Vanguard

NEW UI Analysis

CX Analyst Team

INTRODUCTION

Vanguard is on a mission to offer more personalized financial advice, high-quality investments, retirement tools, and relevant market insights for their clients.

Main project pursuit:

"Did the new UI lead to higher completion rates?"

- Upgrade to a more modern & intuitive design
- Timely in-context prompts

3 month period (3/15/2017-6/20/2017)

DATA OVERVIEW

Client Profiles

Demographics, Tenure, Balance, etc. Unique Client ID: 70,609

Digital Footprints

Visit ID, Process Steps, Timestamps Unique Client ID: 120,157

Experiment Roster

Variation: Test, Control, NA (20,109)

Unique Client ID: 70,609

DATA WORKFLOW

Data Cleaning

Duplicates, merge and split datasets, etc.

Data Analysis

- Exploratory data analysis
- KPI calculation
- Hypothesis testing

Data Visualization

Python and tableau

EXPLORATORY DATA ANALYSIS

Vanguards: A/B Testing EDA

We explore each variables in client profile dataset.

We compare client's demographics information between test and control group to identify any potential biases.

Comparing the number of client visiting the platform between test and control group.

AGE & TENURE DISTRIBUTION

From youths to seniors...

New clients to long-standing clients...

Histogram shows 2 distinct peaks in age

Histogram shows 3 distinct peaks in tenure

CLIENT PROFILE CLUSTERS

Using K-Means Clustering we were able to identify 3 different distinct client profiles:

Cluster A ~ JOJO ~

29 yrs old 9 yr tenure 51,534.15 balance

Cluster B ~ VERONICA ~

48 yrs old 12 yr tenure 81,797.34 balance

Cluster C ~ KARL ~

65 yrs old 15 yr tenure 122,516.38 balance

KEY PERFORMANCE INDICATORS

The proportion of users who reach the final 'confirm' step

A process is considered complete when the users follow the process step sequentially:

start > step 1 > step 2 > step 3 > confirm

Average Session Duration

Error Rates

COMPLETION RATES (CR)

Control Group

start 23,397 → 100.00%

step_1 20,082 → 85.83%

step_2 18,633 → 79.64%

step_3 17,356 → 74.18%

confirm 15,329 → 65.52%

Test Group

start 26.679 → 100.00%

step_1 24,201 → 90.71%

step_2 22,243 → 83.37%

step_3 20,834 **→** 78.09%

confirm 18,445 → 69.14%

Hypothesis Testing

H ₀	CR_test <= CR_control
H ₁	CR_test > CR_control

What are the completion rate (CR) results of the A/B test?

- ↑ 3.62 pp in test group CR
- z-stat = 8.62
- p-value = 0.00 reject H₀

CR:

Control: 65.52%

Test: 69.14%

COMPLETION RATES (CR)

Control Group

Test Group

start

23,397 → 100.00%

step_1

20,082 → 85.83%

step_2

18,633 → 79.64%

step_3

17,356 **→** 74.18%

confirm

15,329 → 65.52%

start

26,679 **→** 100.00%

step_1

24,201 → 90.71%

step_2

22,243 → 83.37%

step_3

20,834 → 78.09%

confirm

18,445 → 69.14%

CR: Control: 65.52% → ▲<5% **← Test:** 69.14%

Hypothesis Testing

CR_test >= CR_control + 5%

H₁ CR_test < CR_control + 5%

Cost-effectiveness Threshold

↑ 3.62 pp in test group CR

- z-stat = -4.88
- p-value = 0.00 reject H₀

With a ▲ of less than 5%, that is statistically reinforced, this A/B test **does not** meet the minimum improvement requirements

COMPLETION RATES (CR)

Hypothesis Testing

H ₀	CR_test <= CR_control
H ₁	CR_test > CR_control

Which steps performed better?

From Start - Step 1

- z-stat = 17.04
- p-value = 0.00 reject H₀

From Step 2 - Step 3

- z-stat = 2.11
- p-value = 0.02 **reject** H₀

KEY PERFORMANCE INDICATORS

Completion Rates

The proportion of users who reach the final 'confirm' step

Average Session Duration

The average duration users spend in the process

Keep in mind that despite there being 5 total steps, we are looking at the timing from one step to another → resulting in there being 4 time values

Error Rates

AVERAGE SESSION DURATION

Did the test group's avg. duration perform differently to the control group's? [3:01 vs 3:28]

- z-stat = -28.17
- p-value = 0.00 reject H₀

What about the individual steps?

Hypothesis Testing

H ₀	AD_test = AD_control
H ₁	AD_test <> AD_control

AVERAGE SESSION DURATION

Confirm **Test Group Start Total** Step 1 Step 2 Step 3 70.00 11.55 27.25 72.55 03:01 **Control Group** Confirm Start Step 1 Step 2 Step 3 **Total** 21.43 24.05 71.65 90.65 03:28

Did the test group's avg. duration perform differently to the control group's? [3:01 vs 3:28]

- z-stat = -28.17
- p-value < 0.00 reject H₀

What about the individual steps?

	Start	Step-1	Step-2	Step-3
t-value	-79.47	15.19	-7.48	-25.09
p-value	< 0.00	< 0.00	< 0.00	< 0.00

Test 📈

Start: Step1 Step2: Step3 Step3: Conf.

Hypothesis Testing

H₁ AD_test <> AD_control

KEY PERFORMANCE INDICATORS

Completion Rates

The proportion of users who reach the final 'confirm' step.

Average Session Duration

The average duration users spend on each step.

Error Rates

The proportion of users who go back to a previous step

If a user went back from confirm to start, it is not considered an error as we assume the session ended correctly and the user started a new session

ERROR RATES

Overall error rates in client %

Hypothesis Testing

Does the test group have a sig. different error rate than the control group?

• z-stat = 20.12 & p-value = $0.00 \rightarrow \text{reject H}_0$

Result is not surprising, given the MVP nature of the experiment

ERROR RATES

Error occurrence by step per visit

	Control	Test
Step 1	2,491	6,404
Step 2	2,163	4,780
Step 3	4,247	4,744
Confirm	228	75

	Ctrl ER	Test ER	z-stat	p-value
Step 1	10.04 %	18.89 %	29.56	0.00
Step 2	9.23 %	16.49 %	24.39	0.00
Step 3	21.74 %	20.52 %	-3.06	0.00

H_n No difference b/w steps | H₁ There's a difference

- Cnrl group has lower ER, apart from...
- **Step 3**; only lower ER for the test group 👀
- Could explain why S.3 had a shorter duration

Test CR outperformed Crtl CR, despite the high ER €€

EXPERIMENT EVALUATION

	Control	Test	Winning Hypothesis	Better Performer
Completion Rates	65.52%	69.14%	CR_test > CR_control; CR_test < CR_control + 5%	Test
Average Session Duration	03:28	03:01	AD_test <> AD_control	Test
Error Rates	24.72%	32.87%	ER_test <> ER_control	Control

Experiment design observations:

- The sampling of the two groups was done well
 - o Results did not appear skewed as each KPI result echoed each other
- The duration of the test was enough to reach a sturdy conclusion

Beneficial additional data:

- Difficult to interpret behaviour (different tabs? were some errors typo corrections?)
- More UI details in the project brief (longer/shorter duration is better?)

CONCLUSION

	CR	Duration	ER	
Overall	Test	Test	Ctrl	
Start to Step 1	Test sig. ↑	Test shorter	Ctrl	Test outperformed Ctrl in 2/3 KPIs
Step 1 to Step 2	Ctrl	Ctrl	Ctrl	
Step 2 to Step 3	Test sig. ↑	Test shorter	Test ER↓	Test outperformed
Step 3 to Confirm.	Ctrl	Test shorter	Ctrl	•

~Insights Box~

While the test UI, in its current form, **did not** meet the cost-effective threshold, it was *very* close

→ just shy by 1.38 pp

Look into clusters; **Cluster A** (Jojo) has compelling results

- Jojo (CA) had the lowest ER
- 72% CR → passing the C.E. threshold

Our recommendations

1] Run another A/B test, using the insights from this A/B test

2] Reduce as many bugs /tech errors as feasibly possible for the test UI

TABLEAU VISUALIZATION

TEAMWORK & PROJECT MANAGEMENT

Two dataframes with a series of unique skills spot a column in common...

- ...giving both a reference to harmoniously merge on $\& \! ...$
- ...granting both access to a wider range of skills when combined
- Organized in a shared working document
- Meet-up, discuss, go over completed tasks, agree on next steps, & 🔁
- Communicate when an issue arises

THANKS

CX Analyst Team

Aisyah Amatul Ghina | Sasha Crowe

ERROR RATES

	Ctrl ER	Test ER	z-stat	p-value
Step 1	10.04 %	18.89 %	29.56	< 0.00
Step 2	9.23 %	16.49 %	24.39	< 0.00
Step 3	21.74 %	20.52 %	-3.06	< 0.00

Error occurrence by step per visit

	Control	Test
Step 1	2,491	6,404
Step 2	2,163	4,780
Step 3	4,247	4,744
Confirm	228	75

- Working with large datasets in long format to calculate performance metrics can be confusing and often involves some trial and error.
- Understanding and selecting the appropriate statistical test for each metric.
- Operating with infinite directions & dealing with different applicable meanings; making decisions when faced with uncertainties.

- Expanding knowledge in Python methods for data analysis, such as diff(), shift(), etc.
- Gain a clearer understanding of how to perform hypothesis testing and determine when to use a z-test or t-test, as well as whether to apply a two-sided or one-sided approach.
- It's important to pay attention to underlying assumptions.