Classification

Classification Introduction

- Credit Scoring
 - o Input: income, savings, profession, age and past financial history
 - o Output: accept or refuse
- Medical Diagnosis
 - o Input: current symptoms, age, gender and past medical history
 - Output: type of diseases
- Handwritten Character Recognition
- Face Recognition
 - o Input: image of a face
 - Output: person

Example Application

Example Application, Continued

Pokémon games (*not* Pokémon cards or Pokémon Go)

• **HP**: hit points or health. Defines how much damage a Pokémon can withstand before fainting

35

• Attack: the base modifier for normal attacks (e.g., Scratch, Punch)

55

• **Defense**: the base damage resistance against normal attacks

40

• **SP Attack**: the base modifier for special attacks (e.g., fire blast, bubble beam)

50

• **SP Def**: the base damage resistance against special attacks

50

• Speed: determines which Pokémon attacks first during each round

90

Can we predict the "type" of Pokémon based on the information?

How to do Classification

Training Data for Classification

Classification as Regression?

Binary classification as example

Training: Class 1 means the target is 1; Class 2 means the target is -1

Testing: closer to $1 \rightarrow$ class 1; closer to $-1 \rightarrow$ class 2

Using Regression for Classification

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{ heta}(x) \geq 0.5$$
 , predict "y = 1"

If
$$h_{ heta}(x) < 0.5$$
 , predict "y = 0"

Using Regression for Classification? Continued

Multiple Classes:

Class 1 means the target is 1

Class 2 means the target is 2

Class 3 means the target is 3 —problematic

Penalize to the examples that are "too correct".

(Bishop, 2006, p 186)

Ideal Alternatives

• Loss function:

$$L(f) = \sum_{n} \delta(f(x^n) \neq \hat{y}^n)$$

The number of times f get incorrect results on training data.

• Find the best function:

Gradient Descent

