

Image Super-Resolution with GANs

Nathanael Bosch¹, Thomas Grassinger¹, Jonas Kipfstuhl¹, Pierre Springer¹

¹Technical University of Munich

Introduction

We call super-resolution (SR) the task of estimating a high-resolution (HR) image from its low-resolution (LR) counterpart.

Recent work with optmizition-based methods largely focuses on minimizing the mean squared reconstruction error. This results in high peak signal-to-noise ratios, but they often have problems with modelling high-frequency details. The results are often too smooth. In our work we tried to tackle this problem using generative adversarial networks (GANs).

GANs

GANs consist of two different networks, a Generator Network and a Discriminator Network. The concept behind this is that the generative network estimates a super-resolved image from its LR version with the goal to become highly similar to real images that the discriminator network fails to distiguish.

Therefore we optimize the discriminator network D_{Θ_D} in an alternating manner along with the generative network G_{Θ_G} to solve the adversarial min-max problem:

$$\min_{\Theta_G} \max_{\Theta_G} \mathbb{E}_{I^{HR} \backsim p_{\text{train}}(I^{HR})} [\log D_{\Theta_D}(I^{HR})] + \mathbb{E}_{I^{HR} \backsim p_G(I^{LR})} [\log (1 - G_{\Theta_G}(I^{LR}))]$$

$$\text{Real world images}$$

$$\text{Discriminator}$$

$$\text{Fake}$$

Fig. 1: h

The perceputal loss l^{SR} we defined as weighted sum of a content loss and an discriminative loss component: $l^{SR} = \alpha l^{SR}_{MSE} + \beta l^{SR}_{VGG16_19/i.j} + \gamma l^{SR}_{D}$

Where l_{MSE}^{SR} is a mean squared error term, l_{VGG}^{SR} is an euclidean distance of the VGG feature representation for the images, and l_D^{SR} is the discriminative loss.

Datasets

PASCAL VOC¹ over 10 000 images for classification in 20 categories

NITRE² 800 high resolution images

Results

Key Points

- Networks learn even without discriminator
- VGG1619 performs considerably better than VGG16
- Training works without discriminator
- The discriminator is hard to train
- Image metrics don't change much, but the images still improve