Abiturvorbereitung Mathe

Til Blechschmidt Schüler, Otto-Hahn-Gymnasium Geesthacht, Germany

11. Dezember 2016

Inhaltsverzeichnis

L	Ana	alysis
	1.1	Kurvendiskussion
		1.1.1 Nullstellen
		1.1.2 Ableitungen
		1.1.3 Extremstellen
		1.1.4 Wendestellen
		1.1.5 Symmetrie
	1.2	Ganzrationale Funktionen
	1.3	Integralrechnung
		1.3.1 Fläche zwischen Graph und X-Achse
		1.3.2 Fläche zwischen zwei Funktionsgraphen
	1.4	Extremwertaufgaben
	a .	
2		chastik
	2.1	Baumdiagramm
	2.2	Vierfeldertafel
	2.3	Verteilungen
		2.3.1 Binomialverteilung
		2.3.2 hypergeometrische Verteilung
	2.4	Erwartungswert
	2.5	Varianz
	2.6	Standardabweichung
	2.7	Sigma-Regel

Abbildungsverzeichnis

Tabellenverzeichnis

1 Analysis

1.1 Kurvendiskussion

1.1.1 Nullstellen

Eine Nullstelle beschreibt den Ort, an dem ein Graph die X-Achse schneidet, also seine Y-Komponente null entspricht. Zur Berechnung der Nullstellen einer Funktion muss f(x) = 0 gelten. Löst man diese nun nach x auf erhält man die X-Komponente des Nullpunkts.

$$f(x) = 5x^2 + 4x\tag{1}$$

Setzt man nun die Funktion 1 gleich null so erhält man:

$$f(x) = 0$$

$$5x^{2} + 4x = 0$$

$$x(5x + 4) = 0$$
(2)

Nun kann man den folgenden Satz anwenden: Ein Produkt ist null, wenn einer der Faktoren null ist.

$$x_1 = 0 (3)$$

$$5x_2 + 4 = 0 (4)$$

Löst man nun Gleichung 4 nach x auf, so erhält man schlussendlich die beiden X-Koordinaten der Nullpunkte

$$5x_2 + 4 = 0$$

$$5x_2 = -4$$

$$x_2 = -\frac{4}{5}$$
(5)

Nun kann man diese X-Komponente mit der Y-Komponente, welche im Falle der Nullpunkte immer null entspricht, zu einem Punkt zusammenschließen.

$$N_1(0|0); N_2\left(0\left|-\frac{4}{5}\right)\right)$$
 (6)

1.1.2 Ableitungen

$$f(x) = ax^{b} + c$$

$$g(x) = 10x^{2} + 3$$
(7)

Die erste Ableitung eines Graphen gibt die Steigung dessen an.

$$f(x)' = a * bx^{b-1} \tag{8a}$$

$$g(x)' = 10 * 2x^{1}$$

 $g(x)' = 20x$ (8b)

Die zweite Ableitung bildet sich, indem man die erste Ableitung ableitet, also die Steigung der ersten Ableitung angibt.

$$g(x)'' = 20 \tag{9}$$

Folglich bildet sich die dritte Ableitung, indem man die zweite ableitet.

$$q(x)^{\prime\prime\prime} = 0 \tag{10}$$

1.1.3 Extremstellen

Extremstellen beschreiben Orte, an denen der Graph einer Funktion f(x) seine maximale Auslenkung erreicht. Zur Berechnung der Extremstelle einer Funktion muss f(x)' = 0, sowie $f(x)'' \neq 0$ gelten. Anschaulich bedeutet es, dass die Steigung des Graphen null entspricht und seine Ausrichtung ist nicht parallel zur X-Achse. Folglich setzt man nun die erste Ableitung (8b) mit null gleich.

$$g(x)' = 0$$

$$40x^{3} = 0$$

$$x = \sqrt[3]{\frac{0}{40}}$$

$$x = 0$$
(11)

Nun muss man die zweite, hinreichende Bedingung überprüfen, indem man die zweite Ableitung (9) an der zuvor berechneten Stelle berechnet.

$$g(0)'' \neq 0$$

$$120 * 0^2 \neq 0$$
(12)

- 1.1.4 Wendestellen
- 1.1.5 Symmetrie

Y-Achse

Punktsymmetrie

- 1.2 Ganzrationale Funktionen
- 1.3 Integral rechnung
- 1.3.1 Fläche zwischen Graph und X-Achse
- 1.3.2 Fläche zwischen zwei Funktionsgraphen
- 1.4 Extremwertaufgaben
- 2 Stochastik
- 2.1 Baumdiagramm
- 2.2 Vierfeldertafel
- 2.3 Verteilungen
- 2.3.1 Binomialverteilung
- 2.3.2 hypergeometrische Verteilung

2.4 Erwartungswert

Der Erwartungswert gibt den Wert an, welcher zu erwarten ist, wenn man das gegebene Experiment n-Mal durchführt wird. Er wird mit E(X) bzw. μ beschrieben und ist wie folgt definiert.

$$E(X) = \mu = a_1 * P(X = a_1) + a_2 * P(X = a_2) + \dots + a_m * P(X = a_m)$$
(13)

2.5 Varianz

Die Varianz gibt die zu erwartende quadratische Abweichung vom Erwartungswert μ an und wird mit V(X) beziehungsweise σ beschrieben. Man kann sie mittels folgender Gleichung berechnen.

$$V(X) = \sigma^2 = (a_1 - \mu)^2 * P(X = a_1) + (a_2 - \mu)^2 * P(X = a_2) + \dots + (a_m - \mu)^2 * P(X = a_m)$$
 (14)

2.6 Standardabweichung

Die Standartabweichung gibt die Abweichung der Werte vom Erwartungswert an. Sie ist die Quadratwurzel der Varianz.

$$\sigma = \sqrt{V(X)} \tag{15}$$

2.7 Sigma-Regel

Mittels der Sigma-Regeln können die Wahrscheinlichkeiten der Umgebung des Erwartungswertes näherungsweise bestimmt werden. Diese treffen jedoch nur zu, sofern die Laplace-Bedingung erfüllt ist $(\sigma > 3)$.

$$P(\mu - 1\sigma \le X \le \mu + 1\sigma) \approx 0.683 \tag{16a}$$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.955 \tag{16b}$$

$$P(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.997 \tag{16c}$$

$$P(\mu - 1.64\sigma \le X \le \mu + 1.64\sigma) \approx 0.90$$
 (17a)

$$P(\mu - 1.96\sigma \le X \le \mu + 1.96\sigma) \approx 0.95$$
 (17b)

$$P(\mu - 2.58\sigma \le X \le \mu + 2.58\sigma) \approx 0.99$$
 (17c)