1 Нормальные формы формул

1.1 Подстановка

Определение

Пусть ϕ , ψ - формулы, v - пропозициональная переменная. Тогда слово, полученное из ϕ заменой всех вхождений переменной v на формулу ψ называется **подстановкой** ψ вместо v в формулу ϕ и обозначается как $(\phi)_{\psi}^{v}$. Последовательная подстановка обозначается следующим образом:

$$(\phi)_{\psi_1\psi_2...\psi_n}^{v_1v_2...v_n} \rightleftharpoons (\dots ((\phi)_{\psi_1}^{v_1})_{\psi_2}^{v_2}\dots)_{\psi_n}^{v_n}$$

утверждение

Для любых двух формул ϕ, ψ и переменной v слово $(\phi)^v_\psi$ является формулой.

Доказательство

Проводится индукцией по глубине ϕ .

1.2 Лемма (о подстановке)

Лемма (о подстановке в эквивалентные формулы)

Пусть ϕ, ψ, χ - формулы, верно, что $\phi \sim \psi$ и v - переменная, такая что $v \notin V(\chi)$. Тогда $(\phi)^v_\chi \sim (\psi)^v_\chi$.

Доказательство

Пусть γ - некоторое означивание переменных в формуле $(\phi)_\chi^v$. Отметим, что $v \notin dom(\gamma)$. Пусть $\gamma' = \gamma \cup \{(v,\gamma(\chi))\}$. Индукцией по глубине ϕ покажем, что $\gamma((\phi)_\chi^v) = \gamma'(\phi)$. Основание индукции. Если $\phi \in \{\top, \bot\}$, то доказывать нечего. Пусть $\phi = w$ - некоторая переменная. Если $w \neq v$, то $(\phi)_\chi^v = \phi$ и утверждение доказано. Пусть w = v. Тогда $(\phi)_\chi^v = \chi$, в свою очередь $\gamma((\phi)_\chi^v) = \gamma(\chi) = \gamma'(v) = \gamma'(\phi)$. Шаг индукции. Рассмотрим все возможные способы построения ϕ . Например, рассмотрим случай, когда $\phi = (\psi_1 \wedge \psi_2)$. Тогда очевидно, что $(\phi)_\chi^v = ((\psi_1)_\chi^v \wedge (\psi_2)_\chi^v)$. Следовательно,

$$\gamma((\phi)^v_{\chi}) = \gamma((\psi_1)^v_{\chi}) \cap \gamma((\psi_2)^v_{\chi}) \stackrel{ind}{=}$$

$$\gamma'(\psi_1) \cap \gamma'(\psi_2) = \gamma'(\psi_1 \wedge \psi_2) = \gamma'(\phi)$$

Остальные случаи доказываются аналогично. Для завершения доказательства, достаточно заметить, что

$$\gamma((\phi)_{\chi}^{v}) = \gamma'(\phi) = \gamma'(\psi) = \gamma((\psi)_{\chi}^{v})$$

1.3 Исключение импликации

Лемма

Для любой формулы ϕ существует такая формула ϕ' , что $\phi \sim \phi'$ и ϕ' не содержит символов импликации \to .

Доказательство

Индукция по глубине ϕ . Основание индукции: если $d(\phi) = 0$, то ϕ является пропозициональной переменной или константой \top или \bot , тогда утверждение очевидно. Шаг индукции. Пусть $d(\phi) = n + 1$. Тогда имеет место один из следующих случаев:

- 1. $\phi = \neg \psi_1$
- 2. $\phi = (\psi_1 \wedge \psi_2)$
- 3. $\phi = (\psi_1 \vee \psi_2)$
- 4. $\phi = (\psi_1 \rightarrow \psi_2)$

Так как $d(\psi_i) \leq n$, для формул ψ_i существуют $\psi_i' \sim \psi_i$, не содержащие \rightarrow . Следовательно, по теореме о замене в случаях 1-3 мы получим:

- 1. $\phi' = \neg \psi_1' \sim \neg \psi_1 = \phi$
- 2. $\phi' = (\psi_1' \wedge \psi_2') \sim (\psi_1 \wedge \psi_2) = \phi$
- 3. $\phi' = (\psi_1' \vee \psi_2') \sim (\psi_1 \vee \psi_2) = \phi$

В четвертом случае, используя эквивалентность $(v_1 \to v_2) \sim (\neg v_1 \lor v_2)$, лемму о подстановках и теорему о замене, мы получим $\phi' = (\neg \psi_1' \lor \psi_2') \sim (\psi_1' \to \psi_2') \sim (\psi_1 \to \psi_2) = \phi$. \square

1.4 Формулы с тесными отрицаниями

Определение

Формула ϕ называется формулой с **тесными отрицаниями**, тогда и только тогда, когда после любого вхождения символа ¬ в формулу ϕ следует пропозициональная переменная или константа (а не символ "(" или "¬").

Лемма

Для любой формулы ϕ , не содержащей символа \rightarrow , существует такая формула с тесными отрицаниями ϕ' , что $\phi \sim \phi'$.

Доказательство

Индукция по глубине ϕ . Основание индукции: атомарные формулы. Для этих формул утверждение очевидно, поскольку такие формулы не содержат вхождений символа \neg . Шаг индукции. Пусть $d(\phi) = n+1$, и утверждение выполнено для формул глубины $\leq n$. Рассмотрим возможные варианты построения ϕ . Если $\phi = (\psi_1 \bullet \psi_2)$, где $\bullet \in \{\land, \lor\}$, тогда по предположению индукции для формул ψ_1 и ψ_2 существуют такие формулы с тесными отрицаниями ψ_1', ψ_2' что $\psi_1' \sim \psi_1$ и $\psi_2' \sim \psi_2$. Следовательно, $\phi \sim (\psi_1' \bullet \psi_2') = \phi'$ - искомая формула с тесными отрицаниями. Теперь рассмотрим случай $\phi = \neg \psi$, где $d(\psi) > 0$. Проверим возможные варианты построения ψ . Вариант 1. $\psi = \neg \chi$. Тогда по предположению индукции $\chi \sim \chi'$, где χ' являются формулами с тесными отрицаниями. Следовательно,

$$\phi \sim \neg \neg \chi \sim \chi \sim \chi' = \phi'$$

Вариант 2. $\psi=(\chi_1\wedge\chi_2)$. Тогда $\phi\sim\neg(\chi_1\wedge\chi_2)\sim(\neg\chi_1\vee\neg\chi_2)$. По предположению индукции существуют такие $\neg\chi_i\sim\chi_i'$, что χ_i' являются формулами с тесными отрицаниями, $i\in\{1,2\}$. Следовательно, $\phi\sim(\chi_1'\vee\chi_2')=\phi'$ Вариант 3, когда $\psi=(\chi_1\wedge\chi_2)$ рассматривается аналогично.

1.5 Элементарные конъюнкции/дизъюнкции

Соглашение

Так как операции ∧ и ∨ ассоциативны, далее будем опускать скобки:

$$(\psi_1 \wedge \psi_2 \wedge \ldots \wedge \psi_n) \rightleftharpoons (\ldots (((\psi_1 \wedge \psi_2) \wedge \psi_3) \ldots \wedge \psi_n))$$

Определение

Литерал - это пропозициональная переменная/константа или отрицание пропозициональной переменной/константы. Примеры: $v_1, v_2, \neg v_1, \neg v_3, \top, \neg \top, \dots$

Определение

Элементарная дизъюнкция - это дизъюнкция литералов. Примеры: $(v_1 \lor v_2 \lor \neg v_3), (v_1 \lor \neg v_1) \dots$

Определение

Элементарная конъюнкция - это конъюнкция литералов. Примеры: $(v_1 \wedge v_2 \wedge \neg v_3), (v_1 \wedge \neg v_1) \dots$

1.6 Нормальные формы

Определение

Формула ϕ находится в **дизъюнктивной нормальной форме** (**ДНФ**), тогда и только тогда, когда ϕ является дизъюнкцией элементарных конъюнкций.

Определение

Формула ϕ находится в **конъюнктивной нормальной форме** (**КНФ**), тогда и только тогда, когда ϕ является конъюнкцией элементарных дизъюнкций.

Примеры

• $(v_1 \lor \neg v_2 \lor v_3) \land (v_2 \lor v_1)$ - формула находится в КНФ.

- $(v_1 \land \neg v_1 \land v_2) \lor (v_3 \land v_1 \land \neg v_2)$ формула находится в ДНФ.
- $v_1 \lor \neg v_2 \lor v_3$ формула находится одновременно в КНФ и в ДНФ.
- $\neg (v_1 \to v_2)$ формула не находится ни в КНФ ни в ДНФ.

1.7 Теорема - приведение к КНФ

Теорема (приведение к КНФ)

Для любой формулы ϕ существует такая формула ϕ' , находящаяся в КНФ, что $\phi \sim \phi'$.

Доказательство

По предыдущим леммам можно утверждать, что ϕ является формулой с тесными отрицаниями и не содержит символов \rightarrow (так как отношение \sim транзитивно). Теперь докажем теорему индукцией по глубине ϕ . Основание индукции: если ϕ - атомарная формула, то ϕ является литералом, тогда он уже находится в КНФ. Теперь шаг индукции: предположим, что $d(\phi) = n + 1$ и утверждение верно для всех формул глубины < n. Рассмотрим все возможные варианты построения ϕ . Если ϕ начинается с \neg , то, так как ϕ - формула с тесными отрицаниями, ϕ является литералом, следовательно, она находится в $KH\Phi$. Теперь случай, когда ϕ начинается с (. Так как ϕ не содержит символов \rightarrow , возможны два случая: $\phi = (\psi_1 \wedge \psi_2)$ или $\phi = (\psi_1 \vee \psi_2)$. Рассмотрим случай, когда $\phi = (\psi_1 \wedge \psi_2)$. Тогда по предположению индукции для формул ψ_i существуют такие формулы ψ_i' , находящиеся в КНФ, что $\psi_i \sim \psi_i'$. Следовательно, по теореме о замене: $\phi \sim (\psi_1' \wedge \psi_2')$ является формулой, находящейся в КНФ. Теперь рассмотрим случай $\phi = (\psi_1 \vee \psi_2)$. По предположению индукции существуют такие ψ_i' , находящиеся в КНФ, что $\psi_i \sim \psi_i'$. Следовательно, $\phi \sim (\psi_1' \vee \psi_2')$. Докажем утверждение индукцией по m количеству символов \wedge в формулах ψ_i' . Если m=0, это означает, что $(\psi_1' \vee \psi_2')$ является элементарной дизъюнкцией, следовательно, она находится в КНФ. Пусть утверждение верно для всех $k \leq m$, Покажем, что оно верно и для m+1. Рассмотрим случай, когда символ \wedge входит, например, в формулу ψ_2' . Тогда $\psi_2' = \chi_1 \wedge \chi_2$. Следовательно, по дистрибутивности:

$$\psi_1' \vee \psi_2' = \psi_1' \vee (\chi_1 \wedge \chi_2) \sim (\psi_1' \vee \chi_1) \wedge (\psi_1' \vee \chi_2)$$

Но формулы $\psi_1' \vee \chi_1$ и $\psi_1' \vee \chi_2$ содержат один символ \wedge , тогда по предположению индукции существуют формулы $\psi_1'' \sim \psi_1' \vee \chi_1$ и $\psi_2'' \sim \psi_1' \vee \chi_2$, находящиеся в КНФ. Следовательно, $\phi \sim (\psi_1'' \wedge \psi_2'')$ искомая формула, находящаяся в КНФ. \square

1.8 Теорема - приведение к ДНФ

Теорема (приведение к ДНФ)

Для любой формулы ϕ существует такая формула ϕ' , находящаяся в ДНФ, что $\phi \sim \phi'$.

Доказательство

Доказывается аналогично теореме о приведении к КНФ.

1.9 Совершенные нормальные формы

Определение

Формула ϕ , находящаяся в нормальной форме (КНФ или ДНФ), находится в **совершенной** нормальной форме (СКНФ или СДНФ), тогда и только тогда, когда каждая переменная $v \in V(\phi)$ входит в любую элементарную конъюнкцию/дизъюнкции формулы ϕ (в зависимости от того, КНФ это или ДНФ) ровно один раз.

Примеры

- $(p \land \neg q) \lor (p \land q)$ находится в СДНФ
- $(p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$ находится в СКНФ
- $(p \lor \neg q) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$ находится в КНФ, но не в СКНФ.

1.10 Теорема о СКН Φ /СДН Φ

Теорема (о СКН Φ /СДН Φ)

Рассмотрим некоторую формулу ϕ . Тогда

- 1. если ϕ не является тождественно истинной, то существует такая формула ϕ' , находящаяся в СКНФ, что $\phi \equiv \phi'$.
- 2. если ϕ является выполнимой, то существует такая формула ϕ' , находящаяся в СДНФ, что $\phi \equiv \phi'$.

Доказательство

Будет доказано в дальнейшем.

1.11 Полином Жегалкина

Определение

Исключающее ИЛИ или **хог** - это бинарная логическая операция, обозначается как \oplus . $x \oplus y$ верно тогда и только тогда, когда логические значения x и y различны.

В полиномах Жегалкина будем использовать 1 для обозначения логической константы \top , и пустое пространство между пропозициональными переменными для \wedge .

Определение

Полином Жегалкина или алгебраическая нормальная форма - это хог-комбинация элементарных конъюнкций и констант 1.

Примеры

- $1 \oplus xy \oplus yz \oplus xyz$
- *xyzt*
- $x \oplus y \oplus z$

1.12 Теорема о полиноме Жегалкина

Теорема

Для каждой формулы ϕ существует единственный полином Жегалкина p_{ϕ} , эквивалентный ϕ .

Доказательство

Существует ровно 2^{2^n} неэквивалентных формул с n пропозициональными переменными, поскольку существует ровно 2^{2^n} различных таблиц истинности с *п* переменными. Теперь посчитаем Полиномы Жегалкина. Для этого сначала заметим, что существует 2^n различных элементарных конъюнкций с п переменными. Чтобы показать это, заметим, что каждой элементарной конъюнкции может быть однозначно сопоставлена функция из n элементов (переменных) в множестве $\{0,1\}$, показывающим, входит ли переменная v_i в элементарную дизъюнкцию. Каждому полиному Жегалкина может быть однозначно сопоставлено отображение, отображающее элементарную конъюнкцию (включая пустую) в 1, если она представлена в сумме, или в 0 в противном случае. Итак, мы пришли к выводу, что существует ровно 2^{2^n} Полиномов Жегалкина. Для завершения доказательства осталось показать, что все полиномы Жегалкина различны. Доказывать это будем от противного. Предположим, что существует два различных эквивалентных Полинома Жегалкина. Если применить к ним операцию хог, то мы получим Полином Жегалкина, эквивалентный \perp , но не содержащий элементарных конъюнкций (с коэффициентом 1). Возьмем такую элементарную конъюнкцию с наименьшим количеством переменных, и интерпретируем все эти переменные как 1, а все остальные как 0. Тогда значение этой элементарной конъюнкции будет равно 1, в то время как значение всех остальных будет равно 0, следовательно, значение всего Полинома будет равно 1 - противоречие.

1.13 Алгоритм вычисления полинома Жегалкина

Алгоритм

Существуют следующие эквивалентности:

- $x \lor y \equiv x \oplus y \oplus xy$
- $\neg x \equiv x \oplus 1$

Используя эти эквивалентности, можно преобразовать ДН Φ в полином Жегалкина. Для этого используются следующие свойства \oplus :

- $x \oplus y \equiv y \oplus x$ коммутативность
- $(x \oplus y) \oplus z \equiv x \oplus (y \oplus z)$ ассоциативность

- $x \oplus x \equiv 0$
- $x\oplus 0\equiv x$ 0 является нейтральным элементом для \oplus
- $x \wedge (y \oplus z) \equiv (x \wedge y) \oplus (x \wedge z)$ дистрибутивность \wedge над \oplus