WEEK 1 EXERCISE

1. Another proof of Pythagoras Theorem and Pythagorean mean

Problem 1. In the following diagram, AD = a, DB = b and CD = h.

Show that $\triangle ACD \sim \triangle CDB$ and $h = \sqrt{ab}$

Remark. \sqrt{ab} is called the geometric mean (GM) of a and b.

 $\frac{a+b}{2}$ is called the *arithemetic mean (AM)* of a and b.

Problem 2. In the following diagram, AB is the diameter, C is a point on the semi-circle and O is the center.

Show that $\angle ACB = 90^{\circ}$.

Problem 3. Point D is the foot of the perpendicular from C to AB and AD = a and DB = b.

From the previous question, we have $\angle ACB = 90^{\circ}$ and hence $DC = \sqrt{ab}$.

- (1) Find OC and OD in terms of a and b.
- (2) Prove the pythagoras theorem by considering $\triangle ODC$.

Remark. This shows that pythagoras theorem is true for every right triangle with sides $\left(\sqrt{ab}, \frac{b-a}{2}, \frac{a+b}{2}\right)$.

Problem 4 (Construction of Pythagorean mean). In the diagram below, AD = a and DB = b.

G is the intersection of the perpendicular bisector of AB and the semi-circle.

In previous exercise, we show the construction of arithmetic mean and geometric mean of two line segments.

Here, we are going to construct the harmonic mean (HM), $\frac{2}{\frac{1}{a} + \frac{1}{b}}$, of a and b.

Finally, we construct the quadratic mean (QM), $\sqrt{\frac{a^2+b^2}{2}}$, of a and b.

- (1) Show that $\triangle CDO \sim \triangle CED$ and $CE = \frac{2ab}{a+b} = \frac{2}{\frac{1}{a} + \frac{1}{b}}$.
- (2) Draw the line segment DG and show that $DG = \sqrt{\frac{a^2 + b^2}{2}}$.

Theorem (Mean inequality). Let a, b be any positive real numbers, then

$$\frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2 + b^2}{2}}$$

The equality holds if and only if a = b.

Proof. With refer to the diagram, the harmonic mean of a and b is the segment CE.

It is less than the hypotenuse of the triangle $\triangle CDE$, i.e. $CE \leq DC$.

DC is the geometric mean, hence we showed $HM \leq GM$.

Since DC is perpendicular to the diameter, it is less than the radius OG.

OG = OA = OB hence it is the arithmetic mean.

This shows $GM \leq AM$.

Finally, a similar argument on the triangle $\triangle ODG$ shows that $AM \leq QM$

This complete the proof of the mean inequality, $HM \leq GM \leq AM \leq QM$.

If a = b, the above four are equal to a.

Conversely, if all of them are equal, one can show that a = b algebraically.

2. C's Syntax

Rewrite the following mathematical expression in C's expression.

Don't not simplify any one of them.

You can assume that \sqrt{x} is written in $sqrt\left(x\right)$ in C.

- (1) $x^3 + y^3$
- (2) $(x+y)^2(x-y)$
- $(3) \sqrt{\left(x-y\right)^2}$
- $(4) \left(\sqrt{x-y}\right)^2$
- (5) $a^2 + 2ab + b^2$
- (6) $\frac{x^3 + y^3}{x + y}$
- (7) $x^2 xy + y^2$
- $(8) \left(\frac{x^3+y^3}{x+y}\right)^2$

Remark. Be careful, computer is so stupid.

It cannot understand simplified notation.

For example, we may write 2xy usually to stand for the product of 2, x and y.

In this case, you have to write 2 * x * y.