

Oversigt – mm. 1 - 5

100827/OKJ

- 1 Jan: Introduktion til AEL og Spice
- 2 PN-dioden: Fysik, egenskaber
- 3 Diodekredsløb
 - Småsignalmodel
 - Ensretterkredsløb
 - Specielle dioder og kredsløb
- 4 Bipolar Junction Transistor, BJT
 - Lidt fysik
 - o Egenskaber
 - Simpel model og forstærkertrin
 - Arbejdslinier
- 5 BJT-fortsat
 - O DC-forspænding
 - Forstærkning, arbejdslinier
 - Egenskaber, modeller
- 6 Jan: Forstærkere med BJT
- 7 ...

[Nogle figurer fra Sedra/Smith: Microelectronic Circuits, 5th ed.

Emner og formål – mm.

Emner:

- BJT-forstærkere
 - DC-forspænding
 - o DC/AC-arbejdslinier
- o Modeller for BJT-transistorer
 - o Kort omtale af Spice-model for BJT, strømafhænging β
 - Småsignalmodel: Hybrid- π model
 - Interne transistorkapaciteter
 - Bestemmelse af hybrid- π parametre ud fra h-parametre (datablad)

Variation af transistorparametre

- o V_{BE}:
 - Drift: ca. -2 mV/K
 - **Spredning**
- β:
 - Drift: ca. 0,6%/K
 - Stor spredning

Electrical DC Characteristics

BC547 (0,13 kr @ 1000 stk.)

Parameter	Test condition	Part	Symbol	Min	Тур	Max	Unit
Base - emitter voltage	$V_{CE} = 5 \text{ V, } I_{C} = 2 \text{ mA}$		V _{BE}	580	660	700	mV
	$V_{CE} = 5 \text{ V, } I_{C} = 10 \text{ mA}$		V_{BE}			720	mV
DC current gain (current gain group A)	$V_{CE} = 5 \text{ V, } I_{C} = 2 \text{ mA}$		h _{FE}	110	180	220	
DC current gain (current gain group B)	$V_{CE} = 5 \text{ V, } I_{C} = 2 \text{ mA}$		h _{FE}	200	290	450	
DC current gain (current gain group C)	$V_{CE} = 5 \text{ V, } I_{C} = 2 \text{ mA}$		h _{FE}	420	500	800	

DC-arbejdslinie - indgang

DC-arbejdslinie - indgang

DC-arbejdslinie - udgang

AC-arbejdslinier

$$R_{th} = R_S \parallel R_B$$

AC-arbejdslinier - indgang

$$v_{th} = i_b R_{th} + v_{be}$$

$$i_b = \frac{v_{th} - v_{be}}{R_{th}}$$

$$i_c = \frac{v_{th} - v_{be}}{R_{th} / \beta}$$

DC-AC-arbejdslinier - indgang

AC-arbejdslinie - udgang

DC-AC-arbejdslinier - udgang

DC-AC-arbejdslinier - udgang

signalet på indgangen

 v_{ce} : Positiv eller negativ

$$v_{CE} = v_{ce} + V_{CEQ} > V_{CEsat}$$

 i_c : Positiv eller negativ

$$i_C = i_c + I_{CQ} > 0$$

Spice model

- o BE-diode og BC-diode:
 - o Diodeligning
 - Rumladningskapacitet afhængig af spænding
 - o Diffusionskapacitet afhængig $C_{BC} = C_{DC} + C_{JC}$ af strøm
 - o BC-diode normalt i spærreretningen
- o Styret strømgenerator mellem $C_{BE} = C_{DE} + C_{JE}$ emitter og collector
- o Tabsmodstande i B, E, og C
- Evt. ekstra kapacitet til substrat
- o ca. 41 parametre ikke alle transistormodeller anvender alle parametre $i_{CE} = I_S \left(e^{\frac{v_{BE}}{n_F V_T}} e^{\frac{v_{BC}}{n_R V_T}} \right) \left(1 \frac{v_{BC}}{V_A} \right) \quad (5.192)$

Figure 5.78

Strømafhængig strømforstærkning

 Strømafhængig strømforstærkning er includeret i Spice

- Strømafhængig strømforstærkning
- ⇒ lidt forskellige DC- og småsignalværdier

Hybrid- π model

π -model:

- o $g_m = I_C/V_T$ Transkonduktans
- o r_{π} := $\beta_{\text{småsignal}}V_{\text{T}}/I_{\text{C}}$ Småsignalmodstand (" I_{S}/β "-diode)
- o $r_0 = (V_A + V_{CE})/I_C$ ($\approx V_A/I_C$): Udgangsmodstand (hældning af i_C/v_{CE} -kurver)

Hybrid- π -model:

- o r_X : Tabsmodstand i basis (lav dotering), ofte << r_π
- o Bemærk: v_{π} ligger mellem B' og E
- o r_{μ} : Tilbagevirkning. Kan oftest negligeres.

z-, y- og h-parametre

- Der findes flere forskellige småsignalparametre (lineær toport)
- Black-box-modeller: Ren matematik, der forudsættes intet kendskab til fysiske forhold

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ v_2 \end{bmatrix}$$

$$v_1 = h_{11}i_1 + h_{12}v_2$$
$$i_2 = h_{21}i_1 + h_{22}v_2$$

z-, y- og h-parametre:

- o er ikke relateret til fysiske forhold,
- o kan måles direkte på komponenten og er derfor objektive og veldefinerede og
- o er velegnede til et juridisk bindende datablad.

Hybrid- π -parametre giver fysisk indsigt, der kan udnyttes ved design.

Måling af h-parametre

$$\begin{aligned} v_1 &= h_{11}i_1 + h_{12}v_2 \Rightarrow h_{11} = \frac{v_1}{i_1} \Big|_{v_2 = 0} \\ i_2 &= h_{21}i_1 + h_{22}v_2 \Rightarrow h_{21} = \frac{i_2}{i_1} \Big|_{v_2 = 0} \end{aligned}$$

- o AC-kortslutning på port 2, småsignalkilde på port 1
- O Mål småsignalværdier: i₁, i₂ og v₁ og bestem forhold.

$$\begin{vmatrix} v_{1} = h_{11}i_{1} + h_{12}v_{2} \Rightarrow h_{12} = \frac{v_{1}}{v_{2}} \\ i_{2} = h_{21}i_{1} + h_{22}v_{2} \Rightarrow h_{22} = \frac{i_{2}}{v_{2}} \end{vmatrix}_{i=0}$$

$$\begin{vmatrix} i_{1} \\ v_{2} \\ v_{3} \\ \vdots \\ v_{2} \end{vmatrix}_{i=0}$$
Black
box
$$\begin{vmatrix} i_{1} \\ v_{2} \\ \vdots \\ v_{2} \end{vmatrix}$$
Signal-kilde

- o AC-afbrydelse på port 1, småsignalkilde på port 2
- o Mål småsignalværdier: v₂, v₁ og i₂ og bestem forhold.

h-parametre & hybrid-π model

- o Fremgangsmåde:
 - o Opstil kredsløbsligninger for hybrid- π -ækvivalentet
 - o Opstil udtryk for h-parametre v.h.a. hybrid- π -ækvivalentet
 - o Eksempel (der ses bort fra r_{μ}):

$$h_{21} = \frac{i_2}{i_1}\Big|_{v_2=0} \approx \frac{g_m v_\pi}{i_1} = \frac{g_m i_1 r_\pi}{i_1} = g_m r_\pi = \beta_{ac}$$

- o i ~input
- o f ~forward
- o r ~reverse
- o o ~output
- e ~fælles emitter

$$\begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} = \begin{bmatrix} h_{ie} & h_{re} \\ h_{fe} & h_{oe} \end{bmatrix}$$

Bestemmelse af hybrid- π parametre

- DC-arbejdspunkt -> g_m m.v.
- - ellers mest fra h-parametre
- o r_x usikkert bestemt

$$g_{m} = \frac{I_{C}}{V_{T}}$$

$$r_{\mu} = \frac{r_{\pi}}{h_{re}}$$

$$r_{\pi} = \frac{h_{fe}}{g_{m}}$$

$$r_{\sigma} = \left(h_{oe} - \frac{h_{fe}}{r_{\mu}}\right)^{-1}$$

$$r_{\sigma} = \frac{V_{A} + V_{CE}}{I} \approx \frac{V_{A}}{I}$$

BC547B-parametre (Vishay)

- DC (storsignal): h_{FE} (β)
- AC (småsignal): h_{fe} (β_{ac})
- Stor spredning på h-parametre
- Husk strømafhængighed!!

Parameter	Test condition	Part	Symbol	Min	Тур	Max	Unit
DC current gain (current gain group B)	$V_{CE} = 5 \text{ V, } I_{C} = 2 \text{ mA}$		h _{FE}	200	290	450	
Small signal current gain (current gain group B)	$V_{CE} = 5 \text{ V. } I_{C} = 2 \text{ mA.} f = 1 \text{ kHz}$		h _{fe}		330		
Input impedance (current gain group B)	$V_{CE} = 5 \text{ V}, I_{C} = 2 \text{ mA}, f = 1 \text{ kHz}$		h _{ie}	3.2	4.5	8.5	kΩ
Output admittance (current gain group B)	$V_{CE} = 5 \text{ V, } I_{C} = 2 \text{ mA, } f = 1 \text{ kHz}$		h _{oe}		30	60	μS
Reverse voltage transfer ratio (current gain group B)	V _{CE} = 5 V, I _C = 2 mA, f = 1 kHz		h _{re}		2 x 10 ⁻⁴		

Interne transistorkapaciteter

- CB-dioden i spærreretningen => rumladningskapacitet
 - o afhængig af v_{CB}
- BE-dioden i lederetning => diffusionskapacitet
 - proportional med i_C
 (ladningsophobning)

Fig. 6 Collector Base Capacitance, Emitter base Capacitance vs. Bias Voltage

Interne transistorkapaciteter

- BE-dioden i lederetning
 - Kapacitet bestemmes indirekte
 - $^{\circ}$ C_π er strømafhængig mest. p.g.a. g_m
 - o f_T er også strømafhængig

$$f_T = \frac{g_m}{2\pi (C_\pi + C_\mu)}$$

$$C_{\pi} = \frac{g_m}{2\pi f_T} - C_{\mu}$$

- o BC547 (Vishay)
- f_T ofte lav for effekttransistorer, MJE3055 ~2MHz

$$f_{T} = \frac{g_{m}}{2\pi \left(C_{\pi} + C_{\mu}\right)}$$

$$C_{\pi} = \frac{g_{m}}{2\pi f_{T}} - C_{\mu}$$

$$C_{\pi} = \frac{g_{m}}{2\pi f_{T}} - C_{\mu}$$

Curve-tracer

- o Spændingsgenerator: Savtak (eller lignende) som funktion af tiden
- Strømgenerator: Trappekurve som funktion af tiden (spænding til FET'er)
- Spænding vises på x-aksen
- o Strøm vises på y-aksen
- Beskyttelseskredsløb indbygget
- Hameg HM6042: En grovkornet digital opløsning er et problem ved små strømme og ved beregning af h₁₁
- Spændinger op til 50 V. Hold fingrene fra komponenten under brug.

Opgaver

- 1 : Forstærkerkredsløb
- ODC-analyse
- Arbejdspunkt, DC & AC-arbejdslinie (udgang)
- o Maksimalt signalsving
- o Simulering
- 2: Transistordata
- Arbejdspunkt kendt
- h- parametre kendt fra datablad
- o Beregn hybrid-π-parametre

