University of Texas at Austin

Problem set 2

Foreign currencies.

Problem 2.1. Paige lives in Great Britain and receives her salary in GBP. She decides to spend 680 GBP and let the proceeds of the exchange accrue interest at the USD continuously compounded risk-free interest rate

- (i) Given that the initial exchange rate is 0.68 GBP per USD, how much (in USD) does Paige receive initially?
- (ii) Given that the USD continuously compounded risk-free interest rate is equal to $r_{\$} = 0.02$, what is the balance in Paige's account six months after the initial transaction? Assume that there were no intermediate deposits or withdrawals.
- (iii) Paige decides to withdraw the balance in her account at that time (still six months from the initial exchange) and exchange it back to GBP. Given that the exchange rate at that time equals 0.71 GBP per USD, how much (in GBP) does Paige receive?
- (iv) Given that the GBP continuously compounded risk-free interest rate equals $r_{\pounds} = 0.03$, what would have Paige's balance have been had she decided to simply deposit her initial investment in a GBP savings account?

Solution:

- (i) 680/0.68 = 1,000
- (ii) $1,000e^{0.01} = 1,010.05$
- (iii) $1,010.05 \times 0.71 = 717.14$
- (iv) $680e^{0.015} = 690.28$

Page: 2 of 2

Problem set: 2

Problem 2.2. You are given the following information:

- the current exchange rate is 8.71 Swedish Kronor (SEK) per USD;
- the SEK continuously compounded risk-free interest rate equals 0.04;
- \bullet the USD continuously compounded risk-free interest rate equals 0.02.

Niklas wants to have 10,000 USD exactly one year from now. He is going to buy USD today and deposit the proceeds in a USD saving account. He does not intend to make any withdrawals or deposits prior to the end of the one-year period. How many Swedish Kronor does Niklas need to spend in SEK today in order to purchase just enough USD so that the final balance in his USD savings account equals 10,000?

Solution: In order for the final balance to be equal to 10,000 the initial deposit needs to be equal to

$$10,000e^{-0.02} = 9801.99$$

So, Niklas needs to spend $9,801.99 \times 8.71 = 85,375.30$ SEK.

Instructor: Milica Čudina