2007 19. The classical experiment on the scattering of alpha particles from a thin gold foil suggested that

A positive charges were evenly distributed throughout the atom

B atomic nuclei were very small and positively charged

C neutrons existed in the nucleus

D alpha particles were helium nuclei

E alpha particles were hydrogen nuclei.

2008 19. Compared with a proton, an alpha particle has

A twice the mass and twice the charge

B twice the mass and the same charge

C four times the mass and twice the charge

D four times the mass and the same charge

E twice the mass and four times the charge.

2011 19. The following statement represents a nuclear decay.

$$^{214}_{x}$$
Pb $\rightarrow ^{y}_{83}$ Bi $+ ^{o}_{z}$ e

Which row in the table shows the correct values of x, y and z for this decay?

	x	у	z
A	82	210	-1
В	82	214	-1
C	84	214	1
D	85	210	2
Е	85	214	2

2008 20. For the nuclear decay shown, which row of the table gives the correct values of x, y and z?

$${}^{214}_{x}$$
Pb $\longrightarrow {}^{y}_{83}$ Bi + ${}^{0}_{8}$ e

	x	У	2
A	85	214	2
В	84	214	1
C	83	210	4
D	82	214	-1
E	82	210	-1

2012 18. Which of the following statements describes a spontaneous nuclear fission reaction?

A
$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{144}_{56}Ba + ^{90}_{36}Kr + 2^{1}_{0}n$$

B
$${}^{7}_{3}\text{Li} + {}^{1}_{1}\text{H} \rightarrow {}^{4}_{2}\text{He} + {}^{4}_{2}\text{He}$$

$$C = {}^{3}_{1}H + {}^{2}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n$$

D
$$^{226}_{88}$$
Ra $\rightarrow ^{222}_{86}$ Rn + $^{4}_{2}$ He

E
$$^{216}_{84}$$
Po $\rightarrow ^{216}_{84}$ Po + γ

2010 18. The following statement describes a fusion reaction.

$${}^{2}_{1}H + {}^{2}_{1}H \longrightarrow {}^{3}_{2}He + {}^{1}_{0}n + energy$$

The total mass of the particles before the reaction is 6.684×10^{-27} kg.

The total mass of the particles after the reaction is 6.680×10^{-27} kg.

The energy released in this reaction is

A
$$6.012 \times 10^{-10}$$
 J

B
$$6.016 \times 10^{-10} \text{ J}$$

C
$$1.800 \times 10^{-13} \text{ J}$$

D
$$3.600 \times 10^{-13} \text{ J}$$

E
$$1.200 \times 10^{-21}$$
 J.

2012 19. The statement below represents a nuclear reaction.

$${}_{1}^{3}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$$

The total mass on the left hand side is $8.347 \times 10^{-27} \, kg$.

The total mass on the right hand side is 8.316×10^{-27} kg.

The energy released during one nuclear reaction of this type is

A
$$9.30 \times 10^{-21}$$
 J

B
$$2.79 \times 10^{-12}$$
 I

C
$$7.51 \times 10^{-10}$$
 J

D
$$1.50 \times 10^{-9}$$
 J

E
$$2.79 \times 10^{15}$$
 J.

- 2013 19. A student makes the following statements about Rutherford's model of the atom.
 - I The nucleus has a relatively small diameter compared with that of the atom.
 - II Most of the mass of the atom is concentrated in the nucleus.
 - III The nucleus consists of positive and negative charges.

Which of these statements is/are correct?

- A I only
- B II only
- C III only
- D I and II only
- E I, II and III
- 2013 20. Part of a radioactive decay series is shown in the diagram.

The symbols X_1 to X_5 represent nuclides in this series.

A student makes the following statements about the decay series.

- I Nuclides X₂ and X₃ contain the same number of protons.
- II Nuclide X₁ decays into nuclide X₂ by emitting an alpha particle.
- III Nuclide X₃ decays into nuclide X₄ by emitting a beta particle.

Which of these statements is/are correct?

- A I only
- B II only
- C III only
- D II and III only
- E I, II and III

2014 10. An isotope of uranium decays into an isotope Revised of protactinium in two stages as shown.

$$^{238}_{92}U \xrightarrow{}^{234}_{90}Th \xrightarrow{}^{234}_{stage 2}Pa$$

Which row in the table identifies the radiations which must be emitted at each stage?

	stage 1	stage 2	
A	alpha	gamma	
В	beta	gamma	
C	gamma	beta	
D	beta	alpha	
Е	alpha	beta	

2014 11. The following statement represents a fission Revised reaction.

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{139}_{57}$ La + $^{95}_{42}$ Mo + $^{1}_{0}$ n + $^{10}_{-1}e$

The total mass of the particles before the reaction is 391.848×10^{-27} kg.

The total mass of the particles after the reaction is 391.478×10^{-27} kg.

The energy released in this reaction is

- A 3.53×10^{-8} I
- B 3.52×10^{-8} J
- C 3.33×10^{-11} J
- D $1.67 \times 10^{-11} \text{ J}$
- E 1.11×10^{-19} J.

2015 12. The following statement describes a fusion reaction.

$${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n + energy$$

The total mass of the particles before the reaction is $6 \cdot 684 \times 10^{-27} \, kg$.

The total mass of the particles after the reaction is $6.680 \times 10^{-27} \, \text{kg}$.

The energy released in the reaction is

- A $6.012 \times 10^{-10} \text{J}$
- B $6.016 \times 10^{-10} \text{J}$
- C $1.800 \times 10^{-13} J$
- D $3.600 \times 10^{-13} J$
- E $1.200 \times 10^{-21} \text{ J}.$

2016 10. The last two changes in a radioactive decay series are shown below.

A Bismuth nucleus emits a beta particle and its product, a Polonium nucleus, emits an alpha particle.

$$_{Q}^{P}$$
Bi $\xrightarrow{\beta}_{decay}$ $_{S}^{R}$ Po $\xrightarrow{\alpha}_{decay}$ $_{82}^{208}$ Pb

Which numbers are represented by P, Q, R and S?

	Р	Q	R	S
Α	210	83	208	81
В	210	83	210	84
С	211	85	207	86
D	212	83	212	84
E	212	85	212	84

2017 8. The following statement represents a nuclear reaction.

$$^{256}_{103}$$
Lr \rightarrow Z+ $^{4}_{2}$ He

Nucleus Z is

- $A = {}^{252}_{101}Md$
- B 252 No
- C 256 101 Md
- D 260 Db
- $E_{103}^{252}Lr.$

2018 11. A nuclear fission reaction is represented by the following statement.

$${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{56}^{141}Ba + X + 3{}_{0}^{1}n$$

- The nucleus represented by X is
- $A = {}^{96}_{40}Zr$
- B 92/36Kr
- $C = {}^{97}_{40}Zr$
- $D \quad {}^{93}_{36} Kr$
- $E_{40}^{94}Zr.$
- 2019 14. A nucleus represented by $^{223}_{87} \text{Fr}$ decays by beta emission.
 - The symbol representing the nucleus formed as a result of this decay is
 - A 224 Fr
 - B 222 Fr
 - C 223 Ra
 - $D \quad {}^{223}_{86} Rn$
 - E $^{224}_{88}$ Ra.