

FIGURE 1

ACTGCACCTCGGTTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGA
CCCACCGCGTCCGGGCCGGAGCAGCACGCCGCAGGACCTGGAGCTCCGGCTCGTCTCCCG
CAGCGCTACCCGCCATCGCCTGCCGCCGGGGCGCTGGGCTCCTGCCGCTTGCTG
CTGCTGCCGCCGCCGGAGGCCAAGAAGCCGACGCCCTGCCACCGGTGCCGGGGCT
GGTGGACAAGTTAACCAAGGGATGGTGGACACCGCAAAGAAAGAACTTGGCGCGGGAAACA
CGGCTTGGAGGAAAAGACGCTGTCCAAGTACGAGTCCAGCGAGATTGCCCTGCTGGAGATC
CTGGAGGGCTGTGCGAGAGCAGCGACTTCGAATGCAATCAGATGCTAGAGGCGCAGGAGGA
GCACCTGGAGGCCTGGTGGCTCAGCTGAAGAGCGAATATCCTGACTTATTGAGTGGTTT
GTGTGAAGACACTGAAAGTGTGCTGCTCTCCAGGAACCTACGGTCCCAGTGTCTCGCATGC
CAGGGCGGATCCCAGAGGCCCTGCAGCGGAATGGCCACTGCAGCGAGATGGAGCAGACA
GGCGACGGGTCTGCCGGTGCACATGGGTACCAGGGCCGCTGTGACTGACTGCATGG
ACGGCTACTTCAGCTCGCTCCGAACGAGACCCACAGCATTGACAGCCTGTGACGAGTCC
TGCAAGACGTGCTCGGCCCTGACCAACAGAGACTGCCGGAGTGTGAAGTGGCTGGGTGCT
GGACGAGGGCGCTGTGGATGTGGACGAGTGTGCCGGAGCCGCTCCCTGCAGCGCTG
CGCAGTTCTGTAAGAACGCCAACGGCTCCTACACGTGCGAAGAGTGTGACTCCAGCTGTG
GGCTGCACAGGGAAAGGCCAGGAAACTGTAAAGAGTGTATCTCTGGCTACGCAGGGAGCA
CGGACAGTGTGCAGATGTGGACGAGTGCCTACTAGCAGAAAAACCTGTGTGAGGAAAAACG
AAAATGCTACAATACTCCAGGGAGCTACGTCTGTGTGTCCTGACGGCTTCGAAGAAACG
GAAGATGCCGTGTGCCGCCGGCAGAGGCTGAAGCCACAGAAGGAGAAAGCCGACACAGCT
GCCCTCCCGCAAGACCTGTAATGTGCCGGACTTACCCCTAAATTATTGAGGATGTCC
CGTGGAAAATGTGGCCTGAGGATGCCGTCTGCAGTGGACAGCGGGAGAGGCTGC
CTGCTCTCTAACGGTTGATTCTCATTTGCCCTAAACAGCTGCATTCTGGTTGTTCTTA
AACAGACTTGTATATTTGATACAGTTCTTGTAAATAAAATTGACCATTGTAGGTAATCAGG
AGGAAAAAAAGGGCGCCGCGACTCTAGAGTGCACCTGCAGAAGC
TTGCCGCCATGGCCAACCTGTTATTGCAGCTATAATGGTTACAAATAAGCAATAGCA
TCACAAATTCAAAATAAGCATTTCAGCTAGTTGTGGTTGTC
ATCAATGTATCTTATCATGTCTGGATCGGGATTAATTCCGCGCAGCACCATGCCCTGAAAT
AACCTCTGAAAGAGGAACCTGGTTAGGTACCTCTGAGGCGAAAGAACCGAGCTGTGGAATG
TGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAGCAG
ATCTCAATTAGTCAGCAACCCAGTTT

FIGURE 2

><subunit 1 of 1, 353 aa, 0 stop

><MW: 38192, pI: 4.53, NX(S/T): 2

MRLPRRAALGLLPLLLLPPAPEAAKKPTPCHRGRGLVDKFNQGMVDTAKKNFGGGNTAEEKTLSKYESSEIRL
LEILEGLCESSDFECNQMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLKVCCSPGTYGPDCLACQGGSQRPCSG
NGHCSGDGSRQGDGSCRCHMGYQGPLCTDCMDGYFSSLRNETHSICTACDESCKTCSGLTNRDCGECEVGWLDE
GACVDVDECAAEPPPCSAAQFCKNANGSYTCEECDSSCVGCTGEGPNCKECISGYAREHGQCADVDEC SLAEKT
CVRKNENCYNTPGSYVCVCPDGFETEDACVPPAEEATEGESPTQLPSREDL

Signal peptide:

amino acids 1-24

N-glycosylation sites.

amino acids 190-194 and 251-255

Glycosaminoglycan attachment sites.

amino acids 149-153 and 155-159

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 26-30

Casein kinase II phosphorylation sites.

amino acids 58-62, 66-70, 86-90, 197-201, 210-214, 255-259, 295-299, 339-343
and 349-353

Tyrosine kinase phosphorylation site.

amino acids 303-310

N-myristoylation sites.

amino acids 44-50, 54-60, 55-61, 81-87, 150-156, 158-164, 164-170, 252-258 and
313-319

Aspartic acid and asparagine hydroxylation site.

amino acids 308-320

EGF-like domain cysteine pattern signature.

amino acids 166-178

Leucine zipper pattern.

amino acids 94-116

FIGURE 3

CAGGTCCAAC TGCACCTCGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTC
GACCTCGACCCACGCGTCCGCCAGGCCGGAGGCAGCGCCAGCGTCAAACGGGAACA
GCCCTGGCTGAGGGAGCTGCAGCGCAGCAGAGTATCTGACGGGCCAGGTTGCGTAGGTGCG
GCACGAGGAGTTCCCGCAGCGAGGAGGTCTGAGCAGC **ATGGCCGGAGGAGCGCCTTC**
CCTGCCGCCGCTCTGGCTCTGGAGCATCCTCCTGTGCTGCTGGCACTGCGGCCAGGC
CGGGCCGCCAGGAGGAGGCCTGTACCTATGGATCGATGCTCACCAAGGAAAGAGTACTCA
TAGGATTGAAGAAGATACTTGATTGTTCAGAGGGAAAATGGCACCTTACACATGAT
TTCAGAAAAGCGCAACAGAGAATGCCAGCTATTCTGTCAATATCATTCCATGAATTTCAC
CTGGCAAGCTGCAGGGCAGGCAGAATACTTCTATGAATTCTGTCTTGCCTCCCTGGATA
AAGGCATCATGGCAGATCCAACCGTCAATGTCCCTCTGCTGGAAACAGTGCTCACAGGCA
TCAGTTGTTCAAGTTGGTTCCATGTCTTGGAAAACAGGATGGGGTGGCAGCATTGAAGT
GGATGTGATTGTTATGAATTCTGAAGGCAACACCATTCTCAAACACACTCAAATGCTATCT
TCTTAAACATGTCAACAAGCTGAGTCCCAGGGTGCAGAACATGGAGGCTTTGTAAT
GAAAGACGCATCTGCGAGTGTCTGATGGTTCCACGGACCTCACTGTGAGAAAGCCCTTG
TACCCACGATGTATGAATGGTGGACTTGTGACTCCTGGTTCTGCATCTGCCACCTG
GATTCTATGGAGTGAAC TGTGACAAGCAAACACTGCTCAACCACCTGCTTAATGGAGGGACC
TGTTCTACCCGGAAAATGTATTGCCCTCCAGGACTAGAGGGAGAGCAGTGTGAAATCAG
CAAATGCCACAACCTGCGAAATGGAGGTAAATGCATTGGTAAAGCAAATGTAAGTGT
CCAAAGGTTACCAAGGGAGACCTCTGTTCAAAGCCTGTCTGAGCCTGGCTGGTGCACAT
GGAACCTGCCATGAACCAACAAATGCCAATGTCAAGAAGGTTGGCATGGAAGACACTGCAA
TAAAAGGTACGAAGCCAGCCTCATACATGCCCTGAGGCCAGCAGCGCCAGCTCAGGCAGC
ACACGCCCTCACTTAAAAGGCCGAGGAGCGGCCAGGATCCACCTGAATCCAATTACATCTGG
TGAACTCCGACATCTGAAACGTTTAAGTTACACCAAGTTCATAGCCTTGTAAACCTTCA
TGTGTTGAATGTTCAAATAATGTTCAATTACACTTAAGAATACTGCCCTGAATTTCATTAGCT
TCATTATAAAATCACTGAGCTGATATTACTCTTCTTTAAGTTCTAAGTACGTCTGTAG
CATGATGGTATAGATTCTTGTGTTCACTGAGCTGATTTGAGATTTTAAATGTCATTGA
TCAGGTTAAAATTTCAGTGTAGTTGGCAGATATTTCAAAATTACAATGCAATTGTT
GTCTGGGGCAGGGAACATCAGAAAGGTTAAATTGGGAAAAATGCGTAAGTCACAAGAAT
TTGGATGGTCAGTTAATGTTGAAGTTACAGCATTTCAGATTATTGTCAGATATTAGAT
GTTGTTACATTTTAAAATTGCTCTTAATTTCAAAATTCTCAATACAATATATTGACC
TTACCAATTCCAGAGATTCACTGAGCTTAAATTTTAAATTACAATGCTGGTAGTGGCATT
AAACAATATAATATCTAAACACAATGAAATAGGAATATAATGTATGAACCTTGCAT
TGGCTTGAAGCAATATAATATTGTAACAAAACACAGCTCTTACCTAATAAACATTTAT
ACTGTTGTATGTATAAAATAAAGGTGCTGCTTAGTTTTGGAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAGGGCGGCCGCACTCTAGAGTCGACCTGCAGAAGCTTGGC
GCCATGGCCCAACTTGTATTGCAGCTTATAATG

FIGURE 4

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33094
><subunit 1 of 1, 379 aa, 0 stop
><MW: 41528, pI: 7.97, NX(S/T): 2
MARRSAFPAAALWLWSILLCLLALRAEAGPPQEEESLYLWIDAHQARVLIGFEEDILIVSEGK
MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFSLRSLDKGIMADPTVNVPPLL
GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILQTPQNAIFFKTCQQAECPGGC
RNNGFCNERRICECPDGFHGPHEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDKANCST
TCFNGGTFCYPGKCICPPGLEGEQCEISKCPQPCRNGGKCIKGSKCKCSKGYQGDLCSPVVC
EPGCGAHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAQLRQHTPSLKKAEERRDP
PESNYIW
```

Signal peptide:

amino acids 1-28

N-glycosylation site.

amino acids 88-92, 245-249

Casein kinase II phosphorylation site.

amino acids 319-323

Tyrosine kinase phosphorylation site.

amino acids 370-378

N-myristoylation sites.

amino acids 184-190, 185-191, 189-195, 315-321

ATP/GTP-binding site motif A (P-loop).

amino acids 285-293

EGF-like domain cysteine pattern signature.

amino acids 198-210, 230-242, 262-274, 294-306, 326-338

FIGURE 5

CGGACGCGTGGCGTCGGCGGTGCAGAGCCAGGAGGCCAGGAGGCCACC**ATGTGGCGATGTCCACTGGGGCTAC**
TGCTGTTGCTGCCGCTGGCTGGCCACTTGGCTCTGGGTGCCACGCAGGGCTGTGGCGCCGG
GAGCTAGCACCGGGCTCGCACCTGCAGGGCATCCGGACGCCGGAGGCCGGTACTGCCAGGA
GCAGGACCTGTGCTGCCGCGCGTGCAGCAGTGTGCCCTGCCACCTGGCGCCATCT
GTTACTGTGACCTCTTGCAACCGCACGGCTCCGACTGCTGCCCTGACTTCTGGGACTTC
TGCCTCGCGTGCCACCCCCCTTCCCCGATCCAAGGATGTATGCATGGAGGTGCTATCTA
TCCAGTCTTGGAACGTACTGGACAACGTAAACCGTTGCACCTGCAGGAGAACAGGCAGT
GGCATGGTGGATCCAGACATGATCAAAGCCATCAACCAGGGCAACTATGGCTGGCAGGCTGG
GAACACAGGCCCTCTGGGCATGACCCTGGATGAGGCATTGCTACGCCTGGCACCA
TCCGCCCATCTCCTCGGTATGAACATGCATGAAATTATAACAGTGTGAAACCCAGGGAG
GTGCTTCCCACAGCCTCGAGGCCTCTGAGAACGTGGCCAACCTGATTGATGAGCCTCTGA
CCAAGGCAACTGTGCAGGCTCTGGCCTCTCCACAGCAGCTGTGCATCCGATGTGTCT
CAATCCATTCTCTGGGACACATGACGCCGTGCTGTGCCCCAGAACCTGCTGTGAC
ACCCACCAGCAGCAGGGCTGCCCGTGGCGTCTCGATGGTGCCTGGTGGTCCCTGCGTCG
CCGAGGGGTGGTGTCTGACCACGTCTACCCCTCTCGGGCGTGAACGAGACGGAGCTGGCC
CTGCCCCCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGCAAGGCCAGGCCACTGCC
CACTGCCCAACAGCTATGTTAAACAAATGACATCTACCAAGTCACTCCTGTCTACCGCCT
CGGCTCCAACGACAAGGAGATCATGAAGGAGCTGATGGAGAACGGCCCTGTCAAGCCCTCA
TGGAGGTGCATGAGGACTTCTTCCATACAGGGAGGCATCTACAGCCACAGCCAGTGAGC
CTTGGGAGGCCAGAGAGATACGCCGGCATGGGACCCACTCAGTCAAGATCACAGGATGGGG
AGAGGAGACGCTGCCAGATGGAAGGACGCTCAAATACTGGACTGCCAACCTGGGCC
CAGCCTGGGGCGAGAGGGCCACTTCCGCATCGTGCAGCGTCAATGAGTGCAGCATCGAG
AGCTCGTGTGGCGTCTGGGCGCTGGGCGTGGGATCCAGGCTAAGGGCGGGCGAAGAGGCCCAATG
GGCGGTGACCCAGCCTGCCGACAGAGGCCGGCGCAGGCCGGCGCAGGGCGCTAAT
CCCGCGCGGGTTCCGCTGACGCAGGCCCGCTGGGAGGCCGGCGAGGCGAGACTGGCG
GAGCCCCAGACCTCCAGTGGGGACGGGGCAGGGCTGGGCTGGGAAGAGCACAGCTGCAG
ATCCCAAGGCCCTGGGCCCTGGATCCAGGCTAAGGCTAACCTCAAGTCTCCAGC
CCCAATAACCCACCCAAATCCGTATTCTTTTTTTAGACAGGGCTTGCTCCG
TTGCCCAAGGTGGAGTGCAGTGGCCATCAGGGCTCACTGTAACCTCCGACTCTGGTTCA
AGTGACCTCCACCTCAGCCTCTCAAGTAGCTGGACTACAGGTGCACCACACCTGGC
TAATTTGTATTTGTAAAGAGGGGGTCTCACTGTGTTGCCAGGCTGGTTCGAACT
CCTGGGCTCAAGCGGTCCACCTGCCCTCCCAAAGTGTGGATTGCAGGCATGAGCC
ACTGCACCCAGCCCTGTATTCTTATTCTCAGATATTATTTCTTCACTGTTAAAAA
TAAAACCAAGTATTGATAAAAAAAA

FIGURE 6

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33223
><subunit 1 of 1, 164 aa, 1 stop
><MW: 18359, pI: 7.45, NX(S/T): 1
MWRCPLGLLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQLCCRGRAADD
ALPYLGAICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPIQGCMHGGRIYPVLGTYWDNCNR
CTCQENRQWHGGSRHDQSHQPGQLWLAGWEQRLLGHDPG
```

N-glycosylation site.

amino acids 78-82, 161-165

Casein kinase II phosphorylation site.

amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300,
411-415

N-myristoylation site.

amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230,
269-275, 378-384, 442-448

Amidation site.

amino acids 26-30, 318-322

Eukaryotic thiol (cysteine) proteases histidine active site.

amino acids 398-409

FIGURE 7

AGGCTCCTTGGCCCTTTCCACAGCAAGCTTNTGCNATCCCGATTGTTGTCTCAAATCCA
ATTCTCTTGGGACACATNACGCCTGTCCTTNGCCCCAGAACCTGCTGTCTGTACACCCAC
CAGCAGCAGGGCTGCCCGNTGGCGTCTCGATGGTGCCTGGTGGTCTGCGTCGCCGAGG
GNTGGTGTCTGACCACTGCTACCCCTCTCGGGCCGTGAACGAGACGAGGCTGGCCCTGCGC
CCCCCTGTATGATGCACAGCCGAGCCATGGTCGGGCAAGCGCCAGGCCACTGCCACTGC
CCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCTGGCTC
CAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTATGGAGG
TGCATGAGGACTTCTTCCATAAGGGAGGCATCTACAGCCACAGGCCAGTGAGCCTTGGG
AGGCCAGAGAGATAACGCCGGCATGGACCCACTCAG

FIGURE 8

GCTGCTTGCCTGTTGATGGCAGGCTTGCCTGCAGCCAGGCACTGCCCTGCTGTGCTACT
CCTGCAAAGCCCAGGTGAGCAACGAGGATGACTGCCCTGCAGGTGGAGAATGTCACCCAGCTGGGG
GAGCAGTGCTGGACCCGCGCATCCGCGCAGTTGGCCTCCTGACCGTCATCAGCAAAGGCTG
CAGCTTGAACTGCGTGGATGACTCACAGGACTACTACGTGGCAAGAAGAACATCACGTGCT
GTGACACCGACTTGTGCAACGCCAGCGGGGCCATGCCCTGCAGCCGGCTGCCGCCATCCTT
GCGCTGCTCCCTGCACTCGGCCTGCTGCTCTGGGACCCGCCAGCTATAGGCTCTGGGGGG
CCCCGCTGCAGCCCACACTGGGTGTGGTCCCCCAGGCCTCTGTGCCACTCCTCACAGACCTG
GCCCAGTGGAGCCTGCCTGGTTCCTGAGGCACATCCTAACGCAAGTCTGACCATGTATGT
CTGCACCCCTGTCCCCCACCCGTGACACAGATCCGCCTGCAGATGGCCCTCCAACCCCTCTGCTGTTTC
CATGGCCCAGCATTCTCCACCCTTAACCCCTGTGCTCAGGCACCTCTCCCCCAGGAAGCCTT
CCCTGCCACCCATCTATGACTTGAGCCAGGTCTGGTCCGTGGTGTCCCCCGACCCAGCA
GGGGACAGGCACTCAGGAGGGCCCAGTAAAGGCTGAGATGAAGTGGACTGAGTAGAAACTGGA
GGACAAGAGTCGACGTGAGTTCCTGGAGTCTCCAGAGATGGGCCTGGAGGCCTGGAGGAA
GGGGCCAGGCCTCACATTCGTGGGCTCCCTGAATGGCAGCCTGAGCACAGCGTAGGCCCTT
AATAAACACCTGTTGGATAAGCAAAAAAA

FIGURE 9

MTHRTTWARRTSRAVTPTCATPAGPMPCSRLPPSLRCSLHSACCSDPASYRLWGAPLQPT
LGVVPQASVPLLTDLAQWEPVLVPEAHPNASLTMYVCTPVPHDPPMALSRTPTRQISSLDT
DPPADGPSNPLCCCFHGPAFSTLNPVLRHLFPQEAFPAHPIYDLSQVWSVVSPAPSRGQALRRAQ

Signal peptide:

amino acids 1-47

N-glycosylation site.

amino acids 31-35, 74-78, 84-88

Casein kinase II phosphorylation site.

amino acids 22-26, 76-80

N-myristoylation site.

amino acids 56-60

Amidation site.

amino acids 70-74

FIGURE 10

CCCATCGCGTCCGAACCTCTCCAGCGATGGGAGCCGCCGCCTGCTGCCAACCTCACTCTGT
GCTTACAGCTGCTGATTCTCTGCTGTCAAACACTCAGTACGTGAGGGACCAGGGCGCCATGACC
GACCAGCTGAGCAGGCCAGATCCGCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA
CGTGCAGGTACCGGGCGTCGCATCTCCGCCACCGCCGAGGACGGCAACAAGTTGCCAAGC
TCATAGTGGAGACGGACACGTTGGCAGCCGGGTTCGCATCAAAGGGCTGAGAGTGAGAAG
TACATCTGTATGAACAAGAGGGCAAGCTCATGGGAAGCCCAGCGGGAAAGAGCAAAGACTG
CGTGTTCACGGAGATCGTGGAGAACAACTATA CGGCCTTCCAGAACGCCGGCACGAGG
GCTGGTTCATGGCCTTCACGCCGCAGGGCGGCCAGGCTTCCGCAGGCCAGAAC
CAGCGCGAGGCCCACTTCATCAAGCGCCTCTACCAAGGCCAGCTGCCCTCCCCAACCACGC
CGAGAAGCAGAAGCAGTCGAGTTGGCTCCGCCCCACCCGCCGACCAAGGCCACAC
GGCGGCCAGCCCTCACGTAGTCTGGGAGGCAGGGGCAGCAGGCCCTGGCCGCCTCCC
CACCCCTTCCCTTAATCCAAGGACTGGCTGGGTGGCGGGAGGGAGGCCAGATCCCC
GAGGGAGGACCCCTGAGGCCCGAAGCATCCGAGCCCCCAGCTGGGAAGGGCAGGCCGGTG
CCCCAGGGCGGCTGGCACAGTGCCCTTCCGGACGGTGGCAGGCCCTGGAGAGGAAC
GAGTGTCAACCTGATCTCAGGCCACCAGCCTCTGCCGCCCTCCAGCCGGCTCCTGAAGCC
CGCTGAAAGGTCA CGCACTGAAGGCCTGCAGACAACCGTCTGGAGGTGGCTGTCCCTAAAA
TCTGCTTCTCGGATCTCCCTCAGTCTGCCCTCAGGCCCCAAACTCCTCCTGGCTAGACTGTA
GGAAGGGACTTTGTTGTTGTTGTTCAAGGAAAAAAGAAAGGGAGAGAGAGGAAAATAG
AGGGTTGTCCACTCCTCACATTCCACGACCCAGGCCTGCACCCACCCCAACTCCCAGCCC
CGGAATAAAACCATTTCCTGC

FIGURE 11

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHKVQVTGRRI
SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKSKDCVFTEIVLE
NNYTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQKQFEF
VGSAPTRRTKRTRRPQPLT

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 9-13, 126-130

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 60-64

Casein kinase II phosphorylation site.

amino acids 65-69

Tyrosine kinase phosphorylation site.

amino acids 39-48, 89-97

N-myristoylation site.

amino acids 69-75, 188-194

Amidation site.

amino acids 58-62

HBGF/FGF family signature.

amino acids 103-128

FIGURE 12

ACTTGCCATCACCTGTTGCCAGTGTGGAAAATTCTCCCTGTTGAATTTTCACATGGAG
GACAGCAGCAAAGAGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATTTAC
CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCACAGAACCCATCCAGT
CATTGATTGCTGTTATTCCCCCTTTCTTCCACCATTTGATTTAT
TTCCGTACTTCAGAAATGGGCTACAGACCACAAAGTGGCCAGCCATGGGCTTTTCCT
GAAGTCTTGGCTTATCATTCCCTGGGCCTACTCACAGGTGTCCAAACTCCTGGCCTGCC
CTAGTGTGTGCCGCTGCGACAGGAACCTTGTCTACTGTAATGAGCGAAGCTGACCTCAGTG
CCTCTGGGATCCCGAGGGCGTAACCGTACTCTACCTCCACAACAACCAAATTAATAATGC
TGGATTCCTGCAGAACTGCACAATGTACAGTCGGTGACACGGTCTACCTGTATGGCAACC
AACTGGACGAATTCCCCATGAACCTCCAAAGAATGTCAGAGTTCTCCATTGCAGGAAAAC
AATATTAGACCATTCACGGGCTGCTTGTCCCAGCTTGAAGCTTGAAGAGCTGCACCT
GGATGACAACCTCCATATCCACAGTGGGGTGGAAAGACGGGCCTCCGGGAGGCTATTAGCC
TCAAATTGTTGTTGTCTAAGAATCACCTGAGCAGTGTGCCTGTGGCTTCCTGTGGAC
TTGCAAGAGCTGAGAGTGGATGAAAATCGAATTGCTGTATATCCGACATGGCCTTCAGAA
TCTCACGAGCTTGGAGCGTCTTATTGTGGACGGGAACCTCCTGACCAACAAGGGTATGCCG
AGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTCATAATTGTACGTAATTGCCGTGTC
CACCCCTCCTCCGATCTCCAGGTACGCATCTGATCAGGCTCTATTGCAGGACAACCAAGAT
AAACCACATTCTTGACAGCCTCTCAAATCTCGTAAGCTGGAAACGGCTGGATATATCCA
ACAACCAACTGCGGATGCTGACTCAAGGGTTTGATAATCTCTCAAACCTGAAGCAGCTC
ACTGCTCGGAATAACCCCTGGTTGTGACTGCAGTATTAAATGGGTACAGAATGGCTCAA
ATATATCCCTCATCTCTCACAGTGCAGGGTTCATGTGCCAAGGTCTGAACAAGTCCGGG
GGATGGCCGTAGGGAAATTAAATGAATCTTGCTCTGCCCACACGACCCCCGGCCTG
CCTCTCTCACCCAGCCCCAAGTACAGCTCTCCGACCACCTCAGCCTCCCACCCCTCTAT
TCCAAACCTAGCAGAAGCTACACGCCTCCAACCTCCTACCAACATCGAAACTTCCCACGATT
CTGACTGGGATGGCAGAGAAAGAGTGACCCCACCTATTCTGAACGGATCCAGCTCTATC
CATTGTTGATGACTTCCATTCAAGTCAGCTGGCTCTCTCTCACCCTGATGGCATA
CAAACTCACATGGGTGAAATGGCCACAGTTAGTAGGGGCATCGTTAGGAGCGCATAG
TCAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACTTAGAGCCCCGATCCACCTATCGGATT
TGTTAGTGCCACTGGATGCTTTAACTACCGCGCGTAGAAGACACCAATTGTCAGAGGC
CACCAACCATGCCTCTATCTGAACAACGGCAGCAACACAGCGTCCAGCCATGAGCAGACGA
CGTCCCACAGCATGGCTCCCCCTTCTGCTGGCGGGCTTGTATGGGGCGCGGTGATATTT
GTGCTGGTGGCTTGCTCAGCGTCTTGTGGCATATGCACAAAAAGGGCGCTACACCTC
CCAGAAGTGGAAATAACAACCGGGCGCGAAAGATGATTATGCGAGGCAGGCACCAAGA
AGGACAACCTCCATCCTGGAGATGACAGAAACCGAGTTTCAGATCGTCTCCTTAATAACGAT
CAACTCCTTAAAGGAGATTTCAGACTGCAGCCATTACACCCAAATGGGGCATTAATTA
CACAGACTGCCATATCCCCAACACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC
ACTGCCATACGTGAAGCCAGAGGCCAGCGTTATCAAGGCGGACAATTAGACTCTTGAGAA
CACACTCGTGTGTCACATAAAGACACGCAGATTACATTGATAATGTTACACAGATGCAT
TTGTCATTTGAATACTCTGTAATTATACGGTGTACTATATAATGGGATTAAAAAGTG
CTATCTTCTATTCAAGTTAATTACAAACAGTTGTAACCTTGCTTTAAATCTT

FIGURE 13

MGLQTTKWPISHGAFFLKSWEIISLGLYSQVSKLLACPSVCRCDRNFVYCNERSLTSVPLGIP
EGVTVLYLHNNQINNAGFPAELHNVQSVHTVYLYGNQLDEFPMNLPKNVRVLHLQENNIQTI
SRAALAQLLKLEELHLDNSISTVGVEDGAFREAIISLKLFLSKNHLSVPVGLPVDLQELR
VDENRIAVISDMAFQNLTSLERLIVDGNLLTNKGIAEGTFSHLTKEFSIVRNSLSHPPPD
LPGTHLIRYLQDNQINHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNLNSNLKQLTARNN
PWFCDCSIKWVTEWLKYIPSSLNVRGFMCQGPEQVRGMAVRELNMNLLSCPTTPGLPLFTP
APSTASPTTQPPTLSIPNPSRSYTPPTTSLPTIPDWGGRERVTPPISERIQLSIHFVND
TSIQVSWLSLFTVMAYKLTWVKMGHSLVGGIVQERIVSGEKQHLSLVNLEPRSTYRICLVPL
DAFNYRAVEDTICSEATTHASYLNNGSNTASSHEQTSHSMGSPFLLAGLIGGAVIFVLVVL
LSVFCWHMHKKGRYTSQWKYNRGRRKDYCEAGTKKDNSILEMTETSFQIVSLNNDQLLKG
DFRLQPIYTPNGGINYTDCHIPNNMRYCNSSVPDLEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653

Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655

Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300,
522-528, 545-551, 633-639

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

FIGURE 14

ACTTGGAGCAAGCGGCGGCCGGAGACAGAGGCAGAGGCAGAACAGCTGGGCTCCGTCTCGCCTCCCACGAGCG
ATCCCCGAGGAGAGCCGCGGCCCTCGCGAGGCCAAGAGGCCAGAGGAAGACCCGGGTGGCTCGGCCCTGCC
TCGCTTCCCAGGCAGGCCGGCTGCAGCCTTGCCCTCTTGCTCGCCITGAAAATGGAAAAGATGCTCGCAGGCT
GCTTCTGCTGATCCTCGGACAGATCGTCCTCCCTGCCAGGGAGGCCAGGGAGCGTCAGTGAGGAGGTTCCATCT
CTAGGGCAGACACGCTCGGACCCACCGCAGACGGCCCTCTGGAGAGTTCCTGTGAGAACAAAGCAGGGCAGACC
TGGTTTCATCATTGACAGCTCTCGCAGTGTCAACACCCATGACTATGCAAAGGTCAAGGAGGTTCATCGTGGACA
TCTTGCATATTGGACATTGGCTCTGATGTCACCCGAGTGGGCTGCTCCAATATGGCAGCAGTGTCAAGAATG
AGTTCTCCCTCAAGACCTCAAGAGGAAGTCCGAGGTGGAGCGTGTCAAGGAGGATGCCGATCTGTCACGG
GCACCATGACTGGGCTGGGACATCCAGTATGCCATGCCAATCTCAGAACAGCAGAGGGGCCGGCCCTGA
GGGAGAATGTGCCACGGGCTATAATGATCGTACAGATGGAGACCTCAGGACTCTGTGGCCAGGTGGCTGCTA
AGGCACGGGACACGGGATCCTAATCTTGCATTGGTGGCCAGGTAGAGTCAACACCTTGAAGTCCATTG
GGAGTGGAGCCCCATGAGGACCATGTCCTGTGAGGAACTTTCAGCCAGATTGAGACGCTGACCTCCGTGTTCC
AGAAGAAGTTGTGACGGGCCACATGTGAGCACCCCTGGAGCATAACTGTGCCACTCTGCATCAACATCCCTG
GCTCATACGTCAGGTCAAACAGGCTACATTCTCAACTCGGATCAGACGACTTGAGAACATCCAGGATCTGT
GTGCATGGAGGACCAACTGTGAGCAGCTGTGTGAATGTGCCGGCTCTCGTGTGAGTGTGCTACAGTG
GCTACGCCCTGGCTGAGGATGGGAAGAGGTGTGAGGACTACTGTGCTCAGAAAACACGGATGTGAAAC
ATGAGTGTGTAATGCTGATGGCTCTACCTTGCCAGTGGCATGAAGGATTGCTCTTAACCCAGATGAAAAAA
CGTGCACAAGGATCAACTACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGCCTCAACATGGAGGAGGCT
ACTACTGCCGCTGCCACCGTGGCTACACTCTGGACCCCAATGGCAAAACCTGCAAGCCGAGTGGACCAACTGTGAC
AGCAGGACCATGGCTGTGAGCAGCTGTGTGAACACGGAGGATTCCCTGCTGCCAGTGTGCTAGAACGGCTCC
TCATCAACGAGGACCTCAAGACCTGTCCTGGGGTGGATTACTGCTGCTGAGTGGCATGGTGTGAATACTCCT
GTGTCACATGGACAGATCCTTGCCCTGTCAGTGTCTGAGGGACACGTGCTCCGAGCGATGGGAAGACGTGTG
CAAAATTGGACTCTTGTGCTCTGGGGACACGGTTGTGAACATTGCTGTGAAGCAGTGAAGATTGTTGTG
GCCAGTGTGTTGAAGGTTATATACTCCGTGAAGATGGAAAACCTGCAAGGAAAGATGTCTGCCAAGCTATAG
ACCATGGCTGTGAACACATTGTGTGAACAGTGACGACTCATCACGTCAGTGTGCTGGAGGGATTCCGGCTCG
CTGAGGATGGGAACGGCTGGCGAAGGAAGGATGTCTGCAAATCAACCCACCATGGCTGCAACACATTGTT
ATAATGGGAATTCTACATCTGCAAATGCTCAGAGGATTGTTCTAGCTGAGGACGGGAAGACGGTGAAGAAAT
GCACTGAAGGCCAATGACCTGGTCTTGATGGATCCAAGAGTCTTGGAGAAGAGAATTGAGGTG
TGAAGCAGTTGTCACTGGAATTATAGATTCTGCTGACAATTCCCTAAAGCCGCTGAGTGGGCTGCTCCAGT
ATTCCACACAGGTCCACACAGAGTTCACTCTGAGAAACTTCACAGCCAAAGACATGAAAAAAAGCCGTGGCC
ACATGAAATACTGGAAAGGGCTATGACTGGGCTGCCCTGAAACACATGTTGAGAGAAGTTTACCCAAG
GAGAAGGGGCCAGGCCCTTCCACAAGGTGCCAGACCGAGCCATTGTTGACCGACGGACGGGCTCAGGATG
ACGTCCTGGAGTGGCCAGTAAGCCAAGGCCAATGGTATCACTATGATGCTGTGGGCTAGGAAAGCCATTG
AGGAGGAACATACAAGAGATTGCTCTGAGCCCACAAACAAGCATCTTCTATGCCAGACTCAGCACAATGG
ATGAGATAAGTAAAAACTCAAGAAAGGCATCTGTGAAGCTCTAGAAGACTCGATGGAAGACAGGACTCTCCAG
CAGGGGAACGTGCCAAAACGGTCAACAGCCAACAGAATCTGAGCCAGTCACCATAAATATCCAAGACCTACTTT
CCTGTTCTAATTGCACTGGTCAACACAGATATCTGTTGAGAAGACAATCTTACGGTCTACACAAAGCTTT
CCCATTCAACAAACCTTCAGGAAGGCCCTTGGAAGAAAACAGATCAATGCAAATGTGAAAACCTTATAATGT
TCCAGAACCTGCAACAGAAGTAAGAAAATTAAACACAGCGCTTAGAAGGAAATGACACAGAGAATGGAAGGCC
TGGAAAATGCCCTGAGATAAGATGAAGATTAGAAAATGCCACACATTGTTAGTCATTGTTACGGATTACAAT
GAACGCAGTGCAGAGCCCCAAAGCTCAGGCTATTGTTAAATCAATAATGTTGAGTAAAACAATCAGTACTGA
GAAACCTGGTTGCCACAGAACAAAGACAAGAAGTATACTACACTAATGTTAGTAAATTTATCTAGGAAAAAAACCT
TCAGAATTCTAAGATGAATTACCAAGGTGAGAATGAATAAGCTATGCAAGGTATTGTTGAAATATACTGTGGACAC
AACTGCTTCTGCCCTCATCCTGCCATTGCAATCTCATTGACTATACGATAAAAGTTGCACAGTCTTACTT
CTGAGAACACTGCCATAGGAAATGCTGTTTTGACTGGACTTACCTTGATATGTATATGGATGTATG
CATAAAATCATAGGACATATGACTTGTGGAACAAGTTGAGTTTATACAATATAAAATTCAACACTTCAG

FIGURE 15

MEKMLAGCFLLILGQIVLLPAEARERSGRSISRGRHARTHPOQTALLESSCENKRADLVFII
DSSRSVNTHDYAKVKEFIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFKRKSEVERAV
KMRHLSTGTMGLAIQYALNIAFSEAE GARPLRENVPRVIMIVTDGRPQDSVAEVAAKARD
TGILIFAIVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLTSVFQKKLCTAHMCSTLEHN
CAHFCINIPGSYVCRKQGYILNSDQTTCRIQDLCAMEDHNCEQLCVNPVPGSFVCQCYSGYA
LAEDGKRCVAVDYCASENHGCEHECVNADGSYLCQCHEGFALNPDEKTCTRINYCALNKPGC
EHECVNMEESYYCRCHRGYTLDPNGKTCRSVDHCAQQDHGEQLCLNTEDSFVCQCSEGFLI
NEDLKTCSRVDYCLLSDHGCEYSCVNMDRSFACQCPEGHVLRS DGKTCAKLDSCALGDHGCE
HSCVSSEDSFVCQCFCFGYILREDGKTCRRKDVCQAIDHGCEHICVNSDDSYTCECLEGFR LA
EDGKRCRRKDVKSTHHGCEHICVNNNGNSYICKCSEG FVLAEDGRRCKCTEGPIDLVFVID
GSKSLGEENFEVVKQFVTGIIDS LTISPKAARVGLLQYSTQVHTEFTLRNFNSAKDMKKAVA
HMKYMGKGSMTGLALKHM FERSFTQGEGARPLSTRVPRAAIVFTDGRAQDDVSEWASKAKAN
GITMYAVGVGKAIEELQEIA SEPTNKHLYAEDFSTMDEISEKLKKGICEALEDSDGRQDS
PAGELPKTVQQPT ESEPVTINI QDLLSCNSFAVQHRYLFEE DNLLRSTQKL SHSTKPSGSPL
EEKHDQCKCENLIMFQNL ANEEVRKLTQRLEEMTQRMEALENRLRYR

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 115-119, 606-610, 892-896

Casein kinase II phosphorylation site.

amino acids 49-53, 118-122, 149-153, 176-180, 223-227, 243-247,
401-405, 442-446, 501-505, 624-628, 673-677, 706-710, 780-784,
781-785, 819-823, 866-870

N-myristoylation site.

amino acids 133-139, 258-264, 299-305, 340-346, 453-459, 494-500,
639-645, 690-696, 752-758, 792-798

Amidation site.

amino acids 314-318, 560-564, 601-605

Aspartic acid and asparagine hydroxylation site.

amino acids 253-265, 294-306, 335-347, 376-388, 417-423, 458-464,
540-546, 581-587

FIGURE 16

GGAGCCGCCCTGGGTGTCAGCGCTCGCTCCCGCAGCCTCCGCCGCGCAGCCTCG
GCACCTGCAGGTCCGTGCGTCCCGCGGCTGGCGCCCTGACTCCGTCCCAGGGAGGGC
CATGATTCCCTCCCCGGGCCCTGGTGACCAACTTGCTGCCGTTTGTTCTGGGCTGA
GTGCCCTCGCGCCCCCTCGCGGCCAGCTGCAACTGCACCTGCCAACCCTGTCAG
GCGGTGGAGGGAGGGAAAGTGGTCTTCCAGCGTGGTACACCTGCACGGGAGGTGCTTC
ATCCCAGCCATGGGAGGTGCCCTTGATGTGGTCTTCAAACAGAAAGAAAAGGAGGATC
AGGTGTTGTCTACATCAATGGGTACAACAAGCAAACCTGGAGTATCCTGGTCTACTCC
ATGCCCTCCCGAACCTGTCCCTGCCGCTGGAGGGTCTCCAGGAGAAAGACTCTGGCCCCTA
CAGCTGCTCCGTGAATGTGCAAGACAAACAAGGAAATCTAGGGCCACAGCATAAAACCT
TAGAACTCAATGTACTGGTCTCCAGCTCCTCATCCTGCCGTCTCAGGGTGTGCCCAT
GTGGGGCAAACGTGACCTGAGCTGCCAGTCTCCAAGGAGTAAGCCGCTGTCCAATACCA
GTGGGATCGGCAGCTCCATCCTCAGACTTTCTTGACCCAGCATTAGATGTATCCGTG
GGTCTTAAGCCTCACCAACCTTCGTCTTCCATGGCTGGAGTCTATGTCTGCAAGGCCAC
AATGAGGTGGCACTGCCAATGTAATGTGACGCTGGAAGTGAGCACAGGCCCTGGAGCTGC
AGTGGTTGCTGGAGCTGTTGGTACCCCTGGTGGACTGGGTTGCTGGCTGGCTGGTCC
TCTTGTACCACCGCCGGCAAGGCCCTGGAGGAGCCAGCAATGATATCAAGGAGGATGCC
ATTGCTCCCGACCCTGCCCTGGCCAAGAGCTCAGACACAATCTCAAGAATGGGACCC
TTCCTCTGTCACCTCCGACGCCCTCCGGCCACCCATGGCCCTCCAGGCCTGGTCAT
TGACCCCCACGCCAGTCTCCAGCCAGGCCCTGCCCTCACCAAGACTGCCACGACAGAT
GGGGCCACCCCTCAACCAATATCCCCCATCCCTGGTGGGTTCTCCTCTGGCTTGAGCCG
CATGGGTGCTGTGCCTGTGATGGTGCCCTGCCCAGAGTCAGCTGGCTCTGGT**TATGATGAC**
CCCACCACTATTGGCTAAAGGATTGGGTCTCTCCTATAAGGGTACCTCTAGCAC
AGAGGCCTGAGTCATGGAAAGAGTCACACTCCTGACCCCTAGTACTCTGCCACCTCTC
TTTACTGTGGAAAACCATCTCAGTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAAGAGGA
AGTGGATCTGGAATTGGGAGGAGCCTCACCCACCCCTGACTCCTCTTATGAAGCCAGCTG
CTGAAATTAGCTACTCACCAAGAGTGAGGGCAGAGACTTCCAGTCAGTCACTGAGTCTCCAGGC
CCCCCTGATCTGACCCACCCCTATCTAACACCAACCCCTGGCTCCACTCCAGCTCCCTGT
ATTGATATAACCTGTCAGGCTGGCTGGTTAGGTTTACTGGGAGGATAGGAAATCTC
TTATTAACATGAAATATGTGTTTTCAATTGCAAATTAAATAAGATAACATAA
TGTTGTATGAAAAA

FIGURE 17

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAWYTLHGEVSS
SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGLQEKDGPY
SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKP
AVQYQWDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGT
AQCNVTLLEVSTGPGAAVVAGAVVGTILVGLGLLAGLVLLYHRRGKALEEP
PANDIKEDAIAAPRTLWPWKSSDTISKNGTLSSVTSARALRPPHGPPRPGALTPTPSLSS
SQALPSPRLPTTDGAHPQPISPIPGGVSSSGLSRMGAVPVMVPAQSQAGSLV

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262,
262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

FIGURE 18

CGCCACCACTGGGCCACCGCCAATGAAACGCCTCCGCTCCTAGTGGTTTTCCACTTTG
TTGAATTGTCCTATACTCAAATTGCACCAAGACACCTGTCTCCAAATGCAAATGTGA
AATACGCAATGGAATTGAAGCCTGCTATTGCAACATGGGATTTCAGGAAATGGTGTACAA
TTTGTGAAGATGATAATGAATGTGGAAATTAACTCAGTCCTGTGGCAGAACATGCTAATTGC
ACTAACACAGAAGGAAGTTATTGTATGTGTACCTGGCTCAGATCCAGCAGTAACCA
AGACAGGTTTATCACTAATGATGGAACCGTCTGTATAGAAAATGTGAATGCAAACGTGCCATT
TAGATAATGTCTGTATAGCTGCAAATATTAATAAAAACCTTAACAAAAATCAGATCCATAAAA
GAACCTGTGGCTTGTACAAGAAGTCTATAGAAAATTCTGTGACAGATCTTCACCAACAGA
TATAATTACATATAGAAAATTAGCTGAATCATCTTCACTACTAGGTTACAAGAACAAACA
CTATCTCAGCCAAGGACACCCCTTCTAACTCAACTCTTACTGAATTGTAAAAACCGTGAAT
AATTTGTTCAAAGGGATACTTGTAGTTGGACAAGTTATCTGTGAATCATAGGAGAAC
ACATCTTACAAAACATGCACACTGTTGAACAAAGCTACTTAAAGGATATCCCAGAGCTTCC
AAAAGACCACAGAGTTGATAACAAATTCAACGGATATAGCTCTCAAAGTTTCTTTTGAT
TCATATAACATGAAACATATTCATCCTCATATGAATATGGATGGAGACTACATAAATATATT
TCCAAAGAGAAAAGCTGCATATGATTCAAATGGCAATGTTGCAGTTGCATTTTATATTATA
AGAGTATTGGTCTTGTCTTCATCATCTGACAACCTTCTTATTGAAACCTCAAATTATGAT
AATTCTGAAGAGGAGGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAAACCC
ACCCACATTATATGAACTTGAAAAAAATAACATTACATTAAGTCATCGAAAGGTACAGATA
GGTATAGGAGTCTATGTGCATTGGAAATTACTCACCTGATACCATGAATGGCAGCTGGTCT
TCAGAGGGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCT
GACACATTTGCAATTGATGTCCTCTGGCCTTCCATTGGTATTAAAGATTATAATATT
TTACAAGGATCACTCAACTAGGAATAATTATTCACTGATTGTCTGCCATATGCATT
ACCTTCTGGTTCTTCAGTCAAAGCACCAGGACAACAATTCAACAAAATCTTGCTG
TAGCCTATTCTTGCTGAACTGTTCTTGTGGATCAATACAAACTAATAAGCTCT
TCTGTTCAATCATTGCCGGACTGCTACACTACTCTTTAGCTGCTTGCATGGATGTGC
ATTGAAGGCATACATCTCATCTGATTGGTGTGTCATCTACAACAAAGGGATTGGCA
CAAGAATTTTATATCTTGCTATCTAACGCCAGCCGTGGTAGTTGGATTTCGGCAGCAC
TAGGATACAGATATTATGGCACAACCAAGTATGTTGGCTTAGCACCGAAAACAAC
TGGAGTTTATAGGACCAGCATGCCTAATCATTCTGTTAATCTCTTGGCTTGGAGTCAT
CATATACAAAGTTTCGTCAACTGCAGGGTTGAAACCAGAAGTTAGTTGCTTGGAGAAC
TAAGGTCTTGTGCAAGAGGAGCCCTCGCTTTCTGTTCTCGGCACCACTGGATCTT
GGGGTTCTCCATGTTGTGCACGCATCAGTGGTTACAGCTACCTCTCACAGTCAGCAATGC
TTTCAGGGGATGTTCATTTTTATTCTGTGTTTATCTAGAAAGATTCAAGAAGAAT
ATTACAGATTGTTCAAATGCCCCCTGTTGGATGTTAAGGTAAACATAGAGAAC
GTGGATAATTACAACGTGACAAAAATAAAATTCCAAGCTGTGGATGACCAATGTATAAAA
TGACTCATCAAATTATCAATTAAACTACTAGACAAAAAGTATTAAATCAGTT
GTTTATGCTATAGGAACACTGTAGATAATAAGGAAAATTATGTATCATATAGATAACTATGT
TTTCTATGTGAAATAGTCTGTCAAAATAGTATTGAGATATTGGAAAGTAATTGGTT
CTCAGGAGTGTATCACTGCACCCAAAGGAAAGATTTCTAACACGAGAAGTATATGAA
TGTCTGAAGGAAACCACGGCTGATATTCTGTGACTCGTGTGCTTGAACACTAGTCC
CCTACCACCTCGTAATGAGCTCCATTACAGAAAGTGGAACATAAGAGAACATGAAGGGCAGA
ATATCAAACAGTGAAAAGGAATGATAAGATGTATTGAAATGAACTGTTCTGTAGAC
TAGCTGAGAAATTGTTGACATAAAATAAGAATTGAAGAACACATTTCACATTGAA
TTGTTCTGAACTTAAATGTCCACTAAACAACTTAGACTCTGTTGCTAAATCTGTTCTT
TTCTAATATTCTAAAAAAAAAGGTTACCTCCACAAATTGAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 19

MKRLPLLVVFSTLLNCSYTQNCTKTPCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDNEC
GNLTQSCGENANCTNTEGSYYCMCVPGRSSSNQDRFITNDGTVCIENVANCHLDNVCIAA
NINKTLTKIRSIKEPVALLQEVRNSVTDLSPTDIITYIEILAESSLLGYKNNTISAKDTL
SNSTLTFVKTVNNFVQRDTVVWDKLSVNHRRTHTKLMHTVEQATLRISQSFQKTTEFDT
NSTDIALKVFFFDSYNMKHIHPHMNMDGYINIFPKRKAAYDSNGNVAVAFLYYKSIGPLLS
SSDNFLLKPQNYDNSEEERVISSVISVSMSSNPPTLYELEKITFTLSRKVTDRYRSLCAF
WNYSPDTMNGWSSEGCELTYSNETHTSCRNCNLTHFAILMSSGPSIGIKDYNILTRITQLG
IIISLICLAICIFTWFFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFCIIAGL
LHYFFLAAFAWMCIEGIHLYLIVGVIVNKGLHKNFYIFGYLSPA VVGFSAALGYRYYGT
TKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHTAGLKPEVSCFENIRSCARGA
LALLFLLGTTWIFGVLVHVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNV
PCCFGCLR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 430-450, 465-486, 499-513, 535-549, 573-593, 619-636,
648-664

N-glycosylation site.

amino acids 15-19, 21-25, 64-68, 74-78, 127-131, 177-181,
188-192, 249-253, 381-385, 395-399

Glycosaminoglycan attachment site.

amino acids 49-53

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 360-364

Casein kinase II phosphorylation site.

amino acids 54-58, 68-72, 76-80, 94-98, 135-139, 150-154,
155-159, 161-165, 181-185, 190-194, 244-248, 310-314, 325-329,
346-350, 608-612

Tyrosine kinase phosphorylation site.

amino acids 36-44, 669-677, 670-678

N-myristoylation site.

amino acids 38-44, 50-56, 52-58, 80-86, 382-388, 388-394,
434-440, 480-486, 521-527

Aspartic acid and asparagine hydroxylation site.

amino acids 75-87

FIGURE 20

TGGAAACATATCCTCCCTCATATGAATATGGATGGAGACTACATAAATATAATTTCCAAAGNG
AAAAGCCGGCATATGGATTCAAATGGCAATGTTGCAGTTGCATTTTATATTATAAGAGTAT
TGGTCCCTTGCTTCATCATCTGACAACCTCTTATTGAAACCTCAAAATTATGATAATTCT
GAAGAGGAGGAAAGAGTCATATCTTCAGTAATTCACTGAGCTCAAACCCACCCAC
ATTATATGAACTTGAAAAAACATTACATTAAGTCATCGAAAGGTACAGATAGGTATA
GGAGTCTATGTGGCATTTGGAATACTCACCTGATACCATGAATGGCAGCTGGTCTTCAGAG
GGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCTGACACA
TTTGCAATTGATGTCCTCTGGCCTTCCATTGGTATTAAAGATTATAATATTCTTACAA
GGATCACTCAACTAGGAATAATTATTCACTGATTGTCTGCCATATGCATTTACCTTC
TGGTTCTTCAGTGAAATTCAAAGCACCAGGA

FIGURE 21

GCTCCCAGCCAAGAACCTGGGGCCGCTGCGCGGTGGGGAGGAGTCCCCGAAACCCGGCCG
CTAAGCGAGGCCTCCTCCCTCCCGCAGATCCGAACGGCCTGGCGGGGTCAACCCGGCTGGGA
CAAGAACGCCCGCCTGCCTGCCCGGGGCCGGAGGGGGCTGGGCTGGGCCGGAGGCGG
GGTGTGAGTGGGTGTGCGGGGGCGAGGCTTGATGCAATCCCATAAGAAATGCTCGGG
TGTCTGGCACCTACCCGTGGGCCCCGTAAGGCGCTACTATATAAGGCTGCCGGCCGGAG
CCGCCGCGCCGTAGAGCAGGAGCGCTCGTCCAGGATCTAGGCCACGACCATCCAAACCC
GGCACTCACAGCCCCAGCGCATCCGGTCGCCAGCCTCCGCACCCCCATGCCGG
AGCTGCGCCGAGAGCCCCAGGGAGGTGCCATGCGGAGCGGGTGTGGTGGTCCACGTATGG
ATCCTGGCCGGCCTCTGGCTGGCGTGGCCGGCGCCCCCTCGCCTTCTCGGACGCGGGCC
CCACGTGCACTACGGCTGGGCGACCCCATCCGCTGCACCTGTACACCTCCGGCCCCC
ACGGGCTCTCCAGCTGCTTCCGCACTCGTGGACGGAGATCAAGGCAGTCGCTCTCGGGACCGTGGCCATCAAGGG
CAGAGCGCGCACAGTTGCTGGAGATCAAGGCAGTCGCTCTCGGGACCGTGGCCATCAAGGG
CGTGCACAGCGTGCAGTACCTCTGCATGGCGCCAGGCAAGATGCAGGGCTGCTTCAGT
ACTCGGAGGAAGACTGTGCTTCGAGGAGGAGATCCGCCAGATGGCTACAATGTGTACCGA
TCCGAGAAGCACGCCCTCCGGTCTCCCTGAGCAGTGCAAACAGCGGAGCTGTACAAGAA
CAGAGGCTTCTTCCACTCTCTCATTCCGCCCCATGCTGCCCTGGAGACCGACAGCATG
AGGACCTCAGGGGCCACTTGGAAATCTGACATGTTCTTCGCCCCCTGGAGACCGACAGCATG
GACCCATTGGGCTTGTACCGGACTGGAGGCCGTGAGGAGTCCAGCTTGAGAAGTAACT
GAGACCATGCCGGGCTTCACTGCTGCCAGGGCTGTGGTACCTGCAGCGTGGGACG
TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTAGCTTAGGAAGAACATCTAGAA
GTTGTACATATTCAAGAGTTTCCATTGGCAGTGCAGTTCTAGCCAATAGACTTGTCTGAT
CATACATTGTAAGCCTGTAGCTGCCAGCTGCTGCCGGCCCCATTCTGCTCCCTCGA
GGTTGCTGGACAAGCTGCTGCACTGTCAGTTCTGCTGAATACCTCCATCGATGGGAAC
TCACTCCTTGGAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTCATCACTTC
CCCAGGAGCAGCCAGAACAGACAGGAGTAGTTAATTCAAGAACAGGTGATCCACTCTGTA
AACACAGCAGTAAATTCACTCAACCCATGTGGAATTGATCTATCTACTTCCAGGG
ACCATTGCCCTCCCAAATCCCTCCAGGCCAGAACCTGACTGGAGCAGGCATGGCCCACCGAG
GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACCTGAGAACATTCCCC
CTGAGGCCAGTTCTGCATGGATGCTGCTGAGAATAACTTGCTGCTCCGGTGTACCTGC
TTCCATCTCCAGGCCACCAGCCCTCTGCCACCTCACATGCCTCCCCATGGATTGGGCCT
CCCAGGCCCCCACCTTATGTCAACCTGCACCTCTGTTCAAAAATCAGGAAAAGAAAAGAT
TTGAAGACCCCAAGTCTGTCAATAACTTGCTGTTGGAAGCAGGGGGAGACCTAGAAC
CCTTCCCCAGCACTGGTTTCCAACATGATATTATGAGTAATTATTTGATATGTACA
TCTCTTATTTCTTACATTATTATGCCCAAATTATATTATGTATGTAAGTGAGGTTG
TTTGTATATTAAAATGGAGTTGTTGT

FIGURE 22

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWDPIRLRHLYTSGPHGLSSCFLRI
RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE
EIRPDGYNVYRSEKHLPLVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD
MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site.

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 48-59

FIGURE 23

CCCAGAACGTTCAAGGGCCCCCGGCCTCCTGCGCTCCTGCCGCCGGGACCCCTGACCTCCTCA
GAGCAGCCGGCTGCCGCCGGGAAGATGGCGAGGAGGAGCCACCGCCTCCTGCTG
CTGCTGCGCTACCTGGTGGTCGCCCTGGGCTATCATAAGGCCTATGGGTTTCTGCCCAAA
AGACCAACAAGTAGTCACAGCAGTAGAGTACCAAGAGGCTATTTAGCCTGCAAAACCCCAA
AGAAGACTGTTCCCTCAGATTAGAGTGGAAAGAAACTGGGTGGAGTGTCTCCTTGCTAC
TATCAACAGACTCTCAAGGTGATTTAAAAATCGAGCTGAGATGATAGATTTCAATATCCG
GATCAAAAATGTGACAAGAAGTGATGCCGGAAATATCGTTGTGAAGTTAGTGCCTCATCTG
AGCAAGGCCAAACCTGGAAGAGGATAACAGTCACACTGGAAGTATTAGTGGCTCCAGCAGTT
CCATCATGTGAAGTACCTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGA
CAAAGAAGGAAATCCAGCTCCTGAATACACATGGTTAAGGATGGCATCCGTTGCTAGAAA
ATCCCAGACTGGCTCCAAAGCACCAACAGCTCATACACAATGAATACAAAAACTGGAAC
CTGCAATTAAACTGTTCCAAACTGGACACTGGAGAATATTCCGTGAAGCCGCAATT
TGTTGGATATCGCAGGTGTCCTGGAAACGAATGCAAGTAGATGATCTAACATAAGTGGCA
TCATAGCAGCCGTAGTAGTTGTGGCCTTAGTGATTCCGTTGTGGCCTTGGTGTATGCTAT
GCTCAGAGGAAAGGCTACTTTCAAAAGAAACCTCCTCCAGAAGAGTAATTCTCATCTAA
AGCCACGACAATGAGTGAATGTGCAGTGGCTACGCCTGTAATCCCAGCAGTTGGAAGG
CCGGCGGGCGGATCACGAGGTCAGGAGTTCTAGACCAGTCTGGCAATATGGTAAACCC
CATCTCTACTAAAATACAAAAATTAGCTGGCATGGTGGCATGTGCCCTGCAGTTCCAGCTGC
TTGGGAGACAGGAGAACACTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGC
CACTGCAGTCCAGCCTGGTAACAGAGCAAGATTCCATCTCAAAAAATAAATAAATA
AATAAATACTGGTTTACCTGTAGAATTCTTACAATAATAGCTTGATATT

FIGURE 24

MARRSRHRLLLLLLRYLVVALGYHKAYGFSAPKQQVVTAVEYQEAILACKTPKKTVSSRLE
WKKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSEQGQNLEED
TVTLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKD GIRLLENPRILGSQST
NSSYTMNTKTGTLQFNTVSKLDTGEYSCEARNSVGYRRCPGKRMQVDDLNISGIIAAVVVA
LVISVCGLGV CYAQRKGYFSKETSFQKSNSSSKATTMSENVQWLTPVIPALWKA AAGGSRGQEF

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

amino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.

amino acids 226-230

FIGURE 25

GACATCGGAGGTGGCTAGCACTGAAACTGCTTTCAAGACGAGGAAGAGGAGGAGAAAGAG
AAAGAAGAGGAAGATGTTGGCAACATTATTTAACATGCTCCACAGCCCGGACCTGGCAT
CATGCTGCTATTCTGCAAATACTGAAGAAGCATGGATTAAATATTTACTTCTAAATAA
ATGAATTACTCAATCTCCTATGACCACACTACATACACTCCACCTCAAAAAGTACATCAATA
TTATATCATTAAAGGAAATAGTAACCTCTTCTCCAATATGCATGACATTGGACAATG
CAATTGTGGCACTGGCACTTATTTCAGTGAAGAAAAACTTGTGGTTATGGCATTCA
TTTGACAAATGCAAGCATCTCCTTATCAATCAGCTCTATTGAACTTACTAGCACTGACTG
TGGAATCCTTAAGGGCCCATTACATTCTGAAGAAGAAAGCTAAGATGAAGGACATGCCACT
CCGAATTCACTGTGCTACTTGGCCTAGCTATCACTACACTAGTACAAGCTGTAGATAAAAAAG
TGGATTGTCCACGGTTATGTACGTGTGAAATCAGGCCTGGTTACACCCAGATCCATTAT
ATGGAAGCCTACAGTGGATTGTAATGATTAGGTCTTTAACCTTCCCAGCCAGATTGCC
AGCTAACACACAGATTCTCTCCTACAGACTAACAAATATTGAAATACTCCACAG
ACTTTCCAGTAAACCTACTGGCCTGGATTATCTCAAAACAATTATCTCAGTCACCAAT
ATTAATGTAAGGAAAGATGCCTCAGCTCCTTCTGTGTACCTAGAGGAAACAAACTACTGA
ACTGCCTGAAAATGTCTGCGAACTGAGCAACTACAAGAACTCTATATTAACTACAACT
TGCTTCTACAATTTCACCTGGAGCCTTATTGGCCTACATAATCTCTCGACTTCATCTC
AATTCAAATAGATTGCAGATGATCAACAGTAAGTGGTTGATGCTCTCCAAATCTAGAGAT
TCTGATGATTGGGAAAGATCCAATTATCAGAACGAACTGAACTTTAACCTCTTATCA
ATCTTCGCAGCCTGGTTATAGCTGGTATAAACCTCACAGAAATACCGATAACGCCTGGTT
GGACTGGAAAACCTAGAAAGCATCTCTTTACGATAACAGGCTTATTAAAGTACCCCATGT
TGCTCTCAAAAGTTGTAATCTCAAATTGGATCTAAATAAAACCTTAAATAGAA
TACGAAGGGGTGATTAGCAATATGCTACACTAAAAGAGTTGGGATAAATAATATGCCT
GAGCTGATTCCATCGATAGTCTGCTGTGGATAACCTGCCAGATTAAAGAAAATAGAAGC
TACTAACACCCCTAGATTGTCTTACATTCAACCCCAATGCATTTCAGACTCCCCAAGCTGG
AATCACTCATGCTGAACAGCAATGCTCAGTGCCCTGTACCATGGTACCATGGTCTG
CCAAACCTCAAGGAAATCAGCATACACAGTAACCCATCAGGTGTGACTGTGTCATCCGTTG
GATGAACATGAACAAAACCAACATTGATTGATGGAGCCAGATTCACTGTTGCGTGGACC
CACCTGAATTCCAAGGTCAAGATGTTGGCAAGTGCATTTCAGGGACATGATGAAATTGT
CTCCCTCTTATAGCTCCTGAGAGCTTCTTCTAAATCTAAATGTAGAAGCTGGAGCTATGT
TTCCTTCACTGTAGAGCTACTGCAGAACACAGCCTGAAATCTACTGGATAACACCTTCTG
GTCAAAAACCTTGCCTAATACCCCTGACAGACAAGTTCTATGTCCATTCTGAGGGAAACACTA
GATATAATGGCGTAACCTCCAAAGAAGGGGTTATATACTTGTATAGCAACTAACCTAGT
TGGCGCTGACTTGAAGTCTGTTATGATCAAAGTGGATGGATCTTCCACAAAGATAACAAATG
GCTCTTGAATATTAAAAGAGATATTCAAGGCCAATTCAAGTTGGTGTCTGGAAAGCA
AGTTCTAAAATTCTCAAATCTAGTGTAAATGGACAGCCTTGTCAAGACTGAAATTCTCA
TGCTGCGCAAAGTGCCTGAATACCATCTGATGTCAGGTATATAATCTTACTCATCTGAATC
CATCAACTGAGTATAAAATTGTATTGATATTCCCACCATCTATCAGAAAAACAGAAAAAAA
TGTGTAATGTCACCACCAAGGTTGCACCCCTGATCAAAAAGAGTATGAAAAGAATAATAC
CACACACATTGGCCTGTCTGGAGGCCTTCTGGGATTATTGGTGTGATATGTCTTATCA
GCTGCCTCTCCAGAAATGAACTGTCAGTGGTGGACACAGCTATGTGAGGAATTACTTACAG
AAACCAACCTTGCATTAGGTGAGCTTATCCTCTGTATAATCTGGGAAGCAGGAAA
AGAAAAAAAGTACATCACTGAAAGTAAAAGCAACTGTTAGGTTACCAACAAATATGTCCT
AAAAACCAAGGAAACCTACTCCAAAATGAAC

FIGURE 26

MKDMLPLRIHVLLGLAITTLVQAVDKVDCPRLCTCEIRPWFTPRSIYMEASTVDCNDLGLLT
FPARLPANTQILLQTNNAKIEYSTDFPVNLTLGDLDSQNNLSSVTNINVKKMPQLLSVYLE
ENKLTELPEKCLSELSNLQELYINHNLLSTISPGAFIGLHNLLRLHNSNRQMINSKWFDA
LPNLEILMIGENPIIRIKDMNFKPLINLRSLVIAGINLTEIPDNALVGLENLESISFYDNRL
IKVPHVALQKVNLKFDDLNKNPINRIRRQDFSNMLHLKELGINNMPELISIDSALVDNLPD
LRKIEATNNPRLSYIHPNAFFRLPKLESMLNSNALSALYHTIESLPNLKEISIHSPIRC
DCVIRWMNMNKTNIRFMEEPDSLFCVDPPEFQGQNVHQVFRDMMEICLPLIAPESFPSNLNV
EAGSYVSFHCRATAEPQPEIYWITPSGQKLLPNTLTDKFYVHSEGTLINGVTPKEGGLYTC
IATNLVGAIDLKSVMIKVDGSFPQDNNGSLNIKIRDIQANSVLVSKASSKILKSSVKWTAFV
KTENSHAAQSARI PSDVKVYNLTHLN PSTEYKICIDIPTIYQKNRKKCVNVTTKGLHPDQKE
YEKNNTTTLMACLGGILLGIIGVICLISCLSPEMNC DGGHSYVRNYLQKPTFALGELYPP LIN
LWEAGKEKSTS LKV KATV IGLPTNMS

Signal sequence:

amino acids 1-22

Transmembrane domain:

amino acids 633-650

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583,
608-612, 624-628, 625-629

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443,
491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

FIGURE 27

GCCCCGGACTGGCGAAGGTGCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTTAG
CTGCAGCCTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCTTAC
CACGCTTGTGGAGTAGATGAGGAATGGGCTCGTGAATTATGCTGACATTCCAGCATGAATCT
GGTAGACCTGTGGTTAACCGTTCCCTCTCCATGTGTCTCCTCCTACAAAGTTTGTTCTTA
TGATACTGTGCTTCATTCTGCCAGTATGTGTCCAAGGGCTGTCTTGTCTCCTCTGGG
GGTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTCCTCCTGA
AACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCAATGAAATTAAAGG
ACCTCCATCAACTGAGAGTTCTCAACCTGTCCAAAATGGCATTGAGTTATCGATGAGCAT
GCCTCAAAGGAGTAGCTGAAACCTTGAGACTCTGGACTTGTCCGACAATCGGATTCAAAG
TGTGCACAAAATGCCTTCATAAACCTGAAGGCCAGGGCAGAATTGCCAACAAACCCCTGGC
ACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGCGTCAATCATGAGACAGCCCAC
AACGTGATCTGTAAAACGTCCGTGTTGGATGAACATGCTGGCAGACCATTCTCAATGCTGC
CAACGACGCTGACCTTGTAAACCTCCCTAAAAAAACTACCGATTATGCCATGCTGGTCACCA
TGTTGGCTGGTCACTATGGTGAATCTCATATGTGGTATATTATGTGAGGCAAATCAGGAG
GATGCCCGGAGACACCTCGAATACTTGAAATCCCTGCCAAGCAGGAGAAGAAAGCAGATGA
ACCTGATGATATTAGCACTGTGGTATAGTGTCCAAACTGACTGTCAATTGAGAAAGAAAGAAA
GTAGTTGCGATTGCACTAGAAATAAGTGGTTACTTCTCCCATCATTGAAACATTTGAA
ACTTGTATTCAGTTTTGAAATTATGCCACTGCTGAACCTTAACAAACACTACAACA
TAAATAATTGAGTTAGGTGATCCACCCCTTAATTGTACCCCCGATGGTATATTCTGAGT
AAGCTACTATCTGAACATTAGTTAGATCCATCTCACTATTAATAATGAAATTATTTTTT
AATTAAAAGCAAATAAGCTTAACCTTGAACCAGGGAAAAAAAAAAAAAAACA

FIGURE 28

MNLVDLWLTRSLSMCLLQSFVLMILCFHSASMC PKGCLSSSGGLNVTC SNANLKEIPRDL
PPETVLLYLDQNQITSIPNEIFKDLHQLRVLNLSKNGIEFIDEHAFKGVAETLQTLDSLDR
IQSVHKNAFNNLKARARIANNPWHCDCTLQQVLRSMASNHEAHNVICKTSVLDEHAGRPF
NAANDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLKSLPSRQKK
ADEPDDISTVV

Signal sequence:

amino acids 1-33

Transmembrane domain:

amino acids 205-220

N-glycosylation site.

amino acids 47-51, 94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 199-203

Casein kinase II phosphorylation site.

amino acids 162-166, 175-179

N-myristoylation site.

amino acids 37-43, 45-51, 110-116

FIGURE 29

ACCGAGCCGAGCGAACGAAGGCCGCCCCGAGATGAGGTGAGCAAGAGGATGCTGGCGGG
GGCGTGAGGAGCATGCCAAGCCCCCTCTGGCCTGCTGGCAGCCCATTCTCTGCTGGTGCT
GGGCTCAGTGTGTCAGGCTGGCCACGGCTGCCGCCGCTGCGAGTGCTCCGCCAGG
ACCGCGCTGTGCTGTGCCACCGCAAGTGCTTGCGACTCCCCGAGGGCATCCCCACCGAG
ACGCGCTGCTGGACCTAGGCAAGAACCGCATAAAACGCTCAACCAGGACGAGTTGCCAG
CTTCCCGCACCTGGAGGAGCTGGAGCTCAACGAGAACATCGTAGGCCTGGAGGCCGGCG
CCTTCAACAAACCTCTCAACCTCCGGACGCTGGGTCTCCGAGCAACCGCCTGAAGCTCATC
CCGCTAGGCGTCTTCACTGGCCTCAGCAACCTGACCAAGCAGGACATCAGCGAGAACAGAT
CGTTATCCTACTGGACTACATGTTCAGGACCTGTACAACCTCAAGTCAGTGGAGGTTGGCG
ACAATGACCTCGTCTACATCTCACCAGCGCCTCAGCGGCCTCAACAGCCTGGAGCAGCTG
ACGCTGGAGAAATGCAACCTGACCTCCATCCCCACCGAGGGCGCTGCCCACCTGCACGGCCT
CATCGTCTGAGGCTCGGCACCTCAACATCAATGCCATCCGGACTACTCCTTAAGAGGC
TGTACCGACTCAAGGTCTGGAGATCTCCACTGGCCCTACTTGGACACCATGACACCCAAC
TGCCTCTACGGCCTCAACCTGACGTCCCTGTCCATCACACACTGCAATCTGACCGCTGTGCC
CTACCTGGCCGTCCGCCACCTAGTCTATCTCGCTTCTCAACCTCTCCTACAACCCCCATCA
GCACCATTGAGGGCTCCATGTTGATGAGCTGCTCCGGCTGCAGGAGATCCAGCTGGTGGGC
GGGCAGCTGGCGTGGTGGAGGCCCTATGCCTTCCGGCCTCAACTACCTGCGCGTGTCAA
TGTCTCTGGCAACCAGCTGACCAACTGGAGGAATCAGTCTTCACTCGGTGGCAACCTGG
AGACACTCATCCTGGACTCCAACCGCTGGCCTGCGACTGTCGGCTCCTGTGGGTGTTCCGG
CGCCGCTGGCGCTCAACTTCAACCGGAGCAGGCCACGTGCGCCACGCCAGTTGTCCA
GGGCAAGGAGTTCAAGGACTTCCCTGATGTGCTACTGCCAACTACTTCACCTGCCGCCGCG
CCCGCATCCGGGACCGCAAGGCCAGCAGGTGTTGTGGACGAGGCCACCGGTGAGTT
GTGTGCCGGCGATGGCGACCGGCCCATCCTCTGGCTCTCACCCGAAAGCACCT
GGTCTCAGCCAAGAGCAATGGCGGCTCACAGTCTCCCTGATGGCACGCTGGAGGTGCGCT
ACGCCCAAGGTACAGGACAACGGCACGTACCTGTGCATCGCGGCCAACGCCGGCAACGAC
TCCATGCCGCCACCTGCATGTGCGCAGCTACTGCCACTGGCCCCATCAGCCCAACAA
GACCTTCGCTTTCATCTCCAACCAGCGGGCGAGGGAGAGGCCAACAGCACCGGCCACTG
TGCCTTCCCTTCGACATCAAGACCTCATCATGCCACCACATGGCTCATCTCTTTC
CTGGCGTCGCTCTTCTGCCCTGGTGTGCTGTTCTGGAGCCGGCAAGGGCAACAC
AAAGCACAACATCGAGATCGAGTATGTCCCCGAAAGTCGGACGCAGGCATCAGCTCCGCC
ACGCCCAAGGTACAGGACAACGGCACGTACCTGTGCATCGCGGCCAACGCCGGCAACGAC
GGCGGCCGGCAGGGGAAGGGGCTGGCGCCACCTGCTCACTCTCCAGTCCTCCACCTC
CTCCCTACCCCTCACACAGTTCTCTTCTCCCTCCGCCCTCCGCTCCCTGCTGCCCG
CCAGCCCTCACCACCTGCCCTCTTCTACAGGACCTCAGAACGCCAGACCTGGGACCCCA
CCTACACAGGGCATTGACAGACTGGAGTTGAAAGCCGACGAACCGACACGCCAGAGTC
ATAATTCAATAAAAAAGTTACGAACCTTCTCTGTAACCTGGTTCAATAATTATGGATTT
TATGAAAACCTGAAATAATAAAAAAGAGAAAAAAACTAAAAAAAAAAAAAA

FIGURE 30

MQVKRMLAGGVRSMPSPLLACWQPILLVLGSVLSGSATGCPPCECSAQDRAVLCHRKCF
VAVPEGIPTETRLLDLGKNRIKTLNQDEFASFPHLEELELNENIVSAVEPGAFNNLFNLRTL
GLRSNRKLIPLGVFTGLSNLTKQDISENKIVILLDYMFQDLYNLKSLEVGDNDLVYISHRA
FSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVLRLRHLNINAIRDYSFKRLYRLKVLEISH
WPYLDTMTPNCLYGLNLTSLSITHCNLTAVPYLAVRHLVYLRFNLNSYNPISTIEGSMLHEL
LRLQEIQLVGGQLAVVEPYAFRGLNYLRVNVSGNQLTTLEESVFHSVGNLETLILDSNPLA
CDCRLLWVFRRRWRLLNFNRQQPTCATPEFVQGKEFKDFPDVLLPNYFTCRRARIRDRKAQQV
FVDEGHTVQFVCRADGDPPPAILWLSPRKHLVSAKSNGRLTVFPDGTLLEVRYAQVQDNGTYL
CIAANAGGNDNSMPAHLHVRSYSPDWPHQPNKTFAFISNQPGEGEANSTRATVPFPFDIKTLI
IATTMGFISFLGVVLFCVLFLWSRGKGNTKHNIEIEYVPRKSDAGISSADAPRKFNMKMI

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 556-578

N-glycosylation site.

amino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345,
492-496, 505-509, 526-530, 542-546

Casein kinase II phosphorylation site.

amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353,
607-611

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143,
262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

FIGURE 31

CCCACGCGTCCGCACCTCGGCCCGGGCTCCGAAGCGGCTCGGGGGGCCCTTCGGTCAAC
ATCGTAGTCCACCCCTCCCCATCCCCAGCCCCGGGGATTCAAGGCTGCCAGCGCCCAGCC
AGGGAGCCGGCGGGAAAGCGCG**AT**GGGGGCCAGCCGCTCGCTCCTGCTCCTGC
TGTCGCCTGCTGGCGCCGGCGGGCCAACCTCTCCAGGACGACAGCCAGCCCTGG
ACATCTGATGAAACAGTGGTGGCTGGTGGCACCGTGGTCAAGTGCAAGTGAAAGATCA
CGAGGACTCATCCCTGCAATGGTCAACCCTGCTCAGCAGACTCTACTTTGGGAGAAGA
GAGCCCTTCGAGATAATCGAATTCAAGCTGGTACCTCTACGCCAACGAGCTCAGCATCAGC
ATCAGCAATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTTCACTATGCCTGT
GCGAACTGCCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGAACCCATCATCACTGGTT
ATAAACTTCATTACGGGAAAAAGACACAGCCACCCCTAAACTGTCAGTCTCTGGGAGCAAG
CCTGCAGCCCGGCTCACCTGGAGAAAGGGTGACCAAGAACCTCACGGAGAACCAACCCGCAT
ACAGGAAGATCCAATGGTAAAACCTTCACTGTCAGCAGCTGGTACATTCCAGGTTACCC
GGGAGGATGATGGGCGAGCATCGTGTGCTCTGTGAACCATGAATCTCTAAAGGGAGCTGAC
AGATCCACCTCTCAACGCATTGAAGTTTATACACACCAACTGCGATGATTAGGCCAGACCC
TCCCCATCCTCGTGAGGGCAGAAGCTGTTGCTACACTGTGAGGGCGCGCAATCCAGTCC
CCCAGCAGTACCTATGGGAGAAGGAGGGCAGTGTGCCACCCCTGAAGATGACCCAGGAGAGT
GCCCTGATCTCCCTTCCTCAACAAGAGTGACAGTGGCACCTACGGCTGCACAGCCACCA
CAACATGGGCAGCTACAAGGCCTACTACACCCCTCAATGTTAATGACCCAGTCCGGTGCCT
CCTCCTCCAGCACCTACCACGCCATCATCGTGGGATCGTGGCTTCATTGTCTCCTGCTG
CTCATCATGCTCATCTTCCCTGGCCACTACTTGATCCGGCACAAAGGAACCTACCTGACACA
TGAGGCAAAAGGCTCCGACGATGCTCCAGACGCGGACACGGCCATCATCAATGCAGAAGGCG
GGCAGTCAGGAGGGGACGACAAGAAGGAATATTCA**T****A**GGCGCCTGCCACTTCCTGC
GCCCCCAAGGGGCCCTGTGGGACTGCTGGGCCGTACCAACCCGGACTTGTACAGAGCAA
CCGCAGGGCCGCCCTCCCGCTTGTCCCCAGCCCACCCACCCCGTACAGAACGTCTGC
TTGGGTGCGGTTTGACTCGGTTGGAATGGGGAGGGAGGAGGGCGGGGGAGGGAGGG
TTGCCCTCAGCCCTTCCGTGGCTCTGCATTGGTTATTATTATTTGTAACAATCC
CAAATCAAATCTGTCTCCAGGCTGGAGAGGCAGGAGGCCCTGGGTGAGAAAAGCAAAAACA
AACAAAAAACAA

FIGURE 32

MGAPAASLLLLLFFACCWAPGGANLSQDDSQWPWTSDETVVAGGTVVLCQVKDHEDSSLQW
SNPAQQTLYFGEKRALRDNRQLQVTSTPHELSIISNVALADEGEYTCSIFTMPVRTAKSLV
TVLGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGQELHGEPTRIQEDPNGK
TFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQ
KLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGSYKA
YYTLNVNDPSPVPSSSSTYHAIIGGIVAFIVFLLIMLIFLGHYLIRHKGTYLTHEAKGSDD
APDADTAIINAEGGQSGGDDKKEYFI

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 331-352

N-glycosylation site.

amino acids 25-29, 290-294

Casein kinase II phosphorylation site.

amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304,
306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 33

GGGGGTTAGGGAGGAAGGAATCCACCCCCACCCCCCAAACCCCTTCTTCTCCTTCCTGG
CTTCGGACATTGGAGCACTAAATGAACCTGAATTGTGTCTGTGGCGAGCAGGATGGTCGCTG
TTACTTTGTGATGAGATCGGGGATGAATTGCTCGCTTAAAAATGCTGCTTGGATTCTGTT
GCTGGAGACGTCTCTTGCCGCTGGAAACGTTACAGGGGACGTTGCAAAGAGAAGA
TCTGTTCTGCAATGAGATAGAAGGGACCTACACGTAGACTGTGAAAAAAAGGGCTTCACA
AGTCTGCAGCGTTCACTGCCCGACTTCCCAGTTACCATTTATTCATGGCAATT
CCTCACTCGACTTTCCCTAATGAGTTGCTAACCTTATAATGCGGTTAGTTGCACATGG
AAAACAATGGCTTGCATGAAATCGTCCGGGGCTTTCTGGGCTGCAGCTGGTAAAAGG
CTGCACATCAACAACAAGATCAAGTCTTTCGAAAGCAGACTTTCTGGGCTGGACGA
TCTGGAATATCTCCAGGCTGATTTAATTATTACGAGATATAGACCCGGGGCCTCCAGG
ACTTGAACAAGCTGGAGGTGCTCATTTAAATGACAATCTCATCAGCACCCCTACCTGCCAAC
GTGTTCCAGTATGTGCCATACCCACCTCGACCTCCGGTAACAGGCTGAAAACGCTGCC
CTATGAGGAGGTCTGGAGCAAATCCCTGGTATTGCGGAGATCCTGCTAGAGGATAACCC
GGGACTGCACCTGTGATCTGCTCTCCCTGAAAGAATGGCTGGAAAACATTCCAAGAATGCC
CTGATCGGCCGAGTGGTCTGCGAAGCCCCCACCAGACTGCAGGGTAAAGACCTCAATGAAAC
CACCGAACAGGACTTGTGCTTGGAAAAACCGAGTGGATTCTAGTCTCCGGCGCCCCCTG
CCCAAGAAGAGACCTTGTCTGGACCCCTGCCAACTCCTTCAAGACAAATGGCAAGAG
GATCATGCCACACCAGGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGAT
CAAATCAGACCCACAGCAGCGATAGCGACGGTAGCTCAGGAACAAACCTTAGCTAAC
GTTTACCTGCCCTGGGGCTGCAGCTGCACCACATCCAGGGTGGTTAAAGATGAAC
TGCAACAACAGGAACGTGAGCAGCTGGCTGATTGAAGCCAAGCTCTAACGTGCAGGA
GCTTTCTACGAGATAACAGATCCACAGCATCCGAAATCGCACTTGTGGATTACAAGA
ACCTCATTCTGTTGGATCTGGCAACAATAACATCGCTACTGTAGAGAACAAACACTTCAAG
AACCTTTGGACCTCAGGTGGCTATACATGGATAGCAATTACCTGGACACGCTGTCCC
GAAATTGCGGGGCTGCAAAACCTAGAGTACCTGAACGTGGAGTACAACGCTATCCAGCTCA
TCCTCCGGCACTTCAATGCCATGCCAAACTGAGGATCCTCATTCTCAACAACAAACCTG
CTGAGGTCCCTGCCTGTGGACGTGTTGCTGGGTCTCGCTCTAAACTCAGCCTGCACAA
CAATTACTCATGTACCTCCGGTGGCAGGGGTGCTGGACCAGTTAACCTCCATCATCC
TAGACCTCCACGGAAACCCCTGGAGTGCTCTGCACAATTGTGCCCTTCAAGCAGTGGCA
GAACGCTTGGGTTCCGAAGTGTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACCTT
TAGAAAGGATTTCATGCTCCTCCAATGACGAGATCTGCCCTCAGCTGTACGCTAGGATCT
CGCCCACGTTAACCTCGCACAGTAAAACAGCACTGGGTGGCGGAGACCGGGACGCACTCC
AACTCCTACCTAGACACCAGCAGGGTGTCCATCTCGGTGTTGGTCCGGACTGCTGCTGG
GTTTGTACCTCCGCCCTCACCGTGGGGCATGCTCGTGTATCCTGAGGAACCGAAAGC
GGTCCAAGAGACGAGATGCCAACTCCTCCGCGTCCGAGATTAATTCCCTACAGACAGTCTGT
GAECTTCTACTGGCACAATGGCCTTACAACGAGATGGGCCACAGAGTGTATGACTG
TGGCTCTCACTCGCTCAGACTAACGACCCCAACCCCAATAGGGAGGGCAGAGGGAAAGGCG
ATACATCCTCCCCACCGCAGGCACCCCGGGGCTGGAGGGCGTGTACCCAAATCCCC
CCATCAGCCTGGATGGGCATAAGTAGATAAAACTGTGAGCTCGCACAACCGAAAGGGCCT
GACCCCTACTTAGCTCCCTCCTGAAACAAAGAGCAGACTGTGGAGAGCTGGAGAGCGCA
GCCAGCTCGCTTTGCTGAGAGCCCCTTGACAGAAAGCCAGCACGACCCCTGCTGGAG
AACTGACAGTGCCCTGCCCTGGCCCCGGGCTGTGGGGTTGGATGCCGGTTCTATAC
ATATATACATATCCACATCTATATAGAGAGATAGATATCTATTTCCTGTGGATTAG
CCCCGTGATGGCTCCCTGTTGGCTACGCAAGGATGGCAGTTGCACGAAGGCATGAATGTAT
TGTAAATAAGTAACCTTGACTTCTGAC

FIGURE 34

MLLWILLLETSLCFAAGNVTGVCKEKICSCNEIEGDLHVDCEKKGFTSLQRFTA
PTSQFYHLFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHEIVPGAFGLQLVKRLH
INNNKIKSFRKQTFGLDDLEYLQADFNLLRIDPGAFQDLNKLEVILILNDNL
LISTLPANVFQYVPITHLDLRGNRLKTLPYEEVLEQIPGIAEILLEDPWDCTCD
LLSLKEWLENIPKNALIGRVVCEAPTRLQGKDLNETTEQDLCPLKNRVDSSLP
PAPPAQEETFAPGPLPTPFKTNGQEDHATPGSAPNGGTKI PGNWQIKIRPT
AAIATGSSRNKPLANSLPCPGGCSDHIPGSGLKMNCNNRNVSSLADLKPKLS
NVQELFLRDNKIHISRKSHFVDYKNLILLDLGNNNIATVENNTFKNLLDLRW
LYMDSNYLDTLSREKFAGLQNLEYLNVEYNIAIQLILPGTFNAMPKLRLIL
LNNNLLRSLPVDFAGVSLSKLSLHNNYFMYLPVAGVLDQLTSIIQIDLH
GNPWECSCTIVPKQWAERLGSEVLMSDLKCETPVNFFRKDFM
LLSND EICPQLYARISPTLTSHSKNSTGLAETGTHSNSYLDTSRVSISVL
VPGLLLVFVTS AFTVVGMLV FILRNRKRSKRRDANS SASEINSLQTV
CDSSYWHNGPYNADGAHRVYDCGSHSLSD

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 618-638

N-glycosylation site.

amino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577,
608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349,
354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 337-348

FIGURE 35

AGTCGACTCGTCCCCGTACCCGGGCCAGCTGTGTTCTGACCCCCAGAATAACTCAGGGC
TGCACCGGGCCTGGCAGCGCTCCGCACACATTCTCTGCGGCCCTAACGGAAACTGTTGGC
CGCTGGGCCCGGGGGGATTCTTGGCAGTTGGGGGTCCGTGGAGCGAGGGCGGAGGGG
AAGGGAGGGGGAACCGGGTTGGGAAGCCAGCTGTAGAGGGCGGTGACCGCGCTCCAGACAC
AGCTCTGCGTCCTCGAGCGGGACAGATCCAAGTGGGAGCAGCTCTCGTGCCTGGGGCCTCAG
AGAATGAGGCCGGCGTTGCCCTGTGCCTCTGGCAGGCCTCTGGCCCTGGGGCCTGCTACAGCCTGC
CGGCGAACACCCCAC TGCGACC GTGCTGGCTCGGCCTCGGGGGCCTGCTACAGCCTGC
ACCACGCTACCATGAAGCGGCAGCGGCCGAGGAGGCCTGCATCCTGCGAGGTGGGGCGCTC
AGCACCGTGCCTGCGGGCGCCGAGCTGCGCCTGTGCTCGCCTCTGCGGGCAGGCCAGG
GCCCGGAGGGGGCTCAAAGACCTGCTGTTCTGGGTGCACTGGAGCGCAGGCGTTCCACT
GCACCCCTGGAGAACGAGCCTTGCGGGGTTCTCTGGCTGTCCTCCGACCCCGGCGGTCTC
GAAAGCGACACGCTGAGTGGGAGGCCAACGCTCCTGCACCGCGGGAGATGCGC
GGTACTCCAGGCCACCGGTGGGGTCGAGGCCGAGGCTGGAAGGAGATGCGATGCCACCTGC
GCGCCAACGGTACCTGTGCAAGTACCAAGTTGAGGTCTGTGTCCTGCGCCGCCCCGGG
GCCGCCTCTAATTGAGCTATCGCGCCCTTCAGCTGCACAGCGCGCTCTGGACTTCAG
TCCACCTGGGACCGAGGTGAGTGCCTGCGCTCGCGGGACAGCTCCCGATCTCAGTTACTGCA
TCGCGGACGAAATCGCGCTCGCTGGACAAACTCTCGGGCGATGTGTTGTGTCCTGCCCC
GGGAGGGTACCTCCGTGGCAAATGCGCAGAGCTCCCTAACTGCTTAGACGACTTGGGAGG
CTTTCGCTGCAATGTGCTACGGGCTTCGAGCTGGGAAGGACGGCGCTTTGTGACCA
GTGGGGAGGACAGCCGACCCCTGGGGGACCGGGGTGCCACCAGGCGCCGCCACT
GCAACCAGCCCCGTGCCGAGAGAACATGGCAATCAGGGTCGACGAGAACGACTGGGAGAGAC
ACCACCTGTCCCTGAACAAGACAATTCAAGTAACATCTATTCTGAGATTCTCGATGGGAT
CACAGAGCACGATGTCTACCCCTCAAATGTCCTCAAGCCGAGTCAAAGGCCACTATCACC
CCATCAGGGAGCGTGATTCCAAGTTAATTCTACGACTCCCTGCCACTCCTCAGGCTTT
CGACTCCTCCCTGCCGTGGTCTTCATATTGTGAGCACAGCAGTAGTAGTGTGATCT
TGACCATGACAGTACTGGGCTTGTCAAGCTCTGCTTCAAGAAAGCCCTTTCCAGCCA
AGGAAGGAGTCTATGGGCCGCCGGCTGGAGAGTGTGATCTGAGCCGCTGCTTGGGCTC
CAGTTCTGCACATTGCACAAACAATGGGTGAAAGTCGGGACTGTGATCTGCCAGAG
CAGAGGGTGCCTTGCGGGAGTCCCTCTGGCTCTAGTGATGCAT**AGGGAAACAGGGGA**
CATGGGCACTCCTGTGAACAGTTTCACTTTGATGAAACGGGAACCAAGAGGAACCTAC
TTGTGTAAGTACAATTCTGCAGAAATCCCCCTCCTCTAAATTCCCTTACTCCACTGAG
GAGCTAAATCAGAACTGCACACTCCTCCCTGATGATAGAGGAAGTGGAAAGTGCCTTAGGA
TGGTGTACTGGGGACGGGTAGTGCTGGGAGAGATATTCTATGTTATTGGAGAA
TTTGGAGAAGTGTGATTGAACTTTCAAGACATTGAAACAAATAGAACACAATATAATTACA
TTAAAAAATAATTCTACCAAAATGGAAAGGAAATGTTCTATGTTAGGCTAGGAGTAT
ATTGGTTGAAATCCCAGGGAAAAAATAAAAATTAAAGGATTGTTGAT

FIGURE 36

MRPAFALCLLWQALWPAGPGGGEHPTADRAGCSASGACYSLHHATMKRQAAEACILRGGALS
TVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRSHTLENEPLRGFSWLSSDPGGL
SDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCAPRPG
ASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLPISVTCIADEIGARWDKLSGDVLCPCPG
RYLRAGKCAELPNCLDDLGFFACECATGFELGKDGRSCVTSGEGQPTLGGTGVPTRRPPATA
TSPVPQRTWPIRVDEKLGETPLVPEQDNSVTSIPEIPRWGSQSTMSTLQMSLQAESKATITP
SGSVISKFNSTTSSATPQAFDSSSAVVIFVSTAVVVLVILMTVLGLVKLCFHESPSSQPR
KESMGPPGLESDPPEAALGSSSAHCTNNGVKVGDCDLRDRAEGALLAESPLGSSDA

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

Glycosaminoglycan attachment site.

amino acids 289-293

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157,
185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469,
477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

FIGURE 37

CGGACGGCTGGGATTCAAGCAGTGGCTGTGGCTGCCAGAGCAGCTCCTCAGGGAAACTAAG
CGTCGAGTCAGACGGCACCATATCGCCTTAAAAGTGCCTCCGCCCTGCCGGCCCGTATC
CCCCGGCTACCTGGGCCGCCCGCGCGGTGCGCGTGAAGAGGGAGCGCGCGGGCAGCGA
GCGCCGGTGTGAGCCAGCGCTGCTGCCAGTGTGAGCGGCCGTGTGAGCGCGTGGGTGCGGA
GGGGCGTGTGCGCGCGCGCGTGGGTGCAAACCCGAGCGTCTACGCTGCCATGA
GGGGCGCGAACGCCTGGCGCCACTCTGCCTGCTGGCTGCCGCCACCCAGCTCTCGCG
CAGCAGTCCCCAGAGAGACCTGTTTACATGTGGTGGCATTCTACTGGAGAGTCTGGATT
TATTGGCAGTGAAGGTTTCTGGAGTGTACCCCTCCAAATAGCAAATGTACTTGGAAAATCA
CAGTTCCCAGGAAAAGTAGTCGTTCTCAATTCCGATTCAAGACCTCGAGAGTGACAAC
CTGTGCCGCTATGACTTGTGGATGTGTACAATGCCATGCCATGGCCAGCGCATTGGCG
CTTCTGTGGCACTTCCGGCTGGAGCCCTGTGTCCAGTGGCAACAAGATGATGGTGCAGA
TGATTCTGATGCCAACACAGCTGGCAATGGCTCATGGCCATGTTCTCCGCTGCTGAACCA
AACGAAAGAGGGATCAGTATTGTGGAGGACTCCTGACAGACCTCCGGCTTTAAAAC
CCCCAACTGGCCAGACGGGATTACCTGCAGGAGTCACCTGTGTGGCACATTGTAGCCC
CAAAGAATCAGTTAGAATTAAAGTTGAGAAGTTGATGTGGAGCGAGATAACTACTGC
CGATATGATTATGTGGCTGTGTTAATGGCGGGAAAGTCAACGATGCTAGAAGAATTGGAAA
GTATTGTGGTGTAGTCCACCTGCGCCAATTGTGCTGAGAGAAATGAACTTCTTATTCACT
TTTATCAGACTTAAGTTAAC TGCAAGATGGTTATTGGTCACTACATATTCAAGGCCAAA
AAACTGCCTACAACACAGAACAGCCTGTCACCACCATTCCTGTAACCACGGTTAAA
ACCCACCGTGGCCTTGTGTCACAAAAGTGTAGACGGACGGGACTCTGGAGGGCAATTATT
GTTCAAGTGACTTGTATTAGCCGGACTGTTACACACCACACTCGCGATGGGAGTTG
CACGCCACAGTCTCGATCATCAACATCTACAAAGAGGGAAATTGGCGATT CAGCAGGCC
CAAGAACATGAGTGCCAGGCTGACTGTCGCTGCAAGCAGTGCCCTCTCCTCAGAAGAGGTC
TAAATTACATTATTATGGCCAAGTAGGTGAAGATGGCGAGGCAAATCATGCCAACAGC
TTTATCATGATGTTCAAGACCAAGAACATCAGAACGCTCCTGGATGCCCTAAAAAATAAGCAATG
TTAACAGTGAACGTGTCATTAAAGCTGTATTCTGCCATTGCCCTTGAAAGATCTATGTC
TCTCAGTAGAAAAAAATACTTATAAAATTACATATTCTGAAAGAGGATTCCGAAAGATGG
GACTGGTTGACTCTTCACATGATGGAGGTATGAGGCCTCCGAGATAGCTGAGGGAAAGTTCTT
TGCCCTGCTGTCAGAGGAGCAGCTATCTGATTGGAAACCTGCCGACTTAGTGCCTGATAGGA
AGCTAAAAGTGTCAAGCGTTGACAGCTTGGAAAGCGTTATTATACATCTGTAAAAGGAT
ATTTAGAATTGAGTTGTGTGAAGATGTCAAAAAAAGATT TAGAAGTGCATATTATAGT
GTTATTTGTTCACCTCAAGCCTTGCCCTGAGGTGTTACAATCTGTCTGCGTTCTA
AATCAATGCTAATAAAATATTAAAGGAAAAAAAAAAAAA

FIGURE 38

MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYPPNSKCTWK
ITVPEGKVVVLNFRFIDLESDNLCRYDFDVYNGHANGQRIGRFCGTFRPGALVSSGNKMMV
QMISDANTAGNGFMAMFSAAEPNERGDQYCGGLDRPSGSFKTPNWPDYDYPAGVTCVWHIV
APKNQLIELKFEKFDVERDNYCRYDYVAVFNGEVNDARRIGKYCGDSPPAPIVSERNELLI
QFLSDLSLTADGFIGHYIFRPKKLPTTTEQPVTTFPVTTGLKPTVALCQQKCRRTGTLEGN
YCSSDFVLAGTVITTITRD GSLHATVSIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRR
GLNYIIMGQVGEDGRGKIMPNSFIMMF KTKNQKL DALKNKQC

Signal sequence:

amino acids 1-23

N-glycosylation site.

amino acids 355-359

Casein kinase II phosphorylation site.

amino acids 64-68, 142-146, 274-278

Tyrosine kinase phosphorylation site.

amino acids 199-208

N-myristoylation site.

amino acids 34-40, 35-41, 100-106, 113-119, 218-224, 289-295,
305-311, 309-315, 320-326, 330-336

Cell attachment sequence.

amino acids 149-152

FIGURE 39

CGGACCGCGTGGCGGGACCGCGTGGCGGCCACGGCGCCCGGGCTGGGCGGTGCCTTCTT
CCTTCTCCGTGGCTACGAGGGTCCCCAGCCTGGTAAAGATGGCCCCATGGCCCCGAAGG
GCCTAGTCCCAGCTGTGCTCTGGGCCTCAGCCTCTTCACACCTCCAGGACCTATCTGG
CTCCAGCCCTCTCCACCTCCCCAGTCTTCTCCCCGCCTCAGCCCCATCCGTGTACACCTG
CCGGGGACTGGTTGACAGCTTAACAAGGGCCTGGAGAGAACCATCCGGACAACTTGGAG
GTGGAAACACTGCCTGGGAGGAAGAGAATTGTCAAATACAAAGACAGTGAGACCCGCCTG
GTAGAGGTGCTGGAGGGTGTGCAGCAAGTCAGACTTCGAGTGCCACCGCCTGCTGGAGCT
GAGTGAGGAGCTGGTGGAGAGCTGGTGGTTACAAGCAGCAGGAGGCCGGACCTCTCC
AGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCGCAGGCACCTCGGGCCCTCCTGC
CTTCCCTGTCTGGGAAACAGAGAGGCCCTGCGGTGGCTACGGGCAGTGTGAAGGAGAAGG
GACACGAGGGGGCAGCGGGCACTGTGACTGCCAAGCCGGTACGGGGTGAGGCCTGTGGCC
AGTGTGGCCTGGCTACTTGAGGCAGAACGCAACGCCAGCCATCTGGTATGTTGGCTTGT
TTTGGCCCTGTGCCGATGCTCAGGACCTGAGGAATCAAACGTGGCAATGCAAGAAGGG
CTGGGCCCTGCATCACCTCAAGTGTAGACATTGATGAGTGAGCAGAGGCCAACT
GTGGAGCTGACCAATTCTCGTGAACACTGAGGGCTCCTATGAGTGCCGAGACTGTGCCAAG
GCCTGCCTAGGCTGCATGGGGCAGGGCCAGGTCGCTGTAAGAAGTGTAGCCCTGGCTATCA
GCAGGTGGCTCCAAGTGTCTCGATGGATGAGTGTGAGACAGAGGTGTCCGGAGAGA
ACAAGCAGTGTAAAACACCGAGGGCGTTATCGCTGCATCTGTGCCGAGGGCTACAAGCAG
ATGGAAGGCATCTGTGTGAAGGAGCAGATCCCAGAGTCAGCAGGCTTCTCAGAGATGAC
AGAAGACGAGTTGGTGGTGCTGCAGCAGATGTTCTTGGCATCATCATCTGTGCACTGGCCA
CGCTGGCTGCTAAGGGCAGTTGGTGTACCGCCATCTCATTGGGCTGTGGCGGCCATG
ACTGGCTACTGGTTGTCAAGAGCGCAGTGACCGTGTGCTGGAGGGCTTCATCAAGGGCAGATA
ATCGCGGCCACCACCTGTAGGACCTCCCACCCACGCTGCCCGAGAGCTTGGCTGCC
TCCTGCTGGACACTCAGGACAGCTTGGTTATTTTGAGAGTGGGTAAGCACCCCTACCTG
CCTTACAGAGCAGCCCAGGTACCCAGGCCGGCAGACAAGGCCCTGGGTAAAAGTAGC
CCTGAAGGTGGATACCATGAGCTTCACTGGGGACTGGCAGGCTTCACAATGTGTGA
ATTTCAAAAGTTTCTTAATGGTGGCTGCTAGAGCTTGGCCCTGCTTAGGATTAGGTG
GTCCTCACAGGGTGGGCCATCACAGCTCCCTGCCAGCTGCATGCCAGTTCTGT
TCTGTGTTACCCACATCCCCACACCCATTGCCACTTATTATTCATCTCAGGAAATAAGA
AAGGTCTTGGAAAGTTAAAAAAAAAAAAAAA

FIGURE 40

MAPWPPKGVLPAVLWGLSLFLNLPGPIWLQPSPPPQQSSPPQPHPCHTCRGLVDSFNKGLER
TIRDNFGGGNTAWEEENLSKYKDSETRLVEVLEGVCSKSDFECHRLLESELVESWWFHKQ
QEAPDLFQWLCSDSLKLCCPAGTFGPSCLPCCPGGTERPCGGYGCCEGEGTRGGSGHCDCQAG
YGGECACGQCGLGYFEAERNASHLVCACFGPCARCSGPEESNLQCKKGWALHHLKCVDIDE
CGTEGANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKCSPGYQQVGSKCLDVDECE
TEVCPGENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFG
IIICALATLAKGDLVFTAIFIGAVAAMTGYWLSERSDRVLEGFIKGR

Signal sequence:

amino acids 1-29

Transmembrane domain:

amino acids 372-395

N-glycosylation site.

amino acids 79-83, 205-209

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 290-294

Casein kinase II phosphorylation site.

amino acids 63-67, 73-77, 99-103, 101-105, 222-226, 359-263

N-myristoylation site.

amino acids 8-14, 51-57, 59-65, 69-75, 70-76, 167-173, 173-179,
177-183, 188-194, 250-256, 253-259, 267-273, 280-286, 283-289,
326-332, 372-378, 395-401

Aspartic acid and asparagine hydroxylation site.

amino acids 321-333

EGF-like domain cysteine pattern signature.

amino acids 181-193

FIGURE 41

TGAGACCCTCCTGCAGCCTCTCAAGGGACAGCCCCACTCTGCCTCTTGCTCCCTCCAGGGCA
GCACCATGCCAGCCCCTGTGGCTCTGCTGGGACTCTGGGTGTTGCCCTGCCAGCCCCGGG
GCCGCCCTGACCGGGGAGCAGCTCCTGGCAGCCTGCTGCCAGCTGCAGCTCAAAGAGGT
GCCCACCCCTGGACAGGGCCGACATGGAGGAGCTGGTCATCCCCACCCACGTGAGGGCCAGT
ACGTGGCCCTGCTGCAGCGCAGCCACGGGACCGCTCCCGCGAAAGAGGTTCAGCCAGAGC
TTCCGAGAGGTGGCCGGCAGGTTCCCTGGCGTTGGAGGCCAGCACACACCTGCTGGTGGTCGG
CATGGAGCAGCGGCTGCCGCCAACAGCGAGCTGGTCAGGCCGTGCTGCCGTCTTCAGG
AGCCGGTCCCCAAGGCCGCGCTGCACAGGCACGGGCGGCTGTCCCCGCGCAGGCCGGGCC
CGGGTACCGTCGAGTGGCTGCCGTCCCGACGACGGCTCCAACCGCACCTCCCTCATCGA
CTCCAGGCTGGTGTCCGTCCACGAGAGCGGCTGGAAGGCCTTCGACGTGACCGAGGCCGTGA
ACTTCTGGCAGCAGCTGAGCCGGCCCCGGCAGCCGCTGCTGCTACAGGTGTCGGTGCAGAGG
GAGCATCTGGCCCGCTGGCGTCCGGCCACAAGCTGGTCCGCTTGCCCTCGCAGGGGGC
GCCAGCCGGCTTGGGAGCCCCAGCTGGAGCTGCACACCCCTGGACCTTGGGACTATGGAG
CTCAGGGCAGCTGTGACCCCTGAAGCACCAATGACCGAGGGCACCCGCTGCTGCCGCCAGGAG
ATGTACATTGACCTGCAGGGATGAAGTGGGCGAGAACTGGGTGCTGGAGGCCCGGGCTT
CCTGGCTTATGAGTGTGGCACCTGCCGGCAGCCCCGGAGGCCCTGGCCTTAAGTGGC
CGTTCTGGGCCTCGACAGTCATGCCCTGGAGACTGACTCGCTGCCATGATCGTCAGC
ATCAAGGAGGGAGGCAGGACCAGGCCAGGTGGTCAGCCTGCCAACATGAGGGTGCAGAA
GTGCAGCTGTGCCTCGATGGTGCCTCGTGCCTAGGCCAAGGAGGCTCCAGCCATAGGGCCTAGTG
TAGCCATCGAGGGACTTGACTTGTGTGTTCTGAAGTGGTGCAGGGTACAGGAGAGCTG
GCGATGACTGAAGTGCCTGATGGACAAATGCTCTGTGCTCTAGTGAGCCCTGAATTGCTT
CCTCTGACAAGTTACCTCACCTAATTTGCTCTCAGGAATGAGAATCTTGGCCACTGGA
GAGCCCTGCTCAGTTCTCTATTCTATTCACTGCACTATATTCTAACACTTACAT
GTGGAGATACTGTAACCTGAGGGCAGAAAGGCCANTGTGTCATTGTTACTGTCCCTGTCAC
TGGATCTGGCTAAAGTCCTCCACCACACTGGACCTAACAGACCTGGGTTAAGTGTGGGT
TGTGCATCCCCAATCCAGATAATAAGACTTTGAAAACATGAATAAACACACATTATTCT
AAAA

FIGURE 42

MQPLWLCWALWVLPLASPGAAALTGEQLLGSLLRQLQLKEVPTLDRADMEELVIPTHVRAQYV
ALLQRSHGDRSRGKRFQSFRREVAGRFLALEASTHLLVFGMEQRLPPNSELVQAVLRLFQEP
VPKAALHRHGRLSPRSARARVTVEWLVRDDGSNRTSLIDSRLVSHESGWKAFDVTEAVNF
WQQLSRPRQPLLQSVQREHLGPLASGAHKLVRFASQGAPAGLGEPQLELHTLDLGDYGAQ
GDCDPEAPMTEGTRCCRQEMYIDLQGMKWAENWVLEPPGFLAYECVGTCRQPPEALAFKWPF
LGPRQCIASETDSLPMIVSIKEGGRTQPVVSLPNMRVQKCSCASDGALVPRRLQP

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 158-162

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 76-80

Casein kinase II phosphorylation site.

amino acids 68-72, 81-85, 161-165, 169-173, 319-323, 329-333

N-myristoylation site.

amino acids 19-25, 156-162, 225-231, 260-266, 274-280

Amidation site.

amino acids 74-78

TGF-beta family signature.

amino acids 282-298

FIGURE 43

GTCTGTTCCCAGGAGTCCTCGCGGCTGTTGTCACTGGCCTGATCGCGATGGGACAAA
GGCGCAAGTCGAGAGGAAACTGTTGTGCCTCTCATATTGGCGATCCTGTTGTGCTCCCTGG
CATTGGGCAGTGTACAGTCACCTGAACCTGAAGTCAGAATTCCCTGAGAATAATCCT
GTGAAGTTGTCTGTGCCACTCGGGCTTTCTTCTCCCCGTGTGGAGTGGAAAGTTGACCA
AGGAGACACCACCAGACTCGTTGCTATAATAACAAGATCACAGCTCCTATGAGGACCGGG
TGACCTTCTTGCCAACGGTATCACCTCAAGTCCGTGACACGGGAAGACACTGGGACATAC
ACTTGTATGGTCTCTGAGGAAGGCGAACAGCTATGGGGAGGTCAAGGTCAAGCTCATCGT
GCTTGTGCCCTCATCCAAGCCTACAGTTAACATCCCTCCTGCCACCATTGGGAACCGGG
CAGTGCTGACATGCTCAGAACAGATGGTCCCCACCTTCTGAATAACACACTGGTTCAAAGAT
GGGATAGTGTGCTACGAATCCAAAAGCACCCGTGCCCTCAGCAACTCTCCTATGTCCT
GAATCCCACAAACAGGAGAGCTGGTCTTGATCCCTGTCAAGCTCTGATAACTGGAGAATACA
GCTGTGAGGCACGGAATGGGTATGGGACACCCATGACTCAAATGCTGTGCGCATGGAAAGCT
GTGGAGCGGAATGTGGGGTCATCGTGGCAGCCGTCTTGTAAACCTGATTCTCCTGGGAAT
CTTGGTTTTGGCATCTGGTTGCCTATAGCCGAGGCCACTTGACAGAACAAAGAAAGGGA
CTTCGAGTAAGAAGGTGATTTACAGCCAGCCTAGTGCCGAAGTGAAGGAGAATTCAAACAG
ACCTCGTCATTCTGGTGTGAGCCTGGTCGGCTACCGCCTATCATCTGCATTGCCTTACT
CAGGTGCTACCGACTCTGGCCCTGATGTCAGTTCACAGGATGCCTTATTGTCCT
TACACCCACAGGGCCCCCTACTTCTCGGATGTGTTTAATAATGTCAGCTATGTGCC
ATCCTCCTCATGCCCTCCCTCCCTTACCACTGCTGAGTGGCTGGAACTTGTAA
GTGTTATTCCCCATTCTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC
TTCTAAGTAGACAGAAAAATGGGGGGTCGCAGGAATCTGCACTCAACTGCCACCTGGC
TGGCAGGGATCTTGAATAGGTATCTTGAGCTGGTCTGGCTCTTCCCTGTACTGAC
GACCAGGGCCAGCTGTTCTAGAGCGGGATTAGAGGCTAGAGCGGCTGAAATGGTTGG
TGATGACACTGGGTCTTCCATCTCTGGGCCACTCTCTGCTTCCATGGAAAGTG
CCACTGGGATCCCTGCCCCTGCTCTGAATACAAGCTGACTGACATTGACTGTCTGT
GGAAAATGGGAGCTTGTGGAGAGCATAGTAAATTTCAGAGAACTTGAAGCCAAAAG
GATTAAAACCGCTGCTCTAAAGAAAAGAAAATGGAGGCTGGCGCAGTGGCTCACGCC
TAATCCCAGAGGCTGAGGCAGGCAGGATCACCTGAGGTGGAGTTGGGATCAGCCTGACCA
ACATGGAGAAACCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCTGTAGTC
CCAGCTGCTCAGGAGCCTGGCAACAAGAGCAAAACTCCAGCTCAAAAAAAAAAAAAA

FIGURE 44

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPKLSCAYSGFSSPRVEW
KFDQGDTTRILVCYNNKITASYEDRVTFLPTGITFKSVTREDTGYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNI PSSATIGNRAVLTCSEQDGSPPSEYTWFKDGVMPNPKSTRAFSNS
SYVLNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158,
193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

FIGURE 45

CAGCGCGTGGCCGGCGCCGCTGTGGGGACAGCATGAGCGCGTTGGATGGCGCAGGTTGGA
GCGTGGCGAACAGGGGCTCTGGGCCTGGCGCTGCTGCTGCTCGGCCTCGGACTAGGCCT
GGAGGCCGCGCGAGCCGCTTCCACCCGACCTCTGCCAGGCCAGGCCAGGCCCCAGCTCAG
GCTCGTCCCACCCACCAAGTCCAGTGCCGACCAGTGGCTTATGCGTCCCCTCACCTGG
CGCTGCGACAGGGACTTGGACTGCAGCGATGGCAGCGATGAGGAGGAGTGCAGGATTGAGCC
ATGTACCCAGAAAGGGCAATGCCACCGCCCCCTGGCCTCCCTGCCCTGCACCGCGTCA
GTGACTGCTCTGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCTGGCCTGCCTAGCA
GGCGAGCTCCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGGCGCTGCGACGGCA
CCCAGACTGTCCCAGCGACGAGCTGGCTGTGGAACCAATGAGATCCTCCCGGAAG
GGGATGCCACAACCATGGGGCCCCCTGTGACCCCTGGAGAGTGTACCTCTCAGGAATGCC
ACAACCATGGGGCCCCCTGTGACCCCTGGAGAGTGTCCCTCTGTGGGAATGCCACATCCTC
CTCTGCCGGAGACCAGTCTGGAAGGCCAAGTGCCTATGGGTTATTGCAGCTGCTGCCGTGC
TCAGTGCAAGCCTGGTCACGCCACCCCTCCTCCTTGTCCCTGGCTCCGAGCCCAGGAGCGC
CTCCGCCACTGGGTTACTGGTGGCCATGAAGGAGTCCCTGCTGTCAGAACAGAAC
CTCGCTGCCTGAGGACAAGCACTTGCCACCAACCGTCACTCAGCCCTGGCGTAGCCGGACA
GGAGGAGAGCAGTGATGCGGATGGTACCCGGCACACCAGCCCTCAGAGACCTGAGTTCTT
CTGCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCC
TGGACACTCCCTATGGAGATCCGGGGAGCTAGGATGGGAACCTGCCACAGCCAGAAC
GGGCTGGCCCCAGGCAGCTCCAGGGGGTAGAACGCCCTGTGCTTAAGACACTCCCTGCTG
CCCCGTCTGAGGGTGGCGATTAAAGTTGCTTC

FIGURE 46

MSGGWMAQVGAWRTGALGLALLLLGLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCR
TSGLCVPLTWRCRDLDGSDEEECRIEPCTQKGQC PPPGLPCPCTGVSDCSGGDKKL
RNC SRLA CLAGELRCTL SDDCIPLTWRC DGH PDCP DSS DEL GCGTNEILPEGDATTMGPV
LESVTSLRNATTMGPVTL ES VPS VGNATSSAGDQSGSPTAYGVIAAAAVLSASLVTATLL
LLSWLRAQERLRPLG LLLVAMKESLLLSEQKTSLP

Signal sequence:

amino acids 1-30

Transmembrane domain:

amino acids 230-246

N-glycosylation site.

amino acids 126-130, 195-199, 213-217

Casein kinase II phosphorylation site.

amino acids 84-88, 140-144, 161-165, 218-222

N-myristoylation site.

amino acids 3-9, 10-16, 26-32, 30-36, 112-118, 166-172, 212-218,
224-230, 230-236, 263-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 44-55

Leucine zipper pattern.

amino acids 17-39

FIGURE 47

CCACCGCGTCGGTCTCGCTCGCGCAGCGGCCAGCAGAGGTCGCCACAGATGCCG
GTTAGACTGGCGGGGGAGGAGGCGGAGGAGGAAGGAAGCTGCATGCATGAGACCCACAGA
CTCTGCAAGCTGGATGCCCTCTGTGGATGAAAGATGTTATCATGGAATGAACCCGAGCAATG
GAGATGGATTCTAGAGCAGCAGCAGCAGCACACCTCAGTCCCCCAGAGACTCTTG
GCCGTGATCCTGTGGTTTAGCTGGCGCTGTGCTCGGCCCTGCACAGCTCACGGCGGGTT
CGATGACCTCAAGTGTGCTGACCCCGCATTCCCGAGAATGGCTTCAGGACCCCCAGCG
GAGGGGTTTCTTGAAAGGCTCTGTAGCCGATTTCACTGCCAAGACGGATTCAAGCTGAAG
GGCGCTACAAAGAGACTGTGTTGAAGCATTAAATGGAACCTAGGCTGGATCCAAGTGA
TAATTCCATCTGTGCAAGAAGATTGCCGTATCCCTCAAATGAAGATGCTGAGATTATA
ACAAGACATATAGACATGGAGAGAACGTAATCATCACTTGTATGAAGGATTCAAGATCCGG
TACCCGACCTACACAATATGGTTTCAATTATGTCGCGATGATGGAACGTGGAATAATCTGCC
CATCTGTCAAGGCTGCCTGAGACCTCTAGCCTCTTAATGGCTATGTAAACATCTCTGAGC
TCCAGACCTCCTCCCGTGGGACTGTGATCTCCTATCGCTGCTTCCGGATTAAACTT
GATGGGTCTGCGTATCTTGAGTGTCTACAAAACCTTATCTGGCGTCCAGCCCACCCGGTG
CCTTGCTCTGGAAGCCAAGTCTGTCCACTACCTCCAATGGTAGTCACGGAGATTCGTCT
GCCACCCGCGCCTTGTGAGCGTACAACCACGGAACGTGGTGGAGTTTACTGCGATCCT
GGCTACAGCCTCACCAAGCGACTACAAGTACATCACCTGCCAGTATGGAGAGTGGTTCCCTC
TTATCAAGTCTACTGCATCAAATCAGAGCAAACGTGGCCAGCACCCATGAGACCCCTCTGA
CCACGTGGAAGATTGTGGCGTTACGGCAACCAGTGTGCTGGTGTGCTCGTCATC
CTGGCCAGGATGTTCCAGACCAAGTTCAAGGCCACTTCCCCCAGGGGCTCCCGGAG
TTCCAGCAGTGACCTGACTTTGTGGTAGACGGCGTGCCTCATGCTCCGTCTATG
ACGAAGCTGTGAGTGGCGCTTGAGTGCCTTAGGCCCGGGTACATGGCTCTGTGGCCAG
GGCTGCCCTTACCGTGGACGACCAGAGCCCCCAGCATACCCGGCTCAGGGACACGGA
CACAGGCCAGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTCTTGAGCTGCTCCAAA
GTCTGTATTCACCTCCAGGTGCCAAGAGAGCACCCACCTGCTGGACAACCTGACATA
ATTGCCAGCACGGCAGAGGAGGTGGCATCCACCAGCCAGGCATCCATGCCCACGGT
GTTGTTCTAAGAAACTGATTGATTAAAAAATTCCAAAGTGTCTGAAGTGTCTCTCAA
ATACATGTTGATCTGTGGAGTTGATTCCCTTCTCTTGAGTGGTTAGACAAATGTAAACAA
AGCTCTGATCTTAAAATTGCTATGCTGATAGAGTGGTAGGGCTGGAAGCTTGATCAAGTC
CTGTTCTTCTTGACACAGACTGATTAAAATTAAAAGNAAAAAA

FIGURE 48

MYHGMNPSNGDFLEQQQQQQQQPQSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGI
PENGFRTPSGGVFFEGSVARFHQCQDGFKLGATKRLCLKHFNGTLGWIPSDNSICVQEDCRI
PQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICGGCLRPLAS
SNGYVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPRCLALEAQVCPLP
PMVSHGDFVCHPRPCERYNHGTVVEFYCDPGYSLTSODYITCQYGEWFPSYQVYCIKSEQT
WPSTHETLLTWKIVAFATSVLLVLLVILARMFQTKFKAHFPPRGPPRSSSDPDFVVVD
GVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGD'TDGPGESETCDS
VSGSELLQSLYSPPRCQESTHPASDNPDIIASTAEEVASTSPGIHHAHWVLFLRN

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 325-344

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

Casein kinase II phosphorylation site.

amino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366,
364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424,
478-484

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 394-405

FIGURE 49

CCACCGCGTCCGCTCCGCCTCCCCCGCCTCCCGTCGGTCCGTGGCCTAGAGA
TGCTGCTGCCCGGGTTGCAGTTGTCGCGCACGCCCTGCCGCCAGCCGCTCCACCGCCGT
AGCGCCCGAGTGTGGGGGGCGCACCCGAGTCGGGCCATGAGGCCGGAACCGCGCTACAGG
CCGTGCTGCTGCCGTGCTGGTGGGCTGCCGCCAGGGTCGCCTGCTGAGTGCC
TCGGATTGGACCTCAGAGGAGGGCAGCCAGTCTGCCGGGAGGGACACAGAGGCCTGTTA
TAAAGTCATTACTTCCATGATACTTCTGAAGACTGAACCTTGAGGAAGCAAAGAACCT
GCAGGAGGGATGGAGGCCAGCTAGTCAGCATCGAGTCTGAAGATGAACAGAAACTGATAGAA
AAGTCATTGAAAACCTCTGCCATCTGATGGTACCTCTGGATTGGCTCAGGAGGCCTGA
GGAGAAACAAAGCAATAGCACAGCCTGCCAGGACCTTATGCTTGGACTGATGGCAGCATAT
CACAACTTAGAACCTGGTATGTGGATGAGCCGTCCGCCAGCGAGGTCTGCGTGGTCATG
TACCATCAGCCATCGGCACCCGCTGGCATCGGAGGCCCTACATGTTCCAGTGGAAATGATGA
CCGGTGCAACATGAAGAACAAATTTCATTGCAAATATTCTGATGAGAAACCAGCAGTCCTT
CTAGAGAAGCTGAAGGTGAGGAAACAGAGCTGACAACACCTGTACTTCCAGAAGAAACACAG
GAAGAACATGCCAAAAAAACATTAAAGAAAGTAGAGAACAGCTGCCTGAATCTGGCCTACAT
CCTAATCCCCAGCATTCCCCTCTCCTCCTGTGGTACCCACAGTTGTATGTTGGGTTT
GGATCTGTAGAAAAAGAAAACGGGAGCAGCCAGACCCCTAGCACAAAGAACACACCATC
TGGCCTCTCCTCACCAAGGAAACAGCCGGACCTAGAGGTCTACAATGTATAAGAAAACA
AAGCGAAGCTGACTTAGCTGAGACCCGCCAGACCTGAAGAATATTCAATTCCGAGTGTGTT
CGGGAGAAGCCACTCCGATGACATGTCTGTGACTATGACAACATGGCTGTGAACCCATCA
GAAAGTGGTTGTGACTCTGGTGGAGAGTGGATTGTGACCAATGACATTATGA
GTTCTCCCCAGACCAAATGGGAGGAGTAAGGAGTCTGGATGGGTGAAAATGAAATATATG
GTTATTAGGACATATAAAAACTGAAACTGACAACAAATGGAAAAGAAATGATAAGCAAAATC
CTCTTATTTCTATAAGGAAAATACACAGAACGGTCTATGAACAAGCTTAGATCAGGTCTGT
GGATGAGCATGTGGTCCCCACGACCTCCTGTGGACCCCCACGTTGGCTGTATCCTTTAT
CCCAGCCAGTCATCCAGCTCGACCTTATGAGAACGGTACCTGCCAGGTCTGGCACATAGTA
GAGTCTCAATAATGTCACTTGGTTGGTGTATCTAACTTTAAGGGACAGAGCTTACCTG
GCAGTGATAAAAGATGGGCTGTGGAGCTTGGAAAACCACCTCTGTTCTGCTATACAG
CAGCACATATTATCATAACAGACAGAAAATCCAGAACATCTTCAAAGCCCACATGGTAGCACAG
GTTGGCCTGTGCATCGCAATTCTCATATCTGTTTTCAAAGAATAAAATCAAATAAAGA
GCAGGAAAAAAA

FIGURE 50

MRPGTALQAVLLAVLLVGLRAATGRLLSASDLRGGQPVCRGGTQRPCYKVIYFHDTSRRL
NFEEAKEACRRDGGQLVSIESEDEQKLIEKFIENLLPSDGDFWIGLRRREEQSNSTACQDL
YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPYMFQWNDDRCNMKNFICKY
SDEKPAVPSREAEGEETELTPVLPETQEEDAKKTFKESREAALNLAYILIPSIPLLLL
VTTVVVCWWICRKRKREQPDPSKKQHTIWPSPHQGNSPDLEVYNVIRKQSEADLAETRPDL
KNISFRVCSGEATPDDMSCDYDNMAVNPSSEGFTLVSVESGFVTNDIYEFSPDQMGRSKES
GWVENEIYGY

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 117-121, 312-316

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 296-300

Casein kinase II phosphorylation site.

amino acids 28-32, 30-34, 83-87, 100-104, 214-218, 222-226,
299-303, 306-310, 323-327

N-myristoylation site.

amino acids 18-24, 37-43, 76-82, 146-152

FIGURE 51

GGGGTCTCCCTCAGGCCGGGAGGCACAGCGTCCCTGCTGAAGGGCTGGATGTACGC
ATCCGCAGGTTCCCGCGGACTTGGGGCGCCCGCTGAGCCCCGGCGCCCGCAGAAGACTTGT
GTTTGCCTCCTGCAGCCTCAACCCGGAGGGCAGCGAGGGCCTACCACCATGATCACTGGTGT
GTTCAGCATGCGCTTGTGGACCCCAGTGGCGTCTGACCTCGCTGGCGTACTGCCTGCACC
AGCGCGGGTGGCCCTGGCGAGCTGCAGGAGGCCATGCCAGTGTCCGGTCACCGCAGC
CTGCTGAAGTTGAAAATGGTGCAGGTGTTGACACGGGGCTGGAGTCCCTCAAGCC
GCTCCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCAAACTC
AGTTGATTACACAGTCACCAATCTAGCTGGTGTCCGAAACCATAATTCTCCTTACGACTCT
CAATACCATGAGACCACCCCTGAAGGGGGCATGTTGCTGGCAGCTGACCAAGGTGGCAT
GCAGCAAATGTTGCCTGGAGAGAGACTGAGGAAGAACTATGTGAAGACATTCCCTTC
TTTCACCAACCTCAACCCACAGGAGGTCTTATTGTTCCACTAACATTTCGGAATCTG
GAGTCCACCCGTTGTTGCTGGCTGGCTTTCCAGTGTCAAGAAAGAAGGACCCATCATCAT
CCACACTGATGAAGCAGATTCAAAGTCTGTATCCAACTACCAAAGCTGGAGCCTGA
GGCAGAGAACCAAGAGGCCGGAGGCAGACTGCCTCTTACAGCCAGGAATCTCAGAGGATTG
AAAAAGGTGAAGGACAGGATGGCATTGACAGTAGTGTATAAGTGGACTTCTCATCCTCCT
GGACAACGTGGCTGCCGAGCAGGCACACAACCTCCAAGCTGCCCATGCTGAAGAGATTG
CACGGATGATCGAACAGAGAGCTGTGGACACATCCTGTACATACTGCCAAGGAAGACAGG
GAAAGTCTTCAGATGGCAGTAGGCCATTCCCTCACATCCTAGAGAGCAACCTGCTGAAAGC
CATGGACTCTGCCACTGCCCGACAAGATCAGAAAGCTGTATCTCTATGCGGCTCATGATG
TGACCTTCATACCGCTTTAATGACCTGGGGATTTTGACCACAAATGCCACCGTTGCT
GTTGACCTGACCATGGAACCTTACCAAGCACCTGGAATCTAAGGAGTGGTTGTGCAGCTCTA
TTACCAACGGGAAGGAGCAGGTGCCGAGAGGTTGCCCTGATGGGCTCTGCCCGCTGGACATGT
TCTTGAATGCCATGTCAGTTACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAA
ACTCAGGTGATGGAAGTTGGAAATGAAGAGTACTGATTATAAAAGCAGGATGTGTTGATT
TTAAAATAAAAGTGCCTTATACAATG

FIGURE 52

MITGVFSMRLWTPVGVLTSLAYCLHQRRVALAELOEADGQCPVDRSLLKLKMVQVVFRHGAR
SPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMFAGQL
TKVGMQQMFALGERLRKNYVEDIPFLSPTFNQEVFIRSTNIFRNLESTRCLLAGLFQCQKE
GPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRRQTASLQPGISEDLKKVKDRMGIDSSDKVD
FFILLDNVAAEQAHNLPSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMAVGPFLHILES
NLLKAMDSATAPDKIRKLYLYAAHDVTFIPLLMTLGIFDHKWPPFAVDLTMELYQHLESKEW
FVQLYYHGKEQVPRGCPDGLCP LDMLNAMS VYTLSPEKYHALCSQTQVM EVGNEE

Signal sequence:

amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 218-222

Casein kinase II phosphorylation site.

amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

FIGURE 53

CTCCTCTAACATACTTGCAGCTAAACTAAATATTGCTGCTGGGGACCTCCTTAGCCT
TAAATTCAGCTCATCACCTCACCTGCCTGGTCATGGCTCTGCTATTCTCCTTGATCCTT
GCCATTGACCAGACCTGGATTCCCTAGCGTCTCCATCTGGAGTGC GGCTGGTGGGGGCCT
CCACCGCTGTGAAGGGCGGGTGGAGGTGGAACAGAAAGGCCAGTGGGGACCGTGTGATG
ACGGCTGGGACATTAAGGACGTGGCTGTGTTGTGCCGGAGCTGGCTGTGGAGCTGCCAGC
GGAACCCCTAGTGGTATTTGTATGAGCCACCAGCAGAAAAAGAGCAAAAGGTCTCATCCA
ATCAGTCAGTTGCACAGGAACAGAAGATACTGGCTCAGTGTGAGCAAGAAGAAGTTATG
ATTGTTCACATGATGAAGATGCTGGGCATCGTGTGAGAACCCAGAGAGCTCTTCTCCCCA
GTCCCAGAGGGTGTCAAGGCTGGTGACGCCCTGGCATTGCAAGGGACGCGTGGAAAGTGAA
GCACCAAGAACCAAGTGGTATACCGTGTGCCAGACAGGCTGGAGCCTCCGGCCGCAAAGGTGG
TGTGCCGGCAGCTGGATGTGGGAGGGCTGTACTGACTCAAAAACGCTGCAACAAGCATGCC
TATGCCGAAAACCCATCTGGCTGAGCCAGATGTCATGCTCAGGACGAGAAGCAACCTTCA
GGATTGCCCTCTGGCCTGGGGAAAGAACACACCTGCAACCAGATGAAGACACGTGGTCG
AATGTGAAGATCCCTTGACTTGAGACTAGTAGGAGGAGACAACCTCTGCTCTGGCGACTG
GAGGTGCTGACAAGGGGTATGGGCTCTGTCTGTGATGACAACACTGGGAGAAAAGGAGGA
CCAGGGTGTATGCAAGCAACTGGCTGTGGAAAGTCCCTCTCCCTCAGAGACCGGA
AATGCTATGCCCTGGGGTTGCCGATCTGGCTGGATAATGTTGCTCAGAGGAGGAG
CAGTCCCTGGAGCAGTGCCAGCACAGATTTGGGGTTCACGACTGCACCCACCAGGAAGA
TGTGGCTGTCATCTGCTCAGTGTAGGTGGCATCATCTAATCTGTTGAGTGCCTGAATAGAA
GAAAAACACAGAAGAAGGGAGCATTACTGTCTACATGACTGCATGGATGAACACTGATCT
TCTTCTGCCCTGGACTGGACTTATACTTGGTGCCCTGATTCTCAGGCCTTCAGAGTTGG
ATCAGAACTTACAACATCAGGTCTAGTTCTCAGGCCATCAGACATAGTTGGAACACTACATCA
CCACCTTCCTATGTCTCCACATTGCACACAGCAGATTCCAGCCTCCATAATTGTGTGTAT
CAACTACTTAAATACATTCTCACACACACACACACACACACACACACACACACACACATA
CACCAATTGTCCTGTTCTCTGAAGAACTCTGACAAAATACAGATTTGGTACTGAAAGAGA
TTCTAGAGGAACGGAATTAAAGGATAAATTCTGAATTGGTATGGGTTCTGAAATTG
GCTCTATAATCTAATTAGATATAAAATTCTGGTAACCTTATTACAATAATAAGATAGCAC
TATGTGTTCAAA

FIGURE 54

MALLFSLILAICTRPGLASPSGVRLVGGHLRCEGRVEVEQKGQWGTVCDDGWDIKDVAVL
RELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDAGASC
ENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRAAKVVCRQLGCGRAVL
TQKRCNKHAYGRKPIWLSQMCSGREATLQDCPSGPWGKNTCNHDEDTWVECEDPFDLRLVG
GDNLCGSRLEVLLHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKCYGPGVGRIDL
DNVRCSGEEQSLEQCQHRFWGFHDCTHQEDVAVICSV

Signal sequence:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238,
267-271, 294-298, 316-320, 336-340

N-myristoylation site.

amino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143,
180-186, 263-269, 286-292

Amidation site.

amino acids 196-200

Speract receptor repeated domain signature.

amino acids 29-67, 249-287

FIGURE 55

ACTGCACTCGGTCTATCGATTGAATTCCCCGGGATCCTCTAGAGATCCCTCGACCTCGAC
CCACCGGTCCCGGGACCGTGGCGGACCGTGGCGGCTACCAGGAAGAGTCTGCCGAAG
GTGAAGGCCATGGACTTCATCACCTCCACAGCCATCCTGCCCCCTGCTGTTGGCTGCCTGGG
CGTCTTCGGCCTTTCCGGCTGCTGCAGTGGGTGCGCGGGAAAGGCCTACCTGCGGAATGCTG
TGGTGGTGATCACAGGCGCCACCTCAGGGCTGGCAAAGAATGTGCAAAAGTCTTCTATGCT
GCGGGTGCTAAACTGGTGCTCTGTGGCCGAATGGTGGGCCCTAGAACAGCTCATCAGAGA
ACTTACCGCTCTCATGCCACCAAGGTGCAGACACACAAGCCTTACTTGGTGACCTTCGACC
TCACAGACTCTGGGCCATAGTTGCAGCAGCAGCTGAGATCCTGCAGTGCTTGGCTATGTC
GACATACTTGTCAACAATGCTGGATCAGCTACCGTGGTACCATCATGGACACACCACAGTGG
TGTGGACAAGAGGGTCATGGAGACAAACTACTTGGCCCAGTTGCTCTAACGAAAGCACTCC
TGCCTCCATGATCAAGAGGAGGCAAGGCCACATTGTCGCCATCAGCAGCATCCAGGGCAAG
ATGAGCATTCCCTTCGATCAGCATATGCAGCCTCCAAGCACGCAACCCAGGCTTCTTGA
CTGTCGCGTCCGAGATGGAACAGTATGAAATTGAGGTGACCGTCATCAGCCCCGGCTACA
TCCACACCAACCTCTGTAAATGCCATCACCGCGGATGGATCTAGGTATGGAGTTATGGAC
ACCACCCACAGCCCAGGGCGAAGCCCTGTGGAGGTGGCCAGGATGTTCTGCTGCTGTGGG
GAAGAAGAAGAAAGATGTGATCCTGGCTGACTTACTGCCTTCCTGGCTGTTATCTCGAA
CTCTGGCTCCTGGCTCTTCTTCAGCCTCATGGCCTCCAGGGCCAGAAAAGAGCGGAAATCC
AAGAACTCCTAGTACTCTGACCAGCCAGGGCAGAGAACAGCAGCACTTTAGGCTTGC
TTACTCTACAAGGGACAGTTGCATTGAGACTTAATGGAGATTGCTCACAAGTGG
AAAGACTGAAGAACACATCTCGTCAGATCTGCTGGCAGAGGACAATAAAAACGACAACA
AGCTTCTCCAGGGTGAGGGAAACACTTAAGGAATAATGGAGCTGGGTTAACACT
AAAAACTAGAAATAAACATCTCAAACAGTAAAAAAAAAAGGGCGGCCGACTCTAG
AGTCGACCTGCAGAAGCTTGGCCGCCATGGCCAATTGTTATTGCAGCTTATAATGGTTAC

FIGURE 56

MDFITSTAILPLLGCLGVFGLFRLLQWVRGKAYLRNAVVIITGATSGLGKECAKVFYAAGA
KLVLCGRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDSGAIVAAAAEILQCFGYVDIL
VNNAGISYRGTIMDTTVVDKRVMETNYFGPVALTKALLPSMIKRQQGHIVAISSIQGKMSI
PFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSRYGVMDTTT
AQGRSPVEVAQDVLAAVGKKKDVLADLLPSLAVYLRTLAPGLFFSLMASRARKERKSNS

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 104-120, 278-292

N-glycosylation site.

amino acids 228-232

Glycosaminoglycan attachment site.

amino acids 47-51

Casein kinase II phosphorylation site.

amino acids 135-139, 139-143, 253-257

Tyrosine kinase phosphorylation site.

amino acids 145-153, 146-153

N-myristoylation site.

amino acids 44-50, 105-111, 238-244, 242-248, 291-297

Amidation site.

amino acids 265-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 6-17

FIGURE 57

FIGURE 58

MKFLLDILLPLLIIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKSK
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKVKAEIGDVSILVNNAGVV
YTSDFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVSVPFLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH
GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34, 283-287

Casein kinase II phosphorylation site.

amino acids 52-56, 95-99, 198-202, 267-271

N-myristoylation site.

amino acids 43-49, 72-78, 122-128, 210-216

FIGURE 59

CCACCGCGTCCGGGACCGTGGCTGACTAGTTCTAGATCGCGAGCGGCCGCCGGCTC
AGGGAGGAGCACCGACTCGGCCGCACCTGAGAGATGGTGGTGCCATGTGGAAGGTGATTG
TTTCGCTGGCTCTGTTGATGCCCTGGCCCTGTGATGGGCTGTTCGCTCCCTATAAGAAGT
GTTTCCATGCCACCTAACGGAGACTCAGGACAGCCATTATTCTCACCCCTACATTGAAGC
TGGGAAGATCCAAAAGGAAGAGAATTGAGTTGGTCGGCCCTTCCCAGGACTGAACATGA
AGAGTTATGCCGGCTTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTTCTGGTT
TTCCCAGCTCAGATAACAGCCAGAAGATGCCAGTAGTTCTCTGGCTACAGGGTGGCCGG
AGGTTCATCCATGTTGGACTCTTGTGGAACATGGGCCTATGTTGTCACAAGTAACATGA
CCTTGCCTGACAGAGACTCCCTGGACCACAACGCTCTCCATGCTTACATTGACAATCCA
GTGGGCACAGGCTTCAGTTTACTGATGATAACCCACGGATATGCAGTCATGAGGACGATGT
AGCACGGGATTATACAGTGCACTAATTCAAGTTTCCAGATATTCTGAATATAAAAATA
ATGACTTTATGTCACTGGGGAGTCTTATGCAGGGAAATATGTGCCAGGCATTGCACACCTC
ATCCATTCCCTCAACCTGTGAGAGAGGGTGAAGATCAACCTGAACCGAATTGCTATTGGAGA
TGGATATTCTGATCCGAATCAATTATAGGGGCTATGCAGAATTCTGTACCAAATTGGCT
TGTTGGATGAGAAGCAAAAAAGTACTTCCAGAACAGCAGTGCATGAATGCATAGAACACATC
AGGAAGCAGAACTGGTTGAGGCCTTGAAATACTGGATAAAACTACTAGATGGCGACTAAC
AAGTGATCCTCTTACTTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTTGCCT
GCACCGAACCTGAGGATCAGCTTACTATGAAATTGTCACTCCAGAGGTGAGACAA
GCCATCCACGTGGGAATCAGACTTTAATGATGAACTATAGTGAAGAAGTACTTGCAGA
AGATACAGTACAGTCAAGCCATGGTTAAGTGAATAATTATAAGGTTCTGA
TCTACAATGGCCAATGGACATCATCGTGGCAGCTGCCCTGACAGAGCGCTCCTGATGGC
ATGGACTGGAAAGGATCCCAGGAATACAAGAACGGAGAAAAAGTTGGAAGATCTTAA
ATCTGACAGTGAAGTGGCTGGTTACATCCGGCAAGCGGGTGACTCCATCAGGTAATTATTC
GAGGTGGAGGACATATTACCTATGACCAGCCTCTGAGAGCTTGACATGATTAATCGA
TTCATTATGAAAAGGATGGATCCTTATGTTGATAAAACTACCTTCCAAAAGAGAACAT
CAGAGGTTTCATTGCTGAAAAGAAAATGTAAGAACAGAAAATGTCATAGGAATAAAAAAA
TTATCTTTCATATCTGCAAGATTTCATCAATAAAATTATCCTTGAAACAAGTGAGC
TTTGTTTGGGGGAGATGTTACTACAAAATTACATGAGTACATGAGTAAGAATTACA
TTATTAACCTAAAGGATGAAAGGTATGGATGATGTGACACTGAGACAAAGATGTATAAATGA
AATTAGGGCTTGAATAGGAAGTTTAATTCTCTAAAGAGTAAGTGAAAAGTGCAGTTG
TAACAAACAAAGCTGTAACATCTTCTGCCAATAACAGAAGTTGGCATGCCGTGAAGGT
GTTGGAAATATTATGGATAAGAATAGCTCAATTATCCAAATAATGGATGAAGCTATAA
TAGTTTGGGAAAAGATTCTCAAATGTATAAAGTCTTAGAACAAAAGAACATTCTTGAAATA
AAAATATTATATAAAAAGTAAAAAAAAAA

FIGURE 60

MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPKGDSQPLFLTPYIEAGKIQKGREL
SVPFPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEH
GPYVVTSNMTLDRDFPWTTLMSMLYIDNPVGTGFSFTDDTHGYAVNEDDVARDLYSALIQF
FQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSILNPVREVKINLNGIAIGDGYSDPESIIGG
YAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEEAFEILDKLLDGDLTSDPSYFQNVTG
CSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIHGNQTFNDGTIVEKYLREDTVQSVKPWLT
EIMNNYKVLIYNGQLDIIVAAALTERSLMGMDWKGSQEYKKAEKVWKIFKSDSEVAGYIRQ
AGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.

amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352,
353-357, 424-428

Tyrosine kinase phosphorylation site.

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

FIGURE 61

CGAGGGCTTCGGCTCCGAATGGCACATGTGGAATCCCAGTCTTGGCTACAACAT
TTTCCCTTCCTAACAGTCTAACAGCTGTTAACAGCTAGTGATCAGGGTTCTTCTT
GCTGGAGAAGAAAGGGCTGAGGGCAGAGCAGGGCACTCTCACTCAGGGTGACCAGCTCCTTG
CCTCTGTGGATAACAGAGCATGAGAAAGTGAAGAGATGCAGCGAGTGAGGTGATGGAAG
TCTAAAATAGGAAGGAATTGTGTGCAATATCAGACTCTGGGAGCAGTTGACCTGGAGAGC
CTGGGGAGGGCTGCTAACAGCTTCAAAAAACAGGAGCGACTTCAACTGGCTGGGAT
AAGACGTGCCGGTAGGATAGGAAGGACTGGTTAGTCCTAACATTGACTGGCTGGG
TGAACCTAACAGCCTTAACCTCTGGGAGATGAAAACGATGGCTTAAGGGCCAGAAA
TAGAGATGTTGAAAATAAAATTAAAAAGCAAGTATTTATAGCATAAAGGCTAGA
GACCAAAATAGATAACAGGATCCCTGAACATTCTAACAGAGGGAGAAAGTATGTTAAAATA
GAAAAACCAAAATGCGAGAAGGAGGAGACTCACAGAGCTAAACCAGGATGGGACCTGGGTC
AGGCCAGCCTTTGCTCCTCCGGAAATTATTTGGTCTGACCACTCTGCCTTGTGTTT
GCAGAATCATGTGAGGGCCAACCGGGGAAGGTGGAGCAGATGAGCACACACAGGAGCCGTCT
CCTCACCGCCGCCCTCTCAGCATGGAACAGAGGCAGCCCTGGCCCCGGGCTGGAGGTGG
ACAGCCGCTGTGGCTCTCAGTGGCTGGGTCTGGCTGGCCCCCAGCAGCCGG
ATGCCTCAGTCAGCACCTCACTCTGAGAATCGTACTGGACCTTCACCACCTGACCGT
CCACCAAGGGACGGGGCGTCTATGTGGGGCCATCAACCGGGTCTATAAGCTGACAGGCA
ACCTGACCATCCAGGTGGCTCATAACAGACAGGGCAGAAGAGGACAACAAGTCTCGTTACCCG
CCCCTCATCGTGCAGCCCTGCAGCGAAGTGTCTACCCCTACCAACAATGTCAACAAGCTGCT
CATCATTGACTACTCTGAGAACCGCCTGCTGGCTGTGGAGCCTCTACCAGGGGTCTGCA
AGCTGCTGCCGGCTGGATGACCTCTCATCCTGGTGGAGCCATCCCACAAGAAGGAGCACTAC
CTGTCCAGTGTCAACAAGACGGGACCATGTACGGGGTGATTGTGCGCTCTGAGGGTGAGGA
TGGCAAGCTCTTATCGGCACGGCTGTGGATGGGAAGCAGGATTACTTCCGACCTGTCCA
GCCGGAAGCTGCCCGAGACCCCTGAGTCCTCAGCCATGCTGACTATGAGCTACACAGCGAT
TTTGTCTCCTCTCATCAAGATCCCTCAGACACCCCTGGCCCTGGTCTCCACTTTGACAT
CTTCTACATCTACGGCTTGCTAGTGGGGCTTGTCTACTTCTCACTGTCCAGCCGAGA
CCCCTGAGGGTGTGGCCATCAACTCCGCTGGAGACCTCTTACACCTCACGCATCGTGC
CTCTGCAAGGATGACCCCAAGTCCACTCATACGTGTCCCTGCCCTGGCTGCACCCGGC
CGGGTGGAAACCGCCTCTGCAGGCTGCTACCTGGCCAAGCCTGGGACTCACTGGCC
AGGCCTTCAATATCACCAGCCAGGACATGTACTCTTGCATCTCTCAAAGGGCAGAAG
CACTACCCAGGCGATGACTCTGCCCTGTGCGCTTCCCTACGGGCAACCTGGAGCTCAACTGGC
GCAGATCAAGGAGCGCCTGCAGTCTGCTACCAGGGCGAGGGCAACCTGGAGCTCAACTGGC
TGCTGGGAAGGACGTCCAGTGCACGAAGGCGCTGTCCCCATCGATGATAACTCTGTGGA
CTGGACATCAACCAGCCCTGGAGGCTCAACTCCAGTGGAGGGCTGACCTGTACACCAC
CAGCAGGGACCGCATGACCTCTGTGCCCTACGTTACAACGGCTACAGCGTGGTTTG
TGGGACTAAGAGTGGCAAGCTGAAAAGGTAAGAGTCTATGAGTCACTGCTCAAATGCC
ATTCACCTCCTCAGCAAAGAGTCCCTTGGAGGTAGCTATTGGTGGAGATTTAACTATAG
GCAACTTATTTCTGGGAACAAAGGTGAATGGGAGGTAAGAAGGGTTAATTGTG
ACTTAGCTCTAGCTACTCCTCCAGCCATCAGTCATTGGTATGTAAGGAATGCAAGCGTA
TTCAATATTCCCAAACTTAAGAAAAACTTAAGAAGGTACATCTGCAAAAGCAAA

FIGURE 62

MGTLGQASLFAPPGNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWP
RALEVDSRSVVLLSVVVVLLAPPAAGMPQFSTFHSENRDWTFNHLTQHGTVGAVYVGAINRV
YKLTGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTLTNNVNKLIIIDYSENRLLAGSL
YQGVCKLLRLDDLFLILVEPSHKKEHYLSSVNKTGTMYGVIVRSEGEDGKLFIGTAVDGKQDY
FPTLSSRKLP RDPESSAMLDYELHSDFVSSLIKIPSDTLALVSHFDIFYIYGFASGGFVYFL
TVQPETPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRAGVEYRLLQAAYLAKP
GDSLAQAFNITSQDDVLFIAIFSKGQKQYHHPPDDSAFCPIRAINLQIKERLQSCYQGEQN
LELNWLLGKDQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTSVASYVYNG
YSVVFVGTKSGKLKKVRVYEFRCSNAIHLLSKESLLEGSYWWRFNYRQLYFLGEQR

Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387,
384-388, 471-475, 481-485, 530-534

N-myristoylation site.

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

FIGURE 63

AGGCTCCCGCGCGCGGCTGAGTGGACTGGAGTGGACCCGGTCCCCCGCGTTAGAGAACACGCG**A**TGACCA
CGTGGAGCCTCOGGCGGAGGCCGGCCCGCACGCTGGACTCTGCTGCTGGCTCTGGCTTCCTGGCTCC
GCAGGCTGGACTGGAGCACCCCTGGTCCCTCTGCGGCTCCGCATCGACAGCTGGGCTGCAGGCCAAGGGCTGGA
ACTTCATGCTGGAGGATTCCACCTCTGGATCTCGGGGCTCCATCACTATTTCGTGTGCCAGGGAGTACT
GGAGGGACCGCCCTGCTGAAGATGAAGGCCCTGCTGAACACCCTCACACCTATGTTCCGTGGAACCTGCATG
AGCCAGAAAGAGGCAAATTGACTTCTCTGGGAACCTGGACCTGGAGGCCCTCGTCTGATGGCCGCAGAGATCG
GGCTGTGGGTATTCTGCTCCAGGCCCTACATCTGCTGAGATGGACCTCGGGGCTGCCAGCTGGCTAC
TCCAAGACCCCTGGCATGAGGCTGAGGACAACCTAACAGGGCTCACCGAAGCAGTGGACCTTATTGACCACC
TGATGTCCAGGGTGGTGCCACTCCAGTACAAGCGTGGGGAGCTATCGTGGCTGAGGTGAGAAATGAATATG
GTTCTATAATAAAGACCCCGCATACATGCCCTACGTCAAGAAGGCCTGGAGGACCGTGGCATTGTGGAACCTGC
TCCTGACTTCAGACAACAAGGATGGGTGAGCAAGGGATTGTCCAGGGAGTCTTGGCCACCATCAACTTGCAGT
CAACACACGAGCTGCAGCTACTGACCACCTTCTCTTCAACGTCCAGGGAGCTCAGCCCAAGATGGTGTGGAGT
ACTGGACGGGGTGGTTGACTCGTGGGAGGCCCTCACAAATATCTTGGATTCTCTGAGGTTTGAAAACCGTGT
CTGCCATTGTGGACGCCGCTCCATCAACCTCTACATGTTCCACGGAGGCACCAACTTGGCTTCATGAATG
GAGCCATGCACTCCATGACTACAAGTCAGATGTCACCAGCTATGACTATGATGCTGTGCTGACAGAACCGCG
ATTACACGCCAAGTACATGAAGCTTCGAGACTCTCGGCTCCATCTCAGGCATCCCTCTCCCTCCCCACCTG
ACCTTCTTCCAAGATGCCGTATGAGCCCTTAACGCCAGTCCTGTACCTGTCTGTGGACGCCCTCAAGTACC
TGGGGAGCCAATCAAGTCTGAAAAGCCATCAACATGGAGAACCTGCCAGTCATGGGGAAATGGACAGTCCT
TCGGGTACATTCTCTATGAGACCAGCATCACCTCGTCTGGCATCCTCAGTGGCCACGTGCTGATCGGGGGCAGG
TGTTTGTGAACACAGTATCCATAGGATTCTGGACTACAAGACAACGAAGATTGCTGTCCCCCTGATCCAGGGTT
ACACCGTGTGAGGATCTGGTGGAGAATCGTGGCGAGTCACATGGGGAGAAATTGATGACCAGCGCAAAG
GCTTAATTGGAAATCTCTATCTGAATGATTACCCCCTGAAAAACTTCAGAATCTATAGCCTGGATATGAAGAAGA
GCTTCTTCAGAGGTTGGCCTGGACAAATGGNTTCCCTCCAGAAACACCCACATTACCTGCTTCTTCTTGG
GTAGCTTGTCCATCAGCTCACGCCCTGTGACACCTTCTGAAGCTGGAGGGCTGGAGAAGGGGTTGTATTCA
TCAATGCCAGAACCTTGGACGTTACTGGAACATTGGACCCAGAACAGCCTTACCTCCAGGTCCCTGGTTGA
GCAGCGGAATCAACCAGGTATCGTTTGAGGGAGACGATGGGGCCCTGCATTACAGTTACGGAAACCCCCC
ACCTGGGAGGAACCACTACATTAAGT**G**AGCGGTTGGCACCCCTCTGCTGGTGCAGTGGGAGACTGCCGCTC
CTCTTGACCTGAAGCCTGGCTGCTGCCCAACCCCTCAGTCAGCAGAACCTTAAGCTGGCAGGGATGGCTCTGGGCC
ACTGGGGCTACAGTCTGCCCTGTCTCAGTCAGCTAACACCCCTAAGCCTGAGGGAAAGGTGGATGGCTCTAGGGTGGAGC
TGGCTTGTGATGGCTTCTCACAGCCCTGCTCTGTGCGGAGGCTGTGGCTGTCTAGGGTGGAGC
AGCTAATCAGATGCCAGCCTTGGCCCTCAGAAAAAGTGTGAAACAGTGCCTTCAGCCGACGTACAGCCC
TGCAGCATCTGCTGGACTCAGCGTGCTCTTGCTGGTCTGGAGGCTGGCCACATCCCTCATGGCCCCAT
TTTATCCCCGAATCCTGGGTGTGTCACAGTGTAGAGGGTGGGAAGGGGTGTCTCACCTGAGCTGACTTGT
CTTCCCTCACAAACCTCTGAGCCTCTTGGGATTCTGAAGGAACCTGGCGTGAAGAACATGTGACTTCCCC
TCCCTCCCACTCGCTGCTCCCACAGGGTACAGGCTGGAGAAACAGAACCTCACCCCTGCGTCTTCC
CAAGTTAGCAGGTGTCTGGTCACTGAGGAGGACATGTGAGTCTGGCAGAACGCCATGCCCATGTCTGCA
CATCCAGGGAGGAGGACAGAACGGCCAGCTCACATGTGAGTCTGGCAGAACGCCATGCCCATGTCTGCAACATCC
AGGGAGGAGGACAGAACGGCCAGCTCACATGTGAGTCTGGCAGAACGCCATGCCCATGTCTGCAACATCCAGGG
GGAGGACAGAACGGCCAGCTCACATGTGAGTCTGGCAGAACGCCATGCCCATGTCTGCAACATCCAGGGAGG
ACAGAACGGCCAGCTCAGTGGCCCCGCTCCCCACCCCCCACGCCGAACAGCAGGGCAGAGCAGCCCTCTTC
GAAGTGTGTCAGTCCGATTTGAGCCTTGTCTGGGCCAGCCAAACACCTGGCTTGGCTACTGCTG
GTTGCAGTAAAGCTATAACCTTGAATCACAA

FIGURE 64

MTTWSLRRR PARTLGLLLLVVLGFLVLRRLDWSTLVPLRLRHQLGLQAKGWNFMLEDSTFW
IFGGSIHYFRVPREYWRDRLLKMKACGLNTLTTYVPWNLHEPERGKFDFSGNLDLEAFVLMA
AEIGLWVILRPGPYICSEMDLGGLPSWLLQDPGMRLRTTYKGFTEAVIDLYFDHLMMSRVVPLQ
YKRGGPIIAVQVENEYGSYNKDPAYMPYVKKALEDRGIVELLTSNDKDGLSKGIVQGVLAT
INLQSTHELQLLTTFLNVQGTQPKMVMEYWTGFDSWGGPHNILDSSEVLKTVSAIVDAGS
SINLYMFHGGTNFGFMNGAMHFHDYKSDVTSYDYDAVLTEAGDYTAKYMKLRDFFGSISGIP
LPPPPDLPKMPYEPLTPVLYLSLWDALKYLGEPIKSEKPINMENLPVNGGNGQSFYIYE
TSITSSGILSGHVHDRGQVFVNTVSIGFLDYKTTKIAVPLIQGYTVLRILVENRGRVNYGEN
IDDQRKGLIGNLYLNDSPLKNFRIYSLDMKKSFFQRFGLDKWXSLPETPTLPAFFLGSLYSIS
STPCDTFLKLEGWEKVVFinQNLGRYWNIGPQKTLYLPGPWLSSGINQVIVFEETMAGPA
LQFTETPHLGRNQYIK

Signal sequence:

amino acids 1-27

Casein kinase II phosphorylation site.

amino acids 141-118, 253-257, 340-344, 395-399, 540-544, 560-564

N-myristoylation site.

amino acids 146-152, 236-242, 240-246, 244-250, 287-293, 309-315,
320-326, 366-372, 423-429, 425-431, 441-447, 503-509, 580-586

FIGURE 65

GGGGACGGGAGCTGAGAGGCTCCGGCTAGCTAGGTGTAGGGTGGACGGTCCCAGGACC
CTGGTGAGGGTTCTCTACTTGGCCTCGGTGGGGTCAAGACGCAGGCACCTACGCCAAAGG
GGAGCAAAGCCGGCTCGGCCGAGGCCCGAGGACCTCATCTCCAATGTTGGAGGAATC
CGACACGTGACGGTCTGTCGCCGTCTCAGACTAGAGGAGCGCTGAAACGCCATGGCTCC
AAGAAGCTGTCCTGCCTCGTCCCTGCTGCTGCCGCTCAGCCTGACGCTACTGCTGCCCA
GGCAGACACTCGGTCGTTGCTAGGGATAGGGGTCATGACCGGTTCTCCTAGACGGGCC
CGTCCGCTATGTGTCGGCAGCCTGCACTACTTCGGGTACCGCGGGTGCTTGGGCCAC
CGGCTTTGAAGATGCGATGGAGCGGCCTCAACGCCATACAGTTATGTCGCCCTGGAACTA
CCACGAGCCACAGCCTGGGGTCTATAACTTAATGGCAGCCGGACCTCATGCCCTTCTGA
ATGAGGCAGCTCTAGCGAACCTGTTGGTCATACTGAGACCAAGGACCTACATCTGTGCAGAG
TGGGAGATGGGGGGTCTCCCATCCTGGTTGCTCGAAAACCTGAAATTCTAAGAACCTC
AGATCCAGACTCCTGCGCAGTGACTCCTGGTTCAAGGTCTGCTGCCAAGATATATC
CATGGCTTATCACAAATGGGGCAACATCATTAGCATTAGGTGGAGAATGAATATGGTAGC
TACAGAGCCTGTGACTTCAGCTACATGAGGCACCTGGCTGGCTCTCGTGCACTGCTAGG
AGAAAAGATCTGCTCTCACACAGATGGGCCTGAAGGACTCAAGTGTGGCTCCCTCCGGG
GAECTATACCACTGTAGATTGGCCAGCTGACAACATGACCAAAATCTTACCCCTGCTT
CGGAAGTATGAACCCATGGGCATTGGTAAACTCTGAGTACTACACAGGCTGGCTGGATTA
CTGGGGCCAGAATCACTCCACACGGTCTGTGTCAGCTGTAACCAAGGACTAGAGAACATGC
TCAAGTTGGGAGCCAGTGTGACATGTACATGTTCCATGGAGGTACCAACTTGGATATTGG
AATGGTGCCGATAAGAAGGGACGCTCCCTCGATTACTACCAGCTATGACTATGATGCACC
TATATCTGAAGCAGGGGACCCACACCTAACGCTTTGCTCTCGAGATGTACAGCAAGT
TCCAGGAAGTCCCTTGGGACCTTACCTCCCCGAGCCCCAAGATGATGCTGGACCTGTG
ACTCTGCACCTGGTTGGCATTACTGGCTTCTAGACTTGCTTGGCCCCGTGGGCCAT
TCATTCAATCTGCCAATGACCTTGAGGCTGTCAGCAGGACCATGGCTCATGTTGTACC
GAACCTATATGACCCATACCATTGGAGCCAACACCATTCTGGGTGCCAATAATGGAGTC
CATGACCGTGCCTATGTGATGGTGGATGGGTGTTCCAGGGTGTGGAGCGAAATATGAG
AGACAAACTATTTTGACGGGAAACTGGGTCAAACCTGGATATCTGGTGGAGAACATGG
GGAGGCTCAGCTTGGGTCTAACAGCAGTGACTCAAGGGCCTGTTGAAGCCACCAATTCTG
GGGCAAACAATCCTAACCACTGGATGATGTTCCCTCTGAAAATTGATAACCTGTGAAGTG
GTGGTTCCCTCCAGTTGCCAAATGCCATATCCTCAAGCTCCTCTGGCCCCACATTCT
ACTCCAAAACATTCCAATTAGGCTCAGTTGGGGACACATTCTATATCTACCTGGATGG
ACCAAGGGCAAGTCTGGATCAATGGGTTAACCTGGGCCGGTACTGGACAAAGCAGGGCC
ACAACAGACCCCTACGTGCCAAGATTCTGCTGTTCTAGGGAGCCCTAACAAAATTA
CATTGCTGGAACCTAGAAGATGTACCTCTCCAGCCCCAAGTCCAATTGGATAAGCCTATC
CTCAATAGCACTAGTACTTGACAGGACACATCAATTCCCTTCAGCTGATAACTGAG
TGCCTCTGAACCAATGGAGTTAAGTGGCACTGAAAGGTAGGCCGGCATGGTGGCTCATGC
CTGTAATCCCAGCACTTGGGAGGCTGAGACGGGTGGATTACCTGAGGTCAAGGACTTCAAGA
CCAGCCTGGCCAACATGGAAACCCCGTCTCCACTAAAAAATACAAAATTAGCCGGCGTG
ATGGTGGGCACCTCTAATCCCAGCTACTGGGAGGCTGAGGGCAGGAGAATTGCTTGAATCC
AGGAGGCAGAGGTTGCAGTGAGTGGAGGTTGTACCACTGCACTCCAGCCTGGCTGACAGTGA
GACACTCCATCTCAAAAAAAAAAA

FIGURE 66

MAPKKLSCLRSLLLPLSLTLLPQADTRSFVVDRGHDRFLLDGAPFRYVSGSLHYFRVPRVL
WADRLLKMRWSGLNAIQFYVPWNYHEPQPGVNFNGSRDLIAFLNEAALANLLVILRPGPYI
CAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNGGNIISIQVENE
YGSYRACDFSYMRHLAGLFALLGEKILLFTTDGPEGLKCGSLRGGLYTTVDFGPADNMTKIF
TLLRKYEPhGPLVNSEYYTGWLWQNHSTRSAVTKGLENMLKLGASVNMYMFHGKTNF
GYWNGADKKGRFLPITTSYDYDAPISEAGDPTPKLFALRDVISKFQEVPGLPLPPSPKMML
GPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGFMLYRTYMTHTIFEPTPFWVPN
NGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDILVENMGRLSFGSNSSDFKGLLKP
PILGQTILTQWMMFPLKIDNLVWWFPLQLPKWPYQAPSGPTFYSKTFPILGSVGDTFLYL
PGWTKGQVWINGFNLGRYWTQGPQQTLYVPRFLFPRGALNKITLLELEDVPLQPQVQFLD
KPILNSTSTLHRTHINSLSADTLSASEPMELSGH

Signal sequence:

amino acids 1-27

N-glycosylation site.

amino acids 97-101, 243-247, 276-280, 486-490, 625-629

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 4-8

Casein kinase II phosphorylation site.

amino acids 148-152, 234-238, 327-331, 423-427, 469-473, 550-554,
603-607, 644-648

Tyrosine kinase phosphorylation site.

amino acids 191-198

N-myristoylation site.

amino acids 131-137, 176-182, 188-194, 203-209, 223-229, 227-233,
231-237, 274-280, 296-300, 307-313, 447-453, 484-490

FIGURE 67

GCTTGAAACACGTCTGCAAGCCAAAGTTGAGCATCTGATTGGTTATGAGGTATTCAGTGC
ACCCACAATATGGCTTACATGTTAAAAAGCTTCTCATCAGTTACATATCCATTATTGTGT
TTATGGCTTATCTGCCTCTACACTCTCTGTTATTCAAGGATAACCTTGAAGGAATATT
CTTCGAAAAGTCAGAGAAGAGAGCAGTTAGTGCACATTCCAGATGTCAAAACGATT
GCGTCCTTCTCACATGGTAGACCAGTATGACCAGCTATATTCCAAGCGTTGGTGTGTT
CTTGTCAAGAGTTAGTGAAGAAATAACTAGGGAAATTAGTTGAACCATGAGTGGACATTG
AAAAACTCAGGCAGCACATTCAACGCCAGGACAAGCAGGAGTTGCATCTGTTCATG
CTGTCGGGGTGCCCCATGCTGTCTTGACCTCACAGACCTGGATGTGCTAAAGCTTGA
AATTCCAGAAGCTAAAATTCTGCTAACAGATTCTCAAATGACTAACCTCAAGAGCTCCACC
TCTGCCACTGCCCTGCAAAAGTTGAACAGACTGCTTTAGCTTCTCGCGATCACTGAGA
TGCCTTCACGTGAAGTTCACTGATGTGGCTGAAATTCTGCCTGGGTGTATTGCTAAAAAA
CCTTCGAGAGAGTTGTACTTAATAGGCAATTGAACCTCTGAAAACAATAAGATGATAGGACTTG
AATCTCTCCGAGAGTTGGCACCTTAAGATTCTCACGTGAAGAGCAATTGACCAAAGTT
CCCTCCAACATTACAGATGTGGCTCCACATCTTACAAAGTTAGTCATTATAATGACGGCAC
TAAACTCTGGTACTGAACAGCCTTAAGAAAATGATGAATGTCGCTGAGCTGGAACTCCAGA
ACTGTGAGCTAGAGAGAATCCCACATGCTATTTCAGCCTCTCTAACAGGAACTGGAT
TTAAAGTCCAATAACATTGCACAATTGAGGAAATCATCAGTTCCAGCATTAAAACGACT
GACTTGTAAAATTATGGATAACAAAATTGTTACTATTCCCTCCCTATTACCCATGTCA
AAAACTTGGAGTCACTTATTCTCTAACACAAGCTCGAACCTTACAGTGGCAGTATT
AGTTACAGAAACTCAGATGCTTAGATGTGAGCTACAACAACATTCAATGATTCAATAGA
AATAGGATTGCTTCAGAACCTGCAGCATTTGCATATCACTGGAACAAAGTGGACATTCTGC
CAAACAAATTGTTAAATGCATAAAGTTGAGGACTTGAATCTGGACAGAACTGCATCACC
TCACTCCCAGAGAAAGTTGGTCAGCTCTCCAGCTCACTCAGCTGGAGCTGAAGGGAACTG
CTTGGACCGCCTGCCAGCCCAGCTGGCCAGTGTGGATGCTCAAGAAAAGCGGGCTGTTG
TGGAAGATCACCTTTGCAAATGGATTAAAACTAACAGATAATATGACACAGTGTGCAGGAAC
AACTCCTAGATTGCAAGTGCTCACGTACAAGTTATTACAAGATAATGCATTAGGAGTAG
ATACATCTTTAAAATAACAGAGAGGATGCATAGAAGGCTGATAGAAGACATAACTGAAT
GTTCAATGTTGTTAGGGTTAAAGTCATTCACTTCCAAATCATTGTTCTTTGGG
AAAGGGAAGGAAAATTATAACTAAATCTTGGTTCTTTAAATTGTTGTAACCTGGAT
GCTGCCGCTACTGAATGTTACAAATTGCTTGCCTGCTAAAGTAAATGATTAAATTGACATT
TTCTTACTAAAAAAAAAAAAAA

FIGURE 68

MAYMLKKLLISYISIICVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSDIPDVKNDFAFL
LHMVDQYDQLYSKRGVFLSEVSENKLREISLNHEWTFEKLRQHISRNAQDKQELHLFMLSG
VPDAVFDTLDVLKLELIPEAKIPAKISQMNTNLQELHLCHCPAKVEQTAFSFLRDHLRCLH
VKFTDVAEIPAWVYLLKNLRELYLIGNLNSENNKMIGLESLRELRLKILHVKSNLTKVPSN
ITDVAPHLTKLVIHNDGTKLLVLNSLKKMMNVAELELQNCELERIPHAIFSLSNLQELDLKS
NNIRTIEIIISFQHLKRLTCLKLWHNKIVTISSITHVKNLESLYFSNNKLESLPVAVFSLQ
KLRCLDVSYNNISMIPIEIGLLQNLQHLHITGNKVDILPKQLFKCIKLRTLNLGQNCITSLP
EKVGQLSQLTQLELKGNCLDRPAQLGQCRMLKKSGLVVEDHLFDTLPLEVKEALNQDINIP
FANGI

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 241-245, 248-252, 383-387

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 326-330

Casein kinase II phosphorylation site.

amino acids 48-52, 133-137, 226-230, 315-319, 432-436, 444-448

Tyrosine kinase phosphorylation site.

amino acids 349-355, 375-381

N-myristoylation site.

amino acids 78-84, 124-130, 212-218, 392-398

FIGURE 69

CC CAC CG CG TCC GGC CT TCT CT GG ACT TT GC AT TT CC AT TT CATT GA CA AA ACT GA CT TT TT ATT CT
TTT TT CC AT CT CT GG CC AG CT GG AT CC TAGG CG CC CT GG AAG AC AT TT GT GT TT AC AC AC TA AGG AT
CT GT GT TT GG GG TT CT T CT CC CT GG AC AT TT GG CATT GC TTA GT GG CT TG GT GG GG AG GG ACC AC CG TG
G CTC AGT G CTT GC TT GC ACT TAT CT GC CT AGG TA CAT CGA AGT CT TT GA CCT CC AT AC AGT G ATT AT GC CT GT
AT CG CT GG GT AT CT GG CC CT TT GC CT GT GC AT AGT GT GT CG CT TG CT GT CT TT ACT TCA AA AT AC AC AAC
GCG CTA AA AG CT GCAA AGG AAC CT GA AG CT GT GG CT GT AAA AA AT CACA ACC CAG AC AAG GT GT GG GT GG CC AG
AAC AG CC AGG CCAA ACC AT GC CAC CG AGT CT GT GC CT GG CG ACT GT GT GA AGG AT AT AGA AT GT GT GC
AG TT TT GA TT CC CT GC CAC CT GT GT GC GA CAT AA AT GA GGG CT CT GA GT TAGG AAGG CT CC CT TC CAA
GC AG AG CC CT GA AG AC TT CA AT GT CA AT GA GG CC AC CT GT TT GT AT GT GC AGG CAC AG AAG GAA AGG CAC AG
CT CC CC AT CAG TT CAT GG AAA AT AACT CAGT GC CT GT GG AACC AG CT GT GG AG AT CC CT AC AG AG AG CT TC
CA CT GG GG CA ACC CT CC AGG AAGG AGT GT GG AG AG AACC CT ACT GT GG GG AT GT GT AT AA ACC AGT CA
CAC AG CT GC CT TATT CT CA CAA AT CT ACC CC TT GC GT GG ACT GAC GT TT CC CT GG AG GT GT CC AG AAA
GCT GA GT TA AC AC AG AG CC TATA AA AG CT GT CG CT TA AGG CT GC CC AG GC CC TT GC CAA AT GG AG CT GT
AGA AGG CT CAT GC CATT GA CC CT TT AA TT CT CT GT TT GG CG AG CT GCA AT GG CG AGG CT GA AGG CA AT
GCA AG CT GC AC AGT CAGT CT AGG GG GT GC CA AT AT GG CAG AG ACC CAA AG CC AT GAT CC TGT CA ACT CA AT CCC
AGT GAG AACT GC AC CT GG CA AT AGA AG ACC CAA ACC AG CAT CAG AATT AT CT TT CT AT GT CC AGC TT
GAT CC AG AT GG AAG CT GT GAA AGT GAAA AC AT TA AGT CT TT GA CGG A AC CT CC AG CA AT GG CC CT TG CT AG GG
CA AGT CT GC AG TAAA AC GACT AT GT CT CT GT ATT TGA AT CAT CAGT AC ATT GA CG TT CAA AT AGT TACT
GA CT CAG CA AG AATT CAA AG AACT GT CT TT GT CT TACT ACT TT CT CT CTA AC AT CT CT AT TCC AA ACT GT
GG CG GT TA CCT GG AT AC CT TT GG AAGG AT CCT CACC AG CCCC AT TA CCA AA AG CC GCA T CT GAG CT GG CT TAT
TGT GT GT GG CA CATA CA AGT GG AGA AA AG ATT ACA AG AATA ACT AA ACT CAA AG AG AT TT CC TAGA AA AT AG AC
AA AC AGT G CAA AT TT GAT TT CT GC CAT CT AT GA TGG CC CT CC ACC AACT CT GG CT GAT GG ACA AGT CT GT
GG CG GT GACT CCC AC CT TC GA AT CGT CAT CAA ACT CT CT GA CT GT CG TT GT CT AC AGA TT AT GC CA AT CT
TAC CG GG GAT TT CT GT CT TT CT AC AC CT CA ATT TAT GC AG AAA AC AT CA AC ACT AC AT CT TA ACT TG CT TT CT
GAC AGG AT GAG GT TATT ATA AG CAA AT CCT AC CT TAG AGG CT TT TA ACT CT TA AT GG AATA ACT TG CA ACT AAA
GAC CCA ACT TG CAG ACC AAA ATT TAT CAA AT GT GT GG AT TT CT GT CC CT TA AT GG AT GT GG TACA AT CAGA
AAG GT AGA AG AT CAGT CA ATT ACT TA CAC CA AT TA AT CAC CT TT CT GC AT CCT CA ACT CT GA AGT GT GAT CACC
CGT CAG AA AC AACT CC CAG ATT ATT GT GA AGT GT GAA AT GG GAC AT TA AT CT AC AGT GG AG AATA AT AC AT AACA
GA AG AT GAT GT AAT ACA AA AGT CAA AA GCA CT GG GCA AA AT TA AC ACC CAG AT GG CT TT TT GA AT CC AATT CA
TTG AAA AG ACT AT ACT TG AAT CAC CA TATT AT GT GG ATT TG AAC CAA ACT CT TT GT CA AGT TAGT CT GC AC
AC CT CAG AT CCA AT TT GG GT GT TT CT TGA TAC CT GT AG AG CTC TCC CAC CT GT ACT TT GC AT CCT CA ACC
TAC GAC CCT AAT CA AAG AGT GG AT GT TAGT CG AG AT GAA ACT TT GT AAG GT TAT CC TT ATT TG GAC ACT AT GG GAGA
TT CC AG TT TA AT GC CT TT AA ATT CT TG AGA AGT AT GAG CT CT GT TAT CT GC AGT GT AA AG TT GT GAT AT GT GAT
AGC AGT GACC ACC AGT CT CG CT GC AAT CA AGG TT GT CT CC AGA AG CAA AC GAG AC AT TT CT TCA TATA AA AT GG
AAA AC AG AT TCC AT CAT AGG ACC CATT CG CT GAAA AGGG AT CGA AGT GCA AGT GG CA AT TC AGG AT TT CAG CAT
GAA AC AC AT CG GG AAG AA ACT CCA AA ACC AGC CCT TCA AC AGT GT GC AT CT GT TT CT CT AT GG TT CT AG CT TG
AAT GT GG GT ACT GT TAGC GACA AT CA CAGT GAGG AT TT GT AA AT CA AC GGG CAG ACT ACA AA AT ACC AGA AG CT G
CAG AACT AT AA ACT AAC AGG TCCA ACC CT AAGT GAG AC AT GT TT CT CC AGG AT GC CAA AGG AA AT GT CT AC CT CG
GG CT AC AC AT ATT AT GA AT AA AT GA GGG CCGT GAA AGT GAC AC AC AGG CCGT GC AT GT AAAA AAAAA

FIGURE 70

MELVRRLMPLTLLLILSCLAEALTMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTI
ERPENKSIRIIFSYVQLDPDGSCESENIKVFDGTSSNGPLLGQVCSKNDYVPVFESSSTLT
FQIVTDSARIQRTVFVFFSPNISIPNCGGYLDTLEGSFTSPNYPKPHPELAYCVWHIQV
EKDYKIKLNFKEIFLEIDKQCKFDLAIYDGPSTNSGLIGQVCGRTPTFESSNSLTVVLS
TDYANSYRGFSASYTSIYAENINTTSLTCSSDRMVIISKSYLEAFNSNGNNLQLKDPTCRP
KLSNVVEFSVPLNGCGTIRKVEDQSITYTNIIITFSASSTSEVITRQKQLQIIVKCEMGHNST
VEIIYITEDDVIQSQNALGKYNTSMALFESNSFEKTILESPYYVDLNQTLFVQVSLHTSDPN
LVVFLDTCRASPTSDFASPTYDLIKSGCSRDETCKVYPLFGHYGRFQFNFKFLRSMSSVYL
QCKVLICDSSDHQSRCNQGCVSRSKRDIISSYKWKTDSIIGPIRLKRDRSASGNQFHETHA
EETPNQPFNSVHLFSFMVLALNVVTVATITVRHFVNQRADYKYQKLQNY

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374,
394-398, 419-423

Casein kinase II phosphorylation site.

amino acids 22-26, 108-112, 289-293, 348-352, 371-375, 379-383,
408-412, 463-467, 520-524, 556-560

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 71

GACGGAAGAACAGCGCTCCCGAGGCCGCGGGAGCCTGCAGAGAGGACAGCCGGCTGCGCCG
GGACATGCGGCCCCAGGAGCTCCCCAGGCTCGCGTTCCCGTTGCTGCTGTTGCTGC
TGCTGCGCCGCCGTGCCCTGCCAACAGCGCCACGCGCTTCGACCCCCACCTGGGAGTCC
CTGGACGCCGCCAGCTGCCCGTGGTTGACCAAGGCAAGTCGGCATCTTCATCCACTG
GGGAGTGTTCGCCCAGCTCGGTAGCGAGTGGTTCTGGTGGTATTGGAAAAGGAAA
AGATACCGAAGTATGTGAAATTATGAAAGATAATTACCCCTAGTTCAAATATGAAGAT
TTTGGACCACATTACAGCAAATTTTAATGCCAACAGTGGCAGATATTTCAAGGC
CTCTGGTGCCTAACATTCAGCTTAACCTCCAAACATCATGAAGGCTTACCTGTGGGGT
CAGAATATTCTGTGGAACCTGGAAATGCCATAGATGAGGGGCCAAGAGGGACATTGTCAAGGAA
CTTGAGGTAGCCATTAGGAACAGAACTGACCTGCGTTGGACTGTACTATTCCCTTTGA
ATGGTTTATCCGCTTCTGAGGATGAATCAGTCATTCCATAAGCGGCAATTCCAG
TTCTAAGACATTGCCAGAGCTATGAGTTAGTGAACAACATCAGCCTGAGGTTCTGTGG
TCGGATGGTGACGGAGGAGCACCGGATCAAACTGGAACAGCACAGGCTTCTGGCCTGGTT
ATATAATGAAAGCCCAGTCGGGGCACAGTAGTCACCAATGATCGTTGGGAGCTGGTAGCA
TCTGTAAGCATGGTGGCTTCTACCTGCAGTGATCGTTATAACCCAGGACATCTTGCCTA
CATAAATGGAAAAGTGCATGACAATAGACAAACTGCTGGGCTATAGGAGGGAAAGCTGG
AATCTGACTATCTTACAATTGAAGAATTGGTGAAGCAACTGTAGAGACAGTTCATGTG
GAGGAAATCTTGATGAATATTGGGCCACACTAGATGGCACCATTTCTGTAGTTTGAG
GAGCGACTGAGGCAAGTGGGCTGGCTAAAGTCAATGGAGAAGCTATTATGAAACCTA
TACCTGGCGATCCCAGAATGACACTGTACCCCCAGATGTGTGGTACACATCCAAGCCTAAAG
AAAAATTAGTCTATGCCATTCTTAAATGGCCCACATCAGGACAGCTGTTCTGGCCAT
CCCAAAGCTATTCTGGGGCAACAGAGGTGAAACTACTGGGCCATGGACAGCCACTTAAC
GATTCTTGAGCAAAATGGCATTATGGTAGAACTGCCACAGCTAACATTATCAGATGC
CGTGTAAATGGGCTGGCTTAGCCCTAACTAATGTGATCTAAAGTGCAGCAGAGTGGCTG
ATGCTGCAAGTTATGTCTAAGGCTAGGAACATCAGGTGTCTATAATTGTAGCACATGGAGA
AAGCAATGTAACGGATAAGAAAATTATTGGCAGTTCAAGCCCTTCCCTTTCCACTA
AATTCTTAAATTACCCATGTAACCATTAACTCTCCAGTGCACTTGCCATTAAAGTC
TCTTCACATTGATTGTTCCATGTGTGACTCAGAGGTGAGAATTTCACATTATAGTAG
CAAGGAATTGGTGGTATTATGGACCGAAGTGAAGAAATTATGTTGAAGCCATATCCCCCATG
ATTATATAGTTATGCATCACTTAATATGGGATATTCTGGAAATGCATTGCTAGTCAT
TTTTTTGTGCAACATCATAGAGTGTATTACAAATCTAGATGGCATAGCCTACTACA
CACCTAATGTGTATGGTATAGACTGTTGCTCCTAGGCTACAGACATATACAGCATGTTACTG
AATACTGTAGGCAATAGTAACAGTGGTATTGTATATCGAAACATATGGAAACATAGAGAAG
GTACAGTAAAATACTGTAAAATGGTGCACCTGTATAGGGCACTTACACGAATGGAG
CTTACAGGACTGGAAGTTGCTGGGTGAGTCAGTGAATGTGAAGGCCTAGGACATTA
TTGAACACTGCCAGACGTTATAAATACTGTATGCTTAGGCTACACTACATTATAA
GTTTTCTTCTCAATTATAAACATAAGTGTACTGTAACATTACAAACGTTTAATT
TTTAAACCTTTGGCTTTGTAATAACACTAGCTAAACATAACTCATTGTGCAA
ATGTAA

FIGURE 72

MRPQELPRLAFPLLLLLLPPPCPAHSATRFDPTWESLDARQLPAWFDQAKFGIFIFIHWG
VFSVPSFGSEWFWWYWKKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWADIFQAS
GAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRGFLYYSLFEW
FHPLFLEDESSSFHKRQFPVSRTLPELYELVNYYQPEVLWSDGDGGAPDQYWNSTGFLAWLY
NESPVVRGTVVTNDRGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDKLSWGYRREAGI
SDYLTIEELVKQLVETVSCGGNLLMNIPTLDGTISVVFEERLRQVGWLKVNGEAIYETYT
WRSQNNDTVTPDVWYTSPKPEKLVYAIFLKWPTSGQLFLGHPKAILGATEVKLLGHGQPLNWI
SLEQNGIMVELPQLTIHQMPCKWGWLALTNVI

Signal sequence:

amino acids 1-28

N-glycosylation site.

amino acids 171-175, 239-243, 377-381

Casein kinase II phosphorylation site.

amino acids 32-36, 182-186, 209-213, 227-231, 276-280, 315-319,
375-375

Tyrosine kinase phosphorylation site.

amino acids 361-369, 389-397

N-myristoylation site.

amino acids 143-149, 178-184, 255-261, 272-278, 428-434

Leucine zipper pattern.

amino acids 410-432

Alpha-L-fucosidase putative active site.

amino acids 283-295

FIGURE 73

AGCAGGGAAATCCGGATGTCTCGTTATGAAGTGGAGCAGTGAGTGTGAGCCTAACATAGT
TCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAAGTGGCCATC
TGAGGTGTTCCCTGGCTCTGAAGGGTAGGCACGATGGGCAGGTGCTTCAGCCTGGTGTG
CTTCTCACTTCCATCTGGACCACAGGGCTCTGGTCCAAGGCTCTTGCAGCAGAAGAGCT
TTCCATCCAGGTGTATGCAGAATTATGGGATCACCCCTGTGAGCAAAAGGCGAACAGC
AGCTGAATTACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGACTAAGTTGGCGGCAAG
GACCAAGTTGAAACAGCCTGAAAGCTAGCTTGAAACTTGCAGCTATGGCTGGGTTGGAGA
TGGATTCGTGGTCATCTTAGGATTAGCCAAACCCCAAGTGTGGAAAAATGGGTTGGGTG
TCCTGATTGAAAGGTTCCAGTGAGCCGACAGTTGCAGCCTATTGTTACAACACTCATCTGAT
ACTTGGACTAACTCGTGCATTCCAGAAATTATCACCACCAAAGATCCCATAATTCAACACTCA
AACTGCAACACAAACACAGAAATTATTGTCAAGTGCAGTACACTCGGTGGCATCCCCTT
ACTCTACAATACCTGCCCTACTACTACTCCTCTGCTCCAGCTCCACTTCTATTCCACGG
AGAAAAAAATTGATTGTGTACAGAAGTTTATGGAAACTAGCACCAGTCTACAGAAAC
TGAACCATTGTTGAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTGGAGGTGTCC
CCACGGCTCTGCTAGTGCTCTCCTCTTGGTGTGCAGCTGGTCTGGATTTGC
TATGTCAAAAGGTATGTGAAGGCCCTCCCTTTACAAACAAGAATCAGCAGAAGGAAATGAT
CGAAACCAAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCCATAATGAGGAATCAAAGA
AAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGCATGCCGGAA
GCTGAAGTTAGATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTCTTCATGCTCC
TTACCCCTGCCCAAGCTGGGAAATCAAAGGGCAAAGAACCAAGAACAGTCCACCCCTT
GGTTCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAACG
CCTTCTCCTATTGTAACCCTGCTGGATCCTATCCTCCTACCTCCAAAGCTTCCCACGGCC
TTCTAGCCTGGCTATGTCTTAATAATATCCCACGGAGAACAGGAGTTTGCAAAGTGCAA
GGACCTAAAACATCTCATCAGTATCCAGTGGTAAAAGGCCCTGGCTGTGAGGCTAGG
TGGTTGAAAGCCAAGGAGTCAGGACTGAGACCAAGGCTTCTACTGATTCCGAGCTCAGAC
CCTTCTCAGCTCTGAAAGAGAACACGTATCCCACCTGACATGCTCTGAGGCCGGTA
AGAGAAAAGAACATGGCAGAAAAGTTAGCCCCTGAAAGCCATGGAGATTCTCATAACCTGAG
ACCTAATCTCTGTAAGCTAAAATAAAGAAATAGAACAGGCTGAGGATACGACAGTACACT
GTCAGCAGGGACTGTAAACACAGACAGGGCAAAGTGTCTCTGAACACACATTGAGTTGGA
ATCACTGTTAGAACACACACACTTACTTTCTGGTCTCTACCACTGCTGATATTCTCT
AGGAAATATACTTTACAAGTAACAAAATAAAACTCTTATAAATTCTATTCTATCTGA
GTTACAGAAATGATTACTAAGGAAGATTACTCAGTAATTGTTAAAAGTAATAAAATTCA
ACAAACATTGCTGAATAGCTACTATGTCAGTGCTGTGCAAGGTATTACACTCTGTAAT
TGAATATTATTCTCAAAAATGCACTAGTAGAACGCTATCTGGGAAGCTATTCTCT
GTTTGATATTCTAGCTTATCTACTTCCAAACTAATTCTATTCTGAGACTAATCTT
ATTCAATTCTCTAATATGGCAACCATTATAACCTTAATTATTAAACATACCTAACAG
TACATTGTTACCTCTATATACCAAAGCACATTAAAAGGCCATTAAACAAATGTATCACTA
GCCCTCCTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATTGTGACAAAAATTAA
AGCATTAGAAAACCTT

FIGURE 74

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACR
LLGLSLAGKDQVETALKASFETCSYGVGDGFVVISRISPNSPKCGKNGVGVLIWKPVSQF
AAYCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPP
APASTSIPRRKKLICVTEVFMETSTMSTETEPFVENKAASFNEAAGFGGVPTALLVIALLFF
GAAAGLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKTDKNPEESKSP
SKTTVRCLAEAV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

FIGURE 75

AGATGGCGGTCTTGGCACCTCTAATTGCTCTCGTATTGGTGCACGACTTCACGATGG
CTCGCCCAACCTTACTACCTCTGTCGGCCCTGCTCTGCTGCCCTACTCGTGAGGAA
ACTGCCGCCGCTCTGCCACGGTCTGCCACCCAACCGGAAGACGGTAACCGTGTGACTTTG
ACTGGAGAGAAGTGGAGATCCTGATGTTCTCAGTGCCATTGTGATGAGAAGAACCGCAGA
TCCATCACTGTGGAGCAACATATAGGCAACATTTCATGTTAGTAAAGTGGCAACACAAT
TCTTTCTTCCGCTTGGATATTGCATGGCCTACTTACATCACACTCTGCATAGTGTCC
TGATGACGTGCAAACCCCCCTATATATGGGCCCTGAGTATATCAAGTACTTCAATGATAAA
ACCATTGATGAGGAACTAGAACGGGACAAGAGGGTCACTGGATTGTGGAGTTCTTGCAA
TTGGTCTAATGACTGCCAATCATTGCCCTATCTATGCTGACCTCTCCCTAAATACAAC
GTACAGGGCTAAATTTGGGAGGTGGATGTTGGACGCTACTGATGTTAGTACGGGTAC
AAAGTGAGCACATCACCCCTACCAAGCAACTCCCTACCCCTGATCCTGTTCCAAGGTGGCAA
GGAGGCAATGCGGCGGCCACAGATTGACAAGAAAGGACGGCTGTCTCATGGACCTCTG
AGGAGAATGTGATCCGAGAATTAACTAAATGAGCTATACCAGCGGCCAAGAAACTATCA
AAGGCTGGAGACAATATCCCTGAGGAGCAGCCTGTGGCTCAACCCCCACCACAGTGTCA
TGGGAAAACAAGAAGGATAAATAAGATCCTACTTGGCAGTGCTTCTCCTGTCAATT
CCAGGCTTTCCATAACCACAAGCCTGAGGCTGCAGCCTTNATTNATGTTTCCCTTGG
CTGNGACTGGNTGGGCAGCATGCAGCTCTGATTAAAGAGGCATCTAGGGATTGTCAG
GCACCCCTACAGGAAGGCCTGCCATGCTGTGGCAACTGTTCACTGGAGCAAGAAAGAGATC
TCATAGGACGGAGGGGAAATGGTTCCCTCCAAGCTGGTCAGTGTGTTACTGCTTATC
AGCTATTAGACATCTCCATGGTTCTCCATGAAACTCTGTGGTTCATCATTCTCTTAG
TTGACCTGCACAGCTGGTTAGACCTAGATTAAACCTAAGGTAAGATGCTGGGTATAGAA
CGCTAAGAATTTCACCCCAAGGACTCTGCTTCTTAAGCCCTCTGGCTTATGGTC
TTCATTAAAAGTATAAGCCTAACTTGTGCTAGCCTAAGGAGAACCTTAACCACAAAG
TTTTATCATTGAAGACAATATTGAACAAACCCCTATTTGTGGGATTGAGAAGGGTGAA
TAGAGGCTTGAGACTTCCCTTGTGTGGTAGGACTGGAGGAGAAATCCCCTGGACTTCAC
TAACCCCTCTGACATACTCCCCACACCCAGTTGATGGCTTCCGTAATAAAAGATTGGGATT
TCCTTTG

FIGURE 76

MAVLAPLIALVYSVPRLSRWLAQPYYLLSALLSAAFLLVRKLPPLCHGLPTQREDGNPCDFD
WREVEILMFLSAIVMMKNRRSITVEQHIGNIFMFSKVANTILFFRLDIRMGLLYITLCIVFL
MTCKPPLYMGPEYIKYFNDKTIDEELERDKRVTWIVEFFANWSNDCQSFAPIYADLSLKYNC
TGLNFGKVDVGRYTDVSTRYKVSTSPLTKQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSE
ENVIREFNLNELYQRAKKLSKAGDNIPEEOPVASTPTVSDGENKKDK

Signal sequence:

amino acids 1-48

Transmembrane domain:

amino acids 111-125

N-glycosylation site.

amino acids 165-169, 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 154-158, 265-269

Casein kinase II phosphorylation site.

amino acids 51-55, 145-149, 245-249, 286-290, 288-292

N-myristoylation site.

amino acids 188-194, 225-231

Myb DNA-binding domain repeat signature 1.

amino acids 244-253

FIGURE 77

GGACAGCTCGCGGCCCCGAGAGCTCTAGCCGTCGAGGAGCTGCCTGGGACGTTGCCCTG
GGGCCAGCCTGGCCGGTCACCCCTGGCATGAGGAGATGGCCTGTTGCTCCTGGTCCA
TTGCTCCTGCTGCCCGCTCCTACGGACTGCCCTCTACAACGGCTCTACTACTCCAACAG
CGCCAACGACCAGAACCTAGGCAACGGTCATGGCAAAGACCTCCTTAATGGAGTGAAGCTGG
TGGTGGAGACACCCGAGGGAGACCCCTGTTCACCTACCAAGGGGCCAGTGTGATCCTGCCCTGC
CGCTACCGCTACGAGCCGGCCTGGTCTCCCCGCGCGTGTGCGTGTCAAATGGTGAAGCT
GTCGGAGAACGGGCCAGAGAAGGACGTGCTGGTGCCATGGGCTGAGGCACCGCTCCT
TTGGGACTACCAAGGCCGCGTGCACCTGCGCAGGACAAAGAGCATGACGTCTGGAG
ATCCAGGATCTCGGGCTGGAGGACTATGGCGTTACCGCTGTGAGGTCAATTGACGGCTGGA
GGATGAAAGCGGTCTGGTGGAGCTGGAGCTGCGGGGTGTGGCTTTCTTACCAAGTCCCCA
ACGGCGCTACCAGTTCAACTTCCACGAGGGCCAGCAGGTCTGTGCAGAGCAGGCTGCCGTG
GTGGCCTCCTTGAGCAGCTCTCCGGCCTGGAGGAGGGCCTGGACTGGTGCAACGCCGG
CTGGCTGCAGGATGCTACGGTGCAGTACCCCATCATGTTGCCCGGCAGCCCTGCCGTGG
CAGGCCTGGCACCTGGCGTGCAGCTACGGCCCCGCCACGCCGCTGCACCGCTATGAT
GTATTCTGCTTCGCTACTGCCCTCAAGGGCGGGTGTACTACCTGGAGCACCTGAGAAGCT
GACGCTGACAGAGGCAAGGGAGGCCTGCCAGGAAGATGATGCCACGATGCCAAGGTGGAC
AGCTCTTGCCGCTGGAAAGTCCATGGCCTGGACCGCTGCAGCCTGGCTGGCAGAT
GGCAGCGTCCGCTACCCGTGGTTCACCGCATCCTAACTGTGGCCCCCAGAGCCTGGGT
CCGAAGCTTGCTTCCCGACCCGAGAGCCGTTGTACGGTGTACTGCTACCGCCAGC
ACTAGGACTGGGCCTCCCTACTGGTGTTTATTGAGTGGT
CGTTTCCCTGTGGTTGGAGCCATTTAACTGTTTATACTTCTCAATTAAATTCT
TTAAACATTTTTACTATTTTGAAAGCAAACAGAACCCATGCCCTCCCTTGCTCCTG
GATGCCCACTCCAGGAATCATGCTTGCTCCCTGGCCATTGCGGTTTGCGGCTCTG
GAGGTTCCCCGCCATCCAGGCTGGTCTCCCTCCCTTAAGGAGGTTGGGCCAGAGTGGC
GGTGGCCTGTCTAGAATGCCGCCGGAGTCCGGGATGGTGGGCACAGTTCTCCCTGCC
CAGCCTGGGGAAAGAAGAGGCCCTGGGGCCTCCGGAGCTGGCTTGGCCTCTGCC
CACCTCTACTTCTCTGTGAAGGCCGTGACCCAGTCTGCCACTGAGGGCTAGGGCTGGAA
GCCAGTTCTAGGCTTCCAGGCGAAATCTGAGGGAGGAAGAAACTCCCTCCCCGTTCC
TCCCTCTCGGTTCAAAGAATCTGTTGTCATTGTTCTCCTGTTCCCTGTGTGG
GGAGGGGCCCTCAGGTGTGTACTTGAGCAATAATGGTGTATGACTGCCCTGCC
AA
AA

FIGURE 78

MGLLLLVPLLLLPGSYGLPFYNGFYYSNSANDQNLGNHGKDLLNGVKLVVETPEETLFTYQ
GASVILPCRYRYEPALVSPRRVRVKWWKLSENGAPEKDVLVAIGLRHRSFGDYQGRVHLRQD
KEHDVSLEIQDLRLEDYGRYRCEVIDGLEDESGLVEELRGVVFPYQSPNGRYQFNFHEGQQ
VCAEQAAVVASFEQLFRAWEELDWNCAGWLQDATVQYPIMLPRQPCGGPGLAPGVRSGPR
HRRLHRYDVFCFATALKGRVYYLEHPEKLTLTEAREACQEDDATIAKVGQLFAAWKFHGLDR
CDAGWLADGSVRYPVVHPHPNCGPPEPGVRSFGFPDPQSRLYGVYCYRQH

Signal sequence:

amino acids 1-17

Casein kinase II phosphorylation site.

amino acids 29-33, 53-57, 111-115, 278-282

Tyrosine kinase phosphorylation site.

amino acids 137-145

N-myristoylation site.

amino acids 36-42, 184-190, 208-214, 237-243, 297-303, 307-313

FIGURE 79

FIGURE 80

MMWRPSVLLLLLRLHGAQGKPSPDAGPHQGRVHQAPLSDAPHDDAHGNFQYDHEAFLGR
EVAKEFDQLTPEESQARLGRIVDRMDRAGDGWVSLAELRAWIAHTQQRHIRDSVSAAWDT
YDTDGRVGWEELRNATYGHYAPGEFHDVEDAETYKKMLARDERRFRVADQDGDSMATRE
ELTAFLHPEEFPHMRDIVAETLEDLDRNKGYVQVEEYIADLYSAEPGEEPAWVQTERQQ
FRDFRDLNKDGHLDGSEVGHVLPPAQDQPLVEANHLLHESDTDKDGRSLKAEILGNWNMFV
GSQATNYGEDLTRHHDEL

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 140-144

Casein kinase II phosphorylation site.

amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293,
291-295, 298-302

N-myristoylation site.

amino acids 263-269, 311-317

Endoplasmic reticulum targeting sequence.

amino acids 325-330

FIGURE 81

GGGCCTTGCCTCCGCACTCGGGCGCAGCCGGTGGATCTCGAGCAGGTGCGGAGCCCCGG
GCGGCCGGCGCGGGTGCAGGGATCCCTGACGCCTCTGTCCTGTTCTTGTCGCTCCCAG
CCTGTCGTCGTTGGCCCGCCCTCCCCCGCGGTGCGGGGTTGCACACCGATCCTG
GGCTCGCTCGATTTGCCGCCAGGGCGCTCCAGACCTAGAGGGCGCTGGCCTGGAGCAG
CGGGTCGTCGTTGTCCTCTCCTCTGCCGCCGGGATCCGAAGGGTGCGGGGCTCT
GAGGAGGTGACGCCGGGCCTCCGCACCCTGCCCTGCCGCATTCTCCCTCTCCCAG
GTGTGAGCAGCCTATCAGTACCAATGTCCGCAGCCTGGATCCCGCTCTGCCCTCGGTGTG
TGTCTGCTGCTGCTGCCGGGCCGCGGGCAGCGAGGGAGCCGCTCCCATTGCTATCACATG
TTTACCAAGGGCTTGGACATCAGGAAAGAGAAAGCAGATGTCCTCTGCCAGGGGCTGCC
CTCTGAGGAATTCTCTGTATGGGAACATAGTATATGCTCTGTATCAGCATATGTGGG
GCTGCTGTCACAGGGAGTAATCAGCAAATCAGGGGACCTGTACGAGTCTATAGCCTACC
TGGTCGAGAAAATATTCTCAGTAGATGCCAATGGCATCCAGTCTCAAATGCTTCTAGAT
GGTCTGCTTCTTCACAGTAACTAAAGCAGGAAAGTAGTACACAGGAGGCCACAGGACAAGCA
GTGTCCACAGCACATCCACCAACAGGTAACAGACTAAAGAAAACACCCGAGAAGAAAATGG
CAATAAGATTGAAAGCAGACATTGCATTCTGATTGATGGAAGCTTAATATTGGCAGC
GCCGATTTAATTACAGAAGAATTGTTGGAAAAGTGGCTCTAATGTTGGAAATTGAAACA
GAAGGACCACATGTGGCCTTGTCAAGCCAGTGAACATCCAAATAGAATTACTTGAA
AAACTTACATCAGCCAAAGATGTTGTTGCCATAAAGGAAGTAGGTTCAGAGGGGTA
ATTCCAATACAGGAAAAGCCTTGAAGCATACTGCTCAGAAATTCTCACGGTAGATGCTGGA
GTAAGAAAAGGGATCCCAAAGTGGTGGTATTATTGATGGTGGCCTCTGATGACAT
CGAGGAAGCAGGCATTGTGGCCAGAGAGTTGGTGTCAATGTATTATAGTTCTGTGGCA
AGCCTATCCCTGAAGAACCTGGGATGGTCAGGATGTCACATTGTTGACAAGGCTGCTGT
CGGAATAATGGCTTCTCTTACACATGCCAACTGGTTGGCACCACAAAATACGTAAA
GCCTCTGGTACAGAACAGCTGTGCACTCATGAACAAATGATGTGCAGCAAGACCTGTTATAACT
CAGTGAACATTGCCCTTAATTGATGGCTCCAGCAGTGTGGAGATAGCAATTCCGCTC
ATGCTGAATTGTTCCAACATAGCCAAGACTTTGAAATCTGGACATTGGTGCAGAT
AGCTGCTGTACAGTTACTTATGATCAGCGCACGGAGTTCAAGTTCACTGACTATAGCACCA
AAGAGAATGTCTCTAGCTGTCACTAGAAACATCCGCTATATGAGTGGTGGAACAGCTACTGGT
GATGCCATTCTCACTGTTAGAAATGTGTTGGCCCTATAAGGGAGAGCCCCAACAGAA
CTTCCTAGTAATTGTCACAGATGGCAGTCCTATGATGATGTCCAAGGCCCTGCAGCTGCTG
CACATGATGCAGGAATCACTATCTCTGTGGTGTGGCTGGCACCTGGATGACCTG
AAAGATATGGCTCTAAACGAAGGAGTCTCACGCTTCTCACAGAGAGTTCACAGGATT
AGAACCAATTGTTCTGATGTCACTAGAGGATTGAGAGATTCTTAGAATCCCAGCAAAT
AATGTAACATTGACAACAGAAAGAAAAGTACAAGGGATCCAGTGTGAAATTGTATT
CTCATAATACTGAAATGCTTCTGATGACTAGAATCAGATACAAACTATTAAGTATGTCAAC
AGCCATTAGGCAAATAAGCACTCCTTAAAGCCGCTGCCCTGTGTTACAATTACAGTGT
ACTTGTTAAAACACTGCTGAGGCTTCATAATCATGGCTTCTAGAAACTCAGGAAAGAGGA
GATAATGTGGATTAAAACCTTAAGAGTTCTAACCATGCCTACTAAATGTACAGATATGCAAA
TTCCATAGCTCAATAAGAATCTGATACTTAGACCAAAAAAA

FIGURE 82

MSAAWIPALGLGVCLLLPGPAGSEAAPIAITCFTRGLDIRKEKADVLCPGGCPLEEFSVY
GNIVYASVSSICGAAVHRGVISNSGGPVRYSLPGRENYSSVDANGIQSQMLSRWSASFTVT
KGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDCKADIAFLIDGSFNIQRRFNLQKN
FVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLKNTSAKDVLFAIKEVGFRGGNSNTGKAL
KHTAQKFFTVDAGVRKGIPKVVVFIDGWPSDDIEEAGIVAREFGVNVFIVSVAKPIPEELG
MVQDVTFVDKAVCRNNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLI
DGSSSGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFSFTDYSTKENVLAVI
RNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDGQSYDDVQGPAAAHDAGITI
FSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ

Signal sequence:

amino acids 1-24

N-glycosylation site.

amino acids 100-104, 221-225

Casein kinase II phosphorylation site.

amino acids 102-106, 129-133, 224-228, 316-320, 377-381, 420-424,
425-429, 478-482, 528-532

N-myristoylation site.

amino acids 10-16, 23-29, 81-87, 135-141, 158-164, 205-211,
239-245, 240-246, 261-267, 403-409, 442-448, 443-449

Amidation site.

amino acids 145-149

FIGURE 83

CGCCCGCGCTCCGCACCCGGCCCACCGCGCCGCTCCGCATCTGCACCCGAGCCC
GGCGGCCTCCGGGGAGCAGCAGATCCAGTCGGGCCCGCAGCGCAACTCGGTCCAGTCG
GGCGGGCGCTCGGGCGCAGAGCGGATGCAGCGGCTGGGCCACCTGCTGTGCCTGC
TGCTGGCGCGCGGTCCCCACGGCCCCCGCGCTCGACGGCGACCTCGGCTCAGTC
AAGCCCAGCCGGCTCTCAGCTACCCGAGGAGGCCACCTCAATGAGATGTTCCGCGA
GGTTGAGGAAGTGGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGG
CAGAAGAAGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACCTACCTCCCAGCTAT
ACAATGAGACCAACACAGACAGAAGGTTGAAATAATACCACATGTGCACCGAGAAAT
TCACAAGATAACCAACAACCAGACTGGACAAATGGTCTTTCAGAGACAGTTATCACATCTG
TGGGAGACGAAGAAGGAGCAAGGAGCCACGAGTCATCATCGACGAGGACTGTGGGCCAGC
ATGTAAGTGCCTTGCAGCTTCCAGTACACCTGCCAGCCATGCCGGGCCAGAGGATGCT
CTGCACCCGGGACAGTGAGTGCTGTGGAGACCAGCTGTGTCTGGGGTCACTGCACCAAAA
TGGCCACCAGGGGAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGCTG
TGCTGTGCCTTCCAGAGAGGCCGCTGTTCCCTGTGTGACACCCCTGCCCGTGGAGGGCGA
GCTTGCCATGACCCGCCAGCCGGCTCTGGACCTCATCACCTGGAGCTAGAGCCTGATG
GAGCCTGGACCGATGCCCTGTGCCAGTGGCCTCCTCTGCCAGCCCCACAGCCACAGCCTG
GTGTATGTGCAAGCCGACCTCGTGGGGAGCCGTGACCAAGATGGGAGATCCTGCTGCC
CAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTATGGAGGAGGTGCCAGGAGCTGG
AGGACCTGGAGAGGGAGCCTGACTGAAGAGATGGCGCTGGGGAGCCTGCCGCTGCCGCT
GCACTGCTGGGAGGGAGAGATTTAGATCTGGACCAAGGCTGTGGTAGATGTGCAATAGAA
ATAGCTAATTATTCCCCAGGTGTGCTTAGGCGTGGCTGACCAGGCTTCTTACA
TCTTCTTCCCAGTAAGTTCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTGTCAGC
TCCCCCAGGCTGTTCTCCAGGCTTCACAGTCTGGCTTGGAGAGTCAGGCAGGGTTAAC
TGCAGGAGCAGTTGCCACCCCTGTCCAGATTATTGGCTGCTTGCCTCTACCAGTGGCAG
ACAGCCGTTGTTCTACATGGCTTGATAATTGTTGAGGGAGGAGATGAAACAATGTGG
AGTCTCCCTCTGATTGGTTGGGAAATGTGGAGAAGAGTGCCTGCTTGCAAACATCAA
CCTGGAAAAATGCAACAAATGAATTTCACGCAGTTCTTCCATGGCATAGGTAAGCTG
TGCCTTCAGCTGTTGCAAGATGAAATGTTCTGTTACCCCTGCATTACATGTGTTATTCA
AGCAGTGTGCTCAGCTCCTACCTCTGTGCCAGGGCAGCATTTCATATCCAAGATCAATT
CCTCTCTCAGCACAGCCTGGGGAGGGGTCAATTGTTCTCCTCGTCATCAGGGATCTCAGAG
GCTCAGAGACTGCAAGCTGCTGCCAAGTCACACAGCTAGTGAAGACCAGAGCAGTTCAT
CTGGTTGTGACTCTAACGCTCAGTGCTCTCCACTACCCACACCAGCCTGGTGCCACCAA
AAGTGTCCCCAAAAGGAAGGAGAATGGGATTTCCTGAGGCATGCACATCTGGAATTAAG
GTCAAACATAATTCTCACATCCCTCTAAAGTAAACTACTGTTAGGAACAGCAGTGTCTCAC
AGTGTGGGGCAGCGTCTTCTAATGAAGACAATGATATTGACACTGTCCCTTTGGCAGT
TGCATTAGTAACCTTGAAAGGTATATGACTGAGCGTAGCATACAGGTTAACCTGCAGAAACA
GTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTGCAAACATCAATTAGCAGCAAC
TGAAGACAATTATCAACCAACACGTGGAGAAAATCAAACCGAGCAGGGCTGTGAAACATGGTT
GTAATATGCGACTGCGAACACTGAACACTCAGCCACTCCACAAATGATGTTTCAGGTGTCA
TGGACTGTTGCCACCATGTATTCCAGAGTTCTTAAAGTTAAAGTTGACATGATTGTA
TAAGCATGCTTCTTGAGTTAAATTATGTATAAACATAAGTGCATTAGAAATCAAGC
ATAAATCACTCAACTGCAAAAAAAAAAAAAAA

FIGURE 84

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQ
HKLRSAVEEMEAEAAAAKASSEVNLANLPPSYHNETNTDKVGNNTIHVHREIHKITNNQTG
QMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRQMLCTRSECCG
DQLCVWGHCTKMATRGSGNTICDNQRDCQPGLCCAFQRGLFPVCTPLPVEGELCHDPASRL
LDLITWELEPDGALDRPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEV
GSFMEEVHQELEDLERSLTEEMALGEPAAAAALLGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316,
327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

FIGURE 85

FIGURE 86

MRLLVAPLLLAWVAGATAATPVVPWHVPCPPQCACQIRPWYTPRSSYREATTVDNDLFLTA
VPPALPAGTQTLLLQSNSIVRVDQSELGYLANLTELDLSQNSFSDARCDFHALPQLLSLHL
EENQLTRLEDHSFAGLASLQELYLNHNQLYRIAPRAFSGLSNLLRLHLSNLLRAIDSRWFE
MLPNLEILMIGGNKVDAILDMDNFRPLANLRSVLVLAGMNLREISDYALEGLQSLSFYDNO
LARVPRRALEQVPGLKFLDLNKNPLQRVPGDFANMLHLKELGLNNMEELVSIDKFALVNLP
ELTKLDITNNPRLSFIHPRAFHLPQMETLMLNNNALSHQQTVESLPNLQEVGLHGNPIR
CDCVIRWANATGTRVRFIEPQSTLCAEPPDLQRLPVREVPFREMTDHCLPLISPRSFPPSLQ
VASGESMVLHCRALAEPEPEIYWVTPAGLRLTPAHAGRRYRVYPEGTLELRRVTAAEAGLYT
CVAQNLVGADTKTVVVGRALLQPGRDEQGLELRVQETHPYHILLSWTPPNTVSTNLTW
SSASSLRGQQGATALARLPRGTHSYNITRLLQATEYWAQAFADAHTQLACWARTKEATS
CHRALGDRPGLIAILALAVLLAAGLAHLGTQPRKGVGRRPLPPAWAFWGWSAPSVRVV
SAPIVLPWNPGRKLPRSSEGETLLPPLSQNS

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 629-648

N-glycosylation site.

amino acids 94-98, 381-385, 555-559, 583-587

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 485-489

Casein kinase II phosphorylation site.

amino acids 46-50, 51-55, 96-100, 104-108, 130-134, 142-146,
243-247, 313-317, 488-492, 700-704

Tyrosine kinase phosphorylation site.

amino acids 532-540

N-myristoylation site.

amino acids 15-21, 493-499, 566-572

Amidation site.

amino acids 470-474, 660-664, 692-696

FIGURE 87

GCAAGCCAAGGCCGCTGTTGAGAAGGTGAAGAAGTCCGGACCCATGTGGAGGAGGGGACATTGTGTACCGCCT
CTACATGCGGCAGACCATCATCAAGGTGATCAAGTTCATCTCATCATCTGCTACACCGTCTACTACGTGCACAA
CATCAAGTTCGACCGTGGACTGCACCGTGGACATTGAGAGCTGACGGGCTACCGCACCTACCGCTGTGCCAACCC
CCTGGGCCACACTCTTCAGATCCTGGCGCTCTTCTACATCAGCCTAGTCATCTCTACGGCCTCATCTGCATGTA
CACACTGTGGTGGATGCTACGGCGCTCCCTCAAGAAGTACTCGTTGAGTCGATCCGTGAGGAGAGCAGCTACAG
CGACATCCCCGACGTCAAGAACGACTTCGCTTCTCATGCTGCACCTCATGACCAATAACGACCCGCTCTACTCCAA
GCGCTTCGCCGCTTCTCTGCGAGGTGAGTGAGAACAGCTGCGGCAGCTGAACCTCAACAACAGTAGTGGACGCT
GGACAAGCTCCGGCAGCGGCTCACCAAGAACGCGCAGGACAAGCTGGAGCTGCACCTGTCAGTGGCAT
CCCTGACACTGTGTTGACTGGTGGAGCTGGAGGTCTCAAGCTGGAGCTGATCCCCGACCGTGACCATCCCCGCC
CAGCATTGCCAGCTCACGGGCCTCAAGGAGCTGAGGCTTACACACAGCGGCCAAGATGAGCAGCTGCCACAGTGGTAC
GGCCTTCCTGCGCGAGAACCTGCGGGCGCTGCACATCAAGTTCACCGACATCAAGGAGATCCCCTGTTGAGCTA
TAGCCCTGAAGACACTGGAGGAGCTGACCTGACGGGCAACTGAGCGGGAGAACACCGCTACATGTCATCGA
CGGGCTCGGGAGCTCAAACGCCCTCAAGGTGCTGGCGCTCAAGAGCAACCTAACGCAAGCTGCCACAGTGGTAC
AGATGTGGCGTGCACCTGCGAGACTGTCCATCAACAAATGAGGGCAGCAAGCTCATCGTCTCAACAGCCTCAA
GAAGATGGCGAACCTGACTGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCACTCCATCTTCAGCCT
CCACAAACCTGCAAGGAGATTGACCTCAAGGACAACACCTCAAGAACCCATCGAGGAGATCATCAGCTTCCAGCACCT
GCACCGCCTCACCTGCCCTAACGCTGTTACAACCACATGCCCTACATCCCCATCCAGATCGGCAACCTCACCAA
CCTGGAGCGCCTTACCTGAACCGCAACAAGATCGAGAAGATCCCCACCCAGCTCTTCTACTGCCGCAAGCTGCG
CTACCTGGACCTCAGCCACAACAAACCTGACCTTCTCCCTGCCGACATCGGCCCTCTGCGAGAACCTCCAGAACCT
AGCCATCACGGCCAACCGGATCGAGACGCTCCCTCCGGAGCTTCCAGTGCCGGAAGCTGCGGGCCCTGACCT
GGGCAACAACGTGCTGCAGTCAGTCCAGGGTGGGCGAGCTGACCAACCTGACGCAAGCTGCGAGATCGAGCTGCGGG
CAACCGGCTGGAGTGCCTGCCGTGGAGCTGGCGAGTGCCCAGTGCTCAAGCGCAGCGGCTTGGTGGAGGA
GGACCTGTTCAACACACTGCCACCCGAGGTGAAGGAGCGGCTGTGGAGGGCTGACAAGGAGCAGGCCAGAGCAG
GCCGGGCCAGCACAGCAAGCAGCAGGACCGCTGCCAGTCTCAGGCCGGAGGGCAGGCCAGTCTCTCCAG
AACTCCCGGACAGCCAGGACAGCCTCGGGCTGGCAGGAGCCTGGGCCGTTGTGAGTCAGGCCAGAGCGAGA
GGACAGTATCTGTGGGGCTGGCCCTTTCTCCCTCTGAGACTCACGTCCCCCAGGGCAAGTGTGTTGGAGGAG
AGCAAGTCTCAAGAGCGCAGTATTGATAATCAGGGTCTCCTCCCTGGAGGCCAGCTCTGCCCTGGGCTGAG
CTGCCACCAGAGGTCTGGGACCCCTCACTTTAGTTCTGGTATTATTCTCCATCTCCACCTCCTCATCC
AGATAATATACATTCCAAGAAAGTTCAGCCAGATGGAAGGTGTTCAGGGAAAGGTGGCTGCCCTTTCCCC
TTGTCTTATTAGCGATGCCGCCGGCATTTAACACCCACCTGGACTTCAGCAGAGTGGTCCGGGGCAACCCAG
CCATGGGACGGTCACCCAGCAGTGCGGGCTGGCTCTGGCTGCCGTCCAGGGAGAGCAGGCCCTCCAGCTGGA
AAGGCAGGCCTGGAGCTTGCTCTCAGTTTGTGGCAGTTTAGTTTTGTGTTTTTTTTAAATCAA
AAACAATTTTTAAAGCTTGAAGGGATGGTTGGGTTATTAAAAGAAAAAAACTTAAAAAAA
AAAAGACACTAACGGCCAGTGAGTTGGAGTCAGGGCAGGGTGGCAGTTCCCTGAGCAAGCAGCCAGACGT
TGAACGTGTTCTTCCCTGGGCCAGGGTGCAGGGTGTCTTCCGGATCTGGTGTGACCTGGTCCAGGAGTT
CTATTGTTCTGGGAGGGAGGTTTTGTGTTGGGTTTTGGTGTCTTGTGTTCTTCTCC
ATGTGTCTTGGCAGGCACTATTCTGTGGCTGTCGGCCAGAGGAATGTTCTGGAGCTGCCAACGGAGGGAGGAG
ACTCGGGTTGGCTAATCCCCGATGAACGGTGCCTCACCTCCCTCCTGTCCTGCCCTGCCCTCTCCA
CGCACAGTGTAAAGGAGCCAAGAGGAGCCACTTCGCCAGACTTGTGTTCCCCACCTCTGCCATGGGTGTGT
CCAGTGCCACCGCTGGCTCCGCTGCTTCCATCAGCCCTGTCGCCACCTGGCTCTCATGAAGAGCAGACACTTA
GAGGCTGGTGGGAATGGGAGGTGCGCCCTGGAGGGCAGGCAGGGTCCAGGCCGTTCCCTGGCG
CTGGAGTGACACAGCCCAGTCGGCACCTGGTGGCTGGAGGCCAACCTGCTTGTGTTAGATCACTCGGGTCCCCACCTT
AGAAGGGTCCCCGCCCTAGATCAATCACGTGGACACTAAGGCACAGTTTAGAGTCCTTGTCTTAATGATTATGT
CCATCCGTCTGTCGGTCCATTGTGTTCTGCGTGTCAATTGGATATAATCCTCAGAAATAATGCACACTAG
CCTCTGACAACCATGAAGCAAAAATCGTTACATGTGGGTCTGAACCTGTAGACTCGGTACAGTATCAAATAAA
ATCTATAACAGAAAAAAAAAAAAAA

FIGURE 88

MRQTIIKVIKFILIIICYTVYYVHNIKFVDVDCTVDIESLTGYRTYRCAHPLATLFKILASFYI
SLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSK
RFAVFLSEVSENKLRLQNLNNNEWTLDKLQRQLTKNAQDKLELHLFMLSGIPDTVFDLVELEV
LKLELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFTDIKEIPLWI
YSLKTLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSKLPQVVTDVGVHLQKLSI
NNEGTKLIVLNSLKKMANLTELELIRCDLERIPHISIFSLHNLQEIDLKDNNLKTIEEIISFQ
HLHRLTCLKLWYNHIAYIPIQIGNLTNERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLT
FLPADIGLLQNLQNLAITANRIETLPPELFQCRKLRALHLGNNVLQSLPSRVGELETNLTQIE
LRGNRLECLPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368,
398-402, 493-497

N-myristoylation site.

amino acids 173-179, 261-267, 395-401, 441-447

FIGURE 89

GCCTGTTGCTGATGCTGCCGTGCGGTACTTGTCATGGAGCTGGCACTGCGGCCTCTCCC GT
CCCGCGGTGGTTGCTGCTGCCGTGCTGGCCTGAACGCAGGAGCTGTCAATTGACT
GGCCCACAGAGGAGGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCC TACATG
TTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCTGGTCAT
GTGGCTTCAGGGCGGTCCAGGC GGTCTAGCACTGGATTGGAAACTTGAGGAATTGGC
CCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATT
GTGGATAATCCCGTGGGCACTGGGTTCA GTTATGTGAATGGTAGTGTCCTATGCCAAGGA
CCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGAACCTCTCAGTTGCCACAAAG
AATTCCAGACAGTTCCATTCTACATTTCTCAGAGTCCTATGGAGGAAAATGGCAGCTGGC
ATTGGTCTAGAGCTTTATAAGGCCATT CAGCGAGGGACC ATCAAGTGCAACTTGCGGGGGT
TGCCTGGGTGATT CCTGGATCTCCCCTGTTGATT CGGTGCTCTCCTGGGGACCTTACCTGT
ACAGCATGTCTCTCGAAGACAAAGGTCTGGCAGAGGTGTCAAGGTTGCAGAGCAAGTA
CTGAATGCCGTAAATAAGGGCTCTACAGAGAGGCCACAGAGCTGTGGGGAAAGCAGAAAT
GATCATTGAACAGAACACAGATGGGTGAACCTCTATAACATCTTA ACTAAAAGCACTCCA
CGTCTACAATGGAGTCGAGTCTAGAATT CACACAGAGCCACCTAGTTGTCTTGT CAGCGC
CACGTGAGACACCTACAACGAGATGCCTTAAGCCAGCTCATGAATGGCCCCATCAGAAAGAA
GCTCAAATTATT CCTGAGGATCAATCCTGGGAGGCCAGGCTACCAACGTCTTGTGAACA
TGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATC
AACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATA ACCATGGGT CAGGAGGCCTG
GGTGC GGAAACTGAAGTGGCCAGAACTGCCTAAATT CAGTCAGCTGAAGT GGAAGGCCCTGT
ACAGTGACCC TAAATCTTGGAAACATCTGCTTTGTCAAGT CCTAC AAGAACCTTGCTTT
TACTGGATTCTGAAAGCTGGTCAATGGTTCTCTGACCAAGGGACATGGCTCTGAAGAT
GATGAGACTGGT GACTCAGCAAGAATAGGATGGATGGGCTGGAGATGAGCTGGTTGGC
CTGGGGCACAGAGCTGAGCTGAGGCCGCTGAAGCTGTAGGAAGGCCATTCTCCCTGTATCT
AACTGGGGCTGTGATCAAGAAGGTTCTGACCAAGCTCTGCAGAGGATAAAATCATTGTCTCT
GGAGGCAATTGGAAATTATTCTGCTTCTTAAAAAAACCTAAGATTTTAAAAAATTGAT
TTGTTTGATCAAAATAAGGATGATAATAGATATTAA

FIGURE 90

MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEWDYVTVRKDAYMFWWLYYATNSC
KNFSELPLVMWLQGGPGGSSTGFGNFEIGPLSDLKPRKTTWLQAASLLFVDNPVGTGFSY
VNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQR
GTIKCNFAGVALGDSWISPVDVLSWGPYLYSMSLLEDKGGLAEVSKVAEQVLNAVNKGLYRE
ATELGKAEMIIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALS
QLMNGPIRKKLKIIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDL
IVDTMGQEAWRKLKWPELPKFSQLWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVP
SDQGDMALKMMRLVTQQE

Signal sequence:

amino acids 1-25

N-glycosylation site.

amino acids 64-68, 126-130, 362-366

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 101-105

Casein kinase II phosphorylation site.

amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site.

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175,
187-193, 195-201, 331-337, 332-338, 360-366

FIGURE 91

GGCCGCGGGAGAGGAGGCCATGGCGCGCGCGGGCGCTGCTGCTGGCGCTGCTGGCT
GGGCTGGACTCAGGAAGCCGGAGTCGCAGGAGGCGGCCGTATCAGGACCATGCGGCCGA
CGGGTCATCACGTGCGCATCGTGGGTGGAGAGGACGCCAACTCGGCGTTGGCGTGGCA
GGGGAGCCTGCGCTGTGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGG
CACTCACGGCGCGCACTGCTTGAAACCTATAGTGACCTTAGTGATCCCTCCGGTGGATG
GTCCAGTTGCCAGCTGACTTCCATGCCATCCTCTGGAGCCTGCAGGCCTACTACACCCG
TTACTTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGAATTCACCTATGACATTG
CCTTGGTGAAGCTGCTGCACCTGTCACCTACACTAAACACATCCAGCCCCTGTCTCCAG
GCCTCCACATTGAGTTGAGAACCGGACAGACTGCTGGGTGACTGGCTGGGGTACATCAA
AGAGGATGAGGCACTGCCATCTCCCCACACCCCTCCAGGAAGTTCAGGTGCCATATAACA
ACTCTATGTGCAACCACCTCTCCTCAAGTACAGTTCCGCAAGGACATCTTGGAGACATG
GTTTGTGCTGCCAACGCCAACGGCGGGAGGATGCCCTGCTCGGTGACTCAGGTGGACCCCT
GGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGAGTGGCTGTG
GTCGGCCAATCGGCCGGTGTACACCAATATCAGCCACCCTTGAGTGGATCCAGAAG
CTGATGGCCCAGAGTGGCATGTCCCAGCCAGACCCCTCCTGGCCACTACTCTTTCCCTCT
TCTCTGGCTCTCCACTCCTGGGCCGGTCTGAGCCTACCTGAGCCATGCAGCCTGGGC
CACTGCCAAGTCAGGCCCTGGTTCTCTGTCTTGGTAATAAACACATTCCAGTTGA
TGCCTTGCAGGGCATTCTCAAAAAAAAAAAAAAAA

FIGURE 92

MGARGALLLALLLARAGLRKPESQEAAPLSGPCGRRVITSRIVGGEDAELGRWPWQGSLRLW
DSHVCGVSSLSHRWALTAAHCFETYSSDLSDPSGMVQFGQLTSMPSFWSLQAYYTRYFVSNI
YLSPRYLGNSPYDIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVTGWGYIKEDEALP
SPHTLQEJVQVAIINNSMCNHLFLKYSFRKDIFGDMVCAGNAQGGKDACFGDSGGPLACNKNG
LWYQIGVVSWVGCGRPNRPGVYTNISHHFEWIQKLMAQSGMSQPDPSWPLLFFPLLWALPL
LGPV

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 167-171, 200-204, 273-277

Casein kinase II phosphorylation site.

amino acids 86-90, 134-138, 161-165, 190-194, 291-295

N-myristoylation site.

amino acids 2-8, 44-50, 101-107, 225-231, 229-235, 239-245,
259-265, 269-275

Amidation site.

amino acids 33-37

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 252-263,

Serine proteases, trypsin family, histidine active site.

amino acids 78-84

FIGURE 93

CCACCGCGTCCGGACGCGTGGGAAGGGCAGAATGGGACTCCAAGCCTGCCTCTAGGGCT
CTTGCCCTCATCCTCTGGCAAATGCAGTTACAGCCCCGGAGCCGACCAGCGGAGGACGC
TGCCCCCAGGCTGGGTGTCCTGGCCGTGCGGACCCCTGAGGAAGAGCTGAGTCTCACCTT
GCCCTGAGACAGCAGAAATGTGAAAGACTCTCGAGCTGGTGCAGGCTGTGCGGATCCCAG
CTCTCCTCAATACGAAAATACCTGACCCCTAGAGAATGTGGCTGATCTGGTGAGGCCATCCC
CACTGACCCCTCCACACGGTGCAAAATGGCTCTGGCAGCCGGAGCCCAGAAGTGCCATTCT
GTGATCACACAGGACTTCTGACTTGCTGGCTGAGCATCCGACAAGCAGAGCTGCTGCTCCC
TGGGGCTGAGTTCATCACTATGTGGGAGGACCTACGGAAACCCATGTTGTAAGGTCCCCAC
ATCCCTACCAGCTTCCACAGGCCCTGGCCCCCATGTGGACTTTGTGGGGACTGCACCGT
TTTCCCCAACATCATCCCTGAGGCAACGTCCTGAGCCGAGGTGACAGGGACTGTAGGCCT
GCATCTGGGGTAACCCCCCTGTGATCCGTAAGCATAACAATTGACCTACAAGACGTGG
GCTCTGGCACCAGCAATAACAGCCAAGCCTGTGCCAGTTCCCTGGAGCAGTATTCCATGAC
TCAGACCTGGCTCAGTTCATGCGCTCTCGGTGGCAACATTGACATCAGGCATCAGTAGC
CCGTGTGGTTGGACAAACAGGGCCGGGCCGGCCGGGATTGAGGCCAGTCTAGATGTGCAGT
ACCTGATGAGTGTGGTGCACATCTCACCTGGGTCTACAGTAGCCCTGGCCGGCATGAG
GGACAGGAGCCCTTCCTGCAGTGGCTCATGCTGCTCAGTAATGAGTCAGCCCTGCCACATGT
GCATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCAGCCTACATCCAGCAGGTCA
ACACTGAGCTCATGAAGGCTGCCCTGGGTCTCACCTGCTCTGCCCTCAGGTGACAGT
GGGGCCGGGTGGTCTGCTCTGGAAGACACCAGTTCCGCCCTACCTTCCCTGCCCTCCAG
CCCCTATGTCACCACAGTGGGAGGCACATCCTCCAGGAACCTTCCATCACAAATGAAA
TTGTTGACTATATCAGTGGTGGCTTCAGCAATGTGTTCCACGGCCTTCATACCAGGAG
GAAGCTGTAACGAAGTCTGAGCTCTAGCCCCACCTGCCACCATCCAGTTACTTCAATGC
CAGTGGCCGTGCCTACCCAGATGTGGCTGCACTTCTGATGGCTACTGGTGGTCAGCAACA
GAGTGCCCATTCATGGGTGTCCGGAACCTCGGCCCTACTCCAGTGTGTTGGGGATCCTA
TCCTGATCATGAGCACAGGATCCTTAGTGGCCGCCCTCTGGCTTCTCAACCCAAG
GCTCTACCAGCAGCATGGGCAGGTCTTTGATGTAACCCGTGGCTGCCATGAGTCCTGTC
TGGATGAAAGAGGTAGAGGGCCAGGGTTCTGCTCTGGCTGGGATCTGTAACAGGC
TGGGGAACACCAACTTCCAGCTTGTAAGACTCTACTCAACCCCTGACCCCTTCTATC
AGGAGAGATGGCTGTCCCCTGCCCTGAAGCTGGCAGTTCACTCCCTTATTCTGCCCTGTTG
GAAGCCCTGCTGAACCCCTCAACTATTGACTGCTGCAGACAGCTTATCTCCCTAACCCCTGAAA
TGCTGTGAGCTTGACTTCACTCCAAACCCCTACCATGCTCCATCATACTCAGGTCTCCCTACT
CCTGCCCTAGATTCTCAATAAGATGCTGAACCTAGCATTTTGAAATGCCCTCTCCCTCCGC
ATCTCATTTCTCTTCAATCAGGCTTCCAAAGGGTTGTATAACAGACTCTGTGCACTA
TTTCACTTGATATTCACTCCCAATTCACTGCAAGGAGACCTACTGTCACCGTTACTCT
TTCCTACCCCTGACATCCAGAAACAATGGCCTCCAGTGCATACTTCTCAATCTTGCTTATG
GCCTTCCATCATAGTGCCCACCTCCCTCTTACTTAGCTTCAAGGTCTTAACCTCTTG
ACTACTCTTGCTTCCCTCTCATCAATTCTGCTTCTCATGGAATGCTGACCTTCATTGC
TCCATTGAGATTGGCTCTCAGTTACTCATTGCCCCGGAAACAAATCACTGACA
TCTACAACCATTACCATCTCACTAAATAAGACTTTCTATCCAATAATGATTGATAACCTAAA
TGTAAAAAA

FIGURE 94

MGLQACLLGLFALILSGKCSYSPEPDQRRTLPPGVSLGRADPEEELSLTFALRQQNVERLS
ELVQAVSDPSSPQYGKYLTLENVALVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWL
SIRQAELLPGAEFHYYVGGPTETHVVRSPHPYQLPQALAPHVDFVGLHRFPPTSSLRQRP
EPQVTGTVGLHLGVTPSVIRKRYNLTSQDVSGTSNNSQACAQFLEQYFHDSDLAQFMRLFG
GNFAHQASVARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPGRHEGQEPFLQWLML
LSNESALPHVHTVSYGDDEDSISAYIQRVNTELMKAARGLTLLFASGDGAGCWSVSGRH
QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEEAVTKFLSSSP
HLPPSSYFNASGRAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSG
RPPLGFLNPRLYQQHGAGLFDVTRGCHESDLDEEVEGQGFCSGPFWDPVTGWGTPTSQLC

Signal sequence:

amino acids 1-16

N-glycosylation site.

amino acids 210-214, 222-226, 286-290, 313-317, 443-447

Glycosaminoglycan attachment site.

amino acids 361-365, 408-412, 538-542

Casein kinase II phosphorylation site.

amino acids 212-216, 324-328, 392-396, 420-424, 525-529

N-myristoylation site.

amino acids 2-8, 107-113, 195-201, 199-205, 217-223, 219-225,
248-254, 270-276, 284-290, 409-415, 410-416, 473-479, 482-488,
521-527, 533-539, 549-555

FIGURE 95

GCCGCGCGCTCTCTCCGGCCCCACACCTGTCTGAGCGCGCAGCGAGCCGCGGCCGGC
GGGCTGCTCGCGCGAACAGTGCTCGGCATGGCAGGGATTCCAGGGCTCCTCTTCTC
TTCTTCTGCTCTGTGCTGTTGGCAAGTGAGCCCTACAGTGCCCCCTGGAAACCCACTTG
GCCTGCATAACGCCCTCCCTGTCGCTTGCCCCAGTCTACCCCTCAATTAGCCAAGCCAGACT
TTGGAGCCGAAGCAAATTAGAAGTATCTTCTCATGTGGACCCAGTGTCAAGGGAACT
CCACTGCCACTTACGAAGAGGCCAAGCAATATCTGTCTTATGAAACGCTCTATGCCAATGG
CAGCCGCACAGAGACGCAGGTGGCATCTACATCCTCAGCAGTAGTGGAGATGGGGCCAAAC
ACCGAGACTCAGGGCTTCAGGAAAGTCTCGAAGGAAGCGGCAGATTATGGCTATGACAGC
AGGTTCAGCATTGGAGGACTTCCTGCTCAACTACCCTTCTCAACATCAGTGAAGTT
ATCCACGGGCTGCACCGCACCCGGTGGCAGAGAACGATGTCCCTCACAGCTGCCACTGCA
TACACGATGGAAAAACCTATGTGAAAGGAACCCAGAACGCTTCAGCCATGCCGAGCAGATGAA
AAGTTAAAGATGGTGGTCGAGGGGCCAACGACTCCACTTCAGCCATGCCGAGCAGATGAA
ATTCAGTGGATCCGGGTGAAACGCACCCATGTGCCAAGGGTTGGATCAAGGGCAATGCCA
ATGACATCGGCATGGATTATGATTATGCCCTCTGGAACTCAAAAAGCCCCACAAGAGAAAA
TTTATGAAGATTGGGGTGAGCCCTCTGCTAAGCAGCTGCCAGGGGCCAGGGTCTGGGTCTAT
TGGTTATGACAATGACCGACCAGGAATTGGTGTATCGCTCTGTGACGTCAAAGACGAGA
CCTATGACTTGTCTACCAGCAATGCGATGCCAGCCAGGGCCAGGGTCTGGGTCTAT
GTGAGGATGTGGAAGAGACAGCAGCAGAACGAGCAGGAAATTATTGGCATTTCAGG
GCACCAAGTGGGTGGACATGAATGGTCCCCACAGGATTCAACGTGGCTGTCAGAACACTC
CTCTCAAATATGCCAGATTGCTATTGGATTAAAGGAAACTACCTGGATTGTAGGGAGGG
TGACACAGTGGTCCCTCTGGCAGCAATTAGGGCTTCATGTTCTATTAGGAGAGGCC
AAATTGTTTTGTCAATTGGCGTGCACACGTGTGTGTGTGTGTGTGTAAAGGTGT
CTTATAATCTTTACCTATTCTTACAATTGCAAGATGACTGGCTTACTATTGAAAATG
GTTTGTGTATCATATCATATCATTAAGCAGTTGAAGGCATACTTTGCATAGAAATAA
AAAAAAACTGATTGGGGCAATGAGGAATATTGACAATTAGTTAATCTTCACGTTTGT
CAAACTTGATTTCATCTGAACCTGTTCAAAGATTATTAATATTAAATATTGGCATA
CAAGAGATATGAAAAAAAAAAAAAA

0 9 8 7 6 5 4 3 2 1

FIGURE 96

MAGIPGLLFLLFFLLCAVGQVSPYSAPWKPTWPAYRLPVVLQSTLNLA
KPDGFGEAKLEVS
SSCGPQCHKGTPLPTYEEAKQYLSYETLYANGSRTETQVGIYILSSSGDGAQHRDGS
SGKS
RRKRQIYGYDSRFSIFGKDFLLNYPFSTSVKLSTGCTGTLVAEKHVLTA
AHCIHDGKTYVK
TQKLRVGFLKPKFKDGGRGANDSTS
SAMPEQMKFQWIRVKRTHVPKGWI
KGANDIGMDYDYA
LLELKKPHKRKFMKIGVSPPAKQLPGGR
IHFGSGYDNDRPGNLVYRFCDVKDETYD
LQQCD
AQPGASGSGVYVRMWKRQQQKWERK
IIIGIFSGHQWVDMNGSPQDFNVAVRITPLKYAQICYW
IKGNYLDCREG

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 93-97, 207-211

Glycosaminoglycan attachment site.

amino acids 109-113, 316-320

Casein kinase II phosphorylation site.

amino acids 77-81, 95-99, 108-112, 280-284, 351-355

N-myristoylation site.

amino acids 159-165, 162-168, 202-208, 205-211, 314-320, 338-344

Serine proteases, trypsin family, histidine active site.

amino acids 171-177

FIGURE 97

GCATCGCCCTGGTCTCTCGAGCCTGCTGCCGTCCCCCCCCACAGCCATGGTGGTTT
CTGGAGCGCCCCCAGCCCTGGGTGGGGCTGTCTCGCACCTCACCTCCCTGCTGCTGCTG
GCGTCGACAGCCATCCTCAATGCGGCCAGGATAACCTGTTCCCCAGCCTGTGGGAAGCCCCA
GCAGCTGAACCGGGTTGTGGCGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGA
GCATCCAGAAGAATGGGACCCACCAC TGCGCAGGTTCTTGCTCACCA GCGCTGGGTGATC
ACTGCTGCCACTGTTCAAGGACAACCTGAACAAACCACACCTGTTCTTGCTGCTGGG
GGCCTGGCAGCTGGGAACCCCTGGCTCTGGTCCCAGAAGGTGGGTGTTGCCTGGGTGGAGC
CCCACCCCTGTGATTCTGGAAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCCTCGAG
CGCTCCATACAGTTCTCAGAGCGGGCCTGCCCATCTGCCTACCTGATGCCTCTATCCACCT
CCCTCCAAACACCCACTGCTGGATCTCAGGCTGGGGAGCATCCAAGATGGAGTTCCCTTGC
CCCACCCCTCAGACCCCTGCAGAACGCTGAAGGTTCTATCATCGACTCGGAAGTCTGCAGCCAT
CTGTACTGGCGGGGAGCAGGACAGGGACCCATCACTGAGGACATGCTGTGCGCGCTACTT
GGAGGGGGAGCGGGATGCTGTCTGGCGACTCCGGGGCCCCCTCATGTGCCAGGTGGACG
GCGCCTGGCTGCTGGCCGGCATCATCAGCTGGCGAGGGCTGTGCCAGCGAACAGGCC
GGGGTCTACATCAGCCTCTTGCGCACCGCTCTGGGTGGAGAACGATCGTCAAGGGGTGCA
GCTCCCGGGCGCGCTCAGGGGGTGGGCCCTCAGGGCACCGAGCCAGGGCTCTGGGCCG
CCGCGCGCTCCTAGGGCGCAGCGGACCGGGCTCGGATCTGAAAGGCGCCAGATCCACA
TCTGGATCTGGATCTGCGCGGCCCTCGGCGGTTCCCCCGCCGTAAATAGGCTCATCTACC
TCTACCTCTGGGGGCCGGACGGCTGCTGCGGAAGGAAACCCCTCCCCGACCGCCGAC
GGCCTCAGGCCCCCTCCAAGGCATCAGGCCCCGCCAACGGCCTCATGTCCCCGCCAC
GACTTCCGGCCCCGCCCGGGCCCCAGCGCTTTGTGTATATAAATGTTAATGATTTTAT
AGGTATTTGTAACCCCTGCCACATATCTTATTATTCTCCAATTCAATAATTATTATT
CTCCAAAAAAA

FIGURE 98

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA43318
><subunit 1 of 1, 317 aa, 1 stop
><MW: 33732, pI: 7.90, NX(S/T): 1
MVVSGAPPALGGGCLGTFTSLLLLASTAILNAARI PVPPACGKPQQLNRVVGGEDSTDSEWP
WIVSIQKNGTHHCAGSLLTSRWVITAHCFKDNLNKPYLFSVLLGAWQLGNPGSRSQKVGVA
WVEPHPVYSWKEGACADIALVRLERSIQFSERVLPICLPDASIHLPPNTHCWISGWGSIQDG
VPLPHPQTLQKLKVPIIDSEVC SHLYWRGAGQGPITEDMLCAGYLEGERDACLGDGGPLMC
QVDGAWLLAGIISWGEGCAERNRPGVYISLSAHRSWVEKIVQGVQLRGRAQGGGALRAPSGQ
SGAAARS

Signal sequence:

amino acids 1-32

N-glycosylation site.

amino acids 62-66, 96-100, 214-218, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 99

GACGGCTGGCCACCATGCACGGCTCTGCAGTTCTGATGCTTCTGCTGCCGCTACTGCTA
CTGCTGGTGGCCACCACAGGCCCGTTGGAGCCCTCACAGATGAGGAGAACGTTGATGGT
GGAGCTGCACAACCTCTACCGGGCCCAGGTATCCCCGACGGCCTCAGACATGCTGCACATGA
GATGGGACGAGGAGCTGGCCGCTTCGCCAAGGCCTACGCACGGCAGTGCCTGTGGGCCAC
AACAAAGGAGCGCGGGCGCCGCGCGAGAAATCTGTTGCCATCACAGACGAGGGCATGGACGT
GCCGCTGGCCATGGAGGAGTGGCACCACGAGCGTGAGCACTACAAACCTCAGGCCGCCACCT
GCAGCCCAGGCCAGATGTGCGGCCACTACACGCAGGTGGTATGGCCAAGACAGAGAGGATC
GGCTGTGGTCCCACCTCTGTGAGAAGCTCCAGGGTGTGAGGAGACCAACATCGAATTACT
GGTGTGCAACTATGAGCCTCCGGGAACGTGAAGGGAAACGCCCTACCAGGAGGGACTC
CGTGCCTCCAAATGTCCCTCTGGCTACCACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGC
CCGGAAGATGCTCAGGATTGCCCTACCTGGTAAC TGAGGCCCATCCTCCGGCGACTGA
AGCATCAGACTCTAGGAAAATGGGTACTCCTTCCCTAGCAACGGGATTCCGGCTTCT
TGGTAACAGAGGTCTCAGGCTCCCTGGCAACCAAGGCTCGCCTGCTGTGAAACCCAGGCC
CCAACCTCCTTAGCAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCCACCTGCGTAAC
AACTGAGGTCCCTCATTGGCAGCTCACAGCCTGCCCTGGATGAGGAGCCAGTTA
CCTTCCCCAAATCGACCCATGTTCTATCCAAAATCAGCAGACAAAGTGACAGACAAAACA
AAAGTGCCCTCTAGGAGCCCAGAGAACTCTCTGGACCCCAAGATGTCCTGACAGGGCAAG
GGAACCTCCTACCCATGCCAGGAGGCTGAGGCTGAGGCTGAGTTGCCCTCCAGTG
AGGTCTTGGCCTCAGTTTCCAGGCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGAC
CACACGGGGCACACCTCCTCCAAGTCCCTGCCAATTCCCCAATACCTCTGCCACCGCTAA
TGCCACGGGTGGCGTGCCTGGCTCTGAGTCGCTGCCAGGTGCAGAGGCCCTGACA
AGCCTAGCGTTGTGTCAGGGCTGAACCTGGCCCTGGTCACTGTGAGGGCCCTCCTGGGA
CTACTGCTCCTGCCTCCTCTGGTGTGGCTGGAATCTTCTTGAATGGATACCAACTCAAAGGG
TGAAGAGGTAGCTGTCCTCTGTCACTTCCCCACCCCTGCCCCAGCCCTAAACAAGATA
CTTCTTGGTTAAGGCCCTCGGAAGGGAAAGGCTACGGGCATGTGCCTCATCACACCATCC
ATCCTGGAGGCACAAGGCCTGGCTGGCTGCGAGCTCAGGAGGCCCTGAGGACTGCACACC
GGGCCACACCTCTCCTGCCCTCCCTGAGTCCTGGGGTGGGAGGATTGAGGGAGCT
CACTGCCTACCTGGCCTGGGCTGTCTGCCACACAGCATGTGCCTCTCCCTGAGTGCCTG
TGTAGCTGGGATGGGATTCCCTAGGGCAGATGAAGGACAAGCCCCACTGGAGTGGGTTTC
TTTGAATGGGGAGGCAGGGACGGAAAGGAAAGTAACCTGACTCTCCAATAAAACCT
GTCCAACCTGTGAAA

FIGURE 100

MHGSCSFLMLLLPLLLLLVATTGPVGALTDEEKRLMVELHNLYRAQVSPTASDMLHMRWDEE
LAAFAKAYARQCVGHNKERGRRGENLFAITDEGMDVPLAMEEWHHEREHYNLSAATCSPGQ
MCGHYTQVVWAKTERIGCGSHFCEKLQGVEETNIELLVCNYEPPGNVKGKRPYQEGTPCSQC
PSGYHCKNSLCEPIGSPEDAQDLPYLVTEAPSFRATEASDSRKMGTPSSLATGIPAFLVTEV
SGSLATKALPAVETQAPTSLATKDPPSMATEAPPCVTTEVPSILAHLPSLDEEPVTFPKS
THVPIPKSADKVTDKTKVPSRSPENSMDPKMSLTGARELLPHAQEEAEAEELPPSEVLAS
VFPAQDKPGELQATLDHTGHTSSKSLPNFPNTSATANATGGRALALQSSLPGAEGPDKPSVV
SGLNSGPGHVWGPLLGLLLLPLVLAGIF

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

Glycosaminoglycan attachment site.

amino acids 439-443

Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

N-myristoylation site.

amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237,
250-256

Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

FIGURE 101

GTAACGTAGGCTTTCAATTGGAGCCCCCTAACAGAACCGTCATTCTCCAAGTTATGGTGGACGT
ACTCTGTTGTTCTCCCTGCTTGCTTTCACATTAGCAGACCGACTAAGTCACAACAGATTATCTTCAT
CAAGGCAAGTCCATGAGCCACCTCAAAGCCTCGAGAAACTGAACAACAATGAATTGGAGACCATTCC
AAATCTGGGACCAAGTCTGGCAAATATTACACTCTCTCCTGGCTGGAAACAGGATTGTGAAATACCTCC
ACATCTGAAAGAGTTCACTGCCCTGAAACTTTGGACCTTAGCAGCAACAATATTTCAGAGCTCCAAACTGCATT
TCCAGCCCTACAGCTAAATATCTGTATCTAACAGCAACCGAGTCACATCAATGGAACCTGGTATTGGACAA
TTTGGCCAACACACTCCTGTGAAAGCTGAACAGGAACCGAATCTCAGCTATCCCACCCAAGATGTTAAACT
GCCCAACTGCAACATCTGAATTGAACCGAAACAAGATTAAGATGGACTGACATTCCAAGGCCTGG
TGCTCTGAAGTCTGAAATGCAAGGAAACTTATGGATGGAGCTTTTGGGGCTGAGCAA
CATGGAAATTTCAGCTGGACATAACAACCTAACAGAGATTACCAAAGGCTGGCTTACGGCTTGCTGATGCT
GCAGGAACCTCATCTCAGCCAAATGCCATCAACAGGATCAGCCCTGATGCCCTGGAGTTCTGCCAGAAGCTCAG
TGAGCTGGACCTAATTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCTGGCTAAGCTTACTAAATAC
ACTGCACATTGGAAACAACAGAGTCAGCTACATTGCTGATTGTGCTTCCGGGGCTTCCAGTTAAAGACTTT
GGATCTGAAGAACATGAAATTCTGGACTATTGAAGACATGAATGGTCTTCTGGAGTGATGAAACTGAG
GCGACTGATACTCCAAGGAAATCGGATCCGTTCTATTACTAAAAAGCTTCACTGGTTGGATGATGGAGCA
TCTAGACCTGAGTGAACCGCAATCATGTCTTACAAGGCAATGCATTTCACAAATGAAGAAACTGCAACAATT
GCATTAAATACATCAAGCCTTTGTGCATTGCCAGCTAAATGGCTCCACAGTGGTGGCGAAAACAACCTT
TCAGAGCTTGAAATGCCAGTTGTGCCATCCTCAGCTGCTAAAGGAAGAACGATTTTGCTGTTAGGCCAGA
TGGCTTGTGTGATGATTTCCAAACCCCAGATCACGGTTAGCCAGAACACAGTCGGAATAAAAGGTT
CAATTGAGTTCATCTGCTCAGCTGCCAGCAGTGAATCCCAATGACTTTGCTTGGAAAAAAAGACAATGA
ACTACTGCATGATGCTGAAATGGAAATTATGCACACCTCCGGGCCAAGGTGGCAGGTGATGGAGTATACCAC
CATCCTCGGCTGCGCAGGTGAAATTGCCAGTGAGGGAAATATCAGTGTGTCATCTCAATCACTTGGTC
ATCCTACTCTGCAAAGCCAAGCTTACAGTAAATATGCTTCCCTCATTCACCAAGACCCCCATGGATCTCACC
CCGAGCTGGGGCCATGGCACGCTTGGAGTGTGCTGTGGGACCCAGCCCCCAGATAGCCTGGCAGAAGGA
TGGGGCACAGACTTCCAGCTGCACGGAGAGACGCATGATGTGATGCCAGGTGATGGTCTTATCGT
GGATGTGAAGATAGAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTCAGCAAATGC
AACTCTGACTGTCTAGAAACACCATATTGGCGGCCACTGTTGGACCGAACGTGTAACCAAGGGAGAAACAGC
CGTCCTACAGTGCATTGCTGGAGGAAGGCCCTCCCCCTAAACTGAACTGGACCAAAGATGATAGCCCATTGGT
AACCGAGAGGCACTTTTGTCAGGCAATCAGCTCTGATTATTGTGGACTCAGATGTCAGTGTGATCTGGAA
ATACACATGTGAGATGCTAACACCCCTGGCACTGAGAGGAAACCTGGCCTCAGTGTGATCCCCACTCCAAC
CTGCGACTCCCCCTCAGATGACAGCCCCATGTTAGACGATGACGGATGGGCACTGTGGTGTGATCATAGC
CGTGGTTGCTGTGGTGGCACGTCACTCGTGTGGTGTGATCATATACACACAAGGGGAGGAATGAAGA
TTGCAGCATTACCAACACAGATGAGACCAACTGCCAGCAGATATTCTAGTTATGTGTCATCTCAGGGAAACGTT
AGCTGACAGGCAGGATGGGTACGTGCTTCAGAAAGTGGAGGCCACCCAGTTGTCACATCTCAGGGTGTGG
ATTTTCTTACACACATGACAGTAGTGGACCTGCCATTGACAATAGCAGTGAAGCTGATGTGAAAGCTGC
CACAGATCTGTTCTTGTCCGTTTGGGATCCACAGGCCCTATGTATTGAAAGGGAAATGTGATGGCTCAGA
TCCTTTGAAACATATCATACAGGTTGCACTCCTGACCCAGAACACAGTTTATGGACCACTATGAGCCCAGTT
CATAAAGAAAAAGGAGTGTACCCATGTCATCCTTCAGAAGAACCTCGCAACGGAGCTCAGTAATATATC
GTGGCTTCACATGTGAGGAAGCTACTTAACACTAGTTACTCTCACAAATGAAGGACCTGGAATGAAAATCTGT
TCTAAACAAGTCTCTTGTGAAAGCTCATTCTCCAGACTTGGACTCTGGTCAAGGATTCAGTAACTTCTCATGGG
TACCTTGAAAGCTCTCAGGAGACCTCACCTAGATGCCATTCAAGCTTGGACAGCCATCAGATTGTCAGCC
AAGAGCCTTTATGTGAAAGCTCATTCTCCAGACTTGGACTCTGGTCAAGGAGATGGAAAGAAAGGAC
AGATTTCAGGAAGAAAATCACATTGTACCTTAAACAGACTTTAGAAAACAGTCCAAATTTCAGTC
TTATGACTTGGACACATAGACTGAATGAGACCAAAGGAAAAGCTTAACATACACTACCTCAAGTGAACCTT
AAAGAGAGAGAACTTATGTTAAATGGAGTTATGAATTAAAGGATAAAATGCTTTATTTATACAGAT
GAACCAAAATTACACAAAGTTATGAAATTTTATACTGGGAATGATGCTCATATAAGAACACCTTTAAACTA
TTTTTTAACTTGTGTTATGCAAAAAGTATCTACGTAATTAAATGATATAAAATCATGATTATTTATGTATT
TTATAATGCCAGATTCTTTATGAAAATGAGTTACTAAAGCATTAAATAACCTGCCCTGTACCAATT
TTAAATAGAAGTTACTCATTATATTGACATTATTTAATAAAATGTGTCATTTGAA

FIGURE 102

MVDVLLFSLCLLFHISRPDLSHNRLSFIKASSMSHLQLSQLREVKLNNNELETIPNLGPVSAN
ITLLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEP
GYFDNLANTLLVLKLNRRNRIASIPPKMFKLQPQLQHLELRNKIKNVGLTFQGLGALKSLKM
QRNGVTKLMGAFWGLSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAINRISPDAWE
FCQKLSELDLTFNHLRSRLLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRLSSLKTLDLKNN
ISWTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQ
MKKLQQLHLNTSSLLCDCQLKWLPOWVAENNQSFVNASCAPQLLKGRSIFAVSPDFVCD
DFPKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKDNELLHDAEMENYAHLRQAQG
GEVMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGA
MARLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCAQN
SAGSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPKNWTKDDSPVVTER
HFFAAGNQLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPQMTAPSLLDDG
WATVGVIIIAVVCCVVGTSLVVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTTLAD
RQDGYSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLCFLCPFLGSTGP
MYLKGNVYGSDPFETYHTGCSPDPRTVLMHYEPSYIKKKECYPCHPSEESCERSFSNISW
PSHVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDA
YSSFGQPSDCQPRAFYLKAHSSPDLDGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQS
YDLDT

Signal sequence:

amino acids 1-19

Transmembrane domain:

amino acids 746-765

N-glycosylation site.

amino acids 62-66, 96-100, 214-220, 382-386, 409-413, 455-459,
628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268,
314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653,
671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962,
1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534,
612-618, 623-629, 714-720, 873-879

FIGURE 103

GGGGAGAGGAATTGACCATGTAAAAGGAGACTTTTTGGTGGTGGCTTGGGTGCCTGCAAAATG
AAGGATGCAGGACGCAGCTTCTCCTGGAACCGAACGCAATGGATAAAACTGATTGTGCAAGAGAGAAGAAC
GAAGCTTTCTTGTGAGCCCTGGATCTTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATGAAA
TAAACCAGAGTTAGACCCCGGGGGTGGTGTCTGACATAAATAATCTTAAAGCAGCTGTTCCCTCC
CCACCCCCAAAAAAAGGATGATTGAAAGAAGAACCGAGGATTCAAAGAAAAAGTATGTTCATTTCTC
TATAAAGGAGAAAGTGAAGCCAAGGGAGATATTGGAATGAAAAGTTGGGGCTTTTAGTAAAGTAAAGAACT
GGTGTGGTGGTGTCTTCTTGAATTCCCACAAAGAGGAGAGGAAATTAAATAACATCTGCAAAGAAA
TTTCAGAGAAGAAAAGTGAACCGCGCAGATTGAGGCATTGATTGGGGAGAGAAACACAGCAGAGCACAGTTGGA
TTTGCCATGTTGACTAAAATTGACGGATAATTGCACTGGATTCTCTTCTTCAACCTCCATTTTTAAAT
TTTTATTCCCTTTGGTATCAAGATCATGCCTTCTTCTTCAACACCCTGGATTCCATCTGGATGTTGCT
GTGATCAGTCTGAAATACAACGTGTTGAATTCCAGAAGGACCAACACAGATAAATTGATGTTGAAACAAGAT
GACCTTACATCCACAGCAGATAATGATAGGTCTAGGTTAACAGGGCCATTGGACCTGCCCTCTGTGCTGGTGC
GCTGGCTCTCAACTTCTGGTGGCTGGTCTGGTGGCTCAGACACTGCCCTCTGTGCTGGTGC
CCAGTTCAAGGTGATTGTTGGAAAAACCTCGTGGAGGTTCCGGATGGCATCTCCACCAACACAGGCT
GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTCAAGCACTTGAGGACTTGGAAATCCT
ACAGTTGAGTAGGAACCATATCAGAACCAATTGAAATTGGGGCTTCAATGGTCTGGGAACCTCAACACTCTGGA
ACTCTTGACAATCGCTTACTACCATCCGAATGGAGCTTGTATCTGTCTAAACTGAAGGAGCTCTGGTT
GCGAAACAACCCATTGAAAGCATCCCTCTTACAGAATTCCCTTGGCGCGACTAGACTTAGG
GGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCTTGAAGGTCTGCCAACCTGAGGTTATTGAACCTTGC
CATGTGCAACCTCGGGAAATCCCTAACCTCACACCGCTCATAAAACATAGATGAGCTGGATCTTCTGGGAATCA
TTTATCTGCCATCAGGCCTGGCTCTTCCAGGGTTGATGCACCTTCAAAACTGTGGATGATACTGCCCAGAT
TCAAGTGAACGGAATGCCCTTGACAACCTCAGTCACTAGTGGAGATCAACCTGGCACACAATACTAAC
ATTACTGCCTCATGACCTCTCACTCCCTTGACATCATCTAGAGCGGATACATTACATACAACCCCTGGAACTG
TAACTGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCTCGAACACAGCTTGTGCCCCGGTG
TAACACTCCTCCAATCTAAAGGGGAGGTACATTGGAGAGCTGACCAGAATTACTTCACATGCTATGCTCCGGT
GATTGGAGCCCCCTGCAGACCTCAATGTCACTGAAGGCATGGCAGCTGAGCTGAAATGTCGGGCTCCACATC
CTGACATCTGTATCTGGATTACTCTCAAATGGAACACTCATGACACATGGGGCTACAAAGTGCAGTAGCTGT
GCTCAGTGTGGTACGTTAAATTTCACAAATGTAACCTGTGCAAGATAAGGCATGTACACATGTATGGTGGTAA
TTCCGGTGGGAATACTACTGCTTCAGGACCCCTGAATGTTACTGTCAGGAAACACTACTCCTTCTTACTTTTC
AACCGTCACAGTAGAGACTATGGAACCGTCTCAGGATGAGGCACGGACACAGATAACAATGTGGGCCCCACTCC
AGTGGTCGACTGGAGACCAATGTGACCACTCTCTCACACCACAGAGCACAAGGTGAGAGAAAAACCTT
CACCATCCCAGTGAATATAAACAGTGGGATCCCAGGAATTGATGAGGTCTGAGACAGACTACCAAAATCATCAT
TGGGTGTTTGGCCATCACACTCATGGCTGAGCTGATGCTGGTCTTCAAGATGAGGAAGCAGCACCA
TCGGCAAAACCATCACGCCAACAAAGGACTGTGAAATTATTAATGTGGATGAGATTACGGGAGACACACC
CATGGAAAGCCACCTGCCATGCCTGCTATCGAGCATGAGCACCTAAATCACTATAACTCATACAAATCTCCCTT
CAACCACACAAACACAGTTAACACAATAATTCAATACACAGTTCACTGAGCTGATGAAACCGTTATTGATCCGAATGAA
CTCTAAAGACAATGTACAAGAGACTCAAATCTAAACATTTACAGAGTTACAAAAACAAACAAATCAAAAAAA
GACAGTTATTAAAAATGACACAAATGACTGGGCTAAATCTACTGTTCAAAAGTGTCTTACAAAAAAACAA
AAAAGAAAAGAATTATTATTAAAAATTCTATTGTGATCTAAAGCAGACAAAAA

FIGURE 104

MLNKMTLHPQQIMIGPRFNRALFDPLLVVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVIC
VRKNLREVPDGISTNTRLLNLHENQIQIICKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA
NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS
YISEGAFEGLSNLRYLNLCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL
WMIQSQIQVIERNADFNLQSLVEINLAHNNLTLLPHDLFTPPLHHLERIHLHHNPWCNC
WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLN
TEGMAAE LKCRASTSLSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMV
NSVGN TTASATLNVTAATTPFSYFSTVTVETMEPSQDEARTTDNNVGPTPVVDWE
TTNVTTSLTPQ STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRK
QHHRQN HHAPTRTVEIINV DDEITGDTPMESHPMPAIEHEHLNHYNSYKSPFNHTT
TVNTINSIHSS VHEPLLIRMSKDNVQETQI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438,
442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243,
391-397, 422-428, 433-439, 531-537

FIGURE 105

AGCCGACGCTGCTCAAGCTGCAACTCTGTCAGTTGCAGTTGGCAGTTCTTCCCTCTGCTGTTGGGGCA
TGAAAGGGCTTCGCCGCCGGAGTAAAAGAAGGAATTGACCAGGGCAGCGCAGGGAGGAGCGCAGCGACCGC
GAGGGCGGGCGTGACCCCTCGGCTGAAAGTTGTGCCGGGCCCCGAGCGCGCAGGGCTGGAGCTTCGGGAG
GACCTAGGCCGCTGGACCGCAGAGCCTCCGTGCGCGCAGGGCTGGGAGCTGGCTGCTGTGC
GCGGTGCTGGGGCGCGTGGCGTCCGACAGCGCGGTGCGGGGAACTCGGGAGCCCTCTGGGTAGCGGCC
GAGCGCCCAGGCCCACTACCTGCCGCTGCCCTGGGACCTGCTGGACTGCACTGTAAGCGGCTAGCGCTT
CCCCAGCCACTCCCGTCTGGGTGCGCTGGACTTAAGTCACAACAGATTATCTTCATCAAGGCAAGTCC
ATGAGCCACCTCAAAGCCTCGAGAAGTGAAGACTGAACAACAATGAATTGGAGAACATTCCAATCTGGGACCA
GTCTCGGCAAATATTACACTTCTCTTGGCTGAAACAGGATTGTGAAATACTCCCTGAACATCTGAAAGAG
TTTCAGTCCCTGAAACTTGGACCTTAGCAGCAACAATATTTCAGAGCTCCAAGTGCATTCCAGGCCACAG
CTCAAAATATCTGTATCTCAACAGCAACCGAGTCACATCAATGGAACCTGGGATTGGCAAAATTGGGCAACACA
CTCCTGTGTTAAAGCTGAACAGGAACCGAATCTCAGCTATCCCACCCAAAGATGTTAAACTGCCCAACTGCAA
CATCTGAATTGAAACCGAAACAAGATTAAAAATGTAGATGGACTGACATTCCAAGGCCCTGGTGTCTGAAGTCT
CTGAAAATGCAAGAAATGGAGTAACGAAACTTATGGATGGAGCTTTTGGGGCTGAGCAACATGGAATTGG
CAGCTGGACCATAACACCTAACAGAGATTACCAAAGGCTGGCTTACGGCTTGTGATGCTGCAGGAACCTCAT
CTCAGCCAAATGCCATCAACAGGATCAGCCCTGATGCCCTGGAGTTCTGCCAGAAGCTCAGTGAGCTGGACCA
ACTTTCAATCACTTCAAGGTTAGATGATTCAAGCTTCCCTGGCCTAACGTTACTAAATACACTGCACATTGGG
AACAAACAGAGTCAGCTACATTGCTGATTGTGCCCTCCGGGGCTTCCAGTTAAAGACTTGGATCTGAAGAAC
AATGAAATTTCCTGGACTATTGAAGACATGAATGGTCTTCTCTGGGCTTGACAAACTGAGGCGACTGATACTC
CAAGGAAATCGGATCCGTTCTATTACTAAAAAGCCTTCACTGGTTGGATGCAATTGGAGCATCTAGACCTGAGT
GACAACGCAATCATGTCTTACAAGGCAATGCATTTCACAAATGAAGAAACTGCAACAATTGCATTAAATACA
TCAAGCCTTTGTGCGATTGCCAGCTAAATGGCTCCCACAGTGGTGGCGGAAACAAACTTCAAGAGCTTGTA
AATGCCAGTTGCCATCTCAGCTGCTAAAGGAAGAACGATTGGCTGTTAGCCAGATGGCTTGT
GATGATTTCACAAACCCAGATCACGGTTCAGGCCAGAAACACAGTCGGCAATAAAGGTTCAATTGAGTTTC
ATCTGCTCAGCTGCCAGCAGTCAGTCTCCCAATGACTTTGCTTGGAAAAAGACAATGAACACTGCACTGAT
GCTGAAATGGAAAATTATGCAACACCTCCGGGCCAAGGTGGCAGGTGATGGAGTATACCAACCATCTTGGCTG
CGCAGGGTGGAAATTGCCAGTGAGGGAAATATCAGTGTGTCATCTCCAATCAGTGTGTTCATCCTACTCTGTC
AAAGCCAAGCTTACAGTAAATATGCTTCCCTATTCACCAAGACCCCCATGGATCTCACCATCCGAGCTGGGCC
ATGGCACGCTGGAGGTGTGCTGCTGGGGCACCCAGCCCCCAGATGCGTGGCAGAAGGATGGGGCACAGAC
TTCCCAGCTGCACGGGAGAGACGCATGATGTGATGCCAGGGATGACGTGTTCTTATGTGGATGTGAAGATA
GAGGACATTGGGTATACAGCTGCACAGCTCAGAACAGTGCAAGGAAGTATTCAAGCAATGCAACTCTGACTGTC
CTAGAAACACCATCATTTGCCACTGTTGGACCGAACTGTAACCAAGGGAGAACAGCCGTCTACAGTGC
ATTGCTGGAGGAAGGCCCTCCCCCTAAACTGAACTGGACCAAAGATGATGAGCCATTGGTGGTAACCGAGAGGCAC
TTTTTGAGCAGGCAATCAGCTCTGATTATTGTGGACTCAGATGTCAGTGCTGGAAATACACATGTGAG
ATGCTAACACCTTGGCACTGAGAGAGGAAACGTCAGGCCACTCCAAACCTGCACTCCCCT
CAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCACCTGTGGGTGCTGATCATAGCCGTGGTTGCTGT
GTGGTGGCAGTCACTCGTGTGGTGTATCATACACACAAGCGGAGGAATGAAGATTGCAGCATTAC
AACACAGATGAGACCAACTGCCAGAGATATTCTAGTTATTGTCTACAGGAAACGTTAGCTGACAGGAG
GATGGTACGTTCTCAGAAAGTGGCAAGCCACCACTGTCACATCTCAGGTGCTGGATTTCCTTACCA
CAACATGACAGTAGTGGCACCTGCCATATTGACAATAGCAGTCAGTGAGCTGCCACAGATCTGTC
CTTGTGCGTTGGGATCCACAGGCCCTATGTTAGGGAAATGTGTATGGCTCAGATCTTGGAAACA
TATCATACAGGTTGCAGTCCTGACCCAGAAACAGTTTAATGGACCACTATGAGCCAGTTACATAAAGAAAAG
GAGTGTACCCATGTTCTCATCCTCAGAAGAACTCTGCAACGGAGCTTCAGTAATATATCCTGCGCTTCACAT
GTGAGGAAGCTTAACACTAGTTACTCTCACAAATGAAGGACCTGGAAATGAAAATCTGTCATAAACAGTCC
TCTTGTGTTTAATGGAGTTATGAATTAAAGGATAAAATGCTTATTTACAGATGAAACCAAAATTAC
AAAAAGTTATGAAATTTTACTGGGAATGATGCTCATATAAGAATACCTTTAAACTATTTTAACTTTG
TTTATGCAAAAAGTATCTACGTTAAATTAGTATGATATAATCATGATTATTTATGTATTTTATAATGCCAGA
TTCTTTTATGGAAATGAGTTACTAAAGCATTAAATAACCTGCCCTGTGACCAATTAAATAGAAGTT
ACTTCATTATATTGCACTTAAATTAAATGTGCAATTGAAAAA

FIGURE 106

MSAPSLRARAAGLGLLLCAVLGRAGRSDSGGRGELGQPSGVAEERPCPTTCRCLGDILLDCSR
KRLARLPEPLPSWVARLDLSHNRLSFIKASSMSHLQSLREVKLNNELETIPNLGPVSANIT
LLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEPGY
FDNLANTLLVLKLNRNRISSAIPPKMFKLQPQLQHLELNRNKIKNVGGLTFQGLGALKSLKMQR
NGVTKLMGAFWGLSNMEILQLDHNNLTEITKGWLGYGLLMLQELHLSQNAINRISPDAWEFC
QKLSELDLTNFNHLRSRLLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRLGSSLKTLKLNNEIS
WTIEDMNGAFSGLDKLRRLLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQMK
KLQQLHLNTSSLCDQLKWLPOWVAENNFQSFVNASCAPHQPLLKGRSIFAVSPDGVCDDF
PKPQITVQPETQSAIKGSNLNFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAQGE
VMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGAMA
RLECAAVGHPPAQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQNSA
GSISANATLTVLETPSFLRPLLDRVTKGECVAVLQCIAGGSPPPKNWTKDDSPLVVTERHF
FAAGNQLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRSLVIPTPTCDSPQMTAPSLLDDGWA
TVGVVIIAVVCCVVGTSLVVVVIYHTRRRNEDCSITNTDETNLPADIPSYLSQGTLADRO
DGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGPMY
LKGNVYGSDFPFETYHTGSPDPRTVLMHYEPSYIKKKECYPCHPSEESCERSFSNISWPS
HVRKLLNTSYSHSNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS
SFGQPSDCQPRAFYLKAHSSPDLDGSEEDGKERTDFQEENHICTFKQTLNEYRTPNFQSYDLDT

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 808-828

N-glycosylation site.

amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519,
688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020

Glycosaminoglycan attachment site.

amino acids 886-890

Casein kinase II phosphorylation site.

amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378,
383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735,
799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022,
1073-1077, 1079-1083, 1081-1085

Tyrosine kinase phosphorylation site.

amino acids 667-675

N-myristoylation site.

amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433,
513-519, 588-594, 672-678, 683-687, 774-780, 933-939

Leucine zipper pattern.

amino acids 58-80, 65-87

FIGURE 107

CAAAACTTGCCTCGCGGAGAGCGCCCCAGCTTGAATTGAAGGAGCCCGAGCCCGGGAGCGCAGCTGAGAC
TGGGGGAGCGCGTTGGGCCCTGTGGGCGCCGCTCGGCGCCGGGCGCAGCAGGAAGGGAGCTGTGGTCTGCC
CTGCTCCACGAGGCGCCACTGGTGTGAACCGGGAGAGGCCCTGGGTGTCCTCCCCTATCCCTCCTTATATA
GAAACCTTCCACACTGGGAAGGCAGCGGGAGGGCAGGGCTCATGGTGAGCAAGGAGGCCGGCTGATCTGCAG
GCGCACAGCATTGGAGTTACAGATTTACAGATAACCAAATGGAAGGCAGAGGAGGCAGAACAGCCTGCCTGGT
TCCATCAGCCCTGGGCCAGGCGCATCTGACTCGGCACCCCTGCAGGCACCATGGCCCAGAGGCCGGGTGCTGC
TGCTCCTGCTGCTGCTGCCACAGCTGCACTGGGACCTGTGCTTGCGCTGAGGGCCCCAGGATTGGCGAA
GTGGCGCCACAGCCTGAGCCCCGAAGAGAACGAATTGGGGAGGAGGAGGCCGGTGTGACTGAGCCCTGAGG
AGCCCGGGCTGGCCAGCCGGTCAAGCTGCCCGAGACTGTGCTCTGGCCAGGAGGGCGTGTGACTGTG
GCGGTATTGACCTGCGTGAAGTCCCGGGGACCTGCTGAGCACCCAACCACCTATCTCTGAGAACAAACCAGC
TGGAAAAGATCTACCCCTGAGGAGCTCTCCCGCTGCACTGGAGACACTGAAACCTGCAAAACCGCCTGA
CTTCCCAGGGCTCCAGAGAAGGCGTTGAGCATCTGACCAACCTCAATTACCTGTACTTGGCCAATAACAAGC
TGACCTTGGCACCCGCTTCTGCCAACGCCCTGATCAGTGTGACTTGTGCTGCCAACATCTCACCAAGATCT
ATGGGCTCACCTTGGCCAAGGCAAACCTTGAGGTCTGTGTACCTGACAACAACAAGCTGGCAGGCCGGG
TGCCGGACAACATGTTCAACGGCTCCAGCAACGTCAGGTTCTCATCTGTCCAGCAACTTCTGCGCACGTGC
CCAAGCACCTGCCCTGCCCTGTACAAGCTGACCTCAAGAACACAAGCTGGAGAAGATCCCCCGGGG
TCAGCGAGCTGAGCAGCTGCGAGCTATACTGAGAACAAACTACCTGACTGAGCAGGGCCTGGACAACGAGA
CCTTCTGGAAGCTCTCAGCCTGGAGTACCTGGATCTGTCCAGCAACAACCTGTCCTGGGCTCCAGCTGGGCTGC
CGCGCAGCCTGGTGTGCTGCACTTGAGAAGAACGCCATCCGGAGCGTGGACCGGAATGTGCTGACCCCC
GCAGCCTGGAGTACCTGCTGCTGCACAGCAACCAGCTGCGGGAGCAGGGCATCCACCCACTGGCCTTCCAGGG
TCAAGCGGTTGCACACGGTGCACCTGTACAACAACGCGCTGGAGCGCGTGCCTGGCTGCC
GCACCCCTCATGATCCTGCACAACCAGATCACAGCATTGGCGCGAAGACTTGGCACCACCTACTTCTGGAGG
AGCTCAACCTCAGCTACAAACCGCATCACCGCCACAGGTGACCGCAGCCTCGCAAGCTGCGCTGCTGC
GCTCGCTGGACCTGTCGGCAACCGGCTGCAACGCTGCCACCTGGGTGCTCGAAATGTCATGTGCTGAAGG
TCAAGCGCAATGAGCTGGCTGCCCTGGCACAGGAGGGCGCTGGCGGGCATGGCTCAGCTGCGTGAGCTGTACCTCA
CCAGCAACCGACTGCCAGCCGAGCCCTGGGCCCCCTGCTGGTGGACCTCGCCCATCTGAGCTGCTGGACA
TCGCCGGGAATCAGCTCACAGAGATCCCCGAGGGCTCCCGAGTCACCTGAGTACCTGAGAACAACA
AGATTAGTGCCTGGCCCAATGCCCTGCACTCCACGCCAACCTCAAGGGGATCTTCTCAGGTTAACAGC
TGGCTGTGGCTCGTGGTGGACAGTGCCTCCGGAGGGCTGAAGGACCTGCAAGGCTTGGACATTGAAGG
TAGAGTTGGTGAACATTCCAAGGACCGTGGCCCTTGGGAAGGAAAGAGGAGGAGGAGGAAGAGGAGGAGG
AGGAAGAGGAAACAAGATAGTGACAAGGTGATGAGATGTGACCTAGGATGATGGACCGCCGACTCTTCTGC
AGCACACGCTGTGCTGAGCCCCCACTCTGCCGTGTCACACAGACACACCCAGCTGCACACATGAGGCA
TCCCACATGACACGGGCTGACACAGTCTCATATCCCCACCCCTGCCAGGGCTGCTCCACGCCAGACACATGC
ACACACATCACACCCCTCAAACACCCAGCTCAGCCACACACA
CCCCACTACCGCTGCCACGCCCTCTGAATCATGCAGGGAGGGCTGCCCTGGCACACACAGGCACCA
TTCCTCCCCCTGTCGACATGTGTATGCGTATGCATACACACCACACACACATGCACAAGTCATGTGCGAA
CAGCCCTCCAAAGCCTATGCCACAGACAGCTTGGCCAGCCAGAATCAGGCACTAGCAGCTGCCGTG
GTCCATCTGTCGCTCCGTTCCCTGGAGAAGACACAAGGTATCCATGCTGTGGCCAGGTGCC
GGAACTCACAAAGCTGGCTTTATTCCCTTCCATGCCATGGGACAGGAGCCTCAGGACTGCTGGCCTGG
TGGCCACCCCTGCTCCAGGTGCTGGCAGTCACTCTGCTAAGAGTCCCTCCCTGCCACGCCCTGGCAGGACA
CAGGCACTTTCCAATGGGAAGGCCAGCTGGAGGCAGGATGGGAGAGGCCCTGGGTGCTGCTGGGCTTGGGG
CAGGAGTGAAGCAGAGGTGATGGGCTGGCTGAGCCAGGGAGGAAGGAGCCAGCTGCACCTAGGAGACAC
GTTCTCAGGCCCTGIGGGGAAGTTCGGGTGCCCTTATTCTTATTCTTAAGGAAAAAAATGATAAAA
CTCAAAGCTGATTTCTGTTATAGAAAAACTAATAAAAGCATTATCCCTATCCCTGCAAAAAAA

FIGURE 108

MEGEEAEQPAWFHQWPWRPGASDSAPPAGTMAQSRVLLLLLPPQLHLGPVLAVRAPGFGRS
GGHSLSPPEENEFAEEEPLVLSPEEPGPAAVSCPDCACSQEGVVDCGGIDLREFPGDLP
EHTNHLSLQNNQLEKIYPEELSRLHRLETNLQNNRLTSRGLPEKAFLTNLNLYLANNK
LTLPAPRFLPNALISVDFAANYLTKIYGLTFGQKPNLRSVYLHNNKLADAGLPDNMFNGSSNV
EVLIILSSNFLRHVPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDN
ETFWKLSSLEYLDLSSNNLSRVPAGLPRSLVLLHLEKNAIRSVDANVLPIRSLEYLLLHSN
QLREQGIHPLAFQGLKRLHTVHLYNNALERVPSGLPRTLMILHNQITGIGREDFATTYF
LEELNLSYNRITSQPVHRDAFRKLRLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNEALAALA
RGALAGMAQLRELYLTSNRLRSRALGPRAWVDLAHLQLLDIAGNQLTEIPEGLPESLEYLYL
QNNKISAVPANAFDSTPNLKGIIFRFNKLAVGSVVDSAFRRLKHLQVLDIEGNLEFGDISKD
RGRLGKEKEEEEEEEEEEETR

Signal sequence:

amino acids 1-48

N-glycosylation site.

amino acids 243-247, 310-314, 328-332, 439-443

Casein kinase II phosphorylation site.

amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595

N-myristoylation site.

amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341,
477-483, 498-502, 539-545, 548-554

Leucine zipper pattern.

amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493,
535-557

FIGURE 109

FIGURE 110

MDFLLALVLVSSLYLQAAAEDGRWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQCOPVCQP
RCKHGE CIGPNKCKCHPGYAGKTCNQDLNECGLKPRPC KHRCMNTYGSYKCYCLNGYMLMPD
GSCSSALTCSMANCQYGCDVVKGQIRCQCPSPGLHLAPDGRTCDVDECATGRASCPRFQRC
VNTFGSYICKCHKGFDL MYIGGKYQCHDIDECSLGQYQCSSFARCVNRGSYKCKCKEGYQG
DGLTCVYIPKVMIEPSGPIHVPKGNGTILKGDTGNNNWIPDVGSTWWPPKTPYIPPIITNRP
TSKPTTRPTPKPTPIPTPPPPPPLPTELRTPLPPTTPERPTTGLTTIAPA AASTPPGGITVDN
RVQTDPQKPRGDVF SVLVHSCNF DHGLCGWI REKDNDLHWEPI RD PAGGQYLT VSAAKAPGG
KAARLVLPLGRLMHSGDLCLSFRHKVTGLHS GTLQVFVRKHGAHGA ALWGRNGGHGW RQ TQI
TLRGADIKSESQR

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 273-277

Casein kinase II phosphorylation site.

amino acids 166-170, 345-349

Tyrosine kinase phosphorylation site.

amino acids 199-206

N-myristoylation site.

amino acids 109-115, 125-131, 147-153, 191-197, 221-227, 236-242,
421-427, 433-439, 462-468, 476-482

Aspartic acid and asparagine hydroxylation site.

amino acids 104-116, 186-198, 231-243

Cell attachment sequence.

amino acids 382-385

EGF-like domain cysteine pattern signature.

amino acids 75-87

FIGURE 111

CTTCTTTGAAAAGGATTATCACCTGATCAGGTTCTCTGCATTGCCCTTAGATTGTGA
AATGTGGCTCAAGGTCTTCACAACTTCCCTTGCACAGGGTGCCTGCTCGGGGCTGA
AGGTGACAGTGCCATCACACACTGTCCATGGCGTCAGAGGTCAAGGCCCTACCTACCCGTC
CACTATGGCTTCCACACTCCAGCATCAGACATCCAGATCATATGGCTATTGAGAGACCCA
ACAATGCCAAATACTTACTGGGCTCTGTGAATAAGTCTGTGGTCTGACTTGGAAATACC
AACACAAGTCACCATGATGCCACCAATGCATCTGCTTATCAACCCACTGCAGTTCCCT
GATGAAGGCAATTACATCGTAAGGTCAACATTCAAGGAAATGGAACACTATCTGCCAGTC
GAAGATAACAAGTCACGGTTGATGATCCTGTACAAAGCCAGTGGTGCAGATTCATCCTCCCT
CTGGGGCTGAGTATGTGGGAACATGACCCCTGACATGCCATGTGGAAGGGGGCACTCGG
CTAGCTTACCAATGGCTAAAAAATGGGAGACCTGTCCACACCAGCTCCACCTACTCCTTTTC
TCCCCAAAACAATACCTTCAATTGCTCCAGTAACCAAGGAAGACATTGGAATTACAGCT
GCCTGGTGAGGAACCTGTCAAGTGAATTCTGATAAAGGGCTAAAAGTAGGGGAAGTGTACTGT
TGACCTTGGAGAGGCCATCCTATTGATTGTTCTGCTGATTCTCATCCCCCAACACCTACT
CCTGGATTAGGAGGACTGACAATACTACATATCATTAAGCATGGGCCTCGCTAGAAGTT
GCATCTGAGAAAGTAGCCCAGAAGACAATGGACTATGTGTGCTGTGCTTACAACACATAAC
CGGCAGGCAAGATGAAACTCATTCACAGTTATCATCACTCCGTAGGACTGGAGAAGCTG
CACAGAAAGGAAAATCATTGTCAACCTTCAAGTATACTGGAATATCACTATTGATT
ATATCCATGTGTTCTCTTCTATGGAAAAAATCAACCCATCAAAGTTATAAAACAGAA
ACTAGAAGGCAGGCCAGAACAGAACATCAGGAAAGCTCAAACATTTCAGGCCATGAAGATG
CTCTGGATGACTTCGGAATATATGAATTGTTGCTTCCAGATGTTCTGGTGTTCAGG
ATTCCAAGCAGGTCTGTTCCAGCCTCTGATTGTTATGGGCAAGATTGCACAGTACAGT
GTATGAAGTTATTCAAGCACATCCCTGCCAGCAGCAAGACCATTCAAGTTGAACTTCATGG
GCTAAACAGTACATTGAGTGAAAATTCTGAAGAACATTAAAGGAAAACAGTGGAAAAGT
ATATTAATCTGGAATCACTGAAGAACAGGACCAACACCTTACTCATTATTCTTACA
TGCAGAACAGGATTATGCAAATTGAACTGCAGGTTTCAGCATATAACAAATGTCTT
GTGCAACAGAAAACATGTTGGGAAATATTCCCTCAGTGGAGAGTCGTTCTCATGCTGACGG
GGAGAACGAAAGTGACAGGGTTCTCATAAGTTGTATGAAATATCTACAAACCTCA
ATTAGTTCTACTCTACACTTCACTATCATCAACACTGAGACTATCCTGTCACCTACAAA
TGTGGAAACTTACATTGTTGATTTTCAGCAGACTTTGTTTATTAAATTGTTATTAGTG
TTAAGAATGCTAAATTATGTTCAATTATTCCTATCTTCAAGTTGTATTTGACAA
CAAAGTAATAAGGATGGTTGTCAAAAAACAAAACATGCCTCTTTTTCAATCACC
AGTAGTATTGAGAAGACTGTGAACACTTAAGGAAATGACTATTAAAGTCTTATTGTTA
TTTTTTCAAGGAAAGATGGATTCAAATAATTCTGTTTGTGTTAAAAAAAAAAAAAA

FIGURE 112

MWLKVFTTFLSFATGACSGLKVTVPSPHTVHGVRGQALYLPVHYGFHTPASDIQIIWLFERPH
TMPKYLLGSVNKSVPDLEYQHKFTMMPPNASLLINPLQFPDEGNYIVKVNIQGNGLTLSASQ
KIQVTVDPPVTKPQQIHPGSAVEYVGNMTLTCHEGGTRLAYQWLKNGRPVHTSSTYSFS
PQNNTLHIAPVTKEDIGNYSCLVRNPVSEMESDIIMPIIYYGPYGLQVNNSDKGLKVGEVFTV
DLGEAILFDCSADSHPPNTYSWIRTDNTTYIIKHGPRLEVASEKVAQKTMDYVCCAYNNIT
GRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIISMCLLFLWKKYQPYKVIKQK
LEGRPETEYRKAQTFSGHEDALDDFGIYEFPDVSGVSRIPSRSVPASDCVSGQDLHSTV
YEVIOHIPAQQQDHPE

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 341-359

N-glycosylation site.

amino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208,
276-280, 308-312

Casein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237,
239-245

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

FIGURE 113

GCAAGCGGC~~GAAATGGCGCCCTCCGGGAGTCTTCAGTTCCCTGGCAGTCCTGGTGTGTT~~
GCTTG~~GGGTGCTCCCTGGACGCACGGCGGCCAGCACGTTCCGTCATCACGGACGAGA~~
ACTGGAGAGAAC~~TGCTGGAAGGAGACTGGATGATAGAATTATGCCCCGGTGCCTGCT~~
TGTCAA~~AAATCTCAACCAGGAATGGAAAGTTGCTGAATGGGAGAAGATCTTGAGGTTAA~~
TATTG~~CAGAAGTAGATGTCACAGAGCAGCCAGGACTGAGTGGACGGTTATCATAACTGCTC~~
TTC~~CTACTATTATCATTGTAAGATGGTGAATTAGGCCTATCAGGGCCAAGGACTAAG~~
AAGGACTTC~~CATAAACTTATAAGTGATAAAGAGTGGAAAGAGTATTGAGCCCCTTCATCATG~~
GTTTGGTCCAGGTTCTGTTCTGATGAGTAGTATGTCAGCACTCTTCAGCTATCTATGTGGA
TCAGGACGTGCCATAACTACTTATTG~~AAGACCTTGGATTGCCAGTGTGGGATCATATACT~~
GTTTG~~CCTTAGCAACTCTGTTCCGGACTGTTATTAGGACTCTGTATGATATTGTGGC~~
AGATTG~~CCTTGTCCCTCAAAAAGGCCAGACCCACAGCCATACCCATACCCCTCAAAAAAAAT~~
TATTATC~~AGAATCTGCACAACCTTGAAAAAAGTGGAGGAGGAACAAGAGGCCGATGAAGAA~~
GATG~~TTCCAGAAGAAGACTGAAAGTAAAGAAGGAACAAACAAAGACTTCCACAGAATGC~~
CAT~~AAGACAACGCTCTGGGCCATCATTGGCACAGATAATCCTAGTAAATTATAG~~
TTATCTTA~~ATATTATGATTTGATAAAAACAGAAGATTGATCATTGTTGGTTGAAGTG~~
AACTGT~~GACTTTTGAAATTGCAGGGTCAGTCTAGATTGTCATTAAATTGAAGAGTCTA~~
CATT~~CAGAACATAAAAGCACTAGGTATACAAGTTGAAATTGATTTAACAGTATGATG~~
GTT~~AAATAGTTCTAATTGAAAAATCGGCCAGCAATAAGATTATGTATATTGT~~
TTAATA~~ATAACCTATTCAAGTCTGAGTTGAAAATTACATTCCCAAGTATTGATTCTGATTAT~~
TGAGG~~TATTAGAAGATTATTAGAGAAAATTCTCATTTGATATAATTCTCTG~~
TTCACT~~GTTGAAAAAGAAGATATTCCATAATGGGAAGTTGCCATTGCTCAAG~~
AAATGT~~GTTTCAGTGACAATTCTGGTCTTTAGAGGTATATTCCAAAATTCTCTG~~
ATTTT~~TAGTTATGCAACTAATAAAACTACCTTACATTAATTAAATTACAGTTCTACACA~~
TGG~~TAATACAGGATATGCTACTGATTAGGAAGTTTAAGTTCATGGTATTCTTGATTC~~
CAAC~~AAAGTTGATTCTCTGTATTCTTACTTACTATGGGTACATTTTATTGTT~~
CAAATTGG~~GATAATTCTGGAAACATTTTATGTTAGTAAACAGTATTGTTGTT~~
GTT~~CAAACGTTGAAAGTTACTGAGAGATCCATCAAATTGAACAATCTGTTGTAATTAAAATT~~
TTGCC~~ACTTTTCAGATTTCATCATTCTGCTGAACCTCAACTGAAATTGTTTTTT~~
TTCTT~~TTGGATGTAAGGTGAACATTCTGATTGTTCTGATGTGAAAAAGCCTGGTA~~
TTTAC~~ATTGAAATTCAAAGAAGCTTAATATAAAAGTTGCATTCTACTCAGGAAAAG~~
CAT~~CTTCTGTATATGCTTAAATGTATTGTCCTCATATACAGAAAGTTCTTAATTGAT~~
TTTAC~~AGTCTGTAATGCTGATGTTAAAATAACATTATTATTTAAAGACAA~~
ACT~~TCAATTATCCTGTTCTGACTGGTAATATTGTGTTGGGATTTCACAGGTAAA~~
GTC~~CAGTAGGATGGAACATTAGTGTATTGTTACTCCTTAAAGAGCTAGAATACATAGTTT~~
CAC~~CTTAAAGAAGGGGAAATCATAAATACAATGAATCAACTGACCATTACGTAGTAGAC~~
AATT~~TCTGTAATGTCCTTCTTAGGCTCTGTTGCTGTGAATCCATTAGATTACAG~~
TAT~~CGTAATATACAAGTTCTTAAAGCCCTCCTTCTGATGCTTAGAATTAAAATTGTA~~
AAAGAG~~TTGGATGTAACTTGTGATGCCTTAGAAAAATATCCTAAGCACAAATAACCT~~
TTCTAAC~~CCACTTCATTAAGCTGAAAAAAAAAAAAAA~~

FIGURE 114

MAPSGSLAVPLAVLVLLLWGAPWTHGRRSNVRVITDENWRELLEGDWMIEFYAPWCPACQNL
QPEWESFAEWGEDLEVNIAKVDVTEQPGLSGRFIITALPTIYHCKDGEFRRYQGPRTKKDFI
NFISDKEWKSIEPVSSWFGPGSVLMSSMSALFQLSMWIRTCHNYFIEDLGLPVWGSYTVFAL
ATLFSGLLLGLCMIFVADCLCPSKRRPQPYPYPSKKLLSESAQPLKKVEEEQEADEEDVSE
EEAESKEGTNKDFPQNAIRQRSLGPSLATDKS

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 182-201

Casein kinase II phosphorylation site.

amino acids 68-72, 119-123, 128-132, 247-251, 257-261

Tyrosine kinase phosphorylation site.

amino acids 107-115

N-myristoylation site.

amino acids 20-26, 192-198

Amidation site.

amino acids 25-29

FIGURE 115

GCGAGTGTCCAGCTGGAGACCCGTGATAATTGTTAACTAATTCAACAAACGGGACCCTT
CTGTGTGCCAGAAACCGCAAGCAGTGTGCTAACCCAGTGGGACAGGCAGGATTGGAAGAGCGGG
AAGTCCTGGCCCAGAGCAGTGTGACACTTCCCTCTGTGACCTGAAACTCTGGGTGTCTGC
ATTGCTGATGGCCTGGTTGGTGTGAGCTGTGTCAGGGCAATTCTCACCTCTATTG
GGCACATGACTGACCTGATTATGCAGAGAAAGAGCTGGTGAGTCTGTGAAAGAGTACATC
CTTGTGGAGGAAGCCAAGCTTCCAAGATTAAGAGCTGGCCAACAAAATGGAAGCCTTGAC
TAGCAAGTCAGCTGCTGATGCTGAGGGCTACCTGGCTCACCTGTGAATGCCTACAAACTGG
TGAAGCGGCTAACACACAGACTGGCCTGCGCTGGAGGACCTTGTCTGCAGGACTCAGCTGCA
GGTTTTATGCCAACCTCTGTGCGAGCGGAGTTCTCCCCACTGATGAGGACGAGATAGG
AGCTGCCAAAGCCCTGATGAGACTTCAGGACACATACAGGCTGGACCCAGGCACAATTCCA
GAGGGGAACCTCCAGGAACCAAGTACCAAGGCAATGCTGAGTGTGGATGACTGCTTGGATG
GGCCGCTCGGCCTACAATGAAGGGACTATTATCATACGGTGTGGATGGAGCAGGTGCT
AAAGCAGCTTGATGCCGGGAGGAGGCCACCAACCAAGTCACAGGTGCTGGACTACCTCA
GCTATGCTGCTTCCAGTTGGGTGATCTGCACCGTGCCTGGAGGCTCACCCGCCGCTGCTC
TCCCTGACCAAGCCACGAGCTGGAGGAATCTCGGTACTTGAGCAGTTATTGGA
GGAAGAGAGAGAAAAACGTTAACAAATCAGACAGAAGCTGAGCTAGCAACCCCAGAAGGCA
TCTATGAGAGGCCTGTGGACTACCTGCCTGAGAGGGATGTTACGAGAGCCTCTGCGTGGG
GAGGGTGTCAAACGTACACCCGTAGACAGAAGAGGCTTCTGTAGGTACCAACATGGCAA
CAGGGCCCCACAGCTGCTATTGCCCTTCAAAGAGGAGGACGAGTGGACAGCCGACA
TCGTCAAGGTACTACGATGTCATGTGATGAGGAAATCGAGAGGATCAAGGAGATCGAAAAA
CCTAAACTTGCACGAGCCACCGTCTGTGATCCCAAGACAGGAGTCCTCACTGCGCAGCTA
CCGGGTTCCAAAGCTCTGGCTAGAGGAAGATGATGACCTGTTGTGGCCGAGTAAATC
GTCGGATGCAGCATATCACAGGTTAACAGTAAAGACTGCAGAATTGTTACAGGTTGCAAAT
TATGGAGTGGGAGGACAGTATGAACCGCACTCGACTTCTCTAGGCGACCTTGACAGCGG
CCTAAAACAGAGGGAAATAGGTTAGCGACGTTCTTAACACATGAGTGTAGAAGCTG
GTGGTGCACCGTCTCCCTGATCTGGGGCTGCAATTGGCTAAGAAGGGTACAGCTGTG
TTCTGGTACAACCTCTGGAGGGAGGAAAGGTGACTACCGAACAGACATGCTGCTGCC
TGTGCTTGTGGCTGCAAGTGGGTCTCCAATAAGTGGTCCATGAACGAGGACAGGAGTTCT
TGAGACCTGTGGATCAACAGAAGTTGACTTGACATCCTTCTGCTCTCCCTCTGGTC
CTTCAGCCCATGTCAACGTGACAGACACCTTGTATGTTCTTGTATGTTCTATCAGGCT
GATTTTGAGGAAATGAATGTTGTCTGGAGCAGAGGGAGACCATACTAGGGCGACTCCTGT
GTGACTGAAGTCCCAGCCCTTCCATTGAGCCTGTGCCATCCCTGGCCCAAGGCTAGGATCA
AAGTGGCTGAGCAGAGTTAGCTGTCTAGCGCTAGCAAGGTGCTTGTACCTCAGGTGTT
TTAGGTGTGAGATGTTCAAGTGAACCAAAGTTCTGATACCTGTTACATGTTGTTTAT
GGCATTCTATCTATTGTGGCTTACCAAAAAATAAAATGTCCCTACCAGAAAAAA

FIGURE 116

MKLWVSALLMAWFGVLSCVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLSKIKSWA
NKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAGFIANLSVQRQFFP
TDEDEIGAAKALMRLQDTYRLDPGTISRGELPGTKYQAMLSVDDCFGMGRSAYNEGDYYHTV
LWMEQVLKQLDAGEEATTTKSQVLDYLSYAVFQLGDLHRAELTRRLLSLDPSHERAGGNLR
YFEQLLEEEEREKTLTNQTEAELATPEGIYERPVDYLPERDVYESLCRGEGVKLTPRQKRLF
CRYHHGNRAPQOLLIAPFKEEDEWDSPHIVRYYDVMSDEEIERIKEIAKPKLARATVRDPKTG
VLTVASYRVSKSSWLEEDDPVVARVNRRMQHITGLTVKTAELLQVANYGVGGQYEPHFDFRS
RRPFDSGLKTEGNRLATFLNYMSDVEAGGATVFPDLGAIWPKKGTAVFWYNLLRSGEGDYR
TRHAACPVLVGCKWVSNKFHERGQEFLRPCGSTEVD

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 115-119, 264-268

Glycosaminoglycan attachment site.

amino acids 490-494

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 477-481

Casein kinase II phosphorylation site.

amino acids 43-47, 72-76, 125-129, 151-155, 165-169, 266-270,
346-350, 365-369, 385-389, 457-461, 530-534

Tyrosine kinase phosphorylation site.

amino acids 71-80, 489-496

N-myristoylation site.

amino acids 14-20, 131-137, 171-177, 446-452

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 8-19

Leucine zipper pattern.

amino acids 213-235

FIGURE 117

GCAGTATTGAGTTTACTCCCTCTTTAGTGAAGACAGACCATAATCCAGTGTGAGTGAAATTGATTGT
TTCATTTATTACCGTTGGCTGGGGTTAGTCCGACACCTTCACAGTGAAGAGCAGGCCAGAAGGAGTTGTGA
AGACAGGACAATCTTCTGGGGATGCTGGCTTGAAGCCAGCAGGGCTTGCTCTGTCTTGGCTCATTGACCC
CAGGTTCTCTGGTTAAACTGAAAGCCTACTACTGGCTGGCCATCAATCATTGATCCTTGAGGCTGTGCC
CCTGGGGCACCCACCTGGCAGGGCTACCAATCGCACTGAGCTCCCTGTTGGCTCTGCTGCCAGCGCTTC
CCCTCATCTTAGGGCTCTCTGGGGTGCAGCCTGAGCCTCTGCGGGTTCTGGATCCAGGGGAGGGAGAAG
ATCCCTGTGTCGAGGCTGAGGGAGCCACAGAACATCCAGATTGAGAGCTGGCTAGACCAAAGTGAAG
ATGAAGACTCTAAACCCCCGATTGTCCTACTACAGGGACCCAAACAAGCCCTACAAGAAGGTGCTCAGGACTC
GGTACATCCAGACAGCAGCTGGCTCCGTGAGCGGTTGCTGGCTGACCTCCGAGCTACACTGTCCA
CTTGGCCGTGGCTGTGAACCGTACGGTGGCCATCACTCCCTCGGTTACTCTACTTCACGGCAGGGGG
CCCGGGCTCCAGCAGGGATGCAAGTGGTGTCTATGGGGATGAGCGCCGGCTGGCTATGTCAGAGACCCCTGC
GCCACCTCACACACACTTGGGCCGACTACGACTGGTCTTCATCATGCAAGGATGACACATATGTCAGGCC
CCGCCTGGCAGCCCTGCTGCCACCTCAGCATCAACCAAGACCTGACTTAAAGCCGGAGAGGAGTTCATIG
GCGCAGGCAGCAGGCCGGTACTGTCACTGGGGCTTGCTACCTGTTGTCACGGAGTCTCTGCTTCGTCTGC
GGCCACATCTGGATGGCTGCCAGGGACATTCTCAGTGGCCGCTTGACGAGTGGCTTGACGCTGCCATTG
ACTCTCTGGCGTCTGGCTGTCACAGCACCAGGGCAGCAGTATGCTCATTTGAACGGCCAAAATAGGG
ACCCCTGAGAAGGAAGGGAGCTGGCTTCCCTGAGTGCCITGCCGTGACCCCTGCTCCGAAGGTACCCCTATGT
ACCGGCTCCACAAACGCTCAGCGCTCTGGAGTTGGAGGGCTTAAGTGAATAGAACAACTGCAAGGCTCAGA
TCCGGAACCTGACCGTGTGACCCCCGAAGGGGAGGCAGGGCTGAGCTGGCCGGTTGGCTCCCTGCTCCTTCA
CACACACACTCTGCTTTGAGGTGCTGGCTGGACTACTTCACAGACGACACACCTCTCCTGTGCAAGATGGGG
CTCCAAGTGCCACTACAGGGGCTAGCAGGGCGACGTGGGTGATGCCGTGAGACTGCCCTGGAGCAGCTCA
ATCGCGCTATCAGCCCCCCTGCCAGAACAGCAGGACTGCTCAACGGCTATCGCGCTTCGACCCAGCAC
GGGGCATGGAGTACACCCCTGGACCTGCTGTTGAAATGTGTGACACAGCGTGGCACCGGGGGCCCTGGCTCGA
GGGTCACTGCTGCCACTGAGCCGGGTGAAATCCTACCTATGCCCTATGTCAGTGGCCACCCGAGTGC
AGCTGGTGTGCCACTCTGGTGGCTGAAGCTGCTGCAGCCCCGGCTTCCCTGAGGCGTTGCAGCCAATGTCC
TGGAGCCACGAGAACATGCTACCCCTGTTGCTACGGGCCACGAGAACGGTGGCCGTGGAGCTCCAG
ACCCATTCTGGGGTGAAGGCTGCAGCAGCGAGTTAGAGCGACGGTACCCCTGGGACGAGGCTGGCTGGCTCG
CTGTGCAAGCAGGCCCCCTCCCAGGTGCGACTCATGGACGTGGCTCGAAGAAGCACCCTGAGGACACTCTCT
TCTTCTTCTACACCGTGTGGACAAGGCTGGCCAGTCTCAACCGCTGTCGATGAATGCCATCTGGCT
GGCAGGCCCTTCTCCAGTCATTTCCAGGAGTTCAATCTGCCCTGTCACCAACAGAGATCACCCCCAGGGCCCC
CGGGGGCTGGCCCTGACCCCCCTCCCTGGCTGACCCCTCCGGGGGCTCTATAGGGGGAGATTG
ACCGGCAGGCTCTGCCGGAGGCTGTTCTACAACGCTGACTACCTGGCGGGCCAGGCCGGCTGGCAGGTGAAC
TGGCAGGCCAGGAAGAGGAGGAAGGCCCTGGAGGGGCTGGAGGGTATGGATGTTTCTCCGGTTCTCAGGGCTCC
ACCTCTTCTGGCCGTAGAGCCAGGGCTGGTGAGAACAGTTCTCCCTGCGAGACTGCAGCCCACGGCTCAGTGAAG
AACTCTACCAACCGCTGCCCTCAGCAACCTGGAGGGCTAGGGGGCGTGCCAGCTGGCTATGGCTCTTTG
AGCAGGAGCAGGCCAATAGCACTTAGCCCGCCTGGGGCCCTAACCTCATTACCTTCTGTCTGCCAGCC
CCAGGAAGGGCAAGGCAAGATGGTGGACAGATAGAGAATTGTTGCTGATTTTAAATATGAAAATGTTATTAA
ACATGTCTCTGCC

FIGURE 118

MRLSSLLALLRPALPLILGLSLGCSLSLLRVSWIQGEGEDPCVEAVGERGGPQNPDSRARLD
QSDEDFKPRIVPYYRDPNPKVLRTRYIQTTELGSRERLLVAVLTSRATLSTLAVAVNRTV
AHHFPRLLYFTGQRGARAPAGMQVVSHGDERPAWLMSETLRHLHTHFGADYDWFFIMQDDTY
VQAPRLAALAGHLSINQDLYLGRAEEFIGAGEQARYCHGGFGYLLSRSLLLRLRPHLDGCRG
DILSARPDEWLGRCLIDS LGVGCVSQHQGQQYRSFELAKNRDPEKEGSSAFLSAFAVHPVSE
GTLMYRLHKRFSALELERAYSEIEQLQAQIRNLTVLTPEGEAGLSPVGLPAPFTPNSRFEV
LGWDYFTEQHTFSCADGAPKCPLQGASRADVGALETALEQLNRRYQPRLRFQKQRLLNGYR
RFDPARGMEYTLDLLECVTQRGHRRRALARRVSLLRPLSRVEILPMPYVTEATRVQLVLPLL
VAEAAAAPAFLEAFAAANVLEPREHALLTLLVYGPREGGRGAPDPFLGVKAAAELERRYPG
TRLAWLAVRAEAPSQVRLMDVVSKKHPVDTLFFLTTVWTRPGPEVLRCRMNAISGWQAFFP
VHFQEFPALSPQRSPPGPPGAGPDPPSPPGADPSRGAPIGGRFDRQASAEGCFYNADYLAA
RARLAGELAGQEEEALEGLEVMDFVLFSGLHLFRAVEPGLVQKFSLRDCSPRLSEELYHR
CRLSNLEGLGGRQLAMALFEQEQQANST

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 489-507

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-68, 150-154, 322-326, 331-337, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-678

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 119

CGGAGTGGTGCACGTGAGAGGAACCGTGCACGGCTGCCTTCCTGTCCCCAAGCC
GTTCTAGACGCCGGAAAAATGCTTCTGAAAGCAGCTCCTTTGAAGGGTGTATGCTTGG
AAGCATTCTGTGCTTGATCACTATGCTAGGACACATTAGGATTGGTCATGAAATAGAA
TGCACCACCATGAGCATCATCACCTACAAGCTCTAACAAAGAAGATATCTGAAAATTCA
GAGGATGAGCGCATGGAGCTCAGTAAGAGCTTCGAGTATACTGTATTATCCTGTAAAACC
CAAAGATGTGAGTCTTGGGCTGCAGTAAAGGAGACTGGACCAAACACTGTGACAAAGCAG
AGTTCTCAGTTCTGAAAATGTTAAAGTGTGAGTCATTAATATGGACACAAATGACATG
TGGTTAATGATGAGAAAAGCTTACAAATACGCCCTTGATAAGTATAGAGACCAATACAAC
GTTCTCCTGCACGCCCACTACGTTGCTATCATTGAAAACCTAAAGTATTTTGTAA
AAAAGGATCCATCACAGCCTTCTATCTAGGCCACACTATAAAATCTGGAGACCTTGAATAT
GTGGGTATGGAAGGAGGAATTGTCTTAAGTGTAGAATCAATGAAAAGACTTAACAGCCTCT
CAATATCCCAGAAAAGTGTCTGAACAGGGAGGGATGATTGGAAGATATCTGAAGATAAAC
AGCTAGCAGTTGCCTGAAATATGCTGGAGTATTGCAAGAAAATGCAGAAGATGCTGATGGA
AAAGATGTATTTAATACCAAATCTGTTGGCTTCTATTAAAGAGGCAATGACTTACACCC
CAACCAGGTAGTAGAAGGCTGTTAGATATGGCTGTTACTTTAATGGACTGACTCCAA
ATCAGATGCATGTGATGTATGGGTATACCGCCTTAGGGCATTGGCATATTTCAAT
GATGCATTGGTTTCTTACCTCAAATGGTCTGACAATGACTGAGAAGTGGTAGAAAAGCG
TGAATATGATCTTGTATAGGACGTGTGTCATTATTGTAGTAGTAACATACATATCCAA
TACAGCTGTATGTTCTTTCTTAATTTGGTGGCACTGGTATAACCACACATTAAAG
TCAGTAGTACATTTAAATGAGGGTGGTTTTCTTAAACACATGAACATTGAAATG
TGTTGGAAAGAAGTGTGTTAAGAATAATAATTGCAAATAACTATTAAATAATTAT
GTGATAAATTCTAAATTATGAACATTAGAAATCTGTGGGGCACATATTTGCTGATTGGTT
AAAAAAATTAAACAGGTCTTAGCGTTCTAACAGATATGCAAATGATATCTCTAGTTGTGAATT
TGTGATTAAAGTAAAACCTTGTGTTCCCTTACTTCTAACACTGATTATGTTCT
AAGCCTCCCCAAGTCCAATGGATTGCCTCTCAAATGTACAACTAAGCAACTAAAGAAA
ATTAAAGTGAAGTGTAAAAAT

FIGURE 120

MLSESSSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERME
LSKSFRVYCIILVKPKDVSLWAAVKETWTKHCDKAFFSSENVKFESINMDTNMDWLMMRK
AYKYAFDKYRDQYNWFFLARPTTFAIENLKYFLLKKDPSQPFYLGHTIKSGDLEYVGMEGG
IVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGKDVFNT
KSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFGHIFNDALVFL
PPNGSDND

Signal sequence:

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389,
399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550,
558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

FIGURE 121

FIGURE 122

MNSSKSSETQCTERGCSSQMFLWTAGIPILFLSACFITRCVVTFRIFQTCDEKKFQLPEN
FTELCYNYGSGSVKNCCPLNWEYFQSSCYFFSTDTISWALSLKNCSAMGAHLVVINSQEEQ
EFLSYKKPKMREFFIGLSDQVVEGQWQWVDGTPLTKSLSFWDVGEPPNNIATLEDCATMRDSS
NPRQNWNDVTCFLNYFRICEMVGINPLNKGS

Signal sequence:

amino acids 1-42

N-glycosylation site.

amino acids 2-6, 62-66, 107-111

Casein kinase II phosphorylation site.

amino acids 51-55, 120-124, 163-167, 175-179, 181-185

N-myristoylation site.

amino acids 15-21, 74-80, 155-161

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 27-38

FIGURE 123

GGGACTACAAGCCGCCCGCCTGCCGCTGGCCCCCTCAGCAACCTCGACATGGCGCTGAGGCGGCCACCGCGAC
TCCGGCTCGCGCTCGGCTGACTTCTTCCTGCTGCTGCTTTCAAGGGGCTGCTGATAAGGGCTGAAATC
TCAAATCCAGCAATCGAACCCCAGTGGTACAGGAATTGAAAGTGTGAACTGTCTGCATCATTACGGATTGCG
AGACAAGTGACCCAGGATCGAGTGGAAAGAAAATTCAAGATGAACAAACCACATATGTGTTTGACAACAAAA
TTCAGGGAGACTTGGCGGGTCTGAGGAAATACTGGGAAGACATCCCTGAAGATCTGAATGTGACACGGAGAG
ACTCAGCCCTTATCGCTGTGAGGTCGTTGCTGAAATGACCGAAGGAAATTGATGAGATTGTGATCGAGTTAA
CTGTGCAAGTGAAGCCAGTGCACCCCTGCTGTAGAGTGCCGAAGGCTGTACCAAGTAGGCAAGATGGCAACACTGC
ACTGCCAGGAGACTGAGGGCACCCCCGGCCTCACTACAGCTGGTATCGCAATGATGTACCAACTGCCACGGATT
CCAGAGCCAATCCCAGATTTCGCAATTCTCTTCACTTAAACTCTGAAACAGGCACTTGTGTTCACTGCTG
TTCACAAGGACGACTCTGGGAGACTACTGCAATTGCGGAATTATGGGGGGGTTCTGGTGTCTGTACTGCCCTGA
AGATGGAAGTCTATGACCTGAAACATTGGCGGAATTATGGGGGGGTTCTGGTGTCTGTACTGCCCTGA
TCACGGTGGGATCTGCTGTGCAACAGCTGAACTTCAACAATAACAGGATGGAGAAAGTTACAAGA
ACCCAGGGAAACCAAGATGGAGTTAACTACATCCGCACTGACGAGGAGGGCACTTCAGACACAAGTCATCGTTG
TGATCTGAGACCCCGGGTGTGGCTGAGAGCGCACAGAGCGCACAGTGCACATACACCTCTGCTAGAAACTCCTGCAA
GGCAGCGAGAGCTGATGCACTCGGACAGAGCTAGACACTCATTCAGAAAGCTTTCTGTTTGGCAAAGTTGACCA
CTACTCTTACTCTAACAGCCACATGAATAGAAGAATTTCCTCAAGATGGACCCGGTAATATAACCAAA
GGAAGCGAAACTGGGTGCGTTACTGAGTTGGGTTCTTAATCTGTTCTGGCCTGATTCCGCATGAGTATTAGG
GTGATCTAAAGAGTTGCTCACTGAAACGCCGTGCTGGGGCTGTGAAGCCAGCATGTTCAACACTGGTCGTT
CAGCAGCCACGACAGCACCATGTGAGATGGCGAGGGTGGCTGGACAGCACCAGCAGCGCATCCGGGGAAACCCA
GAAAAGGCTTCTTACACAGCAGCCTACTTCATCGGCCACAGACACCCACCGCAGTTCTTAAAGGCTCTG
TGATCGGTGTTGCACTGTCATTGTGGAGAAGCTTTGGATCAGCATTTGTAAGAACACAAAATCAGGAAG
GTAATTGGTGTGGAAGAGGGATCTGGCTGAGGAACCCGCTGCTTGTCAAACAGGGTGTCAAGGATTAAGGAAA
ACCTTCGTCCTAGGCTAACTGAAATGGTACTGAAATATGCTTTCTATGGGTCTGTTATTAAAGGAA
TACATCTAAATTGGCTAAAGGATGTATTGATTATTGAAAGAAATTCTATTAAACTGTAATATATTGT
CATACAATGTTAAATAACCTATTGTTAAAAAGGTTCAACTTAAGGTTAGAAGTCCAAGCTACTAGTGTAAAT
TGGAAATATCAATAATTAAAGAGTATTGTTACCAAGGAATCCTCTCATGGAAGTTACTGTGATGTTCTTTCT
CACACAAGTTTAGCCTTTTCACAAGGAACCTACACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTT
TAAAATTCCAGTTAAAGCAATGTTGAAATCAGTTGCTCTTCAAAGAAACCTCTCAGGTTAGCTTGAAC
GCCTCTCCTGAGATGACTAGGACAGTCTGTACCCAGAGGCCACCCAGAAGGCCCTCAGATGTACACACAGATG
CCAGTCAGCTCTGGGGTGCAGGCCAGGCCACCCGCTCTAGCTCAGTTGCTCTGCTGCTGCCAGGAGGCCCT
GCCATCCTGGGGCTGGCAGTGGCTGTGCTCCAGTGGCTTACTCAGTGGCCCTTGCTCATCCAGCACAGC
TCTCAGGGGGCAGTCAGGGACACTGGTCTTCCATGTAGCGTCCAGCTTGGCTCTGTAACAGACCTCT
TTTGTTATGGATGGCTCAAAAATAGGGCCCCAATGCTATTGTTTTAAGTTGTTAAATTGGTT
AAGATTGCTAAGGCCAAGGAATTGCAAATCAAGTCTGTCAGTACAATAACATTGTTAAAAGAAAATGGAT
CCCACTGTTCTCTTGCACAGAGAAAGCACCCAGCAGGCCACAGGCTCTGCGCATTCAAAACAAACCATGAT
GGAGTGGCGGCCAGTCCAGCCTTTAAAGAACGTCAGGTGGAGCAGCAGGTGAAAGGCTGGGGAGGAAAG
TGAAACGCCCTGAATCAAAGCAGTTCTAATTGACTTTAAATTTCATCCGGGAGACACTGCTCCATT
TGTGGGGGACATTAGCAACATCACTCAGAACGCTGTGTTCTCAAGAGCAGGTGTTCTAGCCTCACATGCCCT
GCCGTGCTGGACTCAGGACTGAAGTGTGTAAGCAAGGAGCTGCTGAGAAGGACACTCCACTGTGTGCCCTGGA
GAATGGCTCTCACTACTCACCTGTCTTCAGCTCCAGTGTCTTGGGTTTTTAACTTTGACAGCTTTTTT
AATTGCATACATGAGACTGTGTTGACTTTTTAGTTATGTGAAACACTTGCCGAGGCCCTGGCAGAGGCA
GGAAATGCTCCAGCAGTGGCTAGTGTCCCTGGTGTCTGCATGGCATCCTGGATGCTTAGCATGCAAGTTC
CCTCCATCATTGCCACCTTGGTAGAGAGGGATGGCTCCACCCCTCAGCGTTGGGATTACGCTCCAGCCTCCT
TCTTGGTTGTCTAGTGTAGGGTAGCCTTATTGCCCTCTTCTTAACTCCCTAAACCTCTACACTAGTGCCTA
TGGGAACCAGGTCTGAAAAGTAGAGAGAAGTGAAGTAGAGTCTGGGAAGTAGCTGCTATAACTGAGACTAGA
CGGAAAAGGAATACTCGTGTTAAGATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCT
GCCCTTGGATGGATGGTGTGACACAGATGCTACAGACTTGTACTAACACACCGTAATTGGCATTGTTAAC
CTCATTATAAAAGCTTCAAAAAACCCA

FIGURE 124

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77624
><subunit 1 of 1, 310 aa, 1 stop
><MW: 35020, pI: 7.90, NX(S/T): 3
MALRPPRLRLCARLPDFFLLLLFRGCLIGAVNLKSSNRTPVVQEFESVELSCIITDSQTSD
PRIEWKKIQDEQTTYVFFDNKIQGDLAGRAEILGKTSLSKIWNVRRDSALYRCEVVARNDRK
EIDEIVIELTVQVKPVTPVCRVPKAVPGKMATLHCQESEGHPRPHYSWYRNDVPLPTDSRA
NPRFRNSSFHLNSETGTLVFTAHKDDSGQYYCIASNDAGSARCEEQEMEVYDLNIGGIIGG
VLVVLAVLALITLGICCAYRRGYFINNKQDGESYKNPGKPDGVNYIRTDEEGDFRKSSFVI
```

Important features of the protein:

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 243-263

N-glycosylation sites.

amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 107-110

Casein kinase II phosphorylation site.

amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site.

amino acids 69-77

N-myristoylation sites.

amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267