Symulacje komputerowe w fizyce

Ćwiczenia X – D.L.A.

Agregacja limitowana dyfuzją (DLA)

Witten & Sander (1981)

jeśli cząstka dotknie zarodka, przyłącza się doń

zarodek kryształu

błądzące przypadkowo cząstki

Po jakimś czasie...

Eksperymenty

wzrost bakterii

osadzanie elektrolityczne

palce lepkościowe

Wersja sieciowa DLA

Pierwszy przypadek: klasyczne DLA

Przeprowadź symulację agregacji limitowanej dyfuzją na siatce

Przygotuj klatki odpowiadające różnym wielkościom agregatu (np. co 50 przyłączonych cząstek) i zrób animację ilustrującą dynamikę wzrostu

użyj ok. 10⁴ cząstek

Kilka tricków (dla zaoszczędzenia czasu..)

Drugi przypadek: określone prawdopodobieństwo przyłączenia

przylep się z prawdopodobieństwem *p*, kontynuuj błądzenie z prawdopodobieństwem *1-p* (ale nie wolno wchodzić na klaster!)

spróbuj *p*=0.1, *p*=0.01

Jak teraz wygląda agregat?

Trzeci przypadek: redukcja szumu

Zamiast powiększać agregat w sposób natychmiastowy gdy tylko cząstka odwiedzi jeden z jego węzłów obwodowych, zapisuj ile razy każdy z tych węzłów został odwiedzony przez cząstkę (samą cząstkę zabijaj po tym jak dotarła do węzła obwodowego). Kiedy dla pierwszego z węzłów licznik osiągnie wartość M, dodaj go do agregatu a liczniki wyzeruj.

Spróbuj np. M=10. Jak teraz wygląda agregat?

- węzły obwodowe

