Analyse de Fourier

Exercice 1 On considère la fonction f de \mathbb{R} dans \mathbb{R} , 2π -périodique, impaire, vérifiant

$$f(x) = \frac{x}{\pi} \left(1 - \frac{x^2}{\pi^2} \right), \quad \forall x \in [0, \pi].$$

- 1. Représenter graphiquement la fonction f sur l'intervalle $[-2\pi, 2\pi]$.
- 2. Montrer que la série de Fourier \hat{f} associée à f s'écrit

$$\hat{f}(x) = \sum_{n=1}^{\infty} \frac{12(-1)^{n+1}}{\pi^3 n^3} \sin(nx).$$

- 3. Montrer que la fonction f est égale à sa série de Fourier.
- 4. En déduire $\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)^3}$.
- 5. Calculer la somme $\sum_{n=1}^{+\infty} \frac{1}{n^6}$

Exercice 2 Soit f la fonction 2π -périodique telle que $f(x) = e^x$ si $x \in [-\pi, \pi[$.

- 1. Tracer la fonction f sur l'intervalle $[-3\pi, 3\pi]$
- 2. Déterminer la série de Fourier de f.

 Indication: on pourra utiliser $\cos(nx) = \Re(e^{inx})$ et $\sin(nx) = \Im(e^{inx})$.
- 3. Donner la valeur de la somme suivante : $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$
- 4. Donner la valeur de la somme suivante : $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2+1}$

Exercice 3 Soit f la fonction 2π -périodique définie par f(x) = 1 si $x \in [0, \pi]$ et f(x) = 0 si $x \in]\pi, 2\pi[$. Calculer les coefficients de Fourier $c_n(f)$. Déterminer $f \star f$ et ses coefficients de Fourier.

Exercice 4 Soit $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique. On suppose qu'il existe $\alpha, C > 0$ tels que pour tous $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

1

- 1. Pour $a \in \mathbb{R}$ et $n \in \mathbb{Z}$, exprimer $\int_0^{2\pi} f(t+a)e^{-int}dt$ en fonction de $c_n(f)$
- 2. En déduire l'existence de M > 0 tel que pour tout $n \in \mathbb{Z}^*$, $|c_n(f)| \leq \frac{M}{|n|^{\alpha}}$.

Indication: choisir $a = \frac{\pi}{n}$

Exercice 5 Déterminer la transformée de Fourier de $f: \mathbb{R} \to \mathbb{R}$ avec $f(x) = \max(0, 1 - |x|)$. En déduire $\int_0^\infty \frac{\sin^4(x)}{x^4} dx$

Exercice 6 Pour $\alpha > 0$, on pose $f(x) = e^{-\alpha|x|}$

- 1. Calculer la transformée de Fourier de f.
- 2. A l'aide de la formule de réciprocité, en déduire la transformée de Fourier de $x\mapsto \frac{1}{1+x^2}$.
- 3. Calculer $f \star f$ et en déduire la transformée de Fourier de $x \mapsto \frac{1}{(1+x^2)^2}$.
- 4. Déterminer la transformée de Fourier de $x \mapsto \frac{x}{(1+x^2)^2}$.

Exercice 7 On notera $L^1(\mathbb{R})$ et $L^2(\mathbb{R})$ les espaces de Lebesgue usuels, où les fonctions considérées sont à valeurs complexes. On notera

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} e^{-ix\xi} f(x) dx, \quad \forall f \in L^1(\mathbb{R}).$$

- 1. Soit $f \in L^1(\mathbb{R})$ tel que $\forall p \in \mathbb{N}, \sup_{x \in \mathbb{R}} |x^p f(x)| < \infty$. Montrer que $\hat{f} \in \mathcal{C}^{\infty}(\mathbb{R})$ et pour tout $k \in \mathbb{N}$, $\hat{f}^{(k)} = \hat{g}_k$ où $g_k(x) = (-ix)^k f(x)$.
- 2. Si $f \in \mathcal{C}^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ telle que $f^{(k)} \in L^{1}(\mathbb{R})$ pour tout $k \in \mathbb{N}$ alors $\widehat{f^{(k)}} = (i\xi)^{k}\widehat{f}$. On notera dans la suite $\mathcal{S}(\mathbb{R}) \subset \mathcal{C}^{\infty}(\mathbb{R})$ telles que pour tout $p, q \in \mathbb{N}$, $\sup_{x \in \mathbb{R}} |x^{p} f^{(q)}(x)| < \infty$.
- 3. Montrer que $\mathcal{S}(\mathbb{R}) \subset L^1(\mathbb{R})$ et qu'il est stable par dérivation et produit par un polynome.
- 4. Montrer que si $f \in \mathcal{S}(\mathbb{R})$ alors $\hat{f} \in \mathcal{S}(\mathbb{R})$.
- 5. Soit a > 0 et $\psi_a(x) = e^{-ax^2}$. Montrer que $\psi_a \in \mathcal{S}(\mathbb{R})$ et calculer $\widehat{\psi}_a$ et $\int_{\mathbb{R}} \widehat{\psi}_a(\xi) d\xi$. Indication : écrire une équation différentielle ordinaire sur ψ_a et passer à la transformée de Fourier
- 6. Soit $f \in \mathcal{S}(\mathbb{R})$. On veut montrer que $f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ix\xi} \hat{f}(\xi) d\xi$
 - (a) Soit $\Phi \in \mathcal{S}(\mathbb{R})$, montrer que pour tout $x \in \mathbb{R}$

$$\int_{\mathbb{R}} e^{ix\xi} \hat{f}(\xi) \Phi(\xi) d\xi = \int_{\mathbb{R}} \hat{\Phi}(y) f(x+y) dy.$$

(b) Soit $\Phi_0 \in \mathcal{S}(\mathbb{R})$, choisir $\Phi(t) = \Phi_0(\varepsilon t)$ pour tout $\varepsilon > 0$, montrer que

$$\Phi_0(0) \int_{\mathbb{R}} e^{ix\xi} \widehat{f}(\xi) d\xi = f(x) \int_{\mathbb{R}} \widehat{\Phi_0}(y) dy.$$

(c) Conclure