CLASIFICADOR NAÏVE BAYES

Minería de Datos y el proceso de KDD

Fayyad (1996)

□ Técnicas de Minería de Datos

AGRUPAMIENTO

REGLAS

IF (TIPO = CC) AND (SODIO > 470) ENTONCES (COSTO=BAJO)

IF (TIPO = CR) AND (PRODUCTO = CN)
ENTONCES (COSTO=ALTO)

IF (TIPO = DC) ENTONCES (COSTO=MEDIO)

Clasificador Bayesiano

- Permite tomar una decisión identificando la situación más probable con base en la ocurrencia de eventos.
- Conceptos relacionados
 - Probabilidad condicional
 - Teorema de la multiplicación
 - Teorema de Bayes
 - Hipótesis máxima a posteriori o hipótesis MAP (maximum a posteriori)

Probabilidad Condicional

- En ocasiones, resulta necesario calcular la probabilidad de un evento luego de saber que otro ha ocurrido.
- Es decir que la probabilidad del 2do. evento debe calcularse en referencia al espacio muestral determinado por el 1er. evento.

Veamos un ejemplo

- □ ε: "Tomar al azar un alumno del curso"
- □ Eventos : A = "el alumno aprobó el examen"
 E = "el alumno estudió para el examen"

$$P(A) = 0.75$$

$$P(E) = 0.8$$

$$P(A \cap E) = 0.7$$

Probabilidad condicional - Ejemplo

□ ¿Cuál sería la probabilidad de que un alumno haya aprobado el examen sabiendo que ha estudiado?

Sabemos que el evento E ocurre, es decir, el alumno ha estudiado.

Intuitivamente

$$P(A \mid E) = \frac{0.7}{0.8} = 0.875$$

Probabilidad condicional

 \square Dados dos eventos A y B, con P(B)>0, la probabilidad condicional de A dado que ocurrió B se define como

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Probabilidad condicional. Ejemplo

Al calcular una probabilidad sobre los que estudiaron,
 se produce un cambio del espacio muestral

Probabilidad condicional

Estas probabilidades respetan el espacio muestral original.

- Si ahora E es el nuevo espacio muestral, debemos hacer que sumen 1 manteniendo la proporción.
- □ Es decir que debemos dividirlas por P(E).

Probabilidad condicional

 Estas probabilidades corresponden al nuevo espacio muestral.

El archivo Lentes_Bayes.xls contiene 24 muestras correspondientes a diagnósticos de uso de lentes de contactos extraídas de http://archive.ics.uci.edu/ml/datasets/Lenses

Atributos:

- Edad del paciente: joven, pre-presbicia, presbicia
- Prescripción de lentes: Miopía, hipermetropia
- Astigmatismo: Si, No
- Producción de lágrimas: Reducida, Normal
- Diagnóstico: no_usar_lentes, lentes_blandos, lentes_duros

Edad	Prescripcion	Astigmatismo	Lagrimas	Diagnostico
Joven	Miopía	NO	Reducida	No_usar_Lentes
Joven	Miopía	NO	Normal	Lentes_Blandos
•••	•••	• • •	• • •	• • •
Joven	Hipermetropía	SI	Reducida	No_usar_Lentes
Joven	Hipermetropía	SI	Normal	Lentes_Duros
pre_presb	Miopía	NO	Reducida	No_usar_Lentes
pre_presb	Miopía	NO	Normal	Lentes_Blandos
•••	•••	•••	•••	•••
Presbicia	Hipermetropía	SI	Reducida	No_usar_Lentes
Presbicia	Hipermetropía	SI	Normal	No_usar_Lentes

Ejercicio

□ ¿Cuál es la probabilidad de que un paciente tenga EDAD = "Joven" si se sabe que su DIAGNOSTICO fue usar "lentes_blandos"?

Id	Edad	Prescripcion	Astigmatismo	Lagrimas	Diagnostico
1	Joven	Hipermetropía	NO	Normal	Lentes_Blandos
2	Joven	Miopía	NO	Normal	Lentes_Blandos
9	pre_presb	Hipermetropía	NO	Normal	Lentes_Blandos
11	pre_presb	Miopía	NO	Normal	Lentes_Blandos
18	Presbicia	Hipermetropía	NO	Normal	Lentes_Blandos

$$P(Edad = "Joven" | Diag = "lentes_blandos") = \frac{P(Edad = "Joven" \ \cap \ Diag = "lentes_blandos")}{P(Diag = "lentes_blandos")}$$

$$P(Edad = "Joven" | Diag = "lentes_blandos") = \frac{2/24}{5/24} = \frac{2}{5} = 0.4$$

□ ¿Cuál es la probabilidad de que un paciente tenga astigmatismo si se sabe que su producción de lágrimas es reducida?

$$P(astigmatismo = si | lagrimas = reducida) = \frac{P(astigmatismo = si \ \cap \ lagrimas = reducida)}{P(lagrimas = reducida)}$$

$$P(astigmatismo = si|lagrimas = reducida) = \frac{6/24}{12/24}$$

$$= \frac{6}{12} = 0.5$$

Evento	# ejemplos
(lagrimas=reducida)	12
(lagrimas = reducida) y (astigatismo=si)	6
Total	24

Teorema de la multiplicación

Usando la definición de probabilidad condicional se obtiene

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

se obtiene

$$P(A \cap B) = P(A|B) \cdot P(B)$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

se obtiene

$$P(A \cap B) = P(B|A) \cdot P(A)$$

- \square Sea $\{C_1, C_2, \dots, C_n\}$ una partición de S

 - $\square C_i \cap C_j = \emptyset$, si $i \neq j$
 - $P(C_i) > 0 \quad \forall i = 1, 2, ..., n$
- $lue{}$ Para cualquier evento A de S

$$P(C_k \mid A) = \frac{P(A \mid C_k)P(C_k)}{P(A)}$$

- Se conoce
 - La probabilidad de cada elemento de la partición.
 - La probabilidad de A cuando ocurre c/u de los eventos de la partición.

- \square Sea $\{C_1, C_2, \dots, C_n\}$ una partición de S
- $lue{}$ Para cualquier evento A de S

$$P(C_k \mid A) = \frac{P(A \mid C_k)P(C_k)}{P(A)}$$

- $S = \{C_1, C_2, C_3\} = \{(diag = lentes_blandos), (diag = lentes_duros), (diag = no_usar_lentes)\}$
- $lue{}$ Para cualquier evento A de S

$$P(C_k \mid A) = \frac{P(A \mid C_k)P(C_k)}{P(A)}$$

$$C_k = (diag = lentes_blandos)$$

$$A = (Edad = Joven)$$

- $S = \{C_1, C_2, C_3\} = \{(diag = lentes_blandos), (diag = lentes_duros), (diag = no_usar_lentes)\}$
- $lue{}$ Para cualquier evento A de S

$$P(C_k \mid A) = \frac{P(A \mid C_k)P(C_k)}{P(A)}$$

$$C_k = (diag = lentes_blandos)$$

$$A = (Edad = Joven)$$

Ejemplo

$$P(diag = lentes_blandos|Edad=joven) = \frac{P(Edad = Joven|diag = lentes_blandos)P(diag = lentes_blandos)}{P(Edad = Joven)}$$

- $S = \{C_1, C_2, C_3\} = \{(diag = lentes_blandos), (diag = lentes_duros), (diag = no_usar_lentes)\}$
- $lue{}$ Para cualquier evento A de S

$$P(C_k \mid A) = \frac{P(A \mid C_k)P(C_k)}{P(A)}$$

$$C_k = (diag = lentes_blandos)$$

$$A = (Edad = Joven)$$

Ejemplo

$$P(diag = lentes_blandos|Edad=joven) = \frac{P(Edad = Joven|diag = lentes_blandos)P(diag = lentes_blandos)}{P(Edad = Joven)}$$

$$P(\text{lentes_blandos} \mid \text{Joven}) = \frac{P(Joven \mid \text{lentes_blandos}) * P(\text{lentes_blandos})}{P(Joven)}$$

Tratándose de un problema de clasificación, con una variable clase (C) y un conjunto de variables predictoras o atributos $\{A_1, \ldots, A_n\}$, el teorema de Bayes tendría la siguiente forma:

$$P(C = c_i | A_1 = a_1, ..., A_n = a_n) = \frac{P(A_1 = a_1, ..., A_n = a_n | C = c_i)P(C = c_i)}{P(A_1 = a_1, ..., A_n = a_n)}$$

Tratándose de un problema de clasificación, con una variable clase (C) y un conjunto de variables predictoras o atributos $\{A_1, \ldots, A_n\}$, el teorema de Bayes tendría la siguiente forma:

$$P(C = c_i | A_1 = a_1, ..., A_n = a_n) = \frac{P(A_1 = a_1, ..., A_n = a_n | C = c_i)P(C = c_i)}{P(A_1 = a_1, ..., A_n = a_n)}$$

 \square Si consideramos que los eventos ($A_i=a_i$) son independientes entre si

$$P(A_1 = a_1, ..., A_n = a_n | C = c_i) = P(A_1 = a_1 | C = c_i) * P(A_2 = a_2 | C = c_i) * ... * P(A_n = a_n | C = c_i)$$

Tratándose de un problema de clasificación, con una variable clase (C) y un conjunto de variables predictoras o atributos $\{A_1, ..., A_n\}$, el teorema de Bayes tendría la siguiente forma:

$$P(C = c_i | A_1 = a_1, \dots, A_n = a_n) = \frac{P(A_1 = a_1, \dots, A_n = a_n | C = c_i)P(C = c_i)}{P(A_1 = a_1, \dots, A_n = a_n)}$$

 \square Si C tiene k posibles valores $\{c_1,\ldots,c_k\}$, interesará determinar el más probable.

 \blacksquare Si es un problema de clasificación, con una variable clase $C=\{c_1,\dots,c_k\}$ y un conjunto de atributos $\{A_1,\dots,A_n\}$, el teorema de Bayes recomendará el más probable

$$P(C = c_1 | A_1 = a_1, ..., A_n = a_n) = \frac{P(A_1 = a_1, ..., A_n = a_n | C = c_1)P(C = c_1)}{P(A_1 = a_1, ..., A_n = a_n)}$$

$$P(C = c_2 | A_1 = a_1, ..., A_n = a_n) = \frac{P(A_1 = a_1, ..., A_n = a_n | C = c_2)P(C = c_2)}{P(A_1 = a_1, ..., A_n = a_n)}$$

• • •

$$P(C = c_k | A_1 = a_1, ..., A_n = a_n) = \frac{P(A_1 = a_1, ..., A_n = a_n | C = c_k)P(C = c_k)}{P(A_1 = a_1, ..., A_n = a_n)}$$

 \square Si es un problema de clasificación, con una variable clase $C=\{c_1,\ldots,c_k\}$ y un conjunto de atributos $\{A_1,\ldots,A_n\}$, el teorema de Bayes recomendará el más probable

$$P(C = c_1 | A_1 = a_1, ..., A_n = a_n) = \frac{P(A_1 = a_1, ..., A_n = a_n | C = c_1)P(C = c_1)}{P(A_1 = a_1, ..., A_n = a_n)}$$

$$P(C = c_2 | A_1 = a_1, ..., A_n = a_n) = \frac{P(A_1 = a_1, ..., A_n = a_n | C = c_2)P(C = c_2)}{P(A_1 = a_1, ..., A_n = a_n)}$$

• • •

$$P(C = c_k | A_1 = a_1, ..., A_n = a_n) = \frac{P(A_1 = a_1, ..., A_n = a_n | C = c_k)P(C = c_k)}{P(A_1 = a_1, ..., A_n = a_n)}$$

 $\ \square$ Si es un problema de clasificación, con una variable clase $C=\{c_1,\ldots,c_k\}$ y un conjunto de atributos $\{A_1,\ldots,A_n\}$, el teorema de Bayes recomendará el más probable

$$P(C = c_1 | A_1 = a_1, ..., A_n = a_n) = P(A_1 = a_1, ..., A_n = a_n | C = c_1)P(C = c_1)$$

$$P(C = c_2 | A_1 = a_1, ..., A_n = a_n) = P(A_1 = a_1, ..., A_n = a_n | C = c_2) P(C = c_2)$$

• • •

$$P(C = c_k | A_1 = a_1, ..., A_n = a_n) = P(A_1 = a_1, ..., A_n = a_n | C = c_k) P(C = c_k)$$

Si es un problema de clasificación, con una variable clase $C=\{c_1,\ldots,c_k\}$ y un conjunto de atributos $\{A_1,\ldots,A_n\}$, para un conjunto de eventos dados $\{A_1=a_1,\ldots,A_n=a_n\}$ el teorema de Bayes recomendará el más probable

$$P(C = c_1 | A_1 = a_1, ..., A_n = a_n) = P(A_1 = a_1, | C = c_1) * \cdots * P(A_n = a_n | C = c_1) P(C = c_1)$$

$$P(C = c_2 | A_1 = a_1, ..., A_n = a_n) = P(A_1 = a_1 | C = c_2) * \cdots * P(A_n = a_n | C = c_2) P(C = c_2)$$

• • •

$$P(C = c_k | A_1 = a_1, ..., A_n = a_n) = P(A_1 = a_1 | C = c_k) * ... * P(A_n = a_n | C = c_k) P(C = c_k)$$

Luego se elige el valor de clase c_k que tenga la mayor probabilidad de ocurrir

Hipótesis MAP (máxima a posteriori)

El valor de clase a devolver será

$$C_{MAP} = \underset{c \in \Omega_{C}}{\operatorname{arg} \max} \ P(c|a_{1}, \dots a_{n}) = \underset{c \in \Omega_{C}}{\operatorname{arg} \max} \ \frac{P(a_{1}, \dots a_{n}|c)P(c)}{P(a_{1}, \dots a_{n})}$$

$$C_{MAP} = \underset{c \in \Omega_{C}}{\operatorname{arg}} \max_{c \in \Omega_{C}} P(a_{1}, \dots, a_{n} | c) P(c)$$

Se puede eliminar porque sería el mismo para todos los valores de clase.

donde Ω_C representa el conjunto de valores que puede tomar la variable C.

Clasificador Naïve Bayes

 Utiliza la hipótesis MAP suponiendo que, para un valor de clase dado, los atributos son independientes.

$$C_{MAP} = \arg \max_{c \in \Omega_C} P(a_1, ..., a_n | c) P(c)$$

$$C_{MAP} = \underset{c \in \Omega_{C}}{\operatorname{arg} \, max} \, P(a_{1}|c)P(a_{2}|c) \dots P(a_{n}|c) \, P(c)$$

$$C_{MAP} = \underset{c \in \Omega_{C}}{\operatorname{arg max}} P(c) \prod_{i=1}^{l} P(a_{i}|c)$$

Por tanto, los parámetros que hay que estimar son $P(a_i|c)$ para cada atributo y la probabilidad a priori de la variable clase P(c).

 Se desea utilizar un clasificador Naive Bayes para predecir el valor del atributo C para el siguiente ejemplo: (A1=b; A2=3.5)

A 1	A2	С
а	5	+
а	2.2	-
а	1.8	-
b	4	+
b	2	+
a	3	-

Se debe calcular

$$P(C=+|A1=b, A2=3.5)$$

$$P(C=-|A1=b, A2=3.5)$$

y elegir la de mayor valor

 Se desea utilizar un clasificador Naive Bayes para predecir el valor del atributo C para el siguiente ejemplo: (A1=b; A2=3.5)

A1	A2	С
а	5	+
a	2.2	-
a	1.8	-
b	4	+
b	2	+
a	3	-

□ Se debe calcular

$$P(C=+|A1=b, A2=3.5) = P(A1=b, A2=3.5|C=+) * P(C=+)$$

 $P(C=-|A1=b, A2=3.5)$

 Se desea utilizar un clasificador Naive Bayes para predecir el valor del atributo C para el siguiente ejemplo: (A1=b; A2=3.5)

A1	A2	С
а	5	+
а	2.2	-
а	1.8	-
b	4	+
b	2	+
а	3	-

Se debe calcular

Considerando que los eventos (A1=b) y (A2=3.5) son independientes

$$P(C=+|A1=b, A2=3.5) = P(A1=b|C=+)*P(A2=3.5|C=+) * P(C=+)$$

 $P(C=-|A1=b, A2=3.5)$

 Se desea utilizar un clasificador Naive Bayes para predecir el valor del atributo C para el siguiente ejemplo: (A1=b; A2=3.5)

A 1	A2	С
а	5	+
а	2.2	-
а	1.8	-
b	4	+
b	2	+
а	3	-

□ Se debe calcular

$$P(C=+|A1=b, A2=3.5) = P(A1=b|C=+)*P(A2=3.5|C=+) * P(C=+)$$

 $P(C=-|A1=b, A2=3.5) = P(A1=b|C=-)*P(A2=3.5|C=-) * P(C=-)$

 Se desea utilizar un clasificador Naive Bayes para predecir el valor del atributo C para el siguiente ejemplo: (A1=b; A2=3.5)

A 1	A2	С
а	5	+
а	2.2	-
а	1.8	-
b	4	+
b	2	+
a	3	-

□ Se debe calcular

$$P(C=+|A1=b, A2=3.5) = P(A1=b|C=+)*P(A2=3.5|C=+) * P(C=+)$$

$$P(C=-|A1=b, A2=3.5) = P(A1=b|C=-)*P(A2=3.5|C=-) * P(C=-)$$

Hay que estimar P(C), P(A1 | C) y P(A2 | C)

Estimación de la probabilidad condicional

- □ Si el **atributo es discreto** la estimación de la probabilidad condicional se basa en las frecuencias relativas.
- \square Sea M un subconjunto de registros de la BBDD original. Si llamamos n(a,M) al número de elementos de M en los que el atributo A toma el valor a:

$$P(a|M) = \frac{n(a,M)}{n(M)}$$

En nuestro problema de clasificación el subconjunto M estará conformado por los registros que cumplan con el valor de clase indicado

Esta técnica se conoce como **estimación por máxima verosimilitud**

Desventajas

- Necesita una muestra de gran tamaño
- Sobreajusta a los datos

Estimación de la probabilidad condicional

Estimación por máxima verosimilitud

Ejemplo

$$P(a|M) = \frac{n(a,M)}{n(M)}$$

$$P(Edad = pre_preb|diag = Lentes_blandos) = \frac{2}{5}$$

Id	Edad	Prescripcion	Astigmatismo	Lagrimas	Diagnostico
1	Joven	Hipermetropía	NO	Normal	Lentes_Blandos
2	Joven	Miopía	NO	Normal	Lentes_Blandos
9	pre_presb	Hipermetropía	NO	Normal	Lentes_Blandos
11	pre_presb	Miopía	NO	Normal	Lentes_Blandos
18	Presbicia	Hipermetropía	NO	Normal	Lentes_Blandos

M está formado por estos 5 casos

Estimación por máxima verosimilitud

Ejemplo

$$P(a|M) = \frac{n(a,M)}{n(M)}$$

$$P(Astigmatismo = SI|diag = Lentes_blandos) = \frac{0}{5} = 0$$

Id	Edad	Prescripcion	Astigmatismo	Lagrimas	Diagnostico
1	Joven	Hipermetropía	NO	Normal	Lentes_Blandos
2	Joven	Miopía	NO	Normal	Lentes_Blandos
9	pre_presb	Hipermetropía	NO	Normal	Lentes_Blandos
11	pre_presb	Miopía	NO	Normal	Lentes_Blandos
18	Presbicia	Hipermetropía	NO	Normal	Lentes_Blandos

M está formado por estos 5 casos

 Cuando se trabaja con pocos registros, el estimador de Laplace puede resultar más adecuado

$$P(a|M) = \frac{n(a,M) + 1}{n(M) + \Omega}$$
Probabilidad uniforme a priori

es decir que calcula el cociente entre el número de casos favorables más uno dividido por el número de casos totales más el número de valores posibles del atributo.

Estimación usando Laplace

Ejemplo

$$P(a|M) = \frac{n(a,M) + 1}{n(M) + |\Omega_A|}$$

$$P(Edad = pre_preb|diag = Lentes_blandos) = \frac{2+1}{5+3} = \frac{3}{8} = 0.375$$

Id	Edad	Prescripcion	Astigmatismo	Lagrimas	Diagnostico
1	Joven	Hipermetropía	NO	Normal	Lentes_Blandos
2	Joven	Miopía	NO	Normal	Lentes_Blandos
9	pre_presb	Hipermetropía	NO	Normal	Lentes_Blandos
11	pre_presb	Miopía	NO	Normal	Lentes_Blandos
18	Presbicia	Hipermetropía	NO	Normal	Lentes_Blandos

M está formado por estos 5 casos

Estimación usando Laplace

Ejemplo

$$P(a|M) = \frac{n(a,M) + 1}{n(M) + |\Omega_A|}$$

$$P(Astigmatismo = SI|diag = Lentes_blandos) = \frac{0+1}{5+2} = \frac{1}{7} = 0.143$$

Id	Edad	Prescripcion	Astigmatismo	Lagrimas	Diagnostico
1	Joven	Hipermetropía	NO	Normal	Lentes_Blandos
2	Joven	Miopía	NO	Normal	Lentes_Blandos
9	pre_presb	Hipermetropía	NO	Normal	Lentes_Blandos
11	pre_presb	Miopía	NO	Normal	Lentes_Blandos
18	Presbicia	Hipermetropía	NO	Normal	Lentes_Blandos

M está formado por estos 5 casos

- □ Si se trata de un **atributo continuo**, el clasificador Naïve Bayes supone que dicho atributo sigue una distribución normal.
- Por tanto, sólo hay que calcular, a partir de la BBDD, la media μ y la desviación típica σ condicionadas a cada valor de la variable clase.

$$P(a_i|c) \propto N(\mu,\sigma) = \frac{1}{\sqrt{2\pi}.\sigma} exp\left(-\frac{(a_i-\mu)^2}{2\sigma^2}\right)$$

Esta estimación tiene el inconveniente de que los datos no siempre siguen una distribución normal.

□ Hay que estimar P(C), P(A1 | C) y P(A2 | C).

P(C)	
+	0,5
-	0,5

P(A2 C)	
C=+	$N(\mu=3,67, \sigma=1,53)$
C=-	$N(\mu=2,33, \sigma=0,61)$

P(A1 C)	+	-
а	0,33	1
b	0,67	0

Laplace

A 1	A2	C
а	5	+
а	2.2	-
а	1.8	-
b	4	+
b	2	+
а	3	-

 \square Hay que estimar P(C),

$$\mu = \frac{5+4+2}{3} = 3.67$$

A2

5

2.2

1.8

3

a

a

P(A2 C)	
C=+	$N(\mu=3,67)$, $\sigma=1,53$)
C=-	N(μ=2,33, σ=0,61)

P(A1 C)	+	
а	0,33	1
b	0,67	0

Laplace

$$\sigma = \sqrt{\frac{(5 - 3.67)^2 + (4 - 3.67)^2 + (2 - 3.67)^2}{3 - 1}} = 1.53$$

P(C)	
+	0,5
-	0,5

P(A2 | C)

C=+
$$\mathcal{N}(\mu=3,67,\sigma=1,53)$$

C=- $\mathcal{N}(\mu=2,33,\sigma=0,61)$

P(A1 C)	+	_
а	0,33	1
р	0,67	0

P(A1 C)	+	•
а	0,4	0,8
b	0,6	0,2

A 1	A2	С
а	5	+
а	2.2	-
а	1.8	-
b	4	+
b	2	+
a	3	-

□ Hay que estimar P(C), P(A1 | C) y P(A2 | C).

P(C)	
+	0,5
-	0,5

P(A2 | C)

C=+
$$N(\mu=3,67, \sigma=1,53)$$

C=- $N(\mu=2,33, \sigma=0,61)$

P(A1 C)	+	_
а	0,33	1
b	0,67	0

$$P(A1 = a|C = +) = \frac{1}{3} = 0.33$$

A 1	A2	С
а	5	+
а	2.2	-
а	1.8	-
b	4	+
b	2	+
а	3	-

□ Hay que estimar P(C), P(A1 | C) y P(A2 | C).

P(C)	
+	0,5
-	0,5

P(A2 | C)

C=+
$$N(\mu=3,67, \sigma=1,53)$$

C=- $N(\mu=2,33, \sigma=0,61)$

$$P(A1 = b | C = -) = \frac{0}{3} = 0$$

A 1	A2	С
а	5	+
а	2.2	-
а	1.8	-
b	4	+
b	2	+
a	3	-

□ Hay que estimar P(C), P(A1 | C) y P(A2 | C).

P(C)	
+	0,5
-	0,5

P(A1 C)	+	_
а	0,33	1
b	0,67	0

P(A2 C)	
C=+	$N(\mu=3,67, \sigma=1,53)$
	N(μ=2,33, σ=0,61)

A 1	A2	С
а	5	+
a	2.2	-
а	1.8	-
b	4	+
b	2	+
а	3	-

$$P(A1 = a|C = +) = \frac{1+1}{3+2} = \frac{2}{5} = 0.4$$

□ Hay que estimar P(C), P(A1 | C) y P(A2 | C).

P(C)	
+	0,5
-	0,5

P(A1 C)	+	-
а	0,33	1
b	0,67	0

P(A2 C)	
C=+	$N(\mu=3,67, \sigma=1,53)$
C=-	N(μ=2,33, σ=0,61)

A1	A2	С
а	5	+
а	2.2	-
а	1.8	-
b	4	+
b	2	+
а	3	-

$$P(A1 = b|C = -) = \frac{0+1}{3+2} = \frac{1}{5} = 0.2$$

Usando las estimaciones anteriores clasificar el siguiente caso

$$(A1=b; A2=3.5)$$

$$P(+|(b, 3.5)) =$$

$$P(-|(b, 3.5)) =$$

 Una vez obtenidas las probabilidades condicionales anteriores se elige la mayor.

Usando las estimaciones anteriores clasificar el siguiente caso

$$(A1=b; A2=3.5)$$

$$P(+|(b, 3.5)) = P(+) * P(b|+)*N(3.67,1.53 : 3.5) =$$

$$P(-|(b, 3.5)) = P(-) * P(b|-)*N(2.33,0.61 : 3.5) =$$

P(C)	
+	0,5
-	0,5

P(A1 C)	+	-
а	0,33	1
b	0,67	0

P(A2 C)	
C=+	$N(\mu=3,67, \sigma=1,53)$
C=-	N(μ=2,33, σ=0,61)

 □ Usando las estimaciones anteriores clasificar el siguiente caso (A1=b; A2=3.5)

$$P(+|(b, 3.5)) = P(+) * P(b|+)*N(3.67, 1.53 : 3.5) = 0.5*0.67*0.26 = 0.078$$

$$P(-|(b, 3.5)) = P(-) * P(b|-)*N(2.33, 0.61 : 3.5) = 0.5*0*0.1 = 0$$

P(A1 C)	+	
а	0,33	1
b	0,67	0

P(A2 C)	
C=+	$N(\mu=3,67, \sigma=1,53)$
C=-	N(μ=2,33, σ=0,61)

 □ Usando las estimaciones anteriores clasificar el siguiente caso (A1=b; A2=3.5)

$$\rightarrow$$
 $P(+|(b, 3.5)) = P(+) * P(b|+)*N(3.67,1.53 : 3.5)=0.5*0.67*0.26=0.078$
 $P(-|(b, 3.5)) = P(-) * P(b|-)*N(2.33,0.61 : 3.5)=0.5*0.2*0.1 = 0.01$

P(A1 C)	+	-
а	0,4	0,8
b	0,6	0,2

P(A2 C)	
C=+	$N(\mu=3,67, \sigma=1,53)$
C=-	$N(\mu=2,33, \sigma=0,61)$

Usando las estimaciones anteriores clasificar el siguiente caso

$$(A1=b; A2=3.5)$$

$$P(+|(b, 3.5)) = P(+) * P(b|+)*N(3.67,1.53 : 3.5)=0.5*0.6*0.26 = 0.078$$

 $P(-|(b, 3.5)) = P(-) * P(b|-)*N(2.33,0.61 : 3.5)=0.5*0.2*0.1 = 0.01$

Normalizando se obtiene que

$$P(+|(b, 3.5))=0.89 \text{ y } P(-|(b, 3.5))=0.11$$

□ Por lo tanto el nuevo caso se clasificará como +

 El archivo Lentes.csv contiene 24 muestras correspondientes a diagnósticos de uso de lentes de contactos extraídas de http://archive.ics.uci.edu/ml/datasets/Lenses

Atributos:

- Edad del paciente: joven, pre-presbicia, presbicia
- Prescripción de lentes: Miopía, hipermetropia
- Astigmatismo: Si, No
- Producción de lágrimas: Reducida, Normal
- Diagnóstico: no_usar_lentes, lentes_blandos, lentes_duros

Edad	Prescripcion	Astigmatismo	Lagrimas	Diagnostico
Joven	Miopía	NO	Reducida	No_usar_Lentes
Joven	Miopía	NO	Normal	Lentes_Blandos
•••	•••	• • •	• • •	• • •
Joven	Hipermetropía	SI	Reducida	No_usar_Lentes
Joven	Hipermetropía	SI	Normal	Lentes_Duros
pre_presb	Miopía	NO	Reducida	No_usar_Lentes
pre_presb	Miopía	NO	Normal	Lentes_Blandos
•••	•••	•••	•••	•••
Presbicia	Hipermetropía	SI	Reducida	No_usar_Lentes
Presbicia	Hipermetropía	SI	Normal	No_usar_Lentes

Attribute	Parameter	Lentes_Blandos	Lentes_Duros	No_usar_Lentes	
Edad	value=Joven	0.400	0.500	0.267	
Edad	value=pre_presb	0.400	0.250	0.333	
Edad	value=Presbicia	0.200	0.250	0.400	
Edad	value=unknown	0	0	0	
Prescripcion	value=Hipermetropía	0.600	0.250	0.533	
Prescripcion	value=Miopía	0.400	0.750	0.467	
Prescripcion	value=unknown	0	0	0	robabilidades
Astigmatismo	value=NO	1	0		ondicionales
Astigmatismo	value=SI	0	1	0.533	SIN usar LAPLACE
Astigmatismo	value=unknown	0	0	0	
Lagrimas	value=Normal	1	1	0.200	
Lagrimas	value=Reducida	0	0	0.800	
Lagrimas	value=unknown	0	0	0	

□ ¿Cuál es la probabilidad de que un paciente no use lentes si se sabe que su edad es JOVEN, la prescripción es MIOPIA, no tiene astigmatismo y su producción de lágrimas es reducida?

```
P(no_usar_lentes | (Joven, miopía, NO, reducidas)=

P(no_usar_lentes) * P(edad=joven | no_usar_lentes)

* P(prescripción=miopía | no_usar_lentes)

* P(astigmatismo=no | no_usar_lentes)

* P(lagrimas=reducidas | no_usar_lentes)

= 0.632 * 0.267 * 0.467 * 0.467 * 0.8
```

Prof. Laura Lanzarini

Attribute	Parameter	Lentes_Blandos	Lentes_Duros	No_usar_Lente	es
Edad	value=Joven	0.395	0.490	0.266	
Edad	value=pre_presb	0.395	0.250	0.332	
Edad	value=Presbicia	0.202	0.250	0.398	
Edad	value=unknown	0.008	0.010	0.003	
Prescripcion	value=Hipermetropía	0.593	0.253	0.532	
Prescripcion	value=Miopía	0.398	0.737	0.466	
Prescripcion	value=unknown	0.008	0.010	0.003	Probabilidades
Astigmatismo	value=NO	0.984	0.010	0.466	condicionales
Astigmatismo	value=SI	0.008	0.980	0.532	usando LAPLACE
Astigmatismo	value=unknown	0.008	0.010	0.003	
Lagrimas	value=Normal	0.984	0.980	0.201	
Lagrimas	value=Reducida	0.008	0.010	0.796	
- Lagrimas	value=unknown	0.008	0.010	0.003	

Clasificación de flores de Iris

Se dispone de información de 3 tipos de flores lris

https://archive.ics.uci.edu/ml/datasets/lris

Iris.csv

Id	sepallength	sepalwidth	petallength	petalwidth	class
1	5,1	3,5	1,4	0,2	Iris-setosa
2	4,9	3,0	1,4	0,2	Iris-setosa
•••	•••	•••	•••	•••	•••
95	5,6	2,7	4,2	1,3	lris-versicolor
96	5,7	3,0	4,2	1,2	lris-versicolor
97	5,7	2,9	4,2	1,3	Iris-versicolor
•••	•••	• • •	•••	•••	•••
149	6,2	3,4	5,4	2,3	Iris-virginica
150	5,9	3,0	5,1	1,8	Iris-virginica

Clasificación de flores de Iris

Clasificador Bayesiano

Attribute	Parameter	Iris-setosa	Iris-versicolor	Iris-virginica
sepallength	mean	4.990	5.930	6.630
sepallength	standard deviation	0.369	0.556	0.525
sepalwidth	mean	3.425	2.758	2.982
sepalwidth	standard deviation	0.407	0.303	0.302
petallength	mean	1.452	4.280	5.527
petallength	standard deviation	0.174	0.487	0.464
petalwidth	mean	0.242	1.323	2.032
petalwidth	standard deviation	0.111	0.206	0.286

Clasificación de flores de Iris

accuracy: 96.67%

	true Iris-setosa	true Iris-versicolor	true Iris-virginica	class precision
pred. Iris-setosa	10	0	0	100.00%
pred. Iris-versicolor	0	10	1	90.91%
pred. Iris-virginica	0	0	9	100.00%
class recall	100.00%	100.00%	90.00%	