Introduction to Googology

HypCos Moja (translation)

2010 Mathematics Subject Classification. Primary Key words and phrases. Googology, Mathematics

Abstract.

Contents

Chapter	1. The Be	eginning of Googology	1
1.1.	The Simple	est Unary Operation	1

CHAPTER 1

The Beginning of Googology

1.1. The Simplest Unary Operation

- **1.1.1. The Positive Integers.** The set of positive integers, \mathbb{N}^* , is defined as satisfying the following conditions:
 - (1) For any arbitrary positive integer a, its successor, a^+ is a positive integer as well.
 - (2) There exists a positive integer such that no positive integer's successor is that integer. Notate this as 1.
 - (3) Except for 1, every positive integer is the successor of a positive integer.
 - (4) If $1 \in S$, and whenever $n \in S$, $n^+ \in S$ as well; then $S = \mathbb{N}^*$.

But problems arise. Until now, we might have wondered how to express things like "1's successor," "1's successor," and so on. Could they be expressed as 1^+ , 1^{++} , etc?

For a long time, people defined [TODO] as follows: $1^+ = 2, 2^+ = 3, 3^+ = 4, 4^+ = 5, 5^+ = 6, 6^+ = 7, 7^+ = 8, 8^+ = 9, 9^+ = 10$. We use two digits in "10" to refer to the successor of the number 9.

Then, $10^+ = 11, 11^+ = 12, \dots, 19^+ = 20, \dots, 99^+ = 100, \dots$ Thus, we now have a way to theoretically express any positive integer.

However, this simple operation by itself is practically useless. The really useful stuff is the following...

1.1.2. Addition.

1