算法竞赛个人模板

 Cu_OH_2

2024年4月2日

E	录	7 图论
1	通用 1	7.1 2-SAT
_	1.1 基础框架	7.2 Belinian Fold 辨识
	1.2 实用代码	7.4 Dinic 算法
	1.3 注意事项 1	7.5 Floyd 算法
	at Tababa	7.6 Kosaraju 算法
2	动态规划 1	7.7 Tarjan 算法
	2.1 单调队列优化多重背包	7.8 圆方树
	2.2 二进制分组优化多重背包	7.9 K 短路
		7.11 原始对偶算法
3	字符串 2	7.12 Prim 算法
	3.1 KMP 算法	7.13 Kruskal 算法
	3.2 扩展 KMP 算法	7.14 Kruskal 重构树
	3.3 字典树	o NAW II F
	3.4 AC 自动机	8 计算几何 8.1 平面坐标旋转
	3.5 后缀自动机	8.1 平面坐标旋转 8.2 平面最近点对
	3.6 回文自动机	0.2 闽政辽杰州
	3.8 最小表示法	9 杂项算法
	3.9 字符串哈希	9.1 普通莫队算法
	0.0 1 11 ± 4 ± 4 ± 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	9.2 带修改莫队算法
4	数学 6	9.3 莫队二次离线
	4.1 快速幂 6	9.4 整体二分
	4.2 矩阵快速幂 6	9.5 三分
	4.3 矩阵求逆	9.7 快速排序
	4.4 排列奇偶性	9.8 枚举集合
	4.5 组合数递推	9.9 CDQ 分治 +CDQ 分治
	4.6 线性基	9.10 CDQ 分治 + 数据结构 =
	4.8 连续乘法逆元	40 1000
	4.9 数论分块 8	10 博弈论
	4.10 欧拉函数 8	10.1 Fibonacci 博弈
	4.11 线性素数筛 9	10.2 Wytholi 科弈
	4.12 欧几里得算法 + 扩展欧几里得算法 9	10.10 6.10011 1.100110110110111 [1]
	4.13 中国剩余定理	
	4.14 扩展中国剩余定理 9	
	4.15 哥德巴赫猜想 10	
5	数据结构 10	
-	5.1 哈希表	
	5.2 ST 表	
	5.3 并查集	
	5.4 笛卡尔树	
	5.5 树状数组 11	
	5.6 二维树状数组	
	5.7 线段树	
	5.8 历史最值线段树	
	5.9 动态开点线段树	
	5.11 李超线段树	
6	树论 15	
	6.1 LCA	
	6.2 树的直径 16	
	6.3 树哈希	
	6.5 树上启发式合并	

7 1	.
7.1	2-SAT
7.2	Bellman-Ford 算法
7.3	Dijkstra 算法
7.4	Dinic 算法
7.5	Floyd 算法
7.6	Kosaraju 算法
7.7	Tarjan 算法
7.8	圆方树
7.9	K 短路
7.10	SSP 算法
7.11	原始对偶算法
7.12	Prim 算法
7.13	Kruskal 算法
	Kruskal 重构树
计算	江何
	平面坐标旋转
8.2	
杂页	領法
9.1	普通莫队算法
9.2	带修改莫队算法
9.3	莫队二次离线
9.4	整体二分
0.1	三分
9.5	
9.5	
9.6	离散化
9.6 9.7	离散化
9.6 9.7 9.8	离散化
9.6 9.7 9.8 9.9	离散化
9.6 9.7 9.8	离散化
9.6 9.7 9.8 9.9 9.10	离散化
9.6 9.7 9.8 9.9 9.10 0 博弈 10.1	离散化

1 通用

1.1 基础框架

```
#include<bits/stdc++.h>
using namespace std;
using l1 = long long;

void solve()
{
    return;
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    int T = 1;
    //cin >> T;
    while (T--) solve();
    return 0;
}
```

1.2 实用代码

```
//debug 常用宏
#define debug(x) cout << #x << " = " << x << endl
//本地文件读写
freopen("A.in", "r", stdin);
freopen("A.out", "w", stdout);
//builtin 系列位运算
__builtin_ffs(x); //最低位1是第几位 (从1开始, 不存在则0)
__builtin_clz(x)/__builtin_clzll(x); //前导高0的个数
__builtin_ctz(x)/__builtin_ctzll(x); //未尾低0的个数
 _builtin_popcount(x)/__builtin_popcountll(x); //1的个数
 _builtin_parity(x); //1的个数的奇偶性
//最高位 1 的位置 (从O开始,注意x不能为O)
__lg(x);
//long double 用浮点函数后面加1
sqrtl(x)/fabsl(x)/cosl(x);
//随机数生成器 (C++11, 返回unsigned/ull)
mt19937 mt(time(0));
mt19937_64 mt64(time(0));
mt();
shuffle(v.begin(), v.end(), mt);
//读入包含空格的一行字符串
getline(cin, str);
//优先队列自定义比较函数
priority_queue<T, vector<T>, decltype(cmp)> pq1(cmp); // lambda函数
priority_queue<T, vector<T>, decltype(&cmp)> pq1(cmp); // 普通函数
```

1.3 注意事项

```
/*
常犯错误:
1. 爆 long long
2. 数组首尾边界未初始化
3. 组间数据未清空重置
4. 交互题没用 end1
5. size() 参与减法导致溢出
6. for(j) 循环写成 ++i
7. 输入没写全/输入顺序错
*/
```

2 动态规划

2.1 单调队列优化多重背包

```
* 时间复杂度: O(nm)
* 说明: dp[j]只有可能从dp[j-k*w[i]]转移来
const int N = 100005:
const int M = 40005;
11 n, m; //种数、容积
ll v[N], w[N], k[N]; //价值、体积、数量
11 dp[M]; //使用i容积的最大价值
struct Node
   11 key, id;
void solve()
    for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i] >> k[i];
    for (int i = 1; i <= n; ++i)
        vector<deque<Node>> dq(w[i]);
       auto key = [&](int j) { return dp[j] - j / w[i] * v[i]; }; // dp[j]在比較基准下的指标
        auto join = [&](int j) //dp[j] 入队
           auto& q = dq[j % w[i]];
while (q.size() && key(j) >= q.back().key) q.pop_back();
           q.push_back({ key(j),j });
       for (int j = m; j >= max(011, m - k[i] * w[i]); --j) join(j);
for (int j = m; j >= w[i]; --j)
           auto& q = dq[j % w[i]];
           while (q.size() && q.front().id >= j) q.pop_front();
if (j - k[i] * w[i] >= 0) join(j - k[i] * w[i]);
dp[j] = max(dp[j], q.front().key + j / w[i] * v[i]);
       }
   for (int i = 0; i <= m; ++i) ans = max(ans, dp[i]);</pre>
   cout << ans << '\n';</pre>
   return;
```

2.2 二进制分组优化多重背包

```
* 时间复杂度: O(nmlogk)
* 说明: 二进制分组优化多重背包, 可bitset优化
const int N = 100005;
const int M = 40005;
struct Item
   11 v, w; //价值、体积
11 n, m; //种数、容积
11 dp[M]; //使用i容积的最大价值
void solve()
   cin >> n >> m;
   vector<Item> items;
   11 x, y, z;
   for (int i = 1; i <= n; ++i)
      11 b = 1;
      cin >> x >> y >> z;
      while (z > b)
         items.push_back(\{ x * b, y * b \});
         b <<= 1;
      items.push_back({ x * z, y * z });
   for (auto e : items)
      for (int i = m; i >= e.w; --i)
         dp[i] = max(dp[i], dp[i - e.w] + e.v);
```

```
}
}
ll ans = 0;
for (int i = 0; i <= m; ++i) ans = max(ans, dp[i]);
cout << ans << '\n';
return;
}</pre>
```

2.3 动态 DP

```
时间复杂度: O(qlogn)
* 说明:
* 1. 以CF1814E为例。
* 2. 如果转移只涉及相邻两个位置,可以尝试将转移方程表示为矩阵乘法。
* 2. 如来我修万少众旧中四门上上,马尔西岛山市区上,不知太帝等。 3. 由于矩阵乘法满足结合律,可以用线段树维护,实现动态带修改。
const int N = 200005:
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3;
struct SegTree
   struct Node
       int lef, rig;
       array<array<11, 2>, 2> mat;
   vector<Node> tree;
   void update(int src)
       for (int i = 0; i < 2; ++i)</pre>
          for (int j = 0; j < 2; ++j)
             auto v1 = tree[src << 1].mat[i][1] + tree[src << 1 |</pre>
                   1].mat[1][j];
             auto v2 = tree[src << 1].mat[i][0] + tree[src << 1 |</pre>
                   1].mat[1][j];
             auto v3 = tree[src << 1].mat[i][1] + tree[src << 1 |</pre>
                   1].mat[0][j];
             tree[src].mat[i][j] = min({ v1, v2, v3 });
          }
      }
       return;
   }
   void settle(int src, ll val)
       tree[src].mat[1][1] = val;
       tree[src].mat[0][0] = 0;
       tree[src].mat[0][1] = tree[src].mat[1][0] = INFLL;
   SegTree(int x) { tree.resize(x * 4 + 1); }
   void build(int src, int lef, int rig, ll arr[])
   {
      tree[src].lef = lef;
      tree[src].rig = rig;
      if (lef == rig)
          settle(src, arr[lef]);
          return;
       int mid = lef + (rig - lef) / 2;
      build(src << 1, lef, mid, arr);
build(src << 1 | 1, mid + 1, rig, arr);</pre>
       update(src);
       return;
   }
   void modify(int src, int pos, 11 val)
      if (tree[src].lef == tree[src].rig)
          settle(src, val);
          return;
       int mid = tree[src].lef + (tree[src].rig - tree[src].lef) /
       if (pos <= mid) modify(src << 1, pos, val);</pre>
       else modify(src << 1 | 1, pos, val);</pre>
      update(src);
```

```
11 query() { return tree[1].mat[1][1] * 2; }
};
int n, q, k;
11 a[N], x;

void solve()
{
    cin >> n;
    for (int i = 1; i <= n - 1; ++i) cin >> a[i];
    SegTree sgt(n - 1);
    sgt.build(1, 1, n - 1, a);
    cin >> q;
    for (int i = 1; i <= q; ++i)
    {
        cin >> k >> x;
        sgt.modify(1, k, x);
        cout << sgt.query() << '\n';
    }
    return;
}</pre>
```

3 字符串

3.1 KMP 算法

```
* 时间复杂度: O(n)
* 1.nxt[i]表示t[i] (下标从0开始) 失配时下一次匹配的位置
* 2.nxt[n]在匹配中无必要作用, 但构成前缀数组
* 3.前缀数组pi[i]=nxt[i+1]+1, 代表前缀t[0,i]的最长前后缀长度
struct KMP
   string t;
   vector<int> nxt:
   KMP() {}
   KMP(const string& str) { init(str); }
   void init(const string& str)
      t = str;
      nxt.resize(t.size() + 1);
      nxt[0] = -1;
      for (int i = 1; i <= t.size(); ++i)</pre>
         int now = nxt[i - 1];
         while (now != -1 && t[i - 1] != t[now]) now = nxt[now];
         nxt[i] = now + 1;
      return;
   }
   int first(const string& s)
      int ps = 0, pt = 0;
      while (ps < s.size())</pre>
         while (pt != -1 && s[ps] != t[pt]) pt = nxt[pt];
         ps++, pt++;
         if (pt == t.size()) return ps - t.size();
      return -1;
   vector<int> every(const string& s)
      vector<int> v;
      int ps = 0, pt = 0;
      while (ps < s.size())</pre>
         while (pt != -1 && s[ps] != t[pt]) pt = nxt[pt];
         ps++, pt++;
         if (pt == t.size())
            v.push back(ps - t.size());
            pt = nxt[pt];
      }
      return v;
   }
};
```

3.2 扩展 KMP 算法

```
* 时间复杂度: O(n)
* 说明
* 1.2函数代表后缀与母串的最长公共前缀
* 2.还可以求模式串与文本串每个后缀的LCP
struct ExKMP
   string t;
   vector<int> z;
   ExKMP(const string& str)
      z.resize(t.size());
      z[0] = t.size();
      int 1 = 0, r = -1;
      for (int i = 1; i < t.size(); ++i)</pre>
         if (i \le r \&\& z[i - 1] \le r - i + 1) z[i] = z[i - 1];
            z[i] = max(0, r - i + 1);
            while (i + z[i] < t.size() && t[z[i]] == t[i + z[i]]) z
                 [i]++;
         if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
  }
   vector<int> ext(const string& s)
      vector<int> res(s.size());
      int 1 = 0, r = -1;
      for (int i = 0; i < s.size(); ++i)</pre>
         if (i \le r \&\& z[i - 1] \le r - i + 1) res[i] = z[i - 1];
         else
            res[i] = max(0, r - i + 1);
            while (i + res[i] < s.size() && res[i] < t.size() && t[</pre>
                res[i]] == s[i + res[i]]) res[i]++;
         if (i + res[i] - 1 > r) l = i, r = i + res[i] - 1;
      return res;
  }
};
```

3.3 字典树

```
.
* 时间复杂度: O(sigma(n))
* 说明:
* 1.字典树也即前缀树,每个结点代表一个前缀
* 2.字母表变化只需要修改映射函数F()
* 3.若需要遍历trie树可以用out数组记录出边降低复杂度
struct Trie
  const int ALPSZ = 26:
  vector<vector<int>> trie;
  vector<int> tag;
  //vector<vector<int>> out;
  inline int F(char c) { return c - 'a'; }
  Trie() { init(); }
  void init()
     create();
     return;
  int create()
     trie.push_back(vector<int>(ALPSZ));
     tag.push_back(0);
     //out.push_back(vector<int>());
     return trie.size() - 1;
   void insert(const string& t)
     int now = 0;
```

```
for (auto e : t)
{
    if (!trie[now][F(e)])
    {
        int newNode = create();
        //out[now].push_back(F(e));
        trie[now][F(e)] = newNode;
    }
    now = trie[now][F(e)];
    tag[now]++;
    }
    return;
}
return;
}
int count(const string& pre)
{
    int now = 0;
    for (auto e : pre)
    {
        now = trie[now][F(e)];
        if (now == 0) return 0;
    }
    return tag[now];
}
```

3.4 AC 自动机

```
,
* 时间复杂度: O(alpsz*sigma(len(t))+len(s))
* 说明:
* 1.本模板以小写英文字母为字母表举例,修改字母表可以通过修改F()函数完成
* 2.Trie图优化: 建立fail指针时, fail指针指向的结点有可能依然失配, 需要多
* 次跳转才能到达匹配结点。可以将所有结点的空指针补全,置为该结点的跳转
* 终点。此时根据BFS序,在计算tr[x][i]的fail指针时,fail[x]一定已遍历
* 过,且tr[fail[x]][i]一定存在,要么为fail[x]接收i的后继状态,要
* tr[x][i]的跳转终点。无论哪种情况,fail[tr[x][i]]都可以直接置为
* tr[fail[x]][i]
* 3.last优化:多模式匹配过程中,对于文本串的每个前缀s',沿fail指针路径寻
 找为s'后缀的模式串,途中可能经过无贡献的模式串真前缀结点; last优化使
* 得跳转时跳过真前缀结点直接到达上方第一个模式串结点。last数组可以完全
* 4. 树上差分优化: 统计每种模式串出现次数时, 每匹配到一个模式串都要向上跳
    -次,这个过程相当于区间加一,可以用更新差分数组代替,最后再计算前
* 缀和即可。
struct ACAM
  vector<vector<int>> trie; //trie树指针
  vector<int> tag; //标记数组
  vector<int> fail; //失配函数
  vector<int> last; //跳转路径上一个模式串结点
  vector<int> cnt; //计数器
  const int ALPSZ = 26; //字母表大小
  int ord: //结点个数
  inline int F(char c) { return c - 'a'; }
  ACAM() { init(); }
  void init()
     ord = -1:
     newNode();
  int newNode()
     trie.push back(vector<int>(ALPSZ));
     tag.push_back(0);
     return ++ord;
  void addPat(const string& t)
     int now = 0;
     for (auto e : t)
        if (!trie[now][F(e)]) trie[now][F(e)] = newNode();
        now = trie[now][F(e)];
     tag[now]++;
   void buildAM()
     fail.resize(ord + 1);
     last.resize(ord + 1);
     cnt.resize(ord + 1);
```

```
queue<int> q;
      for (int i = 0; i < 26; ++i)
         //第一层结点的fail指针都指向0,不需要处理
         if (trie[0][i]) q.push(trie[0][i]);
      while (q.size())
         int now = q.front();
         q.pop();
         for (int i = 0; i < 26; ++i)
            int son = trie[now][i];
            if (son)
               fail[son] = trie[fail[now]][i];
                if (tag[fail[son]]) last[son] = fail[son];
                else last[son] = last[fail[son]];
               q.push(trie[now][i]);
            else trie[now][i] = trie[fail[now]][i];
      }
      return;
   int count(const string& s) //统计出现的模式串种数
      int now = 0, ans = 0;
      for (auto e : s)
      {
         now = trie[now][F(e)];
         int p = now;
         while (p) //累加树上差分
            ans += tag[p];
            p = last[p];
         }
      return ans;
  }
};
```

3.5 后缀自动机

```
* 时间复杂度: O(n*ALPSZ)
* 说明:字符集较大可以将next换成map<char,int>
struct SAM
  struct State
     int maxlen; //结点代表的最长子串长度
     int link; //后缀链接, 连向不在该点中的最长后缀
     vector<int> next;
     State(): maxlen(0), link(-1) { next.resize(26); }
  vector<State> node;
  vector<ll> cnt; //子串出现次数 (endpos集合大小) int now; //接收上一个字符到达的结点
  int size; //当前结点个数
  inline int F(char c) { return c - 'a'; }
  SAM(int x)
  {
     node.resize(x * 2 + 5);
     cnt.resize(x * 2 + 5);
now = 0; //从根节点开始转移
     size = 1; //建立一个代表空串的根节点
  }
  void extend(char c)
     int nid = size++;
     cnt[nid] = 1;
     node[nid].maxlen = node[now].maxlen + 1;
     int p = now;
     while (p != -1 \&\& node[p].next[F(c)] == 0)
        node[p].next[F(c)] = nid;
        p = node[p].link;
     if (p == -1) node[nid].link = 0; //连向根结点
```

```
int ori = node[p].next[F(c)];
          if (node[p].maxlen + 1 == node[ori].maxlen) node[nid].link
                = ori:
          else
          {
             //将ori结点的一部分拆出来分成新结点split
             int split = size++;
             node[split].maxlen = node[p].maxlen + 1;
             node[split].link = node[ori].link;
             node[split].next = node[ori].next;
             while (p != -1 \&\& node[p].next[F(c)] == ori)
                node[p].next[F(c)] = split;
                p = node[p].link;
             node[ori].link = node[nid].link = split;
      }
      now = nid;
      return;
   void build(const string& s)
      for (auto e : s) extend(e);
      return;
   void DFS(int x, vector<vector<int>>& son)
       for (auto e : son[x])
         DFS(e, son);
         cnt[x] += cnt[e]; //link树上父节点endpos为所有子结点endpos之
       return;
   void count() //计算endpos大小
      //建立link树
      vector<vector<int>> son(size):
      for (int i = 1; i < size; ++i) son[node[i].link].push_back(i)</pre>
       //在link树 \ dfs
      DFS(0, son);
      return;
   11 substr() //本质不同子串个数
      11 res = 0:
      for (int i = 1; i < size; ++i)</pre>
         res += node[i].maxlen - node[node[i].link].maxlen;
       return res;
};
```

3.6 回文自动机

```
inline int F(char c) { return c - 'a'; }
   PAM(int x)
      node.resize(x + 3);
      node[0] = State(-1, 0); //奇根, link无意义
      node[1] = State(0, 0); //偶根, link指向奇根
      cnt.resize(x + 3);
      now = 0; //第一个字符由奇根转移
      size = 2;
   void build(const string& s)
      auto find = [&](int x, int p) //寻找x后缀中左方为s[p]的最长回文
         while (p - node[x].len - 1 < 0 \mid \mid s[p] != s[p - node[x].
              len - 1]) x = node[x].link;
         return x;
      for (int i = 0; i < s.size(); ++i)</pre>
         now = find(now, i);
          if (!node[now].next[F(s[i])]) //对应结点不存在则需要新建
             int nid = size++;
             node[nid].len = node[now].len + 2; //新建状态结点 node[nid].link = 1; //若now=0, 对应结点为单字符, 指向偶根
             if (now) node[nid].link = node[find(node[now].link, i)
                  ].next[F(s[i])]; //否则指向再前一个结点的扩展
             node[now].next[F(s[i])] = nid;
         now = node[now].next[F(s[i])];
         cnt[now]++;
      for (int i = size - 1; i >= 2; --i) cnt[node[i].link] += cnt[
           i]; //数量由母串向子串传递
      return:
  }
};
```

3.7 Manacher 算法

```
时间复杂度: O(n)
 说明:用n+1个分隔符将字符串分隔可以将奇偶回文子串过程统一处理
struct Manacher
   vector<int> odd, even; //以[i]或[i,i+1]为中心的最长回文串半径
   void work(const string& s)
      odd.resize(s.size());
      even.resize(s.size() - 1);
      int lef = 0, rig = -1, r;
      for (int i = 0; i < s.size(); ++i)</pre>
         if (i > rig) r = 1;
         else r = min(odd[lef + rig - i], rig - i) + 1; //利用对称位
              置答案
         while (i - r) = 0 \& i + r < s.size() \& s[i - r] == s[i + r]
               r]) r++; //暴力扩展
         odd[i] = --r; //记录答案
         if (i + r > rig) lef = i - r, rig = i + r; //扩展lef,rig范
      lef = 0, rig = -1;
      for (int i = 0; i + 1 < s.size(); ++i)
         if (i + 1 > rig) r = 1;
         else r = min(even[lef + rig - i - 1], rig - i) + 1;
         while (i + 1 - r) = 0 \& i + r < s.size() \& s[i + 1 - r]
              == s[i + r]) r++;
         even[i] = --r;
         if (i + r > rig) lef = i + 1 - r, rig = i + r;
      return:
   }
};
```

```
3.8 最小表示法
```

```
* 时间复杂度: O(n)
* 说明:求循环rotate得到的n种表示中字典序最小的一种
const int N = 300005:
int n, a[N];
void solve()
  cin >> n;
   for (int i = 1; i <= n; ++i) cin >> a[i];
   auto norm = [](int x) \{ return (x - 1) \% n + 1; \};
  int p1 = 1, p2 = 2, len = 1;
  while (p1 <= n && p2 <= n & len <= n)
     if (a[norm(p1 + len - 1)] == a[norm(p2 + len - 1)]) len++;
     else if (a[norm(p1 + len - 1)] < a[norm(p2 + len - 1)]) p2 +=
          len, len = 1;
     else p1 += len, len = 1;
     if (p1 == p2) p1++;
  int ans = min(p1, p2);
  return;
```

3.9 字符串哈希

```
* 时间复杂度: O(n)
* 说明:
* 1.字符串传入前必须处理为下标从1开始的模式!
* 2.可以O(log)比较字典序、O(nlog^2)/O(nlog)求最长公共子串
const int M1 = 998244389;
const int M2 = 998244391;
const int B1 = 31;
const int B2 = 29;
const int N = 1000005;
struct Base
   array<ll, N> pow{};
   Base(int base, int mod)
      pow[0] = 1;
      for (int i = 1; i <= N - 1; ++i)
        pow[i] = pow[i - 1] * base % mod;
   const 11 operator[](int idx) const { return pow[idx]; }
} p1(B1, M1), p2(B2, M2);
struct Hash
   vector<ll> hash1, hash2;
   void build(const string& s)
      int n = s.size() - 1;
     hash1.resize(n + 1);
      hash2.resize(n + 1);
      for (int i = 1; i <= n; ++i)
         hash1[i] = (hash1[i - 1] * B1 % M1 + s[i] - 'a' + 1) % M1;
         hash2[i] = (hash2[i - 1] * B2 % M2 + s[i] - 'a' + 1) % M2;
      return;
   11 merge(11 x, 11 y) { return x << 31 | y; }</pre>
   11 calc(int lef, int rig)
      11 res1 = (hash1[rig] - hash1[lef - 1] * p1[rig - lef + 1] %
          M1 + M1) % M1;
      11 res2 = (hash2[rig] - hash2[lef - 1] * p2[rig - lef + 1] %
          M2 + M2) % M2;
      return merge(res1, res2);
};
```

4 数学

4.1 快速幂

```
/**********************
* 时间复杂度: O(sqrt(n))
* 说明:
* 1.特殊情况下需要对res和a的初值进行取模,注意p不可取模
* 2.利用费马小定理求乘法逆元时注意仅当mod为质数时有效
* 3. 若p较大且mod为质数可以将p对mod-1取模
11 qpow(11 a, 11 p, 11 mod)
  11 \text{ res} = 1;
  while (p)
     if (p & 1) res = res * a % mod;
     a = a * a % mod;
     p >>= 1
  return res:
}
11 inv(11 a, 11 mod)
  return qpow(a, mod - 2, mod);
```

4.2 矩阵快速幂

```
时间复杂度: O(n^3logp)
const int MOD = 1e9 + 7:
struct Square
   int n:
   vector<vector<ll>> a;
   Square(int n): n(n) { a.resize(n, vector<ll>(n)); }
   void unit()
      for (int i = 0; i < n; ++i)</pre>
         a[i][i] = 1;
      return;
};
Square mult(const Square& lhs, const Square& rhs)
   assert(lhs.n == rhs.n);
   int n = lhs.n;
   Square res(n);
   for (int i = 0; i < n; ++i)</pre>
      for (int j = 0; j < n; ++j)
         for (int k = 0; k < n; ++k)
            res.a[i][j] += lhs.a[i][k] * rhs.a[k][j] % MOD;
            res.a[i][j] %= MOD;
     }
   }
   return res;
}
Square qpow(Square a, 11 p)
   int n = a.n;
   Square res(n);
   res.unit();
   while (p)
      if (p & 1) res = mult(res, a);
      a = mult(a, a);
      p >>= 1;
   return res:
}
```

4.3 矩阵求逆

```
* 时间复杂度: O(n^3)
  说明:初等变换消元
const int MOD = 1e9 + 7;
ll qpow(ll a, ll p)
   11 \text{ res} = 1;
   while (p)
      if (p & 1) res = res * a % MOD;
      a = a * a % MOD;
      p >>= 1;
   return res;
11 inv(11 x) { return qpow(x, MOD - 2); }
struct Square
   int n;
   vector<vector<11>> a;
   Square(int n): n(n) { a.resize(n, vector<ll>(n)); }
   void unit()
      for (int i = 0; i < n; ++i)
      {
         for (int j = 0; j < n; ++j)
            a[i][j] = (i == j);
         }
      return;
   bool inverse()
      Square rig(n);
      rig.unit();
      for (int i = 0; i < n; ++i)
         // 找到第i列最大值所在行
         11 tar = i;
         for (int j = i + 1; j < n; ++j)
             if (abs(a[j][i]) > abs(a[tar][i])) tar = j;
         ,
// 与第i行交换
         if (tar != i)
             for (int j = 0; j < n; ++j)
                swap(a[i][j], a[tar][j]);
                swap(rig.a[i][j], rig.a[tar][j]);
         ,
// 不可逆
         if (a[i][i] == 0) return 0;
         11 iv = inv(a[i][i]);
         for (int j = 0; j < n; ++j)
            if (i == j) continue;
ll t = a[j][i] * iv % MOD;
for (int k = i; k < n; ++k)</pre>
                a[j][k] += MOD - a[i][k] * t % MOD;
                a[j][k] %= MOD;
             for (int k = 0; k < n; ++k)
                rig.a[j][k] += MOD - rig.a[i][k] * t % MOD;
                rig.a[j][k] %= MOD;
             }
         // 归一
         for (int j = 0; j < n; ++j)
             a[i][j] *= iv;
             a[i][j] %= MOD;
             rig.a[i][j] *= iv;
             rig.a[i][j] %= MOD;
```

```
for (int i = 0; i < n; ++i)
{
    for (int j = 0; j < n; ++j)
        {
            a[i][j] = rig.a[i][j];
        }
    }
    return 1;
}
</pre>
```

4.4 排列奇偶性

```
/**********************
* 时间复杂度: O(n)
* 说明:
* 1.顺序排列为偶排列
* 2.交换任意两个数,排列奇偶性改变
* 3.排列奇偶性等于逆序对数奇偶性
* 4. 求环的个数可以O(n)求得排列奇偶性
void solve()
{
  cin >> n;
  for (int i = 1; i <= n; ++i) cin >> a[i];
  bool inv = n & 1;
  vector<bool> vis(n + 1);
  for (int i = 1; i <= n; ++i)
     if (vis[i]) continue;
     int cur = i:
     while (!vis[cur])
       vis[cur] = 1;
       cur = a[cur];
     inv ^= 1;
  }
  return;
}
```

4.5 组合数递推

```
* 时间复杂度: O(nm)
* 说明: 递推预处理组合数
struct Comb
  vector<vector<ll>> c;
  Comb(int x, int y, int mod)
     c.resize(x + 1, vector<ll>(y + 1));
     for (int i = 0; i <= x; ++i) c[i][0] = 1;
     for (int i = 1; i <= x; ++i)
     {
        for (int j = 1; j <= i; ++j) c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
  11 val(int x, int y)
     if (x < 0 || y < 0) return 0;
     else return c[x][y];
  }
};
```

4.6 线性基

```
const int B = 50:
template<int bit>
struct LinearBasis
   vector<ll> v:
   LinearBasis() { v.resize(bit); }
   void insert(ll x)
       for (int i = bit - 1; i >= 0; --i)
          if (x >> i & 111)
             if (v[i]) x ^= v[i];
             else
                 v[i] = x;
          }
      return;
   11 qmax()
      11 \text{ res} = 0;
      for (int i = bit - 1; i >= 0; --i)
          if ((res ^ v[i]) > res) res ^= v[i];
      return res;
   void merge(const LinearBasis<bit>& b)
       for (auto e : b.v) insert(e);
      return;
};
```

4.7 高精度

```
* 时间复杂度: O(n)/O(n^2)
const int N = 5005;
struct Large
  array<ll, N> ar{};
  int len = 0;
  Large() {}
  Large(11 x)
     int p = 0;
     while (x)
       ar[p++] = x % 10;
       x /= 10;
     updateLen();
  Large(const string& s)
     for (int i = 0; i < s.size(); ++i)</pre>
       ar[i] = s[s.size() - 1 - i] - '0';
     updateLen();
  void updateLen()
     len = ar.size();
     for (int i = ar.size() - 1; i >= 0; --i)
       if (ar[i]) break;
       len = i;
     return;
  Large& operator=(const Large& rhs)
     for (int i = 0; i < ar.size(); ++i) ar[i] = rhs.ar[i];</pre>
     updateLen();
```

```
return *this:
}
Large operator+(const Large& rhs) const
   Large res;
    for (int i = 0; i < ar.size(); ++i) res.ar[i] = ar[i] + rhs.</pre>
         ar[i];
    for (int i = 0; i < ar.size() - 1; ++i)</pre>
       res.ar[i + 1] += res.ar[i] / 10;
       res.ar[i] %= 10;
    res.updateLen();
    return res;
Large& operator+=(const Large& rhs)
    for (int i = 0; i < ar.size(); ++i) ar[i] += rhs.ar[i];</pre>
    for (int i = 0; i < ar.size() - 1; ++i)
       ar[i + 1] += ar[i] / 10;
       ar[i] %= 10;
    updateLen();
    return *this;
}
Large operator-(const Large& rhs) const
    Large res;
    for (int i = 0; i < ar.size(); ++i) res.ar[i] = ar[i] - rhs.</pre>
         ar[i];
    for (int i = 0; i < ar.size() - 1; ++i)</pre>
    {
       if (res.ar[i] < 0)
           res.ar[i] += 10;
          res.ar[i + 1]--;
       }
    res.updateLen():
    return res;
}
Large operator*(const 11 rhs) const
    Large res;
   for (int i = 0; i < ar.size(); ++i) res.ar[i] = ar[i] * rhs;
for (int i = 0; i < ar.size() - 1; ++i)</pre>
       if (res.ar[i] > 9)
           res.ar[i + 1] += res.ar[i] / 10;
           res.ar[i] %= 10;
    res.updateLen();
    return res;
}
Large& operator*=(const 11 rhs)
    for (int i = 0; i < ar.size(); ++i) ar[i] *= rhs;</pre>
    for (int i = 0; i < ar.size() - 1; ++i)</pre>
       if (ar[i] > 9)
           ar[i + 1] += ar[i] / 10;
           ar[i] %= 10;
    updateLen();
    return *this;
}
Large operator*(const Large& rhs) const
    Large res;
    Large dup = *this;
    for (int i = 0; i < rhs.len; ++i)</pre>
       res += dup * rhs.ar[i];
       dup *= 10;
    return res;
Large& operator*=(const Large& rhs)
```

```
{
    *this = *this * rhs;
    return *this;
}

costream& operator<<(ostream& out, const Large& large)
{
    if (large.len == 0)
    {
        cout << '0';
        return out;
    }
    for (int i = large.len - 1; i >= 0; --i) cout << large.ar[i];
    return out;
}</pre>
```

4.8 连续乘法逆元

4.9 数论分块

```
* 时间复杂度: O(sqrt(n))
* 说明: k%i=k-k/i*i => sigma(k%i)=k*n-sigma(k/i*i)
11 n, k;
int main()
   //求sigma[i=1,n](k%i)
  11 ans = 0;
  cin >> n >> k;
  for (ll lef = 1, rig; lef <= n; lef = rig + 1) //分块
     if (k >= lef)
        rig = min(n, k / (k / lef));
     else //该区间大于k (余数都为k)
        rig = n:
     ans += k * (rig - lef + 1) - (k / lef) * (lef + rig) * (rig -
          lef + 1) / 2;
  cout << ans << '\n';
  return 0;
}
```

4.10 欧拉函数

4.11 线性素数筛

```
* 时间复杂度: 0(n)
* 说明:
* 1. 筛出x以内所有质数
* 2.sieve[i]表征i是否为合数
struct PrimeSieve
  vector<int> sieve;
  vector<ll> prime;
  void build(int x)
  {
     sieve.resize(x+1);
     sieve[1] = 1;
     for (int i = 2; i <= x; ++i)
       if (sieve[i] == 0) prime.push_back(i);
       for (auto e : prime)
         if (e > x / i) break;
sieve[i * e] = 1;
         if (i % e == 0) break;
    return;
  }
};
```

4.12 欧几里得算法 + 扩展欧几里得算法

```
/***********************
.
* 时间复杂度: 0(logn)
* 说明:
* 1. 欧几里得算法: 求最大公因数
* 2.扩展欧几里得算法: 求解ax+by=gcd(a,b)
* 3.由扩展欧几里得算法求出一组解x1,y1后,可得解集:
  x=x1+b/gcd(a,b)*k
  y=y1-a/gcd(a,b)*k;
  解出的x1不保证是最小正整数,需要手动调整。
* 4.ax+by=1有解=>1是gcd(a,b)倍数=>gcd(a,b)=1
* 5.扩展欧几里得还可以解同余方程求乘法逆元
* 6.拓展到ax+by=c: x的变化单元还是b/g, 但要先乘以c/g
11 gcd(11 a, 11 b)
  return b == 0 ? a : gcd(b, a % b);
}
ll exgcd(ll a, ll b, ll& x, ll& y)
  if (b == 0) { x = 1, y = 0; return a; }
  11 d = exgcd(b, a % b, x, y);
  11 newx = y, newy = x - a / b * y;
  x = newx, y = newy;
  return d;
}
ll inv(ll a, ll mod)
  exgcd(a, mod, x, y);
  return x;
```

```
11 a, b, x, y, g;

void solve()
{
    cin >> a >> b;
    g = exgcd(a, b, x, y);
    auto M = [](11 x, 11 m) {return (x % m + m) % m; };
    cout << M(x, b / g) << '\n';
    return;
}</pre>
```

4.13 中国剩余定理

```
* 时间复杂度: O(nlogn)
* 说明:
struct CRT
   vector<pair<11, 11>> f;
   inline 11 norm(11 x, 11 mod) { return (x % mod + mod) % mod; }
   11 qmul(11 a, 11 b, 11 mod)
       //a = norm(a, mod);
      //b = norm(b, mod);
ll res = a * b - (ll)((ld)a / mod * b + 1e-8) * mod;
      return norm(res, mod);
   11 exgcd(ll a, ll b, ll& x, ll& y)
      if (b == 0)
      {
          x = 1, y = 0;
          return a;
      11 d = exgcd(b, a % b, x, y);
      11 newx = y, newy = x - a / b * y;
      x = newx, y = newy;
      return d;
   11 inv(ll a, ll mod)
   {
      11 x, y;
exgcd(a, mod, x, y);
       return norm(x, mod);
   void insert(ll r, ll m)
      f.push_back({ r, m });
      return;
   ll work()
      ll mul = 1, ans = 0;
      for (auto e : f) mul *= e.second;
      for (auto e : f)
         11 m = mul / e.second;
11 c = m * inv(m, e.second);
ans += c * e.first;
      return norm(ans, mul);
   }
};
```

4.14 扩展中国剩余定理

```
b = norm(b, mod);
       11 \text{ res} = 0;
       while (b)
           if (b & 1) res = (res + a) % mod;
           a = (a + a) \% mod;
           b >>= 1;
        return res;
    11 exgcd(ll a, ll b, ll& x, ll& y)
        if (b == 0)
           x = 1, y = 0;
           return a;
        11 d = exgcd(b, a \% b, x, y);
       11 newx = y, newy = x - a / b * y;
       x = newx, y = newy;
        return d;
    void insert(ll r, ll m)
    {
       f.push_back({ r, m });
    pair<ll, ll> work()
        while (f.size() >= 2)
           pair<ll, ll> f1 = f.back();
           f.pop_back();
           pair<11, 11> f2 = f.back();
           f.pop_back();
           // n % m1 = r1, n % m2 = r2
           // n = x * m1 + r1 = y * m2 + r2

// x * m1 - y * m2 = r2 - r1
           11 g = exgcd(f1.second, f2.second, x, y);
           11 c = f2.first - f1.first;
           if (c % g) return { -1, -1 }; // 无解
           x = qmul(x, c / g, f2.second / g); // 输入可能为负, 输出非负
ll m = f1.second / g * f2.second; // m = lcm(m1, m2)
ll r = (x * f1.second + f1.first) % m; // r = norm(x) * m1
                   + r1
           f.push_back({ r, m });
       return f.front();
   }
};
```

4.15 哥德巴赫猜想

```
// 1. >=6 的整数可以写成三个质数之和
// 2. >=4 的偶数可以写成两个质数之和
// 3. >=7 的奇数可以写成三个奇质数之和
```

5 数据结构

5.1 哈希表

5.2 ST 表

```
* 时间复杂度: 建表O(nlogn)/查询O(1)
* 说明: 可重复贡献问题[f(r,r)=r]的静态区间查询, 一般是最值/gcd
struct ST
   int sz:
   vector<vector<ll>> st;
   ST(int x) { init(x); }
   void init(int x)
      st.resize(sz + 1, vector<ll>(32));
   void build(ll arr[])
      for (int i = 1; i <= sz; ++i) st[i][0] = arr[i];
      int lg = log2(sz);
      for (int i = 1; i <= lg; ++i)
         for (int j = 1; j <= sz; ++j)
            st[j][i] = st[j][i - 1];
            if (j + (1 << (i - 1)) <= sz)
               st[j][i] = max(st[j][i], st[j + (1 << (i - 1))][i -
                    1]);
            }
        }
      }
   11 query(int lef, int rig)
      int len = int(log2(rig - lef + 1));
return max(st[lef][len], st[rig - (1 << len) + 1][len]);</pre>
};
```

5.3 并查集

```
void merge(int x, int y)
{
    int fx = find(x), fy = find(y);
    if (fx == fy) return;
    if (v[fx] > v[fy]) swap(fx, fy);
    f[fx] = fy;
    v[fy] += v[fx];
    return;
}
```

5.4 笛卡尔树

```
,
* 时间复杂度: 0(n)
* 说明:
* 1.按照第一关键字顺序传入,按照第二关键字大小构建
* 2. 第一关键字满足二叉搜索树性质, 第二关键字满足小根堆性质
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3f;
struct CarTree
  vector<pair<11, 11>> v;
  vector<int> ls, rs;
  CarTree(): v(1, { -INFLL, -INFLL }), sz(0) {}
  void insert(ll a, ll b)
  {
     v.push_back({ a, b });
     return;
  void build()
  {
     ls.resize(v.size());
     rs.resize(v.size());
     stack<int> stk;
     stk.push(0);
     for (int i = 1; i <= sz; ++i)
        while (v[stk.top()].second > v[i].second) stk.pop();
        ls[i] = rs[stk.top()];
        rs[stk.top()] = i;
        stk.push(i);
     return:
  }
};
```

5.5 树状数组

```
时间复杂度: 建立O(n)/修改O(logn)/查询O(logn)
* 说明:
* 1. 动态维护满足区间减法的性质, 一般是求和
* 2.单点修改,区间查询
* 3.时间戳优化可以替代暴力清空
* 4.将加法换成取最值就可以维护不可逆前缀最值
struct Fenwick
  int sz;
  vector<ll> tree;
  //vector<int> tag;
  //int now;
  inline int lowbit(int x) { return x & -x; }
  Fenwick() {}
  Fenwick(int x) { init(x); }
  void init(int x)
     sz = x;
     tree.resize(sz + 1);
     //tag.resize(sz + 1);
     //now = 0;
  void clear()
     now++:
     return;
```

```
void add(int dst, ll v)
       while (dst <= sz)
          //if (tag[dst] != now) tree[dst] = 0;
          tree[dst] += v;
          //tag[dst] = now;
          dst += lowbit(dst);
       return;
   11 pre(int dst)
       11 \text{ res} = 0;
       while (dst)
       {
          if (tag[dst] == now) res += tree[dst];
          dst -= lowbit(dst);
          res += tree[dst];
          dst -= lowbit(dst);
       return res;
   inline ll rsum(int lef, int rig) { return pre(rig) - pre(lef - 1)
   void build(ll arr[])
       for (int i = 1; i <= sz; ++i)
          tree[i] += arr[i];
          int j = i + lowbit(i);
          if (j <= sz) tree[j] += tree[i];</pre>
       return;
   }
};
```

5.6 二维树状数组

```
* 时间复杂度: 修改O(log^2n)/查询O(log^2n)
struct Fenwick2
  int sz;
  vector<vector<ll>> tree;
  inline int lowbit(int x) { return x & -x; }
  Fenwick2() {}
  Fenwick2(int x) { init(x); }
  void init(int x)
     tree.resize(sz + 1, vector<ll>(sz + 1));
     return;
  void add(int x, int y, ll val)
     for (int i = x; i <= sz; i += lowbit(i))</pre>
        for (int j = y; j <= sz; j += lowbit(j))</pre>
          tree[i][j] += val;
     return;
  }
  11 pre(int x, int y)
     11 \text{ res} = 0;
     for (int i = x; i >= 1; i -= lowbit(i))
        for (int j = y; j >= 1; j -= lowbit(j))
          res += tree[i][j];
```

5.7 线段树

```
* 时间复杂度: 建立0(n)/询问0(logn)/修改0(logn)
 说明:维护区间和,支持区间加减
struct SegTree
   struct Node
      int lef, rig;
      ll val, tag;
   vector<Node> tree;
   SegTree() {}
   SegTree(int x) { tree.resize(x * 4 + 1); }
   // 由子节点及其标记更新父节点
   void update(int src)
      11 lw = tree[src << 1].rig - tree[src << 1].lef + 1;</pre>
      ll rw = tree[src << 1 | 1].rig - tree[src << 1 | 1].lef + 1;</pre>
      11 lv = tree[src << 1].val + tree[src << 1].tag * lw;</pre>
      ll rv = tree[src << 1 | 1].val + tree[src << 1 | 1].tag * rw;</pre>
      tree[src].val = lv + rv;
      return:
   // 下传标记并消耗
   void pushdown(int src)
      if (tree[src].lef < tree[src].rig)</pre>
      {
         tree[src << 1].tag += tree[src].tag;</pre>
         tree[src << 1 | 1].tag += tree[src].tag;</pre>
      11 wid = tree[src].rig - tree[src].lef + 1;
      tree[src].val += tree[src].tag * wid;
      tree[src].tag = 0;
      return;
   }
   void build(int src, int lef, int rig, ll arr[])
      tree[src] = { lef, rig, arr[lef], 0 };
      if (lef == rig) return;
      int mid = lef + (rig - lef) / 2;
      build(src << 1, lef, mid, arr);
build(src << 1 | 1, mid + 1, rig, arr);</pre>
      update(src);
      return:
   void build(int src, int lef, int rig)
      tree[src] = { lef, rig, 0, 0 };
      if (lef == rig) return;
int mid = lef + (rig - lef) / 2;
      build(src << 1, lef, mid);</pre>
      build(src << 1 | 1, mid + 1, rig);
      update(src);
      return;
   }
   void modify(int src, int lef, int rig, ll val)
      if (lef <= tree[src].lef && tree[src].rig <= rig)</pre>
      {
         tree[src].tag += val;
         return;
      if (lef <= tree[src << 1].rig) modify(src << 1, lef, rig, val</pre>
```

```
if (rig >= tree[src << 1 | 1].lef) modify(src << 1 | 1, lef,</pre>
            rig, val);
       undate(src);
       return;
   }
   11 query(int src, int lef, int rig)
       pushdown(src);
       if (lef <= tree[src].lef && tree[src].rig <= rig) return tree</pre>
            [src].val;
       11 \text{ res} = 0;
       if (lef <= tree[src << 1].rig) res += query(src << 1, lef,</pre>
            rig);
       if (rig >= tree[src << 1 | 1].lef) res += query(src << 1 | 1,</pre>
             lef, rig);
       return res;
* 时间复杂度: 建立O(n)/询问O(logn)/修改O(logn)
struct SegTree
   struct Node
   {
       int lef, rig;
       int val;
   vector<Node> tree;
   SegTree() {}
   SegTree(int x) { tree.resize(x * 4 + 1); }
   // 由子节点及其标记更新父节点
   void update(int src)
       tree[src].val = tree[src << 1].val + tree[src << 1 | 1].val;</pre>
       return:
   void build(int src, int lef, int rig, ll arr[])
       tree[src] = { lef, rig, arr[i] };
      if (lef == rig) return;
int mid = lef + (rig - lef) / 2;
      build(src << 1, lef, mid, arr);
build(src << 1 | 1, mid + 1, rig, arr);</pre>
       update(src);
       return;
   void build(int src, int lef, int rig)
       tree[src] = { lef, rig, 0 };
       if (lef == rig) return;
       int mid = lef + (rig - lef) / 2;
       build(src << 1, lef, mid);
build(src << 1 | 1, mid + 1, rig);</pre>
       update(src);
       return;
   void assign(int src, int pos, 11 val)
       if (tree[src].lef == tree[src].rig)
       {
          tree[src].val = val;
          return;
       if (pos <= tree[src << 1].rig) assign(src << 1, pos, val);</pre>
       else assign(src << 1 | 1, pos, val);</pre>
       update(src);
       return;
   11 query(int src, int lef, int rig)
       if (lef <= tree[src].lef && tree[src].rig <= rig) return tree</pre>
            [src].val;
       11 \text{ res} = 0;
       if (lef <= tree[src << 1].rig) res += query(src << 1, lef,</pre>
            rig);
          (rig >= tree[src << 1 | 1].lef) res += query(src << 1 | 1,</pre>
              lef, rig);
```

return res:

```
};
* 时间复杂度: 建立0(n)/询问0(logn)/修改0(logn)
* 说明:维护最大值,支持区间加减/二分查询第一个大于等于x的数
struct SegTree
   struct Node
       int lef, rig;
       11 val, tag;
   vector<Node> tree;
   SegTree() {}
   SegTree(int x) { tree.resize(x * 4 + 1); }
   // 由子节点及其标记更新父节点
   void update(int src)
       11 lv = tree[src << 1].val + tree[src << 1].tag;</pre>
       ll rv = tree[src << 1 | 1].val + tree[src << 1 | 1].tag;</pre>
       tree[src].val = max(lv, rv);
       return;
   // 下传标记并消耗
   void pushdown(int src)
       if (tree[src].lef < tree[src].rig)</pre>
       {
          tree[src << 1].tag += tree[src].tag;</pre>
          tree[src << 1 | 1].tag += tree[src].tag;</pre>
       tree[src].val += tree[src].tag;
       tree[src].tag = 0;
       return:
   }
   void build(int src, int lef, int rig, ll arr[])
       tree[src] = { lef, rig, arr[lef], 0 };
       if (lef == rig) return;
int mid = lef + (rig - lef) / 2;
       build(src << 1, lef, mid, arr);
build(src << 1 | 1, mid + 1, rig, arr);</pre>
       update(src);
       return;
   void build(int src, int lef, int rig)
       tree[src] = { lef, rig, 0, 0 };
       if (lef == rig) return;
int mid = lef + (rig - lef) / 2;
       build(src << 1, lef, mid);</pre>
       build(src << 1 | 1, mid + 1, rig);
       update(src);
       return;
   void modify(int src, int lef, int rig, ll val)
       if (lef <= tree[src].lef && tree[src].rig <= rig)</pre>
          tree[src].tag += val;
       pushdown(src);
       if (lef <= tree[src << 1].rig) modify(src << 1, lef, rig, val</pre>
       if (rig >= tree[src << 1 | 1].lef) modify(src << 1 | 1, lef,</pre>
            rig, val);
       update(src);
       return:
   }
   11 query(int src, int lef, int rig)
       pushdown(src);
       if (lef <= tree[src].lef && tree[src].rig <= rig) return tree
            [src].val;
       11 \text{ res} = 0;
       if (lef <= tree[src << 1].rig) res = max(res, query(src << 1,</pre>
             lef, rig));
       if (rig >= tree[src << 1 | 1].lef) res = max(res, query(src</pre>
```

5.8 历史最值线段树

```
* 时间复杂度: 询问0(logn)/修改0(logn)
* 说明:
* 1.维护区间历史最值,支持区间加减
struct SegTree
   struct Node
      int lef, rig;
      11 mval; //历史最值
      11 tag, mtag; //当前修改标签、tag生命周期内最值
   inline ll merge(ll x, ll y) { return min(x, y); } //最大还是最小
   inline void affect(11& x, 11 y) { x = merge(x, y); } //取最值 inline void update(int src) //由子节点及其标记更新父节点
      11 lv = tree[src << 1].mval + merge(tree[src << 1].mtag, 0);</pre>
      11 rv = tree[src << 1 | 1].mval + merge(tree[src << 1 | 1].</pre>
           mtag, 0);
      tree[src].mval = merge(lv, rv);
      return:
   inline void push(int src) //下传标记并消耗
       if (tree[src].lef < tree[src].rig)</pre>
      {
         affect(tree[src << 1].mtag, tree[src << 1].tag + tree[src
               1.mtag);
          affect(tree[src << 1 | 1].mtag, tree[src << 1 | 1].tag +
               tree[src].mtag);
         tree[src << 1].tag += tree[src].tag;
tree[src << 1 | 1].tag += tree[src].tag;</pre>
      tree[src].mval += merge(tree[src].mtag, 0);
      tree[src].mtag = tree[src].tag = 0;
      return:
   inline void mark(int src, ll val) //更新标记
      tree[src].tag += val;
      affect(tree[src].mtag, tree[src].tag);
      return;
   SegTree() {}
   SegTree(int x) { init(x); }
   void init(int x) { tree.resize(x * 4 + 1); }
   void build(int src, int lef, int rig)
      tree[src] = { lef, rig, 0, 0, 0 };
      if (lef == rig) return;
      int mid = lef + (rig - lef) / 2;
      build(src << 1, lef, mid);</pre>
      build(src << 1 | 1, mid + 1, rig);
      update(src);
      return;
   void modify(int src, int lef, int rig, ll val)
      if (lef <= tree[src].lef && tree[src].rig <= rig)</pre>
         mark(src, val);
          return;
       push(src);
```

```
if (lef <= tree[src << 1].rig) modify(src << 1, lef, rig, val</pre>
       if (rig >= tree[src << 1 | 1].lef) modify(src << 1 | 1, lef,</pre>
            rig, val);
       update(src);
       return;
   11 query(int src, int lef, int rig)
       if (lef <= tree[src].lef && tree[src].rig <= rig) return tree</pre>
            [src].mval;
       11 \text{ res} = 0;
       if (lef <= tree[src << 1].rig) res = merge(res, query(src <<</pre>
            1, lef, rig));
       if (rig >= tree[src << 1 | 1].lef) res = merge(res, query(src</pre>
              << 1 | 1, lef, rig));
       return res;
   }
};
```

5.9 动态开点线段树

```
* 时间复杂度: 询问O(logn)/修改O(logn)
* 说明: 注意空间大小
struct SegTree
   struct Node
      int ls = 0, rs = 0;
      11 \text{ val} = 0, \text{ tag} = 0;
   vector<Node> tree;
   int ord:
   SegTree(int x)
      tree.resize(x * 64 + 1);
      ord = 1;
   void push(int src, int lef, int rig)
      if (lef < rig)</pre>
      {
         if (!tree[src].ls) tree[src].ls = ++ord;
         if (!tree[src].rs) tree[src].rs = ++ord;
         tree[tree[src].ls].tag += tree[src].tag;
         tree[tree[src].rs].tag += tree[src].tag;
      tree[src].val += tree[src].tag * (rig - lef + 1);
      tree[src].tag = 0;
      return;
   void modify(int src, int lef, int rig, int l, int r, ll val)
      if (lef >= 1 && rig <= r)
      {
         tree[src].tag += val;
         return:
      int mid = lef + (rig - lef) / 2;
      if (1 <= mid)</pre>
         if (!tree[src].ls) tree[src].ls = ++ord;
         modify(tree[src].ls, lef, mid, l, r, val);
      if (r >= mid + 1)
         if (!tree[src].rs) tree[src].rs = ++ord;
         modify(tree[src].rs, mid + 1, rig, l, r, val);
      tree[src].val += (min(rig, r) - max(lef, l) + 1) * val;
      return;
   11 query(int src, int lef, int rig, int l, int r)
      push(src, lef, rig);
      if (lef >= 1 && rig <= r) return tree[src].val;</pre>
      11 \text{ res} = 0;
      int mid = lef + (rig - lef) / 2;
      if (1 <= mid)</pre>
         if (!tree[src].ls) tree[src].ls = ++ord;
         res += query(tree[src].ls, lef, mid, l, r);
```

```
if (r >= mid + 1)
{
    if (!tree[src].rs) tree[src].rs = ++ord;
    res += query(tree[src].rs, mid + 1, rig, 1, r);
}
    return res;
}
};
```

5.10 可持久化线段树

```
* 时间复杂度: 所有操作O(log(seglen))
* 说明:
* 1.建空根: 可以不靠离散化维护大区间, 但要谨慎考虑空间复杂度。
* 2. 主席树维护区间值域上性质:用可持久化权值线段树维护值域,将序列元素逐
* 个插入,由前缀和性质,区间值域上性质蕴含在新树和旧树的差之中。
* 3.标记永久化:路过结点时标记不下放,也不通过子结点更新,而是直接改变其
 值;向下搜索时记录累积标记值并在最后作用(因此assign()在维护最值时
* 无效)
* 4.区间第k大也可以整体二分/划分树
* 5.若维护区间超过int,记得把32换成64。
struct PerSegTree
   struct Node
      int ls, rs;
      ll val, tag;
     Node(): ls(0), rs(0), val(0), tag(0) {}
   vector<Node> tree;
   vector<int> root;
   int size;
  11 L, R;
   int _build(ll l, ll r, ll a[])
      int now = size++;
      if (1 == r) tree[now].val = a[1];
      else
      {
         11 m = 1 + (r - 1) / 2;
         tree[now].ls = _build(1, m, a);
tree[now].rs = _build(m + 1, r, a);
tree[now].val = tree[tree[now].ls].val + tree[tree[now].rs
              l.val;
      return now;
   void init(ll l, ll r, int cnt, ll a[]) //建初始树
      size = 0;
      L = 1, R = r;
      tree.resize(cnt * 32 + 5);
      root.push_back(_build(L, R, a));
      return:
   void init(ll l, ll r, int cnt) //建一个空根
      size = 1;
      L = 1, R = r;
      tree.resize(cnt * 32 + 5);
      root.push_back(0);
      return:
  void assign(int ver, 11 pos, 11 val) { root.push_back(_assign(
       root[ver], L, R, pos, val, 0)); }
  int _assign(int src, ll l, ll r, ll pos, ll val, ll tag)
      int now = size++;
      tree[now] = tree[src];
      tag += tree[now].tag;
      if (1 == r) tree[now].val = val - tag;
      else
         11 m = 1 + (r - 1) / 2;
         if (pos <= m) tree[now].ls = _assign(tree[now].ls, 1, m,</pre>
              pos, val, tag);
         else tree[now].rs = _assign(tree[now].rs, m + 1, r, pos,
              val, tag);
      return now;
   void modify(int ver, 11 lef, 11 rig, 11 val) { root.push_back(
        _modify(root[ver], L, R, lef, rig, val)); }
```

```
int _modify(int src, 11 1, 11 r, 11 lef, 11 rig, 11 val)
       int now = size++:
      tree[now] = tree[src];
       if (lef <= 1 && r <= rig) tree[now].tag += val;</pre>
       else if (1 <= rig && r >= lef)
          tree[now].val += val * (min(rig, r) - max(lef, l) + 1);
          11 m = 1 + (r - 1) / 2;
          if (lef <= m) tree[now].ls = _modify(tree[now].ls, 1, m,</pre>
               lef, rig, val);
          if (rig > m) tree[now].rs = _modify(tree[now].rs, m + 1, r
               , lef, rig, val);
       return now;
   11 query(int ver, 11 lef, 11 rig) { return _query(root[ver], L, R
         , lef, rig, 0); }
   11 _query(int src, 11 1, 11 r, 11 lef, 11 rig, 11 tag)
       tag += tree[src].tag;
       if (lef <= 1 && r <= rig) return tree[src].val + (r - 1 + 1)</pre>
           * tag;
       else if (1 <= rig && r >= lef)
          int m = 1 + (r - 1) / 2;
          11 \text{ res} = 0;
          if (lef <= m) res += _query(tree[src].ls, l, m, lef, rig,</pre>
               tag);
          if (rig > m) res += _query(tree[src].rs, m + 1, r, lef,
               rig, tag);
          return res;
      else return 0;
   il kth(ll lef, ll rig, int k) { return _kth(root[lef - 1], root[
    rig], L, R, k); }
   11 _kth(int osrc, int nsrc, 11 1, 11 r, int k)
       if (1 == r) return 1;
       int nsum = tree[tree[nsrc].ls].val + tree[tree[nsrc].ls].tag;
       int osum = tree[tree[osrc].ls].val + tree[tree[osrc].ls].tag;
       int dif = nsum - osum;
       int m = 1 + (r - 1) / 2;
       if (dif >= k) return _kth(tree[osrc].ls, tree[nsrc].ls, 1, m,
            k);
       else return _kth(tree[osrc].rs, tree[nsrc].rs, m + 1, r, k -
            dif);
   }
};
```

5.11 李超线段树

```
* 时间复杂度: 建立O(n)/修改O(log^2n)/查询O(logn)
* 说明:
* 1.谨慎使用,注意浮点数精度和结点初始化问题
const int N = 100005:
const double EPS = 1e-9;
struct Seg
  double k, b;
  int lef, rig;
  void init(int x0, int y0, int x1, int y1)
    lef = x0, rig = x1;
    if(x0 == x1)
       k = 0, b = max(y0, y1);
    }
    else
       k = double(y1 - y0) / (x1 - x0);
       b = y0 - x0 * k;
  double at(int x) { return k * x + b; }
} seg[N];
struct LCSegTree
  struct Node
```

```
int lef, rig, id;
   };
   vector<Node> tree:
   LCSegTree(int x) { tree.resize(x * 4 + 1); }
   void build(int src, int lef, int rig)
       tree[src] = { lef, rig, 0 };
       if (lef == rig) return;
       int mid = (lef + rig) / 2;
       build(src << 1, lef, mid);</pre>
       build(src << 1 | 1, mid + 1, rig);
       return;
   void add(int src, int id)
       if (seg[id].lef <= tree[src].lef && seg[id].rig >= tree[src].
          update(src, id);
       if (seg[id].lef <= tree[src << 1].rig) add(src << 1, id);</pre>
       if (seg[id].rig >= tree[src << 1 | 1].lef) add(src << 1 | 1,</pre>
       return;
   bool compare(int id1, int id2, int x)
       if (id1 == 0) return 1;
       if (id2 == 0) return 0;
       double r1 = seg[id1].at(x);
       double r2 = seg[id2].at(x);
       if (fabs(r1 - r2) < EPS) return id2 < id1;</pre>
       else return r2 > r1 + EPS;
   void update(int src, int id)
       int mid = (tree[src].lef + tree[src].rig) / 2;
       if (compare(tree[src].id, id, mid)) swap(tree[src].id, id);
if (tree[src].lef == tree[src].rig) return;
       if (compare(tree[src].id, id, tree[src].lef)) update(src <</pre>
            1, id);
        \begin{tabular}{ll} if (compare(tree[src].id, id, tree[src].rig)) & update(src << 1) \\ \end{tabular} 
             | 1, id);
       return;
   int query(int src, int x)
       if (tree[src].lef == tree[src].rig) return tree[src].id;
       if (x <= tree[src << 1].rig)</pre>
          int r = query(src << 1, x);
          if (compare(r, tree[src].id, x)) return tree[src].id;
          else return r;
       else
           int r = query(src << 1 | 1, x);</pre>
          if (compare(r, tree[src].id, x)) return tree[src].id;
          else return r;
   }
};
```

6 树论

6.1 LCA

```
vector<vector<int>> st:
   void dfs(int x)
       for (auto e : node[x])
          if (e == st[x][0]) continue;
          d[e] = d[x] + 1;
          st[e][0] = x;
          dfs(e);
       return;
   }
   void build(int sz)
       int lg = int(log2(sz));
       for (int i = 1; i <= lg; ++i)
          for (int j = 1; j <= sz; ++j)
             if (d[j] >= (1 << i))</pre>
                 st[j][i] = st[st[j][i - 1]][i - 1];
          }
       return;
   }
   LCA() {}
   LCA(int x, int root) { init(x, root); }
   void init(int x, int root)
      d.resize(x + 1);
       st.resize(x + 1, vector<int>(32));
       dfs(root);
      build(x);
       return:
   }
   int query(int a, int b)
      if (d[a] < d[b]) swap(a, b);</pre>
      int dif = d[a] - d[b];
for (int i = 0; dif >> i; ++i)
          if (dif >> i & 1) a = st[a][i];
      if (a == b) return a;
      else
       {
          for (int i = 31; i >= 0; --i)
              while (st[a][i] != st[b][i])
                 a = st[a][i];
                 b = st[b][i];
          return st[a][0];
      }
   }
};
```

6.2 树的直径

```
if (res.second > ret.second) ret = res;
   return ret:
int n, m;
void solve()
   cin >> n >> m;
   int u, v;
   11 w;
   for (int i = 1; i <= m; ++i)</pre>
      cin >> u >> v >> w;
      node[u].push_back({ v,w });
      node[v].push_back({ u,w });
   int s = farthest(1, 0, -1).first;
   auto res = farthest(s, 0, -1);
   int t = res.first;
   11 d = res.second;
   return;
```

6.3 树哈希

```
/********************
* 时间复杂度: O(nlogn)
* 说明: 判断有根树同构。无根树可通过找重心转换为有根树。
struct TreeHash
   int n, root;
   vector<vector<int>> node;
   vector<int> hav;
   map<vector<int>, int> mp;
   int ord = 0;
   void getTree(vector<int>& p)
   {
      n = p.size() - 1;
      node.clear();
      node.resize(n + 1);
      hav.clear();
      hav.resize(n + 1);
      root = -1;
      for (int i = 1; i <= n; ++i)</pre>
         if (p[i])
         {
            node[p[i]].push_back(i);
            node[i].push_back(p[i]);
         else root = i;
      }
      return:
   }
   void getD(int id, int pa, vector<int>& sz, vector<int>& d)
      sz[id] = 1:
      int res = 0:
      for (auto e : node[id])
         if (e != pa)
            getD(e, id, sz, d);
            sz[id] += sz[e];
            res = max(res, sz[e]);
         }
      if (id == root) d[id] = res;
      else d[id] = max(res, n - sz[id]);
      return;
   vector<int> center()
      vector<int> res;
      vector<int> sz(n + 1), d(n + 1);
      int mnn = n;
      getD(root, -1, sz, d);
      for (int i = 1; i <= n; ++i) mnn = min(mnn, d[i]);</pre>
      for (int i = 1; i \leftarrow n; ++i) if (d[i] == mnn) res.push_back(i
```

```
return res:
   }
   vector<int> hash(vector<int>& p)
       vector<int> res;
       getTree(p);
       auto v = center();
       for (auto e : v) dfs(e, -1), res.push_back(hav[e]);
       sort(res.begin(), res.end());
       return res;
   int hash(vector<int>& p, int root)
       getTree(p);
       dfs(root, -1);
       return hav[root];
   void dfs(int id, int pa)
       vector<int> v;
       for (auto e : node[id])
          if (e != pa)
              dfs(e, id);
              v.push_back(hav[e]);
       sort(v.begin(), v.end());
if (mp.count(v) == 0) mp[v] = ++ord;
       hav[id] = mp[v];
       return;
   }
};
```

6.4 树链剖分

```
* 时间复杂度: O(nlogn)
* 说明: 维护树上两点间路径相关性质, 也可求LCA。
const int N = 100005;
vector<int> node[N];
struct HLD
  vector<int> pa, dep, sz, hson;
  vector<int> top, dfn, rnk;
  int ord = 0;
  HLD(int x, int root)
     pa.resize(x + 1);
     dep.resize(x + 1);
     sz.resize(x + 1):
     hson.resize(x + 1);
     top.resize(x + 1);
     dfn.resize(x + 1);
     rnk.resize(x + 1);
     build(root);
     decom(root);
  }
  void build(int x)
     sz[x] = 1;
     int mxsz = 0;
     for (auto e : node[x])
        if (e != pa[x])
           pa[e] = x;
           dep[e] = dep[x] + 1;
           build(e);
           sz[x] += sz[e];
           if (sz[e] > mxsz)
              mxsz = sz[e];
              hson[x] = e;
        }
```

```
return:
   }
    void decom(int x)
       top[x] = x;
       dfn[x] = ++ord;
       rnk[ord] = x;
       if (hson[pa[x]] == x) top[x] = top[pa[x]];
       for (auto e : node[x]) if (e == hson[x]) decom(e);
for (auto e : node[x]) if (e != pa[x] && e != hson[x]) decom(
        return;
   int lcm(int u, int v)
        while (top[u] != top[v])
           if (dep[u] < dep[v]) v = pa[top[v]];</pre>
           else u = pa[top[u]];
        if (dep[u] < dep[v]) return u;</pre>
       else return v;
};
```

6.5 树上启发式合并

```
* 时间复杂度: O(nlogn)(*状态更新复杂度)
* 说明:
* 1.维护一个用于得出答案的状态, 离线预处理每个子树的答案
* 2.用dfn序代替递归的贡献计算和清除可以优化常数
const int N = 100005;
vector<int> node[N];
int n;
ll a[N];
struct DsuOnTree
   struct State
      vector<int> cnt;
      map<int, 11> mp;
      State() { init(); }
      void init() { cnt.resize(1e5 + 1); }
      void add(ll val)
         if (cnt[val]) mp[cnt[val]] -= val;
if (mp[cnt[val]] == 0) mp.erase(cnt[val]);
          cnt[val]++;
         mp[cnt[val]] += val;
         return;
      void del(ll val)
         mp[cnt[val]] -= val;
         if (mp[cnt[val]] == 0) mp.erase(cnt[val]);
          cnt[val]--:
          if (cnt[val]) mp[cnt[val]] += val;
         return;
      11 ans() { return mp.rbegin()->second; }
   } state;
   vector<int> big; //每个结点的重子
   vector<int> sz; //每个子树的大小
vector<ll> ans; //每个子树的答案
   const int root = 1;
   DsuOnTree()
      big.resize(n + 1);
      sz.resize(n + 1);
      ans.resize(n + 1);
   void dfs0(int x, int p)
      sz[x] = 1;
      for (auto e : node[x])
          if (e == p) continue;
          dfs0(e, x);
```

```
sz[x] += sz[e];
         if (sz[big[x]] < sz[e]) big[x] = e;</pre>
      }
      return;
   void del(int x, int p) //删除子树贡献
      state.del(a[x]);
      for (auto e : node[x])
          if (e == p) continue;
         del(e, x);
      return;
   void add(int x, int p) //计算子树贡献
      state.add(a[x]);
      for (auto e : node[x])
          if (e == p) continue;
          add(e, x);
      return;
   void dfs(int x, int p, bool keep)
      for (auto e: node[x]) //计算轻子子树答案
          if (e == big[x] || e == p) continue;
         dfs(e, x, 0);
      if (big[x]) dfs(big[x], x, 1); //计算重子子树答案和贡献for (auto e : node[x]) //计算轻子子树贡献
          if (e == big[x] || e == p) continue;
          add(e, x);
      state.add(a[x]); //计算自己贡献
      ans[x] = state.ans(); //计算答案
      if (keep == 0) del(x, p); //删除子树贡献
      return;
   }
   void work()
      dfs0(root, 0);
      dfs(root, 0, 0);
      return;
};
void solve()
   cin >> n;
   for (int i = 1; i <= n; ++i) cin >> a[i];
   int u, v;
   for (int i = 1; i <= n - 1; ++i)
      cin >> u >> v;
      node[u].push_back(v);
      node[v].push_back(u);
   DsuOnTree dot;
   dot.work();
   for (int i = 1; i <= n; ++i) cout << dot.ans[i] << ' ';
   cout << endl;</pre>
   return;
```

6.6 点分治

```
sz[x] = 1, maxd[x] = 0;
   for (auto e : node[x])
      if (vis[e] || e == fa) continue;
       getRoot(e, x, sum, root);
       sz[x] += sz[e];
      maxd[x] = max(maxd[x], sz[e]);
   maxd[x] = max(maxd[x], sum - sz[x]);
   if (maxd[x] < maxd[root]) root = x;</pre>
   return;
void dfs(int x, int fa, pair<int, int> p)
   p.first += D[s[x] - 'a'][0];
p.second += D[s[x] - 'a'][1];
   st.insert(p);
   for (auto e : node[x])
       if (vis[e] || e == fa) continue;
      dfs(e, x, p);
   return;
11 work(int x)
   11 \text{ res} = 0;
   multiset<pair<int, int>> ns;
   for (auto e : node[x])
       if (vis[e]) continue;
       dfs(e, x, make_pair(0, 0));
       for (auto p : st)
          pair<int, int> inv;
          inv.first = -(p.first + D[s[x] - 'a'][0]);
          inv.second = -(p.second + D[s[x] - 'a'][1]);
          if (inv == make_pair(0, 0)) res++;
          res += ns.count(inv);
      for (auto p : st) ns.insert(p);
      st.clear();
   return res:
11 divide(int x)
   11 \text{ res} = 0;
   vis[x] = 1;
   res += work(x);
   for (auto e : node[x])
      if (vis[e]) continue;
      int root = 0;
       getRoot(e, x, sz[e], root);
      res += divide(root);
   return res;
void solve()
   cin >> n >> s;
   for (int i = 1; i <= n - 1; ++i)
      int u, v;
      cin >> u >> v;
       node[u].push_back(v);
      node[v].push_back(u);
   maxd[0] = n + 1;
   int root = 0;
   getRoot(1, 0, n, root);
   cout << divide(root) << '\n';</pre>
   return;
```

7 图论

7.1 2-SAT

```
,
* 时间复杂度: O(N+M)
* 说明:按照推导关系建有向图,判断是否有两个矛盾点在同一强连通分量中
const int N = 2000005;
11 n, m, x, y;
bool a, b;
vector<int> node[N];
struct Tarjan
   int sz, cnt, ord;
   stack<int> stk;
   vector<vector<int>> g; //新图
   vector<int> dfn, low, id, val;
   Tarjan(int x)
      sz = x; //点数
      cnt = 0; //强连通分量个数
      ord = 0; //时间戳
      dfn.resize(sz + 1); //dfs序
      low.resize(sz + 1); //能到达的最小dfn
      id.resize(sz + 1); //对应的强连通分量编号
      val.resize(sz + 1); //新图点权
   void dfs(int x)
   {
      stk.push(x);
      dfn[x] = low[x] = ++ord;
      for (auto e : node[x])
         if (dfn[e] == 0)
             dfs(e);
            low[x] = min(low[x], low[e]);
         else if (id[e] == 0)
            low[x] = min(low[x], low[e]);
      if (dfn[x] == low[x]) //x为强连通分量的根
         cnt++;
         while (dfn[stk.top()] != low[stk.top()])
            id[stk.top()] = cnt;
            stk.pop();
         id[stk.top()] = cnt;
         stk.pop();
      return;
   void shrink()
      for (int i = 1; i <= sz; ++i)
         if (id[i] == 0) dfs(i);
      return:
   void rebuild()
      for (int i = 1; i <= sz; ++i)
         for (auto e : node[i])
            if (id[i] != id[e]) g[id[i]].push_back(id[e]);
      return;
   }
};
struct TwoSat
   vector<int> res;
   inline int negate(int x)
      if (x > n) return x - n;
      else return x + n;
   TwoSat(int x)
      res.resize(sz + 1);
```

```
bool work()
       Tarjan tj(sz * 2);
       tj.shrink();
       for (int i = 1; i <= n; ++i)
          if (tj.id[i] == tj.id[negate(i)]) return 0;
       for (int i = 1; i <= n; ++i)
          res[i] = tj.id[i] > tj.id[negate(i)];
       return 1;
};
void solve()
   cin >> n >> m;
   for (int i = 1; i <= m; ++i)
       cin >> x >> a >> y >> b;
       node[x + (!a) * n].push_back(y + b * n);
       node[y + (!b) * n].push_back(x + a * n);
   TwoSat ts(n);
   if (!ts.work()) cout << "IMPOSSIBLE\n";</pre>
   else
       cout << "POSSIBLE\n";</pre>
       for (int i = 1; i <= n; ++i) cout << ts.res[i] << ' ';</pre>
   return;
```

7.2 Bellman-Ford 算法

```
* 时间复杂度: O(NM)
* 1. 适用于带负权边的单源最短路问题
const int N = 1505;
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3;
struct Edge {11 to, v;};
vector<Edge> node[N];
struct BellmanFord
  int sz;
  vector<ll> dis;
  BellmanFord(int x)
     dis.resize(sz + 1, INFLL);
  void work(int s)
     dis[s] = 0;
     for (int i = 1; i <= sz - 1; ++i)
        for (int j = 1; j <= sz; ++j)
           for (auto e : node[j])
             dis[e.to] = min(dis[e.to], dis[j] + e.v);
        }
     return;
  bool negCir()
     for (int i = 1; i <= sz; ++i)
        for (auto e : node[i])
           if (dis[e.to] > dis[i] + e.v) return 1;
```

```
return 0;
}
};
```

7.3 Dijkstra 算法

```
时间复杂度: 朴素O(N^2)/堆优化O(MlogM)
 说明:
* 1. 只适用于非负边权
 2.稀疏图用堆优化,稠密图用朴素
* 3.注意处理图不连通的情况 (dis==INFLL)
const int N = 100005:
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3f3;
struct Edge {int to, v;};
vector<Edge> node[N];
struct Dijkstra
   struct NodeInfo
      int id;
      11 d;
      bool operator < (const NodeInfo& p1) const</pre>
         return d > p1.d;
  };
   int sz;
   vector<int> vis;
   vector<ll> dis;
   Dijkstra(int x)
   {
      sz = x;
      vis.resize(sz + 1);
      dis.resize(sz + 1, INFLL);
  }
   void workO(int s)
   {
     priority_queue<NodeInfo> pq;
dis[s] = 0;
      pq.push({ s,0 });
      while (pq.size())
      {
         int now = pq.top().id;
         pq.pop();
         if (vis[now] == 0)
            vis[now] = 1; //被取出一定是最短路
            for (auto e : node[now])
               if (vis[e.to] == 0 \& dis[e.to] > dis[now] + e.v)
                  dis[e.to] = dis[now] + e.v;
                  pq.push({ e.to,dis[e.to] });
            }
         }
      return;
  }
   void workS(int s)
      auto take = [&](int x)
         vis[x] = 1;
         for (auto e : node[x])
            dis[e.to] = min(dis[e.to], dis[x] + e.v);
         return;
      dis[s] = 0;
      take(s);
      for (int i = 1; i <= sz - 1; ++i)
         11 mnn = INFLL;
         int id = 0;
         for (int j = 1; j <= sz; ++j)</pre>
```

```
{
    if (vis[j] == 0 && dis[j] < mnn)
    {
        mnn = dis[j];
        id = j;
    }
    if (mnn == INFLL) return;
        take(id);
    }
    return;
}
</pre>
```

7.4 Dinic 算法

```
* 时间复杂度: 最差0(N^2*M)/二分图匹配0(sqrt(N)*M)
* 说明:
* 1. 求有向网络最大流/最小割
* 2.也可以求二分图最大匹配
* 3.cap表示残量, cap为0的边满流
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f;
const int N = 3005;
struct Edge
   int to; //终点
   int rev; //反向边对其起点的编号
   ll cap; //残量
   Edge() {}
   Edge(int to, int rev, ll cap) :to(to), rev(rev), cap(cap) {}
vector<Edge> node[N];
void AddEdge(int from, int to, 11 cap)
   int x = node[to].size();
   int y = node[from].size();
   node[from].push_back(Edge(to, x, cap));
   node[to].push_back(Edge(from, y, 0));
   return;
struct Dinic
   vector<int> dep; //每个点所属层深度
   vector<int> done; //每个点下一个要处理的邻接边
   queue<int> q;
   Dinic(int x)
   {
      sz = x:
      dep.resize(sz + 1);
      done.resize(sz + 1);
   bool bfs(int s, int t) //建立分层图
      for (int i = 1; i <= sz; ++i) dep[i] = 0;</pre>
      q.push(s);
      dep[s] = 1;
      done[s] = 0;
      bool f = 0:
      while (q.size())
         int now = q.front();
         q.pop();
         if (now == t) f = 1; //到达终点说明存在增广路
         for (auto e : node[now])
            if (e.cap && dep[e.to] == 0) //还有残量且未访问过
               q.push(e.to);
               done[e.to] = 0; //有增广路, 需要重新处理
               dep[e.to] = dep[now] + 1;
         }
      return f;
   ll dfs(int x, int t, ll flow) //统计增广路总流量
```

```
if (x == t || flow == 0) return flow; //找到汇点或断流
      11 rem = flow; //结点x当前剩余流量
      for (int i = done[x]; i < node[x].size() && rem; ++i)
         done[x] = i; //前i-1条边已经搞定, 不会再有增广路
         auto& e = node[x][i];
         if (e.cap && dep[e.to] == dep[x] + 1)//还有残量且为下一层
            ll inflow = dfs(e.to, t, min(rem, e.cap)); //计算流向e.
            if (inflow == 0) dep[e.to] = 0; //e.to无法流入, 本次增广
                 不再考虑
            e.cap -= inflow; //更新残量
            node[e.to][e.rev].cap += inflow; //更新反向边
            rem -= inflow; //消耗流量
      return flow - rem;
   11 work(int s, int t)
      11 aug = 0, ans = 0;
      while (bfs(s, t))
         while (aug = dfs(s, t, INFLL))
            ans += aug;
      return ans;
  }
};
```

7.5 Floyd 算法

```
* 时间复杂度: O(N^3)
* 说明: 多源最短路、最短路计数、最小环计数
const int N = 505;
const int MOD = 998244353;
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f;
11 cnt[N][N]; // 最短路条数
11 dis[N][N]; // 最短路长度
11 edg[N][N]; // 边长
void solve()
   cin >> n >> m;
   for (int i = 1; i <= n; ++i)
      for (int j = 1; j <= n; ++j)</pre>
         if (i == j) dis[i][j] = 0;
         else dis[i][j] = INFLL;
         cnt[i][j] = 0;
         edg[i][j] = 0;
   for (int i = 1; i <= m; ++i)</pre>
      cin >> u >> v >> w;
      dis[u][v] = edg[u][v] = w;
      cnt[u][v] = 1;
   map<ll, 11> ans;
   for (int k = 1; k <= n; ++k)
      // 用指向最大编号点的边作为一个环的代表
      for (int i = 1; i < k; ++i)</pre>
         if (edg[i][k] && cnt[k][i])
            ans[edg[i][k] + dis[k][i]] += cnt[k][i];
            ans[edg[i][k] + dis[k][i]] %= MOD;
      // 最短路计数
      for (int i = 1; i <= n; ++i)
         for (int j = 1; j <= n; ++j)</pre>
```

```
{
    if (dis[i][k] + dis[k][j] < dis[i][j])
    {
        dis[i][j] = dis[i][k] + dis[k][j];
        cnt[i][j] = cnt[i][k] * cnt[k][j] % MOD;
    }
    else if (dis[i][j] == dis[i][k] + dis[k][j])
    {
        cnt[i][j] += cnt[i][k] * cnt[k][j] % MOD;
        cnt[i][j] %= MOD;
    }
    }
}
if (ans.empty()) cout << "-1 -1\n";
else cout << ans.begin()->first << ' ' << ans.begin()->second << '\n';
return;
}</pre>
```

7.6 Kosaraju 算法

```
* 时间复杂度: O(N+M)
* 说明: 有向图强连通分量
const int N = 10005;
vector<int> node[N];
struct Kosaraju
   int sz, index = 0;
   vector<int> vis, ord;
   vector<vector<int>> rev;
   vector<int> id; //强连通分量编号
   Kosaraju(int x)
      sz = x;
      vis.resize(sz + 1);
      id.resize(sz + 1);
      rev.resize(sz + 1);
      ord.resize(1);
      for (int i = 1; i <= sz; ++i)
          for (auto e : node[i])
         {
             rev[e].push_back(i);
      for (int i = 1; i <= sz; ++i) if (vis[i] == 0) dfs1(i);</pre>
      for (int i = sz; i >= 1; --i) if (id[ord[i]] == 0) index++,
           dfs2(ord[i]);
   }
   void dfs1(int x)
      vis[x] = 1:
      for (auto e : node[x])
         if (vis[e] == 0) dfs1(e);
      ord.push_back(x);
      return;
   }
   void dfs2(int x)
      id[x] = index;
      for (auto e : rev[x])
         if (id[e] == 0) dfs2(e);
      return;
};
```

7.7 Tarjan 算法

```
* 2.求无向图点双连通分量和割点
* 3.求无向图边双连通分量和割边
struct SCC
   int sz, cnt, ord;
   stack<int> stk;
   vector<int> dfn, low, id;
   vector<vector<int>> g; // 新图
   SCC(int x)
       sz = x; // 点数
cnt = 0; // 连通分量个数
ord = 0; // 时间戳
       dfn.resize(sz + 1); // dfs序
low.resize(sz + 1); // 能到达的最小dfn
id.resize(sz + 1); // 连通分量编号
   void dfs(int x)
   {
       stk.push(x);
       dfn[x] = low[x] = ++ord;
       for (auto e : node[x])
          if (dfn[e] == 0) // 未访问过
              dfs(e);
              low[x] = min(low[x], low[e]);
           else if (id[e] == 0) // 在栈中
              low[x] = min(low[x], dfn[e]);
       if (dfn[x] == low[x]) // x为强连通分量的根
          cnt++;
           while (stk.top() != x)
              id[stk.top()] = cnt;
              stk.pop();
           id[stk.top()] = cnt;
          stk.pop();
       return:
   void shrink()
       for (int i = 1; i <= sz; ++i)
          if (id[i] == 0) dfs(i);
       return:
   void rebuild()
       g.resize(cnt + 1);
       for (int i = 1; i <= sz; ++i)
           for (auto e : node[i])
              if (id[i] != id[e]) g[id[i]].push_back(id[e]);
       return;
};
struct VBCC
   int sz, ord;
   stack<int> stk;
   vector<int> dfn, low, tag;
   vector<vector<int>> bcc;
   VBCC(int x)
       sz = x; // 点数
       ord = 0; // 时间戳
       dfn.resize(sz + 1); // dfs序
low.resize(sz + 1); // 能到达的最小dfn
       tag.resize(sz + 1); // 是否割点
   void dfs(int x, int fa)
       stk.push(x);
       dfn[x] = low[x] = ++ord;
       int son = 0;
       for (auto e : node[x])
```

```
if (dfn[e] == 0) // 未访问过
              son++;
              dfs(e, x);
              low[x] = min(low[x], low[e]);
              if (low[e] >= dfn[x]) // x可能是割点
                 if (fa) tag[x] = 1; // 不是dfs的根,则为割点
                 bcc.emplace_back();
                 while (stk.top() != e)
                     bcc.back().push_back(stk.top());
                 bcc.back().push_back(stk.top());
                 stk.pop();
                 bcc.back().push_back(x);
              }
          else if (e != fa) // 祖先
              low[x] = min(low[x], dfn[e]);
       if (fa == 0 && son >= 2) tag[x] = 1; // 特判dfs根是否为割点
       if (fa == 0 && son == 0) bcc.emplace_back(1, x); // 特判dfs根
             是否单独为一个分量
       return:
   void work()
       for (int i = 1; i <= sz; ++i)
          if (dfn[i]) continue;
          while (stk.size()) stk.pop();
          dfs(i, 0);
       return;
   }
};
struct EBCC
   int sz, ord;
vector<int> dfn, low, tag, vis;
vector<vector<int>> bcc;
   EBCC(int x, int y)
      sz = x; // 点数
ord = 0; // 时间戳
      dfn.resize(sz + 1); // dfs序
      low.resize(sz + 1); // 能到达的最小dfn vis.resize(sz + 1); // 是否已加入连通分量 tag.resize(y + 1); // 是否割边
   void dfs0(int x, int fa)
      dfn[x] = low[x] = ++ord;
       for (auto e : node[x])
          if (dfn[e.to] == 0) // 未访问过
              dfs0(e.to, x);
              low[x] = min(low[x], low[e.to]);
              if (low[e.to] > dfn[x]) tag[e.id] = 1; // 是割边
          else if (e.to != fa) // 祖先
             low[x] = min(low[x], dfn[e.to]);
      }
      return;
   void dfs(int x)
       bcc.back().push_back(x);
      vis[x] = 1;
       for (auto e : node[x])
          if (vis[e.to]) continue;
          if (tag[e.id]) continue;
          dfs(e.to);
       return;
   void work()
       for (int i = 1; i <= sz; ++i)
          if (dfn[i]) continue;
```

```
dfs0(i, 0);
}
for (int i = 1; i <= sz; ++i)
{
    if (vis[i]) continue;
    bcc.emplace_back();
    dfs(i);
}
return;
}
};</pre>
```

7.8 圆方树

```
* 说明:对点双中的任意三点a,b,c,一定存在a->b->c的简单路径
vector<int> node[N];
struct RSTree
   int sz, ord, cnt;
   stack<int> stk;
   vector<int> dfn, low, tag;
   vector<vector<int>> g;
   RSTree(int x)
     cnt = x; // 方点编号
     sz = x; // 点数
ord = 0; // 时间戳
     dfn.resize(sz + 1); // dfs序
     low.resize(sz + 1); // 能到达的最小dfn
     g.resize(sz * 2 + 1); // 圆方树
   void dfs(int x, int fa)
      stk.push(x);
     dfn[x] = low[x] = ++ord;
     for (auto e : node[x])
         if (dfn[e] == 0) // 未访问过
           low[x] = min(low[x], low[e]);
            if (low[e] >= dfn[x])
               cnt++;
               while (stk.top() != e)
                  g[cnt].push_back(stk.top());
                  g[stk.top()].push_back(cnt);
                  stk.pop();
               g[cnt].push_back(stk.top());
               g[stk.top()].push_back(cnt);
               stk.pop();
               g[cnt].push_back(x);
               g[x].push_back(cnt);
         else if (e != fa) // 祖先
           low[x] = min(low[x], dfn[e]);
        }
      return;
   void work()
      for (int i = 1; i <= sz; ++i)
         if (dfn[i]) continue;
         while (stk.size()) stk.pop();
         dfs(i, 0);
      return;
   }
};
```

```
,
* 时间复杂度: O(NklogN)
* 说明:利用A*算法。以估价函数值优先搜索,第k次访问某结点即k短路。
const int N = 1005:
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f;
struct E
   11 to, v;
struct V
   bool operator<(const V& v) const { return d > v.d; }
int n, m, k;
vector<E> node[N];
struct Dijkstra
   int sz;
   vector<ll> d;
   vector<int> vis;
   priority queue<V> pq;
   vector<vector<E>> rev;
   void rebuild()
      for (int i = 1; i <= sz; ++i)
          for (auto e : node[i])
             rev[e.to].push_back({ i,e.v });
      return;
   Dijkstra(int x, int s)
      d.resize(sz + 1, INFLL);
      vis.resize(sz + 1);
      rev.resize(sz + 1);
      rebuild();
      d[1] = 0;
      pq.push({ 1,0 });
      while (pq.size())
          auto now = pq.top();
          pq.pop();
          if (vis[now.id]) continue;
          vis[now.id] = 1;
          for (auto e : rev[now.id])
             if (vis[e.to] == 0 && d[e.to] > d[now.id] + e.v)
                d[e.to] = d[now.id] + e.v;
                pq.push({ e.to, d[e.to] });
         }
      }
  }
void solve()
   cin >> n >> m >> k;
   int u, v, w;
   for (int i = 1; i <= m; ++i)
      cin >> u >> v >> w;
      node[u].push_back({ v,w });
   Dijkstra dj(n, n);
   priority_queue<V> pq;
vector<int> vis(n + 1);
   pq.push({ n,dj.d[n] });
   vector<ll> ans(k, -1);
   while (pq.size())
      auto now = pq.top();
      pq.pop();
      if (now.id == 1 && vis[now.id] < k) ans[vis[now.id]] = now.d;</pre>
      vis[now.id]++;
      for (auto e : node[now.id])
```

```
if (vis[e.to] >= k) continue;
    pq.push({ e.to,now.d - dj.d[now.id] + e.v + dj.d[e.to] });
}
for (int i = 0; i < k; ++i) cout << ans[i] << '\n';
return;
}</pre>
```

7.10 SSP 算法

```
时间复杂度: O(NMF) (伪多项式, 与最大流有关)
* 说明:
* 1.求最小费用最大流
* 2.无法处理负环,需要提前排除
const int N = 5005;
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3;
struct Edge
  int to; //终点
   int rev; //反向边对其起点的编号
   11 cap; //残量
   11 cost; //单位流量费用
   Edge() {}
  Edge(int to, int rev, ll cap, ll cost) :to(to), rev(rev), cap(cap
       ), cost(cost) {}
};
vector<Edge> node[N];
void addEdge(int from, int to, 11 cap, 11 cost)
   int x = node[to].size();
   int y = node[from].size();
   node[from].push_back(Edge(to, x, cap, cost));
   node[to].push_back(Edge(from, y, 0, -cost));
   return;
}
struct SSP
   vector<ll> dis; //源点到i的最小单位流量费用
   vector<int> vis;
   vector<int> done; //每个点下一个要处理的邻接边
   queue<int> q;
  11 minc, maxf;
  SSP(int x)
     sz = x;
     dis.resize(sz + 1);
     vis.resize(sz + 1);
     done.resize(sz + 1);
     minc = maxf = 0;
  }
   bool spfa(int s, int t) //寻找单位流量费用最小的增广路
     vis.assign(sz + 1, 0);
     done.assign(sz + 1, 0);
     dis.assign(sz + 1, INFLL);
     dis[s] = 0:
      q.push(s);
     vis[s] = 1;
      while (q.size())
        int now = q.front();
        q.pop();
        vis[now] = 0;
         for (auto e : node[now])
           if (e.cap && dis[e.to] > dis[now] + e.cost) //还有残量且
              dis[e.to] = dis[now] + e.cost;
              if (vis[e.to] == 0) q.push(e.to), vis[e.to] = 1;
        }
      return dis[t] != INFLL;
   ll dfs(int x, int p, int t, ll flow) //沿增广路计算流量和费用
```

```
if (x == t || flow == 0) return flow; //找到汇点或断流
     vis[x] = 1; //防止零权环死循环
     11 rem = flow; //结点x当前剩余流量
      for (int i = done[x]; i < node[x].size() && rem; ++i)</pre>
         done[x] = i; //前i-1条边已经搞定, 不会再有增广路
         auto& e = node[x][i];
         if (e.to != p && vis[e.to] == 0 && e.cap && dis[e.to] ==
             dis[x] + e.cost)
            ll inflow = dfs(e.to, x, t, min(rem, e.cap)); //计算流向
                 e.to的最大流量
            e.cap -= inflow; //更新残量
            node[e.to][e.rev].cap += inflow; //更新反向边
            rem -= inflow; //消耗流量
      }
      vis[x] = 0; //出递归栈后可重新访问
      return flow - rem;
  void work(int s, int t)
     11 aug = 0;
      while (spfa(s, t))
         while (aug = dfs(s, 0, t, INFLL))
            maxf += aug;
           minc += dis[t] * aug;
      return;
  }
};
```

7.11 原始对偶算法

```
* 时间复杂度: O(MlogMF) (伪多项式, 与最大流有关)
* 说明:
* 1. 求最小费用最大流
* 2.无法处理负环,需要提前排除
const int N = 5005;
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3;
struct Edge
  int to; //终点
  int rev; //反向边对其起点的编号
   11 cap; //残量
  11 cost: //单位流量费用
  Edge() {}
  Edge(int to, int rev, ll cap, ll cost) :to(to), rev(rev), cap(cap
       ), cost(cost) {}
};
vector<Edge> node[N];
void addEdge(int from, int to, ll cap, ll cost)
  int x = node[to].size();
  int y = node[from].size();
   node[from].push_back(Edge(to, x, cap, cost));
  node[to].push_back(Edge(from, y, 0, -cost));
  return;
}
struct PrimalDual
  struct NodeInfo
     int id;
     11 d;
     bool operator < (const NodeInfo& p1) const</pre>
        return d > p1.d;
  int sz;
   vector<ll> h; //势能
   vector<int> vis;
   vector<int> done; //每个点下一个要处理的邻接边
```

```
vector<ll> dis:
queue<int> q;
priority_queue<NodeInfo> pq;
11 minc, maxf;
PrimalDual(int x)
   h.resize(sz + 1, INFLL);
   vis.resize(sz + 1);
   done.resize(sz + 1);
   dis.resize(sz + 1);
   minc = maxf = 0;
void spfa(int s) //求初始势能
   h[s] = 0;
   q.push(s);
   vis[s] = 1;
   while (q.size())
      auto now = q.front();
      q.pop();
      vis[now] = 0;
      for (auto e : node[now])
         if (e.cap && h[e.to] > h[now] + e.cost)
            h[e.to] = h[now] + e.cost;
            if (vis[e.to] == 0) q.push(e.to), vis[e.to] = 1;
      }
   return;
}
bool dijkstra(int s, int t)
   dis.assign(sz + 1, INFLL);
   vis.assign(sz + 1, 0);
   done.assign(sz + 1, \theta);
   dis[s] = 0:
   pq.push({ s,0 });
   while (pq.size())
      int now = pq.top().id;
      pq.pop();
      if (vis[now] == 0)
         vis[now] = 1; //被取出一定是最短路
         for (auto e : node[now])
            11 cost = e.cost + h[now] - h[e.to];
            if (vis[e.to] == 0 && e.cap && dis[e.to] > dis[now]
                 + cost)
                dis[e.to] = dis[now] + cost;
                pq.push({ e.to,dis[e.to] });
      }
   vis.assign(sz + 1, 0); //还原vis
   return dis[t] != INFLL;
}
11 dfs(int x, int t, 11 flow) //沿增广路计算流量和费用
   if (x == t || flow == 0) return flow; //找到汇点或断流
   vis[x] = 1; //防止零权环死循环
   11 rem = flow; //结点x当前剩余流量
   for (int i = done[x]; i < node[x].size() && rem; ++i)</pre>
      done[x] = i; //前i-1条边已经搞定, 不会再有增广路
      auto& e = node[x][i];
      if (vis[e.to] == 0 && e.cap && e.cost == h[e.to] - h[x])
           //势能差等于费用表明是最短路
         ll inflow = dfs(e.to, t, min(rem, e.cap)); //计算流向e.
              to的最大流量
         e.cap -= inflow; //更新残量
         node[e.to][e.rev].cap += inflow; //更新反向边
         rem -= inflow; //消耗流量
   vis[x] = 0; //出递归栈后可重新访问
   return flow - rem;
```

```
void work(int s, int t)
{
    spfa(s);
    ll aug = 0;
    while (dijkstra(s, t))
    {
        for (int i = 1; i <= sz; ++i) h[i] += dis[i]; //更新势能
        while (aug = dfs(s, t, INFLL))
        {
            maxf += aug;
            minc += aug * h[t];
        }
    }
    return;
}</pre>
```

7.12 Prim 算法

```
* 时间复杂度: O(N^2)
* 说明:
* 1.选点法最小生成树,适用于稠密图
* 2.注意考虑图不连通的情况
*********
const int N = 5005;
const int M = 200005;
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f3;
struct Edge {11 to, v;};
vector<Edge> node[N];
int n, m;
struct Prim
  int sz;
   vector(int> vis;
  vector<ll> dis;
  Prim(int x)
  {
     sz = x;
     vis.resize(sz + 1);
     dis.resize(sz + 1, INFLL);
  11 work()
      int now = 1;
     11 ans = 0;
      for (int i = 1; i <= sz - 1; ++i)
        vis[now] = 1;
        for (auto e : node[now])
           dis[e.to] = min(dis[e.to], e.v);
        11 mnn = INFLL;
        for (int j = 1; j <= sz; ++j)
           if (vis[j] == 0 && dis[j] < mnn)</pre>
              mnn = dis[j];
              now = j;
           }
        if (mnn == INFLL) return 0; //不连通
        ans += mnn;
     return ans;
  }
};
```

7.13 Kruskal 算法

```
const int N = 5005:
const int M = 200005;
struct Edge
   11 x, y, v;
   bool operator <(const Edge& e)</pre>
       return v < e.v;</pre>
};
Edge e[M];
int n, m;
ll kruskal()
   DSU dsu(n);
   11 \text{ ans} = 0;
   sort(e + 1, e + 1 + m);
   for (int i = 1; i <= m; ++i)
       if (dsu.find(e[i].x) != dsu.find(e[i].y))
       {
          ans += e[i].v;
          dsu.merge(e[i].x, e[i].y);
   return ans;
```

7.14 Kruskal 重构树

```
* 时间复杂度: 建立O(N)/查询O(logN)
* 说明:
* 1.用于解决最小瓶颈路问题
* 2.考虑了初始图不连通的问题
* 3.注意n=1特殊情况 (不用建树)
const int N = 100005:
struct DSU
   vector<int> f;
   void init(int x)
     f.resize(x + 1);
for (int i = 1; i <= x; ++i) f[i] = i;
     return;
   int find(int id) { return f[id] == id ? id : f[id] = find(f[id]);
   void attach(int x, int y) //将fx连向fy, 不按秩合并
     int fx = find(x), fy = find(y);
     f[fx] = fy;
     return;
  }
};
struct LCA
   vector<int> d;
   vector<vector<int>> st:
   void dfs(int x, vector<vector<int>>& son)
      for (auto e : son[x])
        d[e] = d[x] + 1;
        st[e][0] = x;
        dfs(e, son);
      return;
   void build(int x)
      int lg = int(log2(x));
      for (int i = 1; i <= lg; ++i)
         for (int j = 1; j <= x; ++j)
           if (d[j] >= (1 << i))</pre>
              st[j][i] = st[st[j][i - 1]][i - 1];
```

```
}
       }
       return:
   void init(int x)
       d.resize(x + 1);
       st.resize(x + 1, vector<int>(32));
       return;
   int query(int x, int y)
       if (d[x] < d[y]) swap(x, y);
int dif = d[x] - d[y];</pre>
       for (int i = 0; dif >> i; ++i)
          if (dif >> i & 1) x = st[x][i];
       if (x == y) return x;
       for (int i = 31; i >= 0; --i)
          while (st[x][i] != st[y][i])
              x = st[x][i];
             y = st[y][i];
       return st[x][0];
   }
};
struct Edge
   11 x, y, v;
   bool operator<(const Edge& rhs) const { return v < rhs.v; }</pre>
} edg[N];
struct KrsRebTree
   int size; //当前结点数, 最多为n*2-1
   vector<vector<int>> son; //子结点
   vector<ll> val; //点权
   LCA lca:
   DSU dsu;
   void build(int n, int m)
       son.resize(n * 2);
       val.resize(n * 2);
       dsu.init(n * 2 - 1);
       size = n;
       sort(edg + 1, edg + 1 + m);
       for (int i = 1; i \leftarrow m && size < n * 2 - 1; ++i)
          int fx = dsu.find(edg[i].x);
          int fy = dsu.find(edg[i].y);
          if (fx == fy) continue;
          size++;
          dsu.attach(fx, size);
          dsu.attach(fy, size);
          son[size].push_back(fx);
          son[size].push_back(fy);
          val[size] = edg[i].v;
       lca.init(size);
       for (int i = n + 1; i <= size; ++i)</pre>
          if (dsu.find(i) == i) lca.dfs(i, son); //对所有树的根dfs
       lca.build(size);
   11 query(int x, int y)
       if (dsu.find(x) == dsu.find(y)) return val[lca.query(x, y)];
       else return -1;
};
```

8 计算几何

8.1 平面坐标旋转

```
说明: 二维平面 1 一点绕另一点逆时针旋转
const double PI = acos(-1);
inline double deg_to_rad(int x) { return x * PI / 180; }
struct Point
   double x, y;
   void rotate(double rad)
       double newx = x * cos(rad) - y * sin(rad);
double newy = x * sin(rad) + y * cos(rad);
       x = newx;
       y = newy;
       return;
   }
   void rotate(Point p, double rad)
       Point rela = \{x - p.x,y - p.y\};
       rela.rotate(rad);
       x = rela.x + p.x;
      y = rela.y + p.y;
       return;
   }
};
```

8.2 平面最近点对

```
* 时间复杂度: 0(nlogn)
const int N = 400005;
const double INF = 1e100;
double sqr(double x) { return x * x; }
struct Point
  double x, y;
   double dis(const Point& rhs) { return sqrt(sqr(x - rhs.x) + sqr(y
         - rhs.y)); }
   bool operator<(const Point& rhs) { return x < rhs.x; }</pre>
} p[N];
double work(int lef, int rig)
   if (lef == rig - 1) return INF;
   int mid = lef + (rig - lef) / 2;
   double midx = p[mid].x;
   double low = min(work(lef, mid), work(mid, rig));
   int lp = lef, rp = mid;
   vector<Point> v;
   while (lp < mid || rp < rig)</pre>
      if (lp < mid && (rp == rig || p[rp].y > p[lp].y)) v.push_back
           (p[lp++]);
      else v.push_back(p[rp++]);
  for (int i = lef; i < rig; ++i) p[i] = v[i - lef];</pre>
  v.clear();
   for (int i = lef; i < rig; ++i)</pre>
      if (fabs(p[i].x - midx) < low) v.push_back(p[i]);</pre>
   for (int i = 1; i < v.size(); ++i)</pre>
      for (int j = i - 1; j >= 0; --j)
         if (v[i].y - v[j].y >= low) break;
         low = min(low, v[i].dis(v[j]));
      }
   return low;
}
void solve()
   cin >> n;
   for (int i = 1; i <= n; ++i) cin >> p[i].x >> p[i].y;
   sort(p + 1, p + 1 + n);
   cout << fixed << setprecision(4) << work(1, n + 1) << '\n';
```

```
return:
* 时间复杂度: O(nlogn)
* 说明: P7883 (整数)
                      分治/归并排序,需要注意距离和距离的平方
const int N = 400005;
const 11 INF = 0x3f3f3f3f3f3f3f3f3f;
11 sqr(11 x) { return x * x; }
struct Point
   11 x, y;
   11 dd(const Point& rhs) { return sqr(x - rhs.x) + sqr(y - rhs.y);
   bool operator<(const Point& rhs) { return x < rhs.x; }</pre>
} p[N];
11 work(int lef, int rig)
   if (lef == rig - 1) return INF;
   int mid = lef + (rig - lef) / 2;
   11 \text{ midx} = p[\text{mid}].x;
   11 low = min(work(lef, mid), work(mid, rig));
   int lp = lef, rp = mid;
   vector<Point> v;
   while (lp < mid || rp < rig)
       if (lp < mid && (rp == rig || p[rp].y > p[lp].y)) v.push_back
            (p[lp++]);
      else v.push_back(p[rp++]);
   for (int i = lef; i < rig; ++i) p[i] = v[i - lef];</pre>
   v.clear();
   for (int i = lef; i < rig; ++i)</pre>
       if (sqr(abs(p[i].x - midx)) < low) v.push_back(p[i]);</pre>
   for (int i = 1; i < v.size(); ++i)
      for (int j = i - 1; j >= 0; --j)
          if (sqr(v[i].y - v[j].y) >= low) break;
low = min(low, v[i].dd(v[j]));
      }
   return low:
void solve()
   int n:
   cin >> n;
   for (int i = 1; i <= n; ++i) cin >> p[i].x >> p[i].y;
   sort(p + 1, p + 1 + n);
   cout << work(1, n + 1) << '\n';</pre>
   return:
```

9 杂项算法

9.1 普通莫队算法

```
else return (r < rhs.r) ^ (lb & 1);</pre>
      else return 1b < rb:
} q[M];
void solve()
   cin >> n >> m >> k;
   BLOCK = n / sqrt(m); //块大小
   for (int i = 1; i <= n; ++i) cin >> a[i];
   //离线处理询问
   for (int i = 1; i <= m; ++i) q[i].id = i, cin >> q[i].l >> q[i].r
   sort(q + 1, q + 1 + m);
   //计算首个询问答案
   vector<int> cnt(k + 1);
   for (int i = q[1].1; i <= q[1].r; ++i) cnt[a[i]]++;
   11 \text{ res} = 0;
   for (int i = 1; i <= k; ++i) res += cnt[i] * cnt[i];</pre>
   ans[q[1].id] = res;
   //开始转移
   11 1 = q[1].1, r = q[1].r;
   auto del = [&](int p)
      res -= cnt[a[p]] * cnt[a[p]];
      cnt[a[p]]--
      res += cnt[a[p]] * cnt[a[p]];
      return;
   };
   auto add = [&](int p)
   {
      res -= cnt[a[p]] * cnt[a[p]];
      cnt[a[p]]++;
      res += cnt[a[p]] * cnt[a[p]];
      return:
   for (int i = 2; i <= m; ++i)
      while (r < q[i].r) add(++r);
      while (r > q[i].r) del(r--);
      while (1 < q[i].1) del(1++);
      while (1 > q[i].1) add(--1);
      ans[q[i].id] = res;
   for (int i = 1; i <= m; ++i) cout << ans[i] << '\n';
   return:
```

9.2 带修改莫队算法

```
* 时间复杂度: n,m,t同级时O(n^(5/3))
const int N = 150005;
const int M = 150005;
11 BLOCK:
struct 0
   ll l, r, id, t;
   bool operator<(const Q& rhs) const</pre>
       // 左右端点都分块
      if (1 / BLOCK == rhs.1 / BLOCK)
          if (r / BLOCK == rhs.r / BLOCK) return t < rhs.t;</pre>
          else return r / BLOCK < rhs.r / BLOCK;</pre>
       else return 1 / BLOCK < rhs.1 / BLOCK;</pre>
} q[M];
struct C
  11 p, o, v;
} c[M];
11 n, m, a[N], ans[N];
void solve()
```

```
cin >> n >> m;
   BLOCK = pow(n, 2.0 / 3);
   for (int i = 1; i <= n; ++i) cin >> a[i];
   ll mxx = *max_element(a + 1, a + 1 + n);
   // 离线处理询问
   char op;
   11 t = 0, ord = 0, u, v;
   for (int i = 1; i <= m; ++i)
       cin >> op >> u >> v; if (op == 'R') c[++t] = \{ u, a[u], v \}, a[u] = v;
       else ord++, q[ord] = { u, v, ord, t };
   sort(q + 1, q + 1 + ord);
   // 计算首个询问答案
   vector<ll> cnt(mxx + 1);
   ll res = 0, l = q[1].l, r = q[1].r, nowt = t;
   auto del = [&](int p)
       cnt[a[p]]--
       if (cnt[a[p]] == 0) res--;
   auto add = [&](int p)
   {
       cnt[a[p]]++;
       if (cnt[a[p]] == 1) res++;
       return;
   auto chg = [&](int p, 11 v)
       if (p >= 1 \&\& p <= r) del(p);
      a[p] = v;
       if (p >= 1 && p <= r) add(p);
       return;
   while (nowt > q[1].t) a[c[nowt].p] = c[nowt].o, nowt--;
for (int i = 1; i <= r; ++i) add(i);</pre>
   ans[q[1].id] = res;
   // 开始转移
   for (int i = 2; i <= ord; ++i)</pre>
       for (int j = q[i - 1].t + 1; j \leftarrow q[i].t; ++j) chg(c[j].p, c[
       for (int j = q[i - 1].t; j > q[i].t; --j) chg(c[j].p, c[j].o)
       while (r < q[i].r) add(++r);
       while (r > q[i].r) del(r--);
       while (1 < q[i].1) del(1++);</pre>
       while (1 > q[i].1) add(--1);
       ans[q[i].id] = res;
   for (int i = 1; i <= ord; ++i) cout << ans[i] << '\n';</pre>
   return;
int main()
   ios::sync_with_stdio(0);
   cin.tie(0);
   cout.tie(0)
   int T = 1;
   // cin >> T;
   while (T--) solve();
   return 0;
```

9.3 莫队二次离线

```
bool operator<(const Q& rhs) const
       int 1b = 1 / BLOCK, rb = rhs.1 / BLOCK;
      if (lb == rb)
          if (r == rhs.r) return 0;
else return (r < rhs.r) ^ (lb & 1);</pre>
       else return lb < rb;
} q[N];
void solve()
   cin >> n >> m >> k;
   BLOCK = sqrt(n);
   for (int i = 1; i <= n; ++i) cin >> a[i];
   for (int i = 1; i <= m; ++i)
       cin >> q[i].l >> q[i].r;
      q[i].id = i;
      q[i].ans = 0;
   sort(q + 1, q + 1 + m);
   q[0].1 = 1, q[0].r = 0, q[0].ans = 0;
   int lef = 1, rig = 0;
   array<vector<vector<int>>, 2> req{ vector<vector<int>>(n + 1),
         vector<vector<int>>(n + 1) };
   for (int i = 1; i <= m; ++i)
       if (rig < q[i].r) req[0][lef].push_back(i), rig = q[i].r;</pre>
       if (lef > q[i].l) req[1][rig].push_back(i), lef = q[i].l;
       if (rig > q[i].r) req[0][lef].push_back(i), rig = q[i].r;
      if (lef < q[i].1) req[1][rig].push_back(i), lef = q[i].1;</pre>
   vector<ll> tar;
   for (int i = 0; i < (1 << B); ++i)
       if (__builtin_popcount(i) == k) tar.push_back(i);
   vector<ll> cnt(1 << B), pre(n + 2), suf(n + 2);
   for (int i = 1; i <= n; ++i)</pre>
      pre[i] = cnt[a[i]];
       for (auto e : req[0][i])
          if (q[e - 1].r < q[e].r)</pre>
             for (int j = q[e - 1].r + 1; j \leftarrow q[e].r; ++j) q[e].ans
                    -= cnt[a[j]];
          }
          else
             for (int j = q[e].r + 1; j \leftarrow q[e - 1].r; ++j) q[e].ans
                    += cnt[a[j]];
       for (auto e : tar) cnt[a[i] ^ e]++;
   fill(cnt.begin(), cnt.end(), 011);
   for (int i = n; i >= 1; --i)
       suf[i] = cnt[a[i]];
       for (auto e : req[1][i])
          if (q[e - 1].l > q[e].l)
              for (int j = q[e - 1].l - 1; j >= q[e].l; --j) q[e].ans
                    -= cnt[a[j]];
          else
              for (int j = q[e].l - 1; j >= q[e - 1].l; --j) q[e].ans
                    += cnt[a[j]];
          }
       for (auto e : tar) cnt[a[i] ^ e]++;
   lef = 1, rig = 0;
   for (int i = 1; i <= m; ++i)
       q[i].ans += q[i - 1].ans;
       while (rig < q[i].r) q[i].ans += pre[++rig];</pre>
       while (lef > q[i].1) q[i].ans += suf[--lef];
       while (rig > q[i].r) q[i].ans -= pre[rig--];
       while (lef < q[i].1) q[i].ans -= suf[lef++];</pre>
   vector<ll> ans(m + 1);
   for (int i = 1; i <= m; ++i) ans[q[i].id] = q[i].ans;</pre>
   for (int i = 1; i <= m; ++i) cout << ans[i] << '\n';
```

```
return;
}
```

9.4 整体二分

```
* 时间复杂度: 框架O(qlogm)
* 说明:
* 1.对多个需要二分解决的询问同时二分
* 2. 二分对象为答案值域, 但也将询问序列分到两个值域区间中
* 3.对于区间[1,r)的check不能到达O(q)/O(m),应只考虑[1,r)中的值或询问
* 4.注意分到右半区间的询问目标值要削减
* 5.注意值域区间和询问区间的开闭
* 6.注意必要时对元素值去重
const int N = 300005:
struct Fenwick { /*带时间戳树状数组*/ }fen;
struct Discret { /*离散化*/ }D;
struct 0
   int 1, r, k, id;
}q[N];
int n, m;
pair<int, int> a[N];
int ans[N];
void bis(int lef, int rig, int ql, int qr)
   if (lef == rig - 1)
      for (int i = ql; i < qr; ++i) ans[q[i].id] = lef;</pre>
      return;
   int mid = lef + rig >> 1;
   for (int i = lef; i < mid; ++i)</pre>
      fen.add(a[i].second, 1):
   queue<Q> q1, q2;
   for (int i = ql; i < qr; ++i)
      int cnt = fen.rsum(q[i].1, q[i].r);
      if (cnt < q[i].k) q2.push({ q[i].l,q[i].r,q[i].k - cnt,q[i].</pre>
           id });
      else q1.push(q[i]);
   int qm = ql + q1.size();
   for (int i = ql; i < qr; ++i)</pre>
      if (q1.size()) q[i] = q1.front(), q1.pop();
      else q[i] = q2.front(), q2.pop();
   fen.clear();
   bis(lef, mid, ql, qm);
   bis(mid, rig, qm, qr);
   return;
void solve()
   cin >> n >> m;
   fen.init(n);
   for (int i = 1; i <= n; ++i)
      cin >> a[i].first;
      a[i].second = i;
      D.insert(a[i].first);
   D.work();
   for (int i = 1; i <= n; ++i) a[i].first = D[a[i].first];</pre>
   sort(a + 1, a + 1 + n);
   for (int i = 1; i <= m; ++i)
      cin >> q[i].1 >> q[i].r >> q[i].k;
      q[i].id = i;
   bis(1, n + 1, 1, m + 1);
   for (int i = 1; i <= m; ++i) cout << D.v[ans[i] - 1] << '\n';</pre>
   return;
```

9.5 三分

```
* 时间复杂度: 0(logn)
// 浮点数三分
ld tes(ld lef, ld rig)
   if (fabs(lef - rig) < 1e-7) return lef;</pre>
   ld midl = lef + (rig - lef) / 3;
   ld midr = rig - (rig - lef) / 3;
   ld resl = check(midl), resr = check(midr);
   if (resl > resr) return tes(lef, midr);
  else return tes(midl, rig);
}
// 整数三分 [1,r]
ll tes(ll lef, ll rig)
   if (lef == rig) return lef;
  11 mid1 = lef + (rig - lef) / 3;
11 midr = rig - (rig - lef) / 3;
  11 resl = check(midl), resr = check(midr);
  if (resl >= resr) return tes(lef, midr - 1);
   else return tes(midl + 1, rig);
}
```

9.6 离散化

```
* 时间复杂度: O(logn)
* 说明: 注意起始序号
struct Discret
   vector<ll> v;
   void insert(ll val)
      v.push_back(val);
   void work()
   {
      sort(v.begin(), v.end());
      v.erase(unique(v.begin(), v.end()), v.end());
   void clear()
      v.clear();
      return;
   11 operator[](11 val)
      return lower bound(v.begin(), v.end(), val) - v.begin();
   }
};
```

9.7 快速排序

```
swap(a[pivot], a[lef]);
int lp = lef; //第一个等于基准的值
for (int i = lef + 1; i <= rig; ++i)
{
    if (a[i] < a[lef]) swap(a[i], a[++lp]);
}
swap(a[lef], a[lp]);
int rp = lp; //最后一个等于基准的值
for (int i = lp + 1; i <= rig; ++i)
{
    if (a[i] == a[lp]) swap(a[i], a[++rp]);
}
QuickSort(lef, lp - 1);
QuickSort(rp + 1, rig);
return;
}</pre>
```

9.8 枚举集合

```
* 时间复杂度: O(枚举对象个数)
* 说明: 枚举子集、超集、固定大小集合
struct EnumSet
   vector<int> subset(int x) // 枚举x的子集
   {
     vector<int> res;
     for (int i = x; i >= 1; i = (i - 1) & x) res.push_back(i);
     res.push_back(0);
     return res;
   vector<int> kset(int b, int k) // 枚举b位大小为k的集合
      int now = (1 << k) - 1;
      while (now < (1 << b))
        res.push_back(now);
        int lowbit = now & -now;
        int x = now + lowbit;
        int y = ((now \& \sim x) / lowbit) >> 1;
        now = x \mid y;
     return res;
  vector<int> superset(int x, int b) // 枚举x的b位超集
     vector<int> res;
for (int i = x; i < (1 << b); i = (i + 1) | x) res.push_back(</pre>
          i);
     return res;
  }
};
```

9.9 CDQ 分治 +CDQ 分治 = 多维偏序

```
bool bya(const Elem& e1, const Elem& e2)
   if (e1.a == e2.a && e1.b == e2.b) return e1.c < e2.c:
   else if (e1.a == e2.a) return e1.b < e2.b;
   else return e1.a < e2.a;
void cdq2(int lef, int rig)
   if (lef == rig - 1) return;
   int mid = lef + rig >> 1;
   cdq2(lef, mid);
   cdq2(mid, rig);
   int p1 = lef, p2 = mid, now = lef;
   int sum = 0;
   while (now < rig)
       //左半部分xtag为0的可以贡献右半部分xtag为1的
      if (p2 == rig || p1 < mid && ee[p1].c <= ee[p2].c)</pre>
      {
          eee[now] = ee[p1++];
          sum += eee[now].cnt * (eee[now].xtag == 0);
       else
      {
          eee[now] = ee[p2++];
          res[eee[now].id] += sum * (eee[now].xtag == 1);
      now++;
   for (int i = lef; i < rig; ++i) ee[i] = eee[i];
   return;
}
void cdq1(int lef, int rig)
   if (lef == rig - 1) return;
int mid = lef + rig >> 1;
   cdq1(lef, mid);
   cdq1(mid, rig);
int p1 = lef, p2 = mid, now = lef;
   while (now < rig)
       if (p2 == rig || p1 < mid && e[p1].b <= e[p2].b)</pre>
       {
          ee[now] = e[p1++];
          ee[now].xtag = 0;
      else
      {
          ee[now] = e[p2++];
          ee[now].xtag = 1;
      now++:
   for (int i = lef; i < rig; ++i) e[i] = ee[i];</pre>
   cdq2(lef, rig);
   return;
}
void solve()
   cin >> n >> k:
   vector<Elem> ori(n);
   for (int i = 0; i < n; ++i)
       cin >> ori[i].a >> ori[i].b >> ori[i].c;
      ori[i].cnt = 1;
   sort(ori.begin(), ori.end(), bya);
   int cnt = 0;
   for (auto& x : ori)
       if (cnt == 0 || e[cnt] != x) cnt++, e[cnt] = x, e[cnt].id =
            cnt;
       else e[cnt].cnt++;
   cdq1(1, cnt + 1);
   for (int i = 1; i <= cnt; ++i)</pre>
       res[e[i].id] += e[i].cnt - 1;
       ans[res[e[i].id]] += e[i].cnt;
   for (int i = 0; i < n; ++i) cout << ans[i] << '\n';</pre>
   return;
}
```

9.10 CDQ 分治 + 数据结构 = 多维偏序

```
* 时间复杂度: O(nlog^(d-1)n)
* 说明:
* 1.每降一维需要乘0(logn)时间
* 2. 适用于高维偏序等小元素对大元素有贡献的问题
* 3. 元素需要提前去重
* 4.注意小于等于和小于做法不同,如分治顺序与排序复原/mid的移动
* 5.贡献有顺序要求如dp时,先左再合并再右
* 6.有时需要离散化才能利用数据结构
const int N = 100005:
struct Fenwick { /*带时间戳最大值树状数组*/ }fen;
struct Discret { /*离散化*/ }D;
struct Elem
  11 a, b, c;
  ll w, dp;
  bool operator!=(const Elem& e) const { return a != e.a || b != e.
       b || c != e.c; }
} e[N];
int n;
bool bya(const Elem& e1, const Elem& e2)
  if (e1.a == e2.a && e1.b == e2.b) return e1.c < e2.c;</pre>
   else if (e1.a == e2.a) return e1.b < e2.b;
   else return e1.a < e2.a;</pre>
bool byb(const Elem& e1, const Elem& e2)
  if (e1.b == e2.b) return e1.c < e2.c;</pre>
  else return e1.b < e2.b;</pre>
void cdq(int lef, int rig)
  if (e[lef].a == e[rig - 1].a) return;
  int mid = lef + (rig - lef) / 2;
   // 需要保证e[mid-1].a和e[mid].a不同
   if (e[lef].a == e[mid].a)
      while (e[lef].a == e[mid].a) mid++;
  élse
  {
      while (e[mid - 1].a == e[mid].a) mid--;
   // 解决左半
  cdq(lef, mid);
  // 解决合并
  sort(e + lef, e + mid, byb);
   sort(e + mid, e + rig, byb);
  int p1 = lef, p2 = mid;
while (p2 < rig)</pre>
      while (p1 < mid \&\& e[p1].b < e[p2].b)
      {
        fen.add(D[e[p1].c], e[p1].dp);
        p1++;
      e[p2].dp = max(e[p2].dp, e[p2].w + fen.pres(D[e[p2].c] - 1));
      p2++;
  fen.clear():
   // 解决右半
   sort(e + mid, e + rig, bya); // 复原排序
  cdq(mid, rig);
   return;
void solve()
   vector<Elem> ori(n);
   for (int i = 0; i < n; ++i)
      cin >> ori[i].a >> ori[i].b >> ori[i].c >> ori[i].w;
      ori[i].dp = ori[i].w;
     D.insert(ori[i].c);
```

```
D.work();
fen.init(D.v.size());
sort(ori.begin(), ori.end(), bya);
int cnt = 0;
for (auto& x : ori)
{
    if (cnt == 0 || e[cnt] != x) e[++cnt] = x;
        else e[cnt].dp = e[cnt].w = max(e[cnt].w, x.w);
}
cdq(1, cnt + 1);
ll ans = 0;
for (int i = 1; i <= cnt; ++i) ans = max(ans, e[i].dp);
cout << ans << '\n';
return;
}</pre>
```

10 博弈论

10.1 Fibonacci 博弈

10.2 Wythoff 博弈

10.3 Green Hackenbush 博弈