

SYDNEY TECHNICAL HIGH SCHOOL

Year 9 Yearly

2014

Name:	
Teacher:	

Time Allowed: 70 minutes

INSTRUCTIONS TO STUDENTS

- > Questions are not of equal value
- > Approved calculators may be used
- All necessary working should be shown
- > Write using black or blue pen
- > Full marks may not be awarded for careless work or illegible writing

EXAMINER'S USE ONLY

Question	Total	Mark
Factorisation	10	
Q 1,2,3	6	
Coordinate Geometry	11	
Q 4	5	
Equations Inequations & Formula	8	
Q5,6,7,8	8	
Statistics	10	
Q 9	3	
Trigonometry	8	
Q 10	6	
Total	75	

Factorise fully the following:

1	$60x^2 - 45xy$		2	$9a^2 - 100b^2$	
		(1)			
3	$2y^2 + 3y - 2$		4	2	(1)
,	29 + 39 - 2		4	$x^2 - 4x - 5$	
)		(1)			(1)
Sin	nplify where possible:		1		

	npiny where possible:				
5	$\frac{p^2+p-12}{2}$		6	$\frac{t-5}{4(t+2)} \div \frac{t}{t+2}$	
	2 <i>p</i> + 8			4(t+2) t+2	
			ş		
		(2)			(1)
<u>) </u>		(2)			(1)
7	$\frac{3x-2}{2} - \frac{4x+3}{2}$		8	$\frac{m-2}{2}$ given that $m \neq 2$	

7	$\frac{3x-2}{27} - \frac{4x+3}{9}$	8	$\frac{m-2}{2-m}$ given that $m \neq 2$
To a second seco			
	(2)		
	· ·		(1)

1	Calculate the gradient of AB:	2	A straight line passes through the points (2, 1) and (5, 4). Calculate its gradient.
	A		
	4-3- (2, 4)		
	$-4 -3 -2 -1$ 1 2 3 4 \bar{x}		
	B (-2, -4)		
		E	
	(1)		(1)
3	The x-intercept of the linear graph $y = 5x - 6$ is:	4	The equation of a linear graph with gradient 5 that
,			passes through the point $(6, -4)$ is: (Write your answer in the form $y = mx + b$
	(1)		
5	The gradient of the line perpendicular to $2x - 5y - 7 = 0$ is:		
	(2)		(2)
6	Calculate the distance between $(4, -3)$ and $(-1, -5)$. Leave your answer in surd form.	7	Calculate the midpoint of the line segment between the point (-4, 8) and (2, -6):
	(1)		(1)
8	Find the equation of the line parallel to the x axis	9	Write down the equation of the line with a gradient of
	but 3 units below it.		3 and a y intercept of -4
			(1)
	(1)		

Solve the following:

1	4x + 3 = 7x + 33	2	$\frac{5}{x-2} = \frac{-7}{8}.$	
			x-2 8	
				(1)
3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	6-3(x+4) > 19	(1)
		7	0 - 3(x 1 - 4) > 13	
†				
5	(1) Rearrange the following equation to make x the	6	4(n+3) = 2(7-4n) + 5	(2)
	subject $y = ax + b$	_	(iii) 5) 2 (iii) 5	
	y = ux + b			
The state of the s				
	(1)			(2)

From the following stem and leaf graph state the number of pieces of data, the range and the class size.

3

Key: $3 \mid 2 = 32$

Stem | Leaf

- 2 | 1469
- 3 | 0035999
- 4 | 2478
- 5 | 0 0 1 3 4

Range:

Class size:

(2)

The number of goals scored in each match by a soccer team is shown below.

0 2 3 4 2 1 5 2 3 3

1 2 4 1 0 0 2 1 0 2

2 1 0 1 3

Display the results in a frequency table.

Score	Tally	Frequency
0		
1		
2		
3		
4		
5		

(1) (b) Display the data as a combined histogram and frequency polygon.

The table below shows the number of days that students were absent in a class over one term.

Score	Frequency	Cumulative frequency
0	2	****
1	5	
2	9	
3	5	
4	4	WIII W
5	3	
6	2	

(a) Complete the cumulative frequency column.

(1)

Find the number of students who were absent (b) for fewer than 4 days during the term.

(1)

(c) Find the median

(1)

Find the mean (d)

(1)

Find the mode (e)

(1)

(2)

1.	Write an expression for $\cos \theta$	2.	Calculate the value of $ heta$ accurate to the nearest degree.
			8.6 cm
	(1)		(2)
			(2)
3.	What is sin 58° rounded to 4 decimal places?	4.	If $\cos\theta$ = 0.0349, find the value of θ to the nearest degree.
	(1)		(1)
5.	Find the value of <i>n</i> correct to 2 decimal places. 28 cm 28°	6.	What is S20°W as a true bearing?
	(2)		(1)

Miscellaneous

1. Factorise and simplify where possible:

a.
$$(y+1)^2 - (x+6)^2$$

(2)

2. Simplify:

$$\frac{4}{(x+1)(x-2)} + \frac{5}{(x-2)(x+4)}$$

(2)

3. Paul manufactures frames for reading glasses. He finds that his profit \$P\$ per day is given by the formula $p = 70x - 5x^2$ where x is the number of frames made per day. When does Paul make a profit of \$240 per day?

- 4. A circle is enclosed within a square:
 - a. Find the equation of the line AB (3)

b. Find the distance AB

(2)

5. Solve for x:

$$\frac{2x+1}{3} - \frac{1-x}{6} = 2\frac{1}{2}$$

6.	Mary Jane wishes to hire a car for 1 day. She has a total of \$65 to spend. The Acapulco Gold Car Rental charges a flat fee of \$30 per day plus \$0.23 per kilometre. How far can she travel on her budget?	company
		(2)
7.	The Columbian Car Pental Company charges a flat fee of \$29 per day, but only \$0.10 per kilometre. Col	
	The Columbian Car Rental Company charges a flat fee of \$38 per day, but only \$0.19 per kilometre. Con this rate with the Acapulco Gold company from the previous question, for what distance will the total of the two companies be the same?	
		(2)
8.	A man is currently three times as old as his son. Four years ago he was four times as old as his son was How old is his son now?	then.
		(2)

9.	In an office there are 19 people and only four levels of salary paid: \$40 000 (1 person), \$32 000 (3 people), \$25 000 (6 people) and \$18 000 (9 people).						
	a.	Find the median and modal salaries of this group	(2)				
	b.	Explain why the mode is an unsatisfactory measure of the middle in this case.	(1)				
. Justine							

10. The 'Good Ship' is at A, 1km due north of the 'Enemy Ship' at 12pm. After this time the good ship moves on a bearing of 045°T (position B), while the enemy ship remains stationary, at D, as shown below:

original position Good Ship

A

D

C

C

C

C

Enemy Ship

- a. The good ship has travelled 1.5km from A. Find, to the nearest metre:
 - i. How far East it is from its original position at A? (2)
 - ii. How far North it is from its original position at A? (2)
 - iii. How far it is from the enemy ship (2)

Factorise fully the following:

		7	5 Sir	ω μ
	1 - 10 1	= (p + 4)(p - 3) $= (p + 4)(p - 3)$ $= (p + 4)(p - 3)$ $= (p + 4)(p - 3)$	Simplify where possible: $\frac{\left(2\chi -1\right)\left(\chi +2\right)}{\frac{p^{2}+p-12}{2p+8}}$	5x(4x-3y) $ 5x(4x-3y) $ $ 5x(4x-3y) $
(2)	•	(2)		. (1)
~~.		× .	6	2
	$\frac{2-m}{m}$ given that $m \neq 2$	1 t-5 x the 4th the	(2c - 5)(x + 1)	$\frac{9a^{2}-100b^{2}}{(3a)^{2}-(10b)^{2}}$ $= (3a-10b)(3a+10b)$

Ξ

(1)

Ξ.

(2)

11 Marks

							 .r	· ·			ω	 T						
G - 13	Find the equati but 3 units belo	1 22 g	d= \((-3 -+5)^2 + (4 -++1)^2 \)		$m = -\frac{5}{2}$ (2)	-5y = -27c+7 y: 2/5)c = 7/5	The gradient of the line perpendicular to $2x - 5y - 7 = 0$ is:		×=65	y=0 5x-6=0	The x-intercept of the linear graph $y = 5x - 6$ is:	= 2, (1)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(4 + 1)		2 (2,4)		1 Calculate the gradient of AB:
y = 3x-4 (1)	9 Write down the equation of the line with a gradient of 3 and a y intercept of -4	, (<u>-</u> , <u>-</u>)	$NP = \left(\frac{-4+2}{2}, \frac{8-6}{2}\right)$	7 Calculate the midpoint of the line segment between the point (-4, 8) and (2, -6):	. (2)		y = 5x -34	y+4 = 5x-30	y++4 = 5(x-6)	passes through the point $(6, -4)$ is: (Write your answer in the form $y = mx + b$	4 The equation of a linear graph with gradient 5 that	(1)		1	1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M. 1-4	and (5, 4). Calculate its gradient.	4

8 marks

Solve the following:

	$\frac{5}{x-2} = \frac{-7}{8}$.	-7x +14 = 40	L/90 - = x	(1)	6-3x-12 >19	-3x735	3x 4-25 x 4-25/3	$4(n+3) = 2(7 - 4n) + 5 \tag{2}$	S+ ug-+11= 21+ut)	L= NO!	N = 7/12	
-	7			4			····	 9				
h	4x+3=7x+33 $-30=3x$	○1- = 76		(1)	-6.>x	x 4 -5		the following equation to make x the	$y = \alpha x + b$	4-b,	. م الم « الم «	ර)
Ľ				m		<u></u>		 ស				

10 marks Statistics

the class size	2276 6607 217	(2)	cumulative frequency Cumulative frequency Cumulative frequency Cumulative frequency column. Column
From the following stem and leaf graph state the number of pieces of data the range and the rlace civa			The table below shows the number of days that students were absent in a class over one term. Score Frequency Cumulative frequency
number of pieces of			(a) (b) (b) (c) (c) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f
d leaf graph state the		" () ()	Trequency table. Frequency Cools Ombined histogram Of Goals Solution of Goals Of Goals
he following stem and	3 2 = 32 leaf 1469 0035999 2478 00134	2t-31	Isplay the data as a condition of the co
1 From t	Key: 3 2 3 4 5	Range: Class size:	Frequency
			

(2)

(1)

	(2)	= 52.66	
	*	n: 38 tan 28	
T001		tan 28 = 28	
Noon		2280 11	
What is \$20°W as a true bearing? ハ	laces. 6.	Find the value of <i>n</i> correct to 2 decimal places.	က်
. 88	(1)	0.8480	
If $\cos heta = 0.0349$, find the value of $ heta$ to the nearest degree.	ces? 4.	What is sin 58° rounded to 4 decimal places?	Ċ.
= 8-6 13-2	(1)	-	
tan 0 = opp	***.	(
		(S) A " -10	
13.2 cm			
8.6 cm			
Calculate the value of $\boldsymbol{\theta}$ accurate to the nearest degree.		Write an expression for $\cos \theta$	H

Miscellaneous (

1. Factorise and simplify where possible: a. $(y+1)^2 - (x+6)^2$

2

$$\frac{4}{(x+1)(x-2)} + \frac{5}{(x-2)(x+4)}$$

$$4(x+4) + 5(x+1)$$

(+x)(x-x)(+x) (+x)(x-x)(+x) = 2+x5+ 91+267 (++x)(x-x)(+x) (++x)5+ (++x)+

(x+1)(x-2)(x+4)

(2)

Paul manufactures frames for reading glasses. He finds that his profit \$\mathcal{P}\$ per day is given by the formula $p = 70x - 5x^2$ where x is the number of frames made per day. When does Paul make a profit of \$240 per day?

$$70x - 5x^2 = 240$$

 $-5x^2 + 70x - 240 = 0$.
 $5(x^2 - 14x + 48) = 0$.
 $(x-6)(x-8) = 0$.
ether 6 or 8 framos par doug

4. A circle is enclosed within a square:

6. Mary Jane wishes to hire a car for 1 day. She has a total of \$65 to spend. The Acapulco Gold Car Rental company

charges a flat fee of \$30 () ay plus \$0.23 per kilometre. How far can she travel on her budget?

= \$30 + 0.23x

Cost

- And segme grades (-4,3) (4,-3) a. Find the equation of the line AB (3)

- 8 gm m=-3/4 (3,4)
 - 9=-3x+9+4.
- b. Find the distance AB
- d= U(-4-4)2+ (3+23)2
- 547

$$\int_{3}^{2x+1} - \frac{1-x}{6} = 2\frac{1}{2}$$

$$\int_{3}^{2x+1} - \frac{1-x}{6} = 2\frac{6}{2}$$

$$\int_{3}^{2x+1} - \frac{1-x}{6} = \frac{6}{2}$$

- (4, -3) (4,3) (4, 4)
- (5)
 - 18+19 O=
- Solve for x:

$$\frac{2x+1}{3} - \frac{1-x}{6} = 2\frac{1}{2}$$

$$6x - \frac{6}{2}$$

$$3x + \frac{1}{6} - \frac{1-x}{6} = \frac{6}{2}$$

$$3x + \frac{1}{6} - \frac{1-x}{6} = \frac{6}{2}$$

$$2(2x+1) - (1-x) = 15$$

$$4(x+2) - (1+x) = 16$$

$$5x = 14$$

$$x = 14$$

- x= 152.17 km. 65 - 30 + 0.23x. 36 = 0,232
- this rate with the Acapulco Gold company from the previous question, for what distance will the total cost from The Columbian Car Rental Company charges a flat fee of \$38 per day, but only \$0.19 per kilometre. Comparing the two companies be the same?

(5)

8. A man is currently three times as old as his son. Four years ago he was four times as old as his son was then. How old is his son now?

(7)

$$2x - 4 = 4 (x - 4)$$

$$3x - 4 = 4x(x - 4)$$

$$3x - 4 = 4x(-16)$$

$$(2 = x)$$

- ٥ In an office there are 19 people and only four levels of salary paid: \$40 000 (1 person), \$32 000 (3 people), \$25 000 (6 people) and \$18 000 (9 people).
- a. Find the median and modal salaries of this group Median 000/sig

(2)

Mode > \$18,000

Explain why the mode is an unsatisfactory measure of the middle in this case

The scores may lean to one end but the end is not in such cases, mees sure, the median but the mode is the lowest said to be the middle closer measure of the 2 people in the office and of these people earn more than the mode middle

> 10. The 'Good Ship' is غُرِيًّ 1km due north of the 'Enemy Ship' at 12pm. After this time the good ship moves on a bearing of 045°T (position B), while the enemy ship remains stationary, at D, as shown below:

current position of Good Ship

- The good ship has travelled 1.5km from A. Find, to the nearest metre:
- i. How far East it is from its original position at A?
- ii. How far North it is from its original position at A7
- iii. How far it is from the enemy ship

(2)

(2)

(2)

E

= 5th MIS

DB= 2.316 ---

(ii) con 45 =