

DEPARTAMENTO DE BIOINGENIERIA FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIA UNIVERSIDAD NACIONAL DE TUCUMAN

Procesamiento Digital de Señales Biomédicas

Dirección postal: Av. Independencia 1800 (4000) S.M. de Tucumán, Argentina Tel-fax: (54)-9-381-436-4120

gruiz@herrera.unt.edu.ar gpiza@herrera.unt.edu.ar mgsorrentino@herrera.unt.edu.ar

Tema: Transformada Z

TRABAJO PRÁCTICO Nº 8

1. **En lápiz y papel:** Encuentra las funciones de transferencias H(z), las respuestas en frecuencia y las respuestas al impulso unitario de los siguientes sistemas.

2. **En Python:** Encuentra las respuestas en frecuencia de los siguientes filtros. Clasifica: recursivo, no-recursivo. Determina sus respuestas al impulso unitario (determina h(n)).

3. Encuentra las respuestas al impulso de los siguientes filtros digitales.

Grafica las respuestas en frecuencia

DEPARTAMENTO DE BIOINGENIERIA FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIA UNIVERSIDAD NACIONAL DE TUCUMAN

Procesamiento Digital de Señales Biomédicas

Dirección postal: Av. Independencia 1800 (4000) S.M. de Tucumán, Argentina Tel-fax: (54)-9-381-436-4120

gruiz@herrera.unt.edu.ar gpiza@herrera.unt.edu.ar mgsorrentino@herrera.unt.edu.ar

Tema: Transformada Z

TRABAJO PRÁCTICO Nº 8

4. Encuentra las respuestas en frecuencia de los siguientes filtros Notch.

5. Un filtro digital tiene la siguiente función de transferencia

$$H(z) = \frac{1 - bz^{-1}}{1 + bz^{-1}}$$

- a. ¿Qué tipo de filtro es si b=0.8, -0.8, 1, -2 y -1/2?
- b. Si b = -1/2, ¿Cuál es la ganancia del filtro?
- c. Si b = 1/2 ¿Cuál es la ecuación de diferencias y(n)?

6. Supón que la siguiente función p_t representa una señal de presión arterial, que está definida de la siguiente forma:

$$P(n) = 80 + \sum_{k=1}^{3} \left(\frac{2\sqrt{80}}{\pi(2k^2 - 1)} \cos\left(2\pi(k - 1)n \frac{F_c}{F_s} - (3k^3 - 1)\frac{\pi}{7}\right) \right)$$

Donde Fc es la frecuencia cardiaca y Fs es la frecuencia de muestreo (Fs = 400Hz).

- a) Agrega ruido de línea de 50 Hz de baja amplitud a la señal P y grafica. El ruido debe tener la forma: $Ruido(n) = A sin\left(2\pi 50\frac{n}{Fs}\right)$.
- b) Diseña un filtro digital en base a la ubicación de los polos y ceros para filtrar el ruido de 50 Hz. Grafica la señal filtrada.
- c) Grafica en el plano Z los polos y ceros de la función de transferencia del filtro diseñado. Grafica la respuesta en frecuencia y la respuesta temporal del filtro (respuesta al impulso unitario).

DEPARTAMENTO DE BIOINGENIERIA FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIA UNIVERSIDAD NACIONAL DE TUCUMAN

Procesamiento Digital de Señales Biomédicas

Dirección postal: Av. Independencia 1800 (4000) S.M. de Tucumán, Argentina Tel-fax: (54)-9-381-436-4120

gruiz@herrera.unt.edu.ar gpiza@herrera.unt.edu.ar mgsorrentino@herrera.unt.edu.ar

Tema: Transformada Z

TRABAJO PRÁCTICO Nº 8

7. La siguiente función representa una señal de ECG, que está definida de la siguiente forma:

$$ecg(t) = C + \sum_{i=1}^{20} (A_i cos(\Omega_i t) + B_i sen(\Omega_i t))$$

Dónde:

C = 5.64

 $\Omega = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] \times 2\pi F_c$; F_c es la frecuencia cardiaca

A = [0.98, -5.60, -3.99, -1.76, 8.23, -4.55, -6.70, 0.82, 5.76, 1.04, -4.91, -3.02, 2.51, 4.00, -1.27, -3.43, -0.57, 2.47, 0.77, -1.07]

B = [-3.82, 11.08, 2.08, 5.04, -2.76, -6.98, 3.38, 5.17, 0.60, -5.46, -2.02, 3.30, 3.99, -1.90, -3.93, 0.19, 3.13, 0.75, -1.89, -0.83]

- a) Agrega dos ruidos sinusoidales de baja amplitud a la señal de ECG: uno de 55 Hz y otro de 150 Hz. Grafique.
- b) Diseña filtros digitales en base a la ubicación de los polos y ceros para filtrar los ruidos agregados. Grafica la señal filtrada.
- c) Grafica en el plano Z los polos y ceros de la función de transferencia de los filtros diseñados. Grafica la respuesta en frecuencia y la respuesta temporal del filtro (respuesta al impulso unitario).