EE5907 CA1 Programming Assignment

Name: Zhu Qi

Matric Number: A0224460N

Contents

Q1.	Beta-binomial Naïve Bayes	2
1	Plots of training and test error rates versus α.	2
2	What do you observe about the training and test errors as α change?	2
3	Training and testing error rates for α = 1, 10, and 100	3
Q2.	Gaussian Naïve Bayes	3
1	Training and testing error rates for the log-transformed data	3
Q3.	Logistic Regression	4
1	The plot of training and test error rates versus λ	4
2	What do you observe about the training and test errors as λ change?	4
3	Training and testing error rates for λ = 1, 10, and 100	5
Q4.	K-Nearest Neighbours	6
1	The plot of training and test error rates versus K	6
2	What do you observe about the training and test errors as K change?	6
3	Training and testing error rates for K = 1, 10, and 100.	7
Q5.	Survey	8
1	Time Spent	8
2	Feedback	8

Q1. Beta-binomial Naïve Bayes

1 Plots of training and test error rates versus α .

2 What do you observe about the training and test errors as α change?

From the observation shown above, both the training and test error rates will *increase proportionally* to α at a similar trend.

Generally speaking, the testing error rate is higher than the training error rate. Both the training and test error rates fluctuate while increasing and <u>increased sharply at</u> the beginning from $\alpha = 0$ to $\alpha = 10$, as well as at $\alpha = 80$ (the screenshots fo the coordinates are showing in the figures below). Therefore we can know if we have sufficient training, or whether we have chosen a suitable value of α t to reduce the error rate by observing these trends.

3 Training and testing error rates for $\alpha = 1$, 10, and 100.

α	Training Error Rate	Testing Error Rate
1	0.109625	0.113932
10	0.115824	0.124349
100	0.136052	0.145833

```
Command Window

New to MATLAB? See resources for Getting Started.

a= 1, Traing Error Rate=10.9625 %, Test Error Rate=11.3932 %
a= 10, Traing Error Rate=11.5824 %, Test Error Rate=12.4349 %
a= 100, Traing Error Rate=13.6052 %, Test Error Rate=14.5833 %

fx >>
```

Q2. Gaussian Naïve Bayes

1 Training and testing error rates for the log-transformed data.

	Training Error Rate	Testing Error Rate
Log Transformed Data	0.166721	0.183594

```
Command Window

New to MATLAB? See resources for Getting Started.

Traing Error Rate = 16.6721 %
Test Error Rate = 18.3594 %

fx >>
```

From the observation of the error rate for the log-transformed data using the Gaussian Naïve Bayes classifier (training error rate = 16.67% and testing error rate = 18.36%) is higher than the result error rates from the beta-binomial Naïve Bayes classifier in the worst scenario (when $\alpha = 100$, training error rate = 13.60% and testing error rate = 14.58%).

Therefore, by comparing questions one and two, we know that Beta-Binomial Naïve Bayes Classifier is better for this case.

Q3. Logistic Regression

1 The plot of training and test error rates versus λ

2 What do you observe about the training and test errors as λ change?

From the observation of the plot above, generally speaking, the error rate of test data is higher than the training data and both of them are remaining less than 7.00%.

While λ is increasing, the difference between Training and testing error rate forms 2 trends:

- 1) When $0 \le \lambda \le 20$ (coordinate is indicated in the plot below), the difference between training and the test error rate is gradually decreasing, the training error rate is increased proportionally to λ with fluctuation, while the testing error rate has a huge spike of fluctuation $\lambda \le 10$, and then decreased proportionally to λ .
- 2) When $\lambda > 20$, the difference between training and the test error rate is roughly remaining as a constant, and both training and test error rates are increasing proportionally with λ with some small fluctuations.

3 Training and testing error rates for $\lambda = 1$, 10, and 100.

λ	Training Error Rate	Testing Error Rate
1	0.049266	0.061849
10	0.052202	0.060547
100	0.060359	0.068359

```
Command Window

New to MATLAB? See resources for Getting Started.

lamda= 1, Traing Error Rate=4.9266 %, Test Error Rate=6.1849 %
lamda= 10, Traing Error Rate=5.2202 %, Test Error Rate=6.0547 %
lamda= 100, Traing Error Rate=6.0359 %, Test Error Rate=6.8359 %

fx >>
```

Q4. K-Nearest Neighbours

1 The plot of training and test error rates versus K

2 What do you observe about the training and test errors as K change?

As K increased from 1 to 100, the relationship between error rates and K can be categorized into 2 parts:

- When 0 ≤ K ≤ 75, Test Error Rate is always higher than the Training Error Rate, and they are gradually getting closer to each other while K increasing:
 - When $0 \le K \le 10$, both Training & Test error rates increased with huge spikes and fluctuations.
 - a. At K=1, the Training Error Rate is very low (1, 0.0006525) but not equal to 0. Because some samples have the same features distance=0 but from different classes.
 - b. When K >10, the waveform became smoother and the difference between the error rate of Training and Test error reduced gradually until they cross with each other at K =75.
- 2) When k > 75, the waveform is smoother and the error rate of Test data is smaller than the Training data.

3 Training and testing error rates for K = 1, 10, and 100.

K	Training Error Rate	Testing Error Rate
1	0.000653	0.069010
10	0.036542	0.057943
100	0.091354	0.088542

```
New to MATLAB? See resources for Getting Started.

K= 1, Traing Error Rate=6.9010 %, Test Error Rate=6.9010 %

K= 10, Traing Error Rate=5.7943 %, Test Error Rate=5.7943 %

K= 100, Traing Error Rate=8.8542 %, Test Error Rate=8.8542 %

fx >>
```

Q5. Survey

Time Spent

I am a part-time student, and I have spent 4 working-days on this assignment, spent <u>16 hours</u> (around 4 hours per day) in total. Before doing the assignment, I also spent a few days revising the notes since I was not familiar with the formula and terms.

Feedback

This is my 1st semester in NUS, and I have only taken 2 modules, EE5907 & EE5902, where I can tell the difference between the teaching mode between 2 professors with no doubt. Frankly speaking, Prof. Thomas gave a clear explanation of the topics he covered, and he always encourages his students to ask questions and gave feedback during his class. I enjoyed his way of teaching and believe it could lead me to a better understanding of pattern recognition.