Assignment - 01

2006077 Om Stree

Ani)

It: the no. of tons of grade I paper peroduced in

y: the no. of tons of grade y paper produced in

Manimire Z = 2002 + 500 y subject to:x < 400 y < 300

 $0.2x + 0.4y \le 160$ $x,y \ge 0$

Ams2) Solve the LPP using graphical method:- $0.2 \times + 0.4 \text{ y} \leq 160$ $\text{y} \leq -0.5 \times + 400$ y = 300

A (0,300)
B (200,300)
C (400,200)
D (400,0)
E (0,0)

Z= 2002+500y for B, Zmax = 190,000 Ans 3) Manimite $Z = 2\alpha$, $+3\alpha_2$ Subject to constraints:— α , $+\alpha_2 \le 1$ α , $\alpha_2 > 0$ Subm constraints α :— α , $+\alpha_2 \le 1$ Put α , = 0; $\alpha_2 = 1$ $\alpha_2 = 0$; α , = 1From constraints α :—

from constraints 2:
3 $\alpha_1 + \alpha_2 = 4$ Put $\alpha_1 = 0$; $\alpha_2 = 4$ $\alpha_2 = 0$; $\alpha_1 = 4/3 = 1.33$

X A (0,1) X B (1,0) X A (0,4) V C (0,0) optimal max $\overline{t} = 12 \, \chi_1 + 3 \, \chi_2$... Max $\overline{t} = 3$ at $z_1 = 1, z_2 = 0$

Ans4)
$$7 = 2x, +3x_2$$

Subject to:-
 $x_1 + x_2 \le 1$
 $3x_1 + x_2 \le 4$
 $x_1, x_2 \le 0$

Changing constraints:

10

(0)