Payback Period:

If the cash inflows are even (such as for investments in annuities), the formula to calculate payback period is:

Payback Period =
$$\frac{\text{Initial Investment}}{\text{Net Cash Flow per Period}}$$

When cash inflows are uneven, we need to calculate the *cumulative net cash flow* for each period and then use the following formula:

Payback Period =
$$A + \frac{B}{C}$$

Where,

A is the last period number with a negative cumulative cash flow;

B is the absolute value (i.e. value without negative sign) of cumulative net cash flow at the end of the period A; and

C is the total cash inflow during the period following period A

Payback Period:

Example 1: Even Cash Flows
Company C is planning to
undertake a project requiring
initial investment of \$105
million. The project is expected
to generate \$25 million per year
in net cash flows for 7 years.
Calculate thepayback period of
the project. Solution

Payback Period

= Initial Investment ÷ Annual Cash Flow

= \$105M ÷ \$25M

= 4.2 years

Example 2: Uneven Cash Flows Company C is planning to undertake another project requiring initial investment of \$50 million and is expected to generate \$10 million net cash flow in Year 1, \$13 million in Year 2, \$16 million in year 3, \$19 million in Year 4 and \$22 million in Year 5. Calculate the payback value of the project.

Solution

	(cash flows in millions)			
Year	Annual	Cumulative		
	Cash Flow	Cash Flow		
0	(50)	(50)		
1	10	(40)		
2	13	(27)		
3	16	(11)		
4	19	8		
5	22	30		

Payback Period = $3 + 11/19 = 3 + 0.58 \approx 3.6$ years