

# UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

## **Ecuaciones Diferenciales II**

Tarea 1

Integrantes

Docente

Allison Mora Ortega Evelyn Pafián Martínez FREDDY PAIVA

### 1. Ejercicio 1

Resuelva la siguiente EDP, vía método de integrales primeras, verificando que las condiciones necesarias para poder definir las soluciones implícitas, además resolver mediante parametrización y compare ambos resultados.

Hallar  $u \in \mathbb{C}(\Omega)$ , donde  $\Omega$  será un abierto a definir en la resolución del ejercicio, tal que:

$$xu_x + yu_y = xe^{-u}$$
$$u(x, x^2) = 0$$

Realice una gráfica de la solución, puede usar el programa que más le acomode.

#### Resolución

#### 1.1. Mediante método de Integrales Primeras

1. Se obtiene de la EDP que el sistema caracteristico esta dado por:

$$\frac{dx}{x} = \frac{dy}{y} = \frac{du}{xe^{-u}}$$

- 2. Buscando las integrales primeras:
  - 2.1 Primera integral primera: Del sistema se tiene,

$$\frac{dx}{x} = \frac{dy}{y}$$

$$\Leftrightarrow \ln x - \ln y = C_1$$

$$\Leftrightarrow \ln(\frac{x}{y}) = C_1$$

$$\Leftrightarrow \frac{y}{x} = C_1^*, C_1^* \in \mathbb{R}.$$

Luego,

$$\phi(x,y,u) = \frac{y}{x} \operatorname{con} x \neq 0, x, y \in \mathbb{R}.$$

2.2 Segunda integral primera: Del sistema característico se tiene,

$$\frac{dx}{x} = \frac{du}{xe^{-u}}$$

$$\frac{dx}{\cancel{x}} \cdot \cancel{x} = \frac{du}{\cancel{x}e^{-u}} \cdot \cancel{x}$$

$$\Leftrightarrow dx = e^{u}du$$

$$\Leftrightarrow e^{u}du - dx = 0$$

$$\Leftrightarrow e^{u} - x = C_{2}, C_{2} \in \mathbb{R}$$

Entonces,

$$\psi(x,y,u)=e^u-x$$
, con  $x\in\mathbb{R}$ 

Así, la solución general es de la forma,

$$f(e^u - x, \frac{y}{x}) = 0$$
 ó  $e^u - x = f(\frac{y}{x})$ 

Por el dato de Cauchy se tiene que  $y=x^2\Rightarrow u=0$ . Luego aplicandolo a  $e^u-x=f(\frac{y}{x})$  la expresión queda 1-x=f(x).

Evaluando en  $\frac{y}{x}$ , la solución queda expresada como,

$$e^u = x + \left(1 - \frac{y}{x}\right)$$

$$\Leftrightarrow u = \ln(x + 1 - \frac{y}{x})$$

La solución  $u=ln(x+1-\frac{y}{x})$  con  $u\in C^1(\Omega)$  y  $\Omega=\{(x,y)\in\mathbb{R}^2: x^2+x>y, x\neq 0\}.$ 

#### 1.2. Mediante el método de parametrización

Sea D un subconjunto de  $\mathbb{R}^2$  abierto, un conjunto por definir donde la solución estara bien definida y sea de clase  $C^1(D)$ . Reescribimos la EDP como,

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$$

Ademas sea x = x(s,t) e y = y(s,t), parametrizamos nuestra curva inicial como:

$$\Gamma_o = \{(x, y, u) : (x(s), y(s), u(s)) = (s, 0, 0), s \in \mathbb{R}\}\$$

Nuestro sistema característico será escrito como:

$$\begin{cases} \frac{dx}{dt} = x \\ x(s,0) = s \end{cases} \qquad \begin{cases} \frac{dy}{dt} = y \\ y(s,0) = s^2 \end{cases} \qquad \begin{cases} \frac{du}{dt} = xe^{-u} \\ u(s,0) = 0 \end{cases}$$

$$\begin{cases} \frac{dx}{dt} = x \\ x(s,0) = s \end{cases} \Leftrightarrow \begin{cases} (\frac{d}{dt} - 1)x = 0 \\ x(s,0) = s \end{cases}$$

Usando el Factor integrante  $\phi(t) = e^{-t}$ , se tiene:

$$\Leftrightarrow \frac{dx}{dt}e^{-t} - xe^{-t} = 0$$

$$\Leftrightarrow d[xe^{-t}] = 0$$

$$xe^{-t} = F(s)$$

Como x(s,0) = s, se tiene que:  $s \cdot e^0 = F(s) \Rightarrow F(s) = s$ .

Luego,  $x(s,t) = F(s) \cdot e^t = s \cdot e^t$ .

De:

$$\begin{cases} \frac{dy}{dt} = y \\ y(s,0) = s^2 \end{cases} \Leftrightarrow \begin{cases} \frac{dy}{dt} = y \\ y(s,0) = s^2 \end{cases}$$
$$\Leftrightarrow \begin{cases} \frac{dy}{dt} - y = 0 \\ y(s,0) = s^2 \end{cases}$$

Usando el Factor integrante  $\phi(t) = e^{-t}$ , se tiene:

$$\Leftrightarrow \frac{dy}{dt}e^{-t} - ye^{-t} = 0$$
$$\Leftrightarrow d[ye^{-t}] = 0$$
$$\Leftrightarrow ye^{-t} = G(s)$$

Ahora, como  $y(s,0) = G(s) \cdot e^0 = s^2 \Rightarrow G(s) = s^2$ .

Luego,

$$y(s,t) = s^2 \cdot e^t$$

De:

$$\begin{cases} \frac{du}{dt} = xe^{-u} \\ u(s,0) = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{du}{dt} = xe^{-u} \\ u(s,0) = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} e^{u}du = xdt \\ u(s,0) = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} e^{u}du = se^{t}dt \\ u(s,0) = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} d[e^{u}] = s \cdot d[e^{t}] \\ u(s,0) = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} d[e^{u} - s \cdot e^{t}] = 0 \\ u(s,0) = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} e^{u} - s \cdot e^{t} = C(s) \\ u(s,0) = 0 \end{cases}$$

Como, u(s,0)=0, se tiene que  $e^0-s\cdot e^0=C(s)\Rightarrow C(s)=1-s$  Luego,

$$e^{u} - s \cdot e^{t} = 1 - s$$

$$\Leftrightarrow e^{u} = 1 - s + s \cdot e^{t}$$

$$\Leftrightarrow u = ln(1 - s + s \cdot e^{t}), s \in \mathbb{R}.$$

Volviendo a las variables originales, con:

$$x = se^t$$
$$y = s^2e^t = xs$$

Se tiene,

$$u(x,y) = \ln(1 + x - \frac{y}{x})$$

Donde las condiciones de validez son las mismas que al resolver por el método de integrales primeras ya que al comparar resultados las soluciones son iguales y como la curva  $\gamma$  no es tangencial a una característica y las funciones involucradas son suave se garantiza existencia y unicidad del problema Cauchy en el dominio  $\Omega$  que contiene al intervalo I=(-1,0)



Figura 1: Curva solución.

Donde la Figura 1 fue realizada mediante Matlab.

## 2. Ejercicio 2

Hallar  $u \in C(\Omega)$ , donde  $\Omega$  será un abierto a definir en la resolución del ejercicio, tal que:

$$u_x + 2u_y + (2x - y)u = 2x^2 + 3xy - 2y^2$$

Para este ejercicio usea cambio de variable. Debe justificar en qué casos la función tiene solución, y espresarla en términos de una función tal que al momento de imponer condiciones de frontera se pueda hallar una solución.

#### Resolución

Notamos que la EDP puede ser reescrita como,

$$u_x + 2u_y + (2x - y)u = (2x - y)(x + 2y)$$

Luego el sistema característico es,

$$\frac{dx}{1} = \frac{dy}{2} = \frac{du}{(2x-y)(x+2y-u)}$$

Determinamos la ecuación de las curvas características dado que el problema es lineal, tomamos entonces

$$dx = \frac{dy}{2}$$

$$\Leftrightarrow 2dx - dy = 0$$

$$\Leftrightarrow 2x - y = s, s \in \mathbb{R}$$

Ahora podemos elegir cualquier otra recta que no sea paralela a s y además que se intesecten en un sólo punto, por lo que tomamos t=x+2y.

Verificamos la dependencia funcional mediante el cálculo del Jacobiano asociado a la tranformación:

$$\left|\begin{array}{c} \frac{\partial(s,t)}{\partial(x,y)} \end{array}\right| = \left|\begin{array}{cc} 2 & -1\\ 1 & 2 \end{array}\right| = 5 \neq 0$$

Como el jacobiano es distinto de cero podemos utilizar la tranformación. Entonces, se resuelve la EDP para V(s,t)=u(x,y), donde:

$$u_x = \frac{\partial u}{\partial x} = \frac{\partial V}{\partial x} = V_x s_x + V_t s_x = 2V_s + V_t$$

$$u_y = \frac{\partial u}{\partial y} = \frac{\partial V}{\partial y} = V_s s_y + V_t s_y = -V_s + 2V_t$$

Reemplazando los valores obtenidos mediante la parametrización en la EDP a resolver

$$2V_s + V_t + 2(-V_s + 2V_t) + sV = st \Rightarrow 5V_t + sV = st$$

Al reemplazar vemos que el resultado es una EDO lineal, procedemos a resolver mediante factor integrante  $q(t)=e^{\frac{s}{5}t}$ , donde nos queda:

$$(\frac{\partial}{\partial t} + \frac{s}{t})V = \frac{st}{5}$$

$$\Leftrightarrow \frac{\partial}{\partial t}[Ve^{\frac{s}{5}t}] = \frac{s}{5}te^{\frac{s}{5}t}$$

$$\Leftrightarrow Ve^{\frac{s}{5}t} = \frac{s}{5}(\frac{5}{s}e^{\frac{s}{5}t}t + \frac{25}{s^2}e^{\frac{s}{5}t} + F(s))$$

$$\Leftrightarrow V = t - \frac{5}{s} + F(s)e^{\frac{-st}{5}}$$

$$\Leftrightarrow V(s,t) = t - \frac{5}{s} + F(s,t)$$

Volviendo a las variables x, y mediante la transformación

$$\begin{cases} s = 2x - y \\ t = x + 2y \end{cases}$$

la solución está dada por,

$$u(x,y) = x + 2y - \frac{5}{2x - y} + F(2x - y, x + 2y)$$

donde la fución tiene solución para  $2x-y\neq 0$  y cuando nuestro dato de Cauchy no está sobre la curva característica  $\phi(x,y,u)=2x-y$ .