

CIÊNCIAS DA COMPUTAÇÃO

Aspectos Teóricos da Computação

Prof. César C. Xavier

Aspectos Teóricos da Computação

ROTEIRO

Máquinas de Turing – Parte II

- Exercícios
- Expressões Regulares
- Autômato Finito Não-Determinístico (NFA)
- Conversão NFA para DFA
- Máquina de Turing Não Determinísticas
- Máquina de Turing com Várias Fitas
- Máquina de Turing com Acesso Aleatório

Expressões Regulares

- Para todo autômato finito existe uma expressão regular equivalente!
- Se A_1 e A_2 são linguagens regulares então A_3 = $A_1 \cup A_2$ também é.
- **Demonstração**: Existem dois autômatos finitos e determinísticos M_1 e M_2 que reconhecem A_1 e A_2 .

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, reconhece A_1 .
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, reconhece A_2 .

Construir AFD $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 \cup A_2$.

M deverá aceitar w como entrada se M_1 ou M_2 aceitar w.

Prof. César C. Xavier

Aspectos Teóricos da Computação

Expressões Regulares

- Construir AFD $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 \cup A_2$.
- M deverá aceitar w como entrada se M_1 ou M_2 aceitar w.
 - É possível testar primeiro em M_1 e depois em M_2 ?
 - Não!
 - A solução será apresentar a entrada nas duas máquinas em paralelo!!!
- Neste caso, se provado, diz-se que as linguagens A_1 e A_2 são fechadas em relação à operação \cup .
- Ex.: o conjuntos dos números naturais forma um conjunto fechado em relação às operações:
 - Soma, Multiplicação, Subtração e Divisão?
 - V V F F

Expressões Regulares

- Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 \cup A_2$.
 - M deverá estar monitorando o par de estados de M_1 e M_2

Prof. César C. Xavier

Aspectos Teóricos da Computação

Expressões Regulares

• Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 \cup A_2$.

Componentes de M:

i) Estados – par de estados:

$$Q = Q_1 \times Q_2 =$$

$$= \{(q_i, q_j) \mid q_i \in Q_1 \in q_j \in Q_2\}$$

ii) Estado inicial:

$$q_0 = (q_{01}, q_{02})$$

iii) FunçãoTransição: quando se está no par (q,r) ao receber o símbolo a:

$$\delta((q, r), a) = (\delta_1(q, a), \delta_2(r, a))$$

- iv) Estados Aceitáveis F:
 - $F = F_1 \times F_2$.

ERRADO! Pois apenas um dos estados deverá ser aceito!

Expressões Regulares

• Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 \cup A_2$.

Componentes de M:

i) Estados – par de estados: $Q = Q_1 \times Q_2 =$

$$= \{ (q_i, q_i) \mid q_i \in Q_1 \in q_i \in Q_2 \}$$

ii) Estado inicial:

$$q_0=(q_1,\,q_2)$$

iii) FunçãoTransição: quando se está no par (*q*,*r*) ao receber *a*:

$$\delta((q, r), a) = (\delta_1(q, a), \delta_2(q, a))$$

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2).$$

Ou o primeiro estado está em um estado de aceitação qualquer estado para o segundo elemento ou qualquer estado para o primeiro elemento e um estado de aceitação para o segundo elemento.

Aspectos Teóricos da Computação

Expressões Regulares

• Se M_1 e M_2 são autômatos finitos com k_1 e k_2 estados respectivamente, quantos estados M terá?

(a)
$$k_1 + k_2$$

(b)
$$(k_1)^2 + (k_2)^2$$

(c)
$$k_1 \times k_2$$

Expressões Regulares

• Se M_1 e M_2 são autômatos finitos com k_1 e k_2 estados respectivamente, quantos estados M terá?

(a)
$$k_1 + k_2$$

(b)
$$(k_1)^2 + (k_2)^2$$

(c)
$$k_1 \times k_2$$

Prof. César C. Xavier

Aspectos Teóricos da Computação

Expressões Regulares

- Se A_1 e A_2 são linguagens regulares então $A_3 = A_1 A_2$ (concatenação) também é.
- **Demonstração**: Existem dois autômatos M_1 e M_2 que reconhecem A_1 e A_2 .

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, reconhece A_1 .
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, reconhece A_2 .

Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se w = xy se M_1 aceita x e M_2 aceita y.

Expressões Regulares

• Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se w = xy se M_1 aceita x e M_2 aceita y.

Prof. César C. Xavier

Aspectos Teóricos da Computação

Expressões Regulares

• Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se w = xy se M_1 aceita x e M_2 aceita y.

Expressões Regulares

• Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se w = xy se M_1 aceita x e M_2 aceita y.

Passo #2:

- desclassificar o estado inicial de M_2
- estabelecer transição entre os estados finais de M_1 com o estado inicial M_2 - remover os estados finais
- remover os estados finais de M_1 .

Aspectos Teóricos da Computação

Expressões Regulares

Prof. César C. Xavier

• Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se w = xy se M_1 aceita x e M_2 aceita y.

Passo #3:

- remover os estados finais de M_1 .

Expressões Regulares

• Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se w = xy se M_1 aceita x e M_2 aceita y.

Não funciona...

Não sabemos dividimos a palavra na posição certa. Pode ser que exista um estado mais a frente de M_1 no qual aceite a nova palavra.

Aspectos Teóricos da Computação

Expressões Regulares

Prof. César C. Xavier

• Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se w = xy se M_1 aceita x e M_2 aceita y.

Onde dividir a palavra?

Expressões Regulares

• Construir $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se w = xy se M_1 aceita x e M_2 aceita y.

