

DOCUMENT 365-83

WHITE SANDS MISSILE RANGE NEW MEXICO

RANGE REFERENCE ATMOSPHERE
0-70 KM ALTITUDE

AUGUST 1983

METEOROLOGY GROUP
RANGE COMMANDERS COUNCIL

WHITE SANDS MISSILE RANGE KWAJALEIN MISSILE RANGE YUMA PROVING GROUND

PACIFIC MISSILE TEST CENTER
NAVAL WEAPONS CENTER
ATLANTIC FLEET WEAPONS TRAINING FACILITY
NAVAL AIR TEST CENTER

EASTERN SPACE AND MISSILE CENTER
ARMAMENT DIVISION
WESTERN SPACE AND MISSILE CENTER
AIR FORCE SATELLITE CONTROL FACILITY
AIR FORCE FLIGHT TEST CENTER
AIR FORCE TACTICAL FIGHTER WEAPONS CENTER

83 08 14 009

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

REPORT DOCUMENTATION	READ INSTRUCTIONS		
1. REPORT NUMBER	2. GOV'T ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER	
Document 365-83	AD-A132471	· · ·	
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED	
"White Sands Missile Range, New	Mexico	THE STATE OF THE S	
Range Reference Atmosphere 0-70 Km Altitude"			
		6. PERFORMING ORG. REPORT NUMBER	
			
7. Author(s) Meteorology Group		8. CONTRACT OR GRANT NUMBER(#)	
Range Commanders Council			
White Sands Missile Range, NM 8			
9. PERFORMING ORGANIZATION NAME AND ADDR	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Same as Block 7		AREA & WORK UNIT NUMBERS	
Same as Brock /			
11. CONTROLLING OFFICE NAME AND ADDRESS Range Commanders Council		12. REPORT DATE	
ATTN: STEWS-SA-R		August 1983	
White Sands Missile Range, NM 8	13. NUMBER OF PAGES		
14. MONITORING AGENCY NAME & ADDRESS(II dille		15. SECURITY CLASS, (of this report)	
Same as Block 11		UNCLASSIFIED	
		15a. DECLASSIFICATION/DOWNGRADING	
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for Public Release; Di	stribution Unlimite	ed.	
,,			
17. DISTRIBUTION STATEMENT (of the abstract ente	red in Block 20, if different from	m Report)	
18. SUPPLEMENTARY NOTES			
Supersedes Document 104-63, "Wh	ite Sands Missile F	Range (Parts 1 and 2)."	
<u>AD45178</u> 1 and <u>AD782654</u> .		gc (
19. KEY WORDS (Continue on raverse side if necessar			
Range reference atmosphere, dat	a quality control,	coordinate system, computa-	
tion of statistical parameters,	Statistical wind m	nodels, orthogonal axes,	
thermodynamic quantities, data annual mean model atmospheres.	sampres, artitude l	ievels, derived monthly mean,	
umua mean moder aunospheres.			
20. ABSTRACT (Continue on reverse side if recessary	and identify by block number)		
FOREWORD ~ see attached.			

DOCUMENT 365-83

WHITE SANDS MISSILE RANGE, **NEW MEXICO**

RANGE REFERENCE ATMOSPHERE 0-70 KM ALTITUDE

August 1983

Prepared by

Range Reference Atmosphere Committee Meteorology Group Range Commanders Council

Accession For 1717 ST. 31 DT1 = T48 $D^{\epsilon}(0) \cap D^{\epsilon}(0) \cap C^{\epsilon}(0)$ Distribution Availability Codes Att 11 tud/or Dist | Theolal

Published by

Secretariat Range Commanders Council White Sands Missile Range, New Mexico 88002

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

TABLE OF CONTENTS

		PAGE
LIST OF ORGANIZATION ACRONYMS		٧
FOREWORD		vii
CHAPTER I. INTRODUCTION		1
A. Definition and Purpose of the RangeReference Atmosphere		1
and Arrangement of Tables		1 2 3
CHAPTER II. WIND STATISTICS AND MODELS		5
A. General Considerations		5
Statistical Parameters		. 8 10
to Any Orthogonal Axes		25
CHAPTER III. STATISTICS OF THERMODYNAMIC QUANTITIES AND MODELS		. 29
A. General Considerations	• (. 29
B. Establishing Data Samples at the Required Altitude Levels	• (32
C. Computation of Statistical Parameters for Tables II and III	• 6	. 36
D. Derived Monthly Mean and Annual Mean Model Atmospheres	• (. 39
E. Thermodynamic Quantities Derivable from the Basic Tables		. 40
CHAPTER IV. CONCLUSIONS AND RECOMMENDATIONS	•	. 47
REFERENCES		. 49
CONVERSION UNITS		. 53
APPENDIX A		. 109
APPENDIX B		177

LIST OF ORGANIZATION ACRONYMS

AD Armament Division

AFFTC Air Force Flight Test Center

AFSC Air Force Systems Command

AFSC/AFGL AFSC/Air Force Geophysics Laboratory

AFSC/SD AFSC/Space Division

AFSCF Air Force Satellite Control Facility

AFTFWC Air Force Tactical Fighter Weapons Center

AWS Air Weather Service

BMD Ballistic Missile Division

DOD Department of Defense

DOE Department of Energy

DOE/NTS DOE/Nevada Test Site

DPG Dugway Proving Ground

ESMC Eastern Space and Missile Center

ETR Eastern Test Range

KMR Kwajalein Missile Range

NASA National Aeronautics and Space Administration

NASA/MSFC NASA/Marshall Space Flight Center

NASA/WFC NASA/Wallops Flight Center

NOAA National Oceanic and Atmospheric Administration

NWC Naval Weapons Center

PMTC Pacific Missile Test Center

USA/DTC U.S. Army/Deseret Test Center

USAECOM U.S. Army Electronics Command

USAFETAC United States Air Force Environmental Technical

Applications Center

UTTR Utah Test and Training Range

WSMC Western Space and Missile Center

WSMR White Sands Missile Range

WTR Western Test Range

YPG Yuma Proving Ground

6585TG 6585th Test Group

TSCF Targeting Systems Characterization Facility

FOREWORD

Atmospheric parameters are essential to the research and development of missiles and aerospace vehicles. In the early 1960's, the need was recognized for realistic atmospheric models derived in a consistent manner for each of the several major test ranges. An atmospheric model derived from statistical data for a particular geographical location is referred to as a reference atmosphere.

The first Range Reference Atmosphere (RRA) was issued in 1963 by the Inter-Range Instrumentation Group (IRIG) for Cape Kennedy, Florida, and was followed by additional publications for several ranges up to 1974. Since that time, improved upper air data bases have become available from which to develop the RRA. These resulted from the extended period of records and from improvement in the upper air measuring program by rocketsondes for altitudes above the rawinsonde ceiling of 30 km. Revised and improved RRAs are justified for the following reasons:

- 1) Needs for more definitive statistical atmospheric models have arisen because of changes and advances in aerospace technology. The Space Transportation System (Space Shuttle) is one example.
- 2) Most ranges now have an extended and improved upper air data base from which to develop a more definitive RRA.
 - 3) There are requirements for RRAs for new ranges and range sites.
- 4) There have been scientific advances in understanding the upper atmospheric structure and physical relationships.
- 5) Advances in statistical modeling techniques have been made because of the general availability of high-speed electronic computers. These have led to the adoption of advanced concepts in atmospheric modeling.

For these reasons, the Range Reference Atmosphere Committee (RRAC) was tasked by the Range Commanders Council Meteorology Group (RCC MG) to establish new and improved RRAs. The purpose, scope, and objectives of this task are outlined in the following paragraphs.

Purpose: This committee, Task MG-1, establishes RRAs for the several ranges as provided by the RCC. An RRA is a model of the Earth's atmosphere over a geographical location of interest, for use by DOD and other U.S. Government range users. The RRA is used to provide planning data for evaluating environmental constraints for the particular configurations of environment-sensitive systems and components being developed or undergoing tests.

Scope: Using the best available upper atmosphere data base to include rawinsonde, rocketsonde and possibly other high-altitude data sources for the range location, the task is to establish a model of certain statistics for wind and thermodynamic quantities derived in a uniform manner and published in a standardized format.

Objectives: The wind statistics shall be, insofar as practical, modeled to be consistent with rigorous mathematical probability properties of the multivariate normal probability theory. The thermodynamic quantities statistics shall be, insofar as practical, modeled to be consistent with the hydrostatic equation, the equation of state, and the probability principles that are related through these physical equations. The document shall serve as an authoritative source of information and as an atmospheric model for a particular range. The first in the series of revised RRAs to be published is for Kwajalein Missile Range (KMR) (publication date December 1982). The altitude range required for KMR is 0 to 70 km. The order of priority for the subsequent publications is:

	<u>Range</u>	Altitude Range Required
١.	AFFTC/Edwards AFB, CA	$0 - 70 \text{ km}^{\alpha}$
2.	ESMC/Cape Canaveral AFS, FL	0 - 70 km
3.	WSMC/Vandenberg AFB, CA	$0 - 70 \text{ km}^{\alpha}$
4.	WSMR/White Sands, NM	0 - 70 km
5.	PMTC/Point Mugu, CA	0 - 70 km
6.	UTTR/Dugway (Michael AAF), UT	0 – $30~{ m km}^b$
7.	AD/Eglin AFB, FL	0 - 30 km
8.	ESMC/Ascension Island	0 - 70 km (Terminates at 66 km because of insufficient data)
9.	NASA/Wallops Flight Center, VA	0 - 70 km
10.	Taquac (Guam)	0 - 30 km
11.	PMTC/Barking Sands, HI	0 - 70 km

In keeping with the RCC's objective of standardization, the modeling techniques, basic text, and tabulation format are to be the same for all RRAs. These new and revised RRAs present not only the mean values of the thermodynamic quantities (pressure, temperature, virtual temperature, and density), but also include statistical measures for the dispersion (i.e., standard deviations and skewness coefficients). New quantities presented are water vapor pressure and dewpoint temperature. The statistical modeling for the wind is entirely new. The new approach uses the properties of the bivariate normal probability distribution function.

b. Consider augmenting data base from Ely or Salt Lake City.

a. Use rocketsonde data from PMTC/Point Mugu for altitudes above 30 km.

All final computations were performed by the United States Air Force Environmental Technical Applications Center (USAFETAC) in response to a task from Eastern Space and Missile Center (ESMC).

The text was prepared jointly by USAFETAC and the NASA/George C. Marshall Space Flight Center's Space Sciences Laboratory, Atmospheric Sciences Division. The editing and preparation of the draft manuscript were performed by the NASA/MSFC organization.

The cochairmen express their gratitude to all RRAC members and their respective colleagues who have made significant technical contributions to the establishment of these RRAs.

Special thanks are tendered to Lt. B. Novograd for his dilligence in forming the many computations and the development of the primary tables, I through IV. Special thanks goes to Lt. F. Wirsing for editing and formulating the equations for the derivable thermodynamic equations. These gentlemen performed this outstanding work under the direction of Major B. Lilius, USAFETAC.

Grateful acknowledgment goes to Mrs. Annette Tingle, NASA/MSFC, for editing the draft manuscript.

The RRAC consists of representatives from the U.S. Air Force, U.S. Army, National Aeronautics and Space Administration, U.S. Navy, and National Oceanic and Atmospheric Administration. The committee members for the RRA for the first publication are:

- G. G. Boire, WSMC
- O. H. Daniel, ESMC
- R. de Violini, PMTC
- F. G. Finger, NOAA/NWS
- E. E. Fisher, HQ AFSC
- B. R. Hixon, PMTC
- J. M. Hobbie, KMR
- E. J. Keppel, AD
- S. F. Kubinski, WSMR
- F. J. Schmidlin, NAS'/WFC
- O. E. Smith Cochairman, NASA/MSFC

Maj. B. W. Galusha Cochairman, USAF/ETAC

CHAPTER I. INTRODUCTION

A. Definition and Purpose of the Range Reference Atmosphere

A.1 Definition

A reference atmosphere is a statistical model of the Earth's atmosphere derived from upper air measurements over a particular geographical location. Hence, these Range Reference Atmospheres (RRAs) are atmospheric models developed by the Range Reference Atmosphere Committee (RRAC) in response to a task by the Range Commanders Council Meteorology Group (RCC MG) and published by the RCC Secretariat. The RCC MG, formerly called the Inter-Range Instrumentation Group/Meteorology Working Group (IRIG/MWG), published a series of RRAs during the period 1963 through 1974.

A.2 Purpose

A series of revised and expanded RRAs are to be published for locations of interest to the RCC. These publications are to serve as authoritative reference sources on certain upper air statistics and as atmospheric models for particular range sites. The technical usefulness of these documents for the ranges, range users, U.S. aerospace industries, and the scientific community is recognized because of the standardization of the development techniques and the presentation of the tabulations.

B. Scope of the Range Reference Atmosphere and Arrangement of Tables

8.1 Scope

The RRA contains tabulations for monthly and annual means, standard deviations, and skewness coefficients for windspeed, pressure, temperature, density, water vapor pressure, virtual temperature, and dewpoint temperature; the means and standard deviations for the zonal (U) and mericional (V) wind components; and the linear (product moment) correlation coefficient between the wind components. These statistical parameters are tabulated at the station elevation, at 1-km intervals from sea level to 30 km, and at 2-km intervals from 30 to 90 km. The wind statistics are given at approximately 10 m above the station elevations and at altitudes with respect to mean sea level thereafter. For those range sites without rocketsonde measurements, the RRAs terminate at 30 km altitude, or they are extended, if required, when rocketsonde data from a nearby launch site are available. There are four sets of tables for each of the 12 monthly reference periods and the annual reference period.

B.2 Arrangement of Tables

The statistical parameters for the RRA models are presented in four tables, as outlined in the following paragraphs.

Table I contains all the wind statistical parameters. This table gives the monthly and annual means and standard deviations of the U and V wind components and the linear (product moment) correlation coefficient between these two components; the mean, standard deviation and skewness coefficient of the windspeed; and the number of wind observations (sample size).

Table II contains the monthly and annual means, tandard deviations, and skewness values of pressure, temperature, and density, and the number of observations used for each of these thermodynamic quantities.

Table III contains the monthly and annual means, standard deviations and skewness values of the water vapor pressure, virtual temperature and dewpoint, and the number of observations for each of these moisture-related quantities. The statistical parameters for water vapor pressure and dewpoint terminate at 15 km altitude. Above 15 km the statistical parameters for virtual temperature are considered to be the same as those for temperature.

Table 1V contains the monthly and annual mean atmospheric models for the thermodynamic variables: pressure, virtual temperature, and density. This table is derived from the monthly and annual mean virtual temperature versus altitude (geometric) using the hydrostatic equation and the equation of state. Also presented is the geopotential height corresponding to the tabulated geometric altitudes.

The physical unit for all wind parameters is meters per second. The physical unit for pressure is millibars; for temperature and virtual temperature, degrees Kelvin; for density, grams per cubic meter; and for water vapor pressure, millibars. In all cases the skewness coefficient and the correlation coefficient between wind components are unitless. All reference to altitude is geometric altitude and is expressed in kilometers. All reference to height is geopotential height and has the unit geopotential meters or kilometers. All geometric altitudes and geopotential heights are with respect to mean sea level.

C. Data Quality Control Procedures

3

A small portion (less than 10 percent) of the soundings in the data base used to calculate the RRA tables contained erroneous data values. The soundings which contained these erroneous values were eliminated from the data base using the following procedures:

- 1) Soundings containing gaps in their height data greater than 200 mb were rejected. This step was taken because some soundings only contained height values at their "mandatory" pressure levels, which were occasionally missing, resulting in soundings with no height information at all.
- 2) An initial set of RRA statistics was computed using all the remaining soundings. This initial set of statistics was used to determine data limits for the temperature, pressure, U and V components of the wind, and the dewpoint (for the 0- to 30-km portion of the RRA) or the density (for the 30- to 90-km portion of the RRA). The lower (upper) data limits were set at the mean value for a specific parameter, minus (plus) six standard deviations of that quantity. One pair of data limits was computed for each of these parameters: month of the year and data level.

two components; the mean, standard deviation and skewness coefficient of the windspeed; and the number of wind observations (sample size).

Table II contains the monthly and annual manage standard deviations, and skewness values of pressure, temperature, and density, and the number of observations used for each of these thermodynamic quantities.

Table III contains the monthly and annual means, standard deviations and skewness values of the water vapor pressure, virtual temperature and dewpoint, and the number of observations for each of these moisture-related quantities. The statistical parameters for water vapor pressure and dewpoint terminate at 15 km altitude. Above 15 km the statistical parameters for virtual temperature are considered to be the same as those for temperature.

Table IV contains the monthly and annual mean atmospheric models for the thermodynamic variables: pressure, virtual temperature, and density. This table is derived from the monthly and annual mean virtual temperature versus altitude (geometric) using the hydrostatic equation and the equation of state. Also presented is the geopotential height corresponding to the tabulated geometric altitudes.

The physical unit for all wind parameters is meters per second. The physical unit for pressure is millibars; for temperature and virtual temperature, degrees Kelvin; for density, grams per cubic meter; and for water vapor pressure, millibars. In all cases the skewness coefficient and the correlation coefficient between wind components are unitless. All reference to altitude is geometric altitude and is expressed in kilometers. All reference to height is geopotential height and has the unit geopotential meters or kilometers. All geometric altitudes and geopotential heights are with respect to mean sea level.

C. Data Quality Control Procedures

A small portion (less than 10 percent) of the soundings in the data base used to calculate the RRA tables contained erroneous data values. The soundings which contained these erroneous values were eliminated from the data base using the following procedures:

- 1) Soundings containing gaps in their height data greater than 200 mb were rejected. This step was taken because some soundings only contained height values at their "mandatory" pressure levels, which were occasionally missing, resulting in soundings with no height information at all.
- 2) An initial set of RRA statistics was computed using all the remaining soundings. This initial set of statistics was used to determine data limits for the temperature, pressure, U and V components of the wind, and the dewpoint (for the 0- to 30-km portion of the RRA) or the density (for the 30- to 90-km portion of the RRA). The lower (upper) data limits were set at the mean value for a specific parameter, minus (plus) six standard deviations of that quantity. One pair of data limits was computed for each of these parameters: month of the year and data level.

- 3) This initial set of data limits was then used to screen the data base. All the soundings that contained values outside these data limits were rejected. A new RRA was then computed using the screened data base. This second RRA was used to generate a second set of data limits.
- 4) The second set of data limits was then used to screen the data base further. A new RRA was again generated. The skewness values in this RRA were then evaluated, according to empirical criteria specified in section II.A.3 of this document for the winds, and according to criteria in section III.A.3 for the thermodynamic quantities. If these criteria were satisfied, the new RRA was then used to generate a final set of data limits, which were used to control the quality of the data base for the final version of the RRA.
- 5) Occasionally, the third RRA that was generated did not satisfy all of the skewness criteria. This indicated that some incorrect values were still present in the data base. To complete quality control, steps 3 and 4 were repeated for additional iterations (usually one or two) until the resulting RRA satisfied the skewness criteria. At that point, a final set of data limits was generated. This final set of data limits was then used to control the quality of the data base and generate the final RRA.

D. Organization of the Chapters

Because there are plans to publish a series of RRAs, comments on the special organization of the document are in order. The RRA document is arranged in four chapters. Chapter I is the introduction. Chapter II, Wind Statistics and Models, contains the techniques used to arrive at the wind statistical parameters, table I, and the probability functions that are to be used as wind models to derive several wind statistics. Chapter III, Statistics of Thermodynamic Quantities and Models, contains the techniques used to arrive at the thermodynamic and moisture-related statistical parameters given in tables II and III and the atmospheric thermodynamic model presented in table IV. This chapter also contains sets of equations to calculate several atmospheric properties. Chapter IV contains the general conclusions and recommendations. These four chapters are reprinted without change for each documented RRA to assure consistency and for expediency in preparing the documentation. To account for variations particular to a specific RRA, two appendixes have been included. Appendix A, Examples of Wind Statistics, is designed to give a few illustrative examples of wind statistics for the specific RRA and cursory observations, comparisons, or comments on wind statistics. Appendix B, Range Specific Information, is designed to present specific information particular to the range, such as geographical location, data base, etc., and any cursory observations or comments on the thermodynamic quantities.

Read these appendixes! They are located as the last two units in the document because they may vary in length depending on the circumstances. Appendixes A and B and tables I, II, III, and IV are the only differences among the RRA documents published in this new RRA series.

CHAPTER II. WIND STATISTICS AND MODELS

A. General Considerations

A.1. Objectives

An objective of the RRA is to furnish minimum tabulation for the wind statistics. To meet this objective, the bivariate normal probability distribution was adopted as a statistical model for the wind treated as a vector quantity at the RRA data levels. Only five statistical parameters are required to completely describe this probability function. In Cartesian coordinates these parameters are the means and standard deviations of the two orthogonal components and the correlation coefficient between the two components. These five statistical parameters for the U and V (meteorological coordinates) components are given in table I. The statistical properties of the bivariate normal probability distribution are used to derive many wind statistics that are of interest to the ranges and range users. This procedure produces consistent wind statistics that are connected through rigorous mathematical probability functions. By using these functions, extensive tabulations of wind statistics are avoided.

The statistical properties of the bivariate normal probability distribution presented for the vector wind statistical model are:

- 1) the wind components are univariate normally distributed.
- 2) The conditional distribution of one component given a value of the other component is univariate normally distributed.
 - 3) The windspeed is of the form of a generalized Rayleigh distribution.
 - 4) The frequency distribution of wind direction can be derived.
- 5) The conditional distribution of windspeed given a value of wind direction (wind rose) can be derived.
- 6) The five tabulated wind statistical parameters with respect to the meteorological U and V coordinate system can be derived for any arbitrary rotation of the orthogonal axes.

The probability distribution functions and sets of equations to derive wind statistics for the previously stated properties of the vector wind model are presented in this chapter. Symbols used are summarized in table A. Illustrative examples are presented in appendix A. No attempt is made to give the derivation of the probability functions. The reader is referred to Smith (1976) for some derivations and several applications of the probability distribution properties for wind statistics.

A.2. Data Quality Control

The U and V components of the wind were used to generate data limits set at plus and minus six standard deviations from the mean for each of the

TABLE A. LIST OF SYMBOLS USED IN CHAPTER II

- N The number of wind measurements in table I
- r A general variable for the bivariate normal probability distribution in polar coordinates
- R A generalized Rayleigh variable used for derived windspeed probability distribution
- R (U, V) The linear (product moment) correlation coefficient between the zonal and meridional wind components in table I
- SK (W) Skewness parameter for windspeed in table I
- S (U) The standard deviation of the zonal wind component in table I
- S(V) The standard deviation of the meridional wind component in table I
- S (W) The standard deviation of windspeed in table I
- t A standardized normal variate used in text table B
- U The zonal wind component
- UBAR The mean value of the zonal wind component in table I
- V The meridional wind component
- VBAR The mean value of the meridional wind component in table I
- W Windspeed or modulus of wind vector, a scalar quantity
- WBAR The mean value of windspeed in table I
- X A general component variable or coordinate axis
- Y A general component variable or coordinate axis
- \bar{X} A general component mean value in the (x,y) coordinate system
- \overline{Y} A general component mean value in the $\{x,y\}$ coordinate system
- α (alpha) Rotation angle for the [x,y] coordinate system

TABLE A. (concluded)

- θ (theta) Wind direction in the polar coordinate system
- $\lambda_{(\)}$ (Lambda) A parameter in the bivariate normal probability distribution in text table C
- ξ (Xi) The mean value in the standardized normal probability distribution used in text table B
- π (Pi) Constant = 3.14159 ...

Þ.

R)

- ρ (Rho) The general linear correlation coefficient between the two component variables in the [x,y] coordinate system
- σ_{x} , σ_{y} The general standard deviations of the x and y component variables in the [x,y] coordinate system.

quantities. These data limits were used to screen the wind data base, as described in section I.C. The data base was considered to be free from errors under the following conditions:

- 1) The skewness of the windspeed was below 4.0 at data levels where the mean windspeed was less than 15 m/s, and
- 2) The skewness of the windspeed was below 2.5 at data levels where the mean windspeed was greater than 15 m/s.

A.3 Limitations

For the wind statistics, the correlation coefficients for like wind components and unlike wind components between altitude levels were not computed. Therefore, wind statistics with respect to altitude (profile) cannot be derived from the RRA statistics. For wind profile modeling techniques the user is referred to Smith (1976). However, the wind statistics at discrete altitudes are valid; all of the probability distribution functions given in chapter II can be derived from the five wind component statistical parameters contained in table I, and the derived distributions can be considered as wind models at discrete altitudes.

By convention, in the statistical literature Greek letters are used for population or theoretically known parameters, and sample estimates are denoted by English alphabetical letters or with a "hat" (^) over the Greek letters. In chapter II Greek letters are used for the variances and the linear correlation coefficient, and the means are denoted by \overline{X} and \overline{Y} when dealing with the bivariate normal distribution. It will always be understood that table I contains sample estimates of the statistical parameters and they are with respect to the meteorological U and V coordinate system.

B. Coordinate System and Computation of Statistical Parameters

B.1. Coordinate System

Ì

Wind measurements are recorded in terms of magnitude and direction. The wind direction is measured in degrees clockwise from true north and is the direction from which the wind is blowing. The wind magnitude (the modulus of the vector) is the scalar quantity and is referred to as windspeed or scalar wind. A statistical description that accounts for the wind as a vector quantity is appropriate and requires a coordinate system.

For the RRA the standard meteorological coordinate system has been chosen for the wind statistics, all tables of statistical parameters, and related discussions because the coordinate system used in aerospace and related applied fields has not always been consistent.

Using figure 1, the polar and Cartesian forms for the meteorological coordinate system are defined:

- W = windspeed, scalar wind, or magnitude of the wind vector in meters per second.
- θ = wind direction. θ is measured in degrees clockwise from true north and is the direction from which the wind is blowing.
- U = zonal wind component, positive west to east, in meters per second.
- V = meridional wind component, positive south to north, in meters per second.

The components θ and W define the polar form, and the U-V components define the Cartesian forms:

$$U = -W \sin\theta , \quad 0 \le \theta \le 360^{\circ}$$
 (1)

$$V = -W \cos\theta. \tag{2}$$

Figure 1. The meteorological coordinate system.

It is helpful to note the difference between the mathematical convention for a vector direction and the meteorological convention for wind direction:

$$\theta \text{ met} = 270 - \theta \text{ math} \tag{3}$$

when $0 \le \theta$ math $\le 270^{\circ}$

$$\theta$$
 met = 360 + (270 - θ math)

when 270 < 6 math < 360°

B.2 Computation of Statistical Parameters

The wind statistical parameters in table I for the means and standard deviations of the U and V wind components and windspeed and the skewness parameter of windspeed were computed using the sums technique presented in chapter III.C.3. In addition, the linear (product moment) correlation coefficient between the U and V wind components, r (u,v) in table I, was computed. This correlation coefficient is defined as

$$\mathbf{r} (u,v) = \frac{\sum_{i=1}^{n} (U_{i} - \overline{U}) (V_{i} - \overline{V})}{N s(u) \cdot s(v)} . \tag{4}$$

These statistical parameters are with respect to the Standard Meteorological Coordinate System.

C. Statistical Wind Models

C.1. Wind Component Statistics

The univariate normal (Gaussian) probability distribution function is used to obtain wind component statistics. In generalized notations, this probability density function (pdf) is

$$f(t) = \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}}, \qquad (5)$$

where t = X - ε/σ_X is the standardized variate, with ε defining the mean and σ_X the standard deviation. The probability distribution function (PDF) is

$$F(X) = \int_{-\infty}^{X} f(t) dt . \qquad (6)$$

Because this integral cannot be obtained in closed form, it is widely tabulated for zero mean and unit standard deviation. For a convenient reference for the RRA, selected values of F(X) are given in table B. To emphasize the connotation of probability, F(X) is shown in table B as $P\left\{X\right\}$. The t values in table B are used as multiplier factors to the standard deviation to express the probability that a normally distributed variable, X, is less than or equal to a given value as

$$P\{X \leq \text{mean} + t \sigma_X\} = \text{probability, p}$$
 (7)

For example, when t=1.6449, the probability that X is less than or equal to the mean plus 1.6449 standard deviations is 0.95. That value of X that is less than or equal to the mean plus 1.6449 standard deviations is called the 95th percentile value of X. Also given in table B are the numerical values to express the probability that X falls in the interval X_1 and X_2 ; i.e.,

$$P\{X_1 \leq X \leq X_2\} = Interpercentile Range,$$
 (8)

where

$$X_1 = \bar{X} - t \phi_X$$

$$X_2 = \bar{X} + t \phi_X$$

For t = 1.9602 the probability that X lies in the interval X_1 and X_2 is 0.95. The values of X_1 and X_2 in this example comprise the 95th interpercentile range.

For a normally distributed variable, the mode (most frequent value) and the median (50th percentile value) are the same as the mean value. The means and standard deviations of the U and V wind components from table 1 are used in equations (7) and (8) to compute the percentile values and interpercentile ranges of the U and V wind components. When equation (7) is illustrated on a normal probability graph, a straight line is formed.

C.2. The Vector Wind Model

Because wind is a vector quantity having direction and magnitude that can be expressed as two components in an orthogonal coordinate system, a probability model that describes the joint relationship is the bivariate normal probability distribution. In general component notation, the bivariate normal probability density function (BNpdf) is

TABLE B. VALUES OF t FOR STANDARDIZED NORMAL (UNIVARIATE) DISTRIBUTION FOR PERCENTILES AND INTERPERCENTILE RANGES

t	P(X)	ND INTERPERCENTILE RANGES $P\{X_1 \leq X \leq X_2\} \ (\mathbb{C}_c)$
	P(X)	7 1 (71 - 73 72) (72)
-3.0000	0.00135	ξ - 3.0000 σ
-2.5758	0.00500	ξ - 2.5758 σ
-2.3263	0.01000	ξ - 2.3263 σ
-2.2365	0.01266	ξ - 2.2365 σ
-2.0000	0.02275	ξ - 2.0000 σ
-1.9602	0.02500	ξ - 1.9602 σ
-1.6449	0.05000	ξ - 1.6449 σ
-1.2816	0.10000	ξ - 1.2816 σ
-1.0000	0.15866	ξ - 1.0000 σ
-0.8416	0.20000	$\xi = 0.8416 \ \sigma$ \bigcirc
-0.6745	0.25000	
-0.2533	0.40000	(80) (50) (10) (100) (100) (100) (100) (100) (100) (100)
0.0000	0. 50000	
0.2533	0.60000	ξ + 0.2533 σ
0.6745	0.75000	$\xi + 0.6745 \sigma$
0.8116	0.80000	ξ + 0.8614 σ
1.0000	0.84134	ξ + 1.0000 σ
1.2816	0.90000	ξ +1.2816 σ
1.6449	0.95000	ξ + 1.6449 σ
1.9602	0.97502	ξ +1.9602 σ
2.0000	0.97725	ξ + 2.0000 σ
2. 2365	0.98734	ξ +2.2365 σ
2. 3263	0.99000	ξ + 2.3263 σ
2.5758	0.99500	ξ + 2.5758 σ
3.0000	0.99865	ξ 3.0000 σ
		where $X_1 = \xi - t\sigma$
		and $X_2 = \xi + t\sigma$

$$f(X,Y) = \frac{1}{2\pi\sigma_{X}\sigma_{y}} \sqrt{1-\rho^{2}} \left[\exp \frac{-1}{2(1-\rho^{2})} \left\{ \frac{(X-\bar{X})^{2}}{\sigma_{X}^{2}} - \frac{2\rho(X-\bar{X})(Y-\bar{Y})}{\sigma_{X}\sigma_{y}} + \frac{(Y-\bar{Y})^{2}}{\sigma_{y}^{2}} \right\} \right] - \infty \leq X \leq \infty \text{ and}$$

$$-\infty \leq Y \leq \infty , \qquad (9)$$

where the five parameters are $\overline{x}, \overline{y}$, the component means; σ_x , σ_y , the component standard deviations; and ρ , the correlation coefficient between the two component variables, X and Y.

For many applications the interest is in determining the probability that a point $\{X,Y\}$ will fall within a contour of equal probability density. The exponential terms of equation (9), when set equal to a constant, λ^2 , give a family of ellipses depending on the value of the constant. The ellipses have a common center at the point $\{\overline{X},\overline{Y}\}$. Integration of equation (9) over the region bounded by the contours of equal probability density gives

$$P(\lambda) = 1 - e^{\frac{-\lambda^2}{2(1 - \rho^2)}} . (10)$$

Solving for λ^2 and replacing $P(\lambda)$ by p gives

$$\lambda^2 = -2 (1 - \rho^2) \ln (1 - p)$$
 . (11)

Now define

$$\lambda_{e} = \sqrt{2} \sqrt{-\ln (1-p)} \qquad . \tag{12}$$

For ready reference and comparisons, $\lambda_{\mathbf{e}}$ is shown in table : for selected values of p.

TABLE C. VALUES OF λ FOR BIVARIATE NORMAL DISBRIBUTION ELLIPSES AND CIRCLES

P(%)	λ _e (ellipse)	λ _c (circle)	P(%)	λ _e (ellispe)	λ _C (circle)
0.000	0.0000	0.0000	65.000	1.4490	1.0246
5.000	0.3203	0 .22 65	68.268	1.5151	1,0713
10.000	0.4590	0 .324 6	70.000	1.5518	1.0973
15.000	0.5701	0.4031	75.000	1.6651	1.1774
20.000	0.6680	0.4723	80.000	1.7941	1.2686
25.000	0.7585	0.5363	85.000	1.9479	1.3774
30.000	0.8446	0.5972	86.466	2.0000	1.4142
35.000	0.9282	0.6563	90.000	2.1460	1.5175
39.347	1.0000	0.7071	95.000	2.4477	1.7308
40,000	1.0108	0.7147	95.450	2.4860	1,7579
45.000	1,0935	0.7732	98.000	2.7971	1.9778
50.000	1.1774	0.8325	98.168	2.8284	2.0000
54.406	1.2533	0.8862	98.889	3.0000	2. 1213
55.000	1,2637	0.8936	99.000	3.0348	2,1460
60.000	1.3537	0.9572	99.730	3.4393	2.4320
63.212	1.4142	1.0000	99.9877	4.2426	3.0000

$$\lambda_{c} = \sqrt{2} \sqrt{-\ln (1 - P)}$$

$$\lambda_{c} = \sqrt{-\ln(1-P)}$$

The probability ellipse that contains p-percent of the wind vectors expressed in the most general form is the conic defined by

$$AX^2 + BXY + CY^2 + DX + EY + F = 0$$
, (13)

where

$$A = \sigma_y^2$$

$$\mathbf{B} = -2\rho\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}$$

$$C = \sigma_x^2$$

$$D = 2\sigma_{\mathbf{x}}\sigma_{\mathbf{y}} \rho \overline{\mathbf{Y}} - 2\sigma_{\mathbf{y}}^{2} \overline{\mathbf{X}} = -(\mathbf{B} \overline{\mathbf{Y}} + 2\mathbf{A} \overline{\mathbf{X}})$$

$$E = 2\sigma_{X}\sigma_{Y} \in \overline{X} - 2\sigma_{X}^{2}\overline{Y} = -(B\overline{X} + 2C\overline{Y})$$

$$F = A\overline{X}^2 + C\overline{Y}^2 + B\overline{X}\overline{Y} - AC (1 - \rho^2) \lambda_e^2$$

and

$$\lambda_{\rho} = \sqrt{2} \sqrt{-\ln (1 - \rho)} .$$

for graphical presentations, the range of the variable is important in order to arrange the scale. The largest and smallest values of X and Y for a given probability ellipse, p, are given by

$$X_{L,S} = \overline{X} \pm \sigma_{X} \lambda_{e}$$
 (14)

$$Y_{L,S} = \overline{Y} \pm \sigma_{y}^{\lambda} e$$
 , (15)

where, as, before, $\lambda_p = \sqrt{2} \sqrt{-\ln (1-p)}$.

Although there are several approaches to graphing the probability ellipses, the following procedure is advantageous for electronic computer plotting. In establishing the computer plotting program, the sample estimates for $\overline{X}, \overline{Y}, \sigma_{\bullet}$.

ability ellipses desired. Thus, p in equation (12) is programmed as a parameter. The largest and smallest values for X and Y are computed by equations (14) and (15) for the largest probability ellipse selected. This sets the graphical scale. Values of X within the range of "X smallest" to "X largest" are obtained by incrementing X between these limits. Using the quadratic equation, a solution for Y of equation (13) is made and plotted for each value of X. The centroid $(\overline{X}, \overline{Y})$ for the family of probability ellipses is plotted as a point. Labeling and other identification complete the plotting program.

For a given probability, equation (13) defines an ellipse that contains p-percent of the points X,Y. Since the entire area under the bivariate normal density function [equation (9)] is unity, upon integration for a given probability ellipse, that given ellipse contains p-percent of the total area. In the wind statistics, p-percent of the wind vectors fall within the specified probability ellipse. From this point of view, a specified probability ellipse gives the joint probability that p-percent of the U-V components lie within the given ellipse.

When $\sigma_{\chi}^{2} = \sigma_{y}^{2} = \sigma^{2}$ and $\rho = 0$ in the bivariate normal distribution, the probability ellipses of equation (13) reduce to circles whose centers are at the means \overline{X} , \overline{Y} . The radii of the probability circles are $\sigma_{V1}\lambda_{c}$, where

$$c_{V1} = \sqrt{2\sigma^2} \tag{16}$$

and

$$\lambda_{e} = \sqrt{-\ln (1 - p)} \qquad . \tag{17}$$

Values for $\lambda_{\rm c}$ for selected probabilities, p, are given in table C.

Because this function is simple, it can easily be graphed manually. However, the generalized plotting technique for electronic computer plotters, as represented by equation (13), can be advantageously used.

C.3. Derived Distributions for Wind Statistics

In this subsection the probability distribution functions and sets of equations are presented to derive certain probability distribution functions for wind statistics. These derived probability distributions are:

- 1) The conditional distribution of wind components
- 2) The generalized Rayleigh distribution for windspeed
- 3) The distribution for wind direction
- 4) The conditional distribution of windspeed given a wind direction (wind rose).

The required five statistical parameters for these derived distributions for wind statistics are given in table I.

C.3.1 The Conditional Distribution of Wind Components

Given that two random variables X and Y are bivariate normally distributed, the conditional distribution f(Y|X) is read as f(Y) given X, and likewise f(X|Y) is read as f(X) given Y. The conditional probability distribution function F(Y|X) has the mean E(Y|X) and variance $\sigma^2(x|y)$, where

$$\mathbf{E}(\mathbf{Y} \mid \mathbf{X}^*) = \overline{\mathbf{Y}} + \rho \left(\frac{\sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}}\right) (\mathbf{X}^* - \overline{\mathbf{X}})$$
 (18)

and

$$\sigma^2(y|x^*) = \sigma_y^2 (1 - \rho^2)$$
 (19)

The conditional standard deviation is

$$\sigma_{(y|x^*)} = \sigma_y \sqrt{1 - \rho^2} \quad . \tag{20}$$

By interchanging the variables and parameters, the conditional distribution function for $F(X|Y^*)$ has the conditional mean

$$E(X|Y^*) = \overline{X} + \rho \left(\frac{\sigma_X}{\sigma_y}\right) (Y^* - \overline{Y}) , \qquad (21)$$

conditional variance

$$\sigma^2(x|y^*) = \sigma_x^2 (1 - \rho^2)$$
 (22)

and conditional standard deviation

$$\sigma_{(\mathbf{x}|\mathbf{y}^*)} = \sigma_{\mathbf{x}} \sqrt{1 - \rho^2} \quad . \tag{23}$$

The preceding conditional probability distribution functions are univariate normal distributions for a (fixed) given value for one of the bivariate normal variables. Thus, the t-values given in table 8 are applicable for conditional probability statements. For example,

$$F(Y|X^*) = E(Y|X^*) + i\sigma_{(Y|X^*)}$$
 (24)

For t = 1.6449 there is a 95 percent chance that Y is less than or equal to \overline{Y} + 1.6849 $\sigma_{(y|x^*)}$ given that X = X*. In symbols this statement reads

$$P\left\{Y \leq E(Y|X^*) + 1.6449 \sigma_{(y|X^*)} | X = X^*\right\} = 0.9500$$
 (25)

Interval probability statements can also be made; namely,

$$P\left\{Y_{1} = E(Y|X^{*}) - t\sigma_{(y|X^{*})} \leq Y \leq Y_{2} = E(Y|X^{*}) + t\sigma_{y} \mid X = X^{*}\right\}$$

where X* can take on any fixed value of X, but a convenient arrangement is to let X* = $\overline{X} \pm t \epsilon_{\chi}$.

The close connection of the regression function of Y on X to the conditional mean for the bivariate normal distribution is noted: n_{emely} ,

$$Y = \overline{Y} + \rho \left(\frac{\sigma_{y}}{\sigma_{x}}\right) (X - \overline{X}) \qquad (26)$$

Similarly, the regression function of X on Y is

$$\mathbf{X} = \overline{\mathbf{X}} + \rho \left(\frac{\sigma_{\mathbf{Y}}}{\sigma_{\mathbf{X}}} \right) (\mathbf{Y} - \overline{\mathbf{Y}}) \qquad (27)$$

These are linear functions and express the same results as would be obtained from a least-squares regression line.

C.3.2. The Generalized Rayleigh Distribution for Windspeed

If two random variables, X and Y, are bivariate normally distributed, then the probability distribution for the modulus, R, can be derived in terms of the five parameters that define the bivariate normal distribution.

$$R = \sqrt{X^2 + Y^2} \tag{28}$$

The distribution of R so derived is called a generalized Rayleigh distribution because there are no restrictions on the parameters. For applications to the RRA, the variable R is recognized as windspeed or the modulus of the wind vector.

The probability density function for R is expressed as

$$f(R) = a_0 R e^{-a_1 R^2} \left[I_0(a_2 R^2) I_0(a_3 R) + 2 \sum_{k=1}^{\infty} I_k(a_2 R^2) I_{2k}(a_3 R) \cos 2k \psi \right] R \ge 0 .$$
 (29)

The functions, $I_0(\cdot)$, $I_k(\cdot)$, and $I_{2k}(\cdot)$ are the modified Bessel functions of the first kind for zero order, kth order, and 2kth order. The coefficients are

$$\mathbf{a_0} = \exp \left[-\frac{1}{2} \left\{ \frac{\bar{\mathbf{x}}^2}{\sigma_{\mathbf{a}}^2} + \frac{\bar{\mathbf{y}}^2}{\sigma_{\mathbf{b}}^2} \right\} \right] / \sigma_{\mathbf{a}} \sigma_{\mathbf{b}} \quad .$$

where σ_a^2 and σ_b^2 are the rotated variances to produce zero correlation between X and Y. σ_a and σ_b are the positive and negative roots 1 of the expression

$$\sigma^{2}_{(+,-)} = \frac{1}{2} \left\{ \sigma_{\mathbf{x}}^{2} + \sigma_{\mathbf{y}}^{2} \pm \left[(\sigma_{\mathbf{x}}^{2} + \sigma_{\mathbf{y}}^{2})^{2} - 4\sigma_{\mathbf{x}}^{2} \sigma_{\mathbf{y}}^{2} (1 - \rho^{2}) \right]^{1/2} \right\}$$

$$a_{1} = (\sigma_{\mathbf{x}}^{2} + \sigma_{\mathbf{y}}^{2})/4(1 - \rho^{2}) \sigma_{\mathbf{x}}^{2} \sigma_{\mathbf{y}}^{2} ,$$

$$a_{2} = \frac{\left[\left(\sigma_{x}^{2} - \sigma_{y}^{2}\right)^{2} + 4\rho^{2}\sigma_{x}^{2}\sigma_{y}^{2}\right]^{1/2}}{4(1 - \rho^{2}) \sigma_{x}^{2}\sigma_{y}^{2}}$$

$$a_3 = \left[\left(\frac{\overline{X}}{\sigma_a^2} \right)^2 + \left(\frac{\overline{Y}}{\sigma_b^2} \right)^2 \right]^{1/2} ,$$

1. This computational form is obtained from the determinant

$$\begin{vmatrix} \sigma_{\mathbf{x}}^{2} - \mathbf{K} & \sigma_{\mathbf{x}}^{2} \sigma_{\mathbf{y}}^{2} \\ \sigma_{\mathbf{x}}^{2} \sigma_{\mathbf{y}}^{2} & \sigma_{\mathbf{y}}^{2} - \mathbf{K} \end{vmatrix},$$

where K is $\sigma^2_{(+,-)}$, and σ_a and σ_b are analogous to the standard deviation of the major and minor axes of the bivariate normal probability ellipse.

and

$$\tan \psi = \frac{\overline{Y}}{\overline{X}} \frac{\sigma_a^2}{\sigma_b^2} .$$

Since this density function cannot be integrated in closed form from zero to R, numerical integration is used to obtain practical results for the probability distribution function; i.e.,

$$F(R) = \int_{0}^{R \cdot \Phi} f(R) dR \qquad . \tag{30}$$

A number of special cases can be obtained from the general Rayleigh distribution [equation (29)], the simplest of which is to let $\sigma_x \equiv \sigma_y = \sigma$ and $\overline{X} = \overline{Y} = 0$ with independent variables X and Y. This gives

$$f(R) = \frac{R}{\sigma^2} e^{-R^2/2\sigma^2}$$
, (31)

which is recognized as the classical Rayleigh probability density function. The density function, equation (31), can be integrated in closed form over any range of the variable R. Hence, the probability distribution function, F(R), for equation (31) is

$$F(R) = 1 - \exp\left\{\frac{-R^2}{2\sigma^2}\right\}$$
 (32)

C.3.3. The Derived Distribution of Wind Direction

Considering the wind as a vector quantity and bivariate normally distributed, the wind direction can be derived. This is done by first writing the bivariate normal probability density function in polar coordinates whose variables are

$$\mathbf{g}(\mathbf{r},\theta) = \mathbf{rd}_{1}\mathbf{e}^{\frac{1}{2}(\mathbf{a}^{2}\mathbf{r}^{2} - 2\mathbf{b}\mathbf{r} + \mathbf{c}^{2})},$$
(see footnote 2)

where

$$a^{2} = \frac{1}{(1 - \rho^{2})} \left[\frac{\sin^{2}\theta}{\sigma_{x}^{2}} - \frac{2\rho \cos\theta \sin\theta}{\sigma_{x}\sigma_{y}} + \frac{\cos^{2}\theta}{\sigma_{y}^{2}} \right]$$

$$b = \frac{-1}{(1 - \rho^{2})} \left[\frac{\overline{x} \sin\theta}{\sigma_{x}^{2}} - \frac{\rho(\overline{x} \cos\theta + \overline{y} \sin\theta)}{\sigma_{x}\sigma_{y}} + \frac{\overline{y} \cos\theta}{\sigma_{y}^{2}} \right]$$

$$c^{2} = \frac{1}{(1 - \rho^{2})} \left[\frac{\overline{x}^{2}}{\sigma_{x}^{2}} - \frac{2\rho\overline{x}\overline{y}}{\sigma_{x}\sigma_{y}} + \frac{\overline{y}^{2}}{\sigma_{y}^{2}} \right]$$

$$d_{1} = \frac{1}{2\pi\sigma_{x}\sigma_{y}} \sqrt{1 - \rho^{2}}$$

 $r=\sqrt{x^2+y^2}$ is the modulus of the vector or speed, and θ is the direction of the vector. After integrating $g(r,\theta)$ over r=0 to ∞ , the probability density function of θ is

$$\mathbf{g}(\theta) = \frac{d_1}{\mathbf{a}^2} \ \mathbf{e}^{-\frac{1}{2} c^2} \left[1 + \sqrt{2\pi} \left(\frac{\mathbf{b}}{\mathbf{a}} \right) \mathbf{e}^{\frac{1}{2} \left(\frac{\mathbf{b}}{\mathbf{a}} \right)^2} \quad \phi \left(\frac{\mathbf{b}}{\mathbf{a}} \right) \right] \quad , \tag{34}$$

^{2.} This expression, equation (33), in Smith (1976) is given with respect to the mathematical convention for a vector direction.

where a^2 , b, c^2 , and d_1 are as previously defined in equation (33) and

$$\phi\left(\frac{b}{a}\right) = \phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$$

is taken from tables of normal distribution functions or made available through a computer subroutine.

If desired, equation (34) can be integrated numerically over a chosen range of θ to obtain the probability that the vector direction will lie within the chosen range; i.e.,

$$F(\theta) = \int_{\theta_2}^{\theta_1} g(\theta) d\theta . \qquad (35)$$

One application may be to obtain the probability that the wind will flow from a given quadrant or sector as, for example, onshore.

C.3.4. The Derived Conditional Distribution of Windspeed Given the Wind Direction (Wind Rose)

Continuing with the considerations in section C.3.3. of this chapter, the conditional probability density function (pdf) for windspeed, r, given a specified value for the wind direction, θ , can be expressed as

$$f(\mathbf{r} \mid \theta) = \frac{\mathbf{a}^2 \mathbf{r} e^{-\frac{1}{2} (\mathbf{a}^2 \mathbf{r}^2 - \mathbf{b}\mathbf{r})}}{1 + \sqrt{2\pi} \left(\frac{\mathbf{b}}{\mathbf{a}}\right) e^{\frac{1}{2} \left(\frac{\mathbf{b}}{\mathbf{a}}\right)^2} \Phi \left\{\frac{\mathbf{b}}{\mathbf{a}}\right\}},$$
 (36)

where the coefficients, <u>a</u> and <u>b</u> and the function $\phi\left\{\frac{b}{a}\right\}$ are as previously defined in equation (33) and in equation (34).

From equation (36) the mode (most frequent value) of the conditional windspeed given a specified value of the wind direction is the positive solution of the quadratic equation,

$$a^2 r^2 - br - 1 = 0$$
 , (37)

which is

$$(\tilde{\mathbf{r}} \mid \theta) = \frac{1}{2a} \left[\left(\frac{b}{a} \right) + \sqrt{4 + \left(\frac{b}{a} \right)^2} \right]$$
 (38)

The locus of the conditional modal values of windspeed when plotted in polar form versus the given wind directions forms an ellipse.

The noncentral moment for equation (36) is expressed as

$$\mu_{\mathbf{n}}' = \int_{0}^{\infty} \mathbf{r}^{\mathbf{n}} \mathbf{f}(\mathbf{r} | \boldsymbol{\theta}) d\mathbf{r} . \tag{39}$$

Now the first noncentral moment is identical to the first central moment or the expected value, E $(r|\theta)$. The integration of equation (39) for the first moment is sufficiently simple to yield practical computations and can be expressed as

$$E(r|\theta) = \frac{\left(\frac{b}{a}\right) + \left[1 + \left(\frac{b}{a}\right)^{2}\right] \sqrt{2\pi} e^{\frac{1}{2}\left(\frac{b}{a}\right)^{2}} \phi\left\{\frac{b}{a}\right\}}{a\left[1 + \left(\frac{b}{a}\right) \sqrt{2\pi} e^{\frac{1}{2}\left(\frac{b}{a}\right)^{2}} \phi\left\{\frac{b}{a}\right\}\right]}.$$
 (40)

Hence, equation (40) gives the conditional mean value of the windspeed given a specified value for the wind direction.

The integration of equation (36) for the limits r=0 to $r=r^*$ gives the probability that the conditional windspeed is $\leq r^*$ given a value for the wind direction, θ . This conditional probability distribution (PDF) can be written as

$$\Pr\left\{\mathbf{r} \leq \mathbf{r}^{*} \mid \theta = \theta_{o}\right\} = 1 - \left[\frac{e^{-\frac{1}{2}\mathbf{r}_{\mathbf{g}}^{2} + \sqrt{2\pi}\left(\frac{\mathbf{b}}{\mathbf{a}}\right)\left\{1 - \Phi\left(\mathbf{r}_{\mathbf{g}}\right)\right\}}}{e^{-\frac{1}{2}\left(\frac{\mathbf{b}}{\mathbf{a}}\right)^{2} + \sqrt{2\pi}\left(\frac{\mathbf{b}}{\mathbf{a}}\right)\Phi\left(\frac{\mathbf{b}}{\mathbf{a}}\right)}}\right]. \tag{41}$$

where

$$r_s = \left[a r^* - \left(\frac{b}{a} \right) \right]$$

By definition, equation (41) is an expression for a "wind rose." Empirical wind rose statistics are often tabulated or graphically illustrated giving the frequency that the windspeed is not exceeded for those windspeed values that lie within assigned class intervals of the wind direction. After evaluation of equation (41) for various values of windspeed, r*, and the given wind directions, 0, interpolations can be performed to obtain various percentile values of the conditional windspeed.

For the special case when <u>b</u> in equation (33) equals zero (i.e., for $\overline{x} = \overline{y} = 0$), the conditional modal values of windspeeds [equation (38)], the conditional means of windspeeds [equation (40)], and the fixed conditional percent are of windspeeds [interpolated from evaluations of equation (41)] and the fixed conditional percent are of windspeeds [interpolated from evaluations of equation (41)] and the fixed conditional percent are of windspeeds [interpolated from evaluations of equation (41)] and the fixed conditional percent are of windspeeds [interpolated from evaluations of equation (41)] and the fixed conditional percent are of windspeeds [interpolated from evaluations of equation (41)] and the fixed conditional percent are of windspeeds [equation (40)], and the fixed conditional percent are of windspeeds [equation (40)], and the fixed conditional percent are of windspeeds [equation (40)].

For the special case when $\overline{x} = \overline{y} = 0$, equation (36) reduces to the following simple case:

$$\Pr\left\{r \leq r^{*} \mid \theta = \theta_{0}\right\} = 1 - e^{-\frac{a^{2} r^{*2}}{2}}$$
 (42)

There is a special significance of equation (42) when related to the bivariate normal probability distribution. If r^* and θ are measured from the centroid of the probability ellipse, then the probability that $r \le r^*$ is the same as the given probability ellipse. Further, solving equation (42) for r^* , gives

$$r^* = \frac{1}{a} \sqrt{-2 \ln (1 - P)}$$
 (43)

If a probability ellipse P is chosen, equation (42) gives the distance of r along any θ from the centroid of the ellipse to the intercept of the specified probability ellipse. If there is an interest in conditional probability of winds for a given θ relative to the monthly means, equation (43) is applicable. If it is desired to find the magnitude of the wind along any θ relative to the monthly mean to the intercept of a given probability ellipse, equation (43) is applicable.

D. Statistical Parameters With Respect To Any Orthogonal Axes

The five wind statistical parameters presented in table I are given with respect to the standard meteorological coordinate system; i.e., these parameters are for the U and V components. For many aerospace vehicles and range applications, there is a need for wind statistics with respect to orthogonal axes other than west to east and south to north. For example, it may be required to present wind statistics with respect to a flight azimuth of an

aerospace vehicle whose flight azimuth is α degrees from true north measured in a clockwise direction. The following sets of equations are presented to compute the five parameters for the new coordinate axes rotated α degrees clockwise from true north.

a. Rotation of the means through α degrees:

$$\bar{X}_{\alpha} = \bar{X} \cos (90 - \alpha) + \bar{Y} \sin (90 - \alpha)$$
 (44)

$$\overline{Y}_{\alpha} = \overline{Y} \cos (90 - \alpha) - \overline{X} \sin (90 - \alpha)$$
 (45)

b. Rotation of the variances through α degrees:

$$\sigma_{\mathbf{x}_{\alpha}}^{2} = \sigma_{\mathbf{x}}^{2} \cos^{2} (90 - \alpha) + \sigma_{\mathbf{y}}^{2} \sin^{2} (90 - \alpha)$$

+
$$2\rho\sigma_{x}\sigma_{y}\cos(90 - \alpha)\sin(90 - \alpha)$$
 (46)

$$\sigma_{y_{\alpha}}^{2} = \sigma_{y}^{2} \cos^{2} (90 - \alpha) + \sigma_{x}^{2} \sin^{2} (90 - \alpha)$$

$$-2\rho\sigma_{x}\sigma_{y}\cos(90-\alpha)\sin(90-\alpha)$$
 . (47)

c. Rotation of the linear correlation coefficient through α degrees:

$$\rho_{\alpha} = \frac{\text{cov } (X,Y)_{\alpha}}{\sigma_{X_{\alpha}}\sigma_{Y_{\alpha}}} , \qquad (48)$$

where cov $(X,Y)_{\alpha}$ is the rotated covariance,

$$cov(X,Y)_{\alpha} = cov(X,Y)[cos^{2}(90 - \alpha) - sin^{2}(90 - \alpha)]$$

+
$$\cos (90 - \alpha) \sin (90 - \alpha) (\sigma_y^2 - \sigma_x^2)$$

and

$$\operatorname{cov}(X,Y) = \rho \sigma_{\mathbf{x}} \sigma_{\mathbf{y}}$$

By using these rotational equations, the bivariate normal distribution with respect to any desired rotated coordinates can be obtained from sample est-mates that have been computed with respect to a specific axis. The marginal distributions after rotation are also normally (univariate) distributed. Using the rotational equations greatly reduces computational efforts for applications requiring statistics with respect to several coordinate axes.

Appendix A presents some illustrative examples for the wind statistics of the specific RRA.

CHAPTER III. STATISTICS OF THERMODYNAMICS QUANTITIES AND MODELS

A. General Considerations

A.1. Objectives

こので開発のあるとを開いてはないと言葉によっては、お書からなるのでは関わることには聞かれてなれたで聞い

The objective inherent in developing the thermodynamic section of the RRA was to describe the thermodynamic characteristics of the atmosphere using a minimum of data tabulations. A set of parameters was selected which, together, thermodynamically describe the climatological state of the atmosphere. These parameters are the pressure, temperature, density, dewpoint, virtual temperature, and water vapor pressure. Used together, these parameters permit the calculation of a large number of derived quantities. (Symbols used in the calculations in this chapter are summarized in table D.) Some of these quantities, such as the speed of sound, are dealt with in section III.E.

The probability distribution of each of the six thermodynamic RRA parameters is described by its mean value, its standard deviation, and its skewness. Several of these parameters (temperature, pressure, dewpoint and density) have probability distributions that are close to a univariate normal distribution; the others do not. The skewness parameter gives an estimate of the asymmetrical departures of a probability distribution.

Hydrostatically modeled mean values of pressure and density were calculated (table IV), so that users may determine the departure of the actual climatological values of these parameters from hydrostatic conditions. This was done by hydrostatically integrating the pressure from the lowest RRA data level to the termination altitude of the particular RRA.

A.2. Data Quality Control

Data limits derived from the following parameters were used to screen the thermodynamic portion of the RRA data base: temperature, pressure, dewpoint (for the 0- to 30-km portion only), and density (for the 30- to 70-km portion only). These limits were set to plus and minus six standard deviations from the mean values of each of these quantities. These limits were used to screen the thermodynamic portion of the RRA data base, according to the procedures described in section I.C. The data base used to generate the thermodynamic portion of the RRA (tables I, II, and IV) was considered to be free from errors under the following conditions:

- a) The skewness values of the pressure and temperature were between -2.5 and 2.5 at all data levels.
- b) The skewness values of the density were between -3.5 and 3.5 at data levels between 0 and 30 km.
- c) The skewness values of the density were between -4.0 and 3.0 at data levels between 30 and 70 km.
- d) The skewness values of the dewpoint were between -2.5 and 2.5 at all data levels with more than 10 data values.

TABLE D. LIST OF SYMBOLS USED IN CHAPTER III

C_c - Speed of sound

C_d - Collision diameter

E - Vapor pressure

g_φ - Gravity at latitude φ

H - Geopotential height

H_m - Geopotential height at a mandatory radiosonde data level

H_s - Geopotential height at a significant radiosonde data level

K, - Coefficient of thermal conductivity

L - Mean free path length

M - Mean molecular weight of air at sea level

M3Q - Annual or monthly third moment of quantity Q

n - Refractive modulus

N - Refractive index

NA - Avogadro's constant

No - Number of values of quantity Q

P - Pressure

 P_{m} - Pressure at a mandatory radiosonde data level

P_s - Pressure at a significant radiosonde data level

Ph - Hydrostatically integrated mean monthly or annual pressure

Q - Any tabulated RRA quantity

R* - Universal gas constant

R' - Specific gas constant of dry air

r', r* - Parameters used in converting z to h and vice versa

TABLE D. (concluded)

- S Sutherland's constant, used in the calculation of dynamic viscosity
- T Temperature
- T_d Dew point

スカスト 日本 アンマンドング

- T Virtual temperature
- T Virtual temperature at a mandatory radiosonde data level
- T Virtual temperature at a significant radiosonde data level
- V Mean air particle speed
- V Mean collision frequency
- w Parameter used in the hydrostatic interpolation of pressure and density
- Z Geometric altitude
- \(\lambda\) Wavelength
- a Skewness of quantity Q
- β Constant used in the equation for viscosity
- γ Ratio of specific heat at constant pressure to specific heat at constant volume
- n Kinematic coefficient of viscosity
- Dynamic coefficient of viscosity
- ρ Density
- ph Mean monthly or annual density derived from pressure height
- σ Standard deviation of the quantity Q

A.3 Limitation of Thermodynamic Statistics

The correlation coefficients between the thermodynamic quantities and the moisture-related quantities were not calculated at discrete altitudes. nor were any of the correlations between altitudes. Therefore, valid statistical dispersion models that require the relationship between two or more of these quantities at the same altitude or between altitudes cannot be derived. Approximations for the correlation coefficients between pressure, virtual temperature, and density at discrete altitudes may be obtained from the coefficients of variation as developed by Buell (1970). The coefficient of variation is the standard deviation divided by the mean. The mean values and the standard deviations are taken from table II. A model for the profile of monthly and annual mean pressure, virtual temperature, and density that is in excellent agreement with the respective statistical mean values is given by table IV. This agreement results because the physical relationships, given by the hydrostatic equation and the equation of state, were used to derive table IV. When only the monthly or annual mean values for pressure, virtual temperature, and density are required, it is recommended that table IV be used.

B. Establishing Data Samples at the Required Altitude Levels

This section describes the computational procedures used to establish data samples of the thermodynamic RRA parameters at the RRA data levels. References are cited only when an equation given is one of many available in the literature or when an equation is stated in an unusual form.

B.1. Conversion of Data Recorded in Geopotential Heights to Geometric Altitude

The upper-air rocketsonde observations used to obtain the table values above 30 km were recorded in terms of geometric altitude and can be interpolated directly to the altitude intervals shown in the tables. However, the radiosonde observations used to obtain the tabular values below 30 km were recorded in terms of geopotential heights. The change of coordinates from geopotential heights to geometric altitudes (h to z) is accomplished by calculating a table of geopotential heights that correspond exactly to the geometric altitudes at which the atmospheric parameters are tabulated. The radiosonde observations are then interpolated to these geopotential heights. The relationship used to calculate geometric altitude from geopotential height is

$$H = (r'z)/(r*z) , \qquad (49)$$

where

$$r' = gr*/9.80665$$

and

$$\mathbf{r}^* = -2\mathbf{g}_{\phi}/(\partial \mathbf{g}_{\phi}/\partial \mathbf{z}_{O})$$

 g_{ϕ} is the sca-level gravity at the latitude ϕ corresponding to the proper location. This value is given by (List, 1968)

$$g_{\phi} = 9.780356 (1 + 5.2885 \times 10^{-3} \sin^2 \phi - 5.9 \times 10^{-6} \sin^2 (2\phi)).$$
 (50)

 $\frac{\partial g_{\phi}}{\partial z_{\phi}}$ is the rate of change of gravity at the sea level. This quantity is given

by the equation

$$\frac{\partial g_{\phi}}{\partial z_{0}} = -3.085462 \times 10^{-6} + 2.27 \times 10^{-9} \cos (2\phi) - 2 \times 10^{-12} \cos (4\phi).$$
 (51)

The units while for gravity are meters per square second, while the units for $\frac{\delta}{\delta} \frac{g_{\varphi}}{z_0}$ are per square second.

The resulting table of values of H obtained by using even increments of 2 in equation (49) is shown in table IV of the RRA. The values of H above 30 km are not used in the interpolation of original data, but are included for the convenience of the user.

B.2. Calculations on the Original Rawinsonde Data Records

It was necessary to interpolate the information from the original rawin-sonde data records to the geometric altitudes specified as the RRA data levels. The parameters for which this interpolation was required were the temperature, dewpoint, and pressure. The other parameters were calculated from the interpolated values at each RRA data level. These "derived" parameters were the water vapor pressure, density, and virtual temperature.

B.2.1. Calculation of the Geopotential Height at Significant Levels

Two somewhat different interpolation procedures were used to obtain data from radiosonde and rocketsonde observations at the levels shown in the tables. The procedure used to interpolate radiosonde observations began with the calculation of virtual temperature at each data level in a sounding. The virtual temperature was computed by

$$T_V = T/(1. - 0.379 (e/p))$$
 (52)

where T, and T are in degrees Kelvin and e and p are in millibars.

The radiosonde soundings contain a mix of data taken at "mandatory" and "significant" levels. Pressure, temperature, and dewpoint information was given in these soundings at both types of levels. However, geopotential height information was only given at the mandatory levels. The heights at the significant levels were "filled in" (calculated) hydrostatically using pressure and temperature data from these levels. This procedure permitted the use of most of the significant level data in the calculation of the RRA tables. The equation used for this process was

$$H_s = H_m + 29.2712617 \frac{(T_{vs} - T_{vm})}{2} \ln (P_s/P_m)$$
, (53)

where the subscripts s and m denote quantities at significant and mandatory levels. This equation was not used if the difference between two adjacent mandatory levels was greater than 200 mb. All soundings with such data gaps were rejected for use in compiling the RRA.

B.2.2. Temperature

Radiosonde temperatures were interpolated logarithmically with respect to pressure using the equation

$$T = T_U + (T_L - T_U) \frac{\ln p - \ln p_L}{\ln p_U - \ln p_L}$$
, (54)

where the subscripts U and L indicate values at the nearest data levels in the actual sounding above and below the interpolated level.

B.2.3. Pressure

The pressure values in each radiosonde sounding were interpolated to the RRA data levels using the equation

$$p = p_{L} exp\left(\frac{H_{L} - H_{U}}{29.2712617 (0.5) (T_{V_{U}} + T_{V_{L}})}\right)$$
(55)

where the subscript L indicates virtual temperature, geopotential height, and pressure values at the data level below and closest to the level at which data were required.

B.2.4. Dewpoint Temperature

Dewpoint values were interpolated logarithmically with respect to pressure using the equation

$$T_{d} = T_{dU} + (T_{dL} - T_{dU}) \left(\frac{\ln p - \ln p_{L}}{\ln p_{U} - \ln p_{L}} \right) . \tag{56}$$

The subscripts U and L indicate data at the nearest upper and lower data levels in a sounding.

B.2.5. Derived Water Vapor Pressure

The water vapor pressure was calculated from the interpolated dewpoint values at the RRA data levels using Teten's approximation:

$$7.5(T_d - 273.15)/(T_d - 35.86)$$
e = 6.11 mb × 10 (57)

B.2.6. Derived Density

The density values derived from radiosonde observations were calculated at the RRA data levels using the equation

$$\rho = 348.36787 \ p/T_{v} \qquad . \tag{58}$$

B.2.7. Derived Virtual Temperature

The virtual temperature values were calculated at the RRA data levels for each sounding using the equation

$$T_V = T/(1 - 0.379(e/p))$$
 , (59)

where T_{v} and T are in degrees Kelvin, and p and e are the pressure and vapor pressure, respectively, in millibars.

8.3. Calculations on the Original Rocketsonde Data Records

The rocketsonde data records used to calculate the RRA table values above 30 km were given in terms of geometric altitude. For this reason, slightly different calculations were required to convert the recorded data values to values at the RRA data levels. The pressure, temperature, and density were all interpolated to the RRA data levels; moisture-related parameters (virtual temperature, water vapor pressure, and dewpoint) were not calculated, since atmospheric moisture at altitudes above 30 km was considered to be negligible.

No interpolation was done across gaps in the pressure or temperature data within a sounding larger than 7,300 m. Data values at the RRA levels within such a gap were set to missing.

B.3.1. Temperature

Rocketsonde temperatures were interpolated linearly with respect to geometric altitude using the equation

$$T = T_U + (T_L - T_U) \frac{Z - Z_L}{Z_U - Z_L}$$
, (60)

where the subscripts U and L indicate values at the nearest data level in the actual sounding above and below the interpolated level.

B.3.2. Pressure

The pressure values in each rocketsonde sounding were interpolated to the RRA data levels using the equation

$$P = P_{L} \exp \left(-\frac{g_{\phi}}{R^{*}} \frac{M(Z - Z_{L})}{\overline{T}v} \cdot W^{2}\right) , \qquad (61)$$

where

$$\overline{T}_{V} = \frac{T_{VU} + T_{VL}}{2}$$
 and $W = \frac{r^*}{\left(r^* + 2 + \frac{\overline{Z} - \overline{Z}_{L}}{2}\right)}$.

B.3.3. Density

Rocketsonde density values were interpolated using the equation

$$\rho = \rho_{L} \exp \left(-\frac{g_{\phi}^{M}}{R^{*}} \frac{(Z - Z_{L})}{\overline{T_{V}}} \cdot W^{2} \right) , \qquad (62)$$

where W is specified in section III.B.3.2.

C. Computation of Statistical Parameters for Tables II and III

A three-step procedure was used for computing the monthly and annual means, standard deviations, and skewness values from the data values at the RRA data levels. Initially, certain statistical sums were calculated and stored as the soundings in the data base were processed. These sums were then used to calculate the monthly statistics given in the RRA tables. The annual statistics were then calculated from these stored sums and the monthly statistics.

C.1. Stored Statistical Sums

The sums calculated were

$$\sum Q$$
, $\sum Q^2$, and $\sum Q^3$

where Q is any one of the quantities given in the thermodynamic part of the RRA.

C.2. Calculation of the Monthly Statistics

C.2.1. Monthly Means

The mean monthly values of the thermodynamic RRA quantities were calculated using the equation

$$\tilde{\mathbf{Q}} = \sum_{\mathbf{Q}} \mathbf{N}_{\mathbf{Q}}$$

where N_{Ω} is the number of observed values of the quantity Q for a given month.

C.2.2. Monthly Standard Deviations

The monthly standard deviations of the thermodynamic RRA quantities were calculated using the equation

$$o_{Q} = \sqrt{\frac{(N_{Q}\Sigma'Q^{2}) - (\Sigma Q)^{2}}{N_{Q} \cdot (N_{Q} - 1)}} . \tag{63}$$

C.2.3. Monthly Skewness Values

The monthly skewness values of the windspeed and of the thermodynamic RRA quantities were calculated using the equation

$$\alpha_{\mathbf{Q}} = \frac{M_{\mathbf{Q}}^{3}}{\sigma_{\mathbf{Q}}^{3}} .$$

where ${\rm M3}_{\rm Q}$ is the third moment of the quantity Q, $\sigma_{\rm Q}$ is its standard deviation, and

$$M_{3Q} = \left[\frac{\Sigma_{Q}^{3}}{N_{Q}} - \frac{3\Sigma_{Q}\Sigma_{Q}^{2}}{N_{Q}^{2}} - \frac{2\Sigma_{Q}^{3}}{N_{Q}^{3}} \right] \cdot \frac{N_{Q}^{2}}{(N_{Q} - 1)(N_{Q} - 2)} \quad . \quad (64)$$

C.3. Calculation of the Annual Statistics

Equations (63) and (64), used to calculate the monthly values of the standard deviations and skewness values, involve taking the differences between two pairs of large sums containing Q^2 and Q^3 , where Q is the thermodynamic RRA quantity. Using these equations to compute the annual statistics would have resulted in a substantial loss of precision, as these sums become larger by several orders of magnitude in such a case. This problem was avoided by calculating the annual means, standard deviations, and skewness values from the monthly statistics.

C.3.1 Annual Mean Values

The annual mean values of the thermodynamic RRA quantities were calculated using the equation

$$Q_{ANN} = Q_A/N_Q$$
,

where Q_{A} is the total of all observed values of Q and N_{Q} is the total number of observations of Q.

C.3.2. Annual Standard Deviations

The annual standard deviations of the thermodynamic RRA quantities were calculated using the equation

$$\sigma Q_{ANN} = \sqrt{\frac{1}{N_{Q}} \sum_{i=1}^{12} (N_{Qi} \sigma_{Qi}^{2}) + \frac{1}{N_{Q}} \sum_{i=1}^{12} (N_{Qi} \bar{Q}_{i}^{2}) - Q_{ANN}^{2}}, \quad (65)$$

where N_{Qi} = the number of data values for Q in month i (i = 1 to 12), Q_i = the monthly mean of Q, and σ_{Qi} = the standard deviation of quantity Q in month i.

C.3.3. Annual Skewness Values

The annual skewness values of the thermodynamic RRA quantities were calculated using the equation

$$M3Q_{ANN} = \frac{1}{N} \sum_{i=1}^{12} (N_{Qi} M_{3Qi}) + \frac{3}{NQ_{ANN}} \sum_{i=1}^{12} (N_{Qi} \overline{Q}_{i} \sigma_{Qi}^{2})$$

$$+ \frac{1}{NQ_{ANN}} \sum_{i=1}^{12} (N_{Qi} Q_{i}^{3}) - \frac{3\overline{Q}_{ANN}}{NQ_{ANN}} \sum_{i=1}^{12} (N_{Qi} Q_{i}^{2})$$

$$- \frac{3\overline{Q}_{ANN}}{NQ_{ANN}} \sum_{i=1}^{12} (N_{Qi} \sigma_{Qi}^{2}) + 2\overline{Q}_{ANN}^{3} , \qquad (66)$$

where M_{3Qi} = the third moment about the mean of quantity Q in month i and M_{3Qi} = the annual third moment about the mean of the quantity Q.

D. Derived Monthly Mean and Annual Mean Model Atmospheres

A set of modeled monthly mean and annual mean hydrostatic values of pressure and density was calculated from the lowest RRA data level (0 km, mean sea level) upwards to 30 km, and from 30 km upwards to 70 km. The integration from 0 to 30 km was computed independently of the integration from 30 to 70 km because of the difference in data sources. The two different values for 30 km are provided for comparison. When 30-km data are required, the values given in the 0- to 30-km table should be used. These hydrostatically modeled mean values, which are given in table IV, are useful as a check on the validity of the pressure and density values given in table II. In most cases, the values in tables II and IV for any given data level are within! percent of each other. The hydrostatic pressure values in table IV were calculated using the equation

$$\mathbf{p}_{1} = \mathbf{p}_{0} \exp \left(-\frac{0.034162 \left(H_{1} - H_{0} \right)}{0.5 \left(T_{v_{1}} + T_{v_{0}} \right)} \right) , \tag{67}$$

where $\rm H_1$ - $\rm H_0$ is in meters and a "O" subscript refers to values at the RRA data level immediately below the level being checked. $\rm p_0$ at the lowest data level is set equal to the RRA mean pressure; $\rm p_1$, calculated for the next highest data level, is taken as $\rm p_0$ for the level above that. This process is repeated for all the other RRA data levels. The hydrostatic density corresponding to the hydrostatic pressures is calculated from these pressures and the RRA virtual temperature values using the formula

$$\rho_{\mathbf{H}} = 348.36786 \, \mathbf{P}_{\mathbf{H}} / \mathbf{T}_{\mathbf{V}}$$
(68)

where $_{\text{pH}}$ and P_{H} are the hydrostatic density and pressure shown in table IV of the RRA.

E. Thermodynamic Quantities Derivable from the Basic Tables

Several other quantities can be calculated from the statistics listed in tables I and II. Primary physical constants used in these calculations are listed in table E. The equations given in this section can be used to calculate the approximate mean values of these quantities at each RRA data level. It is not possible to infer or derive any information concerning the standard deviation or skewness values of these quantities from the data in tables II and III of the RRA.

E.1. Mean Air Particle Speed

The mean air particle speed, V, is the arithmetic average of the speeds of all air particles in the volume element being considered. For a valid average to occur, there must be a sufficient number of particles involved to represent mean conditions. The equation for V for dry air is

$$V = \sqrt{\frac{8}{\pi} \cdot \frac{R + T}{M}} \quad . \tag{69}$$

A computational form for dry air, using tabulated values, is

$$V = \sqrt{7.3094 \times 10^2 \times T} \text{ (meters per second)}, \qquad (70)$$

where T is the temperature in degrees Kelvin from table II. Equation (69), when corrected for moist air, becomes

$$V = \sqrt{\frac{8}{\pi} \cdot R' T_V} . \qquad (71)$$

The computational form for moist air is

$$V = \sqrt{7.3094 \cdot 10^2 \cdot T_V} \text{ (meters per second)}, \qquad (72)$$

where $T_{\rm V}$ is the virtual temperature in degrees Kelvin from table III.

TABLE E. LIST OF PRIMARY PHYSICAL CONSTANTS

- P_0 = standard atmospheric pressure at sea level = 1.013250 × 10⁵ Newton/m² = 2116.22 lb/ft²
- ρ_0 = standard atmospheric density at sea level = 1.2250 kg/m³ = 0.076474 lb/ft³
- T_{O} = standard temperature at sea level = 288.15 K = 15.0°C = 59.0°F
- g₀ = standard gravity at sea level at latitude 45°32'33" = 9.80665 m/s²
- s = Sutherland's constant used in calculation of dynamic viscosity = 110.4 K
- T_{I} = ice-point temperature at P_{O} = 273.15 K
- β = constant used in calculation of dynamic viscosity
 - = $1.458 \times 10^{-6} \text{ kg/s m K}^{\frac{1}{2}}$

「大きない」を表示している。「おきないる」を表示している。「おきないる」を表示

- = 7.3025×10^{-7} lb/s ft R¹
- γ = ratio of specific heat of air at constant pressure to specific heat of air at constant volume = 1.4
- C_D = mean effective collision diameter of air molecules = 3.65×10^{-10} m = 1.1975×10^{-9} ft
- $N_a = Avogadro's constant$ = 6.022169 × 10²⁶/kg mol = 2.73179 × 10²⁶/lb mol
- R* = gas constant = 8.31432 J/mol K
- R' = gas constant for dry air = 2.8704×10^2 J/kg K
- M = molecular weight of dry air = 28.966 g/mol

E.2 Mean Free Path

The mean free path, L, is the mean value of the distance traveled by each neutral air particle in a selected air parcel, between successive collisions with other particles in that parcel. A meaningful average requires that the selected parcel be large enough to contain a substantial number of particles. The equation for L is given by

$$L = \left(\frac{\sqrt{2}}{2\pi}\right) \left(\frac{R^*T}{N_a C_d^2 P}\right) \qquad (73)$$

where C_d is the effective collision diameter of the mean air molecules. The 1976 standard atmosphere value of 3.65 x 10^{-10} is valid for the range of altitudes in the RRA.

A computational form for moist air, using tabulated values, is

$$L = 2.335 \times 10^{-7} \frac{T}{P} \text{ (meters)}$$
 , (74)

where T is the temperature in degrees Kelvin from table II and P is the pressure in millibars from table II.

A form of (73) to correct L for moist air is

$$L = \left(\frac{\sqrt{2}}{2\pi}\right) \frac{R'MT_v}{N_a C_d^2} . \qquad (75)$$

The computational form for moist air is

$$L = 2.3325 \times 10^{-7} \frac{T_V}{P} \text{ (meters)} ,$$
 (76)

where T_{ν} is the virtual temperature in degrees Kelvin from table III and P is the pressure in millibars from table II.

E.3. Mean Collision Frequency

The mean collision frequency, $\mathbf{V}_{\mathbf{C}}$, is considered to be the average speed of air particles contained in an air parcel, divided by the mean free path of the particles inside that parcel. Computationally this is equivalent to

$$V_c = \frac{V}{L} (sec^{-1}) \qquad (77)$$

To determine V_c for dry air, use V and L from equations (70) and (74). To determine V_c for moist air, use V and L from equations (72) and (76).

E.4. Speed of Sound

The expression for the speed of sound, $C_{\rm S}$, in meters per second in dry air, is

$$C_{g} = \sqrt{\frac{\gamma R + T}{M}} \quad . \tag{78}$$

To compute C_{ς} for dry air from tabulated values, use

$$C_s = \sqrt{4.0185 \times 10^2 \times T}$$
 (meters per second), (79)

where T is the temperature in degrees Kelvin from table II. One form for the speed of sound in moist air is

$$C_s \approx \sqrt{\gamma R' T_v}$$
 (80)

of the second of

where $T_{\rm V}$ is the virtual temperature from table III. A computational form for moist air is

$$C_s \approx \sqrt{4.0185 \times 10^2 T_V}$$
 (meters per second) . (31)

E.5. Dynamic Coefficient of Viscosity

The coefficient of dynamic viscosity, μ , is defined as a coefficient of internal friction developed where gas regions move adjacent to each other at different velocities. The following expression is taken from the U.S. Standard Atmosphere (1976):

$$\mu = \frac{\beta \cdot T^{3/2}}{T + S} \qquad (82)$$

The computational form is

$$\mu = \frac{(1.458 \times 10^{-6}) \text{ T}^{3/2}}{\text{T} + 110.4}$$
 (kilograms per second per meter), (83)

where T is the temperature in degrees Kelvin from table II.

E.6. Kinematic Coefficient of Viscosity

The kinematic coefficient of viscosity, designated as n, is defined to be the ratio of the dynamic coefficient of viscosity of a gas to its density, or

$$\eta = \mu/\rho \qquad . \tag{84}$$

The computational form is

$$\eta = 1.0 \times 10^3 \, \mu/\rho$$
 (square meters per second) , (85)

where μ is the dynamic coefficient of viscosity from equation (83) and ρ is the density in grams per cubic meter from table II.

E.7. Coefficient of Thermal Conductivity

The empirical expression used for the coefficient of thermal conductivity, designated as K_{\star} , is given in the 1976 Standard Atmosphere as

$$K_{t} = \frac{2.65019 \times 10^{-3} \cdot T^{3/2}}{T + 245.4 \times 10^{-(12/T)}}$$
 (watts per meter per degree Kelvin), (86)

where T is in degrees Kelvin.

E.8. Refractive Modulus and Refractive Index

The refractive modulus or refractivity (Selby and McClatchey, 1975; Smith and Weintraub, 1953) is defined as N, where

$$N = (n - 1) \cdot 10^6 \tag{87}$$

and n is the refractive index.

For microwave frequencies below approximately 30 GHz (equivalent to wavelengths above 1 cm), N, the refractive modulus, is given by the empirical equation

$$N = 77.6 \frac{P}{T_d} + 3.73 \times 10^5 \frac{e}{T^2}$$
 (dimensionless), (83)

where E and P are in millibars and T and $T_{\mbox{\scriptsize d}}$ are in degrees Kelvin.

The following expression is valid for the visible and infrared wavelengths shorter than approximately 30 um (0.03 mm).

$$N = 77.6 \frac{P}{T} + 0.584 \frac{P}{T\lambda}$$
 (dimensionless), (39)

where λ is the wavelength in microns and T is in degrees Kelvin.

The expression for N for the wavelength from $0.03~\mathrm{mm}$ to 1 cm is an extremely complex function of wavelength.

CHAPTER IV. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This document satisfies the technical objectives established for the RRAC by the RCC MG. Upper air statistics and models for wind and thermodynamic quantities for the specific site have been derived in a consistent and uniform manner, which will be used in publications for all other assigned site location. These RRAs represent an improvement over the previously published RRAs because of the availability of more extensive upper air data bases and the adaptation of more advanced statistical techniques. A statistical measure of central tendency (mean values) and a measure of dispersion (standard deviation with respect to the mean values) for monthly and annual reference periods have been tabulated for all variables in a consistent manner from data bases that have been edited and quality-controlled in the same manner. Further, a statistical measure for symmetry (skewness coefficient that involves the third statistical moment) has been tabulated for all variables except the U and V wind components. Even with these improvements, the user of these RRAs must recognize certain limitations of the statistical tabulations:

- 1) The wind profile structure with respect to altitude cannot be modeled from the RRA statistics because the interlevel and crosslevel correlations were not computed.
- 2) The profile structure with respect to altitude for any of the thermodynamic variables or any quantities derivable from these variables cannot be modeled because the prerequisite correlations were not computed. However, the profiles of monthly and annual means for pressure, virtual temperature, and density are in agreement (table IV) with the hydrostatic equation and the equation of $stat \epsilon$.

The preceding limitations are cited to prevent a misuse of the RRAs. More extensive statistical tabulations were beyond the scope of this committee's task. As greater insight is gained through usage of these RRAs, many adaptations of the statistical tabulations for specific engineering and scientific applications are envisioned.

Recommendations

It is recommended than the wind and thermodynamic statistical tabulations and attendant models contained in the RRAs be used as a standard reference source, as may be appropriate, by the ranges and range users. It is further recommended that the respective Range Staff Meteorologist or responsible agency staff member be consulted for the applicability of the RRAs for specific engineering applications.

REFERENCES

- Buell, Eugene C.: "Statistical Relations in a Perfect Gas." Journal of Applied Meteorology, 9, 1970, pp. 729-731.
- List, R. J., Editor: Acceleration of Gravity, Smithsonian Meteorological Tables, Sixth Ed. Smithsonian Institution, Washington, D.C., 1968, pp. 488.
- Serby, J.E.A.; and McClatchey, R.A.: AFCRL-TR-75-0255, Atmospheric Transmittance from 0.25 to 28.5 um Computer Code Lowtran 3, Air Force Cambridge Research Laboratories. Available through the N-tional Technical Information Service, Washington, D.C., 1975.
- Smith, E.K.; and Weintraub, S.: "The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies," <u>Proceedings of the Institute of Radio Engineers</u>, 41, 8, August 1953, pp. 1035-1037.
- Smith, O.E.: NASA TM X-73319, <u>Vector Wind and Vector Wind Shear Models at 0-27 km Altitude for Cape Kennedy, Florida, and Vandenberg AFB, California.</u> Prepared under sponsorship of the National Aeronautics and Space Administration. Available through the National Technical Information Service, Washington, D.C., July 1976.
- U.S. Standard Atmosphere, 1976. Prepared under the sponsorship of the National Aeronautics and Space Administration, United States Air Force, and United States Weather Bureau. Available through U.S. Government Printing Office, Washington, D.C., October 1976.

PREVIOUS RANGE REFERENCE ATMOSPHERES PUBLISHED BY IRIG

- Atlantic Missile Range Reference Atmosphere for Cape Kennedy, Florida (Part I), Document 104-63. April 16, 1963. (AD451780)
- White Sands Missile Range Reference Atmosphere (Part I), Document 104-63, June 28, 1964. (AD451781)
- Fort Churchill Missile Range Reference Atmosphere for Fort Churchill, Manitoba, Canada (Part I), Document 104-53, August 7, 1964. (AD634727)
- Pacific Missile Range Reference Atmosphere for Eniwetok, Marshall Islands (Part I), Document 104-63, September 1, 1964. (AD479264)
- Fort Greely Missile Range Reference Atmosphere (Part I), Document 104-63, October 6, 1964. (AD634726)
- Eglin Gulf Test Range Atmosphere for Eglin AFB, Florida (Part 1), Document 104-63, January 25, 1965. (AD472601)
- Pacific Missile Range Atmosphere for Point Arguello, California (Part I), Document 104-63, April 1965. (AD472602)

- Wallops Island Test Range Reference Atmosphere (Part I), Document 104-63, July 10, 1965. (AD474071)
- Eastern Test Range Reference Atmosphere for Ascension Island, South Atlantic (Part I), Document 104-63, July 1966. (AD645591)
- Johnston Island Test Site Reference Atmosphere (Part I), Document 104-63, January 1970. (AD782652)
- Lihue, Kauai, Hawaii Reference Atmosphere (Part I), Document 104-63, January 1970. (AD782653).
- Cape Kennedy, Florida Reference Atmosphere (Part II), Document 104-63, September 1971. (AD751581)
- White Sands Missile Range Reference Atmosphere (Part I.), Document 104-63, September 1971. (AD782654)
- Wallops Island Test Range Reference Atmosphere (Part II), Document 104-63, September 1971. (ADA040280)
- Fort Greely Missile Range Reference Atmosphere (Fart II), Document 104-63, September 1971. (ADA040281
- Edwards Air Force Base Reference Atmosphere (Part I), Document 104-63, September 1972. (AD782651)
- Kwajalein Missile Range Reference Atmosphere for Kwajalein, Marshall Islands (Part 1), Document 104-63, October 1974. (ADAO02664)
- Pacific Missile Test Center Reference Atmosphere for Point Arguello, California (Part II), Document 104-63, November 1975. (ADA040279)

REVISED RANGE REFERENCE ATMOSPHERES PUBLISHED BY THE RCC

- Kwajalein Missile Range, Kwajalein, Marshall Islands, Range Reference Atmosphere, 0-70 Km Altitude, Document 360-82, December 1982. (AD123424)
- Cape Canaveral, Florida, kange Reference Atmosphere, 0-70 Km Altitude, Document 361-83, February 1983. (ADA125553)
- Vandenberg Air Force Base, California, Range Reference Atmosphere, 0-70 Km Altitude, Document 362-83, April 1983.
- Dugway, Utah, Range Reference Atmosphere, 0-30 Km Altitude, Document 363-83, June 1983.
- Wallops Island, Virginia, Range Reference Atmosphere, 0-70 Km Altitude, Document 364-83, July 1983.

In addition to the documents above and the present RRA for White Sands Missile Range, New Mexico, the revised series will include RRAs for the following locations:

Edwards AFB, California Point Mugu, California Eglin AFB, Florida Taquac (Guam) Barking Sands, Hawaii Ascension Island, South Atlantic

CONVERSION UNITS

Physical Constants and Conversion Factors

Numerical values in this document are given in the International System of Units (SI, Système International d'Unités). The values in parentheses are equivalent U.S. Customary Units, which are English units adapted for use by the United States of America. The SI and U.S. Customary Units provided in table F are those normally used for measuring and reporting atmospheric data.

By definition, the following fundamental conversion factors are exact:

<u>Type</u>	U.S. Customary Units	Metric
Length	1 U.S. yard (yd)	0.9144 meter (m)
Mass	l avoirdupois pound (lb)	453.59237 gram (g)
Time	1 second (s)	1 second (s)
Temperature	1 degree Rankine (°R)	9/5 degree Kelvin (K)

To aid in the conversion of units, conversion factors based on the above fundamental conversion factors are given in table F.

TABLE F. FACTORS FOR CONVERSION UNITS

	3 MITRIC		U. S. CUSTOMARY	MARY		CONVI RSION	
Type of Data	Unit	Abbreviation	Unit	Abbreviation	Multiply	Ну	Totiet
LIMPLRATURE							
Ambient Lemperature	degree Celsius	Ç	degree falteenheit	<u></u>	1 - 32	0.5556	<u>.</u>
	degree Kelvin	: 2	degree Rankine	.	٥	1.8•	27.1
					<u>*</u>	1.00.	1 + 450 67
					"R - 459.67	1.00*	-
					¥	1.00*	\$18.200
					K - 273.15	1,641*	J
Temperature Change	degree Celvins		degree Lahrenheit	-	"Cor K	.8.	south, change
	degree Kelvin	æ	degree Rankine	<u>~</u>	*1 or *R	0.5556	Much chan
DI NSITY							
Water Vapor							
Vapor Concentration	gram per cubic meter	f.ui d	grain per cubic foot	rt ft ⁻³	K m -3	0.43,700	r.11.7
and Ambient Density	gram per cubic centimeter	e uo a			E U II	2.2983	
					, m ,	9.91	, 1413 1
					mo a	91 10/17	, 11 13
					gr ft	2.288 \ 10 %	rem."
WIND							
Windspeed	meter per second	m s ⁻¹	mile per hour	ny h	n ș.l	2.2369	qdu
			knots	knots	ydm	0,44704*	
			feet per second	n s.1		1.9438	knots
					knots	0.51444	, ,,
					mph	0.848976	knots
					knot	1.15078	4.1
						0.3048*	E
DISLANCE							
Length	meter	E	iwi	=	E	3.2808	=
	micron	a	ınch	<u>.</u> 털	=	U. 304×	
	Angstrom unit	<			ji,	2.54 \ 10*4*	3
					겉	2.54 \ 10.8	,
					E	.01-	1
					in in		

Defined exact conversion factor

TABLE F. (continued)

	METRIC		U. S. CUSTOMARY	MARY		CONVERSION	
Type of Data	Unit	Abbreviation	Unit	Abbreviation	Multiply	Вŷ	la Get
DISTANCE (Concluded)					7	.9-01	æ
					1	3.937 \ 10.5	Ĕ
					· •	•91.02	E
					A	3,937 × 10°9	II.
MASS							
Weight	เมาส์	21 ,	grain	j,	*	0,45359237*	k,
	kilogram	ķķ	punod	â	41	453.59237*	24.
					ų,	2,20462	æ
					z. :	15.4324	ž. ·
					4	0.000	4.
PRI SSURI.							
Atmospheric	new ton per square meter	newton m ⁻²	pound force per	lb in. 2	фШ	10-3*	pri
	•		square inch		hur	103	щф
	millimeter of Mercury	աուհե	inch of Mercury	in.Hg	newton m.2	10.5	qtu
					newton m ⁻²	1.4504 \ 10 ⁻⁴	F
	-				lb in. ^{- 2}	6.8948 × 10 ³	new ton m2
	bar	har			an ,	1,4504 \ 10"-	lh in "
	millibar	qu			lb in. 2	68.948	ę.
	dyne per square	dyne em 2			unp	103,	dine cm.
	centimeter (increase)	,			dyne em -	· 01	qui
	kilogram force per	kg m²²			16 in2	6.8948 \ 10 ⁴	dyne cm ²
					dyne em -	1.4504 \ 10.5	Ih in.
					mp,	10.1972	Ne m_
					kg m .	0.0980665	drii ,
					lb in. "	703.0696	Pg m _
					kp m-3	0.0014223	. u. 4.
					qui	2.9530 v 10 ⁻²	m.Hg+52-15
					un.	0.75006	mmllg t0 O
					in.Hg (32°1)	25.40*	mmtk a C
					nemilie 10°C)	1.33322	ų.
					m.Hg (32'b)	33.8639	din din
	pawai	- <u>-</u> -			P,4	1.00*	new ton m

* Defined exact conversion factor

TABLE I-1. WIND STATISTICAL PARAMETERS

JANUARY

STATION 4	722696	MHITE S	NO MISSILE	RANGE					41000
2	HEAN U	5.D. U	R(U,V)	MEAN V	S.D. Y	MEAN WS	S.D. WS	skeh hs	NOBS
icн	H/S	M/S		M/S	M/S	M/S	M/S		346.
1.246	.02	2.29	0457	.06	2.77	2.73	2.33	1.28	345.
2.000	2.30	3.41	.3109	50	4.94	5.61	3.17	.97 .45	344.
3.000	6.61	5.60	. 1951	-1.61	5.75	9.66	4.15 5.75	.35	342.
W.000	10.13	7.54	.2764	-2.22	7.01	13.43	7.73	.59	337.
5.000	13.01	9.96	.2958	-2.33	8.56	16.94		.65	326.
6.000	15.16	11.80	.3858	-1.73	9.88	19.48	9.48 10.95	.77	319.
7.000	15.62	13.52	.4683	-1.24	11.44	21.70	12.09	.74	313.
0.003	18.09	14.79	.5126	-1.15	13.05	23.89	13.13	.60	305.
9.000	19.64	15.73	.5!53	92	14.47	25.89 27.83	13.13	.50	294.
10.000	21.61	15.80	.4808	87	15.88		13.49	.39	273.
11.000	23.37	15.51	.4369	-1.02	15.50	29.07	12.95	.41	274.
12.000	25.25	15.28	.3802	61	14.47	30.20	11.75	.45	264.
13.000	25.54	13.44	.3053	74	13.06	29.42	10.07	.12	248.
14.000	24.67	11.27	.4086	92	11.77	27.81	9.47	.03	235.
15.000	೭೦.೯೭	10.52	,4217	57	10.40	25.25	9.23	.09	255.
16.000	20.94	9.72	.4095	68	9.36	23.14 19.77	8.01	.12	207.
17.000	17.97	8.61	.3390	-1.29	7.53		7.15	.26	199.
18.000	14.39	7.86	.2858	-1.43	6.20	16.06 12.93	7.10	.67	195.
19.000	11.14	7.89	.2321	-1.28	5.52	10.87	6.91	.96	185.
20.000	9.09	7.86	.1715	-1.12	4.50	9.74	6.82	1.16	174.
21.000	7.43	8.34	.1922	-1.03	3.97		6.81	1.25	162.
23.000	6.30	9.05	.1964	-1.04	4.16	9.65	6.73	1.16	159.
23.000	6.11	8.90	.3464	89	3.75	9.27	6.73 6.84	1.24	147.
24.000	5.85	9.27	.4295	80	3.92	9.44	6.52	.99	134.
25.000	5.30	9.72	.3963	66	4.49	10.01	6.92 6.87	.68	131.
26.000	6.07	10.35	.3337	15	4.28	10.70	7.39	.51	115.
27.000	7.30	11.00	.4259	. 15	4.61	11.83	8.14	.47	112.
28.000	8.20	11.79	.4518	.76	5.56	13.06 14.06	9.47	.39	67.
29.000	10.50	12.62	.3971	.95	4.28 7.13	15.55	9.90	1.05	214.
30.000	7.66	15.14	.4384	1.36	7.13	18.02	11.51	1.13	215.
32.000	9.65	17.36	.3881	1.66	7.81 8.49	19.67	13.71	1.38	214.
34.000	12.03	18.93	.4928	1.01	8.71	20.89	15.50	1.70	213.
35.000	14.27	19.95	.4532	51		22.82	16.37	1.44	215.
39.000	16.24	20.76	.4323	96	9.72 10.97	24.19	16.24	1.35	214.
40.000	17.11	20.88	.3304	1.09	11.92	27.78	16.89	1.08	2:3.
42.000	20.05	55 55	757!	4 54 6.22	12.50	32.65	18.68	.80	213.
44.000	24.85	24.73	.3593 .2410	8.21	14.96	39.20	21.16	.52	211.
46.000	30.78	27.36	.2410	10.89	17.19	44.90	23.03	.24	210.
48.000	35.89	29.12	.2803	11.63	17.19	48.41	23.90	.12	208.
50.000	39.40	30.41 30.71	.3781	10.56	17.01	49.61	23.09	. 04	209.
52.000	40.66 41.55	30.38	.3116	12.23	15.76	49.90	23.54	.07	208.
54.600 56.000	44.17	29.92	.3117	12.97	17.84	52.16	24.67	.09	201.
58.000	48.24	29.62	.3062	13.20	19.80	56.03	25.07	19	193.
50.000	55.78	30.32	.4131	12.98	20.05	62.04	27.37	11	181.
62,000	65.11	32.35	.2884	10.15	29.64	70.81	28.23	54	149.
64.000	73.91	32.63	.5355	5.52	21.67	78.35	29.72	50	124.
55.000	77.34	40.89	.0134	.63	19.78	83.87	31.63	31	98.
68.000	90.36	46.41	0083	-12.68	21.17	89.37	34.92	26	68.
70.000	82.99	41.40	.0574	-12.93	31.38	92.56	34.01	22	50.
10.00	QC , 33	71.70							

TABLE I-2. WIND STATISTICAL PARAMETERS

FEBRUARY

STATION	722696	HHITE S	AND HISSILI	RANGE					
Z	MEAN U	\$.D. U	R(U,Y)	HEAN Y	S.D. V	MEAN HS	S.D. HS	SKEH HS	N085
iQ4	M/S	'H/5		M/S	M/S	M/S	M/S		
1.246	. 27	2.01	1241	09	2.90	2.75	2.22	.97	386.
2.000	2.15	3.38	. 0387	39	5.15	5.71	3.15	. 75	384.
3.000	5.81	5.22	.1173	-1.34	6.45	9.26	4.29	. 32	383.
4.000	9.51	6.57	. 1683	-1.80	7.41	12.60	5.74	.27	38 0.
5.000	18.61	8.71	. t 956	-1.66	9.00	16.08	7.75	.42	369.
6.000	15.37	10.49	.2817	-1 . 5 7	10.22	19.07	9.45	.47	366 .
7.000	18.08	12.10	.3781	-1.54	11.91	22.34	10.88	. 34	358.
9.000	20.15	13.32	.3996	-1.55	13.42	24.92	18.02	. 33	354.
9.000	22.31	14.56	.3460	-1.66	14.49	27.33	13.23	. 35	345.
10.000	24.35	14.31	.2927	-1.91	15.48	29.39	13.27	. 20	336.
11.000	27.09	13.72	.2690	-1.55	15.44	31.59	15.85	. 14	324.
12.000	30.04	17.66	2742	-1.F4	15.44	34.01	13.13	.21	307.
13.000	30.38	12.04	.2353	-1.15	13.66	33.62	11.43	.25	293.
14.000	28.40	10.33	.3334	62	11.63	30.83	9.91	. 14	276.
15.000	25.49	9.13	3915	94	10.50	27.79	8.48	02	260.
16.000	22.92	8.52	.3155	93	9.60	24.66	8.04	. 29	250.
17.000	16.79	7.23	.3145	-1.03	7.10	20.24	6.85	.47	239.
10.000	14.24	7.45	.2329	-1.05	6.05	15.75	6.91	.83	229.
19.000	11.01	7.40	.2247	65	5.15	12.57	6.70	1.30	228.
20.000	9.03	7.23	.2539	62	4.55	10.52	6.65	1.78	223.
21.000	7.43	7.71	. 1675	76	4.12	9.42	6.50	2.03	215.
55 .000	6.64	8.40	.0839	77	4.10	9.28	5.75	1.80	203.
23.000	6.33	7.92	.1671	56	3.41	8.79	6.11	1.86	200.
24.000	6.26	9.76	.2172	44	3.69	9.50	6.26	1.62	169.
25.000	6.40	9.14	. 1662	41	4.37	10.16	6.33	1.21	178.
26.000	6.84	9. 35	.2812	06	3.40	10.17	6.48	1.13	174.
27.000	8.05	10.36	. 1929	25	3.26	11.29	7.49	.97	154.
28 000	9.33	12.00	.1114	83	3.94	12.84	9.04	.93	152.
29.000	10.56	13.48	.0927	-1.23	3.97	14.13	10.50	.95	111.
30.000	11.29	15.69	.3951	60	5.65	17.68	9.60	.55	199.
32.000	16.29	17.91	.4891	1.49	6.45	21.99	12.04	. 34	205.
34.000	20.66	20.00	.5230	2.64	7.64	26.39	13.97	.27	209.
36.000	24.83	22.42	.5142	5 · 58	8.10	30.58	15.91	. 13	207.
38.000	26.54	23.65	.4581	1.86	9.41	30.41	17.47	. 13	έι <u>Β</u> .
40.000	26.61	24.97	.3817	1.11	10.71	33.39	18.18	. 17	207.
42.000	27.02	25.80	.3462	2.79	10.84	34.07	18.92	.26	208.
44.000	27.89	26.24	.1991	5.42	12.37	36.12	18.48	.13	209. 209.
46.000	30.99	26.35	. 1862	7.96	13.07	39.26	18.55		209. 209.
48.C00	33.40	25.71	.1939	9.53	14.77	41.85	18.05	.07	205. 206.
50.000	36.70	24.37	.3189	10.55	15.16	43.76	19.09	. 38	
52.000	40.68	25.57	.2478	10.71	14.24	47.00	20.32	.45	203.
54.000	44.90	27.19	.2245	9.14	15.19	50.48	22.80	.42	201.
56.000	47.54	26.65	.2034	10.10	16.46	53.12	22.79	.65	198.
58.000	50.68	23.48	.1232	10.69	16.97	55.73	20.33	19 .37	168.
60.000	59.06	23.89	.0092	10.53	17.53	63.05	22.34	11	180. 157.
62.000	68.64	24.31	.0530	6.21	18.27	71.87	22.49	[1 [1	130.
64.000	69.60	27.01	.1040	. 03	17.96	72.78	24.43 24.70	11 43	102.
66.000	72.55	25.99	.0174	-5.52	18.08	75.38 75.65	24.70 23.75	20	62.
68.000	70.84	20.01	.1654	-10.65	19.46				43.
70.000	67.03	27.04	. 3529	-23.77	20.10	75.49	21.69	35	73.

TABLE I-3. WIND STATISTICAL PARAMETERS

MARCH

STATION	722696	MHITE	SAND HISSIL	E RANGE					
Z	MEAN U	S.D. U	R(U,V)	HEAN V	5.0. V	MEAN HS	S.D. WS	SKEH HS	NOBS
KM	H/S	M/S		M/5	H/S	M/S	M/S	30030	11003
1.246	. 15	2.86	0142	.88	3.09	3.31	2.75	1.58	415.
≥.000	2.95	4.08	0505	1.04	5.12	6.24	3.62	1.19	410.
3.000	7.36	5.34	.1519	. 19	6.07	9.95	4.53	.48	410.
4.000	10.95	6.70	<i>3</i> 5 +5 .	. 33	7.75	13.79	5.89	.29	410.
5.000	14.36	8.66	. 2669	.51	9.65	17.72	7.77	. 25	407.
6.000	17.56	10.74	.2950	.79	11.16	21.32	9.69	. 38	405.
7.000	20.34	12.95	.3093	.92	12.04	24.39	11.47	.51	402.
8.000	22.21	14.25	.3888	1.06	13.33	26.80	12.49	.52	393 .
9.000	24.20	14.94	. 3886	1.31	14.31	28.86	13.49	.64	303.
1G.000	25.48	14.32	. 3759	1.36	14.59	29.92	13.16	.42	372.
11.000	26.66	13.30	.2732	1.13	13.72	30.35	12.46	. 32	354.
12.000	29 .22	12.76	.1821	1.09	12.94	31.30	12.15	. 33	351.
13.000	28.68	10.97	. 1753	1.47	10.87	30.76	10.80	01	337.
14.000	27.78	9.31	.1333	1.67	8.78	29.20	9.23	12	323.
13.000	25.52	6.98	1550	1.64	6.13	55.33	8.75	. 25	35¢.
16.000	22 .30	8.07	. 1640	1.17	6.99	23.43	7.95	.08	305.
17.000	19.09	7.92	. 1541	.92	5.91	20.05	7.80	. 35	289.
18.000	15.78	8.62	. 1842	1.11	5.41	16.83	8.39	.64	283.
19.000	12.34	8.71	.1609	1.16	4.79	13.60	8.51	1.04	273.
20.000	9.25	8.17	.2028	.71	3.96	10.51	7.61	1.76	<i>2</i> 66.
21.000	7.22	8.42	.2993	.41	3.62	9.09	7.33	2.19	255.
55 . 000	6.52	9.24	.4045	.49	3.97	9.15	7.70	2.02	243.
23.000	6.40	8.56	.4540	.60	3.49	8.75	7.07	2.14	236.
≥•.000	6.24	9.01	.3741	.57	3.91	9.46	6.79	1.86	<i>22</i> 6.
25.000	5.76	8.75	.2225	. 56	3.94	9.34	6.18	1.74	219.
26.000	6.35	9.01	.286?	.82	3 . 30	9.65	6.30	.97	206.
27.000	7.24	9.78	.2614	.98	3.27	10.65	6.76	. 88	184.
29.000	7.92	10.66	.2077	.91	3.56	11.81	7.08	.84	184.
29.000	8.51	10.68	. 1255	.83	3.69	12.33	6.94	.45	137.
30.000	9.90	11.69	.2883	. 95	4.65	13.80	8.14	. 55	170.
32.000	14.29	13.21	.2217	1.39	5.78	17.65	10.10	.43	172.
34.000	19.82	14.72	. 1636	1.79	6.99	22.77	11.93	. 28	173.
36.000 39.000	25.06	16.34	.3742	1.15	7.10	27.94	12.86	02	174.
40.000	27.75 29.70	17.27	.2954 .2515	.96	7.80	30.58	13.93	.05	175.
40.000	20.70	19.25	.::55	1.08	9.15	32.90	15.93	. 15	175.
44.000	31.89	19.87 17.66		2.99	10 55	34 . NA	16.17	01	175.
46.600	32.87	17.29	.230 9 0405.	5.30	11.98	35.50	15.47	.02	174.
48.000	34.11	17.91	.1630	7.51	12.41	36.70	15.56	.00	174.
50.000	35.10	17.27	.3075	9 .23 10.26	12.99 12.34	38.62	15.09	.29	174.
52.000	34.59	17.96	.2392	10.20		39.07	16.13	. 02	173.
54.000	36.21	17.72	.1632	11.76	11.48 12.47	39.13 41.07	15.36	05	172.
56.000	37.72	19.26	.0882	11.62		42.45	15.20	17	171.
58.000	39.78	21.20	.1774	10.14	13.15 14.95	44.36	16.15 19.70	.06	165.
60.000	39.64	24.25	.1936	10.34	16.77	44.35	20.28	.28 08	162.
62.000	41.71	23.80	.0855	7.13	15.73	46.73	20.43	.09	153. 133.
64.000	41.30	23.36	.1248	3.60	15.73	46.04	19.68	.11	113.
66.000	36.15	25.75	.1303	-5.33	13.11	40.81	22.39	.49	88.
68.000	30.42	24.79	.1255	-12.11	15.56	39.22	19.59	.24	60.
70.000	21.45	23.22	2168	-15.36	22.04	36.26	19.80	.91	43.

TABLE 1-4. WIND STATISTICAL PARAMETERS

APRIL

STATION			SAND HISSIL						
2	HEAN U	\$,D. U	R(U,V)	MEAN V	S.D. V	MEAN HS	S.D. WS	sken Ws	NOB2
KP1	M/S	M/S		H/S	M/S	M/S	M/5		
1.246	.45	2.52	0205	. 65	3.22	3.30	2.59	.95	420.
\$.000	3.13	3.73	.0907	1.68	4.63	6.01	3.44	.62	414.
3.000	6.62	4.96	. 1564	2.14	5.29	9.02	4,42	.43	911.
4.000	9.96	6.42	.2656	3.44	6.42	12.50	6.10	.44	403.
5.000	12.93	7.81	. 3902	4.24	7.99	15.62	7.61	.50	400.
6.000	16.10	9.31	. 4336	5.01	8.97	19.08	9.34	.50	398.
7.000	18.73	10.83	.4365	5.70	10.46	22.10	11.01	.50	395.
8.000	21.19	12.38	.4340	6.67	11.55	25.02	12.39	.51	393.
9.000	23.01	12.90	.3724	7.07	12.18	27.09	12.66	. 34	392.
10.000	78 . بح	18.81	. 3740	7.71	12.47	28.81	12.75	.12	398.
11.000	26.24	12.70	.3753	7.92	12.61	30.09	12.89	.09	372.
12.000	27.29	12.91	.3823	7.60	12.29	30.85	13.03	. 34	370.
13.000	26.91	11.79	. 3626	6.31	11.25	30.05	11.22	.45	345.
14.000	26.13	9.78	.2643	5.74	8.99	28.26	9.56	.28	341.
15.000	23.12	8.53	.2714	5.08	8.38	25.13	9.46	.03	326.
16.000	20.09	7.59	. 1967	4.73	5.86	21.74	7.62	.22	306.
17.000	16.10	6.73	.1393	3.91	6.04	17.62	6.78	. 38	276.
18.000	11.24	6.74	. 1020	3.13	5.35	12.94	6.53	1.01	271.
19.000	6.90	6.10	. 0856	1.98	4.38	8.74	5.62	1.59	257.
20.000	4.00	4.72	.0963	1.26	3.55	5.99	4.07	1.39	248.
21.000	2.32	4.66	. 1695	.84	2.90	4.99	3.35	1.84	237.
2 2.000	1.42	81	. 1420	.92	2.99	4.81	3.43	2.15	235.
23.000	1.14	4.13	.2166	.60	2.12	3.99	2.60	1.39	214.
24.000	. 85	5.06	. 300 1	.43	2.65	5.02	3.05	. 96	210.
25.000	1.06	5.05	.2609	.25	2.82	5.06	2.98	. 75	205.
26.000	1.79	4.86	. 1600	.26	2.62	4.97	2.99	. 64	197.
27.000	3.27	5.00	. 1010	.45	2.9 6	5.81	3.19	. 79	180.
20.000	5.11	5.15	. 0593	. 70	3.09	7.05	3.57	. 34	180.
29.000	7.36	5.68	.0129	.63	2.97	€.03	4.19	. 26	114.
30.000	9.43	6.47	. 1233	1.27	4.21	10.22	5.26	. 78	174
32.000	11.57	7.80	.0781	1.95	5.05	13.37	6.72	. 33	176.
34.000	15.07	9.22	.2397	1.58	5.86	16.60	9.15	.26	190.
36.000	16.85	10.54	.2889	1.47	5.79	18.44	9.50	. 27	181.
3 6.600	16.74	12.40	0نوء.	10	/Ú	:5.30	10.33	.37	iço.
40.000	14.08	14.72	.2212	-1.24	9 .22	18.25	12.26	.63	181.
42.000	10.29	15.09	. 1067	1.66	8.96	16.81	11.57	1.02	180.
44.000	.1.39	14.85	.2180	3.43	9.50	17.33	11.53	.92	180.
46.000	10.67	16.43	.2981	4.06	e.ce	17.45	12.55	1.13	179.
48.000	8.66	17.51	.2093	4.28	10.98	18.64	12.35	. 99	179.
50,000	8.20	17.38	. 1597	5.09	8.17	17.47	12.51	1.37	179.
52.000	6.69	17.79	.2258	5.17	8.24	17.17	12.64	1.54	174.
54.000	3.65	16.22	.1470	4.42	8.98	15.99	10.92	1.31	170.
56.000	. 34	18.60	.3032	4.74	12.09	19.42	11.54	.81	167.
58.000	48	19.60	.2351	7.74	11.09	20.89	11.34	. 91	151.
60.000	03	18.66	.2207	7.26	11.81	20.07	11.65	1.15	141.
62.000	. 18	18.96	.0620	6.56	10.71	19.24	11.65	7,191	123.
64.000	.51	18.04	.0086	4.69	12.25	19.41	10.65	. 25	113.
66.000	.43	16.77	.0948	1.28	11.45	17.35	10.47	1,63	P6.
68.000	15	16.50	0407	-2.94	11.14	16.91	10.84	1.17	6 4 .
70.000	-3.99	14.64	. 1974	~4.88	14.75	19.02	10.04	.08	37.

TABLE I-5. WIND STATISTICAL PARAMETERS

MAY

STATION	722698	HHITE S	AND HISSILE	RANGE					
2	MEAN U	5.D. U	R(U,V)	MEAN V	S.D. Y	MEAN HS	S.D. WS	SKEH HS	NOBS
104	M/S	M/S		M/S	H/S	M/S	H/5		
1.246	.40	2.57	0115	1.32	3.18	3.41	2.64	1.39	489.
2.000	2.42	3.30	.0109	2.35	4,49	5.63	3.27	1 .22	488.
3.000	4.64	3.98	. 1402	1.91	4.36	6.80	3.69	.94	485.
4.000	6.62	5.21	. 3295	2.35	5.37	0.98	4.97	.78	483.
5.000	0.83	6.89	. 3597	2.97	5.78	11.69	6.59	.85	482.
6.000	10.64	7.90	. 3391	3.01	7.62	13.56	7.66	.78	476.
7.000	12.50	9.30	.3867	2.77	7.83	15.17	9.02	.73	473.
8.000	14.27	10.56	. 38 32	2.64	9.58	17.05	10.29	.75	473.
9.000	15.93	11.31	.3731	3.03	9.20	18.85	11.03	.74	456.
10.000	17.72	11.63	3556	3.19	9.99	20.76	11.52	.65	459.
11.000	19.49	12.04	. 3380	3.15	10.58	22.47	11.81	.49	449.
12.000	21.43	12.41	.3346	3.05	10.95	24.35	12.14	.46	447.
13.000	22.14	11.69	. 3571	2.98	10.27	24.72	11.41	.42	431.
14.000	20.81	9.59	. 34 35	3.03	9.04	12.55	9.38	.27	406.
15.000	(6.51	7.88	. cu . c u	2.01	ت. ت	25.23	7.00	. 3 c	35;.
16.000	13.95	6.11	.3216	1.93	7.33	15.86	6.13	.52	342.
17.000	9.43	5.36	.2394	1.63	6.18	11.41	5.31	.60	315.
18.000	5.20	5.15	.2291	1.56	4.99	7.67	4.69	.90	304.
19.000	2.03	4.16	. 1864	1.00	3.56	4.98	3.21	1.37	295.
20.000	21	4.14	. 1504	.73	2.92	4.34	₽.72	1.45	287.
21.000	-1.49	3.99	.1776	. 36	2.78	4.46	2.47	1.00	275.
22.000	-2.55	4.13	.2290	. 37	2.47	4.75	2.69	. 92	275.
23.000	-3.01	3.78	.2544	.31	2.24	4.70	2.51	.49	261.
24.000	-3.31	4.05	. 1571	.26	2.68	5.18	2.80	.73	261.
25.000	-3.46	4.12	.1667	.13	2.49	5.20	2.84	.57	245.
26.000	-3.21	4.50	.2705	. 19	2.55	5.29	3.00	.67	228.
27.000	-2.55	5.02	.3310	.23	2.90	5.49	3.14	. 99	190.
28.000	-1.89	5.12	.2717	. 17	2.58	5.23	3.01	1.31	190.
29.000	63	5.39	.2174	. 26	2.81	5.41	2.80	1.21	155.
30,000	85	5.50	.0408	.85	3.41	5.76	3.17	. 83	203.
32.000	.00	6.82	0254	1.72	3.69	6.74	4.18	1.15	204.
34.000	.17	6.73	0177	1.19	3.98	6.90	3.85	. 80	212.
36.000	82	8.77	.0177	.52	3.73	8.30	4.75	. 79	212.
38.000	-3.48	8.73	257;	.27	4.25	9.09	4.85	,53	212.
40.000	-6.41	8.93	.0355	.00	5.00	10.50	5.94	.68	212.
42.000	-9.45	6.02	.0350	1.09	4 76	12.11	6.79	. 54	213.
44.000	-13.48	10.02	1229	1.88	5.59	15.98	7.83	. 18	213.
45.000	-16.11	10.44	1026	2.92	6.20	18.69	8.10	,42	212.
4B.000	-17.81	10.26	.0107	4.55	6.72	20.39	8.50	. 17	211.
50.000	-19.60	9.30	.0324	5.52	8.08	22.41	8.45	. 10	210.
52.000	-21.05	9.54	.0412	5.01	6.24	22.74	8.99	05	209.
54.000	-22.18	10.53	.0010	4.34	6.99	23.97	9.79	.06	207.
56.000	-25.07	10.72	0175	3,44	9.24	26.92	9.91	06	203.
58.000	-27.85	10.31	.0342	4.13	8.63	29.70	9.51	. 23	195.
60.000	-30.27	11.77	.1416	3.11	10.10	32.65	10.00	07	179
62.000	-33.09	12.71	.1712	4.24	11.98	35.90	11.29	09	165.
64.000	-32.03	14.56	.1145	3.21	11.29	34.75	18.91	.02	131.
66.000	-30.47	17.50	.1240	07	13.15	34.04	15.69	.43	98.
68.000	-27.5!	18.32	÷.0135	-4.09	15.59	32.91	15.29	. 31	75.
70.000	-28.30	17.30	.0237	-7.14	19.43	35.13	16.90	.62	45.
	-0.50								

TABLE 1-6. WIND STATISTICAL PARAMETERS

JUNE

STATION -			MISSILE	RANGE MEAN V	S.D. Y	MEAN HS	S.D. HS	skem ms	NOBS
2	HEAN U	5.D. U	R(U,V)	M/S	M/S	H/S	M/S		
IØI .	M/S	H/S 2.48	0950	1.23	3.25	3.40	2.57	1.17	389.
1.246	.13	3.20	-,0573	2.51	4.26	5.24	3.20	.96	388.
2.000	1.60	3.98	.1798	1.85	4.16	5.90	3.37	.71	386 .
3.000	3.11 3.87	5.26	.4116	1.57	5.59	7.65	4.18	. 86	388 .
4.000	4.86	6.84	.4590	1.66	7.36	9.85	5.50	.77	388 -
5.000	5.98	7.85	,5106	1.63	7.72	10.91	6.34	.73	387.
6.000	7.25	8.35	4966	1,90	7.77	11.65	7.10	70 ،	387.
7.000	7.25 B.43	8.68	.4695	2.13	8.17	12.58	7.70	.71	385.
9.000 9.000	9.85	8.95	.4253	2.394	8.91	14.02	8.09	.74	384 .
10.000	11.81	9.45	. 3576	2.47	9.96	16.13	8.58	. 69	375.
11.000	13.80	10.28	.3010	2.49	11.06	18.47	9.10	. 53	364.
12.000	15.44	10.40	.3161	2.77	11.15	19.85	9.17	.41	364.
13.000	16.22	10.16	.3963	2.97	10.69	20.31	8.76	.43	359.
14.000	15.35	9.05	.4065	3.04	9.14	18.57	8.05	. 39	345.
15.000	12.60	7.67	.3746	3.17	7.48	15.23	7.16	.57	334.
16.000	8.48	5.73	.2300	2.65	5.68	10.72	5.39	.54	310.
17.000	3.93	4.67	.0588	1.90	4.42	6.90	3.55	.65	304.
18.000	19	4.16	.0354	1.35	3.43	4.89	5.62	. <u>, ۲۲</u>	303.
19.000	-3.08	3.68	0208	.99	2.90	5.10	2.51	.62	284.
20.000	-5.16	3.65	.0398	.8₩	2.50	6.26	2.77	.62	201. 273.
21.000	-6.57	3.69	. 1769	. 8⁴	2.42	7.36	3.02	.09	271.
22.000	-7.67	2.3 1	. 1640	.55	1.83	8.02	3.00	17 26	253.
23.000	-8.57	3.34	. 1768	.56	1.69	8.83	3.13		253.
24.000	-9.36	3.85	.0000	.72	2.20	9.74	3.60	10 13	238.
25.000	-9.63	3.88	.0859	.95	1.98	9.96	3.65	08	227.
26.000	-9.84	3.88	.0369	. 69	1.82	10.00	3.75	08	206.
27.000	-10.39	4.13	0033	. 39	2.32	10.74	3.90	04	194.
28.000	-10.71	3.99	.0319	.50	1.91	10.92	3.91 4.12	.05	146.
29.000	-11.10	4.29	.0977	.69	2.77	11.52	4.20	.19	184
30.000	-12.65	4.36	.2089	1.01	3.06	13.10	4.70	07	184
32.000	-13.65	4.91	0617	1.20	3.18	14.13 15.65	5,25	02	194
34.000	-15.13	5.40	. 1556	.79	3.70	17.65	5.81	.00	191
36.000	-17.15	6.17	. 1055	1.00	3.52	21.10	5.75	. 15	
36.000	-20.17	D . PO	1605	بئ.	5.55 4.83	24.22	5.56	- 05	192
40.000	-23.70	6.81	.1537	01	5.24	29.17	7.79	08	192.
42.000	-28.63	8.05	.0253	. 12 1.45	5.43	33.25	7.04	04	192.
44.000	-32.76	7.11	0328	2.68	6.90	35.71	7.41	29	191.
46.000	-34,90	7.61	0563	4,27	6.96	38.42	7.98	.07	190.
48.000	-37.52	8.09	0826	5.31	6.99	41.02	8.90	06	188.
50.000	-40.07	8.91	0330 9950.	5.60	8.16	43.58	8.67	.11	187.
52.000	-42.39	8.90	0029	5.21	7.84	45.13	10.42	.08	186.
54.000	-45.10	10.70	.0029	4.26	9.81	50.09	10.96	.51	184.
56.000	-48.96	10.79 11.91	.0142	3.27	10.67	52.68	11 83		178.
59.000	-51.47	16.50	.0906	5.15	11.36	54.67	15.87		166.
60.000	-53.22	17.44	0481	2.63	13.98	56.15			142.
62.000	-54.18 -54.39	17.96	.16:9	1.99	15.83	57.00			151.
64.000	-54.63	10.36	.1223	4.00	19.28	59.23			88.
66.000 68.000	-48.20	23.23	.1255	4.73	18.53				58.
70.000	-42.88	26.58	.0949	-3.73	18.86	47.32	25.76	.59	34.
10.000		20.00							

TABLE 1-7. WIND STATISTICAL PARAMETERS

JULY

STATION	722696	HALLTE SA	NO HISSILE	RANGE				_	
Z	HEAN U	S.D. U	保(U,V)	MEAN V	5.D. V	HEAN HS	S.D. HS	skeh hs	NOBS
K24	M/5	M/S		M/\$	M/S	M/S	H/S	~	352.
1.246	. 22	2.06	1391	.99	3.04	3.01	2.32	.96	35c.
2.000	22	2.11	1336	2.55	3.61	4.i8	2.56	1.08	349.
3.000	.00	2.93	. 0433	1.39	3.25	4.04	2.14	.67 .83	347.
4.000	-1.36	4 .01	. 1752	01	4.23	5.26	2.85	. 79	347. 345.
5.000	-2.68	4.47	.2320	76	4.99	6.39	3.40	. 49	344.
6.000	-2.38	4.77	. 1692	15	4 .70	6.25	3.37 3.35	.75	344.
7.000	-1.66	14.87	. 1043	58	4.65	6.10		.67	344.
8.000	-1.01	5.34	.0897	.72	5.31	6.77	3.51	.87	342.
9.000	56	6.19	.1011	.64	5.76	7.57	3.85	.67	339 \$
10.000	. 00	7.39	. 1733	.59	6.12	8.53	4.41	.55	339 <i>4</i> 337.
11.000	.41	8.70	.2181	.32	6.88	9.79	5.22	. 55 . 49	337.
12.000	. 63	9.28	. 1895	09	6.93	10.19	5.52	.51	331.
13.000	. 57	9.23	. 1430	39	6.91	10.17	5.45	.52	318.
14.000	. 27	7.90	.0589	- 52	6.30	8.94	4.72	.34	310.
15 000	97	₹ 85	. 1000	!7	#, 22 #, 22	7.16	3.46	.59	275.
16.020	-2.67	4.61	.2203	07	3.69	5.90	3.13 3.34	.60	263.
17.000	-4 62	4.11	. 1613	. 13	3.21	6.11	2.92	. 30	263.
18.000	-6.61	3.26	.0622	.41	3.03	7.43	2.78	. 18	252.
19.000	-8 23	2.93	.2199	.49	2.46	8.65	3.07	. 24	244.
20.000	-9.90	3.19	.0895	.27	2.21	10.19		.10	241.
21.000	-11.47	3.24	. 1811	.52	2.65	11.83	3.06		234.
22.000	-12.66	2.∋8	.0848	.67	1.84	12.03	2.92	10	
23.000	-13.67	2.99	.0048	.69	1.64	13.80	2.95	05	221.
24.000	-14.51	3.18	1455	.65	1.86	14.65	3.17	02	221.
25.000	-15.41	3.17	1240	. 6 6	1.92	15.54	3.16	.02	208 .
26.000	-16.37	3.36	1397	.71	2.27	16.54	3.36	.06	188. 180.
27.000	-17.51	3.80	1206	. 59	2.65	17.78	3.81	.10 .05	162.
28.000	-18.00	3.50	.0006	. 60	1.91	18.11	3.49		114.
29.000	-18.93	3.82	0269	-51	2.64	19.12	3.81	. 47 . 02	165
30.000	-21.75	3.83	.0711	1.00	3.30	22.03	3.77	09	165.
32.000	-22.58	4.38	.1853	1.85	3.32	22.91	1.30		167.
34.000	-23.13	5.20	.2329	1.50	4.01	23.56	5.05	.00 85	167.
36.000	-26.29	5.61	.1483	.81	3.91	26.62	5.48	.23	166.
38.000	-30.17	5.91	.0856	64	4.63	30.51	5.86 5.78	.30	166.
40.000	-33.65	5.90	.1589	51	.89	34.03	6.67	. 06	166.
42.007	-39.52	6.75	1362	. 82	5.39	39.91 43.46	6.5.	, 11	lõo.
44.000	-42.92	7.08	. 1 304	3.18	5.69		7,41	50	164.
46.000	-44.63	7.51	.0033	4.40	7.31	45.45 47.71	8.11	.11	164.
₩8.000	-46.76	9 .30	.0899	6.02	7.13	50.89	9.20	57	164.
50.000	-50.04	9.44	0128	5.50	7.16 7.23	54.56	9.75	-,64	164.
5 2.000	-53.79	9.89	.0362	5.35	9.40	57.85	10.23	.74	162.
54.000	-56.71	10.36	.1339	6.33	10.53	58.96	12.23	.41	156.
56.000	-57.92	12.22	.1754	3.32	11.54	62.22	15.26	.41	148.
58.000	-60.90	15.65	.1258	4. <i>2</i> 7 3.34	16.40	64.77	19.48	1.07	137.
60.000	-61.84	21.76	.0693		16.11	54.89	21.24	.29	155.
62.000	-61.22	24.99	2173	5.86	22.52	61.59	26.41	.48	106.
64.000	-56.26	28.64	.0373	2.13	21.19	57.15	30.96	.79	86.
66.000	-50.95	34.45	.0369	~.89	23.92	48.13	20.50	1.51	60.
68.000	-39.04	32.14	.1059	-4.33		40.27	24.95	1.21	37.
70.000	-20.23	33.78	.1460	-5.10	26.47	40.67	67.53		- / /

TABLE 1-8. WIND STATISTICAL PARAMETERS

AUGUST

STATION 4	722695	HHITE	SAND HISSILE	RANGE					
Z	MEAN U	S.O. U	R(U,V)	MEAN V	5.0. V	HEAN HS	S.D. HS	SKEH HS	NOB5
101	H/S	H/\$		H/\$	M/S	H/5	M/S		
1.248	. 05	1.88	1692	- 62	2.84	2.69	2 . 18	2.16	372.
2.000	.10	2.14	2456	1.99	3.65	3.94	2.52	1.41	371.
3.000	.45	3.00	.0661	1.15	3.25	4.04	2.17	.82	3 71.
4.000	41	4.17	.2859	14	4.05	5.11	2.80	1.02	369.
5.000	-1.18	4.78	.3305	55	4.82	6.17	3.08	.60	368.
6.000	79	4.66	.2299	12	મુ.92	5.98	3.28	. 93	365.
7.000	19	57.4	.2033	13	5.19	6.07	3.52	1.08	361.
0.000	.40	5.75	.2669	34	6.03	7.11	4.37	1.28	36 0.
9.000	. 99	6.46	.2795	43	7.04	9.12	5.13	1.15	357.
10.000	1.00	7.41	.2489	61	7.83	9.30	5.76	. 94	355.
11.000	2.45	9.50	.2371	-1.04	0.60	10.58	6.68	. 78	351.
12.000	2.34	9.06	.2724	-1.63	0.91	11.20	6.80	. 70	349
13.000	2.80	9.28	.2476	-1.62	8.45	11.25	6.47	.67	346.
14.000	2.23 .95	8.24	.1678	-1.29	7.56	10.03	5.46	.74	3 3 6 .
15.000	81	6.52	.1722	80	6.20	7,96	4.34	S e .	328.
16.000	-	5.03	.2494	06	4.65	6.07	3.26	.75	305.
17.000	-3.04	4.17	.2914	. 30	3.29	5.49	2.71	. 56	293.
18.000 19.000	-4.93	3.64	.1793	.26	2.70	6.13	2.69	.45	293 .
20.000	~6.87 ~8.70	3.38 3.06	.0855	.02	2.13	7.32	3.10	.08	282
21.000	-10.28	3.04	.0431	. 31	2.09	8.99	2.96	.09	279.
22.000	-11.39	2.66	. 1505 . 0586	.67	5.12	10.54	2.90	.10	715.
23.000	-12.57	2.76	.0554	. 56 . 50	1.73	11.56	2.54	.03	
24.000	-13.90	2.99	0231	. 50	1.74	12.72	2.65	.25	54
25.000	-14,75	3.07	.0315	.64	1.93	14.G6 14.90	2.89 2.96	.40	
26.000	-15.62	3.07	.0270	.73	1.75	15.75		.09	2.1.
27.000	-16.54	3.70	1140	.69	2.22	15.75	3.21 3.60	01	206.
29.000	-17.3	3.12	1016	.55	1.91	17.43	3.11	15	191.
29.000	-18.	3.36	.03:1	.40	2.91	10.39	3.32	1 48	175. 137.
30.000	-21.1	3.59	0253	1.10	3.10	21.41	3.62	.19	162.
32.000	-21.53	4.95	. 1293	1.90	3.17	21.85	4.88	.00	166.
34.000	-21.52	5.29	0749	1.32	3.69	81.03	5.25	÷.35	166.
36.000	-24.23	5.14	. 1649		3.99	24.58	5.03	33	165.
38. UUU	*20.co	71 ن	. 1340	.65	4.41	20.63	69	02	:05.
40.000	-20.46	7,97	.1467	1.42	5 20	29.18	7.25	52	167.
42.000	-31.08	8.73	.0909	18	5.42	31.74	7.98	.11	167.
44.000	-34.92	8.89	.0294	1.55	6.60	35.74	8.18	03	164.
46.000	-37.62	9.35	1083	4.80	7.68	38.80	8.89	06	163.
48.000	-38.03	10.05	0258	6.42	8.10	39.60	9.24	70	164.
50.000	-37.77	11.64	.0656	6.45	9.28	39.77	10.38	33	164.
58 .000	-18.96	13.65	, 1545	6.03	10.26	41.28	11.90	-,47	163.
54.000	-38.78	14.90	.0858	5.79	10. 69	41.32	12.88	65	150.
56.000	-36.39	19.83	.0172	5.39	9.71	39.32	17.15	05	157.
58.000	-34,45	20.75	.0081	5.07	13.38	38.56	18.27	. 05	152.
60.060	-30.14	22.32	.0131	3.27	13.64	35.41	10.63	. 34	143.
62.000	-26.10	<i>2</i> 4 69	0367	1.84	13.15	32.44	20.28	.69	126.
64.000	-17.08	20.77	. 1294	. 26	14.60	26.37	15.59	1.40	110.
66 .000	-9.16	22.91	.0209	-4.91	14.76	23.95	16.48	1.88	88.
68 .000	-3.85	24.90	.1190	-6.75	22.94	29.55	19.49	2.18	64.
70.000	2.10	22.01	0718	-6.03	23.29	27.69	16.82	1.26	42.

TABLE I-9. WIND STATISTICAL PARAMETERS

SEPTEMBER

STATION	• 72 2 696	MHITE S	SAND MISSIL	E RANGE					
Ź	MEAN U	S.D. U	R(U.V)	HEAN V	5.D. V	HEAN HS	S.D. WS	SKEH HS	NORS
KM	H/S	M/S		M/S	M/S	M/5	H/5	SVEH M3	MUBS
1.246	.01	2.03	1099	. 70	2.87	2.70	2.35	1.77	374.
2.000	.67	2.72	0336	1.91	3.97	4.40	2.79	.84	372.
3.000	2.27	4.08	.0794	1.32	4.04	5.41	3.24	. 89	371.
4.000	2.87	5.54	.2138	. 96	4.85	6.76	4.17	.94	369
5.000	3.96	6.27	.2423	.49	5.62	7.86	5.00	1.10	367.
6.000	5.39	6.62	.2056	. 89	6.33	8.92	5.83	1.36	361.
7.000	6.98	7.03	. 2692	1.31	7.24	10.54	6.40	1.31	360.
€.000	8.94	7.33	.2845	1.52	8.20	12.49	5.86	1.04	360.
9.000	11.03	7.80	.2925	1.80	9.11	14.55	7.54	.77	358.
10.000	13.28	8.46	-2802	1.97	9.96	16.79	8.31	.46	357.
11.000	15.62	9.37	.2933	1.62	10.58	19.08	9.10	.37	353.
12.000	17.65	9.64	.2017	1.74	10.44	20.66	9.45	.30	352.
13.000	18.20	9.79	.2581	1.59	9.76	20.87	9.44	.18	349.
14.000	16.44	9.15	. 2541	1.67	8.54	18.76	8.82	.42	344.
15.000	13.08	7.15	5500	1 363	6 91	15.01	6.82	.51	334.
16.000	8.90	5.48	.2123	.94	5.39	10.67	4.99	.41	360.
17.000	4.71	4.57	.1639	.58	4.23	6.92	3.66	.62	303.
18.000	. 90	4,40	.1102	. 56	3.52	4.39	2.80	. 68	298.
19.000	-1.42	3.55	.1087	.69	2.76	4.22	2.13	.57	284
20.000	27.د-	3.40	. 1908	. 68	2.38	4.77	2.36	.58	278
21.000	-4.47	3.89	.1842	.49	2.61	5.83	2.82	.48	265.
22.000	~5.54	3.73	.1805	. 19	2.07	6.34	2.95	. 54	264
23.000	-6.44	3.71	-1000	. <i>2</i> 8	1.73	6.94	3.20	.24	252.
24.000	-7.40	4.08	.0468	.5!	1.97	7.95	3.49	.11	252.
25.00C	-8 .10	4.21	.0233	70	2.08	8.64	3.66	.14	243.
26.000	-8.54	4.29	0151	.75	2.10	9.04	3.8≥	.17	224.
27.000	-8.84	4.79	0124	.72	2.58	9.49	4.26	. 30	215.
28.000	-8.97	4,72	.0244	. 62	2.00	9.46	4.18	.27	209.
29.000	-9.46	5.08	.1353	. 37	2.81	10.20	4.39	. 06	155.
30.000	-10.65	5.65	0302	. 96	3.04	11.39	5.06	. 22	203.
32.000	-9.01	6.07	.0861	3.00	3.70	10.80	4.89	. 18	208.
34.000	-6.14	7.06	.0971	1.77	3.97	9.06	4.92	.49	212.
36.000 38.000	-6.69	8.39	.0311	.47	4.29	9.59	6.45	. 99	212.
40.000	-7.78	8.59	.0224	76	4.76	10.78	6.41	. 66	214.
42.000	-8.52	9.05	0135	. 76	5.65	:1.88	6 .75	.45	ē17.
44.000	-9.85	9.79	0871	1.50	6.09	13.17	7.65	. 53	217.
45.000	-10.51 -9.06	11.57	.0/02	2.03	2.11	14.53	9.53	1.02	2:0.
48.000	-6.51	11.37	.0943	3.92	7.35	14.31	8.70	. 75	216.
50.000	-3.30	14.18	.0403	5.81	7.44	15, 75	9.29	1 . 35	214.
52.000	-1.96	14.23	~.0916	5.00	7.79	1, 44	8.86	. 95	216.
54.000	-1.90	14.23	0001	5.58	8.79	ر ا	9.43	1.31	206.
56.000	3.08		0416	5.50	85.8	15 03	9.33	. 89	198.
58.000	5.83	14.04 13.64	0671	6.09	10.10	16.44	9.51	. 98	190.
60.000	9.34	13.09	0936	4.46	11.27	15.34	9.95	. 95	185.
60.000	10.22	14.15	0611	4.77	10.55	17,77	9.32	. 79	176.
64.000	12.67	16.34	- 2604	4.05	!1.07	18.93	10.31	.94	160.
66.000	17.12	16.59	.2960 .2960	3.52	15.75	22.93	12.64	1.40	142.
68.000	16.22	18.25	047 3	2.11	16.27	25.22	14.05	1.42	99.
70.000	23.47		0473	.29	15.77	25.96	12.85	.90	71.
70.000	63.7/	17.44	. 2304	-6.89	18.96	32.67	13.62	. 5 5	55.

TABLE 1-10. WIND STATISTICAL PARAMETERS

OCTOBER

STATION	• 72 26 96	MHITE S	AND HISSIL	F RANGE					
Ž	HEAN U	S.D. U	R(U,V)	MEAN V	5.0. V	MEAN HS	S.D. WS	SKEH HS	Monte
101	M/S	H/5		M/S	H/S	M/S	M/S	SKEN N3	NOBS
1.246	.10	2.29	1359	.47	2.99	2.99	2.33	1.49	380.
2,000	1.97	3.27	.0523	1.35	4.62	5.20	3.25	1.11	377.
3.000	4.45	5.15	.0958	1.05	3.74	8.00	4.03	.72	377. 375.
4.000	6.99	6.71	.1874	1.22	7.24	10.89	5.39	.83	373.
5.000	9.24	8.31	8915	1.40	8.56	13.41	7.04	.85	371.
B.400	11.10	9.31	.2284	1.12	9.57	15.33	8.22	.78	366.
7.000	12.85	10.48	.2562	1.09	10.76	17.49	9.26	.61	364.
8.000	14.41	11.07	.3148	1.50	12.29	19.56	10.01	.72	364.
8.000	15.94	11.09	.3230	1.91	13.62	21.41	10.35	.62	360.
10.000	17.60	11.32	.3456	2.00	14.22	23.11	10.46	.43	356.
11.000	19.54	11.77	.3598	2.22	14.33	24.85	10.60	.24	390. 348.
12.000	21.61	12.22	.3404	2.41	13.98	26.41	10.93	.29	348.
13.000	22.67	11.58	.3133	5.13	12.78	26.54	10.53	.25	340.
14.000	21.32	9.95	.2645	1.98	10.68	24.22	9.21	.07	337.
15.000	18.32	8.54	.2680	1.23	9.09	20.59	8.02	.15	334.
16.000	14.04	6.63	.2313	.36	7.04	15.82	6.35	. 37	312.
17.000	9.77	5.37	.2213	. 10	5.71	11.47	4.97	.5∂	
18.000	5.74	5.00	.1730	. 22	4.62	7.58	4.13		301.
19.000	\$.35	4.41	.1468	.27	3.50	5.92		.77	298.
20.000	2.98	4 36	.0858	.52	3.06	5.23	3.40	1.09	292.
21.000	2.42	. 66	0668	.62	2.84	5.18	3.1B 3.01	1.43 1.01	279. 269.
22.000	1.84	4.50	0047	.44	2.65	9.10 4.78			
23.000	1.70	5.01	0315	. 32	2.29		5.82	1.16	268.
24.000	1.40	6.34	0138	. 10	2.86	4.88	3.05	.83	253.
25.000	2.02	6.42	0138	.08		6.12	3.56	.77	248.
26.000	2.35	6.81	.1772	.00	2.38 2.22	6.03	3.79	.93	238
27.000	3.10	7.62	.1496	.43	2.84	6.32 7.46	4.10 4.47	.87	226.
29.000	4.56	7.94	.1381	.52	3.00	8.22	5.04	.71	\$10.
29.000	6.72	0.34	.1428	.64	3.49	9.54		. 92	\$10.
30.000	5.92	3≥ 64	.1448	1.21	3.63		6.01	.71	162.
32.000	9.69	10.74	.3264	2.77	4.72	10.11	6.45 8.95	-61	180.
34.000	15.09	12.55	.4395	3.79	5.87	17.29		.67	180.
36.000	19.06	15.09	.5505	2.94	5.60	20.85	11.61 !\.00	.49	181.
38 000	21 21	16.36	3005	5.13	5.00 6.09	24.61		. 34	183.
40.000	24.98	17.49	.2105	.33	5.76	26.42	15.58 16.27	.31 .23	182.
42.000	26.33	17.71	.2258	. 66	6.17	28.04	16.07	.20	182.
44.000	29.21	18.22	.2805	3.90	7.24	31.07	16.07		182.
46.000	33.40	19.15	.2603	5.67	8.47	31.07 35.57	18.23	.09	181.
48.000	38.56	19.77	.3403	9.42	9.59	40. 85	19.28	+.04	182.
50.000	42.46	21.16	.3757	8.23	3.48	44.85	20.37	13 04	180.
52.000	46.07	22.03	.3556	8.90	9.80	48.09	21.69		178.
54.000	50.06	22.38	.3989	8.92	10.67	52.49	21.18	- 20.	177. 174.
56.000	51.43	21.22	.4427	9.73	11.40	53.39		-, 24 - 20	-
58.000	52.75	21.41	.3880	7.00	10.55	54.21	21.21 21.50	28 11	171. 168.
50.000	53.30	22.31	.3372	7.07	12.62	55.32	22.06		
62 000	52.74	23.53	.1637	4.97	12.68	54.58	23.24	09	163.
64.000	53.08	25.09	.1207	2.47	14.75	55.47	24.34	15	147.
66.000	52.21	26.38	.0839	05	19.92	55.92	26.20	.13 .32	125.
69.000	52.03	25.54	.0383	-5.26	22.87	57.70	23.89		90.
70.000	94.77	28.95	.3783	-9.45	29.66	57.70 53.35		.00	6 0.
,	77.77	LU. 99	.3/03	-8.73	ED.00	23.32	29.76	1.91	37.

TABLE I-11. WIND STATISTICAL PARAMETERS

NOVEMBER

STATION	722896	MHITE S	AND HISSILE	RANGE					
Z	HEAN U	5,0. U	R(U,Y)	MEAN V	5.D. V	MEAN WS	S.D. WS	SKEH HS	NOSS
KM	M/S	1115		M/S	H/5	M/S	H/S		
1.246	28	2.15	1273	. 04	3.04	2.76	2.51	1.69	394.
5.000	S.08	3.01	.0659	. 10	4.90	5.09	3.37	.95	394.
3.000	5.6+	5.41	.0981	81	5.95	8.72	4.58	.60	393.
_ 4.000	9.27	7.01	. 1325	98	7.66	12.41	5.38	.39	392.
5.000	11.97	8.47	. 1717	-1.16	9.43	15.63	7.80	. 39	391.
6.000	[4.44	9.92	.2239	95	11.08	18.56	9.25	.47	382.
7.000	16.54	10.91	. 2594	88	12.83	21.21	10.36	.69	376.
0 .000	18.50	11.75	.3083	~.64	14.50	23.70	11.35	.65	375.
3.000	20.14	12.08	.3154	79	15.15	25.44	11.58	. 35	371.
10.000	21.88	12.76	.3252	56	15.31	27.05	12.01	. 29	367.
11.000	23.77	13.19	.3475	34	14.65	28.50	12.11	. 18	354.
12.000	25.37	13.00	.3282	.08	14.50	29.63	12.02	. 14	352.
13.000	24.88	12.35	.3338	10	13.05	28.51	11.33	. 18	340.
14 . 000	23.36	10.42	.2137	. 09	11.09	26.08	9.82	. 12	323.
15 000	21.12	9.37	2374	. !!	10 69	23.77	9.10	. 22	312.
16.000	17.19	8.02	2198	.41	8.92	19.40	7.82	. 39	280.
17.000	13.45	7.01 €.61	.2514 .1987	. 20 . 12	6.87 5.92	15.23	5.73	. 56	266.
18.000 19.000	10.02 7.37	5.72	.3024	.04	5.92 4.53	11.97	5.90 5.23	1.04	256 .
20.000	6.17	5.34	.3488	30	3.60	9.95 7,67		1.35	249.
21.000	5.44	5.58	.2950	44	3.39	7.32	4.55 4.34	1.51	244.
22.000	4.36	5.56 6.40	.2552	33	3.42	7.07	4.65	1.23	236. 220
23.000	4.95	5.04	.4656	29	3.72 2.95	7.07	4.51	1.29 1.13	22 9 .
24.000	5.51	5.79	.4775	22	3.32	7.84	5.10	1.29	220 .
25.000	6.10	7.05	.3956	-,48	3.30	8.33	5.35	1.19	211. 206.
26.000	7.22	7.40	.4702	29	3.30	9.24	5.63	1.01	200.
27.000	8.65	0.23	.5016	23	3.44	10.62	5.44	.97	172.
20.000	10.43	9.51	.4754	-,34	4.07	12.51	7.52	.90	172.
29.000	12.61	10.35	.5147	39	4.65	19.71	8.43	. 84	104.
30.000	16.88	12.03	3894	1.21	5.76	18.34	11.30	.7e	174.
32.000	21.25	14.18	.3940	1.79	6.73	22.61	13.78	.64	180
34.000	27.18	15.63	.3928	2.35	8.20	29.60	15.41	.51	184.
36.000	33.58	15.96	.4580	2.23	7.80	34.55	15.97	.31	187.
38.000	38.20	16.47	.3457	.71	7.80	39.04	16.33	.22	190.
40.000	41.59	16.46	.3925	.58	7.19	42.31	16.17	.21	168.
42.000	43.30	16.93	.3019	1.34	7.47	43.96	16.61	09	189.
44.000	47.83	18.73	.3427	4.13	9.99	48.98	18.07	65	185.
46.000	54.00	20.57	.4587	7.94	10.29	55.44	20.83	06	189.
48.000	60.17	22.69	.4804	10.88	10.90	61.94	23.33	.05	187.
50.000	64.64	23.55	.5141	11.41	12.13	66.49	24.27	. 15	186.
52.000	69.20	24.96	.5531	12.35	14.75	70.44	26.12	. 10	181.
54.000	70.32	26.26	.51 89	13.22	14.78	72.63	27.44	.01	181.
56.000	71.17	28.09	.4449	11.29	14.84	73.28	29.80	.07	174.
58 .000	71.58	30.06	. 3~93	11.46	14.56	73.95	30.01	.25	172.
60.000	70.93	30. <i>2</i> 9	. 1084	10.71	15.42	73.83	29.13	.52	:60.
62.000	68.97	31.18	.1929	9 .02	15.80	71.63	30.19	1.11	145.
64.000	63.16	33.23	.2102	3.43	17.79	6 7.2 6	29.91	1.16	125.
66.000	56.26	34.37	. 1546	-1.45	20.61	61.58	31.23	.83	103.
68.000	52.97	30.31	1519	-7.40	2 2 .38	59.53	35.74	. 65	79.
70.000	35.47	33.68	.0573	-8.29	21.29	46.55	27.05	. 32	62.

TABLE 1-12. WIND STATISTICAL PARAMETERS

DECEMBER

STATION	722696	MHITE	SAND HISSILE	RANGE					
Z	MEAN U	5.D. U	R(U,V)	HEAN V	5.0. V	MEAN HS	S.D. WS	SKEH HS	NOBS
KM	H/S	H/S	,	H/S	H/S	K/S	M/S		
1.246	31	1.97	2609	. 10	2.65	2.47	2.20	.96	316.
2.000	2.41	2.86	.1760	.67	4.89	5.28	3.22	.91	310.
3.000	7.35	5.80	. 1 382	. 25	6.85	10.38	5.17	. 31	311.
4.000	11.05	7.64	. 1620	.67	9.43	14.24	6.99	.21	311.
5.000	13.76	9.77	. 1999	1.40	9.93	17.55	8.79	.31	309.
6.000	16.26	11.39	.2983	2.32	11.69	20.71	10.32	. 40	307.
7.000	18.58	12.62	.3330	3.24	13.00	23.54	11.59	.41	306.
8.000	20.07	13.44	.3+55	3.97	14.05	25.39	12.30	. 36	302.
9.000	21.55	13.43	. 3705	4.64	15.37	27.17	12.78	. 26	300.
10.000	23.55	13.70	. 3926	5.41	16.29	29 . 3 5	13.23	. 19	2 95.
11.000	24.94	13.40	.4093	5.55	16.29	30 . 38	13.17	. 23	278.
12.000	26.84	12.98	. 3769	5.44	15.76	31.47	13.24	.42	274.
:3.050	25.97	11.11	.311.0	4.47	11.60	30 SS	11.A1	.48	255.
14.000	24.97	9.06	.3376	3.25	11.43	₹7.66	9.81	.17	234.
15.000	22.35	9.87	. 2596	2.51	9.55	24.53	9.61	. 39	213.
16.000	19.17	8.46	. 1895	1.63	8.18	20.99	8.24	.25	197.
17.000	16.05	7.55	. 1098	.73	6.78	17.52	7.34	.57	184.
18.000	12.73	7.11	.0851	09	5.92	14.22	6.72	.99	183.
19.000	9.90	6.66	.2215	49	4.79	11.31	6.12	1.20	177.
20.000	7.32	6.54	. 3340	67	3.89	8.83	5.62	1.66	169.
21.000	5.59	6.63	. 3688	77	3.43	7.51	5.58	1.89	165.
22 .000	4.57	6.71	. 3237	-1.11	3.62	7.31	5.16	2.04	162.
23.000	4.27	6.40	,4724	-1.26	2.93	6.81	4.78	2.18	160.
24.000	4.09	G.97	.4776	-1.34	3.25	7.36	4.62	1.91	149.
25.000	4.35	8.08	.3964	92	3.76	8.15	5.70	1.64	138.
26.000	5.35	8.50	.4594	-1.28	3.33	8.81	5.96	1.58	130.
27.000	7.67	9.25	.5535	-1.35	3.76	10.59	6.90	1.29	122.
28.000	10.02	9.71	.5239	-1.25	4.39	12.69	7.35	1.12	122.
29.000	12.28	9.83	.6610	-1.33	4.29	14.32	7.86	1.15	70.
30.000	15.18	18.07	-5264	33	6.54	20.77	12.94	.89	196.
32.000	21.89	19.65	.4869	1.02	8.12	26.90	14.40	-58	198.
34.000 38.000	31.25 40.09	20.76	.59+5	3.75	9.37	35.26	16.28	.14	199.
38.000	46.75	21.32 20.79	.6074 .4079	4.54	10.21	43.12	18.07	.09	199.
40.000	52.77	19.02	.4079	4.95 5.60	11.96 12.95	49.89	17.19	13	200.
42.000	57.20	19.47	.3551	8.24		55.55	15.98	22	133.
44.000	62.26	20.94	.3551	11.60	14.06 14.78	60.31 66.09	16.66 17.42	74 70	199. 196.
46.000	67.22	22.48	. 1538	14.97	15.98	71.71	10.93		
48.000	70.09	23.04	. 1936	16.28	16.03	71.71	19.93	45 38	196. 194.
50.000	71.49	26.20	.0875	19.05	18.64	77.18	22.61	35 47	
52.000	71.76	27.10	.1148	18.64	18.59	77.16	24.33	40	191. 188.
54.000	71.27	26.65	.1850	18.35	19.97	76.89	24.73	20	184.
56.000	72.52	27.32	.1314	17.90	21.01	78.39	24.94	13	
58 .000	73.42	27.19	.1065	15.60	21.39	78.83	24.76	09	170. 172.
60.000	73.36	28.56	.1104	14.31	22 64	78.94	26.05	09	165.
62.000	74.02	27.91	.1524	9.93	21.79	78.61	25.44	03	152.
64.000	78.69	30.61	.2831	9,44	23.24	82.99	29.41	37	123.
66.000	78.51	33.03	~.0802	7.70	25.29	Ø2.36	31.56	50	78.
68.000	79.57	32.94	.0731	84	29.90	85 . 3 0	31.86	06	50.
70.000	79.26	33.10	0345	-14.46	27.39	84.29	32.38	42	31.
		20.10	- 0			5		1.75	J

TABLE 1-13. WIND STATISTICAL PARAMETERS

ANNUAL

STATION	- 722698	HHITE S	AND HISSILI	RANDE					
7	HEAN U	S.D. U	R(U,V)	MEAN V	5.D. V	MEAN HS	5.D. WS	skeh hs	NOBS
KP1	M/S	H/5		M/S	M/S	H/S	H/S		
1.246	. 12	2.30	0782	.62	3.04	2.99	2.46	1.39	4833.
2.000	1.82	3.33	.0032	1.30	4.67	5.24	3.23	1.08	4604.
3.000	4.55	5.26	. 0659	.67	5.34	7.58	4.46	. 77	4592.
4.000	6.65	7.38	.1750	.52	5.6 +	10.28	6.13	.72	456 7.
5.000	8.52	9.49	.2317	.63	8.09	18.90	7.89	.78	4534.
6.000	10.46	11.04	.2634	.94	9.11	14.91	9.63	.03	4483.
7.000	12.27	12.39	.2967	1.22	10.11	16.82	11.19	. 85	4445.
8.000	13.84	13.40	.3287	1.45	11.27	18.71	12.26	.84	4416.
9.000	15.35	14.08	.3225	1.66	15.50	20.44	12.96	. 78	4363.
10.000	15.96	14,43	.3154	1.61	12.87	22.12	13.27	.64	4293.
11.000	18.48	14.74	.3015	1.79	12.95	23.55	13.25	.51	4163.
12.000	20.02	15.10	.20-3	1.77	12.50	21: 75	13.43	.50	4124
13.000	20.18	14.45	.2747	1.54	11.49	24.38	12.49	. 39	3994.
14.000	18.96	13.07	.2583	1.52	9.78	22.43	11.19	. 56	3831.
15.000	16.43	11.89	.2354	1.34	8 62	19.55	10.27	, 35	3674.
16.000	13.32	16.80	.1903	1.08	7.14	16.15	9.25	.53	3412.
17.000	9.61	9.98	-1282	.75 .62	5.80	12.75	7.98	. 62	3240.
18.000	5.93	9.46	.0876 .0783	.62	4.91 3.99	10.11	6.86	1.30	3180.
19.000	3.31	8.81		.30	3.34	8.37 7.64	5.84	1.74	3069.
20.000	1.16 29	8.49	.05 2 4 .0270	.30	3.12		5.14 5.00	1.95	2982.
21.000 22.000	-1.34	9.61 9. 82	.0408	.17	2.97	7.68 7.87	5.15	1.61 1.61	2880. 2818.
23.000	-1.70	9.02	.0647	.17	2.59	Ø.01	5.19	1.27	2679.
24.000	-2.30	9.67	.0645	.17	2.93	8.87	5.36	1.02	2617.
25.000	-2.46	10.04	.0324	. 20	3.00	9.24	5.53	.80	2485.
26.000	-2.05	10.67	.0514	.29	2.78	9.60	5.82	.68	2346.
27.000	-1.78	11.81	.0779	.30	3.06	10.60	6.31	.68	2120.
29.000	76	12.75	.0884	.29	3.24	11.34	5.73	.76	2062.
29.000	46	13.95	.0690	.26	3.45	12.44	7.22	.75	1439.
30.000	1.05	16.73	.2005	.92	4.76	14.86	9.16	1.00	2224.
32.000	3.61	19.32	. 1970	1.80	5.51	17.34	10.94	1.03	. باعد غ
34.000	6.70	22.13	.3169	1.95	6.41	20.11	13.25	1.03	2251.
3F 000	275	25.69	. 3516	1,42	F.62	23.35	15.43	.96	2291.
38.000	9.51	28.61	.2685	.87	7.46	26.14	16.81	.83	2300.
40.000	9.43	30.97	.2349	.88	8.22	28.24	17.88	.73	2300.
42.000	8.73	33.60	.2712	2.21	8.95	30.58	18.85	.62	2301.
44.000	9.13	36.67	.2919	4.20	9.95	33.95	19.99	.60	2292
46.000	10.71	39.58	. 3067	6.37	10.97	37.93	21.72	.62	2288.
4B.000	15 15	42.04	.3012	7.99	11.03	39.94	22.88	.64	2275.
50.000	13, 14	44.03	.3239	8.62	12.42	91.77	24.40	.65	2263.
52.000	13.43	46.02	. 3468	9.78	12.58	43.49	25.33	.62	2232
54.000	13.89	47.64	.3331	9.80	13.07	45.12	25.99	.57	2202.
56.000	14.18	49.06	. 3 3 2 6	8.38	14.19	46.78	26.33	.60	2144.
58.000	15.10	50.64	.2832	8.15	14.62	48.58	26.83	.51	2062.
60.000	17.13	52.35	.2792	7.59	15.90	50.58	28.06	.53	1943.
82.000	18.98	53.99	.1425	5.99	15.75	52.01	29.25	.45	1727.
64.000	20.73	53.95	.1179	3.46	17.39	52.12	30.66	.60	1463.
65.000	21.27	53.94	.0197	33	18.35	51.43	32.50	. 64	1106.
68.000	21.61	51.97	0380	-5.31	20.68	50.10	33.33	.85	771.
70.000	23.23	47.39	0816	-3.87	23.47	48.94	32.36	.96	5∤6.

TABLE II-1. THERMODYNAMIC STATISTICAL PARAMITTERS

JANUARY

MEAN T S
DEG K DEG K
267.50
-

TABLE II-2. THERMODYNAMIC STATISTICAL PARAMETERS

FEBRUARY

4

		Ė		28	ġ	ġ	i i	Ē	5.5	ŘÍ	ġ	ģ	Ä,	9.	ķ	308	Ŕ	ę.	993	œ.	į	231.	231.	500	9	É	203	<u>3</u>		E	2	ġ	· (<u>×</u>	į.	:	6	3	ă	3	ž	151.	150.	.6 <u>7</u>		<u>*</u>	Ķ	<u>é</u> 1	s i	÷ ;	żK	ė!	<u>:</u>
	Sec		ė	e E	ġ	ġ	5	R	570.	R	ġ	Š	٠ چ	R	2	309.	Š.	27g.	33	ž	į	231.	231	8	28.	ė,	203.	<u>8</u>		.77	Ŕ	<u>.</u>	• 	. 63.	21	į	<u>.</u>	5	3	6	8	<u>:</u>	Ē.		Ė	6	143.	<u>ዳ</u>	103	ė;	ភ័ក	5 8	÷
	N085	ţ				Ė	3	PR I	570	. 1	359.	32	¥7.	220 220	356	309.	9. 9.	279.	93	č Š	į	231.	231.	2 38 .	218.	906.	203.	<u>સ</u>	181	Ĕ.	<u>R</u>	9	<u>.</u>	<u> </u>	<u> </u>	<u>.</u>	'n		ž	1	ž	151.	150.	6 7	147.	* *	ij.	136	gi i	<u>;</u> ;	rj p	Ċ	.61
		5	8	61.	25.	N.	5 ·	e.	Ž.	5	Ċ		-1.00	-1.03	5	01	Ę.	.30	đ.	8	đ,	.67	.	<u>~</u>	3	%	9	24.	29	<u>6</u>	=	9	Ķ	٠ ۲	Ç:	9	3 : 3 :	7 6	3 5	: 2	5	ĸ	03	Ċ	.37	K	03	<u>.</u>	ક ં	9:	s i	<i>F</i> :	30
1	S.D. D		53.0600	32.1100	27.9000	17.950€	ועישרען	9.4580	7.7700	6.6340	5.1340	5.5130	6.7550	מלקם פ	10.2600	10.8200	8.4520	6.2040	5.3420	5.3910	3.5930	6.8240	2.0910	1.4170	1.1020	9332	7617	75.	6608	6008	5135	.±385	. 3765	. 4306	2882	.3076	.2316	9,5	2		1120	0583	.0471	.0385	.0325	.0268	.0205	.0167	.0131	-010	9700.	700.	.00.
1	A NO	200	247.0000	122.3000	0000 260	005.0000	905.500	815.6000	734.1000	660.3000	592.7000	530.4000	472.6000	41B :00	365, 9000	317.0000	272.4000	234.9000	202.7000	17. 2000	149.0000	126.6000	107.0000	90 . 3500	76.3300	64.6700	54.8500	46.5300	39.7+00	33.6300	28.6100	300g	20.8300	17.8000	12 9300	9.4810	6.9740		2000		25.5	0168	1.0570	85.48	<u>.</u>	5003	3883	3011	. 2353	. 1835	X :	. 1113	885
	- 33 25 25			_	_		_		_	_	٠.	_	_	_	٠.		_	_		_	٠.	_	_	_	_	_		_	_	_	_		_	_		_						_			_	_	_	_	_	_	 8	_	
	S.0. 1	א ני מר	10.02	7.17	6.51	8	3	* *	3	4.63	<u>5</u>	8 m	3.33	F ;	4.03	5. 5	£.9	Ð,	×.	3.18	K,	3.21	8 9	2.7	<u>ئ</u> 8	9 8	2.68	2.83	89. 88	3.13	3.15	ж ж	¥. ₩	£.76	8 6	6.57	8. 9.	8 (6 (9 9	D .	9.0		2	9	2.5	9.9	7.18	¥.	7.91	8.33 33	ĸ.	8.23	7.31
E RANGE	FAN T	¥ (£	£.662	278.BR	C4. CE	27.38 SE.1.38	365. W	28.88 88.88	80.00	3	237.0	230.85	35 ES	220.17	217.63	216.45	21.2	8.1.5	203.3 8	208.01	207.83	208.98	210.50	212.03	213.60	215.03	216.56	218.22	219.75	251.42	223.16	25. ·50	227.07	88 62 2	238.59	75.1	10 10 10	R R	ē (2 9 2 9	26. 100. 100. 100. 100. 100. 100. 100. 10	70.00	2 2	3	88	25.87	33.91	<u>ي</u>	34.9.46	247.05	\$2.5 \$4.68	238.₩
SAND HISSIL	SKEH P	;	8	03	8 0.	17	61	Ŗ,	.43	.5	92.	1.57	97.	Ŗ	07	5	ä	89.	.63	Į.	55.	2	ĸ	ĸ	ĸ	Ķ	E.	۳. خ	C.	Š.	.33	Å.	£9.	¥.	9.1	87.	B1	S	7 .	<u>.</u>	ė s	9 8	9 8	5	5	£	9	6	07.	05	20	01	8
	S.D. P	£	9. 3.62 8.	5.3917	5.0085	4.5622	6533	5.0515	5.5387	5.77.2	5.7696	5.7243	5.4096	3	\$. 10¢¢	3.5307	2.9085	2,4165	2.0170	1.4787	1.1546	9816	. 7673	5602	*009°	5555	503	.4680	4288	8818	07 B	Erox.	13.63	60€.	1971	. 1592	. 1336	3	8760.	SCAU.	7.5	5 5 5	5 6	220	1,20	¥ 2	E	2413	9110	2 600.	9900.	7,00.	. 002 8
- 723696	HEAN P	2	018.5000	902.3600	875.4500	799.0200	705.7000	621.5800	2+5.9300	477.7500	416.6500	361.8600	312.8800	50000	231.1500	197,9100	169, 1500	144 3900	123.1100	104.6100	88 9130	75.5180	64.1730	9.5850	46.4920	39.6470	33,8520	28.92	7.2550	21.2100	18.1850	15.6220	13.4470	11.5960	6.6419	6.4883	4.9065	3.7385	2.3667	Z. 2108	1.7122	2000	7.00	5163	2 6 6	5	2	50.5	1700	1315	6101.	1770.	. 0580
STATION	~		_							_				_	_			_	_				_	_	_	_	_	_	_	_	_		_	_	_				_	_	_	_									_		

TABLE II-3. THERMODYNAMIC STATISTICAL PARAMETERS

| 1994年|| からかいから || 1000 ||

MARCH

		1		e i	; ;	; ;	; ;			9	403.	393.	e i	576.	Ŕ	R	R	į	307.	905	Ċ	Ė		ė	ć		32.	92	218.	R	. 181	E	3	!			: 12	127.	127.	127.	127.	126.	9	ė	ė		<u>.</u> :	2	X	<u>:</u> 2	9	ġş	?
	NOBS 1	}	9	86 97	<u>;</u>	; ;	- -			9	•03	393.	383	372.		22.	R R	Š	307.	30p.	(Ė	į	ė	Ė	į	237.	536	218.	₽	181	18	ġ	ei i	2	3		ĸ	Ā	133.	<u>સ</u>	131.	133	E !	5.5	ė		<u>.</u> (Si 14	ė y	Ŕ		7
	NOBS P	1		96	<u>;</u>	<u>.</u>	<u>.</u>			-10e	4 03.	393	383.	372.	∰	2	238 1	ķ	307.	306.	8	8		ė	ć C		237		8. 9.	&	191	. 181	ė	e i	ė ž		: 3		127.	<u>18</u>	Ē.	<u>%</u>	<u>3</u>	92	ė	52		. 62	gi a	÷ 0	į 2	ė s	ż
i	O MUSE	;	8:	6	- 10	<u> </u>	8.	<u>.</u>	.	ī, i	- 58	91	16	89	76	7	£ :	S.	90:	= '	6	2 :	.03	9	31	3.	9 3 1	8	٠. ا	20	ē	90.	0.	- -	90.	5	3 5		1	ē	99.	ä	81.	%	F. 1	ĸ,	ĸ,	.	3, 1			5 t	٠ <u>٠</u>
	S.D. 0	S/H3	51.1300	31.7400	28.3800	00.6	14.6700	10.2200	7.5340	5.8830	5.0870	€.9960	5.5720	7.7870	9.9560	004	0.565	7.0270	5.8130	4.7590	3.8780	3.0620	0857.2	1.5560	1.2130	0.00. -	7758	7	5776	6 99 4.	3916	00 A	.	\$.	8 E	1000	6000	9	0101	.0833	.0700	.0550	.0427	0348	.0275	. 0221	7,10.	24.10.	6600.	1800	, 000.	, 000.	esuu.
,	E AN O	6/43	227.5000	100.0000	060 . 0000	993.4000	900.5000	913.9000	733.5000	659.9000	592.5000	530.6000	472.9000	¥19.0000	367.6000	1 0.60mg	274.3000	235.5000	202.9000	- No. 000€	148.4000	26.2000	106.8000	90. ¥.00	76.4400	7800	25. 3600 32.	¥6.6500	39.6900	33.8200	28.6300	% .8000	21.0200	17.9700	13.1000	20.0	7.100	0. 5180 1 00000	0600	2990	1.7700	1.3660	1.0610	.8267	. 6463	6 000.	3920	3062	2381	3 DE .	50.	.1103	Ē.
	SKEH 1		_		_																																				8												
	5.0. ₹	DEG K	88 69	7.33	6.9	کر در	L4.	 	6	£.7	3. S	š	м Ж	K ₩	3.57	<u>ه</u> د	£.5	3.4B	3.30	3. 3.	3.53	SR M	z m	2.61	2.61	8 ~	Ø∿	3.12	ж Ж.	w 39	3.72	7.0	<u>=</u>	¥.2	88 i	ñ i	\$ 8 6 6	<u> </u>			5.2	S.	5.11	.	g n	r. 7	ğ B	6 18	6.23	, ()	, ,	35.55	8
E PANCE	FAN 1	DEG K	287.7	282.73	SB1.69	279.Q	32. H	Sec. 00	23.5 20.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5 3	13 13 13 13 13 13 13 13 13 13 13 13 13 1	₹5.10	237.93	230.90	5¥.¥2	219.63	S S	215.10	213.80	211.69	210.11	203.4 2	20a. £0	210.33	<u>ج</u> 8	213.55	215.23	216.86	218.57	250.36	221.81	223.50	85 83 83	227.55 50	228.95	234. 3 8	23.65 6.65 6.65 6.65 6.65 6.65 6.65 6.65	5; l	R 8		3	P	98.98	366.30	265.30	263.33	36 36 36	369.6 8	25.1	8. K	248.23	₹ ?	3.8 3.8	235.35
SAND MISSIL	SKEKP	1	60	- 19	ĸ,	L#	Ŋ,	0 7.	3		į.	97.	9	#	χ;	Ω	96	10	<u>z</u> ;	<u>.</u> 10	<u>6</u>	- 33	ις - '	7	ዳ •	12	9	8	. i.5	91.	91.	55.	M¥.	5	8	si s	P . (3 8	ė f		ล้	2	X	15.	5	,	MJ.	,	Ğ.	ጽ:	. OS	۲۰.۶	. 36
MHITE S	S.0. P	₽.	このこ	5.152	4.8017	4.5659	£.8917	£.5563	6.1532	6.4478	6.9417	6. ¥3	6.0275	5.6001	4.9206	955.3	3.35%	5 .6268	2.0319	1.5716	1.2165	·9437	7516	.6160	86. 86.	.4550	82 i 3.	. 3803	- 1	. 3383	. 3202	.3070	28 03	7455.	.1883	6191		1411	9050	. 1991.	300	5	.0352	. 0286	.0231	.0183	.0150	₹.	₹ 600 ·	1200.	5920 .	. 0053	. 0045
• 722696	EA P	9	015.2000	900.6700	874.1100	798.3900	705.7100	621.8400	F6.2900	478.1200	¥16.9500	362.4000	313.4800	269.9700	231.6700	198. RSS	169.2800	154.4400	123.2200	104.8800	69.1930	75.8250	64.4930	¥.820	46.8500	40.0100	¥.2110	23.2710	35.0940	21.5320	18.4960	15.9060	13.7240	11.7970	80 S	6.6166	190 v	3.8121	2 1	7755	97.7	05.40	\$010	.6293	.4882	£ 15.	<u>8165</u> .	2246	. 1718	.1316	- 100	. 0769	87.80
STATION	7																																																				

TABLE II-4. THERMODYNAMIC STATISTICAL PARAMETERS

APRIL

Q 980W	8		Š	ķ	#25.	, do	6	403 .	-10 1		965	e i			8	718	8	Se	.99 999	16	%	ŕ	Ç i		יי א ני א	. 600	9	8 2	Ķ	Ñ	127.	127.	127	<u>.</u>	. 2	<u>.</u>	ĕ	<u>K</u>		<u>.</u>		<u>.</u> 8	ė	ė			ć	<u>;</u>
N085 ↑	Ş	i g	Š	ķ				403.	+01 .	101	336 366	ž	360	35.	. <u>.</u>	312	200	ē	98	æ.	ģ	ν, V	Ċ	250.	215.	ė 8	B	9 2	ğ	Ä	ā —	<u>.</u>	<u>.</u>	<u>.</u>		. <u>.</u> .	121.	152.	<u>.</u>	L			ġ á		. 0	i a	i R	;
9 SBON	Ş	60 70 70 70 70 70 70 70 70 70 70 70 70 70	£29.	£25.	425.	20 s	, 66.	403.	105		396 396	\$8¢	383		. 4		200	281.	990	7,52	246.	, Š	Š.	220.	215.		<u>.</u>	9			rc:	127.	Ē	<u>.</u>	6 %	ė kė	ĸ	ž	120.	6 :		. 98. 88.	gi a	ė t	ć t	?	ý <u>a</u>	<u>.</u>
SKEN O	ě	5.	5	8	Đ.	ų, g	2	E1.	31	78	 	-1.03	٠. د د	5 d		, 4	₽ .	61	=	٤٤.	Ķ	æ.	*	χ.	8.	75.	<u>.</u>	50:-	- 9			51.	01	e:	9.	2	S.	9.	-59	Ŗ.	0.	1.18	5.	61	V	7 1	ŏ.	
S.D. 0	5000	72.000	₹.0500	14.8600	10.8700	7.8000 F.4670	5.1510	4.6280	4.7730	5.1980	5.7450	6.8050	7.9790	0515.7	10000		2000	2 2790	1.7390	1.3830	1.0800	.8373	.615¢	1715.	4325	.3719	330	.3040	0//0.	1175	25.55	.1928	.1562	87.	.1063	. 0.43 5.850		.0359	₹620.	.0233	.0193	.0169	.0131	5010.	.0066	C\$00.	1500.	eron.
HEAN D	5E/5	191.0000	056,0000	976.6000	689.9000	805. 7000 728 5000	656.4000	590.1000	529, 1000	472.7000	420 4000	371.4000	325.5000	279.8000	205 2000	2000	0000.571	127 8000	108.3000	91.4200	77.3500	65.5200	55.6200	47.2800	4 0.2500	¥. 3300	29.2600	26.9500	3100	14.5700	7:19.F	7020	5.4590	4.0880	3.0920	1.8570	0005	1.1020	.8623	.6770	.5318	9917.	33.	£.	± 61.	. 1531	. 1183	<u>5</u>
SKEH 1				3 5, 1															_													_																
S.D. T	2 G			₽.4	16.E	7 F	2	3.08	88.	5.67	2.5	8.50 50	M M	<u>.</u>	2.50	<u> </u>	S 8	R đ	72.5	2	2.73	89. 88	8.8	2.76 5	2.73		P. 61	(X)	ร :	2 S	, (0	£.33	4.3	8	8 i	Z 2	3 2	. F.	3.69	4.31	5 .10	4.70	ķ	æ.	9. 9.	9.16	E	12.65
E RANGE MEAN T	¥ ;	£ 2	26.56	₹ .9	276.67	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S	69.69	7.1.2	233.96	226.87	220.57	215.45	213.96	2 2	216.07	210.75	20.50	210.5	21.0	\$ \$	216.16	19.713	219.63	221.10	222.50	254 . X	226.43	668.18	2.05.0 2.05.0 3.4		246.40	S	257.06	362.18	8 9	200.	269.69	268.14	265.88	362.53	259.83	256.49	253.09	248.27	54.45	239.35	234.50
AND HISSILI SKEH P	•	9.	9	×.	.03	2	, i) F	4.	9	23	06	.05	6 <i>i</i>	₹ i	ָנֻ נַּ	<u>.</u>	9	i 2	į X	R	.30	ĸ.	8	ē.	01	60	91.	e S	₹. ₽	<u> </u>	; ×;	ĸ.	£4.	F. (95°	§ 5	1.6	67.	. 70	٥٢.	<u>.</u>	.67	99.	35	=	90.	3
S.D. P	₽	7.1256	4729	4.1222	4.0973	C (C :	0047.4	7	4.3722	4.1436	፠ፙ፠	3.3517	2.7623	. 2. 683 . 5. 683	1.7826	Y	1.1427	7 20 C	939.	6	889	5754.	.3936	.3651	.3383	.3165	. 2 8 25	₹92.	8	.2380	1503	1398	9111	.0885	.0714	1750.	8 6	70%0	9,50	.0200	·016	98 10	.0113	.0093	. 0065	5,00.	.00 J	.0031
- 722696 HEAN P		0000 110	H71 4700	799 0900	707.6600	•	0000	0000	00+7-99		273 T700	235.1000	201.2600	171.7800	146.5200	3300	106.3000	36.4130	55 4400	55. 75. 55. 55. 55. 55. 55. 55. 55. 55.	47.5820	40.6480	34.7880	29.7950	25.5470	21.9270	18.8+00	16.2150	13.9590	0.0910	5.0434 5.0434	5.1620	3.9359	3.0153	2.3278	8,08	100	9	9,93	5169	6004	3105	.2394	. 1839	90+1	3701.	.0813	.06190
STATION		_	2 6	2.000 2.000	3.000	.000	000	9.00	000	000.6	10.000	11.000	12.000	13.000	14.000	12.000	16.000	17.000	900.00		51.000	22.000	23.000	000 Z	38.000 SE	36 .000	27.000	28.000	29.000	30.000	000 :	36.000	38.000	40.000	42.000	000.3	700 CO	20.00	52.000	000 A	56.000	59.000	60.000	62 000		66 . coo	68.000	70.000

80		ţ	ķ	487.	+86.	ę Ś	28	9	Ċ.	472.		. 6	9	, r	;	. 405 105	393.	ē	316.	305	R.	86	276.	276.	ri Ri	ė	į	. 600	26.	X	111		139.	138	1.58	138.	<u> </u>	. S	9	2	S	Į.	133.	89		5	.08		Ž.	ĸĊ
2004	}	Ŗ	ţ	£87.	-686 -	ģ.	8		Ċ.	24	472.	Ş			<u> </u>		ğ	2	316.	305	236.	86 28	236	3,9) (è i	ý K	į	ei S	i ė	<u>.</u> <u>1</u>		1.2	150	149.	149		<u>.</u>		2	<u>i</u> 3		4	P	ĸĊ	113.	š	9	.7.	ĸė
a yau		ž.	£55.	487 .	989.	+85.		. 189	475.	472.	472.				,	. 131.	10.5	2	316.	305.	% %	98.	276.	<i>21</i> 6.	36	œ K	9	€30.	<u>.</u>	į į	į	ģ <u>\$</u>	ğ	8	3.	<u>8</u>	<u> </u>	38	<u> </u>	2 6	. 2	ķ	133	82	1.0	5	.08	59	ţĵ.	ĸ
מעה		.0≥	.03	90.	3	99.	.	9 , 1	e i	07	8.	34.5	2 · ·	19.1	7		. 1		6	8.	64.	3 .	÷.	20	.20	.17	S	60	05		- 5	, i	, ā	202	20	55.	19	5	75.			<u> </u>	, g	g	.87	78	.87	1.07	1.16	54
c 0	0/H3	43.0400	27.0000	00₹0. ₹	14.4300	10.6200	7.4830	5.3200	4.3480	3.5550	3.3570	3.4100	3.7940	4.5070		0,50.0	6.5550 1.6560	0480	3.3100	2.6970	2.0470	1.5610	1.1770	1 668.	4489.	8.95°	.4728	.3765	ž.	2062	Ç 8	PROS.	- CR05	1580	1390	.1035	5180.	.0670	. 0527	7850.	7150.		99.0		110	0000	.0083	0000	. 3059	.0026
24	G/H3	157.0000	057.0000	033.0300	958.7000	976.3000	798.5000	7.₹.8000	654 B000	589.8000	530.0000	474.7000	423.7000	375.9000	320, 7000	0000	210 0000	0000	153,6000	130.6000	110.2000	92.8300	78.3900	66.4500	56.4300	47.9600	40.8300	34.8200	29.7200	25.4100	200	18.5700	10.0600	1.6620	5.5660	4.1710	3.1520	2.4050	8560	0775.	1.1300) BB.	0/60.	2001	2777	: ¥	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	9691		9560
1		_		_	_	_		_	_	_				_							_	_						_										_	_	_				_						8
•	2.00 EG K	9.6	5	6.53	£.	đ M	3.48	3.01	6.90	ب 86	đ.	9.6	2.7	2.53	23 C	9 (7 6	3 6	, c	\$6 6	8	= .	2.12	P.9	8.	8 9.∻	2.11	g N	ان 19	2.18	89. f	P &	, , ,		98	8	8	3.11	3.67	9	2. 2.	3.75	8 K	9		<u>.</u>	5 6	9	}	13.27
E PANGE	- W - C	302,50	295.70	\$	280.35	282.15	274.09	Sec. 38	≈ %	15 15 15 15 15 15 15 15 15 15 15 15 15 1	£.3	236.67	259.14	225. 1 5		25.5	70.01	7.6	20.00	800	210.69	213.06	215.37	217.22	219.08	220.93	222.73	22.58 58.58	226.33	229.19	86 1 87 1	231.75	9 9	20 M	8	557.83	363.52	3 89.08	270.75	2.12	71.17	569.81	5.99	9	0 00 0 00 0 00	k S	10 M	218.20	250.07	221.93
NO HISSIL	L KJ	Ç.	3	M	5.	, ů	57	60	63	60	B	8	3	33	66	= 1	ę a	5.8	<u> </u>	? ~	2	ē	02	. 05	07	05	3	13	15	١٤٠-	5	<u> </u>	.	y e	9	X,	; ;	S,	Ψ̈́	ij	.67	92.	ē , ;	.03 .03	56.		¥ 5			69.
ENTE S		5.973	3.7516	3.5139	3. 3.33.	3.3734	3.6682	3.863	£. 863	4.0360	3.9870	3.9357	3.7861	3.569 3.	3.13.0	2.7314	6.6715	0.00	R CO	950	7.98	6303	.5143	55.75	3855	97.A.	3149	. 2831	.863	Ŕ.	1113.	18. S	3 5	0001.	6001	2180	8490	¥150°	<u>*</u>	. 0335	. e73	83	1610	CC:0.	00.00	50.00	5000	1,00.	. מלכם המקר	. 0037
722696	1 1 1	0000 .000	0022.598	873.8000	800.9300	711.0200	529.1000	554. 7600	487.2900	426.4200	371.7300	35.5300	279.6500	239.7000	P. D. 32.33	175.3300	149.5100	0014.721	108. 5900	2007	56 6170	26.77	48.4580	41,4300	35.4880	30.4120	26 . 1060	22.4470	19.3080	16.6420	14.3580	12.3430	表现的	000	200	3,0877	2.3850	1.8516	7.4426	651	.8788	.6853	. 5333	5414.	Ž,	17.	7581	0.00	¥ 6	. 198
7																					3 8		8 8	8	8	8	80	000	000	00	0 00		8	8 8	5 8															70.000 70.000

THE STATE OF THE PROPERTY OF T

TABLE II-6. THERMODYNAMIC STATISTICAL PARAMETERS

JUNE

8	3	8	, OR	Ŕ	386.	183	ER 26	i s	, 8	Ř	8 33	ų,	13	193	201	* * *		. D.	300.	38 0.	en.	.692	ė	i i		33	, , ,	26	3.5	112.	-	180		· .		117.	117.	116.	<u>.</u>	<u>.</u>	<u>.</u>	. 0	9	2	Ę	Φ,	23.	ż
300		5	380	387	386.	387.	Fg §	¥) (8)	, M	383.	37.	13	203	Ė			301.	300.	280.	271.	98		Ċ	ė	i i		3	<u> </u>	Ŕ	131.	Ę.	ei :	<u>.</u>	9 5	Ž.	116	121.	123.	<u>.</u>	ġ	2 0	<u>.</u>	5	ģ	ģ	ż	Ė
900	2002	780	380.	385.	386.	387.	2 2 3 3 4	. y	88	38	383.	374.	500	363.	2	334		301.	300.	280	277.	269.	. 267	K	ė	ė į		261	<u>*</u>	117.	118.	!?!	E	<u>.</u>	: :		117.	116.	16.	ri (9 9	9	, e	ģ	23.	<u>.</u>
	r K	- 10	05	₹ -	.30	9 8.	₽ 7		90	.51	*	36	5.6	2 <u>4</u> 8	y 5	2		. 31	18	٠.	- 08	.	90.	80°-		BB .	9		2	6	01	8,	 	9 2	ζ 8	- 5 6	3.	<u>2</u>	1.12	<u>ن</u> ا	S, i	Ϋ́. }	ć;	ė ė	ř		5 2	00.
6	C/ H3	35.1100	21.7400	19.2100	11.5400	9.8 83	6.4070	0.00.4	4,4890	3.7510	3.2260	2.8640	Z.3130	3.4250	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5050	2000	3.5250	2.4640	1.4620	1.0350	9898	.7 6.	£.	4674	3908	3440	9,0	.2837	.2631	S085.	<u></u>	950 	. 1222	0630	50.00	88 →0.	9050.	1750.	.0275	.0221	0610.	٠. ١٥٠	7000	7500.	26.00	3500	3,00
3	6/83	143,0000	043.0000	019.0000	945.9000	865.0000	789.3600	0000 679	585.3000	526.4000	472.6000	423.0000	311.00uu	333.4000	292.4000	219.8000	2000	159.0000	133.7000	112.1000	94.4400	79.7700	67.6300	57.4500	48.8400	41.6100	35.4903	3 5	22,2200	19.0600	14.0000	10.450	7.8910	5.7340	25.5	2005	1.9100	1.4840	1.1580	903B	.7165	6296	619	8 8	נטיס.	3013.	3	9360
																	_	_	_																													3 0
6	- ¥	2	, z	5.28	3.43	W. 13	رب در د	9	2.70	2.83	8.9	2.91	3 5. √	% ₩.	3 K	8 5	5 8	98	Į.	1.87	<u></u>	1.71	07.1	 	9 8 1	ያ (-	5.57	9 6	9	2.6	8.3 8	<u>:</u> ;	3.15	3.93	8 5	6	-	5. B	£4.43	18	4.46	 	₽. 9.	⊋ y v	, , ,) i		15.53 19.03
F PANGE	DEC K	205 44	239.01	297.50	20.33 33.33	28 5. £	278.45 54.65	K 14		68.69.19	<u>ج</u>	234.13	226.73	220.05	214.78	8.100	1.000	205.23	208.19	211.14	213.70	216.07	217.99	₹.6.5	221.88	223.68	2555 57. c.s.	228 85	230.31	232.19	235.98	13	2.6 3.6	8 6 8 6	i i	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	269.90	271.33	<u>2</u> 3	269.05	266.23	262.18	28 28 38	£ 5		ני יארט פר ארט	27.0	222.16
SAND MISSIL	X E M		20.	=	09	23	 	0 - 1	= =	60	=======================================	<u> </u>	17	15	i,		2 6) F	100	90.	60	51.	6	8	8.	<u>당</u>	6. :		9	33	ij	;; ;;	.87	1.07	0		1.08	8.	ĩO.	.78	ţ.	8	¥.	e e	ñ ĉ	ŧ.	9	Ħ,
MATTE S	L 	× ×	3.5365	3.3081	3.014≥	2.8 085	2.9805 4.9805	3.0036 7.007	6050	3,0833	3,1557	3.1982	5.1935	2.9730	2.7543	C 2183	1.076	1.0305	Ď.	.6338	.5501	£605	712h.	. 3739	. 3396	100	. 7.38 8.39 8.39 8.39 8.39	2000	500	Š	. 1613	350	. 1052	. 08+3	.0713	5 6 6	1020	.0334	.0277	.0229	.0189	.0160	S 28	5010.	0000.	9,00	5000	1500
• 722696	£ 9	מטטג אטטט	898.8600	B73.7000	801.7900	713.0300	632.1400	256.3300	2002	776.9700	328.0700	284.3500	245.3700	210.6200	380.2800	133.7530	130.0300	1300	79.8850	67.9530	57.9230	49.4730	£2.3200	36.2670	31.1030	26.7140	22.9750	13. /850	14.6910	12.6860	9.5058	7,1553	5.4273	4.1392	3.1747	90.00	1.4839	1.1553	.9017	750T.	55.35	<u> </u>	8752		200	C041.	B 1 2	.0617
STATION	√ £	2	•		≥.000		• .000 • .000		20.00	000.0	900				13.000	14.000	000.51	12.000	18.000	19.000	20.000	21.000	22.000	23.000	00. %	C	26.000	80.5	200	30.000	32. co	33. 25.	36.000	38.000	2000 2000 2000 2000 2000 2000 2000 200	200	₩. 000	4e.000	50.000	\$2.000 \$	000. Z	26 .000	59.000	60.000	000.00	000	000.000	70.000

TABLE II-7. THERMODYNAMIC STATISTICAL PARAMETERS

JULY

0 S80W	Ē	Ē	353.	23	Ŕ	S	100 F	ņ ç	, ,		š i		· •		ន៍និ	308	112	é	92	Ŕ	Š	Ę.	236.	Ž		212.	36		. 91	<u>.</u>	102.	. 26.	105.		0	2 2	. 101	103.	103	105.	8	38.	ĸ;	S	. 92	20.	Ŗ, X	j ā	<u>.</u>
NOPS 1	122	32	353.	353.	ž,	y y	<u>,</u>			6. 1	5	j.	·	. 258	5 8		140	i k	%	193	₹9.	ž.	236		į.	212	<u>3</u>	<u>.</u>	<u>.</u>	. :	· M	=	112.	<u>c.</u>	. 10	= :	- <u>e</u>	103	Š	107.	Ē	ē	26	93	86	đ:	÷ {	ė 9	ē
NOBS F	123	122	353.	353	ņ	ខ្លុំ	6		5 (gi e M	4	1966 1			, 50 K	9 8	5	X	265	255.	2 8	25.	236.		<u>.</u> گ	212.	26	<u>.</u>		<u>.</u>	. 9	101.	105	ij	5	20.	5 5		103.	102.	.66	8	Ŕ	89	9 .	90.	Ri (ភូទ	Ď
SKEN D	9 8)	10.7	39	90.	5 0.	S	Ç,	Q !		=1	15	Ņ,	9 7		y 9		: X	و ب	S.	\$.	ĸ	<u>*</u>	22.	Ķ.	.15	ē.	9	<u>*</u>	S 8	6.0	00.	; ;	.53	9	90.	6.	. 62	3 9	2	.67	.97	& .	9 <u>;</u>	30	55.	55.	69.	6	4
S.D. D	18 EBC0	16.0500	14.1200	9.6160	6.9.10	7,000	3.3630	3.3960	2.5450	2.6440	2.4076	2.150	. 6160	0807	- C	C.C.	0901	2000	1.7320	1.2960	.9255	.7842	.5965	£464.	4314	3885	.3593	8 A.	, y	<u>.</u>	Ç X	2071	1629	1747	1611.	.0763	9000.	7,00	0366	0326	.0267	6610.	.0158	.0135	٠ <u>. 10</u>	2600	.0071	.0067	c 900.
FAN D	139.000	0000 7 40	1017.0000	946.3000	B64 . 2000	788.2000	113.9000	646.8000 70: 0000	281 8300	523.0000	469.8000	421.4000	377.5000	336.0000	0009.762	2000	102 5000	163 2000	136.3000	114.1000	95.9000	80.8300	69.5200	58.2300	49.5800	42.2500	36.0700	30.8300	26.5700	66.6500	0000	10.4900	7.8070	5.612U	£.¥20	3. 18. S	2.4950	1.9160	1580	9080	7120	888	. +360	3405	.2651	. 2050	0751.	. 1.85	. 0893
SEE T	. 67	1 65	_	_	ė.	_		 				<u>ب</u>	60.		,		3 5					_									 				_		= 9			} =	9	ĸ	Ŗ	ن.	_	33	_	91	B
S.0. ₹	8)() S	3.88	2.80	8 N	 E 1	1.5.	6.	7.47	1.53	8 8	F.1	 8	י ב	R (3 8	3 8	6.	8	12	38	22.1	<u>a.</u>	<u></u>	33	1.67	. 78	88 	1.93	R S	3. F	4.53	£ 5	8	5.88	4.63	9 (Ç 2	RS	3 6		9	6,50	7.13	8.58	10.76	12.34	15.06	18.27
	20 S	8 6 8	K.	254.72	287.40	279.88	272.73	24 1 24 1 24 1	260.30	253.72	246.50	238.89	230.95	61.160	215.71	20.50	H :	203.40	20.70	210.51	213.39	216.19	218.38	220.13	221.77	223.41	83. 83.	226.76	9 €	230.11	232.38	25. 25.	80.35	2.6×5	255.09	259.85	20r. 10	, s	9	1	. i	3	10.40	269.03	243.61	238.97	233.77	232.01	225.60
SAND HISSILE SOCH P	X	=	=	22	94.	6±.	R 3	20	٠. اې	- 10	\$	05	07	Ç:	71.	ý,	9 6	Ġ Ł	غ ج	9	13	70	3	.07	99.	 10	E 1.	50.	.03	2.	3 5	R &	1.33	%	1.03	1.21	1.17	<u>.</u>	è 8		<u>.</u> 8	Ŗē	ę	<u> </u>	78	8	ĸ.	2	8.
S.D. P.	1587	2 5363	2.4019	1.88.1	\$ £ 8.	1.4646		1.3965	1.3870	1.3658	1.4149	1.4126	1.4285	Calca -	1.2927	56.5	9050	1986	5157	2	164	E 103	36.20	. 2231	.2953	5.92	Ę,	. 2213	1102.	1920	8 .2.	15/11	1220	6001	. 0855	₹690.	6 90.	3		X 500	000n	5 6		51.0	600	6200	0900	0900	.0057
• 723696 FEAN P	מטטל פטטן	901 5900	876.5790	BO4 . 7200	715.9900	635.2430	561.7700	495.2300	435.1200	381.1400	332.5700	0080 682	250 7.60	215 1990	104 +300	0091.761	133.4600	16.3360	0100.00	69.00	202	50 1500	42.9260	36. 7920	31.5590	27.0970	23,3010	20.0650	17.2900	14.9450	12.8120	7 2100	5.4616	15.61.4	3.1769	2.4467	9316	1.4583	٠. ا ا	3000	7.00	0.6	7	 	i G	3	1051	. 0786	. 0578
₹	5					2.000		_						ر در ۲	13.000	000	13.000	16.000		000	20.00	200.15	22,000	23.000	000 · ₹	%.80 %	56.000	27.000	50.000	29.000	30.000	200.2	300	000.00	\$c.000	000 a⊁	D00 . 34	200.94	200.00	20.00	000.	000	56.000	20.00	200.63	3 3	96.000	69.000	70.000

A STATE OF THE PROPERTY OF THE

TABLE II-8. THERMODYNAMIC STATISTICAL PARAMETERS

AUGUST

O SBON		Ë	Ė		ė į	376	Ë	372	98	367.	ř	×	Ři	ន់ជ	ġ;	į		: 5	į	ė	B	ė	19	į	, K	Ā	213	96	186	₹3.	107.	108	. 62	9 9	. 201	107.	106	106.	<u>.</u>	6	103	50.5	<u>.</u> 8	Ė	ž	5	ę ę	8	ż	
NOS 1		E.		378	2.4		Ę,	372.	38	367.	36	<u>3</u>	Ř	ន្ត	y Y	36.	, 1	÷ {	Ė	ė	Ė	ė į	8	ė r	Ŕ	Ā		8	96	143.	113.	<u>.</u>		<u>.</u>	<u>.</u> .		-	118.	601		8	. 197.	<u>6</u> !	<u>.</u>	<u>.</u>	; g		æ	ā.	
N085 P		375.		57B.	378		375.	372.	368	367.	364.	362	9 <u>.</u>	i S	i S				į į	Ė	ė	ė	E	, r,	į		214	138.	182.	143.	109.	110.	<u>a</u>	108	9 5	107	901	106	5	20.	103.	103.	. 6	gi e	i a	. 4	ğ ç	Æ	<u> </u>	
SCEN D		ā,	. i	D	0.10	60	- 15	18	8 1.	60.	. 17	.05	90.	9.	53	3 (9.5) ()	ë :	5 !	<u>C</u> :	ē :		9 4		i K	9	<u>*</u>	<u>*</u>	60.	3	: ::	60	 	7.5	\$	89.	ŧ.	Ŧ,	8.	<i>LL</i> .	B :		9. g	7 0	6 - 9 -	2	89	
5.0.0	6/H3	29.1000	17.8200	15.4900	9.5840	4.3130	3.2800	3.4010	2.8190	2.6520	2.4640	2.2950	2.1980	2.1500	2.4270	2.7250	3.0350	Z . 8480	6.4700	000	ટ્રે -	87.68	7085	7 i	12.01	C024	× 5	5964	54.5	.2367	.3633	.2789		5771.	. 1206	2000	989	.0567	.0463	.0386	1520.	.0260	.0501	0110.	200	0000	2000.	600.	5,00.	
E& O	G/H3	144.0000	045.0030	051.0000	949.0000	790.000	716.4000	646.0000	591.0000	522.4000	469.2000	42n.7000	376.7000	335.2000	297.0000	260.6000	2005	193.0000	162.5000 163.5000	135.5000	0008 511	25 7500	80 .8800	E8.E000	0000	0000	1000 A	30.8000	26.3400	22,5600	19.2200	14.1100	34.5	7.7590	5.7660	2000	ייים הקאור הקאור	1.88+0	1.4570	1.1320	. 6823	5893.	. 5397	. 4205 6054.	S 1	Ç i	P 0	5001	. 0873	
SCEN 1		_					_				_	_			_																																		65	
5.0.1	× 930	69.9	8	. s.	2.83	- 1	3	1.53	1.57	1.71	<u>-</u> 8	96.1	98:	£6:	1.70	1.57		8	e. 33	C i	R :	28 1	2	P :	2 0	n •	7 9	9 6	8	2.00	in R	3.11	;;		9 9	- q	9 g	Fi	£.	4.63	98 3	8; •	Į.	6.49 64.9	7.03	2.43	<u>2</u> 0	0.0	13.16	
E RANGE HEAN T	X 930	304.77	238.61	297.10	293.72	3.65	272.12	266.17	260.13	253.47	2.6.3 3	7 65.0	230.95	223.12	215.87	SC9.68	205.03	203.63	20. 58 30. 18	207.08	20.5	213.59	215.88	51.713 51.015		5 6	20 € 100 E	200	25.7.5	225.16	230.36	234.41	63e. 14	8.7	18.9 18.9 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	3.3	3	265.43	264.89	263.81	661.39	228.03	. 75 10 10 10 10 10 10 10 10 10 10 10 10 10	13.00 10.00	R (£ 5	637.55	229.23	
UND HISSIL	! ,	54	١٤٠-	<u> </u>	90	5 6	- 07		61.	23	, 133	3	64.1	\$ 5. 1	K	₹.	 	- 06		.03	-	z.			<u>n</u> u	2 :) ()	7 6	5	5	21.	<u> </u>	Ŋ	3 2	8	2 -	5 2	1.13	1.17	1.83	1.31	<u> </u>	35	æ. -	9 :	٠. ا دا :		ñ.	, R	
S.D. P	2	4.2804	2.7623	2.5850	2.1728	66.24 67.44	1.8453	1.7956	1.7683	1.47.1	1.7830	1.7505	<u> </u>	1.6512	1,5661	1.3969	1.1793	9. 2.	.7335	. 5068	5168	.4617	. 3963	35.6	0015	<u>.</u>	52/2	, y	6.5	1857	.2332	1681.	9.07	¥7.5.	0201	1000 1000 1000 1000 1000 1000 1000 100	6070	17.	.0395	. 0322	. 0262	,0214	.0178	.0150	.0127	8600.	9700.	B (100)	. 9037	
- 722696 MEAN P	2	0003.6000	9019.106	876.4100	804. X200	0000.017	560, 7900	494, 3000	£34.2900	380.3800	331.9000	289 4700	249.6900	214.7000	184 . 0300	156.8200	133.1400	112.9100	95.4930	80.9780	68.8570	58.7090	50.1210	42.8810	30630	1	27.02.02	19 0800	17.205	14, 8380	12.6980	9.4917	7.1332	5.80%	4.0842	5 173	C. 3337	90.5	9601	198	.6683	5175	338	3075	. 2360	.1793	1357	C 01.	.0573	
STATION																																																		

TABLE 11-9, THERMODYNAMIC STATISTICAL PARAMETERS

SEPTEMBER

MO85 0	Ċ		į	; F	373	31.	.697	1963	9	ž.	69	339.	É	Ř	3 4	j k	9	. 10.	8	Ŕ	. 67.0	X	265	100	80	35	227.	218	211.	158	139.	Ξ	Z.	Ç	7 :		1		143.	145.	55.	0 1	133.	131.	. 20	109.	e e	6 3	·	1
¥ 580×	£		2 6	÷	373	371.	363.	363.	%	26	8	359.	125	Ė		9	ģ		, 8				É	ž	Į.	£	227	2.8	21.1.	<u>8</u>	<u>%</u>	150.	<u>*</u>	. 23				9	. . .	69.	147.	167.	139.	<u> </u>	ž.	13	8 1	ន់ទ	•	
A SBON	į		į	; F	37.8	371.	369.	363.		362	365.	359.	355	M	351.		9		5 8	i d	. 6	9		X	3 %	Š		218.	211.	28 28	<u>.</u>	142.	<u>.</u>	<u>.</u>	4 ! 3 :	<u>,</u>	<u>.</u>	3	143	<u>.</u>	7 7 7	140.	133.	<u>.</u>	<u>શ</u>	.00	8 8 1	20	•	31.
SKEN D	ě	9.	: 6	Ç ē		Ñ	.05	ř.	39	.07	٦.٤	91.	- 50	55	Ç	7	Σ Σ	ζ:	- 0	<u>.</u>	C .	0	D 0	9:	- G	3 =	2	.0] =	<u>*</u>	.99	55	05	€0.	::	Ŋ,	8. 5	è F	ń	8	ķ	15 7.	55.	.67	6 9.	.55	57.	89 °	95	.05
S.0. 0		מינים כר	20.00.00	20.000	F 0.10	5.1450	4.9350	4.5340	3.6930	3.6080	3.2430	2.9710	2.8310	5.8850	3.5970	4.6760	£.3110	3.7050	2000	0.00	0164.	UC90. I	9081		1986.	6 F	1001		57.0%	.2657	3558	£.	.2093	.1769	Bio A	. 1239	280	26.00	100. 100.	0389	.0329	0.0270	.0209	.0190	9410	6110.	.0100	.0075	.0066	0400.
O NATIO		168.0000	0000	033.0000	827.4000	793.7000	718.2000	E47.2000	592.6000	524.3000	470.6000	42).2000	375.5000	332.5000	29.3.5000	235.5000	252.5000	190.2000	150.9000	0000.53	12.5000	54.7100	00:0.00	2007	00.00.70	0000	36 6300	30.000	26.02	22.3200	18.9100	13.9600	10.3000	7.6470	5.6335	1.2330	3.170	20104.5	0000	1.1010	£98	6740	583	6014	712.	Ķ	1949	. 1505	17.11.	.0832 26
SCER T	,	5.5				9																															_								_		.25	_	_	_
S.D. 1	ָרְ בְּיִר	2.73	8 9	8 6	R 12		6	2.0	N.	2.60	8. 3 8. 3	ان. ائ	2.5	≥.00	1.78	8 <u>.</u>	6.40	9	. e.	8 !	S 17	8	8	8	ħ.	= £	2 (d 2	5.0	7	2	8	W	3.51	. i.	3.88 3.88	IÇ i	Б. М.:	5 3	g	9	4.73	8	57	6,63	6.87	5.0	16.7	12.20	12.71
E PANCE	200	R F	<u>ም</u>	5 i		25.5	40.7	8	8 70	80.00	73.53	25.06	228.83	222.11	215.77	20.05	25.58 198	\$₹. •2	204.50	5 C	₹.05	23.2	3. 3. 3. 3.	17.21	8.8	2 S	¥ .	5 i	ē 8 Ç X	3 6	1 5	233.20	4	20°.3	₽.c.	₹ ₹	56.93	~ i	8 5	: g	1	, e	5	6 K	6 7 10	7 O.V.	103	38 3.	236.23	228.45
SAND MISSILE SKEM P	;	8	9	7 , 1	<u>.</u> ب	* *	7.7	5	9) ~ •	Ж	38.	r.	S	T .	ž.		60.	5	. 0	S.	=	ů.	9	≈:	S. S.	D	<u>.</u> ?	ķ	i s	ع بَ	K	ទ	19:	Ξ.	.83	Si.	8.	۾ ڊ	3 5	3 2	; &	Ş F	2		3 2	6	.67	2	2.
S.D. P	e i	20	3.5235	2.2678	2.6389	01410	2 2	Ž,	200	100	5.5.28	8	£ 85. ℃	2.3711	2.1709	61.59	0467.1	1.1520	99-ke	. 7218	.616¥	ም .	£67	X 3	E104	9	H !	B (66/2	1010	iscy.	7916	1780	247		.0356	6270	.0637	52,9	7 1 1 1 1	1000	3	3.2	50.0		2	7653	55.50	OLEAN MACHINE	. 0047
- 722696 :EAN P	₽	011.6000	9018 105	876.2530	803.4900	00000	558 5300	00000	0000	177.5533	K.e. 9500	285 4850	2-6.6300	712.0000	161 6000	154.8100	131.5100	11.4103	8.83	25.98.35 25.98.35	68,0050	57,9660	49.4910	12,323	80 £	30580	55.50	22.9.10	39.70	0606.91	20.0	200	5 6	5.285.2	£100	3.0512	2. ¥ 12	BCC8: 1	3558	C 1000) C. M.	5000.	200	1 ACT		1	1368	\$+01.	900	.0585
STATION								90.4	200	200	000	10 000	000.11	12.003	13.000	1.000	15.000	16.000	17.000	1 e . SC)	19.000	%	51 . 000	55.000	23.000	60 1	3,00	90.90	27.000	9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.5	56.00	3 2	18,000	30,7	FC. 000	4≥.000	B4.000	₩6.000											70.000

TABLE II-10, THERMODYNAMIC STATISTICAL PARAMETERS

OCTOBER

= 722696 HEAN P	WHITE SAND HISSILI S.O. P SKEW P	HSSILE (EM P	RANGE HEAN T	5.0.1	SKEN 1	HAS O	S.D. D	O HOO	NOBS P	N085	9 S80 N
¥		;) (C K	X 900	:	G/H3	0/H3	9	931	3	7
7,3336		ខ្លួ	£ 63	.÷. 6	= =	1203.0000	29.5000	? =	356	<u> </u>	ġ ś
יים אין	•	3 2	3	6.13	2	1658.6630	25.4800	60	374.	ř	ĥ
3.6329	,	3 <u>m</u>		<u> </u>	. 69		15.3790	99.	37.	ķ	ķ
3.4152	'	8.	69.67	3.51	-i.05		10.3700	.83	373.	173.	573
3.4065	•	6 ,	23.35	3.01	₹ †		7.3050	75.	371.	1	En 8
3.5769	•	8	S S		9.		0.00		. 503.	165	i k
3.54cd	• •	9	e 4	9 2	8 4		6.6260		i M	363.	; <u>F</u>
3.5316	'	92	\$ KO	8.	ξ.,		4.5570	07.	363.	363.	363.
3.370	•	ß	38.98	€.9	ð		4.7830	85	359.	359.	359.
3.2553	•	ž.	231.23	đ, ni	5.		€.7600	-1.02	353.	333	353
3. be30	•	ŗ.	254.43	è. 16	ij		4. Bacc	(4)	.	yi ı Fə l	ei e F. f
2.6672	•	9.	218. 66	ě	17		5.1820	5.75	i i	ė į	į
2.3233	•	17	214.00	% ~i	ж. :		5.5540	<u>α</u> ;	337.	337.	
1.9340	•	9.	210.23	3.08 3.08	04.		5.3540	6 0.	354.		854.
23	•	- 12	54.705	2.93	5		. 6960 	3 .	ž,	y s	y c
2022 2025	•	思	206.11	88 1 ni i	2 8		0940.	B. 6	6	2 2	900
36. 24.	•	N.	20e . 38	S	ç.		20.00	9 6	į		Ė
8 i	•	٠.	207.50	8 8 Ni (5	ė č	į	2
.6572	•	6	210.23	, i	7.		0600.	- 6		Ė	
2887	,	5 t	212.57	3 5	<u>.</u>		200		: 1		X
5155.		ខ្ម	214.57	<u> </u>	ָּבָּ בּ		3 4	3 8	: X		98
C #		<u> </u>	96.0		. =		51.46		į	į	
1000		2 9	5 K	8	60		5893	ĸ,	Š	9	7
35.55		X	220.0E	2.10	સ		52.96	16	236.	236.	236.
8		ĸ	222.19	2.17	€.		£ 44.	₹1.	<u>ج</u> چ	گ	₹
2002		R.	223.57	2.21	8.		3714	8.	207.	207.	207.
9992		m	224.51	3 .0			- (*: (£0.	207.	. 60.	. 60
.2267		~	23.83 19.03	S. 3			9 :	50.		. 1	2
Z .	7	= 1	228.45	, w	E :		ָרָ בְּיִּרְ רָי	8 8		7 3	· 2
<u>ر</u> بر	•	8	231.14	3.1) -		8055.	60.1	. y		. 4
	•	. 1		<u> </u>	? #		1000	90-1-	Ē	, ,	3
101.	•	9) () ā		1580	6.	37.	14.	137.
		3 3	3	4	Š		<u>%</u>	23	137.	* *	137.
1260		۶۴ ب	955.81	4.73	,		6101.	33	137.	<u>*</u>	137.
1970.		Ľ.	12.132	87.5	23		£ 480.	5	<u>.</u>	<u>?</u>	13,
8290.		87.	SS5. 38	£,	Ŀ		.0689	9	<u>.</u>	m j	Ē.
.6512		<u>چ</u> .	36. 36.	و ر			¥750.	. 20	36	<u>.</u>	<u>.</u>
Ø: 50		S.	268.93	G	'n		0469	<u>ي</u>		Ė	<u>.</u>
.0330		.33	265.78	4.67	.50		.0369	<u>.</u>	<u>.</u>	<u>e</u> !	×,
1750.		Ņ	363.13	Si Si	1.7		7620.	30		!	
.0221		₹.	280.03	5. 80.	X.		0. V.	9 9	ž į	<u> </u>	Ċ
5 0.		8	χ. :Υ	ž Ø	33		5050.	≥ ;		<u>.</u>	
.0152		₽.	g	හි ය	31		.0:65	برج	-	į	- :
٠ <u>.</u> ج		۲'n	250.59	7.56	ŧ.		.0137	. <u>.</u>	. 6	9	. 6
6010		Ę.	\$ 90	Ř.	<u> </u>		.0117	ę, ę	nó ng	5	. 4
.0080		5	2	8.21	80		9900	00.		: p	Ş
. 0063		Φ.	237.38	200	 		0000	ī, ř	ġ <u>9</u>	<u>;</u>	5
9530		ē	230.48	3	Ŗ		2000.		T	į	<u>:</u>

TABLE II-11, THERMODYNAMIC STATISTICAL PARAMETERS

こうして 金貨の さんので 重要な人のの 医・胃な アイ・ドラ 単なないが

ř.

NOVEMBER

1		i	<u>بر</u>	ė L	303 303	20	e Pa	ē,	2	Ŗ	5.	Ė.	370	ġ	ģ	ខ្ល	339		: ;			, d	, e	200	227.	217.	308	8	199	.171	<u>.</u>	103.	E	<u>.</u>			. 2		36.	135.	135.	E.	133	X :	3 5	ė :	<u>.</u>		ė	26	X '	•
	6	1		ę.	393.	393.	à	391.		Ā	ج د ا	ř.	9.5	8	525							Š	ž	2	227.	217.	20B.	20€	661	. 171	<u>الا</u>	103.	5 7		<u>.</u>			3	<i>ž</i>	145.	ž.	<u>.</u>		<u>.</u>	137.	133.		<u>.</u>	6	Ś	į.	ĵ.
3	S		379.	379.	393.	393.	395.	391.	390.	8	375.		370.	ġ	2	10 }	339	X .		i v	, K	, a	Ž	200	227	217.	208.	20 4 .	199.	171	171.	103.	137.	<u> </u>	<u> </u>	<u>.</u>		Ė	9		135.	135.	133.	132	30.		19	102	<u>8</u>	63.	S.	ņ
į	7	•	₹.	.07	.07	. 69	1.06	si s	99.	y :	5	97	-1.63	00.1-	-1. 19.19	11	X a	5 6	3 9) -	1	10	2	\$.·	8	r	C*	21	- 01	\$.	CA !	07		- C	B - C) H	<u> </u>	£1.	Ŧ.	ij	.23	<u>.</u> ت	M ±	.60	.67	9.	99.	1.06	68
4	5.0. 0.0.	SE/2	21.1000	29.7000	25.8000	17.2800	13.6200	10.0200	7.6700	01/0.9	5.3210	5.4290	5.5550	0896.0	6.9120	0808.7	9.1620	0105.7	0.0030	4.8630	30,70	75.75	2	89.0	200	1519.	.5513	4174.	6184	.3899	.3564	.3283	₹ 86 ₹ .	3620	.3050	6 6 6 7	P 0	9101	660	0735	1550	.0421	.0353	9520	.0259	.0216	.0178	.0153	.0133	82.0°.	.010S	1900.
į	N N	\$E/5	1 2 ⋅8. 0000	1117.0000	1086.0000	991.5000	934.6000	835.3000	725.5000	653.9003	588.1000	527.3000	+71.6000	450.4000	372.3000	327.4000	285.1000	246.1000	3004.113	0005.0B1	2000	2007	9500	0023 22	2007	55.7600	47.3000	40.2500	. 2600 W	29.2000	3000 A	21.2603	18.1600	13.3000	9.7630	2 2 7	2 2	3.5	0616.0	1.6800	. 300	1.0010	. 7816	.6095	.4761	3702	₹ 88.	. 2257	. 1728	.1330	.1026	0.056
,	- H			_	_	_	_		_		_	_		_	_	_									_		_					٠.	60.	_	_	_	_					_			_	_		_	_	_	_	_
6		2	6 8.66	6.31	ۍ 8	<u>3</u>	S	3 B	m F	9 •	 94	3.69	Ж. Н	3.67	ار ال	3.16	表 i	# S	7 1 7 1		9 6	y 0	8 8		2 %) K	67.5	60.5	88	2.69	ر. 89.	2.97	5.3	5	8	7 .c	2 S	29 H	ę y	3 5	7	6	7.33	7.68	80.00	7.67	8.57	ය. 6	۶ ا	13.36	16.16	74.70
E RANGE	- X	200	₽. 2	2. E	28 0.88	æ. .⊒æ	£.	57.07	8 18	27.73	98. 98.	243.61	236.35	559.07	222.47	216.P5	212.69	203.78 303.78	7	36.50	9 5	i k	21.010	3	¥	215.03	216.38	2.7.5	219.07	220.64	222.05	253.82	225.31	229.01	232.76	236.57	₹ ₹	\$ 8 \$ 1	R S	3 6	82.93	365.45	263.59	861.98	\$.6S	36. 87.	₹200	\$.8£	245.01	₹38.3	230.32	253.55
SAND HISSIL	SCH P		=	<u>.</u>		₹,	61	99	5	69	5	9	67	. 53	£.	4	KÇ i	2.	ę		i S	5 6	5 6	3 8	5:		8	1	₹.	8	30	8	5 ,	۴,	19	g	= 1	R;	F. 9	3 8		6	.63	5.	Ŀ.	88.	26 .	88	1.02	1.20	3	đ
SHITE S	S.D.	2	8.35.55	5.4133	₹.9976	F. 3778	. 2055 55	4.6264	4.9302	2.2608	5.23.70	5. 3. 5.	1508 *	£.71.7	1,307	8	3.0838	56.93 	B :	1,4727	200) •	7 (0.	1007	\$ 60 H	3	¥	3	0.6	210	2782	S.C.	3160	8	.2013	1591	27.	8 S	X 2	26.5	595	0396	0336	67.50	.0231	9. 36.	.0161	9.	.0105	1800	9 00.	7700
- 722696	4 S	₽	1023.1000	904.0800	877.4100	801.7000	J004. 60C		2000	₩3.3200	423.2200	369.7800	320.0000	576.1€00	237.7200	203.7.60	173.9300	148.1200	000 E	106.7400	20.00	9 5	20.00	201.6		2 S	2		000	18.4900	15.8680	13.6570	11.7550	8.7337	6.5180	Ø. 88.3	20	5. 73.39		1530	5080	7192	3.68	7	£155.	.2720	.2093	.1607	5151.	6 060.	7,67	E 840
STATION	~ 3			000.	9.7	۶. 000	3.C30	.000	900	6.000	7.000	8.000	9.000 5.000	10.000		12.00	13.000	2.000	2 000	16.00c	000.7	900	2 6	200		3 2	3 8			2,000	29 .000	29.000	30.000	35.000 35.000	900 K	. 00 m	DOD.	50.00 00.00	. v			20.00	53. PC3	000	96.000	58 603	50.366	62.000	5	66.000	FB 000	000

TABLE II:12. THERMODYNAMIC STATISTICAL PARAMETERS

DECEMBER

1LE RAVGE P. PEAN T. S.D. T. SIGH T. DEG K. DEG K. 278,99. 9,1920 I.	E FANGE PEAN T S.D. T SIGH T PEAN D DCO K DEG K G/H3 278,99 9.19 .20 1275.0000 1
5. 000, 25.11 04. 6. 05 49.29 50. 1. 1717 60. 05. 05. 05. 05. 05. 05. 05. 05. 05. 0	0.000.02/31 05. 24.19 29.18/3/3/2000.02/31 05. 20.00.00.02/31 05. 20.00.00.00.00.00.00.00.00.00.00.00.00.0
0000.5001 54 67.4 67.775 42	27.775 9.79 4.79 54.775
5.10%37 273.01 4.7147 900.9000	273.01 4.71 - 14.7 900.9000
2007, 200 300 300 300 500 500 500 500 500 500 5	0003.90 - 30 728.6000 05.135 728.6000
6.039552 255.11 4.0975 655.7000	255.11 4.0975 655.7000
- 54 247 94 4.05 - 73 589 3000	347.94 4.05 - 73 589.3000
5.611056 233.60 3.5237 471.4000	233.60 3.5237 471.4000
5.209348 226.81 3.03 14 418.7000	3.03 14 418.7000
2007 (37 12)	2000 E. S. C. C. C. C. S.
3.0280 - 30 213.11 4.52 26 280.0000	213.11 4.52 .26 280.0000
2.409926 211.63 3.66 .20 240.2000	211.63 3.66 .20 240.2000
1, P937 - 23 209.62 3.12 .42 806.6000	269.62 3.12 .42 806.6000
1,447210 238.05 3.12 .18 175.7000	238.05 3.12 .18 175.7000
55 267.35 3.41 .00 127.8000	267.35 3.41 .00 127.8000
.624926 208.15 3.0605 108.2000	208.15 3.0605 108.2000
.4963 -1.40 209.58 2.58 -1.18 91.2500	209.58 2.5818 91.2500
2.50 - 1.30 - 1.31 2.50 - 1.01 77.0900 - 1.01 77.0900 - 1.01 0.10 0.10 0.10 0.10 0.10 0.10	21.31 2.5001 77.0900
55.7 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	55.3100
.293113 215.75 2.29 .11 45.8900	215.75 2.29 .11 45.8900
255. 33. 39.8600 255. 33. 39.8600	217.21 2.55 .31 39.8600
20.000 P. C. St. St. 31.5 St. 00.50	219.93 3.12 71 29.8800
.39 221.35 3.20 .60 24.6100	221.35 3.20 .60 24.6100
0.05.01.9 17. 6.55. 5.55. 5.55. 1705.	252.22 2.66 .71 21.0300
03554.33 -4.53 -4.53 -4.53	224.43 4.53 .42 18.0300
0+09-16 +9: 12 4 54 84 84 84 84 84 84 84 84 84 84 84 84 84	268.55 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5
0990.7 65. 85.7 75.895 63. 6081	099.7 65. 85.7 75.050
57. 57. 57. 57. 57. 57. 57. 57. 57. 57.	7.57
78 250.33 8.57 .06 3.8630	250.33 8.57 .06 3.8630
0188.5 1. 01.01 15.755 88.	01.01 5.0810
.0758 1.10 263.32 9.6606 2.1670	263.32 9.6606 2.1670
1.09 267.73 8.6835 1.6540	267.73 8.6835 1.6540
.0521 1.03 269.23 9.73 .54 1.2810	569.23 9.73 .24 1.2810
3666. ►1. 51.8 33.855 38. 1×0.	2686. 11. 51.8 28.895
. 0364 . 75 . 267.06 8.45 4360.	267.06 8.42 .09 .7839
.0302 .71 253.88 7.8413 .6163	253.88 7.8413 .6163
.0245 .67 259.75 7.6713 .4833	259.75 7.5713 ,4833
.0192 .57 255.66 7.3701	255.66 7.3701 3773
8562. 80 55.9 46.155 35. 3510. (8262: 80:- 52:6 45:152
. 10.5 248.05 11.6001 22.94 35. 85.00 E.	248.65 11.6001 .2294
SZCI. 70. 40.81 17.445 SX. 0010.	SZ1. 70. 40.E1 17.445
1 .0083 .06 239.07 15.6072 .1347	239.07 15.6072 .1347
9501. 00 88.81 10.575 50 1500. 1	9501. 03 88.8860
.13 220.29 20.00 .15 .0797	7670. 21. 00.05 25.052

TABLE II-13, THERMODYNAMIC STATISTICAL PARAMETERS

ANNUAL

• 722698 • 72498	SHITE SA	SAND HISSILE	RANGE FEAN T	5.0.	3XEH 1	FEAN D	8.D. D	Q M3XS	98 9	M085 1	G 580N
	Ė		S K	000 000		5/H3	G/H3				
	8.6711	đ,	293.91	13.08	<u>-</u> .	1199.0000	65.6300	9 ,	4493.	4493.	4493.
	7996	8	288.97	10.36	₹	1084.0000	43.4900	ĸ.	4493.	4493.	4493.
	5,3795	6.	267.78	9.7B	13	1058.0000	39.1000	. 53	4639.	.0+9+	4638
	. 21 85	57	285.89	7.80	33	374.3000	26.4730	گړ. د	1632.	672.	25
	5.1128	63	279.10	6.9	04.1	885.0000	18.5000	ž.	چې د کې	Ç	523
	6.167▶	-`60	₹7.5°.3%	6.17	Ţ.	901.8000	12.3300	Ŗ,	- 200 G	-20G	
	6.9	<u>3</u>	965.69	86 d	2 ;	724.7030	B.8200	ž ;	0 1		000
	7.4642	S F, 1	28.93	ا ف ف	<u>.</u> :	523.3000		8 :			
	7.7.66	S.	%. %.	20 S	¥ !	0000 / BC	200	<u>:</u> :			
	7.9:90	89 ·	8	Ø.	91	0004.75	0915.	- 6			
	7.9257	8 2	237.59	5.21	20.	472 . OPO	0669.	 	. 65	ç	
	:::	ij	530.40	ដ	v.	200	Z : (3 !		
	\$0C\$.	55	224.01	8 8	.17	373.0000	7.43:0	₹. T	<u>s</u>	9	, ,
	5.7202	9.	210.44	£.53	25	328.1000	9.2680	₹. .	7		
	5.9811	.09	あっこ	3.72	23	285 8000	10.6500	. 63	ė į	e d	و و
	5.0223	9ે.	31.5	3.47	Ķ.	247.2000	10.7:00	 5	3864.	15 15 15 15 15 15 15 15 15 15 15 15 15	9
	\$.0403	90.	208.75	8.8 8.8	Ŕ,	213.3000	9.7830	s.	3710.	3710.	3710.
	3.8573	60.	207.16	88 188	55.	18.5,4000	8.0970	6 0.	34:4.	5	*****
	€.6180	90	206.62	3 3 3	55.	155.0000	6.1570	?	35.50	32.70	32.0
	2.1548	S.	16.702	3.11	90.	130 . 9000	4.3390	12		X210.	3210.
	6	8.	86 602	ر 18	7	110.2000	3.0630	=:	3038		3098
	1.6157	S	₹15.1%	2.70	61	92.8600	2.3390	90.		3011.	3011.
	1.4282	50.	214.16	&	58	73.4800	1.6890	07	2308	2008	6 06
	1.2722	8,	215.53	8.3 98.3	59	66.5200	1.6030	0	ις 6		6
	1.1417	٠. ٥٥	217.61	3.00	8.	56. 4500	1.3780	.03	2709.	2709.	6 709.
	- 8x	ë.	₹.612	3.16	50	47.9900	1.2270	07	2643.	2643.	5.5
	0016	- 09	220.96	۳ کو	8	4 0. 8 +00	1.0820	08	<u>÷</u>		ž K
	8183	8	252.46	3.43	53	34 . R000	86.	90	2574.		
	5787.	18	224.11	3.56	£4	2 5,7000	6 528	07	21.5		6146
	£259.	≃.	\$3. \$3	3.67	\$\$."I	25.3600	. 7655	- 08	5083	2063	
	5875	17	227.35	3.72	'n.	21.7200	9269.	11	1465	1,65	5
	.5063	8	228.85	r j	13	18.4+00	.6356	. 18	1605.	969	
	6 903-	٤	אַטְּ בַּצְכַּ	5.23	15	13.5100	\$00°C	67.	1590.	1687.	38
	6 , X	ë	237.58	ις 12	00	9.9390	1854.	9.	1603.	1763.	2 9
	6092.	Š	% %	æ.	39	7.3550	36×E.	- 17	285	. 199	200
	. 208	20.	\$. 7.	£.73	.13	5.4640	.2718		. 283		200
	. 1683	.0	33.46	<u>ځ</u>	8 .	4.0770	.2109	16	1587.	96	<u> </u>
	. 1365	10	226.10	۶. چ	12	3.0650	1676	13	3	ž	e i
	* 0=-		363.5 3	6.43 43	17	₹.3260	. 1339	13	200		
	.0837	. 0	56.75	6.19	.03	1.7850	.1073	2.5	0		
	.0716	8	367.83	6.07	=	1.3820	.0853	60.	2		9
	575	10.	¥.792	6.03	s.	1.0780	.0677	89	.262	. 1001	į
	6.65	00.	265.50	5.03	10	8	1450.	5 .	546.	1603.	. ·
	.0373	9.	\$65.9	6.16	12	6 299.	£ 43.	3	553.	1516.	2
	C301	20.	259.87	5.45	13	.5168	.0358	07	203-	3	, and
	C 7 C D	8	8	6.67	<u> </u>	56.04.	9520.	S	1420.	1513.	•
	27.0	2	8	7.45		.3150	.024	90.	1314.	330	13:4
	3	į		k a	. 07	55.5	2610.	S.	1118.	1193.	
	¥ 6	5 6	3 6		9	1903	.0157	٠. نې	964.	ફું ફું	8
	1000	3 5	5 8		? !	697	6210	- 18	8	597.	ģ
	, E00 .	3	8 9	2 2 2	9 6	£ 1	1010	93	388	4 1≥.	28 28 38
	£ 50.		66.66	2 2	2.5	2 g	591.0	t	ž	. r.s	22
	. DU65	19.	B. A.	5.	3	3		!			

TABLE III-1. MOISTURE RELATED STATISTICAL PARAMETERS

JANUARY

STATION	- 722696	HHITE	SAND HISSIL	E RANGE							
Z	VAPOR P	5.D. VP	SKEH VP	TV	TV	SKEH TV	DEMPT T	5.0. DPT	SKEH DPT	NOBS T+P	NOBS TV
	MEAN			MEAN	S.D.		MEAN				
KH	MB	HB		DEG K	DEO K		DEG K	DEG K			
. 000	5.935	3.818	1.82	281.09	10.99	. 30	270.42	8.66	14	329.	329.
1.000	4.616	2.119	.92	278 . 3 6	7.64	. 14	268.06	6.49	~.50	329.	329.
1.246	4.337	1.830	. 70	277.47	6.91	.09	267.40	6.05	63	347.	348.
2.000	3.462	1.411	.47	270.16	5.31	98	264.56	5.67	49	343.	349.
3.000	2.332	1.162	.73	273.00	5.06	87	259.16	6.62	5∂	330.	34 7.
4.000	1.351	. 807	1.34	267.55	4.76	42	252.32	6.91	~.20	315.	345.
5.000	.775	.511	1.81	261.25	4.58	32	245.97	6.71	.02	301.	340.
6.000	.461	.319	1.67	254.27	4.42	31	240.36	6.61	. 11	287.	330.
7.000	.256	. 175	1.31	246.79	4.36	29	234.44	6.40	. 13	277.	322.
8.000	. 130	. 084	. 98	239.28	4.23	17	228.00	6.42	33	246.	316.
9.000	. 056	.039	.78	231.77	3.80	.01	219. 9 9	7.32	71	147.	308.
10.000	.026	.015	. 36	224.80	3.24	.01	214.73	5.61	81	35.	295.
11.000	99.9 99	99.999	999.99	219.39	3.16	. 32	939. 3 9	99.99	999 .59	ა.	ctic.
12.000	99.999	99.999	99 9.99	215.43	4.76	.47	939.99	99.99	999 .99	5.	277.
13.000	99.999	99,999	999 .99	213.97	4.99	05	999. 9 9	99.09	999 .99	5.	267.
14.000	99.999	99.999	99 9.99	212.47	4.03	35	999.99	99.99	999.99	3.	253.
15.000	99.999	99.999	999.99	210.13	3.58	33	999.99	39 .99	999.99	1.	235.
16.000	99.999	99.999	999.99	207.78	3.72	42	999.93	99.99	999.99	0.	227
17.000	99.999	99.999	999.99	206.75	3.89	33	999.90	9 9.9 9	999.99	0.	212.
18.000	99.999	99.999	999.99	208.79	4.12	23	999.99	99.99	999.99	0.	204.
19.000	99.999	99.999	999.99	207.88	3.68	36	999.99	99.99	999.99	0.	200.
20.000	99.993	99.999	999.99	209.26	3.31	41	999.99	99.99	9 99.99	٥.	169.
21.000	99.599	99.999	999.99	210.75	3.16	36	999.99	99.99	999.99	0.	178.
25.000	99.999	99.999	999.99	212.42	3.13	28	999.99	99.99	999 .99	О.	165.
23.000	99.939	99.399	999.99	213.82	3.10	19	999.99	99,99	99 9.99	Э.	162.
24.000	99.999	99.999	999.99	215.26	3.37	. 04	999.99	99.99	999 .99	O.	149.
25.000	99 999	99.999	99 9.99	217.02	3.29	.26	999.99	99 .99	999.99	0.	127.
26.000	93.993	99.999	999.99	218.50	3.08	.52	999.99	99.99	999.99	٥.	154.
27.000	99.999	99.999	993.99	220.08	3.30	.68	999.99	99.99	9 99.99	0.	119.
29.000	99.999	99.993	999.99	29.155	3.72	.68	999.99	9 9.99	99 9. 99	٥.	117.
29.000	99.999	99.499	939.99	252.90	3.08	01	999.99	99.99	999.39	0.	73.
30.000	99.999	99 .999	999.99	226.70	4.88	.18	999.99	99.99	y 99.99	0.	174.

TABLE III-2. MOISTURE RELATED STATISTICAL PARAMETERS

FEBRUARY

STATION	- 722696	HHI TE	SAND MISSILL	E RANGE						T.D	NOBS TV
2	VAPOR P	S.D. VP	SKEH VP	TV	TV	SHOEM TV	DEHPT T	5.0. OPT	SKEH OPT	NOBS THP	MOR2 14
•	MEAN			MEAN	5.0.		MEAN				
KOH.	MB	MB		DEG K	DEO K		DEG K	DEGK			
.000	6.468	3.310	.83	284.97	10.33	.23	272.25	7.52	36	379.	379.
1.000	4.655	1.957	.74	280.49	7.29	. 38	268.40	5.84	35	379.	379.
1.246	4.292	1.745	.69	279.37	6.60	.41	267.39	5.62	~.39	385.	386.
2.000	3.310	1.342	.91	277.91	4.98	22	254.12	5.10	.06	384.	385.
3.000	2.191	.990	1.00	271.52	4.64	41	259.71	5.53	08	379.	384.
	1.229	.557	1.34	265.59	4.47	61	251.62	5.97	. 05	366.	381.
4.000	.709	,437	1.35	259.12	4.57	84	245.16	6.39	. 05	342.	370.
5.000	. 399	.245	1.29	252.09	4.66	- ,94	239.20	6.03	.06	336 .	367.
6.000	.555	.141	1.09	244.93	4.21	72	233.21	6.27	22	319.	359.
7.000	.118	.074	,84	277 57	3.97	-,41	227.19	F.38	61	261.	355.
8.000	.118	.041	1.07	230.66	3.39	.15	219.45	7.28	26	ι59.	54/.
9.000	.053	.018		224.48	3,33	.68	211.84	6.89	.03	46.	338.
10.000		99.999		220.17	4.07	.72	999.99	99.99	999.99	₽.	326.
11.000	99,990	99.999		217.63	5.46	06	999.99	99.99	999.99	₽.	30 9.
12.000	99.999	99.999	_	216.45	4.91	68	999.99	99.99	999 .93	1.	296.
13.000	99.999	99.999	-	214.24	3.64	58	999.99	99.99	999.99	1.	279.
14.000	99.999	99.999		211.64	3.20	21	999.99	99.99	999.99	0.	263.
15.000	99.999			209.26	3.18	.04	999.99	99.99	999.99	0.	252.
16.000	99.999	99.999	- :	209.01	3.24	.02	999.99	99.99	999,99	0.	241.
17.600	99.999	99.999		207.89	3.27	10	999.99	99 .99	999.99	٥.	231.
18.000	93.999	99.999		208.95	3.09	14	999.99		999.99	0.	231.
19.000	99.999	99.999		210.50	2.71	14	999.99	99.99	999.99	0.	226.
20.000	99.999	99.999		212.03	2.62	05	999.99	99.99	999.99	0.	218.
21.000	99.999	99.999		213.60	2.90	.19	999.99	99.99	999.99	0.	206.
22.000	99.999	99.999		215.03	2.68	.15	999.99		999.99	0.	203.
23.000	99.999	99.999		216.56	2.83	.14	999.99		999.99	0.	192.
24.000	93.999	99.999		218.22	2.89	05	999.99		999.99	0.	181.
25.000	99.999	99.999		219.75	3.13	.07	999.99		999.99	٥.	177.
26.000	99.999	99.939			3.15	.19	999.99			0.	158.
27.000	99.999	99.999		221.42	3.29	.45	995.99			0.	156.
28.000	99.999	99.999		223.16	3.14	.50	999.99			٥.	114.
29.000	98.999	99.999		224 . 90	4.76	08	999.99			S.	153.
30.000	99.999	93.899	999.99	227.07	4.70	08	455.53				

TABLE III-3. MOISTURE RELATED STATISTICAL PARAMETERS

MARCH

STATION	• 722696	HHITE	SAND MISSIL	E RANGE							
Z	VAPOR P	S.D. VP	SKESH VP	TV	tv	SKEH TV	DEMPT T	5.D. OPT	SKEW OPT	N085 T+P	NOBS TV
	MEAN			MEAN	5.D.		MEAN				
KH	MB	MB		DEG K	DEG K		DEG K	DEO K			
.000	7.329	4.473	3.61	288.57	10.29	.24	273.76	7.95	21	396 .	396.
1.000	5.060	2.548	2.80	203.34	7.46	.37	269.31	6.24	.03	39 6.	396.
1.246	4 579	2.218	2.53	282.26	7.01	. 37	268.08	5.93	. 12	410.	411.
2.000	3.449	1.382	. 76	29 0.10	5.86	.00	264.62	5.30	36	402.	911.
3.000	2 289	.977	. 62	273.09	5.53	22	259.39	5.35	24	39 7.	911.
₩.000	1.347	.722	1.05	266.23	5.15	45	252.51	6.56	50	38 7.	411.
5.000	.771	.475	1.23	259.46	4.94	50	245.99	6.63	02	372.	408.
6.000	.429	.290	1.53	25 2.4 5	4.75	61	239.68	6.45	. 16	358.	40€.
7.000	.231	.162	1 . 65	245.16	4.62	47	233.50	6.17	. 24	359.	403.
8.000	.117	.079	1.26	237.97	4.34	~.32	226.98	6.70	64	<i>2</i> 95.	393.
9.000	.054	.041	1.00	230.91	3.79	- 04	219.58	7.14	22	153.	383.
10.000	.022	.019	1.51	224.46	3.35	. 35	211.97	7.50	59	43.	372.
11.000	99 .999	y 9.999	99 9.99	219.63	3.5/	ذة.	999.33	9 5.95	539.53	5	351.
12.000	99.999	9 9.999	999 . 99	216.26	4.96	.31	999.99	99.99	959.99	5.	351.
13.000	9 9.999	99 .999	999 99	215.10	4.57	21	999.99	99.99	999.99	ş.	33 9.
14.000	99.999	99.999	999 . 99	213.80	3.48	12	999.99	99.99	999.99	٤.	324.
15.000	99.999	99.999	999.99	211.69	3.30	.00	999.99	99.90	999.99	O.	307.
16.000	99.999	99.399	999 . 99	210.11	3.39	09	999.99	99.99	999.99	Ō.	306.
17.000	99.999	99.999	999.99	209.42	3.53	06	999.99	99.99	999.99	٥.	290.
18.000	99.999	99.999	999.99	209.40	3.56	09	999.99	99.99	\$99.99	0.	2 9 +.
19.000	99.999	99.999	99 9 .99	210.35	3.14	10	999.99	99.99	999.99	٥.	274.
20.000	99.999	99.999	999.99	211.62	2.61	.03	999.99	99.99	999.99	ŋ.	267.
21.600	99.999	99 . 999	999.99	213.55	2.61	.24	999.99	99.99	999.99	0.	256.
22 .000	99. 999	99.399	999.99	215.20	2.62	. 30	999.99	99.99	999.99	0.	244 .
23.000	99.999	99.999	993.99	216.86	2.79	.49	999.99	99.99	999.99	0.	237.
24.000	99.999	99.999	999.99	219.57	3.12	.57	999.99	99.99	999.99	Q.	226.
25.000	99. 999	99.999	999 .99	220.26	3.30	,43	999.99	99.99	999.99	0.	218.
25.000	99.999	99. 9 94	999.99	221.81	3.62	.18	939.99	99.99	999 99	٥.	204.
27.000	99.9 99	99 .999	999.99	223 50	3.72	. 14	999.99	99.99	999.99	0.	181.
28.000	99.999	99 .999	999.99	225.28	4.01	.27	999.99	99.99	999.99	0.	181.
29.000	99.999	99.999	999.99	227.50	4.11	.37	999.99	99.99	999.59	0.	136.
30.000	93.999	99.999	999.99	<i>2</i> 28.96	4.21	.67	999.09	99.99	099.99	0.	132.

TABLE III-4. MOISTURE RELATED STATISTICAL PARAMETERS

APRIL

STATION	- 722696	MHETE	SAND HISSILE								
2	VAPOR P	S.D. VP	SKEH VP	TV	TV	SKEH TY	DEHPT T	S.D. DPT	SKEH OPT	NOBS T+P	NOBS TV
	MEAN			MEAN	5. 0.		HEAN				
км	HB	MB		DEGK	DEGK		DEG K	DEG K		***	399.
. 000	8.427	3.916	.96	296.18	9.67	.17	276.28	6.79	21 17	399. 3 99.	399. 399.
1.000	5.613	2.272	.79	289.71	6.79	.24	271.01	5.58		429.	399. 429.
1.246	4.970	2.030	.76	288 . 24	6.15	.22	269.35	5.58	20	429. 406.	425.
2.000	4.121	1.629	.73	265.12	4.26	43	266.86	5.77	-1.11		
3.000	2.664	1.097	.96	277.07	3.96	40	261 33	5.25	31	399.	422. 412.
4.000	1.596	.760	1.12	269.81	3.54	- 54	254.08	5.72	35	3 75.	
5.000	.898	.519	1.54	262.86	3.41	66	248.01	5.90	.25	3 63.	408. 406.
6.000	.477	.264	1.48	255.64	3.25	80	241.33	5.52	02	362.	
7.000	.253	. ! 33	1.56	248.56	3.11	73	235.12	4.85	. 05	354.	403.
8.000	.129	.058	1.17	241.26	2.89	- ,48	228.70	4.97	43	335.	401
9.000	.u50	7دن.	1.05	233.99	5.09	-,2,	220.63	5.97	دَد	235.	401.
10.000	150.	.014	1 .29	226.87	2.41	06	212.99	5.15	7.11	68.	398
11.000	99.999	99 .999	99 9 . 99	220.57	2.50	.58	999.99	99.99	999.99	5.	382.
12.000	99.999	99.999	999 . 99	215.45	3.74	.82	999. 99	99.99	999.99	4.	380.
13.000	99.999	99.999	999.99	213.96	4.15	.01	999.99	99.99	999.99	ø.	359.
14.000	99.999	99.999	999.99	213.52	3.15	31	999.99	99.99	999.99	0.	351.
15.000	99.999	99.999	999.99	212.07	2.91	09	999.99	99.99	999.99	0.	336.
16.000	99.999	99.999	999.99	21C.76	2.95	- .08	999.99	99.99	999.99	o.	316.
17.000	99.999	99.999	999. 99	209.92	2.90	22	999.99	99.99	999.99	0.	2 8 6.
18.000	99.999	99.999	999.99	209.72	2.94	17	999.99	99.99	999.99	? .	281 .
19.000	99.999	99.999	999.99	2:0.62	2.57	26	9 99. 99	99.99	999.99	0.	266.
20.000	99.999	99.999	399.99	212.51	2.62	28	999.99	99.99	999.99	0.	257.
21.000	99.999	99.999	999.99	214.34	2.73	36	999.99	99.99	999.99	0.	246.
22.000	99.999	99.999	999.99	216.16	2.82	38	999,99	99.99	999.99	o.	245.
23.000	99.999	99.999	999.99	217.91	2.65	53	999.99	99.99	999.99	0.	225.
24.000	99.999	99.999	999.99	219.63	2.76	43	9 39. 99	99.99	999.99	0.	220.
25.000	99.939	99.999	999.99	221.10	2.73	38	999.99	99.99	999.99	o.	215.
26.000	99.999	99.999	999.99	222.50	2.65	42	999.99	99 .99	999.99	0 .	206.
27.000	99.999	99.999	999.99	224 . 32	2.61	40	999.99	99.99	999.99	0.	168.
28.000	99.939	99.999	999.93	226.43	2.62	48	999.99	99.99	999.99	ō.	199
29.000	99. 399	99.939		228.18	2.71	20	999.59	99.99	999.99	Q.	121.
30.000	لاثمارين	031,099		سے لاؤک	W. 10	. 10	999.99	99.99	999.99	0.	134.

TABLE III-5. MOISTURE RELATED STATISTICAL PARAMETERS

MAY

STATION	722696	HHITE	SAND HISSILE	RANGE							
Z	VAPOR P	S.D. VP	SKEH VP	TV	TV	SHOEH TV	DEHPT T	5.0. DPT	SKEW DPT	NOBS T+P	NOBS TV
	HEAN			MEAN	5.0.		MEAN				
HO1	MB	MB		DEG K	DEG K		DEG K	DEG K			
. 000	11.836	6.518	3.70	303.66	9.98	.15	280.97	7.45	.01	455.	455.
1.000	7.81 6	3.865	3.00	296.68	7.17	.15	275.28	6.47	.06	455.	455.
1.246	6.967	3.446	5.63	294.92	6.63	.12	273.42	6.55	.05	487.	487.
2.000	5.611	5.121	.49	291.11	4.37	-,42	271.05	5.62	80	459.	486.
3.000	3.687	1.354	.46	20 2.70	4.01	47	265.53	5.22	47	455.	485.
4.000	188.5	1.007	. '+6	274.49	3.54	65	259.47	5.85	58	457.	482.
5.000	1.398	.708	.50	266.65	3.06	66	252.99	6.51	42	447.	481.
6.000	. 703	.417	1.12	259.28	2.93	40	245.10	6.38	04	431.	475.
7.000	.342	. 194	1 . 35	251.8 9	2.8B	48	237.88	5.46	.10	429.	472.
8.000	. 174	.099	1.43	244.35	2.96	21	231.31	5.21	08	417.	472.
9.000	.091	.051	1.22	236.72	2.82	.02	224.13	5.63	23	335.	465.
10.000	.032	. 020	1.47	229.14	2.71	.07	216.65	4.74	.00	157.	458.
11.000	.017	.007	.68	222.16	2.55	.27	212.29	3.46	- . 36	5 6.	470.
12.000	.009	.005	. 38	216.32	2.83	.62	207.2 7	5.40	-2.26	58.	447.
13.000	.008	. 034	1.08	213.27	3.46	.53	206.48	3.31	.01	53.	431.
14.000	.007	.003	.75	212.57	3.49	C7	205.95	2.70	.23	49.	406.
15.000	.006	.002	. 38	211.45	3.03	.01	204.42	1.94	.11	34.	39 3.
16.000	99 .999	99 . 999	99 9 . 99	210.03	2.91	13	999.99	99.99	999.99	٥.	343.
17.000	99 .999	99.999	99 9.99	209.03	2.67	13	999. 99	99.99	999 .99	0.	316.
18.000	99.999	99.999	99 9.99	208.94	2.55	04	9 99. 99	99.99	999.99	0.	305.
19.000	99 .999	99 . 9 99	999.99	210.69	2.26	18	999.99	99.99	999.99	0.	296.
20.000	9 9.999	99.999	99 9.99	213.06	2.11	33	999.99	99.99	999 .99	٥.	208.
21.000	99 .999	99 . 9 59	999.99	215.37	2.12	26	999. 99	99.99	999.99	0.	276.
22.000	9 9.9 99	99.999	999.99	217.22	2.07	25	999. 99	9 9.99	999.99	0.	276.
23.000	9 9.999	99.999	999.99	219.08	1.98	42	999.9 9	99.99	999.93	0.	262 .
24.000	99.9 99	99.999	999.99	220.93	2.08	61	999 . 99	99.99	999.99	٥.	2 62 .
25.000	99.999	9 9. 9 99	999.99	222.73	2.11	9 :	999.99	99.99	999.99	0.	246.
26.000	99.999	99.999	999.99	224.58	2.05	58	899. 99	99.99	999.99	0.	230.
27.000	99.999	99.999	99 9.99	226.33	2.19	21	9 99. 99	99.99	999. 99	0.	192.
28.000	99.999	99.999	999.99	228.19	2.18	10	999.99	99.99	999.99	0.	192.
29.000	99.999	99.999	999.99	229.99	2.26	.29	999.99	9 9.99	999. 99	0.	. ۲۹۰
30.000	99.999	99.9 99	999.99	231.75	2.79	.50	99 9.99	99.99	999.99	0.	144.

TABLE III-6. MOISTURE RELATED STATISTICAL PARAMETERS

JUNE

STATION	- 722696	WHITE !	SAND HISSILI	E RANGE							
Z	VAPOR P	5.D. V9	SKEH VP	TV	TV	SHOCH TV	DEHPT T	S.D. DPT	SKEH OPT	NOBS THP	NOBS TV
	MEAN			MEAN	S.D.		MEAN				
HZH.	MB	MB		DEG K	DEG K		DEG K	DEG K			
.000	14.782	5.950	. 34	307.05	8.28	. 19	284.75	8.73	66	390.	380.
1.000	10.225	3.857	. 31	300.31	5. Bl	.14	279.41	5.05	54	38 0.	380.
1.246	9.314	3.559	. 35	298.72	5.31	. 12	278 .08	5.95	49	386.	385.
2.000	7.260	2.490	.46	295.35	3.45	03	274.77	5.13	66	378.	36 6.
3.000	5.014	1.699	. 44	<i>2</i> 97.21	3.22	14	269.76	4.76	40	382.	387.
4.000	3.362	1 . 267	. 30	279.02	2.60	09	264.32	5.30	66	301.	387.
5.000	2.094	.995	.49	27 0.97	2.46	09	257.99	6.16	35	379.	387.
6.000	1.124	.623	. 94	263.62	2.53	.09	250.46	6.22	.10	357.	396.
7.000	.529	.287	1.65	256.73	2.75	.03	242.56	5.11	.42	345.	38 6.
8.000	.261	.147	2.05	249.49	2.89	.00	235.48	4.60	.73	336.	384
9.000	151	. U.J.Ū) 0 . 5	2√1.0€	3. Je	- n a	F29.14	4,55	. 24	317.	383.
10.000	.052	.031	1.70	234.20	s. 98	20	550.65	4.79	10	193.	374.
11.000	.025	.010	1.64	226.73	2.89	32	215.48	2.94	. 38	8 2.	363.
12.000	.010	.004	. 07	220.05	2.85	52	208.38	3.87	-1.89	75 .	253.
13.000	.006	.003	1.66	214.78	2.62	30	204.64	3.70	-2.03	65 .	358.
14.000	.004	.002	2.90	211.06	2.60	.38	201.78	2.91	.84	63.	344.
15.000	.00%	.002	.67	208 . 14	3.04	. 36	200.83	3.38	18	aş.	333.
16.000	99 .999	99 .999	99 9.99	206.43	3.05	.25	939.99	99.99	999.99	0.	307.
17.000	99 .999	99.999	99 9.99	. 106 . 27	2.86	.31	999.39	99.99	999.99	0.	301.
18.000	99 .999	96.999	999.39	. '09. 19	2.6 4	.09	999.99	99.99	999.99	0.	300.
19.000	. 9.999	99 .999	999.99	i 11 . 14	1.87	.22	999.99	99.99	999.99	<u>o</u> .	260.
20.000	99.999	99.999	999.99	7.13.70	1.54	11	999.99	99.99	999.99	0.	277.
21.000	99 .999	99 .999	999.99	216.07	1.71	16	999.99	99.99	999.99	0.	269.
22.000	99.999	99.999	999.99	217.99	1.70	20	999.99	99.99	999.99	0.	267.
23.000	9 9.999	99.999	999.99	219.94	1.53	.17	999.99	99.99	999.99	0.	250.
24.000	99.909	99.999	999.99	221.85	1.58	.05	999.99	99.99	999.99	0.	250.
25.000	99.999	99.999	999.99	223.68	1.55	.04	999.99	99.99	999.99	0.	235.
26.000	99.999	99.999	999.99	225.52	1.57	. 31	999.99	99.99	999.99	0.	224.
27.000	99.999	99.999	999.99	227.32	1.89	.54	999.99	99.99	999.99	0.	204.
29.000	99.999	99.999	999.99	18.855	1.72	.23	999.99	99.99	999.99	0.	192.
29.000	99.999	99.999	999.99	230.31	1.98	. 37	999.99	99.99	999.99	0.	144 1 2 9
30.000	99 . 999	99.999	999.99	232.19	2.61	.69	9 99.99	99.99	999.99	0.	129.

TABLE III-7. MOISTURE RELATED STATISTICAL PARAMETERS

JULY

STATION	- 7226 96	HHITE	SAND HISSIL	E RANGE							
Z	VAPOR P	S.D. VP	SKEH VP	۲V	tv	SKEH TY	DEWPT T	S.D. DPT	SKEW DPT	NOBS THP	NOBS TV
	MEAN			HEAN	S.D.		HEAN				
KM	P24	MB		DEG K	DEG K		DEG K	DEG K			
. 000	24.050	5.190	16	308 . 77	6.12	.66	293.25	3.71	63	351.	351.
1.000	16.807	3.256	22	301.91	4.20	.58	287.66	3.17	63	351.	351.
1.246	15.379	989. خ	18	300 . 24	3.78	.53	286.29	3.13	60	353.	353.
2.000	11.198	2.307	24	296 . 29	2.69	08	84.185	3.29	95	352.	353.
3.000	8.132	1.915	02	288 . 64	2.21	.04	275.82	3.36	64	353.	354.
4.COO	5.391	1.448	~.08	280 . 7 9	1.70	.25	270. 95	4.08	-1.17	35 0.	352.
5.000	3.327	1 .233	06	273.36	l.39	03	264.13	5.56	92	342.	350.
6.070	1.865	.891	. 33	266.73	1.53	08	256.48	6.48	51	329.	349.
7.000	.925	.502	. 84	<i>2</i> 60. 56	1.51	.02	248.24	6.33	27	326.	349.
8.000	.442	.250	1.13	253.87	1.57	.05	240.42	5.74	. 05	3 27.	349.
9.000	.21 8	.116	1.22	<i>≥</i> 46.60	1.71	.24	233.58	5.14	26	309.	347.
10.000	. 109	.056	1.21	238.97	1.80	.23	227.28	4.59	31	214.	344.
11.000	.070	€ء0.	. 64	2ఎ0.96	i.73	.17	ē13.6;	4.50	1.30	ius.	₹4 !
12.000	.016	.011	. 79	223.1 2	1.52	. 26	210.95	5.64	 5 5	9 0.	339.
13.000	.008	.003	. 62	215.71	1.38	.23	205.49	3.52	-1.C8	51.	334.
14.000	.003	.001	.92	209.35	1.53	10	200.39	2.44	. 13	47.	320.
15.000	99 .999	99 .999	999 .99	204 . 92	1.95	. 36	9 99. 99	99 .99	999 .99	0.	300.
16.000	99 .999	99 .999	999 .99	203.40	1.35	. 33	999.99	99.99	999.99	0.	2T1.
17.000	99 .999	99 .999	99 9.99	204 . 16	1.83	10.	939.99	9 9.99	3 33 33	0.	265.
18.000	99.999	99 .999	999.99	207.21	1.95	33	999 99	99.99	999.99	0.	265.
19.000	99 .999	99.999	999.99	210.51	1.72	27	9 99. 99	99.99	999 . 9 9	0.	2 55.
20.000	99 .999	99.999	999.99	213.39	62	.19	999.99	99.99	999.99	0.	248.
21.000	99.999	99 .999	999.99	SI6. 19	1.72	.28	999.99	99.99	999.99	0.	245.
22.000	99.999	99 .999	999.99	218.25	1.54	. 57	999. 99	99.99	999.99	0.	≥36.
23.000	99.999	99.999	999.99	220.13	1.53	.28	999.99	99 .99	999.99	0.	224.
24.000	99.999	99.999	999.39	221. <i>77</i>	1.62	08	9 99. 99	99.99	999.99	٥.	224.
25.000	99.999	99 .999	999.99	223.41	1.67	12	999. 99	99.99	999.99	0.	212
26.600	99.999	99.999	999.99	225 . C4	1.78	.25	999.39	99.99	999.93	٥.	192.
27.000	9 9.99 9	99.999	999.99	226.76	1.98	.31	999.99	99.99	999 .99	0.	192.
28.000	99.999	99.999	999.99	228.4€	1.93	.30	999.99	99.99	999.99	Q.	164.
29.000	99.999	99.999	999.99	230.11	2.28	.35	999. 99	99.99	999.99	0.	116.
30.000	99 .99 9	99 .999	999.99	232.29	3.90	1.75	999. 99	99.99	999.99	0.	114.

TABLE III-8. MOISTURE RELATED STATISTICAL PARAMETERS

AUGUST

STATION	- 722698	STIME	SAND MISSIL	E RANGE							
Z	VAPOR P	5.0. VP	SKEH YP	TV	TV	SICEH TY	DENFT T	S.D. DPT	SKIDH DPT	NOBS THP	NOBS TY
_	MEAN			MEAN	S.D.		HEAN				
KPI	MB	MB		DEG K	DEO K		DEG K	DEG K			
.000	23.695	4.946	- , 03	307.51	6.97	.64	293.04	3.59	73	375.	375.
1.000	16.557	3.025	25	300.70	4.81	.61	287.45	3.01	87	375.	375.
1.246	15.156	2.785	23	299.06	4.31	.58	286.09	e.99	- 95	378.	378.
2.000	11.102	2.148	-,48	295.27	2 . 7 2	.06	291.39	3.13	-1.13	3 75.	379.
3.000	B.130	1.714	21	287.55	5.12	. 08	278.85	3.20	-,71	3 75.	378.
4 .000	5.417	1.361	18	279. <i>77</i>	1.68	09	271.08	3.79		370.	376
5.000	3.077	1.186	10	272.70	1.47	02	263.04	5.83	91	367.	. 375
6.000	1.641	.801	.45	266 . 55	1.60	04	254.93	6.45	45	344.	372.
7.000	.830	.456	. 95	2 60. 39	1.64	~.26	24 7.10	5.10	02	327.	368.
8.000	.421	.241	1.21	253.66	1.77	40	239.94	5.59	. 23	321.	367 .
⊊.≎≎	.209	. 114	:.:7	248.43	1.27	~.45	233 12	5.07	. 02	はした	354.
10.000	.103	.054	1.02	230.85	1.96	30	2 26. 68	₹.53	.00	190.	362.
11.000	.043	350.	. 96	230.94	1.99	`19	218.70	5.35	32	121.	358.
12.000	.014	.010	1.16	323.12	1.86	.01	209. 9 0	5.53	41	EJ.	355.
13.000	.007	.004	. 67	215.87	t.70	. 22	205.22	4.47	-1.16	٠1.	352.
14.000	.003	.001	1.19	2 09 68	1.57	.01	200.09	2.57	. 59	34.	342.
15.000	99 .999	99.999	999 . 99	2 05.0 9	1.61	. 32	9 99. 9 9	99.95	999 . 99	: 0.	334.
16.000	99 .999	99.999	999.99	203.63	2.06	. 18	939.99	99.99	999.99	0.	311.
17.000	99 .999	99 .999	999.99	204.68	2.33	. 14	909.99	5 9.99	999.99	0.	299.
18.000	99 .939	99.999	999 .99	207.66	2. <i>2</i> 5	01	U93.99	39.93	999 .99	0.	299 .
19.000	99 .993	99.999	999 .99	210.82	1.98	05	999.99	99.99	999.99	0.	289.
20.000	99 .999	99.933	999.99	213.59	1.69	.10	358 ' 66	99.99	999.9 9	0.	285.
21.000	99.939	99.499	<u>999, 99</u>	a15.89	1 . 62	.20	999. 99	99.99	999.99	0.	281.
22.000	99.999	99 .9 99	999.99	217.75	1.48	36	599.99	79. 99	999.99	0.	278.
23.000	99.39 9	99.999	949.99	219.48	1.43	~.04	999.93	99.98	999.99	0.	257.
24.000	99.999	99.999	999.99	221.13	1.49	12	599.99	99.99	999.99	٥.	257.
25.000	99.999	99.999	999.93	222.78	1.43	03	999.99	99.99	999.99	0.	241.
26.000	9 9.393	99 939	999.99	224.35	1.48	. i O	999.99	99. 99	999.99	0.	213.
27.000	99.999	99.999	999.99	225.98	1.81	02	9 99.9 9	99.99	999.99	0.	198.
28.000	89.399	99.999	33 ā ' 35	227.51	: .65	.02	993.99	99.99	993.99	٥.	162.
29.000	93.999	99.999	333 39	229.16	2.00	.08	923.99	99.99	999.99	0.	143.
30 OCC	ó ð 444	ସସ ୍ଥମ୍ପ	499,00	230.35	3.33	.47	999.99	99.99	99 9.99	٥.	113.

TABLE III-9. MOISTURE RELATED STATISTICAL PARAMETERS

SEPTEMBER

STATION	• 72 2 698	HHITE	SAND HISSIL	E RANGE							
Z	YAPOR P	S.D. VP	SKEW VP	TV	TV	SKEW TV	DCHPT T	5.0. DPT	SKEN DPT	NOBS THP	NOBS TV
	MEAN			MEAN	S.O.		MEAN				
ICH	~8	HB		DEO K	DEO K		DEG K	DEG K			
.000	1E.979	7.252	. 11	301.96	9 . 33	. 14	288.62	6.93	B 8	370.	370.
1.000	13.611	4.491	10	296 . 29	5.65	.00	283. 8 4	5.70	93	370.	370.
1.248	12.522	4.024	1;	294 . 94	5.31	06	282.65	5.45	92	373.	373 .
5.000	9.301	2.590	13	292 . 52	3.46	87	278.52	4.43	79	372.	373.
3.000	6.484	2.094	.04	285.08	2.73	67	273.25	4.97	77	370.	373.
4.000	4.168	1.691	. 14	277.59	5.05	40	266.97	5.15	- 82	363.	37 1.
5.000	5.535	1.243	.48	270.97	5 . 05	58	258.16	7.55	34	353.	369.
6.000	1.151	. 761	1.07	264 . 79	2.14	55	250.15	7.27	. 46	325.	363 .
7.000	.580	. 391	1.54	258.18	2.39	59	242.95	6.29	خ4.	313.	362.
8.000	.3:3	.217	1.53	250.96	2.63	54	236.46	6.32	. 28	315.	362 .
9.000	. 166	.114	1.58	243.52	2.77	46	230.48	5.94	. 16	271.	360.
10.000	.085	.058	1.28	236.13	5 · Jü	41	224.26	6.03	~.09	124.	253.
:1.003	.027	. 525	:.38	220.03	2.5	32	217 52	5 47	- 11	58.	355.
12.000	.010	.004	- 32	222.11	2.00	26	207.83	4.51	-1.64	41.	354.
13.000	.005	.002	.13	215.77	1.78	.06	203.34	3.63	-1.31	25.	351.
14.000	.003	.001	1.01	210.25	1.99	.21	199.34	1.87	. 32	21.	346.
15.000	99 .999	99 .999	999 .99	205.95	2.40	.27	999.99	99.99	999 .99	1.	336.
16.000	99.999	99 .999	999 .99	204.15	2.56	. 30	999.99	99.99	999 .99	0.	310.
17.000	99.999	99.999	99 9.99	204.50	2.67	.20	999.99	99.99	999.99	0.	304.
18.000	99.999	99.999	99 9.99	207.19	2.65	.20	999.99	99.99	999.99	0.	299.
19.000	99 .99 9	99.999	999 .99	210.64	2.17	.11	999.99	99.99	999.99	0.	2 9 4 .
20.000	99,999	99.999	999.99	213.22	1.68	18	999.99	99.99	9 99.99	0.	278.
21.000	99 .9 99	99.999	999.99	215.32	1.56	12	999. 99	99.99	999 .99	0.	265
22.000	99.999	99.999	999.99	217.27	1.55	. 32	999.99	99.99	999 .99	0.	265.
23.000	99.999	99.999	999.99	219.05	1.54	.17	999.9 9	99.99	999.99	0.	253.
24 .000	99.999	99.999	999.99	<i>2</i> 20.76	1.71	. 16	999.99	99.99	999.99	0.	253.
25.000	99.939	99.999	999.99	222.42	1.79	.60	999.99	99 .93	999.99	٥.	245.
2€.000	99.999	9 9.9 9 9	993.93	224.04	1.82	.75	9 99.99	99.99	999.99	٥.	227.
27.000	99.999	99.999	999.99	225.61	2.01	.58	999.99	99.99	999.99	0.	218.
29.000	99. 999	99.999	999.99	<i>2</i> 26 . 90	2.03	.53	999.99	99.99	939.39	0.	211.
29.000	93. 99 9	99.999	999.99	229.10	2.43	.49	999.99	99.99	999.99	0.	158.
30.000	99.999	99 999	999.99	230.54	3 , 39	.65	999.99	99.59	999.99	0.	152

TABLE III-10. MOISTURE RELATED STATISTICAL PARAMETERS

OCTOBER

STATION	• 722698	HHITE !	SAND HISSIL	E RANGE							
Z	VAPOR P	S.D. YP	SKEH VP	TV	TV	SKEH TV	DEMPT T	S.D. DPT	SKEW DPT	NOUS TOP	NOBS TV
	MEAN			HEAN	\$.D.		MEAN				
104	HB	MB		DEGK	DECK		DEG K	OEG K			
. 000	11.848	5.670	.71	294 . 15	9.90	.08	201.06	7.41	23	368.	386.
1.000	8.672	3.372	.67	289.50	6.91	.06	277.11	5.64	12	366.	366.
1.246	8.030	2.96+	.67	289.44	6.30	.07	276.11	5.32	10	374.	374.
S.000	6.070	2.252	.45	287.24	4.23	72	272.15	5.55	77	372.	374.
3.000	4.179	1.824	. 56	290.31	3.50	-1.08	266.91	5.94	24	36 8.	373.
4.000	2.473	1.341	.97	273.78	3.05	-1.09	259.79	6.60	.08	348.	371.
5.000	1.269	.784	1.57	2 67. 58	3.01	70	251.71	6.42	. 34	341.	369 .
6.000	.654	.380	1.97	260.98	3.00	69	244.70	5.39	.50	3 27.	365.
7.000	. 355	.209	2.20	<i>2</i> 53.79	2.87	65	238.40	5.00	. 58	319.	3 63.
8.000	. 186	.110	€.09	246.34	2.84	28	232.10	4.79	.5ι	317.	3 63.
9.923	. 099	.050	1 90	233.74	2.95	- ù1	334 BH	5.95	٧ج	242.	3 59.
10.000	.041	.029	1.63	231.28	8.88	.29	218.10	5.68	24	94.	3 53.
11.000	.017	.008	.97	224.43	2.72	.23	212.36	3.10	, 44	19.	345.
12.000	.009	.004	.49	218.58	2.84	17	207.16	3.85	60	19.	345.
13.000	.005	5 00.	.44	214.00	2.96	26	204.08	2.25	.01	16.	337.
14.000	.003	.001	.13	210.23	3.00	40	200.30	2.05	+.31	17.	334.
15.000	.002	.000	26	207.42	2.93	04	197.57	1.65	93	16.	332.
16.000	99.999	99 .999	999.99	206 . t I	2.96	.10	999.9 9	99.99	999 . 99	0.	310.
17.000	99 . 999	99 .999	99 9.99	206 . 08	2.99	.05	999.99	99.99	999.99	О.	299.
18.000	99.999	99.999	999.99	207.50	2.95	.30	9 99.99	99. જે	999 .99	0.	296.
19.000	99 . 999	99 .999	99 9.99	210.23	2.70	.44	999. 99	99.99	999.99	0.	290.
50.000	99.999	99.999	999.99	212.57	2.33	.12	999.99	99.99	99 9.99	0.	277.
21.000	99.999	99.599	999.99	214.37	1.99	.02	999.99	99.99	999.99	0.	267.
55.000	99.999	99 .999	99 9.99	215.66	1.91	.14	9 99. 99	99.99	99 9.99	0.	266 .
23.000	99.999	99.999	999.99	217.57	1.81	.19	999.99	99.99	999.99	0.	₹51.
24.000	99 . 999	99.999	999.99	219.25	1.95	.00	999.99	99.99	999.99	0.	246.
25.000	99.999	99 . 599	999.99	280. ₽ 4	2.10	.83	999.99	99.99	999.99	٥.	236.
26.000	99,999	99.999	999.99	222.19	2.17	.09	999.9 9	99 .99	9 99,99	0.	224.
27.000	99.999	99.999	99 9.99	223.37	2.27	.02	999.99	99.99	999.99	0.	207.
28.000	99 .999	99.999	999.93	224.51	2.44	. 15	999.99	99.99	999 . 99	0.	207.
29.000	99.999	99.999	999.99	225.81	2.70	.33	999.99	99.99	999.99	0.	160.
30.000	99.999	99.999	999,00	228.45	3.47	.65	9 99. 9 9	99.99	999.9 9	٥.	144.

TABLE III-11. MOISTURE RELATED STATISTICAL PARAMETERS

NOVEMBER

STATION	- 722696	HHITE	SANO MISSIL	E RANGE							
2	VAPOP P	5.0. VP	SKEN VP	ŤV	TV	SKEN IV	DEMPT T	5.D. OPT	SKEH OPT	NOBS THP	NOBS TV
	HEAN			M.:N	S.D.		MEAN				
KH.	MB	MB		DEG K	DEG K		DEG K	DEO K			
.000	7.413	4.124	.76	285.10	9.73	01	273.78	B.40	38	379.	379.
1.000	5.756	2.447	. 65	282.16	6.53	. 15	271.21	6.03	- .30	379.	379.
1.246	5.429	2.135	.61	261.54	5.92	. 19	270.59	5.53	30	393.	393.
2.000	4.319	1.590	.71	281.76	4.69	39	2 67. 68	¥.96	23	393.	393.
3.C00	2.796	1.164	.79	276.31	4.60	71	261.90	5.37	29	3 79.	392.
4.000	1.617	.803	1.24	<i>2</i> 70.98	4.52	84	255.00	5.62	. 10	371.	391.
5.000	.929	.492	1.33	264.84	4.36	84	248.48	5.90	33	373.	390.
6.000	.536	.284	1.59	257.85	4.18	71	242.62	5.49	29	3 63.	391.
7.000	.313	. 172	1.39	250.74	3.95	74	237.08	5.30	~.03	35 6.	375.
9.000	. 170	.097	1.61	243.66	3.70	54	231.15	5.07	19.	339.	374.
9.000	. 085	.049	. 99	236.37	3.37	22	224.60	5.46	33	230.	370.
10.000	.032	.022	1.37	229.08	3.07	06	216 17	5.65	- , 24	79 .	366.
11.002	.015	.005	. 🎞	222.57	2.75	. 3.4	21: 26	Z 15	– በኚ	11.	353.
12.000	.097	.004	06	216.85	3.16	. 38	204.10	6.88	-1.13	11.	351.
13.000	.005	.002	.40	212.62	3.64	.16	203.47	2.91	. 05	9.	339.
14.000	.003	.001	.40	209.7 8	3.54	01	2 00.42	2 .82	. 15	8.	322.
15.000	.002	.001	. 18	207.51	3.50	.05	197.93	1.56	. 09	6.	311.
16.000	99 .999	99 .999	999 . 99	206.30	3.38	. 22	999.99	99.99	999 .99	0.	279.
17.000	9 9.999	99 .999	99 9.99	≥05. 8 5	3.22	. 33	999.99	99.99	999 .99	Ο.	2 65.
18.000	99.999	99 .999	939.39	206.32	3.0≥	. 29	939.99	99.99	999 .99	0.	255.
19.000	99.999	99.999	999 . 99	208.11	2.22	01	999.99	99.99	999.99	0.	248.
20.000	9 7 999	99.999	999.99	210.12	1.99	. 14	999. 99	99.99	999.99	٥.	243.
21.000	99.599	99.399	999 . 99	211.92	2.10	.07	99 9.99	99 .99	999.99	0.	234.
22.000	99. 999	99.999	999 .99	213.47	2.25	. 23	999.99	99.99	999. 99	Ο.	227.
23 .000	99.999	99.999	999.99	215.03	2. <i>2</i> 6	.21	999.99	93.99	999.99	٥.	217.
24.000	99.993	99.999	999 . 99	216.59	2.49	.04	999.99	99.99	999.99	0.	₽08.
25.000	99 .999	99.999	999.99	217.74	2.60	04	999.99	99 .99	999.99	0.	204.
26 .000	99.993	99. 999	999. 99	219.07	2.69	02	999.99	99.99	99 9 . 99	0.	199.
27.000	99.999	99.939	999.99	220.64	2.69	01	999.99	9 9.99	9 99.99	٥.	171.
28.000	99.999	99.939	999.99	222 . 05	2.89	. 16	999.99	99.99	999.99	٥.	171.
29.000	99.999	99.9 99	999.99	223.62	2.97	.52	999.99	99.99	999.99	0.	103.
30.000	99.999	99.999	999.99	225.31	4.47	.09	999.99	99.99	999.99	0.	144.

TABLE III-12. MOISTURE RELATED STATISTICAL PARAMETERS

DECEMBER

STATION	- 722696	HHITE	SANO HISSIL	E RANGE							
2	VAPOR P	S.D. VP	SKEDH VP	TV	TV	SKEH TV	DEHPT T	S.D. DPT	SKEH DPT	NOBS THP	NOBS TV
	MEAN			MEAN	S.D.		HEAN				
ЮH	MB	MB		DEG K	DECK		DEG K	DEO K			_
. 0 00	5.915	3.410	. 89	2 79. 5 4	9.48	.20	<i>2</i> 70.62	8.27	23	314.	314.
1.000	4.808	2.019	. 59	50. לליב	6.∂0	. 37	2 68. 0 1	5.91	35	314.	314.
1.246	4.593	1.797	.48	277.05	5.54	.40	268.34	5.52	41	321.	321
2.000	3.570	1.321	.77	278.22	4.63	44	2 65.20	4.93	37	319.	320.
3.000	2.387	1.255	1.07	273.37	4.72	49	259.42	6.57	22	314.	319.
4.000	1.449	.867	1.38	<i>2</i> 68.16	4.54	62	253.24	6.55	.17	305.	319.
5.000	.868	.562	1.82	262.07	4.36	59	247.34	6.50	.10	301.	317.
5.000	.496	.317	J. 89	255.23	4.12	75	241.47	5.99	.11	296.	316.
7.000	.276	.101	1.61	24B.01	4.07	72	235.40	5.97	. 19	292 .	315.
B.000	.149	.100	1.29	2 40.86	3.89	70	229.36	6.09	.01	269.	310.
ō tur	073	. በጜኛ	D.E.	223.61	3.53	37	255.54	7 24	- 33	180.	308.
10.000	.032	.020	.43	226.81	3.03	. 15	216.06	6.02	56	60.	303.
11.000	.015	.006	. 69	220.83	3.13	.98	211.52	3.08	02	14.	287.
12.000	.005	.00₩	. 96	215.79	4.19	.75	203.11	7.24	62	14.	283.
13.000	.005	.003	. 75	213.11	4.52	.26	204.81	3.59	. 15	9.	264.
14.000	.304	.002	1.43	211.63	3.66	20	202.12	3.44	.21	9.	243.
15.000	99.999	99 .999	99 9.99	209.52	3.12	.42	999.99	9 9. 99	999 .99	3.	222.
16.000	99.999	99.999	99 9.99	208.05	3.12	.18	999. 9 9	99.99	999 . 99	0.	2 06.
17.000	99.999	99 .999	999.99	207.32	3.27	. 15	999.99	99.99	999. 59	0.	192.
18.000	99.999	99 . 9 99	999.99	207.35	3.41	.00	999.99	99.99	999.99	o.	191.
19.000	99.999	99.999	999.99	208.15	3.06	05	999.99	99.99	999.99	Q.	195.
20.000	9 9.999	99.993	999 . 9 9	209.68	2.68	18	999 .99	99.99	999.99	0.	176.
21.000	99.999	99.999	999.99	211.31	2.50	01	999.99	99.99	999.99	0.	173.
22.000	99.999	99.999	999.99	212.65	2.49	02	999 .99	99.99	999.99	0.	170.
23.000	99.999	99.99 9	999.99	214.22	2.24	01	999.99	99.99	999.99	0.	168.
000 . 🏎	99.999	99.999	9 99 . 99	215.75	2.29	.11	9 99. 99	99.99	999.99	Q.	156
25.000	99 .999	99.999	999.99	217.21	2.55	.31	999.9 9	99.99	999.99	0.	144.
26.000	99 .999	99.999	999.99	218.51	2.90	.54	999.99	99.99	999.99	٥.	144.
27.000	99.999	99.999	999 . 99	219.93	3.12	.71	999.99	99.99	999.99	Ō.	129.
28.000	99.999	99.999	999.99	221.35	3.20	.60	999.99	99.99	999.99		120.
29.000	99.999	99.999	999.99	22.22	2.66	.71	999.99	99.99	999.99		73.
30.000	99.999	99.999	999.99	224.43	4.53	.42	999.99	99.99	999.99	0.	153.

TABLE III-13. MOISTURE RELATED STATISTICAL PARAMETERS

ANNUAL

STATION	- 722698	HHITE !	SAND MISSIL	F RANGE							
2	YAPOR P	5.0. VP	SKEH VP	TV	TV	SKEH TV	CEMPT T	S.D. DPT	SKEH DPT	N083 T+P	NOBS TV
_	MEAN			MEAN	\$.D.		MEAN				
KM	HB	HE8		DEG K	DEG K		DEG K	DEG K			
.000	12.246	8.107	. 95	295.30	13.77	19	280 00	10.61	24	4493.	4493.
1.000	8.575	5.329	. 8 9	290.0→	10.82	14	275.66	6.98	04	4493.	4493.
1.246	7.882	4.8 16	.92	288.74	10.18	13	274.39	8.71	.02	4637.	4638.
2.000	6.037	3.417	.78	286.72	8.12	31	271.00	7.99	11	4555.	4632.
3.000	4.183	2.590	.87	279.73	7.₽→	37	265.78	e .38	09	4501.	4625.
4.000	2.655	1.858	.97	<i>2</i> 72.62	6.389	50	259.44	9.03	06	4384.	4598.
5.000	1.542	1.206	1.24	265. 99	5.99	59	252.57	9.06	.10	4281.	4564.
6.000	.826	.701	1.72	259.12	6.11	48	245.55	8.42	.29	4125.	4516.
7.000	.424	. 357	2.11	<i>2</i> 52.15	6.35	30	238 82	7.59	.27	4016.	4477.
8.000	155.	. 184	2.21	244.97	6.42	15	232.48	7.21	.02	3778.	4446.
9.000	.116	.097	1.90	237.65	6. ක	.03	ee6.13	7.68	29	CBS /.	→ 335.
10.000	.062	. 052	1.61	230.49	5.84	.17	220.6 5	7.44	29	1303.	4322.
11.000	.034	. 024	1.48	224.01	5.03	.17	216.77	5.37	. 14	520.	4195.
12.000	.012	.008	1.92	218.44	4.50	22	208.39	5.42	79	377.	4154.
13.000	.007	.003	2.29	214.54	3.72	23	205.28	2.90	3.66	277.	4028.
14.000	.004	S00.	2.41	211.52	3.47	.26	201.78	3.20	1.24	254.	38€ → .
15.000	.004	.002	. 91	208.75	3.90	بح.	201.24	3.40	05	83.	3710.
16.000	99 .999	99 ,999	9 93.99	207.16	3.89	.22	999.99	59.9 9	999.99	Q.	3444.
17.000	99 .999	99,999	999.99	206.62	3.52	.22	9 99.99	99 .99	999.99	Q.	3270.
18.000	99 .939	99 .999	999,99	207.91	3.11	.00	999.99	99.99	999 .99	0.	3210.
19.000	99.999	99.999	999 .99	209.98	2.78	41	999.99	99.99	999.99	0.	3098.
20.000	99.999	99.9 9 9	999.99	212.14	2.70	61	9 99.99	99.99	999.99	0.	3011.
21.000	99.999	99.999	999.99	214.16	2.84	58	993.39	9 9.99	999.99	0.	2908.
22.000	93 999	99.539	999.99	2:5.93	2.96	~.59	999.99	99.99	999.99	0.	2845.
23.000	99.999	99.999	999. 9 9	217.61	3.00	58	999.99	99.93	999.99	0.	2709.
000 . بح	99.999	99.999	999.99	219.34	3.16	60	999. 9 9	99.99	9 93.99	0.	26 - 3
25.000	99.999	99.999	999.99	2 26. 96	3.26	58	999.99	99.99	999.99	0.	2514.
26.000	9 9.999	99.999	999.99	222.46	3.43	53	999.39	99.99	999.99	0.	2374.
27.000	99.999	99.999	999.99	224.11	3.56	-,43	999.99	99.99	999.99	0.	2146.
28.000	99.999	99.999	999.99	225.64	3.67	44	999.99	99.99	999.99	0.	2089
000.65	99.99 9	99.999	999.99	227.35	3.72	26	999. 99	99.99	999.99	0.	1465.
30 000	9 9.999	99.995	૪૪૭.૧૩	೭೭೮. ರಾ	4.74	13	303.99	32,33	ნინ მმ	0	iede

TABLE IV-1. HYDROSTATIC MODEL ATMOSPHERE

JANUARY

STATION	= 722698 GEO. HT.	MHITE P	SAND MISSILE	RANGE TV
KM	KM	HB	G/M3	DEG K
. 200	.000	1021.6000	1268.0000	281.09
1.000	.999	904.2600	1132.000u	278.35
1.246	1.244	g77.3600	1102.0000	277.47
€.00-	1.997	799.7900	1002.0000	278.16
3.000	2.995	706.7100	901.8000	273.00
₩.000	3.993	622.9700	811.1000	2 67.55
5.000	4.990	547.6400	730.3000	261.25
6.000	5.988	479.6400	657.4000	254,27
7.000	6.984	418.8600	591.3000	246.79
8.000	7.981	364.1100	530.1000	533 58
9.000	8.977	315.1200	473.6000	231.77
10.000	9.973	271.4900	420.7000	99. 425
11.000	in.565	232.9-00	309.3000 322.1000	215.43
12.000 13.000	11.964 12.959	199.2200	276.9000	213.97
14.000	13.953	145.0000	237.7000	212.47
15.000	14.948	123.4600	204.7000	210.13
15.000	15.942	104.9560	175.9000	207.78
17.000	16.935	89.0900	150 1000	206.75
18.000	17.929	75.6050	127.4000	205.79
19.000	18.922	64.1930	107.6000	207.99
20.000	19.915	54.5590	90.8300	209.26
21.000	20.907	46.4250	76.7400	210.75
22.000	21.899	39.5530	64.8700	212.42
23.000	27.891	33.7390	54.9700	213.62
24.000	23.882	28.8110	46.6300	215.26
25.000	24.874	24.6330	39.5400	217.02
26.000	25.965	21.0970	33.6200	218.50
27.000	26.855	18.0710	28.5100	220.08
28.000	27.845	15.5040	24.3700	221.62
29.000	28.835	13.3155	20.8100	222.90
30.000	29.825	11.4557	17.9000	226.70
32,000	31.802	8.5214	13.0800	229.79
34.000	77.779	E DECK	á éalu	234 AB
36.000	35.755	4.7921	7.0380	240.18
38.000	37.729	3.6316		245.21
40.000	39.703	2.7712	3.8700	252.62
42.000	41.675	2,1294	2.9030	258.78
44.000	43.646	1.6461	2.1960	264.41
46.000	45.615	1.2782		267.40 267.75
48.000	47.584	. 99 41 7777.	1.3100	265.62
50.000	49.551	. 5989		261.53
52.000 54.000	51.517 53.482	. 4626 4626 .		258.34
56.000	55.445	. 3562		255.17
58.000	57.407	. 3300		253.09
60.000	59.368			250.84
62.000	61.329			247.98
64.000	63.287			245.12
66.000	65.244			243.18
68.000	67.200			241.19
70.000	69.155			234.11

TABLE IV-2. HYDROSTATIC MODEL ATMOSPHERE

FEBRUARY

STATI		• 722696 0EO. HT.	MHITE P	SAND MISSILE	RANDE TV
KH		KH	MB	G/M3	DEG K
. 00	00	.000	1018.5000	1247.0000	284.97
1.00	OG	.999	902.7000	1121.0000	280.49
1.2	16	1.244	876.0500	1092.0000	279.77
2.00		1.997	798.8100	1001.0000	277.91
3.00		2.995	705.5800	905.0000	271.62
4.00		3.993	621.4800	815.3000	265.54
5.00	00	4.990	545.7800	733.8000	259.12
6.00		5.988	477.6800	660.1000	252.09
7.00		6.984	416.5100	592.4000	244.93
8.00		7.981	361.7000	530.2000	237.67
9.00		8.977	312.7700	472.4000	230.66
10.00		9.973	269.3900	418.0000	224.48
11.0		10.968	231.1300	365.7000	220.17
12.0		11.964	197.8800	316.8000	217.63
13.00		12.959	169.2000	272.3000	216.45
14.00		13.933	144.5000	235.0000	214.24
15.00		14.948	123.1900	202.8000	211.64
16.0		15.942	104.8300	174.5000	209.26
17.0		16.935	89.0920	149.2000	208.01
18.0		17.929	75.6770	126 8000	207.89
19.0		18.922	64.3080	107.2000	208.95
20.0		19.915	54.7060	90.5400	210.50
21.0		20.907	46.5950	76.5500	212.03
22.0		21.899	39.7350	64.8100	213.60
23.0		169.22	33.9240	54.9600	215.03
24.0		23.665	29.9960	46.6400	216.56
25.0		24.874	24.8130	39.8100	218.22
26.0		25.865	21.2590	33.7000	219.75
27.0		26 855	18.2360	28.6900	221.42
28.0		27.845	15.6610	24.4500	223.16
29.0		28.835	13.4665	20 8600	224.90
30.0		20.075	11 5017	17.8000	227.07
32.0		31.802	8.6446	12.9200	232.90
34.0		33.779	6.4915	9.4770	238.59
36.0		35.755	4.9105	6.9780	245.11
38.0		37.729	3.7424	5.1860	251.35
40.0		39.703	2.8696	3.6960	256.56
42.0		41.675	2.2129	2.9440	261.78
44.0		43.646	1.7135	2.2530	264.93
48.0		45.615	1.3301	1.7400	266.18
48.0		47.584	1.0329	1.3540	265.81
50.0		49.551	.8016	1.0570	264.18
52.0		51.517	.6211	.8245	262.37
54.0		53.482	.4803	.6434	260.02
56.0		55.445	. 3707	.5010	257.68
58.0		57.407	.2855	.3887	255.87
60.0		59.368	.2195	.3011	253.91
65.0		61.328	. 1685	.3371	251.70
64 . fil		63.287	. 1290	.1801	249.46
66.0		65.244	.0985	. 1389	247.05
68.0		67.200	. 0750	.1076	242.69
70.0		69.155	. 0568	.0930	238.44
		22	. 5500	.0020	

TABLE IV-3. HYDROSTATIC MODEL ATMOSPHERE

MARCH

STATION Z	- 722698 GEO. HT.	· WHITE	SAND MISSILE	RANGE TV
KOH	KM	MB	G/M3	DEGK
. 000	.000	1015.2000	1227.0000	268.57
1.000	.999	901.0300	1108.0000	203.34
1.246	1.244	874.6900	1080.0000	282 26
2.000	1.997	798.2400	992.8000	i 30.10
3.000	2.995	705.6600	900.2000	273.09
4.000	3.993	621.8700	813.7000	266 23
5.000	4.99 0	546.2500	733.4000	259.46
6 .000	5.988	479 1800	659.9000	252.45
7.000	6.984	417.0100	592.6000	245.16
8.000	7.981	362.1900	530.2000	237.97
9.000	8.977	313.2500	472.6000	230.91
10.000	9.973	269.7700	418.7000	224.46
լ։ ոգո	IN 968	231.4500	367 INDD	RID EZ
16.000	11.964	198.0300	319.0000	215.26
13.000	12.959	169.1500	274.0000	215.10
· · . 300	13.953	144.3700	235.2000	213.80
15.000	14.948	123.0600	202.5000	211.69
16.000	15.942	104.7600	173.7000	210.11
17.000	16.935	89.1060	148.2000	209.42
18.000	17.929	75.7750	126.1000	209.40
19.000	18.922	64.4650	105.8000	210.35
20.000	19.915	54.8960	90.2800	211.82
21.000	20.907	46.8070	76.3600	213.55
22.000	21.899	39.9610	64.6900	215.20
23.000	<i>22</i> .891	34.1600	54.8700	216.86
24.000	23.882	29.2380	46.6000	218.57
25.000	24.874	25.0570	39.6300	220.26
26.000	25.865	21.4990	33.7700	18.155
27.000	26.855	18.4670	28.7800	223.50
29.000	27.845	15.8830	24.5600	225.28
29 .000	20.035	13.6790	20.9500	227.50
30.000	29.825	11.7950	17.9700	228.96
32.000	31.802	0.8123	13.1000	234.38
34.000	33.779	6.6282	9.6250	239.89
36.000	35.755	5.0172	7.1360	244.95
39.0 00	37.729	3.8204	5.3240	249.96
40.000	39.703	2.9249	3.9960	254.97
42.000	41.675	2.2517	3.0160	260.10
44.000	43.646	1.7406	₹.3060	262.98
46.000	45.615	1.3489	1.7750	264.79
48.000	47.584	1.0470	1.3710	266.08
50.000	49.551	.8134	1.0640	266.30
52.000	51.517	.6318	. 0295	265.30
54.000	53.482	.4901	.6483	263.33
56.000	55.445	.3796	.5056	261.50
58.000	57.407	. 2935	.3937	259.66
60.000	59.368	.2263	.3082	255.77
62.000	61.328	.1738	.2408	251.39
64.000	63.287	. 1329	.1866	248.23
66.000	65.244	.1014	. 1435	246.20
68.000	67.200	.0772	.1106	243.06
70.000	69.155	. 0584	.0864	235.35

TABLE IV4. HYDROSTATIC MODEL ATMOSPHERE

APRIL.

STATION	• 722696 0EO. HT.	HHITE P	SAND MISSILE	RANGE
ЮН	KH	HB	G/M3	DEG K
.000	.000	1011.0000	1191.0000	296.18
1.000	.999	899.8800	1082.0000	299.71
1.246	1.244	874.1200	1056.0000	288.24
2.000	1.997	799.1200	976.4000	205.12
3.000	2.995	707.8300	890.0000	277.07
4.000	3.993	624.8700	806.8000	269.81
5.000	4.990	549.8300	728.7000	262.86
6.000	5.988	482.1500	656.5000	255.84
7.000	6.984	421.2500	590.4000	248.55
8.000	7.981	366 5800	529.3000	241.26
9.000	8.977	317.0700	472.9200 470.9200	232.55
10.000	9.973 10.968	274.0600 235.4100	420.8000 371.8000	226.87 220.57
11.000	11.964	201.4100	325.7000	215,45
13.000	12.959	171.9200	279.9000	213 96
14.000	13.953	146.6500	239.3000	213.52
15.000	14.948	125.0200	205.4000	212.07
16.000	15.942	106.4700	176.0000	210.76
17.000	16.935	90.5970	150.4000	209.92
13.000	17.929	77.0670	128.0000	209.72
19.000	18.922	65.5790	108.5000	210.62
20.000	19.915	55.8660	91.5800	212.51
21.000	£0.907	47.6600	77.4600	214.34
55.000	21.899	40.7160	65.6200	215.16
23.000	28.891	34.8310	55.6830	217.91
24.000	23.862	29.8350	47.3200	219.63
25.000	24.874	25.5850	40.3100	221.10
26.000 27.000	25.865	21.9630 18.8760	34.3900 29.3100	222.50
28.000	26.855 27.845	15.2450	24.9900	224.32 225.43
29.000	28.035	13.9992	21.3700	220.18
30.000	29 825	12.0799	18.2700	210.54
32.000	31.802	9.0420	13.3600	235.78
34.000	33.779	6 8126	9.8320	241.36
36.000	35.755	5. 1654	7.3020	246.40
38.000	37 729	3.9393	5.4600	251.32
40.000	39.703	3.0214	4.0940	257.06
42.000	41.675	2.3308	3.0970	<i>2</i> 62.18
44.000	43.646	1.8067	2.3610	26 o 55
46.000	45.615	1.4055	1.8190	269.14
48.000	47.584	1.0955	1.4100	270.67
50.000	49.551	. 8542	1.1030	269.69
52.000	51.517	.6655	.8644	269.14
54.000 56.000	53.482 55.445	.5175 .4015	.6780 .5327	265.88 262.52
58.000	57.407	. 3106	.5327 .4164	259.83
60.000	59.368	. 2396	.3254	256.49
62.000	61.328	. 1843	.2536	253.09
64.000	63.287	. 1411	.1979	248.27
66.000	65.244	.1076		244.49
68.000	67.200	.0816		239.35
70.000	69.155			234.50

TABLE IV-5. HYDROSTATIC MODEL ATMOSPHERE

MAY

STATION	= 72 2698 0EO, HT.	HHITE P	SAND HISSILE	RANGE
KM	KP4	HE	G/M3	DEG K
. 000	.000	1008.0000	1157.0000	303.86
1.000	.999	899.7200	1057.0000	296.68
1.246	1.244	974.5800	1033.0000	294.92
2.000	1.997	801.1000	958.7000	291.11
3.000	2.995	711.3300	876.6000	202.70
4 .000	3.993	629,4100	798.8000	274.49
5.000	4.99 0	554.9300	725.0000	266.65
6.000	5.988	487.5000	655.0000 590.1000	259.28 251.89
7.000 8.000	6.964 7.981	426.6900 371.9800	\$30.1000 \$30.3000	244.35
9.000	8.977	322.9000	.5.2000	235.72
10.000	9.973	279.0200	424.2000	229.14
11.000	10 969	239,9900	37E 3000	222.16
12.000	11.964	205.5100	330.9000	216.32
13.000	12.959	175.4300	206.6000	213.27
14.000	13.953	149.5500	245.1000	212.57
15.000	14.948	127.4100	209.9000	211.45
16.000	15.942	108.4500	179.9000	210.03
17.000	16.935	99.2280	153.7000	209.03
18.000	17.929	78.4040	130.7000	208.94
19.000	18.925	66.6980	110.3000	210.69
20.000	19.915	56.8320	92.9200	213.06
21.000	20.907	48.5130	78.4700 66.5200	215.37 217.22
22.000	21.899	41.4770 35.5100	56.4700	219.08
23.000	198.55 \$88.85	30.4430		220.93
25.000	24.874	26.1330		222.73
26.000	25.865	22.4620		224.59
27.000	26.955	19.3320		226.33
28.000	27.845	16,6580	25.4300	228.19
29.000	26.835	14.3717	21.7700	229.99
30.000	29.625	12.4133		231.75
32.000	31.802	9.3018		236.36
34.000	33.779	7.0102		241.19
36 . 0 00	35.755	5.3132		245.92
38.000	37.729			251.90
40.000	39.703			257.83
42.000	41.675	2.4019		263.52 268.08
44.000	43.646			270.76
46.000 48.000	45.615 47.584			271.51
50.000	49.551	.8847		271.17
52.000	51.517			269.81
54.000	53.482			266.54
56.000	55.445			263.41
58.000	57.407			259.75
60.000	59.368			<i>2</i> 55.52
62.000	61.328			250.87
64 000	63.287			244.48
66.000	65.244			238.21
68.000	67.200			230.97 221.93
70.000	69.155	.0619	.0966	EC1.93

TABLE IV-6. HYDROSTATIC MODEL ATMOSPHERE JUNE

STATION Z	• 722696 ŒO. HT.	HHITE P	SAND MISSILE	RANGE TV
KM	kM.	MB	G/M3	DEGR
. 000	.000	1006.3000	1143.0000	307.05
1.000	. 999	899.3800	1043.0000	300.31
1.246	1.244	874.5300	1050 0000	299.72
2.000	1.997	902.0000	946.0000	295.35
3.000	2.995	713.4000	865.3000	287.21
4.000	3 993	632.4800	789.7000	279.02
5.000	4.990	550.7700	718.4000	270.97
6.000	5.989	49" !100	650.0000	24 3 62
7.000	6.984	431.5600	585.6000	ē73
B.000	7.981	377.2500	526.7000	249 49
9,000	9,977	TO HEND	MAT TUUL	.741 PF
10.000	9.973	284.7000	423.5000	234.20
11.000	10.968	245.6400	377.4000	226.73
12.000	11.964	210.9600	334.0000	200.05
13.000	12.959	180.4300	292 6000	214.78
14.000	13.953	153.8100	253.9000	211.06
15.000	14.948	130.8000	218.9000	208.14
16.000	15.942	111.0300	187.4000	206.43
17.000	16.935	94.1910	159.1000	206.27
18.000	17.929	79.9620	133.0000	208.19
19.000	18.922	69.0160	112.2000	211.14
20.000	19.915	57.9790	94.5200	213.70
21.000	20.907	49.5160	79.8400	216.07
22.000	21.899	42.3560	67.6900	217.99
23.000	55.891	36 2940	57.4700	219.94
24.000	23.862	31.1250	48.8830	221.05
25.000	24.874	26.7360	41.6400	223.68
26.000	25.865	22.9950	35.5200	225.52
27.000	26.855	19.8030	30.3500	227.32
28.000	27.845	17.0730	7,5.9900	558 81
29.000	28.835	14.7342	0005.55	230.31
30.000	29.825	12.7295		232.19
32.000	31.802	9.5450		236 98
34.000	33.779	7.1969		241.39
36.000	35.775 35.755	5.4565		246.30
38.000	37.729	4.1622		251.80
40.000	39.703	3.1944	4.3000	257.84
		2.4665		263.20
42.000	41.675	1.9137		267.47
44.000	43.048			269.90
46.000	45.615	1.4899		271.33
48.000	47.584	1 . 1620		271.25
50.000	49.551	. 9070		269.02
52.000	51.517	. 7074		
54.000	53.482			266.29
56.000	55.445			262 . 18 258 . 32
58.000	57.407			 - 253.84
60.000	59.368			248.44
62.000	61.328			
64.000	63.287			242.73
66.000	65.244			235.70
69.000	00°ء . 67			232.56
70.000	69.155	. 0629	.0582	255.16

TABLE IV:7. HYDROSTATIC MODEL ATMOSPHERE

JULY

STATION	= 722696 GEO. HT.	MHITE P	SANO MISSILE	RANGE
ŘН	KM	MB.	G7H3	DEG K
.000	.000	1009.2000	1139.0000	308.77
1.000	. 999	902.5300	1041.0000	301.91
1.246	1.244	977.7200	1018.0000	300.24
2.000	1.997	905.2100	946.7000	295.29
3.000	2.995	716.6000	964.9000	289.64
4.000	3.993	535 7400	788 8000	280.79
5.000	4.990	562.1700	715.4000	273.36
5.000	5.988	495.5500	647.2000	265.73
7.000	6.984	435.5000	582.3 000	260.56
8.000	7.991	381.5100	523.5000	253.87
9.000	8.977	323.0000	470.400 0	246.60
10.000	9.973	283.4500	422.0000	238.97
11.000	10,968	250.4500	377 Anno	220 06
12.000	11.964	215.6100	336.6000	553.15
13.000	12.959	184 . 6700	298.2000	215.71
14.000	13.953	157.3800	261.9000	203 . 35
15.000	14.948	133.5800	227.1000	204 . 92
16.000	15.942	113.1100	193.7000	203.40
17.000	16.935	95,7530	163.4000	204 . 16
18.000	17.929	81.1890	136.5000	207.21
19.000	18.922	59.0150 59.8110	114.2000 96 .0100	210.51
000.05 000.15	19.915	50.2230	80.9300	216.19
55.000	21.899	42.9670	68.5800	218.25
23.000	22.891	36.8130	58.2600	220.13
24 000	53.885	31.56.0	49.6100	221.77
25.000	24.874	27.1240	42.3000	223.41
26.000	25.865	23.3230	36.1000	225.04
27.000	26.855	20.0780	30.8500	226.76
28.000	27.845	17.3050	26.3900	228.45
29.000	20.035	14.9318	22.6100	230.11
30.000	29.825	12.8998	19.2500	232.29
32.000	31.602	9.5672	14.1700	235.95
34.000	33.779	7.2774	10 5000	239.72
36.000	35.755	5.5051	7.8050	244.00
38.000	37.729	4.1881	5.0120	249.27
46.000	33.703	3.2054	4.3470	255.09
42.000	41.675	2.4674	3.2050	259.85
44.000	43.646	1.9082		264 10
46.000	45.615	1.4812		266.94
49.000	47.584	1.1520 .6963		268.29 267.14
50.000	49.551 51.517	.6963		264.79
52.000 54.000	53.482	.5395		261.73
56.000	55,445	.4169		258.44
58.000	57.407	.3210		254.16
60.000	59.368	, 2459		249.03
62.000	61.328			243.61
64.000	63.287	. 1420		238.97
66.000	65.244	. 1070	.1584	233.77
68.000	67.200			232.01
70.000	69.155	.0600	.0920	225.60

TABLE IV-8. HYDROSTATIC MODEL ATMOSPHERE

AUGUST

STATION	= 722696 ŒO. HT.	HHITE P	SAND HISSILE	
KH	KH	HB	D 9/H3	TV DEG K
.000	.000	1009.6000	1144.0000	307.51
1.000	.999	902.4600	1046.0000	300.70
1.246	1.244	677.5500	0000.5501	299.05
S . 000	1.997	804.8000	949.5000	295.27
3.000	2.995	715.9300	867.4000	297.55
4.000	3.993	634.8700	790.5000	279.77
5.000	4.990	561.1900	716.9000	272.70
6.000	5.988	494.5800	646.4000	266.55
7.000	6.984	434.6200	581.5000	2 60 39
6.000	7.981	380.7000	522.8000	253.66
2.000	8.077	333.3500	450.7100	Bre ni
10.000	9.973	288.7800	421.2000	238.85
11.000	10.368	249.8600	376.9000	230.94
12.000	11.964	215.1000	335.8000	223.12
13.000	12.959	184.2400	297.3000	215.87
14.000 15.000	13.953	157.0500	260.9000	209.69
16.000	14.948 15.942	.33.3200	226.5000	205.09
17.000	16.935	95.6140	193.2000 162.7000	203.63
18.000	17.929	81.1020	136.1000	204 .60 207 .66
19.000	18.922	68.9630	114.0000	210.82
20.000	19.915	58.7770	95.0700	213.59
21.000	20.907	50.1920	80.9900	215.88
25.000	21.899	42.9280	68.6800	217.75
23.000	22.891	25.7650	58.3600	213.48
24.000	23.882	31.5250	49.6600	221.13
25.000	24.874	27.0640	42.3200	222.78
26.000	21 965	23.2610	38.1200	224.35
27.000	26.855	20.0150	30.8600	225.98
28.000	27.845	17.2410	26.4000	227.51
29.000	28 .835	14.8674	22.6000	229.16
30.000	P9 .825	12.8324	19.2200	230.3F
32.000	31.802	9.5960	14.1100	234.41
34.000	33 779	7.2102	10.4400	238.14
36.000	35.755	5.4426	7.7550	241.90
38.000	37.729	4.1300	5.7670	246.81
40.000	39.703	3.1523	4.3040	252.42
42.000	41.675	2.4199	3.2420	257.22
44.000 46.000	43.646	1.8675	2.4530	262.42
48.000	45.615 47.584	1.4468	1.8840	26 4 . 62
50.000	49.551	1.1225 .0712	1.4570 1.1330	265.43 264.89
52.000	51.517	.6757	8888	263.81
54.000	53 482	.5233	5902	261.29
56.000	55.445	.4042	.5398	258.03
58.000	57.407	.3112	.4209	254.78
60.000	59.368	.2397	.3286	250.35
€2.000	61.328	. 1822	.2557	245.58
64.000	63.287	. 1384	. 1974	241.66
66.000	65.244	. 1047	. 1519	237.53
60.000	67.200	.0768	.1165	233.12
70.000	69.155	. 059 เ	.0888	229.29

TABLE IV-9. HYDROSTATIC MODEL ATMOSPHERE

SEPTEMBER

STATION Z	= 722696 QCO. HT.	MHITE P	SAND MISSILE	RANGE TV
Ю1	101	MB	G/MZ	DEG K
- 000	.000	1011.6000	1169.0000	301.98
1.000	.999	902.5300	1061.0000	296.28
1.246	1.244	877.2700	1036.0000	294.94
2.000	1.997	803.7300	957.2000	292.52
3.000	2.995	714.2200	672.8000	295.08
4.000	3.993	632.7200	794.0000	277.59
5.000	4.990	558.8000	718.4000	270.97
6.000	5.989	492.0700	647.4000	264.78
7.000	6.984	431.9800	582.9000	258.18
8.000	7.961	377.9100	524.6000	250.96
9.000	8.977	329.3100	471.1000	243.52
10.000	9.973	285.7600	421.6000	236.13
11.000	10.968	246.8700	375.8000	228.83
12.000	11.964	212.3100	333.0000	222.11
13.000	12.959	181.7900	293.5000	215.77
14.000	13.953	154.9800	256.8000	210.25
15.000	14.948	131.6400	222.7000	205.95
16.000	15.942	111.5400	190.3000	204.15
17.000	16.935	94.4700	160.9000	204.50
18 - 000	17.929	60.1110	134.7000	207.19
19.000	18.922	69.1030	112.6000	210.64
20.000	19.915	58.0310	94.8100	213.22
21.000	20.907	49.5380	80.1500	215.32
22.000	21.899	42.3530	67.9100	217.27
23.000	22. 89 1	36.2600	57.6700	219.05
24.000	23.882	31.0840	49.0500	220.76
25.000	24.874	26.6790	41.7900	222.42
26.000	25.865	22.9 25 0	35.6500	224.04
27.000	26.8 5 5	19.7210	30.4500	225.61
29.000	27.545	16.9820	26.0700	226.90
29.000	20.035	14.6365	22.3500	228.18
30.000	29.825	12.6299	18.9100	230.54
32.00C	31.802	9.4391	13.9600	233.32
34.000	33.779	7.0821	10.3200	236.84
36. Uu0	35.755	5.2363	7.6490	250.73
30 000	37.729	4.0452	5.6850	245.48
40.000	39.703	3.0933	4.2340	251.20
42.000	41.875	2.3651	3.1760	256.93
44.000	43.646	1.8247	2.4010	262.17
48.000	45.615	1.4140	1.0380	265.36
48.000	47.584	1.0981	1.4200	266.73
50.000	49.551	. 6538	1.1020	267.39
52.000	51.517	.6637	.8612	265.84
54.000	53.482	.5151	.6736	263.79
56.000 58.000	55.445 57.407	.3089	.5270	261.15
56.000 60.000	59.368	. 3082	.4114	258.42
62.000	61.328	. 1821	.3216 .2511	254 . 61
64.000	63.287	. 1389		250.12
66.000	65.244	. 1389	.1960 .1505	244.48
68.000	67.200	.0798	.1165	
70.000	69.155	.0598	.0904	236 . 23 228 . 45
	03.133	.0.30	.0507	

TABLE IV-10. HYDROSTATIC MODEL ATMOSPHERE

OCTOBER

	- 722896	HHITE P	SANO MISSILE	
Z 101	0EO. HT.	M9	D G/H3	77
.000	.000	1014.4000	1203.0000	DEG K
1.000	.999	902.5000	1085.0000	294 . 15 289 . 50
1.246	1.244	976.5700	1059.0000	288.44
2.000	1.997	801.7400	972.3000	287.24
3.000	2 995	710.9700	893.6000	290.31
₩.000	3.993	629.6600	799.9000	273.78
5.000	4.990	554.3000	721.7000	267.58
6.000	5.988	487.2600	650.5000	260.96
7.000	6.984	426.8700	585.9000	253.79
8.000	7.981	372.5400	526.8000	246.34
9.000	8.377	323.7700	472,4000	270 71
10.000	9.973	280.1300	422.0000	231.29
11.000	10.958	241.2800	374.5000	224.43
15.000	11.96	206.9600	329.7000	210.68
13.000	12.959	176.8700	287.9000	214.00
14.000	13.953	150.6900	249.7000	210.23
15.000	14.948	128.0600	215.1000	207.42
16.000	15.942	108.6700	183.7000	206.11
17.000	16.935	92.1650	155.8000	205.08
18.000 19.000	17.929 18.922	78.2150	131.3000	207.50
20.000	19.915	66.4890	110.2000	210.23
21.000	20.907	56.6330 48.3160	92.8100 78.5200	212.57
22.000	21.899	41.2730	66.6100	214.37
23.000	22.891	35.2990	56.5200	
24.000	23.882	30.2380	48.0300	217.57
25.000	24.874	25.9160	40.8800	220.84
26.000	25.865	22.2440	34.8800	222.19
27.000	26.835	19.1090	29.8000	223.37
29.000	27.845	16.4300	25.4900	224.51
29.000	28.835	14.1385	21.8100	225.81
30.000	29.825	12.1925	18.6300	228.45
32.000	31.802	9.0802	13.7100	231.14
34.000	33.779	6.7962	10.0900	235.08
36.000	35.755	5.1112	7.4710	238.75
39.000	37.729	3.8647	5.5340	243.70
40.000	39.703	2.9399	4.1130	249.42
42.000	41.675	2.2517	3.0720	<i>2</i> 55.81
44.000	43.646	1.7359	2.3150	261.71
46.000	45.615	1.3.48	1.7680	265.38
48.000 50.000	47.584	1.0445	1.3660	266.92
52.000	49.551 51.517	.8120	1.0620	266.93
54.000	53.482	.6310 .4896	.8285	265.78
56.000	55.445	.3789	.6493 .5084	263.13 260.03
58.000	37.407	. 2024	. 3964	257.37
60.000	59.368	.2250	.3090	254.05
62.000	61.328	.1726	.2403	250.59
64.000	63.297	.1318	. 1966	245.54
66.000	65.244	. 1003	. 1439	243.30
69.000	67.200	. 0760	.1117	237.38
70.000	69.155	. 0571	.0865	84.085

TABLE IV-11. HYDROSTATIC MODEL ATMOSPHERE

NOVEMBER

STATION			SAND MISSILE	
2	OEO. HT.	P	0	۲v
KH	KH	MB	G/H3	DEG K
.000	.000	1020 . 1000	1248.0000	285.10
1.000 1.246	999. 1.244	904.4600 877.9200	1117.0000	282.16
5.000	1.997	801.3100	1096.0000	291.54
3.000	2.995	709.1400	990.8000 894.1000	281.76
4.000	3.993	626.0900	804.9000	276.31
5.000	4.990	551.3100	725.2000	264.84
6.000	5.989	483.9300	653.8000	257.85
7.000	6.984	423.2800	588.1000	250.74
8.00C	7.981	369.8200	527.3000	243.66
9.000	8.977	320.0600	471.7000	235.37
10.000	9.973	276.5300	420.5000	229.08
11.000	10.968	237.9600	372.5000	222.47
12.000	11.964	203.7500	327.3000	216.85
13.000	12.959	173.9200	285.0000	212.62
14.000	13.953	148.0700	245.9000	209.78
15.000	14.948	125.8300	211.2000	207.51
16.000	15.942	105.7900	180.3000	208.30
17.000	16.935	90.5630	133.3000	205.85
18.000	17.929	76.8130	129.7000	206.32
19.000	18.922	65 .2120	109.2000	208.11
20.000	19.915	55.4490	91.9300	210.12
21.000	20.907	47.2190	77.6200	211.92
55.000	21.899	40.2630	65 .7100	213.47
23.000	22.891	34.3730	55.6900	215.03
24.000	23.862	29.3800	47.2600	216.58
25.000 25.000	24.874	25.1380	40.2200	217.74
26.000	25.965	21.5290	34.2400	219.07
27.000	26.855	18.4570	29.1400	220.64
29 .000 29 .000	27.845	15.8410	24.9500	255.05
30.000	28.835 29.825	13.6112	21.1900	223.82
32.000	31.802	8.6970	1 0 .1800 1 3 .2800	225.31
37.000	33.779	6.4913	9.7520	229.01
36.000	35.755	1.2000	7.1563	232.76
38.000	37.729	3.6713	5.3200	241.29
40.000	39.703	2.7852	3.9440	248.94
42.000	41.675	2,1272	2.9400	252.99
44.000	43.646	1.6348	6.5110	258.50
46.000	45.615	1.2629	1.6800	262.77
48.000	47.584	. 9789	1.2910	265.20
50.000	49.551	. 7599	1.0010	265.45
52.000	51.517	. 5695	.7819	263.59
54.000	53.482	. 4 5 68	.6096	261.90
56.000	55.445	. 3529	.4764	259.04
58.000	57.407	.2721	.3711	256.32
60.000	59.368	. 2091	.2899	252.14
62.000	61.328	.1600	.2250	248.64
64.000	63.297	. 1220	.1741	245.01
66.000	65.244	. 0925	.1356	238.54
66.000	67.200	. 0696	1056	230.32
70.000	69.155	.0518	.0912	223.25

TABLE IV-12. HYDROSTATIC MODEL ATMOSPHERE

DECEMBER

STATION	= 722696 0E0, HT.	HHITE P	SAND MISSILE	PANSE 1V
KH	KPI	MB	57 H3	DEG K
.000	.000	1021.7000	1275.0000	279 54
1.000	.999	903.6800	1135.0000	277.50
1.246	1.244	876.9-00	1103.0000	277.05
2.000	1.997	799.3600	1001.0000	278.22
3.000	2.995	766.2000	990.2000	273.37
4.000	3.993	622.8300	809.1000	268.16
5.000	4.990	547.7100	728.1000	262.07
6.000	5.988	480.1200	655.3000	255.23
7.000	5.984	419.3500	589.0000	248.01
8.000	7.981	364.8300	527.7000	240.86
9.000	8.977	316.0700	471.3000	233.61
10.000	9.973	272.6500	418.8000	226.91
11.000	10.968	234.2100	369.5000	220.83
12.000	11.964	200.4300	323.6000	215.79
13.000	12.959	171.0500	279.6000	513.11
14.000	13.953	145.7600	239.9000	211.63
15.000	14.948	124.0500	0005.805	509.65
16.000	15.9.2	105.4300	176.5000	208.05
17.000	16.935	89.5340	150.4000	207.32
18.000	.7.929	76.0150	127.7000	207.35
19.000	18./322	64 5620	100.1000	208.15
20.000	18.915	54.8870	91.1900	209.68
21.000	10.9	46.7220	77.0200	211.31
22.000	21.695	39.8180	65.2300	212.65
23.000	22.391 286 25	33.9730 29.0210	55.2500 46.8800	214.22 215.75
24.000 25.000	24.874	24.8180	39.8000	217.21
26.000	25.865	21.2470	33.8700	218.51
27.000	26.855	18 2070	28.8400	219.93
28.000	27.845	15.6190	24.5800	221.35
29.000	28.835	13.4099	21.0200	55.55
30.000	29.825	11.5254	18.0300	224.43
000 ع3	31.802	8.5537	13.1300	246.55
34.000	33.779	6.3860	9.5910	233.65
36.000	35.755	4.7972	7.0650	238.27
38.000	37.729	3.6259	5.2240	243.52
40.000	39.703	2.7593	3.8590	250.33
42.000	41.675	2.1160	2.8860	257.24
44.000	43.646	1.6337	2.1770	263.32
46.000	45.615	1.2681	1.6620	267.73
48.000	47.584	. 9971	1.2860	269.23
50.000	49.551	7683	1.0040	268.85
52.000	51.517	. 5984	.7863	267.05
54 000	53.482	.4647	.6180	263.88
56.000	55.445			259.75
58.000	57.407			255.66
60.000	59.368			251.94
62.000	61.328			248.65 244.71
64.000 65.000	63.287 65.244			239.07
66 .000				232.01
70.000	67.200 69.155			220 29
70.000	62.133	.0756		FE0 53

TABLE IV-13 HYDROSTATIC MODEL ATMOSPHERI.

ANNUAL

STATION	• 722696 Œ0. H1.	HH:TE	SAND MISSILE	PANSE
ĸн	MH.		5/43	650 K
. coo	.000	1013.7000	1199,0000	295.30
1.000	.939	902 :300	1004.0500	250.04
1.246	1.244	67F . T-00	1057.0000	, ee . 😘
2.000	1.997	801.4:00	973.7000	و: عبع
3.000	2.995	710.5100	884.9000	בר פרק
4.000	3.993	628.0400	6 02.0000	272.62
5.000	4 .990	553.4200	724.8300	25.5.99
6.000	5.988	486.0930	653.5000	₹9.12
7.C00	6.984	475.4500	567.RCC0	252.15
9.000	7.90:	370.9900	527.6000	244 97
⊊.000	6 .3~7	302.1920	+1=.3012	6 2 6 2
10.000	9.973	278.6100	1-21.1000	230.49
11.000	10.969	239.8000	373.0000	224.01
12.000	11.954	205.7000	328.1000	218.4-
13.000	12.959	175.8100	205.5000	214.54
14.000	13.953	149.8303	2-6.9000	211.52
15.000 16.000	14.949 15.942	127.5200 108.3100	212.8000 0001 581	205.75 207.16
17.000	16.935	91.27+0	154 8300	236.82
18.000	17.929	79.0450	130 8000	207.91
19.000	18.922	66.3490	110.1000	239.98
20.000	19.915	56.5000	92.7800	212.14
21.000	20.907	48.1910	78.3900	21- 16
020.55	21.899	41.1670	66.4100	215 93
23.CCO	22.091	35.2070	56.3500	217 61
29.000	23.882	30.1500	47.B900	219.34
25.000	24 . 874	25.0520	40.7600	<i>520</i> 96
25.000	25 . 865	22 .1910	34.7500	255.46
27.000	26.855	:9.0703	29.6400	20×.11
20.000	27.845	16.4070	25.3300	225.E4
29.000	29.835	14.1312	21.6500	227.35
10 000	בנים סר בנים סר	12 1970	iê reuu	225 02
32.000 34.000	31.002 33.779	9.0945 6.8254	13.5000 9.9370	233.03 237.58
36.000	35.755	5.1517	7.3540	242.32
38.000	37.729	3.9120	5.4640	247.64
40.000	39.703	2.9589	4.0730	253.46
42.000	41.675	2.2980	3.0680	259.10
44.000	43.646	1.7763	2.3290	€C 3. HS
46.000	45.615	1.3784	1.7880	205.70
48.000	47.584	1.0717	1.35+0	257.85
50.000	49.551	.8337	1.0790	267.34
52.000	51.517	.648)	, € 441	<i>2</i> 65.50
54.000	53.402	.5026	.4611	262.94
\$6.000	55.445	. 3889		259.87
58.000	57.407	. 3000	.4039	256.95
60.000	59.368	. 2307	.3150	253.30
62.000	61.328	. 1769		249.36 245.07
66.000	63.287 65.244	. 13+8 1024	.1903	.46.89
69.000	67.200	.0770		235.89
70.000	69.155	.0580		220.88

APPENDIX A

EXAMPLES OF WIND STATISTICS FOR WHITE SANDS MISSILE RANGE, NEW MEXICO

Appendix A gives some examples of graphical displays of wind statistics that can be derived from the statistical parameters presented in table I. These illustrations should aid the user of the RRA to understand the functional relationships of the probability wind models and, thus, to develop an appreciation of the powerful properties of the bivariate normal probability distribution function.

All illustrations for this appendix are derived from the five wind component statistical parameters from table I.1 for January and table I.7 for July for eight selected altitudes. These selected altitudes are 4, 12, 20, 30, 40, 50, 60, and 70 km.

1. Windspeed (Tables A-1 and A-2)

The five wind component parameters from table I are used in equation (29) to calculate the generalized Rayleigh probability density function (pdf) and then numerically integrated as indicated by equation (30) to obtain the probability distribution function (PDF) for windspeed. From the PDF interpolations are made to obtain the percentile values for windspeed as shown in tables A-1 and A-2.

2. Frequency of Wind Direction (Figures A-1 through A-16)

The derived frequencies for wind direction shown in figures A-1 through A-16 were obtained using the five wind component parameters from tables I.1 and I.7 as input values in equation (35). The limits of integration (performed numerically) are over the 22.5-degree interval for each of the 16 compass points. These graphs give the percentage frequency that the wind will blow from the direction intervals.

3. Mean Wind Components and 80th Interpercentile Range of Wind Components (Figures A-17 through A-32)

The wind component means with respect to any orthogonal axes are obtained by using the zonal and meridional mean wind components in equations (44) and (45). These component means form the circles shown in figures A-17 through A-32. Further, the zonal and meridonal wind component variances and correlation coefficients are used in equations (46) and (47) to obtain the variances with respect to any orthogonal axes. These rotated component variances and the rotated component means are used in equation (8) to obtain the 80th interpercentile range of wind components and are then illustrated in figures A-17 through A-32.

4. Probability Ellipses (Figures A-33 through A-48)

Using the five wind component parameters from tables I.1 and I.7 and p=0.50, p=0.95, and p=0.99 as input values to equation (13), the wind probability ellipses shown in figures A-33 through A-48 were obtained by computer graphics. The statistical inferences are, for example, that

50 percent of the wind vectors lie within the smaller ellipse and 99 percent of the wind vectors lie within the outer ellipse. These probability ellipses are illustrated using the standard meteorological coordinate system explained in section I.B.1.

5. Conditional Windspeed Given the Wind Direction (Figures A-49 through A-64)

The five wind component parameters from table I.1 and table I.7 are used to evaluate the conditional probability distribution function, equation (41). Figures A-49 through A-64 show interpolations of the conditional function made to obtain the 5th, 15th, 50th (median), 85th, 95th, and 99th conditional percentile values of windspeed, given the wind directions. The conditional mean windspeed, given the wind direction, is obtained from equation (40). The conditional mode (most probable) windspeed, given the wind direction, is obtained from equation (38). The conditional mean windspeed and the conditional windspeed modal value, given the wind direction, are also shown in these figures. For some figures, the conditional windspeed values are invalid for the given wind direction near 270° (from the west). This is caused by the lack of computational precision in evaluating equations (40) and (41) when the arguments for the Gaussian probability distribution have large negative values, i.e., when the coefficients (b/a) become less than -4 in these equations.

This appendix contains only a few of the many options in presenting wind statistics illustrations.

TABLE A-1. DERIVED (RAYLEIGH) PERCENTILE VALUE OF WINDSPEED, WHITE SANDS MISSILE RANGE, NEW MEXICO, JANUARY

Altitude								
(km)	4	12	20	30	40	50	60	70
P	k	к	ĸ	H	h	h	Ŕ	ĸ
1	P/S	M /S	P/S	M/S	P/S	MIS	M/S	MIS
1.0	1.44	3.38	1.14	1.42	2.41	E . 4 1	8.17	14.29
2.5	2.37	5.40	1.85	2.35	3.96	8.61	12.90	22.27
5.0	3.4C	7.71	2.65	3.39	5.57	12.26	18.19	30.88
10.0	4.96	11.07	3.87	4.93	8.07	17.57	25.63	12.41
15.0	6.09	13.75	4.84	6.17	10.14	21.82	31.39	50.89
20.0	7.12	16.11	5.71	7.30	11.95	25.57	36.32	57.92
39.0	8.98	20.35	7.33	9.41	15.39	32.36	44.90	69.74
40.0	10.71	24.29	8.90	11.52	18.61	3A.79	52.64	80.12
50.0	12.43	28.17	10,50	13.77	72.44	45.27	6C.10	89.97
60.0	14.22	32.21	12.22	16.32	26.47	52.12	67.72	99.93
70.3	16.21	36.63	14.16	19.37	31.21	59.75	75.98	110.68
80.0	18.60	41.90	16.52	23.31	37.18	68.95	85.75	123.35
85.C	20.09	45.16	17.97	25.89	40.82	74.70	91.76	131.18
90.0	21.99	49.33	19.85	29.27	45.91	61.99	99.41	141.05
95.0	24.86	55.52	22.66	34.46	53.35	92.90	110.77	155.75
97.5	27.38	60.90	25.09	39.07	59.88	102.42	120.65	168.55
99.0	30.31	67.20	27.94	44.56	67.54	113.55	132.18	183.47

TABLE A-2. DERIVED (RAYLEIGH) PERCENTILE VALUE OF WINDSPEED, WHITE SANDS MISSILE RANGE, NEW MEXICO, JULY

		12	20	30	40	50	60	70
Þ	ĸ	Ŕ	ĸ	R	h	Ř	R	ĸ
*	M/S	" /S	M/S	MIS	M/S	MIS	m/s	M/S
1.0	.35	1.09	1.05	17.11	20.06	29.16	16.92	4.62
2.5	• E 9	1.74	4.05	14.47	22.23	32.56	23.66	7.36
5 • C	1.27	2.51	5.05	15.69	24.12	35.49	29.65	10.49
10.0	1.90	- 3.62	6.14	17.1C	26.29	30.05	37.21	15.07
15.0	2.36	4.53	6.90	18.35	27.76	41.17	42.27	18.73
20.0	2.75	5.32	7.49	19.76	28.94	42.99	46.33	21.97
37.0	2.53	6.75	8.45	20.01	30.83	45.95	52.99	27.85
40.0	4.24	8.11	9.35	21.35	32.46	48.48	58.72	33.42
50.0	4.95	9.48	10.15	22.02	33.98	50.85	64.39	39.05
60.5	5.71	10.93	17.95	22.99	35.51	53.23	69.45	45.06
79.5	6.56	17.65	11.8ì	24.03	37.14	55.76	75.28	51.90
89.8	7.61	14.66	12.82	25.26	39.04	SP.74	62.08	60.37
85.7	8.27	15.97	13.46	25.99	40.22	66.57	86.26	65.81
90.0	9.12	17.72	14.23	26.94	41.76	62.26	91.53	72.87
95.0	10.48	20.41	15.40	28.37	43.86	66.27	99.36	83.77
97.5	11.67	22.35	16.41	29.59	45.79	69.23	106.15	93.55
99.0	17.04	25.81	17.60	30.95	47.97	7:.66	114.05	105.22

Figure A-1.

Figure A-2.

Figure A-3.

Figure A-4.

Figure A-5.

Figure A-6.

Figure A-7.

Figure A-8.

Figure A-9.

Figure A-10,

TAMES OF THE STREET OF THE STREET WAS ABOUT A STREET OF THE STREET

Figure A-11.

Figure A-12.

Figure A-13.

Figure A-14.

Figure A-15.

Figure A-16.

Figure A-17.

Figure A-18.

Figure A-19.

Figure A-20.

Figure A-21.

A CARLOS CALACTER A CARACTER CONTRACTOR STATE CONTRACTOR

Figure A-22.

Figure A-23.

というないのである。 1987年 - 1987年 -

Figure A-24.

Figure A-25.

当者があることで発達の対抗であり。■もなるのだけ関係にいっている間などであれた場合しかなからは、■もってもののは、■人ともののなどでは、■ないないでは、10mmである。

Figure A-26.

Figure A-27.

Figure A-28.

Figure A-29.

Figure A-30.

では、最大ののでは、1年を表現を表する。1年のでは、1

Figure A-31.

CONTRACTOR OF THE CONTRACTOR OF THE STATE OF

The second of th

Figure A-32.

Figure A-33.

Figure A-34.

Figure A-35.

Figure A-36.

Figure A-37.

Figure A-38.

Figure A-39.

AND THE PROPERTY OF THE PARTY O

Figure A-40.

Figure A-41.

Figure A-42.

Figure A-43.

Figure A-44.

Figure A-45.

では、動きしている。これでは、1000年間ではないのでは、1000年間のあれる自然の問題である。これの内閣では、1000年間では、1000年では、1000年間では、1000年には、1000年間では、1000年に

Figure A-46.

Figure A-47.

Figure A-48.

Figure A-49.

HIND STATION-HEN HENTH-JAN ALTITUCE-IS IC

Figure A-50.

MIND STATION-MEN HENTH-LAN ALTITUDE-20 KM

CONDITIONAL HIND SPEED GIVEN HIND DIRECTION

Figure A-51.

HIND STATION-HISH MONTH-JAN ALTITUDE-30 IOI

Figure A-52.

Figure A-53.

HIND STATION-HER HONTH-JAN ALTITUDE-50 KM

Figure A-54.

HIND STATION-HISH PONTH-JAN ALTITUDE-60 IN

Figure A-55.

MIND STATION-MEN HONTH-JAN ALTITUDE-70 101

CONDITIONAL HIND SPEED SIVEN HIND DIRECTION

Figure A-56.

HIND STATIONHER PERMITALY ALTITUDES HIS

Figure A-57.

HIND STATIONHON HORTH-ALLY ALTITUDE-IS IN

Figure A-58.

HIND STATION-HEN HENTH-ALLY ALTITUDE-20 IN

Figure A-59.

HIND STATION-HEM HEMTH-JULY ALTITUDE-30 KM

Figure A-60.

HIND STATION-HEM HONTH-JULY ALTITUDE-40 IOI

CONDITIONAL HIND SPEED GIVEN HIND DIRECTION

Figure A-61,

CONDITIONAL MING SPEED SIVER HIND DIRECTION

Figure A-62.

WIND STATION-WAY MONTH-JULY ALTITUDE-60 KM

CONDITIONAL HIND SPEED GIVEN HIND DIRECTION

Figure A-63.

MIND STATION-ASH HONTH-JALY ALTITUDE-70 IN

CONDITIONAL MIND SPEED DIVEN HIND DIRECTION

Ligure A-64.

APPENDIX B

RANGE SPECIFIC INFORMATION AND THERMODYNAMIC QUANTITIES FOR WHITE SANDS MISSILE RANGE, NEW MEXICO

1. Range Specific Information

To prevent further character size reduction for tables I through IV certain range specific information has been omitted. This important information is given in table B-1.

TABLE B-1

Header Record 0-30 Km	Header Record 32-70 Km			
Table Number0	Table Number0			
Data Source	Data Source			
(1 = DATSAV, 2 = WDC-A)1	(1 = DATSAV, 2 = WDC-A)1			
Call LettersHMN	Call LettersWSD			
WMO Number74732	WMO Number72269			
Latitude32°53'	Latitude32°29'			
Direction (N or S)N	Direction (N or S)N			
Longitude106-°06'	Longitude106°25'			
Direction (E or W)W	Direction (E or W)W			
Elevation in Meters1258	Elevation in Meters1210			
Start Period of Record	Start Period of Record			
(Mo-Yr)169	(Mo-Yr)160			
End Period of Record	End Period of Record			
(Mo-Yr)1278	(Mo-Yr)1271			
No. of Time Windows	No. of Time Windows			
(0, 1 or 3)1	(0, 1 or 3)1			
Start Time Window	Start Time Window			
#1 (Hr-MNZ)0	#1 (Hr-MNZ)0			
End Time Window #12359	End Time Window #12359			
Start Time Window #20	Start Time Window #20			
End Time Window #20	End Time Window #20			
Date of RRA1280	Date of RRA			
Altitude Dange of DDA	Altitude Range of RRA			
Low Level (km)	Low Level (km)30			
Altitude Range of RRA	Altitude Range of RRA			
High Level (km)30	High Level (km)70			
Start Deviation of	Start Deviation of			
Thermodynamic Limits6.0	Thermodynamic Limits6.0			
Wind Limite 6.0	Wind Limits 6 0			

2. Thermodynamic Quantities

This section presents examples of further computations and graphical displays of pressure, density, and virtual temperature statistics that can be derived from the data given in tables II, III, and IV. No attempt is made to present complete nor exhaustive illustrations that can be made to aid in visualizing the relationships that can be made from the data in tables II and IV. The choices are those that aided the committee to verify the reasonableness of the tabulations.

2.1 Monthly Means from the Annual Mean

The hydrostatic model values in table IV are used to compute (1) the monthly mean differences relative to the annual mean values of pressure, density, and virtual temperature expressed in percent and (2) the monthly mean difference in virtual temperature for the annual mean virtual temperature expressed in degrees Kelvin. Examples of these four statistics are given in table B-2 for January and table B-3 for July. Graphical displays of the four statistics contained in tables B-2 and B-3 are shown in figures B-1 through B-8. Also, the relative differences between the monthly mean values from table IV-1 through IV-12 for all months from the annual mean values (table IV-13) are illustrated in figure E-9 for pressure, in figure B-10 for density, and in figure B-11 for virtual temperature. The monthly mean virtual temperature differences from the annual mean virtual temperature for all months are given in figure B-12. The simple sum of the monthly mean differences from the annual mean values of these quantities is not zero. This is because the annual mean statistical parameters are computed (see section C of text) by weighting the monthly means by the number of observations in each month.

2.2 Coefficients of Variation and Derived Correlation Coefficients

The coefficient of variation, C_V , is defined by the standard deviation with respect to the mean divided by the mean. The coefficients of variation for pressure, C_VP , and density, C_VD , were computed using "be standard deviations from table II and the hydrostatic mean values from table IV. The coefficient of variation for temperature uses the standard deviations of virtual temperature from table III to the altitude where virtual temperature exists. Above this altitude, the standard deviations of temperature are from table II. The mean values for temperature (virtual temperature to the altitude where it exists) are taken from table IV. No distinction is made in the table headings in table B-4 (January) and table B-5 (July) and all related figures between virtual temperature and temperature.

From the coefficients of variation for pressure, density, and temperature (virtual temperature to the altitude where it exists), the correlation coefficients between these quantities are derived using Buell's method (see reference in text). The equations for these derived correlation coefficients are

$$r(P,T) = \frac{(C_V T)^2 + (C_V P)^2 - (C_V D)^2}{2[C_V T + C_V P]}$$
(8-1)

$$r(P.D) = \frac{(C_V D)^2 - (C_V T)^2 + (C_V P)^2}{2[C_V D + C_V P]},$$
 (B-2)

$$r(T,D) = \frac{(C_V P)^2 - (C_V D)^2 - (C_V T)^2}{2[C_V T + C_V D]}$$
 (B-3)

The correlation coefficients in tables B-4 and B-5 are derived from the above equations.

A test for the validity of the derived correlation coefficients is that all three of the following inequalities be satisfied.

$$C_{V}P - \{C_{V}D + C_{V}T\} < 0$$

$$C_{V}D - \{C_{V}T + C_{V}P\} < 0$$

$$C_{V}T - \{C_{V}P + C_{V}D\} < 0$$
(B-4)

In these examples (tables B-4 and B-5) the numerical values from equation (B-4) are all negative; hence, the derived correlation test is considered valid. The rare exceptions to this test for several RRAs occur at the extreme highest altitudes, where samples sizes for the statistical sample are small.

The statistical parameters from table B-4 (January) and table B-5 (July) are illustrated in figures B-13 through B-16.

For all months the C_VP values are shown in figure B-17, the C_VD values are shown in figure B-18, and C_VT values are shown in figure B-19. If the abscissa on the figures for the coefficient of variation were multiplied by 100, these figures would show the percentage of the random dispersion of these quantities over the month with respect to the monthly mean for these thermodynamic quantities.

The derived correlation coefficients for all months are illustrated in the following figures:

- a) Figure B-20 gives r(P,D).
- b) Figure B-21 gives r(P,T).
- c) Figure B-22 gives r(T,D).

TABLE B-2.

STATION		HONTH 1	_	
DELTAS	IN PERCENT	RELATIVE T	O ANNUAL	
FEAU	PRESSURE	00/6177	TEPP.	THO-TANNIDEO.K)
.000	.78	5.75	-4.81	-14.21
1.000	٠٤.	4.43	→.03	-11.60
1.246	.12	4.26	-3.90	-11.27
≥.000	20	2.91	-2.99	-8.56
3.000	53	1.91	-2.41	-6.73
₩.000	81	1.13	-1.93	-5.27
5.00G	-1.04	.76	-1.79	-4.74
6.000	-1.20	.60	-1.87	•4.85
7.000	-1.55	.60 .47	-2.13 -2.32	-5.36 -5.69
8.000	-1.85 -2.19	.29	-2.47	-5.8 8
9.000	-2.56	09	-2.47	-5.69
11.000	-2.89	83	-2.06	-4.62
12.000	-3.15	-1.83	-1.36	-3.01
13.000	-3.28	-3.01	51	57
14.000	-3.26	-3.73	.45	.95
15.000	-3.18	-3.01	.66	1.30
16.000	-3.10	-3.40	. 30	.62
17.000	-3.08	-3.C4	03	07
19.000	-3.13	-2.60	54	-1.15
19.000	-3.25	-2.27	-1.00	-2.10
20.000	-3,44	-2.10	-1 . 36	-5 88
21.000	-3.66	-2.10	-1.59	-3.41
22.C00	-3.91	-5.32	-1.63	-3.51 -3.79
23.000	-4.17	-2.47	-1.74 -1.86	- 08
25,000 25,000	-4,44 -4,72	-2.63 -2.99	-1.78	-3 94
26.000	-4.97	-3.25	-1.78	-3.96
27.000	-5.24	-3.48	-:.80	-4.03
20 000	-5.50	-3.79	-1.78	-4.02
29.010	-5.77	-3.66	-1.98	-4.45
30.000	-5.98	-2.93	94	-2.15
3€.000	-6 .30	-3.11	-1.33	-3.≥•
3 ⊶ .000		-3.48	-1.39	-3, 30
36 .000		-4.30	• . 88	-2.14
30.000		-4.78	50	-1.43
40.CC3		-5.12 -5.38	33 12	•.8• •.32
42,000 94,000		-5.71	.16	.56
4E.000		-5.70	.25	.70
48.000		-5.35	04	10
50.000		-4.91	64	•1.72
52.000			-1.50	-3 97
54.000	-7.96	-4.46	-1.75	-4.60
56.000		-4.85	··1 .81	-4.70
58.000			-1 50	-3.85
60.000			97	٠٥. ده.
62.000			53	-1.30
64.000			.02	.೮೧ ೪.೭೪
65.000			.95 	າ. ເອ ຽ. 30
68.000			2.25 2.29	5.23
70.000	, -0.64	-0.71	E . C.A.	J. C. J

TABLE B-3.

STATION		HONTH 7		
DELTAS I	N PERCENT	RELATIVE TO	ANUAL	
LEVEL	PRESSURE	DENSITY	TEMP.	THO-TANNIDED.KI
.020	-, 444	-5.00	4.58	13.47
1.000	. 05	-3.97	4.09	11.87
1.246	. 16	-3.69	3.98	11.50
2.000	.47	-2.77	3.34	9.57
3.000	. 96	-2.26	3.19	8.91
♥.000	1.23	-1.65	\$.92	7.97
5.000	1.58	-1.16	2.77	7.57
6.000	1.95	96	5.9	7.61
7.000	2.36	- 94	3.34 3.63	9.41 9.90
8.000	2.8 ∿ 3.36	78 40	3.63 3.77	8.95
9.000 10.000	3.30 3.89	15.	3.60	8.48
11.000	9.91	1.29	3.10	6.95
12.000	4.82	2.59	2.19	4.68
13.000	5.04	4.45	.55	1.17
14.000	5.00	6.08	-1.03	-2.17
15.000	4.75	6.72	-1.03	-3.83
15.000	4,43	6.37	-1.62	-3.76
17.000	4.17	5.56	-1.29	-2.66
18.000	≒.03	4.36	34	70
19.000	4.02	3.72	. 25	.53
S0.000	₩.09	3.48	. 59	1.25
\$1.000	4.22	3.24	. 95	5.03
22.000	4.39	3.27	1.07	5.32
23.000	4.56	3.37	1 - 16	2.52
≥ .000	4,74	3.59	1.11	2.43 2.45
25.000	4.92 5.10	3.78 3.88	1.11 1.16	2.58
26.000 27.000	5.10	4.08	1.18	5.05
28.000	5.47	4.18	1.25	5.85
29.000	5.67	4.43	1.21	2.76
30.000	5.80	¥.39	1.50	3.44
32.000	6.30	4.56	1.26	2.93
34.C00	6.62	5.67	.90	2.14
36.000	6.8G	6.13	. 69	1.58
38.000	7.06	6.37	. 66	1.63
₩0.000	7.24	6.57	. 64	1.63
₩ 2.500	7.37	7.07	. 29	.75
44.000	7.43	7.30	.09	.జ్ఞ
46.000	7.45	7.33	.09	بح.
48.C00	7.49	7.30	.16	. 44
50.000	7.50	7.60	07	+.20 17
52 .000	7.45	7.78	27 48	-1.21
54.000 5€.000	7.35 7.21	7.87 7.93	55	-1.43
58.000	6.98	9.17	-1.09	-6.79
60.000	6.59	8.44	-1.67	15.4.
62.000	5.02	8.52	-2.31	-5.75
64.000	5.31	8.04	-2.49	-6.10
6G.000	4.51	7.76	-2 96	-7.12
68.000	3.82	5.64	-1.64	-3.88
70 000	1 17.	u 07	-1 68	-1.29

Figure B-1.

Figure B-2.

Figure B-3.

Figure B-4.

Figure B-5.

Figure B-6.

Figure B-7.

Figure B-8.

Figure 8-9.

Figure B-10.

Figure B-11.

Figure B-12.

TABLE B-4.

STATION	722698	MONTH 1							
LEVEL	CYP	cvo	CVT	R(P,T)	R(P,D)				
		• • •	• • • • • • • • • • • • • • • • • • • •	MIE 117	MIP,UI	R(T,D)	DCYP	00.40	00/1
.000	.0089	.0485	.0391	7363	.8611	9913			
1.000	.0060	.0313	.0274	- 5635	.7020	9890	0766	0015	0163
1.246	.0056	. 0290	.02-9	4031	.6201	9847	- 0528	0021	0098
2.000	.0052	.0201	.0191	0791	.3279	9667	0+74	0025	0087
3.000	.0059	.0161	.0165	.5483	- 26.38	9512	0341	0041	0062
4.000	.0075	.0129	.0179	.7600	•. 4975	9309	- 0267	008·	0035
5 .000	.0095	.0111	.0175	.0272	4957	977]	0231	0124	0025
6.000	.0113	.0098	.0174	. 8~ 98	- 3580	- 7965	0191	0159	0030
7.000	.0134	. 0090	.0177	.8662	2145	67 30	- 0159	01 00	0037
0.000	.0154	.0091	.0177	.0571	.0313	4861	0133 0114	• . 0550	0047
9.000	.0172	.0106	.0164	.0033	.3758	- 2-29		n.520	~.0069
10.000	.0189	.0152	.0144	.6117	.6609	1894	0098 0107	0530	0113
11.000	.0199	. 0231	.0144	.1179	.79-2	•.5236	01u7 01 i7	0181	0196
15.C00	.0195	. 0324	.0221	2071	.7451	- 8068	0349	0111	0284
13.000	.0167	.03~9	. 02 33	3694	.70.19	8686	- 0395	0093	0299
19.000	.0175	. 0307	.0190	4180	.8278	855 7	~.0322	ج-200،-	0303
15.000	.0160	. (285	.9170	4890	.0533	8721	0295	0058	0292
16.000	.0143	. 0290	.0179	509+	.0.752	- 6987	0316	00+5 00+2	0275
17.000	-0130	. 0272	.0186	4409	.7039	9029	0330		0244
19 000	1510.	. 0261	.0199	- 2904	.6034	0970	03%	00+6 0059	0214
19.000	.0116	.0212	.0177	n(g	.5519	0371	0273	0091	0183
20.000	.0120	.0175	.0158	.eus	.4742	- 7-50	0213	0103	0151
21.000	.0126	.0153	.0150	1.35 %	.4373	- 65+3	0177	0103	0138
\$5.000	.0137	.0150	.0147	.4409	.4761	5793	0161	0134	+.0129
23.000	.0148	54:0.	.0145	.5332	.5015	4645	0138	0152	0140
۰.000	.0150	. 0150	.0157	.5452	.4866	4671	0148	0165	0145 0152
<u>ლ</u> .070	.0171	.0153	.0151	.5537	. 5688	- 3699	0133	0169	0173
26.000	.0190	.0152	.0141	.5762	. 6523	2437	0113	0169	0191
27.000	.0193	.0167	.0150	.5473	.6619	2653	0125	0175	0210
28.000	.0198	.0:65	. 016 8	.5001	.6171	3729	0155	0191	•.0215
29 .000	.0208	.0194	. 0 1 339	. 4289	. 7667	2511	0124	0152	0265
30.00 <u>0</u> 3∂.000	. 0225	.0269	.0215	.2570	.6324	- 5661	0259	0172	0278
34.000	.0234	0250	. 3231	. 3854	. \$624	5463	0255	0207	0261
36.000	.0257	.0301	.0252	.2987	.6029	5814	0296	0207	0306
349 . 000	.0289	.0345	.0286	.2792	.6051	5955	0342	0230	8/20
40.000	2020. 0420.	0359	.0312	. 3213	. 5695	• . 5936	0365	0258	0352
42.000	.0388	.0374	.0340	. 3976	.5487	- 5469	0374	0307	0374
44.000	.0504	.0374 .0415	.0316	.4512	.6570	3763	0301	0330	0446
46.000	.0456		.0317	.4015	.7156	 3524	0307	0326	0523
48.000	.0485	.0413 €5↔0.	. 0282	.4560	. 7934	1799	~.0239	0326	0587
50.000	.0513	.0447	. 9552	.4822	. 0893	. 0282	0162	~.0282	0689
52.000	.0538	.0447	.0199	.5033	. 9239	. 1344	0132	0264	0762
54.000	.0563	.0500	, 0250 2 550 .	.9171	.9120	.0094	0171	0269	0807
56.000	. 0597	.0538	.0233	.4631	.9174	. 0722	0162	0 28 7	0838
58 000	. 06 35	.0583	.0233	.4357	. 9209	.0485	0174	0291	0902
60.000	.0691	.0019	.0343	. 3978 .4493	.0921	0595	0238	0339	0931
62.000	.0731	.0589	.0408	.59~3	8608	~.0521	0270	0416	0967
64.000	0789	.0605	.0468	.543 .6427	.0302	.0450	0266	0551	0912
66.000	.0801	.0538	.0572	.0427 .7414	.0052	.0649	0284	~. 065 l	0927
68 000	. 0939	.0566	.0653	.6051	.7003	.0-01	0309	0936	0767
70.000	1180	.0700	. 0691	.8464	.7299	1922	0280	- 1025	0852
				.0-0-	. 0507	.4401	0211	~.1171	L189

TABLE B-5.

STATION 72	2698 HO	NTH 7							
LEVEL	CVP	΄΄΄ ένο	:V7	R(P,T)	R(P,0)	R(T,D)	OC VP	OCVD	DC\T
~~~	20.1	A2 15		44.5	. 3.00				
. <b>000</b> 1, <b>0</b> 00	. 00+1 . 0029	.02 <i>2</i> 7 .0154	.0.99	6517 4387	7\98 .9653	9905 9854	0384	0012	0070
1.000	.0027		.0139	3830	. <del>30</del> 73		0264	0014	00
		.0139	.0:26			9833 9772	- 0237	0015	0040
2.000	.0023	-0102	.0091	3659	.5550		0169	0012	0034
3.000	\$500.	.0000	.0077	0336	.3013	9631	0135	0018	<del>-</del> .0025
4.000	.0023	. 0059	- 0061	.2772	. 1069	9257	0095	0025	0021
5.000	.0025	.0047	.0050	. 3819	. 12-9	8693	0072	0029	0022
8.000	.0020	.0052	. 0057	.4139	.00-9	8720	0062	0033	£500.~
7.000	.0032	.0049	. 0050	.5379	.0138	• . 0 355	0075	00+1	0023
■.000	.0036	.0051	.0062	.5771	5500.	0154	÷.0077	0047	002~
9.000	.0042	.0051	. 0.1 <del>69</del>	.6790	0895	7921	0078	0061	~.00≥
10.000	.0049	.0052	. 0075	.7343	1263	7661	0078	0073	+.0025
11.000	.0057	.0048	.0078	.7860	0809	6797	0069	0096	00 <i>2</i> 8
12.000	.0064	.0042	.0068	.7960	.2351	4012	0046	0090	0038
13.000	.0070	.0059	.006+	.6160	.5169	3537	0053	0075	0065
14.000	-0076	.0096	.0073	.3400	. 5971	5513	0083	0063	0089
15.000	.0078	.0118	.0095	.0781	. 5964	7537	0135	0055	0101
16.000	.0079	<b>⊷</b> 510.	.0091	0587	.6824	7698	0136	0046	0113
17.000	.0077	.0125	.0090	1251	. 7036	•.7930	01 <b>38</b>	00+1	0112
18.000	.0076	.0127	.009•	1031	.6751	•.603+	0145	00+3	0109
19.005	.0076	.0113	.0082	0364	.69-5	7443	~.0119	00%	0108
20.000	.0076	.0096	.0076	. 1989	. 6350	6299	<b>~.0096</b>	0056	0097
81.000	.0080	.0097	.0080	.2610	.6100	6051	0097	0063	0097
55.000	.0084	.0087	.0071	. 3752	. 6620	44 <del>8</del> +	0074	0060	OIG.
23.000	.0088	. 0095	.0070	.4374	.6762	<b> 366</b> 7	0067	0072	0103
<b>24</b> .000	.009•	.0087	.0073	.4771	.6745	3271	0067	0080	0107
25.000	.0093	.0092	.0075	.4657	. 6937	3144	00 <b>60</b>	0081	0116
<b>26</b> .000	.0104	.0100	.0079	.4375	. 6995	3365	007*	0 <b>08</b> 4	حج 01،-
27.000	.0110	.0111	.0087	. 382 1	. 6897	4056	~ . 00 <del>89</del>	0086	0134
28.000	.0116	.0102	.008+	.5214	.7075	2341	~.C070	0099	01 <b>3</b> %
29.000	.0129	.0111	.0099	.54,82	.6674	27.69	0065	0116	0141
30.000	.0165	.0200	.0:68	.2757	. 5926	6109	0203	0133	<b>-</b> .0198
32.000	.0178	.0159	.0135	.5153	.68•1	•. <i>₹</i> 7₹6	0116	0155	0202
34.000	.0212	.0197	.0151	. 4494	.7278	2 <del>05</del> 6	01 37	0166	0257
36.000	. 6252	.0209	.0175	.46 <b>58</b>	.6724	<b>3</b> +19	0162	01 <del>88</del>	0236
39.000	.0241	و٠ح٥.	-0187	. 3420	.7103	41 <i>77</i>	0195	0178	0303
<b>₩0.000</b>	.0267	.0274	.0199	. 3 366	. <i>72</i> 91	•. 3991	<b>-</b> .020 <b>6</b>	0192	0342
42.000	.0291	.0232	.0179	.5676	.7756	0795	<b>-</b> .01 <i>2</i> 9	• . 02 <b>?7</b>	0336
44.000	.0305	. 0264	.0158	.5075	. 8573	0085	0115	0200	0412
<b>46.000</b>	.0326	. 0 <del>2 98</del>	.0160	.4698	.8712	0241	0122	0198	0453
<b>48.000</b>	.0348	.0312	.0163	.4459	.0033	0257	0127	0200	0497
50.000	.0371	.0315	.0161	5351	. 9023	. 1167	0106	0215	+.0525
<b>52</b> .000	.0382	. 0359	.0175	. 3602	. 8906	103	0151	0199	<ul><li>.0566</li></ul>
54.000	.0395	.0374	.0196	. 3502	. 8720	1532	0175	0216	0574
56.000	.040B	. C 357	.0236	.4925	.8177	0983	0185	0287	0529
<b>5</b> 8.000	0445	.0361	.0256	.5847	.8194	.0122	0172	03-0	0550
60.000	. 0474	. 0397	.0296	.5510	. 7982	•.0629	0209	0364	<ul> <li>.0585</li> </ul>
<b>52</b> .000	. 0%26	.0429	.0352	.5851	.7464	1030	0255	0449	0603
64.00G	. 0553	.0453	.0450	.6083	.6155	- 2511	0351	0555	0558
66.000	. 0565	. 0445	. 0528	.6698	.4748	3357	0408	·.0647	~.0483
<b>59</b> .000	.0751	. 0561	.0649	.6880	.5424	2366	0+59	0839	~.0662
70.000	. 9945	.0710	.0721	.6672	. 6537	1276	0+86	0957	0934



Figure B-13.



Figure 8-14.



Figure 8-15.



Figure B-16.



Figure B-17.



Figure B-18.



Figure B-19.



Figure B-20.



Figure B-21.



Figure B-22.