

order of elements in finite groups

 ${\bf Canonical\ name} \quad {\bf OrderOfElementsInFiniteGroups}$

Date of creation 2013-03-22 16:34:02 Last modified on 2013-03-22 16:34:02

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 5

Author rm50 (10146) Entry type Theorem Classification msc 20A05 This article proves two elementary results regarding the orders of group elements in finite groups.

Theorem 1 Let G be a finite group, and let $a \in G$ and $b \in G$ be elements of G that commute with each other. Let m = |a|, n = |b|. If gcd(m, n) = 1, then mn = |ab|.

Proof. Note first that

$$(ab)^{mn} = a^{mn}b^{mn} = (a^m)^n(b^n)^m = e_G$$

since a and b commute with each other. Thus $|ab| \leq mn$. Now suppose |ab| = k. Then

$$e_G = (ab)^k = (ab)^{km} = a^{km}b^{km} = b^{km}$$

and thus n|km. But gcd(m, n) = 1, so n|k. Similarly, m|k and thus mn|k = |ab|. These two results together imply that mn = k.

Theorem 2 Let G be a finite abelian group. If G contains elements of orders m and n, then it contains an element of order lcm(m, n).

Proof. Choose a and b of orders m and n respectively, and write

$$lcm(m,n) = \prod p_i^{k_i}$$

where the p_i are distinct primes. Thus for each i, either $p_i^{k_i} \mid m$ or $p_i^{k_i} \mid n$. Thus either $a^{m/p_i^{k_i}}$ or $b^{n/p_i^{k_i}}$ has order $p_i^{k_i}$. Let this element be c_i . Now, the orders of the c_i are pairwise coprime by construction, so

$$\left| \prod c_i \right| = \prod |c_i| = \operatorname{lcm}(m, n)$$

and thus $\prod c_i$ is the required element.