数オリテキスト (仮)

佐世保北高校数学オリンピック勉強会 令和 2 年度

第1章

はじめに

- 1.1 必要な知識
- 1.2 記号・用語についての説明
- 1.2.1 集合の記号

記号	意味
N	自然数
\mathbb{Z}	整数
\mathbb{Q}	有理数
\mathbb{R}	実数
\mathbb{C}	複素数

1.2.2

第2章

代数

2.1 方程式

2.1.1 同じ部分をまとめる

同じ部分はいったんまとめる事で、式がすっきりして解きやすくなることがあるので、 同じ部分を見つけたら、文字で置くなどしてまとめる。また、文字で置いた場合は値の範 囲も確認して、ありえない値を書かないようにすること。

例題

$$(x^2 + 2x)^2 + 3(x^2 + 2x) + 2 = 0$$

 $X = x^2 + 2x$ とすると $(X \ge -1 - ①)$
 $(X + 1)(X + 2) = 0$
① より
 $X = -1$
 $x^2 + 2x = -1$
 $x^2 + 2x + 1 = 0$
 $(x + 1)^2 = 0$
 $x = -1$

練習問題

次の方程式を解け。
$$\frac{1}{x^2 - 10x - 29} + \frac{1}{x^2 - 10x - 45} - \frac{2}{x^2 - 10x - 69} = 0$$

■ポイント $x^2 - 10x$ に着目し、まとめる。

解答

6 第 2 章 代数

$$X = -10$$

①より適
 $x^2 - 10x - 49 = -10$
 $x^2 - 10x - 39 = 0$
 $(x - 13)(x + 3) = 0$
 $x = -3, 13$

2.1.2 解と係数の関係

$$ax^2+bx+c=0$$
 の解を $x=\alpha,\beta$ とすると $(a\neq 0)$
$$\alpha+\beta=-\frac{b}{a}$$

$$\alpha\beta=\frac{c}{a}$$

因数分解をしたときに、

$$ax^{2} + bx + c = a(x - \alpha)(x - \beta)$$

となります。右辺を展開し、係数を比較することで導くことができる。 2次方程式だけでなく、3次以上の場合でも、上と同じように考えることができる。

練習問題1

$$x^{1995} - x + 5 = 0$$

の全ての解の 1995 乗の和を求めよ。

解答

解を
$$x_1, x_2, x_3, \ldots, x_{1995}$$
 とすると、 $x^{1995} - x + 5 = (x - x_1)(x - x_2)(x - x_3) \ldots (x - x_{1995})$ x^{1994} の係数を比較すると、 左辺では 0 右辺では $-(x_1 + x_2 + x_3 + \cdots + x_{1995})$ であるから、 $x_1 + x_2 + x_3 + \cdots + x_{1995} = 0$ $x^{1995} - x + 5 = 0$ $x^{1995} - x + 5 = 0$ よって全ての解の 1995 乗の和は、全ての解からそれぞれ 5 を引いたものの和に等しいから、 $(x_1 - 5) + (x_2 - 5) + (x_3 - 5) + \cdots + (x_{1995} - 5)$ $= x_1 + x_2 + x_3 + \cdots + x_{1995} - 5 \times 1995$ $= x_1 + x_2 + x_3 + \cdots + x_{1995} - 5 \times 1995$ $= -5 \times 1995$ $= -9975$

2.2 不等式 7

n次方程式の x^{n-1} の係数が、解の総和に-1をかけたものに等しいことは、覚えておいても良い。

練習問題2

次の方程式を解け。
$$\begin{cases} xy + x + y = 71 \\ x^2y + xy^2 = 88 \end{cases} (x, y \in \mathbb{N})$$

解答

x,y は整数なので因数分解をすることで解くこともできるが、解と係数の関係を使うと、約数を全通り試す必要なく解くことができる。

$$\begin{cases} xy + x + y = 71 \\ xy (x + y) = 880 \\ a に関する 2 次関数 $a^2 - 71a + 88 = 0$ は、 xy と $x + y$ を解にもつ $a^2 - 71a + 88 = 0$ ($a - 16$) ($a - 55$) = 0 $a = 16, 55$ (i) $x + y = 16$, $xy = 55$ のとき b に関する 2 次関数 $b^2 - 16b + 55 = 0$ は、 x と y を解にもつ $b^2 - 16b + 55 = 0$ ($b - 5$) ($b - 11$) = 0 $b = 5, 11$ よって $(x, y) = (5, 11)$, $(11, 5)$ (ii) $x + y = 55$, $xy = 16$ のとき b に関する 2 次関数 $b^2 - 55b + 16 = 0$ は、 x と y を解にもつ $b^2 - 55b + 16 = 0$ は、 x と y を解にもつ $b = \frac{-3\sqrt{329 + 55}}{2}$, $b = \frac{3\sqrt{329 + 55}}{2}$ $x, y \in \mathbb{N}$ よ b 不適 \therefore $(x, y) = (5, 11)$, $(11, 5)$$$

2.2 不等式

2.2.1 2 乗をつくる

実数は 2 乗をすると 0 以上になる不等式の証明をするときは、方針として、以下のような形を作る

$$A^{2} \ge 0$$

$$B^{2} \ge 0$$

$$A^{2} + B^{2} \ge 0$$

8 第2章 代数

練習問題

$$a^2 + b^2 + c^2 \ge ab + bc + ca$$
 を示せ。

解答

方針として、
$$(a-b)^2 = a^2 - 2ab + b^2$$
 を使うために、 $2ab$ をつくる。
(左辺) - (右辺)

$$= a^2 + b^2 + c^2 - ab - bc - ca$$

$$= \frac{1}{2} (2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)$$

$$= \frac{1}{2} (a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 - 2ca + a^2)$$

$$= \frac{1}{2} \{(a-b)^2 + (b-c)^2 + (c-a)^2\} \ge 0$$

2.2.2 相加相乗平均

 $rac{a+b}{2}$ を相加平均といい、 \sqrt{ab} を相乗平均という。 a,b>0 のとき、 $a+b\geqq 2\sqrt{ab}$ が成り立つ。

また3変数以上にも拡張することができる。

3 変数の場合 $a+b+c \ge 3\sqrt[3]{abc} \ (a,b,c>0)$

n 変数の場合
$$\sum_{i=1}^{n} a_i \ge n \sqrt[n]{\prod_{i=1}^{n} a_i} \ (a_1,a_2,a_3,\ldots,a_n)$$
 また、 $\frac{2}{\frac{1}{a}+\frac{1}{b}}$ を調和平均という。逆数の相加平均の逆数である。

相加平均 ≥ 相乗平均 ≥ 調和平均が成り立つ。このことは相加相乗平均の不等式から導 ける。

Proof. 相加平均と相乗平均の逆数を取ると、 $\dfrac{1}{\sqrt{ab}} \geq \dfrac{2}{a+b}$

$$\frac{1}{\sqrt{ab}} \ge \frac{2}{a+b}$$

$$\sqrt{ab} \ge \frac{2ab}{a+b}$$

$$\sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

等号成立は、a = b のときである。

練習問題

$$x,y,z>0$$
 とする
$$\frac{x^3y^2z}{x^6+y^6+z^6} \,$$
の最大値を求めよ。

2.2 不等式 9

解答

分母が最小になるときに最大になる

$$\begin{split} x^6 + y^6 + z^6 \\ &= \frac{1}{3}x^6 + \frac{1}{3}x^6 + \frac{1}{3}x^6 + \frac{1}{2}y^6 + \frac{1}{2}y^6 + z^6 - \mathbb{O} \\ \mathbb{O} &\geq 6\sqrt[6]{\frac{1}{3}x^6 \times \frac{1}{3}x^6 \times \frac{1}{3}x^6 \times \frac{1}{2}y^6 \times \frac{1}{2}y^6 \times z^6} \\ &= 6\sqrt[6]{\frac{1}{108}} \ x^3y^2z \\ &= \sqrt[3]{4} \times \sqrt[2]{3}x^3y^2z \\ &\therefore \frac{1}{\sqrt[3]{4} \times \sqrt[2]{3}} \end{split}$$

①のような変形をすることで無理矢理 $x^3y^2z \times$ をつくって消すことができた。

2.2.3 コーシーシュワルツ不等式

$$\left(\sum_{i=1}^{n}a_{i}^{2}\right) \left(\sum_{i=1}^{n}b_{i}^{2}\right) \geq \left(\sum_{i=1}^{n}a_{i}b_{i}\right)^{2}$$
つまり
$$\left(a_{1}^{2},a_{2}^{2},a_{3}^{2}\ldots,a_{n}^{2}\right) \left(b_{1}^{2},b_{2}^{2},b_{3}^{2}\ldots,b_{n}^{2}\right) \geq \left(a_{1}b_{1},a_{2}b_{2},a_{3}b_{3},\ldots,a_{n}b_{n}\right)^{2}$$
 が成り立つ。

$$Proof.\ n$$
 次元のベクトルの内積について考える $\vec{a}=(a_1,a_2,a_3,\ldots,a_n)$ $\vec{b}=(b_1,b_2,b_3,\ldots,b_n)$ とする $\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta$ $\left(\vec{a}\cdot\vec{b}\right)^2=|\vec{a}|^2|\vec{b}|^2\cos^2\theta$ $\cos^2\theta \le 1$ より、 $|\vec{a}|^2|\vec{b}|^2 \ge \left(\vec{a}\cdot\vec{b}\right)^2$ $\left(a_1^2,a_2^2,a_3^2\ldots,a_n^2\right)\left(b_1^2,b_2^2,b_3^2\ldots,b_n^2\right) \ge (a_1b_1,a_2b_2,a_3b_3,\ldots,a_nb_n)^2$ 等号成立条件は、 $\cos^2\theta=1$ すなわち 2 つのベクトルが並行なときであり、 $a_1:a_2:a_3:\cdots:a_n=b_1:b_2:b_3:\cdots:b_n$ と同値である。

例題

$$4(w^2+x^2+y^2+z^2) \ge (w+x+y+z)^2$$
 を示す。 (左辺) = $(1+1+1+1)(w^2+x^2+y^2+z^2)$ コーシーシュワルツ不等式より、 $(1+1+1+1)(w^2+x^2+y^2+z^2) \ge (w+x+y+z)^2$ よって (左辺) \ge (右辺) となり、成り立つ。 等号成立は $w:x:y:z=1:1:1:1$ つまり $w=x=y=z$ のとき。

10 第 2 章 代数

■注 有名不等式を使うときは、名前を書くこと。

練習問題

$$x+y+z=1$$
、 $x,y,z>0$ のとき
$$\frac{1}{x}+\frac{4}{y}+\frac{9}{z}$$
 の最小値を求めよ。

解答

コーシーシュワルツ不等式より、
$$(x+y+z)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right) \ge (1+2+3)^2$$
等号成立条件は、
$$x:y:z=\frac{1}{x}:\frac{4}{y}:\frac{9}{z}$$
$$x^2=\frac{y^2}{4}=\frac{z^2}{9}$$
$$x,y,z>0 より、
$$x=\frac{y}{2}=\frac{z}{3}$$
∴ 36$$

2.3 多項式

割り算頑張る。

2.4 関数方程式

$$f(x+1) = f(x) + 1$$
的なやつ。

2.5 数列

一般項を求める問題などが出題される。実験 \rightarrow 予想 \rightarrow の順で解いていく。手を動かして頑張ろう。

練習問題1

 $n \in \mathbb{N}$

 $a_n:\sqrt{n}$ に最も近い自然数

 $b_n = a_n + n$

 b_n の規則性を予想せよ。

解答

とりあえず実験をしてみる。 $n \le 20$ で試してみると、以下の表のようになる。 b_n に存在しない自然数を並べてみると、 $1,4,9,16\dots$ となっており、 b_n には平方

2.5 数列 11

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a_n	1	1	2	2	2	2	3	3	3	3	3	3	4	4	4	4	4	4	4	4
b_n	2	3	5	6	7	8	10	11	12	13	14	15	17	18	19	20	21	22	23	24

数が存在しないようだということがわかる。 b_n には平方数が含まれないことを証明する。

Proof.
$$a_n = m$$
 とすると、
$$\left(m - \frac{1}{2}\right)^2 \le n \le \left(m + \frac{1}{2}\right)^2$$

$$m^2 - m + \frac{1}{4} \le n \le m^2 + m + \frac{1}{4}$$

$$m^2 - m + 1 \le n \le m^2 + m \, (\because n, m \in \mathbb{N})$$

$$m^2 + 1 \le m + m \le m^2 + 2m$$

$$m^2 + 1 \le b_n \le (m+1)^2 - 1$$

練習問題2

$$\begin{cases} f(0) = 0 \\ f(1) = 1 \\ f(n) = f\left(\left[\frac{n}{2}\right]\right) + n - 2\left[\frac{n}{2}\right] \end{cases}$$
 $f(n)$ の規則性を予想せよ。

解答

 $n \le 20$ で試してみると、以下の表のようになる。

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
f(n)	0	1	1	2	1	2	2	3	1	2	2	3	2	3	3	4	1	2	2	3	2

 $f\left(n
ight)$ は n を 2 進数で表したときの 1 の数である。 $f\left(\left[rac{n}{2}
ight]
ight)$ は 1 の位以外の部分での 1 の数、 $n-2\left[rac{n}{2}
ight]$ は 1 の位の数を表している。

■豆知識 $\left[\frac{n}{a^k}\right]$ は、n を a 進数表記し、下 k 桁を切り落としたものになる。 $n-\left[\frac{n}{a^k}\right]$ は、n を a 進数表記したときの下 k 桁を表す。