فرآيندهاي تصادفي

انشكده مهندسي كامپيوتر

زمان تحویل: ۱۱ آذر

Power Spectrum, Point Process, Poisson Process, Gaussian Process

تمرين سوم

١. درست يا نادرست بودن عبارات زير را با ذكر دليل بيان كنيد.

است. $\operatorname{PSD} S_Y(\omega) = \frac{1-\omega^{\mathsf{Y}}}{1+\omega^{\mathsf{Y}}}$ و $S_X(\omega) = e^{-|\omega|}|\sin(\omega)|$ (آ) $S_X(\omega) = e^{-|\omega|}|\sin(\omega)|$

(این دو فرایند WSS هستند)

ب) تابع اتوکوواریانس یک فرآیند WSS با $S(\omega)=rac{ au}{ au+\omega^{\dagger}}$ مدق میکند. $S(\omega)=rac{ au}{ au+\omega^{\dagger}}$ صدق میکند.

 $Q(\omega)$ است. $Q(t)\delta(t-s)$ دارای طیف توان مفید ۲ با میانگین صفر و اتوکوواریانس و اتوکوواریانس دارای طیف توان است.

اشد. λ باشد. یک فرایند پواسون با نرخ $N(t), t \in [{\, \cdot \,}, \infty)$ باشد.

 $(Cov(N(t_1),N(t_1)))$ تابع کوواریانس N(t) را محاسبه کنید. آ

 $E[ilde{N}(t_1,t_7). ilde{N}(t_7,t_7)]$ را محاسبه کنبد رخدادها در بازهی (t, au) باشد. با اگر $E[ilde{N}(t_1,t_7). ilde{N}(t_7,t_7)]$

 $(s>\cdot)$ را محاسبه کنید. N(t+s) و N(t) را محاسبه کنید.

 $s > \cdot$ ، E[N(t)N(t+s)] (ت

ث) احتمال وقوع دو رخداد 0 در بازهی $(\cdot\,,\,\mathbf{Y})$ و سه رخداد در $(\,\mathbf{Y},\,\mathbf{Y})$ را محاسبه کنید.

۳. اگر X و Y دو فرآیند تصادفی پواسون مستقل با نرخهای ۱ $\lambda_1 = 1$ و ۲ $\lambda_2 = 1$ باشند. احتمال اینکه دومین رخداد در X قبل از سومین رخداد در Y اتفاق بیافتد را بیابید.

 $X(t) = At, t \in R, A \sim N(\, \cdot \, , \, 1)$ داشته باشیم: X(t) داشته باشیم. ۴

آ) نشان دهید که X(t) یک فرایند گاوسی است.

ب) مقدار امید ریاضی و اتو کوواریانس این فرایند را به دست آورید.

^{&#}x27;power spectral density

white noise

^{*}power spectrum

fjoint probability mass function

arrival ه

- ۵. اگر یک فرایند گاووسی به صورت $(G_t)_{t \in [\cdot,\infty)} = c$ داشته باشیم و این فرایند خصوصیات زیر را داشته باشد
 - است. $X_{\cdot} = \cdot$ است. (۱
 - $X_t X_s \sim \mathcal{N}(\cdot, \sqrt{t-s})$ $\cdot \cdot \leq s \leq t$ (Υ
 - با توجه به این خصوصیاتها به سوالات زیر پاسخ دهید.
 - آ) مقدار $s \leq t$ را محاسبه کنید. آ
 - $\cdot \leq t_1 \leq t_7 \leq ... \leq t_n$ ب توزیع $(X_{t_1}, X_{t_1}, ..., X_{t_n})$ را مشخص کنید.
- ۶. فرایند تصادفی ورود را دنباله ای از متغیرهای تصادفی صعودی به صورت $S_1 < S_1 < \dots < S_n$ تعریف میکنیم که هر S_i زمان وقوع رخداد i ام است. این فرایند را میتوان به دو شیوه دیگر نمایش داد: ۱ ـ دنباله متغیرهای تصادفی S_i که فاصله زمانی میان رخداد i و i است.
 - $P(S_n \le t) = P(N(t) \ge n)$ الف) نشان دهید که
- ب) فرض کنید X_1, X_2, \dots متغیرهای تصادفی iid با تابع چگالی $f_X(x) = \lambda exp(-\lambda x)$ هستند و برای iid داریم فرض کنید $S_n = X_1 + X_2 \dots + X_n$ نشان دهید که برای $S_n = X_1 + X_2 \dots + X_n$ داریم:
 - $f_{S_1,S_1,...,S_n}(s_1,s_1,...,s_n) = \lambda^n exp(-\lambda s_n)$
 - پ) برای یک فرایند پواسون با نرخ λ مقدار $(S_1,S_1,...,S_{n-1}|S_n=t)$ را به دست آورید.
- ۷. دو پستچی U و V در اداره ی پست در زمانهای صفر و یک حاضر می شوند. زمان تحویل بسته های هر یک از دو پستچی یک فرایند پواسون (مستقل) با نرخهای λ_V و λ_V است.
 - آ) اگر T_1 و T_1 زمانهایی باشند که پستچی T_1 بستههای اول و دوم را تحویل داده است.
 - امیدریاضی شرطی $E[T_{\mathsf{Y}}|T_{\mathsf{I}}]$ را محاسبه کنید (i
 - نابع توزیع چگالی T_1^{γ} را بدست بیاورید. (ii
 - iii) تابع توزیع چگالی توام T_1 و T_1 را بدست آورید.
 - ب) تابع جرم احتمال تعداد کل بسته های تحویل داده شده توسط هر دو پستچی در بازهی [۰, ۲] را بدست بیاورید.

⁹PDF

^vjoint PDF