Tutorial 6

Dynamic Programming

Date	of	the	Session:	٠.												
					•	٠.	٠	•	٠	٠	٠		٠			

6.1 PRE-TUTORIAL

1. What is Dynamic Programming?

Dynamic Programming is a technique that breaks the problems into sub-problems is save the vesult for future purposes. So that we do not need to compute the result again.

· The main use of dynamic programming is to solve aptimization.

limitations: The method is applicable to only those problems which pos

2. State the different types of Dynamic Programming?

The different types of dynamic programming are knapsack & travelling salesman.

6.2 IN-TUTORIAL

Maximuze the profit for the 0/1 knapsack problem using dynamic programming when W=10

Profit	Weight
10	5
40	-1
30	6
50	3

Given
$$n = 4$$
; $\omega = 10$

$$s^{i+1} = s^{i} \cup s^{i}$$

$$s^{i} = s^{0} \cup s^{0}$$

$$s^{0} = \{(0,0)^{i}\}$$

$$s^{0} = \{(0,0), (10,5)^{i}\}$$

$$s^{2} = s^{1} \cup s^{i} = s^{1} = \{(0,0), (10,5)^{i}\}$$

$$s^{3} = s^{1} \cup s^{i} = s^{1} = \{(0,0), (10,5)^{i}\}$$

$$s^{3} = s^{2} \cup s^{2}$$

$$s^{3} = s^{2} \cup s^{2}$$

$$s^{3} = \{(30,6), (40,11), (40,4), (50,4), (30,6), (70,10)^{i}\}$$

$$s^{4} = s^{2} \cup s^{2}$$

$$s^{4} = (0,0), (0,5), (40,4), (50,4), (30,6), (70,10), (50,3), (60,8), (90,7)^{i}\}$$

$$x^{4} = 1 \quad s^{4} \in (40,7) \text{ ss } s^{3} \in (40,4)$$

$$x^{2} = 0 \quad s^{3} \in (40,4) \text{ ss } s^{4} \in (40,4)$$

$$x^{2} = 0 \quad s^{1} \in (0,0) \text{ ss } s^{0} \in (0,0)$$

$$40 + 50 = 90$$

POST-TUTORIAL

Territa de la companya della company

6.3

Explain the concept of travelling salesman problem with real-time example colution

The travelling salesman problem (750) is a classic optimization problem in computer science & operations research. The goal is to find the shortest possible route that allows a salesman to visit a set of cities, exactly a return to the standing city.

2. Given a set of cities and the distance between every pair of cities, the problem is to find the Given a second course that visits every city exactly once and returns to the starting point

Solution:

$$Co(V/E) = \begin{cases} 0 & \text{if } i=j \\ Cij & \text{if } (i,j) \end{cases}$$

$$C(i, v) = \min \left\{ d[i, i] + c(i, v - \{i\}) \right\}$$
 $i \in v \in i \in v$

soli) First of all we will split the Groph () into sub-problem.

We are choosing node-limitial node.

step 1:

Step 2:

Step 2!

$$co \{2, \{3\}, 1\} = min [d(2,3) + c(3, \phi, 1)]^{2}$$
 $min \{9+6\} = 15$
 $co \{2, \{9\}, 1\} = min [d(2,9) + c(4,6, 1)]^{2}$
 74

$$\cos\left(2\sqrt{93},1\right)^2 = \min\left\{d\left(2\sqrt{9}\right) + C\left(4\sqrt{6}\right)\right\}^2$$

$$= \min\left\{10 + 8\right\}^2 = 18$$

$$683,823,13 = min \{d(3,2) + c(3,4,13)\}$$

$$= 813 + 53 = 18$$

$$(0^{\frac{1}{2}3}, \frac{1}{4}3, \frac{1}{3}) = \min \{d(3, 4) + c(4, 4, 1)\}$$

= 9+8=17

$$Co\{4, \{3\}, 1\} = \min\{d(3)\} + c\{3, 0, 1\}\}$$

$$= 12 + 6$$

$$= 18$$

$$(2, \{3,4\}, 1] = \min\{d[2,2] + c(2,\{3\},1], d[2,4] + c[2,443,1]\}$$

$$= \min\{9+15,10+18\} = 24$$

$$c\{3, \{2, 4\}, 1\} = \min\{d\{3, 2\} + c\{3, \{23, 1\}, d\{3, 4\} + c\{3, \{4\}, 1\}\}\}$$

= $\min\{8+18, 9+17\} = 26$.

$$c(4, \{2,3\}, 1) = \min\{d(4, 2) + c(4, \{2\}, 1), d(4, 3) + c(4, \{2\}, 1)\}$$

= $\min\{8 + 13, 9 + 18\} = 24$

$$C[1,[2,3,7],1] = \min\{d(i,9) + C[2,[3,7],1], d(i,3) + C[3,[2,7],1], d(i,4) + C[4,[2,3],1]\}$$

The path is 1-2-3-4-1

COLUMN LAKER HERENTERS AND ASSESSED OF THE PARTY OF THE P

76

South Like Hilling the second

Mathematical Programming

Kaling and his his For Evaluator's Use only

Evaluators Comments

Evaluator's Observation

Marks Secured out of 50

Full Name of the Evaluator:

Signature of the Faluator:

Date of Evaluation: