Model ensembles

Tim Lawson

November 16, 2023

Model ensembles

- ▶ Learn multiple models from versions of the data
 - Resample, e.g., bagging, subspace sampling
 - ► Reweight, e.g., boosting
- Combine the outputs of the models
 - Average scores or probabilities
 - Majority vote

Definition

- $ightharpoonup \vec{x_i} \in \mathbb{R}^n$ is an instance
- $ightharpoonup ec{y}_i \in \{0,1\}^k$ is a label (one-hot vector)
- $lackbox{} f^{(j)}: \mathbb{R}^n
 ightarrow \{0,1\}^k$ is a model
- $ightharpoonup ec{\hat{y}}_i^{(j)} = f^{(j)}(ec{x}_i) \in \{0,1\}^k$ is a prediction (one-hot vector)
- lacksquare $w_i^{(j)} \in \mathbb{R}, w_i^{(0)} = rac{1}{n}, \sum_{i=1}^n w_i^{(j)} = 1$ is an instance weight
- ullet $\epsilon^{(j)} = \sum_{i: \vec{y}_i^{(j)}
 eq \vec{y}_i} w_i^{(j)} \in \mathbb{R}$ is the weighted error of model $f^{(j)}$
- $lackbox{} lpha^{(j)} = f_lpha(\epsilon^{(j)}) \in \mathbb{R}$ is the weight of model $f^{(j)}$
- $lackbrack w_i^{(j+1)} = f_w(w_i^{(j)}, ec{y_i}, \ ec{\hat{y}}_i^{(j)}, \epsilon^{(j)})$ is the updated instance weight
- $ightharpoonup ec{\hat{y}_i} = \sum_{j=1}^J lpha^{(j)} f^{(j)}(x_i) \in \{0,1\}^k$ is the ensemble model prediction

Boosting

Questions

- ▶ What should the weights of the models f_{α} be?
- \blacktriangleright What should the weight updates f_w be?

Assume that the weight updates f_w are:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z^{(j)}} \times \begin{cases} e^{-\alpha^{(j)}} & \text{if } \vec{\hat{y}}_i^{(j)} = \vec{y}_i \\ e^{\alpha^{(j)}} & \text{otherwise} \end{cases}$$

This can be simplified with:

$$\delta(\vec{y_i}, \, \vec{\hat{y}}_i^{(j)}) = \begin{cases} 1 & \text{if } \vec{\hat{y}}_i^{(j)} = \vec{y_i} \\ -1 & \text{otherwise} \end{cases}$$

$$w_i^{(j+1)} = w_i^{(j)} \frac{\exp(-\alpha^{(j)} \delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(j)}))}{Z^{(j)}}$$

Boosting

Model weights derivation

Each update is multiplicative:

$$w_i^{(J)} = w_i^{(0)} \prod_{j=1}^{J} \frac{\exp(-\alpha^{(j)} \delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(j)}))}{Z^{(j)}} = \frac{1}{n} \frac{\exp(-\delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(j)}))}{\prod_{j=1}^{J} Z^{(j)}}$$

Each set of instance weights sums to 1:

$$1 = \sum_{i=1}^{n} w_i^{(j)} = \sum_{i=1}^{n} \frac{1}{n} \frac{\exp(-\delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(j)}))}{\prod_{j=1}^{J} Z^{(j)}}$$

$$\prod_{j=1}^{J} Z^{(j)} = \frac{1}{n} \sum_{i=1}^{n} \exp(-\delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(j)}))$$

 $\exp(-\delta(\vec{y_i}, \hat{\vec{y}_i^{(j)}})) \ge 1$ if x_i is misclassified by the ensemble, so $\prod_{j=1}^J Z^{(j)}$ is an upper bound on the ensemble error.

 $\prod_{j=1}^{J} Z^{(j)}$ could be minimized by minimizing the model error $(n)Z^{(j)}$:

$$nZ^{(j)} = \sum_{i=1}^{n} w_i^{(j)} \exp(-\alpha^{(j)} \delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(j)}))$$

By the definitions of $\epsilon^{(j)}$ and $\delta(\vec{y_i}, \, \hat{\vec{y}}_i^{(j)})$:

$$\mathit{nZ}^{(j)} = \epsilon^{(j)} \exp(\alpha^{(j)}) + (1 - \epsilon^{(j)}) \exp(-\alpha^{(j)})$$

Therefore, $Z^{(j)}$ is minimized when:

$$\frac{\partial Z^{(j)}}{\partial \alpha^{(j)}} = \epsilon^{(j)} \exp(\alpha^{(j)}) - (1 - \epsilon^{(j)}) \exp(-\alpha^{(j)}) = 0$$
$$\exp(2\alpha^{(j)}) = \frac{1 - \epsilon^{(j)}}{\epsilon^{(j)}}$$

That is:

$$lpha^{(j)} = rac{1}{2} \ln \left(rac{1 - \epsilon^{(j)}}{\epsilon^{(j)}}
ight), \ Z^{(j)} = 2 \sqrt{\epsilon^{(j)} (1 - \epsilon^{(j)})}$$