#### STACK OVERFLOW. O que é um TESTE DE MESA e como aplicá-lo?

# Disponível em:

https://pt.stackoverflow.com/questions/220474/o-que-%C3%A9-um-teste-de-mesa-como-aplic%C3%A1-lo

# Qual é o passo a passo para efetuar o Teste de Mesa?

Como dito, não há uma sequências de passos definitiva, mas as que eu costumo seguir e que sempre tiveram uma boa aceitação por iniciantes em programação é:

- 1. Identifique todas as variáveis no seu programa;
- 2. Crie uma tabela onde a primeira coluna se chama "Passo", a segunda de chama "Linha". A partir disto, crie uma coluna para cada variável do programa;
- 3. Na primeira linha da tabela, preencha a coluna "Passo" com "Início", pode deixar a coluna "Linha" em branco e preencha cada coluna das variáveis com os respectivos valores iniciais:
- 4. Percorra seu código linha a linha, preenchendo a tabela. A coluna "Passo" deverá ser incrementada a cada nova linha na tabela; a coluna "Linha" deve indicar o número da linha no código que está sendo analisada e em cada coluna das variáveis deve constar o respectivo valor para cada variável após a linha de código ser executada;
- 5. Execute o passo 4 até o programa finalizar;

Por exemplo, vamos considerar um programa que praticamente todos os iniciantes fazem no início dos estudos: cálculo do fatorial. Um algoritmo para pseudocódigo de cálculo do fatorial é:

```
1 numero <- 0;
2 resultado <- 1;</pre>
3
4
   leia(numero);
5
6 se (numero < 0) então
       imprima("O número não pode ser negativo");
7
8 senão
      enquanto (numero > 0) faça
9
         resultado <- resultado * numero;
10
11
            numero <- numero - 1;
12
        fim
13
14
        imprima("O fatorial de vale", resultado);
15
    fim
```

# Passo 1: Identificar todas as variáveis do programa;

As variáveis do programa são numero, que receberá o valor do qual desejamos calcular o fatorial, e resultado, que armazenará o resultado do cálculo.

#### Passo 2: Criar a tabela;

Lembrando que a primeira coluna se chama "Passo", a segunda "Línha" e as outras representam as variáveis do programa.



Passo 3: Preencher a primeira linha da tabela;

Na coluna "Passo" coloque "Início", na coluna "Linha" não precisa valor e nas colunas das variáveis os valores iniciais de cada.

|        |   | numero | 200 |   | 1 |
|--------|---|--------|-----|---|---|
| Início | - | 0      |     | 1 | 1 |

Passo 4: percorrer cada linha do programa, preenchendo a tabela;

As linhas de definição das variáveis já foram consideradas no passo 3, quando já preenchemos a tabela com os valores iniciais. Portanto, começamos analisar o programa a partir da linha 4. Vamos supor que desejamos calcular o fatorial de 3, portanto, quando a função leia(numero) solicitar ao usuário um número, ele entrará com o valor 3, sendo armazenado na variável numero. A variável resultado não varia, então mantemos o seu valor.

| +      |       | +      | +         | + |
|--------|-------|--------|-----------|---|
| Passo  | Linha | numero | resultado | 1 |
| Início | -     | 0      | 1         | İ |
| 1      | 4     | 3      | 1         | 1 |

Na linha 6 é verificado se o valor entrado pelo usuário é menor do que zero. Como 3 é maior que zero, a condição é falsa e, assim, pulamos para a linha 8. Na linha 9, criamos um laço de repetição que durará enquanto o valor de numero for maior que zero. Neste momento o valor é 3 (veja a tabela acima), então devemos executar o laço, partindo para a linha 10. Nesta linha, o valor de resultado é atualizado para o valor resultado \* numero , ou seja, o novo valor de resultado será o valor atual multiplicado pelo valor de numero . Então:

| 1 | Passo  | Linha | numero | resultado |
|---|--------|-------|--------|-----------|
|   | Início | -     | 0      | 1         |
| 1 | 1      | 4     | 3      | 1         |
|   | 2      | 10    | 3      | 1 * 3 = 3 |

Naturalmente passamos para a linha 11, onde o valor de numero passa a ser o seu valor atual decrementado em uma unidade, então:

| asso  | Linha | numero    | resultado |   |
|-------|-------|-----------|-----------|---|
| nício | -     | 0         | 1         | Ī |
| 1     | 4     | 3         | 1         | Ī |
| 2     | 10    | 3         | 1 * 3 = 3 | 1 |
| 3     | 11    | 3 - 1 = 2 | 3         | Ī |

Terminado o código dentro do laço de repetição devemos voltar a linha 9 e verificar novamente a condição para determinar se o laço de repetição deve continuar ou não. Neste momento, numero vale 2 e, portanto, ainda é maior que 0, então partimos para a linha 10 novamente. O valor de resultado será o atual multiplicado pelo valor de numero, então:

| isso  | Linha | numero    | resultado |
|-------|-------|-----------|-----------|
| ício  | -     | 0         | 1         |
| 1     | 4     | 3         | 1         |
| 2     | 10    | 3         | 1 * 3 = 3 |
| 3     | 11    | 3 - 1 = 2 | 3         |
| <br>4 | 10    | 2         | 3 * 2 = 6 |

Na linha 11, novamente o valor de numero receberá o valor atual decrementado em uma unidade, então:

| Passo  | Linha | numero    | resultado | ļ |  |
|--------|-------|-----------|-----------|---|--|
| Início | -     | 0         | 1         |   |  |
| 1      | 4     | 3         | 1         | ĺ |  |
| 2      | 10    | 3         | 1 * 3 = 3 |   |  |
| 3      | 11    | 3 - 1 = 2 | 3         |   |  |
| 4      | 10    | 2         | 3 * 2 = 6 |   |  |
| 5      | 11    | 2 - 1 = 1 | 6         | ĺ |  |

Voltamos para a linha 9, analisando novamente a condição do laço. Como 1 ainda é maior que zero, então passamos para a linha 10, onde novamente o valor de resultado será modificado:

| Passo  | Linha | numero    | resultado |  |
|--------|-------|-----------|-----------|--|
| Início | 15    | 0         | 1         |  |
| 1      | 4     | 3         | 1         |  |
| 2      | 10    | 3         | 1 * 3 = 3 |  |
| 3      | 11    | 3 - 1 = 2 | 3         |  |
| 4      | 10    | 2         | 3 * 2 = 6 |  |
| 5      | 11    | 2 - 1 = 1 | 6         |  |
| 6      | 10    | 1 1       | 6 * 1 = 6 |  |

E na linha 11 o valor de numero será atualizado:

| Passo  | Linha | numero    | resultado |  |
|--------|-------|-----------|-----------|--|
| Início |       | 0 1       | 1         |  |
| 1      | 4     | 3         | 1         |  |
| 2      | 10    | 3         | 1 * 3 = 3 |  |
| 3      | 11    | 3 - 1 = 2 | 3         |  |
| 4      | 10    | 2         | 3 * 2 = 6 |  |
| 5      | 11    | 2 - 1 = 1 | 6         |  |
| 6      | 10    | 1 1       | 6 * 1 = 6 |  |
| 7      | 11    | 1 - 1 = 0 | 6         |  |

Após, voltamos a linha 9 para verificar novamente a condição do laço, mas agora o valor de numero é 0 e não satisfaz a condição de ser maior que zero, portanto passamos para a linha 14, onde é exibida a mensagem "O fatorial vale 6", pois o valor atual de resultado é 6.

Após, voltamos a linha 9 para verificar novamente a condição do laço, mas agora o valor de numero é 0 e não satisfaz a condição de ser maior que zero, portanto passamos para a linha 14, onde é exibida a mensagem "O fatorial vale 6", pois o valor atual de resultado é 6.

Embora o Teste de Mesa seja muito utilizado para testar laços de repetição ele não é limitado apenas a isso. Qualquer algoritmo pode ser testado utilizando o Teste de Mesa. Por exemplo, na pergunta <a href="Como fazer Teste de Mesa para determinado algoritmo?">Como fazer Teste de Mesa para determinado algoritmo?</a> é apresentado um exemplo de Teste de Mesa em um algoritmo simples, com apenas operações matemáticas. Na pergunta <a href="Funções Recursivas em JavaScript">Funções Recursivas em JavaScript</a> eu respondi sobre como funciona a recursividade no cálculo de fatorial utilizando Teste de Mesa. Já na pergunta <a href="Recursividade em Python">Recursividade em Python</a> eu expliquei como funciona a recursividade para o cálculo da série de Fibonacci também utilizando Teste de Mesa.

#### Existe um software que executa este teste?

Não conheço algum que tenha tal propósito. Como comentei no início da resposta, se estiver utilizando alguma linguagem de programação é bem provável que exista alguma ferramenta de depuração (debug) que faça tal serviço para você. O Teste de Mesa basicamente tem esse nome porque demandará você ter papel, caneta e uma mesa para efetuá-lo. Com certeza efetuar o Teste de Mesa demanda muita disposição, mas, principalmente para quem está iniciando, vale muito a pena. Muitos dos erros de lógica (idealmente todos) no código podem ser identificados ao efetuar o Teste de Mesa.

compartilhar melhorar esta resposta seguir

editada 14/07/17 às 18:31 respondida 14/07/17 às 17:14 Woss

67,2mil • 10 • 98 • 181