Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1	(2, 2) (2, 2)	_
1.	$z_1 + z_2 = (3+2i) + (3-2i) =$	2p
	= 6, care este număr real	3 p
2.	$f(2) = m \Leftrightarrow 4 - 3 = m$	3 p
	m=1	2p
3.	$3^{3x-5} = 3^{-2} \Leftrightarrow 3x - 5 = -2$	3p
	x=1	2p
4.	Mulțimea A are 20 de elemente, deci sunt 20 de cazuri posibile	2p
	În mulțimea A, multiplii de 5 sunt numerele 5, 10, 15 și 20, deci sunt 4 cazuri favorabile	2 p
	nr. cazuri favorabile 4 1	_
	$p = \frac{\text{in eazuri posibile}}{\text{nr. cazuri posibile}} = \frac{1}{20} = \frac{1}{5}$	1p
5.	Ecuația dreptei AB este $y = 2x + 1$	3p
	$C \in AB \Leftrightarrow 1 = 2m + 1 \Leftrightarrow m = 0$	2 p
6.	$E\left(\frac{\pi}{3}\right) = \cos\frac{\pi}{6} + \sin\frac{\pi}{3} =$	2p
	$=\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$(0 \ 1 \ 1)$ $ 0 \ 1 \ 1 $	
	$A(0) = \begin{vmatrix} 2 & 0 & 1 \end{vmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 0 & 1 \end{vmatrix} =$	2p
	$A(0) = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{vmatrix} =$	
	= 0 + 0 + 3 - 0 - 0 - 2 = 1	3 p
b)	$A(x)+A(x+2) = \begin{pmatrix} x & x+1 & 1 \\ 2 & x & 1 \\ 3 & 0 & 1 \end{pmatrix} + \begin{pmatrix} x+2 & x+3 & 1 \\ 2 & x+2 & 1 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2x+2 & 2x+4 & 2 \\ 4 & 2x+2 & 2 \\ 6 & 0 & 2 \end{pmatrix}$	
	$A(x) + A(x+2) = \begin{vmatrix} 2 & x & 1 \end{vmatrix} + \begin{vmatrix} 2 & x+2 & 1 \end{vmatrix} = \begin{vmatrix} 4 & 2x+2 & 2 \end{vmatrix}$	2 p
	$\begin{pmatrix} 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 & 0 & 2 \end{pmatrix}$	
	$(4 \ 6 \ 2)$	
	$2A(2) = \begin{pmatrix} 4 & 6 & 2 \\ 4 & 4 & 2 \\ 6 & 0 & 2 \end{pmatrix}$, deci $x = 1$	3p
	$\begin{pmatrix} 6 & 0 & 2 \end{pmatrix}$	
c)	$\begin{vmatrix} n & n+1 & 1 \end{vmatrix}$	1
	Punctele $M(n,n+1)$, $N(2,n)$ și $P(3,0)$ sunt coliniare \Leftrightarrow $\begin{vmatrix} n & n+1 & 1 \\ 2 & n & 1 \\ 3 & 0 & 1 \end{vmatrix} = 0$	2p
	3 0 1	
	$n^2 - 2n + 1 = 0$, deci $n = 1$	3р
		Эр
2.a)	$f(1) = 1^3 + a \cdot 1^2 + 1 - 1 = a + 1$	2p
	$f(-1) = (-1)^3 + a \cdot (-1)^2 + (-1) - 1 = a - 3 \Rightarrow f(1) - f(-1) = a + 1 - a + 3 = 4$, pentru orice	3р
	număr real a	

b)	$f = X^3 + 2X^2 + X - 1$, câtul este $X + 1$	3 p
	Restul este $-X-2$	2p
c)	$x_1 + x_2 + x_3 = -a$, $x_1x_2 + x_1x_3 + x_2x_3 = 1$, $x_1x_2x_3 = 1$	3p
	$x_1 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3 = x_1x_2x_3 - 1 \Leftrightarrow -a + 1 = 1 - 1$, deci $a = 1$	2p

SUBIECTUL al III-lea (30		(30 de puncte)
1.a)	$f'(x) = \frac{(2x-1)(x-1) - (x^2 - x + 1) \cdot 1}{(x-1)^2} =$	3р
	$= \frac{x^2 - 2x}{(x - 1)^2} = \frac{x(x - 2)}{(x - 1)^2}, \ x \in (1, +\infty)$	2 p
b)	f(2)=3, f'(2)=0	2 p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = 3$	3 p
c)	$\lim_{x \to +\infty} \frac{f(x)}{e^x + 1} = \lim_{x \to +\infty} \frac{x^2 - x + 1}{(x - 1)(e^x + 1)} = \lim_{x \to +\infty} \left(\frac{x^2 - x + 1}{x(x - 1)} \cdot \frac{x}{e^x + 1} \right) =$	2 p
	=1.0=0, decarece $\lim_{x \to +\infty} \frac{x^2 - x + 1}{x(x - 1)} = 1$ şi $\lim_{x \to +\infty} \frac{x}{e^x + 1} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$	3 p
2.a)	$\int_{0}^{1} (f(x) - 2x) dx = \int_{0}^{1} (e^{x} + 2x - 2x) dx = \int_{0}^{1} e^{x} dx = e^{x} \Big _{0}^{1} =$	3 p
	$=e^{1}-e^{0}=e-1$	2 p
b)	$g(x) = 2x \Rightarrow V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} 4x^{2} dx =$	3р
	$= 4\pi \cdot \frac{x^3}{3} \Big _0^1 = \frac{4\pi}{3}$	2 p
c)	$\int_{0}^{a} x f(x) dx = \int_{0}^{a} x (e^{x} + 2x) dx = (x - 1)e^{x} \Big _{0}^{a} + 2 \cdot \frac{x^{3}}{3} \Big _{0}^{a} = (a - 1)e^{a} + 1 + \frac{2a^{3}}{3}$	3р
	$(a-1)e^{a} + 1 + \frac{2a^{3}}{3} = 1 + \frac{2a^{3}}{3} \Leftrightarrow (a-1)e^{a} = 0 \Leftrightarrow a = 1$	2 p