Single Variable Calculus

Otto Martinwall

May 6, 2022

Contents

Calc	culus A	Complete Course	2
1.1	Limits	and Continuity	. 3
	1.1.1	Exercises 1.1	. 5
	1.1.2	Exercises 1.2	. 5
	1.1.3	Exercises 1.3	. 5
	1.1.4	Exercises 1.4	. 5
	1.1.5	Exercises 1.5	. 7
Loca	turos		10
	1.1	1.1 Limits 1.1.1 1.1.2 1.1.3 1.1.4	Calculus A Complete Course 1.1 Limits and Continuity

1 Calculus A Complete Course

1.1 Limits and Continuity

Theorem 1 (The Squeeze Theorem, 4). Suppose that $f(x) \leq g(x) \leq h(x)$ holds for all x in some open interval containing c, except possibly at x = c. Suppose also that

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$$

Then $\lim_{x\to c} g(x) = L$.

Proof. For this proof, the (ϵ, δ) -definition of the limit will be used.

The goal is to prove that $\lim_{x\to c} g(x) = L$, which is true if

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x, (|x - c| < \delta \Rightarrow |g(x) - L| < \epsilon).$$

Since $\lim_{x\to c} f(x) = L$,

$$\forall \epsilon > 0, \exists \delta_1 > 0 : \forall x, (|x - c| < \delta_1 \Rightarrow |f(x) - L| < \epsilon)$$
 (1)

And since $\lim_{x\to c} h(x) = L$,

$$\forall \epsilon > 0, \exists \delta_2 > 0 : \forall x, (|x - c| < \delta_2 \Rightarrow |h(x) - L| < \epsilon). \tag{2}$$

Then we have

$$f(x) \leq g(x) \leq h(x)$$

$$f(x) - L \leq g(x) - L \leq h(x) - L$$
 1.1 Limits and Continuity

We can choose $\delta=\min\{\delta_1,\delta_2\}$, then if $|x-c|<\delta$, and combining (1) and (2), we have

$$-\epsilon < f(x) - L \le g(x) - L \le h(x) - L < \epsilon$$
$$-\epsilon < g(x) - L < \epsilon$$
$$|g(x) - L| < \epsilon$$

So $\lim_{x\to c} g(x) = L$, which completes the proof.

Theorem 2 (The Intermediate-Value Theorem, 9). If f(x) is continuous on the interval [a,b] and if s is a number between f(a) and f(b), then there exists a number c in [a,b] such that f(c)=s.

П

In particular, a continuous function defined on a closed interval takes on all values between its minimum value m and its maximum value M , so its range is also a closed interval, [m,M].

Proof.

1.1.1 Exercises 1.1

1.1.2 Exercises 1.2

78. What is the domain of $\sin \frac{1}{x}$? Evaluate $\lim_{x\to 0} x \sin \frac{1}{x}$.

The domain of $x \sin x$ is \mathbb{R} . The domain of $\frac{1}{x}$ is $(-\infty, 0) \cup (0, \infty)$. Therefore, the domain of $x \sin \frac{1}{x}$ is $(-\infty, 0) \cup (0, \infty)$.

To evaluate $\lim_{x\to 0} x \sin \frac{1}{x}$, we can first evaluate $\lim_{x\to 0} \frac{1}{x}$.

$$\lim_{x\to 0^+}\frac{1}{x}=+\infty$$
 , $\lim_{x\to 0^-}\frac{1}{x}=-\infty$.

This means that $\lim_{x\to 0}\sin\frac{1}{x}=\lim_{x\to\pm\infty}\sin x$, which means that $-1\leq\lim_{x\to 0}\sin\frac{1}{x}\leq 1$.

$$\lim_{x \to 0} x \sin \frac{1}{x} = (\lim_{x \to 0} x)(\lim_{x \to 0} \sin \frac{1}{x}) = 0$$

79. Suppose $|f(x)| \le g(x) \forall x$. What can you conclude about $\lim_{x\to a} f(x)$ if $\lim_{x\to a} g(x) = 0$? What if $\lim_{x\to a} g(x) = 3$?

 $|f(x)| \leq g(x) \forall x \Leftrightarrow -g(x) \leq f(x) \leq g(x) \forall x$. Since $\lim_{x \to a} g(x) = 0$ and therefore $\lim_{x \to a} -g(x) = 0$, then $\lim_{x \to a} f(x) = 0$ by the squeeze theorem.

If $\lim_{x\to a} g(x)=3$, and $-g(x)\leq f(x)\leq g(x) \forall x$, then we can conclude that either $-3\leq \lim_{x\to a} f(x)\leq 3$, or $\lim_{x\to a} f(x)$ doesn't exist.

1.1.3 Exercises 1.3

1.1.4 Exercises 1.4

32.

Let g(x) = f(x) - x. Since $0 \le f(x) \le 1$ for $0 \le x \le 1$, then $0 \le g(0)$. By the same argument, $g(1) \le 0$. Because g(x) is continuous in the interval 5.1.1 Limits and Continuity

[0,1], there must be some value $c\in[0,1]$ such that g(c)=0, by the Intermediate-Value Theorem. If g(c)=0, then f(c)=c, which was to be shown.

33.

Since f(x) is even, it is symmetric around the y-axis. The symmetric equivilance of $\lim_{x\to 0^+}$ around the y-axis is $\lim_{x\to 0^-}$. Since f(x) is right-continuous, it means that $\lim_{x\to 0^+} f(x) = f(0)$ and because of the symmetry, $\lim_{x\to 0^-} f(x) = f(0)$. Because $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(0)$, f is continuous at f(x) is even, it is symmetric around the y-axis. The symmetric equivalent is f(x) is right-continuous, it means that f(x) is f(x) is f(x) is even, it is symmetric around the y-axis. The symmetric equivalent is f(x) is right-continuous, it means that f(x) is right-continuous, it means that f(x) is f(x) is f(x).

34.

 $\lim_{x\to 0^+} f(x) = f(0)$ because f is right continuous. Since f is odd, it is symmetric around the origin, and therefore $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0) = 0$. Since f is both right and left continuous at x = 0, it is continuous at x = 0.

1.1.5 Exercises 1.5

31.

$$(\lim_{x\to a} f(x) = L) \Leftrightarrow (\forall \epsilon > 0, \exists \delta_1 > 0 : 0 < |x-a| < \delta_1 \Rightarrow |f(x) - L| < \epsilon)$$

and

$$(\lim_{x\to a} f(x) = M) \Leftrightarrow (\forall \epsilon > 0, \exists \delta_2 > 0 : 0 < |x-a| < \delta_2 \Rightarrow |f(x) - M| < \epsilon)$$

We assume that $L \neq M$. If we choose $\delta = \min\{\delta_1, \delta_2\}$, then $0 < |x - a| < \delta \Rightarrow |f(x) - L| + |f(x) - M| < \epsilon + \epsilon = 2\epsilon$.

By the triangle inequality,

$$|f(x) - L| + |f(x) - M| \ge |(L - f(x)) + (f(x) - M)| = |L - M|.$$

Since $L \neq M$, we can let $\epsilon = |L - M|/4$ because |L - M| is positive.

This means that $|L-M| \le 2\epsilon = |L-M|/2 \Rightarrow 2 \le 1$, which is obviously false. Therefore L=M and the limit is unique, which was to be shown.

32.

Since $\lim_{x\to a} g(x) = M$, the following must be true

$$|g(x)| = |(g(x) - M) + M| \le |g(x) - M| + |M| < \epsilon + |M|$$

If we choose $\epsilon = 1$ then

$$|g(x)| < 1 + |M|$$

Which was to be shown.

33.

$$\lim_{x\to a} f(x) \Leftrightarrow (\forall \epsilon > 0, \exists \delta_1 > 0 : \forall x, (0 < |x-a| < \delta_1 \Rightarrow |f(x)-L| < \epsilon))$$

And

8

$$\lim_{x \to a} g(x) \Leftrightarrow (\forall \epsilon > 0, \exists \delta_2 > 0 : \forall x, (0 < |x - a| < \delta_2 \Rightarrow |g(x) - M| < \epsilon))$$

Lets assume that $\lim_{x\to a} f(x)g(x) \neq LM$.

Let $\delta = \min{\{\delta_1, \delta_2\}}$. This would result in that

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x, (0 < |x - a| < \delta \Rightarrow |f(x) - L| + |g(x) - M| < 2\epsilon)$$
(3)

$$\begin{split} |f(x)-L|+|g(x)-M| &\geq |g(x)||f(x)-L|+|L||g(x)-M| = |g(x)(f(x)-L)| + |L(g(x)-M)| \geq |g(x)(f(x)-L)+L(g(x)-M)| = |f(x)g(x)-Lg(x)+Lg(x)-LM| = |(f(x)g(x))-(LM)| \end{split}$$

1.1 Limits and Continuity

This together with (3) means that

$$\forall \epsilon > 0, \exists \delta > 0: \forall x, (0 < |x - a| < \delta \Rightarrow |(f(x)g(x)) - (LM)| < 2\epsilon)$$

Which shows that $\lim_{x\to a} f(x)g(x) = LM$.

2 Lectures