partition, partial order relation, poset, linear order relation.

Partition Partial Orden Relation, Ponet, Unea orde relation.

Partition of a Set!

Let, A be a non-limpty but and P be a collection of non-empty subsets of A. The P is called parties at A, if the following properties hold:

i) for all A; A; EP, either A; = A; or A; $\cap A$; = ϕ .

Pin A:

A; EP

A; EP

Thm!

Theorem 1.2.17. Let ho be an equivalence relation on a set A. Then $\mathcal{P}=\big\{[a]\mid a\in$ A is a partition of A.

In the above theorem, we have seen that a given equivalence relation on a set forces a partition of that set. Turning the matter around, we now prove that, corresponding to any given partition of a set, one can associate an equivalence

Theorem 1.2.18. Let $\mathcal P$ be a partition of a given set A. Define a relation ho on Aas follows: 'for all $a, b \in A$, $a \rho b$ if there exists $B \in \mathcal{P}$ such that $a, b \in B$ '. Then ρ is an equivalence relation on A and the corresponding equivalence classes are precisely

Proof. Since \mathcal{P} is a partition of A, we have $A = \bigcup B$. Now, let $a \in A$. So, $a \in B$

for some $B \in \mathcal{P}$. Since $a, a \in B$ and any two elements of B must be ρ -related, we have $a \rho a$, for all $a \in A$, as a was chosen arbitrarily. Hence ρ is reflexive. Now, let $a \rho b$; then $a, b \in B$ for some $B \in \mathcal{P}$, so that $b, a \in B$ also, whence $b \rho a$, showing that ρ is symmetric. Finally, let $a,b,c\in A$ such that $a\,\rho\,b$ and $b\,\rho\,c$. Then there exist $B, C \in \mathcal{P}$ such that $a, b \in B$ and $b, c \in C$. This indicates $b \in B \cap C$ so that $B \cap C \neq \emptyset$. But then naturally B = C as $B, C \in \mathcal{P}$, which is a partition of A. So we have $a, c \in B$ whence, $a \rho c$ holds. This shows that ρ is transitive and consequently ρ is an equivalence relation.

Now it is to be shown that the ρ -classes are precisely the elements of \mathcal{P} . Let $a \in A$; we consider the equivalence class [a]. Since $A = \bigcup B$, there exists $B \in \mathcal{P}$ such that $a \in B$. We assert [a] = B. Let $x \in [a]$. Then $x \rho a$, so that $x \in B$ as

 $a \in B$. Hence $[a] \subseteq B$. Again, since $a \in B$, we have $b \rho a$ for all $b \in B$ and so, $b \in [a]$ for all $b \in B$. Hence $B \subseteq [a]$, so that [a] = B. Finally, observe that if $C \in \mathcal{P}$, then C = [u] for all $u \in C$. Thus the ρ -classes are precisely the elements of \mathcal{P} .

The relation ρ described in this theorem is called the equivalence relation on Ainduced by the partition \mathcal{P} .

Note that the Theorems 1.2.17 and 1.2.18, in a sense tell that there is practically no difference between the outcome of an equivalence relation on a set and a partition of it. If we begin with an equivalence relation, it eventually gives us a partition of the set into equivalence classes, while if we begin with a partition

Antisymmetrice Relation

A relation Ron if for all a, b E A whenever both For example:

et R be a relation

 $R = \{(1,1), (1,2), (2,3), (3,4), (4,4)\}$

Lecture 14 Page 2

POSET (Parially Ordered Set):

A rulation R on a let A is baid to be a Partial order on A if R is reflexive, antisymmetric and transitive. A parial ordin rulation on a set A is usually denoted by \leq .

The set A along with the partial order defined on 9/2 is called a partially ordered set or poset. Some examples on Poret!-1) het A be any non-ampty rel P(A) -7 power ut of X S X for all X & P(A).

Antisymmetric:

If, $X \subseteq Y$ and $Y \subseteq X$, $X, Y \in P(A)$. $\Rightarrow X = Y$. (By def of equality). $\Rightarrow X = Y$. (By def of equality).

antisymmetric ر و م Transitivity $x \subseteq y$, $y \subseteq Z$ x L Z . tramitive. (C 1 °15 P(A). is a ponet. $(P(A), \leq)$ [Proved . HIW 2. 'P' -> rulation defined IR (Real). P: (1,6) C RXR | a-6 < 0 9. Prove mat: (R,P) is a poset. 3. 'R' -> relation on let of integers. (Z). Right (a, h) EZXZ | a divides b in Zy Chek wheth. (Z, R) is a poret? $= \langle (3, -2) \in \mathbb{R}$ a | b | c (-2, 2) ER b= aK. c=bK,

Lecture 14 Page

(-2, 2) ER D= AKL C= bK2 -2 \dday 2 Cy Then it is not antinymmetric So, (Z,R) is not a poset. Linearly Ordered Sch STECESS. poret (A, P) is called linearly ordered set or a chain if for all a, b t A lither a P b or 2ay = 7by or 1by = 2ay 2 a, by & 2 a, b, ch