NOTES

TIANJIAO NIE

Contents

1. Topology	1
1.1. Compactness	1
2. Infinity categories	1
2.1. Model categories	1
2.2. Quasi-categories	1
2.3. Limits and colimits	1
2.4. Yoneda lemma	1
2.5. Adjoint functors	2
2.6. Presentable ∞-categories	2
3. Commutative algebra	2
3.1. Hilbert Nullstellensatz	2
3.2. todo	2
4. Adic spaces	2
5. Trace Formula	3
References	4

1. Topology

1.1. Compactness.

Remark 1.1.1. We shall try to drop the confusing "quasi-compact" terminology.

Definition 1.1.2. A map $f: X \to Y$ of topological spaces is called quasi-compact if the preimage $f^{-1}(K)$ is compact for every compact open subset K of Y.

Definition 1.1.3. Let X be a topological space. A subspace $Z \subset X$ is called retrocompact if the inclusion $Z \to X$ is quasi-compact.

Definition 1.1.4. Let X be a topological space. A subset of X is called constructible if it is a finite union of subsets of X of the form $U \cap V^c$ where U and V are open and retrocompact in X.

Remark 1.1.5. Our definition of "constructible" is called "globally constructible" in ((todo: cite EGA1 second edition)), cf. [Sta, Tag 04ZC].

Lemma 1.1.6. Let X be a topological space. Let U be an open subset of X. Let E be a constructible subset of X. Then $E \cap U$ is constructible in U.

Proof. ((todo: ...))

2. Infinity categories

- 2.1. Model categories.
- 2.2. Quasi-categories.
- 2.3. Limits and colimits.
- 2.4. Yoneda lemma.

1

2 TIANJIAO NIE

- 2.5. Adjoint functors.
- 2.6. Presentable ∞ -categories.

3. Commutative algebra

3.1. Hilbert Nullstellensatz.

3.2. todo.

Lemma 3.2.1. Let I_1, \ldots, I_n be ideals of A such that $I_i + I_j = A$ for all $i \neq j$. Then $\bigcap_i I_i = \prod_i I_i$, and the projections $A \to A/I_i$ induce an isomorphism of rings

$$A/\prod_i I_i \to \prod_i A/I_i.$$

Lemma 3.2.2. Let A be a ring. Let I_1, \ldots, I_n be ideals of A. Let \mathfrak{p} be a prime ideal of A containing $\prod_i I_i$. Then $I_i \subset \mathfrak{p}$ for some i. If $\mathfrak{p} = \cap_i I_i$ or $\mathfrak{p} = \prod_i I_i$, then $\mathfrak{p} = I_i$ for some i.

Lemma 3.2.3. Let A be a ring. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be prime ideals of A. Let I be an ideal of A such that $I \subset \cup_i \mathfrak{p}_i$. Then $I \subset \mathfrak{p}_i$ for some i.

Lemma 3.2.4. Let A be a ring. Let M be an A-module of finite type. Let I be an ideal of A. If IM = M, then there exists $f \in 1 + I$ such that fM = 0.

4. Adic spaces

Definition 4.0.1. A Huber ring A is called Tate if it contains a topologically nilpotent unit.

Lemma 4.0.2. If A is Tate with ring of definition A_0 and pseudo-uniformizer ϖ , then ϖA_0 is an ideal of definition.

Remark 4.0.3. The smallest choice for A^+ is the integral closure of $\mathbb{Z} + A^{\circ \circ}$ in A.

Remark 4.0.4. Let (A, A^+) be a Huber pair. We can define its "completion". Let

$$\widehat{A} = \lim_{n} A/I^{n}.$$

(caution: here I is an ideal of A_0 , and the quotient A/I^n is only a quotient of Abelian groups.) It is equipped with the unique topology such that $\widehat{A}_0 = \lim_n A_0/I^n$ is open. Hence \widehat{A} is a complete topological Abelian group. There is a unique ring structure on \widehat{A} such that $A \to \widehat{A}$ is continuous. Then \widehat{A} is a Huber ring, with a ring of definition \widehat{A}_0 and an ideal of definition $I\widehat{A}_0$. Let \widehat{A}^+ be the closure of the imgage of A^+ in \widehat{A} . Then $(\widehat{A}, \widehat{A}^+)$ is a Huber pair. We have a natural homeomorphism

$$\operatorname{Spa}(\widehat{A}, \widehat{A}^+) \to \operatorname{Spa}(A, A^+)$$

which also identifies rational subsets on both sides.

Lemma 4.0.5. Let (A, A^+) be a complete Huber pair.

- (1) If A is non-zero, then $Spa(A, A^+)$ is non-empty.
- (2) A^+ is equal to the subring of A of elements $f \in A$ such that $|f(x)| \le 1$ for all $x \in \operatorname{Spa}(A, A^+)$.
- (3) $f \in A$ is invertible if and only if $|f(x)| \neq 0$ for all $x \in \operatorname{Spa}(A, A^+)$.

Proof. Proof of (3). For an ideal \mathfrak{a} of A, we can form the "quotient" $(A/\mathfrak{a}, (A/\mathfrak{a})^+)$. Indeed, $(A/\mathfrak{a})_0 = A_0/(A_0 \cap \mathfrak{a})$ with ideal of definition $I/(I \cap \mathfrak{a})$, and take $(A/\mathfrak{a})^+$ to be the integral closure of $A^+/(A^+ \cap \mathfrak{a})$ in A/\mathfrak{a} .

Remark 4.0.6. Let (A, A^+) be a complete Huber pair. Let U be a rational subset of $X = \text{Spa}(A, A^+)$. Then U itself can be "identified" as an adic spectrum.

NOTES 3

Lemma 4.0.7. Let (A, A^+) be a complete Huber pair. Let U be a rational subset of $X = \operatorname{Spa}(A, A^+)$. Then there exists a complete Huber pair (B, B^+) together with a map $(A, A^+) \to (B, B^+)$ of Huber pairs such that $\operatorname{Spa}(B, B^+) \to \operatorname{Spa}(A, A^+)$ factors through U and is universal, i.e.

$$\operatorname{Spa}(B, B^+) \longrightarrow U \longrightarrow \operatorname{Spa}(A, A^+)$$

$$\operatorname{Spa}(C, C^+)$$

Moreover, $\operatorname{Spa}(B, B^+) \to U$ is a homeomorphism.

Remark 4.0.8. Always taking $A^+ = A^{\circ}$ is not robust under taking rational subsets. So an explicit choice of A^+ is required.

Example 4.0.9. Let K be a non-Archimedean field. Let $K^+ \subset K^\circ = \mathcal{O}_K$ be an open valuation subring of K. If $K^+ = K^\circ = \mathcal{O}_K$, then $\mathrm{Spa}(K, K^+)$ has only one point. In general, $\mathrm{Spa}(K, K^+)$ has more than one point. It looks like

where "\simp" means specialization of points.

Remark 4.0.10. If A is Tate, then every point in $Spa(A, A^+)$ admits a unique rank 1 generalization.

Example 4.0.11. Spa($\mathbb{Z}_p[[T]], \mathbb{Z}_p[[T]]$) is not Tate.

Remark 4.0.12. Relation with schemes and formal schemes.

Take A discrete and $A^+ = A$. Then we have maps $\operatorname{Spec}(A) \to \operatorname{Spa}(A, A) \to \operatorname{Spec}(A)$, where the second map is given by taking the kernel of a valuation, and the first map is given by taking the trivial (i.e. rank zero) valuation on the residue field. The composition is identity. This identifies $\operatorname{Spec}(A)$ with the subspace of rank zero valuations of Spa(A, A).

Remark 4.0.13. If X is a smooth projective connected curve over a field k_0 , with function field k, then the Riemann-Zariski space $RZ(k, k_0)$ is homeomorphic to X.

((todo: check: Buzzard-Verberkmoes, "Stably uniform affinoids are sheafy"))

Definition 4.0.14. Let (A, A^+) be a Huber pair. It is called stably uniform if all the rational subsets are uniform, i.e. B is uniform (i.e. B° is bounded) for all rational subsets $\operatorname{Spa}(B, B^{+}) \subset \operatorname{Spa}(A, A^{+})$.

Remark 4.0.15. The case "stably uniform Tate Huber pairs are sheaf" is extremely important, as it contains adic spaces that are hightly non-Noetherian, e.g. perfectoid spaces.

5. Trace Formula

Let G be a reductive group over \mathbb{Q} . Let \mathbb{A} be the ring of adeles of \mathbb{Q} .

We have a right action of $G(\mathbb{A})$ on $L^2(G(\mathbb{Q})\backslash G(\mathbb{A})^1)$.

Let $\mathcal{A}_{\text{cusp}}(G^1)$ be the set of isomorphism classes of irreducible representations of $G(\mathbb{A})^1$ in L^2_{cusp} . Recall $C_c^{\infty}(G(\mathbb{A})) = C_c^{\infty}(G(\mathbb{R})) \otimes_{\mathbb{C}} C_c^{\infty}(G(\mathbb{A}_f))$. We define $C_c^{\infty}(G(\mathbb{A})^1)$ to be the set of restrictions of $f \in C_c^{\infty}(A_G(\mathbb{R})^0 \backslash G(\mathbb{R})) \otimes C_c^{\infty}(G(\mathbb{A}_f)).$ For every $f \in C_c^{\infty}(G(\mathbb{A})^1)$, we define an operator $R^1_{\mathrm{disc}}(f)$ on L^2_{cusp} . Then $R^1_{\mathrm{disc}}(f)$ is of trace class, and

$$\operatorname{tr} R^1_{\operatorname{disc}}(f) = \sum_{\pi \in \mathcal{A}_{\operatorname{cusp}}(G^1)} m_{\pi} f_G(\pi).$$

((todo: finish the part, i.e. until page 6 of lecture notes))

Let P_0 be a minimal parabolic subgroup of G. Fix a Levi component M_0 of P_0 . For a standard parabolic subgroup P of G, we denote by M_P the standard Levi component of P. The unipotent radical of M is denoted by N_P . Thus $P = M_P N_P$. Fix a maximal compact subgroup K of $G(\mathbb{A})$ such that $G(\mathbb{A}) = P_0(\mathbb{A})K$ (recall: this is called the Iwasawa decomposition).

Definition 5.0.1. A cuspidal datum is an equivalence class of pairs (P, σ) where P is a standard parabolic subgroup of G, and $\sigma \in \mathcal{A}_{\text{cusp}}(M_P^1)$. Two pairs (P,σ) and (P',σ') are equivalent if (M_P,σ) and $(M_{P'},\sigma')$ are conjugate under $G(\mathbb{Q})$. The set of cuspidal data is denoted \mathfrak{X}^G .

4 TIANJIAO NIE

Consider the parabolic induction

$$\operatorname{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}(1_{N_P(\mathbb{A})} \boxtimes R_{M_P}^1).$$

Here $R_{M_P}^1$ is the regular representation of $M_P(\mathbb{A})$ on $L^2(M_P(\mathbb{Q})\backslash M_P(\mathbb{A})^1) \simeq L^2(M_P(\mathbb{Q})A_P(\mathbb{R})\backslash M_P(\mathbb{A}))$. Thus $R_{M_P}^1$ is the induction of the trivial representation from $M_P(\mathbb{Q})A_P(\mathbb{R})^0$ to $M_P(\mathbb{A})$. Therefore

$$\operatorname{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}(1_{N_P(\mathbb{A})}\boxtimes R^1_{M_P})=\operatorname{Ind}_{N_P(\mathbb{A})M_P(\mathbb{Q})A_P(\mathbb{R})^0}^{G(\mathbb{A})}\mathrm{triv}.$$

This is the regular representation of $G(\mathbb{A})$ on

$$L^2(N_P(\mathbb{A})M_P(\mathbb{Q})A_P(\mathbb{R})^0\backslash G(\mathbb{A})).$$

The space is denote by \mathcal{H}_P . It carries an inner product defined by

$$\langle \phi, \psi \rangle = \int_K \int_{M_P(\mathbb{Q}) \backslash M_P(\mathbb{A})^1} \phi(mk) \overline{\psi(mk)} dm dk.$$

The representation, denoted by I_P , is not unitary.

References

[Sta] The Stacks Project Authors. Stacks project.

Email address: nietianjiao@outlook.com