МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)
Кафедра Физики

ЛАБОРАТОРНАЯ РАБОТА №19

по дисциплине «Физика»
Тема: Исследование эффекта Холла в
полупроводнике

Студентгр. 9892	Лескин К.А.
Преподаватель	Лоскутников В.С.

 ${
m Cahkt-} \Pi$ етербург 2020

Цель

Изучение действия магнитного поля на движущиеся заряды в полупроводнике, с электронным типом проводимости, определение постоянной Холла, концентрации и подвижности носителей заряда.

Приборы и принадлежности

Установка для исследования эффекта Холла включает:

- датчик Холла ДХ, выполненный в виде пленки, напыленной на подложку из диэлектрика с четырьмя электродами для подведения электрического тока и измерения разности потенциалов Холла;
- электромагнит ЭМ- состоящий из соосной системы двух круговых катушек с током, расположенных на сердечнике из магнитомягкого материала;
- источников питания E_1 и E_2 ;
- потенциометр R_1 «Ток ДХ»,регулирующий ток I_1 через ДХ;
- потенциометр R_2 «**Ток ЭМ**», регулирующий ток I_2 через электромагнит **ЭМ**;
- миллиамперметр ${\bf mA}$, измеряющий ток I_1 через ${\bf ДX}$;
- вольтметр V_2 , измеряющий падение напряжения на резисторе R. Поскольку сопротивление R=1 Ом значение напряжения U_2 численно равно I_2 ;
- операционный усилитель **ОУ** с коэффициентом усиления k;
- вольтметр V_1 , измеряющий напряжение U_1 на выходе $\mathbf{O}\mathbf{Y}$, пропорциональное ЭДС на выходе датчика Холла U_x .

Установка представлена на рис. 1

Рис. 1 – Схема установки для исследования эффекта Холла

Исследуемые закономерности

Если вдоль пластины полупроводника, помещенной в магнитное поле, перпендикулярное вектору плотности тока, а, следовательно, и средней скорости направленного движения заряженных частиц, то на заряженную частицу, движущуюся со средней скоростью $\langle v \rangle$, будет действовать сила Лоренца в направлении, перпендикулярном вектору плотности тока:

$$\overrightarrow{F} = e\langle \overrightarrow{v} \rangle \times \overrightarrow{B} \tag{1}$$

В результате между гранями с электродами 1 и 2 появится поперечное электрическое поле. (эффект Холла):

$$E_x = \frac{F}{e} = \langle v \rangle B \tag{2}$$

Сила тока I:

$$I = nbe\langle v \rangle d \tag{3}$$

Решая совместно (1), (2), (3) получим:

$$U_x = \frac{1}{ne} \times \frac{IB}{d} = R \frac{IB}{d} \tag{4}$$

где $R = \frac{1}{ne}$ — постоянная Холла.

Магнитное поле ЭМ в центре симметрии определяется по формуле

$$B = B_H + a \times I_2 \tag{5}$$

где, B_H — начальная индукция магнитного поля сердечника электромагнита, I_2 — сила тока (A), a — коэффициент пропорциональности в диапазоне изменения силы тока в электромагните от 0,1 A до 1 A.

Протокол

I_1 , мА	$I_2 = U_2$, мА	U_1 , B
/	-0.1	-0.98
	-0.2	-1.2
	-0.3	-1.4
2.0	-0.4	-1.7
	-0.5	-1.85
	-0.6	-2.13
	-0.7	-2.28
	-0.1	-1.44
	-0.2	-1.77
	-0.3	-2.1
3.0	-0.4	-2.47
	-0.5	-2.8
	-0.6	-3.14
	-0.7	-3.35
	-0.1	-1.84
	-0.2	-2.27
	-0.3	-2.66
4.0	-0.4	-3.11
	-0.5	-3.56
	-0.6	-4.06
	-0.7	-4.33
	-0.1	-2.27
	-0.2	-2.75
	-0.3	-3.3
5.0	-0.4	-3.88
	-0.5	-4.49
	-0.6	-5.0
	-0.7	-5.41
	-0.1	-2.68
	-0.2	-3.34
	-0.3	-4.0
6.0	-0.4	-4.6
	-0.5	-5.37
	-0.6	-5.84
	-0.7	-6.4

Константы эксперимента		
K	Коэффициент усиления ОУ	100
d	Толщина полупроводника	0.5 мкм
σ	Удельная эл-сть полу-ка	$3.4 * 10^{-1} \text{ Om}^{-1} \times \text{M}^{-1}$
B_0	Коэффициент	$1.25 \times 10^{-4} \ \mathrm{T}$ л
a	Коэффициент	$5.3 \times 10^{-4} \text{ Тл/A}$

Обработка результатов измерений

I_1 , MA	$I_2 = U_2$, mA	U_1 , B	$R = \frac{U_x * d}{2\pi}$
11, 1111	,		BI_{xi}
	-0.1	-0.98	0.3887
	-0.2	-1.2	0.23798
	-0.3	-1.4	0.1851
2.0	-0.4	-1.7	0.16857
	-0.5	-1.85	0.14676
	-0.6	-2.13	0.14081
	-0.7	-2.28	0.12919
	-0.1	-1.44	0.56877
	-0.2	-1.77	0.34955
	-0.3	-2.1	0.27648
3.0	-0.4	-2.47	0.2439
	-0.5	-2.8	0.22119
	-0.6	-3.14	0.2067
	-0.7	-3.35	0.18902
	-0.1	-1.84	0.72373
4.0	-0.2	-2.27	0.44643
	-0.3	-2.66	0.34875
	-0.4	-3.11	0.30581
	-0.5	-3.56	0.28005
	-0.6	-4.06	0.26615
	-0.7	-4.33	0.2433
5.0	-0.1	-2.27	0.88915
	-0.2	-2.75	0.53858
	-0.3	-3.3	0.43087
	-0.4	-3.88	0.37995
	-0.5	-4.49	0.35174
	-0.6	-5.0	0.32641
	-0.7	-5.41	0.30273
	-0.1	-2.68	1.0454
	-0.2	-3.34	0.65143
6.0	-0.3	-4.0	0.5201
	-0.4	-4.6	0.44859
	-0.5	-5.37	0.41894
	-0.6	-5.84	0.37967
	-0.7	-6.4	0.35664

Рассчитаем среднее значение и доверительную погрешность R_x :

$$\overline{R_x} = \sum_{i=1}^{35} R_{xi} = \frac{0.3887}{35} + \frac{0.23798}{35} + \frac{0.1851}{35} + \frac{0.16857}{35} + \frac{0.14676}{35} + \frac{0.14081}{35} + \frac{0.12919}{35} + \frac{0.56877}{35} + \frac{0.34955}{35} + \frac{0.27648}{35} + \frac{0.2439}{35} + \frac{0.22119}{35} + \frac{0.2067}{35} + \frac{0.18902}{35} + \frac{0.72373}{35} + \frac{0.44643}{35} + \frac{0.34875}{35} + \frac{0.30581}{35} + \frac{0.28005}{35} + \frac{0.26615}{35} + \frac{0.2433}{35} + \frac{0.88915}{35} + \frac{0.53858}{35} + \frac{0.43087}{35} + \frac{0.37995}{35} + \frac{0.35174}{35} + \frac{0.32641}{35} + \frac{0.30273}{35} + \frac{1.0454}{35} + \frac{0.65143}{35} + \frac{0.5201}{35} + \frac{0.44859}{35} + \frac{0.41894}{35} + \frac{0.37967}{35} + \frac{0.35664}{35} = 0.3744897142857142$$

$$S_{R_x} = \sqrt{\frac{\sum_{i=1}^{35} (R_{xi} - \overline{R_x})}{N(N-1)}} = \sqrt{\frac{1.44405}{1190}} = 0.03483514597296792$$

$$\Delta \overline{R_x} = \sqrt{\Delta R_x^2 + \theta_{R_x}^2} = \sqrt{0.07040445598917704^2 + 0.0^2} = 0.07040445598917704 \approx 0.07$$

$$R_x = \overline{R_x} \pm \Delta \overline{R_x} = 0.37 \pm 0.07 \frac{m}{K\Lambda^2}, P = 95\%$$

R	$\mu = \sigma R$
0.3887	0.132
0.23798	0.081
0.1851	0.063
0.16857	0.057
0.14676	0.05
0.14081	0.048
0.12919	0.044
0.56877	0.193
0.34955	0.119
0.27648	0.094
0.2439	0.083
0.22119	0.075
0.2067	0.07
0.18902	0.064
0.72373	0.246
0.44643	0.152
0.34875	0.119
0.30581	0.104
0.28005	0.095
0.26615	0.09
0.2433	0.083
0.88915	0.302
0.53858	0.183
0.43087	0.146
0.37995	0.129
0.35174	0.12
0.32641	0.111
0.30273	0.103
1.0454	0.355
0.65143	0.221
0.5201	0.177
0.44859	0.153
0.41894	0.142
0.37967	0.129
0.35664	0.121

Рассчитаем среднее значение и доверительную погрешность μ :

$$\overline{\mu} = \sum_{i=1}^{35} \mu_i = \frac{0.132}{35} + \frac{0.081}{35} + \frac{0.063}{35} + \frac{0.057}{35} + \frac{0.05}{35} + \frac{0.048}{35} + \frac{0.044}{35} + \frac{0.0193}{35} + \frac{0.019}{35} + \frac{0.094}{35} + \frac{0.083}{35} + \frac{0.075}{35} + \frac{0.07}{35} + \frac{0.064}{35} + \frac{0.246}{35} + \frac{0.152}{35} + \frac{0.119}{35} + \frac{0.104}{35} + \frac{0.095}{35} + \frac{0.09}{35} + \frac{0.083}{35} + \frac{0.302}{35} + \frac{0.183}{35} + \frac{0.146}{35} + \frac{0.129}{35} + \frac{0.12}{35} + \frac{0.111}{35} + \frac{0.103}{35} + \frac{0.355}{35} + \frac{0.221}{35} + \frac{0.177}{35} + \frac{0.153}{35} + \frac{0.142}{35} + \frac{0.129}{35} + \frac{0.121}{35} = \frac{0.121}{35} + \frac{0.121}{35$$

0.12725714285714287

$$S_{\mu} = \sqrt{\frac{\sum_{i=1}^{35} (\mu_i - \overline{\mu})}{N(N-1)}} = \sqrt{\frac{0.16654}{1190}} = 0.011830028733351951$$

$$\Delta\overline{\mu} = \sqrt{\Delta\mu^2 + \theta_\mu^2} = \sqrt{0.023909379853160297^2 + 0.0^2} = 0.023909379853160297 \approx 0.02$$

$$\mu = \overline{\mu} \pm \Delta \overline{\mu} = 0.13 \pm 0.02, P = 95\%$$

Вывод

В ходе выполнения лабораторной работы было изучено действие магнитного поля на движущиеся заряды в полупроводнике, с электронным типом проводимости, определена постоянной Холла, концентрация и подвижность носителей заряда.