LASSO Regression

Sean Hellingman

Thompson Rivers University shellingman14@hotmail.com

April 26, 2023

Presentation Overview

- Introduction
- Theory
- Example
- Conclusions

 Sean Hellingman
 April 26, 2023
 2 / 17

LASSO

- Least Absolute Shrinkage and Selection Operator (LASSO)
- Regularization method for model selection
- The LASSO solution can yield a reduction in variance at the expense of a small increase in bias

Sean Hellingman April 26, 2023 3 / 17

Formulation

The LASSO coefficients, $\hat{\beta}_{\lambda}^{L}$ minimize the quantity

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$
 (1)

The ℓ_1 norm of a coefficient vector β is given by $||\beta||_1 = \sum |\beta_i|$.

Sean Hellingman April 26, 2023

Some Properties

- LASSO shrinks the coefficient estimates towards zero
- \bullet With a sufficiently large λ some of the coefficient estimates shrink to be exactly zero
- LASSO performs variable selection
- Choice of λ is important and is often done through cross-validation

Sean Hellingman April 26, 2023 5 / 17

Another Formulation

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \text{ subject to } \sum_{j=1}^{p} |\beta_j| \le s.$$
 (2)

For every value of λ , there is some s such that (2) will give the same LASSO coefficient estimates.

Sean Hellingman April 26, 2023

Variable Selection Property

- Two parameters (p = 2)
- $\hat{\beta}$: OLS solution
- Blue rectangle: $|\beta_1| + |\beta_2| \le s$
- Red ellipses: regions of constant RSS

7 / 17

Sean Hellingman April 26, 2023

Comments on LASSO

- When $\lambda = 0$, OLS estimates
- Reduction in variance at the expense of a small increase in bias
- Can be a useful tool for model selection

Sean Hellingman April 26, 2023

Problem

Want to model *horsepower* (hp) dependent on Miles/gallon (mpg), weight (wt), $rear\ axle\ ratio$ (drat), and $1/4\ mile\ time$ (qsec) using data from the mtcars dataset.

Sean Hellingman April 26, 2023 9 / 17

Data Exploration

Model	hp	mpg	wt	drat	qsec
Mazda RX4	110	21	2.620	3.900	16.460
Mazda RX4 Wag	110	21	2.875	3.900	17.020
Datsun 710	93	22.800	2.320	3.850	18.610
Hornet 4 Drive	110	21.400	3.215	3.080	19.440
Hornet Sportabout	175	18.700	3.440	3.150	17.020

Sean Hellingman April 26, 2023

Scaling

Code used to scale the variables:

```
####Min-Max Scaling [0-1] Function####
norm_minmax \leftarrow function(x)
  (x- \min(x)) / (\max(x)-\min(x))
####Define Model####
#Response Variable
y <- Cars$hp #horse power
#Predictors
x <- data.matrix(Cars[,c('mpg', 'wt', 'drat', 'qsec')])
#Scaled#
y \leftarrow norm_minmax(y)
x < - norm_minmax(x)
```

Sean Hellingman April 26, 2023

Example Models

Variable	OLS	$\lambda = 0.001$	$\lambda = 5$
mpg	-0.329	-0.325	0.000
wt	2.980	2.886	-
drat	0.551	0.335	-
qsec	-2.375	-2.365	-
Intercept	1.529	1.541	0.335

```
##OLS Model
Im <- Im(y^x)
##Small lambda
#alpha = 1 for LASSO
m1 \leftarrow glmnet(x,y,alpha=1, lambda = 0.001)
##Large lambda
m2 \leftarrow glmnet(x, y, alpha=1, lambda = 5)
```

Sean Hellingman April 26, 2023 12 / 17

Cross Validation

- Find optimal lambda value that minimizes test mean squared error (MSE)
- Perform 10-fold cross-validation to find optimal lambda value
- Functionality in the glmnet R package

```
cv1 <— cv.glmnet(x, y, nfolds = 10, alpha = 1) best_lambda <- cv1\$lambda.min \\ best_lambda \\ [1] 0.006498586
```

Sean Hellingman April 26, 2023 13 / 17

Plot of the Cross-validation Curve

 Sean Hellingman
 April 26, 2023
 14 / 17

Model Comparisons

Variable	OLS	$\lambda = 0.001$	$\lambda = 5$	$\lambda = 0.006498586$
mpg	-0.329	-0.325	0.000	-0.330
wt	2.980	2.886	-	2.574
drat	0.551	0.335	-	-
qsec	-2.375	-2.365	-	-2.278
Intercept	1.529	1.541	0.335	1.537

Sean Hellingman April 26, 2023

LASSO Conclusions

- \bullet Penalizes β values by *shrinking* them to zero
- Useful for variable selection
- ullet Choice of λ is important and is often done through cross-validation
- Related Topics:
 - Ridge regression
 - Elastic net regularization
 - Methods for dimension reduction

Sean Hellingman April 26, 2023

References & Resources

- Hastie, T., Qian, J., Tay, K. (2021). An Introduction to glmnet. CRAN R Repositary.
- 2 James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.

Link to code used: github.com/shellingman/LASSO-Presentation

Sean Hellingman April 26, 2023 17 / 17