

FCC TEST REPORT

Product Name: Mobile Phone

Trade Mark: MI

Model No.: MDG2

Report Number: 170615001RFC-4

Test Standards: FCC 47 CFR Part 15 Subpart E

FCC ID: 2AFZZ-XMSG2

Test Result: PASS

Date of Issue: July 12, 2017

Prepared for:

Xiaomi Communications Co., Ltd.
The Rainbow City of China Resources, NO.68, Qinghe Middle Street,
Haidian District, Beijing, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:	Ting You	Reviewed by:	Jim long	
	Tiny You		Jim Long	
	Engineer		Senior Supervisor	
Approved by:	(X)	Date:	July 12, 2017	
	Billy Li			
	Technical Director			

Version

Version No.	Date	Description
V1.0	July 12, 2017	Original

CONTENTS

1.	GENI	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT Information	4
		1.2.1 GENERAL DESCRIPTION OF EUT	
		1.2.2 DESCRIPTION OF ACCESSORIES	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	
	1.8	DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	1.10 1.11	MEASUREMENT UNCERTAINTY	
2.		SUMMARY	
3.		PMENT LIST	
4.	TEST	CONFIGURATION	12
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	12
	7	4.1.1 NORMAL OR EXTREME TEST CONDITIONS	12
		4.1.2 RECORD OF NORMAL ENVIRONMENT	12
	4.2	TEST CHANNELS	13
	4.3	EUT TEST STATUS	13
	4.4	PRE-SCAN	
		4.4.1 PRE-SCAN UNDER ALL RATES	
		4.4.2 Worst-case data rates	
	4.5	TEST SETUP	
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
	4.0	4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6 4.7	SYSTEM TEST CONFIGURATION	
		DUTY CYCLE	
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	22
	5.1	REFERENCE DOCUMENTS FOR TESTING	22
	5.2	ANTENNA REQUIREMENT	22
	5.3	26 dB Bandwidth	
	5.4	6 DB BANDWIDTH	
	5.5	MAXIMUM CONDUCTED OUTPUT POWER	
	5.6	PEAK POWER SPECTRAL DENSITY	
	5.7	FREQUENCY STABILITY	
	5.8	RADIATED EMISSIONS AND BAND EDGE MEASUREMENT	
	5.9	DYNAMIC FREQUENCY SELECTION	
	5.10	AC Power Line Conducted Emission	86
ΔΡ	PENDI	X 1 PHOTOGRAPHS OF TEST SETUP	20
		X 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Page 4 of 89 Report No.: 170615001RFC-4

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant:	Xiaomi Communications Co., Ltd.
Address of Applicant:	The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China
Manufacturer:	Xiaomi Communications Co., Ltd.
Address of Manufacturer:	The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

1.2 EUT INFORMATION

1.2.1 General Description of EUT

2.1 General Description of Eo1				
Product Name:	Mobile Phone			
Model No.:	MDG2			
Add. Model No.:	NA			
Trade Mark:	MI			
DUT Stage:	Production Unit			
	GSM Bands:	GSM850/1900		
	UTRA Bands:	Band II/ Band V		
	C LITDA Danda	FDD Band 4/ Band 5/ Bar	nd 7	
	E-UTRA Bands:	TDD Band 38		
	2.4 CHz ICM Bandi	IEEE 802.11b/g/n		
FUT Supports Functions	2.4 GHz ISM Band:	Bluetooth: V3.0+HS & V4.0 LE		
EUT Supports Function:	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz	IEEE 802.11a/n/ac	
		5 250 MHz to 5 350 MHz	IEEE 802.11a/n/ac	
		5 470 MHz to 5 725 MHz	IEEE 802.11a/n/ac	
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n/ac	
		1559 MHz to 1610 MHz	GPS/GLONASS	
	BSR:	VHF Band II	FM	
Software Version: QL1515-tissot				
Hardware Version:	ersion: P3A			
IMEI Code:	865181030010724, 865181030010732			
Sample Received Date:	June 10, 2017			
Sample Tested Date:	June 11, 2017 to July 1	10, 2017		

Page 5 of 89 Report No.: 170615001RFC-4

1.2.2 Description of Accessories

E.Z. Besonption of Accessories		
Adapter(1)		
Trade Mark:	MI	
Model No.:	MDY-08-EZ	
Input:	100-240 V~50/60 Hz 0.35 A Max	
Output:	5.0 V == 2.0 A	
AC Cable:	N/A	
DC Cable:	1.0 Meter, Shielded without ferrite	
Manufacturer:	Dongguan Aohai Power Technology Co., Ltd.	

Adapter(2)		
Trade Mark:	MI	
Model No.:	MDY-08-EZ	
Input:	100-240 V~50/60 Hz 0.35 A Max	
Output:	5.0 V == 2.0 A	
AC Cable:	N/A	
DC Cable:	1.0 Meter, Shielded without ferrite	
Manufacturer:	Jangsu Chenyang Electron Co., Ltd.	

Battery			
Trade Mark:	MI		
Model No.:	BN31		
Battery Type:	Lithium-ion Polymer Rechargeable Battery		
Rated Voltage:	3.85 Vdc		
Limited Charge Voltage:	4.4 Vdc		
Rated Capacity:	3000 mAh		
Manufacturer: Zhuhai Coslight Battery Co., Ltd.			

Cable(1)		
Trade Mark:	MI	
Model No.:	L6BU2013-CS-H	
Description:	USB Type-C Plug Cable	
Cable Type:	Shielded without ferrite	
Length:	1.0 Meter	

Cable(2)		
Trade Mark:	MI	
Model No.:	KLC-2588	
Description:	USB Type-C Plug Cable	
Cable Type:	Shielded without ferrite	
Length:	1.0 Meter	

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

.3PRODUCT SPECIF	5150 MHz to 5250 MHz				
Fue more Description	5250 MHz to 5350 MHz				
Frequency Range:	5470 MHz to 5725 MHz				
	5 725 MHz to 5 850 MHz	Z			
Support Standards:	IEEE 802.11a/n/ac				
TPC Function:	Not Support				
DFS Operational mode:	Slave without radar Inter	ference detec	tion function		
	IEEE 802.11a: OFDM(64	4QAM, 16QAN	I, QPSK, BPS	SK)	
Type of Modulation:	IEEE 802.11n: OFDM(64				
	IEEE 802.11ac: OFDM(2				
	IEEE 802.11a/n-HT20/a			, ,	
Channel Spacing:	IEEE 802.11n-HT40/ac-		łz		
	IEEE 802.11ac-VHT80/:				
	IEEE 802.11a: Up to 54				
	IEEE 802.11n-HT20: Up				
Data Rate:	IEEE 802.11n-HT40: Up				
	IEEE 802.11ac-VHT20:				
	IEEE 802.11ac-VHT40:				
	IEEE 802.11ac-VHT80: Up to MCS9				
	5150 MHz to 5250 MHz: 4 for IEEE 802.11a/n-HT20/ac-VHT20 2 for IEEE 802.11n-HT40)/ac-VHT40 1 for IEEE 802.11acVHT80				
	5250 MHz to 5350 MHz:				
	4 for IEEE 802.11a/n-HT20/ac-VHT20				
	2 for IEEE 802.11n-HT40)/ac-VHT40				
Number of Channels:	1 for IEEE 802.11acVHT80				
	5470 MHz to 5725 MHz:				
	11 for IEEE 802.11a/n-HT20/ac-VHT20 5 for IEEE 802.11n-HT40/ac-VHT40				
	2 for IEEE 802.		V11140		
	5725 MHz to 5850 MHz:				
	5 for IEEE 802.		c-VHT20		
	2 for IEEE 802.		VHT40		
	1 for IEEE 802.	11ac-VHT80			
Antenna Type:	PIFA Antenna				
	5150 MHz to 5250 MHz 2.8 dBi				
Antenna Gain:	5250 MHz to 5350 MHz				
	5470 MHz to 5725 MHz 3.2 dBi				
	5725 MHz to 5850 MHz	3.9 dBi		1 1	
Maximum Output Power (dBm):	Mode	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3
	IEEE 802.11a	12.70	12.77	13.19	10.23
	IEEE 802.11n-HT20	11.67	11.74	12.34	10.24
,	IEEE 802.11n-HT40	11.54	11.55	12.10	10.83
	IEEE 802.11ac-VHT80	10.67	10.72	13.04	11.69
Normal Test Voltage:	3.85 Vdc				
Extreme Test Voltage:	3.4 to 4.4 Vdc				

Page 7 of 89 Report No.: 170615001RFC-4

Extreme Test	-20 °C to 50 °C
Temperature:	-20

1.4 OTHER INFORMATION

		Opera	tion Frequen	cy Each of Cl	nannel		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	For IEEE 802.	11a/n-HT20/a	c-VHT20 oper	ation in the 5	150 MHz to 5	350 MHz ban	d
36	5180 MHz	44	5220 MHz	52	5260 MHz	60	5300 MHz
40	5200 MHz	48	5240 MHz	56	5280 MHz	64	5320 MHz
	For IEEE 802.	11a/n-HT20/a	c-VHT20 oper	ration in the 5	470 MHz to 5	725 MHz ban	d
100	5500 MHz	112	5560 MHz	124	5620 MHz	136	5680 MHz
104	5520 MHz	116	5580 MHz	128	5640 MHz	140	5700 MHz
108	5540 MHz	120	5600 MHz	132	5660 MHz	ı	
	For IEEE 802.	11a/n-HT20/a	c-VHT20 oper	ration in the 5	725 MHz to 5	850 MHz ban	d
149	5745 MHz	153	5765 MHz	157	5785 MHz	161	5805 MHz
165	5825 MHz	-	-	-		1	
	For IEEE 802	.11n-HT40/ac	-VHT40 opera	ation in the 5°	150 MHz to 53	50 MHz band	
38	5190 MHz	46	5230 MHz	54	5270 MHz	62	5310 MHz
	For IEEE 802	.11n-HT40/ac	-VHT40 opera	ation in the 54	470 MHz to 57	25 MHz band	
102	5510 MHz	110	5550 MHz	118	5590 MHz	126	5630 MHz
134	5670 MHz	-				ŀ	
	For IEEE 802	.11n-HT40/ac	-VHT40 opera	ation in the 57	725 MHz to 58	50 MHz band	
151	5755 MHz	159	5795 MHz			1	
		802.11ac-VH		in the 5150	MHz to 5350 I	MHz band	
42	5210 MHz	58	5290 MHz				
		802.11ac-VH		in the 5470	MHz to 5725 l	MHz band	
106	5530 MHz	122	5610 MHz				
		802.11ac-VH	T80 operation	in the 5725	MHz to 5850 I	MHz band	
155	5775 MHz	-					

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust
Wireless AP	Alcatel-Lucent	G-240W-B	2ADZRG240WB	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

Page 8 of 89 Report No.: 170615001RFC-4

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Tests were sub-contracted. (FCC 47 CFR Part 15.207, FCC 47 CFR Part 15.209)

Compliance Certification Services (Shenzhen) Inc.

Address: No.10-1 Mingkeda Logistics Park, No.18 Huanguan South RD. Guan Ian Town, Baoan Distr,

Shenzhen, Guangdong, China.

Telephone: +86 (0) 755 28055000 Fax: +86 (0) 755 29055221

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Compliance Certification Services (Shenzhen) Inc.

FCC Registration Number is 441872.

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

	Free-man, and the second control and grant and grant and an						
No.	Item	Measurement Uncertainty					
1	Conducted emission 9KHz-30MHz	±3.2878 dB					
2	Radiated emission 30MHz-200MHz	±3.8928 dB					
3	Radiated emission 200MHz-1GHz	±3.8753 dB					
4	Radiated emission 1GHz-8GHz	±5.3112 dB					
5	Radiated emission 8GHz-18GHz	±5.3493 dB					

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart E Test Cases					
Test Item	Test Requirement	Test Method	Result		
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 FCC 47 CFR Part 15 Subpart C Section 15.407(a)(1) (2)	ANSI C63.10-2013	PASS		
26 dB emission bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5)	KDB 789033 D02 v01r04 Section C.1	PASS		
6 dB bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (e)	KDB 789033 D02 v01r04 Section C.2	PASS		
Maximum conducted output power	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)	KDB 789033 D02 v01r04 Section E.3.a(Method PM)	PASS		
Peak Power Spectral Density	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)	KDB 789033 D02 v01r04 Section F	PASS		
Frequency stability	FCC 47 CFR Part 15 Subpart E Section 15.407 (g)	ANSI C63.10-2013	PASS		
Radiated Emissions and Band Edge Measurement	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6) FCC 47 CFR Part 15 Subpart C Section 15.209/205	KDB 789033 D02 v01r04 Section G.3, G.4, G.5, and G.6	PASS*		
Dynamic Frequency Selection	FCC 47 CFR Part 15 Subpart E Section 15.407 (h)	KDB 905462 D03 Client Without DFS New Rules v01r02	PASS*		
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(6) FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS*		

Note:

- 1) N/A: In this whole report not application.
- 2) "*": In this whole report "*" means tests were sub-contracted Item.

For Dynamic Frequency Selection

er Dynamic Frequency Constitution	
Test Case	Result
Channel Availability Check Time	N/A ¹
U-NII Detection Bandwidth	N/A ¹
Channel Closing Transmission Time	PASS
Channel Move Time	PASS
DFS Detection Threshold	N/A ¹
Non- Occupancy Period	N/A ¹

Note:

1) The EUT is slave, NA In this whole report not application.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List Chamber 1							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
>	PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	Feb. 17, 2017	Feb. 16, 2018		
<	High Noise Amplifier	Agilent	8449B	3008A01838	Feb. 11, 2017	Feb. 10, 2018		
>	Horn Antenna	SCHWARZBEC K	BBHA9120	D286	Feb. 12, 2017	Feb. 11, 2018		
>	Bilog Antenna	SCHAFFNER	CBL6143	5082	02-12-2017	02-11-2018		
>	Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	Feb. 11, 2017	Feb. 10, 2018		
<	Turn Table	N/A	N/A	N/A	N.C.R	N.C.R		
>	Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R		
>	Controller	СТ	N/A	N/A	N.C.R	N.C.R		
<	Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R		
\	Temp. / Humidity Meter	Anymetre	JR913	N/A	Feb. 15, 2017	Feb. 14, 2018		
~	Test S/W	FARAD		LZ-RF	CCS-SZ-3A2			

	Conducted Emission Test Equipment List								
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)			
<	EMI TEST RECEIVER	ROHDE&SCHW ARZ	ESCI	100783	Feb. 11, 2017	Feb. 10, 2018			
<u><</u>	LISN(EUT)	ROHDE&SCHW ARZ	ENV216	101543-WX	Feb. 11, 2017	Feb. 10, 2018			
< <	LISN	EMCO	3825/2	8901-1459	Feb. 12, 2017	Feb. 11, 2018			
>	Temp. / Humidity Meter	VICTOR	HTC-1	N/A	Feb. 15, 2017	Feb. 14, 2018			
>	Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE						

	Conducted RF test Equipment List								
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)			
>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017			
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017			
>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 22, 2016	Dec. 22, 2017			
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 22, 2016	Dec. 22, 2017			
•	EXG-B RF Analog Signal Generator	KEYSIGHT	N5171B	MY53051777	Jan. 09, 2016	Jan. 08, 2018			
>	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	Jan. 08, 2016	Jan. 07, 2018			
~	DC Source	KIKUSUI	PWR400L	LK003024	Sep. 21, 2016	Sep. 20, 2017			
>	Temp & Humidity chamber	Votisch	VT4002	58566133290 020	Jun. 19, 2017	Jun. 18, 2018			

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Test Environment	Selected Values During Tests Ambient					
T4 O						
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)			
TN/VN	+15 to +35	3.85	20 to 75			
TL/VL	-20	3.4	20 to 75			
TH/VL	50	3.4	20 to 75			
TL/VH	-20	4.4	20 to 75			
TH/VH	50	4.4	20 to 75			

Report No.: 170615001RFC-4

Remark:

- 1) The EUT just work in such extreme temperature of -20 °C to 50 °C and the extreme voltage of 3.4 V to 4.4 V, so here the EUT is tested in the temperature of -20 °C to 50 °C and the voltage of 3.4 V to 4.4 V.
- 2) VN: Normal Voltage; TN: Normal Temperature;
 - TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
 - VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.

4.1.2 Record of Normal Environment

٠.	11.2 Record of Normal Environment						
	Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (Kpa)	Tested by		
	AC Power Line Conducted Emission	24.3	56	101.8	Tiny You		
	26 dB emission bandwidth	24.3	56	101.8	Tiny You		
	Maximum conducted output power	24.3	56	101.8	Tiny You		
	Peak Power Spectral Density	24.3	56	101.8	Tiny You		
	6 dB bandwidth	24.3	56	101.8	Tiny You		
	Frequency stability	24.3	56	101.8	Tiny You		
	Dynamic Frequency Selection	24.3	56	101.8	Tiny You		
	Radiated Emissions and Band Edge Measurement	24.3	56	101.8	Tiny You		

Page 13 of 89 Report No.: 170615001RFC-4

4.2TEST CHANNELS

Mode	Ty/Dy Fraguency	Test RF Channel Lists			
Wode	Tx/Rx Frequency	Lowest(L)	Middle(M)	Highest(H)	
	5150 MHz to 5250 MHz	Channel 36	Channel 44	Channel 48	
	3 130 IVITZ 10 3230 IVITZ	5180 MHz	5220 MHz	5240 MHz	
	5250 MHz to 5350 MHz	Channel 52	Channel 60	Channel 64	
IEEE 802.11a IEEE 802.11n-HT20	3230 MHZ 10 3330 MHZ	5260 MHz	5300 MHz	5320 MHz	
IEEE 802.111ac-VHT20	5470 MHz to 5725 MHz	Channel 100	Channel 116	Channel 140	
	3470 WITZ 10 3723 WITZ	5500 MHz	5580 MHz	5700 MHz	
	5725 MHz to 5850 MHz	Channel 149	Channel 157	Channel 165	
	3723 IVITZ 10 3030 IVITZ	5745 MHz	5785 MHz	5825 MHz	
	5150 MHz to 5250 MHz	Channel 38		Channel 46	
		5190 MHz		5230 MHz	
	5250 MHz to 5350 MHz	Channel 54		Channel 62	
IEEE 802.11n-HT40		5270 MHz		5310 MHz	
IEEE 802.11ac-VHT40	5470 MHz to 5725 MHz	Channel 102	Channel 110	Channel 134	
		5510 MHz	5550 MHz	5670 MHz	
	5705 MIL- 4: 5050 MIL-	Channel 151		Channel 159	
	5725 MHz to 5850 MHz	5755 MHz		5795 MHz	
	5150 MHz to 5250 MHz		Channel 42		
	3 130 WITZ 10 3230 WITZ		5210 MHz		
	5250 MHz to 5350 MHz		Channel 58		
IEEE 802.11ac-VHT80	3230 WITZ 10 3330 WITZ		5290 MHz		
1666 002.11ac-vf100	5470 MHz to 5725 MHz	Channel 106		Channel 122	
	3470 WITZ 10 3723 WITZ	5530 MHz		5610 MHz	
	5725 MHz to 5850 MHz		Channel 155		
	JI ZJ IVII IZ IU JOJU IVITIZ		5775 MHz		

4.3 EUT TEST STATUS

Mode	Tx/Rx Function	Description			
IEEE 802.11a/n/ac	1Tx/1Rx	 Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate. 			

4.4 PRE-SCAN

4.4.1 Pre-scan under all rates

Mode and Frequency	Ma	aximum Co	onducted A	Average Po	wer (dBm	for Data F	Rates (Mbp	os)
IEEE 802.11a	6	9	12	18	24	36	48	54
5180 MHz	11.95	11.64	11.43	10.97	10.49	9.47	9.26	9.02
IEEE 802.11n-HT20	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
5180 MHz	10.67	10.15	9.89	9.56	8.63	8.13	7.86	7.56
IEEE 802.11n-HT40	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
5190 MHz	10.03	9.03	8.36	7.76	6.57	6.47	6.65	6.21
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11ac-	10.75	10.54	9.65	9.11	7.86	7.56	7.67	7.53
VHT20 5180 MHz	MCS8							
0.100 1111.12	7.16							
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11ac-	10.01	9.06	8.38	7.74	7.02	6.76	6.34	6.15
VHT40 5190 MHz	MCS8	MCS9						
0.100 1111.12	5.91	5.55						
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
IEEE 802.11ac-	8.11	6.84	6.17	5.62	4.95	4.64	4.36	4.41
VHT80 5210 MHz	MCS8	MCS9						
0_10	4.18	3.98						

4.4.2 Worst-case data rates

Mode	Worst-case data rates
IEEE 802.11a	6 Mbps
IEEE 802.11n-HT20	MCS0
IEEE 802.11n-HT40	MCS0
IEEE 802.11ac-VHT20	MCS0
IEEE 802.11ac-VHT40	MCS0
IEEE 802.11ac-VHT80	MCS0

4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup

4.5.2 For Conducted Emissions test setup

Page 17 of 89 Report No.: 170615001RFC-4

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.85Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning	
Above 1GHz	1TX	Chain 0	X axis	

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)		Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11a	6	1.04	1.235	0.84	84.21	0.75	0.96	-1.49
IEEE 802.11n-HT20	MCS0	0.98	1.175	0.83	83.40	0.79	1.02	-1.58
IEEE 802.11n-HT40	MCS0	0.489	0.687	0.71	71.18	1.48	2.04	-2.95
IEEE 802.11ac-VHT80	MCS0	0.246	0.444	0.55	55.41	2.56	4.07	-5.13

Report No.: 170615001RFC-4

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

Page 22 of 89 Report No.: 170615001RFC-4

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title						
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations						
2	FCC 47 CFR Part 15	Radio Frequency Devices						
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices						
4	KDB 789033 D02 General UNII Test Procedures New Rules v01r04	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15 subpart E						
5	905462 D06 802.11 Channel Plans New Rules v02	Operation in U-NII bands -802.11 channel PLAN(§15.407)						
6	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	Compliance measurement procedures for Unlicensed –National Information Infrastructure devices operates in the frequency bands 5250 MHz to 5350 MHz and 5470 MHz to 5725 MHz bands incorporating dynamic frequency selection						
7	KDB 905462 D03 Client Without DFS New Rules v01r02	U-NII client devices without radar detection capability						

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. the highest case directional gain of the antenna is 4.0 dBi.

Page 23 of 89 Report No.: 170615001RFC-4

5.326 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a) (2)(5)

Test Method: KDB 789033 D02 v01r04 Section C.1 **Limit:** None; for reporting purposes only.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.

Spectrum analyzer according to the following Settings:

- a) Set RBW = approximately 1 % of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Mode	Channel	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)
	36 (5180)	21.74	17.047
	44 (5220)	21.51	17.009
	48 (5240)	21.70	16.976
	52 (5260)	21.80	17.001
IEEE 802.11a	60 (5300)	21.50	16.946
	64 (5320)	21.60	16.996
	100 (5500)	21.52	16.958
	116 (5580)	21.53	16.955
	140 (5700)	22.40	16.999
	36 (5180)	21.67	16.969
	44 (5220)	22.08	18.035
	48 (5240)	22.03	17.976
	52 (5260)	21.53	18.015
IEEE 802.11n-HT20	60 (5300)	22.50	17.942
	64 (5320)	22.08	17.982
	100 (5500)	22.26	17.994
	116 (5580)	21.18	17.936
	140 (5700)	21.88	18.013
	38 (5190)	43.15	36.276
	46 (5230)	42.29	35.987
	54 (5270)	41.77	36.197
IEEE 802.11n-HT40	62 (5310)	39.98	35.947
	102 (5510)	42.76	36.108
	110 (5550)	40.77	36.016
	134 (5670)	40.55	36.205

Page 24 of 89 Report No.: 170615001RFC-4

	42 (5230)	84.39	74.902
IEEE 902 1100 V/UT90	58 (5290)	83.48	74.630
IEEE 802.11ac-VHT80	106 (5530)	82.90	74.905
	122 (5610)	82.82	74.808

Page 30 of 89 Report No.: 170615001RFC-4

5.46 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.407 (e)

Test Method: KDB 789033 D02 v01r04Section C.2

Limit: Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall

be at least 500 kHz.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 * RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
	149 (5745)	16.41	16.504	> 500 kHz	Pass
IEEE 802.11a	157 (5785)	17.60	17.686	> 500 kHz	Pass
	165 (5825)	16.45	16.509	> 500 kHz	Pass
	149 (5745)	17.61	17.694	> 500 kHz	Pass
IEEE 802.11n-HT20	157 (5785)	16.40	16.484	> 500 kHz	Pass
	165 (5825)	17.58	17.678	> 500 kHz	Pass
IEEE 802.11n-HT40	151 (5755)	35.17	35.934	> 500 kHz	Pass
IEEE OUZ.IIII-H140	159 (5795)	35.56	35.944	> 500 kHz	Pass
IEEE 802.11ac-VHT80	155 (5775)	73.78	74.763	> 500 kHz	Pass

The test plot as follows: **IEEE 802.11a** IEEE 802.11n-HT20 Channel 149 Ref Offset 8 dB Ref 11.00 dB Ref Offset 8 dB Ref 11,00 dB Center Free 5.745000000 GH Ref Lvi Offse enter 5.745 GHz Res BW 100 kH enter 5.745 GHz Res BW 100 kHz #VBW 300 kHz Occupied Bandwidth Occupied Bandwidt 16.504 MHz 17.686 MHz mit Freq Error 6.335 kHz **OBW Power** Transmit Freq Error 16.200 kHz **OBW Power** 99.00 % 16.41 MHz 17.60 MHz x dB Bandwidth x dB -6.00 dB x dB Bandwidth x dB -6.00 dB Channel 157 Ref Offset 8 dB Ref 11.00 dBr Center Fre Center Free CF St. enter 5.785 GHz Res BW 100 kHz Center 5.785 GHz Res BW 100 kHz Span 50 MH; Sweep 6.2 ms CFS 15.9 dBm 15.4 dBm 16.509 MHz 17.694 MHz 11.878 kHz 511 Hz Transmit Freq Error Transmit Freq Error 99.00 % **OBW Power** 99.00 % **OBW Power** -6.00 dB -6.00 dB **Channel 165** Ref Offset 8 dB Ref 11.00 dBm Ref Offset 8 dB Ref 11.00 dBm Center Free enter 5.825 GHz Res BW 100 kHz 5.00000 15.6 dBm 14.5 dBm 16.484 MHz 17.678 MHz 13.296 kHz 20.523 kHz 16.40 MHz 17.58 MHz -6.00 dB

Page 33 of 89 Report No.: 170615001RFC-4

5.5 MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) **Test Method:** KDB 789033 D02 v01r04 Section E.3.a(Method PM)

Limits:

- 1. For the band 5.15-5.25 GHz.
 - (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
 - (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
 - (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Page 34 of 89 Report No.: 170615001RFC-4

Test Procedure:

1. Connected the EUT's antenna port to measure device by 10dB attenuator.

2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Antenna gain and the maximum output power limit.

Frequency Band	Antenna Gain (dBi))	Peak Power Limits (dBm)		
U-NII-1	2.80	24.00		
U-NII-2A	4.00	24.00		
U-NII-2C	3.20	24.00		
U-NII-3	3.90	30.00		

For U-NII-1 Band:

	or o mir i bana.						
	Mode	Channel/ Frequency	Maximum con power	Limit (dBm)	Pass / Fail		
		(MHz)	Meas Power	Corr'd Power	(ubiii)		
		36 (5180)	11.95	12.70	24	Pass	
	IEEE 802.11a	44 (5220)	11.69	12.44	24	Pass	
		48 (5240)	11.92	12.67	24	Pass	
	IEEE 000 44.	36 (5180)	10.67	11.46	24	Pass	
	IEEE 802.11n- HT20	44 (5220)	10.72	11.51	24	Pass	
	11120	48 (5240)	10.88	11.67	24	Pass	
	IEEE 802.11n- HT40	38 (5190)	10.03	11.51	24	Pass	
		46 (5230)	9.96	11.44	24	Pass	
	IEEE 802.11ac- VHT80	42 (5210)	8.11	10.67	24	Pass	

Remark:

Corr'd Power = Meas Power + Duty Cycle Factor

Page 35 of 89 Report No.: 170615001RFC-4

For U-NII-2A Band:

Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit (dBm)	Pass / Fail
	(MHz)	Meas Power	Corr'd Power	(ubiii)	
	52 (5260)	12.02	12.77	24	Pass
IEEE 802.11a	60 (5300)	11.82	12.57	24	Pass
	64 (5320)	11.89	12.64	24	Pass
JEEE 000 44	52 (5260)	10.81	11.60	24	Pass
IEEE 802.11n- HT20	60 (5300)	10.83	11.62	24	Pass
11120	64 (5320)	10.95	11.74	24	Pass
IEEE 802.11n-	54 (5270)	10.05	11.53	24	Pass
HT40	62 (5310)	10.07	11.55	24	Pass
IEEE 802.11ac- VHT80	58 (5290)	8.16	10.72	24	Pass

Remark:

- 1. Corr'd Power = Meas Power + Duty Cycle Factor
- 2. The max conducted output power limit is 24dBm (250mW) or 11dBm+10logB, whichever is lower (B=26-Db emission BW)

For IEEE 802.11a/an/ac, the minimum 26dB emission bandwidth is 21.5 MHz 11 dBm + $10\log_{10}(16.946) = 24.3 dBm > 24 dBm (250mW)$, So the power limit is 24dBm.

For U-NII-2C Band:

Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit (dBm)	Pass / Fail
	(MHz)	Meas Power	Corr'd Power	(abiii)	
IEEE 802.11a	100 (5500)	12.44	13.19	24	Pass
	116 (5580)	12.34	13.09	24	Pass
	140 (5700)	12.12	12.87	24	Pass
IEEE 802.11n- HT20	100 (5500)	11.52	12.31	24	Pass
	116 (5580)	11.55	12.34	24	Pass
	140 (5700)	11.48	12.27	24	Pass
IEEE 802.11n- HT40	102 (5510)	10.08	11.56	24	Pass
	134 (5670)	10.62	12.10	24	Pass
IEEE 802.11ac- VHT80	106 (5530)	10.48	13.04	24	Pass

Remark:

- 1. Corr'd Power = Meas Power + Duty Cycle Factor
- 2. The max conducted output power limit is 24dBm (250mW) or 11dBm+10logB, whichever is lower (B=26-Db emission BW)

For IEEE 802.11a/an/ac, the minimum 26dB emission bandwidth is 21.18 MHz

11 dBm + $10log_{10}(16.946) = 24.3$ dBm > 24 dBm (250mW), So the power limit is 24dBm.

Page 36 of 89 Report No.: 170615001RFC-4

For U-NII-3 Band:

Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit	Pass / Fail
	(MHz)	Meas Power	Corr'd Power	(dBm)	
IEEE 802.11a	149 (5745)	9.48	10.23	30	Pass
	157 (5785)	9.39	10.14	30	Pass
	165 (5825)	9.32	10.07	30	Pass
IEEE 802.11n- HT20	149 (5745)	9.45	10.24	30	Pass
	157 (5785)	9.35	10.14	30	Pass
	165 (5825)	9.29	10.08	30	Pass
IEEE 802.11n- HT40	151 (5755)	9.35	10.83	30	Pass
	159 (5795)	9.31	10.79	30	Pass
IEEE 802.11ac- VHT80	155 (5775)	9.13	11.69	30	Pass

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

Page 37 of 89 Report No.: 170615001RFC-4

5.6 PEAK POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)

Test Method: KDB 789033 D02 v01r04 Section F

Limits:

1. For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Page 38 of 89 Report No.: 170615001RFC-4

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Sweep time = auto, trigger set to "free run".
- d) Trace average at least 100 traces in power averaging mode.
- e) Record the max value and add 10 log (1/duty cycle)
- 2. For U-NII-3 band:
- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.
- d) Sweep time = auto, trigger set to "free run".
- e) Trace average at least 100 traces in power averaging mode.
- f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Antenna gain and the maximum output power limit.

Frequency Band	Antenna Gain (dBi))	PSD Limits (dBm/MHz or dBm/500kHz)
U-NII-1	2.80	11.00
U-NII-2A	4.00	11.00
U-NII-2C	3.20	11.00
U-NII-3	3.90	30.00

For U-NII-1 Band:

Mode	Channel/ Frequency	-	Power spectral density (dBm/MHz)		Pass / Fail
	(MHz)	Meas PSD	Corr'd PSD	(dBm/MHz)	
	36 (5180)	0.802	1.552	11	Pass
IEEE 802.11a	44 (5220)	1.372	2.122	11	Pass
	48 (5240)	1.476	2.226	11	Pass
JEEE 000 44	36 (5180)	0.604	1.394	11	Pass
IEEE 802.11n- HT20	44 (5220)	1.109	1.899	11	Pass
11120	48 (5240)	0.081	0.871	11	Pass
IEEE 802.11n-	38 (5190)	-3.14	-1.660	11	Pass
HT40	46 (5230)	-3.40	-1.920	11	Pass
IEEE 802.11ac- VHT80	42 (5210)	-7.968	-5.408	11	Pass

Remark:

1. Corr'd PSD = Meas PSD + Duty Cycle Factor

For U-NII-2A Band:

Mode	Channel/ Frequency	Power spectral density (dBm/MHz)		Limit (dBm/MHz)	Pass / Fail
	(MHz)	Meas PSD	Meas PSD	(dBill/Will2)	
	52 (5260)	1.546	2.296	11	Pass
IEEE 802.11a	60 (5300)	0.748	1.498	11	Pass
	64 (5320)	0.762	1.512	11	Pass
JEEE 000 44	52 (5260)	0.305	1.095	11	Pass
IEEE 802.11n- HT20	60 (5300)	-0.292	0.498	11	Pass
11120	64 (5320)	-0.229	0.561	11	Pass
IEEE 802.11n-	54 (5270)	-3.442	-1.962	11	Pass
HT40	62 (5310)	-3.336	-1.856	11	Pass
IEEE 802.11ac- VHT80	58 (5290)	-8.006	-5.446	11	Pass

Remark:

1. Corr'd PSD = Meas PSD + Duty Cycle Factor

For U-NII-2C Band:

FOI U-MII-2C Ballu.					
Mode	Channel/ Frequency	Power spectral density (dBm/MHz)		Limit (dBm/MHz)	Pass / Fail
	(MHz)	Meas PSD	Meas PSD	(ubili/winz)	
	100 (5500)	-0.089	0.661	11	Pass
IEEE 802.11a	116 (5580)	-4.067	-3.317	11	Pass
	140 (5700)	1.582	2.332	11	Pass
JEEE 000 44	100 (5500)	-1.894	-1.104	11	Pass
IEEE 802.11n- HT20	116 (5580)	-1.381	-0.591	11	Pass
11120	140 (5700)	-1.787	-0.997	11	Pass
IEEE 802.11n-	102 (5510)	-4.255	-2.775	11	Pass
HT40	134 (5670)	-2.954	-1.474	11	Pass
IEEE 802.11ac- VHT80	106 (5530)	-8.683	-6.123	11	Pass

Remark:

1. Corr'd PSD = Meas PSD + Duty Cycle Factor

For U-NII-3 Band:

Mode	Channel/ Frequency	Power spectral density (dBm/500KHz)		Limit (dBm/500KHz)	Pass / Fail
	(MHz)	Meas PSD	Meas PSD	(dBill/300Ki12)	
	149 (5745)	-0.717	0.033	30	Pass
IEEE 802.11a	157 (5785)	-0.321	0.429	30	Pass
	165 (5825)	-0.871	-0.121	30	Pass
JEEE 000 44	149 (5745)	-1.894	-1.104	30	Pass
IEEE 802.11n- HT20	157 (5785)	-1.381	-0.591	30	Pass
11120	165 (5825)	-1.787	-0.997	30	Pass
IEEE 802.11n-	151 (5755)	-5.265	-3.785	30	Pass
HT40	159 (5795)	-5.132	-3.652	30	Pass
IEEE 802.11ac- VHT80	155 (5775)	-8.460	-5.900	30	Pass

Remark:

1. Corr'd PSD = Meas PSD + Duty Cycle Factor

The test plot as follows:

Page 43 of 89 Report No.: 170615001RFC-4

Page 47 of 89 Report No.: 170615001RFC-4

5.7 FREQUENCY STABILITY

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (g)

Test Method: ANSI C63.10-2013

Limit: The frequency of the carrier signal shall be maintained within band of operation.

Test Procedure:

a) To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.

b) The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10 dB lower than the measured peak value.

c) The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

EUT Operation Condition:

Keep the EUT transmit at un-modulation mode to frequency stability

Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

	Frequency Stability Versus Temp.					
Operation Frequency: 5320 MHz						
Temp.	Voltage	Measured Frequency	Frequency Drift			
(°C)	voitage	(MHz)	(ppm)			
50		5319.986	-2.631579			
40		5319.986	-2.631579			
30		5319.988	-2.255639			
20	VAI	5319.988	-2.255639			
10	VN	5319.988	-2.255639			
0		5319.987	-2.443609			
-10		5319.984	-3.007519			
-20		5319.976	-4.511278			

Operation Frequency: 5320 MHz					
Temp.	Voltago	Measured Frequency	Frequency Drift		
remp.	Voltage	(MHz)	(ppm)		
	VL	5319.985000	-2.819549		
TN	VN	5319.988000	-2.255639		
	VH	5319.987000	-2.443609		

5.8 RADIATED EMISSIONS AND BAND EDGE MEASUREMENT

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6)

FCC 47 CFR Part 15 Subpart C Section 15.209/205

Test Method: KDB 789033 D02 v01r04 Section G.3, G.4, G.5, and G.6

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009 MHz-0.090 MHz	Peak	10 kHz	30 KHz	Peak
0.009 MHz-0.090 MHz	Average	10 kHz	30 KHz	Average
0.090 MHz-0.110 MHz	Quasi-peak	10 kHz	30 KHz	Quasi-peak
0.110 MHz-0.490 MHz	Peak	10 kHz	30 KHz	Peak
0.110 MHz-0.490 MHz	Average	10 kHz	30 KHz	Average
0.490 MHz -30 MHz	Quasi-peak	10 kHz	30 kHz	Quasi-peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Quasi-peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak
Above I GHZ	Peak	1 MHz	10 Hz	Average

Limits:

1. Limits of Radiated Emission and Band edge Measurement

Radiated emissions that fall in the restricted bands must comply with the general emissions limits in 15.209(a) as below table. Other emissions shall be at least 20 dB below the highest level of the desired power.

Frequency	Field strength (microvolt/meter)	Limit (dBμV/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)	-	-	300
0.490 MHz-1.705 MHz	24000/F(kHz)	-	-	30
1.705 MHz-30 MHz	30		-	30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Remark:

- The lower limit shall apply at the transition frequencies.
- b. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- c. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Page 49 of 89 Report No.: 170615001RFC-4

2. Limits of Unwanted Emission Out of the Restricted Bands

Applicable To	Limit	
789033 D02 General U-NII Test	Field Strength at 3 m	
Procedures New Rules v01r04	PK: 74 (dBμV/m)	AV: 54 (dBμV/m)
Applicable To	EIRP Limit	Equivalent Field Strength at 3 m
FCC 47 CFR Part 15 Subpart E Section 6.2.1.2	PK: -27 (dBm/MHz)	PK: 74 (dBμV/m)
FCC 47 CFR Part 15 Subpart E Section 6.2.2.2	PK: -27 (dBm/MHz)	PK: 74 (dBµV/m)
FCC 47 CFR Part 15 Subpart E Section 6.2.3.2	PK: -27 (dBm/MHz)	PK: 68.2 (dBµV/m)
FCC 47 CFR Part 15 Subpart E Section 6.2.4.2	27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges; 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges; 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27	PK: 68.2 (dBμV/m)
	dBm/MHz at 75 MHz above or below the band edges; -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.	

Test Setup: Refer to section 4.5.1 for details.

Test Procedures:

- 1. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- 6. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Remark:

- a) The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasipeak detection (QP) at frequency below 1 GHz.
- b) The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- c) The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for RMS Average (Duty cycle < 98 %) for Average detection (AV) at frequency above 1 GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- d) The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) or ≥ 1/T(duty cycle is < 98%) for Average detection (AV) at frequency above 1 GHz.
- e) All modes of operation were investigated and the worst-case emissions are reported.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

Page 50 of 89 Report No.: 170615001RFC-4

The measurement data as follows:

Radiated Emission Test Data (9 KHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Radiated Emission Test Data (1GHz ~ 40GHz): IEEE 802.11a_Channel 36 Frequency Result **Antenna** Limit (dBuV/m) No. Margin (dB) Remark (dBuV/m) (MHz) **Polaxis** 10360.00 43.75 1 74.00 -30.25Peak Horizontal 15540.00 74.00 2 53.79 -20.21 Peak Horizontal 3 10360.00 42.34 74.00 -31.66 Peak Vertical Vertical 4 15540.00 51.54 74.00 -22.46 Peak

IEEE 802.11a_	IEEE 802.11a_Channel 44						
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark	
1	10440.00	43.56	74.00	-30.44	Peak	Horizontal	
2	15660.00	53.44	74.00	-20.56	Peak	Horizontal	
3	10440.00	42.72	74.00	-31.28	Peak	Vertical	
4	15660.00	52.08	74.00	-21.92	Peak	Vertical	

IEEE 802.11a	_Channel 48					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	10480.00	44.23	74.00	-29.77	Peak	Horizontal
2	15720.00	53.85	74.00	-20.15	Peak	Horizontal
3	10480.00	42.67	74.00	-31.33	Peak	Vertical
4	15720.00	53.22	74.00	-20.78	Peak	Vertical

IEEE 802.11a	_Channel 52					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	10520.00	44.56	74.00	-29.44	Peak	Horizontal
2	15780.00	52.91	74.00	-21.09	Peak	Horizontal
3	10520.00	43.12	74.00	-30.88	Peak	Vertical
4	15780.00	53.02	74.00	-20.98	Peak	Vertical

IEEE 802.11a_Channel 60						
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	10600.00	44.67	74.00	-29.33	Peak	Horizontal
2	15900.00	53.27	74.00	-20.73	Peak	Horizontal
3	10600.00	44.22	74.00	-29.78	Peak	Vertical
4	15900.00	51.64	74.00	-22.36	Peak	Vertical

IEEE 802.11a_Channel 64									
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	10640.00	44.56	74.00	-29.44	Peak	Horizontal			
2	15960.00	52.89	74.00	-21.11	Peak	Horizontal			
3	10640.00	43.87	74.00	-30.13	Peak	Vertical			
4	15960.00	53.52	74.00	-20.48	Peak	Vertical			

IEEE 802.11a_Channel 100									
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	11000.00	45.32	74.00	-28.68	Peak	Horizontal			
2	16500.00	53.78	74.00	-20.22	Peak	Horizontal			
3	11000.00	43.67	74.00	-30.33	Peak	Vertical			
4	16500.00	52.78	74.00	-21.22	Peak	Vertical			

IEEE 802.11a_	IEEE 802.11a_Channel 116								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	11160.00	44.67	74.00	-29.33	Peak	Horizontal			
2	16740.00	53.70	74.00	-20.30	Peak	Horizontal			
3	11160.00	43.33	74.00	-30.67	Peak	Vertical			
4	16740.00	52.86	74.00	-21.14	Peak	Vertical			

IEEE 802.11a	Channel 140					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	11400.00	44.51	74.00	-29.49	Peak	Horizontal
2	17100.00	53.69	74.00	-20.31	Peak	Horizontal
3	11400.00	43.67	74.00	-30.33	Peak	Vertical
4	17100.00	53.77	74.00	-20.23	Peak	Vertical

IEEE 802.11a	_Channel 149					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	11490.00	43.77	74.00	-30.23	Peak	Horizontal
2	17235.00	52.45	74.00	-21.55	Peak	Horizontal
3	11490.00	43.34	74.00	-30.66	Peak	Vertical
4	17235.00	53.12	74.00	-20.88	Peak	Vertical

IEEE 802.11a	IEEE 802.11a_Channel 157								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	11570.00	44.54	74.00	-29.46	Peak	Horizontal			
2	17355.00	53.27	74.00	-20.73	Peak	Horizontal			
3	11570.00	43.46	74.00	-30.54	Peak	Vertical			
4	17355.00	52.76	74.00	-21.24	Peak	Vertical			

IEEE 802.11a_Channel 165								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	11650.00	44.68	74.00	-29.32	Peak	Horizontal		
2	17475.00	53.76	74.00	-20.24	Peak	Horizontal		
3	11650.00	42.65	74.00	-31.35	Peak	Vertical		
4	17475.00	53.55	74.00	-20.45	Peak	Vertical		

IEEE 802.11n-HT40_Channel 38								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	10380.00	44.32	74.00	-29.68	Peak	Horizontal		
2	15570.00	53.65	74.00	-20.35	Peak	Horizontal		
3	10380.00	43.12	74.00	-30.88	Peak	Vertical		
4	15570.00	53.07	74.00	-20.93	Peak	Vertical		

IEEE 802.11n-	IEEE 802.11n-HT40_Channel 46									
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark				
1	10460.00	44.76	74.00	-29.24	Peak	Horizontal				
2	15690.00	53.88	74.00	-20.12	Peak	Horizontal				
3	10460.00	43.69	74.00	-30.31	Peak	Vertical				
4	15690.00	52.66	74.00	-21.34	Peak	Vertical				

IEEE 802.11n	IEEE 802.11n-HT40_Channel 54								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	10540.00	44.46	74.00	-29.54	Peak	Horizontal			
2	15810.00	53.54	74.00	-20.46	Peak	Horizontal			
3	10540.00	43.87	74.00	-30.13	Peak	Vertical			
4	15810.00	53.78	74.00	-20.22	Peak	Vertical			

IEEE 8	302.11n	-HT40_Channel	62					
No	0.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark	
1	1	10620.00	44.68	74.00	-29.32	Peak	Horizontal	
2	2	15930.00	53.54	74.00	-20.46	Peak	Horizontal	
3	3	10620.00	43.55	74.00	-30.45	Peak	Vertical	
4	1	15930.00	52.78	74.00	-21.22	Peak	Vertical	

IEEE 802.11n-	IEEE 802.11n-HT40_Channel 102								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	11020.00	43.89	74.00	-30.11	Peak	Horizontal			
2	16530.00	53.78	74.00	-20.22	Peak	Horizontal			
3	11020.00	44.12	74.00	-29.88	Peak	Vertical			
4	16530.00	53.65	74.00	-20.35	Peak	Vertical			

IEEE 802.11n-HT40_Channel 110								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	11100.00	44.54	74.00	-29.46	Peak	Horizontal		
2	16650.00	55.34	74.00	-18.66	Peak	Horizontal		
3	11100.00	43.21	74.00	-30.79	Peak	Vertical		
4	16650.00	53.87	74.00	-20.13	Peak	Vertical		

Page 55 of 89 Report No.: 170615001RFC-4

IEEE 802.11n-HT40_Channel 134									
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	11340.00	43.32	74.00	-30.68	Peak	Horizontal			
2	17010.00	53.87	74.00	-20.13	Peak	Horizontal			
3	11340.00	42.89	74.00	-31.11	Peak	Vertical			
4	17010.00	53.44	74.00	-20.56	Peak	Vertical			

IEEE 802.11n-HT40_Channel 151								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	11510.00	44.54	74.00	-29.46	Peak	Horizontal		
2	17265.00	53.67	74.00	-20.33	Peak	Horizontal		
3	11510.00	42.89	74.00	-31.11	Peak	Vertical		
4	17625.00	53.24	74.00	-20.76	Peak	Vertical		

IEEE 802.11n-HT40_Channel 159							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark	
1	11590.00	44.65	74.00	-29.35	Peak	Horizontal	
2	17385.00	53.45	74.00	-20.55	Peak	Horizontal	
3	11590.00	43.43	74.00	-30.57	Peak	Vertical	
4	17385.00	53.42	74.00	-20.58	Peak	Vertical	

IEEE 80	2.11a	c-VHT80_Chanı	nel 42				
No.	1	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1		10460.00	45.32	74.00	-28.68	Peak	Horizontal
2		15690.00	43.54	74.00	-30.46	Peak	Horizontal
3		10460.00	44.23	74.00	-29.77	Peak	Vertical
4		15690.00	44.67	74.00	-29.33	Peak	Vertical

IEEE 802.11ac	IEEE 802.11ac-VHT80_Channel 58								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark			
1	10580.00	44.66	74.00	-29.34	Peak	Horizontal			
2	15870.00	53.78	74.00	-20.22	Peak	Horizontal			
3	10580.00	43.21	74.00	-30.79	Peak	Vertical			
4	15870.00	52.84	74.00	-21.16	Peak	Vertical			

IEEE 802.11ac	IEEE 802.11ac-VHT80_Channel 106									
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark				
1	11060.00	44.34	74.00	-29.66	Peak	Horizontal				
2	16590.00	53.89	74.00	-20.11	Peak	Horizontal				
3	11060.00	42.87	74.00	-31.13	Peak	Vertical				
4	16590.00	52.29	74.00	-21.71	Peak	Vertical				

IEEE 802.11ac-VHT80_Channel 122

Page 56 of 89 Report No.: 170615001RFC-4

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	11220.00	45.32	74.00	-28.68	Peak	Horizontal
2	16830.00	52.45	74.00	-21.55	Peak	Horizontal
3	11220.00	44.33	74.00	-29.67	Peak	Vertical
4	16830.00	53.06	74.00	-20.94	Peak	Vertical

IEEE 802.11ac-VHT80_Channel 155								
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	11550.00	45.22	74.00	-28.78	Peak	Horizontal		
2	17325.00	52.84	74.00	-21.16	Peak	Horizontal		
3	11550.00	44.43	74.00	-29.57	Peak	Vertical		
4	17325.00	53.66	74.00	-20.34	Peak	Vertical		

Remark: The peak measured value does not exceed the Average limit, so the Average does not measured.

Band Edge Measurements (Radiated)

IEEE 802.11a

Page 58 of 89

IEEE 802.11n-HT40

Page 65 of 89 Report No.: 170615001RFC-4

IEEE 802.11ac-VHT80

Page 71 of 89 Report No.: 170615001RFC-4

Page 76 of 89 Report No.: 170615001RFC-4

5.9 DYNAMIC FREQUENCY SELECTION

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (h) **Test Method:** KDB 905462 D03 Client Without DFS New Rules v01r02

EUT Operating Mode:

DES Operational mode	Operating Frequency Range		
DFS Operational mode	5250 MHz to 5350 MHz	5470 MHz to 5725 MHz	
Slave without radar Interference detection function	✓	✓	

Applicability:

The following table from KDB905462 and the lists of the applicable requirements for the DFS testing.

Applicability of DFS Requirements Prior to Use of a Channel:

	Operational Mode			
Requirement	Master Client Without Radar Detection		Client With Radar Detection	
Non-Occupancy Period	✓	Not required	Yes	
DFS Detection Threshold	✓	Not required	Yes	
Channel Availability Check Time	√	Not required	Not required	
U-NII Detection Bandwidth	√	Not required	Yes	

Applicability of DFS requirements during normal operation:

		Operation	al Mode
1	Requirement	Master Device or Client with	Client Without Radar
		Radar Detection	Detection
	DFS Detection Threshold	Yes	Not required
	Channel Closing Transmission Time	Yes	Yes
	Channel Move Time	Yes	Yes
	U-NII Detection Bandwidth	Yes	Not required
	Additional requirements for		
	devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
	devices with multiple		
	devices with multiple bandwidth modes U-NII Detection Bandwidth and Statistical Performance	Radar Detection	Detection
	devices with multiple bandwidth modes U-NII Detection Bandwidth and Statistical Performance Check Channel Move Time and Channel Closing Transmission	All BW modes must be tested Test using widest BW mode	Not required Test using the widest BW

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection:

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64dBm

- Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
- **Note 2:** Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS Radar Signal Parameter Values:

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1.)
	200 milliseconds + an aggregate of 60
Channel Closing Transmission Time	milliseconds over remaining 10 second period.
	(See Notes 1 and 2.)
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission
0-IVII Detection Bandwidth	power bandwidth. (See Note 3.)

- **Note 1:** Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- **Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- **Note 3:** During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

DFS Radar Signal Parameter:

Radar Type 0 was used in the evaluation of the Client device for the purpose of measuring the Channel Move Time and the Channel Closing Transmission Time

Table 1-Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1.	See Note 1.
1	1	Test A Test B	Roundup $ \begin{pmatrix} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu sec}}\right) \end{pmatrix} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate (Radar Types 1-4)			80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a

Test B: 15 unique PRI values randomly selected within the range of 518-3066 μsec, with a minimum increment of 1 μsec, excluding PRI values selected in Test A

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4

Table 2-Long Pulse Radar Test Waveform

Report No.: 170615001RFC-4

<u> </u>							
Radar Type		Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 3-Frequency Hopping Radar Test Waveform

ш	Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
ı	6	1	333	9	0.333	300	70%	30

In-Service Monitoring: Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

Limit of In-Service Monitoring:

Reference to DFS Radar Signal Parameter Values.

Test Procedures:

- a) One frequency will be chosen from the Operating Channels of the EUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.
- b) In case the EUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will associate with the EUT (Master). For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
- c) The TCP protocol unicast data stream was generated by the iperf software command line with at least 17% activity ratio over any 100ms period.
- d) Timing plots are reported with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On/ (Time On + Off Time).
- e) At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Short Pulse Radar Types 1-4 at DFS Detection Threshold levels on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- f) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs.
- g) When operating as a Master Device, monitor the EUT for more than 30 minutes following instant T2 to verify that the EUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.

Figure 17: Channel Closing Transmission Time, Channel Move Time and Non-Occupancy Period

Page 79 of 89 Report No.: 170615001RFC-4

Conducted test setup

Setup for Client with injection at the Master

Equipment Used: Refer to section 3 for details.

Test Result: Result of Channel Move Time, Channel Closing Transmission Time and Non-

Occupancy Period for Client Beacon Tes

The measurement data as follows:

BW / Channel	BW / Channel Test Item		Limit	Pass/Fail
	Channel Move Time	0.529 s	< 10s	Pass
20 MHz / 5300 MHz	Channel Closing Transmission Time	1.6 ms	< 200+60ms	Pass
	Non-Occupancy Period	No transmission	30 minutes	Pass
	Channel Move Time	0.598 s	< 10s	Pass
20 MHz / 5500 MHz	Channel Closing Transmission Time	1.2 ms	< 200+60ms	Pass
	Non-Occupancy Period	No transmission	30 minutes	Pass
	Channel Move Time	0.575 s	< 10s	Pass
40 MHz / 5500 MHz	Channel Closing Transmission Time	2.4 ms	< 200+60ms	Pass
	Non-Occupancy Period	No transmission	30 minutes	Pass
	Channel Move Time	0.529 s	< 10s	Pass
40 MHz / 5510 MHz	Channel Closing Transmission Time	2.8 ms	< 200+60ms	Pass
	Non-Occupancy Period	No transmission	30 minutes	Pass

Page 80 of 89 Report No.: 170615001RFC-4

Radar Waveform calibration Plot

Page 81 of 89

Data Traffic Plot

More

1 of 2

Span 0 Hz Sweep 2.000 ks (30001 pts)

Center 5.300000000 GHz Res BW 3.0 MHz

VBW 3.0 MHz

- Mark1 Time: Mark1Time:744ms, Mark2Time:1142ms, OntimePoints:3, TotalPoint:995, DutyCycle:0.302%,Sum of OnTime:1.2ms
- Dwell = $S/B = 12000 \text{ms}/30001 = 0.4 \text{ ms}, C = N \times Dwell = 3 \times 0.4 = 1.2 \text{ms}$
- CMT = 1.142 s 0.544 s = 0.598s

Non-Occupancy Period 802.11a CH100 5500 MHz

Properties!

Span 0 Hz Sweep 2.000 ks (30001 pts) More 1 of 2

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Res BW 3.0 MHz

VBW 3.0 MHz

- DutyCycle:0.852%,Sum of OnTime:2.8ms
- Dwell = $S/B = 12000 \text{ms}/30001 = 0.4 \text{ ms}, C = N \times Dwell = 7 \times 0.4 = 2.8 \text{ms}$
- CMT = 0.975 s 0.446 s = 0.529s

Non-Occupancy Period_802.11ac_CH102_5510 MHz

Page 86 of 89 Report No.: 170615001RFC-4

5.10 AC POWER LINE CONDUCTED EMISSION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.207

Test Method: ANSI C63.10-2013

Limits:

Frequency range	Limits (dB(μV)		
(MHz)	Quasi-peak	Average	
0,15 to 0,50	66 to 56	56 to 46	
0,50 to 5	56	46	
5 to 30	60	50	

Remark:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

Test Setup: Refer to section 4.4.2 for details.

Test Procedures:

Test frequency range: 150KHz-30MHz

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

Test Mode: WIFI Link

Remark:

1. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 89 of 89 Report No.: 170615001RFC-4

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

