Autoxidation of Salvinorin A under Basic Conditions

Thomas A. Munro, Glenn W. Goetchius, Bryan L. Roth, Timothy A. Vortherms, and Mark A. Rizzacasa.*

Supporting Information

Compound	Experimental	¹ H NMR spectrum
3	S2	S6
4a	S3	S7
4b	S3	S8
4c	S4	S9
8b	S4	S10
9a	S4	
9d	S4	S11

General Experimental Methods. NMR peaks assignments were based on HMQC, HMBC and COSY data. Stereochemical assignments (α vs β) were based on coupling constants where possible (peaks whose stereochemistry could not be unambiguously assigned on this basis are listed as "a" and "b"). Radioligand binding assays were performed as previously detailed, using cloned opioid receptors stably expressed in HEK 293 cells, with [3H]diprenorphine (50 Ci/mmol, PerkinElmer Inc) as radioligand for all subtypes. IUPAC International Chemical Identifiers (InChIs)2 were created using winChI version 1.3

Autoxidation of 1a. Oxygen was bubbled through a solution of KOH in MeOH (1 M, 2 mL) for 5 min. This was then added to a solution of 1a (31.7 mg, 73.3 μ mol) in minimal CH₂Cl₂ ($\approx 250 \,\mu$ L), and oxygen bubbled through the resulting orange solution for 20 minutes, after which time TLC (Et₂O) showed no 1a ($R_f = 0.54$) or 1b ($R_f = 0.42$). 10% HCl was added dropwise until an opaque white colour persisted. The solution was diluted in 0.05 M NaOH and extracted into CH₂Cl₂. Drying (MgSO₄) and evaporation in vacuo gave enedione 3 as a resin (14.9 mg, 53%). The aqueous layer was acidified with 10% HCl until opaque white, then extracted into CH₂Cl₂, which was dried (MgSO₄) and filtered. MeOH (10 mL) and Me₃SiCHN₂ in Et₂O (2.0 M, 200 μ L) were added. The yellow solution was stirred for 30 min, then evaporated in vacuo. Flash column chromatography on silica gel (50% EtOAc/petrol) gave a mixture of the seco triesters 4a, 4b and 4c (12.2 mg, 37%) which cospotted by TLC ($R_f = 0.45$). Repeated HPLC (36% EtOAc/petrol) on 5 μ m silica gave a compound which was tentatively assigned as 4c. Further elution gave 4a, followed by 4b.

Deacetyl-1,10-didehydrosalvinorin G (3).

```
TLC (Et<sub>2</sub>O): R_f = 0.69;
```

 $[\alpha]_{\rm D}^{14}$ +58 (c 0.7, CH₂Cl₂);

UV (CH₃CN): λ_{max} (log ε) 215 (4.30), 249 (3.77), 324 (3.57) nm;

FTIR (film): $\bar{\nu}_{\text{max}}$ 3373, 3149, 2955, 1726, 1651, 1601, 1504, 1456, 1435, 1408, 1380, 1331, 1244, 1203, 1162, 1068, 1022, 911, 875, 793, 736, 703 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): δ 7.48 (1H, br s, H-16), 7.41 (1H, t, J=1.8 Hz, H-15), 6.99 (1H, s, H-3), 6.91 (1H, s, OH), 6.42 (1H, dd, J=2.0, 0.9 Hz, H-14), 5.44 (1H, dd, J=12.3, 2.9 Hz, H-12), 3.85 (3H, s, CO₂CH₃), 3.11 (1H, ddd, J=14.8, 2.9, 1.2 Hz, H-11α), 2.98 (1H, ddd, J=9.7, 5.4, 1.2 Hz, H-8), 2.53 (1H, ddd, J=14.1, 7.7, 6.3 Hz, H-6a), 2.24 (1H, dtd, J=14.6, 7.4, 5.3 Hz, H-7β), 2.02 (1H, dd, J=15.0, 12.2 Hz, H-11β), 1.98 (1H, dddd, J=14.3, 9.7, 7.7, 6.4 Hz, H-7α), 1.77-1.67 (1H, m, H-6b), 1.72 (3H, s, H-19), 1.67 (3H, s, H-20);

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ 180.7 (C, C-2), 173.2 (C, C-17), 165.4 (C, C-18), 157.5 (C, C-4), 145.0 (C, C-1), 143.6 (CH, C-15), 140.0 (C, C-10), 139.6 (CH, C-16), 128.2 (CH, C-3), 124.5 (C, C-13), 108.4 (CH, C-14), 70.9 (CH, C-12), 52.6 (CH₃, CO₂ CH₃), 44.9 (CH, C-8), 42.3 (C, C-5), 37.7 (C, C-9), 36.8 (CH₂, C-11), 30.3 (CH₃, C-19), 28.3 (CH₂, C-6), 24.4 (CH₃, C-20), 21.9 (CH₂, C-7);

HRESIMS $[M + Na]^+ m/z 409.1265$ (calcd for $C_{21}H_{22}O_7Na^+, 409.1258$).

1-Methoxy-2-O-methyl-2-oxo-1,2-secosalvinorin B (4a).

HPLC (36% EtOAc/ petrol): $t_R = 17.4 \text{ min}$;

 $[\alpha]_{\rm D}^{24}$ +6 (c 0.1, CH₂Cl₂);

FTIR (film): $\bar{\nu}_{\text{max}}$ 2953, 1732, 1506, 1436, 1393, 1373, 1261, 1226, 1202, 1163, 1137, 1079, 1025, 875, 792 cm⁻¹;

¹H NMR (500 MHz, CDCl₃): δ 7.44 (1H, br s, H-16), 7.43 (1H, t, J=1.9 Hz, H-15), 6.41 (1H, m, H-14), 5.46 (1H, dd, J=11.6, 5.4 Hz, H-12), 3.69 (3H, s, CO₂CH₃), 3.68 (3H, s, CO₂CH₃), 3.65 (3H, s, CO₂CH₃), 2.82 (1H, dd, J=15.9, 11.8 Hz, H-3a), 2.72 (1H, dd, J=11.8, 2.0 Hz, H-4), 2.43 (1H, dd, J=15.9, 2.0 Hz, H-3b), 2.25 (1H, s, H-10), 2.17-2.08 (2H, m, H-7 β , 8), 2.01 (1H, dd, J=13.7, 5.5 Hz, H-11 α), 1.84 (1H, ddd, J=13.7, 12.0, 0.8 Hz, H-11 β), 1.74-1.63 (2H, m, H-6a, 7 α), 1.52-1.48 (1H, m, H-6b), 1.38 (3H, s, H-19), 1.30 (3H, s, H-20);

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ 174.0 (C, C-2/18), 172.5 (C, C-2/18), 171.7 (C, C-1), 171.0 (C, C-17), 143.8 (CH, C-15), 139.6 (CH, C-16), 125.1 (C, C-13), 108.5 (CH, C-14), 71.6 (CH, C-12), 58.6 (CH, C-10), 52.0 (CH₃, CO₂CH₃), 51.9 (CH, C-4), 51.7 (CH₃, CO₂CH₃), 51.4 (CH₃, CO₂CH₃), 50.5 (CH, C-8), 44.6 (CH₂, C-11), 38.7 (C, C-5), 36.9 (C, C-9), 35.1 (CH₂, C-6), 32.4 (CH₂, C-3), 18.8 (CH₃, C-19), 18.2 (CH₂, C-7), 15.6 (CH₃, C-20);

HRESIMS $[M + Na]^+$ m/z 473.1783 (calcd for $C_{23}H_{30}O_9Na^+$, 473.1782).

8-epi-1-Methoxy-2-O-methyl-2-oxo-1,2-secosalvinorin B (4b).

HPLC (36% EtOAc/petrol): $t_R = 18.3 \text{ min}$;

 $[\alpha]_{\rm D}^{23}$ +4 (c 0.4, CH₂Cl₂);

FTIR (film): $\bar{\nu}_{\text{max}}$ 2953, 1733, 1504, 1436, 1392, 1361, 1247, 1200, 1166, 1091, 1062, 1025, 998, 968, 909, 875, 849, 794, 735 cm⁻¹;

¹H NMR (500 MHz, CDCl₃): δ 7.47 (1H, br s, H-16), 7.42 (1H, t, J = 1.8 Hz, H-15), 6.42 (1H, dd, J = 1.8, 0.7 Hz, H-14), 5.26 (1H, dd, J = 12.0, 2.1 Hz, H-12), 3.67 (3H, s, CO₂CH₃), 3.66 (3H, s, CO₂CH₃), 3.64 (3H, s, CO₂CH₃), 2.84 (1H, dd, J = 15.9, 11.9 Hz, H-3a), 2.76 (1H, dd, J = 11.9, 1.6 Hz, H-4), 2.53 (1H, dd, J = 4.6, 2.8, H-8), 2.39 (1H, dd, J = 16.0, 1.8 Hz, H-3b), 2.28 (1H, br s, H-10), 2.19-2.14 (1H, m, H-7β), 2.02 (1H, dd, J = 14.5, 11.9 Hz, H-11β), 1.94-1.86 (2H, m, H-6β, 7α), 1.80 (1H, dd, J = 14.4, 2.1 Hz, H-11α), 1.48 (3H, s, H-20), 1.32-1.27 (1H, m, H-6α), 1.29 (3H, s, H-19); 13C NMR (125 MHz, CDCl₃): δ 173.8 (C, C-18), 173.2 (C, C-17), 172.6 (C, C-2), 172.2 (C, C-1), 143.7 (CH, C-15), 139.7 (CH, C-16), 123.6 (C, C-13), 108.4 (CH, C-14), 69.8 (CH, C-12), 57.8 (CH, C-10), 51.9 (CH₃, CO₂CH₃), 51.7 (CH₃, CO₂CH₃), 51.7 (CH, C-4), 51.5 (CH₃, CO₂CH₃), 46.5 (CH₂, C-11), 44.4 (CH, C-8), 38.5 (C, C-5), 35.8 (C, C-9), 32.2 (CH₂, C-3), 31.6 (CH₂, C-6), 25.1 (CH₃, C-20), 18.2 (CH₃, C-19), 18.2 (CH₂, C-7);

HRESIMS $[M + Na]^+ m/z 473.1780$ (calcd for $C_{23}H_{30}O_9Na^+, 473.1782$).

10-epi-1-Methoxy-2-O-methyl-2-oxo-1,2-secosalvinorin B (4c).

HPLC (36% EtOAc/petrol): $t_R = 17.0 \text{ min}$;

¹H NMR (400 MHz, CDCl₃): δ 7.46 (1H, br s, H-16), 7.42 (1H, t, J=1.8 Hz, H-15), 6.42 (1H, dd, J=1.9, 0.9 Hz, H-14), 5.19 (1H, dd, J=11.7, 5.4 Hz, H-12), 3.72 (3H, s, CO₂CH₃), 3.67 (3H, s, CO₂CH₃), 3.65 (3H, s, CO₂CH₃), 3.55 (1H, dd, J=12.3, 2.9 Hz, H-4), 2.80 (1H, dd, J=16.6, 12.3 Hz, H-3a), 2.59 (1H, dd, J=14.9, 5.5 Hz, H-11α), 2.56 (1H, dd, J=16.6, 2.9 Hz, H-3b), 2.53 (1H, br s, H-10), 2.39 (1H, dd, J=12.6, 3.7 Hz, H-8), 1.94-1.83 (1H, m, H-7α), 1.86 (1H, dd, J=14.9, 11.8 Hz, H-11β), 1.78 (1H, dq, J=14.4, 3.8 Hz, H-7β), 1.60-1.41 (2H, m, H-6 [obscured by H₂O]), 1.41 (3H, s, H-19), 1.20 (3H, s, H-20);

HRESIMS $[M + Na]^+$ m/z 473.1781 (calcd for $C_{23}H_{30}O_9Na^+$, 473.1782).

(4R,8S)-Dideacetyl-3,4-dihydrosalvinorin C (8b). Enedione 3 (41.3 mg, 107 μ mol) and NaBH₄ (10 mg, 264 μ mol) were dissolved in CH₂Cl₂ (500 μ L), followed by EtOH (2 mL), and stirred under Ar at 40 °C. The initial orange colour faded to faint yellow within 1 h. After 4 h, TLC (Et₂O) showed no 3 ($R_f = 0.69$). The solution was cooled to 0 °C, and 0.5% H₂SO₄/MeOH added dropwise until effervescence ceased. The solution was concentrated to $\approx 500 \ \mu$ L in vacuo, then partitioned between brine (acidified with 10% HCl) and CH₂Cl₂. Drying (MgSO₄), evaporation in vacuo and flash column chromatography on silica gel (70-100% Et₂O/petrol) gave 8b (15.7 mg, 37%);

TLC (Et₂O): $R_f = 0.53$;

¹H NMR (400 MHz, CDCl₃): δ 7.48 (1H, dt, J=1.7, 0.9 Hz, H-16), 7.42 (1H, t, J=1.7 Hz, H-15), 6.41 (1H, dd, J=1.9, 0.9 Hz, H-14), 5.29 (1H, dd, J=11.7, 1.5 Hz, H-12), 4.07 (1H, br s, H-1), 3.65 (3H, s, CO₂CH₃), 3.54 (1H, ddd, J=11.1, 4.7, 3.2 Hz, H-2), 2.45 (1H, br d, J=4.7 Hz, H-8), 2.23-2.10 (4H, m), 1.90 (1H, tdd, J=14.4, 5.5, 4.0 Hz, H-7α), 1.73-1.53 (m, obscured by H₂O & OH), 1.66 (3H, s, H-20), 1.32 (3H, s, H-19), 0.90 (1H, d, J=1.6 Hz, H-10);

 $^{1}\mathrm{H}$ NMR ([CD₃]₂CO) and $^{13}\mathrm{C}$ NMR (CDCl₃) matched literature values. 4

Salvinorin C (9a).

UV (CH₃CN): $\lambda_{\rm max}$ (log ε) 208 (4.10) nm.

¹H and ¹³C NMR (CDCl₃) matched literature values.⁴

Dideacetylsalvinorin C (9d). To 9a (5.8 mg, 12.2 μ mol) and Na₂CO₃ (5.1 mg, 41.1 μ mol) in CH₂Cl₂ (1 mL) was added MeOH (1 mL), and the solution stirred at rt for 2 h, when TLC (10% acetone/CH₂Cl₂) showed considerable 9a ($R_f = 0.60$). The solution was heated at 45 °C with a reflux condenser for a further 90 min, when TLC showed no 9a. The solution was partitioned between brine (acidified with 10% HCl) and CH₂Cl₂. Drying (MgSO₄), evaporation in vacuo and flash column chromatography on silica gel (33 - 50% EtOAc/petrol, then 25% MeOH/CH₂Cl₂) gave 9d as a resin (4.1 mg, 86%);

TLC (10% acetone/CH₂Cl₂): $R_f = 0.18$;

 $[\alpha]_{\rm D}^{18}$ +27 (c 0.2, CH₂Cl₂);

FTIR (film): $\bar{\nu}_{\text{max}}$ 3456, 2951, 1714, 1504, 1435, 1379, 1314, 1229, 1177, 1144, 1075, 1049, 1027, 949, 875, 788, 736, 685 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): δ 7.43 (1H, m, H-16), 7.42 (1H, t, J = 1.8 Hz, H-15), 6.48 (1H, dd, J = 2.5, 1.6 Hz, H-4), 6.40 (1H, dd, J = 1.9, 0.9 Hz, H-14), 5.60 (1H, dd, J = 11.1, 5.9 Hz, H-12), 4.32 (1H, br d, J = 5.1 Hz, H-1), 4.28 (1H, dd, J = 5.1, 2.4 Hz, H-2), 3.73 (3H, s, CO₂CH₃), 2.49 (1H, dd, J = 13.2, 6.0 Hz, H-11α), 2.50-2.45 (1H, m, H-6α), 2.38 (1H, br d, J = 2.1 Hz, OH), 2.33 (1H, br d, J = 5.9 Hz, OH), 2.14-2.10 (1H, m, H-8), 2.09 (1H, dq, J = 14.6, 3.6 Hz, H-7β), 1.82 (1H, dtd, J = 15.0, 13.2, 3.3 Hz, H-7α), 1.70 (3H, s, H-19), 1.60 (1H, ddd, J = 13.0, 11.1, 0.8 Hz, H-11β), 1.47 (3H, s, H-20), 1.22 (1H, d, J = 1.0 Hz, H-10), 1.16 (1H, tdd, J = 13.3, 3.6, 0.9 Hz, H-6β);

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ 172.0 (C, C-17), 166.6 (C, C-18), 143.9 (CH, C-15), 142.2 (C, C-4), 139.3 (CH, C-16), 135.3 (CH, C-3), 125.8 (C, C-13), 108.4 (CH, C-14), 71.8 (CH, C-12), 69.6 (CH, C-2), 65.6 (CH, C-1), 54.1 (CH, C-10), 51.8 (CH, C-8), 51.7 (CH₃, CO₂CH₃), 44.4 (CH₂, C-11), 37.49 (C, C-5/9), 37.45 (C, C-5/9), 37.0 (CH₂, C-6), 22.1 (CH₃, C-19), 18.4 (CH₂, C-7), 16.3 (CH₃, C-20);

HRESIMS $[M + Na]^+$ m/z 413.1588 (calcd for $C_{21}H_{26}O_7Na^+$, 413.1571).

References

- [1] Munro, T. A.; Rizzacasa, M. A.; Roth, B. L.; Toth, B. A.; Yan, F. J. Med. Chem. **2005**, 48, 345-348.
- [2] Rovner, S. L. Chem. Eng. News **2005**, 83, 39-40.
- [3] http://www.iupac.org/inchi (accessed Sept. 2005).
- [4] Valdés, L. J. J.; Chang, H. M.; Visger, D. C.; Koreeda, M. Org. Lett. 2001, 3, 3935-3937.

