(a)	The frequency of an	X-ray wa	ve is 4.6 ×	10 ²⁰ Hz.			
	Calculate the wavele	ength in p	m.				
			W	avelength =	=		pm [3]
(b)	The distance from E star to Earth in Gs.	arth to a s	star is 8.5	≺ 10 ¹⁶ m. C	alculate the time	for light to trave	el from the
				tion o	=		Oo [0]
							GS [2]
(c)	The following list cor	ntains sca	lar and ve	ctor quantit	ies.		
	Underline all the sca	alar quant	ities.				
	acceleration	force	mass	power	temperature	weight	[1]
(d)	A boat is travelling in river water.	n a flowin	g river. Fig	ı. 1.1 shows	s the velocity vec	tors for the bo	at and the
					/		
					water v	velocity 8.0 m s	-1
					600		
_	boat velocity	14.0 m s ⁻¹				east - — →	

Fig. 1.1

The velocity of the boat in still water is $14.0\,\mathrm{m\,s^{-1}}$ to the east. The velocity of the water is $8.0\,\mathrm{m\,s^{-1}}$ from 60° north of east.

(i)	On Fig. 1.1, draw an arrow to show the direction of the resultant velocity of the boat. [1]
(ii)	Determine the magnitude of the resultant velocity of the boat.
	magnitude of velocity = ms ⁻¹ [2]

2 Fig. 2.1 shows an object M on a slope.

Fig. 2.1

M moves up the slope, comes to rest at point Q and then moves back down the slope to point R. M has a constant acceleration of $3.0\,\mathrm{m\,s^{-2}}$ down the slope at all times. At time t=0, M is at point P and has a velocity of $3.6\,\mathrm{m\,s^{-1}}$ up the slope. The total distance from P to Q and then to R is $6.0\,\mathrm{m}$.

- (a) Calculate, for the motion of M from P to Q,
 - (i) the time taken,

(ii) the distance travelled.

(b) Show that the speed of M at R is $4.8 \,\mathrm{m \, s^{-1}}$.

(c) On Fig. 2.2, draw the variation with time t of the velocity v of M for the motion P to Q to R.

Fig. 2.2

[3]

(d) The mass of M is 450 g.

Calculate the difference in the kinetic energy of M at P and at R.

difference in kinetic energy = J [2]

3 A trolley T moves at speed 1.2 m s⁻¹ along a horizontal frictionless surface. The trolley collides with a stationary block on the end of a fixed spring, as shown in Fig. 3.1.

Fig. 3.1

The mass of T is 250 g. T compresses the spring by $5.4 \,\mathrm{cm}$ as it comes to rest. The relationship between the force F applied to the block and the compression x of the spring is shown in Fig. 3.2.

Fig. 3.2

- (a) Fig. 3.2 to determine
 - (i) the spring constant of the spring,

		work done = J [2]
(b)		spring then expands and causes T to move in a direction opposite to its initial direction. ne time that T loses contact with the block, it is moving at a speed of $0.75\mathrm{ms^{-1}}$.
	Fror	n the time that T is in contact with the block,
	(i)	describe the energy changes,
		[2]
	(ii)	determine the change in momentum of T.
		change in momentum = Ns [2]

(ii) the work done by T compressing the spring by $5.4\,\mathrm{cm}.$

4	(a)	Define moment of a force.
		[1

(b) An arrangement for lifting heavy loads is shown in Fig. 4.1.

Fig. 4.1

A uniform metal beam AB is pivoted on a vertical wall at A. The beam is supported by a wire joining end B to the wall at C. The beam makes an angle of 30° with the wall and the wire makes an angle of 60° with the wall.

The beam has length $2.8\,\mathrm{m}$ and weight of $500\,\mathrm{N}$. A load of $4000\,\mathrm{N}$ is supported from B. The tension in the wire is T. The beam is in equilibrium.

(i) By taking moments about A, show that T is 2.1 kN.

5 A 240 V power supply S with negligible internal resistance is connected to four resistors, as shown in Fig. 5.1.

Fig. 5.1

Two resistors of resistance $550\,\Omega$ and $950\,\Omega$ are connected in series across S. Two resistors of resistance $350\,\Omega$ and R are also connected in series across S.

The current supplied by S is 0.40 A. Currents I_1 and I_2 in the circuit are shown in Fig. 5.1.

- (a) Calculate
 - (i) current I_1 ,

$$I_1 = \dots A[2]$$

(ii) resistance R,

$$R = \dots \Omega[2]$$

(iii) the ratio

power transformed in resistor of resistance 350 Ω power transformed in resistor of resistance 550 Ω

(i)	Calculate the potential difference V_{AB} to	between A and B.
(!!)	The maintaine Distinguished	<i>V</i> _{AB} = V [2]
(ii)	The resistance <i>R</i> is increased.	
	State and explain the effect on $V_{\rm AB}$.	
		[1]

(b) Two points are labelled A and B, as shown in Fig. 5.1.

6 A 12V battery with internal resistance 0.50Ω is connected to two identical filament lamps L₁ and L₂ as shown in Fig. 6.1.

Fig. 6.1

The lamps are connected to the battery via switches $\rm S_1$ and $\rm S_2$. The power rating of each lamp is 48W for a potential difference of 12V.

(a)	S ₁ is	s closed and S ₂ open.
	Stat	te and explain whether the power transformed in L_1 is 48W.
		[2]
(b)	S ₂ i	s now also closed.
	(i)	State and explain the effect on the current in L ₁ .
		[1]
	(ii)	State and explain the effect on the resistance of L ₁ .
		[1]

7 An arrangement that is used to demonstrate interference with waves on the surface of water is shown in Fig. 7.1.

Fig. 7.1 (view from above)

(a) Two dippers D₁ and D₂ are connected to a motor and a d.c. power supply. Initially only D₁ vibrates on the water surface to produce waves.
The variation with distance x from D₁ of the displacement y of the water at one instant of time

is shown in Fig. 7.2.

Fig. 7.2

Using Fig. 7.2, determine

(i) the amplitude of the wave,

amplitude = mm [1]

(ii) the wavelength of the wave.

wavelength = mm [1]

(ii) State and explain whether these waves are stationary or progressive. (iii) Explain why D ₁ and D ₂ are connected to the same motor. (iii) Explain why D ₁ and D ₂ are connected to the same motor. (iv) The points A and B on Fig. 7.1 are at the distances from D ₁ and D ₂ shown in Fig. 7.3 D ₁ A D ₂ A D ₁ B D ₂ B 5.0 cm 7.0 cm 5.0 cm 6.0 cm Fig. 7.3 State and explain the variation with time of the displacement of the water on the surface (i) A, (ii) B.			surface.		israto ana wave	oo aro produces	d by both dippers o
(ii) Explain why D ₁ and D ₂ are connected to the same motor. The points A and B on Fig. 7.1 are at the distances from D ₁ and D ₂ shown in Fig. 7.3 D ₁ A D ₂ A D ₁ B D ₂ B 5.0 cm 7.0 cm 5.0 cm 6.0 cm Fig. 7.3 State and explain the variation with time of the displacement of the water on the surface.	(i)	State	and explain wh	ether these wav	es are stationary	y or progressive	e.
The points A and B on Fig. 7.1 are at the distances from D ₁ and D ₂ shown in Fig. 7.3 D ₁ A D ₂ A D ₁ B D ₂ B 5.0 cm 7.0 cm 5.0 cm 6.0 cm Fig. 7.3 State and explain the variation with time of the displacement of the water on the surface (i) A,							[
The points A and B on Fig. 7.1 are at the distances from D ₁ and D ₂ shown in Fig. 7.3 D ₁ A D ₂ A D ₁ B D ₂ B 5.0 cm 7.0 cm 5.0 cm 6.0 cm Fig. 7.3 State and explain the variation with time of the displacement of the water on the surface (i) A,	(ii)	Expla	ain why D ₁ and [O ₂ are connected	d to the same m	otor.	
D ₁ A D ₂ A D ₁ B D ₂ B 5.0 cm 7.0 cm 5.0 cm 6.0 cm Fig. 7.3 State and explain the variation with time of the displacement of the water on the surface (i) A,							[
5.0 cm 7.0 cm 5.0 cm 6.0 cm Fig. 7.3 State and explain the variation with time of the displacement of the water on the surface	The	e points	s A and B on Fig	g. 7.1 are at the	distances from D	D ₁ and D ₂ show	vn in Fig. 7.3.
Fig. 7.3 State and explain the variation with time of the displacement of the water on the surface			D ₁ A	D_2A	D ₁ B	D ₂ B	
State and explain the variation with time of the displacement of the water on the surface.			5.0 cm	7.0 cm	5.0 cm	6.0 cm	
State and explain the variation with time of the displacement of the water on the surface.				Fig	7.3		
			explain the vari	ation with time o	f the displaceme	ent of the water	r on the surface at
(ii) B.							[
	(ii)	B.					
							[

8	(a)	The results of the $\alpha\text{-particle}$ scattering experiment gave evidence for the structure of the atom.
		State two results and the associated conclusions.
		result 1:
		conclusion 1:
		result 2:
		conclusion 2:
		[4]
	(b)	In a model of a copper atom of the isotope $^{63}_{29}$ Cu, the atom and its nucleus are assumed to be spherical.
		The diameter of the nucleus is 2.8×10^{-14} m. The diameter of the atom is 2.3×10^{-10} m.
		Calculate the ratio
		density of the nucleus density of the atom
		ratio =[3]