AA203 Optimal and Learning-based Control

HJB, HJI, and reachability analysis

Roadmap

Dynamic Programming

Previous lectures: focus on discrete-time setting

This lecture: focus on continuous-time setting

- dynamic programming approach leads to HJB / HJI equation: non-linear partial differential equation
- HJB application: solution to continuous LQR problem
- HJI application: reachability analysis

Readings: lecture notes and references therein, in particular:

- <u>Bansal S., Chen M., Herbert S., Tomlin C. J., "Hamilton-Jacobi reachability: A brief overview and recent advances,"</u> 2017.
- <u>Chen M., Tomlin C. J., "Hamilton–Jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management," 2018.</u>

Continuous-time model

Last time:

- Model: $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k, k)$,
- Cost: $J(\mathbf{x}_0) = h_N(\mathbf{x}_N) + \sum_{k=0}^{N-1} g(\mathbf{x}_k, \mathbf{u}_k, k)$

This time:

- Model: $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), t)$,
- Cost: $J(\mathbf{x}(t_0)) = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau$

where t_0 and t_f are fixed

Two-person, zero-sum differential games

What if there is another player (e.g., nature) that interferes with the fulfillment of our objective?

Two-person differential game:

- Model: $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), \frac{\mathbf{d}(t)}{\mathbf{d}(t)})$ (joint system dynamics),
- Cost: $J(\mathbf{x}(t_0)) = h(\mathbf{x}(0)) + \int_{t_0}^0 g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau$
- Player 1, with control $\mathbf{u}(\tau)$, will attempt to maximize J, while Player 2, with control $\mathbf{d}(t)$, will aim to minimize J, subject to the joint system dynamics
- $\mathbf{x}(\tau)$ is the *joint* system state

Information pattern

- To fully specify the game, we need to specify the *information pattern*
- "Open-loop" strategies
 - Player 1, with control $\mathbf{u}(\tau)$, declares entire plan
 - Player 2, with control $\mathbf{d}(\tau)$, responds optimally
 - Conservative, unrealistic, but computationally cheap
- "Nonanticipative" strategies
 - Other agent acts based on state and control trajectory up to current time
 - Notation: $\mathbf{d}(\cdot) = \Gamma[\mathbf{u}](\cdot)$
 - Disturbance still has the advantage: it gets to react to the control!

Hamilton-Jacobi-Isaacs (HJI) equation

Key idea: apply principle of optimality

The "truncated" problem is

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{0} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + h(\mathbf{x}(0)) \right]$$

Worst-case disturbance – aims to thwart the controller

• Dynamic programming principle:

• Dynamic programming principle:
$$J(\mathbf{x}(t),t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau),\mathbf{u}(\tau),\mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t),t+\Delta t) \right]$$

- Approximate integral and Taylor expand $J(\mathbf{x}(t + \Delta t), t + \Delta t)$
- Derive Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE)

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$
$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t$$

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

Proximations for small
$$\Delta t$$
: $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t$$

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

• Approximations for small Δt :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small
$$\Delta t$$
: $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

- Assume constant u and $d \rightarrow$ Optimization over vectors, not functions!
- Order of max and min reverse (proof given in references)
- $J(\mathbf{x},t)$ does not depend on \mathbf{u} or \mathbf{d}

$$J(\mathbf{x}, t) = J(\mathbf{x}, t) + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) \Delta t + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

• Approximations for small Δt :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small
$$\Delta t$$
: $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

- Assume constant u and $d \rightarrow$ Optimization over vectors, not functions!
- Order of max and min reverse (proof given in references)
- $J(\mathbf{x},t)$ does not depend on \mathbf{u} or \mathbf{d}

$$J(\mathbf{x},t) = J(\mathbf{x},t) + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

• Approximations for small Δt :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small
$$\Delta t$$
: $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

- Assume constant u and $d \rightarrow$ Optimization over vectors, not functions!
- Order of max and min reverse (proof given in references)
- $J(\mathbf{x},t)$ does not depend on \mathbf{u} or \mathbf{d}

$$0 = \frac{\partial J}{\partial t} \Delta t + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) \Delta t + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right]$$

• Approximations for small Δt :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small
$$\Delta t$$
: $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[\int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$
• Assume constant u and $d \rightarrow$ Optimization over vectors, not functions!

- Order of max and min reverse (proof given in references)
- $J(\mathbf{x},t)$ does not depend on \mathbf{u} or \mathbf{d}

$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right]$$

The end result is the Hamilton-Jacobi-Isaacs (HJI) equation

$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right]$$

with boundary condition

The "Hamiltonian"

$$J(\mathbf{x},0) = h(\mathbf{x})$$

 Given the cost-to-go function, the optimal control for Player 1 is

$$\mathbf{u}^*(\mathbf{x}, t) = \arg \max_{\mathbf{u}} \min_{\mathbf{d}} g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

In case there is no disturbance, end result is the Hamilton-Jacobi-Bellman (HJB) equation

> Without a disturbance, **u** is usually selected to minimize cost

$$0 = \frac{\partial J}{\partial t} + \min_{\mathbf{u}} \left[g(\mathbf{x}, \mathbf{u}, t) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, t) \right]$$

with boundary condition $J(\mathbf{x}(t_f), t_f) = h(\mathbf{x}(t_f), t_f)$

$$J(\mathbf{x}(t_f), t_f) = h(\mathbf{x}(t_f), t_f)$$

Given the cost-to-go function, the optimal control is

$$\mathbf{u}^*(\mathbf{x}, t) = \arg\min_{\mathbf{u}} g(\mathbf{x}, \mathbf{u}, t) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, t)$$

Continuous-time LQR

Continuous-time LQR: select control inputs to minimize

$$J(\mathbf{x}_0) = \frac{1}{2}\mathbf{x}(t_f)^T H \mathbf{x}(t_f) + \frac{1}{2} \int_{t_0}^{t_f} [\mathbf{x}(t)^T Q(t) \mathbf{x}(t) + \mathbf{u}(t)^T R(t) \mathbf{u}(t)] dt$$

subject to the dynamics

$$\dot{\mathbf{x}}(t) = A(t)\mathbf{x}(t) + B(t)\mathbf{u}(t)$$

Assumptions:

- $H = H^T \ge 0$, $Q(t) = Q(t)^T \ge 0$, $R(t) = R(t)^T > 0$
- t_0 and t_f specified
- $\mathbf{x}(t)$ and $\mathbf{u}(t)$ unconstrained

Continuous-time LQR

• The HJB equation reduces to an ODE (the Riccati equation):

$$-\dot{V}(t) = Q(t) - V(t)B(t)R(t)^{-1}B(t)^{T}V(t) + V(t)A(t) + A(t)^{T}V(t)$$

- Riccati equation is integrated backwards, with boundary condition $V(t_f)={\cal H}$
- Once we find K(t), the control policy is

$$\mathbf{u}^*(t) = -R(t)^{-1}B(t)^T V(t)\mathbf{x}(t)$$

- Analogously to the discrete case, under some additional assumptions, $K(t) \rightarrow$ constant in the infinite horizon setting
- See Notes §3.3 for more details

Applications of differential games

- Pursuit-evasion games
 - homicidal chauffeur problem
 - the lady in the lake
- Reachability analysis

And many more (e.g., in economics)

Applications of differential games

- Pursuit-evasion games
 - homicidal chauffeur problem
 - the lady in the lake
- Reachability analysis

And many more (e.g., in economics)

Reachability analysis: avoidance

Inputs:

- System model
- Unsafe region:
 e.g., obstacle

Control policy

Backward reachable set (States leading to danger)

Reachability analysis: goal reaching

Inputs:

- System model
- Goal region

Backward reachable set (States leading to goal)

Reachability analysis

- $\mathcal{A}(t) = \{\bar{\mathbf{x}}: \exists \Gamma[\mathbf{u}](\cdot), \forall \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$
- Backward reachable set (states leading to danger) Model of robot
- Unsafe region

Control policy

- Model of robot
- Goal region

Control policy

Backward reachable set (states leading to goal)

• $\mathcal{R}(t) = \{\bar{x} : \forall \Gamma[\mathbf{u}](\cdot), \exists \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$

Reachability analysis

States at time *t* satisfying the following:

there exists a disturbance such that for all control, system enters target set at t=0

•
$$\mathcal{A}(t) = \{\bar{\mathbf{x}}: \exists \Gamma[\mathbf{u}](\cdot), \forall \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$$

- Model of robot
- Unsafe region

Backward reachable set (states leading to danger)

Control policy

- Model of robot
- Goal region

Control policy

Backward reachable set (states leading to goal)

States at time *t* satisfying the following:

for all disturbances, there exists a control such that system enters target set at t=0

4/29/21

26

From HJI to reachability analysis

- Computation of the BRS entails solving a differential game where the outcome is Boolean (the system either reaches the target set or not)
- One can "encode" this Boolean outcome in the HJI PDE by (1) removing the running cost and (2) picking the final cost to denote set membership
 - Value function at each state is the worst case terminal value you can reach

From HJI to reachability analysis

Hamilton-Jacobi Equation

•
$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{d}} \min_{\mathbf{u}} \left[g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right], J(\mathbf{x}, 0) = h(\mathbf{x})$$

Remove running cost

•
$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{d}} \min_{\mathbf{u}} \left[\frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right], J(\mathbf{x}, 0) = h(\mathbf{x})$$

- Pick final cost such that
 - $\mathbf{x} \in \mathcal{T} \Leftrightarrow h(\mathbf{x}) \leq 0$
 - Example: If $\mathcal{T} = \left\{ \mathbf{x} : \sqrt{x_r^2 + y_r^2} \le R \right\} \subseteq \mathbb{R}^3$, we can pick

$$h(x_r, y_r, \theta_r) = \sqrt{x_r^2 + y_r^2} - R$$

Pick Final Cost

- Why is this correct?
 - Final state $\mathbf{x}(0)$ is in \mathcal{T} if and only if $h(\mathbf{x}(0)) \leq 0$
 - To avoid \mathcal{T} , control should maximize $h(\mathbf{x}(0))$
 - Worst-case disturbance would minimize

Reaching vs. Avoiding

Avoiding danger

BRS definition

$$\mathcal{A}(t) = \{ \bar{\mathbf{x}} : \exists \Gamma[\mathbf{u}](\cdot), \forall \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T} \}$$

Value function

$$J(\mathbf{x},t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} h(\mathbf{x}(0))$$

• HJI

$$\frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[\left(\frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right] = 0$$

Optimal control

$$\mathbf{u}^* = \arg\max_{\mathbf{u}} \min_{\mathbf{d}} \left(\frac{\partial J}{\partial \mathbf{x}}\right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

• Reaching a goal

BRS definition

$$\mathcal{R}(t) = \{\bar{\mathbf{x}}: \forall \Gamma[\mathbf{u}](\cdot), \exists \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}\$$

Value function

$$J(\mathbf{x},t) = \max_{\Gamma[\mathbf{u}]} \min_{\mathbf{u}} h(\mathbf{x}(0))$$

HJI

$$\frac{\partial J}{\partial t} + \min_{\mathbf{u}} \max_{\mathbf{d}} \left[\left(\frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right] = 0$$

Optimal control

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} \max_{\mathbf{d}} \left(\frac{\partial J}{\partial \mathbf{x}}\right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

"Sets" vs. "Tubes"

- Backward reachable set (BRS)
 - Only final time matters
 - Initial states that pass through target are not necessarily in BRS
 - Not ideal for safety

- Backward reachable tube (BRT)
 - Keep track of entire time duration
 - Initial states that pass through target are in BRT
 - Used to make safety guarantees

"Sets" vs. "Tubes"

- Backward reachable set (BRS)
- Backward reachable tube (BRT)

Value function definition

$$J(\mathbf{x},t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} h(\mathbf{x}(0))$$

Value function obtained from

$$\frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[\left(\frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right] = 0$$

Value function definition

$$J(\mathbf{x},t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} \min_{\tau \in [t,0]} h(\mathbf{x}(\tau))$$

Value function obtained from

$$\frac{\partial J}{\partial t} + \min_{\mathbf{u}} \left\{ \max_{\mathbf{u}} \min_{\mathbf{d}} \left[\left(\frac{\partial J}{\partial \mathbf{x}} \right)^{\mathsf{T}} f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right], \mathbf{0} \right\} = 0$$

Computational aspects

- Computational complexity (traditional PDE solver)
 - $J(\mathbf{x},t)$ is computed on an (n+1)-dimensional grid
 - $n \le 5$ is reasonable; larger requires some compromises
 - Dimensionality reduction methods (decoupling) sometimes help
- Alternatives/related approaches
 - Sacrifice global optimality
 - Give up guarantees
 - NN-based PDE solvers
 - Sampling-based methods
 - Reinforcement learning

Example: pursuit/evasion with two identical vehicles

• With evader (a), pursuer (b) dynamics

$$\begin{bmatrix} \dot{x}_a \\ \dot{y}_a \\ \dot{\theta}_a \end{bmatrix} = \begin{bmatrix} v\cos(\theta_a) \\ v\sin(\theta_a) \\ u_a \end{bmatrix}, \quad \begin{bmatrix} \dot{x}_b \\ \dot{y}_b \\ \dot{\theta}_b \end{bmatrix} = \begin{bmatrix} v\cos(\theta_b) \\ v\sin(\theta_b) \\ u_b \end{bmatrix}, \quad u_a, u_b \in [-u_{\text{max}}, u_{\text{max}}]$$

we consider the relative system in (a)'s frame

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -v + v\cos(x_3) + u_a x_2 \\ v\sin(x_3) - u_a x_1 \\ u_b - u_a \end{bmatrix}$$

Courtesy of lan Mitchell, "ToolboxLS", Section 2.6.1 x_1 x_2 x_3 x_4 x_4 x_5 x_4 x_5 x_4 x_5 x_5 x_4 x_5 x_5

evader (player I) pursuer (player II)

Next time

Model Predictive Control