

《油气人工智能基础及应用》

4.4卷积神经网络算法

董少群
dshaoqun@163.com
理学院数学系

✓ 1980年,福岛邦彦引入的Neocognitron,是第一个使用卷积和下采样的神经网络,也是卷积神经网络的雏形。福岛邦彦也被称为CNN之父。

✓ 到1989年Lecun发表了《<u>Backpropagation Applied to Handwritten Zip Code</u>》是 CNN的第一个实现网络

✓ 1998年, Yann LeCun等人提出 了LeNet-5,将BP算法应用到神 经网络结构的训练上。

CNN主要用于在图像分类、物体检测、文本检测识别、目标定位、物体分

割

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel; Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput 1989; 1 (4): 541–551.

https://v11-cold.douyinvod.com/187d95150d1c1e1f9a0e88b53a9a120b/633fbb8e/video/tos/cn/tos-cn-ve-15-alinc2/dca54aef150e4eceab06b220f7aef990/

CNN原理

卷积层

卷积层用来提取图像特征,使用卷积核,进行特征提取

7×7

矩阵

 3×3

卷积层

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	
	0

4	3	3
		3
3	3	3

Image

Convolved Feature

Image

Convolved Feature

卷积层

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

1	1	1,	0,0	0,
0	1	1,0	1,	0,0
0	0	1,	1,0	1,
0	0	1	1	0
0	1	1	0	0

4	3	4
\$,	9

4	3	4
2		

Image

Convolved Feature

Image

Convolved Feature

卷积层

$$egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix}$$

1	1	1	0	0
0,1	1,0	1,	1	0
0,0	0,1	1,0	1	1
0,,1	0,0	1,	1	0
0	1	1	0	0

4	3	4
2		
	*	

Convolved Feature

1 _{×1}	1,0	1,	0	0
0,×0	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

卷积层

卷积层

Github Repository for Interactive Convolutional Visualization

https://tinymilky.github.io/demos/conv/

卷积层

https://poloclub.github.io/cnn-explainer/

2. CNN原理——卷积层

卷积之后会使用非线性ReLU激活函数

$$ReLU(x) = \begin{cases} x & if x > 0 \\ 0 & if x \le 0 \end{cases}$$

如果不用激活函数,每一层输出都是上层输入的线性函数,很容易验证,无论神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机了。

Laplacian算子四邻域模板

Laplacian算子八邻域模板

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

四邻域是对邻域中心像素的四个方向求梯度,八邻域是对八个方向求梯度

原图

Laplacian算子4邻域

Laplacian算子8邻域

原图

图像的sobel水平梯度

图像的sobel垂直梯度

图像的sobel梯度

Sobel算子垂向

[-1	-2	-1^{-1}
0	0	0
L 1	2	1 _

Sobel算子水平

图像的Prewitt垂直梯度

Prewitt算子垂向

 $egin{bmatrix} -1 & -1 & -1 \ 0 & 0 & 0 \ 1 & 1 & 1 \end{bmatrix}$

Prewitt算子水平

图像的Prewitt水平梯度

图像的Prewitt梯度

2. CNN原理——卷积层

实际网络中,需要使用多层卷积堆叠,高层提取出更清晰的局部特征来做分类判断

池化层

https://deeplizard.com/resource/pavq7noze3

池化层

池化层是为了压缩卷积输出的特征图

12	7	0	86		12	7	0	86		
19	8	0	12	_	19	8	0	12	_	19 86
27	5	23	4	_	27	5	23	4		97 60
97	12	35	60		97	12	35	60		知乎 @龙鵬

一般来说,数值越大,特征信息越强,保留每区域的最大特征,称为最大池化

全连接层

全连接层是把特征整合到一起(高度提纯特征),方便交给最后的分类器或者回归。 fc_4

CNN实际应用

(1) 开山鼻祖—LeNet

- ·LeNet诞生于1994年,由深度学习三巨头之一的Yan LeCun提出,他也被称为卷积神经网络之父
- ·LeNet主要用来进行手写字符的识别与分类,准确率达到了98%
- ·LeNet定义了CNN的基本结构,是CNN的鼻祖,奠定了现代卷积神经网络的基础。

CNN实际应用

- ·LeNet-5 是一个非常成功的神经网络模型。
- ·基于 LeNet-5 的手写数字识别系统在 90 年代被美国很多银行使用
- ,用来识别支票上面的手写数字。
- ·LeNet-5 共有7层。

· AlexNet

CNN实际应用

- (2) 越走越深—VGGNet
- · VGG于2014年由牛津大学 科学工程系Visual Geometry Group组提出,2014年 ImageNet竞赛定位任务的第 一名和分类任务的第二名的 中的基础网络
- · VGG可以看成是加深版本的AlexNet

CNN实际应用

(2) 越走越深—VGGNet

- ·VGG拥有5段卷积,每段卷积内有2-3个 卷积层,同时每段尾部都会连接一个最大 池化层(用来缩小图片)
- · 每段内的卷积核数量一样, 越后边的段内卷积核数量越多, 依次为:64-128-256-512-512

		Convited	onfiguration			
A	A-LRN	В	С	D	Е	1
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	1
layers	layers	layers	layers	layers	layers	
	i	nput (224×2	24 RGB image	e)		→block
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	1
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool]
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128]
		conv3-128	conv3-128	conv3-128	conv3-128	block
maxpool						020011
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	block
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	Ì
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	→block
maxpool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	-
					conv3-512	block
			pool			
			4096			1
			4096			
		FC-	1000			

CNN实际应用

(3) 里程碑式创新—ResNet

- ·在2015年的ImageNet图像识别大赛中,何恺明和他的团队用"图像识别深度差残学习"系统,一举击败谷歌、英特尔、高通等业界团队,荣获第一。成为举世闻名的152层深度残差网络ResNet-152。
- ·ResNet在网络结构上做了大创新,而不再是简单的堆积层数,ResNet在卷积神经网络的新思路,绝对是深度学习发展历程上里程碑式的事件。

图: 何恺明(右)与导师汤晓鸥

本科就读于清华大学,博士毕业于香港中文大学多媒体实验室。 2011年加入微软亚洲研究院 (MSRA) 工作,主要研究计算机视觉和深 度学习。2016年,加入Facebook AI Research (FAIR) 担任研究科学家。

3. CNN实际应用

· ResNet的基础架构 - 残差块 (residual block)

原始输入: x, 希望学出的理想映射: f(x) (作为上方激活函数的输入)

左图虚线框中的部分需要直接拟合出该映射f(x),

右图虚线框中的部分则需要拟合出残差映f(x) - x。

CNN实际应用

例: ResNet-18

- ·每个模块有4个卷积层,加上第一个卷积层和最后一个全连接层,共有18层。
- ·通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。
- ·虽然ResNet的主体架构跟GoogLeNet类似, 但ResNet架构更简单,修改也更方便。

CNN实例

四、卷积神经网络算法在油气领域中的应用

通过小波分析方法,将一维测井曲线转换为多层二维图像,使CNN可以用于测井解释的深度学习成为可能。

输入图像处理

(Zhu et al., 2018, Petrophysics)

本节课结束! 谢谢!

- 一、卷积神经网络算法概述
- 二、卷积神经网络