Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Convolutional Neural Networks

Logistics and Agenda

- Logistics
 - Wide/Deep due soon!
- · Agenda
 - Basic CNN architectures and Gradient

Class Overview, by topic

Convolutional Neural Networks

STOP making fun of different programming languages

C is FAST

Java is POPULAR

Ruby is COOL

Python is BEAUTIFUL

Javascript

Haskell is INTRIGUING

Reminder: Convolution

$$\sum \left(\mathbf{I} \left[i \pm \frac{r}{2}, j \pm \frac{c}{2} \right] \odot \mathbf{f} \right) = \mathbf{O}[i, j] \quad \text{output image at pixel i,j}$$

input image at $r \times c$ range of pixels centered in i,j

kernel of size, $r \times c$ usually r=c

0	0	0	0	0	0	0	0	0
0	1	2	3	4	12	9	8	0
0	5	2	3	4	12	9	8	0
0	5	2	1	4	10	9	8	0
0	7	2	1	4	12	7	8	0
0	7	2	1	4	14	9	8	0
0	5	2	3	4	12	7	8	0
0	5	2	1	4	12	9	8	0
0	0	0	0	0	0	0	0	0

1	2	1
2	4	2
1	2	1

kernel filter, **f** 3x3

20	21	36		 	
				 :	
			:	 :	

input image, I

output image, O

Breaking Apart Convolution Operations

$$X_{11}$$
 X_{12} X_{13} X_{21} $X_{22}F_{11}$ $X_{23}F_{12}$ X_{31} $X_{32}F_{21}$ $X_{33}F_{22}$

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$
 $O_{12} = X_{12}F_{11} + X_{13}F_{12} + X_{22}F_{21} + X_{23}F_{22}$
 $O_{21} = X_{21}F_{11} + X_{22}F_{12} + X_{31}F_{21} + X_{32}F_{22}$
 $O_{22} = X_{22}F_{11} + X_{23}F_{12} + X_{32}F_{21} + X_{33}F_{22}$

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

$$O_{12} = X_{12}F_{11} + X_{13}F_{12} + X_{22}F_{21} + X_{23}F_{22}$$

$$O_{21} = X_{21}F_{11} + X_{22}F_{12} + X_{31}F_{21} + X_{32}F_{22}$$

$$O_{22} = X_{22}F_{11} + X_{23}F_{12} + X_{32}F_{21} + X_{33}F_{22}$$

$$O_{**} = X_{**} \cdot F_{11} + X_{**} \cdot F_{12} + X_{**} \cdot F_{21} + X_{**} \cdot F_{22}$$

Filter is consistent on columns, input increases indices

What we did before (Daisy)

Statistics of Filter Outputs (Histograms) at point u,v

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_{1}^{\Sigma}(u,v), \dots, \mathbf{G}_{H}^{\Sigma}(u,v)\right]^{\top}$$

$$\mathcal{D}(u_{0}, v_{0}) = \widetilde{\mathbf{h}}_{\Sigma_{1}}^{\top}(u_{0}, v_{0}),$$

$$\widetilde{\mathbf{h}}_{\Sigma_{1}}^{\top}(\mathbf{l}_{1}(u_{0}, v_{0}, R_{1})), \cdots, \widetilde{\mathbf{h}}_{\Sigma_{1}}^{\top}(\mathbf{l}_{T}(u_{0}, v_{0}, R_{1})),$$

$$\widetilde{\mathbf{h}}_{\Sigma_{2}}^{\top}(\mathbf{l}_{1}(u_{0}, v_{0}, R_{2})), \cdots, \widetilde{\mathbf{h}}_{\Sigma_{2}}^{\top}(\mathbf{l}_{T}(u_{0}, v_{0}, R_{2})),$$

Tola et al. "Daisy: An efficient dense descriptor applied to wide- baseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions

Anatomy of a convolutional network

Blue Tensors: Outputs tensors of Each Layer

Learned Params: Weights in Each Arrow

Convolution in a CNN

CNNs: Putting it together

A. Activations

B. Pooling Weights

C. Filter Weights

D. All of these

CNN Overview

- Conv. layer(s):
 - filtering
 - activation
 - pooling

- · allows for "Information Distillation"
- · less dependence on exact pixel locations
- Final layers are densely connected
 - typically multi-layer perceptrons

Simple Example: From Fully Connected to CNN

If image is 9x9, and each fully connected layer is 20 hidden neurons wide, how many parameters are in this NN (ignore bias)?

for 9x9,
$$9^2x20 + (20x10) = 1,820$$
 parameters $(K^2 \times 20) + (20x10) = 200 + 20 K^2$

Simple Example: From Fully Connected to CNN

CNN gradient setup

Lecture Notes for Machine Learning in Python

Professo

Now we can calc partial derivative
$$\partial L^{(N)} = \partial O^{(N)} = \partial L^{(N)}$$

 $V_{pool}^{(N+1)}$

$$\frac{\partial J_{obj}}{\partial F^{(N)}} = \frac{\partial O^{(N)}}{\partial F^{(N)}} \cdot \frac{\partial L^{(N)}}{\partial O^{(N)}} \cdot V_{pool}^{(N+1)}$$

Reminder: Convolution

Filter is consistent on columns, input increases indices

Gradient of Convolution

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial X}$$
 for back propagation

$$\frac{\partial L}{\partial F} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial F}$$
 for weight updates

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Finding derivatives with respect to F_{11} , F_{12} , F_{21} and F_{22}

$$\frac{\partial O_{11}}{\partial F_{11}} = \ X_{11} \quad \frac{\partial O_{11}}{\partial F_{12}} = \ X_{12} \quad \frac{\partial O_{11}}{\partial F_{21}} = \ X_{21} \quad \frac{\partial O_{11}}{\partial F_{22}} = \ X_{22}$$

derivative of every O_{ij} w.r.t. F_{II}

$$\frac{\partial \underline{L}}{\partial \overline{C}_{11}} = \frac{\partial \underline{L}}{\partial O_{11}} * \frac{\partial O_{12}}{\partial \overline{F}_{11}} * \frac{\partial \underline{L}}{\partial O_{12}} * \frac{\partial O_{22}}{\partial \overline{F}_{11}} * \frac{\partial \underline{L}}{\partial O_{22}} * \frac{\partial O_{23}}{\partial \overline{F}_{11}} * \frac{\partial \underline{L}}{\partial O_{22}} * \frac{\partial O_{23}}{\partial \overline{F}_{11}} *$$

$$\frac{\partial L}{\partial E_{n}} = \frac{\partial L}{\partial O_{n}} * \frac{\partial O_{n}}{\partial E_{n}} + \frac{\partial L}{\partial O_{n}} * \frac{\partial O_{n}}{\partial E_{n}}$$

$$\frac{\partial \underline{L}}{\partial \overline{F}_{22}} = \frac{\partial \underline{L}}{\partial O_{1}} * \frac{\partial O_{12}}{\partial F_{21}} + \frac{\partial \underline{L}}{\partial O_{2}} * \frac{\partial O_{22}}{\partial F_{21}} + \frac{\partial \underline{L}}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{21}} + \frac{\partial \underline{L}}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{22}}$$

$$\frac{\partial \underline{L}}{\partial \overline{F}_{\underline{Z}}} \; = \; \frac{\partial L}{\partial Q_{\underline{L}}} * \frac{\partial Q_{\underline{L}}}{\partial \overline{F}_{\underline{Z}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{L}}} * \frac{\partial Q_{\underline{L}}}{\partial \overline{F}_{\underline{Z}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{L}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{Z}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial L}{\partial Q_{\underline{D}}} * \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \; \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}} \; * \; \frac{\partial Q_{\underline{D}}}{\partial \overline{F}_{\underline{D}}}$$

$$\frac{\partial L}{\partial F_{11}} = \frac{\partial L}{\partial O_{11}} * X_{11} + \frac{\partial L}{\partial O_{12}} * X_{12} + \frac{\partial L}{\partial O_{21}} * X_{21} + \frac{\partial L}{\partial O_{22}} * X_{22}$$

$$\frac{\partial \mathcal{L}}{\partial F_{12}} = \frac{\partial \mathcal{L}}{\partial \mathcal{O}_{11}} * X_{12} + \frac{\partial \mathcal{L}}{\partial \mathcal{O}_{12}} * X_{13} + \frac{\partial \mathcal{L}}{\partial \mathcal{O}_{21}} * X_{22} + \frac{\partial \mathcal{L}}{\partial \mathcal{O}_{22}} * X_{23}$$

$$\frac{\partial L}{\partial I_{21}^c} = \frac{\partial L}{\partial O_{11}} * X_{21} + \frac{\partial L}{\partial O_{12}} * X_{22} + \frac{\partial L}{\partial O_{21}} * X_{31} + \frac{\partial L}{\partial O_{22}} * X_{32}$$

$$\frac{\partial L}{\partial F_{22}} = \frac{\partial L}{\partial O_{11}} * X_{22} + \frac{\partial L}{\partial O_{12}} * X_{23} + \frac{\partial L}{\partial O_{21}} * X_{32} + \frac{\partial L}{\partial O_{22}} * X_{33}$$

Filter updates Input

 $\begin{array}{c|c} \frac{\partial L}{\partial \mathbf{O}_{11}} & \frac{\partial L}{\partial \mathbf{O}_{22}} \\ \\ \frac{\partial L}{\partial \mathbf{O}_{21}} & \frac{\partial L}{\partial \mathbf{O}_{22}} \end{array}$

Derivative From activation!

Gradient of Convolution

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial X}$$
 for back propagation

$$\frac{\partial L}{\partial F} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial F}$$

for weight updates

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Differentiating with respect to X_{11} , X_{12} , X_{21} and X_{22}

$$\frac{\partial Q_{11}}{\partial X_{11}} - \frac{1}{F_{11}} \frac{\partial Q_{11}}{\partial X_{12}} - \frac{1}{F_{12}} \frac{\partial Q_{11}}{\partial X_{21}} - \frac{1}{F_{21}} \frac{\partial Q_{11}}{\partial X_{22}} - \frac{1}{F_{22}}$$

Similarly, we can find local gradients for O_{12} , O_{21} and O_{22}

New sensitivity

$$\frac{\partial L}{\partial X_{n}} = -\frac{\partial L}{\partial Q_{n}} * P_{n}$$

$$\frac{\partial L}{\partial X_{n}} = \frac{\partial L}{\partial Q_{n}} * F_{nn} + \frac{\partial L}{\partial Q_{n}} * F_{nn}$$

$$\frac{\partial L}{\partial X_{12}} = \frac{\partial L}{\partial Q_{12}} * F_{12}$$

$$\frac{\partial \underline{L}}{\partial X_{i1}} = \frac{\partial \underline{L}}{\partial Q_{i1}} \cdot F_{i21} + \frac{\partial \underline{L}}{\partial Q_{i2}} \cdot F_{i11}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{A}_{n}} = \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{n}} + \mathbf{P}_{n1} + \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{n}} + \mathbf{P}_{n1} + \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{n}} + \mathbf{F}_{n2} + \frac{\partial \mathbf{L}}{\partial \mathbf{Q}_{n}} + \mathbf{F}_{n}$$

$$\frac{\partial L}{\partial X_{22}} = -\frac{\partial L}{\partial Q_{22}} * F_{22} + -\frac{\partial L}{\partial Q_{22}} * F_{12}$$

$$\frac{\partial L}{\partial X_{a_1}} = \frac{\partial L}{\partial Q_{a_1}} * F_{21}$$

$$\frac{\partial L}{\partial X_{S1}} = -\frac{\partial L}{\partial Q_{21}} \star F_{22} + \frac{\partial L}{\partial Q_{22}} \star F_{21}$$

$$\frac{\partial L}{\partial X_{g_2}} = -\frac{\partial L}{\partial Q_{g_2}} * F_{g_2}$$

F_{22}	F21
F 12	F_{11}

0

0

()

()

0

0

0

0

0

0

Derivative '
From activation!
(zero padded)

https://medium.com/@pavisi/convolutions-and-backpropagations-46026a8f5d2c

Summary

CNN Gradient

- Takeaways:
 - Derivative of a convolutional layer is calculated through two additional convolutions
 - One for filter updates
 - One for calculating a new sensitivity
 - We need to run convolution fast in order to speed up both:
 - feedforward operations (inference and training)
 - back propagation (training)
- Another great resource:
 - https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

CNN Visualizations

Some Example CNN Architectures

CNN: Visuals

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

Jason Yosinski

Jeff Clune

Anh Nguyen

Thomas Fuchs

Hod Lipson

TensorFlow and Basic CNNs

Convolutional Neural Networks

in TensorFlow with Keras

11. Convolutional Neural Networks.ipynb

Demo

Next Lecture

More CNN architectures and CNN history