Notes on BF theories

hisanobu-nakamura

<2020-11-28 >

Contents

I	BF-Theory in D dimensions	1
	3D gravity 2.1 Second order formalism	
	4D Gravity 3.1 Bivectors in 4-D and Simplicity Condition	2

1 BF-Theory in D dimensions

Let M be a D dimensional manifold, G be a finite dimanesional Lie group and \mathfrak{g} the corresponding Lie algebra. Let ω be a \mathfrak{g} -valued connection on M and $F(\omega) = d\omega + \omega \wedge \omega$ its corresponding curvature. We also introduce another \mathfrak{g} -valued (D-2)-form B. Then BF-theory is defined by the following action integral,

$$I_{BF} = \int_{M} trB \wedge F(\omega) \tag{1.1}$$

where tr is the Killing form of the Lie algebra \mathfrak{g} . It is a topological field theory, in the sense that the action does not depend on the metrical structure of the base manifold M. Since the case D=3 is equivalent to the first order formalism of the gravitational theory, the model has been studied intensively so far and some results are known.

Table 1: Ingredients of BF Theory

M	Base manifold	D dimensional
G	compact Lie group	usually $SO(D)$ or $SO(D-1,1)$
P	principal fibre bundle over M with principal group G	
g	Lie algebra of G	
ω	$\mathfrak{g} ext{-valued connection}$	
$F(\omega)$	the curvature of ω	$F = d\omega + \omega \wedge \omega$
$\mid B \mid$	\mathfrak{g} -valued $(D-2)$ -form	

2 3D gravity

2.1 Second order formalism

 $g \in sym(T^*M \bigotimes T^*M)$ or $g: TM \bigotimes TM \to C(M)$. In local coordinates x^{μ} , $g = g_{\mu\nu}dx^{\mu}dx^{\nu}$. g is assumed to be non-degenerate at all points in M.

$$I_{EH} = \int_{M} \sqrt{|g|} R(g) \tag{2.1}$$

2.2Fisrt order formalism

Consider a tirad $e = e_{\mu}^{I} \tau_{I} dx^{\mu}$. The indices I = 1, 2, 3 are thought to be the coordinates of the inner gauge symmetry and $\tau_I = \frac{i}{2}\sigma_I$ where σ_I are the Pauli Matrices. There are nine free variables e_{μ}^I .

3 4D Gravity

Bivectors in 4-D and Simplicity Condition

$$I_{PAL} = \int_{M} tr \left[B \wedge F(\omega) \right] - \lambda_{IJKL} B^{IJ} B^{KL}$$
(3.1)

Theorem 3.1. Assume that e^1, e^2, e^3, e^4 span \mathbb{R}^4 . A bivector $B = B_{\mu\nu}e^{\mu} \wedge e^{\nu}$ with $B_{\mu\nu} \in \mathbb{R}$, can be written as a sum of at most two wedge products of vectors which are linearly independent. In other words, it is either

$$B = u^1 \wedge v^1 + u^2 \wedge v^2 \tag{3.2}$$

for some linearly independent vectors u^1, u^2, v^1, v^2 or

$$B = u \wedge v \tag{3.3}$$

for some linearly independent vectors u, v. In the latter case, B is said to be simple.

Proof. First, let us collect as many terms with the same index in the left subscript as possible, say starting with subscripts containing 1 and 2.

$$B = B_{\mu\nu}e^{\mu} \wedge e^{\nu}$$

$$= e^{1} \wedge (B_{12}e^{2} + B_{13}e^{3} + B_{14}e^{4}) + e^{2} \wedge (B_{23}e^{3} + B_{24}e^{4}) + B_{34}e^{3} \wedge e^{4}$$

$$= e^{1} \wedge e'^{1} + e^{2} \wedge e'^{2} + B_{34}e^{3} \wedge e^{4}$$
(3.4)

Since e^1, e^2, e^3, e^4 are linearly independent, so are the vectors e^1, e'^1, e^2, e'^2 . Now

$$e^{\prime 1} \wedge e^{\prime 2} = B_{12}e^2 \wedge e^{\prime 2} + C_{12:34}e^3 \wedge e^4. \tag{3.5}$$

Here $C_{12;34} := B_{13}B_{24} - B_{14}B_{23}$.

If $C_{12:34} \neq 0$,

$$e^{3} \wedge e^{4} = \frac{1}{C_{12:34}} \left(e^{\prime 1} \wedge e^{\prime 2} - B_{12} e^{2} \wedge e^{\prime 2} \right)$$
 (3.6)

then

$$B = \left(e^{1} - \frac{B_{34}}{C_{12:34}}e^{\prime 2}\right) \wedge e^{\prime 1} + \left(1 - \frac{B_{12}B_{34}}{C_{12:34}}\right)e^{2} \wedge e^{\prime 2} = u^{1} \wedge v^{1} + u^{2} \wedge v^{2}$$
(3.7)

where we have defined $u^1 = \left(e^1 - \frac{B_{34}}{C_{12;34}}e'^2\right), u^2 = e'^1, v^1 = \left(1 - \frac{B_{12}B_{34}}{C_{12;34}}\right)e^2, v^2 = e'^2$. If $C_{12;34} = 0$, we can look for other pairs of indeces to find one ij with $C_{ij;kl} \neq 0$ and then we can apply the same process as described above. Otherwise, we have $C_{ij;kl} = 0$ for all ij. In this case B is a simple bivector. To see this, let us list the coefficients $B_{\mu\nu}$ as the entries of an anti-symmetric matrix

$$\begin{pmatrix}
0 & B_{12} & B_{13} & B_{14} \\
B_{21} & 0 & B_{23} & B_{34} \\
B_{31} & B_{32} & 0 & B_{34} \\
B_{41} & B_{42} & B_{43} & 0
\end{pmatrix}$$
(3.8)

with $B_{\mu\nu} = -B_{\nu\mu}$. Then $C_{ij;kl} = 0$ implies that

$$\begin{pmatrix}
0 & B_{12} & B_{13} & B_{14} \\
B_{21} & 0 & k_1 B_{13} & k_1 B_{14} \\
B_{31} & k_2 B_{12} & 0 & k_2 B_{14} \\
B_{41} & k_3 B_{12} & k_3 B_{43} & 0
\end{pmatrix}$$
(3.9)

for some constants k_1, k_2, k_3 . Then, from the anti-symmetry, we have

$$\begin{cases}
k_1 B_{13} &= -k_2 B_{12} \\
k_1 B_{14} &= -k_3 B_{12} \\
k_2 B_{14} &= -k_3 B_{13}.
\end{cases}$$
(3.10)

Hence, $k_1B_{13} = k_1B_{14} = k_2B_{14} = 0$, which implies that

$$B = e^1 \wedge B_{1\mu} e^{\mu} = u \wedge v. \tag{3.11}$$