ANALISIS PENJADWALAN PRODUKSI MENGGUNAKAN METODE NAWAZ ENSCORE HAM (NEH) DAN HEURISTIC POUR DALAM MEMINIMUMKAN TOTAL WAKTU PRODUKSI

Rosa Azizah Damayanti^{1§}, Ni Ketut Tari Tastrawati², Kartika Sari³

¹ProgramStudiMatematika, Fakultas MIPA–Universitas Udayana [Email: rosaazizah2503@gmail.com]

²ProgramStudiMatematika, Fakultas MIPA–Universitas Udayana [Email: tastrawati@unud.ac.id]

³ProgramStudiMatematika, Fakultas MIPA–Universitas Udayana [Email:sarikartika@unud.ac.id]

§ Corresponding Author

ABSTRACT

Competition in the industrial world is getting tougher, requiring companies to have the right strategy and planning in every production activity. CV. Puspa is a company engaged in rice production. CV. Puspa uses the First Come First Serve (FCFS) method in scheduling every job that comes. This research aims to minimize the total production time using the Nawaz Enscore Ham (NEH) and Heuristic Pour methods at CV. Puspa. The data used is quantitative data, namely data on the processing time for rice production during January 2021. Based on the results of a comparison of the total completion time with the efficiency index parameter, the NEH method shows better performance compared to the FCFS and Heuristic Pour methods as on January 19, 2021. Meanwhile, based on the results of hypothesis testing with the F test, it shows that the FCFS, NEH and Heuristic methods Pour has the same efficiency. Thus, in general the results of scheduling for January 2021 using the NEH method do not have significant an influence on the production scheduling used by CV. Puspa.

Keywords: Production Scheduling, Nawaz Enscore Ham Method, Heuristic Pour Method, Total Completion Time, Rice Production.

1. PENDAHULUAN

Persaingan dunia industri yang semakin ketat, menuntut perusahaan untuk dapat memiliki strategi dan perencanaan yang tepat dalam melakukan setiap aktivitas produksi. Persaingan yang ketat membuat perusahaan harus dapat memenuhi permintaan konsumen, baik dari segi kualitas, harga, dan ketepatan waktu pengiriman. Pada kenyataannya, sering kali terjadi keterlambatan waktu pengiriman karena adanya penumpukan pekerjaan pada proses produksi. Oleh karena itu, diperlukan penjadwalan produksi dalam mengambil keputusan sebagai upaya untuk mengurangi waktu tunggu setiap mesin agar waktu proses produksi menjadi lebih efisien. Terdapat 2 tipe penjadwalan produksi yaitu flow shop dan job shop (Khrisman et al., 2016).

Beberapa penelitian sebelumnya yang membahas tentang penjadwalan produksi diantaranya adalah penelitian mengenai penjadwalan produksi menggunakan metode CDS, Gupta, dan Heuristic Pour yang menunjukkan bahwa metode Heuristic Pour memiliki total waktu penyelesaian produksi lebih efisien dibandingkan dengan metode CDS dan Gupta (Haryanto, 2006). Selain itu, terdapat penelitian Martin (2015) yang membahas penjadwalan menggunakan metode CDS, NEH dan Palmer, pada penelitian tersebut metode NEH memiliki total waktu penyelesaian yang lebih kecil dibandingkan metode CDS dan Palmer. Kemudian, Hana (2018) membahas penjadwalan menggunakan metode CDS, NEH dan Gupta di PT. Trafoindo Prima Perkasa, pada penelitian tersebut menunjukkan bahwa metode NEH memiliki total waktu penyelesaian yang lebih efisien daripada metode CDS dan Gupta.

ISSN: 2303-1751

Selanjutnya, Antari (2021) melakukan penjadwalan produksi menggunakan metode CDS dan *Dannenbring* di CV. Puspa, pada penelitian tersebut menujukkan bahwa metode CDS lebih efisien dibandingkan *Dannenbring*. CV. Puspa merupakan perusahaan manufaktur yang bergerak dalam bidang produksi beras.

Proses produksinya termasuk ke dalam tipe flow shop dan menggunakan metode First Come First Serve (FCFS) untuk menjadwalkan job-job yang datang. Pada penelitian-penelitian terdahulu yang telah dibahas, terdapat dua metode yang efisien untuk digunakan yaitu metode NEH dan Heuristic Pour. Dengan adanya metode penjadwalan produksi yang efisien, diharapkan dapat mengurangi penumpukan pekerjaan pada setiap proses produksi. Berdasarkan hal ini, maka peneliti melakukan penjadwalan produksi menggunakan metode NEH dan Heuristic Pour untuk meminimumkan total waktu produksi di CV. Puspa.

Metode NEH merupakan metode yang dikembangkan pada tahun 1983 oleh Nawaz, Enscore dan Ham. Nawaz, Enscore dan Ham mengusulkan bahwa pekerjaan yang memiliki total waktu proses yang lebih besar seharusnya diberikan prioritas daripada pekerjaan dengan total waktu proses yang lebih kecil (Muharni et al., 2019). Proses perhitungan dengan menggunakan metode NEH dilakukan dengan langkah-langkah sebagai berikut:

Langkah pertama

- 1. Menjumlahkan waktu proses pada masing-masing pekerjaan (*job*).
- 2. Membuat "Daftar Pengurutan *Job*" dimana *job-job* diurutkan secara *decrease* yaitu berdasarkan total waktu proses pada *job* ke-*i* dari yang terbesar sampai yang terkecil.

Langkah kedua

- 1. Pada iterasi 1, set k = 2 (k = banyaknya job yang dipilih).
- 2. Memilih 2 *job* yang berada di urutan pertama dan kedua dalam Daftar Pengurutan *job*.
- 3. Membuat semua alternatif calon urutan parsial baru dari 2 *job* yang dipilih pada tahap 2.
- Menghitung nilai makespan parsial dari calon urutan parsial yang diperoleh pada tahap tiga.
- 5. Memilih calon urutan parsial baru yang mempunyai nilai *makespan* paling kecil. Apabila calon urutan parsial baru tersebut mempunyai nilai *makespan* yang sama, maka dapat menghitung *mean flow time* parsial dari masing-masing calon urutan parsial dan memilih *mean flow time* parsial yang lebih kecil.

Rumus dalam menghitung *mean flow time* yaitu:

$$\begin{split} \bar{F} &= \sum_{j=1}^{m} \frac{\sum_{i=1}^{n_{j}} \frac{F_{j[i]}}{n}}{m} \\ i &= 1, 2, 3, \dots, n \quad j = 1, 2, 3, \dots, m \end{split} \tag{1}$$

- 6. Menghapus *job* yang telah dipilih sebelumnya pada Daftar Pengurutan *Job*.
- Mengamati apakah k = n? (n = total job).
 Jika ya, dapat dilanjutkan ke langkah 4.
 Sedangkan jika tidak, maka dilanjutkan ke langkah 3.

Langkah ketiga

- 1. Pada iterasi 2, set k = k + 1
- 2. Memilih job yang berada pada urutan selanjutnya yaitu urutan ketiga pada Daftar Pengurutan Job.
- 3. Membuat calon urutan parsial baru sebanyak k+1 dengan cara memasukkan job yang dipilih ke setiap slot (awal, tengah, akhir) pada calon urutan parsial yang terpilih sebelumnya.

Tahap empat sampai tujuh dilakukan dengan cara yang sama seperti pada langkah kedua tahap empat sampai tujuh.

Langkah keempat

- Mengurutkan parsial baru sampai menjadi urutan terakhir
- 2. Berhenti

metode Heuristic Pour Selain itu. merupakan metode yang dikembangkan oleh Hamid Davoud Pour pada tahun 2001. Pada metode Heuristic Pour, penentuan prioritas pengerjaan job berdasarkan pada pendekatan kombinasi. Metode Heuristic Pour mengasumsikan bahwa setiap job diproses secara independent dan terpisah pada setiap mesin. Langkah-langkah dalam melakukan perhitungan dengan menggunakan metode Heuristic Pour, yaitu:

- 1. Memilih salah satu *job* untuk dijadikan urutan pertama sementara dalam urutan pengerjaan, misalnya dipilih *job* 1, maka waktu proses pada *job* 1 di seluruh mesin dianggap nol.
- 2. Memilih waktu proses paling kecil pada setiap mesin.
- 3. Melakukan penambahan waktu proses (completion time) secara kumulatif di tiaptiap $p_{i,j}$ berdasarkan increasing processing time (dari waktu yang terkecil hingga yang terbesar) pada setiap mesin.
- 4. Menghitung sum of completion time $(\sum C_i)$ pada job ke-i.
- 5. Mengurutkan $\sum C_i$ berdasarkan aturan *increasing order* (pengurutan dari yang terkecil hingga yang terbesar) untuk

- ditempatkan pada urutan setelah *job* yang telah terpilih (*job* 1).
- 6. Menghitung nilai *makespan* setelah diperoleh urutan sementara.
- 7. Menggunakan *job-job* yang belum terpilih sebagai urutan pertama sementara pada urutan pengerjaan selanjutnya. Kemudian, lakukan seperti pada langkah 1-6.
- 8. Membuat Daftar Pengurutan untuk Penentuan Posisi Pertama berdasarkan hasil pada langkah-langkah sebelumnya. Kemudian, dipilih urutan pengerjaan dengan *makespan* terkecil.
- 9. Mengulangi langkah 1-8 pada *job* yang akan menempati posisi berikutnya.

2. METODE PENELITIAN

2.1 Jenis Data dan Sumber Data

Data yang digunakan dalam penelitian ini adalah data sekunder yang diperoleh dari penelitian Antari (2021). Data tersebut merupakan data kuantitatif berupa data waktu proses pengerjaan produksi beras dari setiap mesin per hari pada bulan Januari 2021 di CV. Puspa. Berikut merupakan data waktu proses pengerjaan *job* tanggal 2 Januari 2021 yang secara terinci disajikan pada Tabel 1.

ISSN: 2303-1751

Tabel 1. Waktu Proses Pengerjaan Job Di Setiap Mesin (jam)

	Waktu Proses Tanggal 2 Januari 2021										
Mesin	J1	J2	J3	J4	J5	J6	J7	J8			
M1	0,305	0,481	2,759	0,436	0,941	0,191	0,176	1,158			
M2	0,413	0,633	3,515	0,554	1,158	0,252	0,223	1,483			
M3	0,205	0,31	1,721	0,271	0,562	0,122	0,109	0,72			
M4	0,412	0,633	3,518	0,556	1,155	0,252	0,224	1,477			
M5	0,414	0,632	3,516	0,556	1,157	0,251	0,223	1,483			
M6	0,412	0,634	3,527	0,556	1,156	0,253	0,224	1,484			
M7	2,52	2,633	8,546	1,199	2,799	1,586	0,948	3,586			

17.	17 .
Keterangan <i>job</i> :	Keterangan Mesin:
J1 = Joged 5 Kg	M1 = Ayakan I
J2 = Joged 10 Kg	M2 = Pecah Kulit
J3 = Joged 25 Kg	M3 = Ayakan II
J4 = Polos 24 Kg	M4 = Poles I
J5 = Polos 25 Kg	M5 = Poles II
J6 = Rajawali 5 Kg	M6 = Poles III
J7 = Rajawali 10 Kg	M7 = Pengepakan

2.2 Teknik Analisis Data

J8 = Rajawali 25 Kg

Langkah-langkah untuk menganalisis data dengan menggunakan metode NEH dan Heuristic Pour dalam menentukan total waktu penyelesaian produksi yang minimum, yaitu:

- 1. Mengumpulkan data yang diperoleh dari penelitian Antari (2021).
- 2. Menghitung total waktu penyelesaian dengan menggunakan metode FCFS.
- 3. Menghitung total waktu penyelesaian dengan menggunakan metode NEH.

- 4. Menghitung total waktu penyelesaian menggunakan metode *Heuristic Pour*.
- 5. Menghitung *Efficiency Index* (EI).
- 6. Melakukan statistic uji F.
- 7. Interpretasi hasil.

3. HASIL DAN PEMBAHASAN

3.1 Perhitungan Menggunakan Metode FCFS

Perusahaan CV. Puspa menggunakan metode *First Come First Serve* (FCFS) dalam menjadwalkan setiap *job* berdasarkan *job* yang pertama kali datang. Berdasarkan data pada tanggal 2 Januari 2021, *job* yang pertama kali datang dapat diurutkan menjadi J6 – J7 – J8 – J1 – J2 – J3 – J4 – J5. Berdasarkan urutan tersebut dapat dilakukan perhitungan *makespan* seperti disajikan pada Tabel 2.

Mesin	Waktu	J6	J7	Ј8	J1	J2	J3	J4	J5
M1	Mulai (jam ke-)	0,00	0,191	0,367	1,525	1,83	2,311	5,07	5,506
	Selesai (jam ke-)	0,191	0,367	1,525	1,83	2,311	5,07	5,506	6,447
M2	Mulai (jam ke-)	0,191	0,443	1,525	3,008	3,421	5,07	8,585	9,139
	Selesai (jam ke-)	0,443	0,666	3,008	3,421	4,054	8,585	9,139	10,297
M3	Mulai (jam ke-)	0,443	0,666	3,008	3,728	4,054	8,585	10,306	10,577
	Selesai (jam ke-)	0,565	0,775	3,728	3,933	4,364	10,306	10,577	11,139
M4	Mulai (jam ke-)	0,565	0,817	3,728	5,205	5,617	10,306	13,824	14,38
	Selesai (jam ke-)	0,817	1,041	5,205	5,617	6,25	13,824	14,38	15,535
M5	Mulai (jam ke-)	0,817	1,068	5,205	6,688	7,102	13,824	17,34	17,896
	Selesai (jam ke-)	1,068	1,291	6,688	7,102	7,734	17,34	17,896	19,053
M6	Mulai (jam ke-)	1,068	1,321	6,688	8,172	8,584	17,34	20,867	21,423
	Selesai (jam ke-)	1,321	1,545	8,172	8,584	9,218	20,867	21,423	22,579
M7	Mulai (jam ke-)	1,321	2,907	8,172	11,758	14,278	20,867	29,413	30,612
	Selesai (jam ke-)	2,907	3,855	11,758	14,278	16,911	29,413	30,612	33,411

Tabel 2. Perhitungan Makespan Menggunakan Metode FCFS

3.2 Perhitungan Menggunakan Metode Nawaz Enscore Ham (NEH)

Langkah-langkah metode Nawaz Enscore Ham (NEH) sebagai berikut:

Langkah Pertama

1. Berdasarkan data Tabel 1, diperoleh total waktu untuk job ke- $I(P_i)$ sebagai berikut:

 $P_5 = 8,928 \text{ jam}$ $P_1 = 4,681 \text{ jam}$ $P_6 = 2,907 \text{ jam}$ $P_2 = 5,956 \text{ jam}$ $P_3 = 27,102 \text{ jam}$ $P_7 = 2,127 \text{ jam}$ $P_8 = 11,391 \text{ jam}$ $P_4 = 4,128 \text{ jam}$

2. Berdasarkan hasil perhitungan pada tahap satu diperoleh Daftar Pengurutan job seperti disajikan pada Tabel 3.

Tabel 3. Daftar Pengurutan Job

No.	Job	Total waktu
		proses (jam)
1	J3	27,102
2	Ј8	11,391
3	J5	8,928
4	J2	5,956
5	J1	4,681
6	J4	4,128
7	J6	2,907
8	J7	2,127

Langkah kedua

- 1. Pada iterasi 1, set k = 2 (k = banyaknya jobyang dipilih)
- 2. Berdasarkan Tabel 3 pada kasus ini dipilih J3 dan J8.
- 3. Semua alternatif calon urutan parsial barunya adalah J3 – J8 dan J8 – J3.
- 4. Menghitung nilai makespan parsial dari calon urutan parsial J3 – J8 dan J8 – J3.

Tabel 4. Perhitungan Makespan J3 – J8

Mesin	Waktu	J3	J8
M1	Mulai (jam ke-)	0,00	2,759
	Selesai (jam ke-)	2,759	3,917
M2	Mulai (jam ke-)	2,759	6,274
	Selesai (jam ke-)	6,274	7,757
M3	Mulai (jam ke-)	6,274	7,995
	Selesai (jam ke-)	7,995	8,715
M4	Mulai (jam ke-)	7,995	11,513
	Selesai (jam ke-)	11,513	12,99
M5	Mulai (jam ke-)	11,513	15,029
	Selesai (jam ke-)	15,029	16,512
M6	Mulai (jam ke-)	15,029	18,556
	Selesai (jam ke-)	18,556	20,04
M7	Mulai (jam ke-)	18,556	27,102
	Selesai (jam ke-)	27,102	30,688

Tabel 5. Perhitungan Makespan J8 – J3

Mesin	Waktu	Ј8	J3
M1	Mulai (jam ke-)	0,00	1,158
	Selesai (jam ke-)	1,158	3,917
M2	Mulai (jam ke-)	1,158	3,917
	Selesai (jam ke-)	2,641	7,432
M3	Mulai (jam ke-)	2,641	7,432
	Selesai (jam ke-)	3,361	9,153
M4	Mulai (jam ke-)	3,361	9,153
	Selesai (jam ke-)	4,838	12,671
M5	Mulai (jam ke-)	4,838	12,671
	Selesai (jam ke-)	6,321	16,187
M6	Mulai (jam ke-)	6,321	16,187
	Selesai (jam ke-)	7,805	19,714
M7	Mulai (jam ke-)	7,805	19,714
	Selesai (jam ke-)	11,391	28,26

5. Hasil perhitungan makespan parsial pada Tabel 4 dan Tabel 5 berdasarkan data Tabel 1 secara ringkas dapat dilihat pada Tabel 6.

No.	Calon urutan	Makespan
		(jam)
1.	J3 – J8	30,688
2.	J8 - J3	28,26

Tabel 6 menunjukkan bahwa calon urutan yang dipilih adalah J8 – J3 karena menghasilkan *makespan* terkecil yaitu 28,26 jam.

- 6. *Job* yang dihapus pada kasus ini pada Tabel 3 adalah J3 dan J8.
- 7. Amati apakah k = n? (n = total job). Jobjob yang telah dipilih pada langkah kedua tahap dua dalam Tabel 3 adalah J3 dan J8 maka banyaknya k = 2. Sedangkan, total job (n) sebanyak 8. Dengan demikian, $k \neq n$ sehingga dapat dilanjutkan ke langkah ketiga untuk melakukan iterasi ke-2.

Langkah ketiga

- 1. Pada iterasi 2, set k = k + 1 = 2 + 1 = 3.
- 2. Memilih *job* yang berada pada urutan selanjutnya yaitu urutan ketiga pada Daftar Pengurutan *Job*. Dengan demikian, pada kasus ini dipilih J5 pada Tabel 3.
- 3. Membuat calon urutan parsial baru sebanyak k + 1 dengan cara memasukkan job yang dipilih ke setiap slot (awal, tengah, akhir) pada calon urutan parsial yang terpilih sebelumnya. Pada langkah kedua tahap satu, banyaknya job yang dipilih sebanyak 2, maka k = 2. Dengan demikian, pada tahap ini banyaknya kemungkinan calon urutan parsial adalah sebanyak 3 karena ditambahkan dengan 1 job yang dipilih pada langkah ketiga tahap dua. Kemudian, urutan parsial yang terpilih pada Tabel 6 (J8 – J3) dibuat calon urutan parsial baru dengan memasukkan job yang dipilih pada langkah ketiga tahap dua (J5) di setiap slot. Dengan demikian,

terdapat tiga kemungkinan calon urutan parsial tersebut, yaitu:

ISSN: 2303-1751

- 1) J8 J3 J5
- 2) J8 J5 J3
- 3) J5 J8 J3

Selanjutnya, lakukan kembali tahap empat sampai tujuh seperti pada langkah kedua hingga ditemukan nilai *makespan*. Berikut rekapitulasi hasil perhitungan *makespan* parsial iterasi ke-2 yang dapat dilihat pada Tabel 7.

Tabel 7. Rekapitulasi perhitungan *makespan* parsial iterasi ke-2

No.	Urutan Job	Makespan
		(jam)
1	J8 - J3 - J5	31,059
2	J8 - J5 - J3	29,201
3	J5 - J8 - J3	29,201

Tabel 7 menunjukkan bahwa terdapat 2 urutan *job* yang mempunyai nilai *makespan* terkecil yang bernilai sama sebesar 29,201 jam. Oleh karena itu, perlu dihitung nilai *mean flow time* pada 2 urutan *job* tersebut. Sebagai ilustrasi, menghitung *mean flow time* urutan J8 – J5 – J3 seperti pada persamaan (1) sebagai berikut:

$$\bar{F} = \frac{\frac{F_{1[1]} + F_{1[2]} + F_{1[3]} + \dots + F_{7[1]} + F_{7[2]} + F_{7[3]}}{3}}{7}$$

$$= \frac{\frac{1,158 + 2,099 + 4,858 + \dots + 11,391 + 14,19 + 29,201}{3}}{7}$$

$$= \frac{\frac{188,317}{3}}{7} = 8,967 \text{ jam}$$

Perhitungan *mean flow time* urutan J5 – J8 – J3 diperoleh 8,974 jam, sedangkan untuk menghitung nilai *mean flow time* urutan J5 – J8 – J3 juga dilakukan seperti cara yang sama. Berdasarkan hasil perhitungan penjadwalan produksi menggunakan metode NEH untuk iterasi selanjutnya secara lengkap disajikan pada Tabel 8.

Tabel 8. Rekapitulasi Perhitungan Menggunakan Metode NEH

Iterasi	Urutan <i>Job</i>	Total Waktu	Mean Flow Time
ke-	12 10	Penyelesaian (Jam)	
1	J3 – J8	30,688	-
	J8 – J3	28,26	=
2	J8 – J3 – J5	31,059	-
	J8 – J5 – J3	29,201	8,967
	J5 – J8 – J3	29,201	8,464
3	J5 – J8 – J3 – J2	31,834	-
	J5 – J8 – J2 – J3	29,682	8,262
	J5 - J2 - J8 - J3	29,682	7,963
	J2 - J5 - J8 - J3	29,682	7,317
4	J2 - J5 - J8 - J3 - J1	32,202	-
	J2 - J5 - J8 - J1 - J3	29,987	7,410
	J2 - J5 - J1 - J8 - J3	29,987	7,129
	J2 - J1 - J5 - J8 - J3	29,987	6,750
	J1 - J2 - J5 - J8 - J3	29,987	6,490
5	J1 - J2 - J5 - J8 - J3 - J4	31,186	•
	J1 - J2 - J5 - J8 - J4 - J3	30,423	6,774
	J1 - J2 - J5 - J4 - J8 - J3	30,423	6,528
	J1 - J2 - J4 - J5 - J8 - J3	30,423	6,248
	J1 – J4 – J2 – J5 – J8 – J3	30,423	6,179
	J4 – J1 – J2 – J5 – J8 – J3	30,423	6,325
6	J1 – J4 – J2 – J5 – J8 – J3 – J6	32,009	
	J1 – J4 – J2 – J5 – J8 – J6 – J3	30,614	6,485
	J1 – J4 – J2 – J5 – J6 – J8 – J3	30,614	6,246
	J1 – J4 – J2 – J6 – J5 – J8 – J3	30,614	5,993
	J1 – J4 – J6 – J2 – J5 – J8 – J3	30,614	5,914
	J1 – J6 – J4 – J2 – J5 – J8 – J3	30,614	5,857
	J6 – J1 – J4 – J2 – J5 – J8 – J3	30,614	5,666
7	J6 – J1 – J4 – J2 – J5 – J8 – J3 – J7	31,562	
	J6 – J1 – J4 – J2 – J5 – J8 – J7 – J3	30,79	6,016
	J6 – J1 – J4 – J2 – J5 – J7 – J8 – J3	30,79	5,792
	J6-J1-J4-J2-J7-J5-J8-J3	30,79	5,559
	J6 – J1 – J4 – J7 – J2 – J5 – J8 – J3	30,79	5,476
	J6 – J1 – J7 – J4 – J2 – J5 – J8 – J3	30,79	5,411
	J6 – J7 – J1 – J4 – J2 – J5 – J8 – J3	30,79	5,329
	J7 – J6 – J1 – J4 – J2 – J5 – J8 – J3	30,79	5,290

Berdasarkan perhitungan pada Tabel 8, pada iterasi ke-7 diperoleh urutan pengerjaan yang memiliki total waktu penyelesaian dan *mean flow time* terkecil adalah urutan J7 – J6 – J1 – J4 – J2 – J5 – J8 – J3 dengan total waktu penyelesaian 30,79 jam dan *mean flow time* sebesar 5,290 jam. Dengan demikian, urutan pengerjaan produksi beras yaitu Beras Rajawali 10 Kg – Beras Rajawali 5 Kg – Beras Joged 5 Kg – Beras Polos 24 Kg – Beras Joged 10 Kg – Beras Polos 25 Kg – Beras Rajawali 25 Kg – Beras Joged 25 Kg.

3.3 Perhitungan Menggunakan Metode Heuristic Pour

Setelah melakukan penjadwalan produksi menggunakan metode NEH, kemudian juga dilakukan penjadwalan produksi menggunakan metode *Heuristic Pour* untuk mendapatkan total waktu penyelesaian dengan data yang sama yaitu data pada Tabel 1. Proses perhitungan dengan menggunakan metode *Heuristic Pour* dilakukan dengan langkahlangkah sebagai berikut:

1. Memilih salah satu *job* untuk dijadikan urutan pertama sementara dalam urutan pengerjaan, misalnya dipilih J1, maka waktu proses pada J1 di seluruh mesin dianggap nol.

Tabel 9. Waktu Proses Saat J1 Sebagai Urutan Pertama Sementara

Mesin	J1	J2	Ј3	J4	J5	J6	J7	J8
M1	0	0,481	2,759	0,436	0,941	0,191	0,176	1,158
M2	0	0,633	3,515	0,554	1,158	0,252	0,223	1,483
M3	0	0,31	1,721	0,271	0,562	0,122	0,109	0,72
M4	0	0,633	3,518	0,556	1,155	0,252	0,224	1,477
M5	0	0,632	3,516	0,556	1,157	0,251	0,223	1,483
M6	0	0,634	3,527	0,556	1,156	0,253	0,224	1,484
M7	0	2,633	8,546	1,199	2,799	1,586	0,948	3,586

Memilih waktu proses paling kecil pada setiap mesin.

M1 = 0,176 M5 = 0,223 M6 = 0,224 M3 = 0,109 M7 = 0,948 M4 = 0,224

3. Melakukan penambahan waktu proses (completion time) secara kumulatif di tiaptiap $p_{i,j}$ berdasarkan increasing processing time (dari waktu yang terkecil hingga yang

terbesar) pada setiap mesin, secara rinci disajikan pada Tabel 10.

4. Menghitung sum of completion time $(\sum C_i)$ pada *job* ke-*i*.

 $\Sigma C_1 = 0$ $\Sigma C_5 = 24,046$ $\Sigma C_2 = 15,118$ $\Sigma C_6 = 6,233$ $\Sigma C_3 = 62,539$ $\Sigma C_7 = 2,127$ $\Sigma C_4 = 7,576$ $\Sigma C_8 = 35,437$

Tabel 10. Perhitungan Penambahan Waktu Proses

Mesin	J1	J2	J3	J4	J5	J6	J7	J8
M1	0	1,284	6,142	0,803	2,225	0,367	0,176	3,383
M2	0	1,662	7,818	1,029	2,82	0,475	0,223	4,303
M3	0	0,812	3,815	0,502	1,374	0,231	0,109	2,099
M4	0	1,665	7,815	1,032	2,82	0,476	0,224	4,297
M5	0	1,662	7,818	1,03	2,819	0,474	0,223	4,302
M6	0	1,667	7,834	1,033	2,823	0,477	0,224	4,307
M7	0	6,366	21,297	2,147	9,165	3,733	0,948	12,751

5. Mengurutkan $\sum C_i$ berdasarkan aturan *increasing order* (pengurutan dari yang terkecil hingga yang terbesar) untuk ditempatkan pada urutan setelah *job* yang telah terpilih (J1). Berdasarkan hasil perhitungan $\sum C_i$ diperoleh urutan sementara dari yang terkecil hingga terbesar

- dengan J1 sebagai urutan pertama adalah J1 J7 J6 J4 J2 J5 J8 J3.
- 6. Menghitung nilai *makespan* setelah diperoleh urutan sementara dari langkah lima. Dengan demikian, perhitungan *makespan* saat J1 sebagai urutan pertama sementara dengan urutan J1 J7 J6 J4 J2 J5 J8 J3 dapat dilihat pada Tabel 11.

Tabel 11. Perhitungan Makespan Saat J1 Sebagai Urutan Pertama Sementara

Mesin	Waktu	J1	J7	J6	J4	J2	J5	Ј8	Ј3
M1	Mulai (jam ke-)	0,00	0,305	0,481	0,672	1,108	1,589	2,53	3,688
	Selesai (jam ke-)	0,305	0,481	0,672	1,108	1,589	2,53	3,688	6,447
M2	Mulai (jam ke-)	0,305	0,718	0,941	1,193	1,747	2,53	3,688	6,447
	Selesai (jam ke-)	0,718	0,941	1,193	1,747	2,38	3,688	5,171	9,962
M3	Mulai (jam ke-)	0,718	0,941	1,193	1,747	2,38	3,688	5,171	9,962
	Selesai (jam ke-)	0,923	1,05	1,315	2,018	2,69	4,25	5,891	11,683
M4	Mulai (jam ke-)	0,923	1,335	1,559	2,018	2,69	4,25	5,891	11,683
	Selesai (jam ke-)	1,335	1,559	1,811	2,574	3,323	5,405	7,368	15,201
M5	Mulai (jam ke-)	1,335	1,749	1,972	2,574	3,323	5,405	7,368	15,201
	Selesai (jam ke-)	1,749	1,972	2,223	3,13	3,955	6,562	8,851	18,717
M6	Mulai (jam ke-)	1,749	2,161	2,385	3,13	3,955	6,562	8,851	18,717
	Selesai (jam ke-)	2,161	2,385	2,638	3,686	4,589	7,718	10,335	22,244
M7	Mulai (jam ke-)	2,161	4,681	5,629	7,215	8,414	11,047	13,846	22,244
	Selesai (jam ke-)	4,681	5,629	7,215	8,414	11,047	13,846	17,432	30,79

7. Menggunakan *job-job* yang belum terpilih yaitu J2, J3, J4, J5, J6, J7 dan J8 sebagai urutan pertama sementara pada urutan pengerjaan selanjutnya hingga diperoleh nilai *makespan*. Apabila nilai *makespan* terkecil

bernilai sama maka data dihitung nilai *mean flow* time. Kemudian, lanjutkan ke langkah 8 yaitu membuat Daftar pengurutan untuk penentuan posisi pertama, seperti yang dapat dilihat pada Tabel 12.

Tabel 12. Daftar Pengurutan untuk Penentuan Posisi Pertama

No.	Job awal	Urutan <i>Job</i>	Makespan	Mean flow
			(jam)	time
1.	J1	J1 – J7 – J6 – J4 – J2 – J5 – J8 – J3	30,79	5,589
2.	J2	J2 – J7 – J6 – J4 – J1 – J5 – J8 – J3	30,79	6,016
3.	J3	J3 – J7 – J6 – J4 – J1 – J2 – J5 – J8	42,373	-
4.	J4	J4 – J7 – J6 – J1 – J2 – J5 – J8 – J3	30,79	5,775
5.	J5	J5 – J7 – J6 – J4 – J1 – J2 – J8 – J3	30,79	7,300
6.	J6	J6 – J7 – J1 – J4 – J2 – J5 – J8 – J3	30,79	5,329
7.	J7	J7 – J6 – J4 – J1 – J2 – J5 – J8 – J3	30,79	5,332
8.	Ј8	J8 – J7 – J6 – J4 – J1 – J2 – J5 – J3	31,622	-

Selanjutnya, untuk penentuan posisi berikutnya, yaitu posisi kedua, ketiga, keempat, kelima, keenam, ketujuh dan kedelapan dilakukan dengan cara yang sama seperti langkah 1-6 hingga diperoleh daftar pengurutan yang secara terinci dapat dilihat pada Tabel 13.

Tabel 13. Rekapitulasi Perhitungan Menggunakan Metode Heuristic Pour

Posisi	Job	Urutan <i>Job</i>	Total Waktu	Mean Flow
ke-	awal		Penyelesaian (Jam)	Time
1	J1	J1 - J7 - J6 - J4 - J2 - J5 - J8 - J3	30,790	5,589
	J2	J2 – J7 – J6 – J4 – J1 – J5 – J8 – J3	30,790	6,016
	J3	J3 – J7 – J6 – J4 – J1 – J2 – J5 – J8	42,373	-
	J4	J4 – J7 – J6 – J1 – J2 – J5 – J8 – J3	30,790	5,775
	J5	J5 – J7 – J6 – J4 – J1 – J2 – J8 – J3	30,790	7,300
	J6	J6-J7-J1-J4-J2-J5-J8-J3	30,790	5,329
	J7	J7 – J6 – J4 – J1 – J2 – J5 – J8 – J3	30,790	5,332
	Ј8	J8 – J7 – J6 – J4 – J1 – J2 – J5 – J3	31,622	-
2	J1	J1 – J7 – J4 – J2 – J5 – J8 – J3	30,599	5,776
	J2	J2-J7-J1-J4-J5-J8-J3	30,599	6,166
	J3	J3 – J7 – J1 – J4 – J2 – J5 – J8	40,787	-
	J4	J4-J7-J1-J2-J5-J8-J3	30,599	5,948
	J5	J5 – J7 – J1 – J4 – J2 – J8 – J3	30,599	7,373
	J7	J7 – J1 – J4 – J2 – J5 – J8 – J3	30,599	5,571
	J8	J8 – J7 – J1 – J4 – J2 – J5 – J3	30,599	8,233
3	J1	J1 – J4 – J2 – J5 – J8 – J3	30,423	6,179
	J2	J2 – J1 – J4 – J5 – J8 – J3	30,423	6,505
	J3	J3 – J1 – J4 – J2 – J5 – J8	39,839	-
	J4	J4-J1-J2-J5-J8-J3	30,423	6,325
	J5	J5 – J1 – J4 – J2 – J8 – J3	30,423	7,608
	Ј8	J8-J1-J4-J2-J5-J3	30,423	8,421
4	J2	J2 – J4 – J5 – J8 – J3	30,118	6,733
	J3	J3 – J4 – J2 – J5 – J8	37,319	-
	J4	J4 – J2 – J5 – J8 – J3	30,118	6,622
	J5	J5 – J4 – J2 – J8 – J3	30,118	7,671
	J8	J8 – J4 – J2 – J5 – J3	30,118	8,424
5	J2	J2 – J5 – J8 – J3	29,682	7,317
	J3	J3 – J2 – J5 – J8	36,120	-
	J5	J5 – J2 – J8 – J3	29,682	7,963
	Ј8	J8 – J2 – J5 – J3	29,682	8,622
6	J3	J3 – J5 – J8	33,487	-
	J5	J5 – J8 – J3	29,201	8,464
	Ј8	J8 – J5 – J3	29,201	8,967
7	J3	J3 – J8	30,688	-
	Ј8	J8 – J3	28,260	-
8	J3	J3	27,102	-
Urutan Job	,	J6 – J7 – J1 – J4 – J2 – J5 – J8 – J3	30,790	-

3.4 Menghitung Efficiency Index (EI)

Untuk membandingkan metode yang digunakan perusahaan (FCFS) dan metode usulan (NEH dan *Heuristic Pour*), maka dapat dibandingkan berdasarkan parameter *Efficiency Index* (EI). Sebagai ilustrasi dihitung EI untuk tanggal 2 Januari 2021. Rumus untuk menghitung EI yaitu:

 Perbandingan antara metode FCFS dengan NEH

$$EI = \frac{C_{max}(FCFS)}{C_{max}(NEH)} = \frac{33,411}{30,790} = 1,085$$
 Nilai $EI =$

1,085 maka EI > 1 sehingga menunjukkan bahwa metode NEH memiliki *performance* yang lebih baik daripada metode FCFS.

2. Perbandingan antara metode FCFS dengan Heuristic Pour

$$EI = \frac{C_{max}(FCFS)}{C_{max}(H.Pour)} = \frac{33,411}{30,790} = 1,085$$
 Nilai

EI = 1,085 maka EI > 1 sehingga metode

Heuristic Pour juga memiliki performance yang lebih baik daripada metode FCFS.

ISSN: 2303-1751

3. Perbandingan antara metode NEH dengan *Heuristic Pour*

$$EI = \frac{C_{max}(NEH)}{C_{max}(H.Pour)} = \frac{30,790}{30,790} = 1$$

Nilai EI = 1 maka menunjukkan bahwa metode NEH dan *Heuristic Pour* memiliki *performance* yang sama.

Selanjutnya, perhitungan untuk menentukan *Efficiency Index* (EI) pada seluruh pekerjaan pada bulan Januari 2021 dilakukan menggunakan rumus yang sama seperti pada pemaparan di atas. Hasil perhitungan *Efficiency Index* (EI) untuk seluruh pekerjaan pada tanggal 2 Januari 2021 sampai 31 Januari 2021 dapat dilihat pada Tabel 14.

Tabel 14. Perbandingan Terhadap Total Waktu Penyelesaian dan Efficiency Index (EI)

Tgl.	Total	waktu penyelesaia	Efficiency Index			
Ü	Metode FCFS	etode FCFS Metode NEH		FCFS-NEH	FCFS-	NEH-
			Heuristic Pour		Heuristic	Heuristic
					Pour	Pour
2	33,411	30,79	30,79	1.085	1.085	1
3	22,143	22,143	22,143	1	1	1
4	39,648	36,471	36,471	1.087	1.087	1
5	28,445	28,389	28,389	1,001	1,001	1
6	42,63	41,768	41,768	1.021	1.021	1
7	63,996	56,199	56,199	1.139	1.139	1
8	26,91	23,654	23,654	1.138	1.138	1
9	34,419	28,503	28,503	1.208	1.208	1
10	52,99	52,566	52,566	1.008	1.008	1
11	41,776	40,219	40,219	1.039	1.039	1
12	41,569	41,569	41,569	1	1	1
13	4,152	4,152	4,152	1	1	1
14	28,041	28,041	28,041	1	1	1
15	42,326	37,634	37,634	1.125	1.125	1
16	24,843	23,015	23,015	1.079	1.079	1
17	41,343	41,019	41,019	1.008	1.008	1
18	30,697	30,697	30,697	1	1	1
19	24,115	24,115	24,625	1	0.979	1.021
20	16,594	16,547	16,547	1.003	1.003	1
21	38,775	35,686	35,686	1.087	1.087	1
22	48,048	42,239	42,239	1.138	1.138	1
23	13,942	13,593	13,593	1.026	1.026	1
24	37,277	31,259	31,259	1.193	1.193	1
25	31,985	30,386	30,386	1.053	1.053	1
26	25,276	24,591	24,591	1.028	1.028	1
27	39,211	38,414	38,414	1.021	1.021	1
28	67,362	54,285	54,285	1.241	1.241	1
29	37,491	35,679	35,679	1.051	1.051	1
30	29,391	25,208	25,208	1.166	1.166	1
31	21,438	20,460	20,460	1.048	1.048	1

2.5 Uji F

Metode penjadwalan (metode FCFS, NEH dan *Heuristic Pour*) dipilih berdasarkan hasil dari statistik uji F. Berikut merupakan hipotesisnya:

- 1) H_o : Ketiga metode mempunyai efisiensi yang sama
- 2) H_1 : Ketiga metode mempunyai efisiensi yang berbeda

Hasil uji F terangkum pada tabel ANOVA berikut:

Tabel 15. Hasil Pengujian Hipotesis dengan Uji F

ANOVA

Waktu

	Sum of Squares	df	Mean Square	F	Sig.
Metode Penjadwalan	111.076	2	55.538	.363	.697
Galat	13305.687	87	152.939		
Total	13416.762	89			

Berdasarkan tabel anova berikut, diperoleh nilai signifikansi sebesar 0,697, jika dibandingkan dengan taraf nyata 5% menunjukan bahwa signifikansinya lebih besar dari taraf nyata, oleh karena itu dapat disimpulkan bahwa H_o diterima, yang berarti ketiga metode mempunyai efisiensi yang sama.

3.5 Interpretasi Hasil

Hasil penjadwalan produksi tanggal 2 – 31 Januari 2021 menggunakan metode FCFS, NEH dan Heuristic Pour secara lengkap dapat dilihat pada Tabel 14. Hasil penjadwalan dengan metode FCFS menunjukkan total waktu penyelesaian yang lebih besar daripada metode NEH dan Heuristic Pour dan pada Tabel 14 juga menunjukkan bahwa total waktu penyelesaian dengan metode NEH lebih kecil dibandingkan dengan Heuristic Pour, seperti pada tanggal 19 Januari 2021. Perbandingan hasil perhitungan antara metode NEH dan Heuristic Pour tanggal 19 Januari 2021 sebesar 24,115 jam:24,625 jam. Dengan demikian, pada pekerjaan tanggal 19 Januari 2021 total waktu penyelesaian produksi menggunakan metode NEH lebih cepat 0,51 jam dibandingkan dengan metode Heuristic Pour.

Kemudian, pada Tabel 14 diperoleh hasil perhitungan EI antara metode FCFS-NEH, FCFS-Heuristic Pour dan NEH-Heuristic Pour. Pada hasil perhitungan EI antara metode FCFS dan NEH menunjukkan bahwa nilai EI > 1kecuali untuk tanggal 3, 12, 13, 14, 18 dan 19 diperoleh Januari 2021 yaitu EI=1. Selanjutnya, hasil perhitungan EI antara metode FCFS dan Heuristic Pour menunjukan bahwa nilai EI > 1 kecuali untuk tanggal 3, 12, 13, 14, 18 Januari 2021 yaitu diperoleh EI = 1 dan EI < 1 pada tanggal 19 Januari 2021. Selain itu, juga terdapat hasil perhitungan EI antara metode NEH dan Heuristic Pour yang menunjukan

bahwa nilai EI > 1 pada tanggal 19 Januari yaitu sebesar 1,021 serta untuk tanggal lainnya memperoleh hasil yang sama.

Selain itu, berdasarkan hasil pengujian hipotesis H_o dan H_1 dengan Uji F berdasarkan data pada Lampiran 6 menunjukkan bahwa H_o diterima yang berarti ketiga metode yaitu metode FCFS, NEH dan *Heuristic Pour* mempunyai efisiensi yang sama. Hal ini menunjukkan bahwa penjadwalan produksi selama bulan Januari 2021 menggunakan metode NEH dan *Heuristic Pour* tidak mempunyai pengaruh yang signifikan terhadap penjadwalan produksi yang digunakan oleh perusahaan (metode FCFS).

4. KESIMPULAN DAN SARAN

Berdasarkan hasil dan pembahasan yang telah diuraikan, dapat ditarik kesimpulan bahwa secara umum total waktu penyelesaian dari tanggal 2 Januari 2021 sampai 31 Januari 2021 dengan menggunakan metode NEH lebih kecil daripada menggunakan metode FCFS dan Pour. Heuristic Kemudian. berdasarkan perbandingan dengan parameter efficiency metode NEH index, juga menunjukkan performance yang lebih baik dibandingkan dengan metode FCFS dan Heuristic Pour seperti pada tanggal 19 Januari 2021. Akan tetapi, berdasarkan hasil pengujian hipotesis dengan uji F, menunjukkan bahwa metode FCFS, NEH dan Heuristic Pour mempunyai efisiensi yang sama.

ISSN: 2303-1751

Dengan demikian, secara umum berdasarkan hasil penjadwalan selama bulan Januari 2021 dengan metode NEH tidak mempunyai pengaruh yang signifikan terhadap penjadwalan produksi yang digunakan oleh CV. Puspa.

DAFTAR PUSTAKA

- Antari, N. K. D. P. (2021). Analisis Penjadwalan Produksi Menggunakan Metode Campbell Dudek Smith dan Dannenbring dalam Meminimumkan Total Waktu Produksi Beras. *Skripsi*. Universitas Udayana. Denpasar.
- Hana, A. (2018). Penjadwalan Pembebanan
 Mesin Untuk Pengerjaan Transformator
 Guna Meminimasi Makespan (Studi Kasus:
 PT. Trafoindo Prima Perkasa) [Universitas
 Mercu Buana. Jakarta]. Skripsi.
- Haryanto, H. (2006). Usulan Perbaikan Sistem Penjadwalan Produksi N-*Job* M-Machine dengan Parameter Minimasi Makespan pada Pembuatan Kabel di PT. Furin Jaya Co, Ltd-Tangerang. *Skripsi*. Universitas Bina Nusantara. Jakarta.
- Khrisman, R., Febrianti, E., & Herlina, L. (2016). Penjadwalan Produksi Flow Shop Menggunakan Metode Campbell Dudek Smith (CDS) dan Nawaz Enscore Ham (NEH). Jurnal Ilmiah, Keilmuan Dan Penerapan Teknik Industri, 4(1), 91–96.
- Martin, V. F. (2015). Perbandingan Algoritma Campbell Dudek Smith (CDS), Nawaz Enscore Ham (NEH) dan Palmer pada Penjadwalan Flowshop [Universitas Jember. Jember]. *Skripsi*.
- Muharni, Y., Kulsum, & Utami, D. A. (2019). Usulan Penjadwalan Produksi Pipa Erw Menggunakan Metode Nawaz Enscore Ham Dan Genetic Algorithm. *FLYWHEEL: Jurnal Teknik Mesin Untirta*, 5(2), 29–38.