

Fraunhofer Center for Maritime Logistics and Services CML

Potentials of Quantum Computing for Enhanced Maritime Operations

Anisa Rizvanolli 30.04.2024

The Fraunhofer Society and Fraunhofer CML

Applied research for economy and society

Fraunhofer Society

30.000 Staff

76 Institutes and research units

2,9 Bio. € Financial volume

Fraunhofer CML, Hamburg

2010 Foundation in Hamburg

Focus on application-oriented research for the maritime industry

Cooperation with Institute of Maritime Logistics of TUHH

Fraunhofer CML

Innovating the Maritime Sector.

- Founded 2010 at Hamburg University of Technology
- Direction: Prof. Dr.-Ing. Carlos Jahn
- Currently around 90 employees
- Applied research in the maritime sector
- Innovative solutions for companies and institutions in shipping, port management and logistics
- Initiation and implementation of future-oriented technologies and processes

Fraunhofer CML: Innovating the Maritime Sector

Fields of Research

Ports and Transport Markets

Analysis and optimization of nodes in the maritime supply chain

Sea Traffic and Nautical Solutions

Technologies for autonomous systems and nautical assistance systems

Ship and Information Management

Software development with focus on digital solutions for fleet management, ship operation and maritime services

Port Technologies

Mobile robotics and AI for new application areas in port operations

Optimization Problems in maritime logistics

Quantum Computing as a tool for Optimization

- Manual, experience-based and suboptimal processes
- Lack of data / digitalization (media breaks)
- Rarely mathematical tools in operation
- High complexity and need for real-time calculations

Hardware

Overview

Technical Maturity

Potential

Classical Computer

Digitaler Annealer

Quantum Annealer

Universal Quantum Computer

NISQ

Fault tolerant

Fujitsu

D-Wave

IBM

Fraunhofer CML: Focus on Applications

Mapping and solving problems from operations

Technology/platform independent works

1. Optimization problem from operations

2. Formalization as mathematical Model

Classical Digital Quantum Annealer Computer

Technical maturity

Potential

3. Development of specialized and customized Algorithms

4. Increased efficiency in operations

Current Pilot Application: Maritime Inventory Routing Problem

Tanker Shipping Company

Customer Problem

Planning the best route for tanker ships under consideration of various constraints

- Port and ship capacity
- Compatibility ship-port
- Restrictions for specific goods

Approach

- Develop customer specific mathematical model
- Transform for CQM
- Run on generic classical and quantum solvers
- Develop specialized hybrid solver for routing
- Implement interface to enable easy DoE

Deliverable

- Formalization of the problem
- Quantum Annealing: potential and limits
- Know-How transfer

Demonstrator

Calculating different scenarios

MIRP Benchmarking on D-Wave

Work in Progress

				O
1.	12	2	3	reduced
2.	12	3	3	reduced
3.	12	3	4	reduced
4.	12	4	4	reduced
5.	30	2	2	reduced
6.	16	7	4	normal
7.	30	2	2	normal
8.	30	3	3	normal
9.	20	7	4	normal
10.	45	7	4	normal

QC Potentials for Optimization Use Cases

Possible Approach

Problem properties

- Combinatorial nature
- Data bottleneck
- Hig automatiation potential

Approach

- First checks with a surrogate model
- Plattform independent
- Hybrid Solutions
- Deeper insights in collaboration projects

Advantages

- Automatization and Optimization
- Fast calculations of good solutions
- Know-How Transfer

Focus and Network

Exploring the potentials of quantum

Dr.-Ing. Anisa Rizvanolli

Team Leader

"Maritime Scientific Computing and Optimization"

+49 1515 1648120 anisa.rizvanolli@cml.fraunhofer.de