1 билет 29

Формула обращения Мёбиуса. Мультипликативный вариант

Теорема 22

Пусть
$$K-$$
 поле, $f,g:\mathbb{N} \to K\setminus\{0\}$, причем $f(m)=\prod\limits_{d\mid m}g(d).$
Тогда $g(m)=\prod\limits_{n\mid m}f(n)^{\mu(\frac{m}{n})}.$

Доказательство.

$$\prod_{n \mid m} f(n)^{\mu(\frac{m}{n})} = \prod_{n \mid m} \left(\prod_{d \mid n} g(d) \right)^{\mu(\frac{m}{n})} = \prod_{d \mid m} g(d)^{\frac{\sum_{d \mid n \mid m} \mu(\frac{m}{n})}{m}} = g(m)$$

по Лемме 8.

$$\prod_{\substack{n, \ d, \\ n \mid m \ d \mid n}} \prod_{\substack{d, \\ d \mid m}} g(d)^{\mu(m/n)} = \prod_{\substack{d, \\ d \mid m}} \prod_{\substack{n, \\ d \mid n \mid m}} g(d)^{\mu(m/n)} = \prod_{\substack{d, \\ d \mid m}} g(d)^{\mu(m/n)} = g(m).$$

2 билет 30

Сумма мультипликативной функции по делителям числа

Теорема 23

Пусть $f: \mathbb{N} \to -$ мультипликативная функция, $g(n) = \sum\limits_{d \mid n} f(d)$. Тогда g — мультипликативная функция.

Доказательство. ullet Пусть $a,b\in\mathbb{N}$, (a,b)=1.

- ullet $a=p_1^{k_1}\dots p_s^{k_s}$ и $b=q_1^{\ell_1}\dots q_t^{\ell_t}$ канонические разложения.
- ullet Так как (a,b)=1, все эти простые различны и $ab=p_1^{k_1}\dots p_s^{k_s}q_1^{\ell_1}\dots q_t^{\ell_t}$ каноническое разложение.
- По Теореме 8, $d \mid ab \iff d = p_1^{k_1'} \dots p_s^{k_s'} q_1^{\ell_1'} \dots q_t^{\ell_t'}$, где $0 \le k_i' \le k_i$ для всех $i \in \{1, \dots, s\}$ и $0 \le \ell_j' \le \ell_j$ для всех $j \in \{1, \dots, t\}$.
- ullet Следовательно, $d=d_ad_b$, где $d_a\,|\,a$ и $d_b\,|\,b$, причем $(d_a,d_b)=1$ и такое представление единственно: $d_a=p_1^{k_1'}\dots p_s^{k_s'}$ и $d_b=q_1^{\ell_1'}\dots q_t^{\ell_t'}$.
- Таким образом,

$$g(ab) = \sum_{d \mid ab} f(d) = \sum_{d_a \mid a} \sum_{d_b \mid b} f(d_a d_b) = \sum_{d_a \mid a} \sum_{d_b \mid b} f(d_a) f(d_b) = \left(\sum_{d_a \mid a} f(d_a)\right) \left(\sum_{d_b \mid b} f(d_b)\right) = g(a)g(b).$$