

Question?

Linear Equation Example

We've learned how to model with a numeric response variable

BUT, WHAT IF
THE RESPONSE
VARIABLE (Y) 15
NOT NUMERIC?

Outline:

- Overview of Categorical Responses
- Case Study: Predicting personalities (binary)

Categorical Data & Reponses

What is a categorical response?

Response data that is measured by categories instead of continuously.

Also called: Qualitative (vs. Quantitative),

Qualitative:

- Color of a sample
- Texture of a surface
- Aroma of a reaction

Quantitative:

Mass of a sample Length of a piece of wire

Molecules in a mole

Binary: 1 or 0

The response variable is one of two things.

- Smoker or Non-smoker
- Netflix Thumbs up or Thumbs down
- People who dance in front of the mirror or people who don't dance in front of the mirror

BIG CONCEPT

- ➤ If a variable is not binary, it is Polytomous *Polytomous (more than 1 outcome)*
- Type of Polytomous: Categorical Responses

Ordinal: On an ordered spectrum

Multiple Categories that can be ordered.

EXAMPLES:

E.g. How much do you like Dr. Ath's class?

(1 - 4)

- 1. It's pretty good
- 2. I love it!
- 3. Would leave my spouse to take it
- 4. Even better than Game of Thrones

Interval: numerical distance between data points

Types of Categorical Responses: Nominal

Nominal categorical responses have no order (unlike ordinal)

Worst Television Show?

iZombie, Santa Clarita Diet, Ironfist

Who is your favorite singer?

Taylor Swift, The Biebs, Beyonce, Shakira, Robert Nakano

Favorite Dessert?

Tiramisu, Chocolate Souffle, Beef jerky, Froyo!

HOW DO YOU PREDICT A CATEGORICAL RESPONSE?

How Do You Predict a Categorical Response?

It depends on what kind:

Binary-> Logistic Regression

Ordinal with irregular intervals -> Logistic Regression

Ordinal with even intervals -> Logistic Regression OR (decision tree) OR Linear Regression (like Ryan's presentation on Predicting Map Difficulty with Dancing)

Nominal-> multinomial logit model

Linear or Logistic Regression Model?

WHY LOGISTIC REGRESSION IS NEEDED?

- 1. The residuals cannot be normally distributed (as the OLS model assumes), since they can only take on one of several values for each combination of level of the Independent Variables
- 2. The OLS model makes nonsensical predictions, since the DV is not continuous e.g., it may predict that someone does something more than 'all the time'. Something like 1.3 doesn't make sense in a binary response.
- 3. For nominal DVs, the coding is completely arbitrary.
- For Ordinal Data, a linear regression may make sense if they are evenly spaced.

How to predict a categorical response?

In statistics, logistic regression, or logit regression, or logit model[1] is a regression model where the dependent variable (DV) is categorical.

Assumptions for Logistic Regressions

Don't Need

Doesn't need to be linear

Distribution doesn't need to be normal

Do Need:

Binary or ordinal data

No multicollinearity in variables

Independent observations (no matched data)

Independent variables need to be linearly related to the log odds

Logistic Regression Formula:

$$p = \frac{1}{1 + e^{-y}}$$

The Sigmoid Function

$$\ln\left(\frac{p}{1-p}\right) = b_0 + b_1 \bullet x$$

Logistic Regression Formula

Binary

A binary logistic model is used to estimate the probability of a binary response based on one or more predictor (or independent) variables (features).

Case Study: Using forum posts to predict a person's personality

WHAT IS MBTI?

The Myers Briggs Type Indicator (MBTI) is a personality classification system that divides individuals into 16 distinct personality types across 4 axis:

- Introversion (I) Extroversion (E)
- · Intuition (N) Sensing (S)
- Thinking (T) Feeling (F)
- Judging (J) Perceiving (P)

16 e

ISFJ Protector

INFJ Counselor

INTJ Mastermind

ISTP Crafter

ISFP Composer

INFP Healer

INTP Architect

ESTP Promoter

ESFP Performer

ENFP Champion

ENTP Inventor

ESTJ Supervisor

Provider

Teacher

Fieldmarshal

voutopiaproject.com

youtopia

a personality magazine

First axis IVS. E

Introverted

V.5 Extroverted

First Indicator I VS. E

binary variable

NFP

Do using certain words indicate

Introverted/Extrovertedness?

MBTI Dataset

https://www.kaggle.com/datasnaek/mbti-type/data

Previ	iew (first 100 rows) Column Metadata Column Metrics	×
type	posts	
INFJ	'http://www.youtube.com/watch?v=qsXHcwe3krw http://41.media.tumblr.com/tumblr_lfouydhas been the most life-changing experience in your life? http://www.youtube.com/watch?v=committing suicide the next day. Rest in peace- http://vimeo.com/22842206 Hello ENFJ7. Schttp://wallpaperpassion.com/upload/23700/friendship-boy-and-girl-wallpaper.jpg http://asse450-338.jpg Game. Set. Match. Prozac, wellbrutin, at least thirty minutes of moving your legs each type (or whichever types you want to do) would more than likely use, given each types' cocompletely promoting the death of any given Sim Dear ENFP: What were your favorite videouveryone. Wait I thought confidence was a good thing. just cherish the time of solitude by complimentary personality,well, hey. when your main social outlet is xbox live conversations because this thread requires it of me. Get high in backyard, roast and eat marshmellows in be v=4V2uYORhQOk http://www.youtube.com/watch?v=SIVmgFQQ0TI Banned for too many pressure. Banned for a whole host of reasons! http://www.youtube.com/watch?v=IRcrv41hgpokemon world an infj society everyone becomes an optimist 49142 http://www.youtube.com/version/d/dd/Ditto.gif http://www.serebii.net/potw-dp/Scizor.jpg Not all artists are artists like herself.:proud: Banned for taking all the room under my bed. Ya gotta learn to share with http://www.youtube.com/watch?v=dcCRUPCdB1w I failed a public speaking class a few year INTJ by the way. http://www.youtube.com/watch?v=hGKLI-GEc6M Move to the Denver area	vXZeYwwRDw8 http://worry to hear of your distrests.dornob.com/wp-consists.dornob.com/wp-consists.dornob.com/wp-consists.dornob.com/wp-consists.dornob.com/wp-consists.dornob.com/wp-consists.dornob.com/wp-consists.dornob.com/wp-consists.dornob.com/wp-consists.dornob.com/wp-consists.dornob.com/watch?v=ZRCEq_JFebecause they draw. It's the roaches. http://wwrs.ago.and.l've.sort.of.lea
ENTP	'I'm finding the lack of me in these posts very alarming. Sex can be boring if it's in the same p theory. Hello *ENTP Grin* That's all it takes. Than we converse and they do most of the flirting tests are funny. I score 140s or higher. Now, like the former responses of this thread I will ment liking your ideas/thoughts. You know you're an ENTP when you http://img188.imageshack.man has special knowledge and special powers like my own, it rather encourages him to seek a emotions and rarely Si. I also use Ni due to me strength You know though. That was ingenion is the best. It makes me lol. You guys are lucky: D I'm really high up on the tumbler system. So in No; The way he connected things was very Ne. Ne dominates are just as aware of their endominate 7w8. 7s and 8s both like to be noticed. 4's like to be known (not the same ;D I'll up singer. I love the beat it makes me bounce. drop.io v1swck0:D Mic really close to my mouth a books he's an ESTJ. As I said. The movie looked good except for it being called sherlock holmes liking it. The guy I kissed didn't know me. It was one of those Sounds pretty much like my a impression that you were female. I never looked at your boxy. Okay, I help out my gay friends all	g while I acknowledge the contract I don't believe in us/img188/6422/6020 a complex cheshirewords. After saying it I really did you hear about that exironments as Se dominus the same clip with and smokin aces: assassis. http://i817.photobuctea and what I'm going the contract in

Do using certain words indicate a certain temperament?

Procedure

- 1. Clean data
 - Create a column for I vs. E (binary)
- 2. Tokenize/vectorize dataset (bag of words)
 - Count words & create giant matrix
- 3. Run a logistic regression
- 4. Summarize data

Case Study: MBTI

Python code

Our Data

4 5 data.head()

Out[73]:

	type	posts	extroverted
0	INFJ	'http://www.youtube.com/watch?v=qsXHcwe3krw	1
1	ENTP	'I'm finding the lack of me in these posts ver	E
2	INTP	'Good one https://www.youtube.com/wat	- 1
3	INTJ	'Dear INTP, I enjoyed our conversation the o	1
4	ENTJ	'You're fired. That's another silly misconce	E

In [74]:

1 #how many is I vs. E in dataset?
2 data.describe()

Out[74]:

type	posts	extroverted
8675	8675	8675
16	8675	2
INFP	'Afterburner your reasoning is EPIC! Patriot	1
1832	1	6676
	8675 16 INFP	8675 16 8675 INFP 'Afterburner your reasoning is EPIC! Patriot

```
In [75]: 1 #breakdown of types in survery
2 type_data = data.groupby('type')
3 type_data.describe()
```

extroverted

Out[75]:

	onti or	oi to a			pooto			
	count	unique	top	freq	count	unique	top	freq
type								
ENFJ	190	1	Е	190	190	190	'There are some really awesome ENFJ facebook g	1
ENFP	675	1	E	675	675	675	"What do you mean? What's changed? I feel a	1
ENTJ	231	1	E	231	231	231	'Usually when I am in a group consisting large	1
ENTP	685	1	E	685	685	685	Haven't had time to think. Oh, christ. Now I	1
ESFJ	42	1	E	42	42	42	Entj Esfp Entp Esfj Estp Infp Intj	1
ESFP	48	1	E	48	48	48	'Good job! William I am!!! Yes to both. Sel	1
ESTJ	39	1	E	39	39	39	hitler was what he was,and i am estj or esfj	1
ESTP	89	1	E	89	89	89	'Class clown. I made a joke out of everything	1
INFJ	1470	1	- 1	1470	1470	1470	'desperately wish there was a moment every day	1
INFP	1832	1	1	1832	1832	1832	'I can say if I was winked at I would be throw	1
INTJ	1091	1	1	1091	1091	1091	'Afterburner your reasoning is EPIC! Patriot	1
INTP	1304	1	1	1304	1304	1304	'I totally analyzed you a figured out who you	1
ISFJ	166	1	- 1	166	166	166	I would say Gayle is an INFP 4w5 so/sx, a very	1
ISFP	271	1	1	271	271	271	'I was with an ENFJ, and this is extremely acc	1
ISTJ	205	1	1	205	205	205	'http://www.youtube.com/watch?v=EOgfZHxTgts	. 1
ISTP	337	1	1	337	337	337	'Lol. But hey, men can be gorgeous too. Nope	. 1

posts

Make Binary Column

```
In [76]:
              1 data['extroverted'].replace(['I','E'],['0','1'],inplace=Tr
                data.head()
Out[76]:
                                                           posts extroverted
                type
                     "http://www.youtube.com/watch?v=gsXHcwe3krw|||...
               ENTP
                           'I'm finding the lack of me in these posts ver...
              INTP
                        'Good one _____ https://www.youtube.com/wat...
               INTJ
                           'Dear INTP, I enjoyed our conversation the o...
            4 ENTJ
                            'You're fired. | That's another silly misconce...
              1 data.dtypes
In [77]:
                            object
Out[77]:
           type
           posts
                           object
           extroverted
                            object
           dtype: object
In [78]:
              1 data['extroverted'] = data['extroverted'].astype('int')
In [79]:
              1 data.dtypes
Out[79]:
           type
                            object
                            object
           posts
           extroverted
                             int32
           dtype: object
```

Create Stopwords

```
1 data['extroverted'] = data['extroverted'].astype('int')
     1 data.dtypes
]: type
                  object
                  object
   posts
   extroverted
                  int32
   dtype: object
     1 from sklearn.feature_extraction import text
     2 stop_words = text.ENGLISH_STOP_WORDS.union(['http', 'isfj', 'infp', 'intj', 'https', 'com', 'youtube', 'enfp', 'entp',
                                                     'infj', 'infp', 'intj', 'intp',
         'intp', 'istj', 'istp', '00', 'enfps', 'entps', 'infjs', 'enfjs', 'estps',
                                                     'entj', 'esfjs', 'existence', 'infps', 'enfj', 'entjs', 'intps',
         '000',
         '01',
```

Count Vectorizer

```
#create our count vectorizer

count_vectorizer = CountVectorizer(analyzer='word', min_df=1, stop_words = stop_words, lowercase=True,max_features=1000

#Transform the list of strings

transform = count_vectorizer.fit_transform(data.posts).toarray()
```

```
1 transform
In [95]:
Out[95]: array([[0, 0, 0, ..., 0, 0, 0],
                [0, 1, 0, ..., 0, 0, 0],
                [2, 1, 2, ..., 0, 0, 0],
                [0, 0, 0, ..., 0, 0, 1],
                [0, 2, 0, ..., 0, 0, 0],
                [0, 1, 0, ..., 1, 0, 0]], dtype=int64)
In [96]:
           1 transform.shape
Out[96]: (8675, 1000)
```

Initial Logistic Regression

```
n [98]:
          1 #deploy and evaluate model
          2 X=transform
          3 y= data.extroverted
          4 LogReg = LogisticRegression()
          5 log model = LogReg.fit(X, y)
          6 print(LogReg.score(X, y))
        0.831469740634
n [99]:
          1 y_pred = LogReg.predict(X)
          2 from sklearn.metrics import classification report
          3 #print(classification report(y, y pred))
          4 y pred
ut[99]: array([0, 1, 0, ..., 0, 0, 0])
          1 #predict probability
[100]:
          2 LogReg.predict proba(X)
t[100]: array([[ 0.98611172, 0.01388828],
               [ 0.24652963, 0.75347037],
               [ 0.9876008 , 0.0123992 ],
               [ 0.79772296, 0.20227704],
              [ 0.58838976, 0.41161024],
               [ 0.91377169, 0.08622831]])
          1 # Check trained model intercept
[101]:
          2 print("Intercept is ", log model.intercept )
          4 # Check trained model coefficients
          5 print("Coefficients are", log model.coef )
       Intercept is [-0.87775154]
        Coefficients are [[ -5.28997687e-02 2.86176034e-02
                                                              3.36041054e-02 -2.36611411e-02
           1.00055925e-02 -1.36921426e-01 2.17613577e-02 -1.52126704e-02
           2.30634796e-01 4.47117324e-02 -4.68193753e-05 -2.16254118e-03
           5.37954702e-02 1.87829004e-02 -2.01270984e-01 -8.77103720e-03
           1.06312899e-01 -1.03347004e-02 -4.69906221e-02 3.34363028e-02
           9.54529808e-02 -6.75883567e-02 8.91682435e-02 -4.90272948e-02
            3.02870909e-02 -1.30802291e-01 -3.02986439e-01
                                                             1.20644477e-01
```

Jupyter 510 MBTI dataset-75 words (autosaved)

e Edit	View Insert	Cell Ker	nel Widgets	Help			Not Tr
+ %	4 1 1 1	N Run ■	C > Cod	e \$			
In [29]:	logit_model=s result=logit_ print(result.	model.fit(rm(X))			
	327231030		on value: 0	The state of the s	esults		
	Dep. Variable	:	extrover	ed No. Ok	oservations: siduals:		8675 8600
	Method:		1	MLE Df Mod	del:		74
	Date:	Sa	t, 28 Apr 20		The second secon		0.1084
	Time:			25 Log-Li			-4175.1
	converged:		T	rue LL-Nul			-4682.7
					-value:		2.422e-165
		coef	std err		P> z		0.975]
	x1	0.0693	0.076	0.906	0.365	-0.081	0.219
	x2	-0.2991	0.063	-4.729	0.000	-0.423	-0.175
	x3	-0.2678	0.082	-3.263	0.001	-0.429	-0.107
	x4	-0.3993	0.087	-4.598	0.000	-0.570	-0.229
	x5	-0.3378	0.080	-4.216	0.000	-0.495	-0.181
	x 6	0.1011	0.035	2.922	0.003	0.033	0.169
	x7	0.2372	0.053	4.442	0.000	0.133	0.342
	v8	-0 3632	0 087	_4 172	0.000	-0 534	-0 193

r 510 MBTI dataset-1000 words (autosaved)

View	Insert	Cell K	ernel Widgets	s Help			Not Trus
ð 6	1	N Run	Cod	e ‡			
result	=logit_	m.Logit(y model.fit summary()	()				
Optimi	Curr		d successful ion value: 0 Logit R		esults		
Dep. V	ariable	:	extrover	ted No. Oh	servations:		8675
Model:			Lo	git Df Res	iduals:		7675
Method	l :			MLE Df Mod	lel:		999
Date:		S	at, 28 Apr 2	018 Pseudo	R-squ.:		0.2944
Time:			20:58		kelihood:		-3304.0
conver	ged:		T	rue LL-Nul	1:		-4682.7
				LLR p-	value:		2.568e-164
		coef	std err	z	P> z		0.975]
x1		-0.0607	0.081	-0.748	0.454	-0.220	0.098
x2		0.0304	0.048	0.638	0.523	-0.063	0.124
x 3		0.0349	0.057	0.618	0.537	-0.076	0.146
x4		-0.0314	0.090	-0.349	0.727	-0.208	0.145
x4		-0.0314	0.090	-0.349	0.727	-0.208	0.145

upyter 510 MBTI dataset- 2000 (autosaved)

	View Inser	t Cell Ke	rnel Widgets	Help			Not Tru
→ 3≪ (2 6 4	▶ Run ■	C Dode	*			
n [27]:	<pre>#broken #cols = X[s #X=X[cols] #y=y</pre>	support]					
n [28]:	result=logi	=sm.Logit(y, t_model.fit(t.summary()))				
	Cu		on value: 0.	280602			
				gression Re			
					.=======		
	Dep. Variab		extrovert	ed No. Oh	.=======		8675 6675
	Dep. Variab		extrovert Log	ed No. Oh	servations:		8675
	Dep. Variab	le:	extrovert Log	ed No. Oh it Df Res LE Df Moo	servations: siduals: del:		8675 6675
	Dep. Variab Model: Method:	le:	extrovert Log Mt, 28 Apr 20	ed No. Oh it Df Res LE Df Moo	servations: siduals: del: o R-squ.:	.======	8675 6675 1999
	Dep. Variab Model: Method: Date:	le:	extrovert Log M At, 28 Apr 20 22:03:	ed No. Oh it Df Res LE Df Mod 18 Pseudo	servations: siduals: del: c R-squ.: ikelihood:		8675 6675 1999 0.4802
	Dep. Variab Model: Method: Date: Time: converged:	le: Sa	extrovert Log Mt, 28 Apr 20 22:03:	ed No. Obit Df Res LE Df Mod 18 Pseudo 56 Log-Li ue LL-Nul	servations: siduals: del: c R-squ.: ikelihood:	3	8675 6675 1999 0.4802 -2434.2 -4682.7 3.151e-193
	Dep. Variab Model: Method: Date: Time: converged:	le: Sa	extrovert Log Mt, 28 Apr 20 22:03: Tr	ed No. Ok it Df Res LE Df Mod 18 Pseudo 56 Log-Li ue LL-Nul LLR p-	pservations: siduals: del: c R-squ.: ikelihood: l1: -value: p> z	[0.025	8675 6675 1999 0.4802 -2434.2 -4682.7 3.151e-193
	Dep. Variab Model: Method: Date: Time: converged:	le: Sa coef	extrovert Log Nt, 28 Apr 20 22:03: Tr	ed No. Ok it Df Res LE Df Mod 18 Pseudo 56 Log-Li ue LL-Nul LLR p-	servations: siduals: del: c R-squ.: ikelihood: ll: -value:	[0.025	8675 6675 1999 0.4802 -2434.2 -4682.7 3.151e-193

```
Jupyter 510 MBTI dataset-2000 words choose 10 (autosaved)
   Edit
         View
               Insert
                      Cell
                           Kernel
                                  Widgets
                                          Help
e
                     N Run
                                     Code
    28
                                                  2000
         print(result.summary())
         Optimization terminated successfully.
                 Current function value: 0.631348
                 Iterations 7
                                 Logit Regression Results
         Dep. Variable:
                               extroverted No. Observations:
         Model:
                                     Logit Df Residuals:
                                       MLE Df Model:
         Method:
         Date:
                           Sat, 28 Apr 2018 Pseudo R-squ.:
                                   23:44:14 Log-Likelihood:
         Time:
         converged:
                                            LL-Null:
                                      True
                                            LLR p-value:
                                           z P> z
                        coef
                             std err
                                                               [0.0]
                     -0.1181
                              0.101 -1.175 0.240 -0.3
         x1
         x2
                     -0.0087
                              0.079 -0.110
                                                  0.912
                                                              -0.1
                     -1.3956 0.139 -10.010 0.000
         x3
                                                              -1.6
                            0.134 -8.887
         x4
                     -1.1885
                                                    0.000
                                                              -1.4
```

Using Recursive Feature Selection with Cross Validation

Optimal number of features : 64

Using RFECV (Recursive Feature Elimination Cross Validation) 1000 Words

INTILIDEI OFFERENCE SCIENTER

```
In [69]:
           1 logit model=sm.Logit(y,rfecv.transform(X))
           2 result=logit model.fit()
           3 print(result.summary())
         Optimization terminated successfully.
                 Current function value: 0.506609
                 Iterations 6
                                   Logit Regression Results
         Dep. Variable:
                                  extroverted
                                               No. Observations:
                                                                                8675
         Model:
                                        Logit Df Residuals:
                                                                                8613
         Method:
                                         MLE Df Model:
                                                                                  61
                             Mon, 30 Apr 2018 Pseudo R-squ.:
         Date:
                                                                             0.06148
         Time:
                                     00:00:06 Log-Likelihood:
                                                                             -4394.8
                                         True LL-Null:
         converged:
                                                                              -4682.7
                                               LLR p-value:
                                                                           7.438e-85
                                                        P> z
                                                                   [0.025
                                 std err
                                                                              0.9751
                         coef
                                                 Z
                                  0.028
                                           -1.546
                                                        0.122
                                                                   -0.097
                                                                               0.011
         x1
                      -0.0428
         x2
                      -0.0484
                                   0.024 -1.979
                                                        0.048
                                                                   -0.096
                                                                              -0.000
                                   0.023 1.388
                                                        0.165
                                                                  -0.013
                                                                               0.076
         x3
                       0.0314
         x4
                      -0.0451
                                   0.028
                                             -1.637
                                                        0.102
                                                                   -0.099
                                                                               0.009
```

RFECV scores and feature names

```
In [120]:
            1 support = rfecv.get support()
             2 #Now support is an array, you can use that to efficiently extract the name of your selected features (columns).
             4 feature names = np.array(count vectorizer.get feature names()) # transformed list to array
             6 feature names support = feature names[support]
In [108]:
             1 rfecv.score(X, y)
Out[108]: 0.7887031700288184
In [146]:
             1 #change max rows to show
            2 pd.options.display.max rows =100
             3 pd.options.display.max rows
Out[146]: 100
             1 final = pd.DataFrame({'feature name':feature_names_support, 'coefficient': result.params})
In [148]:
             2 #https://stackoverflow.com/questions/13148429/how-to-change-the-order-of-dataframe-columns
             3 def order(frame, var):
                  if type(var) is str:
                       var = [var] #let the command take a string or list
                 varlist =[w for w in frame.columns if w not in var]
                  frame = frame[var+varlist]
                   return frame
             9 final = order(final, ['feature name'])
            10 final = final.sort values('coefficient', ascending = False)
            11 final
Out[148]:
```

	leature manne	Coefficient
x43	ne	0.252407
х5	bored	0.216664
x14	debate	0.216558

foature name coefficient

Conclusion:

Top 15

1 rfecv.score(X, y) 0.7887031700288184

Words used in posts can be used to predict temperament (at least introverted/extrovertedness)

Introverted Words

Extroverted	Words
-------------	-------

	feature name	coefficient
x22	earth	-0.477344
x51	quiet	-0.448619
x38	listening	-0.443149
x58	uncomfortable	-0.442473
x42	nature	-0.409219
x2	anime	-0. <mark>4</mark> 07223
x21	dry	-0.404414
x12	dealing	-0.396716
x13	death	-0.396006
x53	sign	-0.391099
x20	dream	-0.387 <mark>9</mark> 78
x48	parts	-0.379960
x54	soul	-0.378604
x49	philosophy	-0.378426

gender

-0.375306

x31

	feature name	coefficient
x43	ne	0.252407
x 5	bored	0.216664
x14	debate	0.216558
x7	business	0.210116
x34	hahaha	0.175742
x23	estp	0.170026
x11	dated	0.148015
x25	excited	0.144750
x16	developed	0.140425
x61	wanna	0.140193
x56	super	0.134935
x35	hot	0.127757
x29	fun	0.123675
x55	spot	0.122939
x24	exact	0.120324

Next Steps

- More Data
- Reduction of variables using lemmatization
- Try using ngrams
- Compare performance of other models/classifiers
- Look at each other axis N/S, F/T, J/P

Multinomial Models

Create multiple dummy regressions, each calculated simultaneously.

For multinomial models (more than 1 possible response) ????

https://www.mathworks.com/help/stats/multinomial-models-for-nominal-responses. html

http://amunategui.github.io/multinomial-neuralnetworks-walkthrough/

https://www.theanalysisfactor.com/logistic-regression-models-for-multinomial-and-ordinal-variables/

R walkthrough

References

https://en.wikipedia.org/wiki/Ordinal_regression

Ordinal Responses

Maybe an example? Which factor effects quality most? (Highest correlation) (https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009)

https://en.wikipedia.org/wiki/Ordered logit

Example of ordered regression problems:

https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/

In SPSS

https://www.ibm.com/support/knowledgecenter/en/SSLVMB_22.0.0/com.ibm.spss.statistics.help/spss/categories/idh_catr.htm

General information on categorical data

http://www.ucd.ie/statdept/classpages/categorical_data_analysis/cda1.pdf

References for R, SAS, & Python

https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/

R tutorial on running a logistic regression:

https://www.r-bloggers.com/how-to-perform-a-logistic-regression-in-r/

R tutorial on building a logistic regression from scratch:

https://www.analyticsvidhya.com/blog/2015/10/basics-logistic-regression/

Python walkthrough:

https://towardsdatascience.com/logistic-regression-using-python-sklearn-numpy-mnist-handwriting-recognition-matplotlib-a6b31e2b166a

https://towardsdatascience.com/building-a-logistic-regression-in-python-step-by-st ep-becd4d56c9c8

SAS example:

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug logistic sect060.htm

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by **SlidesCarnival**
- Photographs by **Unsplash**

Thank you

robertnakano@gmail.com afsanehkhani35@gmail.com joannewangziyi@gmail.com

Link to slides:

https://github.com/bobbyinfj/projects/tree/master/510%20Project-%20Categorical%20Response

