

FCC REPORT

(Bluetooth)

Applicant: Guizhou Fortuneship Technology Co., Ltd.

2nd Floor, Factory Building 4, Hi-Tech Industrial Park, Xinpu

Address of Applicant: Economic Development Zone, Xinpu New District, Zunyi City,

Guizhou Province, P. R. China

Equipment Under Test (EUT)

Product Name: True Wireless Bluetooth Earbuds

Model No.: VD001, DOB T1, T-08

FCC ID: 2ALQJ-VD001

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Aug., 2018

Date of Test: 27 Aug., to 18 Sep., 2018

Date of report issued: 18 Sep., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE180811102

2 Version

Version No.	Date	Description
00	18 Sep., 2018	Original

Tested by: 18 Sep., 2018

Test Engineer

Reviewed by: Date: 18 Sep., 2018

Project Engineer

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	_
4 TEST SUMMARY	4
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF E.U.T.	
5.3 TEST ENVIRONMENT AND TEST MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.5 MEASUREMENT UNCERTAINTY	
5.6 LABORATORY FACILITY	6
5.7 LABORATORY LOCATION	
5.8 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 Antenna Requirement	8
6.2 CONDUCTED EMISSIONS	
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH	
6.5 CARRIER FREQUENCIES SEPARATION	
6.6 HOPPING CHANNEL NUMBER	
6.7 DWELL TIME	
6.9 BAND EDGE	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 Spurious Emission	
6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	53
8 EUT CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna Requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Spurious Emission	15.205 & 15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

General Information 5

5.1 Client Information

Applicant:	Guizhou Fortuneship Technology Co., Ltd	
Address:	2nd Floor, Factory Building 4, Hi-Tech Industrial Park, Xinpu Economic Development Zone, Xinpu New District, Zunyi City, Guizhou Province, P. R. China	

5.2 General Description of E.U.T.

Product Name:	True Wireless Bluetooth Earbuds
Model No.:	VD001, DOB T1, T-08
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	-3.1 dBi
Power supply:	Headphone battery: 1. DC 3.7V(LIR 2J1254C 18B) (worse case) 2. DC 3.7V(Li-ion ZeniPower) Charging box battery: Rechargeable Li-ion polymer Battery DC3.7V, 420mAh
Charging case:	Input: DC5V,500mA Output: DC5V,250mA
Remark:	 Model No.: VD001, DOB T1, T-08 were identical inside, the electrical circuit design, layout, components used and internal wiring, only difference being model name and colour. The report only reflects the worst mode.

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		
Remark: Cl	nannel 0, 39 &78	3 selected fo	or GFSK, π/4-D	QPSK and 8	BDPSK.		

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
Azumi	Adapter	C01B	N/A	N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1808111

Report No: CCISE180811102

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement: FCC Part 15 C Section 15.203 & 247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a Internal antenna which permanently attached, and the best case gain of the antenna is -3.1 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto		
Limit:	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the log	arithm of the frequency.		
Test setup:	Reference	e Plane		
	AUX Equipment E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Hopping mode			
Test results:	Pass			
	ı			

Measurement Data:

Product name:	True Wireless Bluetooth Earbuds	Product model:	VD001
Test by:	YT	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor		Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	dBu∀	dBu√	<u>dB</u>	
1	0.162	39.40	0.17	10.77	50.34	65.34	-15.00	QP
2	0.162	24.56	0.17	10.77	35.50	55.34	-19.84	Average
3	0.186	21.97	0.16	10.76	32.89	54.20	-21.31	Average
4	0.222	35.32	0.14	10.76	46.22	62.74	-16.52	QP
5	0.246	31.88	0.14	10.75	42.77	61.91	-19.14	QP
1 2 3 4 5 6 7 8 9	0.246	17.96	0.14	10.75	28.85	51.91	-23.06	Average
7	0.529	29.55	0.12	10.76	40.43		-15.57	
8	0.538	19.57	0.12	10.76	30.45			Average
9	0.720	20.83	0.13	10.78	31.74		-24.26	
10	0.792	10.38	0.13	10.81	21.32	46.00	-24.68	Average
11	3.700	9.76	0.18	10.90	20.84			Average
12	3.720	21.24	0.18	10.90	32.32		-23.68	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	True Wireless Bluete	ooth Earbuds	Product model:	VD001	
Test by:	YT		Test mode: BT Tx mode		
Test frequency:	150 kHz ~ 30 MHz		Phase:	Neutral	
Test voltage:	AC 120 V/60 Hz		Environment:	Temp: 22.5°C Huni: 55%	
80 Level (dBuV) 70 60 50 40 20 10			12	FCC PART 15.247 QP FCC PART 15.247 AV	
0.15 .2	.5 1	2 Frequency	5 (MUz)	10 20 30	
Fre		Cable Loss Leve	Limit Ov el Line Lim	er it Remark db	
1 0.16 2 0.16 3 0.21 4 0.21 5 0.24 6 0.52 7 0.52 8 0.78 9 1.10 10 1.70 11 3.68 12 3.72	2 24.15 0.97 1 35.75 0.93 1 21.78 0.93 6 32.64 0.95 9 28.54 0.97 9 20.23 0.97 8 10.90 0.97 0 17.25 0.97 7 9.97 0.98 1 11.33 1.00	10. 77 50. 1 10. 77 35. 8 10. 76 47. 4 10. 76 33. 4 10. 76 40. 2 10. 76 31. 9 10. 81 22. 6 10. 88 29. 1 10. 94 21. 8 10. 90 34. 8	39 55.34 -19. 14 63.18 -15. 17 53.18 -19. 34 61.91 -17. 27 56.00 -15. 36 46.00 -23. 38 46.00 -26. 39 46.00 -24. 23 46.00 -22.	45 Average 74 QP 71 Average 57 QP 73 QP 04 Average 32 Average 90 QP 11 Average 77 Average	
Notes:					

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	GFSK mo	de	
Lowest channel	4.89	30.00	Pass
Middle channel	4.41	30.00	Pass
Highest channel	5.19	30.00	Pass
	π/4-DQPSK i	mode	
Lowest channel	5.42	21.00	Pass
Middle channel	4.81	21.00	Pass
Highest channel	4.96	21.00	Pass
	8DPSK mo	ode	
Lowest channel	5.60	21.00	Pass
Middle channel	5.54	21.00	Pass
Highest channel	5.27	21.00	Pass

Test plot as follows:

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data:

Toot channel		20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	848	1248	1224	
Middle	840	1248	1218	
Highest	852	1248	1218	

Test plot as follows:

6.5 Carrier Frequencies Separation

olo odiffici i requestiolog	,		
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	a) 0.025MHz or the 20dB bandwidth (whichever is greater)b) 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
	GFSK				
Lowest	1004	852.00	Pass		
Middle	1004	852.00	Pass		
Highest	1004	852.00	Pass		
	π/4-DQPSK mode				
Lowest	1000	832.00	Pass		
Middle	1000	832.00	Pass		
Highest	1000	832.00	Pass		
	8DPSK mode				
Lowest	1008	816.00	Pass		
Middle	1004	816.00	Pass		
Highest	1004	816.00	Pass		

Note: According to section 6.4

		_
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	852	852.00
π/4-DQPSK	1248	832.00
8DPSK	1224	816.00

Test plot as follows:

6.6 Hopping Channel Number

Toot Doguiroment	CCC Dort 45 C Continu 45 247 (a)(4)	
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz,	
	Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013 and KDB DA00-705				
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak				
Limit:	0.4 Second				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Hopping mode				
Test results:	Pass				

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result	
	DH1	0.14400			
GFSK	DH3	0.27648	0.4	Pass	
	DH5	0.31893			
	2-DH1	0.14272			
π/4-DQPSK	2-DH3	0.27552	0.4	Pass	
	2-DH5	0.31893			
	3-DH1	0.14400			
8DPSK	3-DH3	0.27360	0.4	Pass	
	3-DH5	0.31637			

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.450*(1600/(2*79))*31.6=144.00ms DH3 time slot=1.728*(1600/(4*79))*31.6=276.48ms DH5 time slot=2.990*(1600/(6*79))*31.6=318.93ms

Test plot as follows:

Report No: CCISE180811102

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement:

FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and DA00-705				
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Non-hopping mode and hopping mode				
Test results:	Pass				

Test plot as follows:

6.9.2 Radiated Emission Method

6.9.2 Radiated Emission Method								
Test Requirement:	FCC Part 15 C		5.209	and 15.205				
Test Method:	ANSI C63.10: 2							
Test Frequency Range:	2.3GHz to 2.50	GHz						
Test Distance:	3m					1		
Receiver setup:	Frequency	Detector RBW VBW Remark					Remark	
	Above 1GHz				Peak Value			
	7.5576 15112	RMS		1MHz	3M	3MHz Average Va		
Limit:	Frequency Limit (dBuV/m @3m) Remark						Remark	
	Above 1GHz 54.00 Averag				erage Value			
	Above re	71 12		74.00		F	Peak Value	
	Ground Reference Plane Test Receiver Test Receiver							
Test Procedure:	ground at a determine the second at a determine the second antenna, who tower. 3. The antennation ground to de horizontal at measureme 4. For each surand then the second and the rotal maximum results. The test-recurs Specified Bases. If the emission limit specified EUT would a 10dB marginist.	3 meter cane position as set 3 me inch was eading. Seiver system and width we inch level of ed, then test be reported in would be	waried a polar mission was to turned the Esting of the re-test of the re-test of the re-test of the test of the re-test of the	r. The table was en highest radial away from the ed on the top of the ed on the top of the ed on the EUT was set to Peak aximum Hold I EUT in peak mould be stoppherwise the emerged to the ed on th	as rotate tition. interfer f a varie ter to for the fir antenna as arrar as from ees to 3 Detect Mode. Ode wa ed and hissions ne using the strong as a rotate the first term of the first term o	rence-lable-hour me eld strena are songed to 1 mete 360 de Functions 10dE the pes that did gipeak	receiving eight antenna ters above the ength. Both set to make the oits worst case or to 4 meters grees to find the on and allower than the eak values of the id not have an quasi-peak or	
Test Instruments:	Refer to sectio			<u> </u>				
Test mode:	Non-hopping m	node						
Test results:	Passed							

GFSK Mode:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct	Name:	True W	ireless Blu	luetooth Earbuds Produ			lodel:	VD001					
st By:		YT				YT Te		YT Test mode:		e:	DH1 Tx mode		
st Cha	annel:	Lowest channel Polarization: Horizontal			Horizontal								
st Vol	tage:	AC 120	AC 120/60Hz			Environm	ent:	Temp: 2	Temp: 24℃ Huni: 57				
Lev	vel (dBuV/m)												
Salar	or (abaviiii)												
100													
										a			
80								F	CC PART 15	(PK)			
00										11			
60					~			F	CC PART 15	(AV)			
~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	www	·····	~~~	~~~	······	F	CC PART 15	(AV)			
60	manner of the same	m	~~~~	····	~~~~	~~~~	·····	F	CC PART 15	(AV)			
40		~ ~~	www	~~~~	~~~~		·····	F	CC PART 15	(AV)			
~		m	m	····	~~~~			F	CC PART 15	(AV)			
40			m	**************************************	~~~~			F	CC PART 15	(AV)			
40	10 2320		mym	235			~~~~	F	2	(AV)			
40	10 2320	D	mym	Fr	equency (f	3.5	Tinin		2				
40				Fr Cable			Limit Line	Over	CC PART 15				
40	Freq	Level	Factor	Fr Cable Loss	Preamp Factor	Level	Line	Over Limit	2				
20 0 23			Factor dB/m	Fr Cable Loss dB	equency (P Preamp Factor dB		Line	Over Limit	2 Remark				

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	True Wireless Bluetooth Earbuds	Product Model:	VD001
Test By:	YT	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu₹	dB/m	dB	ā	dBuV/m	dBuV/m	dB	
1	2483.500								
2	2483.500	8.63	27.57	4.81	0.00	41.01	54.00	-12.99	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	True Wireless Bluetooth Earbuds	Product Model:	VD001
Test By:	YT	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	Hz dBuV dB/m dB d		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1 2	2483.500 2483.500						74.00 54.00		Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

π/4-DQPSK mode

oduct Na	me:	True W	/ireless Bl	uetooth F	Earbuds	Produ	ct Model	: \V	VD001		
est By:		YT				Test m	node:	20	H1 Tx mo	ode	
est Chanr	nel:	Lowest	Lowest channel Polarization: Vertical			Polarization:					
est Voltag	je:	AC 120)/60Hz			Enviro	nment:	Te	Temp: 24℃ Huni: 57%		
	L Ad De Al Com										
110 Leve	l (dBuV/m)				T						
100											
80											
					-	-	_		FCC F	PART 15 (PK)	
60									FCCI	PART 15 (AV)	
	many		- ~ ~~	Marana a		. 0	~	Na_pr		Jan 15 (AV)	
40	h	~~~	~~~	V.0.	~ ~	~ ~~~~		-a	2		
20											
0 23 1 0	2320			•	2350 Frequenc	ev (MHz)				240	
02310	2320	Read!	intenna		Frequenc		Limit	Over		240	
02310		Read/ Level	Antenna Factor	Cable	Frequence Preamp		Limit Line		Remark	240	
02310		Read! Level dBuV	Factor	Cable	Frequence Preamp Factor	Level		Limit	Remark	240	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name: True Wireless Bluetooth Earbuds			Product Mode	el:	VD001		
est By:	YT		Test mode:		2DH1 Tx mode		
est Channel:	Lowest chann	Lowest channel Polariza			Horizonta	ıl	
est Voltage:	AC 120/60Hz		Environment:		Temp: 24	℃ Huni	: 57%
Lovel (dDuV	/m)		1				
110 Level (dBuV	nii)						
100							
80					FC(PART 15	(FR)
60					FCC	PART 15,	(AV)
mm	www.	mumm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~	mon	my	
40					2	2	-
20							
02310 232	20	2350					2404
2310 23	20	Frequenc	(NALL=)				2404

	Freq		Factor						Remark
	MHz	—dBu∇	<u>dB</u> /m		<u>ab</u>	dBuV/m	dBuV/m		
650	2390.000								
2	2390.000	7.92	27.37	4.69	0.00	39.98	54.00	-14.02	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	True Wireless Bluetooth Earbuds	Product Model:	VD001
Test By:	YT	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor						
MHz	−−dBuV		dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	True Wireless Bluetooth Earbuds	Product Model:	VD001
Test By:	YT	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	−−dBuV		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8DPSK mode

Product Name:	True Wireless Bluetooth Earbuds	Product Model:	VD001					
Test By:	YT	Test mode:	3DH1 Tx mode					
Test Channel:	Lowest channel	Polarization:	Vertical					
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%					
Level (dBuV/m)								

	Freq		Antenna Factor						Remark
	MHz	dBu∜	<u>dB</u> /m	B	B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000					48.52 40.06			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	True Wireless Bluetooth Earbuds	Product Model:	VD001
Test By:	YT	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBuV	— <u>d</u> B/m	<u>d</u> B	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>dB</u>	
1	2390.000	18.80	27.37	4.69	0.00	50.86	74.00	-23.14	Peak
2	2390.000	7.89	27.37	4.69	0.00	39.95	54.00	-14.05	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	True Wireless Bluetooth Earbuds	Product Model:	VD001
Test By:	YT	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	True Wireless Bluetooth Earbuds	Product Model:	VD001		
Test By:	YT	Test mode:	3DH1 Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

Freq		Antenna Factor						
MHz	dBu∜	─dB/m	dB	−−−−dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.10 Spurious Emission

6.10.1 Conducted Emission Method

0.10.1 Oolladoted Ellission								
Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.8 for details							
Test mode:	Non-hopping mode							
Test results:	Pass							

Test plot as follows:

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209									
Test Method:	ANSI C63.10: 2	ANSI C63.10: 2013								
Test Frequency Range:	9 kHz to 25 GHz									
Test Distance:	3m	3m								
Receiver setup:	Frequency	Detecto	or	RBW	VBV	٧	Remark			
	30MHz-1GHz	Quasi-pe	eak	120kHz	300kl	Hz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	3M⊦	łz	Peak Value			
	Above 1G112	RMS		1MHz	3MF	łz	Average Value			
Limit:	Frequenc	y	Lim	it (dBuV/m @	⊉3m)		Remark			
	30MHz-88N	ИHz		40.0		(Quasi-peak Value			
	88MHz-216	MHz		43.5		(Quasi-peak Value			
	216MHz-960	MHz		46.0		(Quasi-peak Value			
	960MHz-10	SHz		54.0		(Quasi-peak Value			
	Above 1GI	47		54.0			Average Value			
	Above IGI	14		74.0			Peak Value			
	Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz									
	ATE LUT Horn Antenna Tower Ground Reference Plane Test Receiver Pre- Amptifier Controller						na Tower			
Test Procedure:							.8m(below 1GHz) chamber. The table			

	was rotated 360 degrees to determine the position of the highest radiation.2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:	True Wireless Bluetooth Earbuds	Product Model:	VD001
Test By:	YT	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit		
	MHz	dBu∀	dB/m		<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	99.878	40.87	11.68	1.94	29.53	24.96	43.50	-18.54	QP
2	125.886	43.35	9.30	2.24	29.35	25.54	43.50	-17.96	QP
3	136.939	49.26	8.28	2.36	29.29	30.61	43.50	-12.89	QP
4	155.910	43.69	8.90	2.56	29.17	25.98	43.50	-17.52	QP
		37.32		2.82	28.57	24.71	46.00	-21.29	QP
5 6	266.609	42.44	13.41	2.85	28.51	30.19	46.00	-15.81	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product N	lame:	True Wireles	ss Bluetooth	n Earbuds	Product Model: VD001						
Test By:		YT			Test m	mode: BT Tx mode		BT Tx mode			
Test Frequ	uency:	30 MHz ~ 1	GHz		Polariz	zation:	Н	Horizontal			
Test Volta	ige:	AC 120/60H	lz		Enviro	nment:	Т	emp: 24 ℃	Huni: 57%		
. Le	evel (dBuV/m)									
80											
70											
60								FCC	PART 15.247		
50					1000						
40											
30					3	4 M		5	6 acrossophythered there		
20			2		Mary WA	1	- الموسلام	seempth property and property	ARTIN LANGE TO THE		
41/	be and place to be agreed to the same	har to make the land of the same	A SHAP TO BEEN TO	Walley and John W		- Marion	MA THE				
10		7,144	-proma	ash direc							
030)	50	100	Freque	200 ncy (MHz)			500	1000		
	Freq	ReadAnte Level Fac	nna Cabl tor Los			Limit	Over Limit	Remark			
-	MHz	dBu⊽d	B/m d	B dB	dBuV/m	dBuV/m	<u>d</u> B				
1 2 3 4 5	51. 121 109. 029 198. 588 243. 377 570. 610	34.26 12 43.70 11 43.93 13	.89 1.2 .24 2.0 .46 2.8 .08 2.8 .51 3.9	4 29.46 6 28.84 2 28.58		43.50 43.50 46.00	-23.16 -24.42 -14.32 -14.75 -15.64	QP QP QP			
6	884.503		.00 3.8	6 27.92	30.99		-15.01				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Above 1GHz	<u> </u>									
				annel: Lowe						
		1	De	tector: Peak	Value		ı			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	57.23	31.60	6.80	41.81	57.15	74.00	-16.85	Vertical		
4804.00	62.37	31.60	6.80	41.81	62.29	74.00	-11.71	Horizontal		
			Dete	ctor: Averaç	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	43.14	31.60	6.80	41.81	43.06	54.00	-10.94	Vertical		
4804.00	42.22	31.60	6.80	41.81	42.14	54.00	-11.86	Horizontal		
				annel: Midd						
		_		tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	52.56	31.72	6.86	41.84	52.63	74.00	-21.37	Vertical		
4882.00	58.16	31.72	6.86	41.84	58.23	74.00	-15.77	Horizontal		
			Dete	ctor: Averag	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	42.52	31.72	6.86	41.84	42.59	54.00	-11.41	Vertical		
4882.00	43.74	31.20	6.86	41.84	43.81	54.00	-10.19	Horizontal		
			Test ch	annel: Highe	est channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	50.37	31.84	6.91	41.87	50.59	74.00	-23.41	Vertical		
4960.00	55.08	31.84	6.91	41.87	55.30	74.00	-18.70	Horizontal		
			Dete	ctor: Averag	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	40.32	31.84	6.91	41.87	40.54	54.00	-13.46	Vertical		
4960.00	42.28	31.84	6.91	41.87	42.50	54.00	-11.50	Horizontal		

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.