Assignment 2

Finite Automata Due Friday, March 24, 2017

1. Consider the following nondeterministic finite automaton,

40% (每小題 10%,若未表示是否為合法該題扣一半)

母小題 10%,右木衣不定省為台法該題扣一干) ———				
Input States	a	b	3	
1			{2, 8}	
2	{3}			
3			{4, 6}	
4		{5}		
5			{4, 6}	
6	{7}		{10}	
7			{13}	
8			{9, 11}	
9	{10}			
10			{9, 11}	
11		{12}		
12			{13}	
13				

where state 1 is the start state and state 13 is the only final state. The blank entry in the table represents the empty set. Simulate this NFA using the ϵ -closure and move functions with respect to the input strings aa, abba, b, and aaab.

```
aa S=\epsilon-closure(\{1\})=\{1,2,8,9,11\} S=\epsilon-closure(move(\{1,2,8,9,11\},a))=\epsilon-closure(\{3,10\})=\{3,4,6,9,10,11\} S=\epsilon-closure(move(\{3,4,6,9,10,11\},a))=\epsilon-closure(\{7,10\})=\{7,9,10,11,13\} S\cap\{13\}\Leftrightarrow\varnothing\text{ aa 為合法} abba S=\epsilon-closure(\{1\})=\{1,2,8,9,11\} S=\epsilon-closure(move(\{1,2,8,9,11\},a))=\epsilon-closure(\{3,10\})=\{3,4,6,9,10,11\} S=\epsilon-closure(move(\{3,4,6,9,10,11\},b))=\epsilon-closure(\{5,12\})=\{4,5,6,9,10,11,12,13\} S=\epsilon-closure(move(\{4,5,6,9,10,11,12,13\},b)) =\epsilon-closure(\{5,12\})=\{4,5,6,9,10,11,12,13\}
```

```
S = \epsilon-closure(move({4,5,6,9,10,11,12,13}, a)) = \epsilon-closure({7,10})={7,9,10,11,13}  
S \cap {13} \Leftrightarrow \varnothing \therefore abba 為合法  
b  
S=\epsilon-closure(\{1\}) = {1,2,8,9,11}  
S = \epsilon-closure(move({1,2,8,9,11}, b)) = \epsilon-closure({12})={12,13}  
S \cap {13} \Leftrightarrow \varnothing \therefore b 為合法  
aaab  
S=\epsilon-closure(move({1,2,8,9,11}, a)) = \epsilon-closure({3,10})={3,4,6,9,10,11}  
S = \epsilon-closure(move({1,2,8,9,11}, a)) = \epsilon-closure({7,10})={7,9,10,11,13}  
S = \epsilon-closure(move({3,4,6,9,10,11}, a))= \epsilon-closure({10})={9,10,11}  
S = \epsilon-closure(move({7,9,10,11,13}, a))= \epsilon-closure({12})={12,13}  
S \cap {13} \Leftrightarrow \varnothing \therefore aaab 為合法
```

2. Consider the following deterministic finite automaton,

40% (每小題 10%,若未表示是否為合法該題扣一半)

Inputs	а	b
1	2	3
2	4	5
3		
4	6	3
5	7	8
6	6	3
7		
8	7	8

where state 1 is the start state and states 3, 4, 5, and 7 are final states. Simulate this DFA using the move function with respect to the input strings aa, abba, b, and aaab.

```
aa
s= move(1, a) =2
s= move(2, a) =4
4 ∈ {3, 4, 5, 7} ∴aa 為合法
```

```
abba
```

$$s = move(5, b) = 8$$

b

$$s = move(1, b) = 3$$

aaab

$$s=move(1, a)=2$$

$$s=move(2, a)=4$$

$$s = move(4, a) = 6$$

$$s = move(6, b) = 3$$