The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Programming languages are essential for software development. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. It is very difficult to determine what are the most popular modern programming languages. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Integrated development environments (IDEs) aim to integrate all such help. Integrated development environments (IDEs) aim to integrate all such help. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. There exist a lot of different approaches for each of those tasks. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. There are many approaches to the Software development process. Use of a static code analysis tool can help detect some possible problems. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Whatever the approach to development may be, the final program must satisfy some fundamental properties. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging).