Домашнее задание 6

Ешмуратов Айбат

Июль 2022

Аннотация

Разбор домашнего задания по Алгебре по темам конечные поля, мультипликативные группы, приводимость многочленов и подполья.

Оглавление

Ι	Дс	Д омашнее задание				
	Раз		3			
	1.1	Операции в полях	3			
		Задание 1				
	1.3	Задание 2	7			
	1.4	Задание 3	8			
	1.5	Залание 4	ç			

Часть I Домашнее задание

Глава 1

Разбор

1.1 Операции в полях

• Таблица аддитивной и мультипликативной инверсий

	0	1	2	3	4
Аддитивная инверсия	0	4	3	2	1
Мультипликативная инверсия	_	1	2	3	4

ullet Пример поля на множестве Z_5 с операцией умножения.

	0	1	2	3	4
0	0	0	0	0	0
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Вот некоторые определения и иллюстрации, которые пригодятся для выполнения заданий.

Рис. 1.1: Пример аддитивной инверсии

Рис. 1.2: Пример мультипликативной инверсии

- Пусть K поле $[1] \to R = K[x_1, \dots, x_n]$ кольцо многочленов от переменных x_1, \dots, x_n
- Старшим членом многочлена $f \in R \setminus \{0\}$ называется наибольший в лексикографическом порядке одночлен из M(f).
- Многочлен g редуцируется к $g^{'}$ через систему F, если существует цепочка элементарных редукций $g \stackrel{f_1}{\to} g_1 \stackrel{f_2}{\to} g_2 \stackrel{f_3}{\to} \dots \stackrel{f_k}{\to} g_k = g^{'}, \ f_i \in F.$
- Многочлен $S(f_1,f_2)=k_1f_2-k_2f_2$ называется S-многочленом многочленов f_1 и f_2 .
- $S(f_1, f_2) = -S(f_1, f_2)$

1.2 Задание 1

Какие значения может принимать длина убывающей (в лексикографическом порядке) цепочки одночленов от переменных x_1, x_2, x_3 , начинающейся с одночлена $x_1x_2^3x_3^2$ и заканчивающейся одночленом $x_1x_2^2x_3^3$?

1. Цепочка может быть длины ≥ 2 , в силу того, что в условии даны как минимум два одночлена цепочки. Построим цепь в лексикографическом порядке, чтобы узнать какие значения может принимать длина цепочки.

$$x_1 x_2^3 x_3^2 > x_1 x_2^2 x_3^3 \tag{1.1}$$

2. При
 $n \geq 4$ верно следующее

$$x_1 x_2^3 x_3^2 > x_1 x_2^2 x_3^n > x_1 x_2^2 x_3^{n-1} > \dots > x_1 x_2^2 x_3^3$$
 (1.2)

3. Получаем, что в этой цепочке n одночленов, где одночленов $x_1x_2^2x_3^i$ n - 1 штук. Значит цепочка может принимать значения $n\geq 2,$ $n\in \mathbb{N}.$

Ответ: $n \ge 2$, $n \in N$

Лексикографический порядок может быть применим в поразрядной сортировке.

Рис. 1.3: Поразрядная сортировка

1.3 Задание 2

Найдите остаток многочлена g относительно системы $\{f\}$, где

$$g = x_2^4 x_3^5 + 2x_1 x_2^4 x_3 + x_1^2 x_2^2$$
 $f = x_2^4 x_3 - 2x_1 x_2 x_3^2 + x_1 x_2^2$

Чтобы найти остаток проделаем элементарные редукции [3].

$$x_{1}^{4}x_{2}^{2} + 2x_{1}x_{2}^{4}x_{3} + x_{1}^{2}x_{2}^{2} - (f \cdot x_{1}) = x_{1}x_{2}^{4}x_{3} + x_{2}^{4}x_{3}^{5} + 2x_{1}^{2}x_{2}x_{3}^{2}$$
(1.3)

$$x_{1}x_{2}^{4}x_{3} + x_{2}^{4}x_{3}^{5} + 2x_{1}^{2}x_{2}x_{3}^{2} - (f \cdot x_{2}^{2}x_{3}) = 2x_{1}^{2}x_{2}x_{3}^{2} + 2x_{1}x_{2}^{3}x_{3}^{3} - x_{2}^{6}x_{3}^{2} + x_{2}^{4}x_{5}$$
(1.4)

$$2x_{1}^{2}x_{2}x_{3}^{2} + 2x_{1}x_{2}^{3}x_{3}^{3} - x_{2}^{6}x_{3}^{2} + x_{2}^{4}x_{5} - (f \cdot 2x_{2}x_{3}^{3}) = 2x_{1}^{2}x_{2}x_{3}^{2} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} + 4x_{1}x_{2}^{2}x_{3}^{5} - 2x_{2}^{5}x_{3}^{4}$$
(1.5)

$$2x_{1}^{2}x_{2}x_{3}^{2} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} + 4x_{1}x_{2}^{2}x_{3}^{5} - 2x_{2}^{5}x_{3}^{4} - (f \cdot 4x_{3}^{5}) =$$

$$= 2x_{1}^{2}x_{2}x_{3}^{2} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} - 2x_{2}^{5}x_{3}^{4} + 8x_{1}x_{2}x_{3}^{7} - 4x_{2}^{4}x_{3}^{6}$$

Старшая степень системы f одночлен $x_1x_2^2$, каждый одночлен из полученного многочлена не делится на эту старшую степень, получаем, полученный многочлен есть искомый остаток. Запишем многочлен в лексикографическом порядке.

$$2x_1^2x_2x_3^2 + 8x_1x_2x_3^7 + x_2^4x_3^5 - x_2^6x_3^2 - 2x_2^5x_3^4 - 4x_2^4x_3^6$$
 (1.6)

Ответ:

$$2x_1^2x_2x_3^2 + 8x_1x_2x_3^7 + x_2^4x_3^5 - x_2^6x_3^2 - 2x_2^5x_3^4 - 4x_2^4x_3^6$$
 (1.7)

Проделанный алгоритм схож с алгоритмом Евклида [5].

Рис. 1.4: Алгоритм Евклида

1.4 Задание 3

Выясните, является ли множество $\{f_1, f_2, f_3\}$ системой Грёбнера, где

$$f_1 = 2x_1x_2 + 4x_1x_3 + x_2x_3^2$$
 $f_2 = 4x_1x_3^2 + x_2x_3^3 - 4$ $f_3 = x_2^2x_3^3 - 4x_2 - 8x_3$

Система F является системой Гребнера, если полином [2] S всех попарных f редуцируется к 0 относительно F. Всего таких паросочетаний 9 штук, из них пары $S(f_i,f_i)$ точно редуцируются к 0, а полиномы вида $S(f_i,f_j)=-S(f_j,f_i)$, i>j. Докажем, что полиномы $S(f_i,f_j)$ редуцируются к 0 относительно F. Это полиномы $S(f_1,f_2),S(f_1,f_3),S(f_2,f_3)$, каждый полином находится через умножение первого многочлена на старшую степень и вычитание второго многочлена, умноженного на старшую степень. С помощью элементарных редукций относительно F, полученные многочлены можно привести к 0, т.е. они редуцируются к 0 относительно F. Осталось показать, что оставшиеся полиномы $-S(f_j,f_i)$ тоже редуцируются к 0, в силу того, что они равны $S(f_i,f_j)=-S(f_j,f_i)$. Получаем, что полиномы всех пар f редуцируются к 0, значит F - система Гребнера.

1.5 Задание 4

Докажите, что множество $F\subseteq K[x]\setminus\{0\}$ является системой Грёбнера тогда и только тогда, когда существует такой многочлен $f\in F$, который делит любой многочлен из F.

- 1. (а) Пусть данный многочлен f есть f_i , чтобы доказать, что F система Гребнера, воспользуемся предыдущим утверждением, что все f из F, редуцируются к 0 относительно F и для цепочек элементарных редукций остаток многочлена относительно F определен однозначно. Рассмотри полиномы $S(f_i, f_j), f_i, f_j \in F$, пусть степень i минимально, тогда HOK старших степеней будет равен j, потому что рассматриваемые многочлены от одной переменной. Полином S будет иметь следующий вид.
 - (b) $S(f_i, f_j) = x^{j-i} f_i f_j$ (1.8)
 - (c) Теперь докажем, что такие полиномы редуцируются к 0 относительно F. Каждую элементарную редукцию будем проводить по многочлену f.
 - (d) $x^{j-i}f_i f_j + (d_1f) + (d_2f) + \dots + (d_kf) = 0$ (1.9)
 - (e) Получаем, что такими редукциями любой полином редуцируется к 0 относительно F. Также можно однозначно определить остаток таких цепочек относительно F, который равен 0 и не зависит от выбора преобразования. Если взять остаток относительно f в равенстве сверху, то получим, что f_j делимо f, также делимы будут полиномы $S(f_i, f_j)$ относительно f.
- 2. Получаем, что система F есть система Гребнера [4].

Литература

- [1] Эрнест Винберг. Курс алгебры. Litres, 2022.
- [2] Валерий Николаевич Докин, ВД Жуков, НА Колокольникова, ОВ Кузьмин, and МЛ Платонов. Комбинаторные числа и полиномы в моделях дискретных распределений. 1990.
- [3] Владимир Александрович Ильин and Галина Динховна Ким. Линейная алгебра и аналитическая геометрия. *М.: Изд-во Моск. ун-та*, 1998.
- [4] Анатолий Николаевич Корюкин. Базисы Грёбнера–Ширшова алгебры Ли. Алгебра и логика, $44(2):131-147,\ 2005.$
- [5] Владимир Николаевич Крупский and Валерий Егорович Плиско. Теория алгоритмов. *М.: Academia*, 2009.