一、单项选择题(每小题 2 分, 共 20 分)

- (A) 2x

- (B) 6x (C) 0 (D) 216x

2.设
$$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
,则 $|A^6| = ()$. 答案: B

- (A) 4^6

- (B) 5^6 (C) 2^6 (D) 6^6

3. 设A, B都是 n 阶非零矩阵,且AB = 0,则A和B的秩(B).

(A) 必有一个等于零

- (B) 都小于 n
- (C) 一个小于 n,一个等于 n
- (D) 都等于 n

4. 若 $A = E^2(1,2)E(2,3(1))$ 其中E(1,2),E(2,3(1))为 4 阶初等矩阵, 则**A**⁻¹等于(B).

- (A) E(2,3(1)) (B) E(2,3(-1)) (C) E(1,2)
- (D) **E**

5.在函数 $f(x) = \begin{vmatrix} 2x & 1 & -1 \\ -2x & -x & 4x \end{vmatrix}$ 中, x^3 的系数是(A)

- $(A) -2 \qquad (B) 2 \qquad (C) -4 \qquad (D) 4$

6. 设行列式 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 5 \\ -3 & -4 \end{bmatrix}$, 则矩阵 $\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ 的行列 式为 (B)

- (A) 6 (B) -6 (C) 12 (D) -12

7.设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 均为 4 维列向量,矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)^T, B =$ $(\alpha_4, \alpha_3, \alpha_2, \alpha_1)^T, P_1 = E(1,4), P_2 = E(2,3), 其中 <math>A$ 可逆,则 B^{-1} 等于(A)

- (A) $A^{-1}P_1P_2$ (B) $P_1A^{-1}P_2$ (C) $P_2P_1A^{-1}$ (D) $P_2A^{-1}P_1$
- 8. 设A为n阶非零矩阵,E为n阶单位矩阵,若 $A^3 = 0$,则(C).
 - (A) E A不可逆,E + A不可逆 (B) E A不可逆,E + A可逆
 - (C) E-A可逆,E+A可逆 (D) E-A不可逆,E+A不可逆
- 9. 对于n元线性方程组,下述结论正确的是(D)
- (A) 若Ax = 0 只有零解,则Ax = b有唯一解
- (B) Ax = 0 有非零解当且仅当 |A| = 0
- (C) Ax = b有唯一解当且仅当r(A) = 0
- (D) 若Ax = b的有两个不同的解,则Ax = 0 有无穷多解

10. 设
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & a & 1 \\ 3 & -1 & 1 \end{pmatrix}$$
, B 为 3 阶 非零矩阵,且 $AB = \mathbf{0}$,则 $a = (A)$.

二、填空题(每空格3分,共15分)

1.
$$\[\psi \]$$
 f(x)= $\begin{bmatrix} 8 & 27 & x^3 & -8 \\ 4 & 9 & x^2 & 4 \\ 2 & 3 & x & -2 \\ 1 & 1 & 1 & 1 \end{bmatrix}$, $\[\text{id} \]$, $\[\text{id} \]$, $\[\text{id} \]$

答案:将这个行列式做 6 次对换后为一个关于 2,3, x,-2 的范德蒙行列式,利用范德蒙行列式的结论可以得到: f(x) = 20(x-2)(x-3)(-2-x) = -20(x-2)(x+2)(x-3),于是 f(x) 的根为: 2,-2,3

- 2. 设矩阵 $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 矩阵 B 满足 $ABA^* = 2BA^* + E$, 其中 A^* 为A 的伴随矩阵,E是单位矩阵,|B| = . 答案: 1/9
- 3. 设 $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & a & -1 \\ 4 & 2 & a \end{pmatrix}$, $B \neq 0$ 为三阶矩阵,且 BA = 0,则 R(B) =_______1
- 4. 已知 $\alpha_1, \alpha_2, \beta_1, \beta_2, \beta_3$ 均为 4 维列向量,并有 $|A| = |\alpha_1, \beta_1, \beta_2, \beta_3| = 5$, $|B| = |\alpha_2, \beta_1, \beta_2, \beta_3| = -1$,则 |A + B| = 32
- 5. 己知 $R(A)=2,B=\begin{pmatrix} 1 & 3 & 7 \\ 3 & 1 & 5 \\ 7 & 5 & 1 \end{pmatrix}$,则 $R(B^TA^T)=$ ______2

三、计算题(共50分)

- 1.设行列式 $|A| = \begin{vmatrix} 2 & 2 & 2 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a$, A_{ij} 为|A|的代数余子式。
 - (1) $\Re A_{11} + A_{12} + A_{13}$
 - (2) $x \sum_{i=1}^{3} \sum_{j=1}^{3} A_{ij}$

答案:

曲
$$|A| = \begin{vmatrix} 2 & 2 & 2 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a$$
可得: $2A_{11} + 2A_{12} + 2A_{13} = a$,即 $A_{11} + A_{12} + A_{13} = a / 2$

(2)

$$\sum_{i=1}^{3} \sum_{j=1}^{3} A_{ij} = (A_{11} + A_{12} + A_{13}) + (A_{21} + A_{22} + A_{23}) + (A_{31} + A_{32} + A_{33})$$

$$= \frac{a}{2} + \begin{vmatrix} 2 & 2 & 2 \\ 1 & 1 & 1 \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 2 & 2 & 2 \\ a_{21} & a_{22} & a_{23} \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \frac{a}{2} + 0 + 0$$

$$= \frac{a}{2}$$

2. 设 A=
$$\begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 3 & x & 1 \\ 2 & 0 & 3 & -4 \\ 3 & 5 & y & -1 \end{pmatrix}$$
, R(A)=2,求 x, y 的值。

解: A 经过初等行变换

$$A = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & 2 & x - 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & 2 & y - 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & x & 0 \\ 0 & 0 & y - 2 & 0 \end{pmatrix} \Rightarrow x = 0, y = 2$$

3. 设矩阵
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
, 矩阵 X 满足 $A^*X = A^{-1} + 2X$,其中 A^*

为A的伴随矩阵,求X。

解: 计算得
$$|A| = \begin{vmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 4$$
. 关系式 $A*X = A^{-1} + 2X$ 左乘 A 可得
$$4X = E + 2AX,$$
整理为 $(4E - 2A)X = E,$ 故 $X = (4E - 2A)^{-1}$.

由

$$(4E-2A,E) = \begin{pmatrix} 2 & -2 & 2 & 1 & 0 & 0 \\ 2 & 2 & -2 & 0 & 1 & 0 \\ -2 & 2 & 2 & 0 & 0 & 1 \end{pmatrix}$$

可得

$$X = (4E - 2A)^{-1} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & 0\\ 0 & \frac{1}{4} & \frac{1}{4}\\ \frac{1}{4} & 0 & \frac{1}{4} \end{pmatrix}$$

4.设有线性方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$,问 λ 取何值时,方程组无解、有 $x_1 + x_2 + \lambda x_3 = -2$

惟一解和有无穷多组解, 在有无穷多组解时, 试求出其通解。

【解答】因为

$$|\mathbf{A}| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} 0 & 1 - \lambda & 1 - \lambda^2 \\ 0 & \lambda - 1 & 1 - \lambda \\ 1 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 1 - \lambda^2 \\ \lambda - 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 \begin{vmatrix} 1 & 1 + \lambda \\ -1 & 1 \end{vmatrix}$$

$$= (1 - \lambda)^2 (\lambda + 2)$$

所以当 $\lambda \neq 1$ 且 $\lambda \neq -2$ 时,由克拉默法则可知,方程组有惟一解 当 $\lambda = -2$ 时,原方程组成为

$$\begin{cases}
-2x_1 + x_2 + x_3 = -5 \\
x_1 - 2x_2 + x_3 = -2 \\
x_1 + x_2 - 2x_3 = -2
\end{cases}$$

对增广矩阵施行初等行变换

$$\mathbf{B} = \begin{pmatrix} -2 & 1 & 1 & -5 \\ 1 & -2 & 1 & -2 \\ 1 & 1 & -2 & -2 \end{pmatrix} \frac{r_1 + 2r_3}{r_2 - r_3} \begin{pmatrix} 0 & 3 & -3 & -9 \\ 0 & -3 & 3 & 0 \\ 1 & 1 & -2 & -2 \end{pmatrix} \frac{r_1 + r_2}{r_1 + r_2} \begin{pmatrix} 0 & 0 & 0 & -9 \\ 0 & -3 & 3 & 0 \\ 1 & 1 & -2 & -2 \end{pmatrix}$$

由此可知R(A)=2,R(B)=3,所以当 $\lambda \neq -2$ 时方程组无解

当 $\lambda = 1$ 时,方程组成为 $x_1 + x_2 + x_3 = -2$

此时方程组有无穷多组解,若选x,为非自由未知量,则有

$$\begin{cases} x_1 = -x_2 - x_3 - 2 \\ x_2 = x_2 \\ x_3 = x_3 \end{cases}$$

故方程组的通解为 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} x_2 + \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} x_3 + \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix}$,其中 x_2 , x_3 为任意常数

5. 已知 $A = \begin{bmatrix} B & O \\ D & C \end{bmatrix}$,其中B是 $r \times r$ 可逆矩阵,C是 $s \times s$ 可逆矩阵,求 A^{-1} 。

解: 因
$$|A| = \begin{vmatrix} B & O \\ D & C \end{vmatrix} = |B| |C| \neq 0$$
,故 A 可逆。设 $A^{-1} = \begin{bmatrix} X & Y \\ Z & W \end{bmatrix}$,由定义,有

$$AA^{-1} = \begin{bmatrix} B & O \\ D & C \end{bmatrix} \begin{bmatrix} X & Y \\ Z & W \end{bmatrix} = \begin{bmatrix} BX & BY \\ DX + CZ & DY + CW \end{bmatrix} = \begin{bmatrix} E & O \\ O & E \end{bmatrix},$$

得

$$BX = E \Rightarrow X = B^{-1}, BY = 0 \Rightarrow Y = 0 (B \overrightarrow{\square}),$$

$$DX + CZ = O \Rightarrow Z = -C^{-1}DB^{-1} (X = B^{-1}), DY + CW = E \Rightarrow W = C^{-1} (Y = O),$$

故

$$A^{-1} = \begin{bmatrix} \mathbf{B}^{-1} & \mathbf{O} \\ -\mathbf{C}^{-1}\mathbf{D}\mathbf{B}^{-1} & \mathbf{C}^{-1} \end{bmatrix}.$$

四、证明题(每小题5分,共15分)

1. 证明: R(A:AB)=R(A)

$$\therefore R(A) \le R(A : AB)$$

 $\mathbb{Z} : \mathbb{R}(A : AB) = \mathbb{R}(A(E : B)) \le \min \{\mathbb{R}(A), \mathbb{R}(E : B)\} \Rightarrow \mathbb{R}(A : AB) \le \mathbb{R}(A)$

2. 设 $A \stackrel{\cdot}{=} m \times n$ 矩阵,且 $m \times n$,证明: 齐次线性方程组($A^T A$)x = 0 必有非零解

【证明】

证 $A^{T}A$ 是 $n \times n$ 矩阵,由于

 $R(A) = R(A^T) \le m, R(A^TA) \le \min(R(A), R(A^T)) \le m < n$,根据齐次线性方程组解的理论,以n阶矩阵 A^TA 为系数矩阵的齐次线性方程组 $(A^TA)x = 0$ 有非零解的充要条件为 $R(A^TA) < n$

3. 设 A 是 n 阶非零矩阵, A^* 是其伴随矩阵,且满足 $a_{i,j} = A_{i,j}$,证明 A 可逆。

证明:条件A的每一个元素 a_{ij} 等于它的代数余子式,即 $a_{ij} = A_{ij} (i, j = 1, 2, \cdots, n)$ 意味着 $A^* = A^T$.利用伴随矩阵的性质有 $A^*A = |A|E$,因此 $A^TA = |A|E$.

下面证明 $|A| \neq 0$.若|A| = 0 ,则上式意味着 $A^T A = 0$,

因此 A=0,这与 A 是非零矩阵是矛盾的,因此 $|A| \neq 0$,即 A 可逆.