Análisis Matemático II

Tema 2: Ejercicios propuestos

1. Para cada $n \in \mathbb{N}$, sea $f_n:]-1, 1[\to \mathbb{R}$ la función definida por

$$f_n(x) = \frac{x^n}{1 - x^n} \quad \forall x \in]-1, 1[$$

Probar que la serie $\sum_{n\geq 1} f_n$ converge absolutamente en] -1, 1[y uniformemente en cada compacto $K\subset$] -1, 1[, pero no converge uniformemente en] -1, 1[.

2. Fijado $\alpha \in \mathbb{R}^+$ se define:

$$g_n(x) = \frac{1}{n^{\alpha}} \operatorname{arctg} \frac{x}{n} \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

Probar que la serie de funciones $\sum_{n\geq 1} g_n$ converge absoluta y uniformemente en cada subconjunto acotado de $\mathbb R$ y que, si $\alpha>1$, dicha serie converge absoluta y uniformemente en $\mathbb R$.

3. Para cada $n \in \mathbb{N}$ se considera la función $h_n : \mathbb{R} \to \mathbb{R}$ definida por

$$h_n(x) = \frac{1}{n} \operatorname{sen}(n x) \log \left(1 + \frac{|x|}{n}\right) \quad \forall x \in \mathbb{R}$$

Probar que la serie de funciones $\sum_{n\geq 1}h_n$ converge absoluta y uniformemente en cada subconjunto acotado de $\mathbb R$.

4. Estudiar la convergencia puntual, absoluta y uniforme de las siguientes series de potencias:

(a)
$$\sum_{n\geq 0} \frac{x^n}{\log(n+2)}$$
 (b) $\sum_{n\geq 0} \frac{n}{2^n} (x-1)^n$