

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to M-100.
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2023

MATEMATYKA Poziom podstawowy

TEST DIAGNOSTYCZNY

Symbol arkusza
MMAP-P0-100-2209

DATA: 29 września 2022 r.

GODZINA ROZPOCZĘCIA: 9:00

Czas trwania: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 46

WYPEŁNIA ZESPÓŁ NADZORUJĄCY
Uprawnienia zdającego do:
dostosowania zasad oceniania
dostosowania w zw. z dyskalkulią
nieprzenoszenia zaznaczeń na kartę.

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 29 stron (zadania 1–26). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- Na stronie tytułowej arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 3. Nie wpisuj żadnych znaków w tabelkach przeznaczonych dla egzaminatora. Tabelki umieszczone są na marginesie przy odpowiednich zadaniach.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Symbol para zamieszczony w nagłówku zadania oznacza, że rozwiązanie zadania zamkniętego musisz przenieść na kartę odpowiedzi.
- 6. Odpowiedzi do zadań zamkniętych zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 7. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 8. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 9. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 10. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 11. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z taką okładką, jak poniżej.

Zadania egz stronach.	zaminacyjne s	ą wydrukow	ane na kolejnych	<u>1</u>

Zadanie 1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość wyrażenia $(1+3\cdot 2^{-1})^{-2}$ jest równa

- **A.** $\frac{25}{4}$
- **B.** $\frac{4}{25}$ **C.** $\frac{36}{49}$ **D.** $\frac{40}{9}$

Zadanie 2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość wyrażenia $2\log_5 5 + 1 - \frac{1}{2}\log_5 625$ jest równa

A. 1

- **B.** 5
- **C**. 10
- **D.** 25

Zadanie 3. (0–1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wszystkich różnych liczb naturalnych czterocyfrowych, które są nieparzyste i podzielne przez 25, jest

- **A.** $9 \cdot 9 \cdot 2$ **B.** $9 \cdot 10 \cdot 2$ **C.** $9 \cdot 9 \cdot 4$ **D.** $9 \cdot 10 \cdot 4$

Zadanie 4. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dla każdej liczby rzeczywistej $x \neq 1$ wyrażenie $\frac{2}{x-1} - 5$ jest równe

A.
$$\frac{-5x+1}{x-1}$$

B.
$$\frac{-5x+7}{x-1}$$

c.
$$\frac{-5x+3}{x-1}$$

A.
$$\frac{-5x+1}{x-1}$$
 B. $\frac{-5x+7}{x-1}$ **C.** $\frac{-5x+3}{x-1}$ **D.** $\frac{-5x-3}{x-1}$

Zadanie 5. (0-2)

Dokończ zdanie. Wybierz dwie właściwe odpowiedzi spośród podanych.

Dla każdej liczby rzeczywistej $\,x\,$ i dla każdej liczby rzeczywistej $\,y\,$ wyrażenie $9-(x^2-2xy+y^2)\,$ jest równe

A.
$$[3 - (x - 2y)]^2$$

B.
$$[3 + (x - 2y)]^2$$

C.
$$[3 - (x + 2y)]^2$$

D.
$$[3 - (x - y)] \cdot [3 + (x - y)]$$

E.
$$[3 - (x + 2y)] \cdot [3 + (x + 2y)]$$

F.
$$-[(x-y)-3] \cdot [(x-y)+3]$$

Rozwiąż równanie

$$3x^3 - 6x^2 - 27x + 54 = 0$$

Zapisz obliczenia.

Zadanie 7. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Równanie

$$\frac{(x^2+x)(x+3)(x-1)}{x^2-1}=0$$

ma w zbiorze liczb rzeczywistych dokładnie

A. jedno rozwiązanie: x = -3.

B. dwa rozwiązania: x = -3, x = 0.

C. trzy rozwiązania: x = -3, x = -1, x = 0.

D. cztery rozwiązania: x = -3, x = -1, x = 0, x = 1.

Zadanie 8. (0–1)

Spośród nierówności A-D wybierz tę, której zbiór wszystkich rozwiązań zaznaczono na osi liczbowej.

- **A.** $|x+2| \le 2$ **B.** $|x-2| \le 2$ **C.** $|x+2| \ge 2$ **D.** $|x-2| \ge 2$

Zadanie 9. (0-1)

Klient banku wypłacił z bankomatu kwotę 1040 zł. Bankomat wydał kwotę w banknotach o nominałach 20 zł, 50 zł oraz 100 zł. Banknotów 100-złotowych było dwa razy więcej niż 50-złotowych, a banknotów 20-złotowych było o 2 mniej niż 50-złotowych.

Niech x oznacza liczbę banknotów 50-złotowych, a y – liczbę banknotów 20-złotowych, które otrzymał ten klient.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Poprawny układ równań prowadzący do obliczenia liczb x i y to

A.
$$\begin{cases} 20y + 50x + 100 \cdot 2x = 1040 \\ y = x - 2 \end{cases}$$

B.
$$\begin{cases} 20y + 50x + 50x \cdot 2 = 1040 \\ y = x - 2 \end{cases}$$

c.
$$\begin{cases} 20y + 50x + 100 \cdot 2x = 1040 \\ x = y - 2 \end{cases}$$

D.
$$\begin{cases} 20y + 50x + 50x \cdot 2 = 1040 \\ x = y - 2 \end{cases}$$

Zadanie 10.

Na rysunku, w kartezjańskim układzie współrzędnych (x,y), przedstawiono wykres funkcji f określonej dla każdego $x \in [-5,4)$. Na tym wykresie zaznaczono punkty o współrzędnych całkowitych.

10.1. 0–1

Zadanie 10.1. (0-1)

Zapisz w wykropkowanym miejscu zbiór wartości funkcji f.

Zadanie 10.2. (0–1)

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Dla każdego argumentu z przedziału $(-4,-2)$ funkcja f przyjmuje wartości ujemne.	P	F
Funkcja f ma trzy miejsca zerowe.	P	F

Zadanie 10.3. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Najmniejsza wartość funkcji f w przedziale [-4,0] jest równa

- **A.** (-4)
- **B.** (-3)
- **C.** (-2)
- **D**. 0

Zadanie 11. (0-1)

W kartezjańskim układzie współrzędnych (x,y) dane są: punkt A=(8,11) oraz okrąg o równaniu $(x-3)^2+(y+1)^2=25$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Odległość punktu $\,A\,$ od środka tego okręgu jest równa

- **A.** 25
- **B.** 13
- **C.** $\sqrt{125}$
- **D.** $\sqrt{265}$

Zadanie 12.

Basen ma długość 25 m. W najpłytszym miejscu jego głębokość jest równa 1,2 m. Przekrój podłużny tego basenu przedstawiono poglądowo na rysunku.

Głębokość y basenu zmienia się wraz z odległością x od brzegu w sposób opisany funkcją:

$$y = \begin{cases} ax + b & \text{dla } 0 \le x \le 15 \text{ m} \\ 0.18x - 0.9 & \text{dla } 15 \text{ m} \le x \le 25 \text{ m} \end{cases}$$

Odległość x jest mierzona od płytszego brzegu w poziomie na powierzchni wody (zobacz rysunek). Wielkości x i y są wyrażone w metrach.

Zadanie 12.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Największa głębokość basenu jest równa

A. 5,4 m

B. 3,6 m **C.** 2,2 m **D.** 1,8 m

Oblicz wartość współczynnika $\,a\,$ oraz wartość współczynnika $\,b\,$.

Zapisz obliczenia.

Zadanie 13.

Funkcja kwadratowa f jest określona wzorem $f(x) = -(x-1)^2 + 2$.

Zadanie 13.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wykresem funkcji f jest parabola, której wierzchołek ma współrzędne

- **A.** (1, 2)

- **B.** (-1,2) **C.** (1,-2) **D.** (-1,-2)

Zadanie 13.2. (0–1) **□ □ □**

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Zbiorem wartości funkcji f jest przedział

A.
$$(-\infty, 2^{-1})$$

A.
$$(-\infty, 2]$$
 B. $(-\infty, 2)$ **C.** $(2, +\infty)$ **D.** $[2, +\infty)$

C.
$$(2, +\infty)$$

D.
$$[2, +\infty)$$

Zadanie 14.

Dany jest ciąg (a_n) określony wzorem $a_n=\frac{7^n}{21}$ dla każdej liczby naturalnej $n\geq 1.$

Zadanie 14.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Pięćdziesiątym wyrazem ciągu (a_n) jest

A.
$$\frac{7^{49}}{3}$$

B.
$$\frac{7^{50}}{3}$$

c.
$$\frac{7^{51}}{3}$$

A.
$$\frac{7^{49}}{3}$$
 B. $\frac{7^{50}}{3}$ **C.** $\frac{7^{51}}{3}$

Zadanie 14.2. (0–1)

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Ciąg (a_n) jest geometryczny.	Р	F
Suma trzech początkowych wyrazów ciągu (a_n) jest równa 20 .	Р	F

Zadanie 15. (0-1)

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x, y), dana jest prosta k o równaniu y = 3x + b, przechodząca przez punkt A = (-1, 3).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Współczynnik b w równaniu tej prostej jest równy

A. 0

- **B.** 6
- **C.** (-10)
- **D.** 8

Zadanie 16.

Dany jest ciąg (a_n) określony wzorem $a_n = 3n - 1$ dla każdej liczby naturalnej $n \ge 1$.

Zadanie 16.1. (0-1)

Dokończ zdanie tak, aby było prawdziwe. Wybierz odpowiedź A, B albo C oraz jej uzasadnienie 1., 2. albo 3.

Ciąg (a_n) jest

A.	rosnący,		1.	$a_{n+1} - a_n = -1$
В.	malejący,	ponieważ dla każdej liczby naturalnej $n \geq 1$	2.	$a_{n+1} - a_n = 0$
C.	stały,		3.	$a_{n+1} - a_n = 3$

Zadanie 16.2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Najmniejszą wartością $\,n,\,$ dla której wyraz $\,a_n\,$ jest większy od $\,25,\,$ jest

A. 8

B. 9

C. 7

D. 26

Zadanie 16.3. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Suma n początkowych wyrazów ciągu (a_n) jest równa 57 dla n równego

A. 6

- **B.** 23
- **C.** 5
- **D.** 11

Zadanie 17. (0-1)

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x, y), dane są:

- prosta k o równaniu $y = \frac{1}{2}x + 5$
- prosta l o równaniu y 1 = -2x.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Proste k i l

- A. się pokrywają.
- **B.** nie mają punktów wspólnych.
- C. są prostopadłe.
- **D.** przecinają się pod kątem 30°.

Zadanie 18. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość wyrażenia $(1-\cos 20^\circ)\cdot (1+\cos 20^\circ)-\sin^2 20^\circ$ jest równa

- **A.** (-1)
- **B.** 0
- **C.** 1

D. 20

Zadanie 19. (0-1)

W pojemniku są wyłącznie kule białe i czerwone. Stosunek liczby kul białych do liczby kul czerwonych jest równy 4:5. Z pojemnika losujemy jedną kulę.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Prawdopodobieństwo wylosowania kuli białej jest równe

- **A.** $\frac{4}{9}$
- **B.** $\frac{4}{5}$ **C.** $\frac{1}{9}$
- **D.** $\frac{1}{4}$

В	ruc	lno	pis														

Zadanie 20. (0–1)

Punkty A, B oraz C leżą na okręgu o środku w punkcie O. Kąt ABO ma miarę 40° , a kąt

OBC ma miarę 10° (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Miara kąta ACO jest równa

- **A.** 30°
- **B.** 40° **C.** 50°
- **D.** 60°

Zadanie 21. (0-2)

Dany jest trójkąt ABC o bokach długości 6, 7 oraz 8.

Oblicz cosinus największego kąta tego trójkąta.

Zapisz obliczenia.

Zadanie 22. (0-1)

W trójkącie ABC bok AB ma długość 4, a bok BC ma długość 4,6. Dwusieczna kąta ABC przecina bok AC w punkcie D takim, że |AD| = 3.2 (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Odcinek CD ma długość

- **A.** $\frac{64}{23}$

- **B.** $\frac{16}{5}$ **C.** $\frac{23}{4}$ **D.** $\frac{92}{25}$

0-4

Zadanie 23. (0-4)

Rodzinna firma stolarska produkuje małe wiatraki ogrodowe. Na podstawie analizy rzeczywistych wpływów i wydatków stwierdzono, że:

- przychód P (w złotych) z tygodniowej sprzedaży x wiatraków można opisać funkcją P(x)=251x
- koszt K (w złotych) produkcji x wiatraków w ciągu jednego tygodnia można określić funkcją $K(x) = x^2 + 21x + 170$.

Tygodniowo w zakładzie można wyprodukować co najwyżej 150 wiatraków.

Oblicz, ile tygodniowo wiatraków należy sprzedać, aby zysk zakładu w ciągu jednego tygodnia był największy. Oblicz ten największy zysk.

Zapisz obliczenia.

Wskazówka: przyjmij, że zysk jest różnicą przychodu i kosztów.

Zadanie 24.

Firma $\mathcal F$ zatrudnia 160 osób. Rozkład płac brutto pracowników tej firmy przedstawia poniższy diagram. Na osi poziomej podano – wyrażoną w złotych – miesięczną płacę brutto, a na osi pionowej podano liczbę pracowników firmy $\mathcal F$, którzy otrzymują płacę miesięczną w danej wysokości.

Zadanie 24.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Średnia miesięczna płaca brutto w firmie \mathcal{F} jest równa

A. 4 593,75 zł

B. 4 800,00 zł

C. 5 360,00 zł

D. 2 399,33 zł

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Mediana miesięcznej płacy pracowników firmy $\,\mathcal{F}\,$ jest równa

- **A.** 4 000 zł
- **B.** 4 800 zł
- **C.** 5 000 zł **D.** 5 500 zł

Zadanie 24.3. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba pracowników firmy \mathcal{F} , których miesięczna płaca brutto nie przewyższa 5 000 zł, stanowi (w zaokrągleniu do 1%)

- A. 91% liczby wszystkich pracowników tej firmy.
- **B.** 78% liczby wszystkich pracowników tej firmy.
- C. 53% liczby wszystkich pracowników tej firmy.
- **D.** 22% liczby wszystkich pracowników tej firmy.

Zadanie 25. (0-3)

Każda z krawędzi podstawy trójkątnej ostrosłupa ma długość $10\sqrt{3}$, a każda jego krawędź boczna ma długość 15.

Oblicz wysokość tego ostrosłupa.

Zapisz obliczenia.

Wykaż, że dla każdej liczby naturalnej n liczba $10n^2+30n+8$ przy dzieleniu przez 5 daje resztę 3.

BRUDNOPIS (nie podlega ocenie)

MATEMATYKA Poziom podstawowy Formuła 2023

MATEMATYKA Poziom podstawowy Formuła 2023

MATEMATYKA Poziom podstawowy Formuła 2023