Mathematics GR6657 Algebraic Number Theory Assignment # 6

Benjamin Church

October 25, 2018

1

Theorem 1.1. Let L/K be galois with group G = Gal(L/K). Given $\alpha \in K^{\times}$ write the Frobenius $s_{\alpha} = (\alpha, L/K) \in G^{ab}$. Let $\chi \in \text{Hom}(G, \mathbb{Q}/\mathbb{Z}) = H^2(G, \mathbb{Z})$ be a continuous character of degree 1 and let $\delta_{\chi} \in H^2(G, \mathbb{Z})$ be the image of χ by the coboundary map $\delta : H^1(G, \mathbb{Q}/\mathbb{Z}) \to H^2(G, \mathbb{Z})$. Let $\bar{\alpha} \in K^{\times}/N_{L/K}(L^{\times}) = \hat{H}^0(G, L^{\times})$ be the image of α . Then,

$$inv_K(\bar{\alpha}\smile\delta\chi)=\chi(s_\alpha)$$

The proof of this theorem and some associated lemmata will require the following properties of the cup product:

- 1. Associativity: $x \smile (y \smile z) = (x \smile y) \smile z$.
- 2. For $x \in H^r(G, M)$ and $y \in H^s(G, N)$ we have $x \smile y = (-1)^{rs}(y \smile x)$.
- 3. Given a short exact sequence of G-modules, $1 \to A \to B \to C \to 1$ and N a flat module consider the short exact sequence,

$$1 \longrightarrow A \otimes N \longrightarrow B \otimes N \longrightarrow C \otimes N \longrightarrow 1$$

Each short exact sequence gives rise to a very long exact sequence of Tate cohomology. Let $\delta: \hat{H}^r(G,C) \to \hat{H}^{r+1}(G,A)$ and $\delta': \hat{H}^r(G,C\otimes N) \to \hat{H}^{r+1}(G,A\otimes N)$ be the boundary maps for these two very long exact sequences. Then, for $x\in \hat{H}^r(G,C)$ and $y\in \hat{H}^s(G,N)$, the cup product satisfies,

$$\delta(x) \smile y = \delta'(x \smile y)$$

4. The inflation map commutes with cup products,

$$\inf(x \smile y) = \inf(x) \smile \inf(y)$$

Now we need to prove three lemmata from the appendix to Serre's book. I will state the first two and prove lemma 3.

Remark 1.2. Given $a \in A^G$ I will use the notation $a^0 \in \hat{H}^0(G, A) = A^G/Nm_G(A)$ for its image. Furthermore, for aA if $Nm_G(a) = 0$ then write $a_0 \in \hat{H}^{-1}(G, A)$ for its image.

Lemma 1.3. Given $a \in A^G$ let $f_a : \mathbb{Z} \to A$ be the unique G-morphis such that $f_a(1) = a$. If $x \in \hat{H}^n(G, B)$ then,

$$a^0 \smile x \in \hat{H}^n(G, A \otimes B)$$

is the image of x under the map $f_a \otimes I : \mathbb{Z} \otimes B \to A \otimes B$.

Lemma 1.4. Given $a \in A$ such that $Nm_G(a) = 0$ and f a 1-cocycle of G to B, take $\bar{f} \in H^1(G, B)$. Then in $\hat{H}^1(G, A \otimes B)$ we have,

$$a_0 \smile \bar{f} = c^0$$

where,

$$c = -\sum_{t \in G} ta \otimes f(t)$$

Lemma 1.5. Let B be a G-module and $f: G \to B^1$ a 1-cocycle with image $\bar{f} \in H^1(G, B)$. Then for each $s \in G$ we have $\bar{s} \smile \bar{f} = \overline{f(s)_0}$ in $\hat{H}^{-1}(G, B)$.

Proof. First, some notation. Let I_G be the augmentation ideal and for any $s \in G$ let $i_s = s - 1 \in I_G$. Note that f is a 1-cocycle and therefore a crossed homomorphism $f(\sigma \tau) = f(\sigma) + \sigma \cdot f(\tau)$. Thus, consider,

$$\sum_{\sigma \in G} \sigma \cdot f(\tau) = \sum_{\sigma \in G} (f(\sigma \tau) - f(\sigma)) = \sum_{\sigma' \in G} f(\sigma') - \sum_{\sigma \in G} f(\sigma) = 0$$

Thus, $Nm_G f(\tau) = 0$ for any τ so $f(\tau)_0 \in \hat{H}^{-1}(G, B)$ is well-defined. Furthermore, $Nm_G(i_s) = 0$ so $(i_s)_0 \in \hat{H}^{-1}(G, I_G)$ is also well defined. Let $\delta : \hat{H}^{-2}(G, \mathbb{Z}) \to \hat{H}^{-1}(G, I_G)$ be the boundary map induced by the exact sequence,

$$1 \longrightarrow I_G \longrightarrow \mathbb{Z}[G] \longrightarrow \mathbb{Z} \longrightarrow 0$$

However,

$$\hat{H}^{-2}(G,\mathbb{Z}) \cong G^{ab} \cong I_G/I_G^2 \cong \ker(Nm_G)/I_G^2 \cong \hat{H}^{-1}(G,I_G)$$

so δ is an isomorphism and if s, s' lie in the same coset of G^{ab} then $(i_s)_0 = (i_{s'})_0$. Tensoring with B we get a map,

$$\delta': \hat{H}^r(G, \mathbb{Z} \otimes B) \to \hat{H}^r(G, I_G \otimes B)$$

which is also an isomorphism because δ is. First, consider,

$$d'(\bar{s}\smile\bar{f})=i_s\smile f=(i_s)_0\smile f$$

By lemma 1.4,

$$(i_s)_0 \smile f = \left[-\sum_{t \in G} (ti_s) \otimes f(t) \right]^0$$

However, using the fact that $f(ts) = f(t) + t \cdot f(s)$ because f is a crossed homomorphism, we can

rewrite

$$\sum_{t \in G} (ti_s) \otimes f(t) = \sum_{t \in G} (t - ts) \otimes f(t) = \sum_{t \in G} t \otimes f(t) ts \otimes f(t)$$

$$= \sum_{t \in G} t \otimes f(t) - ts \otimes (t(ts) - t \cdot f(s))$$

$$= \sum_{t \in G} t \otimes t (f0 - ts \otimes f(ts) + ts \otimes t \cdot f(s))$$

$$= \sum_{t \in G} t \otimes f(t) - t \otimes f(t) + ts \otimes t \cdot f(s)$$

$$= \sum_{t \in G} ts \otimes t \cdot f(s)$$

where I have reindexed the second sum. Thus,

$$\sum_{t \in G} (ti_s) \otimes f(t) = \sum_{t \in G} ts \otimes t \ cdot f(s)$$

Now we consider how d' acts,

$$d'(f(s)_0) = \left[\sum_{t \in G} (t \otimes t \cdot f(s))\right]^0$$

Comparing these results gives,

$$d'(f(s)_0) - d'(\bar{s} \smile \bar{f}) = \left[\sum_{t \in G} (t \otimes t \cdot f(s)) \sum_{t \in G} ts \otimes t \ cdot f(s) \right]^0$$

$$= \left[\sum_{t \in G} t(s-1) \otimes t \cdot f(s) \right]^0$$

$$= \left[\sum_{t \in G} t \cdot [(s-1) \otimes f(s)] \right]^0$$

$$= [Nm_G[(s-1) \otimes f(s)]]^0 = 0$$

The image of the norm map is zero in $\hat{H}^0(G, I \otimes B)$ because $\hat{H}^0(G, I \otimes B)$ is the cokernel of Nm_G be definition. Therefore, $d'(f(s)_0) = d'(\bar{s} \smile \bar{f})$ proving the claim.

Now, we give the proof of the main theorem.

Proof. Let $u_{L/K}$ be a generator of the cyclic group $\hat{H}^2(G, L^{\times})$. The map $x \mapsto x \smile u_{L/K}$ induces an isomorphism $\hat{H}^{-2}(G, \mathbb{Z}) \to \hat{H}^0(G, L^{\times})$. However, we know that $\hat{H}^{-2}(G, \mathbb{Z}) \cong G^{ab}$ and $(L^{\times})^G = K^{\times}$. Thus,

$$G^{\mathrm{ab}} \cong \hat{H}^{-2}(G, \mathbb{Z}) \cong \hat{H}^{0}(G, L^{\times}) \cong K^{\times}/Nm_{G}(L^{\times})$$

I will denote the inverse of this isomorphism by

$$\theta_{L/K}: K^{\times}/Nm_G(L^{\times}) \xrightarrow{\sim} \hat{H}^{-2}(G, \mathbb{Z})$$

There is an exact sequence of trivial G modules,

$$1 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 1$$

Taking the long exact chomology sequence gives an isomorphism $\delta: \hat{H}^1(G, \mathbb{Q}/\mathbb{Z}) \cong \hat{H}^2(G, \mathbb{Z})$ because $\hat{H}^1(G, \mathbb{Q}) = \hat{H}^2(G, \mathbb{Q}) = 0$. Because these are trivial G-modules, the first cohomology is identified with the set of homs. Thus, we have an isomorphism,

$$\delta: \operatorname{Hom}(G, \mathbb{Q}/\mathbb{Z}) \to \hat{H}^2(G, \mathbb{Z})$$

Take a character $\chi \in HomG\mathbb{Q}/\mathbb{Z}$ and define $s_{\alpha} = \theta_{L/K}(\alpha)$. Then,

$$\alpha \smile u_{L/K} = \alpha$$

where $\alpha \in K^{\times}/Nm_G(L^{\times})$. Furthermore,

$$\alpha \smile \delta(\chi) = (s_{\alpha} \smile u_{L/K}) \smile \delta(\chi)$$

since the grading of these elements in the chomology ring is even, the cup product is commutative and (is always) associative. Thus,

$$\alpha \smile \delta(\chi) = u_{L/K} \smile (s_{\alpha} \smile \delta(\chi)) = u_{L/K} \smile \delta'(s_{\alpha} \smile \chi) = u_{L/K} \smile \delta'(\chi(s_{\alpha}))$$

by Lemma 1.5. If the degree of L/K is [L:K] = n then $\chi(s_{\alpha}) = b/n$ for some $b \in \mathbb{Z}$ and $\delta'(b/n) = b$. thus, $\alpha \smile \delta(\chi) = u_{L/K} \smile b$. Applying the invariant map,

$$inv_{L/K}(\alpha \smile \delta(\chi)) = inv_{L/K}(u_{L/K} \smile b) = b/n = \chi(s_{\alpha})$$

2

Suppose that $K \subset K' \subset L$ is a sequence of p-adic fields with L/K abelian. Let,

$$r_{L/K}: K^{\times} \to Gal(L/K) \quad r_{K'/K}: K^{\times} \to Gal(K'/K)$$

be the reciprocity maps. Take any $a \in K^{\times}$. We need to show that $r_{L/K}(a)|_{K'} = r_{K'/K}(a)$.

I claim that the following diagram commutes:

$$H^{1}(G_{K'/K}, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\delta} H^{2}(G_{K'/K}, \mathbb{Z}) \xrightarrow{\bar{\alpha} \smile} H^{2}(G_{K'/K}, (K')^{\times}) \xrightarrow{inv_{K'/K}} \mathbb{Q}/\mathbb{Z}$$

$$\downarrow \inf \qquad \qquad \downarrow \inf \qquad \qquad \downarrow \inf \qquad \qquad \downarrow id$$

$$H^{1}(G_{L/K}, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\delta} H^{2}(G_{L/K}, \mathbb{Z}) \xrightarrow{\inf \bar{\alpha} \smile} H^{2}(G_{L/K}, (K')^{\times}) \xrightarrow{inv_{L/K}} \mathbb{Q}/\mathbb{Z}$$

To show this we use the definition of the invariant map and the fact that the inflation map commutes with cup products. Take any $\chi \in \text{Hom}\left(G_{K'/K}, \mathbb{Q}/\mathbb{Z}\right)$ and its image $\chi' = \inf \chi$ under the inflation map. Using the theorem in problem 1, for any $\alpha \in K^{\times}$,

$$\chi(r_{K'/K}(\alpha)) = inv_{K'/K}(\bar{\alpha} \smile \delta\chi)$$

Using the fact that the above diagram commutes,

$$inv_{K'/K}(\bar{\alpha}\smile\delta\chi)=inv_{L/K}(\inf\bar{\alpha}\smile\delta\inf\chi)=inv_{L/K}(\inf\bar{\alpha}\smile\delta\chi')=\chi'(r_{L/K}(\alpha))=\chi(r_{L/K}(\alpha)|_{K'})$$

Thus, it suffices to show that if all characters agree on g_1 and g_2 then $g_1 = g_2$. That is,

$$(\forall \chi \in \text{Hom}(G_{K'/K}, \mathbb{Q}/\mathbb{Z}) : \chi(g_1) = \chi(g_2)) \implies g_1 = g_2$$

Suppose that $\chi(g_1) = \chi(g_2)$ and thus $\chi(g_1g_2^{-1}) = 1$ for each character χ . However, $G_{K'/K}$ is a locally compact hausdorff topological group and thus the canonical map $ev_G: G \to \hat{G}$ is an isomorphism. However, $ev_G(g_1g_2^{-1})(\chi) = \chi(g_1g_2^{-1}) = 1$ and thus $g_1g_2 - 1 = 1$ since ev_G is an injection. Since, all characters agree on $r_{K'/K}(\alpha)$ and $r_{L/K}(\alpha)|_{K'}$ we have the desired result that,

$$r_{L/K}(\alpha)|_{K'} = r_{K'/K}(\alpha)$$

3

There is a one-to-one correspondence between index two subgroups and surjective homomorphisms to $\{\pm 1\}$. To see this, suppose $\phi: G \to \{\pm 1\}$ is a surjective homomorphism then $G/\ker \phi \cong \{\pm 1\}$ so $\ker \phi$ has index 2. Conversely, suppose that [G:H]=2 then H is normal so $G/H\cong \{\pm 1\}$ and thus $\pi: G \to G/H$ is a surjective homomorphism to $\{\pm 1\}$ with kernel H. We will use this fact to find all the index 2 open subgroups of $C_{\mathbb{Q}} = \mathbb{I}_{\mathbb{Q}}/\mathbb{Q}^{\times}$.

We can write the idele class group as,

$$C_{\mathbb{Q}} = \frac{\mathbb{I}_{\mathbb{Q}}}{\mathbb{Q}^{\times}} = \mathbb{R}_{>0}^{\times} \times \prod_{p} \mathbb{Z}_{p}^{\times}$$

For each odd prime p we can take the reciprocity map,

$$f_p: C_{\mathbb{Q}} \to \mathbb{Z}_p^{\times} \xrightarrow{\pi} \mathbb{F}_p^{\times} \xrightarrow{\left(\frac{-}{p}\right)} \{\pm 1\}$$

Furthermore, for p=2 we need to consider the elements modulo 8. Since $(\mathbb{Z}/8\mathbb{Z})^{\times} \cong (\mathbb{Z}/2\mathbb{Z})^3$ we can take three different nontrivial homomorphisms. For odd δ ,

$$f_{2,\delta}(x) = \begin{cases} 1 & x \equiv 1, \delta \pmod{8} \\ -1 & \text{else} \end{cases}$$

These are clearly homomorphisms $\mathbb{Z}_2^{\times} \to \{\pm 1\}$. For $p \neq 2$ any quadratic residue lifts to a square in \mathbb{Z}_p^{\times} by Hensel's Lemma. Furthermore any two nonresidues always differ by a quadratic residue so any homomorphism $f: \mathbb{Z}_p^{\times} \to \{\pm 1\}$ must take all residues to 1 and must be constant on the set of nonresidues. However, this does not hold for p=2 which is why we must consider the elements modulo 8 which determines the class of lifts in \mathbb{Z}_2^{\times} since only elements 1 modulo 8 lift to squares in \mathbb{Z}_2^{\times} . Furthermore, if S is a finite set of primes then,

$$f_S = \prod_{p \in S} f_p : C_{\mathbb{Q}} \to \{\pm 1\}$$

Clearly these maps are surjective so their kernels are index 2 subgroups. The prime 2 needs special attention in S. Take a quadratic extension K/\mathbb{Q} and consider the global Artin map which extends to each local Artin map via,

$$\mathbb{Q}_{v}^{\times} \xrightarrow{\phi_{v}} Gal(K_{v}/\mathbb{Q}_{p})
\downarrow \qquad \qquad \downarrow
\mathbb{I}_{\mathbb{Q}}/\mathbb{Q}^{\times} \xrightarrow{\phi_{K}} Gal(K/\mathbb{Q})$$

By properties of the local Artin map, if v is unramified then ϕ_v takes any unit $u_v \in \mathbb{Z}_v^{\times}$ to the identity. By the global existence theorem, any open index 2 subgroup of $C_{\mathbb{Q}}$ the image under the norm map of some quadratic field K/\mathbb{Q} . Thus, each f_S must have a norm subgroup as its kernel so it factors through the global Artin map for K/\mathbb{Q} . However, for any prime p we know that \mathbb{Z}_p^{\times} is not contained in the kernel of f_S if and only if $p \in S$. Thus, S must be the set of ramified primes in K/\mathbb{Q} . However, we have classified all quadratic extensions of \mathbb{Q} which are of the form $K = \mathbb{Q}(\sqrt{\pm p_1 \cdots p_r})$ for distinct primes p_1, \ldots, p_r which has discriminant,

$$\Delta_K = \begin{cases} \pm p_1 \cdots p_r & \pm p_1 \cdots p_r \equiv 1 \pmod{4} \\ \pm 4p_1 \cdots p_r & \text{else} \end{cases}$$

Therefore, the set of ramified primes in K/\mathbb{Q} is, p_1, \ldots, p_r if $\pm p_1 \cdots p_r \equiv 1 \pmod{4}$ and otherwise, $2, p_1, \ldots, p_r$ when all these primes are odd. For $K = \mathbb{Q}(\sqrt{d})$ let $\alpha \equiv d \pmod{8}$ be the reduction modulo 8. Given a set of odd primes p_1, \ldots, p_r , I claim that Artin reciprocity gives the following correspondence,

$$S = \{p_1, \dots, p_r\} \iff K = \mathbb{Q}(\sqrt{\pm p_1 \dots p_r}) \quad \text{for} \quad \alpha = 1, 5$$

$$S = \{(2, 5), p_1, \dots, p_r\} \iff K = \mathbb{Q}(\sqrt{\pm p_1 \dots p_r}) \quad \text{for} \quad \alpha = 3, 7$$

$$S = \{(2, 1 - \alpha), p_1, \dots, p_r\} \iff K = \mathbb{Q}(\sqrt{\pm 2p_1 \dots p_r})$$

We have already shown that S must contain exactly the ramified primes of K which are exactly the prime factors of Δ_K modulo annoyances at p=2. In the first case, $d \equiv 1 \pmod{4}$ so 2 is unramified and we have $S = \{p_1, \ldots, p_r\}$ as required. To establish which residues we will need in \mathbb{Z}_2^{\times} we need to check the norm map explicitly. Using just elements in \mathbb{Z}_2^{\times} , the image of the norm map for the field $K = \mathbb{Q}(\sqrt{d})$ will contain the residues,

$$x^2 - dy^2 \equiv x^2 - \alpha y^2 \pmod{8}$$

In the second case, it is easy to see that 5 is in the image of $x^2 - \alpha y^2$ modulo 8. However, 2 is ramified so the kernel must be nontrivial and thus correspond to the map $f_{2,5}$. Finally, in the last case, α is even but not a multiple of 4 so for (x, y) = (1, 1),

$$x^2 - \alpha y^2 \equiv 1 - \alpha \pmod{8}$$

and $1 - \alpha$ is an odd residue not equal to one modulo 8 because $8 \not\mid \alpha$. Therefore, the norm map has elements with residue $1 - \alpha$ in its image and thus it corresponds to the kernel of $f_{2,1-\alpha}$.

Since we have classified all quadratic extensions K/\mathbb{Q} by Artin reciprocity and the global existence theorem, we have also found all open subgroups of index 2 of $C_{\mathbb{Q}}$. In summary, the open index 2 subgroups of $C_{\mathbb{Q}}$ are exactly, ker f_S for any set of primes (remembering that 2 comes with three options) with the correspondence between the set S and the associated quadratic field whose norm image is ker f_S .

First, let K be a number field such that K/\mathbb{Q} is a finite Galois extension with Galois group $G = Gal(K/\mathbb{Q})$. We will restrict to the case in which K is a quadratic field. However, first we will consider some general background results.

Consider the exact sequence,

$$1 \longrightarrow \frac{\mathbb{I}_{K,S_{\infty}} \cdot K^{\times}}{K^{\times}} \longrightarrow C_K \longrightarrow Cl(K) \longrightarrow 1$$

obtained by applying the third isomorphism theorem to lemma 5.1 where the subgroup,

$$\frac{\mathbb{I}_{K,S_{\infty}} \cdot K^{\times}}{K^{\times}} \subset C_K = \frac{\mathbb{I}_K \cdot K^{\times}}{K^{\times}}$$

is the norm subgroup of the idele class group corresponding to the Hilbert class field of K under the Artin reciprocity map. Let $G = Gal(K/\mathbb{Q})$. This short exact sequence gives rise to a long exact sequence of cohomology,

$$1 \longrightarrow \left(\frac{\mathbb{I}_{K,S_{\infty}} \cdot K^{\times}}{K^{\times}}\right)^{G} \longrightarrow C_{K}^{G} \longrightarrow Cl(K)^{G} \longrightarrow H^{1}(G,(\mathbb{I}_{K,S_{\infty}} \cdot K^{\times})/K^{\times}) \longrightarrow 1$$

Where I have used the fact that $H^1(G, C_K) = 1$ by Lemma 5.2. Using Lemmata 5.3 and 5.7 this exact sequence becomes,

$$1 \longrightarrow C_{\mathbb{Q}} \longrightarrow C_{\mathbb{Q}} \longrightarrow Cl(K)^G \longrightarrow H^1(G, (\mathbb{I}_{K,S_{\infty}} \cdot K^{\times})/K^{\times}) \longrightarrow 1$$

where the map $C_{\mathbb{Q}} \to C_{\mathbb{Q}}$ is surjective because it is simply the restriction of the inclusion map,

$$1 \longrightarrow \frac{\mathbb{I}_{K,S_{\infty}} \cdot K^{\times}}{K^{\times}} \longrightarrow C_K$$

which clearly takes the subgroup $C_{\mathbb{Q}} \to \mathbb{C}_{\mathbb{Q}}$. Therefore, the map $C_{\mathbb{Q}} \to Cl(K)^G$ in the previous exact sequence is the zero map since the map $C_{\mathbb{Q}} \to C_{\mathbb{Q}}$ has full image. Thus, we get an exact sequence,

$$1 \longrightarrow Cl(K)^G \longrightarrow H^1(G, (\mathbb{I}_{K,S_\infty} \cdot K^\times)/K^\times) \longrightarrow 1$$

which gives a canonical isomorphism $Cl(K)^G \cong H^1(G, (\mathbb{I}_{K,S_\infty} \cdot K^\times)/K^\times)$. However, by the second isomorphism theorem,

$$\frac{\mathbb{I}_{K,S_{\infty}} \cdot K^{\times}}{K^{\times}} \cong \frac{\mathbb{I}_{K,S_{\infty}}}{\mathbb{I}_{K,S_{\infty}} \cap K^{\times}} = \frac{\mathbb{I}_{K,S_{\infty}}}{\mathcal{O}_{K}^{\times}}$$

where $\mathbb{I}_{K,S_{\infty}} \cap K^{\times}$ are the elements of K^{\times} which are units in every local field and thus factor into no primes i.e. elements of \mathcal{O}_{K}^{\times} . Therefore,

$$Cl(K)^G \cong H^1\left(G, \frac{\mathbb{I}_{K,S_\infty} \cdot K^\times}{K^\times}\right) \cong H^1\left(G, \frac{\mathbb{I}_{K,S_\infty}}{\mathcal{O}_K^\times}\right)$$

Now, consider the short exact sequence,

$$1 \longrightarrow \mathcal{O}_K^{\times} \longrightarrow \mathbb{I}_{K,S_{\infty}} \longrightarrow \frac{\mathbb{I}_{K,S_{\infty}}}{\mathcal{O}_K^{\times}} \longrightarrow 1$$

which gives rise to a long exact sequence of cohomology,

$$1 \longrightarrow (\mathcal{O}_{K}^{\times})^{G} \longrightarrow (\mathbb{I}_{K,S_{\infty}})^{G} \longrightarrow \begin{pmatrix} \mathbb{I}_{K,S_{\infty}} \end{pmatrix}^{G} \longrightarrow 1$$

$$1 \longrightarrow H^{1}(G, \mathcal{O}_{K}^{\times}) \longrightarrow H^{1}(G, \mathbb{I}_{K,S_{\infty}}) \longrightarrow H^{1}(G, \mathbb{I}_{K,S_{\infty}}/\mathcal{O}_{K}^{\times}) \longrightarrow H^{2}(G, \mathcal{O}_{K}^{\times}) \longrightarrow H^{2}(G, \mathbb{I}_{K,S_{\infty}})$$

By Lemma 5.7, the top row becomes,

$$1 \longrightarrow \mathcal{O}_{\mathbb{Q}}^{\times} \longrightarrow \mathbb{I}_{\mathbb{Q}, S_{\infty}} \longrightarrow \mathbb{I}_{\mathbb{Q}, S_{\infty}} \longrightarrow 1$$

which can be extended to 1 because the map $\mathbb{I}_{\mathbb{Q},S_{\infty}} \to \frac{\mathbb{I}_{\mathbb{Q},S_{\infty}}}{\mathcal{O}_{\mathbb{Q}}^{\times}}$ is the restriction of the projection map to a subgroup and its corresponding sub-quotient which is still a surjective map.

Thus, if we can show that the map $H^2(G, \mathcal{O}_K^{\times}) \to H^2(G, \mathbb{I}_{K,S_{\infty}})$ is injective then we have a short exact sequence,

$$1 \longrightarrow H^1(G, \mathcal{O}_K^{\times}) \longrightarrow H^1(G, \mathbb{I}_{K, S_{\infty}}) \longrightarrow H^1(G, \mathbb{I}_{K, S_{\infty}}/\mathcal{O}_K^{\times}) \longrightarrow 1$$

which implies that,

$$Cl(K)^G \cong H^1\left(G, \mathbb{I}_{K,S_\infty}/\mathcal{O}_K^{\times}\right) \cong H^1(G, \mathbb{I}_{K,S_\infty})/H^1(G, \mathcal{O}_K^{\times})$$

(a)

Now we restrict to the case of an imaginary quadratic extension K/\mathbb{Q} . Since $G = Gal(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$ is finite cyclic, there is a natural isomorphism $\hat{H}^0(G, M) \xrightarrow{\sim} \hat{H}^2(G, M) = H^2(G, M)$. In particular, consider the map,

$$\hat{H}^0(G, \mathcal{O}_K^{\times}) \to \hat{H}^0(G, \mathbb{I}_{K, S_{\infty}})$$

We will exclude the cases $K \neq \mathbb{Q}(i)$ and $K \neq \mathbb{Q}(\zeta_3)$ such that $\mathcal{O}_K^{\times} = \{\pm 1\}^1$. Therefore, \mathcal{O}_K^{\times} is a trivial G-module. In particular,

$$H^0(G,\mathcal{O}_K^\times) = (\mathcal{O}_K^\times)^G = \mathcal{O}_K^\times \text{ and } \hat{H}^0(G,\mathcal{O}_K^\times) = H^0(G,\mathcal{O}_K^\times)/\mathrm{Nm}_{\mathrm{G}}(\mathcal{O}_K^\times) = \mathcal{O}_K^\times$$

However, at the ramified places of $\mathbb{I}_{K,S_{\infty}}$, the image of the norm map cannot contain -1 so the image of -1 inside the group $\hat{H}^0(G,\mathbb{I}_{K,S_{\infty}})$ is nontrivial. The map, $H^2(G,\mathcal{O}_K^{\times}) \to H^2(G,\mathbb{I}_{K,S_{\infty}})$ is nontrivial by naturality of the shift by two isomorphism. However,

$$H^2(G,M) = \hat{H}^2(G,M) \cong \hat{H}^0(G,M) \cong \mathcal{O}_K$$

which has size two. Thus, any nontrivial map is injective. By the theory above, we have that,

$$Cl(K)^G \cong H^1\left(G, \mathbb{I}_{K,S_\infty}/\mathcal{O}_K^{\times}\right) \cong H^1(G, \mathbb{I}_{K,S_\infty})/H^1(G, \mathcal{O}_K^{\times})$$

¹This is not much of a restriction since we know that the class numbers of the fields $\mathbb{Q}(i)$ and $\mathbb{Q}(\zeta_3)$ are both 1.

Furthermore, since \mathcal{O}_K^{\times} is a trivial G-module,

$$H^1(G, \mathcal{O}_K^{\times}) = \operatorname{Hom}\left(G, \mathcal{O}_K^{\times}\right) \cong \mathbb{Z}/2\mathbb{Z}$$

and using Lemma 5.6 we find that,

$$Cl(K)^G \cong \left(\prod_{p \text{ ram.}} (\mathbb{Z}/e_p\mathbb{Z})\right)/(\mathbb{Z}/2\mathbb{Z})$$

However, since n = 2 for a quadratic field and efg = 2 we know that if a prime p is ramified then $e_p = 2$. Thus,

$$Cl(K)^G \cong (\mathbb{Z}/2\mathbb{Z})^{r-1}$$

where r is the number of ramified primes in K. In particular, this implies that the class number h_K of the imaginary quadratic field $K = \mathbb{Q}(\sqrt{-p_1 \cdots p_k})$ for distinct primes p_i has a fast growing lower bound, ²

$$h_K > 2^{k-1}$$

This gives an affirmative answer to Gauss' conjecture that the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$ goes to infinity as d goes to infinity.

(b)

I give up. Please have mercy.

(c)

If K/\mathbb{Q} is a real quadratic extension rather than an imaginary one then vital steps in our proof break down. First, the map $H^2(G, \mathcal{O}_K^{\times}) \to H^2(G, \mathbb{I}_{K,S_{\infty}})$ will not be generically be surjective. Since the group of units will be infinite by Dirichlet's theorem, $H^1(G, \mathcal{O}_K^{\times})$ will be much more complicated. However, the identification,

$$Cl(K)^G \cong H^1\left(G, \frac{\mathbb{I}_{K, S_\infty} \cdot K^\times}{K^\times}\right) \cong H^1\left(G, \frac{\mathbb{I}_{K, S_\infty}}{\mathcal{O}_K^\times}\right)$$

does still hold. However, rather than moding by torsion, we are now moding this idele group by an infinite abelian group. The resulting cohomology is much more difficult to calculate. I certianly don't know how to do it in general.

²The prime 2 may ramify even if $p_i \neq 2$ for any i. This occurs when $p_1 \cdots p_k \equiv 1 \pmod{4}$ and only increases the exponent by one thus not altering the result.

5 Lemmata

Lemma 5.1. There is an exact sequence,

$$1 \longrightarrow \mathbb{I}_{K,S_{\infty}} \cdot K^{\times} \longrightarrow \mathbb{I}_{K} \longrightarrow Cl(K) \longrightarrow 1$$

In particular, if Cl(K) = 1 then the exact sequence reduces to,

$$1 \longrightarrow \mathbb{I}_{K,S_{\infty}} \cdot K^{\times} \longrightarrow \mathbb{I}_{K} \longrightarrow 1$$

and thus $\mathbb{I}_K \cong \mathbb{I}_{K,S_{\infty}} \cdot K^{\times}$.

Proof. Define a map $\Phi: \mathbb{I}_K \to Cl(K)$ via,

$$(a_v) \mapsto \prod_{v \notin S_{\infty}} \mathfrak{p}_v^{\operatorname{ord}_{\mathfrak{p}}(a_v)}$$

which is clearly surjective. The kernel of this map is exactly elements of the form $(a_v) \in \mathbb{I}_K$ such that $\Phi((a_v)) = k\mathcal{O}_K$ is a principal ideal. Then, at each non-archimedean place, by Dedekind factorization,

$$\operatorname{ord}_{\mathfrak{p}_{v}}(k) = \operatorname{ord}_{\mathfrak{p}_{v}} \left(\prod_{v \notin S_{\infty}} \mathfrak{p}_{v}^{\operatorname{ord}_{\mathfrak{p}}(a_{v})} \right) = \operatorname{ord}_{\mathfrak{p}_{v}}(a_{v})$$

Thus, $a_v = ku_v$ where $u_v \in \mathcal{O}_v^{\times}$ since a_v and k generate the same ideal in \mathcal{O}_v . Thus, $(a_v) \in \mathbb{I}_{K,S_\infty} \cdot K^{\times}$. Clearly, any element of $\mathbb{I}_{K,S_\infty} \cdot K^{\times}$ is principal and thus in the kernel of Φ . Thus, $\ker \Phi = \mathbb{I}_{K,S_\infty} \cdot K^{\times}$ and the required exact sequence follows immediately.

Lemma 5.2. Let L/K be a galois extension of global fields with G = Gal(L/K). Let C_L is the idele class group of L, then $H^1(G, C_L) = 1$.

Proof. See Milne Section VII, Theorem 5.1.

Lemma 5.3. Let L/K be a finite galois extensions with G = Gal(L/K). Then $C_L^G = C_K$.

Proof. Consider the short exact sequence,

$$1 \longrightarrow L^{\times} \longrightarrow \mathbb{I}_L \longrightarrow C_L \longrightarrow 1$$

which gives rise to a long exact sequence of cohomology,

$$1 \longrightarrow (L^{\times})^G \longrightarrow (\mathbb{I}_L)^G \longrightarrow (C_L)^G \longrightarrow H^1(G, L^{\times}) = 1 \longrightarrow \cdots$$

where $H^1(G, L^{\times}) = 1$ by Hilbert's theorem 90. However, $(L^{\times})^G = K^{\times}$ and $(\mathbb{I}_L)^G = \mathbb{I}_K$ by Galois theory. Therefore, we have a short exact sequence,

$$1 \longrightarrow K^{\times} \longrightarrow \mathbb{I}_K \longrightarrow (C_L)^G \longrightarrow 1$$

Thus, under the natural inclusions,

$$(C_L)^G = \frac{\mathbb{I}_K}{K^\times} = C_K$$

Lemma 5.4. Let L/K be a finite galois extensions. Let \mathfrak{p} be a finite prime in K and \mathfrak{P} a prime of L lying above v with ramification index $e_{\mathfrak{P}|\mathfrak{p}}$ and decomposition group $D(\mathfrak{P}) = Gal(L_{\mathfrak{P}}/K_{\mathfrak{p}})$. Then,

$$H^1(D(\mathfrak{P}), \mathcal{O}_{\mathfrak{P}}^{\times}) \cong \mathbb{Z}/e_{\mathfrak{P}|\mathfrak{p}}\mathbb{Z}$$

Proof. Let $D = Gal(L_{\mathfrak{P}}/K_{\mathfrak{p}})$. Consider the short exact sequence associated to a local field L_w ,

$$1 \longrightarrow \mathcal{O}_{\mathfrak{P}}^{\times} \longrightarrow L_{\mathfrak{P}}^{\times} \xrightarrow{\operatorname{ord}_{\mathfrak{P}}} \mathbb{Z} \longrightarrow 1$$

This short exact sequence gives rise to a long exact sequence of cohomology,

$$1 \longrightarrow (\mathcal{O}_{\mathfrak{P}}^{\times})^{D} \longrightarrow (L_{\mathfrak{P}}^{\times})^{D} \xrightarrow{\operatorname{ord}_{\mathfrak{P}}} \mathbb{Z}^{D} \longrightarrow H^{1}(D, \mathcal{O}_{\mathfrak{P}}^{\times}) \longrightarrow H^{1}(D, L_{\mathfrak{P}}^{\times}) \longrightarrow \cdots$$

However, by Hilbert's Theorem 90, $H^1(D, \mathcal{O}_{\mathfrak{V}}^{\times}) = 1$ so we get he exact sequence,

$$1 \longrightarrow \mathcal{O}_{\mathfrak{p}}^{\times} \longrightarrow K_{\mathfrak{p}}^{\times} \xrightarrow{\operatorname{ord}_{\mathfrak{P}}} \mathbb{Z} \xrightarrow{\varphi} H^{1}(D, \mathcal{O}_{\mathfrak{P}}^{\times}) \longrightarrow 1$$

However, the image of $\operatorname{ord}_{\mathfrak{P}}$ on $K_{\mathfrak{p}}^{\times}$ is determined by,

$$\operatorname{ord}_{\mathfrak{P}}\left(\mathfrak{p}\right) = \operatorname{ord}_{\mathfrak{P}}\left(\prod_{\mathfrak{P}'\mid\mathfrak{p}}\mathfrak{P}'^{e}\right) = \operatorname{ord}_{\mathfrak{P}}\left(\mathfrak{P}^{e}\right) = e$$

By exactness, $\ker \varphi = \operatorname{Im}(\operatorname{ord}_{\mathfrak{P}}) = e\mathbb{Z}$ so by the first isomorphism theorem,

$$H^1(D, \mathcal{O}_{\mathfrak{P}}^{\times}) = \mathbb{Z}/e\mathbb{Z}$$

Lemma 5.5. Let L/K be a finite galois extension with Galois group G = Gal(L/K). Let v be a prime of K with a prime w_0 in L such that $w_0 \mid v$. Then,

$$H^r(G, \prod_{w|v} L_w^{\times}) \cong H^r(D(w_0), L_{w_0}^{\times})$$

and likewise,

$$H^r(G, \prod_{w|v} \mathcal{O}_w^{\times}) \cong H^r(D(w_0), \mathcal{O}_{w_0}^{\times})$$

Proof. We use the fact that,

$$\prod_{w|v} L_w^{\times} = \operatorname{Ind}_{D(w_0)}^G L_{w_0}^{\times}$$

and similarly, that,

$$\prod_{w|v} \mathcal{O}_w^{\times} = \operatorname{Ind}_{D(w_0)}^G \mathcal{O}_{w_0}^{\times}$$

Therefore, by Shapiro's Lemma,

$$H^r(G, \prod_{w|v} L_w^{\times}) = H^r(G, \operatorname{Ind}_{D(w_0)}^G L_{w_0}^{\times}) = H^r(D(w_0), L_{w_0}^{\times})$$

and similarly,

$$H^r(G, \prod_{w|v} \mathcal{O}_w^{\times}) = H^r(G, \operatorname{Ind}_{D(w_0)}^G \mathcal{O}_{w_0}^{\times}) = H^r(D(w_0), \mathcal{O}_{w_0}^{\times})$$

Lemma 5.6. Let L/K be finite galois with G = Gal(L/K). Let S be a finite set of primes in K with T the set of primes in L lying above some prime in S. Then,

$$H^{r}(G, \mathbb{I}_{L,T}) = \prod_{v \notin S} H^{r}(D(w_0), \mathcal{O}_{w_0}^{\times}) \times \prod_{v \in S} H^{r}(D(w_0), L_{w_0}^{\times})$$

In particular, $(\mathbb{I}_L)^G = H^0(G, \mathbb{I}_L) = \mathbb{I}_K$ and $H^1(G, \mathbb{I}_L) = 1$ and last but not least,

$$H^1(G, \mathbb{I}_{L, T_{\infty}}) = \prod_{v \mid rmm} (\mathbb{Z}/e_{w_0|v}\mathbb{Z})$$

Proof. By definition,

$$\mathbb{I}_{L,T} = \prod_{w \notin T} \mathcal{O}_w^{\times} \times \prod_{w \in T} L_w^{\times} = \prod_{v \notin S} \prod_{w \mid v} \mathcal{O}_w^{\times} \times \prod_{v \in S} \prod_{w \mid v} L_w^{\times}$$

which is a decomposition as a product of G-modules. Therefore, by the fact that cohomology commutes with products,

$$H^r(G, \mathbb{I}_{L,T}) = \prod_{v \notin S} H^r(G, \prod_{w|v} \mathcal{O}_w^{\times}) \times \prod_{v \in S} H^r(G, \prod_{w|v} L_w^{\times})$$

Thus, by the previous lemma,

$$H^{r}(G, \mathbb{I}_{L,T}) = \prod_{v \notin S} H^{r}(D(w_{0}), \mathcal{O}_{w_{0}}^{\times}) \times \prod_{v \in S} H^{r}(D(w_{0}), L_{w_{0}}^{\times})$$

In particular,

$$\mathbb{I}_L = \lim_{T_0 \subset T} \mathbb{I}_{L,T}$$

where if $T \subset T'$ then $\mathbb{I}_{L,T} \subset \mathbb{I}_{L,T'}$. Thus, we can choose S_0 to contain the set of ramified primes (since there are finitely many) and T_0 to be all such primes lying over T_0 . Thus,

$$H^r(G, \mathbb{I}_L) = \varinjlim_{T_0 \subset T} H^r(G, \mathbb{I}_{L,T}) = \varinjlim_{S_0 \subset S} \prod_{v \notin S} H^r(D(w_0), \mathcal{O}_{w_0}^{\times}) \times \prod_{v \in S} H^r(D(w_0), L_{w_0}^{\times})$$

However, by assumption, all the ramified primes are in S so by a previous lemma,

$$H^1(D(w_0), \mathcal{O}_{w_0}^{\times}) = 0$$

Furthermore, by Hilbert's theorem 90.

$$H^1(D(w_0), L_{w_0}^{\times}) = 0$$

Therefore,

$$H^1(G, \mathbb{I}_L) = 0$$

Furthermore,

$$H^{0}(G, \mathbb{I}_{L}) = \varinjlim_{T_{0} \subset T} H^{r}(G, \mathbb{I}_{L,T}) = \varinjlim_{S_{0} \subset S} \prod_{v \notin S} H^{0}(D(w_{0}), \mathcal{O}_{w_{0}}^{\times}) \times \prod_{v \in S} H^{0}(D(w_{0}), L_{w_{0}}^{\times})$$

$$= \varinjlim_{S_{0} \subset S} \prod_{v \notin S} (\mathcal{O}_{w_{0}}^{\times})^{D(w_{0})} \times \prod_{v \in S} (L_{w_{0}}^{\times})^{D(w_{0})} = \varinjlim_{S_{0} \subset S} \prod_{v \notin S} \mathcal{O}_{v}^{\times} \times \prod_{v \in S} L_{v}^{\times} = \mathbb{I}_{K}$$

Likewise, using Hilbert's Theorem 90 and Lemma 5.4,

$$H^{1}(G, \mathbb{I}_{L, T_{\infty}}) = \prod_{v \notin S_{\infty}} H^{1}(D(w_{0}), \mathcal{O}_{w_{0}}^{\times}) \times \prod_{v \in S_{\infty}} H^{1}(D(w_{0}), L_{w_{0}}^{\times})$$

$$= \prod_{v \notin S_{\infty}} (\mathbb{Z}/e_{w_{0}|v}\mathbb{Z}) = \prod_{v \text{ ram.}} (\mathbb{Z}/e_{w_{0}|v}\mathbb{Z})$$

Lemma 5.7.

$$\left(\frac{\mathbb{I}_{K,S_{\infty}}\cdot K^{\times}}{K^{\times}}\right)^{G} = \frac{\mathbb{I}_{\mathbb{Q},S_{\infty}}\cdot \mathbb{Q}^{\times}}{\mathbb{Q}^{\times}} = \frac{\mathbb{I}_{\mathbb{Q}}}{\mathbb{Q}^{\times}} = C_{\mathbb{Q}}$$

and similarly,

$$\left(\frac{\mathbb{I}_{K,S_{\infty}}\cdot K^{\times}}{K^{\times}}\right)^{G} = \left(\frac{\mathbb{I}_{K,S_{\infty}}}{\mathcal{O}_{K}^{\times}}\right)^{G} = \frac{\mathbb{I}_{\mathbb{Q},S_{\infty}}}{\mathcal{O}_{\mathbb{Q}}^{\times}} = C_{\mathbb{Q}}$$

Proof. Let $G = Gal(K/\mathbb{Q})$ where K/\mathbb{Q} is finite galois. Note that \mathbb{Q} has class number 1 so by Lemma 5.3 we know that $\mathbb{I}_{\mathbb{Q}} = \mathbb{I}_{\mathbb{Q}, S_{\infty}} \cdot \mathbb{Q}^{\times}$. Now, consider the exact sequence,

$$1 \longrightarrow K^{\times} \longrightarrow \mathbb{I}_{K,S_{\infty}} \cdot K^{\times} \longrightarrow \frac{\mathbb{I}_{K,S_{\infty}} \cdot K^{\times}}{K^{\times}} \longrightarrow 1$$

which gives rise to a long exact sequence of cohomology,

$$1 \longrightarrow (K^{\times})^{G} \longrightarrow (\mathbb{I}_{K,S_{\infty}} \cdot K^{\times})^{G} \longrightarrow \left(\frac{\mathbb{I}_{K,S_{\infty}} \cdot K^{\times}}{K^{\times}}\right)^{G} \longrightarrow H^{1}(G,K^{\times}) = 1$$

where $H^1(G, K^{\times}) = 1$ by Hilbert's Theorem 90. However,

$$\mathbb{I}_{\mathbb{Q}} = \mathbb{I}_{\mathbb{Q}, S_{\infty}} \cdot \mathbb{Q}^{\times} \subset (\mathbb{I}_{K, S_{\infty}} \cdot K^{\times})^{G} \subset (\mathbb{I}_{K})^{G} = \mathbb{I}_{\mathbb{Q}}$$

and thus, $(\mathbb{I}_{K,S_{\infty}} \cdot K^{\times})^G = \mathbb{I}_Q$. Therefore, the long exact sequence reduces to a short exact sequence,

$$1 \longrightarrow \mathbb{Q}^{\times} \longrightarrow \mathbb{I}_{\mathbb{Q}} \longrightarrow \left(\frac{\mathbb{I}_{K,S_{\infty}} \cdot K^{\times}}{K^{\times}}\right)^{G} \longrightarrow 1$$

Therefore,

$$\left(\frac{\mathbb{I}_{K,S_{\infty}}\cdot K^{\times}}{K^{\times}}\right)^{G}=\mathbb{I}_{\mathbb{Q}}/\mathbb{Q}^{\times}=C_{\mathbb{Q}}$$

Furthermore, by the second isomorphism theorem,

$$\frac{\mathbb{I}_{K,S_{\infty}} \cdot K^{\times}}{K^{\times}} = \frac{\mathbb{I}_{K,S_{\infty}}}{K^{\times} \cap \mathbb{I}_{K,S_{\infty}}} = \frac{\mathbb{I}_{K,S_{\infty}}}{\mathcal{O}_{K}^{\times}}$$

And thus, again by the second isomorphism theorem,

$$\left(\frac{\mathbb{I}_{K,S_{\infty}}\cdot K^{\times}}{K^{\times}}\right)^{G} = \left(\frac{\mathbb{I}_{K,S_{\infty}}}{\mathcal{O}_{K}^{\times}}\right)^{G} = C_{\mathbb{Q}} = \frac{\mathbb{I}_{\mathbb{Q}}}{\mathbb{Q}^{\times}} = \frac{\mathbb{I}_{\mathbb{Q},S_{\infty}}\cdot \mathbb{Q}^{\times}}{\mathbb{Q}^{\times}} = \frac{\mathbb{I}_{\mathbb{Q},S_{\infty}}}{\mathcal{O}_{\mathbb{Q}}^{\times}}$$