

- □Section 4.2: *Shingling*, convert documents to set representation (Boolean vector)
- ■Section 4.3: *Min-Hashing*, convert large sets to short signatures, while preserving similarity

■Section 4.4: *Locality-Sensitive Hashing*, focus on pairs of signatures likely to be from similar documents (candidate

5/6/2025

Section 4.2: Shingling

Convert documents to sets

Content

- Define Shingles
- Compressing Shingles
- 3 Similarity Metric for Shingles

4.2.1 Documents as High-Dim. Data

- □Step 1: Shingling, convert documents to sets
- **□**Approach 1 (simple approaches):
 - ➤ Document = set of words appearing in document
 - ➤ Document = set of "important" words
 - ➤ But don't work well for this application. Why?
 - >Ans: Need to account for ordering of words!

□Approach 2: Shingles

4.2.1 Define Shingles

- \square A k-shingle (or k-gram, k分词, 或称k子串) for a document is a sequence of k tokens that appears in the document
 - Tokens can be characters, words or something else, depending on the application
 - ➤ Assume tokens = characters for examples

□Example:

- \triangleright **k**=**2**, document **D**₁ = abcab. What are 2-shingles?
- ightharpoonup Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
- ➤ Option: Shingles as a bag (multiset), count ab twice: S' (D₁) = {ab, bc, ca, ab}

■Then, represent a document by its set of k-shingles.

4.2.1 Define Shingles

- □ For **white space** (blank, tab, newline, etc) in documents, there are several options to deal with.
 - ➤ Common: replace any sequence of one or more white space characters by a single blank.
 - ➤Or: eliminate blanks.

□Example:

- >k=9. Document D_2 = "The pane was ready for touch down",
- \triangleright Document $D_3 =$ "The quarterback scored a touchdown",
- ➤ When retaining the blanks, **S(D₂)** has "touch dow" and "ouch down" and **S(D₃)** has "touchdown"
- ➤ When eliminating the blanks, both have "touchdown"

4.2.1 Define Shingles

- **□**Documents that have lots of shingles in common have similar text, even if the text appears in different order
- \square Working Assumption, Caveat(提醒): You must pick k large enough, or most documents will have most shingles
 - > k = 5 is OK for short documents
 - > k = 10 is better for long documents

4.2.2 Compressing Shingles

- □To compress long shingles, we can hash them to (say) 4 bytes
- □Represent a document by the set of hash values of its *k*-shingles
 - ➤ Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- **Example:** k=2; document D_1 = abcab
 - \triangleright Set of 2-shingles: S(D1) = {ab, bc, ca}
 - > Hash the singles: $h(D1) = \{1, 5, 7\}$

□Benefits of shingles:

- Documents that are intuitively similar will have many shingles in common
- Changing a word only affects k-shingles within distance k-1 from the word

4.2.3 Similarity Metric for Shingles

- □ Document D_1 is a set of its k-shingles $C_1 = S(D_1)$
- □ Equivalently, each document is a 0/1 vector in the space of k-shingles
 - ➤ Each unique shingle is a dimension
 - Vectors are very sparse
- □A natural similarity measure is the Jaccard similarity (Jaccard 相似度):

$$sim(D_1, D_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$
e.g. 4/8

4.2.3 From Sets to Boolean Matrices

- □Rows = elements (shingles)
- □Columns = sets (documents)
 - ▶1 in row **e** and column **s** if and only if **e** is a member of **s**
- □Typical matrix is sparse!
- □Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1). Each document is a column:
 - \triangleright Example: sim(C₁,C₂) = ?
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6.

Documents

1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0
	1 0 0 1	1 1 0 1 0 0 1 0 1 1	1 1 0 0 1 0 0 0 0 1 0 0 1 1 1

Characteristic/Boolean matrix (特征/布尔矩阵)

Note: We don't really construct the matrix; just imagine it exists

4.2.3 Example

- **Example:** Suppose we need to find near-duplicate documents among N = 1 million (一百万) documents
- □Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - ➤ At 10⁵ secs/day and 10⁶ comparisons/sec, it would take **5 days**
- \square For N = 10 million, it takes more than a year...

Outline: Finding Similar Columns

- **□So far:**
 - ➤ Documents → Sets of shingles
 - > Represent sets as boolean vectors in a matrix
- ■Next goal: Find similar columns while computing small signatures
 - **➤** Similarity of columns == similarity of signatures

Section 4.3:

Minhashing
Convert large sets to short signatures, while preserving similarity

1 Min-Hashing

- The Min-Hash Property
- 3 Implementation Trick for Min-Hash

Content

4.3.1 Finding Similar Columns

- **□Goal:** Find similar columns, small signatures
- ■Naïve approach:
 - ≥1) Signatures of columns: small summaries of columns
 - >2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
 - >3) Optional: Check that columns with similar signatures are really similar

■Warnings:

- ➤ Comparing all pairs may take too much time. Job for Section 4.4: **LSH** (Locality-Sensitive Hashing)
 - These methods can produce false negatives(伪反例), and even false positives (伪正例, if the optional check is not made)

False positive(伪正例):某些文档对不是相似的,但它被认为是相似的False negative(伪反例):某些文档对是相似的,但它却认为是不相似的

4.3.1 Hashing Columns (Signatures)

- □ Key idea: "hash" each column C to a small signature h(C), such that:
 - \triangleright (1) h(C) is small enough that the signature fits in RAM
 - \triangleright (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Goal: Find a hash function h(•) such that:

- If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- □Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

4.3.1 Min-Hashing

- **□Goal**: Find a hash function *h(•)* such that:
 - \triangleright if $sim(C_1,C_2)$ is high, then with high prob. $h(C_1)=h(C_2)$
 - \triangleright if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- □Clearly, the hash function depends on the similarity metric:
 - ➤ Not all similarity metrics have a suitable hash function
- □There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing (最小哈希)

4.3.1 Min-Hashing

- □Imagine the rows of the boolean matrix permuted under random permutation (随机行排列, 随机行置换) π
 - ➤ Thought experiment not real
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

- □Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature for each column
- □Result is a signature matrix (签名矩阵): Columns = sets (e.g., documents), Rows = Min-hash values for each permutation π

4.3.1 Min-Hashing Example

Note: Another (equivalent) way is to

store row indexes:

 1
 5
 1
 5

 2
 3
 1
 3

 6
 4
 6
 4

 $h_1(1)=2$ (permutation 1, column 1) 2nd element of the permutation is the first to map to a 1

Input matrix (Shingles x Documents) Permutation ** Signature matrix (签名矩阵) M 0 3 0 3 6 0 $h_2(3)=4$ (permutation 2, column 3) 4th element of the permutation is the first to map to a 1 0 0 0

4.3.2 The Min-Hash Property

- **Choose a random permutation** π
- \square Claim: Pr[$h_{\pi}(C_1) = h_{\pi}(C_2)$] = sim(C_1 , C_2)
 - \triangleright Let **X** be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
 - Let y be subject to $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
 - ▶ So the prob. that **both** are true is the prob. $y \in C_1 \cap C_2$
 - $ightharpoonup \Pr[\min(\pi(C_1)) = \min(\pi(C_2))] = |C_1 \cap C_2| / |C_1 \cup C_2| = sim(C_1, C_2)$

U	כ
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position y

4.3.2 The Min-Hash Property

0 | 0

- $\Box \underline{\mathsf{Claim}} : \Pr[h_{\pi}(\mathsf{C}_1) = h_{\pi}(\mathsf{C}_2)] = sim(\mathsf{C}_1, \mathsf{C}_2)$
- □Given cols C₁ and C₂, rows may be classified as:

$$\begin{array}{ccccc} & & & C_1 & & C_2 \\ A & & 1 & & 1 \\ B & & 1 & & 0 \\ C & & 0 & & 1 \\ D & & 0 & & 0 \\ \end{array}$$

>a = # rows of type A, etc.

- □Note: $sim(C_1, C_2) = a/(a + b + c)$
- □Then: $Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$
 - ► Look down the cols C₁ and C₂ until we see a 1
 - If it's a type-A row, then $h(C_1) = h(C_2)$; If a type-B or type-C row, then not

)	
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position **y**

4.3.2 Similarity for Signatures

- ■Now generalize to multiple hash functions

- □The *similarity of two signatures* is the fraction of the hash functions in which they agree
- □**Note:** Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their Min-Hash signatures (最小哈希签名)

4.3.2 Similarity for Signatures

■Example: Minhash Signatures

Permutation π

Input matrix (Shingles x Documents)

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix (签名矩阵) M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

Col/Col Sig/Sig

	1-3	2-4	1-2	3-4
Col	0.75	0.75	0	0
ig	0.67	1.00	0	0

4.3.2 Min-Hash Signatures

- □Pick K=100 random permutations of the rows
- □Think of *sig*(C) as a column vector
- □sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column *C* (签名矩阵中第i个哈希函数在第C列上的元素)

$$sig(C)[i] = min(\pi_i(C))$$

- ■Note: The sketch (signature) of document C is small ~100 bytes!
- ■We achieved our goal! We "compressed" long bit vectors into short signatures

2 1 4 1
1 2 1 2
2 1 2 1

4.3.3 Implementation Trick for Min-Hash

- **□**Permuting rows even once is prohibitive ⊗
- □Row hashing! **②**
 - \triangleright Pick **K** = **100** hash functions k_i
 - \triangleright Ordering under k_i gives a random row permutation!
- \Box Q: How to pick a random hash function h(x)?
- □A: Universal hashing:
- $\square h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$, where:
 - *▶a,b* ... random integers
 - **▶***p* ... prime number (素数*p* > *M*)

4.3.3 Implementation Trick for Min-Hash

One-pass implementation

- For each column C and hash-function k_i keep a "slot" for the minhash value
- ► Initialize all $sig(C)[i] = \infty$
- **▶** Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i :
 - If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

Signature matrix M

∞	∞	∞	∞
∞	8	8	8
∞	8	8	%

k;:第i个随机选择的哈希函数

sig(C)[i]: 签名矩阵中第i个哈希函数在第C列上的元素

 $k_i(j)$: 对第j行进行第i个哈希函数的计算结果值

4.3.3 Example

□ Example

Row	C1	C2
0	1	0
1	0	1
2	1	1
3	1	0
4	0	1

$$h(x) = x \bmod 5$$

$$g(x) = (2x + 1) \bmod 5$$

Sig1	Sig2

 ∞ ∞

 ∞ ∞

4.3.3 Example

■Example

 $g(x) = (2x + 1) \bmod 5$

 $h(x) = x \mod 5$

$$h(0) = 0 \quad 0 \quad \infty$$

$$g(0) = 1 \quad 1 \quad \infty$$

$$h(1) = 1$$
 0 1 $g(1) = 3$ 1 3

$$h(2) = 2$$
 0 $g(2) = 0$ 0

$$h(3) = 3 \quad 0 \qquad 1$$

 $g(3) = 2 \quad 0 \qquad 0$

$$h(4) = 4$$
 0 1 $g(4) = 4$ 0 0

Then, final signature matrix M is: