Základné metódy tvorby multimediálneho obsahu

Analógovo-digitálny prevod a zvukové dáta

Ing. Peter Kapec, PhD.

ZS 2020-21

Obsah

- Analógovo-digitálny prevod
- Digitálna reprezentácia zvukových dát
- Zvukové dáta a kompresia
- HTML5 a audio
- CSS

Analógovo-digitálny prevod

Analógový vs digitálny signál

- Analógový signál
 - Spojitý
- Digitálny signál
 - Diskrétny vyberáme len niektoré vzorky zo spojitého analog. signálu
 - Rozlíšenie konkrétna hodnota úrovne signálu nie je presná
 - Výhody: neobsahuje šum, kompresia

Konverzia analóg-digitál

Vzorkovanie

Kvantizácia

Vzorkovanie a rekonštrukcia signálu

Ako vzorkovať?

Vzorkovací teorém a aliasing

 Koľko vzoriek potrebujeme na správnu rekonštrukciu signálu?

Vzorkovací teorém a aliasing

- Koľko vzoriek potrebujeme na správnu rekonštrukciu signálu?
- Shannon-Nyquist teorém:
 - Vzorkovaný signál musí byť vzorkovaný vzorkovacou frekvenciou ktorá je aspoň 2x väčšia ako vzorkovaný signál
 - Keď menej vzorkami vzniká alias

Koľko vzoriek?

- Vzorkovaný signál
- frekvencia vstupného signálu:
 - -8x
 - -2x
 - < 2x

Koľko úrovní pre vzorku?

Úroveň signálu

- Čo keď je úroveň signálu väčšia ako počet úrovní pre vzorku?
 - Orezávanie (clipping)

Chyby pri rekonštrukcii signálu

Kvantizácia, orezávanie

Vzorkovanie a kvantizácia

 Vplyv na kvalitu

Vzorkovanie a kvantizácia

- Vplyv na kvalitu
- Signál
 - 1D signál zvuk
 - 2D signál obraz

1 bit

Dátový tok

$$Bit \ rate = \frac{Bits}{Second} = \left(\frac{Samples \ produced}{Second}\right) \times \left(\frac{Bits}{Sample}\right)$$
$$= Sampling \ rate \ x \ Quantization \ bits \ per \ sample$$

Signal	Sampling rate	Quantization	Bit rate
Speech	8 KHz	8 bits per sample	64 Kbps
Audio CD	44.1 KHz	16 bits per sample	706 Kbps (mono) 1.4 Mbps (stereo)
Teleconferencing	16 KHz	16 bits per sample	256 Kbps
AM Radio	11 KHz	8 bits per sample	88 Kbps
FM Radio	22 KHz	16 bits per sample	352 Kbps (mono) 704 Kbps (stereo)
NTSC TV image frame	Width – 486 Height – 720	16 bits per sample	5.6 Mbits per frame
HDTV (1080i)	Width – 1920 Height – 1080	12 bits per pixel on average	24.88 Mbits per frame

Kvalita vs dátový tok

Kvalita	Vzorkovaci a frekvencia (kHz)	Veľkosť vzorky (v bitoch)	Mono/ stereo	Dátový tok (bez kompresie) (kB/ sec)	Frekvenčné pásmo (Hz)
Telefón	8	8	Mono	8	200-3400
AM rádio	11,025	8	Mono	11,0	100-5500
FM rádio	22,05	16	Stereo	88,2	20-11000
CD	44,1	16	Stereo	176,4	5-20000
DAT	48	16	Stereo	192,0	5-20000
DVD audio	192(max)	24(max)	Do 6 kanálov	1200 (max)	0-96000(max)

Digitálna reprezentácia zvukových dát

Záznam zvuku

- 1800s fonograf (Thomas Alva Edison), gramofón (Emile Berliner)
- Zvukové nahrávky
 - Binaural 2 nemixované kanály (2 mikrofóny a 2 reproduktory) (BBC stereo 1925)
 - Stereophonic viac ako 2 kanály (Walt Disney's Fantasia 1940)

Zvuk

- Akustika
- Zvuk prenos energie v médiu vo forme tlakových vĺn
 - decibely dB, logaritmická mierka

dB	Watts	Example
195	25-40 million	Saturn rocket
170	100,000	Jet engine with afterburner
160	10,000	Turbojet engine at 7,000-pounds thrust
150	1,000	ALSETEX splinterless stun grenade
140	100	2 JBL2226 speakers pulling 2,400 watts inside an automobile
130	10	75-piece orchestra, at fortissimo
120	1	Large chipping hammer
110	0.1	Riveting machine
100	0.01	Automobile on highway
90	0.001	Subway train; a shouting voice
80	0.0001	Inside a 1952 Corvette at 60 mph
70	0.00001	Voice conversation; freight train 100 feet away
60	0.000001	Large department store
50	0.0000001	Average residence or small business office
40	0.00000001	Residential areas of Chicago at night
30	0.000000001	Very soft whisper
20	0.000000001	Sound studio

Zvukové formáty

File suffix			
or logo	Filename	File type	Features
.wav	WAV	Uncompressed PCM coded	Default standard for audio on PCs. WAV files are coded in PCM format.
.au	G.711 μ -law, or ITU μ -law	Uncompressed audio	Universal support for telephone. Packs each 16-bit sample into 8 bits, by using logarithmic table to encode with a 13-bit dynamic range. Encoding and decoding is very fast.
GSM 06.10	Global System for Mobile Communication	Lossy Compressed mobile audio	International standard for cellular telephone technology. Uses linear predictive coding to substantially compress the data. Compression/decompression is slow. Freely available and, thus, widely used
.mp3	MPEG1 Layer3	Compressed audio file format	Uses psychoacoustics for compression Very good bandwidth savings and, hence, used for streaming and Internet downloads.

Zvukové formáty

.ra	Real Audio	Compressed format	Proprietary to Real Audio. Capable of streaming and downloading. Comparable quality to mp3 at high data rates but not so at low data rates
AAC	Advanced Audio Codec MPEG4	Compressed format	Superior quality to .mp3.
.mid	MIDI—Musical Instrument Digital Interface	Descriptive format	MIDI is a language of communication among musical instruments. Description achieved by frequencies, decays, transients, and event lists. Sound has to be synthesized by the instrument.
DOLBY	Dolby Digital (formerly called	Compressed 5.1 surround sound	De facto standard of home entertainment (Dolby AC-3) Distributed with DVD, HDTV systems. Provides five discrete channels—center, left, right, surround left, and surround right—plus an additional six for LFE.

Zvukové formáty

DTS Surround Sound Compressed 5.1 surround sound Alternate to Dolby Digital.

Distributed with DVDs, but not HDTV.

Has higher data rate compared with

Dolby Digital.

THX Surround Sound

Compressed 5.1 surround sound Designed for movie theaters

(THX Ultra) as well home theaters

(THX Select).

Has become the select brand for

surround sound today.

THX Surround Sound Extended Compressed 6.1 or 7.1 surround sound

Jointly developed by Lucasfilm, THX and Dolby

Laboratories.

Also known as Dolby Digital ES.

Has a surround back channel, placed

behind audience achieving 360° of

sound.

Priestorový zvuk

- Surround Sound
 - Niekoľko zvukových kanálov so samostatnými reproduktormi (5.1, 6.1, 7.1,...,10.2)
- Spatial Audio
 - Dosiahnutie "3D" zvukového efektu pomocou menšieho počtu kanálov (napr. 2)
 - Psycho-akustické efekty
 - Sound Retrieval System (SRS), Head Related Transfer Functions (HRTF)

Musical Instrument Digital Interface (MIDI)

- Vytvorené začiatkom 1980
- NIE je digitalizovaný zvuk
- Sekvencia časovo-označených príkazov (muzických akcií – stlačenie klávesu na klavíri)
- Protokol pre prenos
 - Nôt, sekvencií nôt, inštrumentov
- Záznam MIDI klávesy, notový zápis
- Prehrávanie MIDI zariadenie

MIDI

- Záznam z MIDI klávesov
 - Nota, tlak, trvanie, rýchlosť zdvihu, ...
- Kvalita prehrávaného MIDI
 - Závisí od výstupného MIDI zariadenia
- Možnosť "zameniť" nástroj
 - Definovaná sada nástrojov
- Vhodné pre produkciu, nie pre prehrávanie

General MIDI

Sada 128 nástrojov

ID	Sound	ID	Sound
0	Acoustic grand piano	16	Hammond organ
1	Bright acoustic piano	17	Percussive organ
2	Electric grand piano	18	Rock organ
3	Honky-tonk piano	19	Church organ
4	Rhodes piano	20	Reed organ
5	Chorused piano	21	Accordion
6	Harpsichord	22	Harmonica
7	Clarinet	23	Tango accordion
8	Celesta	24	Acoustic guitar (nylon)
9	Glockenspiel	25	Acoustic guitar (steel)
10	Music box	26	Electric guitar (jazz)
11	Vibraphone	27	Electric guitar (clean)
12	Marimba	28	Electric guitar (muted)
13	Xylophone	29	Overdriven guitar
14	Tubular bells	30	Distortion guitar
15	Dulcimer	31	Guitar harmonics

MIDI vs digitálne audio

- Výhody MIDI
 - MIDI súbor značne menší ako dig. nahrávka
 - Môžu znieť lepšie ako dig. nahrávka
 - MIDI je editovateľné bez straty kvality
 - možno zmeniť tempo, jednotlivú notu, ...
 - Obojsmerná konverzia na notový zápis
- Nevýhody
 - Závislosť na výstupnom zariadení
 - Nevhodné na hovorené slovo

Zvukové dáta a kompresia

Potreba kompresie

Audio data	Speech (mono)	CD (stereo)	FM radio (stereo)	5.1 surround sound
Sample size	8 bits	16 bits	16 bits	16 bits
Sample rate	8 KHz	44.1 KHz	22 KHz	44.1 KHz
One second of uncompressed size (B for bytes)	8 KB	88.2 KB (stereo)	44 KB (stereo)	530 KB (6 channels)
One second of transmission bandwidth (b for bits)	64 Kbps	1.4 Mbps (stereo)	704 Kbps (stereo)	4.23 Mbps (6 channels)
Transmission times for one second of data (56 Kb modem)	1.14 seconds	25 seconds	12.5 seconds	76 seconds
Transmission times for one second of data (780 Kb DSL)	0.08 seconds	1.8 seconds	0.9 seconds	5.4 seconds

Teória kompresie audia

- Vizuálny vs zvukový aparát človeka
 - Vizuálny signál viac redundantných informácií
 - Zvukový aparát viac citlivý na šum a degradáciu
- Audio kompresné techniky
 - Brať viac ohľad na straty a skreslenie
 - kompresné techniky pre video vyššia kompresia
- Fidelity vs Bit rate vs Complexity

Pulse Code Modulation (PCM)

- Proces digitalizácie analógového
 - vzorkovanie, kvantizácia
- Použitie
 - Formát .wav
 - Audio CD, DVD

- Stratová kompresia
- Signál sa "málo" mení → vzorky sú si podobné
- Nasledujúcu vzorku možno "odhadnúť" na základe súčasnej a predchádzajúcich
- Odhad → chyba predikcie
- Prenáša sa chyba vzorky < ako vzorka
 - Menej dát na prenos

Predikcia a chyba

12.10.2020 sli.do/#41861 34/71

 Prenos rozdielu medzi predikciou a aktuálnou hodnotou

- Nevýhoda chyba sa kumuluje
 - Dá sa čiastočne eliminovať (uzavretou slučkou)
- Modifikácie
 - Delta Modulation miesto chyby sa prenáša 1bit
 - Indikuje konšt. nárast / pokles hodnoty vzorky
 - Adaptive DPCM variabilný počet bitov na chybu
 - Logarithmic Quantization Scales
 - Vhodné pre kompresiu ľudského hlasu

Nonlinear quantization scales

Psychoakustická kompresia

- Frekvencia: 20Hz 20kHz
- Dynamický rozsah: 120dB
- < 30ms: nevieme rozlíšiť dve udalosti

Psychoakustická kompresia

• Hranica počuteľnosti: dB vs Hz

Psychoakustická kompresia

Maskovanie frekvencií

MPEG-1

- MPEG-1 Layer I, MPEG-1 Layer II, MPEG-1 Layer III (MP3)
- Aplikuje sadu filtrov + psychoakustický model
- Módy: mono, stereo, dual channel, joint stereo
- Pri 384 Kbps "nerozlíšiteľné od originálu"

MPEG-1 enkodér

MPEG-1 dekodér

MPEG-2

- 5.1 kanálov
- MPEG-2 BC spätne kompatibilný s MPEG1
- MPEG-2 AAC (Advanced Audio Coding)
 - 320-430 kb/s pre 5.1 (dobrá kvalita)
 - 128 kb/s a aj menej pre stereo (dobrá kvalita)

MPEG-4

- Formát nielen pre zvuk (aj video, grafika...)
- Pre zvuk 3 časti:
 - Pre ľudský hlas: HVXC (až 2 Kbps), CELP
 - Pre hi-quality audio: rozšírené AAC
 - Low complexity (LC-AAC), High efficiency (HE-AAC)
 - Scalable sample rate (AAC-SSR), Bit sliced arithmetic coding (BSAC), Long term predictor (LTP)
 - Modul pre text-to-speech syntézu

ITU G.x

- Telekomunikačné siete
- ITU G.711, ITU G.722
 - video-telephone cez ISDN, 64 Kbps
- TU G.721, ITU G.726, and ITU G.727
 - ADPCM: 64, 40, 32, 24, 16 Kbps
- ITU G.723 and ITU G.729
 - model-based coders, riešia stratu paketov v Internete
- ITU G.728
 - ISDN video telefonovanie

HTML5

Audio

- <audio controls>
- <source src="horse.ogg" type="audio/ogg">
- <source src="horse.mp3" type="audio/mpeg">
- Oznam, že browser nepodporuje audio element.
- </audio>

CSS IS AWESOME

Cascading Style Sheets

HTML

- Nebolo zamýšľané, aby definovalo elementy pre formátovanie
- "iba" definovanie obsahu a štruktúry dokumentu

CSS

- Oddeľuje definovanie vzhľadu
- Znovupoužitie

Cascading Style Sheets

- Selektor výber HTML elementu
- Deklarácie výber vlastnosti a nastavenie jej hodnoty

Cascading Style Sheets

CSS štýl: sekvencia deklarácií oddelených;

12.10.2020 sli.do/#41861 52/71

Vkladanie CSS stýlov

- Spôsoby použitia
 - Inline style
 - Embedded style
 - External style

Vkladanie CSS stýlov

• Inline style:

```
<a href="http://apress.com"
style="background-color:grey; color:white">
Visit the Apress website </a>
```


Vkladanie CSS stýlov

Embedded style:

```
<head>
  <title>Example</title>
  <style type="text/css">
    a {
         background-color:grey; color:white
    span {
         border: thin black solid;
         padding: 10px;
  </style>
</head>
```


Externé CSS

Externý styles.css súbor:

```
a {
background-color:grey;
color:white
}
```

• Použitie:

```
<head>
    <title>Example</title>
    k rel="stylesheet" type="text/css" href="styles.css"></link>
</head>
```


Importovanie CSS

 Súbor combined.css: @charset "UTF-8"; @import "styles.css"; span { border: medium black dashed; padding: 10px;

CSS – prečo cascading

- Poradie v akom ich browser aplikuje:
 - 1. Inline styles (style atribút v elemente)
 - 2. Embedded styles (definovaný style elementom)
 - 3. External styles (štýly importované *link* elementom)
 - 4. User styles
 - 5. Browser styles
- Pozn.: 1-3 tzv. "author styles"

CSS – dedenie šťýlov

 Ak sa štýl pre element nenájde, použije sa dedenie, t.j. hodnota rodičovského elementu:

```
<style type="text/css">
    p {
    color:white; background:grey; border: medium solid black; }
</style>
```

I like apples and oranges.

CSS – dedenie šťýlov

- Pravidlá:
 - Vzhľad elementu (text color, font details, ...)
 sa dedí
 - Umiestnenie (layout) elementu
 sa nededí

CSS – vnorené štýly

```
<style>
ul {
   list-style-type: square
ul ul {
   list-style-type: disc
ul ul ul {
   list-style-type: circle
</style>
```


CSS - zoskupovanie

```
h1
color:green;
h2
color:green;
color:green;
```

```
h1,h2,p
color:green;
```


CSS – vlastné štýly

• Použiteľné pre viacero elementov

```
<style>
.new {
color: red
</style>
Spraying Techniques for Fruit Trees
```

12.10.2020 sli.do/#41861 63/71

CSS – vlastné štýly

 Použiteľné pre viacero elementov, ale konkrétne špecifikované

```
<style>
p.center
{
text-align:center;
}
</style>
```

This paragraph will be center-aligned.

CSS – vlastné štýly

 Použiteľné pre jeden element v dokumente <style> #special { color: red </style> id="special">Spraying Techniques for Fruit Trees

CSS - Box model

Zhrnutie

- Klúčové poznatky z prednášky
 - A-D a D-A prevod signálu
 - Výpočet dátoveho toku
 - MIDI vs digitálne audio
 - Reprezentácia a kopresia dig. Zvuku
 - PCM, DPCM
 - CSS
 - Syntax a spôsoby použitia v HTML
 - Dedenie štýlov
 - Box model

Nabudúce

- Obrazové dáta
 - Vnímanie obrazu
 - Digitálna reprezentácia obrazu
 - Obrazové dáta a kompresia
 - CSS
 - Box mode
 - Layout stránky

2. kontrolný bod

Pokyny

- Odovzdanie dokumentu do AIS vo formáte PDF
 - Doplnenie dokumentu z 1. kontrolného bodu o:
 - Texty pre web stránku
 - Obrázky, logá, pozadia ...
 - Screenshot web stránky + zdrojový kód
 - Základná kostra web prezentácie:
 - Aspoň 3 zlinkované stránky, použitie sémantických elementov, vložené texty naštýlované CSS, vložené obrázky (layout stránky nie je požadovaný)
- Termín: 18.10. do 23:59 vložiť do AIS

!!! predviesť na cvičení v 5. týždni, t.j. 19.10., 20.10. a 21.10. !!!

Ďakujem za pozornosť