UEC 代数勉強会 第 4 回 問題

9trap

uec19 情報理工学域 Ⅱ 類 P1

ファイル分けた都合上、問題のナンバリングが合ってません. ごめん.

Problem 0.0.1 (参考書 問 2.2). S_3 の左移動による置換表現を求めよ.

教科書の乗積表の元に番号つけるだけ.

Problem 0.0.2 (参考書 問 2.3). $g \sim h \Leftrightarrow h^{-1}g \in H$ で定められた関係が同値関係であることを示せ.

すでにやった.

Problem 0.0.3 (参考書 問 2.4). S_3 の各元の位数を求めよ.

e は当然 1.

互換である (1,2),(2,3),(3,1) は 2.

他 (1,2,3), (1,3,2) は循環シフトだから 3.

Problem 0.0.4 (参考書 問 2.5). 群 G の元 x の位数が 12 のとき、 x^k ($1 \le k \le 12$) の位数を求めよ.

k が 12 の約数であれば 12/k で、そうでなければ 12.

Problem 0.0.5 (参考書 問 2.6). S_4 において、

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$
 とする.

- 1. a の位数を求めよ.
- $2. x^m = a$ となるような x と m は x = a と m = 1 以外に存在するか?

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$
$$a^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

だから、 $a^4 = e$. よって a の位数は 4. また、上の事実から自明に $a^5 = a$.

Problem 0.0.6 (参考書 問 2.7). S_3 の元 a=(1,2,3) と b=(1,2) を 生成元として取ったときの基本関係式を示せ、また、 S_4 , A_4 の生成元と基本関係式をそれぞれ 1 組あたえよ、

a,*b* に関する基本関係式は

$$a^{3} = e$$

$$b^{2} = e$$

$$a^{-1}b = ba$$

の3つ.

$$S_4 = \left< (1,2), (1,2,3,4) \right>$$
 $a = (1,2), b = (1,2,3,4)$ とすると、 $a^2 = e$ $b^4 = e$ $(ab)^3 = e$

$$A_4 = \langle (1,2)(3,4), (1,2,3) \rangle$$
 $a = (1,2)(3,4), b = (1,2,3)$ とすると、 $a^2 = e$ $b^3 = e$ $(ab)^3 = e$

9trap

置換群 (順列) に関する面白いこと

https://deltam.blogspot.com/2019/12/permutationgenerator.html

9trap

Problem 0.0.7 (参考書 問 2.8). 位数 15 の巡回群の生成元となりうる元はいくつあるか?

参考書 系 2.11 より 10 こ.

Problem 0.0.8 (参考書 問 2.9). 位数 24 の巡回群の部分群をすべてあげよ.

生成元の1つを
$$g$$
 とする. $\left\{e,g^2,g^4,...,g^{22}\right\}$, $\left\{e,g^3,g^6,...,g^{21}\right\}$, $\left\{e,g^4,g^8,...,g^{20}\right\}$, $\left\{e,g^6,g^{12},g^{18}\right\}$, $\left\{e,g^{12}\right\}$ が部分群.

Problem 0.0.9 (参考書 問 2.10).

- 1. 群 G の 2 つの部分巡回群の共通部分は巡回群となることを示せ.
- 2. 位数が互いに素な 2 つの巡回部分群の共通部分は単位元だけであることを示せ.

2 つの巡回群を H_1, H_2 とする.

 H_1, H_2 は群だから、どちらも e を含む . よって、 $e \in H_1 \cap H_2$.

 $H_1\cap H_2$ が単位元のみの集合であるとき、これは巡回群である。また、 $H_1\cap H_2$ が単位元以外を含むとき、 $H_1=\left\langle h_1\right\rangle, H_2=\left\langle h_2\right\rangle$ で a_1 を $h_1^{a_1}\in H_2$ となる最小の正の整数とする。このとき $h_1^{a_1}$ は h_2 の累乗と一致するため a_2 を $h_2^{a_2}=h_1^{a_1}$ とする。

また、 $h_1^{ka_1+r}\in H_2(k\in\mathbb{N},0< r< a)$ を仮定すると、 $h_1^{ka_1+r}=h_2^{ka_2}h_1^r\in H_2$. よって、 $h_1^r\in H_2$ となるが、これは a_1 を $h_1^{a_1}\in H_2$ となる最小の正の整数とする仮定に反する.よって帰謬法から H_2 に属するすべての h_1 の累乗は $h_1^{ka_1}$ で表せる.

以上より、 $h_1^{a_1}$ が $H_1 \cap H_2$ の生成元となる.

位数が互いに素な 2 つの巡回部分群を H_1, H_2 とおく.

1. から $H_1\cap H_2$ は巡回群である . また、 参考書 系 2.8 から $\left|H_1\cap H_2\right|$ は $\left|H_1\right|$ の約数でもあり $\left|H_2\right|$ の約数でもある . しかし、 $\gcd\left(\left|H_1\right|,\left|H_2\right|\right)=1$ より $H_1\cap H_2$ の元は 1 個である .

よって
$$H_1 \cap H_2 = \{e\}$$
.

Problem 0.0.10 (参考書 問 3.1). 二面体群 D_3, D_4, D_5, D_6 の置換群による表現を求めよ.

$$e \mapsto e$$

$$\sigma \mapsto (1,3,2) \circ (4,5,6)$$

$$\sigma^{2} \mapsto (1,2,3) \circ (4,6,5)$$

$$\tau \mapsto (1,4) \circ (2,5) \circ (3,6)$$

$$\tau\sigma \mapsto (1,3,2) \circ (4,5,6) \circ (1,4) \circ (2,5) \circ (3,6)$$

$$\tau\sigma^{2} \mapsto (1,2,3) \circ (4,6,5) \circ (1,4) \circ (2,5) \circ (3,6)$$

9trap

あとはめんどくさいだけです.