BARTON: Low Power Tongue Movement Sensing with In-ear Barometers

Balz Maag*, Zimu Zhou*, Olga Saukh† and Lothar Thiele*

*ETH Zürich

⁺TU Graz, CSH Wien

Tongue Movement Sensing

Hands-free computer-human interaction

Popular applications:

Handicapped support

Firefighters

Sports

Related Work

- Wireless sensing
 - Li et al.: Radar mounted on shoulders
- Tongue-mounted sensors
 - Sahni et al.: Magnetic sensors
- Skin-mounted sensors
 - Zhang et al.: EMG electrodes attached to neck
 - Rahman et al.: Microphones attached to neck
- In-ear sensing
 - Vaidyanathan et al.: Microphone in ear-canal
 - Mace et al.: Microphone in ear-canal

Intrusive Limited practicability Complex hardware

Vulnerable to interference (e.g. music) Complex signal processing High power consumption

Our goal: A **practical** and **robust** tongue movement sensing system with **low power consumption** using **in-ear barometers**

Practical: COTS hardware and ordinary headphones

Robust: Resilient to head movement and music interference

TI MSP432 Launchpad

In-Ear Sensing

- Tongue movements (e.g. left, right, forward) lead to deformation of the ear-canal
- In-ear pressure changes with frequencies between [3, 6] Hz
- Challenges:
 - Capture the low-frequency pressure changes
 - Distinguish tongue movements from interferring activities such as head movements, music etc.

Barometers vs. Microphones

- Drawbacks of MEMS microphone based solutions:
 - High sampling rates (>8kHz) and frequency-space signal processing leads to high power consumption
 - MEMS microphones are not designed to capture pressure changes with frequencies <100Hz
- Barometers can capture low-frequent pressure changes at low sampling rates (≤50Hz)
- Experiment:

Frequency Response

- Microphone frequency response drops linearly and cuts off at around 10Hz
- Barometer is not suffering from a linear frequency response drop and, most importantly, is more sensitive to frequencies below 10Hz

Classification

5 classification classes:

- 3 Simple Classifiers
 - Support vector machines (SVM)
 - k-Nearest Neighbors (KNN)
 - Decision Tree (DT)

TI MSP432 Launchpad

Feature Extraction

- Pre-processing of the two pressure data streams:
 - Sliding window W with 50% overlap
 - Detrending (subtracting mean) of samples within window
- Only temporal features to reduce computational complexity

Feature Extraction

- Important features:
 - min(W), max(W), min(diff(W)), max(diff(W)):
 Moving the tongue to the left causes peaks in the right ear canal, and vice-versa
 - covariance(W):
 Moving the tongue forwards causes strong correlations between the pressure signals
- Feature set refinement: Sequential feature selection algorithm
 - Additional features: root-mean-square(W), covariance(diff(W))

Evaluation: Classification Accuracy

mean acc.: 94%

KNN mean acc.: 91%

DT

mean acc.: 89%

- 40Hz sampling rate, 1sec sliding window
- 444 elements for each class
- 10-fold cross-validation

Robustness to music

Pressure signals while playing music

- Music played by Huawei P8 smartphone at 75% volume
- BARTON is not affected by music played through the headphones

Robustness to different users

Activity	User 1	User 2	User 3	User 4	User 5
Left (L)	97%	54%	91%	61%	45%
Right (R)	90%	67%	72%	50%	82%
Forward (F)	100%	87%	63%	20%	100%
Head mov. (H)	93%	64%	93%	100%	56%
Idle (I)	100%	97%	96%	100%	100%
Overall	96%	72%	87%	66%	70%

- 5 users (1, 2: female, 3, 4, 5: male)
- 2-fold cross-validation with 12 to 38 elements per class for each user
- Reasons for different accuracies:
 - 1. Features of the tongue movements are different for each user
 - Headphone tips need to fully enclose the ear canal (particularly a problem for user 4 and 5)

Power

- Decision tree implementation using TI-RTOS
- Sampling rate 40Hz, 1sec sliding window
- Average power consumption: 8.4mW
 - 44x more efficent than micro-phone based implementation by Rahman et al.

Conclusion

- We present BARTON, a tongue movement sensing system that...
 - is practical due to the integration of barometers into ordinary headphones
 - is robust against interference like head movement and music
 - with low-power consumption due to simplistic signal processing and classification
- Evaluations show that BARTON can achieve up to 94% classification accuracy of three major tongue movements while consuming 44x less power compared to related work

Thank you!

Questions?

Backup: Classification Robustness

- Window size of at least 1 sec achieves good accuracies for all the three classifiers.
 - Tongue activities have an average duration of 1 sec while the shortest and longest samples last for 0.75 sec and 1.25 sec respectively.
- A low **sampling rate** improves power efficiency but the coarse sampled pressure signals may decrease the classification accuracy.
- BARTON requires a minimal of 40 samples for each tongue movement to yield a reasonable classification accuracy of 85% for both the SVM and KNN classifiers. The decision tree needs over 300 samples to reach an accuracy over 80%.