Лабораторная работа № 8

Модель ТСР/АОМ

Шуплецов Александр Андреевич

Содержание

1	Введение 1.1 Цели и задачи	4
2	Выполнение лабораторной работы 2.1 Реализация модели в хсоз	
3	Выводы	11

Список иллюстраций

2.1	Переменное окружение	5
	Модель TCP/AQM в xcos	6
2.3	Динамика изменения размера TCP окна W (t) и размера очереди Q(t)	6
2.4	Фазовый портрет (W, Q)	7
2.5	Динамика изменения размера TCP окна W (t) и размера очереди	
	Q(t) при C = 0.9	7
2.6	Фазовый портрет (W, Q) при C = 0.9	8
2.7	Модель TCP/AQM в OpenModelica	8
2.8	Установки симуляции OpenModelica	9
2.9	Динамика изменения размера TCP окна W (t) и размера очереди	
	Q(t). OpenModelica	9
2.10		10

1 Введение

1.1 Цели и задачи

Реализовать модель TCP/AQM с помощью xcos и OpenModelica.

2 Выполнение лабораторной работы

2.1 Реализация модели в хсоз

Зададим переменное окружение(рис. [2.1]).

Рис. 2.1: Переменное окружение

Затем реализуем модель TCP/AQM и разместим регистрирующие устройства(рис. [2.2]):

Рис. 2.2: Модель TCP/AQM в хсоs

Получим динамику изменения размера TCP окна W(t)(зеленая линия) и размера очереди Q(t)(черная линия), а также фазовый портрет. (рис. [2.3], [2.4]):

Рис. 2.3: Динамика изменения размера TCP окна W (t) и размера очереди Q(t)

Рис. 2.4: Фазовый портрет (W, Q)

Уменьшив скорость обработки пакетов С до 0.9 можно увидеть, что автоколебания стали более выраженными(рис. [2.5], [2.6]).

Рис. 2.5: Динамика изменения размера TCP окна W (t) и размера очереди Q(t) при C = 0.9

Рис. 2.6: Фазовый портрет (W, Q) при C = 0.9

2.2 Реализация модели в OpenModelica

Перейдем к реализации модели в OpenModelica. Зададим параметры, переменные и систему уравнений(рис. [2.7]):

```
lab8
🖶 🚜 📘 🕦 Доступный на запись 🛮 Model 🔻 Вид Текст 🗸 lab8 🗸 /home/openmodelica/lab8.mo
      model lab8
      parameter Real N = 1;
      parameter Real R = 1;
      parameter Real K = 5.3;
      parameter Real C = 1;
  8
      Real W(start = 0.1);
      Real Q(start = 1);
 10
 11
      equation
 12
 13
      der(W) = 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
 14
      der(Q) = if (Q==0) then max(N*W/R-C,0) else (N*W/R-C);
 15
 16
      end lab8;
```

Рис. 2.7: Модель TCP/AQM в OpenModelica

Затем установим параметры симуляции(рис. [2.8]).

Рис. 2.8: Установки симуляции OpenModelica

Получим динамику изменения размера TCP окна W(t)(зеленая линия) и размера очереди Q(t)(черная линия), а также фазовый портрет, который показывает наличие автоколебаний параметров системы — фазовая траектория осциллирует вокруг своей стационарной точки(рис. [2.9], [2.10]):

Рис. 2.9: Динамика изменения размера TCP окна W (t) и размера очереди Q(t). OpenModelica

Рис. 2.10: Фазовый портрет (W, Q). OpenModelica

3 Выводы

В результате выполнения работы я реализовал модель TCP/AQM с помощью xcos и OpenModelica.