Contents

§ 1	样本与总体
	样本与总体的概念 2
	样本的分布(iid)
§ 2	统计量及其分布 2
	统计量
	常用统计量
§ 3	χ^2 分布, t 分布和 F 分布 \ldots
	χ^2 分布 \dots
	t分布
	F分布
§ 4	正态总体条件下的常用结论 4
	参数的点估计
0 -	矩估计
	最大似然估计
	估计量评价标准
§ 6	参数的区间估计
0 -	概念
	单个正太总体分布均值和方差的置信区间
§ 7	
3 ·	概念
	原假设与备择假设
	小概率原理与显著性水平
	正太总体下的六大检验及拒绝域
88	两类错误

§1 样本与总体

样本与总体的概念

研究对象全体称为总体,组成总体的每个元素称为个体。

n个相互独立且与总体X具有相同概率分布的随机变量 $X_1,X_2,...,X_n$ 所组成的整体 $(X_1,X_2,...,X_n)$ 称为来自总体X、容量为n的一个简单随机样本,称为样本。一次抽样结果的n个具体数值 $(x_1,x_2,...,x_n)$ 称为来自样本 $X_1,X_2,...,X_n$ 的一个观测值(或样本值)。

样本的分布(iid)

对于容量为n的样本 $X_1, X_2, ..., X_n$, 有如下定理:

设总体X的分布函数F(x) (概率密度为f(x), 或概率分布为 $p_i=P\{X=x_i\}$), 则 $(X_1,X_2,...,X_n)$ 的分布函数为

$$F(x_1, x_2, ..., x_n) = \prod_{i=1}^n F(x_i)$$

相应地:

1. 对于离散型随机变量的样本,联合分布为

$$P\{X_1=x_1,X_2=x_2,...,X_n=x_n\}=\prod_{i=1}^n P\{X_i=x_i\}$$

2. 对于连续型随机变量的样本,联合分布为

$$f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$$

§ 2 统计量及其分布

统计量

设 $X_1,X_2,...,X_n$ 为来自总体X的一个样本, $g(x_1,x_2,...,x_n)$ 为n元函数,如果g中不含任何未知参数,则称 $g(X_1,X_2,...,X_n)$ 为样本 $X_1,X_2,...,X_n$ 的一个统计量。若 $(x_1,x_2,...,x_n)$ 为样本值,则称 $g(x_1,x_2,...,x_n)$ 为样本 $g(X_1,X_2,...,X_n)$ 的观测值。

常用统计量

- 1. 样本数字特征
 - 样本均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$
 - 样本标准差: $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_1 \bar{X})^2}$

• 样本
$$k$$
阶矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k (k = 1, 2, ...)$

• 样本
$$k$$
阶中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k (k = 1, 2, ...)$

2. 顺序统计量

将样本 $X_1, X_2, ..., X_n$ 的n个观测值按其取值从小到大的顺序排列,得

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$

.

随机变量 $X_{(k)}$ 称为**第k顺序统计量**,其中 $X_{(1)}$ 是最小顺序统计量,而 $X_{(n)}$ 是最大顺序统计量:

$$X_{(1)} = \min\{X_1, X_2, ..., X_n\}, X_{(n)} = \max\{X_1, X_2, ..., X_n\}$$

从庄

3. 性质

设总体X的期望 $EX = \mu$, 方差 $DX = \sigma^2$, $X_1, X_2, ..., X_n$ 是取自总体X, 容量为n的一个样本, \bar{X}, S^2 分别为样本均值和样本方差,则:

$$EX_i = \mu, DX_i = \sigma^2(i=1,2,...,n), E\bar{X} = EX = \mu, D\bar{X} = \frac{1}{n}DX = \frac{\sigma^2}{n}, E(S^2) = DX = \sigma^2$$

§ 3 χ^2 分布,t分布和F分布

χ^2 分布

若随机变量 $X_1,X_2,...,X_n$ 相互独立且都服从标准正态分布,则随机变量 $X=\sum_{i=1}^n X_i^2$ 服从自由度为n的 χ^2 分布,记为 $X\sim\chi^2(n)$

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足

$$P\{\chi^2 > \chi^2_\alpha(n)\} = \int_{\chi^2_\alpha(n)}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

的 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 的上 α 分位数。

性质

1. 若
$$X_1 \sim \chi^2(n_1), X_2 \sim \chi^2(n_2), X_1, X_2$$
相互独立,则
$$X_1 + X_2 \sim \chi^2(n_1 + n_2)$$

2. 若
$$X \sim \chi^2(n)$$
, 则 $EX = n$, $DX = 2n$

t分布

设随机变量 $X\sim N(0,1), Y\sim \chi^2(n)$ 且X,Y相互独立,则随机变量 $t=\frac{X}{\sqrt{Y/n}}$ 服从自由度为n的t分布,记为 $t\sim t(n)$

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{+\infty} f(x) \, \mathrm{d}x = \alpha$$

的 $t_{\alpha}(n)$ 为t(n)的上 α 分位数。

性质:

1. t分布的概率密度 f(x)图形关于x = 0对称,因此

$$Et = 0 (n \ge 2)$$

2. 由t分布的概率密度f(x)图形的对称性,可知 $P\{t>-t_{\alpha}(n)\}=P\{t>t_{1-\alpha}(n)\}$,故 $t_{1-\alpha}(n)=0$

F分布

设随机变量 $X\sim\chi^2(n_1),Y\sim\chi^2(n_2)$ 且X,Y相互独立,则随机变量 $F=rac{X/n_1}{Y/n_2}$ 服从自由度为 (n_1,n_2) 的F分布,记为 $F \sim F(n_1, n_2)$

对于给定的 $\alpha(0 < \alpha < 1)$, 称满足

$$P\{F>F_{\alpha}(n_1,n_2)\}=\int_{F_{\alpha}(n_1,n_2)}^{+\infty}f(x)\,\mathrm{d}x=\alpha$$

的 $F_{\alpha}(n_1, n_2)$ 为 $F(n_1, n_2)$ 的上 α 分位数。

性质:

- 1. 若 $F \sim F(n_1, n_2),$ 则 $\frac{1}{F} \sim F(n_2, n_1)$
- 2. $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_1(n_2, n_1)}$
- 3. 若 $t \sim t(n)$, 则 $t^2 \sim F(1, n)$

§ 4 正态总体条件下的常用结论

设
$$X_1, X_2, ..., X_n$$
是来自正态总体 $N(\mu, \sigma^2)$ 的一个样本, \bar{X}, S^2 分别是样本均值和方差,则
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right),$$
即 $\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\sqrt{n}\left(\bar{X} - \mu\right)}{\sigma} \sim N(0, 1)$

2.
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$

3.
$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \frac{\left(X_i - \bar{X}\right)^2}{\sigma^2} \sim \chi^2(n-1)$$

4. \bar{X} 与 S^2 相互独立(正态总体下成立), $\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t(n-1)$, σ 未知时,进一步有

$$\frac{n\big(\bar{X}-\mu\big)^2}{S^2} \sim F(1,n-1)$$

§ 5 参数的点估计

估计量、估计值

矩估计

对于一个参数,

- 用一阶矩建立方程 $\bar{X} = EX$
- 若一阶矩方程不能用,则用二阶矩建立方程 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}=E(X^{2})$

对于两个参数,用一阶矩和二阶矩建立方程组

最大似然估计

1. 写似然函数

$$L(x_1,x_2,...,x_n;\theta) = \begin{cases} \displaystyle\prod_{i=1}^n p(x_i;\theta) \\ \displaystyle\prod_{i=1}^n f(x_i;\theta) \end{cases}$$

- 2. 求参数
 - 若似然函数有驻点,则令 $\frac{dL}{d\theta} = 0$ 或 $\frac{d(\ln L)}{d\theta} = 0$,解出 $\hat{\theta}$
 - 若无驻点,使用定义求出 $\hat{\theta}$
 - 若似然函数为常数,用定义求 $\hat{\theta}$,此时 $\hat{\theta}$ 不唯一

估计量评价标准

1. 无偏性:

对于估计量 $\hat{\theta}$, 若 $E\hat{\theta} = \theta$, 则 $\hat{\theta}$ 是 θ 的无偏估计量

2. 有效性(最小方差)

若 $E\hat{\theta}_1 = \theta, E\hat{\theta}_2 = \theta$, 即 $\hat{\theta}_1, \hat{\theta}_2$ 均是 θ 的无偏估计量,当 $D\hat{\theta}_1 < D\hat{\theta}_2$ 时, $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效

3. 一致性(只针对大样本)

若 $\hat{\theta}$ 为 θ 的估计量,对任意 $\varepsilon > 0$,有:

$$\lim_{n \to \infty} P\{ \left| \hat{\theta} - \theta \right| \ge \varepsilon \} = 0$$

或

$$\lim_{n\to\infty} P\big\{ \left| \hat{\theta} - \theta \right| < \varepsilon \big\} = 1$$

即当 $\hat{\theta} \xrightarrow{P}$ 时,称 $\hat{\theta}$ 为 θ 的一个一致(或相合)估计量。

§ 6 参数的区间估计

概念

设 θ 是总体X的分布函数的一个未知参数,对于给定的 $\alpha \in (0,1)$,如果由样本 $X_1, X_2, ..., X_n$ 确定的两个统计量 $\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, ..., X_n)$, $\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, ..., X_n)$ 满足

$$P \big\{ \hat{\theta}_1 < \theta < \hat{\theta}_2 \big\} = 1 - \alpha,$$

则称区间 $(\hat{\theta}_1,\hat{\theta}_2)$ 为 θ 的置信度为 $1-\alpha$ 的置信区间。 $\hat{\theta}_1,\hat{\theta}_2$ 分别称为 θ 的置信度为 $1-\alpha$ 的双侧置信区间的下限和上限, $1-\alpha$ 称为置信度或置信水平, α 称为显著性水平。若 $P\{\theta<\hat{\theta}_1\}=P\{\theta>\hat{\theta}_2\}=\frac{\alpha}{2}$,则称这种置信区间为等尾置信区间

单个正太总体分布均值和方差的置信区间

设 $X \sim N(\mu, \sigma^2)$, 从总体X中抽取样本 $X_1, X_2, ..., X_n$, 样本均值为 \bar{X} , 方差为 S^2

1. σ^2 已知时, μ 的置信水平是 $1-\alpha$ 的置信区间为

$$\left(ar{X} - rac{\sigma}{\sqrt{n}} z_{rac{lpha}{2}}, ar{X} + rac{\sigma}{\sqrt{n}} z_{rac{lpha}{2}}
ight)$$

2. σ^2 未知时, μ 的置信水平是 $1-\alpha$ 的置信区间为

$$\left(\bar{X} - \frac{S}{\sqrt{n}} z_{\frac{\alpha}{2}}(n-1), \bar{X} + \frac{S}{\sqrt{n}} z_{\frac{\alpha}{2}}(n-1)\right)$$

3. μ 已知, σ^2 的置信水平是 $1-\alpha$ 的置信区间为

$$\left(\frac{\sum_{i=1}^{n} (X_1 - \mu)^2}{\chi_{\frac{\alpha}{2}}^2(n)}, \frac{\sum_{i=1}^{n} (X_1 - \mu)^2}{\chi_{1-\frac{\alpha}{2}}^2(n)}\right)$$

4. μ 未知, σ^2 的置信水平是 $1-\alpha$ 的置信区间为

$$\left(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}\right)$$

§7 假设检验

概念

关于总体的每一种论断称为**统计假设**,然后根据样本观察数据或试验结果所提供的信息去推断(检验) 这个看法是否成立,这类统计推断问题称为**假设检验**

原假设与备择假设

常常把没有充分理由不能轻易否定的假设称为**原假设**(**基本假设或零假设**),记为 H_0 ,将其否定的假设称为**对立假设或备择假设**,记为 H_1

小概率原理与显著性水平

1. 小概率原理

对假设进行检验的基本思想是采用带有概率性质的反证法,这种方法的依据是小概率原理: 概率很接近0的事件在一次试验中认为不会发生,若发生小概率事件,则拒绝原假设。

2. 显著性水平

小概率事件中的"小概率"的值没有统一规定,通常是根据实际问题的要求,规定一个界限 α ,当一个事件的概率不大于 α 时,即认为它是小概率事件。在假设检验中, α 称为显著性水平。

正太总体下的六大检验及拒绝域

- 1. σ^2 已知, μ 未知, $H_0: \mu=\mu_0, H_1: \mu\neq\mu_0$,则拒绝域为 $\left(-\infty, \mu_0-\frac{\sigma}{\sqrt{n}}z_{\frac{\alpha}{2}}\right)\cup \left(\mu_0+\frac{\sigma}{\sqrt{n}}z_{\frac{\alpha}{2}},+\infty\right)$
- 2. σ^2 未知, μ 未知。 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,则拒绝域为

$$\left(-\infty, \mu_0 - \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right) \cup \left(\mu_0 + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1), +\infty\right)$$

3. σ^2 已知, μ 未知, $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$, 则拒绝域为

$$\left[\mu_0 + \frac{\sigma}{\sqrt{n}} z_\alpha, +\infty\right)$$

4. σ^2 已知, μ 未知, $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$,则拒绝域为

$$\left(-\infty,\mu_0-\frac{S}{\sqrt{n}}z_\alpha\right]$$

5. σ^2 未知, μ 未知, $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$, 则拒绝域为

$$\left[\mu_0 + \frac{S}{\sqrt{n}}t_\alpha(n-1), +\infty\right)$$

6. σ^2 未知, μ 未知, $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$, 则拒绝域为

$$\left(-\infty, \mu_0 - \frac{S}{\sqrt{n}} t_\alpha(n-1)\right]$$

§ 8 两类错误

1. 第一类错误(弃真):

2. 第二类错误(取伪):

若 H_0 为假,按检验法接受 H_0 ,称为取伪错误,概率为 $\beta=P\{$ 接受 $H_0|\ H_0$ 为假 $\}=P\{$ 接受 $H_0|\ H_1$ 为真 $\}$