Wave: A new code-based signature scheme

Thomas Debris-Alazard^{1,2} Nicolas Sendrier ² Jean-Pierre Tillich ²

¹Sorbonne Universités, UPMC Univ Paris 06 ² Inria, Paris

Results

- The first code-based "hash-and-sign" that strictly follows the GPV strategy (Trapdoor Preimage Sampleable functions);
- Security reduction to two problems (NP-complete) of coding theory:
- Generic decoding of a linear code;
- Distinguish between random codes and generalized (U, U + V)-codes.
- Key Size \approx 3MB and signature size \approx 13Kbits;
- Feature: uniform signatures through an efficient rejection sampling, one rejection every ≈ 80 signatures.

Full Domain Hash (FDH) Signature Schemes

• f be a trapdoor one-way function

- To sign \mathbf{m} one computes $\mathbf{y} = \mathcal{H}(\mathbf{m})$ (hash) and $\sigma \in f^{-1}(\mathbf{y})$. \rightarrow It is required to invert f on all vectors (full domain).
- Verification $f(\sigma) = \mathcal{H}(\mathbf{m})$?

GPV Strategy

It is based on trapdoor one-way preimage sampleable functions!

A family of trapdoor one way-functions $(f_a)_a$ such that distributions:

- $f_a(x)$ is uniformly distributed when
 - $x \approx \begin{cases} \text{uniform over words of fixed weight in our case} \\ gaussian & \text{for lattices} \end{cases}$
- algorithm computing f_a^{-1} with the trapdoor
 - $\approx \begin{cases} \text{uniform over words of fixed weight in our case} \\ gaussian & \text{for lattices} \end{cases}$

Our Candidate in Code-Based Cryptography

$$f_{\mathbf{H}}: \{\mathbf{e} \in \mathbb{F}_q^n : |\mathbf{e}| = w\} \longrightarrow \mathbb{F}_q^{n-k}$$

$$\mathbf{e} \longmapsto \mathbf{H} \mathbf{e}^{\mathsf{T}}$$

Inverting $f_{\mathbf{H}}$ amounts to solve the following problem:

Syndrome Decoding Problem:

- Given: $\mathbf{H} \in \mathbb{F}_q^{(n-k)\times n}$, $\mathbf{s} \in \mathbb{F}_q^{n-k}$, and an integer w,
- Find: $\mathbf{e} \in \mathbb{F}_q^n$ such that $\mathbf{H}\mathbf{e}^{\mathsf{T}} = \mathbf{s}^{\mathsf{T}}$ and $|\mathbf{e}| = w$.
- \rightarrow Generic problem upon which all code-based cryptography relies.
- \rightarrow A trapdoor on $f_{\mathbf{H}}$ consists in putting a structure on \mathbf{H} !

 Public-Key: \mathbf{H}_{pk}
- Signature of $\mathcal{H}(\mathbf{m})$: \mathbf{e} of weight \mathbf{w} with $\mathbf{H}_{pk}\mathbf{e}^{\mathsf{T}} = \mathcal{H}(\mathbf{m})$.

Hardness of Decoding: Prange Algorithm

Given: **H** random of size $(n-k) \times n$, rank n-k and $\mathbf{s} \in \mathbb{F}_q^{n-k}$ random;

Find: $\mathbf{e} \in \mathbb{F}_q^n$ such that $\mathbf{H}\mathbf{e}^{\mathsf{T}} = \mathbf{s}^{\mathsf{T}}$.

 $\begin{array}{c|cccc}
 & e' \\
\hline
 & k \text{ bits (to choose) } n-k \text{ bits (function of } e')
\end{array}$

• \mathbf{e}'' follows a uniform law over \mathbb{F}_q^{n-k} , therefore $\forall \varepsilon > 0, \exists \alpha > 0$:

$$\mathbb{E}(|\mathbf{e''}|) = \frac{q-1}{q}(n-k)$$

$$\mathbb{P}\left(\left|\left|\mathbf{e}''\right| - \frac{q-1}{q}(n-k)\right| \ge \varepsilon n\right) = e^{-\alpha n}$$

• We get an error $\mathbf{e} = (\mathbf{e'}, \mathbf{e''})$ such that for some $\beta > 0$:

$$\mathbb{E}(|\mathbf{e}|) = \mathbb{E}(|\mathbf{e}'|) + \frac{q-1}{q}(n-k)$$

$$\mathbb{P}\left(|\mathbf{e}| \ge (1+\varepsilon)\left(\mathbb{E}(|\mathbf{e'}|) + \frac{q-1}{q}(n-k)\right)\right) = e^{-\beta n}$$

Our trapdoor: generalized (U, U + V)-codes

Let U (resp. V) and be a code over \mathbb{F}_q of length n/2, of dimension k_U (resp. k_V) and of parity-check matrix \mathbf{H}_U (resp. \mathbf{H}_V).

 $(U, U + V) \stackrel{\triangle}{=} \{ (\mathbf{u}, \mathbf{u} + \mathbf{v}) : \mathbf{u} \in U \text{ and } \mathbf{v} \in V \}$

is code of dimension $k_U + k_V$ and of parity-check matrix:

$$\mathbf{H}_{\mathrm{UV}} \stackrel{\triangle}{=} egin{pmatrix} \mathbf{H}_{U} & \mathbf{0} \ -\mathbf{H}_{V} & \mathbf{H}_{V} \end{pmatrix}$$

We restricted our work to the case of: q = 3

$$\mathbf{H}_{\mathrm{UV}}\mathbf{e}^{\intercal} = \mathbf{s}^{\intercal} \iff egin{cases} \mathbf{H}_{U}\mathbf{e}_{U}^{\intercal} = \mathbf{s}_{U}^{\intercal} \ \mathbf{H}_{V}\mathbf{e}_{V}^{\intercal} = \mathbf{s}_{V}^{\intercal} \end{cases}$$

where: $\mathbf{e} = (\mathbf{e}_U, \mathbf{e}_U + \mathbf{e}_V)$; $\mathbf{s} = (\mathbf{s}_U, \mathbf{s}_V)$

- \rightarrow Codes U and V are random : we use the Prange algorithm!
- (i) firstly to decode in V to get \mathbf{e}_V ;
- (ii) then to decode in U to get \mathbf{e}_U using the knowledge of \mathbf{e}_V

We have the freedom to choose:

- k_V (dimension of V) symbols of \mathbf{e}_V ;
- k_U (dimension of U) symbols of \mathbf{e}_U .

We get a final error $\mathbf{e} = (\mathbf{e}_U, \mathbf{e}_U + \mathbf{e}_V) \in \mathbb{F}_3^n$ of shape up to a permutation (\mathbf{e}_V'' has only non-zero symbols):

• To reach an error of minimum weight:

Put as many 0's as possible in $\mathbf{e}'_U(i)$ (they are doubled in \mathbf{e}).

• To reach an error of maximum weight

Choose k_U symbols $\mathbf{e}_U(i)$ such that: $\begin{cases} \mathbf{e}_U(i) \neq 0 \\ \mathbf{e}_U(i) + \mathbf{e}_V(i) \neq 0 \end{cases}$

 \rightarrow Possible as q=3 and do not depend of $\mathbf{e}_V(i)!$

easy with (U, U + V) trapdoor

$\operatorname{sgn} \triangle$ ($\operatorname{unif} \triangle$ ()

Achieving the Uniform Distribution

$$\mathbf{e}^{\operatorname{sgn}} \stackrel{\triangle}{=} (\mathbf{e}_U, \mathbf{e}_U + \mathbf{e}_V) \quad (\operatorname{resp. } \mathbf{e}^{\operatorname{unif}} \stackrel{\triangle}{=} (\mathbf{e}_1, \mathbf{e}_2))$$

be a signature (resp. be a uniform word of weight w).

Our goal:

$$\mathbf{e}^{\mathrm{sgn}} \sim \mathbf{e}^{\mathrm{unif}} \iff \begin{cases} \mathbf{e}_U \sim \mathbf{e}_1 \\ \mathbf{e}_V \sim \mathbf{e}_2 - \mathbf{e}_1 \end{cases}$$

→ Having signatures is useless to mount an attack!

Idea for $e_V \sim e_2 - e_1$: rejection sampling.

$$\mathbf{e}_V = \operatorname{Prange}(\mathbf{H}_V, \mathbf{s}_V)$$

Distribution of the Prange algorithm is only depends of the weight:

$$\mathbb{P}(\text{Prange}(\cdot) = \mathbf{e} \mid |\text{Prange}(\cdot)| = |\mathbf{e}|) = \frac{1}{\#\{\mathbf{x} : |\mathbf{x}| = |\mathbf{e}|\}}$$

It is enough to ensure:

$$|\mathbf{e}_V| \sim |\mathbf{e}_2 - \mathbf{e}_1|.$$

By making a rejection sampling on $|\mathbf{e}_V|$:

"accept $|\mathbf{e}_V| = i$ " with probability: $\frac{1}{M} \frac{\mathbb{P}(|\mathbf{e}_2 - \mathbf{e}_1| = i)}{\mathbb{P}(|\mathbf{e}_V| = i)}$

$$M \stackrel{\triangle}{=} \max_{j} \frac{\mathbb{P}(|\mathbf{e}_{2} - \mathbf{e}_{1}| = j)}{\mathbb{P}(|\mathbf{e}_{V}| = j)}$$

 $\rightarrow \frac{1}{M}$ is the average number of reject.

We proceed in essentially the same way for \mathbf{e}_U to get $\mathbf{e}_U \sim \mathbf{e}_1$.

A feasible rejection sampling on $|\mathbf{e}_V|$

• A first Step : $\mathbb{E}(|\mathbf{e}_V)| = \mathbb{E}(|\mathbf{e}_2 - \mathbf{e}_1|)$.

$$\mathbf{e}_V = \underbrace{\begin{array}{c|c} \mathbf{e}_V' & \mathbf{e}_V'' \\ \hline k_V \text{ bits} & n/2 - k_V \text{ bits} \end{array}}$$

- \mathbf{e}_V'' follows a uniform law over $\mathbb{F}_3^{n/2-k}$: $\mathbb{E}(|\mathbf{e}_V''|) = \frac{2}{3}(n/2 k_V)$
- \mathbf{e}'_V such that: $\mathbb{E}\left(|\mathbf{e}'_V|\right) = (1-\alpha)k_V$ with a fixed α .

$$\rightarrow$$
 Choose k_V such that:

$$(1-\alpha)k_V + \frac{2}{3}(n/2 - k_V) = \mathbb{E}(|\mathbf{e}_2 - \mathbf{e}_1|).$$

Parameters are constraint.

- → Exponential number of rejects!
- In the queue of distribution:
- $\mathbb{P}(|\mathbf{e}_V|=i)\ll \mathbb{P}(|\mathbf{e}_2-\mathbf{e}_1|=i)$
- \mathbf{e}_V'' follows a uniform law: its variance is fixed
- Choose \mathbf{e}_V' such that: $\mathbb{E}(|\mathbf{e}_V'|) = (1 \alpha)k_V$ and high variance!

Choice for distribution $|\mathbf{e}'_V|$: large degree of freedom!

