Home / My courses / Geometry / FINAL EXAM (03.06.2021) / Final Exam

Started on Thursday, 3 June 2021, 8:10 AM

State Finished

Completed on Thursday, 3 June 2021, 9:45 AM

Time taken 1 hour 34 mins

Grade 4.25 out of 10.00 (43%)

Not answered

Marked out of 2.50

(a) (0.75p) Consider the surface:

$$S_1: z = x^2 + y^2$$

Find the points (x_0, y_0, z_0) on the surface S_1 for which the tangent plane $T_S(x_0, y_0, z_0)$ is parallel to the vector $\overrightarrow{v}(1, -1, 0)$ (they form a locus).

(b) (1p) Let \mathcal{S}_2 be the conoidal surface whose generatrices intersect the line:

$$\ell: \frac{x-2}{2} = \frac{y-1}{1} = \frac{z-3}{3}$$

and are parallel to the plane:

$$\pi: x+z=0$$

A director curve of this conoidal surface is given by the equations:

$$C: x = 0; z = x^2 + y^2$$

Find the implicit equation of the surface S_2 .

(c) (0.75p) Find the coordinates of a point (of your own choosing) which is on the surface S_2 , but not on the plane π .

Write the equation of the normal line to \mathcal{S}_2 in that point.

The full solution to this exercise must be written by hand and uploaded as a single PDF file to the assignment "Final_exam uploads".

Do not write anything in the textbox below, it will not be taken into consideration.

Question ${\bf 2}$

Incorrect

Mark 0.00 out of 1.00

Let $\mathcal S$ be a cylindrical surface whose generatrices are parallel to the vector (8,2,3) and whose director curve $\mathcal C$ is given by the equations:

$$x^2 + y^2 - z^2 = 1$$

$$y = 0$$

Find its implicit equation. The intersection between the surface S and the Oy axis consists of two points A and B. Find the absolute value of each of their y-coordinates (it is supposed to be the same).

Answer:

0.250

The correct answer is: 0.27

Question ${\bf 3}$

Correct

Mark 1.00 out of 1.00

We consider the affine transformation:

$$\phi=R_{rac{3\pi}{2}}\circ \mathrm{Sh}((rac{3}{5},rac{4}{5}),5)\circ T(4,2)\circ R_{rac{\pi}{2}}$$

and the point P = (3, 1).

Let
$$Q = \phi(P) = (x_Q, y_Q)$$
. Find $x_Q + y_Q$.

Answer: 2.600

The correct answer is: 2.60

Question **4**

Correct

Mark 0.25 out of 0.25

The determinant of the homogeneous matrix of a shear can be negative.

Select one:

True

False

The correct answer is 'False'.

Correct

Mark 1.00 out of 1.00

Consider the surface S, given by the implicit equation:

$$S: x^{-7} + y^3 + z^4 + xy + y^2z - 5 = 0$$

and the curve C, given by the implicit equations:

$$C: x = t^4 + 6, y = t^4 + t + 4, z = t + 2$$

Let π be the tangent plane to the surface $\mathcal S$ in the point (1,1,1) and take P to be the intersection point between π and $\mathcal C$. Write the z-coordinate of P.

Answer: 2.636 **✓**

The correct answer is: 2.64

Question 6

Correct

Mark 0.25 out of 0.25

The generatrices of a cylindrical surface are parallel.

Select one:

■ True

False

The correct answer is 'True'.

Question **7**

Correct

Mark 1.00 out of 1.00

Consider the conic $Q_1:y^2=12x$ and let F be its focus.

Consider now the conic $Q_2:rac{x^2}{16}-rac{y^2}{25}=1$

Find the tangents to the conic Q_2 through the point F. The answer to this question will be the modulus of their slope.

(Be careful, ${\cal F}$ is not necessarily on ${\cal Q}_2$!)

Answer: 1.889 **✓**

The correct answer is: 1.89

Incorrect

Mark 0.00 out of 0.25

The equation of the tangent plane to the quadric

$$\mathcal{Q}: \ rac{x^2}{a^2} + rac{y^2}{b^2} - rac{z^2}{c^2} - 2x = 1$$

at its point $M_0(x_0,y_0,z_0)\in\mathcal{Q}$ is:

$$T_{(x_0,y_0,z_0)}(\mathcal{Q}): \; rac{x_0x}{a^2} + rac{y_0y}{b^2} + rac{z_0z}{c^2} - x - x_0 = 1$$

Select one:

● True X

False

The correct answer is 'False'.

Question ${\bf 9}$

Incorrect

Mark 0.00 out of 1.00

Consider the quadric:

$$\mathcal{Q}: rac{x^2}{16} - rac{y^2}{16} - 3z = 0$$

Find the two rectilinear generatrices ℓ_1 and ℓ_2 that are perpendicular to the line:

$$\ell: \frac{x-2}{4} = \frac{y}{4} = \frac{z+1}{16}$$

If θ is the acute angle between ℓ_1 and ℓ_2 , write the value of $\cos(\theta)$.

Answer: 1.570

570

The correct answer is: 0.00

Question 10 Not answered
Marked out of 1.00
This is not a question. It's here just so your free point can get added correctly.
Question 11
Correct
Mark 0.25 out of 0.25
A hyperboloid of one sheet is symmetrical with respect to the coordinate planes.
Select one:
True ✓
○ False
The correct answer is 'True'.
Question 12
Question 12 Correct
Mark 0.25 out of 0.25
Every reflection with respect to a line through the origin is a linear transformation.
Select one:
True ✓
○ False
The correct answer is 'True'.

Correct

Mark 0.25 out of 0.25

What type of conic is the following curve?

$$\mathcal{C}: \; -rac{x^2}{4}+rac{y^2}{9}=2$$

- Ellipse
- Myperbola
- Parabola

Your answer is correct.

The correct answer is:

Hyperbola

Announcements

Jump to...

Final exam uploads ►