

THE PERCEPTRON

Eitan Kosman

TOPICS

- The Problem
 - Linear Seperability Def. 1
 - Linear Seperability Def. 2
- A Biological Neuron
 - Structure
 - A Mathematical model
- The Solution Perceptron
 - A brief history
 - The algorithm
 - Intuitive interpretation for weights update
 - Theorem: Mistake bound
 - The fall of perceptron
 - Rebirth

THE PROBLEM

Given a set of n points in \mathbb{R}^d and labels:

$$X = \{x_i | i \in [n], x \in \mathbb{R}^d\}, Y = \{y_i | i \in [n]\}$$

We want to find a transformation:

$$f: X \to Y$$
 s.t.

DEFINITION (1): LINEAR SEPARABILITY

Let $X_0, X_1 \subseteq \mathbb{R}^d$ be 2 sets of points. X_0, X_1 are linearly separable if there exist n+1 real numbers w_1, w_2, \dots, w_n, k such that:

$$\forall x \in X_0: \sum_{i=1}^n w_i x_i > k$$

$$\forall x \in X_1: \sum_{i=1}^n w_i x_i < k$$

The above terms could also be represented as inner product:

$$\langle w, x \rangle$$
 where: $w = (w_1, w_2, ..., w_n)$ and $x = (x_1, x_2, ..., x_n)$

DEFINITION 1 INTERPRETATION

Given vector w, we can define a hyper-plane by:

$$\langle w, x \rangle + d = 0$$

Thus, the hyper-plane separates the field into 2 regions such that all points belong to X_0 are in one region and all points belong to X_1 are in the other region.

DEFINITION (2): LINEAR SEPERABILITY

Let $X_0, X_1 \subseteq \mathbb{R}^d$ be 2 sets of points. X_0, X_1 are linearly separable precisely when their respective convex hulls are disjoint (do not overlap)

TOPICS

- The Problem
 - Linear Seperability Def. 1
 - Linear Seperability Def. 2
- The Biological Neuron
 - Structure
 - A Mathematical model
- The Solution Perceptron
 - A brief history
 - The algorithm
 - Intuitive interpretation for weights update
 - Theorem: Mistake bound
 - The fall of perceptron
 - Rebirth

THE BIOLOGICAL NEURON - STRUCTURE

Like any other body cell, the neuron has a cell body which contains a nucleus where the DNA is stored.

From our perspective, the interesting parts are:

- Dendrites make connections with tens of thousand of other cells; other neurons. The behave as "inputs".
- Axon transmits information to different neurons, muscles, and other body cells based on the signals the cell receives. It's signals are received by other cells' dendrites.

THE BIOLOGICAL NEURON — A MATHEMATICAL MODEL

- We will try to mimic the function of a neuron using mathematical tools. Given an input vector x:
- x will be the inputs of the neuron (dendrites).
- Define a weight, w_i , for each input, and sum all the multiplications.
- Output the result as \hat{y} (Axon)

There's still a problem – How do we find the weights?

TOPICS

- The Problem
 - Linear Seperability Def. 1
 - Linear Seperability Def. 2
- The Biological Neuron
 - Structure
 - A Mathematical model
- The Solution Perceptron
 - A brief history
 - The algorithm
 - Intuitive interpretation for weights update
 - Theorem: Mistake bound
 - The fall of perceptron

PREHISTORY

Because of the "all-or-none" character of nervous activity, neural events and the relations among them can be treated by means of propositional logic.

- W.S. McCulloch & W. Pitts (1943). "A logical calculus of the ideas immanent in nervous activity", Bulletin of Mathematical Biophysics, 5, 115-137
- This seminal paper pointed out that simple artificial "neurons" could be made to perform basic logical operations such as AND, OR and NOT

AND x y x & y 0 0 0 0 1 0 1 0 0 1 1 1 inputs output

Truth Table for Logical

Truth Table for Logical OR

X	y	$\mathbf{x} \mid \mathbf{y}$
0	0	0
0	1	1
1	0	1
1	1	1

inputs output

1958 — THE PERCEPTRON

Psychological Review Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN ¹

F. ROSENBLATT

Cornell Aeronautical Laboratory

NEW NAVY DEVICE LEARNS BY DOING

Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI)
—The Navy revealed the embryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be conscious of its existence.

PERCEPTRON - THE ALGORITHM

- The goal is to find a hyper-plane separating 2 known classes.
- Consider definition (1) for linear separability:

$$\forall x \in X_0: \langle w, x \rangle > \mathbf{k}$$

$$\forall x \in X_1: \langle w, x \rangle < \mathbf{k}$$

$$\forall x \in X_0: \langle w, x \rangle - k > 0$$

$$\forall x \in X_1: \langle w, x \rangle - k < 0$$

We can eliminate k by augmenting representation with one dimension:

$$x' = (x, 1)$$
$$w' = (w, -k)$$

$$\langle w', x' \rangle = (w, -k) {x \choose 1} = w \cdot x - k$$

Algorithm: Perceptron Learning Algorithm

```
P \leftarrow inputs with label 1;
N \leftarrow inputs with label 0;
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N;
    if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then
        \mathbf{w} = \mathbf{w} + \mathbf{x};
    end
    if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then
       \mathbf{w} = \mathbf{w} - \mathbf{x};
    end
end
//the algorithm converges when all the
 inputs are classified correctly
```

WEIGHTS UPDATE: INTUITION

The orange points are from class -1 and the green points are from class +1. How would we update the decision line so that it classifies all the points correctly?

Theorem:

Let $(x_1, y_1), ..., (x_n, y_n)$, where $x_i \in \mathbb{R}^N$ and $y_i \in \{-1,1\}$ be a sequence of labeled examples and assume it is linearly separable.

Denote:

$$R = \max_{i} ||x_i||$$

Suppose there exists a vector w^* , $\gamma > 0$ such that $||w^*|| = 1$ and $\forall i, y_i(w^{*T}x_i) \geq \gamma$, then the number of mistakes made by the Perceptron algorithm of this sequence of example is $O\left(\left(\frac{R}{\gamma}\right)^2\right)$

$$R = \max_{i} ||x_{i}||$$

$$\forall i, y_{i}(w^{*T}x_{i}) \geq \gamma$$

$$\forall i, y_i(w^{*T}x_i) \geq \gamma$$

Let $w_1 = 0$ (initial weight vector) and denote w_k the weight vector after the k'th mistake.

Lemma 1:
$$w_{t+1} \cdot w^* \ge w_t \cdot w^* + \gamma$$

Lemma 2:
$$||w_{t+1}||^2 \le ||w_t||^2 + R^2$$

Lemma 1: $w_{t+1} \cdot w^* \ge w_t \cdot w^* + \gamma$

The t's update occurred when the perceptron did a mistake on sample (x_i, y_i) .

If
$$y_i = 1$$
:

$$w_{t+1} \cdot w^* = (w_t + x_i) \cdot w^* = w_t \cdot w^* + \underbrace{x_i \cdot w^*}_{\geq \gamma} = w_t \cdot w^* + \gamma$$

If
$$y_i = -1$$
:

$$w_{t+1} \cdot w^* = (w_t - x_i) \cdot w^* = w_t \cdot w^* - \underbrace{x_i \cdot w^*}_{\geq \gamma} = w_t \cdot w^* + \gamma$$

Lemma 2:
$$||w_{t+1}||^2 \le ||w_t||^2 + R^2$$

The t's update occurred when the perceptron did a mistake on sample (x_i, y_i) .

If
$$y_i = 1$$
:
$$||w_{t+1}||^2 = ||w_t + x_i||^2 = ||w_t||^2 + 2 \underbrace{w_t \cdot x_i}_{<0, since} + \underbrace{||x_i||^2}_{\le R^2} \le ||w_t||^2 + R^2$$
a mistake has occurred

If
$$y_i = -1$$
:
$$||w_{t+1}||^2 = ||w_t - x_i||^2 = ||w_t||^2 - 2 \underbrace{w_t \cdot x_i}_{>0, since} + \underbrace{||x_i||^2}_{\leq R^2} \leq ||w_t||^2 + R^2$$

$$\underset{has occured}{\underbrace{||w_t||^2 + R^2}}$$

Now, equipped with the two lemmas, we know that from Lemma 1:

$$w_1 = \overline{0}$$

$$w_2 \cdot w^* \ge w_1 \cdot w^* + \gamma = \gamma$$

$$w_3 \cdot w^* \ge w_2 \cdot w^* + \gamma \ge \gamma + \gamma = 2\gamma$$

Assume: $w_t \cdot w^* \ge (t-1) \cdot \gamma$

Thus -

$$w_{t+1} \cdot w^* \ge w_t \cdot w^* + \gamma \ge (t-1) \cdot \gamma + \gamma = t \cdot \gamma$$

Moreover, from lemma 2:

$$|w_1| = 0$$

$$|w_2|^2 \le |w_1|^2 + R^2 = R^2$$

$$|w_3|^2 \le |w_2|^2 + R^2 \le R^2 + R^2 = 2R^2$$

Assume: $|w_t|^2 \le (t-1)R^2$

Thus -

$$|w_{t+1}|^2 \le |w_t|^2 + R^2 \le (t-1)R^2 + R^2 = tR^2$$

Recap:

After *T* mistakes:

$$|w_{T+1} \cdot w^* \ge T \cdot \gamma$$
$$|w_{T+1}|^2 \le TR^2$$
$$\Downarrow$$

THE FALL OF THE PERCEPTRON

The first computer built around the concept of perceptron looked like this.

Even the wiring was supposed to simulate the connections of neurons.

THE FALL OF THE PERCEPTRON

However, a paper describing the perceptron's shortcomings, particularly that it was effective only at solving simple problems, led to a drastic drop in interest in artificial neural networks in the 1960's.

Unless input categories were "linearly separable", a perceptron could not learn to discriminate between them. **Example:**

