Asymptotic regime for improperness tests of complex random vectors

ANR Ricochet, Grenoble March 25th 2022

- **F.** Chatelain⁽¹⁾, N. Le Bihan⁽¹⁾, J.H. Manton⁽²⁾
- (1) Univ. of Grenoble Alpes, CNRS, GIPSA-Lab, Grenoble, France.
- (2) The University of Melbourne, Australia.

Complex valued signals

Ocean currents

Gravitational waves

Complex valued signals

Ocean currents

Gravitational waves

Properness/Circularity

- Comon [1994],
- Picinbono [1994].

Complex valued signals

Ocean currents

Gravitational waves

Properness/Circularity

- Comon [1994],
- Picinbono [1994].

Improperness testing

- GRLT: Olila et al. [2004], Schreier et al. [2006],
- Asymptotics: Delmas et al. [2011],
- Frequency domain: Walden et al. [2017].

Context & Applications

Assumptions

- Complex vector $\mathbf{z} \in \mathbb{C}^N \leftrightarrow N$ -samples of \mathbb{C} -valued signal,
- Vectors/Signals are centered, *i.e.* $\mathbb{E}[\mathbf{z}] = 0$,
- · Gaussian case,
- ullet Sample size: M (number of independent observed signals),
- $M \ge 2N$ (sample covariance is not rank deficient).

Context & Applications

Assumptions

- Complex vector $\mathbf{z} \in \mathbb{C}^N \leftrightarrow N$ -samples of \mathbb{C} -valued signal,
- Vectors/Signals are centered, *i.e.* $\mathbb{E}[\mathbf{z}] = 0$,
- · Gaussian case,
- ullet Sample size: M (number of independent observed signals),
- $M \ge 2N$ (sample covariance is not rank deficient).

Applications[†]

- Symmetry deciphering (noise vs. signal),
- Low-rank improper signal in proper noise,
- Fluorescence imaging in complex media (Phase retrieval).

 $\ \, \uparrow\colon \text{see "Statistical Signal Processing of Complex-Valued data. The theory of improper and noncircular signals" by \textit{Schreier P. and Scharff, L.L.,} \\$

Cambridge Univ. Press, 2010.

Improperness testing

Canonical Correlation distribution

Generalized Likelihood Ratio Test

Roy's test

Spiked model/Phase transition

Simulations

Improperness testing

Canonical Correlation distribution

Generalized Likelihood Ratio Test

Roy's test

Spiked model/Phase transition

Simulations

Representation of $\mathbf{z} \in \mathbb{C}^N$

Real representation

N-dimensional complex-valued Gaussian vector $\mathbf{z} = \mathbf{u} + i\mathbf{v} \in \mathbb{C}^N$ with $\mathbf{u}, \mathbf{v} \in \mathbb{R}^N$ and $i^2 = -1$ can be represented as:

$$\mathbf{x} = [\mathbf{u}^T, \mathbf{v}^T]^T \in \mathbb{R}^{2N}$$

Representation of $\mathbf{z} \in \mathbb{C}^N$

Real representation

N-dimensional complex-valued Gaussian vector $\mathbf{z} = \mathbf{u} + i\mathbf{v} \in \mathbb{C}^N$ with $\mathbf{u}, \mathbf{v} \in \mathbb{R}^N$ and $i^2 = -1$ can be represented as:

$$\mathbf{x} = [\mathbf{u}^T, \mathbf{v}^T]^T \in \mathbb{R}^{2N}$$

Statistics

Second-order statistics of \mathbf{z} consists of the *real covariance matrix* $\mathbf{C} \in \mathbb{R}^{2N \times 2N}$ of \mathbf{x} given by:

$$\mathbf{C} = \mathbb{E}[\mathbf{x}\mathbf{x}^T] = egin{pmatrix} \mathbf{C}_{\mathbf{u}\mathbf{u}}, & \mathbf{C}_{\mathbf{u}\mathbf{v}} \ \mathbf{C}_{\mathbf{v}\mathbf{u}}, & \mathbf{C}_{\mathbf{v}\mathbf{v}} \end{pmatrix}$$

with $\mathbf{C_{ab}} = \mathbb{E}[\mathbf{ab}^T] \in \mathbb{R}^{N \times N}$ for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^N$.

Properness/Improperness

Definition

The complex vector $\mathbf{z} \in \mathbb{C}^N$ is called *proper*[†] *iff*.

$$C_{uu} = C_{vv}$$
 and $C_{uv}^T = -C_{uv}$ (1)

or *improper* otherwise.

Properness/Improperness

Definition

The complex vector $\mathbf{z} \in \mathbb{C}^N$ is called *proper*[†] *iff*.

$$C_{uu} = C_{vv}$$
 and $C_{uv}^T = -C_{uv}$ (1)

or *improper* otherwise.

 \dagger : Properness \leftrightarrow invariance by rotation \leftrightarrow decorrelation of ${f z}$ and ${f z}^H$

Properness/Improperness

Definition

The complex vector $\mathbf{z} \in \mathbb{C}^N$ is called *proper*[†] *iff*.

$$C_{uu} = C_{vv}$$
 and $C_{uv}^T = -C_{uv}$ (1)

or *improper* otherwise.

 \dagger : Properness \leftrightarrow invariance by rotation \leftrightarrow decorrelation of ${f z}$ and ${f z}^H$

Testing problem

 $\begin{cases} H_0: & \mathbf{z} \text{ is proper if condition (1) holds} \\ H_1: & \mathbf{z} \text{ is improper otherwise} \end{cases}$

Definition

Let \mathcal{G} be the set of non-singular matrices $\mathbf{G} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbf{G} = egin{pmatrix} \mathbf{G}_1 & -\mathbf{G}_2 \ \mathbf{G}_2 & \mathbf{G}_1 \end{pmatrix}, \quad ext{where} \quad \mathbf{G}_1, \mathbf{G}_2 \in \mathbb{R}^{N imes N}$$

Definition

Let \mathcal{G} be the set of non-singular matrices $\mathbf{G} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbf{G} = egin{pmatrix} \mathbf{G}_1 & -\mathbf{G}_2 \ \mathbf{G}_2 & \mathbf{G}_1 \end{pmatrix}, \quad ext{where} \quad \mathbf{G}_1, \mathbf{G}_2 \in \mathbb{R}^{N imes N}$$

Properties

• Null hypothesis H_0 is equivalent to $\mathbf{C} \in \mathcal{T} = \mathcal{S} \cap \mathcal{G}$. ($\mathcal{S} = \text{set of } 2N \times 2N$ real positive definite symmetric matrices.)

Definition

Let \mathcal{G} be the set of non-singular matrices $\mathbf{G} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbf{G} = egin{pmatrix} \mathbf{G}_1 & -\mathbf{G}_2 \ \mathbf{G}_2 & \mathbf{G}_1 \end{pmatrix}, \quad ext{where} \quad \mathbf{G}_1, \mathbf{G}_2 \in \mathbb{R}^{N imes N}$$

Properties

- Null hypothesis H_0 is equivalent to $\mathbf{C} \in \mathcal{T} = \mathcal{S} \cap \mathcal{G}$. ($\mathcal{S} = \text{set of } 2N \times 2N$ real positive definite symmetric matrices.)
- \mathcal{G} is a group, isomorphic to $GL_N(\mathbb{C})$ under the mapping $\mathbf{G} \leftrightarrow \mathbf{G}_1 + i\mathbf{G}_2$

Definition

Let \mathcal{G} be the set of non-singular matrices $\mathbf{G} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbf{G} = egin{pmatrix} \mathbf{G}_1 & -\mathbf{G}_2 \ \mathbf{G}_2 & \mathbf{G}_1 \end{pmatrix}, \quad ext{where} \quad \mathbf{G}_1, \mathbf{G}_2 \in \mathbb{R}^{N imes N}$$

Properties

- Null hypothesis H_0 is equivalent to $\mathbf{C} \in \mathcal{T} = \mathcal{S} \cap \mathcal{G}$. ($\mathcal{S} = \text{set of } 2N \times 2N$ real positive definite symmetric matrices.)
- $\mathcal G$ is a a group, isomorphic to $GL_N(\mathbb C)$ under the mapping $\mathbf G\leftrightarrow \mathbf G_1+i\mathbf G_2$
- $\mathcal G$ acts transitively on $\mathcal T$ under the action $(\mathbf G,\mathbf T)\in\mathcal G imes\mathcal T\mapsto\mathbf G\mathbf T\mathbf G^T\in\mathcal T$

Definition

Let \mathcal{G} be the set of non-singular matrices $\mathbf{G} \in \mathbb{R}^{2N \times 2N}$ s.t.

$$\mathbf{G} = egin{pmatrix} \mathbf{G}_1 & -\mathbf{G}_2 \ \mathbf{G}_2 & \mathbf{G}_1 \end{pmatrix}, \quad ext{where} \quad \mathbf{G}_1, \mathbf{G}_2 \in \mathbb{R}^{N imes N}$$

Properties

- Null hypothesis H_0 is equivalent to $\mathbf{C} \in \mathcal{T} = \mathcal{S} \cap \mathcal{G}$. ($\mathcal{S} = \text{set of } 2N \times 2N$ real positive definite symmetric matrices.)
- $\mathcal G$ is a group, isomorphic to $GL_N(\mathbb C)$ under the mapping $\mathbf G\leftrightarrow \mathbf G_1+i\mathbf G_2$
- $\mathcal G$ acts transitively on $\mathcal T$ under the action $(\mathbf G,\mathbf T)\in\mathcal G imes\mathcal T\mapsto\mathbf G\mathbf T\mathbf G^T\in\mathcal T$
- \Rightarrow Parameters to be tested should be the same for ${f C}$ and ${f G}{f C}{f G}^T$ for any ${f G}\in {\cal G}$

Definition

Consider the real symmetric $2N \times 2N$ matrix:

$$\Gamma(\mathbf{C}) = \dot{\mathbf{C}}^{-\frac{1}{2}} \ddot{\mathbf{C}} \dot{\mathbf{C}}^{-\frac{1}{2}}.$$

with $\mathbf{C} = \dot{\mathbf{C}} + \ddot{\mathbf{C}}$ and

$$\dot{\mathbf{C}} = \frac{1}{2} \begin{pmatrix} \mathbf{C}_{\mathbf{u}\mathbf{u}} + \mathbf{C}_{\mathbf{v}\mathbf{v}} & \mathbf{C}_{\mathbf{u}\mathbf{v}} - \mathbf{C}_{\mathbf{v}\mathbf{u}} \\ \mathbf{C}_{\mathbf{v}\mathbf{u}} - \mathbf{C}_{\mathbf{u}\mathbf{v}} & \mathbf{C}_{\mathbf{u}\mathbf{u}} + \mathbf{C}_{\mathbf{v}\mathbf{v}} \end{pmatrix} \in \mathcal{G},$$

$$\ddot{\mathbf{C}} = \frac{1}{2} \begin{pmatrix} \mathbf{C}_{\mathbf{u}\mathbf{u}} - \mathbf{C}_{\mathbf{v}\mathbf{v}} & \mathbf{C}_{\mathbf{u}\mathbf{v}} + \mathbf{C}_{\mathbf{v}\mathbf{u}} \\ \mathbf{C}_{\mathbf{u}\mathbf{v}} + \mathbf{C}_{\mathbf{v}\mathbf{u}} & \mathbf{C}_{\mathbf{v}\mathbf{v}} - \mathbf{C}_{\mathbf{u}\mathbf{u}} \end{pmatrix}.$$

Lemma (Invariant parameters (Andersson 1975))

Any matrix $\mathbf{C} \in \mathcal{S}$ can be written as:

$$\mathbf{C} = \mathbf{G} \begin{pmatrix} \mathbf{I}_N + \mathbf{D}_{\lambda} & 0 \\ 0 & \mathbf{I}_N - \mathbf{D}_{\lambda} \end{pmatrix} \mathbf{G}^T,$$

where

- G ∈ G,
- $\mathbf{D}_{\lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$,
- λ_n : non-negative eigenvalues of $\Gamma(\mathbf{C})$.
- $\lambda_n \in [0,1]$ and ordering: $1 \ge \lambda_1 \ge \ldots \ge \lambda_N \ge 0$.

Back to the improperness test

Invariant parametrization

- Invariant parameterization of \mathbf{C} for the group action of \mathcal{G} depends only on the N (non-negative) eigenvalues $1 \geq \lambda_1 \geq \ldots \geq \lambda_N \geq 0$ of $\Gamma(\mathbf{C})$.
- Eigenvalues λ_n are termed maximal invariant parameters or population canonical correlation coefficients.
- Under the null hypothesis H_0 : \ddot{C} reduces to the zero matrix.

Back to the improperness test

Invariant parametrization

- Invariant parameterization of \mathbf{C} for the group action of \mathcal{G} depends only on the N (non-negative) eigenvalues $1 \geq \lambda_1 \geq \ldots \geq \lambda_N \geq 0$ of $\Gamma(\mathbf{C})$.
- Eigenvalues λ_n are termed maximal invariant parameters or population canonical correlation coefficients.
- ullet Under the null hypothesis H_0 : \ddot{C} reduces to the zero matrix.

Test reformulation

The invariant properness testing problem is thus:

$$\begin{cases} H_0: & \mathbf{z} \text{ is } \underline{proper} \text{ if } \lambda_1 = 0 \\ H_1: & \mathbf{z} \text{ is } \underline{improper} \text{ otherwise} \end{cases}$$
 (2)

Invariant statistics

Dataset

Consider we are given a sample of size $M \geq 2N$, denoted $\{\mathbf{x}_m\}_{m=1}^M$ where $\mathbf{x}_m = [\mathbf{u}_m^T, \mathbf{v}_m^T]^T$ are 2N-dimensional i.i.d. Gaussian real vectors with zero mean and covariance matrix \mathbf{C} .

Invariant statistics

Dataset

Consider we are given a sample of size $M \geq 2N$, denoted $\{\mathbf{x}_m\}_{m=1}^M$ where $\mathbf{x}_m = [\mathbf{u}_m^T, \mathbf{v}_m^T]^T$ are 2N-dimensional i.i.d. Gaussian real vectors with zero mean and covariance matrix \mathbf{C} .

Sample canonical correlation coefficients

The sample covariance matrix $\mathbf{S} \in \mathbb{R}^{2N \times 2N}$ is:

$$\mathbf{S} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{x}_m \mathbf{x}_m^T = \begin{pmatrix} \mathbf{S}_{\mathbf{u}\mathbf{u}}, & \mathbf{S}_{\mathbf{u}\mathbf{v}} \\ \mathbf{S}_{\mathbf{v}\mathbf{u}}, & \mathbf{S}_{\mathbf{v}\mathbf{v}} \end{pmatrix} = \dot{\mathbf{S}} + \ddot{\mathbf{S}}$$

 \Rightarrow Invariant statistics depend on the N non-negative eigenvalues of $\Gamma(\mathbf{S}),$ denoted l_n

Invariant statistics

Dataset

Consider we are given a sample of size $M \geq 2N$, denoted $\{\mathbf{x}_m\}_{m=1}^M$ where $\mathbf{x}_m = [\mathbf{u}_m^T, \mathbf{v}_m^T]^T$ are 2N-dimensional i.i.d. Gaussian real vectors with zero mean and covariance matrix \mathbf{C} .

Sample canonical correlation coefficients

The sample covariance matrix $\mathbf{S} \in \mathbb{R}^{2N \times 2N}$ is:

$$\mathbf{S} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{x}_m \mathbf{x}_m^T = \begin{pmatrix} \mathbf{S}_{\mathbf{u}\mathbf{u}}, & \mathbf{S}_{\mathbf{u}\mathbf{v}} \\ \mathbf{S}_{\mathbf{v}\mathbf{u}}, & \mathbf{S}_{\mathbf{v}\mathbf{v}} \end{pmatrix} = \dot{\mathbf{S}} + \ddot{\mathbf{S}}$$

 \Rightarrow Invariant statistics depend on the N non-negative eigenvalues of $\Gamma(\mathbf{S}),$ denoted l_n

Sample canonical correlation coefficients $r_n = l_n^2$

Improperness testing

Canonical Correlation distribution

Generalized Likelihood Ratio Test

Roy's test

Spiked model/Phase transition

Simulations

Canonical correlation distribution I

Limiting marginal empirical distribution under H_0

As $M, N \to \infty$ with the ratio $M/N \to \gamma \in [2, +\infty)$ being finite, the marginal empirical distribution of the (unsorted) r_n converges, under H_0 , to the probability measure with density:

$$f(r) = \frac{1}{2\pi(1-r)}\sqrt{4(\gamma-1)\frac{1-r}{r} - (\gamma-2)^2}$$

on its support $r \in (0, c)$, with $c = \frac{4(\gamma - 1)}{\gamma^2} \in (0, 1]$.

PS: Joint distribution of vector (r_1, \ldots, r_N) known (eigenvalues of matrix-variate beta) but no closed-form.

Canonical correlation distribution II

Moments

Under H_0 , mean and variance of the limiting distribution of the unsorted r_n are:

- $E[r_n] = 1/\gamma$,
- $\operatorname{var}(r_n) = (\gamma 1)/\gamma^3$.

Remarks

- When $\gamma \to +\infty$, $r_n \xrightarrow{a.s.} 0$ (usual behavior in small dimension, *i.e.* fixed N and $M \to +\infty$)
- When $\gamma=2$, $r_n\stackrel{d}{\to}\mathcal{B}(\frac{1}{2},\frac{1}{2})$ (arcsine law)

H_0 : Limiting empirical distribution of r_n

Blue: N=100, White: N=10, Red: Limiting distribution f(r).

Improperness testing

Canonical Correlation distribution

Generalized Likelihood Ratio Test

Roy's test

Spiked model/Phase transition

Simulations

Generalized Likelihood Test I

GLRT

Given the sample $\mathbf{X} = \{\mathbf{x}_m\}_{m=1}^M$, the GLRT statistic is defined as:

$$T \propto \frac{\mathbf{c} \sup_{\mathrm{s.t.} H_0} \quad p(\mathbf{X} \, ; \, \mathbf{C})}{\mathbf{c} \sup_{\mathrm{s.t.} H_1} \quad p(\mathbf{X} \, ; \, \mathbf{C})},$$

where $p(\mathbf{X}; \mathbf{C})$ is the multivariate normal pdf of the sample \mathbf{X} composed of M i.i.d. 2N-dimensional real Gaussian vectors with zero mean and covariance matrix \mathbf{C} .

$$\hookrightarrow H_0$$
 is rejected if $T > \eta_{\alpha}$ $\eta_{\alpha} : H_0 \text{ law} + PFA$

Generalized Likelihood Test I

GLRT

Given the sample $\mathbf{X} = \{\mathbf{x}_m\}_{m=1}^M$, the GLRT statistic is defined as:

$$T \propto \frac{\mathbf{c} \sup_{\mathbf{s.t.} H_0} p(\mathbf{X}; \mathbf{C})}{\mathbf{c} \sup_{\mathbf{s.t.} H_1} p(\mathbf{X}; \mathbf{C})},$$

where $p(\mathbf{X}\,;\,\mathbf{C})$ is the multivariate normal pdf of the sample \mathbf{X} composed of M i.i.d. 2N-dimensional real Gaussian vectors with zero mean and covariance matrix \mathbf{C} .

$$\hookrightarrow H_0$$
 is rejected if $T > \eta_{\alpha}$ $\eta_{\alpha} : H_0 \text{ law} + PFA$

GLRT Statistics

$$T = \prod_{n=1}^{N} (1 - r_n)$$

with r_n the N sample covariance correlation coefficients.

Generalized Likelihood Test II

Theorem

The GLRT statistics T is distributed under H_0 as the following Wilks lambda distribution:

$$T \sim \Lambda(N, M - N, N + 1).$$

Moreover this statistics can be expressed under H_0 as:

$$T = \prod_{n=1}^{N} u_n,$$

where the u_n are independent beta-distributed random variables[†] such that $u_n \sim \mathcal{B}\left(\frac{M-N-n+1}{2},\frac{N+1}{2}\right)$, for $1 \leq n \leq N$.

 $\dagger :$ Allows efficient sampling (O(N)) from the null hypotesis of T.

Generalized Likelihood Test III

Theorem (Central limit theorem in high dimension)

Let $T'=-\ln T$ where T is the GLRT statistic. Assume that $M,N\to\infty$ so that the ratio $M/N\to\gamma\in(2,+\infty)$. Under H_0 , the following asymptotic normal distribution is obtained for T':

$$\frac{1}{s}\left(T'-m\right) \xrightarrow{d} \mathcal{N}(0,1)$$

where:

•
$$m = M \left[\ln \frac{\gamma}{\gamma - 1} + \frac{\gamma - 2}{\gamma} \ln \frac{\gamma - 2}{\gamma - 1} \right] + \frac{1}{2} \ln \frac{\gamma}{\gamma - 2}$$
,

•
$$s^2 = 2 \left[\ln \frac{(\gamma - 1)^2}{\gamma(\gamma - 2)} + \frac{1}{M} \frac{1}{\gamma - 2} \right].$$

Generalized Likelihood Test III

Theorem (Central limit theorem in high dimension)

Let $T'=-\ln T$ where T is the GLRT statistic. Assume that $M,N\to\infty$ so that the ratio $M/N\to\gamma\in(2,+\infty)$. Under H_0 , the following asymptotic normal distribution is obtained for T':

$$\frac{1}{s}\left(T'-m\right) \xrightarrow{d} \mathcal{N}(0,1)$$

where:

•
$$m = M \left[\ln \frac{\gamma}{\gamma - 1} + \frac{\gamma - 2}{\gamma} \ln \frac{\gamma - 2}{\gamma - 1} \right] + \frac{1}{2} \ln \frac{\gamma}{\gamma - 2}$$
,

•
$$s^2 = 2 \left[\ln \frac{(\gamma - 1)^2}{\gamma(\gamma - 2)} + \frac{1}{M} \frac{1}{\gamma - 2} \right].$$

Remark

This CLT theorem provides a debiased version of the *low dimensional* Bartlett approximation (N fixed, $M \to \infty$).

Improperness testing

Canonical Correlation distribution

Generalized Likelihood Ratio Test

Roy's test

Spiked model/Phase transition

Simulations

Roy's test

Principle

This test relies on the statistics of the largest eigenvalue: here, the statistics of the largest squared canonical correlation $r_1 = l_1^2$.

$$\Rightarrow$$
 reject H_0 as soon as $r_1 > \eta_{lpha}$

Threshold η_{α} tuned according to the law of r_1 under H_0 and PFA α .

Roy's test

Principle

This test relies on the statistics of the largest eigenvalue: here, the statistics of the largest squared canonical correlation $r_1=l_1^2$.

$$\Rightarrow$$
 reject H_0 as soon as $r_1 > \eta_{\alpha}$

Threshold η_{α} tuned according to the law of r_1 under H_0 and PFA α .

Theorem (Limiting null distribution for Roy's test)

As $M, N \to \infty$ such that the ratio $M/N \to \gamma \in [2, +\infty)$ is finite, let $W = \log{(r_1/(1-r_1))}$ be the logit transform of r_1 . Under H_0 , the asymptotic law of W converges towards a first order Tracy-Widom law denoted as \mathcal{TW}_1 :

$$\frac{W-\mu}{\sigma} \to \mathcal{TW}_1,$$

with appropriate/tedious parameters $\mu(M,N)$ and $\sigma(M,N)$.

Improperness testing

Canonical Correlation distribution

Generalized Likelihood Ratio Test

Roy's test

Spiked model/Phase transition

Simulations

Spiked correlation model

Phase transition threshold

Recalling that $\gamma = M/N$, assume that $\lambda_1 \ge \cdots \ge \lambda_k > 0$, and $\lambda_{k+1} = \cdots = \lambda_N = 0$ (fixed k), then for $1 \le n \le k$:

if
$$\lambda_n^2 \le \rho_c$$
, $r_n \xrightarrow{a.s.} c$
if $\lambda_n^2 > \rho_c$, $r_n \xrightarrow{a.s.} \overline{\rho}_n$

- $\rho_c = \frac{1}{\gamma 1}$ is the phase transition threshold,
- ullet $\overline{
 ho}_n=\lambda_n^2\left(rac{\gamma-1}{\gamma}+rac{1}{\gamma\lambda_n^2}
 ight)^2$ is the limiting value,
- c is the right edge of the H_0 bulk.

Improperness testing

Canonical Correlation distribution

Generalized Likelihood Ratio Test

Roy's test

Spiked model/Phase transition

Simulations

Simulation Scenario I: Equi-correlated model

Equal canonical correlation coefficients

Real and imaginary part of z_m are:

$$\mathbf{u}_m = \mathbf{s}_m + \sqrt{\theta} \mathbf{q}_m,$$
$$\mathbf{v}_m = \mathbf{t}_m + \sqrt{\theta} \mathbf{q}_m,$$

where $\theta > 0$, \mathbf{s}_m , \mathbf{t}_m and \mathbf{q}_m are i.i.d. Gaussian vectors in \mathbb{R}^N , for $1 \leq m \leq M$.

 \Rightarrow Population canonical correlations $\lambda_1,\ldots,\lambda_N$, are all equal to $\lambda\equiv\frac{\theta}{1+\theta}$.

Simulation Scenario I: Equi-correlated model

Power of Roy's test [solid line] and GLRT [dashdotted line] vs λ^2 under the equi-correlated model (N=100, PFA $\alpha=0.01$).

Simulation Scenario II: Spiked model

Spike correlation model

Real and imaginary parts of z_m have a common contribution of rank one: Low-rank improper signal corrupted by proper noise, for $1 \le m \le M$:

$$\mathbf{u}_m = \mathbf{s}_m + \sqrt{\theta} w_m \boldsymbol{\varphi}$$
$$\mathbf{v}_m = \mathbf{t}_m + \sqrt{\theta} w_m \boldsymbol{\varphi}$$

- $\theta > 0$, $\varphi \in \mathbb{R}^N$ is a normed vector s.t. $||\varphi||_2 = 1$,
- ullet w_m are i.i.d. Gaussian centered random variables with unit variance,
- ullet \mathbf{s}_m , \mathbf{t}_m are Gaussian i.i.d . vectors in \mathbb{R}^N ,

$$\Longrightarrow \lambda_1 = \frac{\theta}{1+\theta}$$
 (spike), $\lambda_2 = \cdots = \lambda_N = 0$.

Simulation Scenario II: Spiked model

Histograms of r_n under the spiked Gaussian model for different spike magnitude λ_1 . ($N=100,\ \gamma=5$ and $\rho_c=0.25$.)

Simulation Scenario II: Spiked model

Power of Roy's test [solid line] and GLRT [dashdotted line] vs λ_1^2 under the spiked correlation model ((N=100, PFA $\alpha=0.01$)).

Concluding remarks

Results for $M, N \to \infty$ and finite ratio $M/N \to \gamma \in [2, +\infty)$

- Statistics/CLT for the GLRT,
- Statistics of the Roy's test,
- Spiked model and phase transition.

Future work

- Quaternion-valued vectors/signals
- Random/Structured approximation