Announcements

Surveys

- Midterm survey is opened: 20 questions
- Deadline: Friday, 25 Oct 2019
- Benefit:
 - Allow multiple attempt for Assignment 04
 - Assignment 04 MRQ will show the mark immediately so it might be useful to redo the attempt

Assignment 04

- Release: Sunday, 27 Oct 2019
- Last download: Friday, 8 Nov 2019 at 11.50pm
- Deadline: Saturday, 9 Nov 2019 at 11.59pm
- <u>cs2102-fd-nf.herokuapp.com</u> will be closed from Sat, 26 Oct 2019

Announcements

Assignment 03 and Midterm Marking

- Should finish by end of week
- I will run plagiarism checker on both (since it's programming)
- If you admit to plagiarism before I run the checker (Thu, 24 Oct 2019)
 - You will only get minimal penalty (i.e., 0 mark for assignment3 and/or midterm)
- If you are found to have plagiarized but did not admin
 - Will be reported to Registrar Office

Plagiarism policy

Any student found to have **committed** or **aided** and **abetted** the offence of plagiarism may be subject to disciplinary action. In addition, the student may receive a reduced grade (possibly even zero mark) for the relevant academic assignment, project, or thesis; and could receive a failed grade for the module. Any student caught plagiarizing will be required to retain the plagiarized module as graded, and will not be allowed to exercise the S/U option for that module.

- This includes
 - Giving your answers to a friend
 - Using your friends' answers as your own

CS2102 Database Systems

Slides adapted from Prof. Chan Chee Yong

LECTURE 10

NORMAL FORMS

Decomposition

Definition

- The decomposition of schema R is a set of schemas $\{R_1, R_2, \dots, R_n\}$ (called fragments) such that
 - $\circ R_i \subseteq R$ for each R_i
 - Each fragment is simpler than the original schema
 - $\circ R = R_1 \cup R_2 \cup \cdots \cup R_n$
 - No attributes are missing
- Consider a relation r of R, the decomposition of r into $\{r_1, r_2, \ldots, r_n\}$ is
 - $r_i = \pi_{R_i}(r)$
 - Projection operation!

Lossless-join decomposition

Definition

- $\circ \ r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_n}(r)$
- Lemma 1
 - $\circ \ r \subseteq \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \cdots \bowtie \pi_{R_n}(r)$
- Theorem 1
 - $F \vDash R_1 \cap R_2 \to R_1$ OR $F \vDash R_1 \cap R_2 \to R_2 \Rightarrow lossless$
- Corollary 1
 - If $a \to b$ is a completely non-trivial FD that holds on R, then the decomposition of R into $\{R b, ab\}$ is a lossless-join decomposition
- Theorem 2
 - If $\{R_1, R_2, \ldots, R_n\}$ is a lossless-join decomposition of R, and $\{R_{1,1}, R_{1,2}\}$ is a lossless-join decomposition of R_1 m then $\{R_{1,1}, R_{1,2}, R_2, \ldots, R_n\}$ is a lossless join decomposition of R

Dependency-preserving decomposition

Projection

• $F_a = \{b \rightarrow c \in F^+ \mid bc \subseteq a\}$

What?

- $(F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n})$ is equivalent to F
 - $(F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n}) \equiv F$
 - $(F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n})^+ = F^+$
 - $\circ \left(F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n} \right) \vDash F \land F \vDash \left(F_{R_1} \cup F_{R_2} \cup \dots \cup F_{R_n} \right)$

Lemma 2

- For every decomposition $\{R_1, R_2, \dots, R_n\}$ of R
 - $\circ F \vDash (F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n})$
 - By definition, $F_{R_i} = \{ b \rightarrow c \in F^+ \mid bc \subseteq R_i \}$
 - For all $b \to c$ in F_{R_i} , we also have $b \to c$ in F^+

Algorithms

Algorithm #1

- **Input** A set of attributes $a \subseteq R$ and a set of FDs F on R
- Output a^+ w.r.t. F

Algorithm #2

- **Input** A set of FDs *F*
- Output A minimal cover for F

Algorithm #3

- **Input** A set of attributes $a \subseteq R$ and a set of FDs F on R
- Output F_a

Algorithm #4

- **Input** A decomposition $\{R_1, ..., R_n\}$ of R with FDs F
- Output YES (if dependency-preserving) or NO (otherwise)

- Preliminary
- Boyce-Codd normal form Algorithm
- 3rd normal form
 Algorithm

Overview

- Preliminary
- Boyce-Codd normal form Algorithm
- 3rd normal form
 Algorithm

Normal forms

- A normal form restricts the set of data dependencies that are allowed to hold on a schema to avoid certain undesirable redundancy and update problems in database
- Anomalies:
 - Insertion anomaly
 - Deletion anomaly
 - Update anomaly

Normal forms

- A normal form restricts the set of data dependencies that are allowed to hold on a schema to avoid certain undesirable redundancy and update problems in database
- Anomalies:
 - Insertion anomaly
 - Deletion anomaly
 - Update anomaly
- Occurrences of anomalies is related to FD
 - Consider R(A, B, C) without any FD
 - Any triple < a, b, c > is valid
 - Consider R(A, B, C) with FDs $F = \{A \rightarrow B\}$
 - \blacksquare < a, b_1 , c > should not be with < a, b_2 , c >
 - But if A is a PK, $\langle a, b, c_1 \rangle$ cannot be with $\langle a, b, c_2 \rangle$

Normal forms

- A normal form restricts the set of data dependencies that are allowed to hold on a schema to avoid certain undesirable redundancy and update problems in database
- Anomalies:
 - Insertion anomaly
 - Deletion anomaly
 - Update anomaly
- Occurrences of anomalies is related to FD
 - Consider R(A, B, C) with FDs $F = \{A \rightarrow B\}$
 - There will be no anomalies if we have $R_1(A, B)$ and $R_2(B, C)$
 - \blacksquare < a, b_1 > cannot be with < a, b_2 >
 - Any pair < b, c > will be valid
 - \triangleright R₁ is basically an entity/relationship

- Preliminary
- Boyce-Codd normal form Algorithm
- 3rd normal form
 Algorithm

Boyce-Codd normal form

- Definition
 - Consider a relation schema R with FDs F
 - R is in Boyce-Codd normal form (BCNF) if for every FD $a \rightarrow A$ in F either
 - 1. $a \rightarrow A$ is trivial, OR
 - 2. a is a superkey of R
 - An FD $a \rightarrow b$ that holds on R is said to violate BCNF <u>if</u>
 - $a \rightarrow b$ is non-trivial, AND
 - a is not a superkey of R
- Decomposition
 - A decomposition $\{R_1, R_2, ..., R_n\}$ of R (with FDs F) is in BCNF \underline{if}
 - Each $R_i \in \{R_1, R_2, \dots, R_n\}$ is in BCNF (w.r.t. F_{R_i})

- Definition
 - Consider a relation schema R with FDs F
 - R is in Boyce-Codd normal form (BCNF) if for every FD $a \rightarrow A$ in F either
 - 1. $a \rightarrow A$ is trivial, **OR**
 - 2. a is a superkey of R
- Check
 - To check if any R_i is in BCNF, check if there exists some non-trivial FD f
 which holds on R_i that violates BCNF
 - If F is the set of FDs that hold on R_i
 ⇒ we check for any violating non-trivial FD in F
 - 2. If F is the set of FDs that hold on R and R_i is a decomposed relation schema of R
 - \Rightarrow we check for any violating non-trivial FD in F_{R_i}

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Is R in BCNF?

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Is R in BCNF?

- Answer
 - \triangleright Consider $A \rightarrow B$
 - \triangleright A \rightarrow B is non-trivial
 - \rightarrow A \rightarrow B is not a superkey of R
 - $A^+ = AB \neq R$ w.r.t. F
 - R is not in BCNF

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Let $\{R_1(A,B), R_2(A,C,D,E)\}$ be a schema decomposition of R
 - Is R_2 in BCNF?

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Let $\{R_1(A,B), R_2(A,C,D,E)\}$ be a schema decomposition of R
 - Is R₂ in BCNF?
- Answer
 - \triangleright Consider $A \rightarrow B$
 - \rightarrow A \rightarrow B does not hold in R_2

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Let $\{R_1(A,B), R_2(A,C,D,E)\}$ be a schema decomposition of R
 - Is R_2 in BCNF?
- Answer
 - \triangleright Consider $A \rightarrow B$
 - \rightarrow A \rightarrow B does not hold in R_2
 - \triangleright Consider $BC \rightarrow D$
 - \triangleright BC \rightarrow D does not hold in R_2

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Let $\{R_1(A,B), R_2(A,C,D,E)\}$ be a schema decomposition of R
 - Is R_2 in BCNF?
- Answer
 - \triangleright Consider $A \rightarrow B$
 - \rightarrow A \rightarrow B does not hold in R_2
 - \triangleright Consider $BC \rightarrow D$
 - \rightarrow BC \rightarrow D does not hold in R_2
 - R_2 is in BCNF

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Let $\{R_1(A,B), R_2(A,C,D,E)\}$ be a schema decomposition of R
 - Is R_2 in BCNF?
- Answer
 - \triangleright Consider $AC \rightarrow D$
 - $ightharpoonup AC
 ightharpoonup D
 ightharpoonup F_{R_2}$ (since $AC^+ = ACD$ w.r.t. F_{R_2})
 - \rightarrow AC \rightarrow D is non-trivial
 - \rightarrow AC \rightarrow D is not a superkey of R_2
 - R_2 is not in BCNF

- Lemma 3
 - For any relation schema R with exactly two attributes, R is in BCNF
- Proof
 - Let A, B be the attributes
 - We consider 4 cases
 - 1. $F = \{ \}$
 - All FDs are trivial ⇒ no violation of BCNF can occur
 - 2. $F = \{A \to B\}$
 - $A \rightarrow B$ is the only non-trivial FD and A is superkey
 - $3. \quad F = \{B \rightarrow A\}$
 - $B \rightarrow A$ is the only non-trivial FD and B is superkey
 - $4. \quad F = \{A \rightarrow B, B \rightarrow A\}$

- Lemma 3
 - For any relation schema R with exactly two attributes, R is in BCNF
- Improved check
 - To check if any R_i is in BCNF, check if there exists some non-trivial FD f
 which holds on R_i that violates BCNF
 - If R_i has exactly two attributes then it is in BCNF
 - Otherwise, check for any violating FDs in F_{R_i} (if R_i not decomposed then $R_i = R$ and $F_{R_i} = F^+$)
 - For each $a \to b \in F_{R_i}$
 - \circ If a o b is trivial, then check next a' o b'
 - If a is a superkey, then check next a' o b'
 - Otherwise, we have found a violation

Boyce-Codd normal form (BCNF)

- Algorithm #5
- Input F is a set of FDs that hold on schema R and R_i is either R or a decomposed schema of R
- Output A completely non-trivial FD that violates BCNF if R_i is not in BCNF; otherwise null
- 1. if $(R_i$ has exactly 2 attributes)
- 2. return null
- 3. for each $(a \subseteq R \text{ such that } a \neq \emptyset)$
- 4. let $X = a^+ \cap R_i$ w.r.t. F // compute $a \to X$
- 5. if $(a \subset X \subset R_i)$
- 6. return $a \to (X a)$
- 7. return null

 $a \subset X$ implies non-trivial (since trivial FD means a = X) $X \subset R_i$ implies non-superkey (superkey means $X = R_i$)

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in BCNF?

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in BCNF?
 - Trivial!
 - Let each $R_i \in \{R_1, ..., R_n\}$ consists of exactly 2 attributes
 - Not guaranteed to be lossless-join
 - Not guaranteed to be dependency-preserving

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in BCNF?
 - Can we guarantee lossless-join & dependency-preserving?

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in BCNF?
 - Can we guarantee lossless-join & dependency-preserving?
 - We can guarantee lossless-join
 - We cannot guarantee dependency-preserving

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in BCNF?
 - Can we guarantee lossless-join & dependency-preserving?
- Idea
 - Consider R, we have 2 cases
 - R is in BCNF \Rightarrow we are done
 - R is not in BCNF
 - There's a completely non-trivial FD $a \rightarrow b$ that violates BCNF
 - Decompose R into $\{R_1(R-b), R_2(ab)\}$
 - Check if R_1 and R_2 violates BCNF and decompose as necessary

```
Algorithm #6
InputSchema R with FDs F

    Output A lossless BCNF decomposition of R

1. initialize \delta = \emptyset; i = 1; \theta = \{R\}
2. while (\theta \neq \emptyset)
3. remove some R' from \theta
4. let f = Algorithm #5(F, R')
5. if (f = \text{null}) then \delta = \delta \cup \{R'\} // in BCNF
6. else
7. let f be a \rightarrow b // completely non-trivial
8. let c = R' - b
9. \theta = \theta \cup \{R_i(ab), R_{i+1}(c)\} // decompose
10. i = i + 2
11. return \delta
```

- Question
 - Consider a schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Find a BCNF decomposition of R
- Simplified steps
 - $R_1(A,B), R_3(A,C,D), R_4(A,C,E)$
 - Lossless-join?

- Question
 - Consider a schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Find a BCNF decomposition of R
- Simplified steps
 - $\circ \{R_1(A,B), R_3(A,C,D), R_4(A,C,E)\}$
 - Lossless-join?

- Question
 - Consider a schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Find a BCNF decomposition of R
- Simplified steps
 - $\circ \{R_1(A,B), R_3(A,C,D), R_4(A,C,E)\}$
 - Dependency-preserving?

- Question
 - Consider a schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Find a BCNF decomposition of R
- Simplified steps
 - \circ { $R_1(A, B), R_3(A, C, D), R_4(A, C, E)$ }
 - Dependency-preserving?
 - $F_{R_1} = \{A \to B\}$
 - \circ $F_{R_3} = \{AC \rightarrow D\}$
 - $F_{R_4} = \{ \}$
 - $BC^+ = BC$ w.r.t. $(F_{R_1} \cup F_{R_3} \cup F_{R_4})$
 - $(F_{R_1} \cup F_{R_3} \cup F_{R_4}) \not\models BC \to D$

- Question
 - Consider a schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Find a BCNF decomposition of R
- Simplified steps
 - $R_1(B,C,D), R_3(A,B), R_4(A,C,E)$
 - Lossless-join?

- Question
 - Consider a schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Find a BCNF decomposition of R
- Simplified steps
 - $R_1(B,C,D), R_3(A,B), R_4(A,C,E)$
 - Lossless-join?

- Question
 - Consider a schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Find a BCNF decomposition of R
- Simplified steps
 - $\circ \{R_1(B,C,D), R_3(A,B), R_4(A,C,E)\}$
 - Dependency-preserving?

- Question
 - Consider a schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Find a BCNF decomposition of R
- Simplified steps
 - ${}^{\circ} \{R_1(B,C,D), R_3(A,B), R_4(A,C,E)\}$
 - Dependency-preserving?

$${}^{\circ}$$
 $F_{R_1} = \{BC \rightarrow D\}$

$$F_{R_3} = \{A \rightarrow B\}$$

$$F_{R_4} = \{ \}$$

$$(F_{R_1} \cup F_{R_3} \cup F_{R_4}) = \{A \to B, BC \to D\} = F$$

$$(F_{R_1} \cup F_{R_3} \cup F_{R_4}) \equiv F$$

- Algorithm #6
 - Consider R, we have 2 cases
 - R is in BCNF \Rightarrow we are done
 - R is not in BCNF
 - There's a completely non-trivial FD $a \rightarrow b$ that violates BCNF
 - Decompose R into $\{R_1(R-b), R_2(ab)\}$
 - Check if R₁ and R₂ violates BCNF and decompose as necessary

Boyce-Codd normal form (BCNF)

- Algorithm #6
 - Consider R, we have 2 cases
 - R is in BCNF \Rightarrow we are done
 - R is not in BCNF
 - There's a completely non-trivial FD $a \rightarrow b$ that violates BCNF
 - Decompose R into $\{R_1(R-b), R_2(ab)\}$
 - Check if R₁ and R₂ violates BCNF and decompose as necessary

- The algorithm will terminate
 - Each step, for R violating BCNF, it will be decomposed
 - Each decomposition reduces the number of attributes
 - Once the number of attributes is 2, it will stop
 - At the worst-case, each fragment will have exactly 2 attributes

Boyce-Codd normal form (BCNF)

- Algorithm #6
 - Consider R, we have 2 cases
 - R is in BCNF \Rightarrow we are done
 - R is not in BCNF
 - There's a completely non-trivial FD $a \rightarrow b$ that violates BCNF
 - Decompose R into $\{R_1(R-b), R_2(ab)\}$
 - Check if R₁ and R₂ violates BCNF and decompose as necessary

- The decomposition is a lossless-join decomposition
 - Each decomposition is based on $a \rightarrow b$, note that
 - $a \rightarrow b$ is completely non trivial
 - The fragments are $\{R_1(R-b), R_2(ab)\}$
 - By corollary 1, it is a lossless-join decomposition

Boyce-Codd normal form (BCNF)

- Algorithm #6
 - Consider R, we have 2 cases
 - R is in BCNF \Rightarrow we are done
 - R is not in BCNF
 - There's a completely non-trivial FD $a \rightarrow b$ that violates BCNF
 - Decompose R into $\{R_1(R-b), R_2(ab)\}$
 - Check if R₁ and R₂ violates BCNF and decompose as necessary

- The decomposition may not be dependency-preserving
 - Consider a schema R(A, B, C) with FDs $F = \{A \rightarrow B, BC \rightarrow A\}$
 - Keys are $\{AC\}$ and $\{BC\}$
 - R is not in BCNF because A → B and A is not a superkey
 - Decomposition into $\{R_1(A, B), R_2(B, C)\}$ does not preserve $BC \to A$

Boyce-Codd normal form (BCNF)

- Algorithm #6
 - Consider R, we have 2 cases
 - R is in BCNF \Rightarrow we are done
 - R is not in BCNF
 - There's a completely non-trivial FD $a \rightarrow b$ that violates BCNF
 - Decompose R into $\{R_1(R-b), R_2(ab)\}$
 - Check if R₁ and R₂ violates BCNF and decompose as necessary

- The algorithm will terminate
- The decomposition is a lossless-join decomposition
- The decomposition may not be dependency-preserving

- Properties
 - The algorithm will terminate
 - The decomposition is a lossless-join decomposition
 - The decomposition may not be dependency-preserving
- What went wrong?
 - We want non-redundancy
 - Might not be feasible in the case of overlapping key
 - Consider a schema R(A, B, C) with FDs $F = \{A \rightarrow B, BC \rightarrow A\}$
 - Keys are $\{AC\}$ and $\{BC\} \Rightarrow$ overlap
 - The attributes $\{AB\}$ is an entity due to $A \rightarrow B$
 - The attributes $\{ABC\}$ is also an entity due to $BC \rightarrow A$
 - Both entities need to exist!
 - But if $R_i(A, B, C)$ exists, $A \to B$ violated BCNF

- Example of non dependency-preserving
 - Consider R(Course, Prof, Time) such that
 - Every Course is managed by exactly one Prof
 - Course \rightarrow Prof
 - A Prof cannot teach two Course at the same Time
 - (Prof, Time) \rightarrow Course
 - Keys: {Course, Time} and {Prof, Time}
 - R is not in BCNF because Course \rightarrow Time and Course is not a superkey of R
 - The decomposition $\{R_1(\text{Course}, \text{Prof}), R_2(\text{Course}, \text{Time})\}$ does not preserve (Prof, Time) \rightarrow Course

- Preliminary
- Boyce-Codd normal form Algorithm
- 3rd normal form
 Algorithm

3rd normal form

- Definition
 - Consider a relation schema R with FDs F
 - R is in Boyce-Codd normal form (BCNF) if for every FD $a \rightarrow A$ in F either
 - 1. $a \rightarrow A$ is trivial, OR
 - 2. a is a superkey of R, OR
 - *3. A* is a prime attribute
 - An FD $a \rightarrow b$ that holds on R is said to violate 3NF <u>if</u>
 - $a \rightarrow b$ is non-trivial, AND
 - a is not a superkey of R, AND
 - *A* is a non-prime attribute
- Decomposition
 - A decomposition $\{R_1, R_2, ..., R_n\}$ of R (with FDs F) is in 3NF \underline{if}
 - Each $R_i \in \{R_1, R_2, \dots, R_n\}$ is in 3NF (w.r.t. F_{R_i})

- Definition
 - Consider a relation schema R with FDs F
 - R is in Boyce-Codd normal form (BCNF) if for every FD $a \rightarrow A$ in F either
 - 1. $a \rightarrow A$ is trivial, OR
 - a is a superkey of R, **OR**
 - *3. A* is a prime attribute
- Check
 - To check if any R_i is in 3NF, check if there exists some non-trivial FD f which holds on R_i that violates 3NF
 - 1. If F is the set of FDs that hold on R_i \Rightarrow we check for any violating non-trivial FD in F
 - 2. If F is the set of FDs that hold on R and R_i is a decomposed relation schema of R
 - \Rightarrow we check for any violating non-trivial FD in F_{R_i}

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Is *R* in 3NF?

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Is *R* in 3NF?

- Answer
 - \triangleright Consider $A \rightarrow B$
 - \triangleright $A \rightarrow B$ is non-trivial
 - \rightarrow A \rightarrow B is not a superkey of R
 - \triangleright B is not a prime attribute (key = {A, C, E})
 - R is not in 3NF

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Let $\{R_1(A,B), R_2(A,C,D,E)\}$ be a schema decomposition of R
 - Is *R*₂ in 3NF?

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Let $\{R_1(A,B), R_2(A,C,D,E)\}$ be a schema decomposition of R
 - Is *R*₂ in 3NF?
- Answer
 - \triangleright Consider $A \rightarrow B$
 - \rightarrow A \rightarrow B does not hold in R_2
 - \triangleright Consider $BC \rightarrow D$
 - \rightarrow BC \rightarrow D does not hold in R_2
 - R_2 is in 3NF

- Question
 - Consider a relation schema R(A, B, C, D, E) with FDs $F = \{A \rightarrow B, BC \rightarrow D\}$
 - Let $\{R_1(A,B), R_2(A,C,D,E)\}$ be a schema decomposition of R
 - Is *R*₂ in 3NF?
- Answer
 - ightharpoonup Consider $AC o D \in F_{R_2}$ (since $AC^+ = ACD$ w.r.t. F_{R_2})
 - \rightarrow AC \rightarrow D is non-trivial
 - \rightarrow AC \rightarrow D is not a superkey of R_2
 - \triangleright D is not a prime attribute (key = {A, C, E})
 - R_2 is not in 3NF

- Question
 - Consider a relation schema R(A, B, C) with FDs $F = \{A \rightarrow B, BC \rightarrow A\}$
 - We know R is not in BCNF
 - Is *R* in 3NF?

3rd normal form (3NF)

- Question
 - Consider a relation schema R(A, B, C) with FDs $F = \{A \rightarrow B, BC \rightarrow A\}$
 - We know R is not in BCNF
 - Is *R* in 3NF?
- Answer
 - Key are $\{AC\}$ and $\{BC\}$
 - \triangleright Consider $A \rightarrow B$

- \Rightarrow *B* is a prime attribute
- \triangleright Consider $BC \rightarrow A$
- $\Rightarrow BC$ is a superkey

R is in 3NF

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in 3NF?

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in 3NF?
 - Trivial again!
 - Make every fragment exactly 2 attributes
 - Not guaranteed to be lossless-join
 - Not guaranteed to be dependency-preserving

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in 3NF?
 - Can we guarantee lossless-join & dependency-preserving?

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in 3NF?
 - Can we guarantee lossless-join & dependency-preserving?
 - We can guarantee lossless-join
 - We can guarantee dependency-preserving

- Decomposition
 - Given a relation schema R that violates BCNF, can we construct a decomposed schema $\{R_1, \ldots, R_n\}$ that is in 3NF?
 - Can we guarantee lossless-join & dependency-preserving?
- Idea
 - Consider R with FDs F
 - Consider $a \to b \in F$
 - What is the property of $R_i(ab)$?
 - Can we ensure that there is no $a' \subseteq a$ such that
 - \circ $a' \rightarrow B$
 - a' is not superkey
 - *B* is not a prime attribute
 - Yes: <u>minimal cover</u>

- Algorithm #7
- Input
 Schema R with FDs F which is a <u>minimal cover</u>
- Output A lossless and dependency-preserving 3NF decomposition of R
- 1. initialize $\delta = \emptyset$
- 2. apply union rule to combine FDs in F
- 3. let $G = \{f_1, f_2, \dots, f_n\}$ be the resultant set of FDs
- **4.** for each (FD f_i of the form $a_i \rightarrow b_i$ in G)
- 5. create a relation schema $R_i(a_ib_i)$ for FD f_i
- 6. insert $R_i(a_ib_i)$ into δ
- 7. choose a key K of R and insert $R_{n+1}(K)$ into δ
- 8. remove redundant relation schema from δ
- 9. \Rightarrow delete R_i from δ if $\exists R_j \in \delta \cdot i \neq j \land R_i \subseteq R_j$
- 10. return δ

3rd normal form (3NF)

- Algorithm #7
 - Consider R with FDs F which is a minimal cover.
 - Union rule into G
 - For each $a_i \to b_i \in G$ create $R_i(a_ib_i)$
 - Create $R_{n+1}(K)$ for any key K
 - Remove redundant relation schema

- The algorithm will terminate
 - There are limited $a \rightarrow b \in G$
- The decomposition is a valid decomposition
 - Consider an attribute a not appearing in any FD
 - Then a must be part of all key K
 - This attribute is covered by R_{n+1} (not removed by redundancy check)

- Algorithm #7
 - Consider R with FDs F which is a minimal cover
 - Union rule into G
 - For each $a_i \to b_i \in G$ create $R_i(a_ib_i)$
 - Create $R_{n+1}(K)$ for any key K
 - Remove redundant relation schema
- Properties
 - The decomposition is a lossless-join decomposition
 - proof omitted

- Algorithm #7
 - Consider R with FDs F which is a minimal cover
 - Union rule into G
 - For each $a_i \to b_i \in G$ create $R_i(a_ib_i)$
 - Create $R_{n+1}(K)$ for any key K
 - Remove redundant relation schema
- Properties
 - The decomposition is dependency-preserving
 - Since each $a_i \rightarrow b_i$ is made into $R_i(a_ib_i)$
 - The FD is preserved by R_i.

3rd normal form (3NF)

- Algorithm #7
 - Consider R with FDs F which is a minimal cover.
 - Union rule into G
 - For each $a_i \to b_i \in G$ create $R_i(a_ib_i)$
 - Create $R_{n+1}(K)$ for any key K
 - Remove redundant relation schema

- The algorithm will terminate
- The decomposition is a valid decomposition
- The decomposition is a lossless-join decomposition
- The decomposition is dependency-preserving

Summary

- Normal forms
 - Consider a relation schema R with FDs F
 - BCNF
 - \square For every FD $a \rightarrow A$ in F_R , either
 - \square $a \rightarrow A$ is trivial [OR] a is a superkey of R
 - Lemma 3: Any relation schema R with exactly 2 attributes is in BCNF
 - □ Algorithm #5: Checks BCNF violation; find a completely non-trivial FD violation
 - □ Algorithm #6: Perform BCNF decomposition
 - ☐ Check (algo5) and decompose on violation
 - Properties: (a) lossless-join but (b) may not be dependency-preserving
 - 3NF (relaxation on BCNF)
 - \square For every FD $a \rightarrow A$ in F_R , either
 - \square $a \rightarrow A$ is trivial [OR] a is a superkey of R [OR] A is a prime attribute
 - Lemma 3*: Any relation schema R in BCNF is also in 3NF
 - Algorithm #7: Construct 3NF decomposition (constructive method)
 - Properties: (a) lossless-join and (b) dependency-preserving