Estimating stationary mass, frequency by frequency

Milind Nakul

Vidya Muthukumar

Ashwin Pananjady

Georgia Institute of Technology

Distribution Estimation

- Discrete distribution estimation from dependent data.
- Focus: Large alphabet regime.
- Understand existing results in the IID setting.
- Goal: Design a universally consistent estimator when the samples are dependent.

Natural Language Modelling

Dependent data and mixing

- Data: $X^n = \{X_1, ..., X_n\}$, single trajectory from stochastic ergodic process
- π : Unique stationary distribution, \mathcal{X} : sample space.

Assumption (exponentially α –mixing)

$$\alpha(\tau) \coloneqq \sup_{t \in N} \sup_{A,B} \{ |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| : A \in \sigma(X_t^-), B \in \sigma(X_{t+\tau}^+) \}.$$

 $\alpha(\tau) \leq \mu \rho^{\tau}$ for all $\tau \geq 1$, $\mu > 0$ and $\rho \in (0,1)$.

Mixing time

 $T_{mix} \coloneqq \min \{ \tau : \alpha(\tau) \le 1/4 \}$.

• **Practical modelling choice**: Subsumes finite state Markov chains, hidden Markov models, duplicated sequences, etc.

Count probabilities

- Estimate: $M^{\pi}(X^n) := \left(M^{\pi}_{\zeta}(X^n)\right)_{\zeta=0}^n$.
- For each $\zeta = 0,1,...n$, define

$$M_{\zeta}^{\pi}(X^n) \coloneqq \sum_{\chi \in \mathcal{X}} \pi_{\chi} \mathbb{I}(N_{\chi}(X^n) = \zeta),$$

where $N_x(X^n)$: number of times symbol x appears in X^n .

- $M_{\zeta}^{\pi}(X^n)$: Aggregates stationary masses of symbols with count ζ in X^n .
- $M_{\zeta}^{\pi}(X^n)$: Random functional which depends on X^n and π .

Example

- Alphabet $\mathcal{X} = \{a, b, c, d\}$ with $\pi_a = 0.4, \pi_b = 0.2, \pi_c = 0.3, \pi_d = 0.1$.
- Data $X^n = \{a, b, a, a, c, c, b\}.$
- ϕ_{ζ} : # of symbols appearing ζ times. $\phi_0=1$ ({d}), $\phi_1=0$, $\phi_2=2$ ({b,c}), $\phi_3=1$ ({a}).
- Vector of count probabilities:

• Goal: Design an estimator $\widehat{M}: X^n \to \Delta(\{n\})$ such that we minimize the risk $\mathbb{E}\left[\mathrm{d}_{TV}\big(M^\pi(X^n),\widehat{M}(X^n)\big)\right]$.

\widehat{M} can be used to estimate π

• \hat{q} : Divide \hat{M} equally among all symbols that appear equal times.

$$\widehat{q_x} = \frac{\widehat{M_\zeta}}{\zeta}$$
 for all x such that $N_x(X^n) = \zeta$.

• \hat{q} is a **natural estimator** (Orlitsky and Suresh `15).

Lemma (Nakul, Muthukumar and Pananjady `25)

$$d_{TV}(\pi, \widehat{q}) \le 2 \inf_{q \in Q^{nat}} d_{TV}(\pi, q) + d_{TV}(M^{\pi}, \widehat{M}).$$

• \hat{q} : Competitive with respect to the class of natural estimators.

Special case: IID data

- Data: $X^n = \{X_1, \dots, X_n\}$, i.i.d. samples from π .
- $\alpha(\tau) = 0$ and $T_{mix} = 1$.
- One approach: Empirical or Plug-in (PI) Estimator.

$$\widehat{M}_{PI,\zeta} = \frac{\zeta \phi_{\zeta}(X^n)}{n}.$$

- Failure: Large alphabet regimes (most symbols are unseen).
- Smoothing techniques: Add constant estimators.
- **Hybrid** estimation: **Good Turing** (small ζ) + Plug-In (large ζ).

Good `53: Proposed the Good-Turing (GT) estimator:

$$\widehat{M}_{GT,\zeta} = \frac{(\zeta + 1)\phi_{\zeta+1}(X^n)}{n}.$$

• Observation: $M_{\zeta}^{\pi} \approx \frac{(\zeta+1)\mathbb{E}[\phi_{\zeta+1}(X^n)]}{n}$.

$$\mathbb{I}\left(X_i \notin \left(X^{-i}\right)\right) = 1$$

i = 1

Example:
$$n = 16, \zeta = 0, \phi_1(X^n) = 3$$

• Leave-one-out interpretation: $\widehat{M}_{GT,0} = \frac{1}{n} \sum_{i} \mathbb{I} \left(X_i \notin (X^{-i}) \right)$.

Good `53: Proposed the Good-Turing (GT) estimator:

$$\widehat{M}_{GT,\zeta} = \frac{(\zeta + 1)\phi_{\zeta+1}(X^n)}{n}.$$

• Observation: $M_{\zeta}^{\pi} \approx \frac{(\zeta+1)\mathbb{E}[\phi_{\zeta+1}(X^n)]}{n}$.

$$\mathbb{I}\left(X_i \notin \left(X^{-i}\right)\right) = 0$$

i = 2

Example: $n = 16, \zeta = 0, \phi_1(X^n) = 3$

• Leave-one-out interpretation: $\widehat{M}_{GT,0} = \frac{1}{n} \sum_{i} \mathbb{I}\left(X_{i} \notin (X^{-i})\right)$.

• Good `53: Proposed the Good-Turing (GT) estimator:

$$\widehat{M}_{GT,\zeta} = \frac{(\zeta + 1)\phi_{\zeta+1}(X^n)}{n}.$$

• Observation: $M_{\zeta}^{\pi} \approx \frac{(\zeta+1)\mathbb{E}[\phi_{\zeta+1}(X^n)]}{n}$.

$$\mathbb{I}\left(X_i \notin \left(X^{-i}\right)\right) = 1$$

i = 4

Example: $n = 16, \zeta = 0, \phi_1(X^n) = 3$

• Leave-one-out interpretation: $\widehat{M}_{GT,0} = \frac{1}{n} \sum_{i} \mathbb{I} \left(X_i \notin (X^{-i}) \right)$.

• Good `53: Proposed the Good-Turing (GT) estimator:

$$\widehat{M}_{GT,\zeta} = \frac{(\zeta + 1)\phi_{\zeta+1}(X^n)}{n}.$$

• Observation: $M_{\zeta}^{\pi} \approx \frac{(\zeta+1)\mathbb{E}[\phi_{\zeta+1}(X^n)]}{n}$.

$$\mathbb{I}\left(X_i \notin \left(X^{-i}\right)\right) = 1$$

Example:
$$n = 16, \zeta = 0, \phi_1(X^n) = 3^{i = 13}$$

• Leave-one-out interpretation: $\widehat{M}_{GT,0} = \frac{1}{n} \sum_{i} \mathbb{I} \left(X_i \notin (X^{-i}) \right)$.

Failure of IID estimators on sticky Markov chains

- Generate **base** i.i.d. sequence of length = n_0 .
- Duplicate each symbol in the sequence by i.i.d. factor **Geometric**($1/n_0^{0.2}$).

Power law distribution on base sequence

Uniform distribution on base sequence

Difficulties

- Temporal dependence.
- Chandra et al `22 : GT on Markovian data has a constant bias.
- Pananjady et al `24: Estimator for missing mass for Markovian sequences.

Question: Can we utilize the recent progress for Markovian sequences to perform consistent distribution estimation for general mixing sequences?

Windowed-Good-Turing (Wing-It)

• **Recall:** leave-one-out GT interpretation:

$$\widehat{M}_{GT,\zeta} = \frac{1}{n} \sum_{i} \mathbb{I}(N_{X_i}(X^{-i}) = \zeta).$$

• Define the "Independent" set $I_i = [1, i - \tau] \cup [i + \tau, n]$.

$$\widehat{M}_{WingIt,\zeta} = \frac{1}{n} \sum_{i} \mathbb{I}(N_{X_i}(X_{\mathcal{I}_i}) = \zeta).$$

Wing-It: GT estimator with windowing (leave-a-window-out).

$$\mathbb{I}\big(N_{X_i}(X_{\mathcal{I}_i})=0\big)=1$$

$$i = 2$$

Example: $n = 16, \zeta = 0, \tau = 2$.

Windowed-Good-Turing (Wing-It)

• **Recall:** leave-one-out GT interpretation:

$$\widehat{M}_{GT,\zeta} = \frac{1}{n} \sum_{i} \mathbb{I}(N_{X_i}(X^{-i}) = \zeta).$$

• Define the "Independent" set $I_i = [1, i - \tau] \cup [i + \tau, n]$.

$$\widehat{M}_{WingIt,\zeta} = \frac{1}{n} \sum_{i} \mathbb{I}(N_{X_i}(X_{\mathcal{I}_i}) = \zeta).$$

Wing-It: GT estimator with windowing (leave-a-window-out).

$$\mathbb{I}\big(N_{X_i}(X_{\mathcal{I}_i})=0\big)=0$$

$$i = 6$$

Example: $n = 16, \zeta = 0, \tau = 2$.

Windowed-Good-Turing (Wing-It)

• **Recall:** leave-one-out GT interpretation:

$$\widehat{M}_{GT,\zeta} = \frac{1}{n} \sum_{i} \mathbb{I}(N_{X_i}(X^{-i}) = \zeta).$$

• Define the "Independent" set $I_i = [1, i - \tau] \cup [i + \tau, n]$.

$$\widehat{M}_{WingIt,\zeta} = \frac{1}{n} \sum_{i} \mathbb{I}(N_{X_i}(X_{\mathcal{I}_i}) = \zeta).$$

Wing-It: GT estimator with windowing (leave-a-window-out).

$$\mathbb{I}\big(N_{X_i}(X_{\mathcal{I}_i})=0\big)=1$$

i = 11 Example: $n = 16, \zeta = 0, \tau = 2$.

Estimator for mixing sequences

 $0 \leq \zeta \leq \overline{\zeta}$

Hybrid Estimator (\widehat{M})

 $\int \nabla \int \nabla \eta$

Wing-It for small frequencies $\widehat{M}_{\zeta} = \widehat{M}_{WingIt,\zeta}$. Implementable in $n\tau$ time. PI for large frequencies

$$\widehat{M}_{\zeta} = \widehat{M}_{PI,\zeta} = \frac{\zeta \phi_{\zeta}(X^n)}{n}.$$

Implementable in linear time.

Theorem (Nakul, Muthukumar and Pananjady `25)

For mixing sequences, the hybrid estimator with $\bar{\zeta} = n^{1/3}$, achieves $\mathrm{d}_{TV}(M^\pi, \widehat{M}) \lesssim \sqrt{T_{mix} \log n} \cdot n^{-1/6}$.

Theorem (Nakul, Muthukumar and Pananjady `25)

For mixing sequences, the hybrid estimator with $\bar{\zeta} \approx n^{1/3}$, achieves $\mathrm{d}_{TV}\big(M^\pi, \widehat{M}\big) \lesssim \sqrt{T_{mix}\log n} \cdot n^{-1/6}$.

- Universal estimation in n for any alphabet size $|\mathcal{X}|$.
- Recovers i.i.d. results as special case $\tau = 1$ without **Poissonization**.
- New analysis for small-frequency and large frequency errors.

Adaptive analysis which adjusts to the properties of the stationary distribution.

Self-normalized concentration inequalities for α -mixing sequences.

Success of Proposed Estimator

- Generate **base** i.i.d. sequence of length = n_0 .
- Duplicate each symbol in the sequence by i.i.d. factor **Geometric**($1/n_0^{0.2}$).

Power law distribution on base sequence

Uniform distribution on base sequence

Key takeaways:

- Discrete distribution estimation from dependent samples.
- Proposed estimator: Complementary strengths of Wing-It and Plug-In.
- Consistent estimation for all alphabet sizes.

Future direction:

- Minimax-optimal rates for distribution estimation on mixing sequences?
- Beyond TV distance.

Thank You