Question 5:

Use the definition of Θ in order to show the following:

a. $5n^3 + 2n^2 + 3n = \Theta(n^3)$

In order to show that $5n^3+2n^2+3n=\Theta(n^3)$ we must show that $5n^3+2n^2+3n=O(n^3)$ and $5n^3+2n^2+3n=\Omega(n^3)$. Therefore we will prove each below, given the following:

$$f(n) = 5n^3 + 2n^2 + 3n$$
$$g(n) = n^3$$

Proof that
$$5n^3 + 2n^2 + 3n = O(n^3)$$
 (Big Oh)

Given the following values c=10 and $n_0=1$, we will show that for any $n\geq 1$ that $f(n)\leq 10\cdot g(n)$ Since $n\geq 1$, we know that $n^2\leq n^3$ is also true. So furthermore, we also know the following is true: $5n^3+2n^2+3n\leq 5n^3+2n^3+3n^3$

Looking on the right hand side, $5n^3+2n^3+3n^3$ is equal to $10n^3$ which bears relation to g(n). In order to replicate $f(n) \leq 10 \cdot g(n)$, we put the two inequalities together. Thus we get $5n^3+2n^2+3n \leq 10n^3=10 \cdot g(n)$

Therefore we confirm that for $n \ge 1$, $f(n) \le 10 \cdot g(n)$ which means that f = Og(n) where g(n) is n^3 .

Proof that $5n^3 + 2n^2 + 3n = \Omega(n^3)$ (Big Omega)

Given the following values c=5 and $n_0=1$, we will show that for any $n\geq 1$ that $f(n)\geq 5\cdot g(n)$. Since $n\geq 1$, then we know that $3n\geq 0$. We can also prove $2n^2$ is greater than 0. If you extract n from $2n^2$ you get n(2n). Since $n\cdot 2n$ is greater than 3n we can add $2n^2$ to the inequality and know that the following statement is still true: $2n^2+3n\geq 0$. Add $5n^3$ to both sides and we get $5n^3+2n^2+3n\geq 5n^3$. Therefore we conclude that for $n\geq 1$, $f(n)\geq 5\cdot g(n)$ which means that f is $\Omega g(n)$ where g(n) is n^3 .

In conclusion, since $5n^3+2n^2+3n=O(n^3)$ and $5n^3+2n^2+3n=\Omega(n^3)$ are both true, then we confirm that $5n^3+2n^2+3n=\Theta(n^3)$ is true as well.

b. $\sqrt{7n^2 + 2n - 8} = \Theta(n)$

In order to show that $\sqrt{7n^2+2n-8}=\Theta(n)$ we must show that $\sqrt{7n^2+2n-8}=O(n)$ and $\sqrt{7n^2+2n-8}=\Omega(n)$. Therefore we prove each below given the following:

$$f(n) = \sqrt{7n^2 + 2n - 8}$$
$$g(n) = n$$

Proof that $\sqrt{7n^2 + 2n - 8} = O(n)$ (Big Oh):

Given the following values c=3 and $n_0=1$, we will show that for any $n\geq 1$, $f(n)\leq 3\cdot g(n)$

First we square both expressions to get: $f(n)^2=7n^2+2n-8$ and $9\cdot g(n)^2=9\cdot n^2$. Starting with the left hand side, $f(n)^2$, we know that $7n^2+2n-8\leq 7n^2+2n$ because the expressions are identical save the -8 on the left hand side, which makes the left hand side a smaller value.

Since $n \ge 1$, we also know that $n \le n^2$, so the following must be true: $7n^2 + 2n - 8 \le 7n^2 + 2n^2$ Looking on the right hand side of the above inequality we know that $7n^2 + 2n^2$ is equal to $9n^2$.

g(n) bears resemblance to $9n^2$. In order to replicate the inequality $f(n)^2 \leq 9 \cdot g(n)^2$, we put the two

inequalities together to get $7n^2+2n-8\leq 9n^2=9\cdot g(n)^2$. Then we square both sides to get: $\sqrt{7n^2+2n-8}\leq \sqrt{9n^2}$. This can be further simplified to: $\sqrt{7n^2+2n-8}\leq 3n$.

Therefore, we confirm that for $n \ge 1$, $f(n) \le 3 \cdot g(n)$ which means that f is O(g) where g(n) is n.

Proof that $\sqrt{7n^2 + 2n - 8} = \Omega(n)$ (Big Omega)

Given the following values c=1 and $n_0=3$, we will show that for any $n\geq 3$, $f(n)\geq 1\cdot g(n)$.

First we square both expressions to get: $f(n)^2 = 7n^2 + 2n - 8$ and $g(n)^2 = 1 \cdot g(n)^2$

Plugging in the definitions of $f(n)^2$ and $g(n)^2$, the goal is to show that $7n^2+2n-8\geq n^2$

Since $n\geq 3$ then it is also true that $n\geq 1$. We will start with the inequality $n\geq 1$. Multiply both sides by -8 and flip the inequality to get $-8n\leq -8$. Add $7n^2+2n$ to both sides. This gets us:

 $7n^2+2n-8n \geq 7n^2+2n-8$. The left hand side can be simplified to $7n^2-6n$.

We will need to show that that $7n^2-6n$ is greater than n^2 . To do so we will take the inequality $n\geq 3$, and plug in the lowest permitted value of n into $7n^2-6n\geq n^2$. We get $45\geq 9$. And so we have proved that $7n^2-6n$ is greater than n^2

Now we can put the inequalities together to show that $7n^2+2n-8\geq 7n^2-6n\geq n^2$. We drop the interim expression in the middle, so we can just say $7n^2+2n-8\geq n^2$. n^2 is the same thing as $1\cdot g(n)^2$. This shows that $f(n)^2\geq 1\cdot g(n)^2$. To show that $f(n)\geq c\cdot g(n)$, then we square root both sides, to get

 $\sqrt{7n^2+2n-8} \geq n.$ Therefore we can confirm that for all, $n \geq 3$, $f(n) \geq 1 \cdot g(n)$ which means that f is $\Omega g(n)$ where g(n) = n

In conclusion, since $\sqrt{7n^2+2n-8}=O(n)$ and $\sqrt{7n^2+2n-8}=\Omega(n)$ are both true, then we confirm that $\sqrt{7n^2+2n-8}=\Theta(n)$ is true as well. \blacksquare