SOLUZIONE ESERCIZIO 2 MD27

- g(1)=4=g(8) quindi $f\circ g(1)=f(4)=f\circ g(8)$ perciò $f\circ g$ non è iniettiva.
- f(1)=1=f(-1) quindi $g\circ f(1)=g(1)=g\circ f(-1)$ perciò $g\circ f$ non è iniettiva.

Se $i \ge 0$ allora $f(i) = i^3 \ge 0$, se i < 0 allora f(i) = -i > 0 quindi $f(i) \ge 0$ per ogni $i \in \mathbb{Z}$.

 $g \circ f(i) = g(f(i))$ ed $f(i) \ge 0$ quindi: se f(i) è pari allora $g \circ f(i) = f(i)/2 \ge 0$; se invece f(i) è dispari allora $g \circ f(i) = 3f(i) + 1 \ge 0$.

Quindi $g \circ f(i) \geq 0$ per ogni i, perciò $g \circ f$ non è suriettiva dato che non assume mai valori negativi. Pertanto la soluzione è (d).

Qui sotto enuncio i risultati di cui vi avevo parlato durante il tutorato.

Teorema 1. Siano X, Y, Z insiemi, $f: X \to Y$ e $g: Y \to Z$ funzioni allora:

- se f e g sono iniettive allora $g \circ f$ è iniettiva;
- ullet se f e g sono suriettive allora $g\circ f$ è suriettiva.

Viceversa:

- 1. se $g \circ f$ è iniettiva allora f è iniettiva;
- 2. se $g \circ f$ è suriettiva allora g è suriettiva.

Passando alla contronominale queste ultime due proposizioni (o anche per dimostrazione diretta) si ottiene:

- i) se f non è iniettiva allora $g \circ f$ non è iniettiva;
- $ii) \ se \ g \ non \ \grave{e} \ suriettiva \ allora \ g \circ f \ non \ \grave{e} \ suriettiva.$

Proof. Le dimostrazioni sono tutte molto semplici, ne faccio una come esempio, le altre sono un utile esercizio per voi.

1. Per far vedere che f è iniettiva bisogna mostrare che per ogni $x_1, x_2 \in X$ tali che $f(x_1) = f(x_2)$, si ha che $x_1 = x_2$. Allora, supponendo $f(x_1) = f(x_2)$ si ottiene

$$g \circ f(x_1) = g(f(x_1)) = g(f(x_2)) = g \circ f(x_2)$$

ma $g \circ f$ è iniettiva quindi $x_1 = x_2$ quindi f è iniettiva.