线性方程组的迭代解法实验报告

计 76 陈之杨 2017011377

Ex. 4.2

题目大意

使用三种迭代法求解线性方程组 Ax = b, 其中 $b = [ah^2]_n$,

$$\boldsymbol{A} = \begin{bmatrix} -(2\epsilon + h) & \epsilon + h \\ \epsilon & -(2\epsilon + h) & \epsilon + h \\ & \epsilon & -(2\epsilon + h) & \ddots \\ & & \ddots & \ddots & \epsilon + h \\ & & \epsilon & -(2\epsilon + h) \end{bmatrix},$$

并比较与精确解的误差。对 $\epsilon = 1, 0.1, 0.01, 0.0001$ 重复实验。

结果分析

代码见 ex4_2.cpp。

同时使用误差判据和残差判据作为判断收敛的条件,三种迭代法都能得到较为精确的结果。 以 $\epsilon=1$ 为例,结果如图所示。

各迭代法在不同 ϵ 时所需的迭代次数如下表所示:

迭代法/ϵ	1	0.1	0.01	0.0001
Jacobi	17158	6390	533	114
Gauss-Seidel	9280	3432	319	107
SOR ($\omega = 0.5$)	24519	9238	847	264

可以发现 ϵ 越大,所需的迭代次数越多,并且高斯-赛德尔方法的收敛速度最快。如果对于 ϵ 较大的情况,迭代次数甚至远远超过方程组的规模。如果限制迭代法的迭代次数上限,会发现解远远偏离精确解。