Stonadie Second Order Logic 2) Syntax and penantics bancally the sam as for finite unde 9 = a(x)1 x < y1 x EX1 7 4 1 3 x . 41 -notion of valuation & V vol ~ E E W B) Coneguadence with we regular expressions Prop: L = 2" is regular iff L is definable in De) From automate to MSO Condering A = (Q, I, S, F) NBA, He formla Pa = 3 Xo, Xn. 2. Poutition (Xo, Xn. 2) N ∀x. finst (x) -> Vx€X. 1 Vx, y. suc(x,y) -Λ V Vx. Fy>x. y∈Xq defines the language L(A).

Si

B.) From Mso to automata inter as for finite roads (have valuation or second won. dhate) VII Temporal Logics holds in the real of finite words L') Syntax and semantics of Linea Tenjaral lopic Notario: if w E = do an ar as ..., then whi denotes le wound diait, ait (white)

(which is a little of the contraction) Linea Tenyand Logic vert ン、ト:= aly null xx lyllxx lyllxx ·wFXAifaw[=> · w = AUp if there exists j EN such Hat · w? = + · w[= > for every i < ; (if w = p, Hen w = Dup (j=0)) ex: 2= { a, b, c}: (arbre) U(an Xb) tells that the und admits an occumence of a directly followed by an occumence of b.

Vii

1) Energrondence mthe First - ander Logic to defined by an LTL famula Sa) From LTZ to FO For every & LTL, define of (x) to end that w = Pa(i) iff w = = > fnevery w = 5 " every i EN. a m a (x) λυμ m. ∃z>x. fp(z) ~ ∀x5y6z. fx(y) XX m, Jy. 4 (y), Yz. 25 y y 5 z MB: only three ranables are needed... Bz) From FO to LTL selform if it is of the slape IV ∃ yo < y < y < y < y < -1. quartifie 1 X = y R + only me 1 / (x)(y))-1 /y < y . (B. (y)) ~ (B. (y)) 1 /y 15 (y -1 < y < y; 1 /y > yn-1. Bn (y)

XXXXIII Manslation Pup: Any 3't founda (for the globally")
by an LTL found using U,X, and \$6 (for the globally") for every if N, white white / and white / and white / and white (G expressed in terms of U and X in exercise) Herce, the goal is the following lemma Frenma! Any FO & can be Kranslated to an JY Lemma 1: A conjunction of as FV finale is equivalent to an FV finale [] Lemma 2: Any Formula o equit to a conjunction of FV with at most two free variables Lemma 3: The negation of a FV formule with at most two fee variables is agravalent to a disjunction of FV formulae Then the FY-lemma can be proven by skruckmal induc-(orollary: FO[()] = FO3[(), the fragment of FO where only three variables x, y, z, are allerred.

IX