

2023 Fall 데이터통신 (Course Intro.)

조성현 교수 컴퓨터학부 chopro@hanyang.ac.kr

Contents

- Course Syllabus
- 이동통신의 역사

◉ 교과목 개요 및 목적

- 본 강좌에서는 인터넷 기반 통신 공학의 기본인 TCP/IP 5 계층 프로토콜 스택 학습을 통해 통신과 프로토콜의 기본 개념을 학습 한다. 그리고 데이터 통신 기술의 근간이 되는 아날로그 및 디지 털 전송 기술에 대해 학습하고 관련된 핵심 이론들에 대해 학습한 다.
 - ➤ 데이타통신공학: Layer 1 + Layer 2 + Case Study
 - > 컴퓨터네트워크: Layer 3 + Layer 4 + Layer 5
- Case study로써 무선랜 (Wi-Fi) 시스템, 5G/6G, 및 위성통신 시스템에 대해 학습함으로써 이론적으로 학습한 물리계층(Layer 1) 및 데이터링크계층(Layer 2) 기술이 실제 시스템에 어떻게 적 용되는지 이해할 수 있는 기회가 제공된다.

2

COURSE INTRO

교과목 개요

Textbook

- Data Communications and Networking (6th edition by Behrouz A. Forouzan)
- Grading Policy
 - Mid-term (40%)
 - Final (50%)
 - Homework and Attendance (10%)

Week	Contents
1	Course Introduction & Introduction to Data Communications
2	TCP/IP Protocol Suites & Network Systems
3	Physical Layer1: Data and Signals
4	Physical Layer2: Digital Transmission
5	Physical Layer3: Analog Transmission
6	Physical Layer4: Analog Transmission
7	Physical Layer5: Multiplexing and Spreading
8	Midterm Exam (On or Offline)

4

TENTATIVE SYLLABUS

교과목 개요

Week	Contents
9	Data Link Layer1: Data Link Control (Part I)
10	Data Link Layer2: Data Link Control (Part II)
11	Data Link Layer3: Multiple Access (Part I)
12	Data Link Layer4: Multiple Access (Part II)
13	Case Study1: WiFi Systems
14	Case Study2: 5G/B5G Systems
15	Case Study3: Satellite Communications Systems
16	Final Exam

■ 강의 내용에 추가될 수 있는 주제

■ 강의 내용은 수강생 여러분들의 선행 학습 내용에 따라 변동 가능

Week	Contents	
	Network Layer – Internet Protocol	
	Network Layer – Routing	
	Transport Layer – TCP	
	Transport Layer – UDP	
	Wireshark	

6

COURSE WEB PAGE

교과목 개요

- 강의노트는 LMS를 통해 공유할 계획입니다.
- Office Hour: 이메일을 통한 사전 시간 약속
- 공휴일 강의 (별도 보강 또는 온라인 녹화영상 수업활용)
- 중간고사/기말고사 → 대면 시험 실시
- ◉ 과목 담당 조교
 - 오주현 (joni9@hanyang.ac.kr) 임정주(dlawjdwn12@hanyang.ac.kr)
- ◉ 첫 번째 레포트:
 - 이 과목에서 배우게 되는 내용 및 배우고 싶은 내용

Contents

- Course Syllabus
- 이동통신의 역사

산업구조의 변화와 기업이 필요로 하는 인재상등

■ 빅데이터, AI, 로봇, 퀀텀컴퓨팅,

산업구조의 변화와 기업이 필요로 하는 인재상등

산업구조의 변화와 기업이 필요로 하는 인재상등

◉ 기업이 필요로 하는 미래 인재

- 프로그래밍을 뛰어나게 잘하는 사람?
- ChatGPT 활용을 뛰어나게 잘하는 사람?
- 창의력과 논리력이 뛰어난 사람?
- 조직에 적응을 잘 하는 사람?
- 우리는 일단, 한 가지는 남들보다 잘 했음 → 컴퓨터 전공

Flexibility 및 Adaptability

10

이동통신 기술 발전사

이동통신의 역사

■세대별 무선통신기술 성능 비교

	4G	5G	6G
최대전송속도	1Gbps	20Gbps	1Tbps (1000Gbps)
사용자경험속도	0.01Gbps	0.1Gbps	1Gbps
무선지연시간	10ms	1ms	100µs
네트워크관리	가상화	부분 지능화	지능화 (Al 기반)
다운로드시간 (아바타 4K 영화 최대속도 기준)	2분 40초	8초	0.16초

12

5G 기술 성능 및 6G 성능 목표 비교

항목	5G	6G 기술 성능 목표(KPI)
초성능	최대전송률 : 20Gbps 체감전송속도 : 100Mbps 광액세스 : 최대 20Gbps	최대전송률 : 1Tbps 체감전송속도 : 1Gbps 광액세스 : Tbps급
초대역	주파수대역 : 100st 대역 이하 대역폭: 수(t) 대역폭	주파수대역 : 100分 대역 이상 대역폭: 수십份 대역폭
초공간	지원고도 : 지상 120m 이하 지원속도 : 500km/h 이하	지원고도 : 지상 10km 이하 지원속도 : 1000km/h 이하
초정밀	무선구간지연 : 1msec 이하	무선구간지연 : 1msec 이하 종단간 지연 : 수msec
초지능	해석적 기반의 이동통신	해석적 기반의 이동통신
초현실	시청각 3D 미디어(3자유도)	5감 인지 실감 미디어(6자유도)

<자료=과학기술정보통신부>

14

5G 시스템

이동통신의 역사

5세대(G) 이동통신 개념

*자료:미래창조과학부

4G 대비 1000배 빠른 미래 이동통신 기술 및 서비스

- 개인당 1Gbps급 전송속도, 빠른 접속속도(1초 → 1 msec) 등을 통해 사람·사물·정보가 언제 어디서나 연결
- 800MB 영화 내려받기 속도 비교: 4G LTE-A(약 40초), 5G (1초 이내)
- 5G 시대에서 달라지는 생활상: 사람과 사람, 사람과 사물, 사물과 사물이 연결되어 다양한 생활정보가 활용되고, 모바일을 통해 초다시점, 홀로그램 등 서비스 체험 가능

5세대 이동통신을 기반으로 구현 가능한 기술들

홀로그램 영상 전송

-기가급 데이터의 전송을 통해 UHD(초고화질)보다 더 정보량이 많은 3D(입체) 홀로그램 영상을 스마트폰 으로 바로 전송받아 재생 가능

-3D 영화 감상, 홀로그램 영상 통화 가능

무인자동치

-센서가 달린 차량·운전자·도로·보행자· 교통통제 시스템 등이 모두 연결돼 실시간 으로 정보를 교환하며 운행하는 차량 운행 이 가능해짐.

사물인터넷

-기존 LTE(4세대 이동통신)보다 최대 1000배 빠른 데이터 전송 속도를 활용해 자동차, 냉장고 등 다양한 기기 를 무선으로 연결

가상현실 서비스

-가상현실 기기를 이용해 끊김 없는 동영상을 전송받아 현실과 같은 느낌을 주는 서비스 이용 가능

-서울에 있는 집 안방에서도 1만㎞ 넘게 떨어진 영국 프리미어리그 축구장에서 경기를 보는 것 같은 경험 제공

원격 진료

-의사가 직접 찾아가기 어려운 격오지에 환자 발생 시 로봇을 투입해 인명 구조, 치료 등이 가능한 원격 진료 서비스

네트워크 로봇

한 대로는 제한된 로봇의 지능을 네트워크로 연결해 개별 로봇은 센서를 통해 시각·청각· 촉각 등의 정보를 입력하고 인식·판단·제어는 클라우드 컴퓨팅을 이용해 로봇의 제한된 능력을 극복 가능.

16

INTERNET OF THINGS

이동통신의 역사

Everything will be connected!

What kind of job exists in communications area?

Standard

Research

숙 국내 및 국제 통신 표준화 활동 (ITU, IEEE, 3GPP, IETF, TTA 등)

System Development

- ❖ 차세대 통신 기술 연구 (5G, IoT, NG-WiFi)
- ❖ 휴대폰/기지국 핵심 기술 연구
- ❖ 통신기능이 들어가는 분야 (대부분의 하드웨어 및 소프트웨어)

Patents

- ❖통신 기능이 들어가는 모든 곳 (웹, 앱, 로봇, 자동차 등등)
- ❖소프트웨어 엔지니어 역할 비중 확대
- ❖ 발명 특허 출원 (국내 특허, 해외 특허)❖ 특허 관련 전문직 (특허청 공무원, 변리사)

18

