

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Question Bank - Context Free Grammar

Questions from the Prescribed Textbook

Topic	Exercise No.	Question No's
Context-Free Grammars	5.1	Q7-Q9,Q11,Q15,Q18-25
Parsing and Ambiguity	5.2	Q-6-Q8,Q12-Q19
Context-Free Grammars and programming languages	5.3	Q1,Q2

Extra Questions

- 1. Construct a context free grammar for $a^nb^mc^k$ where 2n = m and $k \ge 2$.
- 2. Describe the language generated by $G=(\{S,A\}, \{a,b\}, P, S)$. The set of productions P is given as:

S->aA|bA

 $A->aAa|bAb|aAb|bAa|\lambda$

- 3. Construct the CFG for the language given by $L=\{0^{i}1^{j}2^{k}|i+j=k\}$.
- 4. Construct the CFG for the language given by $L = \{w_1 ca^n b^m a^i b^j w_2 \mid w1, w2 \in \{a, b\}^*, length(w_1) = length(w_2), j = 2i, n \le m \}.$
- 5. Construct the CFG for the language $L = \{a^n b^m c^k \mid n \neq m \text{ or } m \neq k\}$.
- 6. Consider the grammar $S \to 0B \mid 1A, A \to 0 \mid 0S \mid 1AA, B \to 1 \mid 1S \mid 0BB$. Given the string 1100, find a leftmost derivation and/or a rightmost derivation with corresponding parse trees. Repeat for the strings 001110 and 001101.
- 7. Given the CFG S->AB| λ , A->aB, B->Sb , construct a derivation tree for aaabbbbbb.
- 8. For the regular expression (011+1)*(01)* obtain a context free grammar.

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

9.	Give a context-free grammar for the language $L \subseteq \{0,1,]\}*$, where $L = \{x \# y \mid x \neq y^R, x \}$
	= y .

For example, 00#10,101#000 ∈L but 00#0,11#11 ∉L

- 10. Consider the language $L = \{a^m b^{2n} c^{3n} d^p : p > m, \text{ and } m, n \ge 1\}.$
 - (a) What is the shortest string in L?
 - (b) Write a context-free grammar to generate L.
- 11. Give unambiguous grammar for the following languages.
 - a. {w| the number of a's and b's in w are equal}
 - b. (w) the number of a's is at least the number of b's).
- 12. Prove the context free grammar is ambiguous.

S->aSbT|T T->aT|bT| λ

13. Is the following grammar ambiguous?

S->iCtS | iCtSeS | a C->b

- 14. Show that S->SaS|b is ambiguous. Construct an unambiguous equivalent of the grammar.
- 15. Given the grammar,

S->P|Q

P->AA

A->aAb|ab

Q->aQb|aRb

R->bRa|ba

- a. Give description in English of L(G).
- b. Construct the leftmost and rightmost derivation for the string abab.

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

- 16. Let G be a grammar S-> 0B/1A, A->0/0S/1AA, B->1/1S/0BB. For the string 00110101 find its leftmost derivation and rightmost derivation tree.
- 17. Using the grammar G=(V,T,P,S),with $V=\{S\}$ $P=\{S->S$ U $S|SS|S*|(S)|0|1|<math>\lambda$ }, give the left most derivation and the corresponding parse tree for the strong(0U(10)*1)*.
- 18. Construct leftmost and rightmost derivations for the strings, if the language is given S->AS| ϵ

A->aa|ab|ba|bb

Strings:

- a. aabbba
- b. baabab
- c. aaabbb
- 19. Construct the parse tree for the string a*(a+b00) for the following CFG using both leftmost and rightmost derivation.

 $E \rightarrow I \mid E+E \mid E*E \mid (E)$

 $I \rightarrow a|b|Ia|Ib|I0|I1$

20. Construct the parse tree for the string $a^*(a+a)$ for the following CFG using both leftmost and rightmost derivation. The CFG is $E \to E + E \mid E * E \mid (E) \mid a$.