

Cryptography

Lecture 2: Mathematics Background

Dr. Muhammad Hataba

Muhammad.Hataba@giu-uni.de

References and Legalities

These slides are in part based on:

- Understanding Cryptography, Christof Paar and Jan Pelzl
- Cryptography and Network Security Course, Swansea University,
- Information Security Course, German International University, Amr ElMougy
- Cryptography Course, German International University, Alia El Bolock

Outline of Today's Lecture

- Modular Arithmetic
- Groups, Rings, and Fields
- Prime and Extension Fields
- Arithmetic for Extension Fields

Modular Arithmetic

Prime Numbers

- Prime numbers only have divisors of 1 and self
 - they cannot be written as a product of other numbers
 - note: 1 is not prime, but is generally not of interest
- eg. 2, 3, 5, 7 are prime, 4, 6, 8, 9, 10 are not
- Prime numbers are central to number theory
- List of prime number less than 200 is:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Prime Factorization

- To factor a number nis to write it as a product of other numbers
 n=abc
- Note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- A prime factorisation of a number nis writing it as a product of primes

$$-$$
 eg. 91=7 x 13; 3600 = 2^4 x 3^2 x 5^2

$$a = \prod_{p \in P} p^{a_p}$$

Divisibility

Definition: An integer nis divisible by a nonzero integer a if we can write it as n=as for some integer s.

The following statements are equivalent:

- n is divisible by a
- a divides n
- *a* is a factor of *n*
- n is a multiple of a
- Mathematical notation: a/n

If an integer b does **not** divide n, we write $b \nmid n$

Example: A number n is even if and only if $2 \mid n$

Example: A number n is odd if and only if $2 \nmid n$

GCD and Relative Primality

- Two numbers (a,b) are relatively prime if they have no common divisors apart from 1
 - eg. 8 & 15 are relatively prime since
 - Factors of 8 are 1,2,4,8
 - Factors of 15 are 1,3,5,15
 - 1is the only common factor
- Determine the greatest common divisor by comparing their prime factorizations and using least powers

e.g.,
$$300 = 2^{1}x3^{1}x5^{2}$$

 $18 = 2^{1}x3^{2}x5^{0}$
 $\Rightarrow \gcd(18,300) = 2^{1}x3^{1}x5^{0} = 6$

Modulus

Generally speaking, most cryptosystems are based on sets of numbers that are

- discrete (sets with integers are particularly useful)
- 2. **finite** (i.e., if we only compute with a finitely many numbers)
 Seems too abstract? --- Let's look at a finite set with discrete numbers we are quite familiar with: a clock.

Interestingly, even though the numbers are incremented every hour we never leave the set of integers:

Modulus

Definition 1.4.1 Modulo Operation

Let $a, r, m \in \mathbb{Z}$ (where \mathbb{Z} is a set of all integers) and m > 0. We write

 $a \equiv r \mod m$

if m divides a - r. m is called the modulus and r is called the remainder.

Divisibility and Modular Arithmetic

In many applications, we only care about the remainder when an integer is divided by a specific positive integer.

- Example 1: On a 12-hour clock, what time is it when it is 52 hours after 11:00?
- Answer 1: $52 \mod 12 = 4 \implies 11:00 + 4 \text{ hrs} = 15:00$ $\implies 15:00 \mod 12 = 3:00$
- Example 2: What day of the week will it be 100 days from today?
- **Answer 2:** 100 mod 7 = 2

Congruence

- We have already introduced a mod m to represent the remainder when a is divided by positive integer m
- We also will find it useful to say when two numbers a and b have the same remainder when divided by positive integer m.
- **Definition:** If *a* and *b* are integers and *m* is a positive integer, we say that *a* and *b* are **congruent modulo m** when (all of these are equivalent):
 - a and b have the same remainder when divided by m
 - m|(a-b)
 - \circ a mod m = b mod m
 - $\circ \quad a \equiv b \pmod{m}$
- If a and b are not congruent modulo m, we write $a \neq b \pmod{m}$

Equivalence Classes

Consider equivalence classes mod 3

[0]		[2]
0	1	2
3	4	5
6	7	8
9	10	11
:	•	:

 $[0] = \{...-6,-3,0,3,6,9,...\}$ and $[1] = \{...-5,-2,1,4,7,10,...\}$ and $[2] = \{...-4,-1,2,5,8,11,...\}$

Congruence Relationships

- We can also do arithmetic modulo a positive integer m
 (you already do this naturally mod 12 when you use a 12-hour clock)
- Theorem: Let mbe a positive integer. If $a \equiv b \mod m$ and $c \equiv d \mod m$, then

$$a+c \equiv b+d \mod m$$
 and $ac \equiv bd \mod m$

Congruence Relationships - Examples

• Example: If $7 \equiv 2 \mod 5$ and $11 \equiv 1 \mod 5$ it follows that $18 \equiv 3 \mod 5$ and $77 \equiv 2 \mod 5$

- Question: If ac ≡ bc mod m, is it true that a ≡ b mod m?
- Answer: No!

Counterexample a=2, b=4, c=6 and m=12.

We have:

 $12 \equiv 24 \mod 12 = 0$ but $2 \neq 4 \mod 12$

Modular Arithmetic

- We can also "distribute" the modulo operator
- Theorem: Let mbe a positive integer and a, b are integers. Then...

```
(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m and

(ab) \mod m = ((a \mod m)(b \mod m)) \mod m
```

- Fun/useful fact: We can "mod-out" before doing complicated arithmetic. (you might do this in your head already!)
- **Example:** What is 81 · 124 mod 11?

```
81 · 124 mod 11 = ((81 mod 11)(124 mod 11)) mod 11 = (4 \cdot 3) \mod 11 = 12 \mod 11 = 1
```

Modular Arithmetic - Example

Example: Compute 10ⁿ mod 11 for integer values of n

Solution:

```
10^1 \text{ mod } 11 = 10
                                                 (10 = 11^*0 + 10)
10^2 \text{ mod } 11 = 100 \text{ mod } 11 = 1
                                                          (100 = 11*9 + 1)
10^3 \text{ mod } 11 = 1000 \text{ mod } 11 = 10
                                                          (1000 = 11*90 + 10)
...
10^4 \mod 11 = (10^3 \mod 11)(10^1 \mod 11) \mod 11
                        =(10 \cdot 10) \mod 11
                        =100 \text{ mod } 11 = 1
•••
10^{n} mod 11=1 if n is even, 10 if n is odd
```

Modular Additive Inverse

• The additive inverse bof a number a is defined such that:

$$a + b \equiv 0 \mod m$$

- i.e., b=n-a
- Example: What is the inverse of 5 md9?

The inverse of 5 mod 9 is 4 because $5 + 4 \equiv 0 \mod 9$

Multiplicative Inverse (Modular Division)

Rather than performing a division, we prefer to multiply by the inverse

$$b/a \equiv b \times a^1 m dm$$

• The inverse σ^1 of a number σ is defined such that:

$$aa^1 \equiv 1mdm$$

• Example: What is 5/7md9?

The inverse of $7 \mod 9$ is 4 since $7x4 \equiv 28 \equiv 1 \mod 9$, hence:

$$5/7 \equiv 5 \times 4 = 20 \equiv 2 \mod 9$$

Computing the Inverse (mod m)

How is the inverse computed?

• The inverse of a number a mod m only exists if and only if a and m are coprime, i.e., :

$$gcd(a, m) = 1$$

e.g., gcd(5, 9) = 1, so that the inverse of 5 exists mcdub(9)

 For now, the best way of computing the inverse is to use exhaustive search.

Excursion: Chapter 6 of Understanding Cryptography shows the Extended Euclidean Algorithm for computing an inverse for a given number and modulus.

Fermat's Theorem

Just FYI!

Fermat's Little Theorem

- $a^{p-1} = 1 \pmod{p}$
 - \circ where p is prime and gcd(a,p) = 1
- Also: $a^p = a \pmod{p}$
- useful in public key and primality testing

Euler's Totient φ(n)

For arithmetic modulon

- complete set of residues is: 0..n-1
- reduced set of residues is those numbers (residues) which are relatively prime to n
 - e.g., for n=10,
 - complete set of residues is {0,1,2,3,4,5,6,7,8,9}
 - reduced set of residues is {1,3,7,9}
- Number of elements in reduced set of residues is called the **Euler Totient** Function $\phi(n)$

Euler's Totient φ(n)

- To compute φ(n) need to count number of residues to be excluded
- In general, this needs prime factorization, but

```
- for pprime: \phi(p) = p-1

- for p, q prime: \phi(pq) = (p-1)x(q-1)

e.g.,

\phi(37) = 36

\phi(21) = (3-1)x(7-1) = 2 \times 6 = 12
```

Euler's Theorem

- Generalisation of Fermat's Theorem
- a^{φ(n)} = 1(mod n)
 for any a, n where gcd(a, n) = 1
 e.g.,

```
a=3; n=10; \mathbf{\phi}(10)=4;
hence 3^4=81=1 \mod 10
a=2; n=11; \mathbf{\phi}(11)=10;
hence 2^{10}=1024=1 \mod 11
```


Groups, Rings, and Fields

Mathematical Objects

Groups

Definition 4.3.1 Group

A group is a set of elements G together with an operation \circ which combines two elements of G. A group has the following properties:

- 1. The group operation \circ is closed. That is, for all $a, b \in G$, it holds that $a \circ b = c \in G$.
- 2. The group operation is associative. That is, $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$.
- 3. There is an element $1 \in G$, called the neutral element (or identity element), such that $a \circ 1 = 1 \circ a = a$ for all $a \in G$.
- 4. For each $a \in G$ there exists an element $a^{-1} \in G$, called the inverse of a, such that $a \circ a^{-1} = a^{-1} \circ a = 1$.
- 5. A group G is abelian (or commutative) if, furthermore, $a \circ b = b \circ a$ for all $a, b \in G$.

Groups - Example

- The set of integers $\mathbb{Z}_m = \{0,1,...,m-1\}$ and **addition modulo m** form a group with the neutral element 0.
- Every element a has an inverse –a such that a+(–a) = 0 mod m.
- **Note**: this set does not form a group with **multiplication** because most elements a do not have an inverse such that $aa^{-1}=1$ mdm.

Cyclic Groups

Definition 2 A multiplicative group G is said to be *cyclic* if there is an element $a \in G$ such that for any $b \in G$ there is some integer i with $b = a^i$. Such an element a is called a

generator of the cyclic group,

and we write $G = \langle a \rangle$.

Examples

- $(Z_6, +, 0)$, cyclic group with generators 1 and 5.
- $(Z_3^*, \times, 1)$, cyclic group with generator 2.

$$Z_3$$
* ={1, 2} = <2> ={2⁰ = 1, 2}, 2² = 1 mod 3.

• $(Z_7^*, \times, 1)$, cyclic group, 3 is a generator:

$$3^1 = 3$$
, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1 \mod 7$

However, $2^3 = 1 \mod 7$. Thus 2 is not a generator of \mathbb{Z}_7^* .

• $(Z_5^*, \times, 1)$, cyclic group, 2 is a generator.

$$2^1 = 2$$
, $2^2 = 4$, $2^3 = 3$, $2^4 = 1 \mod 5$, thus $Z_5^* = <2>$.

i.e., every element in \mathbb{Z}_5^* can be written into a power of 2.

Rings

Definition 1.4.2 Ring

The integer ring \mathbb{Z}_m consists of:

- 1. The set $\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$
- 2. Two operations "+" and "×" for all $a,b \in \mathbb{Z}_m$ such that:
 - 1. $a+b \equiv c \mod m$, $(c \in \mathbb{Z}_m)$
 - 2. $a \times b \equiv d \mod m$, $(d \in \mathbb{Z}_m)$

Rings - Example

- Let m=9, i.e., we are dealing with the ring $\mathbb{Z}_9 = \{0,1,2,3,4,5,6,7,8\}$.
- Let's look at a few simple arithmetic operations:

$$6+8=14\equiv 5 \mod 9$$

$$6 \times 8 = 48 \equiv 3 \mod 9$$

Rings - Some Properties

- Closed under addition and multiplication
- Addition and multiplication are associative e.g., a + (b + c) = (a + b) + c, and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all a,b,c $\subseteq \mathbb{Z}_m$
 - There is the neutral element 0 with respect to addition, i.e., for every element $a \in \mathbb{Z}_m$ it holds that $a+0 \equiv a \mod m$
- For any element ain the ring, there is always the negative element –a such that $a+(-a) \equiv 0 \mod m$, i.e., the additive inverse always exists
- There is the neutral element 1with respect to multiplication, i.e., for every element $a \in \mathbb{Z}_m$ it holds that $a \times 1 \equiv a \mod m$
- The multiplicative inverse exists only for some, but not for all, elements
 - Let $a \subseteq \mathbb{Z}$, the inverse a-1 is defined such that $a \cdot a^{-1} \equiv 1 \mod m$
 - If an inverse exists for a, we can divide by this element since $b/a \equiv b \cdot a^{-1} \mod m$
 - It is computationally hard to find the inverse
 - O However, its existence can be checked: An element $a \in \mathbb{Z}$ has a multiplicative inverse a^1 if and only if gcd(a,m)=1

Integral Domain

An integral domain $\{R,+,\times\}$ is a commutative ring that obeys the following two additional properties:

- ADDITIONAL PROPERTY 1: The set R must include an identity element for the multiplicative operation. That is, it should be possible to symbolically designate an element of the set R as '1' so that for every element a of the set we can say a1 = 1a = a
- ADDITIONAL PROPERTY 2: Let 0 denote the identity element for the addition operation. If a multiplication of any two elements a and b of R results in 0, that is if ab = 0 then either a or b must be 0.

Examples of an integral domain: The set of all integers under the operations of arithmetic addition and multiplication.

Fields

Definition 4.3.2 Field

A field F is a set of elements with the following properties:

- All elements of F form an additive group with the group operation "+" and the neutral element 0.
- All elements of F except 0 form a multiplicative group with the group operation "×" and the neutral element 1.
- When the two group operations are mixed, the distributivity law holds, i.e., for all $a,b,c \in F$: a(b+c) = (ab) + (ac).

Fields - Example

The set \mathbb{R} of real numbers is a field with the neutral element 0 for the **additive** group and the neutral element 1 for the **multiplicative** group.

Every real number a has an additive inverse, namely –a, and every nonzero element a has a multiplicative inverse 1/a.

- The set of all integers under the operations of arithmetic addition and multiplication is NOT a field.

Finite or Galois Fields

Theorem 4.3.1 A field with order m only exists if m is a prime power, i.e., $m = p^n$, for some positive integer n and prime integer p. p is called the characteristic of the finite field.

Order: number of elements in the field (also called cardinality)

Thus, we can have finite fields with 11, $81 (= 3^4)$, or $256 (= 2^8)$ elements.

However, not with $12(2^2*3)$ elements.

Prime and Extension Fields

Fields

Prime Fields

Most intuitive fields: $n=1 \Rightarrow$ Fields of Prime Order GF(p)

Theorem 4.3.2 Let p be a prime. The integer ring \mathbb{Z}_p is denoted as GF(p) and is referred to as a prime field, or as a Galois field with a prime number of elements. All nonzero elements of GF(p) have an inverse. Arithmetic in GF(p) is done modulo p.

Prime Fields - Example GF(5)

Consider the finite field

$$GF(5) = \{0,1,2,3,4\}$$

 Tables enable performing all calculations in this field without using modular reduction explicitly

addition

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
0 1 2 3 4	3	4	0	1	2
4	4	0	1	2	3

multiplication

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
× 0 1 2 3 4	0	4	3	2	1

additive inverse

$$-0 = 0$$
 $-1 = 4$
 $-2 = 3$
 $-3 = 2$
 $-4 = 1$

multiplicative inverse

 0^{-1} does not exist $1^{-1} = 1$ $2^{-1} = 3$ $3^{-1} = 2$ $4^{-1} = 4$

Prime Fields - Example GF(2)

Consider the finite field GF(2) = {0,1} (Very important prime field. Why??)

addition + 0 1 0 0 1 1 1 0

multiplication

- Addition is equivalent to XOR gate
- Multiplication is equivalent to AND gate

Extension Fields GF(2^m)

- Important for cryptography
- The Advanced Encryption Standard (AES) is based on a finite field consisting of 256 elements, denoted GF(2⁸).
- Each field element represents one byte.
- $GF(2^8)$ is not a prime field but an extension field (for m>1).
- Addition and multiplication cannot be represented by addition and multiplication of integers modub 2⁸.

Notation for Extension Field Elements

- Elements of GF(2^m) are represented as polynomials
- The polynomials have coefficients that are elements of GF(2)
- Maximum degree of polynomials is m1, i.e., there are m coefficients per element.
- A \subseteq GF(2⁸) is represented as:

$$A(x) = a_{7}x^{7} + \cdots + a_{1}x + a_{0}$$
, where $a_{i} \in GF(2) = \{0,1\}$

- There are exactly 256 such polynomials that make up the finite field of GF(2⁸)
- Such polynomials can be stored as an 8-bit vector

$$A = (a_{7}, a_{6}, a_{5}, a_{4}, a_{3}, a_{2}, a_{1}, a_{0})$$

Recall: A polynomial is an expression consisting of variables and coefficients, that involves only the

operations of +, -, x, and non-negative integer exponents of variables

To Summarize...

Thank you

