Aggregated sampling output

November 20, 2020

Dataset: simulated_data_dataset1_with_error, model type: ODE

Trajectories without pathologies

e.g. no divergent transitions, no max_treedepth exceeded, no Rhat > 1.1, no n_eff < 100 number of trajectories without pathologies (out of 100):

[1] 1

indices of trajectories without pathologies:

[1] 80

no pathologies for a subset of the parameters

parameters considered:

[1] "t0" "sigma" "scale"

[4] "offset" "prod_theta2_m0_scale"

number of trajectories without pathologies (out of 100):

[1] 87

indices of trajectories without pathologies:

		_		_	_	_	_	_											
[1]	1	3	4	5	6	7	8	9	10	12	13	14	15	16	17	18	19	20	21
[20]	23	24	25	27	29	30	31	32	33	35	36	37	38	39	40	41	42	43	44
[39]	46	47	49	50	51	52	53	54	55	56	57	58	60	61	62	63	64	66	67
[58]	68	69	70	71	72	75	76	77	78	79	80	81	82	83	84	86	87	88	89
[77]	90	91	92	93	94	95	96	97	98	99	100								

Divergent transitions

numof.divtransitions	Freq
0	100

Maximum tree depth exceeded

numof.max.t.dexceeded	Freq
0	96
2500	4

total number of trajectories were max. tree depth was exceeded: 4 indices of trajectories were max. tree depth was exceeded: 2 28 45 48

Bayesian fraction of missing information (BFMI)

numof.low.BFMI	Freq
0	98
1	1
4	1

Total sampling time

R-hat total number of trajectories with very high Rhat (> 1.1) (out of 100) $$\tt [1]$$ 99

number of trajectories with high Rhat per parameter (out of 100)

	Rhat > 1.02	Rhat > 1.1
theta[1]	100	99
theta[2]	3	0
theta[3]	100	99
m0	3	1
sigma	11	10
scale	4	3
offset	13	13
t0	13	13
$prod_theta2_m0$	0	0
prod_theta2_scale	0	0
$prod_m0_scale$	2	1
$prod_theta2_m0_scale$	13	13
x2_sim[180]	0	0

number of parameters with high Rhat per trajectory (out of 13)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
$\frac{1.02}{\text{Rhat}} > 1.02$	2 2 2	10	2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	6	2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2	
$\frac{\text{Rhat} > 1.1}{}$		9	2								0	2									
	21	22	23	24	25	<u>,</u>	26	27	28	29	30	31	32	2 33	34	35	36	37	38	39	40
$\overline{\text{Rhat} > 1.02}$	2	6	2	2	2		6	2	10						2 6	2	2	2	2		2
$\frac{\text{Rhat} > 1.1}{}$	2	6	2	2	2	2	6	2	7	2	2	2	2	2 2	2 6	2	2	2	2	2	2
	41	42	43	44	45	<u>, </u>	46	47	48	49	50	51	52	2 53	3 54	55	56	57	58	59	60
$\overline{\text{Rhat} > 1.02}$	2	2	2	2	8	3	2	2	8	2	2	2	2	2	2 2	2	2	2	2	5	2
$\frac{\text{Rhat} > 1.1}{}$	2	2	2	2	6	<u> </u>	2	2	7	2	2	2	2	2 2	2 2	2	2	2	2	5	2
-	61	62	63	64	65	<u> </u>	66	67	68	69	70	71	72	2 73	3 74	. 75	76	77	78	79	80
$\overline{\text{Rhat} > 1.02}$	2	2	2	2	6	;	2	2	2	2	2	2	2	2 6	5 6	2	2	2	2	2	2
$\frac{\text{Rhat} > 1.1}{}$	2	2	2	2		<u> </u>	2	2	2	2	2	2	2	2 5	5 6	2	2	2	2	2	0
	81	82	83	84	85	<u>,</u>	86	87	88	89	90	91	92	93	3 94	95	96	97	98	99	100
Rhat > 1.02	2	2	2	2	5		2	2	2		2	2						2			2
Rhat > 1.1	2	2	2	2	5	5	2	2	2	2	2	2	2	2 2	2 2	2	2	2	2	2	2

theta[1]

number of trajectories with Rhat > 1.02: 100

indizes of trajectories with Rhat > 1.02:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

number of trajectories with Rhat > 1.1: 99

indices of trajectories with Rhat > 1.1:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

theta[2]

number of trajectories with Rhat > 1.02:

indizes of trajectories with Rhat > 1.02:
2 28 45

theta[3]

number of trajectories with Rhat > 1.02: 100

indizes of trajectories with Rhat > 1.02:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

number of trajectories with Rhat > 1.1: 99

indices of trajectories with Rhat > 1.1:

2.0

m0

number of trajectories with Rhat > 1.02:

indizes of trajectories with Rhat > 1.02:
2 28 48

number of trajectories with Rhat > 1.1: 1

indices of trajectories with Rhat > 1.1:

sigma

number of trajectories with Rhat > 1.02: 11

indizes of trajectories with Rhat > 1.02: 2 11 22 26 28 34 45 48 65 73 74

number of trajectories with Rhat > 1.1: 10

indices of trajectories with Rhat > 1.1: 2 11 22 26 28 34 45 48 65 74

scale

number of trajectories with Rhat > 1.02: 4

indizes of trajectories with Rhat > 1.02: $2\ 28\ 45\ 48$

number of trajectories with Rhat > 1.1: 3

indices of trajectories with Rhat > 1.1: 2 28 48

offset

number of trajectories with Rhat > 1.02: 13

indizes of trajectories with Rhat > 1.02: 2 11 22 26 28 34 45 48 59 65 73 74 85

number of trajectories with Rhat > 1.1: 13

indices of trajectories with Rhat > 1.1: 2 11 22 26 28 34 45 48 59 65 73 74 85

 $\mathbf{t0}$

number of trajectories with Rhat > 1.02: 13

indizes of trajectories with Rhat > 1.02: 2 11 22 26 28 34 45 48 59 65 73 74 85

number of trajectories with Rhat > 1.1: 13

indices of trajectories with Rhat > 1.1: 2 11 22 26 28 34 45 48 59 65 73 74 85

 $prod_theta2_m0$

no Rhat > 1.02

R-hat for prod_theta2_m0

 $prod_theta2_scale$

no Rhat > 1.02

R-hat for prod_theta2_scale

 $prod_m0_scale$

number of trajectories with Rhat > 1.02:

indizes of trajectories with Rhat > 1.02: $2\ 28$

number of trajectories with Rhat > 1.1: 1

indices of trajectories with Rhat > 1.1:

R-hat <= 1.1

$prod_theta2_m0_scale$

number of trajectories with Rhat > 1.02:

13

indizes of trajectories with Rhat > 1.02: 2 11 22 26 28 34 45 48 59 65 73 74 85

number of trajectories with Rhat > 1.1: 13

indices of trajectories with Rhat > 1.1: 2 11 22 26 28 34 45 48 59 65 73 74 85

R-hat <= 1.1

R-hat for prod_theta2_m0_scale

$x2_sim[180]$

no Rhat > 1.02

R-hat <= 1.1

Effective sample size (ESS)

total number of trajectories with low ESS (< 100) (out of 100)

[1] NA

number of trajectories with low ESS (< 100) per parameter (out of 100)

	n_eff < 100
theta[1]	99
theta[2]	2
theta[3]	99
m0	2
sigma	11
scale	4
offset	13
t0	NA
$prod_theta2_m0$	0
$prod_theta2_scale$	0
$prod_m0_scale$	1
$prod_theta2_m0_scale$	13
x2_sim[180]	0

number of parameters with low ESS (< 300) per trajectory (out of 13)

-							0 5	. 0		10	4.4	10	10	1.4	15	1.0	1 =	10	10		
_		1	2	3	4	5	6 7	8	9	10	11	12	13	14	15	16	17	18	19	20	
r	n_eff < 100	0 2	10	2	2	2	2 2	2	2	2	6	2	2	2	2	2	2	2	2	2	
		21	22	23	24	25	26	27	29	30	31	32	33	34	35	36	37	38	39	40	41
n_	eff < 100	2	6	2	2	2	6	2	2	2	2	2	2	2 6	2	2	2	2	2	2	2
		42	43	44	45	46	47	48	49	50	51	52	53	5 4	55	56	57	58	59	60	61
n_	eff < 100	2	2	2	8	2	2	8	2	2	2	2	2	2 2	2	2	2	2	5	2	2
		62	63	64	65	66	67	68	69	70	71	72	73	3 74	. 75	76	77	78	79	81	82
n_	eff < 100	2	2	2	6	2	2	2	2	2	2	2	6	5 6	2	2	2	2	2	2	2

theta[1]

number of trajectories with n_eff < 100: 99</pre>

indices of trajectories with $n_{eff} < 100$:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

theta[2]

number of trajectories with n_eff < 100:</pre>

indices of trajectories with n_eff < 100: $2\ 45$

theta[3]

number of trajectories with n_eff < 100: 99</pre>

indices of trajectories with n_eff < 100:</pre>

m0

number of trajectories with n_eff < 100:</pre>

2

indices of trajectories with n_eff < 100: 2 48 $\,$

sigma

number of trajectories with n_eff < 100: 11</pre>

indices of trajectories with n_eff < 100: $2\ 11\ 22\ 26\ 28\ 34\ 45\ 48\ 65\ 73\ 74$

scale

number of trajectories with n_eff < 100: 4

indices of trajectories with $n_{eff} < 100$: 2 28 45 48

offset

number of trajectories with $n_{eff} < 100$: 13

indices of trajectories with n_eff < 100: 2 11 22 26 28 34 45 48 59 65 73 74 85

 $\mathbf{t0}$

number of trajectories with n_eff < 100: NA</pre>

indices of trajectories with n_eff < 100: 2 11 22 26 34 45 48 59 65 73 74 85

 $prod_theta2_m0$

 $no n_eff < 100$

prod_theta2_scale

 $no n_eff < 100$

$prod_m0_scale$

number of trajectories with $n_{eff} < 100$: 1

indices of trajectories with n_eff < 100: 2

$prod_theta2_m0_scale$

number of trajectories with n_eff < 100: 13</pre>

indices of trajectories with $n_{eff} < 100$: 2 11 22 26 28 34 45 48 59 65 73 74 85

x2_sim[180] no n_eff < 100 n_eff >= 100 2000 6000 10000

Find problematic trajectories and parameters

n_eff for x2_sim[180]

Are there any trajectories and parameters for which n_eff is below the threshold, but Rhat does not exceed the threshold?

[1] NA

parameters per trajectories with very high Rhat

```
theta[1]
               theta[3]
1:
     theta[1]
                theta[3]
2:
                              sigma scale offset t0 prod_m0_scale prod_theta2_m0_scale
3:
     theta[1]
                theta[3]
4:
     theta[1]
                theta[3]
     theta[1]
                theta[3]
5:
     theta[1]
                theta[3]
6:
7:
     theta[1]
                theta[3]
     theta[1]
8:
                theta[3]
9:
     theta[1]
               theta[3]
10:
      theta[1]
                 theta[3]
11:
      theta[1]
                 theta[3]
                           sigma offset t0 prod_theta2_m0_scale
12:
      theta[1]
                 theta[3]
13:
      theta[1]
                 theta[3]
14:
      theta[1]
                 theta[3]
15:
      theta[1]
                 theta[3]
16:
      theta[1]
                 theta[3]
      theta[1]
                 theta[3]
17:
      theta[1]
                 theta[3]
18:
      theta[1]
                 theta[3]
19:
20:
      theta[1]
                 theta[3]
21:
      theta[1]
                 theta[3]
22:
      theta[1]
                 theta[3]
                           sigma offset t0 prod_theta2_m0_scale
23:
      theta[1]
                 theta[3]
24:
      theta[1]
                 theta[3]
      theta[1]
25:
                 theta[3]
26:
      theta[1]
                 theta[3]
                           sigma offset
                                          t0 prod_theta2_m0_scale
27:
      theta[1]
                 theta[3]
28:
      theta[1]
                 theta[3]
                           sigma scale offset t0 prod_theta2_m0_scale
29:
      theta[1]
                 theta[3]
30:
      theta[1]
                 theta[3]
31:
      theta[1]
                 theta[3]
32:
      theta[1]
                 theta[3]
33:
      theta[1]
                theta[3]
```

```
34:
      theta[1] theta[3]
                          sigma offset t0 prod_theta2_m0_scale
35:
      theta[1]
                theta[3]
                theta[3]
36:
      theta[1]
37:
                theta[3]
      theta[1]
38:
                theta[3]
      theta[1]
39:
      theta[1]
                theta[3]
40:
      theta[1]
                theta[3]
41:
      theta[1]
                theta[3]
42:
      theta[1]
                theta[3]
43:
      theta[1]
                theta[3]
44:
      theta[1]
                theta[3]
45:
      theta[1]
                theta[3]
                           sigma offset t0 prod_theta2_m0_scale
46:
      theta[1]
                theta[3]
47:
      theta[1]
                theta[3]
48:
      theta[1]
                theta[3]
                           sigma scale offset t0 prod_theta2_m0_scale
49:
      theta[1]
                theta[3]
50:
                theta[3]
      theta[1]
51:
      theta[1]
                theta[3]
52:
      theta[1]
                theta[3]
53:
      theta[1]
                theta[3]
54:
      theta[1]
                theta[3]
55:
      theta[1]
                theta[3]
56:
      theta[1]
                theta[3]
57:
      theta[1]
                theta[3]
58:
      theta[1]
                theta[3]
59:
      theta[1]
                theta[3]
                           offset t0 prod_theta2_m0_scale
60:
      theta[1]
                theta[3]
61:
      theta[1]
                theta[3]
62:
      theta[1]
                theta[3]
      theta[1]
63:
                theta[3]
64:
      theta[1]
                theta[3]
65:
      theta[1]
                theta[3]
                           sigma offset t0 prod_theta2_m0_scale
66:
      theta[1]
                theta[3]
67:
      theta[1]
                theta[3]
68:
      theta[1]
                theta[3]
69:
      theta[1]
                theta[3]
70:
      theta[1]
                theta[3]
71:
      theta[1]
                theta[3]
72:
      theta[1]
                theta[3]
73:
      theta[1]
                theta[3]
                           offset t0 prod_theta2_m0_scale
74:
      theta[1]
                theta[3]
                           sigma offset t0 prod_theta2_m0_scale
75:
      theta[1]
                theta[3]
76:
      theta[1]
                theta[3]
77:
      theta[1]
                theta[3]
78:
      theta[1]
                theta[3]
79:
      theta[1]
                theta[3]
81:
      theta[1]
                theta[3]
82:
      theta[1]
                theta[3]
83:
      theta[1]
                theta[3]
84:
      theta[1]
                theta[3]
85:
                theta[3]
      theta[1]
                           offset t0 prod_theta2_m0_scale
      theta[1]
86:
                theta[3]
87:
      theta[1]
                theta[3]
88:
      theta[1]
                theta[3]
89:
      theta[1]
                theta[3]
90:
      theta[1]
                theta[3]
```

91: theta[1] theta[3] 92: theta[1] theta[3] theta[1] theta[3] 93: theta[3] 94: theta[1] 95: theta[1] theta[3] 96: theta[1] theta[3] 97: theta[1] theta[3] theta[1] theta[3] 98: 99: theta[1] theta[3] theta[1] theta[3] 100:

unique combinations:

number of unique combinations: 5

combinations and number of their occruence:

86 : theta[1] theta[3]

 $1 : theta[1] theta[3] \\ m0 \\ sigma \\ scale \\ offset \\ t0 \\ prod_m0_scale \\ prod_theta2_m0_scale \\$

7 : theta[1] theta[3] sigma offset t0 prod_theta2_m0_scale

2 : theta[1] theta[3] sigma scale offset t0 prod_theta2_m0_scale

3 : theta[1] theta[3] offset t0 prod_theta2_m0_scale

Overview of estimates

st. error of mean for x2_sim[180]

Length of 95% CI for x2_sim[180]

Summary of length of 95% credible intervals (CIs)

Here we give the median, standard deviation (sd), and coefficient of variation (cv) of the length of the 95% CIs.

For simulated data (where the true parameter values are known), we also give the number of times that the CI covers the true value and median, sd, and cv of the length of those 95% CIs that cover the true value.

	median	sd	cv	num_cover	median_cover	sd_cover	cv_cover
theta[1]	0.203	0.041	0.202	60	0.223	0.028	0.122
theta[2]	7.548	0.119	0.016	100	7.548	0.119	0.016
theta[3]	0.204	0.040	0.200	63	0.222	0.032	0.145
m0	733.851	51.420	0.070	100	733.851	51.420	0.070
sigma	0.007	0.092	3.531	0	NA	NA	NA
scale	27.250	0.259	0.010	100	27.250	0.259	0.010
offset	0.335	0.708	1.394	96	0.335	0.722	1.401
t0	0.012	0.178	3.283	16	0.015	0.355	1.891
$prod_theta2_m0$	1702.366	68.089	0.040	100	1702.366	68.089	0.040
prod_theta2_scale	55.700	2.637	0.048	100	55.700	2.637	0.048
$prod_m0_scale$	7896.070	2328.458	0.287	100	7896.070	2328.458	0.287
$prod_theta2_m0_scale$	4.958	19.581	1.943	15	5.115	35.542	1.840
$x2_sim[180]$	6543.534	821.874	0.125	NA	NA	NA	NA

The following table shows the values of the median of the length of the CIs divided by the median of each sample

$$m_1 = \text{median}\left(\frac{q_i(0.975) - q_i(0.025)}{q_i(0.5)}\right),$$

the median of the length of the CIs divided by the mean of each sample

$$m_1 = \text{median}\left(\frac{q_i(0.975) - q_i(0.025)}{sample_mean}\right),$$

as well as the median of the length of the CIs divided by the median of the medians of the sample

$$m_3 = \frac{\text{median}(q_i(0.975) - q_i(0.025))}{\text{median}(q_i(0.5))}.$$

and (if applicable) the median of the length of the CIs divided by the true value

$$m_4 = \frac{\text{median}(q_i(0.975) - q_i(0.025))}{\text{true value}}.$$

	m_1	m_2	m_3	m_4	num_cover	m_1_cover	m_3_cover
theta[1]	1.94	1.79	1.85	1.01	60	1.91	1.63
theta[2]	11.58	4.88	11.55	23.59	100	11.58	11.55
theta[3]	2.11	1.97	2.53	20.35	63	14.31	18.50
m0	5.40	3.56	5.41	3.06	100	5.40	5.41
sigma	0.21	0.21	0.22	0.35	0	NA	NA
scale	7.64	3.83	7.62	15.14	100	7.64	7.62
offset	0.05	0.05	0.05	0.05	96	0.05	0.05
t0	0.01	0.01	0.01	0.01	16	0.02	0.02
$prod_theta2_m0$	44.50	7.73	44.10	22.17	100	44.50	44.10
prod_theta2_scale	54.72	8.46	55.28	96.70	100	54.72	55.28
$prod_m0_scale$	37.38	7.49	37.38	18.28	100	37.38	37.38
prod_theta2_m0_scale	0.04	0.04	0.04	0.04	15	0.04	0.04
x2_sim[180]	44.42	7.72	44.70	NA	NA	NA	NA