MT5823 Semigroup theory: Problem sheet 4 (James D. Mitchell) Congruences and presentations

Congruences

- **4-1**. Prove that every equivalence relation on a semigroup of left zeros is a congruence. Find an equivalence relation on a rectangular band which is not a congruence.
- **4-2.** Let S be a semigroup, and let ρ be a congruence on S. Prove that if $e \in S$ is an idempotent, then its equivalence class e/ρ is a subsemigroup of S, and e/ρ is an idempotent in the quotient S/ρ . Also, prove that if S is finite and x/ρ is an idempotent of S/ρ , then x/ρ contains an idempotent.
- **4-3**. Let $S = I \times \Lambda$ be a rectangular band where $|I| = |\Lambda| = 2$.
 - (a) Show that if ρ is a congruence on S and $(1,1)\rho(2,2)$, then $\rho = S \times S$;
 - (b) Describe the least congruence ρ on S such that $(1,1)\rho(1,2)$.
 - (c) Prove that S has 4 distinct congruences, and describe the quotient of S by each of these congruences.
- **4-4**. Let ρ and σ be congruences on a semigroup S such that $\rho \subseteq \sigma$. Prove that

$$\sigma/\rho = \{ (x/\rho, y/\rho) \in S/\rho \times S/\rho : (x, y) \in \sigma \}$$

is a congruence on S/ρ and that $(S/\rho)/(\sigma/\rho) \cong S/\sigma$.

Presentations

4-5. Let S be the semigroup defined by the presentation

$$\langle a, b \mid a^3 = a, b^4 = b, ba = a^2b \rangle.$$

Prove that S has order 11. Find the idempotents of S. Draw the right Cayley graph of S.

4-6. Let S be the semigroup defined by the presentation

$$\langle a, b, 0 \mid a^2 = b^2 = 0, \ aba = a, \ bab = b, \ 0^2 = 0, 0a = a0 = b0 = 0b = 0 \rangle.$$

Prove that S has order 5. Write down the multiplication table for S. Draw the left and right Cayley graphs of S

4-7. Let S be the semigroup defined by the presentation

$$\langle a_1, \ldots, a_n \mid a_1 a_2 = a_1, \ a_2 a_3 = a_2, \ldots, a_{n-1} a_n = a_{n-1}, a_n a_1 = a_n \rangle$$

Prove that $a_i a_j = a_i$ for any i and j, and so S is the semigroup of left zeros of order n.

4-8. Consider the monoid S defined by the presentation $\langle x,y \mid xyx=1 \rangle$. Prove that xy=yx holds in S. Prove that every element of S is equal to one of x^i , y^j , xy^j ($i \ge 0$, $j \ge 1$). Find two integers which generate the additive (semi)group $\mathbb Z$ and satisfy 2p+q=0. Prove that $S \cong \mathbb Z$.