Jasmine Leblond-Chartrand

COMP 499 Final Project Preliminary Report

Hypertension

The NHANES (National Health and Nutrition Examination Survey) is a survey conducted across United-States to assess the health and nutritional status of individuals living in that country. The dataset includes extensive information about the participants (i.e. demographics, labs, examinations, and questionnaires)

The 2013-2014 edition examines 9,813 participants.

This project will examine determinants and possible outcomes of hypertension, the condition for which medication is the most often prescribed according to the NHANES medications.csv dataset (n = 1595). QUESTIONS Q1: What are the determinants of hypertension? (feature selection) Q2: Can we identify individuals with hypertension from their general health status? (classification) Q3: Which hypertensive patients are at higher risk for complications? (classification) Q4: What is the age of onset of complications for those at higher risk? (regression)

Data Acquisition (via Kaggle API)

In [105]: # Install the Kaggle API to be allowed download the file

```
# pip install kaggle

In [3]: # Need to download a kaggle.json file from the user account page on kaggle .com
# put it in ~/.kaggle/kaggle.json

In [4]: import kaggle
# dataset from "https://www.kaggle.com/cdc/national-health-and-nutrition-e xamination-survey/"

!kaggle datasets download -d cdc/national-health-and-nutrition-examination -survey -p './data/' --unzip

# -p denotes download path
# download the dataset as a single zip file to './data'
# --unzip
# extract the files ['demographic.csv', 'diet.csv', 'examination.csv', 'labs.csv', 'medications.csv', 'questionnaire.csv']

Werning Your Korola AD Law is neaded to be the survey on this current To finite you seem to labeled 600 /
```

Warning: Your Kaggle API key is readable by other users on this system! To fix this, you can run 'chmod 600 / Users/macbookpro/.kaggle/kaggle.json'

Warning: Your Kaggle API key is readable by other users on this system! To fix this, you can run 'chmod 600 / Users/macbookpro/.kaggle/kaggle.json'

Downloading national-health-and-nutrition-examination-survey.zip to ./data

100%|

Data Profiling and Cleaning

Step 2: Loading the data

```
import pandas as pd
import numpy as np

# data_demographic = pd.read_csv('./data/demographic.csv')
# data_diet = pd.read_csv('./data/diet.csv')
# data_examination = pd.read_csv('./data/examination.csv')
# data_labs = pd.read_csv('./data/labs.csv')
data_medications = pd.read_csv('./data/medications.csv', encoding = "ISO-8859-1", usecols= ['SEQN', 'RXDRSC1', 'RXDRSD1'])
data_questionnaire = pd.read_csv('./data/questionnaire.csv', index_col='SEQN')

data_questionnaire.head(20)
```

Out[3]:

ACD011A ACD011B ACD011C ACD040 ACD110 ALQ101 ALQ110 ALQ120Q ALQ120U AL

SEQN									
73557	1.0	NaN	NaN	NaN	NaN	1.0	NaN	1.0	3.0
73558	1.0	NaN	NaN	NaN	NaN	1.0	NaN	7.0	1.0
73559	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73560	1.0	NaN							
73561	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73562	NaN	NaN	NaN	4.0	NaN	1.0	NaN	5.0	3.0
73563	NaN								
73564	1.0	NaN	NaN	NaN	NaN	2.0	1.0	2.0	3.0
73565	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	NaN
73566	1.0	NaN	NaN	NaN	NaN	1.0	NaN	1.0	1.0
73567	1.0	NaN	NaN	NaN	NaN	1.0	NaN	4.0	1.0
73568	1.0	NaN	NaN	NaN	NaN	1.0	NaN	2.0	1.0
73569	NaN								
73570	1.0	NaN							
73571	1.0	NaN	NaN	NaN	NaN	2.0	1.0	2.0	3.0
73572	1.0	NaN							

73573	1.0	NaN							
73574	NaN	NaN	NaN	NaN	1.0	2.0	2.0	NaN	NaN
73575	NaN								
73576	1.0	NaN							

20 rows × 952 columns

In [4]: data_medications.iloc[:10]

Out[4]:

	SEQN	RXDRSC1	RXDRSD1
0	73557	NaN	NaN
1	73557	E11	Type 2 diabetes mellitus
2	73558	G25.81	Restless legs syndrome
3	73558	E11	Type 2 diabetes mellitus
4	73558	E11.2	Type 2 diabetes mellitus with kidney complicat
5	73558	E78.0	Pure hypercholesterolemia
6	73559	E11	Type 2 diabetes mellitus
7	73559	E11	Type 2 diabetes mellitus
8	73559	K86.9	Disease of pancreas, unspecified
9	73559	E78.0	Pure hypercholesterolemia

In [5]: data_questionnaire.describe()

Note: descriptive analysis on data_questionnaire will be done at a later step, after merging the 2 datasets.

Out[5]:

	ACD011A	ACD011B	ACD011C	ACD040	ACD110	ALQ101	ALQ110	ALQ12
count	5759.0	16.0	171.0	2374.000000	1007.000000	5421.000000	1631.000000	4479.000
mean	1.0	8.0	9.0	3.101095	2.956306	1.311197	1.594727	4.709
std	0.0	0.0	0.0	1.511821	1.733794	0.545023	0.615303	34.428
min	1.0	8.0	9.0	1.000000	1.000000	1.000000	1.000000	0.000
25%	1.0	8.0	9.0	2.000000	1.000000	1.000000	1.000000	1.000
50%	1.0	8.0	9.0	3.000000	3.000000	1.000000	2.000000	2.000
75%	1.0	8.0	9.0	4.000000	5.000000	2.000000	2.000000	4.000
max	1.0	8.0	9.0	9.000000	5.000000	9.000000	9.000000	999.000

8 rows × 950 columns

Descriptive statistical analysis is irrelevant for data_medications, since we are only dealing with 'SEQN', which is the respondant sequence number.

```
In [6]: data_medications.describe()
```

Out[6]:

	SEQN
count	20194.000000
mean	78545.350946
std	2933.000334
min	73557.000000
25%	75984.250000
50%	78506.000000
75%	81063.000000
max	83731.000000

Defining Questions

```
In [7]: # Medication grouped

# rows_with_med = data_medications[(data_medications.RXDCOUNT >= 1)]
# grouped_rows_with_med = rows_with_med.groupby(['SEQN'])
# grouped_rows_with_med['RXDCOUNT'].count()

# grouped_medication = data_medications.groupby(['RXDDRUG'])
# grouped_medication['SEQN'].count().sort_values(ascending=False)
```

```
In [8]: pd.set_option('display.max_rows',500)
    pd.set_option('display.max_columns',500)

# List of the most frequent medical diagnoses
# Hypertension is the most frequently seen condition in this dataset.
# Therefore, this project will revolve around this topic

patients_conditions = data_medications.drop_duplicates(subset=['SEQN', 'RX DRSC1'], keep='first').copy()

grouped_conditions = patients_conditions.groupby(['RXDRSC1', 'RXDRSD1'])
    print(grouped_conditions['SEQN'].count().sort_values(ascending=False).head
    (25))
```

RXDRSC1 RXDRSD1

```
I10Essential (primary) hypertension1595E78.0Pure hypercholesterolemia1101E11Type 2 diabetes mellitus575K21Gastro-esophageal reflux disease434F32.9Major depressive disorder, single episode, unspecified399J45Asthma348
```

F41.9 Anxiety disorder, unspecified	346
E03.9 Hypothyroidism, unspecified	334
M54.9 Dorsalgia, unspecified	214
G47.0 Insomnia	198
J30.9 Allergic rhinitis, unspecified	184
K30 Functional dyspepsia	174
F90 Attention-deficit hyperactivity disc	orders 166
T78.40 Allergy, unspecified	150
R60.9 Edema, unspecified	137
M79.2 Neuralgia and neuritis, unspecific	ed 127
I21.P Prevent heart attack/myocardial in	farction 118
D75.9P Prevent blood clots	118
Z79.3 Long term (current) use of hormo	nal contraceptives 115
G47.9 Sleep disorder, unspecified	110
E87.6 Hypokalemia	109
N40 Enlarged prostate	94
M79.1 Myalgia	92
I49.9 Cardiac arrhythmia, unspecified	91
G43 Migraine	85
Name: SEQN, dtype: int64	

Datasets and indicators that will be used in this project:

data_medications

```
* SEQN: Respondent sequence number

* RXDRSC1: ICD-10-CM code 1

* RXDRSD1: ICD-10-CM code 1 description
```

data questionnaire

* All indicators

QUESTIONS

- Q1: What are the determinants of hypertension? (feature selection)
- Q2: Can we identify individuals with hypertension from their general health status? (classification)
- Q3: Which hypertensive patients are at higher risk for complications? (classification)
- Q4: What is the age of onset of complications for those at higher risk? (regression)

Step 2: Basic Statistics (Profiling)

```
In [9]: print ('Number of participants in data_questionnaire: {}'.format(data_questionnaire.shape[0]))
```

Number of participants in data questionnaire: 10175

```
In [10]: print ('Number of rows in data_medications: {}'.format(data_medications.sh
```

```
ape[0]))
```

Number of rows in data medications: 20194

Number of variables in data_questionnaire: 952

Step 3: Dealing with duplicates (Cleaning)

data questionnaire

Number of duplicate participants in data questionnaire: 0

data medications

This is a long-format table with duplicate participant rows, where each rows represents a unique combination of ['SEQN', 'RXDDRUG'] columns (=> a prescribed drug to a patient)

There will certainly be duplicates 'SEQN', or duplicates 'RXDRSC1' (if a patient takes more than one medication for the same diagnosed condition)

Number of rows in data medications: 20194

Number of duplicate participants in data_medications: 12777

We have to filter participants based on hypertension diagnosis (ICD10 code: 'I10')

Number of rows in data medications: 20194

Number of unique participants in data medications: 12777

```
In [15]: rows_with_hypertension = data_medications[(data_medications.RXDRSC1=='I10'
    )]

nb_rows_with_hypertension = len(rows_with_hypertension)
    print('Number of rows with hypertension in data_medications: ' + str(nb_rows_with_hypertension))

nb_duplicate_patients_hypertension = sum(rows_with_hypertension.duplicated (subset=['SEQN'], keep=False))
    print('Number of duplicate patients with hypertension in data_medications:
    ' + str(nb_duplicate_patients_hypertension))
```

Number of rows with hypertension in data_medications: 2421 Number of duplicate patients with hypertension in data medications: 1431

```
In [16]: # Remove duplicate patient entries
    unique_patients = rows_with_hypertension.drop_duplicates(subset=['SEQN'],
    keep='first').copy()
    # set 'SEQN' as table index
    unique_patients = unique_patients.set_index('SEQN')

    nb_unique_patients = len(unique_patients)
    print('Number of unique_patients with hypertension: ' + str(nb_unique_patients))
```

Number of unique patients with hypertension: 1595

In []:

Data Matching & Merging

```
In [61]: data = pd.merge(data_questionnaire, unique_patients, how='inner', left_ind
    ex=True, right_index=True)
# Preview of data
data.head(10)
```

Out[61]:

ACD011A ACD011B ACD011C ACD040 ACD110 ALQ101 ALQ110 ALQ120Q ALQ120U AL

SEQN

73559	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73561	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73562	NaN	NaN	NaN	4.0	NaN	1.0	NaN	5.0	3.0

73613	1.0	NaN	NaN	NaN	NaN	1.0	NaN	2.0	1.0
73626	1.0	NaN	NaN	NaN	NaN	2.0	1.0	0.0	NaN
73633	1.0	NaN	NaN	NaN	NaN	2.0	2.0	NaN	NaN
73638	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73640	1.0	NaN	NaN	NaN	NaN	2.0	1.0	0.0	NaN
73641	1.0	NaN							
73643	NaN	NaN	NaN	NaN	1.0	1.0	NaN	3.0	3.0

10 rows × 954 columns

Basic Stats

Out[62]: 1595

Cleaning

There are no rows with all NaN column values.

```
In [63]: # Drops rows where all column values are NaN
  data.dropna(axis=0, how='all')
  data.shape
```

Out[63]: (1595, 954)

Replacing missing values

```
In [68]: dont_know_values = [99.0, 999.0]
    refused_to_answer_values = [77.0, 777.0]
```

```
values_to_replace = dont_know_values + refused_to_answer_values

for value in values_to_replace:
    data.replace(float(value), np.nan, inplace=True)

data.replace('', np.nan, inplace=True)

data.head(50)
```

Out[68]:

	ACD011A	ACD011B	ACD011C	ACD040	ACD110	ALQ101	ALQ110	ALQ120Q	ALQ120U	AL (
SEQN										
73559	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN	
73561	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN	
73562	NaN	NaN	NaN	4.0	NaN	1.0	NaN	5.0	3.0	
73613	1.0	NaN	NaN	NaN	NaN	1.0	NaN	2.0	1.0	
73626	1.0	NaN	NaN	NaN	NaN	2.0	1.0	0.0	NaN	
73633	1.0	NaN	NaN	NaN	NaN	2.0	2.0	NaN	NaN	
73638	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN	
73640	1.0	NaN	NaN	NaN	NaN	2.0	1.0	0.0	NaN	
73641	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
73643	NaN	NaN	NaN	NaN	1.0	1.0	NaN	3.0	3.0	
73645	1.0	NaN	NaN	NaN	NaN	1.0	NaN	10.0	3.0	
73647	NaN	NaN	NaN	4.0	NaN	1.0	NaN	0.0	NaN	

73652	1.0	NaN							
73654	NaN	NaN	9.0	NaN	NaN	2.0	2.0	NaN	NaN
73659	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73662	1.0	NaN							
73666	NaN	NaN	NaN	NaN	5.0	1.0	NaN	0.0	NaN
73672	1.0	NaN	NaN	NaN	NaN	1.0	NaN	7.0	1.0
73677	1.0	NaN	NaN	NaN	NaN	2.0	1.0	0.0	NaN
73689	1.0	NaN							
73690	1.0	NaN	NaN	NaN	NaN	2.0	1.0	0.0	NaN
73694	1.0	NaN	NaN	NaN	NaN	2.0	1.0	3.0	3.0
73695	1.0	NaN							
73702	1.0	NaN	NaN	NaN	NaN	1.0	NaN	4.0	3.0
73706	1.0	NaN	NaN	NaN	NaN	1.0	NaN	2.0	2.0
73708	NaN	NaN	NaN	5.0	NaN	1.0	NaN	5.0	1.0
73709	1.0	NaN							
73717	1.0	NaN	NaN	NaN	NaN	2.0	2.0	NaN	NaN

73718	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73720	1.0	NaN	NaN	NaN	NaN	1.0	NaN	1.0	2.0
73722	1.0	NaN	NaN	NaN	NaN	1.0	NaN	7.0	1.0
73725	1.0	NaN	NaN	NaN	NaN	2.0	2.0	NaN	NaN
73730	NaN	NaN	NaN	4.0	NaN	1.0	NaN	5.0	3.0
73740	NaN	NaN	NaN	NaN	2.0	2.0	2.0	NaN	NaN
73741	NaN	NaN	NaN	1.0	NaN	2.0	2.0	NaN	NaN
73747	NaN	NaN	NaN	5.0	NaN	2.0	2.0	NaN	NaN
73774	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73778	NaN	NaN	NaN	2.0	NaN	2.0	1.0	0.0	NaN
73782	1.0	NaN	NaN	NaN	NaN	1.0	NaN	2.0	3.0
73787	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73792	1.0	NaN	NaN	NaN	NaN	1.0	NaN	3.0	1.0
73797	1.0	NaN	NaN	NaN	NaN	2.0	1.0	0.0	NaN
73800	1.0	NaN	NaN	NaN	NaN	1.0	NaN	0.0	NaN
73811	1.0	NaN	NaN	NaN	NaN	1.0	NaN	7.0	1.0

73816	NaN	NaN	NaN	1.0	NaN	1.0	NaN	3.0	2.0
73820	1.0	NaN	NaN	NaN	NaN	1.0	NaN	1.0	2.0
73825	NaN	NaN	NaN	NaN	1.0	2.0	2.0	NaN	NaN
73831	1.0	NaN	NaN	NaN	NaN	1.0	NaN	1.0	1.0
73840	1.0	NaN	NaN	NaN	NaN	1.0	NaN	4.0	1.0
73845	1.0	NaN	NaN	NaN	NaN	2.0	1.0	0.0	NaN

50 rows × 954 columns

Descriptive Analysis

The count, for each column, denotes how many patients have answered this column.

There are many columns for which the number of patients (n) is too small to draw conclusions.

In [69]: data.describe()

Out[69]:

	ACD011A	ACD011B	ACD011C	ACD040	ACD110	ALQ101	ALQ110	ALQ120Q
count	1179.0	2.0	24.0	269.000000	130.000000	1430.000000	461.000000	1192.00000
mean	1.0	8.0	9.0	2.776952	2.476923	1.341958	1.557484	3.12500
std	0.0	0.0	0.0	1.612240	1.699135	0.618007	0.782591	11.07339
min	1.0	8.0	9.0	1.000000	1.000000	1.000000	1.000000	0.00000
25%	1.0	8.0	9.0	1.000000	1.000000	1.000000	1.000000	0.00000
50%	1.0	8.0	9.0	3.000000	2.000000	1.000000	2.000000	1.00000
75%	1.0	8.0	9.0	4.000000	4.750000	2.000000	2.000000	3.00000
max	1.0	8.0	9.0	5.000000	5.000000	9.000000	9.000000	305.00000

8 rows × 950 columns

Count

In [70]: nb_samples_required = 310

```
# based on https://select-statistics.co.uk/calculators/sample-size-calcula
tor-population-proportion/
# confidence=0.95, n=1595

print('The number of attributes went')
print('from ' + str(columns_count))
data = data.loc[:, data.count() >= nb_samples_required]

print('to ' + str(data.shape[1]))
```

The number of attributes went from 954 to 399

In [71]: # Preview of data table with only statistically significant columns
 data.head(10)

Out[71]:

	ACD011A	ALQ101	ALQ110	ALQ120Q	ALQ120U	ALQ130	ALQ141Q	ALQ151	ALQ160	BPQ0
SEQN										
73559	1.0	1.0	NaN	0.0	NaN	NaN	NaN	2.0	NaN	
73561	1.0	1.0	NaN	0.0	NaN	NaN	NaN	2.0	NaN	
73562	NaN	1.0	NaN	5.0	3.0	1.0	0.0	2.0	0.0	
73613	1.0	1.0	NaN	2.0	1.0	1.0	0.0	2.0	NaN	
73626	1.0	2.0	1.0	0.0	NaN	NaN	NaN	2.0	NaN	
73633	1.0	2.0	2.0	NaN	NaN	NaN	NaN	NaN	NaN	
73638	1.0	1.0	NaN	0.0	NaN	NaN	NaN	2.0	0.0	
73640	1.0	2.0	1.0	0.0	NaN	NaN	NaN	2.0	NaN	
73641	1.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
73643	NaN	1.0	NaN	3.0	3.0	1.0	0.0	2.0	NaN	

project_preliminary_report							
In []:							
T							