Propositional logic

Exercise 1. Using the truth table method check if:

- 1) "T" connective is associative: $p \uparrow (q \uparrow r) \equiv (p \uparrow q) \uparrow r$.
- 2) " \downarrow " connective is associative: $p \downarrow (q \downarrow r) \equiv (p \downarrow q) \downarrow r$.
- 3) "T" connective is distributive over "\pm" connective: $p \uparrow (q \downarrow r) \equiv (p \uparrow q) \downarrow (p \uparrow r)$.
- 4) " \downarrow " connective is distributive over " \uparrow " connective: $p \downarrow (q \uparrow r) \equiv (p \downarrow q) \uparrow (p \downarrow r)$.
- 5) the properties of absorption: $p \downarrow (q \uparrow p) \equiv p$ and $p \uparrow (q \downarrow p) \equiv p$.
- 6) DeMorgan's laws for \downarrow and \uparrow :

$$-(p \downarrow q) \equiv -p \uparrow -q;$$

$$-(p \uparrow q) \equiv -p \downarrow -q;$$

Exercise 2.

Using the truth table method decide what kind of formula (consistent, inconsistent, tautology, contingent) is A. If A is consistent, write all the models of A.

- 1) $A = q \land \neg p \land r \rightarrow \neg p \lor \neg (q \land r)$
- 2) $A = \neg p \lor \neg (q \land r) \rightarrow q \land \neg p$
- 3) $A = \neg p \lor (\neg q \lor r) \rightarrow q \lor \neg p \lor r$
- 4) $A = \neg(\neg p \lor q) \lor r \to \neg p \lor (\neg q \lor r)$
- 5) $A = \neg p \lor (\neg q \lor \neg r) \to q \land \neg p$
- 6) $A = \neg p \lor (\neg q \land \neg r) \rightarrow q \land \neg p \land r$.

Exercise 3. Using the truth table method check if the following logical consequences hold:

- 1) $p \rightarrow q \mid = (p \rightarrow r) \rightarrow (p \rightarrow q \land r)$
- 2) $p \rightarrow q \mid = (q \rightarrow r) \rightarrow (p \rightarrow r)$
- 3) $p \rightarrow (q \rightarrow r) \models (p \rightarrow q) \rightarrow (p \rightarrow r)$
- 4) $p \rightarrow r \models (q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r)$
- 5) $p \rightarrow q \models (\neg p \rightarrow q) \rightarrow q$
- 6) $p \rightarrow q \models (q \rightarrow r) \rightarrow (p \rightarrow q \land r);$

Exercise 4.

Using the truth table method prove that the following formulas are tautologies.

- 1) $(p \to (q \land r)) \to ((p \to q) \land (p \to r))$ --- left-distribution of \to over \land
- 2) $(p \to (q \to r)) \to (q \to (p \to r))$ --- permutation of the premises law.
- 3) $(p \to (q \to r)) \to (p \land q \to r)$ --- reunion of the premises law.
- 4) $(p \land q \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$ --- separation of the premises law.
- 5) $(p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$ ---"cut" law.
- 6) $p \lor (q \to r) \to ((p \lor q) \to (p \lor r))$ --- left-distribution of \lor over \to

Exercise 5. Transform the formula A into its equivalent CNF and DNF. Using one of these forms prove that A is a valid formula in propositional calculus.

- 1) $A=(p \to (q \to r)) \to (q \to (p \to r))$ --- permutation of the premises law.
- 2) $A=(p \rightarrow q) \land (p \land q \rightarrow r) \rightarrow (p \rightarrow r)$ ---"cut" law.
- 3) $A=(p \land q \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$ --- separation of the premises law.
- 4) $A=(p \to (q \to r)) \to (p \land q \to r)$ --- reunion of the premises law.
- 5) $A=(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$ --- axiom A2
- 6) $A=(p \to (q \land r)) \to ((p \to q) \land (p \to r))$ --- semidistributivity of \to over \land

Exercise 6.

Using the appropriate normal form write all the models of the following formulas:

- 1) $(p \lor q \to r) \to (p \to r) \land q$;
- 2) $\neg(\neg p \lor q) \lor r \to \neg p \land \neg(q \land r)$:
- 3) $(p \land q \rightarrow r) \rightarrow (p \rightarrow r) \land q$;
- 4) $(p \lor q) \land \neg r \to p \land q \land r$;
- 5) $p \lor \neg (q \land \neg r) \rightarrow p \land q \land \neg r$;
- 6) $(p \lor q \to r) \to (q \to r) \land p$;
- 7) $(q \lor r \to p) \to (p \to r) \land q$;
- 8) $(q \land r \rightarrow p) \rightarrow (p \rightarrow r) \land q$.

Exercise 7.

Using the appropriate normal form prove that the following formulas are inconsistent:

- 1) $(U \rightarrow (V \rightarrow Z)) \land \neg ((U \rightarrow V) \rightarrow (U \rightarrow Z))$;
- 2) $(\neg U \lor V) \land \neg (\neg V \to \neg U)$;
- 3) $(U \rightarrow V) \land (U \land V \rightarrow Z) \land (U \land \neg Z)$:
- 4) $(U \rightarrow (V \lor Z)) \land (\neg (U \rightarrow V) \land \neg (U \rightarrow Z))$;
- 5) $U \land (V \rightarrow Z) \land ((U \land V) \land \neg (U \land Z))$;
- 6) $(U \rightarrow (V \rightarrow Z)) \land (U \land V \land \neg Z)$;
- 7) $(U \rightarrow (V \rightarrow Z)) \land \neg (V \rightarrow (U \rightarrow Z))$;
- 8) $(U \land V \rightarrow Z) \land \neg (U \rightarrow (V \rightarrow Z))$;

Exercise 8.

Prove the following properties of the logical consequence relation where: $R, S \subseteq F_P$ and $U, V, Z \in F_P$.

- 1. monotonicity: if $R \models U$ and $R \subseteq S$ then $S \models U$;
- 2. cut: if $S \models V_i$, $\forall i \in I$ and $S \cup \{V_i | i \in I\} \models U$ then $S \models U$;
- 3. tranzitivity: if S = U and $\{U\} = V$ then S = V;
- 4. conjunction in conclusions (right ,, and"):

if
$$S \models U$$
 and $S \models V$ then $S \models U \land V$;

5. disjunction in premises (left "or"):

if
$$S \cup \{U\} \models Z$$
 and $S \cup \{V\} \models Z$ then $S \cup \{U \lor V\} \models Z$;

6. proof by cases:

if
$$S \cup \{U\} \models V$$
 and $S \cup \{\neg U\} \models V$ then $S \models V$.

Remark: These properties are also properties of the syntactic consequence relation "_". **Exercise 9.**

Using the definition of deduction prove the following deductions:

- 1) $p \rightarrow q, r \rightarrow p, r \vdash q$;
- 2) $p \rightarrow r, p \lor r \rightarrow q, r \vdash q$;
- 3) $p \rightarrow q, q \rightarrow r, p \vdash r$;
- 4) $p \lor (q \rightarrow r), p \lor q, \neg p \vdash r$;

- 5) $p \rightarrow (q \rightarrow r), q, p \vdash r$;
- 6) $p \rightarrow (q \rightarrow r), p \land q, p \vdash r$;
- 7) $p \rightarrow (q \rightarrow r), p \rightarrow q, p \vdash r$;
- 8) $p \rightarrow q, r \rightarrow t, p \lor r, \neg q \vdash t$.

Exercise 10.

Using the theorem of deduction and its reverse prove that:

- 1) $|-(U \rightarrow (V \rightarrow Z) \rightarrow (U \land V \rightarrow Z)|$ --- reunion of the premises law.
- 2) $\vdash (U \land V \to Z) \to (U \to (V \to Z))$ --- separation of the premises law
- 3) $\vdash (U \rightarrow (V \rightarrow Z)) \rightarrow (V \rightarrow (U \rightarrow Z))$ --- permutation of the premises law.
- 4) $\vdash (U \rightarrow (V \rightarrow Z)) \rightarrow ((U \rightarrow V) \rightarrow (U \rightarrow Z))$ --- second axiom of propositional logic
- 5) $\vdash (U \rightarrow V) \land (U \land V \rightarrow Z) \rightarrow (U \rightarrow Z)$ --- "cut" law.
- 6) $\vdash (U \rightarrow V) \rightarrow ((U \rightarrow Z) \rightarrow (U \rightarrow V \land Z))$

Exercise 11.

Using the theorem of deduction and its reverse prove that:

- 1) $\vdash (p \rightarrow q) \rightarrow ((r \rightarrow p) \rightarrow (r \rightarrow q))$
- 2) $\vdash (p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow (p \lor q \rightarrow r))$
- 3) $\vdash (p \rightarrow q) \rightarrow ((r \rightarrow t) \rightarrow (p \land r \rightarrow q \land t))$
- 4) $\vdash (p \rightarrow r) \rightarrow ((p \land r \rightarrow q) \rightarrow (p \rightarrow q))$
- 5) $\vdash (q \rightarrow p) \rightarrow ((s \rightarrow q) \rightarrow (s \rightarrow p))$
- 6) $\vdash (p \rightarrow (q \rightarrow r)) \rightarrow (p \rightarrow (\neg r \rightarrow \neg q))$.

Exercise 12.

Using the semantic tableaux method decide what kind of formula is A.

If A is consistent, write all its models.

- 1) $A = ((p \land q) \lor (\neg p \land \neg r)) \rightarrow (q \leftrightarrow r)$.
- 2) A= $(p \land q \rightarrow r) \rightarrow (p \rightarrow r) \land q$
- 3) $A=(q \land r \rightarrow p) \rightarrow (p \rightarrow r) \land q$
- 4) $A = ((r \land q) \lor (\neg p \land \neg r)) \rightarrow (p \leftrightarrow q)$.
- 5) $A=((p \land r) \lor (\neg p \land \neg r)) \rightarrow (q \leftrightarrow r)$
- 6) $A = (\neg (p \rightarrow r) \rightarrow \neg p) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$.

Exercise 13. Prove that the formula A is valid using the semantic tableaux method.

- 1) $A=(p \to (q \to r)) \to (q \to (p \to r))$ permutation of the premises
- 2) $A=(p \rightarrow q \lor r) \leftrightarrow (p \rightarrow q) \lor (p \rightarrow r)$ distribution of implication over disjunction
- 3) $A=(p \to q \land r) \leftrightarrow (p \to q) \land (p \to r)$ distribution of implication over disjunction
- 4) $A=(p \rightarrow q) \rightarrow ((r \rightarrow t) \rightarrow (p \land r \rightarrow q \land t))$
- 5) $A = (\neg (q \rightarrow r) \rightarrow p) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
- 6) $A = (p \rightarrow (q \rightarrow r)) \leftrightarrow (p \land q \rightarrow r)$;

Exercise 14.

Using the semantic tableaux method check if the following logical consequences hold:

- 1) $p \rightarrow (\neg q \lor r \land s), p, \neg s \models \neg q$
- 2) $\neg p \rightarrow (\neg q \rightarrow r), r \lor q \models (\neg p \rightarrow q) \lor r$
- 3) $p \rightarrow (q \lor r \land s), p, \neg r \models q$
- 4) $p \rightarrow q, r \rightarrow t, p \land r \models q \land t$
- 5) $p \land (q \rightarrow r), q \lor r \models p \rightarrow (q \rightarrow r)$
- 6) $p \rightarrow q \models (r \rightarrow t) \rightarrow (p \land r \rightarrow q \land t)$

Exercise 15. Using the sequent calculus check if the following sequent is true or not.

- 1. $p \lor q \to r, p \Rightarrow (p \lor r) \to q$.
- 2. $p \land q \rightarrow r \Rightarrow (p \rightarrow r) \land q$
- 3. $q \land r \rightarrow p, q \Rightarrow (p \rightarrow r) \land q$
- 4. $p, r \land q \lor \neg p \land \neg r \Rightarrow (p \rightarrow q) \land (q \rightarrow p)$.
- 5. $p \lor \neg r, \neg p \lor \neg q \Rightarrow q \rightarrow r, r \rightarrow q$
- 6. $p \land (q \rightarrow r), q \lor r \models p \rightarrow (q \rightarrow r)$

Exercise 16. Prove the validity of the formula A using the sequent calculus method:

- 1) $A=(p \rightarrow q \land r) \leftrightarrow (p \rightarrow q) \land (p \rightarrow r)$, distributivity of \rightarrow over \land
- 2) $A=(p \rightarrow (q \rightarrow r)) \leftrightarrow (p \land q \rightarrow r)$, reunion of the premises
- 3) $A = (\neg (q \rightarrow r) \rightarrow p) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
- 4) $A=(p \rightarrow q \lor r) \leftrightarrow (p \rightarrow q) \lor (p \rightarrow r)$, distributivity of \rightarrow over \lor .
- 5) A= $(p \land q \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$, separation of the premises
- 6) $A = p \lor (q \to r) \leftrightarrow (p \lor q) \to (p \lor r)$

Exercise 17. Using the sequent calculus check if the following logical consequences hold:

- 1) $\neg p \rightarrow (\neg q \rightarrow r), r \lor q \models (\neg p \rightarrow q) \lor r$
- 2) $p \land (q \rightarrow r), q \lor r \models p \rightarrow (q \rightarrow r)$
- 3) $p \rightarrow q, r \rightarrow t, p \land r \models q \land t$
- 4) $p \rightarrow (\neg q \lor r \land s), p, \neg s \models \neg q \lor s$
- 5) $p \rightarrow (q \lor r \land s), p, \neg r \models q \land p$
- 6) $p \rightarrow (q \lor r \land s), p, \neg r \models q \lor r$

Exercise 18. Using general resolution prove that the following formulas are tautologies:

- 1) $(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$;
- 2) $(B \to A) \land (C \to A) \to (B \land C \to A)$:
- 3) $(B \to A) \land (C \to A) \to (B \lor C \to A)$:
- 4) $(A \rightarrow C) \rightarrow ((\neg A \rightarrow B) \rightarrow (\neg B \rightarrow C))$:
- 5) $A \lor (B \to C) \to (A \lor B) \to (A \lor C)$:
- 6) $(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$:
- 7) $(A \rightarrow B) \rightarrow ((\neg A \rightarrow C) \rightarrow (\neg B \rightarrow C))$:
- 8) $(A \to B \land C) \to (A \to B) \land (A \to C)$.

Exercise 19.

Using lock resolution check the inconsistency of the following sets of clauses.

Choose two different indexings:

- 1) $\{p \lor q, p \lor \neg q \lor r, p \lor \neg q \lor \neg r, \neg p \lor r, \neg p \lor \neg r\}$;
- 2) $\{\neg p \lor \neg q, \neg p \lor q \lor \neg r, p \lor \neg r, \neg p \lor r, p \lor r\}$;
- 3) $\{p \lor q, p \lor \neg q \lor \neg r, \neg p \lor \neg r, r, \neg p \lor r\}$;
- 4) $\{p \lor q, \neg p \lor q \lor \neg r, \neg p \lor q \lor r, \neg q \lor \neg r, \neg q \lor r\}$;
- 5) $\{p \lor \neg q, \neg p \lor \neg q \lor r, \neg p \lor q \lor r, p \lor q, \neg r\}$;
- 6) $\{p \lor q, \neg p \lor q \lor \neg r, \neg p \lor \neg q \lor \neg r, p \lor \neg q, r\}$;
- 7) $\{p \lor \neg q, \neg p \lor \neg q \lor r, \neg p \lor \neg q \lor \neg r, r \lor q, \neg r \lor q\}$;
- 8) $\{p \lor r, p \lor q \lor \neg r, \neg p \lor \neg q \lor r, \neg p \lor q \lor r, \neg r\}$.

Exercise 20. Build a linear refutation from the following set of clauses:

- 1) $S = \{p \lor q \lor r, \neg q \lor r, \neg r, \neg p \lor r\}$;
- 2) $S = \{p \lor \neg r, q \lor r, \neg q \lor r, \neg p \lor \neg r\}$;
- 3) $S = \{q \lor r, \neg p, \neg q \lor r, p \lor \neg r\}$
- 4) $S = \{ \neg p \lor q, p \lor \neg q \lor r, \neg r, p \lor q \lor r, \neg p \lor \neg q \}$:
- 5) $S = \{p \lor r, \neg q, p \lor q \lor \neg r, \neg p \lor \neg r, q \lor r\}$:
- 6) $S = \{p \lor q, \neg p \lor q, \neg p \lor \neg q, p \lor \neg q\}$;
- 7) $S = \{p, q \lor r, \neg p \lor q \lor \neg r, \neg p \lor \neg q\}$
- 8) $S = \{p \lor \neg q \lor r, q, \neg p \lor \neg q \lor r, \neg p \lor \neg q \lor \neg r, p \lor \neg r\}$.

Exercise 21.

Using the set-of-support strategy prove the following deductions:

- 1) $\neg (p \lor q) \rightarrow r, \neg p \lor q \lor r, \neg r \vdash q \land \neg r;$
- 2) $p \vee \neg r, \neg q \rightarrow r, \neg q \vdash \neg (p \rightarrow q)$;
- 3) $q \land r \rightarrow p, p \lor q, q \rightarrow r \vdash p$;
- 4) $r \rightarrow p \lor q, \neg p \rightarrow r, \neg q \vdash p \land \neg q$;
- 5) $\neg p \rightarrow q, (q \rightarrow r) \land \neg r \vdash p \land \neg r$;
- 6) $q \rightarrow p, q \lor r, p \rightarrow r \vdash r$;
- 7) $\neg p \rightarrow q \lor r, \neg q, p \rightarrow q \vdash \neg (p \lor q) \land r$;
- 8) $r \to p, \neg p, q \to p \lor r \vdash \neg (\neg p \to q \lor r)$.

Exercise 22.

Prove the syllogisme rule: $(p \to q) \to ((q \to r) \to (p \to r))$ using:

- 1) a syntactic method;
- 2) a semantic method:
- 3) a direct method;
- 4) a refutation method:
- 5) a semantic and direct method;
- 6) a semantic and refutation method:
- 7) a syntactic and refutation method.