

# Quantum annealing und Logistik

Yanick Kind

12. Juli 2023

Fakultät Physik



### Übersicht

### Einleitung

Simulated und quantum annealing

Quadratic unconstrained binary optimization

Hardware embedding

Beispiel: Anwendung in der Logistik

Zusammenfassung und Ausblick



azom.com

Y. Kind | 12. Juli 2023 2/23



### **Traveling Salesman problem**

- klassisches kombinatorische Optimierungsproblem
- Beispiel: Ein Lieferwagen hat *n* Lieferorte
  - → (n 1)! verschiedene Routen
- NP-hard
  - → skaliert nicht polynomiell sondern **exponentiell** mit Systemgröße
- Globales Optimum mittels numerischen Lösungsverfahren finden, ist extrem aufwändig
- Local search Algorithmen als heuristische Näherungsverfahren nutzen

### Motivation



Sascha Wald, Thermalisation and Relaxation of Quantum Systems (2017)



Depot

r-bloggers.com

Ε



# Simulated annealing

- in Analogie zu auskühlenden Metallen
  - schneller auskühlen →suboptimalerer Zustand (amorph)
  - langsamer auskühlen →optimalerer Zustand (kristallin)
- nutzt thermische Fluktuationen, um lokalen Minima zu entkommen
- nutzt den Boltzmann-Faktor zur Bestimmung der Lösung
- $\blacksquare$  Wahrscheinlichkeit  $P_i$  folgen Mastergleichung  $\frac{dP_i}{dt} = \sum_j L_{ij} P_j$





simulated annealing

Bild um die Übergangselemente zu erläutern in Inkscape selber machen

### **Quantum Annealing**

- transversales Ising Modell  $H(t) = \underbrace{-\sum_{ij}J_{ij}\sigma_i^z\sigma_j^z h\sum_i\sigma_i^z}_{H_n} \underbrace{-\Gamma(t)\sum_i\sigma_i^x}_{H_x(t)}$
- $\blacksquare$   $H_{\nu}(t)$  verursacht Tunneln zwischen Eigenzuständen von  $H_{0}$ 
  - schnellere Konvergenz
- $|\Psi(t)\rangle$  durch Schrödingergleichung  $i\frac{\partial |\Psi(t)\rangle}{\partial t} = H(t)|\Psi(t)\rangle$  festgelegt
- wähle monoton fallende Funktionen für **Γ(t)** ("ausglühen")



V. Bapst et al., Physics Reports 523 (2013)

7 / 23

### Adiabatisches Theorem der Quantenmechanik

System bleibt im selben Eigenzustand von *H*, wenn sich *H* hinreichend langsam ändert



### **Adiabatische Zeit**

- minimale Zeit, damit sich System adiabatisch ändert τ
- $\Delta(s) = E_1(s) E_0(s)$
- mindestens  $\tau \propto \frac{1}{\Delta(s)^2}$ , schlimmstenfalls  $\tau \propto \frac{1}{\Delta(s)^3}$
- Problem:  $\Delta(s)$  sehr klein

$$\rightarrow$$
 T  $\rightarrow$   $\infty$ 



E. R. Miranda (Ed.), Quantum Computer Music (2022)



# Simulation zu simulated und quantum annealing

- $P_{SA}(t)$ : Wahrscheinlichkeit System in GZ zu finden
- $P_{OA}(t) = |\langle g|\Psi(t)\rangle|^2$ : Wahrscheinlichkeit System in GZ  $|g\rangle$  von  $H_0$  zu finden
- $P_{SA}^{st}(T)$ : Boltzmann-Faktor des GZ von  $H_0$
- $P_{OA}^{st}(\Gamma) = |\langle g | \Psi_{\Gamma} \rangle|^2 \text{ mit } |\Psi_{\Gamma}\rangle \text{ als GZ von } H$
- - → Superposition aller Zustände gleicher Amplitude (QA)
  - → Alle Zustände gleich wahrscheinlich (SA)
- Idealfall (adiabatisch):  $\lim_{t\to\infty} P_{QA}(t) = \lim_{t\to\infty} P_{SA}(t) = 1$ 
  - → Grundzustand gefunden
  - → sonst: In einem lokalen Minimum "hängen" geblieben
- 8 Spins



K. Fleischer, wikipedia.org

# Ergebnisse zu simulated und quantum annealing

- $P_{SA}(t)$ : Wahrscheinlichkeit System in GZ zu finden
- $P_{OA}(t) = |\langle g|\Psi(t)\rangle|^2$ : Wahrscheinlichkeit System in GZ  $|g\rangle$  von  $H_0$  zu finden
- $P_{SA}^{st}(T)$ : Boltzmann-Faktor des GZ von  $H_0$
- $P_{OA}^{\text{st}}(\Gamma) = |\langle g|\Psi_{\Gamma}\rangle|^2 \text{ mit } |\Psi_{\Gamma}\rangle \text{ als GZ von } H$

$$\Gamma(t) = T(t) = 3/ln(t+1)$$



Kadowaki, T, Nishimori, H, PHYSICAL REVIEW E 1998

# Ergebnisse zu simulated und quantum annealing

- $P_{SA}(t)$ : Wahrscheinlichkeit System in GZ zu finden
- $P_{OA}(t) = |\langle g|\Psi(t)\rangle|^2$ : Wahrscheinlichkeit System in GZ  $|g\rangle$  von  $H_0$  zu finden
- $P_{SA}^{st}(T)$ : Boltzmann-Faktor des GZ von  $H_0$
- $P_{OA}^{\text{st}}(\Gamma) = |\langle g|\Psi_{\Gamma}\rangle|^2 \text{ mit } |\Psi_{\Gamma}\rangle \text{ als GZ von } H$





Kadowaki, T, Nishimori, H, PHYSICAL REVIEW E 1998

# Ergebnisse zu simulated und quantum annealing

- $Arr P_{SA}(t)$ : Wahrscheinlichkeit System in GZ zu finden
- $P_{OA}(t) = |\langle g|\Psi(t)\rangle|^2$ : Wahrscheinlichkeit System in GZ  $|g\rangle$  von  $H_0$  zu finden
- $P_{SA}^{st}(T)$ : Boltzmann-Faktor des GZ von  $H_0$
- $P_{OA}^{st}(\Gamma) = |\langle g|\Psi_{\Gamma}\rangle|^2$  mit  $|\Psi_{\Gamma}\rangle$  als GZ von H

■ J<sub>ij</sub> = const ■ h = 0.1



10

100

1000

 $\Gamma(t) = T(t) = 3/t$ 

Kadowaki, T, Nishimori, H, PHYSICAL REVIEW E 1998



### Quadratic unconstrained binary optimization (QUBO)

# **Aufgabe**

Minimiere 
$$f(\underline{x}, \underline{\underline{Q}}) = \sum_{ij} Q_{ij} x_i x_j$$

- $x_i \in \{0, 1\}$  als binäre Variable
  - lässt sich mittels  $s_i = 2x_i 1 \in \{-1, 1\}$  auf Ising-Variablen ("spin") transformieren
- $Q_{ii}$  definiert Wechselwirkung zwischen  $x_i$ 
  - allg. hermitesch (symmetrisch im Ising-Modell)



# Quadratic unconstrained binary optimization constrains

- constraints lassen sich nicht direkt in der Hardware implementieren
  - constraints als "Strafe" in der Kostenfunktion implementieren
- Beispiel: Ein Truck darf sich nur an einem Punkt aufhalten

$$\sum_i x_i = 1 \iff \sum_i x_i - 1 = 0$$

■ in QUBO Problem umwandeln 
$$\rightarrow g(x_i) = (\sum_i x_i - 1)^2$$

$$\rightarrow f \rightarrow f + \lambda q$$

- constraint verletzt → Kostenfunktion erhöht
- $\blacksquare$  Lagrangeparameter  $\lambda$  sehr groß wählen, damit constraint eingehalten



# Quantum annealer von D-Wave Systems

- D-Wave Systems als Hersteller von quantum annealer

### **Embedding**

- D-Wave's Quantenhardware kann als Graph *U* gesehen werden
  - Gewichtete Vertices (QUBIT)  $i \in V(U)$
  - Gewichtete Kanten (coupler)  $ij \in E(U)$
- Gewichte
  - $h_i(t)$  "QUBIT bias"
  - $\Delta_i(t)$  "tunneling amplitude"
  - J<sub>ii</sub>(t) "coupler strength"
- formuliere transversalen Ising-Hamiltonian auf Graph *G*
- $\blacksquare H(t) = \sum_{i \in V(G)} h_i(t) \sigma_i^z + \sum_{i \in F(G)} J_{ii}(t) \sigma_i^z \sigma_j^z + \sum_{i \in V(G)} \Delta_i(t) \sigma_i^x$
- Eigenergie des Ising-Hamiltonians  $\epsilon(s_1, ..., s_n) = \sum_{i \in V(G)} h_i s_i + \sum_{i i \in E(G)} J_{ii} s_i s_i$ 
  - spins  $s_i \in \{-1, 1\}$
- Suche nach Grundzustandsenergie ist das "Ising Problem"



V. Choi, D-Wave Systems Inc. (2008)

# **Embedding**



- Ising Problem äquivalent zu QUBO Problem auf dem selben Graph (
  - $Y(x_1,...,x_n) = \sum_{i \in V(G)} c_i x_i \sum_{ij \in E(G)} J_{ij} x_i x_j$  maximieren
  - $x_i \in \{0, 1\}$

V. Choi, D-Wave Systems Inc. (2008)

### Ziel

G in U einbetten ("subgraph-embedding") und somit das Ising/QUBO Problem lösen

- Problem: Einschränkungen auf *U* (z.B. Anzahl der coupler) übertragen sich auf *G* 
  - → "dummy"-Vertices mit ferromagnetischer Kopplung einführen



### Minor embedding

- logischer QUBIT i aus G wird auf subtree  $T_i$  physischer QUBITs aus  $G_{emb} \subset U$  abgebildet
- ferromagnetische Kopplung zwischen "dummy"-Vertices muss hinreichend groß sein

### Ziel

Parameter des minor-embedding auf ursprüngliche Ising/QUBO Variablen zurückführen





G

 $G_{\mathsf{emb}}$ 

V. Choi, D-Wave Systems Inc. (2008)

# Minor embedding

- $\bullet$   $\epsilon^{\text{emb}}(s_1, ..., s_N) = \sum_{i \in V(G_{\text{out}})} h_i' s_i + \sum_{ij \in F(G_{\text{out}})} J_{ij}' s_i s_j$  minimieren
- $\quad \blacksquare \quad \tau : V(G) \times V(G) \to V(U), \text{ so dass } i_{\tau(i,j)} \in V(T_i), \ j_{\tau(i,j)} \in V(T_i) \text{ mit } i_{\tau(i,j)} j_{\tau(i,j)} \in E(U)$
- $OE(G_{emb}) = \bigcup_{ii \in E(G)} i_{\tau(i,i)} j_{\tau(i,i)}$  sind ursprüngliche coupler

$$\rightarrow$$
  $J'_{i_{\tau(i,i)}j_{\tau(i,i)}} = J_{ij}$  für  $i_{\tau(i,j)}j_{\tau(j,i)} \in OE(G_{emb})$ 

- ferromagnetische coupler strength  $F_k^{ij}$  für  $ij \in E(T_i)$
- bias h; der logischen QUBITs auf physische QUBITs verteilen

$$\rightarrow \sum_{i_k \in V(T_i)} h'_{i_k} = h_i$$



V. Choi, D-Wave Systems Inc. (2008)

### **Finale Energie**

$$\epsilon^{\text{emb}}(s_1, \dots, s_N) = \sum_{i \in V(G)} \left( \sum_{i_k \in V(T_i)} h'_{i_k} s_{i_k} + \sum_{i_p i_q \in E(T_i)} F_i^{pq} s_{i_p} s_{i_q} \right) + \sum_{ij \in E(G)} J_{ij} s_{i_{\tau(ij)}} s_{j_{\tau(ij)}} s_{j_{\tau(ij)}}$$



Fallbeispiel aus Weinberg et al.

Hier nicht zu sehr ins Detail gehen aber zumindest die Idee und Herangehensweise zeigen



Fallbeispiel aus Weinberg et al.

Hier nicht zu sehr ins Detail gehen aber zumindest die Idee und Herangehensweise zeigen



**Zusammenfassung und Ausblick** 



### Quellen

- Bapst, V. et al., The quantum adiabatic algorithm applied to random optimization problems: The quantum spin glass perspective, ScienceDirect 523 (2013), https://doi.org/10.1016/j.physrep.2012.10.002
- Kadowaki, T. et al. Quantum annealing in the transverse Ising model, PHYSICAL REVIEW E 58 (1998), https://doi.org/10.48550/arXiv.cond-mat/9804280
- Rieffel, E.G., Venturelli, D., O'Gorman, B. et al. A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf Process 14, 1–36 (2015). https://doi.org/10.1007/s11128-014-0892-x
- Choi, V. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf Process 7, 193–209 (2008). https://doi.org/10.1007/s11128-008-0082-9
- Jain, S, Solving the Traveling Salesman Problem on the D-Wave Quantum Computer, Frontiers in Physics, Volume 9, id.646 (2021) ,doi: 10.3389/fphy.2021.760783
- Sangwan, Shabnam. (2018). Literature Review on Travelling Salesman Problem. International Journal of Research. 5. 1152.
- Weinberg, S.J., Sanches, F., Ide, T. et al. Supply chain logistics with quantum and classical annealing algorithms. Sci Rep 13, 4770 (2023). https://doi.org/10.1038/s41598-023-31765-8
- Yarkoni, S et al., Quantum annealing for industry applications: introduction and review, IOP Publishing 85-10 (2022), https://dx.doi.org/10.1088/1361-6633/ac8c54



# Backup-Folien für Detailfragen

Details, evtl. Rechnungen und Zahlenwerte für Fragen