I Questions de cours

1 - Exercice 1 banque CCINP :

On note E l'espace vectoriel des applications continues sur [0;1] à valeurs dans \mathbb{R} . On pose : $\forall f \in E, \ \|f\|_{\infty} = \sup_{t \in [0;1]} |f(t)| \text{ et } \|f\|_1 = \int_0^1 f(t) \mathrm{d}t.$

- a) Les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$ sont-elles équivalentes? Justifier.
- b) Dans cette question, on munit E de la norme $\|\cdot\|_{\infty}$.

Soient
$$u: \begin{bmatrix} E & \longrightarrow & \mathbb{R} \\ f & \longmapsto & f(0) \end{bmatrix}$$
 et $F = \{ f \in E \text{ tq } f(0) = 0 \}.$

Prouver que u est une application linéaire continue sur E et que F est un fermé de $(E, \|\cdot\|_{\infty})$.

c) Dans cette question, on munit E de la norme $\|\cdot\|_1$. On pose $c: \begin{bmatrix} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 1 \end{bmatrix}$

et pour tout
$$n \in \mathbb{N}^*$$
, $f_n(x) = \begin{cases} nx & \text{si } x \in \left[0; \frac{1}{n}\right] \\ 1 & \text{si } x \in \left[\frac{1}{n}; 1\right] \end{cases}$ Pour $n \in \mathbb{N}^*$, calculer $\|f_n - c\|_1$.

On pose enfin $F = \{ f \in E \text{ tq } \hat{f}(0) = 0 \}.$

Montrer que $c \in \overline{F}$. F est-il un fermé de $(E, \|\cdot\|_1)$?

2 - Exercice 37 banque CCINP:

On note E l'espace vectoriel des applications continues de [0;1] dans $\mathbb{R}.$ On pose :

$$\forall f \in E, \ N_{\infty}(f) = \sup_{x \in [0;1]} |f(x)| \text{ et } N_1(f) = \int_0^1 |f(t)| dt$$

- a) Démontrer que N_1 et N_{∞} sont deux normes sur E.
- b) Démontrer qu'il existe k > 0 tel que, pour tout $f \in E$, $N_1(f) \le kN_\infty(f)$.
- c) Démontrer que tout ouvert pour la norme N_1 est un ouvert pour la norme N_{∞} .
- d) Démontrer que les normes N_1 et N_{∞} ne sont pas équivalentes.

3 - Exercice 36 banque CCINP :

Soient E et F deux espaces vectoriels normés sur le corps \mathbb{R} . On note $\|\cdot\|_E$ (respectivement $\|\cdot\|_F$) la norme sur E (respectivement sur F).

- a) Démontrer que si f est une application linéaire de E dans F, alors les assertions suivantes sont équivalentes :
- (i) f est continue sur E. (ii) f est continue en 0_E .
- (iii) $\exists k > 0 \text{ tq } \forall x \in E, \|f(x)\|_E \le k \|x\|_E.$
- b) Soit E l'espace vectoriel des applications continues de [0;1] dans $\mathbb R$ muni de la norme définie par : $\|f\|_{\infty} = \sup_{t \in [0;1]} |f(t)|$.

On considère l'application Ψ de E dans $\mathbb R$ définie par : $\Psi(f)=\int_0^1 f(t)\mathrm{d}t.$ Montrer que Ψ est linéaire et continue.

II Exercices

Exercice 1:

On munit $E = \mathbb{R}[X]$ de la norme uniforme sur [0;1]:

$$\forall P \in E, \ \|P\|_{\infty} = \sup_{t \in [0:1]} |P(t)|$$

Soient f et g les endomorphismes de E suivants :

$$f: P \longmapsto (X-2)P \text{ et } g: P \longmapsto P(X-2)$$

Pour chacun d'eux, préciser s'il est ou non continu sur $(E,\|\cdot\|_{\infty})$ et, le cas échéant, préciser sa norme subordonnée

Exercice 2:

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

Montrer de deux manières différentes que l'adhérence d'une boule ouverte est la boule fermée de même centre et même rayon.

Exercice 3:

Soient (E, N) un espace vectoriel normé et F un sous-espace vectoriel de E.

- 1 On suppose qu'il existe $a \in F$ et r > 0 tels que $\mathcal{B}_f(a,r)$ soit contenue dans F. Montrer que F = E.
- 2 Que peut-on dire de l'intérieur d'un sous-espace vectoriel de E?

Exercice 4:

Soient (E, N) un espace vectoriel normé et F un sous-espace vectoriel de E.

- 1 Montrer que \overline{F} est aussi un sous-espace vectoriel de E.
- 2- En déduire qu'un hyperplan est soit fermé, soit dense dans ${\cal E}.$

Exercice 5:

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

On munit E^2 de la norme N définie par :

$$\forall (x,y) \in E^2, \ N(x,y) = \max(\|x\|, \|y\|)$$

Montrer que l'ensemble $\{(x,y) \in E^2 \text{ tq } (x,y) \text{ est libre} \}$ est un ouvert de E^2 .

Exercice 6:

On considère $E = \mathcal{C}^0([0;1],\mathbb{R})$, on considère les deux normes définies par :

$$\forall f \in E, \ \|f\|_{\infty} = \sup_{x \in [0;1]} |f(x)| \text{ et } \|f\|_{1} = \int_{0}^{1} |f(t)| dt$$

- 1 Soit $F = \left\{ f \in E \text{ tq } \int_0^1 f(t) dt \le 0 \right\}$. Montrer que F est fermé pour $\|\cdot\|_1$. Est-il fermé pour $\|\cdot\|_2$?
- fermé pour $\|\cdot\|_{\infty}$? 2 - Soit $O = \{f \in E \text{ tq } f(0) > 0\}$. Montrer que O est un ouvert pour $\|\cdot\|_{\infty}$. Est-il fermé pour $\|\cdot\|_1$?

Indication : On pourra introduire les fonctions $f_n: \begin{bmatrix} [0;1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & 1-e^{-nt} \end{bmatrix}$ et la fonction constante égale à 1.

Exercice 7:

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

Montrer que le noyau d'une forme linéaire est fermé si, et seulement si, cette forme linéaire est continue sur ${\cal E}$