第十九届全国青少年信息学奥林匹克联赛初赛

普及组 Pascal 语言试题

竞赛时间: 2013年10月13日14:30~16:30

选目	~ \ <u>\</u>	. .
進三		蒠:
שע.		AT.

•	试题纸共有9页,	答题纸共有2页,	满分 100 分。	请在答题纸上作答,	写在试题纸上的
	一律无效。				

•	不得使用任何电子设备	(如计算器、	手机、	电子词典等)	或查阅任何书籍资料。
•		\ \\ \DH \(\lambda \) \\ \\ \Th \(\lambda \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	יטעי נ	. [7] 1 [6,152, 7] 7	

- ,	单项选择题	(共20题,	每题 1.5 分,	共计 30 分;	每题有且仅有一个正确选
项)					

项)	()(20,20, 4,201		
1. 一个 32 位整型	!变量占用()个学	z 节。	
A. 4	B. 8	C. 32	D. 128
2. 二进制数 11.01	l 在十进制下是()) 。	
A. 3.25	B. 4.125	C. 6.25	D. 11.125
3. 下面的故事与	()算法有着异曲	同工之妙。	
从前有座:	山, 山里有座庙, 庙里	【有个老和尚在给小和尚	讲故事:"从前有座山,」
里有座庙, 庙!	里有个老和尚在给小和	口尚讲故事:'从前有座	山,山里有座庙,庙里有个
老和尚给小和	尚讲故事, "		
A. 枚举	B. 递归	C. 贪心	D. 分治
4. 逻辑表达式()的值与变量 A 的	真假无关。	
A. $(A \lor B) \land \neg A$	L	B. $(A \lor B) \land \neg B$	
C. $(A \land B) \lor (\neg A)$	$A \wedge B$)	D. $(A \lor B) \land \neg A$. ^ B
5. 将 (2, 6, 10, 17	7)分别存储到某个地	址区间为 0~10 的哈希表	中,如果哈希函数 <i>h(x)</i> =
(),将不	会产生冲突, 其中 a	mod b 表示 a 除以 b 的余	>数 。
A. <i>x</i> mod 11		B. $x^2 \mod 11$	
C. 2 <i>x</i> mod 11		D. $\left[\sqrt{x}\right] \mod 11$,其中 $\left[\sqrt{x}\right]$ 表示 \sqrt{x} 下取整
6. 在十六进制表	示法中,字母 A 相当于	于十进制中的()。	
A. 9	B. 10	C. 15	D. 16
	CCE NOID2012	知寒並乃紹 D 1 洒 字 / 1 版	

7. 下图中所使用的数据结构是()。

- A. 哈希表
- B. 栈
- C. 队列
- D. 二叉树
- 8. 在 Windows 资源管理器中,用鼠标右键单击一个文件时,会出现一个名为"复制"的 操作选项,它的意思是()。
 - A. 用剪切板中的文件替换该文件
 - B. 在该文件所在文件夹中,将该文件克隆一份
 - C. 将该文件复制到剪切板,并保留原文件
 - D. 将该文件复制到剪切板,并删除原文件
- 9. 己知一棵二叉树有 10 个节点,则其中至多有()个节点有 2 个子节点。
 - A. 4
- B. 5
- C. 6
- D. 7
- 10. 在一个无向图中,如果任意两点之间都存在路径相连,则称其为连通图。下图是一个有 4个顶点、6条边的连通图。若要使它不再是连通图,至少要删去其中的()条边。

- A. 1
- B. 2
- C. 3
- D. 4

- 11. 二叉树的() 第一个访问的节点是根节点。
 - A. 先序遍历
- B. 中序遍历
- C. 后序遍历
- D. 以上都是
- **12.** 以 A_0 作为起点,对下面的无向图进行**深度**优先遍历时,遍历顺序**不可能**是()。

- A. A_0, A_1, A_2, A_3 B. A_0, A_1, A_3, A_2
- C. A_0, A_2, A_1, A_3
- D. A_0, A_3, A_1, A_2

	Pv4 协议使用 吏用() 1			不断被分配, f取代。	地址资源	日趋枯竭。	因此,	它正逐渐被
A.	40	В.	48	C.	64	D.	128	
14.	()的 <u>平</u> :	均 时间复杂	₹度为 O (n	log <i>n</i>),其中	n 是待排序	的元素个数	汝 。	
A.	快速排序	В.	插入排序	C.	冒泡排序	D.	基数	排序
15.	下面是根据欧	7几里得算	法编写的图	函数,它所计	算的是 a 和	ロ b 的() 。	
	unction eu egin	uclid(a,	b : long	gint) : lo	ngint;			
	if b =	0 then						
	euc	lid := a						
	else							
	euc	lid := e	uclid(b,	a mod b);				
e	end;							
A.	最大公共质	[因子		B.	最小公共	质因子		
C.	最大公约数	Ż		D.	最小公倍	数		
16. j	通常在搜索引	擎中,对	某个关键词	同加上双引号	表示() 。		
A.	排除关键词	引,不显示 [。]	任何包含证	亥关键词的结	果			
B.	将关键词分	解,在搜	索结果中心	必须包含其中	的一部分			
C.	精确搜索,	只显示包含	含整个关键	建词的结果				
D.	站内搜索,	只显示关	建词所指向	可网站的内容				
17. F	中国的国家顶	须域名是	() 。					
A.	.cn	В.	.ch	C.	.chn	D.	.chin	a
18. 扌	巴 64 位非零剂	浮点数强制]转换成 32	2 位浮点数后	, <u>不可能</u> (() .		
A.	大于原数			B.	小于原数			
C.	等于原数			D.	与原数符	号相反		
19.	下列程序中,	正确计算 1	, 2,, 100) 这 100 个自	然数之和 s	um(初始值	为0)自	的是()。
A.	i := 1;			В.	i := 1;			
	repeat				repeat			
	sum :	= sum +	i;		sum	:= sum +	i;	
	inc(i);			inc(i);		
	until i >	100;			until i	<= 100;		

```
C.
   i := 1;
                                   D. i := 1;
   while i < 100 do
                                       while i >= 100 do
   begin
                                       begin
      sum := sum + i;
                                          sum := sum + i;
       inc(i);
                                          inc(i);
   end;
```

- **20.** CCF NOIP 复赛全国统一评测时使用的系统软件是()。
 - A. NOI Windows B. NOI Linux C. NOI Mac OS D. NOI DOS

- 二、问题求解(共2题,每题5分,共计10分;每题全部答对得5分,没有部 分分)
- 1. 7个同学围坐一圈,要选2个不相邻的作为代表,有 种不同的选法。
- 2. 某系统自称使用了一种防窃听的方式验证用户密码。密码是 n 个数 $s_1, s_2, ..., s_n$,均为 0或 1。该系统每次随机生成 n 个数 $a_1, a_2, ..., a_n$, 均为 0 或 1, 请用户回答($s_1a_1 + s_2a_2 + ...$ $+s_na_n$)除以2的余数。如果多次的回答总是正确,即认为掌握密码。该系统认为,即使 问答的过程被泄露,也无助于破解密码——因为用户并没有直接发送密码。

然而, 事与愿违。例如, 当 n = 4 时, 有人窃听了以下 5 次问答:

	系统生成的 n 个数				24 10 cha 77 44 177 24 44 177 kb
问答编号	a_1	a_2	a_3	a_4	掌握密码的用户的回答
1	1	1	0	0	1
2	0	0	1	1	0
3	0	1	1	0	0
4	1	1	1	0	0
5	1	0	0	0	0

就破解出了密码 $s_1 =$ ______, $s_2 =$ ______, $s_3 =$ ______, $s_4 =$ ______。

三、阅读程序写结果(共4题,每题8分,共计32分)

1. var

a,b: integer;

begin

readln(a, b);

```
writeln(a, '+', b, '=', a+b);
   end.
   输入: 3 5
   输出: _____
2. var
       a, b, u, i, num : integer;
   begin
       readln(a, b, u);
       num := 0;
       for i:= a to b do
       begin
          if (i \mod u = 0) then
              inc(num);
       end;
       writeln(num);
   end.
   输入: 1 100 15
   输出: _____
3. const SIZE = 100;
   var
       n, f, i, left, right, middle : integer;
       a:array[1..SIZE] of integer;
   begin
       readln(n, f);
       for i := 1 to n do read(a[i]);
       left := 1;
       right := n;
       repeat
          middle := (left+right) div 2;
```

```
if (f <= a[middle]) then</pre>
               right := middle
           else
               left := middle+1;
       until (left >= right);
       writeln(left);
   end.
   输入:
   12 17
   2 4 6 9 11 15 17 18 19 20 21 25
   输出: _____
4. const SIZE = 100;
   var
       n, ans, i, j : integer;
       height, num : array[1..SIZE] of integer;
   begin
       read(n);
       for i := 1 to n do
       begin
           read(height[i]);
           num[i] := 1;
           for j := 1 to i-1 do
           begin
               if ((height[j] < height[i]) and (num[j] >= num[i])) then
                   num[i] := num[j]+1;
           end;
       end;
       ans := 0;
       for i := 1 to n do
       begin
           if (num[i] > ans) then
               ans := num[i];
       end;
```

writeln(ans); end. 输入: 6 2 5 3 11 12 4 输出: ______

四、完善程序(共2题,每题14分,共计28分)

1. (**序列重排**) 全局数组变量 a 定义如下:

const int SIZE = 100; int a[SIZE], n;

它记录着一个长度为 n 的序列 a[1], a[2], ..., a[n]。

现在需要一个函数,以整数 $p(1 \le p \le n)$ 为参数,实现如下功能:将序列 a 的前 p 个数与后 n-p 个数对调,且不改变这 p 个数(或 n-p 个数)之间的相对位置。例如,长度为 5 的序列 1, 2, 3, 4, 5,当 p=2 时重排结果为 3, 4, 5, 1, 2。

有一种朴素的算法可以实现这一需求, 其时间复杂度为 O(n)、空间复杂度为 O(n):

procedure swap1(p : longint);

var

i : longint;

b : array[1..SIZE] of longint;

begin

for
$$i := 1$$
 to p do $b[\underline{ (1)}] := a[i];$ // (3%) for $i := p + 1$ to n do $b[i - p] := \underline{ (2)} ;$ // (3%) for $i := 1$ to $\underline{ (3)}$ do // (2%)

end;

我们也可以用时间换空间,使用时间复杂度为 $O(n^2)$ 、空间复杂度为O(1)的算法:

procedure swap2(p : longint);
var

a[i] := b[i];

i, j, temp : longint;

2. (二叉查找树)二叉查找树具有如下性质:每个节点的值都大于其左子树上所有节点的值、小于其右子树上所有节点的值。试判断一棵树是否为二叉查找树。

输入的第一行包含一个整数 n,表示这棵树有 n 个顶点,编号分别为 1, 2, ..., n,其中编号为 1 的为根结点。之后的第 i 行有三个数 value, $left_child$, $right_child$,分别表示该节点关键字的值、左子节点的编号、右子节点的编号;如果不存在左子节点或右子节点,则用 0 代替。输出 1 表示这棵树是二叉查找树,输出 0 则表示不是。

```
program Bst;
const SIZE = 100;
const INFINITE = 1000000;
type node = record
   left_child, right_child, value : longint;
end;
var
   a : array[1..SIZE] of node;
   i, n : longint;
function is_bst(root, lower_bound, upper_bound : longint) : longint;
var
   cur : longint;
begin
   if root = 0 then
   begin
       is_bst := 1;
```

```
exit;
   end;
   cur := a[root].value;
   if (cur > lower_bound) and (____(1)___) and
                                                           // (3分)
           (is_bst(a[root].left_child, lower_bound, cur) = 1) and
           (is_bst(\underline{(2)},\underline{(3)},\underline{(4)}) = 1) then
                                                  // (3分, 3分, 3分)
       is_bst := 1
   else
       is_bst := 0;
end;
begin
   readln(n);
   for i := 1 to n do
       read(a[i].value, a[i].left_child, a[i].right_child);
   writeln(is_bst(<u>(5)</u>, -INFINITE, INFINITE)); //(2分)
end.
```