1 Zahlensysteme	4.1 Aussagen		7	Ersetzung	;	8.3 Verenigung	
Umrechnen von Dezimalzahlen in andere Zahlensysteme	Aussagen sind 0-stellig der wahr oder falsch.	ge Prädikate. Sie sind entwe-		eine Menge und $t(x)$ ein Ausdruck in x , α eiben wir	(Die Verenigung von zwei Mengen beinhaltet genau die Elemente, die in mindestens einer der beiden Mengen enthalten sind. Formal gilt:	
Die Dezimalzahl 338 wird ins 5er-System umgewandelt:	4.2 Quantoren			$t(A) = \{t(x) \mid x \in A\}$	(3)	$A \cup B := \{x \mid x \in A \lor x \in B\} \tag{8}$	
• 338 : 5 = 67 Rest 3	•	aka für jedes Element)		lie Menge, die als Elemente alle Objekte Form $t(x)$ mit $x \in A$ enthält.	von l	Beispiel:	
 67: 5 = 13 Rest 2 13: 5 = 2 Rest 3 2: 5 = 0 Rest 2 	· -	ntor aka mind. ein Element)		oiel: Menge aller Quadratzahlen		• $\{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}$ • $\mathbb{Z} = \{-n \mid n \in \mathbb{N} \cup \mathbb{N}\}$	
• Rückwärts gelesen: 2323	4.3 Junktoren			$\{x^2 \mid x \in \mathbb{N}\}$	(4)	Möchte man beliebig viele Mengen vereini- Möchte man beliebig vereini- Möchte man beliebig vereini- Möchte man beliebig vereini- Möchte man b	
Umrechnen von anderen Zahlensystemen in Dezimalzahlen	 <i>A</i>¬<i>B</i> (Negation) <i>A</i> ∧ <i>B</i> (Konjunkt) 	ion)	8	Mengenoperationen		gen, d.h. alle Mengen, die Element einer beliebigen Menge M von Mengen sind, dann ist ein Existenzquantor nötig.	
Die Zahl 20022 (3er-System) wird ins Dezimal-	• $A \lor B$ (Disjunktion	•	8.1	Teilmengen		$\bigcup A := \{x \mid \exists A \in M(x \in A)\} $ (9)	
 system umgewandelt: 2 * 3⁰ = 2 2 * 3¹ = 6 	` 1	• $A \Rightarrow B$ (Implikation) • $A \Leftrightarrow B$ (Äquivalenz)		Eine Menge A ist Teilmenge einer Menge B, geschrieben $A \subseteq B$, falls alle Elemente von A auch Elemente von B sind. Formal gilt:		 A∈M Sind die Mengen die man vereinigen möchte indexiert, d.H. M ist in der Form M = {A_i 	
• $0*3^2 = 0$	- (1			$A \subseteq B \Leftrightarrow \forall x (x \in A \Rightarrow x \in B)$	(5)	indexiert, d.H. M ist in der Form $M = \{A_i \mid i \in I\}$, dann verwenden wir auch die folgenden Notation:	
• $0 * 3^3 = 0$ • $2 * 3^4 = 162$	5 Gesetze ı	and Umformun-	Fine	Teilmenge A von B ist eine echte Teilme			
• $2 + 6 + 0 + 0 + 162 = 170$	gen	gen		wenn $A \neq B$ gilt. Wir schreiben $A \subset B$, wenn A ein echte Teilmenge von B ist.			
2 Zahlenmengen	• Distributiv:		CCITIC	remnenge von Bist.		Eigenschaften von \cup	
G	$-A \wedge (B \vee C)$	$\Leftrightarrow (A \land B) \lor (A \land C)$	8.1.1	l Extensionalitätsprinzip		• Kommutativität $A \cup B = B \cup A$	
Natürliche Zahlen $\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6,\}$ Ganze Zahlen		$\Leftrightarrow (A \vee B) \wedge (A \vee C)$		ilfe der Teilmengenrelation lässt sich da onalitätsprinzip wie folgt formulieren:	s Ex-	 Assoziativität (A ∪ B) ∪ C = A ∪ (B ∪ C) Idempotenz A ∪ A = A 	
$\mathbb{Z} = \{, -3, -2, -1, 0, 1, 2, 3,\}$	• Assoziativ:			$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$	(6)	• $A \subseteq A \cup B$	
Rationale Zahlen $Q = \{\frac{1}{2}, \frac{2}{3}, \frac{5}{4}, -\frac{7}{7}, 0, 1, -2,\}$	$-A \wedge (B \wedge C)$	\Leftrightarrow $(A \land B) \land C$		-		• $A \subseteq B \Leftrightarrow B = A \cup B$	
Reele Zahlen	$-A\lor (B\lor C)$	$\Leftrightarrow (A \vee B) \vee C$		Potenzmengen	:	8.4 Schnittmengen	
$\mathbb{R} = \{-2, 0, 1.5, \sqrt{2}, \pi, e,\}$	• de Morgan:			Potenzmenge $\mathcal{P}(A)$ einer Menge A ist die \mathbb{R} ler Teilmengen von A. Formal gilt:	vien- I	Die Schnittmenge von zwei Mengen beinhaltet ge-	
3 Zahlensysteme	$-\neg(A\wedge B)\Leftrightarrow$	$\rightarrow \neg A \lor \neg B$		$\mathcal{P}(A) := \{B \mid B \subseteq A\}$	/>	nau die Elemente, die in beiden Mengen enthalten sind:	
4 Prädikate			Beisp	oiel:	_	$A \cap B := \{ x \mid x \in A \land x \in B \} \tag{11}$	
	6 Aussonder	rung	•	$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$	j	Beispiel:	
Es sei n eine natürliche Zahl. Ein Ausdruck, in dem n viele (verschiedene) Variablen frei vorkommen	Ist A eine Menge und ist E(x) eine Eigenschaft (ein		•	• $\mathcal{P}(\{\{a\}\}) = \{\emptyset, \{\{a\}\}\}$		• $\{1,2,3\} \cap \{2,3,4,5\} = \{2,3\}$ • $\mathbb{N} = \{r \in \mathbb{R} \mid r \ge 0\} \cap \mathbb{Z}$	
und der bei Belegung (= Ersetzen) aller freien Va-		hnen wir mit dem Term:	E	s gilt für beliebige Mengen A:		,	
riablen in eine Aussage übergeht, nennen wir ein n-stelliges Prädikat.	<i>x</i> ∈	$A \mid E(x) \tag{1}$	•	$A \in \mathcal{P}(A)$, weil jede Megne eine Teilm von sich selbst ist.	enge	 Möchte man beliebig viele Mengen schnei- den, d.h. alle Mengen, die Element einer be- liebigen Menge M von Mengen sind, dann ist 	
 x > 3 ist ein 1-stelliges Prädikat. x + y = z ist ein 3-stelliges Prädikat. 	Beispiel: Menge aller G	Geraden Zahlen:	•	$\emptyset \in \mathcal{P}(A)$, weil die leere Menge Teilmenş der Menge ist.	ge je-	ein Allquantor nötig.	
 x ist eine natürliche Zahl 1-stelliges Prädi- kat. 	$\{x \in \mathbb{N} \mid \exists$	$y \in \mathbb{N}(x = 2y)\} \tag{2}$! San	hity-Check : $\mathcal{P}(A)$ hat $2^{ A }$ Elemente.		$\bigcap_{A \in M} A := \{x \mid \forall A \in M(x \in A)\} \tag{12}$	

• Wenn man sie indexiert haben möchte d.H. 9.1.1 Notationen M ist in der Form $M = \{A_i \mid i \in I\}$, dann so:

$$\bigcap_{i \in I} A_i := \bigcap_{A \in M} A = \{x \mid \forall i \in I (x \in A_i)\}$$
 (13)

Eigenschaften von ∩

- Kommutativität $A \cap B = B \cap A$
- Assoziativität $(A \cap B) \cap C = A \cap (B \cap C)$
- Idempotenz $A \cap A = A$
- $A \cap B \subseteq A$
- $A \subseteq B \Leftrightarrow A \cap B = A$

8.5 Disjunkte Mengen

- zwei Mengen A und B heissen disjunkt, wenn $A \cap B = \emptyset$ gilt.
- Eine Menge $M = \{A_i \mid i \in I\}$ von Mengen heissen paarweise disjunkt, wenn für alle aus $i \neq j$ gilt $A_i \cap A_j = \emptyset$ folgt.

Differenzmengen

Sind A und B Mengen, dann bezeichnen wir mit

$$A \setminus B := \{ x \in A \mid x \notin B \} \tag{14}$$

die Differenz (A ohne B) von A und B

8.6.1 Interaktion von \cup , \cap und \setminus

Sind A, B und C beliebige Mengen, dann gilt:

- De Morgan: $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$
- De Morgan: $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$
- Distributivität: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Distributivität: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Relationen

Definition

Eine relation von A nach B ist ein Tripel R =(*G*, *A*, *B*) bestehend aus:

- Einer (beliebigen) Menge A, genannt die Quellmenge der Relation.
 - Einer (beliebigen) Menge B, genannt die Zielmenge der Relation.
 - Einer Menge $G \subseteq A \times B$ genannt der Graph der Relation. Gilt A = Bm dann nennen wir R eine homogene Relation auf A.

- Gr ist der Graph
- (G,A,A) kann man auch als (G,A) schreiben.
- Ist $(x, y) \in G$, dann schreiben wir auch xRyund sagen x steht in Relation zu y.

Tupel und Produktmengen

9.2.1 Tupel

- Ein n-Tupel ist ein Objekt von der Form $(a_1,...,a_n)$
- Der i-ten (für $1 \le i \le n$) Eintrag a_i eines Tupels $a = (a_1, ..., a_n)$ bezeichnen wir auch mit

Damit Tupel gleich sind müssen sie genau die gleiche innere Struktur haben.

- $(1,2,3) \neq (1,3,2)$
- $(1,2) \neq (1,1,2)$

9.2.2 Kartesisches Produkt

Das kartesische Produkt von Mengen $A_1,...,A_n$, ist die Menge aller n-Tupel mit Einträgen aus $A_1,...,A_n$

$$A_1 \times ... \times A_n := \{(a_1, ..., a_n) \mid a_1 \in A_1 \wedge ... \wedge a_n \in A_n\}$$
(15)

Beispiel:

- $\{1\} \times \{a,b\} = \{(1,a),(1,b)\}$
- $\mathbb{N}^2 \times \{0,1\} = \{((x,y),0) \mid x \in \mathbb{N} \land y \in \mathbb{N}\} \cup$ $\{((x, y), 1) \mid x \in \mathbb{N} \land y \in \mathbb{N}\}$

9.2.3 Projektionen

Ist A eine Menge von n-Tupeln und ist $k \le n$ eine natürliche Zahl, dann nennen wir die Menge

$$pr_k(A) = \{x[k] \mid x \in A\}$$
 (16)

die k-te Projektion von A.

- $pr_1(\{(a,b)\}) = \{a\}$
- $pr_1(\{(1,2),(2,7),(1,5)\}) = \{1,2\}$
- $pr_2(\{(1,2),(2,7),(1,5)\}) = \{2,7,5\}$

9.3 Darstellung von Relationen

9.3.1 Gerichteter Graph

 $xRv :\Leftrightarrow x \text{ teilt } v$

9.3.2 Domain

Es sei R = (G, A, B) eine Relation.

• Die Domäne von R entpsricht der Projektion auf die erste Komponente vom Graph von R:

$$dom(R) = pr_1(G_R) \tag{17}$$

• Ist die Relation R als gerichteter Graph dargestellt, dann entspricht die Domäne der Menge aller Punkte, von denen mindestens ein Pfeil ausgeht.

9.3.3 Image

Es sei R = (G, A, B) eine Relation. Die Bildmenge einer Relation R besteht aus den Elementen aus der Ziemlenge welche zu mind. einem Element aus der Quellmenge in Relation stehen:

$$\operatorname{im}(R) =: \{ b \in B \mid \exists a \in A(aRb) \}$$
 (18)

9.4 Klassifizierung von Relationen

9.4.1 Reflexivität

Eine (homogene) Relation R auf A heisst reflexiv, wenn jedes Element (aus der Quellmenge) mit sich selbst in Relation steht:

9.4.2 Symmetrie

Eine (homogene) Relation R auf A ist symetrisch,

$$\forall x, y(xRy \Rightarrow yRx) \tag{20}$$

9.4.3 Antisymmetrie

Eine (homogene) Relation R auf A ist antisymetrisch, falls:

$$\forall x, y (xRy \land yRx \Rightarrow x = y) \tag{21}$$

Ein Graph kann symmetrisch, antisymmetrisch, weder noch, oder beides zusammen sein.

9.4.4 Transitivität

Eine (homogene) Relation R auf einer Menge A heisst transitiv, falls

$$\forall x, y, z (xRy \land yRz \Rightarrow xRz) \tag{22}$$

gilt.

(19) Ein Graph ist transitiv, wenn jede "Abkürzung"

9.4.5 linksvollständig / linkstotal

Für R = (G, A, B)...

9.4.6 rechtsvollständig / rechtstotal

Für R = (G, A, B)...

$$B = im(R)$$

$$A1$$

$$B1$$

$$B2$$

$$A3$$

9.4.7 linkseindeutig

Für R = (G, A, B)...

$$\forall x_1, x_2, y(x_1 R y \land x_2 R y \Rightarrow x_1 = x_2)$$

$$\boxed{\begin{array}{c} \text{B1} \\ \text{B2} \\ \text{A2} \\ \end{array}}$$

$$\boxed{\begin{array}{c} \text{A3} \\ \end{array}}$$

9.4.8 rechtseindeutig

Für R = (G, A, B)...

$$\forall x, y_1, y_2(xRy_1 \land xRy_2 \Rightarrow y_1 = y_2) \tag{26}$$

Funktionen \rightarrow

(23)

(25)

Damit eine Relation eine Funktionen ist, muss sie folgende Eigenschaften haben:

- rechtseindeutig
- linksvollständig

10.1 Injektive Funktionen \hookrightarrow

Damit eine Funktionen injektiv ist muss sie folgende Eigenschaften haben:

- · linksvollständig
- · rechtseindeutig
- · linkseindeutig

Eine Funktionen $f: A \rightarrow B$ heisst injektiv, falls unterschiedliche Ipunts stets in unterschiedlichen Outputs resultieren:

$$\forall x_1, x_2 \in A(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$$
 (27)

10.2 Surjektive Funktionen →

de Eigenschaften haben: linksvollständig

- rechtseindeutig
- · rechtsvollständig

Eine Funktion f = (G, A, B) heisst surjektiv, falls Es seien $f : A \rightarrow B$ und $g : B \rightarrow C$ Funktionen. im(f) = B gilt.

Bijektive Funktionen \rightleftharpoons 10.3

Damit eine Funktionen injektiv ist muss sie folgende Eigenschaften haben:

- · linksvollständig
- rechtsvollständig
- rechtseindeutig
- linkseindeutig

Oder anders gesagt: Eine Funktion $f: A \rightarrow B$ heisst bijektiv, falls sie sowohl injektiv als auch surjektiv ist.

Umkehrfunktionen

Für die Umkehrfunktionen einfach nach x auflösen und dann x und y vertauschen.

Eigenschaften von Umkehrfunktionen:

- Für jede Relation R gilt $R^{-1^{-1}} = R$
- R ist genau dann linksvollständig, wenn R^{-1} rechtseindeutig ist.
- R ist genau dann linkseindeutig, wenn R^{-1} rechtseindeutig ist.

10.5 Komposition

Für $g: A \to B$ und $f: B \to C$ definieren wir:

$$f \circ g : A \to C \tag{28}$$

$$(f \circ g)(x) = f(g(x)) \tag{29}$$

Wörtlich sagt man auch "f nach g" da f nach g ausgeführt wird bzw. g zuerst ausgeführt wird.

10.5.1 Assoziativität

Damit eine Funktionen injektiv ist muss sie folgen- Für $f: A \to B$, $g: B \to C$ und $h: C \to D$ gilt:

•
$$(f \circ g) \circ h = f \circ (g \circ h)$$

10.5.2 Injektivität, Surjektivität und Komposition

- Sind f und g injektiv, so ist auch $g \circ f : A \to C$
- Sind f und g surjektiv, so ist auch $g \circ f : A \rightarrow$ C surjektiv.
- Sind f und g bijektiv, so ist auch $g \circ f : A \to C$ bijektiv.

Äquivalenzrelationen

Äquivalenzrelationen sind homogene Relationen,

- reflexiv xRx
- symmetrisch $xRy \Rightarrow yRx$
- transitiv $xRy \wedge yRz \Rightarrow xRz$

...sind.

11.1 Beispiele

- Die Gleichheitsrelation auf einer beliebigen Menge ist eine Äquivalenzrelation.
- Die Relation \equiv_n ist auf der Menge \mathbb{Z} durch:

$$a \equiv_n b \Leftrightarrow n \text{ teilt } (a - b)$$
 (30)

11 ist kongruent 5 modulo 3 (\equiv_3), da 11 : 3 = 3 Rest 2 und 5: 3 = 1 Rest 2 ist und somit diebeiden Reste gleich sind.

11.2 Äquivalenzklassen

Es sei ~ eine Äquivalenzrelation auf einer Menge

• Für $a \in A$ ist

$$[a]_{\sim} := \{ x \in A \mid a \sim x \} \tag{31}$$

die Äquivalenzklasse von a bezüglich ~ und beinhaltet alle Elemente von A, die zu a in Relation ~ stehen.

• Jedes Element einer Äquivalenzklasse nennen wir einen Repräsentanten dieser Äquivalenzklasse.

• Die Faktormenge A/~ von A modulo ~ ist die 12.2.1 Beispiel Menge aller Äquivalenzklassen:

$$A/_{\sim} := \{ [a]_R \mid a \in A \}$$
 (32)

11.2.1 Eigentschaften

Ist ~ eine Relation auf A, dann sind folgende Aussagen äquivalent:

- *a* ∼ *b*
- $[a]_{\sim} = [b]_{\sim}$
- $[a]_{\sim} \cap [b]_{\sim} \neq \emptyset$
- a ∈ [b]_~
- b ∈ [a]_~

12 Halbordnungen

Eine Halbordnung ist eine...

- · reflexive
- transitive
- antisymmetrische

...Relation.

12.1 Notation

Im Kontext von Ordnungsrelationen wird die Notation R = (G, A) meistens A, G geschrieben.

12.1.1 Beispiele

- Ist A eine beliebige Menge, dann ist $\mathcal{P}(A)$, \subseteq eine Halbordnung.
- Die "normalen"kleiner oder gleich Relationen (A, \leq) mit $A = \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ sind Halbordnungen.

12.2 Hasse-Diagramme

Das Hasse-Diagramm einer Halbordnung (A, \leq) ist eine vereinfachte Darstellung des gerichteten Graphen von (A, \leq) und wird wie folgt konstruiert.

- Die Richtung eines Pfleies $a \rightarrow B$ für Elemte $a, b \in A$ wird dadurch zum Ausdruck gebracht, dass sich der Knoten b oberhalb von a befindet.
- Pfeile zwischen zwei Punkten a, b werden gelöscht, wenn es ein c mit $a \le c \le b$
- · Pfeile, die von einem Punkt auf denselben Punkt zeigen (Schleifen), werden weggelassen.

Halbordnung ($\mathcal{P}(\{a,b,c\})$, ⊆)

Teilbeitskeitrelation auf der Menge aller Teiler von 28:

12.3 Spezielle Elemente

Es sein (A, \leq) eine Halbordnung und $X \subseteq A$. Ein Element $x \in X$ heisst (bezüglich \leq):

• minmales Element von X, falls:

$$\forall y \in X (y \leq x \Rightarrow y = x)$$

• kleinstes Element von X. falls:

$$\forall y \in X (x \leq y)$$

• maximals Element von X, falls:

$$\forall y \in X (y \le x \Rightarrow y = x)$$

• grösstes Element von X, falls:

$$\forall y \in X(x \leq y)$$

12.3.1 Beispiel

Es sei die Halbordnung ≤ gemäss dem untenstehenden gerichteten Graph gegeben. Es gilt:

- maximale Elemente: d, e
- grösste Elemente: keine
- minimale Elemente: a
- kleinste Elemente: a

12.3.2 im Gerichteten Graph

- Maximale Elemente entsprechen den Knoten im gerichteten Graph von denen keine Pfeile weg zeigen (ausser Schleifen).
- Grösste Elemente entsprechen den Knoten im gerichteten Graph zu denen von jedem Knoten ein Pfeil hin zeigt.
- Minimale Elemente entsprechen den Knoten im gerichteten Graph zu denen keine Pfeile hin zeigen (ausser Schleifen).
- Kleinste Elemente entsprechen den Knoten im gerichteten Graph von denen zu jedem Knoten ein Pfeil zeigt.

Lineare Ordnungen

Es sei A, \leq eine Halbordnung.

- Zwei Elemente a und b aus A werden als vergleichbar (bezüglich ≤) bezeichnet, falls entweder $a \le b$ oder $b \le a$ gilt.
- Elemente aus A, die nicht vergleichbar sind heissen unvergleichbar.
- Wenn alle Elemnte von A paarweise vergleichbar sind, dann heisst A, \leq eine totale oder lineare Ordnung.

13.1 Beispiele

- Halbordnung $(\mathbb{N}, \leq), (\mathbb{Z}, \leq), (\mathbb{Q}, \leq)$ $)und(\mathbb{R}, \leq)$ sind lineare Ordnungen.
- Die Halbordnung $\mathcal{P}(1,2)$, \subseteq ist keine lineare Ordnung, da die Elemente {1} und {2} unvergleichbar sind.

13.2 Erweiterung

Definition Eine Halbordnung $(A, \leq A)$ erweitert die Halbordnung $(B, \leq B)$, falls

- B ⊆ A
- $\forall x, y \in B(x \leq_B y \Leftrightarrow x \leq_A y)$

gelten.

13.2.1 Beispiel

- $(\mathbb{N} \setminus \{0\}, \leq)$ erweitert die Teilbeitskeitrelation auf $\mathbb{N} \setminus \{0\}$.
- Die Relation $\mathcal{P}A_{\bullet} \leq \text{mit}$

$$X \leq Y :\Leftrightarrow |X| \subseteq |Y|$$

erweitert die Teilmengenrelation auf $(\mathcal{P}(A),\subseteq).$

14 Partition

Partitionen unterteilen eine gegebene Menge in paarweise disjunkte Teilmengen.

Eine Partition einer Menge A ist eine Menge $\{A_i | i \in$ I) von paarweise disjunkten, nichtleeren Teilmengen von A mit

$$\bigcup_{i \in I} A_i = A \tag{33}$$

Die Elemente Ai heissen die Klassen der Partition.werden auch deren Blöcke genannt.

14.1 Beispiel

Durch $A_0 = \{2n \mid n \in \mathbb{N}\} \text{ und } A_1 = \{2n+1 \mid n \in \mathbb{N}\} \text{ er-}$ hält man eine Partition der natürlichen Zahlen in zwei unendlich grosse Blöcke.

14.2 Induzierte Partition

Folgt aus der Reflexivität einer Äquivalenzrelation und der Äquivalenz:

$$[a]_{\sim} = [b]_{\sim} \Leftrightarrow [a]_{\sim} \cap [b]_{\sim} \neq \emptyset \tag{34}$$

14.3 Induzierte Äquivalenzrelation

Ist $P = \{A_i \mid i \in I\}$ eine Partition einer Menge A, dann ist die Relation \sim mit...

$$a \sim b \Leftrightarrow \exists i \in I (a \in A_i \land b \in A_i)$$
 (35)

...eine Äquivalenzrelation auf A.

15 Lemmas

15.1 Transitivität der Implikation

Für alle Prädikate mit A,B und C mit $A \Rightarrow B$ und $B \Rightarrow C$ gilt $A \Rightarrow C$.

15.2 Kontraposition

Für alle Prädikate mit A und B gilt $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$.

Beweis. Wir wenden die Junktorenregeln an:

$$A \Rightarrow B$$

$$\Leftrightarrow \neg A \lor B$$
 Definition von A \to B
$$\Leftrightarrow B \lor \neg A$$
 Kommutativität
$$\Leftrightarrow \neg \neg B \lor \neg A$$
 Doppelte Negation
$$\Leftrightarrow \neg B \Rightarrow \neg A$$
 Definition von $\neg B \to \neg A$

15.3 Symetrie ∧ Antisymetrie

Es sei A eine beliegende Menge und R eine beliebige Relation. auf A. Die folgenden Aussagen sind äquivalent:

• Die Relation R ist in der gleichheitsrelation auf A enthalten:

$$G \subseteq \{(x, x) \mid x \in A\}$$

• Die Relation R ist symetrisch und antisymetrisch.