Prelims

Let $Y=(X, \mathfrak{I}, \mathfrak{O})$ be a ringed site. Let $R=\Gamma(1;\mathfrak{O})$. Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{c}' \in X$. Let \mathfrak{F} be a quasi-coherent module on $Y_{\mathfrak{a}}$. Let $M=\Gamma(\mathfrak{a};\mathfrak{F})=\Gamma(1;\mathfrak{F})$. Let $\mathfrak{f}:\mathfrak{b}\to\mathfrak{a}$.

Some basic definitions and constructions.

Definition 1 (Over/Under categories). Let C and C' be categories. Let $F: C \to C'$ and $Z \in C'$. Define the category C_Z and C^Z as follows

$$Obj(C_{Z}) := \{(X, u) \mid X \in C, u : F(X) \to Z\},$$

$$Hom((X, u), (Y, v)) := \{f : X \to Y \mid v \circ F(f) = u\},$$

and

$$Obj(C^{Z}) := \{(X, u) \mid X \in C, u : Z \to F(X)\},$$

$$Hom((X, u), (Y, v)) := \{f : X \to Y \mid F(f)u = v\}.$$

We get faithfull functors $C_Z \to C: (X, \mathfrak{u}) \to X$ and $C^Z \to C: (X, \mathfrak{u}) \to X$. We will call both functors \mathfrak{u} and suppress the functor where there can be no confusion

Definition 2. Let M, N be an R-module. Let $g: M \to N$. Define

$$\lambda:R\text{-}Mod\to PMod(Y)$$

by

$$\lambda(M)(\alpha) = M \otimes_R \Gamma(\alpha; \mathfrak{O}),$$
$$\lambda(M)(f) : Id \otimes \mathfrak{O}(f),$$
$$\lambda(g) = (\alpha : g \otimes Id).$$

Definition 3. Define

$$\Lambda : R\text{-Mod} \rightarrow Mod(Y)$$

by $sh \circ \lambda$.

This functor is left adjoing to the global sections functor, which I will prove in the next episode.

Lemma 4. Let S be a subset of Hom(-,f). Then u(S) is a sieve on u(f) = b if and only if S is a sieve on f.

Proof. =>: Let $h: d \to b \in S$ and $k: e \to d$ be arbitrary. By assumption $u(hk) \in u(S)$. The functor u is faithfull, so $hk \in S$.

<=: Let $h: d \to b \in \mathfrak{u}(S)$ and $k: e \to d$ be arbitrary. By assumption $hk \in S$, hence $\mathfrak{u}(hk) \in \mathfrak{u}(S)$.

We will define the induced topology S on C_{α} . That u considered as a map on sieves commutes with the pullback of sieves is used and will not be proved.

Definition 5. Let $\mathfrak{T}(\mathfrak{u}(f))$ be the set of covering sieves on $\mathfrak{u}(f) \in X$. By the previous lemma sieves on $\mathfrak{u}(f)$ are sieves on f. Let $\mathfrak{S}(f) = \{R \mid \mathfrak{u}(R) \in \mathfrak{T}(\mathfrak{u}(f)) \text{ be the induced topology. So } \mathfrak{u}(R) \text{ is covering on } \mathfrak{u}(f) \text{ if and only if } R \text{ is covering on } f.$

- a) Since u commutes with pullback of sieves, we have max(u(f)) = u(max(f)) = max(f), hence $max(f) \in S(f)$.
- b) Let R be a covering sieve on f. Let $h:b'\to a$ and $p:b'\to b$ with fp=h. Commutativity of u and pulling back implies that $\mathfrak{u}(p)^*\mathfrak{u}(R)=\mathfrak{u}(p^*R)$. Hence p^*R is covering since $\mathfrak{u}(p^*R)$ is.
- c) Let R be a covering sieve on f and Q be a sieve on f. Let $h:b'\to a$ and $p:b'\to b\in R$, hence with fp=h. Assume p^*Q is covering for every such p. Then $\mathfrak{u}(p^*Q)=\mathfrak{u}(p)^*\mathfrak{u}(Q)$ is covering for every p. We know that $\mathfrak{u}(R)$ is covering hence $\mathfrak{u}(Q)$ must be, which implies that Q is covering.

We proved that S is indeed a Grothendieck topology.

Main

Lemma 6. Let α be caffine. The global component of the sheafification morphism is equal to the unit of $\Lambda \dashv \Gamma(1;-)$ in C_{α} .

Proof. Let M be a $\Gamma(a; \mathfrak{O})$ -module. Consider the following maps, which you get by

repeatedly calling on an adjunction bijection. Let i be the universal sheafification morphism.

$$\Lambda(M) \rightarrow \Lambda(M)$$

 $i: \lambda(M) \to \Lambda(M)$ use sheafification adjunction

$$M \to \Gamma(\alpha; \Lambda(\mathfrak{M}))$$
 use $\lambda \dashv \Gamma(\alpha; -)$

If you compose the two adjunction bijections used, you get the bijection of $\Lambda \dashv \Gamma(\alpha; -)$ by definition, so the last map is actually η_M . Hence $i_\alpha = \eta_M$, which is an iso by assumption.

Lemma 7. Sheafifying and restricting commute. In formula form

$$sh_b \circ *|_b \cong *|_b \circ sh_a$$
.

Proof. I will prove that we have a natural isomorphism

$$s: sh_b \circ *|_b \to *|_b \circ sh_a$$
.

Let \mathfrak{F} be a presheaf on Y_a . Let $\mathfrak{H} = \mathfrak{sh}(F|_b)$ and $\mathfrak{K} = \mathfrak{sh}(F)|_b$. Let T be a covering sieve on g in Y_b and $j \in T$. Let S_j be a covering sieve on Dom(j) in Y_b and $i \in S_j$.

Let $x = (x_{i,j}) \in sh(F|_b)$ be indexed by S_j and T. We have $x_{i,j} \in \Gamma(Dom(i); \mathfrak{F})$. Define $s_g(x) = (x_{u(i),u(j)})$ with indexing covering sieves $u(S_j), u(T)$.

Let $x \sim y$. Let R be the covering sieve on which they are the same. Then $s_g(x) \sim s_g(y)$ because they are the same on u(R). Hence this map is well-defined.

Let $s_g(x) = s_g(y)$. Then there is some covering sieve R on fg on which they agree. Consider $u^*(R)$ as a covering sieve on g and its is clear that x and y must agree on it, hence the map is injective.

Let $y=(y_{k,l})$ be an element of $\Gamma(c;\mathfrak{K})$ which is indexed by V,W. Then $s_g(y')=y$ where y' has the same elements as y but is indexed by $\mathfrak{u}(V),\mathfrak{u}(W)$, so $y'\in\Gamma(c;\mathfrak{H})$. Hence s_g is surjective.

Let $h: c' \to b$ and $p: c' \to c$, such that gp = h. We will show that $s_h \mathfrak{H}(t) = \mathfrak{K}(t) s_g$. See below diagram. Let $x = (x_{i,j}) \in \Gamma(c; \mathfrak{H})$ with indexing covering sieves S_i and T. Then $\mathfrak{K}(t)(s_g(x))=(x_{k,l})$ with indexing covering sieves t^*S_l and t^*T . The other one becomes $s_h(\mathfrak{H}(t)(x))=(x_{k,l})$ with indexing covering sieves t^*S_l and t^*T . Hence s is natural.

$$\begin{array}{ccc} \Gamma(h;\mathfrak{H}) & \xrightarrow{\quad s_h \quad} \Gamma(h;\mathfrak{K}) \\ \\ \mathfrak{H}(t) & & & \mathfrak{K}(t) \\ \\ \Gamma(g;\mathfrak{H}) & \xrightarrow{\quad s_g \quad} \Gamma(g;\mathfrak{K}) \end{array}$$

Proposition 8. The adjunct of f

$$\Gamma(\mathfrak{a};\mathfrak{F})\otimes_{\Gamma(\mathfrak{a};\mathfrak{O})}\Gamma(\mathfrak{b};\mathfrak{O})\to\Gamma(\mathfrak{b};\mathfrak{F})$$

is an isomorphism.

Consider

By a previous lemma, the left square commutes. By definition the two 'triangles' commute too and the outer square commute, hence the right square also commutes. Therefore $M \otimes \Gamma(b;\mathfrak{D}) \cong \Gamma(b;\mathfrak{F})$. This is the proof you wrote down friday.

The requirement is not to find any isomorphism but a specific one. So I think this is not enough and we need to do some bookkeeping and see if the witnessing isomorphism is our map.

Consider

The natural transformation j is the universal sheafification morphism coming from sh_b . We have seen that $\Gamma(b;j)$ and s are isomorphisms

Let $g:c\to b$. Let $x=m\otimes r\in \lambda(M\otimes \Gamma(c;\mathfrak{O}))$. Then $j_g(x)=(x_i)$ indexed by the maximal sieve on g and $i_g(x)=i_{fg}(x)=(x_i)$ indexed by the maximal sieve on gf. Hence we get $s_g(j_g(x))=i_g(x)$, so the triangle commutes. Evaluating everything on the terminal, in this case on b, shows that two out of three maps are isomorphisms, hence i_b is an isomorphism.