

- Prelegerea 21 -Despre problema logaritmului discret

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Algoritmi pentru DLP

2. Funcții hash rezistente la coliziuni bazate pe PLD

▶ Reamintim PLD:

- Reamintim PLD:
- ► Fie \mathbb{G} un grup ciclic de ordin q (cu |q| = n) iar g este generatorul lui \mathbb{G} .

- Reamintim PLD:
- ▶ Fie \mathbb{G} un grup ciclic de ordin q (cu |q| = n) iar g este generatorul lui \mathbb{G} .
- ▶ Pentru fiecare $h \in \mathbb{G}$ există un unic $x \in \mathbb{Z}_q$ a.î. $g^x = h$.

- Reamintim PLD:
- ▶ Fie \mathbb{G} un grup ciclic de ordin q (cu |q| = n) iar g este generatorul lui \mathbb{G} .
- ▶ Pentru fiecare $h \in \mathbb{G}$ există un unic $x \in \mathbb{Z}_q$ a.î. $g^x = h$.
- ▶ PLD cere găsirea lui x știind \mathbb{G} , q, g, h; notăm $x = \log_g h$;

- Reamintim PLD:
- ► Fie \mathbb{G} un grup ciclic de ordin q (cu |q| = n) iar g este generatorul lui \mathbb{G} .
- ▶ Pentru fiecare $h \in \mathbb{G}$ există un unic $x \in \mathbb{Z}_q$ a.î. $g^x = h$.
- ▶ PLD cere găsirea lui x știind \mathbb{G} , q, g, h; notăm $x = \log_g h$;
- Atenție! Atunci când $g^{x'}=h$ pentru un x' arbitrar (deci NU neapărat $x\in\mathbb{Z}_q$), notăm $\log_g h=[x' \bmod q]$

Problema PLD se poate rezolva, desigur, prin forță brută, calculând pe rând toate puterile x ale lui g până când se găsește una potrivită pentru care $g^x = h$;

- Problema PLD se poate rezolva, desigur, prin forță brută, calculând pe rând toate puterile x ale lui g până când se găsește una potrivită pentru care $g^x = h$;
- ▶ Complexitatea timp este $\mathcal{O}(q)$ iar complexitatea spațiu este $\mathcal{O}(1)$;

- ▶ Problema PLD se poate rezolva, desigur, prin forță brută, calculând pe rând toate puterile x ale lui g până când se găsește una potrivită pentru care $g^x = h$;
- ▶ Complexitatea timp este $\mathcal{O}(q)$ iar complexitatea spațiu este $\mathcal{O}(1)$;
- ▶ Dacă se precalculează toate valorile (x, g^x) , căutarea se face în timp $\mathcal{O}(1)$ și spațiu $\mathcal{O}(q)$;

- Problema PLD se poate rezolva, desigur, prin forță brută, calculând pe rând toate puterile x ale lui g până când se găsește una potrivită pentru care $g^x = h$;
- ▶ Complexitatea timp este $\mathcal{O}(q)$ iar complexitatea spațiu este $\mathcal{O}(1)$;
- ▶ Dacă se precalculează toate valorile (x, g^x) , căutarea se face în timp $\mathcal{O}(1)$ și spațiu $\mathcal{O}(q)$;
- Sunt de interes algoritmii care pot obţine un timp mai bun la rulare decât forţa brută, realizând un compromis spaţiu-timp.

Se cunosc mai mulți astfel de algoritmi împărțiți în două categorii:

- Se cunosc mai mulți astfel de algoritmi împărțiți în două categorii:
 - algoritmi generici care funcționează în grupuri arbitrare (i.e. orice grupuri ciclice);

- Se cunosc mai mulți astfel de algoritmi împărțiți în două categorii:
 - ▶ algoritmi *generici* care funcționează în grupuri arbitrare (i.e. orice grupuri ciclice);
 - algoritmi non-generici care lucrează în grupuri specifice exploatează proprietăți speciale ale anumitor grupuri

- Se cunosc mai mulți astfel de algoritmi împărțiți în două categorii:
 - ▶ algoritmi *generici* care funcționează în grupuri arbitrare (i.e. orice grupuri ciclice);
 - algoritmi non-generici care lucrează în grupuri specifice exploatează proprietăți speciale ale anumitor grupuri
- ▶ Dintre algoritmii generici enumerăm:

- Se cunosc mai mulți astfel de algoritmi împărțiți în două categorii:
 - algoritmi generici care funcționează în grupuri arbitrare (i.e. orice grupuri ciclice);
 - algoritmi non-generici care lucrează în grupuri specifice exploatează proprietăți speciale ale anumitor grupuri
- Dintre algoritmii generici enumerăm:
- Metoda **Baby-step/giant-step**, datorată lui Shanks, calculează logaritmul discret într-un grup de ordin q în timp $\mathcal{O}(\sqrt{q} \cdot (\log q)^c)$;

- Se cunosc mai mulți astfel de algoritmi împărțiți în două categorii:
 - algoritmi generici care funcționează în grupuri arbitrare (i.e. orice grupuri ciclice);
 - algoritmi non-generici care lucrează în grupuri specifice exploatează proprietăți speciale ale anumitor grupuri
- Dintre algoritmii generici enumerăm:
- Metoda **Baby-step/giant-step**, datorată lui Shanks, calculează logaritmul discret într-un grup de ordin q în timp $\mathcal{O}(\sqrt{q} \cdot (\log q)^c)$;
- Algoritmul Pohlig-Hellman poate fi folosit atunci când se cunoaște factorizarea ordinului q al grupului;

 Metoda Baby-Step/Giant-Step este optimă ca timp de rulare, însă există alţi algoritmi mai eficienţi d.p.d.v. al complexităţii spaţiu;

- Metoda Baby-Step/Giant-Step este optimă ca timp de rulare, însă există alți algoritmi mai eficienți d.p.d.v. al complexității spațiu;
- În cazul algoritmului Pohlig-Hellman, timpul de rulare depinde factorii primi ai lui q;

- Metoda Baby-Step/Giant-Step este optimă ca timp de rulare, însă există alți algoritmi mai eficienți d.p.d.v. al complexității spațiu;
- În cazul algoritmului Pohlig-Hellman, timpul de rulare depinde factorii primi ai lui q;
- ▶ Pentru ca algoritmul să nu fie eficient, trebuie ca cel mai mare factor prim al lui q să fie de ordinul 2^{160} .

 Algoritmii non-generici sunt potențial mai puternici decât cei generici;

- Algoritmii non-generici sunt potențial mai puternici decât cei generici;
- ► Cel mai cunoscut algoritm pentru PLD în \mathbb{Z}_p^* cu p prim este algoritmul GNFS (General Number Field Sieve) cu complexitate timp $2^{\mathcal{O}(n^{1/3} \cdot (\log n)^{2/3})}$ unde $|p| = \mathcal{O}(n)$;

- Algoritmii non-generici sunt potențial mai puternici decât cei generici;
- ▶ Cel mai cunoscut algoritm pentru PLD în \mathbb{Z}_p^* cu p prim este algoritmul GNFS (General Number Field Sieve) cu complexitate timp $2^{\mathcal{O}(n^{1/3} \cdot (\log n)^{2/3})}$ unde $|p| = \mathcal{O}(n)$;
- Există și un alt algoritm non-generic numit metoda de calcul a indicelui care rezolvă DLP în grupuri ciclice \mathbb{Z}_p^* cu p prim în timp sub-expoențial în lungimea lui p.

- Algoritmii non-generici sunt potențial mai puternici decât cei generici;
- ▶ Cel mai cunoscut algoritm pentru PLD în \mathbb{Z}_p^* cu p prim este algoritmul GNFS (General Number Field Sieve) cu complexitate timp $2^{\mathcal{O}(n^{1/3} \cdot (\log n)^{2/3})}$ unde $|p| = \mathcal{O}(n)$;
- Există și un alt algoritm non-generic numit metoda de calcul a indicelui care rezolvă DLP în grupuri ciclice \mathbb{Z}_p^* cu p prim în timp sub-expoențial în lungimea lui p.
- Această metodă seamănă cu algoritmul sitei pătratice pentru factorizare;

- Algoritmii non-generici sunt potențial mai puternici decât cei generici;
- ▶ Cel mai cunoscut algoritm pentru PLD în \mathbb{Z}_p^* cu p prim este algoritmul GNFS (General Number Field Sieve) cu complexitate timp $2^{\mathcal{O}(n^{1/3} \cdot (\log n)^{2/3})}$ unde $|p| = \mathcal{O}(n)$;
- Există și un alt algoritm non-generic numit metoda de calcul a indicelui care rezolvă DLP în grupuri ciclice \mathbb{Z}_p^* cu p prim în timp sub-expoențial în lungimea lui p.
- Această metodă seamănă cu algoritmul sitei pătratice pentru factorizare;
- ► Metoda funcționează în 2 etape; prima etapă este de pre-procesare și necesită cunoașterea modulului *p* și a bazei *g*;

▶ **Pasul 1**. Fie q = p - 1, ordinul lui \mathbb{Z}_p^* și $B = \{p_1, ..., p_k\}$ o bază de numere prime mici;

- ▶ **Pasul 1**. Fie q = p 1, ordinul lui \mathbb{Z}_p^* și $B = \{p_1, ..., p_k\}$ o bază de numere prime mici;
- Se caută $l \ge k$ numere distincte $x_1, ..., x_l \in \mathbb{Z}_q$ pentru care $g_i = [g^{x_i} \mod p]$ este "mic" așa încât toți factorii primi ai lui g_i se găsesc în B;

- ▶ **Pasul 1**. Fie q = p 1, ordinul lui \mathbb{Z}_p^* și $B = \{p_1, ..., p_k\}$ o bază de numere prime mici;
- Se caută $l \ge k$ numere distincte $x_1, ..., x_l \in \mathbb{Z}_q$ pentru care $g_i = [g^{x_i} \mod p]$ este "mic" așa încât toți factorii primi ai lui g_i se găsesc în B;
- Vor rezulta relaţii de forma

$$g^{x_i} = p_1^{e_{i,1}} \cdot p_2^{e_{i,2}} \cdot \cdots \cdot p_k^{e_{i,k}} \mod p$$

unde $1 \le i \le k$.

- ▶ **Pasul 1**. Fie q = p 1, ordinul lui \mathbb{Z}_p^* și $B = \{p_1, ..., p_k\}$ o bază de numere prime mici;
- Se caută $l \ge k$ numere distincte $x_1, ..., x_l \in \mathbb{Z}_q$ pentru care $g_i = [g^{x_i} \mod p]$ este "mic" așa încât toți factorii primi ai lui g_i se găsesc în B;
- Vor rezulta relaţii de forma

$$g^{x_i} = p_1^{e_{i,1}} \cdot p_2^{e_{i,2}} \cdot \cdots \cdot p_k^{e_{i,k}} \mod p$$

unde $1 \le i \le k$.

sau

$$x_i = e_{i,1} \log_{\sigma} p_1 \cdot e_{i,2} \log_{\sigma} p_2 \cdot \cdots \cdot e_{i,k} \log_{\sigma} p_k \mod p - 1$$

ightharpoonup În ecuațiile de mai sus, necunoscutele sunt valorile $\{log_g p_i\}$

- ▶ În ecuațiile de mai sus, necunoscutele sunt valorile $\{log_g p_i\}$
- ▶ Pasul 2. Se dă y pentru care se caută $log_g y$;

- În ecuațiile de mai sus, necunoscutele sunt valorile $\{log_g p_i\}$
- ▶ Pasul 2. Se dă y pentru care se caută $log_g y$;
- ▶ Se găsește o valoare $s \in \mathbb{Z}_q$ pentru care $g^s \cdot y \mod p$ este "mic" și poate fi factorizat peste baza B, obținându-se o relație de forma

$$g^s \cdot y = p_1^{s_1} \cdot p_2^{s_2} \cdot \dots \cdot p_k^{s_k} \mod p$$

- În ecuațiile de mai sus, necunoscutele sunt valorile $\{log_g p_i\}$
- ▶ Pasul 2. Se dă y pentru care se caută $log_g y$;
- ▶ Se găsește o valoare $s \in \mathbb{Z}_q$ pentru care $g^s \cdot y \mod p$ este "mic" și poate fi factorizat peste baza B, obținându-se o relație de forma

$$g^s \cdot y = p_1^{s_1} \cdot p_2^{s_2} \cdot \dots \cdot p_k^{s_k} \mod p$$

sau

$$s + \log_g y = s_1 \log_g p_1 \cdot s_2 \log_g p_2 \cdot ... \cdot s_k \log_g p_k \mod p - 1$$

unde s și s_i se cunosc;

• În combinație cu ecuațiile din slide-ul anterior, sunt în total $l+1 \ge k+1$ ecuații liniare în k+1 necunoscute $log_g p_i$, pentru i=1,...,k și $log_g y$.

- În combinație cu ecuațiile din slide-ul anterior, sunt în total $l+1 \ge k+1$ ecuații liniare în k+1 necunoscute $log_g p_i$, pentru i=1,...,k și $log_g y$.
- ▶ O variantă optimizată a acestei metode rulează în timp $2^{\mathcal{O}(\sqrt{n \cdot \log n})}$ pentru un grup \mathbb{Z}_p^* cu p prim de lungime n.

- În combinație cu ecuațiile din slide-ul anterior, sunt în total $l+1 \ge k+1$ ecuații liniare în k+1 necunoscute $log_g p_i$, pentru i=1,...,k și $log_g y$.
- O variantă optimizată a acestei metode rulează în timp $2^{\mathcal{O}(\sqrt{n \cdot \log n})}$ pentru un grup \mathbb{Z}_p^* cu p prim de lungime n.
- ▶ Algoritmul este sub-exponențial în lungimea lui *p*.

Exemplu

▶ Fie p = 101, g = 3 și y=87. Se știe că
$$3^{10} = 65 \mod 101$$
 și $65 = 5 \cdot 13$

La fel,

$$3^{12} = 2^4 \cdot 5 \mod 101$$

şi

$$3^{14} = 13 \mod 101$$

Exemplu

Fie p = 101, g = 3 și y=87. Se știe că
$$3^{10} = 65 \text{ mod } 101 \text{ și } 65 = 5 \cdot 13$$
 La fel,
$$3^{12} = 2^4 \cdot 5 \text{ mod } 101$$
 și
$$3^{14} = 13 \text{ mod } 101$$

▶ Prin urmare:

$$10 = log_35 + log_313 \mod 100$$

 $12 = 4 \cdot log_32 + log_35 \mod 100$
 $14 = log_313 \mod 100$

Exemplu

Fie p = 101, g = 3 și y=87. Se știe că
$$3^{10} = 65 \text{ mod } 101 \text{ și } 65 = 5 \cdot 13$$

La fel,

$$3^{12} = 2^4 \cdot 5 \mod 101$$

şi

$$3^{14} = 13 \mod 101$$

Prin urmare:

$$10 = log_3 5 + log_3 13 \mod 100$$

 $12 = 4 \cdot log_3 2 + log_3 5 \mod 100$
 $14 = log_3 13 \mod 100$

Baza de numere prime mici este:

$$B = \{2, 5, 13\}$$

▶ De asemenea, $3^5 \cdot 87 = 32 = 2^5 \mod 101$ sau

$$5 + log_3 87 = 5 \cdot log_3 2 \mod 100$$

▶ De asemenea, $3^5 \cdot 87 = 32 = 2^5 \mod 101$ sau

$$5 + log_3 87 = 5 \cdot log_3 2 \mod 100$$

► Combinând primele 3 ecuații, rezultă că 4 · log₃2 = 16 mod 100;

▶ De asemenea, $3^5 \cdot 87 = 32 = 2^5 \mod{101}$ sau

$$5 + log_3 87 = 5 \cdot log_3 2 \mod 100$$

- ► Combinând primele 3 ecuații, rezultă că 4 · log₃2 = 16 mod 100;
- ► Această relație nu determină *log*₃2 unic dar se găsesc 4 valori posibile: 4, 29, 54 și 79.

▶ De asemenea, $3^5 \cdot 87 = 32 = 2^5 \mod 101$ sau

$$5 + log_3 87 = 5 \cdot log_3 2 \mod 100$$

- ► Combinând primele 3 ecuații, rezultă că 4 · log₃2 = 16 mod 100;
- ► Această relație nu determină *log*₃2 unic dar se găsesc 4 valori posibile: 4, 29, 54 și 79.
- ▶ Prin încercări, se găsește $log_32 = 39$, și deci $log_387 = 40$.

 În cadrul criptografiei simetrice, am văzut construcții euristice de funcții hash rezistente la coliziuni care sunt folosite pe larg în practică;

- În cadrul criptografiei simetrice, am văzut construcții euristice de funcții hash rezistente la coliziuni care sunt folosite pe larg în practică;
- În continuare prezentăm o construcție pentru funcții hash rezistente la coliziuni bazată pe PLD (prezumpția logaritmului discret) în grupuri de ordin prim;

- În cadrul criptografiei simetrice, am văzut construcții euristice de funcții hash rezistente la coliziuni care sunt folosite pe larg în practică;
- În continuare prezentăm o construcție pentru funcții hash rezistente la coliziuni bazată pe PLD (prezumpția logaritmului discret) în grupuri de ordin prim;
- Cosntrucția este mai puțin eficientă în practică

- În cadrul criptografiei simetrice, am văzut construcții euristice de funcții hash rezistente la coliziuni care sunt folosite pe larg în practică;
- În continuare prezentăm o construcție pentru funcții hash rezistente la coliziuni bazată pe PLD (prezumpția logaritmului discret) în grupuri de ordin prim;
- Cosntrucția este mai puțin eficientă în practică
- ... însă arată că e posibil a obține rezistența la coliziuni pe baza unor prezumpții criptografice standard și bine studiate.

► Fie \mathbb{G} un grup ciclic de ordin prim q (cu |q| = n) și g un generator al său iar h un element aleator din \mathbb{G} ;

- Fie \mathbb{G} un grup ciclic de ordin prim q (cu |q| = n) și g un generator al său iar h un element aleator din \mathbb{G} ;
- Definim o funcție hash H cu intrarea de lungime fixă după cum urmează:

- ► Fie \mathbb{G} un grup ciclic de ordin prim q (cu |q| = n) și g un generator al său iar h un element aleator din \mathbb{G} ;
- Definim o funcție hash H cu intrarea de lungime fixă după cum urmează:
- ▶ H: pentru intrarea $(x_1, x_2) \in \mathbb{Z}_q \times \mathbb{Z}_q$

$$H(x_1,x_2)=g^{x_1}h^{x_2}$$

Teoremă

Dacă problema logaritmului discret este dificilă în grupul \mathbb{G} , atunci construcția de mai sus este o funcție hash de intrare fixă rezistentă la coliziuni.

Teoremă

Dacă problema logaritmului discret este dificilă în grupul \mathbb{G} , atunci construcția de mai sus este o funcție hash de intrare fixă rezistentă la coliziuni.

▶ Pentru demonstrație vom folosi abordarea reducționistă:

Teoremă

Dacă problema logaritmului discret este dificilă în grupul \mathbb{G} , atunci construcția de mai sus este o funcție hash de intrare fixă rezistentă la coliziuni.

- ▶ Pentru demonstrație vom folosi abordarea reducționistă:
- Arătăm că o construcție criptografică e sigură atâta timp cât problema pe care se bazează e dificilă, în felul următor:

Teoremă

Dacă problema logaritmului discret este dificilă în grupul \mathbb{G} , atunci construcția de mai sus este o funcție hash de intrare fixă rezistentă la coliziuni.

- ▶ Pentru demonstrație vom folosi abordarea reducționistă:
- Arătăm că o construcție criptografică e sigură atâta timp cât problema pe care se bazează e dificilă, în felul următor:
- Prezentăm o reducție explicită arătând cum putem transforma un adversar eficient A care atacă securitatea construcției cu probabilitate ne-neglijabilă într-un algoritm eficient A' care rezolvă problema dificilă;

► Fie H o funcție hash precum cea din construcția de mai sus și A un adversar PPT; notăm cu

$$\epsilon(n) = Pr[Hash - coll_{A,H} = 1]$$

probabilitatea ca $\mathcal A$ să găsească coliziuni în funcția $\mathsf H;$

► Fie H o funcție hash precum cea din construcția de mai sus și A un adversar PPT; notăm cu

$$\epsilon(n) = Pr[Hash - coll_{A,H} = 1]$$

probabilitatea ca \mathcal{A} să găsească coliziuni în funcția H;

Aratăm că \mathcal{A} poate fi folosit de \mathcal{A}' pentru a rezolva DLP cu probabilitate de succes $\epsilon(n)$;

▶ **Algoritmul** \mathcal{A}' primește la intrare $s = (\mathbb{G}, q, g, h)$.

- ▶ **Algoritmul** \mathcal{A}' primește la intrare $s = (\mathbb{G}, q, g, h)$.
 - 1. Execută A(s) și obține x și x';

- ▶ **Algoritmul** \mathcal{A}' primește la intrare $s = (\mathbb{G}, q, g, h)$.
 - 1. Execută A(s) și obține x și x';
 - 2. Dacă $x \neq x'$ și H(x) = H(x') atunci

- ▶ **Algoritmul** \mathcal{A}' primește la intrare $s = (\mathbb{G}, q, g, h)$.
 - 1. Execută A(s) și obține x și x';
 - 2. Dacă $x \neq x'$ și H(x) = H(x') atunci
 - 2.1 Dacă h = 1 întoarce 0;

- ▶ **Algoritmul** \mathcal{A}' primește la intrare $s = (\mathbb{G}, q, g, h)$.
 - 1. Execută A(s) și obține x și x';
 - 2. Dacă $x \neq x'$ și H(x) = H(x') atunci
 - 2.1 Dacă h = 1 întoarce 0;
 - **2.2** Altfel $(h \neq 1)$, notează $x = (x_1, x_2)$ și $x' = (x'_1, x'_2)$. Întoarce $[(x_1 x_1') \cdot (x'_2 x_2)^{-1} \mod q]$.

- ▶ **Algoritmul** \mathcal{A}' primește la intrare $s = (\mathbb{G}, q, g, h)$.
 - 1. Execută A(s) și obține x și x';
 - 2. Dacă $x \neq x'$ și H(x) = H(x') atunci
 - 2.1 Dacă h = 1 întoarce 0;
 - 2.2 Altfel $(h \neq 1)$, notează $x = (x_1, x_2)$ și $x' = (x'_1, x'_2)$. Întoarce $[(x_1 x_1') \cdot (x'_2 x_2)^{-1} \mod q]$.
- ► Clar, A' rulează în timp polinomial;

- ▶ **Algoritmul** \mathcal{A}' primește la intrare $s = (\mathbb{G}, q, g, h)$.
 - 1. Execută A(s) și obține x și x';
 - 2. Dacă $x \neq x'$ și H(x) = H(x') atunci
 - 2.1 Dacă h = 1 întoarce 0;
 - 2.2 Altfel $(h \neq 1)$, notează $x = (x_1, x_2)$ și $x' = (x'_1, x'_2)$. Întoarce $[(x_1 x_1') \cdot (x'_2 x_2)^{-1} \mod q]$.
- ► Clar, A' rulează în timp polinomial;
- ▶ Verificăm faptul că dacă \mathcal{A} găsește o coliziune, \mathcal{A}' întoarce răspunsul corect $log_g h$:

▶ Dacă h = 1, atunci răspunsul lui \mathcal{A}' este corect pentru că $log_g h = 0$;

- ▶ Dacă h = 1, atunci răspunsul lui \mathcal{A}' este corect pentru că $log_g h = 0$;
- ► Altfel, existența unei coliziuni implică:

$$H(x_1, x_2) = H(x'_1, x'_2) \Rightarrow g^{x_1} h^{x_2} = g^{x'_1} h^{x'_2}$$

 $\Rightarrow g^{x_1 - x'_1} = h^{x'_2 - x_2}$

- ▶ Dacă h = 1, atunci răspunsul lui \mathcal{A}' este corect pentru că $log_g h = 0$;
- Altfel, existența unei coliziuni implică:

$$H(x_1, x_2) = H(x'_1, x'_2) \Rightarrow g^{x_1} h^{x_2} = g^{x'_1} h^{x'_2}$$

 $\Rightarrow g^{x_1 - x'_1} = h^{x'_2 - x_2}$

Notăm $\Delta = x_2' - x_2$.

- ▶ Dacă h = 1, atunci răspunsul lui \mathcal{A}' este corect pentru că $log_g h = 0$;
- Altfel, existenţa unei coliziuni implică:

$$H(x_1, x_2) = H(x'_1, x'_2) \Rightarrow g^{x_1} h^{x_2} = g^{x'_1} h^{x'_2}$$

 $\Rightarrow g^{x_1 - x'_1} = h^{x'_2 - x_2}$

- Notăm $\Delta = x_2' x_2$.
- ▶ Observăm că $\Delta \neq 0$ mod q. De ce?

- ▶ Dacă h = 1, atunci răspunsul lui \mathcal{A}' este corect pentru că $log_g h = 0$;
- Altfel, existenţa unei coliziuni implică:

$$H(x_1, x_2) = H(x'_1, x'_2) \Rightarrow g^{x_1} h^{x_2} = g^{x'_1} h^{x'_2}$$

 $\Rightarrow g^{x_1 - x'_1} = h^{x'_2 - x_2}$

- Notăm $\Delta = x_2' x_2$.
- ▶ Observăm că $\Delta \neq 0$ mod q. De ce?
- Pentru că ar însemna că $[(x_1 x_1') \mod q] = 0$ și deci $x = (x_1, x_2) = (x_1', x_2') = x'$, contradicție cu $x \neq x'$;

► Cum q-prim și $\Delta \neq 0 \mod q$ atunci inversul $[\Delta^{-1} \mod q]$ există;

- ► Cum q-prim și $\Delta \neq 0 \mod q$ atunci inversul $[\Delta^{-1} \mod q]$ există;
- ▶ Deci $g^{(x_1-x_1')\cdot \Delta^{-1}} = (h^{x_2'-x_2})^{\Delta^{-1} \bmod q} = h^{\Delta \cdot \Delta^{-1} \bmod q} = h$

- ► Cum q-prim și $\Delta \neq 0 \mod q$ atunci inversul $[\Delta^{-1} \mod q]$ există;
- ► Deci $g^{(x_1 x_1') \cdot \Delta^{-1}} = (h^{x_2' x_2})^{\Delta^{-1} \bmod q} = h^{\Delta \cdot \Delta^{-1} \bmod q} = h$
- ▶ rezultă că $log_g h = [(x_1 x_1') \cdot \Delta^{-1} \bmod q] = [(x_1 x_1') \cdot (x_2 x_2')^{-1} \bmod q]$

- ► Cum q-prim și $\Delta \neq 0 \mod q$ atunci inversul $[\Delta^{-1} \mod q]$ există;
- ► Deci $g^{(x_1 x_1') \cdot \Delta^{-1}} = (h^{x_2' x_2})^{\Delta^{-1} \bmod q} = h^{\Delta \cdot \Delta^{-1} \bmod q} = h$
- ▶ rezultă că $log_g h = [(x_1 x_1') \cdot \Delta^{-1} \mod q] = [(x_1 x_1') \cdot (x_2 x_2')^{-1} \mod q]$
- ▶ Observăm că \mathcal{A}' rezolvă DLP corect cu probabilitate exact $\epsilon(n)$

- ► Cum q-prim și $\Delta \neq 0 \mod q$ atunci inversul $[\Delta^{-1} \mod q]$ există;
- ► Deci $g^{(x_1 x_1') \cdot \Delta^{-1}} = (h^{x_2' x_2})^{\Delta^{-1} \bmod q} = h^{\Delta \cdot \Delta^{-1} \bmod q} = h$
- ▶ rezultă că $log_g h = [(x_1 x_1') \cdot \Delta^{-1} \mod q] = [(x_1 x_1') \cdot (x_2 x_2')^{-1} \mod q]$
- ▶ Observăm că \mathcal{A}' rezolvă DLP corect cu probabilitate exact $\epsilon(n)$
- ▶ Cum DLP este dificilă din ipoteză, concluzionăm că $\epsilon(n)$ este neglijabilă.

Important de reținut!

- Cel mai bun algoritm pentru DLP este sub-exponenţial;
- Se pot construi funcții hash rezistente la coliziuni bazate pe dificultatea DLP;