第五章 非参数假设检验

非参数假设检验

若假设 $H_0: F(x) = F_0(x; \theta)$, 其中 $F_0(x; \theta)$ 为一个指定的分布, θ 是参数向量.

- (1)若 $\theta = \theta_0$ 已知, 即总体分布完全确定,此时 H_0 称为简单假设.

当假定某一理论分布 $F_0(x;\theta)$,实际数据 x_1,\cdots,x_n 与理论分布 $F_0(x;\theta)$ 偏离的量用 $\Delta(x_1,\cdots,x_n;F)$ 表示,规定一个界限 Δ_0 ,若 Δ 超过这个界限 Δ_0 ,则认为理论分布与数据 x_1,\cdots,x_n 不符,因而拒绝 H_0 ,否则接受 H_0 . 这个 Δ 就称为"拟合优度"(Goodness of Fit),这种检验称为"拟合优度检验"

◆ロ > ← 個 > ← 差 > ← 差 > 一差 の へ で

$-.\chi^2$ 拟和优度检验

1.简单假设

设总体分布为F(x). (X_1, \dots, X_n) 为取自总体的样本,提出假设 $H_0: F(x) = F_0(x; \theta_0)$, θ_0 为已知参数。 (1)选取r = 1个字数 $-\infty < v_1 < v_2 < \dots < v_{r-1} < +\infty$ 它们将

(1)选取r-1个实数 $-\infty < y_1 < y_2 < \cdots < y_{r-1} < +\infty$,它们将随机变量X的一切可能取值的集合分为r个区间,并用 n_i 表示样本观测值落入第i个区间(y_{i-1}, y_i)的观测频数 (这里

设 $y_0 = -\infty, \ y_r = +\infty$). $\sum_{i=1}^r n_i = n$.

(2)在 H_0 为真下,则由给定的分布函数 $F_0(x; \theta_0)$ 可以求出 $p_i = F_0(y_i; \theta_0) - F_0(y_{i-1}; \theta_0), i = 1, 2, \cdots, r.$

 $\sum_{i=1}^{r} p_i = 1$, 称 np_i 为样本落入第i个小区间的**理论频数**.

(3)考虑统计量 $\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i}$,它表示实际观测频数 n_i 与理论频数 np_i 的相对差异的总和. 由Pearson定理: $\chi^2 \sim \chi^2(r-1)$,因此当n充分大时,对给定的显著性水平 α ,检验的拒绝域为 $W = \{\chi^2 \geq \chi^2_{1-\alpha}(r-1)\}$.

2.复合假设

$$H_0: F(x) = F_0(x; \theta), \theta$$
未知,为s维向量, $\theta = (\theta_1, \dots, \theta_s)$

(1)由MLE法得 $\hat{\theta}$ 代替未知参数,

$$(2)\hat{p}_i = F_0(y_i; \hat{\theta}) - F_0(y_{i-1}; \hat{\theta}), i = 1, 2, \cdots, r$$

$$(3)\chi^2 = \sum_{i=1}^r \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \sim \chi^2(r - s - 1)$$

3.假设检验步骤

- (1)将观测值(数据)分为r个互不相容的区间,算出n_i,每个区间至少有5个样本,区间长度可以不一样。
- (2)在Ho为真下,用MLE估计法去估计分布中所含的未知参数。
- (3)在Ho为真下, 计算理论概

率
$$p_i = F(y_i) - F(y_{i-1}), i = 1, \dots, r$$
,并计算 np_i .

(4)计算
$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i}$$

- (5)对给定的显著性水平 α ,检验的拒绝域 为 $W = \{\chi^2 \ge \chi^2_{1-\alpha}(r-s-1)\}$, 查表得临界值, s为未知参数的个数。
- (6)若 $\chi^2 > \chi^2_{1-\alpha}$,则拒绝 H_0 ,否则接受 H_0 。

注: (1)χ²拟和优度检验必需在大样本下进行。

- (2)要求np_i ≥ 5
- (3)在简单假设检验中,分区间时最好各区间概率相同。

例1. 有一正二十面体的20个面上分别标以数字0,1,...,9,每个数字在两个对称的面上标出,为检验其均匀性,共做800次投掷试验,数字0,1,...,9朝上的次数为

数字	0	1	2	3	4	5	6	7	8	9
频数	74	92	83	79	80	73	77	75	76	91

问:该正20面体是否均匀? ($\alpha = 0.05$)

解: H_0 :该正20面体均匀, 即 $p_i = P(x = i) = \frac{1}{10}, i = 0, 1, \cdots, 9, 则 np_i = 80$

数字	n _i	npi	$n_i - np_i$	$(n_i - np_i)^2$
0	74	80	-6	36
1	92	80	12	144
2	83	80	3	9
3	79	80	-1	1
4	80	80	0	0
5	73	80	-7	47
6	77	80	-3	9
7	75	80	-5	25
8	76	80	-4	16
9	91	80	11	121
Σ	800			410

$$\chi^2 = \sum_{i=1}^{10} \frac{(n_i - np_i)^2}{np_i} = \frac{1}{80} * 410 = 5.125,$$
对 $\alpha = 0.05$, 查表 $\chi^2_{0.95}(10 - 1) = 16.9$, 因为 $\chi^2 < \chi^2_{0.95}(9)$, 所以接受 H_0 , 即认为该正20面体是均匀的。

例2. 遗传学中常常有考虑拟合检验的例子.例如某种动物身上的毛可分成三种类型:极卷,中等卷曲,正常,而毛的卷曲由二个遗传基因F, f 所控制, (F,F) 的后代身上的毛是极卷的, (F,f) 的后代是中等卷曲, (f,f)则为正常, 并且两个基因随机结合,因此极卷,中等卷曲,正常的比例应是1:2:1.现在进行了93次试验,所得下面结果.

极卷	中等卷曲	正常
23	50	20

设 $p_1 = P\{$ 后代的毛是极卷的 $\}$, $p_2 = P\{$ 后代的毛中等卷曲 $\}$, $p_3 = P\{$ 后代的毛正常 $\}$,

则假设检验为

$$H_0: p_1=p_{10}=rac{1}{4}, p_2=p_{20}=rac{1}{2}, p_3=p_{30}=rac{1}{4} \ \leftrightarrow \ H_1: \ \pounds \not = \pi - \uparrow p_i
eq p_{i_0}.$$

$$\chi^2 = \frac{(23 - 93 \times \frac{1}{4})^2}{93 \times \frac{1}{4}} + \frac{(50 - 93 \times \frac{1}{2})^2}{93 \times \frac{1}{2}} + \frac{(20 - 93 \times \frac{1}{4})^2}{93 \times \frac{1}{4}} = 0.72,$$

对 $\alpha = 0.05$, $\chi^2_{0.95}(2) = 5.991 \chi^2 = 0.72 < \chi^2_{0.95}(2)$, 因此不能拒绝原假设,即毛的卷曲程度是由遗传基因(F,F), (F,f)和(f,f)所控制的遗传学理论是站得住脚的.

例3.电话交换台在某一小时内接到用户的呼唤次数,按每分钟计

呼叫次数ni	0	1	2	3	4	5	6	≥7
	8	16	17	10	6	2	1	0

问: 电话每分钟呼叫次数是否服从泊松分布? $(\alpha = 0.05)$

解:由MLE得 $\hat{\lambda} = \bar{X}$,由样本观测值得

$$\bar{x} = (0*8+1*16+\cdots+6*1)/60 = 2$$

 $H_0: \hat{p}_i = P(X=i) = \frac{2^i e^{-2}}{i!}, i = 0, 1, \cdots$ 在 H_0 为真下,每分钟接到呼唤次数的理论频数

$$n\hat{p}_i = 60 * \frac{2^i e^{-2}}{i!}, i = 0, 1, \cdots$$

i	n _i	np̂i	$n_i - n\hat{p_i}$	$(n_i - n\hat{p}_i)^2$	$(n_i - n\hat{p}_i)^2/n\hat{p}_i$
0	8	8.1204	-0.1204	0.0145	0.0018
1	16	16.2402	-0.2402	0.0577	0.0036
2	17	16.2402	0.7598	0.5773	0.0355
3	10	10.8264	-0.8264	0.6829	0.0631
4	6	5.4134			
5	2	2.1654	0.4932	0.2432	0.0286
6	1	0.7218			
7	0	0.2062			
\sum	60				0.1326

$$\chi^2 = \sum_{i=1}^5 \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} = 0.133, r = 5, s = 1,$$
对 $\alpha = 0.05,$ 查 表 $\chi^2_{0.95}(3) = 7.815,$ 因为 $\chi^2 < \chi^2_{0.95}(3),$ 所以接受 H_0 ,即认为每分钟呼叫次数服从参数为2的泊松分布。

二.列联表的独立性检验

"对所考察的总体中每一个元素同时测定两个指标X, Y, 要检验 这两个指标是否有关."

例:考虑对某种疾病的几种治疗方法与治疗结果之间的关系.将n个病人按不同的治疗方法(第一个指标)分组,观察各组内病人的不同效果(第二个指标).设X可能取值为 $1,2,\cdots,p$, Y可能取值为 $1,2,\cdots,q$, 现在对(X,Y) 进行了n次独立观测而得(x_1,y_1),…,(x_n,y_n), 用 n_{ij} 表示样本观测值中"X取i,Y取j"的次数. 检验假设

H₀: X与Y独立.

把数据排列成表的形式,这种表称为p*q列联表

	1	2		q	
1	n ₁₁	n_{12}	• • •	n_{1p}	n_1 .
2	n ₂₁	n_{22}	• • •	n_{2p}	<i>n</i> ₂ .
:	:	÷	٠.	÷	:
р	n_{p1}	n_{p2}	• • •	n_{pq}	n _p .
	$n_{\cdot 1}$	n. ₂	• • •	n. _q	n

其中
$$n_{i.} = \sum_{j=1}^{q} n_{ij},$$
 $n_{.j} = \sum_{i=1}^{p} n_{ij},$ $n = \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}.$ 检验X与Y是否相互独立 $\Leftrightarrow H_0: p_{ij} = p_{i.} \cdot p_{.j},$ 对于所有 (i,j) 都成立; $H_1: p_{ij} \neq p_{i.} \cdot p_{.j},$ 对于某个 (i,j) 成立

由MLE得

$$\begin{cases} \hat{p_{i}} = \frac{n_{i}}{n}, & i = 1, \dots, p; \\ \hat{p}_{\cdot j} = \frac{n_{\cdot j}}{n}, & j = 1, \dots, q. \end{cases}$$

选取统计量

$$\chi^2 = n \sum_{i=1}^p \sum_{j=1}^q \frac{(n_{ij} - \hat{n}_{ij})^2}{n_{i\cdot} n_{\cdot j}} = n \left(\sum_{i=1}^p \sum_{j=1}^q \frac{n_{ij}^2}{n_{i\cdot} n_{\cdot j}} - 1\right) \sim \chi^2((p-1)(q-1))$$

其中
$$\hat{n}_{ij} = \frac{n_i \cdot n_{\cdot j}}{n}$$
,
对给定的 α , 拒绝域 $W = \{\chi^2 \ge \chi^2_{1-\alpha}((p-1)(q-1))\}$ 。

例5. 某校甲乙两班进行某种技能训练,测验成绩按优,良,及格及不及格四级给分,结果如下表,问成绩与班级有无关系? $\alpha = 0.05$

班级	优	良	及格	不及格	合计
甲	14	20	15	11	60
て	18	10	20	12	60
合计	32	30	35	23	120

解:Ho:成绩与班级无关。

在 H_0 为真下,理论频数表如下, $\hat{n}_{ij} = \frac{n_i.n._j}{n}$

班级	优	良	及格	不及格	合计
甲	16	15	17.5	11.5	60
乙	16	15	17.5	11.5	60
合计	32	30	35	23	120

$$\chi^{2} = n \sum_{i=1}^{2} \sum_{j=1}^{4} \frac{(n_{ij} - \hat{n}_{ij})^{2}}{n_{i} \cdot n_{\cdot j}}$$

$$= \frac{(14 - 16)^{2}}{16} + \frac{(20 - 15)^{2}}{15} \cdots \frac{(12 - 11.5)^{2}}{11.5} = 4.592$$

对 $\alpha=0.05,\ p=2,q=4,$ 查表 得 $\chi^2_{0.95}(3)=7.815,$ 则 $w=\{\chi^2>7.815\},$ 由 $\chi^2<\chi^2_{0.95}(3),$ 所以接 受 H_0 ,即在显著性水平0.05下,认为成绩与班级无关。

 \mathbf{i} : (1)列联表检验独立性时,实际上是 χ^2 拟和优度检验中 χ^2 检验统计量极限定理的应用。

- (2)也可用于连续型,将变量值分成若干个互不相容的区间。
- (3)当p=q=2时,得到2*2列联表,也叫四格表,用a,b,c,d表示观测值。

	1	2	\sum
1	а	b	a+b
2	С	d	c+d
\sum	a+c	b+d	n

有一简便的计算公式,

$$\chi^2 = \frac{n(ad - bc)^2}{(a+c)(b+d)(c+d)(a+b)} \sim \chi^2(1)$$

例6.调查339名50岁以上吸烟习惯与患慢性气管炎的关系,得下表,问吸烟与患慢性气管炎是否有关? $\alpha = 0.01$

	患	不患	\sum
吸烟	43	162	205
不吸烟	13	121	134
\sum	56	283	339

解:设Ho:吸烟与患慢性气管炎无关,由四格表检验

$$\chi^2 = \frac{n(ad - bc)^2}{(a+c)(b+d)(c+d)(a+b)} = 7.469$$

对 $\alpha=0.01$, 查表 $\chi^2_{0.99}(1)=6.635$,因为 $\chi^2>\chi^2_{0.99}(1)$,所以拒绝 H_0 ,即认为吸烟与患慢性气管炎有关。