

JSS MAHAVIDYAPEETHA JSS SCIENCE AND TECHNOLOGY UNIVERSITY

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING JSS Technical Institutions Campus, Mysuru – 570 006, Karnataka

JANUARY/FEBRUARY 2021 SEMESTER END EXAMINATIONS

PROGRAMME: B.E.

BRANCH: E&C

SEMESTER: V

SECTION: 'A' & 'B'

PAPER SETTERS: 1) Ms. Anitha S. Prasad

2) Smt. Supreetha M.

DATE: 19.01.2021

DAY: Tuesday

TIME: 9.30 A.M. to 12.30 P.M.

DURATION: 3 hrs. MAX. MARKS: 100

LINEAR ALGEBRA & APPLICATIONS

NOTE:

1. PART-A has compulsory questions.

2. Answer PART-B making use of Internal Choices.

PART - A

Q. No.	со	CD	QUESTION	MARKS
1.	CO2	L3	Obtain the solution to the system of Linear Equations using Gauss Elimination Method. $x+2y+z=3$ $2x+3y+3z=10$ $3x-y+2z=13$	10
2/.	CO1	L2	If W_1 and W_2 are finite dimensional subspaces of a vectorspace V, then prove that W_1+W_2 is finite dimensional and show that $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$	10
3.a)	CO4	L3	Show that the following transformation is a linear transformation $T:R^2-R^2$ defined by $T(V)=T(x,y)=(x+y,x)$	05
b)	CO4	L3	Show how the transformation matrix in different bases B and B ¹ are related.	05

USN: Code: EC510

4.a)	CO1	L1	Define innovati	
			Define innerproduct spaces.	04
b)	CÓ3	L3	Let M=M _{2,3} with innerproduct $\langle A, B \rangle = tr(B^T A)$ and Let $A = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ $C = \begin{bmatrix} 3 & -5 & 2 \\ 1 & 0 & -4 \end{bmatrix}$ Obtain a) $\langle A, B \rangle, \langle A, C \rangle, \langle B, C \rangle$ b) $\langle 2A + 3B, 4C \rangle$ c) $ A $ and $ B $	06
5.a)	CO3	L4	The fraction of rental cars in Denver starts at $\frac{1}{50} = 0.02$. The fraction outside Denver is 0.98. Every month, 80% of the Denver cars stay in Denver. Also 5% of the outside cars come in. Inspect the Eigen vector and 2 months vector.	05
b)	CO4	L3	Obtain the $3x3$ incidence matrix for the triangular graph shown in fig (5b). The first row has -1 in column 1 and +1 in column 2. What vectors (x_1, x_2, x_3) are in its null space? How do you identify that $(1,0,0)$ is not in its row space?	05

PART - B

Q. No.	СО	CD	QUESTION	MARKS
6.	CO2	L3	Obtain the solution to the system of Linear equations using LU factorization. $x_1 + 2x_2 + 3x_3 = 0$ $2x_1 + 2x_2 + 3x_3 = 3$	10
			$-x_1 - 3x_2 = 2$	
			OR	
7.a)	CO2	L3	Find the parametric solution of the following system of equation. x+2y-3z=1 2x+5y-8z=4 3x+8y-13z=7	05
b)	CO2	L3	Obtain the inverse of A $ \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix} $	05

USN: Code: EC510

8.a)	CO3	L3	Find the basis and dimension of the solution space W of each homogeneous system. $x+3y+2z=0$	05
			x + 5y + z = 0	
			3x + 5y - 8z = 0	
b)	CO3	L4	Analyze whether the following vectors are linearly independent (1,0,-1,3) (-1,1,2,-1), (-3,5,8,1) & (0,4,5,3). Identify the dimension of the space spammed by these vectors and also the basic vectors.	05
			OR	
9.	CO3	L4	Consider the standard basis for R3,B $\{e_1,e_2,e_3\}$ and the basis $B^1 = \{u,u_2,u_3\}$ where $u_1 = (1,-1,1)$ $u_2 = (0,1,2)$ $u_3 = (3,0,-1)$. i) Solve for the change of basis matrix P from B to B ¹ ii) Solve for change of basis matrix P from B ¹ to B iii) Represent the vector $u(1,4,6)$ in the basis B ¹	10

		,		
10.a)	CO4	L3	Let $T: V \to W$ be a linear transformation then prove that	07
			i) R(T) is a subspace of W	
			ii) N(T) is a subspace of V	
			iii) T is one-to-one iff $N(t)=\{0\}$	
b)	CO4	L1	Define the Rank and Nullify of the Linear	03
			Transformation.	,
			OR	
11.	CO4	L3	Obtain the basis and dimension of the Kernel and Range	10
7			of the Linear Transformation. The transformation T is	
			defined by $T: \mathbb{R}^5 \to \mathbb{R}^4$	
			$T(x_1, x_2, x_3, x_4, x_5) = (x_1 - x_3 + 3x_4 - x_5, x_2 + x_4 - x_5, 2x_2 - x_3 + 5x_4 - x_5, -x_3 + x_4)$	Ny

12.	CO4	L3	$\begin{bmatrix} 4 & 1 & -1 \end{bmatrix}$	10
			Suppose $A = \begin{bmatrix} 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$	
1			i) Find all Eigen values of A	
			ii) Find P such that D=P ⁻¹ AP is diagonal	
	000		ii) Find P such that D=P ⁻¹ AP is diagonal iii) calculate A ⁸ using A ^m =PD ^m P ⁻¹	
14			OR	
13.a)	CO4	L3	Find the minimal polynomial and characteristic polynomial for the given matrix $A = \begin{bmatrix} 4 & -2 & 2 \\ 6 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$	05

USN: Code: EC510

b)	CO4	L3	Consider the Matrix $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$	05
			Obtain the Eigen values and Eigen vectors. Also find $f(A)$ given $f(t)=t^4-3t^3-6t^2+7t+3$	

14.a)	CO4	L3	Obtain the length of vectors in Hilbert space and check Schwartz inequality	05
			$V = (1, \frac{1}{2}, \frac{1}{4}), W = (1, \frac{1}{3}, \frac{1}{4})$	
b)	CO4	L3	Suppose $f(x)$ is a square wave equal to 1 for $0 \le x < \pi$	05
			Then $f(x)$ drops to -1 for $\pi \le x < 2\pi$. 1 and -1 repeats	
			forever, Solve for obtaining its fourier series.	
			OR	
15.	CO4	L3	Solve for the singular value decomposition.	10
			$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$	

Diagram

Course Outcome

At the e	At the end of the course the student should be able to -							
CO-1	Explain fields, vectorspaces and innerproducts spaces.							
CO-2	Obtain the solution for the systems of linear equations.							
CO-3	Analyze and solve the problems on the bases, dimensions and orthogonalization of							
	vectors.							
CO-4	Apply principles of matrix algebra to linear transformations and canonical forms.							
CO-5	Engage in independent study as a member of a team and make effective							
	presentation on the simulations and applications of Linear Algebra.							

Cogn	itive Domains:	
L1:	Remembering	
L2:	Understanding	
L3:	Applying	
L4:	Analyzing	
L5:	Evaluating	
L6:	Creating	

gig (5b)
edge 1
edge 2
edge 3 3

EC510