

Progetto Batch processing

SABD 2018-2019

Montesano, Perrone, Pusceddu

1 Architettura

Data Ingestion 2

3 Query1 Core & SQL

Query2 Core & SQL 4

5 Query3 Core & SQL

Architettura

- Apache Spark esegue con un master e due worker con cluster manager locale
- Ogni worker ha 1Gb di memoria
- Linguaggio utilizzato:
 Java
- Hdfs esegue con un master e 3 worker

Local Deployment

- Il deploy in locale è costruito utilizzando le Docker Image
- Vengono avviati i container di : Hdfs, Nifi, Hbase, MongoDB ,Spark
 - I container lavorano in modalità cluster
- I container vengono eseguiti sotto la stessa rete denominata: net

Data Ingestion

- L'ingestion dei dati è stato realizzato con il framework Apache Nifi
- Effettua l'iniezione dei dati nel file system distribuito HDFS in due diversi formati : csv e parquet
- Trasferisce i risultati delle query verso due database non relazionali Apache
 Hbase e Mongodb

Scrittura risultati

I risultati vengono salvati su due database in formato Json. Sono stati usati sia Hbase e MongoDb a scopo didattico.

> Per MongoDB è stata creata una collection diversa per ogni query per ogni modalità di spark: Core ed SQL

- Per Hbase sono state create 3 tabelle, una per query
- Le tabelle per la query
 1 e query 3 sono
 state divise in due
 famiglie di colonne:
 Core ed Sql
- La tabella della query
 2 è stata divisa in 6
 famiglia di colonne,3
 per i file di Spark Core
 e 3 per i file di Spark
 SQL

QUERY

Per ogni anno del dataset individuare le città che hanno almeno 15 giorni al mese di tempo sereno nei mesi di marzo, aprile e maggio.

Individuare, per ogni nazione, la media, la deviazione standard, il minimo, il massimo della temperatura, della pressione e dell'umidità registrata in ogni mese di ogni anno.

Individuare, per ogni nazione, le 3 città che hanno registrato nel 2017 la massima differenza di temperature medie nella fascia oraria locale 12:00-15:00 nei mesi di giugno, luglio, agosto e settembre rispetto ai mesi di gennaio, febbraio, marzo e aprile. Confrontare la posizione delle città nella classifica dell'anno precedente (2016).

Pre-Processing

Step by step

Fase di pre processamento comune a tutte le query per ripulire i dati spuri

Chiamate REST al servizio Geonames per ottenere le nazioni tramite le coordinate e i fusi orari

Pre processamento dedicato alla specifica query. Per la query 1 si filtrano i mesi di interesse, per le query 2 e 3 si filtrano i valori non conformi

Pre-Processing

Query 1

Query 1 SQL

Count "sky is clear" days

SELECT year, month, day, cities, SUM(weather) AS sum FROM clearSky GROUP BY year, month, day, cities

Count hour per day of clear sky

SELECT year, month, day, cities, sum FROM tmp WHERE sum >= 18 GROUP BY year, month, day, cities, sum

Cities with at least 15 days of clear sky

SELECT year, month , cities, numdays
FROM (SELECT year, month, cities, COUNT(day) as numdays
FROM tmp2
GROUP BY year, month, cities)
WHERE numdays >= 15
ORDER BY year

Cities with clear sky in the three month period

SELECT year, cities
FROM (SELECT year, COUNT(month) as countmonth, cities
FROM finaleView
GROUP BY year, cities
ORDER BY year)
WHERE countmonth == 3
ORDER BY year

Query 2

Max value

Query 2 SQL

Statistics on humidity, temperature and pressure values

SELECT country, year, month, MEAN(value) AS mean ,MIN(value) as min, MAX(value) as max, STDDEV_SAMP(value) as stddev FROM statistics
GROUP BY country, year, month

Query 3

Query 3 SQL - (1)

Filtering data

SELECT *
FROM filteredTab
WHERE year >= 2016 AND ((month >= 6 AND month <= 9)
OR (month >= 1 AND month <= 4)) AND (hour >= 12 AND hour <= 15)

Temperature average value in the first four months period

SELECT year, nation, city, AVG(temperature) as avg_temp1 FROM avgTemp1 WHERE month >= 1 AND month <= 4 GROUP BY year, nation, city

Temperature average value in the second fourmonths period

SELECT year, nation, city, AVG(temperature) as avg_temp2 FROM avgTemp2 WHERE month >= 6 AND month <= 9 GROUP BY year, nation, city

Temperature differences from max to min

SELECT year, nation, city, sub_temp
FROM (SELECT t1.year, t1.nation, t1.city, ABS(t1.avg_temp1 - t2.avg_temp2) as sub_temp
FROM temp1 as t1 JOIN temp2 as t2
ON t1.year = t2.year AND t1.city = t2.city
GROUP BY t1.year, t1.nation, t1.city, sub_temp)
GROUP BY year, nation, city, sub_temp
ORDER BY sub_temp DESC

Query 3 SQL - (2)

Cities ranking in 2016

SELECT year, nation, city, sub_temp,
DENSE_RANK() OVER (PARTITION BY nation ORDER BY sub_temp DESC) as rank
FROM filter
WHERE (year == 2016)
GROUP BY year, nation, city, sub_temp

Top three cities in 2017

SELECT year, nation, city, sub_temp, rank
FROM (SELECT*,
DENSE_RANK() OVER (PARTITION BY nation ORDER BY sub_temp DESC) as rank
FROM filter
WHERE year == 2017)
WHERE rank BETWEEN 1 AND 3
GROUP BY year, nation, city, sub_temp, rank

Compare ranking between 2016 and 2017

SELECT r1.nation, r1.city, r2.year as currentYear, r2.rank as currentPosition, r1.year as lastYear, r1.rank as LastPosition FROM rank2016 as r1 JOIN rank2017 as r2 ON r1.nation == r2.nation AND r1.city == r2.city GROUP BY r1.year, r2.year, r1.nation, r2.nation, r1.city, r2.city, r1.rank, r2.rank, r1.sub_temp, r2.sub_temp ORDER BY r1.nation, r2.rank

Risultati query

Query 1

year	cities	
2013	Las Vegas	
2014	Las Vegas	
2015	Phoenix	
2015	Las Vegas	
2016	Eilat	
2016	Phoenix	
2016	Las Vegas	
2017	Eilat	

Query 2

country	year	month	mean	min	max	std_dev
US	2017	4	289.0873198900438	268.85	309.43	6.920265998513651
IL	2013	11	290.0220528935104	280.368	305.67	5.526896959507662
IL	2015	4	290.0203029840284	276.984	307.246	4.467095681613358
US	2015	12	281.9348435066526	256.130423071	305.15	7.7474421142896
IL	2013	8	299.6482675851259	286.209	315.15	5.098120892435437
US	2014	9	293.56699400423815	271.170333333	311.889	5.999285077143429
US	2017	8	297.0385777080903	283.04	315.7	5.651514519969669
US	2014	2	277.7136012790829	247.13	302.91	10.59106048707934

Query 3

country	city	currentYear	currentPosition	lastYear	LastPosition
IL	Beersheba	2017	1	2016	1
IL	Eilat	2017	2	2016	5
IL	Haifa	2017	3	2016	2
US	Minneapolis	2017	1	2016	2
US	Chicago	2017	2	2016	3
US	Detroit	2017	3	2016	1

Media e varianza - Core vs SQL

Hardware: Intel-Core I5 9600K 6-core, SSD con interfaccia PCle su slot M.2 e protocollo NVMe.

Varianza	1	2	3
Core	0.0353	0.471	0.0132
SQL	0.0951	0.2872	0.3044

Query1 Core & SQL

Query1 Core & SQL

Query2 Core & SQL

Query2 Core & SQL

Query3 Core & SQL

Query3 Core & SQL

Tempi Ni-Fi

Lettura da locale fino a scrittura su HDFS ~31 s

0	05/29/2019 08:20:17.736 UTC	CREATE	de84144d-8515-4e99-b5a4-5	0 bytes	ListFile	ListFile	8
	05/29/2019 08:20:48.886 UTC	DROP	de84144d-8515-4e99-b5a4-5	19.09 MB	PutParquet	PutParquet	8
•	00/23/2019 00:20:40:000 010	DIVOI	00041440 0010 4099 0004 0	13.03 MB	Tutt diquet	r dit diquet	90

Scrittura su DB per Query Core

	PutHBaseJSONquery1 PutHBaseJSON 1.9.2 org.apache.nifi - nifi-hbase-nar	
In	8 (244 bytes)	5 min
Read/Write	244 bytes / 0 bytes	5 min
Out	0 (0 bytes)	5 min
Tasks/Time	1 / 00:00:02.888	5 min
	PutMongoQuery1 PutMongo 1.9.2 org.apache.nifi - nifi-mongodb-nar	
In	8 (244 bytes)	5 min
Read/Write	244 bytes / 0 bytes	5 min
Out	0 (0 bytes)	5 min
Tasks/Time	8 / 00:00:00.749	5 min

10	PutHBaseJSONquery2Humidity PutHBaseJSON 1.9.2 orgapactenti-nti-rbasenar	
In	123 (13.57 KB	5 min
Read/Write	13.57 KB/0 b	5 min
Out	0 (0 bytes)	5 min
Tasks/Time	5/00:00:02:310	5 min
0	PutMongoQuery2Humidity PutMongo 1.9.2 org apache is 6-is 6-is 6-is orgado-nar	
In	123 (13.57 KB)	5 min
Read/Write	13.57 KB / 0 bytes	5 min
Out	0 (0 bytes)	5 min
Tasks/Time	123 /00:00:01.780	5 min

PutHBaseJSONquery3 PutHBaseJSON 1.9.2 org apache nifi- nifihbase-nar	
In 6 (632 bytes)	5 min
Read/Write 632 bytes / 0 bytes	5 min
Out 0 (0 bytes)	5 min
Tasks/Time 1 / 00:00:02.868	5 min
► PutMongoQuery3	
PutMongo 1.9.2 or g apache nifi-nifi-mongodb-nar	
PutMongo 1.9.2	5 min
PutMongo 1.9.2 org apachenifi-nifi-mongodb-nar	5 min 5 min
PutMongo 1.9.2 org apachentfi-ntf-mongodb-nar In 6 (632 bytes)	

Considerazioni su Parquet

Utilizzando Parquet le dimensioni dei file cambiano nel modo seguente:

city_attributes.csv	1.01KB	city_attributes.parquet	1.89KB
humidity.csv	7.97MB	humidity.parquet	1.39MB
pressure.csv	10.68MB	pressure.csv	1.14MB
temperature.csv	12.08MB	temperature.parquet	5.88MB
weather_description.csv	19.09MB	weather_description.parquet	806.65KB

I tempi in lettura sono dimezzati, ma siccome erano già dell'ordine dei 300ms per brevità si è deciso di non riportarli.

Grazie per l'attenzione