TPU Runtime Prediction Using GNNs

Valeria, Corrina, Amelia, Eduardo & Pablo

Agenda

01 - Introduction

02 - Data

03 - Model Architecture

04 - Model Evaluation

05 - Results

07 - Conclusion

Introduction

Challenges for DLM Training Today

Challenges for DLM Training Today

Challenges for DLM Training Today

How can we effectively measure DLM runtime on complex hardware?

Kaggle Competition Details

Problem

Machine learning models experience slow performance.

Objective

Optimize model compilation by adjusting compiler configurations affecting model speed.

Methodology

Train DLM to predict runtimes using provided data (graphs).

Expected Outcome

Predict the runtime of test dataset graphs and its configurations.

Leveraging **GNNs** for Runtime Prediction on TPUs

• The data: structured in a way that represents a graph with n nodes and m edges.

• **GNNs**: designed to work with graph-structured data.

 Proven Success: A Learned Performance Model for Tensor Processing Units

Data

Graph Representation of Deep Learning Models

Nodes:

- Tensor operations
 - **Features:** Configurations for the *operation*

Edges:

- Tensors flowing through the nodes
 - Features: Configurations for physical storage

Compiler Configurations for an AlexNet RNN

10 layers 256 hidden units 4 attention heads

Operation Nodes (19,541)

Config Nodes (1,778)

Context Nodes (1,778)

Edge Sets hold directed adjacency as list of pairs of indices:

- Actual computation graph
 - Random subset (used for drop-out)
- Correspondence between configurations and operations

Dataset Description

Dataset Files (.npz):

Each file stores a graph (> 20 MB)

Each graph is specific to:

1) Model Type:

- XLA (AlexNet, Inception, ResNet, etc.)
- NLP (BERT, Electra, ALBERT, etc.)

2) Compiler Optimizations

- "Tile": Dividing tensors into smaller parts
- "Layout": Memory arrangement of tensors
 - 3) Search Strategy
 - Default
 - Random

Layout

Tile

Dataset Sizes for Each Model

Layout Datasets

Model Type	Search strategy	Test Graphs	Train Graphs	Val Graphs
	Default	8	61	7
XLA	Random	8	69	7 ~
NLP	Default	17	179	20
	Random	17	77	20

Tiles Datasets

Model Type	Test Graphs	Train Graphs	Val Graphs
XLA	832	5716	676

Model Architecture

Graph Convolution Layers

GNN + Self-Attention

Graph Convolution Layers

Training Process

Loss Function and Optimizer

- Listwise Maximum Likelihood Estimation (ListMLE) loss function
- Adam optimizer

Overfitting Prevention Techniques

- Segment dropout: Random edge sampling during training
- Early stopping based on validation metrics

Model Evaluation

Experimentation

Project Setup

• Google Collab:

CPU/TPU: 107.7 GB

RAM: 12.7 GB

• Kaggle:

GPU: 15.9 GB

CPU: 29 GB,

RAM: 29 GB

Hyperparameter tuning

- Max nodes
- Max configurations
- Batch size
- Epochs
- Early stopping

Evaluation Performance

Competition evaluation

Test set

Avg metrics:

• Tiles:

$$2-rac{\min_{i\in K}y_i}{\min_{i\in A}y_i}$$

• Layout:

Kendal Tau Correlation

Team evaluation

Training- validation set

- OPA:
 Configuration rankings
- ListMLE loss:Output graph

Results

Hyperparameter Tuning

Hyperparameters	Crashed	Passed	
Max nodes	1000	100	
Max configurations	500	20	
Batch size	200	<u>100</u> , 50, 10	
Epochs	_	1 to 6	
Early stopping	_	2 to 4	

Training: 20 - 40 minutes

Testing: 2 - 4 hours

Models' Performances over Datasets

Best OPA: 85%

Best avg OPA: **76.79%**

Best OPA: **85.71%**

Best avg OPA: 73.97%

Models' Loss Behavior

Better OPA (~20%) and loss with testing than training and validation (underfit)

Loss and OPA of NLP Random with 50 batches using attention

Competition Results

hyperparameters	private avg metric
1 epoch 10 batches	23.18%
6 epochs 10 batches	23.06%
6 epochs 50 batches	22.17%
6 epochs 100 batches	17.58%

Conclusions

Understanding Data

- Understanding the data was a big part of the project
- We had a time constraint; learned about graphs

Hardware Limitations

 Lack of RAM limited the our ability to experiment; free cloud services were also lacking resources

Best Methods

Adding attention to the models yielded the best results,
 and the competition winner had the same approach

Kaggle Competition Style

 Submitting results and comparing performance instead of deep exploration and writing a paper

Future Work

 Obtain more resources and experiment with the parameters we were unable to use

Thanks

References:

Article: Kaufman, S., Phothilimthana, P., Zhou, Y., Mendis, C., Roy, S., Sabne, A., & Burrows, M. (2021). A learned performance model for tensor processing units. Proceedings of Machine Learning and Systems, 3, 387-400.

Competition repository: Kaggle Starter Code: https://github.com/google-research-datasets/tpu_graphs

Appendix

Top-Performing Solutions:

- Architecture:
 - Attention
 - SAGEconv (GNN)
- Data Reduction:
 - Reducing graphs structures by learning its statistics
 - Dijkstra's Algorithm to reduce nodes structures
 - Extract values from graphs and do MLP over GNN