ENGR 065: Circuit Theory

Problem Set #7

Read Chapter 6 from [1] and then solve the following problems.

Problem 1 [20%]: a) Consider a 4mF capacitor with voltage

$$v(t) = Ae^{-100t} + Be^{-600t}V$$
 for $t \ge 0$

where A, B are constants. Assume initial voltage v(0) = 50V and initial current i(0) = 20A. Determine A, B and i(t).

b) The current through a 0.5F capacitor is $i(t) = 6(1 - e^{-t})A$. Determine the voltage and power at t = 2s. Assume v(0) = 0.

Problem 2 [10%]: Consider the following circuit under DC conditions. What is the amount of energy stored in the capacitors C_1 and C_2 ? Assume $R_1 = 75 \Omega$, $R_2 = 15 \Omega$, and $C_1 = C_2 = 1F$.

Problem 3 [20%]:

a) Determine the equivalent capacitance for the given circuit, where C = 8 F.

b) Find the equivalent capacitance at terminals a-b of the given circuit, where P = 5 μ F and Q = 10 μ F.

Problem 4 [20%]:

- a) The current through a 49-mH inductor is $i(t) = te^{-2t}$ for t > 0. Find the inductor voltage v(t).
- b) The voltage across a 200mH inductor is $v(t) = 3t^2 + 2t + 4V$ for $t \ge 0$. Determine the current i(t) through the inductor. Assume i(0) = 1A.

Problem 5 [10%]: Consider the following circuit operating under DC conditions and $i_{\rm S}=10mA$. Compute i and v.

Problem 6 [20%]:

a) Determine the equivalent inductance Leq at terminals a-b of the given circuit, where L = 20 mH.

b) An electric motor can be modeled as a series combination of a 12Ω resistor and a 200mH inductor. A current $i(t) = 2te^{-10t}A$ $t \ge 0$ s flows through this series combination. Find the voltage v(t) across the combination for $t \ge 0$ s

References

[1] C. Alexander and M. Sadiku "Fundamentals of Electric Circuits", 7th Edition, 2021, McGraw-Hill