EE120 - Fall'19 - Lecture 12¹ Murat Arcak 17 October 2019

¹ Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Sampling

Suppose we have samples of a continuous-time signal x taken every T units of time, that is, with the sampling frequency:

$$\omega_{\rm s} = \frac{2\pi}{T}.\tag{1}$$

Can we reconstruct x(t) from the samples $\{x(nT)\}_{n\in\mathbb{Z}}$ with an appropriate interpolation?

The Sampling Theorem by Shannon and Nyquist shows that the answer is yes if *x* is bandlimited, i.e.,

$$X(\omega) = 0 \quad |\omega| > \omega_M \tag{2}$$

for some finite frequency ω_M , and the sampling frequency satisfies

$$\omega_s > 2\omega_M.$$
 (3)

The proof of this theorem, stated more precisely below, uses scaled sinc functions for interpolation:

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT) \operatorname{sinc}\left(\frac{t-nT}{T}\right).$$
 (4)

Each sinc function in this sum is centered at a sample point. Verify that (4), when evaluated at a sample point, returns the value of x at that point. This is illustrated in the figure below.

Chapter 7 in Oppenheim & Willsky

Claude Shannon (1916-2001)

Harry Nyquist (1889-1976)

Sampling Theorem: If *x* is bandlimited as in (2) and we select *T* such that the sampling frequency (1) satisfies (3), then $x_r(t) = x(t)$.

Proof: We view x_r in (4) as the output of a LTI system with the following impulse response and input:

$$h_r(t) = \operatorname{sinc}\left(\frac{t}{T}\right) \tag{5}$$

$$x_p(t) := \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT).$$
 (6)

Show that the convolution of these two indeed gives x_r in (4). Thus,

$$X_r(\omega) = H_r(\omega)X_p(\omega) \tag{7}$$

where $H_r(\omega)$ is obtained from the Fourier Transform of (5):

$$H_r(\omega) = \begin{cases} T & |\omega| < \frac{\pi}{T} \\ 0 & |\omega| > \frac{\pi}{T} = \frac{\omega_s}{2}. \end{cases}$$
 (8)

$$X_{p}(\omega) \longrightarrow \underbrace{T \xrightarrow{\omega_{s}}_{\frac{\omega_{s}}{2}}}_{T_{r}(\omega)} X_{r}(\omega)$$

Moreover, as shown in the next section,

$$X_p(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(\omega - k\omega_s)$$
 (9)

and (3) guarantees that the shifted copies in this sum do not overlap:

Thus, $X_p(\omega) = \frac{1}{T}X(\omega)$ when $|\omega| \leq \frac{\omega_s}{2}$, and (7) and (8) give

$$X_r(\omega) = X(\omega).$$

This means that the interpolated signal matches the continuous-time signal from which the samples were obtained. \Box

There are two critical steps in the proof of the Sampling Theorem above. The first is to express the sinc interpolation in (4) as low pass filtering of x_p defined in (6). The second is to use (9), which states that the Fourier Transform of $X_p(\omega)$ consists of shifted copies of $X(\omega)$. When $\omega_M < \omega_s/2$, these copies do not overlap and the lowpass filter recovers x. When the copies overlap the low-pass filter will output a signal that differs from x, a phenomenon called "aliasing."

Impulse Train Sampling

To see where (9) comes from, we note that x_p in (6) can be written as

$$x_p(t) = x(t) \cdot p(t) \tag{10}$$

where

$$p(t) := \sum_{n = -\infty}^{\infty} \delta(t - nT) \tag{11}$$

is called an "impulse train" and x_p is called the impulse train sampled signal. Both signals are illustrated below.

Recall that the Fourier series coefficients of the impulse train are $a_k=\frac{1}{T}$ for all k. Thus,

$$P(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_s) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$$
 (12)

$$X_p(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) P(j(\omega - \theta)) d\theta = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s)),$$

which proves (9).

Since sinc interpolation corresponds to ideal low pass filtering, we next explore simpler forms of interpolation and compare the resulting frequency response to the ideal low-pass filter.

We first consider a zero-order hold which creates a staircase continuoustime signal with constant values in between the samples as shown below.

The resulting signal x_0 can be viewed as the output of a LTI system with impulse response h_0 shown below when the input is x_p :

$$x_0(t) = (x_p * h_0)(t) \tag{13}$$

Thus,

$$H_0(\omega) = e^{-j\omega T/2} T \operatorname{sinc}\left(\frac{T}{2\pi}\omega\right)$$
 (14)

$$X_0(\omega) = H_0(\omega)X_p(\omega). \tag{15}$$

Linear Interpolation (First-order Hold)

$$x_1(t) = (x_p * h_1)(t)$$

Simple Examples of Aliasing

Example 1: $x(t) = \cos(\omega_0 t)$, $\omega_s = 3\omega_0 > 2\omega_0$ (no aliasing)

Example 2: $x(t) = \cos(\omega_0 t)$, $\omega_s = \frac{3\omega_0}{2} < 2\omega_0$ (aliasing)

Example 3: (phase reversal)

$$x(t) = \cos(\omega_0 t + \phi) = \frac{1}{2} e^{j\phi} e^{j\omega_0 t} + \frac{1}{2} e^{-j\phi} e^{-j\omega_0 t}, \quad \omega_s = \frac{3\omega_0}{2}$$
 (18)

$$X_{r}(\omega) = \pi e^{j\phi} \delta\left(\omega + \frac{\omega_{0}}{2}\right) + \pi e^{-j\phi} \delta\left(\omega - \frac{\omega_{0}}{2}\right)$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$x_r(t) = \frac{1}{2} \left(e^{j\left(\frac{\omega_0}{2}t - \phi\right)} + e^{-j\left(\frac{\omega_0}{2}t - \phi\right)} \right) \tag{20}$$

$$= \cos\left(\frac{\omega_0}{2}t - \phi\right) \to \text{ phase reversal} \tag{21}$$

$$=\cos\left(-\frac{\omega_0}{2}t + \phi\right) \tag{22}$$

Wagon wheel effect in movies: Wheel appears to rotate more slowly and in the opposite direction when actual speed exceeds half of the sampling rate (18-24 frames/second).

Example 4: Suppose we sample the signal

$$x(t) = \sin(1.9\pi t) \tag{23}$$

with T = 1 as shown in the figure below. It follows from Fourier analysis similar to the examples above that sinc interpolation gives²

² Show (24).

$$x_r(t) = \cos(0.1\pi t + \pi/2) = -\sin(0.1\pi t),$$
 (24)

which is evident from the samples in the figure. The negative sign of $-\sin(0.1\pi x)$ is a result of the phase reversal discussed above.

Example 5: (critical frequency)

