Using the Transformer

BERT – Shortcommings / Critique

Learning goals

- Problem with the [MASK] token
- Inter-token dependencies

PRETRAIN-FINETUNE DISCREPANCY

- BERT artificially introduces [MASK] tokens during pre-training
- [MASK] -token does not occur during fine-tuning
 - ightarrow Lacks the ability to model joint probabilities
 - \rightarrow Assumes independence of predicted tokens (given the context)

INDEPENDENCE ASSUMPTION

[MASK] - ing procedure:

- "Given a sentence, predict [MASK] ed tokens"
- All [MASK] ed tokens are predicted based on the un-[MASK] ed tokens
- Implicit assumption: Independence of [MASK] ed tokens

$$\begin{split} \mathcal{J}_{\text{BERT}} &= \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{is a city}), \\ \mathcal{J}_{\text{XLNet}} &= \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{New}, \text{is a city}) \\ &\quad \text{Prediction of [New, York] given the factorization order [is, a, city, New, York]} \\ &\quad \text{Source: Yang et al. (2019)} \end{split}$$

MAXIMUM SEQUENCE LENGTH

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2) \cdot d$	(O(1))	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)
not cool		cool	

Source: Vaswani et al. (2017)

Limitation:

- BERT can only consume sequences of up to 512 tokens
- Two sentences for NSP are sampled such that

$$length_{sentenceA} + length_{sentenceB} \le 512$$

- Reason: Computational complexity of Transformer scales quadratically with the sequence length
 - → Longer sequences are disproportionally expensive

BIAS

