SfePy Documentation

March 26, 2008

Contents

1	Not	ation	2
2	\mathbf{List}	of all terms	3
3	Intr 3.1	roduction Term call syntax	5
	3.1	Term can syntax	9
4	Teri	ms in termsMass	5
	4.1	dw_mass	5
	4.2	dw_mass_scalar	6
	4.3	dw_mass_scalar_fine_coarse	6
	4.4	dw_mass_scalar_r	6
	4.5	dw_mass_vector	6
5	Teri	ms in termsBasic	7
0	5.1	d_surface_dot	7
	5.2	d_surface_integrate	7
	5.3	d_volume	7
	5.4	d_volume_dot	7
	5.5	d_volume_integrate	7
	5.6	d_volume_wdot	7
	5.7	di_volume_integrate_mat	8
	5.8	dw_volume_integrate	8
	5.9	dw_volume_wdot	8
	5.10	$dw_volume_wdot_r $	9
6	Teri	ms in termsLaplace	9
Ū	6.1	dw_laplace	9
	0.1		
7	Teri	ms in termsNavierStokes	9
	7.1	d_div	9
	7.2	$\mathrm{dq_grad} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	9
	7.3	dq_lin_convect	10
	7.4	dw_convect	10
	7.5	dw_div	10
	7.6	dw_div_grad	10
	7.7	dw_div_r	10
	7.8	dw_grad	10
	7.9	dw_gradDt	11
		dw_lin_convect	11
	7.11	dw_st_grad_div	11

	7.12 dw_st_pspg_c	11
	7.13 dw_st_pspg_p	11
	7.14 dw_st_supg_c	12
	7.15 dw_st_supg_p	12
8	Terms in termsPoint	12
	8.1 dw_point_lspring	12
9	Terms in termsVolume	12
	9.1 dw_volume_lvf	12
10	Terms in termsSurface	12
	10.1 dw_surface_ltr	12
11	Terms in termsLinElasticity	13
	11.1 d_lin_elastic	13
	11.2 de_cauchy_strain	13
	11.3 de_cauchy_stress	13
	11.4 dw_lin_elastic	13
	11.5 dw_lin_elastic_iso	13
	11.6 dw_lin_elastic_r	14
	11.7 dw_lin_viscous	14
12	Terms in termsSpecial	14
	12.1 dw_mass_scalar_variable	14
13	Term caches in cachesBasic	14
	13.1 cauchy_strain	14
	13.2 div_vector	15
	13.3 grad_scalar	15
	13.4 mat_in_qp	15
	13.5 state_in_surface_qp	15
	13.6 state_in_volume_qp	15
	13.7 volume	15

1 Notation

Ω	volume (sub)domain	
Γ	surface (sub)domain	
t	time	
y	any function	
\underline{y}	any vector function	
<u>n</u>	unit outward normal	
q, s	scalar test function	
p, r	scalar unknown or parameter function	
\bar{p}	scalar parameter function	
\underline{v}	vector test function	
$continued. \dots$		

$\dots continued$		
$\underline{w}, \underline{u}$	vector unknown or parameter function	
<u>b</u>	vector parameter function	
$\underline{\underline{e}}(\underline{u})$	Cauchy strain tensor $(\frac{1}{2}((\nabla u) + (\nabla u)^T))$	
\underline{f}	vector volume forces	
ρ	density	
ν	kinematic viscosity	
c	any constant	
$\delta_{ij}, \underline{\underline{I}}$	Kronecker delta, identity matrix	

The suffix $"_0"$ denotes a quatity related to a previous time step. Term names are prefixed according to the following conventions:

dw	discrete weak	terms having a virtual (test) argument and zero or more unknown arguments, used for FE assembling
d	discrete	terms having all arguments known, the result is the scalar value of the integral
di	discrete integrated	like 'd' but the result is not a scalar (e.g. a vector)
dq	discrete quadrature	terms having all arguments known, the result are the values in quadrature points of elements
de	discrete element	terms having all arguments known, the result is a vector of integral averages over elements (element average of 'dq')

2 List of all terms

d_div	$\int_{\Omega} \bar{p} \; \nabla \cdot \underline{w}$
d_lin_elastic	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{b}) e_{kl}(\underline{w})$
d_surface_dot	$\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$
d_surface_integrate	$\int_{\Gamma} y$, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$
continued	

$\dots continued$		
d_volume	$\int_{\Omega} 1$	
d_volume_dot	$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$	
d_volume_integrate	$\int_{\Omega} y$	
d_volume_wdot	$\int_{\Omega} y p r, \int_{\Omega} y \underline{u} \cdot \underline{w}$	
de_cauchy_strain	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w})$	
de_cauchy_stress	vector of $\forall K \in \mathcal{T}_h$: $\int_{\mathcal{T}_K} D_{ijkl} e_k l(\underline{w})$	
di_volume_integrate_mat	$\int_{\Omega} m$	
dq_grad	$(\nabla p) _{qp}$	
dq_lin_convect	$((\underline{b}\cdot abla)\underline{u}) _{qp}$	
dw_convect	$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$	
dw_div	$\int_{\Omega} q abla \cdot \underline{u}$	
dw_div_grad	$\int_{\Omega} \nu \nabla \underline{v} : \nabla \underline{u}$	
dw_div_r	$\int_{\Omega} q abla \cdot \underline{w}$	
dw_grad	$\int_{\Omega} p \; abla \cdot \underline{v}$	
dw_gradDt	$\int_{\Omega} \frac{p-p_0}{\Delta t} \nabla \cdot \underline{v}$	
dw_laplace	$c \int_{\Omega} \nabla s : \nabla r$	
dw_lin_convect	$\int_{\Omega} ((\underline{b} \cdot abla) \underline{u}) \cdot \underline{v}$	
dw_lin_elastic	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$	
dw_lin_elastic_iso	$ \int_{\Omega} D_{ijkl} = e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \delta_{ij}\delta_{kl} $	
dw_lin_elastic_r	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{w})$	
dw_lin_viscous	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) \frac{e_{kl}(\underline{u}) - e_{kl}(\underline{u}_0)}{\Delta t}$	
dw_mass	$\int_{\Omega} ho \underline{v} \cdot rac{\underline{u} - \underline{u}_0}{\Delta t}$	
dw_mass_scalar	$\int_{\Omega}qp$	
dw_mass_scalar_fine_coarse	$\int_{\Omega}q_{h}p_{H}$	
dw_mass_scalar_r	$\int_{\Omega}qr$	
dw_mass_scalar_variable	$\int_{\Omega} cqp$	
dw_mass_vector	$\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$	
dw_point_lspring	$ \frac{\underline{f}^{i}}{-k\underline{u}^{i}} \forall \text{ FE node } i \text{ in region} \\ \gamma \int_{\Omega} (\nabla \cdot u) \cdot (\nabla \cdot v) $	
dw_st_grad_div	$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$	
$dw_st_pspg_c$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$	
dw_st_pspg_p	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$	
dw_st_supg_c	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{u})$	
continued		

$\dots continued$		
dw_st_supg_p	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$	
dw_surface_ltr	$\int_{\Gamma} \underline{v} \cdot \underline{\underline{\sigma}} \cdot \underline{n}$	
$dw_volume_integrate$	$\int_{\Omega}q$	
dw_volume_lvf	$\int_{\Omega} \underline{v} \cdot \underline{f}$	
dw_volume_wdot	$\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}$	
$dw_volume_wdot_r$	$\int_{\Omega} yqr, \int_{\Omega} y\underline{v} \cdot \underline{w}$	

3 Introduction

Equations in SfePy are built using terms, which correspond directly to the integral forms of weak formulation of a problem to be solved. As an example, let us consider the Laplace equation:

$$c\Delta t = 0 \text{ in } \Omega, \quad t = \bar{t} \text{ on } \Gamma.$$
 (1)

The weak formulation of (1) is: Find $t \in V$, such that

$$\int_{\Omega} c \, \nabla t : \nabla s = 0, \quad \forall s \in V_0 \ . \tag{2}$$

In the syntax used in SfePy input files, this can be written as

$$dw_{laplace.i1.0mega(coef, s, t) = 0,$$
 (3)

which directly corresponds to the discrete version of (2): Find $t \in V_h$, such that

$$s^T(\int_{\Omega_h} c \ \boldsymbol{G}^T \boldsymbol{G}) \boldsymbol{t} = 0, \quad \forall \boldsymbol{s} \in V_{h0} \ ,$$

where $\nabla u \approx \mathbf{G}\mathbf{u}$. The integral over the discrete domain Ω_h is approximated by a numerical quadrature, that is named i1 in our case.

3.1 Term call syntax

In general, the syntax of a term call in SfePy is:

where <i> denotes an integral name (i.e. a name of numerical quadrature to use) and <r> marks a region (domain of the integral). In the following, <virtual> corresponds to a test function, <state> to a unknown function and <parameter> to a known function arguments. We will now describe all the terms available in SfePy to date.

4 Terms in termsMass

4.1 dw_mass

Class: MassTerm

Description: Inertial forces term (constant density).

Definition:

$$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$$

Arguments:

material.rho	ρ
ts.dt	Δt
parameter	\underline{u}_0

Syntax: dw_mass.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

4.2 dw_mass_scalar

Class: MassScalarTerm

Description: Scalar field mass matrix/rezidual.

Definition:

 $\int_{\Omega} qp$

Syntax: dw_mass_scalar.<i>.<r>(<virtual>, <state>)

4.3 dw_mass_scalar_fine_coarse

Class: MassScalarFineCoarseTerm

Description: Scalar field mass matrix/rezidual for coarse to fine grid interpolation. Field p_H

belong to the coarse grid, test field q_h to the fine grid.

Definition:

 $\int_{\Omega} q_h p_H$

Syntax: dw_mass_scalar_fine_coarse.<i>.<r>(<virtual>, <state>, <iemaps>, <pbase>)

4.4 dw_mass_scalar_r

Class: MassScalarRTerm

Description: Scalar field mass rezidual — r is assumed to be known.

Definition:

 $\int_{\Omega} qr$

 $Syntax: \ dw_mass_scalar_r. <i>.<r>(<virtual>, <parameter>)$

4.5 dw_mass_vector

Class: MassVectorTerm

Description: Vector field mass matrix/rezidual.

Definition:

 $\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$

Syntax: dw_mass_vector.<i>.<r>(<material>, <virtual>, <state>)

5 Terms in termsBasic

5.1 d_surface_dot

Class: DotProductSurfaceTerm

Description: Surface $L^2(\Gamma)$ dot product for both scalar and vector fields.

Definition:

$$\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$$

Syntax: d_surface_dot.<i>.<r>(<parameter_1>, <parameter_2>)

5.2 d_surface_integrate

Class: IntegrateSurfaceTerm

Definition:

$$\int_{\Gamma} y$$
, for vectors: $\int_{\Gamma} y \cdot \underline{n}$

Syntax: d_surface_integrate.<i>.<r>(

5.3 d_volume

Class: VolumeTerm

Description: Volume of a domain. Uses approximation of the parameter variable.

Definition:

$$\int_{\Omega} 1$$

5.4 d_volume_dot

Class: DotProductVolumeTerm

Description: Volume $L^2(\Omega)$ dot product for both scalar and vector fields.

Definition:

$$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$$

5.5 d_volume_integrate

Class: IntegrateVolumeTerm

Definition:

Syntax: d_volume_integrate.<i>.<r>(

5.6 d_volume_wdot

Class: WDotProductVolumeTerm

Description: Volume $L^2(\Omega)$ weighted dot product for both scalar and vector fields.

Definition:

$$\int_{\Omega} ypr, \int_{\Omega} y\underline{u} \cdot \underline{w}$$

Arguments:

material	weight function y
matthat	weight function g

Syntax: d_volume_wdot.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

5.7 di_volume_integrate_mat

 ${\bf Class:}\ {\bf IntegrateVolumeMatTerm}$

Description: Integrate material parameter m over a domain. Uses approximation of y variable.

Definition:

$$\int_{\Omega} m$$

Arguments:

material	m (can have up to two dimensions)
parameter	y
shape	shape of material parameter
mode	'const' or 'vertex' or 'ele- ment_avg'

Syntax: di_volume_integrate_mat.<i>.<r>(<material>, <parameter>, <shape>, <mode>)

5.8 dw_volume_integrate

 ${\bf Class:}\ {\bf IntegrateVolumeOperatorTerm}$

Definition:

 $\int_{\Omega} g$

Syntax: dw_volume_integrate.<i>.<r>(<virtual>)

5.9 dw_volume_wdot

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not imple-

mented!) fields. **Definition**:

$$\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}$$

Arguments:

material	weight function y

 $Syntax: \ \, \texttt{dw_volume_wdot.<i>.<r>}(\ \, \texttt{<material>}, \ \, \texttt{<virtual>}, \ \, \texttt{<state>} \ \,)$

$5.10 dw_volume_wdot_r$

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorRTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not imple-

mented!) fields (to use on a right-hand side).

Definition:

$$\int_{\Omega} yqr, \int_{\Omega} y\underline{v} \cdot \underline{w}$$

Arguments:

material	weight function y
----------	---------------------

Syntax: dw_volume_wdot_r.<i>.<r>(<material>, <virtual>, <parameter>)

6 Terms in termsLaplace

6.1 dw_laplace

Class: LaplaceTerm

Description: Laplace term (constant parameter).

Definition:

$$c \int_{\Omega} \nabla s : \nabla r$$

Syntax: dw_laplace.<i>.<r>(<material>, <virtual>, <state>)

7 Terms in termsNavierStokes

$7.1 d_{-}div$

Class: DivIntegratedTerm

Description: Integrated divergence term (weak form).

Definition:

$$\int_{\Omega} \bar{p} \, \nabla \cdot \underline{w}$$

Syntax: d_div.<i>.<r>(<parameter_1>, <parameter_2>)

7.2 dq_grad

Class: GradQTerm

Description: Gradient term (weak form) in quadrature points.

Definition:

 $(\nabla p)|_{qp}$

 $\mathbf{Syntax} \colon \mathtt{dq_grad.} \\ <\mathtt{i}>.<\mathtt{r}>(\ <\mathtt{state}>\)$

7.3 dq_lin_convect

 ${f Class}$: LinearConvectQTerm

Description: Linearized convective term evaluated in quadrature points.

Definition:

$$((\underline{b} \cdot \nabla)\underline{u})|_{qp}$$

Syntax: dq_lin_convect.<i>.<r>(convect.<i</pre>

7.4 dw_convect

Class: ConvectTerm

Description: Nonlinear convective term.

Definition:

$$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_convect.<i>.<r>(<virtual>, <state>)

$7.5 \, dw_div$

Class: DivTerm

Description: Divergence term (weak form).

Definition:

$$\int_{\Omega} q \, \nabla \cdot \underline{u}$$

Syntax: dw_div.<i>.<r>(<virtual>, <state>)

7.6 dw_div_grad

Class: DivGradTerm

Description: Diffusion term.

Definition:

$$\int_{\Omega} \nu \ \nabla \underline{v} : \nabla \underline{u}$$

Syntax: dw_div_grad.<i>.<r>(<material>, <virtual>, <state>)

$7.7 \, dw_div_r$

Class: DivRTerm

Description: Divergence term (weak form) with a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} q \nabla \cdot \underline{w}$$

Syntax: dw_div_r.<i>.<r>(<virtual>, <parameter>)

7.8 dw_grad

Class: GradTerm

Description: Gradient term (weak form).

Definition:

$$\int_{\Omega} p \, \nabla \cdot \underline{v}$$

Syntax: dw_grad.<i>.<r>(<virtual>, <state>)

$7.9 ext{ dw_gradDt}$

Class: GradDtTerm

Description: Gradient term (weak form) with time-discretized \dot{p} .

Definition:

$$\int_{\Omega} \frac{p - p_0}{\Delta t} \nabla \cdot \underline{v}$$

Arguments:

ts.dt	Δt
parameter	p_0

 $Syntax: dw_gradDt.<i>.<r>(<ts>, <virtual>, <state>, <parameter>)$

7.10 dw_lin_convect

Class: LinearConvectTerm

Description: Linearized convective term.

Definition:

$$\int_{\Omega} ((\underline{b} \cdot \nabla) \underline{u}) \cdot \underline{v}$$

Syntax: dw_lin_convect.<i>.<r>(<virtual>, <parameter>, <state>)

7.11 dw_st_grad_div

Class: GradDivStabilizationTerm

Description: Grad-div stabilization term (γ is a global stabilization parameter).

Definition:

$$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$$

Syntax: dw_st_grad_div.<i>.<r>(<material>, <virtual>, <state>)

7.12 dw_st_pspg_c

Class: PSPGCStabilizationTerm

Description: PSPG stabilization term, convective part (τ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_b} \int_{\mathcal{T}_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$$

Syntax: dw_st_pspg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

$7.13 \quad dw_st_pspg_p$

Class: PSPGPStabilizationTerm

Description: PSPG stabilization term, pressure part (τ is a local stabilization parameter), cf.

Laplace term. **Definition**:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$$

Syntax: dw_st_pspg_p.<i>.<r>(<material>, <virtual>, <state>)

$7.14 \, dw_st_supg_c$

Class: SUPGCStabilizationTerm

Description: SUPG stabilization term, convective part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_b} \int_{\mathcal{T}_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{v})$$

Syntax: dw_st_supg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

$7.15 ext{dw_st_supg_p}$

Class: SUPGPStabilizationTerm

Description: SUPG stabilization term, pressure part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$$

Syntax: dw_st_supg_p.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

8 Terms in termsPoint

8.1 dw_point_lspring

Class: LinearPointSpringTerm

Description: Linear springs constraining movement of FE nodes in a reagion; use as a relaxed

Dirichlet boundary conditions.

Definition:

$$\underline{f}^i = -k\underline{u}^i \quad \forall \text{ FE node } i \text{ in region}$$

Syntax: dw_point_lspring.<i>.<r>(<material>, <virtual>, <state>)

9 Terms in termsVolume

9.1 dw_volume_lvf

 ${\bf Class:}\ {\bf Linear Volume Force Term}$

Description: Linear volume forces (weak form).

Definition:

$$\int_{\Omega} \underline{v} \cdot \underline{f}$$

Syntax: dw_volume_lvf.<i>.<r>(<material>, <virtual>)

10 Terms in termsSurface

10.1 dw_surface_ltr

Class: LinearTractionTerm

Description: Linear traction forces (weak form), where, depending on dimension of 'material' argument, $\underline{\underline{\sigma}} \cdot \underline{\underline{n}}$ is $\bar{p}\underline{\underline{I}} \cdot \underline{\underline{n}}$ for a given scalar pressure, $\underline{\underline{f}}$ for a traction vector, and itself for a stress tensor.

Definition:

$$\int_{\Gamma} \underline{v} \cdot \underline{\sigma} \cdot \underline{n}$$

Syntax: dw_surface_ltr.<i>.<r>(<material>, <virtual>)

11 Terms in termsLinElasticity

11.1 d_lin_elastic

Class: LinearElasticIntegratedTerm

Description: Integrated general linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{b}) e_{kl}(\underline{w})$$

Syntax: d_lin_elastic.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

11.2 de_cauchy_strain

Class: CauchyStrainTerm

Description: Cauchy strain tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w})$$

11.3 de_cauchy_stress

Class: CauchyStressTerm

Description: Cauchy stress tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{\mathcal{T}_K} D_{ijkl} e_k l(\underline{w})$$

 $Syntax: de_cauchy_stress. <i>.<r>(<material>, <parameter>)$

11.4 dw_lin_elastic

Class: LinearElasticTerm

Description: General linear elasticity term, with D_{ijkl} given in the usual matrix form exploiting symmetry: in 3D it is 6×6 with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it is 3×3 with the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$$

Syntax: dw_lin_elastic.<i>.<r>(<material>, <virtual>, <state>)

11.5 dw_lin_elastic_iso

Class: LinearElasticIsotropicTerm

Description: Isotropic linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \ \delta_{ij}\delta_{kl}$$

Syntax: dw_lin_elastic_iso.<i>.<r>(<material>, <virtual>, <state>)

11.6 dw_lin_elastic_r

Class: LinearElasticRTerm

Description: General linear elasticity term with a known field (to use on a right-hand side).

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{w})$$

Syntax: dw_lin_elastic_r.<i>.<r>(<material>, <virtual>, <parameter>)

11.7 dw_lin_viscous

Class: LinearViscousTerm

Description: General linear viscosity term, with D_{ijkl} given in the usual matrix form exploiting symmetry: in 3D it is 6×6 with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it is 3×3 with the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) \frac{e_{kl}(\underline{u}) - e_{kl}(\underline{u}_0)}{\Delta t}$$

Arguments:

ts.dt	Δt
material	D_{ijkl}
virtual	\underline{v}
state	\underline{u} (displacements of current time step)
parameter	\underline{u}_0 (known displacements of previous time step)

Syntax: dw_lin_viscous.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

12 Terms in termsSpecial

12.1 dw_mass_scalar_variable

Class: MassScalarVariableTerm

Description: Scalar field mass matrix/rezidual with coefficient c defined in nodes.

Definition:

$$\int_{\Omega} cqp$$

Syntax: dw_mass_scalar_variable.<i>.<r>(<material>, <virtual>, <state>)

13 Term caches in cachesBasic

13.1 cauchy_strain

Class: CauchyStrainDataCache

cache = term.getCache('cauchy_strain', <index>)

data = cache(<data name>, <ig>, <ih>, state)

13.2 div_vector

```
Class: DivVectorDataCache
cache = term.getCache( 'div_vector', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

13.3 grad_scalar

```
Class: GradScalarDataCache
cache = term.getCache( 'grad_scalar', <index> )
data = cache( <data name>, <ig>>, <ih>>, state )
```

13.4 mat_in_qp

```
Class: MatInQPDataCache
cache = term.getCache( 'mat_in_qp', <index> )
data = cache( <data name>, <ig>, <ih>, mat, ap, assumedShapes, modeIn )
```

13.5 state_in_surface_qp

```
Class: StateInSurfaceQPDataCache
cache = term.getCache( 'state_in_surface_qp', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

13.6 state_in_volume_qp

```
Class: StateInVolumeQPDataCache
cache = term.getCache( 'state_in_volume_qp', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

13.7 volume

```
Class: VolumeDataCache
cache = term.getCache( 'volume', <index> )
data = cache( <data name>, <ig>>, <ih>>, region, field )
```