LAPORAN PRAKTIKUM

SISTEM TERTANAM DAN IOT

Disusun oleh: <u>AFRIZAL DANI SAOQI</u> 17/413500/TK/45940

DEPARTEMEN TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI FAKULTAS TEKNIK UNIVERSITAS GADJAH MADA YOGYAKARTA

I

Pengenalan

1.1 Raspberry Pi

Raspberry Pi merupakan SBC (*Single Board computer*) yang dikembangkan oleh Raspberry Pi Foundation. Pada praktikum ini saya menggunakan Raspberry Pi 3 Model B. Berikut spesifikasi Raspberry Pi 3B dan Pinout GPIO pada Raspberry Pi 3B.

SOC	Broadcom BCM2837
CPU	ARM Cortex A53 64Bit @1.2GHz
GPU	VideoCore IV @400MHz
RAM	1GB LPDDR2 @900MHz
Ethernet	10/100Mbps Ethernet
Wifi	2.4GHz IEEE 802.11n
Bluetooth	Bluetooth 4.1 Classic, Bluetooth Low Energy.
Storage	MicroSD
GPIO	40-pin header
MaxPower	2.5A @5V
Ports	4x 2.0 USB Port
VideoOutput	1x HDMI

Tabel 1.1: Spesifikasi Raspberry Pi 3B

Gambar 1.1: Pinout Raspberry Pi 3B

1.2 NodeMCU

NodeMCU adalah mikrokontroler yang dilengkapi dengan modul wifi esp8266. Secara fungsi NodeMCU mirip dengan Arduino, hanya saja NodeMCU sudah dilengkapi dengan wifi.

1.3 Thingsboard

Thingsboard merupakan salah satu IoT platform yang open source. Fitur yang terdapat pada thingsboard dapat mempermudah penggguna dalam pengembangan produk, manajemen maupun *scaling* produk. Terdapat 9 menu pada halaman *home*.

- 1. HOME
- 2. RULE CHAINS
- 3. CUSTOMERS
- 4. ASSETS
- 5. DEVICES

Pada menu ini, pengguna dapat mendaftarkan device yang akan digunakan.

- 6. ENTITY VIEWS
- 7. WIDGETS LIBRARY
- 8. DASHBOARDS Pada menu ini, pengguna dapat membuat tampilan *dashboard* yang diinginkan
- 9. AUDIT LOGS

1.4 MQTT

1.5 HTTP

II

Pembahasan

2.1 Praktikum Minggu I

2.1.1 Percobaan 1

Pada percobaan ini, praktikan membuat *device* led pada Thingsboard. Setelah membuat *device* maka akan mendapatkan akses token. Token tersebut berguna untuk mengakses *device* tersebut.

2.1.2 Percobaan 2

Pada percobaan ini, praktikan menginstall *board* NodeMCU dan beberapa *li-brary* yang akan digunakan. Terdapat 3 *library* yang digunakan, antara lain:

- 1. ArduinoJSON
- 2. PubSubClient
- 3. ESP8266Wifi

Source Code

```
1. #include <ArduinoJson.h>
2 #include <PubSubClient.h>
3 #include <ESP8266WiFi.h>
```

Kode di atas digunakan untuk menambahkan library yang akan digunakan.

```
2, #define WIFI_AP "F"
2 #define WIFI_PASSWORD "1234567890"
3 #define TOKEN "303hoMJLhyZfhSbwHZLc"
4 #define GPIO0 D3
5 #define GPIO2 D4
6 #define GPIO0_PIN 1 //ThingsBoard pin
7 #define GPIO2_PIN 2 //ThingsBoard pin
8 char thingsboardServer[] = "demo.thingsboard.io";
```

Kode di atas digunakan untuk mendefinisikan sebuah konstanta dan variable.

```
3. void setup()
2 {
3     Serial.begin(115200);
4     // Set output mode for all GPIO pins
5     delay(10);
7     InitWiFi();
8     pinMode(GPIO0, OUTPUT);
10     pinMode(GPIO2, OUTPUT);
11     client.setServer(thingsboardServer, 1883);
12     client.setCallback(on_message);
13 }
```

Kode di atas digunakan untuk men-*setup* pin, komunikasi serial, komunikasi MQTT, wifi yang akan digunakan.

```
4. void loop()
2 {
3     if (!client.connected())
4     {
5         reconnect();
6     }
7
8     client.loop();
9 }
```

Kode di atas digunakan untuk menghubungkan kembali komunikasi mqtt jika terputus.

```
Serial.println(topic);
      Serial.print("Message: ");
      Serial.println(json);
13
14
      // Decode JSON request
      StaticJsonBuffer<200> jsonBuffer;
16
      JsonObject &data = jsonBuffer.parseObject((char *) json);
17
      if (!data.success())
19
20
          Serial.println("parseObject() failed");
          return;
23
24
      // Check request method
      String methodName = String((const char *)data["method"]);
26
      if (methodName.equals("getGpioStatus"))
28
          // Reply with GPIO status
30
          String responseTopic = String(topic);
31
          responseTopic.replace("request", "response");
          client.publish(responseTopic.c_str(), get_gpio_status
     ().c_str());
      else if (methodName.equals("setGpioStatus"))
35
36
          // Update GPIO status and reply
          set_gpio_status(data["params"]["pin"], data["params
     "]["enabled"]);
          String responseTopic = String(topic);
39
          responseTopic.replace("request", "response");
          client.publish(responseTopic.c_str(), get_gpio_status
     ().c_str());
          client.publish("v1/devices/me/attributes",
42
     get_gpio_status().c_str());
43
```

Kode di atas digunakan untuk mendapatkan pesan dari sebuah topik pada komunikasi mqtt. Pesan tersebut diolah, kemudian didapatkan nilai *boolean*. Nilai *boolean* tersebut digunakan untuk men-set gpio.

2.1.3 Percobaan 3

Pada percobaan ini, praktikan membuat dashboard yang digunakan untuk mengendalikan led. Dashboard tersebut berisi *widget* yang telah diimport

2.1.4 Tugas

Terdapat 2 buah led yang dikendalikan melalui dashboard thingsboard. Ketika tombol on pada dashboard thingsboard ditekan maka led pada rangkaian NodeMCU akan menyala, begitu sebaliknya.

2.2 Praktikum Minggu II

2.2.1 Percobaan 1

Pada percobaan ini, praktikan membuat *device* DHT11 pada Thingsboard. Setelah membuat *device* maka akan mendapatkan akses token.

2.2.2 Percobaan 2

Percobaan ini bertujuan untuk mengirim data dari sensor DHT11 ke thingsboard menggunakan mqtt. Data yang dikirim adalah nilai dari *Humidity* dan *Temperature*.

2.2.3 Percobaan 3

2.2.4 Tugas

2.3 Praktikum Minggu III

2.3.1 Percobaan 1

Pada percobaan ini, praktikan mengirim data dari sensor jarak menggunakan mqtt ke platform thingsboard. Data tersebut dikirim 1 detik sekali.

Source Code

```
1. # Libraries import os import time import sys
2 import paho.mqtt.client as mqtt
3 import json
```

```
import RPi.GPIO as GPIO
import time
import sys
import os
```

Kode di atas digunakan untuk menambahkan library yang akan digunakan.

```
21 GPIO.setmode(GPIO.BCM) # set GPIO Pins
2 GPIO_TRIGGER = 18
3 GPIO_ECHO = 24
4 # set GPIO direction (IN / OUT)
5 GPIO.setup(GPIO_TRIGGER, GPIO.OUT)
6 GPIO.setup(GPIO_ECHO, GPIO.IN)
```

Kode di atas digunakan untuk melakukan konfigurasi pada pin yang akan digunakan.

```
3. THINGSBOARD_HOST = 'demo.thingsboard.io'
2 ACCESS_TOKEN = 'WJUNtDkejLyn9nKhgDov'
3
4 client = mqtt.Client()
5 # Set access token
6 client.username_pw_set(ACCESS_TOKEN)
7
8 # Connect to ThingsBoard using default MQTT port and 60 seconds keepalive interval
9 client.connect(THINGSBOARD_HOST, 1883, 60)
10 client.loop_start()
```

Kode di atas digunakan untuk men-*setup* komunikasi MQTT dan komunikasi terhadap platform thingsboard.

```
4. def distance():
2
3  # set Trigger to HIGH
4  GPIO.output(GPIO_TRIGGER, True)
5  # set Trigger after 0.01ms to LOW
6  time.sleep(0.00001)
7  GPIO.output(GPIO_TRIGGER, False)
```

```
StartTime = time.time()
      StopTime = time.time()
                              # save StartTime
      while GPIO.input(GPIO_ECHO) == 0:
10
          StartTime = time.time()
11
      # save time of arrival
      while GPIO.input(GPIO_ECHO) == 1:
13
          StopTime = time.time()
      # time difference between start and arrival
      TimeElapsed = StopTime - StartTime
16
      \# multiply with the sonic speed (34300 cm/s) \# and divide
     by 2, because there and back
      distance = (TimeElapsed * 34300) / 2
18
      return distance
```

Kode di atas digunakan untuk mendapatkan data dari sensor jarak.

2.3.2 Percobaan 2

Pada percobaan ini, praktikan membuat *device* HCSR04 pada Thingsboard. *Device* tersebut berguna untuk menerima data yang berasal dari HCSR04. Data yang terkirim dapat dilihat *tab LATEST TELEMETRY*. Data tersebut akan digunakan dalam membuat dashboard.

Dashboard yang digunakan merupakan sebuah *chart widget*. *Chart widget* tersebut bertipe *time series*.

2.3.3 Tugas

Percobaan ini bertujuan untuk mengambil data dari sensor DHT11 dan mengirimkannya ke Thingsboard. Pengiriman data menggunakan protokol komunikasi mqtt. Source Code

```
humidity,temperature = dht.read_retry(dht.DHT22,

4)
humidity = round(humidity, 2)
temperature = round(temperature, 2)
```

Kode di atas digunakan untuk mendapatkan data *humidity* dan *temperature* sensor DHT11. Data tersebut kemudian dibulatkan.

```
2. client.publish('v1/devices/me/telemetry', json.
    dumps(sensor_data), 1)
```

Kode di atas digunakan untuk mengirim data ke Thingsboard. Data yang dikirim berbentuk JSON.

2.4 Praktikum IV

2.4.1 Percobaan 1

Pada percobaan ini, praktikan menginstall beberapa library antara lain:

- 1. Seeed Studio
- 2. Thingsboard MQTT PubSubClient

Source Code

Kode di atas digunakan untuk menambahkan *library* yang akan digunakan.

Kode di atas digunakan untuk melakukan konfigurasi format penulisan dan akses thingsboard.

```
3.
      # Grove - Servo connected to PWM port
      servo = GroveServo(12)
      servo\_angle = 90
      # Grove - mini PIR motion pir sensor connected to port D5
      pir_sensor = GroveMiniPIRMotionSensor(5)
      # Grove - Ultrasonic Ranger connected to port D16
      ultrasonic_sensor = GroveUltrasonicRanger(16)
10
      # Grove - LED Button connected to port D18
      button = GroveLedButton(18)
      # Grove - Moisture Sensor connected to port A0
14
      moisture_sensor = GroveMoistureSensor(0)
15
      # Grove - Light Sensor connected to port A2
17
      light_sensor = GroveLightSensor(2)
      light state = False
      # Grove - Temperature&Humidity Sensor connected to port
      D22
      dht_sensor = DHT('11', 22)
```

Kode di atas digunakan untuk mendapatkan data dari masing-masing sensor. Dalam percobaan ini hanya perangkat led dan servo yang digunakan.

```
def on_server_side_rpc_request (request_id, request_body):
    log.info('received rpc: {}, {}'.format(request_id,
    request_body))

if request_body['method'] == 'getLedState':
    client.send_rpc_reply(request_id, light_state)

elif request_body['method'] == 'setLedState':
    light_state = request_body['params']

button.led.light(light_state)

elif request_body['method'] == 'setServoAngle':
    servo_angle = float(request_body['params'])
```

```
servo.setAngle(servo_angle)
elif request_body['method'] == 'getServoAngle':
client.send_rpc_reply(request_id, servo_angle)
```

Kode di atas digunakan untuk menerima permintaan dari pengguna dan mengirim permintaan tersebut ke *device*. Pengguna dapat mengirim perintah untuk menjalankan servo pada sudut tertentu dan mengontrol led.

2.4.2 Percobaan 2

Pada percobaan ini, praktikan membuat *device* dan *dashboard* pada Thingsboard. *Dashboard* yang digunakan sudah disediakan oleh Seeed Studio.

2.4.3 Tugas

Percobaan ini merupakan gabungan dari percobaan 1 dan 2. Setelah *dashboa- rd* dibuat, pengguna dapat mengendalikan led dan servo melalui *dashboard* tersebut.

- 2.5 Praktikum V
- 2.5.1 Percobaan 1
- 2.5.2 Percobaan 2
- **2.5.3** Tugas
- 2.6 Praktikum V
- 2.6.1 **Percobaan 1**
- 2.6.2 Percobaan 2
- 2.6.3 Percobaan 3
- **2.6.4** Tugas