Logic Circuit Laboratory

Sequential Logic Circuits

1

Course Outline

- 1. Introduction
- 2. Logic Gates & Related Devices
- 3. Combination Circuits I
- 4. Combination Circuits II
- 5. Combination Circuits III
- 6. Combination Circuits IV, Kmap
- 7. Combination Circuits IV, Kmap

- 8. Sequential Circuit I
- 9. Sequential Circuit II
- 10. Sequential Circuit III
- 11. Sequential Circuit IV
- 12. Design Sheet Lab9 (Register)
- 13. FPGA + Logic circuit project
- 14. Lab Exam

Week12 Logic circuit project & FPGA (Field Programmable Gate Array)

3

Logic circuit Project

Assessment

5

Logic circuit Project

Lab 50

Member: 2-3

1. Document (10)

- Project Description
- Logic Schematic

2. Practice (10)

Logic circuit Project

List

- Water tank
- People count
- Traffic control
- Elevator System

7

Logic circuit Project

Water tank ระบบควบคุมการปั้มน้ำ

- มี Sensor วัดระดับน้ำ 4จุด (ใช้ Toggle switch)
- เมื่อมีน้ำจะส่ง Logic 1 ไม่มีน้ำ Logic 0
- ปั้มน้ำจะมีความเร็วในการปั้มน้ำแตกต่างกัน
- มี เกต LED แสดงความเร็วของปั๊มน้ำ
- มี Switch ในการเปิด/ปิด
- Feature อื่นๆ

Logic circuit Project

People count

- มี Sensor วัดคนเข้า/ออก ใช้ Sensor 2 จุด
- Sensor ให้ใช้ Pulse switch แทนได้
- เมื่อมีการเดินเข้าจะมีการนับเพิ่ม
- เมื่อมีการเดินออกจะลดจำนวน
- มีการแสดงผลจำนวนคนที่เข้าห้องโดยใช้ 7Segment 2 หลัก

9

Logic circuit Project

Traffic control

- เป็นระบบควบคุม 4 แยกไฟแดง
- แต่ละแยกแสดง LED 3 ดวง (ไฟแดง ไฟเหลือง ไฟเขียว)

Logic circuit Project

Elevator System

- ลิฟท์ขนคน จำนวน 3 ชั้น
- ใช้ LED แจ้งตำแหน่ง ลิฟท์ (3ดวง)
- แต่ละชั้นมี Switch ขึ้น/ลง (3 x 2Switch)
- ในลิฟท์แจ้งชั้นที่ต้องการไป (3Switch)
- เมื่อมีการกดเรียกลิฟท์ ลิฟท์จะเคลื่อนที่มาที่ชั้น
- จากนั้นกดชั้นที่จะไป ลิฟท์ไปส่ง จากนั้นกลับมาที่ชั้น1
- Feature อื่นๆ สามารถดัดแปลง Mechanism ได้

11

Logic circuit Project

ให้นิสิตมาแจ้งสมาชิกกลุ่ม จะให้สุ่มจับมาได้ทำโปรเจคอะไร

- เมื่อจับซ้ำ 2 ครั้งจะนำเอา List ออก
- ในกรณี เกิน 8 กลุ่ม/หมู่ จะนำเอา สลากมาเริ่มจับใหม่

กำหนดการส่งเอกสาร การออกแบบ และการต่อทดลองจริง

Date/Time: กำหนดจาก อาจารย์ผู้สอน

Lab Exam

13

Assessment

Lab Exam

สอบปฏิบัติ Practice Exam (15 Scores)

Time: 90min, Room: 15309 (รองรับที่นิสิต 15คน/รอบ)

Sec801 27 Nov 2017

Sec802 27 Nov 2017

Sec803 30 Nov 2017

15

Lab Exam

สอบปลายภาค Final Exam (15 Scores) 14 December 2017 08.30 น. - 11.30 น.

ปรนัย 36ข้อ 12 คะแนน อัตนัย 3 ข้อ 3 คะแนน

Logic circuit Week12-14 Timeline

Week 12 ให้เริ่มออกแบบ Project

Week 13 Brainstorm + Test Project

Week 14 สอบ Lab

17

FPGA (Field Programmable Gate Array)

Evolution

- Logic gates (1950s-60s)
- Regular structures for two-level logic (1960s-70s)
- Programmable sum-of-products arrays (1970s-80s)
- Programmable gate arrays (1980s-90s)

trend toward higher levels of integration

19

ASIC

ASIC: Application Specific Integrated Circuit

Gate Array Technology (IBM - 1970s)

21

FPGA Field-Programmable Gate Arrays

Design Flow

FPGA design using

- Schematics Design
- HDL (hardware description language) -> VHDL

23

FPGA Market shared

Ref: IHS

Example FPGA Xilinx Board

Xilinx no
USB on board
Programmer

Xilinx Spartan-6 XC6SLX9

25

Example FPGA Xilinx Board

Programmer

- 1. Xilinx ISE Free
- 2. MATLAB/Simulink
 - + HDL Coder/HDL Verifier
- 3. LabVIEW FPGA

Example FPGA Altera Board

Programmer
USB On board

2Key 8LED 2 GPIO Extension

DEO-Nano Development and Education Board

27

Example FPGA Altera Board

Altera University Program

DE1 Development and Education Board

Ref: Basic Language Constructors of VHDL, Pinit Kumhom, KMUTT

Basic VHDL

Basic VHDL

The Skeleton of VHDL

library ieee;

```
1.
     use ieee.std_logic_1164.all;
     entity even_detector is
2.
        port (
           a: in std_logic_vector(2 downto 0);
           even: out std_logic
        ):
     end even_detector;
3.
    marchitecture sop_arch of even_detector is
        signal p1, p2, p3, p4 : std_logic;
        even <= (p1 or p2) or (p3 or p4);
        p1 <= (not a(0)) and (not a(1)) and (not a(2));
        p2 <= (not a(0)) and a(1) and a(2);
        p3 <= a(0) and (not a(1)) and a(2);
        p4 \le a(0) and a(1) and (not a(2));
     end sop_arch ;
```

1. Design Units and Library

```
library ieee;
use ieee.std_logic_1164.all;
```

IEEE library and packages

- IEEE has developed VHDL packages for facilitating the synthesis
- Important packages are
 - std_logic_1164 package defined in the IEEE standard 1164.
 - numeric_std package defined in the IEEE standard 1706.3
- First line invokes the library name
- The second line make all objects -> std_logic_1164

31

Basic VHDL

name of the circuit

2. Entity Declaration

names and characteristics

```
entity even_detector is

port(

a: in std_logic_vector(2 downto 0);

even: out std_logic

);

end even_detector;
```

- External interface or "outline" of the circuit
- Simplified syntax
 - 1. The name of the circuit (e.g. even_detector)
 - The names and characteristics of its input and output portsFor the even_detector
 - 3-bit input named "a"
 - 1-bit output named "even"

3. Architecture Body

```
signal p1, p2, p3, p4 : std_logic;
begin
    even <= (p1 or p2) or (p3 or p4);
    p1 <= (not a(0)) and (not a(1)) and (not a(2));
    p2 <= (not a(0)) and a(1) and a(2);
    p3 <= a(0) and (not a(1)) and a(2);
    p4 <= a(0) and a(1) and (not a(2));
end sop_arch;</pre>
```

- Specify
 - Internal operations and organization (structure)
- Names
 - The architecture body name **sop_arch**
 - The associated entity name even_detector
- VHDL features

33

Basic VHDL

3. Architecture Body

```
signal p1, p2, p3, p4 : std_logic;
begin
    even <= (p1 or p2) or (p3 or p4);
    p1 <= (not a(0)) and (not a(1)) and (not a(2));
sp2 <= (not a(0)) and a(1) and a(2);
    p3 <= a(0) and (not a(1)) and a(2);
    p4 <= a(0) and a(1) and (not a(2));
end sop_arch;</pre>
```

- Declarations
 - Declaring objects being used inside the body
 signal p1, p2, p3, p4 : std logic
- Concurrent statements
 - Describe operations or organization
 even <= (p1 or p2) or (p3 or p4)

```
library ieee;
 use ieee.std_logic_1164.all;
 entity even_detector is
    port (
       a: in std_logic_vector(2 downto 0);
       even: out std_logic
 end even_detector;
marchitecture sop_arch of even_detector is
    signal p1, p2, p3, p4 : std_logic;
 begin
    even <= (p1 or p2) or (p3 or p4);
    p1 <= (not a(0)) and (not a(1)) and (not a(2));
    p2 <= (not a(0)) and a(1) and a(2);
    p3 <= a(0) and (not a(1)) and a(2);
    p4 \le a(0) and a(1) and (not a(2));
 end sop_arch;
                                                    35
```

Basic VHDL

การเขียน VHDL จะประหยัดเวลาในการออกแบบวงจร logic ที่มีขนาดใหญ่
ลงไปได้เยอะ กระบวนการเรียนรู้ภาษา VHDL เป็นสิ่งที่สำคัญในวิศวกรในสาย
Low level มาก แต่ในปัจจุบันมี Tools เข้ามาช่วยเหลือในการออกแบบ เช่น
Matlab HDL หรือ Labview รวมถึงการออกแบบ HDL แบบ Symbol
ก็จะทำให้ วิศวกรที่ต้องออกแบบ สามารถเลือกเครื่องมือ ที่ตนเองสนใจและถนัดได้

Hardware Engineer

Firmware Engineer

```
Void Bpio_config();

void system_config();

void system_start();

void system_reset();

void factory_reset();

void eeprom_write(wint16_t add, wint4_t data);

void eeprom_write(wint16_t add);
```

37

Lab Logic Project

- แจ้งสมาชิกกลุ่ม จับสลากหัวข้อ หรือจะมาเสนอหัวข้อที่อยากทำ
- จับสลาก ตามกฏที่ได้แจ้งไว้ หัวข้อเมื่อจับซ้ำเกิน 2 จะนำเอาหัวข้อนั้นออก
- จะเปิดแลปให้นิสิต เตรียมสอบแลป + ทำโปรเจค ในสัปดาห์นี้ + สัปดาห์หน้า