PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Temporada Académica de Verano 2022

$MAT1620 \star Cálculo 2$

Solución Examen

- 1. a) Determine si la integral impropia $\int_0^\infty \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ es convergente o divergente.
 - b) Determine si la serie $\sum_{n=1}^{\infty} n^4 e^{-n^2}$ es convergente o divergente.

Solución 1:

a) Notemos que para $x \ge 1$:

$$0 < \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} < \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4} \le \frac{\sqrt{x^5 + 3x^5 + 5x^5}}{x^4} = \frac{3\sqrt{x^5}}{x^4} = 3\frac{1}{\sqrt{x^3}}$$

Luego, dado que $\int_{1}^{\infty} \frac{1}{\sqrt{x^3}} dx$ es convergente, concluimos por el criterio de comparación que $\int_{1}^{\infty} \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ también converge.

Por otra parte, notamos que $\int_0^1 \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ no es impropia y, por lo tanto, converge (por ser la integral definida de una función continua).

Finalmente, concluimos que $\int_0^\infty \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ es convergente.

b) Notemos que:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^4}{e^{(n+1)^2}} \cdot \frac{e^{n^2}}{n^4} \right| = \lim_{n \to \infty} \frac{(n+1)^4}{n^4} \cdot \frac{e^{n^2}}{e^{n^2 + 2n + 1}}$$

$$= \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^4 \cdot \frac{1}{e^{2n+1}} = 0$$

Luego, por el criterio de la razón, la serie es absolutamente convergente.

Solución 2:

a) Consideremos $f(x) = \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + 2x^2 + 1}$ y $g(x) = \frac{1}{\sqrt{x^3}}$. Claramente, f(x) y g(x) son continuas y positivas para $x \ge 1$. Además, tenemos que:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + 2x^2 + 1} \cdot \frac{\sqrt{x^3}}{1} = \lim_{x \to \infty} \frac{\sqrt{x^8 + 3x^6 + 5x^4}}{x^4 + 3x^2 + 1}$$

$$= \lim_{x \to \infty} \frac{\sqrt{1 + \frac{3}{x^2} + \frac{5}{x^4}}}{1 + \frac{3}{x^2} + \frac{1}{x^4}} = 1$$

Luego, dado que $\int_1^\infty \frac{1}{\sqrt{x^3}} dx$ es convergente, concluimos por el criterio de comparación en el límite que $\int_1^\infty \frac{\sqrt{x^5+3x^3+5x}}{x^4+x^2+1} dx$ también converge.

Por otra parte, notamos que $\int_0^1 \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ no es impropia y, por lo tanto, converge (por ser la integral definida de una función continua).

Finalmente, concluimos que $\int_0^\infty \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ es convergente.

b) Consideremos $a_n = \frac{n^4}{e^{n^2}}$ y $b_n = \frac{1}{n^2}$. Notemos que:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{n^4}{e^{n^2}}\cdot\frac{n^2}{1}=\lim_{n\to\infty}\frac{n^6}{e^{n^2}}=0$$

Luego, dado que $\sum_{n=1}^{\infty}\frac{1}{n^2}$ es convergente, concluimos por el criterio de comparación en el límite que $\sum_{n=1}^{\infty}n^4e^{-n^2}$ también converge.

2. a) Demuestre que no existe

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^3+y^3}$$

usando las trayectorias y = x e $y = -xe^x$ para acercarse al punto (0,0).

b) Sea S la superficie definida por la ecuación:

$$x^3z + x^2y^2 + \sin(yz) + 3 = 0$$

Encuentre una ecuación del plano tangente a S en el punto (-1,0,3).

Solución:

a) Si consideramos la trayectoria y = x, obtenemos que:

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^3+y^3} = \lim_{x\to 0} \frac{x^2x^2}{x^3+x^3} = \lim_{x\to 0} \frac{x^4}{2x^3} = \lim_{x\to 0} \frac{x}{2} = 0$$

Por otra parte, al considerar la trayectoria $y = -xe^x$, tenemos que:

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^3+y^3} = \lim_{x\to 0} \frac{x^2(-xe^x)^2}{x^3+(-xe^x)^3} = \lim_{x\to 0} \frac{x^4e^{2x}}{x^3\left(1-e^{3x}\right)}$$
$$= \lim_{x\to 0} \frac{xe^{2x}}{1-e^{3x}} \stackrel{\text{L'H}}{=} \lim_{x\to 0} \frac{e^{2x}+2xe^{2x}}{-3e^{3x}} = -\frac{1}{3}$$

Luego, dado que obtuvimos valores distintos para estas trayectorias, concluímos que el límite no existe.

b) Sea $F(x, y, z) = x^3z + x^2y^2 + \text{sen}(yz) + 3$. Notemos que:

$$F_x(x, y, z) = 3x^2z + 2xy^2$$
 $F_x(-1, 0, 3) = 9$
 $F_y(x, y, z) = 2x^2y + z\cos(yz)$ $F_y(-1, 0, 3) = 3$
 $F_z(x, y, z) = x^3 + y\cos(yz)$ $F_z(-1, 0, 3) = -1$

Luego, una ecuación del plano tangente a la superficie S en el punto (-1,0,3) es:

3

$$9(x+1) + 3y - (z-3) = 0$$
$$9x + 3y - z + 12 = 0$$

- 3. a) Sea f(x,y) = xy(2x + 4y + 1). Encuentre y clasifique los punos críticos de f como máximo relativo, mínimo relativo o punto silla.
 - b) Encuentre el punto de la esfera $x^2 + y^2 + z^2 = 14$ donde f(x, y, z) = 3x 2y + z alcanza su máximo valor.

Solución:

a) Derivando parcialmente obtenemos:

$$f_x(x,y) = y(2x+4y+1) + 2xy = y(4x+4y+1)$$

$$f_y(x,y) = x(2x+4y+1) + 4xy = x(2x+8y+1)$$

Notamos que existen 4 combinaciones para que $(f_x, f_y) = (0, 0)$:

y = 0, x = 0. De donde obtenemos el punto $P_1 = (0, 0)$.

$$y = 0$$
, $(2x + 8y + 1) = 0$. De donde obtenemos el punto $P_2 = \left(-\frac{1}{2}, 0\right)$.

$$\circ$$
 $(4x + 4y + 1) = 0$, $x = 0$. De donde obtenemos el punto $P_3 = \left(0, -\frac{1}{4}\right)$.

$$\circ (4x+4y+1) = 0, (2x+8y+1) = 0.$$
 De donde obtenemos el punto $P_4 = \left(-\frac{1}{6}, -\frac{1}{12}\right).$

Las derivadas parciales de segundo orden de f son:

$$f_{xx}(x, y) = 4y$$

$$f_{xy}(x, y) = 4x + 8y + 1$$

$$f_{yx}(x, y) = 4x + 8y + 1$$

$$f_{yy}(x, y) = 8x$$

Veamos ahora que:

- $D(P_1) = 0 \cdot 0 (1)^2 = -1 < 0$ y entonces P_1 es un punto silla.
- $D(P_2) = 0 \cdot (-4) (-1)^2 = -1 < 0$ y entonces P_2 es un punto silla.
- o $D(P_3) = (-1) \cdot 0 (-1)^2 = -1 < 0$ y entonces P_3 es un punto silla.
- o $D(P_4) = \left(-\frac{1}{3}\right) \cdot \left(-\frac{4}{3}\right) \left(\frac{1}{3}\right)^2 = \frac{1}{3} > 0$, $f_{xx}(P_4) = -\frac{1}{3} < 0$ y entonces en P_4 hay un máximo local.
- b) Queremos encontrar el máximo de la función f(x, y, z) = 2x 2y + z con la restricción $g(x, y, z) = x^2 + y^2 + z^2 = 14$. Usando el método de los multiplicadores de Lagrange, debemos resolver el sistema:

$$\begin{cases} 3 = 2x\lambda & (1) \\ -2 = 2y\lambda & (2) \\ 1 = 2z\lambda & (3) \\ x^2 + y^2 + z^2 = 14 & (4) \end{cases}$$

De (1), (2) y (3) es claro que $\lambda \neq 0$ y entonces podemos escribir $x = \frac{3}{2\lambda}$, $y = -\frac{1}{\lambda}$, $z = \frac{1}{2\lambda}$. Luego, al reemplazar en (4) y resolver, obtenemos que $\lambda = \pm \frac{1}{2}$. De esta manera, tenemos dos puntos candidatos a extremos de la función f, estos son $P_1 = (3, -2, 1)$ y $P_2 = (-3, 2, -1)$. Evaluando, obtenemos que $f(P_1) = 14$ y $f(P_2) = -14$. Por lo tanto, la función alcanza su máximo valor en el punto P_1 y dicho valor es $f(P_1) = 14$.

- 4. a) Determine la constante $c \in \mathbb{R}$ de modo que $\iint_D cxy \, dA = 1$, donde D es el trapezoide de vértices (0,0), (0,1), (1,1) y (2,0).
 - b) Sea R la región en el primer cuadrante acotada por las circunferencias de ecuaciones $x^2+y^2=4$ y $x^2+y^2=2x$. Calcule $\iint\limits_{\mathcal{D}}x\,dA$.

Solución:

a) El trapezoide D se ve como la siguiente región:

Si consideramos a D como una región de tipo II tenemos que:

$$\iint_D cxy \, dA = c \int_0^1 \int_0^{2-y} xy \, dx \, dy = \frac{c}{2} \int_0^1 (2-y)^2 y \, dy$$
$$= \frac{c}{2} \int_0^1 4y - 4y^2 + y^3 \, dy = \frac{c}{2} \left(2 - \frac{4}{3} + \frac{1}{4} \right) = \frac{11c}{24}$$

Luego, el valor de c buscado es $c = \frac{24}{11}$.

Por otra parte, si consideramos a D como una región de tipo I tenemos que:

$$\iint_{D} cxy \, dA = c \left(\int_{0}^{1} \int_{0}^{1} xy \, dy dx + \int_{1}^{2} \int_{0}^{2-x} xy \, dy dx \right)$$

$$= c \left(\int_{0}^{1} \frac{x}{2} \, dx + \int_{1}^{2} 2x - 2x^{2} + \frac{x^{3}}{2} \, dx \right)$$

$$= c \left(\frac{1}{4} + \left(x^{2} - \frac{2x^{3}}{3} + \frac{x^{4}}{8} \right) \Big|_{1}^{2} \right)$$

$$= c \left(\frac{1}{4} + 4 - \frac{16}{3} + 2 - 1 + \frac{2}{3} - \frac{1}{8} \right) = \frac{11c}{24}$$

Luego, el valor de c buscado es $c = \frac{24}{11}$.

b) La región R es:

Luego, usando coordenadas polares, tenemos que:

$$\iint_{R} x \, dA = \int_{0}^{\frac{\pi}{2}} \int_{2\cos(\theta)}^{2} r \cos(\theta) \, r \, dr d\theta = \int_{0}^{\frac{\pi}{2}} \frac{r^{3}}{3} \cos(\theta) \Big|_{r=2\cos(\theta)}^{r=2} \, d\theta$$

$$= \frac{8}{3} \int_{0}^{\frac{\pi}{2}} \cos(\theta) - \cos^{4}(\theta) \, d\theta$$

$$= \frac{8}{3} \int_{0}^{\frac{\pi}{2}} \cos(\theta) \, d\theta - \frac{8}{3} \int_{0}^{\frac{\pi}{2}} \left(\frac{1 + \cos(2\theta)}{2}\right)^{2} \, d\theta$$

$$= \frac{8}{3} - \frac{2}{3} \int_{0}^{\frac{\pi}{2}} 1 + 2\cos(2\theta) + \cos^{2}(2\theta) \, d\theta$$

$$= \frac{8}{3} - \frac{\pi}{3} - \frac{1}{3} \int_{0}^{\frac{\pi}{2}} 1 + \cos(4\theta) \, d\theta$$

$$= \frac{8}{3} - \frac{\pi}{3} - \frac{\pi}{6}$$

$$= \frac{8}{3} - \frac{\pi}{2}$$

- 5. a) Escriba la integral triple $\int_0^1 \int_0^z \int_{y^2}^1 f(x,y,z) \, dx \, dy \, dz \text{ como una integral de la forma}$ $\iiint f(x,y,z) \, dx \, dz \, dy.$
 - b) Calcule utilizando una integral triple en coordenadas esféricas, el volumen de la región:

Solución:

a) Notamos que en el plano YZ tenemos la siguiente región:

Luego:

$$\int_0^1 \int_0^z \int_{y^2}^1 f(x, y, z) \, dx dy dz = \int_0^1 \int_y^1 \int_{y^2}^1 f(x, y, z) \, dx dz dy$$

b) Una integral triple en coordenadas esféricas para el volumen de la región es:

$$V = \int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{2\pi} \int_1^2 \rho^2 \operatorname{sen}(\varphi) \ d\rho d\theta d\varphi$$
$$= \left(\int_0^{\frac{\pi}{2}} \operatorname{sen}(\varphi) \ d\varphi \right) \left(\int_{\frac{\pi}{2}}^{2\pi} 1 \ d\theta \right) \left(\int_1^2 \rho^2 \ d\rho \right)$$
$$= 1 \cdot \frac{3\pi}{2} \cdot \frac{7}{3} = \frac{7\pi}{2}$$