Lecture 10

저번시간 리뷰(CNN 연구):

VGGNet: 16계층, 19계층 모델

GoogleNet: 22계층 모델

(배치 정규화 발명 전. 그래서 참 대단하다)

ResNet: 중복 블록(Residual block)갖는 모델.

DenseNet, FractalNet: 모델 내에서 더하기, 항등연결(identity connections)더하기.

#VGGNet, AlexNet은 FC에 매우 많은 수의 파라미터 갖고 있다. FC계층 줄이고, 파라미터 수 줄이는게 더좋다.(GoogleNet 이후 연구.)

순환 신경망(Recurrent Neural Networks):

RNN은 이미지의 여기저기 둘러보고 어떤 종류(숫자)인지 결정.

->RNN처리 모식도.

h_0에서 들어오면, x_1, f_w값을 거쳐서 새로운 h_1생성. 그렇게 h_t까지 가는데, W값은 계속 중복된다.

->다대다 과정.

똑같이 위와같이 계산 하고, 대신 중간중간 y_i값이 하나씩 나옴. 전체 손실값(L도 다 더해서 계산)

->다대일 과정. 끝에 y값 하나로 뱉기.

RNN: 계산 그래프 (Computational Graph): 일대다

->일대다 과정. x값(입력값?)하나로 들어오고, y값은 여러 개(출력값?)

Sequence to Sequence: 다대일 + 일대다

->다대일 과정 거치면서 나온 최종 h값을, 일대다 과정으로 #다대일 거치면서 나온 요약 문을, 일대다 거치면서(unrolling)되는 느낌.

RNN 사용 예시:

언어 모델링.

->이건 잘못된 모델.

흐름은 RNN써서 훈련된 것과 유사해 보이는 텍스트 합성.

-> 이런식으로 한번에 한글자씩 순열 합성.

순방향(검은 화살표)으로 손실 계산, 역방향(빨간 화살표)로 경사 계산.

짤라서 계산도 가능.(전체 다 한번에 계산하면, 메모리 터져서)

순환 신경망 (Recurrent Neural Network)

합성곱 신경망 (Convolutional Neural Network)

#입력 이미지 -> CNN을 거치고 나온 것 -> RNN에 넣기 -> 이미지 관련된 텍스트.

다만, CNN에 넣는 것은 똑같은데, 끝에 Softmax 점수를 얻는 게 아니라, 그 전 단계 FC계층까지만 거치고, 전체 문맥 요약 후, RNN에 넣기.

CNN계층을 다 거치고 난 후에, V값으로 나왔다.

그러고 이렇게 RNN계층을 거친다.

잘못된 결과를 출력하는 경우가 더러 있어서, 그래서 만들어진게, Attention.

Attention: 연관된 것 중에서, 어떤 부분에 집중해야 하는지를 결정하는 것.

구성은 이렇게 된다.

a1에서 다시 Features로 들어가는데, 매 시점마다 어휘를 샘플링 한다는 것을 뜻함.

이미지 캡셔닝과 어텐션 (Attention)

그렇게 또 다른 입력이 들어오면, 2개의 출력 값을. (a2,d1). 또 a2, a3를 또 Features로 거친다. 어텐션은 '이미지 캡셔닝' 뿐만 아니라 질의 응답에도 사용됨.

#어텐션 이란게 각 단계의 계산값을 기억해두는 느낌.

다계층 RNN에서 '바닐라 RNN', 'LSTM', 'GRU' 사용.

바닐라 (Vanilla) RNN 경사 흐름

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013

-> 바닐라 RNN.

빨간 화살표는 역전파 과정(경사계산: h에서 h 0까지 W를 다 곱하기)

exploding gradient(폭발하는 경사): 역전파 과정중에서, 값이 1보다 큰 값을 역전파 한다고 할 때, 최종경사(h_0)값은 매우 커진다. -> gradient clipping(경사 잘라내기) 사용해서, 경사 비율을 조정해서 해결. vanishing gradient(사라지는 경사): 값이 1보다 작은 값을 역전파 한다고 하면, 경사는 계속 줄어든다. -> RNN구조 자체를 바꿔야 한다.

Long Short Term Memory (LSTM): 경사 흐름

[Hochreiter et al., 1997]

 C_t 부터 C_{t-1} 까지의 역전파는 f로 원소단위 (elementwise) 곱셈만 함, $\qquad \qquad >$ W로 행렬 곱셈 없음

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

->LSTM(Long Short Term Memory).

역전파 할 때, 중간에 '+'가 2가지로 복사된다. 그래서 '원소마다의' 곱하기를 통해 역전파가 된다.

중간에 잊기 게이트 덕분에 폭발경사, 사라지는 경사가 없어진다.(전에서의 가중치 반복해서 곱하는거 사라져서).

그래서 서로 이렇게 역전파에 방해받지 않는다.

GRU [Learning phrase representations using mn encoder-decoder for statistical machine translation, Cho et al. 2014]

$$\begin{split} r_t &= \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r) \\ z_t &= \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z) \\ \tilde{h}_t &= \tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h) \\ h_t &= z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t \end{split}$$

또 GRU라고 또 다른 '사라지는 경사'문제를 해결하려 함.

Lecture 11

이미지 분리(Segmentation), 위치 찾기(Localization), 탐지(Detection)

의미적 분리(Segmantic, segmentation):

-> 이미지에서 각 '픽셀'을 레이블로 구분.'픽셀'만 신경써서, 별 못함.

이렇게 소 두마리 있는걸 구

의미적 분리 아이디어: 슬라이딩 윈도우 (Sliding Window)

위와 같은 문제를 해결하기 위해, '슬라이딩 윈도우 방식'(구역별로 잘라내서 그걸 CNN거치게 하는 것)을 쓰는 것인데, 전체 이미지에 대한 것이 아니라 잘라낸 것에만 적용하는 거라서 별로다.

망을 많은 합성곱 계층들로 디자인해서 한번에 모든 픽셀에 대한 예측을 함! Conv Conv Conv Conv Ad수: C x H x W 합성곱: D x H x W

-> 'fully convolutional Network'아이디어. 독립적 조각 분류 느낌이 아닌, . CNN망 쌓은 느낌. 너무 많은 메모리를 차지해서, 잘 사용 안 하는 방식.

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

->다운 샘플링, 업샘플링 방식. 위 fully convolutional network방식이랑 비슷한데, 처음 '다운 샘플링'으로 작은 수의 합성곱 거치고, '업 샘플링'으로 고해상도 이미지 출력.

망내 업샘플링 (In-Network Upsampling): "최대 언풀링 (Max Unpooling)"

->'업 샘플링' 방식으로는 최근접 이웃 언풀링(같은 수 복제 방식), 바늘방석(bed of nalls:0값 채워넣기)방식 존재. 위 그림은 첫 다운 샘플링으로 맥스 풀링 방식 사용. 후에 바늘방석 방식 사용 업 샘플링 사용.

->다운 샘플링, 업 샘플링(스트라이드 2, 패딩 1 방식)

 $\vec{x} * \vec{a} = X \vec{a}$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

예: 1D 합성곱, 커널 크기=3, 스트라이드=2, 패딩=1

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

$$\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

스트라이드>1일때, 합성곱 전치는 더 이상 정상적인 합성곱이 아님!

->행렬 계산.

분류 + 위치찾기(Classification + Localization):

->노란색 신경망(AlexNet)거치고 나온 이미지 요약 내용. FC로 연결하고, <mark>좌표 알려주는</mark> 값 뱉고, 나온 각 Loss값 더해서 최종 Loss값.

이런식으로, 왼발 오른발, 머리, 다리 나누어서 손실값 내고, 이런식으로.

->물체 탐지.

각 물체마다 (x,y,w,h)값 4개씩 예측(좌표찾기)해야 하는데, 회귀 문제로 풀면 안된다.

이미지를 잘라낸 많은 여러 조각에 대해 CNN을 적용, CNN은 각 잘라낸 조각을 물체나 배경으로 분류

개? 아니오 고양이? 예 배경? 아니오

->그래서 여러 조각 나눈 CNN적용 하는 방식. #너무 많은 계산이 들어감

영역 제안

- 물체가 있을 것 같은 "명확하지 않은" 이미지 영역을 찾기
- 비교적 실행하는데 빠름; 예. 셀렉티브 서치 (Selective Search)는 CPU에서 실행한지 몇 초만에 2000개의 영역 제안을 제공

->그래서 나온 'region proposals'(영역제안 방식)

셀렉티브 서치(Selective Search)라는 방식 써서, cpu에서 2초동안 실행하면 2000개의 영역 뱉는다. 노이즈 껴있긴 한데, 그래도 위에꺼 보다 더 좋음.

-> R-CNN방식. 각 영역마다 구역 나눠서 CNN통과. 각 경계 나누는 걸 많이 한다면, 계산이 너무 많이 들어감. 시간도 당연히 많이 걸림.

-> 그래서 나온 빠른 R-CNN 방식. 영역 구분 안하고 전체 이미지 한 번에 CNN계층 통과. FC 거치고 손실값 두개 계산.

더 빠른 R-CNN: 관심 영역 풀링

- -> 더 빠른 R-CNN. MaxPooling 거친 방식.
- # 테스트 시간: R-CNN -> SPP-Net -> Fast R-CNN -> Faster R-CNN.

-> YOLO / SSD방식. 이미지를 그리드 영역으로 나눔.

->Mask R-CNN방식.

단순 분류, 예측이 아닌, 영역 각각을 분리. (마스크)