Metody obliczeniowe w nauce i technice - laboratorium 2b - ćwiczenie 1

Kacper Klimas

Treść zadania

Dla jednej z poniższych funkcji (podanej w zadaniu indywidualnym) wyznacz dla zagadnienia Hermita wielomian interpolujący.

Interpolację przeprowadź dla różnej liczby węzłów (np. n = 3, 4, 5, 7, 10, 15, 20). Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów: równoodległe oraz Czebyszewa*.

Oceń dokładność, z jaką wielomian przybliża zadaną funkcję.

Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję.

Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Rungego (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa.

Zadana funkcja, wartości oraz przedział

$$f(x) = x * sin(\frac{k * \pi}{x})$$

$$x \in < 0.5, 4 >$$

$$k = 4$$

Legenda:

- (*) węzły równoodległe
- (**) węzły Chebysheva

Wykresy zależności rzeczywistych wartości funkcji od przybliżonych wartościami wielomianów interpolujących zostały narysowane przy udziale 1000 punktów.

Wielomian interpolujący dla zagadnienia Hermita

Węzły równoodległe

Wykresy

Wielomian interpolujący udało się wyznaczyć dla maksymalnej ilości węzłów = 23.

Dla kolejnych węzłów dokładność wielomianu drastycznie spada, wartości bardzo oscylują (wykresy 9, 10, 11).

W porównaniu do wielomianu interpolacyjnego Newtona jest to aż dwa razy wcześniej (dla węzłów o dwa razy mniejsze wartości).

Dla wykresów o numerach 3, 5, 6 widoczny jest efekt Rungego. Dla węzłów nieparzystych występuje on wcześniej.

Węzły Czebyszewa

Wykresy

Wielomian interpolujący udało się wyznaczyć dla maksymalnej ilości węzłów = 32.

Dla kolejnych wartości węzłów interpolowany wielomian niemal w całości pokrywa się z wartościami funkcji.

Dla węzłów powyżej 32 podobnie jak poprzednio dokładność wielomianu spada, wartości bardzo oscylują (wykresy 14, 15).

W przeciwieństwie do węzłów równo oddalonych, wartości wielomianu dla węzłów Czebyszewa oscylują na początku przedziału, a nie na końcu.

Efekt Rungego

Dla węzłów Czebyszewa jest on w całości niwelowany.

Dokładności

Dla każdego z węzłów w przedziale <3, 30> i dla różnego ich rozłożenia (równoodległe / Chebysheva) zostały policzone wartości lambda 1 oraz lambda 2, które odpowiednio są równe:

$$\lambda_{1} = \max(|f(x_{i}) - w(x_{i})|) \quad dla \ i = 1, 2, \dots, N$$

$$\lambda_{2} = \sum_{i=1}^{N} (f(x_{i}) - w(x_{i}))^{2}$$

Dla N = 1000

Wykres nr 16

Wartości lambda 2 w zależności od ilości węzłów

Wykresy (nr 16 i 17) pokazują, że w miarę wzrastania ilości węzłów niezależnie od ich rodzaju (jednorodne / Czebyszewa) wielomian przybliżający funkcję staje się coraz to dokładniejszy.

Podobnie jak w wielomianach Lagrange'a / Newtona, dla węzłów równoodległych, wartości lambdy oscylują, natomiast ostatecznie zbiegają do 0.

Dla (*) najdokładniejszy wielomian jest tworzony przy użyciu 24 węzłów, natomiast dla (**) przy użyciu 30 węzłów.

Zależność węzłów od wartości $\lambda_1^{}$ i $\lambda_2^{}$ dla wielomianu Hermita oraz węzłów Czebyszewa.

Liczba węzłów	λ_1	λ_2
3	1.74830	455.54212
6	3.37757	622.80123
9	1.28230	126.81830
12	0.38659	11.17514
15	0.07347	0.27607
18	0.00440	0.00073
21	0.00056	2.61795 * 10 ⁻⁵
24	7.52140 * 10 ⁻⁵	1.82209 * 10 ⁻⁷

Tabela nr 1

Zależność węzłów od wartości $\lambda_1^{}$ i $\lambda_2^{}$ dla wielomianu Hermita oraz węzłów równoodległych.

Liczba węzłów	λ_1	λ_2
3	4.81390	3768.16847
6	1.46091	192.09326
9	5.49463	948.67243
12	1.15812	57.33128
15	4.28305	390.61527
18	1.55470	37.55846
21	0.59014	5.05736
24	0.16175	0.32655

Tabela nr 2

Podsumowanie

Porównując wielomian Hermita do wielomianów Lagrange'a oraz Newtona jego dokładność / stabilność jest około dwa razy gorsza. Może to wynikać z faktu, że do wyznaczenia go potrzeba pochodnych.

Mimo gorszej stabilności, wielomian Hermita dla 30 węzłów (**) uzyskuje podobną dokładność co Newtona dla 60 węzłów (**).