MAT02026 - Inferência B

Lista 1 - Intervalos de Confiança e Intervalos de Credibilidade

Exercício 1 Se L(X) e U(X) satisfazem $P_{\theta}(L(X) \leq \theta) = 1 - \alpha_1$, $P_{\theta}(U(X) \geq \theta) = 1 - \alpha_2$ e $L(x) \leq U(x)$ para todo x, mostre que

$$P_{\theta}(L(X) \leqslant \theta \leqslant U(X)) = 1 - \alpha_1 - \alpha_2.$$

Exercício 2 Seja X_1, \cdots, X_n uma a.a. com função de distribuição comum

$$P(X_i \leqslant x) = \begin{cases} 0, & \text{se } x \leqslant 0, \\ \left(\frac{x}{\beta}\right)^{\alpha}, & \text{se } 0 < x < \beta, \\ 1, & \text{se } x \geqslant \beta. \end{cases}$$

- a) Se α é uma constante conhecida, α_0 , encontre um limite de confiança superior para β com coeficiente de confiança de 95%.
- b) Utilize os dados 22,0 23,9 20,9 23,8 25,0 24,0 21,7 23,8 22,8 23,1 23,1 23,5 23,0 23,0 para construir uma estimativa de intervalo para β . Assuma que α é conhecido e igual a estimativa gerada pelo seu estimador de máxima verossimilhança utilizando os dados acima. Interprete.

Exercício 3 Seja X_1, \dots, X_n uma a.a. onde cada uma das variáveis aleatórias possui função densidade de probabilidade dada abaixo. Encontre um intervalo de confiança para θ com coeficiente de confiança $1 - \alpha$.

- a) f(x) = 1, para $\theta \frac{1}{2} < x < \theta + \frac{1}{2}$.
- b) $f(x) = \frac{2x}{\theta^2}$, para $0 < x < \theta$, onde $\theta > 0$.

Exercício 4 Encontre uma quantidade pivotal com base em uma amostra aleatória de tamanho n a partir de uma população $N(\theta,\theta)$, onde $\theta > 0$. Utilize a quantidade pivotal para definir um intervalo de confiança $1 - \alpha$ para θ .

Exercício 5 Seja X uma única observação obtida da distribuição Beta $(\theta, 1)$.

- a) Assuma $Y = -(\log(X))^{-1}$. Calcule o coeficiente de confiança do intervalo [1/(2Y), 1/Y] para θ .
- b) Mostre que X^{θ} é uma quantidade pivotal.
- c) Construa um intervalo de confiança utilizando a quantidade pivotal X^{θ} . Este intervalo deve possuir um coeficiente de confiança igual a 0.95.

Exercício 6 Seja X_1, \ldots, X_n uma amostra aleatória da $N(\theta; 1)$. Encontre uma quantidade pivotal para este problema e a utilize para obter um intervalo de confiança para θ com coeficiente de confiança igual a 0.95.

Exercício 7 Seja X_1, \ldots, X_n uma amostra aleatória de tamanho n = 10 da $Exponencial(\lambda), \lambda > 0$.

a) Mostre que $\lambda \sum_{i=1}^{n} X_i$ é uma quantidade pivotal.

- b) Construa um intervalo de confiança utilizando a quantidade pivotal do item anterior. Este intervalo deve possuir um coeficiente de confiança igual a 0.90.
- c) Mostre que $2\lambda \sum_{i=1}^n X_i$ também é uma quantidade pivotal.

Exercício 8 Seja X_1, \ldots, X_n uma amostra aleatória de tamanho n da variável aleatória $Exponencial(\lambda)$, $\lambda > 0$.

- a) Encontre um IC assintótico para λ baseado na distribuição do EMV $\hat{\lambda}_{EMV}.$
- b) Compare com o IC obtido no ítem (b) do Exercício 7, considerando um "n grande".

Exercício 9 Seja X_1, \ldots, X_n uma amostra aleatória de tamanho n da variável aleatória $Poisson(\lambda)$, $\lambda > 0$.

- a) Encontre um IC assintótico para λ baseado na distribuição do EMV $\hat{\lambda}_{EMV}.$
- b) Encontre um IC assintótico para $g(\lambda) = \frac{\lambda}{1-\lambda}.$

Exercício 10 Resolver os exercícios 9.26 e 9.29 (a) do livro Casella e Berger.