Combinational Circuits

- Combinational circuit is a circuit in which we combine the different gates in the circuit, for example encoder, decoder, multiplexer and demultiplexer.
- Some of the characteristics of combinational circuits are following –
- The output of combinational circuit at any instant of time, depends only on the levels present at input terminals.

Adders

• Addition of binary bits is the most basic operation.

Diagram

Cow Adder # It able is a Shirte hit added circuit. I carry tes.

Truth table

					-6-
a	13	er'	S	C	1
0	0	0	0	0	I
0	0		-1	0	
0	1	0	_/	0	
0	•	1	0	1	
	0	0		0	
1	0	0	0	1	
1	1	ől	0	L	
11	1	1	-1	,	
	1 50000	1300001111	00	0 0 0 0	0 0 0 0 0

Kmap

Full adders using half adders

Carry calculations

Sum - AR ABABCUA ACUA Caly -> ABABCUA + ACUA ABEB Cint

Poll

- 2. Total number of inputs in a half adder is ______
- a) 2
- b) 3
- c) 4
- d) 1

Solutions

- 2. Total number of inputs in a half adder is ______
- a) 2
- b) 3
- c) 4
- d) 1

Answer: a

Explanation: Total number of inputs in a half adder is two. Since an EXOR gates has 2 inputs and carry is connected with the input of EXOR gates. The output of half-adder is also 2, them being, SUM and CARRY. The output of EXOR gives SUM and that of AND gives carry.

Poll

- 4. If A and B are the inputs of a half adder, the sum is given by ______
- a) A AND B
- b) A OR B
- c) A XOR B
- d) A EX-NOR B

- 4. If A and B are the inputs of a half adder, the sum is given by ______
- a) A AND B
- b) A OR B
- c) A XOR B
- d) A EX-NOR B

Answer: c

Explanation: If A and B are the inputs of a half adder, the sum is given by A XOR B, while the carry is given by A AND B.

Poll

- 5. If A and B are the inputs of a half adder, the carry is given by _____
- a) A AND B
- b) A OR B
- c) A XOR B
- d) A EX-NOR B

- 5. If A and B are the inputs of a half adder, the carry is given by _____
- a) A AND B
- b) A OR B
- c) A XOR B
- d) A EX-NOR B

Answer: a

Explanation: If A and B are the inputs of a half adder, the carry is given by: A(AND)B, while the sum is given by A XOR B.

POII

- The difference between half adder and full adder is _____
- a) Half adder has two inputs while full adder has four inputs
- b) Half adder has one output while full adder has two outputs
- c) Half adder has two inputs while full adder has three inputs
- d) All of the Mentioned

Solutions

- 7. The difference between half adder and full adder is ______
- a) Half adder has two inputs while full adder has four inputs
- b) Half adder has one output while full adder has two outputs
- c) Half adder has two inputs while full adder has three inputs
- d) All of the Mentioned

Answer: c

Explanation: Half adder has two inputs while full adder has three outputs; this is the difference between them, while both have two outputs SUM and CARRY.

Binary Subtractor

• Half subtractor is a combinational circuit with two inputs and two output.

The Sublish (A-B); A is called minuted bit of B is called as Subtahard bit.

Full Subtractor

A full subtractor is a **combinational circuit** that performs subtraction of two bits, one is minuend and other is subtrahend, taking into account borrow of the previous adjacent lower minuend bit. This circuit **has three inputs and two outputs**. The three inputs A, B and Bin, denote the minuend, subtrahend, and previous borrow, respectively. The two outputs, D and Bout represent the difference and output borrow, respectively.

Truth Table

From above table we can draw the K-Map as shown for "difference" and "borrow".

INPUT			OUTPUT	
Α	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Logical expression for difference -

```
= A'B'Bin + A'BBin' + AB'Bin' + ABBin
= Bin(A'B' + AB) + Bin'(AB' + A'B)
= Bin( A XNOR B) + Bin'(A XOR B)
= Bin (A XOR B)' + Bin'(A XOR B)
= Bin XOR (A XOR B)
= (A XOR B) XOR Bin
```

INPUT			OUTPUT	
A	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Logical expression for borrow -

```
Bout = A'B'Bin + A'BBin' + A'BBin + ABBin
     = A'B'Bin +A'BBin' + A'BBin + A'BBin + A'BBin + ABBin
     = A'Bin(B + B') + A'B(Bin + Bin') + BBin(A + A')
     = A'Bin + A'B + BBin
OR
Bout = A'B'Bin + A'BBin' + A'BBin + ABBin
     = Bin(AB + A'B') + A'B(Bin + Bin')
     = Bin( A XNOR B) + A'B
     = Bin (A XOR B)' + A'B
```

Diagram-Full Subtractor using Half Subtractor

Full subtractor using general logic diagram

Poll

- 1. Half subtractor is used to perform subtraction of _____
- a) 2 bits
- b) 3 bits
- c) 4 bits
- d) 5 bits

- 1. Half subtractor is used to perform subtraction of ______
- a) 2 bits
- b) 3 bits
- c) 4 bits
- d) 5 bits

Answer: a

Explanation: Half subtractor is a combinational circuit which is used to perform subtraction of two bits, namely minuend and subtrahend and produces two outputs, borrow and difference.

- 2. For subtracting 1 from 0, we use to take a _____ from neighbouring bits.
- a) Carry
- b) Borrow
- c) Input
- d) Output

- 2. For subtracting 1 from 0, we use to take a _____ from neighbouring bits.
- a) Carry
- b) Borrow
- c) Input
- d) Output

Answer: b

Explanation: For subtracting 1 from 0, we use to take a borrow from neighbouring bits because carry is taken into consideration during addition process.

3. How many outputs are required for the implementation of a subtractor?

- a) 1
- b) 2
- c) 3
- d) 4

- 3. How many outputs are required for the implementation of a subtractor?
- a) 1
- b) 2
- c) 3
- d) 4

Answer: b

Explanation: There are two outputs required for the implementation of a subtractor. One for the difference and another for borrow.

- 4. Let the input of a subtractor is A and B then what the output will be if A = B?
- a) 0
- b) 1
- c) A
- d) B

- 4. Let the input of a subtractor is A and B then what the output will be if A = B?
- a) 0
- b) 1
- c) A
- d) B

↑ View Answer

Answer: a

Explanation: The output for A = B will be 0. If A = B, it means that A = B = 0 or A = B = 1. In both of the situation subtractor gives 0 as the output.