Contrôle N°2

DIRECTIVES:

Durée : 1h30, aucune documentation n'est permise. Vous êtes invités à porter une attention particulière à la rédaction, réfléchissez bien avant de faire des calculs fastidieux!

Exercice 1:

On veut fabriquer 3 produits P1,P2 et P3 dont le profit unitaire est de 250, 100 et 100 euros respectivement. Le produit P1 respectivement (P2), (P3) nécessite 2, 5, 5 et 2, (3, 2, 3 et 1), (1, 0, 0 et 1) tonnes des matières premières : nickel, chrome, germanium et magnésium. On peut disposer de 7, 11, 10 et 6 tonnes de Ni, Cr, Ge et Mg par jour. Les produits P1 et P2 doivent passer par un four séparément 1 et 2 heures quotidiennement. Le four est opérationnel 6 heures par jour. On veut connaître la politique de production qui maximise le profit. Modéliser le problème décrit et formuler son dual. Interpréter la signification du problème dual.

Exercice 2:

Considérons le modèle de programmation linéaire suivant :

Maximiser:

$$z = 2x_1 + 3x_2 + 3x_3$$

Sous les contraintes:

$$3x_1 + 2x_2 \le 60$$

$$-x_1 + x_2 + 4x_3 \le 10$$

$$2x_1 - 2x_2 + 5x_3 \le 50$$

$$x_1, x_2, x_3 \ge 0$$

- 1. Résoudre le modèle linéaire en utilisant la méthode du simplexe.
- 2. Formuler le problème dual.
- 3. Donner la solution du dual.

Exercice 2:

Considérons le modèle de programmation linéaire ci-dessous denoté par (P) où l'objectif propose la maximisation d'une fonction linéaire et l'origine du plan O = (0,0) n'est pas une solution admissible

$$Max Z = 100x_1 + 200x_2$$

sous les contraintes

$$3x_1 + x_2 \le 23$$
 Main d'œuvre (jours)
 $5x_1 + 6x_2 \ge 52$ Demande
 $3x_1 - 6x_2 \le 12$ Gestion de stocke
 $x_2 \le 7$ Limite produit 2
 $x_1, x_2 \ge 0$

- 1. Écrire le problème (PLS) et le problème (PLF_I) si nécessaire.
- 2. Établir le problème dual de ce problème.
- 3. Trouver une solution de base réalisable à l'aide de la méthode du simplexe. (le tableau final de la phase 2 est présenté ci-dessous)
- 4. On désire changer le prix de produit 2. En utilisant le tableau optimal de ce problème, déterminer un intervalle dont lequel peut varier le prix du produit 2 sans changer la solution optimale.
- 5. On aimerait diminuer ou augmenter le nombre d'heure associé à la main d'œuvre. Déterminer l'intervalle pour lequel, la solution optimale peut varier et déterminer la solution optimale ainsi que la valeur optimale en fonction de cette variation.

V.B	x1	x2	el	e2	e3	e4	b
e2	0	0	1.67	1	0	4.33	16.67
x1	1	0	0.33	0	0	-0.33	5.33
e3	0	0	-1	0	1	7	38
x2	0	1	0	0	0	1	7
C.j	0	0	-33.33	0	0	-166.67	1933.33