Table des matières

_	Vecteurs I. 1 Généralités	2
П	Droites et cercles dans le plan II. 1 Équation d'une droite du plan	3 4
III	I Droites et plans dans l'espace III. 1Équation d'un plan de l'espace	4 4 5
IV	Projection Orthogonale	6

Chapitre 9 : Géométrie

I Vecteurs

I. 1 Généralités

Définition 1. Un vecteur de \mathbb{R}^n est un point de \mathbb{R}^n

Avec cette définition, un vecteur est juste un n-uplet de réels.

Graphiquement, un vecteur $u=(u_1,...,u_n)$ est la donnée de n'importe quelle paire de points $(A=(a_1,...,a_n),B=(b_1,...,b_n))$ de \mathbb{R}^n telle que

$$\forall i \in [1, n], u_i = b_i - a_i$$

On note alors

$$u = \vec{AB}$$

Proposition 1. Soit O un point et \vec{u} un vecteur non nul, alors il existe un unique point M tel que $\vec{OM} = \vec{u}$.

Proposition 2. Soit $u=(u_1,...,u_n)$ et $v=(v_1,...,v_n)$ deux vecteurs de \mathbb{R}^n et $\lambda\in\mathbb{R}$ on définit

$$u + v = (u_1 + v_1, ..., u_n + v_n)$$
 et $\lambda \cdot u = (\lambda u_1, ..., \lambda u_n)$

Proposition 3 (Relation de Chasles). Soient A, B, C trois points du plan ou de l'espace, on a alors :

$$\vec{A}B + \vec{B}C = \vec{A}C$$

Proposition 4. Soient A, B deux points du pland ou de l'espace, on a alors :

$$\vec{A}B = -\vec{B}A$$

Proposition 5. Soient \vec{u} , \vec{v} deux vecteurs, $\lambda \in \mathbb{R}$. On a :

$$\lambda \cdot (\vec{u} + \vec{v}) = \lambda \cdot \vec{u} + \lambda \cdot \vec{v}$$

Définition 2. On dit que deux vecteurs \vec{u} et \vec{v} sont colinéaires si il existe $a, b \in \mathbb{R}^2$, non tous nuls tels que

$$a\vec{u} + b\vec{v} = \vec{0}$$

Définition 3. On dit que trois vecteurs \vec{u} et \vec{v} et \vec{w} sont coplanaires si il existe $a, b, c \in \mathbb{R}^3$ non tous nul tel que

$$a\vec{u} + b\vec{v} + c\vec{w} = \vec{0}$$

Définition 4. Une base de \mathbb{R}^2 est la donnée de deux vecteurs de \mathbb{R}^2 non colinéaires. Une base de \mathbb{R}^3 est la donnée de trois vecteurs de \mathbb{R}^3 non coplanaires

I. 2 Déterminant

Définition 5. Déterminant de deux vecteurs d'un plan Soit $\vec{u} = (x, y) \in \mathbb{R}^2$ et $\vec{v} = (x', y') \in \mathbb{R}^2$. Le déterminant des vecteurs (\vec{u}, \vec{v}) est défini par :

$$\det(\vec{u}, \vec{v}) = \left| \begin{array}{cc} x & x' \\ y & y' \end{array} \right| =$$

Démonstration.

I. 3 Produit scalaire dans le plan ou l'espace

Définition 6. Soit \vec{u} et \vec{v} deux vecteurs du plan ou de l'espace. Le produit scalaire de \vec{u} et \vec{v} est défini par

$$\vec{u} \cdot \vec{v} =$$

où $||\cdot||$ désigne la norme du vecteur et θ est l'angle formé par les vecteurs \vec{u} et \vec{v} .

Proposition 7. Propriétés du produit scalaire

- \bullet $\vec{u} \cdot \vec{v} = \dots$
- \bullet $(\lambda \vec{u}) \cdot \vec{v} = \dots$
- \bullet $\vec{u}^2 = \vec{u} \cdot \vec{u} = \dots$
- Inégalité de Cauchy-Schwarz : $|\vec{u} \cdot \vec{v}| \leq \dots$

Remarque. On peut en déduire les identités remarquables suivantes :

$$(\vec{u} + \vec{v})^2 =$$
 et $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) =$

Proposition 8. Expression grâce aux coordonnées

- Soit $\vec{u}(x,y) \in \mathbb{R}^2$ et $\vec{v}(x',y') \in \mathbb{R}^2$. Alors : $\vec{u} \cdot \vec{v} = \dots$
- Soit $\vec{u}(x,y,z) \in \mathbb{R}^3$ et $\vec{v}(x',y',z') \in \mathbb{R}^3$. Alors : $\vec{u} \cdot \vec{v} = \dots$

Remarque. On peut en déduire l'expression de la norme d'un vecteur grâce à ses coordonnées :

- Soit $\vec{u}(x,y) \in \mathbb{R}^2$. Alors: $||\vec{u}|| = \dots$
- Soit $\vec{u}(x,y,z) \in \mathbb{R}^3$. Alors: $||\vec{u}|| = \dots$

Proposition 9. Caractérisation à l'aide du produit scalaire

Définition 7. Vecteur normal

- Soit \mathcal{D} une droite. On appelle vecteur normal de \mathcal{D} tout vecteur non nul dont la direction est orthogonale à \mathcal{D} , c'est-à-dire tout vecteur \vec{v} tel que pour tous points A et B de \mathcal{D} , on ait
- Soit \mathcal{P} un plan. On appelle vecteur normal de \mathcal{P} tout vecteur non nul dont la direction est orthogonale à \mathcal{P} , c'est-à-dire tout vecteur \vec{v} tel que pour tous points A et B de \mathcal{P} , on ait

Remarque. Soient A, B et C trois points. On a alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AH}||$, où H est le projeté de C sur la droite AB.

II Droites et cercles dans le plan

II. 1 Équation d'une droite du plan

Proposition 10. Equation cartésienne d'une droite du plan

- Un vecteur normal de \mathcal{D} est alors
- Le vecteur directeur est alors
- Si $b \neq 0$, le coefficient directeur est alors

Proposition 11. Positions relatives de deux droites du plan

Soient deux droites \mathcal{D} : ax + by + c = 0 et \mathcal{D}' : a'x + b'y + c' = 0.

- Elles se coupent en un unique point si

Méthodes si on connaît un point A(a,b) et un vecteur directeur non nul $\vec{u}(u_1,u_2)$:

• Équation paramétrique :

$$\begin{array}{ccc} M(x,y) \in \mathcal{D} & \Longleftrightarrow & \overrightarrow{AM} \text{ et } \overrightarrow{u} \text{ sont colinéaires} \\ & \Longleftrightarrow & \exists \lambda \in \mathbb{R}, \ \overrightarrow{AM} = \lambda \overrightarrow{u} \\ & \Longleftrightarrow & \left\{ \begin{array}{c} x = \\ y = \end{array} \right. \end{array}$$

• Équation cartésienne :

$$M(x,y) \in \mathcal{D} \iff \overrightarrow{AM} \text{ et } \overrightarrow{u} \text{ sont colinéaires}$$

$$\iff \left| \begin{array}{cc} x-a & u_1 \\ y-b & u_2 \end{array} \right| = 0$$

$$\iff$$

Méthode si on connaît un point A(a,b) et un vecteur normal $\vec{n}(n_1,n_2)$:

$$M(x,y) \in \mathcal{D} \iff \overrightarrow{AM} \text{ et } \overrightarrow{n} \text{ sont orthogonaux} \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0$$

Exercice 1. Le plan est rapporté au repère orthonormé (O, \vec{i}, \vec{j}) . Les points distincts A et B ont pour coordonnées respectives (2, 4) et (-1, 3). Les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives (2, -1) et (3, -2). Donner des équations des droites (AB), \mathcal{D} droite qui passe par A et de vecteur directeur \vec{u} et \mathcal{D}' droite qui passe par B et qui est orthogonale à \vec{v} .

Exercice 2. Le plan est rapporté au repère orthonormé (O, \vec{i}, \vec{j}) . Soient les points A(1, -2), B(2, -1) et C(6, -2).

- 1. Donner les équations des droites (AB), (BC) et (CA).
- 2. Donner une représentation paramétrique de la médiane de ABC passant par B.
- 3. Trouver les coordonnées de H orthocentre de ABC.
- 4. Quelle est l'aire de ABC?

II. 2 Équation d'un cercle du plan

Proposition 12. Equation cartésienne d'un cercle du plan

Le cercle de centre (x_0, y_0) et de rayon R admet pour équation :

Exercice 3. Le plan est rapporté au repère orthonormé (O, \vec{i}, \vec{j}) . Soient les points A(2,3) et B(1,-1). Quelle est l'équation du cercle de centre B passant par A? Quelle est l'équation de la tangente en A à C?

Exercice 4. Soit \mathcal{C} le cercle de centre O et de rayon 1 et soit \mathcal{C}' le cercle de centre Ω de coordonnées (5,0) et de rayon 2.

- $1. \ \, {\rm Quelles}$ sont les équations de ces cercles ?
- 2. Soit $M_0 \in \mathcal{C}$ le point de coordonnées (x_0, y_0) et soit \mathcal{D}_m la droite d'équation $y_0x x_0y m = 0$. Montrer que \mathcal{D}_m est perpendiculaire à la tangente en M_0 à \mathcal{C} .

III Droites et plans dans l'espace

III. 1 Équation d'un plan de l'espace

Proposition 13. Equation cartésienne d'un plan de l'espace

- Un vecteur normal de \mathcal{P} est alors

Proposition 14. Positions relatives de deux plans de l'espace

Soient deux plans \mathcal{P} : ax + by + cz + d = 0 et \mathcal{P}' : a'x + b'y + c'z + d' = 0.

- Ils sont confondus si
- Ils sont parallèles si
- Leur intersection est une droite de l'espace sinon.

Exercice 5. L'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soit \mathcal{P}_m le plan d'équation x - my + mz = 1 avec m paramètre réel. Soient A(0, 1, -1), B(0, 0, 1) et C(1, -1, 1) trois points de l'espace.

- 1. Montrer que les trois points A, B et C déterminent un plan de l'espace, noté \mathcal{R} et en donner une équation.
- 2. Donner un vecteur normal à \mathcal{P}_m .
- 3. Est-il possible que \mathcal{P}_m et \mathcal{R} soient parallèles? Orthogonaux? Si oui, à quelle(s) condition(s)?
- 4. Soit \mathcal{D} une droite de vecteur directeur $\vec{v}(0,1,1)$. Montrer que \mathcal{D} est parallèle à \mathcal{P}_m .

Méthodes si on connaît un point A(a, b, c) et deux vecteurs directeurs non colinéaires $\vec{u}(u_1, u_2, u_3)$ et $\vec{v}(v_1, v_2, v_3)$:

• Équation paramétrique :

$$\begin{array}{ll} M(x,y,z) \in \mathcal{P} & \Longleftrightarrow & \overrightarrow{AM} \text{ s'écrit comme combinaison linéaire de } \vec{u} \text{ et de } \vec{v} \\ & \Longleftrightarrow & \exists (\lambda,\beta) \in \mathbb{R}^2, \ \overrightarrow{AM} = \lambda \vec{u} + \beta \vec{v} \\ & \Longleftrightarrow & \begin{cases} x = \\ y = \\ z = \end{cases} \end{array}$$

• Équation cartésienne : on résout le système d'inconnues (λ, μ) . L'équation de compatibilité que l'on obtient donne l'équation cartésienne du plan.

Méthode si on connaît un point A(a,b,c) et un vecteur normal $\vec{n}(n_1,n_2,n_3)$:

$$M(x,y,z) \in \mathcal{P} \iff \overrightarrow{AM} \text{ et } \overrightarrow{n} \text{ sont orthogonaux} \Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0$$

Exercice 6. L'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soient les points A(1,0,0), B(0,1,0) et C(0,0,2). Montrer que ces trois points détermine un plan. Donner un vecteur normal au plan puis donner une équation cartésienne du plan.

Exercice 7. L'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soient $A(5, 2, 1), \vec{u} = \vec{i} - 3\vec{j} + \vec{k}$ et $\vec{v} = \vec{i} + \vec{j}$.

- 1. Donner une équation du plan passant par A et de vecteurs directeurs les vecteurs \vec{u} et \vec{v} .
- 2. Donner une équation du plan normal à \vec{u} et passant par A.

III. 2 Équation d'une droite dans l'espace

Proposition 15. Equation cartésienne d'une droite de l'espace Toute droite de l'espace \mathcal{D} est l'intersection de deux plans non parallèles

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$$

avec (a, b, c) et (a', b', c') non proportionnels.

Méthodes si on connaît un point A(a,b,c) et un vecteur directeur non nul $\vec{u}(u_1,u_2,u_3)$:

• Équation paramétrique :

$$M(x,y,z) \in \mathcal{D} \iff \overrightarrow{AM} \text{ et } \overrightarrow{u} \text{ sont colinéaires}$$
 $\iff \exists \lambda \in \mathbb{R}, \ \overrightarrow{AM} = \lambda \overrightarrow{u}$ $\iff \begin{cases} x = \\ y = \\ z = \end{cases}$

• Équation cartésienne : On résout le système d'inconnue λ . Les deux équations de compatibilité que l'on obtient donnent les équations cartésiennes de la droite.

Exercice 8. L'espace est rapporté au repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. Soient les points A(1,0,0), B(0,1,0), C(0,0,2) et D(1,2,3).

- 1. Montrer que les trois points A, B et C déterminent un plan noté \mathcal{P} . Donner un vecteur normal au plan puis donner une équation cartésienne du plan.
- 2. Donner une représentation paramétrique de la droite passant par D et perpendiculaire au plan \mathcal{P} .
- 3. Donner les coordonnées de D_0 symétrique de D par rapport à \mathcal{P} .

IV Projection Orthogonale

Définition 8. Projection orthogonale.

- Soit M un point, et \mathcal{D} une droite. Le projeté orthogonal de M sur \mathcal{D} est le point H de \mathcal{D} tel que les droites \mathcal{D} et MH soient perpendiculaires.
- Soit M un point, et \mathcal{P} un plan. Le projeté orthogonal de M sur \mathcal{P} est le point H de \mathcal{P} tel que la droite MH soit orthogonale à \mathcal{P} .