ЛАБОРАТОРНА РОБОТА № 6

Наївний Байєс в Python

Мета роботи: набути навичок працювати з даними і опонувати роботу у Python з використанням теореми Байэса.

Варіант 7

Хід роботи:

Посилання на GitHub:

https://github.com/Dubnitskyi/AI_all_labs/tree/master/Lab6

Завдання 1

Визначити відбудеться матч при наступних погодних умовах чи ні.

2, 7, 12	Outlook = Overcast	Перспектива = Похмуро
2, 7, 12		Вологість = Висока
	Wind = Strong	Вітер = Сильний

Програмний код:

import pandas as pd

```
def ChansGame(data, freq_table, elem):
  all_Yes = sum(freq_table["Yes"])
  all_No = sum(freq_table["No"])
  S_YaN = freq_table['Yes'][elem] + freq_table['No'][elem]
  all_Elem = len(data)
  PElem = round(S_YaN / all_Elem, 8)
  PYesAElem = round(freq_table['Yes'][elem] / all_Yes, 8)
  PYes = round(all_Yes / all_Elem, 8)
  P_Y_s = round((PYesAElem * PYes) / PElem, 8)
  PNoAElem = round(freq_table['No'][elem] / all_No, 8)
  PNo = round(all_No / all_Elem, 8)
  P_N_s = round((PNoAElem * PNo) / PElem, 8)
  print(f"{elem} --- Yes = {round(P_Y_s, 3)}, No = {round(P_N_s, 3)}")
  return P_Y_s, P_N_s, PYes, PNo
data = pd.read_csv('data.csv')
freq_table_outlook = pd.crosstab(data['Outlook'], data['Play'])
freq_table_humidity = pd.crosstab(data['Humidity'], data['Play'])
```

```
freq_table_wind = pd.crosstab(data['Wind'], data['Play'])
```

```
P_Y_{s1}, P_N_{s1}, PYes1, PNo1 = ChansGame(data, freq_table_outlook, "Overcast") \\ P_Y_{s2}, P_N_{s2}, PYes2, PNo2 = ChansGame(data, freq_table_humidity, "High") \\ P_Y_{s3}, P_N_{s3}, PYes3, PNo3 = ChansGame(data, freq_table_wind, "Strong") \\ Probability_yes = round(P_Y_{s1} * P_Y_{s2} * P_Y_{s3} * PYes1 * PYes2 * PYes3, 8) \\ Probability_no = round(P_N_{s1} * P_N_{s2} * P_N_{s3} * PNo1 * PNo2 * PNo3, 8) \\ Print(f"P(Yes) = \{round(Probability_yes / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_yes + Probability_no), 3)\}") \\ Print(f"P(No) = \{round(Probability_no / (Probability_no / (Probability_n
```

Результат виконання:

```
task1 ×

C:\Users\yousu\AppData\Local\Programs\Pyt
    Overcast --- Yes = 1.0, No = 0.0
    High --- Yes = 0.429, No = 0.571
    Strong --- Yes = 0.5, No = 0.5

P(Yes) = 1.0

P(No) = 0.0
```

Завдання 2.

Застосуєте методи байєсівського аналізу до набору даних про ціни на квитки на іспанські високошвидкісні залізниці.

Програмний код:

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

data = pd.read_csv('renfe_small.csv')
freq_table = pd.crosstab(data['price'], data['destination'])
array = freq_table.values
X, y = array[:, :-1], array[:, -1]
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=8)

```
gnb = GaussianNB()
gnb.fit(X_train, y_train)
y_pred = gnb.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
```

Результат виконання:

```
task2 ×

C:\Users\yousu\AppData\Local\Programs\
Accuracy: 0.78181818181819
```

Висновок: Під час лабораторної роботи я набув навичок працювати з даними і опонував роботу у Python з використанням теореми Байэса.