Functions

Functions

- lacklose There is an elegant way of defining a function from at set A to a set B purely in terms of a subset of $A \times B$.
- ${\color{red} \bigcirc}$ And as we have seen, members of $A\times B$ can be defined purely in terms of sets.
- But we don't often think of a function this way.
- Functions usually have a formula (or recipe) for determining the output for every input. But sometimes there is no known recipe—for example

$$F(x) = \begin{cases} 1 & x \in \mathbf{Q} \\ -1 & x \notin \mathbf{Q} \end{cases}$$

Last I checked, nobody knows the value of $F(\pi-e)$. But certainly F(107)=1 and $F(\sqrt{2})=-1$.

Functions

To define a function F with domain A and formula blob, we can write

$$F=x\in A\mapsto \mathsf{blob}.$$

In the rare cases that it's important to give the function a codomain, we can write

$$F = x \in A \mapsto \mathsf{blob} \in B$$
,

where $\operatorname{codomain}(F) = B$. Generically for a function F with domain A and codomain B, we say that F is a function from A to B.

Example

The notation

$$F = x \in [-1, 1] \mapsto 2x + 1$$

is our compact way of writing: Define F(x)=2x+1 and $\mathrm{dom}(F)=[-1,1].$

Function signature

The notation $F: A \rightarrow B$ means

- lacksquare F is a function.
- \bigcirc dom(F) = A.
- \odot codomain(F) = B.

We'll say that $A \to B$ is the *signature* of a function. The signature of a function doesn't tell us its formula. It does tell us the domain of a function and it indicates what the outputs of the function can be.

Range

Definition

For any function, we define

$$\operatorname{range}(F) = \{F(x) \mid x \in \operatorname{dom}(F)\}.$$

Thus range(F) is the set of all outputs.

Fact

Let F be a function. Then

$$[y \in \text{range}(F)] \equiv (\exists x \in \text{dom}(F)) (y = F(x)).$$

Example

Define $F=x\in [-1,1]\mapsto 2x+1$. Then $\frac{3}{2}\in \mathrm{range}(F)$ because $\frac{1}{4}\in \mathrm{dom}(F)$ and $F(\frac{1}{4})=\frac{3}{2}$.

Ontoness

The codomain of a function tells us something about its outputs, but remember that the range and the codomain of a function need not be the same. For all functions F, we have

range $F \subset \operatorname{codomain}(F)$.

Definition

A function is onto if its range and codomain are equal.

Example

Question: Is the sine function onto? **Answer** It is if its codomain is [-1,1]. But if its codomain is \mathbf{R} , then no it's not onto. There is no standard value for the codomain of the trigonometric functions, so the asking "Is the sine function onto?" is rubbish.

Equality

Definition

Functions F and G are equal dom(F) = dom(G) and for all $x \in dom(F)$, we have F(x) = G(x). Equivalently

$$(F=G)\equiv (\mathrm{dom}(F)=\mathrm{dom}(G))\wedge (\forall x\in \mathrm{dom}(F))(F(x)=G(x)).$$

The definition of function equality does not involve the codomain of the function. Thus two functions can be equal, but have unequal codomains.

Example

The functions $F=x\in [-1,1]\mapsto x\in [-1,1]$ and $G=x\in [-1,1]\mapsto x\in \mathbf{R}$ are equal, but F is onto and G is not onto. Thus ontoness isn't a property of a function.

Apply a function to a set

Definition

Let $F: A \to B$. For any subset A' of A define

$$F(A') = \{F(x) | x \in A'\}.$$

Equivalently, we have

$$y \in F(A') \equiv (\exists x \in A')(y = F(x)).$$

Theorem

For all functions F, we have $F(\operatorname{dom} F) = \operatorname{range}(F)$. Further $F(\varnothing) = \varnothing$.

Inverse image

Definition

Let $F: A \to B$. For any subset B' of B define

$$F^{-1}(B') = \{ x \in A | F(x) \in B \}.$$

Equivalently, we have

$$x \in F^{-1}(B') \equiv F(x) \in B.$$

Theorem

Let $F: X \to Y$ and let A and B be subsets of X. Then $F(A \cap B) = F(A) \cap F(B)$.

Proof

Suppose $y\in (F(A\cap B);$ we'll show that $y\in F(A)\cap F(B)$. Since $y\in (F(A\cap B),$ there is $x\in A\cap B$ such that y=F(x). But $x\in A\cap B$ implies either $x\in A$ or $x\in B.$ If $x\in A,$ we have $y\in F(A;$ similarly if $x\in B,$ we have $y\in F(B).$ So either $y\in F(A)$ or $y\in F(B)$; therefore $y\in F(A)\cap F(B).$

Suppose $y \in F(A) \cap F(B)$. We'll show that $y \in F(A \cap B)$.