Компьютерная графика

Лекция 9: Геометрические шейдеры, shadow volumes, shadow mapping и его разновидности

2021

▶ Тип шейдера, наравне в вершинным и фрагментным

- ▶ Тип шейдера, наравне в вершинным и фрагментным
- ► Создаётся как glCreateShader(GL_GEOMETRY_SHADER)

- Тип шейдера, наравне в вершинным и фрагментным
- ▶ Создаётся как glCreateShader(GL_GEOMETRY_SHADER)
- Встраивается после вершинного шейдера, до perspective divide

- ▶ Тип шейдера, наравне в вершинным и фрагментным
- ▶ Создаётся как glCreateShader(GL_GEOMETRY_SHADER)
- Встраивается после вершинного шейдера, до perspective divide
- Оперирует целыми примитивами (точками/линиями/треугольниками), т.е. наборами вершин

- Тип шейдера, наравне в вершинным и фрагментным
- ► Создаётся как glCreateShader(GL_GEOMETRY_SHADER)
- Встраивается после вершинного шейдера, до perspective divide
- Оперирует целыми примитивами (точками/линиями/треугольниками), т.е. наборами вершин
- Может менять тип примитива и количество вершин

- Тип шейдера, наравне в вершинным и фрагментным
- ▶ Создаётся как glCreateShader(GL_GEOMETRY_SHADER)
- Встраивается после вершинного шейдера, до perspective divide
- Оперирует целыми примитивами (точками/линиями/треугольниками), т.е. наборами вершин
- Может менять тип примитива и количество вершин
- Может варьировать количество вершин на выходе

▶ Расчёт нормалей для flat shading'a

Flat shading

- ▶ Расчёт нормалей для flat shading'a
 - Вход: треугольник (тройка вершин)
 - ▶ Выход: те же вершины с посчитанной нормалью

- ► Расчёт нормалей для flat shading'a
 - Вход: треугольник (тройка вершин)
 - ▶ Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей

- ► Расчёт нормалей для flat shading'a
 - Вход: треугольник (тройка вершин)
 - Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - Вход: вершина с нормалью
 - Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль

Визуализация нормалей

- ► Расчёт нормалей для flat shading'a
 - ▶ Вход: треугольник (тройка вершин)
 - ▶ Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes

- ► Расчёт нормалей для flat shading'a
 - Вход: треугольник (тройка вершин)
 - ▶ Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - ▶ Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes
- Billboards плоские фигуры, всегда смотрящие в сторону камеры

${\sf Bill boards}$

- ► Расчёт нормалей для flat shading'a
 - ▶ Вход: треугольник (тройка вершин)
 - ▶ Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - ▶ Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes
- Billboards плоские фигуры, всегда смотрящие в сторону камеры
 - Вход: одна вершина (точка)
 - Выход: набор треугольников

- ▶ Расчёт нормалей для flat shading'a
 - Вход: треугольник (тройка вершин)
 - ▶ Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes
- Billboards плоские фигуры, всегда смотрящие в сторону камеры
 - Вход: одна вершина (точка)
 - Выход: набор треугольников
 - Системы частиц

Billboards: система частиц (дым)

- ▶ Расчёт нормалей для flat shading'a
 - ▶ Вход: треугольник (тройка вершин)
 - Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes
- Billboards плоские фигуры, всегда смотрящие в сторону камеры
 - Вход: одна вершина (точка)
 - Выход: набор треугольников
 - Системы частиц

- ▶ Расчёт нормалей для flat shading'a
 - Вход: треугольник (тройка вершин)
 - ▶ Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes
- Billboards плоские фигуры, всегда смотрящие в сторону камеры
 - Вход: одна вершина (точка)
 - Выход: набор треугольников
 - Системы частиц
 - Облака

Billboards: облака

- ► Расчёт нормалей для flat shading'a
 - Вход: треугольник (тройка вершин)
 - ▶ Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes
- Billboards плоские фигуры, всегда смотрящие в сторону камеры
 - Вход: одна вершина (точка)
 - Выход: набор треугольников
 - Системы частиц
 - Облака

- ▶ Расчёт нормалей для flat shading'a
 - Вход: треугольник (тройка вершин)
 - Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes
- Billboards плоские фигуры, всегда смотрящие в сторону камеры
 - Вход: одна вершина (точка)
 - Выход: набор треугольников
 - Системы частиц
 - Облака
 - Деревья

Billboards: деревья

- ▶ Расчёт нормалей для flat shading'a
 - Вход: треугольник (тройка вершин)
 - ▶ Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes
- Billboards плоские фигуры, всегда смотрящие в сторону камеры
 - Вход: одна вершина (точка)
 - Выход: набор треугольников
 - ▶ Системы частиц
 - Облака
 - Деревья

- ▶ Расчёт нормалей для flat shading'a
 - ▶ Вход: треугольник (тройка вершин)
 - Выход: те же вершины с посчитанной нормалью
- Визуализация нормалей
 - Вход: вершина с нормалью
 - ▶ Выход: линия из двух вершин исходная вершина, исходная вершина + нормаль
- Shadow volumes
- Billboards плоские фигуры, всегда смотрящие в сторону камеры
 - Вход: одна вершина (точка)
 - Выход: набор треугольников
 - Системы частиц
 - Облака
 - Деревья
 - Трава

Billboards: трава

Геометрические шейдеры: пример

```
#version 330 core
uniform mat4 transform;
// Входные примитивы - точки
layout (points) in;
// Выходные примитивы - линии, в сумме не больше 2х вершин
layout (line_strip, max_vertices = 2) out;
// Данные из вершинного шейдера
in vec3 normal[];
void main() {
    gl_Position = transform * gl_in[0].gl_Position;
    EmitVertex();
    gl_Position = transform * (gl_in[0].gl_Position
        + vec4(normal[0], 0));
    EmitVertex():
    EndPrimitive();
```

Геометрические шейдеры: пример

```
#version 330 core
// Входные примитивы - линии
layout (lines) in;
// Выходные примитивы - треугольники, в сумме не больше 4х вершин
layout (triangle_strip, max_vertices = 4) out;
// Данные для фрагментного шейдера
out vec4 color:
void main() {
    gl_Position = gl_in[0].gl_Position + vec4(-1.0, -1.0, 0.0, 0.0);
    color = vec4(1.0, 0.0, 0.0, 1.0);
   EmitVertex():
    gl_Position = gl_in[0].gl_Position + vec4(1.0, -1.0, 0.0, 0.0);
    color = vec4(0.0, 1.0, 0.0, 1.0):
   EmitVertex():
    gl_Position = gl_in[1].gl_Position + vec4(-1.0, 1.0, 0.0, 0.0);
    color = vec4(0.0, 0.0, 1.0, 1.0);
    EmitVertex():
    gl_Position = gl_in[1].gl_Position + vec4(1.0, 1.0, 0.0, 0.0);
    color = vec4(1.0, 1.0, 1.0, 1.0);
    EmitVertex():
   EndPrimitive():
```

Геометрические шейдеры: ссылки

- khronos.org/opengl/wiki/Geometry_Shader
- learnopengl.com/Advanced-OpenGL/Geometry-Shader
- open.gl/geometry
- ▶ lighthouse3d.com/tutorials/glsl-tutorial/geometry-shader
- GPU Gems, Chapter 7. Rendering Countless Blades of Waving Grass