T.D. VIII - Réduction des matrices carrées

I - Valeurs propres / Vecteurs propres

Exercice 1. (
$$\overset{\bullet}{\bullet}$$
) Soit $A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$, $X_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Montrer que X_1 est un vecteur propre de A et préciser la valeur propre associée.

Montrer que X_1 est un vecteur propre de A et préciser la valeur propre associée.

Exercice 3. (
$$\mathbf{C}_{\mathbf{s}}^{\mathbf{s}}$$
) Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$, $X_1 = \begin{pmatrix} \sqrt{2} \\ \sqrt{3} \end{pmatrix}$ et $X_2 = \begin{pmatrix} -\sqrt{2} \\ \sqrt{3} \end{pmatrix}$.

Montrer que X_1 et X_2 sont des vecteurs propres de A et préciser les valeurs propres associées.

Exercice 4. (
$$\mathfrak{A}_{\mathbf{a}}^{\bullet}$$
) Soit $A = \begin{pmatrix} -2 & -1 \\ -1 & 0 \end{pmatrix}$, $X_1 = \begin{pmatrix} 1+\sqrt{2} \\ 1 \end{pmatrix}$ et $X_2 = \begin{pmatrix} 1-\sqrt{2} \\ 1 \end{pmatrix}$.

Montrer que X_1 et X_2 sont des vecteurs propres de A et préciser les valeurs propres associées.

Exercice 5. (
$$\mathbf{x}_{\mathbf{s}}^{\mathbf{s}}$$
) Soit $A = \begin{pmatrix} -3 & -5 & 6 \\ -5 & -3 & 6 \\ -6 & -6 & 10 \end{pmatrix}$, $X_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $X_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

et
$$X_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Montrer que X_1 , X_2 et X_3 sont des vecteurs propres de A et préciser les valeurs propres associées.

Exercice 6. (\$\infty\$. Soit
$$A = \begin{pmatrix} 9 & -7 & 6 \\ -7 & 9 & 6 \\ 3 & 3 & 2 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $X_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

et
$$X_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
.

Montrer que X_1 , X_2 et X_3 sont des vecteurs propres de A et préciser les valeurs propres associées.

II - Polynômes annulateurs

Exercice 7. ($\mathfrak{S}_{\mathbf{s}}^{\mathbf{s}}$) Soit $A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.

- 1. Exprimer A^2 en fonction de A. En déduire un polynôme annulateur de A.
- ${\bf 2.}\;$ En déduire déduire les valeurs propres possibles de A.

On pose
$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
.

- **3.** Montrer que P est inversible et déterminer P^{-1} .
- **4.** Calculer $P^{-1}AP$ et en déduire que A est diagonalisable.

Exercice 8. Soit
$$M = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$
.

- **1.** Cacluler le produit matriciel (M-I)(M+3I).
- **2.** Déterminer un polynôme annulateur de M.
- **3.** En déduire les valeurs propres possibles de M.

Exercice 9. Soit
$$J = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
.

- 1. Montrer que $J^3 = 2J$.
- **2.** En déduire les valeurs propres possibles de J.

Exercice 10. Soit
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 et $R(X) = X^3 + X^2 - 4X - 4$.

- 1. Montrer que R est un polynôme annulateur de A.
- **2.** En déduire que A est inversible et déterminer A^{-1} .
- **3.** Déterminer R(2).
- **4.** À l'aide d'une division euclidienne, déterminer le polynôme Q tel que R(X) = (X-2)Q(X).
- 5. En déduire les valeurs propres possibles de la matrice A.

On pose
$$X_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
, $X_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et $X_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

6. Vérifier que X_1 , X_2 et X_3 sont des vecteurs propres de A et préciser les valeurs propres associées.

On pose
$$P = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 et $D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

7. Vérifier que AP = PD et en déduire que A est diagonalisable.

III - Calculs de puissances

Exercice 11. Soit (u_n) , (v_n) et (w_n) trois suites définies par $u_0=1$, $v_0=-1$, $w_0=2$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} & = -3u_n + 4v_n - w_n \\ v_{n+1} & = 2v_n \\ w_{n+1} & = -4v_n - 2w_n \end{cases}.$$

- 1. Déterminer les valeurs de u_1 , v_1 et w_1 .
- **2.** Pour tout n entier naturel, exprimer v_n en fonction de n.

On pose
$$A = \begin{pmatrix} -3 & 4 & -1 \\ 0 & 2 & 0 \\ 0 & -4 & -2 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

3. Vérifier que PA = DP et en déduire que A est diagonalisable.

Soit $n \in \mathbb{N}$.

- **4.** En déduire, par récurrence, une expression de A^n en fonction de D^n , P^{-1} et P.
- 5. Déterminer D^n et en déduire les 9 coefficients de A^n .

Pour tout n entier naturel, on pose $U_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

- **6.** Montrer que, pour tout n entier naturel, $U_{n+1} = AU_n$.
- 7. Montrer par récurrence que, pour tout n entier naturel, $U_n = A^n U_0$.
- **8.** En déduire les expressions de u_n , v_n et w_n .

Exercice 12. Soit (u_n) , (v_n) et (w_n) trois suites définies par $u_0 = 1$, $v_0 = -1$, $w_0 = 2$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} &= -u_n + w_n \\ v_{n+1} &= 2v_n - 4w_n \\ w_{n+1} &= -2w_n \end{cases}$$

- 1. Déterminer les valeurs de u_1 , v_1 et w_1 .
- **2.** Pour tout n entier naturel, exprimer w_n en fonction de n.

On pose
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & -2 \end{pmatrix}, P = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \text{ et } D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

- **3.** Vérifier que AP = PD et en déduire que A est diagonalisable. Soit $n \in \mathbb{N}$.
- **4.** En déduire par récurrence que, une expression de A^n en fonction de D^n, P^{-1} et P.
- 5. Déterminer D^n et en déduire les 9 coefficients de A^n .

Pour tout
$$n$$
 entier naturel, on pose $U_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

- **6.** Montrer que, pour tout n entier naturel, $U_{n+1} = AU_n$.
- 7. Montrer par récurrence que, pour tout n entier naturel, $U_n = A^n U_0$.
- **8.** En déduire les expressions de u_n , v_n et w_n .