TBD*

TBD

Ziheng Zhong

April 8, 2024

TBD

Table of contents

1	Intr	oduction	2
2	Dat 2.1	a Source	2
	2.2	Method	
3	Resi	ults	5
	3.1	Data Trend	5
	3.2	Heat Maps	5
	3.3	Modeling	5
4	Disc	cussion	5
	4.1	Demographic Shifts	5
	4.2	Health-related Behaviors	5
	4.3	Government Policies	5
	4.4	Environmental Changes	5
	4.5	Possible Improvements	5
5	Con	clusion	5
Α		pendix Datasheet	6
Re	foror	nces	7

^{*}Code and data are available at: https://github.com/iJustinn/House_Price.git

Table 1: Summary statistics of the California housing dataset

Table 2: Count of missing values for each variable

1 Introduction

2 Data

Data used in this paper was cleaned, processed and tested with the programming language R (R Core Team 2022). Also with support of additional packages in R: tidyverse (Wickham et al. 2019), ggplot2 (Wickham 2016), janitor (Firke 2023), readr (Wickham, Hester, and Bryan 2023), knitr (Xie 2014), modelsummary (Arel-Bundock 2023), testthat (Wickham Year of publication), KableExtra (Zhu 2023), viridis (Garnier et al. 2018), lubridate (Grolemund and Wickham 2021), maps (Deckmyn et al. 2021), mgcv (Wood 2021).

Table 3: Count of missing values for each variable after cleaning

Table 4: Modeling Results for Linear Models

	Multiple Regression	Polynomial Regression
(Intercept)	-13969628.019	212 976.031
_ ,	(395357.616)	(1359.110)
Year	6958.769	·
	(196.466)	
NumBedroom	59897.327	
	(993.637)	
poly(Year, 2)1		3866485.706
		(105994.679)
poly(Year, 2)2		1601816.793
		(105993.208)
poly(NumBedroom, 2)1		6591537.312
		(105993.313)
poly(NumBedroom, 2)2		1365656.076
		(105994.574)
Num.Obs.	6082	6082
R2	0.445	0.479
R2 Adj.	0.445	0.479
AIC	158396.4	158018.2
BIC	158423.3	158058.5
Log.Lik.	-79194.199	-79003.096
\mathbf{F}	2440.891	1397.712
RMSE	109331.51	105 949.60

Table 5

	GAM Regression
(Intercept)	212976.031
	(1322.680)
Num.Obs.	6082
R2	0.506
AIC	157697.2
BIC	157801.7
RMSE	103028.50

 ${\bf Mo\overline{deling~Results~for~Non-linear~Mo\bar{dels}}}$

Figure 1: Trend of Average House Price from 2000 to 2024

Figure 2: Trend of Average House Price from 2000 to 2024 by House Type

- 2.1 Source
- 2.2 Method
- 3 Results
- 3.1 Data Trend
- 3.2 Heat Maps
- 3.3 Modeling
- 4 Discussion
- 4.1 Demographic Shifts
- 4.2 Health-related Behaviors
- 4.3 Government Policies
- 4.4 Environmental Changes
- 4.5 Possible Improvements

5 Conclusion

Figure 3: Average Price by State in the US for All House Types

A Appendix

A.1 Datasheet

Motivation

Composition

Collection process

Preprocessing/cleaning/labeling

Uses

Distribution

Maintenance

References

- Arel-Bundock, Vincent. 2023. Modelsummary: Summary Tables and Plots for Statistical Models and Data: Beautiful, Customizable, and Publication-Ready. https://vincentarelbundock.github.io/modelsummary/.
- Deckmyn, Alex, Original S code by Richard A. Becker, Allan R. Wilks. R version by Ray Brownrigg. Enhancements by Thomas P Minka, and Alex Deckmyn. 2021. *Maps: Draw Geographical Maps.* https://CRAN.R-project.org/package=maps.
- Firke, Sam. 2023. Janitor: Simple Tools for Examining and Cleaning Dirty Data. https://CRAN.R-project.org/package=janitor.
- Garnier, Simon, Noam Ross, Bob Rudis, and Marco Sciaini. 2018. Viridis: Default Color Maps from 'Matplotlib'. https://CRAN.R-project.org/package=viridis.
- Grolemund, Garrett, and Hadley Wickham. 2021. Lubridate: Make Dealing with Dates a Little Easier. https://CRAN.R-project.org/package=lubridate.
- R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley. Year of publication. Testthat: Get Started with Testing. https://CRAN.R-project.org/package=testthat.
- ——. 2016. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.
- Wickham, Hadley, Jim Hester, and Jennifer Bryan. 2023. Readr: Read Rectangular Text Data. https://CRAN.R-project.org/package=readr.
- Wood, Simon N. 2021. Mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. https://CRAN.R-project.org/package=mgcv.
- Xie, Yihui. 2014. Knitr: A Comprehensive Tool for Reproducible Research in R. Edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.
- Zhu, Hao. 2023. kableExtra: Construct Complex Table with 'Kable' and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.

Figure 4: Average Price by State in the US for Different House Types

Figure 5