

Sprint 2 Yukie Kuang

Sprint 1 Recap

Journeying Through

Data Pre-processing

Image Pre-processing

> Baseline Model

- importing image and respective annotated files
- Combining files and annotations
 - o Create tuple
 - pixel value scaling
 - noise detection
 - data augmentation
 - edge detection

 Very barebones neural network

In the Thick of It - EDA •

2 datasets from different sources:

- o MHIST dataset is 224 x 224 labels in .csv file
- Chaoyang dataset is 512 x 512 labels in .json

Labels:

Chaoyang dataset has 4 labels

- "0" means normal
- "1" means serrated
- "2" means adenocarinoma
- "3" means adenoma

MHIST dataset has 2 labels

- HP (Hyperplastic Polyp) aka normal polyps have no potential to become malignant
- SSA (Sessile Serated Adenoma)

<u>DataFrame</u>	<u>Label</u>	Count
mhist_csv_df	HP	617
	SSA	360
cy_df_train_df	2	1404
	0	1111
	1	842
	3	664
cy_df_test_df	2	840
	0	705
	1	321
	3	273

In the Thick of It - EDA

Size:

MHIST - 977*

Chaoyang - test: 2,139 train:4,021

It was thought that the MHIST dataset had provided annotations for 3,152. However, there was only one file that had annotations with <u>only</u> 977 entries!

<u>DataFrame</u>	Label	Count
mhist_csv_df	HP	617
	SSA	360
cy_df_train_df	2	1404
	0	1111
	1	842
	3	664
cy_df_test_df	2	840
	0	705
	1	321
	3	273

Data Pre-processing Steps

Combined Dataset

There is around a 70/30 split

Class Distributions

Labels	Test:	Train:	Total:
0	826	1611	2437
1	400	1123	1523
2	840	1404	2244
3	273	664	937
Total:	2335	4802	7137

 The class distributions are showing label 2, 0, 1 to be the highest.

Labeled Datasets

ChaoyangTrain

Chaoyang Test

Label: 2

Label: 2

MHIST

Image Pre-processing Steps

Baseline Model Creation - SSN

Input Layer Hidden Layer

Door where data enters

Use special functions (like ReLU) to help the network learn complexity

Gives you the final answer the network learned from the data

Scorecard - how far off predictions are from the actual answers.

Next Steps

- Complete a full run of the baseline model
- Run a CNN
- Reiterate, Reiterate, Reiterate

Thank you.

Image generated by dreamstudio.ai

