# Bagging and blocking: Inference via particle filters for interacting dynamic systems

Edward Ionides
University of Michigan, Department of Statistics

Statistics seminar series at
Chalmers University of Technology / University of Gothenburg
Tuesday November 23, 2021

Collaborators: Kidus Asfaw, Ning Ning, Joonha Park and Aaron King

#### Outline<sup>1</sup>

**The curse of dimensionality**. Particle filter (PF) methods are effective for inference on low-dimensional nonlinear partially observed stochastic dynamic systems. They scale exponentially badly.

Bagged filters. Combining independent Monte Carlo filters.

- Unadapted bagged filter (UBF)
- adapted bagged filter (ABF)
- adapted bagged filter with intermediate resampling (ABF-IR)

**Blocked particle filter** (BPF). Theory by Rebeschini and van Handel (2015) and practice independently by Ng et al. (2002).

**From filtering to inference**. Iterated filtering using stochastically perturbed parameters.

**Metapopulation dynamics**. Bagged and blocked filters work on collections of weakly coupled populations, in theory and practice.

### What is a SpatPOMP?

**POMP** models are partially observed Markov processes, also known as state space models or hidden Markov models

SpatPOMP models are POMP models with a unit structure

Latent Markov process:  $X_{u,n} = X_u(t_n)$ ,  $u \in 1:U$ ,  $n \in 1:N$ 

**Observation process**:  $Y_{u,n}$  depends only on  $X_{u,n}$ 

The units could be a metapopulation, say cities in an epidemic model

3

### U=40 units for a coupled measles SEIR model



- **A**. Measles UK pre-vaccination case reports for the 40 largest cities.
- **B**. Simulated data using Susceptible-Exposed-Latent-Recovered dynamics coupled with a gravity model.

# The particle filter (PF)

#### **Evolutionary analogy**

Mutation
↓
Fitness
↓
Natural selection

#### Particle filter algorithm

Filter: resample

• PF is an evolutionary algorithm with good mathematical properties: an unbiased likelihood estimate and consistent latent state distribution.

5

# The block particle filter (BPF)

### **Evolutionary analogy**

Mutation

↓
Fitness
for each chromosome

↓
Natural selection
for each chromosome

↓

Recombine chromosomes

#### **Block particle filter**

Recombine blocks

- Blocks in BPF allow recombination (reassortment of chromosomes in sexual reproduction) in the evolutionary analogy.
- Blocks are a partition of the spatial units.

### Plug-and-play methods for implicit models

- We address stochastic dynamic models where a simulator is available, but transition densities are not readily accessible.
- These models have been called implicit (Diggle and Gratton, 1984).
- An algorithm that uses a simulator but not transition densities is called plug-and-play (Bretó et al., 2009; He et al., 2010).
- Plug-and-play methods can be applied to implicit models.
- Similar ideas have been called equation-free and likelihood-free.

#### Unadapted bagged filter: inputs, outputs and implicit loops.

#### input:

simulator for  $f_{\boldsymbol{X}_0}(\boldsymbol{x}_0)$  and  $f_{\boldsymbol{X}_n|\boldsymbol{X}_{n-1}}(\boldsymbol{x}_n\,|\,\boldsymbol{x}_{n-1})$  evaluator for  $f_{Y_{u,n}|X_{u,n}}(y_{u,n}\,|\,x_{u,n})$  number of replicates,  $\mathcal{I}$  neighborhood structure,  $B_{u,n}$  data,  $\boldsymbol{y}_{1:N}^*$ 

#### output:

Log likelihood estimate,  $\ell^{\,\mathrm{MC}} = \sum_{n=1}^{N} \sum_{u=1}^{U} \ell_{u,n}^{\,\mathrm{MC}}$ 

### implicit loops:

u in 1:U, n in 1:N,  $i \text{ in } 1:\mathcal{I}$ 

#### UBF. Unadapted bagged filter.

Simulate 
$$oldsymbol{X}_{0:N,i} \sim f_{oldsymbol{X}_{0:N}}(oldsymbol{x}_{0:N})$$

Measurement weights,  $w_{u,n,i}^M = f_{Y_{u,n}|X_{u,n}}(y_{u,n}^* \mid X_{u,n,i})$ 

Prediction weights,  $w^P_{u,n,i} = \prod_{(\tilde{u},\tilde{n}) \in B_{u,n}} w^M_{\tilde{u},\tilde{n},i}$ 

$$\ell_{u,n}^{\,\mathrm{MC}} = \log\left(\textstyle\sum_{i=1}^{\mathcal{I}} w_{u,n,i}^{M} w_{u,n,i}^{P}\right) - \log\left(\textstyle\sum_{i=1}^{\mathcal{I}} w_{u,n,i}^{P}\right)$$

- ullet We simulate  ${\mathcal I}$  times and do local importance sampling.
- A simple algorithm that provides a starting point for ABF and ABF-IR.

### The unadapted bagged filter is not entirely naive

- ullet UBF seems naive. Particle filter (PF) method are well known to scale better with N than unconditional simulations.
- $\bullet$  With modern computers, large numbers of simulations are feasible even when U and N are not small.
- $\bullet$  Initially we studied UBF as a theoretical toy, since it is relatively easy to show theoretically that it can beat the curse of dimensionality as U increases, for weakly coupled systems. Then we found it is competitive in practice on some models of interest.

### Adapted simulation: An easier problem than filtering

- We aim to make each replicate track the data in a weak sense, easier and more scalable than solving the full filtering problem.
- ullet The adapted simulation problem is to draw from  $f_{m{X}_n|m{Y}_n,m{X}_{n-1}}ig(m{x}_n\,|\,m{y^*}_n,m{x}_{n-1}ig).$
- ullet The adapted bagged filter (ABF) algorithm uses importance sampling to carry out adapted simulation on each replicate, with a sample size J.
- Importance sampling for adapted simulation does NOT bypass the curse of dimensionality. We later combine it with intermediate resampling to give scalability.
- ABF calculates the likelihood using the proper weight restricted to a neighborhood.

#### ABF. Adapted bagged filter.

Initialize adapted simulation:  $m{X}_{0,i}^{ ext{A}} \sim f_{m{X}_0}(m{x}_0)$ 

For n in 1:N

Proposals: 
$$m{X}_{n,i,j}^{\mathrm{P}} \sim f_{m{X}_n | m{X}_{n-1}} ig( m{x}_n \, | \, m{X}_{n-1,i}^{\mathrm{A}} ig)$$

Measurement weights: 
$$w_{u,n,i,j}^M = f_{Y_{u,n}|X_{u,n}} \left(y_{u,n}^* \mid X_{u,n,i,j}^P \right)$$

Adapted resampling weights:  $w_{n,i,j}^{\mathrm{A}} = \prod_{u=1}^{U} w_{u,n,i,j}^{M}$ 

Resampling: 
$$\mathbb{P}\big[r(i)=a\big]=w_{n,i,a}^{\mathrm{A}}\Big(\sum_{k=1}^{J}w_{n,i,k}^{\mathrm{A}}\Big)^{\mathrm{T}}$$

$$\begin{split} \boldsymbol{X}_{n,i}^{\mathrm{A}} &= \boldsymbol{X}_{n,i,r(i)}^{\mathrm{P}} \\ w_{u,n,i,j}^{\mathrm{P}} &= \prod_{\tilde{n}=1}^{n-1} \left[ \frac{1}{J} \sum_{k=1}^{J} \prod_{(\tilde{u},\tilde{n}) \in B_{u,n}^{[\tilde{n}]}} w_{\tilde{u},\tilde{n},i,k}^{M} \right] \prod_{(\tilde{u},n) \in B_{u,n}^{[n]}} w_{\tilde{u},n,i,j}^{M} \end{split}$$

End for

$$\ell_{u,n}^{\text{MC}} = \log \left( \frac{\sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{J} w_{u,n,i,j}^{M} w_{u,n,i,j}^{P}}{\sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{J} w_{u,n,i,j}^{P}} \right)$$

### Intermediate resampling

- ullet Intermediate resampling splits the time interval between observations into S subintervals.
- Reweighting and/or sampling at each subinterval uses a revised estimate of the anticipated measurement density at the end of the interval called a **guide function**.
- This is applicable to continuous time models.
- Intermediate resampling has useful theoretical and empirical properties (Del Moral and Murray, 2015; Park and Ionides, 2020).
- Intermediate resampling for adapted simulation within ABF gives the ABF-IR algorithm.
- Intermediate resampling within PF gives the guided intermediate resampling filter (GIRF) of Park and Ionides (2020), a generalization of the auxiliary particle filter of Pitt and Shepard (1999).

### A guide function for intermediate resampling

- Intermediate resampling with an ideal guide function can beat the curse of dimensionality (Park and Ionides, 2020).
- It is consistent for any guide function, but scalability is limited in practice since the ideal guide is generally intractable.
- In practice, we use moment-matching to approximate the ideal guide for Gaussian models.
- New algorithmic parameters: number of intermediate timesteps, S measurement variance parameterizations,  $\overset{\leftarrow}{\mathbf{v}}_{u,n}$  and  $\overset{\rightarrow}{\mathbf{v}}_{u,n}$  approximate process and observation mean functions,  $\boldsymbol{\mu}$  and  $h_{u,n}$

#### ABF-IR. ABF with intermediate resampling.

Initialize adapted simulation:  $\boldsymbol{X}_{0,i}^{\mathrm{A}} \sim f_{\boldsymbol{X}_0}(\boldsymbol{x}_0)$ For n in 1:NGuide simulations:  $oldsymbol{X}_{n,i,j}^G \sim f_{oldsymbol{X}_n | oldsymbol{X}_{n-1}} ig( oldsymbol{x}_n \, | \, oldsymbol{X}_{n-1,i}^{\mathrm{A}} ig)$ Guide variance:  $V_{u,n,i} = \operatorname{Var}\{h_{u,n}(X_{u,n,i,j}^G), j \text{ in } 1:J\}$  $g_{n,0,i,j}^{R} = 1$  and  $X_{n,0,i,j}^{IR} = X_{n-1,i}^{A}$ For s in 1:SIntermediate proposals:  $X_{n,s,i,j}^{\text{IP}} \sim f_{X_{n,s}|X_{n,s-1}} \left( \cdot | X_{n,s-1,i,j}^{\text{IR}} \right)$  $\mu_{n,s,i,j}^{\text{IP}} = \mu(X_{n,s,i,j}^{\text{IP}}, t_{n,s}, t_n)$  $egin{align*} oldsymbol{\mu}_{n,s,i,j} &= oldsymbol{\mu}(oldsymbol{A}_{n,s,i,j}, t_{n,s}, \ell_n) \ V_{u,n,s,i,j}^{ ext{proc}} &= oldsymbol{V}_{u}( heta, \mu_{u,n,s,i,j}^{ ext{proc}}) \ , \end{array} \quad V_{u,n,s,i}^{ ext{proc}} &= V_{u,n,i} \left(t_n - t_{n,s}\right) \Big/ \left(t_n - t_{n,0}\right) \end{aligned}$  $\theta_{u,n,s,i,j} = \stackrel{\leftarrow}{\nabla}_{u} \left( V_{u,n,s,i,j}^{\text{meas}} + V_{u,n,s,i}^{\text{proc}}, \mu_{u,n,s,i,j}^{\text{IP}} \right)$  $\begin{array}{l} g_{n,s,i,j} = \prod_{u=1}^{U} f_{Y_{u,n}|X_{u,n}} \left(y_{u,n}^* \mid \mu_{u,n,s,i,j}^{\mathrm{IP}}; \theta_{u,n,s,i,j}\right) \\ \text{Guide weights: } w_{n,s,i,j}^G = g_{n,s,i,j}/g_{n,s-1,i,j}^{\mathrm{R}} \end{array}$ Resampling:  $\mathbb{P}[r(i,j)=a] = w_{n,s,i,a}^G \left(\sum_{k=1}^J w_{n,s,i,k}^G\right)^{-1}$  $X_{n,s,i,j}^{\text{IR}} = X_{n,s,i,r(i,j)}^{\text{IP}}$  and  $g_{n,s,i,j}^{\text{R}} = g_{n,s,i,r(i,j)}$ End For Set  $X_{n,i}^{A} = X_{n,S,i,1}^{IR}$ Measurement weights:  $w_{u,n,i,i}^M = f_{Y_{u,n}|X_{u,n}}(y_{u,n}^*|X_{u,n,i,i}^G)$  $w_{u,n,i,j}^{\mathrm{P}} = \prod_{\tilde{n}=1}^{n-1} \Big[ \frac{1}{J} \sum_{a=1}^{J} \prod_{\substack{(\tilde{u},\tilde{n}) \in B_{i}^{[\tilde{n}]}, \\ \tilde{n}}} w_{\tilde{u},\tilde{n},i,a}^{M} \Big] \prod_{\substack{(\tilde{u},n) \in B_{u,n}^{[n]}}} w_{\tilde{u},n,i,j}^{M}$ End for

$$\ell_{u,n}^{\text{MC}} = \log \left( \frac{\sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{J} w_{u,n,i,j}^{M} w_{u,n,i,j}^{P}}{\sum_{i=1}^{\mathcal{I}} \sum_{j=1}^{J} w_{u,n,i,j}^{P}} \right)$$

### Software for SpatPOMP models

- We use the asif, asifir, bpfilter, enkf and girf implementations in the R package spatPomp (Asfaw et al., 2019).
- spatPomp offers a class 'spatPomp' that extends the 'pomp' class for POMP models in the R package pomp (King et al., 2016).
- All methods available in pomp can formally be applied to 'spatPomp' objects, though they may not be practically effective for spatiotemporal POMPs.

### Filtering *U*-dimensional correlated Brownian motion



# Filtering U units of a coupled measles SEIR model



Simulated data using a gravity model with geography, demography and transmssion parameters corresponding to UK pre-vaccination measles.

# Filtering U units of Lorenz 96 toy atmospheric model



$$dX_u(t) = \{X_{u-1}(t)(X_{u+1}(t) - X_{u-2}(t)) - X_u(t) + F\}dt + \sigma dB_u(t)$$

### From filtering to parameter inference

- Log likelihood evaluation in principle enables likelihood-based or Bayesian inference.
- Iterated filtering for PF (Ionides et al., 2015) and GIRF (Park and Ionides, 2020) maximizes the likelihood by randomly perturbing the parameters.
- Particle Markov chain Monte Carlo can be applied with any likelihood estimate (Andrieu et al., 2010). It is numerically intractable when Monte Carlo estimates are costly and noisy.
- Iterated filtering is harder for bagged filters; it is possible but expensive (lonides et al., 2021).
- Iterated filtering works well for BPF when parameters are unit-specific, i.e., each city has its own parameters (Ning and Ionides, 2021). It also can work with shared parameters (current unpublished work).

### Measles likelihood slices for G



Simulating 15 year of data from U=40 cities for the measles model. Slice likelihood, varying G with other paramters fixed at the truth.

- A. Evaluation using ABF.
- **B**. Evaluation using BPF.
- **C**. Evaluation using EnKF.

#### Theorem

Let  $\ell^{MC}$  denote the Monte Carlo likelihood approximation constructed by UBF, ABF or ABF-IR. Consider a limit with a growing number of replicates,  $\mathcal{I} \to \infty$ . Suppose regularity assumptions listed in the paper. There are quantities  $\epsilon(U,N) = O(1)$  and  $V(U,N) = O(U^2N^2)$  such that

$$\mathcal{I}^{1/2} \big[ \ell^{\, \mathrm{MC}} - \ell - \epsilon U N \big] \xrightarrow[\mathcal{T} \to \infty]{d} \mathcal{N} \big[ 0, V \big],$$

where  $\xrightarrow[\mathcal{I}\to\infty]{d}$  denotes convergence in distribution and  $\mathcal{N}[\mu,\Sigma]$  is the normal distribution with mean  $\mu$  and variance  $\Sigma$ . If an additional spatiotemporal mixing assumption holds, we obtain an improved variance bound

$$V(U, N) = O(UN)$$

### References I

- Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 72:269–342.
- Asfaw, K., Ionides, E. L., and King, A. A. (2019). spatPomp: R package for statistical inference for spatiotemporal partially observed Markov processes. <a href="https://github.com/kidusasfaw/spatPomp">https://github.com/kidusasfaw/spatPomp</a>.
- Bretó, C., He, D., Ionides, E. L., and King, A. A. (2009). Time series analysis via mechanistic models. *Annals of Applied Statistics*, 3:319–348.
- Del Moral, P. and Murray, L. M. (2015). Sequential Monte Carlo with highly informative observations. *Journal on Uncertainty Quantification*, 3:969–997.
- Diggle, P. J. and Gratton, R. J. (1984). Monte Carlo methods of inference for implicit statistical models. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 46:193–227.

### References II

- He, D., Ionides, E. L., and King, A. A. (2010). Plug-and-play inference for disease dynamics: Measles in large and small towns as a case study. *Journal of the Royal Society Interface*, 7:271–283.
- Ionides, E. L., Asfaw, K., Park, J., and King, A. A. (2021). Bagged filters for partially observed interacting systems. *Journal of the American Statistical Association*, 0(ja):1–33.
- Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S., and King, A. A. (2015). Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. *Proceedings of the National Academy of Sciences of the USA*, 112:719–724.
- King, A. A., Nguyen, D., and Ionides, E. L. (2016). Statistical inference for partially observed Markov processes via the R package pomp. *Journal of Statistical Software*, 69:1–43.

### References III

- Ng, B., Peshkin, L., and Pfeffer, A. (2002). Factored particles for scalable monitoring. *Proceedings of the 18th Conference on Uncertainty and Artificial Intelligence*, pages 370–377.
- Ning, N. and Ionides, E. L. (2021). Iterated block particle filter for high-dimensional parameter learning: Beating the curse of dimensionality. *arXiv:2110.10745*.
- Park, J. and Ionides, E. L. (2020). Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter. *Statistics and Computing*, 30(5):1497–1522.
- Pitt, M. K. and Shepard, N. (1999). Filtering via simulation: Auxillary particle filters. *Journal of the American Statistical Association*, 94:590–599.
- Rebeschini, P. and van Handel, R. (2015). Can local particle filters beat the curse of dimensionality? *The Annals of Applied Probability*, 25:2809–2866.