Predicting Home Sale Prices in Ames, Iowa

Gabriela Armenta • 05.30.2025

Objective & Background

- Data Description
- Preprocessing & Exploratory Analysis
- Model Selection & Hyperparameter
 Tuning
- Results

Background and Objective

- Analysis is a ML project under NYC Data Science Academy.
- Objective: predict real estate sale prices and reveal their key drivers by
 - Performing feature engineering and exploratory data analysis.
 - Building predictive models to maximize R².
 - Interpreting model outcomes and uncover key predictors using SHAP.

- Objective & Background
- Data Description
- Preprocessing & Exploratory Analysis
- Model Selection & Hyperparameter
 Tuning
- Results

Dataset Overview

Dataset contains 2,580 house sale records from 2006 to 2010

Ames Iowa is a mid-size city with stable housing market

Complied by Prof.
Dean De Cock from
Truman State
University

Dataset includes property details such as size and building type

Includes 79 predictors

Target variable: Sale Price

Continuous variable

US dollars

From 2006 to 2010

Feature Overview

- 43 objects and 38 numeric variables.
- Property location, zoning, utilities, and adjacent conditions.
- Building type, condition, and exterior finishes.
- Foundation, basement, living area layout and quality.
- Heating, cooling, and electrical systems characteristics.
- Garage and parking details.
- Outdoor features and amenities.
- Sale transaction information.

- Objective & Background
- Data Description
- Preprocessing & Exploratory Analysis
- Model Selection & Hyperparameter
 Tuning
- Results

Preprocessing and Exploratory Analysis

Steps

- 1. Initial exploration of dataset structure and content.
- 2. Examine pattern of missing data and impute missing values where replacements are known.
- 3. Encode ordered categorical features as numeric.
- 4. Visualize feature relationships with Sale Price.

Assessment and Imputation of Missing Data

- For 23 variables missing values signified true absence (e.g., no basement, no pool) and were recorded as 0 or None.
- Eight variables had only one or two missing entries (<0.01% of observations) and were dropped because imputation added negligible value.
- Masonry veneer type (10+ missing), masonry veneer area (20+ missing), and lot frontage area (460+ missing), were imputed using mean or median values as appropriate.

Ordinal Encoding and Data Pruning

Ordinal mapping

 Mapped values of 21 ordinal categorical variables to numeric codes where higher value meant better (e.g., heating quality scored from 0=poor to 4=excellent).

Dropped Ground Living Area > 4000

 Dropped outliers and unusual sales per dataset creator, Dean De Cock's recommendation.

Drop Features with close to zero variance

 Removed near-constant features (98% or more identical values) because their lack of variation provides negligible signal for learning relationships.

Exploratory Data Analysis of Numeric and Ordinal Features

Exploratory Data Analysis of Categorical Nominal Features

Exploratory

Top 10 Positive Correlations with SalePrice

- 0.7

				Top 10 Positive Correlations with SalePrice								
Data	Sale Price -	1.00	0.79	0.72	0.68	0.66	0.65	0.64	0.64	0.64	0.59	0.55
Analysis:	Overall qual -	0.79	1.00	0.56	0.71	0.65	0.52	0.45	0.58	0.54	0.62	0.57
	Ground living area -	0.72	0.56	1.00	0.41	0.42	0.40	0.53	0.50	0.48	0.32	0.23
Heatmap	Exterior qual -	0.68	0.71	0.41	1.00	0.70	0.44	0.37	0.50	0.47	0.54	0.58
	Kitchen qual -	0.66	0.65	0.42	0.70	1.00	0.41	0.38	0.47	0.45	0.49	0.51
	Basement sq ft -	0.65	0.52	0.40	0.44	0.41	1.00	0.78	0.43	0.46	0.57	0.40
	1st floor sq ft -	0.64	0.45	0.53	0.37	0.38	0.78	1.00	0.44	0.48	0.27	0.29
	Garage cars -	0.64	0.58	0.50	0.50	0.47	0.43	0.44	1.00	0.89	0.45	0.52
	Garage area -	0.64	0.54	0.48	0.47	0.45	0.46	0.48	0.89	1.00	0.40	0.46
	Basement qual -	0.59	0.62	0.32	0.54	0.49	0.57	0.27	0.45	0.40	1.00	0.61
	Year built -	0.55	0.57	0.23	0.58	0.51	0.40	0.29	0.52	0.46	0.61	1.00
		Sale Price -	Overall qual -	ound living area -	Exterior qual -	Kitchen qual -	Basement sq ft -	1st floor sq ft -	Garage cars -	Garage area -	Basement qual -	Year built -

- Objective & Background
- Data Description
- Preprocessing & Exploratory Analysis
- Model Selection & Hyperparameter Tuning
- Results

Pipelines and Hyperparameter Tuning

Preprocessing pipelines

- 1. Identified numeric, categorical, and dummy columns.
- 2. Numeric processing:
 - Skewed: imputed median and MinMax scaling (0 and 1).
 - Symmetric: imputed mean and Standard scaling.
 - Dummies: none were present in the dataset.
- 3. Categorical processing:
 - Nominal: imputed mode and converted to dummies using one-hot encoding.
 - Ordinal: mapped to numeric codes. After that applied numeric processing.

Pipelines and Hyperparameter Tuning

Preprocessing pipeline

Combined all feature-specific pipelines into a ColumnTransformer

Model Pipelines

Created pipelines for random forest, XGBRegressor, and Elastic Net.

Hyperparameter Tuning

• Used Optuna to optimize each model's parameters

- Objective & Background
- Data Description
- Preprocessing & Exploratory
 Analysis
- Model Selection & Hyperparameter Tuning

Results

Conclusions and Next Steps

Results: Metrics

Ra	nd	om	Fo	rest
110	I I W	\sim		

MSE: 569281441.24

RMSE: 23859.62

MAE: 14474.70

R²: 0.8968

Elastic Net

MSE: 496402737.18

RMSE: 22280.10

MAE: 14937.00

 R^2 : 0.9100

XGBoost Regressor

MSE: 358492032.00

RMSE: 18933.89

MAE: 12216.03

 R^2 : 0.9350

SHAP Values

SHAP Values

Model Performance Plots

Performance Metrics

Actual vs. Predicted Sales Price

- Objective & Background
- Data Description
- Preprocessing & Exploratory Analysis
- Model Selection & Hyperparameter
 Tuning
- Results
- Conclusions and Next Steps

Conclusions

Overall quality was the top contributor to predictions of Real Estate Sale Price

XGBoost Regressor was the best performing algorithm

Model explained 94% of the variability in the data.

Top 15 contributors to predictions focused on quality, size, age, and special features:

- Quality and condition indicators (overall, exterior, kitchen, condition) which indicate how "nice" the home is built or maintained.
- **Size and area metrics** (living area, basement, garage, lot) which describe how much usable space there is, both indoors and outdoors.
- Age and updates (year built, remodel date) give a sense of how old the home is and when it last received a
 major upgrade.
- **Features and amenities** (fireplaces, garage capacity) point to specific selling points that can drive buyer interest.

Conclusions: How home buyers and sellers could leverage these insights

- **Set Pricing Strategically:** Base list prices on measurable attributes (e.g., overall quality, living area, basement) instead of relying mostly on neighborhood comparables.
- Highlight Key Features in Marketing: Emphasize high-impact elements like kitchen quality, finished basement, fireplaces, and garage capacity in listings and ads.
- Advise Sellers on Cost-Effective Upgrades: Recommend targeted improvements (e.g., refreshing exterior finishes or updating the kitchen) that boost value rather than broad renovations.
- **Guide Staging and Presentation:** Showcase square footage (open living areas, functional basements) and quality details (finishes, fixtures) since these drive perceived value.

Conclusions: How home buyers and sellers could leverage these insights

- **Tailor Buyer Matching:** Filter listings by attributes buyers care about (e.g., move-in readiness, ample garage space) to connect them with the right homes.
- Negotiate with Data: Use objective measures (e.g., year built vs. remodel date) to support price adjustments, credits, or repair requests.
- Allocate Time and Resources Efficiently: Focus showings on properties whose high-impact features align with buyer priorities instead of low-predictive locations.

Next steps

 Use a larger dataset to build models for the US and not only for lowa.

 Build an AI platform that can have interactive dashboards and an agent guiding decisions.