Unit II Computer Hardware

- 2.1 Basic Components: Input, Output, Processing, Storage
 - 2.2 Types of Computers (Desktops, Laptops, Servers, Mobile Devices)
 - 2.3 Hardware Components
 - 2.4 Central Processing Unit (CPU)
 - 2.5 Memory (RAM, ROM)
 - 2.6 Storage Devices (Hard Drives, SSDs, External Storage)
 - 2.7 Input and Output Devices (Working principle, application)
 - 2.7.1 Keystroke Devices
 - 2.7.2 Touch Devices
 - 2.7.3 Voice-Controlled Devices
 - 2.7.4 Movement-Controlled Devices
 - * Game Controllers (joysticks, gamepads, and VRcontrollers.),

- * Gesture-Control Devices, Leap Motion for touchless interaction.
- 2.7.5 Brain-Computer Interface (BCI):
- 2.8.6 Wearables:
 - * Smart glasses, AR/VR headsets (e.g., Oculus, HoloLens).
- 2.7.7 Haptic Feedback Gloves:
 - * Used in VR and advanced interaction systems.
- 2.7.8 Biosensors:
 - * Devices that track physiological data (e.g., heart rate monitors).
- 2.7.9 Data Scanning Devices
 - * Barcodes, QR code scanners.
 - * RFID: Radio Frequency Identification scanners for contactless identification.
 - * Biometric Scanners: Fingerprint, iris scanners.
- 2.7.10 Digitizers:
 - * Graphics tablets, touch-sensitive stylus input.
- 2.7.11 Microphones:
 - * Analog, digital, condenser microphones for voice input.
- 2.7.12 Electronic Cards Based Devices
 - * Smart cards, debit/credit cards with NFC/RFID technology.
- 2.7.13 Speech Recognition Devices
- 2.7.14 Vision-Based Devices
 - * Cameras, LiDAR, infrared sensors, facial recognition systems.
- 2.8 Output Devices (Working principle, application)
 - * Monitors: CRT, LED, OLED screens.
 - * Printers: Inkjet, laser, 3D printers.
 - * Projectors: DLP, LCD.
 - * Audio Output: Speakers, headphones, and surround sound systems.
 - * Tactile Output: Braille readers, haptic feedback systems.

2.1 Basic Components: Input, Output, Processing, Storage

- A computer is a programmable electronic device that accepts raw data as input and processes it with a set of instructions (a program) to produce the result as output.
- ➤ It renders output just after performing mathematical and logical operations and can save the output for future use.
- ➤ It can process numerical as well as non-numerical calculations. The term "computer" is derived from the Latin word "computare" which means to calculate.
- ➤ **Input**: Devices like keyboards, mice, scanners, and sensors that allow users to provide data or instructions to the computer.
- ➤ Output: Components such as monitors, printers, and speakers that present processed data to the user.
- ➤ **Processing**: The Central Processing Unit (CPU), which performs calculations and executes instructions.
- > Storage: Includes primary memory (RAM and ROM) and secondary storage (HDDs, SSDs) for saving data and instructions.

2.2 Types of Computers (Desktops, Laptops, Servers, Mobile Devices)

Computers are categorized based on their size, portability, and purpose. Below is an overview of the common types of computers:

1. Desktops:

- o Fixed, powerful systems for personal or professional use.
- Stationary computers designed for regular use at a single location.
 They consist of separate components like the monitor, CPU, keyboard, and mouse.

o Features:

- High performance with upgradable hardware.
- Larger storage and screen size compared to laptops.
- Requires a constant power supply.

Applications:

• Used in offices, schools, and homes for tasks like document editing, gaming, and data analysis.

2. Laptops:

 Portable computers with integrated components such as a monitor, keyboard, and battery.

o Features:

- Compact and lightweight, ideal for mobility.
- Rechargeable battery allows operation without a continuous power supply.
- Slightly lower performance compared to desktops of the same generation.

o Applications:

 Widely used by students and professionals for online learning, presentations, and work on the go.

3. Servers:

 High-capacity computers designed to manage network resources, store data, and provide services to multiple users simultaneously.

o Features:

- Powerful processors, large memory, and storage capacity.
- Operate 24/7 with advanced cooling systems.

• Can be physical (on-premises) or virtual (cloud-based).

o Applications:

- Hosting websites, managing databases, and running applications for businesses.
- Centralized file storage and resource sharing in organizations.

Examples in Nepal/Asia:

- Nepal Telecom uses servers to manage its telecommunications network.
- Banks in Nepal use servers for secure transaction processing.
- Cloud servers from companies like Alibaba and AWS are used in Asia for hosting applications.

4. Mobile Devices:

 Compact, touch-based devices like smartphones and tablets.

- Touchscreen interfaces and wireless connectivity.
- Lower computational power compared to desktops and laptops but highly versatile.
- Built-in sensors like GPS, accelerometers, and cameras.

o Applications:

- Used for communication, online transactions, multimedia consumption, and casual gaming.
- Increasingly employed in education and healthcare for mobility and convenience.

Examples in Nepal/Asia:

- Smartphones are the primary internet access devices in Nepal, especially in rural areas.
- Tablets are used in Nepalese schools for digital learning and multimedia presentations.

2.3 Hardware Components

- o Hardware components are the physical elements of a computer system.
- They work together to perform the input, processing, storage, and output functions required for computing tasks. Below is a detailed breakdown of hardware components:

CPU Block Diagram & Architecture

> Input Devices:

- o Tools like keyboards, mice, and scanners.
- o Input devices allow users to interact with a computer by entering data and instructions.
- Examples:
 - **Keyboards**: Used for typing.
 - Mice: Used for navigation and selection.
 - Scanners: Convert physical documents into digital format.
 - **Touchscreens**: Allow direct interaction with the display.
- Example in Nepal/Asia:
 - Touchscreen ATMs in Nepal enable easy financial transactions.

Output Devices:

- o Monitors, printers, and speakers.
- Output devices display or present processed information from the computer.
- o Examples:
 - **Monitors**: Show visual output.
 - **Printers**: Produce hard copies of digital files.
 - **Speakers**: Output audio signals.
 - **Braille Readers**: Provide tactile output for visually impaired users.
- o **Example in Nepal**:
 - Printers are widely used in government offices for producing official documents.

Processing Unit/ Central Processing Unit (CPU):

o Includes the CPU and GPU for running instructions and graphical processing.

- o The CPU, known as the "brain" of the computer, executes instructions and processes data.
- o Components:
 - Control Unit (CU): Directs operations and manages data flow.
 - Arithmetic Logic Unit (ALU): Handles mathematical and logical computations.
 - **Registers**: Temporary storage for quick access to data during processing.
- Storage Devices: Internal HDDs/SSDs and external drives for data storage

→ Graphics Processing Unit (GPU)

- Specialized hardware for rendering images and video.
- o Applications:
 - Used in gaming, video editing, and machine learning applications.

Example in Nepal/Asia:

 GPUs are increasingly used by Nepalese designers and architects for 3D modeling.

2.4 Central Processing Unit (CPU)

- ➤ **Definition**: The CPU is the primary processing unit that executes instructions to perform tasks.
- **Components:**
 - **Control Unit (CU)**: Directs the flow of data and instructions.
 - Arithmetic Logic Unit (ALU): Handles mathematical and logical operations.
 - **Registers**: Small storage areas for quick access to frequently used data.

CPU Block Diagram & Architecture

Example: Intel Core i7 processors are popular in high-performance laptops used in Nepal.

2.5 Memory (RAM, ROM)

- ➤ Memory is a critical component of a computer system, enabling data storage and access.
- ➤ It is broadly categorized into volatile and non-volatile memory.
- ➤ Below is an in-depth explanation of RAM (Random Access Memory) and ROM (Read-Only Memory), their types, functions, and applications.

> RAM (Random Access Memory):

- RAM is volatile memory, meaning it loses data when power is turned off. It temporarily stores data and instructions that the CPU needs during operation.
- Characteristics:
 - Volatile: Requires constant power to retain data.
 - Fast: Provides quick access to frequently used data.
 - Temporary
- Types of RAM:

O DRAM (Dynamic RAM):

- Stores data using capacitors that need periodic refreshing.
- Slower but cheaper and widely used in general-purpose systems.
- Example: Found in laptops and desktops in Nepal.

o SRAM (Static RAM):

- Uses flip-flops to store data, eliminating the need for refreshing.
- Faster but more expensive than DRAM.
- Example: Used in cache memory in high-performance servers in Asia.

Applications:

- Multitasking (running multiple programs simultaneously).
- Gaming and video editing, where high-speed memory access is crucial.
- Virtualization in servers, which demands large RAM capacities.

Examples in Nepal/Asia:

- Nepalese educational institutions use systems with 8 GB or more RAM for e-learning platforms.
- High-end laptops with 16 GB RAM are popular among Nepalese software developers.

> ROM (Read-Only Memory):

 ROM is non-volatile memory, meaning it retains data even when the computer is powered off. It stores essential instructions for the computer's startup process.

Characteristics:

- **Non-volatile**: Data is permanently stored.
- **Pre-programmed**: Contains factory-written data, typically not user-modifiable.
- **Slower than RAM**: Access speeds are lower compared to RAM.

Types of ROM:

1. **PROM (Programmable ROM)**:

- o Can be programmed once after manufacturing.
- o Example: Used in Nepalese embedded systems for control devices.

2. EPROM (Erasable Programmable ROM):

- Can be erased and reprogrammed using UV light.
- Example: Used in firmware updates in Nepalese electronics.

3. **EEPROM** (Electrically Erasable Programmable ROM):

- Data can be erased and rewritten electrically.
- Example: Used in Nepalese mobile devices for BIOS updates.

4. Flash Memory:

 A modern variant of EEPROM that is faster and more durable.

Example: Found in USB drives and SSDs used by Nepalese businesses.

o Applications:

- Storing firmware (BIOS/UEFI) that initializes hardware during startup.
- Embedded systems like smart TVs and industrial machines.
- Mobile devices for OS and application storage.

o Examples in Nepal/Asia:

- Nepal Telecom's routers use ROM for firmware storage.
- EEPROM is used in Nepalese smart cards for secure data storage.

Computer Syatem - Memory Hierarchy

Comparison of RAM and ROM

Feature	RAM	ROM
Volatility	Volatile (data lost on power off)	Non-volatile
Purpose	Temporary storage for active use	Permanent storage of firmware
Speed	Faster	Slower
Data Modifiability	Fully modifiable	Typically non-modifiable

2.6 Storage Devices (Hard Drives, SSDs, External Storage)

- Storage devices are critical hardware components for saving and accessing data in a computer system.
- They come in various forms, each designed to meet specific needs for speed, capacity, and portability.
- ➤ Here's a detailed breakdown of different types of storage devices:

➤ Hard Drives (HDDs):

- o Magnetic storage for bulk data.
- HDDs are mechanical storage devices that use spinning disks (platters) coated with a magnetic material to store data.

o Components:

- o **Platters**: Store data magnetically.
- Read/Write Head: Moves across the disk to read or write data.
- **Spindle Motor**: Spins the platters at high speeds.

• Working Principle:

 Data is read or written by magnetizing the material on the spinning platters using the read/write head.

- o **Capacity**: Typically ranges from hundreds of GB to several TB.
- Speed: Slower compared to SSDs (e.g., 5400 or 7200 RPM).
- o **Durability**: Prone to mechanical wear and tear.

Applications:

- Mass storage in desktops, servers, and backup systems.
- o Archiving large files like videos or databases.

Examples in Nepal/Asia:

- HDDs are commonly used in small businesses in Nepal for cost-effective data storage.
- They are widely used in surveillance systems for recording CCTV footage in Asia.

several TB.

➤ Solid State Drives (SSDs):

- o Faster, more reliable storage than HDDs.
- SSDs are non-mechanical storage devices that use flash memory to store data. They have no moving parts, which makes them faster and more reliable.
- o Components:

- Flash Memory Chips: Store data electronically.
- Controller: Manages data flow and optimizes performance.

O Working Principle:

 Data is stored using floating-gate transistors that retain an electrical charge to represent binary data.

• Features:

- **Speed**: Faster read/write speeds compared to HDDs.
- **Durability**: More resistant to physical shock due to the lack of moving parts.
- Capacity: Ranges from 128 GB to several TB.

o Applications:

- Boot drives in laptops and desktops for faster startup and operation.
- High-performance systems used for gaming, data analysis, and video editing.

o Examples in Nepal/Asia:

- SSDs are gaining popularity among Nepalese gamers and professionals for improved system performance.
- Asian data centers increasingly rely on SSDs for faster database processing.

o External Storage:

- o USB drives, external HDDs for portable data storage.
- External storage devices are portable storage options used for data transfer, backups, and additional storage needs.

Types of External Storage Devices:

External Hard Drives:

- HDDs housed in an external casing with USB or Thunderbolt connectivity.
- Applications: Backing up personal or professional data in Nepal.

External SSDs:

- Faster and more durable than external HDDs, used for onthe-go high-speed data access.
- Applications: Use d by photographers in Nepal for storing high-resolution images.

USB Flash Drives:

• Compact and highly portable devices with storage capacities ranging from a few GBs to 1 TB.

• Applications: Widely used by students in Nepal for sharing files and projects.

Memory Cards:

- Small, portable storage used in devices like cameras and smartphones.
- Applications: Nepalese photographers use SD cards for storing images during shoots.

Network-Attached Storage (NAS):

- Applications: Used by Nepalese businesses for collaborative file sharing.
- Dedicated devices connected to a network for shared storage.

Network Attached Storage

2.7 Input and Output Devices (Working principle, application)

Overview: These devices allow interaction between users and computers.

2.7.1 Keystroke Devices

☐ Examples: Keyboards for data entry.

Application: Used extensively in Nepal for office and educational purposes.

2.7.2 Touch Devices

☐ Examples: Touchscreens in smartphones and tablets.

☐ Application: ATMs in Nepal use touch interfaces for transactions.

			T 7		•					111	. 1	·	•	•	
•		•	•	$\mathbf{\Omega}$	ice-	•		m1	t re	ΛII	$\Delta \alpha$			714	\mathbf{P}
	. / .		•	W	יייייי	┖	v		יעט	W	ıvu		,,,	/ 11	

2.7.5 voice-Controlled Devices
Examples: Smart assistants like Google Assistant.
Application : Nepali users use voice input for setting reminders.
2.7.4 Movement-Controlled Devices
* Game Controllers (joysticks, gamepads,

Game Controllers: Joysticks, gamepads for gaming.

• Example: Used by Nepalese gamers for PC and console games.

and VRcontrollers.),

* Gesture-Control Devices, Leap Motion for touchless interaction.

Gesture-Control Devices: Devices like Leap Motion for touchless interactions.

Application: Used in advanced gaming in Asia.

2.7.5 Brain-Computer Interface (BCI):

□ Definition : A direct interface between the brain and the computer.
☐ Example in Asia : Research institutions in India explore BCI for medical applications.
2.8.6 Wearables:
* Smart glasses, AR/VR headsets (e.g., Oculus, HoloLens).
☐ Augmented Reality glasses like HoloLens.
☐ Example : AR devices are being explored for tourism in Nepal.
2.7.7 Haptic Feedback Gloves:

☐ **Definition**: Gloves providing tactile feedback for VR systems.

☐ **Example**: Used in VR simulations in advanced training centers in Asia.

2.7.8 Biosensors:

		Definition:	Track	physio	logical	data	like	heart 1	rate
--	--	-------------	-------	--------	---------	------	------	---------	------

☐ Example in Nepal: Fitness wearables used by trekkers for safety.

2.7.9 Data Scanning Devices

* Barcodes, QR code scanners.

Barcode/QR Scanners: Used for retail and payment systems.

• Example: QR scanners in Nepal are popular for digital payments.

* RFID:

Radio Frequency Identification scanners for contactless identification.

Used for contactless tracking in logistics.

* Biometric Scanners:

Fingerprint, iris scanners.

Devices for fingerprint and iris recognition.

• Example in Nepal: Used in banks for secure transactions.

2.7.10 Digitizers:

D C' ''	· ·	111		. 11 .	C	1 .	1	1 .
Definition:	Devices	11120	oranhic	tablete	tor	drawing	and	decton
 Denningen.		IIIC	ziainiic	lathets	1 () 1	uiawiiiz	and	ucoren

☐ Example: Used by Nepalese graphic designers for digital art

* Graphics tablets, touch-sensitive stylus input.

2.7.11 Microphones:

- Examples: Analog and digital microphones for voice input.
- Application: Used for podcasting and interviews in Nepal.

^{*} Devices that track physiological data (e.g., heart rate monitors).

* Analog, digital, condenser microphones for voice input.

		10		•	α	T	\mathbf{r}	. •
•	′/	17	HI	ectronic	l'orde	Kacad		
<i>_</i>	. / -		- 1		Valus	114561		CVILES

*	Smart ca	ards,	debit/credit	cards with	NFC/RFID	technology.
---	----------	-------	--------------	------------	----------	-------------

☐ Definition: Devices using NFC or RFID for payment or access control.

☐ Example: Smart cards are used for public transportation in Nepal.

2.7.13 Speech Recognition Devices

- Examples: Tools like Google Voice for dictation.
- Application: Nepali language is increasingly supported in speech-to-text systems.

2.7.14 Vision-Based Devices

*	Cameras,	LiDAR,	infrared	sensors,	facial	recognition	systems.
---	----------	--------	----------	----------	--------	-------------	----------

☐ Cameras: Webcams for video conferencing.

☐ LiDAR: Advanced	sensors for	· depth	mapping.
-------------------	-------------	---------	----------

☐ Facial Recognition: Used in security systems.

• Example in Asia: Airports in India employ facial recognition for immigration checks.

2.8 Output Devices (Working principle, application)

Output devices convert processed data from a computer into human-perceivable formats like visuals, sound, or tactile feedback. Below is a detailed breakdown of common output devices, their working principles, and applications:

* Monitors: CRT, LED, OLED screens.

☐ CRT (Cathode Ray Tube): Uses electron beams directed at a phosphorescent screen to produce images
☐ LED (Light Emitting Diode): Utilizes a liquid crystal display backlit by LEDs for sharper, more
energy-efficient visuals.
OLED (Organic Light Emitting Diode): Each pivel emits light offering better contrast and flevibility

OLED (Organic Light Emitting Diode): Each pixel emits light, offering better contrast and flexibility for curved screens.

Applications:

- **CRT**: Older televisions and computer monitors.
- **LED**: Commonly used in laptops, desktops, and TVs in Nepal.
- **OLED**: High-end TVs, smartphones, and foldable displays in Asia.

* Printers: Inkjet, laser, 3D printers.

☐ Working Principle:

- Inkjet: Sprays tiny droplets of liquid ink onto paper to produce high-resolution prints.
- Laser: Uses a laser beam to create static electricity on a drum, which attracts toner particles transferred to paper.
- 3D Printers: Build objects layer by layer using materials like plastic, resin, or metal, guided by a digital model.

☐ Applications:

- Inkjet: Used for home and office printing in Nepal.
- Laser: Preferred for bulk printing in Nepalese government offices and educational institutions.
- 3D Printers: Prototyping in industries like architecture, with growing applications in Nepal.

* Projectors: DLP, LCD.

☐ Working Principle:

- DLP (Digital Light Processing): Uses micro mirrors to reflect light onto a screen.
- LCD (Liquid Crystal Display): Channels light through LCD panels to project images.

☐ Applications:

- DLP: Used in theaters and conference rooms for high-resolution projections.
- LCD: Popular in classrooms and offices for presentations in Nepal.

Audio Output: Speakers, headphones, and surround sound systems.

- Speakers: Use electromagnetic induction to convert electrical signals into sound waves.
- Headphones: Function similarly to speakers but are designed for personal listening.

•	Surround Sound Systems: Combine multiple speakers to create an immersive audio experience using advanced
	audio encoding.

☐ Applications:

- Speakers: Used in homes, schools, and events in Nepal for communication and entertainment.
- Headphones: Widely used by students in Nepal for online classes.
- Surround Sound: Increasingly popular in Asian home theater setups.

Tactile Output: Braille readers, haptic feedback systems.

☐ Working Principle:

- Braille Readers: Use raised dots that change dynamically to represent text for visually impaired users.
- Haptic Feedback Systems: Generate vibrations or pressure to simulate touch sensations.

☐ Applications:

- **Braille Readers**: Used in libraries and institutions for the visually impaired in Nepal.
- **Haptic Systems**: Deployed in VR systems and gaming devices in Asia for immersive experiences.