Learning Density-Based Correlated Equilibria for Markov Games

Libo Zhang, Yang Chen, Toru Takisaka, Bakh Khoussainov,

The University of Auckland Auckland, New Zealand

Background

Fundamental. Rather than merely considering reward signals, how do we address **non-reward requirements** such as safety in the AI systems?

Fairness white states are wishe

Black and white states are wished to be visited at the same frequency

- *Markov Games*. Markov games, also known as stochastic games, are extensions of Markov decision processes to **the multi-agent setting**, where a set of agents act in a stochastic environment, each aiming to maximise its cumulative rewards.
- *Correlated Equilibrium*. solution to a Markov is called an equilibrium that amounts to a joint policy where no agent has an incentive to unilaterally deviate to gain rewards. Compared with Nash Equilibrium (NE), correlated equilibrium (CE) captures the coordination among agents.
- *Gap.* CE to a Markov Game forms a convex set, which is described by reward-based constraints. Existing methods either modify the reward function, which is not easy; or cut the CE set by additional constraints, which may lead to no solutions.
- Objective A new CE concept for Markov games which exploits the state density function to explicitly capture non-reward requirements without changing the set of all feasible CEs, Densitybased CE (DBCE).

Density function

- The density function $\rho: S \to R_{\geq 0}$ measures the visitation frequency of states when navigating the environment with a policy.
- Similar to the density function, an **occupancy measure** measures the visitation frequency of state-action pairs given a stationary policy.
- $\rho^{\pi}(s,a) := \sum_{t=0}^{\infty} \gamma^t \Pr(s^t = s, a^t = a | \pi, s^0)$ holds under the bellman-flow constraint:

$$\sum_{a \in A} \rho^{\pi}(s, a) - \eta(s) - \gamma \sum_{s' \in S} \sum_{a \in A} \Pr(s|s', a) \rho^{\pi}(s', a) \\
\rho^{\pi}(s, a) \ge 0$$

• A One-to-one correspondence exists between a policy and an occupancy measure, $\pi(s,a) = \frac{\rho^{\pi}(s,a)}{\sum_{a'\in A}\rho^{\pi}(s,a')}$

Density-based CE as optimisation problem

PROBLEM 1.
$$\min_{f: S \times \mathcal{A} \to \mathbb{R}} \sum_{s \in S^*} \sum_{a \in \mathcal{A}} f(s, a)$$
 subject to

$$\operatorname{reg}_{f}'(s, i, a_{i}, a_{i}') \leq 0, \qquad \forall i \in [N], s \in \mathcal{S}, a_{i}, a_{i}' \in \mathcal{A}_{i}; \quad (6)$$

$$\mathsf{BFError}_f(s) = 0, \quad \forall s \in \mathcal{S};$$
 (7)

$$f(s, a) \ge 0, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}.$$
 (8)

Objective function denotes the non-reward requirement.

- (6) Refers to the **CE constraint**;
- (7), (8) Refers to **Bellman Flow constraint**;

Addressing the non-reward requirements by DBCE

- Safety: $min \sum_{s \in S^*} \rho(s)$ for a set of states S^* ;
- Frequency: $min|\sum_{s\in S^*} \rho(s) c|$ for some constant c;
- Fairness: $min|\sum_{s\in S_1}\rho(s)-\sum_{s\in S_2}\rho(s)|$ for 2 sets of states

Algorithm and Experiment

- Algo. We developed a policy-iteration-based algorithm Density-Based Correlated Policy Iteration (DBCPI) to calculate DBCE.
- *Exp.* We designed 3 games with cooperative and non-cooperative settings, all games are equipped with animation demonstrations. We addressed 3 aforementioned non-reward requirements in these 3 games, and tested the ability of DBCPI.

Algorithm 1 Density-Based Correlated Policy Iteration 1: Input: A Markov game $(S, \mathcal{A}, P, \{r_i\}_{i=1}^N, \eta, \gamma)$. 2: **Initialisation**: Q_i for each $i \in [N]$, learning rate α 3: $\pi(s, a) \leftarrow f(s, a) / \sum_{a' \in \mathcal{A}} f(s, a')$ 4: for each iteration do \leftarrow (solution to Prob. 1 with $\{Q_i\}_{i\in[N]}$) $\pi(s,a) \leftarrow f(s,a)/\sum_{a' \in \mathcal{A}} f(s,a')$ while Not converge do Initialise state $s \in S$ Observe transition (s, a, r, s')for each $i \in [N]$ do $V_i(s') \leftarrow \sum_{a' \in \mathcal{A}} \pi(s', a') Q_i(s', a')$ $Q_i(s, a) \leftarrow (1 - \alpha)Q_i(s, a) + \alpha(r_i + \gamma V_i(s'))$ end for 13: Decay α 14: end while 16: end for 17: **Output:** A joint policy π , and $\varphi'(f)$ as the error of π .

Game Demos:

DBCPI
Performance:

