"Smart Li-Fi: High-Accuracy Wireless Data Transmission Using Raspberry Pi"

INTRODUCTION

- traditional methods like Wi-Fi face challenges such as network congestion, interference and security risks.
- This is where Li-Fi (Light Fidelity) comes in—a technology that uses light instead of radio waves to transmit data.
- works by rapidly blinking an LED to send data, which is then picked up by a receiver like a photodiode.
- It's faster, more secure and interference-free.
- In this project, we explore how Raspberry Pi can be used to build a simple Li-Fi communication system. To make the data transfer more reliable, we implement Manchester Encoding

LITRATURE SURVEY

Serial No.	TITLE	Year of Publishing	Summary	Advantages	Disadvantages
1	Light Fidelity (Li- Fi) Prototype with Raspberry Pi	2016	 This dissertation discusses the research, construction, and testing of a Light Fidelity (Li-Fi) prototype using Raspberry Pi. The prototype aims to demonstrate the principle of VLC using accessible components. 	The prototype is compact, low cost, and uses accessible components.	LEDs are not suitable in transmission for high-speed applications due to their communication limitations.
2	Utilizing a Raspberry Pi for Transmitting Image using Li-Fi Transceiver	2020	 Using of VLC with On-Off Keying (OOK) modulation to transmit color images from a Raspberry Pi. Designing a Li-Fi transceiver using Arduino for transmitting digital data using VLC. Viability of using Python for coding and SPI for data transfer in a Li-Fi prototype. 	Application of Li-Fi for Image Transmission & Utilization of Open- Source Tools like Python	 Li-Fi technology faces challenges like: Line-of-sight requirement Limited range Sensitivity to ambient light interference
3	LiFi-Based Visible Light Communicati on and Modulation Techniques	2021	 This article discusses LiFi (Light Fidelity) technology as a high-speed communication network, focusing on its use for short-distance and local intranet communication. The article also introduces a new modulation method using Morse code, which significantly improves decoding speed and reduces bandwidth requirements. 	 LiFi has a band frequency of 200,000 GHz, which is 100 times faster than Wi-Fi. safe in areas susceptible to electromagnetic interference 	 It will take a long time for LiFi to become more affordable than Wi-Fi. LiFi has a limited range of approximately 100 meters.

PROBLEM STATEMENT

- Traditional wireless communication systems relying on radio frequencies face challenges such as bandwidth congestion, interference, and security vulnerabilities.
- There is a need for an alternative communication technology that offers higher speed, better security, and reduced interference.
- Existing visible light communication (VLC) systems often struggle with synchronization issues and data transmission errors, affecting their reliability and efficiency.

FLOW CHART

PROJECT EXECUTION STEPS

- Define the challenges of traditional wireless communication
- Study existing research on Li-Fi communication and Manchester Encoding for improved data accuracy.
- Hardware used- Raspberry Pi, LED (transmitter), Photodiode (receiver), Resistors, Transistors.
- Software used- Python for encoding, decoding, and GPIO control.
- Design the transmitter circuit, design the receiver circuit and stimulate using circuit design tools before implementation
- Convert input data to Manchester Encoding and use Raspberry Pi's GPIO to blink LED according to encoded data.

- Photodiode detects LED blinks and sends data to Raspberry Pi. Decode Manchester-encoded signals to reconstruct original data.
- Test for accuracy, range, and environmental interference. Adjust LED brightness, GPIO timing, and filtering techniques
- · Record circuit diagrams, Python code, and test results.

COMPONENTS REQUIRED AND COST ESTIMATE

• Transmitter Side-

High-Brightness LED, resistors, transistor

Receiver Side-

Photodiode, resistors, capacitors, op-amp

• Common Components & Accessories-

Breadboard, jumper wires, power supply

Processing Unit-

Raspberry Pi

Component	Quantity	Estimated Cost (INR)	
High-Brightness LED	1-2	₹20 - ₹50	
Photodiode	1	₹30 - ₹80	
Resistors (220 Ω , 10k Ω , etc.)	3-5	₹10 - ₹20	
Transistor	1	₹10 - ₹15	
Capacitors (10µF, 100nF, etc.)	2-3	₹10 - ₹20	
Breadboard	1	₹0	
Jumper Wires	4-5	₹0	
Power Supply	1	₹0	
Raspberry Pi	1	₹0	

REFERENCES

- 1. "Light Fidelity (Li-Fi) Prototype with Raspberry Pi" o Link: https://sear.unisq.edu.au/31404/1/Fergusson_P_Kist.pdf
- 2. "Utilizing a Raspberry Pi for Transmitting Image using Li-Fi Transceiver" o Link: https://www.semanticscholar.org/paper/Utilizing-a-Raspberry-Pi-forTransmitting-Image-SandeepReddy/77221f2a2a77878e90f5be713d2defb2b11756a0
- 3. "Design of Reconfiguration Based Manchester Coding Techniques for Li-Fi System" o Link: https://www.researchgate.net/publication/319647618 Design of Reconfiguration
 Based Manchester Coding Techniques for Li-Fi System
- 4. "Li-Fi Technology in Optical Communication Systems: A Review" o Link: https://www.researchgate.net/publication/381992725 LiFi Technology in Optical Communication Systems A Review www.researchgate.net/publication/381992725 LiFi Technology in Optical Communication Systems A Review
- 5. "LiFi Based Visible Light Communication" o Link: https://www.irjet.net/archives/V8/i7/IRJET-V8I7796.pdf
- 6. "Design of a Li-Fi Transceiver for Distributed Factory Planning Applications" o Link: https://inria.hal.science/hal-04030345v1/file/509923 1 En 20 Chapter.pdf Page 7 Dept of ECE, BMSCE