Day 2: Introduction to Convolutional Neural Networks (CNNs)

Lesson of Content

- 1. What is the problem with Neural Network?
- 2. Image processing
- 3. Convolutional Operation
- 4. Some blocks
- 5. ImageNet challenge
- 6. Some Architecture
- 7. CNN Applications

1. What problem with Neural Network?

Với ảnh kích thước nhỏ: 128x128x3 Số lớp Hidden: 1 => Mạng tương đối đơn giản mà số parameters đã đến gần 50 M. (Too big)

Input Image:

128x128x3

Flatten

Red (R) Green (G) Blue (B)

Color: Được tạo từ ba kênh

màu.

Shape: **32 x 80 x3**

GrayScale: Được tạo từ 1 kênh màu range từ 0 -> 255.

Shape: 32 x 80 x 1

Black-and-white: Được bởi

hai giá trị 1 và 0. Shape: 32 x 80 x 1

2. Image Processing

Color

Grayscale

Black-and-white

2. Image Processing

2. Image Processing

Element-wise multiplication matrix

Đây là một phép toán được sử dụng nhiều nhất trong CNNs.

Input: 256x256x3

Kernel: 4x4x3 , có **5** cái kernel,

Padding = 0 , Stride = 2 **Output**: 127x127x**5**

- **Trích xuất đặc trưng:** Giúp học và phát hiện được các đặc trưng của dữ liệu như (Màu, góc, cạnh, ...).
- Hiểu được cấu trúc không gian: của dữ liệu.
- Tăng tính phi tuyến: CNN có khả năng phát hiện các đặc trưng phức tạp -> nó có thể tạo thành các hàm phức tạp.
- **Giảm số lượng tham số:** Giúp inference nhanh và training nhanh (Do CNN không phụ thuộc vào kích thước ảnh đầu vào mà phụ thuộc vào kernel size)

Total Parameter:

Neural Network: 50M

- CNNs: 10M

3. <u>Convolutional Operation</u>

1X0 + 5X - 1 + 9X0 + 2X - 1 + 6X5 + 10X - 1 + 3X0 + 7X - 1 + 11X0 + 5 = 11

2X0+6X-1+10X0+3X-1+7X5+11X-1+4X0+8X-1+12X0+5=12

6 X O + 10 X -1 + 14 X O + 7 X -1 + 11 X 5 + 15 X -1 + 8XO + 12X-1 + 16XO + 5 = 16

- Input: (N,C_{in},H_{in},W_{in}) or (C_{in},H_{in},W_{in})
- ullet Output: $(N, C_{out}, H_{out}, W_{out})$ or $(C_{out}, H_{out}, W_{out})$, where

$$H_{out} = \left\lfloor rac{H_{in} + 2 imes \mathrm{padding}[0] - \mathrm{dilation}[0] imes (\mathrm{kernel_size}[0] - 1) - 1}{\mathrm{stride}[0]} + 1
ight
floor$$

$$W_{out} = \left\lfloor rac{W_{in} + 2 imes \mathrm{padding}[1] - \mathrm{dilation}[1] imes (\mathrm{kernel_size}[1] - 1) - 1}{\mathrm{stride}[1]} + 1
ight
floor$$

source: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

N: Số lượng sample

C_in/out: Số lượng Channel ngõ vào/ra

H, W: Lần lượt là Width và Height

Padding: Kích thước phần được thêm vào (Theo chiều Width

và chiều Height)

Stride: Kích thước trượt của Kernel (Theo chiều Width và

chiều Height)

Kernel_size: Kích thước của Kernel

Pooling

4. Some blocks

Giảm kích thước không giảm: Giảm số lượng tham số và phép tính, giúp mô hình nhanh và ít bộ nhớ hơn.

Trích xuất đặc trưng cục bộ Tăng tính phi tuyến: Giúp thêm một chút tính phi tuyến vào mô hình.

Mất thông tin: Mỗi lần pooling mất một số thông tin. Nếu dùng MaxPooling thì chỉ giữ những pixel có giá trị max, còn AveragePooling thì giữ lại giá trị trung bình.

Flatten and Global Average Pooling (GAP)

Flatten thường dùng cho mạng CNN ít lớp (LeNet, AlexNet)

GAP thường dùng cho mạng CNN hiện đại như ResNet

Skip Connection (Residual Connection)

Giảm Vanishing gradient

Cho phép mạng sâu hơn: Minh chứng cho thấy mạng ResNet thường có số lớp sâu nhưng vẫn hiệu quả.

Khả năng hội tụ nhanh hơn: Trên thực nghiệm cho thấy mô hình có skip connection sẽ hội tụ nhanh hơn.

$$egin{aligned} H(x) &= F(x) + x \ Y(x) &= anh(H(x)) \ rac{dY}{dx} &= rac{dY}{dH} \cdot rac{dH}{dx} \ rac{d anh(z)}{dz} &= 1 - anh^2(z) \ rac{dY}{dH} &= 1 - anh^2(H(x)) \ rac{dH}{dx} &= rac{dF}{dx} + 1 \ rac{dY}{dx} &= (1 - anh^2(H(x))) \cdot (rac{dF}{dx} + 1) \end{aligned}$$

Batch Normalization

- Thường đặt ở sau hàm kích hoạt để chuẩn hóa đưa phổ dữ liệu về vùng bão hòa. Giúp **giảm Vanishing/ Exploding Gradient.**
- Đồng nhất phân phối: Giúp việc huấn luyện nhanh và ổn định hơn.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // normalize // scale and shift

1x1 Convolutions (Pointwise Convolutions)

Network

Thường dùng để **Giảm/Tăng chiều** của một feature map mà không thay đổi chiều cao, chiều rộng.

- **Tính toán phi không gian:** Giúp mô hình có sự học hiểu giữa các kênh của tích chập.
- **Giảm chi phí tính toán:** Thường đặt 1x1 Conv trước khi vào 3x3 hoặc 5x5 Conv , giúp giảm số lượng tham số tính toán.
- Tăng cường tính phi tuyến: Giúp mô hình có những biểu diễn phức tạp hơn.

Depthwise Convolutions

Giảm số lượng tham số: Mỗi kênh đầu vào có một kernel riêng, nên số lượng tham số giảm đáng kể.

Giảm tính toán: Số lượng tính toán chỉ phụ thuộc vào số lượng channel.

Tích hợp thông tin đặc trưng và không gian (Nếu dùng theo sau là Pointwise Convolutions)

Không thể học mối quan hệ phức tạp như CNN truyền thống.

Các architecture chứa loại này: **Xception**, **MobileNet**, **EfficientNet**, **SqueezeNet**

Depth-Separable Convolutions

CONV:

Parameters:

$$(5x5x32 + 1)x64 = 51.264$$

Computational Complexity:

(126x126)x(5x5x32)x64 = 812.851.200 (Phép tính)

Depth-Separable Convolutions:Parameters:

$$w1 = 5x5x32 = 800$$

 $w2 = (1x1x32 + 1)x64 = 2.112$
 $w1 + w2 = 2.912$

Computational Complexity:

Output

126x126x64

$$t1 = (126x126)x(5x5x32)x1 = 12.700.800$$

 $t2 = (126x126)x(1x1x32)x64 = 32.514.048$
 $t1 + t2 = 45.214.848$ (Phép tính)

Giảm số lượng <u>tính toán</u> đi: 17.9 lần Giảm số lượng <u>tham số</u> đi: 17.6 lần

Transposed Convolution

Thường dùng trong Image Segmentation , Generative Adversarial Networks (GANs) và Super Resolution.

- **Khôi phục thông tin:** Do các ConV thường làm mất đi thông tin, thì TConv sẽ là khôi phục thông tin của feature đã mất.
- **Phân đoạn hình ảnh:** Nó là bước trung gian từ 1 pixel tăng lên rồi giảm về lại kích thước ban đầu, từ đó đưa ra dự đoán mức độ pixel
- Tăng kích thước feature map đầu ra.

Vấn đề checkerboard pattern cần lưu ý.

Checkerboard pattern

Xảy ra do việc sử dụng stride lớn trong TConV. Khi tính toán output nhiều vùng được cộng chồng lên nhau.

Solution:

- Thường dùng Kernel là số chẵn.
- Kết hợp thêm một lớp ConV ngày sau khi TConv giúp làm "mịn" hình ảnh và giảm thiểu sự không đồng đều.

~14 million labeled images, 20k classes Images gathered from Internet Human labels via Amazon MTurk

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1.2 million training images, 1000 classes

Link: <u>www.image-net.org/challenges/LSVRC/</u>

5. <u>ImageNet Challenge</u>

Winner in year 2015

6. Some Architecture

VGG-19

Model	Parameters (excl. classif. heada)	ImageNet accuracy	104 flowers F1 score ^b (fine- tuning)	104 flowers F1 score (trained from scratch)
VGG19	20M	71%	88% precision: 89%, recall: 88%	N/A ^c
Previous best	for comparison:			
AlexNet	3.7M	60%		39% precision: 44%, recall: 38%

- Dễ hiểu và triển khai

- **Số lượng tham số lớn** (Do lạm dụng nhiều Convolutional và Pooling) dẫn đến train và dự đoán lâu
- Vẫn có thể bị vanishing gradient
- **Dễ bị overfit với tập huấn luyện nhỏ** do số lượng tham số lớn.

6. Some Architecture

ResNet-50

Model	Parameters (excl. classif. head ^a)	lmageNet accuracy	104 flowers F1 score ^b (fine- tuning)	104 flowers F1 score (trained from scratch)
ResNet50	23M	75%	94% prec.: 95%, recall: 94%	73% prec.: 76%, recall: 72%
Previous best for co	mparison:			
InceptionV3	22M	78%	95% prec.: 95%, recall: 94%	
SqueezeNet, 24 layers	2.7M			76% prec.: 77%, recall: 75%

- Mạng sâu và hiệu quả: Nhờ sử dụng <u>Residual</u> <u>blocks</u> giúp không bị vanishing gradient.
- **Mạng sâu hơn ít tham số** (so với VGG): Nhờ việc sử dụng nhiều Convolutional 1x1.
- **Số lượng tham số lớn** (Do lạm dụng nhiều CNN và Pooling) dẫn đến train và dự đoán lâu
- **Dễ bị overfit với tập huấn luyện nhỏ** do số lượng tham số lớn.

Applications of CNN

Computer Vision and related application

Natural Language Processing

Object Detection and Segmentation

Image Classification

Speech Recognition

Video Processing

Low-resolution images

Limited Resource system

CNN for various dimensional data

Object Counting

7. CNN Applications

