A feedback control system configuration

Structure of the cascade controller to be designed

Time domain requirements translation: resume

A three stage procedure

Steady-state controller gain design

Phase lead controller design

Phase lag controller design

Application to dc-motors position control design

A feedback control system configuration

The given parts of the configuration we are dealing with are:

- plant G_p with plant disturbance d_p
- actuator G_a with actuator disturbance d_a
- sensor G_s with sensor noise d_s

The controller to be designed consists of:

- prefilter G_r (reference generator)
- cascade controller G_c
- feedback controller G_f (for 2 DOF or, if constant, for dc gain)

Without loss of generality we assume that

$$G_r = 1$$

 G_a = constant (large bandwidth because of fast dynamics)

 G_f = constant (to handle the control system steady-state gain)

 G_s = constant (large bandwidth because of fast dynamics)

$$G = G_c G_a G_p = \frac{N_G}{D_G}$$
 $H = G_s G_f = \frac{N_H}{D_H}$

$$G_r = 1$$

 $G_a = \text{constant}$
 $G_f = \text{constant}$
 $G_s = \text{constant}$

Structure of the cascade controller to be designed

Controller structure

LTI controllers described by the transfer function

$$G_{c}(s) = \frac{K_{c}}{s^{\nu}} \prod_{j} \left(\frac{1 + \frac{s}{Z_{di}}}{1 + \frac{s}{m_{di}Z_{di}}} \right) \prod_{j} \left(\frac{1 + \frac{s}{m_{ij}p_{ij}}}{1 + \frac{s}{p_{ij}}} \right)$$

will be considered from now on.

• The controller has ν poles at s = 0 and its generalized steady-state gain is defined as:

$$\lim_{s\to 0} s^{\nu}G_{c}(s) = K_{c}$$

• The plant has p poles at s = 0 and its generalized steady-state gain is defined as:

$$\lim_{s\to 0} s^{\rho} G_{\rho}(s) = K_{\rho}$$

Controller structure

The part $\frac{K_c}{s^v}$ is designed from the steady state requirements

Next we will see how the remaining factors can be designed

$$\prod_{i} \left(\frac{1 + \frac{S}{Z_{di}}}{1 + \frac{S}{m_{di}Z_{di}}} \right) \prod_{j} \left(\frac{1 + \frac{S}{m_{j}p_{j}}}{1 + \frac{S}{p_{j}}} \right)$$

from the transient time domain requirements

The 2nd order prototype model

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

is used to translate the transient time domain requirements

$$\hat{s}$$
 t_r $t_{s,\alpha}$ %

into the relevant indices of the frequency response of the functions T(s), S(s) and L(s)...

... in particular:

$$\hat{S} \rightarrow \begin{cases} \mathcal{T}_{p} \rightarrow \text{resonance peak of } |\mathcal{T}(j\omega)| \\ S_{p} \rightarrow \text{resonance peak of } |\mathcal{S}(j\omega)| \end{cases}$$

$$\frac{t_{r}}{t_{s,\alpha}\%} \rightarrow \omega_{c} \rightarrow \text{crossover frequency of } |\mathcal{L}(j\omega)|$$

It is easy to show that S_p and T_p are related to the gain and phase margins.

$$GM \ge \frac{S_p}{S_p - 1}, \qquad PM \ge 2\sin^{-1}\left(\frac{1}{2S_p}\right)$$

$$GM \ge 1 + \frac{1}{T_p}, \qquad PM \ge 2\sin^{-1}\left(\frac{1}{2T_p}\right)$$

- The values of the resonance peaks T_p and S_p of $|T(j\omega)|$ and $|S(j\omega)|$ respectively obtained via the \hat{s} requirement can be used to draw on the Nichols plane the corresponding constant magnitude loci
- Such loci can be considered as constraints which should not be violated by the Nichols plot of the frequency response of the loop function $L(j\omega)$

A three stage procedure controller design

A three stage procedure controller design

The controller design is accomplished through the following three stage procedure:

Stage 1: Steady-state and transient requirements translation

Stage 2: Controller design through loop-shaping tecniques

Stage 3: Performance analysis of the designed feedback control system, focusing the report on the assigned requirements. If some of the requirements are not fulfilled, go back to stage 2 and modify the designed controller accordingly.

Steady-state controller gain design

Steady-state controller gain design

First, according to the control system type derived from the steadystate requirements, a suitable number of poles at the origin (v) must be set in the controller.

Thanks to the stability Nyquist criterion, the correct sign of K_c is chosen.

Then, the Nichols plot of the loop function frequency response should be drawn on the phase-magnitude plane (the Nichols plane).

An increase of abs(K_c) shifts the Nichols plot upwards.

A decrease of abs(K_c) shifts the Nichols plot downwards.

Steady-state controller gain design

The abs(K_c) should be greater than the minimum value derived from the steady-state requirements.

The abs(K_c) should be less than the value which makes the Nichols plot of the loop function frequency response intersect the constant loci corresponding to the resonance peaks T_ρ and S_ρ .

When we move the $abs(K_c)$, the shape of the loop function frequency response is not modified.

Higher values of $abs(K_c)$ imply higher crossover frequency (faster response), decreased steady state errors to polynomial references and disturbances, decreased stability margin.

Lower values of abs(K_c) imply lower crossover frequency (slow response), increased steady state errors to polynomial references and disturbances, increased stability margin.

Phase lead controller design

Example 1

 In this case phase lead and magnitude increase actions are required

Example 1

The lead network

The introduced example motivates the use of the

lead network

$$R_d(s) = \frac{1 + \frac{s}{Z_d}}{1 + \frac{s}{m_d Z_d}}, m_d > 1$$

The lead network: frequency response

$$R_{d}(s) = \frac{1 + \frac{s}{Z_{d}}}{1 + \frac{s}{m_{d}Z_{d}}}, m_{d} > 1$$

Magnitude increase

Phase lead

Phase lead frequency response

The lead network: effects

Effects on the Nichols plane:

phase lead and magnitude increase gives rise to an oblique shift of the loop Nichols plot over the frequencies of interest.

The lead network: design

• Suppose that a 40° phase lead is required at $\omega_{c,des} = 7 \text{ rad/s}$

several choices can be made:

■
$$m_D$$
= 5; ω/ z_D =1.8
→ (ω/ z_D)| ω=ωc =1.8
 z_D = ω_c /1.8=3.89 rad/s

■
$$m_D$$
= 10; ω/z_D =1
→ $(\omega/z_D)|_{\omega=\omega c}$ = 1
 z_D = ω_c /1 = 7 rad/s

The lead network: design

The corresponding magnitude increases are:

Phase lag controller design

Example 2

A magnitude attenuation action is required

The lag network

The introduced example motivates the use of the

lag network

$$R_{i}(s) = \frac{1 + \frac{s}{m_{i}p_{i}}}{1 + \frac{s}{p_{i}}}, m_{i} > 1$$

The lag network: frequency response

$$R_{i}(s) = \frac{1 + \frac{s}{m_{i}p_{i}}}{1 + \frac{s}{p_{i}}}, m_{i} > 1$$

Magnitude attenuation

Phase lag

Phase lag frequency response

The lag network: effects

Effects on the Nichols plane:

 the magnitude attenuation effect gives rise to a vertical shift of the loop Nichols plot over the frequency of interest.

Application to dc-motors position control design

Control application

Suppose we are given the plant transfer function:

$$G_{\rho}(s) = \frac{Y(s)}{V_{a}(s)} = \frac{1.61}{s \left(1 + \frac{s}{54.67}\right) \left(1 + \frac{s}{5.49}\right)}$$

Control application

... and the disturbance transfer function

$$G_{d}(s) = \frac{Y(s)}{T_{r}(s)} = \frac{3.23 \left(1 + \frac{s}{60}\right)}{s \left(1 + \frac{s}{54.67}\right) \left(1 + \frac{s}{5.49}\right)}$$

Control application

Design a control system such that:

$$\hat{s} \leq 10\%$$

$$|e_r^{\infty}| \le \rho_r = 2 \cdot 10^{-2} \text{ when } r(t) = R_0 t; |R_0| \le \frac{\pi}{10}$$

Feedback control systems to be designed

$$G_r = 1$$

 $G_a = 1$
 $K_d = 1$
 $G_s = 1$