

Magnetic Resistance System for Augmented Play of Mario Kart

PRESENTED BY: BLAKE PICKETT, SAGE MOONEYHAM, TYLER CHITTUM, BENJAMIN REED, AND RAY DURLIN

SUPERVISOR: MR. JESSE ROBERTS

Demonstration

https://youtu.be/qGHIfFxjndl

Problem

Primary Objective: Improve the Mario Kart gaming simulation platform

- Design and construct a dynamic resistance system that provides a realistic experience
- Design and construct a data recording module to be replayed on the Mario Kart simulation platform
- Convert sensors to wireless and provide new power sources
- Update wired connected sensors to wireless
- Update HDMI interface and power distribution
- Strengthen and stabilize sensor mounts

- Resistance felt by the user to be applied comparable an exercising spin bike
- Eddy currents created by moving two magnets closer to a rotating aluminum disk
- Modes of operation
 - Mario Kart Gaming Simulation
 - Pre-recorded course input from RRSA
- Resistance system control
 - PID controller
 - Arduino Nano
 - PID_v1 library
 - Maintains 25 % duty cycle
 - H-Bridge
 - MOSFET H-Bridge made with discrete components

THEORETICAL APPLICATION

$$T_d = \frac{P_d}{\theta} = \frac{\pi \sigma}{4} D^2 dB^2 R^2 \theta$$

where,

 $\sigma = Conductivity of flywheel material (\Omega^{-1}m^{-1})$

D = magnet diameter (meters)

d = disc (flywheel) thickness (meters)

B = magnet field strength (Tesla)

R = dist from flywheel center to magnet (m)

 $\theta = angular \ velocity \left(\frac{rads}{s}\right)$

MATHEMATICAL MODEL

MAGNET ANALYSIS

$$B_y = \frac{\mu_0}{4\pi} * \frac{m}{4\pi} [3\cos^2(\theta) - 1]$$

Note: Field strength in the y direction

where,

 $\mu_o = magnetic permeability in a vaccum \left(\frac{Tm}{A}\right)$

 $m = magnetic moment (Am^2)$

r = dist. from magnet to flywheel (m)

$$m = \frac{(B_r V)}{\mu_0}$$

where,

 $B_r = residual field (Gauss)$

 $V = magnet \ volume \ (m^3)$

NEODYMIUM MAGNET - 2" DIA. X 1/4" THICK

- Problems
 - Order Delays: Resistance system controller and H-bridge
 - Increased Fabrication/Build Time: fabricated flywheel for custom fit

Resistance System Controller Testing

- Some voltage ripple (8 V pk-pk maximum), but this was from supply
- Duty cycle kept at 25 %
- Not possible to test at maximum rated current due to equipment limitations
- Passed stability test

Initial Experimentation and Validation

PROOF OF CONCEPT

Resistance Measurements

- Initial experimentation validates that resistance in the form of braking torque can be provided using designed resistance system
- At a fixed distance of 19 mm
 - Data gathered proves concept of design

RESISTANCE (TORQUE) PROVIDED AT VARYING SPEEDS

Initial Experimentation and Validation

LOW SPEED EXPERIMENTATION

Minimum speed: 105 RPM (11 rad/s)

Distinct state: 1.434 Nm

Max distance: 39 mm

Min distance: 16 mm

RESISTANCE FELT BY THE RIDER AT 105 RPM

Ride Replay System Acquisition (RRSA) – Design

- Data Collection
 - Video
 - Elevation (via pressure sensor)
 - Speed (via reed switch and magnet)
- Data Processing
 - Uses a Raspberry Pi Model B2
 - Automatic shutdown on low battery
 - Battery life indicator LEDs
- Problems
 - Bluetooth file transfer not functional
 - Bike mounting bracket broke after testing heavy shock
 - Desync with video due to dropped frames
 - Order Delays

RRSA Testing

- Water resistant, but mounting bracket broke after riding off a curb
- Calculated altitude imprecision greater than 4.76 cm (design value) – failed test
- Video frame unobstructed by bike
- Video recording drops frames causing desync
- Can continuously record for at least 3 hours
- Projected recording storage capacity: 42 hours

RRSA Test Example

A snapshot of the collected video footage

The route followed. Map credit: TN Tech
Department of Parking and Transportation

Wireless Sensors – Steering

- Design and Implementation
 - Arduino Nano BLE made the sensors able to transfer data by Bluetooth
 - Design system to enable to provide power the sensors using 4 lithium AA batteries
 - MOSFET was added in the speed sensor circuit to save power
- Problems
 - Communication: Bluetooth connection
 - Damaged Parts: Potentiometer damaged
 - Power
- Experimentation and Validation
 - Played multiple games to test the Bluetooth communication
 - Measured the voltage and current used to play a full game
 - Measured the voltage and current used while the game is not being playing

Wireless Sensors – Speed

- Design and Implementation
 - Replaced the speed Arduino Nano with an Arduino Nano BLE with built-in Bluetooth technology
 - Arduino Nano BLE made the sensors able to transfer data by Bluetooth
 - Design system to enable to provide power the sensors using 4 lithium AA batteries
 - MOSFET was added in the speed sensor circuit to save power
- Problems
 - Damaged Parts: Speed sensor controller had physical damage during implementation
 - Not able to send Bluetooth
 - Re-ordered another controller
- Experimentation and Validation
 - Measured the voltage and current used to play a full game
 - Measured the voltage and current used while the game is not being playing

Bluetooth Low Energy (BLE) Communication

- Design and Implementation
 - Uses the ArduinoBLE library on the Nano, Bluepy library on the RPi
 - RPi initialized as Central device, Nano as Peripheral
 - Steering Service that holds Steering values, handlebar switches as characteristics
- Problems
 - Slight input delay
 - Occasional connection issues at launch
 - Sent as a byte, needed conversion

```
BLE.begin();
22
       BLE.setAdvertisedService(steeringService);
23
       steeringService.addCharacteristic(steeringCharacter);
24
       steeringService.addCharacteristic(leftCharacter);
25
       steeringService.addCharacteristic(rightCharacter);
26
       BLE.addService(steeringService);
27
       BLE.setLocalName("SteeringSensor");
28
       BLE.setDeviceName("SteeringSensor");
29
       BLE.advertise();
30
```

Steering Sensor Mount Enhancement

- Design and Implementation
 - Strengthened and stabilized steering sensor mount
 - Replaced existing plastic 3D printed L-Bracket with metal L-Bracket for enhanced strength
 - Attached L-Bracket to bike with conduit hanger for stability
- Problems
 - Order Delays: L-Bracket did not arrive on time
 - Increased Fabrication/Build Time: fabricated L-Bracket
 - Damaged Parts: Potentiometer was determined broken during testing
- Experimentation and Validation
 - Played multiple games to test the stability

HDMI Switcher

HDMI Switcher

GUI w/ HDMI Switch

Power Distribution

- Design and Implementation
 - Provide device and system protection
 - Overprotection
 - Ground Fault Interruption (GFI)
 - Installation of over protection and GFI protection
 - Complete replacement of 120 VAC power supply
- National Electrical Code (NEC)
 - Overprotection devices to be at least 125% of continuous load
 - Article 210.20(A)
 - Wiring to be at least 125% of continuous load
 - Article 210.19(A)(1)

Final System Wiring Diagram

Budget

Subsystem	Cost
Resistance system	\$ 188.02
Wireless Sensors	\$ 142.98
Steering Bracket	\$ 23.02
Power Distribution	\$ 288.29
HDMI Switcher	\$ 16.69
RRSA	\$ 227.55
Linear Actuator Assembly	\$ 254.09

Total Cost: \$1,140.64

Future Work

- Enclose all Steering Sensor Subsystem equipment
- Replace tape on tire with paint or design new means of measuring speed
- Design means to prevent handlebars from turning 360 degrees
- Reduce flywheel size for further evaluation
- Design a means for adding magnets on both sides of the flywheel
- Find a means of decoding Nintendo switch Rumble data output
- Change frame rate of ride replay video based on speed

Questions?