Regression
Classification: given pt. X, predict class Colscrets
regression: given ptx, predict a <u>numerical Value</u> Nypothesis
- (hanse:
(form of regression function h(x; v) W parameter U
1- like decision function from classification
2) cost function to optimize 1> usually bused on loss function, e.g. empirical risk = E[loss]
Some regression fins:
1) linear regression h(x; W, d) = LIX+ d
2 polynomial regression Cplug in polynomial features into Sneer regression)
3) logistic regression h(x; v, d) = S(V, x + d), S() is signoid, S(r) = -r
WA PROJUCES LOGISTIC POSTRION PROBLEMINES
La interpolate probabilities not numbers
<u>loss</u> functions: Z= prediction h(x), y is label
A Savend error: (2-4)2
B Absolute ever: Z-y computationally healer to do
O logistic/cross-entropy: - Yln Z - (1-yln(1-2) Z & y must be in scane range
Some Cost fus
@ JChs= & Elch(xi),yi) mean loss
(b) J(h) = max L(h(xi), yi) maximum loss
OJCh) = Ew; L(h(xi), Yi) Weighted Som
·
@ L2 regularization: $J(h) + 1 w _2^2$ doint trust large Weights @ L1 regression: $J(h) + 1 w _1^2$
Z don't trust large Weights
@ L1 regression: T(n) + 2 v 1
+amous regression methods?
Veight 1 10 lines regression: U + (1) + (2)
Veighted LS linear regression: 1 + A + B } quadratic cost fn. (convex) Ridge Regression: 1 + A + B
Lasco: 1 + A + B audicitic Property (like SVMc)
Legistic Regression: 3 + 0 + @ Convex Cost; minimize U/ gradient descent
Least absolute deviations: 0 + B + Q Convex cost; minimize U gradient descent Least absolute deviations: 0 + B + Q Chebychev (citaion D+ B+ B)
Chebycher Critain: 1 + 10 + 10

<u>Least-Savares linea Regression</u> Gauss, 1801 Linear regression for D + Savand loss (A) + cost for (a) problem: find Wd that minimizes = (Xi-U+d-4i)2 design matrix= X_{11} X_{12} ... X_{1d} 2Point X_{1} X_{11} X_{12} ... X_{1d} 1 X_{11} ... X_{1d} 1And 1]

feature column X * 1 Usually, n > d (+all, not hide) Recall fictitions dimension trick: h(x) = xut & as $\begin{bmatrix} \chi_1 \dots \chi_2 & 1 \end{bmatrix} \cdot \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$ NOW X & PR^nx(dtl) Vis q dt1 Vector find 11 that minimizes || XW-Y|| = RSS(U), residual sum of squares Optimize W (alculus: min RSS(W) = UTXTXU - ZYTXU + VTY $\nabla V SS = 2x^T x u - 2x^T y = 0$ with least $\Rightarrow x^T \times U = x^T y$ (hormal equations) $\Rightarrow u^* = (x^T x)^T x^T y$ Pseudo invese of $x = x^* x^* + y^* \in \mathbb{R}^{d+1} \times n$ If XTX is singular, this problem is underconstrained to all points lie on a hyperplane, don't use all off dimensions We can use a linear Solver to get W Observe: $\chi^{\dagger} x = (\chi^{\dagger} x)^{-1} \chi^{\dagger} x = \mathcal{I}_{AH}$ Observe: predicted value of Y; is $V_i = \mathcal{V} \cdot X_i$

Let
$$S_{i} = S(X_{i} \cdot u)$$

$$\downarrow \Rightarrow \nabla_{u} J = -\frac{2}{3} \left(\frac{Y_{i}}{S_{i}} + \nabla S_{i} - \frac{1 - Y_{i}}{1 - S_{i}} \cdot \nabla S_{i} \right)$$

$$= -\frac{2}{3} \left(\frac{Y_{i}}{S_{i}} - \frac{1 - Y_{i}}{1 - S_{i}} \right) S_{i}(1 - S_{i}) X_{i}$$

$$= -\frac{2}{3} \left(Y_{i} - S_{i} \right) X_{i} \qquad \text{element-hise Signoid of Xu Vector}$$

$$= -X^{T} (Y - S(X_{u}))$$

gradient descent rule: U = W + EXT (Y-S(XV)) SGD: W = W + E(Y; -S(X; ·U)) X;