Color-Based Retrieval of Facial Images

Yannis Avrithis, Nicolas Tsapatsoulis and Stefanos Kollias

Image, Video and Multimedia Lab.

Dept. of Electrical and Computer Engineering

National Technical University of Athens

e-mail: {iavr,ntsap}@image.ntua.gr

Presenter: Anastasios Doulamis

Overview

- Content-Based Retrieval
- A Working Scenario
- Color Segmentation
- Skin-Tone Color Distribution
- Shape Processing
- Retrieval Result Ranking
- Experimental Results

Content-Based Retrieval

- New tools for summarization, content-based query, browsing, indexing and retrieval required for the emerging multimedia applications
- Existing systems use color, motion, texture, shape information as well as spatial and temporal relation between objects
- Extraction of semantic information requires a priori knowledge and can only be achieved in the context of specific applications
- Growing interest in retrieval of images containing human faces: face detection and segmentation required

Face Detection for Multimedia Applications

- In many cases it is enough to detect the presence of a face in a picture / video sequence
 - i.e. detect the anchorperson
- Fast Implementations (real-time performance is desirable)
 - example: news summarization
- Color should be exploited
 - convenience with dedicated content-based indexing /retrieval algorithms

The Proposed Technique

- Combine color segmentation and color based face detection for facial image retrieving
- M-RSST segmentation algorithm employed; average color components, size, location, shape and texture extracted.
- Adaptive 2-D Gaussian density function used for modeling skin-tone color distribution; exploit shape characteristics to discriminate face from skin segments
- Query-by-example framework proposed for interactive, configurable and flexible content-based human face retrieval

A Working Scenario

- Images in database segmented and color chrominance components, size and shape information stored
- Query-by-example: User presents a facial image; system performs face detection and ranks existing images according to several criteria
- Retrieval based on color similarity, facial scale or number of face segments possible
- Retrieved images returned to user; further manual selection used to adapt skin-color probabilistic model

Color Segmentation: M-RSST

- Multiresolution decomposition and construction of a truncated image pyramid
- All 4-connected region pairs assigned a *link weight* equal to the distance measure

$$d(X,Y) = \|\mathbf{c}_X - \mathbf{c}_Y\| \frac{a_X a_Y}{a_X + a_Y}$$

- Recursive merging of adjacent regions and boundary block splitting in each resolution level
- Fast algorithm, employed directly on MPEG streams with minimal decoding

M-RSST Flowchart

Image, Video and Multimedia Lab.

National Technical University of Athens

YCrCb Color Space and Human Skin

- Skin color can be modeled via the chrominance components of the YCrCb color model
 - ☐ Skin color covers a small part of the *Cr-Cb* plane
 - ☐ Influence of Y channel small
- Skin color subspace restrictions:
 - cannot be modeled in a general way for all face images
 - 'relaxing' the model => increased number of False Alarms
 - □ a 'rigorous' model => increased number of Dismissals
- □ False Alarm: Detection of a face in a wrong position or in frames / pictures where no faces are contained
- Dismissal: A failure to detect an existing face

The Proposed Skin Color Model

Approximation of skin-tone color distribution with a 2-D Gaussian density function on the Cr-Cb chrominance plane:

$$P(\mathbf{x} \mid \boldsymbol{\mu}_0, \mathbf{C}) = \frac{\exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_0)^T \mathbf{C}^{-1}(\mathbf{x} - \boldsymbol{\mu}_0)\}}{(2\pi)^{\frac{k}{2}} \cdot |\mathbf{C}|^{\frac{1}{2}}}$$

- x: input pattern (mean chrominance components of an image segment)
- \square μ_0 : mean vector, \mathbb{C} : covariance matrix

Skin-Color Region Extraction

Re-estimation of the mean vector based on current image / frame:

$$\boldsymbol{\mu}_0 = (1 - m) \cdot \boldsymbol{\mu}_0 + m \cdot \boldsymbol{\mu}$$

µ: mean vector estimated from current image / framem: a memory tuning constant

Skin-color region merging based on estimated skin-color probability:

$$d_C(X,Y) = [\max(1-p_X, 1-p_Y)]^2$$

 Adjacent face segments merged – remaining partition map not affected

Shape Processing

- Global shape features of segment contours
 - □ Shape *compactness*: $g_X = 4\pi a_X / r_X^2$
 - □ Shape *elongation*: $\ell_X = \sqrt{\lambda_2 / \lambda_1}$
- Both normalized in [0,1] and invariant to translation,
 scaling and rotation
- Combination with skin-color probability using non-linear functions – construction of an overall face probability map
- Segments with extremely irregular shape discarded

Retrieval Result Ranking

- Query-by-example: User presents a facial image; system performs face detection and ranks existing images according to several criteria
- Similarity with the presented face segment: m small, ranking w.r.t. segment probability
- Facial scale: m high, ranking w.r.t. percentage of image area
- Number of face segments: m high, ranking w.r.t. facial segments present in the image

Experimental Results

Segmentation and probability assignment

Image, Video and Multimedia Lab.
National Technical University of Athens

Skin Color based Retrieval

Image Presented to the system

mem: 0.3

Selected from the user segment

0.9992

0.9872

0.9735

0.9591

Retrieval based on number of Faces

Image Presented to the system

mem: 0.7

Segmented Faces

prob=0.6369

0.5525

0.1581

0.1224

Image, Video and Multimedia Lab.
National Technical University of Athens

Retrieval based on Facial Scale

Image Presented to the system

mem: 0.8

Segmented Face

Facial area: 0.0867

0.0873

0.0883

0.0969

0.0985

Conclusions

- Color segmentation: powerful tool for object extraction, especially for human faces
- M-RSST algorithm: eliminates facial details and provides a single object for each face
- Chrominance components with a probabilistic model used in an efficient way for retrieving facial images from image databases
- Interactive retrieval framework adapts the model to user needs and leads to meaningful retrieval results