# Projeto e Análise de Algoritmos: Trabalho Prático 1

João Mateus de Freitas Veneroso

Departamento de Ciência da Computação da Universidade Federal de Minas Gerais

May 17, 2017

## Contents

| 1 | Introdução   | 2      |
|---|--------------|--------|
| 2 |              | 3<br>3 |
| 3 | Experimentos | 6      |
| 4 | Conclusão    | 9      |

## Introdução

Este relatório descreve a implementação do trabalho prático 1 da disciplina Projeto e Análise de Algoritmos. O trabalho consistiu em modelar um aplicativo de compartilhamento de viagens por meio do uso de grafos. A descrição mais detalhada do problema e do algoritmo utilizado para resolvê-lo será feita na próxima seção.

### Implementação

#### 2.1 Problema

Sendo G=(V,A) um grafo onde os vértices  $v\in V$  representam rotas e as arestas direcionadas  $(v_i,v_j)\in A$  representam possibilidades de compartilhamento, cada aresta possui um benefício associado  $B(v_i,v_j)\in R^*$  e cada rota possui uma capacidade igual ao número de assentos vazios no veículo. Um plano de compartilhamento é um subgrafo  $G_p=(V,A_p):A_p\subseteq A$  que contém todos os vértices e um subconjunto das arestas de G. O somatório dos benefícios de todas as arestas representa o benefício total de um plano de compartilhamento  $B_t(G_p)=\sum_{(v_i,v_j)\in A_p}B(v_i,v_j)$ . Nosso objetivo é encontrar um plano de compartilhamento  $G_p^*=argmax\ B_t(G_p)$  sujeito às restrições:

- O número total de passageiros em um veículo não pode exceder a sua capacidade.
- Um passageiro só pode pegar carona em uma rota. Ou seja,  $\forall (v_i, v_j) \in A_p$  não existe  $k \neq j$  tal que  $(v_i, v_k) \in A_p$ .
- Um motorista não pode ser também passageiro e vice-versa. Ou seja,  $\forall (v_i, v_j) \in A_p$  não existe k tal que  $(v_j, v_k) \in A_p$ .

### 2.2 Solução

O plano de compartilhamento de benefício máximo  $G_p^*$  é um subgrafo de G em que todos os vértices são mantidos, mas cujas arestas são um subconjunto das arestas de G. Dessa forma, uma solução para o problema é construir todas as combinações possíveis  $G_p$ , conferir sua validez de acordo com as restrições descritas na subseção anterior e finalmente calcular o benefício total. Após calcularem-se todas as configurações possíveis, escolhe-se aquela com o maior benefício dentre as possibilidades e assim obtemos  $G_p^*$ .

O algoritmo 1 descreve esta abordagem. Primeiro inicializa-se o benefício máximo  $b^*$  com um valor negativo, dessa forma qualquer configuração válida vai proporcionar um benefício maior. A partir daí, no loop das linhas 5-10, para cada configuração válida, calcula-se o benefício total e atualiza-se o valor de  $b^*$ 

se este benefício for maior do que qualquer um encontrado até então. Além disso, a variável  $G_p^*$  guarda a configuração que proporcionou o maior benefício. Ao final do algoritmo,  $b^*$  guarda o valor do benefício máximo para o grafo G e  $G_p^*$  guarda a configuração que proporcionou este benefício.

A complexidade deste algoritmo depende do número de configurações  $G_p$  diferentes e do custo da função ConstraintsAreValid. O número de configurações  $G_p$  diferentes é  $2^m$  para m igual ao número de arestas no grafo G. Pois, cada aresta pode estar presente ou não em  $G_p$  e nós queremos as combinações possíveis para todas as arestas m. O custo da função ConstraintsAreValid depende do número de arestas, pois, para cada aresta (u,v), temos de verificar se ela é a única aresta que sai do vértice u, se o vértice v é um motorista e se v possui espaço para acomodar todos os passageiros de u. Como todas estas operações tem custo constante, a função ConstraintsAreValid tem custo O(m). Por último, a linha 7 calcula a soma dos pesos de todas as arestas também com custo O(m). Logo, a complexidade total do algoritmo é  $2m2^m$  e o algoritmo é  $O(m2^m)$ .

#### Algorithm 1 MaximizeBenefit

```
1: procedure MaximizeBenefit(G = (V,A))
            b^* \leftarrow -1
            G_p^* \leftarrow \emptyset
 3:
 4:
            for all G_p = (V, A_p) : A_p \subseteq G.A do
 5:
                  if ConstraintsAreValid(G_p) then
 6:
                        \begin{array}{l} b \leftarrow \sum_{(v_i,v_j) \in A_p} B(v_i,v_j) \\ \textbf{if} \ b > b^* \ \textbf{then} \end{array}
 7:
 8:
                               b^* \leftarrow b
 9:
                              G_p^* \leftarrow G_p
10:
11:
```

Uma melhora ainda pode ser alcançada se deixarmos de testar parte das configurações inválidas de G. Sabemos que um passageiro só pode pegar carona em uma rota, portanto, qualquer combinação  $G_p$  onde existirem arestas  $(u,v_i),(u,v_j)$ :  $i\neq j$  é inválida. Dessa forma, basta manter uma única aresta ativa por vez na lista de adjacência de cada vértice. Por exemplo, na figura 2.1 apenas duas combinações precisam ser testadas:  $G_0(V,A_0)$ :  $A_0=\{(X,Y)\}$  e  $G_1(V,A_1):A_1=\{(X,Z)\}$ .

Além disso, é necessário lembrar que um vértice pode representar um motorista sem passageiros ou um passageiro que não vai pegar carona com ninguém, portanto, o número total de combinações se torna  $\sum_{v \in V} G \to Adj(v) + 2$  e, no pior caso (um grafo completo), o número de combinações se torna  $O(n^n)$  onde n é o número de vértices no grafo G. Feitas estas considerações, a complexidade assintótica do algoritmo é  $O(mn^n)$ . O algoritmo implementado em Python para este trabalho utiliza este método.

A complexidade de espaço do algoritmo original e da versão aprimorada é



Figure 2.1: Grafo 1

 ${\cal O}(n+m),$ pois o grafo é armazenado na forma de listas de adjacência.

### **Experimentos**

Um experimento foi conduzido para verificar a complexidade assintótica do algoritmo descrito na última seção. Para tanto, foram gerados grafos aleatórios com a quantidade de vértices variando entre 1 e 15 e a quantidade de arestas variando também entre 1 e 15. Observe que, por exemplo, um grafo com dois vértices pode ter no máximo duas arestas, nesses casos, o número de arestas descrito nos experimentos serve como um limite superior para o número de arestas total do grafo. O gráfico 3.1 mostra como o tempo de execução (mensurado em milisegundos) variou com mudanças tanto no número de arestas m como no número de vértices n. É possível observar que a medida que os valores de m e n crescem, o tempo de execução cresce de forma exponencial. O gráfico 3.2 é um corte do gráfico tridimensional que mantém m fixo com o valor de 15 arestas e varia n. O gráfico 3.3 é um corte do gráfico tridimensional que varia m e mantém o valor de n fixo em 15 vértices. É possível observar nestes cortes que a complexidade cresce de forma semilinear em m e claramente exponencial em n, como previsto pela função de complexidade assintótica.



Figure 3.1: Tempo de execução variando n e m



Figure 3.2: Tempo de execução variando n



Figure 3.3: Tempo de execução variando m

## Conclusão

Este relatório descreveu a implementação do Trabalho Prático 1 da disciplina Projeto e Análise de Algoritmos. A complexidade final alcançada foi  $O(mn^n)$  e os resultados experimentais se mostraram coerentes com as expectativas teóricas.