ОВАиТК, дз №2

Задача 1

Докажите, что если p — простое число, то группа S_{p-1} не может транзитивно действовать на множестве из p элементов.

Действие G на X называется **транзитивным**, если для любых $x,y\in X$ найдется элемент группы $g\in G$, такой что g(x)=y. Другими словами, действие транзитивно, если все элементы X образуют ровно одну орбиту.

Задача 2

Пусть p простой делитель |G|. Докажите, что в G найдется элемент порядка p.

Для этого рассмотрите следующее множество: наборы (g_1, g_2, \ldots, g_p) элементов группы G таких, что $g_1g_2\ldots g_p=e$. Сколько существует различных таких наборов? Рассмотрите на нем действие группой C_p , сдвигающее элементы набора циклически. Какая мощость у орбит этого действия?

Задача 3

Докажите изоморфизм $G/H \equiv G/(gHg^{-1})$

Задача 4

Докажите, что если H < G индекса n, то найдется K < H, нормальная в G, такая что индекс (G:K) делит НОД |G| и n!.

Hint: мы разбирали похожую теорему на последнем семинаре.

Задача 5

Пусть Inn(G) — множество изоморфизмов $G \to G$, представимых в виде $\phi_g : x \mapsto gxg^{-1}$ с операцией композиции. Докажите, что отображение $G \to Inn(G)$, задаваемое правилом $g \mapsto \phi_g$, является гомоморфизмом. Найдите его ядро.