

Algorithms for Parallel Shared-Memory Sparse Matrix-Vector Multiplication on Unstructured Matrices

Kobe Bergmans¹, Karl Meerbergen¹ and Raf Vandebril¹ ¹KU Leuven, Dept. Computer Science, NUMA section ⋈ kobe.bergmans@kuleuven.be

Problem Statement

Sparse matrix-vector (SpMV) multiplication is an important kernel in scientific computing and graph analysis. Therefore, an efficient parallel algorithm is pivotal.

Unstructured sparse data appear more frequently due to large-scale data collection. E.g. social media, shopping data, road networks, ...

Two performance bottlenecks:

- 1. Parallel load balancing because of the unpredictable nonzero structure.
- 2. Low arithmetic intensity due to sparse matrix storage formats only storing the nonzero elements.

Goal: Combine aspects of the current state-of-the-art to create improved algorithms.

Standard Storage Formats

Coordinate format (COO) stores three arrays: two for the row and column indices, and one to store the nonzero entries.

Compressed Row Storage (CRS) uses less storage. The nonzero elements are sorted row-wise and the row indices are compressed by storing row pointers to the start of each row.

$$\begin{vmatrix} 0 & 2 & 5 & 0 \\ 3 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 2 & 0 & 9 & 0 \end{vmatrix} \Rightarrow \begin{cases} \texttt{row_ptr} = [0, 2, 4, 5, 6, 8] \\ \texttt{col_ind} = [1, 2, 0, 1, 3, 1, 0, 2] \\ \texttt{data} = [2, 5, 3, 2, 1, 3, 2, 9] \end{cases}$$

State-of-the-art Algorithms

Perfect static load balancing in multiply-add and mem-

■ Elements inside blocks are stored using compressed

COO format. Row and column indices are compressed

into a 32 bit integer. Elements are sorted using the

■ Parallelization using *OpenMP* tasking. Tasks are mul-

Statically subdivide matrix rows by equally distributing

Nonzero elements inside blocks are stored using com-

■ Blocks are stored in Hilbert order, using a CRS variant.

pressed CRS variant. The row pointers and columns

Subdivision into sparse subblocks in each partition.

tiplications of a block row with the possibility of further

Blocks are stored using row-wise block pointers.

Row-distributed Block CO-H (BCOH)

nonzero entries across threads.

indices are stored as 16 bit integers.

Compressed Sparse Blocks (CSB)

Subdivides matrix into sparse subblocks.

Merge-based

ory operations.

Z-Morton order.

subdivision.

CRS format.

Hybrid Algorithms

Six new algorithms are developed by combining optimizations of the state-of-the-art.

CSB Hilbert (CSBH)

■ Elements inside blocks are ordered using the Hilbert curve.

BCOH Compression (BCOHC)

Storage inside blocks using compressed COO.

BCOH Compression Hilbert (BCOHCH)

All nonzero elements in a partition are sorted using the Hilbert curve. So, blocks and the nonzero elements inside them are ordered.

BCOH Compression Hilbert Pointer (BCOHCHP)

Blocks are stored using row-wise block pointers.

Merge Blocking (MergeB)

- Subdivides matrix into sparse subblocks.
- Storage inside blocks using compressed COO. Blocks are stored using CRS.
- Static parallelization using the Merge algorithm where a multiply-add operation is replaced by a block multiplication, and memory operations consist of storing chunks of the output vector.

Merge Blocking Hilbert (MergeBH)

Elements inside blocks are ordered using the Hilbert curve.

- High-performance, open-source, C++ implementation.
- Three test machines. Two NUMA systems and one

Name	CPU	RAM		
Sapphire Rapids	2×48 cores, $2.1\mathrm{GHz}$	4800 MHz DDR5		
Ice Lake NUMA	2×36 cores, $2.4\mathrm{GHz}$	$3200\mathrm{MHz}$ DDR4		
Ice Lake UMA	36 cores, $2.4\mathrm{GHz}$	$3200\mathrm{MHz}$ DDR4		

- parse Matrix Collection. Split into two test groups: low $(\leq 10^{-6})$ and high density $(> 10^{-6})$.
- Parallel SpMV multiplication speedup is measured compared to the sequential CRS algorithm. Performance is averaged over all test matrices.

Evaluation

- Parallelized using *OpenMP*.
- UMA system.

	Ice Lake N	IUMA	2×36 c	cores,	$2.4\mathrm{GHz}$	3200	MHz	DDR4
	Ice Lake	UMA	36 co	res, 2	$.4\mathrm{GHz}$	3200	MHz	DDR4
1	6 square	unstruc	ctured	test	matrices	from	the	SuiteS-
								_

Conversion time between COO format and required format is presented in terms of the time required by an amount of SpMV multiplications.

Matrix Structure

Structured matrix

SpMV Multiplication Results 50 IL NUMA IL UMA Low density 60 40 IL NUMA **IL UMA** High density ParCRS Merge CSB CSBH BCOH BCOHC BCOCH BCOHCHP MergeB MergeBH

Conclusions

- The new **BCOH Compression (Hilbert)** algorithm achieves high performance for all types of matrices on NUMA machines. For high density matrices it outperforms the current state-of-the-art by up to 19%.
- Higher nonzero density increases parallel speedup.
- Complex storage formats induce a high conversion cost.
- Hilbert ordering has a positive effect on SpMV multiplication speedup, and improves over Z-Morton ordering. But, the cost of conversion increases significantly.

References

- [1] Kobe Bergmans, Karl Meerbergen, & Raf Vandebril. (2025). Algorithms for Parallel Shared-Memory Sparse Matrix-Vector Multiplication on Unstructured Matrices. arXiv:2502.19284.
- [2] Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1, Article 1 (November 2011)

