Computational Statistics II

Unit A.1: R programming and MCMC

Tommaso Rigon

University of Milano-Bicocca

Ph.D. in Economics and Statistics

Unit A.1

Main concepts

- Brief recap of inference via MCMC and the Metropolis—Hastings algorithm
- Weibull model with censored data
- Writing clean and efficient **R** code
- Reparametrizations and transformations.
- Associated R code: https://tommasorigon.github.io/CompStat/exe/un_A1.html

Main reference

 \blacksquare Robert, C. P., and Casella, G. (2009). Introducing Monte Carlo methods with R. Springer.

Bayesian computations

- Over the past 30 years, Markov Chain Monte Carlo methods (MCMC) methods have revolutionized Bayesian statistics.
- Bayesian computational statistics is nowadays a lively and mature research field, compared to the early days. Still, there are several open questions.
- The ISBA bullettin (2011). What are the open problems in Bayesian statistics?
- Alan Gelfand (ISBA bullettin, 2011): "Arguably the biggest challenge is in computation. If MCMC is no longer viable for the problems people want to address, then what is the role of INLA, of variational methods, of ABC approaches?"
- Link: https://www.stat.berkeley.edu/~aldous/157/Papers/Bayesian_open_problems.pdf

Bayesian inference (recap)

- Let X be the data, following some distribution $\pi(X \mid \theta)$, i.e. the likelihood, with $\theta \in \Theta \subseteq \mathbb{R}^p$ being an unknown set of parameters.
- Let $\pi(\theta)$ be the **prior distribution** associated to θ .
- lacksquare In Bayesian analysis, inference is based on the posterior distribution for $m{ heta}$, defined as

$$\pi(\boldsymbol{\theta} \mid \boldsymbol{X}) = \frac{\pi(\boldsymbol{\theta})\pi(\boldsymbol{X} \mid \boldsymbol{\theta})}{\int_{\Theta} \pi(\boldsymbol{\theta})\pi(\boldsymbol{X} \mid \boldsymbol{\theta})d\boldsymbol{\theta}}.$$

- Key issue: the normalizing constant, i.e. the above integral, is often intractable no analytical solutions.
- Numerical approximations of $\int_{\Theta} \pi(\theta) \pi(\mathbf{X} \mid \theta) d\theta$ are highly unstable, especially in high dimensions \implies the integrate \mathbf{R} function will not work in most cases.

Inference via MCMC (recap)

- **Key solution**. It is possible to sample from the posterior distribution even without knowing the normalizing constant.
- If we can get random samples $\theta^{(1)}, \dots, \theta^{(R)}$ from the posterior distribution, then we can approximate any functional of interest, i.e.

$$\mathbb{E}(f(\boldsymbol{\theta}) \mid \boldsymbol{X}) \approx \frac{1}{R} \sum_{r=1}^{R} f(\boldsymbol{\theta}^{(r)}).$$

- This approximation is often justified by the ergodic theorem.
- The samples $\theta^{(1)}, \dots, \theta^{(R)}$ are often dependent and may follow a Markov Chain \Longrightarrow Markov Chain Monte Carlo (MCMC).

Metropolis-Hastings algorithm (recap)

- A simple strategy for posterior sampling is the Metropolis-Hastings (MH) algorithm.
- Set the first value of the chain θ_1 to some (reasonable) value.

At the rth value of the chain

- Let $\theta = \theta^{(r)}$ be the current status of the chain.
- Sample θ^* from a proposal distribution $q(\theta^* \mid \theta)$.
- Compute the acceptance probability, defined as

$$\alpha = \min \left\{ 1, \frac{\pi(\boldsymbol{\theta}^* \mid \boldsymbol{X})}{\pi(\boldsymbol{\theta} \mid \boldsymbol{X})} \frac{q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^*)}{q(\boldsymbol{\theta}^* \mid \boldsymbol{\theta})} \right\} = \min \left\{ 1, \frac{\pi(\boldsymbol{\theta}^*)\pi(\boldsymbol{X} \mid \boldsymbol{\theta}^*)}{\pi(\boldsymbol{\theta})\pi(\boldsymbol{X} \mid \boldsymbol{\theta})} \frac{q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^*)}{q(\boldsymbol{\theta}^* \mid \boldsymbol{\theta})} \right\}.$$

■ With probability α , update the status of the chain and set $\theta \leftarrow \theta^*$.

Implementation of MCMC

- The MH is perhaps the simplest MCMC algorithm and it has several limitations. We will discuss modifications / extensions of the MH in the next units.
- In units A.1-A.2 we will focus on practical considerations concerning the implementation with **R** and its interface with C++ using **Rcpp**.
- This is far from a comprehensive guide about R programming. We will consider a specific model and we will implement the relevant code in R.

What about BUGS / JAGS / Stan?

- If the performance is not a concern, Stan-like software is an extremely useful tool for practitioners who wish to implement standard Bayesian models.
- Conversely, any non-standard or novel model, i.e. those usually developed by researchers in statistics, may be difficult or even impossible to implement.
- Besides, the "manual" implementation is very useful to gain insights about the model itself and it facilitates a lot the debugging process.

Example: Weibull model for censored data

- We consider an example from survival analysis, i.e. the data are survival times which may be censored.
- In this example, we assume that the survival times are iid random variable following a Weibull distribution Weib (α, β) .
- The observed survival time t_i is either complete $(d_i = 1)$ or right censored $(d_i = 0)$, meaning that the survival time is higher than the observed t_i .
- The hazard and survival functions of a Weibull distribution are

$$h(t \mid \alpha, \beta) = \frac{\alpha}{\beta} \left(\frac{t}{\beta} \right)^{\alpha - 1}, \quad S(t \mid \alpha, \beta) = \exp \left\{ -\left(\frac{t}{\beta} \right)^{\alpha} \right\}.$$

■ Recall that the density function is obtained as $f(t \mid \alpha, \beta) = h(t \mid \alpha, \beta)S(t \mid \alpha, \beta)$

Likelihood function

 The likelihood for this parametric model, under suitable censorship assumptions, is proportional to the following quantity

$$\pi(\mathbf{t}, \mathbf{d} \mid \boldsymbol{\theta}) \propto \prod_{i=1}^{n} h(t_i \mid \alpha, \beta)^{d_i} S(t_i \mid \alpha, \beta) = \prod_{i:d_i=1} f(t_i \mid \alpha, \beta) \prod_{i:d_i=0} S(t_i \mid \alpha, \beta),$$

with (α, β) being the parameter vector.

- **Remark** When performing (Bayesian) inference, note that the likelihood is always defined up to an irrelevant normalizing constant not depending on the parameters θ .
- These irrelevant constants can and should be omitted when performing computations, especially if they are expensive to evaluate.

Bad implementation I (use the log-scale)

- In our experiments, we make use the stanford2 dataset of the survival package.
- In first place, we need to implement the log-likelihood function, say loglik.
- The following implementation of the log-likelihood is correct but numerically unstable.

```
loglik_inaccurate <- function(t, d, alpha, beta) {
   hazard <- prod((alpha / beta * (t / beta)^(alpha - 1))^d)
   survival <- prod(exp(-(t / beta)^alpha))
   log(hazard * survival)
}

# Evaluate the log-likelihood at the point (0.5, 1000)
loglik_inaccurate(t, d, alpha = 0.5, beta = 1000)
# [1] -Inf</pre>
```

■ The product of several terms close to 0 leads to numerical inaccuracies ⇒ use the log-scale instead.

Bad implementation II (initialize the output)

- This second coding attempt relies on the log-scale and is indeed numerically much more stable than the previous version.
- However, this implementation is inefficient ⇒ do not increase objects' dimension.

```
loglik inefficient2 <- function(t, d, alpha, beta) {
                 n <- length(t) # Sample size
                 log hazards <- NULL
                 log survivals <- NULL
                 for (i in 1:n) {
                                  \log_{a} - c(\log_{a} - c(\log_{a} - c(\log_{a} - \log(\log_{a} - 1) * \log(\log_{a} - \log(\log_{a} - \log(\log_{a} - \log\log_{a} -
                                  log survivals <- c(log survivals, -(t[i] / beta)^alpha)
                  sum(log hazards) + sum(log survivals)
 # Evaluate the log-likelihood at the point (0.5, 1000)
loglik inefficient2(t, d, alpha = 0.5, beta = 1000)
   # [17 -873.3299
```

Bad implementation III (avoid for loops)

■ This third attempt avoids the previous pitfalls but it is still quite inefficient ⇒ use vectorized code whenever possible.

```
loglik inefficient1 <- function(t, d, alpha, beta) {
 n <- length(t) # Sample size
 log hazards <- numeric(n)
 log survivals <- numeric(n)
 for (i in 1:n) {
    \log_{\text{hazards}}[i] \leftarrow d[i] * ((alpha - 1) * \log(t[i] / beta) + \log(alpha / beta))
    log_survivals[i] <- -(t[i] / beta)^alpha</pre>
  sum(log_hazards) + sum(log_survivals)
# Evaluate the log-likelihood at the point (0.5, 1000)
loglik inefficient1(t, d, alpha = 0.5, beta = 1000)
# [1] -873.3299
```

Good implementation

■ The following version is both numerically stable and efficient.

```
loglik <- function(t, d, alpha, beta) {
  log_hazard <- sum(d * ((alpha - 1) * log(t / beta) + log(alpha / beta)))
  log_survival <- sum(-(t / beta)^alpha)
  log_hazard + log_survival
}

# Evaluate the log-likelihood at the point (0.5, 1000)
loglik(t, d, alpha = 0.5, beta = 1000)
# [1] -873.3299</pre>
```

- \blacksquare All these versions of loglik run in fractions of seconds. However, the loglik function must be executed i.e. $\sim 10^5$ times within a MH algorithm.
- Moreover, in more complex models several instances of these inefficiencies add up.

Benchmarking the code

- To understand which function works better, you need to test its performance.
- There exist specialized packages to do so, i.e. R rbenchmark or microbenchmark.
- These packages execute the code several times and report the average execution time.
- The column "elapsed" refer to the overall time (in seconds) over 1000 replications.

A matter of style

- Formatting your code properly is a healthy programming practice.
- You can refer to https://style.tidyverse.org for a comprehensive overview of good practices in R.
- Quoting the tidyverse style guide: "Good coding style is like correct punctuation: you can manage without it, butitsuremakesthingseasiertoread".
- The styler R package automatically restyles your code for you and it is integrated within RStudio as an add-in.

```
# Good
x <- 5
```

x = 5

Reparametrizations I

- When performing (Bayesian) inference, the choice of the parametrization has strong impacts on computations.
- General advice: perform computations on the most convenient parametrization and then transform back the obtained samples.
- As a rule of thumb, you should use parametrizations with <u>unbounded domains</u>. This facilitates the choice of proposal distributions and could also <u>improve the mixing</u>.
- In our model, the two parameters α, β are strictly positive. Hence, a common strategy is to consider their logarithm, i.e. $\theta = (\theta_1, \theta_2) = (\log \alpha, \log \beta)$.

To log or not to log?

Roberts, G. O. and Rosenthal, J. S. (2009). *Examples of adaptive MCMC*. Journal of Computational and Graphical Statistics, **18**(2), 349–367.

Reparametrizations & priors

- When reparametrizations are involved, there two possible modeling strategies.
- Choose the prior <u>before</u> the reparametrization. In our setting, we could let for example

$$\alpha \sim \text{Ga}(0.1, 0.1), \qquad \beta \sim \text{Ga}(0.1, 0.1).$$

If you do so, remember to include the $\underline{\underline{\mathsf{jacobian}}}$ of the transformation when considering the transformed posterior!

■ Choose the prior <u>after</u> the reparametrization. In our setting, we could let for example

$$\theta_1 = \log(\alpha) \sim \mathsf{N}(0, 100), \qquad \theta_2 = \log(\beta) \sim \mathsf{N}(0, 100).$$

This strategy is simpler as it avoids the extra step of computing the jacobian.

```
logprior <- function(theta) {
   sum(dnorm(theta, 0, sqrt(100), log = TRUE))
}
logpost <- function(t, d, theta) {
   loglik(t, d, exp(theta[1]), exp(theta[2])) + logprior(theta)
}</pre>
```

The MH implementation

lacktriangle Since the space of $m{ heta}$ is unbounded, it is reasonable to select a Gaussian random walk as proposal distribution, namely

$$(\theta^* \mid \theta) \sim N_2(\theta, 0.25^2 I_2).$$

The choice of the variance will be discussed in unit B.1.

■ Gaussian random walks are symmetric proposals distributions, implying that

$$q(\theta \mid \theta^*) = q(\theta^* \mid \theta),$$

which means that their ratio can be simplified (= 1) when computing the acceptance probability α .

- lacksquare As before, make sure you compute lpha using the log-scale to avoid numerical instabilities.
- Remark. Unfortunately, there is no way to avoid for loops, which are highly inefficient ⇒ this justifies the usage of Rcpp and RcppArmadillo.

Metropolis-Hastings code

```
RMH <- function(R, burn in, t, d) {
  out <- matrix(0, R, 2) # Initialize an empty matrix to store the values
  theta <- c(0, 0) # Initial values
  logp <- logpost(t, d, theta) # Log-posterior</pre>
  for (r in 1:(burn in + R)) {
    theta new <- rnorm(2, mean = theta, sd = 0.25) # Propose a new value
    logp_new <- logpost(t, d, theta_new)</pre>
    alpha <- min(1, exp(logp_new - logp))
    if (runif(1) < alpha) {</pre>
      theta <- theta new; logp <- logp new # Accept the value
    if (r > burn in) {
      out[r - burn in, ] <- theta # Store the values after the burn-in period
  out
```

```
# Executing the code
library(tictoc) # Library for "timing" the functions
tic()
fit_MCMC <- RMH(R = 50000, burn_in = 5000, t, d)
toc()
# 0.92 sec elapsed
```

Estimated survival function

■ Posterior mean of the survival function with pointwise 95% credible intervals.

