Partiel S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ni au crayon à papier.

Exercice 1 (5 points)

- Convertissez les nombres présents sur le document réponse dans le format IEEE754 simple précision. Vous exprimerez le résultat final sous forme binaire en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le document réponse. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 2 (4,5 points)

On souhaite réaliser une mémoire RAM d'une capacité de 8 Mib (que l'on notera *M*) à l'aide de plusieurs mémoires RAM d'une capacité de 8 Kio (que l'on notera *m*). La mémoire *M* possède un bus de donnée de 32 bits et la mémoire *m* un bus de donnée de 8 bits. Répondez aux questions sur le document réponse.

Exercice 3 (5,5 points)

On souhaite réaliser la séquence du tableau présent sur le document réponse à l'aide de bascules D.

- 1. Remplissez le tableau présent sur le document réponse.
- 2. Donnez les expressions les plus simplifiées des entrées *D* pour chaque bascule <u>en justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes (les bulles sont obligatoires)</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : D0 = 1, D1 = Q0). Ne pas utiliser l'opérateur OU EXCLUSIF.
- 3. Simplifiez *D1* et *D2* à l'aide d'un OU EXCLUSIF.

Exercice 4 (3 points)

On souhaite réaliser la séquence du tableau présent sur le document réponse à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le document réponse.
- 2. Donnez les expressions les plus simplifiées des entrées *J* et *K* de chaque bascule.

Partiel S2 – Corrigé

Exercice 5 (2 points)

Que réalisent les deux montages ci-dessous ? Vous préciserez les trois caractéristiques suivantes :

- Compteur ou décompteur ;
- Synchrone ou Asynchrone;
- Valeur du modulo.

Figure 1

Figure 2

Partiel S2 – Corrigé 2/4

Nom : Prénom : Cl	lasse :
-------------------	---------

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Nombre	S	S E M	
632	0	10001000	00111100000000000000000
3,34375	0	10000000	1010110000000000000000

2.

Représentation IEEE 754	Représentation associée
334400000000000 ₁₆	5 × 2 ⁻²⁰⁵
7 FFFFFFFFFFFFF $_{16}$	NaN
000002000000000_{16}	1 × 2 ⁻¹⁰³³

Exercice 2

Question	Réponse
Quelle est la profondeur de la mémoire <i>m</i> ?	2 ¹³ mots
Quelle est la profondeur de la mémoire M ?	2 ¹⁸ mots
Donnez le nombre de fils du bus d'adresse de la mémoire <i>m</i> .	13 fils
Donnez le nombre de fils du bus d'adresse de la mémoire M .	18 fils
Combien de mémoires doit-on assembler en série ?	32 mémoires
Combien de mémoires doit-on assembler en parallèle ?	4 mémoires
Combien de bits d'adresse vont servir à déterminer les entrées <i>CS</i> des mémoires ?	5 bits d'adresse
Quel est le nombre total de mémoires m que contient la mémoire M ?	128 mémoires <i>m</i>
Quand la mémoire M est active, combien de mémoires m sont actives simultanément ?	4 mémoires <i>m</i>

Partiel S2 – Corrigé 3/4

Exercice 3

1.

Q2	Q1	Q0	D2	D1	D0
1	1	1	1	1	0
1	1	0	1	0	1
1	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	0	1
0	0	1	0	0	0
0	0	0	1	1	1

2.

$$\mathbf{D0} = \overline{\mathbf{Q2}}.\overline{\mathbf{Q0}} + \mathbf{Q1}.\overline{\mathbf{Q0}}$$

		Q1 Q0				
	D1	00	01	11	10	
03	0	1	0	Ф	0	
Q2	1	1	0	1	0	

$$D1 = \overline{Q1}.\overline{Q0} + Q1.Q0$$

$$D2 = Q2.Q0 + Q2.Q1 + \overline{Q2}.\overline{Q1}.\overline{Q0}$$

3. Avec le OU EXCLUSIF				
$\mathbf{D1} = \overline{\mathbf{Q1} \oplus \mathbf{Q0}}$	$\mathbf{D2} = \mathbf{Q2} \oplus \overline{\mathbf{Q0} + \mathbf{Q1}}$			

Exercice 4

Q1	Q0	J1	K1	Ј0	K0
1	0	Φ	0	1	Φ
1	1	Φ	1	Ф	0
0	1	0	Ф	Ф	1
0	0	1	Φ	0	Φ

$$\mathbf{K0} = \overline{\mathbf{Q1}}$$

$$K1 = Q0$$

$$\mathbf{J1} = \overline{\mathbf{Q0}}$$

4/4

Exercice 5

Figure 1:

Compteur asynchrone modulo 6

Figure 2:

Décompteur asynchrone modulo 14

Partiel S2 – Corrigé