Functional Analysis

Alef Sterk a.e.sterk@rug.nl

Lecture 15 Tuesday 26 March 2024

Topics:

- §7.2: the dual space of ℓ^p
- §7.5: the second dual space and reflexive spaces

Uniform convergence

Let (φ_n) be a sequence in $\mathcal{C}([a,b],\mathbb{K})$

Recall: φ_n converges uniformly to $\varphi \in \mathcal{C}([a,b],\mathbb{K})$ if

$$\forall\,\varepsilon>0\quad\exists\,N_\varepsilon>0\quad\text{s.t.}\quad n\geq N_\varepsilon\quad\Rightarrow\quad |\varphi_n(x)-\varphi(x)|\leq\varepsilon\quad\forall\,x\in[a,b]$$

Equivalent: convergence in $\|\cdot\|_{\infty}$ -norm:

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} > 0 \ \text{s.t.} \ n \geq N_{\varepsilon} \ \Rightarrow \ \|\varphi_n - \varphi\|_{\infty} \leq \varepsilon$$

Pointwise convergence

Recall: φ_n converges pointwise to $\varphi \in \mathcal{C}([a,b],\mathbb{K})$ if for all fixed $x \in [a, b]$ we have

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon,x} > 0 \ \text{s.t.} \ n \ge N_{\varepsilon,x} \ \Rightarrow \ |\varphi_n(x) - \varphi(x)| \le \varepsilon$$

How to understand this in terms of normed linear spaces?

Dual spaces

Definition: let X be a NLS

The dual space of X is defined as

$$X' = B(X, \mathbb{K})$$

The norm on X' is given by

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||}$$

The dual of a Hilbert space

If X is a Hilbert space and $y \in X$, then the map

$$f_{V}: X \to \mathbb{K}, \qquad f_{V}(x) = \langle x, y \rangle$$

belongs to X' and $||f_y|| = ||y||$

Riesz-Fréchet theorem: for all $f \in X'$ there exists a unique $y \in X$ such that

$$f = f_V$$
 and $||f|| = ||y||$

Corollary: the map $T: X \to X'$ given by $Ty = f_v$ is:

- conjugate-linear: $T(\lambda y + \mu z) = \bar{\lambda} T y + \bar{\mu} T z$
- isometric: ||Ty|| = ||y|| for all $y \in X$ (hence T is injective)
- surjective

Corollary: the dual space X' is a Hilbert space with inner product

$$\langle f_{V}, f_{Z} \rangle := \langle z, y \rangle$$

[The order of y and z is indeed reversed; this is not a typo!]

Theorem: for 1 , <math>1/p + 1/q = 1, and $a \in \ell^q$ define

$$f_a:\ell^p\to\mathbb{K},\quad f_a(x)=\sum_{i=1}^\infty x_ia_i$$

Then

- 1. $f_a \in (\ell^p)'$
- 2. $a \mapsto f_a$ is an isometric isomorphism from ℓ^q onto $(\ell^p)'$

Corollary: if $1 , then <math>(\ell^p)' \simeq \ell^q$

Proof: for all $x \in \ell^p$ we have

$$|f_a(x)| = \left| \sum_{i=1}^{\infty} x_i a_i \right|$$

$$\leq \sum_{i=1}^{\infty} |x_i a_i|$$

$$\leq ||x||_p ||a||_q \qquad [H\"{o}lder's inequality]$$

This implies that $f_a \in (\ell^p)'$ and

$$||f_a|| = \sup_{x \neq 0} \frac{|f_a(x)|}{||x||_p} \le ||a||_q$$

Proof (ctd): let $f \in (\ell^p)'$ and $a_i = f(e_i)$, where

$$e_i = (0, 0, \dots, 0, 1, 0, 0, \dots)$$
 [1 at *i*-th entry]

Fix $n \in \mathbb{N}$ and define

$$b=(b_1,\ldots,b_n,0,0,0,\ldots) \qquad b_i=egin{cases} |a_i|^q/a_i & ext{ if } a_i
eq 0 \ 0 & ext{ otherwise} \end{cases}$$

We have

$$\sum_{i=1}^{n} |a_i|^q = f(b) = |f(b)| \le ||f|| \, ||b||_p = ||f|| \left(\sum_{i=1}^{n} |a_i|^q\right)^{1/p}$$

Proof (ctd): for all $x \in \ell^p$ and $n \in \mathbb{N}$ we have

$$\left(\sum_{i=1}^{n} |a_i|^q\right)^{1/q} = \left(\sum_{i=1}^{n} |a_i|^q\right)^{1-1/p} \le ||f||$$

$$f\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i a_i = f_a\left(\sum_{i=1}^{n} x_i e_i\right)$$

Hence we obtain

$$f = f_a$$
 and $||a||_a \le ||f|| = ||f_a|| \le ||a||_a$

The dual of ℓ^1 and ℓ^∞

Theorem: $(\ell^1)' \simeq \ell^{\infty}$

[Proof as in ℓ^p -case]

Theorem: X' separable $\Rightarrow X$ separable

[See lecture notes; proof uses Hahn-Banach]

Corollary: $(\ell^{\infty})' \simeq \ell^1$ is **NOT** true since ℓ^{∞} is not separable

Second dual space

Definition: let X be a NLS

The second dual space of X is defined as

$$X'' := (X')' = B(X', \mathbb{K})$$

The norm on X'' is given by

$$\|\varphi\| = \sup_{f \in X', f \neq 0} \frac{|\varphi(f)|}{\|f\|}$$

Second dual spaces

Lemma: assume X is a NLS

Define for a fixed $x \in X$ the evaluation map

$$F_x: X' \to \mathbb{K}, \qquad F_x(f) = f(x)$$

Then
$$F_x \in X''$$
 and $||F_x|| = ||x||$

Evaluation map

Proof: for all $f, g \in X'$ and $\lambda, \mu \in \mathbb{K}$ we have

$$F_{x}(\lambda f + \mu g) = (\lambda f + \mu g)(x)$$
$$= \lambda f(x) + \mu g(x)$$
$$= \lambda F_{x}(f) + \mu F_{x}(g)$$

In addition, we have

$$||F_x|| = \sup_{f \neq 0} \frac{|F_x(f)|}{||f||} = \sup_{f \neq 0} \frac{|f(x)|}{||f||} = \sup_{||f|| = 1} |f(x)| = ||x||$$

Natural map

Second dual spaces 0000000

Definition: for a NLS X we define the natural map by

$$J: X \to X'', \qquad x \mapsto F_x \quad \text{i.e.} \quad J(x)(f) = f(x)$$

Note: *J* is isometric (and thus injective) since

$$||J(x)|| = ||F_x|| = ||x||$$

Natural map

Second dual spaces 0000000

Example: assume X is a NLS, but not Banach

- X is isometrically isomorphic to J(X)
- X" is a Banach space
- $\overline{J(X)}$ is closed in X'' and hence a Banach space
- $\overline{J(X)}$ is a completion of X

Reflexive spaces

Second dual spaces 0000000

Definition: X is called reflexive if $J: X \to X''$ is surjective

In this case, $J: X \to X''$ is an isometric isomorphism

Remark: there exists a Banach space X such that

- X is isometrically isomorphic X"
- but $J: X \to X''$ is not surjective

Reflexive spaces

Second dual spaces 000000

Examples:

- every finite-dimensional space is reflexive
- every Hilbert space is reflexive
- ℓ^p is reflexive for 1
- ℓ^1 and ℓ^∞ are NOT reflexive

Definition: a sequence (x_n) in X converges to $x \in X$

• in the strong sense if:

$$||x_n - x|| \to 0$$
 as $n \to \infty$

• in the weak sense if:

$$f(x_n) \to f(x)$$
 as $n \to \infty$ for all $f \in X'$

Remark: strong convergence implies weak convergence since

$$|f(x_n) - f(x)| = |f(x_n - x)|$$

 $\leq ||f|| ||x_n - x||$

On a finite-dimensional space the converse is also true

In general, the converse is **NOT** true!

Weak convergence

Proposition: if X is a NLS and (x_n) converges weakly to x, then (x_n) is bounded

Proof: for every $n \in \mathbb{N}$ define the map

$$T_n: X' \to \mathbb{K}, \quad T_n(f) = f(x_n)$$

Apply the uniform boundedness principle:

$$\sup_{n\in\mathbb{N}}|T_n(f)|<\infty\quad\forall\,f\in X'\quad\Rightarrow\quad\sup_{n\in\mathbb{N}}\|T_n\|<\infty$$

Finally, note that $T_n = J(x_n)$ and thus $||T_n|| = ||x_n||$

Pointwise convergence in $\mathcal{C}([a,b],\mathbb{K})$

Proposition: if φ_n converges weakly to φ in $\mathcal{C}([a,b],\mathbb{K})$ then

- 1. φ_n converges pointwise to φ
- 2. $\sup \|\varphi_n\|_{\infty} < \infty$

Proof: for (1) pick a fixed $x \in [a, b]$ and consider

$$f_x: \mathcal{C}([a,b],\mathbb{K}) \to \mathbb{K}, \quad f_x(\varphi) = \varphi(x)$$

This gives

$$|\varphi_n(x) - \varphi(x)| = |f_x(\varphi_n) - f_x(\varphi)| \to 0$$
 as $n \to \infty$

For (2) recall that weakly convergent sequences are bounded

Strong, weak, and weak* convergence on the dual

Definition: a sequence (f_n) in X' converges to $f \in X'$

• in the strong sense if:

$$||f_n - f|| \to 0$$
 as $n \to \infty$

in the weak sense if:

$$g(f_n) \to g(f)$$
 as $n \to \infty$ for all $g \in X''$

in the weak* sense if:

$$f_n(x) \to f(x)$$
 as $n \to \infty$ for all $x \in X$

Weaker forms of compactness

Theorem: if X is reflexive, then every bounded sequence in X has a weakly convergent subsequence

Theorem: if X is a separable Banach space, then every bounded sequence in X' has a weak* convergent subsequence

Weak and weak* convergence are used in existence proofs for solutions of nonlinear partial differential equations, see

James C. Robinson

Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors

Cambridge University Press, 2001