Série 8

Exercice 1. (Lemme de Jordan) Démontrer le résultat suivant.

Soit f une fonction méromorphe sur \mathbb{C} avec |f(z)| = O(1/|z|) quand $|z| \to \infty$. On a que

$$\int_{C_R^+} f(z) e^{-i\xi z} dz \underset{R \to +\infty}{\longrightarrow} 0 \quad \text{pour } \xi < 0,$$

$$\int_{C_{R}^{-}} f(z) e^{-i\xi z} dz \underset{R \to +\infty}{\longrightarrow} 0 \quad \text{pour } \xi > 0.$$

où $C_R^{\pm}=\partial D(0,R)\cap \mathbb{H}^{\pm}$ et $\mathbb{H}^{\pm}=\{z\in\mathbb{C}: \mathrm{Im}z\in\mathbb{R}^{\pm}\}.$

Exercice 2. (Transformée de Fourier par résidus)

(1) Montrer que, sous le même conditions de l'exercice 1 et f intégrable sur \mathbb{R} , si f n'a que des pôles simples on a

$$\hat{f}(\xi) = i \sum_{z \in \text{sing}(f) \cap \mathbb{H}^+} e^{-i\xi z} \text{res}(f, z)$$
 si $\xi < 0$

$$\hat{f}(\xi) = -i \sum_{z \in \text{sing}(f) \cap \mathbb{H}^-} e^{-i\xi z} \text{res}(f, z)$$
 si $\xi > 0$.

(2) Calculer la transformée de Fourier de la fonction (réelle)

$$f(x) = \frac{1}{x^2 + 1} \ .$$

(3) Calculer la transformée de Fourier de la fonction (réelle)

$$f(x) = \frac{1}{x^4 + 2a^2x^2\cos(2\theta) + a^4}$$
 $a > 0$, $0 < |\theta| < \frac{\pi}{2}$.

Exercice 3. Calculer les intégrales suivantes :

$$\int_{\mathbb{R}} \frac{dx}{x^{2n} + 1} \qquad n = 1, 2, \dots$$

$$\int_{\mathbb{R}} \frac{dx}{(x^2+1)^n} \qquad n=1,2,\dots$$

$$\int_{\mathbb{R}} \frac{dx}{(e^x + x + 1)^2 + \pi^2}$$

Exercice 4.

(1) Montrer que si $R: \mathbb{R}^2 \to \mathbb{R}$ est une fonction rationnelle bien définie sur $\partial D(0,1)$, on a que

$$\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta = 2\pi i \sum_{z \in \operatorname{sing}(r) \cap D(0,1)} \operatorname{res}(r, z),$$

οù

$$r\left(z\right) = \frac{1}{iz} R\left(\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right) \ .$$

(2) Calculer pour |a| > 1,

$$\int_0^{2\pi} \frac{d\theta}{a + \sin \theta} \ .$$

Exercice 5.

Soit $f: \mathbb{C}^* \to \mathbb{C}$ une fonction holomorphe telle que $zf(z) \to 0$ quand $|z| \to +\infty$. Montrer que le résidu de f en 0 vaut 0.

Exercice 6. Soient $z_1, \ldots, z_{2n} \in \mathbb{C}$ des nombres complexes distincts et soit M la matrice antisymétrique $2n \times 2n$ avec coefficients $m_{ij} = \frac{1}{z_i - z_j}$ pour $i \neq j$ et $m_{ii} = 0$. Montrer par récurrence que

$$\det M = \sum_{\sigma} \frac{1}{(z_{\sigma(1)} - z_{\sigma(2)})^2 \cdots (z_{\sigma(2n-1)} - z_{\sigma(2n)})^2}$$

où la somme est sur tous les partitions $\{\{\sigma(1),\sigma(2)\},\dots\{\sigma(2n-1),\sigma(2n)\}\}$ de l'ensemble $\{1,\dots,2n\}$ en n sous-ensembles de 2 éléments telles que $\sigma(2j-1)<\sigma(2j)$ pour tous $j=1,\dots,n$.