Machine Learning:

Supervised

o Learn a mapping from paired input and expected output

$$\circ f(X_i) = Y_i$$

$$\circ \text{ Training set } D = \{(X_i, Y_i)\}_{i}^{N}$$

- X feature space
- Y label space
 - □ Categorical classification
 - □ Real-valued scaler regression

Unsupervised

- o Discover hidden patterns in the data
 - Dimensionality reduction
 - Clustering categorical

• Reinforcement

- o Correct solution not given, just a reward signal
- o Feedback
 - Delayed
 - Next data supplied affected by action taken by agent

Main ML problems:

- Classification
 - o Predict correct label
 - o supervised
- Regression
 - o Approx. an unknown function
- Clustering
 - o Group data unsupervised
- Dimensionality Reduction
 - unsupervised
- Density Estimation
 - o Estimate probability of the observed data
- Policy Search
 - o Reinforcement
 - Which action an agent should take
 - Depending on current state
 - To maximize reward

14 January 2019

k-Nearest Neighbors:

- Find k-Nearest points based on distance from
 - o Manhattan (L1-norm)

$$d(x_i, x_q) = \sum_{g} |a_g(x_i) - a_g(x_q)|$$

•
$$d(x_i, x_q) = \sum_g |a_g(x_i) - a_g(x_q)|$$
• Euclidian distance (L2-norm)
• $d(x_i, x_q) = \sqrt{\sum_g (a_g(x_i) - a_g(x_q))^2}$
• Chebyshev (L-infinity norm)
• $d(x_i, x_q) = \max_g |a_g(x_i) - a_g(x_q)|$

- - Max independent feature distance
- · Classify based on these nearest points' classification
- Choosing k:
 - Small k
 - Good borderline resolution
 - Prone to noise
 - o Large k
 - Bad borderline resolution
 - Less susceptible to noise
 - o Choose with a validation data set
- k-NN is slow if large data set
 - o Calculating distances

Distance Weighted k-NN:

- · Weighted distance
 - o Closer the other point, the higher the weighting
 - o Can use
 - Inverse of distance
 - Gaussian distribution
- Advantage more robust to noise
- Disadvantage some irrelevant features affect distance - affect weight
 - o Remedy weigh each feature differently
- · Can use this for regression
 - o Weighted average
- k<n local method
- · k=n global method
 - o Considering all data

As dimensions increases Avg distances increases

> - Points aren't that close in high-dimensional feature space

Lazy Learner:

- Stores data feature + label
- · Generalizing beyond data done after explicit request made
- +ve
 - o Suitable for complex and incomplete problems
 - o Large datasets with few attributes
- - o Large memory requirements
 - o Long query time
- e.g. k-NN

Eager Learner:

- Creates an explicit target function
- +ve
 - o Memory efficiency
 - o Lower query times
 - o Dealing with noise
- - o Bad local approximations
- e.g. ANN / Decision Trees
- Slide 57 note

Decision Trees

14 January 2019

DT: approximate discrete classification functions

Algorithm:

- Search for a <u>split point (or attribute)</u> using a <u>statistical test of each</u> attribute to determine how well it classifies the training examples when considered alone
- 2. **Split** your dataset according to your split point (or attribute)
- 3. Repeat 1. and 2. on each of the created subsets

Choose feature that reduces total entropy: (max gain, min rmder)

•
$$G(q) = H(dataset) - \left(\frac{|subsetA|}{|dataset|}H(subsetA) + \cdots\right)$$

- Subset A: Feature 1 split into subsets A,B,...
- Probabilities labels

Ordered Values: (real values)

- for each feature, first sort
- split between two examples in sorted order
 - that have different classifications

Symbolic Values:

- search for most informative feature
 - o reduces total entropy the most
- create as many branches as there are different values for this feature

Statistical tests:

- Information gain
 - o reduction of information entropy

- Variance reduction
 - o regression trees
 - leaf is a linear function
 - o target is continuous

Overfitting:

- split into training and validation datasets
- Pruning:
 - o For all nodes only connected to leaves
 - o Check if accuracy on validation dataset would not decrease
 - if this node became one of the possible leaves
 - o Do this recursively
 - might create new node just connected to leaves

Evaluation

14 January 2019 16:08

Test Dataset:

- Shuffle
- Then split
- Never use this to tune parameters

Parameter Tuning

- 3 sets
 - Training
 - Diff models
 - o Validation
 - Pick best model
 - o Test
 - Final evaluation
- 60/20/20
 - o 50/25/25 if lots of examples

Hold Out:

- 1. Train models first
- 2. pick best with validation set
- 3. Re-train
 - Same parameters
 - training+validation sets
- 4. Production
 - Re-train with *entire* dataset

Cross Validation

- o Better for smaller datasets
- o Divide by k (usually 10)
- \circ Perform **k** folds
 - test set never overlaps between folds

1. Estimate test set performance

- Use k-2 for training
- 1 validation optimise parameters
- 1 test set estimate performance
 - take avg
- diff set of optimal parameters in each fold

1. Only Tuning

- know avg accuracy
- k-1 folds for training
- 1 validation optimise parameters

o Production

- Using optimal parameters from 2
- train on entire dataset

Performance Metrics

28 January 2019

$$\frac{ \text{Classification Rate: (accuracy)} }{ \bullet \frac{TP + TN}{TP + TN + FP + FN}} = \frac{Trace}{Sum}$$

• Classification Error = 1 - rate

$$\frac{\overline{TP}}{TP + FN} = \frac{C1 \ Predicted \ Correctly}{C1 \ Actual}$$

• Pr(correctly classified | class 1)

•
$$\frac{TP}{TP + FP} = \frac{C1 \ Predicted \ Correctly}{Total \ C1 \ Predicitons}$$

• Pr(positive | classified as positive)

High Recall, Low Precision

- low FN, high FP
- Class 1 correctly recognised, but many FP

Low Recall, High Precision

- high FN, low FP
- · Low Class 1 recognition, but confident when recognised as class 1

Confusion Matrix:

• Treat Class 1 as Positive

		C1 Predicted	C2 Predicted
•	C1 Actual	TP	FN
	C2 Actual	FP	TN

Unweighted Average Recall:

- compute recall for each class
- $UAR = mean(R1, R2 \dots)$

F-measure:

•
$$F_{\alpha} = (1 + \alpha^2) \frac{Precision * Recall}{\alpha^2 * Precision + Recall}$$

measures the effectiveness of retrieval with respect to a user who attaches $\boldsymbol{\beta}$ times as much importance to recall as precision

Multiple Class

	C1P	C2P	СЗР	C4P
C1A	TP	FN	FN	FN
C2A	FP	TN	?	?
СЗА	FP	?	TN	?
C4A	FP	?	?	TN

- CR and UAR same
- Recall, Precision, F-measure for each class

Imbalanced Test set:

- CR goes down affected by majority class
- · Precision of other classes goes down
- · UAR can help detect if a class is completely misclassified
- Solutions
 - o normalise rows (sum to 1.0)
 - o Unsample / Downsample
 - repeat and retrain with diff set
 - mean and s.d. of metrics

Confidence Interval:

n ≥ 30

•
$$error_s(h) \pm Z_N \sqrt{\frac{error_s(h) * (1 - error_s(h))}{n}}$$

N%:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Comparing Two Algorithms:

- Two-sample T-test diff datasets
- · Paired T-test diff algo, same dataset
- Get a "p-value"
 - Pr(null hypothesis rejected)
 - o null no performance diff
 - o 0 there is a diff, 1 no diff
 - Statistically significant if p<0.05

ANN Design

14 January 2019

Neuron:

- $x \in \mathbb{R}^{nx_1}$
- $w \in \mathcal{R}^{nx_1}$
- f(z) acivation function
- $y = f(w^T x)$

Layer:

- Has M neurons
- $x \in \mathcal{R}^{Nx1}$
- $W \in \mathcal{R}^{NxM}$
- $\bullet \ \ b \in \mathcal{R}^{M \times 1}$
- $y = f(W^T x + b)$

Perceptron:

- Binary classification
 - o Any linearly separable function
- $h_w(x) = 1$ if $w.x \ge 0$, else 0
- $w_i \leftarrow w_i + \alpha (y h_w(x)) x_i$

Feed-Forward Networks:

- Depth = hidden + output layers
- Width = neurons in a layer
- Initialise weights
 - o Zeros (useful for bias)
 - Normal
 - o Xavier Glorot

$$\bullet W \sim U \left[\frac{-\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \right]$$

• $n_j = layer input, n_{j+1} = outputs$

Activation Function:

- Sigmoid = $\frac{1}{1+e^{-x}}$ Compress between 0 and 1
- (0,0.5)• Tanh = $\frac{2}{1+e^{-2x}} 1$ Compress between -1 and 1
 - 0,0)
- ReLU
 - $\circ \ f(x)=x\ if\ x>0,$ else 0
 - o Preserves linear properties while not being linear
- softmax
 - o n-dimensional version of sigmoid
 - o Compress sum of output vector to 1

Loss Functions:

	Туре	Output Layer	Desired Output	Loss
	Regression	Linear	value	(mean)-square-error
	Binary	Sigmoid	0 or 1	Binary cross entropy
-	Multi-class	Softmax	One-hot	Categorical x-entropy
	Multi-label	Sigmoid	0s and 1s	Binary x-entropy
				, , , ,

ANN Training

14 January 2019 16:08

•
$$Z = XW + b$$

$$\frac{\partial Loss}{\partial X} = \frac{\partial Loss}{\partial Z} W^T = \frac{\partial Loss}{\partial Z} \circ f'(X) \ (Activation \ Fn)$$

$$\frac{\partial Loss}{\partial W} = X^T \frac{\partial Loss}{\partial Z}$$

$$\frac{\partial Loss}{\partial b} = \mathbf{1}^T \frac{\partial Loss}{\partial Z}$$

Gradient Descent:

•
$$W \leftarrow W - \alpha \frac{\partial L}{\partial W}$$

- 1. forward pass
- 2. compute derivate of loss w.r.t network outputs
- 3. back-propagate (all layers)
- 4. THEN update weights

^DERIVATIONS^

09 March 2019

20.53

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial A} \frac{\partial A}{\partial z} \frac{\partial z}{\partial W}$$

• Work out each term by differentiating

 $\frac{\delta L}{\delta A}$:

• Sub A into Loss function the differentiate

 $\frac{\delta A}{\delta z}$:

• Sigmoid: $= \sigma(z) = \sigma(z) (1 - \sigma(z))$

• Tanh: =

$$\frac{\delta z}{\delta W} = X$$

ANN Evaluating

19 February 2019

Early Stopping:

Regularisation:

- limit weight max value
- L2 regularisation

$$J(\theta) = Loss(Y, A) + \lambda \sum_{w} w^{2}$$

$$w \leftarrow w - \alpha (\frac{\partial Loss}{\partial w} + 2\lambda w)$$

- o larger weight larger loss
- o large weights shrink faster
- o encourage combination of inputs
- L1 regularisation
 - o also decays weight to 0
 - o more sparse (more 0s)
 - o feature selection

$$\begin{split} J(\theta) &= Loss(Y, A) + \lambda \sum_{w} |w| \\ w &\leftarrow w - \alpha (\frac{\partial Loss}{\partial w} + \lambda \mathrm{sign}(w)) \end{split}$$

- <u>dropout</u> randomly set a neurons output to 0
 - o applied at training time
 - reduces inter-dependency between neurons across layers

Data pre-processing:

- data augmentation
 - o add noise
 - o flip, rotate etc
- data normalisation
 - feature scaling
 - fixed scaling
 - o z-normalisation
 - Normal distributed data
 - updating weights which uses this gradient relies on the magnitude of the input

Unsupervised Learning & Density Estimation

k-means:

1. Initialisation

a. select the of cluster ${\bf k}$

b. randomly place the ${\bf k}$ centroids

2. Assignment

a. each data point is assigned to the closest centroid

3. Update

a. calculate mean of all associated points for each

b. set the centroids to this mean

4. Repeat

a. Repeat 2-3 until convergence

Selection of k:

· elbow method

$$\circ \ score = \frac{1}{K} \sum_{k=1}^{K} meanDist_{k}$$

$$\circ \ select 'elbow' corner of K-so$$

- cross-validation
 - o run k-means on N-1 folds
 - o compute score on remaining fold

Pros - simple, efficient $O(tkn) \sim O(n)$, popular

- mean must be defined (k-modes exists)
- reliant on random init finds local min
- sensitive to outliers
- · not suitable for discovering non hyper-ellipsoid clusters

likelihood =
$$p(X|\theta)$$

= $\prod_{n=1}^{N} p(x_n|\theta)$ (i.i.d data)

We use the negative log-likelihood - (minimise)

$$\mathcal{L} = -\log p(\mathcal{X}|\boldsymbol{\theta}) = -\sum_{n=1}^{N} \log p(\boldsymbol{x}_n|\boldsymbol{\theta})$$

Mixture Models:

- weigh different models to form a likelihood
- e.g. Gaussian Mixture Model

$$\circ GMM: p(\boldsymbol{x}|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$\circ \pi_k: 0...1, \quad all \ sum \ to \ 1$$

- o <u>responsibilities</u>
- o for kth model on nth data-point

$$\circ \ r_{nk} = \frac{\pi_k \mathcal{N} \big(x_n \big| \mu_k, \Sigma_k \big)}{\sum_{j=1}^K \pi_j \mathcal{N} \big(x_n \big| \mu_j, \Sigma_j \big)}$$

- E-step: compute the responsibilities
- M-step: re-estimate the parameters $oldsymbol{ heta}$

GMM-EM:

- 1. Initialisation
- 2. E-step:
 - a. compute responsibilities
 - i. for all data points
 - ii. and each mixture component
- 3. M-Step:

a. Update the **mean** of **each** mixture component
$$\mu_{\pmb{k}} = \frac{1}{N_k} \sum_{n=1}^N \pmb{r}_{n\pmb{k}} \pmb{x}_n \quad , \qquad N_k = \sum_1^N \pmb{r}_{n\pmb{k}}$$

b. Update the ${\bf covariance}$ of ${\bf each}$ mixture component

after the update to the mean

c. Update the weight of each mixture

$$\pi_k = \frac{N_k}{N}$$

4. Repeat E and M steps until convergence

Selecting number of components - Occam's razor

- selecting simplest of all models that fits
- Minimise Bayesian Information Criterion

$$\circ BIC(K) = \mathcal{L}(K) + \frac{P(K)}{2}\log(N)$$

k-means vs GMM-EM

09 March 2019 22:26

Similarities:

- select k
- converge when changes are small
- Sensitive to initialisation
 - Often, GMM-EM means are initialised from k-means

Differences:

- <u>k-mean</u>
 - hard clustering
 - every point belongs to exactly one cluster
 - o minimise sum of squared distance
 - o Assumes spherical clusters with equal probability of a cluster
- GMM
 - soft clustering
 - every point belongs to several clusters
 - responsibilities determine the probability of each data point belonging to a cluster (mixture component)
 - o maximise (min) (neg) log-likelihood
 - Can be used for non-spherical clusters

Genetic Algorithms

14 January 2019 16:08

Main Concept:

- 1. Population
- 2. Evaluate
 - a. using a fitness function
- 3. Ranking
- 4. Seeding
 - a. Best ones
 - i. keep
 - ii. breed
 - iii. mutate
 - b. Discard worst
 - c. Back to 1.

Genetic Operators:

- Selection
 - o after evaluating with fitness function
 - biased roulette wheel (CDF)
 - o **Tournament** pit random individuals against each other
 - o Elitism pick top (10%) to always stay
- Cross-over
 - o akin to breeding
 - o for binary string basic split points for genotypes
- Mutation
 - explore nearby solutions
 - flips bits with probability m = 1/sizeof(genotype)

Used to have:

- Genetic algorithm
 - o string of bits
- Genetic programs
 - program represented as a tree
- Evolutionary strategies
 - o floats
 - usually don't cross-over

Unification:

• Evolutionary Algorithms

$(\mu + \lambda)$ – Evolutionary Srategy:

- 1. Randomly gen population of size $(\mu + \lambda)$
- 2. Evaluate
- 3. Select the μ best individuals to keep as **parents**
- 4. Generate λ amount of offspring from the parents
 - a. each λ_i can mutate (add some $\mathcal{N}(\mathcal{O}, \sigma)$)
- 5. Have new population
- 6. Return to 2.

Finding Sigma:

- Large quick, bad refine; Small slow, local opt, but refined
- Concept: Add sigma to the genotype