Computer Architecture Chapter 5: Virtual memory

Adapted from Computer Organization the Hardware/Software Interface – 5th

Virtual Memory

- Use main memory as a "cache" for secondary (disk) storage
 - Managed jointly by CPU hardware and the operating system (OS)
- Programs share main memory
 - Each gets a private virtual address space holding its frequently used code and data
 - Protected from other programs
- CPU and OS translate virtual addresses to physical addresses
 - VM "block" is called a page
 - VM translation "miss" is called a page fault

Address Translation

Fixed-size pages (e.g., 4K)

Virtual address

Physical address

Page Fault Penalty

- On page fault, the page must be fetched from disk
 - Takes millions of clock cycles
 - Handled by OS code
- Try to minimize page fault rate
 - Fully associative placement
 - Smart replacement algorithms

Page Tables

- Stores placement information
 - Array of page table entries, indexed by virtual page number
 - Page table register in CPU points to page table in physical memory
- If page is present in memory
 - PTE stores the physical page number
 - Plus other status bits (referenced, dirty, ...)
- If page is not present
 - PTE can refer to location in swap space on disk

Translation Using a Page Table

Mapping Pages to Storage

Replacement and Writes

- To reduce page fault rate, prefer least-recently used (LRU) replacement
 - Reference bit (aka use bit) in PTE set to 1 on access to page
 - Periodically cleared to 0 by OS
 - A page with reference bit = 0 has not been used recently
- Disk writes take millions of cycles
 - Block at once, not individual locations
 - Write through is impractical
 - Use write-back
 - Dirty bit in PTE set when page is written

Fast Translation Using a TLB

- Address translation would appear to require extra memory references
 - One to access the PTE
 - Then the actual memory access
- But access to page tables has good locality
 - So use a fast cache of PTEs within the CPU
 - Called a Translation Look-aside Buffer (TLB)
 - Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 0.01%–1% miss rate
 - Misses could be handled by hardware or software

Fast Translation Using a TLB

TLB and Cache Interaction

- If cache tag uses physical address
 - Need to translate before cache lookup
- Alternative: use virtual address tag
 - Complications due to aliasing
 - Different virtual addresses for shared physical address

TLB Misses

- If page is in memory
 - Load the PTE from memory and retry
 - Could be handled in hardware
 - Can get complex for more complicated page table structures
 - Or in software
 - Raise a special exception, with optimized handler
- If page is not in memory (page fault)
 - OS handles fetching the page and updating the page table
 - Then restart the faulting instruction

TLB Miss Handler

- TLB miss indicates
 - Page present, but PTE not in TLB
 - Page not preset
- Must recognize TLB miss before destination register overwritten
 - Raise exception
- Handler copies PTE from memory to TLB
 - Then restarts instruction
 - If page not present, page fault will occur

Page Fault Handler

- Use faulting virtual address to find PTE
- Locate page on disk
- Choose page to replace
 - If dirty, write to disk first
- Read page into memory and update page table
- Make process runnable again
 - Restart from faulting instruction

Memory Protection

- Different tasks can share parts of their virtual address spaces
 - But need to protect against errant access
 - Requires OS assistance
- Hardware support for OS protection
 - Privileged supervisor mode (aka kernel mode)
 - Privileged instructions
 - Page tables and other state information only accessible in supervisor mode
 - System call exception (e.g., syscall in MIPS)

The Memory Hierarchy

The BIG Picture

- Common principles apply at all levels of the memory hierarchy
 - Based on notions of caching
- At each level in the hierarchy
 - Block placement
 - Finding a block
 - Replacement on a miss
 - Write policy

Exercise

- Given the TLB (fully associative) and the Page table (4KB pages) with LRU replacement
- If pages must be brought from disk, increment the next largest page number
- Show the final state of the TLB and Page table if virtual address requests are as follow:
 - 4669, 2227, 13916, 34587, 48870, 12608, 49225
 - 12948, 49419, 46814, 13975, 40004, 12707, 52236
- b. The same question but 16KB pages instead of 4KB

V	Physical or Disk		
1	5		
0	Disk		
0	Disk		
1	6		
1	9		
1	11		
0	Disk		
1	4		
0	Disk		
0	Disk		
1	3		
1	12		

V	Tag	Physical
1	11	12
1	7	4
1	3	6
0	4	9

Hint: Analyse the virtual address to extract virtual page number

Solution

- Virtual address (decimal): 4669, 2227, 13916, 34587, 48870, 12608, 49225
- Binary address: 4KB pages => 12-bit page offset
 - $-4669 = 1_0010_0011_1101$, VPN = 1
 - $-2227 = 0_1000_1011_0011$, VPN = 0
 - 13916 = 11_0110_0101_1100, VPN = 3
 - $-34587 = 1000_0111_0001_1011$, VPN = 8
 - 48870 = 1011_1110_1110_0110, VPN = 11
 - $-12608 = 11_0001_0100_0000$, VPN = 3
 - 49225 = 1100_0000_0100_1001, VPN = 12

			TLB		
Address	Virtual Page	TLB H/M	Valid	Tag	Physical Page
			1	11	12
4669	1	TLB miss PT hit	1	7	4
		PF	1	3	6
			1 (last access 0)	1	13
			1 (last access 1)	0	5
2227		TLB miss	1	7	4
2227	0	PT hit	1	3	6
		1 (last 1 (last 1 (last 1 (last 1 (last 1 (last	1 (last access 0)	1	13
			1 (last access 1)	0	5
12010	_		1	7	4
13916	3	TLB hit	1 (last access 2)	3	6
			1 (last access 0)	1	13
			1 (last access 1)	0	5
24507	8	TLB miss PT hit PF	1 (last access 3)	8	14
34587	•		1 (last access 2)	3	6
			1 (last access 0)	1	13
			1 (last access 1)	0	5
40070	11	TLB miss	1 (last access 3)	8	14
48870	11	PT hit	1 (last access 2)	3	6
			1 (last access 4)	11	12
			1 (last access 1)	0	5
10000	_		1 (last access 3)	8	14
12608	3	TLB hit	1 (last access 5)	3	6
			1 (last access 4)	11	12
		TLB miss PT miss	1 (last access 6)	12	15
40005	12		1 (last access 3)	8	14
49225			1 (last access 5)	3	6
			1 (last access 4)	11	12

			TLB		
Address	Virtual Page	TLB H/M	Valid	Tag	Physical Page
		TLB miss PT hit	1	11	12
4000	o		1	7	4
4669	0		1	3	6
	1 (last access 0)	0	5		
		TLB hit	1	11	12
2227	o		1	7	4
2221	0		1	3	6
	1 (last access	1 (last access 1)	0	5	
			1	11	12
			1	7	4
13916	0	TLB hit	1	3	6
			1 (last access 2)	0	5
			1 (last access 3)	2	13
24507		TLB miss PT hit PF	1	7	4
34587	2		1	3	6
			1 (last access 2)	0	5
		TLB hit	1 (last access 4)	2	13
40070	_		1	7	4
48870	48870 2		1	3	6
		1 (last access 2)	0	5	
		TLB hit	1 (last access 4)	2	13
12608 0			1	7	4
	0		1	3	6
			1 (last access 5)	0	5
49225	3	TLB hit	1 (last access 4)	2	13
			1	7	4
			1 (last axxess 6)	3	6
			1 (last access 5)	0	5

Block Placement

- Determined by associativity
 - Direct mapped (1-way associative)
 - One choice for placement
 - n-way set associative
 - n choices within a set
 - Fully associative
 - Any location
- Higher associativity reduces miss rate
 - Increases complexity, cost, and access time

Finding a Block

- Hardware caches
 - Reduce comparisons to reduce cost
- Virtual memory
 - Full table lookup makes full associativity feasible
 - Benefit in reduced miss rate

Associativity	Location method	Tag comparisons
Direct mapped	Index	1
n-way set associative	Set index, then search entries within the set	n
Fully associative	Search all entries	#entries
	Full lookup table	0

Replacement

- Choice of entry to replace on a miss
 - Least recently used (LRU)
 - Complex and costly hardware for high associativity
 - Pseudo-LRU
 - Close to LRU, less costly hardware
 - Random
 - Close to LRU, easier to implement
- Virtual memory
 - LRU approximation with hardware support

Write Policy

- Write-through
 - Update both upper and lower levels
 - Simplifies replacement, but may require write buffer
- Write-back
 - Update upper level only
 - Update lower level when block is replaced
 - Need to keep more state
- Virtual memory
 - Only write-back is feasible, given disk write latency

Sources of Misses

- Compulsory misses (aka cold start misses)
 - First access to a block
- Capacity misses
 - Due to finite cache size
 - A replaced block is later accessed again
- Conflict misses (aka collision misses)
 - In a non-fully associative cache
 - Due to competition for entries in a set
 - Would not occur in a fully associative cache of the same total size

Concluding Remarks

- Fast memories are small, large memories are slow
 - We really want fast, large memories ☺
 - Caching gives this illusion ©
- Principle of locality
 - Programs use a small part of their memory space frequently
- Memory hierarchy
 - − L1 cache ↔ L2 cache ↔ ... ↔ DRAM memory↔ disk
- Memory system design is critical for multiprocessors

