

Sunbeam Institute of Information Technology Pune and Karad

Module - Concepts of Operating System

Trainer - Devendra Dhande

Email – <u>devendra.dhande@sunbeaminfo.com</u>

Memory Management

Simple MMU

Contiguous memory allocation

	Fixed partition
RAM	•
P6	16 k
IK 2	14 k internal tragmentation
P7	internal fragmentation if process is not utilizing whole allocated partition, then some part will be wasted.
P3	lok then some part will be
P2	gk wasted.
	· 7ド
PY	
	4x limitations:
PS	1. Max no. of processes are
P1	2. may movers size is equal
	1. Max no. of processes are no. of partitions 2. max process size is equal to max partition size

Virtual memory

Segmentation MMU

Paging MMU

Page fault

Producer - Consumer

Semaphore

- semaphore is internally a counter
- Operations:

 1. Dec/wait/PC):

 a. dec count

 - b. if count < 0, then block the current process
 - 2. Inc/post/vc); a. inc count

 - b. if someone is blocked on this semaphore, wake up one
- a. Counting semaphore -counting no. of processes waiting b. Binary semaphore - only one should use resource at

a time.

Mutez = Mutual Exclusion

Ly one at a time

- lock/unlock operations are performed
- process who locks the muter becomes owner of the muter
- only owner can unlock the muter

Deadlock

- infinite waiting for a resource
- deadlock occurs only when below four conditions hold true at a time
 - 1. Mutual Exclusion
 - 2. No preemption
 - 3. Hold & wait 4. Circular wait

Prevention:

while implementing OS, it is always ensured that 1/4 condition will hold false.

Avoidance:

- 1. Banker's algorithm 2. Resource allocation graph 3. Safe state algorithm

Recover:

- 1. resource pre emption of process

Thank you!!!

Devendra Dhande

devendra.dhande@sunbeaminfo.com