Online Shoppers Purchasing Intention Dataset Analysis

Github: https://github.com/wendyhuai/Online-Shoppers-Analysis

Zuxuan Huai Brown University Oct 14, 2020

What factors will classify a website visit as a visit with purchase made or one without?

- E-commerce essential to retail industry
- Classification Problem
- 12330 rows and 18 columns
- 17 Predictor variables
 - 9 Numerical
 - 8 Categorical
- Assume IID
- No Missing Values, No Group Structure

Target Variable Breakdown

• True / False in Revenue Column

Predictor Variables - Numerical

- Number of Visits: Administrative, Informational, Product-related
- Total time spent on a type of page

Predictor Variables - Numerical

- The average rate of the pages visited by the user:
 - Bounce Rates: the percentage of visitors who enter the site from that page and then leave the site
 - **Exit Rates:** for all pageviews to the page, the percentage that were the last in the session

Predictor Variables

• **Special Day:** numerical [0, 0.2, 0.4, 0.6, 0.8, 1] closeness of the site visiting time to a specific special day

Predictor Variables - Categorical

- Month: 10 unique months, excluding Jan and Apr
- Operating Systems: 8 categories
- Browser: 13 categories
- Region: 9 categories
- Traffic Type: 20 categories
- Visitor Type: New Visitor, Returning Visitor, or Other
- Weekend: True/False

Month & Visitor Type

Splitting Data

Preprocessing

- Ordinal Encoder:
 - Special Day
- One Hot Encoder:
 - Month, Operating Systems, Browser, Region, Traffic Type, Visitor Type, Weekend
- Standard Scalar:
 - Administrative, Administrative Duration
 - Informational, Informational Duration
 - Product-related, Product-related Duration
 - Bounce Rates, Exit Rates, Page Values

Reference

Sakar, C.O., Polat, S.O., Katircioglu, M. et al. Neural Comput & Applic (2018).