PROJECT-5

The transactions made by a UK-based,

registered, non-store online retailer between December 1, 2010, and December 9, 2011, are all included in the transnational data set known as online retail. The company primarily offers oneof-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. Company ObjectiveUsing the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [2]: import pandas as pd
 from matplotlib import pyplot as plt
 %matplotlib inline

In [4]: df=pd.read_csv(r"C:\Users\user\Downloads\onlineretail.csv")
 df

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Coun
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Uni Kingd
1	536365	71053	WHITE METAL LANTERN	6	01-12 - 2010 08:26	3.39	17850.0	Uni Kingd
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Uni Kingd
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Uni Kingd
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Uni Kingd
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Frar
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Frar
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Frar
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12 - 2011 12:50	4.15	12680.0	Frar
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Frar
	_	_						

541909 rows × 8 columns

In [5]: df.head()

Out[5]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [6]: df.tail()

Out[6]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Coun
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fran
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fran
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fran
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fran
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fran
4)

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 541909 entries, 0 to 541908 Data columns (total 8 columns):

Column Non-Null Count Dtype ------------0 InvoiceNo 541909 non-null object 1 StockCode 541909 non-null object 2 Description 540455 non-null object 3 Quantity 541909 non-null int64 4 InvoiceDate 541909 non-null object 5 UnitPrice 541909 non-null float64 6 CustomerID 406829 non-null float64 7 541909 non-null object Country dtypes: float64(2), int64(1), object(5)

memory usage: 33.1+ MB

In [8]: df.describe()

Out[8]:

	Quantity	UnitPrice	CustomerID
count	541909.000000	541909.000000	406829.000000
mean	9.552250	4.611114	15287.690570
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.000000
25%	1.000000	1.250000	13953.000000
50%	3.000000	2.080000	15152.000000
75%	10.000000	4.130000	16791.000000
max	80995.000000	38970.000000	18287.000000

In [9]: | df['CustomerID'].value_counts()

```
17841.0
           7983
14911.0
           5903
14096.0
           5128
12748.0
           4642
14606.0
           2782
15070.0
               1
15753.0
               1
               1
17065.0
16881.0
               1
               1
16995.0
```

Out[9]: CustomerID

Name: count, Length: 4372, dtype: int64

```
In [10]: df['Quantity'].value_counts()
Out[10]: Quantity
          1
                    148227
          2
                     81829
          12
                     61063
                     40868
          6
          4
                     38484
         -472
                         1
         -161
                         1
         -1206
                         1
         -272
                         1
         -80995
                         1
         Name: count, Length: 722, dtype: int64
In [11]:
         plt.scatter(df["CustomerID"],df["Quantity"])
         plt.xlabel("CustomerID")
         plt.ylabel("Quantity")
Out[11]: Text(0, 0.5, 'Quantity')
               80000
               60000
               40000
               20000
          Quantity
                    0
             -20000
             -40000
             -60000
             -80000
                             13000
                                       14000
                                                 15000
                                                           16000
                                                                     17000
                                                                               18000
```

```
In [12]: df.fillna(method='ffill',inplace=True)
```

CustomerID

```
In [13]: df.isnull().sum()
Out[13]: InvoiceNo
                         0
         StockCode
                        0
         Description
                        0
                        0
         Quantity
         InvoiceDate
                        0
         UnitPrice
                        0
         CustomerID
                        0
                        0
         Country
         dtype: int64
In [14]: from sklearn.cluster import KMeans
         km=KMeans()
         km
Out[14]:
          ▼ KMeans
          KMeans()
In [15]: y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
         y_predicted
         C:\Users\user\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklea
         rn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
Out[15]: array([2, 2, 2, ..., 5, 5, 5])
```

In [16]: df["cluster"]=y_predicted
 df.head()

Out[16]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	clι
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	6	01-12 - 2010 08:26	3.39	17850.0	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4.6									

Out[17]: Text(0, 0.5, 'Quantity')

Out[18]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	clı
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12 - 2010 08:26	3.39	17850.0	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4.0									•

```
In [20]: scaler.fit(df[["CustomerID"]])
    df["CustomerID"]=scaler.transform(df[["CustomerID"]])
    df.head()
```

Out[20]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	clı
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12 - 2010 08:26	3.39	0.926443	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4.6									

K-MEANS CLUSTURING

In [23]: df["New Cluster"]=y_predicted
 df.head()

Out[23]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	clı
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12 - 2010 08:26	3.39	0.926443	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4.0	_	_	_	_	_	_			•

```
In [24]: | df1=df[df["New Cluster"]==0]
         df2=df[df["New Cluster"]==1]
         df3=df[df["New Cluster"]==2]
         plt.scatter(df1["CustomerID"],df1["Quantity"],color="violet")
         plt.scatter(df2["CustomerID"],df2["Quantity"],color="pink")
         plt.scatter(df3["CustomerID"],df3["Quantity"],color="skyblue")
         plt.xlabel("CustomerID")
         plt.ylabel("Quantity")
Out[24]: Text(0, 0.5, 'Quantity')
              1.0
                                                                          0
             0.8
              0.6
           Quantity
              0.4
              0.2
              0.0
                                                                          0
                   0.1
                            0.2
                                     0.3
                                              0.4
                                                                 0.6
                                                       0.5
                                                                          0.7
                                                                                   0.8
                                              CustomerID
In [25]: km.cluster_centers_
Out[25]: array([[0.16526878, 0.50006071],
                 [0.71519482, 0.50005359],
                 [0.42140152, 0.50006068],
                 [0.8368849, 0.50006402],
                 [0.56274126, 0.50005395],
                 [0.29841382, 0.50006077],
                 [0.05138668, 0.50006691],
                 [0.93897265, 0.50005203]])
In [27]:
         k_rng=range(1,10)
         sse=[]
```

For the given dataset we use K-means

Clustering and done the grouping based on the given data. In the above dataset we will take customer id and quantity based on that we make the clusters. When the K-value is low error rate is more and the K-value is high error rate is very high. So, finally we can Conclude the above dataset is bestfit for K-Means

In []:
