Machine Problem 3

- Applying PCA and FDA to digital recognition
 - First, apply PCA (method B) and FDA to get a lower-dimensional feature representation
 - Choose the dimensionality of subspace for PCA
 - Set the number of transforms to 9 for FDA
 - Use KNN in MP1 to the obtained feature by PCA and FDA, report the performance
 - Repeat three protocols in MP1 to tune K
 - Repeat Naive Bayes in MP2
 - This time, you do not need to tune α ; use MLE instead
 - Bonus credit: apply PCA (method A) to classify digit images.
 - Due: 11:59am, October 16

A Good Structure of Machine Problem Reports

- Background
 - What's the objective of this machine problem? Algorithms, the problems to solve
 - How do you implement? Programming language, library used, source code referenced
- Experiment setting
 - Training and test sets
 - The protocol you have used
- Results
 - How performance (accuracy/computing time) changes with different settings/parameters?
- Most Important part: what you have learned?