Exercice 1. Les opérations suivantes sont-elles valides pour résoudre un système d'èquations?

a)
$$x-y = 1 \longrightarrow L_1 + L_2 \longrightarrow 0 = 0$$

 $-x+y = -1 \longrightarrow L_2 + L_1 \longrightarrow 0 = 0$

b)
$$3x + 2y = 4 \rightarrow L_1 - L_2$$
 $0 = 0$
 $3x + 2y = 4$ $3x + 2y = 4$

a)
$$x-y = 1$$
 \Rightarrow $L_1 + L_2$ $0 = 0$
 $-x + y = -1$ \Rightarrow $L_2 + L_1$ $0 = 0$
b) $3x + 2y = 4$ \Rightarrow $L_1 - L_2$ $0 = 0$
 $3x + 2y = 4$ \Rightarrow $L_1 \cdot 0$ $0 = 0$
 $3x + 2y = 4$ \Rightarrow $L_1 \cdot 0$ $0 = 0$
 $3x + 2y = 4$

Exercice 2. A l'aide de l'algorithme d'élimination de Gauss, résoudre le système suivant :

$$\begin{cases} w + 2x - y &= 4 \\ -y + x &= 3 \\ w + 3x - 2y &= 7 \\ 2u + 4v + w + 7x &= 7 \end{cases}$$

Exercice 3. Soit $a \in \mathbb{R}$. A l'aide de l'algorithme d'élimination de Gauss, déterminer les valeurs du paramètre a pour lesquelles le système

$$\begin{cases} ax + (1-a)y + (1-a)z &= a^2 \\ ax + (1+a)y + (1+a)z &= a-a^2 \\ x+y+z &= 1-a \end{cases}$$

- a) n'admet aucune solution,
- b) admet une infinité de solutions,
- c) admet une solution unique.

Ensuite résoudre le système dans les cas (b) et (c).

Exercice 4. Choix Multiple.

a. Le système linéaire suivant où a est un paramètre réel

$$\begin{cases} ax + y = 1\\ (a^2 + 1)x + 2ay = -2 \end{cases}$$

- \square possède une solution unique lorsque $a \neq 1$
- \square possède une solution lorsque $a \neq \pm 1$
- \square possède une infinité de solutions lorsque a=1
- \square possède une solution unique lorsque a=1
- b. Le système linéaire suivant où a est un paramètre réel

$$\begin{cases} 2x + 2y + 2z &= 1\\ 2y + 2z &= 1 - 2a\\ 2x + 4ay + 2z &= 1\\ 4x + 4ay + 2z &= 1 + 2a \end{cases}$$

- \square possède une solution unique lorsque a = 1/2
- \square ne possède aucune solution lorsque $a \neq 1/2$
- \square possède une infinité de solutions lorsque a=1/2
- \square ne possède aucune solution lorsque a=1/2

Exercice 5.

$$A = \begin{bmatrix} 4 & -5 & 3 \\ 5 & 7 & -2 \\ -3 & 2 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 7 & 0 & -1 \\ -1 & 5 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 5 \\ 4 & -3 \\ 1 & 0 \end{bmatrix}.$$

Calculer AC, BC et CB.

Exercice 6. On se donne les matrices :

$$A = \begin{bmatrix} 7 & 0 \\ -1 & 5 \\ -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 4 \\ -4 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 7 \\ -3 \end{bmatrix}, \quad D = \begin{bmatrix} 8 & 2 \end{bmatrix}.$$

Si elles sont définies, calculer les matrices :

$$AB, CA, CD, DC, A^TA, AA^T.$$

Si elles ne sont pas définies, expliquer pourquoi.

Exercice 7. Considérons le système suivant d'équations linéaires aux inconnues x, y, z, t, (où a est un paramètre réel) :

$$ax - 2y + t = 5z - 1$$
$$2t + 3z = 4y - x$$
$$-1 = 2x + y$$

Trouver des matrices A et b telle que l'ensemble des solutions du système correspond à l'ensemble des solutions de l'équation matricelle

$$A \cdot \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = b.$$

Exercice 8. Ecrire les matrices élémentaires 3×3 suivantes :

- la matrice A qui permute les deuxièmes et troisièmes lignes;
- la matrice B qui multiplie la deuxième ligne par 8;
- la matrice C qui ajoute 7 fois la première ligne à la troisième.
- 1. Calculer AB. La matrice AB correspond à quel type d'opération?
- 2. Ecrire les inverses des matrices A, B et C. La matrice B^{-1} correspond à quel type d'opération?
- 3. Calculer le produit $(AB)(B^{-1}A^{-1})$.
- 4. Est-ce que la matrice AB est inversible?
- 5. Calculer A^T , B^T , $(AB)^T$, A^TB^T et B^TA^T .
- 6. Calculer $(A+B)^T$ et A^T+B^T .
- 7. Calculer $3A^T$ et $(3A)^T$.