Confidence intervals

PREPARING FOR STATISTICS INTERVIEW QUESTIONS IN PYTHON

Conor Dewey

Data Scientist, Squarespace

Intro to sampling

¹ Wikimedia

What is a confidence interval?

¹ Wikimedia

Calculating confidence intervals

$$\bar{X} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

Calculating confidence intervals

Proportions

$$\hat{p}\pm Z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Example: means

```
(9.446, 13.554)
```

Example: proportions

```
from sm.stats.proportion import proportion_conf
proportion_confint(4, 10, .05)
```

(0.0964, 0.7036)

Summary

- Sampling
- Confidence intervals
- Example

Let's prepare for the interview!

PREPARING FOR STATISTICS INTERVIEW QUESTIONS IN PYTHON

Hypothesis testing

PREPARING FOR STATISTICS INTERVIEW QUESTIONS IN PYTHON

Conor Dewey

Data Scientist, Squarespace

Quick review

¹ xkcd

Assumptions

- Random sampling
- Independent observations
- Normally distributed
- Constant variance

Generating hypotheses

Two-tailed test	One tailed test
H ₀ : Estimate = value	H ₀ : Estimate ≥ value (Estimate ≤ value)
H₁: Estimate ≠ value	H ₁ : Estimate < value (Estimate > value)

Which test to use

Evaluating results

¹ Wikimedia

Types of errors

¹ AB Tasty

Summary

- Quick review
- Assumptions
- Testing process
- Types of errors

Let's prepare for the interview!

PREPARING FOR STATISTICS INTERVIEW QUESTIONS IN PYTHON

Power and sample size

PREPARING FOR STATISTICS INTERVIEW QUESTIONS IN PYTHON

Conor Dewey

Data Scientist, Squarespace

Power analysis

Few

¹ Public domain vectors

Moving parts

- Effect size
- Significance level
- Power
- Sample size

Calculating sample size

```
zt_ind_solve_power()
```

- tt_ind_solve_power()
- proportion_effectsize()

Example: conversion rates

1091.8962

Example: conversion rates

1807.76215

Summary

- Power analysis
- Moving parts
- Example

Let's prepare for the interview!

PREPARING FOR STATISTICS INTERVIEW QUESTIONS IN PYTHON

Multiple testing

PREPARING FOR STATISTICS INTERVIEW QUESTIONS IN PYTHON

Conor Dewey

Data Scientist, Squarespace

Multiple comparisons problem

¹ xkcd

Correcting for multiple comparisons

¹ GraphPad

Common approaches

- Bonferroni correction
- Sidak correction
- Step-based procedures
- Tukey's procedure
- Dunnet's correction

Bonferroni correction

The original p value -

The number of tests performed

Example

```
from statsmodels.sandbox.stats.multicomp import multipletests
p_adjusted = multipletests(pvals, alpha=.05, method='bonferroni')
print(p_adjusted[0])
print(p_adjusted[1])
```

```
[ True False False False]
[0.05 0.25 0.5 1. 1. ]
```

Side effects

¹ What's wrong with Bonferroni adjustments

Summary

- Multiple comparisons problem
- Common correction approaches
- Bonferroni correction

Let's prepare for the interview!

PREPARING FOR STATISTICS INTERVIEW QUESTIONS IN PYTHON

