## **Totality of Rational points on Moduli stacks**

Counting Families of Varieties: Lecture 1

June Park

The University of Sydney

KIAS-LFANT Winter School on Number Theory

## Rational Points on Projective Varieties over Q



**Figure 1:** Rational points on  $x^2 + y^2 = 1$  over  $\mathbb{Q}$  - Pythagorean Triples

## Why should we be happy?

- 1. Height of a rational number a/b with  $\gcd(a,b)=1$  is  $ht(a/b)=\max(|a|,|b|)$ . Therefore, ht(4/10)=5. Bigger denominator allows more possibilities for numerator thus more rational points.
- **2.** Geometry is enlightening and the quadratic formula is awesome as we have found / parametrized all rational points  $(x,y)=\left(\frac{t^2-1}{t^2+1},\frac{2t}{t^2+1}\right)\in\mathbb{Q}^2$  on the unit circle over  $\mathbb{Q}$
- **3.** Integral points  $[X:Y:Z]=[a^2-b^2:2ab:a^2+b^2]\in\mathbb{Z}^3$  on  $C:=V(X^2+Y^2-Z^2)$  correspond to "Pythagorean Triples"
- **4.** On **projective varieties**, the integral and the rational points coincide i.e.,  $X(\mathbb{Q}) = X(\mathbb{Z})$ . Bear in mind gcd(a, b) = 1.

## Why should we be unhappy?

- 1. If we don't have a rational point to begin the process then we cannot apply quadratic formula. For example,  $x^2 + y^2 = 3$  and turns out  $X(\mathbb{Q}) = \emptyset$ . We need Arithmetic to prove this.
- 2. Take  $x^4 + y^4 = 1$  then we have "Fermat's Last Theorem" regarding  $x^n + y^n = 1$  with n = 4. By Wiles-Taylor, we **know** it has only 4 rational points  $X(\mathbb{Q}) = \{(\pm 1, 0), (0, \pm 1)\}$ . Recalling Mordell-Faltings, we **know** it had  $X(\mathbb{Q}) < \infty$
- **3.** Take  $y^2 = x^3 + Ax + B$  this is 1 polynomial in 2 variables of degree 3 (the Weierstrass cubic for an elliptic curve over  $\mathbb{Q}$ ). What are  $E(\mathbb{Q})$ ? Shockingly, we still cannot answer this.
- **4.** Actually, we know there is at least 1 rational point, the point at  $\infty = [0:1:0]$  for  $E: V(Y^2Z X^3 AXZ^2 BZ^3)$

## Degree of countable infinity, the Rank

- 1. By Mordell-Weil, the set  $E(\mathbb{Q})$  of rational points on  $E/\mathbb{Q}$  has a finitely-generated abelian group structure  $E(\mathbb{Q}) = \mathbb{Z}^r \oplus T$  with algebraic rank  $r \in \mathbb{Z}_{>0}$  and torsion subgroup T
- **2.** The rank r of  $E(\mathbb{Q})$  is **not** well understood.
  - **2.1** An algorithm that is guaranteed to correctly compute *r*?
  - **2.2** Which values of *r* can occur? *How often do they occur?*
  - **2.3** Is there an upper limit, or can *r* be arbitrarily large?
- **3.** When r is small, computational methods exist but when r is large, often the best we can do is a lower bound; we now know, assuming GRH, there is an  $E/\mathbb{Q}$  with  $r \geq 29$  by Elkies-Klagsbrun (2024).

## Demography of Elliptic Curves $E/\mathbb{Q}$

Trying to find / parametrize all the rational points on a given  $E/\mathbb{Q}$  is a dead-end. Thus we rotate our entry. We would like to think about the Question of Distribution and Proportion over all  $E/\mathbb{Q}$ 

Naive height for  $E: y^2 = x^3 + Ax + B$  with no  $p^4|A$  and  $p^6|B$  (minimal Weierstrass model) is  $ht(E) := \max(4|A|^3, 27B^2)$ .

### Conjecture (Minimality + Parity; Goldfeld and Katz-Sarnak)

Over any number field, 50% of all elliptic curves (when ordered by height) have Mordell-Weil rank r=0 and the other 50% have Mordell-Weil rank r=1. Moreover, higher Mordell-Weil ranks  $r\geq 2$  constitute 0% of all elliptic curves, even though there may exist infinitely many such elliptic curves. Therefore, a suitably-defined average rank would be  $\frac{1}{2}$ .

What does this really mean? To talk about Average, we need the "Total number of elliptic curves over  $\mathbb{Q}$  up to isomorphism".

## **Triangle of Rational Dedekind Domains**

Consider not only  $E/\mathbb{Q}$  but also  $E/\mathbb{F}_q(t)$  as well as  $E/\mathbb{C}(z)$ 

- 1. The rational number field  $\mathbb Q$  consisting of ratio of integer numbers in  $\mathbb Z$  is **the rational global field of char** = 0
- 2. The rational function field  $\mathbb{F}_q(t)$  with coefficients in  $\mathbb{F}_q = \mathbb{F}_{p^r}$  consisting of ratio of polynomial functions in  $\mathbb{F}_q[t]$  is the rational global field of char  $= p > 0 \Leftrightarrow$  Projective line  $\mathbb{P}^1_{\mathbb{F}_q}$
- **3.** The meromorphic function field  $\mathbb{C}(z)$  with coefficients in  $\mathbb{C}$  consisting of ratio of holomorphic functions in  $\mathbb{C}[z]$  is **NOT** the rational global field of char  $=0\Leftrightarrow \mathsf{Riemann}$  sphere  $\mathbb{CP}^1$ 
  - Let us count ALL elliptic curves over  $K = \mathbb{F}_q(t)$  wrt height.



# The Sharp Enumeration over Rational Function Field

Define height of discriminant  $\Delta$  over  $\mathbb{F}_q(t)$  as  $ht(\Delta) \coloneqq q^{\deg \Delta}$ 

▶ Elliptic case:  $Deg(\Delta) = 12n \implies ht(\Delta) = q^{12n}$  for  $n \in \mathbb{Z}_{\geq 0}$ 

We consider the counting function  $\mathcal{N}(\mathbb{F}_q(t), B) :=$ 

$$\left|\left\{ \mathsf{Minimal\ elliptic\ curves\ over\ }\mathbb{P}^1_{\mathbb{F}_q}\ \mathsf{with\ }0< \mathit{ht}(\Delta) \leq B 
ight\} \right|$$

### Theorem (Dori Bejleri-JP-Matthew Satriano; April 2024)

Let  $\operatorname{char}(\mathbb{F}_q) > 3$  and  $\delta(x) := \begin{cases} 1 & \text{if } x \text{ divides } q-1, \\ 0 & \text{otherwise.} \end{cases}$ , then

$$\mathcal{N}(\mathbb{F}_q(t), B) = 2\left(\frac{q^9 - 1}{q^8 - q^7}\right) B^{5/6} - 2B^{1/6}$$

$$+ \delta(6) \cdot 4\left(\frac{q^5 - 1}{q^5 - q^4}\right) B^{1/2} + \delta(4) \cdot 2\left(\frac{q^3 - 1}{q^3 - q^2}\right) B^{1/3}$$

$$+ \delta(6) \cdot 4 + \delta(4) \cdot 2$$

## Precise proportions of E/K motivated by NT

#### Theorem (Generic Torsion Freeness; Phillips)

The set of torsion-free elliptic curves over global function fields has density 1. i.e., 'Most elliptic curves over K are torsion free'.

#### Theorem (Boundedness; Tate-Shafarevich & Ulmer)

The ranks of <u>non-constant</u> elliptic curves over  $\mathbb{F}_q(t)$  are unbounded (in both the **isotrivial** and **non-isotrivial** cases).

## **Projective Elliptic K3 Surface of height** n = 2

$$y^2 = x^3 + a_4(u:v)x + a_6(u:v)$$

Weierstrass data for elliptic fibration on algebraic K3 surface,

$$\begin{cases} a_4(u:v) &= -3u^4v^4, \text{ degree } 8 = 4 \times 2, \\ a_6(u:v) &= u^5v^5(u^2+v^2), \text{ degree } 12 = 6 \times 2. \end{cases}$$

Then we have  $\Delta=4a_4^3+27a_6^2$  and  $j=1728\cdot 4a_4^3/\Delta$ 

$$\begin{cases} \Delta &= 27u^{10}v^{10}(u-v)^2(u+v)^2, \text{ degree } 24 = 12 \times 2, \\ j &= 1728 \cdot -\frac{4u^2v^2}{(u-v)^2(u+v)^2}, \text{ degree } 4! \text{ NOT } 24. \end{cases}$$

Wait, where did degree 20 go?

After all, we should have  $j: \mathbb{P}^1 \to \overline{M}_{1,1} \cong \mathbb{P}^1$  of degree 24?

Well, it can get whole lot worse.

## Isotrivial Rational Elliptic Surface of height n=1



## Precise proportions of E/K motivated by NT

We consider the counting function  $\mathcal{N}_T^r(\mathbb{F}_q(t), B) :=$ 

 $|\{ \mathsf{Minimal}\ E/\mathbb{F}_q(t) \ \mathsf{with}\ \mathsf{algebraic}\ \mathsf{rank}\ r,\ \mathsf{torsion}\ \mathcal{T}\ \mathsf{and}\ \mathit{ht}(\Delta) \leq B \}|$ 

If we combine the above two Theorems and the Rank Distribution Conjecture, we are led to the following conclusion.

### Quantitative Rank Distribution Conjecture over $K = \mathbb{F}_q(t)$

$$\mathcal{N}_{T=0}^{r=0}(\mathbb{F}_q(t),\ B) = \left(rac{q^9-1}{q^8-q^7}
ight) B^{5/6} + o(B^{rac{5}{6}}),$$
  $\mathcal{N}_{T=0}^{r=1}(\mathbb{F}_q(t),\ B) = \left(rac{q^9-1}{q^8-q^7}
ight) B^{5/6} + o(B^{rac{5}{6}}),$   $\mathcal{N}_{T}^{r\geq 2}(\mathbb{F}_q(t),\ B) = o(B^{rac{5}{6}}),$  where all o are little-o.

† |E(K)|=1 and  $E(K)=\mathbb{Z}$  each corresponds to 50% of all elliptic curves over K ordered by discriminant height having equal main leading term  $B^{5/6}$  with identical leading coefficient  $\left(\frac{q^9-1}{q^8-q^7}\right)$ .

## **Totality of Rational points on Moduli stacks**

**Counting Families of Varieties : Lecture 2** 

June Park

The University of Sydney

KIAS-LFANT Winter School on Number Theory

## Grothendieck ring $K_0(\operatorname{Stck}_k)$ of k-algebraic stacks

Ekedahl in 2009 introduced the Grothendieck ring  $K_0(\operatorname{Stck}_k)$  of algebraic stacks extending the classical Grothendieck ring  $K_0(\operatorname{Var}_k)$  of varieties first defined by Grothendieck in 1964.

#### **Definition**

Fix a field k. Then the Grothendieck ring  $K_0(\operatorname{Stck}_k)$  of algebraic stacks of finite type over k all of whose stabilizer group schemes are affine is an abelian group generated by isomorphism classes of algebraic stacks  $\{\mathcal{X}\}$  modulo relations:

- ▶  $\{X\} = \{Z\} + \{X \setminus Z\}$  for  $Z \subset X$  a closed substack,
- ▶  $\{\mathcal{E}\} = \{\mathcal{X} \times \mathbb{A}^n\}$  for  $\mathcal{E}$  a vector bundle of rank n on  $\mathcal{X}$ .

Multiplication on  $K_0(\operatorname{Stck}_k)$  is induced by  $\{\mathcal{X}\}\{\mathcal{Y}\} \coloneqq \{\mathcal{X} \times \mathcal{Y}\}$ . A distinguished element  $\mathbb{L} \coloneqq \{\mathbb{A}^1\}$  is called the *Lefschetz motive*.

$$\{\mathbb{P}^1\} = \{II\} = \mathbb{L}+1, \ \{\mathbb{P}^N\} = \mathbb{L}^N + \ldots + 1, \ \{\mathbb{G}_m\} = \mathbb{L}-1, \ \{E\} = ?$$

## **Universal Property for Additive Invariants**

For any ring R and any function  $\tilde{\nu}: \operatorname{Stck}_k \to R$  satisfying relations

- 1)  $\tilde{\nu}(\mathcal{X}) = \tilde{\nu}(\mathcal{Y})$  whenever  $\mathcal{X} \cong \mathcal{Y}$ ,
- 2)  $\tilde{\nu}(\mathcal{X}) = \tilde{\nu}(\mathcal{U}) + \tilde{\nu}(\mathcal{X} \setminus \mathcal{U})$  for  $\mathcal{U} \hookrightarrow \mathcal{X}$  an open immersion,
- 2)  $\tilde{\nu}(\mathcal{X} \times \mathcal{Y}) = \tilde{\nu}(\mathcal{X}) \cdot \tilde{\nu}(\mathcal{Y})$ ,

there is a unique ring homomorphism  $\nu: K_0(\operatorname{Stck}_k) \to R$ 



Such homomorphism  $\nu$  are called **motivic measures**.

 $\therefore$  When  $k = \mathbb{F}_q$ , the point counting measure  $\{\mathcal{X}\} \mapsto \#_q(\mathcal{X})$  is a well-defined ring homomorphism  $\#_q : K_0(\operatorname{Stck}_{\mathbb{F}_q}) \to \mathbb{Q}$  giving the weighted point count  $\#_q(\mathcal{X})$  of  $\mathcal{X}$  over  $\mathbb{F}_q$ .

$$|\mathbb{P}^{N}(\mathbb{F}_q)|=q^N+\ldots+1, \ q+1-2\sqrt{q}\leq |E(\mathbb{F}_q)|\leq q+1+2\sqrt{q}$$

## V. Arnol'd, J. Milnor, M. Atiyah, G. Segal

- 1. Hom space  $\operatorname{Hom}_n(\mathbb{P}^1_D,\mathbb{P}^1_T)$  is the moduli space of morphisms  $f:\mathbb{P}^1_D\to\mathbb{P}^1_T$  of degree n as  $f^*\mathcal{O}_{\mathbb{P}^1_T}(1)\cong L_{\mathbb{P}^1_D}\cong \mathcal{O}_{\mathbb{P}^1_D}(n)$ .
- 2. A morphism  $f: \mathbb{P}^1_D \to \mathbb{P}^1_T$  consists of global sections (global homogeneous polynomials)  $f = (s_0(u:v), s_1(u:v))$  where  $\deg(s_0) = \deg(s_1) = n$  and are coprime i.e.  $\operatorname{Res}(s_0, s_1) \neq 0$ .
- 3. Consider  $f = (-27u^{12}v^{12}, 27u^{14}v^{10} 54u^{12}v^{12} + 27u^{10}v^{14})$  is a **degree 4** morphism as the common factor is  $27u^{10}v^{10}$
- **4.** The rational maps and the morphisms coincide i.e.  $f: \mathbb{P}^1_D \dashrightarrow \mathbb{P}^1_T = f: \mathbb{P}^1_D \to \mathbb{P}^1_T \ (\mathbb{P}^1_D \text{ smooth } \mathbb{P}^1_T \text{ projective})$  after cancellation of common factors i.e.  $\gcd(s_0, s_1) = 1$
- 5.  $\mathbb{P}^1_T(k(t))_n = \mathbb{P}^1_T(k[t])_n$  for  $\mathbb{P}^1_D$  with function field k(t) and ring of integers  $\mathcal{O}_{k(t)} = k[t] \sim \mathbb{P}^1_T(\mathbb{Q})_{ht(a/b)} = \mathbb{P}^1_T(\mathbb{Z})_{ht(a/b)}$

## **Projective Elliptic K3 Surface of height** n = 2

$$y^2 = x^3 + a_4(u:v)x + a_6(u:v)$$

Weierstrass data for elliptic fibration on algebraic K3 surface,

$$\begin{cases} a_4(u:v) &= -3u^4v^4, \text{ degree } 8 = 4 \times 2, \\ a_6(u:v) &= u^5v^5(u^2+v^2), \text{ degree } 12 = 6 \times 2. \end{cases}$$

Then we have  $\Delta=4a_4^3+27a_6^2$  and  $j=1728\cdot 4a_4^3/\Delta$ 

$$\begin{cases} \Delta &= 27u^{10}v^{10}(u-v)^2(u+v)^2, \text{ degree } 24=12\times 2,\\ j &= \frac{27u^{10}v^{10}}{27u^{10}v^{10}}\cdot -\frac{1728\cdot 4u^2v^2}{(u-v)^2(u+v)^2}, \text{ degree } 4! \text{ NOT } 24. \end{cases}$$

The j-map  $j: \mathbb{P}^1 \to \overline{M}_{1,1} \cong \mathbb{P}^1$  is always a morphism but **lost the** valuation data crucial for Tate's algorithm to find out what are (additive) singular fibers at [0:1] for t=0 and [1:0] for  $t=\infty$ .

# Arithmetic of $X_n := \operatorname{Hom}_n(\mathbb{P}^1_D, \mathbb{P}^1_T)$

- 1.  $X_n = \mathbb{P}^{2n+1} V(\operatorname{Res}(s_0, s_1))$  is the open complement of **Resultant hypersurface**  $\operatorname{Res}(s_0, s_1) = 0$  in  $\mathbb{P}^{2n+1}$  thus it is an open quasiprojective variety of dimension 2n+1
- **2.** By Farb-Wolfson's seminal work (2016)  $\{X_n\} = \mathbb{L}^{2n+1} \mathbb{L}^{2n-1} \to |X_n(\mathbb{F}_q)| = q^{2n+1} q^{2n-1}$
- 3. Both domain  $\mathbb{P}^1_D$  and target  $\mathbb{P}^1_T$  are **unparameterized** and the action of an element of  $\operatorname{PGL}_2$  on the homogeneous coordinates [u:v] of  $\mathbb{P}^1_D$  translates to an action on the global sections  $s_i$  of  $\mathcal{O}_{\mathbb{P}^1_D}(n)$  for i=0,1 which are the homogeneous coordinates of  $\mathbb{P}(V)=\mathcal{P}(\underbrace{1,\ldots,1}_{n+1\text{ times}},\underbrace{1,\ldots,1}_{n+1\text{ times}})=\mathbb{P}^{2n+1}$
- **4.**  $\mathbb{L}^{2n+1} \mathbb{L}^{2n-1} = \mathbb{L}(\mathbb{L}^2 1) \cdot \mathbb{L}^{2n-2}$  as  $\{PGL_2\} = \mathbb{L}(\mathbb{L}^2 1)$

# Topology of $X_n := \operatorname{Hom}_n(\mathbb{P}^1_D, \mathbb{P}^1_T)$

- 1.  $\operatorname{Hom}_n^*(\mathbb{P}^1_D, \mathbb{P}^1_T) \hookrightarrow \operatorname{Hom}_n(\mathbb{P}^1_D, \mathbb{P}^1_T) \to \mathbb{P}^1_T$  via the evaluation morphism  $\operatorname{ev}_\infty : \operatorname{Hom}_n(\mathbb{P}^1_D, \mathbb{P}^1_T) \to \mathbb{P}^1_T$  with  $f \mapsto f(\infty) \in \mathbb{P}^1_T$
- 2. Fiber  $\operatorname{Hom}_n^*(\mathbb{P}^1_D,\mathbb{P}^1_T)$  is the based mapping space which is identical to the space of coprime polynomials  $\operatorname{Poly}_1^{(n,n)}$

#### **Definition**

Fix a field K with algebraic closure  $\overline{K}$ . Fix  $k, l \ge 0$ . Define  $\operatorname{Poly}_1^{(k,l)}$  to be the set of pairs (u, v) of monic polynomials in K[z] so that:

- **2.1** deg u = k and deg v = l.
- **2.2** u and v have no common root in  $\overline{K}$ .
  - 3.  $\operatorname{ev}_{\infty}$  is a Zariski-locally trivial fibration via the transitive action of  $\operatorname{Aut}(\mathbb{P}^1_T)=\operatorname{PGL}_2$
  - **4.**  $\mathbb{L}^{2n+1} \mathbb{L}^{2n-1} = (\mathbb{L}+1) \cdot (\mathbb{L}^{2n} \mathbb{L}^{2n-1})$  as  $\{\operatorname{Hom}_n^*(\mathbb{P}_D^1, \mathbb{P}_T^1)\} = \{\operatorname{Poly}_1^{(n,n)}\} = \mathbb{L}^{2n} \mathbb{L}^{2n-1}$

## Arithmetic of Algebraic Stacks over Finite Fields

The weighted point count of  $\mathcal X$  over  $\mathbb F_q$  is defined as a sum:  $\#_q(\mathcal X) \coloneqq \sum_{x \in \mathcal X(\mathbb F_q)/\sim} \frac{1}{|\operatorname{Aut}(x)|}$  where  $\mathcal X(\mathbb F_q)/\sim$  is the set of  $\mathbb F_q$ -isomorphism classes of  $\mathbb F_q$ -points of  $\mathcal X$ .

What we really need is the unweighted point count  $|\mathcal{X}(\mathbb{F}_q)/\sim|$ . But this is immune to the Grothendieck-Lefschetz trace formula.

We clarify the arithmetic role of the *inertia stack*  $\mathcal{I}(\mathcal{X})$  of an algebraic stack  $\mathcal{X}$  over  $\mathbb{F}_q$  which parameterizes pairs (x, Aut(x)).

#### Theorem (Changho Han-JP)

Let  $\mathcal X$  be an algebraic stack over  $\mathbb F_q$  of finite type with affine diagonal. Then,

$$|\mathcal{X}(\mathbb{F}_q)/\sim|=\#_q(\mathcal{I}(\mathcal{X}))$$

Thus the weighted point count  $\#_q(\mathcal{I}(\mathcal{X}))$  of the inertia stack  $\mathcal{I}(\mathcal{X})$  is the unweighted point count  $|\mathcal{X}(\mathbb{F}_q)/\sim|$  of  $\mathcal{X}$  over  $\mathbb{F}_q$ .

# Deligne–Mumford stack $\overline{\mathcal{M}}_{1,1}$ of stable elliptic curves

Fine moduli stack  $\overline{\mathcal{M}}_{1,1}$  parametrizes isomorphism classes [E] of stable elliptic curves with the coarse moduli space  $\overline{M}_{1,1}\cong\mathbb{P}^1$  parametrizing the j-invariant  $j([E])=1728\cdot 4a_4^3/(4a_4^3+27a_6^2)$ 





When the characteristic of the field k is not equal to 2 or 3,  $(\overline{\mathcal{M}}_{1,1})_k \cong [(Spec\ k[a_4,a_6]-(0,0))/\mathbb{G}_m]=:\mathcal{P}_k(4,6)$  through the short Weierstrass equation:  $y^2=x^3+a_4x+a_6$ 

Stabilizers are the orbifold points [1 : 0] & [0 : 1] with  $\mu_4$  &  $\mu_6$  respectively and the generic stacky points such as [1 : 1] with  $\mu_2$ 

The fine moduli stack  $\overline{\mathcal{M}}_{1,1}$  comes equipped with the universal family  $p:\overline{\mathcal{E}}_{1,1}\to\overline{\mathcal{M}}_{1,1}$  of stable elliptic curves.

# Boundary Divisor $\overline{\mathcal{M}}_{1,1} \setminus \mathcal{M}_{1,1} = [\infty]$ for $I_1$ nodal fiber

- 1. Take the nodal curve  $y^2 = x^3 + x^2$ , then *complete the cubic* via  $x = x' \frac{1}{3}$ . This is why we require  $\operatorname{char}(k) \neq 2, 3$ .
- **2.** We get  $y^2=x^3-\frac{1}{3}x+\frac{2}{27}$ . Coefficients should be integral thus we take  $\lambda=3$  to multiply  $\lambda^4$  to  $-\frac{1}{3}$  and  $\lambda^6$  to  $+\frac{2}{27}$ . Notice here weighted homogeneous coordinate of  $\mathcal{P}(4,6)$ .
- 3. We arrive at  $y^2=x^3-27x+54$  thus  $\left[-\frac{1}{3}:\frac{2}{27}\right]=\left[-27:54\right]$ . Curve is singular  $\Delta=4(-27)^3+27(54)^2=0$  thus  $j=\infty$ . Written as  $I_1$  multiplicative reduction in Kodaira notation.
- **4.** Remember the isomorphism, for any  $\lambda \in \mathbb{G}_m$

$$\left[y^2=x^3+Ax+B\right]\cong \left[y^2=x^3+\lambda^4\cdot Ax+\lambda^6\cdot B\right]$$
 via  $x\mapsto \lambda^{-2}\cdot x$  and  $y\mapsto \lambda^{-3}\cdot y$ .

## Geometric Tate's algorithm



## Tate's algorithm via Twisted maps; correspondence

#### Theorem (Dori Bejleri-JP-Matthew Satriano; April 2024)

If  $\operatorname{char}(K) \neq 2,3$ . Then the twisting condition (r,a) and the order of vanishing of j at  $j=\infty$  determine the Kodaira fiber type, and (r,a) is in turn determined by  $m=\min\{3\nu(a_4),2\nu(a_6)\}$ .

| $\gamma:( u(a_4),\  u(a_6))$ | Reduction type with $j \in \overline{M}_{1,1}$ | Γ : ( <i>r</i> , <i>a</i> ) |
|------------------------------|------------------------------------------------|-----------------------------|
| $(\geq 1,1)$                 | II with $j = 0$                                | (6,1)                       |
| $(1, \geq 2)$                | III with $j = 1728$                            | (4, 1)                      |
| $(\geq 2, 2)$                | IV with $j = 0$                                | (3, 1)                      |
| (2,3)                        | $I_{k>0}^*$ with $j=\infty$                    | (2,1)                       |
|                              | $I_0^*$ with $j \neq 0, 1728$                  |                             |
| $(\geq 3, 3)$                | $\mathrm{I}_0^*$ with $j=0$                    | (2,1)                       |
| $(2, \geq 4)$                | $I_0^*$ with $j = 1728$                        | (2,1)                       |
| (≥ 3, 4)                     | $IV^*$ with $j=0$                              | (3, 2)                      |
| $(3,\geq 5)$                 | $III^*$ with $j=1728$                          | (4, 3)                      |
| $(\geq 4,5)$                 | $II^*$ with $j=0$                              | (6,5)                       |

## How many elliptic curves over $k = \mathbb{F}_q$ upto isom?

The inertia stack  $\mathcal{I}\overline{\mathcal{M}}_{1,1}$  parametrizes [E] and automorphism groups ([E],  $\operatorname{Aut}[E]$ ). To keep track of the primitive roots of unity contained in  $\mathbb{F}_q$ , define function  $\delta(x) \coloneqq \begin{cases} 1 & \text{if } x \text{ divides } q-1, \\ 0 & \text{otherwise.} \end{cases}$ 

Grothendieck class in  $K_0(\operatorname{Stck}_k)$  with  $\operatorname{char}(k) \neq 2,3$ ,

$$\{\mathcal{I}\overline{\mathcal{M}}_{1,1}\} = 2 \cdot (\mathbb{L} + 1) + 2 \cdot \delta(4) + 4 \cdot \delta(6)$$

Weighted point count over  $\mathbb{F}_q$  with  $\operatorname{char}(\mathbb{F}_q) \neq 2, 3$ ,

$$\#_q(\mathcal{I}\overline{\mathcal{M}}_{1,1}) = 2 \cdot (q+1) + 2 \cdot \delta(4) + 4 \cdot \delta(6)$$

Exact number of  $\mathbb{F}_q$ -isomorphism classes with  $\operatorname{char}(\mathbb{F}_q) \neq 2,3$ ,

$$|\overline{\mathcal{M}}_{1,1}(\mathbb{F}_q)/\sim|=2\cdot(q+1)+2\cdot\delta(4)+4\cdot\delta(6)$$

# Elliptic surfaces /k = Families of elliptic curves /K

The study of **fibrations of algebraic curves** lies at the heart of the Enriques-Kodaira classification of algebraic surfaces.



We call an algebraic surface S to be an **elliptic surface**, if it admits an elliptic fibration  $f: S \to C$  which is a flat proper morphism f from a nonsingular surface S to a nonsingular curve C, such that a generic fiber is a smooth curve of genus 1.

While this is the most general setup, it is natural to work with the case when the base curve is the smooth projective line  $\mathbb{P}^1$  and there exists a section  $O:\mathbb{P}^1\hookrightarrow S$  coming from the identity points of the elliptic fibres and not passing through the singular points.

## Moduli stack of stable elliptic fibrations

Thus, a stable elliptic fibration  $g: Y \to \mathbb{P}^1$  is induced by a morphism  $\varphi_f: \mathbb{P}^1 \to \overline{\mathcal{M}}_{1,1}$  and vice versa.

$$X \xrightarrow{\nu} Y = \varphi_f^*(\overline{\mathcal{E}}_{1,1}) \longrightarrow \overline{\mathcal{E}}_{1,1}$$

$$\downarrow_f \qquad \qquad \downarrow_p$$

$$\mathbb{P}^1 = \mathbb{P}^1 \xrightarrow{\varphi_f} \overline{\mathcal{M}}_{1,1}$$

X is the non-singular semistable elliptic surface; Y is the stable elliptic fibration;  $\nu: X \to Y$  is the minimal resolution.

The moduli stack  $\mathcal{L}_{12n}$  of stable elliptic fibrations over the  $\mathbb{P}^1$  with 12n nodal singular fibers and a marked section **is** the Hom stack  $\operatorname{Hom}_n(\mathbb{P}^1,\overline{\mathcal{M}}_{1,1})$  where  $\varphi_f^*\mathcal{O}_{\overline{\mathcal{M}}_{1,1}}(1)\cong\mathcal{O}_{\mathbb{P}^1}(n)$ .

A morphism  $\varphi_f: \mathbb{P}^1 \to \overline{\mathcal{M}}_{1,1}$  consists of global sections (homogeneous polynomials in [u:v])  $\varphi_f = (a_4(u,v), a_6(u,v))$  where  $\deg(a_4) = 4n$  and  $\deg(a_6) = 6n$  (!) and  $\operatorname{Res}(a_4, a_6) \neq 0$ .

## Motivic Analytic Number Theory Praxis

Moduli of minimal stable  $E/\mathbb{F}_q(t)$  is  $\mathcal{L}_{12n}=\operatorname{Hom}_n(\mathbb{P}^1,\overline{\mathcal{M}}_{1,1})$ 

#### Theorem (Changho Han-JP)

Grothendieck class in  $K_0(\operatorname{Stck}_k)$  with  $\operatorname{char}(k) \neq 2,3$ ,

$$\{\mathcal{L}_{12n}\} = \mathbb{L}^{10n+1} - \mathbb{L}^{10n-1}$$

Weighted point count over  $\mathbb{F}_q$  with  $\operatorname{char}(\mathbb{F}_q) \neq 2,3$ ,

$$\#_q(\mathcal{L}_{12n}) = q^{10n+1} - q^{10n-1}$$

Exact number of  $\mathbb{F}_q$ -isomorphism classes with  $\operatorname{char}(\mathbb{F}_q) \neq 2,3$ ,

$$|\mathcal{L}_{12n}(\mathbb{F}_q)/\sim|=\#_q(\mathcal{IL}_{12n})=2\cdot(q^{10n+1}-q^{10n-1})$$

$$\mathcal{Z}_{\mathbb{F}_q(t)}(\mathcal{B}) = \sum_{n=1}^{\left\lfloor rac{log_q\mathcal{B}}{12}
ight
floor} \left|\mathcal{L}_{1,12n}(\mathbb{F}_q)/\sim 
ight| = 2 \cdot rac{(q^{11}-q^9)}{(q^{10}-1)} \cdot \left(\mathcal{B}^{rac{5}{6}}-1
ight)$$

## **Totality of Rational points on Moduli stacks**

**Counting Families of Varieties : Lecture 3** 

June Park

The University of Sydney

KIAS-LFANT Winter School on Number Theory

## Stacky Heights on Algebraic Stacks

Ellenberg, Zureick-Brown, and Satriano extends the rational point  $x \in \mathcal{X}(K)$  to a stacky curve, called a *tuning stack*  $(\mathcal{C}, \pi, \overline{x})$  for x.



 $\mathcal{C}$  is a normal,  $\pi$  is a birational coarse space map.

#### Definition

If  $\mathcal V$  is a vector bundle on  $\mathcal X$  and  $x \in \mathcal X(K)$ , the *height of* x *with respect to*  $\mathcal V$  is defined as

$$\mathsf{ht}_{\mathcal{V}}(x) \coloneqq -\mathsf{deg}(\pi_* \overline{x}^* \mathcal{V}^\vee)$$

for any choice of tuning stack  $(C, \pi, \overline{x})$ .

## **Height Moduli Space on Cyclotomic Stacks**

There is a height moduli stack  $\mathcal{M}_n(\mathcal{X}, \mathcal{L})$  parametrizing all rational points on general proper polarized cyclotomic stacks of stacky height n and that the spaces of twisted maps yield a stratification of  $\mathcal{M}_n(\mathcal{X}, \mathcal{L})$  corresponding to fixing the local contributions to the stacky height. The fact that  $\mathcal{M}_n(\mathcal{X}, \mathcal{L})$  is of finite type is a geometric incarnation of the Northcott property.

### Theorem (Dori Bejleri-JP-Matthew Satriano; April 2024)

Let  $(\mathcal{X}, \mathcal{L})$  be a proper polarized cyclotomic stack over a perfect field k. Fix a smooth projective curve C/k with function field K = k(C) and  $n, d \in \mathbb{Q}_{\geq 0}$ .

**1.** There exists a separated Deligne–Mumford stack  $\mathcal{M}_{n,C}(\mathcal{X},\mathcal{L})$  of finite type over k with a quasi-projective coarse space and a canonical bijection of k-points

$$\mathcal{M}_{n,C}(\mathcal{X},\mathcal{L})(k) = \{P \in \mathcal{X}(K) \mid ht_{\mathcal{L}}(P) = n\}.$$

1. There is a finite locally closed stratification

$$\bigsqcup_{\Gamma,d} \mathcal{H}^{\Gamma}_{d,C}(\mathcal{X},\mathcal{L})/S_{\Gamma} o \mathcal{M}_{n,C}(\mathcal{X},\mathcal{L})$$

where  $\mathcal{H}_{d,C}^{\Gamma}$  are moduli spaces of twisted maps and the union runs over all possible admissible local conditions

$$\Gamma = (\{r_1, a_1\}, \dots, \{r_s, a_s\})$$

and degrees d for a twisted map to  $(\mathcal{X}, \mathcal{L})$  satisfying

$$n=d+\sum_{i=1}^{s}\frac{a_i}{r_i}$$

and  $S_{\Gamma}$  is a subgroup of the symmetric group on s letters that permutes the stacky points of the twisted map.

**2.** Under the bijection in part (1), each k-point of  $\mathcal{H}_{d,C}^{\Gamma}(\mathcal{X},\mathcal{L})/S_{\Gamma}$  corresponds to a K-point P with the stable height and local contributions given by

$$\operatorname{ht}^{\operatorname{st}}_{\mathcal{L}}(P) = d \qquad \quad \left\{ \delta_i = \frac{a_i}{r_i} \right\}_{i=1}^s.$$

## Geometric Interpretation of Tate's Algorithm



Here f is a Weierstrass model,  $\psi$  is the associated weighted linear series viewed as a rational map to  $\overline{\mathcal{M}}_{1,1}$ ,  $\varphi$  is a twisted morphism from the universal tuning stack  $\mathcal C$  which induces a stable stack-like model  $h: \mathcal Y \to \mathcal C$  where  $g: Y \to \mathcal C$  is the twisted model via coarse moduli maps,  $\hat f$  is a resolution of Y, and f' is the relative minimal model obtained by contracting relative (-1)-curves.

Suppose that normalized base multiplicity m=3. This occurs if and only if  $(\nu(a_4), \nu(a_6)) = (1, \ge 2)$ . Then  $r = 12/\gcd(3, 12) = 4$ and  $a = 3/\gcd(3,12) = 1$ . Thus the stabilizer of the twisted curve acts on the central fiber of the twisted model via the character  $\mu_4 \to \mu_4$ ,  $\zeta_4 \mapsto \zeta_4^{-1}$ . In particular, the central fiber E of Y has j=1728. The  $\mu_4$  action on E has two fixed points, and there is an orbit of size two with stabilizer  $\mu_2 \subset \mu_4$ . Let  $E_0$  be the image of Ein the twisted model Y. As E appears with multiplicity 4, Y has  $\frac{1}{4}(-1,-1)$  quotient singularities at the images of the the fixed points and a  $\frac{1}{2}(-1,-1)$  singularity at the image of the orbit of size two. Each of these singularities is resolved by a single blowup to obtain  $\hat{X}$  with central fiber  $4\tilde{E}_0 + E_1 + E_2 + E_3$  where  $E_i$  are the exceptional divisors of the resolution for i = 1, 2, 3 and  $E_1^2 = E_2^2 = -4$  with  $E_3^2 = -2$ . Then  $\tilde{E}_0$  is a (-1)-curve so it needs to be contracted. After this contraction  $E_2$  becomes a (-1) curve and must also be contracted. Since  $E_i$  for i = 1, 2, 3 are incident and pairwise transverse after blowing down  $\tilde{E}_0$ , then the images of  $E_1$  and  $E_2$  must be tangent after blowing down  $E_3$ . Moreover, they are now (-2)-curves and the relatively minimal model for type III.

## Tate's Algorithm via Twisted Morphisms

#### Theorem (Dori Bejleri-JP-Matthew Satriano; April 2024)

If  $\operatorname{char}(K) \neq 2,3$ . Then the twisting condition (r,a) and the order of vanishing of j at  $j=\infty$  determine the Kodaira fiber type, and (r,a) is in turn determined by  $m=\min\{3\nu(a_4),2\nu(a_6)\}$ .

| $\gamma:( u(a_4),\  u(a_6))$ | Reduction type with $j \in \overline{M}_{1,1}$ | Γ : ( <i>r</i> , <i>a</i> ) |
|------------------------------|------------------------------------------------|-----------------------------|
| $(\geq 1,1)$                 | II with $j = 0$                                | (6,1)                       |
| $(1, \geq 2)$                | III with $j = 1728$                            | (4, 1)                      |
| (≥ 2, 2)                     | IV with $j = 0$                                | (3, 1)                      |
| (2,3)                        | $I_{k>0}^*$ with $j=\infty$                    | (2,1)                       |
|                              | $I_0^*$ with $j \neq 0, 1728$                  |                             |
| $(\geq 3, 3)$                | $I_0^*$ with $j=0$                             | (2,1)                       |
| $(2, \geq 4)$                | $I_0^*$ with $j = 1728$                        | (2,1)                       |
| (≥ 3, 4)                     | $IV^*$ with $j=0$                              | (3, 2)                      |
| $(3,\geq 5)$                 | $III^*$ with $j = 1728$                        | (4, 3)                      |
| $(\ge 4, 5)$                 | $II^*$ with $j=0$                              | (6,5)                       |

## Geometric Meaning of Height Moduli Framework

- 1. So one can run the resolution / minimal model. As these are algebraic surfaces it can be done over char(K) = p > 0
- 2. A twisted morphism  $\varphi: \mathcal{C} \to \overline{\mathcal{M}}_{1,1}$  with its twisting data  $\Gamma$  from the universal tuning stack  $\mathcal{C}$  induces a stable stack-like model  $h: \mathcal{Y} \to \mathcal{C}$  as a unique pullback of the universal family  $p: \overline{\mathcal{E}} \to \overline{\mathcal{M}}_{1,1}$ . All the ensuing birational geometry is natural.
- 3. True purpose of a **representable classifying morphism** is in the <u>universal principle</u> that  $\varphi$  intrinsically contains all the algebro-geometric data necessary to uniquely determine a fibration with singular fibers. This is the very essence of the inner arithmetic of rational points on moduli stacks over K.

## $\mathcal{A}$ lgebraic $\mathcal{G}$ eometry $\cap$ $\mathcal{T}$ opology $\iff$ $\mathbb{A}$ rithmetic

- 1. Consider the fact that  $\overline{\mathcal{M}}_{1,1}$  could have been any other algebraic stack  $\mathcal{X}$  (such as  $\overline{\mathcal{M}}_g$  or  $\overline{\mathcal{A}}_g$ ) which is the representing object for certain moduli functor as the fine moduli stack together with the universal family  $p:\overline{\mathcal{E}}\to\mathcal{X}$ .
- 2. Representable classifying morphisms as twisted morphisms  $\varphi: \mathcal{C} \to \mathcal{X}$  uniquely determines certain families of varieties (of algebraic curves or abelian varieties) with non-abelian stabilizers  $(g \geq 2)$ . And they naturally have corresponding "Tate's algorithm", counting statements and so on.
- 3. Geometrizing  $\mathcal{X}(K)$  leads to Height moduli space  $\mathcal{M}_n(\mathcal{X}, \mathcal{L})$  and once we have a **space** (AG), we compute its **invariants** (AT) naturally having various kinds of **consequences** (NT).

## Motivic Height Zeta Function as Generating Series

#### **Definition**

A  $\vec{\lambda}$ -weighted linear series  $(L, s_0, \dots, s_N)$  is *minimal* if for each indeterminacy point  $x \in C$ , there exists an j such that  $\nu_x(s_i) < \lambda_i$ .

#### **Definition**

The motivic height zeta function of  $\mathcal{P}(\lambda_0,\ldots,\lambda_N)$  is the formal power series

$$Z_{\vec{\lambda}}(t) := \sum_{n \geq 0} \left\{ \mathcal{W}_n^{min} \right\} t^n \in \mathcal{K}_0(\operatorname{Stck})[\![t]\!]$$

where  $\mathcal{W}_n^{min}$  is the space of minimal weighted linear series on  $\mathbb{P}^1$  of height n. We also define the variant

$$\mathcal{I}Z_{\vec{\lambda}}(t) := \sum_{n \geq 0} \left\{ \mathcal{I}W_n^{min} \right\} t^n \in \mathcal{K}_0(\operatorname{Stck}_k)[\![t]\!]$$

## Stratification on Ambient Projective Stacks

Minimality defect e measures the degree of failure of a weighted linear series to be minimal (not a rational point of height n).

#### **Definition**

Let  $\mu$  be the normalized base profile. We can divide each part  $\mu_i$  by  $\kappa$  to obtain  $\mu_i = \kappa q_i + r_i$ . We define  $q(\mu)$  and  $r(\mu)$  to be the partitions with parts  $q_i$  and  $r_i$  respectively.

The minimality defect of  $\mu$  is the size of the quotient  $e = |q(\mu)|$ .

### Corollary (Dori Bejleri-JP-Matthew Satriano; April 2024)

The disjoint union of  $\psi_{n,e}$ 

$$\psi_n: \bigsqcup_{e=0}^n \mathcal{W}_{n-e}^{min} imes \mathbb{P}(V_e^1) o \mathcal{P}\left(\bigoplus_{i=0}^N V_n^{\lambda_j}\right)$$

is an isomorphism after stratifying the source and target.

1. We denote the usual motivic zeta function of  $\mathbb{P}^1$  by

$$Z(t) = \sum \{ \mathsf{Sym}^e \, \mathbb{P}^1 \} t^e = \frac{1}{(1 - \mathbb{L}t)(1 - t)}$$

2. We stratify by minimality defect e to obtain an equality

$$\left\{ \mathcal{P}\left(\bigoplus_{i=0}^{N} V_{n}^{\lambda_{i}}\right) \right\} = \sum_{e=0}^{n} \{\mathcal{W}_{n-e}^{min}\} \{\operatorname{Sym}^{e} \mathbb{P}^{1}\}$$

which implies

$$\sum_{n\geq 0} \left\{ \mathcal{P}\left(\bigoplus_{i=0}^{N} V_n^{\lambda_i}\right) \right\} t^n = Z_{\vec{\lambda}}(t) \cdot Z(t) \tag{1}$$

3. Homogeneous polynomials live in compact ambient stack!

$$\sum_{n\geq 0} \left\{ \mathcal{P}\left(\bigoplus_{i=0}^{N} V_n^{\lambda_i}\right) \right\} t^n = \frac{\{\mathbb{P}^N\} + \mathbb{L}^{N+1}\{\mathbb{P}^{|\vec{\lambda}|-N-2}\}t}{(1-t)(1-\mathbb{L}^{|\vec{\lambda}|}t)}$$

## Rationality of Motivic Height Zeta Function

Fix weights  $\vec{\lambda} = (\lambda_0, \dots, \lambda_N)$  and let  $|\vec{\lambda}| := \sum_{i=0}^N \lambda_i$ . Suppose for simplicity that k contains all  $\text{lcm} = \text{lcm}(\lambda_0, \dots, \lambda_N)$  roots of unity.

### Theorem (Dori Bejleri-JP-Matthew Satriano; April 2024)

For  $k, \vec{\lambda}$  as above and  $C = \mathbb{P}^1_k$ , consider  $\mathcal{W}^{min}_n$  and its inertia stack  $\mathcal{IW}^{min}_n$ . We have the following formulas over  $K_0(\operatorname{Stck}_k)$ .

$$\sum_{n\geq 0} \{\mathcal{W}_n^{min}\}t^n = \frac{1-\mathbb{L}t}{1-\mathbb{L}^{|\vec{\lambda}|}t}\left(\{\mathbb{P}^N\} + \mathbb{L}^{N+1}\{\mathbb{P}^{|\vec{\lambda}|-N-2}\}t\right)$$

$$\sum_{n\geq 0} \{\mathcal{IW}_n^{min}\}t^n = \sum_{g\in \mu_{\mathrm{lcm}}(k)} \frac{1-\mathbb{L}t}{1-\mathbb{L}^{|\vec{\lambda_g}|}t} \left(\{\mathbb{P}^{N_g}\} + \mathbb{L}^{N_g+1}\{\mathbb{P}^{|\vec{\lambda_g}|-N_g-2}\}t\right)$$

where g runs over the lcm roots of unity and  $\vec{\lambda}_g$  is a subset of  $\vec{\lambda}$  of size  $N_g+1$  depending explicitly on the order of g.

## Motives of Moduli Stacks of Elliptic Surfaces

#### Theorem (Dori Bejleri-Changho Han-JP-Matthew Satriano)

Let  $\operatorname{char}(k) \neq 2,3$ . The motives (modulo  $\{PGL_2\}$ ) of moduli stacks  $\mathcal{W}_{\min,n}^{\Theta}$  of minimal Weierstrass fibrations with a single Kodaira fiber  $\Theta$  and at worst multiplicative reduction elsewhere is

| Reduction type $\Theta$ with $j \in \overline{M}_{1,1}$ | $ \gamma $ | $\{\mathcal{W}_{\min,n}^{\Theta}\}\in \mathcal{K}_0(\operatorname{Stck}_{\mathcal{K}})$ |
|---------------------------------------------------------|------------|-----------------------------------------------------------------------------------------|
| $I_{k>0}$ with $j=\infty$                               | 0          | <u></u> ⊥ <sup>10</sup> n−2                                                             |
| II with $j = 0$                                         | 2          | <u></u> ⊥ <sup>10</sup> n−3                                                             |
| III with $j = 1728$                                     | 3          | <u></u> ⊥ <sup>10</sup> n−4                                                             |
| IV with $j = 0$                                         | 4          | <u></u> 10 <i>n</i> −5                                                                  |
| $I_{k>0}^*$ with $j=\infty$                             | 5          | $\mathbb{L}^{10n-6} = \mathbb{L}^{10n-7}$                                               |
| $I_0^*$ with $j \neq 0, 1728$                           |            |                                                                                         |
| $I_0^*$ with $j = 0, 1728$                              | 6          | <b>⊥</b> <sup>10</sup> n−7                                                              |
| IV* with $j = 0$                                        | 7          | <u></u> 10 <i>n</i> −8                                                                  |
| III* with $j = 1728$                                    | 8          | <u></u> 10 <i>n</i> −9                                                                  |
| II* with $j = 0$                                        | 9          | $\mathbb{L}^{10n-10}$                                                                   |

#### Theorem (Dori Bejleri-JP-Matthew Satriano; April 2024)

$$\begin{split} \left\{ \mathcal{W}_{n=1}^{\min}(\mathcal{P}(\vec{\lambda})) \right\} &= \{ \mathbb{P}^{N} \} (\mathbb{L}^{|\vec{\lambda}|} - \mathbb{L}) + \mathbb{L}^{N+1} \{ \mathbb{P}^{|\vec{\lambda}|-N-2} \} \\ \left\{ \mathcal{W}_{n \geq 2}^{\min}(\mathcal{P}(\vec{\lambda})) \right\} &= \mathbb{L}^{(n-2)|\vec{\lambda}|+N+2} (\mathbb{L}^{|\vec{\lambda}|-1} - 1) \{ \mathbb{P}^{|\vec{\lambda}|-1} \} \end{split}$$

Take  $|\vec{\lambda}|=10$  and N=1 as  $\overline{\mathcal{M}}_{1,1}\cong \mathcal{P}(4,6)$  over  $\mathbb{Z}[1/6]$ .

**1.** When n = 1, X is a **Rational elliptic surface**.

$$\left\{\mathcal{W}_{1}^{\min}\right\} \!\!=\!\! \mathbb{L}^{11} \!+\! \mathbb{L}^{10} \!+\! \mathbb{L}^{9} \!+\! \mathbb{L}^{8} \!+\! \mathbb{L}^{7} \!+\! \mathbb{L}^{6} \!+\! \mathbb{L}^{5} \!+\! \mathbb{L}^{4} \!+\! \mathbb{L}^{3} \!-\! \mathbb{L}$$

**2.** When n = 2, X is algebraic K3 surface with elliptic fibration (i.e., **Projective elliptic K3 surface with moduli dim. 18**).

$$\left\{\mathcal{W}_{2}^{min}\right\} = \mathbb{L}^{21} + \mathbb{L}^{20} + \mathbb{L}^{19} + \mathbb{L}^{18} + \mathbb{L}^{17} + \mathbb{L}^{16} + \mathbb{L}^{15} + \mathbb{L}^{14} + \mathbb{L}^{13} - \mathbb{L}^{11} - \mathbb{L}^{10} - \mathbb{L}^{9} - \mathbb{L}^{8} - \mathbb{L}^{7} - \mathbb{L}^{6} - \mathbb{L}^{5} - \mathbb{L}^{4} - \mathbb{L}^{3} + \mathbb{L}^{10} + \mathbb{$$

$$= \mathbb{L}(\mathbb{L}^2 - 1) \Big( \mathbb{L}^{18} + \mathbb{L}^{17} + 2\mathbb{L}^{16} + 2\mathbb{L}^{15} + 3\mathbb{L}^{14} + 3\mathbb{L}^{13} + 4\mathbb{L}^{12} + 4\mathbb{L}^{11} + 5\mathbb{L}^{10} + 4\mathbb{L}^9 + 4\mathbb{L}^8 + 3\mathbb{L}^7 + 3\mathbb{L}^6 + 2\mathbb{L}^5 + 2\mathbb{L}^4 + \mathbb{L}^3 + \mathbb{L}^2 \Big)$$