

DÉPARTEMENT MATHEMATIQUES

Année Universitaire: 2018/2019

Examen d'Algèbre 2

Session de Rattrapage, Janvier 2019 Durée 1H30

Pr. Nouh IZEM

NB: (Barème)

Ex1:(1+1+1+[1+1]=5pts)

Ex2:(1+2+2+2=7pts)

Ex3:(1+2+1+1+2+1=8pts)

Exercice 1

Soient $E=\{(x,y,z)\in\mathbb{R}^3/\ x+y+z=0\}$ et $F=\{(x,y,z)\in\mathbb{R}^3/\ x+y+z=0\ \text{et}\ x-y-z=0\}$ deux sous-ensembles de \mathbb{R}^3 . Supposons que F est un sous espaces vectoriel de \mathbb{R}^3

- + \checkmark 1 Montrer que E est un sous espaces vectoriel de \mathbb{R}^3 .
 - Vérifier que $\{(2,0,1),(-1,1,0)\}$ est une famille génératrice de E. Est-elle base de E?
 - $\overline{3}$ Trouver un système générateur de F.
 - $\boxed{4}$ Soient $u_1=(1,-1,1,2)$ et $u_2=(-1,2,3,1)$ des vecteurs de \mathbb{R}^4 .
 - \mathcal{L} (a) Déterminer des réels x, y pour que le vecteur V=(-2,x,y,3) appartienne au s.e.v. engendré dans \mathbb{R}^4 par le système $\{u_1,u_2\}$?
 - \checkmark (b) Former l'équation (ou un système d'équations) cartésienne(s) du sous espaces vectoriel $G = vect(\{u_1, u_2\})$.

Exercice 2

Soient $P, B \in \mathbb{R}[X]$ définis par:

$$P(X) = X^6 + X^5 + 3X^4 + 2X^3 + 3X^2 + X + 1, \quad B(X) = X^3 + X^2 + X + 1$$

- \mathcal{L} Montrer que i est une racine multiple de P.
- \mathcal{L} En remarquant que P est un polynôme pair, donner toutes les racines de P ainsi que leur multiplicité.
- \mathcal{L} 3 Factoriser P dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$
- Pour tout entier naturel n, déterminer le reste de la division euclidienne de $A(X) = X^n$ par B (Indication: Utiliser le thèorème de la division Euclidienne puis le fait que -1, i et -i sont des racines de B)

Exercice 3

Soient F et G les fractions rationnelles définies par:

$$F(X) = \frac{6X - 2}{X^4 - 1}, \quad G(X) = \frac{X^3 + 1}{(X^2 + X + 1)(X^2 + 1)^2}, \quad H(X) = \frac{20X + 19}{(X^2 + X + 1)^{2019}}$$

- $V + \mathcal{L}$ 1 Ecrire la forme de la décomposition en éléments simples de F dans $\mathbb{R}(X)$.
- \mathcal{L} 2 Calculer les coefficients de la décomposition de F dans $\mathbb{C}(X)$. (Indication: $X^4 1 = (X^2 1)(X^2 + 1)$)
 - \star 1 3 En déduire sa décomposition dans $\mathbb{R}(X)$.
 - \mathcal{J} Donner la forme de la décomposition en éléments simples de G dans $\mathbb{R}(X)$.
 - 2 5 Calculer les coefficients de la décomposition de G dans $\mathbb{R}(X)$.
 - \downarrow 6 Donner la décomposition en éléments simples de H dans $\mathbb{R}(X)$.