AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

3

1	1. (Previously presented) A method for communicating between a first
2	semiconductor die and a second semiconductor die through optical signaling,
3	comprising:
4	converting an electrical signal into an optical signal using an electrical-to-
5	optical transducer located on a face of the first semiconductor die;
6	wherein the first semiconductor die and the second semiconductor die are
7	oriented face-to-face so that the optical signal generated on the first
8	semiconductor die shines on the second semiconductor die;
9	passing the optical signal through annuli located within metal layers on the
10	first semiconductor die to focus the optical signal onto the second semiconductor
11	die;
12	receiving the optical signal on a face of the second semiconductor die; and
13	converting the optical signal into a corresponding electrical signal using an
14	optical-to-electrical transducer located on the face of the second semiconductor
15	die.
1	2. (Cancelled)
1	3. (Original) The method of claim 1, wherein after generating the optical
2	signal on the first semiconductor die, the method further comprises using a lens to

focus the optical signal onto the second semiconductor die.

1	4. (Original) The method of claim 1, wherein after generating the optical
2	signal on the first semiconductor die, the method further comprises using a mirror
3	to reflect the optical signal, so that the optical signal can shine on the second
4	semiconductor die without the first semiconductor die having to be coplanar with
5	the second semiconductor die.
1	5-6 (Canceled).
1	7. (Previously presented) The method of claim 1,
2	
3	wherein multiple spatially adjacent electrical-to-optical transducers in the
	plurality of electrical-to-optical transducers transmit the same signal; and
4	wherein electronic steering circuits in the first semiconductor die direct
5	data to the multiple spatially adjacent electrical-to-optical transducers to correct
6	mechanical misalignment in X , Y and Θ coordinates.
1	8. (Previously presented) The method of claim 1,
2	wherein multiple spatially adjacent optical-to-electrical transducers in the
3	plurality of optical-to-electrical transducers receive the same signal; and
4	wherein electronic steering circuits in the second semiconductor die direct
5	data from the multiple spatially adjacent optical-to-electrical transducers to correct
6	mechanical misalignment in X , Y and Θ coordinates.
1	9. (Original) The method of claim 1, wherein the electrical-to-optical
2	transducer includes one of:
3	a Zener diode;
4	a light emitting diode (LED);
5	a vertical cavity surface emitting laser (VCSEL); and
5	an avalanche breakdown P-N diode.

1	10. (Original) The method of claim 1, wherein the optical-to-optical
2	transducer includes one of:
3	a P-N-diode photo-detector; and
4	a P-I-N-diode photo-detector.
1	11. (Previously presented) An apparatus for communicating between
2	semiconductor chips through optical signaling, comprising:
3	a first semiconductor die;
4	a second semiconductor die;
5	an electrical-to-optical transducer located on a face of the first
6	semiconductor die, which is configured to convert an electrical signal into an
7	optical signal;
8	wherein the first semiconductor die and the second semiconductor die are
9	oriented face-to-face so that the optical signal generated on the first
10	semiconductor die shines on the second semiconductor die;
11	annuli located within metal layers on the first semiconductor die
12	configured to focus the optical signal onto the second semiconductor die;
13	an optical-to-electrical transducer located on a face of the second
14	semiconductor die, which is configured to convert the optical signal received from
15	the first semiconductor die into a corresponding electrical signal.
1	12. (Cancelled)
1	13. (Original) The apparatus of claim 11, further comprising a lens
2	configured to focus the optical signal onto the second semiconductor die.
1	14. (Original) The apparatus of claim 11, further comprising a mirror
2	configured to reflect the optical signal, so that the optical signal can shine on the

3	second semiconductor die without the first semiconductor die having to be
4	coplanar with the second semiconductor die.
1	15-16 (Canceled).
1	17. (Previously presented) The apparatus of claim 11,
2	wherein multiple spatially adjacent electrical-to-optical transducers in the
3	plurality of electrical-to-optical transducers transmit the same signal; and
4	wherein electronic steering circuits in the first semiconductor die direct
5	data to the multiple spatially adjacent electrical-to-optical transducers to correct
6	mechanical misalignment in X , Y and Θ coordinates.
1	18. (Previously presented) The apparatus of claim 11,
2	wherein multiple spatially adjacent optical-to-electrical transducers in the
3	plurality of optical-to-electrical transducers receive the same signal; and
4	wherein electronic steering circuits in the second semiconductor die direct
5	data from the multiple spatially adjacent optical-to-electrical transducers to correct
6	mechanical misalignment in X , Y and Θ coordinates.
1	19. (Original) The apparatus of claim 11, wherein the electrical-to-optical
2	transducer includes one of:
3	a Zener diode;
4	a light emitting diode (LED);
5	a vertical cavity surface emitting laser (VCSEL); and
6	an avalanche breakdown P-N diode.
1	20. (Original) The apparatus of claim 11, wherein the optical-to-optical

transducer includes one of:

4	a P-I-N-diode photo-detector.
1	21. (Previously presented) A computer system including semiconductor
2	chips that communicate with each other through optical signaling, comprising:
3	a first semiconductor die containing one or more processors;
4	a second semiconductor die containing circuitry that communicates with
5	the one or more processors;
6	an electrical-to-optical transducer located on a face of the first
7	semiconductor die, which is configured to convert an electrical signal into an
8	optical signal;
9	wherein the first semiconductor die and the second semiconductor die are
10	oriented face-to-face so that the optical signal generated on the first
11	semiconductor die shines on the second semiconductor die;
12	annuli located within metal layers on the first semiconductor die
13	configured to focus the optical signal onto the second semiconductor die;
14	an optical-to-electrical transducer located on a face of the second
15	semiconductor die, which is configured to convert the optical signal received from
16	the first semiconductor die into a corresponding electrical signal.
1	22. (Cancelled)
1	23. (Original) The computer system of claim 21, further comprising a lens
2	configured to focus the optical signal onto the second semiconductor die.
1	24. (Original) The computer system of claim 21, further comprising a
2	mirror configured to reflect the ontical signal, so that the ontical signal can shine

a P-N-diode photo-detector; and

- 3 on the second semiconductor die without the first semiconductor die having to be
- 4 coplanar with the second semiconductor die.
- 1 25-26 (Canceled).
- 1 27. (Previously presented) The computer system of claim 21.
- wherein multiple spatially adjacent electrical-to-optical transducers in the
- 3 plurality of electrical-to-optical transducers transmit the same signal; and
- 4 wherein electronic steering circuits in the first semiconductor die direct
- 5 data to the multiple spatially adjacent electrical-to-optical transducers to correct
- 6 mechanical misalignment in X, Y and Θ coordinates.
- 1 28. (Previously presented) The computer system of claim 21,
- wherein multiple spatially adjacent optical-to-electrical transducers in the
- 3 plurality of optical-to-electrical transducers receive the same signal; and
- 4 wherein electronic steering circuits in the second semiconductor die direct
- 5 data from the multiple spatially adjacent optical-to-electrical transducers to correct
- 6 mechanical misalignment in X, Y and Θ coordinates.
- 1 29. (Original) The computer system of claim 21, wherein the electrical-to-
- 2 optical transducer includes one of:
- 3 a Zener diode:
- 4 a light emitting diode (LED);
- 5 a vertical cavity surface emitting laser (VCSEL); and
- 6 an avalanche breakdown P-N diode.
- 1 30. (Original) The computer system of claim 21, wherein the optical-to-
- 2 optical transducer includes one of:

J	a r-14-diode photo-detector; and
4	a P-I-N-diode photo-detector.
1	31. (Previously presented) The method of claim 1, wherein after
2	generating the optical signal on the first semiconductor die, the method further
3	comprises passing the optical signal through an interposer sandwiched between
4	the first semiconductor die and the second semiconductor die, wherein the
5	interposer contains one or more waveguides that direct the optical signal, so that
6	the optical signal shines on the second semiconductor die.
1	32. (Previously presented) The apparatus of claim 11, further comprising
2	an interposer sandwiched between the first semiconductor die and the second
3	semiconductor die, wherein the interposer contains one or more waveguides that
4	direct the optical signal, so that the optical signal shines on the second
5	semiconductor die.
1	33. (Previously presented) The computer system of claim 21, further
2	comprising an interposer sandwiched between the first semiconductor die and the
3	second semiconductor die, wherein the interposer contains one or more
4	waveguides that direct the optical signal, so that the optical signal shines on the
5	second semiconductor die.
1	34. (New) The method of claim 1,
2	wherein the electrical-to-optical transducer is a member of a plurality of
3	electrical-to-optical transducers located on the first semiconductor die; and
4	wherein the optical-to-electrical transducer is a member of a plurality of

optical-to-electrical transducers located on the first semiconductor die;

6	whereby a plurality of optical signals can be transmitted in parallel from
7	the first semiconductor die to the second semiconductor die.
1	35. (New) The apparatus of claim 11,
2	wherein the electrical-to-optical transducer is a member of a plurality of
3	electrical-to-optical transducers located on the first semiconductor die; and
4	wherein the optical-to-electrical transducer is a member of a plurality of
5	optical-to-electrical transducers located on the first semiconductor die;
6	whereby a plurality of optical signals can be transmitted in parallel from
7	the first semiconductor die to the second semiconductor die.
1	36. (New) The computer system of claim 21,
2	wherein the electrical-to-optical transducer is a member of a plurality of
3	electrical-to-optical transducers located on the first semiconductor die; and
4	wherein the optical-to-electrical transducer is a member of a plurality of
5	optical-to-electrical transducers located on the first semiconductor die;
5	whereby a plurality of optical signals can be transmitted in parallel from
7	the first semiconductor die to the second semiconductor die