

Perhatikan data kurva perubahan entalpi reaksi berikut.

Kurva reaksi manakah yang menunjukkan reaksi menyerap energi paling kecil?

- (A.) Kurva A
- B. Kurva B
- C. Kyrva C
- D. Kurva D
- E. Kurva E

Data energi ikatan:

C-C: 347 kJ mol-1 C-CI : 339 kJ mol-1 C=C: 611 kJ mol-1 H-CI : 431 kJ mol-1

: 414 kJ mol-1

Berdasarkan data di atas, maka perubahan entalpi reaksi

$$CH_3 - CH = CH_2(g) + HCI(g) \rightarrow CH_3 - CHCI - CH_3(g)$$

adalah A. + 46 kJ

10

DH = & Eikreak - & Eikprod = (611 + 431) - (414 + 339 + 347)

. Perhatikan data percobaan berikut:

 $M(aq) + N(aq) \rightarrow L(aq)$

No.	Konsentrasi awal Laju awal (M					
NO.	—	~				
	M (M)	N (M)	s-1)			
1	0,1	0,1	10			
2	2 0,1 7	2 0,2 7	40			
3	0,2	0,2	160			
4	0,2	0,4	640			

V= K [M] KNJY

Cari x -0 283

Cariy - 182

Lodala Myg beda Nyg Sama

$$\left(\frac{1}{2}\right)^{X} = \frac{1}{4} \quad X = 2$$

Berdasarkan data di atas, maka rumus persamaan laju dan orde reaksinya adalah

A.
$$v = k [P]; 2$$

D.
$$v = k [P]^2[Q]; 3$$

B.
$$v = k [P][Q]; 2$$

$$D. V = K[P]^2[Q]; 3$$

C.
$$v = k [B][Q]^2$$
; 3

E.
$$v = k [P]^2[Q]^2; 4$$

$$(E.) v = k [P]^2[Q]^2$$

$$\left(\frac{1}{2}\right)^{y} = \frac{1}{4} \quad y = 2$$

data Myg sama N beda

18. Sejumlah energi listrik yang sama dialirkan kedalam sel elektrolisis yang masing – masing berisi larutan CuSO4 dan AgNO3. Apabila endapan perak yang terjadi sebesar 54 gram, maka massa Cu yang diendapkan sebesar(

A. 8 gram

Dalam elektrolisis larutan CuCl₂ dengan elektroda inert digunakan arus listrik 9,65 A selama 100 detik. Massa endapan yang didapat di katoda adalah ... (A, Cu = 64).

- 21
- 22. Diketahui data energi ionisasi 5 elektron terakhir atom logam Z sebagai berikut:

Elektro n ke	1	2	3	4	5
EI	32	150	600	1200	2400
(kJ/mol	0	0.	0	0	0
)			•	•	·

Berdasarkan data tersebut kation Z memiliki valensi :

22

🕐. Nama senyawa berikut ini adalah

- A. 3,3-dimetil-1-butanol
- B. 2,2-dimetil-1-propanol
- C. 2-etil-2-heksanol
- D. 5-metil-5-pentanol
- 2-metil-2-propanol
- 🛂. Di bawah ini tertera rumus bangun suatu senyawa

turunan benzena. Nama senyawa

tersebut adalah

- A. 1-hidroksi-2,4-dinitrotoluena
- B. 1.3-dinitrofenol
- C. 2,4-dinitrobenzen
- D. 2,4-dinitrotoluena
- E. 2,4-dinitrotoluena

- $W = e \cdot it$ e = Ar g_{6500} g_{100}

- Senyawa yang merupakan isomer fungsional dari metil etanoat adalah
- A. C₂H₅ O C₂H₅

D. CH₃ – CH₂ – CH – CH₃

ÖΉ

- Perhatikan struktur senyawa benzena berikut.

Pasangan senyawa yang merupakan fenol dan asam benzoat adalah

- В.
- (1) dan (2)
- (1) dan (4)
- (2) dan (3)
- (4) dan (5)

- D. (3) dan (4)

25. Perhatikantabelberikutini!					
Polimer	Monomer	Jenis reaksi			
protein	asam amino	COOCA	-o Kondelasi		
karet alam PVC	etilen glikol x vinil klorida	adisi			
teflon	tetrafluoto etena	adisi v	- adisi		
			×		
Berdasarkan	isoprena (1666) tabel diatas, hubung	an yang benar			
antara polim polimer nya a	er, monomer dan jer	nis reaksi			
A. proteir					
B. karet a					
(C.) PVC					
D. Teflon E. dakron					
E. Gakion	'				