Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Курсовая работа по дисциплине «Методы машинного обучения» на тему: «Исследование продаж на рынке видеоигр»

испо.	ЛНИТ	ЪЛЬ:
-------	------	------

Мокренко	Никита	Валерьевич
		ИУ5-34М

"	"	2021 г.

Оглавление

Оглавление	2
Задание	3
Подготовка данных	4
Загрузка датасета	
Устранение пропусков данных	
Обработка категориальных признаков	
Нормализация числовых признаков	5
Масштабирование признаков	
Отбор признаков	5
Результат работы моделей	7
AutoML	

Задание

- 1. Поиск и выбор набора данных для построения модели машинного обучения. На основе выбранного набора данных строится модель для задачи классификации.
- 2. Для выбранного датасета решить следующие задачи:
 - а. устранение пропусков в данных;
 - b. кодирование категориальных признаков;
 - с. нормализацию числовых признаков;
 - d. масштабирование признаков;
 - е. обработку выбросов для числовых признаков;
 - f. обработку нестандартных признаков (которые не является числовым или категориальным);
 - д. отбор признаков, наиболее подходящих для построения модели;
- 3. Обучить модель и оценить метрики качества для двух выборок:
 - а. исходная выборка, которая содержит только минимальную предобработку данных, необходимую для построения модели (например, кодирование категориальных признаков).
 - b. улучшенная выборка, полученная в результате полной предобработки данных в пункте 2.
- 4. Построить модель с использованием произвольной библиотеки AutoML.
- 5. Сравнить метрики для трех полученных моделей.

Подготовка данных

Загрузка датасета

	<pre>data = pd.read_csv('./vgsales.csv', sep=',', encoding="utf-8") data.head()</pre>											
[5]:	Rank		ank Name Platform Year Geni	Genre	nre Publisher NA_Sale	NA_Sales	s EU_Sales	JP_Sales	Other_Sales	Global_Sales		
Ī	0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
	1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
	2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
	3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
	4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role-Playing	Nintendo	11.27	8.89	10.22	1.00	31.37

Устранение пропусков данных

Пропуски присутствуют в двух столбцах. Так как оба признака являются категориальными и количество пропусков незначительно, можно выполнить замену пропусков одним значением («Unknown»), либо вообще исключить строки с пропусками.

Обработка категориальных признаков

Можно использовать Count Encoder для признаков Genre, Platform, Year и Publisher.

Нормализация числовых признаков

Не провожу нормализацию, т.к. в данных много нулевых значений.

Масштабирование признаков

Использую MinMaxScaler для масштабирования признаков, относящихся к продажам.

Отбор признаков

Можно пока исключить признак Rank, т.к. это уникальное значение, обозначающее место в рейтинге. Гораздо разумнее предсказывать продажи.

Проверим датасет на наличие константных признаков:

Теперь посмотрим корреляционную матрицу:

Видно, что признак продаж по миру сильно коррелирует с продажами в Европе и Северной Америке (что логично), так что при построении модели машинного обучения его можно будет убрать.

Результат работы моделей

```
In [129]: for model in clas_models_dict:
    logger.plot('Модель: ' + model, model, figsize=(7, 4))
```


AutoML

Обучение при помощи технологии AutoML

```
↑ ↓ ፡ ■ 🛊 🖫 🖥 :
automl.fit(train[train.columns[:-1]], train['EU_Sales'])
    Linear algorithm was disabled.
    AutoML directory: AutoML_1
    The task is regression with evaluation metric rmse
    AutoML will use algorithms: ['Baseline', 'Decision Tree', 'Random Forest', 'Xgboost', 'Neural Network'
    AutoML will ensemble available models
    AutoML steps: ['simple_algorithms', 'default_algorithms', 'ensemble']
    * Step simple algorithms will try to check up to 2 models
    1 Baseline rmse 0.615306 trained in 1.37 seconds
   2_DecisionTree rmse 0.30605 trained in 10.36 seconds
* Step default_algorithms will try to check up to 3 models
    3\_Default\_Xgboost\ rmse\ 0.260395\ trained\ in\ 10.48\ seconds
    4 Default NeuralNetwork rmse 0.021286 trained in 2.53 seconds
    5 Default RandomForest rmse 0.332865 trained in 6.68 seconds
    \bar{\phantom{a}} Step ensemble will try to check up to 1 model
    Ensemble rmse 0.021286 trained in 0.32 seconds
    AutoML fit time: 69.21 seconds
    AutoML best model: 4 Default NeuralNetwork
    AutoML()
```