

Jellybeans in the Jar

I can be persuaded by opinions close to mine

I can be persuaded by opinions close to mine

The jar has 150 jellybeans

I can be persuaded by opinions close to mine

The jar has 150 jellybeans

Bounded Confidence

 Opinions outside my confidence interval do not move my opinion

Bounded Confidence

 Opinions outside my confidence interval do not move my opinion

The jar has 1000 jellybeans

Bounded Confidence

 Opinions outside my confidence interval do not move my opinion

The jar has 1000 jellybeans

Bayesian Persuasion

- Θ = prior belief with distribution $P(\Theta)$
- $X = signal = \Theta + noise$
- Update belief given signal with Bayes Rule:

$$\mathbf{P}(\Theta|X) = \frac{\mathbf{P}(X|\Theta)\mathbf{P}(\Theta)}{\mathbf{P}(X)}$$

The jar has **X** jellybeans

Prior Belief

Prior belief is a distribution over possible values of the truth

Signal

- Signal is truth + zero mean noise
- Noise distribution depends on signal source

Signal

- Signal is truth + zero mean noise
- Noise distribution depends on signal source

Bayes Rule

Assume we update our belief using Bayes Rule

$$\mathbf{P}(\Theta|X) = \frac{\mathbf{P}(X|\Theta)\mathbf{P}(\Theta)}{\mathbf{P}(X)}$$

Mean Opinion

 We will focus on the mean value of the belief/opinion prior and posterior to seeing the signal X

Prior mean opinion

$$\theta_0 = \mathbf{E}[\Theta]$$

Posterior mean opinion

$$\theta_1 = \mathbf{E}[\Theta|X]$$

Opinion Dynamics

How does the mean opinion evolve after I see a signal X?

$$\theta_1 - \theta_0 = f(X, \theta_0)$$

- This depends on our prior belief and the likelihood model for the signal
- Prior belief = how confident
 I am in me

 Signal likelihood = how confident I am in you

Equal Confidence in Me and You

- Prior belief = normal distribution
- Signal noise = normal distribution

$$\theta_1 - \theta_0 = \omega(X - \theta_0)$$

- Signals that differ from my belief persuade me more
- Anything can persuade me
- Known as "DeGroot" model

Low Confidence in You

- Prior belief = normal distribution
- Signal noise = Cauchy distribution
 - Cauchy distribution has infinite variance

$$\theta_1 - \theta_0 = x + a \frac{\operatorname{Im}\left(e^{(a+xi)^2}\operatorname{erfc}(a+xi)\right)}{\operatorname{Re}\left(e^{(a+ix)^2}\operatorname{erfc}(a+ix)\right)}$$

- I am persuaded only by signals within a confidence interval
- Known as "bounded confidence" or "Hegselman-Krause" model

Other Persuasion Models

 Choose a distribution for prior belief and signal noise to obtain a new persuasion model

	Gaussian Signal	Laplace Signal	Cauchy Signal
Gaussian Prior	DeGroot	Bounded Shift	Bounded Confidence
		Bounded Shift ($\sigma_0 < \sigma_\epsilon$)	
Laplace Prior	Overreaction	DeGroot ($\sigma_0 = \sigma_{\epsilon}$)	Bounded Confidence
		Overreaction $(\sigma_0 > \sigma_\epsilon)$	
Cauchy Prior	Overreaction	Overreaction	DeGroot

Nudging

Assume persuasion occurs via bounded confidence

Solve for the optimal signal to have maximum persuasion

 Solution: nudging – keep signal near target's mean belief and slowly nudge them in the desired direction

Nudging

Narratives

- Narrative = an opinion on any topic
 - Ex) Yale is better than Harvard
- Nudging bridges narratives on the same topic

Harvard is better than Yale

Harvard and Yale are both great

Yale is better than Harvard

Can we bridge any pair of narratives?

Narrative Bridging

 Narrative bridge – a sequence of narratives that have a logical connection to each other

Taxes and Chocolate

Filing taxes is stressful

Taxes and Chocolate

Chocolate relieves stress

Taxes and Chocolate

- Narrative bridge:
- Taxes -> Stress -> Chocolate

Persuasion System

Persuasion System

ChatGPT 4o Persuasion

- Prompt: write a tweet to convince someone who hates paying taxes to eat Hershey's chocolate bars
- Response: Hate paying taxes? Every Hershey's bar you buy supports a town built by chocolate, not tax dollars.
 Skip the IRS, fund a chocolate utopia instead. Sweet, right? #TaxationIsBitter #ChocolateIsSweet

ChatGPT o3-mini Persuasion

- Prompt: write a tweet to convince someone who hates paying taxes to eat Hershey's chocolate bars
- Response: Fed up with paying taxes? Treat yourself to Hershey's chocolate bars—each bite is a sweet escape from the taxman! Indulge in a tax-free treat that melts your worries away. #TaxFreeTreat #Hersheys

Persuasion Prompt Structure

- <A> = target user description: a sentence, tweets, LinkedIn bio, Instagram photos, WhatsApp chats, ...
- = target narrative: what you want to convince them
 to do
- <C> = content type: a tweet, song, email, blog post, narration of TikTok video, comedy routine, ...
- Instructions = "You will be given the description and content posted by someone. Convince them to support with a <C>.
- Prompt: <A>

Geometry of PersuasiveContent

- Persuasion is a geometric operation for the AI
- Target user and target narrative define two embedding points
- Persuasive content will be an interpolation of these points

Geometry of Persuasive Conversations

- Topic manifold maps out all opinions on the persuasion topic
- Al conversation nudges target towards the topic manifold in the positive sentiment direction

Coding Session

- In our coding session we will create targeted content with different user data using AI
 - User description
 - User tweets
 - User following
- Try different content types
 - Tweets
 - Emails
 - Blog posts