Reg. No.	-						

B.Tech. DEGREE EXAMINATION, DECEMBER 2023 Fourth Semester

18AUC203T - APPLIED THERMAL ENGINEERING FOR AUTOMOTIVE ENGINEERS (For the candidates admitted from the academic year 2020-2021 to 2021-2022)

Note: Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute. Part - B & Part - C should be answered in answer booklet. (ii) Max. Marks: 100 Time: 3 hours

	$PART - A (20 \times 1 = Answer ALL Q)$			Marks	BL	СО
	Answer ALL Q	for	diagal	1	1	1
1.	The cycle is also known as(A) Constant volume cycle	$-^{(D)}$	Constant pressure cycle			
	(A) Constant volume cycle	(D)	Ligh temperature cycle			
	(C) Constant temperature cycle	(D)	High temperature cycle			
2.	A four stroke engine running at 600 per minute.	00 rpr	n haspower strokes	1	2	1
	(A) 2000	(B)	3000			
	(C) 4000	. ,	6000			
		,				
3.	For the same compression ratio, efficiency.	a	cycle has maximum	1	1	1
	(A) Otto	(B)	Diesel			
	(C) Dual	\ /	Carnot			
	(C) Buai	(-)				
1	During heat addition, the entropy usu	ıallv		1	1	1
4.	(A) Remains constant	(B)	Decreases			
		(D)	Decreases and then increases			
	(C) Increases	(D)	B00104000 4114 4114 1114			
5.	Brake power is the power available		. 1 6	1	1	2
	(A) In the cylinder		At the engine output shaft			
	(C) During combustion	(D)	At the front brake			
(Garaifia final congumntion is given b	V		1	1	2
0.	Specific fuel consumption is given b	y (R)	ma/BP			
	(A) ma/IP		mf/BP			
	(C) mf/IP	(D)	IIII/BI			
7.	Morse test cannot be used on an eng	ine w	ithcylinders.	1	1	2
	(A) One	(B)	Four			
	(C) Six	(D)	Ten			
0	Managed to find			1	1	2
8.	Morse test is used to find	(R)	Indicated power			
	(A) Frictional power		Thermal efficiency			
	(C) Brake power	(D)	Thermal efficiency			

9.	For	a cylinder, the critical radius is g	given	by	1	3	3
	(A)	2K/h	(B)	K/2h			
	(C)	K/h	(D)	3K/h			
10.			essing	g any gas iscompression.	1	2	3
		Isentropic	(B)	Isochoric			
	(C)	Isothermal	(D)	Adiabatic			
11.		e convection occurs due to	(D)	D 1100	1	1	3
	(A)	Random free electrons	(B)	Density difference caused by			
	(C)	Molocular anin	(D)	temperature gradients			
	(C)	Molecular spin	(D)	External stirring			
12.		t transfer coefficient is maximu	ım fo	r the following material at room	1	1	3
	-	Zinc	(B)	Aluminium			
	. ,	Brass	(D)	Carbon steel			
	()		(-)				
13.	Hea	t from the refrigerated volume	e of	a refrigerator is removed by a	1	1	4
	(A)	Compressor	(B)	Condenser			
	(C)	Expansion valve	(D)	Evaporator			
14.		lly, the gas entering a refrigerato			1	2	4
	, ,	Mixed with water		Completely dry vapour			
	(C)	At high velocity	(D)	Cooled below saturation point			
15	T1	A	1		1	2	4
13.		dry bulb temperature lines on a p			1	2	4
	` ′	Horizontal lines	` /	Vertical lines			
	(C)	Inclined at 45°	(D)	Exponential curves			
16.	The	thermal conductivity of air		_with rise in temperature.	1	1	4
10.		Increases		Remains constant			
	, ,	Increases		Is independent			
			(-)	as maop on a sin			
17.	Duri	ng heating and humidification,		increases.	1	1	5
		Relative humidity		Specific humidity			
	(C)	Specific mass of air	(D)	Flow velocity			
18.	At 1	00% relative humidity, the we	et bul	b temperature isthan	1	1	5
	$\overline{(\Lambda)}$	temperature. Lower, dew point	(D)	Favol day maint			
		Higher, dry bulb		Equal, dew point Higher, dew point			
	(C)	riigher, dry buib	(D)	riigher, dew point			
19.	The	performance of a refrigerator is	descri	bed by	1	1	5
		Power supplied to compressor					
		Expansion ratio		Coefficient of performance			
20	T _{re}	manage also as a 197			1	ï	_
<i>2</i> U.			em, t	he following component is not	1	1	. 5
		ssary Cooling coil	(D)	Unmidifier			
	, ,	Fan or blower	` '	Humidifier Heating coil			
	(\cup)	I all of olower	(\mathcal{D})	Heating coil			

	$PART - B (5 \times 4 = 20 Marks)$			
	Answer ANY FIVE Questions	Marks	BL	CO
21.	State the assumptions made for air standard cycles.	4	1	1
22.	Draw the PV and T-S diagrams for otto cycle.	4	1	1
23.	Differentiate between indicated power and brake power.	4	2	2
24.	Describe Willan's line method.	4	3	1
25.	Derive the expression for finding the critical radius of a cylinder.	4	4	1
26.	Why is multi stage compression necessary?	4	5	1
27.	Write a short note on dehumidification. Write is it necessary.	4	5	1
	$PART - C (5 \times 12 = 60 Marks)$			
	Answer ALL Questions	Marks	BL	CO
28. a.	Derive the air standard efficiency of an otto cycle.	12	2	1
	(OR)			
b.	The minimum pressure and temperature in an otto cycle are 100 kPa and 27°C. The heat added per cycle is 1500 kJ/kg. Determine the thermal efficiency and the pressure and temperature at all salient points.	12	3	1
29. a.	Explain the basic performance parameters of IC engines with suitable sketches.	12	2	2
b.	A single cylinder, 4 stroke oil engine has the following parameters. Cylinder diameter = 20 cm Stroke length = 40 cm Indicated MEP = 6 bar Torque = 407 Nm Speed = 250 rpm Oil consumption = 4 kg/hour Calorific value of oil = 43 MJ/kg Cooling water flow rate = 4.5 kg/minute. Air used per kg of fuel = 30 kg Change in water temp. from inlet to outlet = 45°C Temp. of exhaust gas = 420°C Ambient air temp. = 20°C Specific heat of exhaust gas = 1 kJ/kg.K Find the values of IP and BP. Prepare a heat balance sheet in kJ/hour.	12	3	2
30. a.	Derive the expression for heat conducted through a composite wall from the steady sate equation.	12	2	3

(OR)

b. Determine the heat required in a parallel flow heat exchanger to cool oil 3 3 from 60°C to 30°C using water at 20°C. The outlet temperature of water is 26°C. The oil flows at the rate of 10 kg/s and has a specific heat of 2200 J/kg.K. The overall heat transfer U=300 W/m²K. Also find the area required for a counter flow heat exchanger with the above data. 31. a. Explain the construction and working of a single acting air compressor with a neat sketch. (OR) b. Prepare a report on the working of vapour compression refrigeration 2 system with neat sketches. 32. a. Explain the working of winter air conditioning system. 12 (OR) b. Write short notes on 12 2 Sensible cooling (i) (ii) Sensible heating

* * * * *