第14回. 内積と外積

岩井雅崇 2022/07/21

以下の内容は「基礎数学研究会 新版基礎線形代数 (東海大学出版会)」の第8章を参考にした. これも覚える必要はない (ただしベクトル解析などで役に立つ内容である).

1 内積

 \mathbb{R} を実数の集合とし, $n \ge 1$ なる自然数について

$$\mathbb{R}^n = \{(x_1, \dots, x_n) | x_1, \dots, x_n \in \mathbb{R}\}$$
 とする.

例 1. \mathbb{R}^2 は平面をあらわし、 \mathbb{R}^3 は空間を表す.

定義 **2.** $a=(a_1,\ldots,a_n), b=(b_1,\ldots,b_n)\in\mathbb{R}^n, \,\alpha\in\mathbb{R}$ について和, 差, スカラー倍, 内積, 長さ (ノルム) を次で定める.

- π $a + b = (a_1 + b_1, \dots, a_n + b_n).$
- $\not\equiv a b = (a_1 b_1, \dots, a_n b_n).$
- スカラー倍 $\alpha a = (\alpha a_1, \ldots, \alpha a_n)$.
- 内積 $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \cdots + a_n b_n$.
- 長さ (ノルム) $||a|| = \sqrt{a \cdot a} = \sqrt{a_1^2 + \dots + a_n^2}$.

例 3. $\boldsymbol{a}=(3,5), \boldsymbol{b}=(6,1), \alpha=2$ とすると $\boldsymbol{a}+\boldsymbol{b}=(9,6), \ \boldsymbol{a}-\boldsymbol{b}=(-3,4), \ \alpha\boldsymbol{a}=(6,10),$ $\boldsymbol{a}\cdot\boldsymbol{b}=3\times 6+5\times 1=23, \ ||\boldsymbol{a}||=\sqrt{3^2+5^2}=\sqrt{34}$ となる.

命題 $\mathbf{4.} \ \mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ とする.

- 1. (中線定理) $||a + b||^2 + ||a b||^2 = 2(||a||^2 + ||b||^2)$.
- 2. $\mathbf{a} \cdot \mathbf{b} = \frac{1}{4}(||\mathbf{a} + \mathbf{b}||^2 ||\mathbf{a} \mathbf{b}||^2) = \frac{1}{2}(||\mathbf{a} + \mathbf{b}||^2 ||\mathbf{a}||^2 ||\mathbf{b}||^2) = \frac{1}{2}(||\mathbf{a}||^2 + ||\mathbf{b}||^2 ||\mathbf{a} \mathbf{b}||^2).$
- 3. (Cauchy-Schwarz の不等式) $(\boldsymbol{a} \cdot \boldsymbol{b})^2 \le ||\boldsymbol{a}||^2 ||\boldsymbol{b}||^2$.
- 4. (三角不等式) $||a+b|| \le ||a|| + ||b||$.
- 5. n=3 とし ${\bf a}=(a_1,a_2,a_3), {\bf b}=(b_1,b_2,b_3)$ とする. \mathbb{R}^3 上の点 ${\rm P}$ を (a_1,a_2,a_3) , \mathbb{R}^3 上の点 ${\rm Q}$ を (b_1,b_2,b_3) , \mathbb{R}^3 上の原点を点 ${\rm O}$ とする. このとき線分 ${\rm OP}$ と ${\rm OQ}$ がなす角を θ とすると

$$a \cdot b = ||a|| ||b|| \cos \theta$$
となる.

特に $||a|| \neq 0$ かつ $||b|| \neq 0$ のとき, $a \cdot b = 0$ は直線 OP と OQ が直交していることと同値である.

例 5. $a=(a_1,a_2,a_3)$ に直交し点 $c=(c_1,c_2,c_3)$ を通る平面 S を求めよ.

(解). $\mathbf{x}=(x_1,x_2,x_3)$ が平面 S の点であるとき, $\mathbf{x}-\mathbf{c}$ と \mathbf{a} は直交する. よって $(\mathbf{x}-\mathbf{c})\cdot\mathbf{a}=0$ である.

$$(\boldsymbol{x} - \boldsymbol{c}) \cdot \boldsymbol{a} = a_1(x_1 - c_1) + a_2(x_2 - c_2) + a_3(x_3 - c_3)$$

であるので, $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | a_1(x_1 - c_1) + a_2(x_2 - c_2) + a_3(x_3 - c_3) = 0 \}$ となる.

2 外積

定義 6. $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3) \in \mathbb{R}^3$ について、外積 $a \times b$ を次で定める.

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix}$$
$$= (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

例 7. $\boldsymbol{a} = (3,5,0), \boldsymbol{b} = (6,1,0)$ とすると

$$\boldsymbol{a}\times\boldsymbol{b}=\left(\begin{vmatrix}5&0\\1&0\end{vmatrix},\begin{vmatrix}0&3\\0&6\end{vmatrix},\begin{vmatrix}3&5\\6&1\end{vmatrix}\right)=(0,0,-27),\,\boldsymbol{b}\times\boldsymbol{a}=\left(\begin{vmatrix}1&0\\5&0\end{vmatrix},\begin{vmatrix}0&6\\0&3\end{vmatrix},\begin{vmatrix}6&1\\3&5\end{vmatrix}\right)=(0,0,27).$$

命題 8. $a, b \in \mathbb{R}^3$ とする.

- 1. $\mathbf{b} \times \mathbf{a} = -\mathbf{a} \times \mathbf{b}$. 特に $\mathbf{a} \times \mathbf{a} = 0$.
- 2. $\mathbf{a} \times \mathbf{b}$ は \mathbf{a} や \mathbf{b} に直交する.
- 3. $\mathbf{a} \times \mathbf{b} = 0$ であることは $\mathbf{a} \times \mathbf{b}$ が平行であることと同値.
- $4. ||a \times b||$ は a と b を 2 辺とする平行四辺形の面積に等しい.

例 $9. \ a_1, a_2, b_1, b_2$ を実数とする.このとき $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$ の行列式の絶対値 $|a_1b_2-a_2b_1|$ は (a_1, a_2) と (b_1, b_2) を 2 辺とする平行四辺形の面積に等しい.

3 3次の行列式と内積外積

定理 **10.** $\boldsymbol{a} = (a_1, a_2, a_3), \boldsymbol{b} = (b_1, b_2, b_3), \boldsymbol{c} = (c_1, c_2, c_3) \in \mathbb{R}^3$ について、

$$\det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}).$$

特に $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$ である (スカラー 3 重積とも呼ばれる).

定理 11. $\boldsymbol{a}=(a_1,a_2,a_3), \boldsymbol{b}=(b_1,b_2,b_3), \boldsymbol{c}=(c_1,c_2,c_3)\in\mathbb{R}^3$ とすると次の値は等しい.

- $\det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$ の絶対値.
- $a \cdot (b \times c)$ の絶対値.
- *a*, *b*, *c* によって生成される平行 6 面体の体積.