AUTOGEN: ENABLING NEXT-GEN LLM APPLICATIONS VIA MULTI-AGENT CONVERSATION

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, Chi Wang

Accepted by ICLR2024

<u>Paper link</u>

Outline

1. INTRODUCTION

2. THE AUTOGEN FRAMEWORK

3. APPLICATIONS OF AUTOGEN

4. DISCUSSION

Introduction

As the breadth and complexity of tasks applied to LLMs continue to increase, we need to enhance LLM capabilities through a <u>multi-agent approach</u>. The advantages of using multiple agents are:

- LLM agents can collaborate through conversations with each other.
- Differently configured agents work together to combine LLM capabilities in complementary ways.
- LLMs can solve complex tasks by breaking them into subtasks,
 with multi-agent dialogues helping to manage this process.

Problems encountered:

- 1. How can we design individual agents that are capable, reusable, customizable, and effective in multi-agent collaboration?
- 2. How can we develop a straightforward, unified interface that can accommodate a wide range of agent conversation patterns?

Thus, their proposed AutoGen encompasses these two concepts:

- Customizable and conversable agents
- Conversation programming

THE AUTOGEN FRAMEWORK

Core Design Principle of AutoGen

- Aims to reduce the effort needed to build complex LLM applications
- Transforms complex tasks into manageable steps via multi-agent discussions
- Also focuses on maximizing the reusability of agents
- Introduces two key concepts:
 - Conversable Agents
 - Conversation Programming

- Has a specific role
- Can send/receive messages to/from other agents
- Maintains conversation context based on the message history
- Configurable with LLMs, tools, or human input
- Behaves based on predefined logic

- AutoGen agents can be powered by:
 - LLMs: Enable reasoning, role-playing, code generation, and history-aware responses. These capabilities can be combined and enhanced using prompting techniques.
 - Humans: AutoGen supports human participation via human-backed agents
 - The default UserProxyAgent allows:
 - Configurable involvement frequency and conditions
 - Option to skip human input when needed

- AutoGen agents can be powered by:
 - Tools: have the capability to execute tools via code execution or function execution.
 - For example, the default UserProxyAgent in AutoGen is able to execute code suggested by LLMs, or make LLM-suggested function calls.

- Agent Customization
 - Agents can be customized with different back-end types (LLMs, humans, tools)
 - AutoGen supports easy agent creation by reusing/extending built-in classes

- Conversable Agent: Basic agent, supports all back-ends
- AssistantAgent: LLM-backed AI assistant
- UserProxyAgent: Human/tool-backed agent to receive input or execute code

AutoGen Agents

- AssistantAgent generates solution using LLM
- UserProxyAgent executes
 the code or asks for human input
- Feedback loop enables task refinement

- Developers must control and coordinate multi-agent conversations to make meaningful task progress
- AutoGen introduces a paradigm called Conversation Programming, which includes:
 - Computation The actions agents take to generate responses based on conversation
 - Control Flow The order & condition for executing computations
- Both computation and control flow are conversation-driven

- Unified interfaces and auto-reply mechanisms
 - Unified interfaces for all agents:
 - 1. $send() / receive() \rightarrow message passing$
 - 2. $generate_reply() \rightarrow respond to message$
 - 3. register_reply() → define custom behaviors
- Auto-reply mechanism:
 - Automatically triggers reply when message is received
 - Supports built-in or custom reply (LLM, code, human input)
- No central controller needed conversation flows autonomously

- Flexible Control Flow
 - Natural-language control: Use prompts to guide LLM behavior
 - Programming-language control: Python can define logic. For example, termination, input conditions, auto-reply limits
 - Mixed control transition:
 - From code → LLM: custom reply function can invoke LLM
 - From LLM \rightarrow code: LLM proposes function calls to trigger execution

Flexible Conversation Patterns

- Composable Conversation Patterns
 - AutoGen supports composing agents in various conversation patterns: sequential chat, nested chat, group chat, Hierarchical Chat
 - Patterns can be:
 - Static (predefined structure)
 - Dynamic (depends on message/context)

Case A1 - Math problem solving

- Scenario 1 (Operate completely autonomously)
 - Dataset
 - o MATH (Hendrycks et al., 2021)
 - Evaluation
 - o 120 level 5 problems
 - Whole dataset (5000 problems)

(a) A1: Performance on MATH (w/ GPT-4).

Case A1 - Math problem solving

- Scenario 1 (Operate completely autonomously)
 - Problem solving rate
 - Q1 a square root fraction
 - Q2 second number theory
 - AutoGen better performance

Correctness	Failure Reason
3/3	N/A.
0/3	The LLM gives code without the print function so the
	result is not printed.
1/3	The return from Wolfram Alpha contains 2 simplified
	results, including the correct answer, but GPT-4 always
	chooses the wrong answer.
2/3	Returns a wrong decimal result.
0/3	LangChain gives 3 different wrong answers.
0/3	It gives 3 different wrong answers due to calculation errors.
	3/3 0/3 1/3 2/3 0/3

⁽a) Evaluation on the first problem that asks to simplify a square root fraction.

	Correctness	Failure Reason
AutoGen	2/3	The final answer from code execution is wrong.
AutoGPT	0/3	The LLM gives code without the print function so the
		result is not printed.
ChatGPT+Plugin	1/3	For one trial, GPT-4 got stuck because it keeps giving
		wrong queries and has to be stopped. Another trial simply
		gives a wrong answer.
ChatGPT+Code Interpreter	0/3	It gives 3 different wrong answers.
LangChain ReAct	0/3	LangChain gives 3 different wrong answers.
Multi-Agent Debate	0/3	It gives 3 different wrong answers.

⁽b) Evaluation on the second number theory problem.

Case A1 - Math problem solving

- Scenario 1 (Operate completely autonomously)
 - Quality evaluation
 - Verbosity (Detail to Brief)
 AutoGPT > AutoGen/LangChain/
 ChatGPT+Code Interpreter > ChatGPT + Plugin
 - System stability
 Smoothly: AutoGen & ChatGPT+Code Interpreter
 AutoGPT: without the print' statement and cannot revise
 ChatGPT + Wolfram: stuck in a loop
 Langchain: handle parse error

Case A1 - Math problem solving

Scenario 2 (Human in loop)
 Problems cannot be solved without humans
 Every question test 3 times

Case A1 - Math problem solving

- Scenario 2 (Human in loop)
 - Question

Find the equation of the plane which bisects the angle between the planes 3x - 6y + 2z + 5 = 0 and 4x - 12y + 3z - 3 = 0, and which contains the point (-5, -1, -5).

Result(success/loss)
 AutoGen 3/0
 ChatGPT + Code Interpreter 2/1 -> fail to use hint
 ChatGPT + Plugin 2/1 -> error symbol in answer
 AutoGPT 0/3 -> derived an incorrect distance equation(1)
 & code execution errors(2)

Case A1 - Math problem solving

Scenario 3 (Multiple user participant)
 Easily to realize (UserProxyAgent, AssistantAgent)
 High expansibility

Expert Assistant

Case A2 - RAG & QA

Retrieval-augmented User Proxy Retrieval-augmented Assistant

Case A2 - RAG & QA

Scenario 1
 an evaluation regarding natural question answering
 Dataset: Natural Questions

Figure 8: Retrieval-augmented Chat without (W/O) and with (W/) interactive retrieval.

(b) A2: Q&A tasks (w/ GPT-3.5).

Case A2 - RAG & QA

Scenario 2
 Generate code base on codebase
 Set use_spark -> visit newest document
 Enhance efficiency on retrieve -> optimize code quality

Case A3 - Decision making

Benchmark: ALFWorld (simulate real-world household scenes)

Case A3 - Decision making

Method	Pick	Clean	Heat	Cool	Look	Pick 2	All
ReAct (avg)	63	52	48	71	61	24	54
ALFChat (2 agents)(avg)	61	58	57	67	50	19	54
ALFChat (3 agents)(avg)	79	64	70	76	78	41	69
ReAct (best of 3)	75	62	61	81	78	35	66
ALFChat (2 agents)(best of 3)	71	61	65	76	67	35	63
AFLChat (3 agents)(best of 3)	92	74	78	86	83	41	77

Table 3: Comparisons between ReAct and the two variants of ALFChat on the ALFWorld benchmark. For each task, we report the success rate out of 3 attempts. Success rate denotes the number of tasks successfully completed by the agent divided by the total number of tasks. The results show that adding a grounding agent significantly improves the task success rate in ALFChat.

(c) A3: Performance on ALFWorld.

Case A4 - Multiagent coding

- Base on OptiGuide
- Reduce code 430 -> 100 lines
- Solve 3x of user's time
- Reduce user interactions 3-5 times

(d) A4: Performance on OptiGuide.

Case A5 - Dynamic Group Chat
Chat base on ongoing conversion
GropChatManager(Manager): conductor of conversion

A5. Dynamic Group Chat

3. Broadcast

Case A5 - Dynamic Group Chat

Success on 12 tasks

Table 5: Number of successes on the 12 tasks (higher the better).

Model	Two Agent	Group Chat	Group Chat with a task-based speaker selection policy
GPT-3.5-turbo	8	9	7
GPT-4	9	11	8

• Average termination failure on 12 tasks

Table 6: Average # LLM calls and number of termination failures on the 12 tasks (lower the better)

Model	Two Agent	Group Chat	Group Chat with a task-based speaker selection policy
GPT-3.5-turbo	9.9, 9	5.3, 0	4, 0
GPT-4	6.8, 3	4.5, 0	4, 0

Case A6 Conversational Chess

Board Agent: Censor to ensure move is legal & give info

Player agent: AI/ Human

Natural dialogue flow

Accurate rule execution

• Rich interactive experience Human/Al Chess Player A

• Effective error handling

Case A6 Conversational Chess

Figure 16: Comparison of two designs—(a) without a board agent, and (b) with a board agent—in Conversational Chess.

Discussion

AutoGen as a general multi-agent conversation framework, has possesses powerful capabilities to empower the development of various complex and diverse LLM applications.

Future improvement of AutoGen:

- Integration of existing agent implementations into multi-agent framework
- Balance between automation and human control
- Agent topology structure and conversation patterns
- Security challenges

Thanks for listening