Institut de Financement du Développement du Maghreb Arabe

CONCOURS DE RECRUTEMENT DE LA 36 ème PROMOTION (Banque)

Épreuve de Finance Août 2016

Eléments de Corrigé

EXERCICE 1

Caractéristiques de l'obligation :

Prix d'émission	Valeur nominale	Valeur de remboursement	Taux d'Intérêt nominal	Durée de vie de l'obligation
100	100	100	0,07	5

1- Prix de l'Obligation:

$$P = \sum F_t * (1+r)^{-t}$$

F: Cash-Fow, t: période

Date	Flux	Facteur d'actualisation	$\sum F_t * (1+r)^{-t}$
1	7	0,934579439	6,542056075
2	7	0,873438728	6,114071098
3	7	0,816297877	5,714085138
4	7	0,762895212	5,340266484
5	107	0,712986179	76,2895212
			Prix = 100

$$P = (7 \times 1,07)^{-1} + (7 \times 1,07)^{-2} + (7 \times 1,07)^{-3} + (7 \times 1,07)^{-4} + (107 \times 1,07)^{-5} = 100$$

Ce prix (identique à la valeur nominale) est attendu car le taux nominal (7%) coïncide avec le taux du marché (7%).

2/

Date	Flux	Facteur d'actualisation	$\Sigma F_t*(1+r)^{-t}$	$\sum t^* F_t^* (1+r)^{-t} / P(r)$
1	7	0,934579439	6,542056075	0,065420561
2	7	0,873438728	6,114071098	0,122281422
3	7	0,816297877	5,714085138	0,171422554
4	7	0,762895212	5,340266484	0,213610659
5	107	0,712986179	76,2895212	3,81447606
				Duration = 4,387211256
			Prix = 100	

La relation entre la duration (DU) et la sensibilité s'écrit: $S(r) = -(1+r)^{-1}*DU$ $S(r) = -(1+r)^{-1}*DU = -4,100197436$

3/Le taux du marché baisse à 6.5%

		Facteur d'actualisation	
Date	Flux	à 6.5%	$F_t*(1+r)^{-t}$
1	7	0,938967136	6,572769953
2	7	0,881659283	6,171614979
3	7	0,827849092	5,794943643
4	7	0,777323091	5,441261636
5	107	0,729880837	78,09724951

Prix de l'obligation (au taux r = 6.5%) : P (6.5%) =
$$\sum F_t(1+r)^{-t}$$
 = 102,0778397

Variation de prix= $\Delta P(r) = P(6.5\%) - P(7\%) = 2,077839719$

Par définition, la sensibilité s'écrit
$$S(r) = \frac{\Delta P(r)}{P(r)} / \Delta r$$

d'où
$$\Delta P(r) = P(r) * S(r) * \Delta r$$
;

Application numérique :
$$\Delta P(r) = P(7\%) * S(7\%) * [6.5\% - 7\%)] = 2,050098718$$

Cette variation obtenue en utilisant le concept de sensibilité est très proche de celle obtenue à la question précédente (par calcul direct)

EXERCICE 2

Etat de l'environnement n°i	Probabilité	Rendement du marché:r _{mi}	Rendement du titre r _{ji}	pi*r _{mi}	pi*r _{ii}	$Pi (r_m - E[r_m])^2$	Pi (r _m -E[r _m])[rj-E[rj)]
1	0,1	-0,15	-0,3	-0,015	-0,03	0,00625	0,01125
2	0,3	0,05	0	0,015	0	0,00075	0,00225
3	0,4	0,15	0,2	0,06	0,08	0,001	0,001
4	0,2	0,2	0,5	0,04	0,1	0,002	0,007
			0,1	0,15	0,01	0,0215	0,1

Rendement espéré du marché= $E[r_m] = 0,10$ Rendement espéré du titre j= E[rj] = 0,15Variance du rendement du marché $Var(r_m) = 0,01$ Covariance (r_m, r_j) = 0,0215 Béta du titre j: $\beta j = 0,0215 / 0,01 = 2,15$

Rendement du titre sans risque: $r_f = 0.05$

Rendement du titre j à l'équilibre du marché (selon le MEDAF) = $r_f + \beta j$ (E[r m] - r_f) = 0,05 + (0,10 – 0,05) 2,15 = **0,1575**

Il n'est pas intéressant d'acquérir le titre.

Rendement du titre sans risque: $r_f = 0.06$ $r_f + \beta j \ (E[r_m] - r_f) = 0.06 + (0.10 - 0.06) \ 2.15 = 0.146$

Il est intéressant d'acquérir le titre.