Feuille 1 Calcul matriciel

Les feuilles d'exercices sont découpées en trois types d'exercice :

- Les *indispensables* : à savoir faire en autonomie.
- Les exercices d'application : pour mieux maîtriser et comprendre le cours.
- Pour aller plus loin : exercices présentant des développements mathématiques ou des études de modélisations de phénomènes issues d'autres disciplines.

Exercice 1 (Produits de matrices). On considère :

$$X = \begin{pmatrix} 1 \\ -1 \end{pmatrix} , Z = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} , A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
$$B = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} , D = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}$$

Quels sont les produits matriciels possibles? Les calculer.

Solution: En regardant les tailles (m, n) des matrices, les produits que l'on peut former sont AX, BX, DZ, AB, BA, AA, BB, DD; en effet il faut que le nombre de lignes de la seconde matrice soit égal au nombre de colonnes de la première.

Le calcul donne
$$AX = \begin{pmatrix} -1\\1 \end{pmatrix}, BX = \begin{pmatrix} -2\\-1 \end{pmatrix}, DZ = \begin{pmatrix} 13\\7\\11 \end{pmatrix};$$
puis $AB = \begin{pmatrix} -1&3\\-2&3 \end{pmatrix}, BA = \begin{pmatrix} 1&-1\\2&1 \end{pmatrix}, AA = \begin{pmatrix} 5&4\\4&5 \end{pmatrix}, BB = \begin{pmatrix} 1&0\\0&1 \end{pmatrix};$
enfin $DD = \begin{pmatrix} 13&9&14\\11&11&14\\11&9&16 \end{pmatrix}.$

Exercice 2 (Identités remarquables). Soient $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

- 1. Calculer AB et BA.
- 2. Calculer $(A+B)^2$.
- 3. Calculer $A^2 + 2AB + B^2$ et $A^2 + AB + BA + B^2$ et conclure.
- 4. Calculer, s'ils existent, les inverses de A et de B.

Solution:

1. On a
$$AB = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$
 et $BA = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$.

2. On a
$$(A+B)^2 = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}^2 = \begin{pmatrix} -1 & 4 \\ -2 & -1 \end{pmatrix}$$
.

3. On a $A^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ et $B^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. On calcule donc $A^2 + 2AB + B^2 = \begin{pmatrix} -2 & 4 \\ -2 & 0 \end{pmatrix}$ et $A^2 + AB + BA + B^2 = \begin{pmatrix} -1 & 4 \\ -2 & -1 \end{pmatrix} = (A+B)^2$.

Bilan : les identités remarquables ne sont plus vraies avec des matrices. De fait, elles ne sont vérifiées que si AB = BA.

4. Pour l'inverse de A, on cherche une matrice $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que M.A (ou A.M! seul cas de commutativité avérée) = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. On a

$$M.A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right). \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} a & a+b \\ c & c+d \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Donc, on a $M = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = A^{-1}$

Pour l'inverse de B, on cherche une matrice $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que $M.B=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. On a

$$M.B = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right). \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) = \left(\begin{array}{cc} -b & a \\ -d & c \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Donc, on a $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = B^{-1}$.

Exercice 3 (La transposée). Soit M une matrice dans $M_{n,m}(\mathbb{R})$, $M=(m_{ij})$. La matrice transposée de M, M^t , est par définition la matrice où la coordonnée ij est la coordonnée m_{ji} de M. Dans $M_{3,4}(\mathbb{R})$

soient
$$A = \begin{pmatrix} -5 & -4 & -3 & -2 \\ -1 & 0 & 1 & 2 \\ 3 & 4 & 5 & 6 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 2 & 1 & 0 & -1 \\ 1 & 0 & -1 & 2 \end{pmatrix}$. Écrire la matrice A^t puis calculer BA^t .

Solution: On a
$$A^t = \begin{pmatrix} -5 & -1 & 3 \\ -4 & 0 & 4 \\ -3 & 1 & 5 \\ -2 & 2 & 6 \end{pmatrix}$$
, puis $BA^t = \begin{pmatrix} -2 & 6 & 14 \\ -12 & -4 & 4 \\ -6 & 2 & 10 \end{pmatrix}$

Applications

Exercice 4 (Matrices de rotation). Soit θ un nombre réel. On considère la matrice

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

1. On considère un vecteur non nul $v = \begin{pmatrix} a \\ b \end{pmatrix}$ de \mathbb{R}^2 . Montrer qu'il existe r > 0 et $\phi \in \mathbb{R}$ tel que $v = \begin{pmatrix} r\cos(\phi) \\ r\sin(\phi) \end{pmatrix}.$

2

- 2. Calculer $R_{\theta} \cdot v$ en fonction de r, ϕ et θ .
- 3. Montrer que l'application $\mathbb{R}^2 \to \mathbb{R}^2$, donnée par $v \to R_{\theta}v$, est la rotation de centre 0 et d'angle θ .
- 4. On considère un autre nombre réel θ' . Calculer $R_{\theta}R_{\theta'}$. Quelle est l'application de $\mathbb{R}^2 \to \mathbb{R}^2$ correspondante?

Solution:

- 1. Posons z = a + ib. En posant r = |z| et $\phi = \arg(z)$, on a $z = re^{i\phi}$, puis $a = \operatorname{Re}(z) = r\cos(\phi)$ et $b = \operatorname{Im}(z) = r\sin(\phi)$.
- 2. On calcule

$$R_{\theta}v = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} r\cos(\phi) \\ r\sin(\phi) \end{pmatrix} = \begin{pmatrix} r(\cos(\phi)\cos(\theta) - \sin(\phi)\sin(\theta)) \\ r(\cos(\phi)\sin(\theta) + \sin(\phi)\cos(\theta)) \end{pmatrix} =$$
$$= \begin{pmatrix} r\cos(\phi + \theta) \\ r\sin(\phi + \theta) \end{pmatrix}$$

On remarque qu'il est bon de connaître ses formules de trigonométrie.

- 3. Revenons à la notation complexe. En posant $\binom{c}{d} = R_{\theta}v$ et w = c + id, d'après les questions 1 et 2 nous avons que $z = re^{i\phi}$ et $w = re^{i(\phi+\theta)} = e^{i\phi}z$. La distance entre v et 0, qui vaut r, est donc la même que celle entre $R_{\theta}v$ et 0, et l'angle entre v et $R_{\theta}v$ est égal à ϕ . L'application $v \to R_{\theta}v$ est donc la rotation de centre 0 et angle θ .
- 4. Option 1 : On calcule :

$$R_{\theta}R_{\theta'} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \cos(\theta') & -\sin(\theta') \\ \sin(\theta') & \cos(\theta') \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta')\cos(\theta) - \sin(\theta')\sin(\theta) & -(\cos(\theta')\sin(\theta) + \sin(\theta')\cos(\theta)) \\ \cos(\theta')\sin(\theta) + \sin(\theta')\cos(\theta) & \cos(\theta')\cos(\theta) - \sin(\theta')\sin(\theta) \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta + \theta') & -\sin(\theta + \theta') \\ \sin(\theta + \theta') & \cos(\theta + \theta') \end{pmatrix} = R_{\theta + \theta'}$$

Option 2 : la rotation de centre 0 et d'angle θ suivie de la rotation de centre 0 et d'angle θ' est la rotation de centre 0 et d'angle $\theta + \theta'$. Donc $R_{\theta}R_{\theta'} = R_{\theta+\theta'}$.

Exercice 5 (Traitement d'images). On considère le triangle dont les coordonnées des sommets sont :

 x
 1
 2
 3

 y
 1
 2
 1

Soient

$$A = \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ C = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \ D = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix},$$

Quelles sont les figures géométriques obtenues en appliquant respectivement les matrices A, B, C et D aux sommets du triangle? Quelles sont les images de l'intérieur du triangle?

Solution:

1. Il faut calculer le produit de matrices

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

2. Il faut calculer le produit de matrices

$$\begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 8 \\ 1 & 2 & 5 \end{pmatrix}$$

3. Il faut calculer le produit de matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -1 \end{pmatrix}$$

4. Il faut calculer le produit de matrices

$$\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 0.366025 & 0.732051 & 2.09808 \\ 1.36603 & 2.73205 & 2.36603 \end{pmatrix}$$

Exercice 6 (La suite de Fibonacci). On considère la suite $(f_n)_{n\in\mathbb{N}}$ définie par $f_0=0,\ f_1=1$ et pour tout $n\geq 0,\ f_{n+2}=f_{n+1}+f_n.$ On note $M=\begin{pmatrix} 0&1\\1&1 \end{pmatrix}.$ Soit k un entier naturel.

1. Calculer par récurrence, en fonction des éléments de la suite $(f_n)_{n\in\mathbb{N}}$, la valeur de $M^k\begin{pmatrix}0\\1.\end{pmatrix}$

2. Exprimer les coefficients de M^k en fonction de f_{k-1} , f_k et f_{k+1} .

Solution:

- 1. Montrons, par récurrence sur $k \geq 0$, que $M^k \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} f_k \\ f_{k+1} \end{pmatrix}$ Initialisation : Pour k = 0, on a bien $M^0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \end{pmatrix}$ Hérédité : Soit $k \geq 0$ tel que $M^k \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} f_k \\ f_{k+1} \end{pmatrix}$. On a alors $M^{k+1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = M(M^k \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = M(M^k \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = M(M^k \begin{pmatrix} f_k \\ f_{k+1} \end{pmatrix} = \begin{pmatrix} f_{k+1} \\ f_k + f_{k+1} \end{pmatrix} = \begin{pmatrix} f_{k+1} \\ f_{k+2} \end{pmatrix}$.
- 2. D'après la question 1, $M^k \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} f_k \\ f_{k+1} \end{pmatrix}$, donc la deuxième colonne de M^k est $\begin{pmatrix} f_k \\ f_{k+1} \end{pmatrix}$. Or, puisque $M^{k+1} = M^k \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, la deuxième colonne de M^k est égale à la première colonne de M^{k+1} . On déduit que, si $k \geq 0$, on a $M^k = \begin{pmatrix} f_{k-1} & f_k \\ f_k & f_{k+1} \end{pmatrix}$.

Pour aller plus loin

Exercice 7 (Puissance *n*-ième). On considère une matrice diagonale $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ (a et b réels) et la matrice $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- 1. Montrer par récurrence sur $n \ge 1$, que $D^n = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix}$ et $T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.
- 2. Calculer la matrice $X = D + T I_2$.
- 3. Montrer que $X^n = \begin{pmatrix} a^n & c_n \\ 0 & b^n \end{pmatrix}$, avec $c_n = \sum_{i=0}^{n-1} a^i b^{n-i-1}$.

<u>Solution</u>:

- 1. Montrons, par récurrence sur $n \ge 1$, que $D^n = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix}$ et $T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.

 Initialisation : Lorsque n = 1, on a bien $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ et $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

 Hérédité : Soit $n \ge 1$ tel que $D^n = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix}$ et $T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$. On a alors $D^{n+1} = D^n D = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b^n \end{pmatrix} = \begin{pmatrix} a^{n+1} & 0 \\ 0 & b^{n+1} \end{pmatrix}$. De plus, $T^{n+1} = T^n T = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n+1 \\ 0 & 1 \end{pmatrix}$.
- 2. On a $X = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$.
- 3. Montrons, par récurrence sur $n \ge 1$, que $X^n = \begin{pmatrix} a^n & c_n \\ 0 & b^n \end{pmatrix}$, avec $c_n = \sum_{i=0}^{n-1} a^i b^{n-i-1}$. Initialisation: On a bien $X^1 = X = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$. Donc $c_1 = 1$.

Hérédité : Soit
$$n \ge 1$$
 tel que $X^n = \begin{pmatrix} a^n & c_n \\ 0 & b^n \end{pmatrix}$ avec $c_n = \sum_{i=0}^{n-1} a^i b^{n-i-1}$.

On calcule alors $X^{n+1} = X^n X = \begin{pmatrix} a^n & c_n \\ 0 & b^n \end{pmatrix} \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix} = \begin{pmatrix} a^{n+1} & a^n + bc_n \\ 0 & b^{n+1} \end{pmatrix}$. On a donc $c_{n+1} = a^n + b \sum_{i=0}^{n-1} a^i b^{n-i-1} = a^n + \sum_{i=0}^{n-1} a^i b^{n-i} = \sum_{i=0}^{(n+1)-1} a^i b^{(n+1)-i-1}$.

Exercice 8. On considère la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Pour tout $n \ge 1$, calculer A^n .

Solution: On commence par

$$A^{2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} * \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} = 3.A$$

Donc,

$$A^3 = A.A^2 = A.3.A = 3.A^2 = 3.3.A = 3^2.A$$

Par récurrence,

$$A^n = 3^{n-1}.A$$