A GESTURE BASED TOOL FOR STERILE BROWSING OF RADIOLOGY IMAGES

PROJECT REPORT

SUBMITTED BY

KISHOR G (TEAM LEAD)
PRAVIN RAJ P R(MEMBER 1)
SHANMUGAASARAN D (MEMBER 2)
AKIL KRUSHNAN A(MEMBER 3)

TEAM ID: PNT2022TMID01529

CONTENTS

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- **5.1 Data Flow Diagrams**
- 5.2 Solution & Technical Architecture
- **5.3 User Stories**

6. PROJECT PLANNING & SCHEDULING

- **6.1 Sprint Planning & Estimation**
- **6.2 Sprint Delivery Schedule**
- **6.3 Reports from JIRA**

7. CODING & SOLUTIONING

- **7.1 Feature 1**
- **7.2 Feature 2**
- 8. TESTING
 - **8.1 Test Cases**
 - 8.2 User Acceptance Testing
- 9. RESULTS
 - **9.1 Performance Metrics**
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

1. INTRODUCTION

A gesture based automation tool for sterile browsing of radiology images helps in processing the radiology images by means of gestures and without having any physical contact with the computing devices such as keyboards, mouse etc.

1.1 Project Overview

Humans are able to recognize body and sign language easily. This is possible due to the combination of vision and synaptic interactions that were formed along brain development. In order to replicate this skill in computers, some problems need to be solved: how to separate objects of interest in images and which image capture technology and classification technique are more appropriate, among others. In this project Gesture based Desktop automation, first the CNN model is trained pre trained on the images of different hand gestures, such as a showing numbers with fingers as 1,2,3,4. This model uses the integrated webcam to capture the video frame. The image of the gesture captured in the video frame is compared with the Pretrained model and the gesture is identified. If the gesture predicts is 1 then images is resized. If 2 is predicted, image is blurred, 3 for image rotation and 4 for rectangle.

1.2 Purpose

The purpose of this project is to do the following.

- To assists surgeons while performing operations at a fast rate without any physical contact.
- Make use of hand gestures as an alternative to existing interface techniques, thus offering the major advantage of sterility.
- To highly benefit customers by performing surgeries without touching any pointing devices and also to save time.

2. LITERATURE SURVEY

A gesture-based tool for sterile browsing of radiology images (2008) by JUAN P. WACHS, PHD, HELMAN I. STERN, PHD, YAEL EDAN, PHD,

MICHAEL GILLAM, MD, JON HANDLER, MD, CRAIG FEIED, MD, PHD, MARK SMITH, MD - "Gestix," a vision-based hand gesture capture and recognition system that interprets in real-time the user's gestures for navigation and Manipulation of images in an electronic medical record (EMR) database is used. Navigation and other gestures are translated to commands based on their temporal trajectories, through video capture.

Hand-gesture-based sterile interface for the operating room using contextual cues for the navigation of radiological images (2012) by Mithun George Jacob, Juan Pablo Wachs, Rebecca A Packer. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera.

REALISM: Real-Time Hand Gesture Interface for Surgeons and Medical Experts (2010) by David Louis M. Achacon Jr., Denise M. Carlos, Maryann Kaye Puyaoan Christine T. Clarin, Prospero C. Naval, Jr. The project was developed using OpenCV, a computer vision library originally developed by Intel and Cascade Classifiers, PCA and Nearest Distance Matching.

S. No	Title	Merits	Demerits
1	A gesture-based tool for sterile browsing of radiology images	Ease of use, Rapid reaction, An unencum bered interface, Distance control—the hand gestures can be performed up to 5 meters from the camera	The setup time for the whole "Gestix" system was approximately 20 minutes.
2	Hand-gesture- based sterile interface for the operating room using contextual cues for the	It uses environmental cues to determine intent allowing the user to perform gestures anywhere in the field of view of the	The tracking algorithm occasionally failed in the presence of several people in the camera field of view.

	navigation of radiological images	sensor and also the framework can be extended to a large gesture vocabulary.	
3	REALISM: Real- Time Hand Gesture Interface for Surgeons and Medical Experts	The hand detection module was able to achieve higher precision and recall in well lighted environment.	Although the system detects most of the hands present in the camera's vision, it still misclassifies some objects as hands. The performance was not that good in poorly illuminated environment

2.1 Existing problem

One of the problems in existing system is that the "Gestix" system takes approximately 20 minutes for setup. The tracking algorithm occasionally failed in the presence of several people in the camera field of view. Although the system detects most of the hands present in the camera's vision, it still misclassifies some objects as hands. The performance was not that good in poorly illuminated environment

2.2 References

- A gesture-based tool for sterile browsing of radiology images by JUAN P. WACHS, PHD, HELMAN I. STERN, PHD, YAEL EDAN, PHD, MICHAEL GILLAM, MD, JON HANDLER, MD, CRAIG FEIED, MD, PHD, MARK SMITH, MD
- Hand-gesture-based sterile interface for the operating room using contextual cues for the navigation of radiological images by Mithun George Jacob, Juan Pablo Wachs, Rebecca A Packer.

 REALISM: Real-Time Hand Gesture Interface for Surgeons and Medical Experts by David Louis M. Achacon Jr., Denise M. Carlos, Maryann Kaye Puyaoan Christine T. Clarin, Prospero C. Naval, Jr.

2.3 Problem Statement Definition

Computer information technology is increasingly penetrating into the hospital domain. A major challenge involved in this process is to provide doctors with efficient, intuitive, accurate and safe means of interaction without affecting the quality of their work. Keyboards and pointing devices, such as a mouse, are today's principal method of human—computer interaction. However, the use of computer keyboards and mice by doctors and nurses in intensive care units (ICUs) is a common method for spreading infections. Even though voice control also provides sterility, the noise level in the operating room (OR) deems it problematic. Our solution for this problem is the use of hand gestures as an alternative to existing interface techniques, offering the major advantage of sterility. In our work we refer to gestures as a basic form of non-verbal communication made with the hands.

Problem Statement (PS)	I am (Custome r)	I'm trying to	But	Because	Which makes me feel
PS - 1	Doctors	Perform surgery by sterile browsing of radiology images	The gestures may be misinter preted	Camera may detect multiple persons in the OR	Frustrated
PS - 2	Nurses	Perform surgery by sterile	It may predict wrong	Camera hardly detects	Anxious

browsing of	under	images	
radiology	bad	in	
images	lightings	darkness	

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

Define your problem statement

PROBLEM

Keyboards, mouse etc are today's principal method of human—computer interaction. However, the use of computer keyboards and mice by doctors and nurses in intensive care units is a common method for spreading infections. Even though voice control also provides sterility, the noise level in the operating room deems it problematic. To overcome this, our system makes use of hand gestures as an alternative to existing interface techniques, offering the major advantage of sterility.

Brainstorm

ADMA PR	IYA T R		THANYA S	5 5		NARESH K			PRANAV R	Į.	
Capture the incoming video	Use Deep learning algorithm	Convolutions Neural Network	Consider bad lighting	Jupyter Notebook	Video frames	Noise removal	Check lightings	Split trainir and testing images	Use of DL Algorithms	OpenCV	Activa Funct
UI design	Segmentation of images	IBM Watsor Studio	Collect dataset	Deep Learning Algorithms	Flask Framework	Use CNN	IBM AI Studio	YOLO	Feature Scaling	Tuning the model	Neu Netw
Train the dataset	Image Processing	Recognition of Gestures	Consider GPUs	Bug free	Pick appropriati gestures	ReLU Layer	Quality of input images	Computer Vision	Python	Processing of images	0bj dete

Group ideas

Image Processing

Computer Vision

Deep learning model

Recognition of Gestures

User Interface

Platforms

Jupyter Natebook

IBM AI Studio

IBM Watson Studio

3.3 Proposed Solution

In our solution, Convolution Neural Network is used. First the model is trained pre trained on the images of different hand gestures, such as a showing numbers with fingers as 1,2,3,4. This model uses the integrated webcam to capture the video frame. The image of the gesture captured in the video frame is compared with the Pre-trained model and the gesture is identified. If the gesture predicts is 1 then images is blurred; 2, image is resized; 3, image is rotated; 4, rectangle.

SI. No	Parameter	Description
1	Problem Statement (Problem to be solved)	Computer information technology is increasingly penetrating into the hospital domain. A major challenge involved in this process is to provide doctors with efficient, intuitive, accurate and safe means of interaction without affecting the quality of their work. Keyboards and pointing devices, such as a mouse, are today's principal method of human—computer interaction. However, the use of computer keyboards and mice by doctors and nurses in intensive care units (ICUs) is a common method for spreading infections. Even though voice control also provides sterility, the noise level in the operating room (OR) deems it problematic. Our solution for this problem is the use of hand gestures as an alternative to existing interface techniques, offering the major advantage of sterility. In our work we refer to gestures as a basic form of non-verbal communication made with the hands.
2	Idea / Solution description	In this project Convolution Neural Network is used. First the model is trained pre trained on the images of different hand gestures, such as a showing numbers with fingers as 1,2,3,4. This model uses the integrated webcam to capture the video frame. The image of the gesture captured in the video frame is compared with the Pre-trained model and the gesture is identified. If the gesture predicts is 1 then images is blurred;2, image is resized;3,image is rotated; 4, rectangle.
3	Novelty / Uniqueness	The proposed system prevents surgeon's focus shift and change of location while achieving, rapid intuitive interaction with

		image databases. The system allows the surgeon to use his/her hands, their natural work tool. Non-verbal instructions by hand gesture commands used in this project are intuitive and fast.
4	Social Impact / Customer Satisfaction	This system assists surgeons while performing operations at a fast rate without any physical contact. Customers are highly benefited as the surgeries can be performed without touching any pointing devices. It also saves time. It can also be placed in other industries like banking. It can also help blind people.
5	Business Model (Revenue Model)	This system can be used in hospitals and diagnosis centers. It can also be placed in private and government medical camps.
6	Scalability of the Solution	More number of gestures can be added so that they can be improved. In addition to this, more number of images can be added so that the system makes correct prediction.

3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Launching the model	Launch from the cloud where it is deployed Launch offline by installation
FR-2	Image Capturing	Capture Image via Camera Upload images from local system
FR-3	Perform gestures	Gestures should be captured correctly in the camera and proper gestures should be

		performed
FR-4	Model rendering	When the user captures/uploads the gestures followed by a click on the submit button, the deep learning algorithm should starts its processing task.
FR-5	Sterile browsing	After recognizing the gestures, sterile browsing of images should be done properly
FR-6	Displaying the images	The browsed images should be visible to the user.

4.2 Non- Functional requirement

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	The system designed is user-friendly
NFR-2	Security	The system is enforced with security
		mechanisms to avoid data theft.
NFR-3	Reliability	The system predicts the gestures and
		perform sterile browsing accurately and it
		produces improper results
NFR-4	Performance	It handles the visitors with a handsome
		response time, it is scalable and the
		underlying hardware and software is
		perfect.
NFR-5	Availability	The system is available or accessible by an
		authorized user whenever it is needed. It is
		not influenced by Denial of Service and
		Loss of Data Processing Capabilities
NFR-6	Scalability	The developed software model never downs
		the website due to an increase in website
		visitors.

5. PROJECT DESIGN

5.1 Data Flow Diagram

5.2 Solution & Technical Architecture5.2.1 Solution Architecture

5.2.2 Technical Architecture

5.3 User Stories

The following depicts the user stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Surgeons	Launching Software	USN-1	As a user, I can launch the developed software.	I can launch the software	Low	Sprint-1
	Access UI	USN-2	As a user, I can use the software and operate on the UI	I can access the UI	Medium	Sprint- 1
Surgeons (Performs live browsing using camera)	Launching camera	USN-3	As a user, I can open the camera from the software to perform gestures	I can open the camera to capture the images	Low	Sprint-2
Surgeons (Performs browsing by uploading existing images)	Upload images from local system	USN-4	As a user, I can upload images to the software from the local system	I can upload images to the software	Low	Sprint-2
Surgeons (Performs live browsing using camera)	Perform Gestures	USN-5	As a user, I can perform various gestures with respect to system specification for processing.	I can perform various gestures	Medium	Sprint-3
	Display	USN-6	As a user, I	I can see	High	Sprint-

output	can see the	the sterile	4	
	sterile	browsed		
	browsed	image on		
	image with	the screen		
	respect to			
	the gestures			
	performed,			
	displayed on			
	the screen			

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement	User Story	User Story / Task	Story Points	Priority	Team Members
	(Epic)	Number				
Sprint-1	Launching Software	USN-1	As a user, I can launch the developed software.	1	Low	Padma Priya T R Thanya S S Naresh K Pranav R
Sprint-1	Access UI	USN-2	As a user, I can use the software and operate on the UI	1	Medium	Padma Priya T R Thanya S S Naresh K Pranav R
Sprint-2	Launching camera	USN-3	As a user, I can open the camera from the software to perform gestures	1	Low	Padma Priya T R Thanya S S Naresh K Pranav R
Sprint-2	Upload images from local system	USN-4	As a user, I can upload images to the	2	Low	Padma Priya T R Thanya S

			software			S
			from the			Naresh K
			local system			Pranav R
Sprint-	Perform	USN-5	As a user, I	2	Medium	
3	Gestures		can perform			Priya T R
			various			Thanya S
			gestures with			S
			respect to			Naresh K
			system			Pranav R
			specification			
			for			
			processing.			
Sprint-	Display	USN-6	As a user, I	2	High	Padma
4	output		can see the			Priya T R
			sterile			Thanya S
			browsed			S
			image with			Naresh K
			respect to the			Pranav R
			gestures			
			performed,			
			displayed on			
			the screen			

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Durati on	Sprint Start Date	Sprint End Date (Planned)	Story Points Complete d (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

6.3 Reports from JIRA6.3.1 Velocity Report

Velocity report

How to read this report

6.3.2 Sprint Burndown Chart

Date - October 24th, 2022 - October 29th, 2022

Date - October 31st, 2022 - November 5th, 2022

Date - November 7th, 2022 - November 12th, 2022

Date - November 14th, 2022 - November 19th, 2022

7. CODING & SOLUTIONING

7.1 Feature 1

The proposed solution is based on Convolutional neural network. A Convolutional neural network, or CNN, is a deep learning neural network designed for processing structured arrays of data such as images. Convolutional neural networks are widely used in computer vision and have become the state of the art for many visual applications such as image classification, and have also found success in natural language processing for text classification.

7.1.1 Import The ImageDataGenerator Library

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset. The Keras deep learning neural network library provides the capability to fit models using image data augmentation via the ImageDataGenerator class. The ImageDataGenerator class is imported from keras.

from tensorflow.keras.preprocessing.image import ImageDataGenerator

7.1.2 Configure ImageDataGenerator Class

ImageDataGenerator class is instantiated and the configuration for the types of data augmentation. There are five main types of data augmentation techniques for image data; specifically:

- Image shifts via the width_shift_range and height_shift_range arguments.
- Image flips via the horizontal_flip and vertical_flip arguments.
- Image rotations via the rotation_range argument.
- Image brightness via the brightness_range argument.
- Image zoom via the zoom_range argument.

train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)

7.1.3 Apply ImageDataGenerator Functionality To Train set And Test set

To apply ImageDataGenerator functionality for Training set use flow_from_directory function. This function will return batches of images from the subdirectories 0,1,2,3,4,5 together with labels 0 to 5{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}

Arguments:

directory: Directory where the data is located. If labels is "inferred", it should contain subdirectories, each containing images for a class. Otherwise, the directory structure is ignored.

batch_size: Size of the batches of data. Default: 32.

target_size: Size to resize images to after they are read from disk.
class_mode:

- 'int': means that the labels are encoded as integers (e.g. for sparse_categorical_crossentropy loss).
- 'categorical' means that the labels are encoded as a categorical vector (e.g. for categorical_crossentropy loss).
- 'binary' means that the labels (there can be only 2) are encoded as float32 scalars with values 0 or 1 (e.g. for binary_crossentropy).
- None (no labels).

ImageDataGenerator functionality to Trainset and Testset by using the following code

train_data= train_datagen.flow_from_directory (r 'D:\Dataset\train', target_size=(128,128), batch_size=8, class_mode='categorical', subset='training', color_mode= 'grayscale')

test_data = test_datagen.flow_from_directory(r'D:\Dataset\test', target_size=(128,128),batch_size=8,class_mode='categorical',color_mode='grayscale')

7.1.4 Importing The Model Building Libraries

Import the necessary libraries required for model building

import tensorflow as tf

import keras

import numpy as np

from tensorflow.keras import layers,losses

from tensorflow.keras.models import Sequential, Model, load_model

from tensorflow.keras.models import Sequential, Model, load_model

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from keras import regularizers

from keras.layers import BatchNormalization

7.1.5 Initializing The Model

Sequential model is a linear stack of layers. We can create a Sequential model by passing a list of layer instances to the constructor: from keras.models import Sequential from keras as follows.

model = Sequential()

7.1.6 Adding CNN Layers

We are adding a convolution layer with activation function as "relu" and with a small filter size (3,3) and number of filters (32) followed by a max pooling layer. Max pool layer is used to down sample the input. Flatten layer flattens the input. It does not affect the batch size.

```
model.add(BatchNormalization(input_shape = (128,128,1)))
model.add(Convolution2D(32, (3,3), activation = 'relu', input_shape = (128, 128, 1)))
model.add(MaxPooling2D(pool_size=2))
model.add(Convolution2D(filters=6,kernel_size=4,padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Convolution2D(filters=128,kernel_size=3,padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Convolution2D(filters=128,kernel_size=2,padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(MaxPooling2D(pool_size=2))
model.add(MaxPooling2D(pool_size=2))
model.add(MaxPooling2D(pool_size=2))
```

7.1.7 Adding Dense Layers

Dense layer is deeply connected neural network layer. It is most common and frequently used layer.

```
model.add(Dense(units=128,activation = 'relu'))
model.add(Dense(units=64,activation = 'relu'))
model.add(Dense(units=32,activation = 'relu'))
model.add(Dense(units = 6, activation = 'softmax'))
```

Understanding the model is very important phase to properly use it for training and prediction purposes. Keras provides a simple method, summary to get the full information about the model and its layers. The following code represents that.

model.summary()

7.1.8 Compiling the model

The compilation is the final step in creating a model. Once the compilation is done, we can move on to training phase. Loss function is used to find error or deviation in the learning process. Keras requires loss function during model compilation process. Optimization is an important process which optimizes the input weights by comparing the prediction and the loss function. Here we are using adam optimizer. Metrics is used to evaluate the performance of your model. It is similar to loss function, but not used in training process.

model.compile(optimizer='adam',loss=losses.categorical_crossentropy,metrics=['accuracy'])

7.1.9 Train the model on IBM

Next, the process of training the model with image dataset is done. fit_generator functions used to train a deep learning neural network

Arguments:

steps_per_epoch: it specifies the total number of steps taken from the generator as soon as one epoch is finished and next epoch has started. We can calculate the value of steps_per_epoch as the total number of samples in your dataset divided by the batch size.

Epochs: an integer and number of epochs we want to train our model for.

validation_data can be either:

- an inputs and targets list

- a generator
- an inputs, targets, and sample_weights list which can be used to evaluate
- the loss and metrics for any model after any epoch has ended.

validation_steps: only if the validation_data is a generator then only this argument can be used. It specifies the total number of steps taken from the generator before it is stopped at every epoch and its value is calculated as the total number of validation data points in your dataset divided by the validation batch size.

The model is trained on IBM Cloud platform

model.fit_generator(train_gen,epochs=25,

steps_per_epoch=18000//32,steps_per_epoch=18000//32, validation_steps=3600//32)

7.1.10 Save the model

The model is saved with .h5 extension as follows. An H5 file is a data file saved in the Hierarchical Data Format (HDF). It contains multidimensional arrays of scientific data.

model.save(r'D:\IBM Project\gesture.h5')

7.2 Feature 2

7.2.1 Create HTML Pages

We use HTML to create the front end part of the web page. Here, we created 3 html pages- Home.html, Intro.html and Index.html. Home.html displays home page. Intro.html displays introduction about the hand gesture recognition. Index.html accepts input from the user (live video) and predicts the values. We also use JavaScript-main.js and CSS-main.css to enhance our functionality and view of HTML pages.

7.2.2 Build Python Code

Flask is a web framework written in python for server-side scripting. The step by step procedure for building the backend application is given below.

MediaPipe is a Framework for building machine learning pipelines for processing time-series data like video, audio, etc. This cross-platform Framework works in Desktop/Server, Android, iOS, and embedded devices like Raspberry Pi and Jetson Nano.

App starts running when "__name_" constructor is called in main. render_template is used to return html file. "GET" method is used to take input from the user. "POST" method is used to display the output to the user.

MediaPipe is used detect the hand using the co-ordinates from the live video and passes this as input to the deep learning model.

The deep learning model after getting the input from camera processes it and predicts the output. With respect to the predicted gesture, Resize, Blur, Rotation and Rectangle operations are done.

The following code illustrates the overall process

```
import mediapipe as mp
import numpy as np
from flask import Flask, render_template, request
import cv2
import os
from keras.models import load_model
app = Flask(__name__)
@app.route("/")
def home():
  return render_template("home.html")
@app.route("/process", methods=['GET', 'POST'])
def process():
  if request.method == 'POST':
    upload_image = request.files['upload_image']
    img=upload_image.read()
    npimg = np.fromstring(img, np.uint8)
```

```
model1 = load_model('gesture.h5')
    mpHands = mp.solutions.hands
    hands = mpHands.Hands(max_num_hands=1, min_detection_confidence=0.5,
min_tracking_confidence=0.5)
    mpDraw = mp.solutions.drawing_utils
    cap = cv2.VideoCapture(0)
    while True:
      _, frame = cap.read()
       h, w, c = frame.shape
       frame = cv2.flip(frame, 1)
       framergb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
       result = hands.process(framergb)
       res = "
       if result.multi_hand_landmarks:
         landmarks = []
         for handslms in result.multi_hand_landmarks:
           x_max = 0
           y_max = 0
           x_min = w
           y_min = h
           for lm in handslms.landmark:
              x = int(lm.x * w)
              y = int(lm.y * h)
              landmarks.append([x, y])
              if x > x_max:
                x max = x
              if x < x_min:
                x_min = x
              if y > y_max:
                y_max = y
              if y < y_min:
                y_min = y
```

```
cv2.rectangle(frame, (x_min - 5, y_min - 5), (x_max + 5, y_max + 5), (0, y_min - 5), (x_max + 5, y_max + 5), (0, y_min - 5), (x_max + 5, y_max + 5), (0, y_min - 5), (x_max + 5, y_max + 5), (0, y_min - 5), (x_max + 5, y_max + 5), (0, y_min - 5), (x_max + 5, y_max + 5), (0, y_min - 5), (x_max + 5, y_max + 5), (0, y_max + 5, y_max + 5, y_max + 5), (0, y_max + 5, y_max + 5, y_max + 5), (0, y_max + 5, y_max + 5, y_max + 5), (0, y_max + 5, y_max + 5, y_max + 5, y_max + 5), (0, y_max + 5, y_max + 5, y_max + 5, y_max + 5, y_max + 5), (0, y_max + 5, 
255, 0), 2)
                                framegray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                                hand = framegray[y_min - 5:y_max + 5, x_min - 5:x_max + 5]
                                hand = cv2.resize(hand, (128, 128))
                                hand = hand / 255
                                hand = hand.reshape(128, 128, 1)
                                hand = np.expand_dims(hand, axis=0)
                                mpDraw.draw landmarks(frame, handslms,
mpHands.HAND CONNECTIONS)
                                prediction = model1.predict(hand)
                                res = np.argmax(prediction)
                                image1 = cv2.imdecode(npimg, cv2.IMREAD_COLOR)
                                image1 = cv2.resize(image1, (400, 400))
                                if res = 1:
                                      resized = cv2.resize(image1, (200, 200))
                                      cv2.imshow("Resizing", resized)
                                      key=cv2.waitKey(3000)
                                      if (key & 0xFF) == ord("1"):
                                             cv2.destroyWindow("Resizing")
                                elif res==2:
                                      blurred = cv2.GaussianBlur(image1, (21, 21), 0)
                                      cv2.imshow("Blurred", blurred)
                                      key=cv2.waitKey(3000)
                                      if (key & 0xFF) == ord("3"):
                                             cv2.destroyWindow("Blurred")
                                elif res==3:
                                      (h, w, d) = image 1.shape
                                      center = (w // 2, h // 2)
                                      M = cv2.getRotationMatrix2D(center, -45, 1.0)
                                      rotated = cv2.warpAffine(image1, M, (w, h))
                                      cv2.imshow("OpenCV Rotation", rotated)
                                      key=cv2.waitKey(3000)
                                      if (key & 0xFF) == ord("2"):
```

```
cv2.destroyWindow("OpenCV Rotation")
           elif res==4:
              cv2.rectangle(image1, (480, 170), (650, 420), (0, 0, 255), 2)
              cv2.imshow("Rectangle", image1)
              cv2.waitKey(0)
              key=cv2.waitKey(3000)
              if (key & 0xFF) == ord("0"):
                cv2.destroyWindow("Rectangle")
           else:
              continue
       #cv2.putText(frame, str(res), (10, 50), cv2.FONT_HERSHEY_SIMPLEX,
              #1, (0, 0, 255), 2, cv2.LINE_AA)
       cv2.imshow("Output", frame)
       if cv2.waitKey(1) == ord('q'):
         break
    cap.release()
    cv2.destroyAllWindows()
  return render_template("index.html")
@app.route("/intro")
def intro_page():
  return render_template("intro.html")
@app.route("/index")
def index_page():
  return render_template("index.html")
@app.route("/back")
```

```
def back():
    return render_template("home.html")
```

7.2.3 Run the application

At last, the flask application is run using the following command.

```
if___name__ == '__main__':
     app.run(debug=True)
```

8. TESTING

8.1 Test Cases

Test	Feat	Co	Test	Pre-	Steps to	Tes	Expec	Actua	Stat
Case	ure	mp	Scenario	Requisite	execute	t	ted	1	us
ID	Type	one				Dat	Result	Result	
		nt				a			
Hom	Funct	Но	Verify	1. Laptop	1. Enter	App	Home	Worki	Pass
Page	ional	me	user is	2.Internet	URL in the	licat	Page	ng as	
_TC		Pag	able to	Connection	browser	ion	should	expect	
_OO		e	see the	3. Web	and click	Url	be	ed	
1			home	cam	enter.		displa		
			page		2.Verify		yed		
			when user		whether the				
			clicked		home page				
			on the		of the				
			applicatio		application				
			n link		displayed				
					or not				
Hom	UI	Но	Verify the	1. Laptop	1. Enter	App	Applic	Button	Fail
Page		me	UI	2.Internet	URL in the	licat	ation	is not	
_TC		Pag	elements	Connection	browser	ion	should	visible	
_OO		e	in Home	3. Web	and click	Url	show		
2			Page	cam	enter.		the		
					2. Verify		'Get		
					the UI		Starte		
					Component		d'		

					s of the		button		
					home page		0 0000011		
					by				
					checking				
					the 'Get				
					Started'				
					button.				
Hom	UI	Но	Verify the	1. Laptop	1. Enter	App	Applic	Worki	Pass
Page		me	UI	2.Internet	URL in the	licat	ation	ng as	
_TC		Pag	elements	Connection	browser	ion	should	expect	
_00		e	in Home	3. Web	and click	Url	show	ed	
$\frac{1}{3}$			Page	cam	enter.		the		
					2. Verify		'Get		
					the UI		Starte		
					Component		d'		
					s of the		button		
					home page				
					by				
					checking				
					the'Get				
					Started'				
					button.				
Hom	Funct	Но	Verify	1. Laptop	1. Enter	App	User	Not	Fail
Page	ional	me	whether	2.Internet	URL in the	licat	should	naviga	
_TC		Pag	the user is	Connection	browser	ion	naviga	ted to	
_OO		e	able to	3. Web	and click	Url	te to	intro	
4			move to	cam	enter.		intro	page	
			intro page		2. Click on		page		
			or not?		the 'Get				
					Started'				
					button				
					3. Verify				
					whether the				
					user is able				
					to move to				
					intro page				
					or not?				
Hom	Funct	Но	Verify	1. Laptop	1. Enter	App	User	Worki	Pass
Page	ional	me	whether	2.Internet	URL in the	licat	should	ng as	
_TC		Pag	the user is	Connection	browser	ion	naviga	expect	

$\bigcirc\bigcirc$			abla ta	3. Web	and click	T T _m 1	to to	ed	
_OO		e	able to			Url	te to	ea	
3			move to	cam	enter.		intro		
			intro page		2. Click on		page		
			or not?		the 'Get				
					Started'				
					button				
					3. Verify				
					whether the				
					user is able				
					to move to				
					intro page				
					or not?				
Intro	Funct	Intr	Verify	1. Laptop	1. Enter	App	Intro	Worki	Pass
Page	ional	0	user is	2.Internet	URL in the	licat	page	ng as	
_TC		Pag	able to	Connection	browser	ion	should	expect	
_OO		e	open the	3. Web	and click	Url	be	ed	
1			intro page	cam	enter.		opene		
			1 0		2.Click on		ď		
					the 'Get				
					Started'				
					button				
					3. Verify				
					whether the				
					user is able				
					to open the				
					intro page				
					or not?				
Intro	UI	Intr	Verify the	1. Laptop	1. Enter	Δnn	UI	UI	
Page		0	UI	2.Internet	URL in the	App licat	compo	compo	Fail
TC TC			elements	Connection	browser	ion	nents	nents	Tan
		Pag					should		
$\frac{-00}{2}$		e	in Intro	3. Web	and click	Url		not	
\ \ ²			Page	cam	enter.		be	displa	
					2. Click on		displa	yed	
					the 'Get		yed on		
					Started'		the		
					button.		screen		
					3. Verify		•		
					the				
					following				
					UI				

Intro Page _TC _OO 3	UI	Intr o Pag e	Verify the UI elements in Intro Page	1. Laptop 2.Internet Connection 3. Web cam	Component s of the intro page a. Intro Text b. Proceed button c. Back button 1. Enter URL in the browser and click enter. 2. Click on the 'Get Started' button. 3. Verify the following UI Component s of the intro page a. Intro Text b. Proceed button	App licat ion Url	UI compo nents should be displa yed on the screen .	Worki ng as expect ed	Pass
Intro Page _TC _OO 4	Funct ional	Intr o Pag e	Verify whether the user is able to navigate to index page	1. Laptop 2.Internet Connection 3. Web cam	1. Enter URL in the browser and click enter. 2. Click on the 'Get Started' button.	App licat ion Url	Index page should be opene d	Worki ng as expect ed	Pass

					3. Click on 'Proceed' button. 4. Verify whether the index page is opening or not				
Intro Page _TC _OO 5	Functional	Intr o Pag e	Verify whether the user is able to navigate back to the home page	1. Laptop 2.Internet Connection 3. Web cam	1. Enter URL in the browser and click enter. 2. Click on the 'Get Started' button. 3. Click on 'Back' button. 4. Verify whether the home page is opening or not	App licat ion Url	Home Page should be displa yed	Home page not opene d	Fail
Intro Page _TC _OO 6	Functional	Intr o Pag e	Verify whether the user is able to navigate back to the home page	1. Laptop 2.Internet Connection 3. Web cam	1. Enter URL in the browser and click enter. 2. Click on the 'Get Started' button. 3. Click on 'Back' button. 4. Verify whether the home page	App licat ion Url	Home Page should be displa yed	Worki ng as expect ed	Pass

					is opening				
					or not				
Inde xPag e_T C_O O1	Functional	Inde x Pag e	Verify whether the user is able to open the index page or not	1. Laptop 2.Internet Connection 3. Web cam	1. Enter URL in the browser and click enter. 2. Click on the 'Get Started' button. 3. Click on 'Proceed' button. 4. Verify whether the index page is opening or not	App licat ion Url	Index page should be opene d	Worki ng as expect ed	Pass
Inde xPag e_T C_O O2	UI	Inde x Pag e	Verify the UI elements in Intro Page	1. Laptop 2.Internet Connection 3. Web cam	1. Enter URL in the browser and click enter. 2. Click on the 'Get Started' button. 3. Click on the 'Proceed' button. 4. Verify the following UI Component s of the index page a. File	App licat ion Url	UI compo nents should be displa yed on the screen .	Worki ng as expect ed	Pass

					unload				
					upload button				
					b. Video				
					Capture				
					button				
					c. Image				
					display				
					field				
					d. Back				
- 1	_	- 1	77 10		button	-	-	-	- II
Inde	Funct	Inde	Verify	1. Laptop	1. Enter	Ima	Image	Image	Fail
xPag	ional	X	whether	2.Internet	URL in the	ge	should	not	
e_T		Pag	the user is	Connection	browser	fro	be	upload	
C_O		e	able to	3. Web	and click	m	upload	ed	
O3			upload	cam	enter.	loca	ed		
			the image		2. Click on	1			
			or not.		the 'Get	syst			
					Started'	em			
					button.				
					3. Click on				
					the				
					'Proceed'				
					button.				
					4. Click				
					on the				
					upload file				
					button.				
					5. Choose				
					an image				
					from				
					gallery.				
					6. Upload				
					the image.				
					7. Verify				
					whether the				
					image is				
					uploaded				
					or not.				
Inde	Funct	Inde	Verify	1. Laptop	1. Enter	Ima	Image	Worki	Fail
xPag	ional	X	whether	2.Internet	URL in the	ge	should	ng as	
e_T		Pag	the user is	Connection	browser	fro	be	expect	

$C \cap$			able to	3. Web	and click	m	unload	ed	
C_O		e				m	upload	ea	
O4			upload	cam	enter. 2. Click on	loca	ed		
			the image		the 'Get				
			or not.		Started'	syst			
					button.	em			
					3. Click on				
					the				
					'Proceed'				
					button.				
					4. Click				
					on the				
					upload file				
					button.				
					5. Choose				
					an image				
					from				
					gallery.				
					6. Upload				
					the image.				
					7. Verify				
					whether the				
					image is				
					uploaded				
					or not.				
Inde	Funct	Inde	Verify	1. Laptop	1. Enter	Ima	Image	Worki	Fail
xPag	ional	X	whether	2.Internet	URL in the	ge	should	ng as	
e_T	101101	Pag	the user	Connection	browser	fro	be	expect	
C_O		e	uploaded	3. Web	and click	m	displa	ed	
O5			image is	cam	enter.	loca	yed on		
			displayed		2. Click on	1	the		
			on the		the 'Get	syst	screen		
			screen or		Started'	em			
			not.		button.				
					3. Click on				
					the				
					'Proceed'				
					button.				
					4. Click				
					on the				
					upload file				
					button.				
	<u> </u>	<u> </u>	<u> </u>	I .		<u> </u>		1	

Inde xPag e_T C_O O6	Functional	Inde x Pag e	Verify whether the system is capturing live video	1. Laptop 2.Internet Connection 3. Web cam	5. Choose an image from gallery. 6. Upload the image. 7. Verify whether the image is displayed on the screen or not. 1. Enter URL in the browser and click enter. 2. Click on the 'Get Started' button. 3. Click on the 'Proceed' button. 4. Click on the capture video button. 5. Verify whether the live video is captured or not.	Liv e Vid eo	Live video should be captur ed	Worki ng as expect ed	Fail
Inde xPag	Funct ional	Inde x	Verify whether	1. Laptop 2.Internet	1. Enter URL in the	Liv e	Gestur e	Wron o	Fail
e_T	ionai	Pag	the model	Connection	browser	Vid	should	g predic	
		e	predicts	3. Web	and click	eo	be	tion	
C_O									

			correct gesture		2. Click on the 'Get Started'		ted correc tly.		
					button. 3. Click on the 'Proceed' button. 4. Click on the capture video button. 5. Verify whether the system predicts the				
					correct gesture or				
Inde xPag e_T C_O O8	Functional	Inde x Pag e	Verify whether the model predicts the correct gesture	1. Laptop 2.Internet Connection 3. Web cam	not. 1. Enter URL in the browser and click enter. 2. Click on the 'Get Started' button. 3. Click on the 'Proceed' button. 4. Click on the capture video button. 5. Verify whether the system predicts the	Liv e Vid eo	Gestur e should be predic ted correc tly.	Worki ng as expect ed	Pass

					correct				
					gesture or				
					not.				
T., 1.	E	T., .1.	VI	1 1		т:	T1-	XX 7	T7-11
Inde	Funct	Inde	Verify	1. Laptop	1. Enter	Liv	Task	Wron	Fail
xPag	ional	X	whether	2.Internet	URL in the	e	should	g	
e_T		Pag	the .	Connection	browser	Vid	be	gestur	
C_O		e	system is	3. Web	and click	eo	perfor	e	
O9			performin	cam	enter.		med		
			g the		2. Click on		with		
			correct		the 'Get		respec		
			task with		Started'		t to		
			respect to		button.		the		
			the		3. Click on		gestur		
			gesture		the		e.		
					'Proceed'				
					button.				
					4. Click on				
					the capture				
					video				
					button.				
					5.Verify				
					whether the				
					system is				
					performing				
					the correct				
					task with				
					respect to				
Indo	Eumot	Tendo	Vonter	1 I amton	the gesture	T :	Tools	Worls	Dagg
Inde	Funct	Inde	Verify	1. Laptop	1. Enter	Liv	Task	Worki	Pass
xPag	ional	X	whether	2.Internet	URL in the	e	should	ng as	
e_T		Pag	the	Connection	browser	Vid	be	expect	
C_O		e	system is	3. Web	and click	eo	perfor	ed	
O10			performin	cam	enter.		med		
			g the		2. Click on		with		
			correct		the 'Get		respec		
			task with		Started'		t to		
			respect to		button.		the		
			the		3. Click on		gestur		
			gesture		the		e.		
					'Proceed'				

Inde	Funct	Inde	Verify	1. Laptop	button. 4. Click on the capture video button. 5. Verify whether the system is performing the correct task with respect to the gesture 1. Enter	Pres	Camer	Worki	Pass
xPag e_T	ional	x Pag	whether the user is	2.Internet Connection	URL in the browser	sing 'q'	a screen	ng as expect	T uss
C_O		e	able to	3. Web	and click	9	should	ed	
011			quit the	cam	enter.		be	ca	
			screen		2. Click on		closed		
			after		the 'Get				
			performin		Started'				
			g tasks		button.				
					3. Click on				
					the				
					'Proceed'				
					button.				
					4. Click on				
					the capture video				
					button.				
					5.Analyze				
					the task				
					performed				
					6.Press 'q'				
					to quit				

8.2 User Acceptance Testing

8.2.1 Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the A Gesture Based Tool for Sterile Browsing of Radiology Images project at the time of the release to User Acceptance Testing (UAT).

8.2.2 Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severit y1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	1	2	0	3
Duplicate	0	0	0	0	0
External	2	1	1	0	4
Fixed	2	2	3	0	7
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	4	4	6	0	14

8.2.3 Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pa ss
Home Page	5	0	2	3
Intro Page	6	0	2	4
Index Page	11	0	3	8

9. RESULTS

9.1 Performance Metrics

The performance of the solution is measured in terms of validation accuracy and the loss in every epoch. The model summary and the accuracy is given as follows.

S.N	Paramet	et Values Sc	reenshot		
0.	er				
1.	Model	-	Model: "sequential"		
	Summary		Layer (type)	Output Shape	Param #
			batch_normalization (BatchN ormalization)		4
			conv2d (Conv2D)	(None, 126, 126, 32)	320
			<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 63, 63, 32)	0
			conv2d_1 (Conv2D)	(None, 63, 63, 6)	3078
			<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 31, 31, 6)	0
			conv2d_2 (Conv2D)	(None, 31, 31, 128)	7040
			<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 15, 15, 128)	0
			conv2d_3 (Conv2D)	(None, 15, 15, 128)	65664
			<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 7, 7, 128)	0
			flatten (Flatten)	(None, 6272)	0
			dense (Dense)	(None, 128)	802944
			dense_1 (Dense)	(None, 64)	8256
			dense_2 (Dense)	(None, 32)	2080
			dense_3 (Dense)	(None, 6)	198
			Total params: 889,584 Trainable params: 889,582 Non-trainable params: 2		

2.	Accuracy	Training	Epoch 1/20 562/562 [====================================
		Accuracy –	1.0000 Epoch 2/20
		99.92%	562/562 [============] - 306s 545ms/step - loss: 0.0386 - accuracy: 0.9880 - val_loss: 0.0068 - val_accuracy: 0.9978
		T7 1' 1 .'	Epoch 3/20 562/562 [===============] - 299s 532ms/step - loss: 0.0192 - accuracy: 0.9948 - val_loss: 7.7184e-04 - val_accur acy: 1.0000
		Validation	Epoch 4/20
		Accuracy –	562/562 [====================================
		99.86%	Epoch 5/20 562/562 [==============] - 310s 552ms/step - loss: 0.0184 - accuracy: 0.9940 - val_loss: 5.2546e-04 - val_accur
			Epoch 6/20 562/562 [====================================
			Epoch 7/20 562/562 [====================================
			Epoch 8/20 562/562 [====================================
			Epoch 9/20 562/562 [====================================
			Epoch 10/20 562/562 [====================================
			Epoch 11/20 562/562 [====================================
			Epoch 12/20 562/562 [====================================
			Epoch 13/20 562/562 [====================================
			Epoch 14/20 562/562 [====================================
			Epoch 15/20 562/562 [====================================
			Epoch 16/20 562/562 [====================================
			Epoch 17/20 560/562 [=============] - 306s 545ms/step - loss: 0.0020 - accuracy: 0.9996 - val_loss: 1.1681e-05 - val_accur acy: 1.0000
			Epoch 18/20 562/562 [============] - 307s 546ms/step - loss: 0.0074 - accuracy: 0.9981 - val_loss: 1.8610e-04 - val_accuracy: 1.0000
			Epoch 19/20 562/562 [====================================
			acy: 1.0000 Epoch 20/20 562/562 [============================ - 304s 540ms/step - loss: 0.0026 - accuracy: 0.9992 - val_loss: 0.0037 - val_accuracy:
			0.9986

10. ADVANTAGES & DISADVANTAGES

10.1 Advantages

The main advantage of the system is that it prevents surgeon's focus shift and change of location while achieving, rapid intuitive interaction with image databases. The system allows the surgeon to use his/her hands, their natural work tool. Non-verbal instructions by hand gesture commands used in this project are

intuitive and fast. This system assists surgeons while performing operations at a fast rate without any physical contact. Customers are highly benefited as the surgeries can be performed without touching any pointing devices. It also saves time. It can also be placed in other industries like banking. It can also help blind people.

10.2 Disadvantages

The disadvantage of this system is that the system is quite expensive as it requires expensive cameras and other devices to capture images and process it

11. CONCLUSION

In this project we developed a tool which recognizes hand gestures and enables doctors to browse through radiology images using these gestures. This enables doctors and surgeons to maintain the sterility as they would not have to touch any mouse or keyboard to go through the images. This tool is also easy to use and is quicker than the regular method of using mouse/keyboard. It can be used regardless of the user's location since they don't have to be in contact with any device. It also does not require the user to have any device on them to use it. Further this technology can be extended to other industries like it can be used by presenters, by teachers for show images in the classroom, etc.

12. FUTURE SCOPE

The tool can be made quicker by increasing the recognition speed. More number of gestures can be added thereby increasing this tool's functionality and usabilityfor different purposes. Tracking of both hands can be added to increase the set of commands. Voice commands can also be added to further increase the functionality.

13. APPENDIX

Source Code: GitHub - https://github.com/IBM-EPBL/IBM-Project-6782-1658837170