Priority Queue

Mar 1st, 2020

Priority Queue

- An extension of a Queue Data Structure
- Properties:
 - Every Item in the Queue has a priority key attached to the item
 - The item with the high priority is deque before the items with low priorities.
 - If two items have the same priority, the deque will be determined by their order in the queue.

What Priority Queue are for

- Scheduling
- Graph/Path Algorithms
- Queue Applications

Central Priority Queue Operations (as an unsorted array)

- Insert(item, priority): Inserts an Item with an priority O(1)
- Get_First(self): Return the item with the highest priority O(N)
- Remove_First(self): Delete the item with the highest priority O(N)
- Is_Empty(self): Return if queue has no value O(1)
- len(self): Return the length of the queue O(1)

Priority Queue as a Heap

What is a heap:

- A Data Structure based on Complete Binary Tree
- Every node with the same depth in the heap should be filled before traversing down to another depth
- Min-Heap: All parents should be smaller than their descendants
- Max-heap: All parents should be bigger than their descendants

Priority Queue as a Heap

How can you use heap as implementation for Priority Queue?

=> Create a hierarchy using the heap where the root node is the highest priority item, and the closer to root, the more high priority it is.

This way, operation such as delete_first and get_first will be done much easier, since we just have to pop/peek at the root node of the heap.

Priority Queue (Insertion for Heap)

Rule to remember:

- Fill all the children of a depth from left to right before moving on to another.
- All parents must be smaller than the children

Priority Queue (Insertion for Heap)

When insert a item into the queue:

- Move to the available position and add the item as a leaf node.
- Case 1: If the item's priority is bigger than the parent => Done
- Case 2: If the item's priority is smaller than the parent:
 - Swap value of the node with its parent
 - Recursively check the priority of the parent with the ancestors until Case 1 is reached or the item becomes the root node
- What's the time complexity? O(logN)

Priority Queue (Insertion for Heap)

Example of Priority Queue (as a Min Heap)

Insert new element into min-heap

The new element is put to the last position, and ReheapUp is called for that position.

Try one!

Insert 4 into the heap

Priority Queue (Deletion for Min-Heap)

Rule to remember:

- If len(queue) = 1, delete the root and return None
- Delete the root node and replace it with the last item in the heap
- Check if the new root is smaller than any of its children:
 - Case 1: If there's no children or the root priority is smaller than its possible children, then stay
 the same
 - Case 2: If there exist one child that is smaller than the root: Swap with the child and do the checking step with the new position of the root.
 - Case 3: If there exist two child that is smaller than the root: Swap with the left child and do the checking step with the new position of the root.
- Time Complexity: O(LogN)

Priority Queue (Deletion for Min-Heap)

Try One!

Try delete

Priority Queue (get_first, lenth, is_empty)

- get_first: Return the value of the root => O(1)
- is_empty: return root == None => O(1)
- len: Return a tracker that keep track of number of item inserted, deleted =>
 O(1)

Real World Example - EC Room Selection

- Purpose: Students with more credits will be prioritized to select the room first.
- Priority: Number of Credits, Item: Student
- Use Max-Heap as Priority Queue
- After insertion of all the students, with their given number of credits as priority, start delete first to get the student who get to choose the room first.

Reference and Figure Source

- https://visualgo.net/en/heap
- http://lcm.csa.iisc.ernet.in/dsa/node138.html
- https://www.geeksforgeeks.org/priority-queue-set-1-introduction/
- Data Structure and Algorithm in Python