

SB 503 - Avionics Technologies
Integrated Modular Avionics
Networks – ARINC 429, Arinc 664 (AFDX ™), Field Bus,...

Professor: H. GOUTELARD (Contractor ENAC/Sup'Aéro)

The A664 Standard

- Short reminder : Communication Principles
- The aircraft communication context and constraints
- The origin of the standard
- Products

Key Features

- Open Standard
- Virtual Link concept
- "Firewalling" (Traffic Shaping / Policing / Filtering)
- Redundancy
- Latency / Determinism

Network Architecture

- Physical architecture design
 - Main drivers for physical architecture design
 - Safety constraints
- Logical Architecture design
 - Logical architecture principles
 - ES Part / The different types of application port
 - ES Part / Different logical communications
 - · SWM Part

Performances optimisation and determinism

- Several sources of latency
- ES Latencies
 - descriptions / optimisation
- SWM Latencies
 - descriptions / optimisation
- A664 addressing features
- Networks optimization & Field Bus technologies overview

Short reminder: Communication principles

 The key driver for the definition of the Network layering is the implementation of independence between applications and communications means

Short reminder: Usual communication layers

Application services

Communication Services Session

DataLink/MAC

Physical connection

IEEE 802.3 "Ethernet"

IEEE 802.11 "WI-FI" G992.1 "ADSL"

ATM

GEA Tianjin / 中国民航大学中欧航空工程师学院 The aircraft communication context (1/2)

GEA Tianjin / 中国民航大学中欧航空工程师学院 The aircraft communication context (2/2)

- Until 90's, there was never a strong need for networking inside an aircraft.
- When digital technologies were introduced, the communication was limited to digital data link

• The introduction of digital technologies was done in the "control of platform" area not in the "information" area.

Process control requirements

- As the transmitted data are involved in <u>process control</u>, the transmission must be done with a <u>minimum bounded delay</u>
- The stability of the flight relies on this transmission
- Key drivers : <u>Time</u>, <u>integrity</u> and <u>availability</u>
- A few principles :
 - No common shared resource (limited risk of common failure)
 - · one source, one line, several receivers
 - The transmitter does not need to know who receives data
 - No time synchronisation between transmitter and receiver
 - common shared time is a kind of common resource

Aeronautical Answer: ARINC 429 Digital Information Transfer System

Process control requirements: ARINC 429 answer

- Each line has only one source and is connected to every equipment that need the data transmitted by the source
- Each data is individually identified (by a label) and sent

Information System requirement: ARINC 429 answer

- In Information system, the major requirement is to insure that the information is transmitted without any error
- A few principles
 - Information should be acknowledged
 - Delay is not critical and messages can be sent again in case of error
- The former aircraft generation still used A429 but added acknowledged data block

- The evolution of the avionics market is exposed to a great pressure for reducing cost.

 Avionics Market Evolution
 - Scaleability, Wiring simplification, P/N Rationalization
 - Maintenance, Interoperability, integration simplified
 - Connectivity to Open World networks (standardization)
 - Weight reduction
- In the same time, mature concepts arose:
 - Electronics Modularity
 - Operating System
 - Decision to re-use and share common resource
- Network design challenge & key drivers to satisfy contradictory objectives:
 - To transmit data under strong time constraint
 - To guarantee information exchange according to client/server model
 - To reduce cost by using/reusing commercial component (COTS: commercial off-the-shelf) under certification constraint

High integration of functions VS number of I/O access points

→ From 'point to point' to 'multiple emitters/multiple receivers' model

Technological choices

- Communication technologies from desktop computing market
 - Best candidates :
- Ethernet for Physical layer
- Internet for upper protocol layer
- Communication technologies from multimedia telecom market
 - Best candidate :
 - ATM (backbone telecom and ADSL) and cell switching (channel concept)

- Key drivers
 - Heavy aeronautical background:
 - · time constraint
 - safety
 - Arrival of Switched Ethernet (from ATM concept)
 - Low cost, market size of desktop computing versus small telecom market

Final choice

and the winner is...

AFDX TM: Avionics Full Duplex switched('X') Ethernet

Switched Full Duplex Ethernet <u>with some specific deviations</u> to cope with real time/certification constraints

A664 standardization

- The standardisation body
 - ARINC 664 is undertaken by the civil aviation usual standardisation body: ARINC/AEEC ADN working group
 - ARINC: Aeronautical Radio Inc. funded by airlines, in charge of the definition of Aeronautical standards that ensure interchange ability and interoperability
 - AEEC : Airlines Electronic Engineering Committee
 - ADN : Aircraft Data Network working group
- The standard
 - AFDX TM is described as ARINC specification 664 part 7
 - The ARINC 664 covers in general, the usage of Ethernet as an airborne communication system, extended to the confidentiality issues and future IPv6 extensions

A664: basic network architecture

 A664 is based on the Ethernet switched network

It is built with:

- Switches, network devices in charge of data forwarding
- End System, network devices in charge of data transmission/reception

A664 Physical Products (as an example...)

A664 Switch
(Format ARINC 600)

« Quadrax » ports SWM

« Quadrax » for E/S

GEA Tianjin / 中国民航大学中欧航空工程师学院 Configuration Table

A664 Network Configuration

Switch and ES configurations are built separately

The A664 Standard

- Short reminder : Communication Principles
- The aircraft communication context and constraints
- The origin of the standard
- Products

Key Features

- Open Standard
- Virtual Link concept
- "Firewalling" (Traffic Shaping / Policing /Filtering)
- Redundancy
- Latency / Determinism

Network Architecture

- Physical architecture design
 - Main drivers for physical architecture design
 - Safety constraints
- Logical Architecture design
 - Logical architecture principles
 - ES Part / The different types of application port
 - ES Part / Different logical communications
 - SWM Part

Performances optimisation and determinism

- Several sources of latency
- ES Latencies
 - descriptions / optimisation
- SWM Latencies
 - descriptions / optimisation
- A664 addressing features
- Networks optimization & Field Bus technologies overview

A664 Key features

- A664 is the common communication system used for modular avionics architecture
- It is compliant with the following design key features
 - It is based on Open Standard
 - · as required by cost and commercial standard reuse objective
 - It provides "Resource Sharing"
 - as required by modularity, reuse, and cost objective
 - It provides "Robust Partitioning"
 - · as required by resource sharing and safety, certification constraints
 - It provides "Determinism" and "Availability"
 - · as required by safety, certification constraints

The A664 key features are mainly concentrated on the Data Link layer (MAC level)

A664 : An "Avionics" Standard based upon Open Standard

A664: An "Avionics" Standard based upon Open Standard

A664 key feature : Virtual Link (1/2)

- The robust partitioning for networking is applied on bandwidth allocated to "communication channel".
- The VL model is ARINC429 "single wire" and the ATM "Virtual Channel"
 - one wire/channel for one data source, distributed to all who needed
 - The A664 response is:
 - one channel (named VL "Virtual Link") for one data source, distributed with multicast Ethernet address channels are merged together on one Ethernet data link

A664 key feature: Virtual Link (2/2)

- The VL receives a "Bandwidth contract".
- This contract is named Bandwidth Allocation Gap (BAG)
- It is expressed in terms of :
 - Maximum Frame Size (MFS) (in bytes)
 - Minimum time between two frames (in ms)
- Contractual bandwidth [kbit/s] = MFS[bit]/BAG[ms] (incl headers)
- Max bandwidth for a single VL ≈ 12,5Mb/s (=1571 bytes * 8 / 1ms)
- No correlation between application clock and End system clock

A664 key feature: "Firewalling" (1/2) Traffic Shapping / Traffic Policing

- The robust partitioning relies on "Bandwidth contract"(BAG) granted to each Virtual Link
- The ES has Bandwidth Contract for each Virtual Link and must comply with this contract (constraint on emission – not reception)
- The Switches know the term of the contract for each Virtual Link and monitor the traffic to check if contract is respected

GEA Tianjin / 中国民航大学中欧航空工程师学院 A664 key feature: "Firewalling" (2/2) Traffic filtering

 Another feature related to robust partition and safety is the integrated "firewall" provided by the A664.

This firewall is implemented by Access Control List (ACL)

A664 key feature : Redundancy

- In response to the "Availability" requirement A664 network is basically redundant.
- Each End-System has the capability to send/receive twice each message toward to independent set of switches.
- Both TX frames are identified with a Sequence Number used at reception
- Reception algorithm based on "First Valid wins" principle

A664 key feature: Latency Management

- In A664 context the determinism is defined as the control of maximum transmission delay through the network
- The enabler of such control is precisely the bandwidth contract
- Ethernet Switch provides better capability for determinism than usual Ethernet Hub because there is no collision and no transmission random retry

A664 key feature : Determinism (1/2)

- Determinism Definition
 - According to Standard ARINC A664, the ADN determinism can be defined as:
 - Compliance with the user requirement on time spent for network transit (latency and jitter)
 - Assurance that the ADN does not change the frames sequence
 - Compliance with the ADN feature capabilities (e.g. max allowable switch output buffer size) => no frame lost
 - To summarize , determinism aims at mastering and warranty :
 - transit time (latency) (WCTT < user latency),
 - Jitter
 - without data loss

A664 key feature : Determinism (2/2)

- Determinism should be <u>proven</u> for <u>each</u> topology
- Objective is to <u>formally</u> prove that all functionnal flows are temporally satisfied regarding to user requirements and without loss of frame

The A664 Standard

- Short reminder : Communication Principles
- The aircraft communication context and constraints
- The origin of the standard
- Products

Key Features

- Open Standard
- Virtual Link concept
- "Firewalling" (Traffic Shaping / Policing / Filtering)
- Redundancy
- Latency / Determinism

Network Architecture

- Physical architecture design
 - Main drivers for physical architecture design
 - Safety constraints

Logical Architecture design

- Logical architecture principles
- ES Part / The different types of application port
- ES Part / Different logical communications
- SWM Part

• Performances optimisation and determinism

- Several sources of latency
- ES Latencies
 - descriptions / optimisation
- SWM Latencies
 - descriptions / optimisation
- A664 addressing features
- Networks optimization & Field Bus technologies overview

Network architecture

Physical architecture

(equipment list, positions,...)

=> Wiring/installation

Logical architecture

(flow adressing, routing)

=> -configuration of ES

-configuration of SWM

The A664 Standard

- Short reminder : Communication Principles
- The aircraft communication context and constraints
- The origin of the standard
- Products

Key Features

- Open Standard
- Virtual Link concept
- "Firewalling" (Traffic Shaping / Policing / Filtering)
- Redundancy
- Latency / Determinism

Network Architecture

- Physical architecture design
 - Main drivers for physical architecture design
 - Safety constraints

Logical Architecture design

- Logical architecture principles
- ES Part / The different types of application port
- ES Part / Different logical communications
- SWM Part

• Performances optimisation and determinism

- Several sources of latency
- ES Latencies
 - descriptions / optimisation
- SWM Latencies
 - descriptions / optimisation
- A664 addressing features
- Networks optimization & Field Bus technologies overview

Logical interconnection / ES Part (1/3)

Several addressing levels which support data multiplexing and

Port type: Sampling (ES Part)

Sampling Ports are defined by ARINC 653 API specification and by A664

- Correspond to a data from "process control" (non protocol)
- Data is sent as a single transmission unit
- Source and destination addresses are statically defined
- Rx Sampling port
 - The last received data overwrites the previous one
 - Several application can read the data
 - A "freshness" is attached to the data for each applications that use it
- Tx Sampling port
 - The last produced data overwrites the previous one

Port type : Queuing (ES Part)

- Queuing Ports are defined by ARINC 653 API specification and by A664
 - Correspond to data from "<u>information system</u>" (protocol)
 - protocol defined in a specification (A615A, A661, tftp Airbus, ...)
 - protocol of standard TCP/IP (SNMP, ...)
 - data can be larger than the transmission unit and can be fragmented into a sequence of transmission unit and reassembled at reception
 - data are managed by FIFO policy
 - only one application can read the data
 - Overflow can occur when producer is faster than consumer
 - source and destination addresses are <u>still</u> defined <u>statically</u>

Authorized logical communication : Tx side (ES Part)

- In Tx, there is a one to one mapping between Application port (API) and A664 port
 - Tx = data flow multiplexing

EADS

Authorized logical communication : Rx side (ES Part)

- In Rx, there is a one to one mapping between Application port (API) and A664 port
 - Rx data flow demultiplexing
 - Sampling port can be multicasted

Redundancy types: Tx side (ES Part)

- At Tx side, redundancy is a parameter attached to VL
- A VL can be configured to be
 - Redundant
 - · the frame is sent simultaneously to both A and B attachments
 - Non redundant
 - the frame is sent only on one attachment A or B

Redundancy types: Rx side (ES Part)

- At Rx side, redundancy is a parameter attached to a port
- A port can be configured to receive message
 - from a Redundant VL
 - · only the first received frame is stored in the port whatever its origin A or B
 - from a given attachment A or B
 - only the frame received from A (resp. B) is stored in the port
 - Note:
 - when the transmitting VL is redundant, this allows to process the two frames at application level
 - when the transmitting VL is not redundant, it is expected that the attachments are the same in Tx and Rx

- The A664 Standard
 - Short reminder : Communication Principles
 - The aircraft communication context and constraints
 - The origin of the standard
 - Products
- Key Features
 - Open Standard
 - Virtual Link concept
 - "Firewalling" (Traffic Shaping / Policing / Filtering)
 - Redundancy
 - Latency / Determinism
- Network Architecture
 - Physical architecture design
 - Main drivers for physical architecture design
 - Safety constraints
 - Logical Architecture design
 - Logical architecture principles
 - ES Part / The different types of application port
 - ES Part / Different logical communications
 - SWM Part
- Performances optimisation and determinism
 - Several sources of latency
 - ES Latencies
 - descriptions / optimisation
 - SWM Latencies
 - descriptions / optimisation
- A664 addressing features
- Networks optimization & Field Bus technologies overview

Avionics

GEA Tianjin / 中国民航大学中欧航空工程师学院

Performance aspects and Determinism...

- The major performance parameter in A664 network is the latency.
 - Latency is defined as the delay for a message to be received.
 - Jitter is defined as the variation of this latency
- End to end latency is the addition of several successive latencies:
 - TX Applicative latency
 - latency in the Tx ES
 - cumulated latency along the links
 - latency in the Rx ES
 - RX Applicative latency

Network Integrator: Configures switch, calculates, qualifies Network latency

GEA Tianjin / 中国民航大学中欧航空工程师学院 Tx ES: Traffic shaping latency / <u>sampling</u>

Tx ES: Traffic shaping latency / queuing

Rx ES latency

Rx ES latency includes

Technological latency

- The "floor" delay needed to process the message when no other message is processed (typical max value = 150 μs)
- This latency includes Traffic filtering and message reassembly

Traffic contention latency

There is NO contention in Rx

Application asynchronism latency

- The destination application is (often in avionics) periodic
- There can be one period delay before the application receive actually its message

Network latency: Formal Proof

Principle

- All functions which need to use the network specify their needs
- Network architect build a topology (physical and logical) to satisfy them
- Determinism is formally proved running a dedicated algorithm (software tool) which :
 - computes the Worst Case transit Time (WCTT) for any paths
 - checks if any need is satisfied in the Worst Case

The A664 Standard

- Short reminder: Communication Principles
- The aircraft communication context and constraints
- The origin of the standard
- Products

Key Features

- Open Standard
- Virtual Link concept
- "Firewalling" (Traffic Shaping / Policing / Filtering)
- Redundancy
- Latency / Determinism

Network Architecture

- Physical architecture design
 - Main drivers for physical architecture design
 - Safety constraints
- Logical Architecture design
 - Logical architecture principles
 - ES Part / The different types of application port
 - ES Part / Different logical communications
 - SWM Part

Performances optimisation and determinism

- Several sources of latency
- ES Latencies
 - descriptions / optimisation
- SWM Latencies
 - descriptions / optimisation

A664 addressing features

Networks optimization & Field Bus technologies overview

Routing example (ES part) – Back-up slide

Addressing example (ES part) – Back-up slide

The A664 Standard

- Short reminder : Communication Principles
- The aircraft communication context and constraints
- The origin of the standard
- Products

Key Features

- Open Standard
- Virtual Link concept
- "Firewalling" (Traffic Shaping / Policing /Filtering)
- Redundancy
- Latency / Determinism

Network Architecture

- Physical architecture design
 - Main drivers for physical architecture design
 - Safety constraints
- Logical Architecture design
 - Logical architecture principles
 - ES Part / The different types of application port
 - ES Part / Different logical communications
 - SWM Part

Performances optimisation and determinism

- Several sources of latency
- ES Latencies
 - descriptions / optimisation
- SWM Latencies
 - descriptions / optimisation
- A664 addressing features
- Networks optimization & Field Bus technologies overview

Network Optimisation (1/2)

Optimisation can be performed on:

- The topology of the network :
 - Objective = to meet safety constraints with a limited number of switches
- The choice of MFS and BAG values for a given VL bandwidth
 - Objective = to minimize the impact of a VL on the neighbouring VLs within a switch
 - Stakes = a true realization of incremental certification
- The WCTT (Worst Case Transfer Time)
 - Objective = to use the network at its maximum capability

Network Optimisation (2/2)

Topology optimisation

 A problem of Graph Theory and linear optimisation when safety constaints are applied on the choice of the effective path

MFS / BAG

- A compromise to be found
 - · The minimum MFS, the minimum the impact on latency
 - The maximum MFS, the maximum the efficiency of the frame overhead

WCTT

- WCTT computation gives over pessimistic values that drive to "under" usage of the network
- State of the art of WCTT computation:
 - Network Calculus (Airbus, Rockwell-Collins approach)
 - "Model based" (Thales approach)
- Both give about the same result, some direction of improvement are under experimentation

Market New demands...Recurrent needs

- NG Communication for safety-critical controls shall fulfill:
 - Cost optimization/reduction
 - Increase of performances
 - Operational
 - Flight safety
 - System reliability & aircraft availability
 - Modular design with incremental certification features (DO297)
 - · Maintenance, repair & overhaul
 - Obsolescence management
 - Enhancement of functionality
 - Seamless design tool integration

Field Bus Communication Technologies I

- Traditional event-driven (network activity is triggered by application activity)
 - CAN, ARINC429, ...
- Time-Triggered
 (network activity is triggered by schedule executed on flow of time)
 - TTP, FlexRay, ...
- Time-Triggered Ethernet Approach
 (Can cover standard Ethernet, rate constrained and time-triggered data traffic requirements)

Field Bus Communication Technologies II

Technical Overview about Field-bus Protocol Features:

technical	Determinism/Testability	Fault-Tolerance built-in	Data-rate / Bandwidth	DC-free coding
CAN	-	1	1Mbit/s	-
MIL1553B	medium	-	1Mbit/s	•
ARINC429	-	-	100kbit/s	•
ARINC629	low	-	2Mbit/s	•
TTP	high	•	2x5Mbit/s	•
FlexRay	high	high - 2x10Mb		-

Field Bus Data Communication Technologies III

Commercial Overview about Field-bus Protocols:

commercial	Technology cost	second source (S) multi source (M)	Physical Layer specified	certification acc. aerospace standards	Aerospace proven
CAN	low	M	•	•	•
MIL1553B	high	M	•	•	
ARINC429	high	M	•	•	
ARINC629	high	-	•	•	•
TTP	medium	(S) under design	in progress (AS6003)	•	•
FlexRay	low	M	•	-	-

Field Bus Selection Outline (back-up)

- Advantages/benefits for Time-Triggered Protocols (TTP/FxR)
 - CAN, MIL1553B, ARINC429, ARINC629:
 - Bandwidth at it upper limit for aerospace use
 - Insufficient determinism
 - Lack of fault tolerance mechanisms / services built-in
 - Not sufficiently suited for modular/platform based design
- Difference TTP FxR, trade-off
 - FxR disadvantages:
 - Certification acc. to aerospace standards
 - Start-up (CAS babbler)
 - Suitability for safety-critical applications (FxR: withdrawn)
 - DC free physical layer (TTP: Manchester versus FxR: NRZ)
 - Aerospace production project history
 - Limitation to automotive use
 - TTP disadvantages:
 - Second source controller not finished (under design)
 - TTTech is single supply of Tools & origin of controllers (VHDL model)
 - Strict design rules require update of all nodes (in case of change of frame sending pattern) if no future extensions were foreseen in the design
 - Market share (good success in production programs but limited number)

