ЛАБОРАТОРНАЯ РАБОТА № 3.1 ЧИСЛЕННЫЕ МЕТОДЫ ПОИСКА УСЛОВНОГО ЭКСТРЕМУМА

Методы последовательной безусловной оптимизации 1. МЕТОД ШТРАФОВ.

Постановка задачи

Даны дважды непрерывно дифференцируемые целевая функция $f(x) = f(x_1, x_2, ..., x_n)$ и функции ограничений $g_j(x) = 0$, j = 1,..., m и $g_j(x) \le 0$, j = m+1,..., p, определяющие множество допустимых решений X.

Требуется найти локальный минимум целевой функции на множестве X , т.е. такую точку $x^e \in X$, что

$$f(x^e) = \min_{x \in X} f(x),$$
 где $X = \begin{cases} x \mid g_j(x) = 0, \ j = 1, ..., m; m < n \\ g_j(x) \le 0, \ j = m+1, ..., p \end{cases}$

Стратегия поиска

Идея аметода заключается в сведении задачи на условный минимум к решению последовательности задач поиска безусловного минимума вспомогательной функции:

$$F(x, r^k) = f(x) + P(x, r^k) \rightarrow \min_{x \in R^n}$$

где $P(x,r^k)$ - штрафная функция, r^k - параметр штрафа, задаваемый на каждой k -й итерации. Это связанос возможностью применения эффективных и надежных методов поиска экстремума на основе методов безусловной оптимизации.

Штрафные функции конструируются, исходя из следующих условий:

$$P(x, r^k) = \begin{cases} 0, & \text{при выполненииограничений} \\ > 0, & \text{при невыполнении ограничений,} \end{cases}$$

Причем при невыполнении ограничений и $r^k \to \infty, k \to \infty$ справедливо $P(x, r^k) \to \infty$. Чем больше r^k , тем больше штраф за невыполнение ограничений. Как правило, для ограничений типа равенств используется квадратичный штраф, а для ограничений типа неравенств – квадрат срезки:

$$P(x,r^{k}) = \frac{r^{k}}{2} \left\{ \sum_{j=1}^{m} [g_{j}(x)]^{2} + \sum_{j=m+1}^{p} [g_{j}^{+}(x)]^{2} \right\},\,$$

где $[g_{i}^{+}(x)]^{2}$ - срезка функции :

$$g_{j}^{+}(x) = \max\{0, g_{j}(x)\} = \begin{cases} g_{j}(x), g_{j}(x) > 0 \\ 0, g_{j}(x) \le 0. \end{cases}$$

Начальная точка поиска задается обычно вне множества допустимых решений X. На каждой k —й итерации ищется точка $x^*(r^k)$ минимума вспомогательной функции $F(x,r^k)$ при заданном параметре r^k с помощью одного из методов безусловной минимизации. Полученная точка $x^*(r^k)$ используется в качестве начальной на следующей итерации, выполняемой при возрастающем значении параметра штрафа. При неограниченном возрастании r^k последовательность $x^*(r^k)$ стремится к точке условного минимума x^e .

Алгоритм

Шаг. 0. Задать начальную точку x^0 ; начальное значение параметра штрафа $r^0>0$; число C>1 для увеличения параметра; малое число $\varepsilon>0$ для условия останова. Положить k=0.

Шаг. 1. Составить вспомогательную функцию

$$F(x, r^{k}) = f(x) + \frac{r^{k}}{2} \left\{ \sum_{j=1}^{m} [g_{j}(x)]^{2} + \sum_{j=m+1}^{p} [g_{j}^{+}(x)]^{2} \right\}$$

Шаг. 2. Найти точку $\chi^*(r^k)$ безусловного минимума функции $F(x, r^k)$ по x с помощью какого-либо метода (нулевого, первого или второго порядков):

$$F(x^*(r^k), r^k) = \min_{x \in R^n} F(x, r^k)$$

При этом задать все требуемые выбранным методом параметры. В Качестве начальной точки взять x^k . Вычислить $P(x^*(r^k), r^k)$.

Шаг. 3. Проверить условие останова:

3.1. Если $P(x^{*}(r^{k}), r^{k}) \leq \varepsilon$, то **конец:**

$$x^{e} = x^{*}(r^{k}), \quad f(x^{e}) = f(x^{*}(r^{k})).$$

3.2. Если $P(x^*(r^k), r^k) > \varepsilon$, положить: $r^{k+1} = Cr^k$, $x^{k+1} = x^*(r^k)$, k = k+1; перейти на *Шаг. 1.*

Обычно $r^0=0.01;0.1;1.0,\;$ а C=[4,10]. Иногда начинают с $r^0=0$, т.е. с задачи поиска безусловного минимума.

ЗАДАЧИ

Задача 1. Найти минимум:

$$f(x) = x_1^2 + x_2^2 \rightarrow \min,$$

 $g_1(x) = -x_1 + 1 \le 0,$
 $g_2(x) = x_1 + x_2 - 2 \le 0.$

Задача 2. Найти минимум:

$$f(x) = (x_1^2 - 2)^2 + x_2^2 - 1 \rightarrow \min,$$

$$g_1(x) = -(x_1 + 1)^2 + 3 \le 0,$$

$$g_2(x) = (x_1 + x_2)^2 - 2 \le 0.$$

Задача 3. Найти минимум:

$$f(x) = 3(x_1 - 2)^2 + 2(x_2 - 5)^2 + 5x_3^2 \rightarrow \min,$$

$$g_1(x) = -(x_1 + 1)^2 + 1 \le 0,$$

$$g_2(x) = (x_1 + x_2)^2 - 5 \le 0.$$

Задача 4. Найти минимум:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \to \min,$$

$$g_1(x) = -x_1 \le 0,$$

$$g_2(x) = (x_1 + x_2)^2 - 3 \le 0.$$

Задача 5. Найти минимум:

$$f(x) = 10(x_2 - x_1)^4 + (5 - x_2^2)^2 \rightarrow \min,$$

$$g_1(x) = -x_1 + 1 \le 0,$$

$$g_2(x) = x_1 + 5x_2 - 10 \le 0.$$

Задача 6. Найти минимум:

$$f(x) = 5(x_1^2 - x_2^2)^2 + 3(x_1 - x_2^2)^2 \to \min,$$

$$g_1(x) = -(3x_1 + 1)^2 + 1 \le 0,$$

$$g_2(x) = (x_1 + x_2)^2 - 8 \le 0.$$

Задача 7. Найти минимум:

$$f(x) = 8x_2 - x_1^2 + (1 - x_2^2)^2 \rightarrow \min,$$

$$g_1(x) = -(x_1 + 1)^2 + 1 \le 0,$$

$$g_2(x) = (x_1 + x_2)^2 - 10 \le 0.$$

Задача 8. Найти минимум:

$$f(x) = \sum_{i=1}^{2} (100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2) \rightarrow \min,$$

$$g_1(x) = -(x_1 + 1)^2 \le 0,$$

$$g_2(x) = x_1 + x_2 - 5 \le 0.$$

Задача 9. Найти минимум:

$$f(x) = (x_1^2 - 4x_2)^2 + (x_2^2 - 2x_1 + 4x_2)^2 \rightarrow \min,$$

$$g_1(x) = -x_1 + 1 \le 0,$$

$$g_2(x) = (x_1 + x_2)^2 - 8 \le 0.$$