

What is claimed is:

1. A nitride semiconductor light emitting device comprising:
2 an active layer formed of a GaN family compound semiconductor; and
3 multi-quantum barrier layers formed by repeatedly depositing a double layer
4 consisting of an $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layer and a GaN layer at least two times, at either the
5 upper or lower side of the active layer, by which an energy band has a multi-
6 quantum barrier structure,
7 wherein $0 < x < 1$.

1 2. The nitride semiconductor light emitting device of claim 1, further
2 comprising GaN light waveguide layers formed at the upper and lower sides of the
3 active layer or at the upper and lower sides of the multi-quantum barrier layers.

1 3. The nitride semiconductor light emitting device of claim 1, wherein the
2 active layer is formed by depositing a double layer consisting of an $\text{In}_x\text{Ga}_{1-x}\text{N}$ layer
3 and an $\text{Al}_y\text{Ga}_{1-y}\text{N}$ layer, a double layer consisting of an $\text{In}_x\text{Ga}_{1-x}\text{N}$ layer and an
4 $\text{In}_y\text{Al}_z\text{Ga}_{1-y-z}\text{N}$ layer, a double layer consisting of an $\text{In}_x\text{As}_y\text{Ga}_{1-x-y}\text{N}$ layer and $\text{In}_z\text{Ga}_{1-z}\text{N}$
5 layer or a double layer consisting of an $\text{In}_x\text{As}_y\text{Ga}_{1-x-y}\text{N}$ layer and an $\text{Al}_y\text{Ga}_{1-y}\text{N}$ layer a
6 predetermined number of times to form a multi-quantum well structure and at this
7 time, $0 \leq x \leq 1$, $0 \leq y < 1$, $0 \leq z < 1$, $x+y < 1$ and $y+z < 1$.

1 4. A nitride semiconductor light emitting device comprising:
2 an active layer formed of a GaN family compound semiconductor; and
3 multi-quantum barrier layers formed by repeatedly depositing a double layer
4 consisting of an $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layer and an $\text{Al}_y\text{Ga}_{1-y}\text{N}$ layer at least two times, at either
5 the upper or lower side of the active layer, by which an energy band has a multi-
6 quantum barrier structure,
7 wherein $0 < x < 1$, $0 \leq y < 1$, and $x > y$.

1 5. The nitride semiconductor light emitting device of claim 4, wherein if
2 $0 < x < 1$, $0 \leq y < 1$ and $x > y$, the multi-quantum barrier layer is formed by making the

3 thickness of the $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layer of each double layer differ from the thicknesses of
4 the $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layers of the other double layers, thereby making the energy levels of
5 multi-quantum barrier layers differ from each other.

1 6. The nitride semiconductor light emitting device of claim 4, wherein if
2 $0 < x < 1$, $0 \leq y < 1$ and $x > y$, the multi-quantum barrier layer is formed by making the
3 thickness of the $\text{Al}_y\text{Ga}_{1-y}\text{N}$ layer of each double layer differ from the thicknesses of
4 the $\text{Al}_y\text{Ga}_{1-y}\text{N}$ layers of the other double layers, thereby making the energy levels of
5 multi-quantum barrier layers differ from each other.

1 7. The nitride semiconductor light emitting device of claim 4, wherein if
2 $0 < x < 1$, $0 \leq y < 1$ and $x > y$, the multi-quantum barrier layer is formed by making the
3 value of x for of aluminum of the $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layer of each double layer differ from the
4 value of x for the $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layers of the other double layers, thereby making the
5 energy levels of multi-quantum barrier layers differ from each other.

1 8. A nitride semiconductor light emitting device comprising:
2 an active layer formed of a GaN family compound semiconductor; and
3 multi-quantum barrier layers formed by repeatedly depositing a double layer
4 consisting of an $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layer and an $\text{In}_y\text{Ga}_{1-y}\text{N}$ layer at least two times, at either
5 the upper or lower side of the active layer, by which an energy band has a multi-
6 quantum barrier structure,
7 wherein $0 < x < 1$ and $0 < y \leq 1$.

1 9. The nitride semiconductor light emitting device of claim 8, wherein the
2 multi-quantum barrier layer is formed by making the thickness of the $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layer
3 of each double layer differ from the thicknesses of the $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layers of the other
4 double layers, thereby making the energy levels of multi-quantum barrier layers
5 differ from each other.

1 10. The nitride semiconductor light emitting device of claim 8, wherein the
2 multi-quantum barrier layer is formed by making the thickness of the $\text{In}_y\text{Ga}_{1-y}\text{N}$ layer
3 of each double layer differ from the thicknesses of the $\text{In}_y\text{Ga}_{1-y}\text{N}$ layers of the other
4 double layers, thereby making the energy levels of multi-quantum barrier layers
5 differ from each other.

1 11. The nitride semiconductor light emitting device of claim 8, wherein the
2 multi-quantum barrier layer is formed by making the value of x for the $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layer
3 of each double layer differ from the value of x for the $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layers of the other
4 double layers, thereby making the energy levels of multi-quantum barrier layers
5 differ from each other.

1 12. A nitride semiconductor light emitting device comprising:
2 a substrate;
3 an active layer formed on the substrate, in which light emission occurs;
4 an n-type material layer for generating a laser beam which is formed between
5 the substrate and the active layer and includes an n-type clad layer for preventing
6 light loss in the direction of installation of the substrate;
7 a carrier blocking layer, a p-type waveguide layer and a p-type compound
8 semiconductor layer which are sequentially deposited on the active layer; and
9 an n-type electrode and a p-type electrode generating a potential difference
10 for diffusion of electrons to the active layer.

1 13. The nitride semiconductor light emitting device of claim 12, wherein the
2 n-type material layer comprises:
3 an n-type waveguide layer formed between the n-type clad layer and the
4 active layer; and
5 an n-type compound semiconductor layer formed between the n-type clad
6 layer and the substrate and connected to the n-type electrode.

1 14. The nitride semiconductor light emitting device of claim 12 or claim 13,
2 wherein the active layer is a III-V group nitride compound semiconductor layer
3 having a multi-quantum well structure.

1 15. The nitride semiconductor light emitting device of claim 12 or claim 13,
2 wherein the n-type clad layer has a thickness between 0.5 μm and 1.7 μm .

1 16. The nitride semiconductor light emitting device of claim 12, wherein the
2 p-type waveguide layer has a thickness between 0.15 μm and 0.22 μm , by which
3 light mode and light gain are maximized.

1 17. The nitride semiconductor light emitting device of claim 12, wherein the
2 carrier barrier layer is a mono-layer or a multi-quantum barrier layer.

1 18. The nitride semiconductor light emitting device of claim 17, wherein the
2 multi-quantum barrier layer consists of double layers of an $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layer and an
3 $\text{In}_y\text{Ga}_{1-y}\text{N}$ layer ($0 < x < 1$, $0 < y \leq 1$) and is formed by making the thickness of the $\text{In}_y\text{Ga}_{1-y}\text{N}$ layer
4 of each double layer differ from the thicknesses of the $\text{In}_y\text{Ga}_{1-y}\text{N}$ layers of
5 the other double layers, thereby making the energy levels of multi-quantum barrier
6 layers differ from each other.

1 19. The nitride semiconductor light emitting device of claim 17, wherein the
2 multi-quantum barrier layer consists of a plurality of double layers of an $\text{Al}_x\text{Ga}_{1-x}\text{N}$
3 layer and an $\text{In}_y\text{Ga}_{1-y}\text{N}$ layer ($0 < x < 1$, $0 < y \leq 1$) is formed by making the value of x for
4 the $\text{Al}_x\text{Ga}_{1-x}\text{N}$ layer of each double layer differ from the value of x for the $\text{Al}_x\text{Ga}_{1-x}\text{N}$
5 layers of the other double layers, thereby making the energy levels of multi-quantum
6 barrier layers differ from each other.

1 20. The nitride semiconductor light emitting device of claim 12, wherein the
2 p-type waveguide layer and the p-type compound semiconductor layer are the same

3 material layer, however the doping concentration of the p-type compound
4 semiconductor layer is higher than that of the p-type waveguide layer.

1 21. The nitride semiconductor light emitting device of claim 12, wherein the
2 material of the substrate is one selected from the group consisting of sapphire,
3 silicon carbon (SiC), silicon (Si), gallium arsenic (GaAs), gallium nitride (GaN) and
4 zinc oxide (ZnO).