STOCH. MODELE SYSTEMÓW ODDZIUAŁUJĄCYCH 2024 WYKŁAD 2: MOCNA WŁASNOŚĆ MARKOWA

Pojęcie czasu zatrzymania odgrywa kluczową rolę w teorii procesów stochastycznych. Są to losowe momenty adaptowalne do z góry zadanej filtracji. Jest to kluczowa koncepcja zarówno w silnej własności Markowa. Będziemy korzystać z ciągłej filtracji $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{R}_+}$.

0.1 Czasy zatrzymania

Przypomnijmy, że w czasie dyskretnym definicja czasu stopu τ jest taka, że $\{\tau=n\}\in\mathcal{F}_n$ dla każdego naturalnego n. Jest to równoważne z warunkiem, że $\{\tau\leq n\}\in\mathcal{F}_n$ dla każdego naturalnego n. W czasie ciągłym ta równoważność nie zachodzi, ponieważ $[0,\infty)$ nie jest przeliczalne. Warunek analogiczny do tego drugiego jest naturalny do użycia w czasie ciągłym, ponieważ zazwyczaj zdarzenie $\{\tau=t\}$ ma zerowe prawdopodobieństwo dla każdego t.

Definicja 0.1. Zmienna losowa $\tau: \Omega \to [0, \infty]$ nazywana jest \mathbb{F} -czasem zatrzymania, jeśli $\{\tau \leq t\} \in \mathcal{F}_t$ dla każdego $t \geq 0$.

W niektórych kontekstach filtracja \mathbb{F} z którą pracujemy jest na tyle regularna, że ułatwia to weryfikację, czy zmienna jest czasem zatrzymania.

Definicja 0.2. Powiemy, że filtracja $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{R}_+}$ jest prawostronnie ciągła, jeżeli

$$\mathcal{F}_t = \mathcal{F}_{t_+}, \qquad \text{gdzie} \qquad \mathcal{F}_{t+} := \bigcap_{s>t} \mathcal{F}_s$$

dla każdego $t \in \mathbb{R}_+$.

Zadanie 0.1. Załóżmy, że filtracja \mathbb{F} jest prawostronnie ciągła. Wówczas τ jest czasem zatrzymania wtedy i tylko wtedy, gdy $\{\tau < t\} \in \mathcal{F}_t$ dla każdego $t \in \mathbb{R}_+$.

Zadanie 0.2. Pokaż, że jeśli τ_1 i τ_2 są czasami zatrzymania, to również $\tau_1 \wedge \tau_2$, $\tau_1 \vee \tau_2$ i $\tau_1 + \tau_2$ są czasami zatrzymania.

Zadanie 0.3. Udowodnij, że jeśli $\{\tau_n\}_{n\in\mathbb{N}}$ jest ciągiem czasów stopu, które maleją do τ , to τ jest czasem stopu.

Własność Markowa dotyczy warunkowej wartości oczekiwanej względem \mathcal{F}_s dla ustalonego s. Mocna własność Markowa jest analogiczna, ale warunkowanie odbywa się względem σ -algebry \mathcal{F}_{τ} , gdzie τ jest czasem stopu. Składa się ona ze zdarzeń, które są określone przez przeszłość aż do czasu τ .

Definicja 0.3. Dla czasu zatrzymania τ definiujemy

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \leq t \} \in \mathcal{F}_t \text{ dla każdego } t \in \mathbb{R}_+ \}.$$

Zadanie 0.4. Pokaż, że:

- (a) \mathcal{F}_{τ} jest σ -algebra,
- (b) Załóżmy, że F jest prawostronnie ciągła. Pokaż, że

$$\mathcal{F}_{\tau} = \{A : A \cap \{\tau < t\} \in \mathcal{F}_t \text{ dla każdego } t \geq 0\}.$$

Oto niektóre podstawowe własności \mathcal{F}_{τ} .

Twierdzenie 0.4. Jeśli wszystkie τ występujące poniżej są czasami zatrzymania, to:

- (a) τ jest mierzalny względem \mathcal{F}_{τ} .
- (b) Jeśli $\tau_n \downarrow \tau$, to $\mathcal{F}_{\tau} = \bigcap_n \mathcal{F}_{\tau_n}$.
- (c) $\tau_1 \leq \tau_2$ implikuje $\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}$.

 $Dow \acute{o}d$. Zadanie.

0.2 Mocna własność Markowa

Twierdzenie 0.5. [Silna własność Markowa] Niech (\mathbf{P}, \mathbb{F}) będzie łańcuchem Markowa na przeliczalnej przestrzeni stanów S. Załóżmy, że Y jest ograniczoną zmienną losową oraz że τ jest czasem zatrzymania. Wówczas dla każdego $x \in S$,

$$\mathbf{E}_x[Y \circ \theta_\tau | \mathcal{F}_\tau] = \mathbf{E}_{X(\tau)}[Y] \quad \mathbf{P}_x - \text{prawie na pewno} \quad \text{na} \quad \{\tau < \infty\}. \quad (0.1)$$

Silna własność Markowa jest zazwyczaj używana w następujący sposób: Przemnóż równość (0.1) przez $\mathbf{1}_{\{\tau<\infty\}}$, a następnie zastosuj \mathbf{E}_x . Wynik, z uwzględnieniem, że $\{\tau<\infty\}\in\mathcal{F}_{\tau}$, to:

$$\mathbf{E}_{x}\left[Y \circ \theta_{\tau} \mathbf{1}_{\{\tau < \infty\}}\right] = \mathbf{E}_{x}\left[\mathbf{E}_{X(\tau)}\left[Y\right] \mathbf{1}_{\{\tau < \infty\}}\right]. \tag{0.2}$$

 $Dowód\ Twierdzenia\ 0.5$. Najpierw załóżmy, że τ przyjmuje wartości z przeliczalnego zbioru $0 \le t_1 \le t_2 \le \ldots$ oraz ∞ . W tym przypadku silna własność Markowa sprowadza się do własności Markowa, jak teraz pokażemy.

Zauważmy, że prawa strona (0.1) jest mierzalna względem \mathcal{F}_{τ} . Musimy więc sprawdzić, że jeśli $A \in \mathcal{F}_{\tau}$ oraz $A \subseteq \{\tau < \infty\}$, to

$$\mathbf{E}_{x}\left[Y \circ \theta_{\tau} \mathbf{1}_{A}\right] = \mathbf{E}_{x}\left[\mathbf{E}_{X(\tau)}\left[Y\right] \mathbf{1}_{A}\right].$$

Aby to wykazać, napiszmy:

$$\mathbf{E}_{x}\left[Y \circ \theta_{\tau} \mathbf{1}_{A}\right] = \sum_{n \in \mathbb{N}} \mathbf{E}_{x}\left[Y \circ \theta_{t_{n}} \mathbf{1}_{A \cap \{\tau = t_{n}\}}\right] = \sum_{n \in \mathbb{N}} \mathbf{E}_{x}\left[\mathbf{E}_{X(t_{n})}\left[Y\right] \mathbf{1}_{A \cap \{\tau = t_{n}\}}\right]$$
$$= \sum_{n \in \mathbb{N}} \mathbf{E}_{x}\left[\mathbf{E}_{X(\tau)}\left[Y\right] \mathbf{1}_{A \cap \{\tau = t_{n}\}}\right] = \mathbf{E}_{x}\left[\mathbf{E}_{X(\tau)}\left[Y\right] \mathbf{1}_{A}\right].$$

W drugim kroku skorzystaliśmy z własności Markowa, ponieważ

$$A \cap \{\tau = t_n\} \in \mathcal{F}_{t_n}$$

zgodnie z definicja \mathcal{F}_{τ} .

W drugim kroku uzasadnimy tezę dla dowolnych τ i Y postaci

$$Y(\omega) = \prod_{j=1}^{m} f_j(\omega(t_j))$$
 (0.3)

dla pewnego $m \in \mathbb{N}, t_1, \ldots, t_m \in \mathbb{R}_+$ oraz ograniczonych funkcji $f_1, \ldots, f_m \colon S \to \mathbb{R}$. Jeśli τ nie jest dyskretny, przybliżamy go od góry czasami stopu $\{\tau_n\}$ zdefiniowanymi przez

$$\tau_n = \frac{k+1}{2^n}$$
 jeśli $\frac{k}{2^n} \le \tau < \frac{k+1}{2^n}$.

gdzie $\tau_k = \infty$ gdy $\tau = \infty$. Weźmy teraz $A \in \mathcal{F}_{\tau} \subseteq \mathcal{F}_{\tau_k}$ takie, że $A \subseteq \{\tau < \infty\}$. Z pierwszej części dowodu,

$$\mathbf{E}_x \left[Y \circ \theta_{\tau_k} \mathbf{1}_A \right] = \mathbf{E}_x \left[\mathbf{E}_{X(\tau_k)} [Y] \mathbf{1}_A \right].$$

Musimy przejść do granicy, gdy $k \to \infty$. Po prawej stronie, $\tau_k \downarrow \tau$ i z prawostronnej ciągłości $X(\tau_k) \to X(\tau)$ w S, czyli $X(\tau_k) = X(\tau)$ dla dostatecznie dużych k. Po lewej stronie, napiszmy

$$(Y \circ \theta_{\tau_k})(\omega) = \prod_{m=1}^n f_m(\omega(t_m + \tau_k)) \to \prod_{m=1}^n f_m(\omega(t_m + \tau)) = (Y \circ \theta_{\tau})(\omega).$$

kiedy $k \to \infty$, dzięki prawostronnej ciągłości ścieżek. To pokazuje tezę:

$$\mathbf{E}_x \left[Y \circ \theta_\tau \mathbf{1}_A \right] = \mathbf{E}_x \left[\mathbf{E}_{X(\tau)} [Y] \mathbf{1}_A \right].$$

W ostatnim kroku dowodu pokażemy tezę dla dowolnego Y. Dla dowolnego $m \in \mathbb{N}$ oraz $t_1, \ldots, t_m \in \mathbb{R}_+$ rozważmy $\pi_{t_1, \ldots, t_m} \colon \Omega \to \mathbb{R}^m$ dane wzorem

$$\pi_{t_1,\ldots,t_m}(\omega) = (\omega(t_1),\omega(t_2),\ldots,\omega(t_m)).$$

Wówczas dla dowolnych borelowskich $A_1, A_2, \ldots, A_m \subseteq S$,

$$\pi_{t_1,\dots,t_m}^{-1}[A_1 \times A_2 \times \dots \times A_m] = \{\omega \in \Omega : \omega(t_1) \in A_1,\dots,\omega(t_m) \in A_m\}.$$

Rozważmy teraz π -układ

$$\mathcal{B} = \left\{ \pi_{t_1,\dots,t_m}^{-1} [A_1 \times A_2 \times \dots \times A_m] : m \in \mathbb{N}, t_1,\dots,t_m \in \mathbb{R}_+, A_1,\dots,A_m \subseteq S \right\}.$$

oraz λ -układ

$$\mathcal{L} = \left\{ G \in \mathcal{F} : \mathbf{P}_x \left[\theta_\tau \in G, A \right] = \mathbf{E}_x \left[\mathbf{P}_{X(\tau)} \left[G \right] \mathbf{1}_A \right] \text{ dla } A \in \mathcal{F}_\tau, A \subseteq \left\{ \tau < \infty \right\} \right\}.$$

Aproksymując $\mathbf{1}_{\pi_{t_1,\ldots,t_m}^{-1}[A_1\times\ldots\times A_m]}$ zmiennymi Y postaci (0.3), dostajemy $\mathcal{B}\subseteq\mathcal{L}$. Z lematu o π - λ układach mamy $\mathcal{F}=\sigma(\mathcal{B})\subseteq\mathcal{L}$. Czyli dla każdego $G\in\mathcal{F}$,

$$\mathbf{P}_x \left[\theta_\tau \in G, A \right] = \mathbf{E}_x \left[\mathbf{P}_{X(\tau)} \left[G \right] \mathbf{1}_A \right]$$

dla każdego $A \in \mathcal{F}_{\tau}$ takiego, że $A \subseteq \{\tau < \infty\}$. Jest to równoważne naszej tezie dla $Y = \mathbf{1}_G$. Z liniowości teza jest zatem prawdziwa dla każdego Y przyjmującego skończenie wiele wartości. Zastosowanie standardowego twierdzenia granicznego dowodzi tezy dla dowolnego ograniczonego Y.

0.3 Charakteryzacja

Zauważmy, że każda funkcja $\omega \in \Omega$ musi być następującego typu: Istnieje $t_1 \in (0,\infty]$, taki że $\omega(t) = \omega(0)$ dla każdego $t \in [0,t_1)$, następnie, jeśli $t_1 < \infty$, istnieje $t_2 \in (t_1,\infty]$ taki, że $\omega(t) = \omega(t_1) \neq \omega(0)$ dla każdego $t \in [t_1,t_2)$, i tak dalej. Powyższe czasy t_1,t_2,\ldots zależą oczywiście od wyboru ω . Dla każdego $\omega \in \Omega$, istnieje zatem ciąg

$$T_0(\omega) = 0 < T_1(\omega) \le T_2(\omega) \le T_3(\omega) \le \cdots \le \infty,$$

taki, że $X_t(\omega) = X_0(\omega)$ dla każdego $t \in [0, T_1(\omega))$ oraz dla każdej liczby całkowitej $i \geq 1$, warunek $T_i(\omega) < \infty$ implikuje $T_i(\omega) < T_{i+1}(\omega)$, $X_{T_i(\omega)}(\omega) \neq X_{T_{i-1}(\omega)}(\omega)$ i $X_t(\omega) = X_{T_i(\omega)}(\omega)$ dla każdego $t \in [T_i(\omega), T_{i+1}(\omega))$. Co więcej, $T_n(\omega) \uparrow \infty$, gdy $n \to \infty$. Nietrudno jest sprawdzić, że T_0, T_1, T_2, \ldots są czasami stopu. Na przykład,

$$\{T_1 \le t\} = \{X(t) \ne X(0)\} \cup \bigcup_{q \in (0,1) \cap \mathbb{Q}} \{X_q \ne X_0\} \in \mathcal{F}_t.$$

Przypomnijmy, że dla $\lambda > 0$, dodatnia zmienna losowa U ma rozkład wykładniczy z parametrem λ , jeśli $\mathbb{P}(U > r) = e^{-\lambda r}$ dla każdego $r \geq 0$. W poniższym lemacie przyjmujemy konwencję, że zmienna losowa wykładnicza o parametrze 0 jest równa ∞ prawie na pewno.

Lemat 0.6. Niech $x \in S$. Istnieje rzeczywista liczba $c(x) \geq 0$, taka że zmienna losowa T_1 ma rozkład wykładniczy z parametrem q(x) pod \mathbf{P}_x . Co więcej, jeśli q(x) > 0, to T_1 i X_{T_1} są niezależne pod \mathbf{P}_x .

 $Dow \acute{o}d$. Niech $s, t \geq 0$. Mamy

$$\mathbf{P}_x[T_1 > s + t] = \mathbf{E}_x[\mathbf{1}_{\{T_1 > s\}} \Phi \circ \theta_s],$$

gdzie $\Phi(\omega) = \mathbf{1}_{\{\omega(r) = \omega(0), \forall r \in [0,t]\}}$. Używając własności Markowa (Twierdzenie 6.16), dostajemy

$$\mathbf{P}_x[T_1 > s + t] = \mathbf{E}_x[\mathbf{1}_{\{T_1 > s\}} \mathbf{E}_x[\Phi]] = \mathbf{E}_x[\mathbf{1}_{\{T_1 > s\}} \mathbf{P}_x[T_1 > t]] = \mathbf{P}_x[T_1 > s] \mathbf{P}_x[T_1 > t],$$

co implikuje, że T_1 ma rozkład wykładniczy pod \mathbf{P}_x .

Załóżmy teraz, że c(x) > 0. Wówczas $T_1 < \infty$, \mathbf{P}_x prawie na pewno. Dla każdego $t \geq 0$ i $y \in S$,

$$\mathbf{P}_x[T_1 > t, X_{T_1} = y] = \mathbf{E}_x[\mathbf{1}_{\{T_1 > t\}} \Psi \circ \theta_t],$$

gdzie dla $\omega \in \Omega$, $\Psi(\omega) = 0$ jeśli ω jest stałe, a w przeciwnym razie $\Psi(\omega) = \mathbf{1}_{\{\gamma_1(\omega)=y\}}$, gdzie $\gamma_1(\omega)$ jest wartością ω po jego pierwszym skoku. Zatem mamy

$$\mathbf{P}_{x}[T_{1} > t, X_{T_{1}} = y] = \mathbf{E}_{x}[\mathbf{1}_{\{T_{1} > t\}} \mathbf{E}_{x}[\Psi]] = \mathbf{E}_{x}[\mathbf{1}_{\{T_{1} > t\}} \mathbf{P}_{x}[X_{T_{1}} = y]] = \mathbf{P}_{x}[T_{1} > t] \mathbf{P}_{x}[X_{T_{1}} = y],$$

co daje pożadana niezależność.

Punkty, dla których c(x)=0, są stanami pochłaniającymi dla procesu Markowa, w tym sensie, że $\mathbf{P}_x[X_t=x,\,\forall t\geq 0]=1$. Dla każdych $x,y\in S$ definiujemy

$$\Pi(x,y) = \begin{cases} \mathbf{P}_x[X_{T_1} = y] & c(x) > 0\\ \delta_x(y) & c(x) = 0 \end{cases}$$

Zauważmy, że $\Pi(x,\cdot)$ jest miarą prawdopodobieństwa na S.

Twierdzenie 0.7. Niech (\mathbf{P}, \mathbb{F}) będzie łańcuchem Markowa w czasie ciągłym takim, że $\sup_{x \in S} c(x) < \infty$. Wówczas

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{P}_x[X_t = y]|_{t=0} = c(x)\Pi(x, y).$$

 $Dow \acute{o}d$. Jeśli c(x) = 0, to $\mathbf{P}_x[X_t = x] = \mathbf{P}_x[X_0 = x] = 1$, i stąd

$$\lim_{t \to 0} \frac{\mathbf{P}_x[X_t = x] - 1}{t} = 0.$$

Załóżmy teraz, że c(x) > 0. Najpierw zauważmy, że

$$\mathbf{P}_x[T_2 \le t] = O(t^2) \tag{0.4}$$

gdy $t \to 0$. Rzeczywiście, używając silnej własności Markowa w T_1 ,

$$\mathbf{P}_x[T_2 \le t] \le \mathbf{P}_x[T_1 \le t, T_2 \le T_1 + t] = \mathbf{E}_x[\mathbf{1}_{\{T_1 \le t\}} \mathbf{P}_{X_{T_1}}[T_1 \le t]],$$

i możemy oszacować

$$\mathbf{P}_{X_{T_1}}[T_1 \le t] \le \sup_{y \in S} \mathbf{P}_y[T_1 \le t] \le \sup_{y \in S} c(y),$$

co daje oczekiwany wynik, ponieważ mamy również $\mathbf{P}_x[T_1 \leq t] \leq c(x)t.$ Z(0.4) wynika, że

$$\mathbf{P}_{x}[X_{t} = y] = \mathbf{P}_{x}[X_{t} = y, T_{1} > t] + \mathbf{P}_{x}[X_{T_{1}} = y, T_{1} \leq t] + O(t^{2})$$
$$= \delta_{x}(y)e^{-c(x)t} + (1 - e^{-c(x)t})\Pi(x, y) + O(t^{2}),$$

używając niezależności T_1 i X_{T_1} oraz definicji $\Pi(x,y)$. Dochodzimy do wniosku, że skoro $\mathbf{P}_x[X_0=y]=\delta_x(y)$, to

$$\frac{\mathbf{P}_x[X_t = y] - \mathbf{P}_x[X_0 = y]}{t} \to -c(x)\delta_x(y) + c(x)\Pi(x, y).$$

co kończy dowód.

Kolejne twierdzenie dostarcza pełnego opisu próbek procesu X pod \mathbf{P}_x . Dla uproszczenia zakładamy, że nie ma stanów pochłaniających, ale czytelnik łatwo rozszerzy stwierdzenie na przypadek ogólny.

Twierdzenie 0.8. Zakładamy, że c(y) > 0 dla każdego $y \in S$ i że $\sup_{y \in S} c(y) < \infty$. Niech $x \in S$. Wówczas, \mathbf{P}_x p.n., czasy skoku $T_1 < T_2 < T_3 < \ldots$ są skończone, a ciąg $X_0, X_{T_1}, X_{T_2}, \ldots$ pod \mathbf{P}_x jest dyskretnym łańcuchem Markowa z macierzą przejścia Π rozpoczętym w x. Ponadto, pod warunkiem $(X_0, X_{T_1}, X_{T_2}, \ldots)$, zmienne losowe $T_1 - T_0, T_2 - T_1, \ldots$ są niezależne, a dla każdej liczby całkowitej $i \geq 0$, rozkład warunkowy $T_{i+1} - T_i$ jest wykładniczy z parametrem $c(X_{T_i})$.

Dowód. Zastosowanie silnej własności Markowa pokazuje, że wszystkie czasy stopu T_1, T_2, \ldots są skończone p.n. pod \mathbf{P}_x . Następnie, niech $y, z \in S$, a $f_1, f_2 \colon S \to \mathbb{R}$. Używając silnej własności Markowa w T_1 :

$$\mathbf{E}_{x}[\mathbf{1}_{\{X_{T_{1}}=y\}}f_{1}(T_{1})\mathbf{1}_{\{X_{T_{2}}=z\}}f_{2}(T_{2}-T_{1})] = \mathbf{E}_{x}[\mathbf{1}_{\{X_{T_{1}}=y\}}f_{1}(T_{1})\mathbf{E}_{x}[\mathbf{1}_{\{X_{T_{2}}=z\}}f_{2}(T_{2}-T_{1})]]$$

$$= \Pi(x,y)\Pi(y,z)\int_{0}^{\infty}e^{-c(x)s_{1}}f_{1}(s_{1})\mathrm{d}s_{1}\int_{0}^{\infty}e^{-c(y)s_{2}}f_{2}(s_{2})\mathrm{d}s_{2}.$$

Postępując indukcyjnie, otrzymujemy dla każdych $y_1, \ldots, y_p \in S$ oraz $f_1, \ldots, f_p \colon S \to \mathbb{R}$:

$$\mathbf{E}_{x}[\mathbf{1}_{\{X_{T_{1}}=y_{1}\}}\mathbf{1}_{\{X_{T_{2}}=y_{2}\}}\dots\mathbf{1}_{\{X_{T_{p}}=y_{p}\}}f_{1}(T_{1})f_{2}(T_{2}-T_{1})\dots f_{p}(T_{p}-T_{p-1})]$$

$$=\Pi(x,y_{1})\Pi(y_{1},y_{2})\dots\Pi(y_{p-1},y_{p})\prod_{i=1}^{p}\left(\int_{0}^{\infty}e^{-c(y_{i-1})s}f_{i}(s)ds\right),$$

gdzie
$$y_0 = x$$
.

Z powyższego twierdzenia wynika charakteryzacja łańcucha Markowa w terminach Q-macierzy. Przez $\mathbb{F}^X = (\mathcal{F}_t^X)_t$ oznaczać będziemy najmniejszą możliwą filtrację, tj.

$$\mathcal{F}_t = \sigma(X_s : s < t).$$

Wniosek 0.9. Niech $q=(q(x,y))_{x,y\in S}$ będzie Q-macierzą taką, że $\sup_{x\in S}|q(x,x)|<\infty$. Wówczas istnieje jedyna rodzina miar $\mathbf P$ taka, że $(\mathbf P,\mathbb F^X)$ jest łańcuchem Markowa stowarzyszonym z Q-macierzą q.