J500/1723

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

McGILL

Atty. Ref.: 978-54

Serial No. 09/933,013

Patent No. 6,854,875

Group: 1723

Filed: August 21, 2001

Issued: February 15, 2005

Examiner: D. Sorkin

For: FOOD BLENDING APPARATUS

April 17, 2006

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

SUBMISSION OF INFORMATION UNDER 37 C.F.R. §1,97(i)

Applicant submits herein information under 37 C.F.R. §1.97(i). The information is either background information or merely cumulative of references already of record. Applicant requests that the information be placed in the file.

Respectfully submitted,

NIXON & VANDERHYE P.C.

By:

Alan M. Kagen Reg. No. 36,178

AMK:jls

901 North Glebe Road, 11th Floor

Arlington, VA 22203-1808 Telephone: (703) 816-4000 Facsimile: (703) 816-4100

Attachments: Korean Utility Model Publication No. 1996-7233 and Concise Explanation of the

Relevance of the Non-English Language Reference

1063370

CONCISE EXPLANATION OF THE RELEVANCE OF THE NON-ENGLISH LANGUAGE REFERENCE(S)

Korean Utility Model 1996-0007233 shows a cup having a thread about its open end. A die cast actuating body carrying a rotatable blade is arranged to be threadingly engaged on the cup to seal product within the cup. The actuating body also has drive means configured to be engaged on the drive shaft of a base unit when the cup/body is inverted. The body includes a projection for triggering a switch on the base unit, to cause rotation of the blade.

In use, the actuating body is united with the cup, inverted and then placed on the base unit in engagement with the drive shaft. As illustrated, the cup is intended to be held manually in driving engagement with the drive means. Rotation of the blade only occurs when the user "pushes down" on the cup, whereby the projection triggers the switch to cause rotation of the blade. If downwards pressure is released, the switch is released and rotation is interrupted.