1	2	3	4	5

APELLIDO Y NOMBRE:

No. de libreta:

CARRERA:

ALGEBRA 1 – Final (06/09/04)

(1) Para cada $n \in \mathbb{N} \cup \{0\}$, sea la relación \Re_n en \mathbb{Z} definida inductivamente por:

$$a \Re_0 b \iff a = b \text{ ó } a = b + 1$$

 $a \Re_{n+1} b \iff \exists c \in \mathbb{Z} \text{ tal que } a \Re_n c \text{ y } c \Re_n b.$

Probar que para todo $n \in \mathbb{N} \cup \{0\}$, $a \Re_n b \iff \exists k, 0 \le k \le 2^n$, tal que a = b + k.

- (2) Sea $a \in \mathbb{Z}$ tal que $(7a^{103} + 18 : 132) = 33$. Determinar el resto de dividir a a por 66.
- (3) Sea $\omega \in \mathbb{C}$, $\omega \neq -1$, una raíz quinta de -1. Probar que $z = \omega^{24} + \omega^{102} + \omega^{39}$ es una raíz quinta primitiva de 1.
- (4) Sea $n \in \mathbb{N}$ un número impar. Probar que $(x^{2n}-1)(x-1)$ es divisible por $(x^n-1)(x^2-1)$.
 - Determinar el polinomio mónico en $\mathbb{Z}[x]$ cuyas raíces son las raíces primitivas de orden 10 de la unidad, todas con multiplicidad 1.
- (5) Determinar todos los $n \in \mathbb{N}$ para los cuales el polinomio $x^n 11x + 10$ admite al menos una raíz múltiple. Para cada valor hallado, determinar la cantidad de raíces distintas del polinomio y su multiplicidad.

Justifique todas sus respuestas.