UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores:

Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Tarea 6

- 1. Sea G una gráfica conexa no euleriana. Demuestre que las siguientes afirmaciones son equivalentes.
 - (a) Hay un paseo euleriano en G.
 - (b) Hay exactamente dos vértices de grado impar en G.
 - (c) Existe una familia de ciclos ajenos por aristas dos a dos $\{C_i\}_{i=1}^k$ y un paseo P tal que $E_G = E_P \cup \bigcup_{i=1}^k E_{C_i}$.
- 2. Sea D una digráfica conexa. Demuestre que D es euleriana si y sólo si para cada $v \in V_D$, se tiene $d^+(v) = d^-(v)$.

Demostración: ⇒ Sea D una digrafica conexa e eucliriana → Por definicion de grafica eucliriana existe un circuito euclidiano que une a todos los vertices, llamemosle C a este circuito → sea x perteneciente a V_D el inicio de este circuito → C= $(x, v_i, v_{i+1}, ..., v_{i+n}, u)$ con i y n pertenecientes a los naturales, → como todos los vertices son consecutivos notemos que cada vertice de C es cola y cabeza para dos flechas distintas en el circuito → para todo V_k que pertenece a C existe d^+ y d^- que unene a V_k con sus vertices adyacentes V_{k-1} y V_{k+1} → cada vertice de la trayectoria C tendrá una "arista" d^+ y una d^- , ya que D es par y por construccion de C. Por lo tanto $d^+ = d^-$ ya que para todo vertice de D se puen sumar el numero de veces que aparecen en la trayectoria C y preservará la igualdad anterior.

⇐ Sea D conexa y para toda v que pertenece a V_D se tiene que $d^+ = d^- \to$ para toda v que pertenece a V_D existe al menos una d^+ y una d^- , por lo que para todo v que pertenece a V_D v es mayor igual a 2, pero el grado de V siempre debe ser par, ya que tenemos la igualdad $d^+ = d^- \to D$ es par, por lo tanto por teorema visto en clase tenemos que D es una grafica Eucliriana

3. La digráfica de de Bruijn-Good BG_n tiene como conjunto de vértices al conjunto de todas las sucesiones binarias de longitud n, y donde el vértice $a_1a_2\cdots a_n$ es adyacente al vértice $b_1b_2\cdots b_n$ si y sólo si $a_{i+1}=b_i$ para $1\leq i\leq n-1$. Demuestre que BG_n es

4. Demuestre que existe una forma de ordenar todas las fichas de dominó en un ciclo (respetando las reglas del juego). ¿Cómo generalizaría este resultado para dominós con n puntos? (el dominó estándar es el de 6 puntos).

una digráfica euleriana de orden 2^n y diámetro dirigido n.

5. Sean G una gráfica euleriana no trivial y $u \in V_G$. Demuestre que todo paseo en G que inicia en u se puede extender a un circuito euleriano si y sólo si G - u es acíclica.

Puntos Extra

- 1. Una digráfica D es balanceada si $|d^+(v) d^-(v)| \le 1$, para cada $v \in V$. Demuestre que toda gráfica tiene una orientación balanceada.
- 2. Una sucesión circular $s_1 s_2 \cdots s_{2^n}$ de ceros y unos es llamada una sucesión de de Bruijn-Good de orden n si las 2^n subsucesiones $s_i s_{i+1} \cdots s_{i+n-1}$, $1 \le i \le 2^n$ (con los subíndices

tomados módulo 2^n son distintas, y por lo tanto constituyen todas las posibles sucesiones binarias de longitud n. Por ejemplo, la sucesión 00011101 es una una sucesión de de Bruijn-Good de orden tres. Muestre como encontrar un de estas sucesiones para cualquier orden n utilizando un circuito euleriano dirigido en la gráfica de de Bruijn-Good BG_{n-1} . Justifique su respuesta.

- 3. Sea G una gráfica conexa, y sea X el conjunto de vértices de G de grado impar. Suponga que |X|=2k, con $k\geq 1.$
 - (a) Demuestre que hay k paseos ajenos por aristas Q_1, \ldots, Q_k en G tales que $E_G = \bigcup_{i=1}^k E_{Q_i}$.
 - (b) Deduza que G contiene k paseos ajenos por aristas que conectan a los vértices de X en pares.