Digital Logic and Design (EEE-241) Lecture 2

Dr. M. G. Abbas Malik abbas.malik@ciitlahore.edu.pk

Picture Source: http://www.vanoast.com/old-portfolio/digital-design-logo-one%5Ba%5D.jpg

Previous lecture

- Digital Vs. Analog
- Digital System example digital computer
- Discrete values and binary values
- Number system (positional and non-positional)
- Binary number system
 - Conversion, addition, subtraction, multiplication, division.
- Octal number system (conversion)
- Hexadecimal number system (conversion)

- Complements are used to simplify the subtraction operation and for logical manipulation
- Consider r is the base of a number system, then there exist two types of complement
 - 1. r's complement
 - 2. (r-1)'s complement

Example

- For binary number system, there are two complements 2's (r) complement and 1's (r-1) complement
- For decimal number system, these are 10's and 9's complements.

r's complements

r is the base of our number system.

X is a number in base r that has n digits in its integral part.

The r's complement of X is defined as $r^n - X$ for $X \neq 0$ and 0 for X = 0.

Example 1: Decimal numbers

Integral Fractional
Part Part
Dr. M. G. Abbas Malik – COMSATS Lahore

Decimal Number:

10's (r's) complement

 $= 10^4 - 1234.765$

= 8765.235

r's complements

Example 1: Decimal numbers (cont...)

- The 10's complement of $(0.3456)_{10}$ is $10^0 0.3456 = 1 0.3456 = 0.6544$
- 10's complement can formed by leaving all least significant ZEROS unchanged, subtracting the first non-zero least significant digit from 10, and then subtracting all other higher significant digits from 9.

r's complements

Example 2: Binary numbers

- The 2's (r's) complement of $(101100)_2$ is $(2^6)_{10} (101100)_2 = (1000000 101100)_2$ = $(010100)_2$
- The 2's complement of $(0.0110)_2$ is $(2^0)_{10} (0.0110)_2 = (1 0.0110)_2 = 0.1010$
- The 2's complement can be computed by leaving all least significant ZEROS and first non-zero digit unchanged, and then replacing 1's by 0's and 0's by 1's in all other higher significant digits.

(r-1)'s complements

r is the base of our number system.

X is a number in base r that has n digits in its integral part and a fractional part with m digits.

The (r-1)'s complement of X is defined as $r^n - r^{-m} - X$

Example 1: Decimal numbers

Decimal Number:

9's (r-1's) complement

 $= 10^4 - 10^{-3} - 1234.765$

= 10000 - 0.001 - 1234.765

= 8765.234

(r-1)'s complements

Example 1: Decimal numbers (cont...)

- The 9's complement of $(0.3456)_{10}$ is $10^{0} 10^{-4} 0.3456 = 1 0.0001 0.3456 = 0.6543$
- 9's complement of a decimal number is formed by subtracting every digit by 9.

(r-1)'s complements

Example 2: Binary numbers

- The 1's complement of $(101100)_2$ is $(2^6 2^0)_{10} (101100)_2 = (1000000 1 101100)_2$ = $(111111 - 101100)_2 = (010011)_2$
- The 1's complement of $(0.0110)_2$ is $(2^0 2^{-4})_{10} (0.0110)_2 = (1 0.0001 0.0110)_2$ = $(0.1111 - 0.0110)_2 = (0.1001)_2$
- The 1's complement is formed by replacing 1's by 0's and 0's by 1's.

Conversions

r's complement to (r-1)'s complement

r's complement - r-m

• (r-1)'s complement to r's complement

(r-1)'s complement + r^{-m}

Subtraction

General Subtraction

246 ← Minuend

- 138 ← Subtrahend

----108

- In general, when the minuend digit is smaller than the corresponding subtrahend digit, we borrow 1 from the higher significant position.
- This is easier when people perform subtraction with paper and pencil.
- This method is less efficient in digital systems.

With r's Complement

Suppose we have two positive number X and Y, both of base r.

Subtraction X – Y may be done as follows:

- 1. Add the minuend X to the r's compliment of the subtrahend Y.
- Inspect the result obtained in step 1 for an end carry
 - a) If an end carry occurs, discard the end carry.
 - b) If an end carry does not occur, take the r's complement of the number obtained in step 1 and place a negative sign in front.

With r's Complement

Example 1 – Decimal numbers

X = 72532

72532

Y = 3250

10' complement of 03250 = +96750

End carry \rightarrow 1

69282

Answer of X - Y = 69282

With r's Complement

Example 1 – Decimal numbers

X = 3250

03250

Y = 72532

10' complement of 72532 = + 27468

No end carry

30718

Answer of X - Y = -10's complement of 30718 = -69282

Number of digits in X and Y must be same. Before taking the r's complement of Subtrahend (Y), if Y has less number of digits, then we add ZEROS to the left of the number and take r's complement considering newly added ZEROS as part of the number.

With r's Complement

Example 2 – Binary numbers

X = 1010100

1010100

Y = 100100

2's complement of 0100100 = + 1011100

End carry \rightarrow 1 0110000

Answer of X - Y = 110000

With r's Complement

Example 2 – Binary numbers

X = 100100

0100100

Y = 1010100

2's complement of 1010100 = + 0101100

No end carry

1010000

Answer = -2's complement of 1010000 = -110000

With (r-1)'s complement

Suppose we have two positive number X and Y, both of base r.

Subtraction X – Y may be done as follows:

- 1. Add the minuend X to the (r-1)'s compliment of the subtrahend Y.
- Inspect the result obtained in step 1 for an end carry
 - a) If an end carry occurs, add 1 to the least significant digit (end around carry).
 - b) If an end carry does not occur, take the (r-1)'s complement of the number obtained in step 1 and place a negative sign in front.

With (r-1)'s Complement

Example 1 – Decimal numbers

$$X = 72532$$

72532

$$Y = 3250$$

9's complement of
$$03250 = + 96749$$

$$03250 =$$

Answer of X - Y = 69282

With (r-1)'s Complement

Example 1 – Decimal numbers

X = 3250

03250

Y = 72532

9's complement of 72532 = + 27467

No end carry

30717

Answer of X - Y = -9's complement of 30718 = -69282

Number of digits in X and Y must be same. Before taking the r's complement of Subtrahend (Y), if Y has less number of digits, then we add ZEROS to the left of the number and take r's complement considering newly added ZEROS as part of the number.

With (r-1)'s Complement

Example 2 – Binary numbers

X = 1010100

1010100

Y = 100100

1' complement of 0100100 = + 1011011

End carry → 1 0101111

Answer of X - Y = 110000

With (r-1)'s Complement

Example 2 – Binary numbers

X = 100100

0100100

Y = 1010100

1' complement of 1010100 = + 0101011

No end carry

1001111

Answer = -1's complement of 1010000 = -110000

Complements in Digital Systems

2's complement

- 1. Harder to implement
- Subtraction take only one arithmetic addition
- Possesses only one arithmetic 0
- Used only in conjunction with arithmetic applications

1's complement

- Easier to implement
- 2. Subtraction takes two arithmetic additions
- 3. Possesses two arithmetic zeros: one with all 0s and one with all 1s
- Useful in logical manipulation: change of 1's to 0's - inversion

- Electronic digital systems use signals that have two distinct values and Circuit elements that have two stable states.
- A binary number of n-digits may be represented by n binary circuit elements, each having an output signal equivalent to 1 or 0.
- Digital system not only manipulate binary numbers, but also many other discrete elements of information.
 - Colors
 - Decimal digits
 - Alphabets (English, French, Urdu, Hindi, Punjabi, etc.)

- A bit is a binary digit.
- To represent a group of 2ⁿ distinct discrete elements in a binary code requires a minimum of n bits.

Example 1: Color Codes

- Consider we have four colors: RED, GREEN, BLACK and BLUE
- We want to assign a binary code to each color, so that we can represent these information in our digital system

Example 1: Color Codes (cont...)

- We have total $4 = 2^2$ distinct discrete elements.
- It means we need minimum 2 bits to represent these four colors.

Color	Binary Code
Black	00
Blue	01
Green	10
Red	11

Example 2: Binary Coded Decimal (BCD)

• Binary code for decimal digits require a minimum 4 bits as $2^4 = 16 > 10 > 8 = 2^3$

Bit required	Number of Discrete Elements
1	$2^0 \le discrete \ elements \le 2^1$
2	$2^1 \le discrete \ elements \le 2^2$
3	$2^2 \le discrete elements \le 2^3$
4	$2^3 \le discrete elements \le 2^4$
5	$2^4 \le discrete \ elements \le 2^5$
8	$2^7 \le \text{discrete elements} \le 256 = 2^8$

Example 2: Binary Coded Decimal (BCD)

• Binary code for decimal digits require a minimum 4 bits as $2^4 = 16 > 10 > 8 = 2^3$

Decimal Digit	BCD	Decimal Digit	BCD
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

Home Work: Read & Understand the other decimal codes given in table 1-2 and binary codes: Error-Detection, Reflected & Alphanumeric Codes (**Section1-6**)

Difference between Binary Codes and Binary Conversion

 When we convert a decimal number in binary, it is a sequence of 1's and 0's similar to binary codes, but they are different.

Binary Conversion

Conversion of decimal number 24 in binary is $(11000)_2$

Binary Codes

Binary code of decimal number 24 in BCS is $(0010\ 0100)_2$

Binary Storage and Registers

- Binary Cell is a device that possesses two stable states and is capable of storing one bit of information.
 - In Electronics, it is a flip-flop circuit, ferrite core use in memory
 - In a Punch-Card, positions punched with a hole or not punched.
- Binary cells are used to store the digital (binary) information
- Register is a group of binary cells

Binary Storage and Registers

- 1 bit = 1 binary cell
- 1 byte = 8 bits
- Register size depends on the computer system architecture.
 - 1. 8 bits architecture register size is 8 bits
 - 2. 16 bits architecture register size is 16 bits
 - 3. 32 bits architecture register size is 32 bits
 - 4. 64 bits architecture (latest) register size is 64 bits
- A digital computer is characterized by its registers.
- Assignment # 2 (available on course website)

Registers

- A register with n binary cells can stores any discrete quantity of information that contains n bits.
- This is a 16-cells register

 If contains the BCD information then it represent the decimal number 8369

Register

- Memory (RAM) is merely a collection of thousands of registers.
- The processor unit composed of various registers that stores operands on which operations are performed.
 - For example for the addition of two numbers, first number (operand) is stored in the register A and the second number (operand) is stored in the register B and their sum after calculations is stored in the register C
- The control unit uses registers to keep track of various computer sequences
- Every input and output device must have at least one register to store the information transferred to or from the device

Register Transfer

Dr. M. G. Abbas Malik - COMSATS Lahore

Register Transfer

Dr. M. G. Abbas Malik - COMSATS Lahore

Logic

- NOT
- AND
- OR

Logic Gates

Name	Graphic Symbol	Algebraic Function	Truth Table
AND	A—————————————————————————————————————	F = A + B or F = AB	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	A — F	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	A—————————————————————————————————————	F = Ā or F = A'	A F 0 1 1 0
NAND	A—————————————————————————————————————	F = (AB)	ABF 001 011 101 110
NOR	A—————————————————————————————————————	$F = (\overline{A + B})$	A B F 0 0 1 0 1 0 1 0 0 1 1 0

Image Source: http://images.wikia.com/bmet/images/a/ab/Logic_gate.gif