Exercise 1. Define a *line* in \mathbb{P}^2 to be a closed subset of the form $L = \{ [x:y:z]: ax + by + cz = 0 \}$ for some constants $a,b,c \in \mathbb{C}$, not all zero.

- i) If (a,b,c)=(1,0,0), we saw in class that $\mathbb{P}^2\backslash L=\{[x:y:z]:x\neq 0\}=U_x$ could be identified with \mathbb{C}^2 .
 - Similarly, show that for any line L there is a bijection $\mathbb{P}^2 \setminus L \simeq \mathbb{C}^2$.
- ii) Prove that any two distinct lines L_1 and L_2 intersect in a single point.
- iii) Prove that there is a unique line L through any two distinct points in \mathbb{P}^2 .

Answer