Semaine du 14 au 18 novembre

An3-b : Propriétés analytiques de $x \mapsto \sum_{n=0}^{\infty} a_n x^n \text{ sur }] - R, R[.$

- Continuité. DL en 0 - Primitive, intégration
- Dérivabilité. Toute somme de série entière est \mathscr{C}^{∞} sur]-R,R[
- Série entière de Taylor associée à $f \in \mathscr{C}^{\infty}(]-\alpha,\alpha[)$

An3-c : Série produit de Cauchy. Application à exp et à la série géométrique.

- $\sum nz^{n-1}$: rayon et somme par produit de Cauchy
- exp vérifie $\forall (z,z') \in \mathbb{C}^2$, $\exp(z+z') = \exp(z) \times \exp(z')$. Propriétés de exp
- sin et cos trigonométrique et hyperbolique sur C.

An 4 : Intégration sur un intervalle quelconque :

- Définition d'une intervalle convergente. Caractérisation pour les fonctions positives.
- Exemples ; Exemples de référence (Riemann)
- Domination, comparaison, équivalent des fonctions positives.
- Convergence absolue
- Linéarité, Positivité, Croissance, Chasles, $|\int_I f| \le \int_I |f|$ si l'intégrale CVA.
- Si $\int_I f$ CVA et f continue sur I telle que $\int_I |f| = 0$, alors f = 0. Changement de variables sur un intervalle quelconque
- IPP : Je préconise de passer à la limite dans les intégrales sur un segment.
- $\int_0^\infty \frac{\sin(t\bar{t})}{t} dt$ CV sans converger absolument.
- Fonction intégrable.

An 5 : Espace vectoriel normé

- Norme. Exemples dans \mathbb{K}^n , $\mathcal{M}_{np}(\mathbb{K})$, $\mathcal{C}([a,b],\mathbb{K})$, $\mathbb{K}[X]$, $\mathbb{K}_n[X]$
- Distance associée : elle conserve la distance par translation
- Normes équivalentes, exemples.
- En dimension finie, toutes les normes sont équivalentes
- Boules, sphère. Ensemble borné. Union, intersection.
- Suite, convergence, limite. Toute suite convergente est bornée.
- $-u_n \underset{n \to \infty}{\longrightarrow} \ell \Longrightarrow ||u_n|| \underset{n \to \infty}{\longrightarrow} ||\ell||.$
- Combinaison linéaire et produit de suites convergentes...
- Suite extraite. Propriétés.
- Lien entre convergence et norme.
- Suite et convergence en dimension finie : non dépendance à la norme... Application pour les matrices : Si $A_k \xrightarrow[k \to \infty]{} A$, alors $A_k^T \xrightarrow[k \to \infty]{} A^T$ et si $B_k \xrightarrow[k \to \infty]{} B$, alors $A_k B_k \xrightarrow[k \to \infty]{} AB$

An 6 : Suite de fonctions

- Introduction de la notion de convergence simple.
- Exemples et insuffisance de cette notion
- Convergence uniforme
- $\text{CVU} \Rightarrow \text{CVS}$
- Méthode : Etude du tableau de variations de $t \mapsto |f_n(t) f(t)|$ pour établir la CVU.

Attention: Merci aux colleurs de poser à chaque élève un exercice de justification de convergence d'intégrale, pour vérifier que les techniques sont connues.

> Page 1/2MCOL07-PSI tex

Programme de colle PSI

Questions de cours : Les preuves font partie de la question de cours...

- * Rayon et somme de $\sum_{n\geq 1} \frac{(-1)^{n-1}}{n} x^n$ (par intégration ou dérivation) : Formule à connaître...
- * Série entière de coefficients u_n où u_n est une suite de Fibonacci. Calcul de la somme.
- * Produit de Cauchy: $\frac{1}{(1-z)^2}$, $\exp(z+z') = \exp(z) \times \exp(z')$.
- * DL en 0 d'une somme de série entière
- * Convergence d'intégrale : Comparaison, domination et équivalents de fonction positives.
- * Etalon de Riemann (en $+\infty$, en 0, en a)
- * $\int_0^1 \ln(t) dt$ et, pour $\alpha > 0$, $\int_0^\infty e^{\alpha t} dt$ convergent
- * Convergence absolue implique convergence
- * $|\int_I f| \leqslant \int_I |f|$ si l'intégrale CVA (ou f intégrable sur I...)
- * Si $\int_I f \text{CVA}$ (ou f intégrable sur I...) et f continue sur I telle que $\int_I |f| = 0$, alors f = 0.
- * $\int_0^\infty \frac{\sin(t)}{t} dt$, $\int_1^\infty \frac{e^{it}}{t} dt$ sont convergences sans être absolument convergences.
- * Convergence et lien entre $\int_0^\infty e^{-t^2} dt$ et $\int_0^\infty \frac{e^{-t}}{\sqrt{t}} dt$
- * Γ est définie sur \mathbb{R}_+^* et prolonge la factorielle.
- * Toute suite convergente est bornée
- * Combinaison linéaire de suites CV
- * Si \vec{u}_n CV vers $\vec{\ell}$ et v_n CV vers ℓ' , alors $\lambda \vec{u}_n + \mu \vec{v}_n$ CV vers $\lambda \vec{\ell} + \mu \vec{\ell'}$.
- * Produit d'une suite scalaire et d'une suite vectorielle convergentes.
- * Cas d'une algèbre : Produit de suites vectorielles convergentes...
- * Convergence et norme : Si $N \leq k.N'$, alors ... Application : Cas des normes équivalentes.
- * Lien entre $\|.\|_{\infty}$ et N_1 dans $\mathscr{C}([0,1],\mathbb{R})$: Elles ne sont pas équivalentes, mais il y a une inégalité...