## **Practice Problems**

(Partial Order Relation)

1. Let be a relation R is defined as all even number are less than all odd numbers and the usual ordering is applied between the evens and the odds. Is R a total ordering relations. Also, give the order of the elements.

Ans: This is a well-ordered set: { 0 2 4 6 8 ... 1 3 5 7 9 ...} with zero being the minimum element

2. xRy iff one of the following condition holds

x=0, x is positive and y is negative, x and y both are positive and  $x \le y$ , x and y both are negative and  $|x| \le |y|$ 

Ans: This is a well-ordered set:  $\{0\ 1\ 2\ 3\ 4\ ...\ -1\ -2\ -3\ ...\}$  with zero being the minimum element

3. |x| < |y| or |x| = |y| and x <= y

Ans: This is a well-ordered set:  $\{0, -1, 1, -2, 2, ...\}$  with zero being the minimum element

- 4. Let  $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$  be partially ordered by the division relation (that is, for a,  $b \in A$ , we say that a R b if a is a divisor of b). How many maximal elements are there for this partial order relation?
  - (A) 5

(B) 2

- (C) 3
- (D) 4

5. Which relation is a total order relation?

$$(A) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Ans: B

- 6. Let  $A = \{1, 2, 3, 4, 5\}$ . Which of the following is a partial order relation on A?
  - (A)  $R = \{(a, b) \mid b \mod a = 3\}$

(B)  $R = \{(a, b) \mid a \mod b = 0\}$ 

(C)  $R = \{(a, b) \mid a + b \text{ is even}\}\$ 

- (D)  $R = \{(a, b) \mid a \mod 3 = b\}$
- 7. For which sets A of P(A) with set inclusion ( $\subseteq$ ) a total ordering?
  - (i) Ø
- (ii) {a}
- (iii) {a, b}
- (iv)  $\{a, b, c\}$

- (A) i & ii
- (B) ii and iii
- (C) iii and iv
- (D) i, ii, iii, iv

- 8. Let  $(S, \leq)$  be a partial order with two minimal elements a and b, and a maximum element c. Let  $P: S \rightarrow \{True, False\}$  be a predicate defined on S. Suppose that P(a) = True, P(b) = False and  $P(x) \Rightarrow P(y)$  for all  $x, y \in S$  satisfying  $x \leq y$ , where  $\Rightarrow$  stands for logical implication. Which of the following statements CANNOT be true?
  - (A)  $P(x) = \text{True for all } x \in S \text{ such that } x \neq b$
  - (B)  $P(x) = False for all x \in S such that x \neq a and x \neq c$
  - (C)  $P(x) = False for all x \in S such that b \le x and x \ne c$
  - (D)  $P(x) = False for all x \in S such that a \le x and b \le x$
- 9. A relation R is defined on ordered pairs of integers as follows (x, y) R(u, v) if x < u and y > v. Then R is

Equivalence relation, Total Order relation, Partial Order relation

Ans: Neither a Partial Order not an Equivalence Relation

10. Consider the set  $S = \{a, b, c, d\}$ . Consider the following 4 partitions  $\pi_1, \pi_2, \pi_3, \pi_4$ , on

$$S: \pi_1 = \overline{\{abcd\}}, \, \pi_2 \overline{\{ab, \overline{cd}\}}, \, \pi_3 = \overline{\{abc, \overline{d}\}}, \, \pi_4 = \{\overline{a}, \overline{b}, \, \overline{c}, \, \overline{d}\}$$

Let  $\prec$  be the partial order on the set of partitions S' =  $(\pi_1, \pi_2, \pi_3, \pi_4)$  defined as follows:  $\pi_i \prec \pi_j$  if and only if  $\pi_i$  refines  $\pi_j$ . The poset diagram for (S',  $\prec$ ) is

Ans:



11. Draw the hasse diagram of relation  $R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (3,1), (1,4), (5,1), (3,4), (5,4)\}$ 

12. In a partially ordered set, a chain is a totally ordered subset. For example, in the set 1, 2, 3, 4, 5, 6, the divisibility relation is a partial order and 1, 2, 4 and 1, 3, 6 are chains. What is the longest chain on the set {1, 2 . . . n} using the divisibility relation?

Ans:  $\log n + 1$ 

13. What is the longest chain on the power set of a set A with |A| = n with the  $\subseteq$  relation?

Ans: n+1