BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION SECOND SEMESTER 2015-2016

Course Handout Part II

Date: 12/01/2016

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BITS F464

Course Title : Machine Learning

Instructor-in-charge : MUKESH KUMAR ROHIL (rohil@pilani.bits-pilani.ac.in)

Course Description:

Machine Learning is an exciting sub-area of Artificial Intelligence which deals with designing machine which can learn and improve their performance from examples/experience. This course introduces the student to the key algorithms and theory that forms the core of machine learning. The course will cover the major approaches to learning namely, supervised, unsupervised, and reinforcement leaning. The course emphasizes various techniques, which have become feasible with increased computational power. The topics covered in the course include regression, decision trees, support vector machines, artificial neural networks, Bayesian techniques, Hidden Markov models, genetic algorithms etc.

Text Book:

T1. Tom M. Mitchell, Machine Learning, Tata McGraw-Hill, 1997.

Reference Books:

- R1. Christopher M. Bhisop, Pattern Recognition & Machine Learning, Springer, 2006.
- **R2.**Introduction to Machine Learning, N. J. Nilson, Stanford, Available online at author's website. http://robotics.stanford.edu/people/nilsson/mlbook.html
- **R3.**Machine Learning, Neural and Statistical Classification, D. Michie, D.J. Spiegelhalter, C.C. Taylor (eds), Ellis Horwood publishers, available online at http://www.amsta.leeds.ac.uk/~charles/statlog/

Lecture Plan:

Topic	Topic Details	Lecture#	Chapter Reference
Overview	Introduction	1-2	T1.Ch.01
Preliminaries	Probability theory	3-5	R1.Ch.02
	 Decision theory 		
	 Information theory 		
Some important principles/conc epts/algorithms	MAP Hypothesis	6-8	T1.Ch.06 + class notes
	 Min. Description Length (MDL) principle 		
	 Expectation Maximization (EM) Algo. 		
	 Bias-variance decomposition 		
	 Lagrange Multipliers 		
	 Mixture of Gaussians 		
	• PCA & SVD		
Linear models	Linear basis function models	9-11	R1.Ch.03
for Regression	Bayesian linear regression		

Topic	Topic Details	Lecture#	Chapter Reference
Linear models for classification	Discriminant FunctionsProbabilistic Generative ClassifiersProbabilistic Discriminative Classifiers	12-15	R1.Ch.04
Bayesian Learning Techniques	Bayes optimal classifierGibbs AlgorithmNaïve Bayes Classifier	16-17	T1.Ch.06
	Decision TreesEnsemble Classifiers	18-24	T1.Ch.03
Non-linear Models & Model Selection	 Neural Networks Multilayer Perceptron Network training Error backpropagation 		T1.Ch.04 R1.Ch.05
Selection	 Instance-based Learning o K-NN o Case-based Reasoning 		T1.Ch.08
Margin/Kernel BasedApproach	Support Vector Machines	25-27	R1.Ch.07 + Class Notes
Graphical Models	Bayesian NetworksHidden Markov Models	28-31	T1.Ch.06 + Class Notes
Unsupervised Learning	Mixture Models<i>K</i>-means Clustering	32-33	T1.Ch.06 R1.Ch.09
Genetic Algorithms	Hypothesis space searchGenetic programmingModels of evaluation & learning	34-35	T1.Ch.09
Reinforcement Learning	 Q Learning Non-deterministic rewards & actions Temporal difference learning Generalization 	36-37	T1.Ch.13
Advanced Topics	Active earningDeep Learning	38-40	Class Notes

Evaluation Scheme:

Component	Duration	Weight (& Nature)	Date (Time)
Mid-semester Test	90 Mins.	35% (Closed Book)	16/3 2:00 -3:30 PM
Project	10 to 14 days	20% (Open Book)	TBA
Comprehensive Exam.	3 Hours	45% (Closed Book)	9/5 FN

Notices: Will be either displayed on LMS server or CSIS notice-board or announced in class.

Chamber Consultation Hour: M-10 (05:00 PM to 05:50 PM)

Makeup Policy: Makeup will be granted only for genuine cases if prior request is given.

Class Schedule: As per the ID announced time-table