21-0: Strongly Connected Graph

• Directed Path from every node to every other node

• Strongly Connected

21-1: Strongly Connected Graph

• Directed Path from every node to every other node

• Strongly Connected

21-2: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

21-3: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

21-4: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

21-5: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

21-6: Connected Components

- Connected components of the graph are the *largest possible* strongly connected subgraphs
- If we put each vertex in its own component each component would be (trivially) strongly connected
 - Those would not be the connected components of the graph unless there were no larger connected subgraphs

21-7: Connected Components

- Calculating Connected Components
 - Two vertices v_1 and v_2 are in the same connected component if and only if:
 - Directed path from v_1 to v_2
 - Directed path from v_2 to v_1
 - To find connected components find directed paths
 - Use DFS

21-8: DFS Revisited

- We can keep track of the order in which we visit the elements in a Depth-First Search
- For any vertex v in a DFS:
 - d[v] = Discovery time when the vertex is first visited
 - f[v] = Finishing time when we have finished with a vertex (and all of its children)

21-9: DFS Revisited

```
class Edge {
   public int neighbor;
   public int next;
}

void DPS(Edge G[], int vertex, boolean Visited[], int d[], int f[]) {
   Edge tmp;
   Visited(vertex] = true;
   d[vertex] = time++;
   for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {
      if (!Visited[tmp.neighbor])
            DPS(G, tmp.neighbor, Visited);
   }
   f[vertex] = time++;
}
```

21-10: DFS Revisited

• To visit every node in the graph:

```
TraverseDFS(Edge G[]) {
  int i;
  boolean Visited = new boolean[G.length];
  int d = new int[G.length];
  int v = new int[G.length];
  time = 1;
  for (i=0; i<G.length; i++)
    Visited[i] = false;
  for (i=0; i<G.length; i++)
    if (!Visited[i])
        DFS(G, i, Visited, d, f);
}</pre>
```

21-11: **DFS Example**

21-13: DFS Example

21-14: **DFS Example**

21-16: **DFS Example**

21-18: **DFS Example**

21-20: DFS Example

21-22: DFS Example

21-24: **DFS Example**

d 5

f 6

d

f

d 4

f 7

21-26: **DFS Example**

d 2

21-28: **DFS Example**

6

d

f

8

d

f

21-30: **DFS Example**

d

f

2

d

f

f

21-32: **DFS Example**

f

21-34: **DFS Example**

21-36: **DFS Example**

21-38: **DFS Example**

21-40: **DFS Example**

21-42: **DFS Example**

d 5

f 6

d 12

f

d 3

f 8

21-44: **DFS Example**

d 2

21-46: **Using d[] & f[]**

• Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?

21-47: **Using d[] & f[]**

- Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?
 - Either:
 - ullet Path from v_1 to v_2
 - Start from v_1
 - ullet Eventually visit v_2
 - \bullet Finish v_2
 - Finish v_1

21-48: **Using d[] & f[]**

- Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?
 - Either:
 - Path from v_1 to v_2
 - No path from v_2 to v_1
 - Start from v_2
 - Eventually finish v_2
 - Start from v_1
 - Eventually finish v_1

21-49: **Using d[] & f[]**

- If $f[v_2] < f[v_1]$:
 - Either a path from v_1 to v_2 , or no path from v_2 to v_1
 - If there is a path from v_2 to v_1 , then there must be a path from v_1 to v_2
- $f[v_2] < f[v_1]$ and a path from v_2 to $v_1 \Rightarrow v_1$ and v_2 are in the same connected component

21-50: Calculating paths

- Path from v_2 to v_1 in G if and only if there is a path from v_1 to v_2 in G^T
 - G^T is the transpose of G G with all edges reversed
- If after DFS, $f[v_2] < f[v_1]$
- Run second DFS on G^T , starting from v_1 , and v_1 and v_2 are in the same DFS spanning tree
- ullet v_1 and v_2 must be in the same connected component

21-51: Connected Components

- Run DFS on G, calculating f[] times
- Compute G^T
- Run DFS on G^T examining nodes in inverse order of finishing times from first DFS
- ullet Any nodes that are in the same DFS search tree in G^T must be in the same connected component

21-52: Connected Components Eg.

21-53: Connected Components Eg.

21-55: Connected Components Eg.

CS245-2013S-21	Connected Components		
d 1 f 10	d 3 f 8	d 11 f 16	d 12 f 13
2	4	6	8
d 2 f 9	d 4 f 7	d 5 f 6	d 14 f 15
21-56: Connected Cor	nponents Eg.	5	7

21-57: Connected Components Eg.

21-58: Connected Components Eg.

21-60: **Topological Sort**

- How could we use DFS to do a Topological Sort?
 - (Hint Use discover and/or finish times)

21-61: Topological Sort

- How could we use DFS to do a Topological Sort?
 - (Hint Use discover and/or finish times)
 - (What does it mean if node x finished before node y?)

21-62: **Topological Sort**

• How could we use DFS to do a Topological Sort?

- Do DFS, computing finishing times for each vertex
- As each vertex is finished, add to front of a linked list
- This list is a valid topological sort