WYZNACZENIE e/m Z POMIARÓW EFEKTU MAGNETRONOWEGO

1. Opis teoretyczny do ćwiczenia

zamieszczony jest na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

2. Opis układu pomiarowego

W ćwiczeniu efekt magnetronowy jest badany przy wykorzystaniu diody lampowej EY - 51 umieszczonej wewnątrz cewki. Schemat układu pomiarowego przedstawiono na rysunku.

Układ diody i cewki wraz z zasilaczem obwodu żarzenia i obwodu anodowego umieszczony jest na wspólnej płycie. Zasilacz diody wraz z potencjometrem suwakowym R jest obudowany i przymocowany do płyty. Potencjometr suwakowy R służy do regulacji napięcia anodowego.

Na płycie wyprowadzone są zaciski: do zasilacza cewki – oznaczone literą I, do pomiaru napięcia anodowego – oznaczone literą U_a , do pomiaru prądu anodowego – oznaczone literą I_a .

3. Przeprowadzenie pomiarów

Zaznajomić się z poszczególnymi elementami układu. Sprawdzić połączenie układ według schematu przedstawionego na rysunku. Na przyrządach pomiarowych ustawić następujące podzakresy: woltomierz – zakres 30 V, mikroamperomierz – zakres 750 μ A, miliamperomierz – zakres 750 mA, potencjometr suwakowy do regulacji napięcia anodowego U_a w położenie zero.

- 1. Włączyć zasilacz diody i odczekać około 5 10 minut na nagrzanie lampy.
- 2. Potencjometrem suwakowym R ustawić napięcie anodowe na wybraną wartość U_a z zakresu 5 12 V.
- 3. Włączyć zasilacz stabilizowany i zmieniając napięcie zasilające cewkę zmierzyć charakterystykę $I_a = f(I)$. Prąd cewki zmieniać w zakresie od 0 do 400 mA, co 10-20 mA. Przy pomiarze zależności $I_a = f(I)$ należy utrzymywać stała wartość U_a .
- 4. Czynności z punktów 4 i 5 powtórzyć dla trzech różnych wartości napięcia anodowego, a wyniki zapisać w tabeli.
- 5. Zapisać parametry stanowiska i niepewności pomiarowe.

4. Opracowanie wyników pomiarów

Wykonanie wykresu (1) - zależności prądu anodowego od prądu zasilającego cewkę

1. Na podstawie wyników z tabeli pomiarów wykreślić wykresy zależności $I_a = f(I)$ dla zmierzonych wartości dla $U_a = const$. Charakterystyki nanieść na trzy oddzielne wykresy (Wykres-1a, Wykres-1b, Wykres-1c) w celu zapewnienia dobrej czytelności, zaznaczając niepewności pomiarowe.

- 2. Proste widoczne na załączonym tu wykresie pomocniczym wyznaczyć metodą graficzną. Są one przybliżeniem liniowym przebiegu początkowego i końcowego odcinka charakterystyki $I_a = f(I)$ i są do siebie równoległe.
- 3. Wyznaczyć trzecią prostą równoległą do dwóch poprzednich położoną w połowie odległości między nimi.
- 4. Określić wielkości I_{kr} jako rzut punktu przegięcia krzywej $I_a = f(I)$ na oś I. Oszacować niepewność ΔI_{kr} z wykresu.
- 5. Dla każdej wartości U_a określić wartość B_{kr} według zależności $B_{kr} = \beta I_{kr}$, gdzie $\beta = (1.38 \pm 0.02) \cdot 10^{-2} \ VsA^{-1}m^{-2}$ to stała wyznaczona empirycznie dla tego stanowiska.

Wyznaczenie stosunku e/m i jego niepewności

- 6. Wyznaczyć dla wszystkich napięć U_a wartości $\frac{\rm e}{\rm m} = \frac{8~{\rm U_a}}{\beta^2~{\rm I_{kr}}^2~{\rm (r_a-r_b)}^2}$ przyjmując $r_a = (0.800\pm0.001)~cm$, $r_k = (0.050\pm0.001)~cm$.
- 7. Biorąc pod uwagę niepewności maksymalne ΔU_a , $\Delta \beta$, Δr_k , Δr_a i ΔI_{kr} obliczyć dla wszystkich wartości U_a niepewności złożone względną wielkości e/m:

$$u_{c,r}\left(\frac{e}{m}\right) = \frac{1}{\sqrt{3}} \cdot \sqrt{\left(\frac{\Delta U_a}{U_a}\right)^2 + \left(2 \cdot \frac{\Delta \beta}{\beta}\right)^2 + \left(2 \cdot \frac{\Delta I_{kr}}{I_{kr}}\right)^2 + \left(2 \cdot \frac{\Delta r_a}{r_a}\right)^2 + \left(2 \cdot \frac{\Delta r_k}{r_k}\right)^2}$$

- 8. Wyznaczyć dla wszystkich napięć U_a niepewności złożone bezwzględne $u_c \left(\frac{e}{m}\right) = \left(\frac{e}{m}\right) u_{c,r} \left(\frac{e}{m}\right)$
- 9. Wyznaczyć dla wszystkich napięć U_a niepewności rozszerzone $U\left(\frac{e}{m}\right) = 2 \cdot u_c\left(\frac{e}{m}\right)$.

5. Podsumowanie

1. Zgodnie z regułami prezentacji wyników zestawić wyznaczoną wielkości $\frac{e}{m}$ dla wszystkich napięć U_a

$$\left(\frac{e}{m}, u_c\left(\frac{e}{m}\right), u_{c,r}\left(\frac{e}{m}\right), U\left(\frac{e}{m}\right)\right)$$
 oraz wartość odniesienia,

- 2. Przeanalizować uzyskane rezultaty:
- a) która z niepewności wnosi największy wkład do niepewności złożonej $u_c \left(\frac{e}{m}\right)$,
- b) czy spełniona jest relacja $u_{c,r}\left(\frac{e}{m}\right) < 0.1$,
- c) czy spełniona jest relacja $\left(\frac{e}{m}\right)_{odniesienie} \frac{e}{m} < U\left(\frac{e}{m}\right)$,
- e) czy spełniona jest relacja $\left| \left(\frac{e}{m} \right)_{maks} \left(\frac{e}{m} \right)_{min} \right| < U \left(\frac{e}{m} \right),$
- g) rozkład punktów na charakterystykach $I_a = f(I)$, pod kątem występowania i przyczyn błędów grubych, systematycznych i przypadkowych.
- **3.** Wnioski z analizy rezultatów.
- a) Wyciągnąć wnioski pod kątem występowania błędów grubych, systematycznych i przypadkowych i ich przyczyn. Czy wartość napięcia U_a wpływa na dokładność?
- b) Zaproponować działania zmierzające do podniesienia dokładności wykonywanych pomiarów.
- c) Wyjaśnić czy cele ćwiczenia zostały osiągnięte.

6. Przykładowe pytania

Zamieszczone są na stronie <u>www.wtc.wat.edu.pl</u> w dziale DYDAKTYKA – FIZYKA – ĆWICZENIA LABORATORYJNE.

Zespół w składzie
cele ćwiczenia:
• wyznaczenie stosunku $\frac{e}{m}$,
• zbadanie zależności $\frac{e}{m}$ od wartości napięcia anodowego,
3.1 Wartości teoretyczne wielkości wyznaczanych lub określanych:
stosunek e/m
3.2 Potwierdzić na stanowisku wartości parametrów i ich niepewności!
$r_a = (0.800 \pm 0.001) cm$
$r_k = (0.050 \pm 0.001) cm$
$\beta = (1,38 \pm 0,02) \cdot 10^{-2} \ VsA^{-1}m^{-2} \dots$
3.3 Pomiary i uwagi do ich wykonania:
Niepewność pomiaru I
Niepewność pomiaru I a
Niepewność pomiaru U a

I [mA]	U _a =[V]	$U_a = \dots V$	$U_a = \dots [V]$
	Ia [ma]	Ia [ma]	Ia [ma]
0			
20			
40			
60			
80			
100			
110			
120			
130			
140			
150			
160			
170			
180			
190			
200			
220			
240			
260			
280			
300			
320			
340			
360			
380			
400			