## **Ride Data Analysis**

- 1) The dataset spans a period of one month, from **February 2, 2020**, to **March 13, 2020** with **4943** rows and **26** columns.
- 2) The entire dataset can be divided into three major segments.
  - a) The first segment comprises **non-significant price difference**, which accounts for approximately **37.3%** of the data.
  - b) The second segment represents **significant price differences**, exceeding 20%, making up around **31.6%** of the dataset.
  - c) Finally, the third segment consists of missing values in the price, totaling ~31.0% of the data.



3) The variables **distances/duration** and **predicted distance/duration** exhibit a similar distribution resembling a skewed normal distribution with a pointed peak. This suggests a correlation between the two variables in terms of their behavior. Additionally, these variables play a significant role in predicting upfront price differences.





## Opportunities to improve the upfront price

## 1) Feature Engineering for Upfront\_Price:

One way to enhance the prediction of upfront\_price is by constructing or utilizing new features derived from existing ones. In our analysis, we focused on engineering three new features: distance\_time, time\_distance, and distance\_squared, using the predicted\_distance and predicted\_duration variables.

To assess the impact of these newly created features on upfront\_price prediction, we conducted regression and correlation analyses. Based on our analysis, we have reached the conclusion that the new features exhibit a correlation with upfront\_price and can account for the variability in its prediction. A heatmap is employed to visually understand the correlations between the variables, while a table represents the p-values.

|    | Variable             | R-squared | P-value       |
|----|----------------------|-----------|---------------|
| 0  | All Combined         | 0.843141  | 5.710689e-57  |
| 1  | distance_time        | 0.648295  | 0.000000e+00  |
| 2  | distance_squared     | 0.590489  | 0.000000e+00  |
| 3  | predicted_duration   | 0.557765  | 0.000000e+00  |
| 4  | predicted_distance   | 0.512000  | 0.000000e+00  |
| 5  | eu_indicator_1       | 0.170775  | 9.482035e-141 |
| 6  | gps_confidence_1     | 0.042844  | 2.637585e-34  |
| 7  | dest_change_number_2 | 0.023298  | 3.210145e-19  |
| 8  | time_distance        | 0.000669  | 1.310676e-01  |
| 9  | dest_change_number_5 | 0.000052  | 6.725229e-01  |
| 10 | dest_change_number_4 | 0.000048  | 6.849410e-01  |
| 11 | dest_change_number_7 | 0.000035  | 7.304898e-01  |
| 12 | dest_change_number_3 | 0.000033  | 7.364677e-01  |
|    |                      |           |               |



We can also improve upfront\_price accuracy by taking into account variables like traffic pattern, number of stops during the ride, weather and visibility details, road blockages etc.

## 2) Improving Predicted Duration and Distance:

An ANOVA test was conducted to investigate the most influential variables for predicted distance and duration. The results indicated that **"gps\_confidence"** was a highly influential variable, with statistically significant p-values (< 0.05).

This variable is associated with the mobile devices used by drivers. Further analysis revealed that a majority of the devices with bad gps connection are from the Techno brand. As a recommendation, drivers could be encouraged to utilize mobile devices from other brands or consider upgrading to the latest models, as this may lead to improved gps\_confidence and consequently enhance the accuracy of upfront price predictions.

