Produto cartesiano e Conjuntos das partes

José Antônio O. Freitas

MAT-UnB

Dados dois conjuntos A e B,

Dados dois conjuntos A e B, definimos o produto cartesiano

$$A \times B =$$

$$A \times B = \{(x, y)\}$$

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y),

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$,

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x,y)=(z,t)$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam A =
$$\{1, 2\}$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$.

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B =$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3),$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4),$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), \}$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), \}$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4)$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

 $B \times A =$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

 $B \times A = \{(3,1), (2,3), (2,4), (2,5), (2,5),$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

 $B \times A = \{(3,1), (3,2),$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

 $B \times A = \{(3,1), (3,2), (4,1),$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

 $B \times A = \{(3,1), (3,2), (4,1), (4,2),$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

 $B \times A = \{(3,1), (3,2), (4,1), (4,2), (5,1),$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

 $B \times A = \{(3,1), (3,2), (4,1), (4,2), (5,1), (5,2)\}$

Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados (x, y), $(z, t) \in A \times B$, temos

$$(x, y) = (z, t)$$
 se, e somente se, $x = z$ e $y = t$.

Sejam
$$A = \{1, 2\}$$
 e $B = \{3, 4, 5\}$. Então

$$A \times B = \{(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)\}$$

 $B \times A = \{(3,1), (3,2), (4,1), (4,2), (5,1), (5,2)\}$

1) Do Exemplo anterior

1) Do Exemplo anterior vemos que em geral $A \times B \neq B \times A$.

- 1) Do Exemplo anterior vemos que em geral $A \times B \neq B \times A$.
- 2) No caso em que A = B

- 1) Do Exemplo anterior vemos que em geral $A \times B \neq B \times A$.
- 2) No caso em que A = B vamos escrever

- 1) Do Exemplo anterior vemos que em geral $A \times B \neq B \times A$.
- 2) No caso em que A = B vamos escrever

$$A \times A = A^2 =$$

- 1) Do Exemplo anterior vemos que em geral $A \times B \neq B \times A$.
- 2) No caso em que A = B vamos escrever

$$A \times A = A^2 = \{(x, y) \mid x, y \in A\}.$$

- 1) Do Exemplo anterior vemos que em geral $A \times B \neq B \times A$.
- 2) No caso em que A = B vamos escrever

$$A \times A = A^2 = \{(x, y) \mid x, y \in A\}.$$

De modo geral:

- 1) Do Exemplo anterior vemos que em geral $A \times B \neq B \times A$.
- 2) No caso em que A = B vamos escrever

$$A \times A = A^2 = \{(x, y) \mid x, y \in A\}.$$

De modo geral:

$$\underbrace{A \times A \times \cdots \times A}_{n \text{ vezes}} = A^n =$$

- 1) Do Exemplo anterior vemos que em geral $A \times B \neq B \times A$.
- 2) No caso em que A = B vamos escrever

$$A \times A = A^2 = \{(x, y) \mid x, y \in A\}.$$

De modo geral:

$$\underbrace{A \times A \times \cdots \times A}_{n \text{ vezes}} = A^n = \{(x_1, x_2, \dots, x_n) \mid x_1, x_2, \dots, x_n \in A\}$$

- 1) Do Exemplo anterior vemos que em geral $A \times B \neq B \times A$.
- 2) No caso em que A = B vamos escrever

$$A \times A = A^2 = \{(x, y) \mid x, y \in A\}.$$

De modo geral:

$$\underbrace{A \times A \times \cdots \times A}_{n \text{ vezes}} = A^n = \{(x_1, x_2, \dots, x_n) \mid x_1, x_2, \dots, x_n \in A\}$$

para $n \geq 2$.

Para qualquer conjunto A,

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) =$$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de **conjunto das partes** de A.

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

1)
$$A = \emptyset$$
,

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

1)
$$A = \emptyset$$
, $\mathcal{P}(A) = \{\emptyset\}$;

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}$,

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}, \mathcal{P}(B) =$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}, \ \mathcal{P}(B) = \{\emptyset, \}$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $P(A) = {\emptyset}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}$,

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}, \mathcal{P}(C) =$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}, \mathcal{P}(C) = \{\emptyset, \}$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}, \mathcal{P}(C) = \{\emptyset, \{\alpha\}, \{\alpha\}\})$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = {\alpha, \beta, \gamma}, \mathcal{P}(C) = {\emptyset, {\alpha}, {\beta},$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $P(A) = {\emptyset}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = {\alpha, \beta, \gamma}, \mathcal{P}(C) = {\emptyset, {\alpha}, {\beta}, {\gamma}},$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = {\alpha, \beta, \gamma}, \mathcal{P}(C) = {\emptyset, {\alpha}, {\beta}, {\gamma}, {\alpha, \beta},$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $\mathcal{P}(A) = \{\emptyset\}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}, P(C) = \{\emptyset, \{\alpha\}, \{\beta\}, \{\gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\alpha, \gamma\},$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $P(A) = {\emptyset}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}, \mathcal{P}(C) = \{\emptyset, \{\alpha\}, \{\beta\}, \{\gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\alpha, \gamma$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $P(A) = {\emptyset}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}, \mathcal{P}(C) = \{\emptyset, \{\alpha\}, \{\beta\}, \{\gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, C\};$

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $P(A) = {\emptyset}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}, \mathcal{P}(C) = \{\emptyset, \{\alpha\}, \{\beta\}, \{\gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, C\};$
- 4) $D = \mathbb{R}$,

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $P(A) = {\emptyset}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}, \mathcal{P}(C) = \{\emptyset, \{\alpha\}, \{\beta\}, \{\gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, C\};$
- 4) $D = \mathbb{R}$, $\mathcal{P}(D) = \{X \mid X \subseteq \mathbb{R}\}$,

Para qualquer conjunto A, indicamos por $\mathcal{P}(A)$ o conjunto

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

que é chamado de conjunto das partes de A.

- 1) $A = \emptyset$, $P(A) = {\emptyset}$;
- 2) $B = \{x\}, \mathcal{P}(B) = \{\emptyset, \{x\}\};$
- 3) $C = \{\alpha, \beta, \gamma\}, \mathcal{P}(C) = \{\emptyset, \{\alpha\}, \{\beta\}, \{\gamma\}, \{\alpha, \beta\}, \{\alpha, \gamma\}, \{\beta, \gamma\}, C\};$
- 4) $D = \mathbb{R}$, $\mathcal{P}(D) = \{X \mid X \subseteq \mathbb{R}\}$, por exemplo $\mathbb{Q} \in \mathcal{P}(D)$.