Mathematical Methods and Algorithms for Signal Processing

Todd K. Moon
Utah State University
Wynn C. Stirling
Brigham Young University

PRENTICE HALL Upper Saddle River, NJ 07458

This previously included a CD. The CD contents can now be accessed at www.prenhall.com/moon. Thank You.

Contents

I	Intro	oductio	on and Foundations	1
1	Intro		and Foundations	3
	1.1	What	is signal processing?	3
	1.2	Mathe	ematical topics embraced by signal processing	. 5
	1.3	Mathe	ematical models	6
	1.4	Mode	els for linear systems and signals	7
		1.4.1	Linear discrete-time models	. 7
		1.4.2	Stochastic MA and AR models	12
		1.4.3	Continuous-time notation	20
		1.4.4	Issues and applications	21
		1.4.5	Identification of the modes	26
		1.4.6	Control of the modes	28
	1.5		tive filtering	28
		1.5.1	System identification	29
		1.5.2	Inverse system identification	29
		1.5.3	Adaptive predictors	29
		1.5.4	Interference cancellation	30
	1.6		ian random variables and random processes	31
		1.6.1	Conditional Gaussian densities	36
	1.7		ov and Hidden Markov Models	37
		1.7.1	Markov models	37
		1.7.2	Hidden Markov models	39
	1.8		aspects of proofs	41
		1.8.1	Proof by computation: direct proof	43
		1.8.2	Proof by contradiction	45
	1.0	1.8.3	Proof by induction	46
	1.9		plication: LFSRs and Massey's algorithm	48
		1.9.1	Issues and applications of LFSRs	50
		1.9.2	Massey's algorithm	52
	1.10	1.9.3	Characterization of LFSR length in Massey's algorithm	53
	1.10		ses	58
	1.11	Keiere	ences	67
II	Vect	or Spa	ces and Linear Algebra	69
2	Signa	l Space		71
	2.1	Metric	spaces	72
		2.1.1	Some topological terms	76
		2.1.2	Sequences, Cauchy sequences, and completeness	78

vi Contents

		2.1.3 Technicalities associated with the L_p and L_{∞} spaces	82
	2.2	Vector spaces	84
		2.2.1 Linear combinations of vectors	87
		2.2.2 Linear independence	88
		2.2.3 Basis and dimension	90
		2.2.4 Finite-dimensional vector spaces and matrix notation	93
	2.3	Norms and normed vector spaces	93
		2.3.1 Finite-dimensional normed linear spaces	97
	2.4	Inner products and inner-product spaces	97
		2.4.1 Weak convergence	99
	2.5	Induced norms	99
	2.6	The Cauchy–Schwarz inequality	100
	2.7	Direction of vectors: Orthogonality	101
	2.8	Weighted inner products	103
		2.8.1 Expectation as an inner product	105
	2.9	Hilbert and Banach spaces	106
	2.10	Orthogonal subspaces	107
	2.11	Linear transformations: Range and nullspace	108
	2.12	Inner-sum and direct-sum spaces	110
	2.13	Projections and orthogonal projections	113
	2.13	2.13.1 Projection matrices	115
	2.14	The projection theorem	116
	2.15	Orthogonalization of vectors	118
	2.16	Some final technicalities for infinite dimensional spaces	121
	2.17	Exercises	121
	2.18	References	129
ı	Panra	esentation and Approximation in Vector Spaces	130
,	3.1	The approximation problem in Hilbert space	130
	3.1	3.1.1 The Grammian matrix	133
	3.2	The orthogonality principle	135
	3.2	3.2.1 Representations in infinite-dimensional space	136
	3.3	Error minimization via gradients	137
	3.3 3.4	Matrix representations of least-squares problems	138
	3.4	• • •	140
		3.4.1 Weighted least-squares	
	2.5	3.4.2 Statistical properties of the least-squares estimate	140
	3.5	Minimum error in Hilbert-space approximations	141
		Applications of the orthogonality theorem	
	3.6	Approximation by continuous polynomials	143
	3.7	Approximation by discrete polynomials	145
	3.8	Linear regression	147
	3.9	Least-squares filtering	149
		3.9.1 Least-squares prediction and AR spectrum	
		estimation	154
	3.10	Minimum mean-square estimation	156
	3.11	Minimum mean-squared error (MMSE) filtering	157
	3.12	Comparison of least squares and minimum mean squares	161
	3.13	Frequency-domain optimal filtering	162
		3.13.1 Brief review of stochastic processes and	
		Laplace transforms	162
		Ladiace transforms	102

		3.13.2 Two-sided Laplace transforms and their	
			165
		decompositions	169
			171
		3.13.4 Solution to the Wiener–Hopf equation	174
			176
		3.13.6 Mean-square error	176
	3.14		179
		A dual approximation problem	182
	3.15	Minimum-norm solution of underdetermined equations	183
	3.16	Iterative Reweighted LS (IRLS) for L_p optimization	
	3.17	Signal transformation and generalized Fourier series	186
	3.18	Sets of complete orthogonal functions	190
		3.18.1 Trigonometric functions	190
		3.18.2 Orthogonal polynomials	190
		3.18.3 Sinc functions	193
	2.40	3.18.4 Orthogonal wavelets	194
	3.19	Signals as points: Digital communications	208
		3.19.1 The detection problem	210
		3.19.2 Examples of basis functions used in digital	
		communications	212
		3.19.3 Detection in nonwhite noise	213
	3.20	Exercises	215
	3.21	References	228
4	Lines	ar Operators and Matrix Inverses	229
•	4.1	Linear operators	230
		4.1.1 Linear functionals	231
	4.2	Operator norms	232
		4.2.1 Bounded operators	233
			235
		4.2.3 Matrix norms	235
	4.3		237
	1.5	J 1	239
	4.4		239
	4.5	· ·	242
	1.5	4.5.1 The four fundamental subspaces with	
		• • • • • • • • • • • • • • • • • • •	246
	4.6	Some properties of matrix inverses	247
	4.0		248
	4.7	Some results on matrix rank	249
	7.7		250
	4.8		251
	4.9	· ·	251
	4.10		253
	4.11		258
	4.11		259
		**	261
	4.12	- 1	264
	4.12	_	267
	112	**	268
	4.13		
	4.14	References	274

5	Some	e Importa	ant Matrix Factorizations	275
	5.1	The LU	J factorization	275
		5.1.1	Computing the determinant using the LU factorization	277
		5.1.2	Computing the LU factorization	278
	5.2	The Ch	olesky factorization	283
		5.2.1	Algorithms for computing the Cholesky factorization	284
	5.3	Unitary	matrices and the QR factorization	285
		5.3.1	Unitary matrices	285
		5.3.2	The QR factorization	286
		5.3.3	QR factorization and least-squares filters	286
		5.3.4	Computing the QR factorization	287
		5.3.5	Householder transformations	287
		5.3.6	Algorithms for Householder transformations	291
		5.3.7	QR factorization using Givens rotations	293
		5.3.8	Algorithms for QR factorization using Givens rotations	295
		5.3.9	Solving least-squares problems using Givens rotations	296
		5.3.10	Givens rotations via CORDIC rotations	297
		5.3.11	Recursive updates to the QR factorization	299
	5.4	Exercis	es	300
	5.5	Referen	nces	304
_		_		
6	_		nd Eigenvectors	305
	6.1		alues and linear systems	305
	6.2		dependence of eigenvectors	308
	6.3	_	alization of a matrix	309
		6.3.1	The Jordan form	311
		6.3.2	Diagonalization of self-adjoint matrices	312
	6.4		try of invariant subspaces	316
	6.5		try of quadratic forms and the minimax principle	318
	6.6		al quadratic forms subject to linear constraints	324
	6.7		rshgorin circle theorem	324
			Application of Eigendecomposition methods	
	6.8	Karhun	en-Loève low-rank approximations and principal methods	327
		6.8.1	Principal component methods	329
	6.9	Eigenfil	ters	330
		6.9.1	Eigenfilters for random signals	ੱ330
		6.9.2	Eigenfilter for designed spectral response	332
		6.9.3	Constrained eigenfilters	334
	6.10	Signal s	subspace techniques	336
		6.10.1	The signal model	336
		6.10.2	The noise model	337
		6.10.3	Pisarenko harmonic decomposition	338
		6.10.4	MUSIC	339
	6.11	General	ized eigenvalues	340
		6.11.1	An application: ESPRIT	341
	6.12	Charact	eristic and minimal polynomials	342
		6.12.1	Matrix polynomials	342
		6.12.2	Minimal polynomials	344
	6.13	Moving	the eigenvalues around: Introduction to linear control	344
	6.14	_	ss constrained channel capacity	347

6.15	Computation of eigenvalues and eigenvectors	350
	6.15.1 Computing the largest and smallest eigenvalues	350
	6.15.2 Computing the eigenvalues of a symmetric matrix	351
	6.15.3 The QR iteration	352
6.16	Exercises	355
6.17	References	368
The S	Singular Value Decomposition	369
7.1	_	369
7.2		372
		373
		375
	•	377
R	Applications of the SVD	
7.6	System identification using the SVD	378
7.7	Total least-squares problems	381
	7.7.1 Geometric interpretation of the TLS solution	385
7.8	- · · · · · · · · · · · · · · · · · · ·	386
7.9	•	389
7.10	Computation of the SVD.	390
7.11		392
7.12	References	395
Some	Special Matrices and Their Applications	396
	· · · · · · · · · · · · · · · · · ·	396
		399
		400
		402
		403
		407
		408
8.4		409
		410
0.0		
		412
		413
8.6		416
	•	417
	• •	418
8.9	References	421
Kron	ecker Products and the Vec Operator	422
		422
		425
·		
	9.7.1 Past Hadamard transforms	4/7
	9.2.1 Fast Hadamard transforms	425 426
93	9.2.2 DFT computation using Kronecker products	426
9.3 9.4		
	6.16 6.17 The S 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 Some 8.1 8.2 8.3	6.15.1 Computing the largest and smallest eigenvalues 6.15.2 Computing the eigenvalues of a symmetric matrix 6.15.3 The QR iteration 6.16 Exercises 6.17 References The Singular Value Decomposition 7.1 Theory of the SVD 7.2 Matrix structure from the SVD 7.3 Pseudoinverses and the SVD 7.4 Numerically sensitive problems 7.5 Rank-reducing approximations: Effective rank Applications of the SVD 7.6 System identification using the SVD 7.7 Total least-squares problems 7.7.1 Geometric interpretation of the TLS solution 7.8 Partial total least squares 7.9 Rotation of subspaces 7.10 Computation of the SVD 7.11 Exercises 7.12 References Some Special Matrices and Their Applications 8.1 Modal matrices and parameter estimation 8.2 Permutation matrices 8.3 Toeplitz matrices and some applications 8.3.1 Durbin's algorithm 8.3.2 Predictors and lattice filters 8.3.3 Optimal predictors and Toeplitz inverses 8.3.4 Toeplitz equations with a general right-hand side 8.4 Vandermonde matrices 8.5.1 Relations among Vandermonde, circulant, and companion matrices 8.5.1 Relations among Vandermonde, circulant, and companion matrices 8.5.1 Relations among Vandermonde, circulant, and companion matrices 8.5.2 Asymptotic equivalence of the eigenvalues of Toeplitz and circulant matrices 8.6 Triangular matrices 8.7 Properties preserved in matrix products 8.8 Exercises 8.9 References Kronecker Products and the Vec Operator 9.1 The Kronecker product and Kronecker sum 9.2 Some applications of Kronecker products

x Contents

Ш	Det	ection,	Estimation, and Optimal Filtering	435
10	Introduction to Detection and Estimation, and Mathematical Notation			
	10.1		ion and estimation theory	437
		10.1.1	Game theory and decision theory	
		10.1.2	Randomization	
		10.1.3	Special cases	
	10.2	Some r	notational conventions	442
		10.2.1	Populations and statistics	443
	10.3	Condit	ional expectation	444
	10.4	Transfo	ormations of random variables	445
	10.5	Sufficie	ent statistics	446
		10.5.1	Examples of sufficient statistics	450
		10.5.2	Complete sufficient statistics	
	10.6	Expone	ential families	453
	10.7	Exercis	ses	. 456
	10.8	Refere	nces	459
11	Detec	tion The	eorv	460
	11.1		action to hypothesis testing	
	11.2		n-Pearson theory	
	11.2	11.2.1	Simple binary hypothesis testing	
		11.2.2	The Neyman–Pearson lemma	
		11.2.3	Application of the Neyman–Pearson lemma	
		11.2.4	The likelihood ratio and the receiver operating	
			characteristic (ROC)	467
		11.2.5	A Poisson example	
		11.2.6	Some Gaussian examples	
		11.2.7	Properties of the ROC	
	11.3		n-Pearson testing with composite binary hypotheses	
	11.4	•	decision theory	
		11.4.1	The Bayes principle	0
		11.4.2	The risk function	
		11.4.3	Bayes risk	
		11.4.4	Bayes tests of simple binary hypotheses	
		11.4.5	Posterior distributions	
		11.4.6	Detection and sufficiency	
		11.4.7	Summary of binary decision problems	
	11.5		M-ary problems	
	11.6		um-likelihood detection	
	11.7		simations to detection performance: The union bound	
	11.8		nt Tests	
	11.0	11.8.1	Detection with random (nuisance) parameters	
	11.9		tion in continuous time	
		11.9.1		
	11.10		nax Bayes decisions	
	11.10	11.10	•	
		11.10	•	
		11.10		

Contents xi

		11.10.4 Determining the least favorable prior	528
		11.10.5 A minimax example and the minimax theorem	529
	11.11		532
	11.12	References	541
12		nation Theory	542
	12.1	The maximum-likelihood principle	542
	12.2	ML estimates and sufficiency	547
	12.3	Estimation quality	548
		12.3.1 The score function	548
		12.3.2 The Cramér–Rao lower bound	550
		12.3.3 Efficiency	552
		12.3.4 Asymptotic properties of maximum-likelihood	
		estimators	553
		12.3.5 The multivariate normal case	556
		12.3.6 Minimum-variance unbiased estimators	559
		12.3.7 The linear statistical model	561
	12.4	Applications of ML estimation	561
		12.4.1 ARMA parameter estimation	561
		12.4.2 Signal subspace identification	565
		12.4.3 Phase estimation	566
	12.5	Bayes estimation theory	568
	12.6	Bayes risk	569
		12.6.1 MAP estimates	573
	ر د	12.6.2 Summary	574
		12.6.3 Conjugate prior distributions	574
		12.6.4 Connections with minimum mean-squared	
		estimation	577
		12.6.5 Bayes estimation with the Gaussian distribution	578
	12.7	Recursive estimation	580
		12.7.1 An example of non-Gaussian recursive Bayes	582
	12.8	Exercises	584
	12.9	References	590
13	The k	Kalman Filter	591
13	13.1	The state-space signal model	591
	13.2	Kalman filter I: The Bayes approach	592
	13.3	Kalman filter II: The innovations approach	595
	15.5	13.3.1 Innovations for processes with linear observation models.	596
		13.3.2 Estimation using the innovations process	597
		13.3.3 Innovations for processes with state-space models	598
		13.3.4 A recursion for $P_{t t-1}$	599
		13.3.5 The discrete-time Kalman filter	601
		13.3.6 Perspective	602
		13.3.7 Comparison with the RLS adaptive filter algorithm	603
	13.4	Numerical considerations: Square-root filters	604
	13.4	Application in continuous-time systems	606
	13.3	13.5.1 Conversion from continuous time to discrete time	606
		13.5.2 A simple kinematic example	606
	13.6	Extensions of Kalman filtering to nonlinear systems	607
	13.0	LAUGIOIO OI Kaiman muchig to nonneal systems	UU/

xii Contents

	13.7	Smoothing	613
		13.7.1 The Rauch–Tung–Streibel fixed-interval smoother	613
	13.8	Another approach: H_{∞} smoothing	616
	13.9	Exercises	617
	13.10	References	620
IV	Itera	ative and Recursive Methods in Signal Processing	621
14	Basic	Concepts and Methods of Iterative Algorithms	623
	14.1	Definitions and qualitative properties of iterated	
		functions	624
		14.1.1 Basic theorems of iterated functions	626
		14.1.2 Illustration of the basic theorems	627
	14.2	Contraction mappings	629
	14.3	Rates of convergence for iterative algorithms	631
	14.4	Newton's method	632
	14.5	Steepest descent	637
		14.5.1 Comparison and discussion: Other techniques	642
		Some Applications of Basic Iterative Methods	
	14.6	LMS adaptive Filtering	643
		14.6.1 An example LMS application	645
		14.6.2 Convergence of the LMS algorithm	646
	14.7	Neural networks	648
		14.7.1 The backpropagation training algorithm	650
		14.7.2 The nonlinearity function	653
		14.7.3 The forward–backward training algorithm	654
		14.7.4 Adding a momentum term	654
		14.7.5 Neural network code	655
		14.7.6 How many neurons?	658
		14.7.7 Pattern recognition: ML or NN?	659
	14.8	Blind source separation	660
		14.8.1 A bit of information theory	660
		14.8.2 Applications to source separation	662
		14.8.3 Implementation aspects	664
	14.9	Exercises	665
	14.10	References	668
15	Iterati	ion by Composition of Mappings	670
	15.1	Introduction	670
	15.2	Alternating projections	671
		15.2.1 An applications: bandlimited reconstruction	675
	15.3	Composite mappings	676
	15.4	Closed mappings and the global convergence theorem	677
	15.5	The composite mapping algorithm	680
		15.5.1 Bandlimited reconstruction, revisited	681
		15.5.2 An example: Positive sequence determination	681
		15.5.3 Matrix property mappings	683
	15.6	Projection on convex sets	689
	15.7	Exercises	693
	150	Deferences	604

16			95
	16.1		95
		* **	95
		16.1.2 An example application: Pattern recognition 6	97
		16.1.3 <i>k</i> -means Clustering	98
		16.1.4 Clustering using fuzzy k-means	00
	16.2		01
		16.2.1 The Jacobi method	02
		16.2.2 Gauss-Seidel iteration	03
		16.2.3 Successive over-relaxation (SOR)	05
	16.3	Algebraic reconstruction techniques (ART)	06
	16.4		08
	16.5	Conjugate-gradient method	10
	16.6	• •	13
	16.7	•	13
	16.8	References	15
17	The F		17
	17.1		18
	17.2		21
	17.3	O C	23
		17.3.1 Convergence rate: Some generalizations	24
		Example applications of the EM algorithm	
	17.4	· · · · · · · · · · · · · · · · · · ·	
	17.5	Emission computed tomography (ECT) image reconstruction 7	25
	17.6	Active noise cancellation (ANC)	29
	17.7	Hidden Markov models	32
	. 8	17.7.1 The E- and M-steps 7	34
	<i>)</i> °	17.7.2 The forward and backward probabilities 7	35
			36
		17.7.4 Gaussian output densities	36
		17.7.5 Normalization	37
		17.7.6 Algorithms for HMMs	38
	17.8	Spread-spectrum, multiuser communication	40
	17.9	Summary 7	43
	17.10	Exercises	44
	17.11	References 7	47
V	Meth	nods of Optimization 74	49
18	Theor	ry of Constrained Optimization 7.	51
	18.1	•	51
	18.2		55
	18.3		57
	18.4		57 58
			64
	18.5	1 1 1	67
	18.6		70
	18.7	•	73
	18.8	• • • • • • • • • • • • • • • • • • •	73 73

xiv Contents

	18.9	Inequality constraints: Kuhn–Tucker conditions	777 783 783
	18.10	Exercises	784
		References	786
19	Short	est-Path Algorithms and Dynamic Programming	787
	19.1	Definitions for graphs	787
	19.2	Dynamic programming	789
	19.3	The Viterbi algorithm	791
	19.4	Code for the Viterbi algorithm	795
		19.4.1 Related algorithms: Dijkstra's and Warshall's	798
		19.4.2 Complexity comparisons of Viterbi and Dijkstra	799
		Applications of path search algorithms	
	19.5	Maximum-likelihood sequence estimation	800
		19.5.1 The intersymbol interference (ISI) channel	800
		19.5.2 Code-division multiple access	804
		19.5.3 Convolutional decoding	806
	19.6	HMM likelihood analysis and HMM training	808
		19.6.1 Dynamic warping	811
	19.7	Alternatives to shortest-path algorithms	813
	19.8	Exercises	815
	19.9	References	817
20	Linea	r Programming	818
	20.1	Introduction to linear programming	818
	20.2	Putting a problem into standard form	819
		20.2.1 Inequality constraints and slack variables	819
		20.2.2 Free variables	820
		20.2.3 Variable-bound constraints	822
		20.2.4 Absolute value in the objective	823
	20.3	Simple examples of linear programming	823
	20.4	Computation of the linear programming solution	824
		20.4.1 Basic variables	824
		20.4.2 Pivoting	826
		20.4.3 Selecting variables on which to pivot	828
		20.4.4 The effect of pivoting on the value of the problem	829
		20.4.5 Summary of the simplex algorithm	830
		20.4.6 Finding the initial basic feasible solution	831
		20.4.7 MATLAB® code for linear programming	834
	20.5	20.4.8 Matrix notation for the simplex algorithm	835
	20.5	Dual problems	836
	20.6	Karmarker's algorithm for LP	838
		20.6.1 Conversion to Karmarker standard form	842 844
			844 846
		,	040
	20.7	Examples and applications of linear programming	016
	20.7	Linear-phase FIR filter design	846 847
	20.8	Linear optimal control	849
	20.0		ロサク

3

	20.9	Exercises	850
	20.10	7 References	853
A	Rocia	c Concepts and Definitions	855
A	A.1	Set theory and notation	855
	A.1 A.2	Mappings and functions	859
	A.3	Convex functions	860
	A.3 A.4	O and O Notation	861
	A.5	Continuity	862
	A.6	Differentiation	864
	A.0	A.6.1 Differentiation with a single real variable	864
		A.6.2 Partial derivatives and gradients on \mathbb{R}^m	865
		A.6.3 Linear approximation using the gradient	867
			868
	۸.7	A.6.4 Taylor series	869
	A.7	Basic constrained optimization	870
	A.8	The Hölder and Minkowski inequalities	
	A.9	Exercises	871 876
	A.10	References	8/0
В	Comp	pleting the Square	877
	B .1	The scalar case	877
	B.2	The matrix case	879
	B.3	Exercises	879
C	Racic	Matrix Concepts	880
C	C.1	Matrix Concepts Notational conventions	880
	C.1	Matrix Identity and Inverse	882
	C.2 C.3	Transpose and trace	883
	C.3	Block (partitioned) matrices	885
	C.4 C.5	Determinants	885
	C.5		885
		C.5.1 Basic properties of determinants	887
	0.6	C.5.3 Determinants and matrix inverses	889
	C.6 C.7		889
	C.7	References	890
D	Rand	om Processes	891
	D.1	Definitions of means and correlations	891
ç	D.2	Stationarity	892
	D.3	Power spectral-density functions	893
	D.4	Linear systems with stochastic inputs	894
		D.4.1 Continuous-time signals and systems	894
		D.4.2 Discrete-time signals and systems	895
	D.5	References	895
E	Doring	atives and Gradients	896
	E.1	Derivatives of vectors and scalars with respect to a real vector	896
	L.1	E.1.1 Some important gradients	897
	E.2	Derivatives of real-valued functions of real matrices	899
	E.2 E.3	Derivatives of matrices with respect to scalars, and vice versa	901
			901
	E.4	The transformation principle	903
	E.5	Derivatives of products of matrices	903

rvi	Conte
(VI	V.OHLE

Inde		920
Bibli	ography	91
F.3	Exercises	914
F.2	Poisson random variables	914
F.1	Multinomial distributions	913
Cond	itional Expectations of Multinomial and Poisson r.v.s	913
E.10	References	913
E.9	Exercises	910
E.8	Modifications for derivatives of complex vectors and matrices	908
E.7	Derivatives involving the trace	900
E.6	Derivatives of powers of a matrix	904
		•

J