Pearl Hunter: An Inspired Hyperheuristic

16th January 2012, Paris

CY Chan, Fan Xue, WH Ip, CF Cheung Department of Industrial & Systems Engineering Hong Kong Polytechnic University

- 1 Pearl Hunting
- The Pearl Hunter
- Training and Validation on HyFlex
- 4 Conclusions

☐ Pearl diving is an out-of-date diving activity of retrieving pearls from oysters.

□ Can still be found in:

- ×Some Asian tourist sites,
- ×Virtual games.

In Australia (screenshot of "Introduction to pearls and Australian Pearl Divers", © by Australian Opal Cutter youtube.com/watch?v=V6vuBvgIndw)

Pearl diver in Japan (from Wikimedia Commons, public copyright)

In Qatar (screenshot of "Pearling", © Qatar Pavilion, World EXPO 2010)

Pearl Diving and Simulation

- In a search perspective, pearl hunting consists of repeated
 - *i* diversification (surface and change target area)
 - □ *intensification* (dive and find pearl oysters).
- ❖ In the paradigm of Iterated Local Search (Lourenço et al, 2003).
- Simulated operations
 - move (diversification, 1 source or multiple sources)
 - □ dive (intensification)
 - × snorkeling (quick, low level local search, stops after any improvements)
 - × deep dive (scuba; slow, high level local search, till no further improvements)

Correlations Between Snorkeling and Deep Dive

Table 1: Pearson correlations between improvements by snorkeling (10% maximum depth of search) and deep dive (maximum depth of search) in 3 domains of CHeSC

Diversification by LLH		Max-SAT	Bin Packing	Flow Shop
Crossover	Pearson Cor.	0.82*	0.47^	0.88*
	Sig. (2-tailed)	0.00	0.00	0.00
	N	466	143	317
Mutation	Pearson Cor.	0.61^	0.11	0.83*
	Sig. (2-tailed)	0.00	0.00	0.00
	N	112	1405	752
Ruin-recreate	Pearson Cor.	0.08	0.07	0.58^
(extra)	Sig. (2-tailed)	0.51	0.11	0.00
	N	70	551	328

Correlations:

Strong (*) or moderate (^) positive coefficient with a significant level 0.01

 $\bowtie 1 \le N_{\text{snorkeling}}/N_{\text{deepdive}} \le 10$, choose best of snorkeling in practice

Pearl Hunter: A Hyper-heuristic Imitation

"Environment":

- Shallow water, where deep dive always returns the same as snorkeling
- Sea trench, where deep dives cost too much time at maximum depth-of-search
- □ Default, otherwise
- Preparation of Low Level Heuristics(LLHs)
 - Selective scheme (CHeSC2011)

 Selective scheme (CHeSC2011)
 - \times Choose {A, B} from {A, B, C}
 - ☐ Constructive scheme
 - ×Pre-trained
 - ×Online trained

- ❖ Pearl Hunter can drop a *Buoy* at the depth of first deep dive, to escape from local optimum by mutations (SIs).
- Four running modes (portfolios) of selected LLHs:
 - $\blacksquare \mathbf{A}$: all moves averagely, with a *Buoy* mark
 - Arr B: crossover with a Buoy mark (triggering a few mutations)
 - □ C: crossover only, no mutation, no Buoy
 - **□ D**: Sea trench mode, all surface moves averagely, no *Buoy*. Moves are subject to online pruning.

Other tricks:

□ tabu lists (memory), "mission restarts" (go to new areas)

- + HyFlex (Hyper-heuristics Flexible framework) is a java cross-domain platform (Burke et al, 2011)
 - □ 6 domains, 4 public (training domain) and 2 hidden
 - "Black-box" low-level heuristics in 4 categories:
 - ×Crossover, Mutation, Ruin-recreate, and Local search
 - ☐ Parameters to control low-level heuristics:
 - ×"Intensity" of mutations, and "depth of local search"
- CHeSC 2011 is the first Cross-domain Heuristic Search Challenge on HyFlex. (http://www.asap.cs.nott.ac.uk/chesc2011/)
- ❖ Pearl Hunter was ranked in CHeSC:
 - [™]4th out of 20 entries overall,
 - \square 1st out of 20 entries in the hidden domains.

HyFlex and CHeSC: BF-Tree Obtained by Offline Learning (by Weka v3.5)

- □ D_{murr}: Depth of the mission in the Mutation and Ruin-recreate test,
- $\mbox{\ensuremath{\square}}\mbox{\ensuremath{M_{co}}}\mbox{:}\mbox{Number of missions completed in the Crossover test,}$
- ☐ N: Number of sub-optimal solutions found in total,
- □ P_{dir}: Percent of sub-optimal solutions found right after some moves (before any dive),
- μ P_{mu}: Percent of sub-optimal solutions found in iterations started with Mutation moves,
- □ P_{rr}: Percent of sub-optimal solutions found in iterations started with Ruin-recreate moves,

Tests on Personnel Scheduling: Beyond the 600s Time Limit of CHeSC

- On large-scale personnel scheduling problems,
 - □ Running time was increased to 10 hours (normalized to P4 3GHz),
 - Same decision tree and algorithm codes
- New best known solutions:

Instance	Men days	Time (h)	Result	Prev BK*	% improved
CHILD-2A	41 42	10	1,095	1,111	1.4
ERRVH-A	51 42	10	2,142	2,197	2.5
ERRVH-B	51 42	10	3,121	6,859	54.5

^{*} Best known values were collected from http://www.cs.nott.ac.uk/~tec/NRP/misc/NRP_Results.xls

A possible reason

A new "vertical" swap concept first implemented in low-level heuristics on HyFlex

- We present a hyper-heuristic
 - □ Imitates pearl hunting
 - ☐ Perceives "environment" of search
 - □ Determines a perturbation mode by offline learning
 - □ Generates different modes of ILS
- We find the results of tests encouraging
- Possible future works
 - □ Hunters can generate new LLHs besides a selection
 - ×(Custom designed for TSP) Generated an association-rules-based weighting hyper-heuristic to determine candidate set, and facilitated branch-and-bound and local search (2-Opt, 5-Opt) (Xue *et al*, 2010, 2012).

- □ Burke E.K., Curtois T., Qu R., Vanden Berghe G. (2007) A Time Pre-defined Variable Depth Search for Nurse Rostering.

 Technical Report No. NOTTCS-TR-2007-6. University of Nottingham
- ™ Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., and Qu, R. (2010) Hyperheuristics: A Survey of the State of the Art, University of Nottingham. Technical Report No. NOTTCS-TR-SUB-0906241418-2747.
- □ Burke, E., Curtois, T., Hyde, M., Ochoa, G., Vazquez-Rodriguez J. A. (2011) HyFlex: A Benchmark Framework for Cross-domain Heuristic Search, ArXiv e-prints, arXiv:1107.5462v1
- □ Lourenço, H., Martin, O., St titzle, T. (2003) Iterated Local Search. In Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. Springer New York. 320-353.
- ™ Xue F., Chan, C.Y., Ip, W.H., Cheung, C.F. (2010) Towards a learning-based heuristic searching reform scheme, XXIV European Conference on Operational Research (EURO), Lisbon, Portugal.
- Xue F., Chan, C.Y., Ip, W.H., Cheung, C.F. (2012) A learning-based variable assignment weighting scheme for heuristic and exact searching in Euclidean traveling salesman problems, NETNOMICS, (to appear).

 □ Xue F., Chan, C.Y., Ip, W.H., Cheung, C.F. (2012) A learning-based variable assignment weighting scheme for heuristic and exact searching in Euclidean traveling salesman problems, NETNOMICS, (to appear).

Thank you for your attention!

E-mail addr.: mffxue@inet.polyu.edu.hk dewolf_matri_x@msn.com

