# NLP for Social Sciences

1. The Basics of NLP

# Natural Language Processing



#### 1 Ambiguity

bank, present, light, spring, match, trip

#### 2 Idioms

break the ice, under the weather, a piece of cake

#### 3 Complex grammar

passive voice, conditional tense. phrasal verbs

4 Homonyms

bass (fish/sound) bat (animal/sport.)

5 Borrowed words

rendezvous

6 Slang

Lol, u, yp

- Inference tasks, world knowledge

Jessica noticed that Sarah was unusually quiet. After the discussion, **she** asked if everything was okay.

Who is she?

- Inference tasks, world knowledge

Jessica noticed that Sarah was unusually quiet. After the discussion, **she** asked if everything was okay.

Who is she?

Training data limitations

Text representation problem

- a word is the basic structural unit of language
- word meaning depends on context
- many words and sparse feature spaces

Language structure (3-level)

- Words and phrases (morphology)
- Sentences (syntax)
- Text (discourse)

- Tasks
- Languages



- Tasks
- Languages
- Data domains



### Corpus

- A corpus is a collection of text
- Often annotated in some way
- Sometimes just lots of text
- Examples
  - Penn Treebank: 1M words of parsed WSJ
  - Canadian Hansards: 10M+ words of French/English sentences
  - Yelp reviews
  - Famous benchmarks: MMLU, GLUE
  - https://huggingface.co/datasets



#### Course Structure

- Introduction to structural linguistics and text processing
- Text representation models
- Main tasks: text classification, named entity recognition, machine translation
- Transformer-like language models

Evaluation: Project + Exam

# Text classification problem



#### Overview of main tasks in NLP

- Conversational agents
- Information extraction and question answering
- Machine translation
- Opinion and sentiment analysis
- Social media analysis
- Visual understanding
- Essay evaluation
- Mining legal, medical, or scholarly literature

### Text classification problem



Processing + n feature extraction



 $\begin{pmatrix} w_{11} & \cdots & w_{1r} \\ \vdots & \ddots & \vdots \end{pmatrix}$ 

$$\vdots$$
  $\vdots$   $\vdots$   $w_{n1}$   $\cdots$   $w_{nm}$ 







Label

- Spam classification
- Sentiment analysis
- Hate speech detection
- Text similarity

### Ranking problem

- Search engine ranking:
- Recommendation systems
- Ad ranking





### Machine translation problem



#### Grammatical error correction

I goes to the market to buy some fruit. I seen a lot of colorful apples and oranges. The price of them was cheaper then I expected. I buyed three apples and two oranges. I sees ...

### Virtual assistants (Chatbots)

Analyze the input and generates output based on the request

- SNCF/RATP chatbots
- La banque postale virtual assistant
- Air France Chatbot (Louis)

### Text preprocessing

- Tokenization
- Sentence segmentation
- Punctuation removal
- Stop words
- Order by length, frequency/regular expression
- Lemmatization
- Stemming

### Example of Lemmatization

Les touristes ont aimé la promenade sur le pont. Le touriste avoir aimer la promenade sur le pont

Lemmatization

Tourist aim prom sur pont.

Stemming

# Zipf's law

- Sparse data problem
- Example: the frequency of different words in a large text corpus

| any word  |       |           | nouns      |  |
|-----------|-------|-----------|------------|--|
| Frequency | Token | Frequency | Token      |  |
| 1,698,599 | the   | 124,598   | European   |  |
| 849,256   | of    | 104,325   | Mr         |  |
| 793,731   | to    | 92,195    | Commission |  |
| 640,257   | and   | 66,781    | President  |  |
| 508,560   | in    | 62,867    | Parliament |  |
| 407,638   | that  | 57,804    | Union      |  |
| 400,467   | is    | 53,683    | report     |  |
| 394,778   | a     | 53,547    | Council    |  |
| 263,040   | I     | 45,842    | States     |  |

# Zipf's law



### Zipf's law



- Regardless of how large our corpus is, there will be a lot of infrequent words
- This means we need to find clever ways to estimate probabilities for things we have rarely or never seen