

MOSFET

650V CoolMOS™ C7 Gold series (G7) SJ Power Device

The C7 GOLD series (G7) for the first time brings together the benefits of the C7 GOLD CoolMOS™ technology, 4 pin Kelvin Source capability and the improved thermal properties of the TOLL package to enable a possible SMD solution for high current topologies such as PFC up to 3kW

Features

- C7 Gold gives best in class FOM R_{DS(on)}*E_{oss} and R_{DS(on)}*Q_g.
- C7 Gold technology enables best in class R_{DS(on)} in smallest footprint.
- TOLL package has inbuilt 4th pin Kelvin Source configuration and low parasitic source inductance (~1nH).
- TOLL package is MSL1 compliant, total Pb-free and has easy visual inspection grooved leads.
- TOLL SMD package combined with lead free die attach process enables improved thermal performance R_{th}.

Benefits

- C7 Gold FOM $R_{DS(on)}^*Q_g$ is 14% better than previous C7 650V enabling faster switching leading to higher efficiency.
- C7 Gold can reach $33m\Omega$ in in TOLL 115mm² footprint, whereas previous BIC C7 650V was $45m\Omega$ in 150mm² D²PAK footprint.
- Reducing parasitic source inductance by Kelvin Source improves efficiency by faster switching and ease of use due to less ringing.
- TOLL package is easy to use and has the highest quality standards.
- Improved thermals enable SMD TOLL package to be used in higher current designs than has been previously possible.

Potential applications

PFC stages and hard switching PWM stages for e.g. Computing, Server, Telecom, UPS and Solar.

Product validation

Fully qualified according to JEDEC for Industrial Applications

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Parameter	Value	Unit
V _{DS} @ T _{j,max}	700	V
R _{DS(on),max}	33	mΩ
Q _{g.typ}	110	nC
I _{D,pulse}	245	A
I _{D,continuous} @ T _j <150°C	77	A
E _{oss} @400V	13.5	μJ
Body diode di/dt	60	A/µs

Type / Ordering Code	Package	Marking	Related Links
IPT65R033G7	PG-HSOF-8	65R033G7	see Appendix A

Table of Contents

Description
Maximum ratings
Thermal characteristics
Electrical characteristics
Electrical characteristics diagrams
Test Circuits
Package Outlines
Appendix A
Revision History
Trademarks
Disclaimer

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Davamatar	Values				11	Note / Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	-	-	69 44	А	T _C =25°C T _C =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	245	Α	T _C =25°C	
Avalanche energy, single pulse	E AS	-	-	289	mJ	I _D =12.5A; V _{DD} =50V; see table 10	
Avalanche energy, repetitive	E AR	-	-	1.44	mJ	I _D =12.5A; V _{DD} =50V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	12.5	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	100	V/ns	V _{DS} =0400V	
Gate source voltage (static)	V _{GS}	-20	-	20	V	static;	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	391	W	<i>T</i> _C =25°C	
Storage temperature	T _{stg}	-55	-	150	°C	-	
Operating junction temperature	T _j	-55	-	150	°C	-	
Mounting torque	-	-	-	n.a.	Ncm	-	
Continuous diode forward current	I _S	-	-	69	Α	T _C =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	245	Α	T _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	1.5	V/ns	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ <= $I_{\rm S}$, $T_{\rm j}$ =25°C see table 8	
Maximum diode commutation speed	di _f /dt	-	-	60	A/μs	V_{DS} =0400V, I_{SD} <= I_{S} , T_{j} =25°C see table 8	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	$V_{\rm rms}$, $T_{\rm C}$ =25°C, t =1min	

 $^{^{1)}}$ Limited by $T_{j\,\text{max}}.$ $^{2)}$ Pulse width t_p limited by $T_{j,\text{max}}$ $^{3)}$ Identical low side and high side switch

2 Thermal characteristics

Table 3 Thermal characteristics

Damanatan	Values					Note / Took Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	0.32	°C/W	-
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	device on PCB, minimal footprint
Thermal resistance, junction - ambient for SMD version	$R_{ m thJA}$	-	35	45	°C/W	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area for drain connection and cooling. PCB is vertical without air stream cooling.
Soldering temperature, wave- & reflow soldering allowed	T _{sold}	-	-	260	°C	reflow MSL1

3 Electrical characteristics

at T_j=25°C, unless otherwise specified

Table 4 Static characteristics

Parameter	Oh o.l		Values			Nets / Test Osmalities
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	650	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage	V _{(GS)th}	3	3.5	4	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=1.44{\rm mA}$
Zero gate voltage drain current	I _{DSS}	-	- 45	2 -	μΑ	V _{DS} =650, V _{GS} =0V, T _i =25°C V _{DS} =650, V _{GS} =0V, T _i =150°C
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.029 0.072	0.033	Ω	V _{GS} =10V, I _D =28.9A, T _j =25°C V _{GS} =10V, I _D =28.9A, T _j =150°C
Gate resistance	R _G	-	0.85	-	Ω	f=1MHz, open drain

Table 5 Dynamic characteristics

Damamatan	Ob. a.l		Values			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	C _{iss}	-	5000	-	pF	V _{GS} =0V, V _{DS} =400V, <i>f</i> =250kHz
Output capacitance	Coss	-	80	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	169	-	pF	V _{GS} =0V, V _{DS} =0400V
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	1880	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0400V
Turn-on delay time	t _{d(on)}	-	20	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =28.9A, $R_{\rm G}$ =3.3 Ω ; see table 9
Rise time	t _r	-	8	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =28.9A, $R_{\rm G}$ =3.3 Ω ; see table 9
Turn-off delay time	$t_{ m d(off)}$	-	85	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =28.9A, $R_{\rm G}$ =3.3 Ω ; see table 9
Fall time	t _f	-	5	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =28.9A, $R_{\rm G}$ =3.3 Ω ; see table 9

 Table 6
 Gate charge characteristics

Parameter	Cyronhad		Values			Nata / Taat Canditian
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	27	-	nC	V_{DD} =400V, I_{D} =28.9A, V_{GS} =0 to 10V
Gate to drain charge	$Q_{ m gd}$	-	35	-	nC	V_{DD} =400V, I_{D} =28.9A, V_{GS} =0 to 10V
Gate charge total	Qg	-	110	-	nC	V_{DD} =400V, I_{D} =28.9A, V_{GS} =0 to 10V
Gate plateau voltage	V _{plateau}	-	5.4	-	V	V_{DD} =400V, I_{D} =28.9A, V_{GS} =0 to 10V

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

Table 7 Reverse diode characteristics

Parameter	Cumbal	Values			I Incid	Note / Test Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	$V_{ ext{SD}}$	-	0.8	-	V	V _{GS} =0V, I _F =28.9A, T _j =25°C
Reverse recovery time	t _{rr}	-	600	-	ns	V_R =400V, I_F =28.9A, d_F/dt =60A/ μ s; see table 8
Reverse recovery charge	Qrr	-	9	-	μC	V_R =400V, I_F =28.9A, di_F/dt =60A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}	-	30	-	А	V_R =400V, I_F =28.9A, di_F/dt =60A/ μ s; see table 8

4 Electrical characteristics diagrams

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times (ss)

Table 10 Unclamped inductive load (ss)

6 Package Outlines

Figure 1 Outline PG-HSOF-8, dimensions in mm/inches

7 Appendix A

Table 11 Related Links

• IFX CoolMOS™ G7 Webpage: www.infineon.com

• IFX CoolMOS™ G7 application note: www.infineon.com

• IFX CoolMOS[™] G7 simulation model: <u>www.infineon.com</u>

• IFX Design tools: www.infineon.com

Revision History

IPT65R033G7

Revision: 2020-11-06, Rev. 2.3

Previous	Revision
LICVIOUS	LICAISION

Revision	Date	Subjects (major changes since last revision)
2.0	2016-03-01	Release of final version
2.1	2016-03-14	Page 1 format update
2.2	2017-03-20	page1 marking changed, diagram 8 RDSon: fitted to table value
2.3	2020-11-06	Content update diagram 2,3,4,7,8 and format update

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2020 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie") .

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.