

Permutation & Combination

CHEAT SHEET

RAGHAVENDRA BAZARI

Contents

Operations	2
Arrangements	3
Each distinct object with one occurrence	3
Each distinct object with finite many occurrences	
One distinct object with finite many occurrences (sp. case)	c
Fach distinct Object each with infinite many occurrences	10

Operations

Name	Formula	Properties
Factorial, n!	$n! = 1 \times 2 \times 3 \times \times (n-1) \times n$	
Combination, ${}^n_i C$	$_{i}^{n}C = \frac{n!}{(n-i)!i!}$	• ${}_{i}^{n}C = {}_{n-i}^{n}C$ • $if {}_{i}^{n}C == {}_{j}^{n}C$ $then \ either \ i == j \ or \ i + j == n$ • ${}_{i}^{n}C + {}_{i+1}^{n}C = {}_{i+1}^{n+1}C$ • ${}_{i}^{n}C = {}_{i}^{n} \times {}_{i-1}^{n-1}C$
Permutation, $_{i}^{n}P$	$_{i}^{n}P = _{i}^{n}C \times i! = \frac{n!}{(n-i)!}$	

Arrangements

Each distinct object with one occurrence

n objects each distinct i.e. $\{o_1, o_2, \dots, o_{n-1}, o_n\}$

Pla	aces	Number of ways to arrange n objects on r places
r distinct places each with one occurrence	$\{p_1, p_2, \dots, p_{r-1}, p_r\}$	${}_r^n \mathcal{C} \times r!$ if n >=r ${}_n^r \mathcal{C} \times n!$ otherwise
		 Special cases: When a particular object is to be included each time: ⁿ⁻¹_{r-1}C × r! When a particular object is never included: ⁿ⁻¹_rC × r! = ⁿ⁻¹_rP When two specified objects always occur & occur together: ⁿ⁻²_{r-2}C × (r - 1)! × 2 Arranging n objects on n places such that no two objects from a subset m objects (out of n) occur together: (n - m)! ^{n-m+1}_mC × m!
r distinct places each with finite possible occurrences x out of r places identical + y places identical + y object identical too and rest (r-3) all are distinct In other word, first place allows x objects	$\{p_1,\ldots,p_1,p_2,\ldots,p_2,p_3,\ldots,p_3,\ldots,p_{r-1},p_r\}$ x times y times y times 1-time: such (r-3) places	$\frac{n!}{x!*y!*y!*1!\dots 1!}\times\left(\frac{\left(x+y+y+(r-3)\right)!}{2!*(r-3)!}\right)$ Division by number of times those places allowing same objects, for example y was allowed by 2 places and 1 was allowed by r-3 times. (this whole term including numerator is only needed if we want to arrange r places)
to be placed second one allows y objects and so on		This assumes that all sum of all finite occurrences of r objects eventually sum to n , if that's not the case then add a dummy place and dump remaining $n-\left(x+y+y+(r-3)\right)$ objects in that place and then use above formula.

	3 distinct place with r (finite) occurrences $\{p_1,p_1,,p_1,p_1\}$ occurrences $\{p_1,p_1,,p_1,p_$		$\underbrace{\{p_1,p_1,\ldots,p_1,p_1\}}_{}$	•
			r times	
			ed: ${}^n_4C - {}^m_3C \times {}^{n-m}_1C - {}^m_4C$ $\frac{0}{2} + 1$ $\frac{n^n_2C \times {}^m_2C}{2}$ $\frac{-(l-1) \times (l-(l-1))}{2^n_2C + 2^m_1C^n_1C}$ Inged circularly, then actually we can only arrange $(r-1)$ places, hence: $(r-1)!$	
possi In ot	ible oc	aces each with infinite currences ord each of r places can get any objects (including no objects).	$(p_1, p_1, \dots, \infty, p_2, p_2, \dots, \infty, \dots, p_r, p_r, \dots, \infty)$	r^n
r distinct places each with infinite possible occurrences but each distinct place should be used at least once. In other word each of r places can get any number of objects (excluding no objects).		currences stinct place should be used at ord each of r places can get any	$(p_1, p_1, \dots, \infty, p_2, p_2, \dots, \infty, \dots, p_r, p_r, \dots, \infty)$	$r^{n} - {}_{1}^{r}C(r-1)^{n} + {}_{2}^{r}C(r-2)^{n} - {}_{3}^{r}C(r-3)^{n} + {}_{4}^{r}C(r-4)^{n} + \dots + \infty$

Each distinct object with finite many occurrences

a out of n objects identical of one type + b places identical of another type + b object identical too and rest (n-3) all are distinct

Places		Number of ways to arrange n objects on r places
r distinct places each with one occurrence	$\{p_1, p_2, \dots, p_{r-1}, p_r\}$	Coefficient of x^r in $ \left(\frac{x^0}{0!} + \dots + \frac{x^a}{a!}\right) \times \left(\frac{x^0}{0!} + \dots + \frac{x^b}{b!}\right) \times \left(\frac{x^0}{0!} + \dots + \frac{x^b}{b!}\right) \times \left(\frac{x^0}{0!} + \frac{x^1}{1!}\right)^{n-3} \times r $ Special case, $r = \text{sum of all finite occurences then} $ $ \frac{(a+b+b+n-3)!}{a! \ b! \ b! \ 1! \ \dots . 1!} = \frac{r!}{a! \ b! \ b! \ 1! \ \dots . 1!} $
Number of ways to arrange $\{1, 2, 3, 4, 5\}$ su On first look it might seem like there are 5 of them, hence answer is $\frac{5!}{3!}$	•	d 3 always comes before 5. e to constraint above, actually {2, 3, 5} are now identical as we can't arrange

r distinct places each with finite possible occurrences

x out of r places identical + y places identical + y object identical too and rest (r-3) all are distinct

$\{p_1,\ldots,p_1$	$, p_2,, p_2$	$, p_3,, p_3$	$\{,\ldots,p_{r-1},p_r\}$
$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$
x times	y times	y times	1-time: such
			(r-3) places

NA

	place	ord, first place allows x objects d second one allows y objects		
		tinct place with r (finite) rrences	$\{p_1,p_1,\dots,p_1,p_1\}$ r times	Coefficient of x^r in $ (x^0 + \dots + x^a) \times (x^0 + \dots + x^b) \times (x^0 + \dots + x^b) \times (x^0 + x^1)^{n-3} $
Special Case	Number of Integral solutions of $x_1 + x_2 + \dots + x_r = n$ s. t . $0 \le x_i \le n$ Answer: Here we can assume n being finite occurrences of 1 distinct place on which we are trying to place $\{0, 1, 2, \dots, n-1, n\}$ units from x_1 (basically n objects of 1 type) and n objects of another type (x_2) and so on. So basically:		So basically: $= (x^0 + \dots + x^n)^r$ $\leq n$ on which we are trying to place $\{0, k_1, 2k_1, \dots, \}$ units from x_1 and	
r distinct places each with infinite possible occurrences $ (p_1,p_1,,\infty,p_2,p_2,,\infty,,p_r,p_r,,\infty) $ NA		NA		
		ord each of r places can get any objects (including no objects).		

r distinct places each with infinite possible occurrences but each distinct place should be used at least once.	$(p_1, p_1, \dots, \infty, p_2, p_2, \dots, \infty, \dots, p_r, p_r, \dots, \infty)$	NA
In other word each of r places can get any number of objects (excluding no objects).		

One distinct object with finite many occurrences (sp. case)

only 1 object with n occurrences:

$$\underbrace{\{o_1,\ldots,o_1\}}_{\text{n times}}$$

Places		Number of ways to arrange n objects on r places
r distinct places each with one occurrence	$\{p_1, p_2, \dots, p_{r-1}, p_r\}$	1
r distinct places each with finite possible occurrences x out of r places identical + y places identical + y object identical too and rest (r-3) all are distinct	$\{p_1,\ldots,p_1,p_2,\ldots,p_2,p_3,\ldots,p_3,\ldots,p_{r-1},p_r\}$ x times y times 1-time: such (r-3) places	1
In other word, first place allows x objects to be placed second one allows y objects and so on		
r distinct places each with infinite possible occurrences	$(p_1, p_1, \dots, \infty, p_2, p_2, \dots, \infty, \dots, p_r, p_r, \dots, \infty)$	$_{r-1}^{n+r-1}\mathcal{C}$
In other word each of r places can get any number of objects (including no objects).		
Number of Integral solutions of x_1 + Results in the solution of x_1 in the solution of x	$x_2 + \dots + x_r = n \ s. \ t. \ 0 \le x_i \le n$	

Number of Integral solutions of $x_1 + x_2 + \cdots + x_r \le n$, $s.t. 0 \le x_i \le n$

Answer: Add a dummy variable x_{r+1} , $s. t. 0 \le x_{r+1} \le n$

Then we can re-write equation as $x_1 + x_2 + \dots + x_r + x_{r+1} = n$, $s.t.0 \le x_i \le n$ now use above solution with r+1 places.

r distinct places each with infinite possible occurrences but each distinct place should be used at least once.

 $(p_1, p_1, \dots, \infty, p_2, p_2, \dots, \infty, \dots, p_r, p_r, \dots, \infty)$

 $r_{-1}^{n-1}C$

In other word each of r places can get any number of objects (excluding no objects).

Examples

Number of Integral solutions of $x_1 + x_2 + \dots + x_r = n \text{ s. t. } 1 \leq x_i \leq n$

Answer: $r_{-1}^{n-1}C$

Each distinct Object each with infinite many occurrences

n distinct and infinite occurrence for each object:

$$(o_1,o_1,\ldots,\infty,o_2,o_2,\ldots,\infty,\ldots,o_n,o_n,\ldots,\infty)$$

Places		Number of ways to arrange n objects on r places
r distinct places each with one occurrence	$\{p_1, p_2, \dots, p_{r-1}, p_r\}$	n^r
 r distinct places each with finite possible occurrences x out of r places identical + y places identical + y object identical too and rest (r-3) all are distinct 	$\{p_1,\dots,p_1,p_2,\dots,p_2,p_3,\dots,p_3,\dots,p_{r-1},p_r\}$ x times y times 1-time: such (r-3) places	NA
In other word, first place allows x objects to be placed second one allows y objects and so on		
r distinct places each with infinite possible occurrences	$(p_1, p_1, \dots, \infty, p_2, p_2, \dots, \infty, \dots, p_r, p_r, \dots, \infty)$	NA
In other word each of r places can get any number of objects (including no objects).		
r distinct places each with infinite possible occurrences but each distinct place should be used at least once.	$(p_1, p_1, \dots, \infty, p_2, p_2, \dots, \infty, \dots, p_r, p_r, \dots, \infty)$	NA
In other word each of r places can get any number of objects (excluding no objects).		