- Upload a scanned PDF to Gradescope
- Show all handwritten work and code used in your calculations
- 1. (6 points) Consider the simple heat exchanger shown in Figure 1, in which f_C and f_H are the flows (assumed constant) of cold and hot water, T_H and T_C represent the temperatures in the hot and cold compartments, respectively, T_{Hi} and T_{Ci} denote the temperature of the hot and cold inflow, respectively, and V_H and V_C are the volumes of hot and cold water. The temperatures in both compartments evolve according to:

$$V_C \frac{dT_C}{dt} = f_C (T_{Ci} - T_C) + \beta (T_H - T_C)$$

$$V_H \frac{dT_H}{dt} = f_H (T_{Hi} - T_H) - \beta (T_H - T_C)$$

Let the inputs to this system be $u_1 = T_{Ci}$, $u_2 = T_{Hi}$, the outputs are $y_1 = T_C$ and $y_2 = T_H$, and assume that $f_C = f_H = 0.1 \ (m^3/min)$, $\beta = 0.2 \ (m^3/min)$ and $V_H = V_C = 1 \ (m^3)$.

Figure 1. A simple heat exchanger.

- (a) In the absence of any input, use the eigendecomposition to determine $y_1(t)$ and $y_2(t)$.
- (b) Is the system stable? Why or why not?
- 2. (6 points) Consider the differential equation for the Van der Pol oscillator (use ode45 or scipy.integrate.solve_ivp)

$$\ddot{y} - \mu(1 - y^2)\dot{y} + y = 0$$

which has a nonlinear damping term $-\mu(1-y^2)\dot{y}$.

- (a) Write this nonlinear ODE as a system of first order differential equations.
- (b) For $\mu = 0.1$, numerically solve the equation for t=0:100 sec for two sets of initial conditions: y(0) = -3; $\dot{y}(0) = 0$ and y(0) = -1; $\dot{y}(0) = 0$. Plot your solutions as trajectories over the vector field/phase portrait $(y \vee y)$. Discretize the state space from [-5:5; -5:5].
- (c) Repeat part (b) for $\mu = 1$.
- 3. (4 points) Consider the nonlinear system

$$\dot{x} = 2x - 2x^2 - xv$$

$$\dot{y} = 2y - xy - 2y^2$$

- (a) The system has a fixed point at (2/3, 2/3). Complete a Jacobian linearization at this fixed point.
- (b) Is the linearized model stable or unstable at the fixed point? Why?
- 4. (4 points) Consider the second-order system

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \mathbf{u}(t)$$

For what values of k_1 and k_2 is the system completely controllable?

5. (6 points) Consider the system

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}(t)$$

- (a) Design a state feedback law that places the eigenvalues at $\lambda = -5, -6$.
- (b) Plot the response of the *uncontrolled* system for initial conditions $x_1(0) = 1$ and $x_2(0) = 1$.
- (c) Plot the response of the *controlled* system for the same initial conditions as part (b).
- (d) For the controlled system, plot the control input.