Math 342W/642/742W

Recitation – Day #7 (2.25.25)

I. Linear Algebra Basics for Vectors

Define the following for a set of vectors $V = \{v_1, v_2, \dots, v_k\} \in \mathbb{R}^n$:

(i)
$$\operatorname{span}(V) := \left\{ \sum_{j=1}^k a_j \cdot \boldsymbol{v}_j \;\middle|\; \forall j,\, a_j \in \mathbb{R} \right\} = \operatorname{set} \text{ of all linear combinations of the } \boldsymbol{v}_j\text{'s}$$

(ii) linearly independent set V: $\sum_{j=1}^{k} a_j \cdot \boldsymbol{v}_j = 0 \iff a_j = 0, j \in \{1, 2, \dots, k\}$ i.e., no vector is in the span of the other vectors

II. Linear Algebra Basics for Matrices

Given an $n \times p$ matrix $A \in \mathbb{R}^{n \times p}$, define the following:

- (i) col(A) := span of the column vectors of A
- (ii) row(A) := span of the row vectors of A
- (iii) $\operatorname{rank}(A) := \# \text{ of leading 1's in } \operatorname{rref}(A) = \dim(\operatorname{co}\ell(A)) = \dim(\operatorname{row}(A))$
- (iv) $\operatorname{null}(A) := \{ \boldsymbol{x} \in \mathbb{R}^p \mid A\boldsymbol{x} = \boldsymbol{0} \}$

Define the matrix multiplication of two matrices $A \in \mathbb{R}^{n \times p}$, and $B \in \mathbb{R}^{p \times m}$:

$$(AB)_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$
 for $1 \le i \le n, \ 1 \le j \le m$

Define the **matrix-column representation** for the matrix product AB:

$$AB = A[\mathbf{b}_1 \mid \mathbf{b}_2 \mid \cdots \mid \mathbf{b}_m] = [A\mathbf{b}_1 \mid A\mathbf{b}_2 \mid \cdots \mid A\mathbf{b}_m]$$

Define the **matrix-row representation** for the matrix product AB:

$$AB = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_n \end{bmatrix} B = \begin{bmatrix} \mathbf{a}_1 \cdot B \\ \mathbf{a}_2 \cdot B \\ \vdots \\ \mathbf{a}_n \cdot B \end{bmatrix}$$

1

III. More on Rank

Provide justification for the following statements on rank:

1. Given $A \in \mathbb{R}^{n \times p}$, rank $(A) = \text{rank}(A^T)$.

$$\underline{\mathbf{Pf}}$$
: rank $(A) = \dim(\operatorname{row}(A)) = \dim(\operatorname{col}(A^T)) = \operatorname{rank}(A^T)$

2. Given $A \in \mathbb{R}^{n \times p}$, rank(A) = rank(UA) = rank(AV) whenever U, V are invertible matrices.

<u>Pf</u>: First, we show that $\operatorname{rank}(A) = \operatorname{rank}(UA)$. Since U is an invertible matrix it is a product of elementary matrices. Each elementary matrix represents an elementary row operation. Elementary row operations preserve the row space of a matrix. Hence, $\operatorname{row}(A) = \operatorname{row}(UA)$ which implies that $\operatorname{rank}(A) = \operatorname{rank}(UA)$. Now we show that $\operatorname{rank}(A) = \operatorname{rank}(AV)$ by noting that

$$\operatorname{rank}(AV) = \operatorname{rank}(AV)^T = \operatorname{rank}(V^T A^T) = \operatorname{rank}(A^T) = \operatorname{rank}(A) \quad \blacksquare$$

3. Given $A \in \mathbb{R}^{n \times p}$, and $B \in \mathbb{R}^{p \times m}$, (i) $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$, and (ii) $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$

Pf: By applying the matrix-column representation for the matrix product AB, we have that $col(AB) \subseteq col(A)$ since the columns of AB are linear combinations of the columns of A. Hence, $rank(AB) \le rank(A)$. Similarly, by applying the matrix-row representation for the matrix product AB, we have that $row(AB) \subseteq row(B)$ since the rows of AB are linear combinations of the rows of B. Hence, $rank(AB) \le rank(B)$.

IV. Equivalent Statements

2

Complete the following list of equivalent statements for $A \in \mathbb{R}^{n \times p}$ (assume n > p):

1.
$$rank(A) = p$$
.

4. The
$$p \times p$$
 matrix $A^T A$ is invertible.

2. The columns of A span
$$\mathbb{R}^p$$
.

5.
$$CA = I_p$$
 for some $p \times n$ matrix C .

3. The columns of
$$A$$
 are linearly independent in \mathbb{R}^n .

6. If
$$A\mathbf{x} = \mathbf{0}$$
 and $\mathbf{x} \in \mathbb{R}^n$, then $\mathbf{x} = \mathbf{0}$.