Introduction to Artificial Intelligence with Python

Optimization

optimization

choosing the best option from a set of options

local search

search algorithms that maintain a single node and searches by moving to a neighboring node

Hill Climbing

Hill Climbing

```
function HILL-CLIMB(problem):
    current = initial state of problem
    repeat:
        neighbor = highest valued neighbor of current
        if neighbor not better than current:
        return current
        current = neighbor
```


Hill Climbing Variants

Variant	Definition
steepest-ascent	choose the highest-valued neighbor
stochastic	choose randomly from higher-valued neighbors
first-choice	choose the first higher-valued neighbor
random-restart	conduct hill climbing multiple times
local beam search	chooses the \emph{k} highest-valued neighbors

Simulated Annealing

Simulated Annealing

- Early on, higher "temperature": more likely to accept neighbors that are worse than current state
- Later on, lower "temperature": less likely to accept neighbors that are worse than current state

Simulated Annealing

```
function SIMULATED-ANNEALING(problem, max): current = initial state of problem for t = 1 to max: T = TEMPERATURE(t) neighbor = random neighbor of current \Delta E = how much better neighbor is than current if <math>\Delta E > 0: current = neighbor with probability e^{\Delta E/T} set current = neighbor return current
```

Traveling Salesman Problem

Linear Programming

Linear Programming

- Minimize a cost function $c_1x_1 + c_2x_2 + ... + c_nx_n$
- With constraints of form $a_1x_1+a_2x_2+...+a_nx_n \leq b$ or of form $a_1x_1+a_2x_2+...+a_nx_n=b$
- With bounds for each variable $l_i \le x_i \le u_i$

- Two machines X_1 and X_2 . X_1 costs \$50/hour to run, X_2 costs \$80/hour to run. Goal is to minimize cost.
- X_1 requires 5 units of labor per hour. X_2 requires 2 units of labor per hour. Total of 20 units of labor to spend.
- X_1 produces 10 units of output per hour. X_2 produces 12 units of output per hour. Company needs 90 units of output.

Cost Function: $50x_1 + 80x_2$

- X_1 requires 5 units of labor per hour. X_2 requires 2 units of labor per hour. Total of 20 units of labor to spend.
- X_1 produces 10 units of output per hour. X_2 produces 12 units of output per hour. Company needs 90 units of output.

Cost Function: $50x_1 + 80x_2$

Constraint: $5x_1 + 2x_2 \le 20$

• X_1 produces 10 units of output per hour. X_2 produces 12 units of output per hour. Company needs 90 units of output.

Cost Function: $50x_1 + 80x_2$

Constraint: $5x_1 + 2x_2 \le 20$

Constraint: $10x_1 + 12x_2 \ge 90$

Cost Function: $50x_1 + 80x_2$

Constraint: $5x_1 + 2x_2 \le 20$

Constraint: $(-10x_1) + (-12x_2) \le -90$

Linear Programming Algorithms

- Simplex
- Interior-Point

Constraint Satisfaction

Constraint Satisfaction Problem

- Set of variables $\{X_1, X_2, ..., X_n\}$
- Set of domains for each variable $\{D_1, D_2, ..., D_n\}$
- Set of constraints C

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Variables

$$\{(0, 2), (1, 1), (1, 2), (2, 0), ...\}$$

Domains

{1, 2, 3, 4, 5, 6, 7, 8, 9} for each variable

Constraints

$$\{(0, 2) \neq (1, 1) \neq (1, 2) \neq (2, 0), ...\}$$

hard constraints

constraints that must be satisfied in a correct solution

soft constraints

constraints that express some notion of which solutions are preferred over others

unary constraint

constraint involving only one variable

unary constraint

 ${A \neq Monday}$

binary constraint

constraint involving two variables

binary constraint

 $\{A \neq B\}$

node consistency

when all the values in a variable's domain satisfy the variable's unary constraints

arc consistency

when all the values in a variable's domain satisfy the variable's binary constraints

arc consistency

To make X arc-consistent with respect to Y, remove elements from X's domain until every choice for X has a possible choice for Y

Arc Consistency

```
function REVISE(csp, X, Y):

revised = false

for x in X.domain:

if no y in Y.domain satisfies constraint for (X, Y):

delete x from X.domain

revised = true

return revised
```

Arc Consistency

```
function AC-3(csp):

queue = all arcs in csp

while queue non-empty:

(X, Y) = DEQUEUE(queue)

if REVISE(csp, X, Y):

if size of X.domain == 0:

return false

for each Z in X.neighbors - {Y}:

ENQUEUE(queue, (Z, X))

return true
```


Search Problems

- initial state
- actions
- transition model
- goal test
- path cost function

CSPs as Search Problems

- initial state: empty assignment (no variables)
- actions: add a {variable = value} to assignment
- transition model: shows how adding an assignment changes the assignment
- goal test: check if all variables assigned and constraints all satisfied
- path cost function: all paths have same cost

Backtracking Search

Backtracking Search

```
function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = Select-Unassigned-Var(assignment, csp)

for value in Domain-Values(var, assignment, csp):

if value consistent with assignment:

add {var = value} to assignment

result = Backtrack(assignment, csp)

if result \neq failure: return result

remove {var = value} from assignment

return failure
```


maintaining arc-consistency

algorithm for enforcing arc-consistency every time we make a new assignment

maintaining arc-consistency

When we make a new assignment to X, calls AC-3, starting with a queue of all arcs (Y, X) where Y is a neighbor of X

```
function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = Select-Unassigned-Var(assignment, csp)

for value in Domain-Values(var, assignment, csp):

if value consistent with assignment:

add {var = value} to assignment

inferences = Inference(assignment, csp)

if inferences ≠ failure: add inferences to assignment

result = Backtrack(assignment, csp)

if result ≠ failure: return result

remove {var = value} and inferences from assignment

return failure
```

```
function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = Select-Unassigned-Var(assignment, csp)

for value in Domain-Values(var, assignment, csp):

if value consistent with assignment:

add {var = value} to assignment

inferences = Inference(assignment, csp)

if inferences ≠ failure: add inferences to assignment

result = Backtrack(assignment, csp)

if result ≠ failure: return result

remove {var = value} and inferences from assignment

return failure
```

```
function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = Select-Unassigned-Var(assignment, csp)

for value in Domain-Values(var, assignment, csp):

if value consistent with assignment:

add {var = value} to assignment

inferences = Inference(assignment, csp)

if inferences ≠ failure: add inferences to assignment

result = Backtrack(assignment, csp)

if result ≠ failure: return result

remove {var = value} and inferences from assignment

return failure
```

SELECT-UNASSIGNED-VAR

- minimum remaining values (MRV) heuristic: select the variable that has the smallest domain
- **degree** heuristic: select the variable that has the highest degree


```
function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = Select-Unassigned-Var(assignment, csp)

for value in Domain-Values(var, assignment, csp):

if value consistent with assignment:

add {var = value} to assignment

inferences = Inference(assignment, csp)

if inferences ≠ failure: add inferences to assignment

result = Backtrack(assignment, csp)

if result ≠ failure: return result

remove {var = value} and inferences from assignment

return failure
```

```
function BACKTRACK(assignment, csp):

if assignment complete: return assignment

var = Select-Unassigned-Var(assignment, csp)

for value in Domain-Values(var, assignment, csp):

if value consistent with assignment:

add {var = value} to assignment

inferences = Inference(assignment, csp)

if inferences ≠ failure: add inferences to assignment

result = Backtrack(assignment, csp)

if result ≠ failure: return result

remove {var = value} and inferences from assignment

return failure
```

DOMAIN-VALUES

- least-constraining values heuristic: return variables in order by number of choices that are ruled out for neighboring variables
 - try least-constraining values first

Problem Formulation

$$50x_1 + 80x_2$$
$$5x_1 + 2x_2 \le 20$$
$$(-10x_1) + (-12x_2) \le -90$$

Local Search Linear Programming Constraint Satisfaction

Optimization

Introduction to Artificial Intelligence with Python