GSERM 2021Analyzing Panel Data

June 15, 2021

One- and Two-Way "Unit Effects"

Two-way variation:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \gamma V_i + \delta W_t + u_{it}$$

→ "two-way" effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

Also: "One-way" effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \eta_t + u_{it}$$
 (time)

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$
 (units)

"Brute force" model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$

=
$$\mathbf{X}_{it}\boldsymbol{\beta} + \alpha_1 I(i=1)_i + \alpha_2 I(i=2)_i + \dots + u_{it}$$

Alternatively, decompose:

$$\bar{\mathbf{X}}_i = \frac{\sum_{N_i} \mathbf{X}_{it}}{N_i}$$

and

$$\tilde{\mathbf{X}}_{it} = \mathbf{X}_{it} - \bar{\mathbf{X}}_{i}$$

Yields:

$$Y_{it} = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + \tilde{\mathbf{X}}_{it} \boldsymbol{\beta}_W + \alpha_i + u_{it}$$

"Fixed" Effects

Means that:

$$Y_{it}^* = Y_{it} - \bar{Y}_i$$

 $\mathbf{X}_{it}^* = \mathbf{X}_{it} - \bar{\mathbf{X}}_i$

$$Y_{it}^* = \beta_{FE} \mathbf{X}_{it}^* + u_{it}.$$

ightarrow a "Fixed Effects" Model is actually a "Within-Effects" Model.

"Fixed" Effects: Test(s)

Standard F-test for

$$H_0: \alpha_i = \alpha_j \forall i \neq j$$

versus

$$H_A: \alpha_i \neq \alpha_j$$
 for some $i \neq j$

is
$$\sim F_{N-1,NT-(N-1)}$$
.

Example Data: Demonstrations, 1945-2014

Data:

- Data are (a subset of) Banks (2019)
- N = 180 countries, T = 70 years [1945-2014]
- Variables:
 - Demonstrations: Number of social/political demonstrations in that country in that year
 - POLITY: The country's POLITY IV score that year (-10 = fully autocratic; 10 = fully democratic)
 - · POLITY²: POLITY IV squared (expected curvilinear relationship)
 - · GDP: The per capita GDP (PPP, in constant \$US) for that country / year
 - Monarch: Whether (=1) or not (=0) that country was a monarchy in that year
 - ColdWar: Indicator variable, coded 1 for the period 1945-1989, 0 otherwise

Regression model:

```
ln(\mathsf{Demonstrations}+1)_{it} = \beta_0 + \beta_1 \mathsf{POLITY}_{it} + \beta_2 \mathsf{POLITY}_{it}^2 + \beta_3 \mathsf{In}(\mathsf{GDP})_{it} + \beta_4 \mathsf{Monarch}_{it} + \beta_5 \mathsf{Cold} \, \mathsf{War}_{it} + u_{it}
```

Data Summary

```
> summary(Demos)
     ccode
                    Year
                                   POLITY
                                                     GDP
        . 2
               Min.
                       :1945
                                      :-10.00
                                                            185
 Min.
                               Min.
                                                Min.
 1st Qu.:235
               1st Qu.:1969
                               1st Qu.: -7.00
                                                1st Qu.:
                                                          1580
 Median:451
               Median:1985
                               Median: 0.00
                                                Median:
                                                          4002
 Mean
        :456
               Mean
                      :1984
                               Mean
                                    : 0.63
                                                Mean
                                                      : 8120
 3rd Qu.:663
               3rd Qu.:2000
                               3rd Qu.:
                                         8.00
                                                3rd Qu.: 10365
 Max.
        :950
               Max.
                      :2014
                               Max.
                                      : 10.00
                                                Max.
                                                        :134040
                               NA's
                                      :111
                                                NA's
                                                        :2348
    Monarch
                   1nDemons
                                   ColdWar
                                                    1nGDP
 Min.
        :0.0
                       :0.0
                                       :0.000
                                                        : 5.2
                Min.
                                Min.
                                                Min.
                                                1st Qu.: 7.4
 1st Qu.:0.0
                1st Qu.:0.0
                                1st Qu.:0.000
                                                Median: 8.3
 Median:0.0
                Median:0.0
                                Median :1.000
 Mean
        :0.1
                Mean
                       :0.3
                                Mean
                                       :0.563
                                                        : 8.3
                                                Mean
 3rd Qu.:0.0
                3rd Qu.:0.0
                                3rd Qu.:1.000
                                                3rd Qu.: 9.2
 Max.
        :1.0
                Max.
                       :4.3
                                Max.
                                       :1.000
                                                Max.
                                                        :11.8
 NA's
        :1198
                NA's
                       :1149
                                                NA's
                                                        :2348
```

Visualization (using panelView)

Categorical Variable Visualization

Demonstrations: Total Variation

```
> with(Demos, describe(lnDemons)) # all variation
  vars    n mean    sd median trimmed mad min    max range skew kurtosis    se
X1    1 8219 0.25 0.55    0    0.11    0    0 4.32    4.32 2.54    7.3 0.01
```


Demonstrations: "Between" Variation

```
> DemonsMeans <- ddply(Demos,.(ccode),summarise,
+ DemonsMean = mean(lnDemons,na.rm=TRUE))
> with(DemonsMeans, describe(DemonsMean)) # "between" variation
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 160 0.23 0.25 0.15 0.18 0.15 0 1.38 1.38 1.99 4.55 0.02
```


Demonstrations: "Within" Variation

Regression: Pooled OLS

```
> OLS<-plm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar,
         data=PDF, model="pooling")
> summary(OLS)
Pooling Model
Call:
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, model = "pooling")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Residuals:
  Min. 1st Qu. Median 3rd Qu.
                                 Max
-0.4501 -0.2930 -0.2176 -0.0754 4.1073
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
(Intercept) -0.124639  0.058208  -2.14  0.032 *
POT.TTY
            0.006296 0.001179 5.34 9.5e-08 ***
I(POLITY^2) -0.002267  0.000255  -8.90 < 2e-16 ***
     0.057679 0.007513 7.68 1.9e-14 ***
1nGDP
Monarch -0.046393 0.028572 -1.62 0.104
ColdWar
       0.027883 0.013961 2.00 0.046 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
                      1850
Residual Sum of Squares: 1800
R-Squared:
               0.0261
Adj. R-Squared: 0.0253
F-statistic: 34.8228 on 5 and 6499 DF, p-value: <2e-16
```

"Fixed" (Within) Effects

```
> FE<-plm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar,
            data=PDF, effect="individual", model="within")
> summary(FE)
Oneway (individual) effect Within Model
Call:
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, effect = "individual", model = "within")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Residuals:
  Min. 1st Qu. Median 3rd Qu.
-1.3556 -0.2120 -0.0768 0.0193 4.0496
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
POLITY
            0.001526 0.001553 0.98 0.32604
I(POLITY^2) -0.001942  0.000296  -6.55  6.1e-11 ***
1 nGDP
          0.054586 0.015200 3.59 0.00033 ***
Monarch 0.047976 0.068071 0.70 0.48097
ColdWar -0.035487 0.016235 -2.19 0.02887 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
Residual Sum of Squares: 1400
R-Squared:
               0.013
Adj. R-Squared: -0.0102
F-statistic: 16.7177 on 5 and 6355 DF, p-value: <2e-16
```

A Nicer Table

Table: Models of Demonstrations

	OLS	FE
POLITY	0.006***	0.002
	(0.001)	(0.002)
POLITY Squared	-0.002***	-0.002***
	(0.0003)	(0.0003)
In(GDP)	0.058***	0.055***
	(0.008)	(0.015)
Monarch	-0.046	0.048
	(0.029)	(0.068)
Cold War	0.028**	-0.035**
	(0.014)	(0.016)
Constant	-0.125**	
	(0.058)	
Observations	6,505	6,505
R^2	0.026	0.013
Adjusted R ²	0.025	-0.010
F Statistic	34.820*** (df = 5; 6499)	16.720*** (df = 5; 6355)

^{*}p<0.1; **p<0.05; ***p<0.01

Time-Period Fixed Effects

The model is:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \eta_t + u_{it}$$

which is estimated via:

$$Y_{it}^{**} = Y_{it} - \bar{Y}_t$$

 $\mathbf{X}_{it}^{**} = \mathbf{X}_{it} - \bar{\mathbf{X}}_t$

$$Y_{it}^{**} = \beta_{FE} \mathbf{X}_{it}^{**} + u_{it}.$$

Comparison: Unit vs. Time Fixed Effects

Table: FE Models of Demonstrations

	FE.Units	FE.Time	
POLITY	0.002	0.007***	
	(0.002)	(0.001)	
POLITY Squared	-0.002***	-0.002***	
•	(0.0003)	(0.0003)	
In(GDP)	0.055***	0.058***	
,	(0.015)	(800.0)	
Monarch	0.048	-0.038	
	(0.068)	(0.028)	
Cold War	-0.035**		
	(0.016)		
Observations	6,505	6,505	
R^2	0.013	0.028	
Adjusted R ²	-0.010	0.018	
F Statistic	16.720*** (df = 5; 6355)	46.270*** (df = 4; 6439)	

p<0.1; **p<0.05; ***p<0.01

Fixed Effects: Testing

The specification:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

...suggests that we can use an F-test to examine the hypothesis:

$$H_0: \alpha_i = 0 \ \forall i$$

(and a similar test for $\eta_t = 0$ in the time-centered case).

Arguably better are Lagrange multiplier-based tests:

- Breusch-Pagan (1980)
- King and Wu (1997)
- See (e.g.) Croissant and Millo (2018, §4.1) for details

FE Model Tests

```
> pFtest(FE.OLS)
F test for individual effects
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
F = 13, df1 = 144, df2 = 6355, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE,effect=c("individual"),type=c("bp"))
Lagrange Multiplier Test - (Breusch-Pagan) for unbalanced panels
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
chisq = 8016, df = 1, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE,effect=c("individual"),type=c("kw"))
Lagrange Multiplier Test - (King and Wu) for unbalanced panels
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
normal = 90, p-value < 2e-16
alternative hypothesis: significant effects
```

Same For Time Effects

```
> pFtest(FE.Time,OLS)
F test for time effects
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
F = 3, df1 = 60, df2 = 6439, p-value = 1e-13
alternative hypothesis: significant effects
> plmtest(FE.Time,effect=c("time"),type=c("bp"))
Lagrange Multiplier Test - time effects (Breusch-Pagan) for unbalanced
panels
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
chisq = 144, df = 1, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE.Time,effect=c("time"),type=c("kw"))
Lagrange Multiplier Test - time effects (King and Wu) for unbalanced panels
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
normal = 12, p-value <2e-16
alternative hypothesis: significant effects
```

Fixed Effects: Interpretation

FE models are *subject-specific* models, that rely entirely on *within-unit* variability to estimate variable effects.

• This means that:

$$\hat{\beta}_k = \frac{\partial E(Y|\hat{\alpha})}{\partial X_k}$$

- That is, $\hat{\beta}_k$ is the expected change in E(Y) associated with a one-unit increase in observation i's value of X_k
- Key: within-unit changes in X are associated with within-unit expected changes in Y.
- In a linear model, the value of $\hat{\alpha}$ doesn't affect the value of that partial derivative...

Fixed Effects: Interpretation

Mummolo and Peterson (2018) note that:

"...because the within-unit variation is always smaller (or at least, no larger) than the overall variation in the independent variable, researchers should use within-unit variation to motivate counterfactuals when discussing the substantive impact of a treatment" (2018, 829).

Significance:

- Predictors X in FE models typically have both cross-sectional and temporal variation
- FE models only consider within-unit variation in X and Y
- As a result, the degree of actual/observed (within-unit) variation in predictors is almost always less – and sometimes significantly less – than if cross-sectional variation were also considered

Interpretation Example: Monarchy

Monarchy - All Variation:

```
> with(Demos, sd(Monarch,na.rm=TRUE))
[1] 0.2601
```

Monarchy - "Within" Variation:

"While the overall variation in the independent variable may be large, the within-unit variation used to estimate β may be much smaller" (M & P 2018, 830).

Pros and Cons of "Fixed" Effects

Pros:

- Mitigates (Some) Specification Bias
- Simple + Intuitive
- Widely Used/Understood

Cons (see e.g. Collischon and Eberl 2020):

- Can't Estimate β_B
- Slowly-Changing Xs
- (In)Efficiency / Inconsistency (Incidental Parameters)
- Cannot Control for (e.g.) Time-Varying Heterogeneity
- Sensitivity to Measurement Error

From the equation above:

$$Y_{it} = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + \tilde{\mathbf{X}}_{it} \boldsymbol{\beta}_W + \alpha_i + u_{it}$$

...we can derive a "Between Effects" model:

$$\bar{Y}_i = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + u_{it}$$

This model:

- is essentially cross-sectional,
- is based on N observations,
- considers only between-unit (average) differences
- Interpretation:

 $\hat{\beta}_k$ is the expected difference in Y between two units whose values on \bar{X}_k differ by a value of 1.0.

"Between" Effects

```
> BE<-plm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar,
           data=PDF, effect="individual", model="between")
> summary(BE)
Oneway (individual) effect Between Model
Call:
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, effect = "individual", model = "between")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Observations used in estimation: 145
Coefficients:
           Estimate Std. Error t-value Pr(>|t|)
(Intercept) -0.30601
                    0.20837 -1.47 0.1442
POLITY
            0.00597 0.00489
                               1.22 0.2244
I(POLITY^2) -0.00302  0.00112 -2.69  0.0079 **
          0.06883 0.02734 2.52 0.0130 *
1 nGDP
Monarch -0.04966 0.10320 -0.48 0.6312
ColdWar 0.25872
                    0.08482
                               3.05 0.0027 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
Residual Sum of Squares: 7.64
R-Squared:
              0.127
Adj. R-Squared: 0.0961
F-statistic: 4.06164 on 5 and 139 DF, p-value: 0.0018
```

A Nicer Table (Again)

Table: Models of Demonstrations

	OLS	FE	BE
POLITY	0.006***	0.002	0.006
	(0.001)	(0.002)	(0.005)
POLITY Squared	-0.002***	-0.002***	-0.003***
	(0.0003)	(0.0003)	(0.001)
In(GDP)	0.058***	0.055***	0.069**
, ,	(0.008)	(0.015)	(0.027)
Monarch	-0.046	0.048	-0.050
	(0.029)	(0.068)	(0.103)
Cold War	0.028**	-0.035**	0.259***
	(0.014)	(0.016)	(0.085)
Constant	-0.125**		-0.306
	(0.058)		(0.208)
Observations	6,505	6,505	145
R^2	0.026	0.013	0.127
Adjusted R ²	0.025	-0.010	0.096
F Statistic	34.820*** (df = 5; 6499)	16.720*** (df = 5; 6355)	4.062*** (df = 5; 139)

 $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + u_{it}$$

with:

$$u_{it} = \alpha_i + \lambda_t + \eta_{it}$$

and

$$\begin{split} E(\alpha_i) &= E(\lambda_t) = E(\eta_{it}) &= 0, \\ E(\alpha_i \lambda_t) &= E(\alpha_i \eta_{it}) = E(\lambda_t \eta_{it}) &= 0, \\ E(\alpha_i \alpha_j) &= \sigma_\alpha^2 \text{ if } i = j, \ 0 \text{ otherwise}, \\ E(\lambda_t \lambda_s) &= \sigma_\lambda^2 \text{ if } t = s, \ 0 \text{ otherwise}, \\ E(\eta_{it} \eta_{js}) &= \sigma_\eta^2 \text{ if } i = j, \ t = s, \ 0 \text{ otherwise}, \\ E(\alpha_i \mathbf{X}_{it}) &= E(\lambda_t \mathbf{X}_{it}) = E(\eta_{it} \mathbf{X}_{it}) &= 0. \end{split}$$

"Random" Effects

If those assumptions are met, we can consider the "two-way variance components" model where:

$$Var(u_{it}) = Var(Y_{it}|\mathbf{X}_{it})$$
$$= \sigma_{\alpha}^{2} + \sigma_{\lambda}^{2} + \sigma_{\eta}^{2}$$

If we assume $\lambda_t = 0$, then we get a model like:

$$Y_{it} = \mathbf{X}_{it}\beta + \alpha_i + \eta_{it}$$

with total error variance:

$$\sigma_u^2 = \sigma_\alpha^2 + \sigma_\eta^2.$$

"Random" Effects: Estimation

The model in 1 will violate the standard OLS assumptions of uncorrelated errors, because the (compound) "errors" within each unit share a common component α_i .

Consider the within-i variance-covariance matrix of the errors \mathbf{u} :

$$E(\mathbf{u}_{i}\mathbf{u}_{i}') \equiv \mathbf{\Sigma}_{i} = \sigma_{\eta}^{2}\mathbf{I}_{T} + \sigma_{\alpha}^{2}\mathbf{i}\mathbf{i}'$$

$$= \begin{pmatrix} \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \cdots & \sigma_{\alpha}^{2} \\ \sigma_{\alpha}^{2} & \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} & \cdots & \sigma_{\alpha}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \cdots & \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} \end{pmatrix}$$

Assuming conditional independence across units, we then have:

$$\mathsf{Var}(\mathbf{u}) \equiv \mathbf{\Omega} = \begin{pmatrix} \mathbf{\Sigma}_1 & 0 & \cdots & 0 \\ 0 & \mathbf{\Sigma}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{\Sigma}_N \end{pmatrix}$$

"Random" Effects: Estimation

We can then show that:

$$\mathbf{\Sigma}^{-1/2} = rac{1}{\sigma_{\eta}} \left[\mathbf{I}_{T} - \left(rac{ heta}{T} \mathbf{i} \mathbf{i}'
ight)
ight]$$

where

$$heta=1-\sqrt{rac{\sigma_{\eta}^2}{T\sigma_{lpha}^2+\sigma_{\eta}^2}}$$

is an unknown quantity to be estimated.

Starting with an estimate of $\hat{\theta}$, calculate:

$$Y_{it}^* = Y_{it} - \hat{\theta} \bar{Y}_i$$

$$X_{it}^* = X_{it} - \hat{\theta} \bar{X}_i,$$

then estimate:

$$Y_{it}^* = (1 - \hat{ heta}) lpha + X_{it}^* eta_{RE} + [(1 - \hat{ heta}) lpha_i + (\eta_{it} - \hat{ heta} ar{\eta}_i)]$$

and iterate between the two processes until convergence.

"Random" Effects: An Alternative View

Random Effects

```
> RE<-plm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar.
               data=PDF, effect="individual", model="random")
> summary(RE)
Oneway (individual) effect Random Effect Model
   (Swamv-Arora's transformation)
Call:
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, effect = "individual", model = "random")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Effects.
                var std.dev share
idiosyncratic 0.2197 0.4687 0.8
individual
             0.0563 0.2373 0.2
theta.
  Min. 1st Qu. Median
                        Mean 3rd Qu.
 0.108 0.708 0.736 0.724 0.757
Coefficients:
            Estimate Std. Error z-value Pr(>|z|)
(Intercept) -0.131708 0.104987 -1.25
                                          0.210
POLITY
            0.002574 0.001450
                                1.78
                                        0.076 .
I(POLITY^2) -0.001953  0.000287  -6.81  9.6e-12 ***
1nGDP
            0.057117 0.012443
                                4.59 4.4e-06 ***
Monarch
           -0.006937 0.053291 -0.13 0.896
ColdWar
           -0.023580 0.015008 -1.57 0.116
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
                        1440
Residual Sum of Squares: 1430
R-Squared:
              0.0124
Adj. R-Squared: 0.0117
Chisq: 81.0788 on 5 DF, p-value: 4.99e-16
```

A Nicer Table (Yet Again)

Table: Models of Demonstrations

	OLS	FE	BE	RE
POLITY	0.006***	0.002	0.006	0.003*
	(0.001)	(0.002)	(0.005)	(0.001)
POLITY Squared	-0.002***	-0.002***	-0.003***	-0.002***
	(0.0003)	(0.0003)	(0.001)	(0.0003)
In(GDP)	0.058***	0.055***	0.069**	0.057***
, ,	(0.008)	(0.015)	(0.027)	(0.012)
Monarch	-0.046	0.048	-0.050	-0.007
	(0.029)	(0.068)	(0.103)	(0.053)
Cold War	0.028**	-0.035**	0.259***	-0.024
	(0.014)	(0.016)	(0.085)	(0.015)
Constant	-0.125**		-0.306	-0.132
	(0.058)		(0.208)	(0.105)
Observations	6,505	6,505	145	6,505
R^2	0.026	0.013	0.127	0.012
Adjusted R ²	0.025	-0.010	0.096	0.012
F Statistic	34.820*** (df = 5; 6499)	16.720*** (df = 5; 6355)	4.062*** (df = 5; 139)	81.080***

 $^*p{<}0.1; \ ^{**}p{<}0.05; \ ^{***}p{<}0.01$

"Random" Effects: Testing

Hausman test (FE vs. RE):

$$\hat{\mathcal{W}} = (\hat{\boldsymbol{\beta}}_{\mathsf{FE}} - \hat{\boldsymbol{\beta}}_{\mathsf{RE}})'(\hat{\boldsymbol{\mathsf{V}}}_{\mathsf{FE}} - \hat{\boldsymbol{\mathsf{V}}}_{\mathsf{RE}})^{-1}(\hat{\boldsymbol{\beta}}_{\mathsf{FE}} - \hat{\boldsymbol{\beta}}_{\mathsf{RE}})$$

$$W \sim \chi_k^2$$

Issues:

- Asymptotic
- No guarantee $(\hat{f V}_{\sf FE} \hat{f V}_{\sf RE})^{-1}$ is positive definite
- A general specification test...

Hausman Test: Intuition

If the data-generating process is the result of "random" effects [that is, if $Cov(\mathbf{X}_{it}, \alpha_i = 0)$]:

- the random-effects estimate $\hat{\beta}_{RE}$ will be consistent and (more) efficient
- ullet the fixed-effects / within-unit estimator $\hat{eta}_{\it FE}$ will be consistent but inefficient

BUT...

If the data-generating process is in fact the result of "fixed" effects [that is, if $Cov(\mathbf{X}_{it}, \alpha_i \neq 0)$]:

- ullet the fixed-effects / within-unit estimator $\hat{eta}_{\it FE}$ will be consistent and efficient
- the random-effects estimate $\hat{\beta}_{RE}$ will be inconsistent

Hausman Test Results

Hausman test (FE vs. RE):

> phtest(FE, RE)

Hausman Test

data: lnDemons $\tilde{}$ POLITY + I(POLITY-2) + lnGDP + Monarch + ColdWar chisq = 11, df = 5, p-value = 0.05 alternative hypothesis: one model is inconsistent

Practical "Fixed" vs. "Random" Effects

Factors to consider:

- "Panel" vs. "TSCS" Data
- Nature of the Data-Generating Processes
- Importance of Non-Time-Varying Covariate Effects
- Dimension/Location of the Variance in the Data (N vs. T)

Connections: Hierarchical Linear Models

HLM Starting Points

Begin by considering a two-level "nested" data structure, with:

$$i \in \{1, 2, ...N\}$$
 indexing first-level units, and $j \in \{1, 2, ...J\}$ indexing second-level groups.

A general two-level HLM is an equation of the form:

$$Y_{ij} = \beta_{0j} + \mathbf{X}_{ij}\beta_j + u_{ij} \tag{1}$$

where β_{0j} is a "constant" term, \mathbf{X}_{ij} is a $NJ \times K$ matrix of K covariates, β_j is a $K \times 1$ vector of parameters, and $u_{ij} \sim \text{i.i.d.} \ N(0, \sigma_u^2)$ is the usual random-disturbance assumption.

Each of the K+1 "level-one" parameters is then allowed to vary across Q "level-two" variables \mathbf{Z}_j , so that:

$$\beta_{0j} = \gamma_{00} + \mathbf{Z}_j \gamma_0 + \varepsilon_{0j} \tag{2}$$

for the "intercept" and

$$\beta_{kj} = \gamma_{k0} + \mathbf{Z}_j \gamma_k + \varepsilon_{kj} \tag{3}$$

for the "slopes" of **X**. The ε s are typically assumed to be distributed multivariate Normal, with parameters for the variances and covariances selected by the analyst. Substitution of (5) and (5) into (1) yields:

$$Y_{ij} = \gamma_{00} + \mathbf{Z}_j \gamma_0 + \mathbf{X}_{ij} \gamma_{k0} + \mathbf{X}_{ij} \mathbf{Z}_j \gamma_k + \mathbf{X}_{ij} \varepsilon_{kj} + \varepsilon_{0j} + u_{ij}$$
 (4)

The form is essentially a model with "saturated" interaction effects across the various levels, as well as "errors" which are multivariate Normal.

HLM Details

Model Assumptions

- Linearity / Additivity
- Normality of us
- Homoscedasticity
- Residual Independence:
 - · $Cov(\varepsilon_{\cdot j}, u_{ij}) = 0$ · $Cov(u_{ii}, u_{i\ell}) = 0$

Model Fitting

- MLE
- "Restricted" MLE ("RMLE")
- Choosing:
 - · MLE is biased in small samples, especially for estimating variances
 - RMLE is not, but prevents use of LR tests when the models do not have identical fixed effects
 - In general: RMLE is better with small sample sizes, but MLE is fine in larger ones

HLMs: Attributes

Note that if we specify:

$$\beta_{0i} = \gamma_{00} + \varepsilon_{0i}$$

and

$$\beta_{kj} = \gamma_{k0}$$

we get:

$$Y_{ij} = \gamma_{00} + \mathbf{X}_{ij}\gamma_{k0} + \varepsilon_{0j} + u_{ij}$$

which is the RE model above (formally, a "one-level random-intercept" HLM).

In addition:

- HLMs can be expanded to 3- and 4- and higher-level models
- One can include cross-level interactions...

HLMs are widely used in education, psychology, ecology, etc. (less so in economics, political science). Also, there are many, many excellent books, websites, etc. that address HLMs

Random Effects Remix (using 1mer)

```
> library(lme4)
> AltRE<-lmer(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar+
                  (1|ccode), data=Demos)
> summary(AltRE)
Linear mixed model fit by REML ['lmerMod']
Formula: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar +
   (1 | ccode)
  Data: Demos
REML criterion at convergence: 9005
Random effects:
Groups Name
                     Variance Std.Dev.
ccode
         (Intercept) 0.0536 0.232
Regidual
                     0.2200 0.469
Number of obs: 6507, groups: ccode, 145
Fixed effects:
            Estimate Std. Error t value
(Intercept) -0.133634 0.104246
POLITY
            0.002623 0.001447
                                1.81
I(POLITY^2) -0.001972  0.000287  -6.88
InGDP
            0.057513 0.012371
                                 4.65
Monarch
           -0.015175 0.052863 -0.29
ColdWar
           -0.022225 0.014986 -1.48
Correlation of Fixed Effects:
           (Intr) POLITY I (POLI lnGDP Monrch
POT.TTY
            0.109
T(POLTTY^2) 0.134 -0.135
InCDP
          -0.968 -0.140 -0.270
Monarch
         0.004 0.172 -0.163 -0.022
ColdWar
        -0.391 0.387 -0.210 0.351 0.014
```

Q: Are They The Same? [A: Yes]

Table: RE Models of Demonstrations

	RE	AltRE	
POLITY	0.003*	0.003*	
	(0.001)	(0.001)	
POLITY Squared	-0.002***	-0.002***	
	(0.0003)	(0.0003)	
In(GDP)	0.057***	0.057***	
	(0.012)	(0.012)	
Monarch	-0.007	-0.008	
	(0.053)	(0.053)	
Cold War	-0.024	-0.023	
	(0.015)	(0.015)	
Constant	-0.132	-0.132	
	(0.105)	(0.104)	
Observations	6,505	6,505	
R ²	0.012		
Adjusted R ²	0.012		
Log Likelihood		-4,496.000	
Akaike Inf. Crit.		9,009.000	
Bayesian Inf. Crit.		9,063.000	
F Statistic	81.080***		

^{*}p<0.1; **p<0.05; ***p<0.01

HLM with Country-Level Random β s for lnGDP

```
> HI.M1<-lmer(lnDemons~POLITY+I(POLITY^2)+lnGDP+(lnGDP|ccode)+
              Monarch+ColdWar, data=Demos,
              control=lmerControl(optimizer="bobyqa"))
> summary(HLM1)
Linear mixed model fit by REML ['lmerMod']
Formula: InDemons ~ POLITY + I(POLITY^2) + InGDP + (InGDP | ccode) + Monarch +
   ColdWar
   Data: Demos
Control: lmerControl(optimizer = "bobyqa")
Scaled residuals:
   Min
          10 Median
                              Max
-2.821 -0.442 -0.175 -0.005 8.530
Random effects:
 Groups Name
                     Variance Std.Dev. Corr
 ccode
         (Intercept) 1.377
                            1.174
         1nGDP
                             0.145
                     0.021
                                      -0.98
Residual
                     0.214
                            0.462
Number of obs: 6505, groups: ccode, 145
Fixed effects:
           Estimate Std. Error t value
(Intercept) -0.21563
                    0.15416
                               -1.40
POLITY
            0.00198
                     0.00149
                                1.33
I(POLITY^2) -0.00206
                     0.00030
                               -6 88
1nGDP
           0.06938
                     0.01894
                               3.66
Monarch
        0.02635
                     0.05681
                               0.46
ColdWar
          -0.01394
                     0.01542
                               -0.90
Correlation of Fixed Effects:
           (Intr) POLITY I(POLI lnGDP Monrch
POLITY
            0.093
I(POLITY^2) 0.127 -0.096
1nGDP
           -0.984 -0.114 -0.214
Monarch
        -0.015 0.136 -0.167 0.006
ColdWar
        -0.286 0.368 -0.215 0.246 0.019
```

Testing

```
> anova(AltRE, HLM1)
refitting model(s) with ML (instead of REML)
Data: Demos
Models:
AltRE: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar +
AltRE: (1 | ccode)
HLM1: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + (lnGDP | ccode) + Monarch +
HLM1:
         ColdWar
     npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
Altre 8 8959 9013 -4471
                              8943
HLM1 10 8887 8955 -4434 8867 75.6 2 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> VarCorr(HLM1)
Groups Name
                    Std.Dev. Corr
ccode (Intercept) 1.174
         1nGDP
                 0.145
                           -0.98
Residual
                    0.462
```

Random Coefficients

```
> Bs<-data.frame(coef(HLM1)[1])
> head(Bs)
   ccode..Intercept. ccode.POLITY ccode.I.POLITY.2. ccode.lnGDP ccode.Monarch ccode.ColdWar
             0.45231
                         0.001981
                                           -0.002065
                                                         0.09778
                                                                        0.02635
                                                                                     -0.01394
20
             0.12457
                         0.001981
                                                         0.02329
                                                                        0.02635
                                           -0.002065
                                                                                     -0.01394
42
            -0.45766
                         0.001981
                                           -0.002065
                                                         0.10707
                                                                        0.02635
                                                                                     -0.01394
51
            -0.04898
                         0.001981
                                           -0.002065
                                                         0.05320
                                                                        0.02635
                                                                                     -0.01394
52
            0.44058
                         0.001981
                                           -0.002065
                                                        -0.02591
                                                                        0.02635
                                                                                     -0.01394
70
            -1.34265
                         0.001981
                                           -0.002065
                                                         0.20813
                                                                        0.02635
                                                                                     -0.01394
> mean(Bs$ccode..Intercept.)
[1] -0.2156
> mean(Bs$ccode.lnGDP)
[1] 0.06938
```

Random Intercepts (Plotted)

Random Slopes for lnGDP (Plotted)

Scatterplot: Random Intercepts and Slopes

Separating Within and Between Effects

Recall that we can decompose the variance of our regression model as:

$$Y_{it} = \bar{\mathbf{X}}_i \beta_B + (\mathbf{X}_{it} - \bar{\mathbf{X}}_i) \beta_W + u_{it}$$
 (5)

This raises the possibility of fitting the model in (5) directly...

- Simple to estimate (via OLS or other)
- Relatively easy interpretation
- ullet Easy to test $\hat{oldsymbol{eta}}_B=\hat{oldsymbol{eta}}_W$

Example data: Separate effects for within- and between-country wealth (GDP)...

Combining Within- and Between-Effects

Table: BE + WE Model of Demonstrations

	WEBE.OLS		
POLITY	0.007***		
	(0.001)		
POLITY Squared	-0.002***		
	(0.0003)		
Within-Country In(GDP)	0.082***		
- , ,	(0.016)		
Between-Country In(GDP)	0.053***		
, , ,	(800.0)		
Monarch	-0.042		
	(0.029)		
Cold War	0.040**		
	(0.016)		
Constant	-0.091		
	(0.062)		
Observations	6,505		
R ²	0.027		
Adjusted R ²	0.026		
Residual Std. Error	0.526 (df = 6498)		
F Statistic	29.510*** (df = 6; 6498)		
*p<	<0.1; **p<0.05; ***p<0.01		

Two-Way Unit Effects

Our original decomposition considered "two-way" effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

This implies that we can use (e.g.) an F-test to examine the hypothesis:

$$H_0: \alpha_i = \eta_t = 0 \ \forall i, t$$

...that is, whether adding the (two-way) effects improves the model's fit.

We can also consider the partial hypotheses:

$$H_0: \alpha_i = 0 \ \forall i$$

and

$$H_0: \eta_t = 0 \ \forall \ t$$

separately.

Two-Way Effects: Good & Bad

The Good:

- Addresses both time-invariant, unit-level heterogeneity and cross-sectionally-invariant, time-point-specific heterogeneity
- May be "fixed" or "random" ...
- Two-way FE is equivalent to differences-in-differences when N=T=2 (more on that later)

The (Potentially) Bad:

- Ability to control for unobserved heterogeneity depends on (probably invalid) functional form assumptions (Imai and Kim 2020)
- FE requires predictors that vary both within and between both units and time points
- RE requires the (additional) assumption that Cov(X_{it}, η_t) = Cov(α_i, η_t) = 0
- Two-way effects models ask a lot of your data (effectively fits N + T + k parameters using NT observations)

Example: Two-Way Fixed Effects

```
> TwoWavFE<-plm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar.
         data=PDF.effect="twoway".model="within")
> summary(TwoWavFE)
Twowavs effects Within Model
Call:
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, effect = "twoway", model = "within")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Residuals:
  Min. 1st Qu. Median 3rd Qu.
                                  Max.
-1.4299 -0.2154 -0.0790 0.0674 3.7220
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
POT.TTY
            0.001864 0.001552
                                 1.20
                                           0.230
I(POLITY^2) -0.002135  0.000293  -7.29  3.4e-13 ***
1 nGDP
           -0.013235 0.018399 -0.72 0.472
           0.112024 0.067260 1.67 0.096 .
Monarch
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
                        1350
Residual Sum of Squares: 1330
R-Squared:
               0.009
Adj. R-Squared: -0.0239
F-statistic: 14.2917 on 4 and 6295 DF, p-value: 1.29e-11
```

Two-Way Effects: Testing

```
> # Two-wav effects:
> pFtest(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar.
         data=PDF.effect="twoway".model="within")
F test for twowavs effects
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
F = 11, df1 = 204, df2 = 6295, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(TwoWayFE,c("twoways"),type=("kw"))
Lagrange Multiplier Test - two-ways effects (King and Wu) for unbalanced
panels
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
normal = 59, p-value <2e-16
alternative hypothesis: significant effects
> # One-way effects in the two-way model:
> plmtest(TwoWayFE,c("individual"),type=("kw"))
Lagrange Multiplier Test - (King and Wu) for unbalanced panels
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
normal = 90, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(TwoWayFE,c("time"),type=("kw"))
Lagrange Multiplier Test - time effects (King and Wu) for unbalanced panels
data: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
normal = 12, p-value < 2e-16
alternative hypothesis: significant effects
```

Two-Way Fixed Effects via 1m

```
> TwoWavFE.BF<-lm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+
                   factor(ccode)+factor(Year),data=PDF)
> summary(TwoWayFE.BF)
Call:
lm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   factor(ccode) + factor(Year), data = PDF)
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
              1.353540 0.195636 6.92 5.0e-12 ***
(Intercept)
               0.001864 0.001552 1.20 0.22984
POT.TTY
I(POLITY^2) -0.002135 0.000293 -7.29 3.4e-13 ***
1 nGDP
           -0.013235 0.018399 -0.72 0.47198
Monarch
              0.112024 0.067260 1.67 0.09586 .
factor(ccode)20 -1.150899 0.082756 -13.91 < 2e-16 ***
factor(ccode)42 -1.111681 0.091558 -12.14 < 2e-16 ***
factor(ccode)51 -1.172966 0.096647 -12.14 < 2e-16 ***
factor(Year)2000 0.361636 0.088496 4.09 4.4e-05 ***
factor(Year)2001 0.249294 0.088601
                                      2.81 0.00491 **
[ reached getOption("max.print") -- omitted 10 rows ]
Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.46 on 6295 degrees of freedom
  (2863 observations deleted due to missingness)
Multiple R-squared: 0.278.Adjusted R-squared: 0.254
```

F-statistic: 11.6 on 209 and 6295 DF. p-value: <2e-16

Example: Two-Way Random Effects

```
> TwoWayRE<-plm(lnDemons"POLITY+I(POLITY"2)+lnGDP+Monarch+ColdWar,
               data=PDF.effect="twowav".model="random")
> summary(TwoWayRE)
Twoways effects Random Effect Model
  (Swamy-Arora's transformation)
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, effect = "twoway", model = "random")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Effects:
                 var std.dev share
idiosyncratic 0.21186 0.46028 0.77
individual
             0.05647 0.23763 0.21
             0.00527.0.07258.0.02
theta:
        Min. 1st Qu. Median Mean 3rd Qu. Max.
    0.11143 0.7136 0.7406 0.7289 0.7611 0.7611
time 0.27832 0.4773 0.4942 0.4840 0.5263 0.5289
total 0.09787 0.4485 0.4720 0.4571 0.4943 0.5081
Residuals:
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                         Max.
 -0.41 -0.25 -0.18 0.03 -0.07
                                         4.09
Coefficients:
            Estimate Std. Error z-value Pr(>|z|)
(Intercept) -0.003886 0.244584 -0.02 0.98732
POLITY
            0.003325 0.003132
                                 1.06 0.28847
T(PDI.TTY^2) -0.002048
                     0.000615 -3.33 0.00088 ***
1 nCDP
            0.042258 0.028693
                                 1.47 0.14082
Monarch
            0.021130 0.114872
                                  0.18 0.85405
ColdWar
           -0.045119 0.053826
                                -0.84 0.40190
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
Residual Sum of Squares: 1820
R-Squared:
               0.0181
Adj. R-Squared: 0.0174
Chisq: 92.4819 on 5 DF. p-value: <2e-16
```

A Prettier Table

Table: Models of Demonstrations

	OLS	FE	BE	RE	TwoWayFE	TwoWayRE
POLITY	0.006***	0.002	0.006	0.003*	0.002	0.003
	(0.001)	(0.002)	(0.005)	(0.001)	(0.002)	(0.003)
POLITY Squared	-0.002***	-0.002***	-0.003***	-0.002***	-0.002***	-0.002***
	(0.0003)	(0.0003)	(0.001)	(0.0003)	(0.0003)	(0.001)
In(GDP)	0.058***	0.055***	0.069**	0.057***	-0.013	0.042
	(0.008)	(0.015)	(0.027)	(0.012)	(0.018)	(0.029)
Monarch	-0.046	0.048	-0.050	-0.007	0.112*	0.021
	(0.029)	(0.068)	(0.103)	(0.053)	(0.067)	(0.115)
Cold War	0.028**	-0.035**	0.259***	-0.024		-0.045
	(0.014)	(0.016)	(0.085)	(0.015)		(0.054)
Constant	-0.125**		-0.306	-0.132		-0.004
	(0.058)		(0.208)	(0.105)		(0.245)
Observations	6,505	6,505	145	6,505	6,505	6,505
R ²	0.026	0.013	0.127	0.012	0.009	0.018
Adjusted R ²	0.025	-0.010	0.096	0.012	-0.024	0.017
Residual Std. Error	0.526 (df = 6499)					

p < 0.1; **p < 0.05; ***p < 0.01

Other Variations: FEIS

"Fixed Effects Individual Slope" models

- Cite: Bruederl, Josef, and Volker Ludwig. 2015. "Fixed-Effects Panel Regression." In *The Sage Handbook of Regression Analysis* and Causal Inference, Eds. Henning Best and Christof Wolf. Los Angeles: Sage, pp. 327-357.
- FE + unit-level slopes for (some / all) predictor variables
- Equivalent to including N-1 interactions between a predictor ${\bf X}$ and each of the $\alpha_i{\bf s}$
- Also can test for homogeneity of estimated slopes (Hausman-like test)
- See the feisr R package, and its accompanying vignette, or xtfeis in Stata

Unit Effects Models: Software

R:

- the plm package; plm command
 - · Fits one- and two-way FE, BE, RE models
 - · Also fits first difference (FD) and instrumental variable (IV) models
- the fixest package; fast/scalable FE estimation for OLS and GLMs
- the lme4 package; command is lmer
- the nlme package; command lme
- the Paneldata package

Stata: xtreg

- option re (the default) = random effects
- option fe = fixed (within) effects
- option be = between-effects