Úloha č. 1

Snadno ukážeme, že T(A) je grupa. Z komutativnosti A je to pak triviálně normální podgrupa, tudíž můžeme definovat faktorovou grupu A/T(A). Z definice je neutrální prvek této grupy $e \cdot T(A) = T(A)$ pro e neutrální prvek A.

Předpokládejme, že pro nějaké $a \in A$ je $a \cdot T(A)$ konečného řádu. Potom musí platit pro nějaké přirozené k, n

$$(a \cdot T(A))^k = T(A) \implies (a^k) \cdot T(A) = T(A) \implies (\forall x \in T(A))(a^k \cdot x \in T(A)) \implies a^k \cdot e \in T(A) \implies a^k \in T(A) \implies (a^k)^n = e \implies a^{kn} = e \implies a \in T(A) \implies a \cdot T(A) = T(A),$$

kde poslední implikace plyne z uzavřenosti T(A). Z tohoto pak vyplývá, že jediný prvek v A/T(A) s konečným řádem je ten neutrální.

Úloha č. 2

Mějme prvočíslo p a přirozené k. Vezměme z faktorové grupy prvek $\frac{1}{p^k} + \mathbb{Z}$. Pro tento prvek platí

$$p^k \left(\frac{1}{p^k} + \mathbb{Z}\right) = p^k \frac{1}{p^k} + \mathbb{Z} = 1 + \mathbb{Z} = \mathbb{Z},$$

tudíž řád tohoto prvku je nejvýše p^k . Jelikož pro libovolné menší n není $\frac{n}{p^k}$ celé číslo, je jeho řád roven p^k .

Úloha č. 3

a)

Využijeme vlastností homomorfismu.

Uzavřenost

$$f_0(g_1)(x) = x \land f_0(g_2)(x) = x \implies f_0(g_1 \cdot g_2)(x) = (f_0(g_1) \circ f_0(g_2))(x) = x,$$

.

Neutrální prvek

Pro neutrální prvek $e \in G$ musí platit $f_0(e) = id$, tudíž e je stabilizátor x.

Inverzní prvek

Pokud $f_0(g)(x) = x$, pak $f_0(g^{-1})(x) = f_0^{-1}(g)(x) = x$.

b)

Nechť
$$h = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$
.

Stabilizátor translace

Hledáme množinu matic g takových, že $trans_g(h) = h \Leftrightarrow g \cdot h = h$.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot h = \begin{pmatrix} a & 2a + 2b \\ c & 2c + 2d \end{pmatrix} = h$$

$$a = 1$$

$$c = 0$$

$$2a + 2b = 2 \implies b = 0$$

$$2c + 2d = 2 \implies d = 1$$

z čehož vyplývá, že stabilizátorem hpři translaci je množina

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Orbita transpozice

Matice náležící orbitě h při transpozici jsou regulární matice vyjádřitelné jako

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot h = \begin{pmatrix} a & 2a + 2b \\ c & 2c + 2d \end{pmatrix}.$$

Když vezmeme matice tohoto tvaru pro všechna $a, b, c, d \in \mathbb{Z}_3$, zjistíme, že dostáváme celou $GL_2(\mathbb{Z}_3)$.