ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Программная инженерия» (ВШЭ ФКН ПИ)

СОГЛАСОВАНО	УТВЕРЖДАЮ
Доцент департамента	Академический руководитель
Программной инженерии,	образовательной программы
ФКН, к.т.н.	«Программная инженерия»
K. Ю. Дегтярёв	старший преподаватель
«»20г.	Н. А. Павлочев
	«»20г.

ПРОГРАММА ДЛЯ МОДЕЛИРОВАНИЯ ВОСПРИЯТИЯ ФАКТОРОВ УСПЕХА ІТ-ПРОЕКТА С ИСПОЛЬЗОВАНИЕМ НЕЧЕТКИХ КОГНИТИВНЫХ КАРТ

Руководство оператора

лист утверждения

RU.17701729.10.03-01 ПЗ 01-1-ЛУ

$\begin{array}{c} 1 \\ \text{RU.17701729.10.03-01} \ \Pi 3 \ 01\text{--}1 \end{array}$

УТВЕРЖДЕН RU.17701729.10.03-01 ПЗ 01-1-ЛУ

ПРОГРАММА ДЛЯ МОДЕЛИРОВАНИЯ ВОСПРИЯТИЯ ФАКТОРОВ УСПЕХА ІТ-ПРОЕКТА С ИСПОЛЬЗОВАНИЕМ НЕЧЕТКИХ КОГНИТИВНЫХ КАРТ

Руководство оператора

RU.17701729.10.03-01 ПЗ 01-1-ЛУ

Листов 12

Содержание

1	Введение	3
2	Установка и настройка	3
	2.1 Системные требования	3
	2.2 Шаг 1: Активируйте виртуальную среду	3
	2.2.1 Для Linux:	4
	2.2.2 Для Windows:	4
	2.3 Шаг 2: Перейдите в папку django-проекта	4
	2.4 Шаг 3: Установите зависимости	4
	2.5 Шаг 4: Примените миграции	4
	2.6 Шаг 5: Создайте суперпользователя	4
	2.7 Шаг 6: Запустите сервер	4
3	Основные функции и интерфейс	5
4	Создание и редактирование нечетких когнитивных карт	5
	4.1 Добавление фактора	5
	4.2 Добавление связи между факторами	
	4.3 Удаление сущности	6
5	Анализ и моделирование	6
6	Отчёт о результатах работы алгоритма	6
7	Примеры использования	6
	7.1 Пример 1: Анализ влияния команды на успех проекта	7
	7.2 Пример 2: Влияние технологий на проект	
	7.3 Пример 3: Оценка рисков проекта	
	7.4 Использование результатов программы стейкхолдерами	
	7.4.1 Этапы использования результатов программы	8
	7.4.2 Рекомендации по интерпретации результатов	8
8	Заключение	8
9	Список использованных источников	9
Π^{1}	риложения	11
	•	

1 Введение

Данный документ представляет из себя руководство оператора программы для моделирования восприятия факторов успеха IT-проекта с использованием нечетких когнитивных карт. Эта программа предназначена для аналитиков, исследователей и менеджеров проектов, стремящихся глубже понять и оценить комплексные взаимодействия множества факторов, оказывающих влияние на успех IT-проектов.

В современных условиях разработки IT-проектов, управление и моделирование факторов успеха требуют анализа множества параметров и их взаимосвязей. Традиционные методы анализа часто бывают недостаточно эффективны из-за их неспособности учитывать неопределенность и непрямые связи между факторами. Здесь на помощь приходят нечеткие когнитивные карты (НКК) — инструмент, позволяющий моделировать и анализировать сложные системы с высоким уровнем неопределенности.

Цель данной программы — предоставить пользователю удобный и доступный инструмент для создания, редактирования и анализа нечетких когнитивных карт. С ее помощью можно выявить ключевые факторы успеха IT-проекта, определить их влияние друг на друга и построить целостную картину причинно-следственных связей.

Задачи программы включают:

- Позволить пользователю создавать и настраивать нечеткие когнитивные карты с учетом специфики IT-проектов.
- Обеспечить удобный интерфейс для добавления и редактирования узлов, связей и весовых коэффициентов.
- Предоставлять инструменты для анализа НКК с целью выявления критических факторов успеха.
- Генерировать понятные и интерпретируемые отчеты, которые могут быть использованы для принятия управленческих решений.

Данное руководство поможет оператору освоить основные функции программы, начиная с установки и настройки рабочего пространства, и заканчивая продвинутыми методами моделирования и анализом результатов.

2 Установка и настройка

Данный раздел поможет вам установить и настроить программу для моделирования восприятия факторов успеха IT-проекта с использованием нечетких когнитивных карт. Следуйте приведённым инструкциям, чтобы быстро приступить к работе.

2.1 Системные требования

Перед началом установки убедитесь, что ваша система соответствует следующим требованиям:

- Операционная система: Linux или Windows
- Установленный Python версии 3.6 или выше
- Установленный менеджер пакетов рір

2.2 Шаг 1: Активируйте виртуальную среду

Для изоляции окружения и установки всех необходимых зависимостей, необходимо активировать виртуальную среду. В командной строке выполните следующую команду:

2.2.1 Для Linux:

source succenv/bin/activate

2.2.2 Для Windows:

succenv\Scripts\activate

2.3 Шаг 2: Перейдите в папку django-проекта

После активации виртуальной среды, перейдите в директорию, содержащую ваш django-проект. Выполните команду:

cd success

2.4 Шаг 3: Установите зависимости

Теперь установите все необходимые зависимости, указанные в файле requirements.txt. Это можно сделать с помощью следующей команды:

pip3 install -r requirements.txt

2.5 Шаг 4: Примените миграции

Миграции нужны для создания необходимых таблиц в базе данных. Выполните команду:

python manage.py migrate

2.6 Шаг 5: Создайте суперпользователя

Для доступа к административной панели вам необходимо создать суперпользователя. Введите команду:

python manage.py createsuperuser

Следуйте инструкциям в командной строке для ввода имени пользователя, адреса электронной почты и пароля.

2.7 Шаг 6: Запустите сервер

После выполнения всех предыдущих шагов, вы можете запустить сервер для проверки корректности установки:

python manage.py runserver

Сервер будет доступен по адресу: http://127.0.0.1:8000/.

Теперь вы успешно установили и настроили программу. Перейдите по указанному адресу, чтобы начать использование программы для моделирования восприятия факторов успеха IT-проекта.

3 Основные функции и интерфейс

Первый экран представляет собой главную страницу программы. На ней представлены следующие элементы:

- Вкладка About: информация о программе.
- Вкладка GitHub: ссылка на GitHub проекта.
- Вкладка Contacts: ссылка на контакт разработчика программы, к которому можно обратиться для уточнения деталей.
- Kнопка Get started: позволяет зарегистрироваться (ввести email и пароль дважды).
- **Кнопка Log in:** позволяет войти в учетную запись.

Второй экран представляет собой список проектов. Его элементы расположены следующим образом:

- Верхняя часть экрана: популярные шаблоны нечетких когнитивных карт (НКК), которые могут быть использованы для создания собственных НКК.
- Посередине экрана My projects: список проектов пользователя.
- **Нижняя часть экрана Public projects:** общедоступные проекты, которые могут использоваться всеми.
- Правая верхняя часть экрана: кнопка Import для загрузки НКК из файла и кнопка Create для создания новой НКК (данный процесс будет описан в следующем разделе).

Каждый из этих экранов предоставляет пользователю доступ к основным функциям программы, обеспечивая интуитивно понятный интерфейс для выполнения ключевых задач.

4 Создание и редактирование нечетких когнитивных карт

После нажатия кнопки **Create** открывается всплывающее окно. В нём необходимо ввести имя проекта, выбрать настройки приватности и тип нечеткого множества. Затем откроется рабочая область для создания НКК.

В левой верхней части экрана отображается название проекта и кнопка-бургер. При нажатии на неё появляются два варианта: Save и Import, чтобы сохранить НКК или загрузить из файла соответственно. В левой части экрана также расположены три кнопки: Добавить фактор, Добавить связь между факторами и Удалить сущность.

4.1 Добавление фактора

При нажатии на кнопку **Добавить фактор** (кнопка **плюс**) открывается всплывающее окно. В нём необходимо ввести:

- Название фактора,
- Начальное значение фактора (используя лингвистическую переменную от Excellent до Very poor),
- Выбрать тип функции активации.

Фактор появится на рабочей области в виде точки соответствующего цвета.

4.2 Добавление связи между факторами

Чтобы добавить связь между факторами, нажмите на кнопку **стрелка**. Появится всплывающее окно, в котором можно задать:

- Степень влияния одного фактора на другой,
- Исходный фактор,
- Конечный фактор.

Учтите, что фактор может влиять сам на себя.

4.3 Удаление сущности

Чтобы удалить сущность, нажмите кнопку **ножницы**. В всплывающем окне выберите сущность, которую нужно удалить (фактор или связь). Затем нажмите **Delete**.

Каждая из этих функций обеспечивает удобство и гибкость при создании и редактировании нечетких когнитивных карт, направленных на моделирование факторов успеха IT-проекта.

5 Анализ и моделирование

В правой верхней части рабочей области находится контейнер с несколькими полями ввода:

- α коэффициент сглаживания,
- ϵ порог сходимости,
- Функция f функция активации,
- Number of steps максимальное количество итераций.

Справа от контейнера расположена кнопка **play** в виде треугольника. При её нажатии начнётся выполнение алгоритма анализа НКК (reasoning process).

После завершения выполнения алгоритма появится всплывающее окно с сообщением: Bыполнение алгоритма завершено. При нажатии на кнопку $\mathbf{O}\mathbf{k}$ начнётся скачивание отчёта о результатах работы алгоритма в формате Eхсеl.

Этот процесс анализа НКК обеспечивает пользователю возможность провести моделирование и анализ причинно-следственных связей среди факторов успеха IT-проекта, а также получить детализированный отчёт для дальнейшего изучения и принятия решений.

6 Отчёт о результатах работы алгоритма

Программа предоставляет подробный отчёт о результатах работы алгоритма, который включает:

- Матрица весов факторов: Отражает степень влияния одного фактора на другой. Помогает понять, какие факторы имеют наибольшее влияние на успех проекта.
- **Анализ критических факторов успеха (CSF):** Идентифицирует наиболее значимые факторы, влияющие на успех проекта, позволяя концентрировать усилия на этих аспектах.
- Влияние отдельных факторов: Оценивает влияние каждого фактора на общий успех проекта, помогая определить, какие факторы нуждаются в усилении или изменении.
- **Итерационные вычисления:** Отображает процесс итеративных вычислений, показывающий изменения в системе при изменении одного из факторов и симулирующий различные сценарии.
- **Конвергенция карты:** Уровень стабилизации модели после нескольких итераций, показывающий, насколько система приближается к равновесию и оценивающий устойчивость предложенной модели.

Этот отчёт может быть использован при дальнейшем обсуждении результатов со стейкхолдерами, что способствует более эффективному управлению и планированию IT-проектов.

Таким образом, разработанное веб-приложение предоставляет пользователям инструмент для моделирования и анализа факторов успеха IT-проектов, что подтверждает его полезность и актуальность для решения поставленных задач.

7 Примеры использования

Этот раздел предоставляет примеры использования программы для моделирования восприятия факторов успеха IT-проекта с помощью нечетких когнитивных карт (HKK). Эти примеры помогут вам понять, как применять программу на практике и максимально использовать её возможности.

7.1 Пример 1: Анализ влияния команды на успех проекта

Описание задачи: Руководитель проекта хочет понять, как различные параметры команды (например, опыт, сотрудничество и мотивация) влияют на успех IT-проекта.

Шаги:

- 1. Создайте новый проект, используя кнопку **Create**, введите имя проекта, настройки приватности и тип нечеткого множества.
- 2. Добавьте факторы: опыт команды, уровень сотрудничества и мотивация.
- 3. Установите начальные значения факторов с помощью лингвистических переменных (например, от *Excellent* до *Very poor*).
- Добавьте связи между факторами, указывая степень их влияния друг на друга и на общий успех проекта.
- 5. Задайте параметр $\alpha = 0.8, \epsilon = 0.01$, функцию активации f и максимальное количество итераций (Number of steps) равное 100.
- 6. Запустите анализ, нажав кнопку **play**.
- 7. После завершения анализа скачайте отчёт в формате Excel и изучите результаты.

7.2 Пример 2: Влияние технологий на проект

Описание задачи: Менеджер по разработке хочет оценить, как выбор технологий (например, языки программирования, платформы и инструменты) влияет на продуктивность команды и качество продукта.

Шаги:

- 1. Создайте новый проект и введите необходимые параметры.
- 2. Добавьте факторы: язык программирования, платформа и инструменты.
- 3. Установите начальные значения для каждого фактора.
- 4. Добавьте связи между факторами, указывая, как они влияют на продуктивность команды и качество продукта.
- 5. Настройте параметры анализа $(\alpha, \epsilon, f, Number\ of\ steps)$.
- 6. Выполните анализ, используя кнопку **play**.
- 7. Изучите отчёт в формате *Excel* для понимания взаимосвязей.

7.3 Пример 3: Оценка рисков проекта

Описание задачи: Аналитик рисков хочет построить модель для оценки того, как различные риски (например, задержки поставок, недостаток ресурсов, недостаток квалификации) могут повлиять на успех проекта.

Шаги:

- 1. Создайте новый проект с соответствующими настройками.
- 2. Добавьте факторы: задержки поставок, недостаток ресурсов и недостаток квалификации.
- 3. Установите начальные значения факторов и их влияния друг на друга.
- 4. Добавьте связи и настроите параметры анализа $(\alpha, \epsilon, f, Number\ of\ steps)$.
- 5. Запустите процесс анализа, нажав кнопку **play**.
- 6. Скачайте и изучите отчёт для выявления критических рисков и их воздействия на проект.

Эти примеры показывают, как программа может быть использована для моделирования и анализа различных аспектов IT-проектов, предоставляя ценную информацию для принятия обоснованных решений.

8 Использование результатов программы стейкхолдерами

Разработанное веб-приложение предоставляет пользователям ценную информацию о факторах, влияющих на успех IT-проектов. Важно подчеркнуть, что программа не делает самостоятельных выводов, а лишь предоставляет значения и результаты анализа. Конечное решение всегда остаётся за стейкхолдерами, которые интерпретируют данные и принимают управленческие решения на основе представленных результатов. Ниже описаны этапы и рекомендации, которые помогут стейкхолдерам более эффективно использовать результаты программы.

8.1 Этапы использования результатов программы

- Получение результатов анализа: После моделирования факторов успеха с использованием нечеткой когнитивной карты и запуска процесса рассуждения пользователю предоставляется подробный отчет о результатах анализа. Этот отчет включает в себя матрицу весов факторов, критические факторы успеха, влияние отдельных факторов, итерационные вычисления и графическую визуализацию.
- **Первичный анализ результатов:** Стейкхолдеры проводит первичный анализ предоставленных данных, обращая особое внимание на критические факторы успеха и взаимосвязи между ними. Это позволяет выявить ключевые аспекты, требующие внимания.
- Обсуждение результатов: После первичного анализа стейкхолдеры должны провести обсуждение результатов. Это обеспечивает всесторонний обзор представленных данных и совместное понимание выявленных факторов и их взаимосвязей.

8.2 Рекомендации по интерпретации результатов

- Погружение в контекст: Прежде чем начать интерпретацию результатов, стейкхолдерам следует погрузиться в контекст проекта, чтобы лучше понимать характеристики каждой переменной и ее роль в проекте. Это поможет избежать неверной интерпретации значений.
- Использование визуализаций: Графическая визуализация нечеткой когнитивной карты помогает наглядно представить взаимосвязи между факторами. Стейкхолдеры должны обратить внимание на узлы с наибольшими весами и их связи, что поможет в выявлении критических точек.
- Обсуждение сценариев: Совместное обсуждение различных сценариев с участием всех заинтересованных сторон помогает понять, как изменения в одном факторе могут повлиять на общий успех проекта. Это способствует лучшему пониманию и подготовке к возможным рискам.
- Экспертное мнение: Привлечение экспертов для интерпретации сложных взаимосвязей и анализа предоставленных данных поможет получить более точные и обоснованные выводы.
- Дополнительные анализы: Использование других методов анализа и инструментов, таких как SWOTанализ или PEST-анализ, может дополнительно подтвердить или опровергнуть результаты, предоставленные программой.

Таким образом, использование разработанного веб-приложения и интерпретация его результатов требует совместной работы стейкхолдеров и экспертов. Программа предоставляет ценную информацию, которая может служить основой для дальнейших управленческих решений. Важно помнить, что конечные выводы и действия должны основываться на совокупности представленных данных и экспертного мнения, чтобы обеспечить успех IT-проекта.

9 Заключение

В данном руководстве были рассмотрены основные возможности и функции программы для моделирования восприятия факторов успеха IT-проекта с использованием нечетких когнитивных карт (НКК). Процесс установки и настройки, ознакомление с интерфейсом и базовыми функциями, а также этапы создания и редактирования НКК были подробно описаны.

Нечеткие когнитивные карты предоставляют мощный инструмент для анализа сложных систем с множеством взаимодействующих компонентов, что позволяет лучше понимать и управлять факторами, влияющими на успех IT-проектов. Программа позволяет легко создавать и настраивать НКК, моделировать реальные сценарии и анализировать полученные данные.

Были рассмотрены примеры использования программы для различных сценариев: анализ влияния команды на успех проекта, влияние технологий на продуктивность и качество продукта, оценка рисков проекта. Данные примеры демонстрируют, как программа может быть применена на практике для решения реальных задач и принятия обоснованных решений.

Использование программы способствует более эффективному управлению проектами, предсказанию возможных проблем и принятию решений на основе детализированного анализа данных. Надеемся, что данное руководство станет полезным инструментом для освоения программы и поможет в достижении поставленных целей.

В случае возникновения вопросов или предложений по улучшению программы, пожалуйста, свяжитесь с разработчиком через вкладку **Contacts** на главной странице программы. Обратная связь всегда приветствуется для дальнейшего совершенствования продукта.

10 Список использованных источников

- [1] ГОСТ 19.101-77. Единая система программной документации. Термины и определения: утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 20 мая 1977 г. № 1268 срок введения: с 01.01.1980 г. URL: https://www.swrit.ru/doc/espd/19.001-77.pdf (дата обращения: 01.12.2023). Текст: электронный.
- [2] ГОСТ 19.102-77. Единая система программной документации. Термины и определения: утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 20 мая 1977 г. № 1268 срок введения: с 01.01.1980 г. URL: https://www.swrit.ru/doc/espd/19.102-77.pdf (дата обращения: 01.12.2023). Текст: электронный.
- [3] 19.103-77. Единая система программной документации. Термины и определения: утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 20 мая 1977 г. № 1268 срок введения: с 01.01.1980 г. URL: https://www.swrit.ru/doc/espd/19.103-77.pdf (дата обращения: 01.12.2023). Текст: электронный.
- [4] ГОСТ 19.104-78. Единая система программной документации. Термины и определения: утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 20 мая 1977 г. № 1268 срок введения: с 01.01.1980 г. URL: https://www.swrit.ru/doc/espd/19.104-78.pdf (дата обращения: 01.12.2023). Текст: электронный.
- [5] ГОСТ 19.105-78. Единая система программной документации. Термины и определения: утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 20 мая 1977 г. № 1268 срок введения: с 01.01.1980 г. URL: https://www.swrit.ru/doc/espd/19.105-78.pdf (дата обращения: 01.12.2023). Текст: электронный.
- [6] ГОСТ 19.106-78. Единая система программной документации. Термины и определения: утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 20 мая 1977 г. № 1268 срок введения: с 01.01.1980 г. URL: https://www.swrit.ru/doc/espd/19.106-78.pdf (дата обращения: 01.12.2023). Текст: электронный.
- [7] ГОСТ 19.404-79. Единая система программной документации. Термины и определения: утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 20 мая 1977 г. № 1268 срок введения: с 01.01.1980 г. URL: https://www.swrit.ru/doc/espd/19.404-79.pdf (дата обращения: 01.12.2023). Текст: электронный.

- [8] ГОСТ 19.603-78. Единая система программной документации. Термины и определения: утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 20 мая 1977 г. № 1268 срок введения: с 01.01.1980 г. URL: https://www.swrit.ru/doc/espd/19.603-78.pdf (дата обращения: 01.12.2023). Текст: электронный.
- [9] ГОСТ 19.404-79. Единая система программной документации. Термины и определения: утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 20 мая 1977 г. № 1268 срок введения: с 01.01.1980 г. URL: https://www.swrit.ru/doc/espd/19.404-79.pdf (дата обращения: 01.12.2023). Текст: электронный.
- [10] Учебный офис ФКН ПИ (2023) СПРАВОЧНИК УЧЕБНОГО ПРОЦЕССА НИУ ВШЭ. Выпускная квалификационная работа (ВКР) // Сайт hse.ru (https://www.hse.ru/studyspravka/vkr) Просмотрено: 30.11.2023.
- [11] Жернова Мария Олеговна (2023) Учебные планы 2020 года набора // Сайт hse.ru (https://www.hse.ru/ba/se/learn_plans) Просмотрено: 12.12.2023.
- [12] Robert Axelrod (1976) Structure of Decision: The Cognitive Maps of Political Elites // Сайт jstor.org (https://www.jstor.org/stable/j.ctt13x0vw3) Просмотрено: 17 января 2024.
- [13] Bart Kosko (1985) Fuzzy cognitive maps // Сайт sipi.usc.edu (http://sipi.usc.edu/ kosko/FCM.pdf) Просмотрено: 17 января 2024.
- [14] Papageorgiou, Elpiniki & Papageorgiou, Konstantinos & Dikopoulou, Zoumpoulia & Mourhir, Asmaa (2018) A Fuzzy Cognitive Map web-based tool for modeling and decision making // Сайт researchgate.net (https://www.researchgate.net/publication/336591466_A_Fuzzy_Cognitive_Map_web-based tool for modeling and decision making) Просмотрено: 17.01.2024.
- Gerardo \mathcal{E} \mathcal{E} [15] Felix Benjamin, N'apoles,GonzaloFalcon,Rafael \mathcal{E} Froelich, WojciechVanhoof, KoenEš Bello, Rafael(2019)Α Review on Methods and Software Maps. Artificial Intelligence Review. Сайт researchgate.net (https://www.researchgate.net/publication/319167451 A Review on Methods and Software for Fuzzy Cognitive Management Просмотрено: 17 января 2024.
- [16] Pete Barbrook-Johnson & Alexandra S. Penn (2022) Fuzzy Cognitive Mapping // Сайт link.springer.com (https://link.springer.com/chapter/10.1007/978-3-031-01919-7_6) Просмотрено: 17 января 2024.
- [17] Glykas, Michael (2010) Fuzzy cognitive maps. Advances in theory, methodologies, tools and applications // Сайт researchgate.net (https://www.researchgate.net/publication/268170676_Fuzzy_cognitive_maps_Advances_in_theory Просмотрено: 17 января 2024.
- [18] Luis Rodriguez-Repiso, Rossitza Setchi, Jose L. Salmeron (2007) Modelling IT projects success with Fuzzy Cognitive Maps // Сайт sciencedirect.com (https://doi.org/10.1016/j.eswa.2006.01.032) Просмотрено: 17 января 2024.
- [19] Atasoy, Güzide (2007) Using cognitive maps for modeling project success // Сайт open.metu.edu.tr (https://open.metu.edu.tr/handle/11511/16910) Просмотрено: 17 января 2024.
- [20] Bhutani, K., Kumar, M., Garg, G., & Aggarwal, S. (2016). Assessing it projects success with extended fuzzy cognitive maps & neutrosophic cognitive maps in comparison to fuzzy cognitive maps. Neutrosophic Sets and Systems, 12(1), 9-19.
- [21] L.A. Zadeh (1965) Fuzzy sets // Сайт www.sciencedirect.com (https://www.sciencedirect.com/science/article/pii/S0019995-Просмотрено: 16 февраля 2024.
- [22] G. M. Mendez, Ismael Lopez-Juarez, P. N. Montes-Dorantes, M. A. Garcia (2023) A New Method for the Design of Interval Type-3 Fuzzy Logic Systems With Uncertain Type-2 Non-Singleton Inputs (IT3 NSFLS-2): A Case Study in a Hot Strip Mill // Сайт ieeexplore.ieee.org (https://ieeexplore.ieee.org/document/10114383) Просмотрено: 16 февраля 2024.

Приложения

Приложение 1

Ссылка на репозиторий проекта с исходным кодом и всеми использованными материалами. https://github.com/NikPeg/modeling_perception_success_factors

Приложение 2

Приложение 3

Терминология

- 1. **Информационные технологии (IT)**: Термин используется для обозначения комплекса технологий, связанных с созданием, хранением, обработкой и передачей информации с помощью компьютеров и компьютерных сетей.
- 2. **Когнитивные карты**: Психологический инструмент, используемый для представления знаний, представлений и восприятий. Применяются в моделировании сложных систем и проблем.
- 3. **Нечеткие когнитивные карты (Fuzzy Cognitive Maps, FCM)**: Расширение обычных когнитивных карт, позволяющее представить информацию об отношениях между элементами системы в виде нечетких значений.
- 4. **ІТ-проект**: Проект, связанный с разработкой, внедрением или поддержкой информационных систем или технологий.
- 5. **Моделирование**: Процесс создания модели упрощенного представления реального объекта или процесса с целью его исследования и оптимизации.
- 6. Факторы успеха: Элементы или условия, которые способствуют успешной реализации проекта.
- 7. **Методы анализа**: Статистические и математические инструменты, используемые для изучения и распределения данных.
- 8. **Алгоритмы**: Указания или набор правил, которые следует выполнить в определенном порядке для достижения конкретного результата.
- 9. Прогнозирование: Использование статистических и математических методов для предсказания будущих показателей на основе определенного набора данных.
- 10. Данные о проекте: Информация, собранная в процессе выполнения проекта, которая используется для анализа и прогнозирования.
- 11. **Риск-менеджмент**: Процесс, включающий идентификацию, оценку и приоритизацию рисков (определенные как комбинации их вероятности и последствий) и последующую координацию и экономическую эффективность использования ресурсов для контроля вероятности и/или влияния неприемлемых событий.