人工智能笔记

陈鸿峥

2019.12*

目录

1	前介	2
	.1 概述	2
	.2 历史	2
2	搜索	3
	.1 无信息搜索	3
	.2 有信息搜索	6
	.3 博弈树搜索	8
3	艮制可满足性问题	10
	.1 回溯(backtracking)搜索	11
	.2 向前检测	11
	.3 一般性边一致性(GAC)	12
4	印识表示与推理	13
5	角定性规划	15
	.1 情景演算	15
	.2 STRIPS	16
	.3 松弛问题	16
6	下确定性规划	17
	.1 基础知识	17
	.2 贝叶斯网络	18

^{*}Build 20191231

7 机器学习			
	7.1	决策树	22
	7.2	贝叶斯学习	22
	7.3	聚类算法	23
	7.4	神经网络	23
	7.5	强化学习	24

1 简介

1.1 概述

- 1997 Deep Blue
- 2011 IBM Watson
- 2016 Google DeepMind

什么是AI?

- 像人类一样思考(thinking humanly): 中文屋子
- 理智思考(thinking rationally)
- 像人类一样行为(acting humanly): 图灵测试(1950)
- 理智行为(acting rationally)

常见术语

- 强AI: 机器像人类一样思考
- 弱AI: 机器有智能的行为
- 通用AI(AGI): 能够解决任何问题
- 窄AI: 专注于某一特定任务 不以模拟人类作为实现人工智能的最好方法
- 计算机和人类的体系结构不同:数值计算、视觉、并行处理
- 对人类大脑的了解太少了!

1.2 历史

- 1950-70: Early excitement, great expections
 - Samuel(1952)跳棋程序
 - Newell(1955)逻辑理论家
 - Dartmouth会议(1956): AI诞生

- 1970-90: Knowledge is power
- 1990-: rise of machine learning "AI Spring"
- 2010-: Deep learning

2 搜索

搜索主要包括无信息(uninformed)搜索和有信息搜索。

- 状态空间(state space)
 - 传统搜索: 状态空间可见、动作确定性
 - 非传统搜索: 局部搜索、模拟退火、爬坡
- 动作(action): 不同状态之间的转换
- 初始状态(initial state)
- 目标/期望(goal)

树搜索, 边界集(frontier)是未探索的状态集合

Algorithm 1 Tree Search

- 1: **procedure** TreeSearch((Frontier, Successors, Goal?))
- 2: **if** Frontier is empty **then**
- 3: **return** failure
- 4: Curr = select state from Frontier
- 5: **if** Goal?(Curr) **then**
- 6: **return** Curr
- 7: Frontier' = (Frontier $\{Curr\}$) \cup Successors(Curr)
- 8: **return** TreeSearch(Frontier',Successors,Goal?)

搜索需要关注的几个特性:

- 完备性: 若解存在, 搜索是否总能找到解
- 最优性: 是否总能找到最小代价的解
- 时间复杂性: 最大需要被**生成或展开**¹的结点数
- 空间复杂性: 最大需要被存储在内存中的结点数

2.1 无信息搜索

2.1.1 宽度优先搜索(BFS)

将后继加入边界集的后面,b为最大状态后继数目/分支因子(branching factor),d为最短距离解的行动数(注意是**边数**,而不是层数!)

¹而不是探索的结点数目

- 完备性与最优性: 所有短路总在长路前被探索,某一长度只有有限多条路径,最终可以检测所有长度为d的路径,从而找到最优解
- 时间复杂度: $1+b+b^2+\cdots+b^d+(b^d-1)b=O(b^{d+1})$,最差情况在最后一层的最后一个节点才探索到最优解,从而前面b个节点都要展开第d+1层
- 空间复杂度: $b(b^d-1) = O(b^{d+1})$, 需要将边界集都存储下来

2.1.2 深度优先搜索(DFS)

将后继加入边界集的前面, 即总是展开边界集中最深的节点

- 完备性
 - 无限状态空间: 不能保证
 - 有限状态空间无限路径: 不能保证
 - 有限状态空间+路径/重复状态剪枝: 可以保证
- 最优性: 因完备性不能保证, 故最优性也不能保证
- 时间复杂性: $O(b^m)$, 其中m为状态空间的最长路的长度(若m >> d,则非常糟糕; 但如果有大量解路径,则会快于BFS)
- 空间复杂性: O(bm), 线性空间复杂性是DFS最大的优点。边界集只包含当前路径的最深节点以及回溯节点(backtrack points为当前路径上节点的未探索的兄弟sibling)

2.1.3 一致代价(Uniform-cost)

一致代价搜索(Uniform cost search, UCS)²的边界集以路径开销升序排序,总是先展开最低开销的路径。如果每一个动作都是一样的代价,则一致代价等价于BFS。

- 完备性与最优性: 假设所有转移都有代价 $\geq \varepsilon > 0$,所有更低代价的路径都在高代价路径之前被展开,只有有限多的路径开销小于最优解的开销,故最终一定会到达最优解
- 时间复杂性: $O(b^{C^*/\varepsilon+1})$, 对应着BFS中 $d=C^*/\varepsilon$, 其中 C^* 为最优解的开销,最坏情况就是每一层开销都很小为 ε
- 空间复杂性: $O(b^{C^*/\varepsilon+1})$

2.1.4 深度受限搜索(Depth-limited)

执行只在最大深度执行DFS, 因此无穷路径长不会存在问题

- 完备性与最优性: 不能保证, 若解的深度大于L
- 时间复杂度: $O(b^L)$
- 空间复杂度: O(bL)

²至于为什么叫Uniform,可以看https://math.stackexchange.com/questions/112734/in-what-sense-is-uniform-cost-search-uniform和https://cs.stackexchange.com/questions/6072/why-is-uniform-cost-search-called-uniform-cost-search,比较合理的解释是到达同一结点的cost都被认为是相同的(寻找最优解时)。一致的算法总是选择边界集中第一个元素。

2.1.5 迭代加深搜索(Iterative Deepening)

迭代加深搜索(Iterative Deepening Searching, IDS)逐渐增加最大深度L,对每一个L做深度受限搜索

- 完备性: 可以保证
- 最优性: 如果开销一致3,则可以保证
- 时间复杂性: $(d+1)b^0 + db + (d-1)b^2 + \cdots + b^d = O(b^d)$,第0层搜了(d+1)次,可以看到时间复杂度是**比BFS**优的
- 空间复杂性: O(bd), 同DFS

2.1.6 双向搜索(Bidirectional)

从源结点和汇结点同时采用BFS,直到两个方向的搜索汇聚到中间。

- 完备性: 由BFS保证
- 最优性: 若一致代价则可保证
- 时间复杂性: O(b^{d/2})
- 空间复杂性: $O(b^{d/2})$

2.1.7 环路/路径检测

- 环路(cycle)检测: 检测当前状态是否与已探索的状态重复(BFS)
- 路径(path)检测: 只检测当前状态是否与该路径上的状态重复(DFS)

注意不能将环路检测运用在BFS上,因为开销太大。

环路检测运用到UCS上依然**可以保证最优性**⁴。因为UCS第一次探索到某一状态的时候已经发现最小 代价路径,因而再次探索该状态不会发现路径比原有的更小。

2.1.8 总结

	BFS	UCS	DFS	Depth-limited	IDS	Bidirectional
完备性	1	✓	X	×	✓	✓
时间复杂度	$O(b^d)$	$O(b^{\lfloor C^{\star}/\varepsilon \rfloor + 1})$	$O(b^m)$	$O(b^l)$	$O(b^d)$	$O(b^{d/2})$
空间复杂度	$O(b^d)$	$O(b^{\lfloor C^{\star}/\varepsilon \rfloor + 1})$	O(bm)	O(bl)	O(bd)	$O(b^{d/2})$
最优性	✓	✓	×	×	✓	✓

例 1. N个传教士和N个食人族要过河,他们都在河的左岸。现在只有一条船能够运载K个人,要把他们都运往右岸。要满足无论何时何地,传教士的数目都得大于等于食人族的数目,或者传教士数目为0。

分析. 考虑对问题形式化为搜索问题

³若开销不一致,则可以采用代价界(cost bound)来代替:仅仅展开那些路径开销小于代价界的路径,同时要记录每一层深搜的最小代价。这种方式的搜索开销会非常大,有多少种不同路径开销就需要多少次迭代循环。

⁴注意这在启发式搜索中不一定成立

- 状态(M,C,B), 其中M为左岸传教士数目, C为左岸食人族数目, B=1指船在左岸
- 动作(m,c)指运m个传教士和c个食人族到对岸
- 先决条件: 传教士数目和食人族数目满足限制
- 效果: $(M,C,1) \stackrel{(m,c)}{\Longrightarrow} (M-m,C-c,0)$ $(M,C,0) \stackrel{(m,c)}{\Longrightarrow} (M+m,C+c,1)$

2.2 有信息搜索

在无信息搜索中,我们从不估计边界集中最有期望(promising)获得最优解的结点,而是无区别地选择当前边界集中第一个结点。然而事实上,针对不同问题我们是有对结点的先验知识(apriori knowledge)的,即从当前结点到目标结点的开销有多大。而这就是有信息搜索(informed),或者称为启发式搜索(heuristics)。

关键在于领域特定启发式函数h(n)的设计,它估计了从结点n到目标结点的开销(cost)。注意满足目标状态的结点h(n)=0。

2.2.1 贪心最优搜索(Greedy Best-First Search)

直接使用h(n)对边界集进行排序,但这会导致贪心地选择**看上去**离目标结点开销最小的路径。如果存在环路,贪心最优搜索是不完备的,会陷入死循环。

2.2.2 A*搜索

综合考虑当前已走的开销和未来估计的开销。定义一个估值函数

$$f(n) = g(n) + h(n)$$

其中g(n)为路径到节点n的代价,h(n)为从n到目标节点的代价,采用f(n)对边界集内的节点进行排序。 f(n)需要满足下列两个性质。

定义 1 (可采纳的(admissibility)). 假设所有代价 $c(n1 \to n2) \ge \varepsilon > 0$,令 $h^*(n)$ 为从n到目标节点 ∞ 的最优解 5 ,若

$$\forall n: h(n) \leq h^{\star}(n)$$

则称h(n)是可采纳的。即一个可采纳的启发式函数总是**低估**了当前结点到目标结点的真实开销(这样才能保证最优解不被排除)。

定义 2 (一致性(consistency)/单调性(monotonicity)). 若对于所有的结点 n_1 和 n_2 , h(n)满足(三角不等 式)

$$h(n_1) \le c(n_1 \to n_2)_h(n_2)$$

则称h(n)是单调的。

 $^{^{5}}$ 如果没有路径则 $h^{*}(n) = ∞$

定理 1. 一致性蕴含可采纳性

分析. 分类讨论

- 当结点n没有到目标结点的路径,则 $h(n) \le h^*(n) = \infty$ 恒成立

$$h(n_i) \le c(n_i \to n_{i+1}) + h(n_{i+1}) \le c(n_i \to n_{i+1}) + h^*(n_{i+1}) = h^(n_i)$$

定理 2. 可采纳性蕴含最优性

分析. 假设最优解有开销 C^* ,则任何最优解一定会在开销大于 C^* 的路径之前被展开。因此在最优解展开之前的路径一定有开销 $< C^*$,最终我们一定会检测到最优解,而且次优解不会在最优解之前被检测。

做环检测可能导致找不到最优解 但如果满足单调性,有以下几个性质

命题 1. 路径上的f一定是非递减的

分析.

$$f(n) = g(n) + h(n)$$

$$\leq g(n) + c(n \to n') + h(n')$$

$$= g(n') + h(n')$$

$$= f(n')$$

命题 2. 如果 n_2 在 n_1 之后被扩展,则 $f(n_1) \leq f(n_2)$

分析. n_2 在边界上 n_1

命题 3. 当n在任何小于f值得路径之前被展开

分析.

命题 4. A*算法第一次展开某个状态时,它已经找到了到达那个状态的最小开销路径。

分析.

若满足单调性,则进行环检测不会破坏最优性

2.2.3 迭代加深A*(IDA)算法

 A^* 算法有和BFS或UCS同样的空间复杂性问题,而迭代加深 A^* 算法同样解决空间复杂度的问题

2.2.4 构造启发式函数

常常需要考虑一个更加简单的问题,然后让h(n)为到达一个简单问题解的开销

例 2. 现有积木若干,积木可以放在桌子上,也可以放在另一块积木上面。有两种操作:

- 1. move(x,y): 把积木x放到积木y上面, 前提是积木x和积木y上面都没有其他积木
- 2. moveToTable(x): 把积木x放到桌子上, 前提是积木x上面无其他积木, 且积木x不在桌子上设计一个可采纳的启发式函数h(n)

分析. $h(n) = h_1(n) + h_2(n)$

2.3 博弈树搜索

博弈的一些前提

- 两个博弈玩家
- 离散值:游戏和决策都可以映射到离散空间
- 有限的: 只有有限的状态和可能的决策
- 零和博弈: 完全竞争, 即如果一个玩家胜利, 则另外一个失去同样数量的收益
- 确定性的: 没有牵涉到概率性事件, 如色子、抛硬币等
- 完美信息博弈: 状态的所有方面都可以被完全观察,即没有隐藏的卡牌剪刀石头布是简单的一次性(one-shot)博弈
- 一次移动
- 在博弈论中称为策略或范式博弈(strategic/normal form) 但很多游戏是牵涉到多步操作的
- 轮回(turn-taking)游戏,如棋类
- 在博弈论中称为扩展形式博弈(extensive form) 两个玩家A(最大化己方收益)和B(最小化对方收益)
- 状态集合S
- 初始状态*I* ∈ S
- 终止位置T ⊂ S
- 后继: 下一可能状态的集合
- 效益(utility)/收益(payoff)函数 $V: T \mapsto \mathbb{R}$,表明终止状态对A玩家有多好,对B玩家有多坏(都站在A角度给出)

minimax算法: 自己选max, 对方选min

• 构建整棵博弈树, 然后将终止/叶子结点标上收益

• 回溯整棵树, 然后将每个结点都标记上收益

$$U(n) = \begin{cases} \min\{U(c): c \text{ is a child of } n\} & n \text{ is a Min node} \\ \max\{U(c): c \text{ is a child of } n\} & n \text{ is a Max node} \end{cases}$$

用DFS可以遍历整棵树,同时保持线性的空间复杂度,每次回溯时更新结点为 \min/\max 即可 α - β 剪枝

- 只要当前Max结点的值 \geq 祖先某-Min结点的值,就可以在该Max结点上做 α 剪枝
- 只要当前Min结点的值 \leq 祖先某-Max结点的值,就可以在该Min结点上做 α 剪枝可以证明,如果原始情况需要访问 $O(b^D)$ 个结点,则经过 α - β 剪枝后只需访问 $O(b^{D/2})$ 个结点。

但在现实生活的游戏中,即使采用了 α - β 剪枝,博弈树也太过庞大。如棋类的分支因子大致是35,深度为10的树已经到 2.7×10^{14} 个结点。因此不能将整棵博弈树展开,需要采用一些启发式方式进行估计。

评价函数(evaluation)的一些需求:

- 对于终止状态,评价函数的序应与真实的收益函数相同
- 对于非终止状态,评价函数则应该与真实的胜率相关联
- 计算时间不能花太长
- 通常取多个特征,然后进行加权求和(先验知识) 在线(online)/实时(real-time)搜索
- 没有办法展开全部的边界集,因此限制展开的大小(在没找到去目标的真实路径就做出决定/直接 选一条路就开始走)
- 在这种情况下,评价函数不仅仅引导搜索,更是提交真实的动作
- 虽然找不到最优解,但是求解时间大大缩减

Algorithm 2 Alpha-Beta Pruning

```
1: procedure AlphaBeta(n,Player,alpha,beta)
       {f if} n is TERMINAL then
          return V(n)
3:
                                                                           ▶ Return terminal states utility
       ChildList = n.Successors(Player)
4:
       if Player == MAX then
5:
          for c in ChildList do
6:
              alpha = max(alpha, AlphaBeta(c, MIN, alpha, beta))
7:
              if beta i= alpha then
8:
                  break
9:
          return alpha
10:
11:
       else
                                                                                          \triangleright Player == MIN
12:
          for c in ChildList do
13:
              beta = min(beta, AlphaBeta(c,MAX,alpha,beta))
              if beta := alpha then
14:
15:
                  break
          return beta
16:
                                                \triangleright Initial call: AlphaBeta(START-NODE, Player, -\infty, +\infty)
```

3 限制可满足性问题

在搜索问题中,状态表示是个黑箱,可以有多种多样的方法来表达。但实际上我们可以有特定的状态表示方法来解决大量不同的问题,在这种情况下的搜索算法可以变得很高效。

限制可满足性问题(Constraint Satisfaction Problem, CSP)指每一个状态都可以用一组特征值向量表示的问题。

- k个特征/变量的集合 V_1, \ldots, V_n
- 每一个变量都有一个包含有限值的论域 $dom[V_i]$, 如

$$height = \{short, average, tall\}$$

- 一组限制条件 C_1, \ldots, C_m
 - 每个限制条件都有一个作用域(scope),表示作用在什么变量上,如 $C(V_1, V_2, V_4)$
 - 相当于一个布尔函数,从变量赋值到布尔值的映射,如

$$C(V_1 = a, V_2 = b, V_4 = c) = True$$

- 布尔函数可以以表形式给出,或以表达式形式给出,如 $C(V_1, V_2, V_4) = (V_1 = V_2 + V_4)$
- 一个状态可以通过给每一个变量赋值得到

CSP不关心到目标状态的移动步骤,而只关心是否存在这样一组变量满足目标。

3.1 回溯(backtracking)搜索

对每一个变量分别赋值,深搜方式,同时结合启发式函数,用于在每一步选择不同的赋值变量。

```
BT(Level)
  If all variables assigned
       PRINT Value of each Variable
       RETURN or EXIT (RETURN for more solutions)
(EXIT for only one solution)
 ConstraintsOK = TRUE
       for each constraint C such that

a) V is a variable of C and
              b) all other variables of C are assigned:
                 ; (rarely the case initially high in the search tree)
           \ensuremath{\mathsf{IF}} C is \ensuremath{\mathsf{not}} satisfied by the set of current
              assignments:
              ConstraintsOK = FALSE
       If ConstraintsOk == TRUE:
           BT (Level+1)
  Assigned[V] := FALSE //UNDO as we have tried all of V's values
  return
```

回溯的问题在于不能提前探测到某一变量已经没有可以赋值了,导致依然要进入一层进行搜索。因此考虑前瞻式算法,即限制传播(propagation)。

- 甚至可以在还未进行搜索之前就采用
- 传播本身需要耗费资源,因此这里存在一个权衡

3.2 向前检测

- 1. 选择一个未被赋值的变量V。这里可以采用最小剩余值(Minimum Remaining Values, MRV)作为启发式函数,即先选论域小的变量。
- 2. 选择论域dom[V]中的值对V进行赋值d
- 3. 将d向前传递给含有V的限制C,主要考察那些**只剩一个未赋值变量**X的限制
- 4. 检测FCCheck(C,X)是否出现论域清空(Domain Wipe Out, DWO),即X没得选值了。这里FCCheck做的则是核心的限制传播部分,当V=d后把X不能取的值删去
- 5. 如果不出现DWO,则进入下一层(选择新的未赋值变量赋值)
- 6. 否则需要恢复当层FCCheck剪枝的部分,即d不可取,V要重新取值

- 4X4 Queens
 - Q1,Q2,Q3,Q4 with domain {1..4}
 - All binary constraints: C(Qi,Qj)
- FC illustration: color values are removed from domain of each row (blue, then yellow, then green)

 Dom(Q1)={1}
 Dom(Q1)={1}
 Dom(Q2)={1,2,3,4}={3,4}
 Dom(Q3)={1,2,3,4}={2,4}
 Dom(Q4)={1,2,3,4}={2,4}
 Dom

3.3 一般性边一致性(GAC)

定义 3 (一致). 限制C(X,Y)是一致的, 当且仅当对于所有X的值都存在某些Y满足C, 即 $\forall X\exists Y: C(X,Y)$ 。

定义 4 (一般性边一致性(Generalized Arc Consistency, GAC))。限制 $C(V_1, V_2, \ldots, V_n)$ 是关于 V_i 边一致的,当且仅当 $\forall V_i, \exists V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_n$ 满足C。 限制C是GAC的当且仅当对于每一变量都是GAC的。一个CSP是GAC的当且仅当它的限制都是GAC的。

有GAC算法:

- 在 $V_i = d$ 下,没有其他变量赋值能够满足该限制,则d是边不一致的,进而可以被剪枝剪掉。
- 注意当从论域中移除一个值时可能导致新的不一致,故需要采用队列的方式,不断将需要检测边一 致性限制添加,直到队列为空,即限制条件变为GAC。
- 近似可理解为将后续搜索步骤都前移到剪枝部分。

向前检测和边一致性检测的区别如下

- Assign {Q=green}
- · Effects on other variables connected by constraints with Q
 - NT can no longer be green = {B}
 - NSW can no longer be green = {R, B}
 - SA can no longer be green = {B}
- DWO there is no value for SA that will be consistent with NT ≠ SA and NT = B

Note Forward Checking would not have detected this DWO.

4 知识表示与推理

- 一阶逻辑(First-Order Logic,FOL)
- ◆ 个体/常量(0-ary)
- 类型(unary)谓词: A(x), B(x)
- ◆ 关系(二元谓词): L(x,y)

定义 $\mathbf{5}$ (项(term)). 每一个变量都是一个项。若 t_1, \ldots, t_n 都为项,且f为n参数的的函数,则 $f(t_1, \ldots, t_n)$ 是一个项。

定义 6 (公式(formular)). 公式包括以下几种情况:

- $\overline{t}_1, \ldots, t_n$ 都是项,且P是n元的谓词符号,则 $P(t_1, \ldots, t_n)$ 是一个公式
- 若 t_1, t_2 都是项,那么 $(t_1 = t_2)$ 是一个原子公式
- $\dot{\pi}$ 者 α , β 都是公式, v是一个变量, 则 $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \neg \beta)$, $\exists v.\alpha$, $\forall v.\alpha$ 都是公式

定义 7 (句子(sentence)). 没有自由变量的公式

定义 8 (替换). $\alpha[v/t]$ 表示 α 中所有自由出现的v都用项t替代

定义 9 (解释(interpretation)). 一个解释是一个对 $(pair)\mathcal{I} = \langle D, I \rangle$, 其中

- D是论域, 可以是任何非空集
- 1是从谓词到函数符号的映射
- 如果P是一个n-参数的谓词符号,I(P)是一个在D上的n-参数的关系,即 $I(P) \subset D^n$

定义 10 (赋值(denotation)). 变量指派 $(assignment)\mu$ 是一个从变量集合到论域D的映射

$$||v||_{\mathcal{I},\mu} = \mu(v)$$

$$||f(t_1, \dots, t_n)||_{\mathcal{I},\mu} = I(f)(||t_1||_{\mathcal{I},\mu}, \dots, ||t_n||_{\mathcal{I},\mu})$$

定义 11 (满足). $\mathcal{I}, \mu \models \alpha$ 读作 \mathcal{I}, μ 满足 α

- $\mathcal{I}, \mu \models \alpha \iff \langle ||t_1||_{\mathcal{I}, \mu}, \dots, ||t_n||_{\mathcal{I}, \mu} \rangle \in I(P)$
- $\mathcal{I}, \mu \models (t_1 = t_2) \iff ||t_1||_{\mathcal{I}, \mu} = ||t_2||_{\mathcal{I}, \mu}$

定义 12 (子句(clause)). 文字(literal)是原子公式或它的取反,一个子句是文字的析取(disjunction), 如 $p \lor \neg r \lor s$, 写作 $(p, \neg r, s)$ 。特殊地,空子句()代表为假。公式(formula)则是子句的合取(conjunction)。

归结(resolution) 反驳(refutation)

 \vdash

- 消除蕴含: $A \to B \iff \neg A \lor B$
- 将非向内推: 德摩根定律
- 标准化变量: 重命名变量使得每一个量词都是唯一的
- 消除存在量词(skloemize): 引入新的函数符号,如 $\forall x P(x)$ 改为P(g(y))
- 将所有量词带到最前面: 只有全局量词, 且名字均不同
- 析取分配到合取
- 压平
- 转化为子句: 将量词全部移除

定义 13 (MGU). 两个公式f和q的替换 σ

•

•

计算MGU的算法:不断代入新的元,使其一致利用归结(两条文字合一变真删除)看是否能得到空子句答案抽取(answer extraction)

- 将询问 $\exists x P(x)$ 用 $\exists x [P(x) \land \neg answer(x)]$ 替换(因为取非后变成 $\forall x P(x) \Longrightarrow answer(x)$)
- 直到获得任意子句只包含答案的谓词

例 3. 对下列查询进行归结及答案查询

- Whoever can read R(x) is literate L(x)
- Dolphins D(x) are not literate
- Flipper is an intelligent dolphin I(x)

Who is intelligent but cannot read?

分析. 对语句进行形式化

$$\forall x (R(x) \rightarrow L(x)) \qquad 1 \qquad (\neg R(u), L(u))$$

$$\forall x (D(x) \rightarrow \neg L(x)) \qquad 2 \qquad (\neg D(v), \neg L(v))$$

$$D(Flip) \land I(Flip) \qquad 3 \qquad D(Flip)$$

$$4 \qquad I(Flip)$$

$$Q: \exists x (I(x) \land \neg R(x)) \qquad 5 \qquad (\neg I(y), R(y), answer(y))$$

$$R[4, 5]/y = Flip \qquad 6 \qquad (R(Flip), answer(Flip))$$

$$R[1, 6]/u = Flip \qquad 7 \qquad (L(Flip), answer(Flip))$$

$$R[2, 7]/v = Flip \qquad 8 \qquad (\neg D(Flip), answer(Flip))$$

$$R[3, 8] \qquad 9 \qquad (answer(Flip))$$

因此得到Flipper是聪明的但是不能阅读

一组子句是否可满足是NP完全的[Cook,1972]

5 确定性规划

智能体应该能够对世界做出动作(action),而不仅仅是通过搜索解决问题或推理及知识表示。核心是 对动作的效果进行推理,并且计算什么动作能够达成特定的效果。

本节中主要关注确定性规划,即有完全的初始状态描述及确定性的动作效果。

5.1 情景演算

情景演算(Situation Calculation, SitCalc)三个基本部分

- 动作(action): 一组谓词
- 情景(situations): 动作序列,do(a,s)为动作、情景到新情景的函数映射, S_0 为初始情景

$$do(put(a,b), do(put(b,c), S_0))$$

要区别情景与状态(state),如将硬币转两次,情景/动作历史不同,但状态都是一样的

• 流(fluent): 从情景到情景的谓词或函数(动态变化过程),用谓词或函数符号描述,其中最后一个参数为情景,如Holding(r,x,s)代表机器人r在状态s下拿着物体x,有

$$\neg Holding(r,x,s) \land Holding(r,x,do(pickup(r,x),s))$$

- 条件(precondition): 动作执行的前提条件
- 影响(effect): 执行动作后改变的流。如下在情景s下执行修复动作后,x就不是破碎的

$$\neg Broken(x, do(repair(r, x)), s)$$

情景演算的形式化仅陈述了执行动作的影响,而没有阐述没影响的部分。但是给定一个流只有很少的动作会被影响,而大多数都保持不变。

而框架(frame)问题则是找到一种高效的方法来确定动作的非效果(non-effects)。而不是显式地将它们全部写下来,可以考虑用一阶逻辑。

形式化后的情景即可以利用归结进行规划,但是开销会非常大。

5.2 STRIPS

传统的规划没有不完全或不确定的信息,因此可以做以下假设。

- 封闭世界假设(Closed-World Assumption, CWA): 初始状态的信息是完备的,用于表示世界状态的知识库是一系列真实的原子事实(与数据库类似)。如emp(A,C)不在数据库中,则 $\neg emp(A,C)$ 为真。
- 动作的前提只能是原子命题的合取
- 动作的影响只会使原子命题变真或变假,不会出现条件影响或析取影响

STRIPS(Stanford Research Institute Problem Solver):

- 世界被表示成封建世界知识库(CW-KB),一个STRIPS的动作表示成更新CW-KB的方式
- 一个动作生成新的KB, 用以描述新的世界

在SitCalc中我们可能有不完全的信息(用一阶逻辑公式表示),而在STRIPS中,我们有完整的信息(用CW-KB)表示。

STRIPS中需要用3个列表来表示一个动作

- 动作的前提pre
- 动作增加的影响add
- 动作减少的影响delete

例子如下: pickup(X):

- Pre: handempty, clear(X), ontable(X)
- Adds: holding(X)
- Dels: handempty, clear(X), ontable(X)

注意STRIPS的表达力还是有限制的,如它没有条件(conditional)影响。因此需要有表达力更强的语言Action Description Language(ADL),允许在前提中有任意公式,而且可以有条件和全称影响。

可以将规划看成是一个搜索问题,每个动作都是由一个CW-KB到CW-KB的映射,但搜索空间会非常巨大。

5.3 松弛问题

放松(relaxed)问题即考虑忽略删除动作的列表,这样可能得到有用的启发式函数估计。

定理 3. 放松问题的一个最优规划的长度是原始问题最优规划长度的下界

证明. 由于我们将所有影响都添加了,并且不删除负面影响,因此很直觉地会很快得到目标。令P为原始问题,P'为放松问题,我们希望得到 $Sols(P) \subset Sols(P')$,则有 $Minlen(Sols(P')) \leq Minlen(Sols(P))$ 。

- 又令 $s'_0 = s_0$,且 $s'_{i+1} = s'_i \cup add(a_i)$,通过数学归纳法证明 $s_i \subset s'_i, \forall i \leq n$ 。
 - 归纳奠基: i = 0时 $s_0 \subset s'_0 = s_0$
 - 归纳假设: 假设 $s_i \subset s_i', \forall i < n$, 证明 $s_{i+1} \subset s_{i+1}'$
 - 推理: 因为 a_i 在 s_i 中是可采纳的,即 $pre(a_i) \subset s_i$,因此 $pre(a_i) \subset s_i \subset s_i'$,即 a_i 在 s_i' 中是可采纳的。所以得到

$$s_{i+1} = s_i \cup add(a_i) - del(a_i) \subset s'_i \cup add(a_i) = s'_{i+1}$$

进而 $Goal \subset s_n \subset s'_n$,且 $pre(a_i) \subset s_i \subset s'_i, \forall i < n$,因此 a_0, \ldots, a_{n-1} 也是P'的一个解。

因此最优放松问题的规划可以作为A*算法的可采纳启发式函数。然而在放松问题中计算一个最优的问题是NP难的,可以从S开始建立层次(layered)结构使其到达目标。

可达性分析: $s_0, a_1, s_1, \ldots, a_n, s_n$, 直到 $s_n \subset Goal$, 或者状态层 s_n 不再改变(到达不动点)。

命题 5. 令 a_0, \ldots, a_{n-1} 为 S_0 中可采纳的动作序列,令 $s_0 = S_0$,且 $s_{i+1} = s_i \cup add(a_i) - del(a_i)$ 。那么 $\forall i < n, \exists j, k \leq i$ 使得 $a_i \in A_k$ 且 $s_i \subset S_i$

分析. 用数学归纳法

- 归纳奠基: i=0显然成立
- 归纳假设: 假设 $\forall i < n \exists j \leq i : s_i \subset S_j$
- 因为 $pre(a_i) \subset s_i, pre(a_i) \subset S_j$,令k为最小的 $u \leq j$ 使得 $pre(a_i) \subset S_u$,那么 $a_i \in A_k$,故 $add(a_i) \subset S_{k+1} \subset S_{j+1}$ 因此

$$s_{i+1} \subset s_i \cup add(a_i) \subset S_j \cup S_{j+1} = S_{j+1}$$

定理 4. 假设 $Goal \subset S_k$,对于i < k,令 A'_{i-1} 为调用 $CountActions(G_i, S_i)$ 的结果,则 A'_0, \ldots, A'_{k-1} 为松弛问题的一个解。

证明. 用数学归纳法

定理 5. 假设状态层不再改变且目标不被满足,则原始规划问题是不可解的。

证明. 用反证法,假设 a_0,\ldots,a_{n-1} 为原始问题的一个解,则 $Goal\subset s_n$ 。由前面的命题,存在 $m\leq n$ 使得 $Goal\subset s_n\subset S_m$,导致矛盾。

6 不确定性规划

6.1 基础知识

一组变量 V_1, \ldots, V_n 以及其对应的有限域 $dom[V_i]$,很容易导致指数的计算复杂度。

定理 6 (全概率公式). $\{B\}_{i=1}^k$ 为全集U的一个划分,则

$$\mathbb{P}(A) = \mathbb{P}(A \cap B_1) + \dots + \mathbb{P}(A \cap B_k)$$
$$= \mathbb{P}(A \mid B_1) \mathbb{P}(B_1) + \dots + \mathbb{P}(A \mid B_k) \mathbb{P}(B_k)$$

定理 7 (条件独立). 若

$$\mathbb{P}\left(B \mid A \cap C\right) = \mathbb{P}\left(B \mid A\right)$$

,则在给定A的情况下B条件独立于C(C没有给A增加知识)。若对于所有 $x \in \text{dom}[X], y \in \text{dom}[Y], z \in \text{dom}[Z]$,

$$\mathbb{P}\left(X=x \land Y=y \mid Z=z\right) = \mathbb{P}\left(X=x \mid Z=z\right) \mathbb{P}\left(Y=y \mid Z=z\right)$$

则在给定Z = z下, X = x和Y = y条件独立。

命题 6 (独立性性质). • 若A和B独立,则 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

• 给定A, B和C条件独立, 则

$$\mathbb{P}(B \cap C \mid A) = \mathbb{P}(B \mid A) \mathbb{P}(C \mid A)$$

定理 8 (贝叶斯公式). 条件概率定义

$$\mathbb{P}\left(X\mid Y\right) = \mathbb{P}\left(XY\right)/\mathbb{P}\left(Y\right) \implies \mathbb{P}\left(XY\right) = \mathbb{P}\left(X\mid Y\right)\mathbb{P}\left(Y\right)$$

注意与贝叶斯公式区分

$$\mathbb{P}\left(Y\mid X\right) = \frac{\mathbb{P}\left(XY\right)}{\mathbb{P}\left(X\right)} = \frac{\mathbb{P}\left(X\mid Y\right)\mathbb{P}\left(Y\right)}{\mathbb{P}\left(X\right)}$$

定理 9 (链式法则).

$$\mathbb{P}\left(A_{1}\cap A_{2}\cap \cdots \cap A_{n}\right) = \mathbb{P}\left(A_{1}\mid A_{2}\cap \cdots \cap A_{n}\right)\mathbb{P}\left(A_{2}\mid A_{3}\cdots \cap A_{n}\right)\mathbb{P}\left(A_{n-1}\mid A_{n}\right)\mathbb{P}\left(A_{n}\right)$$

6.2 贝叶斯网络

6.2.1 基础知识

有以下概率公式成立

- $\mathbb{P}(H \mid B, A, E, C) = \mathbb{P}(H \mid B)$
- 由链式法则和独立性假设

$$\mathbb{P}(HBACE) = \mathbb{P}(H \mid BACE) \,\mathbb{P}(B \mid ACE) \,\mathbb{P}(A \mid CE) \,\mathbb{P}(C \mid E) \,\mathbb{P}(E)$$

$$\mathbb{P}(HBACE) = \mathbb{P}(H \mid B) \,\mathbb{P}(B \mid A) \,\mathbb{P}(A \mid C) \,\mathbb{P}(C \mid E) \,\mathbb{P}(E)$$

• 通用公式

$$\mathbb{P}(X_1 X_2 \cdots X_n) = \mathbb{P}(X_n \mid Par(X_n)) \cdots \mathbb{P}(X_1 \mid Par(X_1))$$

单点概率(由全概率公式和条件概率定义)

$$\mathbb{P}(a) = \sum_{c_i \in \text{dom}[C]} \mathbb{P}(a \mid c_i) \mathbb{P}(c_i)$$
$$= \sum_{c_i \in \text{dom}[C]} \mathbb{P}(a \mid c_i) \sum_{e_i \in \text{dom}[E]} \mathbb{P}(c_i \mid e_i) \mathbb{P}(e_i)$$

因此每个结点只需存一个条件概率表(conditional probability table, CPT)。

定义 14 (D分隔(separation)). 若一组变量E阻隔(block)了X到Y的所有无向路径P,则称E D-分隔了X和Y,且有给定证据E下,X和Y条件独立。 E阻隔(block)了路径P当且仅当在路径上存在某点Z使得下面任一成立。

If Z in evidence, the path between X and Y blocked

If Z in evidence, the path between X and Y blocked

If Z is **not** in evidence and **no** descendent of Z is in evidence, then the path between X and Y is blocked

注意第3种情况,证据集中没有给交叉结点及其子结点,则父亲节点都独立。

例 4. 考虑如下贝叶斯网络

在此例中 $\mathbb{P}(c \mid a, b, \neg d, \neg e, \neg f) \neq \mathbb{P}(c \mid a, b)$ 。

determine if A and E are independent given the evidence:

- 1. A and E given no evidence? No
- 2. A and E given {C}? No
- 3. A and E given {G,C}? Y
- 4. A and E given {G,C,H}? Y
- 5. A and E given {G,F}? No
- 6. A and E given {F,D}? Y
- 7. A and E given {F,D,H}? No
- 8. A and E given {B}? Y
- 9. A and E given {H,B}? Y
- **10.** A and E given {G,C,D,H,D,F,B}? Y

Why the answer to 7 is No?

例 5. 注意第3种情况的适用条件,由于H在证据集中,所以并不满足第3种情况。在第7个例子中,AGHBE没有被阻隔,故给定FDH,A, E也不独立。

6.2.2 贝叶斯推断

推断过程如下:

$$\mathbb{P}(a \mid d, e) = \mathbb{P}(a, d, e) / \mathbb{P}(d, e)$$
$$= \mathbb{P}(a, d, e) / \sum_{A} \mathbb{P}(a, d, e)$$
$$\mathbb{P}(a, d, e) = \sum_{B, C} \mathbb{P}(a, B, C, d, e)$$

故只需计算 $\mathbb{P}(a,d,e)$ 。

采用动态规划的思想,存储子项,减少计算量。 记因子为某些变量的函数,如 $\mathbb{P}(C\mid A))=f(A,C)$

- \Re $H(X,Y,Z) = f(X,Y) \times g(Y,Z)$
- 求和: $h(Y) = \sum_{x \in \text{dom}[X]} f(x, Y)$
- 因子限定: h(Y) = f(a, Y)

算法 1 (变量消除(Variable Elimination, VE)). 给定贝叶斯网络, 条件概率表F, 询问Q, 证据E, 其余变量为Z, 计算 $\mathbb{P}(Q \mid E)$ 。

- 1. 对于 $f \in F$ 中每一变量,将其替换为 $f_{E=e}$ (因子限定)
- 2. 对于每一 $Z_i \in Z$, 按给定 Z_i 顺序, 并按照以下步骤消除:
 - f_1, f_2, \ldots, f_k 为含有 Z_j 的因子
 - 计算新的因子 $g_j = \sum_{Z_i} f_1 \times f_2 \times \cdots \times f_k$
 - 将 f_i 从F中移除,并将新的因子 g_i 添加到F中
- 3. 剩下的因子只包含询问Q中的变量,则计算它们的乘积归一化得到 $\mathbb{P}(Q \mid E)$

可以采用桶消除(bucket elimination)算法,每次将新生成的因子放在第一个可被应用的桶中。下图展示的是超图(hypergraph),最大超边(hyperedge)的大小即为最大的CPT表项/VE算法的复杂度。

多树(polytree): 单连通(singly connected)的贝叶斯网络,即在任意两个结点间只有一条路径。 最小填充(min-fill)启发式: 总是先消除产生最小因子大小的变量,这种方法可以使得在线性时间内 求解多树。

定义 15 (相关性(relevance)). 给定证据E询问Q, 则有以下几种情况:

- Q自身当然是相关的
- 若结点Z相关,则它的父母也相关
- $\exists e \in E$ 是一个相关结点的后代,则E也是相关的

Query: P(F)

• relevant: F, C, B, A

Query: P(F|E)

• relevant: F, C, B, A

• also: E, hence D, G

 intuitively, we need to compute P(C|E) to compute P(F|E)

例 6. 但询问 $P(F \mid H)$,则D, E, G是不相关的。而且这种算法会过度估计相关的变量。

7 机器学习

7.1 决策树

假定样本集合D中第k类样本所占比例为 $p_k(k=1,2,\ldots,|\mathcal{Y}|)$,则D的信息熵定义为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$

又假定离散属性a有V个可能取值 $\{a^1, a^2, \dots, a^V\}$,第v个分支结点包含了D中所在属性a上取值为 a^v 的样本,记为 D^v ,进而可定义信息增益

$$\mathrm{Gain}(D,a) = \mathrm{Ent}(D) - \sum_{v=1}^V \frac{|D^v|}{|D|} \mathrm{Ent}(D^v)$$

每次选择最大增益的属性进行划分,即

$$a_* = \underset{a \in A}{\operatorname{arg\,max}} \operatorname{Gain}(D, a)$$

以信息增益为准则来选择划分属性的算法即为ID3决策树。

7.2 贝叶斯学习

先验 $\mathbb{P}(H)$ 、似然 $\mathbb{P}(d \mid H)$ 、证据 $d = \langle d_1, d_2, \dots, d_n \rangle$,有贝叶斯公式(先验推后验)

$$\mathbb{P}\left(H\mid d\right) = \alpha \mathbb{P}\left(d\mid H\right) \mathbb{P}\left(H\right)$$

假设独立同分布 $\mathbb{P}(d \mid h) = \prod_{i} \mathbb{P}(d_i \mid h)$

- 贝叶斯学习: $\mathbb{P}(X \mid d) = \sum_{i} \mathbb{P}(X \mid d, h_i) \mathbb{P}(h_i \mid d) = \sum_{i} \mathbb{P}(X \mid h_i) \mathbb{P}(h_i \mid d)$
- 极大后验(MAP)学习: $\mathbb{P}(X \mid d) \approx \mathbb{P}(X \mid h_{MAP})$

$$h_{MAP} = \operatorname*{arg\,max}_{h_{i}} \mathbb{P}\left(h_{i} \mid d\right) = \operatorname*{arg\,max}_{h_{i}} \mathbb{P}\left(h_{i}\right) \mathbb{P}\left(d \mid h_{i}\right)$$

• 最大似然(ML)学习: $\mathbb{P}(X \mid d) \approx \mathbb{P}(X \mid h_{ML})$

$$h_{ML} = \operatorname*{arg\,max}_{h_i} \mathbb{P}\left(d \mid h_i\right)$$

基于属性条件独立性假设

$$\mathbb{P}(c \mid \mathbf{x}) = \frac{\mathbb{P}(c) \mathbb{P}(\mathbf{x} \mid c)}{\mathbb{P}(x)} = \frac{\mathbb{P}(c)}{\mathbb{P}(\mathbf{x})} \prod_{i=1}^{d} \mathbb{P}(x_i \mid c)$$

其中d为属性数目, x_i 为 \mathbf{x} 在第i个属性上的取值。因对所有类别来说 $\mathbb{P}(\mathbf{x})$ 相同,因此贝叶斯判定准则为

$$h_{NB}(\mathbf{x}) = \underset{c \in \mathcal{Y}}{\operatorname{arg max}} \mathbb{P}(c) \prod_{i=1}^{d} \mathbb{P}(x_i \mid c)$$

令 D_c 表示训练集D中第c类样本组成的集合,有

$$\mathbb{P}(c) = \frac{D_c}{D}$$
 $\mathbb{P}(x_i \mid c) = \frac{|D_{c,x_i}|}{|D_c|}$

7.3 聚类算法

- 硬聚类: 每个样本都决定放在哪一个类别中
- 软聚类: 每个样本都被指派每个类别的概率分布

K-means算法

• E步: 对于每一个类别i和特征 X_i ,有

$$pval(i, X_j) \leftarrow \frac{\sum_{e:class(e)=i} val(e, X_j)}{|\{e:class(e)=i\}|}$$

• M步: 对于每一个样本e, 指派e给类别i使得

$$\min_{i} \sum_{j=1}^{n} (pval(i, X_j) - val(e, X_j))^2$$

7.4 神经网络

定理 10 (一致近似理论(Universal Approximator Theorem)). 具有至少一个隐层的深度神经网络可以无

限逼近任意连续函数

前向后向传播过程:

• 前向过程:

$$in_j = \sum_i w_{ij} a_i \qquad a_j = g(in_j)$$

• 后向过程:

output:
$$\Delta_j = g'(in_j)(y_j - a_j)$$

hidden: $\Delta_i = g'(in_i) \sum_j w_{ij} \Delta_j$

注意以下两条求导公式

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \frac{\partial \sigma(x)}{\partial x} = (1 - \sigma(x))\sigma(x)$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \qquad \frac{\partial \tanh(x)}{\partial x} = 1 - \tanh^2(x)$$

7.5 强化学习

目标:

$$\max_{\pi_{\theta}} \left[\sum_{t=1}^{\infty} \gamma^{t} r_{t} \right]$$

给定策略 π :

$$Q^{\pi}(s, a) = \sum_{s'} \mathbb{P}\left(s' \mid a, s\right) \left(R(s, a, s') + \gamma V^{\pi}(s')\right)$$

$$V^{\pi}(s) = Q(s, \pi(s))$$

Q学习:随机选择动作a,观察回报r和下一状态s'

$$Q[s,a] \leftarrow Q[s,a] + \alpha(r + \gamma \max_{a'} Q[s',a'] - Q[s,a])$$