SSII UT.05 Instalación de Sistemas Operativos

Instalando GNU/Linux: generalidades, proceso de instalación

1/149

Copyleft © 2014 Alejandro Roca Alhama

Licencia

Copyright © 2008-2014 Alejandro Roca Alhama.

Se otorga permiso para copiar, distribuir y/o modificar este documento bajo los términos de la Licencia de Documentación Libre de GNU, Versión 1.2 o cualquier otra versión posterior publicada por la Free Software Foundation; sin Secciones Invariantes ni Textos de Cubierta Delantera ni Textos de Cubierta Trasera. Puede acceder a una copia de la licencia en http://www.fsf.org/copyleft/fdl.html.

¿Qué vamos a ver?

- Particiones. ¿Por qué hacer particiones?
- Utilidades de particionamiento.
- Esquemas de particionado.
- Caso común: una sola partición (Windows XP/7).
- Breve introducción a fdisk.
- Gestores de arranque: GRUB.
- Configuraciones avanzadas.
- Recuperación de GRUB.
- Instalación de GNU/Linux. Pasos previos.

3/149

Copyleft © 2014 Alejandro Roca Alhama

Instalando GNU/Linux

Generalidades

Particiones

- El particionamiento consiste en la creación de divisiones lógicas en un disco duro.
- Cada una de estas unidades se denomina partición y va a ser formateada con un sistema de ficheros.
 - Sistemas de ficheros importantes:
 - ext4/ext3 (Linux).
 - XFS (Linux).
 - Btrfs (Linux).
 - NTFS (Windows NT/2000/XP/Vista/7/8/2003/2008/2012).
 - exFAT (Windows XP/Vista/7/8/2003/2008/2012).
 - FAT (desde Windows 95/98).
 - etc.

Copyleft © 2014 Alejandro Roca Alhama

¿Por qué particionar?

- Limitaciones técnicas.
- Para aumentar la seguridad de los datos.
- En sistemas Linux, se puede compartir la cantidad de memoria swap entre varias instalaciones.
- Para prevenir que el aumento de los datos de una partición haga el sistema inusable.
- Para instalar diversos sistemas operativos en una misma máquina.
- · Cada partición puede tener atributos independientes.
- Para estructurar información.

5/149

Implementación IBM PC

- Un disco duro se divide en:
 - MBR (Master Boot Record).
 - Primer bloque del disco duro.
 - Contiene la tabla de particiones y el código de arranque.
 - Un número determinado de particiones (4 como máximo).
- Las particiones pueden ser:
 - Primarias.
 - Extendidas.
- Una de las particiones se marca como activa.

7/149

Copyleft © 2014 Alejandro Roca Alhama

Particiones: tipos

- Particiones primarias.
 - Sólo se pueden tener cuatro como máximo.
 - Muchas versiones de Windows solo se instalan en la primera partición primaria marcada como activa.
- Particiones extendidas.
 - Puede haber una o ninguna.
 - Dentro de una partición extendida puede haber multitud de unidades o particiones lógicas.
 - La información de las particiones lógicas NO SE ALMACENA en el MBR, sino al principio de la partición extendida.

Utilidades de particionamiento

GNU Parted, fdisk, and cfdisk

Symantec's PartitionMagic

Mandriva's DiskDrake

Acronis' DiskDirectorSuite

TeraByte Unlimited's BootIt NG

Microsoft's DiskPart and FDISK

DIY DataRecovery's DiskPatch

Ranish Partition Manager

FIPS

VCOM's Partition Commander

Paragon Software's Paragon Hard Disk Manager

9/149

Copyleft © 2014 Alejandro Roca Alhama

¿Cómo editar la tabla de particiones?

Podríamos utilizar:

- Mecanismos de particionamiento que llevan los instaladores de Linux ó Windows.
- Partition Magic o cualquier otro producto comercial.
- Diskpart (Microsoft). Incompleto. Sólo Windows.
- **fdisk de Linux**: El mejor. Soporta todo.
- GParted. Gráfico, mucho más fácil de usar.

Discos/particiones: ejemplo 1

Un solo disco con dos particiones primarias:

11/149

Copyleft © 2014 Alejandro Roca Alhama

Discos/particiones: ejemplo 2

Un solo disco con cuatro particiones primarias:

Discos/particiones: ejemplo 3

Un solo disco dos primarias y una extendida con varias particiones lógicas:

Caso de partida (I)

- Si es la primera vez que nos enfrentamos a una instalación de Linux, partiremos de la siguiente situación:
 - Tenemos un solo disco duro.
 - La tabla de particiones solo contiene una partición primaria marcada como activa (unidad C:).
 - En el mejor de los casos podremos tener dos particiones.
 - No hay ninguna partición libre para instalar Linux.
- Varias soluciones.

Caso de partida (y II)

• Soluciones:

- Sol.1: borramos todo e instalamos solamente Linux.
- Sol.2: instalamos todo desde cero:
 - Instalación de Windows XP/7, creando una partición y dejando espacio para Linux.
 - Instalamos posteriormente Linux en el espacio que hemos dejado libre.
- Sol.3: redimensionamos la partición que tenemos dejando espacio libre.

15/149

Copyleft © 2014 Alejandro Roca Alhama

Puntualizaciones a la solución 3 (I)

- Si optamos por la solución 3. Hay que tener en cuenta:
 - Los accidentes ocurren, antes de "jugar" con las particiones hay que hacer una copia de seguridad de nuestros datos (o una imagen del sistema completo).
 - La partición no debe "estar llena".
 - No estaría de más desfragmentar el disco antes.
 - Necesitamos un software de reparticionamiento.
 - Los instaladores de las últimas distribuciones de Linux permiten redimensionar particiones.

Puntualizaciones a la solución 3 (y II)

Nuestro disco duro antes y después:

Redimensionar la partición de Windows (I)

- 0.- Hacemos una copia de seguridad.
- 1.- Liberamos espacio.
 - Si nuestra partición de Windows tiene 500 GB, y tenemos 450 GB ocupados vamos a poder liberar poco.
 - Un sistema Linux se puede instalar con solo 16 GB, pero eso dejaría poco espacio para el usuario y para aplicaciones adicionales.
- 2.- Desfragmentamos la unidad C: de Windows.
 - Esto lo podemos hacer desde Windows.

Redimensionar la partición de Windows (y II)

3.- Redimensionamos la partición:

- Desde Windows.
 - No todas las versiones de Windows lo permiten.
- Desde el instalador de Ubuntu.
- Con GParted.
- Con cualquier utilidad comercial.
 - Partition Magic, etc.
- 4.- Instalamos Ubuntu.

19/149

Copyleft © 2014 Alejandro Roca Alhama

Redimensionar con GParted

- Para poder redimensionar con GParted necesitamos arrancar con un LiveCD de Linux que lo lleve.
- Alternativas:
 - SystemRescueCD.
 - http://www.sysresccd.org
 - GParted Live CD.
 - http://gparted.sourceforge.net/livecd.php

¿ Qué particiones necesita Linux?

Como mínimo, Linux necesita dos particiones:

/ Partición raíz.

Es la partición principal del sistema, donde Linux almacena todos los ficheros. Lo que en Windows es el directorio raíz \ de la unidad C:

Memoria o área de intercambio (swap).

Es una partición que se usa como espacio de intercambio, como memoria virtual.

El tamaño recomendado es (simplificando):

Si se tiene hasta 1 GB de RAM, el doble que la memoria RAM.

Si se tiene 1 GB de RAM o más, entonces el mismo tamaño que la memoria RAM.

21/149

Copyleft © 2014 Alejandro Roca Alhama

Esquema de particiones simple (Windows + Linux)

Esquema de particiones complejo

(Windows + Linux)

Esquema de particiones complejo

Muchas razones para particionar un Linux así:

Número de discos duros, rendimiento, seguridad, software instalado, sistemas de ficheros a utilizar, etc.

Si se opta por varias particiones para los distintos directorios, los directorio que normalmente van a las diferentes particiones son:

/	Directorio raíz del sistema de ficheros completo.
/boot	Kernel de Linux, ficheros del gestor de arranque (GRUB).
/home	Directorios personales de los usuarios.
/tmp	Ficheros temporales.
/usr	Utilidades y aplicaciones de los usuarios del sistema.
/var	Ficheros y datos variables, logs, locks, spools
/opt	Paquetes de software y aplicaciones opcionales.
etc	

Simplificando

Para una máquina de escritorio para uso personal podríamos optar por crear las siguientes particiones (unos 264 GB).

```
/ 64 GB
/home 64 GB
/tmp 8 GB
/var/VirtualMachines 64 GB
/home/bazar 64 GB
swap 1 GB (depende de la RAM)
```

Aunque para un uso básico de escritorio también podríamos:

```
/ 64 GB (incluso 32 o incluso 16)
swap 1 GB (depende de la RAM)
/home ?? GB (para el/los usuario/sp)/left © 2014 Alejandro Roca Alhama
```

Instalando GNU/Linux

Breve introducción a fdisk

25/149

Breve introducción a fdisk (I)

Modo comando. Para ejecutarlo tecleamos:

fdisk < dispositivo >

Ejemplos:

fdisk /dev/hda <- Disco IDE, canal IDE0 maestro.

fdisk /dev/hdd <- Disco IDE, canal IDE1, esclavo.

fdisk /dev/sda <- Primer disco duro SCSI/SATA/USB.

fdisk /dev/sdc <- Tercer disco duro SCSI/SATA/USB.

El comando ...

fdisk -l /dev/sda

... nos mostrará las particiones de nuestro disco duro.

27/149

Copyleft © 2014 Alejandro Roca Alhama

Breve introducción a fdisk (II)

Los comandos más importantes son:

- m Muestra todos los comandos del modo normal.
- p Muestra la tabla de particiones.
- l Lista los tipos de particiones reconocidos.
- n Permite crear una partición.
- d Permite eliminar una partición.
- t Permite cambiar el tipo de la partición.
- w Escribe la tabla de partición a disco y termina.
- q Salir de fdisk SIN GRABAR los cambios.

Breve introducción a fdisk (III)

- Vamos a particionar un disco de 10GB de la siguiente forma:
 - Partición primaria de 5 GB (para un Windows XP).
 - Partición extendida de 5 GB:
 - Una unidad lógica de 512 MB para swap.
 - Una unidad lógica de 4,5 GB para montar / (para Linux).

29/149

Copyleft © 2014 Alejandro Roca Alhama

Breve introducción a fdisk (IV)

```
root@ubuntu:~# fdisk /dev/sdb
Orden (m para obtener ayuda): p
Disco /dev/sdb: 10.7 GB, 10737418240 bytes
255 cabezas, 63 sectores/pista, 1305 cilindros, 20971520 sectores en total
Unidades = sectores de 1 * 512 = 512 bytes
Tamaño de sector (lógico / físico): 512 bytes / 512 bytes
Tamaño E/S (mínimo/óptimo): 512 bytes / 512 bytes
Identificador del disco: 0xe95f8ccc
Dispositivo Inicio
                    Comienzo Fin
                                            Bloques Id Sistema
Orden (m para obtener ayuda): n
Tipo de partición:
  p primaria (0 primaria, 0 extendida, 4 libre)
   e extendido
Seleccione (predeterminado p): p
Número de partición (1-4, valor predeterminado 1): 1
Primer sector (2048-20971519, valor predeterminado 2048): 2048
Último sector, +sectores o +tamaño{K,M,G} (2048-20971519, valor
predeterminado 20971519): +5G
```

Breve introducción a fdisk (V)

```
Command (m for help): n
Partition type:
   p primary (1 primary, 0 extended, 3 free)
   e extended
Select (default p): e
Partition number (1-4, default 2): 2
First sector (10487808-20971519, default 10487808): 10487808
Last sector, +sectors or +size{K,M,G} (10487808-20971519, default 20971519): 20971519
```

31/149

Copyleft © 2014 Alejandro Roca Alhama

Breve introducción a fdisk (VI)

```
Command (m for help): n
Partition type:
       primary (1 primary, 1 extended, 2 free)
      logical (numbered from 5)
Select (default p): 1
Adding logical partition 5
First sector (10489856-20971519, default 10489856): 10489856
Last sector, +sectors or +size\{K,M,G\} (10489856-20971519, default
20971519): +512M
Command (m for help): n
Partition type:
     primary (1 primary, 1 extended, 2 free)
      logical (numbered from 5)
Select (default p): 1
Adding logical partition 6
First sector (11540480-20971519, default 11540480): 11540480
Last sector, +sectors or +size\{K,M,G\} (11540480-20971519, default
20971519): 20971519
```

Breve introducción a fdisk (VII)

```
Command (m for help): p
Disk /dev/sdb: 10.7 GB, 10737418240 bytes
255 heads, 63 sectors/track, 1305 cylinders, total 20971520 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0xe95f8ccc
   Device Boot
                    Start
                                  End
                                           Blocks
                                                    Id
                                                        System
/dev/sdb1
                     2048
                             10487807
                                          5242880
                                                    83
                                                        Linux
/dev/sdb2
                 10487808
                             20971519
                                          5241856
                                                    5 Extended
/dev/sdb5
                                                    83 Linux
                 10489856
                             11538431
                                           524288
/dev/sdb6
                 11540480
                             20971519
                                          4715520
                                                    83 Linux
Command (m for help): t
Partition number (1-6): 1
Hex code (type L to list codes): 7
Changed system type of partition 1 to 7 (HPFS/NTFS/exFAT)
Command (m for help): t
Partition number (1-6): 5
Hex code (type L to list codes): 82
Changed system type of partition 5 to 82 (Linux swap / Solaris)
دودارددک
```

Breve introducción a fdisk (y VIII)

```
Command (m for help): p
Disk /dev/sdb: 10.7 GB, 10737418240 bytes
255 heads, 63 sectors/track, 1305 cylinders, total 20971520 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0xe95f8ccc
  Device Boot
                    Start
                                  End
                                           Blocks
                                                     Id System
/dev/sdb1
                     2048
                             10487807
                                           5242880
                                                        HPFS/NTFS/exFAT
/dev/sdb2
                 10487808
                             20971519
                                           5241856
                                                     5 Extended
/dev/sdb5
                 10489856
                             11538431
                                            524288
                                                     82 Linux swap /
Solaris
/dev/sdb6
                 11540480
                             20971519
                                           4715520
                                                     83 Linux
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
root@ubuntu:~#
```

Cómo ejecutar fdisk

- Se puede ejecutar fdisk desde...
 - Una instalación de Linux ya hecha a la que se quiera modificar la tabla de particiones.

ii ATENCIÓN a lo que se hace!!

- En la instalación de casi cualquier distribución, una vez que hayamos llegado al paso de particionamiento, siempre podemos cambiar de consola y ejecutar fdisk.
- LiveCD de distribuciones populares (Ubuntu, Fedora, ...).
- Desde un sistema Linux de rescate:
 - System Rescue CD.
 - http://www.sysresccd.org
 - Knoppix.
 - http://www.knopper.net/knoppix/index-en.html_{Copyleft © 2014 Alejandro Roca Alhama}

Instalando GNU/Linux

GParted

35/149

¿Qué es GParted?

- GParted es un front-end gráfico escrito con GTK+ para la utilidad de discos GNU Parted.
 - Es también uno de los editores de particiones oficiales de Gnome además de Gnome Disks (gnome-disk-utility).
- GParted permite:
 - Crear, borrar, redimensionar, mover, chequear y copiar particiones.
 - Y los sistemas de ficheros asociados a dichas particiones.
 - Compatible con NTFS (Windows Vista/7).
 - Sistemas de ficheros soportados (total o parcialmente):
 - Btrfs, crypt/LUKS, exFAT, ext2/ext3/ext4, FAT, HFS/HFS+, JFS, LVM2, NILFS2, NTFS, Reiser4, ReiserFS UFS, XFS.

37/149

Copyleft © 2014 Alejandro Roca Alhama

Cómo ejecutar GParted

- Incluido en cualquier distribución de Linux.
- Si no podemos iniciar desde nuestro sistema Linux, siempre se puede iniciar desde una LiveCD:
 - Ubuntu LiveCD, Fedora LiveCD, etc.
 - Desde un sistema de rescate como:
 - SystemRescueCD.
 - GParted LiveCD.

GParted

(c) http://en.wikipedia.org/wiki/GParted

39/149

Copyleft © 2014 Alejandro Roca Alhama

Instalando GNU/Linux

GPT: GUID Partition Table El futuro presente de la tabla de particiones

GPT

- GPT es el nuevo estándar que define la distribución de la tabla de particiones en discos.
- Aunque forma parte del estándar EFI (Extensible Firmware Interface) de Intel, ya se está utilizando como sustituto de la tabla de particiones MBR debido a sus limitaciones. Incluso en máquinas sin EFI.
 - En MBR existe un tamaño máximo de partición de 2 TiB (menos 512 bytes).
 - Con GPT el tamaño máximo pasa a ser de 8 ZiB (menos 67
 * tamaño_bloque_disco bytes).
- Soportado por muchos sistemas operativos.
 - Algunas versiones de Windows y Mac OS solo pueden usarla en sistemas EFI.

 Copyleft © 2014 Alejandro Roca Alhama

41/149

GPT y EFI/UEFI

- Intel comenzó el desarrollo de GTP a finales de los '90 como parte de lo que se iba a convertir en el estándar UEFI.
- GPT forma parte del estándar UEFI desde 2010.

GPT: características

- GPT consta de:
 - Una cabecera.
 - La tabla de particiones.
- Se sigue usando LBA como forma de acceder a los bloques de disco:
 - LBA 0: contiene el MBR (por compatibilidad).
 - También contiene la primera fase del cargador de arranque.
 - LBA 1: cabecera.
 - Se almacena información como: bloques usables del disco, número y tamaño de las particiones, identificador del disco (UUID), lugar donde reside la segunda copia de la cabecera, un CRC...
 - LBA 2-33: tabla de particiones. Se permiten hasta 128.
 - LBA -33 a -1: copia de la tabla de particiones.

43/149

Copyleft © 2014 Alejandro Roca Alhama

GPT: esquema

GPT: direccionamiento

- MBR utiliza direcciones de 32 bits...
 - Por lo que el tamaño máximo direccionable es de:
 - $2^{32} * 512 = 2.199.023.255.552$ bytes = 2 TiB.
- GPT utiliza para los bloques direcciones de 64 bits.
 - Esto implica poder direccionar discos de...
 - 2⁶⁴ * **512 bytes** (para discos con bloques de 512 bytes).
 - $-2^{64} * 512 = 9.444.732.965.739.290.427.392$ bytes = **8 ZiB**.
 - 2⁶⁴ * 4096 bytes (para discos con bloques de 4 KiB).
 - $-2^{64} * 4096 = 75.557.863.725.914.323.419.136$ bytes = **64 ZiB**.

45/149

Copyleft © 2014 Alejandro Roca Alhama

Sistemas que soportan GPT

- GNU/Linux (32 y 64 bits).
 - Desde Ubuntu 8.04, Fedora 8, etc.
 - Utilidades:
 - GNU Parted.
 - GPT fdisk (gdisk, cgdisk, sgdisk).
 - El programa fdisk no soporta GPT.
- FreeBSD (desde la versión 7.0).
- Mac OS X (desde la versión 10.4.0).
- Windows (solo 64 bits):
 - Soporte completo solo en sistemas UEFI.
 - Windows Vista/7/8, Server 2003/20008/2012.
- Etc.

Particionando con GPT

- Vamos a particionar un disco de 100 GB de la siguiente forma:
 - Partición de 40 GB (para un Windows 7).
 - Partición de 1 GB para la swap de Linux.
 - Resto para la partición de Linux, directorio /.

47/149

Copyleft © 2014 Alejandro Roca Alhama

Particionando GPT con gdisk (I)

```
root@ubuntu64:~# gdisk /dev/sdb
GPT fdisk (gdisk) version 0.8.8

Partition table scan:
    MBR: not present
    BSD: not present
    APM: not present
    GPT: not present
Creating new GPT entries.

Command (? for help): n
Partition number (1-128, default 1): [ENTER]
First sector (34-209715166, default = 2048) or {+-}size{KMGTP}: [ENTER]
Last sector (2048-209715166, default = 209715166) or {+-}size{KMGTP}: +40G
Current type is 'Linux filesystem'
Hex code or GUID (L to show codes, Enter = 8300): 0700
Changed type of partition to 'Microsoft basic data'
```

Particionando GPT con gdisk (II)

```
Command (? for help): p
Disk /dev/sdb: 209715200 sectors, 100.0 GiB
Logical sector size: 512 bytes
Disk identifier (GUID): 14240DC8-1AE9-4E4A-BD19-267E09E44350
Partition table holds up to 128 entries
First usable sector is 34, last usable sector is 209715166
Partitions will be aligned on 2048-sector boundaries
Total free space is 125829053 sectors (60.0 GiB)
Number Start (sector)
                          End (sector)
                                                   Code Name
                                      Size
                2048
                           83888127 40.0 GiB
                                                   0700 Microsoft basic
data
```

49/149

Copyleft © 2014 Alejandro Roca Alhama

Particionando GPT con gdisk (III)

```
Command (? for help): n
Partition number (2-128, default 2): 2
First sector (34-209715166, default = 83888128) or \{+-\} size\{KMGTP\}:
[ENTER]
Last sector (83888128-209715166, default = 209715166) or {+-}size{KMGTP}:
Current type is 'Linux filesystem'
Hex code or GUID (L to show codes, Enter = 8300): 8200
Changed type of partition to 'Linux swap'
Command (? for help): n
Partition number (3-128, default 3): [ENTER]
First sector (34-209715166, default = 85985280) or \{+-\} size\{KMGTP\}:
[ENTER]
Last sector (85985280-209715166, default = 209715166) or {+-}size{KMGTP}:
Current type is 'Linux filesystem'
Hex code or GUID (L to show codes, Enter = 8300): [ENTER]
Changed type of partition to 'Linux filesystem'
```

Particionando GPT con gdisk (y IV)

```
Command (? for help): p
Disk /dev/sdb: 209715200 sectors, 100.0 GiB
Logical sector size: 512 bytes
Disk identifier (GUID): 14240DC8-1AE9-4E4A-BD19-267E09E44350
Partition table holds up to 128 entries
First usable sector is 34, last usable sector is 209715166
Partitions will be aligned on 2048-sector boundaries
Total free space is 2014 sectors (1007.0 KiB)
Number Start (sector)
                         End (sector) Size
                                                 Code Name
                           83888127 40.0 GiB
               2048
                                                  0700 Microsoft basic data
  2
           83888128
                           85985279 1024.0 MiB 8200 Linux swap
           85985280 209715166 59.0 GiB 8300 Linux filesystem
Command (? for help): w
Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING
PARTITIONS!!
Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to /dev/sdb.
The operation has completed successfully.
root@ubuntu64:~#
```

51/149

Copyleft © 2014 Alejandro Roca Alhama

Particionando GPT con parted (I)

```
root@ubuntu64:~# parted /dev/sdb
GNU Parted 2.3
Usando /dev/sdb
¡Bienvenido/a a GNU Parted! Teclee «help» para ver la lista de órdenes.
(parted) mklabel gpt
(parted) mkpart primary ntfs 1 40960
(parted) mkpart primary linux-swap 40960 41984
(parted) mkpart primary ext4 41984 -1
(parted) print
Modelo: VMware, VMware Virtual S (scsi)
Disco /dev/sdb: 107GB
Tamaño de sector (lógico/físico): 512B/512B
Tabla de particiones. gpt
Numero
                        Tamaño
                                 Sistema de archivos
                                                                Banderas
       Inicio Fin
                                                       Nombre
 1
        1049kB 41,0GB 41,0GB
                                                       primary msftdata
 2
        41,0GB 42,0GB 1023MB
                                                       primary
 3
        42,0GB 107GB
                        65,4GB
                                                       primary
(parted) quit
Información: Puede que sea necesario actualizar /etc/fstab.
root@ubuntu64:~#
52/149
                                                        Copyleft © 2014 Alejandro Roca Alhama
```

Particionando GPT con parted (y II)

- Parted es mucho más potente ya que permite:
 - Particionar.
 - Formatear particiones.
 - Redimensionar particiones.
 - Copiar particiones.
- ... pero gdisk es una herramienta más especializada que maneja mejor la tabla de particiones.

53/149

Copyleft © 2014 Alejandro Roca Alhama

GPT y UEFI

- Para el particionamiento del disco principal o disco del sistema, hay que tener en cuenta un par de consideraciones a la hora de particionar con GPT según tengamos un sistema con BIOS o un sistema con UEFI.
 - En sistemas UEFI, el disco principal se tiene que formatear con GPT de forma obligatoria y tiene que tener una partición reservada de al menos 512 MB.
 - La partición debe tener un tipo especial (0xEF00) y estar formateada en FAT32.
- Resumiendo sería...

GPT y (BIOS o UEFI)

	GPT (recomendado)	MBR (obsoleto)
UEFI	Crear partición especial Tipo: EF00 Formato: FAT32 Mínimo: 512 MB	NO SOPORTADO por algunos firmwares
BIOS	Crear partición especial Tipo: EF02 Formato: FAT32 Mínimo: 512 MB	Particiones < 2 TiB Algunos Windows

55/149

Copyleft © 2014 Alejandro Roca Alhama

Instalando GNU/Linux

Gestores de arranque: **GRUB** (Legacy GRUB)

Gestores de arranque

- Un gestor de arranque (boot loader) es un programa que permite seleccionar el sistema operativo a usar y se encarga de su carga.
- Se pueden instalar varios gestores de arranque que se llamen entre sí.
- Un gestor de arranque puede instalarse en:
 - MBR.
 - Al principio de cualquier partición.

57/149

Copyleft © 2014 Alejandro Roca Alhama

Gestores arranque importantes

- GRUB: The GNU GRand Unified Bootloader.
 - Dos versiones: GRUB y GRUB2.
- LILO: a bootloader for the Linux kernel.
- Microsoft Windows NT Bootloader.
- Microsoft Windows 2000 Bootloader.
- Microsoft Windows XP Bootloader.
- Microsoft Windows Vista Bootloader.
- Microsoft Windows 7 Bootloader.
- Microsoft Windows 8 Bootloader.

Características de GRUB (I)

- Cumple la especificación multiarranque.
- Funcionalidad básica para los usuarios finales.
- Funcionalidad extendida para administradores y desarrolladores.
- Compatibilidad descendente para arrancar SSOO como FreeBSD, NetBSD, OpenBSD.
- Soporte para arrancar SSOO propietarios como DOS, OS2 y Windows (XP/Vista/7/8/2003/2008 ...) a través de la función *chainloader*.

59/149

Copyleft © 2014 Alejandro Roca Alhama

Características de GRUB (y II)

- Configuración a través de un único fichero.
- Proporciona un menú gráfico en el arranque.
- Posee una interfaz en línea de comandos potente.
- Soporte de múltiples sistemas de ficheros:
 - FFS, FAT16/32, ext2, ext3, ReiserFS, JFS, XFS...
- Puede acceder a cualquier dispositivo instalado.
- Soporte modo LBA.
- Soporte de red.
 - Puede cargar imágenes desde la red usando TFTP.

60/149

Proceso de arranque (I)

- El cargador GRUB está dividido en dos trozos o etapas.
 - El primer trozo reside en el MBR y va a ser el encargado de leer el segundo trozo.
 - El segundo trozo se encuentra en la partición de datos (generalmente ext3/ext4).
 - GRUB es capaz de leer ext3/ext4, así que es capaz de leer el programa y el fichero de configuración, normalmente /boot/grub/menu.lst.
- La BIOS será la encargada de llevar el MBR a memoria y lanzarlo.

61/149

Copyleft © 2014 Alejandro Roca Alhama

Proceso de arranque (y II)

- La segunda etapa es la encargada de visualizar el menú y presentar al usuario una pantalla gráfica mostrando los diferentes sistemas a arrancar.
- Si seleccionamos un kernel de Linux, GRUB lo cargará y le cederá el control.
- Para cargar un SO tipo Windows, GRUB llama a su gestor de arranque.

Convención de nombres (I)

GRUB no nombra los dispositivos de la misma forma que Linux:

Dispositivo	GRUB	Linux
IDE0, maestro	(hd0)	/dev/hda (antes)
IDE0, esclavo	(hd1)	/dev/hdb (antes)
IDE1, maestro	(hd2)	/dev/hdc (antes)
IDE1, esclavo	(hd3)	/dev/hdd (antes)
Floppy	(fd0)	/dev/fd0
SCSI, primer disco	(hd0)	/dev/sda
SATA, primer disco	(hd0)	/dev/sda

63/149

Copyleft © 2014 Alejandro Roca Alhama

Convención de nombres (y II)

Dispositivo	GRUB	Linux
IDE0, maestro , 1ª part.prim.	(hd0,0)	/dev/hda1 (antes)
IDE0, esclavo , 3ª part. prim.	(hd1,2)	/dev/hdb3 (antes)
IDE1, maestro , 1 ^a un.log.	(hd2,4)	/dev/hdc5 (antes)
IDE1, esclavo , 2ª un.log.	(hd3,5)	/dev/hdd6 (antes)
SATA, 1 ^a part. Primaria	(hd0,0)	/dev/sda1
SATA, 2ª part. Primaria	(hd0,1)	/dev/sda2
SATA, 3 ^a part. Primaria	(hd0,2)	/dev/sda3
SATA, 4ª part. Extendida	(hd0,3)	/dev/sda4
SATA, 1ª unidad lógica	(hd0,4)	/dev/sda5
SATA, 2ª unidad lógica	(hd0,5)	/dev/sda6

Instalación de GRUB

- Normalmente lo hace la instalación de Linux.
- Casi todas las distribuciones de Linux optan por GRUB como gestor de arranque:
 - Debian (hasta la versión 5.0).
 - Ubuntu (hasta la versión 9.04).
 - Fedora (hasta la versión 15).
- Para instalarlo manualmente (como root):

grub-install /dev/sda

• Se configura a través del fichero:

/boot/grub/menu.lst

65/149

Copyleft © 2014 Alejandro Roca Alhama

¿Qué necesita GRUB?

- GRUB es el encargado de arrancar cualquier SO que esté instalado en la máquina:
 - Sistemas Linux.
 - A GRUB hay que proporcionarle:
 - Fichero del kernel de Linux: **vmlinuz**.
 - Disco RAM inicial: initrd.
 - Sistemas Windows.
 - Solo hay que indicar dónde se encuentra el gestor de arranque de Windows.

Fichero de configuración por defecto en Fedora 15

```
#boot=/dev/sda
default=0
timeout=0
splashimage=(hd0,1)/grub/splash.xpm.gz
hiddenmenu
```

67/149

Copyleft © 2014 Alejandro Roca Alhama

Pequeños cambios (I)

Un fichero de GRUB que arranque un Linux y un Windows mostrando un menú tendría este aspecto:

Pequeños cambios (y II)

69/149

Copyleft © 2014 Alejandro Roca Alhama

Fichero de configuración por defecto en Ubuntu 9.04 (I)

```
default
                  0
timeout
                  3
hiddenmenu
```

```
title
                Ubuntu 9.04, kernel 2.6.28-15-generic
uuid
                7caf0042-90a6-48a0-9d00-5d06dfd1c117
                /boot/vmlinuz-2.6.28-15-generic
kernel
     root=UUID=7caf0042-90a6-48a0-9d00-5d06dfd1c117 ro quiet splash
initrd
                /boot/initrd.img-2.6.28-15-generic
quiet
```

```
title
                Ubuntu 9.04, kernel 2.6.28-15-generic (recovery
mode)
uuid
                7caf0042-90a6-48a0-9d00-5d06dfd1c117
kernel
                /boot/vmlinuz-2.6.28-15-generic
     root=UUID=7caf0042-90a6-48a0-9d00-5d06dfd1c117 ro
                                                          single
```

/boot/initrd.img-2.6.28-15-generic initrd

70/149

Fichero de configuración por defecto en Ubuntu 9.04 (y II)

title uuid kernel quiet	Ubuntu 9.04, memtest86+ 7caf0042-90a6-48a0-9d00-5d06dfd1c117 /boot/memtest86+.bin	
title	Microsoft Windows XP Professional	
root	(hd0,0)	
savedefault		
makeactive		
chainloader	+1	

71/149

Copyleft © 2014 Alejandro Roca Alhama

Interfaz gráfica para la configuración de GRUB (I)

- Existen herramientas gráficas para configurar GRUB:
 - KGRUBEditor (paquete kgrubeditor):

http://sourceforge.net/projects/kgrubeditor

72/149

Interfaz gráfica para la configuración de GRUB (y II)

- startupmanager (paquete startupmanager):
 - Sistema->Administración->Administrador de Arranque
 - También soporta GRUB2.

Copyleft © 2014 Alejandro Roca Alhama

73/149

Instalando GNU/Linux

Gestores de arranque: GRUB 2

GRUB 2 (I)

- Sustituto de GRUB.
 - El desarrollo de GRUB 1 se da por finalizado.
- GRUB 2 es una reescritura completa de GRUB.
- Es software libre.
- Actualmente se hace referencia a GRUB2 cuando se habla de GRUB.

75/149

Copyleft © 2014 Alejandro Roca Alhama

GRUB 2 (y II)

- Actualmente GRUB2 es el cargador por defecto de varias distribuciones, incluyendo a Ubuntu desde la versión 9.10.
 - Siguen habiendo algunas distribuciones/versiones que siguen manteniendo GRUB.
 - Esto complica la instalación de varias distribuciones de Linux en la misma máquina.
 - Esto es cada vez más raro.
- Llamamos GRUB2 a cualquier GRUB por encima de la versión 1.98 o posterior. Las versiones anteriores se corresponden a GRUB (legacy GRUB).
 - La versión actual en Ubuntu 14.04 es GRUB 2.02.

Mejoras de GRUB2 (I)

- Entres las mejoras de GRUB 2 destacamos:
 - El nuevo soporte de scripting incluye sentencias condicionales y funciones.
 - Carga dinámica de módulos.
 - Modo rescate.
 - Menús configurables.
 - Soporte de temas.
 - Soporte de menús gráficos de arranque y 'splash' mejorados.
 - Arranque de LiveCDs (imágenes ISO) directamente desde disco duro.

77/149

Copyleft © 2014 Alejandro Roca Alhama

Mejoras de GRUB2 (II)

- Línea de comandos muy flexible.
- Soporte de una gran cantidad de sistemas de ficheros:

ext2/ext3/ext4, FAT, exFAT, HFS/HFS+, ISO9660, NTFS, ReiserFS, BSD UFS/UFS2, XFS, ZFS, ...

Nueva estructura de ficheros de configuración.

ii Mejora o pesadilla!!

- Soporte para otras plataformas distintas a x86, como PowerPC.
- Soporte universal para UUIDs.
- Soporte de arranque por red.
- iiConfiguración casi automática!!

Inconvenientes de GRUB2

- Hasta no hace mucho tiempo, documentación muy escasa.
- La configuración de GRUB2 es muy diferente a la de GRUB.
 - Hay que hacerse con la filosofía.
 - Al principio parece que el cambio no aporta nada.

79/149

Copyleft © 2014 Alejandro Roca Alhama

GRUB vs GRUB2 (I)

- El menú por defecto de GRUB2 es muy similar al de GRUB, pero existen bastante diferencias:
 - En una instalación nueva de Ubuntu (desde la versión 9.10) en la que no haya otro sistema operativo, GRUB2 arrancará directamente el sistema operativo.
 - No se mostrará ningún menú ni prompt.
 - Teniendo pulsada la tecla SHIFT se mostrará el menú durante el arranque del sistema (esta tecla sustituye a la tecla ESC de GRUB).
 - El fichero de configuración es /boot/grub/grub.cfg
 - No existe el anterior /boot/grub/menu.lst
 - NO HAY QUE EDITAR el fichero /boot/grub/grub.cfg.

80/149

GRUB vs GRUB2 (II)

- El fichero /boot/grub/grub.cfg se sobrescribe cada vez que:
 - Hay una actualización de GRUB2.
 - Se instala/elimina un kernel.
 - El usuario ejecuta el comando update-grub.
- La lista de kernel accesibles se genera de forma automática desde el directorio /boot.
 - No se hace de forma manual.
 - Basta con ejecutar update-grub.
- Existe un fichero /etc/grub.d/40_custom para personalizar las entradas de GRUB2.
 - Este fichero no se sobrescribe.
- La configuración principal de GRUB2 está en /etc/default/grub.

81/149

Copyleft © 2014 Alejandro Roca Alhama

GRUB vs GRUB2 (y III)

- El menu de GRUB2 puede configurarse desde múltiples sitios:
 - /etc/default/grub
 - Los ficheros situados en /etc/grub.d/
- La numeración ha cambiado:
 - Las particiones comienzan en 1 (en GRUB comenzaban en 0).
 - El primer dispositivo sigue siendo el número cero (como antes).
- La búsqueda de otros sistemas operativos, como Windows, es automática.
 - Y realizada por el comando update-grub.
- No se produce ningún cambio en la configuración hasta que se ejecutar el comando update-grub.

Configuración de GRUB2

iii Ninguna!!!

- En principio toda la configuración de GRUB2 es automática.
- No tenemos que preocuparnos de nada.
- Solo habría que revisar la configuración en el caso de:
 - Configuraciones avanzadas.
 - Modificaciones del comportamiento por defecto.

83/149

Copyleft © 2014 Alejandro Roca Alhama

Dispositivos y particiones

Disp.	Linux	GRUB	GRUB2	Windows
HD 1, part. 1	/dev/sda1	(hd0,0)	(hd0,1)	C:
HD 2, part. 2	/dev/sdb2	(hd1,1)	(hd1,2)	D:
HD 1, part. Ext. 1	/dev/sda5	(hd0,4)	(hd0,5)	Depende
HD 2, part. 1	/dev/sdb1	(hd1,0)	(hd1,1)	Depende

Instalación

- GRUB2 es instalado por defecto en todas las instalaciones actuales de Ubuntu (desde la 9.10).
 - Las actualizaciones desde la 9.04 mantienen GRUB a no ser que el usuario especifique lo contrario.
- Se puede comprobar la versión instalada con:

grub-install --version

- El paquete es grub-pc.
 - Actualizar desde GRUB a GRUB2 es tan sencillo como:

apt-get install grub-pc

(comprobar que todo está bien)

upgrade-from-grub-legacy Copyleft © 2014 Alejandro Roca Alhama

85/149

Estructura de ficheros (I)

- La estructura de ficheros se ha revisado por completo.
 - El fichero /boot/grub/menu.lst ya no se usa.
- Los directorios y ficheros usados por GRUB2 son:
 - /boot/grub/grub.cfg
 - /etc/default/grub
 - /etc/grub.d/ (directorio)

Estructura de ficheros (II)

(/boot/grub/grub.cfg)

- Muy similar al anterior /boot/grub/menu.lst.
- El fichero NO SE DEBE EDITAR.
- Cada sección del fichero viene delimitada con

BEGIN fichero

- ... indicando el fichero dentro del directorio /etc/grub.d/ que generó la sección.
- grub.cfg se genera cada vez que se ejecuta el comando update-grub
 - update-grub es un script que ejecuta realmente el comando:
 grub-mkconfig -o /boot/grub/grub.cfg "\$@"
 - ... cuya función es generar de nuevo el fichero grub cfg

Estructura de ficheros (III)

(/boot/grub/grub.cfg)

- El fichero se actualiza de forma automática cada vez que se instala o elimina un nuevo kernel.
 - También se actualiza a través de cualquier procedimiento que modifique el funcionamiento de GRUB2.
- Por defecto, el fichero es de solo lectura.
 - Indicativo más de que NO SE DEBE EDITAR el fichero de forma manual.
- En el mismo directorio /boot/grub/ existe una gran cantidad de ficheros *.mod. Son módulos que se cargarán si GRUB2 los necesita.

88/149

87/149

Estructura de ficheros (IV)

(/etc/default/grub)

- Contiene configuración general sobre el comportamiento de GRUB2.
 - Estas configuraciones aparecían en GRUB al inicio de su fichero de configuración /boot/grub/menu.lst.
- También contiene los parámetros que se deben pasar al kernel.
- El fichero puede ser editado por el usuario root y los cambios se incorporan al fichero grub.cfg al ejecutar el comando update-grub.

89/149

Copyleft © 2014 Alejandro Roca Alhama

Estructura de ficheros (V)

(directorio /etc/grub.d/)

- Los ficheros existentes en este directorio se leen durante la ejecución del comando update-grub y se incorporan el fichero grub.cfg.
- El orden de los elementos del menú de arranque de GRUB2 depende del orden de los ficheros en este directorio.
 - Los ficheros con menor número se ejecutan primero.
 - 10_linux se ejecuta antes que 20_memtest86+ y así sucesivamente.
 - Los ficheros que no empiecen con un número se ejecutan antes que los numéricos.

Estructura de ficheros (VI)

(directorio /etc/grub.d/)

- Las entradas personalizadas se pueden añadir en:
 - Fichero 40_custom.
 - Todo lo puesto en este fichero aparecerá al final del menú de GRUB2, si queremos que aparezca al principio habrá que renombrar el fichero (por ejemplo a 06_custom).
 - Fichero nuevo.
- Solo los ficheros ejecutables generarán una salida hacia grub.cfg al ejecutar update-grub.
- Los ficheros por defecto de este directorio son los siguientes:

91/149

Copyleft © 2014 Alejandro Roca Alhama

Estructura de ficheros (VII)

(directorio /etc/grub.d/)

- 00_header

- Fija la apariencia inicial de GRUB2 (modo gráfico a utilizar, timeout, etc.).
- Estas configuraciones se importan desde /etc/default/grub.
- · No habrá que modificarlo normalmente.

05_debian_theme

• Se utiliza para configurar la imagen "splash" de GRUB, los colores, el realzado de la selección y los temas.

10_hurd

- Busca kernels Hurd, sin uso actualmente.
- Eliminado en algunas versiones como en la 14.04 actual.

Estructura de ficheros (VIII)

(directorio /etc/grub.d/)

- 10_linux

- Busca kernels Linux en el dispositivo raíz para el sistema operativo actualmente en uso.
- Toma la información necesaria y establece el nombre del sistema en el menú de GRUB2.
- Es uno de los primeros scripts a ejecutar, por eso no es posible personalizar la lista de kernels que aparecen en el menú.
- Para eliminar kernels antiguos, basta eliminar los paquetes asociados.

- 20_memtest86+

- Busca el programa /boot/memtest86+.bin y lo incluye como opción en el menú de arranque.
- Esta opción añade una entrada en el menú de arranque para chequear la memoria de nuestro sistema.

93/149

Copyleft © 2014 Alejandro Roca Alhama

Estructura de ficheros (IX)

(directorio /etc/grub.d/)

- 30_os-prober

- Lanza el programa os-prober encargado de buscar otros sistemas operativos.
- Los resultados se añaden al fichero grub.cfg.
- El fichero se divide en cuatro secciones, que representan los tipos de sistemas operativos manejados por GRUB2: Linux, Windows, MacOSX y Hurd.
- Las variables que aparecen determinan el formato del nombre que se visualiza en el menú de GRUB.
 - Se puede desactivar la ejecución de este script a través de una entrada en /etc/default/grub.

Estructura de ficheros (y X)

(directorio /etc/grub.d/)

- 40_custom

- Configuración personalizada.
- El contenido de este fichero por debajo de la línea "exec tail -n +3 \$0" se añadirá al fichero de configuración grub.cfg tras la ejecución de update-grub.

- 41 custom

- · Añade configuraciones del fichero custom.cfg.
- Los ficheros de este directorio deben ser ejecutables para que puedan ser usados por update-grub.
 - Se ignorarán todos los ficheros no ejecutables.
 - Para convertir un fichero en ejecutable tecleamos el comando: chmod +x nombrefichero

 Copyleft © 2014 Alejandro Roca Alhama

95/149

Configuración de GRUB2 (I)

(/etc/default/grub)

- Las opciones que se pueden encontrar son:
 - GRUB DEFAULT
 - Indica el SO a arrancar por defecto.
 - GRUB_DEFAULT=0
 - Arranca el SO indicado en la primera entrada del menú.
 - Las entradas se numeran desde 0.
 - GRUB_DEFAULT="Ubuntu, con Linux 3.13.0-37-generic"
 - Arrancará la entrada con ese nombre.
 - GRUB_HIDDEN_TIMEOUT=0
 - Indica el tiempo en que GRUB2 esperará (sin mostrar un menú) para que el usuario presione una tecla para visualizarlo.
 - Si solo hay un SO instalado, el comportamiento por defecto de GRUB2 es no mostrar el menú y no dar tiempo para poder mostrarlo.

Configuración de GRUB2 (II)

(/etc/default/grub)

- GRUB_HIDDEN_TIMEOUT_QUIET=true
 - No se muestra ninguna cuenta atrás. La pantalla estará en negro.
 - Si el valor es falso, se mostrará un contador a la duración del valor indicado en GRUB_HIDDEN_TIMEOUT.
- GRUB_TIMEOUT=10
 - Con la opción GRUB_HIDDEN_TIMEOUT comentada, indica el número de segundos en el que se visualizará el menú para poder seleccionar el SO.
 - Con GRUB_TIMEOUT=-1 el menú se mostrará hasta que se se seleccione el SO.
- GRUB_CMDLINE_LINUX
 - Si existe, esta línea importa cualquier entrada al final de la línea linux.

97/149

Copyleft © 2014 Alejandro Roca Alhama

Configuración de GRUB2 (III)

(/etc/default/grub)

- GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
 - Importa cualquier entrada al final de la línea donde se configura el kernel. Las entradas se añaden al final.
 - Si el valor es "", tendremos un arranque normal sin splash en el que el kernel muestra todos los mensajes de arranque.
 - Si es necesaria la opción "acpi=off", se pondría aquí.
- #GRUB_TERMINAL=console
 - Descomentar para deshabilitar la terminal gráfica.
- #GRUB_DISABLE_LINUX_UUID="true"
 - Descomentar para que GRUB no pase al kernel de Linux un parámetro del tipo "root=UUID=xxx".

Configuración de GRUB2 (y IV)

(/etc/default/grub) <<<<<<< AQUI

- #GRUB_GFXMODE=640x480
 - Al descomentarla fija la resolución del menú gráfico.
 - Se pueden ver las resoluciones soportadas por GRUB2 con el comando vbeinfo (en la consola de GRUB2).
- GRUB_DISABLE_LINUX_RECOVERY=true
 - Deshabilita del menú de GRUB las opciones del modo recuperación (Recovery Mode).
- GRUB_DISABLE_OS_PROBER=true
 - Deshabilita la búsqueda de otros sistemas operativos en otras particiones.

99/149

Copyleft © 2014 Alejandro Roca Alhama

Configuraciones personalizadas (I)

- Residen en el fichero /etc/grub.d/40_custom
- El fichero debe tener permisos de ejecución.
- Basta añadir la configuración al fichero, respetando las primeras líneas:

```
#!/bin/sh
exec tail -n +3 $0
```

This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above.

Configuraciones personalizadas: Ubuntu (II)

```
#!/bin/sh
exec tail -n +3 $0
# This file provides an easy way to add custom menu entries. Simply type the
# menu entries you want to add after this comment. Be careful not to change
# the 'exec tail' line above.
menuentry 'Mi entrada personalizada para Ubuntu' {
        recordfail
        load video
        gfxmode $linux gfx mode
        insmod gzio
        insmod part_msdos
        insmod ext2
        set root='hd0,msdos6'
        linux /boot/vmlinuz-3.13.0-32-generic root=UUID=9e399ff5-d459-4a56-
9eb5-8051731cf1a9 ro
        initrd /boot/initrd.img-3.13.0-32-generic
```

101/149

Copyleft © 2014 Alejandro Roca Alhama

Configuraciones personalizadas: System Rescue "instalado" (III)

```
#!/bin/sh
exec tail -n +3 $0
# This file provides an easy way to add custom menu entries. Simply type the
# menu entries you want to add after this comment. Be careful not to change
# the 'exec tail' line above.
menuentry "System Rescue CD" {
    set root=(hd0,8)
    linux /sysrcd/rescuecd subdir=sysrcd setkmap=es
    initrd /sysrcd/initram.igz
}
```

Configuraciones personalizadas: iniciando System Rescue CD desde su imagen ISO (III)

```
#!/bin/sh
exec tail -n +3 $0
# This file provides an easy way to add custom menu entries. Simply type the
# menu entries you want to add after this comment. Be careful not to change
# the 'exec tail' line above.
menuentry "SystemRescueCD" {
    set root=(hd0,6)
    set isofile="/boot/systemrescuecd-x86-4.3.1.iso"
    loopback loop (hd0,6)$isofile
    linux (loop)/isolinux/rescue64 setkmap=es isoloop=$isofile
    initrd (loop)/isolinux/initram.igz
}
```

103/149

Copyleft © 2014 Alejandro Roca Alhama

Configuraciones personalizadas: cargando otro GRUB (IV)

```
#!/bin/sh
exec tail -n +3 $0
# This file provides an easy way to add custom menu entries. Simply type the
# menu entries you want to add after this comment. Be careful not to change
# the 'exec tail' line above.
menuentry "Fedora 20 (Heisenbug)" {
    set root=(hd0,3)
        chainloader +1
}
```

Configuraciones personalizadas: arrancando Windows (y V)

```
#!/bin/sh
exec tail -n +3 $0
# This file provides an easy way to add custom menu entries. Simply type the
# menu entries you want to add after this comment. Be careful not to change
# the 'exec tail' line above.
menuentry "Windows 7" {
    set root=(hd0,1)
        chainloader +1
}
```

105/149

Copyleft © 2014 Alejandro Roca Alhama

Ejemplo (I)

- Vamos a configurar GRUB2 para un sistema en el que suponemos:
 - sda1 -> instalado un Windows 7.
 - sda2 -> swap
 - sda3 -> instalado un sistema GNU/Linux Fedora.
 - sda4 -> instalado un sistema GNU/Linux Ubuntu.
- Queremos que GRUB2:
 - Muestre el menú sin timeout.
 - Arrangue Ubuntu directamente.
 - Arranque Fedora llamando al GRUB de Fedora.

Ejemplo (II)

Fichero /etc/default/grub

```
# If you change this file, run 'update-grub' afterwards to update
# /boot/grub/grub.cfg.
# For full documentation of the options in this file, see:
# info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0
#GRUB_HIDDEN_TIMEOUT=0
#GRUB_HIDDEN_TIMEOUT_QUIET=true
#GRUB_TIMEOUT=10
GRUB_TIMEOUT=1
GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian`
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"
GRUB_CMDLINE_LINUX=""
GRUB_DISABLE_OS_PROBER=true
```

107/149

Copyleft © 2014 Alejandro Roca Alhama

Ejemplo (y III)

Fichero /etc/grub.d/40_custom

```
#!/bin/sh
exec tail -n +3 $0
# This file provides an easy way to add custom menu entries. Simply type the
# menu entries you want to add after this comment. Be careful not to change
# the 'exec tail' line above.
menuentry "Windows 7" {
    set root='(hd0,1)'
    chainloader +1
}
menuentry "Fedora 20 (Heisenbug)" {
    set root=(hd0,3)
    chainloader +1
}
```

Configurar GRUB2 gráficamente

- GRUB2 no es difícil de configurar, pero hay que hacerse con la filosofía y con sus ficheros de configuración.
- Hay configuradores gráficos que nos pueden ahorrar trabajo.
 - Una vez tengamos nuestro sistema Ubuntu instalado, podemos configurar GRUB a través del programa:

GRUB customizer.

109/149

Copyleft © 2014 Alejandro Roca Alhama

grub-customizer (I)

grub-customizer (y II)

https://launchpad.net/grub-customizer

Copyleft © 2014 Alejandro Roca Alhama

Instalando GNU/Linux

Instalación y configuraciones avanzadas

111/149

Configuraciones avanzadas... (I)

113/149

Copyleft © 2014 Alejandro Roca Alhama

Configuraciones avanzadas... (y II)

- Instalar varios sistemas operativos:
 - Windows: 7, XP, 2008 Server, ...
 - GNU/Linux: Debian, Fedora y Ubuntu.
 - Varios de ellos simultáneamente.
- Instalar un gestor de arranque: GRUB2.
- Manipular la tabla de particiones para suplir deficiencias de Microsoft.

A tener en cuenta

Sistemas Windows:

- Deben instalarse en particiones primarias del primer disco duro para arrancar.
 - Si se hace sobre lógicas, el arranque dependerá de una primaria, y C: será la partición que esté activa.
- La partición C: será la que esté marcada como activa.
- Las particiones entre sí no deben verse. Sólo se verá la C: y el CD-ROM.
- Cada vez que se instala borra el MBR sin preguntar.

Sistemas GNU/Linux:

- Requieren una partición swap (pueden compartirse con otro Linux).
- Los instalaremos normalmente sobre particiones lógicas.

115/149

Copyleft © 2014 Alejandro Roca Alhama

Cosas a recordar ...

Sobre la tabla de particiones:

- Se encuentra en el MBR, en el primer sector del disco duro.
- Tiene solo cuatro entradas.
- Las particiones pueden ser: primarias y extendidas.
- En la partición extendida se definen las lógicas.
- · Varias Combinaciones posibles:
 - Una sola partición primaria.
 - Cuatro primarias.
 - Tres primarias y una extendida con n lógicas; etc.

Para editar la tabla de particiones:

- Partition Magic. Inestable. Se cuelga con facilidad.
- Diskpart. Solo trabaja con SSOO Microsoft.
- fdisk de Linux. El mejor, lo soporta todo.

Esquema de particiones: ejemplo l

 Tenemos instalado un Windows y un Linux (Debian), queremos instalar otro Linux (Fedora) en la partición sda4...

117/149

Copyleft © 2014 Alejandro Roca Alhama

Ejemplo I: proceso de instalación

1.- Instalar Fedora.

La tabla de particiones ya está hecha, tan solo tenemos que instalar Fedora en la partición /dev/sda4.

Ambos Linux pueden compartir la partición /dev/sda3 como memoria de intercambio. Ya hay un GRUB2 instalado, con sus ficheros de configuración en /dev/sda2. Fedora nos preguntará si deseamos instalar GRUB en el MBR.

2.- ¿Qué GRUB se instalar en el MBR?

El nuevo de Fedora:

Si instalamos GRUB en el MBR desde Fedora, Fedora arrancará pero es posible que alguno de los otros SO no lo hagan.

Basta arrancar Fedora y editar la configuración de GRUB.

Dejamos el de Debian:

GRUB ya está instalado (lo hizo Debian), pero hay que modificarlo para que contemple la instalación de Fedora.

Arrancamos Debian y editamos la configuración de GRUB.

Solución efectiva: tener dos GRUB

- La solución más efectiva:
 - Cuando Fedora nos pregunte dónde instalar GRUB, diremos que lo instale en la partición sda4. Dejaremos el GRUB que hay en el MBR intacto (es el que instaló Debian).
 - Al reiniciar, el GRUB de Debian no nos permite arrancar Fedora, pero podemos añadir al fichero de configuración de Debian las siguientes líneas:

 menuentry "Fedora 19" {

• Ventajas:

- Más fácil de configurar.
- Las actualizaciones tanto de Debian como de Fedora se harán de forma independiente y sin tocar la configuración de GRUB perteneciente al otro sistema.

119/149

Copyleft © 2014 Alejandro Roca Alhama

set root=(hd0,4)

chainloader +1

Esquema de particiones: ejemplo II

Instalación de:

Dos sistemas Windows: Dos sistemas Linux:

Windows 7. Debian Linux.
Windows XP. Fedora Linux.

Proceso de instalación

1.- Instalar un Linux.

En la instalación definiremos la tabla de particiones.

Instalar GRUB en el MBR.

Marcar como activa la primera partición, tipo 7.

2.- Instalar Windows (uno cualquiera).

En la partición que hemos marcado como activa, lo sabremos porque es la que sugiere.

Windows borrará el MBR (eliminando el gestor de arranque).

3.- Arrancar con un CD de rescate de Linux

Configurar GRUB para que contemple el nuevo sistema.

Cambiar el tipo de la primera partición, fijar como tipo 0x17 (NTFS oculto) o cualquier otro tipo desconocido para Windows, como 0xA6 (OpenBSD).

Marcar como activa la siguiente partición primaria y fijarla a tipo 0x07.

Restaurar el MBR: grub-install /dev/sda.

4.- Volver al paso 2 para instalar el siguiente Windows hasta que terminemos.

121/149

Copyleft © 2014 Alejandro Roca Alhama

¿Cómo "engañar" a Windows con GRUB?

- GRUB puede cambiar los tipos de las particiones en el arranque:
 - Para que se inicie Windows 7:
 - Partición 1: tipo 0x07 (activa).
 - Partición 2: tipo 0xa6.
 - Para que se inicie Windows XP:
 - Partición 1: tipo 0xa6.
 - Partición 2: tipo 0x07 (activa)
 - También se puede hacer con ocultando y desocultando la partición.
 - Realmente se conmuta entres los tipos 0x07 y 0x17.

Engañar a Windows con GRUB2

La configuración sería algo parecido a:

```
#!/bin/sh
exec tail -n +3 $0
# This file provides an easy way to add custom menu entries. Simply type the
# menu entries you want to add after this comment. Be careful not to change
# the 'exec tail' line above.
menuentry "Windows 7" {
  insmod ntfs
  set root=(hd0,1)
 parttool (hd0,1) boot+
 parttool (hd0,1) hidden-
 parttool (hd0,2) hidden+
 chainloader +1
menuentry "Windows XP" {
  insmod ntfs
  set root=(hd0,2)
 parttool (hd0,2) boot+
 parttool (hd0,1) hidden+
 parttool (hd0,2) hidden-
  chainloader +1
```

123/149

Copyleft © 2014 Alejandro Roca Alhama

Instalando GNU/Linux

Recuperar GRUB2

Recuperar GRUB2

- Una vez que GRUB2 está instalado, no dejará de funcionar...
- A no ser que se sobrescriba el MBR:
 - Las catástrofes suceden.
 - Los virus maliciosos existen.
 - Tenemos varios Linux y queremos fijar el GRUB/GRUB2 de otro Linux instalado en otra partición.
 - A veces hay que convivir con Windows.
- Windows siempre instala su gestor de arranque en el MBR, no pregunta y no es respetuoso.

125/149

Copyleft © 2014 Alejandro Roca Alhama

Recuperar GRUB2 desde el CD/DVD de Ubuntu (I)

- Supongamos que hemos instalado un Windows nuevo:
 - Windows sobrescribe el MBR.
 - No podemos iniciar Ubuntu.
- Hay que recuperar GRUB:
 - Introducimos el CD de instalación de Ubuntu.
 - Solo lleva el modo rescate el "Server CD" y el "Alternate CD".
 - En el menú de arranque, seleccionamos la opción "Recuperar un sistema dañado".
 - Respondemos a unas sencillas preguntas.

Pasos recuperación de GRUB2 (II)

	Language					
Amharic	Français	Македонски	Tamil			
Arabic	Gaeilge	Malayalam	తెలుగు			
Asturianu	Galego	Marathi	Thai			
Беларуская	Gujarati	Burmese	Tagalog			
Български	עברית	Nepali	Türkçe			
Bengali	Hindi	Nederlands	Uyghur			
Tibetan	Tibetan Hrvatski		Українська			
Bosanski	Bosanski Magyar		Tiếng Việt			
Català	Bahasa Indonesia	Punjabi(Gurmukhi)	中文(简体)			
Čeština	Íslenska	Polski	中文(繁體)			
Dansk	Italiano	Português do Brasil				
Deutsch	日本語	Português				
Dzongkha	ქართული	Română				
Ελληνικά	Қазақ	Русский				
English	Khmer	Sámegillii				
Esperanto	ಕನ್ನಡ	ສິ∘ <mark></mark> ທ⊚				
Español	한국어	Slovenčina				
Eesti	Eesti Kurdî					
Euskara	Lao	Shqip				
ىسراف	Lietuviškai	Српски				
Suomi	Latviski	Svenska				
F1 Help F2 Language F3 Keymap F4 Modes F5 Accessibility F6 Other Options						
	·	<u> </u>				

- 1.- Arrancamos con el CD de Ubuntu:
 - * Server o alternate.
 - * Desde Ubuntu 13.10 no existe la versión alternate.
- Seleccionamos el "Español" como idioma.

127/149 Copyleft © 2014 Alejandro Roca Alhama

Pasos recuperación de GRUB2 (III)

- 1.- Escogemos la opción "Recuperar un sistema dañado".
- 2.- Pulsamos INTRO.

Pasos recuperación de GRUB2 (IV)

- 1.- Escogemos el país.
- 2.- Verificamos que estamos en modo rescate.

129/149

Copyleft © 2014 Alejandro Roca Alhama

Pasos recuperación de GRUB2 (V)

 Indicamos al instalador que NO detecte la disposición de teclado.

Pasos recuperación de GRUB2 (VI)

Seleccionamos como teclado Español.

131/149

Copyleft © 2014 Alejandro Roca Alhama

Pasos recuperación de GRUB2 (VII)

 Seleccionamos como disposición del teclado la de España.

Pasos recuperación de GRUB2 (VIII)

Pasos recuperación de GRUB2 (IX)

- 1.- Seleccionamos el dispositivo a utilizar como sistema de ficheros raíz.
 - Tenemos que recordar qué partición montamos como sistema de ficheros raíz /, en nuestra instalación de Linux.
- 2.- Para nuestro ejemplo Linux está instalado en /dev/sda6.
 - Es necesario porque es en nuestro sistema de ficheros raíz donde se encuentra toda la configuración de GRUB2.

Pasos recuperación de GRUB2 (X)

- 1.- La recuperación será automática si seleccionamos la opción "Reinstalar el cargador de arranque GRUB".
- 2.- Tendremos más control con la opción "Ejecutar un intérprete de órdenes en /dev/sda6".

Desde esta opción podemos hacer otras cosas interesantes como:

- * Reinstalar GRUB2.
- * Cambiar la contraseña de root.

135/149

Copyleft © 2014 Alejandro Roca Alhama

Pasos recuperación de GRUB2 (XI)

- 1.- Indicamos dónde instalar GRUB.
- Para instalarlo en el MBR tecleamos /dev/sda.

Pasos recuperación de GRUB2 (XII)

1.- Reiniciamos el sistema.

137/149

Copyleft © 2014 Alejandro Roca Alhama

Pasos recuperación de GRUB2 (y XIII)

- GRUB2 vuelve a estar instalado, arrancamos Linux.
 - GRUB2 no sabe que hay un Windows instalado.
- Se lo indicamos con los siguientes comandos:

```
alex@ubuntuserver:~$ sudo -i
[sudo] password for alex: ********
root@ubuntuserver:~# update-grub
Generando archivo de configuración grub...
Se encontró una imagen linux: /boot/vmlinuz-3.13.0-32-generic
Se encontró una imagen initrd: /boot/initrd.img-3.13.0-32-generic
Found memtest86+ image: /boot/memtest86+.elf
Found memtest86+ image: /boot/memtest86+.bin
Encontrado en Windows 7 (loader) en /dev/sda2
Encontrado en Fedora release 20 (Heisenbug) en /dev/sda3
hecho
root@ubuntuserver:~#
```

Desde el Desktop CD (I)

- Iniciamos desde el CD.
- Seleccionamos:
 - El idioma.
 - Pulsamos en "Probar Ubuntu".
- Cuando se inicie el sistema lanzamos una terminal y ejecutamos los siguientes comandos:
 - Suponiendo que /dev/sda6 es la partición donde se encuentra instalado nuestro sistema Linux.

139/149

Copyleft © 2014 Alejandro Roca Alhama

Desde el Desktop CD (y II)

```
ubuntu@ubuntu:~$ sudo -i
root@ubuntu:~# mkdir /mnt/linux
root@ubuntu:~# mount /dev/sda6 /mnt/linux
root@ubuntu:~# mount -o bind /proc /mnt/linux/proc
root@ubuntu:~# mount -o bind /dev /mnt/linux/dev
root@ubuntu:~# mount -o bind /sys /mnt/linux/sys
root@ubuntu:~# chroot /mnt/linux
root@ubuntu:/# ls
bin dev home
                      lib lost+found mnt proc run srv tmp var
boot etc initrd.img lib64 media opt root sbin sys usr vmlinuz
root@ubuntu:/# grub-install /dev/sda
Instalando para plataforma i386-pc.
Instalación terminada. Ningún error encontrado.
root@ubuntu:/# update-grub
Generando archivo de configuración grub...
Se encontró una imagen linux: /boot/vmlinuz-3.13.0-32-generic
Se encontró una imagen initrd: /boot/initrd.img-3.13.0-32-generic
Found memtest86+ image: /boot/memtest86+.elf
Found memtest86+ image: /boot/memtest86+.bin
Encontrado en Windows 7 (loader) en /dev/sda2
Encontrado en Fedora release 20 (Heisenbug) en /dev/sda3
root@ubuntu:/# exit
root@ubuntu:~# reboot
```

Instalando GNU/Linux

Proceso de Instalación de: GNU/Linux **Ubuntu 14.04** (Trusty Tahr) GNU/Linux **Fedora 20** (Heisenbug)

141/149

Copyleft © 2014 Alejandro Roca Alhama

Antes de empezar: ¿de qué hardware disponemos?

- Podemos obtener el hardware a través de:
 - Un destornillador (desmontando la máquina).
 - Si tenemos Windows...
 - ... a través del Panel de Control (!!???), Everest, AIDA32, ...
 - Si tenemos Linux (cualquier LiveCD):
 - dmesg | less
 - Ispci y Ispci -v
 - Isusb ó Isusb -v
 - Ishw
 - Alguna utilidad que nos chequee la máquina.

Mejor si sabemos:

- Número de discos duros, tamaño y tipo (PATA, SATA, SCSI ...).
- Cantidad de memoria RAM.
- Tipo de adaptador SATA/SCSI/RAID.
- Información de los periféricos, principalmente:
 - Marca y modelo de la tarjeta de vídeo.
 - Marca y modelo de la tarjeta de red.
 - Marca y modelo de la tarjeta de sonido.
- Configuración de la red (si no hay servidor DHCP):
 - Dirección IP, máscara y puerta de enlace (gateway).
 - DNS's, nombre de la máquina y dominio.

143/149

Copyleft © 2014 Alejandro Roca Alhama

A tener en cuenta

Sistemas Windows:

- Deben instalarse en particiones primarias del primer disco duro para arrancar.
 - Si se hace sobre lógicas, el arranque dependerá de una primaria, y C: será la partición que esté activa.
- La partición C: será la que esté marcada como activa.
- Cada vez que se instala borra el MBR sin preguntar.

Sistemas GNU/Linux:

- Requieren una partición swap (pueden compartirse con otro Linux).
- Los instalaremos normalmente sobre particiones lógicas.

Cosas a recordar ...

- Sobre la tabla de particiones:
 - Se encuentra en el MBR, en el primer sector del disco duro.
 - Tiene solo cuatro entradas.
 - Las particiones pueden ser: primarias y extendidas.
 - En la partición extendida se definen las lógicas.
- Para editar la tabla de particiones:
 - Partition Magic. Inestable. Se cuelga con facilidad.
 - Diskpart. Solo trabaja con SSOO Microsoft.
 - fdisk de Linux. El mejor, lo soporta todo.

145/149

Copyleft © 2014 Alejandro Roca Alhama

Instalación (I)

La instalación de Ubuntu se "divide" en los siguientes pasos:

Configuración del idioma/país/teclado.

Detección de hardware.

Configuración de la red.

Creación de usuarios.

Configuración de la zona horaria.

Particionamiento del disco duro.

Instalación del sistema base. Selección e instalación de software.

Instalación de GRUB.

Configuración UTC.

Reinicio de la máquina.

Instalación (y II)

La inst. de Fedora se "divide" en los siguientes pasos:

Chequeo del medio de instalación (opcional).

Configuración del idioma/país/teclado.

Configuración de los dispositivos de almacenamiento a utilizar.

Detección de hardware.

Configuración del nombre de la máquina y de la red.

Configuración de la zona horaria.

Configuración de la contraseña del administrador (root).

Particionamiento del disco duro.

Instalación del gestor de arranque (GRUB).

Selección e instalación de software.

Tras el primer reinicio:

Aceptación de la licencia.

Configuración fecha y hora.

Creación de usuarios.

Resumen y posible envío del perfil de hardware.

Copyleft © 2014 Alejandro Roca Alhama

147/149

Manos a la obra...

ii Tan solo queda instalarlo nosotros mismos !!

Más información en:

Documentation for Ubuntu https://help.ubuntu.com/

Documentation Ubuntu-es. http://doc.ubuntu-es.org/Portada

Fedora 13 Guía de Instalación. http://docs.fedoraproject.org/es-

ES/Fedora/13/html/Installation_Guide/index.html

Fedora 20 Installation Guide. http://docs.fedoraproject.org/en-

US/Fedora/20/html/Installation_Guide/index.html

GNU GRUB. http://www.gnu.org/software/grub/

GNU GRUB manual. http://www.gnu.org/software/grub/manual/

GJOEN S. **HOWTO: Multi Disk System Tuning**. http://www.tldp.org. 2002.

LISSOT A. Linux Partition HOWTO. http://www.tldp.org. 2005.

GRUB2. https://help.ubuntu.com/community/Grub2

Guía de instalación Debian GNU/Linux.

http://www.debian.org/releases/stable/i386/

Recovering Ubuntu after installing Windows.

https://help.ubuntu.com/community/RecoveringUbuntuAfterInstallingWindows?

149/149

Copyleft © 2014 Alejandro Roca Alhama