03-regular-languages-and-lexical-analysis

Riconoscere i linguaggi

Prendiamo l'esempio di $L = \{a^nb^n \mid n > 0\}$, una buona scelta è usare uno stack, prima inserisco tutte le a, poi faccio una pop per ogni b che leggo, se alla fine lo stack è vuoto allora la parole appartiene al linguaggio.

Però con dei linguaggi più complessi non ho scelta e devo usare una macchina a stati.

Linguaggi regolari

Le grammatiche regolari sono grammatiche libere che hanno solo produzioni della forma:

- \bullet $A \rightarrow a$
- ullet A o aB
- ullet A o arepsilon

Questi linguaggi generato delle espressioni regolari, vengono riconosciuti attraverso l'uso di automi deterministici e non.

Per la loro facilità di analisi sono alla base dell'analisi lessicale.

Espressioni regolari (regex)

Fissiamo un alfabeto A e un certo numero di operatori.

Definiamo allora le espressioni regolari in modo induttivo:

- Caso base:
 - $\forall a \in \mathcal{A}$ è una regex
 - ε è una regex
- Passo induttivo: se r_1 e r_2 sono espressioni regolari allora:
 - $r_1 \mid r_2$ è una regex detta alternanza
 - ullet $r_1 \cdot r_2$ oppure $r_1 r_2$, è una regex chiamata concatenazione
 - ullet r_1^* è una regex chiamata *Kleene star* e significa ripetere 0 o più volte il simbolo r_1
 - (r_1) è una regex detta parentesi, si usa per esprimere la precedenza

Linguaggi denotati

Se un linguaggio può essere denotato da un'espressione regolare possiamo dire che la regex *denota* quel linguaggio.

Consideriamo un'espressione regolare r su \mathcal{A} , il linguaggio denotato da quell'espressione L(r) è definibile tramite induzione.

- Caso base:
 - ullet $L(a)=\{a\}\ orall a\in \mathcal{A}$
 - $L(\varepsilon) = \{\varepsilon\}$
- Passo induttivo:

Se
$$r=r_1\mid r_2$$
 allora $L(r)=L(r_1)\cup L(r_2)$
Se $r=r_1r_2$ allora $L(r)=\{w_1w_2\mid w_1\in L(r_1)\wedge w_2\in L(r_2)\}$
Se $r=r_1^{1}$ allora $L(r)=\{\varepsilon\}\cup\{w_1w_2\dots w_k\mid k\geq 1\wedge \forall i:1\leq i\leq k.\,w_i\in L(r_1)\}$

Come nell'aritmetica anche qua i vari operatori hanno delle precedenze:

- 1. Kleene star
- 2. Concatenazione
- 3. Alternanza

Tutte le operazioni sono associative a sinistra.

Esempi di linguaggi denotati

- $\bullet \ \ L(a|b) = \{a,b\}$
- $L((a|b)(a|b)) = \{aa, ab, ba, bb\}$
- $L(a^*) = \{a^n | n \ge 0\}$
- $L(a|a^*b) = \{a\} \cup \{a^nb|n \ge 0\}$

Automi a stati finiti

Sono usati per determinare se una parola appartiene ad un linguaggio denotato da una certa espressione regolare.

Vedremo due tipi di automi:

- 1. Nondeterministc Finite state Automata (NFA)
- Deterministic Finite state Automata (DFA)
 Solitamente i calcoli negli NFA risultano molto più pesanti perchè si devono percorrere molti più cammini di derivazione rispetto ad un DFA.

Nondeterministc Finite state Automata (NFA)

Un automa a stati finiti non deterministico è rappresentato dalla tupla:

$$\mathcal{N} = (S, \mathcal{A}, \mathrm{move}_n, s_0, F)$$

nella quale:

- S è l'insieme degli stati
- \mathcal{A} è il vocabolario con $\varepsilon \notin \mathcal{A}$
- $s_0 \in S$ è lo stato iniziale
- $F \subseteq S$ è l'insieme degli stati finali o accettati
- move_n : $S \times (A \cup \{\varepsilon\}) \to 2^S$ la funzione di transizione, che associa una tupla <stato,carattere> ad un elemento dell'insieme potenza di S.

Rappresentazione grafica

La tupla ${\mathcal N}$ viene rappresentata come un grafo diretto, dove:

- Gli stati sono visti come nodi
- Lo stato iniziale è identificato da una freccia entrante e proveniente dal vuoto
- Lo stato finale è un nodo con un doppio cerchio
- Gli archi sono la funzione di transizione

Esempio

Il non determiniscmo è dato dalla presenza dalla presenza di più stati nell'immagine della funzione $move_n(S_0, a)$, che va sia in S_0 sia in S_1 .

Possiamo anche creare una rappresentazione tabellare della funzione di transizione:

	ε	a	b
S_0	Ø	$\{S_0,S_1\}$	$\{S_0\}$
S_1	Ø	Ø	$\{S_2\}$
S_2	Ø	Ø	$\{S_3\}$
S_3	$\{S_3\}$	Ø	Ø

Linguaggi accettati

Un NFA \mathcal{N} accetta/riconosce una parola w se e solo se esiste almeno un cammino che fa lo spelling di w da s_0 ad uno stato di F.

Il linguaggio accettato da \mathcal{N} , detto $L(\mathcal{N})$ è l'insieme delle stringhe accettate da \mathcal{N} .

Esempio 1

Il linguaggio accettato è $L((a|b)^*abb)$.

Esempio 2

Il linguaggio generato è $L(aa^*|bb^*)$.

Costruzione di Thompson

Un algoritmo che permette di costruire un NFA \mathcal{N} , partendo da una regex r, tale che $L(\mathcal{N}) = L(r)$.

La costruzione è basata sulla definizione induttiva di regex:

- Caso base: $r \ \ \hat{e} \ \ \varepsilon$ oppure un simbolo dell'alfabeto
 - Definisco un NFA per riconoscere $L(\varepsilon)$
 - Definisco un NFA per riconoscere L(a)

Dati due NFAs \mathcal{N}_1 e \mathcal{N}_2 tali che $L(\mathcal{N}_i) = L(r_i)$ per i=1,2

Definisco un NFA per riconoscere $L(r_1|r_2)$

Definisco un NFA per riconoscere $L(r_1r_2)$

Definisco un NFA per riconoscere $L(r_1^*)$

* Definisco un NFA per riconoscere $L((r_1))$

Graficamente la base della costruzione di Thompson è:

Mentre il passo induttivo come:

Ogni passo per la costruzione introduce al più 2 nuovi stati, quindi l'NFA generato ha al più 2k stati, con k il numero di simboli e di operatori nell'espressione regolare. In ogni NFA intermedio ci sono:

- Esattamente uno stato finale
- Nessun vertice entrante nello stato iniziale
- Nessun vertice uscente dallo stato finale

Complessità

Consideriamo di costruire un NFA con n nodi e m archi, ogni passo aggiunge al più 2 stati e 4 archi.

Consideriamo ogni passo svolto in tempo costante, abbiamo un totale di |r| passi, allora:

- ullet Spaziale: n+m ovvero $O(2|r|) \implies O(|r|)$
- Temporale: O(|r|)

Esempio di applicazione

Supponiamo di avere la regex $r=(a|b)^*abb$, dobbiamo inanzitutto scomporla in sotto-regex.

$$r_1 = (a|b) \qquad
ightarrow \qquad r_2 = r_1^* = (a|b)^* \qquad
ightarrow \qquad r_3 = r_2 \cdot abb = (a|b)^*abb$$

Ora possiamo iniziare la costruzione di Thompson partendo da r_1 e aggiungendo pezzi fino a r_3 :

Iniziamo con l'automa per r_1 :

Ora dobbiamo implementare la *Klenee star* per poter ripere r_1 0 o più volte:

Infine passiamo all'automa per r_3 nel quale semplicemenete prendiamo quello per r_2 e facciamo l'append di abb:

Simulazione di NFAs

Dopo aver costruito il nostro NFA dobbiamo verificare su una parola $w \in L(\mathcal{N})$.

Per poter fare questa verifica ci serve *simulare l'auotma*, dobbiamo trovare un'algoritmo formale in grado di poter fare questa verifica senza usare *backstrack* che farebbe aumentare assurdamente il costo della funzione.

Inanzitutto potremmo eliminare le ε -transizioni, che aggiungono solo molto overhead ai nostri algoritmi, introduciamo così le ε -chiusure.

ε -closure

 $\mathsf{Sia}\; (S, \mathcal{A}, \mathsf{move}_n, s_0, F) \; \mathsf{un} \; \mathsf{NFA} \text{, sia} \; t \in S \; \mathsf{e} \; \mathsf{sia} \; T \subset S.$

Definiamo ε -closure($\{t\}$) l'insieme di stati in S che sono raggiungibili da t tramite 0 o più ε -transizioni (posso raggiungere anche t stesso).

Definiamo invecete ε -closure(T) come:

$$arepsilon - \operatorname{closure}(T) = igcup_{t \in T} arepsilon - \operatorname{closure}(\{t\})$$

Computazione

Per eseguire l'algoritmo useremo le seguenti strutture dati:

Uno stack;

- Un array di boolean alreadyon di dimensione |S| per verificare in tempo costante se uno stato t è nello stack;
- Una matrice per registrare move_n, ogni entry (t, x) è una linked listz contenente tutti gli stati raggiungibili con una x-transizione da t.

Supponiamo di avere la struttura move $_n$ con scope globale.

```
function closure-wrapper()
    Stack S = Stack();
    foreach index = 1 in |S| do
        alredayOn[index] = False;
    closure(t,S)

function closure(State t, Stack S)
    S.push(t);
    alreadyOn[t] = True;
    foreach u ∈ move(t,ε) do
        if not alreadyOn[u] then
        closure(u,S);
```

Complessità

Le righe:

- 1. S.push(t)
- 2. set alreadyOn[t]
- 3. find next $u \in move(t, \epsilon)$
- 4. test alreadyOn[u]

Vengono eseguite in tempo costante, dobbiamo allora trovare ogni quante volte vengono riptute.

Le righe 1 e 2 vengono eseguite ad ogni invocazione, ogni stato va nello stack al più una volta per via di alreadyon, assumendo di avere n stati abbiamo O(n).

Le righe 3 e 4 vengono eseguite per ogni $u \in move(t, \varepsilon)$, nel caso peggiore ogni stato va nello stack e ogni stato ha almeno una ε -transazione, quindi se abbiamo m archi O(m). Concludendo l'algoritmo delle ε -closure ha complessità O(n+m).

Algoritmo per la simulazione

```
input : NFA N = (S, A, move, s0, F ), w$
output : "yes" if w ∈ L(N), "no" altrimenti

states = ε-closure({s0});
symbol = nextchar();
while symbol != $ do
```

```
states = ε-closure(UtEstates move(t, symbol));
    symbol = nextchar();
if states n F != Ø then
    return "yes";
else
    return "no";
```

Esempio di simulazione

Dato l'NFA sopra, pensiamo di dover verificare cha la parola w=ababb appartenga o meno al linguaggio generato da esso.

Ci serviamo di una tabella per vedere meglio i passaggi:

states	symbol	move	ε -closure
T_0 ={0,1,2,4,7}	а	{3,8}	{1,2,3,4,6,7,8}
T_1 ={1,2,3,4,6,7,8}	b	{5,9}	{1,2,4,5,6,7,9}
T_2 ={1,2,4,5,6,7,9}	а	{3,8}	T_1
T_1	b	{5,9}	T_2
T_2	b	{5,10}	{1,2,4,5,6,7,10}
$T_3 = \{1, 2, 4, 5, 6, 7, 10\}$	\$		

Complessità

La comeplessità non costante è data dal ciclo while.

Lo speudo-codice è semplificato, nella realtà avremmo bisogno di una paio di strutture dati per immagazzinare gli stati.

- Uno stack per lo stato corrente, ovvero gli stati a sinistra dell'assegnamento dentro il while.
- Uno stack per tenere traccia dei nuovi stati dati dall'unione della funzione ε-closure.

 Dobbiamo quindi usare una funzione per scambiare i contenuti dei due stack, con

complessità $\Theta(x)$ perchè dobbianmo sempre scambiare tutti gli x elementi dello stack. Ora assumiamo che il nostro NFA abbia n stati e m archi.

Per ogni ciclo while devo:

- Popolare il nuovo stack con complessità O(n+m), devo fare le ϵ -closure.
- Scambiare le stack con complessità O(n). Il ciclo viene ripetuto per tutta la lunghezza di w, quindi O(|w|(n+m)), nel caso specifico in cui l'NFA derivi dalla costruzione di Thompson 2|r|=n+m quindi posso scrivere O(|w||r|).

Conclusione sugli NFA

Dati una regex r ed una parola w, quanto costa capire se $w \in L(r)$? Applico l'algoritmo della costruzione di Thompson con O(|r|). Simulo l'NFA ottenuto con O(|w||r|). In conclusione ho O(|w||r|).

Digressione sulle ε -closure

Sia $(S, \mathcal{N}, \text{move}_n, s_0, F)$ un NFA e sia $M \subseteq S$.

Allora la ε -closure(M) è il più piccolo insieme $X \subseteq S$ tale che X sia una soluzione di:

$$X = M \cup \{N' \mid N' \in \mathrm{move}_n(N, \varepsilon) \land N \in X\}$$

Nota

Diciamo il più piccolo per evitare di incorrere in loop infiniti come nel caso di cicli composti da ε -transizioni.

La formula va letta come: X è composto da M più tutti gli stati N' che sono raggiungibili da N tramite una ε -transizione, con N uno stato di X.

Sembra una formula impossibile da calcolare visto che per trovare X dovrei avere già X, invece grazie al teorema del punto fisso è calcolabile.

Teorema del punto fisso

L'equazionaccia vista prima è una particolare equazione su insiemi che prende la forma generale di X=f(X).

Teorema

Sia $f: 2^D \to 2^D$ per un insieme finito D e sia inoltre f monotona, quindi se $X \subseteq Y$ allora $f(X) \subseteq f(Y)$.

Allora $\exists m \in \mathbb{N}$ tale per cui esiste un'unica soluzione minima dell'equazione X = f(X) che è $f^m(\emptyset)$.

Dimostrazione

Prima dimostriamo che $\exists m \in \mathbb{N}$ tale che $f^m(\emptyset)$ è soluzione di X = f(X).

Per definizione abbiamo immediatamente che $\emptyset \subseteq f(\emptyset)$ e per la monotonia della funzione allora $f(\emptyset) \subseteq f^2(\emptyset)$.

Per il principio di induzione possiamo affermare che $f^i(\emptyset)\subseteq f^{i+1}(\emptyset)\ \forall i\in\mathbb{N}$, abbiamo quindi una catena $\emptyset\subseteq f^1(\emptyset)\subseteq f^2(\emptyset)\subseteq f^3(\emptyset)\dots$

Visto che l'insieme D non è infinito la mia catena dovrà arrivare ad un punto in cui un insieme sarà uguale ad un altro, quindi per un qualche m si ha che

$$f^m(\emptyset)=f^{m+1}(\emptyset)=f(f^m(\emptyset))$$
, guarda caso ho proprio dimostrato la forma $X=f(X)$.

Ora proviamo che $f^m(\emptyset)$ è l'unica soluzione minima.

Poniamo per assurdo che esista un'altra soluzione A, allora per ipotesi A = f(A) e quindi $A = f(A) = f^2(A) = \cdots = f^m(A)$.

Sappiamo che $\emptyset \subseteq f(A)$ allora per monotonia della funzione $f^m(\emptyset) \subseteq f^m(A)$.

Allora sapendo che $f^m(A) = A$ possiamo concludere che $f^m(\emptyset) \subseteq A$, quindi $f^m(\emptyset)$ è l'unica soluzione minima.

Deterministic Finite state Automata (DFA)

Definiamo un automa a stati finiti deterministico come la tupla

$$\mathcal{D} = (S, \mathcal{A}, \text{move}_d, s_0, F)$$

Dove tutte le componenti sono unguali ad un NFA fatta eccezione per la funzione di transizione, infatti è definta come:

$$\mathrm{move}_d: S imes \mathcal{A} o S$$

E' possibile notare molto velocemente alcune caratteristiche di questa funzione che si ripercuotono su tutti i DFA:

- In tutti i DFA non esistono ε -transizioni per via di com'è definito il dominio della funzione move_d.
- Se move_d è totale allora per ogni stato c'è **esattamente** una una a-transizione $\forall a \in A$.
- Se move_d è parziale allora per ogni stato esiste al più una a-transizione $\forall a \in A$.

Simulazione di DFAs

Linguaggio riconosciuto

Il linguaggio accettato da un DFA \mathcal{D} , denotato da $L(\mathcal{D})$, è l'insieme delle parole w tali che:

- O esiste un cammino che fa lo spelling $w=a_1\dots a_k$ con $k\geq 1$ dallo stato iniziale di $\mathcal D$ ad uno finale.
- Oppure lo stato iniziale è anche finale $w = \varepsilon$.

Simulazione con funzione di transizione totale

Iniziando dallo stato inziale seguo il cammino che fa lo spelling di w, se raggiungo uno stato finale ritorno "yes", altrimenti ritorno "no".

Simulazione con funzione di transizione parziale

Iniziando dallo stato iniziale seguo il cammino che fa lo spelling di $w=a_1\dots a_k$, se per qualche carattere a_i non esiste uno stato "target" ritorno immediatamente "no". Se raggiungo uno stato finale allora ritorno "yes",altrimenti ritorno "no".

Funzione parziale vs. totale

Dato un DFA \mathcal{D} con funzione di transizione parziale posso allora definire un altro DFA \mathcal{D}' con funzione di transizione totale tale che $L(\mathcal{D}) = L(\mathcal{D}')$.

Devo usare uno stato "morto" detto sink, ovvero uno stato che sarà l'obbiettivo di tutte le transizioni mancanti e avrà dei self-loop per ogni lettera dell' alfabeto.

Costruzione dei subset

Dato un NFA \mathcal{N} devo costruire un DFA \mathcal{D} tale che $L(\mathcal{D}) = L(\mathcal{N})$.

Idea: Uso le ε -closure per mappare i subset degli stati di un NFA in un singolo stato di un DFA.

Algoritmo

```
input : NFA N = (S, A, moven, s0, F)
output : DFA D = (R, A, moved, t0, E) tale che L(D) = L(N)
t0 = \epsilon - closure(\{s0\});
R = \{t0\};
set t0 as unmarked;
while some T \in R is unmarked do
        mark T;
        foreach a ∈ A do
                 T' = ε-closure(Ut∈T moven(t, a));
                 if T' != Ø then
                         moved(T, a) = T';
                          if T' ∉ R then
                                  add T' to R;
                                   set T' as unmarked;
foreach T \in R do
        if (T \cap F) != \emptyset then set T \in E;
```

Complessità

La complessità è data dal ciclo while, dal ciclo foreach annidato e dalla computazione delle ε -closure.

Dobbiamo fare delle premesse, poniamo che l'NFA abbia n stati e m archi, mentre il DFA in output abbia n_d stati.

- Il ciclo while va a scorrere tutti gli stati del DFA contenuti in $\mathbb R$ per verificare unmarked nel caso peggiore $O(n_d)$.
- Il ciclo foreach annidato scorre ogni singolo elemento dell'alfabeto e quindi viene ripetuto $\Theta(|\mathcal{A}|)$ volte.
- Infine il calcolo delle ε -closure ha costo O(n+m). Risulta che la complessità finale $O(n_d \cdot |\mathcal{A}| \cdot (n+m))$.

Esempio

Proviamo ora dato un NFA a convertirlo in DFA.

Prima cosa cerco tutto l'alfabeto, ho solo due lementi a e b, quindi dovrò fare le ε -cchiusure solo di questi per ogni nodi.

Stati	ε -closure a -transizioni	ε -closure b -transizioni
$arepsilon(0) = T_0 = \{0,1,2,4,7\}$	$\varepsilon(3,8) = T_1 = \{1,2,3,4,6,7,8\}$	$arepsilon(5) = T_2 = \{ ext{1,2,4,5,6,7}\}$
$T_1 = \{1,2,3,4,6,7,8\}$	$arepsilon(3,8)=T_1$	$arepsilon(5,9) = T_3 = \{ exttt{1,2,4,5,6,7,9}\}$
$T_2 = \{1,2,4,5,6,7\}$	$arepsilon(3,8)=T_1$	$arepsilon(5)=T_2$
$T_3 = \{1,2,4,5,6,7,9\}$	$arepsilon(3,8)=T_1$	$arepsilon(5,10)=T_4=\{$ 1,2,4,5,6,7,10 $\}$
$T_4 = \{1,2,4,5,6,7,10\}$	$arepsilon(3,8)=T_1$	$arepsilon(5)=T_2$

Facendo una rappresentazione grafica:

Come si può notare non è il miglior DFA che possiamo ottenere, ma è comunque un DFA valido per linguaggio $L((a|b)^*abb)$.

Minimizzazione DFA

Dato un DFA \mathcal{D} devo ottenere un DFA \mathcal{D}' , con il minor numero di stati possibile, tale che $L(\mathcal{D}') = L(\mathcal{D})$.

L'idea è he ci sono degli stati ridondanti, ovvero presi due stati s e t allora:

$$\forall a \in \mathcal{A}^*, \mathrm{move}_d^*(s,a) \in F \iff \mathrm{move}_d^*(t,a) \in F$$

Equivalenza di stati

Sia $\mathcal{D}=(S,\mathcal{A},\mathrm{move}_d,s_0,F)$ un DFA con funzione di transizione totale , allora $s,t\in S$ sono equivalenti se e solo se vale:

$$orall a \in \mathcal{A}^*, \mathrm{move}_d^*(s,a) \in F \iff \mathrm{move}_d^*(t,a) \in F$$

Dove la funzione di transizione multi-passo move $_d^*$ è definita con l'induzione sulla lunghezza della stringa.

- $ullet \ \mathrm{move}_d^*(s,arepsilon) = s$
- $\bullet \ \ \mathrm{move}_d^*(s,wa) = \mathrm{move}_d(\mathrm{move}_d^*(s,w),a)$

Raffinamento delle partizioni

Con questo processo arriveremo a dividere gli stati in blocchi, ovvero sottoinsiemi disgiunti di S.

Iniziamo con 2 blocchi:

- $B_1 = F$
- $B_2 = S \backslash F$

Facciamo questa scelta perchè con $s \in B_1$ e $t \in B_2$ non sono equivalenti perchè $\operatorname{move}_d^*(s,\varepsilon) \in F$ e $\operatorname{move}_d^*(t,\varepsilon) \notin F$.

Per i passi successivi dobbiamo verificare che in ogni blocco ci siano solo stati equivalenti.

Se tutti gli stati un $B_i = \{s_1, \dots, s_k\}$ sono equivalenti allora $\forall a \in \mathcal{A}$ gli stati obbiettivo delle a-transizioni da s_1, \dots, s_k sono tutti nello stesso blocco.

Il blocco B_i può essere diviso se per qualche $s,t\in B_i$ $\mathrm{move}_d(s,a)\in B_j\wedge\mathrm{move}_d(t,a)
otin B_j$, la divisione si compie dividendo in due insiemi:

aggiungere un sink e il min-DFA in output non è detto abbia una funzione totale.

- $\bullet \ \ \{s \in B_i \mid \mathrm{move}_d(s,a) \in B_j\}$
- $\{s \in B_i \mid \text{move}_d(s,a) \notin B_j\}$ Si noti che se non abbiamo un DFA con funzione completa possiamo sempre

Esempio 1

Creo i blocchi iniziali $B_1=\{E\}$ e $B_2=\{A,B,C,D\}$. Separo B_2 : $B_1=\{E\},\ B_{21}=\{D\},\ B_{22}=\{A,B,C\}$. Separo $B_{22}:B_1=\{E\},\ B_{21}=\{D\},\ B_{221}=\{B\},\ B_{222}=\{A,C\}$.

Esempio 2

Dato il seguente DFA con funzione parziale restituire il DFA minimizzato.

Avendo una funzione parziale posso aggiungere un sink per rendere la funzione totale.

Iniziamo con $B_1 = \{D\}$ e $B_2 = \{A, B, C, sink\}$.

Separo B_2 perchè $\mathrm{move}_d(C/B,a) \in B_1$, $B_1 = \{D\}$ e $B_{21} = \{A,sink\}$ e $B_{22} = \{B,C\}$.

Separo B_{21} perchè $\mathrm{move}_d(A,a) \in B_{22}$, $B_1 = \{D\}$ e $B_{211} = \{A\}$ e $B_{212} = \{sink\}$ e

 $B_{22} = \{B, C\}.$

Infine separo B_{22} perchè $\mathrm{move}_d(C,b) \in B_{212}$, $B_1=\{D\}$ e $B_{211}=\{A\}$ e $B_{212}=\{sink\}$ e

 $B_{221} = \{B\} \ \mathsf{e} \ B_{222} = \{C\}.$

Risulta che il DFA è già minimizzato.

Dimensioni di un DFA

Lemma

 $\forall n \in \mathbb{N}^+$ esiste un NFA con n+1 stati il cui DFA minimo ha almeno 2^n stati e una funzione di transizione totale.

Dimostrazione

Prendiamo il il linguaggio $L=((a|b)^*a(a|b)^{n-1})$, allora ci sarà un NFA che accetta L con almeno n+1 stati.

Allora per contraddizione, poniamo esista un DFA $\mathcal D$ che accetta L e ha $k < 2^n$ stati. Sappiamo che nel linguaggio L ci sono esattamente 2^n parole distinte con la lunghezza n. Allora ci sono due percorsi in $\mathcal D$ tali che:

- La lunghezza è n.
- Compongono rispettivamente w_1 e w_2 con $w_1 \neq w_2$.
- Condividono almeno un nodo.

Allora per i cammini x_1, x_2 e x_i ho due possibilità mutualmente esclusive.

- $w_1 = x_1 a x$ e $w_2 = x_2 b x$
- $w_1 = x_1 b x$ e $w_2 = x_2 a x$

Possiamo supporre senza problemi che $w_1 = x_1 ax$ e $w_2 = x_2 bx$.

Allora possiamo definire $w_1'=x_1ab^{n-1}\in L(\mathcal{D})$, lo stato che raggiunge w_1' in \mathcal{D} è finale. Ma allora ho una contraddizione perchè lo stato non può essere finale visto che è raggiunto anche da $x_2bb^{n-1}\not\in L(\mathcal{D})$.

Di conseguenza non posso avere l'ultima parte del cammino in comune e quindi devo avere un numero di stati tale che $k \geq 2^n$.

Pumping lemma per linguaggi regolari

Lemma

Sia L un linguaggio regolare, allora:

- $\exists p \in \mathbb{N}^+$
- $\forall z \in L$ tale che |z| > p
- $\exists u, v, w$ tali che:
 - $z = uvw \wedge$
 - $ullet |uv| \leq p \wedge$
 - |v|>0 \wedge
 - $ullet \ \ orall i\in \mathbb{N}.\, uv^iw\in L$

Dimostrazione

Sia L un linguaggio regolare, allora esiste un DFA $\mathcal{D}=(S,\mathcal{A},\mathrm{move}_n,s_0,F)$ tale che $L=L(\mathcal{D})$

Sia p=|S|-1, allora tutti i cammini da s_0 a qualche stato finale che attraversano al più una volta ogni stato hanno lunghezza limitata da p.

Allora per una parola z vale |z|>p, allora possiampo scomporre z in $z=a_1\dots a_pz'$ e siamo sicuri che almeno uno stato, chiamiamolo s^* , è stato attraversato più di una volta durante $a_1\dots a_p$.

Questo implica che esiste un ciclo in \mathcal{D} che parte da s^* e torna in s^* , questo ciclo può essere indicato come $a_{i+1} \dots a_j$ con $i < j \le p$.

Possiamo ora scomporre la parola in:

- $u = a_1 \dots a_i$
- $v = a_{i+1} \dots a_j$ (sarebbe il ciclo, ovvero il termine pompabile)

$$ullet \quad w = egin{cases} z' & j = p \ a_{j+1} \dots a_p z' & j$$

Possiamo quindi dire che $|uv| \leq p$ e che |v| > p perchè per definizione un ciclo tocca almeno un nodo, ed essendo quindi un ciclo può essere ripetuto un numero indefinito di volte mantenendo comunque $\forall i \in \mathbb{N}.\ uv^iw \in L(\mathcal{D}).$

Applicazioni del pumping lemma

Mostra per contraddizione che un linguaggio non è regolare.

- Assumiamo il linguaggio regolare.
- Mostriamo che not(Thesis) è vera.
 - Thesis: $\exists p \in \mathbb{N}^+. \, \forall z \in L: |z|>p. \, \exists u,v,w. \, P$ Dove $P\equiv (z=uvw \wedge |uv|\leq p \wedge |v|>0 \wedge \forall i \in \mathbb{N}. \, uv^iw \in L)$
 - not(Thesis): $orall p\in \mathbb{N}^+$. $\exists z\in L: |z|>p$. orall u,v,w. Q Dove $Q\equiv (z=uvw\wedge |uv|\leq p\wedge |v|>0)$ implica che $(\exists i\in \mathbb{N}.\ uv^iw
 otin L)$

Esempio

Proviamo a dimostrare che $L=\{a^nb^n|n>0\}$ non è regolare.

Assumiamo che L sia regolare e prendiamo la parola $z=a^pb^p$, partizioniamo ora i termini come segue $u=a_1\dots a_x$, $v=a_{x+1}\dots a_p$ e infine $w=b_1\dots b_p$. Il partizionamento scelto rispetta i vincoli dell'ipotesi perchè:

- |uv| < p contenendo solo a.
- |v| > 0 perchè v contiene almeno un'occorenza di a. Possiamo ora scegliere i = 0 e vedere che la parola diventa $uv^0w = a^xb^p$ con x < p, abbiamo quindi dimostrato che $uv^0w \notin L$ e quindi il linguaggio non è regolare.

Chiusure dei linguaggi regolari

Unione

Questa proprietà è visibile graficamente tamite l'algoritmo di Thompson, basta prendere gli automi per i due linguaggi e fare l'*alternanza*.

Concatenazione

Anche per questa chiusura è possibile costruire un NFA che accetti il nuovo linguaggio usando le regole Thompson.

Complementazione

Prendiamo il linguaggio L su un certo alfabeto A, allora il complementare del linguaggio è dato da $A \setminus L$ ed è sicuramente regolare (non ho trovato una dimostrazione).

Intersezione

Per dimostrarla possiamo ricondurci al caso dell'unione con De Morgan.

$$L_1 \cap L_2 = \neg(\neg(L_1 \cap L_2)) = \neg(\neg L_1 \cup \neg L_2)$$

Ora avendo detto che l'unione ed la complementazione di due linguaggi regolari $L_{1,2}$ è regolare lo è quche la sua intersezione.

Analisi lessicale

In questa fase vogliamo identificare quali parti del nostro codice corrispondono alle *keyword*, tipo identificatori, operatori, ecc...

Gli elementi che vogliamo riconoscere prendono il nome di *lessemi* ed il nostro obbiettivo è trasformarli in un flusso di token che andranno a costruire i terminali della nostra grammatica.

Tpicamente esistono token univoci:

- per ogni keyword tipo for, while, ecc...
- per ogni operatore, infatti in C + e ++ hanno token diversi
- un token univoco per tutti gli identificatiori
- un token per ogni segno di punteggiatura

Obbiettivo

L'obbiettivo dell'analizzatore lessicale è riconoscere i *lessemi*, ovvero quelle porzioni di codice che corrispondono ai vari token e ritornarli.

Tipicamente vengono ritornati delle tuple, solitamente <token-nome> oppure <token-valore>:

- <token-nome> è il nome scelto per indicare quello specifico token.
- <token-valore> è un puntatore alla symbol tabel che contiene le informazioni di quel token.

Lessemi

Sono descritti da regex e vengono riconosciuti da un automa a stati che esegue istruzioni specifiche quando riconosce una parola.

Pattern matching basato su NFAs

Viene simulato un NFA i cui stati finali sono associati a delle azioni.

- 1. Simuliamo l'NFA.
- 2. Continuiamo la smiluazione finchè nessun'altra azione è possibile, ovvero per *longest* match.
- 3. Se nell'insieme di stati in cui siamo ci sono delle azioni le eseguiamo, eseguiamo le istruzioni dalla prima all'ultima, in caso di parità ci sono delle priorità d rispettare.
- 4. Se invece non ci sono azioni dobbiamo tornare indietro nella simulazione fino a trovare un'insieme di stati valido con azioni.
 - Nel nostro andare indietro dobbiamo ricordarci di far scorrere il puntatore al buffer di input.
 - Possiamo fare il pattern matching anche su DFAs, basta tradurre e semplificare il nostro NFA.