Calculus Cheat Sheet

Daniel Lin

Based on notes by Dr A.G. Walton

1 Basics

Formulae relating permutation and Kronecker delta:

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$

$$\epsilon_{ijk}\epsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}$$

Dot product

$$\mathbf{a}.\mathbf{b} = a_i b_i$$

Cross product

$$[\boldsymbol{a} \times \boldsymbol{b}]_i = \epsilon_{ijk} a_j b_k$$

Triple scalar product

$$\boldsymbol{a}.(\boldsymbol{b}\times\boldsymbol{c})=\epsilon_{ijk}a_ib_ic_k$$

$$\boldsymbol{a}.(\boldsymbol{b}\times\boldsymbol{c})=0\Leftrightarrow a,b,c$$
 are coplanar.

$$a.(b \times c) = (a \times b).c$$

Triple vector product

$$a \times (b \times c) = (a.c)b - (a.b)c$$

2 Gradient, divergence and curl

Gradient & directional derivative

$$\nabla \phi = \frac{\partial \phi}{\partial x} \hat{\boldsymbol{i}} + \frac{\partial \phi}{\partial y} \hat{\boldsymbol{j}} + \frac{\partial \phi}{\partial z} \hat{\boldsymbol{k}}, \frac{\partial \phi}{\partial s} = \hat{\boldsymbol{s}}.\nabla \phi$$

note that \hat{s} here must be unit vector.

Formal definition of gradient, S is a surface, τ is the volume of region enclosed by S:

$$\nabla \phi = \lim_{\tau \to 0} \frac{1}{\tau} \int_{S} \widehat{\boldsymbol{n}} \, \phi \, dS$$

Laplace

$$\nabla^2 \phi := \nabla \cdot \nabla \phi = \frac{\partial^2}{\partial x_i^2} \phi$$
$$[\nabla^2 \mathbf{A}]_i = \frac{\partial^2}{\partial x_i^2} \mathbf{A}_i$$

Finding tangent plane at point P:

1. Change the equation of surface to $\phi(x, y, z) = c$ where c is a constant. Try to use addition instead of multiplication so that ϕ is more linear.

2.

$$\left. \frac{\partial \phi}{\partial x} \right|_{P} (x - x_{P}) + \left. \frac{\partial \phi}{\partial y} \right|_{P} (y - y_{P}) + \left. \frac{\partial \phi}{\partial z} \right|_{P} (z - z_{P})$$

is the equation of tangent plane.

For a vector field A

$$div(\mathbf{A}) = \nabla \cdot \mathbf{A}, \quad curl(\mathbf{A}) = \nabla \times \mathbf{A}$$

Note: 2D curl is defined assuming it is on x - y plane of 3-D space, so

$$curl(\mathbf{A}) = \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y}\right) \hat{\mathbf{k}}$$

Strict definitions:

$$div(\mathbf{A}) = \lim_{\tau \to 0} \frac{1}{\tau} \int_{S} (\widehat{\mathbf{n}}.\mathbf{A}) dS \qquad curl(\mathbf{A}) = \lim_{\tau \to 0} \frac{1}{\tau} \int_{S} (\widehat{\mathbf{n}} \times \mathbf{A}) dS$$

Properties:

- $\nabla(\phi_1 + \phi_2) = \nabla\phi_1 + \nabla\phi_2$
- $div(\mathbf{A} + \mathbf{B}) = div(\mathbf{A}) + div(\mathbf{B}), \ curl(\mathbf{A} + \mathbf{B}) = curl(\mathbf{A}) + curl(\mathbf{B})$
- $\nabla(\phi\psi) = \phi\nabla\psi + \psi\nabla\phi$
- $div(\phi \mathbf{A}) = \phi div(\mathbf{A}) + \nabla \phi \cdot \mathbf{A}$, $curl(\phi \mathbf{A}) = \phi curl(\mathbf{A}) + \nabla \phi \times \mathbf{A}$
- $div(\mathbf{A} \times \mathbf{B}) = \mathbf{B}.curl(\mathbf{A}) \mathbf{A}.curl(\mathbf{B})$
- $curl(\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} (\mathbf{A} \cdot \nabla)\mathbf{B} + div(\mathbf{B})\mathbf{A} div(\mathbf{A})\mathbf{B}$
- $\nabla(A.B) = (B.\nabla)A + (A.\nabla)B + B \times curl(A) + A \times curl(B)$
- $curl(\nabla \phi) = 0$
- $div(curl(\mathbf{A})) = 0$
- $curl(curl(\mathbf{A})) = \nabla(div(\mathbf{A})) \nabla^2 \mathbf{A}$

Irrotational vector field: $curl(\mathbf{A}) = 0$ solenoid vector field: $div(\mathbf{A}) = 0$

3 Integrals

3.1 Line Integral

$$\int_{\gamma} f \, ds := \lim_{N \to \infty, \max(\delta s_n) \to 0} \sum_{n=1}^{N} f_n \delta s_n$$

where δs_n are lengths of segments on the path γ (must be smooth or piece-wise smooth). Function f is usually a scalar field, if it is vector field, integral is calculated element-wise.

Length of path γ can be calculated using integration $l = \int_{\gamma} ds$. If γ is y = y(x), then the arc length between (a, f(a)), (b, f(b)) is

$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

ds - Change of arc length, $\hat{\boldsymbol{t}} = \frac{d\boldsymbol{r}}{ds}$ - tangent vector, $d\boldsymbol{r} = \hat{\boldsymbol{t}}ds$ - path element. So we have another line integral defined for vector field \boldsymbol{F} :

$$\int_{\gamma} \boldsymbol{F} \cdot d\boldsymbol{r} := \int_{\gamma} (\boldsymbol{F} \cdot \hat{t}) \ ds$$

Circulation: when the path is closed (same beginning and end point) denoted as $\oint_{\gamma} F . dr$

Field \mathbf{F} is conservative (circulation around any closed path γ is 0) $\Leftrightarrow \mathbf{F} = \nabla \phi$ for some function ϕ . (ϕ is called potential) $\Leftrightarrow curl(\mathbf{F}) = 0$. In this case, given any path γ joining point A, B, we have

$$\int_{\gamma} f \ ds = \phi(B) - \phi(A)$$

Steps to find potential ϕ :

- $\frac{\partial \phi}{\partial x} = F_1$ so integrate F_1 w.r.t. x to find ϕ . The integration constant should be C(y,z) (a function depending on y,z only)
- Then differentiation ϕ w.r.t y and compare with F_2 to solve for C(y,z). It should be of the form g(y,z) + C(z).
- Finally differentiation ϕ w.r.t. z. You may leave the constant c there as there is no way to ger rid of it.

Another practical result is if there is a vector field \mathbf{B} s.t. $curl(\mathbf{B}) = \mathbf{A}$, then $div(\mathbf{A}) = 0$

Evaluation Line Integral

With parameterisation $x = x(t), y = y(t), z = z(t)t_0 \le t \le t_1$, we have

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \left(F_1 \frac{dx}{dt} + F_2 \frac{dy}{dt} + F_3 \frac{dz}{dt} \right) dt$$

3.2 Surface Integral

Some definitions: Convex surface: crossed by any straight line at most twice. Closed surface: can divide the space into two non-connected regions. (interior & exterior)

Simply Connected Region: Any curve inside the region can be shrunk to a point (any point) without leaving the region. Otherwise the region is called multiply-connected.

Similar to line integral, we define surface integral on surface S as below

$$\int_{S} f \, dS := \lim_{N \to \infty, \max(\delta S_n) \to 0} \sum_{n=1}^{N} f_n \delta S_n$$

dS - area element (infinite small area of surface), $d\mathbf{S} = \hat{\mathbf{n}} dS$ - vector areal element ($\hat{\mathbf{n}}$ is normal to dS). Note area of S can be calculated using $\int_{S} 1 \, dS$.

Evaluating surface integral

$$I = \int_{S} f(P)dS$$

where P is a general point on surface S.

1. (From our notes) Projection

Choose a plane to project to (say the x, y plane) and find projection area Σ and normal vector $\widehat{\boldsymbol{m}} = \widehat{\boldsymbol{k}}$ to projected plane. Change variables in f(x, y, z) if necessary to get rid of z (using the equation of surface S, NOT equation of Σ)

$$I = \int_{\Sigma} f(P) \frac{dx \, dy}{|\widehat{\boldsymbol{n}}.\widehat{\boldsymbol{k}}|}$$

where $\hat{\boldsymbol{n}}$ is normal to S and it may depend on x,y,z. If the surface is given by g(x,y,z)=c for some constant c, then $\hat{\boldsymbol{n}}=\nabla g/|\nabla g|$ (ALWAYS remember to check $\hat{\boldsymbol{n}}$ is pointing to exterior of region). Projection to other planes can be done similarly.

2. Parameterisation

Any surface can be parameterised by two parameters say $\mathbf{r} = \mathbf{r}(\theta, \phi)$. For scalar function f:

$$\int_{S} f(\boldsymbol{r}) dS = \iint_{A} f(\boldsymbol{r}(\theta, \phi)) \left| \frac{\partial \boldsymbol{r}}{\partial \theta} \times \frac{\partial \boldsymbol{r}}{\partial \phi} \right| d\phi \ d\theta$$

where A is the corresponding area on $\theta - \phi$ plane. For vector field F:

$$\int_{S} \boldsymbol{F}(\boldsymbol{r}) . d\boldsymbol{S} = \iint_{A} (\boldsymbol{F}(\boldsymbol{r}(\theta, \phi)) . \widehat{\boldsymbol{n}}) \left| \frac{\partial \boldsymbol{r}}{\partial \theta} \times \frac{\partial \boldsymbol{r}}{\partial \phi} \right| d\phi \ d\theta$$

where \hat{n} is unit normal to surface S.

3.3 Volume Integral

If τ is a region in 3D space, $\int_{\tau} f d\tau$ (defined similar to above) is volume integral where $d\tau = dx \, dy \, dz$ is volume element.

3.4 Some useful Integrals

Given curve $y = y(x), x \in [a, b]$, the arc length is

$$\int_a^b \sqrt{1 + (\frac{dy}{dx})^2} \, dx$$

surface area of surface generated by revolving y = y(x) between x = a, b about x-axis is:

$$2\pi \int_a^b y\sqrt{1+(\frac{dy}{dx})^2}\ dx$$

for revolution about y-aixs:

$$2\pi \int_a^b x \sqrt{1 + (\frac{dy}{dx})^2} \ dx$$

volume of revolution about x-axis is

$$\int_{a}^{b} \pi y^{2} dx$$

volume of revolution about y-axis is

$$\int_a^b \pi x^2 \ dy$$

4 Green's theorem, divergence theorem and Stokes theorem

Green's theorem gives an important connection between line integral and surface integral. If R is a closed plane region bounded by simple closed convex curve C (anti-clockwise) and $\boldsymbol{F} = \begin{pmatrix} P \\ Q \end{pmatrix}$:

$$\oint_C \boldsymbol{F}.d\boldsymbol{r} = \oint_C \left(P \; dx + Q \; dy\right) = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \; dS$$

Green's theorem is proved directly for simply connected convex R but can be generalised to non-convex/multiply connected regions using suitable breakdown. For example, given a region R is bounded by an interior boundary C_0 (clockwise) and an exterior boundary C_1 (anti-clockwise):

$$\oint_{C_1} \mathbf{F} . d\mathbf{r} - \oint_{C_0} \mathbf{F} . d\mathbf{r} = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dS$$

If F is undefined at some point P in region R, you should dig a circle with radius r around point P, calculate the integral and then let $r \to 0$.

Area of a region If a closed region has boundary curve C, then its area is given by

$$\frac{1}{2} \oint_C (x \, dy - y \, dx)$$

This integral can be calculated by parametrisation.

Flux

Flux of a surface S and vector field A is

$$\int_{S} \mathbf{A} \cdot \widehat{\mathbf{n}} dS$$

where \hat{n} is normal to surface S.

Divergence theorem

For closed convex surface S with normal \hat{n} and region τ enclosed by S that is simply connected. A is a vector field with continuous derivative on τ :

$$\int_{S} \mathbf{A} . d\mathbf{S} = \int_{S} \mathbf{A} . \hat{\mathbf{n}} \ dS = \int_{\tau} div(\mathbf{A}) d\tau$$

This can be generalised to non-convex surfaces and multiply-connected regions just like Green's theorem.

You can use divergence theorem to evaluate $\int_{\tau} f(\mathbf{r}) d\tau$ but you have to first find function $\mathbf{A}(\mathbf{r})$ s.t. $div \mathbf{A} = f$. Try to pick \mathbf{A} as simple as possible (say, $\mathbf{A} = x\mathbf{i}$)

Green's identities: (ϕ, ψ) are scalar functions, other symbols have the same meaning as in Divergence theorem)

$$\iint_{S} \phi \frac{\partial \psi}{\partial \boldsymbol{n}} dS = \int_{\tau} \phi \nabla^{2} \psi + \nabla \phi \cdot \nabla \psi d\tau$$

$$\iint_{S} \phi \frac{\partial \psi}{\partial \boldsymbol{n}} - \psi \frac{\partial \phi}{\partial \boldsymbol{n}} dS = \int_{\tau} \left(\phi \nabla^{2} \psi - \psi \nabla^{2} \phi \right) d\tau$$

Generalised integration by part: (R is region enclosed by curve C)

$$\iint_{R} \phi \nabla^{2} \psi \, dx \, dy = \oint_{C} \phi \frac{\partial \psi}{\partial \mathbf{n}} dS - \iint_{R} \nabla \phi \cdot \nabla \psi \, dx \, dy$$

Gauss's flux theorem: S is closed surface with normal \hat{n} and O means origin.

$$\int_{S} \frac{\widehat{\boldsymbol{n}}.\boldsymbol{r}}{|\boldsymbol{r}|^{3}} dS = \begin{cases} 0 & \text{if O is exterior} \\ 4\pi & \text{if O is interior} \end{cases}$$

Stokes theorem S is open surface with boundary curve γ . \boldsymbol{A} is continuously differentiable on S,

$$\oint_{\gamma} \boldsymbol{A}.d\boldsymbol{r} = \int_{S} curl(\boldsymbol{A}).\widehat{\boldsymbol{n}} \ dS$$

Note LHS is independent of the surface S chosen.

5 Curvillinear system

For coordinate system $\mathbf{x} = (x_1, x_2, x_3)$, transformation to new coordinate system $\mathbf{u} = (u_1, u_2, u_3)$ is possible if

$$\det(J(u_x)) = \det\left(\begin{pmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \frac{\partial u_1}{\partial x_3} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_3}{\partial x_1} & \frac{\partial u_3}{\partial x_2} & \frac{\partial u_3}{\partial x_3} \end{pmatrix}\right) \neq 0$$

Also remember that $J(x_u)J(u_x)=I$, so $\det(J(x_u))\det(J(u_x))=1$. This means if $\det(J(x_u))\neq 0$, the above condition is satisfied.

For a given point $P = (x_1, x_2, x_3)$, by finding $\nabla u_i(P)$ and normalising (change to a unit vector). We have $\hat{\boldsymbol{u}}_i$, the unit normal vector to the surface $u_i = u_i(P)$ (where $u_i(P)$ is a constant). So

$$\widehat{\boldsymbol{u}}_i = \frac{\nabla u_i(P)}{|\nabla u_i(P)|}$$

system is orthogonal of \hat{u}_i are mutually orthogonal.

In general, tangential vectors(to the line where only u_i varies) $\hat{e_i}$ are used more. In Cartesian coordinates, \hat{e}_i are $\hat{i}, \hat{j}, \hat{k}$. To find \hat{e}_i , use this formulae:

$$\frac{\partial \boldsymbol{r}}{\partial u_i} = h_i \hat{e}_i$$
, where $h_i = \left| \frac{\partial \boldsymbol{r}}{\partial u_i} \right|$, $\boldsymbol{r} = x \hat{\boldsymbol{i}} + y \hat{\boldsymbol{j}} + z \hat{\boldsymbol{k}}$

 h_i are called length scale. Showing \hat{e}_i are mutually orthogonal also proves orthogonality of the coordinate system.

In orthogonal system:

$$\widehat{m{e}}_i = \widehat{m{u}}_i$$

Path element

$$d\mathbf{r} = \sum h_i du_i \widehat{e_i}$$

(for orthogonal system)

$$(ds)^2 = (d\boldsymbol{r}.d\boldsymbol{r}) = \sum h_i^2 du_i^2$$

Volume element

$$dV = h_1 h_2 h_3 du_1 du_2 du_3$$

Area element (on the surface where u_1 is constant)

$$dS = h_2 h_3 du_2 du_3$$

Gradient

$$\nabla = \sum \frac{1}{h_i} \hat{e_i} \frac{\partial}{\partial u_i}$$

from this we have $\hat{\boldsymbol{e}}_i = \nabla \boldsymbol{u}_i h_i$

Divergence

$$div(\mathbf{A}) = \frac{1}{h_1 h_2 h_3} \left\{ \sum \frac{\partial}{\partial u_i} (A_i h_j h_k) \right\}$$

Curl

$$curl(\mathbf{A}) = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \widehat{e_1} & h_2 \widehat{e_2} & h_3 \widehat{e_3} \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{vmatrix}$$

Laplacian

$$\bigtriangledown^2\Phi = \frac{1}{h_1h_2h_3} \left\{ \sum \frac{\partial}{\partial u_i} (\frac{h_jh_k}{h_i} \frac{\partial \Phi}{\partial u_i}) \right\}$$

5.1 Cartesian, Cylindrical and Spherical

Three systems are all orthogonal.

Definition of Cylindrical coordinates:

$$x = r \cos \theta, y = r \sin \theta, z = z$$

Definition of Spherical coordinates:

$$x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta$$

where $r \geq 0$ is radius, $\theta \in [0, \pi]$ is rotation above x-y plane and $\phi \in [0, 2\pi]$ is rotation with in x-y plane.

Tables below are ordered by (x, y, z), (r, θ, z) , (r, θ, ϕ)

Coordinate system	h_i	$\widehat{e_i}$	
Cartesian	1,1,1	$\hat{m{i}},\hat{m{j}},\hat{m{k}}$	
Cylindrical	1	$\cos heta\hat{m i} + \sin heta\hat{m j}$	
	r	$-\sin heta \hat{m{i}} + \cos heta \hat{m{j}}$	
	1	$\hat{m{k}}$	
Spherical	1	$\sin\theta\cos\phi\hat{\pmb{i}} + \sin\theta\sin\phi\hat{\pmb{j}} + \cos\theta\hat{\pmb{k}}$	
	r	$\cos\theta\cos\phi\hat{\pmb{i}} + \cos\theta\sin\phi\hat{\pmb{j}} - \sin\theta\hat{\pmb{k}}$	
	$r\sin\theta$	$-\sin\theta\sin\phi\hat{\boldsymbol{i}} + \sin\theta\cos\phi\hat{\boldsymbol{j}}$	

Table 1: Table of tangential vectors and length scales

Coordinate system	gradient div		Laplacian
Cartesian	$\hat{m{i}}rac{\partial}{\partial x}+\hat{m{j}}rac{\partial}{\partial y}+\hat{m{k}}rac{\partial}{\partial z}$	$\frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z}$	$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2}$
Cylindrical	$\hat{m{r}}rac{\partial}{\partial r}+rac{\hat{m{ heta}}}{r}rac{\partial}{\partial heta}+\hat{m{k}}rac{\partial}{\partial z}$	$\frac{\partial A_1}{\partial r} + \frac{A_1}{r} + \frac{1}{r} \frac{\partial A_2}{\partial \theta} + \frac{\partial A_3}{\partial z}$	$\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta} + \frac{\partial^2 \Phi}{\partial z}$
Spherical	$\hat{m{r}} rac{\partial}{\partial r} + rac{\hat{m{ heta}}}{r} rac{\partial}{\partial heta} + rac{\hat{m{\phi}}}{r \sin heta} rac{\partial}{\partial \phi}$	$\frac{1}{r^2 \sin \theta} \left\{ \frac{\partial}{\partial r} (r^2 \sin \theta A_1) + \frac{\partial}{\partial \theta} (r \sin \theta A_2) + \frac{\partial}{\partial \phi} (r A_3) \right\}$	$\frac{\partial^2 \Phi}{\partial r^2} + \frac{2}{r} \frac{\partial \Phi}{\partial r} + \frac{\cot \theta}{r^2} \frac{\partial \Phi}{\partial \theta} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi}$

Table 2: Table of div, gradient and Laplacian for vector valued function \boldsymbol{A} or scalar valued function Φ

5.2 Change of variables

If we parameterise surface S by (u_1, u_2) ,

$$dS = |J| du_1 du_2$$
, where $J = \frac{\partial \mathbf{r}}{\partial u_1} \times \frac{\partial \mathbf{r}}{\partial u_2}$

If S is on x-y plane

$$J = J(\boldsymbol{x}_{\boldsymbol{u}})$$
, where $\boldsymbol{x} = (x, y)$

If S is z = f(x, y) and we parameterise using x, y:

$$|J| = \sqrt{1 + |\nabla f|^2}$$

So surface area of any surface S is

$$\int_{\Sigma} \sqrt{1+|\nabla f|^2} \, dx dy$$

where Σ is projection of S onto x-y plane.

6 Calculus of Variation

Vanishing lemma If g is a continuous function s.t. for every smooth function $\eta(x)$ with $\eta(x_1) = \eta(x_2) = 0$,

$$\int_{x}^{x_2} g(x)\eta(x) \ dx = 0$$

then $g \equiv 0$

Target of this section: find function y = y(x) that minimises the integral

$$I := \int_{x_1}^{x_2} L(x, y, y') \ dx$$

L is a functional.

1D E-L equation and special cases

Full equation

$$\frac{\partial L}{\partial y} = \frac{d}{dx} \left\{ \frac{\partial L}{\partial y'} \right\}$$

L independent of y

$$\frac{\partial L}{\partial u'} = \text{constant}$$

L independent of y'

$$\frac{\partial L}{\partial y} = 0$$

L independent of x:

$$L - y' \frac{\partial L}{\partial y'} = \text{constant}$$

Finding extrema of $I = \int_{x_1}^{x_2} L(x, y, y') dx$ where L is a functional

- 1. Use E-L equation to obtain a differential equation.
- 2. Solve it, remember to include the integration constants.
- 3. Check that I''(0) > 0 or I''(0) < 0
- 4. use boundary conditions to determine integration constants

Multivariate E-L If we are finding extrema of

$$I = \int_{t_1}^{t_2} L(t, x_1(t), x_1'(t), ..., x_n(t), x_n'(t)) dt$$

E-L equation becomes a set of equations

$$\frac{\partial L}{\partial x_i} = \frac{d}{dt} \left\{ \frac{\partial L}{\partial x_i'} \right\}$$

With constraint

$$J = \int_{t_1}^{t_2} g(t, x_1(t), x_1'(t), ..., x_n(t), x_n'(t)) \ dt = \text{constant}$$

E-L becomes

$$\frac{\partial}{\partial x_i}(L+\lambda g) - \frac{d}{dt}\frac{\partial}{\partial x_i'}(L+\lambda g) = 0$$

Leave λ there and after finishing regular steps, plug in integral J to determine λ . However, the order you determine the constants is not restricted, you may as well find λ in terms of an integration constant c first, then solve c using the restriction.

E-L for surface integral The function f(r) where r = xi + yj that maximises

$$I = \int_R L(\boldsymbol{r}, f(\boldsymbol{r}), \nabla f(\boldsymbol{r})) \ dx \ dy$$

can be found by solving the following equation

$$\frac{\partial L}{\partial f} = div(\nabla_{\nabla_f} L) = div(\widehat{\boldsymbol{i}}\frac{\partial L}{\partial f_x} + \widehat{\boldsymbol{j}}\frac{\partial L}{\partial f_y})$$

where f_x, f_y are partial derivatives of f.

Isoperimetric inequality For any simple curve with area A and perimeter l,

$$4\pi A \leq l^2$$

equality holds iff curve is circle.

7 Integration Techniques

Ways of showing $f(x) \equiv 0$ using integration:

- 1. Use vanishing lemma
- 2. Prove $\int_{x_1}^{x_2} f^2 dx = 0$. Or if you know $f(x) \ge 0$, prove $\int_{x_1}^{x_2} f dx = 0$. Some inverse trig integrals

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}(\frac{x}{a}) + c$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a}) + c$$

$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1}(\frac{|x|}{a}) + c$$

Some inverse hyperbolic integrals

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1}(\frac{x}{a}) + c$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1}(\frac{x}{a}) + c$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{a} \tanh^{-1}(\frac{x}{a}) + c \quad (x^2 < a^2)$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{a} \coth^{-1}(\frac{x}{a}) + c \quad (x^2 > a^2)$$

Derivatives of trigs:

$$(\sin(x))' = \cos(x) \quad (\cos(x))' = -\sin(x) \quad (\tan(x))' = \sec^2(x)$$

 $(\csc(x))' = -\cot(x)\csc(x) \quad (\sec(x))' = \tan(x)\sec(x) \quad (\cot(x))' = -\csc^2(x)$

Reduction formulas:

$$I_n = \int \cos^n(x) \, dx = \frac{1}{n} \cos^{n-1}(x) \sin(x) + \frac{n-1}{n} I_{n-2}$$

$$I_n = \int \sin^n(x) \, dx = -\frac{1}{n} \sin^{n-1}(x) \cos(x) + \frac{n-1}{n} I_{n-2}$$

$$I_n = \int x^n e^{ax} \, dx = \frac{x^n e^a x}{a} - \frac{1}{n} I_{n-1}$$

Product to sum rules for trigs:

$$\sin(x)\cos(y) = \frac{1}{2}[\sin(x+y) + \sin(x-y)]$$

$$\cos(x)\sin(y) = \frac{1}{2}[\sin(x+y) - \sin(x-y)]$$

$$\cos(x)\cos(y) = \frac{1}{2}[\cos(x+y) + \cos(x-y)]$$

$$\sin(x)\sin(y) = -\frac{1}{2}[\cos(x+y) - \cos(x-y)]$$