# 1 Perceptrón: XOR

| XOR                        |       |   |  |
|----------------------------|-------|---|--|
| $W(0.5, 1.5) \ bias = 1.5$ |       |   |  |
| $X_1$                      | $X_2$ | T |  |
| 0                          | 0     | 0 |  |
| 0                          | 1     | 1 |  |
| 1                          | 0     | 1 |  |
| 1                          | 1     | 0 |  |



Estos datos no son linealmente separables, por lo cual no puede aplicarse el perceptrón.

# 2 Perceptrón: AND

| And                        |       |               |  |
|----------------------------|-------|---------------|--|
| $W(0.5, 1.5) \ bias = 1.5$ |       |               |  |
| $X_1$                      | $X_2$ | $\mid T \mid$ |  |
| 0                          | 0     | 0             |  |
| 0                          | 1     | 0             |  |
| 1                          | 0     | 0             |  |
| 1                          | 1     | 1             |  |

Verficamos que sea linealmente separable:



Se puede apreciar en la imagen que en este caso los datos son linealmente

separables.

## • Época 1:

- Paso 1. Entrada 
$$P_1 = (0,0), T_1 = 0.$$
  
 $W(0.5, 1.5)$  bias = 1.5

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0 * 0.5) + (0 * 1.5) + 1.5 = 1.5$$
  
 $a = \text{hardlim}(1.5) = 1$   
 $T_1 = 0 \neq a = 1$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_1 - a = 0 - 1 = -1,$$
  
 $W_n = W + e * P_1 = (0.5, 1.5) + (-1) * (0, 0) = (0.5, 1.5)$   
 $bias_N = bias + e = 1.5 + (-1) = 0.5$ 

- Paso 2. Entrada  $P_2 = (0, 1), T_2 = 0.$ W(0.5, 1.5) bias = 0.5

Aplicamos la regla de aprendizaje para el patrón 2:

neta + bias = 
$$(0 * 0.5) + (1 * 1.5) + 0.5 = 2$$
  
 $a = \text{hardlim}(2) = 1$   
 $T_2 = 0 \neq a = 1$ 

Por lo tanto es necesario ajustar los pesos:

$$\begin{split} e &= T_2 - a = 0 - 1 = -1, \\ W_n &= W + e * P_2 = (0.5, 1.5) + (-1) * (0, 1) = (0.5, 0.5) \\ \mathrm{bias}_N &= \mathrm{bias} + e = 0.5 + (-1) = -0.5 \end{split}$$

- Paso 3. Entrada  $P_3 = (1,0), T_3 = 0.$ W(0.5, 0.5) bias = -0.5

Aplicamos la regla de aprendizaje para el patrón 3:

neta + bias = 
$$(1 * 0.5) + (0 * 0.5) - 0.5 = 0$$
  
 $a = \text{hardlim}(0) = 1$   
 $T_3 = 0 \neq a = 1$ 

$$e = T_3 - a = 0 - 1 = -1,$$
  
 $W_n = W + e * P_3 = (0.5, 0.5) + (-1) * (1, 0) = (-0.5, 0.5)$   
 $bias_N = bias + e = -0.5 + (-1) = -1.5$ 

- Paso 4. Entrada 
$$P_4 = (1, 1), T_4 = 1.$$
  
 $W(-0.5, 0.5)$  bias = -1.5

neta + bias = 
$$(1 * (-0.5)) + (1 * 0.5) - 1.5 = -1.5$$
  
 $a = \text{hardlim}(-1.5) = 0$   
 $T_4 = 1 \neq a = 0$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_4 - a = 1 - 0 = 1,$$
  
 $W_n = W + e * P_4 = (-0.5, 0.5) + (1) * (1, 1) = (0.5, 1.5)$   
 $bias_N = bias + e = -1.5 + 1 = -0.5$ 

### • Época 2:

- Paso 1. Entrada 
$$P_1 = (0,0), T_1 = 0.$$
  
 $W(0.5, 1.5)$  bias = -0.5

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0 * (0.5)) + (0 * 1.5) - 0.5 = -0.5$$
  
 $a = \text{hardlim}(-0.5) = 0$   
 $T_1 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 2. Entrada 
$$P_2 = (0,1), T_2 = 0.$$
  
 $W(0.5, 1.5)$  bias = -0.5

Aplicamos la regla de aprendizaje para el patrón 2:

neta + bias = 
$$(0 * (0.5)) + (1 * 1.5) - 0.5 = 1$$
  
 $a = \text{hardlim}(1) = 1$   
 $T_2 = 0 \neq a = 1$ 

$$e = T_2 - a = 0 - 1 = -1,$$

$$W_n = W + e * P_2 = (0.5, 1.5) + (-1) * (0, 1) = (0.5, 0.5)$$

$$bias_N = bias + e = -0.5 - 1 = -1.5$$

- Paso 3. Entrada 
$$P_3 = (1,0), T_3 = 0.$$
  
 $W(0.5, 0.5)$  bias = -1.5

neta + bias = 
$$(1 * (0.5)) + (0 * 0.5) - 1.5 = -1$$
  
 $a = \text{hardlim}(-1) = 0$   
 $T_3 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 4. Entrada  $P_4 = (1, 1), T_4 = 1.$ W(0.5, 0.5) bias = -1.5

Aplicamos la regla de aprendizaje para el patrón 4:

neta + bias = 
$$(1 * (0.5)) + (1 * 0.5) - 1.5 = -0.5$$
  
 $a = \text{hardlim}(-0.5) = 0$   
 $T_4 = 1 \neq a = 0$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_4 - a = 1 - 0 = 1,$$
  
 $W_n = W + e * P_4 = (0.5, 0.5) + (1) * (1, 1) = (1.5, 1.5)$   
 $bias_N = bias + e = -1.5 + 1 = -0.5$ 

- Época 3:
  - Paso 1. Entrada  $P_1 = (0,0), T_1 = 0.$ W(1.5, 1.5) bias = -0.5

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0 * (1.5)) + (0 * 1.5) - 0.5 = -0.5$$
  
 $a = \text{hardlim}(-0.5) = 0$   
 $T_1 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 2. Entrada 
$$P_2 = (0, 1), T_2 = 0.$$
  
 $W(1.5, 1.5)$  bias = -0.5

Aplicamos la regla de aprendizaje para el patrón 2:

neta + bias = 
$$(0 * (1.5)) + (1 * 1.5) - 0.5 = 1$$
  
 $a = \text{hardlim}(1) = 1$   
 $T_2 = 0 \neq a = 1$ 

$$e = T_2 - a = 0 - 1 = -1,$$
  
 $W_n = W + e * P_2 = (1.5, 1.5) + (-1) * (0, 1) = (1.5, 0.5)$   
 $bias_N = bias + e = -0.5 - 1 = -1.5$ 

- Paso 3. Entrada 
$$P_3 = (1,0), T_3 = 0.$$
  
 $W(1.5, 0.5)$  bias = -1.5

neta + bias = 
$$(1 * (1.5)) + (0 * 0.5) - 1.5 = 0$$
  
 $a = \text{hardlim}(0) = 1$   
 $T_3 = 0 \neq a = 1$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_3 - a = 0 - 1 = -1,$$
  
 $W_n = W + e * P_3 = (1.5, 0.5) + (-1) * (1, 0) = (0.5, 0.5)$   
 $bias_N = bias + e = -1.5 - 1 = -2.5$ 

- Paso 4. Entrada 
$$P_4 = (1, 1), T_4 = 1.$$
  
 $W(0.5, 0.5)$  bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 4:

neta + bias = 
$$(1 * (0.5)) + (1 * 0.5) - 2.5 = -1.5$$
  
 $a = \text{hardlim}(-1.5) = 0$   
 $T_4 = 1 \neq a = 0$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_4 - a = 1 - 0 = 1,$$

$$W_n = W + e * P_4 = (0.5, 0.5) + (1) * (1, 1) = (1.5, 1.5)$$

$$bias_N = bias + e = -2.5 + 1 = -1.5$$

### • Época 4:

- Paso 1. Entrada 
$$P_1 = (0,0), T_1 = 0.$$
  
 $W(1.5, 1.5)$  bias = -1.5

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0 * (1.5)) + (0 * 1.5) - 1.5 = -1.5$$
  
 $a = \text{hardlim}(-1.5) = 0$   
 $T_1 = 0 = a = 0$ 

- Paso 2. Entrada 
$$P_2 = (0,1), T_2 = 0.$$
  
 $W(1.5, 1.5)$  bias = -1.5

neta + bias = 
$$(0 * (1.5)) + (1 * 1.5) - 1.5 = 0$$
  
 $a = \text{hardlim}(0) = 1$   
 $T_2 = 0 \neq a = 1$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_2 - a = 0 - 1 = -1,$$
  

$$W_n = W + e * P_2 = (1.5, 1.5) + (-1) * (0, 1) = (1.5, 0.5)$$
  

$$bias_N = bias + e = -1.5 - 1 = -2.5$$

- Paso 3. Entrada  $P_3 = (1,0), T_3 = 0.$ W(1.5, 0.5) bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 3:

neta + bias = 
$$(1 * (1.5)) + (0 * 0.5) - 1.5 = -2.5$$
  
 $a = \text{hardlim}(-2.5) = 0$   
 $T_3 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 4. Entrada 
$$P_4 = (1, 1), T_4 = 1.$$
  
 $W(1.5, 0.5)$  bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 4:

neta + bias = 
$$(1 * (1.5)) + (1 * 0.5) - 2.5 = -0.5$$
  
 $a = \text{hardlim}(-0.5) = 0$   
 $T_4 = 1 \neq a = 0$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_4 - a = 1 - 0 = 1,$$
  
 $W_n = W + e * P_4 = (1.5, 0.5) + (1) * (1, 1) = (2.5, 1.5)$   
 $bias_N = bias + e = -2.5 + 1 = -1.5$ 

- Época 5:
  - Paso 1. Entrada  $P_1 = (0,0), T_1 = 0.$ W(2.5, 1.5) bias = -1.5

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0*(2.5)) + (0*1.5) - 1.5 = -1.5$$
  
 $a = \text{hardlim}(-1.5) = 0$   
 $T_1 = 0 = a = 0$ 

- Paso 2. Entrada 
$$P_2 = (0,1), T_2 = 0.$$
  
 $W(2.5, 1.5)$  bias = -1.5

neta + bias = 
$$(0 * (2.5)) + (1 * 1.5) - 1.5 = 0$$
  
 $a = \text{hardlim}(0) = 1$   
 $T_2 = 0 \neq a = 1$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_2 - a = 0 - 1 = -1,$$
  
 $W_n = W + e * P_2 = (2.5, 1.5) + (-1) * (0, 1) = (2.5, 0.5)$   
 $\text{bias}_N = \text{bias} + e = -1.5 - 1 = -2.5$ 

- Paso 3. Entrada 
$$P_3 = (1,0), T_3 = 0.$$
  
 $W(2.5, 0.5)$  bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 3:

neta + bias = 
$$(1 * (2.5)) + (0 * 0.5) - 2.5 = 0$$
  
 $a = \text{hardlim}(0) = 1$   
 $T_3 = 0 \neq a = 1$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_3 - a = 0 - 1 = -1,$$
  
 $W_n = W + e * P_3 = (2.5, 0.5) + (-1) * (1, 0) = (1.5, 0.5)$   
 $bias_N = bias + e = -2.5 - 1 = -3.5$ 

- Paso 4. Entrada 
$$P_4 = (1, 1), T_4 = 1.$$
  
 $W(1.5, 0.5)$  bias = -3.5

Aplicamos la regla de aprendizaje para el patrón 4:

neta + bias = 
$$(1 * (1.5)) + (1 * 0.5) - 3.5 = -1.5$$
  
 $a = \text{hardlim}(-1.5) = 0$   
 $T_4 = 1 \neq a = 0$ 

$$e = T_4 - a = 1 - 0 = 1,$$

$$W_n = W + e * P_4 = (1.5, 0.5) + (1) * (1, 1) = (2.5, 1.5)$$

$$bias_N = bias + e = -3.5 + 1 = -2.5$$

#### • Época 6:

- Paso 1. Entrada 
$$P_1 = (0,0), T_1 = 0.$$
  
 $W(2.5, 1.5)$  bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0 * (2.5)) + (0 * 1.5) - 2.5 = -2.5$$
  
 $a = \text{hardlim}(-2.5) = 0$   
 $T_1 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 2. Entrada 
$$P_2 = (0,1), T_2 = 0.$$
  
 $W(2.5, 1.5)$  bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 2:

neta + bias = 
$$(0 * (2.5)) + (1 * 1.5) - 2.5 = -1$$
  
 $a = \text{hardlim}(-1) = 0$   
 $T_2 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 3. Entrada 
$$P_3 = (1,0), T_3 = 0.$$
  
 $W(2.5, 1.5)$  bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 3:

neta + bias = 
$$(1 * (2.5)) + (0 * 1.5) - 2.5 = 0$$
  
 $a = \text{hardlim}(0) = 1$   
 $T_3 = 0 \neq a = 1$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_3 - a = 0 - 1 = -1,$$
  
 $W_n = W + e * P_3 = (2.5, 0.5) + (-1) * (1, 0) = (1.5, 0.5)$   
 $bias_N = bias + e = -2.5 - 1 = -3.5$ 

- Paso 4. Entrada 
$$P_4 = (1, 1), T_4 = 1.$$
  
 $W(1.5, 0.5)$  bias = -3.5

Aplicamos la regla de aprendizaje para el patrón 4:

neta + bias = 
$$(1 * (1.5)) + (1 * 0.5) - 3.5 = -1.5$$
  
 $a = \text{hardlim}(-1.5) = 0$   
 $T_4 = 1 \neq a = 0$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_4 - a = 1 - 0 = 1,$$
  
 $W_n = W + e * P_4 = (1.5, 0.5) + (1) * (1, 1) = (2.5, 1.5)$   
 $bias_N = bias + e = -3.5 + 1 = -2.5$ 

- Época 7:
  - Paso 1. Entrada  $P_1 = (0,0), T_1 = 0.$ W(2.5, 1.5) bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0 * (2.5)) + (0 * 1.5) - 2.5 = -2.5$$
  
 $a = \text{hardlim}(-2.5) = 0$   
 $T_1 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 2. Entrada 
$$P_2 = (0,1), T_2 = 0.$$
  
 $W(2.5, 1.5)$  bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 2:

neta + bias = 
$$(0 * (2.5)) + (1 * 1.5) - 2.5 = -1$$
  
 $a = \text{hardlim}(-1) = 0$   
 $T_2 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 3. Entrada 
$$P_3 = (1,0), T_3 = 0.$$
  
 $W(2.5, 1.5)$  bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 3:

$$\begin{aligned} & \text{neta} + \text{bias} = (1*(2.5)) + (0*1.5) - 2.5 = 0 \\ & a = \text{hardlim}(0) = 1 \\ & T_3 = 0 \neq a = 1 \end{aligned}$$

$$e = T_3 - a = 0 - 1 = -1,$$

$$W_n = W + e * P_3 = (2.5, 1.5) + (-1) * (1, 0) = (1.5, 1.5)$$

$$bias_N = bias + e = -2.5 - 1 = -3.5$$

- Paso 4. Entrada 
$$P_4 = (1, 1), T_4 = 1.$$
  
 $W(1.5, 1.5)$  bias = -3.5

neta + bias = 
$$(1 * (1.5)) + (1 * 1.5) - 3.5 = -0.5$$
  
 $a = \text{hardlim}(-0.5) = 0$   
 $T_4 = 1 \neq a = 0$ 

Por lo tanto es necesario ajustar los pesos:

$$e = T_4 - a = 1 - 0 = 1,$$
  
 $W_n = W + e * P_4 = (1.5, 1.5) + (1) * (1, 1) = (2.5, 2.5)$   
 $bias_N = bias + e = -3.5 + 1 = -2.5$ 

#### • Época 8:

- Paso 1. Entrada 
$$P_1 = (0,0), T_1 = 0.$$
  
 $W(2.5, 2.5) \text{ bias} = -2.5$ 

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0 * (2.5)) + (0 * 2.5) - 2.5 = -2.5$$
  
 $a = \text{hardlim}(-2.5) = 0$   
 $T_1 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 2. Entrada 
$$P_2 = (0, 1), T_2 = 0.$$
  
 $W(2.5, 2.5)$  bias = -2.5

Aplicamos la regla de aprendizaje para el patrón 2:

neta + bias = 
$$(0 * (2.5)) + (1 * 2.5) - 2.5 = 0$$
  
 $a = \text{hardlim}(0) = 1$   
 $T_2 = 0 \neq a = 1$ 

$$e = T_2 - a = 0 - 1 = -1,$$
  
 $W_n = W + e * P_2 = (2.5, 2.5) + (-1) * (0, 1) = (2.5, 1.5)$   
 $bias_N = bias + e = -2.5 - 1 = -3.5$ 

- Paso 3. Entrada 
$$P_3 = (1,0), T_3 = 0.$$
  
 $W(2.5, 1.5)$  bias = -3.5

neta + bias = 
$$(1 * (2.5)) + (0 * 1.5) - 3.5 = -1$$
  
 $a = \text{hardlim}(-1) = 0$   
 $T_3 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 4. Entrada  $P_4 = (1, 1), T_4 = 1.$ W(2.5, 1.5) bias = -3.5

Aplicamos la regla de aprendizaje para el patrón 4:

$$\begin{aligned} & \text{neta} + \text{bias} = (1*(2.5)) + (1*1.5) - 3.5 = 0.5 \\ & a = \text{hardlim}(0.5) = 1 \\ & T_4 = 1 = a = 1 \end{aligned}$$

Por lo tanto no es necesario ajustar los pesos:

- Época 9:
  - Paso 1. Entrada  $P_1 = (0,0), T_1 = 0.$ W(2.5, 1.5) bias = -3.5

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0*(2.5)) + (0*1.5) - 3.5 = -3.5$$
  
 $a = \text{hardlim}(-3.5) = 0$   
 $T_1 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 2. Entrada 
$$P_2 = (0,1), T_2 = 0.$$
  
 $W(2.5, 1.5) \text{ bias } = -3.5$ 

Aplicamos la regla de aprendizaje para el patrón 2:

neta + bias = 
$$(0*(2.5)) + (1*1.5) - 3.5 = -2$$
  
 $a = \text{hardlim}(-2) = 0$   
 $T_2 = 0 = a = 0$ 

- Paso 3. Entrada 
$$P_3 = (1,0), T_3 = 0.$$
  
 $W(2.5, 1.5)$  bias = -3.5

neta + bias = 
$$(1*(2.5)) + (0*1.5) - 3.5 = -1$$
  
 $a = \text{hardlim}(-1) = 0$   
 $T_3 = 0 = a = 0$ 

Por lo tanto no es necesario ajustar los pesos:

- Paso 4. Entrada  $P_4 = (1, 1), T_4 = 1.$ W(2.5, 1.5) bias = -3.5

Aplicamos la regla de aprendizaje para el patrón 4:

$$\begin{aligned} & \text{neta} + \text{bias} = (1*(2.5)) + (1*1.5) - 3.5 = 0.5 \\ & a = \text{hardlim}(0.5) = 1 \\ & T_4 = 1 = a = 1 \end{aligned}$$

Por lo tanto no es necesario ajustar los pesos:

- Fase de Verificación:
  - Paso 1. Entrada  $P_1 = (0,0), T_1 = 0.$ W(2.5, 1.5) bias = -3.5

Aplicamos la regla de aprendizaje para el patrón 1:

neta + bias = 
$$(0*(2.5)) + (0*1.5) - 3.5 = -3.5$$
  
 $a = \text{hardlim}(-3.5) = 0$   
 $T_1 = 0 = a = 0$ 

- Paso 2. Entrada  $P_2 = (0,1), T_2 = 0.$ W(2.5, 1.5) bias = -3.5

Aplicamos la regla de aprendizaje para el patrón 2:

neta + bias = 
$$(0*(2.5)) + (1*1.5) - 3.5 = -2$$
  
 $a = \text{hardlim}(-2) = 0$   
 $T_2 = 0 = a = 0$ 

- Paso 3. Entrada  $P_3 = (1,0), T_3 = 0.$ W(2.5, 1.5) bias = -3.5

Aplicamos la regla de aprendizaje para el patrón 3:

neta + bias = 
$$(1 * (2.5)) + (0 * 1.5) - 3.5 = -1$$
  
 $a = \text{hardlim}(-1) = 0$   
 $T_3 = 0 = a = 0$ 

– Paso 4. Entrada 
$$P_4 = (1,1), T_4 = 1.$$
  $W(2.5, 1.5)$  bias =  $-3.5$ 

neta + bias = 
$$(1*(2.5)) + (1*1.5) - 3.5 = 0.5$$
  
 $a = \text{hardlim}(0.5) = 1$   
 $T_4 = 1 = a = 1$ 



Los resultados obtenidos son:

Pesos: W(2.5, 1.5) bias: -3.5