

2 Banks x 512K x 16 Bit Synchronous DRAM

DESCRIPTION

THE Hyundai HY57V161610D is a 16,777,216-bits CMOS Synchronous DRAM, ideally suited for the main memory and graphic applications which require large memory density and high bandwidth. HY57V161610D is organized as 2banks of 524,288x16.

HY57V161610D is offering fully synchronous operation referenced to a positive edge clock. All inputs and outputs are synchronized with the rising edge of the clock input. The data paths are internally pipelined to achieve very high bandwidth. All input and output voltage levels are compatible with LVTTL.

Programmable options include the length of pipeline (Read latency of 1,2 or 3), the number of consecutive read or write cycles initiated by a single control command (Burst length of 1,2,4,8 or full page), and the burst count sequence(sequential or interleave). A burst of read or write cycles in progress can be terminated by a burst terminate command or can be interrupted and replaced by a new burst read or write command on any cycle. (This pipeline design is not restricted by a '2N' rule.)

FEATURES

- Single 3.0V to 3.6V power supply
- All device pins are compatible with LVTTL interface
- JEDEC standard 400mil 50pin TSOP-II with 0.8mm of pin pitch
- All inputs and outputs referenced to positive edge of system clock
- · Data mask function by UDQM/LDQM
- · Internal two banks operation

- Auto refresh and self refresh
- 4096 refresh cycles / 64ms
- · Programmable Burst Length and Burst Type
 - 1, 2, 4, 8 and Full Page for Sequence Burst
 - 1, 2, 4 and 8 for Interleave Burst
- Programmable CAS Latency; 1, 2, 3 Clocks

ORDERING INFORMATION

Part No.	Clock Frequency	Organization	Interface	Package
HY57V161610DTC-5	200MHz			
HY57V161610DTC-55	183MHz			
HY57V161610DTC-6				
HY57V161610DTC-7		2Banks x 512Kbits x 16	LVTTL	400mil 50pin TSOP II
HY57V161610DTC-8	125MHz			·
HY57V161610DTC-10	100MHz			
HY57V161610DTC-15	66MHz			

Note:

1. VDD(min) of HY57V161610DTC-5/55 is 3.15V

This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsibility for use of circuits described. No patent licenses are implied

PIN CONFIGURATION

PIN DESCRIPTION

PIN	PIN NAME	DESCRIPTION
CLK	Clock	The system clock input. All other inputs are referenced to the SDRAM on the rising edge of CLK.
CKE	Clock Enable	Controls internal clock signal and when deactivated, the SDRAM will be one of the states among power down, suspend or self refresh.
CS	Chip Select	Command input enable or mask except CLK, CKE and DQM
BA	Bank Address	Select either one of banks during both RAS and CAS activity.
A0 ~ A10	Address	Row Address : RA0 ~ RA10, Column Address : CA0 ~ CA7 Auto-precharge flag : A10
RAS, CAS, WE	Row Address Strobe, Column Address Strobe, Write Enable	RAS, CAS and WE define the operation. Refer function truth table for details
LDQM, UDQM	Data Input/Output Mask	DQM control output buffer in read mode and mask input data in write mode
DQ0 ~ DQ15	Data Input/Output	Multiplexed data input / output pin
VDD/VSS	Power Supply/Ground	Power supply for internal circuit and input buffer
VDDQ/VSSQ	Data Output Power/Ground	Power supply for DQ
NC	No Connection	No connection

Rev. 4.0/Aug. 02 2

FUNCTIONAL BLOCK DIAGRAM

1Mx16 Synchronous DRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Ambient Temperature	TA	0 ~ 70	°C
Storage Temperature	TSTG	-55 ~ 125	°C
Voltage on Any Pin relative to VSS	VIN, VOUT	-1.0 ~ 4.6	V
Voltage on VDD relative to VSS	VDD	-1.0 ~ 4.6	V
Short Circuit Output Current	IOS	50	mA
Power Dissipation	PD	1	W
Soldering Temperature-Time	TSOLDER	260·10	°C ·Sec

Note: Operation at above absolute maximum rating can adversely affect device reliability.

DC OPERATING CONDITION (TA=0°C to 70°C)

Parameter	Symbol	Min	Тур.	Max	Unit	Note
Power Supply Voltage	VDD, VDDQ	3.0	3.3	3.6	V	1, 2, 3
Input high voltage	VIH	2.0	3.0	VDD + 0.3	V	1, 4
Input low voltage	VIL	-0.5	0	0.8	V	1, 5

Note:

- 1.All voltages are referenced to VSS = 0V.
- 2.VDD(min) is 3.15V when HY57V161610DTC-7 operates at $\overline{\text{CAS}}$ latency=2
- 3.VDD(min) of HY57V161610DTC-5/55 is 3.15V
- 4.VIH(max) is acceptable 4.6V AC pulse width with \leq 10ns of duration.
- 5.VIL(min) is acceptable -1.5V AC pulse width with \leq 10ns of duration.

AC OPERATING CONDITION (TA=0°C to 70°C, VDD=3.0V to 3.6V, Vss=0V)

Parameter	Symbol	Value	Unit	Note
AC input high / low level voltage	VIH / VIL	2.4/0.4	V	
Input timing measurement reference level voltage	Vtrip	1.4	V	
Input rise / fall time	tR / tF	1	ns	
Output timing measurement reference level	Voutref	1.4	V	
Output load capacitance for access time measurement	CL	30	pF	1

Note

- Output load to measure access times is equivalent to two TTL gates and one capacitance(30pF).
 For details, refer to AC/DC output load circuit.
- 2. VDD(min) is 3.15V when HY57V161610DTC-7 operates at CAS latency=2 and tCK2=8.9ns
- 3. VDD(min) of HY57V161610DTC-5/55 is 3.15V'

CAPACITANCE (TA=25°C, f=1MHz)

Parameter	Pin	Symbol	Min	Max	Unit
	CLK	CI1	2.5	4	pF
Input capacitance	A0 ~ A10, BA CKE, CS, RAS, CAS, WE, UDQM, LDQM	CI2	2.5	5	pF
Data input / output capacitance	DQ0 ~ DQ15	CI/O	4	6.5	pF

OUTPUT LOAD CIRCUIT

DC Output Load Circuit

AC Output Load Circuit

DC CHARACTERISTICS I (TA=0°C to 70°C)

Parameter	Symbol	Min.	Max	Unit	Note
Power Supply Voltage	VDD	3.0	3.6	V	1, 2
Input leakage current	IL	-1	1	uA	3
Output leakage current	Ю	-1	1	uA	4
Output high voltage	VOH	2.4	-	V	IOH = -4mA
Output low voltage	VOL	-	0.4	V	IOL =+4mA

Note:

- 1.VDD(min) is 3.15V when HY57V161610DTC-7 operates at $\overline{\text{CAS}}$ latency=2 and tCK2=8.9ns.
- 2.VDD(min) of HY57V161610DTC-5/55 is 3.15V
- 3.VIN = 0 to 3.6V, All other pins are not under test = 0V
- 4.DOUT is disabled, VOUT=0 to 3.6V

Rev. 4.0/Aug. 02 5

DC CHARACTERISTICS II (TA=0°C to 70°C, VDD=3.0V to 3.6V, VSS=0VNote1.2)

Parameter	Symbol	Test Condition					Speed				Unit	Note
raiametei	Symbol	rest condition	rest condition		-55	-6	-7	-8	-10	-15		Note
Operating Current	IDD1	Burst Length=1, One bank active tRAS ≥ tRAS(min),tRP ≥ tRP(min), IO=0mA		130	130	120	110	110	110	100	mA	2
Precharge Standby Current	IDD2P	CKE ≤ VIL(max), tCK = min.	-				1				mA	
in power down mode	IDD2PS	$CKE \leq VIL(max),tCK = \infty$					1				IIIA	
Precharge Standby Current in non power down mode	IDD2N	CKE ≥ VIH(min), CS ≥ VIH(n min Input signals are changed or during 2Clks. All other pins ≥ or ≤ 0.2V				20				mA		
mode	IDD2NS	CKE ≥ VIH(min), tCK = ∞ Input signals are stable.			15							
Active Standby Current	IDD3P	CKE ≤ VIL(max), tCK = min			3.0						mA	
in power down mode	IDD3PS	$CKE \leq VIL(max),tCK = \infty$			3.0							
Active Standby Current in non power down mode	IDD3N	CKE ≥ VIH(min), CS ≥ VIH(n min Input signals are changed or during 2CLKs. All other pins 0.2V or ≤ 0.2V	ne time				50				mA	
	IDD3NS	CKE ≥ VIH(min), tCK = ∞ Input signals are stable					30					
		tCK ≥ tCK(min),	CL=3	130	130	120	110	110	90	80		
Burst Mode Operating Current	IDD4	tRAS ≥ tRAS(min), IO=0mA	CL=2	-	-	110	110	-	-	-	mA	3
		All banks active	CL=1	-	-	-	-	-	-	70		
Auto Refresh Current	IDD5	tRRC ≥ tRRC(min), All banks active		130 130 110 110 110 110 100					100	mA		
Self Refresh Current	IDD6	CKE ≤ 0.2V					2				mA	

Note:

^{1.}VDD(min) is 3.15V when HY57V161610DTC-7 operates at $\overline{\text{CAS}}$ latency=2 and tCK2=8.9ns.

^{2.}VDD(min) of HY57V161610DTC-5/55 is 3.15V

^{3.}IDD1 and IDD4 depend on output loading and cycle rates. Specified values are measured with the output open.

$\textbf{AC CHARACTERISTICS} \quad (\text{TA=0}^{\circ}\text{C to 70}^{\circ}\text{C, VDD=3.0V to 3.6V, VSS=0V}^{\text{Note1,2}})$

Param	otor	Symbol		-5		-55		-6		-7	Unit	Note
Faiaiii	eter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Oiiit	Note
	CL=3	tCK3	5		5.5		6	-	7	-		
System clock cycle time	CL=2	tCK2	-		-		10	-	10	-	ns	3
	CL=1	tCK1	-		-		-	-	-	-		
Clock high pulse	e width	tCHW	1.75		2		2	-	2.5	-	ns	4
Clock low pulse	width	tCLW	1.75		2		2	-	2.5	-	ns	4
	CL=3	tAC3		4.5		5	-	5.5	-	6		
Access time from clock	CL=2	tAC2					-	6	-	6	ns	3
	CL=1	tAC1					-	-	-	-	-	
Data-out hold tir	me	tOH	1.5		2		2	-	2.5	-	ns	
Data-Input setu	p time	tDS	1.5		1.5		1.5	-	1.75	-	ns	4
Data-Input hold	time	tDH	1		1		1	-	1	-	ns	4
Address setup t	ime	tAS	1.5		1.5		1.5	-	1.75	-	ns	4
Address hold tir	ne	tAH	1		1		1	-	1	-	ns	4
CKE setup time		tCKS	1.5		1.5		1.5	-	1.75	-	ns	4
CKE hold time		tCKH	1		1		1	-	1	-	ns	4
Command setu	o time	tCS	1.5		1.5		1.5	-	1.75	-	ns	4
Command hold	time	tCH	1		1		1	-	1	-	ns	4
CLK to data out time	put in low Z-	tOLZ	2		2		2	-	2	-	ns	
CLK to data ou Z-time	tput in high	tOHZ	2	5	2	5.5	2	6	2	7	ns	

AC CHARACTERISTICS (TA=0°C to 70°C, VDD=3.0V to 3.6V, VSS=0VNote1.2)

- continued -

Param	notor	Symbol		-8		-10		-15	Unit	Note
Falali	ieter	Syllibol	Min	Max	Min	Max	Min	Max	Oille	Note
	CL=3	tCK3	8	-	10	-	15	-		
System clock cycle time	CL=2	tCK2	12	-	12	-	15	-	ns	3
	CL=1	tCK1	-	-	-	-	15	-		
Clock high pulse width	1	tCHW	3	-	3	-	3	-	ns	4
Clock low pulse width		tCLW	3	-	3	-	3	-	ns	4
	CL=3	tAC3	-	6	-	7	-	7		
Access time from clock	CL=2	tAC2	-	6	-	7	-	7	ns	3
o.co.	CL=1	tAC1	-	-	-	-	=	14		
Data-out hold time		tOH	2.5	-	2.5	-	2.5	-	ns	
Data-Input setup time		tDS	2	-	2.5	-	2.5	-	ns	4
Data-Input hold time		tDH	1	-	1	-	1	-	ns	4
Address setup time		tAS	2	-	2.5	-	2.5	-	ns	4
Address hold time		tAH	1	-	1	-	1	-	ns	4
CKE setup time		tCKS	2	-	2.5	-	2.5	-	ns	4
CKE hold time		tCKH	1	-	1	-	1	-	ns	4
Command setup time		tCS	2	-	2.5	-	2.5	-	ns	4
Command hold time		tCH	1	-	1	-	1	-	ns	4
CLK to data output in low Z-time		tOLZ	2	-	2	-	2	-	ns	
CLK to data output in	high Z-time	tOHZ	2	8	3	10	3	15	ns	

Note:

^{1.}VDD(min) is 3.15V when HY57V161610DTC-7 operates at $\overline{\text{CAS}}$ latency=2 and tCK2=8.9ns.

^{2.}VDD(min) of HY57V161610DTC-5/55 is 3.15V

^{3.}tCK2 is 8.9ns only when tAC2 is 7.9ns in HY57V161610DTC-6 and HY57V161610DTC-7.

^{4.} Assume tR / tF (input rise and fall time) is 1ns.

AC CHARACTERISTICS (TA=0°C to 70°C, VDD=3.0V to 3.6V, VSS=0V^{Note1,2}))

Dar	amter	Symbol	-	5	{	55	-	6	-	7	Unit	Note
ган			Min	Max	Min	Max	Min	Max	Min	Max		11010
RAS cycle time	Operation	tRC	55		55		60	-	70	-	ns	
TVAO Cycle time	Auto Refresh	tRRC	55		55		60	-	70	-	ns	
RAS to CAS dela	у	tRCD	15		16.5		18	-	20	-	ns	
RAS active time		tRAS	40	100K	38.5	100K	40	100K	45	100K	ns	
RAS precharge ti	me	tRP	3		3		3	-	3	-	CLK	
RAS to RAS bank	c active delay	tRRD	2		2		2	-	2	-	CLK	
CAS to CAS bank	c active delay	tCCD	1		1		1	-	1	-	CLK	
Write command to	o data-in delay	tWTL	0		0		0	-	0	-	CLK	
Data-in to precha	rge command	tDPL	1		1		1	-	1	-	CLK	
Data-in to active of	command	tDAL	4		4		4	-	4	-	CLK	
DQM to data-in H	i-Z	tDQZ	2		2		2	-	2	-	CLK	
DQM to data mas	sk	tDQM	0		0		0	-	0	-	CLK	
MRS to new com	mand	tMRD	2		2		2	-	2	-	CLK	
Precharge to data	a output Hi-Z	tPROZ	3		3		3	-	3	-	CLK	
Power down exit	time	tPDE	1		1		1	-	1	-	CLK	
Self refresh exit ti	me	tSRE	1		1		1	-	1	-	CLK	3
Refresh Time		tREF		64		64	-	64	-	64	ms	

AC CHARACTERISTICS (TA=0°C to 70°C, VDD=3.0V to 3.6V, VSS=0V^{Note1,2})

- continued -

Par	amter	Symbol	-	8	-	10	-1	15	Unit	Note
Fair	amei	Symbol	Min	Max	Min	Max	Min	Max	Onic	Note
RAS cycle time	Operation	tRC	70	-	70	-	70	-	ns	
RAS Cycle time	Auto Refresh	tRRC	70	-	80	-	80	-	ns	
RAS to CAS delay		tRCD	20	-	20	-	20	-	ns	
RAS active time		tRAS	45	100K	45	100K	45	100K	ns	
RAS precharge time		tRP	3	-	2	-	2	-	CLK	
RAS to RAS bank ac	tive delay	tRRD	2	-	2	-	2	-	CLK	
CAS to CAS bank ac	tive delay	tCCD	1	-	1	-	1	-	CLK	
Write command to da	ata-in delay	tWTL	0	-	0	-	0	-	CLK	
Data-in to precharge	command	tDPL	1	-	1	-	1	-	CLK	
Data-in to active com	nmand	tDAL	4	-	3	-	3	-	CLK	
DQM to data-in Hi-Z		tDQZ	2	-	2	-	2	-	CLK	
DQM to data mask		tDQM	0	-	0	-	0	-	CLK	
MRS to new commar	MRS to new command		2	-	2	-	2	-	CLK	
Precharge to data output Hi-Z		tPROZ	3	-	3	-	3	-	CLK	
Power down exit time		tPDE	1	-	1	-	1	-	CLK	
Self refresh exit time		tSRE	1	-	1	-	1	-	CLK	3
Refresh Time		tREF	-	64	-	64	-	64	ms	

Note:

DEVICE OPERATING OPTION TABLE

HY57V161610DTC-5

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
200MHz	3CLKs	3CLKs	8CLKs	11CLKs	3CLKs	4.5ns	1.5ns
183MHz	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5ns	2ns
166MHz	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.5ns	2ns

^{1.} VDD(min) is 3.15V when HY57V161610DTC-7 operates at $\overline{\text{CAS}}$ latency=2 and tCK2=8.9ns.

^{2.}VDD(min) of HY57V161610DTC-5/55 is 3.15V

^{3.} A new command can be given tRRC after self refresh exit.

HY57V161610DTC-55

	CAS Latency	tRCD	RCD tRAS		tRP	tAC	tOH
183MHz	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5ns	2ns
166MHz	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.5ns	2ns
143MHz	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.5ns	2.5ns

HY57V161610DTC-6

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH	
166MHz	3CLKs	3CLKs	7CLKs 10CLKs		3CLKs 5.5ns		2ns	
143MHz	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.5ns	2.5ns	
125MHz	3CLKs	2CLKs	6CLKs	9CLKs	3CLKs	6ns	2.5ns	

HY57V161610DTC-7

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH
143MHz	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.5ns	2.5ns
125MHz	3CLKs	3CLKs	6CLKs	9CLKs 3CLKs	3CLKs	6ns	2.5ns
100MHz	2CLKs	2CLKs	5CLKs	7CLKs	2CLKs	7ns	2.5ns

HY57V161610DTC-8

	CAS Latency	tRCD	tRCD tRAS		tRP	tAC	tOH
125MHz	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	6ns	2.5ns
100MHz	3CLKs	2CLKs	5CLKs	7CLKs	2CLKs	7ns	2.5ns
83MHz	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	7ns	2.5ns

HY57V161610DTC-10

	CAS Latency	tRCD	tRAS	tRC	tRP	tAC	tOH	
100MHz	3CLKs	2CLKs	5CLKs	7CLKs	2CLKs	7ns	2.5ns	
83MHz	2CLKs	2CLKs	4CLKs	6CLKs	2CLKs	7ns	2.5ns	

HY57V161610DTC-15

	CAS Latency tRCD		tRAS	tRC	tRP	tAC	tOH	
66MHz	1CLKs	2CLKs	4CLKs	6CLKs	2CLKs	14ns	2.5ns	

Rev. 4.0/Aug. 02 11

COMMAND TRUTH TABLE

Commar	ıd	CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	A0~A9	A10/ AP	ВА	Note
Mode Register Set		Н	Х	L	L	L	L	Х		OP code		
No Operation		Н	х	Н	Х	Х	Х	х		Х		
				L	Н	Н	Н				1	
Bank Active		Н	Х	L	L	Н	Н	Х	Row Ad	ddress	V	
Read		н	X	L	Н	L	н	X	Column	L	V	
Read with Auto precharge		11	^	-		L	'''		Address	Н	v	
Write		Н	v		Н				Column	L	V	
Write with Auto precha	arge	1 11	X	L	Н	L	L	Х	Address	Н	V	
Precharge All Bank		Н	х	L	L	Н	L	х	Х	Н	Х	
Precharge selected Ba	ank		^	_		П	L	^	^	L	V	
Burst Stop		Н	Х	L	Н	Н	L	Х	X			
U/LDQM	U/LDQM				Х			V	X			
Auto Refresh		Н	Н	L	L	L	Н	Х		Х		
Burst-READ-Single-W	/RITE	Н	×	L	L	L	L	х	(Othe	A9 Pin High r Pins OP c	ode)	
	Entry	Н	L	L	L	L	Н	Х				
Self Refresh ¹	Exit	L	Н	Н	Х	Х	Х	х		X		
	EXIL	L	П	L	Н	Н	Н					
	Entr.	Н	L	Н	Х	Х	Х	X				
Precharge power	Entry		_	L	Н	Н	Н			X		
down		L	Н	Н	Х	Х	Х	V		^		
	Exit			L	Н	Н	Н	X				
	Entry	Н	L	Н	Х	Х	Х	Х		X		
Clock Suspend	Liluy			L	V	V	V	_ ^				
	Exit	L	Н)	<		Х				

Note

^{1.} Exiting Self Refresh occurs by asynchronously bringing CKE from low to high.

^{2.} X=Do not care, L=Low, H=High, BA=Bank Address, RA= Row Address, CA=Column Address, Opcode=Operand Code, NOP=No Operation.

UNIT: mm(inch)

PACKAGE INFORMATION

400mil 50pin Thin Small Outline Package (TC) 1Mx16 Synchronous DRAM

