Yet another variant of Curry's paradox (after Restall)

Robin Houston

May 24, 2009

The setup

A naïve set theory with membership (\in) and subset (\subseteq) predicates that satisfy the natural deduction rules below. This is enough to reduce the theory to triviality, assuming only that the ambient logic admits contraction.

The rules

$$\frac{\phi(t)}{t \in \{x \mid \phi(x)\}} \, [\in I] \qquad \frac{t \in \{x \mid \phi(x)\}}{\phi(t)} \, [\in E] \qquad \frac{x \in A \quad A \subseteq B}{x \in B} \, [\subseteq E] \qquad \frac{x \in B}{A \subseteq B} \, [\subseteq I]$$

The proof

Fix some arbitrary γ and Δ , and let $P = \{x \mid \{y \mid x \in x\} \subseteq \Delta\}$. Now we can deduce $\gamma \in \Delta$:

$$\frac{[x \in \{y \mid P \in P\}]^*}{P \in P} [\in E]$$

$$\frac{[x \in \{y \mid P \in P\}]^*}{\{y \mid P \in P\} \subseteq \Delta} [\in E]$$

$$\frac{x \in \Delta}{\{y \mid P \in P\} \subseteq \Delta} [\subseteq I]^*$$

$$\frac{[x \in \{y \mid P \in P\}]^{\dagger}}{P \in P} [\in E]$$

$$\frac{[x \in \{y \mid P \in P\}]^{\dagger}}{P \in P} [\in E]$$

$$\frac{[x \in \{y \mid P \in P\}]^{\dagger}}{P \in P} [\in E]$$

$$\frac{[x \in \{y \mid P \in P\}]^{\dagger}}{\{y \mid P \in P\} \subseteq \Delta} [\in E]$$

$$\frac{[x \in \{y \mid P \in P\}]^{\dagger}}{P \in P} [\in E]$$

$$\frac{[x \in \{y \mid P \in P\}]^{\dagger}}{\{y \mid P \in P\} \subseteq \Delta} [\subseteq E]$$

$$\gamma \in \Delta$$