Présentation Projet: Pykuten

Classification multimodale

Participants:

Sana Lamiri Ewen Bail Olivier Douangvichith

Plan de la Présentation

- 1. Contexte
- 2. Analyse exploratoire de données
- 3. Pré-traitement de données
- 4. Modèle d'identification d'images
- 5. Modèle d'identification de texte
- 6. Modèle final
- 7. Conclusion

Contexte

Cadre de projet:

- Concours organisé par Rakuten Institute of Technology
- Formation DataScientest
- Intérêt pédagogique du challenge
 - Quantité importante de données disponible
 - o Confrontation à des cas réels d'exploitation
- Problématique introduite par le commerçant:
 - Catalogue en constante évolution
 - Disparité des produits présentés (images et descriptions)

Objectif:

 Etablir un modèle de prédiction à partir des informations textuelles et de l'image associée à chaque article du catalogue.

Données textes Designation Description Matelas de piscine California Dream de la marque Intex.? Matéire : Vmyle? Matelas de piscine Hawai Fleurs Nombre de places : 1 personne? 3

Classe Produit: Accessoires piscine et spa

Analyse exploratoire de données

Dataset: 84 916 articles d'entrainement - 13 812 articles de test

Fichiers d'entrée:

- Fichier csv: désignation + description + id produit + id image
- Images.zip: images associées à tous les articles

Affichage de wordCloud des mots les plus utilisés par classe

Classe Livre1

Classe Accessoire de jeu vidéo

Fichier de sortie:

- Fichier csv: classe associée à chaque produit
- => 27 classes identifiées

Distribution des classes => Déséquilibrée

Pré-traitement de données

Texte

DataScientest

Suppression des NANs

Désignation + Description => Text

HTML encoding => UTF8

Suppression balises HTML et caractères spéciaux

Suppression des StopWords

Dataset dont on connaît les classes

Entrainement 72%

Validation 18%

Test 10%

Image

Chargement à partir de chemin d'accès

Générateur d'image

Redimensionnement, rotation, translation

Caractéristiques généralisables

Modèle d'identification d'image

Vue d'ensemble du modèle

Hyperparamètres:

- Loss: sparse_categorical_crossentropy
- Optimizer: Adam
- Learning Rate: 0,01 / 0,001
- Batch: 64
 Epoch: 10

Entrainement:

3 callbacks:

- taux d'apprentissage
- stagnation de la fonction de loss
- checkpoints

Modèle d'identification d'image

Résultats et évaluation des performances

Modèle (base)	Learning rate	f1_score (Test)	Accuracy (Train)	Accuracy (Val)	Accuracy (Test)
ResNet50	0.01	0.59	0.45	0.55	0.59
ResNet50	0.001	0.59	0.49	0.59	0.60
MobilNetV2	0.01	0.38	0.44	0.52	0.42
MobilNetV2	0.001	0.42	0.45	0.50	0.44
VGG16	0.01	0.54	0.57	0.55	0.56

Modèle d'identification d'image

Modèle d'identification de texte

Hyperparamètres:

- Couche Embedding: mot => vecteur d'embedding
- Couche RNN à base de GRU ou LSTM: vecteur de mots => suite de séquences
- Couche cachée : calcul de classification
- Couche de sortie: classification finale
- Couches de Dropout et de pooling: éviter le surapprentissage

Entraînement:

- Taille du dictionnaire des mot: 10000
- Colonnes de la matrice d'embeding: 300
- Cellules GRU et LSTM: 256
- Optimizer Adam avec 2 LR: 0.01 et 0.001
- Epoch : 10

Vue d'ensemble du modèle

Modèle d'identification de texte

Modèle	f1_score (Test)	Accuracy (Train)	Accuracy (Val)	Accuracy (Test)	Learning rate
GRU	0.34	0.45	0.48	0.34	0.01
GRU	0.40	0.55	0.50	0.39	0.001
LSTM	0.69	0.90	0.70	0.69	0.01
LSTM	0.72	0.95	0.74	0.71	0.001

Modèle d'identification de texte

base: RNN - LSTM, LR: 0,001

Classification report

Matrice de confusion

Concaténation des deux modèles

- Confrontation simple des prédiction des deux modèles pour chaque classe:

model_final (class		$= \frac{P_{model_img} (classe) + P_{model_txt} (classe)}{2}$			
	precision	recall	f1-score	support	
0	0.45	0.31	0.37	332	
1	0.50	0.44	0.47	428	
2	0.49	0.66	0.56	161	
3	0.50	0.38	0.43	496	
4	0.32	0.60	0.42	302	
5	0.89	0.81	0.85	503	
6	0.46	0.57	0.51	274	
7	0.73	0.61	0.66	500	
8	0.20	0.34	0.25	199	
9	0.74	0.75	0.74	431	
10	0.74	0.65	0.70	463	
11	0.65	0.58	0.62	273	
12	0.94	0.93	0.93	1054	
13	0.38	0.42	0.40	73	
14	0.73	0.70	0.71	482	
15	0.79	0.67	0.72	149	
16	0.89	0.72	0.79	399	
17	0.70	0.56	0.62	500	
18	0.57	0.42	0.48	257	
19	0.72	0.78	0.75	90	
20	0.59	0.54	0.56	325	
21	0.54	0.48	0.51	242	
22	0.34	0.72	0.46	97	
23	0.67	0.81	0.74	74	
24	0.43	0.51	0.47	231	
25	0.83	0.63	0.72	76	
26	0.27	0.81	0.41	81	
accuracy			0.63	8492	
macro avg	0.60	0.61	0.59	8492	
eighted avg	0.66	0.63	0.64	8492	

DEMO Streamlit

Perspectives et conclusion

Problématiques rencontrés :

- Volume de données et capacité de calculs
- Acquisition et maîtrise des concepts fondamentaux du deep learning.

Perspectives d'amélioration :

- Etablir un modèle final plus robuste (en fonction des classes)
- Améliorer l'entraînement

Conclusion:

 On peut considérer l'objectif atteint, autant d'un point de vue des performances, que pédagogique.

Questions?

