Introduction to Stochastic Actor-Oriented Models Fundamentals of SAOMs

Johan Koskinen

Department of Statistics Stockholm University University of Melbourne

February 21, 2024

Preamble

- All material is on the workshop repository https://github.com/johankoskinen/CHDH-SNA
 - ▶ Download the RMarkdown file CHDH-SNA-3.Rmd
- In order to run the Markdown you need
 - ▶ The R-package ■
 - ► The RStudio interface R Studio
- We will predominantly use the packages
 - sna
 - network
 - RSiena

Outline of workshops

- (Basic) Introduction to SAOM (Thursday PM)
 - SAOM as an agent-based model
 - How to estimate a SAOM
- (Social Influence) Analysing social influence with SAOM (Friday AM)
 - Accounting for nodal attributes
 - Modelling change of nodal attributes
 - Trouble shooting and dealing with common issues
- Advanced topics in SAOM (Friday PM)
 - ▶ Even more types of data
 - ▶ Likelihood-based estimation
 - ▶ Settings and imperfect data
 - Modelling multiple parallel networks

The two basic types of data

NETWORK

nodes: Andras, Per, Zsofia have **ties:** Andras \rightarrow Per

BEHAVIOUR

attributes of nodes: Andras, Per,

Zsofia drink

Zsofia does not smoke

We have observations on NETWORK and BEHAVIOUR

At some fixed points in time

starting at t_0 followed by t_1 $t_0 < t_1$

We have observations on NETWORK and BEHAVIOUR

At some fixed points in time

starting at t_0 followed by t_1 $t_0 < t_1$

We have observations on NETWORK and BEHAVIOUR

At some fixed points in time

starting at t_0 followed by t_1 $t_0 < t_1$

We have observations on NETWORK and BEHAVIOUR

Especially the co-evolution:

selection influence

We have observations on NETWORK and BEHAVIOUR

Especially the **co-evolution**:

selection influence

We have observations on NETWORK and BEHAVIOUR

Especially the **co-evolution**:

selection influence

inferential task: explain how t_0 change into t_1

The SAO Model

We have **observations** on NETWORK and BEHAVIOUR

inferential task: explain how t_0 change into t_1

The SAO Model

Assume **PARTIAL observations** on a process

observations:

at t_0 and t_1

the rest:

missing

the process explains how t_0 change into t_1

The SAO Model

Assume PARTIAL observations on a process

observations:

at t_0 and t_1

the rest:

missing

the process explains how t_0 change into t_1

What type of data do we want to explain: adjacency matrix

Data represented as adjacency matrices

$$\mathbf{x} = \left(egin{array}{ccccc} . & 0 & 0 & 0 & 1 \\ 1 & . & 0 & 0 & 0 \\ 1 & 1 & . & 0 & 0 \\ 0 & 0 & 0 & . & 0 \\ 0 & 0 & 1 & 1 & . \end{array}
ight)$$

where $x_{ij} = 1$ or 0 according to wether $i \rightarrow j$ or not.

What type of data do we want to explain: longitudinal

Data represented as adjacency matrices where elements change

$$x(t_0) = \left(egin{array}{ccccc} . & 0 & 0 & 0 & 1 \ 1 & . & 0 & 0 & 0 \ 1 & 1 & . & 0 & 0 \ 0 & 0 & 0 & . & 0 \ 0 & 0 & 1 & 1 & . \end{array}
ight)$$

15 / 79

What type of data do we want to explain

Data represented as adjacency matrices where elements change

$$x(t_1) = \left(egin{array}{ccccc} . & \mathbf{1} & 0 & 0 & 1 \ 1 & . & 0 & 0 & 0 \ 1 & \mathbf{0} & . & 0 & 0 \ 0 & 0 & 0 & . & 0 \ \mathbf{1} & 0 & 1 & 1 & . \end{array}
ight)$$

16 / 79

What type of data do we want to explain

Data represented as adjacency matrices where elements change

$$x(t_2) = \left(egin{array}{ccccc} . & 1 & 0 & 1 & 1 \ 1 & . & 0 & 0 & 1 \ 1 & 1 & . & 0 & 0 \ 0 & 0 & 0 & . & 0 \ 1 & 0 & 0 & 1 & . \end{array}
ight)$$

SAOM: the rate of change

At random points in time, at rates λ_i

nodes/individuals/actors are given opportunities to change

18 / 79

SAOM: the direction of change

Conditional on an actor having an opportunity for change the probability for each outcome

- o is modelled like multinomial logistic regression
- reflects the attractiveness of the outcome to the actor

Micro-step

When actor i has opportunity to change

They may toggle x_{ij} to $1 - x_{ij}$

We call the new network

$$X(i \rightsquigarrow j)$$

the network X that differs in exactly **one** tie-variable x_{ij}

Probability of a change

Of the three changes (for j=2,3,4) available to i (here 1) the probability that i toggles the tie $i \rightarrow j$ is given by

One-step jump probability

$$p_{ij}(\beta, \underbrace{X}) = \frac{\exp\left(f_i(\beta, \underbrace{X(i \leadsto j)})\right)}{\min_{\text{new network}}},$$
current network
$$\underbrace{\sum_{h=1}^{n} \exp\left(f_i(\beta, X(i \leadsto h))\right)}_{\text{all possible changes}}$$

where

- $X(i \leadsto j)$ is the network resulting from the change
- \bullet β are statistical parameters
- f_i describes the attractiveness of $X(i \rightsquigarrow j)$ to i

Probability of a change: utility

One-step jump probability: can be derived as:

- Each network X has **untility** $U_i(X, t)$ for i
- Actor i chooses network X that maximises $U_i(X, t)$

If (random) utility has form

$$U_i(X,t) = \underbrace{f_i(\beta,X)}_{\text{objective function}} + \epsilon_{it}.$$

random component

Actors are (myopically) maximising the utility of their network ties

31 / 79

Agent-based: Change driven by incremental updates

Koskinen CHDH-SNA-3 February 21, 2024 32 / 79

Markdown: https://raw.githubusercontent.com/johankoskinen/CHDH-SNA/main/Markdowns/CHDH-SNA-2.Rmd

```
library('RSiena')
library('network')
library('sna')
tmp3[is.na(tmp3)] <- 0 # remove missing
tmp4[is.na(tmp4)] <- 0 # remove missing
par(mfrow = c(1,2))
coordin <- plot(as.network(tmp3))
plot(as.network(tmp4),coord=coordin)</pre>
```


Koskinen CHDH-SNA-3 February 21, 2024 33 / 79

Let us assume that *i* ONLY cares about not having too many or two few ties:

$$f_i(\beta, X) = \beta \sum_j x_{ij}$$

meaning that

$$p_{ij}(\beta, X) = \frac{\exp\left\{\beta(1 - 2x_{ij})\right\}}{\sum_{h=1}^{n} \exp\left\{\beta(1 - 2x_{ih})\right\}},$$

because if

- currently $x_{ij} = 1$, then
- the number of ties for i in $X(i \rightsquigarrow j)$ will be one less (-1),
- and if currenlty $x_{ij} = 0 \dots$

Simulation settings: actors only care about degree

Let the rate be equal for all $\lambda_i = \lambda = 5.7288$

- ✓ is each iteration, actor with shortest waiting time 'wins' (and gets to change)
- ✓ on average every actor gets 5.7 opportunities to change

and set
$$\beta = -0.7349$$

- \checkmark if $\beta = 0$ actor would not care if tie was added or deleted
- \checkmark here β < 0 meaning that actor wants less than half of the possible ties

Koskinen

van de Bunt data set

37 / 79

Model: rate

38 / 79

Model: conditional one-step change probability

$$\begin{array}{l} \Pr(1 \sim 2) = \\ \frac{e^{-0.7349}}{e^{-0.7349} + e^{1.1059} + e^{-0.7349} + 1} = 0.1185 \\ \Pr(1 \sim 3) = \\ \frac{e^{1.1059}}{e^{-0.7349} + e^{1.1059} + e^{-0.7349} + 1} = 0.5156 \\ \Pr(1 \sim 4) = \\ \frac{e^{-0.7349}}{e^{-0.7349} + e^{1.1059} + e^{-0.7349} + 1} = 0.1185 \end{array}$$

Of course, in van de Bunt every actor has 31+1 choices for change

Koskinen CHDH-SNA-3 February 21, 2024 39 / 79

Now let us simulate

Simulate from t_0 to t_1 (simOnly = TRUE)

The object sim_ans will now contain 1000 simulated networks

41 / 79

Extract networks

```
n <- dim(tmp4)[1]
mySimNets <- reshapeRSienaDeps( sim_ans , n )</pre>
```

The object mySimNets is a 1000 by n by n array of adjacency matrices

42 / 79

```
pdf(file='simnets1.pdf', width = 9,height =4.5)
par(mfrow=c(2,5), oma = c(0,4,0,0) + 0.1,
   mar = c(5,0,1,1) + 0.1)
plot(as.network(tmp4),coord=coordin,
              main=paste('ties:',sum(tmp4) ) )
apply(mySimNets[1:9,,],1,function(x)
                  plot(as.network(x),
                       coord=coordin,
                       main=paste('ties: ',sum(x))) )
dev.off()
```


43 / 79

The observed at t_1 and possible netowrks at t_1

Simulated networks v t_1 obs


```
Dyad Census
```

```
> dyad.census(tmp4)
    Mut Asym Null
[1,] 46 83 367
> dyad.census(mySimNets[1:9,,])
     Mut Asym Null
[1,] 23
          128 345
 [2,] 25
          133 338
 [3,] 17
          136 343
          134 342
      20
 [5,]
      16
          143
               337
 [6,]
      21
          136
               339
      26
          118 352
 [8,]
      23
          128 345
 Γ9. 7
      30
          122 344
```

Conclusions

A process where i ONLY cares about not having too many or two few ties does to replicate the reciprocity at t_1 Assume that i ALSO cares about having ties $i \rightarrow j$ reciprocated $j \rightarrow i$

$$f_i(\beta, X) = \beta_d \sum_{j} x_{ij} + \beta_r \sum_{j} x_{ij} x_{ji}$$

meaning that probability that i toggles relationship to j

$$p_{ij}(\beta, X) = \frac{\exp \left\{ \frac{\beta_d (1 - 2x_{ij}) + \beta_r (1 - 2x_{ij}) x_{ji} \right\}}{\sum_{h=1}^{n} \exp \left\{ \frac{\beta_d (1 - 2x_{ih}) + \beta_r (1 - 2x_{ih}) x_{hi} \right\}},$$

Model

Objective function:

$$\beta_d \sum_j x_{ij} + \beta_r \sum_j x_{ij} x_{ji}$$

- adding $1 \rightarrow 2$: β_d
- deleting $1 \rightarrow 3$: $-\beta_d \beta_r$
- adding $1 \rightarrow$ 4: β_d

Our simulated networks had too few reciprocated dyads so we need to set $\beta_r \dots$

Simulation settings: actors care about degree and reciprocity

Let the rate be equal for all $\lambda_i = \lambda = 6.3477$

✓ on average every actor gets 6.3 opportunities to change

and set
$$\beta_d = -1.1046$$

 \checkmark here $\beta_d < 0$ - actors do not want too many ties

and set
$$\beta_r = 1.2608$$

 \checkmark here $\beta_r > 0$ - actors prefer reciprocated to assymetric ties

van de Bunt data set

49 / 79

Now let us simulate

Simulate from t_0 to t_1 now with reciprocity (simOnly = TRUE)

The object sim_ans will now contain 1000 simulated networks NOTE: this piece of code is unchanged

51 / 79

Plot observed network and 9 simulated

52 / 79

The observed at t_1 and possible netowrks at t_1

Simulated networks v t_1 obs: triad census

Simulated networks v t_1 obs: triad census

```
> triad.census(tmp4)
003 012 102 0210 0210 0210 1110 1110 030T 030C 201 1200 1200 120C 210 300
[1,] 2078 1329 745 146 80 52 65 217 37 0 68 16 65 10 30 22

> triad.census(mySimNets[1:9,,])
003 012 102 0210 0210 0210 110 1110 030T 030C 201 1200 120U 120C 210 300
[1,] 1968 1381 718 95 84 160 148 224 16 4 77 13 13 13 17 33 9
[2,] 2067 1348 703 85 82 154 150 191 16 8 75 9 11 25 27 9
[3,] 2073 1397 687 102 75 158 129 181 18 2 68 14 13 23 13 77 33 9
[4,] 2185 1313 733 78 60 132 102 172 20 7 89 7 10 20 28 4
[5,] 2040 1340 766 89 64 155 129 189 18 7 82 12 11 19 27 12
[6,] 2206 1403 669 76 68 135 122 143 17 6 64 8 12 9 17 12
[6,] 2164 1301 681 70 65 136 168 174 12 5 91 15 8 30 28 12
[9,] 1988 1383 729 111 67 151 148 173 26 10 82 13 22 19 32 68
```

Reciprocity is clearly not enough to explain the incidence of *transitive triangles* and *simmelian ties* (3 Mutual 0, Assymetric, 0 Null)

Assume that i ALSO cares about closure

$$f_i(\beta, X) = \exp \left\{ \beta_d \sum_{j} x_{ij} + \beta_r \sum_{j} x_{ij} x_{ji} + \beta_t s_{i,t}(x) \right\}$$

Modelled through, e.g.

transitive triplets effect, number of transitive patterns in i's ties $(i \rightarrow j, j \rightarrow h, i \rightarrow h)$ $s_{i,t}(x) = \sum_{i,h} x_{ij} x_{jh} x_{ih}$

transitive triplet

Model

Objective function including $s_{i,t}(x)$:

- adding $1 \rightarrow 2$: ... + β_t
- deleting $1 \rightarrow 3$: no change in closure
- adding $1 \rightarrow 4$: ... + β_t

Our simulated networks had too few 030T and 300 so we need to set $\beta_t \dots$

Assume actors care about degree, reciprocity, and closure

Let the rate be equal for all $\lambda_i = \lambda = 7.0959$

✓ on average every actor gets 7 opportunities to change

and set
$$\beta_d = -1.6468$$

 \checkmark here $\beta_d < 0$ - actors do not want too many ties

and set
$$\beta_r = 0.8932$$

 \checkmark here $\beta_r > 0$ - actors prefer reciprocated to assymetric ties

and set
$$\beta_t = 0.2772$$

 \checkmark here $\beta_t > 0$ - actors prefer ties that close open triads

58 / 79

van de Bunt data set

```
myeff <- includeEffects(myeff, recip,include=TRUE)</pre>
myeff <- includeEffects(myeff, transTrip,include=TRUE)</pre>
myeff$initialValue[
              myeff$shortName == 'Rate'] <- 7.0959</pre>
myeff$initialValue[
         myeff$shortName =='density'][1] <- 1.6468</pre>
myeff$initialValue[
           myeff$shortName =='recip'][1] <- 0.8932</pre>
myeff$initialValue[
           myeff$shortName =='transTrip'][1] <- 0.2772</pre>
```


59 / 79

Now let us simulate

Simulate from t_0 to t_1 now with transitivity (simOnly = TRUE)

NOTE: this piece of code is unchanged

Koskinen CHDH-SNA-3 February 21, 2024 61 / 79

Plot observed network and 9 simulated

62 / 79

The observed at t_1 and possible netowrks at t_1

 Koskinen
 CHDH-SNA-3
 February 21, 2024
 63 / 79

Simulated networks v t_1 obs: triad census

Reciprocity togehter with transitivity seems enough to explain the incidence of *transitive triangles* and *simmelian ties* (3 Mutual 0, Assymetric, 0 Null)

Koskinen CHDH-SNA-3 February 21, 2024 64 / 79

Computer simulation algorithm for arbitrary rate function $\lambda_i(\alpha, \rho, x)$

- **1** Set t = 0 and x = X(0).
- ② Generate S according to the exponential distribution with mean $1/\lambda_+(\alpha,\rho,x)$ where $\lambda_+(\alpha,\rho,x) = \sum_i \lambda_i(\alpha,\rho,x)$.
- **3** Select $i \in \{1, ..., n\}$ using probabilities $\frac{\lambda_i(\alpha, \rho, x)}{\lambda_+(\alpha, \rho, x)}$.

Koskinen CHDH-SNA-3 February 21, 2024 65 / 79

- **3** Select $j \in \{1, ..., n\}, j \neq i$ using probabilities $p_{ii}(\beta, x)$.
- $5 Set t = t + S and x = x(i \rightsquigarrow j).$
- Go to step 2 (unless stopping criterion is satisfied).

What effects are there?

- RSiena Manual http://www.stats.ox.ac.uk/~snijders/siena/RSiena_Manual.pdf check for shortName
- scroll through the effects available to you for your data myeff check for shortName
- also effectsDocumentation(myeff)

Where did I get these numbers?

Estimation by Method of Moments: data

Basics for data

- You need at least 2 observations on X(t) for waves t_0 , t_1
- ullet First observations is fixed and contains no information about heta
- No assumption of a stationary network distribution

68 / 79

Estimation by Method of Moments: procedure

How to estimate $\theta = (\lambda, \beta)$?

- ullet pick starting values for heta
- ullet simulate from $X(t_0)$ until t_1 call the simulated network (-s) $X_{
 m rep}$
- ullet if statistic $Z_k(X_{
 m rep})$ for parameter k is different to $Z_k(X_{
 m obs})$, adjust accordingly

69 / 79

Estimation by Method of Moments: aim

For suitable statistic $Z=(Z_1,\ldots,Z_K)$, i.e., K variables which can be calculated from the network; the statistic Z_k must be *sensitive* to the parameter θ_k e.g. number of mutual dyads is sensitive to the reciprocity parameter (as we have seen)

The MoM estimate is a value: $\hat{\theta}$ of θ such that for

- ullet observed stats $Z(X_{
 m obs})$
- ullet and the the expected value $\mathsf{E}_{ heta}(Z(X_{\mathrm{rep}}))$

$$E_{\hat{\theta}}\left\{Z(X_{\text{rep}})\right\} = Z(X_{\text{obs}}).$$

70 / 79

Method of Moments matches the moments

Do we have to do this for every update of the parameter θ ?

Koskinen CHDH-SNA-3 February 21, 2024 71 / 7

Robbins-Monro algorithm

The moment equation $E_{\hat{\theta}}\{Z\}=z$ cannot be solved by analytical or the usual numerical procedures

Stochastic approximation (Robbins-Monro, 1951)

Iteration step:

$$\hat{\theta}_{N+1} = \hat{\theta}_N - a_N D^{-1}(z_N - z) ,$$
 (1)

where z_N is a simulation of Z with parameter $\hat{\theta}_N$,

D is a suitable matrix, and $a_N \rightarrow 0$.

Computer algorithm has 3 phases:

- brief phase for preliminary estimation of $\partial E_{\theta} \{Z\}/\partial \theta$ for defining D;
- estimation phase with Robbins-Monro updates, where a_N remains constant in subphases and decreases between subphases;
- ullet final phase where heta remains constant at estimated value; this phase is for checking that

$$\mathsf{E}_{\hat{\theta}}\left\{Z\right\} \approx z$$
,

and for estimating D_{θ} and Σ_{θ} to calculate standard errors.

Convergence¹

We say that $E_{\hat{\theta}}\{Z\} = z$ is approximately satisfied if, for each statistic $Z_k(X_{\rm obs})$ is within 0.1 standard deviation of $E_{\theta}(Z(X_{\rm rep}))$. This is provided in the output as the *convergence t-ratio* (and the overall maximum convergence ratio is less than 0.25)

Koskinen CHDH-SNA-3 February 21, 2024 74 /

Summary

What is the purpose of having the embedded Markov Chain in continuous time?

DYNAMICS

can model change of *tie* as dependent on current ties AND behaviour can model change in *behaviour* as dependent on current behaviour AND the behavior of those you are tied to

75 / 79

Summary

What is the purpose of having the embedded Markov Chain in continuous time?

STATISTICAL

This is a statistical model that has estimable parameters for selection and influence

This is a generative model from which we can also generate replicate data AND assess GOF

Summary

What is the purpose of having the embedded Markov Chain in continuous time?

STATISTICAL

This is a statistical model that has estimable parameters for selection and influence

This is a generative model from which we can also generate replicate data AND assess GOF Compare

- Generalized Estimation Equations
- Regressing behaviour wave 1 on wave 0

Is the model any good?

How do we choose parameters and how do we know that we have a good model?

- CHDH-SNA-4: more extensive suit of possible effects.
- We have already simulated to investigate goodness-of-fit
- ... but there are ready-made routines in RSiena

78 / 79

Everything you need to know (including scipts for all kinds of data) is avaiable at http://www.stats.ox.ac.uk/~snijders/siena/

