Single Cell RNA seq

Imputation methods

The "drop-out" problem

- "drop-out" = a gene with 0 counts which we're not sure is true
- Rate varies with
 - Cell
 - o Gene
 - Technology / platform

The high variance problem

Expression variability has many causes

- Technical variation
 - Batch effect
 - Library quality
 - Cell-specific capture efficiency
 - Amplification bias

Biological variation "Bursty" / stochasti

- o "Bursty" / stochastic transcription
- Varying rate of RNA processing
- Cell identity
- Temporal progression / oscillation

Drop-outs and high variance complicate analysis

Whether they are biological or technical

Session outline

Describe three algorithms that deal with these issues

- MAGIC
- scImpute
- netSmooth

MAGIC (Markov Affinity-based Graph Imputation of Cells)

Assumptions:

- Gene expression is highly collinear (many genes co-regulated)
- Dropout makes expression sparse but we can impute based on similar cells
 - Similarity is distance on manifold

MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data David van Dijk, Juozas Nainys, Roshan Sharma, Pooja Kathail, Ambrose J Carr, Kevin R Moon, Linas Mazutis, Guy Wolf, Smita Krishnaswamy, Dana Pe'er

bioRxiv 111591; doi: https://doi.org/10.1101/111591

Collinearity

Distance on a manifold

Distance on a manifold

MAGIC - the algorithm

1. Finding the manifold

MAGIC - the algorithm

- 1. Finding the manifold
- 2. Local averaging

MAGIC - when does it work?

Good for temporal relationships

MAGIC - when does it work?

- Good for temporal relationships
- Good for picking up gene-gene relationships

MAGIC - weaknesses

- Imputes non-dropouts (is this a strength or a weakness?)
- Requires large number of cells (paper says >7,000)
- Cluster structure

MAGIC - how to use

https://github.com/KrishnaswamyLab/magic/blob/develop/notebooks/Magic_single_cell_RNAseq.ipynb

scImpute

Assumptions:

- Genes have their own drop-out likelihoods
- Cells are differently affected by drop-outs
- Non drop-outs have more information than drop-outs

scImpute: Accurate And Robust Imputation For Single Cell RNA-Seq Data

Wei Vivian Li, Jingyi Jessica Li

bioRxiv 141598; doi: https://doi.org/10.1101/141598

Genes have different dropout likelihoods

scImpute - the algorithm

scImpute - example

scImpute - example

scImpute - weaknesses

Orders of magnitude slower

scImpute - how to use

netSmooth (Network-smoothing based imputation for single cell RNA-seq)

Assumptions:

- We can use information in previous experiments to impute (priors)
 - Interacting proteins are co-expressed
 - Protein-protein interaction networks encode co-expression expectations

On using priors

- Tenet of bayesian inference to temper evidence using priors
- We measure genes (transcripts) solo
- But they never act solo always interacting with other genes

Our prior isn't individual genes' expression levels

It's the relations between them

https://string-db.org

Protein-Protein interactions

 PPI database lists interactions from many sources

 Interacting proteins likely to be co-expressed

> https://doi.org/10.1093/bio informatics/bti398

https://string-db.org

Network smoothing for RNAseq

netSmooth - glioblastoma tumors and cell lines

netSmooth - PCA of embryonic cells

netSmooth - weaknesses

- Dependent on a good gene network for your organism
- Gene networks may be context specific
 - Novel cell types with previously uncharacterized interactions
- Speed
 - MAGIC (30 seconds) > netSmooth (20 minutes) > scImpute (3 hours)

Network smoothing parameters

Random walk with restarts

$$E_{t+1} = \alpha A E_t + (1 - \alpha) E_0$$

Network smoothing parameters

Random walk with restarts

Network smoothing parameters

Random walk with restarts

$$E_{t+1} = \alpha A E_t + (1 - \alpha) E_0$$

netSmooth - optimizing the smoothing parameters

- With no ground-truth labeling of cells
- Based on statistical robustness of clustering results

netSmooth - clustering single cells

Purdom E and Risso D (2017). clusterExperiment: Compare Clusterings for Single-Cell Sequencing

netSmooth - how to use

Walk through vignette