Ejercicios de Programación - Sebesta

Lenguajes de Programación - ESPOL

12 de febrero de 2014

1. Introducción

Las respuestas propuestas en este repositorio son producto del trabajo de los estudiantes de la materia "Lenguajes de Programación" de la ESPOL, correspondientes a las preguntas del libro de Robert Sebesta, Concepts of Programming Languages.

2. Preguntas y Respuestas

2.1. Capítulo 5: Nombres, Enlaces y Alcances

- Pregunta 4 0J0000000000 faltaaaaaaaaaaaaaaaaaaaa
- Pregunta 5: Write a C function that includes the following sequence of statements: x = 21;int x;x = 42; Run the program and explain the results. Rewrite the same code in C++ and Java and compare the results.
 - Función en C

NO COMPILA: error C2065: 'x': identificador no declarado

ARGUMENTO: En el lenguaje C es necesario crear la variable o instanciarla de las siguientes formas antes de poder usarla o asignarle un valor:

- (tipo) (nombreVariable);
 Ejemplo: int x;
 (tipo) (nombreVariable)=(valor Inicial);
 Ejemplo: int x=10;
- Función en C++
 Sucede lo mismo que en C, el compilador de visual presenta los mismos
 errores, como si las tres lineas estuvieran mal escritas, aunque realmente
 es la primera.
- Función en Java

```
7
                                      11:
         cannot find symbol
 8
         symbol: variable x
         location: class JavaApplication1 pation1 {
 9
10
       (Alt-Enter shows hints)
11
   main(String[] args) {
                  x = 21;
 8
13
         Create field "x" in javaapplication1.JavaApplication1
14
         Create parameter "x"
         Create local variable "x"
15
16
17
18
```

NO COMPILA: error: cannot find symbol

ARGUMENTO: En el lenguaje Java, el intérprete antes de compliar sugiere al programador crear la variable X como una variable de clase, y una vez compilado muestrar el error de que no puede encontrar el simbolo que se esta intentado usar, en este caso X.

- Pregunta 6: Write test programs in C++, Java, and C# to determine the scope of a variable declared in a for statement. Specifically, the code must determine whether such a variable is visible after the body of the for statement.
 - Función en C++

```
#include<stdio.h>

int main(){
    int i=5;
    int length=0;
    for (i = 0; i < 5; i++)
    {
        int cont;
        length++;
        cont=length+5;
    }
    printf("%i",cont);
}</pre>
```

NO COMPILA: No es visible despues de la sentencia for.

• Función en C#

```
⊡using System;
 using System.Collections.Generic;
 using System.Ling;
 using System.Text;
 using System.Threading.Tasks;
\neg namespace ConsoleApplication2
 {
      class Program
          static void Main(string[] args)
              int i=100:
              for (int j = 0; j < 5; j++)
                  int holamundo= 5;
                  holamundo++;
              Console.WriteLine("Hello World! {1}",holamundo,i);
              Console WriteLine("Press any key to e
                                                       El nombre 'holamundo' no existe en el contexto actual
              Console.ReadKey();
          }
```

NO COMPILA: No es visible despues de la sentencia for.

Es de notar que los avisos que muestra el intérprete son diferentes en los dos casos anteriores, en C++ nos dice que no existe definición de la variable que se quiere usar y por tanto no hay ningún valor que mostrar. En la siguiente, en C# en cambio nos informa que no estamos en el mismo contexto y que por tanto la variable no es visible ni alcanzable.

■ Pregunta 7 0J000000000 faltaaaaaaaaaaaaaa

2.2. Capítulo 6: Tipos de Datos

- Pregunta 1 0J0000000000 faltaaaaaaaaaaaaaaaaaaaaaaa
- Pregunta 2 0J0000000000 faltaaaaaaaaaaaaaaaaaaaa
- Pregunta 7 0J000000000 faltaaaaaaaaaaaaaa

2.3. Capítulo 7: Expresiones e Instrucciones de asignación

• Pregunta 1: Run the code given in Problem 13 (in the Problem Set) on some system that supports C to determine the values of sum1 and sum2. Explain the results.

El codigo:

```
int fun(int *k) {
          *k += 4;
          return 3 * (*k) - 1;
}

void main() {
          int i = 10, j = 10, sum1, sum2;
          sum1 = (i / 2) + fun(&i);
          sum2 = fun(&j) + (j / 2);
}
```

Nos devuelve sum1 = 46 y sum2 = 48

```
sum1 = (i/2) + fun(&i) = 5 + 41 = 46

//fun se calcula despues de obtener el valor de i/2

sum2 = fun(&j) + (j/2) = 41 + 7 = 48

//fun se calcula antes de obtener el valor de j/2
```

- Pregunta 2: Rewrite the program of Programming Exercise 1 in C++, Java, and C#, run them, and compare the results
 - Programa en C++, C#

```
class Program

{
static void Main(string[] args)

{
```

```
Program p = new Program();
5
                int i = 10, j=10, sum1, sum2;
6
                sum1 = (i / 2) + p.fun(ref i);
                sum2 = p.fun(ref j) + (j / 2);
                System.Console.WriteLine("sum1 = "+sum1);
9
                System.Console.WriteLine("sum2 = " + sum2);
10
                Console.Read();
11
12
            public int fun(ref int k)
13
14
                k = 4 + k;
15
                return 3*(k) - 1;
16
17
18
```

El programa retorna el mismo resultado que C

• Programa en Java

```
public class TestLP {
        public static void main(String[] args) {
2
            TestLP test = new TestLP();
3
            int i = 10, j = 10, sum1, sum2;
            sum1 = (i / 2) + test.fun(i);
5
            sum2 = test.fun(j) + (j / 2);
6
            System.out.println("sum1= " + sum1);
            System.out.println("sum2= " + sum2);
8
9
         public int fun(int k) {
10
            k += 4;
11
            return 3 * (k) - 1;
12
       }
13
14
```

El programa retorna: sum1= 46 y sum2= 46, ya que no se pueden utilizar punteros en Java.

 Pregunta 3: Write a test program in your favorite language that determines and outputs the precedence and associativity of its arithmetic and Boolean operators.

```
public class TestLP {
    public static void main(String[] args) {
        boolean a;
        double e;
}
```

```
a = true | false && false | false;
5
            System.out.println(a);
6
            a =false || true && false || false && false;
7
            System.out.println(a);
            e = 1 + 2 + 3 * 3 / 6.0;
9
            System.out.println(e);
10
            e = (1 + 2) + ((3 * 3) / 6.0);
11
            System.out.println(e);
12
        }
13
   }
14
```

Como resultado obtenemos lo siguiente por consola

```
true
false
4.5
4.5
```

Lo que nos indica que en las operaciones booleanas el operador AND (&&) tiene mayor precedencia que el operador OR (||). En las operaciones aritmeticas el operador * tiene mayor precedencia que / y +

• Pregunta 4: Write a Java program that exposes Java's rule for operand evaluation order when one of the operands is a method call.

```
public class TestLP {
        public static void main(String[] args) {
2
            TestLP test = new TestLP();
3
            int a = 0, c;
4
            c = (a) + test.func(--a);
            System.out.println("c = " + c);
            System.out.println("a = " + a);
            a = 0;
            c = test.func(--a) + (a);
9
            System.out.println("c = " + c);
10
            System.out.println("a = " + a);
11
        }
1\,2
        public int func(int c) {
13
            return c + 10;
14
        }
15
   }
16
```

El programa retorna:

Lo que nos muestra que las funciones se evaluan de izquierda a derecha

• Pregunta 5: Repeat Programming Exercise 5 with C++.

```
class Program
       {
2
            static void Main(string[] args)
3
                Program p = new Program();
                int a = 0, c;
                c = (a) + p.func(--a);
                System.Console.WriteLine("c = " + c);
                System.Console.WriteLine("a = " + a);
9
                a = 0;
10
                c = p.func(--a) + (a);
11
                System.Console.WriteLine("c = " + c);
12
                System.Console.WriteLine("a = " + a);
13
                Console. Read();
14
15
            public int func(int c)
16
17
                return c + 10;
18
19
       }
20
```

El programa retorna:

```
ille:///c:/users/juan/documents/visual studio 2012/Projects/TestPL2/TestPL2/bin/Debug/TestPL2.EXE

c = 9
a = -1
c = 8
a = -1
-
```

■ Pregunta 6: Repeat Programming Exercise 6 with C#.

```
class Program
       {
2
            static void Main(string∏ args)
3
                Program p = new Program();
                int a = 0, c;
6
                c = (a) + p.func(--a);
                System.Console.WriteLine("c = " + c);
8
                System.Console.WriteLine("a = " + a);
9
                a = 0;
10
                c = p.func(--a) + (a);
11
                System.Console.WriteLine("c = " + c);
12
                System Console WriteLine("a = " + a);
13
                Console. Read();
14
15
            public int func(int c)
16
17
                return c + 10;
18
            }
19
        }
20
```

El programa retorna:

```
ille:///c:/users/juan/documents/visual studio 2012/Projects/TestPLSharp/TestPLSharp/bin/Debug/TestPLSharp.EXE

c = 9
a = -1
c = 8
a = -1
```

■ Pregunta 9: Write a program in either Java, C++, or C# that performs a large number of floating-point operations and an equal number of integer operations and compare the time required.

```
public class TestLP {
    public static void main(String[] args) {
        int ae[] = new int[500000];
        float af[] = new float[500000];
        float accf = 0;
```

```
long t1, t2, t3, te, tf;
6
            int acce = 0;
7
            Random r = new Random();
            for(int i=0; i < 500000; i++){
                 af[i]=r.nextFloat();
10
                 ae[i]=r.nextInt(40);
11
            }
12
            t1= System.nanoTime();
13
            for(int e:ae){
14
                 acce+=e;
15
16
            t2=System.nanoTime();
17
            for(float f:af){
18
                 accf+=f;
19
^{20}
            t3=System.nanoTime();
            te=t2-t1;
22
            tf=t3-t2;
23
            System.out.println("Total Entero = " + acce);
24
            System.out.println("Total Flotante = " + accf);
25
            System.out.println("Tiempo Entero = " + te);
26
            System.out.println("Tiempo Flotante = + tf);
^{27}
            System.out.println(t1);
28
            System.out.println(t2);
29
            System.out.println(t3);
30
        }
31
   }
```

El tiempo Entero es de alrededor de 7 milisegundos, mientras que el tiempo de flotantes es de alrededor de 0.5 milisegundos

2.4. Capítulo 8: Estructuras de Control

- Pregunta 3 OJOOOOOOOO faltaaaaaaaaaaaaaaaaa
- Pregunta 4 0J0000000000 faltaaaaaaaaaaaaaaaaaaaaaaaa
- Pregunta 5 0J000000000 faltaaaaaaaaaaaaaaaaaaaaaaaaa

2.5. Capítulo 9: SubProgramas

- Pregunta 1 0J0000000000 faltaaaaaaaaaaaaaaaaaaaaaaaa
- Pregunta 5 0J000000000 faltaaaaaaaaaaaaaaaaaaaaaaaaa