Robótica Móvil un enfoque probabilístico

SLAM: Localización y Mapeo Simultáneo

Ignacio Mas

¿Qué es SLAM?

- Estimar la pose del robot y el mapa del entorno al mismo tiempo
- SLAM es difícil, porque:
 - Se necesita un mapa para localización
 - Una buena estimación de pose es necesaria para hacer mapeo
- Localización: Inferir pose dado un mapa
- Mapeo: inferir un mapa dadas las poses
- SLAM: Aprender un mapa y localizar el robot en el mapa simultáneamente

El problema del SLAM

- SLAM se considera un problema estilo "El huevo y la gallina" :
 - → Necesito mapa par localizar y
 - → Necesito una estimación de pose para hacer un mapa

Aplicaciones de SLAM

 SLAM es central en aplicaciones de interiores y exteriores, en tierra, aire, ambiente submarino para vehículos tripulados y no tripulados.

Ejemplos:

- Domésticos: aspiradoras, cortadoras de césped
- Aire: vigilancia con UAVs
- Submarino: monitoreo de corales
- Bajo tierra: exploración de minas
- Espacial: mapeo de terreno para geolocalización
- Cualquier aplicación que necesite de mapas

Aplicaciones de SLAM

Representaciones de Mapas

Ejemplos: Mapa de subte, mapa de ciudad, mapa basado en landmarks

Los mapas son modelos **topológicos** y/o **métricos** del entorno

Representaciones de mapas en robótica

Mapas de grilla o escaneos, 2d, 3d

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01; Grisetti et al., 05; ...]

Basado en landmarks

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...

El problema del SLAM

- SLAM es considerado un problema fundamental para que los robots sean verdaderamente autónomos
- Se han desarrollado una gran variedad de métodos de SLAM
- La mayoría usa conceptos probabilísticos
- Los trabajos comenzaron a mediados de los 80s

SLAM basado en Features

Dados:

Señales de control de robot

$$U_{1:k} = \{u_1, u_2, \dots, u_k\}$$

Observaciones relativas

$$oldsymbol{Z}_{1:k} = \{oldsymbol{z}_1, oldsymbol{z}_2, \dots, oldsymbol{z}_k\}$$

Buscamos:

- Un mapa de features $m{m} = \{m{m}_1, m{m}_2, \dots, m{m}_n\}$
- El recorrido del robot

$$oldsymbol{X}_{1:k} = \{oldsymbol{x}_1, oldsymbol{x}_2, \ldots, oldsymbol{x}_k\}$$

SLAM Basado en Features

- Poses de robot absolutas
- Posiciones de landmarks absolutas
- Pero solo
 mediciones
 relativas de
 landmarks

¿Por qué SLAM es un problema difícil?

SLAM: el camino del robot y el mapa son ambos **desconocidos!**

El error en la ubicación del robot se correlaciona con errores en el mapa

¿Por qué SLAM es un problema difícil?

- El mapeo entre observaciones y landmarks es desconocido
- La asociación de datos incorrecta puede tener consecuencias graves (divergencia)

SLAM: Localización y mapeo simultáneo

Full SLAM:

$$p(x_{0:t}, m | z_{1:t}, u_{1:t})$$

Estima el trayecto completo y el mapa

Online SLAM:

$$p(x_{t}, m \mid z_{1:t}, u_{1:t}) = \int \int ... \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_{1} dx_{2} ... dx_{t-1}$$

Estima la pose más reciente y el mapa

 Las integraciones (marginalizaciones) se hacen recursivamente

Modelo gráfico de Full SLAM

$$p(x_{1:t+1}, m \mid z_{1:t+1}, u_{1:t+1})$$

Modelo gráfico de Online SLAM

$$p(x_{t+1}, m \mid z_{1:t+1}, u_{1:t+1}) = \int \int \dots \int p(x_{1:t+1}, m \mid z_{1:t+1}, u_{1:t+1}) dx_1 dx_2 \dots dx_t$$

Modelo de movimiento y observación

"Modelo de observación"

Repaso de algoritmo KF

- 1. Algoritmo **Kalman_filter**(μ_{t-1} , Σ_{t-1} , u_t , z_t):
- 2. Predicción:

3.
$$\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}\mu_{t}$$

$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

- 5. Corrección:
- $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$
- 7. $\mu_{t} = \mu_{t} + K_{t}(z_{t} C_{t}\mu_{t})$
- $\mathbf{8.} \qquad \Sigma_t = (I K_t C_t) \Sigma_t$
- 9. Return μ_t , Σ_t

SLAM EKF: Representación de estados

Localización

vector de pose 3x1 Matriz de cov. 3x3
$$\mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \\ \theta_k \end{bmatrix}$$
 $\Sigma_k = \begin{bmatrix} \sigma_x^2 & \sigma_{xy}^2 & \sigma_{x\theta}^2 \\ \sigma_{yx}^2 & \sigma_y^2 & \sigma_{y\theta}^2 \\ \sigma_{\theta x}^2 & \sigma_{\theta y}^2 & \sigma_{\theta}^2 \end{bmatrix}$

SLAM

Los landmarks extienden el estado.

Crece el vector de estados y la matriz de covarianza!

$$\mathbf{x}_{k} = \begin{bmatrix} \mathbf{x}_{R} \\ \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \vdots \\ \mathbf{m}_{n} \end{bmatrix} \quad \Sigma_{k} = \begin{bmatrix} \Sigma_{R} & \Sigma_{RM_{1}} & \Sigma_{RM_{2}} & \cdots & \Sigma_{RM_{n}} \\ \Sigma_{M_{1}R} & \Sigma_{M_{1}} & \Sigma_{M_{1}M_{2}} & \cdots & \Sigma_{M_{1}M_{n}} \\ \Sigma_{M_{2}R} & \Sigma_{M_{2}M_{1}} & \Sigma_{M_{2}} & \cdots & \Sigma_{M_{2}M_{n}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Sigma_{M_{n}R} & \Sigma_{M_{n}M_{1}} & \Sigma_{M_{n}M_{2}} & \cdots & \Sigma_{M_{n}} \end{bmatrix}$$

SLAM EKF: Representación de estados

 Mapa con n landmarks: Gaussiana de dimension (3+2n)

Pueden manejarse cientos de dimensiones

SLAM EKF: Ciclo de Filtro

- 1. Predicción de estado (odometría)
- 2. Predicción de la medición
- 3. Medición
- 4. Asociación de datos
- 5. Actualización
- 6. Integración de nuevas landmarks

SLAM EKF: Ciclo de Filtro

- 1. Predicción de estado (odometría)
- 2. Predicción de la medición
- 3. Medición
- 4. Asociación de datos
- 5. Actualización
- 6. Integración de nuevas landmarks

SLAM EKF: Predicción de estado

Odometría:

Predicción de croscovarianza robot-landmark:

$$\hat{\Sigma}_{RM_i} = F_x \Sigma_{RM_i}$$

SLAM EKF: Predicción de medición

Transformación de terna Global a Local h

$$\hat{\mathbf{z}}_k = h(\hat{\mathbf{x}}_k)$$

$$\begin{bmatrix} \mathbf{x}_R \\ \mathbf{m}_1 \\ \vdots \\ \mathbf{m}_n \end{bmatrix} \begin{bmatrix} \Sigma_R & \Sigma_{RM_1} & \dots & \Sigma_{RM_n} \\ \Sigma_{M_1R} & \Sigma_{M_1} & \dots & \Sigma_{M_1M_n} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{M_nR} & \Sigma_{M_nM_1} & \dots & \Sigma_{M_n} \end{bmatrix}$$

SLAM EKF: Medición Obtenida

landmark en punto (x,y)

$$\mathbf{z}_k = \left[egin{array}{c} x_1 \ y_1 \ x_2 \ y_2 \end{array}
ight] = \left[egin{array}{c} \mathbf{z}_1 \ \mathbf{z}_2 \end{array}
ight]$$

$$R_k = \left[\begin{array}{cc} R_1 & 0 \\ 0 & R_2 \end{array} \right]$$

$$\begin{bmatrix} \mathbf{x}_R \\ \mathbf{m}_1 \\ \vdots \\ \mathbf{m}_n \end{bmatrix} \begin{bmatrix} \Sigma_R & \Sigma_{RM_1} & \dots & \Sigma_{RM_n} \\ \Sigma_{M_1R} & \Sigma_{M_1} & \dots & \Sigma_{M_1M_n} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{M_nR} & \Sigma_{M_nM_1} & \dots & \Sigma_{M_n} \end{bmatrix}$$

SLAM EKF: Asociación de Datos

Asocia la medición predicha $\hat{\mathbf{z}}_k^i$ con la observación \mathbf{z}_k^j

?
$$\nu_k^{ij} = \mathbf{z}_k^j - \hat{\mathbf{z}}_k^i$$
 $S_k^{ij} = R_k^j + H^i \hat{\Sigma}_k H^{iT}$

$$\begin{bmatrix} \mathbf{x}_R \\ \mathbf{m}_1 \\ \vdots \\ \mathbf{m}_n \end{bmatrix} \begin{bmatrix} \Sigma_R & \Sigma_{RM_1} & \dots & \Sigma_{RM_n} \\ \Sigma_{M_1R} & \Sigma_{M_1} & \dots & \Sigma_{M_1M_n} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{M_nR} & \Sigma_{M_nM_1} & \dots & \Sigma_{M_n} \end{bmatrix}$$

SLAM EKF: Paso de Actualización

Las expresiones típicas del filtro de Kalman

 μ

$$K_k = \hat{\Sigma}_k H^T S_k^{-1}$$

$$\mathbf{x}_k = \hat{\mathbf{x}}_k + K_k \nu_k$$

$$C_k = (I - K_k H) \hat{\Sigma}_k$$

SLAM EKF: Nuevas Landmarks

Estado aumentado por

$$\mathbf{m}_{n+1} = g(\mathbf{x}_R, \mathbf{z}_j)$$

$$\Sigma_{M_{n+1}} = G_R \Sigma_R G_R^T + G_z R_j G_z^T$$

Covarianzas cruzadas:

$$\Sigma_{M_{n+1}M_i} = G_R \Sigma_{RM_i}$$
$$\Sigma_{M_{n+1}R} = G_R \Sigma_R$$

$oxed{\mathbf{x}_R}$	Σ_R	Σ_{RM_1}		Σ_{RM_n}	$\Sigma_{RM_{n+1}}$
\mathbf{m}_1	Σ_{M_1R}	Σ_{M_1}		$\Sigma_{M_1 M_n}$	$\sum_{M_1 M_{n+1}}$
	: :	:	٠.	: :	
\mathbf{m}_n	$\sum_{M_n R}$	$\sum_{M_n M_1}$		Σ_{M_n}	$\sum_{M_n M_{n+1}}$
$\lfloor \mathbf{m}_{n+1} \rfloor$	$\sum_{M_{n+1}R}$	$\sum_{M_{n+1}M_1}$	• • •	$\sum_{M_{n+1}M_n}$	$\sum_{M_{n+1}}$

SLAM EKF

Mapa

Matriz de Correlación

SLAM EKF

Mapa

Matriz de Correlación

SLAM EKF

Mapa

Matriz de Correlación

SLAM EKF: Las correlaciones son importantes

Qué pasa si despreciamos las correlaciones

cruzadas?
$$\Sigma_k = \begin{bmatrix} \Sigma_R & 0 & \cdots & 0 \\ 0 & \Sigma_{M_1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Sigma_{M_n} \end{bmatrix} \qquad \Sigma_{RM_i} = \mathbf{0}_{3\times 2}$$

$$\Sigma_{M_iM_{i+1}} = \mathbf{0}_{2\times 2}$$

$$\Sigma_{RM_i} = \mathbf{0}_{3\times 2}$$

$$\Sigma_{M_i M_{i+1}} = \mathbf{0}_{2 \times 2}$$

SLAM EKF: Las correlaciones son importantes

Qué pasa si despreciamos las correlaciones

cruzadas?
$$\Sigma_k = \begin{bmatrix} \Sigma_R & 0 & \cdots & 0 \\ 0 & \Sigma_{M_1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Sigma_{M_n} \end{bmatrix} \qquad \Sigma_{RM_i} = \mathbf{0}_{3\times 2}$$

$$\Sigma_{RM_i} = \mathbf{0}_{3 \times 2}$$

- Las incertezas de landmarks y robot son demasiado optimistas
- La asociación de datos fallaría
- Múltiples entradas en el mapa del mismo landmark
- Mapa inconsistente

SLAM: Cierre del lazo (Loop Closure)

- Reconocer un área ya mapeada, en general, después de una vuelta de exploración (el robot "cierra el lazo")
- Estructuralmente igual a la asociación de datos, pero
 - Altos niveles de ambigüedad
 - Simetrías del entorno
- Las incertezas colapsan después de cerrar un lazo (ya sea un cierre correcto o no)

SLAM: Cierre del Lazo

Antes del cierre del lazo

SLAM: Cierre del Lazo

Antes del cierre del lazo

SLAM: Cierre del Lazo

Después del cierre del lazo

SLAM: Cierre del Lazo

- Al revisitar áreas ya mapeadas, las incertezas en la estimación del robot y los landmarks se reduce
- Esto puede usarse cuando se explora un entorno para obtener mejores mapas (más precisos)
- Exploración: el problema de dónde adquirir nueva información
- → Luego veremos más de este tema

SLAM-KF: Propiedades (Caso Lineal)

 El determinante de cualquier sub-matriz de la matriz de covarianza del mapa disminuye monótonamente al agregar observaciones sucesivas

- Cuando una nueva landmark es inicializada, su incerteza es maxima
- La incerteza del landmark disminuye monótonamente con cada nueva observación

SLAM-KF Propiedades (Caso Lineal)

 En el límite, las estimaciones de landmarks están totalmente correlacionadas

SLAM-KF Propiedades (Caso Lineal)

 En el límite, la covarianza asociada a la estimación de posición de cada landmark está determinada sólo por la covarianza inicial en la estimación de la posición del vehículo.

SLAM EKF - Ejemplo: Victoria Park Dataset

Victoria Park: Toma de datos

Victoria Park: Trayectoria Estimada

[cortesía de E. Nebot]

Victoria Park: Landmarks

[cortesía de E. Nebot]

SLAM EKF: Ejemplo Cancha de tenis

SLAM EKF: Ejemplo Cancha de tenis

odometría

Estimación de Landmarks

[cortesía de John Leonard]

Ejemplo SLAM EKF: Features de líneas

 KTH Bakery Data Set 156 -15 -20 -25 -30 [Wulf et al., ICRA 04]

SLAM-EKF: Complejidad

- Costo por paso: O(n²), donde n es el número de landmarks:
- Costo total para hacer un mapa con n landmarks:
 O(n³)
- Consumo de memoria: O(n²)
- Problema: Se hace computacionalmente intratable para mapas grandes!
- Existen variantes para evitar esto

Técnicas de SLAM

- SLAM EKF
- FastSLAM
- Basado en grafos (graph-based SLAM)
- SLAM topológico (reconocimiento de lugares)
- Macheo de escaneos / odometría visual (mapas localmente consistentes)
- Aproximaciones de SLAM: sub-mapas locales,
 filtros de información extendidos ralos, links ralos...

• ...

SLAM EKF: Resumen

- La primera solución al SLAM
- Se puede probar convergencia para el caso lineal gaussiano
- Puede divergir si las no-linealidades son grandes (y el mundo es no-lineal...)
- Solo puede lidiar con un solo modo
- Exitoso para entornos de mediana escala
- Existen aproximaciones para reducir la complejidad computacional