Amendments to the Claims

- (previously presented) A method for the manufacture of a high temperature superconducting layer on a substrate comprising the following steps:
 - a. deposition of an RBa₂Cu₃O₇-layer onto the substrate with a low growth rate less than 1 nm/s, wherein R represents yttrium, an element of the group of rare-earth elements (atomic number 57-71) or mixtures of two or more of these elements;
 - b. deposition of an XBa₂Cu₃O₇-layer onto the RBa₂Cu₃O₇-layer with a high growth rate greater than 1 nm/s, wherein X represents yttrium, an element of the group of rare-earth elements (atomic number 57-71) or mixtures of two or more of these elements.
- 2. (previously presented) A method according to claim 1, wherein the high growth rate is greater than 2 nm/s.
- (previously presented) A method according to claim 1, wherein the RBa₂Cu₂O₂-layer comprises a thickness of less than 500 nm.
- (previously presented) A method according to claim 1, wherein the RBa₂Cu₂O₂-layer has a thickness of greater than 5 nm.
- (previously presented) A method according to claim 1, wherein the XBa.Cu.O.-laver has a thickness of greater than 1 um.
- (previously presented) A method according to claim 1, wherein the RBa₂Cu₃O₇-layer is deposited onto an at least biaxially textured substrate or a substrate with an at least biaxially textured buffer layer.
- (previously presented) A method according to claim 1, wherein the XBa₂Cu₃O₇-layer is deposited as a precursor layer, comprising the metal components of the high temperature superconducting layer.

- (previously presented) A method according to claim 7, wherein the
 precursor layer is transformed in a further method step by a temperature treatment with
 a high transformation rate into a superconducting XBa₂Cu₂O₂-layer.
- 9. (previously presented) A method according to claim 8, wherein the transformation rate is greater than 2 nm/s.
- 10. (previously presented) A method according to claim 1, wherein R represents a rare-earth element of the group comprising La, Pr, Nd, Sm, Eu, and Gd, or compounds comprising to at least 50% of one or more of these elements in mixtures with other rare-earth elements.
 - 11. (cancelled)