

Change the text at page 17 lines 3-18 to read as follows:

Fluorescence quencher compositions of the invention include quencher-phosphoramidites according to the structure VI:

where Q is selected from structures I and II above, and Y, L₁, L₂, and L₃ are as described for compound III above. Quencher-phosphoramidite reagents VI are particularly useful for the automated synthesis of labelled polynucleotides. The phosphoramidite reagents can be nucleosidic (X = nucleoside) or non-nucleosidic, according to structure VI, which can effect labelling of a polynucleotide or polypeptide with one or more protected or unprotected quencher moieties, Q. When taken separately, R₁ and R₂ are C₁-C₁₂ alkyl such as methyl, ethyl, or isopropyl; C₅-C₁₄ aryl; or cycloalkyl containing up to 10 carbon atoms such as, morpholino. When taken together with the phosphoramidite nitrogen atom, R₁ and R₂ may be C₄-C₁₁ cycloalkyl, e.g. morpholino. R₃ is a phosphite ester protecting group which prevents unwanted extension of the polynucleotide. Generally, R₃ is stable to polynucleotide or polypeptide synthesis conditions yet is able to be removed from a synthetic polynucleotide product with a reagent that does not adversely affect the integrity of the polynucleotide or the dye. R₃ may be C₁-C₆ alkyl, such as methyl, tert-butyl, or cyanoethyl; C₅-C₁₄ aryl, such as phenyl or 2-(4-nitrophenyl)ethyl.

In the Claims

Cancel claims 26-75 without prejudice.

Please amend claim 1 to read as follows:

1. (Amended) A fluorescence quencher composition having the structure:

wherein Y is selected from N and CR, where R is H, C₁-C₆ alkyl or C₅-C₁₄ aryl; L₁, L₂, and L₃ are independently selected from a bond, C₁-C₁₂ alkyldiyl, C₁-C₁₂ alkoxydiyl, C₁-C₁₂ alkylaminodiyl, C₁-C₁₂ alkylamidediyl, C₅-C₁₄ aryldiyl, and 1-20