1) Lösung. Die Algebra $\langle \Sigma^*; \cdot, \epsilon \rangle$ ist ein Monoid wenn $\langle \Sigma^*; \cdot \rangle$ eine Halbgruppe und ϵ das neutrale Element der Konkatenation ist.

Wir zeigen, dass für alle $x, y, z \in \Sigma^*$ gilt

$$(x \cdot y) \cdot z = x \cdot (y \cdot z),$$

mit Hilfe von Induktion über die Länge von x.

Basis: |x| = 0.

Da |x| = 0 kommt für x nur das Leerwort ϵ in Frage.

$$(x \cdot y) \cdot z = (\epsilon \cdot y) \cdot z$$
$$= y \cdot z$$
$$= \epsilon \cdot (y \cdot z)$$
$$= x \cdot (y \cdot z)$$

Schritt: |x| = n > 0. Sei x = aw mit $a \in \Sigma$ und $w \in \Sigma^{n-1}$. Als Induktionshypothese verwenden wir

$$(w \cdot y) \cdot z = w \cdot (y \cdot z).$$

Das erlaubt uns wie folgt umzuformen:

$$(x \cdot y) \cdot z = (aw \cdot y) \cdot z$$
 Ersetzen von x

$$= a(w \cdot y) \cdot z$$
 Zweite Gleichung von der Definition \cdot

$$= a(w \cdot (y \cdot z))$$
 Zweite Gleichung von der Definition \cdot

$$= a(w \cdot (y \cdot z))$$
 Induktionshypothese
$$= aw \cdot (y \cdot z)$$
 Zweite Gleichung von der Definition \cdot

$$= x \cdot (y \cdot z)$$

Damit ist bewiesen, dass \cdot assoziativ und $\langle \Sigma^*; \cdot \rangle$ eine Halbgruppe ist. Weiters ist ϵ das neutrale Element der Konkatenation: $\epsilon \cdot x = x$ ist eine direkte Konsequenz aus der Definition der Konkatenation, der Beweis von $x \cdot \epsilon = x$ verwendet dasselbe Induktionsargument wie der Beweis der Assoziativität.

- 2) Lösung.
 - a) G_1 ist kontextfrei, kontextsensitiv und beschränkt.

$$-L(G_1) = \{a^n b^n \mid n \ge 1\}.$$

- Da G_1 kontextfrei ist und es keine rechtslineare Grammatik für $L(G_1)$ gibt, ist $L(G_1)$ vom Typ 2.
- b) $-G_2$ ist rechtslinear, kontextfrei, kontextsensitiv und beschränkt.
 - $L(G_2) = \{ \operatorname{ac}^i \mathsf{b} \mid i \ge 0 \} \cup \{ \epsilon \}.$
 - Da G_2 rechtslinear ist, ist $L(G_2)$ vom Typ 3.
- c) G_3 ist beschränkt.
 - $-L(G_3) = \{ \mathsf{a}^n \mathsf{b}^n \mathsf{c}^n \mid n \ge 0 \}.$
 - Da G_3 nur beschränkt ist, es aber keine kontextfreie oder rechtslineare Grammatik für $L(G_3)$ gibt, können wir nur daraus schließen, dass $L(G_3)$ vom Typ 0 ist. Jedoch gibt es eine kontextsensitive Grammatik (siehe Foliensatz 7 der Vorlesung), welche die Sprache $L(G_3)$ erzeugt, dadurch ist $L(G_3)$ vom Typ 1.
- d) G_4 erfüllt keine der Eigenschaften (i)-(iv).
 - $L(G_4) = \{a^n \mid n \ge 0\}$
 - Da G_4 keine Eigenschaft auf (i)-(iv) erfüllt, können wir nur schließen, dass $L(G_4)$ vom Typ 0 ist. Wir können aber eine rechtslineare Grammatik für $L(G_4)$ angeben: $G'_4 := (\{S\}, \{a\}, R, S)$ mit den Regeln R:

$$S
ightarrow \epsilon \mid \mathsf{a} S$$

Somit ist $L(G_4)$ vom Typ 3.

3) Die KFG $G = (\{P\}, \Sigma, R, P)$, wobei R wie folgt definiert ist, beschreibt die Sprache der Palindrome.

$$P \rightarrow \epsilon \mid 0 \mid 1$$

 $P \rightarrow 0P0 \mid 1P1$

Diese Grammatik, und darum auch die Sprache der Palindrome, ist kontextfrei. Mittels dem sogenannten "Pumping Lemma" kann gezeigt werden dass die Sprache nicht regulär ist.

¹Siehe https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages.