Single Variable Calculus

Otto Martinwall

April 17, 2022

Contents

1	Calculus A Complete Course													2)			
	1.1	Limits														3	3	
		1.1.1	Exercises 1.1 .														5	
		1.1.2	Exercises 1.2 .														5	5
2	Lect	tures															E	

1 Calculus A Complete Course

1.1 Limits and Continuity

Theorem 1 (The Squeeze Theorem, 4). Suppose that $f(x) \leq g(x) \leq h(x)$ holds for all x in some open interval containing c, except possibly at x = c. Suppose also that

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$$

Then $\lim_{x\to c} g(x) = L$.

Proof. For this proof, the (ϵ, δ) -definition of the limit will be used.

The goal is to prove that $\lim_{x\to c} g(x) = L$, which is true if

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x, (|x - c| < \delta \Rightarrow |g(x) - L| < \epsilon).$$

Since $\lim_{x\to c} f(x) = L$,

$$\forall \epsilon > 0, \exists \delta_1 > 0 : \forall x, (|x - c| < \delta_1 \Rightarrow |f(x) - L| < \epsilon)$$
 (1)

And since $\lim_{x\to c} h(x) = L$,

$$\forall \epsilon > 0, \exists \delta_2 > 0 : \forall x, (|x - c| < \delta_2 \Rightarrow |h(x) - L| < \epsilon). \tag{2}$$

Then we have

$$f(x) \le g(x) \le h(x)$$

$$f(x) - L \le g(x) - L \le h(x) - L$$

We can choose $\delta=\min\{\delta_1,\delta_2\}$, then if $|x-c|<\delta$, and combining (1) and (2), we have

$$-\epsilon < f(x) - L \le g(x) - L \le h(x) - L < \epsilon$$
$$-\epsilon < g(x) - L < \epsilon$$
$$|g(x) - L| < \epsilon$$

So $\lim_{x\to c} g(x) = L$, which completes the proof.

1.1.1 Exercises 1.1

1.1.2 Exercises 1.2

78. What is the domain of $\sin \frac{1}{x}$? Evaluate $\lim_{x\to 0} x \sin \frac{1}{x}$.

The domain of $x \sin x$ is \mathbb{R} . The domain of $\frac{1}{x}$ is $(-\infty, 0) \cup (0, \infty)$. Therefore, the domain of $x \sin \frac{1}{x}$ is $(-\infty, 0) \cup (0, \infty)$.

To evaluate $\lim_{x\to 0} x \sin \frac{1}{x}$, we can first evaluate $\lim_{x\to 0} \frac{1}{x}$.

$$\lim_{x\to 0^+} \frac{1}{x} = +\infty$$
, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

This means that $\lim_{x\to 0}\sin\frac{1}{x}=\lim_{x\to\pm\infty}\sin x$, which means that $-1\le\lim_{x\to 0}\sin\frac{1}{x}\le 1$.

$$\lim_{x \to 0} x \sin \frac{1}{x} = (\lim_{x \to 0} x)(\lim_{x \to 0} \sin \frac{1}{x}) = 0$$

79. Suppose $|f(x)| \leq g(x) \forall x$. What can you conclude about $\lim_{x \to a} f(x)$ if $\lim_{x \to a} g(x) = 0$? What if $\lim_{x \to a} g(x) = 3$?

 $|f(x)| \leq g(x) \forall x \Leftrightarrow -g(x) \leq f(x) \leq g(x) \forall x$. Since $\lim_{x \to a} g(x) = 0$ and therefore $\lim_{x \to a} -g(x) = 0$, then $\lim_{x \to a} f(x) = 0$ by the squeeze theorem.

If $\lim_{x\to a}g(x)=3$, and $-g(x)\leq f(x)\leq g(x)\forall x$, then we can conclude that either $-3\leq \lim_{x\to a}f(x)\leq 3$, or $\lim_{x\to a}f(x)$ doesn't exist.

2 Lectures