Double gate structure

- Double-gate 5-nm-thick silicon & 0.5-nm-thick oxide at both sides
- 40-nm-long gate (Workfunction: 4.3 eV)

Step 1

- Solve the nonlinear Poisson equation for the double-gate structure.
- V_S = V_D =0 and V_G varies from 0 V to 1 V. (0.1 V step)

Electron density at V_D = 0.2 V

Electron density at V_D = 0.3 V

Potential at $V_D = 0.3 \text{ V}$

Electron density at V_D = 0.4 V

Potential at $V_D = 0.4 \text{ V}$

Electron density at V_D = 0.5 V

Electron density at V_D = 0.6 V

Electron density at V_D = 0.7 V

Potential at V_D = 0.7 V

Electron density at V_D = 0.8 V

Electron density at V_D = 0.9 V

Electron density at V_D = 1.0 V

Potential at V_D = 0.8 V

Potential at V_D = 0.9 V

Potential at $V_D = 1.0 \text{ V}$

Step 2

- Solve the drift-diffusion equation for the double-gate structure.
- Self-consistent simulation is mandatory.
- *VS*=0
- VG varies from 0 V to 1 V. (0.1 V step)
- VD varies from 0 V to 0.5 V. (0.1 V step)
- The electron mobility is assumed to be 1430 cm2/V sec.

Step 3

- Solve the Schrödinger equation.
- Use ϕ obtained in Step2.
- *Vs*=0
- Consider VG of 0.1 V and 0.5 V.
- Consider VD of 0.1 V and 0.5 V.
- Consider three different valleys.

Electron density at Vs = 0.1 V and VG = 0.1 V mxx = 0.91; myy = 0.19; mzz = 0.19

Electron density at Vs = 0.1 V and VG = 0.1 V mxx = 0.19; myy = 0.91; mzz = 0.19

Electron density at Vs = 0.1 V and V_G = 0.1 V mxx = 0.19; myy = 0.19; mzz = 0.91

Electron density at Vs = 0.1 V and V_G = 0.5 V mxx = 0.91; myy = 0.19; mzz = 0.19

Electron density at Vs = 0.1 V and VG = 0.5 V mxx = 0.19; myy = 0.91; mzz = 0.19

Electron density at Vs = 0.1 V and VG = 0.5 V mxx = 0.19; myy = 0.19; mzz = 0.91

Electron density at Vs = 0.5 V and VG = 0.1 V mxx = 0.91; myy = 0.19; mzz = 0.19

Electron density at Vs = 0.5 V and VG = 0.1 V mxx = 0.19; myy = 0.91; mzz = 0.19

Electron density at Vs = 0.1 V and VG = 0.5 V mxx = 0.19; myy = 0.19; mzz = 0.91

Electron density at Vs = 0.5 V and VG = 0.5 V mxx = 0.91; myy = 0.19; mzz = 0.19

Electron density at Vs = 0.5 V and VG = 0.5 V mxx = 0.19; myy = 0.91; mzz = 0.19

Electron density at Vs = 0.5 V and V_G = 0.5 V mxx = 0.19; myy = 0.19; mzz = 0.91