$10_{84} \ (K10a_{50})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -26695942110849u^{43} + 24221062450767u^{42} + \dots + 146051535266254b + 143537280527879, \\ &- 958891166678785u^{43} + 1195830341741191u^{42} + \dots + 146051535266254a + 928016870112473, \\ u^{44} - 2u^{43} + \dots - 5u + 1 \rangle \\ I_2^u &= \langle b + 1, \ a + 2, \ u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 45 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -2.67 \times 10^{13} u^{43} + 2.42 \times 10^{13} u^{42} + \dots + 1.46 \times 10^{14} b + 1.44 \times 10^{14}, \ -9.59 \times 10^{14} u^{43} + 1.20 \times 10^{15} u^{42} + \dots + 1.46 \times 10^{14} a + 9.28 \times 10^{14}, \ u^{44} - 2u^{43} + \dots - 5u + 1 \rangle$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 6.56543u^{43} - 8.18773u^{42} + \dots + 35.0046u - 6.35404 \\ 0.182784u^{43} - 0.165839u^{42} + \dots - 0.0574672u - 0.982785 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 6.55549u^{43} - 8.08325u^{42} + \dots + 36.0390u - 5.60107 \\ 0.268862u^{43} - 0.336643u^{42} + \dots + 0.229869u - 1.06886 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.202656u^{43} - 0.625196u^{42} + \dots - 1.87375u - 0.511274 \\ -0.827844u^{43} + 1.65839u^{42} + \dots - 3.42533u + 0.827852 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 4.95923u^{43} - 5.84946u^{42} + \dots + 26.4222u - 4.00846 \\ -1.49853u^{43} + 1.58954u^{42} + \dots - 9.24326u + 1.49850 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{2627515223052688}{73025767633127}u^{43} + \frac{3096365063700750}{73025767633127}u^{42} + \cdots - \frac{11221793809688154}{73025767633127}u + \frac{2703461955268724}{73025767633127}u^{42} + \cdots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{44} + 2u^{43} + \dots + 5u + 1$
c_2,c_4	$u^{44} + 14u^{43} + \dots - u + 1$
c_3	$u^{44} + 4u^{43} + \dots - u - 1$
c_6	$u^{44} + 7u^{43} + \dots - 2u + 2$
c_7, c_{10}	$u^{44} - 2u^{43} + \dots - 5u - 1$
c ₈	$u^{44} - 2u^{43} + \dots - 17u - 11$
<i>c</i> 9	$u^{44} - 4u^{43} + \dots - 21u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{44} - 14y^{43} + \dots + y + 1$
c_2, c_4	$y^{44} + 34y^{43} + \dots + 137y + 1$
<i>c</i> ₃	$y^{44} + 6y^{43} + \dots + y + 1$
<i>c</i> ₆	$y^{44} - 9y^{43} + \dots - 40y + 4$
c_7,c_{10}	$y^{44} - 26y^{43} + \dots - 71y + 1$
<i>C</i> ₈	$y^{44} - 42y^{43} + \dots - 2995y + 121$
<i>c</i> ₉	$y^{44} - 38y^{43} + \dots - 123y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.927602 + 0.226351I		
a = -0.224310 - 0.062924I	-1.13001 + 3.88298I	-6.50680 - 7.75927I
b = -0.115105 + 0.911207I		
u = -0.927602 - 0.226351I		
a = -0.224310 + 0.062924I	-1.13001 - 3.88298I	-6.50680 + 7.75927I
b = -0.115105 - 0.911207I		
u = 0.778786 + 0.710214I		
a = 1.43805 - 0.91909I	0.040125 + 0.820231I	-5.81896 - 3.03229I
b = -1.049480 + 0.821846I		
u = 0.778786 - 0.710214I		
a = 1.43805 + 0.91909I	0.040125 - 0.820231I	-5.81896 + 3.03229I
b = -1.049480 - 0.821846I		
u = -0.927070 + 0.063011I		
a = -1.49031 - 0.50021I	-4.92583 + 1.73663I	-14.9087 - 4.1335I
b = -1.37113 + 0.48363I		
u = -0.927070 - 0.063011I		
a = -1.49031 + 0.50021I	-4.92583 - 1.73663I	-14.9087 + 4.1335I
b = -1.37113 - 0.48363I		
u = -0.658922 + 0.846151I		
a = -0.183634 - 0.593747I	3.70844 - 0.99499I	0.63089 + 2.41468I
b = 0.865773 + 0.460561I		
u = -0.658922 - 0.846151I		
a = -0.183634 + 0.593747I	3.70844 + 0.99499I	0.63089 - 2.41468I
b = 0.865773 - 0.460561I		
u = 0.878177 + 0.660456I		
a = 0.670319 + 1.230810I	-1.82200 - 2.55706I	-9.50147 + 2.98004I
b = -1.59639 + 0.09563I		
u = 0.878177 - 0.660456I		
a = 0.670319 - 1.230810I	-1.82200 + 2.55706I	-9.50147 - 2.98004I
b = -1.59639 - 0.09563I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.840203 + 0.731796I		
a = 0.53742 + 1.70678I	1.40942 + 2.09852I	-2.80453 - 11.50069I
b = -0.912754 - 0.201576I		
u = -0.840203 - 0.731796I		
a = 0.53742 - 1.70678I	1.40942 - 2.09852I	-2.80453 + 11.50069I
b = -0.912754 + 0.201576I		
u = 0.772905 + 0.818777I		
a = 0.33712 - 1.68078I	5.49636 + 2.42871I	0 2.25678I
b = 0.254394 + 1.136870I		
u = 0.772905 - 0.818777I		
a = 0.33712 + 1.68078I	5.49636 - 2.42871I	0. + 2.25678I
b = 0.254394 - 1.136870I		
u = 0.709073 + 0.883385I		
a = -0.840026 + 0.862508I	2.27409 + 8.60569I	-2.63926 - 4.58190I
b = 1.27066 - 0.62408I		
u = 0.709073 - 0.883385I		
a = -0.840026 - 0.862508I	2.27409 - 8.60569I	-2.63926 + 4.58190I
b = 1.27066 + 0.62408I		
u = -1.117850 + 0.238085I		
a = 1.25957 + 0.83369I	-5.29949 + 8.62766I	-9.10597 - 7.54655I
b = 1.277770 - 0.452951I		
u = -1.117850 - 0.238085I		
a = 1.25957 - 0.83369I	-5.29949 - 8.62766I	-9.10597 + 7.54655I
b = 1.277770 + 0.452951I		
u = -0.902384 + 0.723912I		
a = -0.42622 - 3.07845I	1.21777 + 3.45181I	0. + 7.88863I
b = -0.993100 + 0.182802I		
u = -0.902384 - 0.723912I		
a = -0.42622 + 3.07845I	1.21777 - 3.45181I	0 7.88863I
b = -0.993100 - 0.182802I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.940648 + 0.702120I		
a = -0.12431 + 2.40011I	-0.45271 - 6.24747I	-7.31920 + 8.44159I
b = -1.20650 - 0.83342I		
u = 0.940648 - 0.702120I		
a = -0.12431 - 2.40011I	-0.45271 + 6.24747I	-7.31920 - 8.44159I
b = -1.20650 + 0.83342I		
u = 1.18227		
a = 1.12361	-2.71479	5.71830
b = 0.834518		
u = 0.802912 + 0.142507I		
a = 0.916574 + 0.518690I	-1.40557 - 0.34934I	-7.47293 + 0.48118I
b = -0.174142 - 0.024221I		
u = 0.802912 - 0.142507I		
a = 0.916574 - 0.518690I	-1.40557 + 0.34934I	-7.47293 - 0.48118I
b = -0.174142 + 0.024221I		
u = 0.812067		
a = -6.68009	-2.95636	47.1560
b = -1.03778		
u = 0.098222 + 0.805268I		
a = -0.628805 - 0.691139I	-1.20700 - 5.24815I	-2.80453 + 6.18731I
b = 1.121430 + 0.435398I		
u = 0.098222 - 0.805268I		
a = -0.628805 + 0.691139I	-1.20700 + 5.24815I	-2.80453 - 6.18731I
b = 1.121430 - 0.435398I		
u = 1.133010 + 0.369128I		
a = 0.498144 - 0.725878I	-4.55359 + 1.09231I	-9.24999 - 5.05772I
b = 1.113320 - 0.253728I		
u = 1.133010 - 0.369128I		
a = 0.498144 + 0.725878I	-4.55359 - 1.09231I	-9.24999 + 5.05772I
b = 1.113320 + 0.253728I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.835443 + 0.852874I		
a = -0.056114 + 0.817361I	4.53169 + 2.82413I	0 4.92903I
b = 0.565371 - 0.419340I		
u = -0.835443 - 0.852874I		
a = -0.056114 - 0.817361I	4.53169 - 2.82413I	0. + 4.92903I
b = 0.565371 + 0.419340I		
u = -0.940979 + 0.796566I		
a = -0.298082 - 0.266590I	4.19341 + 3.30756I	0
b = 0.375731 + 0.414152I		
u = -0.940979 - 0.796566I		
a = -0.298082 + 0.266590I	4.19341 - 3.30756I	0
b = 0.375731 - 0.414152I		
u = 0.973933 + 0.757495I		
a = -1.09792 + 1.17097I	4.87682 - 8.33877I	0. + 7.62816I
b = 0.181664 - 1.203370I		
u = 0.973933 - 0.757495I		
a = -1.09792 - 1.17097I	4.87682 + 8.33877I	0 7.62816I
b = 0.181664 + 1.203370I		
u = -1.046830 + 0.731985I		
a = 0.54736 + 1.47326I	2.52892 + 6.89763I	0
b = 0.992978 - 0.410523I		
u = -1.046830 - 0.731985I		
a = 0.54736 - 1.47326I	2.52892 - 6.89763I	0
b = 0.992978 + 0.410523I		
u = 1.033090 + 0.762400I		
a = 0.30235 - 2.16182I	1.2704 - 14.7099I	0
b = 1.32116 + 0.62604I		
u = 1.033090 - 0.762400I		
a = 0.30235 + 2.16182I	1.2704 + 14.7099I	0
b = 1.32116 - 0.62604I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.109387 + 0.546973I		
a = 0.696572 + 1.005610I	1.40694 - 1.21023I	2.44144 + 1.67923I
b = 0.218376 - 0.606022I		
u = -0.109387 - 0.546973I		
a = 0.696572 - 1.005610I	1.40694 + 1.21023I	2.44144 - 1.67923I
b = 0.218376 + 0.606022I		
u = 0.188748 + 0.259164I		
a = 2.94448 + 0.60372I	-1.92044 - 0.80342I	-4.41092 - 0.12174I
b = -1.038390 - 0.225035I		
u = 0.188748 - 0.259164I		
a = 2.94448 - 0.60372I	-1.92044 + 0.80342I	-4.41092 + 0.12174I
b = -1.038390 + 0.225035I		

II.
$$I_2^u=\langle b+1,\; a+2,\; u-1
angle$$

(i) Arc colorings

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_4 \\ c_7$	u-1
c_2, c_5, c_8 c_9, c_{10}	u+1
c_6	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_9, c_{10}	y-1
c_6	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -2.00000	-3.28987	-12.0000
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)(u^{44} + 2u^{43} + \dots + 5u + 1)$
c_2	$(u+1)(u^{44}+14u^{43}+\cdots-u+1)$
c_3	$(u-1)(u^{44} + 4u^{43} + \dots - u - 1)$
c_4	$(u-1)(u^{44}+14u^{43}+\cdots-u+1)$
c_5	$(u+1)(u^{44}+2u^{43}+\cdots+5u+1)$
c_6	$u(u^{44} + 7u^{43} + \dots - 2u + 2)$
c_7	$(u-1)(u^{44}-2u^{43}+\cdots-5u-1)$
c_8	$(u+1)(u^{44}-2u^{43}+\cdots-17u-11)$
<i>c</i> ₉	$(u+1)(u^{44}-4u^{43}+\cdots-21u+1)$
c_{10}	$(u+1)(u^{44}-2u^{43}+\cdots-5u-1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y-1)(y^{44}-14y^{43}+\cdots+y+1)$
c_2, c_4	$(y-1)(y^{44} + 34y^{43} + \dots + 137y + 1)$
c_3	$(y-1)(y^{44}+6y^{43}+\cdots+y+1)$
<i>c</i> ₆	$y(y^{44} - 9y^{43} + \dots - 40y + 4)$
c_7, c_{10}	$(y-1)(y^{44}-26y^{43}+\cdots-71y+1)$
c ₈	$(y-1)(y^{44} - 42y^{43} + \dots - 2995y + 121)$
<i>c</i> ₉	$(y-1)(y^{44} - 38y^{43} + \dots - 123y + 1)$