

Squares and Square Roots Ex 3.5 Q2

Answer:

(i) Using the long division method:

	48	
4	2361	
4	16	
88	761	
8	704	
	57	

We can see that 2361 is 57 more than 47^2 . Hence, 57 must be subtracted from 2361 to get a perfect square.

(ii) Using the long division method:

	441
4	194491
4	16
84	344
4	336
881	891
_1	881
	10

We can see that 194491 is 10 more than 441^2 . Hence, 10 must be subtracted from 194491 to get a perfect square.

(iii) Using the long division method:

	162
1	26535
1	1
26	165
6	156
322	935
2	644
	291

We can see that 26535 is 291 more than 162^2 . Hence, 291 must be subtracted from 26535 to get a perfect square.

(iv) Using the long division method:

127		
1	16160	
1	1	
22	061	
2	44	
247	1760	
7	1729	
	31	

We can see that 16160 is 31 more than 127^2 . Hence, 31 must be subtracted from 16160 to get a perfect square.

(v) Using the long division method:

	2098
2	4401624
2	4
40 0	040
409	4016
409	3681
4188	33524
8	33504
	20

We can be see that 4401624 is 20 more than 2098^2 . Hence, 20 must be subtracted from 4401624 to get a perfect square.