NASA * Technical Paper 2704

June 1987

Effects of Afterbody Boattail
Design and Empennage Arrangement
on Aeropropulsive Characteristics
of a Twin-Engine Fighter Model
at Transonic Speeds

Linda S. Bangert, Laurence D. Leavitt, and David E. Reubush

(NASA-TF-2704) EFFECTS OF AFTEREODY ECATTAIL DESIGN AND EMPENNAGE ARRANGEMENT ON AEROPROPULSIVE CHARACTERISTICS OF A TWIN-ENGINE FIGHTER MODEL AT TEANSONIC SPEEDS (NASA) 134 p Avail: NTIS HC H N87-21873

Unclas H1/02 0072706

NASA Technical Paper 2704

1987

Effects of Afterbody Boattail
Design and Empennage Arrangement
on Aeropropulsive Characteristics
of a Twin-Engine Fighter Model
at Transonic Speeds

Linda S. Bangert, Laurence D. Leavitt, and David E. Reubush

Langley Research Center Hampton, Virginia

Scientific and Technical Information Office

Summary

The effects of empennage arrangement and afterbody boattail design (upper/lower nozzle-flap boattail angle versus nozzle-sidewall boattail angle) of nonaxisymmetric nozzles on the aeropropulsive characteristics of a twin-engine fighter-type model have been determined in an investigation conducted in the Langley 16-Foot Transonic Tunnel. Three nonaxisymmetric and one twin axisymmetric convergentdivergent nozzle configurations were tested with three different tail arrangements: a two-tail V-shaped arrangement; a staggered, conventional three-tail arrangement; and a four-tail arrangement similar to that on the F-18. Two of the nonaxisymmetric nozzles were also vectorable. Tests were conducted at Mach numbers from 0.60 to 1.20 over an angle-ofattack range from -3° to 9° . Nozzle pressure ratio was varied from 1 (jet off) to approximately 12, depending on Mach number.

Results of this study indicate that at design nozzle pressure ratio, the medium-aspect-ratio nozzle (with equal boattail angles on the nozzle sidewalls and upper and lower flaps) had the lowest zero-angle-ofattack drag of the nonaxisymmetric nozzles for all tail configurations at subsonic Mach numbers. The drag levels of the twin axisymmetric nozzles were competitive with those of the medium-aspect-ratio nozzle at subsonic Mach numbers and clearly had the lowest drag at a Mach number of 1.20. Unfavorable tail interference effects were present at all test conditions. Tail interference drag increments increased with increasing subsonic Mach number, a result accounting for as much as 60 percent of the drag on the entire aft end at a Mach number of 0.90. The fourtail arrangement generally produced the most unfavorable interference, and the medium-aspect-ratio nozzle generally had the least unfavorable tail interference at subsonic Mach numbers.

Introduction

The mission requirements for the next generation of fighter airplanes may define a very versatile and agile vehicle capable of operation over a wide range of flight conditions and from short or bomb-damaged runways. Meeting these requirements may mean that the airplanes will have variable-geometry multifunction nozzles to provide high internal performance as well as thrust vectoring and reversing. Variable-geometry nozzles cause important aft-end parameters such as aft-end closure and local boat-tail angles to change continuously throughout the operating range of Mach number, angle of attack, and engine pressure ratio and thus further complicate the already complex flow field associated with

twin-engine afterbodies. Many studies have shown that large drag penalties can result from integration of the propulsion system into the airplanes because of adverse interactions originating from empennage surfaces, base areas, actuator fairings, and tail booms (refs. 1 to 5).

Considering the effect of the aforementioned requirements, when using nonaxisymmetric nozzles, throat aspect ratio (the ratio of throat width to throat height) is one of the important aft-end design variables. For a fixed nozzle throat area, nozzle exit area, and cross-sectional area of the fuselage nozzle connect station, variations in nozzle throat aspect ratio result in external nozzle boattail variations. For example, a nozzle with a low throat aspect ratio might dictate large sidewall boattail angles (relative to upper/lower nozzle-flap boattail angles) to fair the fuselage into the nozzle exit. Conversely, a nozzle with a high throat aspect ratio (with the combination of increased nozzle throat width and decreased height) dictates more shallow nozzle-sidewall boattail angles and steeper upper/lower nozzle-flap boattail angles. To date, little information is available concerning the effects of trading nozzle-sidewall and upper/lower nozzle-flap boattail angles on installed afterbody performance characteristics.

This paper presents the results of an investigation in the Langley 16-Foot Transonic Tunnel in which the nonaxisymmetric nozzle boattail design (upper/lower nozzle-flap boattail angle versus nozzlesidewall boattail angle) was systematically varied and compared with a twin axisymmetric nozzle configuration. Three nonaxisymmetric aft-end nozzle configurations were tested representing three different values of nozzle throat aspect ratio. low-aspect-ratio nozzle had sidewall boattail angles nearly twice the magnitude of the upper/lower nozzle-flap boattail angles. The nozzle configuration with medium throat aspect ratio had equal boattail angles on the nozzle sidewalls and upper/lower flaps. The high-aspect-ratio nozzle resulted in upper/lower nozzle-flap boattail angles approximately twice as large as the nozzle-sidewall boattail angles. Because aft-end aeropropulsive characteristics are often so dependent on configuration (refs. 6 to 8), the interference effects of three different empennage arrangements were assessed in conjunction with the aft-end closure variations. Tests were conducted on the twinengine propulsion model at Mach numbers from 0.60 to 1.20, angles of attack from -3° to 9° , and nozzle pressure ratios up to approximately 12.

Syn	nbols
-----	-------

Model forces and moments are referred to the stability axis system with the model moment reference center located 1.75 in. above the model centerline at fuselage station 36.06 in., which corresponds to $0.25\bar{c}$. All coefficients are nondimensionalized with respect to $q_{\infty}S$ or $q_{\infty}S\bar{c}$. A discussion of the data reduction procedure and definitions of the aerodynamic force and moment terms and the propulsion relationships used herein are presented in the appendix. The symbols in parentheses appear in the computer printout tables.

bols in pa	rentheses apr	pear in the computer printout			(eq. (113))
tables.		afterbody model cross-	$\Delta C_{D,in}$		increment in empen- nage interference drag coefficient on nozzle
		sectional area, in ²			(eq. (A12))
A_e		nozzle exit area, in 2	$\Delta C_{D,it}$		increment in empennage interference drag coef-
$A_{ m max}$		maximum cross-sectional area of model wing-fuselage combination,			ficient on entire aft end (eq. (A11))
4		73.64 in^2	C_L	(CL)	lift coefficient of entire aft end
$A_{mb,1}$		model cross-sectional area at FS 44.75 and FS 48.25, 49.14 in ²	$C_{L,\mathrm{aft}}$	(CLAFT)	lift coefficient of after- body (plus tails)
$A_{mb,2}$		model cross-sectional area	$C_{L,n}$	(CLNOZ)	lift coefficient of nozzle
		at FS 66.25, 38.78 in ² for axisymmetric nozzle and 38.87 in ² for nonaxisymmetric nozzles	$C_{L,t}$	(CLT)	total lift coefficient (including thrust component) of entire aft end, $C_{L,t} \equiv C_L$ at NPR = 1
AR		nozzle throat aspect ra-			(jet off)
		tio, Throat width/Throat height	C_m	(CM)	pitching-moment coeffi- cient of entire aft end
$A_{ m seal,1}$		cross-sectional area enclosed by seal strip at FS 44.75, 47.18 in ²	$C_{m,\mathrm{aft}}$	(CMAFT)	pitching-moment coeffi- cient of afterbody (plus tails)
$A_{ m seal,2}$		cross-sectional area enclosed by seal strip at FS 48.25, 47.34 in ²	$C_{m,n}$	(CMNOZ)	pitching-moment coeffi- cient of nozzle
$A_{ m seal,3}$		cross-sectional area enclosed by seal strip at FS 66.25, 35.81 in ² for axisymmetric nozzle and 35.16 in ² for nonaxisym-	$C_{m,t}$	(CMT)	total pitching-moment coefficient (including thrust component), $C_{m,t} \equiv C_m$ at NPR = 1 (jet off)
		metric nozzles	C_p		pressure coefficient, $(p-p_{\infty})/q_{\infty}$
A_t		nozzle throat area, in ²	$ar{c}$		wing mean geometric
C_D	(CD)	drag coefficient of entire aft end			chord, 14.47 in.
$C_{D,\mathrm{aft}}$	(CDAFT)	drag coefficient of after-	D		drag, lbf
_ ,	*	body (plus tails)	D_f		friction drag, lbf

 $C_{D,n}$

 $C_{D, \mathrm{tails}}$

 $C_{(D-F)}$

 $\Delta C_{D,ia}$

(CDNOZ)

(C(D-F))

drag coefficient of nozzle

drag-minus-thrust coeffi-

cient, $C_{(D-F)} \equiv C_D$ at

NPR = 1 (jet off)

(eq. (A13))

increment in empen-

nage interference drag

coefficient on afterbody

drag coefficient of tails

F_A	axial force of entire aft end, lbf	R	gas constant, 53.364 ft-lb/lb- $^{\circ}$ R for air
$F_{A,\mathrm{Mbal}}$	axial force measured by main balance, lbf	S	wing reference area, 664.4 in ²
$F_{A,\mathrm{mom}}$	axial-force momentum tare due to bellows, lbf	$T_{t,j}$	jet total temperature, °R
$F_{A,\mathrm{Sbal}}$	axial force measured by afterbody shell balance,	w_i	ideal weight-flow rate, lbf/sec
	lbf	w_p	measured weight-flow rate, lbf/sec
$F_{ m aft}$	axial force of afterbody (plus tails), lbf	x	axial distance from FS 48.25, in.
F_{i}	ideal isentropic gross thrust (eq. (A3)), lbf	α (ALPHA)	angle of attack, deg
F_j	thrust along body axis, lbf	eta_c	nozzle boattail chord angle (see fig. 4(a)), deg
F_N	measured normal force, lbf	eta_t	nozzle boattail terminal angle (see fig. 4(a)), deg
F_r	resultant gross thrust, $\sqrt{F_N^2 + F_A^2}$, lbf	γ	ratio of specific heats, 1.3997 for air
$l_{ m aft}$	afterbody length, 23.45 in.	δ	measured resultant thrust vector angle, $\tan^{-1}(F_N/F_A)$, deg
g	gravitational constant, 32.174 ft/sec^2	δ_v	design thrust vector angle, measured from
M (MACH)	free-stream Mach number		horizontal reference line,
NPR	nozzle pressure ratio, $p_{t,j}/p_{\infty}$		positive down, deg
p	$Pt, J/P\infty$ local static pressure, psi	ρ	divergent flap angle (see fig. $(4(a))$, deg
$ar{p}_{es,1}$	average static pres-	Subscripts:	
1 00,1	sure at external seal at	l	lower
=	FS 44.75, psi	side	nozzle sidewall
$ar{p}_{es,2}$	average static pressure at external seal at FS 48.25,	u	upper
	psi	Abbreviations:	
$ar{p}_{es,3}$	average static pressure at	AXI	axisymmetric
	external seal at FS 66.25, psi	BL	buttock line, in.
$ar{p}_i$	average internal static pressure, psi	FS	fuselage station (axial location described by distance from model
$p_{t,j}$	average jet total pressure, psi		nose), in.
m	-	HI	high aspect ratio
p_{∞}	free-stream static pres- sure, psi	LO	low aspect ratio
q_{∞}	free-stream dynamic	MED	medium aspect ratio
	pressure, psi	WL	waterline, in.

Apparatus and Procedure

Facility

This investigation was conducted in the Langley 16-Foot Transonic Tunnel, a continuous-flow, single-return, atmospheric wind tunnel with a slotted octagonal test section and continuous air exchange. The wind tunnel has a continuously variable air-speed up to a Mach number of 1.30 with test-section plenum suction used for speeds above a Mach number of 1.05. A complete description of the facility and operation characteristics can be found in reference 9.

Model and Support System

Details of the generic, air-powered, twin-engine fighter afterbody model and wingtip support system used in this investigation are presented in figure 1. Photographs of the model and support system installed in the Langley 16-Foot Transonic Tunnel are shown in figure 2. Sketches of the afterbody external geometry are presented in figure 3. Sketches of the nozzles and tails are presented in figures 4 and 5, respectively.

The wingtip support system shown in figure 1 consisted of three major portions: the twin support booms, the forebody (nose), and the wingcenterbody combination. These pieces made up the nonmetric portion (that portion of the model not mounted on the force balance) of the twin-engine fighter model. The fuselage centerbody was essentially rectangular in cross section and had a constant width and height of 10.00 in. and 5.00 in., respectively. The maximum cross-sectional area of the fuselage centerbody was 49.14 in². The support system forebody (nose) was typical of a powered model in that the inlets were faired over. For this test the wings were mounted in a "high-wing" position (1.75 in. above the model centerline), an arrangement which is typical of many current fighter designs. The support system wing had a 45° leading-edge sweep, a taper ratio of 0.43, an aspect ratio of 2.4, and a cranked trailing edge (fig. 1(c)). The NACA 64-series airfoil had a thickness ratio of 0.067 near the wing root to provide a realistic wake on the afterbody. However, from BL 11.00 outboard to the support booms, the wing thickness ratio increased from 0.077 to 0.10 to provide adequate structural support for the model and to permit transfer of compressed air from the booms to the model propulsion system.

The metric portion of the model (aft of FS 44.75) was mounted on the main balance and consisted of the internal propulsion system, afterbody, nozzles, and tails (when installed). The afterbody shell from FS 48.25 to FS 66.25 and tails (when installed) were

attached to an afterbody balance, which was in turn attached to the main balance. The main balance was grounded to the nonmetric wing-centerbody section. The nozzles were attached to the main force balance through the propulsion system piping. Three clearance gaps (metric breaks) were provided between the nonmetric and individual metric portions (afterbody and nozzles) of the model at FS 44.75, FS 48.25, and FS 66.25 to prevent fouling of the components upon each other. A flexible plastic strip inserted into circumferentially machined grooves in each component impeded flow into or out of the internal model cavity.

In this report, the section of the model aft of FS 48.25 is referred to as the entire aft end (which includes afterbody, nozzles, and tails, when installed). The section of the model from FS 48.25 to FS 66.25 is referred to as the afterbody, and the section aft of FS 66.25 is considered the nozzles. A skin-friction drag adjustment to the axial force measured by the main balance was made for the constant cross-sectional area segment between FS 44.75 and FS 48.25.

The afterbody had a constant cross-sectional area between FS 48.25 and FS 61.30. The external contours of the afterbody-nozzle combination aft of FS 61.30 are provided in figure 3(a). Cross-sectional area distributions for the axisymmetric and nonaxisymmetric nozzle afterbodies are shown in figure 3(b) and are nearly identical for all configurations.

Sketches of the nozzle internal geometry are provided in figure 4. All nozzle configurations represented dry (maximum nonaugmented) power settings of convergent-divergent designs and had a nominal expansion ratio (ratio of exit area to throat area) of 1.4. The three nonaxisymmetric nozzles represented three different nozzle throat aspect ratios (ratio of throat width to throat height), resulting in three different nozzle boattail designs (boattail angle on the upper/lower nozzle flaps versus the boattail angle on the nozzle sidewalls). The low-aspect-ratio (LO) nozzle (fig. 4(a)), which had a throat aspect ratio of 3.5, had an upper/lower nozzle-flap boattail chord angle $(\beta_{c,u/l})$ approximately one-half the magnitude of the nozzle-sidewall boattail chord angle $(\beta_{c,\text{side}})$. The medium-aspect ratio (MED) nozzle (AR = 5.5) had equal boattail chord angles on the upper/lower nozzle flaps and nozzle sidewalls (fig. 4(b)). The high-aspect-ratio (HI) nozzle (AR = 7.5) had an upper/lower nozzle-flap boattail chord angle that was twice the size of the boattail chord angle on the nozzle sidewalls (fig. 4(c)).

Although the nonaxisymmetric afterbody-nozzle models tested represented a twin-engine configuration, exhaust flow from the two individual tail pipes

was exhausted through a common nonaxisymmetric nozzle. In addition to forward mode operation ($\delta_v=0^\circ$), the medium- and high-aspect-ratio nozzles had the capability for thrust vectoring in the pitch direction. The upper/lower nozzle divergent flaps were rotated about a pivot at the nozzle throat to a setting of $\delta_v=20^\circ$ for the medium-aspect-ratio nozzle and to settings of $\delta_v=10^\circ$ and 20° for the high-aspect-ratio nozzle.

The twin axisymmetric nozzles investigated are shown in figure 4(d). As seen, the nozzle external shape is conical over the last 3.15 in. and has an external boattail chord angle equal to 10.0° . Details of the nozzle interfairing region are provided in the table included in figure 4(d).

The afterbody had provisions for mounting horizontal and vertical tails in three different arrangements (fig. 5): a two-tail V-shaped arrangement (twin vertical tails only with a 30° outward cant angle), a staggered, conventional three-tail arrangement, and a four-tail arrangement (the two-tail V-shaped configuration plus horizontal tails). No attempt was made to optimize these tail configurations for low drag, and the axial position of the tails was not a variable in this investigation. Descriptions of the individual tails are provided in figures 5(b) and 5(c). The single and twin vertical tail planforms were identical. Individual root fairings (fillers) contoured the tails to the various nozzles, with clearance gaps provided between the nozzles and horizontal tails in order to prevent fouling between the main and afterbody balances.

Twin-Jet Propulsion System

The twin-jet propulsion system is shown in figure 1. An external high-pressure air system provides a continuous flow of clean, dry air at a controlled temperature of about 70°F at the nozzles. This high-pressure air is brought into the wind-tunnel main support strut where it is divided into two separate flows and passed through remotely operated flow-control valves. These valves are used to balance the total pressure in each nozzle.

The divided compressed airflows are piped through the wingtip support booms, through the wings, and into the flow-transfer bellows assemblies (fig. 1(a)). The air in each supply pipe is discharged perpendicularly to the model axis through eight sonic nozzles equally spaced around the supply pipe. This method is designed to eliminate any transfer of axial momentum as the air is passed from the nonmetric to the metric portion of the model. Two flexible metal bellows are used as seals and serve to compensate for the axial forces caused by pressurization (fig. 6). The cavity between the supply pipe and bellows is vented

to the model internal pressure. The divided airflow is then passed through the tail pipes into the transition sections and then into the exhaust nozzles. In the nonaxisymmetric nozzle configurations, a splitter fairing helped transition the airflow from the two instrumentation sections to the single exhaust nozzle.

Instrumentation

Forces and moments on the metric portions of the model were measured by two six-component straingauge balances. The main balance measured forces and moments resulting from the nozzle gross thrust and the external flow field over the model aft of FS 44.75. The afterbody balance measured forces and moments resulting from the external flow field over the afterbody and empennage surfaces from FS 48.25 to FS 66.25. This tandem balance arrangement allows the separation of model component forces for data analysis.

Five external seal static pressures were measured in each of the seal gaps at the first two metric breaks (FS 44.75 and FS 48.25), where the orifices were spaced about the right side of the model perimeter. An additional six orifices, positioned about the model perimeter, measured the seal gap pressures at the third metric break (FS 66.25). At each of the breaks, the orifices were located on the upstream body. In addition to these external pressures, two internal pressures were measured at each metric seal. These pressure measurements were then used to correct measured axial force and pitching moment for pressure-area tares as discussed in the appendix.

A limited number of static-pressure orifices were located on the afterbody and nozzle boattails. Results from these static-pressure orifices (because of the limited number) were used primarily as a diagnostic tool and as supporting information to the balance force and moment measurements; hence, exact orifice locations are not defined herein. However, whenever static-pressure data are plotted, the figures contain sketches showing relative orifice locations.

A critical-flow multiple venturi system was used to determine weight-flow rates for the nozzles and is described in detail in reference 10. Instrumentation in each nozzle consisted of a stagnation-temperature probe and a total-pressure rake. Each rake contained five total-pressure probes (fig. 1(b)).

All pressures were measured with individual pressure transducers. Data obtained during each tunnel run were recorded on magnetic tape and were reduced with standard data reduction procedures. For each data point, 50 samples of data were recorded over a period of 5 sec and were averaged.

Tests

This investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.60 to 1.20 and at angles of attack from -3° to 9° . Nozzle pressure ratio was varied from 1 (jet off) to approximately 12, depending on Mach number. The basic data were obtained by varying angle of attack at nozzle pressure ratios of 1 (jet off) and 5.6 (design pressure ratio) and varying nozzle pressure ratio at zero angle of attack. This investigation was conducted with different nozzles and empennage arrangements. Reynolds number based on the wing mean geometric chord varied from 4.4×10^6 to 5.28×10^6 .

All tests were conducted with 0.10-in-wide boundary-layer transition strips consisting of No. 120 silicon carbide grit sparsely distributed in a thin film of lacquer. These strips were located 1.0 in. from the tip of the forebody nose and on both upper and lower surfaces of the wings and empennage from 5 percent of the root chord to 10 percent of the tip chord.

Presentation of Results

The results of this investigation are presented in both tabular and plotted form. Table 1 is an index to the basic data presented in tables 2 to 24. The computer symbols appearing in these tables are defined in the section "Symbols" with their corresponding mathematical symbols that are described in the appendix. Note that NPR < 1.0 for jet-off data at M=1.20 since total pressures measured in the nozzle cavity are reduced by flow expanding over the nozzle boattails. Plotted basic and summary data for selected conditions are presented in figures 7 to 24 as follows:

Figure
Nozzle static internal performance 7
Basic data:
Variation of aft-end aerodynamics characteristics with α at NPR = 1 (jet off) and NPR = 5.6 for— Tails off, variable nozzle configuration,
$\delta_v = 0^{\circ} \dots \dots$
AXI nozzle, variable tail configuration 9
LO nozzle, variable tail configuration 10
MED nozzle, $\delta_v = 0^{\circ}$, variable tail
configuration
HI nozzle, $\delta_v = 0^{\circ}$, variable tail
configuration
HI nozzle, $\delta_v = 10^{\circ}$, variable tail
configuration
HI nozzle, tails off, variable δ_v

Variation of aft-end aerodynamic characteristics at $\alpha=0^\circ$ with NPR for—	
AXI nozzle, variable tail configuration	15
LO nozzle, variable tail configuration	16
MED nozzle, $\delta_v = 0^{\circ}$, variable tail	
configuration	17
HI nozzle, $\delta_v = 0^{\circ}$, variable tail	4.0
configuration	18
HI nozzle, $\delta_v = 10^{\circ}$, variable tail	10
configuration	19
configuration $\dots \dots \dots \dots$	20
Static pressures on nozzle upper and lower flaps,	20
HI nozzle, tails off, $M = 0.60$, $\alpha = 0^{\circ}$	21
Summary data:	
Aft-end and nozzle drag, variable nozzle-tail	
combination, $\alpha = 0^{\circ}$, NPR = 5.6,	
$\delta_v = 0^{\circ}$	22
Variation of tail interference drag	
increments with NPR, $\alpha = 0^{\circ}$, variable tail	20
arrangement	23
(a) AXI nozzle	
(b) LO nozzle	
(c) MED nozzle, $\delta_v = 0^{\circ}$	
(d) HI nozzle, $\delta_v = 0^{\circ}$	
Summary of tail interference drag increments,	
$\alpha = 0^{\circ}$, NPR = 5.6, variable nozzle-tail	
combination, $\delta_v = 0^{\circ}$	24

Discussion

Nozzle Static Internal Performance

Nozzle internal thrust ratio F_A/F_i , resultant thrust ratio F_r/F_i , discharge coefficient w_p/w_i , and resultant thrust vector angle δ are presented in figure 7 as a function of NPR. Figure 7(a) compares the performance of the unvectored ($\delta_v = 0^{\circ}$) nozzles, and figures 7(b) and 7(c) show the effect of design thrust vector angle on internal performance for the medium-aspect-ratio (MED) and high-aspectratio (HI) nozzles, respectively. Note that the design NPR of 5.6 was not reached at static conditions.

As seen in figure 7(a), the four unvectored nozzles had levels of discharge coefficient, thrust ratio, and resultant thrust ratio all within about 1 percent of each other. As expected (see ref. 11), discharge coefficient decreased slightly with increasing nozzle aspect ratio. This effect is believed to result from a higher scrubbing drag due to the increased throat perimeter (surface area) as the throat aspect ratio increased.

As expected, at NPR > 3.0 the resultant thrust vector angle was small (less than 1°) and nearly

independent of NPR, although fairly large angles (up to 6.3°) were measured at NPR = 2.0. This phenomenon has been observed before (see ref. 12) and is probably caused by asymmetric internal flow separation.

For the MED nozzle (fig. 7(b)), the measured resultant thrust vector angle exceeded the design thrust vector angle of 20° only at NPR = 2.0, with δ decreasing below 20° with increasing NPR. Vectoring the nozzle also incurred a 2-percent loss in discharge coefficient, a loss noted previously on similar nozzle configurations (ref. 13) that is caused by changes in the location and physical geometry of the nozzle throat. As shown in figure 7(c) the HI nozzle vectoring configurations provided slightly more flow turning than the MED nozzle. Values of resultant thrust vector angle δ were generally within 2° of the geometric vector angle δ_v at values of NPR near the design NPR (5.6) for all configurations. The $\delta_v = 10^{\circ}$ configuration provided no discharge coefficient penalty, whereas the $\delta_v = 20^{\circ}$ configurations had a 2-percent penalty (figs. 7(b) and 7(c)) relative to the unvectored nozzle cases. None of the vectored configurations experienced significant losses in resultant thrust ratio (less than 1 percent compared with the unvectored nozzles), indicating that the majority of the exhaust flow turning occurred subsonically where turning losses are small (ref. 13).

Basic Data

The basic aeropropulsive data obtained during this investigation are presented in figures 8 to 20 for the various configurations tested. been removed from these data with the use of procedures outlined in the appendix; hence the results represent aerodynamic and/or thrust-induced aerodynamic characteristics of the entire aft end. Two types of data presentation are made to illustrate the effects of nozzle pressure ratio and angle of attack. First, the variation of aft-end aerodynamic lift, drag, and pitching-moment coefficients with angle of attack is presented in figures 8 to 14 at NPR = 1 (jet off) and 5.6 (design pressure ratio). Second, the variation of aft-end, afterbody, and nozzle aerodynamic drag coefficients with nozzle pressure ratio at $\alpha = 0^{\circ}$ is presented in figures 15 to 20. Note that all basic data, including total (thrust included) and thrustremoved coefficients, are presented in tables 2 to 24.

Figures 8 to 14 present aft-end aerodynamic characteristics at nozzle pressure ratios of 1 and 5.6 (design pressure ratio). These data show that NPR effects on lift and pitching-moment coefficients are usually negligible; only drag coefficient is affected by jet operation. The variation of aft-end lift coefficient

with angle of attack is generally nonlinear. This result is typical for partially metric, afterbody propulsion model data (e.g., see refs. 8 and 14) and is due to the changing wing downwash characteristics on the afterbody and empennage in the transonic speed range. Figure 8 shows that the tails-off, unvectored nozzle configurations have almost identical aerodynamic characteristics, which are nearly independent of angle of attack, for subsonic Mach numbers. At M = 1.20 and NPR = 5.6, the AXI nozzle clearly has lower drag than the nonaxisymmetric nozzles throughout the angle-of-attack range. Figures 9 to 13 show that for positive angles of attack, increasing the number of tails generally increases the aft-end lift coefficient at subsonic Mach numbers, and the minimum aft-end drag in all cases. Zero pitching-moment coefficient generally occurs at or near $C_L = 0$, regardless of tail configuration for all unvectored nozzle configurations.

The effects of thrust vectoring on the tails-off, aft-end aerodynamic characteristics of the HI nozzle configuration are presented in figure 14. As expected (see ref. 15), thrust vectoring increases lift at all Mach numbers. Examination of the jet-off lift coefficient increments indicates that a portion of the lift increase associated with vectoring the nozzle is produced by deflection of the vector flap into the freestream flow. This jet-off lift increment varies with both Mach number and angle of attack, accounting for up to approximately 80 percent of the total lift increment due to thrust vectoring. Also, as expected, positive vector angles produced a nose-down pitching moment.

The variation of aft-end drag coefficient with NPR is shown in figures 15 to 20. As will be discussed in the appendix (eq. (A8)), aft-end drag is the sum of afterbody drag and nozzle drag. Generally, the variation of aft-end drag with nozzle pressure ratio results from thrust-induced effects occurring on the nozzles rather than on the afterbody. In fact, afterbody drag coefficient $C_{D,\mathrm{aft}}$ is nearly independent of NPR, indicating that either the pressure variations resulting from NPR changes do not feed forward onto the afterbody or that the aft-facing area on the afterbody is so small (because of the small amount of afterbody closure) that any NPR-induced pressure changes occurring on these surfaces produce very little change in drag.

The variations of aft-end drag (and corresponding nozzle drag) generally follow expected trends noted in references 7 and 14 for the unvectored configurations. Aft-end drag for the unvectored nozzles appears to decrease with initial jet operation (NPR between 1 and 2). During this study no data were taken in this range of nozzle pressure ratio (between 1

and 2); however, results from previous studies (refs. 7) and 14) noted that a drag minimum often occurred. When the jet is not operating, external flow must expand over the nozzle boattail to fill in the large base region behind the nozzle. This expansion acts to lower pressures on the nozzle boattail and thus causes increased drag on the nozzle. Upon initial operation of the jet, this expansion of the external flow is reduced, thus increasing boattail pressures and ultimately reducing drag. Further increases in NPR from approximately 2.0 to the design NPR (in this case, 5.6) result in some external flow being entrained by the jet-exhaust flow. This entrainment accelerates the external flow around the nozzle boattails, thus reducing boattail pressures and again increasing drag. Once the design NPR is reached, nozzle internal flow becomes underexpanded and the flow must expand externally. The jet plume begins to enlarge, thus providing some blockage of the external flow in the vicinity of the nozzle exit. Because this plume blockage then decelerates the external flow, nozzle boattail pressures are increased and drag is decreased.

Exceptions to these general aft-end drag/NPR trends occurred at subsonic speeds for both the medium- (fig. 17) and high-aspect-ratio nozzles (figs. 18 and 19). The largest differences occurred on the HI nozzle vectored configurations where an additional (and unexpected) decrease and increase in drag occurred at values of NPR between 2 and 4. Reasons for the deviation are believed to result from the fact that at NPR = 2 the exhaust flow was significantly overturned as noted in the discussion of nozzle static performance. As a result, upper nozzle boattail pressures, as shown in figure 21(a), decreased and lower nozzle boattail pressures increased. Since the lower vectored nozzle flap had little axial projected area relative to that of the upper flap, it is assumed that the increased drag on the upper flap dominated the overall nozzle drag trends. As NPR increased to NPR > 3.0, flow overturning decreased and resultant thrust vector angle levels generally became nearly independent of NPR; this resulted in the more conventional aft-end drag/NPR relationships discussed previously.

Variations of aft-end drag with NPR for the unvectored MED and HI nozzle configurations (figs. 17 and 18) also generally deviate from the expected trends at subsonic speeds. Again the NPR = 2.0 point is believed to be the exception. This time, however, exhaust flow was being turned upward and resultant thrust vector angles of -5° and -6.3° were measured even though $\delta_v = 0^{\circ}$. This upward-deflection exhaust flow appears to provide some blockage of the free-stream flow on the external upper nozzle surfaces (thus increasing nozzle boattail

pressures as shown in fig. 21(b)). Conversely, the external flow on the lower nozzle-flap boattail appeared to accelerate (thus reducing lower flap boattail pressures). The net result is believed to be an overall increase in aft-end drag at NPR = 2 (relative to the aft-end drag level where $\delta = 0^{\circ}$).

In general, nozzle drag was only a small contributor to aft-end drag at subsonic speeds. In fact, the unvectored nozzle configurations (the MED and HI nozzles, especially) often had negative drag coefficients, a result indicating that favorable positive pressures on the nozzle boattails are acting to reduce aft-end drag. Nozzle drag at supersonic speeds was always positive and generally accounted for between 40 and 70 percent of the aft-end drag, and afterbody drag accounted for the remainder.

The addition of empennage surfaces resulted in increased aft-end drag, as expected from reference 14. Drag increased as the number of tails increased. Most of this drag increase was measured on the afterbody, although tails often had a significant effect on nozzle drag as well.

Figure 22 summarizes the data presented in figures 15 to 18 at the design nozzle pressure ratio of 5.6. Note that this nozzle pressure ratio is a realistic engine operating condition only at M=0.90. At subsonic Mach numbers the MED nozzle, with equal and moderate boattail angles ($\beta_c=13.5^{\circ}$), provided the lowest drag of all nonaxisymmetric nozzle configurations and was competitive with, or better than, the twin axisymmetric nozzles with smaller boattail angles ($\beta_c=10^{\circ}$). This effect was true regardless of empennage arrangement. As noted previously, nozzle drag was consistently lower on the MED nozzle than on either the LO or HI nozzles.

At supersonic speeds the AXI nozzles clearly provided the lowest drag of all nozzle configurations while the HI nozzle generally had the highest drag. Even though the area distribution for all nozzle configurations was nearly identical, the smaller boattail angles associated with the axisymmetric nozzles apparently provided more favorable pressures on the nozzles and perhaps even on the interfairing region at supersonic speeds. In all cases the MED nozzle had the lowest nozzle drag of the nonaxisymmetric nozzles (but it often had higher afterbody drag) so that differences in C_D were generally small (within 0.0013).

Effect of Tail Configuration

The effects of nozzle pressure ratio on individual tail interference drag increments at $\alpha=0^{\circ}$ are presented in figure 23 for each unvectored configuration investigated. These results are summarized in figure 24 at design pressure ratio (NPR = 5.6). Tail

interference increments are that portion of the complete drag resulting from tail-induced interference effects (tails-on drag versus tails-off drag). These tail interference increments are expressed as the tail-induced drag on the entire aft end $(\Delta C_{D,it})$, on the afterbody $(\Delta C_{D,ia})$, and on the nozzle $(\Delta C_{D,in})$. A more detailed description of these measurements and how they are computed appears in the appendix. A negative tail interference increment indicates that the interference is favorable (tails-on drag less than tails-off drag). It should be noted that no attempt was made to optimize these tail configurations for low drag.

Tail interference effects (fig. 24) are present at all test conditions, with the tail interference drag increments increasing in magnitude with increasing subsonic Mach number. Tail interference drag on the entire aft end and on the afterbody is generally unfavorable. Tail interference drag increments on the nozzles are favorable at several conditions; however, they do not necessarily correspond to conditions discussed previously where nozzle drag was negative. The largest tail interference drag increments on the aft end and afterbody occur, as expected, at M = 0.90 where tail interference drag can account for almost 60 percent of the drag on the entire aft end. At subsonic Mach numbers, tail interference drag increments $\Delta C_{D,it}$ on the aft end were generally smaller for the MED nozzle than for any other nozzle configuration. However, as might be expected based on the previous discussions of aft-end drag, values of $\Delta C_{D,it}$ at M=1.20 were lower for the axisymmetric nozzle configurations. The four-tail empennage arrangement provided the largest tail interference drag increment, independent of nozzle design.

Conclusions

An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of nozzle boattail design and empennage arrangement on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. Three nonaxisymmetric and one twin axisymmetric covergentdivergent nozzles were tested with three different tail arrangements: a two-tail V-shaped arrangement; a staggered, conventional three-tail arrangement; and a four-tail arrangement similar to that on the F-18. Tests were conducted at Mach numbers from 0.60 to 1.20 over an angle-of-attack range from -3° to 9° . Nozzle pressure ratio was varied from 1 (jet off) to approximately 12, depending on Mach number. An analysis of the results of this investigation indicated the following conclusions:

- 1. All four unvectored nozzles had similar internal static performance. Thrust vectoring was accomplished with no significant losses of internal static performance when compared with the unvectored nozzles.
- 2. At an angle of attack of 0° and subsonic Mach numbers, the medium-aspect-ratio nozzle (with equal boattail angles on the nozzle sidewalls and upper and lower flaps) had the lowest drag of any nonaxisymmetric nozzle configuration. The drag levels of the twin axisymmetric nozzle were competitive with those of the medium-aspect-ratio nozzle at subsonic Mach numbers and were clearly lower than those of the nonaxisymmetric nozzles at a Mach number of 1.20.
- 3. Unfavorable tail interference effects were present at all test conditions. Tail interference drag increments increased with increasing subsonic Mach number.
- 4. At a Mach number of 0.90, adverse tail interference effects accounted for a significant percentage of drag on the entire aft end, in some cases nearly 60 percent.
- 5. At subsonic Mach numbers the medium-aspect-ratio nozzle configurations generally had the least unfavorable tail interference drag increments, and the four-tail configuration generally produced the most unfavorable interference drag increments at all Mach numbers.

NASA Langley Research Center Hampton, VA 23665-5225 March 26, 1987

Appendix

Data Reduction and Calibration Procedure

Calibration Procedure

The main balance measured the combined forces and moments due to nozzle gross thrust and the external flow field of that portion of the model aft of FS 44.75. The tandem shell balance measured forces and moments due to the external flow field exerted over the afterbody and tails between FS 48.25 and FS 66.25.

Force and moment interactions exist between the flow-transfer bellows system (fig. 6) and the main force balance because the centerline of this balance was below the jet centerline (fig. 1(b)). Consequently, single and combined loadings of normal and axial force and pitching moment were made with and without the jets operating with Stratford choke calibration nozzles. These calibrations were performed with the jets operating because this condition gives a more realistic effect of pressurizing the bellows than capping the nozzles and pressurizing the flow system. Thus, in addition to the usual balance-interaction corrections applied for a single force balance under combined loads, another set of interactions were made to the data from this investigation to account for the combined loading effect of the main balance with the bellows system. These calibrations were performed over a range of expected normal forces and pitching moments. Note that this procedure is not necessary for the afterbody forces because the flow system is not bridged by the tandem shell balance.

Data Adjustments

In order to achieve desired axial-force terms, the axial forces measured by both force balances must also be corrected for pressure-area tare forces acting on the model and the main balance must be corrected for momentum tare forces caused by flow in the bellows. The external seal and internal pressure forces on the model were obtained by multiplying the difference between the average pressure (external seal or internal pressures) and free-stream static pressure by the affected projected area normal to the model axis. The momentum tare force was determined from calibrations with the ASME nozzle prior to the wind-tunnel investigation.

Axial force minus thrust was computed from the main balance axial force with the following relationship:

$$F_A - F_i = F_{A,\text{Mbal}} + (\bar{p}_{es,1} - p_{\infty}) (A_{mb,1} - A_{\text{seal},1}) + (\bar{p}_i - p_{\infty}) A_{\text{seal},1} - F_{A,\text{mom}} + D_f$$
 (A1)

where $F_{A,\text{Mbal}}$ includes all pressure and viscous forces, internal and external, on both the afterbody and thrust system. The second and third terms account for the forward seal rim and interior pressure forces, respectively. The internal pressure at any given set of test conditions was uniform throughout the inside of the model; thus, no cavity flow was indicated. The momentum tare force $F_{A,\text{mom}}$ is a momentum tare correction with jets operating and is a function of the average bellows internal pressure that is a function of the internal chamber pressure in the supply pipes just ahead of the sonic nozzles (fig. 6). Although the bellows were designed to minimize momentum and pressurization tares, small bellows tares still exist with the jet on. These tares result from small pressure differences between the ends of the bellows when internal velocities are high and also from small differences in the forward and aft bellows spring constants when the bellows are pressurized. The last term D_f (eq. (A1)) is the friction drag of the section from FS 44.75 to FS 48.25. A friction drag coefficient of 0.0004 was applied at all Mach numbers.

Afterbody axial force is computed from a similar relationship as follows:

$$F_{\text{aft}} = F_{A,\text{Sbal}} + (\bar{p}_{es,2} - p_{\infty})(A_{mb,1} - A_{\text{seal},2})$$

$$+ (\bar{p}_{i} - p_{\infty})A_{\text{seal},2} + (\bar{p}_{es,3} - p_{\infty})(A_{mb,2} - A_{\text{seal},3})$$

$$+ (\bar{p}_{i} - p_{\infty})A_{\text{seal},3}$$
(A2)

Since both balances are offset from the model centerline, similar adjustments are made to the pitching moments measured by both balances. These adjustments are necessary because both the pressure area and bellows momentum tare forces are assumed to act along the model centerline. The pitching-moment tare is determined by multiplying the tare force by the appropriate moment arm and subtracting the value from the measured pitching moments.

Model Attitude

The adjusted forces and moments measured by both balances were transferred from the body axis (which lies in the horizontal tail chord plane) of the metric portion of the model to the stability axis. The attitude of the nonmetric forebody relative to gravity was determined from a calibrated attitude indicator located in the model nose. Angle of attack α , which is the angle between the afterbody centerline and the relative wind, was determined by applying terms for afterbody deflection, caused when the model and balance bent under aerodynamic load, and by a flow angularity term to the angle measured by the attitude indicator. The flow angularity adjustment was 0.1° , which is the average angle measured in the Langley 16-Foot Transonic Tunnel.

Ideal Thrust

The ideal isentropic gross thrust of each nozzle can also be determined if the weight-flow rate for each nozzle is known. The effective discharge coefficients of the eight sonic nozzles (fig. 6) forward of each of the nozzle tail pipes were determined and used for measuring mass flow.

The total ideal isentropic gross thrust or exhaust jet momentum for both nozzles is

$$F_{i} = w_{p} \left\{ \frac{RT_{t,j}}{g} \frac{2\gamma}{\gamma - 1} \left[1 - \left(\frac{p_{\infty}}{p_{t,j}} \right)^{\frac{\gamma - 1}{\gamma}} \right] \right\}^{1/2}$$
(A3)

where w_p is the weight-flow rate measured by the critical flow multiple venturis and $p_{t,j}$ is the average jet stagnation pressure.

Thrust-Removed Characteristics

The resulting force and moment coefficients (including thrust components) from the main balance include total lift coefficient $C_{L,t}$, drag-minus-thrust coefficient $C_{(D-F)}$, and total pitching-moment coefficient $C_{m,t}$. Force and moment coefficients from the tandem shell balance are afterbody (plus tails) lift coefficient $C_{L,aft}$, afterbody drag coefficient $C_{D,aft}$, and afterbody pitching-moment coefficient $C_{m,aft}$.

Thrust-removed aerodynamic force and moment coefficients for the entire model were obtained by determining the components of thrust in axial force, normal force, and pitching moment and subtracting these values from the measured total (aerodynamic plus thrust) forces and moments. These thrust components at forward speeds were determined from measured static data and were a function of the free-stream static and dynamic pressure. Thrust-removed aerodynamic coefficients are

$$C_L = C_{L,t} - \text{Jet lift coefficient}$$
 (A4)

$$C_D = C_{(D-F)} + \text{Thrust coefficient}$$
 (A5)

$$C_m = C_{m,t}$$
 – Jet pitching-moment coefficient (A6)

Nozzle coefficients are obtained by simply combining the measured results from both force balances as follows:

$$C_{L,n} = C_L - C_{L,aft} \tag{A7}$$

$$C_{D,n} = C_D - C_{D,\text{aft}} \tag{A8}$$

$$C_{m,n} = C_m - C_{m,\text{aft}} \tag{A9}$$

Tail Interference Terms

Vertical and horizontal tail drag was defined as the sum of form drag plus skin-friction drag for $M \leq 0.90$ and wave drag plus skin-friction drag for M > 1.00. The subsonic form factors for the tails were calculated with the equation

Form factor =
$$1 + 1.44(t/c) + 2(t/c)^2$$
 (A10)

where t/c denotes the thickness-chord ratio. The individual fairings required for each tail location were also included in the skin-friction and wave-drag calculations. Values of $C_{D,\mathrm{tails}}$ are given in table 25.

The tail interference terms used in this report are consistent with those used in references 8 and 14. The total empennage interference increment on the aft end was determined from

$$\Delta C_{D,it} = (C_D)_{\text{tails on}} - (C_D)_{\text{tails off}} - C_{D,\text{tails}} \tag{A11}$$

where $(C_D)_{\text{tails on}}$ is the measured total aft-end drag for a given configuration, $(C_D)_{\text{tails off}}$ is the measured aft-end drag for the same afterbody-nozzle combination with the tails removed, and $C_{D,\text{tails}}$ is the computed value of tail drag as discussed previously. Hence, this total tail interference increment includes the interference effects of one tail surface on another, of the afterbody-nozzle combination on the tail surfaces, and of the tail surface on the afterbody-nozzle combination. It also includes drag increments associated with misalignment of the tail surfaces with the afterbody flow field. The empennage interference effects on the nozzles alone were found from the following equation:

$$\Delta C_{D,in} = (C_{D,n})_{\text{tails on}} - (C_{D,n})_{\text{tails off}} \tag{A12}$$

where the nozzle drags are obtained from equation (A8). This empennage interference increment, then, is the result of changes in nozzle external pressure distributions resulting from adding tail surfaces to an afterbody-nozzle configuration. The tail interference increment on the afterbody alone was then defined to be the difference between the tail interference increments on the total aft end and the nozzles alone or

$$\Delta C_{D,ia} = \Delta C_{D,it} - \Delta C_{D,in} \tag{A13}$$

References

- Nichols, Mark R.: Aerodynamics of Airframe-Engine Integration of Supersonic Aircraft. NASA TN D-3390, 1966.
- Glasgow, E. R.: Integrated Airframe-Nozzle Performance for Designing Twin-Engine Fighters. AIAA Paper No. 73-1303, Nov. 1973.
- Runckel, Jack F.: Interference Between Exhaust System and Afterbody of Twin-Engine Fuselage Configurations. NASA TN D-7525, 1974.
- Richey, G. K.; Surber, L. E.; and Laughrey, J. A.: Air-frame/Propulsion System Flow Field Interference and the Effect on Air Intake and Exhaust Nozzle Performance. Airframe/Propulsion Interference, AGARD-CP-150, Mar. 1975, pp. 23-1—23-31.
- Berrier, Bobby L.; and Staff, Propulsion Integration Section: A Review of Several Propulsion Integration Features
 Applicable to Supersonic-Cruise Fighter Aircraft. NASA
 TM X-73991, 1976.
- Leavitt, Laurence D.: Effects of Various Empennage Parameters on the Aerodynamic Characteristics of a Twin-Engine Afterbody Model. AIAA-83-0085, Jan. 1983.
- Berrier, Bobby L.: Empennage/Afterbody Integration for Single and Twin-Engine Fighter Aircraft. AIAA-83-1126, June 1983.
- 8. Capone, Francis J.; and Carson, George T., Jr.: Effects of Empennage Surface Location on Aerodynamic Charac-

- teristics of a Twin-Engine Afterbody Model With Nonaxisymmetric Nozzles. NASA TP-2392, 1985.
- Peddrew, Kathryn H., compiler: A User's Guide to the Langley 16-Foot Transonic Tunnel. NASA TM-83186, 1981.
- Berrier, Bobby L.; Leavitt, Laurence D.; and Bangert, Linda S.: Operating Characteristics of the Multiple Critical Venturi System and Secondary Calibration Nozzles Used for Weight-Flow Measurements in the Langley 16-Foot Transonic Tunnel. NASA TM-86405, 1985.
- Leavitt, Laurence D.: Summary of Nonaxisymmetric Nozzle Internal Performance From the NASA Langley Static Test Facility. AIAA-85-1347, July 1985.
- Berrier, Bobby L.; and Re, Richard J.: Effect of Several Geometric Parameters on the Static Internal Performance of Three Nonaxisymmetric Nozzle Concepts. NASA TP-1468, 1979.
- Re, Richard J.; and Leavitt, Laurence D.: Static Internal Performance Including Thrust Vectoring and Reversing of Two-Dimensional Convergent-Divergent Nozzles. NASA TP-2253, 1984.
- Leavitt, Laurence D.: Effect of Empennage Location on Twin-Engine Afterbody/Nozzle Aerodynamic Characteristics at Mach Numbers From 0.6 to 1.2. NASA TP-2116, 1983.
- Capone, Francis J.; and Berrier, Bobby L.: Investigation of Axisymmetric and Nonaxisymmetric Nozzles Installed on a 0.10-Scale F-18 Prototype Airplane Model. NASA TP-1638, 1980.

Table 1. Index to Basic Data Tables

		Tail	
Table	Nozzle	configuration	δ_v , deg
2	AXI	Off	0
3		2	
4		3	
5	↓ ↓	4	
6	LO	Off	
7		2	
8		3	
9	↓	4	
10	MED	Off	
11		2	
12		3	
13		4	
14	HI	Off	
15		2	
16		3	
17	↓ ↓	4	
18	MED	Off	20
19	HI	Off	10
20		2	
21		3	
22		4	
23		Off	20
24	<u> </u>	2	20

 $[^]a\mathrm{Numbers}$ refer to number of tails in empennage arrangement.

Table 2. Aeropropulsive Characteristics for AXI Nozzle With Tails Off

CHNDZ	0027	•004	• 000	400	400	000	02	14	G.	•012	•011	200			.002	003	002	01	01	05	0	005	011	•014	14	\sim	800	000	210	617	0 0			700	T00*	.001	86	000		\ 900°-
CONOS	00	60	600		80	008	11	18	14	014	013	710	110	10	001	002	001	000	00	000	13	011	12	18	022	013	07	600	2;	710	9 5	100	•		000	000	000	000	3	8
CCNOZ	.0008	02	00		000	000	8	12	3	2	_ (1 0	- c	60	004	0.0	0.1	5	03	27	0	80	12	12	80 6	9	50	<u>ک</u> :	7	* (3 6	3 6	7	05	000	00	5 5	
CHAFT	.0043	40	50	2 6	3 6	03	9	022	.022	022	• 0 2 2	770.	770	770	50	0.1	001	0	0	01	16	003	600	.023	035	19	16	• 003		620.	0.60	מ כ	ָ מ	55	20	5	0	91	ָצְי כ	03
CDAFT	.0052	25	50	000	5.0	005	05	98	80	8	80	9 6	9 0	2 2	40	40	40	9	30	3	90	9	9	80	7	90	8	6 3	90	9 6	7	ט מ	5 5	50	S.	0.5	9	.0054	S	02
CLAFT		•004	•004	700	003	.003	004	023	23	23	023	23	220	מים כ	50	.002	.002	.002	•002	002	17	၉	10	25	34	.017	.017	600	010	22	450	•	5000	003	03	03	00	•003	9	m
, o	.0015	000	000			001	01	36	35	035	033	032	• 031	2 0		001	000	000	000	000	23	0	21	038	040	024	24	001	020	.037	\$ 6 0 0	3 6	100.	000	8	8	8	0	3	03
6	.0164	4	4:	\$ C	יי ב	13	16	27	23	22	22	21	2 8	2 4	9 6	9	0.0	9	9	9	5	16	2	26	35	20	16	7	97	21	2	_ {	ם ו	9	9	9	2	9	n	0
เ	0034	.001	•003	5 0		400	.003	3.5	36	36	3.	032	7;	7 6			20	000	000	001	24	005	13	3	020	26	•056	00	- C	3	.040		000	5	.001	00.	0	•003	_	03
F # D	.0016	03	90	2:	7 7	15	10	•036	33	• 230	27	021	87.0°	200				027	029	000	23	5	7	9	2	5	3	0	013	030	3	3 8	5	6	õ	ခ	=	w	0	0
C(D-F)	.0164	.033	•05E	9.0	145	161	•016	027	900	•024	640	000	121.	1 2 3 3 4	9 6		183	284	.310	005	019	016	021	026	035	020	• 05 5	057	055	020	2 40	017	000	•023	.051	620	.123	• 185	00	00
CLT	0034	.002	•005	005	100	000	.003	035	037	040	045	045) ()	5000			000	001	002	001	.024	002	010	038	0 20	•020	029	001	023	045	061	E00.	•003	•001	•005	.001	.001	8	•001	003
ALPHA	.00	• 01	•01	0.00	•	- 01	•	•	6.02	•	•	•	•	•	• 05	•	3		01	•	-2.97	•	•	•	•	•	ď	• 00	•	•	•	•	00•	•01	• 01	• 02	• 00	00•	•	5 • 02
α Δ. Ζ	1.08	. 0	9	0 0	•	2.0	ω •	\sim	•	°	č.	၀ မ	ာ () 	•	•		ຸພາ			30	æ	₹0	w	-	æ	ur.		9	4	•	ω,	•	٠,	ိ	•	4)	-	٠	3
MACH H	1.201	• 2	7	٦,	• •	. ~	7	5	.2	•2	2	2	2	2	U 1	0 <	o C	, vo	•	ഥ	7	5		5	2	2	2	\sim	• 5	7		2	Or.	J	106.	006.	.901	668.	868	• 401

Table 2. Continued

CMNDZ		000
CDNOS	1	000
CLNBZ	1	0
CMAFT	00000000000000000000000000000000000000	02
CDAFT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
CLAFT	11111111111111111111111111111111111111	C
<u>د</u> ن	111 1 1 1 1 1 1 1 1 1	20
90	00000000000000000000000000000000000000	0
כר		003
C A		25
C(D-F)		00
CLT	111	003
ALPHA		0
χ α.	00000000000000000000000000000000000000	•
E O		5.9

CONDZ CLAFT £ . 00054 00054 00054 00053 00052 00052 ರ CAT 3-0) C 2 0 Z

Table 2. Concluded

17

Table 3. Aeropropulsive Characteristics for AXI Nozzle With Two Tails

CMNDZ	- 00025 00005 00007 00007 00007 00013 00013 00037 00038 00037 00038 00037 00038 00037 0003	2
CDNDZ		8
CLNDZ	11111111111111111111111111111111111111	0
CMAFT	1	07
CDAFT	00000000000000000000000000000000000000	0.4
CLAFT		01
ž U		02
00	00000000000000000000000000000000000000	0
7.	11111111111111111111111111111111111111	01
CM		10
C(D-F)		•155
CLT	11111111111111111111111111111111111111	002
ALP 4A		0
₩ Q. Z.	111 000 000 000 000 000 000 000 000 000	9
х О Т	11111111111111111111111111111111111111	80

Table 3. Concluded

CMNDZ	00022 00022 00022 00022 00022 00022 00023 00023 00034 00034	
CDNDZ	000000000000000000000000000000000000000	
CLNOZ	1	
CHAFT	11.	
CDAFT	00000000000000000000000000000000000000	
CLAFT	00000000000000000000000000000000000000	
Ω X	11. 11. 0052 0052 0053 0053 0053 0053 0053 0053	
00	00076 00076 00077 00080 00080 00117 00076 00077 00077 00077 00077 00077 00077 00077	
כר		
E E	11111111111111111111111111111111111111	
C(D-F)	11687 20056 00074 00080 00112 001142 00142 00142 00142 00142 00142 00142 00142 00074 00074 00081 00081 00081 00081 00081 00081	
CLT	00026 00033 00033 00033 00033 00013 00013 00026 00026 00026 00027 00027 00027 00027 00027 00027 00027 00027	
ALPSA	1 3 3 00 1 1 1 8 2 00 1 1 1 8 2 0 0 1 1 1 8 2 0 0 1 1 1 1 8 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
α a z		
MACH		

Table 4. Aeropropulsive Characteristics for AXI Nozzle With Three Tails

CHNOZ	1 1 1 1 1 1 1 1 1 1	0
CONDZ		0002
ZONTO		•0014
CMAFT	00000000000000000000000000000000000000	
CDAFT		.0077
CLAFT	11111111111111111111111111111111111111	ö
Σ		13
Q.D	00098 00098 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099	0
נו	11111111111111111111111111111111111111	6
CMT		003
C (D-F)	11102000000000000000000000000000000000	.155
CLT	11111111111111111111111111111111111111	10
ALPHA		01
a Z	14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•
MACL		, 0

Table 4. Concluded

CMNOZ	00000000000000000000000000000000000000
CONDS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CLNDZ	
CMAFT	11.
CDAFT	00000000000000000000000000000000000000
CLAFT	00000000000000000000000000000000000000
E U	1 1 1 1 1 1 1 1 1 1
Q D	00000000000000000000000000000000000000
70	00088 000000 000000 000000 000000 000000
CMT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C(D-F)	11.00.00.00.00.00.00.00.00.00.00.00.00.0
CLT	00100 001000 001000 001000 001000 001000 00000 00000 00000 00000 00000 00000 0000
ALP 4A	1
æ æ ₹	0
F T T	### ### ### ### ### ### ### ### ### ##

Table 5. Aeropropulsive Characteristics for AXI Nozzle With Four Tails

CMNDZ	00000000000000000000000000000000000000	40
CDNOS	10000000000000000000000000000000000000	00
CLNDZ	11111111111111111111111111111111111111	0
CMAFT	00000000000000000000000000000000000000	022
CDAFT	00000000000000000000000000000000000000	60
CLAFT	11111111111111111111111111111111111111	011
£	0110 0110 01170	
CD	00000000000000000000000000000000000000	60
70		60
E E	00000000000000000000000000000000000000	001
C (0-F)	1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.168
CLT		011
AL PAA		0
a a Z	11 0 8 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•
HACH		.802

00046 00018 00019 00019 00019 00019 00019 00019 00019 00019 00019 00019 CDNDZ -.0224 -.0253 .0050 CMAFT -.0522 -.0982 -.1407 -.0200 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 CDAFT CLAFT Table 5. Concluded 00090 00093 00097 00097 00097 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 00099 C (0-F) 20033 0003 0003 CLT MACH

Table 6. Aeropropulsive Characteristics for LO Nozzle With Tails Off

CHNDZ		•
CDNOS	00000000000000000000000000000000000000	
CLNPZ		,
CMAFT	111	,
CDAFT	$\begin{array}{c} \cdot \cdot$	}
CLAFT	1	
x	1	
0	00000000000000000000000000000000000000	;
C		· ·
CMT	11111111111111111111111111111111111111	•
C(0-F)		•
CLT		- }
ALPHA		•
a a z	10000000000000000000000000000000000000	•
MACH		2

CHNDZ	00000000000000000000000000000000000000	02
CDNDZ	00000000000000000000000000000000000000	-0005
CLNOZ	00000000000000000000000000000000000000	031
CMAFT	00000000000000000000000000000000000000	~
CDAFT		.0051
CLAFT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01
£	00000000000000000000000000000000000000	0
6	00000000000000000000000000000000000000	40
נר	1 1 1 1 1 1 1 1 1 1	40
E W	00000000000000000000000000000000000000	0
C (D-F)	111	900
CLT	1 1 1 1 1 1 1 1 1 1	004
ALP 4A		5
a a Z	$\begin{array}{c} 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 &$	•
A C H		5

Table 6. Concluded

CHNDZ	00023 0000 0000 0016 0015
CDNDZ	
CLNDZ	1 1 1 1 1 1 1 1 1 1
CHAFT	0041 .0037 .0035 .0016 0018 0048
CDAFT	.0059 .0059 .00649 .00647 .0050
CLAFT	- 00042 - 00046 - 00024 - 00015 - 00017
Σ ບ	0018 .0029 .0025 .0018 .0017
CO	.0060 .0063 .0067 .0067 .0068
כר	1 1 000 86 000 86 000 80 000 80 000 80 000 80 000 80 80 8
E	0018 .0029 .0311 .0300 .0288 .0281
C(D-F)	
CLT	0086 0052 0192 0007 .0167 .0348
ALPYA	1.2.0.3 3.0.03 5.0.03 6.0.03 1.0.04.68
۵. ک	11 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 1
MAC	

Table 7. Aeropropulsive Characteristics for LO Nozzle With Two Tails

	ORIGINAL PAGE IS OF POOR QUALITY	
CMNDZ	11111111111111111111111111111111111111	
CONOS		
CLNDZ		
CMAFT		
CDAFT	01000 01002 01002 01002 01002 01002 01002 01002 0102 0103 0004 0004 0004 0004 0004 0004 0004	
CLAFT		
5	00129 00120 001100 0011100 001120 001120 001120 001132 001132 001132 001132 001132 001132 001132 001132 001132 001132 001132 001132 001132 0011332 0011332 0011332 0011332 0011332	
CD	00000000000000000000000000000000000000	
נר		
CMT	00000000000000000000000000000000000000	
C (D-F)		
CLT	11111111111111111111111111111111111111	
ALP 4A		
a. C	10	
M P D A M	11111111111111111111111111111111111111	

Table 7. Concluded

CHNDZ	- 00012 - 00013 - 00013	
CONDS		
CLNDZ	00000000000000000000000000000000000000	
CHAFT		
CDAFT	00000000000000000000000000000000000000	
CLAFT	00000000000000000000000000000000000000	
ī	1	
00	00000000000000000000000000000000000000	ı
75	00000000000000000000000000000000000000	
F M	00000000000000000000000000000000000000	
C (9-F)	11221 11221 11221 11221 11221 11221 11221 11232 11232 11333 11333 11333 11334 11334 11334 11334 11334 11334 11334	
GLT.	00000000000000000000000000000000000000	•
AL PHA		,
a Z		
X A T		1

Table 8. Aeropropulsive Characteristics for LO Nozzle With Three Tails

CMNDZ	11111111111111111111111111111111111111
CONOS	
CLNDZ	
CMAFT	
CDAFT	0.000000000000000000000000000000000000
CLAFT	11111111111111111111111111111111111111
ដ	1
g	00099999999999999999999999999999999999
כו	
CMT	1
C(D-F)	1111 1 1 1 1 1 1 1 1
CLT	1
ALPHA	
94 0. 27	00000000000000000000000000000000000000
E V V	11.2000 11.

Table 8. Concluded

CMNDZ	- 00000 - 00010 - 00010	• 0008
CDNOS	000111 000000 000000 000000 000000 000000	0006
CLNDZ	1 1 1 1 1 1 1 1 1 1	•0018
CMAFT		0145
CDAFT	00073 00083 00083 00083 00083 00083 00074 00074 00073 00073 00073 00073 00073 00073 00073 00073 00073	•0016
CLAFT	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0067
E O		0137
83	00089 00073 00073 00073 00073 00073 00073 00074 00073 00073 00073 00073	•0000
טר		•0085
CMT	00027 00053 00053 00053 00053 00053 00053 00053 00053 00053 00053	0137
C(D-F)	1. 20079 00079 00079 00079 00079 00073 00074 00078 00078 00078 00078 00078 00078 00078 00078 00078	007
170	1	0
ALPHA	### ##################################	•
α΄ Δ. Ζ	00000000000000000000000000000000000000	•
E S S S S S S S S S S S S S S S S S S S		009.

Table 9. Aeropropulsive Characteristics for LO Nozzle With Four Tails

CMNOZ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CDNOS	11	
CLNDZ	00000000000000000000000000000000000000	
CMAFT	00000000000000000000000000000000000000	
CDAFT	00000000000000000000000000000000000000	
CLAFT	11111111111111111111111111111111111111	
£	00011 00027	
00	00000000000000000000000000000000000000	
נו		i I
THU D	00000000000000000000000000000000000000	
C (0-F)) -
170		
AL P HA		,
۲ ۳		•
¥ V T		-

Table 9. Concluded

CHNDZ	
CDNDS	
CLNDZ	00000000000000000000000000000000000000
CMAFT	1
CDAFT	00000000000000000000000000000000000000
CLAFT	
δ	
as	
C	1
CMT	
C(0-F)	
CLT	1
ALP HA	6 5 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
a a	
M FO	

Table 10. Aeropropulsive Characteristics for MED Nozzle With Tails Off and $\delta_v=0^\circ$

CHNDZ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CONDZ		
CLNDZ	11111	
CMAFT		
CDAFT	00000000000000000000000000000000000000	
CLAFT		
T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
00		
נר	1111111 11 11 11 11 11 11 11 11 11 11 1	
CMT		
C(D-F)		
CLT		
ALPHA		
a: n. Z	2 m m m m m m m m m m m m m m m m m m m	
MACH		

Table 10. Continued

ZONNO	1 1 1 1 1 1 1 1 1 1	
CDNOS	00000000000000000000000000000000000000	1
CLNDZ		l '
CMAFT		
CDAFT	00000000000000000000000000000000000000	
CLAFT	1	
T		
9	00000000000000000000000000000000000000	
C	1	
E E O	00000000000000000000000000000000000000	
C(0-F)		
CLT	00000000000000000000000000000000000000	
ALPHA		
α α <i>Σ</i>	4 m p r r r r r r r r r r r r r r r r r r	
¥ CH		

Table 10. Concluded

CMNDZ	, 00001 00003 00003 00005 00005
CONDZ	0000 00018 00018 0010 0010 0010
CLNDZ	
CMAFT	00035 00015 00016 0003
CDAFT	00000 00000 00000 00000 00000 00000 0000
CLAFT	-00035 -00047 -00021 -00042 -00042
£ U	0001 0003 0002 0002 0003 0035
90	.0045 .0039 .0037 .0043
CL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CMT	0011 0038 0310 0209 0283 0283
C(D-F)	
CLT	
ALPHA	9.00 9.00 9.00 9.00 9.00 0.00 0.00
α 0. Z	1.004 5.004 5.004 5.003 5.003 1.003
÷ O ₹	00000000000000000000000000000000000000

Table 11. Aeropropulsive Characteristics for MED Nozzle With Two Tails and $\delta_v=0^\circ$

CMNDZ		5
CONDZ		
CLNDZ	11111111111111111111111111111111111111	_
CMAFT	00000000000000000000000000000000000000	•
CDAFT	00000000000000000000000000000000000000	5
CLAFT	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,
E U	0151 01129 01130	110.
9	00000000000000000000000000000000000000	8
נר		5
CMT		5
C(D-F)		•
CLT		<u> </u>
ALPHA		•
α 3. Σ		•
MACH		3

Table 11. Concluded

CMNOZ		
CONOS	00000000000000000000000000000000000000	
CLNDZ	1	
CMAFT	111	
CDAFT	00000000000000000000000000000000000000	
CLAFT	00000000000000000000000000000000000000	
£ U	11.00121 00121 00121 00121 00121 00120 00120 00120 00120 00120 00120 00110 00110 00110 00110	
QD	00000000000000000000000000000000000000	;))
כר	00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044 00044)) 1
CMT	11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
C (D-F)	11 11 11 11 11 11 11 11 11 11 11 11 11)
170	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•
ALPHA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) •
α 0. Ζ	00000000000000000000000000000000000000	•
AACH	00000000000000000000000000000000000000	•

Table 12. Aeropropulsive Characteristics for MED Nozzle With Three Tails and $\delta_v=0^\circ$

CHNOZ		>
CDNOS	00000000000000000000000000000000000000	****
CLNDZ		4
CMAFT	00000000000000000000000000000000000000	•
CDAFT))
CLAFT		•
E C		1
00	00000000000000000000000000000000000000	•
CL		•
CMT		
C (D-F)	1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•
CLT		5
ALPHA		•
∝ 6 7		•
MACH		•

Table 12. Concluded

CMNOZ	00000000000000000000000000000000000000	
CDNGS		
CLNOZ	00000000000000000000000000000000000000	
CMAFT		
CDAFT		
CLAFT		
ž.	11.	i
ao	74000000000000000000000000000000000000	
¥.	1	1 1 1
C (0-F)	11.2.00.75 11.0.00.73 11.0.00.73 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.0.00.00 11.00 11.00 1	 - - - - -
CLT	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) } }
AL PHA		•
а 2 2	47-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
M TO T		•

Table 13. Aeropropulsive Characteristics for MED Nozzle With Four Tails and $\delta_v=0^\circ$

CMNDZ	00000000000000000000000000000000000000	m O
CDNDS	00000000000000000000000000000000000000	0.0
CLNDZ		33
CMAFT	00000000000000000000000000000000000000	21
CDAFT		7.
CLAFT		Ď
E.	1	3
8	00000000000000000000000000000000000000	Ξ.
บ		12
E CO	1	-
C(9-F)		• 118
110		12
ALPHA		- 03
χ 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Š
HACH		0

-.0017 -.0018 -.0013 -.0010 -.0002 -.0016 CDNDZ 0017 00017 00019 00018 00018 00018 00090 CLNDZ -.0275 -.0272 -.0273 -.0265 .0048 -00295 -00552 -1079 -1501 -.0223 -.0504 -.0825 -.1106 -.0230 -.0278 CDAFT 0123 0139 0139 0139 0125 0125 0125 0103 0096 0096 0097 0097 0097 0097 0169 - 00091 - 00091 - 00091 - 00090 - 0000 -0151 0149 0149 0145 0161 0161 0403 CLAFT .0678 .0940 .0158 -.0269 -.0267 -.0270 -.0269 -.0273 -.0266 -.0280 .0073 -.1187 -.0642 Ξ ဥ -00065 -00090 -00090 -00691 -00052 -00110 -0110 -0110 .0168 .0172 .0166 .0176 .0081 .0182 .0728 .1031 C -.0101 -.0280 -.0280 -.0285 -.0642 -.0110 (U-E) .0120 .0132 .0160 .0201 .0201 .1208 .1106 CLT ď MACH

Table 13. Concluded

41

Table 14. Aeropropulsive Characteristics for HI Nozzle With Tails Off and $\delta_v=0^\circ$

CMNDZ)
ZONOS))
CLNDZ		•
CMAFT	11111	,
CDAFT		,
CLAFT	1	
E	00000000000000000000000000000000000000	ļ
9	00000000000000000000000000000000000000	•
CL))
E E		•
C (D-F)		•
CLT	111111 1111111111111111111111111111111))
ALPHA		•
a a z	100 8 90 0 0 0 8 90 0 0 0 0 0 0 0 0 0 0 0	•
M CH	00000000000000000000000000000000000000	>

Table 14. Continued

CMNDZ	00000000000000000000000000000000000000	07
CDNOS	1 1 1 1 1 1 1 1 1 1	0
CLNDZ		0
CMAFT	1	02
CDAFT	00000000000000000000000000000000000000	02
CLAFT	1 1 1 1 1 1 1 1 1 1	05
5	00000000000000000000000000000000000000	01
00	00000000000000000000000000000000000000	0.5
13	1 1 1 1 1 1 1 1 1 1	0 5
T W O	00000000000000000000000000000000000000	01
C(0-F)		0.5
CLT	1111	005
AL PHA		6.
α Δ 2	67-11-07-4-67-11-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0
HACH		0

Table 14. Concluded

CMNDZ	•0003	.0007	. 0007	0000	0008	0011	0018	.0013
CDNDZ	9000*	+0000	0002	0003	0002	•0005	8000	8000°-
CLNDZ	.0058	6000	6000	.0010	.0031	.0047	0900	4000
CHAFT	0051	•0054	•0024	.0007	0002	0023	0056	.001
CDAFT	.0061	.0051	6 500 •	.0047	.0047	.0051	0900*	0000
CLAFT	6700.	0039	0037	0016	0001	• 0022	•0055	0020
5	0048	.0031	.0031	.0008	0010	0034	0074	0004
80	• 0067	.0047	• 0046	******	• 0045	• 0053	.0068	.0042
ช	.0107	0048	0047	9000*-	•0030	•0010	.0115	-,0016
CMT	0048	.0031	.0281	•0253	•0236	.0213	.0173	-0024
C(0-F)	.0067	.0047	2899	2850	2850	2830	2797	0042
273	.0106	0047	0175	.0021	•020•	.0397	•0594	0016
ALPHA	8.96	-3.05	-3.04	02	5 99	5.65	96.8	- 03
α΄ α. Ζ	1.03	1.04	5.64	5.57	5.56	5.57	5.57	1.04
E Q T	.598	• e01	009	•601	009.	009•	£600	.601

	CMNDZ	.0047	001	003	004	•003	003	.0047	0.5	600	20	03	000	700	100	000	0	8	• 0000	.0015	ទុ ។	•	0016	001	.0018	000	200.	6200-	000	003	00	02	0	0 (9	۰,	2000	600	•
	CONDZ	.0147	012	12	10	80	.0077	14	15	14	7	8	* 6	£000•		20	000	8	000	000	000		35	000	.0001	0001	\circ	0001	000	12	12	13	15	9	•015	9	1.0014	000	
	CLNDZ	0035	001	000	00	000	000	4200-1	004	•004	00	005	200	500		, , ,	.0017	N	•0010	0	m t		9000	0	0	.0031	so .	ο α	000.5	0012		ന	90	900	• 003	400	0000		•
$\mathrm{d}\delta_v=0^\circ$	CMAFT	.0180	018	17	18	18	017	0000	018	024	9	0670	920	270			011	~	0120	900	011	400	044	900	007	11	030	\$ C	-0004	90		\sim	.05	990	• 018	္	000	•	•
o Tails an	CDAFT	.0103	.0102	.0103	.0102	.0102	0102	0103	•0103	.0116	.0155	•0100	•0123	1100	2700	.0073	.0073	•0073	•0075	.0078	.0075	4000	0138	.0078	• 0075	.0072	.0082	010	.0075	.0122	010	•0116	.0153	1010	.0103	.0105	5 0	9	,
With Tw	CLAFT	0142	014	013	0141	.014	013	2470	014	018	47	5	040	900	200	0058	900	90	•0063	0	90	220	00000	007	900	•	202	033	JE	047	013	.0196	7	53	14	0	3 2		.
H Nozzle	Σ	.0227	017	14	13	4	13	0653	•0238	014	0492	63	964	50		2 5	0.1	12	11	07	50	1000	1.0424	000	600	12	33	\circ	-0111	056	013	27	9	64	23	00	00033		
istics for l	Q _D	.0250	.0229	.0229	•020	.0188	0180	.0271	ı N	~	3	സ	\sim	4700.	4200	0083	.0071	1900	6900	•0075	• 0074	2000	0115	.0073	0	• 0072	.0087	0116	0000	.0247	3	4	.0282	5	S	® (> <	> <	•
Character	נר	0177	•	0137	0139		9	0552	9	0	•0462	•0596	\circ	\sim $^{\circ}$	9 5	8200	.0077	•0083	.0081	0071	.0091	~ •	2040	\circ	О	•000	.0257	\circ	0100	, 0	0	•0230	.0538	•0614	0184	00	000	9 0)
Table 15. Aeropropulsive Characteristics for HI Nozzle With Two Tails and	CMT	.0227	2.1	20	23	26	027	າເ	023	014	49	63	064	010		7 C	012	1,4	$\overline{}$	07	011	150	1,0524	007	034	12	80	970	֡֝֜֜֜֜֓֓֓֓֓֓֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֜֓֓֡֓֓֡	62	019	0	55	20	23	8	2 6		
l5. Aeropi	C (D-F)	.0250	.023	.050	060	125	• 142	0,70	025	026	030	036	027	.00.	0000	178	283	•308	900	007	000	9 5	7 7 0	700	.285	. 283	• 285	7.8	7 7 7	8,0	040	.048	•044	•036	025	600	120	0 4 0	•
Table 1	170	0177	014	013	312	.012	• 012	ر م ب	010	014	940	59	054	003	900		2	011	0.8	007	600	670	ֆ Մ	900	.020	011	043	073	7 0	051	10	027	062	073	•01g	S i	\ 00°		0
	ALPHA	05	•	•	•	05	•				•	•	•	•	•	• •		•	•	•	•	•	0. 4 0. 4 0. 5		ິຕ	•	•	•	• •	•		•	•	٠	•	90	•	500) •
	a. 2	.92	•	9	6	0	o (7 0	6.	20	æ	8	ۍ ر •	9	•	20	3	¢.	0	C.	٠ •	္	1.04		9	5	•	9,	•		3	5	•	9	o.	7	0	96.7	•
	¥ O ¥	1.200	. ~	7	.2	5	٦,	• •	. ~	~	7	2	;	o,	0 4	0 40	.601	Ð	Ð	o	009	0		599	•	009	009•	009	O 4	•	1,200	2	2	2.	7	• 902	006	706	A A D •

Table 15. Concluded

MACH	α σ.	ALPHA	נוז	C (D-F)	C M T	13	QD	T U	CLAFT	CDAFT	CMAFT	CLNDZ	CDNDS	CMNDZ
869	5.60	07	• 0044	1215	.0001	.0033	.0088	0110	.0031	9600	0115	.0003	6000	•0009
001	7.74	90-	•0045	1835	•0053	.0028	•0072	0109	•0024	•0045	0106	•000•	0023	0003
006	1.10	- 03	0018	.0080	0020	0018	.0080	0020	6000	•0109	0081	0027	0025	.0061
000	1.10	-3.06	0119	.0080	.0119	0120	0800	.0119	0091	.0105	6900	0029	0025	.0050
000	1.10	- 02	0017	.0082	0012	0017	.0082	0012	•000•	.0105	0071	0020	0023	•0028
600	100	2.99	0000	.0085	0145	.0089	.0085	0145	•0086	.0106	0198	• 0002	0021	.0053
100	00	5.99	.0162	.0093	0247	.0162	.0093	0247	.0165	.0113	0312	0003	0019	• 0065
3	01-1	0.05	0301	.0121	0383	•0302	.0121	0383	.0236	.0135	0406	• 0066	0014	•0023
200	1.10	-3-07	0010	0028	.0103	0100	.0078	.0103	0082	.0104	.0054	0027	0026	• 0040
3	5.61	-3.04	0144	1219	.0176	0088	.0083	• 0065	0075	9600.	• 0044	0013	0013	.0021
600	5.66	90	.0037	1221	•0014	•0026	.0085	0097	.0020	9600.	0097	9000	0013	.0001
000	5.65	05.0	.0215	1211	0126	.0134	.0092	0237	.0102	.0101	0223	.0032	6000	0014
000	7.00	5.97	0363	1193	0244	.0215	• 0105	0355	.0185	.0110	0342	.0031	0005	0013
800	5.61	8.94	.0553	1157	0342	.0338	.0133	0453	.0249	.0131	0422	6800.	•0005	0032
800	1.08	90-	.0036	00000	0141	•0086	.0070	0141	• 00 19	.0083	0162	.0007	0014	.0021
108	2.03	- 04	0021	0301	.0045	.0003	• 0072	• 0003	.0048	.0078	0113	0046	9000*-	.0116
00,5	3.04	-006	00000	0642	-00074	.0085	.0071	0135	.0075	•000	0154	.0010	0008	•0010
800	4.02	90	.0100	0660	0059	*0092	.0078	0151	.0078	•0019	0158	.0014	0001	.0007
800	5.62	90	.0101	1576	0006	.0087	.0072	0146	.0075	• 000 •	0153	.0012	0007	•0007
801	5.96	90	.0101	1695	.0003	•0086	.0071	0147	•0076	•0019	-,0155	.0010	0007	•000
103	7.00	- 05	.0108	2081	.0033	.0088	• 0064	0149	• 0076	.0078	0155	.0012	0014	•0000
108	1.08	- 02	7600	.0067	0150	* 500 *	.0067	0150	• 0086	.0083	0172	9000	0017	.0021
800	1.08	-3.06	5900-	0200	60000	6900	.0070	• 0040	0055	.0085	.0023	0014	0015	•0025
703	1.08	90	4600	6900	0147	*000	6900	0147	• 0084	.0083	0169	.0010	0014	.0021
F 0 3	1.08	2.97	.0239	.0080	0328	.0239	.0080	0328	.0219	*600	0355	•0050	0014	.0028
700	1.07	5.92	.0371	.0105	6640	.0371	.0105	6650	.0342	.0116	0529	.0030	0011	.0031
600	1.08	3.96	1940.	.0140	0606	•0468	.0140	0606	• 0405	.0145	0619	• 0062	0005	•0012
100	1.08	- 06	.0085	.0067	0143	.0085	.0067	0143	.0081	.0083	0165	•0003	0017	•0022

	CMNOZ	88	0030	00	0	88	•	90	000	9 8	0015	.0014	0	.0150	0003		8	• 0004	.0017	9	>	8	•0020	00.	9	0032	8	• 0002	0	.01	010	9 0	9 6	2500.	0	0
	CONOS	.0151	e	11	60	• 0082	1	.0155		910	0169	012	9000*-	•000•	000	0000	8	00	00	200		N	000	0		0000	002	+0000-	3	4	5	270	017	-,0023	100	000
	CLNOZ	00		000	000	-0004	.005	.001		000	0045	005	00	0.5		003	03	02	000	5 6	2900		00	10	n o	000	12	3	05	0	52	v		000	000	000
$\mathrm{d} \ \delta_v = 0^\circ$	CMAFT		.0051	9	•0026	000	5 9	003	• 053	• 0.89	0090	059	13	•002	210	013	.013	3	.012	.013	041/	.120	012	•012	•013	46	.121	013	05	21	680	1 40		0 1 1 0 0 0 0 0 0	011	0 11
e Tails an	CDAFT	.0114			11	Ξ:	13	17	13	19 24	13	13	90	0	0 0	0	6	07	80	56	2 6	19	9	98	50	2°C	5	0	급	£.	18	.0277	7 .	0105	60	60
opulsive Characteristics for HI Nozzle With Three Tails and	CLAFT	80	900	• 005	900	• 006	2 4 U 10	•005	35	061	5 5 5	940	90	0	000	05	900	90	2	S	0 C 4 3 C		_		Λ.	0620	076		90	34	61	\$ (ŝ	\$ 000	0	03
I Nozzle V	3	.0037	.0007	8	.0013	•0017	0599	200	057	900	.058	061	~	600	013	014	014	013	013	013	7 6	125	014	014	• 015	1.0426	130	012	8	62	102	829T*-	5 G	1800	800	01
tics for H	as	.0265	.0248	.0224	• 0202	• 0196	.0285	.0271	• 0293	• 0359	0282	.0264	•0073	•0020	• 0079	00.76	.0071	•0076	.0081	1800.	6600	.0220	.0077	• 0077	2200	.0095	.0220	.0073	.0251	•0275	• 0342	0478	v	.0083) C	0
haracteris	CL	00	0071	•006	•000	000		900	O- 1	068	4 0	050	90	40	800	9 0	60	8	10	60	.0311	. 8	H	10	0	.0583	60	8	03	•0439	92	9 6	ŝ	.0011) [• ••
pulsive C	THU		9 6	0	2	5	9 0	20	7	0 4	0 00	5.	2	33	25	10	2	13	13	2	7 F	5.5	14	3.8	60) 0	105	12	90		960		2 6	1800-	0 0	004
Aeropr	C(0-F)	.0265	022	080	.124	.140	0 2 8 0 2 8	027	020	035	9 00	940	• 00 7	•050	115	282	311	.007	900	800	900	022	700	. 282	.285	2 (A)	270	.007	9 40.	.045	038	•024 •024	7 20	, 00°	100	074
Table 16.	CLT	0074	.006	000	.005	005	51	•000	99	068	040	53	900	306	000	110	012	900	010	000	31	9.60	011	022	012	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	138	008	005	0.48	0.84	• 12 th	000	.001	- n	40
	ALPAA	50.	.02	0	0	٠ د	20	0	•	~ (, O		C	0	\circ	• •	•	਼	0	਼	\circ :	• •	3.0	਼	٠ •	0,7		਼	9	਼	•	ۍ. د	္	\circ	\sim) ()
	1 7	.92	ο <	0	0	1.0	7 0	.91	0	നാ	co	9	0	•	्०	2		0	0	਼੍ਰ	9	•	઼	• 6	3	0 4	9	0	9•	9	9	φ;	.	٦, ٥	<u>۽</u> د	\circ
	MACH	1.202	202	202	20	20	202	• 20	• 20	.23	2 5	20	5.9	60	909	9 6	60	60	9	9	9 9	3 50	9	60	5	n 4) (T	09	•20	• 20	• 20	200	2.5	O	\circ	\circ

Table 16. Concluded

CMNDZ	1
CDNDZ	
CLNDZ	
CMAFT	
CDAFT	00000000000000000000000000000000000000
CLAFT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
.	
00	00000000000000000000000000000000000000
CI	
E W O	
C(D-F)	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CLT	
AL 2 4&	
ŭ. Q Z.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M A C H	

	CHNDZ	.0014	3	• 000	•000	900		10	02	07	60	000	3 6	.0126	6	•005	100	000	700	013	015	~	4	90	000	7 4	005	40	4	003	9 00		90	000	003	005	90	80
	CDNOZ	.0153	013	13	1	60	5 E	015	15	12	16	017	10	001	0	01	000		7 7		014	16	8	000		80	000	000	0	000		> <	35	000	00	00	-	•0050
	CLNDZ	0018	000			000	3 6	000	002	0	02	900		000	002	6	003	6003	2 0	.0109	014	000	001	0025	000	.0033	003	000	2	000			2	000	003	005	•0062	0
$\delta_v = 0^{\circ}$	CMAFT	.0102	0	•	0	86	- C	`	0	90•	•10	77	- ^	010	• 02	• 02	905	200	5 6	0610	60	0	-	601	2 6	0208	02	0176	0	10.	1 t	•	000	00	02	0485	₩.	1025
Tails and	CDAFT	.0138	013	013	13	013	13	015	013	19	22	620	30	008	600	08	800	000	017	16	019	013	.0129	011	710	12	012	.0128	13	•0129	010	100	12	011	12	13	16	.0184
opulsive Characteristics for HI Nozzle With Four	CLAFT	0100	600	•	60	000	0 0	.057	007	41	7	063	סה	008	014	14	014	012	000	041	063	60	90	9 9		စေ	008	90	90	.0067	, ,	מי מי מי	90	005	8	25	• 0484	5
I Nozzle V	N.	.0116	90		2	m <	•	07	• 00 92	• 05	•10	12	1000	00	02	•02	92	• 02	٠ •	> r ~	• 10	0	0128	8		0248	• 02	.01	• 0078	0.01	50.4			000	02	054	8	1111
tics for H	a	.0291	.0275	.0272	.0251	• 0233	5020	, 0	.0297	.0325	.0391	Ф C	4000		.0101	.0108	0 (0 0	ગ	.0313	0	• 0300	.0124	.0121	0 0	.0125	0	.0120	.0114	.0124	5 7	9 5	7 -	011	12	0	17	• 0204
haracteris	CF	0119	010	•008	008	800		064	•010	45	9	980	r w	003	017	~	017	910	200	51	077	010	04	02	800	.0110	012	90	08	90	620	240	9 6	400	012	031	54	0690•
pulsive C	CMT	.0116	101	10	12	015	45	079	600	0.29	102	120	~ v	010	015	211	001	026	760	-,0682	101	010	012	• 002	014	0193	600	013	0	•013	6030				014	043	2	1001
	C(D-F)	.0291	010	046	•086	202	000	031	59	032	039	45	700	0.56	113	176	• 2 8 3	600	٧ ر د د	0.40	38	030	012	017	044	17	.173	015	011	12	013	0 7 7	7 -	10	1117	1115	111	•108
Table 17. Aerop	CLT	0119	600	900°	900	000		064	.010	045	92	0 8 C •	4 5 6 0	10	017	19	20	018	400	200.	286	010	004	001	600	13	013	900	08	90	623	7 4 0	200	2 0	013	39	69	το Ο
	ALPHA	.00	01	01	02	6		-2.99	•	•	•	2°08	• C		, 0	0	਼	۰ ۱	•	20.0	. 4	0	0	0	9	010	0	0	਼	- 01	.	э ч	- 4 - 6		•	9	O-	
	α′ 0. Σ	.61	0	•	٠.	0 0	• 0	•	0	a:	C .	m :	•	•	•	6.	9	٠ •	٥	\circ	9	<u>ۍ</u>	0	0	्	5.62	Ū	•	۲.	0	္ရ	• °	• -	•	8	.5	.5	S
	MACH	201	199	•199	• 200	• 199	107	198	• 202	. 202	. 201	2	000	004	ð	.600	.601	• 599	. 203	6.7	201	.199	.901	· 902	ው (000	· O	8	O.	.901	200	> 0	000	σ	606	•	.897	∞ .

Table 17. Concluded

CHNDZ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0003
CONOZ	00000000000000000000000000000000000000	0002
CLNDZ		03
CMAFT	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	0241
CDAFT	00000000000000000000000000000000000000	0600
CLAFT	00000000000000000000000000000000000000	.0136
E C	11111111111111111111111111111111111111	24
Q O	00000000000000000000000000000000000000	20
13	00000000000000000000000000000000000000	2
CMT		24
C(D-F)	11111111111111111111111111111111111111	008
CLT	11000000000000000000000000000000000000	· ~
ALPHA		•
a. a. Z	00000000000000000000000000000000000000	•
Æ D. E	90000000000000000000000000000000000000	60

Table 18. Aeropropulsive Characteristics for MED Nozzle With Tails Off and $\delta_v=20^\circ$

	ORIGINAL PAGE IS OF POOR OURLITY
CHNDZ	1
CDNDS	00000000000000000000000000000000000000
ZUNDO	00000000000000000000000000000000000000
CMART	00000000000000000000000000000000000000
CDAFT	00000000000000000000000000000000000000
CLAFT	00000000000000000000000000000000000000
x	1
9	00100000000000000000000000000000000000
ช	
E E	
C(D-F)	
CLT	
ALPHA	2 m d g 2
α α. Σ.	44079 111111111111111111111111111111111111
MACH	11111111111111111111111111111111111111

Table 18. Concluded

CHNDZ	03935 0335 00335 00436 00436 00436 00436 00436 00436
CONOS	.0066 .0058 .0067 .0067 .0087 .0121 .0151
CLNDZ	.0288 .0235 .0193 .0266 .0297 .0325
CMAFT	
CDAFT	00000000000000000000000000000000000000
CLAFT	.0092 .0052 .0017 .0053 .0016 .0112 .0017
5	0.000000000000000000000000000000000000
5	.0113 .0106 .0089 .0111 .0141 .0184
נר	.0349 .0287 .0210 .03491 .0469
CMT	1 1 1 1 1 402 1 1 402 1 1 1 402 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C (0-F)	2502 .0106 .0089 .0111 .0141 .0184
CLT	.1209 .0287 .0210 .0291 .0408 .0465
ALPHA	-2 -01 3 -007 5 -004 5 -004 -2 -03
α a Z	100000000000000000000000000000000000000
MACH	

Table 19. Aeropropulsive Characteristics for HI Nozzle With Tails Off and $\delta_v=10^\circ$

CHNDZ		
ZONOS	00000000000000000000000000000000000000	1
CLNDZ	00000000000000000000000000000000000000	
CMAFT	00000000000000000000000000000000000000	,
CDAFT	00000000000000000000000000000000000000	;
CLAFT	00000000000000000000000000000000000000	,
T	1 1 1 1 1 1 1 1 1 1	
င္ပ		3
CL		•
CMT		
C(D-F)		1
170		r
ALPHA	1	•
<u>a</u> d.		•
MACH		>

Table 19. Concluded

CMNBZ	0289	0144	0165	0275	0296	0240	0271	0279	0104	0102	0109	0115	0121	0200	0100	0258	0269	0268	0269	0330
CONDZ	.0001	.0002	.0014	0009	• 0006	1000	6000	0007	0010	0007	0007	0003	0000	•0019	0008	.0002	•0000	•0012	.0019	•0042
CLNDZ	.0177	.0086	.0127	.0206	.0175	•0142	.0160	.0168	.0067	• 0056	.0077	.0091	*000	.0173	6400	.0129	.0155	.0162	.0164	.0253
CMAFT	0061	0020	0034	0090	0050	0037	0045	0051	0012	0026	0012	6000	*000	+0000-	0025	0062	0043	0028	0029	0039
CDAFT	.0052	.0054	.0055	.0060	•0056	.0057	• 0026	• 0055	0900•	• 900	0900•	•0058	•0057	• 0063	• 002 •	•0054	• 0057	• 0056	•0056	• 000 •
CLAFT	.0025	0013	.0013	.0071	.0011	.0002	6000	.0013	0014	0002	0014	0027	0018	.0008	0003	.0020	. 0007	0002	• 0007	•0036
T	0350	0164	0199	0365 0117	0345	0277	0316	0330	0116	0129	0121	0106	0115	0204	0125	0320	0312	0297	0298	0369
ខ	.0063	.0056	.0069	.0121	.0062	• 00064	*900	•004₽	• 0020	•0052	• 00 53	• 0055	.0057	•0082	• 0052	•0056	• 0062	1900	• 0075	.0105
น	.0201	.0073	.0140	.0056	.0186	.0144	.0168	.0181	.0053	•0054	•0063	*900	•0075	.0181	•0046	.0150	.0162	.0160	.0171	•0289
0 A +	0666 0721 0179	0164	0199	0365	0440	0438	0550	0653	0116	0129	0121	0106	0115	0204	0125	0548	0541	0527	0530	0090*-
C (0-F)	1701	.0056	.0069	.0120	0217	0762	1230	1817	• 00 20	.0052	•0053	• 0055	.0057	.0082	.0052	1211	1200	1192	1172	1120
CLT	.0519	.0110	.0140	.0277	•0254	.0278	.0367	•0458	•0053	.0054	•0063	•0064	•0075	.0181	•0046	.0278	.0356	.0423	6650	.0681
ALPHA	1.03	-3.01	3.02	8.48 01	.02	03	+0	03	• 02	-3.03	• 01	3.02	5.48	86.8	-3.03	-3.03	+00-	3.00	5.97	8.97
œ: œ:	7.00	1.05	1.05	1.06	2.00	4.03	5,65	7.76	1.07	1.06	1.06	1.06	1.07	1.08	1.06	5.58	5.59	5.62	5.59	5.61
MACH	. 803 . 799	800	.801	668	8.6	901	.895	.901	• 904	006.	006.	.901	6897	006	006.	.901	.901	006	896	668.

Table 20. Aeropropulsive Characteristics for HI Nozzle With Two Tails and $\delta_v=10^\circ$

CMNDZ		.024
CONDS		200
CLNDZ		15
CMAFT		020
CDAFT	00000000000000000000000000000000000000	989
CLAFT		- 12 - 20 -
T U		.052
00		.0093
נו		33
CMT		ってゅ
C(D-F)	1	094 094 151
CLT		57.5
ALPHA		000
α α Ζ	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000
T O V		O O C

Table 20. Concluded

CMNDZ	0265 0268 0106	0101	0102	0148	-0104	0415	0237	0287	0282	0181	0175	0181	0169	0199	0277	0172	0263	0287	0308		0350	0176
CDNOS	0000	0000	.0010	.0032	.0002	•0040	•0020	.0015	.0012	•0013	.0010	.0014	.0023	.0038	•0065	.0007	•0002	.0016	•0059	•0049	•0062	.0010
CLNDZ	.0165	0000	.0107	.0148	.0012	.0247	.0155	0180	.0175	.0128	.010	.0131	.0137	.0167	•0225	.0103	.0157	.0180	• 0205	•0220	.0242	.0116
CHAFT	0287 0288	0033	0410	0690	0212	0316	0239	0264	0263	0214	0029	0215	0400	0593	0733	0033	0071	0265	0459	0646	0757	0214
CDAFT	.0082	0083	.0095	.0154	2000.	.0076	•0074	.0075	• 0075	•0075	•0075	•0075	• 0086	.0115	.0153	• 0075	•0073	•0075	0600*	.0120	.0157	• 0075
CLAFT	.0163 .0163	-0019	.0255	.0451	.0124	•0195	.0144	.0163	.0162	•0126	0011	.0127	.0263	• 0402	•0400	0008	.0020	.0163	•0306	.0441	•0518	.0125
E U	0552	0134	0512	0838	0386	0731	0475	0551	0545	0395	0204	0396	0569	0792	1010	0205	0334	0553	0767	0972	1107	0389
00	.0091	0083	.0105	•0186	0600	.0116	•0095	\$010°	• 0087	•0088	•0085	6800	•0110	•0153	.0218	• 0082	.0078	*0045	•0110	•0166	.0219	•0082
נו	.0328	00042	.0351	•0599	.0236	•0443	•020	.0342	.0337	•0254	•0095	•0258	•0400	•0569	•0724	•0005	•0176	•0343	.0508	•0660	•0760	•0245
E .	0865 0923	-0134	0512	0838	0386	0460-	0680	0401	1099	0395	0204	0396	0569	0792	1010	0205	0854	1067	1280	1484	1622	0389
C(0-F)	1653 2011	.0083	.0105	010	38	• 05	.114	S IC	• 30	æ	• 0085	6800	ā	• 0152	_	8	281	.27	2678	•25	.252	• 0085
CLT	.0594	000	0 3	0.5	- ~	0.5	4 .	ο ~	9	2	0	\sim	m	S	~	0	4	~	0	m	9	\sim
AL P HA	1005		3.01	•	• •	• 01	•	- 03 - 03	•	• 01	•	•	•	•	•	-3.02	•	•	•	•	•	•
a a x	6.00		00	0	20	6	0		3.	਼	0	0	਼	•	0	•	•	3	5	5	9	0
MACH	. 800 . 800 700	803	600	.798	667.	•601	.601	009	Φ	.598	.597	.601	.598	009•	.599	.601	•601	.601	009	• 600	.601	• 600

ORIGINAL PAGE IS OF POOR QUALITY

	CMNDZ	0128		٥.	9	9	9	-,00056		9	0169	9	9) (֓֞֜֜֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֜֜֜֓֓֓֓֜֜֡֓֡֡֡֡֓֜֜֡֡֡֡֡֡		0	٠	0227	\circ	2 9	9	•	9	٠ د	-,0273		ೌ	0077	0	9	9	0	္င	•	$\supset C$	- 0338	•
	20 N Q D	0139	1 ~	3	2	0	φ.	7 7	014	S	.0166	~	•0035	1000	• 0003	100	•0012		6	014	0.510	000	000	00	50	4000	0	000		0000		6	5	.0005	5 6	200	3 5	•0010
	CLNDZ	.0051	•	~	4	5	J ,	0018	. 0	4	9	~	2	710	2 7 0	8	013	0	œ.	\$ -		3	5	æ	3.	ρα	9	03		80	ø ,	m i	2	013	- 1	~ c	, 0	.0160
$1 \delta_v = 10^\circ$	CMAFT	.0038	03	02	.0023	02	•0050	3 5	052	089	9	•031	.047	2004		038	•031	56	55	001	.0031	018	033	.023	• 028	300	017	00	17	038	.071	.103	• 000	010	700	000	700	034
e Tails and	CDAFT	.0113	: ::	11	.0114	11	(13	"	18	21	8	∞ ∣	2 6	2 6	- 1	~	cr)	3	- 0	n -	Ω	0	0	0	o c	0	O	0	0	3	_	0	50	₽:	15	2 0	000
/ith Three	CLAFT	0052	•004	•003	• 003	003	•005	0.40	034	061	71	.0174	27	010	120	.0221	017	043	0419	200	7,000	900	015	.0101	•0127	213	.0062	0010	90	13	30	50	0	000 000 000	70	220	, v	.0185
Nozzle W	E	0090	017	024	28	027	027	<u> </u>	067	-	121	048	388	00000	000	190	050	020	m	027	- C C C - I	025	92	•036	051	ر د د	025	010	024	046	080	115	010	040	000	083	r ye	90
ics for HI	0	.0252	• 0243	.0245	• 0234	.0213	.0203	.0275	, 0	• 0344	.0379	. 0092	.0115	, coo.	2110	.0095	*0092	.0280	.0267	.0253	7070	9600	.0105	6600	•0114	• 0110	9600	*600	6600.	•010•	.0141	•0180	0600	0100	0110	0	4000	10
naracterist	כר	0001	005	08	-	11	011	τ C	045	075	87	025	050	1000	900	· 0	030	2	33	12	000.	11	031	18	56	030	12	002	12	9	48	73	•0018	19	7050.	9 6	س در	34
Aeropropulsive Characteristics for HI Nozzle With Three Tails and	F# O	0090	27	37	~	51		7 =	740	03	1217	4	1093	ָרָרָ מַרָּי	707	2 2	050	50	20	040	3 5	25	990	45	29	080	25	010	24	46	80	15	0	063		106	י מ	071
	C(D-F)	.0252	022	•047	.085	119	135	~ ~	027	034	037	600	050	• L C &	. 272	299	• 000	• 028	• 045	045	200	600	010	•045	.071	115	600	600	600	010	014	018	000	117	4 T T •	112		058
Table 21.	CLT	0001	012	019	27	032	•034	0.45	045	75	087	025	065	1 4	200	36	030	45	•020	23	700	011	38	026	040	020	012	002	012	026	048	073	001	031	7 10	072	220	14
	ALPHA	- 02		•	•	•	٠	•			•	• 00	02	•	•	40.1	•	•	3	• 05	• •	00	•	•	•	-03	• •	-3.01	•	•	•	•	•	က	•	•	•	000
	a d z		•	•	7.9	0	o (0 %	· 00	00	₽	•	6	•	• ·		•	ထ	•	٠,	0 %	0	•	•	·	•		9	0	•	٥.	਼	•	٠.	۰	9	•) O
	MACH	1.200	61.	•20	• 20	•19	61.	02.	200	.20	.20	9	9	2 3	0 4	9	99	• 20	• 20	200	20	6	3	6	6	9	• 0	06	9	0	0	0	ው	о т (\circ	\circ	•	0

Table 21. Concluded

CHNDZ	
CDNDS	1 000000000000000000000000000000000000
ZUNIO	
CMAFT	1
CDAFT	
CLAFT	- 0185 - 0194 - 0194 - 0138 - 0138 - 0138 - 0138 - 0138 - 0140 - 0140 - 0140 - 0140 - 0167
E	1005
90	.01001 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
73	00339 00334 00370 00226 00226 00226 00226 00226 00226 00226 00226 003399 003999
FWO	100995 000995 000999 000999 00099 00099 00099 00099 00099 000999 000999 000999
C(D-F)	
CLT	0050 0050 0050 0050 0050 0050 0050 005
ALPHA	1 1 1
α a z	ни и и и и и и и и и и и и и и и и и и
MACH	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22. Aeropropulsive Characteristics for HI Nozzle With Four Tails and $\delta_v=10^\circ$

CHNDZ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CDNGZ	10000000000000000000000000000000000000	•
CLNDZ	44711111111111111111111111111111111111	
CMAFT	00000000000000000000000000000000000000	
CDAFT	0.000000000000000000000000000000000000	•
CLAFT		•
Σ U	1 1 1 1 1 1 1 1 1 1	
a _o	00000000000000000000000000000000000000	
75		
E S		1
C(D-F)		
SLT		3
ALPHA		•
a: a. Z	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
₹ 0		•

Table 22. Concluded

CMNDZ	1.0088	0097	0139	0155	0417	0228	0280	0156	0162	0156	0176	0219	0158	0262	0280	0303	0332	0338	0162	0290	0287	0162
CDNOZ	.0005	.0016	.0029	.0011	.0040	•0018	•0030	•0000	.0016	•0024	•0036	•0054	•0000	.0021	.0032	.0041	•0056	0900	.0010	•0015	.0010	8000°
CLNDZ	.0072	.0109	.0158	.0103	•0245	.0147	.0176	*600	.0120	.0130	.0155	•0192	9600.	.0152	.0178	.0200	.0229	.0235	.0115	.0183	.0181	.0114
CMAFT	0422	1222	1642	0419	0631	0482	0504	-,0064	0415	0775	1260	1718	0065	0122	0506	+060	1406	1502	0415	0516	0515	0412
CDAFT	.0100	.0176	.0253	.0093	•0003	• 0092	.0092	0600	.0092	.0116	.0173	.0259	6800	.0087	.0092	.0121	.0183	.0199	.0091	• 0092	• 0092	.0091
CLAFT	.0239	.0763	.1023	.0251	.0387	•0292	.0307	.0007	.0247	*6 *0.	.0813	.1100	.0008	•0045	•0307	.0579	• 0605	9960.	.0247	.0316	.0315	.0245
r U	0510	1319	1781	0574	1048	0710	0785	0220	0577	0931	1436	1938	0223	0383	0785	1207	1738	1840	0577	0805	0802	0574
S	.0105	.0192	.0283	.0104	.0134	.0109	•0122	• 0095	.0107	.0140	.0208	.0313	*000	.0107	.0124	.0162	.0239	.0258	.0102	.0108	.0102	6600.
10	.0311	.0872	.1181	.0354	.0631	.0440	.0483	.0101	.0367	•0624	.0967	.1292	.0104	.0197	.0485	.0779	.1135	.1201	•0362	6650	•0496	0359
F 50	0510	1319	1781	0574	1264	0.910	1148	0220	0577	0931	1436	1938	0223	0663	1064	1490	2023	2125	0577	1326	1362	0574
C (3-E)	.0105	.0192	.0283	.0104	0509	1116	1742	.0095	•0107	.0140	•0208	.0313	*000	1435	1404	1372	1282	1255	.0102	2760	3024	6600
CLT	.0311	.0871	.1130	.0354	• 0 7 8 B	.0620	.0786	.0101	.0367	, 5624	1950.	.1291	.0105	•0357	•0724	.1103	.1540	.1621	.0362	0560*	•0972	.0359
ALPHA	03	5.46	8.75	.01	+0.	01	+00-	-3.03	-•03	2.38	5.48	3.96	-3.02	-3.01	01	2.97	5.99	5.57	01	03	05	00.
a a Z	1.04	1.03	1.04	1.02	2.03	3,03	*0°	1.03	1.02	1.02	1.02	1.02	1.03	3.51	3.49	3.54	3.54	3.53	1.03	5.63	6.03	1.03
T O V	. F02	. 797	. R01	.601	009	.602	• 601	-602	009	.598	009•	.599	• 599	.601	.549	.601	666.	009•	009•	• 600	• 599	009

Table 23. Aeropropulsive Characteristics for HI Nozzle With Tails Off and $\delta_v=20^\circ$

CHNDZ		.062 .062 .035
CONOS	00000000000000000000000000000000000000	000
CLNDZ	00000000000000000000000000000000000000	ろゅき
CMAFT	00000000000000000000000000000000000000	15 15 08
CDAFT	00000000000000000000000000000000000000	050
CLAFT	00000000000000000000000000000000000000	8 8 0
E U	<u> </u>	077
Q.	00000000000000000000000000000000000000	14 14 10
75		4 4 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
E W D		131 130 044
C(0-F)	11. 10. 00. 00. 00. 00. 00. 00. 00. 00.	078 077 010
CLT	00000000000000000000000000000000000000	078 077 025
ALP 1A		000
a: a. z	00000000000000000000000000000000000000	000
MACH	20000000000000000000000000000000000000	~~~

Table 23. Concluded

CHNDZ	0316 0358 0414	1.0462 1.0535 1.0354	-0383	0656	0752 0808 0668	0695 0721 0763 0805
CDNDS	.0043	.0107 .0145 .0056	00067	00049	.0149 .0210	.0111 .0138 .0170 .0208
CLNDZ	.0177	0279	0272	0373	.0427 .0427 .0466	.0393 .0409 .0435 .0485
CMAFT	0070	0126 0160 0085	0106	0232	0203 0225 0290 0171	0196 0222 0250 0288
CDAFT	.0049	00062	.0046	00046	00058	.0049 .0058 .0070 .0088
CLAFT	.0019	.0082 .0116 .0037	.0093	0026	.0152 .0152 .0210	.0122 .0148 .0174 .0209
5	0386 0442 0521	0588 0694 0438	0489	0888	0977 1097 0840	0891 0943 1013 1093
5	.0109	.0169 .0219 .0107	.0116	0268	.0206 .0298 .0134	.0160 .0195 .0240 .0296
1	.0196 .0249 .0314	0361	0279	0559	.0579 .0579 .0676	.0513 .0557 .0609 .0669
E E	0386 0442 0521	1.0588 1.0694 1.0438	0489	0888 0407 1969	2069 2052 1787	1837 1891 1965 2046
C (0-F)	.0109 .0109	.0169 .0219 .0107	.0116	00268	1661 1209 1509	1449 1385 1208 1208
CLT	.0197 .0249 .0313	.0361 .0443 .0242	0000 0000 0000 0000 0000	0558	.1379 .1379 .1534	.1121 .1248 .1385 .1526
ALPHA	-3 -05 -05	8.07 8.05 1.04	1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 3 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	2.94 8.93 -3.07	1 0 0 4 0 0 0 4 0
G G	0000	0000	0000	1.00	4.46 3.45 3.45	3.97 3.95 3.96 1.00
# 0 +	8 8 8 1 000 8 6	997.	. 599 599	. 603 . 603	599 597 601	. 601 . 599 . 599

Table 24. Aeropropulsive Characteristics for HI Nozzle With Two Tails and $\delta_v=20^\circ$

CMNOZ	1	280
CDNDZ	00000000000000000000000000000000000000	13
CLNDZ		٥
CMAFT	00000000000000000000000000000000000000	\$
CDAFT		5
CLAFT)
F	11111111111111111111111111111111111111	· 0
ОЭ	00000000000000000000000000000000000000	20
10		7.7
E C	11111 11111111111111111111111111111111	1865
C (D-F)		• 050
CLT		12
ALPHA		្
a. 2	00 00 00 00 00 00 00 00 00 00 00 00 00	•
MACH	11111111111111111111111111111111111111	•

Table 24. Concluded

CMNDZ	0647 0594 0345	0308	1.0408	0310 0605 0638	0645 0652 0662 0344
CDNDZ	.0097	.0040	0107	00049	.0104 .0114 .0123
CLNDZ	.0373 .0341 .0218	.0184	0279	.0185 .0343 .0370	.0378 .0386 .0395
CMAFT	0438 0417 0281	0084	-0680	0086 0235 0444	0515 0585 0662 0273
CDAFT	.0077	.0073	0120	.0071 .0069 .0077	.0082 .0090 .0099
CLAFT	.0278	.0026	000000000000000000000000000000000000000	.0027 .0129 .0282	.0333 .0384 .0440
ž . O	1085 1012 0625	0392	1088 1255	0396 0840 1082	1160 1238 1325 0618
00	.0174 .0172 .0134	.0120	.0227	.0120 .0144 .0175	.0186 .0204 .0222
13	.0650	.0209	0739	.0212	.0711 .0770 .0834
FMO	1809 1855 0625	0392	1.1088	0396 1573 1901	1878 1958 2046 0618
C (0-F)	0885 1180 .0134	.0120	0227	.0120 0955 0875	0856 0832 0808 0132
CLT	.1106 .1143 .0387	.0209	.0739 .0739	.0212 .0875 .1103	.1140 .1258 .1342
AL P 4A	02	-3.02	3 N N N N N N N N N N N N N N N N N N N	-3.02 -3.03 -04	1. 46 2. 46 - 02
a. 2	2.99	1.00	> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.00 3.03 2.99	2.99
F C T	.600 .600	600	. 599 . 601	. 603 . 603	.601 .601 .600

Table 25. Tail Drag Coefficients

${ m Empennage} \ { m arrangement}^a$	M	Nozzle	C
2	0.60	AXI	$C_{D, m tails} \ 0.0013$
2	0.60		0.0013
		LO	
		MED	
	↓ ↓	HI	
	0.80	AXI	1
	!	LO	
		MED	
		HI	
	0.90	AXI	-
	0.50	LO	
		MED	1
			1
	<u>+</u>	HI	+
	1.20	AXI	0.0038
		LO	
		MED	
	1	HI	<u> </u>
3	0.60	AXI	0.0017
ŀ		LO	
		MED	1
	↓ ↓	HI	↓ ↓
	0.80	AXI	0.0016
	0.00	LO	0.0010
		MED	
		HI	
	*		-
	0.90	AXI	
		LO	
		MED	
	↓ ↓	HI	\
	1.20	AXI	0.0052
		LO	.0053
		MED	.0053
↓	↓	HI	.0054
4	0.60	AXI	0.0023
[LO	
		MED	
1		HI	
	0.80	AXI	0.0022
	0.80	LO	0.0022
		MED	
	+	HI	4
	0.90	AXI	
]		LO	
		MED	
	↓	HI	↓
	1.20	AXI	0.0071
		LO	.0072
		MED	.0072

 $[^]a$ Numbers refer to number of tails in empennage arrangement.

nonaxisymmetric convergent-divergent dry power nozzle. All dimensions are given in inches unless otherwise specified.

(b) Jet simulation system and balance arrangement.

Figure 1. Continued.

(c) Wing planform geometry.

Figure 1. Concluded.

68

(a) Overall view.

Figure 2. Airplane model.

Figure 2. Continued.

(b) Medium-a spect-ratio nozzle with two tails and $\delta_v=0^\circ.$

ORIGINAL PAGE IS OF POOR QUALITY

 $\left(c\right)$ Twin axisymmetric nozzles with four tails.

Figure 2. Continued.

(d) High-aspect-ratio nozzle with tails off and $\delta_v=10^\circ$.

Figure 2. Concluded.

61.3 1.000 2.998 5.000 7.998 10.000 62.3 1.237 2.526 7.526 64.3 2.344 64.8 2.464 0.0 4.800 65.8 2.250 66.3 2.250 66.3 2.250 66.3 2.250 66.3 2.250 66.3 2.094 67.8 2.004 67.8 2.004 67.8 2.004 67.8 68.3 1.938 67.8 68.3 1.782 68.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.782 69.3 1.783 69.8 2.525 69.3 1.784 69.3 1.784 69.3 1.784 69.3 1.784 69.3 1.800 69.3 1.782 69.8 2.598 7.798 7.798 7.798 7.798 7.798 7.798		Axisy	mmetric afte	Axisymmetric afterbody and nozzle	ozzle	
1.000 2.998 5.000 7.998 10. 1.237 2.526 7.526 1.656 1.626 1.626 1.480 2.041 7.041 7.041 2.067 .866 5.866 9.86 2.384 .231 4.928 5.000 9.9 2.400 4.800 4.928 5.000 9.9 2.328 4.500 4.500 9.9 2.172 4.344 9.9 9.9 2.094 4.188 9.9 9.9 2.094 4.032 8.8 9.9 1.782 3.700 8.8 8.8 1.704 3.408 8.8 8.8 1.548 3.252 8.8 8.8 1.342 3.096 8.8 7.7 1.342 2.684 7.7	FS	ĸ	₹	노	WI	WT
1.237 2.526 7.526 7.526 1.480 2.041 7.041	61.3	1.000	2.998	2.000	7.998	10.000
1. 480 2. 041 7. 041 1. 762 1. 476 6. 476 1. 476 2. 384 2. 384 2. 314 2. 464 0.0 4. 800 2. 328 5. 000 9. 2. 250 4. 500 4. 500 6. 2. 328 2. 328 6. 2. 328 6. 3. 328 6. 3. 328 6. 3. 328 6. 3. 328 6. 3. 328 6. 3. 348 8. 348 8.	62.3	1.237	2.526		7.526	
2. 267 866 5. 866 231 5. 231 5. 231 5. 231 5. 231 5. 231 5. 230 5. 866 5. 866 5. 866 5. 866 5. 250 4. 500 4. 656 5. 250 4. 500 4. 656 5. 250 4. 500 4. 656 5. 2094 4. 188 4. 500 4. 344 5. 2094 4. 188 4. 344 5. 2094 4. 188 3. 366 8. 8. 8. 3. 720 8. 8. 8. 3. 720 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	62.8	1.480	2.041		7.041	_
2.067866	63.3	1.762	1.476		6.476	
2. 384231	63.8	2.067	998.	188.1	5.866	
2. 464 0.0 4,928 5.000 9. 2. 400 2. 328 4. 656 9. 2. 250 4. 550 9. 2. 172 4. 4. 188 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	64.3	2.384	.231	_	5.231	-
2. 400 2. 328 2. 250 2. 250 2. 172 2. 094 4. 032 2. 016 3. 876 1. 938 3. 720 3. 736 1. 626 3. 256 3. 256 3. 309 3. 340 3.	64.8	2.464	0.0	4.928	2.000	9.928
2. 328 2. 250 2. 250 4. 450 4. 344 2. 004 2. 004 4. 188 9. 9. 9. 1.93 1. 938 1. 938 1. 704 1. 702 1. 704 1. 626 1. 548 1. 548	65.3	2.400	_	4.800	_	9.800
2. 250 2. 250 2. 172 2. 094 4. 344 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9	65.8	2.328	_	4,656		9.626
2. 172 2. 094 2. 094 2. 094 2. 016 3. 016 3. 876 3. 876 3. 700 3. 700 3. 700 3. 252 3. 900 3. 252 3. 900 3. 342 3. 300 3. 342 3. 300 3. 342 3. 300 3. 342 3.	66.3	2.250		4.500		9.500
2. 094 4. 188 9. 2. 016 4. 032 9. 9. 1. 938 3. 876 8. 8. 1. 860 3. 720 8. 8. 1. 782 3. 564 8. 1. 704 3. 252 8. 1. 548 1. 349 9. 2. 798 7. 1. 342 7	8.99	2.172		4.344		9.344
2. 016 4, 032 9. 1, 938 3, 876 8. 1, 860 3, 720 8. 1, 782 3, 564 8. 1, 704 3, 252 8. 1, 548 3, 096 8. 1, 342 7.	67.3	2.094		4, 188		9.188
1. 938 3. 876 8. 8. 1. 860 1. 782 3. 720 8. 1. 782 1. 782 1. 704 3. 254 8. 1. 626 3. 252 8. 1. 548 1. 349 2. 798 7. 7. 1. 342	8.79	2.016	_	4.032		9.032
1. 860 3. 720 8. 1. 782 1. 782 1. 782 1. 704 3. 408 8. 1. 626 3. 252 8. 1. 548 1. 399 1. 342	68.3	1.938		3.876		8.876
1. 782 1. 704 1. 626 1. 548 1. 548 1. 399 1. 342 1. 342 2. 684 7. 7.	68.8	1.860		3.720	_	8.720
1. 704 3. 408 8. 1. 626 3. 252 8. 1. 548 3. 096 8. 1. 548 3. 096 8. 1. 399 7. 2. 798 7. 1. 342 7. 2. 684 7. 7.	69.3	1.782		3.564		8.564
1.626 3.252 8. 1.548 3.096 8. 1.399 2.798 7. 1.342 2.684 7.	8.69	1.704		3.408		8.408
1.548 1.399 1.342 2.798 7. 2.684 7.	70.3	1.626		3.252		8.252
1.399 2.798 7. 1.342 2.684 7.	70.8	1.548		3.096		8.096
1.342 2.684 7.	71.5	1,399		2.798		7.798
	71.7	1.342	-	2.684	-	7.684

		WT	10 000
	,	WI	8 000
'	ric afterbody	Ή	2
	Nonaxisymmetric afterbody	Ŧ	3 000
	Z	œ	5
		FS	,

- WI -

<u>*</u>

	WT	10.000	9.964	9.922	9.866	9.794	90.706	9.605	9.484	9.350	9.232
	WI	8.000	8.060	8.084	8. 100	8. 108	8, 104	8.088	8.062	8.022	8.004
ic afterbody	도	5.000	4.964	4. 922	4.866	4.794	4.706	4.602	4, 484	4.350	4.202
Nonaxisymmetric afterbody	Ŧ	3.000	3,060	3.084	3, 100	3, 108	3, 104	3.088	3.062	3.022	2.974
N	æ	1.000	. 952	.919	883	28	188	757	.711	999	.614
	FS	61.3	62.3	8 29	63.3	63.8	6.3	8.8	65.3	65.8	6.9

	M	9.106	8 98	80,	8.744	07070	0.400	0,000	8, 212	9.000	. 838	7.798
ratio nozzle	M	7.980	7.960	7.952	7.940	7.924	7.908	7.888	0/8.7	200	018.7	7.798
High-aspect-ratio nozzle	HT	4.012	3.806	3.582	3.342	3.090	778.7	2.540	2.262	1.972	1.564	1.450
_	Ħ	2.886	2.784	2.668	2.538	2.398	2.244	2.08	1.920	 	1.516	1.450
	WT	9.058	8.868	8.664	8. 422	8.234	7.996	7.746	7.482	7.208	908 9	9.90
Medium-aspect-ratio nozzle	W	7. 932	7.846	7.750	7.618	7.542	7.418	7.284	7.140	986.9	6.758	069.9
dium-aspect	Ħ	4.038	3.858	3.664	3.422	3.234	2.996	2.746	2.482	2.208	1.806	1.690
We	Ŧ	2 912	2.836	2,750	2.618	2.542	2.418	2.284	2.140	1.986	1,758	1.690
	W	9 018	8 752	8,458	8, 136	7.786	7.418	7.028	6.620	6.194	5.570	5.390
o nozzle	M	7 807	7 730	7.544	7.332	7.094	6.840	6.566	6.278	5.972	5.522	5.390
Low-aspect-ratio nozzle	H	7 052	4.5	3,754	3,592	3,418	3.230	3.026	2,806	2.568	2.206	2.098
Low	Ξ	2 026	2 884	28	2.788	2,726	2.652	2.564	2.464	2.346	2.158	2.098
	2	693	9:	457	405	346	. 289	. 231	171	1111	024	0.0
	FS	0 77	0.00	× 29	68.3	8.8	69.3	8 69	70.3	70.8	7 5	71.7

(a) External coordinates.

Figure 3. External geometry. Symbols used are defined in above sketch. All dimensions are given in inches.

(b) Aft-end cross-sectional area distribution.

Figure 3. Concluded.

Figure 4. Nozzle internal geometry. All dimensions are given in inches unless otherwise specified.

(b) Medium-aspect-ratio nozzle.

Figure 4. Continued.

(c) High-aspect-ratio nozzle.

Figure 4. Continued.

Nozzle interfairing									
FS	RF	HF							
66. 65 66. 80 67. 30 67. 80 68. 30 68. 80 69. 30 69. 80 70. 30 70. 80	2. 195 2. 172 2. 094 2. 016 1. 938 1. 860 1. 782 1. 704 1. 626 1. 548	4. 390 4. 344 4. 160 3. 854 3. 467 3. 017 2. 496 1. 900 1. 220 0. 444							
71.06	1.501	0.0							

(d) Twin axisymmetric nozzles. RF and and HF are defined in sketch.

Figure 4. Concluded.

Figure 5. Empennage geometry. All dimensions are given in inches unless otherwise specified.

(b) Horizontal tail geometry.

Figure 5. Continued.

80

(c) Vertical tail geometry.

Figure 5. Concluded.

81

Figure 6. Details of bellows arrangement used to transfer air from nonmetric to metric portions of model.

(a) Effect of nozzle configuration with $\delta_v = 0^{\circ}$.

Figure 7. Nozzle static internal performance.

(b) Effect of design thrust vector angle for medium-aspect-ratio nozzle.

Figure 7. Continued.

(c) Effect of design thrust vector angle for high-aspect-ratio nozzle.

Figure 7. Concluded.

Figure 8. Effect of nozzle configuration on aft-end aerodynamic characteristics with tails off and $\delta_v = 0^{\circ}$.

Figure 8. Continued.

Figure 8. Continued.

Figure 8. Concluded.

Figure 9. Effect of tail configuration on aft-end aerodynamic characteristics for twin axisymmetric nozzles.

Figure 9. Continued.

Figure 9. Concluded.

Figure 10. Effect of tail configuration on aft-end aerodynamic characteristics for low-aspect-ratio nozzle.

Figure 10. Continued.

Figure 10. Continued.

96

Figure 10. Concluded.

Figure 11. Effect of tail configuration on aft-end aerodynamic characteristics for medium-aspect-ratio nozzle with $\delta_v=0^\circ$

Figure 11. Continued.

99

Figure 11. Continued.

Figure 11. Concluded.

Figure 12. Effect of tail configuration on aft-end aerodynamic characteristics for high-aspect-ratio nozzle with $\delta_v=0^\circ$.

(c) M = 0.90. Figure 12. Continued.

Figure 12. Concluded.

Figure 13. Effect of tail configuration on aft-end aerodynamic characteristics for high-aspect-ratio nozzle with $\delta_v=10^\circ$.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 13. Continued.

Figure 13. Concluded.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 14. Effect of design thrust vector angle on aft-end aerodynamic characteristics for high-aspect-ratio nozzle with tails off.

(b) M = 0.90. Figure 14. Continued.

Figure 14. Concluded.

Figure 15. Effect of tail configuration on aft-end aerodynamic characteristics for twin axisymmetric nozzles with $\alpha = 0^{\circ}$.

ORIGINAL PAGE IS OF POOR QUALITY

113

Figure 15. Concluded.

Figure 16. Effect of tail configuration on aft-end aerodynamic characteristics for low-aspect-ratio nozzle with $\alpha=0^{\circ}$.

(b) $C_{D,\text{aft}}$ and $C_{D,n}$ versus NPR. Figure 16. Concluded.

Figure 17. Effect of tail configuration on aft-end aerodynamic characteristics for medium-aspect-ratio nozzle with $\delta_v = 0^{\circ}$ and $\alpha = 0^{\circ}$.

ORIGINAL PAGE IS OF POOR QUALITY

(b) $C_{D,aft}$ and $C_{D,n}$ versus NPR.

Figure 17. Conclude

Figure 18. Effect of tail configuration on aft-end aerodynamic characteristics for high-aspect-ratio nozzle with $\delta_v=0^\circ$ and $\alpha=0^\circ$.

ORIGINAL PAGE IS OF POOR QUALITY

(b) $C_{D,aft}$ and $C_{D,n}$ versus NPR.

Figure 18. Concluded.

Figure 19. Effect of tail configuration on aft-end aerodynamic characteristics for high-aspect-ratio nozzle with $\delta_v=10^\circ$ and $\alpha=0^\circ$.

(b) C_{D,aft} and C_{D,n} versus NPR. Figure 19. Concluded.

(a) C_D versus NPR.

Figure 20. Effect of tail configuration on aft-end aerodynamic characteristics for high-aspect-ratio nozzle with $\delta_v=20^\circ$ and $\alpha=0^\circ$.

ORIGINAL PAGE IS OF POOR OWALITY

123

Figure 20. Concluded.

Figure 21. Static pressures on nozzle upper and lower flaps with high-aspect-ratio nozzle and tails off at M=0.60 and $\alpha=0^\circ$. All dimensions are given in inches.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 22. Effect of nozzle-tail combination on drag coefficient of entire aft end and nozzle drag coefficient with $\alpha = 0^{\circ}$ and NPR = 5.6 at $\delta_v = 0^{\circ}$. Open symbols denote C_D ; solid symbols denote $C_{D,n}$.

Figure 23. Effect of tail arrangement on tail interference drag increments with $\alpha=0^\circ.$

Figure 23. Continued.

Figure 23. Continued.

Figure 23. Concluded.

Figure 24. Summary of tail interference drag increments with $\alpha=0^\circ$ and NPR = 5.6. Symbols represent interpolated data.

National Aeronalutics and Space Administration Report Documentation Page				
1. Report No. NASA TP-2704	2. Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle			5. Report Date	
Effects of Afterbody Boattail Design and Empennage Arrangement on Aeropropulsive Characteristics of a Twin-Engine Fighter Model at Transonic Speeds			June 1987	
		ne Fighter	6. Performing Organization Code	
7. Author(s) Linda S. Bangert, Laurence D. Leavitt, and David E. Reubush			8. Performing Ore	ganization Report No.
		eubusn	L-16227	
9. Performing Organization Name and Address			10. Work Unit No.	
NASA Langley Research Center			505-62-91-01	
Hampton, VA 23665-5225			11. Contract or G	rant No.
12. Sponsoring Agency Name and Address			13. Type of Report and Period Covered	
National Aeronautics and Space Administration			Technical Pa	
Washington, DC 20546-0001		ŀ	14. Sponsoring Agency Code	
15. Supplementary Notes				
The effects of empennage arrangement and afterbody boattail design (upper/lower nozzle-flap boattail angle versus nozzle-sidewall boattail angle) of nonaxisymmetric nozzles on the aeropropulsive characteristics of a twin-engine fighter-type model have been determined in an investigation conducted in the Langley 16-Foot Transonic Tunnel. Three nonaxisymmetric and one twin axisymmetric convergent-divergent nozzle configurations were tested with three different tail arrangements: a two-tail V-shaped arrangement; a staggered, conventional three-tail arrangement; and a four-tail arrangement similar to that on the F-18. Two of the nonaxisymmetric nozzles were also vectorable. Tests were conducted at Mach numbers from 0.60 to 1.20 over an angle-of-attack range from -3° to 9°. Nozzle pressure ratio was varied from 1 (jet off) to approximately 12, depending on Mach number. Results of this study indicate that at design nozzle pressure ratio, the medium-aspect-ratio nozzle (with equal boattail angles on the nozzle sidewalls and upper and lower flaps) had the lowest zero-angle-of-attack drag of the nonaxisymmetric nozzles for all tail configurations at subsonic Mach numbers. The drag levels of the twin axisymmetric nozzles were competitive with those of the medium-aspect-ratio nozzle at subsonic Mach numbers and clearly had the lowest drag at a Mach number of 1.20.				
17. Key Words (Suggested by Authors(s)) Nonaxisymmetric nozzles Boattail drag Empennage arrangement Afterbody drag		18. Distribution Statement Unclassified—Unlimited		
		Sub	oject Category	02
19. Security Classif.(of this report)	20. Security Classif.(of this page)		21. No. of Pages	22. Price
Unclassified	Unclassified		132	A07