数字电路 Digital Circuits and System

李文明 liwenming@ict.ac.cn

- 触发器概述
- SR锁存器
- 电平触发的触发器
- 边沿触发的触发器
- 触发器的逻辑功能及其描述方法

- 触发器概述
- SR锁存器
- 电平触发的触发器
- 边沿触发的触发器
- 触发器的逻辑功能及其描述方法

触发器概述

- 触发器含义
 - 能够存储1位二值信号的基本单元电路
 - 又称半导体存储单元或记忆单元
 - -特点
 - 具有两个能自行保持的稳定状态
 - 根据不同的输入信号可以置成 "0" 或 "1"

● 触发器分类

- 触发方式 (电平触发、边沿触发)
- •逻辑功能 (SR触发器、D触发器、JK触发器、T触发器等)
- 存储数据的原理 (静态触发器、动态触发器)

- 触发器概述
- SR锁存器
- 电平触发的触发器
- 边沿触发的触发器
- 触发器的逻辑功能及其描述方法

如何存储数据? 反馈

● 反馈: 把输出信号连接到输入端

- 正反馈: 反馈信号与输入信号同相位, 增强输入

- 负反馈: 反馈信号与输入信号相位相反, 削弱输入

● 存储 "一位"数据,正反馈,使电路的输出状态"维持不变"

- 两个"非门"可以存储"一位"数据

● 如何存储 "一位"新数据?

● 如何实现 "Load"和 "Remember"开关,并控制它们协同工作?

SR锁存器

• 或非门组成的SR锁存器

 u_{I1} 要**存入的数据**

 u_{o1}, u_{o2} 已存入的1位数据,互为反向

 G_1 相当于 "load" 开关

G₂ 相当于 "Remember" 开关

或非门SR锁存器工作过程(1)

- 当取值: $R_D = 0, S_D = 1$
 - $-S_D = 1 \square Q' = 0$
 - $-R_D = 0$ 并且Q' = 0,则 Q=1
 - 锁存器处于"1"态
 - $-称S_D$ 为置位端,或置"1"输入端
- 当取值: $R_D = 1, S_D = 0$
 - $-R_{D}=1$,则 Q=0
 - $-S_D = 0$ 并且Q = 0,则Q' = 1
 - 锁存器处于 "0" 态
 - $-称R_D$ 为复位端,或置 "0"输入端

S_D	R_D	Q'	Q	说明
0	0	Q'	Q	储存
0	1	1	0	置0,复位
1	0	0	1	置1, 置位
1	1	0	0	不定态,禁止

或非门SR锁存器工作过程(2)

• 当取值: $R_D = 0$, $S_D = 0$

- 若原态: Q = 1, Q' = 0, 则: Q = 1, Q' = 0

- 若原态: Q = 0, Q' = 1, 则: Q = 0, Q' = 1

- 锁存器状态维持不变

- 称为"存储状态"

- 若原态: Q = 1, Q' = 0, 则: Q = 0, Q' = 0

- 若原态: Q = 0, Q' = 1, 则: Q = 0, Q' = 0

- 锁存器处于 "0" 态,不定态

- 称为锁存器禁态,不允许出现

- 如何做到不出现?

S_D	R_D	Q'	Q	说明
0	0	Q'	Q	储存
0	1	1	0	置0,复位
1	0	0	1	置1,置位
1	1	0	0	不定态,禁止

与非门SR锁存器工作过程

S_D'	R_D'	Q'	Q	说明
0	0	1	1	不定态,禁止
0	1	0	1	置1, 置位
1	0	1	0	置0,复位
1	1	Q'	Q	储存

SR锁存器动作特点

任何时刻,输入都能 直接改变输出的状态

S'_与R'_同时为 "0"

则: Q, Q'同时为 "1"

- 触发器概述
- SR锁存器
- 电平触发的触发器
- 边沿触发的触发器
- 触发器的逻辑功能及其描述方法

电平触发的触发器原理

- 又称同步SR触发器
 - 在基本RS触发器之前增加电平控制信号CLK

- CLK=0时
 - -门 G_3 和 G_4 被封锁,输出为高电平。对于由 G_1 和 G_2 构成的SR锁存器,触发器保持原态,即 $Q^*=Q$

- CLK=1时
 - 此时门 G_3 和 G_4 开启,触发器输出由 S 和 R 决定

S	R	Q'	Q	说明
0	0	Q'	Q	储存
0	1	1	0	置0,复位
1	0	0	1	置1,置位
1	1	0	0	不定态,禁止

电平触发的触发器特性表

- ◆特性表:触发器在输入信号的和当前状态的控制下,转化成下一个状态的取值列表
- Q*是触发器的下一个状态
- 可以列出*Q**的逻辑函数式:

$$Q^* = (CLK) \bullet (S'R'Q + SR'Q' + SR'Q)$$
$$Q^* = (CLK) \bullet (S'R'Q + SR')$$

CLK	S	R	\boldsymbol{Q}	$oldsymbol{Q}^*$
0	X	X	0	0
0	X	X	1	1
1	0	0	0	0
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	1	0	1*
1	1	1	1	1*

电平触发的触发器的动作特点

只有当CLK为有效电平时,触发器才能接收输入信号,并按照输入信号把触发器的输出置成相应的状态

● 在CLK为有效电平的期间, S 和 R 的变化 都将引起输出状态的变化

电平触发的 "D触发器"

● RS触发器的R和S取值不能同时为"1",考虑用非门把R和S连在一起,只出一个输入控制信号—— D触发器

● 电平触发D触发器 (D型锁存器) 在CLK的有效电平期间内,输出状态始终跟随输入状态变化,即输出与输入状态相同

- 触发器概述
- SR锁存器
- 电平触发的触发器
- 边沿触发的触发器
- 触发器的逻辑功能及其描述方法

边沿触发器

- 设计原因
 - 提高可靠性,增强抗干扰能力
 - 触发器的次态仅取决于CLK的下降沿(或上升沿)到来时的输入信号状态,与在此前、后输入的状态没有关系。
- 常见的电路结构
 - 用两个电平触发D触发器构成的边沿触发器
 - 维持阻塞触发器
 - 利用门电路传输延迟时间的边沿触发器

双电平D触发器构成边沿触发器

- CLK=0期间, D在第一个触发器输出, 第二个触发器状态不变
- CLK从 "0" 到 "1" 瞬间(上升沿),第二个触发器的输出锁定在D

CLK	D	Q	$oldsymbol{Q}^*$
X	X	1	Q
1	0	X	0
1	1	X	1

电路结构框图

特性表

特性逻辑式: $Q^* = D$, 在CLK上升沿时刻

带异步控制的边沿触发器(1)

- 为实现异步置位和复位功能,引入置位端 S_D 和复位端 R_D
 - -当 $S_D = 1$, $R_D = 0$ 时, Q = 1 (置位)
 - -当 $S_D = 0$, $R_D = 1$ 时, Q = 0 (复位)
 - -正常工作时, S_D 和 R_D 加低电平

带异步控制的边沿触发器(2)

MODE SELECT — TRUTH TABLE

OPERATING MODE		INPUTS	OUTPUTS		
OPERATING MODE	SD	SD	D	ď	Q
Set	L	Н	X	Н	L
Reset (Clear)	Н	L	Х	L	Н
*Undetermined	L	L	Х	Н	Н
Load "1" (Set)	Н	Н	h	Н	L
Load "0" (Reset)	Н	Н	- 1	L	Н

- 触发器概述
- SR锁存器
- 电平触发的触发器
- 边沿触发的触发器
- 触发器的逻辑功能及其描述方法

触发器功能分类和描述方法

- 触发器按逻辑功能的分类
 - SR触发器、D触发器、JK触发器、T触发器
- 触发器的电路结构和逻辑功能、触发方式的关系
 - 主从结构、维持阻塞结构
 - -SR、D、JK、T
 - 电平触发、边沿触发 (上升沿、下降沿)

有限状态图

- 如何描述一个电路的功能特性?
 - 组合逻辑电路: 真值表、波形图、逻辑函数、符号图
 - 时序逻辑电路: 特性表、波形图、状态方程和驱动方程、有限状态图、符号图
- 有限状态图的画法
 - 确定电路状态: 电路所有可能的唯一不同配置模式 (状态)
 - 画出状态转移关系: 在输入作用下, 电路从一种状态转换到另一种状态的条件和输出

SR触发器状态图(1)

● 状态: 电路所有可能的唯一 不同配置模式

S_D	R_D	Q	$oldsymbol{Q}'$	说明
0	0	Q	$oldsymbol{Q}'$	储存
0	1	0	1	置0,复位
1	0	1	0	置1,置位
1	1	0	0	不定态,禁止

● 当SR=11时,触发器会进入 不定态,并可能在"00"与 "11"两个状态震荡

SR触发器状态图(2)

- QQ' = 11是瞬间即失的不稳定状态
- 锁存器总是尽可能维持在QQ' = 01或QQ' = 10的 稳定状态
- 为避免QQ' = 00状态出现,禁止 RS = 11出现,即约束条件为:RS=0

<i>S</i> —	1S	٦	$-\varrho$
<i>CLK</i> —	C 1		
R	1R	٦	─ — <i>Q'</i>

S_D	R_D	Q	$oldsymbol{Q}'$	说明
0	0	Q	$oldsymbol{Q}'$	储存
0	1	0	1	置0,复位
1	0	1	0	置1,置位
1	1	0	0	不定态,禁止

RS触发器的特性方程

- RS触发器的特性表如右所示
- 约束条件: RS = 0
- *Q**的卡诺图如下:

● 触发器的输出方程:

$$\begin{cases} Q^* = S'R'Q + SR'Q' + SR'Q = S'R'Q + SR' = S + R'Q \\ SR = 0 \quad (约束条件) \end{cases}$$

S	R	Q	Q^*
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	1*
1	1	1	1*

D触发器

● 凡在时钟信号作用下,符合下面的特性表所规定的触发器,均称为D触发器

特性方程: Q* = D

● 状态转换图

• 时钟上升沿触发

s_D ——	S	Q Q	
D	D		
CLK —	ightharpoonup c		
R_D	R	Q' Q'	,

CLK	D	Q	$oldsymbol{Q}^*$
1	0	0	0
1	0	1	0
†	1	0	1
1	1	1	1

JK触发器

特性方程: Q* = JQ' + K'Q

$$Q^* = J'K'Q + JK'Q' + JK'Q + JKQ'$$

$$= J'K'Q + JQ' + JK'Q$$

$$= JQ' + K'Q \qquad \mathbf{J=1}$$

$$\mathbf{Q} \qquad \mathbf{K=0}$$

• 触发器符号

J	K	Q	$oldsymbol{Q}^*$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

T触发器

特性方程: Q* = TQ' + T'Q

● 状态图:

T	Q	Q^*
0	0	0
0	1	1
1	0	1
1	1	0

- 与JK触发器的关系: J=K=T
- T=1时: 输入时钟使触发器翻转
- T=0时: 触发器状态维持不变

电路结构、逻辑功能和触发方式(1)

• 电路结构与逻辑功能不存在固定的对应关系

同步SR触发器电平触发

两个电平触发D触发器结构——边沿触发D触发器

电路结构、逻辑功能和触发方式(2)

- 电路结构与触发方式有固定的对应关系
 - 同步SR触发器属于电平触发
 - 在*CLK*= 1触发器动作

电路结构、逻辑功能和触发方式(3)

- 电路结构与触发方式有固定的对应关系
 - 采用主从结构的触发器,是脉冲(边沿)触发器, Q和Q'状态的变化发生在CLK的下降沿
 - 如主从SR触发器

● 采用两个电平触发器构成的主从结构,都 属于边沿触发器

电路结构、逻辑功能和触发方式(4)

- 维持阻塞结构D触发器采用上升沿触发
 - SN54/74LS74A

问题和建议?

