### **MAGNETISMO**

#### Método e recomendacións

## • Carga nun campo magnético

- 1. Un protón cunha enerxía cinética de 4,0·10<sup>-15</sup> J penetra perpendicularmente nun campo magnético uniforme de 40 mT. Calcula:
  - a) O módulo da forza á que está sometido o protón dentro do campo.
  - b) O tipo de movemento realizado polo protón, a traxectoria que describe e o raio desta.

Datos:  $q_p = 1.6 \cdot 10^{-19} \text{ C}$ ;  $m_p = 1.67 \cdot 10^{-27} \text{ kg}$ .

(A.B.A.U. extr. 22)

2

**Rta.:** a)  $F_B = 1.4 \cdot 10^{-14} \text{ N}$ ; b) R = 0.57 m.

| Datos                                                        | Cifras significativas: 2               |
|--------------------------------------------------------------|----------------------------------------|
| Enerxía cinética do protón                                   | $E_{\rm c} = 4.0 \cdot 10^{-15} \rm J$ |
| Valor da intensidade do campo magnético                      | B = 40  mT = 0.040  T                  |
| Ángulo entre a velocidade do protón e o campo                | $\varphi = 90^{\circ}$                 |
| Carga do protón                                              | $q = 1.6 \cdot 10^{-19} \text{ C}$     |
| Masa do protón                                               | $m = 1,67 \cdot 10^{-27} \text{ kg}$   |
| Incógnitas                                                   |                                        |
| Módulo da forza á que está sometido o protón dentro do campo | $F_B$                                  |

# Radio da traxectoria *Ecuacións*

Lei de Lorentz: forza magnética sobre unha carga, q, que se despraza polo inte- $\overline{F}_B = q(\overline{v} \times \overline{B})$  rior dun campo magnético,  $\overline{B}$ , cunha velocidade,  $\overline{v}$ 

Aceleración normal (nun movemento circular de raio R)  $a_{\rm N} = \frac{v^2}{R}$ 2.ª lei de Newton da Dinámica  $\Sigma \overline{F} = m \cdot \overline{a}$ Velocidade nun movemento circular uniforme de raio R  $v = \frac{2\pi \cdot R}{T}$ 

#### Solución:

a) A velocidade do protón calcúlase a partir da enerxía cinética:

$$E_{c} = \frac{1}{2} m \cdot v^{2} \Longrightarrow 4.0 \cdot 10^{-15} [J] = (1,67 \cdot 10^{-27} [kg] / 2) \cdot v^{2}$$
$$v = \sqrt{\frac{2 \cdot 4.0 \cdot 10^{-15} [J]}{1,67 \cdot 10^{-27} [kg]}} = 2,2 \cdot 10^{6} \text{ m/s}$$

A forza magnética calcúlase pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

En módulos:

$$F_B = |\overline{F}_B| = q \cdot |\overline{v}| \cdot |\overline{B}| \cdot \text{sen } 90^\circ = 1,6 \cdot 10^{-19} \text{ [C]} \cdot 2,2 \cdot 10^6 \text{ [m/s]} \cdot 0,040 \text{ [T]} = 1,4 \cdot 10^{-14} \text{ N}$$

b) Como só actúa a forza magnética, que é perpendicular á velocidade, o protón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal  $a_{\rm N}$ .



Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Despexando o raio, R:



$$R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi} = \frac{1,67 \cdot 10^{-27} \, [\text{kg}] \cdot 2,2 \cdot 10^6 \, [\text{m/s}]}{1,6 \cdot 10^{-19} \, [\text{C}] \cdot 0,040 \, [\text{T}] \cdot \text{sen } 90^{\circ}} = 0,57 \, \text{m}$$

Análise: Se o protón entra nun campo magnético, ao describir media circunferencia sairá del, polo que en realidade só daría media volta e sairía a unha distancia de 2 R = 1,0 m do punto de entrada, na mesma dirección coa que entrou, pero en sentido oposto.

A respostas poden calcularse coa folla de cálculo Fisica (gal).

Ao abrir a folla de cálculo, mostrarase unha alerta de seguridade. Prema sobre o botón Activar macros. Para ir á folla para resolver un problema dunha partícula cargada movéndose nun campo magnético uniforme pode elixir unha destas opcións:

- Prema sobre a icona ▶ do grupo | ◄ ◄ ▶ | situado na parte inferior esquerda ata que vexa a pestana
   Lorentz. Logo prema sobre esa pestana.
- No índice, pulse a tecla [Ctrl] mentres preme sobre a cela Partícula cargada movéndose nun campo magnético uniforme do capítulo Electromagnetismo.

Para borrar os datos pode elixir unha destas opcións:

- Datos, instrucións e enunciado:
  - 1. Prema sobre o menú: Editar o Seleccionar o Seleccionar celas desprotexidas
  - 2. Pulse a tecla Supr.
- Tódolos datos:
  - 1. Prema sobre calquera cela de datos:
  - 2. Prema sobre o botón Borrar datos
  - 3. No diálogo «Borrar os datos desta folla?», prema sobre o botón Aceptar.
- Só algúns dos datos:
  - 1. Seleccione co rato unha área na que se atopen os datos que desexa borrar.
  - 2. Prema sobre o botón Borrar datos
  - 3. No diálogo «Borrar os datos no intervalo seleccionado?», prema sobre o botón Aceptar.

Faga clic na cela situada debaixo de "Partícula" e escolla «Protón», para non ter que teclear os valores da masa e carga do protón.

Partícula Carga  $q = 1,60218 \cdot 10^{-19}$  C Protón Masa  $m = 1,67262 \cdot 10^{-27}$  kg

Faga clic na cela de color salmón situada baixo «kg» e elixa «J».

Faga clic na cela de color branca e bordo azul situada a súa esquerda e escriba 4E-15, (o, si o prefire,  $4.0 \uparrow 3$   $10^- ^1 5$  e borre os espacios).

Faga clic na cela de color branca e bordo azul situada á dereita de «B =» e teclee 0,04. Deberá ver:

| Partícula | Carga $q = 1,60218 \cdot 1$    | 10 <sup>-19</sup> C  |
|-----------|--------------------------------|----------------------|
| Protón    | Masa $m = 1,67262 \cdot 1$     | 10 <sup>-27</sup> kg |
|           | Enerxía cinética $E = 4E-15$   | J                    |
|           | Ángulo entre v e B $\varphi$ = | 90 °                 |
|           | Radio da circunferencia $R =$  |                      |
|           | Campo magnético B =            | 0,04 T               |

Para ver o resultado da «Forza magnética», debe facer clic na cela de color salmón baix «Radio da traxectoria circular» e elixir esa opción.

| na circular" e chan esa opeion. |                                       |                                 |
|---------------------------------|---------------------------------------|---------------------------------|
|                                 | Cifras                                | significativas: 3               |
| Velocidade dea p                | oartícula v =                         | 2,19·10 <sup>6</sup> m/s        |
| Radio da traxectoria            | circular $R =$                        | 0,571                           |
|                                 |                                       |                                 |
| Forza ma                        | $rac{agnética}{f} = rac{agnética}{f}$ | $1,40 \cdot 10^{-14} \text{ N}$ |

- 2. Unha partícula de masa 8 ng e carga eléctrica  $-2 \mu C$  entra nunha rexión do espazo na que hai un campo magnético  $\overline{B} = 3 \overline{j}$  T, cunha velocidade,  $\overline{v} = 6 \overline{i}$  km·s<sup>-1</sup>. Calcula:
  - a) A velocidade angular con que se move.
  - b) A intensidade de campo eléctrico (vector) que se debe aplicar para que a partícula siga unha traxectoria rectilínea.

(A.B.A.U. ord. 22)

Cifras significations 2

**Rta.:** a)  $\omega = 7.5 \cdot 10^5 \text{ rad/s}$ ; b)  $\overline{E} = -1.8 \cdot 10^4 \overline{k} \text{ N/C}$ .

| Datos                                                                        | Cifras significativas: 3                                                     |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Masa da partícula                                                            | $m = 8,00 \text{ ng} = 8,00 \cdot 10^{-12} \text{ kg}$                       |
| Carga da partícula                                                           | $q = -2,00 \ \mu \ \text{C} = -2,00 \cdot 10^{-6} \ \text{C}$                |
| Intensidade do campo magnético                                               | $\overline{\boldsymbol{B}} = 3,00\ \overline{\mathbf{j}}\ \mathrm{T}$        |
| Velocidade da partícula                                                      | $\overline{\mathbf{v}} = 6.00 \cdot 10^3  \overline{\mathbf{i}}  \text{m/s}$ |
| Radio da traxectoria circular                                                | $R = 1,00 \cdot 10^{-7} \text{ m}$                                           |
| Incógnitas                                                                   |                                                                              |
| Velocidade angular                                                           | $\omega$                                                                     |
| Vector campo eléctrico para que a partícula siga unha traxectoria rectilínea | $\overline{m{E}}$                                                            |
| Outros símbolos                                                              |                                                                              |
| Radio da traxectoria circular                                                | R                                                                            |
| Valor da forza magnética sobre a partícula                                   | $F_B$                                                                        |
| Vector forza eléctrica sobre a partícula                                     | $egin{array}{c} F_B \ \overline{oldsymbol{F}}_E \end{array}$                 |
|                                                                              |                                                                              |

#### **Ecuacións**

Datos

Lei de Lorentz: forza magnética sobre unha carga, q, que se despraza polo inte- $\overline{F}_B = q(\overline{v} \times \overline{B})$  rior dun campo magnético,  $\overline{B}$ , cunha velocidade,  $\overline{v}$ 

|                                                              | 2                                            |
|--------------------------------------------------------------|----------------------------------------------|
| Aceleración normal (nun movemento circular de raio $\it R$ ) | $a_{\rm N} = \frac{v^2}{R}$                  |
| 2.ª lei de Newton da Dinámica                                | $\Sigma \overline{F} = m \cdot \overline{a}$ |
| Velocidade nun movemento circular uniforme de raio ${\it R}$ | $v = \frac{2\pi \cdot R}{T}$                 |
|                                                              |                                              |

Forza,  $\overline{F}_E$ , exercida por un campo electrostático,  $\overline{E}$ , sobre unha carga, q  $\overline{F}_E = q \cdot \overline{E}$  Relación entre a velocidade lineal v e a velocidade angular  $\omega$  nun movemento circular de raio R.  $v = \omega \cdot R$ 

#### Solución:

a) Como só actúa a forza magnética, que é perpendicular á velocidade, a partícula describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal  $a_N$ .

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$



Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Se a partícula entra perpendicularmente ao campo magnético, sen  $\varphi$  = 1. Despexando o raio:

$$R = \frac{m \cdot v}{|q| \cdot B} = \frac{8,00 \cdot 10^{-12} [\text{kg}] \cdot 6,00 \cdot 10^{3} [\text{m/s}]}{2,00 \cdot 10^{-6} [\text{C}] \cdot 3,00 [\text{T}]} = 8,00 \cdot 10^{-3} \text{ m} = 8,00 \text{ mm}$$

Pódese calcular a velocidade angular a partir da velocidade lineal:

$$v = \omega \cdot R \Rightarrow \omega = \frac{v}{R} = \frac{6,00 \cdot 10^3 \text{ [m/s]}}{8,00 \cdot 10^{-3} \text{ [m]}} = 7,50 \cdot 10^5 \text{ rad/s}$$

b) Se a forza eléctrica anula a magnética:

$$\overline{F}_B + \overline{F}_E = q(\overline{v} \times \overline{B}) + q \cdot \overline{E} = \overline{0}$$



$$\overline{E} = -(\overline{v} \times \overline{B}) = -(6.00 \cdot 10^3 \overline{i} [m/s] \times 3.00 \overline{j} [T]) = -1.80 \cdot 10^4 \overline{k} N/C$$

A maior parte das respostas pode calcularse coa folla de cálculo Fisica (gal)

Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

Partícula cargada movéndose nun campo magnético uniforme

del capítulo

Electromagnetismo Lorentz

Partícula cargada movéndose nun campo magnético uniforme

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas celdas de cor branca e bordo azul.

| Partícula | Carga              | <i>q</i> =   | -2   | μС   |
|-----------|--------------------|--------------|------|------|
|           | Masa               | <i>m</i> =   | 8    | ng   |
| Difer     | enza de potencial  | $\Delta V$ = | 6000 | m/s  |
| Á         | angulo entre v e B | φ =          |      | 90 ° |
| Raio      | da circunferencia  | R =          |      |      |
| (         | Campo magnético    | <i>B</i> =   | 3    | Т    |

A folla non realiza o cálculo vectorial, só calcula os módulos dos vectores.

Para ver o resultado de «Velocidade angular», debe facer clic na cela de color salmón baixo «Radio da traxectoria circular» e elixir esa opción.

Velocidade angular 
$$\omega = 7,50 \cdot 10^5 \text{ rad/s}$$

Para ver o resultado de «Intensidade de campo eléctrico», debe facer clic na cela de color salmón e elixir «Intensidade de campo eléctrico» en vez de «Velocidad angular».

Intensidade de campo eléctrico 
$$E = e1,80\cdot10^4 \text{ N/C}$$
 que anula a desviación

\*\*\*

- 3. Un protón acelerado por unha diferenza de potencial de 5000 V penetra perpendicularmente nun campo magnético uniforme de 0,32 T. Calcula:
  - a) A velocidade do protón.
  - b) O raio da órbita que describe.
  - c) O número de voltas que dá en 1 segundo.
  - d) Que campo eléctrico  $\overline{E}$  hai que aplicar para que a carga non sufra ningunha desviación? Datos:  $m_p = 1,67 \cdot 10^{-27}$  kg,  $q_p = 1,60 \cdot 10^{-19}$  C (Fai un debuxo do problema)

Problema modelo basado en P.A.U. Xuño 05

**Rta.:** a)  $v = 9.8 \cdot 10^5$  m/s; b) R = 3.2 cm; c)  $N = 4.9 \cdot 10^6$  voltas/s; d)  $\overline{E} = 3.1 \cdot 10^5$  N/C perpendicular a  $\overline{B}$  e  $\overline{v}$ 

| Datos                                                          | Cifras significativas: 3                         |
|----------------------------------------------------------------|--------------------------------------------------|
| Potencial de aceleración                                       | $V = 5000 \text{ V} = 5,00 \cdot 10^3 \text{ V}$ |
| Valor da intensidade do campo magnético                        | B = 0.320  T                                     |
| Carga do protón                                                | $q = 1,60 \cdot 10^{-19} \text{ C}$              |
| Ángulo entre a velocidade do protón e o campo magnético        | $\varphi = 90^{\circ}$                           |
| Masa do protón                                                 | $m = 1,67 \cdot 10^{-27} \text{ kg}$             |
| Tempo para calcular o número de voltas                         | t = 1,00  s                                      |
| Incógnitas                                                     |                                                  |
| Velocidade do protón                                           | ν                                                |
| Radio da traxectoria circular                                  | R                                                |
| Número de voltas que dá en 1 s                                 | N                                                |
| Campo eléctrico para que a carga non sufra ningunha desviación | E                                                |
| Outros símbolos                                                |                                                  |
| Valor da forza magnética sobre o protón                        | $F_B$                                            |
| Período do movemento circular                                  | T                                                |
|                                                                |                                                  |

#### Incógnitas

Enerxía (cinética) do protón

 $E_{\rm c}$ 

Traballo do campo eléctrico Traballo da forza resultante

Enerxía cinética

Forza  $\overline{\textbf{\textit{F}}}_{\!\scriptscriptstyle E}$  exercida por un campo electrostático  $\overline{\textbf{\textit{E}}}$  sobre unha carga q

W(eléctrico) =  $q \cdot \Delta V$   $W = \Delta E_c$   $E_c = \frac{1}{2} \underline{m} \cdot v^2$  $\overline{F}_E = q \cdot \overline{E}$ 

#### Solución:

a) Para calcular a velocidade temos que ter en conta que ao acelerar o protón cunha diferenza de potencial (supomos que desde o repouso), este adquire unha enerxía cinética:

$$W(\text{eléctrico}) = q \cdot \Delta V = \Delta E_c = \frac{1}{2} m_p v^2 - \frac{1}{2} m_p v_0^2$$

Se parte do repouso,  $v_0 = 0$ . A velocidade final é:

$$v = \sqrt{\frac{2 q \cdot \Delta V}{m_p}} = \sqrt{\frac{2 \cdot 1,60 \cdot 10^{-19} [C] \cdot 5,00 \cdot 10^{3} [V]}{1,67 \cdot 10^{-27} [kg]}} = 9,79 \cdot 10^{5} \text{ m/s}$$

b) Como só actúa a forza magnética:

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_B$$

O protón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal aN,

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Despexando o raio R

$$R = \frac{m \cdot v}{|q| \cdot B \cdot \sec \varphi} = \frac{1,67 \cdot 10^{-27} [\text{kg}] \cdot 9,79 \cdot 10^{5} [\text{m/s}]}{1,60 \cdot 10^{-19} [\text{C}] \cdot 0,320 [\text{T}] \cdot \sec 90^{\circ}} = 3,19 \cdot 10^{-2} \text{ m} = 3,19 \text{ cm}$$

Análise: o raio ten un valor aceptable, uns centímetros.

c) Despexando o período

$$T = \frac{2\pi \cdot R}{v} = \frac{2 \cdot 3,14 \cdot 3,19 \cdot 10^{-2} [m]}{9,79 \cdot 10^{5} [m/s]} = 2,05 \cdot 10^{-7} s$$

O número de voltas en 1 s será:

$$N = 1,00 \text{ [s]} \cdot \frac{1 \text{ volta}}{2,05 \cdot 10^{-7} \text{ [s]}} = 4,88 \cdot 10^6 \text{ voltas}$$



Análise: Se o protón entra nun campo magnético, ao describir media circunferencia sairá del, polo que en realidade só daría media volta nun tempo de  $T/2 = 1,03 \cdot 10^{-7}$  s e sairía a unha distancia de 2 R = 6,4 cm do punto de entrada.

d) Tomando o sistema de referencia como o de figura da dereita, cando só actúa a forza magnética a traxectoria do protón é unha circunferencia. Na figura anterior debuxouse o protón movéndose inicialmente no sentido positivo do eixe X e o campo magnético dirixido no sentido negativo do eixe Z.



Cando actúa unha forza eléctrica que anula a magnética,

$$\overline{F}_B + \overline{F}_E = q(\overline{v} \times \overline{B}) + q \cdot \overline{E} = \overline{0}$$

O campo eléctrico debe valer:

$$\overline{E} = -(\overline{v} \times \overline{B}) = -(9.79 \cdot 10^5 \,\overline{i} \,[\text{m/s}] \times 0.320 \,(-\overline{k}) \,[\text{T}]) = -3.13 \cdot 10^5 \,\overline{j} \,\text{N/C}$$

O campo eléctrico está dirixido no sentido negativo do eixe  $\it Y$ .

En calquera sistema de referencia, a dirección do campo eléctrico debe ser perpendicular tanto á dirección do campo magnético como á dirección da velocidade. O sentido do campo eléctrico ten que ser igual que o da forza eléctrica, porque a carga do protón é positiva, e oposto ao da forza magnética.



A maior parte das respostas pode calcularse coa folla de cálculo <u>Fisica (gal)</u> Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

Partícula cargada movéndose nun campo magnético uniforme

del capítulo

Electromagnetismo Lorentz

Partícula cargada movéndose nun campo magnético uniforme

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas celdas de cor branca e bordo azul.



Os resultados son:



Facendo clic en «Número de voltas» e elixindo «Intensidade de campo eléctrico» vese o resultado do último apartado:

d) Intensidade de campo eléctrico  $E = 3,13 \cdot 10^5 \text{ N/C}$  que anula a desviación

#### Forza entre condutores

- 1. Dous fíos condutores rectos moi longos e paralelos (A e B) con correntes  $I_A = 5$  A e  $I_B = 3$  A no mesmo sentido están separados 0,2 m. Calcula:
  - a) O campo magnético no punto medio entre os dous condutores (D)
  - b) A forza exercida sobre un terceiro condutor C paralelo os anteriores, de 0,5 m e con  $I_C$  = 2 A e que pasa por D.

Dato:  $\mu_0 = 4 \pi \cdot 10^{-7} \text{ S.I.}$  (P.A.U. Set. 06)

**Rta.:** a)  $\overline{B} = 4.0 \cdot 10^{-6}$  T perpendicular aos fíos; b)  $\overline{F} = 4.0 \cdot 10^{-6}$  N cara a A.

Datos

Intensidade de corrente polo condutor A Intensidade de corrente polo condutor B

Distancia entre os condutores

Permeabilidade magnética do baleiro

Intensidade de corrente polo condutor C

Lonxitude do condutor C

Incógnitas

Campo magnético no punto D medio entre os dous condutores

Forza exercida sobre un terceiro condutor C que pasa por D

Ecuacións
Lei de Biot e Savart: campo magnético  $\overline{B}$  creado a unha distancia r por un con- $B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$ 

Principio de superposición:

Lei de Laplace: forza magnética que exerce un campo magnético  $\overline{B}$  sobre un

tramo l de condutor recto polo que circula unha intensidade de corrente I

## Cifras significativas: 3

 $I_{\rm A} = 5,00 {\rm A}$  $I_{\rm B} = 3,00 {\rm A}$ d = 0,200 m

 $\mu_0 = 4 \pi \cdot 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1}$ 

 $I_{\rm C} = 2,00 {\rm A}$ l = 0.500 m

 $\overline{\boldsymbol{B}}_{\!\scriptscriptstyle \mathrm{D}}$ 



 $\overline{F}_{R} = I(\overline{l} \times \overline{B})$ 

#### Solución:

a) O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

No diagrama debúxanse os campos magnéticos  $\overline{B}_{A}$  e  $\overline{B}_{B}$  creados por ambos os condutores no punto medio D.

O campo magnético creado polo condutor A no punto D equidistante de ambos os condutores é:

$$\vec{B}_{A \to D} = \frac{\mu_0 \cdot I_A}{2\pi \cdot r} (-\vec{k}) = \frac{4\pi \cdot 10^{-7} [\text{T} \cdot \text{m} \cdot \text{A}^{-1}] \cdot 5,00 [\text{A}]}{2\pi \cdot 0,100 [\text{m}]} (-\vec{k}) = -1,00 \cdot 10^{-5} \vec{k} \text{ T}$$

O campo magnético creado polo condutor B no punto D equidistante de ambos os condutores é:

$$\vec{B}_{\text{B} \to \text{D}} = \frac{\mu_0 \cdot I_{\text{B}}}{2\pi \cdot r} \vec{\mathbf{k}} = \frac{4\pi \cdot 10^{-7} \left[ \text{T} \cdot \text{m} \cdot \text{A}^{-1} \right] \cdot 3,00 \left[ \text{A} \right]}{2\pi \cdot 0,100 \left[ \text{m} \right]} \vec{\mathbf{k}} = 6,00 \cdot 10^{-6} \vec{\mathbf{k}} \text{ T}$$

O campo magnético resultante é a suma vectorial de ambos:

$$\overline{\boldsymbol{\textit{B}}}_{\mathrm{D}} = \overline{\boldsymbol{\textit{B}}}_{\mathrm{A} \rightarrow \mathrm{D}} + \overline{\boldsymbol{\textit{B}}}_{\mathrm{B} \rightarrow \mathrm{D}} = -1,00 \cdot 10^{-5} \ \overline{\mathbf{k}} \ [\mathrm{T}] + 6,00 \cdot 10^{-6} \ \overline{\mathbf{k}} \ [\mathrm{T}] = -4,0 \cdot 10^{-6} \ \overline{\mathbf{k}} \ \mathrm{T}$$

b) A forza que se exerce sobre un condutor C situado en D é:

$$\overline{F}_B = I(\overline{l} \times \overline{B}) = 2,00 \text{ [A] } (0,500 \overline{\mathbf{j}} \text{ [m]} \times (-4,0.10^{-6} \overline{\mathbf{k}} \text{ [T]})) = -4,0.10^{-6} \overline{\mathbf{i}} \text{ N}$$

Está dirixida cara ao condutor A se o sentido da corrente é o mesmo que o dos outros condutores. Análise: Os condutores que transportan a corrente no mesmo sentido atráense e en sentido oposto repélense. Aínda que se ve atraído por ambos os condutores, o será con maior forza polo que circula maior intensidade, ou sexa o A.

A maior parte das respostas pode calcularse coa folla de cálculo Fisica (gal) Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela Campo e forza magnética entre condutores paralelos do capítulo.

Electromagnetismo Condutores

Campo e forza magnética entre condutores paralelos



Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas celdas de cor branca e bordo azul.

| Intensidade no condutor 1           | $I_1 =$ | 5   | A  | +         |
|-------------------------------------|---------|-----|----|-----------|
| Intensidade no condutor 2           | $I_2 =$ | 3   | A  | Sentido + |
| Separación entre condutores         | s =     | 0,2 | m  |           |
| Distancia del punto P ao condutor 1 | $d_1 =$ | 0,1 | m  |           |
| Distancia del punto P ao condutor 2 | $d_2 =$ | 0,1 | m  |           |
| Intensidade no condutor 3           | $I_3 =$ | 2   | A  |           |
| Lonxitude do condutor 3             | $L_3 =$ | 50  | cm |           |

Os resultados son:

|    | Campo magnético no punto P       |            | Cifras significativas: 3  |
|----|----------------------------------|------------|---------------------------|
|    | debido ao condutor 1             | $B_1 =$    | 1,00⋅10 <sup>-5</sup> T   |
|    | debido ao condutor 2             | $B_2 =$    | -6,00⋅10 <sup>-6</sup> T  |
| a) | resultante                       | $B_p =$    | 4,00·10 <sup>-6</sup> T   |
|    | Forza entre los condutores 1 e 2 | $F_{12} =$ | 1,50·10 <sup>-5</sup> N/m |
| b) | Forza sobre o cond. 3 no punto P | F =        | 4,00·10 <sup>-6</sup> N   |

- Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor recto percorrido por unha corrente e realiza un esquema que ilustre as características de devandito campo. Considérese agora que dous fíos condutores rectos e paralelos de gran lonxitude transportan a súa respectiva corrente eléctrica.
  - a) Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando separados 10 cm, atráense cunha forza por unidade de lonxitude de 4,8·10<sup>-5</sup> N·m<sup>-1</sup>, calcula as intensidades que circulan polos fíos.
  - b) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta menos corrente?

Dato:  $\mu_0 = 4 \pi \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2}$ (P.A.U. Xuño 15) **Rta.:** b)  $I_1 = 3,46 \text{ A}$ ;  $I_2 = 6,93 \text{ A}$ ; c)  $B = 3,3 \mu\text{T}$ 

Cifras significativas: 3 Intensidade de corrente polo segundo condutor  $I_2 = 2 I_1$ d = 10.0 cm = 0.100 mDistancia entre os dous condutores Forza de atracción por unidade de lonxitude  $F/l = 4.8 \cdot 10^{-5} \text{ N} \cdot \text{m}^{-1}$ Permeabilidade magnética do baleiro  $\mu_0 = 4 \pi \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2}$ Incógnitas Intensidades que circulan polos fíos  $\frac{I_1}{\mathbf{R}}$ ,  $I_2$ Campo magnético a 3 cm do fío con menos corrente

**Ecuacións** 

Ecuacións
Lei de Biot e Savart: campo magnético  $\overline{B}$  creado a unha distancia r por un con- $B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$  $\overline{B} = \Sigma \overline{B}_i$ Principio e superposición: Lei de Laplace: Forza que exerce un campo magnético  $\overline{\pmb{B}}$  sobre un tramo l de  $\overline{F} = I(\overline{l} \times \overline{B})$ condutor que transporta unha corrente I

#### Solución:

a) O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

O valor do campo magnético  $\overline{B}$  creado a unha distancia r por un condutor recto polo que circula unha intensidade de corrente *I* vén dado pola expresión:



$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

b) A forza entre dous condutores rectilíneos paralelos obtense substituíndo na ecuación de Lorentz a expresión da lei de Biot e Savart.

$$F_{1 \to 2} = I_1 \cdot l \cdot B_2 = I_1 \cdot l \cdot \frac{\mu_0 \cdot I_2}{2\pi \cdot r} = \frac{\mu_0 \cdot I_1 \cdot I_2}{2\pi \cdot r} \cdot l$$

Substituíndo os datos, tendo en conta que a forza é por unidade de lonxitude ( $l=1~\mathrm{m}$ )

$$4.8 \cdot 10^{-5} \left[ \text{N} \cdot \text{m}^{-1} \right] = \frac{4 \pi \cdot 10^{-7} \left[ \text{N} \cdot \text{A}^{-2} \right] \cdot I_1 \cdot 2 I_1}{2 \pi \cdot 0.100 \left[ \text{m} \right]}$$

$$I_{1} = \sqrt{\frac{4,8 \cdot 10^{-5} \left[\text{N} \cdot \text{m}^{-1}\right] \cdot 2\pi \cdot 0,100 \left[\text{m}\right]}{2 \cdot 4\pi \cdot 10^{-7} \left[\text{N} \cdot \text{A}^{-2}\right]}} = 3,46 \text{ A}$$

$$I_{2} = 2 I_{1} = 6,93 \text{ A}$$

c) No diagrama debúxanse os campos magnéticos  $\overline{\boldsymbol{B}}_1$  e  $\overline{\boldsymbol{B}}_2$  creados por ambos os condutores no punto 3 a 3 cm de I  $_1$ .

O campo magnético creado polo condutor 1 a 3 cm de distancia é:

$$B_{1} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r_{1}} = \frac{4\pi \cdot 10^{-7} \left[ \text{N} \cdot \text{A}^{-2} \right] \cdot 3,46 \left[ \text{A} \right]}{2\pi \cdot 0,030 \text{ Q/m}} = 2,31 \cdot 10^{-5} \text{ T}$$

O campo magnético creado polo condutor 2 a 7 cm de distancia é:

$$B_2 = \frac{\mu_0 \cdot I_1}{2\pi \cdot r_2} = \frac{4\pi \cdot 10^{-7} \left[ \text{N} \cdot \text{A}^{-2} \right] \cdot 6,93 \left[ \text{A} \right]}{2\pi \cdot 0,070 \text{ Q[m]}} = 1,98 \cdot 10^{-5} \text{ T}$$

Como os campos son de sentidos opostos, o campo magnético resultante no punto que dista 3 cm é

$$B_3 = B_1 - B_2 = 2.31 \cdot 10^{-5} [T] - 1.98 \cdot 10^{-5} [T] = 3.3 \cdot 10^{-6} T$$

A dirección do campo magnético resultante é perpendicular ao plano formado polos dous condutores e o sentido é o do campo magnético do fío máis próximo, (no debuxo, cara ao bordo superior do papel)



Actualizado: 16/07/24

# **Sumario**

| MAGNETISM | 1 |
|-----------|---|

| Carg  | a nun campo magnético1                                                                                                                                                                                                                                                                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Un protón acelerado por unha diferenza de potencial de 5000 V penetra perpendicularmente nun campo magnético uniforme de 0,32 T. Calcula:1                                                                                                                                                        |
|       | a) A velocidade do protón                                                                                                                                                                                                                                                                         |
|       | b) O raio da órbita que describe                                                                                                                                                                                                                                                                  |
|       | c) O número de voltas que dá en 1 segundo                                                                                                                                                                                                                                                         |
|       | d) Que campo eléctrico E hai que aplicar para que a carga non sufra ningunha desviación?                                                                                                                                                                                                          |
| Forza | a entre condutores3                                                                                                                                                                                                                                                                               |
|       | Dous fios condutores rectos moi longos e paralelos (A e B) con correntes IA = 5 A e IB = 3 A no                                                                                                                                                                                                   |
|       | mesmo sentido están separados 0,2 m. Calcula:                                                                                                                                                                                                                                                     |
|       | a) O campo magnético no punto medio entre os dous condutores (D)                                                                                                                                                                                                                                  |
|       | b) A forza exercida sobre un terceiro condutor C paralelo os anteriores, de 0,5 m e con IC = 2 A e que pasa por D                                                                                                                                                                                 |
| 2.    | Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor recto percorrido por unha corrente e realiza un esquema que ilustre as características de devandito campo. Considérese agora que dous fíos condutores rectos e paralelos de gran lonxitude transportan a |
|       | súa respectiva corrente eléctrica4                                                                                                                                                                                                                                                                |
|       | a) Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando separados 10 cm, atráense cunha forza por unidade de lonxitude de 4,8·10 <sup>-5</sup> N·m <sup>-1</sup> , calcula as intensidades que circulan polos fíos                                      |
|       | b) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta menos corrente?                                                                                                                                                                                    |

Método e recomendacións