HeapSort

Cuprins

- Reprezentarea arborilor binari folosind array-ul;
- Heap Max & Min;
- Inserarea elementelor în Heap (Max);
- Ștergerea elementelor din Heap (Max);
- Heapsort;
- Heapify;
- Priority Queues.

Nodul	indexul
Un nod	i
Copilul din stânga a nodului	2*i
Copilul din dreapta a nodului	2*i+1
Părintele nodului	i/2

Arbore binar complet

Nu are elemente necompletate în tablou

1	2	3	4	5	6	7
Α	В	С	D	E	F	G

Α	i = 1	
В	i = 2,	2 * i(A) = 2 * 1 = 2
С	i = 3,	2 * i(A) + 1 = 2 * 1 + 1 = 3
D	i = 4,	2 * i(B) = 2 * 2 = 4
E	i = 5,	2 * i(B)+ 1 = 2 * 2 + 1 = 5
F	i = 6,	2 * i(C) = 2 * 3 = 6
G	i = 7,	2 * i(C) + 1 = 2 * 3 + 1 = 7

Nodul	indexul
Un nod	i
Copilul din stânga a nodului	2*i
Copilul din dreapta a nodului	2*i+1
Părintele nodului	i/2

Arbore binar complet

Nu are elemente necompletate în tablou

Α	i = 1	
В	i = 2,	2 * i(A) = 2 * 1 = 2
С	i = 3,	2 * i(A) + 1 = 2 * 1 + 1 = 3
D	i = 4,	2 * i(B) = 2 * 2 = 4
E	i = 5,	2 * i(B)+ 1 = 2 * 2 + 1 = 5

Nodul	indexul
Un nod	i
Copilul din stânga a nodului	2*i
Copilul din dreapta a nodului	2*i+1
Părintele nodului	i/2

Arbore binar necomplet

Are elemente necompletate în tablou, index 4 și 5

1	2	3	4	5	6	7
Α	В	С	-	-	D	E

Α	i = 1	
В	i = 2,	2 * i(A) = 2 * 1 = 2
С	i = 3,	2 * i(A) + 1 = 2 * 1 + 1 = 3
D	i = 6,	2 * i(C) = 2 * 3 = 6
E	i = 7,	2 * i(C) + 1 = 2 * 3 + 1 = 7

Nodul	indexul
Un nod	i
Copilul din stânga a nodului	2*i
Copilul din dreapta a nodului	2*i+1
Părintele nodului	i/2

Arbore binar necomplet

Are elemente necompletate în tablou, index 4 și 5

1	2	3	4	5	6	7
Α	В	С	-	 -	D	E

Α	i = 1	
В	i = 2,	2 * i(A) = 2 * 1 = 2
С	i = 3,	2 * i(A) + 1 = 2 * 1 + 1 = 3
D	i = 6,	2 * i(C) = 2 * 3 = 6
E	i = 7,	2 * i(C) + 1 = 2 * 3 + 1 = 7

IMPORTANT!

Un arbore poate avea maximum $2^{h+1} - 1$ noduri, unde h este înălțimea* arborelui, $2^{2+1} - 1 = 7$.

^{*}Înălțimea arborelui – numărul de nivel maxim asociat nodurilor terminale.

Arbore binar complet

Nu are elemente necompletate în tablou

	1	 .	2		3		4		5		6	 7_	
г- ! !	Α	!	В	- -	С	-7- !	D	 -	E	-7-	F	G	-7 !

IMPORTANT!

Arbori binari: Ce fel de arbore avem, complet sau nu?

IMPORTANT!

Arbori binari: Ce fel de arbore avem, complet sau nu?

IMPORTANT!

Arbori binari: Ce fel de arbore avem, complet

sau nu?

Necomplet

IMPORTANT!

Heap Max & Min

IMPORTANT!

Un MaxHeap/MinHeap este format din noduri a căror valoare este mai mare/mică decât valoarea descendenților(copiilor) acestuia.

Inserarea elementelor în Heap (Max)

Părintele lui 80: i/2 = 8/2 = 4

Inserarea elementelor în Heap (Max)

Părintele lui 80: i/2 = 8/2 = 4

IMPORTANT!

Ștergerea unui element din heap se va face din vârful piramidei, adică se va șterge rădăcina arborelui binar.

!!! Elementele șterse din heap și rescrise în array, devin aranjate crescător.

Heapsort Heapify Priority Queues

https://www.youtube.com/watch?v=HqPJF2L5h9U

Nodul	Indexul 1	Indexul zero
Un nod	i	i
Copilul din stânga a nodului	2*i	2*i+1
Copilul din dreapta a nodului	2*i+1	2*i+2
Părintele nodului	i/2	(i-1)/2