Relatório para o Roteiro I de Modelagem Matemática em Finanças I

Luiz Rodrigo Silva de Souza 16 de abril de 2018

Observação: o aplicativo que desenvolvi para essa atividade pode ser testado em

http://lurodrigo.com/mmfin1/bopm/

Atividade 2: O valor de u será $u_a^{\frac{T}{360N}}$. Basta ver que $u_d=u_a^{\frac{1}{360}}$. Tendo a taxa diária, o valor de u deve ser tal que $u^N=u_d^T$, e aí obtemos a fórmula acima. Utilizando o mesmo raciocínio, encontramos $r=(1+r_a)^{\frac{T}{360N}}-1$.

Atividade 3: Tanto faz, pois as transformação $u\mapsto u^{\frac{1}{360}}$ e $r\mapsto (1+r)^{\frac{1}{360}}-1$ são crescentes, ou seja, preservam as comparações.

Aqui abaixo estão exemplos de random walks com todos os parâmetros iguais, exceto pelo N, que é 10 ou 100.

Naturalmente, além dos resultados diferentes dos lançamentos de moeda, a diferença está na resolução do modelo: um modelo com N maior contempla uma quantidade maior de valores possíveis para o valor final do ativo.

- Atividade 4:
- Atividade 5:
- Atividade 6: