$$\log\left(\frac{\rho_{1}(x)}{1-\rho_{1}(x)}\right) = \log\left(\frac{\rho_{1}(x)}{\rho_{2}(x)}\right)$$

From 4.12:

$$P_{K}(x) = \frac{1}{12\pi \sigma} \exp\left(-\frac{1}{2\sigma^{2}}(x - M_{K})^{2}\right)$$

$$= \frac{1}{12\pi \sigma} \exp\left(-\frac{1}{2\sigma^{2}}(x - M_{E})^{2}\right)$$

$$\begin{aligned} \log \left(\frac{P_{1}(x)}{P_{2}(x)} \right) &= \log \left[\frac{\Pi_{1}}{\Pi_{2}} \frac{1}{12\Pi\sigma} \exp\left(-\frac{1}{2\sigma^{2}}(x-M_{1})^{2}\right) \right] &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \log \left(\exp\left(-\frac{1}{2\sigma^{2}}(x-M_{1})^{2}\right) \right] &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \log \left(\exp\left(-\frac{1}{2\sigma^{2}}(x-M_{1})^{2} + \frac{1}{2\sigma^{2}}(x-M_{2})^{2}\right) \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \log \left(\exp\left(-\frac{1}{2\sigma^{2}}(x-M_{1})^{2} + \frac{1}{2\sigma^{2}}(x-M_{2})^{2}\right) \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) + \log \left((x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-M_{1})^{2} + (x-M_{2})^{2} \right) &= \log \left((x-M_{1})^{2} + (x-$$

$$= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left[-\chi^{2} + 2M_{1} \times -M_{1}^{2} + \chi^{2} - 2M_{2} \times + M_{2}^{2} \right]$$

$$= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left[2\chi \left(M_{1} - M_{2} \right) + M_{2}^{2} - M_{1}^{2} \right]$$

$$= \log \left(\frac{\Pi_{1}}{\Pi_{2}} \right) + \frac{1}{2\sigma^{2}} \left[2\chi \left(M_{1} - M_{2} \right) + M_{2}^{2} - M_{1}^{2} \right]$$

$$= \log \left(\frac{11}{11} \right) + \frac{M_2^2 - M_1^2}{2 \sigma^2} + \frac{M_1 - M_2}{4} \times \frac{1}{11}$$

Thus,
$$\log\left(\frac{P_1(x)}{P_2(x)}\right) = C_0 + C_1 \times \text{ by direct proof}$$

(a) berive equation (423) on page 149 of ISL ic.

$$\delta_{k}(x) = -\frac{1}{2}(x-u_{k})^{T} \underset{k}{\overset{-1}{\leq}} (x-u_{k}) + \log \Pi_{k}$$

Suppose that x is a vector $(x_1, x_2, ..., x_p)$ drawn from a multivariate normal distribution with mean M_K and covariance matrix Z_K for the K^{th} class

Then

P(X=x|Y=k). Assuming that the prior distribution defined by the equation $P(Y=k)=TT_k$ is known,

 $P(Y=K|X=k)=\frac{f_K(x)TK}{P(X=x)}$ which equals $cf_K(x)TK$. In this case, c is a constant. The equation expands to:

$$CT_{K} = \frac{1}{(2\pi)^{P/2}} |2|^{1/2} exp(-\frac{1}{2}(x-u_{k})^{T} + \frac{1}{2}(x-u_{k}))$$

Applying the logarithm:

$$\log(P_{K}(x)) = \log c - \log((2\Pi)^{P/2} | \mathcal{Z}_{k}|^{\frac{1}{2}}) - \frac{1}{2}(x - M_{K})^{T} \mathcal{Z}_{k}^{1}(x - M_{K})$$

$$= \log(c + \log \Pi_{K} - \frac{1}{2} \log(2\Pi) - \frac{1}{2} \log|\mathcal{Z}_{k}| - \frac{1}{2}(x - M_{K})^{T} \mathcal{Z}_{k}^{1}(x - M_{K})$$

To maximize the above, we must ignore constant terms.
To maximize the above, we must ignore constant terms. $\log(P_k(x)) = \log T_k - \frac{1}{2}\log S_k - \frac{1}{2}(x - u_k)^T \stackrel{?}{\underset{k}{\neq}} (x - u_k)$ $= \log T_k - \frac{1}{2}\log S_k - \frac{1}{2}x^T \stackrel{?}{\underset{k}{\neq}} x + x^T \stackrel{?}{\underset{k}{\neq}} u_k - \frac{1}{2}u_k \stackrel{?}{\underset{k}{\neq}} u_k$ Thus
= 10911x - = 1001 5x1 - = xT 5xx + xT 5ux - = uk 5uk
Thus, we have derived 4.23
26). Assume that you have the data {(xi,yi)}_12ien. Write down
your estimators of Ek, Uk and ITK.
To estimate the Prior Probability of the Kth class, we use
To estimate the Prior Probability of the kth class, we use a sample size of it. ($\widehat{T}_R = \frac{n_R}{n}$ where n is the total number
of abservations).
· · · · · · · · · · · · · · · · · · ·

Here $I = \begin{cases} 1 & \text{if element present} \\ 0 & \text{otherwise} \end{cases}$

In Quadratic Discriminant Analysis, the Covariance Madrat of our dass is estimated as follows:

 $\frac{1}{2} = \frac{1}{17} \sum_{i=1}^{2} (x_i - M_k)^T (x_i - M_k) I(C(x_i) = k).$

2c) Based on your estimators in (b), write down the decision rule of QDA.

The decision boundary between classes k and ℓ is $(x:r_k(x):r_k(x))$ on $-\frac{1}{2}\log(|2\kappa|)-\frac{1}{2}x^T\xi_k^Tx-\frac{1}{2}M\kappa^T\xi_k^TM\kappa+M\kappa^T\xi_k^Tx+\log(17\kappa)$

QDA assigns observations for those classes that are largest as described in Parta.