# KEYSTROKE DYNAMICS AUTHENTICATION SYSTEM

Biometric Systems A. Y. 2022/2023 Marco Raffaele 1799912 Tommaso Battistini 1869913

# INTRODUCTION



# DATA ACQUISITION AND PREPROCESSING



# DATA ACQUISITION AND PREPROCESSING

In addition to key **press** and **release** times, **slope** data are also saved.

```
"hold 1": 0.08256649971008301,
"press press": 0.23795866966247559,
"release_press": 0.15539216995239258,
"release release": 0.18987703323364258,
"hold_2": 0.03448486328125,
"total_time": 0.2724435329437256,
"slope h1": -0.04808163642883301,
"slope pp": -0.11260223388671875,
"slope rp": -0.06452059745788574,
"slope rr": -0.0780644416809082.
"slope_h2": -0.013543844223022461,
"slope_tt": -0.1261460781097412
"hold 1": 0.03448486328125,
"press_press": 0.12535643577575684,
"release_press": 0.09087157249450684,
"release release": 0.11181259155273438,
"hold 2": 0.02094101905822754,
"total_time": 0.14629745483398438,
"slope h1": -0.013543844223022461,
"slope_pp": -0.1044154167175293,
"slope rp": -0.09087157249450684,
"slope rr": 0.015389442443847656,
"slope h2": 0.10626101493835449,
"slope tt": 0.0018455982208251953
```

# ARCHITECTURE



## **ENROLLEMENT**



#### L2 NORM MODEL

The **L2 Norm** is a common similarity measure used in many fields, including computer vision, natural language processing, and information retrieval. Defined as follows

$$distance(X,Y) = ||X - Y||_2 = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

We compute the L2 Norm of an artificial vector, computed by comparing the new samples with all the enrolled ones and picking the **most similar value** for every single feature

#### NAIVE BAYES MODEL

**Naive Bayes** is a probabilistic machine learning algorithm used for classification tasks by making predictions based on the probability of certain events happening, given certain conditions. We chose to use its Gaussian variation.. The used formula to estimate the underlying data distributions is defined as follows:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} * e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

#### **VERIFICATION**

Verification is performed by comparing the typing patterns of a password with the data of the user associated with that password.



#### **IDENTIFICATION**

Identification is performed by comparing the typing patterns of a standard sentence ("il futuro è passato di qui") with the data from the same sentence in all user enrollments.



## **EVALUATION: VERIFICATION**

#### False Acceptance and False Rejection Rates





### **EVALUATION: VERIFICATION**

#### Receiver Operating Characteristic (ROC)





#### **EVALUATION: VERIFICATION**

Half Total Error Rate (HTER)

$$HTER = (FAR + FRR)/2$$





## **EVALUATION: IDENTIFICATION**

#### Accuracy

| Bayes   | 0.875 |
|---------|-------|
| L2 Norm | 0.926 |

### **EVALUATION: IDENTIFICATION**

#### **Cumulative Match Characteristics (CMC)**





## **CONCLUSIONS**



- Recap



- Applicability



- Issues and Limitations