Category Theory

Peter Johnstone

These notes, taken by Markus Himmel, will at times differ significantly from	
what was lectured. In particular, all errors are almost certainly my own.	
what was lectured. In particular, all errors are almost certainly my own.	

Contents

Exercises	
Chapter 1	
Chapter 2	•

Exercises

Chapter 1

Exercise 17.

EXERCISE. A morphism $e: A \to A$ is called idempotent if ee = e. An idempotent e is said to split if it can be factored as fg where gf is an identity morphism.

- (i) Let \mathcal{E} be a collection of idempotents in a category \mathcal{C} : show that there is a category $\mathcal{C}[\check{\mathcal{E}}]$ whose objects are the members of \mathcal{E} , whose morphisms $e \to d$ are those morphisms f: dom $e \to \mathrm{dom}\,d$ in \mathcal{C} for which dfe = f, and whose composition coincides with composition in \mathcal{C} . [Hint: first show that the single equation dfe = f is equivalent to the two equations df = f = fe. Note that the identity morphism on an object e is not $1_{\mathrm{dom}\,e}$ in general.]
- (ii) If \mathcal{E} contains all identity morphisms of \mathcal{C} , show that there is a full and faithful functor $I \colon \mathcal{C} \to \mathcal{C}[\check{\mathcal{E}}]$, and that an arbitrary functor $T \colon \mathcal{C} \to \mathcal{D}$ can be factored as $\widehat{T}I$ for some \widehat{T} iff it sends the members of \mathcal{E} to split idempotents in \mathcal{D} .
- (iii) Deduce that if all idempotents split in \mathcal{D} , then the functor categories $[\mathcal{C}, \mathcal{D}]$ and $[\widehat{\mathcal{C}}, \mathcal{D}]$ are equivalent, where $\widehat{\mathcal{C}} = \mathcal{C}[\widecheck{\mathcal{E}}]$ for \mathcal{E} the class of all idempotents in \mathcal{C} .

SOLUTION. We will first show that if $f: C \to D$ is any morphism and $c: C \to C$ and $d: D \to D$ are idempotents, then $dfe = f \iff df = f = fe$.

Indeed, if df = f = fe, then dfe = fe = f. Conversely, if dfe = f, then f = dfe = ddfe = df and f = dfe = dfee = fe.

To show that $\mathcal{C}[\check{\mathcal{E}}]$ is a category, we need to show that the composition of two morphisms is indeed a morphism and that there are identity morphism.

Assume that $c\colon C\to C,\ d\colon D\to D,\ e\colon E\to E$ are idempotents and that $f\colon C\to D$ and $g\colon D\to E$ satisfy dfc=f and egd=g. We need to show that egfc=gf. Using the lemma, we have egf=(eg)f=gf and gfc=g(fc)=gf, so, again by the lemma, the claim follows.

If $e: E \to E$ is an idempotent, define $1_e := e \xrightarrow{e} e$. By idempotency of e, this is indeed a morphism. If $f: d \to e$ is a morphism, then the morphism $f1_d$ is the morphism fd = f (here we use the lemma again) in \mathcal{C} , so $f1_d = f$ as required. Similarly, $1_e f = f$. This completes part (i).

Next, assume that $\mathcal E$ contains all identity morphisms of $\mathcal C.$ Define the functor I via

$$I: \mathcal{C} \to \mathcal{C}[\check{\mathcal{E}}]$$

$$A \mapsto 1_A$$

$$(f: A \to B) \mapsto (f: 1_A \to 1_B)$$

This is indeed a functor and since the data of a morphism $A \to B$ in \mathcal{C} is precisely the same as the data of a morphism $1_A \to 1_B$ in $\mathcal{C}[\check{\mathcal{E}}]$, I is fully faithful.

Now let $T: \mathcal{C} \to \mathcal{D}$ be any functor.

EXERCISES

First, assume that there is some functor $\widehat{T} \colon \mathcal{C}[\check{\mathcal{E}}] \to \mathcal{D}$ such that $T = \widehat{T}I$. Let $e : A \to A \in \mathcal{E}$ be an idempotent. Then we have

$$Te = \widehat{T}(1_A \xrightarrow{e} 1_A)$$

$$= \widehat{T}(1_A \xrightarrow{e} e \xrightarrow{e} 1_A)$$

$$= \widehat{T}(e \xrightarrow{e} 1_A) \circ \widehat{T}(1_A \xrightarrow{e} e),$$

and we also have

$$\begin{split} \widehat{T}(1_A \overset{e}{\longrightarrow} e) \circ \widehat{T}(e \overset{e}{\longrightarrow} 1_A) &= \widehat{T}(e \overset{e}{\longrightarrow} 1_A \overset{e}{\longrightarrow} e) \\ &= \widehat{T}(e \overset{ee}{\longrightarrow} e) \\ &= \widehat{T}(e \overset{e}{\longrightarrow} e) \\ &= \widehat{T}(1_e) \\ &= 1_{\widehat{T}e}, \end{split}$$

which shows that Te is split.

Next, assume that Te is split for any $e \in \mathcal{E}$. For any $e \in \mathcal{E}$, choose a splitting

$$TA \xleftarrow{g_e} B_e$$
,

i.e., $f_e \circ g_e = Te$, $g_e \circ f_e = 1_{B_e}$. For identity morphisms 1_A (A an object of \mathcal{C}), choose the specific splitting given by $B_{1_A} := TA$, $f_{1_A} := 1_{TA}$, $g_{1_A} := 1_{TA}$.

Now define the functor \widehat{T} via

$$\widehat{T} \colon \mathcal{C}[\check{\mathcal{E}}] \to \mathcal{D}$$

$$(e \colon A \to A) \mapsto B_e$$

$$(f \colon d \to e) \mapsto g_e \circ Tf \circ f_d.$$

If $e \in \mathcal{E}$, then we have

$$\widehat{T}(1_e) = g_e \circ Te \circ f_e$$

$$= g_e \circ f_e \circ g_e \circ f_e$$

$$= 1_{B_e} \circ 1_{B_e} = 1_{B_e}$$

Furthermore, if $f: c \to d$ and $g: d \to e$, then we have

$$\begin{split} \widehat{T}(g \circ f) &= g_e \circ T(g \circ f) = f_c \\ &= g_e \circ Tg \circ Tf = f_c \\ &= g_e \circ Tg \circ T(d \circ f) \circ f_c \\ &= g_e \circ Tg \circ Td \circ Tf \circ f_c \\ &= g_e \circ Tg \circ f_d \circ g_d \circ Tf \circ f_c \\ &= \widehat{T}g \circ \widehat{T}f. \end{split}$$

So \widehat{T} is indeed a functor. If A is an object of \mathcal{C} , then

$$\widehat{T}IA = \widehat{T}1_A = B_{1_A} = TA$$

and if $f: C \to D$ is a morphism in C, then

$$\widehat{T}If = \widehat{T}(1_C \xrightarrow{f} 1_D) = g_{1_D} \circ Tf \circ f_{1_C} = 1_{TD} \circ Tf \circ 1_{TC} = Tf,$$

so \widehat{T} is the required factorisation, completing part (ii).

Define a functor $\Phi \colon [\widehat{\mathcal{C}}, \mathcal{D}] \to [\mathcal{C}, D]$ via $F \mapsto F \circ I$, $\eta \mapsto I\eta$, where $I\eta$ is defined cia $I\eta_C := \eta_{IC} = \eta_{1_C}$. Naturality of $I\eta$ immediately follows from naturality of η . Functoriality is also clear.

CHAPTER 2 7

We will show that this functor is full, faithful and essentially surjective.

Indeed, let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then \widehat{F} as defined in the previous part satisfies $\Phi \widehat{F} = F$, so Φ is essentially surjective.

Next, let $F, G: \widehat{\mathcal{C}} \to \mathcal{D}$ be functors and $\eta: F \circ I \to G \circ I$ a natural transformation. For an idempotent $e: A \to A$ in \mathcal{C} , define $\hat{\eta}_e$ to be the composite

$$Fe \xrightarrow{F(e \xrightarrow{e} 1_A)} F1_A = (F \circ I)A \xrightarrow{\eta_A} (G \circ I)A = G1_A \xrightarrow{G(1_A \xrightarrow{e} e)} Ge.$$

We claim that this defines a natural transformation $\hat{\eta} \colon F \to G$. Indeed, if $f \colon d \to e$ is a morphism, then

$$\begin{split} \hat{\eta}_{e} \circ Ff &= G(1_{A} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(e \stackrel{e}{\longrightarrow} 1_{E}) \circ F(d \stackrel{f}{\longrightarrow} e) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(d \stackrel{f}{\longrightarrow} e \stackrel{e}{\longrightarrow} 1_{E}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(d \stackrel{d}{\longrightarrow} 1_{D} \stackrel{d}{\longrightarrow} d \stackrel{f}{\longrightarrow} e \stackrel{e}{\longrightarrow} 1_{E}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(d \stackrel{d}{\longrightarrow} 1_{D} \stackrel{d}{\longrightarrow} d \stackrel{f}{\longrightarrow} e \stackrel{e}{\longrightarrow} 1_{E}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(1_{D} \stackrel{efd}{\longrightarrow} 1_{E}) \circ F(d \stackrel{d}{\longrightarrow} 1_{D}) \\ &= G(1_{E} \stackrel{e}{\longrightarrow} e) \circ \eta_{E} \circ F(efd) \circ F(d \stackrel{d}{\longrightarrow} 1_{D}), \end{split}$$

and doing the whole thing backwards we conclude that $\hat{\eta}_e \circ Ff = Gf \circ \hat{\eta}_d$, so $\hat{\eta}$ is indeed a natural transformation.

For any $A \in \mathcal{C}$ we have

$$(I\hat{\eta})_A = \hat{\eta}_{IA} = \hat{\eta}_{1_A} = G(1_A \xrightarrow{1_A} 1_A) \circ \eta_A \circ F(1_A \xrightarrow{1_A} 1_A)$$

= $G(1_{1_A}) \circ \eta_A \circ F(1_{1_A}) = \eta_A,$

which means that $\Phi(\hat{\eta}) = \eta$, so Φ is full.

Finally, let $F,G\colon\widehat{\mathcal{C}}\to\mathcal{D}$ be functors and $\eta,\eta'\colon F\to G$ be natural transformations such that $\Phi(\eta)=\Phi(\eta')$. To show that Φ is faithful, we need to prove that $\eta=\eta'$. The assumption $\Phi(\eta)=\Phi(\eta')$ means that for all $A\in\mathcal{C}$ we have $\eta_{IA}=\eta'_{IA}$, so $\eta_{1_A}=\eta'_{1_A}$.

so $\eta_{1_A} = \eta'_{1_A}$. Let $e: A \to A$ be any idempotent in \mathcal{C} . We need to show that $\eta_e = \eta'_e$. Indeed, we have

$$\eta_e = G(1_e) \circ \eta_e
= G(e \xrightarrow{e} e) \circ \eta_e
= G(e \xrightarrow{e} e) \circ \eta_e
= G(e \xrightarrow{e} 1_A \xrightarrow{e} e) \circ \eta_e
= G(1_A \xrightarrow{e} e) \circ G(e \xrightarrow{e} 1_A) \circ \eta_e
= G(1_A \xrightarrow{e} e) \circ \eta_{1_A} \circ F(e \xrightarrow{e} 1_A)
= G(1_A \xrightarrow{e} e) \circ \eta'_{1_A} \circ F(e \xrightarrow{e} 1_A),$$

and the same argument in backwards direction shows that $\eta_e = \eta'_e$, completing the proof.

Chapter 2

Exercise 13.

EXERCISES

EXERCISE. The inner automorphisms of \mathcal{C} form a normal subgroup of the group of all automorphisms of \mathcal{C} . [Don't worry about whether these groups are sets or proper classes!]

SOLUTION. Let $F, G: \mathcal{C} \to \mathcal{C}$ be automorphisms and let $\alpha: F \to 1_{\mathcal{C}}$ be a natural isomorphism.

Let $A \in \mathcal{C}$. Define $\beta \colon GFG^{-1} \to 1_A$ via $\beta_A \coloneqq G(\alpha_{G^{-1}A})$ (so $\beta_A \colon GFG^{-1}A \to GG^{-1}A = A \to GG^{-1}A = 1_{\mathcal{C}}A$.

This is indeed a natural transformation: let $f:A\to B\in\mathcal{C}$, then we can write the naturality square in a funny way,

$$GFG^{-1}A \xrightarrow{G(\alpha_{G^{-1}A})} G1_{C}G^{-1}A$$

$$\downarrow^{GFG^{-1}(f)} \qquad \downarrow^{G1_{C}G^{-1}f}$$

$$GFG^{-1}B \xrightarrow{G(\alpha_{G^{-1}B})} G1_{C}G^{-1}B$$

and we see that it is just the functor G applied to the naturality diagram for α and the morphism $G^{-1}f$.

Therefore, β is a natural transformation, and since functors map isomorphisms to isomorphisms, it is also a natural isomorphism. So GFG^{-1} is an inner automorphism as required.

LEMMA 0.1. Let $1 \in \mathcal{C}$ be a terminal object and $F: C \to C$ an automorphism. Then F1 is a terminal object.

PROOF. If $A \in \mathcal{C}$, the functor F, which is fully faithful, induces a bijection between the collection of morphisms $F^{-1}A \to 1$ and the collection of morphisms $A \to F1$. Since 1 is terminal, there is exactly one morphism $A \to F1$.

EXERCISE 0.2. If $F \colon \mathsf{Set} \to \mathsf{Set}$ is an automorphism, then there is a unique natural isomorphism $1_{\mathcal{C}} \to F$.

SOLUTION. Of course, the terminal object in the category of sets is just the one-element set $1 = \{\star\}$.

We define a natural transformation $\alpha: 1_{\mathsf{Set}} \to \mathsf{Set}(1, -)$ by setting

$$\alpha_A(a)(\star) \coloneqq a.$$

The naturality square for $f \colon A \to B$ is

$$\begin{array}{ccc} A & \stackrel{\alpha_A}{\longrightarrow} & \mathsf{Set}(1,A) \\ \downarrow^f & & \downarrow^{g \mapsto f \circ g} \\ B & \stackrel{\alpha_B}{\longrightarrow} & \mathsf{Set}(1,B) \end{array}$$

Both paths are just $a \mapsto (\star \mapsto f(a))$, so α is natural. It is also clear that α_A is bijective, so α is a natural isomorphism.

In particular, this tells is that the collection of natural transformations

$$1_{\mathsf{Set}} o F$$

is in bijection with the collection of natural transformation

$$\mathsf{Set}(1,-) \to F.$$

This in turn, by the Yoneda lemma, is in bijection with F1, which is a terminal object, hence in bijection with 1, so we conclude that there is precisely one natural transformation $1_{\mathsf{Set}} \to F$.

CHAPTER 2 9

TODO: Show that this is a natural isomorphism.