

Prevention of Microarchitectural Covert Channels on an Open-Source 64-bit RISC-V Core

Fourth Workshop on Computer Architecture Research with RISC-V (CARRV 2020)

May 29th, 2020

Nils Wistoff
Moritz Schneider
Frank K. Gürkaynak
Luca Benini
Gernot Heiser

Outline

- 1. Covert channels?
- 2. Measure
- 3. Mitigate
- 4. Costs
- 5. Conclusion

Covert Channel

Covert Channel

Microarchitectural Timing Channel

security boundary

Microarchitectural Timing Channel

Example: D\$ Timing Channel

(1) Spy:

Example: D\$ Timing Channel – Prime

Example: D\$ Timing Channel – Prime

Example: D\$ Timing Channel – Context switch

Prime Cont. sw. Encode s Cont. sw.

(1) Spy: (2) OS: (3) Trojan: (4) OS: (5) Spy:

Probe

Example: D\$ Timing Channel – Encode *s*

Example: D\$ Timing Channel – Encode *s*

Example: D\$ Timing Channel – Context Switch

(1) Spy:

(2) OS: (3) Trojan: (4) OS: (5) Spy:

Prime Cont. sw. Encode s Cont. sw.

Probe

Example: D\$ Timing Channel – Probe

Example: D\$ Timing Channel – Probe

Spatial Partitioning

Spatial Partitioning

Prime Cont. sw. Encode s Cont. sw.

(1) Spy: (2) OS: (3) Trojan:

(4) OS: (5) Spy:

OS: Flush

Probe

Main memory

OS: Flush

Probe

Main memory

OS: Flush

Probe

Main memory

Flush: SW Approach

Evaluation Platform

Hardware platform

Ariane RV64GC core [4]

- FPGA (Genesys 2) @50MHz
- Add timer peripheral and 512KiB LLC [3]
- Write-through 32KiB L1D\$ and 16KiB L1I\$
- 16-entry DTLB, 16-entry BTB, 64-entry BHT

Evaluation Platform

Supervisor
 SeL4 microkernel [5]
 Focus on security
 Port to Ariane
 Enable cache colouring of LLC
 FPGA (Genesys 2) @50MHz
 Add timer peripheral and 512KiB LLC [3]
 Write-through 32KiB L1D\$ and 16KiB L1I\$
 16-entry DTLB, 16-entry BTB, 64-entry BHT

Evaluation Platform

s ₀	107	t _o	83316
s ₁	11	t ₁	80209
s ₂	112	t ₂	82069
s ₃	235	t ₃	88152
S ₄	246	t ₄	88856
s ₅	152	t ₅	86627
			•

 $N = 10^6$

M = 1667.3 mb

s ₀	107	t _o	83316
s ₁	11	t ₁	80209
s ₂	112	t ₂	82069
s ₃	235	t ₃	88152
S ₄	246	t ₄	88856
s ₅	152	t ₅	86627

M

 M_0 : 95% confidence interval of M_0^* $M > M_0 \Rightarrow$ covert channel!

M = 1667.3 mb

 $M_0 = 0.5 \text{ mb}$

Flush: SW Approach

Software Mitigation: L1 D\$ Channel

Unmitigated

 $N = 10^6$, M = 1667.3 mb, $M_0 = 0.5$ mb

L1 D\$ prime on context switch

$$N = 10^6$$
, $M = 1471.5$ mb, $M_0 = 0.6$ mb

Software Mitigation: L1 D\$ Channel

Single L1 D\$ prime on context switch

 $N = 10^6$, M = 1471.5 mb, $M_0 = 0.6$ mb

Double L1 D\$ prime on context switch

$$N = 10^6$$
, $M = 515.7$ mb, $M_0 = 1.1$ mb

Temporal Fence Instruction (fence.t)

31	12	11	7	6	0
select[19:0]		000	000	000	1011
20		5			7

Temporal Fence Instruction (fence.t)

Temporal Fence Instruction (fence.t)

fence.t: L1 D\$ Channel

Unmitigated

 $N = 10^6$, M = 1667.3 mb, $M_0 = 0.5$ mb

Flush targeted components on context switch

$$N = 10^6$$
, $M = 7.7$ mb, $M_0 = 1.4$ mb

fence.t: L1 D\$ Channel

Unmitigated

 $N = 10^6$, M = 1667.3 mb, $M_0 = 0.5$ mb

Flush targeted components on context switch

 $N = 10^6$, M = 7.7 mb, $M_0 = 1.4$ mb

Vulnerable 2nd Order State-Holding Components

L1 D\$:

- LFSR for pseudo-random replacement policy
- Memory arbiter
- TX FIFO
- Write-buffer arbiters

L1 I\$:

LFSR for pseudo-random replacement policy

TLBs:

Pseudo-LRU tree for replacement policy

Full fence.t: L1 D\$ Channel

Unmitigated

 $N = 10^6$, M = 1667.3 mb, $M_0 = 0.5$ mb

$$N = 10^6$$
, $M = 8.4$ mb, $M_0 = 9.6$ mb

L1 I\$ Channel

Unmitigated

 $N = 10^6$, M = 1905.0 mb, $M_0 = 0.5$ mb

$$N = 10^6$$
, $M = 19.5$ mb, $M_0 = 20.5$ mb

TLB Channel

Unmitigated

 $N = 10^6$, M = 409.2 mb, $M_0 = 0.1$ mb

$$N = 10^6$$
, $M = 2.7$ mb, $M_0 = 5.4$ mb

BTB Channel

Unmitigated

 $N = 10^6$, M = 3481.3 mb, $M_0 = 0.1$ mb

$$N = 10^6$$
, $M = 33.0$ mb, $M_0 = 57.6$ mb

BHT Channel

Unmitigated

 $N = 10^6$, M = 4873.3 mb, $M_0 = 0.1$ mb

$$N = 10^6$$
, $M = 44.1$ mb, $M_0 = 58.8$ mb

Context Switch Latency

seL4 one-way inter-address-space IPC microbenchmark

Unmitigated			
Hot	Cold		
430 (±7.0)	1,180 (±1.0)		

Context Switch Latency

seL4 one-way inter-address-space IPC microbenchmark

Unmitigated		D\$ Software Flush		
Hot	Cold	Single	Double	
430 (±7.0)	1,180 (±1.0)	12,099 (±52)	51,876 (±256)	

Context Switch Latency

seL4 one-way inter-address-space IPC microbenchmark

Unmit	Unmitigated		D\$ Software Flush	
Hot	Cold	Single	Double	HW Flush
430 (±7.0)	1,180 (±1.0)	12,099 (±52)	51,876 (±256)	1,502 (±0.9)

Hardware Costs: FPGA

	LUTs	Registers	Muxes	
Unmodified	102,796 (±10)	58,957 (±208)	13,590 (±38)	
w/fence.t	102,792 (±57)	60,607 (±5)	15,038 (±2)	
	±0%	+2.8%	+10.6%	

Conclusion

- We measure five distinct covert channels on Ariane
- Confirmed: OS needs HW-support for time protection [1]
- HW-mechanism must flush all μArch state
 - Identifying µArch state not always straight-forward
 - Systematic approach for HW / Security codesign needed
- Further, off-core covert channels still need to be addressed
 - e.g. DRAM, thermal controller, etc.

Sources

- [1] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser: "Time Protection: The Missing OS Abstraction", EuroSys, 2019
- [2] R. E. Kessler and Mark D. Hill: "Page Placement Algorithm for Large Real-Indexed Caches", ACM Trans. Comp. Syst. 19, 1992
- [3] Wolfgang Rönninger: "Memory Subsystem for the First Fully Open-Source RISC-V Heterogeneous SoC", Master's thesis, ETH Zurich, 2019
- [4] Florian Zaruba and Luca Benini: "The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology", IEEE Trans. on VLSI Systems 27, 2019
- [5] Gerwin Klein, June Andronick, Kevin Elphistone, Toby Murray, Thomas Sewell, Rafal Kolanski, and Gernot Heiser: "Comprehensive Formal Verification of an OS Microkernel", ACM Trans. Comp. Syst. 32, 2014

Prevention of Microarchitectural Covert Channels on an Open-Source 64-bit RISC-V Core

Fourth Workshop on Computer Architecture Research with RISC-V (CARRV 2020)

May 29th, 2020

Nils Wistoff
Moritz Schneider
Frank K. Gürkaynak
Luca Benini
Gernot Heiser

Hardware Costs: FPGA

	LUTs	Registers	Muxes	
Unmodified	102,796 (±10)	58,957 (±208)	13,590 (±38)	
w/fence.t	102,792 (±57) 50.4%	60,607 (±5) 14.9%	15,038 (±2) 9.8%	
	±0%	+2.8%	+10.6%	

Time Protection [1]

- Off-core components
- e.g. cache colouring (LLC) [2]
- Not a solution for on-core components!

- On-core components
- e.g. L1 caches, TLBs, branch predictors
- Reset μArch state on context switch