This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 09100450 A

(43) Date of publication of

application: 15. 04 . 97

(51) Int. CI

C09J 7/02 C09J201/00 H01L 21/52 H01L 21/301

(21) Application number: 07256090

(22) Date of filing: 03 . 10 . 95

(71) Applicant: LINTEC CORP

(72)Inventor: SUGINO TAKASHI

> SENOO HIDEO ... KOGURE MASAO

(54) TACKY ADHESIVE TAPE AND ITS METHOD OF USE"

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a tacky adhesive tape having a tacky adhesive layer consisting of an energy beam curing-type tacky component, a heat curing-type adhesive component, a flexible component and a coupling agent, having an energy beam curing property and a heat curing property, and useful as a dicing tape, etc.

SOLUTION: This tacky adhesive tape has (A) a base material (preferably a light transmitting base material having 240dyne/cm surface COPYRIGHT: (C)1997,JPO

tension) and (B) a tacky adhesive layer formed on the (A) consisting of (i) an energy beam curing-type tacky agent component (e.g.; a tacky composition consisting of an acrylic tacckiness an agent, energy: beam polymerizable compound and photo-polymerization initiator), (ii) heat adhesive component, curing-type flexible component (e.g.; a thermoplastic resin or an elastomer) and (iv) a coupling agent. The tacky adhesive tape is useful at the time of pasting a semiconductor wafer to its tacky adhesive layer for dicing semiconductor wafer to form IC chips.

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

09100450

PUBLICATION DATE

15-04-97

APPLICATION DATE

03-10-95

APPLICATION NUMBER

07256090

APPLICANT:

LINTEC CORP:

INVENTOR:

KOGURE MASAO;

INT.CL.

C09J 7/02 C09J201/00 H01L 21/52 H01L 21/301

TITLE

TACKY ADHESIVE TAPE AND ITS METHOD OF USE

ABSTRACT :

PROBLEM TO BE SOLVED: To obtain a tacky adhesive tape having a tacky adhesive layer consisting of an energy beam curing-type tacky component, a heat curing-type adhesive component, a flexible component and a coupling agent, having an energy beam curing property and a heat curing property, and useful as a dicing tape, etc.

SOLUTION: This tacky adhesive tape has (A) a base material (preferably a light transmitting base material having ≤40dyne/cm surface tension) and (B) a tacky adhesive layer formed on the (A) consisting of (i) an energy beam curing-type tacky agent component (e.g.; a tacky composition consisting of an acrylic tacckiness agent, an energy beam polymerizable compound and a photo-polymerization initiator), (ii) a heat curing-type adhesive component, (iii) a flexible component (e.g.; a thermoplastic resin or an elastomer) and (iv) a coupling agent. The tacky adhesive tape is useful at the time of pasting a semiconductor wafer to its tacky adhesive layer for dicing the semiconductor wafer to form IC chips.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-100450

(43)公開日 平成9年(1997)4月15日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FΙ		技術表示箇所
C 0 9 J 7/02	JJU .	•	C 0 9 J 7/02	JJU	
201/00	JBC		201/00	JBC	
H 0 1 L 21/52		•	H01L 21/52	E	
. 21/301			21/78	M	•

審査請求 未請求 請求項の数4 OL (全 9 頁)

(21)出願番号 特顧平7-256090

(22)山願日 平成7年(1995)10月3日

(71)出顧人: 000102980

リンテック株式会社

東京都板橋区本町23番23号

(72)発明者 杉 野 貴 志

東京都北区西ヶ原4-13-15

(72) 発明者 妹 尾 秀 男

埼玉県和光市諏訪原団地2-6-505

(72)発明者 小 暮 正 男

埼玉県北足立郡吹上町新宿1-199-4

(74)代理人 弁理士 鈴木 俊一郎

(54) 【発明の名称】 粘接着テープおよびその使用方法

(57)【要約】

【課題】 エネルギー線硬化性と加熱硬化性とを有し、 ダイシングの際にはダイシングテープとして使用すること ができ、マウントの際には接着剤として使用すること ができ、かつ最終的には耐衝で性の高い硬化物を与える ことができ、しかも剪断強度と利罷強度とのバランスに 優れ、厳しい熱湿条件下においても充分な接着物性を保 持しうる粘接着層を備えた粘接着テープを提供すること。

【解決手段】 (A) エネルギー線硬化型粘着成分と、

- (B) 熱硬化型接着成分と、(C) 可とう性成分と、
- (D)カップリング剤とから形成されている粘接着層を 有する粘接着テープ。

【特許請求の範囲】

【請求項1】 基材と、その上に形成された(A)エネルギー線硬化型粘着成分と、(B)熱硬化型接着成分と、(C)可とう性成分と、(D)カップリング剤とからなる粘接着層を有することを特徴とする粘接着テープ。

【請求項2】 該基材が、4 O dyn/cm以下の表面張力を 有する光透過性基材であることを特徴とする請求項1に 記載の粘接着テープ。

【請求項3】 請求項1または2のいずれかに記載の粘接着テープの粘接着層に半導体ウェハを貼付し、該半導体ウェハをダイシングしてICチップとする際に、ダイシング前またはダイシング後のいずれかにおいて該粘接着層にエネルギー線を照射して該粘接着層を硬化させ、該粘接着層を該ICチップの表面に固着残存させて基材から剥離し、該ICチップをリードフレーム上に該粘接着層を介して載置し、次いで加熱することにより該粘接着層に接着力を発現させて該ICチップとリードフレームとを接着することを特徴とする粘接着テープの使用方法。

【請求項4】 照射するエネルギー線が紫外線であることを特徴とする請求項3に記載の粘接着テープの使用方法。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、新規な粘接着テープおよびその使用方法に関する。さらに詳しくは、本発明は、特にシリコンウェハ等をダイシングし、さらにリードフレームにダイボンディングする工程で使用するのに特に適した粘接着テープおよびその使用方法に関する。

[0002]

【発明の技術的背景】シリコン、ガリウムヒ素などの半 導体ウェハは大径の状態で製造され、このウェハは素子 小片(ICチップ)に切断分離(ダイシング)された後 に次の工程であるマウント工程に移されている。この 際、半導体ウェハは子じめ粘着シートに貼着された状態 でダイシング、洗浄、乾燥、エキスパンディング、ピッ クアップの各工程が加えられた後、次工程のボンディン グ工程に移送される。

【0003】このような半導体ウェハのダイシング工程からピックアップ工程に至る工程で用いられる粘着シートとしては、ダイシング工程から乾燥工程まではウェハチップに対して充分な接着力を有しており、ピックアップ時にはウェハチップに粘着剤が付着しない程度の接着力を有しているものが望まれている。

【0004】ビックアップされたチップは、ダイボンディング工程において、エボキシ接着剤などのダイ接着用接着剤を介してリードフレームに接着され、半導体装置が製造されている。しかしながら、チップが非常に小さな場合には、適量の接着剤を塗布することが困難であ

り、ICチップから接着剤がはみ出したり、あるいはICチップが大きい場合には、接着剤量が不足するなど、充分な接着力を有するように接着を行うことができないなどという問題点があった。またこのようなダイ接着用接着剤の塗布作業は煩雑でもあり、プロセスを簡略化するためにも改善が要求されている。

【0005】このような問題点を解決するために、ウェハ固定機能とダイ接着機能とを同時に兼ね備えたウェハ 貼着用粘着シートが種々提案されている(たとえば、特 開平2-32181号公報)。

【0006】特開平2-32181号公報には、(メタ)アクリル酸エステル共重合体、エポキシ樹脂、光重合性低分子化合物、熱活性型潜在性エポキシ樹脂硬化剤および光重合開始剤よりなる組成物から形成される粘接着層と、基材とからなる粘接着テープが開示されている。この粘接着層は、ウェハダイシング時には、ウェハを固定する機能を有し、ダイシング終了後、エネルギー線を照射すると硬化し、基材との間の接着力が低下する。したがって、チップのピックアップを行うと、粘接着層は、チップとともに剥離する。粘接着層を伴ったICチップをリードフレームに載置し、加熱すると、粘接着層が接着力を発現し、ICチップとリードフレームとの接着が完了する。

【0007】上記公報に開示されているウェハ貼着用粘着シートは、いわゆるダイレクトダイボンディングを可能にし、ダイ接着用接着剤の塗布工程を省略できるようになる。

【0008】ところで、上記の粘接着テープの粘接着層は、エネルギー線硬化および熱硬化を経たダイボンド後には全ての成分が硬化し、チップとリードフレームとを非常に強固に接着するが、さらに靱性および耐衝撃性の向上が求められている。

【0009】さらに、半導体産業においては、リードフレーム用の素材として鉄ーニッケル系合金(FeNi合金)と銅系合金の2種類が用いられている。中でもFeNi合金は、接着性や熱寸法安定性の良好な素材として用いられてきた。しかし、最近の生産性向上や高集積化に伴い、高熱をいち速く放熱できる銅系合金製のリードフレームが主流になりつつある。また銅系合金は、FeNi合金に比べてコスト的にも有利である。しかしながら、この銅系合金製のリードフレームは、熱伝導性が良好な分、上述の接着性や熱寸法安定性に劣り、その結果、チップの反りの増大や接着・密着不良によるパッケージクラック発生など信頼性の面で問題がある。

【0010】また、装置の高機能化・高集積化に伴い、 半導体自体も高集積化・高機能化され、多ピン化・チップの大型化、高消費電力化が進んでいる。一方、パッケージに対しても実装の高密度化や高機能化が求めれてきている。従来、半導体チップとリードフレームとの接着に用いられていた銀ペーストでは、充分な接着性が得ら れないため、この様な小型、薄型、面実装化の要求を達成できなかった。このため、銀ペーストに代わる、剪断強度と剥離強度とのバランスに優れた接着剤組成物が望まれている。

【0011】このような剪断強度と剥離強度とのバランスに優れた接着剤を備えた粘接着テープとして、既に本願発明者らは、特願平7-45648号において、

(A) エネルギー線硬化型粘着成分と、(B) 熱硬化型 接着成分と、(C) 可とう性成分とから形成されている 粘接着層を有する粘接着テープを提案している。この粘接着テープは、上記のような技術的課題の解消には有効ではあるが、日々進歩を遂げる最先端の技術分野である 半導体産業においては、常に改良・改善が要求され続けている。特に、最終製品である半導体パッケージ内に組み込まれるダイボンド用接着剤については、厳しい熱湿条件下(たとえば85℃、85%RH、一週間)においても充分な接着物性を保持することが要求され、改良が検討されている。

[0012]

【発明の目的】本発明は、上記のような従来技術に鑑みてなされたものであって、エネルギー線硬化性と加熱硬化性とを有し、ダイシングの際にはダイシングテープとして使用することができ、マウントの際には接着剤として使用することができ、かつ最終的には耐衝撃性の高い硬化物を与えることができ、しかも剪断強度と剥離強度とのバランスに優れ、厳しい熱湿条件下においても充分な接着物性を保持しうる粘接着層を備えた粘接着テープおよびその使用方法を提供することを目的としている。【0013】

【発明の概要】本発明に係る粘接着テープは、(A)エネルギー線硬化型粘着成分と、(B)熱硬化型接着成分と、(C)可とう性成分と、(D)カップリング剤とから形成されている粘接着層を有することを特徴としている。

【〇〇14】本発明に係る粘接着テープの使用方法は、上記粘接着テープの粘接着層に半導体ウェハを貼付し、該半導体ウェハをダイシングしてICチップとする際に、ダイシング前またはダイシング後のいずれかにおいて該粘接着層にエネルギー線を照射して該粘接着層を硬化させ、該粘接着層を該ICチップの表面に固着残存させて基材から剥離し、該ICチップをリードフレーム上に該粘接着層を介して載置し、次いで加熱することにより該粘接着層に接着力を発現させて該ICチップとリードフレームとを接着することを特徴としている。

【0015】照射するエネルギー線としては、紫外線が好ましい。

[0016]

【発明の具体的説明】以下、本発明に係る粘接着テープ およびその使用方法について、具体的に説明する。

【0017】本発明に係る粘接着テープの基材と、その

上に形成された粘接着層とからなり、該粘接着層は、 (A)エネルギー線硬化型粘着成分と、(B)熱硬化型 接着成分と、(C)可とう性成分と、(D)カップリン グ剤とから形成されている。

【〇〇18】(A) エネルギー線硬化型粘着成分は、紫外線、電子線等のエネルギー線の照射前には、充分な粘接着を有し、エネルギー線の照射を受けると成分が硬化し粘着性が消失する成分を指す。このようなエネルギー線硬化型粘着成分は種々知られてり、本発明においては特に制限されることなく従来より公知の様々なエネルギー線硬化型粘着成分を用いることができる。このようなエネルギー線硬化型粘着成分の一例としては、(A-1) アクリル系粘着剤、(A-2) エネルギー線重合性化合物および必要に応じ(A-3) 光重合開始剤からなる粘着組成物をあげることができる。

【0019】アクリル系粘着剤(A-1)としては、たとえ ば、(メタ)アクリル酸エステルモノマーおよび(メ タ) アクリル酸誘導体から導かれる構成単位とからなる (メタ) アクリル酸エステル共重合体が挙げられる。こ こで(メタ)アクリル酸エステルモノマーとしては、 (メタ) アクリル酸シクロアルキルエステル、(メタ) アクリル酸ベンジルエステル、アルキル基の炭素数が1 ~18である (メタ) アクリル酸アルキルエステルが用 いられる。これらの中でも、特に好ましくはアルキル基 の炭素数が1~18である(メタ)アクリル酸アルキル エステル、たとえばアクリル酸メチル、メタクリル酸メ チル、アクリル酸エチル、メタクリル酸エチル、アクリ ル酸プロピル、メタクリル酸プロピル、アクリル酸ブチ ル、メタクリル酸ブチル等が用いられる。また、(メ タ) アクリル酸誘導体としては、たとえば (メタ) アク リル酸グリシジル等を挙げることができる。

【0020】アクリル系粘着剤(A-1)の分子量は、好ましくは100000以上であり、特に好ましくは150000~100000である。またアクリル系粘着剤のガラス転移温度は、通常20℃以下、好ましくは-70~0℃程度であり、常温(23℃)においては粘着性を有する。

【0021】上記のようなアクリル系粘着剤(A-1)としては、特に、(メタ)アクリル酸または(メタ)アクリル酸ブリシジルと、少なくとも1種類の(メタ)アクリル酸アルキルエステルとの共重合体が好ましい。この場合、共重合体中における(メタ)アクリル酸グリシジルから誘導される成分単位の含有率は通常は0~8.0モル%、好ましくは5~50モル%である。グリシジル基を導入することにより、後述する熱硬化型接着成分としてのエポキシ樹脂との相溶性が向上し、また硬化後のTgが高くなり耐熱性も向上する。(メタ)アクリル酸から誘導される成分単位の含有率は通常は0~40モル%、好ましくは5~20モル%である。また(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メ

チル、(メタ)アクリル酸エチル、(メタ)アクリル酸 ブチル等を用いることが好ましい。また、ヒドロキシエ チルアクリレート等の水酸基含有モノマーを導入するこ とにより、被着体との密着性や粘着物性のコントロール が容易になる。

【0022】エネルギー線重合性化合物(A-2) は、紫外 線、電子線等のエネルギー線の照射を受けると重合硬化 する化合物である。この化合物は、分子内に少なくとも 1つの重合性三重結合を有し、通常は、分子量が100 ~30000、好ましくは300~10000程度であ る。このようなエネルギー線重合性化合物(A-2) として は、たとえば特開昭60-196,956号公報および 特開昭60-223、139号公報に開示されているよ うな低分子量化合物が広く用いられ、具体的には、トリ メチロールプロパントリアクリレート、テトラメチロー ルメタンテトラアクリレート、ペンタエリスリトールト リアクリレート、シベンタエリスリトールモノヒドロキ シベンタアクリレート、ジベンタエリスリトールヘキサ アクリレートあるいは1、1-ブチレングリコールジア クリレート、1.6-ヘキサンジオールジアクリレー ト、ポリエチレングリコールジアクリレート、市販のオ リゴエステルアクリレートなどのアクリレート系化合物 が用いられる。

【0023】さらにエネルギー線重合性化台物(A-2)と して、上記のようなアクリレート系化合物のほかに、ウ レタンアクリレート系オリコマーを用いることもでき る。ウレタンアクリレート系オリゴマーは、ボリエステ ル型またはポリエーテル型などのボリオール化合物と、 多価イソシアナート化合物たとえば2、4 トリレンジ イソシアナート、2,6-トリレンジイソシアナート、 1,3-キシリレンジイソシアナート、1.1-キシリ レンジイソシアナート、ジフェニルメタン4.4-ジイ ソシアナートなどを反応させて得られる末端イソシアナ ートウレタンプレポリマーに、ヒドロキシル基を有する アクリレートあるいはメタクリレートたとえば2ーヒド ロキシエチルアクリレートまたは2 ヒドロキシエチル メタクリレート、2-ヒドロキシブロビルアクリレー ト、2ーヒドロキシプロピルメタクリレート、ポリエチ レングリコールアクリレート、ポリエチレングリコール メタクリレートなどを反応させて得られる。このウレタ ンアクリレート系オリゴマーは、炭素ー炭素二重結合を 少なくとも1個以上有する。

【0024】このようなウレタンアクリレート系オリゴマーとして、特に分子量が3000~3000、好ましくは3000~10000、さらに好ましくは4000~8000であるものが好ましい。

【0025】また、これらの他にも、エボキシ変性アクリレート、ボリエステルアクリレート、ボリエーテルアクリレートおよびイタコン酸オリゴマーのように水酸基あるいはカルボキシル基などの官能基を有するオリゴマ

一を用いることもできる。

【0026】上記のような成分(A-1) および(A-2) からなる粘接着剤組成物は、エネルギー線照射により硬化する。エネルギー線としては、具体的には、紫外線、電子線等が用いられる。

【0027】エネルギー線として紫外線を用いる場合には、上記の組成物中に光重合開始剤(A-3)を混入することにより、重合硬化時間ならびに光線照射量を少なくすることができる。

【0028】このような光重合開始剤(A-3) としては、 具体的には、ベンゾフェノン、アセトフェノン、ベンゾ イン、ベンゾインメチルエーテル、ベンゾインエチルエ ーテル、ベンゾインイソプロピルエーテル、ベンゾイン イソブチルエーテル、ベンゾイン安息香酸、ベンゾイン 安息香酸メチル、ベンゾインジメチルケタール、2.4-ジ エチルチオキサンソン、α-ヒドロキシシクロヘキシル フェニルケトン、ベンジルジフェニルサルファイド、テ トラメチルチウラムモノサルファイド、アゾビスイソブ チロニトリル、ベンジル、ジベンジル、ジアセチル、β ークロールアンスラキノンなどが挙げられる。

【0029】本発明で用いられるエネルギー線硬化型粘着成分 (A) は、好ましくは上記成分(A-1) \sim (A-3) からなり、その配合比は各成分の特性に応じ適宜に設定されるが、一般的には成分(A-1) 100重量部に対して、成分(A-2) は $50\sim150$ 重量部、好ましくは $80\sim125$ 重量部程度、成分(A-3) は $1.5\sim4.5$ 重量部、好ましくは $2.4\sim3.8$ 重量部程度の割合で用いることが好ましい。

【0030】上記のようなエネルギー線硬化型粘着成分(A)は、次に挙げる熱硬化型接着成分(B)100重量部に対して、通常15~100重量部、好ましくは18~70重量部、特に好ましくは20~50重量部の量で用いられる。

【0031】熱硬化型接着成分(B)は、エネルギー線によっては硬化しないが、加熱を受けると三次元網状化し、被着体を強固に接着する性質を有する。このような熱硬化型接着成分(B)は、一般的にはエポキシ、フェノール、レゾルシノール、ユリア、メラミン、フラン、不飽和ポリエステル、シリコーン等の熱硬化性樹脂と、適当な硬化促進剤とから形成されている。このような熱硬化型接着成分は種々知られており、本発明においては特に制限されることなく従来より公知の様々な熱硬化型接着成分を用いることができる。このような熱硬化型接着成分の一例としては、(B-1) エポキシ樹脂と(B-2) 熱活性型潜在性エポキシ樹脂硬化剤とからなる接着成分を挙げることができる。

【0032】エポキシ樹脂(B-1) としては、従来より公知の種々のエポキシ樹脂が用いられるが、通常は、分子量300~2000程度のものが好ましく、特に分子量300~500、好ましくは330~400の常態液状

のエポキシ樹脂と、分子量400~2000、好ましく は500~1500の常態固体のエポキシ樹脂とをブレ ンドした形で用いるのが望ましい。また、本発明におい て好ましく使用されるエポキシ樹脂のエポキシ当量は通 常50~5000g/egである。このようなエポキシ樹脂 としては、具体的には、ピスフェノールA、ピスフェノ ールド、レゾルシノール、フェニルノボラック、クレゾ ールノボラックなどのフェノール類のグリシジルエーテ ル:ブタンジオール、ポリエチレングリコール、ポリプ ロビレンクリコールなどのアルコール類のグリシジルエ ーテル:フタル酸、イソフタル酸、テトラヒドロフタル 酸などのカルボン酸のグリシジルエーテル: アニリンイ ソシアメレートなどの営素原子に結合した活性水素をグ リシジル基で置換したグリシジル型もしくはアルキルグ リシジル型のエボキシ樹脂:ビニルシクロヘキサンジエ ボキシド、3.1-エボキシシクロヘキシルメチル-3,4-ジー シクロヘキサンカルボキシレート、2-(3,4-エポキシ)シ クロヘキシル-5.5-スピロ(3.4-エポキシ)シクロヘキサ ンーロジオキサンなどのように、分子内の炭素ー炭素二 重結合をたとえば酸化することによりエポキシが導入さ れた、いわゆる脂環型エポキシドを挙げることができ る。

【0033】これらの中でも、本発明では、ビスフェノール系グリシジル型エポキシ樹脂、ロクレゾールノボラック型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂が好ましく用いられる。

【0031】これらエボキシ樹脂は、1種単独で、または2種以上を組み合わせて用いることができる。熱活性型潜在性エボキシ樹脂硬化剤(B-2)とは、室温ではエボキシ樹脂と反応せず、ある温度以上の加熱により活性化し、エボキシ樹脂と反応するタイプの硬化剤である。

【0035】熱活性型溶在性エボキシ樹脂硬化剤(B-2)の活性化方法には、加熱による化学反応で活性種(アニオン、カチオン)を生成する方法:室温付近ではエボキシ樹脂(B-1)中に安定に分散しており高温でエポキシ樹脂と相溶・溶解し、硬化反応を開始する方法:モレキュラーシーブ封入タイプの硬化剤で高温で溶出して硬化反応を開始する方法:マイクロカプセルによる方法等が存在する。

【0036】これら熱活性型滞在性エボキシ樹脂硬化剤は、1種単独で、または2種以上を組み合わせて用いることができる。特に上記の中でも、ジシアンジアミド、イミダゾール化合物あるいはこれらの混合物が好ましい。

【0037】上記のような熱活性型潜在性エポキシ樹脂 硬化剤(B-2) は、エホキシ樹脂(B-1) 100重量部に対 して通常0、1~20重量部、好ましくは0.5~15 重量部、特に好ましくは1~10重量部の割合で用いら れる。

【0038】可とう性成分(C)とは、エネルギー線硬

化型粘着剤(A)及び熱硬化型接着成分(B)がともに 硬化した状態でも、可とう性を有する成分で、熱可塑性 樹脂またはエラストマーからなる。

【0039】また、上記のような可とう性成分(C)は、前記熱硬化型接着成分(B)100重量部に対して通常1~40重量部、好ましくは4~30重量部、特に好ましくは4~25重量部の割合で用いられる。

【0040】可とう性成分(C)のガラス転移温度Tgは、好ましくは−40~80℃程度、特に好ましくは−30~10℃程度である。可とう性成分(C)の分子量は、好ましくは1000~100000程度、特に好ましくは2000~60000程度であるが、内部架橋している可とう性成分(C)については、この限りではない。

【0041】可とう性成分(C)は、エネルギー線活性 および加熱で実質的に硬化しない成分であり、ポリマー またはポリマーのグラフト成分、ポリマーのブロック成 分であってもよい。

【0042】可とう成分(C)は、硬化後の粘接着層中 に均一に分散して粘接着層の脆質性を改善し、外部応力 に対し抵抗を有するようになる。また可とう性成分

(C)は、熱硬化型接着成分(B)中に均一に分散または混合されていることがその改善効果に対して好ましく、このため微細粒子状であるか、またはトルエン、エチルメチルケトン等の有機溶媒に可溶もしくは易溶であることが望ましい。微細粒子状の可とう性成分(C)を用いる場合、その粒径は、0.1~5μm、好ましくは0.1~1μmであることが望ましい。

【0043】有機溶媒に可溶もしくは易溶な可とう性成分(C)を用いる場合でも、その硬化過程により、可とう性成分(C)は熱硬化型接着成分(B)と相分離し、構造的に2相系となることが知られている。この様な有機溶媒に可溶もしくは易溶な可とう性成分(C)としては、飽和ポリエステル樹脂、液状NBR、液状クロロプレンゴム、ウレタンゴム、ポリオレフィン樹脂、シリコーンオイル等が挙げられ、これらの中でも特に飽和ポリエステル樹脂が好ましい。

【0044】微細粒子状の可とう性成分(C)としては、乳化重合により調製されたアクリルゴム微粒子;ポリエーテルポリエステル等のブロックポリエステルエラストマー;ポリエチレン微粒子;シリコーンゴム微粒子等が挙げられ、これら中でも特にアクリルゴム微粒子、ブロックポリエステルエラストマーがが好ましい。

【0045】上記のような微細粒子状の可とう性成分(C)は、前記した熱硬化型接着成分(B)としてのエポキシ樹脂中に分散された形態で市販されている。また、熱硬化型接着成分(B)中の熱硬化性樹脂と、上記可とう性成分(C)とを予め変性した変性樹脂を用いることもできる。この様な変性樹脂は、特にアロイ変性樹脂やゴムブレンド変性樹脂と呼ばれる。

【0046】上記のような変性物としては、各種ゴム変性エポキシ樹脂(NBR変性、CTBN変性等)、ウレタン変性エポキシ樹脂、シリコーン変性エポキシ樹脂等が挙げられる。

【0047】カップリング剤(D)は、一般に、有機質と反応する官能基(アミノ基、ビニル基、エポキシ基、メルカプト基、クロル基など)と主に無機質と反応する官能基(メトキシ基、エトキシ基など)を持つ化合物であり、代表的なものにシラン系とチタン系のものがある。本発明においては、上記(A)~(C)成分、好ましくは成分(B)が有する官能基と反応する基を有することが望ましく、特に、エポキシ基あるいはアミノ基を有するカップリング剤が好ましい。

【0048】このようなカップリング剤は、シラン系では、無機官能基としてのアルコキシ基が加水分解をしてシラノールとなり、被着体表面のM-OH基(Mは、Si、Cuまた他の金属など)と縮合反応して共有結合し、チタン系では、加水分解を伴わず1段階で反応するものと考えられている。

【0049】また、特に硬化反応時に、有機官能基が熱硬化型接着成分(B)(特に好ましくはエポキシ樹脂)と反応すると考えられ、硬化物の耐熱性を損なわずに、接着性、密着性を向上させることができ、さらに耐水性(耐湿熱性)も向上する。

【0050】カップリング剤としては、その汎用性とコストメリッドなどからシラン系(シランカップリング剤)が好ましい、また、上記のようなカップリング剤(D)は、前記熱硬化型接着成分(B)100重量部に対して通常0.1~20重量部、好ましくは0.5~15重量部、特に好ましくは1~10重量部の割合で用いられる。

【0051】本発明の粘接着テープの粘接着層は、上記のような(A)エネルギー線硬化型粘着成分と、(B)熱硬化型接着成分と、(C)可とう性成分と、(D)カップリング剤とから形成されている。

【0052】上記のような各成分からなる粘接着層はエネルギー線硬化性と加熱硬化性とを有し、ダイシングの際にはウェハ固定用粘着剤として使用することができ、マウントの際にはチップとリードフレームとを接着する接着剤として使用することができる。そして熱硬化を経て最終的には耐衝撃性の高い硬化物を与えることができ、しかも剪断強度と剥離強度とのバランスにも優れ、厳しい熱湿条件下においても充分な接着物性を保持しうる

【0053】上記粘接着層には、さらに、ダイボンド後の導電性の付与を目的として、金、銀、銅、ニッケル、アルミニウム、ステンレス、カーボン、またはセラミック、あるいはニッケル、アルミニウム等を銀で被覆したもののような導電性フィラーを添加してもよく、また熱伝導性の付与を目的として、金、銀、銅、ニッケル、ア

ルミニウム、ステンレス、シリコン、ゲルマニウム等の 金属材料やそれらの合金等の熱伝導性物質を添加しても よい。これらの添加剤は、粘接着層(A+B+C+D) 100重量部に対して、10~400重量部程度の割合 で配合されていてもよい。

【0054】上記粘接着層には、エネルギー線照射前の 初期接着力および凝集力を調節するために、有機多価イ ソシアナート化合物、有機多価イミン化合物等を添加す ることもできる。

【0055】上記有機多価イソシアナート化合物として は、芳香族多価イソシアナート化合物、脂肪族多価イソ シアナート化合物、脂環族多価イソシアナート化合物お よびこれらの多価イソシアナート化合物の三量体、なら びにこれら多価イソシアナート化合物とポリオール化合 物とを反応させて得られる末端イソシアナートウレタン プレポリマー等をあげることができる。有機多価イソシ アナート化合物のさらに具体的な例としては、たとえば 2,4-トリレンジイソシアナート、2,6-トリレン ジイソシアナート、1,3-キシリレンジイソシアナー ト、1,4-キシレンジイソシアナート、ジフェニルメ タンー4, 4'ージイソシアナート、ジフェニルメタン -2, 4'-ジイソシアナート、3-メチルジフェニル メタンジイソシアナート、ヘキサメチレンジイソシアナ ート、イソホロンジイソシアナート、ジシクロヘキシル メタンー4、4'ージイソシアナート、ジシクロヘキシ ルメタン-2,4'-ジイソシアナート、リジンイソシ アナートなどがあげられる。

【0056】上記有機多価イミン化合物の具体例としては、N,N'-ジフェニルメタン-4,4'-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ- β -アジリジニルプロピオナート、+-アジリジニルプロピオナート、+-アジリジニルプロピオナート、+-アジリジニルプロピオナート、+-アジリジンカルボキシアミド)トリエチレンメラミン等をあげることができる。

【0057】さらにまた、上記粘接着層中に、エネルギー線照射により着色する化合物を含有させることもできる。このようなエネルギー線照射により、着色する化合物を粘接着層に含ませることによって、粘接着テープにエネルギー線が照射された後には該テープは着色され、したがって光センサーによってウェハチップを検出する際に検出精度が高まり、ウェハチップのピックアップ時に誤動作が生ずることがない。また粘接着テープにエネルギー線が照射されたか否かが目視により直ちに判明するという効果が得られる。

【0058】エネルギー線照射により着色する化合物は、特開昭62-153377号公報に記載のものが使用できる。また、上記の粘接着層中にエキスパンディング剤を添加することもできる。エキスパンディング剤を添加することにより、粘接着層の重合硬化後のエキスパンドがさらに容易になる。エキスパンディング剤として

は、具体的には特開昭63-193981号公報に記載 のものが使用できる。

3

【0059】さらに上記の粘接着層中に帯電防止剤を添加することもできる。帯電防止剤を添加することにより、エキパンド時あるいはピックアップ時に発生する静電気を抑制できるため、チップの信頼性が向上する。帯電防止剤としては、具体的には、アニオン性、カチオン性、非イオン性、ないし両イオン性の一般に公知の活性剤等が用いられる。帯電防止剤は、粘接着層中に0~50重量%、特には0~30重量%の範囲の量で用いられることが好ましい。

【0060】本発明の粘接着テープの基材としては、た とえばエネルギー線として紫外線を用いる場合には、ポ リエチレンフィルム、ポリプロピレンフィルム、ポリブ テンフィルム、ポリブタジエンフィルム、ポリメチルペ ンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル 共重合体フィルム、ポリエチレンテレフタレートフィル ム、ポリブチレンテレフタレートフィルム、ポリウレタ ンフィルム、エチレン酢ピフィルム、アイオノマー樹脂 フィルム、エチレン・(メタ) アクリル酸共重合体フィ ルム、エチレン・(メタ)アクリル酸エステル共重合体 フィルム、ポリスチレンフィルム、ポリカーボネートフ ィルム等の透明フィルムが用いられる。またこれらの架 橋フィルムも用いられる。さらにこれらの積層フィルム であってもよい。また、エネルギー線として電子線を用 いる場合には、透明である必要はないので、上記の透明 フィルムの他、これらを着色した不透明フィルム、フッ・ 素樹脂フィルム等を用いることができる。

【0061】さらに基材の表面張力は、好ましくは40 dyne/cm 以下、さらに好ましくは37 dyne/cm 以下、特に好ましくは35 dyne/cm 以下であることが望ましい。これにより本発明の粘接着テープはダイボンディング時に粘接着層がシリコンチップに容易に転着するようになる。このような表面張力に低い基材は、材質を適宜に選択して得ることが可能であるし、また基材に表面にシリコーン樹脂等を塗布して離型処理を施すことで得ることもできる。

【0062】このような基材の膜厚は、通常は $10\sim3$ 00 μ m、好ましくは $20\sim200\mu$ m、特に好ましくは $50\sim150\mu$ m程度である。さらに本発明では、基材中に砥粒が分散されていてもよい。この砥粒は、特開昭63-208582号公報に記載のものが使用できる。

【 0 0 6 3 】上記のような砥粒を基材中に含ませることによって、切断ブレードが基材中に切り込んできて、切断ブレードに粘着剤が付着しても砥粒の研磨効果により、目づまりを簡単に除去することができる。

【0064】本発明に係る粘接着テープは、離型シート上に上記成分からなる粘接着剤組成物をコンマコーター、グラビアコーター、ダイコーター、リバースコータ

ーなど一般に公知の方法にしたがって塗工し、乾燥させて粘接着層を形成し、離型シートを除去することによって得ることができる。また、上記の基材を用いる場合には、該基材上に粘接着剤組成物を同様の方法で塗工し、乾燥させて粘接着層を形成することに粘接着テープを製造することができる。なお、上記の粘接着剤組成物は、必要に応じ、溶剤に溶解し、若しくは分散させて塗布することができる。

【0065】このようにして形成される粘接着層の厚さは、通常は、3~100μm、好ましくは10~60μmであることが望ましい。上記のようにして得られた粘接着テープは、次のようにして使用される。

【0066】シリコンウェハの一方の面に本発明の粘接着テープを貼着した後、粘接着テープを介してダイシング装置上に固定し、ダイシングソーなどの切断手段を用いて、上記のシリコンウェハと粘接着テープとを切断してICチップを得る。この際のシリコンウェハと粘接着テープとの接着力は、通常50~2000g/25mm、好ましくは100~1500g/25mmであり、他方、粘接着テープの粘接着層と基材との接着力は通常500g/25mm以下である。

【0067】次いで、上記のようにして得られたICチップに貼着した粘接着テープにエネルギー線を照射する。本発明において使用することができるエネルギー線としては、紫外線(中心波長=約365mm)および電子線等が挙げられる。エネルギー線として紫外線を使用する場合、通常、照度は20~500m/cm²、さらに照射時間は0.1~150秒の範囲内に設定される。また、たとえば電子線を照射する場合にも、上記の紫外線照射の場合に準じて諸条件を設定することができる。なお、上記のようなエネルギー線照射の際に補助的に加熱することもできる。

【0068】このようにエネルギー線の照射を行なうことにより、エネルギー線硬化型粘着成分(A)が硬化し、シリコンウェハと粘接着層との接着力は、通常50~4000g/25mm、好ましくは100~3000g/25mmに増加する。他方、粘接着テープの粘接着層と基材との接着力は通常1~500g/25mmとなり、好ましくは100g/25mm以下である。

【0069】したがって、上記のようにしてエネルギー 線の照射を行なうことにより、粘接着層をICチップの 片面に固着残存させて基材から剥離することができる。 なお、エネルギーの照射は、ダイシング工程の前に行な われていてもよい。

【0070】このようにして粘接着層が固着されている ICチップをリードフレームに載置し、次いで加熱する ことにより粘接着層中のエボキシ樹脂を硬化させ、IC チップとリードフレームとの接着を行なう。この場合の 加熱温度は、通常は100~300℃程度、好ましくは 150~250℃程度であり、加熱時間は、通常は、1 ~120分間、好ましくは5~60分間である。このような加熱により、加熱硬化型接着成分が硬化し、ICチップとリードフレームとを強固に接着することができる。

【0071】そして、最終的に硬化した粘接着層は高い耐熱性を有するとともに、該粘接着層中には硬化に関与しない可とう性成分が分散しているため、硬化物は剪断強度と刺離強度の一方が極端に低くなることはなく、バランスに優れ、高い耐衝撃性、耐熱湿性を有する。

【0072】なお、本発明の粘接着テープは、上記のような使用方法の他、半導体化合物、ガラス、セラミックス、金属などの接着に使用することもできる。

[0073]

【発明の効果】本発明によれば、エネルギー線硬化性と加熱硬化性とを有し、ダイシングの際にはダイシングテーフとして使用することができ、マウントの際には接着削として使用することができる粘接着テープが提供される。本発明の粘接着テープは、特殊な組成の粘接着層を有し、この粘接着層は無硬化後において剪断強度が0.4kg チップ、剥離強度が100g/チップを超える値で、高接着力を示し、耐衝撃性、耐熱湿性に優れた硬化物を与えた。さらに本発明によれば、このような粘接着テーブの使用方法が提供される。

[0074]

【実施例】以下本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。

【0075】なお、以下の実施例および比較例において、「剥離強度」は次のようにして評価した。

剥離強度

厚み350μm、オ2000研磨のシリコンウェハの裏面に粘接着テープを貼付し、紫外線照射後、5mm×20mmにダイシングした。次に、得られたシリコンチップを厚み150μmの網板に貼着し、170℃の恒温槽中で30分間接着・硬化し、サンプルとした。

【0076】このサンプルのシリコンチップ側を接着固定し、銅板を90°ピールにより剥離させた時の接着強度(g/5 mm 幅)を測定した。なお、剥離速度は、10 mm 分に統一した。

熱温条件試験。

以下の条件下で、所定時間放置した後、取り出し1時間 後に、「剥離強度」の測定を行った。

[0077]

条件1:85℃、85%RH、168時間 条件2:85℃、85%RH、336時間

条件3:85C、85%RH、500時間

また、以下の実施例において、(A)エネルギー線硬化型粘着成分、(B)熱硬化型接着成分、(C)可とう性成分、(D)カップリング剤として以下のものを用いた

(A) エネルギー線硬化型粘着成分

〔(A-1) (メタ) アクリル酸エステル共重合体〕ブチルアクリレート55重量部とメチルメタクリレート10重量部とグリシジルメタクリレート20重量部と2-ヒドロキシエチルアクリレート15重量部とを共重合してなる重量平均分子量900,000、ガラス転移温度-28℃の共重合体

((A-2) エネルギー線重合性化合物] ウレタンアクリレート系オリゴマー(約5000)

((A-3) 光重合開始剤) α-ヒドロキシシクロヘキシル フェニルケトン

(B) 熱硬化型接着成分

〔(B-1) エポキシ樹脂〕

(B-1-1):液状ビスフェノールF型樹脂(エポキシ当量: 165~175)

(B-1-2):固形ビスフェノールA型樹脂(エポキシ当量: 800~900)

〔(B-2) 熱活性型潜在性エポキシ樹脂硬化剤〕

(B-2-1):ジシアンジアミド

(B-2-2):イミダゾール化合物

(C) 可とう性成分

(C-1):アクリルゴム微粒子

(C-2):ブロックポリエステルエラストマー微粒子

(D)カップリング剤

(D-1): γ-グリシドキシプロピルトリメトキシシラン (D-2): γ-グリシドキシプロピルメチルジエトキシシラン

(D-3): γ -グリシドキシプロピルトリエトキシシラン (D-4): γ -アミノプロピルトリエトキシシラン その他

API: 芳香族系ポリイソシアナート

[0078]

【実施例1】表1に記載の割合で各成分を混合し、粘接着剤組成物を得た。この粘接着剤組成物を、可塑化PV C層とエチレン/メタクリル酸共重合体層とを積層してなる厚み90μmの積層フィルムのエチレン/メタクリル酸共重合体層側(表面張力35dyn/cm)に塗布、乾燥し粘接着テープを得た。

【0079】得られた粘接着テープを用いて「剥離強度」を上記のようにして評価した。結果を表1に示す。 【0080】

【実施例2~4】各成分の配合割合を表1に記載のように変更した以外は、実施例1と同様の操作を行なった。 結果を表1に示す。

[0081]

【比較例】各成分の配合割合を表1に記載のように変更 した以外は、実施例1と同様の操作を行なった。結果を 表1に示す。

[0082]

【表1】

	l	粘接着剤組成 (重量部)							外域的度(g/5 mm/幅)			
	(A-1)	(A-2)	(A-3)	(B-1)	(B-2)	(C)	(D)	API	常題	条件1	条件2	条件3
実施例1	12.5	1 0	0. 8	(B-1-1) (B-1-2) 2 4 3 0	(B-2-1) (B-2-2) 0, 8 0, 4	(C-1) (C-2) 1 0 6	(D-1) 0.94	0. 2	600	580	560	530
実施例2	12.5	10	0. 3	(B-1-1) (B-1-2) 2 4 3 0	(B-2-1) (B-2-2) 0. 8 0. 4	(C-1) (C-2) 1 0 6	(D-2) 0.94	0. 2	530	480	660	570
実施例3	12.5	10	0. 3	(B-1-1) (B-1-2)	(B-2-1) (B-2-2) 0. 8 0. 4	(C-1) (C-2) 1 0 8	(D-3) 0.94	0. 2	670	.730	725	630
実施例4	12.5	10	0. 3	(B-1-1) (B-1-2) 2 4 3 0	(B-2-1) (B 2-2) 0. 8 0. 4	(C-1) (C-2) 1 0 G	(D-4) 0.94	0. 2	390	630	705	560
Halasi	12.5	10	0. 3	(B-1-1) (B-1-2) .2 4 3 0	(B-2-1) (B-2-2) 0. 8 0. 4	(C-1) (C-2) 1 0 6		0. 2	570	127	< 10	<10