MAT 171 - CLASS NOTES - Section 4.4: Exponential and Logarithmic Equations

- 1) Solve for x.
 - a) $3^x = 81$

b) $2^{x-4} = 32$

c) $\left(\frac{1}{5}\right)^{x-1} = 625$

d) $e^{x+4} = \frac{1}{e^{2x}}$

- 2) Solve the exponential equation algebraically. Approximate the result to three decimal places.
 - a) $4^x = 26$

b) $2(5^x) = 32$

c) $4e^x = 91$

d) $4^{-3t} = 0.10$

e) $8^{2-x} = 431$

- 3) Solve the logarithmic equation algebraically. Approximate the result to three decimal places.
 - a) $log_6x = 3$

b) lnx = 2

c)
$$2ln(3x) = 7$$

$$d) log(x+6) = log(2x-1)$$

e)
$$log_3(x+2) + log_3(x-4) = 3$$

f)
$$ln(2x+3) - ln(x-2) = ln(x+6)$$

g)
$$3logx = log64$$

4) In a savings account where interest is compounded continuously, the initial investment is \$750 and the annual interest rate is 10.5%. Find the time it takes to double the amount of money in the account.

5) If \$8,000 dollars is invested for 12 years com	unded continuously, then what interest rate would be
required to end up with \$18,000? (Round to	

6) The number y of daily fee golf facilities in the United States from 1995 to 2003 can be modeled by y = 4381 + 1883.6 lnt, $5 \le t \le 13$, where t represents the year, with t = 5 corresponding to 1995. During which year did the number of daily fee golf facilities reach 9000?