

Statistics Foundation

JANUARY, 07 2020 | SAO PAULO

Measures of Central Tendency:

Which is the single best value to represent your data.

Mean, Median, Mode

Harmonic mean, geometric mean

Descriptive Statistics - Mean and Median

Descriptive Statistics - Mean and Median

$$Mean = \frac{10 + 31 + 17 + 21 + 25 + 17 + 12}{7}$$

$$Mean = 19$$

$$Mean = \frac{10 + 31 + 17 + 21 + 25 + 17 + 12 + 1000}{8}$$

$$Mean = 141,625$$

10 12 17 17 21 25 31 1000
$$Median = \frac{17+21}{2} = 19$$

Descriptive Statistics - Mean and Median

$$Mean = \frac{10 + 31 + 17 + 21 + 25 + 17 + 12}{7}$$

$$Mean = 19$$

$$Mean = \frac{10 + 31 + 17 + 21 + 25 + 17 + 12 + 1000}{8}$$

 $Arithmetic\ Mean = 141,625$

10 12 17 17 21 25 31 1000
$$Median = \frac{17+21}{2} = 19$$

- Measures of Dispersion:

How the data varies? How do they jump around?

Variance, Standard Deviation, Range, InterQuartile Range

Mean Deviation = $(x_i - \overline{x})$

Squared Mean Deviation = $(x_i - \overline{x})^2$

Variance =
$$\frac{\sum (x_i - \overline{x})^2}{n}$$

Variance =
$$\frac{\sum (x_i - \overline{x})^2}{n-1}$$

- Gaussian Normal Distribution:

Distribution is a formula that tells you how likely a particular value is to occur in your data.

Descriptive Statistics - https://galtonboard.com/probabilityexamplesinlife

Descriptive Statistics - https://galtonboard.com/probabilityexamplesinlife

Effect of σ

Low σ :

Values closer to the mean

High σ :

Values far away from the mean

