

Problem Due to Concurrent Execution

Serializable Schedule.

1 Conflict Serializable View Servializable.

(i) Initial Read

(ii) Final Write

(iii) Updated - Read Sogrence.

Problem Due to Concurrent execution

- 1 WR Disty Read un committed Read Boblem.
- 2) RW Non un repeatable Read Problem
- (3) WW Lost Update Problem.
- (4) Phantom Tuble Boblem.

Consider the following transactions with data items P and Q initialized to zero:

```
T<sub>1</sub>: read (P);
  read (Q);
  if P = 0 then Q := Q + 1;
  write (Q).
T<sub>2</sub>: read (Q);
  read (P);
  if Q = 0 then P := P + 1;
  write (P).
```

Any non-serial interleaving of T₁ and T₂ for concurrent execution leads to

[GATE-2012-CS: 1M]

12 Ti R(P) (B) R(P)16 Q=0 than P. P+L write(P) R(Q) P= O them 72 Cycle Not Conflict

a serializable schedule

a schedule that is not conflict serializable

a conflict serializable schedule

a schedule for which a precedence graph cannot be drawn

Not Serializable Schadule.

Consider the following schedule S of transactions T₁ and T₂:

Which of the following is TRUE about the schedule S? [2004: 2 Marks]

	The Total	T ₁	T ₂
A	S is serializable only as T ₁ , T ₂	$\frac{\text{Read}(A)}{A = A-10}$	
В	S is serializable only as T_2 , T_1		Read(A) Temp = 0.2 * A
C	S is serializable both as $\rm T_1$, $\rm T_2$ and $\rm T_2$ $\rm T_1$	Λ	Write(A) Read(B)
B	S is not serializable either as T_1 or as T_2 Not which	Write(A) $Read(B)$ $B = B + 10$	Ca
	Not View	Write(B)	B = B + Temp Write(B)

Consider a simple checkpointing protocol and the following set of

operations in the log. (start, T4); (write, T4)(y) 2, 3); (start, T1); (commit, <u>T4</u>); (write, T1, z) 5, 7);

(checkpoint)

(start, T2); (write, T2, x, 1, 9); (commit, T2);

start, T3); (write, T3, 2) 7, (2);

If a crash happens now and the system tries to recover using both undo and redo operations, what are the contents of the undo list and the redo list?

Redo: T2

UNDO: T3, TI

Undo: T3, T1; Redo: T2

Undo: T3, T1; Redo: T2, T4

Undo: none; Redo: T2, T4, T3, T1

Undo: T3, T1, T4; Redo: T2

[GATE-2015-CS: 2M]

To ----> Redo

Ta - Undo

CHECK POINT: Those transaction Commit before the Check point Not Require Any Redo @ Undo operation.

Those transaction Commit After the check point Require Redo operation
Those transactions Not Commit yet, Require Undo operation

UNDO 4 REDO Concept.

Transaction Data OLD New)

ONDO: OLD Value.

Time t=1 (T_X 5 7)

REDO: Top to Bottom X=4 11)

REDO: Top to Bottom X=4 11

 $\int_{X=1}^{1} \frac{1}{x} dx$

UNDO: Bottom to TOP.

X=\$ 7-11 X=11

Problem Due to Concurrent execution

- @ WR Disty Read Uncommitted Read Boblem.
- 2) RW/Non/un repeatable Read Pooblam.
- 3) WW Lost Update Problem.
 - (4) Phantom Tuble Boblem.

TI TE WIA)
R(A)

Uncommitted Dirty Read: Here transaction Tz
Read the value of

Data Item A, that is updated (write) By Uncommitted Transaction TI

Transaction, Read a Value that is updated (written) by Un Committed Transaction.

Modification (Update) by One transaction & Read by another transaction

(2) RW[Read-Write] Un non Repeatable Read Poblem.

TI TZ

R(A)

W(A)

(ES) Library DB

Read (A)
ib (A > 0)
5

A= A-1
Write(A) // Book
3
else
else

No Book Issue.

Kurthan Pead(A)

Kurthan N

A=10 Read(A)

ib(A>0)

(T) (T2) A-A-1

(A-9) Write(A)

Read(A) A=10 16(A>0) A=A-1Write(A) A=9

12

A=9 2 Book Issue (17) Inconsistent

(3) WW [write - write) Poublem)

20 10 12 WA) WIA) WIB) WIB) A = 20 Inhansistat B = 10 3 WW [write-write] Lost upolate Poublem. 1000X.10 = 100 A=1000 Read (A) an A = A -100 W(A) Read (A) A=1000 W(1) temp = AX . 10 temp = 100 A= A + temp (1100)

1

Suppose that Teareaction Ti & Te interleaved in such a Manner, To Read the Value of Account before I update. F Now When transaction II updateAthan after that Toursambin To update the value of Arcount it so Here lost of update (Duer worthen the value of 'A')

Problem.

(Note) Lost uppate: It there is Two write operation of Different transaction of between these 2 write there is No Read operation then 2nd write operation overwritten the first write value so Lost of Updation of TI.

(9) Phantom Tuple.

Emp.		
Cid	NAW	ne Solony
	A	2000
2	B	6000
4	0	7000

Select	+
From En	P
HERE SOLT 470	v

T2

Ingest in Emp Value (5, E, 5100)

eid	Norma	Salary
1	A	5000
2	B	CON
4	Ď	7000
5	E	5100)

Select +
From Emp
WhERE Sol >4700

Emp.

eid	Norwe	Solary
1	A	\$000
2	R	6000
3	C	4000
4	D	7000
5	E	5100

Here Ti May Read a Set of Typles from the Table Based on Some Condition.

Now Suppose other transaction To insert a New Tuple Such that also satisfying the Condition of Ti Transaction.

Now it Ti is Repeated then Ti will see a New Tuble that Previously did not exist, Called Phanton Tuble.

Concurrent Schedule. (S+NS)

Serial Schedule

Non Servial Schedule

mis the No. of Transaction. Non = Total Conculsient _ Serial Serial = Schedule Schedule.

Total Concurrent = (n_1+n_2) ! Schedule (n_1) ! (n_2) ! Ti -> n, operation
Tz -> n2 operation

Ti: 2 Operation

Tz: 2 operation

Serial Schedule = 21 = 2

Non Serial Schedule = 6-2 = (4) Aug

Finding Total Number of concurrent Schedule

T ₁	T ₂
$R_1(A)$ $W_1(A)$	R ₂ (B) W ₂ (B)

T ₁	T ₂
L_1 L_2	L ₃ L ₄

T ₁	T ₂
0	1 1

$L_1L_2L_3L_4$	
L ₃ L ₄ L ₁ L ₂	_

 $L_1L_3L_2L_4$ (or) $L_1L_3L_4L_2$

 $L_3L_1L_4L_2(or)L_3L_1L_2L_4$

T ₁	T ₂
R(A)	R(B)
W(A)	W(B)

T,	T ₂
R(A)	R(B)
W(A)	W(B)

T ₁	T ₂
R(A)	
W(A)	R(B)
	W(B)

T,	T ₂
R(A)	
W(A)	R(B) W(B)

T,	T ₂
	R(B)
R(A)	W(B)
W(A)	

T ₁	T ₂
R(A) W(A)	R(B)
W(A)	W(B)

$$S_1 < T_1 T_2 > (1)$$

$$S_2 < T_2 T_1 >$$

Lila Laly Serially.
Lila Laly Ge Lilaly.
Lila Laly Ge Lilaly.
Lila Laly Ge Lilaly.

Total # Concurrent = $\frac{(n_1+n_2)!}{(n_2)!(n_2)!}$ Schedule

$$=\frac{(2+2)!}{(2)!(2)!}=\frac{4\times 3\times 2}{2\times 2}=6$$

Total Concurrent = 6

$$= 6 - 2$$

$$Serial = 2$$

NOTE:

The Number of Concurrent schedule that can be formed Over m transaction having $n_1 n_2 n_3 \dots n_m$ operation respectively

Total # of
$$= \frac{(n_1 + n_2 + n_3 + \cdots + n_m)!}{(n_1!)(n_2!)(n_2!)...(n_m!)}$$

Total # of
Non Serial Schedule
$$= \frac{(n_1 + n_2 + n_3 + \cdots + n_m)!}{(n_1!)(n_2!)(n_2!)...(n_m!)} - m!$$

Ti: 2 operation
To: 3 operation
To: 4 operation

