ISO774x-Q1 Automotive, High-Speed, Reinforced Quad-Channel Digital Isolators

1 Features

- Qualified for automotive applications
- AEC-Q100 qualified with the following results:
 - Device temperature Grade 1: –40°C to 125°C ambient operating temperature
- Functional Safety-Capable
 - Documentation available to aid functional safety system design: ISO7740-Q1, ISO7741-Q1, ISO7742-Q1
- 100 Mbps data rate
- Robust isolation barrier:
 - >100-year projected lifetime at 1500 V_{RMS} working voltage
 - Up to 5700 V_{RMS} isolation rating
 - Up to 12.8 kV surge capability
 - ±100 kV/µs typical CMTI
- Wide supply range: 2.25 V to 5.5 V
- 2.25-V to 5.5-V level translation
- Default output high (ISO774x) and low (ISO774xF) options
- Low power consumption, typical 1.5 mA per channel at 1 Mbps
- Low propagation delay: 10.7 ns typical (5-V Supplies)
- Robust electromagnetic compatibility (EMC)
 - System-level ESD, EFT, and surge immunity
 - ±8 kV IEC 61000-4-2 contact discharge protection across isolation barrier
 - Low emissions
- Extra-wide SOIC (DWW-16), wide-SOIC (DW-16) and QSOP (DBQ-16) package options
- Safety-related certifications:
 - DIN VDE V 0884-11:2017-01
 - UL 1577 component recognition program
 - CSA, CQC, and TUV certifications

2 Applications

- Hybrid, electric and powertrain system (EV/HEV)
 - Battery management system (BMS)
 - On-board charger
 - Traction inverter
 - DC/DC converter
 - Inverter and motor control

3 Description

The ISO774x-Q1 automotive devices are highperformance, quad-channel digital isolators with 5700 V_{RMS} (DWW package), 5000 V_{RMS} (DW package) and 3000 V_{RMS} (DBQ package) isolation ratings per UL 1577. This family of devices has reinforced insulation ratings according to VDE, CSA, TUV and CQC.

ISO774x-Q1 devices provide electromagnetic immunity and low emissions at low power consumption, while isolating CMOS or LVCMOS digital I/Os. Each isolation channel has a logic input and output buffer separated by a double capacitive silicon dioxide (SiO₂) insulation barrier. These devices come with enable pins which can be used to put the respective outputs in high impedance for multi-master driving applications and to reduce power consumption. The ISO7740-Q1 device has all four channels in the same direction, the ISO7741-Q1 device has three forward and one reverse-direction channels, and the ISO7742-Q1 device has two forward and two reverse-direction channels. If the input power or signal is lost, default output is high for devices without suffix F and low for devices with suffix F. See the Device Functional Modes section for further details.

Device Information

PART NUMBER(1)	PACKAGE	BODY SIZE (NOM)
ISO7741-Q1	SOIC (DWW)	10.30 mm × 14.0 mm
ISO7740-Q1	SOIC (DW)	10.30 mm × 7.50 mm
ISO7741-Q1 ISO7742-Q1	SSOP (DBQ)	4.90 mm × 3.90 mm

For all available packages, see the orderable addendum at the end of the data sheet.

V_{CCI}=Input supply, V_{CCO}=Output supply GNDI=Input ground, GNDO=Output ground

Simplified Schematic

Table of Contents

1 Features1	7.18 Insulation Characteristics Curves	. 20
2 Applications 1	7.19 Typical Characteristics	.21
3 Description1	8 Parameter Measurement Information	.23
4 Revision History2	9 Detailed Description	25
5 Description Continued4	9.1 Overview	.25
6 Pin Configuration and Functions4	9.2 Functional Block Diagram	.25
Pin Functions6	9.3 Feature Description	26
7 Specifications 7	9.4 Device Functional Modes	27
7.1 Absolute Maximum Ratings7	10 Application and Implementation	. 29
7.2 ESD Ratings 7	10.1 Application Information	. 29
7.3 Recommended Operating Conditions7	10.2 Typical Application	. 29
7.4 Thermal Information8	11 Power Supply Recommendations	.32
7.5 Power Rating 8	12 Layout	.33
7.6 Insulation Specifications9	12.1 Layout Guidelines	
7.7 Safety-Related Certifications10	12.2 Layout Example	. 33
7.8 Safety Limiting Values10	13 Device and Documentation Support	34
7.9 Electrical Characteristics—5-V Supply12	13.1 Documentation Support	. 34
7.10 Supply Current Characteristics—5-V Supply13	13.2 Related Links	
7.11 Electrical Characteristics—3.3-V Supply14	13.3 Receiving Notification of Documentation Updates.	. 34
7.12 Supply Current Characteristics—3.3-V Supply 15	13.4 Support Resources	. 34
7.13 Electrical Characteristics—2.5-V Supply 16	13.5 Trademarks	.34
7.14 Supply Current Characteristics—2.5-V Supply 17	13.6 Electrostatic Discharge Caution	.34
7.15 Switching Characteristics—5-V Supply18	13.7 Glossary	
7.16 Switching Characteristics—3.3-V Supply18	14 Mechanical, Packaging, and Orderable	
7.17 Switching Characteristics—2.5-V Supply19	Information	. 35

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision C (February 2020) to Revision D (October 2020)	Page
•	Added Functional Safety bullet in Section 1	1
С	hanges from Revision B (June 2018) to Revision C (February 2020)	Page
•	Made editorial and cosmetic changes throughout the document	1
•	Changed From: "Isolation Barrier Life: >40 Years" To: " >100-year projected lifetime at 1500 V _{RMS} worki voltage" in Section 1	
•	Added "Up to 5700 V _{RMS} isolation rating" in Section 1	1
•	Added "Up to 12.8 kV surge capability" in Section 1	<mark>1</mark>
•	Added "±8 kV IEC 61000-4-2 contact discharge protection across isolation barrier" in Section 1	1
•	Changed VDE standard name From: DIN V VDE V 0884-11:2017-01 To: DIN VDE V 0884-11:2017-01 throughout the document	1
•	Deleted "All Certifications Complete except CQC Approval of DBQ-16 Package Devices" in Section 1 Updated list of applications in Section 2 section	
•	Updated Figure 3-1 to show two isolation capacitors in series per channel instead of a single isolation capacitor	
•	Added extra-wide SOIC (DWW-16) package information for ISO7741-Q1 in the datasheet	4
•	Added "Contact discharge per IEC 61000-4-2" specification of ±8000 V in Section 7.2	
•	Added the following table note to <i>Data rate</i> specification: "100 Mbps is the maximum specified data rate although higher data rates are possible."	,
•	Changed ISO7741-Q1 P _{D1} or Maximum power dissipation by side-1 From: 50 mW To: 75 mW and P _{D2} of Maximum power dissipation by side-2 From: 150 mW To: 125 mW in Section 7.5 table	

www.ti.com

•	Changed V _{IORM} value for DW-16 package From: "1414 V _{PK} " To: "2121 V _{PK} " in Section 7.6 table	<mark>9</mark>
•	Changed V_{IOWM} values for DW-16 package From: "1000 V_{RMS} " and "1414 V_{DC} " To: "1500 V_{RMS} " and "21 V_{DC} " in Section 7.6 table	21
•	Added 'see Figure 10-7' to TEST CONDITIONS of V _{IOWM} specification in Section 7.6	9
•	Changed V _{IOSM} TEST CONDITIONS From: "Test method per IEC 60065" To: "Test method per IEC 6236 in Section 7.6 table	
•	Updated certification information in Section 7.7 table	10
•	Changed the Regulatory Information table to Safety-Related Certifications and updated content	
•	Changed the certifications from planned to certified in the Safety-Related Certifications table	10
•	Corrected ground symbol for 'Input (ISO774xF)' schematic in Section 9.4.1	28
•	Updated Figure 10-1 by changing CAN transceiver From: SN65HVD231Q To: TCAN1042-Q1 and transformer driver From: SN6501-Q1 To: SN6505x-Q1	29
•	Added Section 10.2.3.1 sub-section under Section 10.2.3 section.	
•	Added SN6505x-Q1 reference in Section 11 section	
•	Added 'How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems' application report to Section 13.1 section	
•	Added SN6505x-Q1 data sheet reference in Section 13.1 section	
C	hanges from Revision A (May 2018) to Revision B (June 2018)	Page
•	Changed the isolation rating of the DBQ package from 2500 V _{RMS} to 3000 V _{RMS}	
•	Moved the HBM and CDM values from the <i>Features</i> section to the <i>ESD Ratings</i> table	
•	Added V _{TEST} to the conditions for the maximum transient isolation voltage parameter in the <i>Insulation Specifications</i> table	9
•	Changed the value for the DBQ package from 3600 V _{PK} to 4242 V _{PK} throughout the document	
•	Changed the method b1 V _{ini} condition for apparent charge in the <i>Insulation Specifications</i> table	
•	Changed From: "Plan to certify" To: "Certified" in column VDE of Section 7.7	
•	Added a conditions statement to Section 7.7	
•	Changed From: "Plan to certify" To: "Certified" in column UL of Section 7.7	
•	Changed From: "Plan to certify" To: "Certified" in column TUV of Section 7.7	10
•	Changed From: "Certification Planned" To: 'Certificate number: 40040142" in column VDE of Section 7.7	
•	Changed From: "Certification Planned" To: "File number: E181974" in column VDE of Section 7.7	10
•	Changed From: "Certification Planned" To: "Client ID number: 77311" in column TUV of Section 7.7	10
•	Changed the CMTI TYP value From: 75 kV/µs To: 100 kV/µs in the Section 7.9	12
•	Changed the CMTI TYP value From: 75 kV/µs To: 100 kV/µs in the Section 7.11	14
•	Changed the CMTI TYP value From: 75 kV/µs To: 100 kV/µs in the Section 7.13	16
•	Changed the t_{DO} TYP value From: 6 μs To: 0.1 μs and the MAX value From: 9 μs To: 0.3 μs in the Section	
•	Changed the t _{DO} TYP value From: 6 μs To: 0.1 μs and the MAX value From: 9 μs To: 0.3 μs in the Sectio 7.16	
•	Changed the t _{DO} TYP value From: 6 μs To: 0.1 μs and the MAX value From: 9 μs To: 0.3 μs in the Sectio 7.17	on
•	Switched the line colors for V _{CC} at 2.5 V and V _{CC} at 3.3 V in Figure 7-14	
•	Switched the labels for V_{CC1} falling and V_{CC2} rising in the graph legend of <i>Power Supply Undervoltage</i>	21
	Threshold vs Free-Air Temperature	21
C	hanges from Revision * (November 2016) to Revision A (May 2018)	Page
•	Updated the Safety-Related Certifications table	
•	Changed the minimum CMTI from 40 to 85 in all <i>Electrical Characteristics</i> tables	

5 Description Continued

Used in conjunction with isolated power supplies, these devices help prevent noise currents on data buses, such as CAN and LIN, or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. Through innovative chip design and layout techniques, electromagnetic compatibility of the ISO774x-Q1 devices have been significantly enhanced to ease system-level ESD, EFT, surge, and emissions compliance. The ISO774x-Q1 devices are available in 16-pin wide SOIC (DW) and QSOP (DBQ) packages. ISO7741-Q1 is also available in extra-wide SOIC (DWW) package.

6 Pin Configuration and Functions

Figure 6-1. ISO7740-Q1 DW and DBQ Packages 16-Pin SOIC-WB and QSOP Top View

Figure 6-2. ISO7741-Q1 DWW, DW and DBQ Packages 16-Pin SOIC-Extra-WB, SOIC-WB and QSOP Top View

Figure 6-3. ISO7742-Q1 DW and DBQ Packages 16-Pin SOIC-WB and QSOP Top View

Pin Functions

		PIN		1/0	PERCENTION
NAME	ISO7740-Q1	ISO7741-Q1	ISO7742-Q1	I/O	DESCRIPTION
EN1	_	7	7	ı	Output enable 1. Output pins on side 1 are enabled when EN1 is high or open and in high-impedance state when EN1 is low.
EN2	10	10	10	I	Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low.
GND1	2	2	2		Ground connection for V _{CC1}
GNDT	8	8	8	_	Ground connection for V _{CC1}
GND2	9	9	9		Cround connection for V
GNDZ	15	15	15	Ground connection for V _{CC2}	
INA	3	3	3	I	Input, channel A
INB	4	4	4	I	Input, channel B
INC	5	5	12	I	Input, channel C
IND	6	11	11	I	Input, channel D
NC	7	_	_	_	Not connected
OUTA	14	14	14	0	Output, channel A
OUTB	13	13	13	0	Output, channel B
OUTC	12	12	5	0	Output, channel C
OUTD	11	6	6	0	Output, channel D
V _{CC1}	1	1	1	_	Power supply, side 1
V _{CC2}	16	16	16	_	Power supply, side 2

7 Specifications

7.1 Absolute Maximum Ratings

See (1)

		MIN	MAX	UNIT
V _{CC1} , V _{CC2}	Supply voltage ⁽²⁾	-0.5	6	V
V	Voltage at INx, OUTx, ENx	-0.5	V _{CCX} + 0.5 ⁽³⁾	V
Io	Output current	-15	15	mA
TJ	Junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.
- (3) Maximum voltage must not exceed 6 V.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level 3A	±6000	
V _{(ESI}	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011 CDM ESD Classification Level C6	±1500	V
		Contact discharge per IEC 61000-4-2; Isolation barrier withstand test ^{(2) (3)}	±8000	

- (1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
- (2) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.
- 3) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.

7.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V _{CC1} , V _{CC2}	Supply voltage		2.25		5.5	V
V _{CC(UVLO+)}	UVLO threshold when supply vo	VLO threshold when supply voltage is rising			2.25	V
V _{CC(UVLO-)}	UVLO threshold when supply voltage is falling		1.7	1.8		V
V _{HYS(UVLO)}	Supply voltage UVLO hysteresis		100	200		mV
		$V_{CCO}^{(1)} = 5 \text{ V}$	-4			
Гон	High-level output current	V _{CCO} = 3.3 V	-2			mA
		V _{CCO} = 2.5 V	-1			
		V _{CCO} = 5 V			4	4
I _{OL}	Low-level output current	V _{CCO} = 3.3 V			2	mA
		V _{CCO} = 2.5 V			1	
V _{IH}	High-level input voltage	•	0.7 × V _{CCI} ⁽¹⁾		V _{CCI}	V
V _{IL}	Low-level input voltage		0		0.3 × V _{CCI}	V
DR	Data rate ⁽²⁾		0		100	Mbps
T _A	Ambient temperature		-40	25	125	°C

⁽¹⁾ V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} .

^{2) 100} Mbps is the maximum specified data rate, although higher data rates are possible.

7.4 Thermal Information

			ISO774x-Q1			
	THERMAL METRIC(1)	DWW (SOIC) DW (SOIC)	DBQ (QSOP)	UNIT	
		16 Pins	16 Pins	16 Pins		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	58.3	83.4	109	°C/W	
R _{0JC(top)}	Junction-to-case(top) thermal resistance	21.4	46	54.4	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	30.5	48	51.9	°C/W	
ΨЈТ	Junction-to-top characterization parameter	7.1	19.1	14.2	°C/W	
ΨЈВ	Junction-to-board characterization parameter	29.8	47.5	51.4	°C/W	
R ₀ JC(bottom)	Junction-to-case(bottom) thermal resistance	_	_	_	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Power Rating

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
ISO77	740-Q1		•					
P _D	Maximum power dissipation				200	mW		
P _{D1}	Maximum power dissipation by side-1	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, T_J = 150^{\circ}\text{C}, C_L = 15 \text{ pF},$ Input a 50-MHz 50% duty cycle square wave			40	mW		
P _{D2}	Maximum power dissipation by side-2				160	mW		
ISO77	ISO7741-Q1							
P_D	Maximum power dissipation				200	mW		
P _{D1}	Maximum power dissipation by side-1	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, T_J = 150^{\circ}\text{C}, C_L = 15 \text{ pF},$ Input a 50-MHz 50% duty cycle square wave			75	mW		
P _{D2}	Maximum power dissipation by side-2				125	mW		
ISO77	742-Q1							
P _D	Maximum power dissipation				200	mW		
P _{D1}	Maximum power dissipation by side-1	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, T_J = 150^{\circ}\text{C}, C_L = 15 \text{ pF},$ Input a 50-MHz 50% duty cycle square wave			100	mW		
P _{D2}	Maximum power dissipation by side-2				100	mW		

7.6 Insulation Specifications

	DADAMETED	TEST COMPLETIONS		VALUE			
	PARAMETER	TEST CONDITIONS	DWW-16	DW-16	DBQ-16	UNIT	
CLR	External clearance ⁽¹⁾	Shortest terminal-to-terminal distance through air	>14.5	>8	>3.7	mm	
CPG	External creepage ⁽¹⁾	Shortest terminal-to-terminal distance across the package surface	>14.5	>8	>3.7	mm	
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	>21	>21	>21	μm	
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	>600	>600	V	
	Material group	According to IEC 60664-1	ı	ı	I		
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	I-IV	1-111		
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 600 V _{RMS}	I-IV	I-IV	n/a		
		Rated mains voltage ≤ 1000 V _{RMS}	I-IV	1-111	n/a		
DIN VD	E V 0884-11:2017-01 ⁽²⁾		•				
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	2828	2121	566	V _{PK}	
V _{IOWM}	Maximum working isolation voltage	AC voltage; Time dependent dielectric breakdown (TDDB) Test; see Figure 10-7	2000	1500	400	V _{RMS}	
IOVVIVI	3	DC voltage	2828	2121	566	V _{DC}	
V _{IOTM}	Maximum transient isolation voltage	V _{TEST} = V _{IOTM} . t = 60 s (qualification); V _{TEST} = 1.2 × V _{IOTM} , t= 1 s (100% production)	8000	8000	4242	V _{PK}	
V_{IOSM}	Maximum surge isolation voltage ⁽³⁾	Test method per IEC 62368-1, 1.2/50 μs waveform, V _{TEST} = 1.6 × V _{IOSM} (qualification)	8000	8000	4000	V _{PK}	
			≤5	≤5	≤5		
q _{pd}	Apparent charge ⁽⁴⁾		≤5	≤5	≤5	pC	
		Method b1; At routine test (100% production) and preconditioning (type test) $V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1 s; \\ V_{pd(m)} = 1.875 \times V_{IORM}, t_{m} = 1 s$	≤5	≤5	≤5		
C _{IO}	Barrier capacitance, input to output ⁽⁵⁾	$V_{IO} = 0.4 \times \sin(2\pi ft)$, f = 1 MHz	~1	~1	~1	pF	
		V _{IO} = 500 V, T _A = 25°C	>1012	>10 ¹²	>10 ¹²		
R _{IO}	Isolation resistance ⁽⁵⁾	V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C	>10 ¹¹	>10 ¹¹	>10 ¹¹	Ω	
		V _{IO} = 500 V at T _S = 150°C	>10 ⁹	>10 ⁹	>10 ⁹	1	
	Pollution degree		2	2	2		
	Climatic category		55/125/ 21	55/125/ 21	55/125/ 21		
UL 157	7	•	1	•	1		
V _{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (qualification), $V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production)	5700	5000	3000	V _{RMS}	
		1					

- (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
- (2) This coupler is suitable for *safe electrical insulation* only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- (4) Apparent charge is electrical discharge caused by a partial discharge (pd).
- (5) All pins on each side of the barrier tied together creating a two-terminal device.

7.7 Safety-Related Certifications

VDE	CSA	UL	CQC	TUV
Certified according to DIN VDE V 0884-11:2017-01	Certified according to IEC 60950-1, IEC 62368-1 and IEC 60601-1	Certified according to UL 1577 Component Recognition Program	Certified according to GB 4943.1-2011	Certified according to EN 61010-1:2010/A1:2019, EN 60950-1:2006/A2:2013 and EN 62368-1:2014
Maximum transient isolation voltage, 8000 V _{PK} (DWW-16, DW-16) and 4242 V _{PK} (DBQ-16); Maximum repetitive peak isolation voltage, 2828 V _{PK} (DWW-16, Reinforced), 2121 V _{PK} (DW-16, Reinforced) and 566 V _{PK} (DBQ-16); Maximum surge isolation voltage, 8000 V _{PK} (DWW-16, DW-16, Reinforced) and 4000 V _{PK} (DBQ-16)	Reinforced insulation per CSA 60950-1-07+A1+A2, IEC 60950-1 2nd Ed.+A1+A2, CSA 62368-1-14 and IEC 62368-1 2nd Ed. 1450 V _{RMS} (DWV-16), 800 V _{RMS} (DWV-16) and 370 V _{RMS} (DBQ-16) max working voltage (pollution degree 2, material group I); 2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 400 V _{RMS} (DWW-16) and 250 V _{RMS} (DW-16) max working voltage	DW-16: Single protection, 5000 V _{RMS} ; DBQ-16: Single protection, 3000 V _{RMS}	DWW-16: Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 1450 V _{RMS} maximum working voltage; DW-16: Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 700 V _{RMS} maximum working voltage; DBQ-16: Basic Insulation, Altitude ≤ 5000 m, Tropical Climate, 400 V _{RMS} maximum working voltage	5700 V _{RMS} (DWW-16), 5000 V _{RMS} (DW-16) and 3000 V _{RMS} (DBQ-16) Reinforced insulation per EN 61010-1:2010/A1:2019 up to working voltage of 1000 V _{RMS} (DWW-16), 600 V _{RMS} (DW-16) and 300 V _{RMS} (DBQ-16) 5700 V _{RMS} (DWW-16), 5000 V _{RMS} (DW-16) and 3000 V _{RMS} (DW-16) and 3000 V _{RMS} (DBQ-16) Reinforced insulation per EN 60950-1:2006/A2:2013 and EN 62368-1:2014 up to working voltage of 1450 V _{RMS} (DWW-16), 800 V _{RMS} (DW-16) and 370 V _{RMS} (DBQ-16)
Reinforced certificate: 40040142	Master contract number: 220991	File number: E181974	Certificate numbers: CQC15001121716 (DWx-16) CQC18001199097 (DBQ-16)	Client ID number: 77311

7.8 Safety Limiting Values

Safety limiting⁽¹⁾ intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

	PARAMETER	TEST CONDITIONS	MIN	TYP I	MAX	UNIT
DWV	V-16 PACKAGE					
		$R_{\theta JA} = 58.3 \text{ °C/W}, V_I = 5.5 \text{ V}, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}, \text{ see Figure 7-1}$			390	
Is	Safety input, output, or supply current	$R_{\theta JA} = 58.3 \text{ °C/W}, V_I = 3.6 \text{ V}, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}, \text{ see Figure 7-1}$			596	mA
		$R_{\theta JA} = 58.3 ^{\circ}\text{C/W}, V_{I} = 2.75 ^{\circ}\text{V}, T_{J} = 150 ^{\circ}\text{C}, T_{A} = 25 ^{\circ}\text{C}, \text{see Figure}$ 7-1			780	
Ps	Safety input, output, or total power	$R_{\theta JA} = 58.3 \text{ °C/W}, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}, \text{ see Figure 7-4}$		2	2144	mW
T _S	Maximum safety temperature				150	°C
DW-	16 PACKAGE					
	Safety input, output, or supply current	R _{0JA} = 83.4 °C/W, V _I = 5.5 V, T _J = 150°C, T _A = 25°C, see Figure 7-2			273	
Is		R _{0JA} = 83.4 °C/W, V _I = 3.6 V, T _J = 150°C, T _A = 25°C, see Figure 7-2			416	mA
.3		$R_{\theta JA} = 83.4 ^{\circ}\text{C/W}, V_{I} = 2.75 \text{V}, T_{J} = 150 ^{\circ}\text{C}, T_{A} = 25 ^{\circ}\text{C}, \text{see Figure}$ 7-2			545	
Ps	Safety input, output, or total power	$R_{\theta JA} = 83.4 \text{ °C/W}, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}, \text{ see Figure 7-5}$			1499	mW
T _S	Maximum safety temperature				150	°C
DBQ	-16 PACKAGE					
		$R_{\theta JA} = 109 \text{ °C/W}, V_I = 5.5 \text{ V}, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}, \text{ see Figure 7-3}$			209	
I _S	Safety input, output, or supply $R_{\theta JA} = 109 \text{ °C/W}, V_I = 3.6 \text{ V}, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}, \text{ see Figure 7-3}$			319	mA	
'5	current	$R_{\theta JA}$ = 109 °C/W, V_I = 2.75 V, T_J = 150°C, T_A = 25°C, see Figure 7-3		417		
Ps	Safety input, output, or total power	$R_{\theta JA} = 109 ^{\circ}\text{C/W}, T_J = 150 ^{\circ}\text{C}, T_A = 25 ^{\circ}\text{C}, \text{ see Figure 7-6}$			1147	mW

Safety limiting⁽¹⁾ intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
Ts	Maximum safety temperature			150	°C

(1) The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Section 7.4 is that of a device installed on a High-K test board for leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance

Copyright © 2020 Texas Instruments Incorporated

Submit Document Feedback

7.9 Electrical Characteristics—5-V Supply

V_{CC1} = V_{CC2} = 5 V ±10% (over recommended operating conditions unless otherwise noted)

001	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = –4 mA; see Figure 8-1	V _{CCO} ⁽¹⁾ – 0.4	4.8		V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA; see Figure 8-1		0.2	0.4	V
V _{IT+(IN)}	Rising input voltage threshold			0.6 × V _{CCI}	0.7 × V _{CCI}	V
V _{IT-(IN)}	Falling input voltage threshold		0.3 × V _{CCI}	0.4 × V _{CCI}		V
V _{I(HYS)}	Input threshold voltage hysteresis		0.1 × V _{CCI}	0.2 × V _{CCI}		V
I _{IH}	High-level input current	V _{IH} = V _{CCI} ⁽¹⁾ at INx or ENx			10	μΑ
I _{IL}	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μΑ
СМТІ	Common-mode transient immunity	$V_1 = V_{CCI}$ or 0 V, $V_{CM} = 1200$ V; see Figure 8-4	85	100		kV/μs
Cı	Input Capacitance ⁽²⁾	$V_1 = V_{CC}/2 + 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}, V_{CC} = 5 \text{ V}$		2		pF

⁽¹⁾ V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} .

⁽²⁾ Measured from input pin to ground.

7.10 Supply Current Characteristics—5-V Supply

 $V_{CC1} = V_{CC2} = 5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted).

PARAMETER	TEST CONDITION	IS	SUPPLY CURRENT	MIN TYP	MAX	UNIT
ISO7740-Q1						
	EN2 = 0 V; V _I = V _{CC1} (ISO7740-Q1)	;	I _{CC1}	1.2	1.6	
Supply current - Disable	$V_I = 0 \text{ V (ISO7740-Q1 with F suffix)}$		I _{CC2}	0.3	0.5	
Supply current - Disable	EN2 = 0 V; V _I = 0 V (ISO7740-Q1);		I _{CC1}	5.5	7.8	
	$V_I = V_{CC1}$ (ISO7740-Q1 with F suffix	()	I _{CC2}	0.3	0.5	
	EN2 = V _{CC2} ; V _I = V _{CC1} (ISO7740-Q1);		I _{CC1}	1.2	1.6	
Supply current - DC signal	$V_I = 0 \text{ V (ISO7740-Q1 with F suffix)}$	V _I = 0 V (ISO7740-Q1 with F suffix)		2	3.2	
Supply current - DC signal	EN2 = V_{CC2} ; $V_I = 0 V (ISO7740-Q1)$; $V_I = V_{CC1} (ISO7740-Q1 \text{ with F suffix})$		I _{CC1}	5.5	7.8	mA
			I _{CC2}	2.2	3.6	ША
		1 Mbps	I _{CC1}	3.3	4.7	
		1 IVIDPS	I _{CC2}	2.3	3.6	
Supply current - AC signal	All channels switching with square	10 Mbps	I _{CC1}	3.4	4.8	
Supply current - AC signal	wave clock input; C _L = 15 pF	TO WIDPS	I _{CC2}	4.2	5.8	
		100 Mbps	I _{CC1}	3.8	5.7	
		100 lyibps	I _{CC2}	22.7	28	
ISO7741-Q1						
Supply current - Disable	EN1 = EN2 = 0 V; V _I = V _{CCI} (1) (ISO	7741-Q1);	I _{CC1}	1	1.5	
	$V_I = 0 \text{ V (ISO7741-Q1 with F suffix)}$	ŕ	I _{CC2}	0.8	1.1	
	EN1 = EN2 = 0 V; V _I = 0 V (ISO774	1-Q1);	I _{CC1}	4.3	6.3	
	V _I = V _{CCI} (ISO7741-Q1 with F suffix		I _{CC2}	1.8	2.7	
	EN1 = EN2 = V _{CCI} ; V _I = V _{CCI} (ISO77	741-Q1);	I _{CC1}	1.5	2.3	
O	V _I = 0 V (ISO7741-Q1 with F suffix)		I _{CC2}	2	3	- mA
Supply current - DC signal	EN1 = EN2 = V_{CCI} ; V_I = 0 V (ISO7741-Q1); V_I = V_{CCI} (ISO7741-Q1 with F suffix)		I _{CC1}	4.8	6.8	
			I _{CC2}	3.2	4.9	
		1 Mbps	I _{CC1}	3.2	4.6	
			I _{CC2}	2.8	4.1	
	All channels switching with square		I _{CC1}	3.7	5.2	
Supply current - AC signal	wave clock input; C _L = 15 pF	10 Mbps	I _{CC2}	4.2	5.7	
		400 Mb	I _{CC1}	8.6	11.3	
		100 Mbps	I _{CC2}	18	22	
ISO7742-Q1		1				
Cumply current Disable	EN1 = EN2 = 0 V; V _I = V _{CCI} (ISO774 V _I = 0 V (ISO7742-Q1 with F suffix)	42-Q1);	I _{CC1} , I _{CC2}	0.9	1.3	
Supply current - Disable	EN1 = EN2 = 0 V; V _I = 0 V (ISO774: V _I = V _{CCI} (ISO7742-Q1 with F suffix	, .	I _{CC1} , I _{CC2}	3	4.6	
Supply current - DC signal	EN1 = EN2 = V_{CCI} ; $V_I = V_{CCI}$ (ISO77 $V_I = 0$ V (ISO7742-Q1 with F suffix)	742-Q1);	I _{CC1} , I _{CC2}	1.7	2.7	mA
oupply culterit - DO Signal	EN1 = EN2 = V_{CCI} ; V_I = 0 V (ISO774 V_I = V_{CCI} (ISO7742-Q1 with F suffix		I _{CC1} , I _{CC2}	4	5.9	
		1 Mbps	I _{CC1} , I _{CC2}	3	4.4	
Supply current - AC signal	All channels switching with square wave clock input; $C_L = 15 \text{ pF}$	10 Mbps	I _{CC1} , I _{CC2}	4	5.5	
	mayo olook inpat, of - 10 pi	100 Mbps	I _{CC1} , I _{CC2}	13.4	17	

⁽¹⁾ $V_{CCI} = Input-side V_{CC}$

7.11 Electrical Characteristics—3.3-V Supply

 $V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

001	001 002 1 3					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -2 mA; see Figure 8-1	V _{CCO} (1) – 0.3	3.2		V
V _{OL}	Low-level output voltage	I _{OL} = 2 mA; see Figure 8-1		0.1	0.3	V
V _{IT+(IN)}	Rising input voltage threshold			0.6 × V _{CCI}	0.7 × V _{CCI}	V
V _{IT-(IN)}	Falling input voltage threshold		0.3 × V _{CCI}	0.4 × V _{CCI}		V
V _{I(HYS)}	Input threshold voltage hysteresis		0.1 × V _{CCI}	0.2 × V _{CCI}		V
I _{IH}	High-level input current	V _{IH} = V _{CCI} ⁽¹⁾ at INx or ENx			10	μA
I _{IL}	Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA
CMTI	Common-mode transient immunity	V _I = V _{CCI} or 0 V, V _{CM} = 1200 V; see Figure 8-4	85	100		kV/μs

⁽¹⁾ V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} .

7.12 Supply Current Characteristics—3.3-V Supply

 $V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted).

PARAMETER	TEST CONDITION	S	SUPPLY CURRENT	MIN	TYP	MAX	UNIT
ISO7740-Q1						-	
	EN2 = 0 V; V _I = V _{CC1} (ISO7740-Q1);	:	I _{CC1}		1.2	1.6	
Complete compant Disable	V _I = 0 V (ISO7740-Q1 with F suffix)		I _{CC2}		0.3	0.5	
Supply current - Disable	EN2 = 0 V; V _I = 0 V (ISO7740-Q1);		I _{CC1}		5.5	7.8	
	$V_I = V_{CC1}$ (ISO7740-Q1 with F suffix)	I _{CC2}		0.3	0.5	
	EN2 = V _{CC2} ; V _I = V _{CC1} (ISO7740-Q1);		I _{CC1}		1.2	1.6	
Complete and the DC signal	$V_I = 0 \text{ V (ISO7740-Q1 with F suffix)}$	•	I _{CC2}		1.9	3.2	
Supply current - DC signal	EN2 = V_{CC2} ; V_I = 0 V (ISO7740-Q1); V_I = V_{CC1} (ISO7740-Q1 with F suffix)		I _{CC1}		5.5	7.8	A
			I _{CC2}		2.2	3.6	mA
		4 1 1 1 1 1 1 1	I _{CC1}		3.3	4.7	
		1 Mbps	I _{CC2}		2.2	3.6	
Cumply ourrant AC signal	All channels switching with square	10 Mbna	I _{CC1}		3.4	4.8	
Supply current - AC signal	wave clock input; C _L = 15 pF	10 Mbps	I _{CC2}		3.6	5	
		400 Mb = -	I _{CC1}		3.3	5.5	
		100 Mbps	I _{CC2}		17	20	
ISO7741-Q1		1	1			<u>'</u>	
Supply current - Disable	EN1 = EN2 = 0 V; V _I = V _{CCI} (1) (ISO7	7741-Q1);	I _{CC1}		1	1.5	
	$V_I = 0 \text{ V (ISO7741-Q1 with F suffix)}$,-	I _{CC2}		0.8	1.1	
	EN1 = EN2 = 0 V; V _I = 0 V (ISO7741	I-Q1);	I _{CC1}		4.3	6.3	
	$V_I = V_{CCI}$ (ISO7741-Q1 with F suffix)		I _{CC2}		1.9	2.7	
	EN1 = EN2 = V_{CCI} ; $V_I = V_{CCI}$ (ISO7741-Q1); $V_I = 0 \text{ V}$ (ISO7741-Q1 with F suffix)		I _{CC1}		1.5	2.3	mΛ
0 1 1 20 1			I _{CC2}		2	3	
Supply current - DC signal	EN1 = EN2 = V _{CCI} ; V _I = 0 V (ISO7741-Q1); V _I = V _{CCI} (ISO7741-Q1 with F suffix)		I _{CC1}		4.8	6.8	
			I _{CC2}		3.2	4.9	mA
		4.4	I _{CC1}		3.2	4.6	
		1 Mbps	I _{CC2}		2.7	4.1	
Supply current - AC signal	All channels switching with square	40.14	I _{CC1}		3.5	5	
	wave clock input; C _L = 15 pF	10 Mbps	I _{CC2}		3.7	5.2	
		400 Missis	I _{CC1}		6.8	9.3	
		100 Mbps	I _{CC2}		13.7	16.4	
ISO7742-Q1		1					
Committee on the China halo	EN1 = EN2 = 0 V; V _I = V _{CCI} (ISO774 V _I = 0 V (ISO7742-Q1 with F suffix)	2-Q1);	I _{CC1} , I _{CC2}		0.9	1.3	
Supply current - Disable	EN1 = EN2 = 0 V; V _I = 0 V (ISO7742 V _I = V _{CCI} (ISO7742-Q1 with F suffix)		I _{CC1} , I _{CC2}		3	4.6	
Supply current - DC signal	EN1 = EN2 = V_{CCI} ; $V_I = V_{CCI}$ (ISO77 $V_I = 0$ V (ISO7742-Q1 with F suffix)	(42-Q1);	I _{CC1} , I _{CC2}		1.7	2.7	mA
oupply ourrent - DO signal	$EN1 = EN2 = V_{CCI}$; $V_I = 0 \text{ V (ISO774}$ $V_I = V_{CCI}$ (ISO7742-Q1 with F suffix)	EN1 = EN2 = V _{CCI} ; V _I = 0 V (ISO7742-Q1); V _I = V _{CCI} (ISO7742-Q1 with F suffix)			4	5.9	
	All 1 1 11 11 11	1 Mbps	I _{CC1} , I _{CC2}		2.9	4.3	
Supply current - AC signal	nal All channels switching with square wave clock input; C _L = 15 pF		I _{CC1} , I _{CC2}		3.6	5.1	
.,,	10 pi	100 Mbps	I _{CC1} , I _{CC2}		10.3	13	1

⁽¹⁾ $V_{CCI} = Input-side V_{CC}$

7.13 Electrical Characteristics—2.5-V Supply

 $V_{CC1} = V_{CC2} = 2.5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

001 002					
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
High-level output voltage	I _{OH} = -1 mA; see Figure 8-1	$V_{CCO}^{(1)} - 0.2$	2.45		V
Low-level output voltage	I _{OL} = 1 mA; see Figure 8-1		0.05	0.2	V
Rising input voltage threshold			0.6 × V _{CCI}	0.7 × V _{CCI}	V
Falling input voltage threshold		0.3 × V _{CCI}	0.4 × V _{CCI}		V
Input threshold voltage hysteresis		0.1 × V _{CCI}	0.2 × V _{CCI}		V
High-level input current	V _{IH} = V _{CCI} ⁽¹⁾ at INx or ENx			10	μA
Low-level input current	V _{IL} = 0 V at INx or ENx	-10			μA
Common-mode transient immunity	V _I = V _{CCI} or 0 V, V _{CM} = 1200 V; see Figure 8-4	85	100		kV/μs
	PARAMETER High-level output voltage Low-level output voltage Rising input voltage threshold Falling input voltage threshold Input threshold voltage hysteresis High-level input current Low-level input current Common-mode transient	PARAMETER TEST CONDITIONS High-level output voltage I _{OH} = -1 mA; see Figure 8-1 Low-level output voltage I _{OL} = 1 mA; see Figure 8-1 Rising input voltage threshold Falling input voltage threshold Input threshold voltage hysteresis High-level input current V _{IH} = V _{CCI} (1) at INx or ENx Low-level input current V _{IL} = 0 V at INx or ENx Common-mode transient V _{II} = V _{COI} or 0 V V _{COI} = 1200 V; see Figure 8-4	PARAMETER TEST CONDITIONS MIN High-level output voltage $I_{OH} = -1$ mA; see Figure 8-1 V_{CCO} (1) – 0.2 Low-level output voltage $I_{OL} = 1$ mA; see Figure 8-1 Rising input voltage threshold $0.3 \times V_{CCI}$ Input threshold voltage hysteresis $0.1 \times V_{CCI}$ High-level input current $V_{IH} = V_{CCI}$ (1) at INx or ENx Low-level input current $V_{IL} = 0$ V at INx or ENx Common-mode transient $V_{IR} = V_{CCI}$ or 0 V V V at = 1200 V; see Figure 8-4	PARAMETERTEST CONDITIONSMINTYPHigh-level output voltage $I_{OH} = -1$ mA; see Figure 8-1 $V_{CCO}^{(1)} = 0.2$ 2.45Low-level output voltage $I_{OL} = 1$ mA; see Figure 8-10.05Rising input voltage threshold $0.6 \times V_{CCI}$ $0.4 \times V_{CCI}$ Falling input voltage threshold $0.3 \times V_{CCI}$ $0.4 \times V_{CCI}$ Input threshold voltage hysteresis $0.1 \times V_{CCI}$ $0.2 \times V_{CCI}$ High-level input current $V_{IH} = V_{CCI}^{(1)}$ at INx or ENx -10 Low-level input current $V_{IL} = 0$ v at INx or ENx -10 Common-mode transient $V_{II} = V_{CCI}^{(1)}$ or $0.0 \times V_{CCI}^{(2)}$ see Figure 8-485	PARAMETERTEST CONDITIONSMINTYPMAXHigh-level output voltage $I_{OH} = -1$ mA; see Figure 8-1 $V_{CCO}^{-(1)} = 0.2$ 2.45Low-level output voltage $I_{OL} = 1$ mA; see Figure 8-1 0.05 0.2 Rising input voltage threshold $0.6 \times V_{CCI}$ $0.7 \times V_{CCI}$ Falling input voltage threshold $0.3 \times V_{CCI}$ $0.4 \times V_{CCI}$ Input threshold voltage hysteresis $0.1 \times V_{CCI}$ $0.2 \times V_{CCI}$ High-level input current $V_{IH} = V_{CCI}^{-(1)}$ at INx or ENx10Low-level input current $V_{IL} = 0$ val INx or ENx-10Common-mode transient $V_{IL} = V_{CCI}^{-(1)}$ or $0 \times V_{CCI} = 1200 \times 100 \times$

⁽¹⁾ V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} .

7.14 Supply Current Characteristics—2.5-V Supply

 $V_{CC1} = V_{CC2} = 2.5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted).

PARAMETER	TEST CONDITION	S	SUPPLY CURRENT	MIN	TYP	MAX	UNIT
ISO7740-Q1						•	
	EN2 = 0 V; V _I = V _{CC1} (ISO7740-Q1)		I _{CC1}		1.2	1.6	
Supply current - Disable	$V_I = 0 \text{ V (ISO7740-Q1 with F suffix)}$		I _{CC2}		0.3	0.5	
Supply current - Disable	EN2 = 0 V; V _I = 0 V (ISO7740-Q1);		I _{CC1}		5.5	7.8	
	$V_I = V_{CC1}$ (ISO7740-Q1 with F suffix	2)	I _{CC2}		0.3	0.5	
	EN2 = V _{CC2} ; V _I = V _{CC1} (ISO7740-Q1);		I _{CC1}		1.2	1.6	
Supply current - DC signal	$V_I = 0 \text{ V (ISO7740-Q1 with F suffix)}$		I _{CC2}		1.9	3.2	
Supply current - DC signal	EN2 = V_{CC2} ; V_I = 0 V (ISO7740-Q1); V_I = V_{CC1} (ISO7740-Q1 with F suffix)		I _{CC1}		5.4	7.8	mA
			I _{CC2}		2.2	3.6	ША
		1 Mbps	I _{CC1}		3.3	4.7	
		i Mbps	I _{CC2}		2.2	3.5	
Supply current - AC signal	All channels switching with square	10 Mbps	I _{CC1}		3.4	4.8	
Supply current - AC signal	wave clock input; C _L = 15 pF	TO Mbps	I _{CC2}		3.2	4.7	
		100 Mbno	I _{CC1}		3.2	5.4	
		100 Mbps	I _{CC2}		13	17	
ISO7741-Q1						,	
Supply current - Disable	EN1 = EN2 = 0 V; V _I = V _{CCI} (1) (ISO	7741-Q1);	I _{CC1}		1	1.5	
	$V_I = 0 \text{ V (ISO7741-Q1 with F suffix)}$	•	I _{CC2}		0.8	1.1	
	EN1 = EN2 = 0 V; V _I = 0 V (ISO774	1-Q1);	I _{CC1}		4.3	6.3	
	$V_I = V_{CCI}$ (ISO7741-Q1 with F suffix		I _{CC2}		1.8	2.7	
	EN1 = EN2 = V _{CCI} ; V _I = V _{CCI} (ISO77	741-Q1);	I _{CC1}		1.4	2.3	
O	$V_I = 0 \text{ V (ISO7741-Q1 with F suffix)}$		I _{CC2}		2	3	mA
Supply current - DC signal	EN1 = EN2 = V_{CCI} ; V_I = 0 V (ISO7741-Q1); V_I = V_{CCI} (ISO7741-Q1 with F suffix)		I _{CC1}		4.7	6.8	
			I _{CC2}		3.2	4.9	
			I _{CC1}		3.1	4.6	
		1 Mbps	I _{CC2}		2.7	4	
0 1 1 10 1	All channels switching with square		I _{CC1}		3.4	4.9	
Supply current - AC signal	wave clock input; C _L = 15 pF	10 Mbps	I _{CC2}		3.5	4.9	
		400 14	I _{CC1}		5.6	8.3	
		100 Mbps	I _{CC2}		10.8	13.8	
ISO7742-Q1							
Complete support Disable	EN1 = EN2 = 0 V; V _I = V _{CCI} (ISO774 V _I = 0 V (ISO7742-Q1 with F suffix)	12-Q1);	I _{CC1} , I _{CC2}		0.9	1.3	
Supply current - Disable	EN1 = EN2 = 0 V; V_I = 0 V (ISO774: V_I = V_{CCI} (ISO7742-Q1 with F suffix		I _{CC1} , I _{CC2}		3	4.6	
Supply current DO size -1	EN1 = EN2 = V_{CCI} ; $V_I = V_{CCI}$ (ISO77 $V_I = 0$ V (ISO7742-Q1 with F suffix)	'42-Q1);	I _{CC1} , I _{CC2}		1.7	2.7	mA
Supply current - DC signal	EN1 = EN2 = V_{CCI} ; V_I = 0 V (ISO774 V_I = V_{CCI} (ISO7742-Q1 with F suffix		I _{CC1} , I _{CC2}		4	5.9	
		1 Mbps	I _{CC1} , I _{CC2}		2.9	4.3	
Supply current - AC signal	All channels switching with square	10 Mbps	I _{CC1} , I _{CC2}		3.4	4.9	
	wave clock input; C _L = 15 pF		I _{CC1} , I _{CC2}		8.3	11.5	

⁽¹⁾ $V_{CCI} = Input-side V_{CC}$

7.15 Switching Characteristics—5-V Supply

V_{CC1} = V_{CC2} = 5 V ±10% (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 9.4	6	10.7	16	ns
PWD	Pulse width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	See Figure 8-1		0	4.9	ns
t _{sk(o)}	Channel-to-channel output skew time ⁽²⁾	Same-direction channels			4	ns
t _{sk(pp)}	Part-to-part skew time ⁽³⁾				4.4	ns
t _r	Output signal rise time	0 Firmer 0.4		2.4	3.9	ns
t _f	Output signal fall time	See Figure 8-1		2.4	3.9	ns
t _{PHZ}	Disable propagation delay, high-to-high impedance output			9	20	ns
t _{PLZ}	Disable propagation delay, low-to-high impedance output			9	20	ns
	Enable propagation delay, high impedance-to-high output for ISO774x-Q1			7	20	ns
t _{PZH}	Enable propagation delay, high impedance-to-high output for ISO774x-Q1 with F suffix	See Figure 8-2		3	8.5	μs
	Enable propagation delay, high impedance-to-low output for ISO774x-Q1			3	8.5	μs
t _{PZL}	Enable propagation delay, high impedance-to-low output for ISO774x-Q1 with F suffix			7	20	ns
t _{DO}	Default output delay time from input power loss	Measured from the time V _{CC} goes below 1.7 V. See Figure 8-4		0.1	0.3	μs
t _{ie}	Time interval error	2 ¹⁶ – 1 PRBS data at 100 Mbps		0.8		ns

- (1) Also known as pulse skew.
- (2) t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- (3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

7.16 Switching Characteristics—3.3-V Supply

 $V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 8-1	6	11	16	ns
PWD	Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH}	See Figure 6-1		0.1	5	ns
t _{sk(o)}	Channel-to-channel output skew time ⁽²⁾	Same-direction channels			4.1	ns
t _{sk(pp)}	Part-to-part skew time ⁽³⁾				4.5	ns
t _r	Output signal rise time	See Figure 8-1		1.3	3	ns
t _f	Output signal fall time	- See Figure 6-1		1.3	3	ns
t _{PHZ}	Disable propagation delay, high-to-high impedance output			17	30	ns
t _{PLZ}	Disable propagation delay, low-to-high impedance output			17	30	ns
	Enable propagation delay, high impedance-to-high output for ISO774x-Q1	See Figure 8-2		17	30	ns
t _{PZH}	Enable propagation delay, high impedance-to-high output for ISO774x-Q1 with F suffix			3.2	8.5	μs
	Enable propagation delay, high impedance-to-low output for ISO774x-Q1			3.2	8.5	μs
t _{PZL}	Enable propagation delay, high impedance-to-low output for ISO774x-Q1 with F suffix			17	30	ns
t _{DO}	Default output delay time from input power loss	Measured from the time V _{CC} goes below 1.7 V. See Figure 8-4		0.1	0.3	μs
t _{ie}	Time interval error	2 ¹⁶ – 1 PRBS data at 100 Mbps		0.9		ns

- (1) Also known as pulse skew.
- (2) t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- (3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

7.17 Switching Characteristics—2.5-V Supply

 $V_{CC1} = V_{CC2} = 2.5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 9.4	7.5	12	18.5	ns
PWD	Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH}	- See Figure 8-1		0.2	5.1	ns
t _{sk(o)}	Channel-to-channel output skew time ⁽²⁾	Same-direction Channels			4.1	ns
t _{sk(pp)}	Part-to-part skew time ⁽³⁾				4.6	ns
t _r	Output signal rise time	- See Figure 8-1		1	3.5	ns
t _f	Output signal fall time	- See Figure 6-1		1	3.5	ns
t _{PHZ}	Disable propagation delay, high-to-high impedance output			22	40	ns
t _{PLZ}	Disable propagation delay, low-to-high impedance output			22	40	ns
	Enable propagation delay, high impedance-to-high output for ISO774x-Q1			18	40	ns
t _{PZH}	Enable propagation delay, high impedance-to-high output for ISO774x-Q1 with F suffix	See Figure 8-2		3.3	8.5	μs
	Enable propagation delay, high impedance-to-low output for ISO774x-Q1			3.3	8.5	μs
t _{PZL}	Enable propagation delay, high impedance-to-low output for ISO774x-Q1 with F suffix			18	40	ns
t _{DO}	Default output delay time from input power loss	Measured from the time V _{CC} goes below 1.7 V. See Figure 8-4		0.1	0.3	μs
t _{ie}	Time interval error	2 ¹⁶ – 1 PRBS data at 100 Mbps		0.7		ns

⁽¹⁾ Also known as pulse skew.

⁽²⁾ t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

⁽³⁾ $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

7.18 Insulation Characteristics Curves

Figure 7-1. Thermal Derating Curve for Safety Limiting Current for DWW-16 Package

Figure 7-2. Thermal Derating Curve for Safety Limiting Current for DW-16 Package

Figure 7-3. Thermal Derating Curve for Safety Limiting Current for DBQ-16 Package

Figure 7-4. Thermal Derating Curve for Safety Limiting Power for DWW-16 Package

Figure 7-5. Thermal Derating Curve for Safety Limiting Power for DW-16 Package

Figure 7-6. Thermal Derating Curve for Safety Limiting Power for DBQ-16 Package

7.19 Typical Characteristics

8 Parameter Measurement Information

Copyright © 2016, Texas Instruments Incorporated

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3ns, $Z_O =$ 50 Ω . At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application.
- B. $C_1 = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 8-1. Switching Characteristics Test Circuit and Voltage Waveforms

- Copyright © 2016, Texas Instruments Incorporated
- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 10 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $t_C = 50$ Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 8-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform

- A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.
- B. Power Supply Ramp Rate = 10 mV/ns

Figure 8-3. Default Output Delay Time Test Circuit and Voltage Waveforms

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 8-4. Common-Mode Transient Immunity Test Circuit

9 Detailed Description

9.1 Overview

The ISO774x-Q1 family of devices an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. If the ENx pin is low then the output goes to high impedance. The ISO774x-Q1 devices also incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due to the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 9-1, shows a functional block diagram of a typical channel.

9.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

Figure 9-1. Conceptual Block Diagram of a Digital Capacitive Isolator

Figure 9-2 shows a conceptual detail of how the ON-OFF keying scheme works.

Figure 9-2. On-Off Keying (OOK) Based Modulation Scheme

9.3 Feature Description

Table 9-1 provides an overview of the device features.

Table 9-1. Device Features

PART NUMBER	CHANNEL DIRECTION	MAXIMUM DATA RATE	DEFAULT OUTPUT	PACKAGE	RATED ISOLATION(1)
ISO7740-Q1	4 Forward,	100 Mbps	High	DW-16	5000 V _{RMS} / 8000 V _{PK}
1307740-Q1	0 Reverse	100 Mbps	riigii	DBQ-16	3000 V _{RMS} / 4242 V _{PK}
ISO7740-Q1 with F	4 Forward,	100 Mbps	Low	DW-16	5000 V _{RMS} / 8000 V _{PK}
suffix	0 Reverse			DBQ-16	3000 V _{RMS} / 4242 V _{PK}
	3 Forward, 1 Reverse	100 Mbps		DWW-16	5700 V _{RMS} / 8000 V _{PK}
ISO7741-Q1			Mbps High	DW-16	5000 V _{RMS} / 8000 V _{PK}
				DBQ-16	3000 V _{RMS} / 4242 V _{PK}
		100 Mbps		DWW-16	5700 V _{RMS} / 8000 V _{PK}
ISO7741-Q1 with F suffix	3 Forward, 1 Reverse		Low	DW-16	5000 V _{RMS} / 8000 V _{PK}
Januar	1.1.0.00			DBQ-16	3000 V _{RMS} / 4242 V _{PK}
ISO7742-Q1	2 Forward,	100 Mbps	Lliab	DW-16	5000 V _{RMS} / 8000 V _{PK}
1307742-Q1	2 Reverse	100 Mbps	High	DBQ-16	3000 V _{RMS} / 4242 V _{PK}
ISO7742-Q1 with F	2 Forward,	400 Mb = =	Low	DW-16	5000 V _{RMS} / 8000 V _{PK}
suffix	2 Reverse	100 Mbps	LOW	DBQ-16	3000 V _{RMS} / 4242 V _{PK}

⁽¹⁾ See Section 7.7 for detailed isolation ratings.

9.3.1 Electromagnetic Compatibility (EMC) Considerations

Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO774x-Q1 family of devices incorporates many chip-level design improvements for overall system robustness. Some of these improvements include:

- Robust ESD protection cells for input and output signal pins and inter-chip bond pads.
- Low-resistance connectivity of ESD cells to supply and ground pins.
- Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.
- Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path.
- PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs.
- Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.

9.4 Device Functional Modes

Table 9-2 lists the functional modes for the ISO774x-Q1 devices.

Table 9-2. Function Table

14010 0 21 1 411041011 14010										
V _{CCI} (1)	V _{cco}	INPUT (INx) ⁽³⁾	OUTPUT ENABLE (ENx)	OUTPUT (OUTx)	COMMENTS					
PU	PU	Н	H or open	Н	Normal Operation:					
		L	H or open	L	A channel output assumes the logic state of its input.					
		Open	H or open	Default	Default mode: When INx is open, the corresponding channel output goes to its default logic state. Default is <i>High</i> for ISO774x-Q1 and <i>Low</i> for ISO774x-Q1 with F suffix.					
X	PU	X	L	Z	A low value of output enable causes the outputs to be high-impedance.					
PD	PU	х	H or open	Default	Default mode: When V_{CCI} is unpowered, a channel output assumes the logic state based on the selected default option. Default is \textit{High} for ISO774x-Q1 and \textit{Low} for ISO774x-Q1 with F suffix. When V_{CCI} transitions from unpowered to powered-up, a channel output assumes the logic state of the input. When V_{CCI} transitions from powered-up to unpowered, channel output assumes the selected default state.					
х	PD	Х	Х	Undetermined	When V _{CCO} is unpowered, a channel output is undetermined ⁽²⁾ . When V _{CCO} transitions from unpowered to powered-up, a channel output assumes the logic state of the input.					

⁽¹⁾ V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} ; PU = Powered up ($V_{CC} \ge 2.25$ V); PD = Powered down ($V_{CC} \le 1.7$ V); X = Irrelevant; H = High level; L = Low level; Z = High Impedance

⁽²⁾ The outputs are in undetermined state when 1.7 V < V_{CCI} , V_{CCO} < 2.25 V.

⁽³⁾ A strongly driven input signal can weakly power the floating V_{CC} through an internal protection diode and cause undetermined output.

9.4.1 Device I/O Schematics

Copyright © 2016, Texas Instruments Incorporated

Figure 9-3. Device I/O Schematics

10 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The ISO774x-Q1 devices are high-performance, quad-channel digital isolators. These devices come with enable pins on each side which can be used to put the respective outputs in high impedance for multi master driving applications and reduce power consumption. The ISO774x-Q1 devices use single-ended CMOS-logic switching technology. The voltage range is from 2.25 V to 5.5 V for both supplies, V_{CC1} and V_{CC2} . When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μ C or UART), and a data converter or a line transceiver, regardless of the interface type or standard.

10.2 Typical Application

Figure 10-1 shows the typical isolated CAN interface implementation.

Figure 10-1. Typical Isolated CAN Application Circuit

10.2.1 Design Requirements

To design with these devices, use the parameters listed in Table 10-1.

Table 10-1. Design Parameters

PARAMETER	VALUE		
Supply voltage, V _{CC1} and V _{CC2}	2.25 to 5.5 V		
Decoupling capacitor between V _{CC1} and GND1	0.1 μF		
Decoupling capacitor from V _{CC2} and GND2	0.1 μF		

10.2.2 Detailed Design Procedure

Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO774x-Q1 family of devices only require two external bypass capacitors to operate.

Figure 10-2. Typical ISO774x-Q1 Circuit Hook-up

The DWW package provides wider creepage and clearance without the need for two isolators in series or an extra isolated power supply, saving design cost and board space. For more details, please refer to the technical document *How to Meet the Higher Isolation Creepage & Clearance Needs in Automotive Applications*.

10.2.3 Application Curve

The following typical eye diagrams of the ISO774x-Q1 family of devices indicates low jitter and wide open eye at the maximum data rate of 100 Mbps.

10.2.3.1 Insulation Lifetime

Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown (TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal device and high voltage applied between the two sides; See Figure 10-6 for TDDB test setup. The insulation breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million (ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20% higher than the specified value.

Figure 10-7 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based on the TDDB data, the insulation withstand capability of DW-16 package is 1500 V_{RMS} with a lifetime of 135 years as illustrated in Figure 10-7. Similarly, the insulation withstand capability of DWW-16 package is 2000 V_{RMS} with a corresponding lifetime of 34 years. DBQ-16 package at 400 V_{RMS} working voltage has a much longer lifetime than both DW-16 and DWW-16 packages. Factors, such as package size, pollution degree, and material group can limit the working voltage of a component.

Figure 10-6. Test Setup for Insulation Lifetime Measurement

Figure 10-7. Insulation Lifetime Projection Data

11 Power Supply Recommendations

To help ensure reliable operation at data rates and supply voltages, a 0.1- μ F bypass capacitor is recommended at the input and output supply pins (V_{CC1} and V_{CC2}). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501-Q1 or SN6505B-Q1 . For such applications, detailed power supply design and transformer selection recommendations are available in SN6501-Q1 Transformer Driver for Isolated Power Supplies and SN6505x-Q1 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies data sheets .

12 Layout

12.1 Layout Guidelines

A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 12-1). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.

- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/inch².
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias.

If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

For detailed layout recommendations, refer to the *Digital Isolator Design Guide*.

12.1.1 PCB Material

For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit boards. This PCB is preferred over cheaper alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and self-extinguishing flammability-characteristics.

12.2 Layout Example

Figure 12-1. Layout Example Schematic

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

For related documentation, see the following:

- · Texas Instruments, Digital Isolator Design Guide
- Texas Instruments, Isolation Glossary
- Texas Instruments, How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems application report
- Texas Instruments, SN6501-Q1 Transformer Driver for Isolated Power Supplies data sheet
- Texas Instruments, SN6505x-Q1 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies data sheet
- Texas Instruments, TCAN1042-Q1 Automotive fault protected CAN transceiver with CAN FD data sheet
- Texas Instruments, TMS320F28035 Piccolo™ Microcontrollers data sheet
- Texas Instruments, TPS76333-Q1 Low-Power 150-mA Low-Dropout Linear Regulators data sheet

13.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 10-1. Related Liliks									
PARTS	PRODUCT FOLDER ORDER NOW		TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY				
ISO7740-Q1	Click here	Click here	Click here	Click here	Click here				
ISO7741-Q1	Click here	Click here	Click here	Click here	Click here				
ISO7742-Q1	Click here	Click here	Click here	Click here	Click here				

Table 13-1. Related Links

13.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

13.5 Trademarks

Piccolo[™] is a trademark of Texas Instruments.

TI E2E[™] is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.7 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7740FQDBQQ1	ACTIVE	SSOP	DBQ	16	75	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7740FQ	Samples
ISO7740FQDBQRQ1	ACTIVE	SSOP	DBQ	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7740FQ	Samples
ISO7740FQDWQ1	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7740FQ	Samples
ISO7740FQDWRQ1	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7740FQ	Samples
ISO7740QDBQQ1	ACTIVE	SSOP	DBQ	16	75	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7740Q	Samples
ISO7740QDBQRQ1	ACTIVE	SSOP	DBQ	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7740Q	Samples
ISO7740QDWQ1	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7740Q	Samples
ISO7740QDWRQ1	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7740Q	Samples
ISO7741FQDBQQ1	ACTIVE	SSOP	DBQ	16	75	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7741FQ	Samples
ISO7741FQDBQRQ1	ACTIVE	SSOP	DBQ	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7741FQ	Samples
ISO7741FQDWQ1	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7741FQ	Samples
ISO7741FQDWRQ1	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7741FQ	Samples
ISO7741FQDWWQ1	ACTIVE	SOIC	DWW	16	45	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7741FQ	Samples
ISO7741FQDWWRQ1	ACTIVE	SOIC	DWW	16	1000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7741FQ	Samples
ISO7741QDBQQ1	ACTIVE	SSOP	DBQ	16	75	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7741Q	Samples
ISO7741QDBQRQ1	ACTIVE	SSOP	DBQ	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7741Q	Samples
ISO7741QDWQ1	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7741Q	Samples
ISO7741QDWRQ1	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7741Q	Samples
ISO7741QDWWQ1	ACTIVE	SOIC	DWW	16	45	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7741Q	Samples
ISO7741QDWWRQ1	ACTIVE	SOIC	DWW	16	1000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7741Q	Samples

PACKAGE OPTION ADDENDUM

10-Dec-2020

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7742FQDBQQ1	ACTIVE	SSOP	DBQ	16	75	RoHS & Green	(6) NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7742FQ	Samples
ISO7742FQDBQRQ1	ACTIVE	SSOP	DBQ	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7742FQ	Sample
ISO7742FQDWQ1	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7742FQ	Sample
ISO7742FQDWRQ1	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7742FQ	Sample
ISO7742QDBQQ1	ACTIVE	SSOP	DBQ	16	75	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7742Q	Sample
ISO7742QDBQRQ1	ACTIVE	SSOP	DBQ	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	7742Q	Samples
ISO7742QDWQ1	ACTIVE	SOIC	DW	16	40	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7742Q	Sample
ISO7742QDWRQ1	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	ISO7742Q	Sample

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

10-Dec-2020

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ISO7740-Q1, ISO7741-Q1, ISO7742-Q1:

Catalog: ISO7740, ISO7741, ISO7742

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

www.ti.com 26-Aug-2022

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7740FQDBQRQ1	SSOP	DBQ	16	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
ISO7740FQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7740FQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7740QDBQRQ1	SSOP	DBQ	16	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
ISO7740QDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7740QDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7740QDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7741FQDBQRQ1	SSOP	DBQ	16	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
ISO7741FQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7741FQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7741FQDWWRQ1	SOIC	DWW	16	1000	330.0	24.4	18.0	10.0	3.0	20.0	24.0	Q1
ISO7741QDBQRQ1	SSOP	DBQ	16	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
ISO7741QDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7741QDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7741QDWWRQ1	SOIC	DWW	16	1000	330.0	24.4	18.0	10.0	3.0	20.0	24.0	Q1
ISO7742FQDBQRQ1	SSOP	DBQ	16	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Aug-2022

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7742FQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7742FQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7742QDBQRQ1	SSOP	DBQ	16	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
ISO7742QDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7742QDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

www.ti.com 26-Aug-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7740FQDBQRQ1	SSOP	DBQ	16	2500	350.0	350.0	43.0
ISO7740FQDWRQ1	SOIC	DW	16	2000	356.0	356.0	35.0
ISO7740FQDWRQ1	SOIC	DW	16	2000	356.0	356.0	35.0
ISO7740QDBQRQ1	SSOP	DBQ	16	2500	350.0	350.0	43.0
ISO7740QDWRQ1	SOIC	DW	16	2000	350.0	350.0	43.0
ISO7740QDWRQ1	SOIC	DW	16	2000	356.0	356.0	35.0
ISO7740QDWRQ1	SOIC	DW	16	2000	356.0	356.0	35.0
ISO7741FQDBQRQ1	SSOP	DBQ	16	2500	350.0	350.0	43.0
ISO7741FQDWRQ1	SOIC	DW	16	2000	356.0	356.0	35.0
ISO7741FQDWRQ1	SOIC	DW	16	2000	356.0	356.0	35.0
ISO7741FQDWWRQ1	SOIC	DWW	16	1000	350.0	350.0	43.0
ISO7741QDBQRQ1	SSOP	DBQ	16	2500	350.0	350.0	43.0
ISO7741QDWRQ1	SOIC	DW	16	2000	356.0	356.0	35.0
ISO7741QDWRQ1	SOIC	DW	16	2000	356.0	356.0	35.0
ISO7741QDWWRQ1	SOIC	DWW	16	1000	350.0	350.0	43.0
ISO7742FQDBQRQ1	SSOP	DBQ	16	2500	350.0	350.0	43.0
ISO7742FQDWRQ1	SOIC	DW	16	2000	350.0	350.0	43.0
ISO7742FQDWRQ1	SOIC	DW	16	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Aug-2022

ſ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
I	ISO7742QDBQRQ1	SSOP	DBQ	16	2500	350.0	350.0	43.0
I	ISO7742QDWRQ1	SOIC	DW	16	2000	367.0	367.0	38.0
Ī	ISO7742QDWRQ1	SOIC	DW	16	2000	367.0	367.0	38.0

www.ti.com 26-Aug-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
ISO7740FQDBQQ1	DBQ	SSOP	16	75	505.46	6.76	3810	4
ISO7740FQDWQ1	DW	SOIC	16	40	507	12.83	5080	6.6
ISO7740FQDWQ1	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7740QDBQQ1	DBQ	SSOP	16	75	505.46	6.76	3810	4
ISO7740QDWQ1	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7740QDWQ1	DW	SOIC	16	40	507	12.83	5080	6.6
ISO7741FQDBQQ1	DBQ	SSOP	16	75	505.46	6.76	3810	4
ISO7741FQDWQ1	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7741FQDWQ1	DW	SOIC	16	40	507	12.83	5080	6.6
ISO7741FQDWWQ1	DWW	SOIC	16	45	507	20	5000	9
ISO7741QDBQQ1	DBQ	SSOP	16	75	505.46	6.76	3810	4
ISO7741QDWQ1	DW	SOIC	16	40	507	12.83	5080	6.6
ISO7741QDWQ1	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7741QDWWQ1	DWW	SOIC	16	45	507	20	5000	9
ISO7742FQDBQQ1	DBQ	SSOP	16	75	505.46	6.76	3810	4
ISO7742FQDWQ1	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7742FQDWQ1	DW	SOIC	16	40	507	12.83	5080	6.6
ISO7742QDBQQ1	DBQ	SSOP	16	75	505.46	6.76	3810	4
ISO7742QDWQ1	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7742QDWQ1	DW	SOIC	16	40	507	12.83	5080	6.6

PLASTIC SMALL OUTLINE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 mm per side.
- 4. This dimension does not include interlead flash.

PLASTIC SMALL OUTLINE

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

7.5 x 10.3, 1.27 mm pitch

SMALL OUTLINE INTEGRATED CIRCUIT

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SHRINK SMALL-OUTLINE PACKAGE

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
- 4. This dimension does not include interlead flash.5. Reference JEDEC registration MO-137, variation AB.

SHRINK SMALL-OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SHRINK SMALL-OUTLINE PACKAGE

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated