

Tritium Breeding and blanket technology

<u>W. Biel^{1,2}</u>

¹Institute of Energy- and Climate Research, Forschungszentrum Jülich GmbH, Germany ²Department of Applied Physics, Ghent University, Belgium

DPG School "The Physics of ITER" Bad Honnef, 26.09.2014

Introduction: principle of a fusion power plant

Fusion rates in a thermal plasma

Blanket design

The blanket is a key components of a fusion reactor, with the following functions:

- Tritium breeding
- Power exhaust
- Radiation shielding

Important aspects for blanket design:

- Tritium breeding rate TBR > 1
- structural integrity maintained for long operation (high neutron fluence)
- efficient heat exhaust (high thermodynamic efficiency)
- low activation
- Low tritium retention
- Good tritium confinement

Radial build of a tokamak reactor

Fusion power plant: distance between plasma edge and TF coil casing **b** ~ **1.8 m**. This number does not scale with reactor size → consequence for reactor size

Tritium breeding blanket

Tritium ($t_{1/2}$ = 12.32 years) is only scarcely available (from fission reactors) and hence it has to be produced in the fusion reactor ("breeding").

Natural Lithium consists of 7.42% ⁶l i and 92.58% ⁷l i

Possible breeding reactions:

$$^{6}Li + n \rightarrow T + \alpha + 4.78MeV$$
 $^{7}Li + n \rightarrow T + \alpha + n - 2.47MeV$

The 7 Li(n;n' α)t reaction is endothermic with an energy threshold of 2.8 MeV.

In steady state operation, a fusion reactor should reach a tritium breeding ratio ((TBR) > 1.

Abschätzung der notwendigen Blanket-Dicke

Freie Weglänge (1/e) für die Abbremsung der Neutronen

(after: J. Freidberg)

$$\lambda_{SD} = \frac{1}{n_{Li}\sigma_{SD}} \approx 0.055m$$
 (Stoß-Querschnitt Neutronen-Kühlung $\sigma_{SD} = 10^{-28} \text{ m}^2$)

Daraus folgt für die Energie der Neutronen folgender räumlicher Verlauf:

$$\frac{dE}{dx} = -\frac{E}{\lambda_{SD}}, \quad \Rightarrow E = E_n e^{-\frac{x}{\lambda_{SD}}}$$

Wie dick muss der Li-Moderator sein, damit die Neutronen von der Anfangsenergie $E_n = 14.1 \text{ MeV}$ auf thermische Energien ($E_{th} = 0.025 \text{ eV}$) abgebremst werden?

Antwort:

$$\lambda_{SD} = \frac{1}{n_{Li}\sigma_{SD}} \approx 55 \ mm \ , \quad \frac{E_n}{E_{th}} = \frac{14.1 \ MeV}{25 \ meV} = 5.63 \times 10^8 \Rightarrow x = \ln(5.63 \times 10^8) \lambda_{SD}$$

 \rightarrow Es werden etwa 20 Abfall-Längen λ_{SD} benötigt, d.h. x = 1.1 m

Berücksichtigt man zusätzlich die Brutreaktion, genügt eine Blanket-Dicke von etwa 0.7 ... 0.9 m

Neutron multiplication

A pure Lithium blanket cannot reach TBR > 1 due to unavoidable neutron losses:

- absorption in structural materials
- Geometric losses through divertor (no breeding blanket there)
- voids in the blanket needed for heating and diagnostic access

Endothermic reactions with Be or Pb are suited for neutron mulitiplication in the blanket → TBR > 1

In total, the blanket is producing extra energy due to the exothermic ⁶Li reaction. The typical total energy yield per primary fusion reaction is about 20 MeV.

Overview: European blanket concepts for DEMO

Helium-gekühltes "Pebble-Bed"-Blanket

HCPB Konzept (KIT):

- Keramische Kugel-Schüttungen mit Li und Be; Verbrauch ca. 1 cm/Jahr
- Helium-Kühlung (hohe Abgangstemperatur; Sicherheit)
- Komplett-Austausch von Blanket + erster Wand nach einigen Jahren

- benötigt sehr hohe Pumpleistungen
- T-Inventar in den Li₄SiO₄ Kugeln (Ausgasrate ist temperaturabhängig)
- Versprödung der keramischen Kugeln

HCPB Blanket (Helium Cooled Pebble Bed)

DEMO BLANKET Iso Box Back Plate view (35mm - 70 mm) Back Supporting Structure (350mm) First Wall Protective W layer (2 mm) Caps (30mm) Li,SiO, Beryllium/Be-alloy Ceramics Neutron multiplier breeder Plasma side **Breeder Unit** Helium Cooling 300-500°C, 8 MPa

(slide after L. Boccaccini, KIT / Eurofusion)

Main features

- Large modules (up to 1 m x 2 m)
- EUROFER as structural material: protective tungsten layer at the front side
- He at 8MPa, Tinl/Tout = 300/500 °C coolant
- Ceramic Breeder (CB): Li₄SiO₄ in form of pebble bed at 50% 6Li. Li2TiO3 is an alternative candidate.
- Beryllium as multiplier in form of a pebble bed
- T extraction (Be and CB) through low pressure purge He (few bars)

Operational conditions in a ceramic type blanket

High temperature operation needed

- 1. to ensure that the Tritium can outgas from the ceramic pebbles fast enough,
- 2. to allow for a high thermodynamic efficiency of electrical power generation

Note that high temperature operation is demanding for the materials requirements.

(slide after L. Boccaccini, KIT / Eurofusion)

HCLL Blanket Concepts (Helium Cooled Lithium Lead)

HCLL equatorial outboard module LiPb flow PbLi outlet Breeding zone cel Horizontal stiffening

Main features

- Large modules (~ 2 m x 1.5 m)
- EUROFER as structural material
- He at 8MPa, Tinl/Tout = 300/500 °C coolant
- Pb-Li (Li at 90% in 6Li) breeder, neutron multiplier and tritium carrier
- PbLi slowly re-circulating (10/50)rec/day)
- T extraction from Pb-Li outside the blanket

G. Aiello et al. Development of the Helium Cooled Lithium Lead Blanket for DEMO, ISFNT-11

Breeding zone column

Flüssig-PbLi Blanketprinzip

Self-cooled PbLi blankets

Poloidal flow concept

PbLi as breeder and coolant

Advantages:

- · only one fluid
- simple design

Schwierigkeiten:

- Strömung eines elektrisch leitfähigen Mediums senkrecht zum Magnetfeld, daher hoher Druckabfall
- Korrosion in den Leitungswegen

The ARIES-RS Blanket and Shield are Segmented to maximize Component Lifetime

Outer blanket detail

- Blanket and shield consists of 4 radial segments.
- First wall segment, attached to the structural ring, is replaced every 2.5 FPY.
- Blanket/reflector segment is replaced after 7.5 FPY.
- Both shield segments are lifetime components:
 - High-grade heat is extracted from the high-temperature shield:
 - Ferritic steel is used selectively as structure and shield filler material.

Pumping liquid metals

(after L. Bühler, KIT)

Flow of electrically conducting fluids in a magnetic field

Poiseuille - Hartmann flow

(L. Bühler, KIT)

Exact solution

$$u = U \left(1 - \frac{\cosh Ha \, y}{\cosh Ha} \right)$$

Hydrodynamic flow for Ha < 1

Plug flow for Ha >> 1

Formation of thin boundary layers

Balance between pressure and Lorentz force

$$Ha = LB\sqrt{\frac{\sigma}{\rho \nu}}$$
 $\sigma = \text{electr. conductivity}$ $\rho = \text{mass density}$ $\nu = \text{kinematic viscosity}$

v = kinematic viscosity

= tube radius

B = magnetic field

For applications in fusion blankets: $Ha > 10^4$, $\delta << 1$

Optimisation of Tritium breeding ratio (TBR)

Optimisation of TBR is possible via

- enrichment of ⁶Li
- 2. mass ratio between neutron multiplier and breeding materials

Rough survey by homogenized model of cooling layer (F82H + H₂O) + breeder (Li₂TiO₃) + multiplier(Be or Be₁₂Ti)

The Blanket systems: segmented design

Fusionsreaktor: Gefäß-Komponenten und deren

Reaktor-Komponenten:

- Vakuum-Gefäß + Ports
- Blanket
- Divertor
- Magnetsystem
- Anschlüsse und Rohre
- Abschirmung, Isolation

Wichtige Reaktor-Systeme:

- Kühlsystem
- Stromerzeugung
- Tritium-Erzeugung und Auskopplung
- Komponenten-Austausch-System
- Plasma-Heizung und Stromtrieb
- Plasma-Kontrolle

D. Filsinger, L. V. Boccaccini, et al. (KIT)

Konzept für Wartung und Austausch von Komponenten (Vertikaler Port)

Regelmäßiger Austausch von Wand-Komponenten und Blanket ca. alle 2 - 4 Jahre

D. Filsinger, L. V. Boccaccini, et al. (KIT)

Test blanket modules for **ITER**

Blanket Name	IP	Coolant	Breeder materials	Additional features		
Helium Cooled Lithium	EU	helium	PbLi			
Lead (HCLL)	200200					
Helium Cooled Pebble Bed	EU	helium	Ceramic Breeder +			
(HCPB)			Be			
Water Cooled Ceramic	JA	water	Ceramic Breeder +	T-permeation barrier should be		
Breeder (WCCB)			Be	tested		
Helium Cooled Ceramic	KO	helium	Ceramic Breeder +	Reflector of graphite pebbles		
Reflector (HCCR)		WASHINGTON TO	Be	coated with SiC.		
Helium Cooled Ceramic	CHI	helium	Ceramic Breeder +	Be as binary bed and T		
Breeder (HCCB)			Be	Permeation barriers.		
Lithium Lead Ceramic	IN(RF)	helium /	Ceramic Breeder +	Electrical insulating coatings for		
Breeder (LLCB)	400 000	PbLi	PbLi	PbLi flow		
[Dual Coolant Lithium Lead	US	Helium /	PbLi	SiC _t /SiC inserts as electrical		
(DCLL)]		PbLi		insulator for PbLi flow		

All the Blankets use a RAFM stell as structural material (in EU the steel is EUROFER-97)

Port#16	Port#18	Port#2	none	
---------	---------	--------	------	--

Blanket concepts for a <u>DEMO reactor</u>

Label	Class of concept	Structure	Coolant	Breeder	Multiplier	Tritium removal
WCSB (JA)	Water Cooled Solid Breeder	RAFM	Water @ 285-325°C, 15.5 MPa Opt: @ 280/510°C, 25 MPa,	Li ₂ TiO ₃	Be BeTi	Separated Tritium / Heat removal loops
WCLL (EU)	Water Cooled Lithium Lead	RAFM	Water @ 285-325°C, 15.5 MPa	PbLi	PbLi	Separated Tritium / Heat removal loops
HCPB (EU) HCCB (CHI) HCCR (KO)	Helium Cooled Solid Breeder	RAFM	Helium @ 300-500°C, 8 MPa	Li ₄ SiO ₄ (Li ₂ TiO ₃)	Be (Be12Ti)	Separated Tritium / Heat removal loops
HCLL (EU)	Helium Cooled Lithium Lead	RAFM	Helium @ 300-500°C, 8 MPa	PbLi	PbLi	Separated Tritium / Heat removal loops
DCLL (US, EU,CHI)	Dual Coolant Lithium Lead	RAFM	Helium @ 300-500°C, 8 MPa PbLi @ 500-700°C)	PbLi	PbLi	Combined Tritium / Heat removal loops
FFHR (JA)	FLiBe Self Coolant	RAF V (alloy)	FLiBe @ 450-550°C	FLiBe	FLiBe + Be	Combined Tritium / Heat removal loops
Li/V-SC (US)	Li/V Self Coolant	V (alloy)	Li @ 650-700°C	Li	(Be)	Combined Tritium / Heat removal loops
AHCPB (KIT-EU)	Advanced HCPB	SiC _f /SiC	Helium@ 350-750°C, 8 MPa	Li ₄ SiO ₄	Be	Separated Tritium / Heat removal loops
SCLL (US, EU) TAURUS (CEA-EU)	Self Coolant Lithium Lead	SiC _f /SiC	PbLi @ 700-1100°C	PbLi	PbLi	Combined Tritium / Heat removal loops
Dream (JA)	High temperature Solid Breeder	SiC _f /SiC	Helium @ 600-900°C, 10MPa	Li ₂ TiO ₃	Be	Combined Tritium / Heat removal loops
EVOLVE (US)	Evaporating Li	W (alloy)	Li @ 1200°C (boiling)	Li	none	Combined Tritium / Heat removal loops

Zusammenfassung zur Blanket-Auslegung für einen Fusions-Reaktor

- In der Brutzone laufen die Prozesse von Moderation der Neutronen, Tritium-Brüten und Neutronenvervielfachung parallel ab; einschließlich Strukturmaterial und Kühlung ist eine Dicke von etwa 1 m notwendig.
- Falls wir einen zu häufigen Austausch des Blankets vermeiden wollen, dann muss entsprechend eine "Verbrauchsschicht" zugegeben werden, hierfür genügen etwa + 10 cm (> 10 Jahre)
- Eine Feinabstimmung der Brutrate (TBR) oder geringe Reduzierung der Blanketdicke kann durch Anreicherung von ⁶Li erfolgen
- Die Magnetfeldspulen benötigen eine Abschirmung gegenüber der verbleibenden ionisierenden Strahlung sowie eine thermische Abschirmung (+ 30 .. 40 cm).
- Ein doppelwandiges Vakuumgefäß ist für den sicheren Einschluss des Tritium-Inventars nötig (+ 30 .. 40 cm).
- Insgesamt ergibt sich auf der Innenseite des Torus ein Mindestabstand zwischen Plasmarand und TF-Spulen von b = 1.8 ... 2.0 m