1 Les données

Date: 2024-04-24 Scan: 89-97-102-108

Paramètres: With1, DeadtimeDMD, With1_bis, Deadti-

meDMD bis

FIGURE 2 – Les profils du 24-04-2024

- a) "Deformation bord $\tau = 1 \ ms$ " (1): Profil longitudinal des données 1 ms après la sélection en x = 0.
- b) "Deformation bord $\tau=18~ms$ " (1) : Profil longitudinal des données après 18 ms de déformation du bord.
- c) "Expansion 1D $\tau=1~ms$ " (1) : Profil longitudinal des données après 1 ms d'expansion.
- d) "Expansion 1D $\tau = 30 \ ms$ " (1) : Profil longitudinal des données après 30 ms d'expansion.

- A) Système semi-infinie pour $x \ge 0$:
 - a) Système dans une potentiel quartique :
 - fréquence transverse : $\omega_{\perp} \stackrel{exp}{=} 2\pi * 2.56 \text{ } KHz$
 - la densité spatial : $n_0 = n_p$ sur les données "deformation bord $\tau = 1$ ms" (1), je mesure $n_p \stackrel{exp}{=} 56.6 \ \mu m^{-1}$.
 - b) Selection de $x \ge 0$:
 - la densité spatial théorique : $n_0 = n_p \Theta(x)$
 - garde le potentiel transverse
- B) Deformation du bord :
 - o "deformation bord $\tau=1~ms~(1)$: le profile longitudinale des données apres 1 ms de déformation du bord
 - o "deformation bord $\tau=18~ms$ (1) : le profile longitudinale des données apres 18~ms de déformation du bord
 - garde le potentiel transverse
 - temps de déformation du bord $\tau = 18 \ ms$
- C) Mesure locale de distribution de rapidité , Expansion 1D :
 - a) Local : selection de la tranche $[x_0 \ell/2, x_0 + \ell/2]$:
 - $x_0 = 19.6 \ \mu m$ (trouvé avec un ajustement gaussien sur "expansion 1D $\tau = 1 \ ms$ " (1)
 - $\ell = 24.78~\mu m$ (trouvé en faisant la différence des positions des extremums du gradient de s données "expansion 1D $\tau = 1~ms$ " (1))
 - b) Expansion:
 - o "expansion 1D $\tau=1~ms$ " : profile longitudinale des données après 1 ms d'expansion.
 - o "expansion 1D $\tau=30~ms$ " : profile longitudinale des données après 30 ms d'expansion.
 - $\bullet\,$ temps de déformation du bord $\tau=18\;ms$
 - garde le potentiel transverse

(a) [Bleu] Donnée de Déformation du bord t=18~ms, [Vert] Ajustement avec T=556.975~nK et $\mu(T=556.975~nK, n_p=56.6~\mu m^{-1})=64.554~nK$, [Orange] Donnée de Selection après expansion $\tau=1~ms$ et [Rouge] Simulation de l'expansion pour $\tau=1~ms$, avec $x_0=19.6~\mu m$ et $\ell=24.78~\mu m$

(c) [Bleu] Donnée expansion $\tau=30~ms$, [Orange] Simulation de expansion $\tau=30~ms$ avec $n_p=56.6~\mu m^{-1}$, T=556.975~nK, $\mu=556.975~nK$, $x_0=19.6~\mu m$, et $\ell=24.78~\mu m$ et [Vert] Distribution de rapidité en x=0 pour T=556.975~nK, $\mu=556.975~nK$

(b) [Bleu] Donnée de Selection après expansion $\tau=1~ms$, [Vert] Simulation de l'expansion pour $\tau=1~ms$, avec $x_0=19.6~\mu m$ et $\ell=24.78~\mu m$ et (T=556.975~nK) et $\mu=556.975~nK, n_p=56.6~\mu m^{-1})=64.554~nK)$ et [Orange] Données de l'expansion pour $\tau=30~ms$

(d) [Bleu] Déviation de du nombre d'atome simulé par raport au nombre d'atome simulé à $\tau=0~ms$, [Orange] Déviation de du nombre d'atome simulé par rapport au nombre d'atome mesuré dans les donné à $\tau=1~ms$, [Vert] Déviation de du nombre d'atome simulé par raport au nombre d'atome mesuré sur les donné à $\tau=30~ms$ et [Rouge] Déviation de du nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesurer sur les donné à $\tau=30~ms$ rapport au nombre d'atome mesurer sur les donné à $\tau=1~ms$

2 Simulation GHD

- 2.1 Méthode 1 (Ajustement de la déformation du bord ($\mu(T,n_p=56.6~\mu m^{-1}),T,x_0=19.6~\mu m,\ell=24.78~\mu m$) :
 - A) Ajustement de la déformation du bord (3a) :
 - a) On extrais la temperature T en faisant un ajustement sur le profil de bord
 - b) Le potentiel chimique est une fonction de la temperature T et la densité $n_p: \mu(T, n_p = 56.6 \ \mu m^{-1})$ tel que $\int \rho_{[\nu_{\{T,\mu\}}]}(\theta) d\theta = n_p$
 - L'ajustement donne $T = 556.975 \ nK$ et $\mu(T = 556.975 \ nK, n_p = 56.6 \ \mu m^{-1}) = 64.554 \ nK$
 - B) Selection et Expansion
 - a) Selection $[x_0 \ell/2, x_0 + \ell/2]$
 - $x_0 = 19.6 \ \mu m \ (\text{trouv\'e avec un ajustement gaussien sur "expansion 1D } \tau = 1 \ ms" \ (1) \ \text{ou} \ (3a) \ \text{ou} \ (3b) \)$
 - o $\ell=24.78~\mu m$ (trouvé en faisant la différence des positions des extremums du gradient des données "expansion 1D $\tau=1~ms$ " (1) ou (3a) ou (3b))
 - b) Expansion
 - On considère que la tranche $[x_0 \ell/2, x_0 + \ell/2]$ n'est pas homogène
 - o Après Simulation GHD on obtiens les profil orange de 3c
 - Les simulations GHD Conservent le nombre d'atoms à 3% près (blue de 3d)
 - Les simulations GHD de l'expansion commencent avec une erreur 10% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion à $\tau = 1 \ ms$ (Premier point de la courbe orange de 3d)
 - Les simulations GHD de l'expansion se terminent avec une erreur 13% en nombre d'atome par rapport au nombre d'atome mesuré les données d'expansion $\tau = 30~ms$ (Dernier point de la courbe verte de 3d)
 - Les mesures sur les données du nombre d'atomes lors de l'expansion montrent une perte de 17% du nombre d'atomes (rouge 3d)

FIGURE 4 – Données du 24-04-2024 et simulation avec ajustement sur déformation du bord , où $\mu = f(T, n_p)$ avec n_p mesuré sur donné "déformation bord $\tau = 1ms$

FIGURE 5 – Données du 24-04-2024 et simulation avec ajustement sur expension du bord , où $\mu=f(T,n_p)$ avec n_p mesuré sur donné "déformation bord $\tau=1ms$