A Polyhedral Study of Triplet Formulation for Single Row Facility Layout Problem

Sujeevraja Sanjeevi and Kiavash Kianfar

SINGLE ROW FACILITY LAYOUT PROBLEM

Single Row Facility Layout Problem (SRFLP): linear arrangement problem with the objective of minimizing the total weighted sum of distances between department pairs.

- $ightharpoonup l_i$ Length of department i
- $ightharpoonup c_{ij}$ Average daily traffic between departments i and j
- $ightharpoonup z_{ii}^{\pi}$ Distance between centroids of departments i and j in permutation π

Objective of SRFLP:
$$\min_{\pi} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c_{ij} z_{ij}^{\pi}$$

- ► Amaral's formulation of SRFLP triplet formulation [1].
- ► Two projections of triplet formulation and its valid inequalities presented in [1].
- Linear program solved over valid inequalities in [1] yields optimal solution for several classical instances of sizes n = 5 to n = 30.
- ► This suggests that the valid inequalities are quite strong.

RESEARCH CONTRIBUTIONS

- ▶ Dimension of the triplet polytope is n'' = n(n-1)(n-2)/3.
- ► Almost all valid inequalities defined for the triplet polytope by Amaral in [1] are facet-defining.
- ▶ The above results are also true for the other projections of the triplet polytope defined in [1].

TRIPLET POLYTOPE

► Decision variable:

$$\lambda_{ijk} = \begin{cases} 1 & \text{if department } k \text{ lies between departments } i \text{ and } j, i < j \\ 0 & \text{otherwise.} \end{cases}$$

- ► Set of departments: $N = \{1, ..., n\}$
- ▶ Decision variable vector: $\lambda = \{\lambda_{ijk} : i, j, k \in N, i < j\}$
- ▶ Number of elements of λ : n' = n(n-1)(n-2)/2
- $ightharpoonup P^1 = \{\lambda \in \{0,1\}^{n'}: \lambda \text{ represents a permutation of } \{1,...,n\}\}$
- ▶ Triplet polytope: convex hull of P^1 .

Objective function of SRFLP:
$$\min \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c_{ij} \left(\frac{1}{2} (l_i + l_j) + \sum_{k \neq i, k \neq j}^{n} l_k \lambda_{ijk} \right)$$

Valid inequalities for SRFLP presented in [1]:

$$0 \leq \lambda_{ijk} \leq 1 \qquad i, j, k \in \mathbb{N}, i < j \tag{1}$$

$$\lambda_{ijk} + \lambda_{ikj} + \lambda_{jki} = 1 \qquad i, j, k \in \mathbb{N}, i < j < k$$

$$-\lambda_{ijd} + \lambda_{jkd} + \lambda_{ikd} \geqslant 0 \qquad i, j, k, d \in N, i < j < k \tag{}$$

$$\lambda_{ijd} + \lambda_{jkd} - \lambda_{ikd} \ge 0$$
 $i, j, k, d \in N, i < j < k$
 $\lambda_{ijd} - \lambda_{jkd} + \lambda_{ikd} \ge 0$ $i, j, k, d \in N, i < j < k$

$$\lambda_{ijd} - \lambda_{jkd} + \lambda_{ikd} \ge 0 \qquad i, j, k, d \in N, i < j < k$$

$$\lambda_{ijd} + \lambda_{jkd} + \lambda_{ikd} \le 2 \qquad i, j, k, d \in N, i < j < k$$

$$(5)$$

For a positive even integer $\beta \le n$, let $S = \{i_t : t = 1, ..., \beta\} \subseteq N$ be a set of departments and $d \in S$. Let (S_1, S_2) be a partition of $S \setminus \{d\}$ such that $|S_1| = \beta/2$. Then the following inequality is valid for $conv(P^1)$ [1]:

$$\sum_{p,q \in S_1: p < q} \lambda_{pqd} + \sum_{p,q \in S_2: p < q} \lambda_{pqd} \leq \sum_{p \in S_h, q \in S_{\{1,2\} \setminus h}: h = 1, 2, p < q} \lambda_{pqd}$$
 (7)

PRELIMINARY RESULTS

Notation:

- $ightharpoonup \Pi_N$ set of all permutations of departments in N.
- $\triangleright \lambda^{\pi}$ vector that represents a permutation $\pi \in \Pi_N$.
- ▶ To simplify notation, wherever we have λ_{ijk} with i > j, we mean λ_{ijk} .

Lemma 1. For given distinct departments $x, y, z \in N$, let $\pi^1, \pi^2, \pi^3, \pi^4$ be four permutations of the departments in N satisfying the following conditions:

- $\blacktriangleright \pi^1$: First two departments are x,y
- $\blacktriangleright \pi^2$: First two departments are y,x, other departments are in the same order as π^1
- $\blacktriangleright \pi^3$: First three departments are z,x,y
- $\blacktriangleright \pi^4$: First three departments are z,y,x, other departments are in the same order as π^3

If the λ vectors corresponding to these permutations lie on the hyperplane

$$\sum_{i,j,k \in N: i < j} a_{ijk} \lambda_{ijk} = b, \tag{}$$

then $a_{yzx} = a_{xzy}$.

Outline of proof:

Dimension of $conv(P^1)$

Theorem 2. $conv(P^1)$ is of dimension n'' = n(n-1)(n-2)/3.

 $conv(P^1) \subset \mathbb{R}^{n'}$ and any $\lambda \in P^1$ satisfies the set of $\binom{n}{3}$ linearly independent equalities (2). Hence, dim $\left(conv(P^1)\right) \leqslant n' - \binom{n}{3} = n''$. To prove that the dimension is actually equal to n'', we just need to show that any other hyperplane like

$$\sum_{i,j,k \in N: i < j} a_{ijk} \lambda_{ijk} = b \tag{9}$$

satisfied by all $\lambda \in P^1$ will be a linear combination of the equalities (2).

Outline of proof:

FACET-DEFINING PROPERTY OF VALID INEQUALITIES

Lemma 3. Consider inequality (7) for given β , S, S_1 , S_2 and d. Let $\pi \in \Pi_N$, and γ_1 and γ_2 be the number of departments in S_1 and S_2 which are to the left of d in π , respectively. Then $\lambda^{\pi} \in P^1$ satisfies (7) at equality if and only if $\gamma_1 - \gamma_2 = 0$ or 1.

Theorem 4. Any of inequalities (7) is facet-defining for $conv(P^1)$. Let P' be the face of $conv(P^1)$ defined by an inequality of the form (7) for given β , S, S₁, S₂ and d. Hence, for every point in P', (7) is satisfied at equality, i.e.

$$\sum_{p,q \in S_1: p < q} \lambda_{pqd} + \sum_{p,q \in S_2: p < q} \lambda_{pqd} - \sum_{p \in S_1, q \in S_2} \lambda_{pqd} = 0.$$
 (10)

To prove that (10) is a facet, we need to show that any hyperplane like

$$\sum_{e,f,g \in N: e < f} a_{efg} \lambda_{efg} = b \tag{}$$

that passes through P' is a linear combination of hyperplanes (2) and hyperplane (10).

- ▶ (3), (4) and (5) special cases of (7) for $\beta = 4$, so they are facet-defining.
- ▶ (1) and (6) not facet-defining in general can be checked numerically.
- ➤ We have also shown that the above results are true for other projections of the triplet polytope in [1] using a simple result related to projection of polyhedra [2].

Concluding Remarks

Our results provide theoretical support for the fact that the LP solution over these valid inequalities gives the optimal solution for all instances studied in [1].

Major References

- 1. Amaral, A. R. S. 2009. A new lower bound for the single row facility layout problem. *Discrete Applied Mathematics* **157(1)**, 183–190.
- 2. Sanjeevi, S. and Kianfar, K. 2010. A polyhedral study of triplet formulation for single row facility layout problem. *Discrete Applied Mathematics*, **in press**, DOI: 10.1016/j.dam.2010.07.005.