

Introduction to Data Structures and Algorithms

Dr. Sirasit Lochanachit

Overall

What is "Data Structure"?

Way to store and organise data

 Enable efficient access and modification of data

- Designed for a specific algorithm
 - Strengths and limitations
 - Time and space complexity

Abstract Data Type

- A data type, where only behavior is defined but not implementation.
- Similar to a black box where input and output are known, but not how.
- Examples: Array, List, Map, Queue, Set, and etc.

Type of Data Structure

Check out for a comprehensive list of data structures at https://en.wikipedia.org/wiki/List of data structures

What is "Algorithm"?

 Well-defined procedure or set of instructions to accomplish a task

 Sequence of steps that transform input into output

 Tool to solve a well-specified computational problem

Example: Sorting numbers

1. Input:

- A sequence of n numbers: <a1, a2, ..., an>
- <31, 41, 59, 26, 41>
- 2. Sorting Algorithms
- 3. Output:
 - A permutation (reordering) <a'1, a'2, ..., a'n>
 of input sequence such that a'1 <= a'2 <= ... <= a'n
 - <26, 31, 41, 41, 59>

Control Structure

Sequence

Sequence

Exercise: Sequence

Write a flowchart that converts USD currency to Thai baht. At the end of the flowchart, print the Thai baht. (Exchange rate USD to Thai baht is 32.00)

Iteration

Infinite Loop

Finite Loop

Exercise: Control Flow

Write a flowchart describing the logic of factorial function.

Hint: The factorial n!, is the product of all positive integers less than or equal to n.

For example: 5! = 5 * 4 * 3 * 2 * 1 = 120

Exercise: Control Flow

Write a flowchart describing the logic of factorial function.

Hint: The factorial n!, is the product of all positive integers less than or equal to n.


```
def factorial1(n):
    if n <= 1:
        return 1
    else:
        fact = 1
        for num in range(2,n+1):
        fact *= num
        return fact</pre>
```


What kind of problems are solved by algorithms?

- Human Genome Project
 - identifying all genes of human beings
- Internet: Routing, searches, and security
 - Shortest path, search engines, encrypted communication
- E-commerce
 - Ads, recommendations, authentications
- Commercial enterprises
 - Resource allocation:
 - crew assignment on flights, package delivery route

Data Structures and Algorithms

- Data Structures
 - Way to store and organise data
- Algorithms
 - Sequence of steps performed on data structures to perform a task

Type of Data Structure

Check out for a comprehensive list of data structures at https://en.wikipedia.org/wiki/List of data structures

Arrays

Stacks

Queues

1 Dequeue Enqueue

Linked Lists

Linked Lists

Linked Lists

Linked Lists VS Arrays

Linked Lists

Arrays

Type of Data Structure

Check out for a comprehensive list of data structures at https://en.wikipedia.org/wiki/List of data structures

Trees

Graphs

Algorithm Analysis

- If computers were infinitely fast, any correct method for solving a problem would do.
- Computing time and space in memory are a limited resource.
- The solution should run as fast as possible.
- For the same problem, it can be solved by different algorithms but they are often differ in their efficiency.
- Algorithms that are efficient in terms of time or space are preferred.

Algorithm Analysis

- How do we measure algorithm efficiency or performance?
 - Use running time as an indicator.

Benchmark Analysis

- Example: Summation of *n* integers
 - \circ Time required for the iterative solution seems to increase as we increase the value of n.
- Running time depends on many factors
 - Hardware (CPU, RAM, etc.)
 - Software (OS, Programming language, etc.)
- Need an alternative way for analysing algorithms with respect to running time

Algorithm Analysis

- How do we measure algorithm efficiency or performance?
 - Use running time as an indicator.

- Running time can be expressed as the number of operations or steps executed.
 - theSum = 0
 - o for i in range(1,n+1):

theSum = theSum + i

-> 1 step/time

-> n steps/times

Time complexity T(n) = 1+n

Algorithm Analysis

- The parameter n is often referred as "size of the problem" or input size
- The running time of an algorithm or data structure operation increases with the input size.
- Running time as a function of the input size f(n)
- As n gets larger, the constant will become less significant.
- Order of magnitude/growth describes the running time that is most important.

Asymptotic Notation

- Example:
 - Suppose an algorithm runs on an input size n.
 - \circ Times required to execute is T(n) = $2n^2 + n + 1$
 - The n² terms become larger when n gets larger.
 - The running time of this algorithm grows as n^2 .
- Asymptotic notation represents algorithm's complexity
 - Ignores constant factors and slower growing terms.
 - Focus on the main components that affect the growth.
 - Big-O notation

Big-O notation

- Big-O notation (Order)
 - Example:
 - Given T(n) = 1+n, then T(n) = O(n)
 - Given $T(n) = 2n^2 + n + 1$, then $T(n) = O(n^2)$

•O(n) means time complexity will never exceed n.

Big-O notation

Big-O notation (Order)

- Common f(n):
 - 0(1): constant
 - O(log n): logarithm
 - O(n): Linear
 - O(n log n): Log linear
 - O(n²): Quadratic
 - O(2ⁿ): Exponential
 - O(n!): Factorial

Time Complexity

In general, the standard functions of input size n are shown in figure.

Exponential Quadratic

Mathematic

f(n) = 3

Computer

- Simple statements (read, write, assign)
- Simple operations(+ * / == > >= < <=)

Big-O

Mathematic

f(n) = n-3

Computer

Linear loop

Big-O

O(n)

Linear

$$f(n) = n^2 + n + 7$$

Big-O

Python Code

Time complexity

Linear

for i in range (0,n):
do something

T(n) = n, O(n)

Linear

for i in range (0,n,2): do something

T(n) = n/2, O(n)

Nested

for i in range (0,n):

for j in range (0,n):

do something

 \rightarrow T(n) = n², O(n²)

Python Code

n=1000

Time complexity

Logarithmic

i = 1 **Start**

while i < n: **Stop**

do something

i = i * 2 **Step**

 \Longrightarrow

 $T(n) = \log n, O(\log n)$

Logarithmic

i = n Stop

while i >= 1: Start

do something

i = i // 2 **Step**

\rightarrow

500

 $T(n) = \log n, O(\log n)$

Python Code

Time complexity

Linear logarithmic

for i in range (0,n): \mathbf{n} j = 1while j < n: $\log \mathbf{n}$ do something j = j*2

$$T(n) = nlog n, O(nlog n)$$

Python Code

Time complexity

Dependent Nested

for i in range (0,n):
$$n$$

for j in range(0, i+1):(n+1)/2 \rightarrow $T(n) = n(n+1)/2$, $O(n^2)$
do something

Number of iterations of the inner loop depends on the outer loop

For the inner loop, the number of iterations is (n+1)/2

For example,
$$n = 3$$
, $i = 0$ then $j = [0]$, $i = 1$ then $j = [0, 1]$, $i = 2$ then $j = [0, 1, 2]$

Time complexity

- $n^2 + 100n$
- $n^2*n + 100n^2 \log n$
- 123 + log 657
- $(n + \log n)^3$
- $n(2 + \log n)$
- 1+2+3+....+n

0(?)

O(?)

O(?)

O(?)

O(?)

O(?)

Time complexity

- $n^2 + 100n$
- $n^2*n + 100n^2 \log n$
- 123 + log 657
- $(n + \log n)^3$
- $n(2 + \log n)$
- 1+2+3+....+n

 $O(n^2)$

 $O(n^3)$

O(1)

 $O(n^3)$

O(n log n)

O(n)

Python Code: Factorial

Python Code: Simple nested loops

```
Number of steps
def simple(n):
 for i in range(n):
   for j in range(n):
     print("i: {0}, j: {1}".format(i,j))
                                               T(n) = n*n
                                          Complexity: O(n²)
```


Python Code: Element uniqueness v1

```
Number of steps
def unique1(s):
 for i in range(len(s)):
   for j in range(i+1, len(s)):
       return False # Found duplicate pair
                 # All elements are unique
 return True
                                             T(n) = n(n-1)/2
                                        Complexity: O(n^2)
```


Python Code: Element uniqueness v2

```
def unique2(s):
    temp = sorted(s) # create a sorted copy of s
    for i in range(1, len(temp)):
        if temp[i-1] == temp[i]:
            return False # Found duplicate pair
    return True # All elements are unique
T(n) = n log n + n
```

Complexity: O(n log n)

Python Code: Prefix averages v1

```
Number of steps
def prefix average1(s):
  n = len(s)
                              create list of n zeros
  for i in range(n):
    total = 0
                                                              \implies (n+1)/2
    a[i] = total / (i+1)
                                                          T(n) = 1 + n + 2n
  return a
                                                        + n(n+1)/2
Complexity: O(n<sup>2</sup>)
```


Python Code: Prefix averages v2

Python Code: Prefix averages v3

```
Number of steps
   def prefix average3(s):
      = len(s)
                             # create list of n zeros
     total = 0
     for i in range(n):
       total += s[i] # update total sum to include s[i]
       a[i] = total / (i+1)
   current sum
     return a
                                                       T(n) = 2 + n + 2n
                                                       Complexity: O(n)
v3 is asymptotically better than v2 and v1
```


Python Code

```
def example1(s):
   n = len(s)
   total = 0
   for i in range(n):  # loop from 0 to n-1
      total += s[i]
   return total
```

T(n) = ?

Complexity: O(?)

Python Code

```
def example2(s):
    n = len(s)
    total = 0
    for i in range(0,n,2): # Increment of 2
        total += s[i]
    return total
```


Python Code

```
def example3(s):
    n = len(s)
    total = 0
    for i in range(n):  # loop from 0 to n-1
        for k in range(1+i):  # loop from 0 to i
        total += s[k]
    return total
```


Python Code

```
def example4(s):
 n = len(s)
 prefix = 0
  total = 0
 for i in range(n):
    prefix += s[i]
    total += prefix
 return total
```


Python Code

```
Assume that A and B have equal length of n
def example5(A,B):
 n = len(A)
 count = 0
 for i in range(n):
   total = 0
   for j in range(n): # loop from 0 to n-1
     for k in range(1+j): # loop from 0 to j
       total += A[k]
   if B[i] == total:
     count += 1
 return count
```


Exercise 2: Sequence

1) Write a flowchart that converts the **Buddhist** calendar to the **Anno Domini** calendar. At the end of the flowchart, print the Anno Domini calendar.

Best, average, or worst case?

- Example: Sequential search
- Suppose a sequence of numbers: <10, 20, 30, 40, 50>
 - Find number 10 = 1 step = Best case
 - Find number 50 = 5 steps = Worst case

- We are interested in worst-case running time, that is, the longest running time for any input of size n.
- With any input size, it guarantees that the algorithm will never take any longer.

Example 10

Write your answer in the

- 1. n^2+n box
- 2. $3n+4n^2+n^3-12$
- 3. **8**
- 4. n^4+8
- 5. $9n^2+3n-4n^2-6$
- 6. 6n+2
- 7. $9+10n^2+3n-10n^2$
- 8. $2n+12+4n^3$

การวัดประสิทธิภาพอัลกอริทึม

```
f(n) Asymptomic
c \Theta(1)
\sum_{i=1}^k c_i n^i \quad \Theta(n^k)
\sum_{i=1}^{n} i \Theta(n^2)
\sum_{i=1}^n i^2 \Theta(n^3)
\sum_{i=1}^{n} i^k \Theta(n^{k+1})
\sum_{i=0}^n r^i \qquad \Theta(r^n)
   \Theta(n(n/e)^n)
\sum_{i=1}^{n} 1/i \quad \Theta(\log n)
```