Class: IBM Quantum Learning

Mathematical Concepts

Dirac Notation(or Bra-Ket Notation)

Terminology: ket of A is $|A\rangle$ and bra of A is $\langle A|$. Example, let $\Sigma = \{A, B, C\}$ then $|A\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $|B\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $\langle A| = (1,0,0)$, $\langle B| = (0,1,0)$ Note that $|\Psi\rangle$ then $\langle \Psi| = |\Psi\rangle^T$.

Cartesian product

Let
$$y = \{0, 1\}$$
 and $x = \{a, b\}$. Then,
 $x \times y = \{(0, a), (0, b), (1, a), (1, b)\}$ and
 $y \times x = \{(a, 0), (a, 1), (b, 0), (b, 1)\}.$

Tensor Product of vectors

$$\begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_0 b_0 \\ \vdots \\ a_n b_n \end{bmatrix}$$

Tensor Product Properties

1.
$$(|\phi_1\rangle + |\phi_2\rangle) \otimes |\psi\rangle = |\phi_1\rangle \otimes |\psi\rangle + |\phi_2\rangle \otimes |\psi\rangle$$

2. $(a|\phi\rangle) \otimes |\psi\rangle = a(|\phi\rangle \otimes |\psi\rangle)$

3.
$$|a\rangle \otimes |b\rangle = |b\rangle \otimes |a\rangle$$

Quantum Information Systems

State Vector

Quantum State of a sytem is represented by a complex column vector. Let the quan-

tum state vector
$$v$$
 be equal to $\begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix}$, where

$$\sum_{i=0}^{n}\left|a_{i}\right|^{2}=1$$
 The euclidean norm of the $||v||=\sqrt{\sum_{i=0}^{n}\left|a_{i}\right|^{2}}$

Common Quantum States

$$\begin{array}{ll} code & description \\ \text{Plus State} & |+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\ \text{Minus State} & |-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \\ \text{Other State} & \frac{1+2i}{3} |0\rangle - \frac{2}{3} |1\rangle \\ \end{array}$$

Standart Basis Measurement

Let a quantum system be in the state $|\psi\rangle$, then the probability for the measure outcome to be a is Pr(outcome = a) =

 $|\langle a|\psi\rangle|^2$ If U is an unary matrice then the following Propertie hold, $||U\psi|| = ||\psi||$

Unary Operations

Unary Matrice

A squared matrix U having complex number entries is unitary if it satisfies the equations, $UU^{\dagger}=U^{\dagger}U=\mathbb{I}$ where \mathbb{I} is the identity matrix.

Some unitary operations on qubits

Pauli operations:

$$\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_z = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Hadamard operation:
$$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Phase operations:
$$P_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$

Quantum cirtcuit