Disproving Existentially Quantified Statments

Examples:

① Claim:
$$\exists x \in \mathbb{R}$$
 $\sin(x+1) + \cos(x^2-x) + \sin(2x) = 5$

$$Sin(x+1) + (os(x^3-x) + Sin(2x)$$

 $\leq 1+1+1=3$

(2) Claim:
$$\exists n \in \mathbb{Z}$$
 $n^2+1=7$

Disproof: Suppose that there is an
$$n \in \mathbb{Z}$$
 such that $n^2 + 1 = \mathbb{Z}$

Then
$$n^2 = 6$$

Since
$$2^2 = 4$$
 and $3^2 = 9$
then $2 \le n \le 3$

Proving / Disproving Nested Statments

Examples:

1 Claim: Yx ER, Yy ER, x2+y2=1

Disproof: Take x=8 and y=5Then $8^2 \cdot 5^2 = 80 \neq 1$

2 Claim: $\forall x \in \mathbb{R}$, $\exists y \in \mathbb{R}$, $x^2 + y^2 = 1$

Disproof: Take x=4Then $x^2+y^2=16+y^2$ so if this is 1 then $y^2=-15$. Which is imposible π

3 Claim: Ix & B, Iy & B, x2 + y2 = 1

Proof: Take x=0, y=1Then $0^2+1^2=1$

(Claim: Ix = R, Yy = R, x2 + y2 = 1

Disproof:

Suppose Ix. ER such that YyER x.2+y2=0

ロ

In Praticular if y=0 then $x_0^2 + 0^2 = 1 \iff x_0^2 = 1$ contradiction

While if y = 1 +hen x,2+12=1 \(\infty \) \(\infty \)

Proving Implications

" A ⇒ B "

Strategy:

- 1 Assume A (the hypothoses)
- Argue >
- 3 Deduce B (the conclusion)
 warning: DO NOT assume B (the conclusion)

Examples:

- O Claim: YKEZ, IF K³ is a perfect square
 then 9K" is a perfect square
 an integer a is a perfect square if

 3 b EZ such that b²=a
 - Proof: Let $K \in \mathbb{Z}$, Assume K^2 is a perfect square, So $\exists b \in \mathbb{Z}$ such that $b^2 = K^2$

Then
$$9K'' = 3^2 K^4 K^2$$

= $3^2 (K^4)^2 b^2$
= $(3K^4 b)^2$ $(3K^4 b) \in \mathbb{Z}$

- Since $9K'' = (integer)^2$, 9K'' is a perfect square
- (2) Claim: If $n \in \mathbb{N}$ is even then so is $n^2 + n$ an integer $a \in \mathbb{Z}$ is even if $\exists k \in \mathbb{Z}$ such that a = 2k
 - Proof: Let neN, Assume n is even, so JKEZ such that n=2K

Since 2K2+KEZ, n2+n is even

3 Claim: If $n \in \mathbb{N}$ is odd then so is $2n^3-n$
an integer a EZ is odd if JKEZ such that a=2K+1
Proof. Let $n \in \mathbb{N}$ assume n is odd, so $\exists K \in \mathbb{Z}$ such that $n = 2K + 1$
$2n^{3}-n=2(2k+1)^{3}-(2k+1)$ $=2(8k^{3}+12k^{4}+6k+1)-2k-1$ $=2(8k^{3}+12k^{4}+5k+1)-1$ $=2(8k^{3}+12k^{2}+5k+1)-1+(2-2)$ $=2(8k^{3}+12k^{2}+5k+1)+1$
Since 8K3+12K+5K-16Z, 2n3-n is odd.