Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul

Campus Rio Grande – Matemática III - Prof^a Aline

Lista de Exercícios: Matrizes

1 Escreva o tipo de cada uma das seguintes matrizes:

$$A = \begin{pmatrix} 2 & 1 & 1/2 & 4 \\ 0 & -1 & \sqrt{3} & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 1 & \sqrt{3} \\ 0 & -2 & 5 \end{pmatrix} \qquad E = \begin{pmatrix} 4 & 2 \\ 3 & 1 \\ 1/4 & -1 \\ 0 & \sqrt{3} \end{pmatrix}$$

$$B = \begin{pmatrix} 4 \\ 4 \\ 1 \\ 5 \end{pmatrix} \qquad D = (0 \ 1) \qquad F = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -3 \\ -2 & 1 & 0 \end{pmatrix}$$

- **2** Escreva a matriz $A = (a_{ij})_{2\times 3}$, em que $a_{ij} = 2i + 3j$.
- Escreva as matrizes $C = (c_{ij})_{4 \times 1}$, em que $c_{ij} = i^2 + j$, e $D = (d_{ij})_{1 \times 3}$, em que $d_{ij} = i j$. Que matrizes especiais são essas?
- **6** Escreva a matriz $A = (a_{ij})_{3\times 3}$, em que $a_{ij} = \begin{cases} i+j, \text{ se } i=j\\ 0, \text{ se } i\neq j \end{cases}$. Forneça os elementos que pertencem às diagonais principal e secundária de A.
- 7 Escreva a matriz $A = (a_{ij})_{2 \times 3}$, em que $a_{ij} = \begin{cases} 2i + j, \text{ se } i \ge j \\ i j, \text{ se } i < j \end{cases}$
- 8 Chama-se *traço* de uma matriz quadrada a soma dos elementos de sua diagonal principal. Determine o traço de cada uma das matrizes $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ e $B = \begin{pmatrix} 2 & 0 & 1 \\ \sqrt{2} & 3 & -5 \\ -1 & 0 & -1 \end{pmatrix}.$
- **9** (Covest-PE) Eric necessita de complementos das vitaminas *A* e *C*. Diariamente precisa de pelo menos 63 unidades de *A* e no mínimo 55 unidades de *C*. Ele pode escolher entre os compostos I e II, que apresentam, por cápsula, as características abaixo:

Composto	Vitamina A	Vitamina C	Valor R\$
	7 unidades	4 unidades	0,70
II	4 unidades	5 unidades	0,50

Qual o gasto mínimo diário de Eric, em reais, com os compostos I e II?

12 Determine
$$x$$
, y e z que satisfaçam $\begin{pmatrix} 1 & -2 & x \\ 3y & 5 & z - 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & \frac{3}{4} \\ -6 & 5 & 0 \end{pmatrix}$.

- **13** Determine $p \in q$, tais que $\begin{pmatrix} p+q & -2 \\ 0 & 2p-q \end{pmatrix} = \begin{pmatrix} 6 & -2 \\ 0 & 3 \end{pmatrix}$.
- 14 Verifique se existe m, $m \in \mathbb{R}$, para que se tenha $\begin{pmatrix} 2 & m^2 9 \\ m 3 & m + 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$.

15 Determine
$$m$$
, $m \in \mathbb{R}$, se existir, tal que $\begin{pmatrix} 4 - m^2 & 1 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ m & 3 \end{pmatrix}$.

16 Seja A =
$$(a_{ij})_{2\times 3}$$
, em que $a_{ij} = i + j$. Determine $m, n \in p$ em

$$B = \begin{pmatrix} m+n & 3 & 4 \\ n-1 & m-2p & 5 \end{pmatrix}, \text{ a fim de que tenhamos A} = B.$$

17 Determine
$$0 \le x < 2\pi$$
 e $0 \le y < 2\pi$ de modo que $\begin{pmatrix} \sec x & \cos y \\ \sec y & \cos x \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$.

18 Determine
$$x \in y$$
 reais de modo que $\begin{bmatrix} 2^x - 1 & y^4 \\ y^x & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$

Sejam as matrizes
$$A = (a_{ij})_{3 \times 2}$$
, em que $a_{ij} = i + 2j$, e $B = (b_{ij})_{3 \times 2}$, em que $b_{ij} = 1 + i + j$.

- a) Determine a matriz A + B.
- b) Determine a matriz D = A B. Como você representaria, genericamente, um elemento d_{ii} de D?

a)
$$X + \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix} = \begin{pmatrix} 11 \\ 3 \\ -2 \end{pmatrix}$$
 b) $X - \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ 0 & 3 \end{pmatrix}$

23 Determine a matriz
$$X$$
 em $\begin{pmatrix} 2 & 4 \\ -3 & 5 \end{pmatrix} + \begin{pmatrix} -1 & 3 \\ 5 & 0 \end{pmatrix} = X - \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$.

Sejam as matrizes
$$A = (a_{ij})_{7 \times 9}$$
, em que $a_{ij} = 2i - j$, e $B = (b_{ij})_{7 \times 9}$, em que $b_{ij} = i + j$. Seja $C = A + B$, em que $c_{ij} = a_{ij} + b_{ij}$. Determine os elementos:

25 Resolva o sistema matricial
$$\begin{cases} X + Y = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \\ X - Y = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ -6 \end{pmatrix}$$

26 Resolva o sistema
$$\begin{cases} X + Y + \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 1/2 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 3/2 & 4 \end{pmatrix} \\ X - Y = \begin{pmatrix} 6 & -3 \\ 4 & 0 \end{pmatrix} - \begin{pmatrix} 2 & -2 \\ 2 & 1 \end{pmatrix}$$

29 Sejam as matrizes
$$A = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 2 & 2 \\ 0 & 5 & -4 \end{pmatrix}$$
 e $B = (b_{ij})_{3 \times 3}$, em que $b_{ij} = i - j$. Determine a matriz $\frac{1}{2}A + 4B$.

Dadas as matrizes
$$A = \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & -1 \\ 0 & 1 \end{pmatrix}$ e $C = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}$, determine a matriz X que verifica a equação $2A + B = X + 2C$.

Dada uma matriz
$$A = (a_{ij})_{m \times n}$$
, chama-se *transposta de A* a matriz $A^t = (a'_{ij})_{n \times m}$, em que $a'_{ij} = a_{ji}$, para todo i e todo j . Isso significa que as linhas de A^t são ordenadamente iguais às colunas de A (e as colunas de A^t são ordenadamente iguais às linhas de A).

Assim, se
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & -1 & 4 \end{pmatrix}_{2\times 3}$$
, então $A^t = \begin{pmatrix} 2 & 3 \\ 1 & -1 \\ 0 & 4 \end{pmatrix}_{3\times 2}$, e se $B = \begin{pmatrix} 0 & 2 \\ 4 & 5 \end{pmatrix}_{2\times 2}$, então $B^t = \begin{pmatrix} 0 & 4 \\ 2 & 5 \end{pmatrix}_{2\times 2}$.

Sendo A =
$$\begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$$
 e B = $\begin{pmatrix} 0 & 1 \\ 4 & 3 \\ -2 & 5 \end{pmatrix}$, determine:
a) 2A + A^t b) B^t

34 Determine
$$X$$
 em $3X + 2A = B^{t} + 2X$, se $A = \begin{pmatrix} 1 & 0 & 1 \\ -2 & -1 & 3 \\ -1 & 0 & 0 \end{pmatrix}$ e $B = \begin{pmatrix} 5 & -1 & 4 \\ 1 & 2 & 3 \\ -3 & -4 & 1 \end{pmatrix}$.

35 Resolva a equação
$$2X^t - 3A = B$$
, se $A = \begin{pmatrix} 4 & -3 \\ 5 & 2 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & -2 \\ 1 & 4 \end{pmatrix}$.

36 Resolva o sistema
$$\begin{cases} 2X + Y = \begin{pmatrix} 1 & 4 \\ 5 & -3 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & -2 \end{pmatrix} \\ 3X + 2Y = \begin{pmatrix} 1/2 & -1/4 \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} 1/2 & -3/2 \\ 1 & 2 \end{pmatrix} \end{cases}$$

37 (UF-RS) Uma matriz
$$A$$
 é dita *simétrica* quando $A = A'$. Sabendo-se que a matriz

$$\begin{pmatrix} 1 & 2 & y \\ x & 4 & 5 \\ 3 & z & 6 \end{pmatrix}$$
 é simétrica, qual é o valor de $x + y + z$?

39 (UE-CE) Sejam as matrizes
$$P_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $P_2 = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$ e $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
Se $(2 - n) \cdot I + n \cdot P_1 = P_2$ ($n \in \mathbb{N}$), quanto vale $n^2 - 2n + 7$?

a)
$$\begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} -1 & 4 & 3 & -2 \\ 0 & 1 & 1 & -3 \end{bmatrix}$$
 b) $\begin{pmatrix} 4 & -3 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 2 & -1 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 3 & 5 \\ 5 & -2 \end{pmatrix}$

a)
$$\begin{pmatrix} 1 & 10 & -6 \\ 5 & 2 & 0 \\ -3 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}$$
 c) $\begin{bmatrix} 1 & -1 \\ 5 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 5 \\ 2 \end{bmatrix}$

b)
$$\begin{pmatrix} 4 & -3 \\ 2 & 1 \\ 0 & -1 \\ 3 & 0 \end{pmatrix}$$
 \cdot $\begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix}$ d) $\begin{pmatrix} 1 & -2 & 0 \\ 5 & 0 & 4 \\ 2 & -3 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 4 \\ -3 & 0 & 0 \end{pmatrix}$

42 Determine, se existirem, os produtos:

a)
$$\begin{pmatrix} 3 & 5 & -2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \\ 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 \\ 10 \\ 5 \end{pmatrix} \begin{pmatrix} 4 & -1 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 4 & -3 \end{pmatrix}$

- **45** Calcule $x \in y$ em $\begin{pmatrix} 2 & x \\ y & -3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$.
- Sejam as matrizes $A = (a_{ij})_{6 \times 3}$, em que $a_{ij} = i + j$, e $B = (b_{jk})_{3 \times 4}$, em que $b_{jk} = 3j 2k$. Sendo $C = (c_{ik})_{6 \times 4}$ a matriz produto $A \cdot B$, determine o elemento c_{52} .
- (UF-SC) Sejam A = $(a_{ij})_{4\times 3}$ e B = $(b_{ij})_{3\times 4}$ duas matrizes definidas por a_{ij} = i + j e b_{ij} = 2i + j, respectivamente. Se A · B = C, então qual é o elemento c_{32} da matriz C?
- Determine $x \in y$ a fim de que as matrizes $\begin{pmatrix} 2 & 0 \\ -3 & 4 \end{pmatrix} \in \begin{pmatrix} 3 & x \\ y & 1 \end{pmatrix}$ comutem.
- **51** Dois alunos, *A* e *B*, apresentaram a seguinte pontuação em uma prova de português e em outra de matemática:

		Português	Matemática	
	aluno A	4	6	
	aluno B	9	3	

- a) Se o peso da prova de português é 3 e o da prova de matemática é *x*, obtenha, através de produto de matrizes, a matriz que fornece a pontuação total dos alunos *A* e *B*.
- b) Qual deve ser o valor de x a fim de que A e B apresentem mesma pontuação final?
- **52** Seja *A* uma matriz quadrada de ordem n; definimos $A^2 = A \cdot A$. Assim, determine A^2 nos seguintes casos:

a)
$$A = \begin{pmatrix} -1 & -3 \\ 4 & 5 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 3 & 4 \\ -4 & -1 & 0 \end{pmatrix}$

- **53** Resolva a equação $X \cdot \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ -1 & 5 \end{pmatrix}$.
- 54 Um *fast-food* de sanduíches naturais vende dois tipos de sanduíche, *A* e *B*, utilizando os ingredientes (queijo, atum, salada, rosbife) nas seguintes quantidades (em gramas) por sanduíche:

1	Sanduíche A	Sanduíche
queijo	18 g	10 g
salada	26 g	33 g
rosbife	23 g	12 g
atum	Str. Bel	16 g

Durante um almoço foram vendidos 6 sanduíches do tipo A e 10 sanduíches do tipo B. Qual foi a quantidade necessária de cada ingrediente para a preparação desses 16 sanduíches? Represente-a na forma de produto de matrizes.

- **55** Sendo $A = \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & 1 \\ 4 & 3 \\ -2 & 5 \end{pmatrix}$, resolva a equação $A^t \cdot X = B^t$.
- **56** Resolva a equação $A \cdot X + B = C$, na qual $A = \begin{bmatrix} -1 & 0 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ e $C = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$.

57 Resolva a equação
$$A \cdot B = X \cdot C$$
, se $A = \begin{pmatrix} 1 & 0 & -3 \\ 2 & 1 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ -4 & 1 \\ 0 & 2 \end{pmatrix}$ e $C = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$.

60 (Vunesp-SP) Considere as matrizes reais 2 × 2 do tipo:

$$A(x) = \begin{bmatrix} \cos x & \sin x \\ \sin x & \cos x \end{bmatrix}$$

- a) Calcule o produto $A(x) \cdot A(x)$.
- b) Determine todos os valores de $x \in [0, 2\pi]$ para os quais $A(x) \cdot A(x) = A(x)$.
- **61** (UF-MT) Os aeroportos 1, 2 e 3 estão interligados por vôos diretos e/ou com escalas. A matriz A = (a_{ij}), abaixo, descreve a forma de interligação dos mesmos, sendo que:
 - a_{ij} = 1 significa que há vôo direto (sem escala) do aeroporto i para o aeroporto j;
 - $a_{ij} = 0$ significa que não há vôo direto do aeroporto i para o aeroporto j.

A diagonal principal de A é nula, significando que não há vôo direto de um aeroporto para ele mesmo.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Seja $A^2 = A \cdot A = (b_{ij})$. Se $b_{ij} \neq 0$ significa que há vôo do aeroporto *i* para o aeroporto *j* com uma escala. Com base nessas informações, julgue os itens.

- a) Há vôo direto do aeroporto 1 para o aeroporto 3, mas não há vôo direto do aeroporto 3 para o 1.
- b) Há vôo do aeroporto 2 para o aeroporto 3 com uma escala.

63 Verifique se
$$\begin{pmatrix} 3/5 & -2/5 \\ 1/5 & 1/5 \end{pmatrix}$$
 é a inversa de $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$.

66 Sejam as matrizes
$$A = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix}$. Determine:
a) $A^{-1} + B$ b) $A^{-1} \cdot B$

68 Seja
$$A^{-1}$$
 a inversa de $A = \begin{pmatrix} -9 & 4 \\ 2 & -1 \end{pmatrix}$. Determine:
a) $A + A^{-1}$ b) $(A^{-1})^2 + A^{-1}$

69 A inversa de
$$\begin{pmatrix} y & -3 \\ -2 & x \end{pmatrix}$$
 é a matriz $\begin{pmatrix} x & x-4 \\ x-5 & 1 \end{pmatrix}$. Determine $x \in y$.

70 Determine a matriz inversa de
$$X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$
.

71 Qual é a inversa da matriz
$$X = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
?

(UC-GO) Determine x a fim de que a matriz
$$A = \begin{pmatrix} 1 & 2 \\ 0 & x \end{pmatrix}$$
 seja igual a sua inversa.

Usando a inversão de matrizes, resolva a equação
$$A \cdot X = B$$
, se $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ e $B = \begin{pmatrix} 3 & -4 \\ 2 & 1 \end{pmatrix}$.

(Ucsal-BA) A igualdade matricial

$$2 \cdot \begin{bmatrix} x & x^2 - 1 \\ -1 & -x \end{bmatrix} = \begin{bmatrix} x^2 + 6x & 30 \\ -2 & -2x \end{bmatrix},$$

em que $x \in \mathbb{R}$, é verdadeira se, e somente se, x^3 é igual a:

- a) 64
- d) -64 ou 64
- b) 64
- e) -64, 0 ou 64
- c) 0
- (PUC Pelotas-RS) Seja a matriz

A =
$$(a_{ij})_{3 \times 3}$$
, na qual $a_{ij} = \begin{cases} 0 \text{ se } i = j \\ 1 \text{ se } i > j \end{cases}$;
-1 se $i < j$

então A - At + I3 resulta na matriz:

- - $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -2 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$

- c) $\begin{pmatrix} 1 & -2 & -2 \\ 2 & 1 & -2 \end{pmatrix}$
- (UF-AL) O elemento localizado na segunda linha e terceira coluna da matriz $A = (a_{ij})_{3 \times 3}$ definida por

$$a_{ij} = \begin{cases} \sqrt{i} \text{ , se } i < j \\ \log j, \text{ se } i = j \text{ } é \\ i^j, \text{ se } i > j \end{cases}$$

- a) 8
- d) $\sqrt{3}$
- b) log 3
- e) $\sqrt{2}$
- c) log 2
- (PUC-MG)

Se A =
$$\begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$$
 e A² =
$$\begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix}$$
,

o valor do produto ab é:

- a) 4
- c) 8
- e) -17
- b) -6
- d) -12
- (UF-RN) Dadas as matrizes

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \mathbf{e} \ \mathbf{B} = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}, \, \mathbf{qual} \,\, \acute{\mathbf{e}} \,\, \mathbf{o} \,\, \mathbf{re} \text{-}$$

sultado de AB - BA?

- a) [0 0] 0 0
- d) 20 48
- b) $\begin{bmatrix} 0 & -18 \\ 12 & 0 \end{bmatrix}$
- $e) \begin{bmatrix} 20 & -18 \\ 12 & 20 \end{bmatrix}$
- c) 20 12 32 20

- 14 (Fatec-SP) Sabe-se que as ordens das . matrizes A, B e C são, respectivamente, $3 \times r$, $3 \times s$ e $2 \times t$. Se a matriz $(A - B) \cdot C$ é de ordem 3×4 , então r + s + t é igual a:
 - a) 6 b) 8 c) 10 d) 12 e) 14
 - 17 (Unirio-RJ) Considere as matrizes

$$A = \begin{bmatrix} 3 & 5 \\ 2 & 1 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 4 \\ 3 \end{bmatrix} e C = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}.$$

A adição da transposta de A com o produto de B por C é:

- a) impossível de se efetuar, pois não existe o produto de B por C.
- b) impossível de se efetuar, pois as matrizes são todas de tipos diferentes.
- c) impossível de se efetuar, pois não existe a soma da transposta de A com o produto de B por C.
- d) possível de se efetuar e o seu resultado é do tipo 2×3 .
- e) possível de se efetuar e o seu resultado é do tipo 3×2 .
- 20 (Unificado-RJ) Cláudio anotou suas médias bimestrais de matemática, português, ciências e estudos sociais em uma tabela com quatro linhas e quatro colunas, formando uma matriz, como mostra a figura:

	1º b	2º b	3° b	4º b
matemática	Γ 5, O	4,5	6, 2	5,9]
português	8, 4	6, 5	7, 1	6, 6
ciências	9,0	7, 8	6,8	8,6
est. sociais	7, 7	5, 9	5, 6	6, 2

Sabe-se que as notas de todos os bimestres têm o mesmo peso, isto é, para calcular a média anual do aluno em cada matéria basta fazer a média aritmética de suas médias bimestrais. Para gerar uma nova matriz cujos elementos representem as médias anuais de Cláudio, na mesma ordem acima apresentada, bastará multiplicar essa matriz por:

- $c) \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$

Respostas:

$$4 C = \begin{pmatrix} 2 \\ 5 \\ 10 \\ 17 \end{pmatrix}$$
é matriz coluna e

$$D = (0 - 1 - 2)$$
 é matriz linha

6
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
; principal: 2, 4 e 6 e secundária: 0, 4 e 0

7
$$\begin{pmatrix} 3 & -1 & -2 \\ 5 & 6 & -1 \end{pmatrix}$$

12
$$x = \frac{3}{4}$$
, $y = -2$, $z = 1$

13
$$p = 3$$
, $q = 3$

15
$$m = -2$$

16 m =
$$-2$$
, n = 4 , p = -3

17
$$x = \pi$$
, $y = 0$

18
$$x = 1$$
, $y = -1$

20 a)
$$\begin{pmatrix} 6 & 9 \\ 8 & 11 \\ 10 & 13 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$; dij = -1 + b) $\begin{pmatrix} -5 & -23 \\ 5 & 1 \\ -3 & -5 \\ 3 & -6 \end{pmatrix}$ d) $\begin{pmatrix} 1 & -3 & -6 \\ -7 & -5 & 10 \\ 2 & -5 & -8 \end{pmatrix}$

22 a)
$$\begin{pmatrix} 8 \\ 4 \\ -7 \end{pmatrix}$$
 b) $\begin{pmatrix} 6 & 2 \\ 4 & 4 \end{pmatrix}$

$$\mathbf{23} \begin{pmatrix} 2 & 5 \\ 5 & 9 \end{pmatrix}$$

24 a)
$$c_{21} = 6$$

b)
$$c_{63} = 18$$

25
$$X = \begin{pmatrix} 3 \\ \frac{5}{2} \\ -\frac{1}{2} \end{pmatrix}$$
 e $Y = \begin{pmatrix} 2 \\ \frac{1}{2} \\ \frac{17}{2} \end{pmatrix}$ **47** 94
49 $x = 0$ e $y = 3$
51 a) $\begin{bmatrix} 12 + 6x \\ 27 + 3x \end{bmatrix}$ b) $x = 5$

26 X =
$$\begin{pmatrix} \frac{7}{2} & 0 \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix}$$
 e Y = $\begin{pmatrix} -\frac{1}{2} & 1 \\ -\frac{1}{2} & \frac{3}{2} \end{pmatrix}$ **52** a) $\begin{pmatrix} -11 & -12 \\ 16 & 13 \end{pmatrix}$

29
$$\begin{bmatrix} 1 & -\frac{7}{2} & -8 \\ \frac{7}{2} & 1 & -3 \\ 8 & \frac{13}{2} & -2 \end{bmatrix}$$
53 $X = \begin{pmatrix} -\frac{3}{11} & \frac{6}{11} \\ -\frac{9}{11} & \frac{7}{11} \end{pmatrix}$
54 208 g de queijo, 486 g de salada, 258 g de rosbife e 160 g de atum

$$32 \begin{pmatrix} 7 & -5 \\ 4 & -1 \end{pmatrix}$$

$$\begin{bmatrix} 3 & 1 & -5 \\ 3 & 4 & -10 \\ 6 & 3 & 1 \end{bmatrix}$$

35
$$X = \begin{pmatrix} 6 & -\frac{11}{2} \\ 8 & 5 \end{pmatrix}$$
 56 $X = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$

$$36 X = \begin{pmatrix} 2 & \frac{35}{4} \\ 9 & -9 \end{pmatrix} e$$

$$Y = \begin{pmatrix} -3 & -\frac{25}{2} \\ -13 & 13 \end{pmatrix}$$

40 a)
$$\begin{bmatrix} -2 & 7 & 5 & -1 \\ -4 & 19 & 15 & -17 \end{bmatrix}$$

b)
$$\begin{pmatrix} 4 & -10 \\ 2 & 8 \end{pmatrix}$$

41 a)
$$\begin{pmatrix} 63 \\ 15 \\ -2 \end{pmatrix}$$
 c) Não existe.

b)
$$\begin{pmatrix} -5 & -23 \\ 5 & 1 \\ -3 & -5 \\ 3 & -6 \end{pmatrix}$$

b)
$$\begin{pmatrix} 8 & -2 & 6 \\ 40 & -10 & 30 \\ 20 & -5 & 15 \end{pmatrix}$$

45
$$x = \frac{7}{5}$$
 e $y = \frac{-9}{2}$

49
$$x = 0$$
 e $y = 3$

51 a)
$$\begin{bmatrix} 12 + 6x \\ 27 + 3x \end{bmatrix}$$

52 a)
$$\begin{pmatrix} -11 & -12 \\ 16 & 13 \end{pmatrix}$$

b)
$$\begin{pmatrix} 9 & 2 & -2 \\ -16 & 5 & 12 \\ -4 & -3 & 4 \end{pmatrix}$$

53
$$X = \begin{pmatrix} -\frac{3}{11} & \frac{6}{11} \\ -\frac{9}{11} & \frac{7}{11} \end{pmatrix}$$

de rosbife e 160 g de atum

56
$$X = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

36
$$X = \begin{pmatrix} 2 & \frac{35}{4} \\ 9 & -9 \end{pmatrix} e$$
 57 $X = \begin{pmatrix} 2 & -1 \\ -\frac{35}{11} & \frac{16}{11} \end{pmatrix}$

$$Y = \begin{pmatrix} -3 & -\frac{25}{2} \\ -13 & 13 \end{pmatrix}$$
 60 a) $\begin{bmatrix} 1 & \sin 2x \\ \sin 2x & 1 \end{bmatrix}$ b) $x = 0$ ou $x = 2\pi$

b) V, pois
$$b_{23} = 1$$

40 a)
$$\begin{bmatrix} -2 & 7 & 5 & -1 \\ -4 & 19 & 15 & -17 \end{bmatrix}$$
 66 a) $\begin{pmatrix} 1 & -1 \\ -4 & 7 \end{pmatrix}$ b) $\begin{pmatrix} 6 & -7 \\ -9 & 11 \end{pmatrix}$

b)
$$\begin{pmatrix} 4 & -10 \\ 2 & 8 \end{pmatrix}$$
 68 a) $\begin{pmatrix} -10 & 0 \\ 0 & -10 \end{pmatrix}$ b) $\begin{pmatrix} 98 & 0 \\ 0 & 98 \end{pmatrix}$

69 x = 7 e y = 1

b)
$$\begin{pmatrix} 8 & -2 & 6 \\ 40 & -10 & 30 \\ 20 & -5 & 15 \end{pmatrix}$$
 70 $X^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ -\frac{1}{3} & 0 & \frac{1}{3} \end{pmatrix}$ c) Não existe.

71
$$X^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

72
$$x = -1$$

74 X =
$$\begin{pmatrix} 3 & -4 \\ \frac{5}{2} & -\frac{3}{2} \end{pmatrix}$$