UBA - CBC — PARCIALITO SEGUNDO PARCIAL DE FÍSICA

APELLIDO......DNI......DNI

COMISIÓN.....

OM1					OM2	P1		P2			NOTA
1	2	3	4	5		a	b	1	2	3	

OM-1 En la figura se muestra un resorte caracterizado por **k** y **l**₀ en 5 situaciones diferentes, inicialmente trabado en la posiciones indicadas como A, B, C, D y E. Unido al resorte hay una masa **m**. Si se deja el conjunto masa - resorte en libertad, en cuál de las posiciones se verifica respectivamente que: TACHE LAS LETRAS QUE NO CORRESPONDE

- (1) la fuerza elástica es de igual módulo que la fuerza peso ABCDE
- (2) la aceleración es máxima A B C D E (la mayor aceleración esta relacionada a la mayor distancia al punto de equilibrio, x₀)
- (3) la aceleración es nula. A B C D E
- (4) el módulo de la fuerza elástica es máxima ABCDE
- (5) el módulo de la fuerza elástica e mínima ABCDE

OM-2 Un satélite de comunicaciones gira en un trayectoria circular y a una altura H por sobre el ecuador terrestre. Se pretende **reducir el período a la octava parte**. Entonces se necesitará:

☐ Duplicar el radio de la órbita ☐ Reducir H a la mitad

 \square Duplicar H \square Reducir a la cuarta parte el radio de la órbita

☐ Triplicar el radio de la órbita ☐ Reducir a la octava parte el radio de la órbita

- **P-1**El tambor de un lavarropa de **1m de diámetro**, gira durante el centrifugado, a 900 rpm. En su interior una prenda de m = 600gr gira solidaria al tambor, ver figura.
 - a) Calcule el módulo de la fuerza que permite que la ropa gire a 900 rpm.
 - b) Dé el módulo de la Fuerza de rozamiento, entre la pared del tambor y la prenda, sabiendo que μ_E = 0,9 y μ_D = 0,50.

- **P-2** En la aproximación de polea y soga de masa despreciable, y soga inextensible, el sistema esta en equilibrio, dar
- a) el rango de valores de μ_E
- b) Determinar el valor de todas las fuerzas que actúan sobre cada masa y el estiramiento del resorte

Datos: M = m = 20kg; $k = 1000N/m \ y \ l_0 = 50cm$; $g = 10m/s^2$; $\mu_D = 0.5$, $\alpha = 30 \ ^\circ$