

计算机学院正湘浩班 2024级

- > 最小支撑树的概念
- > Prim算法
- > Kruskal 算法
- > 强连通分量

戴文渊 上海交通大学本科硕士 香港科技大学博士 ACM/ICPC全球总决赛冠军 百度主任架构师、华为主任科学家 第四范式创始人兼CEO 身价85亿元人民币(据胡润财富榜)

学习达不到自己预期时,不 用慌。每个人的预期总会或多或 少的带点理想色彩,所以实际的 效果一般来说总是不如预期的。 有时甚至会出现只有预期的三分 之一到二分之一的情况。

但是,只要你坚持不懈地去 做,不动摇自己的信念,最后的 成绩一定不会差。

记住, 你遇到的困难, 你的对手也会遇到的。

最小支撑树及图应用

- > 最小支撑树概念
- > Prim算法
- > Kruskal 算法

第档之法

TENRO!

问题引入

在n个地点间修缮造价最低的连通道路。

边的权值:修缮道路的费用

支撑树(Spanning Tree)

- > 给定包含n个顶点的无向带权连通图G,由G中n个顶点和n-1条边构成的连通子图,称为G的一棵支撑树,亦称生成树。
- ▶ 支撑树包含图G的全部顶点,且包含使子图连通所需的最少的边(n-1条边)。 课下思考:支撑树中有环么?

最小支撑树(Minimum Spanning Tree, MST)

> 边权之和最小的支撑树称为G的最小支撑树。

边权和37

连通图G

吉林大学计算机科学与技术学院 朱允刚

边权和 26

边权和23

最小支撑树的典型应用

A

网络设计:如交通网络、通信网络等。

应用广泛

ONCi 学图知例 www.cnki.net	□ 38 基于互近邻相对距离的最小生成树聚类算法	程汝峰; 刘奕志; 梁永全	郑州大学学报(理学 版)	2017-07-24 17:28	2019-09-15
	□ 39 基于聚类- <mark>最小生成树</mark> 的沥青路面裂缝检测方法研究	张栋冰	中山大学学报(自然 科学版)	2017-07-15	2019-01-15
检索范围: 学术期刊 (篇名: 最小支 □ 全选 已选: 0 清除 批量7	□ 40 一种基于统计学习理论的最小生成树图像分割准则	王平; 魏征; 崔卫红; 林志勇	武汉大学学报(信息 科学版)	2017-07-05	2019-01-05 08:50
	□ 41 一种融合超像素与 <mark>最小生成树</mark> 的高分辨率遥感影像分割方法	董志鵬; 王密; 李德 仁	测绘学报	2017-06-15	2018-12-15
□ 1 基于 <mark>最小生成树的</mark> 高分辨率;	□ 42 基于广义 <mark>最小生成树</mark> 的多微网源荷储恢复顺序优化策略	许志荣; 杨苹; 曾智 基; 何婷; 彭嘉俊	电力系统自动化	2017-04-25	2018-12-15
② 基于最小生成树原理的矿井; ③ 基于LINGO的最小支撑树问	□ 43 基于自然邻居和 <mark>最小生成树</mark> 的原型选择算法	朱庆生; 段浪军; 杨 力军	计算机科学	2017-04-15	2018-11-16 13:47
□4 一种求解双目标 <mark>最小生成树</mark> !	□ 44 基于GPU的Bor?vka最小生成树改进算法	吴永存; 刘成安; 印 茂伟	科技通报	2017-02-28	2018-09-26
□5 最小支撑树博弈:重新审视Bi	□ 45 基于 <mark>最小生成树</mark> 的多视图特征点快速匹配算法	李丹; 朱玲玲; 胡迎松	华中科技大学学报 (自然科学版)	2017-01-20 13:53	2018-09-15
□6 基于度约束最小生成树的域/	□ 46 基于 <mark>最小生成树</mark> 的渠道系统优化布局模型	许自昌	农业工程学报	2017-01-08	2018-07-15
□ 6 基于度约束最小生成树的域 □ 7 基于最小生成树的船舶运输;	□ 47 基于 <mark>最小生成树</mark> 的含分布式电源的配电网重构算法	侯成滨; 王瑞峰	郑州大学学报(理学 版)	2016-12-21 13:58	2018-07-11 17:19
□8 基于局部差异最小生成树脑	□ 48 粒子寻优和最小生成树聚类下的WSN能量优化	郑淼; 郑成增	计算机工程与应用	2016-12-16 14:00	2018-06-29
□9 面向装配序列规划的最小生/	□ 49 基于粒子群优化和 <mark>最小生成树</mark> 聚类的能耗均衡算法	李凯佳; 袁凌云; 俞 锐刚	微电子学与计算机	2016-12-05	10:33
□10 一种基于 <mark>最小生成树</mark> 的无人;	□ 50 基于直觉模糊集的随机最小支撑树选取	王肖霞; 杨风暴; 袁 华	计算机工程	2016-10-15	2018-05-08
□ 11 <mark>最小生成树</mark> 算法应用于蛋白)	1 2 3	4 5	下一页		2018-04-11 21:29

跨集合边

G=(V,E)是一个连通图,S是顶点集V的一个非空子集,则图G的顶点被分为S和V-S两个集合。

跨集合边

(A)

G=(V,E)是一个连通图,S是V的一个非空子集,若边(u,v)满足 $u \in S, v \in V-S$,则称边(u,v)为跨集合边,简称跨边。

 (\boldsymbol{A})

定理:连通图G中权值最小的跨集合边(简称最小跨边)一定在G的一棵最小支撑树里。即若边(u,v)满足 weight(u,v)=min{ weight $(u_0,v_0) \mid u_0 \in S, v_0 \in V-S$ },则必存在G的一棵最小支撑树T,T包含边(u,v)。

证明: 反证法, 假定最小 支撑树T不包含最小跨级 (u, v), T是连通的, 故u 和v之间必有一条路集合 该(s,t)。

 (\boldsymbol{A})

定理:连通图G中权值最小的跨集合边(简称最小跨边)一定在G的一棵最小支撑树里。即若边(u,v)满足 weight(u,v)=min{ weight $(u_0, v_0) \mid u_0 \in S, v_0 \in V-S$ },则必存在G的一棵最小支撑树T,T包含边(u,v)。

证明: 反证法, 假定最小 支撑树T不包含最小跨边 (u, v), T是连通的,故u 和v之间必有一条路集合 该路径必包含一条跨集合 边(s,t)。

 $|\boldsymbol{A}|$

定理:连通图G中权值最小的跨集合边(简称最小跨边)一定在G的一棵最小支撑树里。即若边(u,v)满足 weight(u,v)=min{ weight $(u_0,v_0) \mid u_0 \in S, v_0 \in V-S$ },则必存在G的一棵最小支撑树T,T包含边(u,v)。

对T删去边(s, t), 加入边(u, v), 得到一棵新的支撑树T'

 $|\boldsymbol{A}|$

定理:连通图G中权值最小的跨集合边(简称最小跨边)一定在G的一棵最小支撑树里。即若边(u,v)满足 weight(u,v)=min{ weight $(u_0,v_0) \mid u_0 \in S, v_0 \in V-S$ },则必存在G的一棵最小支撑树T,T包含边(u,v)。

由于w(u,v) < w(s,t),故T'的边权之和小于T,这与T是最小支撑树矛盾。

该定理是最小支撑树算法的依据

最小支撑树及图应用

- > 最小支撑树的概念
- > Prim算法
- > Kruskal 算法

THRI

Prim算法

Vojtěch Jarník 布拉格大学教授 捷克科学院院士

Robert Prim 贝尔实验室数学研究中心主任

集合S:

1

集合V-S:

2 3 4 5 6

最小跨边 1—3

集合S:

1

集合V-S:

2

4

5 6

最小跨边 1—3 3—6

集合S:

1

集合V-S:

2

4

5

最小跨边 1—3 3—6

集合S:

- (1)
- (3)
- 6

4

集合V-S:

2

5

最小跨边 1—3 3—6 6—4 2

集合S:

- (1)(3)(6)
- 4 2

集合V-S:

5

最小跨边 1—3 3—6 6—4

集合S:

集合V-S:

最小跨边 1—3

最小跨边 1-3 最小支撑树

Prim算法

设G=(V,E)为连通图,S为最小支撑树的顶点集。

- ① 选择任一点u做为起点,放入集合S,即令 $S=\{u\}$ ($u \in V$);
- ② 找最小跨集合边(u, v), 即端点分别属于集合S和V-S且权值最小的边,将该边加入最小支撑树,并将点v放入S;
- ③ 执行②, 直至S=V.

扫描所有跨集合边找权值最小的边,涉及重复运算

把顶点v到集合S的最小跨边保存起来,权值存入Lowcost[v], 边在集合S中的端点存入pre[v]。即 $Lowcost[v]=min\{weight(u,v)|u\in S,v\in V-S,\},pre[v]=u,u\in S.$

每次选择Lowcost值最小的顶点v,把边(pre[v], v)加入最小支撑 树, 把点v放入集合S.

整个图的最小跨边的权值: $\min_{i \in V-U} \{Low cost[i]\}$

每次选择Lowcost值最小的顶点v, 把边(pre[v], v)加入最小支撑 树, 把点v放入集合S.

每次选择Lowcost值最小的顶点v,把边(pre[v], v)加入最小支撑 树, 把点v放入集合S.

每次选择Lowcost值最小的顶点v,把边(pre[v], v)加入最小支撑 树, 把点v放入集合S.

吉林大学计算机科学与技术学院 朱允刚

- |B|
- ①每次选择Lowcost值最小的顶点v, 把边(pre[v], v)加入最小支撑树, 把点v放入集合S.
- ② 更新顶点v的邻居w的Lowcost值: 若G[v][w] < Lowcost[w], 则 $Lowcost[w] \leftarrow G[v][w]$. $pre[w] \leftarrow v$.

将v加入集合 S后将产生 新的跨集合 边(v,w)

S

V-S

Prim算法实现——准备工作

- (B)
- ► Lowcost[v]: 顶点v到集合S的最小跨边的权值。初始时Lowcost[u]=0, Lowcost[i]= ∞ ($\forall i \neq u$), 其中u为起点;
- \triangleright pre[v]: 顶点v到集合S的最小跨边在集合S中的端点,初值-1;
- \triangleright S[v]:顶点v是否在集合S中,初值0。
- > 若存在MST,求出MST中的边并返回边权和,否则(图不连通)求出包含起点u的连通子图的MST并返回其边权和。
- > 采用邻接矩阵G存图。

Prim算法的实现


```
int Prim(int G[N][N], int n, int u, int Lowcost[], int pre[]) {
    int S[N]={0}, sum=0; // sum存MST边权之和, 作为函数返回值
    for(int i=1;i<=n;i++){pre[i]=-1; Lowcost[i]=(i==u)? 0:INF;}
    for(int i=1;i<=n;i++){ // 把n个点逐个加入集合S
        int V=FindMin(S, Lowcost,n); // 从不在S中的点里选Lowcost值最小的点
        if(V==-1) return sum; // 不存在跨边,图不连通
        // 未完待续...
```



```
int FindMin(int S[],int Lowcost[], int n){
   int v=-1, min=INF;
   for(int i=1; i<=n; i++)
       if(S[i]==0 && Lowcost[i]<min){
       min=Lowcost[i]; v=i;
       }
    return v;
}</pre>
```

Prim算法的实现


```
int Prim(int G[N][N], int n, int u, int Lowcost[], int pre[]) {
    int S[N]={0}, sum=0; // sum存MST边权之和,作为函数返回值
    for(int i=1;i<=n;i++){pre[i]=-1; Lowcost[i]=(i==u)? 0:INF;}
    for(int i=1;i<=n;i++){ // 把n个点逐个加入集合S
        int v=FindMin(S, Lowcost, n); // 从不在S中的点里选Lowcost值最小的点
        if(v==-1) return sum; // 不存在跨边,图不连通
        S[v]=1; sum+=Lowcost[v]; // 找到一条MST的边(pre[v], v), v加入集合S
        // 未完待续...
```


Prim算法的实现


```
int Prim(int G[N][N], int n, int u, int Lowcost[], int pre[]) {
    int S[N]={0}, sum=0; // sum存MST边权之和, 作为函数返回值
    for(int i=1;i<=n;i++){pre[i]=-1; Lowcost[i]=(i==u)? 0:INF;}
    for(int i=1;i<=n;i++){ // 把n个点逐个加入集合S
        int v=FindMin(S, Lowcost, n); // 从不在S中的点里选Lowcost值最小的点
        if(v==-1) return sum; // 不存在跨边,图不连通
        S[v]=1; sum+=Lowcost[v]; // 找到一条MST的边 (pre[v], v), v加入集合S
        // 未完待续...
```


Prim算法的实现


```
int Prim(int G[N][N], int n, int u, int Lowcost[], int pre[]){
 int S[N]=\{0\}, sum=0; // sum 存MST 边权之和,作为函数返回值
 for(int i=1;i<=n;i++){pre[i]=-1; Lowcost[i] = (i==u)? 0:INF;}</pre>
 for(int i=1;i<=n;i++) //把n个点逐个加入集合S
    int v=FindMin(S,Lowcost,n); //从不在S中的点里选Lowcost值最小的点
    if(v==-1) return sum; //不存在跨边,图不连通
    S[v]=1; sum+=Lowcost[v]; //找到一条<math>MST的边 (pre[v],v), v加入集合S
    for(int w=1; w<=n; w++) //更新v邻接顶点的Lowcost和pre值
       if(S[w]==0 \&\& G[v][w]<Lowcost[w]){
           Lowcost[w]=G[v][w]; pre[w]=v;
                                               Lowcost w
                                               G[v][w]
 return sum;
```

时间复杂度

将v加入集合S后可能 产生新跨边(v,w)

如何使用pre数组——直接输出MST的边

```
void OutputMST(int Lowcost[],int pre[],int n){ //输出MST中的边
for(int v=1; v<=n; v++) //输出MST中的边(pre[v],v)及权值
if(pre[v]!=-1)
    printf("edge:%d-%d,weight:%d\n",pre[v],v,Lowcost[v]);</pre>
```


课下阅读——使用pre数组构建MST的邻接表

```
|B|
```

```
void BuildMST(Vertex Head[],int n,int Lowcost[],int pre[]){
 //通过Lowcost和pre数组构建MST的邻接表
 for(int v=1; v<=n; v++){</pre>
     Edge *p = Head[v].adjacent; //将v的邻接顶点pre[v]插入邻接表
    Head[v].adjacent = new Edge(pre[v],Lowcost[v],p);
     p = Head[pre[v]].adjacent; //将pre[v]的邻接顶点v插入邻接表
    Head[pre[v]].adjacent = new Edge(v,Lowcost[v],p);
                                 struct Edge{
                                   int VerAdj;
```

```
2 5 1 4
3 2
5 6
```

```
struct Edge{
   int VerAdj;
   int cost;
   Edge *link=NULL;
   Edge(int a, int c, Edge *p){
      VerAdj=a; cost=c; link=p;
   }
};
```

Dijkstra算法 VS Prim算法

Prim算法

从集合V-S中选择Dist 值最小的顶点放入集合 S,并更新其邻居的 Dist值

Dijkstra算法

从集合V-S 中选择Lowcost值最小的顶点放入集合S,并更新其邻居的Lowcost值

```
B
```

Dijkstra算法 VS Prim算法

```
仔细体会两段代
码的细微不同,
会加深你对这两
个算法的理解
```

int S[N]={0};

S[v]=1;

for(int i=1;i<=n;i++){</pre>

if(v==-1) return;

for(int w=1; w<=n; w++)</pre>

int v = FindMin(S, dist, n);

void Dijkstra(int G[N][N],int n,int u,int dist[],int pre[]){

for(int i=1;i<=n;i++){dist[i]=(i==u)?0:INF; pre[i]=-1;}</pre>

 $if(S[w]==0 \&\& dist[v]+G[v][w]< dist[w]){$

dist[w]=dist[v]+G[v][w]; pre[w]=v;

```
int Prim(int G[N][N], int n, int u, int Lowcost[], int pre[]){
  int S[N]=\{0\}, sum=0;
  for(int i=1;i<=n;i++){Lowcost[i]=(i==u)?0:INF; pre[i]=-1;}</pre>
  for(int i=1;i<=n;i++){</pre>
       int v = FindMin(S, Lowcost, n);
       if(v==-1) return sum;
       S[v]=1; sum+=Lowcost[v];
       for(int w=1; w<=n; w++)</pre>
            if(S[w]==0 \&\& G[v][w]<Lowcost[w])
                  Lowcost[w]=G[v][w]; pre[w]=v;
   return sum;
```


Last updated on 2025.5

最小支撑树及图应用

- > 最小支撑树的概念
- > Prim算法
- > Kruskal 算法

The same and the adversary

zhuyungang@jlu.edu.cn

Kruskal算法(逐边加入)

Joseph Kruskal (1928-2010) 普林斯顿大学博士 贝尔实验室研究员 美国统计学会会士

Kruskal算法(逐边加入)

设连通图G=(V, E), 令T为G的最小支撑树, 初始时T中有G的n个顶点和0条边, 可看成n个连通分量。

- ①在G中选择权值最小的边,并将此边从G中删除;
- ②若该边加入T后不产生环(即此边的两个端点在T的不同连通分量中),则将此边加入T中,从而使T减少一个连通分量,否则本步骤无操作。
- ③重复①②直至T中仅剩一个连通分量。

Kruskal算法的实现

(B)

> 选权值最小的边: 先对所有边按权值递增排序。

▶ 判环:并查集(连通分量⇔集合)

顶点u和v不在同一连通分量, 在MST中加入边(u,v)不会产 生环,故边(u,v)是MST的边

if(Find(u)!= Find(v)){ 将边(u,v)加入最小支撑树 Union(u, v).

合并u和v所在集合,使 二者在同一连通分量里

Kruskal算法的实现

> 如何存图: 只需存储图中边的信息, 使用边集数组。

```
struct Edge{
   int head;
   int tail;
   int weight;
};
Edge E[1010];
```


→ 若图的最小支撑树存在,输出最小支撑树的边并返回边权之和,否则(图不连通)返回∞

Kruskal算法的实现

```
B
```

```
int Kruskal(Edge E[], int n, int e) { //E 存图的边, n 为顶点数, e 为边数
  for(int i=1;i<=n;i++) Make set(i); //初始化
                //对边按权值递增排序,时间复杂度O(eloge)
  Sort(E,e);
  int sum=0,k=0; //sum为mst边权和,k为已找到的mst边的条数
  for(int i=0;i<e;i++){ //从小到大依次扫描每条边
    int u=E[i].head, v=E[i].tail, w=E[i].weight;
    if(Find(u))!= Find(v)){} //边(u,v)是最小生成树的一条边
       printf("%d-%d",u,v); k++; sum+=w;
      Union(u,v); //合并集合
    if(k==n-1) return sum; //成功找到mst的全部n-1条边
                                        时间复杂度
  return INF;
                                          O(eloge)
```

Kruskal算法的正确性依据

设Kruskal算法某次选出的最小边为(u,v), 其中u所在的连通分量的顶点集合为S。则边(u,v)是集合S和V-S的最小跨边,故必在最小支撑树里。

Prim算法与Kruskal算法

贪心算法

算法	时间复杂度	适用场合
Prim	$O(n^2)$	稠密图
Kruskal	$O(e \log e)$	稀疏图

判断:相对于 Kruskal算法, Prim算法更适宜于稀疏图。

【2023年清华大学考研题】

D

主要研究进展举例

时间	时间复杂度	提出者
1975	$O(e \log \log n)$	姚期智
2002	$O(e \cdot \alpha(n,e))$	Pettie Ramachandran

姚期智(1946-) 图灵奖获得者(迄今唯一华人获奖者) 原Stanford, Princeton, UC Berkeley教授 现清华大学教授 中国科学院法士 美国科学院外籍院士 2016年放弃美国国籍成为中国公民

课下思考

- ▶图G的最小支撑树一定包含G中的最小边么? 一定包含G中第2小的边么? 一定包含G中第3小的边么?
- >若图中边权互异, 其最小支撑树是否唯一?
- >若图中有权值相同的边,其最小支撑树一定不唯一么?

拓展问题

B

> 求图的必须包含某些边的最小支撑树。

拓展问题

- > 最大支撑树
 - √边权值取反,求最小支撑树
 - ✓修改Kruskal算法,每次选权值最大的边

拓展问题

B

▶最小乘积支撑树:给定正权图,求图的一棵支撑树,其边的权值乘积最小。

MST的其他应用举例——聚类

- ▶用户聚类:根据不同用户的兴趣,对所有用户聚类,相似的用户分到一组(簇),对不同组的用户推荐不同商品。
- 一每个用户对应图中一个顶点,边权反映用户购买习惯的相似性。设置参数k,执行Kruskal算法直至剩下k个连通分量(k组用户)。或者设置一个阈值,选出的最小边权高于阈值算

法就终止。

海宝网 Taobao.com

MST的其他应用举例——图像分割

▶每个像素对应一个顶点,边权表示两个像素颜色、亮度等的相似度,用Kruskal算法把颜色、亮度相似的像素分到一组(簇)。

