PAWS Root Systems: PROBLEM SET 2

Devjani Basu, Marcella Manivel, Mishty Ray, Ajmain Yamin September 30, 2024

Question 1: This question asks us to use the definition of B_2 to determine the characterization of B_3 and then B_{ℓ} .

- (1) Recall the definition of B_2 and compute the Euclidean lengths of the roots as vectors. Notice that there are roots of length 1 and roots of length $\sqrt{2}$. Check that these are all the vectors in \mathbb{R}^2 with integer coordinates and with Euclidean length 1 or $\sqrt{2}$.
- (2) List all the vectors in \mathbb{R}^3 with integer coordinates and with Euclidean length 1. *Hint: there should be 6.* List all the vectors in \mathbb{R}^3 with integer coordinates and with Euclidean length $\sqrt{2}$. *Hint: there should be 12.*
- (3) Prove that the set of vectors in \mathbb{R}^3 with integer coordinates and Euclidean length 1 or $\sqrt{2}$ is a root system. This is the B_3 root system.
- (3) Make a guess for a definition of B_{ℓ} . List all the vectors in B_{ℓ} .
- (4) Check your guess with section 8.10.3 of Hall's *Lie Groups, Lie Algebras, and Representations*. The book is available at Springer's website or on ResearchGate (link to download).

Question 2: With the $A_1 \times A_1$ root system as given in the notes, draw the integral span of Φ . That is, draw

$$m_1(e_1 - e_2) + m_2(-e_1 + e_2) + m_3(e_1 + e_2) + m_4(-e_1 - e_2)$$
 with $m_i \in \mathbb{Z}$.

Question 3: The dual of a root system Φ in the finite dimensional real vector space V is the set

$$\Phi^{\vee} = \{ \alpha^{\vee} = \frac{2\alpha}{(\alpha, \alpha)} \mid \alpha \in \Phi \}.$$

- (1) Prove that Φ^{\vee} is a root system in V.
- (2) Prove that the Weyl group of Φ^{\vee} is isomorphic to the Weyl group of Φ .
- (3) Show that $\langle \alpha^{\vee}, \beta^{\vee} \rangle = \langle \beta, \alpha \rangle$.
- *(4) Draw a picture of Φ^{\vee} in the cases of A_1 , A_2 , B_2 , G_2 .

Definition. Let Δ be a base for a root system Φ . For $\beta \in \Phi$, there is a unique way to write

$$\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha.$$

The **height** of β (relative to Δ), denoted $ht(\beta)$, is $ht(\beta) := \sum_{\alpha \in \Delta} c_{\alpha}$.

Question 4: In your own words, what is the height measuring?

Question 5: Consider the B_2 root system with

$$\Phi = \{\pm e_1, \pm e_2, \pm (e_1 + e_2), \pm (e_1 - e_2)\}.$$

One example of a base is $\Delta = \{e_1, -e_1 + e_2\}.$

- (1) Express the remaining roots in Φ in terms of the simple roots in Δ .
- (2) Find the height of the following roots with respect to Δ :
 - (a) e_1
 - (b) e_2
 - (c) $e_1 + e_2$
 - (d) $-e_1 e_2$

*Question 6: If β is a positive root but not a simple root, prove that $ht(\beta) > 1$.

*Question 7: Any root $\beta \in \Phi$ can be expressed uniquely as

$$\beta = \sum_{\alpha \in \Delta} c_{\alpha} \alpha$$

where all $c_{\alpha} \geq 0$ or all $c_{\alpha} \leq 0$. Prove that if β is not a multiple of a root, then there exists Weyl group element $w \in W$ such that

$$w(\beta) = \sum_{\alpha \in \Delta} c'_{\alpha} \alpha$$
 with some $c'_{\alpha} > 0$ and some $c'_{\alpha} < 0$.

*Question 8: Show that the Weyl group of B_{ℓ} is the group of transformations expressible as a composition of a permutation of the entries and an arbitrary number of sign changes.

Question 9:

- (1) Prove that Weyl groups of $A_1 \times A_1$, A_2 , B_2 , G_2 are dihedral groups of order 4, 6, 8 and 12, respectively.
- *(2) Prove that if Φ is any root system of rank 2, its Weyl group must be isomorphic to one of these.

Question 10: Prove that the Weyl group W of a root system Φ is a normal subgroup of $\operatorname{Aut}(\Phi)$, the group of linear automorphisms of V preserving Φ setwise.

Question 11: Determine the Weyl group of A_l .

Question 12: At the end of the lecture, Dr. Emory mentions the Lie algebras

that our root systems correspond to. This question is meant to familiarize us with Lie algebras. A Lie algebra is a vector space V with a binary operation, called the Lie bracket, denoted $[\cdot,\cdot]:V\times V\to V$ that is bilinear, anti-symmetric, and satisfies the Jacobi identity.¹

In this problem, we consider the example

$$\mathfrak{sl}(3,\mathbb{C}) := \{ A \in M_{3,2}(\mathbb{C}) \mid \text{tr}(A) = 0 \}$$

which is an 8-dimensional vector space (there's 9 entries in each matrix and the trace zero condition removes one degree of freedom). The Lie bracket in $\mathfrak{sl}(3,\mathbb{C})$ is defined as

$$[A, B] := AB - BA$$

- (1) Compute $\begin{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
- (2) Witness an example of anti-symmetry by computing

$$\left[\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right]$$

and comparing with part (1).

(3) Verify that the Jacobi identity holds for

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, Z = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

(4) Lie algebras matter because they are the tangent space at the identity of a Lie group. To recover the Lie group $SL(3,\mathbb{C})$, we can apply the matrix exponential map to elements in $\mathfrak{sl}(3,\mathbb{C})$. For any square matrix X, the matrix exponential is defined as

$$\exp(X) := Id + X + \frac{1}{2!}X^2 + \frac{1}{3!}X^3 + \frac{1}{4!}X^4 + \dots$$
 (1)

Compute
$$\exp \left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \right)$$
 and find $\det(\exp \left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \right)$).

¹Bilinar means that for $X, Y, Z \in \mathfrak{sl}(3, \mathbb{C})$ and a, b scalars [aX + bY, Z] = a[X, Z] + b[Y, Z]and [Z, aX + bY] = a[Z, X] + b[Z, Y]].Anti-symmetry means that [X, Y] = -[Y, X].The Jacobi identity means that [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.