Machine Learning, 2021 Fall Assignment 1

Notice

Due 23:59 (CST), Oct. 23, 2021

Plagiarizer will get 0 points. LeteXis highly recommended. Otherwise you should write as legibly as possible.

1 Gradient Descent

In order to minimize f(x) where $x \in \mathbb{R}^n$, we takes iteration:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \alpha_k \boldsymbol{p}^k$$

where $p^k = H^k \nabla f(x^k)$ and $\alpha^k \to 0^+$. What kind of H^k can guarantee that p^k is a descent direction? Give a detailed proof.[1pts]

Solution:

In order to let the objective descent, we should have:

$$f(x^{k+1}) = f(x^k + \alpha_k p^k) = f(x^k + \alpha_k H^k \nabla f(x^k)) < f(x^k)$$

Take Taylor expansion at x_k :

$$f(\boldsymbol{x}^{k+1}) = f(\boldsymbol{x}^k) + \nabla f(\boldsymbol{x}^k)^T \alpha_k H^k \nabla f(\boldsymbol{x}^k) + o(\alpha_k H^k \nabla f(\boldsymbol{x}^k))$$

Thus:

$$\nabla f(x^k)^T \alpha_k H^k \nabla f(x^k) + o(\alpha_k H^k \nabla f(x^k)) < 0$$

As $\lim_{\alpha_k \to 0^+} o(\alpha_k H^k \nabla f(x^k)) = 0$:

$$f(x^k)^T H^k \nabla f(x^k) < 0$$

2 Convex

(1) Prove that $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function if and only if $epif = \{(x,t) \in \mathbb{R}^{n+1} | x \in dom(f), f(x) \leq t\}$ is a convex set. [0.5pts]

(2) Let $f_1, f_2, ..., f_k$ be convex functions on R^n , prove that $f(x) = max\{f_1(x), f_2(x), ..., f_k(x)\}$ is also a convex function. [0.5pts]

(3) Prove that $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function if and only if $g: \mathbb{R} \to \mathbb{R}$

$$g(t) = f(x+tv) \quad dom(g) = \{t|x+tv \in dom(f)\}\$$

is convex for any $x \in dom(f)$ and $v \in \mathbb{R}^n$. [0.5pts]

(4) Prove that f(x) = log(det(x)) $dom(f) = S_{++}^n$ is a concave function. [0.5pts]

Solution:

(1):

Sufficiency:

Suppose f is convex and $(x_1, t_1), (x_2, t_2) \in epif. \theta \in [0, 1]$

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2) \le \theta t_1 + (1 - \theta)t_2$$

thus $(\theta x_1 + (1 - \theta)x_2, \theta t_1 + (1 - \theta)t_2) \in epif$ Necessity: Suppose epif is a convex set.

 $\forall (x_1, f(x_1)), (x_2, f(x_2)) \in epif, \ \theta \in [0, 1] \quad (\theta x_1 + (1 - \theta)x_2, \theta f(x_1) + (1 - \theta)f(x_1)) \in epif$ thus:

$$\forall x_1, x_2 \in dom f \quad f(\theta x_1 + (1 - \theta)x_2)) \le \theta f(x_1) + (1 - \theta)f(x_2)$$

(2):

$$epif = \bigcap_{i=1}^{k} epif_i$$

Thus epif is the intersection of convex sets, it is also a convex set, which implies f is a convex function.

(3):

Sufficiency:

Suppose \hat{f} is a convex function. $t_1, t_2 \in domg, \theta \in [0, 1]$

$$g(\theta t_1 + (1 - \theta)t_2) = f(x + \theta t_1 v + (1 - \theta)t_2 v)$$

$$= f(\theta(x + t_1 v) + (1 - \theta)(x + t_2 v))$$

$$\leq \theta f(x + t_1 v) + (1 - \theta)f(x + t_2 v)$$

$$= \theta g(t_1) + (1 - \theta)g(t_2)$$

Thus g is convex.

Necessity:

Suppose g(t) is convex, $x_1, x_2 \in dom f$.

Let $g(t) = f(x_1 + t(x_2 - x_1))$

$$f(\theta x_1 + (1 - \theta)x_2) = g(\theta 0 + (1 - \theta)1) \le \theta g(0) + (1 - \theta)g(1) = \theta f(x_1) + (1 - \theta)f(x_2)$$

Thus f is convex.

(4):

Let g(t) = logdet(x + tv)

$$\begin{split} g(t) &= log det(x+tv) \\ &= log det(x^{\frac{1}{2}}(I+tx^{-\frac{1}{2}}Vx^{-\frac{1}{2}})x^{\frac{1}{2}}) \\ &= log det(x) + log det(I+tx^{-\frac{1}{2}}Vx^{-\frac{1}{2}}) \end{split}$$

$$\begin{split} \operatorname{Let} Z &= I + t x^{-\frac{1}{2}} V x^{-\frac{1}{2}} = I + t Q \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} Q^T = Q \begin{bmatrix} 1 + t \lambda_1 & & \\ & & \ddots & \\ & & 1 + t \lambda_n \end{bmatrix} Q^T \\ g(t) &= \log \det(x) + \sum_{i=1}^n \log(1 + t \lambda_i) \end{split}$$

thus -g(t) is convex, -f is also convex by (3), then f is concave.

3 Learning

Assume that $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N, \mathbf{x}_{N+1}, \dots, \mathbf{x}_{N+M}\}$, $N, M \in \mathbb{N}^+$ and $\mathcal{Y} = \{-1, +1\}$ with an unknown target function $f: \mathcal{X} \to \mathcal{Y}$. The training data set \mathcal{D} is $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$. Define the off-training-set error of a hypothesis h with respect to f by

$$E_{\text{off}}(h, f) = \frac{1}{M} \sum_{m=1}^{M} [h(\mathbf{x}_{N+m}) \neq f(\mathbf{x}_{N+m})]$$

(a) Say f(x) = +1 for all x and

$$h(\mathbf{x}) = \left\{ \begin{array}{ll} +1, & \text{ for } \mathbf{x} = \mathbf{x}_k \text{ and } k \text{ is odd and } 1 \leq k \leq M+N \\ -1, & \text{ otherwise} \end{array} \right.$$

What is $E_{\text{off}}(h, f)$? [0.5pts]

- (b) We say that a target function f can 'generate' \mathcal{D} in a noiseless setting if $y_n = f(\mathbf{x}_n)$ for all $(\mathbf{x}_n, y_n) \in \mathcal{D}$. For a fixed \mathcal{D} of size N, how many possible $f : \mathcal{X} \to \mathcal{Y}$ can generate \mathcal{D} in a noiseless setting? [0.25pts]
- (c) For a given hypothesis h and an integer k between 0 and M, how many of those f in (b) satisfy $E_{\rm off}(h,f)=\frac{k}{M}$? [0.25pts]
- (d) For a given hypothesis h, if all those f that generate \mathcal{D} in a noiseless setting are equally likely in probability, what is the expected off trainingset error $\mathbb{E}_f\left[E_{\mathrm{off}}(h,f)\right]$? [0.5pts]
- (e) A deterministic algorithm A is defined as a procedure that takes \mathcal{D} as an input, and outputs a hypothesis $h = A(\mathcal{D})$. Argue that for any two deterministic algorithms A_1 and A_2 . [0.5pts]

$$\mathbb{E}_f \left[E_{\text{off}} \left(A_1(\mathcal{D}), f \right) \right] = \mathbb{E}_f \left[E_{\text{off}} \left(A_2(\mathcal{D}), f \right) \right]$$

Solution:

- (a) $E_{\text{off}}(h, f)$ equals to the fraction of even numbers between N+1 and N+M in total M numbers.
- (b) For a function f to generate \mathcal{D} in a noiseless setting, it means $f(x_i) = y_i$ for $i = 1, 2, \dots, N$. They only have freedom to assign various values on the rest points in \mathcal{X} , i.e. x_{N+1}, \dots, x_{N+M} . So there are total $2^M f$ that can generate \mathcal{D} .
- (c) Among those f in(b), if they agree with a given h on M-k points, i.e. $E_{off}(h,f)=\frac{k}{M}$, then each of them need to choose k points from M x_{N+1},\ldots,x_{N+M} to match with y , and other M-k points to mismatch with y . This has $\left(\begin{array}{c} M\\k \end{array}\right)$ combinations.
- (d) Given a hypothesis h, for an integer k between 0 and M, from previous problem (c), we know that there are $\binom{M}{k}$ number of functions f that satisfy $E_{off}(h,f)=\frac{k}{M}$. So the probability to get

$$E_{off}(h,f)=rac{k}{M}$$
 is $rac{\left(egin{array}{c}M\\k\end{array}
ight)}{2^M}$. So the expectation is $E_f\left[E_{off}(h,f)
ight]=rac{1}{2^M}\sum_{k=0}^M\left(egin{array}{c}M\\k\end{array}
ight)rac{k}{M}=rac{1}{2}$

(e) The above expectation in problem (d) depends on M only, and doesn't depend on h at all (each term in the expectation depends on the number of mismatches between h and f, but they are consumed in the expectation). So for any two deterministic algorithms A_1 and A_2 , the expectations will be the same.

4 MAE

The Empirical risk minimization(ERM) principle is meant to choose a hypothesis \hat{h} which minimizes the empirical risk $\hat{R}_{\mathcal{D}}[h]$.

(a) Consider the following hypothesis and loss function

$$\mathcal{H} = \{ h_{\theta}(x) = \theta_1 x : \theta_1 \in \mathbb{R} \},$$

$$\mathcal{L}(\theta_1) = \frac{1}{N} \sum_{i=1}^{N} \left| h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right|$$

Assume we already have a dataset $\mathcal{D} = \{(1,3), (-1,-2), (2,4)\}$. Derive the value of θ_1 which minimizes the empirical risk. [0.5pts]

(b) Assume we have a dataset $\mathcal{D} = \{x_1, x_2, \cdots, x_n\}$ where $x_i \in \mathcal{R}$. Consider the hypothesis \mathcal{H} to be

$$\mathcal{H} = \{ h_{\theta} = \theta_0 : \theta_0 \in \mathbb{R} \}$$

Derive the hypothesis h^* which minimizes the empirical risk. [0.5pts]

$$h^* = \arg\min_{h} \frac{1}{N} \sum_{i=1}^{N} \left| h - x^{(i)} \right| \quad \text{s.t.} \quad h \in \mathcal{H}$$

Solution:

- (a) $\theta_1^* = 2$.
- (b) Taking the derivative of the empirical risk w.r.t h and let it equal to 0, we have

$$\sum_{n=1}^{N} \operatorname{sign}\left(h - x_n\right) = 0$$

Let $h^* = \text{median}(x_i)$, $i = 1, 2, \dots, N$ be the median of the data points. Then we have half of the data smaller than h^* , and half of the data larger than h^* , which makes the derivative to zero.