Artificial Intelligence and Machine Learning Barbara Caputo

x is an observation for which:

x is an observation for which:

```
if P(\omega_1 \mid x) > P(\omega_2 \mid x) True state of nature = \omega_1 if P(\omega_1 \mid x) < P(\omega_2 \mid x) True state of nature = \omega_2
```

x is an observation for which:

if
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 True state of nature = ω_1 if $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ True state of nature = ω_2

Therefore:

whenever we observe a particular x, the probability of error is :

x is an observation for which:

if
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 True state of nature = ω_1 if $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ True state of nature = ω_2

Therefore:

whenever we observe a particular x, the probability of error is :

$$P(error \mid x) = P(\omega_1 \mid x)$$
 if we decide ω_2
 $P(error \mid x) = P(\omega_2 \mid x)$ if we decide ω_1

Bayes Decision Rule minimizes probability of error

Bayes Decision Rule minimizes probability of error

Decide ω_1 if $P(\omega_1 \mid x) > P(\omega_2 \mid x)$; otherwise decide ω_2

Bayes Decision Rule minimizes probability of error

Decide ω_1 if $P(\omega_1 \mid x) > P(\omega_2 \mid x)$; otherwise decide ω_2

Therefore:

$$P(error \mid x) = min [P(\omega_1 \mid x), P(\omega_2 \mid x)]$$

(Bayes decision)

Bayes Decision Theory – Continuous Features

- Generalization of the preceding ideas
 - Use of more than one feature
 - Use more than two states of nature
 - Allowing actions and not only decide on the state of nature
 - Introduce a loss of function which is more general than the probability of error

Loss Function

- Allowing actions other than classification primarily allows the possibility of rejection
- Refusing to make a decision in close or bad cases!
- The loss function states how costly each action taken is

Let $\{\omega_1, \ \omega_2, ..., \ \omega_c\}$ be the set of c states of nature (or "categories")

Let $\{\omega_1, \omega_2, ..., \omega_c\}$ be the set of c states of nature (or "categories")

Let $\{\alpha_1, \alpha_2, ..., \alpha_a\}$ be the set of possible actions

Let $\{\omega_1, \omega_2, ..., \omega_c\}$ be the set of c states of nature (or "categories")

Let $\{\alpha_1, \alpha_2, ..., \alpha_a\}$ be the set of possible actions

Let $\lambda(\alpha_i \mid \omega_i)$ be the loss incurred for taking

action α_i when the state of nature is ω_i

 $R = Sum \ of \ all \ R(\alpha_i \mid x) \ for \ i = 1,...,a$

 $R = Sum \ of \ all \ R(\alpha_i \mid x) \ for \ i = 1,...,a$

Conditional risk

Minimizing R \longleftarrow Minimizing $R(\alpha_i \mid x)$ for i = 1, ..., a

 $R = Sum \ of \ all \ R(\alpha_i \mid x) \ for \ i = 1,...,a$

Conditional risk

Minimizing R \leftarrow Minimizing $R(\alpha_i \mid x)$ for i = 1,..., a

Expected Loss with action i

$$R(\alpha_i \mid x) = \sum_{j=1}^{j=c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid x)$$

 $R = Sum \ of \ all \ R(\alpha_i \mid x) \ for \ i = 1,...,a$

Conditional risk

Minimizing R \longleftarrow Minimizing $R(\alpha_i \mid x)$ for i = 1,..., a

Expected Loss with action i

$$R(\alpha_i | x) = \sum_{j=1}^{j=c} \lambda(\alpha_i | \omega_j) P(\omega_j | x)$$

Select the action α_i for which $R(\alpha_i \mid x)$ is minimum

R is minimum and R in this case is called the Risk

Bayes risk = best performance that can be achieved

```
\alpha_1 : deciding \omega_1
```

$$lpha_2$$
 : deciding ω_2

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$$

 α_1 : deciding ω_1

 α_2 : deciding ω_2

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$$

loss incurred for deciding ω_i when the true state of nature is ω_i

 α_1 : deciding ω_1

 α_2 : deciding ω_2

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$$

loss incurred for deciding ω_i when the true state of nature is ω_j

Conditional risk:

$$R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} P(\omega_1 \mid \mathbf{x}) + \lambda_{12} P(\omega_2 \mid \mathbf{x})$$

$$R(\alpha_2 \mid x) = \lambda_{21} P(\omega_1 \mid x) + \lambda_{22} P(\omega_2 \mid x)$$

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

This results in the equivalent rule : decide ω_1 if:

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

This results in the equivalent rule : decide ω_1 if:

$$(\lambda_{21} - \lambda_{11}) P(\mathbf{x} \mid \omega_1) P(\omega_1) >$$

$$(\lambda_{12} - \lambda_{22}) P(\mathbf{x} \mid \omega_2) P(\omega_2)$$

and decide ω_2 otherwise

Minimum-Error-Rate Classification

Actions are decisions on classes

If action α_i is taken and the true state of nature is ω_j then: decision is correct if i = j and in error if $i \neq j$

Seek a decision rule that minimizes the *probability of error* which is the *error rate*

Let's take a break!

Maximum Likelihood

- Need to measure how well we do
- For density estimation we care about

$$\Pr\left\{X\right\} = \prod_{i=1}^{m} p(x_i)$$

- Finding a that maximizes P(X) will peak at all data points since x_i explains x_i best ...
- Maxima are delta functions on data.
- Overfitting!

Overfitting

Likelihood on training set is much higher than typical.

Overfitting

Underfitting

Likelihood on training set is very similar to typical one.

Too simple.

Model Selection

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best

Model Selection

- Validation
 - Use some of the data to estimate density.
 - Use other part to evaluate how well it works
 - Pick the parameter that works best

$$\mathcal{L}(X'|X) := \frac{1}{n'} \sum_{i=1}^{n'} \log \hat{p}(x_i')$$

• Leave-one-out Crossvalidation

- Leave-one-out Crossvalidation
 - Use almost all data to estimate density.

- Leave-one-out Crossvalidation
 - Use almost all data to estimate density.
 - Use single instance to estimate how well it works

- Leave-one-out Crossvalidation
 - Use almost all data to estimate density.
 - Use single instance to estimate how well it works

$$\log p(x_i|X\backslash x_i) = \log \frac{1}{n-1} \sum_{j\neq i} k(x_i, x_j)$$

- Leave-one-out Crossvalidation
 - Use almost all data to estimate density.
 - Use single instance to estimate how well it works

$$\log p(x_i|X\backslash x_i) = \log \frac{1}{n-1} \sum_{j\neq i} k(x_i, x_j)$$

This has huge variance

- Leave-one-out Crossvalidation
 - Use almost all data to estimate density.
 - Use single instance to estimate how well it works

$$\log p(x_i|X\backslash x_i) = \log \frac{1}{n-1} \sum_{j\neq i} k(x_i, x_j)$$

- This has huge variance
- Average over estimates for all training data

- Leave-one-out Crossvalidation
 - Use almost all data to estimate density.
 - Use single instance to estimate how well it works

$$\log p(x_i|X\backslash x_i) = \log \frac{1}{n-1} \sum_{j\neq i} k(x_i, x_j)$$

- This has huge variance
- Average over estimates for all training data
- Pick the parameter that works best

- Leave-one-out Crossvalidation
 - Use almost all data to estimate density.
 - Use single instance to estimate how well it works

$$\log p(x_i|X\backslash x_i) = \log \frac{1}{n-1} \sum_{i \neq i} k(x_i, x_j)$$

- This has huge variance
- Average over estimates for all training data
- Pick the parameter that works best
- Simple implementation

$$\frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{n}{n-1} p(x_i) - \frac{1}{n-1} k(x_i, x_i) \right] \text{ where } p(x) = \frac{1}{n} \sum_{i=1}^{n} k(x_i, x_i)$$

k-fold Crossvalidation

- k-fold Crossvalidation
 - Partition data into k blocks (typically 10)

- k-fold Crossvalidation
 - Partition data into k blocks (typically 10)
 - Use all but one block to compute estimate

- k-fold Crossvalidation
 - Partition data into k blocks (typically 10)
 - Use all but one block to compute estimate
 - Use remaining block as validation set

- k-fold Crossvalidation
 - Partition data into k blocks (typically 10)
 - Use all but one block to compute estimate
 - Use remaining block as validation set
 - Average over all validation estimates

Carnegie menon em versity

- k-fold Crossvalidation
 - Partition data into k blocks (typically 10)
 - Use all but one block to compute estimate
 - Use remaining block as validation set
 - Average over all validation estimates

$$\frac{1}{k} \sum_{i=1}^{k} l(p(X_i|X\backslash X_i))$$

- k-fold Crossvalidation
 - Partition data into k blocks (typically 10)
 - Use all but one block to compute estimate
 - Use remaining block as validation set
 - Average over all validation estimates

$$\frac{1}{k} \sum_{i=1}^{k} l(p(X_i|X\backslash X_i))$$

 Almost unbiased (e.g. via Luntz and Brailovski, 1969) (error is for (k-1)/k sized set)

- k-fold Crossvalidation
 - Partition data into k blocks (typically 10)
 - Use all but one block to compute estimate
 - Use remaining block as validation set
 - Average over all validation estimates

$$\frac{1}{k} \sum_{i=1}^{k} l(p(X_i|X\backslash X_i))$$

- Almost unbiased (e.g. via Luntz and Brailovski, 1969) (error is for (k-1)/k sized set)
- Pick best parameter

