```
In [47]: ####### Problem statement and dataset description
          #This project builds a neural network to classify handwritten digits 0 and 1 using 20x20 grayscale images.
          #Each image is turned into 400 features based on pixel intensity and labeled as either 0 or 1.
          #The dataset includes 1,000 images to train and test the model.
In [44]: # Load Dataset
         import pandas as pd
          data = pd . read_csv ("binary_digits.csv")
         X = data . iloc [: , : -1]. values
y = data . iloc [: , -1]. values
print (" Shape of X:", X. shape )
print (" Shape of y:", y. shape )
          # Output:
          # The output indicates that X is a dataset with 1000 samples, with 400 features each.
         # y is a label vector with 1000 values, one per sample.
         Shape of X: (1000, 400)
         Shape of y: (1000,)
 In [9]: # Visualize Data
          import matplotlib . pyplot as plt
          import numpy as np
          fig, axes = plt.subplots(4, 4, figsize=(8, 8))
          for i, ax in enumerate(axes.flat):
              index = np.random.randint(X.shape[0])
              ax.imshow(X[index].reshape(20, 20).T, cmap='gray')
              ax.set_title(f"Label: {y[index]}")
              ax.axis('off')
          plt.show()
          # Output:
          # A 4x4 grid of grayscale images is outputted.
          # Each represent handwritten binary digit (0 or 1), labeled with its corresponding class
```



```
In []: ##### Neural Network Architecture
# The neural network is a simple feedforward model with 400 input neurons (one for each pixel)
```

Hidden layer of 25 neurons using relu and an output layer with one neuron using sigmoid for binary classification.
Another version was tested with 50 hidden neurons and tanh activation to see if it performed better.

```
In [21]: # Implementation in TensorFlow/Keras
         import tensorflow as tf
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense
         # Define the model
         # Model 1
         model = Sequential([
             Dense(25, activation='relu', input_shape=(400,)),
             Dense(1, activation='sigmoid')
         ])
         model.summary()
         # Output:
         # This is a simple feedforward neural network.
         # - 400 input features
         # -One hidden layer with 25 neurons (ReLU activation)
        # - One output neuron (Sigmoid activation for binary classification)
         # - Total trainable parameters: 10,051
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense_2 (Dense)	(None, 25)	10,025
dense_3 (Dense)	(None, 1)	26

Total params: 10,051 (39.26 KB)
Trainable params: 10,051 (39.26 KB)
Non-trainable params: 0 (0.00 B)

```
In [26]: # Compile the Model

model.compile(
    optimizer='adam',
    loss='binary_crossentropy',
    metrics=['accuracy']
)

# Train the model
history = model.fit(X, y, epochs=20, batch_size=32, validation_split=0.2)

# Output:
# - 20 lines, one per epochs
# - Initially, accuracy is roughly 50%, meaning the model starts off by guessing
# - Over time, accuracy increases, and loss decreases, showing the model is learning
# - When val_accuracy decreases and accuracy increases, model is overfitting
# - output helps track training progress and diagnose model performance over time
```

```
Epoch 1/20
25/25 •
                         - 1s 11ms/step - accuracy: 0.5085 - loss: 0.7185 - val_accuracy: 0.5150 - val_loss: 0.6963
Epoch 2/20
25/25 -
                           0s 5ms/step - accuracy: 0.5482 - loss: 0.6887 - val_accuracy: 0.5150 - val_loss: 0.7011
Epoch 3/20
25/25 -
                           0s 6ms/step - accuracy: 0.5385 - loss: 0.6893 - val_accuracy: 0.4300 - val_loss: 0.7047
Epoch 4/20
                           0s 4ms/step - accuracy: 0.5053 - loss: 0.6988 - val_accuracy: 0.4750 - val_loss: 0.6984
25/25
Epoch 5/20
25/25 -
                           0s 4ms/step - accuracy: 0.5655 - loss: 0.6827 - val_accuracy: 0.5000 - val_loss: 0.6955
Epoch 6/20
25/25
                           0s 5ms/step - accuracy: 0.5757 - loss: 0.6757 - val_accuracy: 0.4750 - val_loss: 0.7021
Epoch 7/20
                           0s 4ms/step - accuracy: 0.6085 - loss: 0.6697 - val_accuracy: 0.5550 - val_loss: 0.6904
25/25
Epoch 8/20
25/25
                           0s 4ms/step - accuracy: 0.6274 - loss: 0.6589 - val_accuracy: 0.4400 - val_loss: 0.7207
Epoch 9/20
25/25
                           0s 5ms/step - accuracy: 0.6084 - loss: 0.6600 - val_accuracy: 0.5450 - val_loss: 0.6955
Epoch 10/20
                           0s 5ms/step - accuracy: 0.6621 - loss: 0.6483 - val_accuracy: 0.4950 - val_loss: 0.7005
25/25
Epoch 11/20
25/25 -
                           0s 4ms/step - accuracy: 0.7167 - loss: 0.6196 - val_accuracy: 0.4450 - val_loss: 0.7367
Epoch 12/20
25/25
                           0s 4ms/step - accuracy: 0.7064 - loss: 0.6168 - val_accuracy: 0.4550 - val_loss: 0.7309
Epoch 13/20
25/25
                           0s 5ms/step - accuracy: 0.6944 - loss: 0.6267 - val_accuracy: 0.5700 - val_loss: 0.7206
Epoch 14/20
25/25
                           0s 10ms/step - accuracy: 0.6132 - loss: 0.6338 - val_accuracy: 0.5200 - val_loss: 0.7155
Epoch 15/20
25/25
                           0s 4ms/step - accuracy: 0.7194 - loss: 0.5933 - val_accuracy: 0.5450 - val_loss: 0.7210
Epoch 16/20
                           0s 3ms/step - accuracy: 0.7205 - loss: 0.5885 - val_accuracy: 0.4900 - val_loss: 0.7269
25/25
Epoch 17/20
25/25 -
                           0s 4ms/step - accuracy: 0.7483 - loss: 0.5598 - val_accuracy: 0.5000 - val_loss: 0.7289
Epoch 18/20
25/25
                           0s 5ms/step - accuracy: 0.7339 - loss: 0.5625 - val_accuracy: 0.5100 - val_loss: 0.7316
Epoch 19/20
25/25
                           0s 6ms/step - accuracy: 0.7532 - loss: 0.5442 - val_accuracy: 0.4750 - val_loss: 0.7654
Epoch 20/20
25/25
                           0s 4ms/step - accuracy: 0.7639 - loss: 0.5447 - val_accuracy: 0.5000 - val_loss: 0.7406
```

In [30]: # Plot training accuracy

plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Training and Validation Accuracy')
plt.show()


```
In []: #Output:
# - plots the training and validation accuracy over 20 epochs to see how well the model learns
# - Training Accuracy is greater than Validation Accuracy
```

```
# - The model learns well on training data, but not good with generalization
         #- the changing validation (going high to low) accuracy shows there coulf be nstability and overfitting
In [34]: #Evaluate the Model
         from sklearn.metrics import classification_report , confusion_matrix
         # Predict labels
         y_pred = (model.predict(X) >= 0.5).astype (int)
         # Print classification report
         print ( classification_report (y , y_pred))
         # Confusion matrix
         conf_matrix = confusion_matrix (y , y_pred)
         print("Confusion Matrix :\n",conf_matrix)
         # Outcome:
         # - 74% overall accuracy (740/1000 samples)
         # - Precision and recall are generally balanced
         #- f1-score(0.74) not perfect balance between precision and recall
         # 391 True Negatives correctly predicted 0
         # 346 True Positives correctly predicted 1
         # 126 False Positives, predicted 1, but it was actually 0
         # 137 False Negatives, predicted 0, but it was actually 1
         # model misses more positives than it falsely detects
         # overall good accuracy of 74%
        32/32 -
                                  - 0s 3ms/step
                      precision
                                   recall f1-score
                                                      support
                                     0.76
                 0.0
                           0.74
                                               0.75
                                                          517
                 1.0
                           0.73
                                     0.72
                                               0.72
                                                          483
                                               0.74
                                                         1000
            accuracy
           macro avg
                           0.74
                                     0.74
                                               0.74
                                                         1000
                                               0.74
                                                         1000
        weighted avg
                           0.74
                                     0.74
        Confusion Matrix :
         [[391 126]
         [137 346]]
In [69]: # Experimentation with Hyperparameters
         # Model 2
         #tanh activation function 25 neurons
         model = Sequential([
             Input(shape=(400,)),
             Dense(25, activation='tanh'),
             Dense(1, activation='sigmoid')
         1)
         model.summary()
```

Model: "sequential_15"

Layer (type)	Output Shape	Param #
dense_30 (Dense)	(None, 25)	10,025
dense_31 (Dense)	(None, 1)	26

Total params: 10,051 (39.26 KB)
Trainable params: 10,051 (39.26 KB)
Non-trainable params: 0 (0.00 B)

Model: "sequential_13"

Layer (type)	Output Shape	Param #
dense_26 (Dense)	(None, 100)	40,100
dense_27 (Dense)	(None, 1)	101

Total params: 40,201 (157.04 KB)
Trainable params: 40,201 (157.04 KB)
Non-trainable params: 0 (0.00 B)

Model: "sequential_14"

Layer (type)	Output Shape	Param #
dense_28 (Dense)	(None, 100)	40,100
dense_29 (Dense)	(None, 1)	101

In []: # - All models are feedforward neural networks with one hidden layer

Total params: 40,201 (157.04 KB)
Trainable params: 40,201 (157.04 KB)
Non-trainable params: 0 (0.00 B)

```
# - Each model takes 400 input features
        # - Models with the same number of neurons have the same number of parameters, regardless of activation function
        # - 100 neurons Models(3 & 4) have more parameters(40,201) than Models 1 & 2(10,051)
        # - Increasing the risk of overfitting for models 3 and 4
        # - Relu and tanh changes models learning speed and convergence
        # - For generalization Model 1 is the best
        # - For higher accuracy, Model 4 best but needs regularization
In [ ]: ##### Conclusion
        # Model Performance:
        # - Model had 74% accuracy, showing is has a moderate ability to classify 0 and 1 correctly
        # - Precision and recall were pretty balanced
        # - Confusion matrix showed that the model missed more positive cases(false negatives) than it falsely detected(false
        # - Training accuracy improved, but validation accuracy went up and down meaning instable
        # - Model learned the training data well but did not for unseen data
        # - Maybe with larger dataset the model could have learned more
        # Potential Improvements:
        # - Adjust learning rate or number of neurons to find the best balance
        # - Adding more hidden layers
        # - Larger data set
        # - Lowering the threshold for sigmoid to make it so that tthe model more likely to predict 1 which can reduce the fa
```