Amendments to the Abstract:

ABSTRACT

Please replace the abstract that appears on page 16 of the specification with the following revised abstract which is submitted on a separate sheet.

Abstract

The invention relates to a magneto-inductive method for determining the flow rate of a medium flowing through a measuring tube [[(2)]] in the direction of the measuring tube axis. In order to be able to detect a coating formation on a measuring electrode early and with a high degree of certainty, a test pulse (U_p) of defined pulse length (t_p) is issued to the measuring electrode [[(3, 4)]]; at least one signal in response to the test pulse (U_p) is determined at at least two measuring points in time (t_1, t_2) , wherein the measuring points in time (t_1, t_2) lie in a time window $(t_{end} - t_{begin})$, which is so selected that no predictable disturbance signals occur on the measuring electrode [[(3, 4)]] in this time window $(t_{end} - t_{begin})$. On the basis of the response signal determined in the measuring points in time (t_1, t_2) , the relaxation time [[()]], or the length of time until the reaching of a predetermined state of discharge (U_i) , of the measuring electrode [[(3, 4)]] is determined; on the basis of the determined relaxation time [[()]], or on the basis of the length of time until the reaching of the defined state of discharge (U_i) , of the measuring electrode [[(3, 4)]], a malfunctioning of the measuring electrode (3, 4) is detected, or becomes detectable.

[[(Fig. 2)]]