

NATURAL MAGNETS AND

ARTIFICIAL MAGNETS

NATURAL = LODE STONE

ARTIFICIAL = STEEL - (NICKEL
ALUMINUM - COBALT) = ALNICO

FLUX TOTAL AMOUNT OF
LINES OF FORCE

PERMEABILITY - THE ABILITY OF
A SUBSTANCE TO PASS LINES OF
FORCE OR CONDUCT MAGNETISM.

RELUCTANCE - THE OPOSITION TO
LINES OF FORCE. IRON IS
2000 TIMES MORE PERMEABLE
THAN AIR.

RETENTIVITY - THE ABILITY
TO HOLD MAGNETISM.

RESIDUAL MAGNETISM - LEFT
OVER MAGNETISM.

LAW - LIKE POLES REPELL
UNLIKE POLES ATTRACT

ELECTROMAGNETISM

A CONDUCTOR CARRYING CURRENT
HAS A MAGNETIC FIELD AROUND
IT THIS FORCE IS ELECTROMAG-
NETIC FORCE - IT IS AT RIGHT
ANGLES TO THE CONDUCTOR
NO POLARITY. LEFT HAND
RULE THUMB DIRECTION OF
CURRENT.

FIELD IN A COIL HAS POLARITY - LEFT HAND RULE
FINGERS DIRECTION OF CURR

T - THUMP N. POLE.

EFFECTS IN COIL DEPEND
IN AMOUNT OF CURRENT
AND NO OF TURNS. INCREASE
UNIT OF MEASURE IS THE
AMPERE-HOURS.

FORMULA

A.H. = CURRENT X TURNS

~~AN ELECTRO MAGNET IS~~
A COIL WITH IRON CORE
INCREASES FIELD

MAGNETO ~~FORCE~~ MOTIVE
FORCE IS THE STRENGTH OF
A MAGNETIC FORCE AROUND
A ELECTROMAGNET - UNIT
AMP-HOURS.

INDUCED E.M.F.

INDUCTION IS THE PRODUCTION
OF EMF IN A CONDUCTOR BY
CUTTING OR BEING ^{CUT} BY A MAGNETIC
FLUX (RELATIVE MOTION)

3 - FACTORS - 1 - FLUX - 2 - MOTION
3 - CONDUCTOR

3 KINDS OF E.M.F.

1 - ELECTROMAGNETIC
2 - SELF INDUCED
3 - MUTUAL INDUCED

Nº 1 - ELECTROMAGNETIC FORCE
IS THE PRODUCTION OF AN
E.M.F. DUE TO PHYSICAL MOTION
A CONDUCTOR AND A MAGNETIC
FIELD. A.C.

Nº 2 - SELF INDUCED IS THE
PRODUCTION OF AN E.M.F DUE
TO THE CHANGE OF CURRENT
IN A CONDUCTOR - 1-CIRCUIT

Nº 3 - MUTUAL IS AN E.M.F. SET
UP (INDUCED) IN A CIRCUIT
BY THE CHANGE OF CURRENT
IN A ADJACENT CIRCUIT

2-CIRCUITS - MOTION INVISIBLE
IN ELECTROMAGNETIC INDUCTION
WE INCREASE E.M.F BY INCREASING
4E FACTORS

3 - EFFECTS - 1 - NUMBER OF
CONDUCTORS - 2 - STRENGTH OF
FLUX OR FIELD. 3 - THE
SPEED OF CONDUCTORS.
LEFTHAND RULE FOR GENERATOR = FLUX TAKU PALM,
THUM DIRECTION OF MOTION,
FINGERS POINT DIRECTION
OF CURRENT

SELF INDUCTANCE E-M-F.
1-CIRCUIT - MOTION INVISI-
BLE - IS COUNTER INDUCE
E.M.F OR BACK EMF OPPOSES

THE IMPLIED EMF OR
LAGGING EFFECT OF CU-
RRENT

LENZ'S LAW - 1. AN INDUCED
VOLTAGE ALWAYS OPPOSES IN-
DUCING (APPLIED) EMF.

2 AN INDUCED EMF
ALWAYS OPPOSES ANY CHAN-
GE IN CURRENT

MUTUAL INDUCTANCE -
SOME LIKE IT TRANSFORMER

A.C.

A.C. IS A CURRENT WHICH
PERIODICALLY CHANGES IN DI-
RECTION AND CONSTANTLY CH-
GES VALUE.

SINE WAVE

INSTANTANEOUS VALUE OF A
SINE WAVE IS EMF GENERAT-
ED AT ANY INSTANT TIME.

MAXIMUM VALUE IS PEAK EMF
EFFECTIVE VALUE IS EQUAL TO
THE VALUE OF A D.C. WHICH PRO-
DUCES EQUAL HEATING EFFECT
EFFECTIVE VALUE = MAXIMUM VAL-
UE $\times 0.707$ - PRODUCT IS LESS
THAN MAXIMUM VALUE
PULSATING D.C (P.D.C) IS IF
D.C. COMPONENT OF A.C. CHA-
GING IN VALUE - ONE DIRECTION

ONE ALTERNATION - HALF CYCLE. 180° + OR - ONE CYCLE - 2 ALTERNATIONS 360°

FREQUENCY IS NUMBER OF CYCLES PER SECOND OF A COIL. PHASE IS THE DIFFERENCE IN TIME BETWEEN ANY ~~TIME~~ POINT IN A CYCLE AND THE BEGINNING OF THAT CYCLE

GENERATORS

GENERATOR IS A MACHINE WHICH CHANGES MECHANICAL ENERGY INTO ELECTRIC ENERGY. IN RELATIVE MOTION BETWEEN CONDUCTOR AND FIELD ELECTROMAGNET, YOKE, FIELD COIL - IN A.C. USE COLLECTOR RINGS OR SLIP-RING IN D.C. (COMMUTATOR) AND BRUSHES ~~OPEN PATH SLITS~~

FREQUENCY DEPENDS ON SPEED OF ARMATURE AND NUMBER OF POLES. TYPES - SELF EXCITED - EXTERNALLY EXCITED

SHUNT GENERATOR OUTPUT VOLTAGE CONNECTED ACROSS FIELD COIL

SERIES OUTPUT CONNECTED IN SERIES WITH FIELD COIL.

COMPOUND HAS BOTH SERIES AND SHUNT FIELD IN SAME POLE-SERIES TO ADD OR OPPOSE SHUNT FIELD

MOTORS

MOTORS CONVERT MECHANICAL ENERGY INTO ELECTRICAL
 PHYSICALLY SAME AS GENERATOR
TORQUE IS THE TURNING FORCE - SHUNT-SERIES
 COMPOUND & SHUNT WOUND
 GOOD TORQUE - CONSTANT SPEED
SERIES WOUND STRONG TORQUE
 GOOD TO START HEAVY LOAD
 IF IT IS REMOVE.

INDUCTANCE

IS THE ABILITY OF MAGNETIC FIELD TO OPOSE ANY CHANGE IN CURRENT FLOW - SYMBOL "L"
 CUTTING ACTION OF MAGNETIC FIELD - OPPOSITION CAUSED BY ~~EMF~~ SELF INDUCED VOL TAGE. A COIL IS CALLED

INDUCTOR = $\frac{\text{WOB}}{\text{AIR CORE}}$

RATE OF FLUX CUTTING
MAGNITUDE OF INDUCED EMF
 DEPENDS IN 4 PHYSICAL FACTORS = I - SIZE A NUMBER OFURNS OF WIRE - II - DISTANCE BETWEEN TURNS. III - DIAMETER OF CORE. IV TYPE OF CORE PRACTICAL TO CHANGE - UNIT OF INDUCTANCE = $L = \text{HENRY} = h$
 $\text{MILLIHENRY} = mh = 0.001$

$1 \text{ h} = \text{ ONE INDUCED VOLT TO STOP ONE AMP IN ONE SECOND}$

D.C. INDUCTIVE CIRCUIT

PASS D.C. WITH NO CEMF.

A.C. INDUCTIVE CIRCUIT. THE CEMF WILL BE GREATER AT START OF CURRENT CAUSED BY THE CUTTING FORCE OF FLUX. CURRENT STARTS AT 90° LAG.

INDUCTIVE REACTANCE & REACTANCE IS THE OPPOSITION TO I FLOW WHICH WILL NOT CONSUME POWER - THE UNIT Ω SYMBOL 'X' INDUCTIVE REACTANCE "XL" NO "XL" IN D.C. - IN P.D.C "XL" IN A.C. COMPONENT. AN INDUCTOR IN P.D.C. WILL SMOOTH THE CURRENT. - FORMULA FOR "XL"

$$XL = 2\pi fL$$

XL = INDUCTIVE REACTANCE IN Ω
 $2\pi = 6.28$

f = FREQUENCY IN CYCLES PER SECOND

L = INDUCTANCE IN HENRYS

IF WE LOOK FOR "L"

$$L = \frac{XL}{2\pi f} \quad I = \frac{E}{XL}$$

1. A DOUBLE RESISTOR Ckt
 "E" AND "I" ARE IN PHASE
 IN A PURE INDUCTIVE Ckt "E"
 AND I ARE 90° OUT OF PHASE
 SERIES L-R CIRCUITS

E AND I PURES R AND DUAL
 E AND I IN L 90° OUT
 CURRENT EVERYWHERE SAME
 FORMULA

$$E_L = 60V \quad E_R = \sqrt{E_L^2 + E_R^2}$$

$$E_L = 60V \quad E_R = 80V \quad \frac{100}{\sqrt{10000}} = E_{L2}$$

$$60 \times 60 = 3600$$

$$\frac{80 \times 80}{10000} = 6400 \quad 100 \times 10 = 1000$$

INDUCTIVE REACTANCE AND RESISTANCE = IMPEDANCE

IMPEDANCE IS THE TOTAL OPPOSITION OF R AND L (RESISTANCE AND REACTANCE) IN A CIRCUIT
 UNIT Ω SYMBOL Z.

$$VOLTAGE ACROSS RESISTANCE = E_R = I R$$

$$VOLTAGE ACROSS INDUCTOR = E_L = I X_L$$

VOLTAGE ACROSS RESISTANCE

$$E_R = IR \quad // \quad E_R = I_R R$$

$$E = \sqrt{E_R^2 + E_L^2} \quad // \quad E = \sqrt{(IR)^2 + (I_L R)^2}$$

$$I^2 = \frac{\sqrt{I^2(R^2 + X_L^2)}}{E^2}$$

$$Z = \sqrt{R^2 + X_L^2} \quad \text{IN SERIES}$$

OHM'S LAW FOR A.C CIRTS

$$I = \frac{E}{Z} \quad // \quad E = IZ \quad // \quad Z = \frac{E}{I}$$

PARALLEL L-R CIRTS

$$E_R - E_L = E_R \text{ IN PARALLEL CIRTS}$$

$$I = \frac{E}{R} \text{ IN PARALLEL CIRTS WITH } E -$$

I IN L 90° OUT OF PHASE

$$\text{TOTAL } I = \sqrt{I_R^2 + I_L^2}$$

I_R AND I_L 90° OUT OF PHASE

TOTAL IMPEDANCE IN A PARALLEL

$$Z_{\text{PAR}} = Z_j = \frac{R \cdot X_L}{\sqrt{R^2 + X_L^2}} \quad \text{OR PRODUCT OVER SUM}$$

OR BY OHM'S LAW.

$$Z_j = \frac{E_R}{I_R}$$

VOLTAGE SUBSTITUTION

TRANSFORMERS

MUTUAL INDUCTANCE

A TRANSFORMER IS AN ELECTRIC DEVICE WHICH TRANSFERS ELECTRICAL POWER FROM ONE CIRCUIT TO ANOTHER BY MEANS OF MUTUAL INDUCTION. CONSISTS OF TWO COILS PRIMARY AND SECONDARY AND A CORE.

TURN'S RATIO - MAGNITUDE OF RMF DEPENDS ON N_p OR TURNS IN SECONDARY

~~$\frac{E_p}{N_p} = \frac{E_s}{N_s}$~~ \therefore TURN'S RATIO WITH N RATIO

$\frac{N_s}{N_p} = \frac{E_s}{E_p}$ TURN'S RATIO = VOLTAGE RATIO

CURRENT RATIO SAME BUT INVERSE = $\frac{N_p}{N_s} = \frac{I_s}{I_p}$

RATIO RELATIONSHIP

STEP UP TRANSFORMER

RATIO $\frac{N_s}{N_p}$ = STEP DOWN $\frac{N_p}{N_s}$

RATIO 2:1 STEP UP "E"

RATIO 1:2 STEP DOWN "I"

POWER EQUAL - $P_p = P_s$

POWER = EI OR ~~E^2 / R~~

$P_p = E_p I_p$ // $P_s = E_s I_s$ THEN

$$E_p I_p = E_s I_s$$

N-RATIO = 3 TO 1 STEP-UP

$$P_p = 660$$

$$P_s = 660$$

TURNS RATIO; IMPEDANCE

IMPEDANCE RATIO ACROSS A
TRANSFORMER = THE SQUARE
OF TURNS RATIO.

$$Z = N^2 \quad N = \sqrt{Z \text{ RATIO}}$$

$$\text{N-RATIO} \quad Z \text{ RATIO}$$

$$9 : 1 \quad 81 : 1$$

$$12 : \quad \sqrt{144} : 1$$

EMPE DANCE MACHINE

~~RESISTANCE FROM SOURCE~~
 PNP LOAD MATCHING
 FOR MAXIMUM TRANSFER OF POWER IN ANY CASE, THE IMPEDANCE OF THE LOAD MUST EQUAL OR MATCH THE INFINITE IMPEDANCE OF THE SOURCE

$$\left(\frac{N_p}{N_s} \right) = \sqrt{\frac{Z_p}{Z_s}} = \sqrt{\frac{10,000}{400}} = \\ = \sqrt{\frac{25}{1}} = \frac{N_p}{N_s} = \frac{5}{1} \text{ TURNS RATIO}$$

TRANSFORMER LOSSES: EFFICIENCY
 EFFICIENCY OF TRANSFORMER DEPENDS IN FOUR FACTORS OF LOSSES - 1 - COPPER LOSS, 2 - HYSTERESIS - 3 - EDDY CURRENT, 4 - FLUX LEAKAGE

1 - COPPER LOSSES IN RESISTANCE OF COIL - USE LARGER WIRE POSSIBLE. 2 - HYSTERESIS - POWER LOSS IN TRANSFORMER CORE OVERCOME BY USING CORE OF

SILICON STEEL - LOW HISTERESIS LOSS. 3 - EDDY CURRENTS EMULATED IN CORE = OVERCOME BY LAMINATING THE CORE AND INSULATING THEM. 4 - FLUX LEAKAGE ARE FLUX LINES LOST IN THE AIR.

HIGH FREQ. MORE HISTERESIS AND EDDY CURRENTS.

LOSS % OF EFFICIENCY =

$$\frac{\text{OUTPUT}}{\text{INPUT}} \times 100$$

$$\frac{P}{E} = P = EI$$

$$100 \times 2 = 200 \text{ W}$$

$$\frac{180}{200} \times 100 = 90\% \text{ EF}$$

CAPACITANCE - CAPACITOR CAPACITANCE THE ABILITY TO STORE ELECTRICAL ENERGY. CAPACITOR IS A DEVICE HAVING ABILITY TO STORE ELECTRICAL ENERGY. COMPOSED OF PARTES AND DIELECTRIC. SYMBOL "C" UNIT THE "FARAD" "F" MICROFARAD, MICROMICROFARAD. ϵ_{rel} - FACTORS TO OF CAPACITANCE. 1 - AREA OF PLATE 2 - DISTANCE BETWEEN PLATES 3 - TYPE OF DIELECTRIC

MATHEMATICS

POWERS OF TEN

EXONENT IS THE NUMBER FOUND IN THE UPPER RIGHT HAND CORNER OF A NUMBER WHICH INDICATES HOW MANY TIMES THAT NUMBER

IS TO BE MULTIPLIED BY ITSELF.

$$3^2 = 3 \times 3 \quad 10^2 \times 10^2 = 10^4$$

WHEN MULTIPLYING POWERS EXPONENTS ADD - $10^2 \times 10^2 = 10^4$

MULTIPLYING MINUS EXPONENTS
SUBTRACT = $10^5 \times 10^{-2} = 10^{-3}$

WHEN MULTIPLYING SAME EXPONENTS = SUBSTRACT AND KEEP THE SIGN OF LARGER NUMBER

$$10^{-2} \times 10^4 = 10^2 \quad 10^{-7} \times 10^3 = 10^{-4}$$

WHEN DIVIDING BRING UP NUMBER AND CHANGE SIGN.

$$\frac{10 \times 10^5}{5 \times 10^2} = \frac{10 \times 10^3 \times 10^{-2}}{5} =$$

$$\frac{10 \times 10^4}{5} = \frac{10}{5} = 2 \text{ TO } 10^4 \text{ ADD FOUR ZEROS}$$

SO 2,0000

MINUS

$$\frac{6 \times 10^2}{3 \times 10^6} = \frac{6 \times 10^2 \times 10^{-6}}{3} =$$

$$= \frac{6 \times 10^{-4}}{3} = \frac{6}{3} = 2 \quad \begin{array}{l} \text{ADD 4 MINUS} \\ \text{PLACES} \\ \cancel{\text{ZEROS}} \end{array}$$

(0.002)

WHEN $\sqrt{}$ WITH EXPONENT
DIVIDE EXPONENTS BY TWO

$$\sqrt{10^6} = 10^3$$

$$\sqrt{25 \times 10^8} = \sqrt{25} \times 10^4$$

$$2/2 = 1 \quad 5 \times \sqrt{25 \times 10^8} = 5 \times 10^4$$

$$\sqrt{25 \times 10^7} = \sqrt{25 \times 10 \times 10^6} = \\ \cancel{5 \times 5 \times 10^3} = 5 \times 10^4$$

$$= \sqrt{250 \times 10^6} =$$

$$350,000,000 \times 10^{-5} = \\ (35 \times 10^3) \times (5 \times 10^{-5}) = 35 \times 5 \times 10^{-2} =$$

$$175 \times 10^2 = 17500$$

$$\text{MEGA} = 1 \times 10^6$$

$$\text{KILO} = 1 \times 10^3$$

$$\text{MILLI} = 1 \times 10^{-3}$$

$$\text{MICRO} = 1 \times 10^{-6}$$

$$\text{MICROMICRO} = 1 \times 10^{-12}$$

$$X_L = 2\pi f L = 6.28 \times (5 \times 10^6) \times$$

$$F = 5 \text{ MHz} \quad \times (5 \times 10^3)$$

$$L = 8 \text{ mH} \quad 5 \times 80 = 40 \times 6.28 = 251.2 \Omega$$

$$251.2 \times 10^{+3} = \underline{\underline{251.2 \Omega}}$$

DIELECTRIC CONSTANT "K"

DIELECTRIC CONSTANT IS A RATIO
GIVEN TO THE DIELECTRIC BISSED
BETWEEN AIR WHICH IS "1"
AIR - 1 = GLASS & TO 1 BETTER
GLASS & - MICA ???

A CAPACITOR IS IN AN OPEN CIR-
CUIT TO D.C. AND CLOSE TO A.C.
WORKING VOLTAGE IS THE SAME
VOLTAGE WHICH THE CAPACITOR
WILL OPERATE.

PHASE SHIFT

IN A CAPACITANCE CIRCUIT
CURRENT LEADS THE VOLTAGE BY
90° - CURRENT FLOW THE MAXI-
MUM INSTANTANEOUSLY.

CAPACITIVE REACTANCE

IS OPPOSITION TO CURRENT COU-
PLED BY CAPACITANCE SYMBOL
"Xc" UNIT "Ω" - FORMULAT.

$$X_c = \frac{1}{2\pi f c} = \frac{1}{6.28 f c} = \frac{0.159}{f c}$$

INCREASE FOR C. REACTANCE DE-
CREASES - CURRENT INCREASES

~~SERIES R-C CIRCUITS~~

CAPACITANCE - RESISTANCE -
IMPEDANCE → REACTANCE

THE IMPEDANCE OF AN R-C CIRCUIT IS THE SQUARE ROOT OF THE VECTORIAL SUM OF THE SQUARES OF RESISTANCE AND REACTANCE.

$$Z = \sqrt{R^2 + X_C^2}$$

IN SERIES R-C CIRCUITS

THE CURRENT IS ALLOVER THE SAME IN RESISTANCE IN PHASE WITH E - IN ~~E-XC~~ 90° OUT OF PHASE WITH E

$$E_T = \sqrt{E_C^2 + E_R^2} \quad Z = \sqrt{R^2 + X_C^2}$$

IN PARALLEL CIRCUITS THE CURRENT IS 90° OUT OF PHASE IN THE R AND $X_C = I_T = \sqrt{I_R^2 + I_C^2}$

$$Z = \frac{E}{I_T} \text{ OR } Z = \frac{R \cdot X_C}{\sqrt{R^2 + X_C^2}}$$

CURRENT MORE THAN IN EITHER IMPEDANCE IS LESS

CAPACITORS IN SERIES

FIND PARALLEL - $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

TOTAL CAPACITANCE IN

SERIES $\Rightarrow \frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$

THAN RESISTORS IN PARALLEL

$$C_T = \frac{C_1 \times C_2}{C_1 + C_2}$$

IN PARALLEL IS SAME AS
RESISTANCE IN SERIES

$$C_T = C_1 + C_2 + C_3$$

L-C-R CIRCUITS SERIES

IN SERIES L-C-R CIRCUITS TIME

VOLTAGES ACROSS "L" AND "C"

ARE 180° OUT OF PHASE

"I" IS CONSTANT -

VECTORS:

$$E_R = \sqrt{R^2 + (E_L - E_C)^2}$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

THE VOLTAGE ACROSS A SINGLE REACTIVE ELEMENT CAN HAVE A GREATER EFFECTIVE VALUE THAN THE E_R .

$$E_L = I \cdot X_L - E_C = I \cdot X_C$$

IF THE CIRCUIT ~~IS~~ X_L IS GREATER THAN X_C IT IS INDUCTIVE.

IF X_C IS GREATER IS CAPACITIVE
IF $X_L = X_C$ IT IS IN RESONANCE AND VOLTAGE AND CURRENT IN

PHASE AND $Z = R + E_C = E_L$

AND "I" IS AT MAXIMUM - THE "E" DROPS IN THE REACTIVE ELEMENTS ARE MAXIMUM AND SO CAN BE GREATER THAN " E_R "

FREQUENCY IN A RESONANT CIRCUIT

$$f = \frac{1}{2\pi\sqrt{LC}}$$

AT ~~FOR~~ IN RESONANCE MAXIMUM IMPEDANCE - ON EITHER SIDE OF RESONANCE "I" IS LOW AND Z IS HIGH

$X_C \ll X_L$ - CAPACITIVE

$X_L \ll X_C$ - INDUCTIVE

R - RESISTIVE

SERIES TUNED CIR

FREQUENCY IN RESONANCE

DEPENDS ON L AND C
ALL OTHER FACTORS ARE
CONSTANT.

IF SERIES TUNED CIR IS
ONE IN WHICH THE VOLTAGE
AC IS ORIGINATED WITHIN IT
SELF.

CHARACTERISTICS:

1. I IS EQUAL IN ALL PORTS

$$2. E_{L2} = \sqrt{E_{L1}^2 + (E_C - E_R)^2}$$

3. E_L LEADS I BY 90°

4. E_C LAGS I BY 90°

5. E_C AND E_L ARE 180° OUT

$$E_C = E_L; X_C = X_L; X = 0$$

Z = R AT RESONANCE OR
TUNED L & C MUST BE SAME

AT RESONANCE Z MAXIMUM
Z MINIMUM.

IF F_2 INCREASES AT RESO
NANCE X_L INCREASE X_C DECRE
SES SAME RATIO

NOT A RESONANCE
IF F_R INCREASES X_L
INCREASES X_C DECRE.
 F_R DECR. X_L DECR. X_C INC.
 F_R - IN EITHER SIDE OF
RESONANCE \Rightarrow GREATER IN
IT LONGER.

RESONANT F_R .

"C" INC. F_R DEC. X_C DEC.
"C" DEC F_R INC X_C INC
"L" DEC - F_R INC. X_L
"L" INC - F_R DEC. X_L

SO IF L OR C INC. F_R DEC
AND F L OR DEC - F_R INC
RESONANCE CURVE

SENSITIVITY IS THE DEGREE OF
RESPOND THAT A TUNED CKT
HAS FOR A WEAK SIGNAL. OR
THE RESPOND CURVE HOW
HIGH DEPENDS IN I
SELECTIVITY IS THE ABILITY
TO SELECT ONE F_R AND REJECT
ALL OTHERS. THE WIDTH OF
THE SLOPE DETERMINES THE
SELECTIVITY. THE SHIEST

THE STOPE THE MORE SELECTIVITY:

THE RESPONSE CURVE DEPENDS ON RESISTANCE. THE MORE 'R' THE LITTLE IS THE LOWEST THE CURVE

"Q" OF A SERIES CIRCUIT IS THE QUALITY OF A TUNED CIRCUIT OR THE MEASURE OF "E" GAIN OR THE RATIO BETWEEN E_o AND E_L OF LC.

$$"Q" = \frac{E_o}{E} = \frac{X_L}{R}$$

Q IS THE MEASURE OF SELECTIVITY, THE HIGHER THE "Q" THE HIGHER THE Q.

BANDWIDTH

IS THE AMOUNT OF ~~CHANGES~~ CYCLES

ABOUT AND BELOW RESONANT Freq. THAT CAN BE RECEIVED

$$B_{WW} = \frac{F_2 - F_1}{Q} - \text{V.E BY IT TUNED CIRCUIT}$$

PARALLEL TUNED CIRCUITS

PARALLEL RESONANCE CIRCUIT
IS ONE IN WHICH THE SIGNAL SOURCE IS ORIGINATED OUTSIDE
THE CIRCUIT. A TANK CIRCUIT IS
IS USED AS ATTENDEE FOR
SERIES OR PARALLEL CIRCUITS
TUNED, AND IT MEANS THE
ABILITY TO STORE ENERGY.

A PARALLEL CIRCUIT IS
IN RESONANCE IF
 $X_C = X_L$

IN PARALLEL E_{12} IS EQUAL
IN ALL BRANCHES AND
 I_C LEADS E BY 90°
 I_L LAGS E BY 90°
 I_C AND I_L 180° OUT OF PHASE

$$I_C = \frac{E}{X_C}; \quad I_L = \frac{E}{X_L}$$

$$I_X = \left(\frac{I_C - I_L}{I_C + I_L} \right) \quad I_T = \sqrt{I_R^2 + I_X^2}$$

I_L AND I_C CAN BE GREATER
THAN I_T $Z = \frac{E}{I_T}$

THE CIRCUIT WILL ACCORDING
TO THE CURRENT FLOW

IN THE BRANCHES THUS IF
 X_L IS GREATER AND X_C IS
LOWER AND THE CAPACITI-
VE, AND THE ~~OPPOSITIVE~~ IF
IT HAS INDUCTIVE.

IN THE RESONANT CIRCUIT X_C
AND X_L ARE EQUAL AND
 I_C AND I_L EQUAL SO THE
CIRCUIT IS RESISTIVE

THE RESONANT FREQUENCY
FINDS $F_0 = \frac{1}{\sqrt{L \cdot C}}$

SOMETIMES CALLED NATURAL
FREQUENCY F_0

AT RESONANCE F_0 , T_0 AND I_{L0}
ARE EACH OTHER SO I_L IS "0"
THE LINE CURRENT IS AT
MINIMUM. THE TANK CURRENT IS
MAXIMUM AND THE IMPEDANCE
IS MAXIMUM.

IN EITHER SIDE OF RESONAN-
CE THE I_L IS GREATER, THE
 Z IS LOWER. AT HIGH FR.
 X_L HIGH AND X_C LOW; AT
LOW FR. X_C GREATER X_L LOWER
AND Z LOW. THE I_{TANK}
IS CALLED SWELLING I
AND IT MOVES FROM 2 TO 1
AND BACK CONSTANTLY.

ITANK MAXIMUM TORSION T_{max}
 MINIMUM - 2 MAXIMUM CARS
 ACTS RESISTIVE. HIGH POINT
TRANSFER.

PARALLEL Ckt

$$\text{RESONANCE } F_r = \frac{159}{\sqrt{L \cdot C}} \leq 0$$

$$\frac{159}{\sqrt{4 \times 10^{-3} \times 4 \times 10^{-6}}} = 398.000 \text{ CPS}$$

$$I_L =$$

$$X_L = 6.28FL = 6.28 \times 398 \times 10^3 \times 4 \times 10^{-3}$$

$$X_L = 10,000 \Omega$$

$$I_L = \frac{E}{X_L} = \frac{300}{10,000} = .03 A$$

$$I_C = 200 \text{ Kc}$$

$$X_C = 6.28 \times 2 \times 10^5 \times 4 \times 10^{-3} = 5024 \Omega$$

$$I_C = \frac{300}{5024} = .059 A$$

$$X_C = \frac{159}{F_C} = \frac{159}{2 \times 10^5 \times 4 \times 10^{-3}} = 19,900 \Omega$$

Ckt Inductive

$$I_{L+I_C} = I_C + I_L = .059 + .03 = .092 A$$

$$Z = \frac{X_L + X_C}{X_C - X_L} = \frac{5024 \times 19.980}{14900 - 5024} = 6.72 \Omega$$

NOW THEN

$$I_c = \frac{E}{\sqrt{R_L^2 + X_L^2}} \text{ OR } \frac{E}{Z}$$

$$I_c = \frac{E}{X_C} \quad I_T = I_L - I_c$$

DETERMINING

TO ACHIEVE FREQUENCY WHEN
INCOMING F. INCIDENCE "K"

DECREASE X_C ; X_L CONSTANT
HIGHER THAN INCOMING ~~HIGHER~~
~~IS~~ DECREASE "K" X_C MORE.
PRIME EFFECT OF PRIMING
TUNING CKT IS TO GET MAXIMUM
IMPEDANCE P.M. MAXIMUM
IN THE TANK.

"Q" OF THE PARALLEL CKT
IS THE RATIO OF I_T IN THE
TANK TO THE I IN THE LINE

$$Q = \frac{I_T}{I} = \frac{X_L}{R} = \frac{Z \cdot R}{X_C} = \frac{X_L \cdot Z}{X_C}$$

THE MAGNITUDE OF "R" IN THE
LORC DETERMINES THE QUALI-
TY OF OR "Q" OF A RESONATOR

$I_c = Q \cdot I; Z = Q \cdot X_L \text{ OR } X_C$
AT RESONANCE THE Z OF
THE LINE IS RESISTIVE

Q - RESONANCE CURVE AND
BW RESONANCE CURVE IS THE
PROFILE CURVE OF MAXIMUM
CURRENT AND Z

SELECTIVITY THE WIDER BANDWIDTH
SENSITIVITY THE HIGH. IF R
INCREASES ' β ' DECREASES

BAND ~~WIDENED~~ WIDTH IS
THE TOTAL NO. OF CYCLES OBTAINED
AND READING PER THOUSAND CAN BE
RECALLED AS BY A TUNED CIRCUIT

BANDWIDTH IS DIRECTLY PROPORTIONAL TO Q

PRINCIPLES OF RADIO TRANS.

BASIC MEDIUM OF ALL COMMUNICATIONS IS THE CARRIER.
TYPES: AMPL-D.C.- R.F.C.; IF
CARRIER FREQUENCY IS A CONTINUOUS WAVE (C.W) - A CARRIER WAVE
IS A (C.W) MODULATED WHICH IS A LOW F. SUPERIMPOSED
IN A HIGH F. (INTERFERED)
C.W. R.F AND R.E IS THE SAME.

RADIO TRANSMITTER

IS COMPOSE OF 6 STAGES.

- Oscillator - Buffer Amplifier
- R.F Amplifier - Speech R.F.A.
- Modulator - Power Supply
- Oscillator Generators (2)
- R.F Signals. Buffer Amp.
- Separates the oscillator signal from the antenna load or feedback. R.F AMP. AMPLIFIES THE WEAK R.F FROM THE OSCILLATOR. MIKE CHANGES THE SOUND INTO ELECTRICAL ENERGY. SPEECH R.F.A. AMPLIFIES THE SPEECH. MODULATOR TO ~~VARY~~ VARY THE R.F. TO R.F RATE. POWER SUPPLY SUPPLYS POWER TO ALL STAGES

TRANSMITTING ANTENNA CHANGES R.F. TO RADIO WAVE.
R.F. SAME AMPLITUDE

R.F. MODULATED OR R.F. SUPERIMPOSED

TRANS:

RADIO RECEIVERS - (TUNED R.F., AND (SUPERHETERODYNE))

TUNED R.F.: RECEIVING ANTENNA

R.F. AMP. ~ DEFECTOR - R.F. AMP.
POWER SUPPLY

ANTENNA INTERCEPTS R.F. SIGNAL

DEFECTOR - SEPARATES R.F. FROM
R.F. GETS RID OF R.F. - R.F. AMPLIFIERS WHICH R.F. COMING FROM
THE DEFECTOR - POWER SUPPLY.
SUPPLY'S POWER TO ALL STAGES, R.F.
OR D.C.

TUNED R.F.

SUPERHETERODYNE

R.F. AMP. - MIXER STAGE OR FIRST DETECTOR - LOCAL OSCILLATOR - INTERMEDIATE F. AMP OF SECOND DETECTOR - R.F. AMP. - POWER SUPPLY. R.F. AMP. AMPLIFIES THE INCOMING R.F. - MIXER MIXES THE R.F. AND OSCILLATOR F. BY CIRCUIT BUT WITH I.F. LOCAL OSCILLATOR GENERATES A DESIRED F. - I.F. AMP. AMPLIFIES THE I.F. - SECOND DETECTOR, SEPARATES THE I.F. FROM I.F. - GETS RID OF I.F. - R.F. AMP. AMPLIFIES THE R.F. - POWER SUPPLY

WAVE LENGTH AND F.

THE VELOCITY OF F. IS CONSTANT
300,000,000 METERS/SEC

ONE WAVE LENGTH IS THE DISTANCE IN SPACES BETWEEN A POINT ON ONE WAVE AND THE SAME POINT OF THE NEXT WAVE. SYMBOL

(λ) - UNIT METER

$$\lambda = \frac{\text{VEL}}{F} \quad F = \frac{\text{VEL}}{\lambda}$$

BUT IF F. IS THE ONLY THING THAT THE EAR ~~SENSES~~ NORMALLY RESPONDS
R.F. 20 - 20,000 CY.

CONVERSATION 200 TO 2500 CY.

2000 IS THE R.F. TO WHICH THE EAR BEST RESPONDS

R.F. 20,000 CY TO 300,000 HZ.

8 BANDS

1 - VERY LOW F. 20 - 30 Hz.

2 - LOW F. 30 - 300 Hz. SHIDOSH

3 - MEDIUM F. 300 - 3,000 Hz. BIHARD CITS

4 - HIGH F. 3 Mc - 30 Mc

5 - VERY HIGH F - 30 Mc - 300 Mc

6 - ULTRA HIGH F. 300 Mc - 3,000 Mc

7 - SUPER HIGH F 3000 E - 30,000 Hz

8 - EXTREMELY HIGH F 30,000 Hz - 300,000 Hz

19.12.0. COMPOUNDS

RESISTORS TO LIMIT 1 OR
OPEN F. -(BUDS) SHORTED OR
OPEN DUE OVERHEATING OR

BURNED-(D) DISCONNECT RISER
AT ONE END AND TEST WITH
CHMMETER.

INDUCTOR ARE USED AS FILTERS
TO BLOCK OUT F. - SMOOTH OUT THE
RIPPLE OF CURRENT - SHORTED
OR OPEN DUE TO CORROSION
AND EXCISEIVE CURRENT
APPLICATORS (BY-FIRES TUNED CAT)
FIR OR VARIABLE - PLATE AND
(COUPLING INTERNAL TO STAGES)
ELECTRICAL OPEN CIRCUITS
HUM - SHORTED IT ALLOWS I TO
PASS. TRANSFORMER - POWER -
(A.F) (R.F) (I.F) POW-GOLY. IRON
CORE - (R.F) TO COUPLE AUDIO AND
POWER STAGES. IRON CORE-THERM
L.F NEARLY SAME.

R-F XMER. - RF AMPLIFIERS ZIN
C-PAT ONLY ONE F.

I-F XMER 2 STAGES TYPE OF

R-F XMR → VACUUM TUBES
DIODE PASS IN ONE DIRECTION
ONLY - A TWO ELEMENT TUBE
USE IN RECTIFIER AND POWER
SUPPLY.

TRIODES - TETRODE - PENTODE
TUBES CHECK TUBES FIRST
90% AT TROUBLE

VACUUM TUBES

4 TYPES OF ELECTRON EMISSION

THERMIONIC EMISSION (HEAT)

SECONDARY EMISSION CAUSED BY ELECTRON BOMBARDMENT OF THE PLATE.

PHOTOELECTRIC EMISSION (LIGHT)

EMISSION CAUSED BY GASS ELECTRON BOMBARDMENT

GAS EMISSION - LARGER AREA OF Emitter more heat

THREE TYPES OF EMITTERS

DIRECTLY OR INDIRECTLY HEATED. FILAMENTS TUNGSTEN IN DIRECTLY HEATED TUBE COATED WITH CATHODER (OXIDE) THORIATED CATHODE - OXIDE MORE EFFICIENT REQUIRES LESS HEAT. RED COLOR.

<u>DIRECTLY HEATED CATHODE</u>	<u>INDIRECTLY HEATED CATHODE</u>
--	--

HEATING

DIODES - TWO ELEMENT TUBE CATHODE AND PLATE (ANODE). CATHODE IS POSITIVE. PLATE BECOMES NEGATIVE. ELECTRONS FLOW FROM CATHODE TO PLATE.

CRILLED PLATE CURRENT (I_p) - PLATE VOLTAGE IS THE
 POTENTIAL DIFFERENCE BETWEEN
 CATHODE AND PLATE. GETTER
 IS MAGNESIUM OR IRON THAT IS
 BURNED INSIDE THE TUBE TO GET
 MINUTE AMOUNTS OF OXYGEN AND GET
 COMPLETE VACUUM. SPACE CHARGE
 IS A CLOUD OF ELECTRONS THAT
 DON'T REACH THE PLATE BECAUSE
 BEING EMITTED BY THE CATHODE.
 E. POINT OF SATURATION
 IS THE POINT OF MAXIMUM
 ELECTRON FLOW IN TUBE.

VINCEL DIODE CIRCUIT

SATURATION CURVE (PLATE)

DIODE RECT. DIODE USED TO CONVERT
A.C. TO P.D.C. THIS IS BECAUSE
FOR THE USE OF OTHER TUBE

HALF WAVE RECT. A.C. INPUT VOLTAGE - CURRENT IN TUBE CAN
ONE WAY ONLY - P.D.C. OUTPUT

$$+\text{VVA}_+ = \text{AAN}'$$

HALF WAVE RECT.

IN NEGATIVE SIDE OF CYCLE NO CURRENT FLOW TO PLATE ACCORDINGLY
TO INCREASE I_p MORE, MORE ENERGY
IS REQUIRED BY PLATE. P.D.
INVERSE VOLTAGE IS THE MAXIMUM
NEGATIVE VOLTAGE THON CAN BE
APPLIED TO THE PLATE WITHOUT
BREAKDOWN IN THE NEGATIVE SIDE
HALF WAVE DIODE RECT. OF THE CYCLE

DUO DIODE OR FULL WAVE
RECTIFIER, A DIODE WITH
TWO PLATES.

FULL WAVE RECTIFIER

DUO-DIODE

AMPLIFYING TUBE

THE TRIODE

CONTROL GRID CONTROLS THE CURRENT FLOW IN TUBE. GASSY WINDINGS HIGHER AMPLIFICATION. NORMALLY LOW AMPLIFICATION. GRID NEGATIVE, LOW CURRENT IN PLATE. GRID POSITIVE, HIGH I_P.

A.C. SIGNAL APPLIED TO GRID
A.C. VOLTAGE TO CONTROL

BIAS - BIAS IS AN STRAY DC VOLTAGE THAT EXISTS BE
TWEEN GRID AND CATHODE. TOTAL
GRID E (E_G) AC + DC.

CUT OFF POINT IS WHEN
THE NEGATIVE GRID VOLTAGE
IS ENOUGH TO CUT OFF THE
CURRENT FLOW IN THE TUBE

SYMBOLS: E_{BB} - PLATE VOLTAGE
I_P (I_B) PLATE CURRENT - E_G (E_G)
GRID VOLTAGE - I_G (I_G) GRID

CUT OFF POINT

EG - NEGATIVE

Pos. +

EG	-12	-11	-9	75	6	4.5	3	1.5	0	+1.5
IP	0	0	0	1	3	6	9.5	13	17	21
EP	0	0	0	0	0	0	0	0	9	-5

CUT OFF POINT

CURRENT UPRIATIONS

SIGNAL	0	+1.5	-1.5	0
EG	-3	-1.5	-4.5	-3
IP	9.2	13	5.8	9.2
EP	175	175	175	175

PLATE LOAD TO MAKE USE
OF IP UPRIATIONS AND HAD
A VOLTAGE DROP IN THE OUT-
CIR.

SIG	0	+1.5	-1.5	0
EG	-3	-1.5	-4.5	-3
IP	8	10.5	5	8
EP	167	169	170	167
LOAD	8	10.5	5	8
ERL.				

THE PLATE LOAD VOLTAGE IS
190V OUT OF PHASE WITH THE
D.C. SIGNAL

GRAPHS AND CURVES - A PHOTO
WITH REPRESENTATION ON THE
TOP CHARGING UPRIOTS AND THE
RELATIONSHIP

PLATE CURVES - TWO KINDS

STATIC CURVE - NO PLATE LOAD

DYNAMIC CURVE - WITH LOAD

TUBE CONSTANTS

A.C. TUBE RESISTANCE (R_p)

TRANSCONDUCTANCE ($\frac{\Delta I_p}{\Delta E_g}$) (G_m)

AMPLIFICATION FACTOR (μ)

R_p IS THE RESISTANCE BETWEEN THE CATHODE AND PLATE OR

THE RATIO OF CHANGE IN E_p AND I_p WITH E_g CONSTANT.

$$R_p = \frac{\Delta E_p}{\Delta I_p} \quad E_g \text{ constant}$$

(G_m) MUTUAL CONDUCTANCE IS THE ABILITY OF THE GRID VOLTAGE TO CONTROL THE I_p OR

THE RATIO OF CHANGE BETWEEN E_p AND E_g - WITH E_p CONSTANT

$$G_m = \frac{\Delta I_p}{\Delta E_g} \quad E_p \text{ constant}$$

$$(\text{MHO}) \text{ MILLI-}$$

MU - IS THE RATIO OF CHANGE
IN EP AND EG TO PRODUCE THE
SAME CHANGE IN Ip

$$\mu = \frac{\Delta E_P}{\Delta E_G} \text{ IMPEDANCE OR } \\ \Delta I_P \text{ FACTOR OR } \\ \underline{\text{TUBE RATIO}}$$

BIASES - TWO TYPES

FIXED BIASES AND SEMI BIASES
FIXED BIASES IS SUPPLY BY
OUTSIDE VOLTAGE. (C)BATT C
RYO SEMI BIASES TWO KINDS.
BIASES PRODUCED BY CATHODE ITSELF
CATHODE ~~IS~~ RESISTOR - GRID
LEAK CATHODE RESISTOR AND BIASES
PRODUCED BY Ip - VARIES SO
USE CAPACITOR. GRID LEAK
PRODUCTION BY Ip.

DISADVANTAGE OF TRIODE
VERY LOW AMPLIFICATION

FACTOR 4 TO 75.

CAPACITANCE BETWEEN GRID
AND PLATE - INTERELECTION
CAPACITANCE. COUSING FEED
BACK AND DISTORTION
RELIVED BY NEUTRALIZING CAP.

TETRODES

TO CUT OFF INTERELECTION AND
REVERSE THE SCREEN GRID
AT HIGH FREQUENCIES. SCREEN
GRID VOLTAGE IS POSITIVE
IT HELPS THE PLATE TO EJECT
SECONDARY ELECTRONS. SO SCREEN VOLTAGE
IS LESS THAN RP.

WITH HIGH SPEED ELECTRONS
HITTING THE PLATE PRODUCES
SECONDARY EMISSION

PENTODES

TO FAMINITY SECONDARY EMISSION THE SUPPRESSOR GRID IS PUT ON AND IT IS MADE NEGATIVE TO SEND THE ELECTRONS BACK TO THE FIRST SUPPRESSOR GRID.

THE BEAM POWER TUBE IS USED FOR POWER SUPPLY BECAUSE HIGH POWER ABILITY. IT USES REFLECTOR PLATE VARIABLE MU TUBES ARE USED TO CONTROL THE INPUT SIGNAL BY CONTROLLING THE GRID - USED WHEN HIGH BIAS IS NEEDED - CONTROL GRID WIDING ARE CLOSER AT THE ENDS AND SEPARATE AT THE CENTER.

POWER SUPPLIES

ITEM OF ELECTRICAL EQUIPMENT

- 1. TRANSFORMERS (A) - HIGH VOLTRAGES TO THE PARTS. (B) HIGH CURRENTS. (C) D.C. OR D.C.
- 2. RECTIFIERS (A) low voltages (B) low currents. (C) A.C. OR D.C. FILAMENT LOAD 200 - low "I" VOLTAGE - DIODE (B+) HIGH VOLTAGE - SCREWDOWN (B+) VOLTAGE
- 3. GRID BIAS (C) NEGATIVE D.C. HIGH OR LOW

KINDS OF PS. BATTERY -
AC POWER SUPPLY - TRANSFORMER
RECTIFIER - ELECTROSTATIC AND
SYSTEMS.

CHARTERS SUPPLY PURE D.C.
TEST METER - BUCHY - REPAIR
EQUIPMENT - VOLTAGE AND CURRENT
LIMITED. PS. COMPONENTS
C - POWER TRANSFORMER - REC-
TIFIER - FILTER CIR - BLEEDER
RESISTOR - VOLTAGE DIVIDER
TRANSFORMER TO INCREASE OR
DECREASE B.C. INPUT - RECTIFIER
TO RECTIFY AC. TO P.D.C. FILTER
CIR TO SMOOTH OUT THE P.D.C.
TO ALMOST PURE D.C. BLEEDER
HIGH RESISTANCE ACROSS
PS TO DISCHARGE THE FILTER

WHEN THE PS IS TURNED OFF AND USED AS A VOLTAGE DIVIDER TO TAP OFF VARIOUS VOLTAGES. POTS IS A LIGHT LOAD FOR THE PS WHEN IS TURNED ON. VOLTAGE REGULATOR TO KEEP THE OUTPUT PS A CONSTANT VALUE.

RECTIFIER

LOW VOLTAGE POWER SUPPLY

HIGH VOLTAGE PS.

RECTIFIERS

VACUUM TUBES ARE METALIC
HALF WAVE AND FULL WAVE
HALF LOW EFFICIENCY NEED
A LITTLE FILTERING - FULL GOOD
LESS FILTERING

VACUUM TUBES AND METALLIC RECTIFIERS.

VACUUM TUBES - RUGGED STAND

AGAINST VARIATIONS OF CURRENT
HIGH VACUUM TUBES NOT VERY
EFFICIENT - USED LOW POWER
TRANSMITTER AND RECEIVER
HIGH INTERNAL VOLTAGE DROP
HIGH MAXIMUM ANODE BURN
VOLTAGE. GASEOUS TUBES HAVE
VERY VAPOR DIODE WHICH HAS
COLD VAPOR - WILL NOT STAND
SURGES OF CURRENT - LOW INVER
SE PEAK VOLTAGE AND IONIZA
TION - REDUCE SPARK OVERF.

ELECTRON EMISSION FROM GASS
ATOMS AND PRODUCES HIGH ELIC
TRODS RESULT LARGE IP - LOW
VOLTAGE DROP 10-15 VOLTS

USED ON HIGH VOLTAGE CIRCUITS
TO DEAL WITH LARGE QUANTITY OF I
METALLIC IMPURITIES TWO DISI
NODISH SURFACES HAVING
PROPERTY OF PASSING CURRENT
IN ONE ONLY. SELENIUM-COP
PER OXIDE. ELECTRODE COATED
WITH COPPER OXIDE IN ONE SIDE
SELENIUM IRON OR ALUMINUM
DISK SELENIUM COATED IN ONE SI
DE - SELENIUM POOR CONDUCTOR

SELENIUM RECTIFIER DIODE
COMBINANTS; FRONT ELECTRODE

DE - BARRIER LAYER - SELINIUM

OR POOR CONDUCTOR - BACK ELECTRODE

FRONT - FRONT ELECTRODE

FRONT ELECTRODE - GORDON CONDUCTOR

 BACK ELECTRODE - NO FREE ELECTRONS

FRONT ELECTRODE

BARRIER POOR CONDUCTOR CURRENT FROM

LAYER CONDUCTOR ONE WAY - VERY LITTLE OTHER WAY. - LOW DIODA VOLTAGE

LOW BREAKDOWN VOLTAGE
LOW MELTING POINT - NO GOOD

AT HIGH TEMPERATURE - ADD DIODA UNDERCUTS IT IS MORE AND

THICK (BREAKDOWN) DIODA - MORE

MORE I → IN DIODA

SYMBOL

FULL WAVE

RECTIFICATION

RECTIFICATION

FILTER CIRCUIT

LOW PASS HIGH PASS - BAND

PASS - BAND REJECT - PARTS -

CAPACITORS - INDUCTORS (CHOKE),
RESISTORS - LOW PASS, PASS

LOW F. R.C. D.C. REJECTS HIGH F.
PI-TYPE - HIGH PASS HIGH F.

~~REJECTS ALL OTHERS ABOVE~~
BAND PASS FILTERS ONE BAND
IF REJECTS ALL OTHERS ABOVE
OR BELOW RESONANCE - REJECT
BAND FILTERS OUT BAND AND
LEAVES REST OF BANDS

CAPACITOR FILTER TYPE

INDUCTIVE FILTER TYPE

BAND PASS

BAND REJECT

SERIES OR PARALLEL FUNCTION
SHOULD INPUT FILTER IN PS
VERY GOOD VOLTAGE REGULA-
TION - LOW DISS INPUTS WILL
SHOOT OUT POWER VIBRATIONS
INPUT

BLENDERS AND VOLTAGE DIVIDERS
 RESISTOR OR SERIES RESISTOR
 DIVIDES OUTPUT OF FB AND
 STORED AT VARIOUS POINTS.
 ACTS AS A BUFFER FOR STABILITY
 ALSO AS A LOAD FOR FB.
 THIS LOAD IS ABOUT 10 OR
 15 PERCENT OF TOTAL CURRENT
 POWER RATING OF FB.
 WHICH IS IMPORTANT, WHETHER OR NOT THAT
 THE RESISTOR WILL BURN UP

VOLTAGE DIVIDER

THE VOLTAGE DIVIDER CAN BE
 USED TO GET NEGATIVE VOLTAGE
 WITH RESPECT TO GROUND
 (B_-) WHEN A POINT OTHER THAN
~~ground~~^{B-} IS USED AS GROUND
 USING THIS LAW WE CAN
 FIND ALL THE VOLTAGES IN THE
 VOLTAGE DIVIDER REGARDLESS
 OF THE DIRECTION FROM IT
 I. FROM - TO +

VOLTAGE REGULATOR
OUTPUT VOLTAGES CHANGES
LOAD CHANGES.

1) V.R. IS AN ELECTRONIC DEVICE ACROSS THE INPUT OF THE PS TO MAINTAINING A CONSTANT OUTPUT VOLTAGE - PHOTOTUBE AND GLOW TUBE - V.R.
PHOTOTUBE THIS DEVICE IS A HOT IRON WIRE RESISTANCE IS SPACED IN A ELECTRONIC TUBE WHICH CONTAINS HELIUM OR HYDROGEN GAS. FOR RIZING CURRENT HIGH POSITIVE TEMPERATURE EFFICIENT - COULD BE LIT WHERE IONS OF RISE WHICH WITH SMALL AMOUNTS OF CURRENT.

~~SYMBOL~~ SYMBOL -
GLOW TUBE TWO ELEMENTS TWO CATHODE FILLED WITH NEON OR ARGON. IS A FIX MULTIVIBRATOR - IT REGULATES BY ~~ADJUST~~ VARIATION THE IONIZATION AND IMPURITY. IT MUST HAVE A RESISTOR. DESIGNATION - VR. 150-30

SYMBOL

VIBRATOR POWER SUPPLY

SYNCHRONOUS AND NON-SYNCHRONOUS

VIBRATOR CHANGES LOW D.C.
TO HIGH D.C. IS A MECHANICAL
RELAY DEVICE WHICH IS SWITCH WITH
CONTACTS AND CLESES THE CIRCUIT
AT HIGH FREQUENCY DUE TO AN
ELECTROMAGNET - IS IT IN TURN
CONNECTED TO THE PRIMARY OF
THE TRANSFORMER

SYNCHRONOUS IS A SPECIAL REQUIREMENT -
NON-SYNCHRONOUS NEEDS
A SEPARATE RECTIFIER

A HAMPSHIRE FILTER IS CONNECTED
IN THE PRIMARY TO STOP R.F.
FROM THE VIBRATOR AND BUFFER
CAPACITOR ACROSS THE SECONDARY
TO ABSORB VOLTAGE
CHANGES - FREQUENCY

CHANGES FROM 115 TO 220 CYCLES D.S. VIBRATOR MORE
EFFICIENT THAN DYNAMOTOR
COMPACT DESIGN. AMPERE IS
CURRENT WHERE DC POINTS
OF CENTER. SYNCHRONOUS
GIVES MORE GET OF CENTER

WAVE
FORM

NON SYNCHRONOUS

LOW D.C. TO HIGH D.C.

SYNCHRONOUS

LOW D.C.

TO D.C.

LOW

HIGH

STEPS FOR LESS VOLTAGE
TO INVERTOR IN DC MOTOR

1. T.F.T - INCREASES THE DESIGN
SE GENERATION OF WINDINGS.
IT HAS A DIFFERENT INPUT
IN THE MOTOR TO EXAMINER
R.F FROM BRUSHES AND
PI-FLATER IN OUTPUT FOR SAME
PERSONS. BIG CAPACITORS
AND BIG CHOKES INPUT.

CONSTANT SPEED SHUNT
WINDINGS - LESS THAN 50%
EFFICIENT - MAINTAINANCE -
CHECK FUZE - DIRTY COMMUTA-
TOR - HIGH MICH. PRES OR IF
LARGE SEGMENTS IN COMMU-
TATOR ARE MOTORS

HARMONICS - R.F + I.F.
PURPOSE IS TO INCREASE THE
STRONGEST OF SIGNAL.
R.F. 20 TO 20,000 CPS MOST USED
FIRST 60,000 CPS - T.V. SHOT DOME.
12 MM CPS - 18 F. 20 MC AND 12 MC
SECOND. I.F. 16 MC TO 480 KC
GROUND 455 KC. IN DIODES
SUPERHETRODYNIC. I.F. IS THE
DIFFERENCE BETWEEN THE
R.F AND THE VENDE PUT OUT
BY THE OSCILLATOR.

JUDIE AMPLIFIERS

PROBLEMS OF AMPLIFIER OPERATION

$$R = 10,000 \times 0.010 = 100 \text{ V } E_L$$

$$E_P = 200 - 100 = 100 \text{ V } E_P$$

SIGNAL FROM GRID TO -4 TO -2

PLATE VOLTAGE E_P = GRID MORE NEGATIVE - E_P DECREASES
E_G. E_P INCREASES E_L DIRECTLY.
GRID LESS NEGATIVE - I_P INCREASES.
E_P DECREASES E_L INCREASES
CLASS "A"

CLASS B

EQUIVALENT OUT OF AMP NOT ACTUALLY CAT

$$I_O = \frac{\text{MUXE}}{R_P + R_L}$$

PHASE RELATIONSHIP BETWEEN
OUTPUT SIGNAL AND INPUT

OUTPUT OF TUBE, APPLIED TO T_2 ,
IS 180° OUT OF PHASE WITH INPUT
SIGNAL.

CROSS "A" USED IN MICROPHONE
RECORDING METER. CLASS "A" OPERA-
TES IN THE CENTER OF THE
LINEAR PORTION OF THE LOAD
CURVE. - CURRENT IS PULSE
CURRENT ALL THE TIME. 360° FULL
WAVE. FIDELITY IS THE DEGREE
OF POWERED TO WHICH AN AMPLI-
FIER REPRODUCES THE INPUT SIGNA-
LUS IN THE METER. CLASS "A"
SENSITIVITY IS THE
RATIO OF ONE RMS TO THE
PRODUCED STANDBY ENERGY WITH
SIGNALS. CROSS "A" GOOD SENSITIVITY
NONLINEAR DISTORTION. DISTORTED
OUTPUT SIGNAL DUE TO EXC-
ITIVE BIAS - INSUFFICIENT BIAS -
EXCESSIVE SIGNAL APPLIED.

CHANGES IN VOLTAGE AMPLIFICATION
 ARE DUE TO CHANGES IN LOAD RESISTANCE.
 A.C. INPUT SIGNAL IS USED AS A V.S.
 AC EMMITTER TO PRODUCE VOLTAGE
 VARIATIONS (CAUSED BY THE
 CHANGING IP AND EG) ACROSS
 THE LOAD RESISTOR RL. THE
 RATIO OF THIS VARIATION -
 P.C. OUTPUT VOLTAGE TO A.C.
 INPUT SIGNAL IS THE VOLTAGE
 AMPLIFICATION. GAIN FACTORS
 MU OF THE TUBE, PHASE
 IMPEDANCE (RP) - LOAD RESISTANCE
 (RL) $VA = \frac{E_L}{E_G}$ $E_L = I_P \times R_L$
 $E_G = I_P \times R_E$
 $I_P = \frac{I_E \times E_G}{R_L + R_P} \quad | \quad E_L = \frac{\mu \times E_G}{R_P + R_L} \times R_L$
 $V_{IF} = \frac{\mu \times R_E}{R_L + R_P} \times R_L \quad | \quad V_{IF} = \frac{\mu \times R_L}{R_L + R_P}$

MAXIMUM VOLTAGE AMPLIFICATION
 USES 12 TIMES LOAD RESISTANCE
 OF 3 TO 10 TIMES THE
 UNI-PHASE RESISTANCE

$$RL = 3 \text{ to } 10 \times RP$$

MV	RP	RL	VA
20	1000	1000	10
20	10000	10000	18

TRIODE HAS A "MUCH" OF FREQUENCY
100% EXCELLENT FIDELITY.

PENTODE HAS A "ITTLE" OF LOWER
INCREASED DISTORTION

TYPES OF COUPLING

FREQUENCY RESPONSE - VOICE BIAS
LOW FREQUENCY 80 TO 350 CPS
SOPRANO 250 - 1150 CPS - INSTRUMENTS - PICCOLO - 612 - 4600 CPS
PIANO 40 - 8000 CPS HARMONICA
UP TO 10,000 CPS.

TYPES OF

COUPLING IS A DEVICE USED TO
PASS THE SIGNAL FROM ONE STAGE
TO THE OTHER. KINDS OF COUPLING
RESISTANCE-CAPACITANCE (R.C)
IMPEDANCE COUPLING - TRANSFORMER
MICRO COUPLING R.C COUPLING

R_L - ACTS AS A LOAD FOR T_1

R_G - GRID RETURN RESISTOR - PREVENTS
FLOATING GRID. CONECTS GRID TO
CATHODE. R_L 10 TIMES AS
GREAT AS R_P - R_G VERY
LARGE

LOW COUPLING RATIO → HIGH FREQUENCY OVER BANDWIDTH
R.C COUPLING USES HIGH R +
 HIGH FREQUENCY OVER BANDWIDTH
 SO RT CAN SPEC. HIGH AT FRE-
 QUENCIES. RT MODERATELY
 HIGH IMPEDANCE IN PARALLEL
 VALUES OF R, AND C CONTROL THE
 FREQUENCY RESPONSE.

INDEPENDENCE COUPLING → IS ALMOST
 THE SAME BUT WITH R.C. R-
 LARGE PRODUCT WITH EACH COU-
 PLING POINT IS PUT IN PARALLEL TO THE
 LOAD RESISTOR. GREATER AMPLI-
 TUDINAL GRAD. POOR FREQUEN-
 CY RESPONSE. NARROW BAND.

SOMETIMES USED
FREQUENCY RESPONSE IS THE RE-
 SONSE OF PN AMPL. ITS GRAD. OVER
 AT A PARTICULAR F. OR THE

MANUFACTURED IN MEDIUM FREQUENCY
VALUES OVER 20000 BANDS OF 1000

FREQ. FILTER

TRANSFORMED CONTROL.

PRIMARY OF TRANS. 120FS 125 LOOPS
FOR PLATE. CAN BE USED FOR
IMPEDANCE MATCHING. LF FREQ OF
F. RANGE LIMITED

TRANSFORMER COUPLING LIMITED RANGE

ZONE CONTROL - THE LATER
RESPONSE RANGE DEPENDS ON TONE
TONE CONTROL TO GND TO COMPENSATE
FOR "F" RESPONSE IN IMPT HIGH F.
TONE CONTROL TO GROUND
OUT HIGH & F₀ COMPONENTS
PRODUCING RESPONSE F₀
BY CHANGING VALUES OF
RESISTANCE OR CAPACITANCE.

VARIABLE
BIAS TONE
TONE CONTROL

VARIABLE
RESISTOR
TONE CONTROL

VOLUME CONTROL CONTROLLING
THE OUTPUT OF THE TUBE BY
CONTROLLING THE GRID WEAKENING

GRID
CONTROL
VOLUME.

BIAS - SOURCE AND NEGATIVE

(1) CONTROL PLATE CURRENT
DETERMINING THE AMPLIFIER OPERATING POINT. IN CLASS "A" BIAS IN CENTER OF LINEAR PORTION OF CURVE. I_p FLOWS 360° . IN CLASS "B" NEAR CUT-OFF POINTS I_p FLOWS 180° .

CLASS AB₁ ANY WHERE BETWEEN "A" AND "B" CURRENT FROM "A"
CLASS AB₂, SAME AS "AB₁" EXCEPT CURRENT FLOWS IN GRID

LARGE VACUUM DECREASES THE FOLDING GRID VALUE. CHARACTERISTICS

THREE CURRENTS EXIST IN THE TUBE.

90° TO 120° ANGLE.

TYPES OF DIODES

FULLY-BIASED

POWER SUPPLY

SELF BIASED

GRID LEAK - CATHODE RESISTOR

CHARACTERISTICS OF SOUND

FREQUENCY = $\frac{PI \times C}{L}$ = $3.14 \times 10^8 \text{ cm}^{-1} \text{ sec}^{-1}$

PURE TONE IS A SINUSOIDAL WAVE

HARMONICS ARE OVERTONES. THEY ARE MULTIPLES OF THE FUNDAMENTAL FREQUENCY.

THEIR FREQUENCIES ARE SMALL, & DUE TO THIS

THE HARMONICS PRODUCE THE QUALITY OF TIMBRE, A LOWNESS OR

INTENSITY.

FUNDAMENTAL

SECOND HARMONIC

2 TIMES

FUNDAMENTAL

FUNDAMENTAL FREQUENCY

PICKUP IN P.F. AMP
SOUND WHEN THE OUTPUT SIGNAL IS NOT EQUAL TO ZERO
DETECTION OF THE INPUT SIGNAL
1) FREQUENCY DISTORTION CAUSED BY THE CIRCUIT AND POSSIBLY ALSO BY THE SOURCE - GAIN FIELD OF P.P. R.C. COMPARATOR AND BY THE AMPLIFIER.
2) DISTORTION NON-LINEAR DISTORTION - CAUSED BY AMPLIFIER.
FOR STRONG SIGNALS - OVER DRIVING THE STAGE - FREQUENCY DISTORTION PHASE DISTORTION IN P.F. STAGE AND OTHER STAGES OF SIGNAL PROCESSING. PHASE DISTORTION IS NOT CRITICAL FOR TELEVISION RECEIVERS. FEEDBACK WHEN THE INPUT SIGNAL IS PROVIDED TO THE INPUT TERMINALS OF THE TWO POSITIVE FEEDBACK STAGES OF P.F. AMPLIFIER. HAVING A FEEDBACK SIGNAL WHICH COINCIDES WITH THE INPUT SIGNAL INCUBATES THE CIRCUIT AT PARTICULAR FREQ. AND THIS IF POSITIVE FEEDBACK EXCEEDS THE AMPLIFIER WILL OSCILLATE. IN PRACTICE WITH INPUT SIGNAL AND FEEDBACK

POSITIVE FEEDBACK

NARROWS BAND PASS

WIDENS LOWER PASS

NEGATIVE FEEDBACK - REDUCES GAIN. REDUCES DISTORTION. IMPROVES OUT STABILITY. WIDENS UP BAND PASS. 180° OUT PHASE WITH INPUT SIGNAL.

DECOUPLING FILTER IS TO PREVENT UNDESIRABLE FEEDBACK FROM AFFECTING FOLLOWING STAGES, AND KEEP IT FROM OSCILLATING.

DECOUPLING FILTERS

CLASS B B.T. POWER AMP.
A POWER AMP. NEEDS TO DIVIDE POWER TO ITS LOAD BUT, CHANGES D.C. POWER TO B.C. POWER
B.C. FROM POWER SUPPLY. B.C. APPLIED - USE FOR TC DRIVE
→ PREAMP - MULTIPLEXER

POWER SENSITIVITY OF CLASS
B R.F POWER AMP =
RATIO OF POWER OUTPUT TO
SIGNA INPUT SQUARE
POWER SENSITIVITY = $\frac{\text{POWER}}{Eg^2}$

POWER TUBES TRIODE - LOW
POWER SENSITIVITY - LOW EFFI-
CIENCY.

BEDD POWER - HIGH POWER OUTPUT
HIGH POWER SENSITIVITY - HIGH
EFFICIENCY.

ENTIRE COUPLE FOR POWER
OUT PUT TO SPEAKER

FOR MAXIMUM POWER TRANS-
FER WE MAKE THE TUBE LINEAR
FOR MAXIMUM ~~EFFICIENT~~ UNDIS-
PUTED POWER R_L = TWICE
LARGER THAN R_P.

IMPEDANCE MATCHING
FOR MAXIMUM POWER TRANS-
FER WE MUST MAKE IMPED-
ANCE MATCHING IN THE

PRIMARY AND SECONDARY,
AND IT IS FOUND THAT THE
TUBES REQUIRE

$$\frac{Z_p}{Z_s} = \left(\frac{N_p}{N_s} \right) \frac{N_p}{N_s} = \sqrt{\frac{Z_p}{Z_s}}$$

PUSH-PULL AMPLIFICATION

TWO TUBES THE Grids EXCITED BY VOLTAGE SOURCE AND ONE PLATE SHUNT, AND WORK PLATE OUTPUT ARE COMBINED BY A CENTER-TAPPED TRANSFORMER. PURPOSE: MORE THAN TWICE POWER OUTPUT.

PERMIT NO DISTORTION BY HARMONICS (EVEN), MERELY FIVE VGP IN CLASSE "B" SECOND HARMONICS AVOIDED OF DISTORTION IN TRIODES.

IN CLASSE "B" THE PUSH-PULL TUBES IS PERMIT CUT-OFF BUT SIGNALS REQUIRED CAN BE FOR LARGE SIGNALS.

HIGH EFFICIENCY - MORE OUTPUT POWER THAN CLASS S/H

PHASE INVERSION BY THE TRANSFORMER

12 PHASE INVERTER IS EQUIPPED WITH
INVERTS THE POLARITY OF THE
SINGLE TRIADS CONNECTED ON TUMBLE

SINGLE ENDED CLASS S COUPLED

TO PUSH-PULL ON ONE SIDE OF
12 PHASE INVERTER.

HIGH SWING P-HEMT INVERTER VOLTAGE

DECOUPLING FILTER IS TO PREVENT FEEDBACK FROM AMPLIFIER TO DRIVER STAGES

CIRCUIT ELEMENTS TO COUPLE A HIGH IMPEDANCE SOURCE TO AN INPUT OF AMPL. FOR A HIGH IMPEDANCE LOAD. HIGH POWER GAIN WITH RANGE OF FLAT FR. RESPONSE, LOW DISTORTION

CLASSES "A", "B", AND "AB" AMPL.
CLASSES "B" OPERATING NEAR CUT-OFF POINT - BIAS CUT-OFF - Ip FLUXES 180° - POOR SENSITIVITY - POOR LINEARITY - GOOD EFFICIENCY 50-60%
USED IN R.F. AND TO COUPLE A SINGLE ENDED STAGE TO DOUBLE THROUGH PUSH-PULL FOR F.T.
CLASSES "AB" - "AB₁" - "AB₂"

AB, AB₁ IS LESS THAN 180° BUT MORE THAN "B" - Ip FLUXES MORE THAN 180° LESS THAN 360°
FAIR SENSITIVITY - FAIR LINEARITY
FAIR EFFICIENCY 30-50%

CLASSES "AB₂" SAME AS "AB₁" BUT HAVING Ip FLOWING IN GRID

DUE TO HIGH SIGNAL USED
IN PUSH-PULL - LOW FREQUENCY
FED AM USED FOR R.F.

CLASS "B" BIAS AT TWICE OR
MORE CUT OFF. I_D FLows FROM
45° - 120° - USUALLY 1425 GRID IN
WITH ZERO BIAS USED
VERY POOR SENSITIVITY, VERY
POOR FIDELITY, HIGH EFFICIENCY
60 - 80% - USED FAIR SINGLE
ENDED STAGE. R.F. AMPL.
ONLY FOR POWER OUTPUT - USED
UNBAL PREAMPS ON T.V. FOR R.F.
E-LINE. FREQUENCY MULTIPLIER
PUSH-PULL OUTPUT OF TRANSMITTER
IS FOR AMPLIFIERS TO INCREASE
THE SIGNAL. FREQUENCY SPECTRUM
IS 73.75.

(1) - 20 Mc - 550 Kc MULITIPLIER
(2) - 550 - 1050 - 20M6 WITH 132000 Mc
650 - 44 Mc - 51407 WITH
44 Mc - 88 - T.V. 1-C CHANNEL
88 Mc - 108 - F.M.
108 - 400 Mc - T.V. 7-13 CHANNEL
400 - 750.000 Mc - T.V. UHF RADAR
MICROWAVE - 123000-750000 Mc
INFRARED - ULTRA VIOLET
COSMO-RAYS

R.F. AMPLIFICATION. R.F.
KIND - "TUNED" AND "CUT"
NOT CUT OR - R.F. AMPLIF.

RANGE - 15 kc TO 300 kc.
R.F. AMPL. WORKS ONLY CIRCUIT
OR NARROW BAND-TUNED
CIRCUIT IN R.F. AMPL. HARMONIC
DISSOCIATION NOT EFFECT R.F.
R.F. AMPL. IN RECEIVER WORKS
200 kc. R.F. CIRCUITS MUST BE
TUNED OUT OF TUNED CIRCUITS
CIRCUIT TO PICK UP ONE OF
THE TWO BANDS AT 150. TAKE
LINE GND AND THE OTHER
R.F.

RESONANT PR.

R.F. RESONANT
CURVE.

TRANSFORMER

COUPLING IN

BAND, R.F. USES 1712
TUBE AND FEW R. TURNS

PRIMARY IS RESONANT
PARALLEL CAP. SECOND.

FOTS 125 IF 51915'S RESONANT

PF FIFTH STAGE MMAM. I
TRANSMITTER STAGE USED
25 POWER TUBE & 1000 RMPS

D TUNED TRANS. COUPLED DIRECT
NOLE OR DOUBLE TUNED. HIGH
EFFICIENCY IN PICKING UP RESONANT
FREQUENCY.

FLYWHEEL EFFECT IN IF
TANK CIRCUIT HAVING ONE NE-
GATIVE CYCLE FOR SPACES

D BALANCED FED BY SHARP
POSITIVE PULSES.

INPUT IF. FREQUENCIES
BUT CLIPPING OF TANK
WITH ONLY POSITIVE
PULSES APPLIED.

[PF. VOLTAGE 18MPS.
USES 1ST AMP. STAGE OF PF OF
VHF. - CLASS "A" SUSCEPTIBLE TO
WITH SIGNAL IN IF STAGE
FOR BUFFER SENSE IN TRANSMI-
TTER. CLASSIFICATION BOARDING
TO COUPLED - (1) R.F. COUPLING
ONLY CONSIDERABLY LENGTHENED
FOR A WIDE BAND, PLUS
R.F. COUPLED WITH SHUNT
FED GRID LENGTH BIAS. PRO-
TECTOR CATHODE BIAS
R.F. CHOKES IN BIAS]

B.F. CHOKES TO HIGH IMPEDANCE IN GRID.

IMPEDANCE COUPLING TO PREVENT THE MODULATOR FROM SWINGING TO OSCILLATE, AND BAND PASS IN CRT INDUCTOR REQUIRES RESISTOR.

TUNE IMPEDANCE USES VARIABLY CAPACITOR IN PARALLEL WITH INDUCTOR.

HF MOSTLY USED IN TRANSMITTERS.
OCASIONALLY IN RECEIVERS AT RESONANT FREQUENCY - THE PARALLEL TUNED CAT ACTS AS PURE RESONANT TRANSMITTER.

TRANSFORMER COUPLING USED IN RECEIVERS

TRANSFORMER TUNED

9. F. CLASS "C" USED FOR HIGH
EFFICIENCY - FINAL POWER TUBE
AT TRANSMITTER - FREQUENCY
MULTIPLIER TUNED OUTPUT TO
SECOND HARMONIC - A DOUBLE OF
VARIABLE FREQUENCY BUT WITHIN
OSCILLATOR - OSCILLATOR FREQUENCIES
ARE CLASS "C"
WITH GRID LEAK BIAS -
~~WHEN~~ WHEN OPERATING
WITH GRID LEAK BIAS TUBES FOR
G TO FLOW IN POSITIVE BIAS.
PROTECTOR CATHODE BIAS TO
PROTECT THE TUBE IN CASE
A GRID LEAK WOULD OPEN IN
OPERATING TO ENSURE IP FLOW.

FINAL FLYWHEEL EFFECT
IN CLASS "C" FINAL WITH
DISTORTED.

R.F. POWER AMPLIFIER
TUBES USED: TRIODE - INTER
ELECTRODE CAPACITANCE
AT HIGH FREQUENCIES
TETRODE - PENTODE BEAM
POWER TUBE CONNECTED

SINGLE ENDED OR PUSH PULL
POWER AMPLIFIER WITH NO
PARASitic RESISTANCE

MAXIMUM POWER OUTPUT

MAXIMUM POWER TRANSFER

$$I_P = \frac{M_U E_G}{R_P + R_L}$$

MAXIMUM POWER TRANSFER AT
RESONANCE OF LOAD IMPEDANCE
WITH THE PARASitic RESISTANCE

M_U E_G	R_P	R_L	$I_P = \frac{M_U E_G}{R_P + R_L}$	P = $I_P^2 R_L$
100	10	5	6.6	215 W.
100	(10 12)	5	5	250 W.
100	10	10	5	200

TUBES - UNDISTORTED SINGLE ENDED
PARASitic - PUSH PULL

PUSH PULL
DOUBLE ENDED
TWO VOLTAGES
 180° OUT OF
PHASE SAME
VALUE

IMPEDANCE MATCHING R.L.
FOR MAXIMUM VOLTAGE
 R_L SHOULD BE LESS THAN R_P
POWER IN - $P_L = R_P \cdot$ IF COUPLING
IS NOT TIGHT NO LOAD NO VOLTAGE
CLOSE COUPLING TIGHT COUPLING
REFERS TO COUPLING IN RESONANT
CD IMPEDANCE

$$(Q = \frac{X_L}{R})_{\text{PRIMARY}} \left(Z_0 - \frac{X_L^2}{R} \right) = R$$

$(Z_0 = R + X_L)$ LOSSES COUPLING
PRIMARY AND SECONDARY IMPEDANCES
FURTHER APPR. VERY SIMPLE
REPLACED Z_0 MEDIUM COUPLING - Q DECREASES REFLECTED R . IN TANK) IMPEDANCE
 Z_0 OF TANK DECREASES
TIGHT COUPLING - Q DECREASES
 Z_0 MORE. Z_0 MINIMUM

$$\text{CLASSIC FORM } Z = \frac{E \text{ (DC PART)}}{I \text{ (DC PART)}}$$

$$Z = Q \cdot X_L \quad Q = \frac{X_L}{R} - Q = \frac{Z}{L}$$

$$X_L = \frac{Z}{Q}$$

NEUTRALIZATION: THE PROCESS OF BALANCING OUT THE LINE-TO-LINE FEEDBACK BY INTRODUCING FEEDBACK SPLITTERS. IT IS TUSSED TO THE FEEDBACK WAVEFORMS SO AS TO CANCEL OUT THE GRID SIGNALS. PURPOSE IS TO PREVENT OSCILLATIONS IN AMPL. PLATE OR HAZELINE NEUTRALIZATION CENTER-TAP CENTER-TAP PLATE TUBE CAT TO LEFT AND CENTER FEEDBACK TO NEUTRAL POSITION FEEDBACK.

GAIN AND OUTPUT CONTROL: CONTROL IS PROVIDED TO VARY THE GAIN UPON THE AMP. BY CHANGING THE TUBE CURRENT TERMINALS. WE CAN DON'T INFLUENCE THE BIAS ON IF REVERSE CUT-OFF TUBE. MINIMUM OF AUTOMATION.

THREE CUTS IN GRID SHEET

MANUAL -

FREQUENCY MULTIPLIERS IN
RADIO. THAT AMPLIFIES RADIO
WAVE IN TRANSMITTER. SIX-
VIAL GENERATOR - CONDITIONS
REDUCTION OF HARMONICS.
TRANS SIGNAL WITH THE STRONG
ER BANDS FROM THE OUTPUT
TRANSFORMER THAN ANT. TUNED
TO THE DESIRE FREQUENCY.
SINGLE STAGE F.R. MULTIPLIER
PRODUCES ALL HARMONICS
EVEN AND ODD.

ODD HARMONICS PUSH PULL
PUSH-PULL F.R. MULTIPLIER
ONLY EVEN HARMONICS

LOW VEC HARMONICS
PUSH-PUSH.

B.F FILTERS TO KEEP R.F OUT
OF POWER SUPPLY. DECOUPLING
FILTERS ~~LOW PASS~~ TO PICK OUT
ONE DESIRED FREQUENCY AND
BLOCK OTHERS. CAN BE COMBINED
TO GET BAND PASS. A STANDARD
FOR PREVENT OSCILLATIONS AND
INTERFERENCES - LOW PASS. PRACTICALLY
NO FEED BACK. BAND PASS FILTERS
OR DESIGN BAND OF FREQ. - REQUIRED
GAPES IN TRANSMITTERS TO
PREVENT HARMONICS FROM BEING
SEND OUT

BAND
PASS
FILTERS
IN TRANS-
MITTERS

R.F. PUSH-PULL POWER AMPLIFIER AND CROSS NEUTRALIZATION

CROSS NEUTRALIZATION
IN PUSH-PULL.

OSCILLATORS, TRANSMITTER
ANTENNAS.

OSCILLATORS - Oscillating in tank circuit to generate R.F. and maintain a constant F.R. less oscillations more F.R.)
IAMP oscillations caused by es. of out. FEED BACK TO KINETIC OSCILLATIONS AT SAME AMPLITUDE SUFFICIENT AND IN PHASE POSITIVE).

FEED BACK CANCELLING
METHODS (1) INDUCTION (2)
CAPACITIVE (3) ENHANCEMENT
APPROXIMATION. VACUUM TUBE BIAS
VU OSCILLATE. IT SERVES AS
AND ELECTRONIC SWITCH.
RE. OF OSCILLATIONS IS THE NUMBER OF TIMES "C" CHARGES AND DISCHARGES IN TANK.

VALUE OF "C" & "L" DETERMINES
FREQ. OF OSCILLATIONS IS INVERSELY
RELATED TO "C" & "L"

$$f = \frac{1}{2\pi\sqrt{LC}}$$
 TICLE IS 2012 AND
FREQ. OF OSCILLATIONS

TICKLE COIL FEEDBACK OSCILL.

AT THE START NO GRID IP FLOW
TO "2" INDUCING A HIGH VOLT.
(FEEDBACK) IN "L1" WHICH UP
TILL SATURATION POINT. GRID
POSITIVE. "C1" CHARGE. INDUCED
VOLT. DECREASES. C1 DISCHARGES
PHASE REVERSAL. GRID BECOMES
NEGATIVE. IP GOES DOWN. C1
CHARGES OPPOSITE. "L1" INDUCES
NEGATIVE VOLT. IN L1 - GRID AT
CUTOFF. NO INDUCED VOLT. "C1"
DISCHARGES - GRID BECOMES NEG.
TIVE. IP STARTS TO FLOW
COMPLETE CYCLE. WHEN
POWER IS NOT SUPPLIED THERE

IS NO GRID POSITIONING. WE
LOOK FOR OSCILLATIONS BY
MEASURING GRID CURRENT AND
VOLTAGE. NONE NO OSCILLA-
TIONS. IP GREATER IF THERE
IS NO GRID. IP LESS-LESS
INDUCED VOLTAGE IN TANK
OSCILLATORS MUST USED
RID LEAK BIAS COT SLOW SWAY-
TING WITH GRID LEAK OSCILLA-
TION. AND THIS IS OPERATING
HARTLEY "SERIES" AND "SHUNT"
ED OSCILLATORS. HARTLEY
SHUNTED TANKS USING 12
VALVE TUBE AND TUNED
OR. INDUCTIVE FEEDBACK.

SERIES ONLY ONE PATH FOR
FOR D.C. AND R.C. FROM PLATE:

HARTLEY SHUNT- TWO PATHS
R.F. CHOKES FOR D.C. "C" FOR
R.C. * KEEPS HIGH D.C.

FROM 2001 - BIF C HAVING 100
FROM P.S.

COPPIES OSCILL. SPAC IS 3
UPRTLEN BUT CAN'T FIND
CD200100S INSTEAD OF 300
TRIODE CAPACITOR PLATE

TURN C GRID CONTROL VOLTAGE
-2 FEEDBACK CONTROL PHASE
SHIFT IN CENTERED TUBE
RELATIVE VOLTAGE IN "C" & "C₂"

$$\frac{E_{C_1}}{V_{C_2}} = \frac{C_2}{C_1} \text{ VOLTAGE INVERSE TO CAPACITANCE}$$

TUNED PLATE AND GRID OSCILL.
INTERELEGSTRODE FEEDBACK

BOTH GRID AND PLATE TANK
CUST BE TUNED TO IF-FR. SLIG-
HLY HIGHER THAN OPERATING

FR. NATURAL FR. IS DETER-
MINED BY THE "G" OF EITHER
PLATE "G" - RATIO OR RATIO
OF CAPACITANCE TO RESISTANCE.

ELECTRON COUPLE OSCILLATOR
WILL HAVE SAME EFFECT ON LUBD OR FR.
MORE STABLE THAN ANY ~~CRYSTAL~~
ION CRYSTAL OSCILL. OSCILL.
NO AMPL. SELF STARTING.

SCREEN ACTS AS PLATE FOR HARTLEY OSCILL. PLATE TANK TUNED IT FOR AMPLI. TETRODE TUBE PLATE LOAD DON'T EFFECT OSCILL. FR. OF OSCILL. CAN BE MADE SUBSTANTIALLY INDEPENDENT IF SUPPLY VOLTAGE VARIATION

CRYSTAL OSCILLATOR MOST
OPTIMALLY TUNED IF

FR = RESONANT VALUE.

PIEZOELECTRIC EFFECT IN
CRYSTAL IS PLACE BETWEEN
METALLIC SURFACES WITH DIF-
FERENT POTENTIALS THE XTRL
EXPANDS AND CONTRACTS
PRODUCING VIBRATIONS. IN
P.C. THIS TYPE IN TRAN-
SMIT VERY SMALL FEEDBACK
NEEDED. AT RESONANT FR,
LARGE VOLTAGE. RESONANT
FR. WHEN THE FR. OF 2.0
VOLTS IS EQUAL TO FR. OF XTRL.
KIND OF XTRL QUARTZ -

BIGHEST SENSITIVITY - QUARTZ NOT MECHANICAL
LOW TEMPERATURE COEFFICIENT
THE TYPE OF CUT DETER-
MINES THE TEMPERATURE CO-
EFFICIENT. "X" CUT NEGATIVE
COEFFICIENT. INCREASE OF
TEMP DECREASES FR. "Y" CUT
POSITIVE COEFFICIENT INCREAS-
E OF TEMP INCREASES FR.
"AT" AND "BT" CUT NO
EFFECT IN TEMPE. THICKNESS
OF XTRL DETERMINES THE
FR. OF XTRL

AT RESONANCE THE XTRAL
OSCILLATOR ACTS AS A
TUNED CHT. \rightarrow SYMBOL

THE XTRAL OSCILLATOR
TUNED PART IS WITH TRIODE
OR TETRODE USES INTER
ELECTRODE FEEDBACK
TETRODE CUTS DOWN THE
AMOUNT OF FEEDBACK

AT RESONANCE SHARP AT RESONANCE
AT LOW OUTPUT PUT OUT HIGH
IN G RADIATION DANGER IN OPERATING
A XTRAL - FIXED FREQU. XTRAL
PATES ACT AS "G"

PIERCE OSCILL. VERY STABLE
NO TUNING REQUIRED.

INTERELECTRODE CAPACITANCE
FEED BACK, USED IN MEASURING
INSTRUMENTS.

FR. DRIFT SOURCE IN OSCILLATOR
(1) HEATING OF GUIT (A) XTRC
(B) TUNING OF CAPACIT. IN TUNING
TANK. (C) INDUCTANCE IN GRID
TANK (D) INTERELECTRODE CAP.
(WARMUP TIME 8 MINUTES PLUS
OF THEM) (2) DRIFT OF BT
(VOLTAGE RADIANT TURNS) A CO-
REGULATED POWER SUPPLY. (3)
WINDING TYPE AFFECTS THE TUNING
CAPACITORS.

THE CW TRANSMITTERS
SUPPLY POWER FOR AMPLIFICATIONS
SEND OVER THE ANTENNA.
CONTINUOUS CONSTANT AM-
PLITUDE AND CONSTANT FRE-
QUENCY TRANSMITTERS
(1) POWER SUPPLY (2) KEY (3) AN-
TENNA LOW INPUT POWER
QUALITY. ~~OSCILLATION~~ LINE,
FED DIRECTLY TO ANTENNA
POWER AMP. IS TRIODE DON'T
HAVE TO BE NEUTRALIZED
IF IS ROTATING PS & FR. MULTI-
PLIER. BUFFER VOLTAGE
AMPLIF. SEPARATES OSCILLATOR
BUFFER (IDEAL OPERATION
IN CLASS "A" FOR SENSITIVITY
"B" OR "C" FOR EFFICIENCY)

INTERSTROBE COUPLING

R.F & R.F

RE (1) IMPEDANCE COUPLING

- NOT SELECTIVE - PHASE SHIFTS, COUPLED INTEGRANCE, DANGER OF 4164 D.C. SHORTING OR CAPACITOR AND R.F. IN NEUTRAL LEAD OUT LOSS DUE TO RADIATED ENERGY LOSS OF 50% 22 - 30% 30% HESSES. ADDO SMALL CAPACITOR

TRANSFORMER COUPLING

INDUCTIVE) - VERY STABLE PHYSICAL SEPARATION BETWEEN COUPLED COILS - MINIMUM IRREDUCIBLE LOSS - BULKY - COSTLY

LINK COUPLING LINK AT

ANGLE TO MINIMIZE THE DISTRIBUTED CAPACITANCE - COUPLE BETWEEN TWO POINTS OF LOW POTENTIAL R.F.

DISTANCE BETWEEN STAGES
MAY BE WIDE.

L1 AND COUPLING WITH DUSHFOL
NEUTRALIZATION AND PARASITIC
OSCILLATIONS NEED BE, IN TRADES
IN R.F. AMPLI. AT HIGH F.R.
FOR FEEDBACK (INTERCIRCUIT
COUPLING) WHICH MAY CAUSE
OSCILLATIONS - HAVING TO RICE
AND CROSS NEUTRALIZATION
(SEE ABOVE DIAGRAM)

F.R. OF GRID TUBE = TRANSITION
DATE. PARASITIC OSCILLATION
INTERFERENCES AT OTHER THAN
OPERATING F.R. IN R.F. AMPLI.
(1) CAUSED BY DISTRIBUTED
INDUCT. AND CAPAC. (2) LOW POWER
EFFICIENCY - POWER WASTAGE
IN HEAT IN CATS. (3) SPOURIOUS
TRANSMISSIONS EXTRA F.R.
PREVENTION; DON'T REARRANGE
CATS - PARASITIC SUPPRESSORS
L1
L2

FR. MULTIPLIERS - NEEDED
BECAUSE XTAL LIMITS TO
PROXI. 20 Mc. THICK IN INCHES =
.27 = THICKNESS OF XTAL
IN.
FR. MULTIPLIERS PROD
DITONAL BANDS OF OPERATION
FOR 1 OSC. FR. PULLER

SINGLED ENDED MULTIPLIER
FOR ODD AND EVEN HARMONICS
CLASS "C" R.F. AMP. TUNED
AT C AND GRID CAP. USES TRI-
ODES AND PENTODES - MINI-
STORTION THUS STRONGER
HARMONICS. PUSH PULL FOR
ODD HARMONICS MULTIPLI-
ER PUSH FOR EVEN.

METHODS OF KEYING KEY
TO PDD INTERLACED TO SCAN.
METHODS IN ANY OF THE EX-
CLENDS OF TUBE TO STOP
OPERATION. PLATE AN-
GRID MOST COMMON - PLATE
VOLTAGE OR GATE CONTROL

EP

PLATE HEVING USING THE
220V AND CIRCUIT FOR KEY
CLICKS OR DISCHARGE

RELAY KEYING - REMOTE KEYING
BIG WAVE RISE TIME WHEN
KEY IS OPEN CAUSED BY IMP.
PER NEUT RADIATION. BREAKS
MAGNETIC COUPLING B/W WHT
> STAGES. INCOMPLETE HAVING
GRID BREAKING KEYING KEY
OPEN. HIGH NEGATIVE VOLTAGE
N GRID CUTS OFF TUBE.

TUNING THE GRID TRAVERS
WILL CHANGE THE AMPLITUDE

GRID TRAVERS CIRCUIT ACTS AS A
SERIES TUNED CIRCUIT AT
RESONANCE LONGEST Z MAX.
ACROSS I IN GRID PLATE
TUNED CIRCUIT PARALLEL TUNED
MAXIMUM Z LONGEST IP SO
AT RESONANCE TUNED GRID
I AT MAXIMUM AND IP MINI
MUM.

TESTING FOR GRID ~~MAX~~ I

EXCEPT IN PLATE OF OSCILLATOR
TORS. XTRAL + TUNED GRID-PLATE
CIRTS. IP SLIGHTLY MORE THAN
MINIMUM.

HIGH IMPEDANCE MODULATOR ON
AUDIO FREQUENCY

Q.M. IS LIFTING THE IMPEDANCE OF THE R.F. WAVE TO
THE AUDIO FREQUENCY CARRIER. MUST BE CONSTANT, 12MPL.
TWO WAYS WITH AUDIO FAN AND
AUDIO AMPL. IS IN
R.F. VOLTAGE AMPL. STOPS
UP OUTPUT FROM MICS.
CLASS "B" CATHODE RESIST-
TUBE BIAS MOVES EXCESS
SOME TIMES MORE THAN ON
STAGE -- MODULATOR R.F. POWER 12MPL. CLASS "A" (AB)
OR "B" IN PUSH-PULL) FIXED
BIAS - SOMETIMES CATHODE
BIAS. AMPLIFIES AUDIO DUE
TO CAPACITIVE INPUT MICS
OF R.F. BIAS. GENERATION
WILL NOT OVERLOAD AND
SOUND PRODUCER P.D. CAN
BE TAKEN OUT. R.F. IN
INTO CARBON GRAMMOPHONE
R.F. WITH SOUND SOE YELL
R.F. IN WISPER R.F. IN
HIGH OUTPUT.

DYNAMIC MICS IS IN R.F.
GENERATOR. PERMANENT
MAGNET - DONT NEED BIAS

POWER - LOW OUTPUT
SIDE BANDS AND NO MODULATION
MIXING = HETERODYNE IS
 MIXING 2 F.R. SIGNALS
 OF DIFFERENT C.R.-MIXING
 R.F. AND A.O. F.R.
 R.F. PRODUCER (R.F.) IS
 THE OMISSION) SIDE F.R.
 GROUPED SIDE F.R. IS
UPPER SIDE BANDS. THIS
 BANDS RISE IN BOTH SIDES
 OF THE CARRIER F.R.

 USE THE ADDITION & SUBTRACTION OF
 LOWER SIDE BANDS RISE
 THE R.F. MINUS THE GROUPED
 TO F.R.

R MODULATED F.R. EQUALS 4
 TIMES OF BANDWIDTH OF 6-12
 EQUAL TO 2 TIMES THE
MODULATED F.R. HIGHEST
 MODULATED F.R.

B.W. MEASURES WITH F.F. COMING IN AT THE CODED RATE. THE CENTER OF THE SIDE BANDS IS DETERMINED BY THE % OF MODULATION FOR 100% MODULATION THE SIDE BANDS DO NOT GO BEYOND R.F. FREQUENCY. THE AMPLITUDE OF THE SIDE BANDS IS THEN TO SOME % OF MAXIMUM AND THE CENTER OF VOLTAGE OUTPUT CORRELATED TO CW AMPLITUDE. IF THE AMPLITUDE IS LESS THAN 100% THE GARRIER MODULATION IS LESS THAN 100%.

RECORDING THE % MODULATION USING THESE PNS IS USEFUL IN LOSS OF OUTPUT.

$$I = \frac{E_{MAX} - E_{MIN}}{E_{MAX} + E_{MIN}} \times 100 \quad \text{CURRENT}$$

ALSO BE USED

$$M = \frac{\text{PEAK R.F. VOLTAGE}}{B + \text{APPLIED TO R.F.}} \times 100$$

90% = P.P.D. R.F. = R.F. BY
20% DISTORTED MODULATIONS
BPK R.F. MUCH SMALLER THAN
THAN R.F. BY UNDER NO
DISTORTION WHICH IS UNWANTED.
LESS DISTORTION FROM MODULATIONS
IN ADJUSTMENT OF
THE MODULATION AND P.D.
DISTRIBUTED POWER

VIDE POWER IS THE POWER
IT IS IN THE SIDE BANDS
VIDEO P.W. = $\frac{1}{2}$ OF CARRIER P.W.
VID P.W. = SIDE BANDS
ON AND UP TO 3 DEGREES
FROM THE $\frac{1}{2}$ OF VIDEO POWER
FOR VIDEO TRANSMISSION
WITH MAX POWER OTHER
THAN

TOTAL R.PD. P.D. POWER
TRP = CARRIER + VIDEO
FRACTIONS

$$\text{TRP}_{\text{IDEAL}} = \frac{\text{TRP}}{\text{CARRIER}} - \frac{1}{2}^{\text{OF CARRIER}}$$

$$\text{AUDIO} = \frac{\text{AUDIO}}{\text{TRP}} = \frac{1}{3} \text{ OF TRP}$$

$$\text{CARRIER} = \frac{2}{3} \text{ OF TRP}$$

$\text{RUD.O} = \text{SIDE BONDS} = \frac{1}{3}$ OF T.R.P.
 $\text{1 SIDE BOND} = \frac{1}{6}$ OF T.R.P.

ANTENNA CURRENT

ANTENNA CURRENT INCREASES
WITH % OF MOD. INCREASES
THUS $100\% \text{ MOD.}$

$$\begin{aligned} \text{C.W.} &= 100 \text{ W.} \\ R &= 1 \text{ ohm} \end{aligned} \quad \left. \begin{aligned} \text{C.W.} &+ \text{RUD.O} \\ 100 &+ 50 = 150 \text{ W.} \end{aligned} \right\}$$
$$\text{ANT.I.} = 10 \text{ m.A.} \quad I_{\text{ANT.}} = \sqrt{150} =$$
$$P.W. = I^2 \times R \quad 12.25 \text{ m.A.}$$

ANTENNA I. INCREASES
22.5% MAXIMUM.
TWO-FIFTHS OUTPUT OR 40%
% OF MODUL. INCREASES.

IN TUNED TRAVERSITTER
IP WOULD BE MINIMUM IZM.
IN RES. DETUNED TUNED

IP DECREASES - IG INCREASES

REDUCED LOAD IP DECREASES
IG INCREASES - I ANT. DECREASES
MODULATION METHODS - PHASE
MOD. (ONE ELEMENT OF
PENTODE CAN BE USED FOR
MODULATION) METHOD NAMED
AFTER ELEMENT OF R.F. TUBE
RECEIVING THE R.F. VOLTAGE.

POWER LEVEL OF R.F.
STAGE LOW AND WITH
POWER MODULATION

ON LEVEL FINAL STAGES
MUST BE LINEAR - MUST
HAVE GOOD LINEARITY - CLASS
"AB" OR "B" PUSH-PULL - POWER
TUBE MUST BE NEAR LOAD

164 POWER MODULATOR
INITIAL STAGE = MODULATOR + P
CLASS "C" FOR HIGH OUTPUT
RATE MODULATOR TRANSFORMER
COUPLED

PLATE MODULATION - HEISING
CHOKES - CONSTANT CURRENT
THE AMP METER READS
MODUL. PA R, F.

GRID BIDS MODULATION

M.C.W (MODUL. C.W) METHOD
 OF USING CODE - USING D.M.
 DOESN'T NEED B.F.O IN RECEIVER

ANTENNAE

TRANSMITTERS TRANSMISSION LINE - ANTENNA

RF SPEED

186,000 MILES

484,000,000 FEET

300,000,000 METERS

$$\text{WAVELENGTH} = \lambda = \frac{V}{F}$$

INCIDENT VIBR.

Q

REFLECTION COEFF.

STANDING WAVE

SOME POINT OF CONSIDERATION
IN ANTENNA IS ELECTRIC FIELD
IN TRANSMITTER WAS MINIMUM
ONE END IMPEDANCE
WAVE LENGTH = λ , WHICH
VIBRATES PERIODICALLY

WAVE - VERTICAL

STANDING WAVE RIZZLES
IN THE HEAT OF IRON'S STEEL
END TO END. IT HAS. IT
CENTER. MINIMUM AT END
(T-LOOP). (T-NOD) VOLTAGE
MAX. AT END MINIMUM AT
CENTER. T-LOOP

MAGNETIC FIELD FLOW
FROM TOP TO GROUND

I AM AT GROUND MINIMUM
AT TOP VERTIGO MAX.
AT TOP MINIMUM AT GROUND

ELECTROMAGNETIC FIELD

ELECTROSTATIC FIELD HORIZONTAL
FIELD BUILT BY VOLTAGE DIFFERENT
POLARITY IN ANTENNA

MAGNETIC FIELD CIRCULAR
CURRENT IN ANTENNA
HORIZONTALITY

-GLOB INDUCTIVE
PARAMETERS

POINT OF ILLUMINATION ENERGY
SOURCES ON THE PULSE
POLARIZATION THE HORIZONTAL
ANTENNA MOST IS
IN THE SAME PLANE THAT
THE BENDING
ANTENNA TYPES

USE A HERTZ WIRE OR
AT NEED A VERY LONG
ANTENNA. USE A MARCONI
WHEN NEED FOIT IS FAR
SO ONE MUST BE GIVE
DED.

COUNTERPOISE SIMILAR TO
GROUND FOR ANTENNA IN
ENNA USING CAPACITIVE
ND USED IN MOBILE EQUIP
MENT.

DOING INDUCTION USE
RIES TO ANTENNA. ACTS
AS A RADIATOR.
DOING COUPLED LINE IN
RIES. ROTS AS A SHARING
ONE LENGTH IN PARALLEL
CIRCUIT. TO COUPLE
IS ADDING CAPACITANCE
WITH GROUND. DUMMY
ANTENNA TO PRODUCE RA
DIONS AND ACT AS LOAD

TRANSMISSION LINES AND
FEEDERS TYPES OF LINE
W/IN READ. COAXIAL CABLE
TWISTED PAIR SINGLE
WIRE - (GROUND)

CHARACTERISTIC IMPED
ANCE IS THE RESISTAN
CE OF THE LINE, SIZE OF

WIRE AND LENGTH - HAVING

72 TO 300 FT. M.P.C.O.N.T.

36 TO 300 FT.

MATCHED LINE - POWER TRIP
THE ~~EFFICIENT~~ PLATE THE LINE
TIE THE COUPLED COUPLING IS,
0.712, 0.907 DIAMETRIC EXPANSION
NON-REFLECTIVE LINE.

UNMATCHED - PLATE LINE
NOT TIED WITH ~~ANTENNA~~ COUPLED
HAVING THE EXPANSION
THE LINE IS FEED AT
END OF LOW IMPEDANCE
LOW Z POINT HIGH I POINT
COUPLING AND TUNING
TRANSFORMER COUPLING
LINE MADE OF EVEN NUM-
BER OF $\frac{1}{2}$ WAVE LENGTHS
FOR EXPANSION BY ADDING
SERIES TUNED CIRCUITS USED
WITH EVEN NUMBER OF
 $\frac{1}{2}$ WAVELENGTHS.

PARRALLEL WITH ~~FEED~~
ODD + HIGH Z IN LINE
LOW Z FT. ANTENNA POINT

LINK COUPLING WITH TUNING UNIT

IMPEDANCE COUPLING

ANTENNA ARRAYS DIFFUSION CONTROL

DRIVER ELEMENT

(CENTER) GETS ITS POWER FROM TRANSISTOR REFLECTOR (BACK)

(PARASITIC ELEMENT) GETS ITS POWER FROM DRIVER. 5% LONGER THAN DRIVER. $\frac{1}{2}$ WAVE LENGTH AWAY FROM CENTER. ITS DOMAIN BACK PROPAGATES INVERSELY.

INCREASES FORWARD. DIRECTOR (FRONT) 5% SHORTER TO $\frac{1}{10}$ WAVE LENGTH PROPAGATES

DRIVEN ARRAYS GENERAL ANTENNAS ALL ELEMENTS GET POWER FROM ~~POWER~~ TRANSWITER. ADD AND CANCEL SIGNALS.

DETECTORS AND RECEIVERS

DETECTION OR DEMODULATION IS A PROCESS OF REPRODUCING TRANSMITTED INFORMATION FROM A MODULATED R.F. WAVE AND (DEMODULATION) EXTRACTING THE INTELLIGENCE FROM THE CARRIER BY RECTIFYING THE HIGH FREQUENCY AND FILTERING THE R.F. SIGNALS FOR CAR AND MSG.

TYPES OF DETECTORS FOR AM

- (1) DIODE DET (2) GRID LEAK DET (REC. P.M.P.L. FLATER-TRIODE), (3) REGEN TRIODE DET (4) PARASITE DET (TRIODE-V.T.V.M.) (5) C.W. H.F. FERODINE DET (REGENERATIVE)

D.D.C. DET. DEFINITION

DEFINITION - FUNCTION
A D.D.C. RECEIVER IS A CIRCUIT WHICH GENERATES A MINIMUM SIGNAL INPUT VOLTAGE THROUH WHICH WILL DELIVER A STANDARD SIGNAL OUTPUT WHETHER THE SIGNAL IS THE AMPLITUDE TO PUT OUT THE DESIRED FREQUENCY OR THE FREQUENCY OF THE SIGNAL. THE AMPLITY IS TO P.M.P.L. & B.I.D. IF F.F. WITH MODULATION WITH OUT DISTORTION SIGNAL HAVING DARING AMPLITY (S.O. 12.12.)

THE ABILITY TO HANDLER KRF.
IS SIMPLIFIED WITHOUT AMPLIFIERS

No. - RECTIFIED WITHOUT DISTORTION

DIODE DET. GOOD LINEARITY

TUNED CKT-SELECTOR -

FILTER CAT. CAP. R.F.

BIG BASE BIAS
NOT P.D. POSSIBLY
THIS CAN BE SATURATED

THROUGH R.F. - FREQUENCY -

DIODE LOAD - T² SERIES IF
FREQUENCY VOLTAGE DROP FULL
OUTPUT NO B+ NEEDED

CHARACTERISTICS: SENSITIVITY
POOR DUE TO HIGH PAR-
A "Z" DRAFT RESONANCE UN-
LT. SENSITIVITY: DUE TO NO
IMPED. NO GAIN. S.H. F.
VERY GOOD. E.I.CL. GOOD

GRID LEAK DETECTRODE

TRIODE
USED AS
DIODE

RECT. BETWEEN CATHODE AND
GRID: AMPED BETWEEN CATHODE
AND PLATE. OVERLOADS EASILY
WITH STRONG SIGNAL (DISTORTION)
CHARACTERISTICS: SENSITIVITY

GOOD SELECTIVITY PAIR.

S.H.A. POOR - FIDELI PAIR.

GRID CAP. AND RES. ACT 123

FILTERS.

REGENERATIVE PAIR (POSITIVE FEEDBACK). COMBINES THE PRINCIPLE OF TUNING COUPLED GRID AND GRID-CATHODE DET.

GENERATION IS A PROCESS OF FEEDING PART OF THE OUT PUT OF THE TUBE BACK TO THE INPUT IN ~~THE~~ PHASE WITH THE PHASE SO IT AMPLIFIES THE GRID EXCITATION THROUGH FEEDBACK AMP. AND HAVING A VARIABLE COIL TO CONTROL FEEDBACK.

FEEDBACK MUST BE CONTROLLED. MUCH FEEDBACK WILL CAUSE OSCILLATION. IN PARALLEL COUPLED INDUCTIVE TWO COILS DEPENDED IMPEDANCE SENSITIVITY WHICH IS SELECTIVITY ELEMENT.

S.H.A. POOR - FIDELITY PAIR.

PLATE DEF.

FIXED BIAS

LARGE ENOUGH BIAS
TO OPERATE NEAR CUT-OFF

FIXED BIAS ARE USED

B.P. = FB CHASSIS "A" - "B" NEAR
SURFACE. AMPLIFIES POSITIVE SIDE
OF CYCLES. DRIVING GRID HAS
NEGATIVE IP FLOWS - SIG ↑ BIAS

W IP ↑ CHARACTERISTIC SENSITI-

P.B.T.T. & F.D.A. - SELECT GOOD

S.H.R. GOOD - F.I.D.E. GOOD

I.W. - DETEC (HETRODYNE)

HETRODYNING - BEATING IP
MIXING TWO DIFFERENT FR.
TOGETHER TO GET TWO MORE
THE SUM AND THE DIFFERENCE
I.F. OR LOW FR.
FOR I.F. OR CERO BEING
TWO EQUAL FR.

CAN DEFECT WITH OSCILLATION
TO PRODUCE I.F.

TO MIX WITH
I.F.
TO GET A
LOW AUDIO FR.

GENERATION & PROBLEMS

THE T.R.F.

T.R.F. MORE STAGES OF RIF. SHOULD BE USED
TO INCREASE SENSITIVITY - GOOD PRACTICE TO USE
CURRENT LIMITER

PURPOSE OF RECEIVER

- 1) SIGNAL INTERCEPTION - (2)
- 2) SELECTOR - (3) R.F. AMPLIFIER
- (4) DETECTOR (5) R.F. AMPL.
- 6) REPRODUCER.

SUPERHET. PRINCIPLE.

LOCAL OSCILLATOR PRODUCES
A FREQUENCY HIGHER THAN RECEIVING F.R. TO WHICH IT IS PRODUCED THE DIFFERENCE OF I.F. LOCAL OSCIL. F.R. IN THE MIXER. ANY GRID CAN BE USED BUT IN VECTOR GRID INJECTION THE LOCAL OSCIL. F.R. = INCOMING + I.F. - I.F. IS CONSTANT. TUNING CAPACITORS IN R.F. MIXER AND LOCAL OSCILLATOR ARE GROUPED TOGETHER. F.R. CONVERSION IN MIXER OF 1ST CONDUCTIVE.

INTERACTION WHEN ONE STAGE AFFECTS ANOTHER. STAGE CONVERGENCE CRITERIA SIMILAR FROM THE MIXER CONVERTER I.F. AMPL. B.T.D. & XTRAL FILTER I.F. TUBE PLATE - VARIABLE MU - REMOTE CUT OFF - ORTHODEE BIAS & PLATE BIAS PASS "A" - A LOT OF SELECTIVITY DUE TO TUNED CIRCUIT IN INPUT AND OUTPUT - LOW IMPEDANCE I.F. - SENSITIVE HIGH AMPLIF. CAPA. IN I.F. ~~NOT~~ ADJUSTABLE NOT VIBRATING

TRANSFORMERS IN R.F. LOW
NUMBER OF TURNS FOR HIGH
F.R. - IN I.F. HIGH NUMBER
OF TURNS - LOW FREQUEN.

DOUBLE TUNED COUPLING

TWO WAYS OF TUNING I.F.
(TRIMMERS) ADJUST CAPACIT.
PERMIBILITY - IRON SUGS OR
COILS - MORE SELECTIVITY
LESS TURNS OF WIRE IN COIL
LESS RESIST. HIGHER "Q" OR
CUT.

C.W. RECEPTION - I.F. 455 Kc
TOO HIGH FOR AUDIO DETE-
CTOR CIRCUIT PICK IT UP NEED
B.I.F.O. - B.I.F.O. PUTS OUT F.R.
OF 456 Kc. THE DIFFERENCE
IS 1 Kc. AUDIBLE. CUT
MUST BE HIGHLY SELECTIVE.
NARROW B.W. USE XTAL
VERY STABLE. WITH A
SWITCH - NO GOOD FOR RIM
XTAL WILL NOT PASS THE
SIDE BANDS.

B.F.O. FR. EQUALISE TO DETECT
FOR B.W. APPARATUS COMPARISON
OF 19 IN MMICN

$\frac{1}{2}$ XTRL FROM CH17CIR 15.

SPURIOUS RECESSION AND
INTERFERENCE: IMPOSSIBILITY
AND SPURIOUS RESPONSES
IMPOSSIBILITY AND UNPREDICTABILITY
AFTER WORKING WITH
KOSZL OSCILL. F.R. PRODUCING
THE RECEIVER I.F.
IMPOSS F.R. FORMULA

DESIRED F.R. + 2 x I.F. OR
~OC. OSC. + I.F. CRUSCS FOR
IMAGE F.R. - POOR OR IMPROPER
SELECTION - USING LOW
I.F. TO REDUCE IMAGE F.R.
HIGH R.F. P.M.P.I. OR HIGHER
I.F.

FR. SELECTION AND SENSITIVITY

PRE-SELECTOR R.F. AMPL.

TUBE PENTODE - VARIABLE

"M.U" REMOTE CUT OFF. CH+

THROPE BIRDS - CLASS "A" -

SENSITIVITY (AMPLIFIER).

SENSITIVITY CONTROL OF

R.F. GAIN CONTROL. TUNING

OF P.P.C.O. SAME VALUE THAN

I.F. AND LOCAL OSC. COILS

DIFFERENT. SAME IN R.F. AND

I.F. OSCILL. DIFFERENT.

TRIMERS OF P.P.C.O. ARE SMALL
CAPACI. ADJUSTED IN HIGH END
OF THE BAND IN PARALLEL
WITH TUNING CAP. LOW VALUE
EDDER OF P. IN OSCILL. IN
SERIES WITH TUNING CAP. IN
OSCILL. AND ADJUST TO LOW
END OF BAND - HIGH VALUE

TRACKING IS ALL THE TUNED
CUT ARE RESPONDING TO THE
CORRECT F.R. TRIMERS AND
POTENTIERS ARE TO HELP THIS
CHANGES BIAS ↑ AMPLIF ↓
P. F. FEEDBACK CONTROL

A.V.C. SIMPLE AND
DEVELOPED A.V.C. PURPOSE
TO KEEP THE OUTPUT LEVEL
OF RECEIVER CONSTANT, BY
VARYING THE MAGNETIC BIAS
IN THE RF AND I.F STAGES
WITH THE STRENGTH OF THE
SIGNAL. WHEN SIGNALS IS
STRONG WE WANT STRONG
NEGATIVE BIASES TO CONTROL
AMPLIF. AND VICE VERSA
SIC A.BIASES & JAMMING WE
GET A.V.C. BIASES FROM P.T.O.
LORD. SIMPLE A.V.C. NOT
VERY GOOD OPERATES IN
STRONG AND WEAK SIGNALS
THAT'S WHY IT CUTS DOWN
THE WEAK SIGNALS. A.V.C.
NEEDED FOR STRONG
SIGNAL ONLY.

SYMPLE A.V.C.
CUT →

A

T. F.

D.E.T.

D.E.C. DECOUPLING

D.V.C. DECOUPLING

R. FOR GRID RETURN

F.L.S.C.

D.Y. 2000

FILTER

F.O.R. G.T. (P.D.C.)

G.T. D.C.

DELAYED R.V.C. AND FOLLOW
AMPLIF. OF WEAK SIGNALS.
CONTACT BIAS

WITH STRONG SIGNAL
WITH P - 3 POTENT. IN D.R.V.C.
PLATE WEAK SIGNALS THE
DETECT. PLATE CONDUCTS MORE
POSITIVE PART. WHEN STRONG
SIGNAL APPLIED THERE IS
A POSITIVE POTENT. IN D.R.V.C.
PLATE I FLOWS PUTTING A
NEGATIVE POTENT. IN D.R.V.C. LINE FOR GRIDS OF R.F.
AND I.F. STAGES. THE OTHER
SECTION OF TUBE IS A.F. AMP.
FOR ALIGNMENT OR SET SUT OFF R.V.C.

R.F. AMPL. (VOLTAGE) AND
VOLUME CONTROL. THE R.F.
VOLTAGE AMPL. NEEDS GOOD
FIDELI. CLASS "A". TRIODE
TO AMPLIFY OUTPUT ADDIO

FROM DET. (P.D.C.).

VOLUME CONTROL TO CONTROL
THE AMOUNT OF RADIO SIGNAL
VOLTAGE. TAP IN THE
GRID SIDE OF LOAD R. WI-
TH AMP. DUE TO OBTAINING
THE SIGNAL BEFORE IT
PASSES THROUGH THE R. COULD
BE USED AS A VOLUME CONTROL
WITH A POTEN. GRID RES.
T.O.R. ALSO USE AS VOLUME
CONTROL.

2 KINDS - (1) VARV OUTPUT
F DET. (2) VARV GRID VOLTS
O A.F. AMP. CONVERT POTEN-
TIAL BIRDS TO MEG. R. GRID
RETURN

G.L.D. POWER AMP. AND REPROD.
P.A. IS LAST STAGE - BEAM
POWER TUBE OR PENTODE
IN PUSH PULL - CLASS "A" CATHO-
DE BIRDS. TRANSFORMER
COUPLING STEP DOWN.

IMPEDANCE MATCH. H.C.
COUPLING GOOD F. RESPONSE

NOT GOOD FOR POWER.

REPRODUCERS (SPEAKERS)
TYPES (1) MOVING IRON
ABSOLUTE. (2) MOVING COIL
PERMANENT MAGNET

MOVING COIL USES OUTSIDE
VOLTAGES TO EXCITE FIELD
OF COIL.

INCREASING THE TUNING
RANGE. = FOUND SWITCHING
PURPOSE TO MAKE RECEIVER
CAPABLE OF WIDE RANGE
RECEPTION - TWO TYPES
(1) ROTARY SWITCH DIFFERENT
COILS IN TUNED CIRTS.

3-SWITCHES
CIRNG TOGETHER
3-CAPACITOR CHANGED

2 TYPE = PLUG IN COILS
SAME FIS CUT BUT NOT
SWITCH. PLUG IN TYPE
COILS.

BAND SPREAD PROCESS
= SPREADING OUT A SMALL
SECTION OF THE BAND

CALLED - BERNIER TUNING
TO MAKE TUNING EASIER
NO MECHANICAL - BY SIMI-
LLER TUNNING WHEEL.

ELECTRICAL TYPE ~~OF~~

~~MAIN~~ TUNING CAPACITOR
VERY SMALL VALUE IN
PARALLEL WITH MAIN
TUNING CAPAC. OR IN
SERIAL WITH COIL

1- MAIN TUNNING

2- TRIMMER

3- BAND SPRED

ALIMENT AND EQUIPMENT

- (1)- SIGNAL GENERATOR
RANGE 100 KHz TO 32 MEG.
- (2)- OUTPUT METER ~~W~~ VTVM
CONNECT ACROSS SECONDARY
IN OUTPUT TRANS. ST?
FOR H.C. (3) ALIMENT
TO TOOL - PLASTIC SCREW
DRIVER OR BANKEYITY

PIGMENT PROBLEMS

(1) TURN SET ON - (2) DYNR
MIC TEST - (3) CONNECT
WTVM. IN OUTPUT. (4) SET
GENERATOR TO 400 KC RATIO
APPLIED TO GRID OF R.F. AMP.
SECONDARY METHOD - GRID
TAPPING - NO ADJUST MADE
IN AUDIO STAGES.

(5) PIGM. OF I.F. SEC.
SET GENERATOR I.F. &
MODULATED - KILL A.V.C
KILL LOCAL OSC. APPLY SIGNAL
TO GRID OF FIRST I.F. FOR
MAX. READING ADJUST TRIMERS
IN SECONDARY OF OUTPUT
MOVE TO PRIMARY AND
REPEAT. MOVE TO NEXT
I.F. AND REPEAT. MOVE
SIGNAL TO MIXER - ADJUST
TRIMERS IN OUTPUT - THEN
LOCAL OSC.

R.F. STAGE SET GENERA-
TOR TO 1400 KC MODULATED
PUT LOCAL OSC. IN OPERATION
SET PIGM. IN HIGH ENDOR
BAND RECEIVER - APPLY
SIGNAL TO ANTENNA. ADJUST
TRIMERS IN R.F. AND
MIXER - NEXT PIGM TO

600 GE. LOW END OF
HAND - ADJUST THER-
ODDIF CAP. IN OSC. FOR
MAX. FREQUENCY
ROUBLE SHOOTING (1)
FIELD OPERATORS REPORT
1) VISUAL INSPECTION
EXTERNAL INSPECTION
FUSES - POWER CORD -
INTERNAL INSPECTION
LOOK AT COMPONENTS -
BURNED RESIST. - LOOSE
WIRES - TUBES - (3)
CONTINUITY CHECK - OHMMETER
HECK RESIST. CHECK FOR
OPEN ~~RESIST.~~ CUTO (4) VOLTR.
MEASURES - SET ON
'K' D.C. - B+ - LINES A.C.
FILMMENTS - INPUT
TEST EQUIPMENT
DOLLS - PIERS - COMPUTERS
TL-13 - 8" LONG - DIAL
NDS TL-103 - LONG - 100'
TL-126 -
TEST EQUIPMENT - PROBLEM
MEASURE CURRENT. USE
RES. IN PARALLEL FOR PAN
E. VOLTAGE RES. IN SERIES
FOR RANGE. OMMETER - SERIES
- SHUNT FOR HIGH & LOW RESIS.

VICOM TS 2941U - MULTIMETER

2.97/6. . R.3MΩ & TUN. 1000MHz
MV 2.7, METER - 100KΩMS.

TUBE TESTER I 172 DV/VIC
MIC. MUTUAL CONDUCTANCE
AND EMISSION TYPES. TO TEST
TUBES. (1) ~~SLEEVES~~ LINE

TESTS. (2) TEST SHORTS.

SIGNAL GENERATOR 0.1-1MHz.
I 72 - 3X XPIESE OF OUTPUT

UNMODULATED RF ~~FOR~~ FOR RF

FOR FREQUENCY SECTION

OSCILLATOR, SECTION OF RECEIVING
MODULATED RF FOR I.F. & R.F.

SECTION. 400 CPS AUDIO

TONE FOR R.F SECTION.

USED FOR ALIGNMENT SIGNAL
TO SUBSTITUTION CHECK, SPIN
OF STEPS. SHORT CIRCUIT

FOR RECEIVER B.C. 221 &

- S.R. 211 (ACCESSORIES)

12.5 TO 20.000 Kc. RANGE

FOR SIGNAL GENERATOR.

30. 12/V. BEST METHOD FOR
TEST TUBES IS SUBSTITUTION

BEST TEST SET DYNAMIC.

THEORY OF THE DIPOLE
MOMENT MOVING COIL TYPE
INDUCT - PHASE 40IPS - OR
PROPORTIONAL MIRONOV - -

ALUMINUM FIRE - HARD STEEL
LETS TO SUPPORT THE COIL
WITH VENTED BEARINGS
OR PEGS TO CONCENTRATE
THE FLUX - TWO LIGHT SPRINGS
TO CONTROL THE POSITION
MATERIAL OF PHOSPHATE BRONZE
CARRY CURRENT TO COIL
A LIGHT COIL SC ST UN
LOAD FREE - COIL WEIG
BALANCE THE POSITION.
MOVEMENT OF COIL DEPENDS
NOW THE NUMBER OF RINGS IN
COIL - CURRENT IN COIL IS
VOL AMMETER - TO DETERMI
THE AMOUNT OF FLUX IN
POINTIC POSITION DAMPING
GET QUICK CURRENT READINGS
WITHOUT VIBRATIONS, CAUSED
BY HIGH EDDY CURRENTS IN
COIL IN THE ALUMINUM FIRE.
WE - INTERNAL RESIST
DEPENDS ON AMOUNT OF WIND
ED IN COIL - MORE WINDINGS
IN COIL LESS CURRENT NEEDED
FOR FLUX - MORE RESIST
SENSITIVITY OF METER - THE
AMOUNT OF "I" TO CARRY THE
DINTOR TO FULL SCALE DE

FRACTION FORMULA - $R = \frac{E}{I}$

OR $R = \frac{1000}{I}$

SENSITIVITY

OMMS PER VOLT SENSITIVITY
NUMBER OF OHMS THAT MUST
BE PUT IN SERIES WITH METER
TO MEASURE 1 VOLTA. AMOUNT
OF RESISTANCE DETERMINES THE
SENSITIVITY. LARGER RES. MORE
SENSITIVE. TURN 1000 G INTO
100 OHMS. VERY SENSITIVE.

SHUNT RESISTANCE HUNTING
RESISTANCES WITH METER AND
ONE METER TO DETERMINE THE
FRACTION OF GROUND TO PROPORTION
OF TOTAL FLOW. WHICH IS EQUAL
TO PROPORTION CURRENT THAN MORE
GIVEN BY $R_{SHUNT} = R_s$. MUST BE LONG
THAN INTERNAL R. OF METER
TO INCORPORATE RANGE OF
METER. LONGER ~~SHUNT~~ SHUNT
IS ALSO PROPORTIONALLY FOR SAME
TO FIND AMOUNT OF RESIST.

$$R_{SHUNT} = \frac{R_s}{N-1} \quad \text{WHERE } R_s \text{ IS } R_s \text{ OF METER}$$

N IS THE TIMES WHICH IS GOING
TO INCORPORATE RANGE (1000)
NEW RANGE OVER OLD.
WHEN THE VALUE OF

"N" IS OVER 50 DISPERSED
THE MINUS 1. POWER
FACTOR MUST ALSO BE CONSIDERED
WHEN USING SHUNT
RESISTORS.

VOLT METER - ANALYSIS
AMMETER WITH A HIGH
REGISTER (MULTIPLIERS) IN
SERIES WITH A VOLTMETER IS CALLED
THE AMMETER OR CURRENT (D.C.)
READING VOLTMETER. FORMULA
TO FIND VALUE OF MULTIPLIER.
 $R = \frac{E}{I}$ WHERE E = VOLTAGE

RESISTANCE OF AMMETER IS
LESS THAN 1% OF VOLTMETER
REGISTER. IF MORE SUBTRACT
FROM TOTAL R . ~~TO OBTAIN~~
~~GREATER SENSITIVITY~~
OF VOLTMETERS IS OHMS
PER VOLT = $R = \frac{1 \text{ OHM}}{\text{SENSITIVITY}}$

TO INCREASE RANGE INCREASE
THE REGISTER IN OHMS.
TO USE VOLTMETER FOR A.C.
USE RECTIFIERS - TWO HALF
WAVE OR 12 BRIDGE RECTIFIED
~~ZINC~~ CUPPER OXIDE
VOLTDIVIDERS OF PLATINUM
RECTIFIERS - NOT VERY REICH

PART DUE TO CAPACITIVE
LOADS WHICH PRODUCES POWER LOSS

WELLING METER LOADING
IS WHEN THE METER
DRAWNS TOO MUCH I FROM
Ckt DUE TO HIGHER METER
R - PUTS "I" IN PARALLEL
WITH Ckt SO TOTAL
R. DECREASES - NO LOAD R.
DROP TO READ. MORE R IN
Ckt MORE OVERLOAD.

OHMMETER TO MEASURE
RESISTANCE AND
CHECK CONTINUITY - (1) DC
METER (2) BATTERY (3) 'I'
AMMETER RESIST (4) VARIABLE
RESIST 2 FOR ADJUST. SPINE
AND SHUNT TYPE - ~~THE~~ SHUNT
SERIES TYPE METER IS
IN SERIES - WE DO NOT
TAKES SERIES FOR LOW
I DRAW. POINTER DRAWS
TO THE LEFT. SPINE
TYPE MORE ACCURATE IN
HIGH RESISTANCE.

SHUNT TYPE METER IN
PARALLEL WITH "R" BEING
MEASURED. ~~THE~~ TOTAL R
DECREASES. MORE ACCURATE
IN LOWER RESISTANCE.

TO TEST P.R. DISCONNECT
U+ END OF RESIS. VTVM
USES BOTH SERIES & SHUNT
VTVM PYROLYSIS USES
METER AND VACUUM TUBES
VERY SENSITIVE - POSS.
TO READ VERY SIMPLE
VOLTAGES - ELECTRICALLY
RUGGED - CAN'T BURN OUT
TUBE SATURATION - OPEN
TUBE FRI. RANGE - GREATER
CURRENT IN TUBE -
IF THE RESIST. OF METER
WAS 1000 OHMS THEN
100 VOLTS (METER 11 MEG)
VOLTAGE BEING MEASURED
CONTROLS THE IP FLOW
THROUGH THE GRID OF TUBE
P.R. TEST DC
TEST LOAD RATE. RESIST
100 MEG.
TUBE TESTED TWO TYPES
EMISSION AND DYNAMIC
EMISSION TEST TO TEST
THE CURRENT TUBE
ALL KINDS OF TUBE CONNECTED
TO THE DIODE OR REGULATOR
TUBE. SHAKER NOT TOO
MANY PARTS - STURDY
SHOWS CONDITION OF CATHODE

DISADVANTAGES TUBE NOT
OPERATING PROPERLY IN
CAT. - THE DYNAMIC -

PARTIAL VACUUM OF CONDUCT
ANCE OF TUBE (G.M.)

$$G.M. = \frac{4 I_P}{4 E_P} \quad \text{RATIO OF G.M. TO}$$

GE OF IP TO

GE - MORE REQUIRE -

SUBSTITUTION PUTS TUBE
UNDER WORKING CONDITIONS

TUBE TESTER. J-172

"P" & "B" CONTROL SOCKET
PLUG. PUTS HIGH FILAM. VOL.
RED BUTTON - RMPL. MICROMHRS
HAVE IN 3000 - TOP SOCKET
L CONTROL PLATE VOLTA
GE. "R" CONTROL GRID VOL.
TWO RED BUTTONS - STAND
AND 324 - DIODE - GRASS

1-2 - LINES ADJUST TO
HAVE 93 VOLTS ACROSS
PRIMARY OF TRANSF. FIRST
TEST. FOR SHORFS. (2)
QUALITY TEST FREQU.

RED OR GREEN - MULTIPLE
COULD HAVE READING
MORE ACCURACY TEST
TO RESTRICT DIODES TEST
DC PLATE CURRENT - RED
AND GREEN FOR REG.

TESTS & AMPLIFIER SECTION
MULTIPURPOSE TUBE.

TEST - WARM UP FOR
15 MINUTES ADJUST "L"
TO 6M OR 60 - PRESS
PSE NO 1 ADJUST P TUBE
READ 1000 VOLTS PRESS
NO 2 GND SET 15 POINTS
MOVES UP IN STEP MODE
THREE HUNDRED OR FIVE HUNDRED
NO GOOD TOO Gassy DUE
TO TUNING ON IP INCRE-
SES. VOICE TEST TO DETECT
INTERMITTENT SHORTS.
SIGNAL GENERATOR 1-72
TO GENERATE AND AD-
JUSTED WITH ENOUGH
STABILITY FOR TESTING
PURPOSES. TYPES OF SIGNAL
MODULATED R.F.-UNMODU-
LATED R.F. - 400 CPS 12V
DC TUBE - MAXIMUM OUT
PUT 15 VOLTS RMS OF 6A7
TEST ALIGNMENT - S. CABLE
SUBSTITUTION - UNCOUPLED
SIGNAL GENERATOR - 72 - MODU-
LATE R.F. 30.000 MICROVOLTS
400 CPS R.F. 1.5 VOLTS
OVERDRIVE OF STAGES
WHEN TO LARGE OF SIGNA-

APPLY. VARY OUTPUT TO
PREVENT OVERDRIVING &
PND DISTORTION. R.F.
RANGE 100 TO 32000 HZ
2 CONTROLS TO VARY OUT
PUT - 5 BANDS (1)
100 - 320 Hz (2) 320 -
1000 Hz (3) 1 MEC - 32 MEC
(4) 3.2 - 10 MEC (5) 10 MEC
- 32 MEC.

FREQUENCY METERS C
A WAVE METER WHICH CONTAINS
INS A TUNED CIRCUIT WITH A
RESONANT F.R. IS MADE
EQUAL TO AN UNKNOWN F.R.
PURPOSE TO MAKE A
ACCURATE FR STANDARD
USES TO CALIBRATE EQUIP
MENT - CAN RECEIVE AND
SEND R.F. B.C. 221 C

~~SCR.~~ SCR. 211 ACCESSORIES
BATTERY - WATERS OUT
BUSHY LOOSE OF VOLTAGE
F.R. CHANGES - HETERO
DYNE TYPE - RANGE 125
TO 20000 Hz. 2 BANDS
HIGH & LOW - 125 - 20000 Hz. C
LOW - ~~R.F.~~ FUNDIMENTAL F.R.
125 - 250 Hz HARMONICS
2 - 4 - 8 - LOW BAND

HIGH BAND. 250 \$5000.00
UNDAMENTAL F.R. 1424-
MONIES - 2-4-5.

CORRECTING CONTROL TO
CORRECT RNV DIVERSION
OF THE V.F.O. (ELECTRON
COUPLE HARTLEY) XTRC
OSCILL. PUTS OUT 1000 KHz
CONTROL OF VFO. 1.5
BERT WHILE WE REACH
ZERO BERT - CONTROL
IN XTRC OSC. XTRC OSC
DETEC. & PNP. - CONTROL
IN XTRC CH100. BOTH OSC.
CONTROL IN OPERATOR. - IF
DETEC. IS NEEDED THE HEP
ET COMPARE THE
K12M. OUT. - DON'T CONC.
OUTPUT OF TRANSMITTER
TO ANTENNA - IT CAN BE RIS.
SIGNAL CARRIER ON TO
ANTENNA AND CHOOSE
CALIBRATION BOOK - MC-177
INTERPOLATION - XTRC
OSC POINTS AT BOTTOM
LEFT HAND CORNER OF PAGE.
TO FIND UNKNOWN, DRAW
DRAFTING IS THE PROCESS
OF INTERPOLATION.

FIND FR. WITH DIAL SET
AT 3775.4 - LOOK IN
BOOK AND TAKE READINGS

ABOVE AND BELOW

3776.1 - 3606 kc

3775.2 - ~~X~~

3773.7 - ~~3605 kc~~

$$\frac{2.4}{1.7} \times \frac{1}{X} = \frac{1.7 - 1}{2.4 - 1}$$

SUBTRACT AND CROSS
MULTIPLY AND INVERSE
RESULT FOR DIVISION

ADD RESULT TO LONG IR FR.

3605 + 1 = 3606.5 X FR.

TO COMPENSATE GENER.

WARM UP FOR 15 MINUTS - PLUG IN

HEAD SETS. COUPLE GENER.

TO ANTENNA - CHIN U.F.O

+ V XTRAS SWITCH FOR ZERO

BEAT - SWITCH TO HEAD. OSCILL.

SET GENER. TO APPROXIMATE
FR. AND FR. AND ZERO BEAT
AND CHECK DIAL FOR CALIBRA-
TION OF GENERATOR.

INTRODUCED TO FM SING-CNT
RADIO SC-13/U - FOR ALIGN-
MENT OF FM EQUIPMENT
IN FM. THE INTELLIGEN-
CE IS MODULATED IN THE

PROPORTIONS OF THE F.R.

F.M. ~~without the carrier~~

F.M. ~~without the carrier~~
VARYING F.R.

F.M. OSCILL.

F.R. IS MODULATED BY THE
NEPOTF (VARIABLE) OF MIKE
CHANGES CAPACITANCE
WITH STRENGTH OF SOUND THE
RE FOR SWINGING F.R.

PLATES CLOSER - SWING F.R.
PLATES FARTHER SWING F.R.
OUTPUT OF OSC. IS VARYING
AT AND RADIO FREQU.

REST F.R. IS THE CARRIER
F.R. WITHOUT MODUL.

DEVIATION MAXIMUM AMOUNT
OF CHANGE OF F.R. ABOUT OR
BELOW REST F.R. DEVIATION
DEPENDS IN THE STRENGTH OF
THE MODULATED SIGNAL

SWING OR B.W.

IS TWICE DEVIATION

CHANGE ABOVE

THE REST F.R. AND BELOW REST
PITCH OR SPEED OF MODUL. SIGNAL
DETERMINES F.R. OF MODUL. SIGNAL

OUTPUT OF SG-1210

3 SIGNALS.

1 - P.P.F. MODULATED FM.

2 - P.P.F. UNMODULATED

3 - I.F. UNMODULATED.

RANGE - 20 - 102 MECO.

20 - 20.000 CPS POSSIBLE IN NO
DURATION. P.I.F. OUTPUT 005 TO
10.000 MICROVOLTS. I.F. ATTL
CONTROL, FOR CALIBRATION
CONTROL 20 TO 60MC. EERY
1 MEGACYCLE - FROM 60MC TO
100MC. EERY 1 MEGACYCLE.
ZERO BEAT DIAL POSITION FINE.
- 100 MC. AND HERMOSIT RT
HEATER TUNER VFO AT
OPERATING TEMPERATURE.

DIAL FOR FR. TO METHODS

DIGIT CONTROL IN LINE
KIF SET TO RED LINE.

FIND FR. IN DIAL LOWER
NUMBER. THIS METHOD NOT
VERY ACCURATE. P.I.F. UNMO
DULATED. INTERETHOD.
USE INTERPOSITION - SET DIAL
1 MEGACYCLE PROBE FR. AND
ZERO BEAT. TAKE READING
OF TOP SCALE ADAPTER
AND PUT TOGETHER MAKE
A 4 FIGURE NUMBER.

SET DIAL ONE MC. BELOW
FR. - ZERO BEAT AND TAKE
READINGS EXAMPLE -

FIND READING FOR 52.68 Mc.

53 - 1424

52.68 - X 138.72

52 - 1220

$$\frac{1}{60} \times \frac{204}{1} - \frac{138.72}{1} = 138.72$$

$$1220 + 138.72 = \underline{1388.72}$$

B.C. 342 PHASE +

1

2

3

4

5

6

(C)

(C)

(C)

(C)

(C)

(C)

AN/GRC-2L

F.M. THEORY

P.T. 100P.T. — 100

AN/PRC 6-10

LAB — 93

P.T. — 97

AVE — 94

AN/TRC-

P.T — 95

LAB — 88.5

P.T
CARRIER — 100AVE — 91

AN/GRC-3-8 PHRF-I

R.T. 108 (RT-70)

AM. 65

P.T — 95

LAB — 92

AVE — 93

PHRF-II

R.T. 66

CONTROL

P.T. — 93

LAB — 93

AVE — 93

RADIFAC -

P.T. — (?)

LAB — (?)

AVE — 80.2

MAC-20

AIRCRAFT

P.T. — 91

LAB — 95.5

AVE — 94

Ave — 93.1

D.C.		A.C.
TEST - 88		TEST - 96
L1713 - 100		L1713 - 100
AVE 92		AVE - 97

TUNED OK	TUBES
TEST - 80	TEST - 94
L1713 AVE. 90	L1713 AVE - 92
AVE - <u>83.3</u>	AVE - <u>94.3</u>

POWER SUPPLY	OSCILLATOR
L1713 - 93	100 - 94
TEST - 92	TEST - 96
AVE - 92	AVE - <u>94</u>

TUBE	TEST EQUIPMENT
TEST - 100	TEST - 100
L1713 - 93	L1713 - 89.8
AVE - <u>97</u>	AVE - <u>92.5</u>

B.C. 342	B.C. 191
TEST - 95	TEST - 95
L1713 - 95	L1713 - 95
AVER - 95	AVE - <u>95</u>

AN/GRC-9	SCR-499 - B.C. 610
TEST - 100	TEST - 100
L1713 - 94	L1713 - 85
AVE - <u>96</u>	AVE - <u>90</u>

The selling of the
securities from
the original
equity + future
income + interest
on the securities
is called
the sale of the
securities

Debt instrument
is the
one that
represents
a debt
between
two parties.

(C)

(C)

(C)

(Q)

(C)

(C)

RELUCTANCE - OPOSITION
INDUCTANCE - ABILITY

SL-REACTANCE - OPPOSITION COIL

IMPEDANCE - TOTAL R. Ω

