第3章 逻辑门电路

- 3.1 概述
- 3.2 半导体二极管和三极管的开关特性
 - 3.2.1 半导体二极管的开关特性
 - 3.2.2 半导体三极管的开关特性 双极型三极管的开关特性
- 3.3 最简单的与、或、非门电路
 - 3.3.1 二极管与门
 - 3.3.2 二极管或门
 - 3.3.3 二极管非门

3.4 TTL门电路

- 3.4.1 TTL反相器的电路结构和工作原理
- 3.4.2 TTL反相器的静态输入特性和输出特性
- 3.4.3 TTL反相器的动态性能
- 3.4.4 其他类型的TTL门电路
- 3.4.5 TTL电路的改进系列

3.1概述

门电路——用以实现各种基本逻辑运算和复合逻辑运算的单元电路

正逻辑——用1表示高电平、用0表示低电平的情况负逻辑——用0表示高电平、用1表示低电平的情况注意:除非特别说明,书中一律采用正逻辑。

3.2半导体二极管和三极管的开关特性

3.2.1半导体二极管的开关特性

理想二极管:正向导通电阻为0,反向内阻为

图3.2.2 二极管的伏安特性

图3.2.1 二极管开关电路

图3.2.3 二极管伏安特性的几种近似方法

二极管的动态电流:

动态:从一个方向变化到另外一个方向

这里指加到二极管两端的电 压突然反向时电流的变化过 程

外加电压由负 ——正

外加电压由正→负

图3.2.4 二极管的动态电流波形 6

3.2.2半导体三极管的开关特性

- 一、双极型三极管的开关特性
- 1.双极型三极管的结构

图**3.2.5** 双极型三极管的两种类型 (a) NPN型 (b) PNP型

2.双极型三极管的输入特性和输出特性

输入特性

开启电压{ 硅管: (0.5~0.7) V 锗管: (0.2~0.3) V

输出特性

3.双极型三极管的基本开关电路

v_I< V_{ON}时,三极管截止,i_B≈0

i_C≈0, R_C上没有压降

输出为高电平V_{OH},且V_{OH}≈V_{CC}

v_I>V_{ON}时,i_B产生

ic流过Rc和三极管的输出回路

三极管进入放大区

$$i_B = \frac{v_I - V_{ON}}{R_B}$$

$$\begin{aligned} v_O &= V_{CE} = V_{CC} - i_C R_C \\ &= V_{CC} - \beta i_B R_C^{10} \end{aligned}$$

v₁ R_c压降↑,当R_c压降接近V_{cc}时,三极管压降接近零,三极管处于深度饱和状态,

三极管深度饱和压降为V_{CE(sat)}

 $V_{CC} - V_{CE(sat)} = i_C R_C$

解得:
$$i_C = \frac{V_{CC} - V_{CE(sat)}}{R_C} < \beta i_B$$

则
$$i_{B} > \frac{V_{CC} - V_{CE(sat)}}{\beta R_{C}} = I_{BS}$$

为使三极管处于饱和工作状态,电路输出低电平,必须保证 $i_B \geq I_{BS}$ (饱和基极电流)

综上所述, 只要合理地选择电路参数。保证

 v_I 为低电平 V_{IL} 时 $V_{BE} < V_{ON}$,三极管工作在截止状态 v_I 为高电平 V_{IH} 时 $I_B \ge I_{BS}$,三极管工作在深度饱和状态

则三极管的c-e间就相当于一个受v_r控制的开关

- 三极管截止时相当于开关断开,输出高电平
- 三极管饱和导通时相当于开关接通,输出低电平

4.三极管的开关等效电路

实用电路中通常都满足饱和压降 $V_{CE(sat)} \approx 0$,截止时的 $I_{CEO} \approx 0$

图3.2.9 双极型三极管的开关等效电路 (a)截止状态 (b)饱和导通状态

5.双极型三极管的动态开关特性

动态情况下,即三极管在截止与饱和导通两种状态间迅速转换时,三极管内部电荷建立和消散都需要一定的时间

因而i_c的变化将滞后于输入电压v_i的变化 所以v_o的变化滞后于输入电压v_i的变化

图3.2.10 双极型三极管的动态开关特性

3.3最简单的与、或、非门电路

3.3.1二极管与门

设 $V_{cc}=5V$,A、B输入端的高、低电平分别为 $V_{IH}=3V$, $V_{IL}=0V$,二级管 D_1 、 D_2 的正向导通压降 $V_{DF}=0.7V$

电路逻辑电平

A/V	B/V	Y/V
0	0	0.7
0	3	0.7
3	0	0.7
3	3	3.7

电路真值表

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

3.3.2二极管或门

电路逻辑电平

B/V	Y/V
0	0
3	2.3
0	2.3
3	2.3
	0 3 0

电路真值表

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

3.3.3 三极管非门

3.4 TTL门电路

1961年美国德克萨斯仪器公司率先将数字电路的元、器件和连线制作在同一硅片上,制成了集成电路IC。

按集成度高低可分: SSI, MSI, LSI, VLSI。 按制造工艺的不同可分为: 双极型和单极型

TTL电路:输入端和输出端均为三极管结构的电路,叫三极管-三极管逻辑电路,(Transistor-Transistor Logic)简称TTL电路。

3.4.1 TTL反相器的电路结构和工作原理

一、电路结构

