

Modern NLP

Based on Deep Learning and Language models. Day 2 Morning

2nd Day

- 1. Morning (~ 2h)
 - Smallest remainder of Day 1
 - King Man + Woman
 - Using advanced embedding techniques
- 2. Afternoon (~ 4h)
 - Gentle introduction to delivery API + front End
 - 3 Transfert learning
 - Fine Tuning

First ... Let's Talk!

Small Remainder

- Project and goups
- VSCode / PyCharm
- Github Account
- OpenAI GPT API Key
- Exam

What is a Deep Learning Neural Network?

Deep learning is a subfield of machine learning that focuses on using **neural networks** with many layers—hence the term "deep."

Deep learning has been behind many recent advancements in areas like **computer vision**, **natural language processing**, and audio recognition.

Differences between **Deep Learning** and Classical Machine Learning : Model Complexity / Feature Engineering / Handling Unstructured Data / S

The Very First 'not so deep' Neural Network

Most famous network: the CNN

Convolution Neural Network (CNN) Input Output **Pooling Pooling Pooling** 0.7 Zebra SoftMax Activation Convolution Convolution Convolution Function ReLU ReLU ReLU Kernel Flatten Layer Fully Connected Feature Maps Layer Probabilistic Feature Extraction Classification Distribution

Most important Feature in DL

Backpropagation

Better for NLP: The RNN

From RNN to LSTM

RNN

LSTM

Transformers

From LSTM to...

Attention is All You Need

- Employs **self-attention** mechanisms to assign varying degrees of importance to different words in a sentence, independently of their positions within the sequence.
- Processes entire sequences of data in parallel, which significantly speeds up training and enhances the model's ability to handle long-range dependencies.
- Does not use any recurrent architecture (no data flow from one time step to the next), unlike LSTM.

Practice!

Annexes

About Deep Learning

- https://www.fast.ai/
- https://www.youtube.com/@CNRS-FIDLE
- https://www.deeplearning.ai
- https://feedly.com/ (Intell)