Natural Language Processing CS 6320

Lecture 13
Semantic Role Labeling

What is Semantic Role Labeling?

Semantic Role Labeling, also called Thematic Role Labeling, or Case Role Assignment or Shallow Semantic Parsing is the task of automatically finding the thematic roles for each predicate in a sentence.

What is Automatic Semantic Role Labeling?

Given a sentence:

Abby bought a car from Robin for \$5,000.

a) Identify predicates:

Abby bought a car from Robin for \$5,000.

b) Identify and assign thematic/semantic roles for each predicate:

```
Abby bought a car from Robin for $5,000.
```

Why Study Semantic Role Labeling?

 Who did What to Whom, When, Where, Why, How, etc.

- Proved to be useful in:
 - Question Answering (QA)
 [Narayanan and Harabagiu, COLING'02]
 - Information Extraction (IE)

[Surdeanu et al., ACL'03]

Using Semantic Role Labeling in QA

Parsing Questions

Q: What kind of materials were stolen from the Russian navy?

FS(Q): What [GOODS: kind of nuclear materials] were [Target-Predicate: stolen] [VICTIM: from the Russian Navy]?

Parsing Answers

A(Q): Russia's Pacific Fleet has also fallen prey to nuclear theft; in 1/96, approximately 7 kg of HEU was reportedly stolen from a naval base in Sovetskaya Gavan.

FS(A(Q)): [VICTIM(P1): Russia's Pacific Fleet] has also fallen prey to [Goods(P1): nuclear] [Target-Predicate(P1): theft]; in 1/96, [GOODS(P2): approximately 7 kg of HEU] was reportedly [Target-Predicate (P2): stolen] [VICTIM (P2): from a naval base] [SOURCE(P2): in Sovetskaya Gavan]

Result: exact answer= "approximately 7 kg of HEU"

Semantic Roles

Thematic Role	Definition/Example
AGENT	The volitional causer of an event.
	The waiter spilled the soup.
EXPERIENCER	The experiencer of an event.
	John has a headache.
FORCE	The non-volitional causer of the event.
	The wind blows debris from the mall into our yards.
ТНЕМЕ	The participant most directly affected by an event.
	Only after Benjamin Franklin broke the ice
RESULT	The end product of an event.
	The French government has built a regulation-size baseball diamond
CONTENT	The proposition or content of a propositional event.
	Mona asked "You met Marry Ann at a supermarket"?
INSTRUMENT	An instrument used in an event.
	He turned to poaching catfish, stunning them with a shocking device
BENEFICIARY	The beneficiary of an event.
	Whenever Ann Callahan makes hotel reservation for her boss
SOURCE	The origin of the object of a transfer event.
	I flew in from Boston.
GOAL	The destination of an object of a transfer event.
	I drove to Portland.

Common Realizations for Major Thematic Roles

Thematic Role	Realization	
AGENT	as subject in active sentences	
	preposition by in passive sentences	
EXPERIENCER	as animate subject in active sentences with no agent	
ТНЕМЕ	as object of transitive verbs	
	as subject of non-action verbs	
INSTRUMENT	as subject in active sentences with no agent	
	preposition with	
BENEFICIARY	as indirect object with transitive verbs	
	preposition for	

FrameNet

- The FrameNet Project [Baker et al.,1998], developed at ICSI Berkeley, proposes roles that are neither as general as the ten abstract thematic roles, nor as specific as the thousands of potential verb specific roles.
- FrameNet encodes a set of frames (semantic representation of situations)
- Frames are characterized by:
 - target words or lexical predicates whose meaning includes aspects of the frame;
 - frame elements (FEs) which represent the semantic roles of the frame;
 - examples of annotations performed for instances of each target word in various texts.

Sample Domains and Frames from FrameNet

FrameNet Annotation

- The project methodology was done on a frame-byframe basis:
 - 1) choose a semantic frame (e.g. Commerce_buy)
 - 2) define the frame and its frame elements (e.g. BUYER, GOODS, SELLER, MONEY)
 - 3) list the various lexical predicates (verbs, nouns and adjectives) that evoke the frame (buy.v, purchase.v, purchase.n)
 - 4) extract sentences for each predicate from various corpora, e.g. British National Corpus

Frame Example: Commerce_buy

Definition: These are words describing a basic commercial transaction involving a buyer and a seller exchanging money and goods, taking the perspecitive of the buyer. The words vary individually in the patterns of frame element realization they allow. For example, the typical pattern for the verb BUY: BUYER buys GOODS from SELLER for MONEY.

Frame Element	
Buyer	The Buyer wants the Goods and offers Money to a Seller in exchange for them.
	Lee BOUGHT a textbook from Abby.
Goods	The FE Goods is anything (including labor or time, for example) which is exchanged for Money in a transaction. (Only one winner PURCHASED the paintings)
Money	Money is the thing given in exchange for Goods in a transaction.
	Sam BOUGHT the car for \$12,000.
Seller	The Seller has possession of the Goods and exchanges them for Money from a Buyer.
	Most of my audio equipment, I PURCHASED from a department store near my apartment
Place	Where the event takes place.

Frame-to-Frame Relations

Frame Relation – a directed relation between two frames, where one frame is called Super_Frame (less dependent, more abstract) and the other frame is called Sub_Frame (the more dependent, less abstract)

Relation	Sub	Super
Inheritance	Child	Parent
Perspective_on	Perspectivized	Neutral
Subframe	Component	Complex
Precedes	Later	Earlier
Inchoative_of	Inchoative	State
Causative_of	Causative	Inchoative/State
Using	Child	Parent
See_also	Referring Entry	Main Entry

Frame Relations for Commercial transaction

Parent Child frame

Parent → Child Relation Types:

Inheritance
Subframe
Perspective On
Using
Causative Of
Inchcative Of
See Also

Ordering Relation:

Precedes

Commercial_transaction frame specifies a compex schema involving an exchange of multiple themes (Money and Goods) between the Buyer and Seller, including also two sub-frames: Commerce_goods_transfer and Commerce_money_transfer

77070707070777070000

Proposition Bank (PropBank)

- ☐ A one million word corpus annotated with predicate argument structures
- Developed at University of Pennsilvania
- Annotation is performed on the Penn TreeBank
- Predicates are lexicalized only by verbs
- Arguments numbered from 0..5
- Adjunctive arguments: Locative, Temporal, Manner, Cause, etc.

PropBank Example

```
[A0] He ] [AM-MOD] would ] [AM-NEG] n't ] [Vaccept] [A1] anything of value ] from [A2] those he was writing about ] .
```

Here, the roles for the predicate accept (that is, the *roleset* of the predicate) are defined in the PropBank Frames scheme as:

V: verb

A0: acceptor

A1: thing accepted

A2: accepted-from

A3: attribute

AM-MOD: modal

AM-NEG: negation

Using Semantic Role Labeling in QA

Parsing Questions

Q: What kind of materials were stolen from the Russian navy?

PAS(Q): What [ARG1: kind of nuclear materials] were [Predicate: stolen]

[ARG2: from the Russian Navy]?

Parsing Answers

A(Q): Russia's Pacific Fleet has also fallen prey to nuclear theft; in 1/96, approximately 7 kg of HEU was reportedly stolen from a naval base in Sovetskaya Gavan.

PAS(A(Q)): [Arg1(P1redicate 1): Russia's Pacific Fleet] has [ArgM-Dis(Predicate 1) also] [Predicate 1: fallen] [Arg1(Predicate 1): prey to nuclear theft]; [ArgM-TMP(Predicate 2): in 1/96], [Arg1(Predicate 2): approximately 7 kg of HEU] was [ArgM-ADV(Predicate 2) reportedly] [Predicate 2: stolen] [Arg2(Predicate 2): from a naval base] [Arg3(Predicate 2): in Sovetskaya Gavan]

Result: exact answer= "approximately 7 kg of HEU"

Common Realizations in Argument Numbers

- Arg0 = agent
- Arg1 = direct object / theme / patient
- Arg2 = indirect object / benefactive / instrument / attribute / end state
- Arg3 = start point / benefactive / instrument / attribute
- Arg4 = end point

Recall that FrameNet employs a large number of frame-specific frame elements as roles, while PropBank makes use of a <u>smaller number of generic argument labels</u>.

Adjuncts in PropBank

ArgM-DIR	directionals	walk along the road	
ArgM-LOC	locatives	walk around the countryside	
ArgM-MNR	manner	works well with others	
ArgM-TMP	temporal	in 1987	
ArgM-EXT	extent	raised prices by 15%	
ArgM-REC	reciprocals	John and Mary killed each other	
ArgM-PRD	predication	Mary called John an idiot	
ArgM-PRP	purpose	I live to eat	
ArgM-DIS	discourse	also, however	
ArgM-ADV	other adverbial	generally?	
ArgM-MOD	modal	possibly	
ArgM-NEG	negative	did not	
ArgM	bare ArgM	adjuncts not related to verb, e.g. extraposed modifier	

PropBank Example

The company bought a wheel-loader from Dresser.

Arg0: The company

rel: bought

Arg1: a wheel-loader

Arg2-from: Dresser

TV stations bought "Seinfeld" reruns for record prices.

Arg0: TV stations

rel: bought

Arg1: "Cosby" reruns

Arg3-for: record prices

BUY

Arg0: buyer

Arg1: commodity

Arg2: seller Arg3: price

Arg4: beneficiary

SELL

Arg0: seller

Arg1: commodity

Arg2: buyer

Arg3: price

Arg4: beneficiary

Same roleset; different order

PAY

Arg0: buyer

Arg1: price paid

Arg2: seller

Arg3: commodity

Arg4: beneficiary

PropBank/FrameNet Role Mappings

NomBank

- □ Provides argument structures for instances of about 5000 common nouns in the Penn Treebank II
- Developed at New York University
- Annotation is performed on the Penn TreeBank
- Predicates are lexicalized only by nouns
- Arguments numbered from 0..4
- Adjunctive arguments: Locative, Temporal, Manner, Cause, etc.
- SUPPORT items

400

A Combined PropBank/Nombank Graphical Representation

They gave the chefs a standing ovation

PropBank

REL: gave

Arg0: they

Arg1: a standing ovation

Arg2: the chefs

NomBank

REL: ovation

Arg0: they

Arg1: the chefs

Support: gave

Automatic Labeling of Semantic Roles

Given a sentence:

Abby bought a car from Robin for \$5,000.

a) Identify predicates:

Abby bought a car from Robin for \$5,000.

b) Identify and assign thematic roles for each predicate:

```
[BuyerAbby] bought [Goods a car] [Seller from Robin] [Money for $5,000].
```

A Semantic Role Labeling Algorithm

function SEMANTICROLELABEL(words) returns labeled tree

parse ← PARSE(words)
for each predicate in parse do
 for each node in parse do
 featurevector ← EXTRACTFEATURES(node, predicate, parse)
 CLASSIFYNODE(node, featurevector, parse)

Semantic Role Labeling Using Two Classifiers

- Instead of training a single stage classifier, some role labeling algorithms do classification in multiple stages for efficiency:
 - Pruning: to speed the execution, some constituents are eliminated from consideration as possible roles, based on simple rules;
 - Identification: a binary classification of each node as an ARG (positive example) to be labeled or NONE (negative example)
 - Classification: a one-of-N classification of all the constituents that were labeled as ARG by the previous stage.

Example

[ARG0 The San Francisco Examiner] issued [ARG1 a special edition] [ARGM-TMP around noun yesterday].

Example: Pruning

Also, all the leafs of the parse trees can be ignored

Example: Argument Identification

Example: Argument Classification

Extracting Features

```
function SEMANTICROLELABEL(words) returns labeled tree

parse ← PARSE(words)

for each predicate in parse do

for each node in parse do

featurevector ← EXTRACTFEATURES(node, predicate, parse)

CLASSIFYNODE(node, featurevector, parse)
```

The syntactic parse tree is traversed for each predicate;

- ➤ In traversing the tree for a predicate each constituent is analyzed in order to determine whether it plays any role with respect to that predicate
- ☐ The judgment is made by first characterizing the constituent as a set of features with respect to the predicate
- A classifier trained on an appropriate training set is then passed this feature set and makes the appropriate assignment.

Features: Governing Predicate

In our example, the verb issued

- For PropBank the predicates are always verbs; FrameNet also has noun and adjective predicates.
- ☐ The predicate is a crucial feature since both PropBank and FrameNet labels are defined only with respect to a particular predicate
- Derived feature: predicate lemma

Features: Phrase Type

In our example, the phrase type of the constituent is NP (or NP-SBJ)

- It is the name of the parse node which dominates this constituent in the parse tree
- ☐ Different roles tend to be realized by different syntactic categories. Some semantic roles tend to appear as NPs, others as S or PP, etc.

Features: Head Word

In our example, the head word of the constituent is **Examiner**

- Each head word if a constituent can be computed using standard head rules.
- Certain head words (e.g. pronouns) place strong constraints on the possible semantic roles they are likely to fill.

Features: Head Word Part of Speech

In our example, NNP

Features: Parse Tree Path

- Is the path in the parse tree from constituent to the predicate
- ☐ It describes the syntactic relation between the constituent in the question and the target

In our example, it is marked by the red dotted line

Simple linear representation: $NP^{\uparrow}S \downarrow VP \downarrow VBD$ where \uparrow and \downarrow represent upward and downward movement in the tree respectively

Most Frequent Values of the Parse Tree Path Feature

Frequency	Path	Description
14.2%	VB↑VP↓PP	PP argument/adjunct
11.8	VB↑VP↑S↓NP	subject
10.1	VB↑VP↓NP	object
7.9	VB↑VP↑VP↑S↓NP	subject (embedded VP)
4.1	VB↑VP↓ADVP	adverbial adjunct
3.0	$NN\uparrow NP\uparrow NP\downarrow PP$	prepositional complement of noun
1.7	VB↑VP↓PRT	adverbial particle
1.6	VB↑VP↑VP↑VP↑S↓NP	subject (embedded VP)
14.2		no matching parse constituent
31.4	Other	

Features: Position

➤ Binary linear position of the constituent with respect to the predicate In our case, the value is before

Features: Voice

☐ Binary feature indicating whether the voice of the clause in which the constituent appears is active or passive.

In our case, the value is active

Direct objects of active verbs often correspond in semantic role to subjects of passive verbs

Features: Sub-Categorization

- \Box The set of expected arguments that appear in the verb phrase In our case, the value is $VP \rightarrow NP$ PP
- Can be extracted by using the phrase structure rule that expands the immediate parent of the predicate

Extended Feature Set

- CONTENT WORD (cw): lexicalized feature that selects an informative word from the constituent, other than the head.
- PART OF SPEECH OF CONTENT WORD (cPos): part of speech tag of the content word.
- PART OF SPEECH OF HEAD WORD (hPos): part of speech tag of the head word.
- NAMED ENTITY CLASS OF CONTENT WORD (cNE): the class of the named entity that includes the content word.
- BOOLEAN NAMED ENTITY FLAGS: set of features that indicate if a named entity is included at any position in the phrase:
 - neOrganization: set to true if an organization name is recognized in the phrase.
 - neLocation: set to true if a location name is recognized in the phrase.
 - nePerson: set to true if a person name is recognized in the phrase.
 - neMoney: set to true if a currency expression is recognized in the phrase.
 - nePercent: set to true if a percentage expression is recognized in the phrase.
 - neTime: set to true if a time of day expression is recognized in the phrase.
 - neDate: set to true if a date temporal expression is recognized in the phrase.

Extended Feature Set - 2

- PARSE TREE PATH WITH UNIQUE DELIMITER: remove the direction in the PATH
- PARTIAL PATH: uses only the path from the constituent to the lowest common ancestor of the predicate and the constituent
- FIRST WORD: first word covered by constituent
- FIRST POS: POS of first word covered by constituent
- LAST WORD: last word covered by constituent
- LAST POS: POS of last word covered by constituent
- LEFT CONSTITUENT: left sibling constituent label
- LEFT HEAD: left sibling head
- LEFT POS HEAD: left sibling POS of head word
- RIGHT CONSTITUENT: right sibling constituent label
- RIGHT HEAD: right sibling head
- RIGHT POS HEAD: right sibling POS of head word
- PP PREP: if constituent is labeled PP get first word in PP
- DISTANCE: distance in the parse tree from constituent to the target word

Semantic Role Labeling Methods

- Various Stochastic Models
- Supervised Machine Learning
 - Training set:
 - FrameNet
 - PropBank
 - NomBank
 - Algorithms: SVM, HMM, CRF, MaxEnt, etc.
- State of the art:
 - F-Score of about 85% in discovering and classifying semantic roles.

Resources

- FrameNet
 - http://framenet.icsi.berkeley.edu/
- PropBank
 - http://www.cs.rochester.edu/~gildea/PropBank/Sort/
 - http://verbs.colorado.edu/framesets/
- NomBank
 - http://nlp.cs.nyu.edu/meyers/NomBank.html

A Neural Algorithm for Semantic Role Labeling

- ☐ A bi-LSTM approach to semantic role labeling. Most actual networks are much deeper than shown in this figure: 3 to 4 bi-LSTM layers (6 to 8 total LSTMs) are common. He et al. (2017)
- The input is a concatenation of an embedding for the input word and an embedding of a binary variable which is 1 for the predicate to 0 for all other words.

