

AN5031 Application note

Getting started with STM32MP1 Series hardware development

Introduction

This application note shows how to use the STM32MP1 Series, and describes the minimum hardware resources required to develop an application based on those MPU products.

This application note is intended for system designers who require an overview of the hardware implementation of the development board, with focus on features like:

- Power supply
- Package selection
- · Clock management
- Reset control
- · Boot mode settings
- · Debug management.

Reference design schematics are also contained in this document with descriptions of the main components, interfaces and modes.

February 2019 AN5031 Rev 1 1/78

Contents AN5031

Contents

1	Gen	eral info	ormation	8		
2	Refe	erence d	locuments	8		
3	Glos	sary		9		
4	Pow	er supp	lies	. 11		
	4.1	4.1 Introduction				
		4.1.1	Independent ADC and DAC converter supply and reference voltage .	. 12		
		4.1.2	Battery backup	. 13		
		4.1.3	Voltage regulators	. 13		
	4.2	Power	supply schemes	. 14		
	4.3	Reset	and power supply supervisor	. 17		
		4.3.1	Power on reset (POR) / power down reset (PDR)	. 17		
		4.3.2	Programmable voltage detector (PVD)	. 17		
		4.3.3	Application and system resets	. 18		
5	Pacl	cages .		. 20		
	5.1	Packa	ge selection	. 20		
	5.2	Alterna	ate function mapping to pins	. 22		
	5.3	Packa	ge compatibility between versions	. 23		
6	Cloc	ks		. 28		
	6.1	HSE C	OSC clock	. 28		
		6.1.1	External source (HSE bypass)			
		6.1.2	External crystal/ceramic resonator (HSE crystal)			
	6.2	LSE O	SC clock	. 30		
		6.2.1	External source (LSE bypass)	. 30		
		6.2.2	External crystal/ceramic resonator (LSE crystal)	. 30		
	6.3	Clock	security system (CSS)	. 31		
		6.3.1	CSS on HSE			
		6.3.2	CSS on LSE			
7	Boo	t config	uration	. 32		

AN5031	Contents

	7.1	Boot mode selection	2
	7.2	Boot pin connection	3
	7.3	Embedded boot loader mode	5
8	Debu	ug management	6
	8.1	Introduction 3	6
	8.2	SWJ debug port (serial wire and JTAG)	6
	8.3	Pinout and debug port pins	6
		8.3.1 Internal pull-up and pull-down resistors on JTAG pins	6
		8.3.2 Debug port connection with standard JTAG connector	7
		8.3.3 Debug port and UART connection with STDC14 connector3	8
		8.3.4 Parallel trace and HDP	9
		8.3.5 Debug triggers and LEDs4	1
9	Reco	ommendations4	2
	9.1	Printed circuit board 4	2
	9.2	Component position	2
	9.3	Ground and power supply (V _{SSx} , V _{DDx})	2
	9.4	IO speed settings	2
	9.5	PCB stack and technology	6
	9.6	Decoupling	0
	9.7	ESD/EMI protections	
	9.8	Sensitive signals	
	9.9	Unused I/Os and features	
10	Refe	erence design examples	2
. •	10.1	Description	
	10.1	10.1.1 Clock	
		10.1.2 Reset	
		10.1.3 Boot mode	
		10.1.4 SWD / JTAG interface	
		10.1.5 Power supply	4
		10.1.6 DDR3/DDR3L SDRAM5	
		10.1.7 LpDDR2/LpDDR3 SDRAM	9
		10.1.8 SD card	0
		10.1.9 eMMC™ Flash	2
\		AN5031 Rev 1 3/7	'8

10.1.10	SLC NAND-Flash
10.1.11	Serial NOR-Flash/NAND-Flash
10.1.12	USB67
10.1.13	Ethernet
10.1.14	Display serial interface (DSI)

Contents

11

AN5031

AN5031 List of tables

List of tables

Table 1.	Reference documents	8
Table 2.	Glossary	9
Table 3.	Recommended settings for ANASWVDD and EN_BOOSTER	
Table 4.	Amount of decoupling recommendation by package	
Table 5.	Package summary	20
Table 6.	Major feature changes related to packages	21
Table 7.	Device compatibility summary	23
Table 8.	STM32MP151xxx and STM32MP153xxx for 16x16 LFBGA354 compatibility	24
Table 9.	STM32MP151xxx and STM32MP153xxx for 10x10 TFBGA257 compatibility	25
Table 10.	STM32MP151xxx and STM32MP153xxx for 12x12 TFBGA361 compatibility	26
Table 11.	STM32MP151xxx and STM32MP153xxx for 18x18 LFBGA448 compatibility	27
Table 12.	Boot modes	
Table 13.	OSPEEDR setting example for VDD = 3.3V typ	43
Table 14.	OSPEEDR setting example for VDD = 1.8V typ	44
Table 15.	HSE BOM for oscillator or crystal	52
Table 16.	UART possible boot pins	53
Table 17.	Components example for 1.2V 2A	55
Table 18.	Components example for 1.35V 1A	55
Table 19.	USB package length matching values	
Table 20.	DSI package length matching values	76
Table 21.	Document revision history	77

AN5031 Rev 1 5/78

List of figures AN5031

List of figures

Figure 1.	Power supply scheme	11
Figure 2.	Power-on reset/power-down reset waveform	17
Figure 3.	PVD thresholds	18
Figure 4.	Simplified reset pin circuit	19
Figure 5.	STM32CubeMX example screen-shot	22
Figure 6.	16x16 LFBGA354 compatibility	24
Figure 7.	10x10 TFBGA257 compatibility	25
Figure 8.	12x12 TFBGA361 compatibility	26
Figure 9.	18x18 LFBGA448 compatibility	27
Figure 10.	HSE external clock	28
Figure 11.	HSE crystal/ceramic resonators	28
Figure 12.	LSE external clock	30
Figure 13.	LSE crystal/ceramic resonators	30
Figure 14.	Boot mode selection example	33
Figure 15.	BOOT pins typical connection schematics	34
Figure 16.	Simplified boot flow	35
Figure 17.	Host-to-board connection	
Figure 18.	JTAG/SWD MIPI10 connector implementation example	
Figure 19.	JTAG/SWD/UART VCP STDC14 connector implementation example	
Figure 20.	Parallel trace port with JTAG/SWD on Mictor-38 implementation example	40
Figure 21.	Example of LED connections	41
Figure 22.	IO speed summary with various loads and voltages	43
Figure 23.	6 layer PCB stack example	46
Figure 24.	4 layer PCB stack example	
Figure 25.	PCB rule example for 0.8 mm pitch package	48
Figure 26.	PCB rule example for 0.5 mm pitch package	
Figure 27.	PCB rule example for inner balls with 0.65mm power improved pitch	49
Figure 28.	Exemple of decoupling layout	
Figure 29.	HSE recommended schematics for both oscillator/crystal options	
Figure 30.	Discrete supplies example 3.3 V I/Os with DDR3L	
Figure 31.	ST1S31PUR SMPS details	
Figure 32.	PMIC example 3.3 V I/Os with DDR3L	
Figure 33.	PMIC example 1.8 V I/Os with LPDDR2/LPDDR3	
Figure 34.	DDR3L 16/32 bits connection example	
Figure 35.	LPDDR2/LPDDR3 32-bits connection example	
Figure 36.	SD-Card with external level shifter connection example	
Figure 37.	SD-Card with 3.3V I/Os connection example	
Figure 38.	eMMC™ connection example	
Figure 39.	SLC NAND-Flash connection example	
Figure 40.	Serial Flash connection example	
Figure 41.	Dual-Serial Flash connection example	
Figure 42.	USB 2 ports host high-speed + OTG full-speed connection example	
Figure 43.	USB host high-speed + OTG high-speed connection example	
Figure 44.	USB high speed PCB track example for 0.8 mm ball pitch package	
Figure 45.	10/100M Ethernet PHY connection example	70
Figure 46.	10/100M Ethernet PHY connection with REFCLK from RCC example	
Figure 47.	Gigabit Ethernet PHY connection example with VDD=3.3V (RTL8211E)	
Figure 48.	Gigabit Ethernet PHY connection example with VDD=3.3V (RTL8211F)	73

AN5031		List of figures

Figure 49.	Gigabit Ethernet PHY connection example with VDD=1.8V (RTL8211F)	7 3
Figure 50.	Gigabit Ethernet 2-port switch example with VDD = 3.3V (RTL8363NB)	' 4
Figure 51.	Display connection example with DSI	7 5
Figure 52.	DSI interface PCB track example for 0.8 mm ball pitch package	76

AN5031 Rev 1 7/78

General information AN5031

1 General information

This document applies to Arm^{®(a)}-based devices.

2 Reference documents

The following documents are available on www.st.com.

Table 1. Reference documents

Reference	Title			
AN2867	Oscillator design guide for ST microcontrollers			
AN1709	EMC design guide for ST microcontrollers			
AN5275	STM32MP1 Series: USB DFU/USART protocols used in bootloaders			
AN5168	STM32MP1 Series DDR configuration			
AN5089	STM32MP1 Series and STPMIC1 hardware and software integration			
AN5122	STM32MP1 Series DDR memory routing guidelines			
AN5256	STM32MP1 Series discrete power supply hardware integration			
UM2535	STM32MP1 Evaluation boards user manual			
UM2534	STM32MP1 Discovery board user manual			
RM0441	STM32MP151 advanced Arm®-based 32-bit MPUs			
RM0442	STM32MP153 advanced Arm®-based 32-bit MPUs			
RM0436	STM32MP157 advanced Arm [®] -based 32-bit MPUs			
DS12500	STM32MP151Axx datasheet			
DS12501	STM32MP151Cxx datasheet			
DS12502	STM32MP153Axx datasheet			
DS12503	STM32MP153Cxx datasheet			
DS12504	STM32MP157Axx datasheet			
DS12505	STM32MP157Cxx datasheet			

AN5031 Rev 1

_

8/78

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5031 Glossary

3 Glossary

Table 2. Glossary

Term	Meaning			
ADC	Analog to digital converter			
AHB	Advanced high-performance bus			
CSI	Low power internal oscillator			
СТІ	Cross-trigger interface			
DAC	Digital to analog converter			
DAP	Debug access port			
DDRCTRL	Double data rate SDRAM controller. Supports LPDDR2 and DDR3/DDR3L protocols			
DDRPHYC	DDR physical interface control			
DSI	Display serial interface master			
ETH	Ethernet controller			
EXTI	Extended interrupt and event controller			
FMC	Flexible memory controller			
GPIO	General purpose input output			
HDP	Hardware debug port			
HSE	High-speed external quartz oscillator			
HSI	High-speed internal oscillator			
I2C	Inter IC bus			
IWDG	Independent watchdog			
JTAG	Joint test action group. A debug interface			
LSE	Low-speed external quartz oscillator			
LSI	Low-speed internal oscillator			
MDIOS	Management data input/output slave. Interface used to control Ethernet physical Interface			
OTG	USB on the Go. An USB standard for interface able to become host or device			
ОТР	One time program memory			
PMIC	Power management integrated circuit. External circuit which provides various platform power supplies with large controllability through signals and serial interface			
PWR	Power control			
QUADSPI	Quad data lanes serial peripheral interface			
RCC	Reset and clock control			
ROM	Read-only memory			
RTC	Real time clock			

Glossary AN5031

Table 2. Glossary (continued)

Term	Meaning			
SDMMC	Secure digital and multiMedia card interface. Supports SD, MMC, eMMC and SDIO protocols			
SMPS	Switched mode power supply			
SPI	Serial peripheral interface			
STM	System trace macrocell			
SW	Software			
SWD	Serial wire debug			
SWO	Single wire output. A trace port			
SYSCFG	System configuration			
TAMP	Tamper detection IP			
TEMP	Temperature sensor			
UART	Universal asynchronous receiver/transmitter			
USART	Universal synchronous/asynchronous receiver/transmitter			
USB	Universal serial bus			
USBH	USB host controller			
VREFBUF	ADC/DAC voltage reference buffer			

AN5031 Power supplies

4 Power supplies

 $V_{\mathsf{DDA1V2_DSl_PHY}}$ V_{DD1}V2_DSI_REG $V_{\text{DDA1V1_REG}}$ JVDD_DSI USB FS lOs DDR **USB HS** 1V8 DSI DSI PHY regulator PHY PHY regulator regulator V_{SS} V_{SS_DSI} DSI Core domain V_{DDCORE} PLL $V_{\text{SS}} \\$ (MPU, peripherals, (MCU, evel shifter peripherals, RAM) IO RAM) **IOports** IOs logic (System logic, Peripherals) $V_{DD} (V_{DD_ANA})$ V_{DD} HSI, CSI, HSE, LSI, WKUP, VSW domain Ю **IWDG** VDD Retention domain **IOports** Retention lOs logic regulator Retention V_{BAT} RAM $V_{\text{DD_PLL}}$ Backup domain Backup **PLLs** VDD domain regulator V_{SS_PLL} Backup RAM LSE, RTC, AWU, BKUP Ю **IOports** Tamper, backup IOs logic registers, Reset $V_{DDA} [\![$ Vss Analog domain REF_BUF ADC, DAC V_{REF^+} V_{REF^+} V_{REF} V_{REF} V_{SSAI} MSv46507V2

Figure 1. Power supply scheme

Power supplies AN5031

4.1 Introduction

Note: See details and guaranteed operating points in product datasheets.

- The main IOs voltage supply (V_{DD}) range is 1.71 V to 3.6 V.
- The core logic operating voltage supply (V_{DDCORE}) range is 1.18 V to 1.25 V.
- The USB supplies (V_{DD3V3} USBHS and V_{DD3V3} USBFS) range is 3.1 V to 3.6 V.
- Embedded regulators are used to supply some internal blocks.
 - 1.2 V LDO for DSI available on $V_{DD1V2_DSI_REG}$ which is used to supply DSI PLL and $V_{DD1V2_DSI_PHY}$ pin. Range is 1.15 V to 1.26 V.
 - 1.8 V LDO for DSI and USB available on V_{DDA1V8_REG} which is used to supply USB internally and $V_{DDA1V8_DSI}.$ When BYPASS_REG1V8 = $V_{DD},\,V_{DDA1V8_REG}$ must be supplied externally. In that case, range is 1.65 V to 1.95 V.
 - 1.1 V LDO for USB available on V_{DD1V1} REG for external decoupling

Note: Embedded regulators must not be used to supply external components.

 The real-time clock (RTC) and backup registers can be powered from the V_{BAT} voltage when the main V_{DD} supply is powered off. This internal supply with automatic switch between V_{BAT} and V_{DD} is named V_{SW} domain and is also used to supply PI8, PC13, PC14, PC15 pads.

V_{BAT} voltage range is 1.20 V to 3.6 V.

When V_{DD} is above V_{BAT} , a small charging current could be enabled on V_{BAT} for an external backup voltage device (e.g. supercapacitor).

4.1.1 Independent ADC and DAC converter supply and reference voltage

To improve the conversion accuracy and dynamic range, the ADC, DAC and reference have an independent power supply that can be filtered separately, and shielded from noise on the PCB.

The analog operating voltage supply (V_{DDA}) range is 1.71 V to 3.6 V (DAC could only be used when V_{DDA} is above or equal 1.8 V).

- The ADC/DAC/VREFBUF voltage supply input is available on a separate V_{DDA} pin.
- An isolated supply ground connection is provided on the V_{SSA} pin.
 In all cases, the V_{SSA} pin should be externally connected to same supply ground than V_{SS}.

External VREF

The user can connect a separate external reference voltage ADC/DAC input on V_{REF+} . The voltage on V_{REF+} may range from 1.62 V to V_{DDA} .

Note: In order to work, DAC requires V_{RFF+} above 1.8 V.

Internal VREF

The user can enable in the VREFBUF block an internal reference voltage on V_{REF+} . The voltage on V_{REF+} could be selected between 1.5 V, 1.8 V, 2.048 V and 2.5 V.

With internal VREF available on V_{REF+} pin, it could be used externally (e.g. for analog comparator reference) if loading is kept within datasheet values.

Note: In order to work, the DAC requires V_{REF+} above 1.8 V.

AN5031 Power supplies

Note: The VREFBUF requires V_{DDA} equal to or higher than $V_{REF+} + 0.3 \text{ V}$.

Caution: When available (depending on package), V_{REF} must be externally tied to V_{SSA}.

Booster for ADC analog input switches

The ADC inputs are multiplexed with analog switches which have reduced performances when V_{DDA} supply is below 2.7V. In order to get maximum ADC analog performances, it is alternatively possible to supply analog switches with either V_{DD} (if above 2.7V) or an embedded 3.3V booster from V_{DDA} .

The control is done in the SYSCFG_PMCR register.

Table 3. Recommended settings for ANASWVDD and EN_BOOSTER

V _{DDA} (V)	V _{DD} (V)	>	SYSCFG_PMCR. ANASWVDD	SYSCFG_PMCR. EN_BOOSTER	Switches supply	ADC analog performances	
>2.7	1.71 to 3.6	-	0	0	V _{DDA} (>2.7V)		
	>2.7	>2.7	-	1	0	V _{DD} (>2.7V)	Maximum
<2.7	<2.7		0	1 ⁽¹⁾	Booster (~3.3V)		
	~2.1	_	0	0 ⁽²⁾	V _{DDA} (<2.7V)	Reduced	

^{1.} Booster voltage can take up to 50 μs to stabilize.

4.1.2 Battery backup

To retain the content of the backup registers, BKPSRAM and RETRAM, when V_{DD} is turned off, the V_{BAT} pin can be connected to an optional standby voltage supplied by a battery or another source.

The V_{BAT} pin also powers the RTC unit, allowing the RTC to operate even when the main digital supply (V_{DD}) is turned off. The switch to the V_{BAT} supply is controlled by the power down reset (PDR) circuitry embedded in the reset block.

If no external battery is used in the application, it is required to connect V_{BAT} externally to V_{DD} .

4.1.3 Voltage regulators

The 1.8V LDO (for USB and DSI) is always enabled after power on reset if BYPASS_REG1V8 = V_{SS} . It is not affected by (LP/LPLV-)Stop, but disabled on Standby entry.

The 1.1V LDO (for USB) is always enabled after power on reset. It is not affected by (LP/LPLV-)Stop, but disabled on Standby entry.

The 1.2V LDO (for DSI) is disabled after system reset and must be enabled by software before DSI is used. It is not affected by (LP/LPLV-)Stop, but disabled on Standby entry.

The embedded regulators must not be used to supply external components unless specifically mentioned.

57

Note:

AN5031 Rev 1 13/78

^{2.} If reduced ADC analog performance is acceptable, the booster disabled could save up to 250 μ A.

Power supplies AN5031

4.2 Power supply schemes

The circuit is powered by multiple power supplies:

 The V_{DD} is the main supply for IOs and internal part kept powered during the Standby mode. Useful voltage range is 1.71 V to 3.6 V (e.g. 1.8 V, 2.5 V, 3.0 V or 3.3 V typ.)

- Those supplies must be connected to external decoupling capacitors (see Table 4).
- V_{DD DSI} , V_{DD PLL} and V_{DD ANA} must be connected to V_{DD}
- The V_{DDCORE} is the main digital voltage and could be shutdown externally during the Standby mode. Voltage range is 1.18 V to 1.25 V (1.2 V typ.)
 - This supply must be connected to external decoupling capacitors (see Table 4)
 - V_{DDCORE} could be reduced further in specific Stop mode (LPLV_Stop). This involves either PWR_ON signal (e.g. with STPMIC1, external power management IC) or PWR_LP signal (with discrete SMPS components)
- The V_{BAT} pin can be connected to the external battery (1.2 V < V_{BAT} < 3.6 V).
 - If RETRAM is used, minimum V_{BAT} is 1.4 V
 - If application does not support backup battery, it is recommended to connect this pin to V_{DD}.
 - If application is supporting backup battery, it is recommended to add a 100 nF ceramic decoupling capacitor between V_{BAT} and V_{SS}.
 - If application is using a supercapacitor on V_{BAT}, no additional decoupling is required.
- The V_{DDA} pin is the analog (ADC/DAC/VREFBUF) supply and must be connected to external decoupling capacitors (see *Table 4*).
- The V_{REF+} pin can be connected to the V_{DDA} external power supply. If a separate, internal or external, reference voltage is applied on V_{REF+}, a decoupling capacitor must be connected between this pin and V_{REF-} (see *Table 4*). Refer to *Section 4.1.1*.
 Additional precautions can be taken to filter analog noise:
 - V_{DDA} can be connected to V_{DD} through an inductor based filter.
- V_{DDQ_DDR} is the DDR IO supply and must be connected to external decoupling capacitors (see *Table 4*).
 - Voltage range is 1.425 V to 1.575 V for interfacing DDR3 memories (1.5 V typ.)
 - Voltage range is 1.283 V to 1.45 V for interfacing DDR3L memories (1.35 V typ.)
 - Voltage range is 1.14 V to 1.3 V for interfacing LPDDR2 or LPDDR3 memories (1.2 V typ.)
- V_{DDA1V2_DSI_REG} pin is the output of internal regulator and must be connected to external decoupling capacitors (see *Table 4*).
 - $\,$ $\,$ $V_{DDA1V2\,\,DSI\,\,REG}$ is connected internally to DSI PLL.
- V_{DDA1V2_DSI_PHY} is the analog DSI PHY supply. Voltage range is 1.15 V to 1.26 V. (1.2 V typ.)
 - V_{DDA1V2 DSI PHY} should be connected to V_{DDA1V2 DSI REG}.

AN5031 Power supplies

 V_{DD3V3_USBHS} and V_{DD3V3_USBFS} are respectively the USB high-speed and full-speed PHY supply. Voltage range is 3.07 V to 3.6 V. Must be connected together to external decoupling capacitors (see *Table 4*).

 V_{DD3V3_USBFS} is used to supply OTG_VBUS and OTG_ID (PA10) pins. So, V_{DD3V3_USBFS} must be supplied as well when USB high-speed dual-role-port or USB high-speed device is used. If not used, should be connected to V_{DD}

- The V_{DDA1V8_REG} pin is the output of internal regulator and must be connected to external decoupling capacitors (see *Table 4*).
 - V_{DDA1V8 REG}, is connected internally to USB PHY and USB PLL.
 - Internal V_{DDA1V8_REG} regulator is enabled by default and could be controlled by software. It is always shutdown during Standby.

For the 1.8 V voltage regulator configuration, there is specific BYPASS_REG1V8 pin that should be connected either to V_{SS} or V_{DD} to activate or deactivate the voltage regulator. It is mandatory to bypass the 1.8 V regulator when V_{DD} is below 2.25 V:

- BYPASS_REG1V8 = V_{DD} . In that case, V_{DDA1V8_REG} pin should be connected to V_{DD} (if below 1.98V) or a dedicated 1.65 V 1.98 V supply (1.8 V typ.).
- BYPASS_REG1V8 = V_{SS}. In that case, V_{DD} must be above 2.25 V to allow correct behavior of 1.8 V voltage regulator.
- Refer to Section 4.1.3 and section "Embedded Regulators characteristics" of the related device datasheet for details.
- V_{DDA1V8_DSI} is the analog DSI supply. the voltage range is 1.65 V to 1.98 V. (1.8 V typ.)
 Should be connected to V_{DDA1V8_REG} and must be connected to external decoupling capacitors (see *Table 4*).
- V_{DDA1V1_REG} pin is the output of internal regulator and must be connected to external decoupling capacitors (see *Table 4*). The voltage range is 1.045 V to 1.155 V (1.1 V typ.)
 - V_{DDA1V1} _{REG} is connected internally to USB PHY.
 - Internal V_{DDA1V1_REG} regulator is enabled by default and could be controlled by software. It is always shutdown during Standby.

Caution: V_{DD3V3_USBHS} must not be present unless V_{DDA1V8_REG} is present, otherwise permanent STM32MP1 Series damage could occur. Must be ensured by PMIC ranking order or with external component in case of discrete component power supply implementation.

Caution: All supply grounds (V_{SS}, V_{SS_ANA}, V_{SS_PLL}, V_{SS_USBHS}, V_{SS_DSI}, V_{SSA} and V_{REF-}) should be connected together with power planes.

AN5031 Rev 1 15/78

Power supplies AN5031

Table 4. Amount of decoupling recommendation by package

	Table 4. Amount of decoupling			recommendation by package			
Supplies pins	Decoupling point ⁽¹⁾	Value	LFBGA354	TFBGA257	TFBGA361	LFBGA448	Comments
V _{BAT}	V _{SS}	100 nF	1	1	1	1	could be skipped if V_{BAT} is connected to V_{DD} or if a supercapacitor is used instead of a battery
V _{DDCORE}	V _{SS}	1 μF ⁽²⁾	15	15	15	15	Not including capacitors on PMIC/SMPS
V _{DDQ_DDR}	V _{SS}	1 μF ⁽²⁾	4	4	7	7	Not including capacitors on PMIC/SMPS and additional capacitors on DDR memory
V _{DD_ANA}	V _{SS_ANA}	1 μF ⁽²⁾	1	_(3)	1	1	-
V _{DD_PLL} , V _{DD_PLL2}	V _{SS_PLL} , V _{SS_PLL2}	1 μF ⁽²⁾	2	_(3)	_(3)	2	Not including capacitors on PMIC/SMPS.
V _{DD} , V _{DD_DSI}	V _{SS}	1 μF ⁽²⁾	4	4	4	4	
V _{DD1V2_DSI_REG} ,	V _{SS_DSI}	2.2 µF ⁽²⁾	1	-	1	1	_
V _{DD1V2_DSI_PHY}	V_{SS}	Ζ.Ζ μι	-	1 ⁽⁴⁾	-	1	
V _{DDA1V8_REG}	V _{SS_USBHS}	2.2 µF ⁽²⁾	1	-	1	1	_
*DDATV6_REG	V_{SS}		-	1 ⁽⁴⁾	-	-	
V _{DDA1V8_DSI}	V _{SS_DSI}	1 μF ⁽²⁾	1	-	1	1	V _{DDA1V8_DSI} must be connected to
- DDATV6_DSI	V_{SS}		-	1 ⁽⁴⁾	-	-	V _{DDA1V8_REG}
V _{DDA1V1_REG}	V _{SS_USBHS}	2.2 µF ⁽²⁾	1	-	1	1	_
DDATVI_REG	V_{SS}	r	-	1 ⁽⁴⁾	-	-	
V _{DD3V3_USBHS} , V _{DD3V3_USBFS}	V _{SS_USBHS}	1 μF ⁽²⁾	1	-	1	1	-
V _{DD3V3_USB}	V_{SS}		-	1 ⁽⁴⁾	-	-	
V_{DDA}	V _{SSA}	100 nF + 1 μF ⁽²⁾	1	1	1	1	V _{SSA} must be connected to V _{SS} plane
V _{REF+}	V_{REF-} and V_{SSA}	100 nF +	1	-	-	1	$\rm V_{REF-}$ must be connected to $\rm V_{SSA}$ then $\rm V_{SS}$ plane
	V _{SSA}	Τ μΕ`` ΄	-	1 ⁽⁵⁾	1 ⁽⁵⁾	-	V _{SSA} must be connected to V _{SS} plane

^{1.} All V_{SS_x} and V_{SSA} must be connected to a common V_{SS} plane.

^{2.} Multi Layer Ceramic Capacitor type (MLCC).

^{3.} Supply internally merged with V_{DD} .

^{4.} Supply return path internally merged with V_{SS}.

^{5.} V_{REF-} internally merged with V_{SSA} .

AN5031 Power supplies

4.3 Reset and power supply supervisor

4.3.1 Power on reset (POR) / power down reset (PDR)

The device has an integrated POR/PDR circuitry that allows proper operation starting from 1.71 V.

The device remains in the reset mode as long as V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit. For more details concerning the power on/power down reset threshold, refer to the electrical characteristics in the product datasheets.

Figure 2. Power-on reset/power-down reset waveform

The internal power-on reset (POR) / power-down reset (PDR) circuitry can be disabled through the PDR_ON pin. In that case, an external power supply supervisor should monitor V_{DD} and should maintain the device in reset mode as long as V_{DD} is below a specified threshold.

4.3.2 Programmable voltage detector (PVD)

The user can use the PVD to monitor the V_{DD} power supply by comparing it to a threshold selected by the PLS[2:0] bits in the power control register (PWR_CR).

The PVD is enabled by setting the PVDE bit.

A PVDO flag is available, in the power control/status register (PWR_CSR), to indicate whether V_{DD} is higher or lower than the PVD threshold. This event is internally connected to EXTI Line16 and can generate an interrupt if enabled through the EXTI registers. The PVD output interrupt can be generated when V_{DD} drops below the PVD threshold and/or when V_{DD} rises above the PVD threshold depending on the EXTI Line16 rising/falling edge configuration. As an example the service routine can perform emergency shutdown tasks.

AN5031 Rev 1 17/78

t_{RSTTEMPO} is approximately 2.6 ms. V_{POR/PDR} rising edge is 1.67 V (typ.) and V_{POR/PDR} falling edge is 1.63 V (typ.). Refer to STM32MP1 Series datasheets for actual value.

Power supplies AN5031

Figure 3. PVD thresholds

4.3.3 Application and system resets

An application reset (app_rst) is generated from one of the following sources:

- A reset from NRST pad,
- A reset from por_rst signal (generally called power-on reset),
- A reset from bor rst signal (generally called brownout),
- A reset from the Independent Watchdogs 1 (iwdg1 rst),
- A reset from the Independent Watchdogs 2 (iwdg2 rst),
- A software reset from the Cortex-M4 (MCU), via the AIRCR register (MCSYSRST) if the option byte OPT_MCU_SYSRST_EN allows it,
- A software reset from the RCC, when the Cortex-A7 (MPU) sets the bit MPSYSRST to '1' in the RCC.
- A failure on HSE, when the clock security system feature is activated (hcss_rst).

A System reset (nreset) is generated from one of the following sources:

- A reset from app rst signal (application reset),
- A reset from vcore rst signal.

Note: When the system is in Standby, the V_{DDCORE} is switched off, but V_{DD} is still present. So when the system exits from Standby, the vcore_rst signal is activated, generating a nreset

reset.

Note: On silicon Rev.B (DBGMCU_IDC.REV_ID=0x2000), it is recommended to connect NRST to NRST_CORE when there is no VDDCORE power cycle on NRST (done by default with

STPMIC1). Refer to product errata sheet for details.

Refer to RCC section in the reference manual for more details on reset coverage.

AN5031 Power supplies

Figure 4. Simplified reset pin circuit

Packages AN5031

5 Packages

5.1 Package selection

The package must be selected by taking into account the constraints that are strongly dependent upon the application.

The list below summarizes the more frequent constraints:

- Amount of interfaces required.
 - Some interfaces might not be available on some packages.
 - Some interfaces combinations might not be possible on some packages.
 - Refer to product datasheets for details
- PCB technology constraints.
 - Small pitch and high ball density could require more PCB layers and higher PCB class requiring stackup with micro-via (laser via) technology
- Package height
- PCB available area
- Thermal constraints (larger packages have better thermal dissipation capabilities)

·	bio oi i dollago	ourimar y		
Size (mm) ⁽¹⁾	16 x 16	10 x 10	12 x 12	18 x 18
Minimum Pitch (mm)	0.8	0.5	0.5	0.8
Height (mm)	1.4	1.2	1.2	1.4
Sales numbers	LFBGA354	TFBGA257	TFBGA361	LFBGA448
STM32MP151xxx	X	Х	Х	Х
STM32MP153xxx	X	Х	Х	Х
STM32MP157xxx	Х	Х	Х	X

Table 5. Package summary

Typical body size.

AN5031 Packages

Table 6. Major feature changes related to packages

Packages		TFBGA257	LFBGA354	TFBGA361	LFBGA448	
	Body Size (mm)		10x10	16x16	12x12	18x18
Package		Pitch (mm)	0.5 (center 0.65)	0.8	0.5 (center 0.65)	0.8
		Thickness (mm)	<1.2	<1.4	<1.2	<1.4
	Ball count		257	354	361	448
	LPDDR2/3	16-bits 533 MHz	Up to 1GByte, single rank	-	Up to 1GByte, single rank	-
SDRAM	LI DDI(2/3	32-bits 533 MHz		-	Up to 1GByte, single rank	-
S	DDD3/31	16-bits 533 MHz		Up to 1GByte	e, single rank	
	DDR3/3L 32-bits 533 MHz		-		Up to 1GByte, single rank	
	Parallel Address/Data 8/16 bits		-		4 × CS, up to 4 × 64 MBytes	
FMC Parallel AD-Mux 8/16 bits		4 × CS, up to 4 × 64 MBytes				
NAND 8/16 bits			Yes, 2 × CS,	SLC, BCH4/8		
Gigabit	Gigabit Ethernet			-	MII, RMII, GMII,	RGMII with PTP
10/100	10/100M Ethernet		MII, RMII with PTP and EEE		and EEE	
GPIOs	with interrupt	(total count)	98		148	176
	Securable G	SPIOs	-		8	
-	Wakeup pin	S	4		6	
	Tamper pins (active tamper)		2 (1)		3 (1)	
Up to 16 bit synchronized ADC		2 (up to 0.25/4.4/5/5.7/6.7 Ms		sps on 16/14/12/10/8 bits each)		
Low noise 16 bit (differential)		-		2 (1)		
	16 bit (differential)		6 (1)		7 (1)	
_	14 bit (differential)		11 (3)		13 (3)	
	ADC channels in total		17		22	

Packages AN5031

5.2 Alternate function mapping to pins

In order to easily explore peripheral alternate functions mapping to pins, it is recommended to use the STM32CubeMX tool available on www.st.com.

_ D X ◎ STM32CubeMX File Project Pinout Window Help 📭 📔 🖫 🖟 🖟 🎒 🏥 🧰 Keep Current Signals Placement 🦸 🦘 🕌 🕳 🕢 💠 Find 🔻 🔍 🔍 📝 Show user Label 🛛 🥠 🤚 ⊕ ® LPTIM4 **⊞ ®** LPTIM5 ⊕ **⊚** MDIOS **⊕ ⊚** QUADSPI ⊕ © OUADSPI BOOT ⊕ ® RCC RNG ⊕ 🍺 RTC ⊕ ® SAI1 ⊕ ® SAI2 **⊕ 1** SAI4 ⊕ ® SDMMC BOOT1 **■ ⑤** SDMMC2 **≜ ≜** SDMMC3 ⊕ ® SPI1 ⊕ **⑤** SPI2 ⊕ **⑤** SPI3 ● SPI4 # SPI5 ⊕ **⑤** SPI6 € SYS ⊕ **® TIM2** ± ⚠ TIM3 ⊕ ® TIM4 TIM5 TIM7 ■ TIM8 ⊕ ® TIM12

Figure 5. STM32CubeMX example screen-shot

AN5031 Packages

5.3 Package compatibility between versions

The STM32MP151xxx, STM32MP153xxx devices slightly differ from the STM32MP157xxx devices. Nevertheless, it is possible to build a compatible PCB at the expense of few additional connections.

Table 7. Device compatibility summary

		Device used		
PCB made for	STM32MP151xxx	STM32MP153xxx	STM32MP157xxx	
STM32MP151xxx	Compatible	Compatible	Compatibility possible	
STM32MP153xxx	Compatible	Compatible	(See <i>Table 8</i> to <i>Table 11</i> and <i>Figure 6</i> to <i>Figure 9</i>)	
STM32MP157xxx	Compatible	Compatible	Compatible	

AN5031 Rev 1 23/78

Packages AN5031

Table 8. STM32MP151xxx and STM32MP153xxx for 16x16 LFBGA354 compatibility

Ball connection to add	STM32MP151xxx	STM32MP153xxx	STM32MP157xxx
B12 to V11 (VDD1V8_REG)	VDDA1V8_Unused		VDDA1V8_DSI
A16 to B16 + 1 µF to VSS	VDD1V2_Unused		VDD1V2_DSI_PHY / VDD1V2_DSI_REG
A12 to VDD	VDD_Unused		VDD_DSI

Figure 6. 16x16 LFBGA354 compatibility

Note: This drawing is to help understanding and does not show realistic board traces and components size/placement.

AN5031 Packages

Table 9. STM32MP151xxx and STM32MP153xxx for 10x10 TFBGA257 compatibility

Ball connection to add	STM32MP151xxx	STM32MP153xxx	STM32MP157xxx
1B6 to 1H5 (VDD1V8_REG)	VDDA1V8_Unused		VDDA1V8_DSI
1B7 to 1A7 + 1 μF to VSS	VDD1V2_Unused		VDD1V2_DSI_PHY / VDD1V2_DSI_REG
C13 to VDD	VDD_U	Jnused	VDD_DSI

Figure 7. 10x10 TFBGA257 compatibility

Note: This drawing is to help understanding and does not show realistic board traces and components size/placement.

577

AN5031 Rev 1 25/78

Packages AN5031

Table 10. STM32MP151xxx and STM32MP153xxx for 12x12 TFBGA361 compatibility

Ball connection to add	STM32MP151xxx	STM32MP153xxx	STM32MP157xxx
C14 to AB14 (VDD1V8_REG)	VDDA1V8_Unused		VDDA1V8_DSI
C17 to C18 + 1 µF to VSS	VDD1V2_Unused		VDD1V2_DSI_PHY/ VDD1V2_DSI_REG
B18 to VDD	VDD_U	Jnused	VDD_DSI

Figure 8. 12x12 TFBGA361 compatibility

Note:

This drawing is to help understanding and does not show realistic board traces and components size/placement.

AN5031 Packages

Table 11. STM32MP151xxx and STM32MP153xxx for 18x18 LFBGA448 compatibility

Ball connection to add	STM32MP151xxx	STM32MP153xxx	STM32MP157xxx
B14 to AB12 (VDD1V8_REG)	VDDA1V8_Unused		VDDA1V8_DSI
A18 to B18 + 1 μF to VSS	VDD1V2	_Unused	VDD1V2_DSI_PHY / VDD1V2_DSI_REG
A14 to VDD	VDD_U	Jnused	VDD_DSI

Figure 9. 18x18 LFBGA448 compatibility

Note:

This drawing is to help understanding and does not show realistic board traces and components size/placement.

AN5031 Rev 1 27/78

Clocks AN5031

6 Clocks

Different clock sources can be used to drive the sub-systems clocks:

- HSI oscillator clock (high-speed internal clock signal)
- CSI oscillator clock (low power internal clock signal)
- HSE oscillator clock (high-speed external clock signal)
- PLL1/2/3/4 clocks
- PLL DSI to generate the DSI clock (up to 1 GHz)^(a)
- PLL_USB to generate the USB clock (480 MHz)

The devices have two secondary clock sources:

- 32 kHz low-speed internal RC (LSI RC) that drives the independent watchdog and, optionally, the RTC used for auto-wakeup from the Stop/Standby modes.
- 32.768 kHz low-speed external crystal (LSE crystal) that optionally drives the real-time clock (RTCCLK)

Each clock source can be switched on or off independently when it is not used, to optimize the power consumption.

Refer to the RM0436, RM0441, RM0442 reference manuals for the description of the clock tree.

6.1 HSE OSC clock

The high-speed external clock signal (HSE) can be generated from two possible clock sources:

- HSE user external clock (see Figure 10)
- HSE external crystal/ceramic resonator (see Figure 11)

- 1. Refer Oscillator design guide for ST microcontrollers application note (AN2867).
- Load capacitance C_L has the following formula: C_L = C_{L1} x C_{L2} / (C_{L1} + C_{L2}) + C_{stray} where: C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 4 pF. Refer to Section 9: Recommendations on page 42 to minimize its value.

a. Availability depends on the STM32MP1 Series devices.

AN5031 Clocks

6.1.1 External source (HSE bypass)

In this mode, an external clock source must be provided. It can have a frequency from 8 to 50 MHz (refer to STM32MP1 Series datasheets for actual max value).

The external digital (V_{IL}/V_{IH}) or analog (amplitude of 200 mV pk-pk minimum) clock signal with a duty cycle of about 50%, has to drive the OSC_IN pin.

Note:

In order to allow USB boot, the BootROM automatically selects the HSE mode by checking the OSC_OUT connection during startup phase (i.e. on NRST rising edge):

- OSC_OUT is tied to GND (max 1 Kohm): HSE digital bypass
- OSC OUT is tied to VDD (max 1 Kohm): HSE analog bypass
- OSC_OUT high-impedance or connected to a crystal/ceramic resonator: HSE crystal/ceramic resonator mode.

When Bypass is used, the external clock generator could be enabled by PWR_ON to save power (i.e. disabled in Standby). In that case, the OSC_IN clock input should be stable within 10 ms after the PWR_ON rising edge occurs.

6.1.2 External crystal/ceramic resonator (HSE crystal)

The external oscillator frequency ranges from 8 to 48 MHz.

The external oscillator has the advantage of producing a very accurate rate on the main clock. The associated hardware configuration is shown in *Figure 11*. Using a 24 MHz crystal frequency is a good choice to get accurate USB high-speed clocks.

The crystal/ceramic resonator and the load capacitors have to be connected as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. The load capacitance values must be adjusted according to the selected crystal/ceramic resonator.

For C_{L1} and C_{L2} it is recommended to use NP0/C0G capacitors in the 5 pF-to-25 pF range (typ.), selected to meet the load requirements of the crystal/ceramic resonator. C_{L1} and C_{L2} , have usually the same value. The crystal manufacturer typically specifies a load capacitance that is the series combination of C_{L1} and C_{L2} . The PCB and pin capacitances must be included when sizing C_{L1} and C_{L2} (10 pF can be used as a rough estimate of the combined pin and board capacitance).

Refer to oscillator design guide for ST microcontrollers application note (AN2867) and electrical characteristics sections in the product datasheet for more details.

AN5031 Rev 1 29/78

Clocks AN5031

6.2 LSE OSC clock

The low-speed external clock signal (LSE) can be generated from two possible clock sources:

- LSE user external clock (see Figure 12)
- LSE external crystal/ceramic resonator (see Figure 13)

- "LSE crystal/ceramic resonators" figure: It is strongly recommended to use a resonator with a load capacitance C₁ ≤12.5 pF.
- 2. "LSE external clock" and "LSE crystal/ceramic resonators" figures:
 OSC32_IN and OSC32_OUT pins can be used also as GPIO, but it is recommended not to use them as both RTC and GPIO pins in the same application.

6.2.1 External source (LSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to 1 MHz. The external digital (VIL/VIH) or analog (amplitude of 200 mV pk-pk minimum) clock signal with a duty cycle of about 50% has to drive the OSC32_IN pin while the OSC32_OUT pin must be left high impedance (see *Figure 12*). The configuration of the bypass mode as well as the selection between the digital and analog is done within RCC registers

6.2.2 External crystal/ceramic resonator (LSE crystal)

The LSE crystal is a 32.768 kHz low-speed external crystal or ceramic resonator. It has the advantage of providing a low-power, but highly accurate clock source to the real-time clock peripheral (RTC) for clock/calendar or other timing functions.

The resonator and the load capacitors have to be connected as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. The load capacitance values C_{L1} and C_{L2} must be adjusted according to the selected oscillator.

Refer to Oscillator design guide for ST microcontrollers dedicated application note (AN2867) and electrical characteristics sections in the product datasheet for more details.

AN5031 Clocks

6.3 Clock security system (CSS)

For details, see the reference manuals available from the STMicroelectronics website www.st.com.

6.3.1 CSS on HSE

The clock security system can be activated by software. In this case, the clock detector is enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.

• If a failure is detected on the HSE oscillator clock, a system reset can be generated as well as signaled to the TAMP block for security protection.

6.3.2 **CSS on LSE**

The clock security system can be activated by software. In this case, the clock detector is enabled after the LSE oscillator startup delay, and disabled when this oscillator is stopped.

• If a failure is detected on the LSE oscillator clock, the RTC/TAMP clock source is stopped as well as signaled to the TAMP block for security protection.

AN5031 Rev 1 31/78

Boot configuration AN5031

7 Boot configuration

7.1 Boot mode selection

In the STM32MP1 Series devices, different boot modes can be selected by means of the BOOT[2:0] pins. the reserved configuration is highlighted in gray in the table.

воот2	BOOT1	воото	Initial boot mode	Comments
0	0	0	UART and USB ⁽¹⁾	Wait incoming connection on: - USART2/3/6 and UART4/5/7/8 on default pins - USB High-Speed device on OTG_HS_DP/DM pins ⁽²⁾
0	0	1	Serial NOR-Flash ⁽³⁾	Serial NOR-Flash on QUADSPI ⁽⁵⁾
0	1	0	eММС™ ⁽³⁾	eMMC™ on SDMMC2 (default) ⁽⁵⁾⁽⁶⁾
0	1	1	NAND-Flash ⁽³⁾	SLC NAND-Flash on FMC
1	0	0	Reserved	Used to get debug access without boot from Flash ⁽⁴⁾
1	0	1	SD-Card ⁽³⁾	SD-Card on SDMMC1 (default) ⁽⁵⁾⁽⁶⁾
1	1	0	UART and USB ⁽¹⁾⁽³⁾	Wait incoming connection on: - USART2/3/6 and UART4/5/7/8 on default pins - USB High-speed device on OTG_HS_DP/DM pins ⁽²⁾
1	1	1	Serial NAND-Flash ⁽³⁾	Serial NAND-Flash on QUADSPI (5)

Table 12. Boot modes

- 1. Could be disabled by OTP settings.
- USB requires 24 MHz HSE clock/crystal if OTP is not programmed for different frequency (See Section 7.3: Embedded boot loader mode).
- 3. Boot source could be changed by OTP settings (e.g. Initial boot on SD-Card, then eMMC with OTP settings).
- 4. Cortex-A7 Core0 in infinite loop toggling PA13, Cortex-M4 in infinite loop on RETRAM.
- Default pins can be altered by OTP.
- 6. Alternatively, another SDMMC interface than this default can be selected by OTP.

The values on the BOOT pins are sampled by BootROM after a reset. It is up to the user to set the BOOT[2:0] pins before reset exit to select the required boot mode.

The BOOT pins could also be resampled later by software (for example by reading SYSCFG.BOOTR_BOOT[2:0] field) or by the BootROM when exiting the Standby mode. Consequently, they must be kept in the required boot mode configuration all the time.

During Stop modes, when the BOOT[2:0] pins are connected to V_{DD} , as the three embedded pull-down are enabled by default, some current is flowing thru the pull-down. In order to save some tens of μA of power, the software could disable the pull-down on pins which are connected to V_{DD} by simply setting field SYSCFG_BOOTR.BOOT[2:0]_PD equal to value read in SYSCFG_BOOTR.BOOT[2:0] field. This must be done again after each Standby exit as the SYSCFG_BOOTR register is reset. Note that during Standby, the BOOT[2:0] pins are set in tri-state and no current is flowing in BOOT[2:0] pins even if connected to V_{DD} .

AN5031 Boot configuration

7.2 Boot pin connection

Figure 14 shows an example of the external connection required to select the boot memory of the STM32MP1 Series devices.

Figure 14. Boot mode selection example

Despite all the recovery cases in software, there is a risk that with wrong or corrupted Flash content (e.g. user mistake, bad Flash content programmed, power lost), the system might not start (also known as 'bricked').

Note that on empty Flash, the boot code automatically switches to UART/USB connection.

It might be required to have a way to force use of UART/USB connection in order to allow board Flash re-programming (for example after sale services, firmware update, etc...).

There are also cases of where initial boot is done on a different Flash than regular boot (for example the initial boot from SD-Card, which copies binary data in another Flash like Serial NOR, Serial NAND, eMMC or SLC NAND). This is possible as the initial boot code could set relevant OTP bits to force future boot from the programmed Flash (see *Figure 16*). This allows a simplified and flexible mass production without intervention on BOOT pins.

The typical connections examples for final board are described in *Figure 15*.

The 'switches' could be done by various ways: pushbutton, solder bridges, connector contacts, test points, etc..., but assumed 'open' by default during normal product boot to avoid current flow in external resistors.

Note that OTP configuration could force or forbid any of the boot sources in order to satisfy product security requirements.

577

AN5031 Rev 1 33/78

Boot configuration AN5031

Figure 15. BOOT pins typical connection schematics

AN5031 **Boot configuration**

7.3 **Embedded boot loader mode**

This embedded boot loader is located in the BootROM memory.

For additional information, refer to STM32MP1 Series: USB DFU/USART protocols used in bootloaders (AN5275) (Table 1).

During boot, the QUADSPI, FMC, SDMMC and USART peripherals operates with the internal 64 MHz oscillator (HSI).

The USB OTG HS device, however, can function only if an external clock (HSE) is present with a default frequency of 24 MHz (alternatively, 8, 10, 12, 14, 16, 20, 24, 25, 26, 28, 32, 36, 40 and 48 MHz could be used with OTP settings and/or automatic frequency detection).

AN5031 Rev 1 35/78 Debug management AN5031

8 Debug management

8.1 Introduction

The Host/target interface is the hardware equipment that connects the host to the application board. This interface is made of three components: a hardware debug tool, a JTAG or SWD connector and a cable connecting the host to the debug tool.

Figure 17 shows the connection of the host to the evaluation board.

Figure 17. Host-to-board connection

8.2 SWJ debug port (serial wire and JTAG)

The STM32MP1 Series core integrates the Serial Wire / JTAG debug port (SWJ-DP). It is an Arm[®] standard CoreSight[™] debug port that combines a JTAG-DP (5-pin) interface and a SW-DP (2-pin) interface.

- The JTAG debug port (JTAG-DP) provides a 5-pin standard JTAG interface to the AHP-AP port
- The serial wire debug port (SW-DP) provides a 2-pin (clock + data) interface to the AHB-AP port

The two pins of the SW-DP are multiplexed with two of the five JTAG pins of the JTAG-DP.

8.3 Pinout and debug port pins

8.3.1 Internal pull-up and pull-down resistors on JTAG pins

To avoid any uncontrolled I/O levels, the STM32MP1 Series embeds internal pull-up and pull-down resistors on JTAG pins:

- NJTRST: Internal pull-up
- JTDI: Internal pull-up
- JTDO-TRACESWO: Internal pull-up
- JTMS-SWDIO: Internal pull-up
- JTCK-SWCLK: Internal pull-down

AN5031 Debug management

Note:

The JTAG IEEE standard recommends to add pull-up resistors on TDI, TMS and nTRST but there is no special recommendation for TCK. However, for the STM32MP1 Series, an integrated pull-down resistor is used for JTCK.

Having embedded pull-up and pull-down resistors removes the need to add external resistors.

8.3.2 Debug port connection with standard JTAG connector

Figure 18 shows the connection between the STM32MP1 Series and a standard JTAG/SWD connector.

Figure 18. JTAG/SWD MIPI10 connector implementation example

Note:

The single wire trace on TRACESWO pin is only available for Cortex-M4 core. To trace all cores activity, a parallel trace port must be used (see Section 8.3.4: Parallel trace and HDP).

37/78

AN5031 Rev 1

Debug management AN5031

8.3.3 Debug port and UART connection with STDC14 connector

Figure 19 shows the connection between the STM32MP1 Series and a STDC14 connector including UART virtual com port connection.

Reference example for STDC14 header is FTSH-107-01-L-DV-K-A

Figure 19. JTAG/SWD/UART VCP STDC14 connector implementation example

Note: The single wire trace on TRACESWO pin is only available for Cortex-M4 Core. To trace all cores activity, a parallel trace port must be used (see Section 8.3.4: Parallel trace and HDP).

Note: STDC14 connector is respecting (from pin 3 to pin 12) the ARM10 pinout (Arm Cortex debug connector).

AN5031 Debug management

8.3.4 Parallel trace and HDP

Parallel trace

TRACED[15:0] and TRACECLK signals are available as alternate functions on IOs pins. The user could select number of trace data N = 1, 2, 4, 8 or 16 pins. Less trace data mean lower available trace bandwidth, so less information could be traced (for example the number of trace sources, code and/or data tracing, etc...) without trace overrun (there is a 8 Kbytes buffer in STM32MP1 Series). For each product, a trade-off between available features and trace bus could lead to have reduced feature while using trace during product development.

The trace is compliant to Arm[®] CoreSight™ trace and needs a dedicated tracing tool in order to be interpreted and correlated with debugging done through SWD or JTAG.

For more information on the Trace Port Interface CoreSight™ component, refer to product reference manual and the Arm® CoreSight™ SoC-400 technical reference manual.

Note that for efficient tracing bandwidth, TRACECLK should run as fast as possible while maintaining good signal integrity on all parallel trace signals. This is dependent on board and connector choices, GPIO strength settings (GPIO_OSPEEDR registers) and V_{DD} voltage.

When using V_{DD} = 1.8 V, a setting in the OTP bit and the register SYSCFG_IOCTRLSETR (HSLVEN_TRACE bit) could be required to ensure the best speed on pads used on trace signals.

Warning: UHSLVEN and HSLVEN must not be set when V_{DD} is above 2.7 V otherwise permanent IC damage could occur.

AN5031 Rev 1 39/78

Debug management AN5031

Figure 20. Parallel trace port with JTAG/SWD on Mictor-38 implementation example

Hardware debug port

Some internal signal are available for deep debugging. Internal knowledge and an oscilloscope or logic analyzer are needed. For more information, refer to product reference manual and datasheet.

AN5031 Debug management

8.3.5 Debug triggers and LEDs

The CoreSight™ Cross-Trigger Interface (CTI) are available on pins as DBTRGI and DBTRGO.

DBTRGI could be generated by external user signal and could be programmed inside CoreSight™ components to start/stop traces or enter specific core(s) in debug mode (break).

DBTRGO could be generated by CTI to see externally that a trigger condition has been reached by one of the CoreSight™ component (core break, trace started, etc...).

DBTRGO could be made available on PA13, PA14 or PG9.

DBTRGI could be made available on PA13, PA14 or PA15.

PA13 specific behavior (see boot documentation for details):

- During boot phase, in case of boot failure, the PA13 pin is set to low open-drain (i.e. the error LED lights bright).
- During UART/USB boot, the PA13 pin toggles open-drain at a rate of about 5 Hz until a connection is started (i.e. error LED blinks fast).
- With BOOT[2:0] = 0b100 (no boot, used for specific debug), PA13 toggles open-drain at a rate of about 5 kHz (i.e. error LED lights weak).
- In all other cases, the PA13 is kept in its reset value, i.e. high-z until software setting.

It is a good idea to put a red LED on PA13 as shown in Figure 21.

LEDs are useful for quick visual signaling of system activity. So, it is a good choice to use PA13 and PA14. This does not avoid usage of DBTRGI and DBTRGO on PA13 or PA14 for debug (assuming the software stops controlling LEDs during this specific debug).

PA13

Red

Red

Red

PA14

Test Point

Test Point

MSv48319V1

Figure 21. Example of LED connections

57/

AN5031 Rev 1 41/78

Recommendations AN5031

9 Recommendations

9.1 Printed circuit board

For technical reasons, it is mandatory to use a multilayer printed circuit board (PCB) with a separate layer dedicated to ground (V_{SS}) and another layer dedicated for power supplies like the V_{DD} and V_{DDCORE} . This provides good decoupling and a good shielding effect.

9.2 Component position

A preliminary layout of the PCB must separate the different circuits according to their EMI contribution in order to reduce cross-coupling on the PCB, that is noisy, high-current circuits, low-voltage circuits, and digital components.

9.3 Ground and power supply (V_{SSx}, V_{DDx})

Due to large power and high frequencies involved in STM32MP1 Series, it is mandatory to use at least 4 layers PCB with dedicated power planes for V_{SSx} and V_{DDx} .

9.4 IO speed settings

It is important to set the right output drive on IOs in order to have sufficient rise and fall time, but also avoid additional ringing and noise.

When there is no specific requirements for IO speed, it is mandatory to set OSPEEDR to 0.

As a first approximation, the following drawing and tables could be used to quickly choose the right setting to apply according to signal frequency and capacitive load. This setting might need to be tailored in case of signal integrity issue.

In most cases, IO compensation needs to be enabled in SYSCFG. Refer to product datasheet for more details.

Note: In case of asynchronous or single edge clocked data lanes (e.g. SDR), the maximum data frequency toggle is effectively half the data rate. For example an SRI running at 10 Mbits/s

frequency toggle is effectively half the data rate. For example an SPI running at 10 Mbits/s has a maximum frequency of 5 MHz on data signal (e.g. output serial data 01010101...), but 10 MHz on the clock signal. On dual edge clocked data lanes (e.g. DDR), the clock and data

have same maximum toggling frequency.

Note: The HSLVEN_xxx bits are not taken into account if the OTP bit

PRODUCT_BELOW_2V5 =0 (default state).

Note: Setting HSLVEN xxx=1 and product below 2V5=1 while VDD > 2.7V can damage the IC.

AN5031 Recommendations

Figure 22. IO speed summary with various loads and voltages

Table 13. OSPEEDR setting example for VDD = 3.3V typ

Peripheral	Signals	Toggling rate (MHz)	OSPEEDR CL=30 pF OSPEEDR CL=10 pF			OSPEEDR CL=10 pF
FMC async	Data/Controls	50	1	Medium speed	1	Medium speed
FMC sync	CLK	100	2	High speed	1	Medium speed
FING Sylic	Data/Controls	50	1	Medium speed	1	Medium speed
QUADSPI (SDR)	CLK	133	2	High speed ⁽¹⁾	2	High speed
QUADSFI (SDR)	Data/Controls	66.5	1	Medium speed	1	Medium speed
QUADSPI (DDR)	All	66.5	1	Medium speed	1	Medium speed
LTDC (HDMI) ⁽²⁾	CLK	74.25	1	Medium speed	1	Medium speed
LIDC (HDWII)	Data/Controls	37.125	1	Medium speed	1	Medium speed
LTDC ⁽²⁾	CLK	90	2	High speed	1	Medium speed
LIDC	Data/Controls	45	1	Medium speed	1	Medium speed
LTDC	CLK	48	1	Medium speed	1	Medium speed
LIDC	Data/Controls	24	0	Low speed	0	Low speed
TIM/LPTIM	All	5	0	Low speed	0	Low speed

Recommendations AN5031

Table 13. OSPEEDR setting example for VDD = 3.3V typ (continued)

Peripheral	Signals	Toggling rate (MHz)		OSPEEDR CL=30 pF OS		OSPEEDR CL=10 pF	
I2C	All	1	0	Low speed	0	Low speed	
USART	All	5	0	Low speed	0	Low speed	
SPI	CLK	50	1	Medium speed	1	Medium speed	
SFI	Data/Controls	25	1	Medium speed	0	Low speed	
	MCLK	15	0	Low speed	0	Low speed	
SAI	CLK	1	0	Low speed	0	Low speed	
	Data/Controls	0.5	0	Low speed	0	Low speed	
MDIOS	All	5	0	Low speed	0	Low speed	
SDMMC (SDR)	CLK	133	2	High speed ⁽¹⁾	2	High speed	
SDIVING (SDR)	Data/Controls	66.5	1	Medium speed	1	Medium speed	
SDMMC (DDR)	All	52	1	Medium speed	1	Medium speed	
FDCAN	All	5	0	Low speed	0	Low speed	
ETH (MII)	CLK	50	1	Medium speed	1	Medium speed	
	Data/Controls	25	1	Medium speed	0	Low speed	
ETH (RMII)	All	50	1	Medium speed	1	Medium speed	
ETH (GMII)	CLK	125	2	High speed	2	High speed	
LTTT (GIVIII)	Data/Controls	62.5	1	Medium speed	1	Medium speed	
ETH (RGMII)	All	125	2	High speed	2	High speed	
ETH (MDIO)	MDIO	2.5	0	Low speed	0	Low speed	
TRACE	All	133	3	Very high speed	2	High speed	
IRACE	All	100	2	High speed	1	Medium speed	

^{1.} Value for CL=20 pF.

Table 14. OSPEEDR setting example for VDD = 1.8V typ.⁽¹⁾

Peripheral	Signals	Toggling rate (MHz)		OSPEEDR CL=30 pF	OSPEEDR CL=10 pF	
FMC async	Data/Controls	50	2	High speed	2	High speed
FMC sync	CLK	69	3	Very high speed	3	Very high speed
I WC Sylic	Data/Controls	34.5	2	High speed	1	Medium speed
QUADSPI (SDR) ⁽²⁾	CLK	133	3	Very high speed ⁽³⁾	2	High speed
QUADSFI (SDR)	Data/Controls	66.5	1	Medium speed	1	Medium speed
QUADSPI (DDR)(2)	All	66.5	1	Medium speed	1	Medium speed
LTDC (HDMI)	CLK	74.25	3	Very high speed ⁽³⁾	3	Very high speed
LIDC (IIDMI)	Data/Controls	37.125	2	High speed	2	High speed

^{2.} Requires External Oscillator for HSE.

AN5031 Recommendations

Table 14. OSPEEDR setting example for VDD = 1.8V typ.⁽¹⁾ (continued)

Peripheral	Signals	Toggling rate (MHz)		OSPEEDR CL=30 pF	OSPEEDR CL=30 pF OSPEEDR CL=10 pF		
LTDC	CLK	69	3	Very high speed	3	Very high speed	
LIDC	Data/Controls	34.5	2 High speed		1	Medium speed	
TIM/LPTIM	All	5	0	Low speed	0	Low speed	
I2C	All	1	0	Low speed	0	Low speed	
USART	All	5	0	Low speed	0	Low speed	
SPI ⁽⁴⁾	CLK	50	1	Medium speed	1	Medium speed	
SPIC	Data/Controls	25	1	Medium speed	0	Low speed	
	MCLK	15	1	Medium speed	1	Medium speed	
SAI	CLK	1	0	Low speed	0	Low speed	
	Data/Controls	0.5	0	Low speed		Low speed	
MDIOS	All	5	0	Low speed	0	Low speed	
SDMMC (SDR) ⁽⁵⁾	CLK	133	3	Very high speed ⁽³⁾	2	High speed	
SDIVING (SDR)	Data/Controls	66.5	1	Medium speed	1	Medium speed	
SDMMC (DDR) ⁽⁵⁾	All	52	1	Medium speed	1	Medium speed	
FDCAN	All	5	0	Low speed	0	Low speed	
ETH (MII) ⁽⁶⁾	CLK	50	1	Medium speed	0	Low speed	
	Data/Controls	25	0	Low speed	0	Low speed	
ETH (RMII) ⁽⁶⁾	All	50	1	Medium speed	0	Low speed	
ETH (GMII) ⁽⁶⁾	CLK	125	3	Very high speed ⁽³⁾	2	High speed	
ETH (GIVIII)	Data/Controls	62.5	1	Medium speed	1	Medium speed	
ETH (RGMII) ⁽⁶⁾	All	125	3	Very high speed ⁽³⁾	2	High speed	
ETH (MDIO)	MDIO	2.5	0	Low speed	0	Low speed	
TRACE ⁽⁷⁾	All	133	3	Very high speed ⁽³⁾	2	High speed	
IRACE'	All	100	2	High speed	1	Medium speed	

^{1.} HSLVEN_xxx=1 are only taken into account if OTP bit PRODUCT_BELOW_2V5 is set.

7. HSLVEN_TRACE=1.

^{2.} HSLVEN_QUADSPI=1.

^{3.} Value for CL=20pF.

^{4.} HSLVEN_SPI=1.

^{5.} HSLVEN_SDMMC=1.

^{6.} HSLVEN_ETH=1.

Recommendations AN5031

9.5 PCB stack and technology

A trade off between the PCB cost and easy electrical connections has to be made. Below examples are either for 4 or 6 layers PCB with only PTH (suited for 0.8mm pitch package) or 4 layers PCB with both PTH and laser drilled vias (suited for 0.5mm pitch package).

Note that some STM32MP1 Series packages with outer ball pitch of 0.5 mm provide power improved center ball matrix with a pitch of 0.65 mm to allow large PTH via in between balls. This ensures better supply connection as well as optimized thermal conductivity than small buried laser drilled vias.

Figure 23. 6 layer PCB stack example

AN5031 Recommendations

Figure 24. 4 layer PCB stack example

Recommendations AN5031

Figure 25. PCB rule example for 0.8 mm pitch package

AN5031 Recommendations

Figure 26. PCB rule example for 0.5 mm pitch package

49/78

AN5031 Recommendations

9.6 Decoupling

All the power supply and ground pins must be properly connected to the power supplies. These connections, including pads, tracks and vias should have as low impedance as possible. This is typically achieved with thick track widths and, preferably, the use of dedicated power supply planes in multilayer PCBs.

In addition, each power supply pair should be decoupled with ceramic capacitors (most of the time 100 nF or 1 µF, see Table 4). These capacitors need to be placed as close as possible to, or below, the appropriate pins on the underside of the PCB. Exact values might depend on the application. Figure 28 shows the typical layout of such a decoupling placement.

Figure 28. Exemple of decoupling layout

1. PTH via connecting supplies and decoupling capacitors to internal planes are visible in gray.

9.7 **ESD/EMI** protections

ElectroStatic Discharge (ESD) and ElectroMagnetic Interference (EMI) should be taken into account from the beginning of a product development as it could be very complex and expensive to add them later.

ESD and EMI are driven by global standards (for example IEC 61000, JESD 22, etc...) which in most countries require a certification to allow mandatory marking to be applied on a product (for example CE, FCC, etc...).

ESD and EMI are also driven by standardized interface certification or requirements (for example USB).

Although the STM32MP1 Series embeds device level ESD protection, the final product protection should be done by external components, more especially on interfaces having external user access in the final product (for example Ethernet, USB, SD-card, etc.).

AN5031 Recommendations

Some components provide ESD protection as well as EMI common mode filtering (e.g. ECMF02-2AMX6 used on USB).

Some examples of ESD/EMI protections are provided in *Section 10: Reference design examples*.

For more details, refer to *EMC design guide for ST microcontrollers* application note (AN1709).

9.8 Sensitive signals

When designing an application, the ElectroMagnetic Compatibility (EMC) performance can be improved by closely studying:

- Signals for which a temporary disturbance affects the running process permanently (the case of interrupts and handshaking strobe signals, and not the case for LED commands).
 - For these signals, a surrounding ground trace, shorter lengths and the absence of noisy and sensitive traces nearby (crosstalk effect) improve the EMC performance. For digital signals, the best possible electrical margin must be reached for the two logical states and slow Schmitt triggers are recommended to eliminate parasitic states.
- Noisy signals (clock, etc.)
- Sensitive signals (high impedance, etc.)

For more details, refer to EMC design guide for ST microcontrollers application (AN1709).

9.9 Unused I/Os and features

The STM32MP1 Series is designed for a wide range of applications and often a particular application does not use 100% of the resources.

To increase the EMC performance, unused clocks, counters or I/Os, should not be left free, for example I/Os should be set to "0" or "1" (pull-up or pull-down to the unused I/O pins) and unused features should be "frozen" or disabled.

AN5031 Rev 1 51/78

10 Reference design examples

10.1 Description

The following sections are example to help the user to connect major and critical interfaces to the STM32MP1 Series.

10.1.1 Clock

Two clock sources are used for STM32MP1 Series, with the following choice:

- LSE: 32.768 kHz crystal for the embedded RTC
- HSE: 24 MHz crystal or external oscillator as STM32MP1 Series main clock

Refer to Section 6: Clocks on page 28.

Figure 29. HSE recommended schematics for both oscillator/crystal options

Table 15. HSE BOM for oscillator or crystal

-	Oscillator	Crystal
X1	NZ2016SH 24 MHz	NX2016SA 24 MHz
R1	10 ohms	-
R2	10 Kohms	-
R3	-	0 ohm
R4	1Kohm	-
C1	-	6.8 pF
C2	-	6.8 pF
C3	10 nF	-

10.1.2 Reset

The NRST reset signal in *Figure 4* is active low. The reset sources include:

- Reset button
- Debugging tools via the JTAG connector

Refer to Section 4.3: Reset and power supply supervisor on page 17.

10.1.3 Boot mode

The boot option is configured by setting permanent wires or switches SW3 (BOOT2), SW2 (BOOT1) and SW1 (BOOT0) and internal OTP. Refer to Section 7: Boot configuration on page 32.

In case of the UART boot using one of the possible U(S)ARTx_RX pins, (refer to STM32MP1 Series wiki), to avoid a floating signal sent to the host, until the initialization character is received and decoded by the BootROM, it is required to have a 10 kOhm V_{DD} pull-up on the respective U(S)ARTx_TX pin.

Peripheral Pin Signal RX PA3 **USART2** TX PA2 RX PB12 **USART3** TX PB10 RX PB2 **UART4**⁽¹⁾ TX PG11 RX PB5 **UART5 PB13** TX RX PC7 **USART6** TX PC6 RX PF6 **UART7** TX PF7 RX PE0 **UART8** TX PE1

Table 16. UART possible boot pins

10.1.4 SWD / JTAG interface

The reference design shows the connections between the STM32MP1 Series and some standard connector. Refer to Section 8: Debug management on page 36.

Note:

If available, it is recommended to connect the debugger probe system reset pin to NRST in order to be able to reset the application from the debugger.

AN5031 Rev 1 53/78

^{1.} Recommended default UART for Linux console (i.e. as VCP on STLINK STDC14 connector).

10.1.5 Power supply

Refer to Section 4: Power supplies on page 11.

Discrete supplies example with 3.3 V I/Os with DDR3L

This reference design example targets a simple 3.3V IOs platform with low cost DDR3L without emphasis on power reduction. The Sleep/Stop/Standby modes are supported. LP-Stop and low power Standby with DDR3L retention could be supported but might have little interest due to the use of DDR3L which has not a low power target for self-refresh.

Refer also to STM32MP1 Series discrete power supply hardware integration (AN5256).

Figure 30. Discrete supplies example 3.3 V I/Os with DDR3L

- 1. Additional SMPS components not shown.
- 2. Smaller NCP161AFCT330 could also be used.
- 3. The 10 nF capacitor on NRST_CORE pin could be removed if NRST_CORE is connected to NRST.

47/

VIN 6 VINS W VINA IC Cin_SW Cin_A IC FB 3 FB 3 FB 4 PG PGND AGND ePAD 8 4 O = reduced VOU

Figure 31. ST1S31PUR SMPS details

See related SMPS IC datasheet for more details and latest component choices

$$VOUT = 0.8V \times \frac{R1 + R2}{R2}$$

Table 17. Components example for 1.2V 2A

Component	Description						
IC	ST1S31PUR - VFDFPN 8	ST1S31PUR - VFDFPN 8					
Cin_SW	15 μF - 10 V - 20% - TDK - C3225X5R1	A156M					
Cout	47 μF - 6.3 V - 20% - AVX - 12106D476	47 μF - 6.3 V - 20% - AVX - 12106D476MAT2A					
L	2.2 µH - 6.8 A - Wurth Elektronik - 7440660022						
R1	12 kOhm 1%						
R2	24 kOhm 1%	47.5 kOhm 1% ⁽¹⁾					
R3	NC 48.7 kOhm 1% ⁽¹⁾						
Cin_A	1 μF - 10 V - 15% - muRata - GRM188R61A105KA61B						
CR1	NC						

^{1.} This option could be used to allow scale down to 1V on LP_Stop, when PWR_LP is active (high).

Table 18. Components example for 1.35V 1A

Component	Description
IC	ST1S31PUR - VFDFPN 8
Cin_SW	15 μF - 10 V - 20% - TDK - C3225X5R1A156M
Cout	47 μF - 6.3 V - 20% - AVX - 12106D476MAT2A
L	2.7 µH - 7 A - Coilcraft - DO3316H-272MLB
R1	15 kOhm 1%
R2	22 kOhm 1%
R3	NC

AN5031 Rev 1 55/78

Table 18. Components example for 1.35V 1A (continued)

Component	Description
Cin_A	1 μF - 10 V - 15% - muRata - GRM188R61A105KA61B
CR1	110 pF

PMIC supplies example 3.3 V I/Os with DDR3L

This reference design example targets a complex 3.3V IOs platform with low cost DDR3L and high integration PMIC. Usually, all platform components can be powered by the PMIC. Full power supply control is supported thanks to PMIC I2C and side band signals. The Sleep/Stop/Standby modes are supported. See PMIC documentations for details of PMIC components.

Figure 32. PMIC example 3.3 V I/Os with DDR3L

PMIC supplies example 1.8V I/Os with LPDDR2/LPDDR3

This reference design example targets a complex 1.8V IOs platform with low power LPDDR2/LPDDR3 and high integration PMIC. Usually, all platform components can be powered by the PMIC. The full power supply control is supported thanks to PMIC I2C and side band signals. The Sleep/Stop/Standby modes are supported as well as very low power Standby with LPDDR2/LPDDR3 retention. See PMIC documentations for details of PMIC components

Figure 33. PMIC example 1.8 V I/Os with LPDDR2/LPDDR3

AN5031 Rev 1 57/78

10.1.6 DDR3/DDR3L SDRAM

The DDR3 differs from DDR3L only by different supply voltage (1.5 V vs 1.35 V) and V_{REF} level (0.75 V vs 0.675 V). DDR3L has superseded most DDR3 designs.

A 240 Ohm 1% resistor should be connected between DDR_ZQ and V_{SS} . This resistor must not be shared with ZQ resistors required on each DDR3/DDR3L components.

In case of 2x16-bits device, the impedance matching resistor network connected on termination voltage (VTT) supply should be placed as close as possible off the last device. 'Fly-by' routing techniques must be used to avoid any impedance discontinuities. Values in example below should work in most cases, but could be tailored to each side IO drive strengths and PCB impedance.

Figure 34. DDR3L 16/32 bits connection example

- Alternatively, to ease routing and avoid long V_{REF} lines, V_{REF} could be generated locally by a 1KOhm/1KOhm 1% resistor divider on V_{DDQ} close to each V_{REF} pins.
- 2. Supplies and decoupling capacitors not shown.

Detailed routing examples are described in *STM32MP1 Series DDR memory routing guidelines* application note (AN5122).

10.1.7 LpDDR2/LpDDR3 SDRAM

A 240 Ohm 1% resistor should be connected between DDR_ZQ and V_{SS} . This resistor must not be shared with one or more ZQ resistors required on LPDDR2/LPDDR3 component.

Figure 35. LPDDR2/LPDDR3 32-bits connection example

1. Supplies and decoupling capacitors not shown.

Detailed routing examples are described in *STM32MP1 Series DDR memory routing guidelines* application note (AN5122).

AN5031 Rev 1 59/78

10.1.8 SD card

External level shifter

It allows to use UHS-I faster modes (up to SDR50 and DDR50, i.e. 50 MBytes/s bus speed) which need to switch to 1.8 V card I/Os voltage (SD-card is started with 3 V card I/Os).

Note:

As boot is always done in 'Standard' mode (3 V IOs), if the card is used by the application in USH-I, a power cycle on card supply is required after Reset or Standby.

This example is independent of MPU IO voltage V_{DD} which could be between 1.71 V and 3.6 V. In case of VDD at 1.8 V typ, an external level shifter is mandatory as all SD-Card start transactions in 'Standard' mode using 3 V signaling voltage.

Note that a good signal integrity is dependent on board, GPIO strength settings (GPIO_OSPEEDR registers) and V_{DD} voltage.

When using V_{DD} = 1.8 V, a setting in the OTP bit and the register SYSCFG_IOCTRLSETR (HSLVEN_SDMMC bit) could be required to ensure the best speed on pads used on SDMMC outputs.

Warning: UHSLVEN and HSLVEN must not be set when V_{DD} is above 2.7V otherwise permanent IC damage could occur.

If needed, the impedance matching resistor should be placed as close as possible of the output driver pin. Values in example below should work in most cases, but could be tailored to IO drive strengths and PCB impedance.

Figure 36. SD-Card with external level shifter connection example

- SDMMC1_D0DIR is not used during boot phase as only read data is requested from SD card DAT0. Nevertheless, SDMMC1_D0DIR pull-down is required to ensure correct DATA0_SD direction from card to MPU.
- 2. If used in USH-I, V_{DD_SD} must be cut for >1ms in order to allow reboot (on Reset or Standby exit) use V_{DD} if $V_{DD} > V_{DD_SD}$.
- 3. If used in USH-I, V_{DD SD} must be cut for >1ms in order to allow reboot (on Reset or Standby exit).
- 4. Decoupling capacitors not shown.

Before V_{DD_SD} shutdown (e.g. before Standby), All signals going to card must be set to 0 or high-z by the SDMMC1 driver.

AN5031 Rev 1 61/78

Direct 3.3 V IO voltage

It is the simpler interface which requires $V_{DD} > 2.9V$, limited to standard SD-Card speed (up to high-speed 25 MBytes/s bus speed). Due to high current required by the high-density SD-card, and to limit power during Standby, the V_{DD_SD} could be separated from V_{DD} , but voltage level between them should be within 200 mV, except when V_{DD_SD} is cut to save power.

Figure 37. SD-Card with 3.3V I/Os connection example

10.1.9 eMMC™ Flash

Note that a good signal integrity is dependent on board, GPIO strength settings (GPIO_OSPEEDR registers) and V_{DD} voltage.

When using V_{DD} = 1.8V, a setting in the OTP bit and the register SYSCFG_IOCTRLSETR (HSLVEN_SDMMC bit) could be required to ensure the best speed on pads used on SDMMC outputs.

Warning: UHSLVEN and HSLVEN must not be set when V_{DD} is above 2.7 V otherwise permanent IC damage could occur.

If needed, the impedance matching resistor should be placed as close as possible of the output driver pin. Values in example below should work in most cases, but could be tailored to IO drive strengths and PCB impedance.

Figure 38. eMMC™ connection example

1. Decoupling capacitors not shown.

RSTn is disabled by default in eMMC and if there is no power cycle on eMMC supply, RSTn must be enabled in the eMMC registers in order to allow reboot after a reset.

In case the memory IO power supply could be shutdown independently than V_{DD} , NRST must not be directly connected to the memory reset pin and the following options could be used:

- Memory reset pin left open if the memory has an internal power on reset
- Connected through a Schottky diode with the cathode on NRST side

Otherwise, the NRST might be pulled low by memory internal protections when its IO supply is not present (which could cause an unwanted platform reset).

Refer to the memory documentation to verify the memory reset pin requirements (especially, the presence of internal power on reset and/or internal pull-up on the reset pin)

57

AN5031 Rev 1 63/78

10.1.10 SLC NAND-Flash

The single 8 or 16-bit SLC NAND memory device (CE# = FMC_NCE) as well as two independent 8-bit SLC NAND memory devices (device1 CE# = FMC_NCE and device2 CE# = FMC_NCE2) are supported.

Note that boot is only done on the SLC NAND memory device connected to FMC_NCE.

Figure 39. SLC NAND-Flash connection example

Note: Only single level cell (SLC) NAND-Flash is supported, with either Hamming, BCH4 or BCH8 error correction algorithms.

^{1.} V_{DD_NAND} must be cut for >1ms in order to allow reboot (on Reset or Standby exit).

^{2.} Decoupling capacitors not shown.

10.1.11 Serial NOR-Flash/NAND-Flash

Note:

As boot is always done in 'SPI' mode, if the Serial Flash is set by the application in multiple data lines or if sector addressing has been changed, a power cycle on Serial Flash supply is required after Reset or Standby exit.

Note that a good signal integrity is dependent on board, GPIO strength settings (GPIO_OSPEEDR registers) and V_{DD} voltage.

When using V_{DD} = 1.8 V, a setting in the OTP bit and the register SYSCFG_IOCTRLSETR (HSLVEN_QUADSPI bit) could be required to ensure the best speed on pads used on SDMMC outputs.

Warning: UHSLVEN and HSLVEN must not be set when V_{DD} is above 2.7 V otherwise permanent IC damage could occur.

If needed, the impedance matching resistor should be placed as close as possible of the output driver pin. Values in example below should work in most cases, but could be tailored to IO drive strengths and PCB impedance.

Figure 40. Serial Flash connection example

- 1. $V_{DD\ FLASH}$ must be cut for >1ms in order to allow reboot (on reset or Standby exit).
- 2. Decoupling capacitors not shown.

AN5031 Rev 1 65/78

Figure 41. Dual-Serial Flash connection example

- 1. V_{DD_FLASH} must be cut for >1ms in order to allow reboot (on Reset or Standby exit).
- 2. Decoupling capacitors not shown.

In case the memory IO power supply could be shutdown independently than V_{DD} , NRST must not be directly connected to the memory reset pin and the following options could be used:

- Memory reset pin left open if the memory has an internal power on reset
- Connected through a Schottky diode with the cathode on NRST side

Otherwise, NRST might be pulled low by memory internal protections when its IO supply is not present (which could cause an unwanted platform reset).

Refer to memory documentation to verify the memory reset pin requirements (especially, the presence of internal power on reset and/or internal pull-up on the reset pin)

10.1.12 USB

Note:

USB Type-C is supported with some external component, see www.st.com for dedicated application note.

A 3 kOhm 1% resistor should be connected between USB_RREF and V_{SS_USBHS} (or V_{SS} if V_{SS_USBHS} is not available on selected package).

Figure 42. USB 2 ports host high-speed + OTG full-speed connection example

Note: On OTG IP, USB full-speed device is also supported by using Micro-B receptacle instead of Micro-AB and leaving the OTG_ID pin unconnected.

577

AN5031 Rev 1 67/78

Figure 43. USB host high-speed + OTG high-speed connection example

Note: On OTG IP, USB high-speed device is also supported by using Micro-B receptacle instead of Micro-AB and leaving the OTG_ID pin unconnected.

USB high-speed PCB track length matching

Each package has been optimized to provide easier length matching when differential balls pair signals are not directly on adjacent balls. Example: package with 0.8 mm ball pitch, when differential pair are on two different rows, the package already have around 800 μm length internal difference to allow the PCB track to match total length, according to USB standard requirements, with minimum or even no additional routing complexity. The table below shows DM - DP length difference (inside package) at ball level to be taken into account by the PCB tool.

Table 19. USB package length matching values

	TFB	GA257	LFBGA354		TFB	GA361	LFBGA448		
Pin name	(10 x 10 p	itch 0.5 mm)	(16 x 16 p	16 x 16 pitch 0.8 mm)		(12 x 12 pitch 0.5 mm)		(18 x 18 pitch 0.8 mm)	
	Ball position	length difference	Ball position	length difference	Ball position	length difference	Ball position	length difference	
USB_DM1	W14	486 µm	W14	818 µm	AB17	-507 μm	AB15	792 μm	
USB_DP1	V14	400 μπ	V14	στο μπ	AC17	-507 μπ	AA15	7 92 μπ	
USB_DM2	W10	494 µm	V13	-816 µm	AB16	-500 µm	AA14	-850 µm	
USB_DP2	V10	494 μπ	W13	-0 10 μπ	AC16	-500 μπ	AB14	-050 μπ	

Figure 44. USB high speed PCB track example for 0.8 mm ball pitch package

AN5031 Rev 1 69/78

10.1.13 Ethernet

10/100M Ethernet

Note that a good signal integrity is dependent on board, GPIO strength settings (GPIO_OSPEEDR registers) and V_{DD} voltage.

If needed, the impedance matching resistors should be placed as close as possible of the output driver pin. Values in example below should work in most cases, but could be tailored to each side IO drive strengths and PCB impedance.

Figure 45. 10/100M Ethernet PHY connection example

1. Decoupling capacitors not shown.

Alternatively, if PHY allows it and if RCC can provide a precise 50 MHz clock (possibility must be checked with respect to HSE quartz frequency and RCC other peripheral/core clocks frequency settings), a 50 MHz ETH_CLK could be provided by the STM32MP1 Series to the PHY, and REF_CLK is left unconnected on both sides. This saves BOM and area, as well as some power on some PHYs.

Figure 46. 10/100M Ethernet PHY connection with REFCLK from RCC example

1. Decoupling capacitors not shown.

AN5031 Rev 1 71/78

Gigabit Ethernet

Note that a good signal integrity is dependent on board, GPIO strength settings (GPIO_OSPEEDR registers) and V_{DD} voltage.

When using V_{DD} = 1.8V, a setting in the OTP bit and the register SYSCFG_IOCTRLSETR (HSLVEN_ETH bit) is required to ensure the best speed on pads used on Ethernet outputs.

Warning: UHSLVEN must not be set when V_{DD} is above 2.7 V otherwise permanent IC damage could occur.

If needed, the impedance matching resistors should be placed as close as possible of the output driver pin. Values in example below should work in most cases, but could be tailored to each side IO drive strengths and PCB impedance.

3.3V 15, 21 DVDD3V3 (VIO) AVDD3V3 6, 41 V_{DD} = 3.3V ± 5% (PHY 3.3V can be shut **VDDREG** RTL8211E-VB-CG DVDD3V3 STM32MP15x 10/100/1000M AVDD10 (1.05V) REG OUT ETH_CLK (25 MHz Refer PB5, PG8 RCC CKXTAI 1 AVDD10 DVDD10 28, 36 CKXTAL2 PG5 38 4k7 3.3V 22 46 CI K125 **ENSWREG** PA1 ETH1_RGMII_RX_CLK 22 19 RXC PA7 ETH1_RGMII_RX_CTL PXCTL(PHY_AD2) PC4 ETH1_RGMII_RXD0 SELRGV=1 22 14 RXD0 (SELRGV) (RXDLY) LED2 PC5 ETH1_RGMII_RXD1 33V TXDIY=1 RXD1 (TXDLY) (PH6) PB0 ETH1_RGMII_RXD2 33V 447 (PHY_AD0) LED0 22 17 RXD2 (AN0) (PH7) PB1 ETH1_RGMII_RXD3 33V ANT 1 RXD3 (AN1) (PHY_AD1) LED1 PG4 ETH1_RGMII_GTX_CLK

(PG11) PB11 ETH1_RGMII_TX_CTL

22 TXC ETH TXCTL MDI3N (PB12) **PG13** ETH1_RGMII_TXD0
(PB13) **PG14** ETH1_RGMII_TXD1 TXD0 MDI3F TXD1 MDIS PC2 ETH1_RGMII_TXD2 57 (PB8) PE2 ETH1_RGMII_TXD3 TXD2 MDI2F TXD3 MDI1N PC1 ETH1_MDC 3.3V 1k5 MDC MDI1P 3.3V 1k5 PA2 ETH1_MDIO MDIO with Magnetics and LEDs PG12 ETH1_PHY_INTN INTB MDIOP PXX GPIOxx GPIO PHYRSTB RSET 2849 1% Pxx WKUPx 100Ω differential traces PWF PMEB GND exposed thermal pad NC 12 50Ω traces unless otherwise noted traces should be short with balanced length Optional schematic

Figure 47. Gigabit Ethernet PHY connection example with V_{DD}=3.3V (RTL8211E)

1. Decoupling capacitors not shown.

Figure 48. Gigabit Ethernet PHY connection example with V_{DD}=3.3V (RTL8211F)

1. Decoupling capacitors not shown.

Figure 49. Gigabit Ethernet PHY connection example with V_{DD} =1.8V (RTL8211F)

1. Decoupling capacitors not shown.

AN5031 Rev 1 73/78

Figure 50. Gigabit Ethernet 2-port switch example with V_{DD} = 3.3V (RTL8363NB)

1. Decoupling capacitors not shown.

10.1.14 Display serial interface (DSI)

STM32MP157 Vnn 57 VDD VDD1V2_DSI_REQ **LDO 1.2V** Recommended connection even if DSI **DSI PLL** is not used V_{DD} Supplies VDD1V2_DSI_PHY **DSI Display** DSI_CK_P 100Ω differential DSI_CK_N trace 57 PH₹ DSI_D0_P 2 x ECMF04-4HSWM10 (1) 100Ω differential DSI_D0_N DSI DSI DSI D1 P 100Ω differential DSI_D1_N VDDA1V8_DSI DSI_TE Recommended connection even if DSI is not used VDDA1V8 REG **LDO 1.8V** Recommended connections

Figure 51. Display connection example with DSI

- ECMF04-4HSWM10 includes common mode filter for WLAN/BT bands. For ESD protection only, HSP051-4M10 could be used instead (similar but not same footprint).
- 2. Decoupling capacitors not shown.
- 3. Availability of DSI depends on the STM32MP1 Series devices.

AN5031 Rev 1 75/78

DSI interface PCB track length matching

Each package has been optimized to provide easier length matching when differential balls pair signals are not directly on adjacent balls. Example: package with 0.8 mm ball pitch, when differential pairs are on two different rows, the package already have around 800 µm length internal difference to allow the PCB track to match total length with minimum or even no additional routing complexity. Table 20 shows DM - DP length difference (inside package) at ball level to be taken into account by the PCB tool.

Table 20. DSI package length matching values

	TFBGA257		LFBGA354		TFB	GA361	LFBGA448	
Pin name	(10 x 10 pitch 0.5 mm)		mm) (16 x 16 pitch 0.8 mm)		(12 x 12 p	oitch 0.5 mm)	(18 x 18 pitch 0.8 mm)	
	Ball position	Length difference	Ball position	Length difference	Ball position	Length difference	Ball position	Length difference
DSI_CKN	B12	-505 μm	A14	822 µm	A16	490 µm	A16	867 µm
DSI_CKP	A12	-505 μπ	B14	022 μπ	B16	430 μm	B16	σον μπι
DSI_D0N	C12	-736 µm	A13	781 µm	B15	514 um	A15	701 um
DSI_D0P	B11	-7 30 μm	B13	701 μπ	C15	514 μm	B15	791 µm
DSI_D1N	B13	-507 µm	A15	804 µm	A17	505 µm	A17	785 µm
DSI_D1P	A13	-307 μπ	B15	ουτ μπ	B17	σοσ μπ	B17	705 μπ

хP xM/xN хP 737 HM <u>ዿ</u>፟ዿ 900 800 хP xM/xN xM/xN xM/xN хP MSv48333V2

Figure 52. DSI interface PCB track example for 0.8 mm ball pitch package

AN5031 Revision history

11 Revision history

Table 21. Document revision history

Date	Revision	Changes
01-Feb-2019	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved