

In [23]:	<pre> <class 'pandas.core.frame.dataframe'=""> RangeIndex: 45211 entries, 0 to 45210 Data columns (total 9 columns): # Column Non-Null Count Dtype</class></pre>
In [24]:	<pre>4 day</pre>
In [25]:	<pre>from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler , OneHotEncoder #from future_encoders import OneHotEncoder # requires future_encoders.py # Create the preprocessing pipeline for numerical features # There are two steps in this pipeline # Pipeline(steps=[(name1, transform1), (name2, transform2),]) # NOTE the step names can be arbitrary</pre> # Step 1 is what we discussed before - filling the missing values if any using mean
	<pre># Step 2 is feature scaling via standardization - making features look like normal-distributed # see sandardization: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardS caler.html) num_pipeline = Pipeline(steps=[('num_imputer', SimpleImputer()), # we will tune differet strategies later ('scaler', StandardScaler()),]) # Create the preprocessing pipelines for the categorical features # There are two steps in this pipeline:</pre>
	<pre># Step 1: filling the missing values if any using the most frequent value # Step 2: one hot encoding cat_pipeline = Pipeline(steps=[('cat_imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown = 'ignore')),]) # Assign features to the pipelines and Combine two pipelines to form the preprocessor from sklearn.compose import ColumnTransformer</pre>
	<pre>preprocessor = ColumnTransformer(transformers=[('num_pipeline', num_pipeline, num_features), ('cat_pipeline', cat_pipeline, cat_features),]) Models Following Models are used.</pre>
	 Decision Tree Random Forrest SVM XGBoost Naive Bayes Decision Tree
In [26]:	<pre># Specify the model to use, which is DecisionTreeClassifier # Make a full pipeline by combining preprocessor and the model from sklearn.tree import DecisionTreeClassifier pipeline_dt = Pipeline(steps=[</pre>
In [27]:	<pre># we show how to use GridSearch with K-fold cross validation (K=10) to fine tune the model # we use the accuracy as the scoring metric with training score return_train_score=True from sklearn.model_selection import GridSearchCV # set up the values of hyperparameters you want to evaluate # here you must use the step names as the prefix followed by two under_scores to sepecify the parameter names and the "full path" of the steps # we are trying 2 different impouter strategies # 2x5 different decision tree models with different parameters # in total we are trying 2x2x5 = 20 different combinations param_grid_dt = [</pre>
	<pre># set up the grid search grid_search_dt = GridSearchCV(pipeline_dt, param_grid_dt, cv=10, scoring='accuracy') # train the model using the full pipeline grid_search_dt.fit(X_train, y_train) GridSearchCV(cv=10,</pre>
	<pre>er()),</pre>
	<pre>er(strategy='most_frequent')),</pre>
Out[29]:	<pre>"median']}], scoring='accuracy') # check the best performing parameter combination grid_search_dt.best_params_ {'clf_dtcriterion': 'gini', 'clf_dtmax_depth': 7, 'preprocessornum_pipelinenum_imputerstrategy': 'median'} # build-in CV results keys</pre>
Out[30]:	<pre>sorted(grid_search_dt.cv_resultskeys()) ['mean_fit_time', 'mean_score_time', 'mean_test_score', 'param_clf_dtcriterion', 'param_clf_dtmax_depth', 'param_preprocessornum_pipelinenum_imputerstrategy', 'params', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score',</pre>
	<pre>'split3_test_score', 'split4_test_score', 'split5_test_score', 'split6_test_score', 'split7_test_score', 'split8_test_score', 'split9_test_score', 'std_fit_time', 'std_score_time', 'std_test_score']</pre>
Out[31]:	<pre># test score for the 20 decision tree models grid_search_dt.cv_results_['mean_test_score'] array([0.90054734, 0.90054734, 0.90035379, 0.90035379, 0.90220622,</pre>
	<pre># select the best model # the best parameters are shown, note SimpleImputer() implies that mean strategry is used clf_best = grid_search_dt.best_estimator_ clf_best Pipeline(steps=[('preprocessor',</pre>
	<pre>['age', 'balance', 'day',</pre>
Out[34]: In [35]:	<pre># final test on the testing set # To predict on new data: simply calling the predict method # the full pipeline steps will be applied to the testing set followed by the prediction y_pred = clf_best.predict(X_test) y_pred array([0, 0, 0,, 0, 0, 0], dtype=int64) clf_best.named_steps {'preprocessor': ColumnTransformer(transformers=[('num_pipeline',</pre>
	<pre>Pipeline(steps=[('num_imputer',</pre>
	<pre>clf_best.named_steps['preprocessor'] ColumnTransformer(transformers=[('num_pipeline',</pre>
In [38]:	<pre>('onehot',</pre>
In [39]:	0.04124727, 0.00382411, 0.00375056, 0. , 0.00991195, 0.02209235, 0.0008162, 0. , 0.00159478, 0.00061306, 0. , 0.00448686, 0.02231354, 0.00542562, 0.00164968, 0.00871744, 0.00302178, 0. , 0. , 0.25458985, 0.]) numeric_features_list = list(num_features) numeric_features_list.extend(onehot_columns) print(numeric_features_list) ['age', 'balance', 'day', 'duration', 'pdays', 'housing_no', 'housing_yes', 'contact_cellular', 'cont
In [41]: Out[41]:	<pre>act_telephone', 'contact_unknown', 'month_apr', 'month_aug', 'month_dec', 'month_feb', 'month_jan', 'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep', 'poutcome_ failure', 'poutcome_other', 'poutcome_success', 'poutcome_unknown'] import eli5 as eli5 eli5.explain_weights(clf_best.named_steps["clf_dt"], top=50, feature_names=numeric_features_list, feature_filter=lambda x: x != '<bias>') Weight Feature 0.4912 duration 0.2546 poutcome_success 0.0475 pdays</bias></pre>
	0.0414 age 0.0412 housing_no 0.0223 month_mar 0.0221 month_apr 0.0216 day 0.0142 balance 0.0099 contact_unknown 0.0087 month_oct 0.0054 month_may 0.0045 month_jun 0.0038 housing_yes 0.0038 contact_cellular 0.0030 month_sep 0.0016 month_nov 0.0016 month_feb
	0.0008 month_aug 0.0006 month_jan 0 poutcome_unknown 0 contact_telephone 0 month_jul 0 poutcome_failure 0 poutcome_other 0 month_dec duration <= 1.015 (89.0%) poutcome_success <= 0.500 (86.1%) duration <= -0.205 (54.9%)
	<pre>month_mar <= 0.500 (54.4%) month_oct <= 0.500 (53.7%) age <= 2.598 (53.3%) month_apr <= 0.500 (50.4%)> 0.017 month_apr > 0.500 (2.9%)> 0.081 age > 2.598 (0.4%) month_feb <= 0.500 (0.3%)> 0.183 month_feb > 0.500 (0.1%)> 0.500 month_oct > 0.500 (0.7%) duration <= -0.629 (0.2%) duration <= -0.695 (0.2%)> 0.000</pre>
	<pre>duration <= 0.095 (0.1%)> 0.061 duration > -0.629 (0.5%)</pre>
	day <= -0.218 (0.1%) > 0.346 $day > -0.218 (0.0%) > 0.056$ $duration > -0.590 (0.3%)$ $duration <= -0.328 (0.2%)$ $age <= -0.696 (0.1%) > 0.188$ $age > -0.696 (0.1%) > 0.519$ $duration > -0.328 (0.1%)$ $day <= -0.278 (0.0%) > 0.875$ $day > -0.278 (0.1%) > 0.421$ $duration > -0.205 (31.2%)$
	housing_no <= 0.500 (17.9%) pdays <= 3.338 (17.8%) month_mar <= 0.500 (17.7%) age <= 2.033 (17.7%)> 0.048 age > 2.033 (0.0%)> 0.818 month_mar > 0.500 (0.1%) day <= 1.462 (0.0%)> 0.889 day > 1.462 (0.0%)> 0.250 pdays > 3.338 (0.1%) duration <= 0.025 (0.0%) balance <= -0.124 (0.0%)> 0.222
	balance > -0.124 (0.0%)> 1.000 duration > 0.025 (0.1%) duration <= 0.878 (0.1%)> 0.955 duration > 0.878 (0.0%)> 0.500 housing_no > 0.500 (13.3%) age <= 1.845 (12.4%) month_apr <= 0.500 (11.9%) pdays <= -0.201 (10.5%)> 0.127 pdays > -0.201 (1.4%)> 0.369 month_apr > 0.500 (0.6%)
	<pre>pdays <= 1.536 (0.5%)> 0.568 pdays > 1.536 (0.1%)> 0.172 age > 1.845 (0.8%) pdays <= 0.533 (0.7%) balance <= -0.329 (0.2%)> 0.383 balance > -0.329 (0.5%)> 0.574 pdays > 0.533 (0.1%) duration <= 0.498 (0.1%)> 0.227 duration > 0.498 (0.0%)> 0.667 poutcome_success > 0.500 (2.9%) duration <= -0.486 (0.5%)</pre>
	<pre>duration <= -0.486 (0.5%) duration <= -0.679 (0.2%) balance <= 4.353 (0.2%) pdays <= 3.348 (0.1%) month_feb <= 0.500 (0.1%)> 0.021 month_feb > 0.500 (0.0%)> 0.333 pdays > 3.348 (0.0%) pdays <= 3.787 (0.0%)> 0.667 pdays > 3.787 (0.0%)> 0.000 balance > 4.353 (0.0%)> 1.000 duration > -0.679 (0.4%)</pre>
	month_sep <= 0.500 (0.4%) pdays <= 0.622 (0.2%) pdays <= 0.448 (0.1%)> 0.158 pdays > 0.448 (0.1%)> 0.463 pdays > 0.622 (0.2%) balance <= -0.364 (0.0%)> 0.462 balance > -0.364 (0.2%)> 0.073 month_sep > 0.500 (0.0%) pdays <= 1.127 (0.0%) age <= -0.602 (0.0%)> 0.000
	<pre>age > -0.602 (0.0%)> 1.000 pdays > 1.127 (0.0%)> 0.000 duration > -0.486 (2.3%) month_may <= 0.500 (2.0%) duration <= -0.170 (0.7%) balance <= 0.407 (0.5%) duration <= -0.374 (0.2%)> 0.533 duration > -0.374 (0.4%)> 0.766 balance > 0.407 (0.2%) month_sep <= 0.500 (0.1%)> 0.429</pre>
	<pre>month_sep > 0.500 (0.0%)> 1.000 duration > -0.170 (1.3%) month_nov <= 0.500 (1.2%) duration <= 0.525 (1.0%)> 0.828 duration > 0.525 (0.2%)> 0.724 month_nov > 0.500 (0.1%) day <= 0.202 (0.1%)> 0.852 day > 0.202 (0.0%)> 0.312 month_may > 0.500 (0.3%) housing_yes <= 0.500 (0.2%) duration <= 0.091 (0.1%)</pre>
	<pre>day <= 0.502 (0.1%)> 0.727</pre>
	<pre>duration > 1.015 (11.0%) duration <= 2.196 (7.0%) poutcome_success <= 0.500 (6.7%) contact_unknown <= 0.500 (4.8%) duration <= 1.447 (2.5%) month_jun <= 0.500 (2.4%) age <= 2.080 (2.3%)> 0.297 age > 2.080 (0.1%)> 0.607 month_jun > 0.500 (0.1%) day <= -1.118 (0.0%)> 1.000 day > -1.118 (0.0%)> 0.500</pre>
	<pre>day > -1.118 (0.0%)> 0.500 duration > 1.447 (2.3%)</pre>
	month_may <= 0.500 (0.3%)> 0.277 month_may > 0.500 (0.5%)> 0.136 age > 0.434 (0.3%) duration <= 1.478 (0.3%)> 0.061 duration > 1.478 (0.0%)> 0.400 duration > 1.505 (0.9%) age <= -0.696 (0.3%) duration <= 2.149 (0.3%)> 0.426 duration > 2.149 (0.0%)> 0.000 age > -0.696 (0.6%) balance <= -0.427 (0.1%)> 0.098
	balance <= -0.427 (0.1%)> 0.098 balance > -0.427 (0.5%)> 0.280 poutcome_success > 0.500 (0.3%) housing_no <= 0.500 (0.1%) duration <= 1.960 (0.1%) day <= 0.322 (0.1%) month_apr <= 0.500 (0.1%)> 0.679 month_apr > 0.500 (0.0%)> 0.250 day > 0.322 (0.0%) balance <= -0.435 (0.0%)> 0.500 balance > -0.435 (0.0%)> 1.000
	<pre>duration > 1.960 (0.0%)> 0.000 housing_no > 0.500 (0.2%) day <= 1.762 (0.2%)</pre>
	<pre>duration > 2.196 (4.0%) contact_cellular <= 0.500 (1.3%) balance <= -0.179 (0.8%) day <= 1.642 (0.7%) month_jun <= 0.500 (0.5%)</pre>
	<pre>duration <= 2.394 (0.0%)> 0.000 duration > 2.394 (0.0%)</pre>
	<pre>month_jan <= 0.500 (0.5%)> 0.645 month_jan > 0.500 (0.0%)> 0.000 balance > 2.489 (0.0%) duration <= 3.840 (0.0%)> 0.000 duration > 3.840 (0.0%) age <= 1.280 (0.0%)> 1.000 age > 1.280 (0.0%)> 0.000 contact_cellular > 0.500 (2.7%) age <= 1.280 (2.3%) poutcome_success <= 0.500 (2.2%)</pre>
	<pre>pdays <= 0.837 (1.9%)</pre>
	age > 1.280 (0.4%) day <= 0.802 (0.3%) month_nov <= 0.500 (0.3%) pdays <= 1.446 (0.2%)> 0.639 pdays > 1.446 (0.0%)> 0.250 month_nov > 0.500 (0.0%) age <= 2.410 (0.0%)> 0.200 age > 2.410 (0.0%)> 1.000 day > 0.802 (0.1%) month_aug <= 0.500 (0.1%)
In [42]:	<pre>balance <= -0.457 (0.0%)> 0.667 balance > -0.457 (0.1%)> 0.158 month_aug > 0.500 (0.0%)> 1.000 r = pd.DataFrame(i, index=numeric_features_list, columns=['importance']) r print(r.sort_values('importance', ascending = False)) importance duration</pre>
	pdays 0.047509 age 0.041381 housing_no 0.041247 month_mar 0.022314 month_apr 0.022092 day 0.021580 balance 0.014240 contact_unknown 0.009912 month_oct 0.008717 month_may 0.005426 month_jun 0.004487 housing_yes 0.003824
	contact_cellular 0.003751 month_sep 0.003022 month_nov 0.001650 month_feb 0.001595 month_aug 0.000816 month_jan 0.000613 month_jul 0.000000 month_dec 0.000000 poutcome_failure 0.000000 poutcome_other 0.000000 contact_telephone 0.000000 poutcome_unknown 0.000000
In [43]:	<pre>Random Forest # try random forest classifer from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification # rf pipeline pipeline_rf = Pipeline([('preprocessor', preprocessor), ('clf rf', RandomForestClassifier()),</pre>
	<pre># here we are trying 2x3 different rf models param_grid_rf = [</pre>
In [44]:	<pre>X_train.info() <class 'pandas.core.frame.dataframe'=""> Int64Index: 36168 entries, 24001 to 44229 Data columns (total 9 columns): # Column Non-Null Count Dtype</class></pre>
In [45]:	4 day 36168 non-null int64 5 month 36168 non-null object 6 duration 36168 non-null int64 7 pdays 36168 non-null int64 8 poutcome 36168 non-null object dtypes: int64(5), object(4) memory usage: 2.8+ MB %%time # train the model using the full pipeline grid_search_rf.fit(X_train, y_train)
Out[45]:	<pre>Wall time: 7min 55s GridSearchCV(cv=10,</pre>
	<pre>['age',</pre>
In [46]:	<pre>er(handle_unknown='ignore'))]),</pre>
Out[46]:	<pre>clf_best = grid_search_rf.best_estimator_ clf_best Pipeline(steps=[('preprocessor',</pre>
In [47]: Out[47]:	<pre>simpleImputer(strategy='most_frequ ent')),</pre>
/]:	<pre>{'preprocessor': ColumnTransformer(transformers=[('num_pipeline',</pre>
In [48]: Out[48]:	<pre>'clf_rf': RandomForestClassifier() }</pre>
	SimpleImputer(strategy='most_frequent')),
	<pre>0.0136944 , 0.00842336, 0.00420647, 0.00816126, 0.00300033,</pre>
In [51]: Out[51]:	<pre>['housing', 'contact', 'month', 'poutcome'])] # get columnTransformer clf_best[0] ColumnTransformer(transformers=[('num_pipeline',</pre>
Out[53]:	
Out[54]: In [55]:	
	<pre>'contact_unknown', 'month_apr', 'month_aug', 'month_fec', 'month_feb', 'month_jan', 'month_jul', 'month_jul', 'month_mar', 'month_mar', 'month_may', 'month_nov', 'month_oct',</pre>
	<pre>'month_oct', 'month_sep', 'poutcome_failure', 'poutcome_other', 'poutcome_success', 'poutcome_unknown']</pre>

<pre>In [56]: Out[56]:</pre>	<pre>feature_names = num_original_feature_names + cat_new_feature_names feature_names ['age', 'balance', 'day', 'duration', 'pdays', 'housing_no',</pre>
	<pre>'housing_yes', 'contact_cellular', 'contact_telephone', 'contact_unknown', 'month_apr', 'month_aug', 'month_dec', 'month_feb', 'month_jan',</pre>
	<pre>'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep', 'poutcome_failure', 'poutcome_other', 'poutcome_success', 'poutcome_unknown']</pre>
<pre>In [57]: Out[57]:</pre>	importance age 0.131024 balance 0.143643
	day 0.113451 duration 0.326142 pdays 0.050667 housing_no 0.011422 housing_yes 0.010521 contact_cellular 0.009086 contact_telephone 0.004562
	contact_unknown 0.009179 month_apr 0.013694 month_aug 0.008426 month_dec 0.004208 month_feb 0.008181 month_jan 0.005000
	month_jul 0.008174 month_jun 0.012353 month_mar 0.013381 month_may 0.008674 month_nov 0.007375 month_oct 0.011209 month_sep 0.007892
In [58]:	<pre>poutcome_failure 0.007258 poutcome_other 0.004462 poutcome_success 0.057358 poutcome_unknown 0.012656 r.sort_values('importance', ascending=False)</pre>
Out[58]:	importance duration 0.326142 balance 0.143643 age 0.131024 day 0.113451 poutcome_success 0.057358
	pdays 0.050667 month_apr 0.013694 month_mar 0.013381 poutcome_unknown 0.012656 month_jun 0.012353 housing_no 0.011422 month_oct 0.011209
	housing_yes 0.010521 contact_unknown 0.009179 contact_cellular 0.009086 month_may 0.008674 month_feb 0.008181 month_jul 0.008174
	month_sep 0.007892 month_nov 0.007375 poutcome_failure 0.007258 month_jan 0.005000 contact_telephone 0.004562 poutcome_other 0.004462
<pre>In [59]: Out[59]:</pre>	
	0.20 0.15 0.10
	duration balance age age day poutcome_success month_apr month_may month_ieb
Out[60]:	<pre># Save the model as a pickle file import joblib joblib.dump(clf_best, "clf-best.pickle") ['clf-best.pickle'] # Load the model from a pickle file saved_tree_clf = joblib.load("clf-best.pickle") saved_tree_clf</pre>
Out[61]:	<pre>Pipeline(steps=[('preprocessor',</pre>
Tn [62]•	SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['housing', 'contact', 'month', 'poutcome'])])), ('clf_rf', RandomForestClassifier())]) onehot_columns = list(clf_best.named_steps['preprocessor'].named_transformers_['cat_pipeline'].named_st
In [63]:	<pre>eps['onehot'].get_feature_names(input_features=cat_features)) numeric_features_list = list(num_features) numeric_features_list.extend(onehot_columns) print(numeric_features_list) ['age', 'balance', 'day', 'duration', 'pdays', 'housing_no', 'housing_yes', 'contact_cellular', 'contact_telephone', 'contact_unknown', 'month_apr', 'month_aug', 'month_dec', 'month_feb', 'month_jan',</pre>
In [65]:	<pre>'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep', 'poutcome_ failure', 'poutcome_other', 'poutcome_success', 'poutcome_unknown'] SVM # try SVM classifer from sklearn.svm import SVC np.warnings.filterwarnings('ignore')</pre>
	<pre># SVC pipeline pipeline_svc = Pipeline([('preprocessor', preprocessor), ('clf_svc', SVC()),]) # here we are trying three different kernel and three degree values for polynomail kernel # in total 5 different combinations param_grid_svc = [</pre>
In [66]:	<pre> 'clf_svc_kernel': ['linear', 'poly', 'rbf'], 'clf_svc_degree': [3, 4, 5], # only for poly kernel } # set up the grid search grid_search_svc = GridSearchCV(pipeline_svc, param_grid_svc, cv=10, scoring='accuracy') # train the model using the full pipeline </pre>
	<pre>#grid_search_svc.fit(X_train, y_train) # best test score #grid_search_svc.best_score_ XG Boost from sklearn import preprocessing</pre>
	<pre>lbl = preprocessing.LabelEncoder() #X_train['default'] = lbl.fit_transform(X_train['default'].astype(str)) #X_train['loan'] = lbl.fit_transform(X_train['loan'].astype(str)) X_train['housing'] = lbl.fit_transform(X_train['housing'].astype(str)) X_train['contact'] = lbl.fit_transform(X_train['contact'].astype(str)) X_train['month'] = lbl.fit_transform(X_train['month'].astype(str)) X_train['poutcome'] = lbl.fit_transform(X_train['month'].astype(str)) #X_train['job'] = lbl.fit_transform(X_train['job'].astype(str)) #X_train['education'] = lbl.fit_transform(X_train['education'].astype(str))</pre>
<pre>In [69]: Out[69]:</pre>	age balance housing contact day month duration pdays poutcome 24001 36 861 0 1 29 1 140 -1 1 43409 24 4126 0 0 5 0 907 185 0 20669 44 244 1 0 12 1 1735 -1 1 18810 48 0 0 1 31 5 35 -1 7
In [70]:	<pre>import xgboost as xgb from xgboost import XGBRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler</pre>
	<pre>from sklearn.decomposition import PCA #from sklearn.preprocessing import Imputer model = xgb.XGBClassifier() pipeline = Pipeline([('standard_scaler', StandardScaler()), ('pca', PCA()), ('model', model)])</pre>
In 「7°	<pre>param_grid = { 'pcan_components': [5, 10, 15, 20], 'modelmax_depth': [2, 3, 5, 7, 10], 'model_n_estimators': [10, 100, 500] } grid_search_xg = GridSearchCV(pipeline, param_grid, cv=5, n_jobs=-1, scoring='roc_auc') #%%time</pre>
[71]:	<pre>grid_search_xg.fit(X_train, y_train) mean_score = grid_search_xg.cv_results_["mean_test_score"][grid_search_xg.best_index_] std_score = grid_search_xg.cv_results_["std_test_score"][grid_search_xg.best_index_] grid_search_xg.best_params_, mean_score, std_score print(f"Best parameters: {grid_search_xg.best_params_}") print(f"Mean CV score: {mean_score: .6f}") print(f"Standard deviation of CV score: {std_score: .6f}")</pre>
	print(f"Standard deviation of CV score: {std_score: .6f}") print(f"Best score: {grid_search_xg.best_score_: .6f}") [18:28:25] WARNING:\src\learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. Best parameters: {'model_max_depth': 7, 'model_n_estimators': 100, 'pca_n_components': 5} Mean CV score: 0.894718 Standard deviation of CV score: 0.004039 Best score: 0.894718
	<pre>clf_best = grid_search_xg.best_estimator_ clf_best Pipeline(steps=[('standard_scaler', StandardScaler()),</pre>
	<pre>interaction_constraints='', learning_rate=0.300000012, max_delta_step=0, max_depth=7, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=8, num_parallel_tree=1, random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None))])</pre>
In [73]:	<pre># best test score print('best dt score is: ', grid_search_dt.best_score_) #print('best svc score is: ', grid_search_svc.best_score_) print('best rf score is: ', grid_search_rf.best_score_) print('best xgboost score is: ', grid_search_xg.best_score_) best dt score is: 0.9024552506477523 best rf score is: 0.9063535929766269 best xgboost score is: 0.8947183340539521</pre>
In [74]:	<pre>NBdf.Class.replace((1, 2), ('no', 'yes'), inplace=True) NBdf.head()</pre>
Out[74]:	agejobmaritaleducationdefaultbalancehousingloancontactdaymonthdurationcampaignpdayspreviousp058managementmarriedtertiaryno2143yesnounknown5may2611-10144techniciansinglesecondaryno29yesnounknown5may1511-10233entrepreneurmarriedsecondaryno2yesyesunknown5may761-10347blue-collarmarriedunknownno1506yesnounknown5may921-10433unknownsingleunknownno1nonounknown5may1981-10
	Features to focus on duration - numerical job - categorical martial - categorical contact - categorical poutcome - categorical
<pre>In [75]: In [76]: Out[76]:</pre>	
In [77]:	<pre>numerical = [var for var in NBdf.columns if NBdf[var].dtype!='0']</pre>
Out[78]: In [79]:	<pre>numerical ['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'] X = NBdf X = X.drop(['education', 'default', 'housing', 'loan', 'month', 'Class', 'age', 'balance', 'day', 'campaign', 'pdays', 'previous'], axis = 1) X.columns</pre>
In [80]: In [81]:	<pre>Index(['job', 'marital', 'contact', 'duration', 'poutcome'], dtype='object') y = NBdf['Class'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)</pre>
	<pre>import category_encoders as ce</pre>
	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train)</pre>
In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB()</pre>
In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>
In []: In []: In []: In []:	<pre>oneHot = ce.OneHotEncoder(cols=X.columns) X_train = oneHot.fit_transform(X_train) X_test = oneHot.transform(X_test) from sklearn.naive_bayes import GaussianNB bayes = GaussianNB() #bayes.fit(X_train, y_train) y_pred = bayes.predict(X_test) from sklearn.metrics import accuracy_score print('Model Accuracy Score is {0:0.4f}'.format(accuracy_score(y_test, y_pred))) print('Training-set Accuracy Score is {0:0.4f}'. format(accuracy_score(y_train, bayes.predict(X_train)))) y_test.value_counts()</pre>