seq \rightarrow \alpha \ seq$

flatten is logically equivalent to (iter append (empty ())).

Less formally, if s is a sequence value of sequence values, then (flatten s) evaluates to the concatenation of the sequences in s in the order that they appear in s.

3.5.21 zip:
$$\alpha \ seq \rightarrow \beta \ seq \rightarrow (\alpha \times \beta) \ seq$$

zip is logically equivatent to (map2 (fn x => x)).

Less formally, if s, t are sequence values, then $zip\ s$ t will pair the first elements of s and t and the second elements of s and t etc until one or both of the sequences has no more elements. Any remaining elements are not included in the result and are dropped.

3.5.22 inject: $(int \times \alpha) seq \rightarrow \alpha seq \rightarrow \alpha seq$

Let ind and s be sequence values and let

$$occ(i) := \{j | ind_j = (i, x) \text{ for some x} \}$$

(inject ind s) evaluates to the sequence s' with length |s|, where for all valid indicies i into s

$$s'_i = \begin{cases} s_i & occ(i) = \{\}\\ x & j = \max(occ(i)) \land ind_j = (i, x) \end{cases}$$

This application will raise Range if any element of ind has a first component that is not a valid index into s.

3.5.23 append: $\alpha \ seq \times \alpha \ seq \rightarrow \alpha \ seq$

If s1 and s2 are sequence values, then (append (s1, s2)) evaluates to a sequence s with length $|s_1| + |s_2|$ such that the subsequence of s starting at index 0 with length $|s_1|$ is s_1 and the subsequence of s starting at index $|s_1|$ with length $|s_2|$ is s_2 .

3.5.24 take: $\alpha \ seq \times int \rightarrow \alpha \ seq$

If s is a sequence value and n is an integer, then (take (s,n)) evaluates to the first subsequence of s of length n. This application will raise Range if n > |s|.

3.5.25 drop: $\alpha \ seq \times int \rightarrow \alpha \ seq$

If s is a sequence value and n is an integer, then (drop (s,n)) evaluates to the last subsequence of s of length |s| - n. This application will raise Range if n > |s|.

3.5.26 subseq:
$$\alpha \ seq \rightarrow (int \times int) \rightarrow \alpha \ seq$$

If s is a sequence value and j and len int are values such that $j + len \le |s|$, then (subseq s (j, len)) evaluates to the subsequence s' of s of length len such that $s'_i = s_{i+j}$ for all i < len.

This application will raise Range if the subsequence specification is invalid.

3.5.27 sort:
$$\alpha$$
 ord $\rightarrow \alpha$ seq $\rightarrow \alpha$ seq

If ord is an ordering and s is a sequence, (sort ord s) evaluates to a rearrangement of the elements of s that is sorted with respect to ord.

3.5.28 merge:
$$\alpha$$
 ord $\rightarrow \alpha$ seq $\rightarrow \alpha$ seq $\rightarrow \alpha$ seq

3.5.29 collect:
$$\alpha$$
 ord \rightarrow $(\alpha \times \beta)$ seq \rightarrow $(\alpha \times \beta$ seq) seq

Let ord be an ordering and s be a sequence of pairs. (collect ord s) evaluates to a sequence of sequences where each unique first coordinate of elements of s is paired with the sequence of second coordinates of elements of s. The resultant sequence is sorted by the first coordinates, according to ord. The elements in the second coordinates appear in their original order in s.

For example, if

$$s = \langle (5, "b"), (1, "a"), (1, "b"), (1, "b") \rangle$$

and ord is the usual ordering on integers, then (collect ord s) will evaluate to

$$\langle (1, \langle "a", "b", "b" \rangle), (5, \langle "b" \rangle) \rangle$$

3.5.30 toString:
$$(\alpha \rightarrow string) \rightarrow \alpha \ seg \rightarrow string$$

If f is a function and s is a sequence value, (toString f s) evaluates to a string representation of s. This representation begins with " \langle ", which is followed by the results of applying f to each element of s, in left-to-right order, interleaved with ",", and ends with " \rangle ".

3.5.31 showt: $\alpha \ seq \rightarrow \alpha \ treeview$

Let s be a sequence value.

- If |s| = 0, (showt s) evaluates to EMPTY.
- If |s| = 1, (showt s) evaluates to ELT(s_0).
- If |s| > 1, and NODE(take (s, (|s|/2)), drop (s, (|s|/2))) evaluates to some value v, (showt s) evaluates to v.

3.5.32 showti: $\alpha \ seq \rightarrow (int \rightarrow int) \rightarrow \alpha \ treeview$

Let s be a sequence value.

- If |s| = 0, (showti s f) evaluates to EMPTY.
- If |s| = 1, (showti s f) evaluates to ELT(s_0).
- If |s| > 1, $f : \text{int} \to \text{int}$ is a function, and NODE(take (s, f |s|), drop (s, f |s|)) evaluates to some value v, (showti s f) evaluates to v.

3.5.33 hidet: $\alpha \ treeview \rightarrow \alpha \ seq$

Let tv be a treeview value.

- If tv is EMPTY, then (hidet tv) evaluates to $\langle \rangle$.
- If tv is (ELT x), then (hidet tv) evaluates to $\langle x \rangle$.
- If tv is NODE (1,r), then (hidet tv) evaluates to the same value as append (1,r).

3.5.34 showl: $\alpha \ seq \rightarrow \alpha \ listview$

Let s be a sequence value.

- If |s| = 0, (showl s) evaluates to NIL.
- If |s| > 0, (showl s) evaluates to CONS $(s_0, \langle s_1, \dots, s_{|s|-1} \rangle)$.

3.5.35 hidel: α listview $\rightarrow \alpha$ seq

Let lv be a listview value.

- If lv is NIL, then (hidel lv) evaluates to $\langle \rangle$.
- If lv is CONS(x,xs), then hidel lv evaluates to a sequence with length |xs| + 1 such that s'_0 is x and s'_i is xs_i for all valid indices i into xs.

SET Signature

4.1 Overview

We begin by describing an abstract notion of a set representation, which extends the standard mathematical sets. The documentation for the signature that follows states the behavior of implementations in terms of this abstraction.

Like a mathematical set, a set S is a finite collection of unique elements of some type and the size of S, denoted by |S|, is the number of elements in that set. The crucial difference between a set in the mathematical sense and a set is this library is that a set here is always ordered: for enumeration purposes, the implementation gives an implicit ordering of the elements. The empty set, denoted by \emptyset , is a special set that represents an empty collection, so $|\emptyset| = 0$.

4.2 Signature Definition

```
signature SET =
sig
  type set
  type key
  type t = set
  structure Seq : SEQUENCE
  val empty : set
  val singleton : key -> set
  val size : set -> int
  val equal : set * set -> bool
  val iter : ('b * key -> 'b) -> 'b -> set -> 'b
  val filter : (key -> bool) -> set -> set
  val find : set -> key -> bool
  val union : (set * set) -> set
  val intersection : (set * set) -> set
  val difference : (set * set) -> set
  val insert : key -> set -> set
  val delete : key -> set -> set
  val fromSeq : key Seq.seq -> set
  val toSeq : set -> key Seq.seq
  val toString : set -> string
end
```

4.3 Details of Types

4.3.1 set

This is the abstract type representing a set described in Section 4.1.

4.3.2 *key*

This indicates that each element of a set has to have type key.

4.4 Details of Values

4.4.1 empty: set

empty represents the empty set \emptyset .

4.4.2 singleton: $key \rightarrow set$

For a value x of type key, the expression singleton x evaluates to a set containing exactly x.

4.4.3 size: $set \rightarrow int$

If s is a value of type set, then size s evaluates to |s| (i.e., the number of elements in the set represented by s).

4.4.4 equal: $set \times set \rightarrow bool$

If s1 and s2 are values of type set, then equal (s1,s2) evaluates to true if s1 and s2 are identical sets (i.e, they have the exact same set of elements); otherwise, it evaluates to false.

4.4.5 iter:
$$(\beta \times key \rightarrow \beta) \rightarrow \beta \rightarrow set \rightarrow \beta$$

If f is a function, b is a value, and s is a set value, then iter f b s iterates f with left association on s on an implementation-specified ordering, using b as the base case. That is to say, iter f b s evaluates to

$$f(f(...f(b,s_{|s|-1}),...s_1),s_0),$$

where $s_0, s_1, \ldots, s_{|s|-1}$ are the elements of s listed in the order that the implementation chooses.

4.4.6 filter: $(key \rightarrow bool) \rightarrow set \rightarrow set$

If p is a predicate and s is a set value, then filter p s evaluates to the subset s' of s such that an element $x \in s'$ if and only if p holds on x.

4.4.7 find: $set \rightarrow key \rightarrow bool$

If s is a set value and k is a key value, then find s k evaluates to a boolean value indicating whether or not k is a member of s.

4.4.8 union: $(set \times set) \rightarrow set$

If s and t are set values, union (s,t) evaluates to the set $s \cup t$.

4.4.9 intersection: $(set \times set) \rightarrow set$

If s and t are set values, intersection (s,t) evaluates to the set $s \cap t$.

4.4.10 difference: $(set \times set) \rightarrow set$

If s and t are set values, difference (s,t) evaluates to the set $s \setminus t$ (i.e. the set $\{x \in s : s \notin t\}$).

4.4.11 insert: $key \rightarrow set \rightarrow set$

If k is a key value and s is a set, insert k s evaluates to the set $s \cup \{k\}$.

4.4.12 delete: $key \rightarrow set \rightarrow set$

If k is a key value and s is a set, delete k s evaluates to the set $s \setminus \{k\}$.

4.4.13 from Seq: $keySeq. seq \rightarrow set$

If s is a sequence value of type key Seq.seq, then from Seq s evaluates to the set containing the elements $s_0, s_1, \ldots, s_{|s|-1}$. The ordering in the set representation may differ from the ordering in the sequence representation.

4.4.14 to Seq: $set \rightarrow keySeq$. seq

If s is a set value where the elements have type key, then to Seq s evaluates to the sequence of type key Seq. seq containing all |s| elements of s appearing in the order of the implementation's choosing.

4.4.15 toString: $set \rightarrow string$

If s is a set, toString s evaluates to a string representation of s listing the elements of s, interleaved with ",".

ST_SEQUENCE Signature

5.1 Overview

5.1.1 Abstract Sequences

We define an abstract mathematical notion of a sequence. The documentation for the signature that follows states the behaviour of implementations in terms of this abstraction.

- A sequence is an ordered finite list of elements of some type, indexed by the natural numbers.
- The *length* of a sequence is the number of elements in that sequence. If s is a sequence, its length is denoted |s|.
- A natural number i is said to be a valid index into the sequence s if and only if $0 \le i < |s|$.
- If s is any sequence and i is a valid index into s, then s_i denotes the i^{th} element of s.
- ullet If s is a particular sequence with n elements, we may denote s with the notation

$$\langle s_0, s_1, \ldots, s_{n-1} \rangle$$

For example,

 $\langle \rangle$

denotes the empty sequence and

 $\langle 4, 2, 3 \rangle$

denotes a particular sequence of natural numbers with length three.

- A sequence s' is said to be a *subsequence* of a sequence s if there is a strictly increasing, possibly empty, sequence I of valid indices into s such that $s'_i = s_{I_i}$.
- Sequences can only be ordered if their elements can be ordered. If that condition is met, sequences are ordered lexicographically.

5.2 Signature Definition

signature ST_SEQUENCE =

sig

structure Seq : SEQUENCE

Figure 5.1: Reduce tree structure for any sequence s with |s| = 7

```
type 'a seq = 'a Seq.seq
type 'a stseq
exception Range
val nth : 'a stseq -> int -> 'a
val update : (int * 'a) -> 'a stseq -> 'a stseq
val inject : (int*'a) seq -> 'a stseq -> 'a stseq
val fromSeq : 'a seq -> 'a stseq
val toSeq : 'a stseq -> 'a seq
end
```

5.3 Details of Types

5.4 Details of Exceptions

5.4.1 Range

Range is raised whenever an invalid index into a sequence is used. The specifications for the individual functions state when this will happen more precisely.

This is the only exception that the functions in a module ascribing to SEQUENCE raise. An expression applying such a function to appropriate arguments may raise other exceptions, but it will do so only because one of the arguments in that application raised the other exception.

5.5 Details of Values

5.5.1 nth: $\alpha st \ seq \rightarrow int \rightarrow \alpha$

If s is a sequence value and i is an int value and i is a valid index into s, then (nth s i) evaluates to s_i . This application raises Range if i is not a valid index. **5.5.2** update: $(int \times \alpha) \rightarrow \alpha st \ seq \rightarrow \alpha st \ seq$

The call insert (i,v) S replaces the i^{th} location of S with v returning a new sequence. Will raise Range if i is out of bounds, i.e., i < 0 or $i \ge |S|$.

5.5.3 inject: $(int \times \alpha)$ $seq \rightarrow \alpha st$ $seq \rightarrow \alpha st$ seq

Let \mathtt{ind} and \mathtt{s} be sequence values and let

$$occ(i) := \{j | ind_j = (i, x) \text{ for some x} \}$$

(inject ind s) evaluates to the sequence s' with length |s|, where for all valid indicies i into s

$$s'_{i} = \begin{cases} s_{i} & occ(i) = \{\}\\ x & j = \max(occ(i)) \land ind_{j} = (i, x) \end{cases}$$

This application will raise Range if any element of ind has a first component that is not a valid index into s.

TABLE Signature

6.1 Overview

Abstractly, a *table* is a set of key-value pairs where the keys are unique. For this reason, we often think of it as a mapping that associates each key with a value. Since tables are sets, standard set operations apply on them. We denote by \emptyset an empty table. The size of a table S is the number of keys in S and is rendered |S| in mathematical notation. Furthermore, a table of size S can be written as follows

$$\{(k_1, v_1), (k_2, v_2), \dots, (k_n, v_n)\},\$$

where k_1, \ldots, k_n are n distinct keys and each key k_i maps to v_i for $i \in [n]$. For concreteness, we say that a key k is present in a table T, written as $k \in_m T$, if there exists a value v such that $(k, v) \in T$. The documentation that follows states the behavior of operations on this abstraction.

6.2 Signature Definition

```
signature TABLE =
  type 'a table
  type 'a t = 'a table
  structure Key : EQKEY
  type key = Key.t
  structure Seq : SEQUENCE
  type 'a seq = 'a Seq.seq
  structure Set : SET where type key = key and Seq = Seq
  type set = Set.set
  val empty : unit -> 'a table
  val singleton : key * 'a -> 'a table
  val size : 'a table -> int
  val map : ('a -> 'b) -> 'a table -> 'b table
  val mapk : (key * 'a -> 'b) -> 'a table -> 'b table
  val tabulate : (key -> 'a) -> set -> 'a table
  val domain : 'a table -> set
  val range : 'a table -> 'a seq
  val reduce : ('a * 'a -> 'a) -> 'a -> 'a table -> 'a
  val filter : (key * 'a -> bool) -> 'a table -> 'a table
  val iter : ('b * (key * 'a) -> 'b) -> 'b -> 'a table -> 'b
```

```
val iterh : ('b * (key * 'a) -> 'b) -> 'b -> 'a table -> ('b table * 'b)
val find : 'a table -> key -> 'a option
val merge : ('a * 'a -> 'a) -> ('a table * 'a table) -> 'a table
val mergeOpt : ('a * 'a -> 'a option) -> ('a table * 'a table) -> 'a table
val extract : 'a table * set -> 'a table
val extractOpt : ('a * 'b -> 'c option) -> 'a table * 'b table -> 'c table
val erase : 'a table * set -> 'a table
val insert : ('a * 'a -> 'a) -> (key * 'a) -> 'a table -> 'a table
val delete : key -> 'a table -> 'a table
val fromSeq : (key*'a) seq -> 'a table
val collect : (key*'a) seq -> 'a seq table
val toString : ('a -> string) -> 'a table -> string
end;
```

6.3 Details of Types

6.3.1 α table

This is the abstract type representing a table with key type key (see below) and value type α .

6.3.2 αt

This type is a shorthand for the abstract type α table representing a table.

6.3.3 *key*

This indicates that the type of keys in a table has to have type key.

6.4 Details of Values

6.4.1 empty: $unit \rightarrow \alpha \ table$

empty represents the empty collection \emptyset .

6.4.2 singleton: $key \times \alpha \rightarrow \alpha \ table$

If k is a value of type key and v is a value of type α , the expression singleton (k,v) evaluates to the collection $\{(k,v)\}$.

6.4.3 size: α table \rightarrow int

If T is a value of type α table, then size T evaluates to |T| (i.e., the number of keys in the collection T).

6.4.4 map: $(\alpha \rightarrow \beta) \rightarrow \alpha \ table \rightarrow \beta \ table$

If f is a function of type $\alpha \to \beta$ and T is a value of type α table with entries

$$\{(k_1, v_1), \ldots, (k_n, v_n)\},\$$

then map f T evaluates to $\{(k_1, fv_1), (k_2, fv_2), \dots, (k_n, fv_n)\}$. That is, it creates a new collection with the same keys by applying f on each value.

6.4.5 mapk: $(key \times \alpha \rightarrow \beta) \rightarrow \alpha \ table \rightarrow \beta \ table$

This function generalizes the map function. If f is a function of type $key \times \alpha \to \beta$ and T is a value of type α table with entries $\{(k_1, v_1), \ldots, (k_n, v_n)\}$, then mapk f T evaluates to $\{(k_1, f(k_1, v_1)), (k_2, f(k_2, v_2)), \ldots, (k_n, f(k_n, v_n))\}$.

6.4.6 tabulate: $(key \rightarrow \alpha) \rightarrow set \rightarrow \alpha \ table$

If f is a function of type $key \rightarrow \alpha$ and S is a value of type set with elements

$$\{k_1,\ldots,k_n\},\$$

then tabulate f S evaluates to $\{(k_1, fk_1), (k_2, fk_2), \dots, (k_n, fk_n)\}.$

6.4.7 domain: α table \rightarrow set

For a table T, the function domain T returns the domain of T as a set.

6.4.8 range: α table $\rightarrow \alpha$ seq

For a table T, the function range T returns the range of T as a sequence. In particular it is equivalent to $Seq.map (fn (k,v) \Rightarrow v) (toSeq T)$.

6.4.9 reduce: $(\alpha \times \alpha \to \alpha) \to \alpha \to \alpha \ table \to \alpha$

The function reduce f init T returns the same as Seq.reduce f init (range(T))

6.4.10 filter: $(key \times \alpha \rightarrow bool) \rightarrow \alpha \ table \rightarrow \alpha \ table$

If p is a predicate and T is an α table value, then filter p T evaluates to the collection T' of T such that $(k, v) \in T$ if and only if p evaluates to true on (k, v).

6.4.11 iter: $(\beta \times (key \times \alpha) \rightarrow \beta) \rightarrow \beta \rightarrow \alpha \ table \rightarrow \beta$

If f is a function, b is a value, and T is a table value, then iter f b s iterates f with left association on T on an implementation-specified ordering, using b as the base case. That is, iter f b T evaluates to

$$f(f(\ldots f(b,(k_{|T|},v_{|T|})),\ldots(k_2,v_2))),(k_1,v_1)),$$

where $(k_1, v_1), (k_2, v_2), \dots, (k_{|T|}, v_{|T|})$ are members of T listed in the order that the implementation chooses.

6.4.12 iterh: $(\beta \times (key \times \alpha) \rightarrow \beta) \rightarrow \beta \rightarrow \alpha \ table \rightarrow (\beta \ table \times \beta)$

If f is a function, b is a value, and T is a table value, then iterh f b s iterates f with left association on T on an implementation-specified ordering, using b as the base case. Unlike iter, iterh also stores intermediate results in a table. That is, if the implementation orders T as $(k_1, v_1), (k_2, v_2), \ldots, \ldots, (k_{|T|}, v_{|T|})$ and we let r_i denote the result of the partial evaluation up to the i-th pair (i.e., $r_i = f(f(\ldots f(b, (k_i, v_i)), \ldots (k_2, v_2))), (k_1, v_1))$, then iterh evaluates to the pair

$$(\{(k_i, r_i) : i = 1, \dots, |T|\}, r_{|T|}),$$

where $r_{|T|} = \text{iter f b T by definition.}$

6.4.13 find: α table \rightarrow key $\rightarrow \alpha$ option

If T is a table value and k is a key value, then find T k evaluates to SOME v provided that k is present in T and is associated with the value v; otherwise, it evaluates to NONE.

6.4.14 merge: $(\alpha \times \alpha \to \alpha) \to (\alpha \ table \times \alpha \ table) \to \alpha \ table$

merge is a generalization of set union in the following sense. If f is a function of type $\alpha \times \alpha \to \alpha$ and S and T are α tables, then merge f (S, T) evaluates a table with the following properties: (1) it contains all the keys from S and T and (2) for each key k, its associated value is inherited from either S or T if k is present in exactly one of them. But if k is present in both tables, i.e., $(k, v) \in S$ and $(k, w) \in T$, then the value is f(v, w).

6.4.15 mergeOpt: $(\alpha \times \alpha \to \alpha \ option) \to (\alpha \ table \times \alpha \ table) \to \alpha \ table$

mergeOpt further generalizes set union, allowing values to cancel out each other and eliminate the presence of a key in manner similar to set symmetric difference. If f is a function of type $\alpha \times \alpha \to \alpha$ option and S and T are α tables, then merge f (S, T) evaluates a table with the following properties: (1) it contains all the keys from S and T and (2) for each key k, its associated value is inherited from either S or T if k is present in exactly one of them. But if k is present in both tables, i.e., $(k, v) \in S$ and $(k, w) \in T$, then the following outcomes are possible: in the case that f(v, w) evaluates to NONE, the key k will not be present in the output table; otherwise, f(v, w) evaluates to SOME r and the key k will be associated with the value r.

6.4.16 extract: $\alpha \ table \times set \rightarrow \alpha \ table$

extract is a generalization of set intersection in the following sense. If T is an α table and S is a set, then extract (T,S) evaluates to $\{(k,v) \in T : k \in_m S\}$.

6.4.17 extractOpt: $(\alpha \times \beta \rightarrow \gamma \ option) \rightarrow \alpha \ table \times \beta \ table \rightarrow \gamma \ table$

extractOpt is a further generalization of set intersection. If f is a function $\alpha \times \beta \to \gamma$ option, T is an α table, and S is a β table, then extractOpt f (T,S) evaluates to $\{(k,w): (k,v) \in T, (k,v') \in S, \text{ and } w = f(v,v')\}$.

6.4.18 erase: α table \times set $\rightarrow \alpha$ table

This operation extends set difference. If T is an α table, and S is a set, then erase (T,S) evaluates to $\{(k,v) \in T : (k,v) \in T, k \notin_m S\}$.

6.4.19 insert: $(\alpha \times \alpha \to \alpha) \to (key \times \alpha) \to \alpha \ table \to \alpha \ table$

For a function f of type $\alpha \times \alpha \to \alpha$, a key-value pair (k, v), and a table T, insert f (k, v) T evaluates to $T \cup \{(k, v)\}$ provided that $k \not\in_m T$; otherwise, if $(k, v') \in T$, it evaluates to $(T \setminus \{(k, v')\}) \cup \{(k, f(v', v))\}$ (i.e., it replaces the value associated with k with the result of applying f on the old value v' and the new value v).

6.4.20 delete: $key \rightarrow \alpha \ table \rightarrow \alpha \ table$

If k is a value of type key and T is an α table, then delete k T evaluates to $\{(k', v') \in T : k' \neq k\}$.

6.4.21 from Seq: $(key \times \alpha)$ seq $\rightarrow \alpha$ table

If s is a $key \times \alpha$ sequence such that

$$s = \langle (k_1, v_1), (k_2, v_2), \dots (k_n, v_n) \rangle,$$

then from Seq s evaluates to $\{(k_1, v_1), (k_2, v_2), \dots (k_n, v_n)\}.$

6.4.22 to Seq: α table \rightarrow $(key \times \alpha)$ seq

If T is an α table representing $\{(k_1, v_1), (k_2, v_2), \dots (k_n, v_n)\}$, then toSeq T evaluates to $\langle (k_1, v_1), (k_2, v_2), \dots (k_n, v_n) \rangle$, where the ordering is determined by the implementation.

6.4.23 collect: $(key \times \alpha)$ seq $\rightarrow \alpha$ seq table

This function groups values of the same key together as a sequence of values that respects the original sequence ordering. Specifically, if **s** is a $key \times \alpha$ sequence representing $\langle (k_1, v_1), (k_2, v_2), \dots (k_n, v_n) \rangle$, then **collect s** evaluates to $\{(\ell_1, s_1), (\ell_2, s_2), \dots, (\ell_m, s_m)\}$, where the ℓ_i 's are unique keys belonging to $\{k_1, \dots, k_n\}$ and for $i \in [m]$, s_i is the sequence of values in s with the key ℓ_i (i.e., $s_i = \langle v_j : k_j = \ell_i \rangle$).