Lógica de primer orden

Ma. Laura Cobo

Métodos Formales para Ingeniería

Departmento de Ciencias e Ingeniería de la Computación

Universidad Nacional del Sur

Argentina

Lógica de primer orden

La lógica utilizada aquí difiere de la presentada en los cursos sobre lógica convencionales.

La versión que se utilizará está diseñada para poder hablar de programas JAVA en forma más conveniente.

La lógica incluye un sistema de tipos con subtipado. Característica que no está presente en la mayoría de la presentaciones convencionales de la lógica

Departamento de Ciencias e Ingeniería de la Computación – Universidad Nacional del Sur, Argentina

Lógica de primer orden: tipos

para poder razonar convenientemente sobre objetos del lenguajes de programación Java. Hay, por lo tanto, un vínculo entre el sistema de tipos de Java y el sistema de tipos de la lógica.

Es importante recordar que Java utiliza dos conceptos de tipo (que no deben ser confundidos)

- Cada objeto tiene un tipo dinámico (es fijado desde la creación del objeto hasta que es recolectado por el garbage collector).
- Cada expresión tiene un tipo estático: se obtiene a partir de los tipos declarados

Cada posible tipo dinámico también puede ocurrir como tipo estático. Los tipos estáticos están ordenados en una jerarquía de tipos. Luego cada tipo dinámico de un objeto es un subtipo de algún tipo estático de la expresión

Los objetos tienen un único tipo

Departamento de Ciencias e Ingeniería de la Computación – Universidad Nacional del Sur, Argentina

Lógica de primer orden: tipos

Los objetos tienen un único tipo

En la lógica esta distinción se logra asignando tipos estáticos a las expresiones ("términos") y tipos dinámicos a los valores ("elementos del dominio")

Jerarquía de tipos: agrupa la información relevante sobre tipos y las relaciones de subtipado.

Una jerarquía de tipos de una cuádrupla, formada por:

- Un conjunto de tipos estáticos \mathcal{T} . Tal que $\mathcal{T} = \mathcal{T}_d \cup \mathcal{T}_a$
- Un conjunto de tipos dinámicos T_d
- Un conjunto de tipos abstractos T_a
- Una relación de subtipo \sqsubseteq sobre T

Los nombres en \mathcal{T}_a son los nombres de las interfaces y clases abstractas de las cuales no hay instancias

Hay un tipo vacío y un tipo universal. La relación de subtipo establece un orden parcial reflexivo sobre $\mathcal T$

Lógica de primer orden: signature

El equivalente en lógica para un método Java son predicados y funciones

Básicamente los predicados son funciones boolenas

Signature

A first-order signature Σ consists of

- ightharpoonup a set T_{Σ} of types
- \triangleright a set F_{Σ} of function symbols
- ightharpoonup a set P_{Σ} of predicate symbols
- ightharpoonup a typing α_{Σ}

Intuitivamente, el tipado determina:

- Para cada función y predicado:
 - La aridad
 - Los tipos de los argumentos
- Para cada función el tipo resultado

Lógica de primer orden: signature

Signature

A first-order signature Σ consists of

- ightharpoonup a set T_{Σ} of types
- \blacktriangleright a set F_{Σ} of function symbols
- \triangleright a set P_{Σ} of predicate symbols
- ightharpoonup a typing α_{Σ}

$$T_{\Sigma_1} = \{\text{int}\},\ F_{\Sigma_1} = \{+,-\} \cup \{...,-2,-1,0,1,2,...\},\ P_{\Sigma_1} = \{<\}$$

$$\alpha_{\Sigma_1}(<) = (int,int)$$

$$\alpha_{\Sigma_1}(+) = \alpha_{\Sigma_1}(-) = (int,int,int)$$

$$\alpha_{\Sigma_1}(0) = \alpha_{\Sigma_1}(1) = \alpha_{\Sigma_1}(-1) = \dots = (int)$$

Página 7

Lógica de primer orden: signature

Se utilizará una notación más breve para las signaturas.

Type declaration of signature symbols

- Write τ x; to declare variable x of type τ
- ▶ Write $p(\tau_1, \ldots, \tau_r)$; for $\alpha(p) = (\tau_1, \ldots, \tau_r)$
- ▶ Write τ $f(\tau_1, \ldots, \tau_r)$; for $\alpha(f) = (\tau_1, \ldots, \tau_r, \tau)$

r = 0 is allowed, then write f instead of f(), etc.

Ejemplo:

Variables: integarArray a; int i;

Predicados: estaVacia(Lista); alertaEncendida;

Funciones: int buscarArreglo(int); object o;

La aridad de o es cero

Lógica de primer orden: signature

$$\begin{split} &\alpha_{\Sigma_1}(<) = (\text{int,int}) \\ &\alpha_{\Sigma_1}(+) = \alpha_{\Sigma_1}(-) = (\text{int,int,int}) \\ &\alpha_{\Sigma_1}(0) = \alpha_{\Sigma_1}(1) = \alpha_{\Sigma_1}(-1) = \dots = (\text{int}) \end{split}$$

Ahora:

menor: <(int,int);</pre>

mas: int +(int,int)

numéricas: int 0; int 1;

Lógica de primer orden: términos

Se definen en forma recursiva:

Terms

A first-order term of type $\tau \in T_{\Sigma}$

- \blacktriangleright is either a variable of type τ , or
- has the form $f(t_1, ..., t_n)$, where $f \in F_{\Sigma}$ has result type τ , and each t_i is term of the correct type, following the typing α_{Σ} of f.

Asumiendo:

un conjunto de variables ∨

 $(V \cap (F_{\Sigma} \cup P_{\Sigma}) = \emptyset).$

cada $v \in V$ tiene un único tipo

 $\alpha_{\Sigma}(v) \in T_{\Sigma}$.

Lógica de primer orden: términos

```
ejemplos:
```

```
-7
null
new(13, null)
```

- \geq elem(new(13, null))
- next(next(o))

Para el modelado de funciones de primer orden se permite la notación posfija de punto

```
new(13, null).elem
o.next.next
```

Departamento de Ciencias e Ingeniería de la Computación – Universidad Nacional del Sur, Argentina

Fórmulas atómicas

Logical Atoms

Given a signature Σ .

A logical atom has either of the forms

- ► true
- ► false
- ▶ $t_1 = t_2$ ("equality"), where t_1 and t_2 have the same type.
- ▶ $p(t_1,...,t_n)$ ("predicate"), where $p \in P_{\Sigma}$, and each t_i is term of the correct type, following the typing α_{Σ} of p.

Fórmulas generales

Formulas

- each atomic formula is a formula
- with ϕ and ψ formulas, x a variable, and τ a type, the following are also formulas:
 - $\triangleright \neg \phi$ ("not ϕ ")
 - $\blacktriangleright \phi \wedge \psi$ (" ϕ and ψ ")

 - $\phi \rightarrow \psi$ (" ϕ implies ψ ")
 - $\phi \leftrightarrow \psi$ (" ϕ is equivalent to ψ ")
 - $\blacktriangleright \forall \tau x; \phi \quad (\text{"for all } x \text{ of type } \tau \text{ holds } \phi")$
 - ▶ $\exists \tau x$; ϕ ("there exists an x of type τ such that ϕ ")

La variable x debe estar ligada, es decir no puede ser una variable libre Las fórmulas sin variables libres están cerradas.

Departamento de Ciencias e Ingeniería de la Computación – Universidad Nacional del Sur, Argentina

Semántica de las fórmulas

Por ahora el significado queda acotado a lo que indica la fórmula, lo cual está asociado a la asignación de las variables.

Para poder trabajar con el significado de una fórmula sobre la evolución de estados será necesario apelar la lógica dinámica.

Para establecer la semántica se requiere establecer el dominio $\mathcal D$ y la interpretación $\mathcal I$.

El dominio ${\mathcal D}$ es el conjunto de elementos que le da significado a los términos y variables

Una interpretación ${\mathcal I}$ asigna el significado a las funciones y predicados

Una valuación a partir de una interpretación y un dominio evalúa las fórmulas cerradas a verdadero o falso

Departamento de Ciencias e Ingeniería de la Computación – Universidad Nacional del Sur, Argentina

Semántica de las fórmulas

El dominio ${\mathcal D}$ es el conjunto de elementos que le da significado a los términos y variables

Una interpretación ${\mathcal I}$ asigna el significado a las funciones y predicados

Un valuación a partir de una interpretación y un dominio evalúa las fórmulas cerradas a verdadero o falso

Las fórmulas evaluadas a verdadero en todos los dominios e interpretaciones son válidas

En el contexto de métodos formales el par dominio, interpretación es llamado estado $(\mathcal{D}, \mathcal{I})$.

Departamento de Ciencias e Ingeniería de la Computación – Universidad Nacional del Sur, Argentina

Sintaxis concreta

	Text book	KeY
Negation	٦	
Conjunction	\wedge	&
Disjunction	V	
Implication	\rightarrow , \supset	->
Equivalence	\leftrightarrow	<->
Universal Quantifier	$\forall x; \phi$	\forall τx ; ϕ
Existential Quantifier	$\exists x; \phi$	\exists τx ; ϕ
Value equality	≐	=

Cálculo

El cálculo elegido para trabajar es el sequent calculus (cálculo de secuentes).

Los datos básicos manipulados por la reglas de este cálculo son secuentes, es decir fórmulas de la forma:

$$\Phi_1, \ldots, \Phi_n \Rightarrow \Psi_1, \ldots, \Psi_m$$

La fórmula previa, de sequent calculus, resulta válida cuando la fórmula

$$\Phi_1 \wedge \ldots \wedge \Phi_n \to \Psi_1 \vee \ldots \vee \Psi_m$$

lo es

Reglas proposicionales del cálculo

main	left side (antecedent)	right side (succedent)
not	$ \frac{\Gamma \Rightarrow \phi, \Delta}{\Gamma, \neg \phi \Rightarrow \Delta} $	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
or	$\begin{array}{c c} \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \lor \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \lor \psi, \Delta}$
imp	$\begin{array}{c c} \Gamma \Longrightarrow \phi, \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \to \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$
clos	e $\overline{\Gamma,\phi\Rightarrow\phi,\Delta}$ true $\overline{\Gamma\Rightarrow}$	$\overline{\text{true}, \Delta}$ false $\overline{\Gamma, \text{false} \Rightarrow \Delta}$

FOL a simple vista

	left side, antecedent	right side, succedent
¥	$\frac{\Gamma, \forall \tau x; \ \phi, \ [x/t'] \ \phi \Longrightarrow \Delta}{\Gamma, \forall \tau x; \ \phi \Longrightarrow \Delta}$	$ \frac{\Gamma \Rightarrow [x/c] \phi, \Delta}{\Gamma \Rightarrow \forall \tau x; \phi, \Delta} $ $ \Gamma \Rightarrow [x/t'] \phi, \exists \tau x; \phi, \Delta $
3	$\frac{\Gamma, [x/c] \phi \Longrightarrow \Delta}{\Gamma, \exists \tau x; \phi \Longrightarrow \Delta}$	$ \frac{\Gamma \Rightarrow [x/t'] \phi, \exists \tau x; \phi, \Delta}{\Gamma \Rightarrow \exists \tau x; \phi, \Delta} $
÷	$\frac{\Gamma, t \doteq t' \Longrightarrow [t/t'] \phi, \Delta}{\Gamma, t \doteq t' \Longrightarrow \phi, \Delta}$ (+ application rule on left side)	$\Gamma \Longrightarrow t \doteq t, \Delta$

- $ightharpoonup [t/t'] \phi$ is result of replacing each occurrence of t in ϕ with t'
- ightharpoonup t, t' variable-free terms of type τ
- ightharpoonup c new constant of type τ (occurs not on current proof branch)