CS4335 Design and Analysis of Algorithms (Midterm, 2020)

Question 1. (20 points)

(a) (10 points) For the interval scheduling problem, the set of jobs (s_i, f_i) are as follows: (0, 2), (1, 3), (2, 6), (2, 4), (6, 9) (8, 12), (5, 8), and (6, 7).

Use a greedy algorithm to compute the maximum number of compatible jobs. You should give main steps. What is the running time of the greedy algorithm?

Answer:

(b) (8 points) For the interval partitioning problem, the set of lectures (s_i, f_i) are as follows: (0, 1), (0, 3), (1, 4), (2, 6), (2, 4), (4, 5), (3, 5) and (5, 8).

Use a greedy algorithm to compute the minimum number of classrooms to accommodate all the lectures. You should give main steps.

Answer:

(c) (2 points) For the interval partitioning problem given in (b), what is the depth of the problem?

Answer:

Question 2. (15 points)

(a) (7 points) Find the minimum spanning tree for the graph in Figure 1 using Kruskal's algorithm.

Answer:

(b) (8 points) Find the minimum spanning tree for the graph in Figure 1 using Prim's algorithm.

Figure 1.

Answer:

Question 3. (20 points)

(a) (15 points) Use Dijkstra's algorithm to compute a shortest path from s to ν in the following graph. You should give main steps.

Answer:

(b) (5 points) Does Dijkstra's algorithm work for the case, where some edges can have negative weights? Why?

Answer:

Question 4 (15 points)

- (a) (10 points) For the list: 2, 1, 5, 8, 9, 10, 4, 7, 6, 13, 14, and 11. Suppose we have sorted the two halves as list1: 1, 2, 5, 8, 9, 10; and list2: 4, 6, 7, 11, 13, 14. Calculate the number of inversions with one number in list1 and the other number in list2 using O(n) operations. Immediate steps are required.
- **(b) (1 points)** Suppose T(1)=1, and T(n)=T(n-1)+n for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?
- (c) (1 points) Suppose T(1)=1, and T(n)=T(n-1)+1 for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?
- (d) (1 points) Suppose T(1)=1, and T(n)=T(n/2)+1 for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?
- (e) (1 points) Suppose T(0)=1, T(1)=1, and $T(n)=T(n-2)+\log_2 n$ for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?
- (f) (1 points) Suppose T(1)=1, and T(n)=T(n/3)+1 for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?

Question 5. (15 points)

Given an array of $n \ge 2$ integers, say [x(1),...,x(n)], we want to find the largest difference d, which is defined to be the max of x(j)-x(i) over all j > i. For example, for x = [22, 5, 8, 10, -3, 1], the largest difference d = x(4)-x(2) = 10-5 = 5.

(a)(10 points) Design a divide-and-conquer algorithm to solve the problem. The running

mark for other methods.)

(a)(10 points) Design a divide-and-conquer algorithm to solve the problem. The running time of your algorithm should be O(n). (Only divide-conquer approach is acceptable. 0

Question 1. (20 points)

- (a) (10 points) For the interval scheduling problem, the set of jobs (s_i, f_i) are as follows: (0,2), (1,3), (2,6), (2,4), (6,9), (8,12), (5,8), and (6,7). Use a greedy algorithm to compute the maximum number of compatible jobs. You should give main steps. What is the running time of the greedy algorithm?
- (b) (8 points) For the interval partitioning problem, the set of lectures (s_i, f_i) are as follows: (0, 1), (0, 3), (1, 4), (2, 6), (2, 4), (4, 5), (3, 5) and (5, 8). Use a greedy algorithm to compute the minimum number of classrooms to accommodate all the lectures. You should give main steps.
- (c) (2 points) For the interval partitioning problem given in (b), what is the depth of the problem?

Solution 1

- (a) Solution:
 - Step 1. Sort all intervals in non-decreasing order by their finishing time f_i : (0, 2), (1, 3), (2, 4), (2, 6), (6, 7), (5, 8), (6, 9), (8, 12).
 - Step 2. Select the first job, and choose the rest jobs one by one if one is compatible with the former job: (0, 2), (2, 4), (6, 7), (8, 12).
 - Running time:

Running time is $O(n \log n)$, where n is the number of intervals. Step 1 (sorting) requires the running time $O(n \log n)$. Step 2 (selecting) requires the running time O(n) since each interval would be visited at most once. Hence, sorting is the dominated part which implies the running time is $O(n \log n)$.

- (b) Step 1. Sort all intervals in non-decreasing order by their starting time s_i: (0, 1), (0, 3), (1, 4), (2, 4), (2, 6), (3, 5), (4, 5), (5, 8).
 - Step 2. Schedule the lectures (intervals) one by one, don't use the new classroom unless necessary. One possible interval partition can be found in Figure 1.

Figure 1: One possible interval partition.

- Step 3. The minimum number of classrooms is 4. Note that the Figure is not the unique but the minimum number of classrooms is unique.
- (c) The depth of a set of intervals is the maximum number of overlapped intervals (lectures) during the whole time line. Hence, the depth is 4

Question 2. (15 points)

- (a) (7 points) Find the minimum spanning tree for the graph in Figure 2 using Kruskal's algorithm.
- (b) (8 points) Find the minimum spanning tree for the graph in Figure 2 using Prim's algorithm.

Figure 2: Graph for Question 2.

Solution 2

- (a) Kruskal's algorithm:
 - Step 1. Sort all edges in non-decreasing order by their weights: (a, d, 1), (s, a, 2), (d, c, 2), (a, b, 5), (s, d, 8), (a, c, 8), (c, v, 8), (b, c, 10), (b, v, 20).
 - Step 2. Select (a, d, 1). $A = \{ (a, d) \}.$
 - Step 3. Select (s, a, 2). $A = \{(a, d), (s, a)\}.$
 - Step 4. Select (d, c, 2). $A = \{ (a, d), (s, a), (d, c) \}.$
 - Step 5. Select (a, b, 5). $A = \{ (a, d), (s, a), (d, c), (a, b) \}.$
 - Step 6. Don't select (s, d, 8) since vertex s and d are in the same connected component. $A = \{(a, d), (s, a), (d, c), (a, b)\}.$
 - Step 7. Don't select (a, c, 8) since vertex a and c are in the same connected component. $A = \{(a, d), (s, a), (d, c), (a, b)\}.$
 - Step 8. Select (c, v, 8). $A = \{(a, d), (s, a), (d, c), (a, b), (c, v)\}.$

- Step 9. Don't select (b, c, 10) since vertex b and c are in the same connected component. $A = \{(a, d), (s, a), (d, c), (a, b), (c, v)\}.$
- Step 10. Don't select (b, v, 20) since vertex b and v are in the same connected component. $A = \{(a, d), (s, a), (d, c), (a, b), (c, v)\}.$
- Step 11. All edges have been visited and therefore Kruskal's algorithm end.

(b) Prim's algorithm:

Step 1. Start from an arbitrary vertex, e.g., s: $A = \emptyset$

Q is the following table. Q can also be written as a set of tuples, i.e., $Q = \{(node, key, parent)\}.$

Node	S	a	b	c	d	v
Key	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$
Parent	NIL	NIL	NIL	NIL	NIL	NIL

Step 2. Choose the vertex s and update key values: $A = \emptyset$.

Node	8	a	b	c	d	v
Key	0	2	$+\infty$	$+\infty$	8	$+\infty$
Parent	NIL	s	NIL	NIL	s	NIL

Step 3. Choose the vertex a and update key values: $A = \{ (s, a) \}.$

Node	s	a	b	c	d	v
Key	0	2	5	8	1	$+\infty$
Parent	NIL	S	a	a	a	NIL

Step 4. Choose the vertex d and update key values:

$$A = \{ (s, a), (d, a) \}.$$

Node	S	a	b	c	d	v
Key	0	2	5	2	1	$+\infty$
Parent	NIL	s	a	d	a	NIL

Step 5. Choose the vertex c and update key values:

$$A = \{ (s, a), (d, a), (c, d) \}.$$

Node	s	a	b	c	d	v
Key	0	2	5	2	1	8
Parent	NIL	s	a	d	a	c

Step 6. Choose the vertex b and update key values: $A = \{(s, a), (d, a), (c, d), (b, a)\}.$

Node	S	a	b	C	d	v
Key	0	2	5	2	1	8
Parent	NIL	s	a	d	a	c

Step 7. Choose the vertex v and update key values: $A = \{(s, a), (d, a), (c, d), (b, a), (v, c)\}.$

Node	s	a	b	C	d	v
Key	0	2	5	2	1	8
Parent	NIL	S	a	d	α	C

Step 8. $Q = \emptyset$ and therefore Prim's algorithm ends.

Question 3. (20 points)

- (a) (15 points) Use Dijkstra's algorithm to compute a shortest path from s to v in Figure 3. You should give main steps.
- (b) (5 points) Does Dijkstra's algorithm work for the case, where some edges can have negative weights? Why?

Figure 3: Graph for Question 3

Solution 3

(a) • Dijkstra's algorithm:

Step 1. Start from the source s and maintain 3 variables. $S = \emptyset$.

Node	s	a	b	c	d	v
distance	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$
π	NIL	NIL	NIL	NIL	NIL	NIL

Step 2. Add s to set S and update distances. $S = \{s\}.$

Node	8	a	b	c	d	v
distance	0	4	$+\infty$	$+\infty$	13	$+\infty$
π	NIL	s	NIL	NIL	s	NIL

Step 3. Add a to set S and update distances. $S = \{ s, a \}.$

Node	S	a	b	C	d	v
distance	0	4	9	$+\infty$	5	$+\infty$
π	NIL	S	a	NIL	a	NIL

Step 4. Add d to set S and update distances. $S = \{ s, a, d \}.$

Node	s	a	b	c	d	v
distance	0	4	9	10	5	$+\infty$
π	NIL	s	a	d	a	NIL

Step 5. Add b to set S and update distances. $S = \{ s, a, d, b \}.$

Node	S	a	6	c	d	v
distance	0	4	9	10	5	29
π	NIL	s	a	d	a	b

Step 6. Add c to set S and update distances. $S = \{ s, a, d, b, c \}.$

Node	S	a	b	c	d	v
distance	0	4	9	10	5	14
π	NIL	S	a	d	a	c

Step 7. Add v to set S.

$$S=\{\,s,a,d,b,c,v\,\}.$$

Node	8	a	b	c	d	v
distance	0	4	9	10	5	14
π	NIL	s	a	d	a	c

Step 8. Set S contains all vertices in the given graph and therefore Dijkstra's algorithm ends.

5

Question 4 (15 points)

(a) (10 points) For the list: 2, 1, 5, 8, 9, 10, 4, 7, 6, 13, 14, and 11. Suppose we have sorted the two halves as list1: 1, 2, 5, 8, 9, 10; and list2: 4, 6, 7, 11, 13, 14. Calculate the number of inversions with one number in list1 and the other number in list2 using O(n) operations. Immediate steps are required.

Answer: Similar to the slides.

(b) (1 points) Suppose T(1)=1, and T(n)=T(n-1)+n for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?

Answer: $T(n)=T(n-1)+n=\{T(n-2)+n-1\}+n=...T(1)+2+3+...n=O(n^2)$

(c) (1 points) Suppose T(1)=1, and T(n)=T(n-1)+1 for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?

Answer: $T(n)=T(n-1)+1=\{T(n-2)+1\}+1=...T(1)+1+1+...+1. // (n-1) 1$'s =O(n)

(d) (1 points) Suppose T(1)=1, and T(n)=T(n/2)+1 for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?

Answer: $T(n)=T(n/2)+1=\{T(n/2^2)+1\}+1=T(n/2^3)+1+1+1$ = $T(n/2^k)+k$. When n/2k=1, we have $k=\log_2 n$. Thus, $T(n)=T(n/2^k)+k=T(1)+\log_2 n=O(\log_2 n)$.

(e) (1 points) Suppose T(0)=1, T(1)=1, and $T(n)=T(n-2)+\log_2 n$ for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?

Answer: $T(n)=T(n-2)+\log_2 n=\{T(n-2-2)+\log_2 (n-2)\}+\log_2 n=...$ = $T(n-2k)+\log_2 (n-2(k-1))+\log_2 (n-2)+\log_2 n$. When n-2k=1, ' $T(n)=T(1)+\log_2(3)+...+\log_2 (n-2)+\log_2 n<=n\log_2 n$. SO, $T(mn)=O(n\log_2 n)$.

(f) (1 points) Suppose T(1)=1, and T(n)=T(n/3)+1 for $k=2,3,4,\ldots$ What is T(n) in terms of big O notation?

Answer: $T(n)=T(n/3)+1=\{T(n/3^2)+1\}+1=...T(n/3^k)+k=T(1)+\log_3 k$. (When $n/3^k=1$, $k=\log_3 n$).