I Illinois NeRFDeformer: NeRF Transformation from a Single View via 3D Scene Flows ON TOTAL OUT TO TOTAL

Zhenggang Tang,¹ Zhongzheng Ren,¹ Xiaoming Zhao,¹ Bowen Wen,² Jonathan Tremblay,² Stan Birchfield,² Alexander Schwing¹

¹University of Illinois Urbana-Champaign: {ztang, zr5, xz23, aschwing}@illinois.edu ²NVIDIA: {bowenw, jtremblay, sbirchfield}@nvidia.com

Task Definition

Goal: Automatically transforming a NeRF given a single observation I^B showing a **non-rigidly** transformed version (B) of the original NeRF-captured scene (A)

Method Overview

We define two **flows**: original (*A*) to transformed (*B*) scene **forward** flow $(F^{A\to B})$ and **backward** flow $(F^{B\to A})$

New view synthesis:

Original

mesh M^A

 $CA \rightarrow B$

 $\mathbf{C}B \rightarrow A$

Transformed mesh M^B

Querying in

original NeRF A

Flow Definitions: Embedded Deformation Graph

Original space A

We optimize the parameters

of rigid transformations ξ_i via

 $L_{\rm DG} = L_{\rm ARAP} + \alpha L_{\rm Con}$

As-rigid-as-possible

regularization using vertex

connectivity

Translation penalty from corre-

sponding points $I = \{(v_i^A, v_i^B)\}$

 $L_{\text{Con}} = \frac{1}{|\mathcal{T}|} \sum ||t_i + v_i^A - v_i^B||^2$

Methods

Zero123-XL [5]

DreamGaussian [40]

NeRF Φ

NeRF finetuned

SINE [1]*

Ours

LOSS

Quanti-

Results

tative

 R_i and t_i are learnable parameters p^A is a query point Final transformation: a blending of ξ_i $F^{A \to B}(p^A) = \sum w(p^A, v_k) \, \xi_k(p^A),$

Transformed view

Rendering of original

SSIM ↑

 $0.799_{\pm 0.071}$

 $0.876_{\pm 0.059}$

 $0.265_{\pm 0.076}$

 $0.149_{\pm 0.067}$

 $0.125_{\pm 0.061}$

 $0.198_{\pm 0.100}$

 $1.46_{\pm 2.9}$

images I

Weight $w(p^A, v)$ via K-nearest vertex neighbor search K $\frac{1}{\max_{k \in \mathcal{K}(p^A, \mathcal{V})} \|v_k - p^A\|}$

1. Pixel-space filtering:

Robust NeRF-based Correspondence Matching

confidence measured via pixel neighbor density size

 $2.46_{\pm 0.84}$

 $1.72_{\pm 0.95}$

 $1.85_{\pm 1.10}$

 $1.85_{\pm 1.10}$

 $0.62_{\pm 0.79}$

Rigid transformations ξ_i anchored

 $\xi_i(p^A) = R_i(p^A - v_i) + v_i + t_i,$

at mesh vertices $V = \{v_i\}$.

$\sum w\left(p^B, \xi_k(v_k)\right) \, \xi_k^{-1}(p^B)$ No need to optimize • Use ξ_i^{-1} as the naïve • \mathcal{K} is querying in the

Only cyclic on near

2. 3D-space filtering:

Qualitative Results Objaverse data:

Render images I_i^A of original scene A via NeRF 2D dense correspondence matching between I^B and I_i^A ; filter out less confident pairs Lift pixel correspondences to 3D space; filter out pairs behaving differently from nearby clusters Real world data: New view synthesis Geometric reconstruction LPIPS J VmIoU↑ CD (success) \downarrow succ rate \uparrow

0.372

0.903

 $0.306_{\pm0.18}$

 $0.315_{\pm 0.23}$

 $0.312_{\pm 0.25}$

 $0.515_{\pm 0.25}$

 $0.666_{\pm 0.20}$

Original & transformed Our rendering & geometry reconstruction

inverse of ξ_i

transformed vertices

→ more flexible flows

set $\mathcal{V}' = \{\xi_i(v_i)\}$

surface areas