ALGEBRAIZATION OF FORMAL M-SCHEMES

1. Some 2-categorical limits

Consider a category \mathcal{C} and its endofunctor $T: \mathcal{C} \to \mathcal{C}$. Our goal is to construct certain 2-categorical limit associated with a pair (\mathcal{C}, T) . Consider pairs (X, u) consisting of an object X of \mathcal{C} and an isomorphism $u: T(X) \to X$ in \mathcal{C} . If (X, u) and (Y, w) are two such pairs, then a morphism $f: (X, u) \to (Y, u)$ is a morphism $f: X \to Y$ in \mathcal{C} such that the following square

$$T(X) \xrightarrow{u} X$$

$$T(f) \downarrow \qquad \qquad \downarrow f$$

$$T(Y) \xrightarrow{m} Y$$

is commutative. This data give rise to a category $\mathcal{C}(T)$. There exists a forgetful functor $\pi:\mathcal{C}(T)\to\mathcal{C}$ that sends a morphism $f:(X,u)\to(Y,w)$ to $f:X\to Y$. Moreover, there exists a natural isomorphism $\sigma:T\cdot\pi\Rightarrow\pi$ such that the component of σ on an object (X,u) of $\mathcal{C}(T)$ is u. The next result states that the data above form a certain 2-categorical limit.

Theorem 1.1. Let (C, T) be a pair consiting of a category and its endofunctor $T : C \to C$. Suppose that D is a category, $P : D \to C$ is a functor and $\tau : T \cdot P \Rightarrow P$ is a natural isomorphisms. Then there exists a unique functor $F : D \to C(T)$ such that $P = \pi \cdot F$ and $\sigma_F = \tau$.

Proof. Suppose that $F : \mathcal{D} \to \mathcal{C}(T)$ is a functor such that $P = \pi \cdot F$ and $\sigma_F = \tau$. Pick an object X of \mathcal{D} . Then we have $\pi \cdot F(X) = P(X)$ and $\sigma_{F(X)} = \tau_X$. This implies that

$$F(X) = (P(X), \tau_X : T(P(X)) \rightarrow P(X))$$

Next if $f: X \to Y$ is a morphism in \mathcal{D} , then we derive that $\pi(F(f)) = P(f)$. Hence F(f) = P(f). This implies that there exists at most one functor F satisfying the properties above. Note also that formulas

$$F(X) = (P(X), \tau_X : T(P(X)) \to P(X)), F(f) = P(f)$$

for an object X in \mathcal{D} and a morphism $f: X \to Y$ in \mathcal{D} , give rise to a functor that satisfy $P = \pi \cdot F$ and $\sigma_F = \tau$. This establishes existence and the uniqueness of F.

Assume now that the pair (C, T) consists of a monoidal category C and a monoidal endofunctor T. Then there exists a canonical monoidal structure on C(T). We define $(-) \otimes_{C(T)} (-)$ by formula

$$(X,u)\otimes_{\mathcal{C}(T)}(Y,w)=\left(X\otimes_{\mathcal{C}}Y,(u\otimes_{\mathcal{C}}w)\cdot m_{X,Y}\right)$$

where

$$m_{X,Y}: T(X \otimes_{\mathcal{C}} Y) \to T(X) \otimes_{\mathcal{C}} T(Y)$$

is the tensor preserving isomorphism of *T*. We also define the unit

$$I_{\mathcal{C}(T)} = (I, T(I) \cong I)$$

where isomorphism $T(I) \cong I$ is precisely the unit preserving isomorphism of the monoidal functor T. The associativity natural isomorphism for $(-) \otimes_{\mathcal{C}(T)} (-)$ and right, left units for $I_{\mathcal{C}(T)}$ in $\mathcal{C}(T)$ are associavity natural isomorphism and right, left units for \mathcal{C} , respectively. The structure makes a functor $\pi:\mathcal{C}(T)\to\mathcal{C}$ strict monoidal and σ a monoidal natural isomorphism. The next result states that the data with these extra monoidal structure form a 2-categorical limit in the 2-category of monoidal categories.

1

Theorem 1.2. Let (C,T) be a pair consiting of a monoidal category and its monoidal endofunctor $T:C\to T$ *C.* Suppose that \mathcal{D} is a monoidal category, $P: \mathcal{D} \to \mathcal{C}$ is a monoidal functor and $\tau: T\cdot P \Rightarrow P$ is a monoidal natural isomorphisms. Then there exists a unique monoidal functor $F: \mathcal{D} \to \mathcal{C}(T)$ such that $P = \pi \cdot F$ and $\sigma_F = \tau$ as monoidal functors and monoidal transformations.

Proof. Note that *F* must be defined as it was described in the proof of Theorem 1.1. Namely we must have

$$F(X) = (P(X), \tau_X : T(P(X)) \to P(X)), F(f) = P(f)$$

for an object X in \mathcal{C} and a morphism $f: X \to Y$ in \mathcal{C} .

Suppose now that F admits a structure of a monoidal functor such that $P = \pi \cdot F$ as monoidal functors. Let

$$\left\{m_{X,Y}^F: F(X \otimes_{\mathcal{D}} Y) \to F(X) \otimes_{\mathcal{C}(T)} F(Y)\right\}_{X,Y \in \mathcal{C}'} \phi^F: F(I_{\mathcal{D}}) \to I_{\mathcal{C}(T)}$$

be the data forming that structure. Since π is a strict monoidal functor and $P = \pi \cdot F$ as monoidal functors, we derive that for any objects X, Y of C

$$\pi(m_{X,Y}^F): P(X \otimes_{\mathcal{D}} Y) \to P(X) \otimes_{\mathcal{C}} P(Y)$$

is the tensor preserving isomorphism $m_{X,Y}^P: P(X \otimes_{\mathcal{D}} Y) \to P(X) \otimes_{\mathcal{C}} P(Y)$ of the monoidal functor P. By the same argument

$$\pi(\phi_F): P(I_{\mathcal{D}}) \to I_{\mathcal{C}(T)}$$

is the unit preserving isomorphism $\phi^P: P(I_D) \to I_{\mathcal{C}(T)}$ of P. Thus we deduce that for any objects X,Y of \mathcal{C} we have $m_{X,Y}^F = m_{X,Y}^P$ and $\phi^F = \phi^P$. This implies that there exists at most one monoidal functor F such that $P = \pi \cdot F$ as monoidal functors. On the other hand define $m_{X,Y}^F = m_{X,Y}^P$ for objects X,Y in \mathcal{C} and $\phi^F = \phi^P$. We check now that F as a sum of the following F and F are the following F are the following F and F are the following F are the following F and F are the following F and F are the following F are the following F are the following F and F are the following F and F are

equipped with these data is a monoidal functor. Fix objects X, Y in C. The square

$$T(P(X \otimes_{\mathcal{D}} Y)) \xrightarrow{\tau_{X \otimes_{\mathcal{C}} Y}} P(X \otimes_{\mathcal{C}} Y)$$

$$T(m_{X,Y}^{p}) \downarrow \qquad \qquad \downarrow^{m_{X,Y}^{p}}$$

$$T(P(X) \otimes_{\mathcal{C}} P(Y)) \xrightarrow{(\tau_{X} \otimes_{\mathcal{C}} \tau_{Y}) \cdot m_{P(X), P(Y)}^{T}} P(X) \otimes_{\mathcal{C}} P(Y)$$

is commutative due to the fact that $\tau:T\cdot P\Rightarrow P$ is a monoidal natural isomorphisms. This implies that $m_{X,Y}^F$ is a morphism in $\mathcal{C}(T)$. It follows that $m_{X,Y}^F$ is a natural isomorphism and due to the definition of associativity in C(T), we derive its compatibility with $m_{X,Y}^F$. Similarly, since the square

$$T(P(I_{\mathcal{D}})) \xrightarrow{\tau_{I_{\mathcal{D}}}} P(I_{\mathcal{D}})$$

$$T(\phi^{P}) \downarrow \qquad \qquad \downarrow \phi^{P}$$

$$T(I_{\mathcal{C}}) \xrightarrow{\phi^{T}} I_{\mathcal{C}}$$

is commutative, we deduce that ϕ^F is a morphism in C(T). By definition of left and right unit in $\mathcal{C}(T)$, we derive their compatibility with ϕ^F . This finishes the verification of the fact that F with $\{m_{X,Y}^F\}_{X,Y\in\mathcal{C}}$ and ϕ^F is a monoidal functor. Definitions of $\{m_{X,Y}^F\}_{X,Y\in\mathcal{C}}$ and ϕ^F show that the identities $P = \pi \cdot F$ holds on the level of monoidal structures. Since the 2-forgetful functor from

2-category of monoidal categories into 2-category of categories is faithful on 2-cells, the identity $\sigma_F = \tau$ of natural isomorphisms is also the identity of monoidal natural isomorphisms.

Theorem 1.3. Let (C, T) be a pair consiting of a category and its endofunctor $T : C \to C$. Assume that T preserves colomits. Then the following assertions hold.

- **(1)** $\pi: \mathcal{C}(T) \to \mathcal{C}$ creates colimits.
- **(2)** Suppose that \mathcal{D} is a category, $P: \mathcal{D} \to \mathcal{C}$ a functor preserving small colimits and $\tau: T \cdot P \Rightarrow P$ a natural isomorphisms. Then the unique functor $F: \mathcal{D} \to \mathcal{C}(T)$ such that $P = \pi \cdot F$ and $\sigma_F = \tau$ preserves small colimits.

Proof. Let I be a small category and $D: I \to \mathcal{C}(T)$ be a diagram such that the composition $\pi \cdot D: I \to \mathcal{C}$ admits a colimit given by cocone $(X, \{g_i\}_{i \in I})$. Since T preserves colimits, we derive that $(T(X), \{T(u_i)\}_{i \in I})$ is a colimit of $T \cdot \pi \cdot D: I \to \mathcal{C}$. Now $\sigma_D: T \cdot \pi \cdot D \to \pi \cdot D$ is a natural isomorphism. Hence there exists a unique arrow $u: T(X) \to X$ such that $u \cdot T(g_i) = g_i \cdot \sigma_{D(i)}$ for $i \in I$. Clearly u is an isomorphism and hence (X, u) is an object of $\mathcal{C}(T)$. Moreover, the family $\{g_i\}_{i \in I}$ together with (X, u) is a colimiting cocone over D. This proves (1). Now (2) is a consequence of (1).

Now we apply the results above to certain more general diagrams of categories.

Definition 1.4. A diagram

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

of categories and functors is called a telescope of categories.

Definition 1.5. Let

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

be a telescope of monoidal categories and monoidal cocontinuous functors. Then a 2-categorical limit of the telescope consists of a monoidal category \mathcal{C} , a family of monoidal cocontinuous functors $\{\pi_n: \mathcal{C} \to \mathcal{C}_n\}_{n \in \mathbb{N}}$ and a family of monoidal natural isomorphisms $\{\sigma_n: F_{n+1} \cdot \pi_{n+1} \Rightarrow \pi_n\}_{n \in \mathbb{N}}$ such that the following universal property holds. For any monoidal category \mathcal{D} , family $\{P_n: \mathcal{D} \to \mathcal{C}_n\}_{n \in \mathbb{N}}$ of cocontinuous monoidal functors and a family $\{\tau_n: F_n P_{n+1} \Rightarrow P_n\}_{n \in \mathbb{N}}$ of monoidal natural isomorphisms there exists a unique monoidal cocontinuous functor $F: \mathcal{D} \to \mathcal{C}$ satisfying $P_n = \pi_n \cdot F$ and $(\sigma_n)_F = \tau_n$ for every $n \in \mathbb{N}$.

Corollary 1.6. Let

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

be a telescope of monoidal categories and monoidal cocontinuous functors. Then its 2-limit exists.

Proof. We decompose the task of constructing its 2-limit as follows. First note that one may form a product $C = \prod_{n \in \mathbb{N}} C_n$. Next the functors $\{F_n\}_{n \in \mathbb{N}}$ induce an endofunctor $T = \prod_{n \in \mathbb{N}} F_n \times t$, where **1** is the terminal category (it has single object and single identity arrow) and $t : C_0 \to \mathbf{1}$ is the unique functor. Consider the category C(T). We define $\{\pi_n : C(T) \to C_n\}_{n \in \mathbb{N}}$ to be a family of functors given by coordinates of $\pi : C(T) \to C$ and $\{\sigma_n : F_n \cdot \pi_{n+1} \Rightarrow \pi_n\}_{n \in \mathbb{N}}$ to be a family of natural isomorphisms given by coordinates of $\sigma : \pi \cdot T \Rightarrow \pi$. Now this data form a 2-limit of the telescope by compilation of Theorem **1.2** and Theorem **1.3**.

2. M-EQUIVARIANT QUASI-COHERENT SHEAVES

LS TODO:

Tu trzeba zdefiniować i następnie opisać przypadek schematu z lokalnie liniowym działaniem, bo on jest najważniejszy

3. FORMAL M-SCHEMES

This section is devoted to introducing some notions from formal geometry that are central in this notes

Definition 3.1. Let **M** be a monoid *k*-scheme. A formal **M**-scheme consists of a sequence $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ of **M**-schemes together with **M**-equivariant closed immersions

$$Z_0 \longrightarrow Z_1 \longrightarrow ... \longrightarrow Z_n \longrightarrow Z_{n+1} \longrightarrow ...$$

satisfying the following assertions.

- (1) We have $Z_0 = Z_n^{\mathbf{M}}$ scheme-theoretically for every $n \in \mathbb{N}$.
- (2) Let \mathcal{I}_n be an ideal of \mathcal{O}_{Z_n} defining Z_0 . Then for every $m \le n$ the subscheme $Z_m \subset Z_n$ is defined by \mathcal{I}_n^{m+1} .

Example 3.2. Let **M** be a monoid k-scheme and let Z be a **M**-scheme. Consider a quasi-coherent ideal \mathcal{I} of fixed point subscheme $Z^{\mathbf{M}}$ of Z. Then for every $n \in \mathbb{N}$ ideal \mathcal{I}^n is **M**-equivariant and hence

$$V(\mathcal{I}) \longrightarrow V(\mathcal{I}^2) \longrightarrow \dots \longrightarrow V(\mathcal{I}^n) \longrightarrow \dots$$

is a formal **M**-scheme. We denote it by \widehat{Z} .

Definition 3.3. Let \mathbf{M} be a monoid k-scheme. Suppose that $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ and $\mathcal{W} = \{W_n\}_{n \in \mathbb{N}}$ are formal \mathbf{M} -schemes. Then a morphism $f: \mathcal{Z} \to \mathcal{W}$ of formal \mathbf{M} -schemes consists of a family of \mathbf{M} -equivariant morphisms $f = \{f_n: Z_n \to W_n\}_{n \in \mathbb{N}}$ such that the diagram

$$Z_{0} \longleftrightarrow Z_{1} \longleftrightarrow \dots \longleftrightarrow Z_{n} \longleftrightarrow Z_{n+1} \longleftrightarrow \dots$$

$$f_{0} \downarrow \qquad f_{1} \downarrow \qquad f_{n} \downarrow \qquad f_{n+1} \downarrow$$

$$W_{0} \longleftrightarrow W_{1} \longleftrightarrow \dots \longleftrightarrow W_{n} \longleftrightarrow W_{n+1} \longleftrightarrow \dots$$

is commutative.

Since group *k*-scheme is also a monoid *k*-scheme, definitions above can be applied to group *k*-schemes.

Definition 3.4. Let **G** be a group k-scheme. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **G**-scheme. Then there we have the corresponding telescope of monoidal categories

$$...\longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_{n+1})\longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_n)\longrightarrow ...\longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_2)\longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_1)\longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_0)$$

and cocontinuous monoidal functors given by restricting **G**-equivariant quasi-coherent sheaves to closed **G**-subschemes. Then we define a category $\mathfrak{Qcoh}(\mathcal{Z})$ of quasi-coherent sheaves on \mathcal{Z} as a monoidal category which is a 2-limit of the telescope above. This category is defined uniquely up to a monoidal equivalence.

Let Z be a **G**-scheme and let \mathcal{I} be a quasi-coherent ideal of $Z^{\mathbf{G}}$. We have a commutative diagram

in the category of **G**-schemes. Thus restriction functors $\mathfrak{Qcoh}_{\mathbf{G}}(Z) \to \mathfrak{Qcoh}_{\mathbf{G}}(V(\mathcal{I}^n))$ for $n \in \mathbb{N}$ induce a unique cocontinuous monoidal functor $\mathfrak{Qcoh}_{\mathbf{G}}(Z) \to \mathfrak{Qcoh}(\widehat{Z})$.

Definition 3.5. Let Z be a **G**-scheme. Then a unique cocontinuous monoidal functor $\mathfrak{Qcoh}_{\mathbf{G}}(Z) \to \mathfrak{Qcoh}(\widehat{Z})$ is called *the comparison functor*.

Definition 3.6. Let **M** be a monoid k-scheme with group of units **G**. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **M**-scheme. A **M**-scheme Z is called *an algebraization of* Z if the following two conditions are satisfied.

- (1) Z is isomorphic to \widehat{Z} in the category of formal **M**-schemes.
- (2) The comparison functor $\mathfrak{Q}\mathfrak{coh}_{\mathbf{G}}(Z) \to \mathfrak{Q}\mathfrak{coh}(\widehat{Z})$ is an equivalence of monoidal categories.

4. Locally linear M-schemes

Definition 4.1. Let **M** be a monoid *k*-scheme and let *X* be a **M**-scheme. Suppose that each point of *X* admits an open affine **M**-stable neighborhood. Then we say that *X* is *a locally linear* **M**-scheme.

Proposition 4.2. Let M be an affine monoid k-scheme and let X be a M-scheme. Suppose that there exists a quasi-coherent M-equivariant ideal \mathcal{I} on X with nilpotent sections. Consider an open subset U of X. Then the following are equivalent.

- (1) *U* is M-stable.
- **(2)** $U \cap V(\mathcal{I})$ is **M**-stable.

Proof. Let $\alpha: \mathbf{M} \times X \to X$ be the action of \mathbf{M} on X. Fix open subset U of X. If U is \mathbf{M} -stable, then $U \cap V(\mathcal{I})$ is \mathbf{M} -stable. So suppose that $U \cap V(\mathcal{I})$ is \mathbf{M} -stable. Since \mathcal{I} has nilpotent sections and \mathbf{M} is affine, we derive that closed immersions $U \cap V(\mathcal{I}) \to U$ and $\mathbf{M} \times (U \cap V(\mathcal{I})) \to \mathbf{M} \times U$ induce homeomorphisms on topological spaces. Consider the commutative diagram

where the bottom horizontal arrow is the induced action on $U \cap V(\mathcal{I})$ and vertical morphisms are homeomorphisms. The commutativity of the diagram implies that $\alpha(\mathbf{M} \times U)$ is contained set-theoretically in U. Since U is open in X, we derive that morphism of schemes $\alpha_{|\mathbf{M} \times U|}$ factors through U. Hence U is \mathbf{M} -stable.

Corollary 4.3. Let M be an affine monoid k-scheme and let X be a M-scheme. Suppose that there exists a quasi-coherent M-equivariant ideal \mathcal{I} on X such that $\mathcal{I}^n = 0$ for $n \in \mathbb{N}$. Consider an open subset U of X. Then the following are equivalent.

- **(1)** *U is* **M**-*stable and affine*.
- **(2)** $U \cap V(\mathcal{I})$ is **M**-stable and affine.

Proof. Since $\mathcal{I}^n = 0$, we derive that U is affine if and only if $U \cap V(\mathcal{I})$ is affine. Combining this with Proposition 4.2, we deduce the result.

Corollary 4.4. Let \mathbf{M} be an affine monoid k-scheme and let X be a \mathbf{M} -scheme. Suppose that there exists a quasi-coherent \mathbf{M} -equivariant ideal \mathcal{I} on X such that $\mathcal{I}^n = 0$ for $n \in \mathbb{N}$. Then X is locally linear \mathbf{M} -scheme if and only if $V(\mathcal{I})$ is locally linear \mathbf{M} -scheme.

Proof. This is a consequence of Corollary 4.3.

5. Some results on formal M-schemes

Corollary 5.1. Let **M** be an affine monoid k-scheme and let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **G**-scheme. Then Z_n is locally linear **G**-scheme for every $n \in \mathbb{N}$.

Proof. Let \mathcal{I}_n be an ideal defining Z_0 in Z_n . Since \mathcal{Z} is a formal **M**-scheme, we derive that $\mathcal{I}_n^{n+1} = 0$ and Z_0 is locally linear **M**-scheme. Thus we apply Corollary 4.4 and derive that Z_n is locally linear **M**-scheme.

We are particularly interested in formal M-schemes for monoid M with zero. For this we need the following elementary result.

Proposition 5.2. Let M be a monoid k-scheme with zero o and let X be a M-scheme. Then the following results hold.

- (1) The multiplication by zero $\mathbf{o} \cdot (-) : X \to X$ factors through $X^{\mathbf{M}}$ inducing a \mathbf{M} -equivariant retraction $r_{\mathbf{M}} : X \twoheadrightarrow X^{\mathbf{M}}$.
- (2) If N is a submonoid k-scheme of M and o is a k-point of N, then $r_M = r_N$.
- (3) If **M** is affine and X is locally linear **M**-scheme, then $r_{\mathbf{M}}$ is affine.

Proof. The multiplication $\mathbf{o} \cdot (-) : \mathfrak{P}_X \to \mathfrak{P}_X$ factors as an \mathfrak{P}_M -equivariant epimorphism $\mathfrak{P}_X \to \mathfrak{P}_{X^M}$ composed with a closed immersion $\mathfrak{P}_{X^M} \to \mathfrak{P}_X$. The \mathfrak{P}_M -equivariant epimorphism $\mathfrak{P}_X \to \mathfrak{P}_{X^M}$ corresponds to a \mathbf{M} -equivariant morphism $r_M : X \to X^M$ of k-schemes such that r_M restricted to X^M is the identity 1_{X^M} . This proves (1).

For the proof of (2) note that $\mathbf{o} \cdot (-) : \mathfrak{P}_X \to \mathfrak{P}_X$ is defined similarly for \mathbf{M} and \mathbf{N} (provided that \mathbf{o} is a k-point of \mathbf{N}). Thus $r_{\mathbf{M}} = r_{\mathbf{N}}$.

Suppose now that **M** is affine and *X* is locally linear **M**-scheme. Consider the action $\alpha : \mathbf{M} \times X \to X$ of **M** on *X*. Since *X* is locally linear and **M** is affine, we derive that α is an affine morphism of k-schemes. Now $\mathbf{o} \cdot (-) : X \to X$ is given as a composition

$$X \xrightarrow{\cong} \mathbf{o} \times X \longrightarrow \mathbf{M} \times X \xrightarrow{\alpha} X$$

The morphism above is affine (as a composition of affine morphisms). Since the composition of r with a closed immersion $X^{\mathbf{M}} \hookrightarrow X$ is $\mathbf{o} \times (-)$ and hence an affine morphism, we derive that r is affine. This proves (3).

Let us note the immediate consequence of this result.

Corollary 5.3. Let \mathbf{M} be an affine monoid k-scheme with zero and let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal \mathbf{M} -scheme. Then \mathcal{Z} is a part of the commutative diagram

in which vertical morphisms $r_n: Z_n \twoheadrightarrow Z_0$ are affine \mathbf{M} -equivariant morphisms such that $r_{n|Z_0} = 1_{Z_0}$. Moreover, if \mathbf{N} is a submonoid k-scheme of \mathbf{M} containing the zero of \mathbf{M} , then \mathcal{Z} is a formal \mathbf{N} -scheme.

Proof. This is an immediate consequence of Corollary 5.1 and Proposition 5.2.

6. Toruses and toric monoid k-schemes

Definition 6.1. Let T be an affine algebraic group over k. Suppose that there exists $n \in \mathbb{N}$ such that for every algebraically closed extension K of k there exists an isomorphism

$$T_K \cong \operatorname{Spec} K \times \underbrace{\mathbb{G}_m \times \mathbb{G}_m \times ... \times \mathbb{G}_m}_{n \text{ times}}$$

of group schemes over *K*. Then *T* is called *a torus over k*.

Example 6.2. If $T \cong \underbrace{\mathbb{G}_m \times \mathbb{G}_m \times ... \times \mathbb{G}_m}_{n \text{ times}}$, then T is a torus. We call toruses T of this form split

Example 6.3. Define

toruses.

$$S^1 = \operatorname{Spec} k[x, y]/(x^2 + y^2 - 1)$$

a scheme over k and let \mathfrak{P}_{S^1} be its functor of points. Then for every k-algebra A we have

$$\mathfrak{P}_{\mathbf{S}^1}(A) = \{(u, v) \in A \times A \mid u^2 + v^2 = 1\}$$

There is also a morphism $\mathfrak{P}_{S^1} \times \mathfrak{P}_{S^1} \to \mathfrak{P}_{S^1}$ of *k*-functors given by

$$\mathfrak{P}_{\mathbf{S}^{1}}(A) \times \mathfrak{P}_{\mathbf{S}^{1}}(A) \to \mathfrak{P}_{\mathbf{S}^{1}} \ni ((u_{1}, v_{1}), (u_{2}, v_{2})) \mapsto (u_{1}u_{2} - v_{1}v_{2}, u_{1}v_{2} + u_{2}v_{1}) \in \mathfrak{P}_{\mathbf{S}^{1}}(A)$$

for every k-algebra A. This makes \mathfrak{P}_{S^1} into a group k-functor. Thus S^1 with the group structure described above is an affine algebraic group over k. We call it *the circle group over k*.

Now suppose that char(k) = 2 and K is an algebraically closed extension of k. Consider an element $i \in K$ such that $i^2 = -1$. For every K-algebra A we have a map

$$\mathfrak{P}_{\mathbf{S}^1}(A) \ni (u,v) \mapsto u + iv \in A^*$$

First note that this map is bijective. Indeed, its inverse is given by

$$A^* \ni a \mapsto \left(\frac{1}{2}(a+a^{-1}), \frac{1}{2i}(a-a^{-1})\right) \in \mathfrak{P}_{\mathbf{S}^1}(A)$$

Moreover, the map $\mathfrak{P}_{S^1}(A) \to A^*$ is a homomorphism of abstract groups. Thus \mathfrak{P}_{S^1} restricted to the category \mathbf{Alg}_K of K-algebras is isomorphic with $\mathfrak{P}_{\operatorname{Spec} K \times \mathbb{G}_m}$ as a group k-functor. Hence

$$\mathbf{S}_K^1 \cong \operatorname{Spec} K \times \mathbf{G}_m$$

as algebraic group schemes over K. Hence S^1 is a torus over k.

Now assume that $k = \mathbb{R}$. Then abstract groups

$$\mathfrak{P}_{\mathbf{S}^1}(\mathbb{R}) = \{z \in \mathbb{C} \mid |z| = 1\} \subseteq \mathbb{C}^*, \mathbb{R}^*$$

are not isomorphic. Indeed, the left hand side group has infinite torsion subgroup and the right hand side group has torsion subgroup equal to $\{-1,1\}$. This implies that over \mathbb{R} algebraic groups \mathbf{S}^1 and G_m are not isomorphic. Hence \mathbf{S}^1 is not a split torus over \mathbb{R} .

Corollary 6.4. *Let T be a torus over k. Then T is a linearly reductive algebraic group.*

Definition 6.5. Let T be a torus over k and let \overline{T} be a linearly reductive monoid having T as the group of units. Then \overline{T} is a toric monoid over k

Theorem 6.6. Let \overline{T} be a toric monoid over k with group of units T and let K be an algebraically closed extension of k. Suppose that N is a dimension of T.

(1) The group of characters of T_K is isomorphic to \mathbb{Z}^N and there exists an abstract submonoid S of \mathbb{Z}^N such that the open immersion

$$T_K = \operatorname{Spec}\left(\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m\right) \hookrightarrow \operatorname{Spec}\left(\bigoplus_{m \in S} K \cdot \chi^m\right) = \overline{T}_K$$

is induced by the inclusion $S \to \mathbb{Z}^N$.

(2) Let $\{V_{\lambda}\}_{{\lambda}\in \mathbf{Irr}(T)}$ be a set of irreducible representation of T such that V_{λ} is in isomorphism class λ . For every λ there exists a finite subset A_{λ} of \mathbb{Z}^N such that

$$K \otimes_k V_{\lambda} = \bigoplus_{m \in A_{\lambda}} K \cdot \chi^m$$

If λ *consists of irreducible representations of* \overline{T} *, then* A_{λ} *is a subset of* S*. Moreover, we have*

$$\mathbb{Z}^N = \coprod_{\lambda \in \mathbf{Irr}(T)} A_{\lambda}$$

and $A_{\lambda_0} = \{0\}$, where λ_0 is a class of trivial representation of T.

(3) If \overline{T} has a zero, then there exists a homomorphism $f: \mathbb{Z}^N \to \mathbb{Z}$ of abelian groups such that $f_{|S \setminus \{0\}} > 0$. Moreover, f induces a closed immersion

$$\operatorname{Spec} K \times \mathbb{G}_m = \operatorname{Spec} K[\mathbb{Z}] \hookrightarrow \operatorname{Spec} \left(\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m \right) = T_K$$

of group K-schemes that extends to a zero preserving closed immersion $\mathbb{A}^1_K \hookrightarrow \overline{T}_K$ of monoid K-schemes.

Proof. Since *T* is a torus, we derive that

$$T_K = \operatorname{Spec} K \times \underbrace{\mathbb{G}_m \times \mathbb{G}_m \times ... \times \mathbb{G}_m}_{N \text{ times}} = \operatorname{Spec} \left(\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m \right)$$

and hence

$$\overline{T}_K = \operatorname{Spec}\left(\bigoplus_{s \in S} K \cdot \chi^s\right)$$

for some abstract submonoid S of \mathbb{Z}^N . Moreover, the open immersion $T_K \to \overline{T}_K$ is induced by the inclusion $S \to \mathbb{Z}^N$. This proves (1).

We have identification

$$k[T] = \bigoplus_{\lambda \in \mathbf{Irr}(T)} V_{\lambda}^{n_{\lambda}}$$

of *T*-representations, where $n_{\lambda} \in \mathbb{N} \setminus \{0\}$ for each λ . Thus

$$\bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m = K \otimes_k k[T] = \bigoplus_{\lambda \in \mathbf{Irr}(T)} (K \otimes_k V_{\lambda})^{n_{\lambda}}$$

This implies that n_{λ} = 1 for every λ and moreover, we derive that

$$K \otimes_k V_{\lambda} = \bigoplus_{m \in A_{\lambda}} K \cdot \chi^m$$

for some finite set $A_{\lambda} \subseteq \mathbb{Z}^N$. We also have $A_{\lambda_0} = \{0\}$ and $A_{\lambda} \subseteq S \setminus \{0\}$ for $\lambda \in Irr(\overline{T})$. This proves (2).

Since \overline{T} admits a zero, we derive that

$$\mathfrak{m} = \bigoplus_{m \in S \smallsetminus \{0\}} K \cdot \chi^s \subseteq \bigoplus_{m \in \mathbb{Z}^N} K \cdot \chi^m$$

is an ideal. This implies that $S \setminus \{0\}$ is closed under addition. In particular, there exists a homomorphism of abelian groups $f : \mathbb{Z}^N \to \mathbb{Z}$ such that $f_{|S \setminus \{0\}} > 0$. This implies (3).

7. COMMUTING ACTIONS

Corollary 7.1. Let G be an affine group scheme over k and let $\mathfrak G$ be a monoid k-functor. Denote by Λ the set of isomorphism classes of irreducible G-representations. Suppose that V is a representation of both G and $\mathfrak G$ and assume that their actions on V commute. Assume that V is completely reducible as a G-representation and consider the decomposition

$$V = \bigoplus_{\lambda \in \Lambda} V[\lambda]$$

onto isotypic components with respect to the action of **G**. Then for every λ in Λ the subspace $V[\lambda]$ is a \mathfrak{G} -subrepresentation of V.

Proof. Part of the structure V as the \mathfrak{G} -representation is the morphism $\rho:\mathfrak{G}\to\mathcal{L}_V$ of k-monoids. Fix k-algebra A and $g\in\mathfrak{G}(A)$. Since actions of \mathbf{G} and \mathfrak{G} on V commute, morphism $\rho(g):A\otimes_k V\to A\otimes_k V$ of A-modules is a morphism of \mathbf{G}_A -representation. According to Proposition \ref{G} : we derive that

$$\operatorname{Hom}_{\mathbf{G}_A}(A \otimes_k V[\lambda_1], A \otimes_k V[\lambda_2]) = 0$$

for distinct $\lambda_1, \lambda_2 \in \Lambda$. Thus

$$\rho(g) (A \otimes_k V[\lambda]) \subseteq A \otimes_k V[\lambda]$$

for every λ in Λ . This holds for every k-algebra A and $g \in \mathfrak{G}(A)$. Hence $V[\lambda]$ is \mathfrak{G} -subrepresentation of V.

8. Algebraization of Formal M-schemes

In this section we prove the main algebraization result. The first step is to prove the following interesting theorem.

Theorem 8.1. Let \mathbf{M} be a Kempf monoid with unit group \mathbf{G} and let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal \mathbf{M} -scheme. Then there exists a locally linear \mathbf{M} -scheme Z equipped with an action of \mathbf{M} such that \widehat{Z} is isomorphic to \mathcal{Z} .

Monoid **M** is affine and admits zero **o**. Hence by Corollary 5.3 formal **M**-scheme \mathcal{Z} corresponds to a sequence of surjections

...
$$\longrightarrow$$
 $\mathcal{A}_{n+1} \longrightarrow \mathcal{A}_n \longrightarrow$... \longrightarrow $\mathcal{A}_1 \longrightarrow \mathcal{A}_0 = \mathcal{O}_{Z_0}$

of quasi-coherent \mathcal{O}_{Z_0} -algebras with **M**-linearization such that $\mathcal{A}_n^{\mathbf{M}} = \mathcal{A}_0$ for every $n \in \mathbb{N}$ and if \mathcal{I}_n is the kernel of $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_0$ in \mathcal{A}_n , then \mathcal{I}_n^{m+1} is the kernel of $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_m$ for $m \le n$ and $n \in \mathbb{N}$. Since **M** is a Kempf monoid, there exists a closed subgroup T of the center $Z(\mathbf{G})$ such that T is a torus and the scheme-theoretic closure \overline{T} of T in **M** contains the zero \mathbf{o} of **M**. We derive by Corollary 5.3 that $\mathcal{A}_n^{\mathbf{T}} = \mathcal{A}_0$ for every $n \in \mathbb{N}$. By definition \overline{T} is a toric monoid k-scheme with T as a group of units. We start with some lemmas.

Lemma 8.1.1. Let λ be in $\operatorname{Irr}(\overline{T})$. Then there exists $n_{\lambda} \in \mathbb{N}$ such that for each $n > n_{\lambda}$ and any $\lambda_1, ..., \lambda_n \in \operatorname{Irr}(\overline{T}) \setminus \{\lambda_0\}$ the representation

$$\bigotimes_{i=1}^{n} V_{\lambda_i}$$

for $1 \le i \le n$ has trivial isotypic component of type λ . We have $n_{\lambda_0} = 0$, where λ_0 is an isomorphism type of the trivial representation of T.

Proof of the lemma. Let K be an algebraically closed extension of k. Pick A_{λ} and f as in Theorem 6.6 and define

$$n_{\lambda} = \sup_{m \in A_{\lambda}} f(m)$$

We have

$$K \otimes_k V_{\lambda_1} \otimes_k \ldots \otimes_k V_{\lambda_n} = \bigoplus_{(m_1, \ldots, m_n) \in A_{\lambda_1} \times \ldots \times A_{\lambda_n}} K \cdot \chi^{m_1 + \ldots + m_n}$$

and since $m_1, ... m_n \in A_{\lambda_1} \cup ... \cup A_{\lambda_n} \subseteq S \setminus \{0\}$ we derive that

$$f(m_1 + ... + m_n) = f(m_1) + ... + f(m_n) \ge n > n_\lambda = \sup_{m \in A_\lambda} f(m)$$

This implies that V_{λ} is not an isotypic component of $V_{\lambda_1} \otimes_k ... \otimes_k V_{\lambda_n}$.

Lemma 8.1.2. Fix λ in $Irr(\overline{T})$. Then $A_{n+1}[\lambda] \twoheadrightarrow A_n[\lambda]$ is an isomorphism for $n \ge n_{\lambda}$.

Proof of the lemma. Since $\mathcal{A}_n^{\overline{T}} = \mathcal{A}_0$ and \overline{T} is linearly reductive monoid, we derive that $\mathcal{I}_n[\lambda] = 0$ for $\lambda \notin \mathbf{Irr}(\overline{T}) \setminus {\lambda_0}$. Fix $\lambda \in \mathbf{Irr}(\overline{T})$. By Lemma 8.1.1 we derive that

$$\left(\underbrace{\mathcal{I}_{n+1} \otimes_k \mathcal{I}_{n+1} \otimes_k \dots \otimes_k \mathcal{I}_{n+1}}_{n+1 \text{ times}}\right) [\lambda] = 0$$

for $n \ge n_{\lambda}$. Note also that the image of the composition

$$\underbrace{\mathcal{I}_{n+1} \otimes_k \mathcal{I}_{n+1} \otimes_k ... \otimes_k \mathcal{I}_{n+1}}_{n \text{ times}} \longrightarrow \underbrace{\mathcal{I}_{n+1} \otimes_{\mathcal{O}_{Z_0}} \mathcal{I}_{n+1} \otimes_{\mathcal{O}_{Z_0}} ... \otimes_{\mathcal{O}_{Z_0}} \mathcal{I}_{n+1}}_{n \text{ times}} \longrightarrow \mathcal{A}_{n+1}$$

is \mathcal{I}_{n+1}^{n+1} . Since the composition above is a morphism of sheaves with \overline{T} -linearization, we derive that $\mathcal{I}_{n+1}^{n+1}[\lambda] = 0$ for $n \geq n_{\lambda}$. Hence the kernel of $\mathcal{A}_{n+1}[\lambda] \twoheadrightarrow \mathcal{A}_n[\lambda]$ is trivial. \square

Proof of Theorem. According to Corollary 7.1 and the fact that T is central in \mathbf{M} we derive that $\mathcal{A}_n[\lambda]$ is a quasi-coherent sheaf with \mathbf{M} -linearization. For $\lambda \in \mathbf{Irr}(\overline{T})$ we define

$$A[\lambda] = A_n[\lambda]$$

where $n \ge n_{\lambda}$ as in Lemma 8.1.2. We set

$$\mathcal{A} = \bigoplus_{\lambda \in \mathbf{Irr}(\overline{T})} \mathcal{A}[\lambda]$$

Clearly $\mathcal{A}[\lambda_0] = \mathcal{A}_0 = \mathcal{O}_{Z_0}$ canonically (where λ_0 is the trivial T-representation), hence \mathcal{A} is a quasi-coherent sheaf on Z_0 with \mathbf{M} -linearization. Actually $\mathcal{A} = \lim_{n \in \mathbb{N}} \mathcal{A}_n$ in the category of quasi-coherent sheaves with \mathbf{M} -linearization on Z_0 . We construct the \mathcal{O}_{Z_0} -algebra structure on \mathcal{A} . For this pick $\lambda_1, \lambda_2 \in \mathbf{Irr}(\overline{T})$. Consider the irreducible representations V_{λ_1} and V_{λ_1} in classes λ_1 and λ_2 , respectively. Suppose that $\eta_1, ..., \eta_s$ are finitely many classes in $\mathbf{Irr}(\overline{T})$ such that $V_{\lambda_1} \otimes_k V_{\lambda_2}$ can be completely decomposed onto irreducible representation in these classes. Since the image of the multiplication $\mathcal{A}_n[\lambda_1] \otimes_{\mathcal{O}_{Z_0}} \mathcal{A}_n[\lambda_2] \to \mathcal{A}_n$ on \mathcal{A}_n is also the image of a morphism

$$\mathcal{A}_n[\lambda_1] \otimes_k \mathcal{A}_n[\lambda_2] \longrightarrow \mathcal{A}_n[\lambda_1] \otimes_{\mathcal{O}_{Z_0}} \mathcal{A}_n[\lambda_2] \longrightarrow \mathcal{A}_n$$

we deduce that it is contained in $\bigoplus_{i=1}^{s} A_n[\eta_i]$. By Lemma 8.1.2 all these multiplications for $n \ge \sup\{n_{\lambda_1}, n_{\lambda_2}, n_{\eta_1}, ..., n_{\eta_s}\}$ can be identified. Now we define

$$\mathcal{A}[\lambda_1] \otimes_{\mathcal{O}_{Z_0}} \mathcal{A}[\lambda_2] \to \bigoplus_{i=1}^s \mathcal{A}[\eta_i] \subseteq \mathcal{A}$$

as a morphism induced by the multiplication morphism for any $n \ge \sup\{n_{\lambda_1}, n_{\lambda_2}, n_{\eta_1}, ..., n_{\eta_s}\}$. This gives an \mathcal{O}_{Z_0} -algebra structure on \mathcal{A} , so \mathcal{A} is in fact the limit of $\{\mathcal{A}_n\}_{n\in\mathbb{N}}$ is the category of quasi-coherent algebras with **M**-linearization. Note that from the description of \mathcal{A} it follows that for every $n \in \mathbb{N}$ we have a surjective morphism $p_n : \mathcal{A} \twoheadrightarrow \mathcal{A}_n$ of algebras. We denote its kernel by \mathcal{J}_n and we put $\mathcal{J} = \mathcal{J}_0$. The natural injection $\mathcal{O}_{Z_0} = \mathcal{A}_0 \to \mathcal{A}$ is a section of p_0 , so that we have

$$\mathcal{J} = \bigoplus_{\lambda \in \mathbf{Irr}(\overline{T}) \setminus \{\lambda_0\}} \mathcal{A}[\lambda]$$

Recall that we denote by \mathcal{I}_n the kernel of $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_0 = \mathcal{O}_{Z_0}$ for $n \in \mathbb{N}$. Then $\mathcal{I}_n = \mathcal{J}/\mathcal{J}_n$. Fix $m \in \mathbb{N}$ and consider $n \in \mathbb{N}$ such that $n \ge m$. Since \mathcal{Z} is a formal **M**-scheme, the sheaf \mathcal{I}_n^{m+1} is the kernel of the morphism $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_m$. Thus

$$\mathcal{J}_m/\mathcal{J}_n = \mathcal{I}_n^{m+1} = (\mathcal{J}^{m+1} + \mathcal{J}_n)/\mathcal{J}_n$$

Both \mathcal{J}_m and \mathcal{J}^{m+1} are $\operatorname{Irr}(\overline{T})$ -graded and for given $\lambda \in \operatorname{Irr}(\overline{T})$ and for $n \geq n_\lambda$ the isotypic component $\mathcal{J}_n[\lambda]$ is zero by Lemma 8.1.2. Hence $\mathcal{J}_m = \mathcal{J}^{m+1}$ for every $m \in \mathbb{N}$. We define

$$Z = \operatorname{Spec}_{Z_0} \mathcal{A}$$

and we denote by $\pi: Z \to Z_0$ the structural morphism. The scheme Z inherits a **M**-action from A. For every $n \in \mathbb{N}$ the zero-set of \mathcal{J}^{n+1} in A is a **M**-scheme isomorphic to $Z_n = \operatorname{Spec}_{Z_0} A_n$. Hence Z is isomorphic to \widehat{Z} .

Theorem 8.2. Let **M** be a Kempf monoid and let Z be a locally noetherian **M**-scheme. If \widehat{Z} is locally noetherian, then the canonical morphism $\pi: Z \to Z_0$ is of finite type. In particular, Z is locally noetherian.

9. Nibylandia

Now a **G**-coherent sheaf on \mathcal{Z} corresponds to a sequence

$$... \longrightarrow \mathcal{M}_{n+1} \longrightarrow \mathcal{M}_n \longrightarrow ... \longrightarrow \mathcal{M}_1 \longrightarrow \mathcal{M}_0$$

such that \mathcal{M}_n is a coherent sheaf on \mathcal{A}_0 with **G**-action and the kernel of $\mathcal{M}_{n+1} \twoheadrightarrow \mathcal{M}_n$ is $\mathcal{I}_{n+1,n}$ \mathcal{M}_{n+1} for every $n \in \mathbb{N}$.

9.1. Kempf monoids.

Definition 9.1. Let **M** be a monoid *k*-scheme. Suppose that the following conditions hold.

- (1) M is affine, geometrically connected and geometrically normal.
- (2) There exists zero o in M.
- (3) There exists a torus *T* over *k* contained in the center of **M** such that the closure **cl**(*T*) of *T* in **M** contains **o**.

Then **M** is called *Kempf monoid*.

LS TODO:

Tutaj szanowni państwo kończy się uporządkowany świat i zaczyna się...

LS TODO:

Tutaj trzeba zdefiniować monoidy Kempfa. Najpierw trzeba porządnie spisać dowód algebraizacji, żeby mieć poprawną definicję

LS TODO: (or rather Jelisiejew :D) Let **M** be a Kempf monoid and let **G** be its group of units. If V is a representation of **G** and λ is a class in Λ , then we denote by $V[\lambda] \subseteq V$ the sum of all irreducible T-subpresentations of V of isomorphism type λ . Since T is a central subgroup of **G**, we derive by Proposition \ref{G} that $V[\lambda]$ is a **G**-representation of V.

Suppose that Z is a k-scheme with trivial action of M. If \mathcal{F} is a quasi-coherent sheaf on Z equipped with G-action, then we denote by $\mathcal{F}[\lambda]$ a sheaf given by

$$U \mapsto \mathcal{F}(U)[\lambda]$$

for every open affine subset U of Z. Then $\mathcal{F}[\lambda] \subseteq \mathcal{F}$ is a **G**-quasi-coherent subsheaf of \mathcal{F} .

LS TODO: Locally noetherian trzeba włączyć i jechać z

koksami

dalej

<u>Proof.</u> Assume that each scheme Z_n is locally Noetherian over k. Then \mathcal{I}_n is a coherent \mathcal{A}_n -module, thus $\mathcal{I}_n^i/\mathcal{I}^{i+1}$ is a coherent \mathcal{A}_0 -module for all i. The series

$$0=\mathcal{I}_n^{n+1}\subset\mathcal{I}^n\subset\ldots\subset\mathcal{I}\subset\mathcal{A}_n$$

has coherent subquotients, hence \mathcal{A}_n is a coherent \mathcal{O}_{Z_n} -algebra. Thus $\mathcal{A}[\lambda]$ is a coherent \mathcal{O}_{Z_0} -module for every $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$. The claim that π is of finite type is local on $Z^{\mathbf{G}}$, hence we may assume that $Z^{\mathbf{G}}$ is quasi-compact. The sheaf $\mathcal{J}/\mathcal{J}^2 \subseteq \mathcal{A}_1$ is coherent so there exists a finite set $\lambda_1, \ldots, \lambda_r \in \operatorname{Irr}(\overline{\mathbf{G}}) \setminus \{\lambda_0\}$ such that the morphism

$$\bigoplus_{i=1}^r \mathcal{A}[\lambda_i] \to \mathcal{J}/\mathcal{J}^2$$

induced by $\mathcal{A} \twoheadrightarrow \mathcal{A}_2$ is surjective. Let $\mathcal{B} \subset \mathcal{A}$ be the quasi-coherent \mathcal{O}_{Z_0} -subalgebra generated by the coherent subsheaf $\mathcal{M} := \bigoplus_{i=1}^r \mathcal{A}[\lambda_i] \subseteq \mathcal{A}$. Let \overline{k} be an algebraic closure of k and let $\mathcal{A}' = \mathcal{A} \otimes \overline{k}$. Fix a Kempf's torus over \overline{k} and the associated grading $\mathcal{A}' = \bigoplus_{i \geq 0} \mathcal{A}'[i]$ as in Corollary ??. Then $\mathcal{J} = \bigoplus_{i \geq 1} \mathcal{A}'[i]$ is a graded ideal and $\mathcal{J}/\mathcal{J}^2$ is generated by the graded (coherent) subsheaf $\mathcal{M}' = \bigoplus_{i=1}^r \mathcal{A}'[\lambda_i]$. By graded Nakayama's lemma, the ideal \mathcal{J} itself is generated by (the elements of) \mathcal{M}' . Then by induction on the degree, \mathcal{A}' is generated by \mathcal{M}' as an algebra. In other words, $\mathcal{A}' = \mathcal{B} \otimes \overline{k}$. Thus also $\mathcal{A} = \mathcal{B}$ and so \mathcal{A} is of finite type over \mathcal{O}_{Z_0} .

REFERENCES

[Lang, 2005] Lang, S. (2005). *Algebra*. Graduate Texts in Mathematics. Springer New York. [Mac Lane, 1998] Mac Lane, S. (1998). *Categories for the working mathematician*, volume 5 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition.