Bivariate Correlation Scatterplot Graph			
 Determine if two numerical continuous variables are linearly related to each other. Correlation coefficient is a number between -1 and 1 indicates the strength of the relationship of two variables. Sign: direction, positive or negative Positive: higher score on one variable are associated with higher scores on the other variables Negative: higher score on one variable are associated with lower scores on the other variable Magnitude: strength A correlation coefficient of 1: near-perfect positive correlation. A correlation coefficient of 0: uncorrelated. A correlation coefficient of -1: near-perfect negative correlation. 	 A simple two-dimensional plot in which the two coordinates of each dot represent the value of one variable measured on a single observation Independent variable on the horizontal axis. Dependent variables on the vertical axis. Underlying the phenomenon based on: Form: the overall shape made by the points. Ex: linear, quadratic or nonlinear. Direction: positive or negative, whether the two variables tend to move in the same or opposite direction. Strength: governed by how much scatter is present, whether the points seem to be clustered to suggest a relationship. Outliers: any point that don't fit the overall pattern or lie far away. 		
Analyze – Correlate – Bivariate Select the two desired variables Option Select Mean and Standard Deviation Select either Pairwise or Listwise as desired Paste	Graph – Legacy Dialog – Scatter/Dot ➤ Select Simple Scatter – Define ➤ Select the desired independent variable for x-axis ➤ Select the desired dependent variable for y-axis ➤ Paste		
correlations /variables = Variable1 Variable2 /print = twotail-or-onetail nosig. /statistics descriptives /missing = pairwise-or-listwise	graph /scatterplot = Variable1 with Variable2 /title = "Your-Graph-Name"		
Two-tailed test: $H_0 \text{: There is no correlations, } \rho = 0.$ $H_1 \text{: There is correlation, } \rho \neq 0.$ One-tailed test: $H_0 \text{: There is no correlation, } \rho = 0.$ $H_1 \text{: There is a positive correlation, } \rho > 0.$ Or $H_1 \text{: There is a negative correlation, } \rho < 0.$ By default, SPSS has selected:	Positive Negative Null		

By default, SPSS has selected:

- Pearson and Two-tailed Test although users have the option to select Kendall's tau-b/Spearman and One-tailed Test if desire.
- A pairwise deletion of missing values.

 - Pairwise: as long as both variables in the correlation have valid values for a case, it will be included in the correlation).

 Listwise: if a case has missing value for any variable, it will be eliminated from all correlation even though there are valid values for the other variables in the current correlation

Reporting Correlation in APA Format:

A Pearson Correlation test has <failed/succeeded> to reveal a statistical correlation between <Variable1> and <Variable2>, with <r = >, thus <accepting/rejecting> H_0 .

weight	
58 115	
117	
120	
123	
126	
129	
132	
135	
139	
142	
146	
150	
154	
159	
164	

Example:

A selection of data from the Women dataset is chosen to illustrate the correlation between women's height and weight. The selection includes 15 observations and 2 variables: height (in inches) and weight (in pound)

Hypothesis:

Two-tailed test:

 H_0 : There is no correlation between women's height and weight, $\rho = 0$.

 H_1 : There is correlation between women's height and weight, $\rho \neq 0$.

SPSS Code:

CORRELATIONS
/VARIABLES=height weight
/PRINT=TWOTAIL NOSIG
/STATISTICS DESCRIPTIVES
/MISSING=PAIRWISE.

GRAPH

/SCATTERPLOT(BIVAR)=weight WITH height

/MISSING=LISTWISE

/TITLE="Scatterplot of Women's Height Based on Women's Weight".

Output

Descriptive Statistics

	Mean	Std. Deviation	N
height	65.00	4.472	15
weight	136.73	15.499	15

Correlations

		height	weight
height	Pearson Correlation	1	.995**
	Sig. (2-tailed)		.000
	N	15	15
weight	Pearson Correlation	.995**	1
	Sig. (2-tailed)	.000	
	N	15	15

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Conclusion:

A Pearson Correlation test has succeeded to reveal a strong statistical positive correlation between women's height and weight (r = 0.995), thus rejecting H_0 .