Amendments to the Claims:

This listing will replace all prior versions, and listings, of the claims in the application.

Listing of the Claims:

1. (Currently Amended) A method for coupling an organomagnesium compound of the formula: R¹MgX¹ with an aromatic ether compound of the formula: Ar¹-OR² to produce a coupled aromatic compound of the formula: Ar¹-R¹, said method comprising admixing the organomagnesium compound with the aromatic ether compound in the presence of a nickel catalyst comprising a phosphino-ligand of the formula PR³R⁴R⁵ under conditions sufficient to produce the coupled aromatic compound, wherein

R¹ is selected from the group consisting of aryl and heteroaryl;

R² is selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, aryl, aralkyl and a moiety of the formula -SiR⁹R¹⁰R¹¹, wherein each of R⁹, R¹⁰ and R¹¹ is independently a hydrocarbon moiety:

Ar¹ is aryl or heteroaryl;

X¹ is a magnesium metal ligand;

each of R³ and R⁴ is independently a saturated hydrocarbon moiety having from one to about twelve carbon atoms; and

- R⁵ is selected from the group consisting of a saturated hydrocarbon moiety having from one to about twelve carbon atoms and an aryl moiety having from six to fourteen carbon ring atoms.
- 2. (Öriginal) The method of claim 1, wherein the saturated hydrocarbon moiety is selected from the group consisting of C_1 - C_{12} alkyl and C_3 - C_{10} cycloalkyl.
- 3. (Original) The method of claim 2, wherein each of R³ and R⁴ is independently selected from the group consisting of isopropyl, methyl, tert-butyl, isobutyl, neopentyl and cyclohexyl.

- 4. (Original) The method of claim 3, wherein R⁵ is selected from the group consisting of isopropyl, methyl, tert-butyl, iso-butyl, neopentyl, cyclohexyl and phenyl.
- 5. (Original) The method of claim 4, wherein each of the phosphino-ligand is independently selected from the group consisting of triisopropylphosphine, dicyclohexylphenylphosphine, di-tert-butylmethylphosphine, triisobutylphosphine, trineopenylphosphine and tricyclohexylphosphine.
 - 6. (Original) The method of claim 1, wherein Ar¹ is aryl.
- 7. (Original) The method of claim 6, wherein Ar¹ is optionally substituted phenyl.
 - 8. (Original) The method of claim 7, wherein R² is methyl or ethyl.
 - 9. (Original) The method of claim 8, wherein R¹ is aryl.
- 10. (Original) The method of claim 9, wherein R¹ is optionally substituted phenyl.
- 11. (Original) The method of claim 1, wherein the admixture further comprises at least about 2 equivalents of phosphine compound relative to the amount of the nickel catalyst, wherein the phosphine compound is of the formula: PR³R⁴R⁵, wherein R³, R⁴ and R⁵ are as defined in claim 1.
- 12. (Original) The method of claim 1 further comprising admixing the organomagnesium compound with the aromatic ether compound in a non-aromatic reaction solvent.

Express Mail No. EV 506438575 US
Office Action Response
Application Serial No. 10/615,810
Page 4 of 8

13. (Original) A process for producing a substituted aromatic compound of the formula:

Ar¹-R¹

said process comprising admixing an organomagnesium compound of the formula: R¹Mg X¹ and an aromatic ether compound of the formula: Ar¹-OR² in a non-aromatic solvent in the presence of a nickel catalyst comprising a phosphino-ligand to produce the substituted aromatic compound, wherein

R¹ is selected from the group consisting of aryl and heteroaryl;

R² is selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, aryl, aralkyl and a moiety of the formula -Si R⁹R¹⁰R¹¹, wherein each of R⁹, R¹⁰ and R¹¹ is independently a hydrocarbon moiety;

Ar¹ is aryl or heteroaryl; and

X¹ is a magnesium metal ligand.

- 14. (Original) The process of claim 13, wherein the phosphino-ligand comprises a plurality of saturated hydrocarbons.
- 15. (Original) The process of claim 14, wherein the phosphino-ligand is of the formula:

 $PR^3R^4R^5$,

wherein

each of R³ and R⁴ is independently a saturated hydrocarbon moiety having from one to about twelve carbon atoms; and

- R⁵ is selected from the group consisting of a saturated hydrocarbon moiety having from one to about twelve carbon atoms and an aryl moiety having from six to fourteen carbon ring atoms.
- 16. (Original) The process of claim 14, wherein each saturated hydrocarbon is independently selected from the group consisting of C_1 - C_{12} alkyl and C_3 - C_{10} cycloalkyl.

Express Mail No. EV 506438575 US
Office Action Response
Application Serial No. 10/615,810
Page 5 of 8

- 17. (Original) The method of claim 13, wherein the non-aromatic solvent is selected from the group consisting of THF, DME, 1,4-dioxane, THP, MTBE, diethyl ether, dicyclohexyl methyl amine, t-AmOMe, diisopropyl ether, DEM, di-n-butyl ether, and a combination of two or more solvents thereof.
- 18. (Original) The method of claim 17, wherein the non-aromatic solvent is selected from the group consisting of t-AmOMe, disopropyl ether, DEM, di-n-butyl ether, and a combination of two or more solvents thereof.

Claims 19-27 (Canceled).