Théorie des Langages Rationnels Pruning and Determinization

Adrien Pommellet, LRE

March 29, 2023

Two automata accepting $bc + a^*$

Cleaning the automaton

The NFA generated by Thompson's algorithm followed by the backward removal of ε -transitions are needlessly complicated. How can we make them **smaller**?

A property of accepting paths

A word w is only accepted if there is an accepting path, that is, a path from an initial state to a final state labelled by w.

Thus, a state that cannot lead to a final state or cannot be reached from an initial state will never belong to an accepting path.

Useful states

Let us formalize this intuition:

Usefulness of states

Let q be a state of an automaton A.

- q is said to be accessible if it can be reached from an initial state.
- q is said to be **co-accessible** if from q, a final state can be reached.
- q is said to be useful if it is both accessible and co-accessible. It is otherwise said to be useless.

In the previous example, states q_1 and q_2 are useless, but state q_3 is useful.

A simpler automaton

A simpler automaton

Theorem

Let A be an automaton, and let A' be the automaton obtained by removing the useless states from A (also called the **pruned** automaton). Then A and A' are equivalent.

This theorem yields the following pruning algorithm:

- Find the accessible states by performing a **depth-first** or **breadth-first** search from the initial states.
- Find the co-accessible states by performing a search from the final states, reversing the edges.
- Seep only the states that are both accessible and co-accessible.

Practical Application

Exercise 1. Prune the automaton A on the alphabet $\Sigma = \{a, b\}$ below.

Answer I

Figure 1: Accessible states of the automaton A.

Answer II

Figure 2: Co-accessible states of the partially pruned automaton A.

Answer III

Figure 3: The pruned automaton \mathcal{A}' .

A reminder

A NFA may feature multiple paths labelled by the same word, but it only takes one accepting path to accept said word.

The NFA above accepts the word *abc*, but it may take **up to three attempts** before finding an accepting path.

A better model

NFA are not an efficient model: to check whether a word is accepted, one may have to browse an **arbitrary** number of paths.

On the other hand, a DFA features at most one path per word: checking whether a word is accepted or not takes takes a **linear** number of operations in the size of the input.

We will introduce an algorithm that proves the following theorem:

Theorem

Given a NFA ${\mathcal A}$ on an alphabet Σ , there exists an equivalent DFA ${\mathcal A}'$ on Σ .

An intuition

We will use sets to list all the possible states the automaton could be in: $\{q_2, q_4\}$ stands for "being in state q_2 or in state q_4 ".

The theoretical powerset construction

- **1** The states of \mathcal{A}' are labelled by sets of states of the original NFA \mathcal{A} .
- ② The initial state of \mathcal{A}' is labelled by I, the set of initial states of \mathcal{A} . A run may start in any initial state.
- **3** If a state of \mathcal{A}' is labelled by a set S, then its successor by the letter $a \in \Sigma$ is the state labelled by $S_a = \{q \mid \exists p \in S, p \xrightarrow{a}_{\mathcal{A}} q\}$. Note that S_a is the set of all states that can be reached with the letter a by **at least one** state of S, but not necessarily **every** state.
- A state of A' is accepting if and only if at least one accepting state of A belongs to its label.
 It only takes one accepting path to accept a word.

A practical implementation

States	a	b
$I = \{0\}$	{0,1}	{0}
$\{0,1\}$	{0,1,2}	$\{0,2\}$
$\{0, 1, {\color{red}2}\}$	{0,1,2}	$\{0,2\}$
$\{0, {\color{red} 2}\}$	$\{0, 1\}$	{0}

The result

Note that a same state of A may appear in multiple labels: these sets merely list the possible configurations at a given point of the execution.

A practical summary

- **1** We will design a **table** representing A'; its columns are labelled by the alphabet Σ , and its lines, by the sets labelling each state of A'.
- ② The first line is labelled by the set I of initial states of A.
- **3** Write in cell (E, x) the set E_x of successors of E by letter x.
- If a set E_x that has **not been explored yet** appears in a cell, add a new line labelled by E_x and compute its successors.
- Iterate until there is no new set left to explore.
- ullet Any set whose label contains an **accepting** state of ${\mathcal A}$ is made accepting.

Practical Application

Exercise 2. Compute a DFA on the alphabet $\Sigma = \{a, b, c\}$ equivalent to the NFA below.

Answer I

States	a	Ь	С
$I = \{0\}$	$\{0, 1\}$	{0}	Ø
$\{0, 1\}$	$\{0, 1\}$	{0}	$\{1\}$
Ø	Ø	Ø	Ø
{1 }	{1}	Ø	{1}

Answer II

A node labelled by \emptyset may appear. It is a **sink state** that never accepts.

Properties of the resulting DFA

Theorem

Given a NFA A on an alphabet Σ with n states:

- There exists a **complete**, equivalent DFA A' on Σ .
- This equivalent automaton may have **up to** 2ⁿ **states**.

Intuitively, if a set Q is of size n, the set of its subsets (also known as its **powerset**, written 2^Q) contains exactly 2^n elements.

Thus, if Q is the set of states of A, since the states of A' are identified by labels in 2^Q , A' has at most 2^n states.

Note that the previous example has $4 = 2^2$ states and is complete.