Let $\alpha \in (0,\pi/2]$. A semigroup $(T(t))_{t \geq 0}$ is called <u>holomorphic of angle</u> α if it possesses an extension $T:S(\alpha) \to L(E)$ for some $\alpha \in (0,\pi/2]$ which satisfies all the requirements of Definition 1.11 except that it is not required to be bounded on any sector $S(\alpha_1)$.

Theorem 1.14. A densely defined operator A is the generator of a holomorphic semigroup if and only if there exist M > 0 and $r \ge 0$ such that $\lambda \in \rho(A)$ and $\|R(\lambda,A)\| \le M/|\lambda|$ whenever Re $\lambda > 0$, $|\lambda| \ge r$.

<u>Proof.</u> It is not difficult to show that A generates a holomorphic semigroup of angle α if and only if for every $\alpha_1 \in (0,\alpha)$ there exists $w \in \mathbb{R}$ such that A-w generates a bounded holomorphic semigroup of angle α_1 (cf.[Reed-Simon (1978b),p.252]). As a consequence one obtains the following. A densely defined operator A generates a holomorphic semigroup of angle $\alpha \in (0,\pi/2]$ if and only if for every $\alpha_1 \in [0,\alpha)$ there exist a constant $M \ge 0$ and $r \ge 0$ such that

$$S(\alpha_1 + \pi/2) \setminus B(r) \subset \rho(A)$$
 (where $B(r) = \{z \in \mathbb{C} : |z| \le r\}$)

and

$$||R(\lambda,A)|| \le M/|\lambda|$$
 for all $\lambda \in S(\alpha_1)\setminus B(r)$.

This shows that the condition of the theorem is necessary. Conversely, assume that the condition holds. Since $\|R(\lambda,A)\| \to \infty$ when λ approaches $\sigma(A)$ (cf. Lemma 1.21 below), it follows that $\lambda \in \rho(A)$ and $\|R(\lambda,A)\| \le M/|\lambda|$ if $Re\lambda = 0$ and $|\lambda| > r$ as well.

Let c=1/2M. If ξ , $\eta \in \mathbb{R}$ satisfy $|\xi| \le c\eta$, $|\eta| \ge r$, then $\|\xi R(i\eta,A)\| \le \xi \cdot M/|\eta| \le c \cdot M = 1/2$.

Hence $R(\xi+i\eta,A) = \sum_{n=0}^{\infty} (-\xi)^n R(i\eta,A)^{n+1}$ exists and

$$\begin{split} \|R(\xi+i\eta,A)\| &\leq (|\xi+i\eta|)^{-1} \cdot |\xi+i\eta| \cdot \sum_{n=0}^{\infty} |\xi|^{n} M^{n+1} / |\eta|^{n+1} \\ &\leq (|\xi+i\eta|)^{-1} \cdot M \cdot (|\xi|^{2} + |\eta|^{2})^{-1/2} / |\eta| \cdot \sum_{n=0}^{\infty} M^{n} c^{n} \\ &\leq (2M \cdot (c^{2} + 1)^{-1/2}) / |\xi+i\eta| \\ &= N / |\xi+i\eta| . \end{split}$$

This together with the assumption implies that there exist $N' \ge 0$ and $\alpha \in (0,\pi/2]$ such that $\lambda \in \rho(A)$ and $\|R(\lambda,A)\| \le N'/|\lambda|$ for all $\lambda \in S(\alpha+\pi/2)$.

Compared with the Hille-Yosida theorem, Theorem 1.14 gives a very simple criterion for an operator to be the generator of a (holomorphic) semigroup. Merely the resolvent and not its powers have to be