Nucleotide diversity Total Nonsynonymous sites Silent sites Haplotype diversity Neutrality tests

L

 $\pi_{\rm a}$

0.96 0.47 9963

 θ_{Ws}

74 7 44 4 08

 π_{s}

1.19

8.25

ND

4.63

3.99

15

21

207

9 (8)

 $N_{\rm h}$ (SD)

36

 $H_{\rm e}$ (SD)

0.201 (0.048) -1.49

0.922(0.015) -0.54

0.304 (0.083) -0.99

0.582 (0.074) -1.21

0.955 (0.011) -0.56

0.545 (0.254) -0.92

 D^a

0.985 (0.009) -1.57** -5.47

H

-2.98

1.33

0.46

0.62

-4.22

-0.74

S

S (singl.) θ_{Wt}

3 196 76 (98) 5 41 3 03

 π_t^a

L

881

87

309

ND

50

400

7109

S

 θ_{Wa}

2.59

2.91

ND

2.80

1.30

ND

0

38

0.49

2.88

ND

2.31

0.88

0

340

182

ND ND

155

169

7288 175

4 2.67

9 11.06

ND

8.74

5.81

15 21.24 17.56

L

Gene

col1

se1368

se1390

se1391

xy225

Total

xy1420

Average 47

47

49

48

49

429

495

503

209

571

— 15,836 230 (89)

5 (3)

13 (4)

4(1)

6 (3)

20(4)

719 10.5 (4)

2.66 1.04

5.89 4.83

1.80 1.02

6.47 3.42

7.86 6.81*

3.16 2.08

Nucleotide variation, haplotypic diversity, and neutrality tests in 22 Picea abies loci sequenced across seven populations

coii	40	5,190	10 (40)	5.41 5.05	001	1	0.40	0.47	4403	74	7.44	4.00	30	0.365 (0.003)	-1.57	-5.47	
cry	52	918	4(2)	$0.97 \ 0.57$	595	4	1.49	0.87	321	0	0	0	4	0.418 (0.076)	-0.93	-4.88	
ebs	50	730	16 (8)	$4.89\ 2.26$	317	2	1.41	0.25	407	14	7.68	3.86	12	0.481 (0.087)	-1.67*	_	
gi	48	772	7 (3)	2.04 1.28	243	2	1.85	1.56	521	5	2.16	1.17	7	0.546 (0.073)	-1.00	-1.21	
pat1	40	420	3 (1)	$1.69 \ 1.95$	162	1	1.45	2.37	256	2	1.84	1.70	3	0.396 (0.077)	0.35	-0.04	
phynrI	54	759	8 (5)	$2.33 \ 1.22$	585	4	1.50	0.43	171	4	5.14	3.94	8	0.619 (0.050)	-1.27	0.56	
phynrII	35	689	2(1)	$0.71\ 0.24$	535	1	0.45	0.11	152	1	1.60	0.73	3	0.165 (0.082)	-1.28*	0.06	
phyo	44	1,776	19 (8)	$2.47 \ 1.58$	1016	5	1.13	1.35	759	14	4.24	1.88	20	0.910 (0.027)	-1.16	0.21	
phyP	49	794	4(1)	$1.13 \ 1.15$	599	1	0.37	0.66	193	3	3.49	2.67	5	0.509 (0.073)	0.04	-0.30	
phyP2	53	273	5 (2)	$4.08\ 2.05$	211	2	2.09	0.53	62	3	10.64	7.20	6	$0.440 \ (0.078)$	-1.18	-1.42	
vip3	54	762	6 (3)	1.73 0.57*	353	1	0.62	0.10	400	5	2.74	0.99	6	0.234 (0.077)	-1.68**	0.41	
se121	41	440	4(3)	$2.14\ 0.55$	ND	ND	ND	ND	ND	ND	ND	ND	5	0.230 (0.086)	-1.76**	0.23	
se129	49	275	2(0)	$1.64\ 1.85$	ND	ND	ND	ND	ND	ND	ND	ND	3	0.471 (0.068)	0.24	-0.73	
se1100	40	346	6 (0)	$4.12\ 3.95$	83	0	0	0	263	6	5.36	5.19	7	0.831 (0.031)	-0.09	0.53	
se1151	49	480	8 (5)	$3.77 \ 2.11$	ND	ND	ND	ND	ND	ND	ND	ND	9	0.687 (0.076)	-1.19	0.40	
se1358	49	447	8 (3)	4.01 2.88	355	4	2.53	1.54	92	4	9.77	8.04	8	0.684 (0.056)	-0.78	0.32	
se1364	47	552	4(1)	$1.64 \ 1.32$	228	0	0	0	321	4	2.83	2.28	5	0.423 (0.080)	-0.44	0.59	