Algèbre 2 CC Nº 2 AU 2015-2016 CPI 1

Durée: 2h

Questions de cours:

- 1- Définir un polynôme irréductible dans $\mathbb{K}[X]$.
- 2- Quant peut-on dire que a est une racine de multiplicité m d'un polynôme P (donner deux définitions).
- 3- Donner la forme générale des expressions symétriques élémentaires σ_k .
- 4- Donner la forme de la décomposition en éléments irréductibles d'un polynôme P dans $\mathbb R$ et dans $\mathbb C$.

Exercice 1:

- 1. En réalisant une division euclidienne, donner une condition sur $(\lambda, \mu) \in \mathbb{K}^2$ pour que $X^2 + 2$ divise $X^4 + X^3 + \lambda X^2 + \mu X + 2$.
- 2. Trouver tous les polynômes U et V tels que $(X-1)^3U + (X+1)^2V = 1$.

Exercice 2:

Soit $P \in K[X]$.

- 1. Montrer que P(X) X divise P(P(X)) P(X).
- 2. En déduire que P(X) X divise P(P(X)) X.
- 3. On note $P^{(n)} = P \circ ... \circ P$ (composition n fois). Montrer que P(X) X divise $P^{(n)}(X) X$

Exercice 3:

Résoudre dans C:

$$\begin{cases} x + y + z = 1 \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \\ xyz = -4 \end{cases}$$

Exercice 4:

Résoudre $x^3 - 8x^2 + 23x - 28 = 0$ sachant que la somme de deux des racines est égale à la troisième $(x_1 + x_2 = x_3)$.