Linear Algebra

주재걸 고려대학교 컴퓨터학과

• **Definition:** A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto \mathbb{R}^m if each $\mathbf{b} \in \mathbb{R}^m$ is the image of at least one $\mathbf{x} \in \mathbb{R}^n$. That is, the range is equal to the co-domain.

• **Definition:** A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one if each $\mathbf{b} \in \mathbb{R}^m$ is the image of at most one $\mathbf{x} \in \mathbb{R}^n$. That is, each output vector in the range is mapped by only one input vector, no more than that.

Neural Network Example

Fully-connected layers

Neural Network Example: ONE-TO-ONE

 Will there be many (or unique) people mapped to the same (over_weighted, tall_and_smoking)?

Neural Network Example: ONTO

 Is there any (over_weighted, tall_and_smoking) that does not exist at all?

• Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, i.e.,

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^n$.

- *T* is one-to-one if and only if the columns of *A* are linearly independent.
- T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .

Example:

Let
$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Is *T* one-to-one?
- Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?

Example:

Let
$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- Is *T* one-to-one?
- Does T map \mathbb{R}^3 onto \mathbb{R}^2 ?

Further Study

- Gaussian elimination, row reduction, echelon form
 - Lay Ch1.2,

- LU factorization: efficiently solving linear systems
 - Lay Ch2.5
- Computing invertible matrices
 - Lay Ch2.2
- Invertible matrix theorem for square matrices
 - Lay Ch2.3, Ch2.9