# 3.1. FPGAs



# 3.1.1. Generalidades



### Familias de FPGA

- Fabricantes: Xilinx, Intel Altera, Actel, LatticeSemiconductor
   Hay varios tipos de FPGAs adaptadas a distintas aplicaciones (automoción, consumo, aeroespacial, etc)
- ☐ Se clasifican en series o familias que a su vez pueden subdividirse en subgrupos.
- □ Las FPGAs miembros de una misma familia comparten las características básicas (Tª, encapsulado, velocidad...) pero difieren en la cantidad de recursos (CLBs, IOBs, etc) o si disponen de otros (procesadores, memorias, multiplicadores....)



### Características de las FPGA

☐ FPGA (*Field Programmable Gate Array*). Dispositivo que contiene millones de transistores conectados entre sí para realizar distintas funciones lógicas.

El principal beneficio de la FPGA es que un cambio en el diseño no implica una modificación del hardware.

Programable por el usuario: Aporta flexibilidad para hacer

cambios rápidos





Products Solutions Support
USA (English) Sign In & Q

FPGA Devices Benefits Get Started

Intel® FPGAs offer a wide variety of configurable embedded SRAM, high-speed transceivers, high-speed I/Os, logic blocks, and routing. Built-in intellectual property (IP) combined with outstanding software tools lower FPGA development time, power, and cost.



#### Intel® Stratix® Series

The Intel® Stratix® FPGA and SoC family enables you to deliver high-performance, state-of-the-art products to market faster with lower risk and higher productivity.



#### Intel® Arria® Series

The Intel® Arria® device family delivers Intel® performance and power efficiency in the midrange.



#### Intel® Cyclone® Series

The Intel® Cyclone® FPGA series is built to meet your low-power, cost-sensitive design needs, enabling you to get to market faster.



#### Intel® MAX® Series

The Intel® MAX® 10 FPGAs revolutionize non-volatile integration by delivering advance processing capabilities in a low-cost, single chip small form.

https://www.intel.com/content/www/us/en/products/programmable/fpga.html





### **Xilinx Multi-Node Product Portfolio Offering**



http://www.xilinx.com/products/silicon-devices/fpga.html



#### 28nm

#### 16nm









### Xilinx All Programmable SoC and MPSoC Comparison Table

| PROCESSING SYSTEM           | Zynq-7000 SoC                                                               | Zynq UltraScale+ MPSoC                                                               |
|-----------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Application Processing Unit | Dual-core ARM <sup>®</sup> Cortex™-A9 MPCore™ with CoreSight™ up<br>to 1GHz | Quad-core ARM <sup>®</sup> Cortex™-A53 MPCore up to 1.5GHz                           |
| Real-Time Processing Unit   |                                                                             | Dual-core ARM <sup>®</sup> Cortex™-R5 MPCore up to 600MHz                            |
| Multimedia Processing       | -                                                                           | GPU ARM <sup>®</sup> Mali™-400MP up to 667MHz,<br>Video Codec supporting H.264-H.265 |
| Dynamic Memory Interface    | DDR3, DDR3L, DDR2, LPDDR2                                                   | DDR4, LPDDR4, DDR3, DDR3L, LPDDR3                                                    |
| High-Speed Peripherals      | USB 2.0, Gigabit Ethernet, SD/SDIO                                          | PCIe <sup>®</sup> Gen2, USB3.0, SATA 3.1, DisplayPort, Gigabit Ethernet,<br>SD/SDIO  |
| Security                    | RSA, AES, and SHA, ARM <sup>®</sup> TrustZone <sup>®</sup>                  | RSA, AES, and SHA, ARM <sup>®</sup> TrustZone <sup>®</sup>                           |
| Max I/O Pins                | 128                                                                         | 214                                                                                  |

### http://www.xilinx.com/products/silicon-devices/soc.html



# http://www.xilinx.com/products/silicon-devices/fpga/index.htm

### FPGA Comparison Table

|                                           | Spartan-6                       | Artix-7                             | Kintex-7                            | Virtex-7                               |
|-------------------------------------------|---------------------------------|-------------------------------------|-------------------------------------|----------------------------------------|
| Logic Cells                               | 150,000                         | 215,000                             | 480,000                             | 2,000,000                              |
| BlockRAM                                  | 4.8Mb                           | 13Mb                                | 34Mb                                | 68Mb                                   |
| DSP Slices                                | 180                             | 740                                 | 1,920                               | 3,600                                  |
| DSP Performance (symmetric FIR)           | 140GMACs                        | 930GMACs                            | 2,845GMACs                          | 5,335GMACs                             |
| Transceiver Count                         | 8                               | 16                                  | 32                                  | 96                                     |
| Transceiver Speed                         | 3.2Gb/s                         | 6.6Gb/s                             | 12.5Gb/s                            | 28.05Gb/s                              |
| Total Transceiver Bandwidth (full duplex) | 50Gb/s                          | 211Gb/s                             | 800Gb/s                             | 2,784Gb/s                              |
| Memory Interface (DDR3)                   | 800Mb/s                         | 1,066Mb/s                           | 1,866Mb/s                           | 1,866Mb/s                              |
| PCI Express® Interface                    | x1 Gen1                         | x4 Gen2                             | x8 Gen2                             | x8 Gen3                                |
| Analog Mixed Signal (AMS)/XADC            |                                 | Yes                                 | Yes                                 | Yes                                    |
| Configuration AES                         | Yes                             | Yes                                 | Yes                                 | Yes                                    |
| I/O Pins                                  | 576                             | 500                                 | 500                                 | 1,200                                  |
| I/O Voltage                               | 1.2V, 1.5V, 1.8V, 2.5V,<br>3.3V | 1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V | 1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V | 1.2V, 1.35V, 1.5V, 1.8V, 2.5V,<br>3.3V |
| EasyPath™ Cost Reduction Solution         | -                               | -                                   | Yes                                 | Yes                                    |



# 3.1.2. Interfaces de E/S



- Los interfaces E/S permiten la transferencia de datos con el exterior de la FPGA. Estan situados en la periferia del dispositivo.
- Incluyen recursos adicionales: Rpull-up, bloques de retrasos, etc
- Ofrecen varios tipos de <u>estándares eléctricos</u> (LVTTL, LVCMOS, etc)
- ☐ La denominación de los interfaces puede variar según cada fabricante:
  - IOB (Xilinx)
  - IOE (Altera)



#### Niveles de tensión

- •Valores de tensión que corresponde al "0" y "1" lógico
- •Depende de la tensión de alimentación (Vcc) que se aplique al circuito

 Idealmente
 si
 Vcc=5V (Familia TTL) →

 "1" sería 5V
 -Oscilaciones de V

 "0" sería 0V
 -Ruido en las líneas

<u>Realidad</u>: los niveles lógicos se corresponden con un rango de valores de tensión y además depende de si son valores de entrada a un circuito digital o a una salida.





### Niveles de tensión





### Niveles de tensión





### Niveles de tensión : Margen de ruido



En este ejemplo, el margen de ruido es 0,4. Por ejemplo, si un "0" en una salida es COMO MÁXIMO 0,4 v (y no 0 v como debería ser), aún con un ruido en los cables de 0,4 v, la puerta siguente entendería que los 0,8 v que recibe corresponden a un "0"

Fuente: http://www2.ate.uniovi.es/fernando/Doc2005/Ei\_05/Presentaciones/Familia%20TTL.pdf



### Niveles de tensión : Estándares eléctricos





### **Niveles Lógico: Corrientes nominales**



Importante para mantener los niveles de tensión establecidos para ALTO y BAJO





SelectIO Resources Introduction

#### SelectIO Resources Introduction

All 7 series FPGAs have configurable SelectIO drivers and receivers, supporting a wide variety of standard interfaces. The robust feature set includes programmable control of output strength and slew rate, on-chip termination using digitally-controlled impedance (DCI), and the ability to internally generate a reference voltage (INTERNAL\_VREF).

**Note:** HR banks do not have DCI. Therefore, any reference to DCI in this user guide does not apply to the HR banks.

With some exceptions, each I/O bank contains 50 SelectIO pins. The two pins at the very ends of each bank can only be used with <a href="single-ended">single-ended</a> I/O standards. The remaining 48 pins can be used with either single-ended or differential standards using two SelectIO pins grouped together as positive/negative (P/N) pairs. Every SelectIO resource contains input, output, and 3-state drivers.

The SelectIO pins can be configured to various I/O standards, both single-ended and differential.

- Single-ended I/O standards (e.g., LVCMOS, LVTTL, HSTL, PCI, and SSTL)
- Differential I/O standards (e.g., LVDS, Mini\_LVDS, RSDS, PPDS, BLVDS, and differential HSTL and SSTL)





#### Spartan-3E FPGA Family Data Sheet

DS312 July 19, 2013

**Product Specification** 

#### Module 1: Introduction and Ordering Information DS312 (v4.1) July 19, 2013

- Introduction
- Features
- Architectural Overview
- Package Marking
- Ordering Information

#### Module 2: Functional Description DS312 (v4.1) July 19, 2013

- Input/Output Blocks (IOBs)
  - Overview
  - SelectIO™ Signal Standards
- Configurable Logic Block (CLB)
- Block RAM
- Dedicated Multipliers
- Digital Clock Manager (DCM)
- Clock Network
- Configuration
- Powering Spartan®-3E FPGAs
- Production Stepping

# Module 3: DC and Switching Characteristics

DS312 (v4.1) July 19, 2013

- DC Electrical Characteristics
  - Absolute Maximum Ratings
  - Supply Voltage Specifications
  - Recommended Operating Conditions
  - DC Characteristics
- Switching Characteristics
  - I/O Timing
  - SLICE Timing
  - DCM Timing
  - Block RAM Timing
  - Multiplier Timing
  - Configuration and JTAG Timing

#### Module 4: Pinout Descriptions DS312 (v4.1) July 19, 2013

- Pin Descriptions
- Package Overview
- Pinout Tables
- Footprint Diagrams



Table 8: SelectIO DC Input and Output Levels(1)(2)

| I/O Standard |        | V <sub>IL</sub>          | VII                      | н                        | V <sub>OL</sub>             | V <sub>OH</sub>             | I <sub>OL</sub> | I <sub>OH</sub> |  |
|--------------|--------|--------------------------|--------------------------|--------------------------|-----------------------------|-----------------------------|-----------------|-----------------|--|
| i/O Standard | V, Min | V, Max                   | V, Min                   | V, Max                   | V, Max                      | V, Min                      | mA, Max         | mA, Min         |  |
| HSTL_I       | -0.300 | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | 8.00            | -8.00           |  |
| HSTL_I_18    | -0.300 | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | 8.00            | -8.00           |  |
| HSTL_II      | -0.300 | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | 16.00           | -16.00          |  |
| HSTL_II_18   | -0.300 | V <sub>REF</sub> – 0.100 | V <sub>REF</sub> + 0.100 | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | 16.00           | -16.00          |  |
| HSUL_12      | -0.300 | V <sub>REF</sub> – 0.130 | V <sub>REF</sub> + 0.130 | V <sub>CCO</sub> + 0.300 | 20% V <sub>CCO</sub>        | 80% V <sub>CCO</sub>        | 0.10            | -0.10           |  |
| LVCMOS12     | -0.300 | 35% V <sub>CCO</sub>     | 65% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | Note 3          | Note 3          |  |
| LVCMOS15     | -0.300 | 35% V <sub>CCO</sub>     | 65% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.300 | 25% V <sub>CCO</sub>        | 75% V <sub>CCO</sub>        | Note 4          | Note 4          |  |
| LVCMOS18     | -0.300 | 35% V <sub>CCO</sub>     | 65% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.300 | 0.450                       | V <sub>CCO</sub> - 0.450    | Note 5          | Note 5          |  |
| LVCMOS25     | -0.300 | 0.7                      | 1.700                    | V <sub>CCO</sub> + 0.300 | 0.400                       | V <sub>CCO</sub> - 0.400    | Note 4          | Note 4          |  |
| LVCMOS33     | -0.300 | 0.8                      | 2.000                    | 3.450                    | 0.400                       | V <sub>CCO</sub> - 0.400    | Note 4          | Note 4          |  |
| LVTTL        | -0.300 | 0.8                      | 2.000                    | 3.450                    | 0.400                       | 2.400                       | Note 5          | Note 5          |  |
| MOBILE_DDR   | -0.300 | 20% V <sub>CCO</sub>     | 80% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.300 | 10% V <sub>CCO</sub>        | 90% V <sub>CCO</sub>        | 0.10            | -0.10           |  |
| PCl33_3      | -0.400 | 30% V <sub>CCO</sub>     | 50% V <sub>CCO</sub>     | V <sub>CCO</sub> + 0.500 | 10% V <sub>CCO</sub>        | 90% V <sub>CCO</sub>        | 1.50            | -0.50           |  |
| SSTL135      | -0.300 | V <sub>REF</sub> - 0.090 | V <sub>REF</sub> + 0.090 | V <sub>CCO</sub> + 0.300 | V <sub>CCO</sub> /2 - 0.150 | V <sub>CCO</sub> /2 + 0.150 | 13.00           | -13.00          |  |
| SSTL135_R    | -0.300 | - Notes:                 |                          |                          |                             |                             |                 | 0               |  |
|              |        | INCUES.                  |                          |                          |                             |                             |                 |                 |  |

DS181 (v1.25) June 18, 2018 **Product Specification** 

-0.300

SSTL15

1. Tested according to relevant specifications.

- 3.3V and 2.5V standards are only supported in HR I/O banks.
- Supported drive strengths of 4, 8, or 12 mA in HR I/O banks.
- Supported drive strengths of 4, 8, 12, or 16 mA in HR I/O banks.



# 3.1.3. Lógica de los bloques de E/S



# Lógica de los bloques de salida

http://www.altera.com/literature/hb/cyc/cyc\_c51002.pdf (Pag.40)





# Lógica de los bloques de salida





### Lógica de los bloques de salida





# 3.1.4. Bloques Lógicos



- Lógica o recursos incluidos en la FPGA para construir el diseño.
- ☐ Diferente denominación según fabricante:
  - INTEL ALTERA: LE (Logic Element) / ALM (Adaptative Logic Module)
  - XILINX: CLB (Configurable Logic Blocks)
- ☐ Cada fabricante define la lógica constructiva y la cantidad de ésta que incluye en sus dispositivos



# Menor unidad lógica



Xilinx → Logic Cell (LC)

Altera → Logic Element (LE)



# (Look-up table) LUT



# (Look-up table) LUT

### Construir funciones lógicas de más de 4 entradas



De 5 entradas

De 9 entradas



# Slice (Xilinx)





#### **CLB** (Configurable Logic Block) (Xilinx)

These two slices do not have direct connections to each other, and each slice is organized as a column.

Each slice in a column has an independent carry chain.



Table 2-1: Logic Resources in One CLB

| Slices | LUTs | Flip-Flops | Arithmetic and<br>Carry Chains | Distributed RAM <sup>(1)</sup> | Shift Registers <sup>(1)</sup> |
|--------|------|------------|--------------------------------|--------------------------------|--------------------------------|
| 2      | 8    | 16         | 2                              | 256 bits                       | 128 bits                       |

#### Notes:

1. SLICEM only, SLICEL does not have distributed RAM or shift registers.



# 3.1.5. Recursos adicionales



### Otros recursos de las FPGA

- > Cadenas de acarreo rápido
- **➢ Bloques de memoria RAM**
- ➤ Multiplicadores y sumadores (DSP)
- **➢ Núcleos de procesadores embebidos**



# Otros recursos de las FPGA: Cadena de acarreo rápido

#### Chapter 9: Using Carry and Arithmetic Logic







# Otros recursos de las FPGA: Cadena de acarreo rápido







### Otros recursos de las FPGA: Bloques de RAM y DSP

### **Artix-7 FPGA Feature Summary**

### Table 4: Artix-7 FPGA Feature Summary by Device

|          | Logic   | Configurable Logic Blocks (CLBs) |                                | DSP48E1               | Block RAM Blocks <sup>(3)</sup> |       |             |  |
|----------|---------|----------------------------------|--------------------------------|-----------------------|---------------------------------|-------|-------------|--|
| Device   | Cells   | Slices <sup>(1)</sup>            | Max<br>Distributed<br>RAM (Kb) | Slices <sup>(2)</sup> | 18 Kb 3                         | 36 Kb | Max<br>(Kb) |  |
| XC7A12T  | 12,800  | 2,000                            | 171                            | 40                    | 40                              | 20    | 720         |  |
| XC7A15T  | 16,640  | 2,600                            | 200                            | 45                    | 50                              | 25    | 900         |  |
| XC7A25T  | 23,360  | 3,650                            | 313                            | 80                    | 90                              | 45    | 1,620       |  |
| XC7A35T  | 33,280  | 5,200                            | 400                            | 90                    | 100                             | 50    | 1,800       |  |
| XC7A50T  | 52,160  | 8,150                            | 600                            | 120                   | 150                             | 75    | 2,700       |  |
| XC7A75T  | 75,520  | 11,800                           | 892                            | 180                   | 210                             | 105   | 3,780       |  |
| XC7A100T | 01,440  | 15,850                           | 1,188                          | 240                   | 270                             | 135   | 4,860       |  |
| XC7A200T | 215,360 | 33,650                           | 2,888                          | 740                   | 730                             | 365   | 13,140      |  |



# Otros recursos de las FPGA: Convertidor A/D

# **Artix-7 FPGAs**

| ransceiver Optimization at the Lowest Cost and Highest DSP Bandwidth | ١ |
|----------------------------------------------------------------------|---|
| L.OV. 0.95V. 0.9V)                                                   |   |

|                     | Λ.                                                     | 1.04, 0.334, 0.3 | • /         |             |             |             |             |             |
|---------------------|--------------------------------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                     | Part Number                                            | XC7A12T          | XC7A15T     | XC7A25T     | XC7A35T     | XC7A50T     | XC7A75T     | XC7A100T    |
|                     | Logic Cells                                            | 12,800           | 16,640      | 23,360      | 33,280      | 52,160      | 75,520      | 101,440     |
| Logic<br>Resources  | Slices                                                 | 2,000            | 2,600       | 3,650       | 5,200       | 8,150       | 11,800      | 15,850      |
| Resources           | CLB Flip-Flops                                         | 16,000           | 20,800      | 29,200      | 41,600      | 65,200      | 94,400      | 126,800     |
|                     | Maximum Distributed RAM (Kb)                           | 171              | 200         | 313         | 400         | 600         | 892         | 1,188       |
| Memory<br>Resources | Block RAM/FIFO w/ ECC (36 Kb each)                     | 20               | 25          | 45          | 50          | 75          | 105         | 135         |
| Resources           | Total Block RAM (Kb)                                   | 720              | 900         | 1,620       | 1,800       | 2,700       | 3,780       | 4,860       |
| Clock Resources     | CMTs (1 MMCM + 1 PLL)                                  | 3                | 5           | 3           | 5           | 5           | 6           | 6           |
| I/O Resources       | Maximum Single-Ended I/O                               | 150              | 250         | 150         | 250         | 250         | 300         | 300         |
| I/O Resources       | Maximum Differential I/O Pairs                         | 72               | 120         | 72          | 120         | 120         | 144         | 144         |
|                     | DSP Slices                                             | 40               | 45          | 80          | 90          | 120         | 180         | 240         |
|                     | PCle® Gen2 <sup>(1)</sup>                              | 1                | 1           | 1           | 1           | 1           | 1           | 1           |
| Embedded<br>Hard IP | Analog Mixed Signal (AMS) / XADC                       | 1                | 1           | 1           | 1           | 1           | 1           | 1           |
| Resources           | Configuration AES / HMAC Blocks                        | 1                | 1           | 1           | 1           | 1           | 1           | 1           |
|                     | GTP Transceivers (6.6 Gb/s Max<br>Rate) <sup>(2)</sup> | 2                | 4           | 4           | 4           | 4           | 8           | 8           |
|                     | Commercial Temp (C)                                    | -1, -2           | -1, -2      | -1, -2      | -1, -2      | -1, -2      | -1, -2      | -1, -2      |
| Speed Grades        | Extended Temp (E)                                      | -2L, -3          | -2L, -3     | -2L, -3     | -2L, -3     | -2L, -3     | -2L, -3     | -2L, -3     |
|                     | Industrial Temp (I)                                    | -1, -2, -1L      | -1, -2, -1L | -1, -2, -1L | -1, -2, -1L | -1, -2, -1L | -1, -2, -1L | -1, -2, -1L |

Dimensions - Dell Ditch



#### Otros recursos de las FPGA: Procesador embebido

# **Núcleo Hardware (FPGA-SoC)**

- Eliminan la necesidad de otro chip externo
- Posibilidad de incluir un sistema operativo
- El procesador actuará como controlador de todo el sistema diseñado en la FPGA
- Solo lo incluyen las familias de altas prestaciones (Zynq)

**Núcleos ARM-Dual Core** 



#### Otros recursos de las FPGA: Procesador embebido

# **Núcleo Hardware (FPGA-SoC)**

Xilinx Zynq-7000 SoC Solution





#### Otros recursos de las FPGA: Procesador embebido

# **Núcleo Software (Soft-core)**

- Ventaja sobre el Nucleo HW
  - Solo lo implemento si lo necesite
  - Los fabricantes ofrecen un modelo de procesador que se puede personalizar para la aplicación.



Clock management tile (CMT): elemento que recibe una señal de reloj externa y genera un número de señales "hijas". (TCM en Xilinx)

#### Se utiliza para:

Síntesis de frecuencia: cuando la frecuencia que viene del exterior no es la frecuencia necesaria (multiplicando o dividiendo la frecuencia externa)





Detectar y corregir el fenómeno conocido como "jitter"







> Correción skew:





Correción auto-skew: Se realiza comparando la señal hija con el reloj externo.





### Arquitectura de la FPGA

# Basic FPGA architecture



Fuente: Javier Serrano, CERN



# 3.1.6. Infraestructura de reloj



### Infraestructura de reloj

La señal de reloj es distribuida dentro de la FPGA mediante una estructura en árbol.







### Infraestructura de reloj



# 3.1.7. Interconexiones jerárquicas



- ➤ Conexiones de propósito general → Más lentas, pasan al menos por un SB. Interconectan CLBs lejanos.
  - Single
  - Double
- Líneas de interconexion largas : No pasan por SB programables para evitar retardos
  - Verticales y Horizontales
  - Líneas largas globales/dedicadas (CLK y RESET)



## **Conexión directa**





Conexión de propósito general





Líneas de interconexión largas









# 3.1.8 Programación de las FPGAs



- > Configurar: generar la secuencia de bits que configura el dispositivo
- Programar: Descargar la información de configuración a la FPGA

Programar: cambiar las funciones lógicas y las conexiones



La implementación física de la memoria sirve para clasificar las FPGAs

Fuente: Universidad Rey Juan Carlos



Clasificación de las FPGA según el tipo de memoria de programación.



Fuente: Universidad Rey Juan Carlos



Clasificación de las FPGA según el tipo de memoria de programación.

| VENTAJAS (SRAM)                 | DESVENTAJAS (SRAM)            |
|---------------------------------|-------------------------------|
| Rapidez en la reprogramabilidad | Volátil                       |
| Bajo consumo                    | Ocupan área del semiconductor |

| VENTAJAS (FLASH) | DESVENTAJAS (FLASH)           |
|------------------|-------------------------------|
| No volátil       | Programación lenta (3xSRAM)   |
|                  | Ocupan área del semiconductor |

| VENTAJAS (OTP)                             | DESVENTAJAS (OTP)    |
|--------------------------------------------|----------------------|
| Menor retardo                              | Programables una vez |
| Menor tamaño, ocupan menos área            | Programación externa |
| Tolerancia a la radiación electromagnética |                      |
| No volátil                                 |                      |



### **Programación SRAM**





#### Programación basada en el estándar IEEE 1149.1 (JTAG o Boundary Scan)



Fuente: Universidad Rey Juan Carlos





#### Reconfiguración

### ➤ Reconfigurabilidad estática:

La configuración de la FPGA sólo cambia durante la fase de diseño. Su funcionalidad no cambia mientras que la aplicación esté en funcionamiento.

#### ➤ Reconfigurabilidad dinámica:

La funcionalidad cambia durante el funcionamiento normal el sistema se adapta a nuevas necesidades del proceso sin cambiar el sistema físico.



### Reconfiguración estática

Realización de prototipos de sistemas complejos: Permite comprobar el funcionamiento real (no simulación) de un sistema a partir de una descripción de alto nivel. Una vez comprobado el funcionamiento del prototipo, se fabrica un ASIC para implementar el sistema final.

Realización de sistemas: La FPGA permite su modificación sin necesidad de rediseñar de nuevo la placa del circuito. Adaptación a diferentes entornos y normas durante su vida útil. Menores tiempos de diseño y costes, rapidez en la comercialización



#### Reconfiguración dinámica

- ➤ Sistemas autoverificables: La FPGA se configura inicialmente en modo verificación y se reconfigura después para la aplicación incrementa la fiabilidad pero también el tamaño, la complejidad y el coste.
- Interfaces de comunicación reconfigurables: La mayoría de protocolos de buses actuales incluyen mecanismos de autoconfiguración ("plug and play") de los dispositivos conectados para distribuir los recursos y el modo de comunicación.
- Computadores reconfigurables: Reconfiguran su hardware para adaptarse a los algoritmos a realizar en cada instante. Mayor velocidad que un computador de aplicación general, gran complejidad, dificultad para desarrollar SO adecuados.

#### Reconfiguración dinámica

#### Computadores reconfigurables

Como aceleradores de procesamiento en servidores. La FPGA se configura para realizar tareas paralelas readaptándose al algoritmo necesario en cada caso.

Ejemplo: Microsoft Bing

http://research.microsoft.com/en-us/projects/catapult/

http://streamcomputing.eu/blog/2014-09-16/use-opencl-fpgas/



### **BIBLIOGRAFÍA**

- The Design Warrior's Guide to FPGAs. Clive "Max" Maxfield
- www.xilinx.com
- www.altera.com
- FPGA 101. Gina Smith. Editorial Elsevier.

