Backpropagation Examples

Original Slide Credits: Andrej Karpathy

Modified by Amit Roy-Chowdhury

$$f(x,y,z) = (x+y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$f(x,y,z)=(x+y)z$$
e.g. $x=-2$, $y=5$, $z=-4$

$$q=x+y \qquad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$
e.g. $x=-2$, $y=5$, $z=-4$
 $q=x+y$
 $\frac{\partial q}{\partial x}=1$, $\frac{\partial q}{\partial y}=1$
 $\frac{\partial f}{\partial q}=z$, $\frac{\partial f}{\partial q}=z$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$
e.g. $x=-2$, $y=5$, $z=-4$
 $q=x+y$ $\frac{\partial q}{\partial x}=1$, $\frac{\partial q}{\partial y}=1$
 $f=qz$ $\frac{\partial f}{\partial q}=z$, $\frac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$
e.g. $x=-2$, $y=5$, $z=-4$
 $q=x+y$ $\frac{\partial q}{\partial x}=1$, $\frac{\partial q}{\partial y}=1$
 $\frac{\partial f}{\partial z}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$
e.g. $x=-2$, $y=5$, $z=-4$
 $q=x+y$ $\frac{\partial q}{\partial x}=1$, $\frac{\partial q}{\partial y}=1$
 $\frac{\partial f}{\partial z}$
 $\frac{\partial f}{\partial z}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$
e.g. $x=-2$, $y=5$, $z=-4$

$$q=x+y \qquad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$$

$$f=qz \qquad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x,y,z)=(x+y)z$$
e.g. $x=-2$, $y=5$, $z=-4$

$$q=x+y \qquad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$$

$$f=qz \qquad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z)=(x+y)z$$
e.g. $x=-2$, $y=5$, $z=-4$

$$q=x+y \qquad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$$

$$f=qz \qquad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x,y,z) = (x+y)z$$
e.g. $x = -2$, $y = 5$, $z = -4$

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z,rac{\partial f}{\partial z}=q$ Chain rule: $rac{\partial f}{\partial y}=rac{\partial f}{\partial q}rac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$
e.g. $x = -2$, $y = 5$, $z = -4$

$$q = x + y \qquad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x,y,z)=(x+y)z$$
e.g. $x=-2$, $y=5$, $z=-4$

$$q=x+y$$

$$\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$$

Chain rule:

$$=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

ole:
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^{x} \qquad \rightarrow \qquad \frac{df}{dx} = e^{x} \qquad f(x) = \frac{1}{x} \qquad \rightarrow \qquad \frac{df}{dx} = a \qquad f_{c}(x) = c + x \qquad \rightarrow$$

ole:
$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x$$

$$rac{df}{dx}=e^x \ df$$

$$f(x) = rac{1}{x}$$

$$rac{df}{dx}=-1/x^2$$

$$ightarrow rac{d}{dx} = e^{x}$$
 $ightarrow rac{df}{dx} = a$

ole:
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x$$

$$rac{df}{dx}=e^x$$

$$rac{df}{dx} = -1/df$$

$$\rightarrow$$

 $f(x) = e^x$

ole:
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) &= e^x &
ightarrow & rac{df}{dx} &= e^x & f(x) &= rac{1}{x} &
ightarrow & rac{df}{dx} &= -1/x \ f_a(x) &= ax &
ightarrow & rac{df}{dx} &= a & f_c(x) &= c + x &
ightarrow & rac{df}{dx} &= -1/x \ \hline \end{pmatrix}$$

ole:
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^{x} \qquad \rightarrow \qquad \frac{df}{dx} = e^{x} \qquad f(x) = \frac{1}{x} \qquad \rightarrow \qquad \frac{d}{dx}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

ole:
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad o \qquad \qquad rac{df}{dx}=e^x \ f_a(x)=ax \qquad \qquad o \qquad \qquad rac{df}{dx}=a$$

ole:
$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned}$$

ole:
$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ \hline f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \hline \end{aligned}$$

$$f(x) = rac{1}{x} \qquad o \qquad rac{df}{dx} = -1/c$$
 $f(x) = a \qquad f_c(x) = c + x \qquad o \qquad rac{df}{dx} = -1/c$

ole:
$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_2 + w_2$$

$$f(x) = e^x \qquad o \qquad rac{af}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=$$

ole:
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

 $f(x) = e^x$

$$x1 -2.00$$
 $w2 -3.00$
 0.20

$$rac{df}{dx}=e^x \ df$$

$$egin{array}{c} x & & & \\ a & & & \end{array}$$

$$=\frac{1}{x}$$

$$\rightarrow$$

$$rac{df}{dx} = -1/x$$
 $rac{df}{dx} = -1/x$

$$\frac{df}{dx} = \epsilon$$

 $f(x) = e^x$

$$\rightarrow$$

$$rac{f}{x}=e^x \ df$$

$$(x) = \frac{1}{x}$$

$$\rightarrow$$

$$rac{df}{dx} = -1/x^2$$

$$rac{dx}{df} = a$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=rac{1}{1+e^{-x}}$$
 sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \left(1 - \sigma(x)
ight)\sigma(x)$$

