Math 591 Lecture 11

Thomas Cohn

9/25/20

Tangent Vectors

Last time, we proved that for $p \in U \subseteq M$, $\phi : U \to \mathbb{R}^n$ chart, $\phi = (x^1, \dots, x^n)$, that $\forall v \in T_pM$, we can write

$$v = \sum_{i=1}^{n} v([x^{i}]) \left. \frac{\partial}{\partial x^{i}} \right|_{p}$$

This is based on:

Thm: If $g: B \to \mathbb{R}$, with $B \subseteq \mathbb{R}^n$ being the open ball centered at the origin, then there exist $g_{ij} \in C^{\infty}(B)$ s.t. $\forall r \in B$,

$$g(r) = g(0) + \sum_{j=1}^{n} r^{j} \frac{\partial g}{\partial r^{j}}(0) + \frac{1}{2} \sum_{i,j=1}^{n} r^{i} r^{j} g_{ij}(r)$$

with $g_{ij}(0) = \frac{\partial^2 g}{\partial r^i \partial r^j}(0)$.

Proof: Start with $g(r) = g(0) + \int_0^1 \frac{d}{dt} g(tr) dt$. Then by the fundamental theorem of calculus, this is equal to

$$= g(0) + \int_{0}^{1} \sum_{j=1}^{n} r^{j} \frac{\partial g}{\partial r^{j}}(tr) dt = g(0) + \sum_{j=1}^{n} r^{j} \int_{\underbrace{0}}^{1} \frac{\partial g}{\partial r^{j}}(tr) dt = g(0) + \sum_{j=1}^{n} r^{j} g_{j}(r)$$

We can then repeat this argument with each g_j , so for each j, there are some $g_{ji} \in C^{\infty}$ s.t.

$$g_j(r) = g_j(0) + \sum_{i=1}^n r^i g_{ji}(r)$$

(The exact computation may be off here by a factor of 2, due to symmetry.) Observe that

$$g_j(0) = \int_0^1 \frac{\partial g}{\partial r^j}(0) dt = \frac{\partial g}{\partial r^j}(0)$$

Plugging the g_j 's back in, we get

$$g(r) = g(0) + \sum_{j=1}^{n} r^{j} g_{j}(0) + \sum_{j=1}^{n} r^{j} \sum_{i=1}^{n} r^{i} g_{ji}(r) = g(0) + \sum_{j=1}^{n} r^{j} g_{j}(0) + \sum_{i,j=1}^{n} r^{j} r^{i} g_{ji}(r)$$

Tangent Vectors and Curves

Let $p \in U \subseteq M$, $\phi: U \to \mathbb{R}^n$ chart, $\phi = (x^1, \dots, x^n)$. Then let γ so that

$$(-\varepsilon,\varepsilon) \xrightarrow{\gamma} U$$

$$\downarrow^{\phi \circ \gamma} \downarrow^{f}$$

$$\mathbb{R}^{n} \xrightarrow{f_{\phi}} \mathbb{R}$$

Previously, we defined $\dot{\gamma}(0) \in T_pM$ so that $\dot{\gamma}(0)([f]) = \frac{d}{dt}(f \circ \gamma)\big|_{t=0}$, where $f \circ \gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}$.

Computation of $\dot{\gamma}(0)$ in coordinates:

Lemma: Let $(\phi \circ \gamma)(t) = (x^1(t), \dots, x^n(t))$, defined by $x^i(t) : (-\varepsilon, \varepsilon) \to \mathbb{R}$. Then

$$\dot{\gamma}(0) = \sum_{j=1}^{n} \left. \frac{dx^{j}(t)}{dt} \right|_{t=0} \left. \frac{\partial}{\partial x^{j}} \right|_{p}$$

Proof: Let $f: U \to \mathbb{R}$. Then $f \circ \gamma = (f \circ \phi^{-1}) \circ (\phi \circ \gamma) = f_{\phi} \circ (\phi \circ \gamma)$. Use the chain rule on the right-hand side. Then

$$\dot{\gamma}(0)[f] = \left. \frac{d}{dt} (f \circ \gamma)(t) \right|_{t=0} = \sum_{j=1}^{n} \underbrace{\frac{\partial f_{\phi}}{\partial r^{j}} ((\phi \circ \gamma)(t))}_{\frac{\partial f}{\partial x^{j}} (\gamma(t))} \underbrace{\frac{dx^{j}(t)}{dt}}_{t=0}$$

Cor: Any $v \in T_pM$ is equal to $\dot{\gamma}(0)$ for some curve γ .

Proof: Choose a chart (U, ϕ) so that $\phi(p) = 0$. Then $v = \sum_{j=1}^{n} v_j \frac{\partial}{\partial x^j}|_p$, with each $v_j \in \mathbb{R}$. Define γ by $x^j(t) = tv_j$, $\forall j \in \{1, \ldots, n\}$, and letting this define $\phi \circ \gamma$.

Then $\gamma(p) = \phi^{-1}(tv_1, \dots, tv_n)$. \square

Smooth Maps Between Manifolds and Tangent Spaces

Let $F: M \to N$ be a smooth map between smooth manifolds M and N. Let $p \in M$, with $q = F(p) \in N$.

Observe: Given any $f: V \to \mathbb{R}, q \in V \subseteq N$, we have

$$M \xrightarrow{F} V \xrightarrow{f} \mathbb{R}$$

Defn: Consider $F^{-1}(V)$, an open neighborhood of p. $f \circ F : F^{-1}(V) \to \mathbb{R}$. This gives us a map

$$F^*: C^\infty_q(N) \to C^\infty_p(M)$$
$$[f] \mapsto [f \circ F]$$

This is the pullback map on germs. Note that this is a ring morphism!

By duality, we can pushforward tangent vectors.

Defn: If $v \in T_pM$, we define the <u>pushforward</u> of $v, F_{*,p}(v): C_q^{\infty}(N) \to \mathbb{R}$ by $F_{*,p}(v)([f]) = v(F^*([f])) \in \mathbb{R}$.

Claim: $F_{*,p}(v) \in T_qN$, i.e., $F_{*,p}(v)$ is also a derivation.

Rough proof: Recall that F^* is a ring morhpism. This, combined with the fact that v is a derivation, implies that $F_{*,p}(v)$ is a derivation. \square

Conclusion: We obtain $F_{*,p}:T_pM\to T_{F(p)}N.$

Defn: We can take its dual: $F_p^*: T_{F(p)}^*N \to T_p^*M$.

Lemma: F_p^* is linear.

Lemma: $F_{*,p}(\dot{\gamma}(0)) = \frac{d}{dt}(F \circ \gamma)\big|_{t=0}$.

This final lemma is very useful for computation!