

Universidade de Brasília Fundamentos de Arquitetura de Computadores Guilherme Guy de Andrade – 16/0123186 Leonardo dos Santos Silva Barreiros – 15/0135521

Trabalho 01

Sistema operacional foi usado na construção do sistema:

Linux Mint – 64 bits – AMD 64.

Ambiente de desenvolvimento:

MARS 4.5 – MIPS.

Instruções de Tela:

pt Address	Code	Basic					Source			
	0x0c100014 jal 0x3c011001 lui		21:	jal le_inteiro sw \$v0, a # save retur						
		\$2,0x000000000(\$1)	22:	sw svo, a # save retur	n in a					
	0x0c100014 jal		24:	ial le inteiro						
	0x3c011001 lui		25:	sw \$v0, b # save retur	n in h					
		\$2,0x000000004(\$1)	LU.	34 440, 5 4 3440 10141	11 11 1					
	0x0c100014 jal		27:	jal le inteiro						
	0x3c011001 lui		28:	sw \$v0, p # save retur	n in p					
0x00400020	0xac220008 sv	\$2,0x000000008(\$1)								
	0x3c011001 lui		30:	lw \$a0, p # pass p as	arg to eh_primo func					
		\$4,0x000000008(\$1)								
	0x0c100017 jal		31:	jal eh_primo # call fu						
		\$2,\$0,0x000000002	33:		eturn of fun is not 0, jump					
	0x0c100040 jal		34:		ro # if return is 0, call im	prime_erro				
	0x0810006a j 0 0x0c10002e jal		36: 40:	j exit_prog						
	0x3c011001 lui		41:	jal calc_exp sw \$v0. z						
0.0004000040	OXSCOTTOOTICAL	\$1.0000001001	1 41:	5W 3VO. 2						
Data Segment										
Address		Value (+0)		Value (+4)	Value (+8)	Value (+c)	Value (+10)	Value (+14)	Value (+18)	Value
	0x10010000	0x0000		0x00000003	0x00000004	9x 939909090	0x78652041	0x656e6f70	0x6169636e	
	0x10010020	0x616c		0x20002072	0x76656c65	0x206f6461	0x20002061	0x646f6d28	0x20290020	
	0x10010040	0x4f00		0x646f6d20	0x206f6c75	0x206f616e	0x70206865	0x6f6d6972	0x00000a2e	
	0x10010060	9x0000		0x00000000	Gx6G06G060	9x00000000	0x00000000	0x00000000	0x00000000	
	0x10010080	0x0000		0x00000000	0x00000000	0x00000000 0x00000000	0x00000000	0x00000000	0x00000000	
	0x100100a0 0x100100c0	0x0000		0x00000000 0x00000000	0x00000000 0x00000000	0x00000000	0x000000000 0x000000000	0x00000000 0x00000000	0x00000000 0x00000000	
	0x100100c0	0x0000		0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	
	0x10010100	0x0000		0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	
	0x10010100	0x0000		0x00000000	000000000	0x00000000	0x00000000	0x00000000	0x00000000	
	0x10010140	0x0000		0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	
	0x10010160	0x0000		Ox GODGODGO	OxGGOGGGGG	0x00000000	0x00000000	0x00000000	0x00000000	
	0x10010180	0x0000	0000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	0x00000000	
	0~1.001.01.40	0-0000	nnnn	0-0000000	00000000	n-0000000	n-nnnnnn	0-0000000	n-conconon	
rs Messages	Run I/O									
s messages	Kull I/O									
2										
Reset.	reset complete	h								
1,00001	reset comptet									
5										
3										
13										
A expo	nencial modula	r 5 elevado a 3 (mod	13) eh 8							
lear proj	gram is finish	ad running								
- pro	gram to IIIIISII	o running								
5										
5										
5 3 4										
5 3 4 0 modu	lo nao eh prim	i.								
10.000	lo nao eh prim									

Após a inicialização do programa, no console do MARS, deve-se inserir na respectiva ordem:

- Um número inteiro que representa a base numérica da exponenciação;
- Um número inteiro, não negativo, que representa o expoente da operação matemática;
- Um número inteiro que será considerado como possível primo;

A inserção destes dados deve desencadear as subrotinas do programa. Caso o possível número primo que foi inserido não seja um número primo a seguinte mensagem de erro será exibida: "O modulo nao eh primo.".

Caso o número for primo, será calculada a exponenciação modular com base na fórmula [(A ^ B) mod P], sendo A e B números inteiros e P um número primo. Após esse cálculo a seguinte mensagem será exibida no console MARS: "A exponencial modular A elevado a B (mod P) eh Z.", em que A, B e P são substituídos pelos valores citados anteriormente e Z é substituido pelo valor resultante da operação matemática.

limitações conhecidas:

- O número primo opera com um valor limite de um inteiro de 16 bits;
- Lentidão no cálculo com valores elevados:
- Para números grandes o resultado não é calculado corretamente;
- Em alguns casos o resultado fica negativo;