МГТУ им. Н. Э. Баумана, кафедра ИУ5 курс "Методы машинного обучения"

Лабораторная работа №1

«Создание «истории данных» (Data Storytelling) »

выполнил:

Широков П.Ю.

Группа: ИУ5-21М

Вариант: 15

ПРОВЕРИЛ:

Гапанюк Ю.Е.

Задание:

- Выбрать набор данных (датасет);
- Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:
 - 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию;
 - 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков;
 - 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов;
 - 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика;
 - 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.
- Сформировать отчет и разместить его в своем репозитории на github.

Описание набора данных:

Дата - день, месяц, год;

Осадки - кол-во осадков за день;

Максимальная температура - максимальная температура за день;

Минимальная температура - минимальная температура за день;

Ветер - средняя скорость ветра за день;

 Π огода - оценка дня (солнечный, снежный, дождливый, туманный или с моросящим дождем)

Импортирование необходимых библиотек

```
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from google.colab import drive drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive is attempt to forcibly remoun
```

Исследуем основные характеристики датасета

WING	weather
4.7	drizzle
4.5	rain
2.3	rain
4.7	rain
6.1	rain
	4.7 4.5 2.3 4.7

Веделим новые столбцы, разбив дату

8.0

11.7

2

7.2

2.3

rain

1 2012

```
1.3
                                8.9
                                          2.8
                                                6.1
                                                         rain
                                                                  1 2012
   [7] data.shape
        (1461, 7)
   [8] data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1461 entries, 0 to 1460
       Data columns (total 7 columns):
                          Non-Null Count Dtype
        # Column
                            -----
           precipitation 1461 non-null float64
                           1461 non-null float64
1461 non-null float64
1461 non-null float64
1461 non-null object
        1
            temp max
        2
           temp_min
        3
            wind
        4
            weather
                           1461 non-null int64
        5 month
           year
                           1461 non-null
       dtypes: float64(4), int64(2), object(1)
       memory usage: 80.0+ KB
      data.isnull().sum()
   precipitation
       temp_max
       temp_min
                         0
       wind
       weather
                        0
       month
                         0
       year
                         0
       dtype: int64
[10] data['weather'].value_counts()
                   641
       rain
                   640
       sun
                  101
       fog
                   53
       drizzle
                   26
       snow
       Name: weather, dtype: int64
[11] plt.figure(figsize=(13,10))
       sns.heatmap(data.corr(), cmap = "Oranges", annot=True, linewidth=3)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fe948d50890>

2

3

8.0

20.3

11.7

12.2

7.2

5.6

2.3

4.7

rain

rain

1 2012

1 2012

Из матрицы корреляции видно, что наиболее сильно коррелируют максимальная и минимальная температуры

```
[18] plt.figure(figsize=(10, 10))
    df = data.groupby(by = 'weather').count()
    labels = df.index
    sizes = df['precipitation']
    plt.pie(sizes, labels=labels, autopct='%1.1f%%', wedgeprops=dict(width=0.5),startangle=180)
    plt.show()
```


Из круговой диаграммы видно, что в неком городе больше всего дождливых дней, чуть меньше солнечных. А снег там почти не выпадает

```
[26] wind_by_month = data.pivot_table(index=['month'], values='wind', columns='year')
```


Разбив и сгрупировав среднюю скорость ветра по годам и месяцам можно увидеть ее изменения с 2012 по 2015 года в разне месяцы. Можно заметить, что летом и осенью скорость ветра из года в год мало отличается, а вот весной и зимой погода более непредсказуемая.

```
[ ]
    df1 = data.groupby(by = 'weather').agg({"wind":"mean"})
    df1.plot(kind='bar', figsize=(10,10))
    #sns.plot(x="weather", y="speed wind", data=df1) #, order = data['weather'].value_counts().index)
    #plt.xticks(rotation=90)
```

```
df1 = data.groupby(by = 'weather').agg({"wind":"mean"})
df1.plot(kind='bar', figsize=(10,10))
#sns.plot(x="weather", y="speed wind", data=df1) #, order = data['weather'].value_counts().index)
#plt.xticks(rotation=90)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fef099db450>

Из гистограммы видно, что во время выпадения снега наблюдается наибольшая скорость ветра, а во время тумана и мороси наименьшая

```
[14] weather_by_temp = data[['weather','temp_max','temp_min']]
weather_by_temp['temp_avg'] = (weather_by_temp['temp_max'] + weather_by_temp['temp_min'])/2
weather_by_temp.head()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

```
[14] weather_by_temp = data[['weather','temp_max','temp_min']]
weather_by_temp['temp_avg'] = (weather_by_temp['temp_max'] + weather_by_temp['temp_min'])/2
weather_by_temp.head()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#!

	weather	temp_max	temp_min	temp_avg
0	drizzle	12.8	5.0	8.90
1	rain	10.6	2.8	6.70
2	rain	11.7	7.2	9.45
3	rain	12.2	5.6	8.90
4	rain	8.9	2.8	5.85

(matplotlib.axes._subplots.AxesSubplot at 0x7fef0532f050>

Изходя из графика боксплота можно сделать вывод какая средняя дневная температура сопрововождает какие дни: солнечные, дождливые, туманные и т.д. Самый большой температурный размах в солнечные дни. Но чаще всего температура колеблется в дни, когда дождь моросит, о чем говорит длинное тело. Самая большая медиана в солнечные дни, самая малая в снежные.

На основании проведенного анализа можно сделать следующий вывод:

- В городе N солнечных и дождливых дней равное кол-во;
- Самый сильный сильный ветер наблюдается во время снега;
- Летом и осенью скорость ветра мало меняется из года в год;
- Если температура выше 14 градусов, то сильный дождь маловероятен.