Visualization Basics

Intro to Data Visualization

Gaston Sanchez

CC BY-SA 4.0

Vision

Data Visualization?

Data visualization is simply mapping data to geometric objects and their visual attributes.

Star Wars data set

weapon	species	jedi	weight	height	gender	name	
lightsaber	human	yes_jedi	77	1.72	male	Luke Skywalker	1
blaster	human	no_jedi	49	1.50	female	Leia Organa	2
lightsaber	human	yes_jedi	77	1.82	male	Obi-Wan Kenobi	3
blaster	human	no_jedi	80	1.80	male	Han Solo	4
unarmed	droid	no_jedi	32	0.96	male	R2-D2	5
unarmed	droid	no_jedi	75	1.67	male	C-3P0	6
lightsaber	yoda	yes_jedi	17	0.66	male	Yoda	7
bowcaster	wookiee	no_jedi	112	2.28	male	Chewbacca	8

How does it (conceptually) work?

Building a Scatterplot

- Dataset: starwars
- ► Variables: height, weight, jedi
- ► Geometric objects: points
- Visual attributes:
 - X-axis: height, Y-axis: weight
 - Shape: dots
 - Color: based on jedi categories

Mapping Data

data values

height	weight	jedi
1.72 1.50 1.82 1.80 0.96 1.67 0.66 2.28	77 49 77 80 32 75 17	yes_jedi no_jedi yes_jedi no_jedi no_jedi yes_jedi no_jedi

These values are meaningful to us, but not to the computer

visual attributes

Х	у	color
X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ X ₇ X ₈	y ₁ y ₂ y ₃ y ₄ y ₅ y ₆ y ₇ y ₈	#F8766D #00BFC4 #F8766D #00BFC4 #00BFC4 #00BFC4 #F8766D #00BFC4

They need to be converted from data units to physical units that the computer can display

Supporting Elements

- Axis labels
- Legends (positions, labels, symbols)
- Choice of colors for points
- Background color (i.e. gray)
- Grid lines (major and minor)
- Axis tick marks

In Summary

- Graphs consist of several components
- ► Some components represent quantitative values (e.g. lines, bars, etc.)
- ► Some represent categorical values (e.g. color, shape, orientation)
- ► Some play a supporting role (e.g. grid lines, legends, scales on axes)

Geometric Objects and their Visual Attributes

Mapping Fundamentals

Quantitative & Categorical

Data

Geometric Objects

Visual Attributes

Geometric Objects (primitives)

Example of Graphs with Geometric Objects

Points: e.g. scatterplot

Bars: e.g. bar chart

Lines: e.g. timeline

2D-areas / Polygons: e.g. densities

Geometric objects

Graphical objects (typically) used to encode quantitative values

- Points
- Lines
- Bars
- ▶ 2D areas and polygons

Visual Attributes

Visual Attributes

Visual Attributes of Geometric objects

Used to encode both quantitative and categorical

- Position
- Color
- Size
- Shape
- ▶ Fill pattern
- Border
- ► Line style

Examples of Visual Attributes

Vertical position

Vertical position Horizontal position Color hue

Vertical position Horizontal position

Vertical position Horizontal position Color hue Size (area)

Gallery of Charts

(off-the-self examples)

Examples from Google Charts

Examples from Google Charts

Examples from Google Charts

Examples from ggplot2

Examples from ggplot2

Two Variables Continuous X, Continuous Y Continuous Bivariate Distribution e <- ggplot(mpg, aes(cty, hwy)) h <- ggplot(diamonds, aes(carat, price)) $geom_label(aes(label = cty), nudge_x = 1,$ $h + geom_bin2d(binwidth = c(0.25, 500))$ nudge y = 1, check overlap = TRUE) x, y, alpha, color, fill, linetype, size, weight x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust h + geom_density2d() e + geom iitter(height = 2, width = 2) x, v, alpha, colour, group, linetype, size x, v, alpha, color, fill, shape, size h + geom_hex() e + geom point() x, v, alpha, colour, fill, size x, v, alpha, color, fill, shape, size, stroke Continuous Function e + geom quantile() i <- ggplot(economics, aes(date, unemploy)) x, v, alpha, color, group, linetype, size, weight + geom_area() e + geom_rug(sides = "bl") x, v, alpha, color, fill, linetype, size x, y, alpha, color, linetype, size + geom line() e + geom smooth(method = lm) x, y, alpha, color, group, linetype, size x, y, alpha, color, fill, group, linetype, size, weight + geom step(direction = "hv") e + geom text(aes(label = cty), nudge x = 1,x, v, alpha, color, group, linetype, size AB nudge v = 1, check overlap = TRUE) x y label alpha angle color family fontface

So how do you approach graphing data?

Creating graphs . . .

With computer technology, anyone can create graphics, but few of us know how to do it well.

Donna Wong

Approaching graphing data

With so many chart options, and various software tools, how can you determine what type of graph should you use?

In my opinion, there are a couple of aspects to always keep in mind:

- ▶ Data encoding (core idea)
- Common analytical tasks
- Visual perception basics
- Effective charts suggestions

Analytical Tasks

Following Stephen Few's philosophy, creating charts can be approached from the type of analytical task (or analytical pattern) to be used.

Approaching graphing data

- ► Part-to-whole analysis
- Ranking analysis
- Deviation analysis
- ► Times series (trends in time)
- Distribution analysis
- Correlation analysis
- Multivariate analysis

GSW Game Results (regular season 2017-2018)

G	Date	Opponent	Result	Tm	Орр
1	Tue, Oct 17, 2017	Houston Rockets	L	121	122
2	Fri, Oct 20, 2017	New Orleans Pelicans	W	128	120
3	Sat, Oct 21, 2017	Memphis Grizzlies	L	101	111
4	Mon, Oct 23, 2017	Dallas Mavericks	W	133	103
5	Wed, Oct 25, 2017	Toronto Raptors	W	117	112
6	Fri, Oct 27, 2017	Washington Wizards	W	120	117
7	Sun, Oct 29, 2017	Detroit Pistons	L	107	115
8	Mon, Oct 30, 2017	Los Angeles Clippers	W	141	113
9	Thu, Nov 2, 2017	San Antonio Spurs	W	112	92
10	Sat, Nov 4, 2017	Denver Nuggets	W	127	108
11					

Pay attention to . . .

I'll show you some Analytical Task examples using GSW Game Results data. In each graph, pay attention to the following:

- type of data (quant, categ)
- geometric object(s)
- visual attribute(s)
- supporting elements

Task: Part-to-whole

GSW Wins and Losses

Task: Distribution

Game Results by GSW

Task: Distribution

Game Results by GSW

Task: Distribution

Task: Deviation

GSW Wins and Losses

Task: Ranking

GSW Game Results (Ranked)

Task: Time trend

Next

To create effective data visualizations we also need to briefly talk about how our visual system works, as well as some visual perception aspects related with charts and graphs.