Algoritmi per le Impronte Digitali

Parte IV

Indice

1	Algoritmi di prefiltraggio ed enhancement			2
	1.1	Filtragg	gi iniziali	3
			Contrast streching	3
			Manipolazione dell'istogramma	3
		1.1.3	Filtro di Wiener	4
			Normalizzazione	4
			Segmentazione	4
			Regioni con diversa qualità	4
	1.2		olazione dell'immagine (enhancement)	5
			Filtri contestuali	5
			Filtro di O'Gorman e Nickerson	6
2	Est	razione	di caratteristiche	7
	2.1	Caratte	eristiche di I livello	7
			Ridge counting	7
			Analisi delle frequenze spaziali	8
			Core detection: metodo delle normali	9
	2.2		one delle minuzie di II livello	9
			Metodi di binarizzazione	9
			Thinning	9
				10
				10
	2.3		1 1 9	11
3	Spo	ofing e	Anti-Spoofing	12
	-	_		13
			-	13

Capitolo 1

Algoritmi di prefiltraggio ed enhancement

Nel modulo per estrazione delle feature si eseguono tipicamente questi passi:

- 1. filtraggio iniziale
- 2. manipolazione dell'immagine (enhancement)
- 3. estrazione delle feature
- 4. codifica

In questa sezione ci concentriamo sui punti 1 e 2.

1.1 Filtraggi iniziali

1.1.1 Contrast streching

Le immagini delle impronte digitali hanno di solito una dinamica dei toni di grigio molto limitata; l'operazione di Contrast Stretching allarga la dinamica dell'immagine.

1.1.2 Manipolazione dell'istogramma

L'istogramma di una immagine può essere mappato in un altro mediante diverse funzioni; il logaritmo permette ad esempio di evidenziare delle variazioni sottili di toni di grigio in una immagine che ha già una dinamica elevata.

1.1.3 Filtro di Wiener

Quando si conoscono le caratteristiche spettrali dell'immagine e del rumore si usa il filtro di Wiener. Si riesce a distinguire i rumori tra sfondo ed impronta, dando risalto al secondo.

1.1.4 Normalizzazione

L'obiettivo della normalizzazione è quello di standardizzare le variazione di grigio dei ridge in tutta l'immagine per agevolare gli algoritmi successivi.

1.1.5 Segmentazione

Gli algoritmi per la segmentazione estraggono il foreground dal background (impronta dallo sfondo).

Permettono di focalizzarsi solo sulle regioni della immagine che portano informazione utile al processo biometrico.

1.1.6 Regioni con diversa qualità

Una volta che l'impronta è stata individuata nella immagine dalla segmentazione si iniziano le analisi successive.

Raramente una immagine di una impronta ha la stessa qualità in tutte le regioni, a causa di:

- diversa pressione
- traslazioni
- tagli
- uso non corretto dell'inchiostro

Di solito si distinguono tre regioni:

- well-defined
- \bullet recoverable
- unrecovable

1.2 Manipolazione dell'immagine (enhancement)

Ha due obiettivi:

- migliorare la chiarezza della struttura dei ridge dove possibile
- marcare le regioni dove non è possibile estrarre informazione perché c'è troppo rumore

Prende in ingresso una immagine di toni di grigio, e produce un'immagine a toni di grigio binarizzata.

1.2.1 Filtri contestuali

Per ottenere i massimi risultati nell'evidenziare la struttura dei ridge in una immagine occorre ricorrere ai filtri adattativi o contestuali. Questa categoria dei filtraggi per le immagini modifica automaticamente i propri parametri per meglio adattarsi al mutare delle condizioni dell'immagine, basandosi su:

- distanza tra i ridge
- orientamento dei ridge
- livello di rumore presente

Questi filtri lavorano sulla immagine in ingresso attraverso un'operazione chiamata convoluzione con una maschera di filtraggio.

A seconda del tipo di maschera usata il filtro aumenta/diminuisce alcune caratteristiche piuttosto che altre.

1.2.2 Filtro di O'Gorman e Nickerson

La forma particolare di questa maschera è fatta per fare "match" con lo spessore dei ridge, la loro distanza di separazione, il valore del massimo e del minimo in un intorno del punto di esame.

Questo filtro tende ad attenuare il rumore locale.

Capitolo 2

Estrazione di caratteristiche

2.1 Caratteristiche di I livello

In questa sezione ci concetriamo sull'estrazione delle feature di I livello (direzione dei ridge, core, delta, ridge count).

2.1.1 Ridge counting

E' una misura dei ridge che attraversano una linea immaginaria passante tra due minutiae.

- fra A e B 4 ridge
- fra B e C 0 ridge
- fra C e A 3 ridge

2.1.2 Analisi delle frequenze spaziali

E' una misura di quanto sono stretti o larghi i ridge nelle varie regioni dell'impronta.

${\bf Mappa\ delle\ frequenze\ spaziali}$

Usando l'informazione ricavata dalle frequenze di ridge per ogni blocco dell'immagine è possibile avere la mappa delle frequenze dell'immagine.

2.1.3 Core detection: metodo delle normali

I punti di core possono essere calcolati utilizzando le normali. Se seguendo N ridge e calcolando M normali abbiamo un numero sufficientemente alto di intersezioni in un punto, allora abbiamo trovato un core.

2.2 Estrazione delle minuzie di II livello

In questa sezione esaminiamo gli algoritmi per l'estrazione del II livello (minutiae).

2.2.1 Metodi di binarizzazione

I metodi di binarizzazione portano una immagine in toni di grigio in una immagine in bianco e nero dove sono evidenziati i ridge.

2.2.2 Thinning

L'operazione di thinning corrisponde ad ridurre progressivamente le linee dell'immagine binarizzata fino allo spessore di 1 pixel (scheletro dell'immagine).

L'algoritmo deve anche (se possibile) riempire i buchi nei ridge per non creare profili di questo tipo:

2.2.3 Come identificare le minuzie

Esaminando l'intorno di ogni punto lungo un ridge di una immagine scheletrizzata è immediato capire in quale punto dell'impronta ci troviamo: basta contare le intersezioni della matrice 3x3 attorno al punto.

2.2.4 Metodi di post processing

I moduli di post processing servono per rimuovere le minutiae spurie introdotte dei moduli precedenti per errore.

L'errore che si può commettere è quello di togliere una minutia corretta commettendo quindi errori.

Esistono due categorie principali di post processing:

- structural post processing
- minutiae filtering in the gray-scale domain

Structural post processing

Questi moduli sono tipicamente basati su regole che fanno riferimento a caratteristiche dello scheeltro.

2.3 Estrazione delle minuzie di III livello

Nelle feature di III livello, tipicamente si studiano le posizioni dei pori, attraverso le tecniche di segmentazione ed operatori morfologici.

Ecco alcune feature estratte sui 3 livelli

Capitolo 3

Spoofing e Anti-Spoofing

Esistono molti modi per frodare un sistema biometrico:

- attaccare i canali di comunicazione del sistema
- attaccare dei moduli specifici (ad esempio il modulo SW di estrazione delle caratteristiche)
- attaccare il DB con tutti i dati di enrollment
- ingannare il sensore, presentando un sample finto

3.1 Test di vitalità per sensori ottici

Un metodo per effettuare anti-spoofing è quello di effettuare il test di vitalità: consiste nell'usare uno o più segni vitali comuni a tutta la popolazione, come ad esempio:

- il **flusso sanguigno e la sua pulsazione**, che possono essere rilevati mediante la luce riflessa/trasmessa attraverso il dito
- la **temperatura e la sua distribuzione**, in grado di indicare se il dito è vivo, morto o fasullo
- i dettagli del III livello rilevati da sensori ad alta risoluzione (¿700 dpi), che sono difficili da imitare in un dito artificiale
- il colore della pelle del dito, che cambia colore per effetto della pressione

Inoltre, gli scanner ottici di tipo *live-scan* o i sensori allo stato solido utilizzano un **meccanismo di acquisizione differenziata per le creste e i solchi** delle impronte, leggendo le differenze 3D dei ridge; in questo modo, sono in grado di difendersi da attacchi che usano immagini 2D fasulle.

3.2 Test di vitalità per sensori allo stato solido

Le proprietà elettriche di un dito vivente possono essere facilmente misurate in un sensore a stato-solido, come ad esempio:

- la differenza di potenziale tra due specifici punti della muscolatura del dito
- la **impedenza** del dito (resistenza di opposizione al passaggio della corrente elettrica)
- la sudorazione