3 2 MSMWD cross validataion and training set2

November 28, 2021

```
[1]: print('importing modules..')
     import numpy as np
     import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
     import time
     #Training and evaluation
     from sklearn.model_selection import train_test_split
     \#from\ sklearn.ensemble\ import\ RandomForestClassifier
     from sklearn.metrics import log_loss
     from sklearn.calibration import CalibratedClassifierCV
     import warnings
     warnings.filterwarnings("ignore")
     from sklearn.feature_selection import SelectKBest, chi2
     from xgboost import XGBRFClassifier, XGBClassifier
     from hyperopt import hp, STATUS_OK, Trials, fmin, tpe
     # https://www.appliedaicourse.com/lecture/11/
      →applied-machine-learning-online-course/3255/
      \rightarrow models-on-all-features-randomforest-and-xgboost/7/
      \rightarrow module-6-machine-learning-real-world-case-studies
```

importing modules..

```
[2]: print('loading data...')
X = np.load('feature_set2.npy')
Y = np.load('target.npy')
```

loading data...

```
Train:cv:test :: 6520 : 2174 : 2174
Shape of training data (6520, 620)
```

Train test differences - Distribution of classes in train, cv and test set test_imbalance train_imbalance cv_imbalance

```
3
         0.280129
                          0.271472
                                        0.258970
2
         0.233211
                          0.228834
                                        0.220331
                          0.141258
                                        0.147194
1
         0.137994
8
         0.109476
                          0.114110
                                        0.113155
9
         0.093836
                          0.091411
                                        0.097976
6
         0.064397
                          0.069325
                                        0.073137
4
         0.040478
                          0.043558
                                        0.047378
7
         0.037718
                          0.035890
                                        0.037718
5
         0.002760
                          0.004141
                                        0.004140
```

```
[5]: # Hyperparameter tuning: https://www.analyticsvidhya.com/blog/2020/09/
     \rightarrow alternative-hyperparameter-optimization-technique-you-need-to-know-hyperopt/
     # Hyperopt: http://hyperopt.github.io/hyperopt/
     # Hyperopt gihub: https://github.com/hyperopt/hyperopt/wiki/fmin
     print('Tuning..')
     # narrow search on multiple parameters
     space = { 'max_depth': hp.choice('max_depth',[1,3,5,7]),
                'learning_rate': hp.choice('learning_rate',[.5,1]),
                'subsample': hp.choice('subsample',[0.4,.5,.6,.7,1]),
              'colsample_bynode':hp.choice('colsample_bynode', [0.4,.5,.6,.7,1]),
                'n_estimators': hp.choice('n_estimators',np.arange(30,400))}
     def hyperparameter_tuning(params):
         ''return dict should have train loss with key loss for the fmin to_\sqcup
      →minimize. Other params are for analysis'''
         clf = XGBClassifier(eval metric='mlogloss',**params)
         print(params, end = "=>")
         #tick = time.time(),
```

```
clf.fit(x_train,y_train.ravel())
    sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
    sig_clf.fit(x_train, y_train.ravel())
    train_loss = log_loss(y_train,sig_clf.predict_proba(x_train))
    loss = log_loss(y_cv,sig_clf.predict_proba(x_cv))
    #print('Time:',time.time() - tick)
    dic = {"loss": loss, "status": STATUS_OK, 'train_loss':train_loss}
    dic.update(params)
    print(dic)
    return dic
trials = Trials()
best = fmin(fn=hyperparameter_tuning, space = space, trials=trials, algo=tpe.
 ⇒suggest, max_evals=50)
#TRY THIS: use label encoder=False when constructing XGBClassifier
tuned = pd.DataFrame(trials.results).sort_values(by='loss',axis=0)
tuned.to_csv("feature_set2_50_trials.csv")
print(tuned)
print('done')
Tuning..
{'colsample bynode': 0.7, 'learning rate': 1, 'max depth': 5, 'n estimators':
290, 'subsample': 0.5}
=>
{'loss': 0.023425612423347248, 'status': 'ok', 'train_loss':
0.011407115434723836, 'colsample bynode': 0.7, 'learning rate': 1, 'max depth':
5, 'n_estimators': 290, 'subsample': 0.5}
{'colsample_bynode': 0.7, 'learning rate': 0.5, 'max_depth': 3, 'n_estimators':
396, 'subsample': 0.5}
=>
{'loss': 0.02087685188421868, 'status': 'ok', 'train_loss':
0.009884001423295003, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 396, 'subsample': 0.5}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 3, 'n_estimators':
378, 'subsample': 0.4}
=>
{'loss': 0.023025653743884524, 'status': 'ok', 'train_loss':
0.010746776877673454, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
3, 'n estimators': 378, 'subsample': 0.4}
{'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 5, 'n_estimators': 104,
'subsample': 0.6}
=>
{'loss': 0.02657286743619554, 'status': 'ok', 'train_loss':
0.010455834729584498, 'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 5,
'n_estimators': 104, 'subsample': 0.6}
{'colsample bynode': 0.6, 'learning rate': 1, 'max_depth': 1, 'n_estimators':
```

```
260, 'subsample': 0.7}
=>
{'loss': 0.06698892162191686, 'status': 'ok', 'train_loss': 0.0530363844099486,
'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth': 1, 'n_estimators':
260, 'subsample': 0.7}
{'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth': 1, 'n_estimators':
193, 'subsample': 0.6}
=>
{'loss': 0.02214372259672183, 'status': 'ok', 'train loss': 0.01015654648630132,
'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth': 1, 'n_estimators':
193, 'subsample': 0.6}
{'colsample_bynode': 0.4, 'learning_rate': 0.5, 'max_depth': 1, 'n_estimators':
94, 'subsample': 0.6}
=>
{'loss': 0.02149463554007085, 'status': 'ok', 'train_loss':
0.009787639447378508, 'colsample_bynode': 0.4, 'learning_rate': 0.5,
'max_depth': 1, 'n_estimators': 94, 'subsample': 0.6}
{'colsample bynode': 0.5, 'learning rate': 1, 'max_depth': 7, 'n_estimators':
368, 'subsample': 0.7}
{'loss': 0.019427227538402, 'status': 'ok', 'train loss': 0.009752976862590267,
'colsample_bynode': 0.5, 'learning_rate': 1, 'max_depth': 7, 'n_estimators':
368, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 5, 'n_estimators':
179, 'subsample': 1}
=>
{'loss': 0.02184814425666957, 'status': 'ok', 'train_loss':
0.009810508154259268, 'colsample_bynode': 0.7, 'learning rate': 0.5,
'max_depth': 5, 'n_estimators': 179, 'subsample': 1}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
107, 'subsample': 0.6}
{'loss': 0.018458384003673407, 'status': 'ok', 'train_loss':
0.009534720344896873, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max depth': 7, 'n estimators': 107, 'subsample': 0.6}
{'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 5, 'n_estimators': 384,
'subsample': 0.6}
{'loss': 0.026475428759958192, 'status': 'ok', 'train_loss':
0.010508178557739398, 'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 5,
'n_estimators': 384, 'subsample': 0.6}
{'colsample bynode': 0.5, 'learning rate': 1, 'max_depth': 7, 'n_estimators':
166, 'subsample': 1}
=>
{'loss': 0.02375643349743516, 'status': 'ok', 'train_loss':
0.010279731360041275, 'colsample_bynode': 0.5, 'learning rate': 1, 'max_depth':
7, 'n_estimators': 166, 'subsample': 1}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 1, 'n estimators':
```

```
85, 'subsample': 0.4}
=>
{'loss': 0.021774449179950313, 'status': 'ok', 'train_loss':
0.010048078677850476, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max depth': 1, 'n estimators': 85, 'subsample': 0.4}
{'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth': 7, 'n_estimators':
351, 'subsample': 0.5}
=>
{'loss': 0.02168470071614595, 'status': 'ok', 'train loss':
0.010665176613495309, 'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth':
7, 'n_estimators': 351, 'subsample': 0.5}
{'colsample bynode': 1, 'learning rate': 1, 'max_depth': 1, 'n_estimators': 260,
'subsample': 1}
=>
{'loss': 0.02923966831275202, 'status': 'ok', 'train_loss':
0.014324814823812407, 'colsample_bynode': 1, 'learning_rate': 1, 'max_depth': 1,
'n_estimators': 260, 'subsample': 1}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
312, 'subsample': 0.6}
{'loss': 0.020018561868550822, 'status': 'ok', 'train loss':
0.009540143792862166, 'colsample bynode': 0.6, 'learning rate': 0.5,
'max_depth': 3, 'n_estimators': 312, 'subsample': 0.6}
{'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth': 5, 'n_estimators':
131, 'subsample': 0.4}
=>
{'loss': 0.020279786140288903, 'status': 'ok', 'train_loss':
0.011511180332414817, 'colsample_bynode': 0.7, 'learning_rate': 1, 'max_depth':
5, 'n_estimators': 131, 'subsample': 0.4}
{'colsample_bynode': 0.5, 'learning_rate': 0.5, 'max_depth': 5, 'n_estimators':
60, 'subsample': 0.5}
{'loss': 0.02024743104937957, 'status': 'ok', 'train loss': 0.01004122165693674,
'colsample_bynode': 0.5, 'learning_rate': 0.5, 'max_depth': 5, 'n_estimators':
60, 'subsample': 0.5}
{'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth': 7, 'n_estimators':
124, 'subsample': 0.7}
{'loss': 0.018907410272434436, 'status': 'ok', 'train_loss':
0.011322813193230174, 'colsample_bynode': 0.4, 'learning_rate': 1, 'max_depth':
7, 'n_estimators': 124, 'subsample': 0.7}
{'colsample bynode': 0.5, 'learning rate': 1, 'max_depth': 7, 'n_estimators':
331, 'subsample': 0.6}
=>
{'loss': 0.020682398530314776, 'status': 'ok', 'train_loss':
0.010295347879465185, 'colsample_bynode': 0.5, 'learning rate': 1, 'max_depth':
7, 'n_estimators': 331, 'subsample': 0.6}
{'colsample_bynode': 0.4, 'learning rate': 0.5, 'max_depth': 7, 'n_estimators':
```

```
107, 'subsample': 0.7}
=>
{'loss': 0.018726917452867024, 'status': 'ok', 'train_loss':
0.00965618454240924, 'colsample_bynode': 0.4, 'learning_rate': 0.5, 'max_depth':
7, 'n estimators': 107, 'subsample': 0.7}
{'colsample_bynode': 0.4, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
210, 'subsample': 0.7}
=>
{'loss': 0.01867758137582251, 'status': 'ok', 'train loss': 0.00964587911121564,
'colsample_bynode': 0.4, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
210, 'subsample': 0.7}
{'colsample_bynode': 0.4, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
100, 'subsample': 0.7}
=>
{'loss': 0.018706401249036327, 'status': 'ok', 'train_loss':
0.009658105958093924, 'colsample_bynode': 0.4, 'learning_rate': 0.5,
'max_depth': 7, 'n_estimators': 100, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
150, 'subsample': 0.7}
{'loss': 0.018391192836998062, 'status': 'ok', 'train loss':
0.00912838209768504, 'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth':
7, 'n_estimators': 150, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
150, 'subsample': 0.7}
=>
{'loss': 0.018391192836998062, 'status': 'ok', 'train_loss':
0.00912838209768504, 'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth':
7, 'n_estimators': 150, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
150, 'subsample': 0.7}
{'loss': 0.018391192836998062, 'status': 'ok', 'train_loss':
0.00912838209768504, 'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth':
7, 'n estimators': 150, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
157, 'subsample': 0.7}
{'loss': 0.018429803904164835, 'status': 'ok', 'train_loss':
0.009139900692144381, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max_depth': 7, 'n_estimators': 157, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
200, 'subsample': 0.7}
=>
{'loss': 0.018371163231389362, 'status': 'ok', 'train_loss':
0.00912676799290517, 'colsample bynode': 0.7, 'learning rate': 0.5, 'max depth':
7, 'n_estimators': 200, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning rate': 0.5, 'max_depth': 3, 'n_estimators':
```

```
299, 'subsample': 0.7}
=>
{'loss': 0.018671509475577473, 'status': 'ok', 'train_loss':
0.009584000510205958, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max depth': 3, 'n estimators': 299, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
106, 'subsample': 0.7}
=>
{'loss': 0.01839900542325946, 'status': 'ok', 'train loss':
0.009148730075024468, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max_depth': 7, 'n_estimators': 106, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning rate': 0.5, 'max_depth': 3, 'n_estimators':
56, 'subsample': 0.5}
=>
{'loss': 0.021068329168600883, 'status': 'ok', 'train_loss':
0.009964345074784513, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 56, 'subsample': 0.5}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
228, 'subsample': 0.4}
{'loss': 0.019932977688736905, 'status': 'ok', 'train loss':
0.009879139484826695, 'colsample bynode': 0.7, 'learning rate': 0.5,
'max_depth': 7, 'n_estimators': 228, 'subsample': 0.4}
{'colsample_bynode': 1, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
250, 'subsample': 0.7}
=>
{'loss': 0.01966170545436672, 'status': 'ok', 'train_loss':
0.009801018449731757, 'colsample_bynode': 1, 'learning_rate': 0.5, 'max_depth':
3, 'n_estimators': 250, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
231, 'subsample': 1}
{'loss': 0.02109872168564039, 'status': 'ok', 'train_loss':
0.009715667950986029, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max depth': 7, 'n estimators': 231, 'subsample': 1}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 7, 'n_estimators':
273, 'subsample': 0.5}
{'loss': 0.02186130276764457, 'status': 'ok', 'train_loss':
0.010086449629915107, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max_depth': 7, 'n_estimators': 273, 'subsample': 0.5}
{'colsample bynode': 1, 'learning rate': 0.5, 'max_depth': 1, 'n_estimators':
218, 'subsample': 0.7}
=>
{'loss': 0.021369181792280072, 'status': 'ok', 'train_loss':
0.00948657526546517, 'colsample bynode': 1, 'learning rate': 0.5, 'max depth':
1, 'n_estimators': 218, 'subsample': 0.7}
{'colsample_bynode': 0.7, 'learning_rate': 0.5, 'max_depth': 5, 'n_estimators':
```

```
200, 'subsample': 0.4}
=>
{'loss': 0.01984264718390866, 'status': 'ok', 'train_loss':
0.010318000005631553, 'colsample_bynode': 0.7, 'learning_rate': 0.5,
'max depth': 5, 'n estimators': 200, 'subsample': 0.4}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
175, 'subsample': 0.7}
=>
{'loss': 0.01828051540625518, 'status': 'ok', 'train loss':
0.009454544003798904, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 175, 'subsample': 0.7}
{'colsample_bynode': 0.6, 'learning rate': 0.5, 'max_depth': 3, 'n_estimators':
42, 'subsample': 0.7}
=>
{'loss': 0.018278892297853042, 'status': 'ok', 'train_loss':
0.009557546018518022, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 42, 'subsample': 0.7}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
42, 'subsample': 1}
{'loss': 0.022183394020881413, 'status': 'ok', 'train loss':
0.00984623395002492, 'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth':
3, 'n_estimators': 42, 'subsample': 1}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
175, 'subsample': 0.7}
=>
{'loss': 0.01828051540625518, 'status': 'ok', 'train_loss':
0.009454544003798904, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 175, 'subsample': 0.7}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
398, 'subsample': 0.4}
{'loss': 0.01910720949306562, 'status': 'ok', 'train_loss':
0.009773361510059163, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max depth': 3, 'n estimators': 398, 'subsample': 0.4}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
97, 'subsample': 0.5}
{'loss': 0.021290602900053707, 'status': 'ok', 'train_loss':
0.009680478849334586, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 97, 'subsample': 0.5}
{'colsample bynode': 0.6, 'learning rate': 1, 'max_depth': 3, 'n_estimators':
247, 'subsample': 1}
=>
{'loss': 0.023248387238679655, 'status': 'ok', 'train_loss':
0.010688454880334503, 'colsample_bynode': 0.6, 'learning rate': 1, 'max_depth':
3, 'n_estimators': 247, 'subsample': 1}
{'colsample_bynode': 0.6, 'learning rate': 0.5, 'max_depth': 3, 'n_estimators':
```

```
334, 'subsample': 0.6}
=>
{'loss': 0.019935754314252943, 'status': 'ok', 'train_loss':
0.009524425427149546, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max depth': 3, 'n estimators': 334, 'subsample': 0.6}
{'colsample_bynode': 0.6, 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators':
112, 'subsample': 0.7}
=>
{'loss': 0.01829093147152248, 'status': 'ok', 'train loss':
0.009465980169112702, 'colsample_bynode': 0.6, 'learning_rate': 0.5,
'max_depth': 3, 'n_estimators': 112, 'subsample': 0.7}
{'colsample bynode': 0.6, 'learning rate': 1, 'max_depth': 3, 'n_estimators':
359, 'subsample': 0.7}
=>
{'loss': 0.017919715350828213, 'status': 'ok', 'train_loss':
0.010523712028967356, 'colsample_bynode': 0.6, 'learning rate': 1, 'max_depth':
3, 'n_estimators': 359, 'subsample': 0.7}
{'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth': 1, 'n_estimators':
45, 'subsample': 0.6}
{'loss': 0.16551458300029137, 'status': 'ok', 'train loss': 0.1558045257692576,
'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth': 1, 'n_estimators': 45,
'subsample': 0.6}
{'colsample bynode': 0.5, 'learning rate': 1, 'max depth': 3, 'n estimators':
115, 'subsample': 0.4}
=>
{'loss': 0.019725126725513572, 'status': 'ok', 'train_loss':
0.011027072182896423, 'colsample_bynode': 0.5, 'learning_rate': 1, 'max_depth':
3, 'n_estimators': 115, 'subsample': 0.4}
{'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth': 3, 'n_estimators':
165, 'subsample': 0.5}
{'loss': 0.020131677723017445, 'status': 'ok', 'train_loss':
0.010827717713793853, 'colsample_bynode': 0.6, 'learning_rate': 1, 'max_depth':
3, 'n estimators': 165, 'subsample': 0.5}
100%|
                           | 50/50 [23:45<00:00,
28.50s/trial, best loss: 0.017919715350828213]
        loss status train_loss colsample_bynode learning_rate max_depth \
46 0.017920
                      0.010524
                                                             1.0
                                                                          3
                ok
                                              0.6
38 0.018279
                ok
                      0.009558
                                              0.6
                                                             0.5
                                                                          3
40 0.018281
                      0.009455
                                              0.6
                                                             0.5
                                                                          3
                ok
                                              0.6
                                                             0.5
                                                                          3
37 0.018281
                ok
                      0.009455
45 0.018291
                ok
                                              0.6
                                                             0.5
                                                                          3
                      0.009466
                                                                          7
27 0.018371
                ok
                      0.009127
                                              0.7
                                                             0.5
                                                                          7
24 0.018391
                ok
                      0.009128
                                              0.7
                                                             0.5
                                                                          7
23 0.018391
                ok
                      0.009128
                                              0.7
                                                             0.5
25 0.018391
                 ok
                      0.009128
                                              0.7
                                                             0.5
                                                                          7
29 0.018399
                ok
                      0.009149
                                              0.7
                                                             0.5
                                                                          7
```

26	0.018430	ok	0.009140	0.7	0.5	7
9	0.018458	ok	0.009535	0.7	0.5	7
28	0.018672	ok	0.009584	0.7	0.5	3
21	0.018678	ok	0.009646	0.4	0.5	7
22	0.018706	ok	0.009658	0.4	0.5	7
20	0.018727	ok	0.009656	0.4	0.5	7
18	0.018907	ok	0.011323	0.4	1.0	7
41	0.019107	ok	0.009773	0.6	0.5	3
7	0.019427	ok	0.009753	0.5	1.0	7
32	0.019662	ok	0.009801	1.0	0.5	3
48	0.019725	ok	0.011027	0.5	1.0	3
36	0.019843	ok	0.010318	0.7	0.5	5
31	0.019933	ok	0.009879	0.7	0.5	7
44	0.019936	ok	0.009524	0.6	0.5	3
15	0.020019	ok	0.009540	0.6	0.5	3
49	0.020132	ok	0.010828	0.6	1.0	3
17	0.020247	ok	0.010041	0.5	0.5	5
16	0.020280	ok	0.011511	0.7	1.0	5
19	0.020682	ok	0.010295	0.5	1.0	7
1	0.020877	ok	0.009884	0.7	0.5	3
30	0.021068	ok	0.009964	0.7	0.5	3
33	0.021099	ok	0.009716	0.7	0.5	7
42	0.021291	ok	0.009680	0.6	0.5	3
35	0.021369	ok	0.009487	1.0	0.5	1
6	0.021495	ok	0.009788	0.4	0.5	1
13	0.021685	ok	0.010665	0.6	1.0	7
12	0.021774	ok	0.010048	0.6	0.5	1
8	0.021848	ok	0.009811	0.7	0.5	5
34	0.021861	ok	0.010086	0.7	0.5	7
5	0.022144	ok	0.010157	0.4	1.0	1
39	0.022183	ok	0.009846	0.6	0.5	3
2	0.023026	ok	0.010747	0.7	1.0	3
43	0.023248	ok	0.010688	0.6	1.0	3
0	0.023426	ok	0.011407	0.7	1.0	5
11	0.023756	ok	0.010280	0.5	1.0	7
10	0.026475	ok	0.010508	1.0	1.0	5
3	0.026573	ok	0.010456	1.0	1.0	5
14	0.029240	ok	0.014325	1.0	1.0	1
4	0.066989	ok	0.053036	0.6	1.0	1
47	0.165515	ok	0.155805	0.6	1.0	1
					-	_
	n_estimators	s sub	sample			
46	359	9	0.7			
38	42	2	0.7			
40	475	-	0.7			

0.7

0.7

0.7

0.7

24 23 25 29 26 9	150 150 150 106 157 107 299	0.7 0.7 0.7 0.7 0.7 0.6 0.7
21	210	0.7
22	100	0.7
20	107	0.7
18	124	0.7
41	398	0.4
7	368	0.7
32	250	0.7
48 36	115 200	0.4
31	200	0.4
44	334	0.6
15	312	0.6
49	165	0.5
17	60	0.5
16	131	0.4
19	331	0.6
1	396	0.5
30	56	0.5
33	231	1.0
42	97	0.5
35	218	0.7
6 13	94 351	0.6
12	85	0.5
8	179	1.0
34	273	0.5
5	193	0.6
39	42	1.0
2	378	0.4
43	247	1.0
0	290	0.5
11	166	1.0
10	384	0.6
3	104	0.6
14	260	1.0
4 47	260 45	0.7
done	40	0.0
dolle.		

[1]: import pandas as pd pd.read_csv("feature_set2_50_trials.csv")

[1]:		Unnamed: 0	loss	status	train_loss	colsample_bynode	learning_rate	\
	0	46	0.017920	ok	0.010524	0.6	1.0	
	1	38	0.018279	ok	0.009558	0.6	0.5	
	2	40	0.018281	ok	0.009455	0.6	0.5	
	3	37	0.018281	ok	0.009455	0.6	0.5	
	4	45	0.018291	ok	0.009466	0.6	0.5	
	5	27	0.018371	ok	0.009127	0.7	0.5	
	6	24	0.018391	ok	0.009128	0.7	0.5	
	7	23	0.018391	ok	0.009128	0.7	0.5	
	8	25	0.018391	ok	0.009128	0.7	0.5	
	9	29	0.018399	ok	0.009149	0.7	0.5	
	10	26	0.018430	ok	0.009140	0.7	0.5	
	11	9	0.018458	ok	0.009535	0.7	0.5	
	12	28	0.018672	ok	0.009584	0.7	0.5	
	13	21	0.018678	ok	0.009646	0.4	0.5	
	14	22	0.018706	ok	0.009658	0.4	0.5	
	15	20	0.018727	ok	0.009656	0.4	0.5	
	16	18	0.018907	ok	0.011323	0.4	1.0	
	17	41	0.019107	ok	0.009773	0.6	0.5	
	18	7	0.019427	ok	0.009753	0.5	1.0	
	19	32	0.019662	ok	0.009801	1.0	0.5	
	20	48	0.019725	ok	0.011027	0.5	1.0	
	21	36	0.019843	ok	0.010318	0.7	0.5	
	22	31	0.019933	ok	0.009879	0.7	0.5	
	23	44	0.019936	ok	0.009524	0.6	0.5	
	24	15	0.020019	ok	0.009540	0.6	0.5	
	25	49	0.020132	ok	0.010828	0.6	1.0	
	26	17	0.020247	ok	0.010041	0.5	0.5	
	27	16	0.020280	ok	0.011511	0.7	1.0	
	28	19	0.020682	ok	0.010295	0.5	1.0	
	29	1	0.020877	ok	0.009884	0.7	0.5	
	30	30	0.021068	ok	0.009964	0.7	0.5	
	31	33	0.021099	ok	0.009716	0.7	0.5	
	32	42	0.021291	ok	0.009680	0.6	0.5	
	33	35	0.021369	ok	0.009487	1.0	0.5	
	34	6	0.021495	ok	0.009788	0.4	0.5	
	35	13	0.021685	ok	0.010665	0.6	1.0	
	36	12	0.021774	ok	0.010048	0.6	0.5	
	37	8	0.021848	ok	0.009811	0.7	0.5	
	38	34	0.021861	ok	0.010086	0.7	0.5	
	39	5	0.022144	ok	0.010157	0.4	1.0	
	40	39	0.022183	ok	0.009846	0.6	0.5	
	41	2	0.023026	ok	0.010747	0.7	1.0	
	42	43	0.023248	ok	0.010688	0.6	1.0	

43	0	0.023426	ok	0.011407	0.7	1.0
44	11	0.023756	ok	0.010280	0.5	1.0
45	10	0.026475	ok	0.010508	1.0	1.0
46	3	0.026573	ok	0.010456	1.0	1.0
47	14	0.029240	ok	0.014325	1.0	1.0
48	4	0.066989	ok	0.053036	0.6	1.0
49	47	0.165515	ok	0.155805	0.6	1.0
_	max_depth	n_estimators	subs	sample		
0	3	359		0.7		
1	3	42		0.7		
2	3	175		0.7		
3	3	175		0.7		
4	3	112		0.7		
5	7	200		0.7		
6	7	150		0.7		
7	7	150		0.7		
8	7	150		0.7		
9	7	106		0.7		
10	7	157		0.7		
11	7	107		0.6		
12	3	299		0.7		
13	7	210		0.7		
14	7	100		0.7		
15	7	107		0.7		
16	7	124		0.7		
17	3	398		0.4		
18	7	368		0.7		
19	3	250		0.7		
20	3	115		0.4		
21	5 7	200		0.4		
22		228		0.4		
23 24	3 3	334 312		0.6 0.6		
2 4 25	3	165		0.5		
26	5	60		0.5		
27	5	131		0.3		
28	7	331		0.4		
29	3	396		0.5		
30	3	56		0.5		
31	7	231		1.0		
32	3	97		0.5		
33	1	218		0.3		
34	1	94		0.6		
35	7	351		0.5		
36	1	85		0.3		
37	5	179		1.0		
01	J	113		1.0		

38	7	273	0.5
39	1	193	0.6
40	3	42	1.0
41	3	378	0.4
42	3	247	1.0
43	5	290	0.5
44	7	166	1.0
45	5	384	0.6
46	5	104	0.6
47	1	260	1.0
48	1	260	0.7
49	1	45	0.6