TEMA 3: Suficiencia y completitud

- 3.1. Estadísticos suficientes.
- 3.2. Estadísticos completos.
- 3.3. Suficiencia y completitud en familias exponenciales.

3.1. ESTADÍSTICOS SUFICIENTES

 $(X_1, \ldots, X_n) \in \chi^n$ muestra aleatoria simple de $X \to \{P_\theta; \ \theta \in \Theta\}$.

 $f_{\theta} \to \text{ función de densidad o función masa de probabilidad de } X$ bajo P_{θ} .

 $f_{\theta}^{n} \to \text{ función de densidad o función masa de probabilidad de } (X_{1}, \dots, X_{n}) \text{ bajo } P_{\theta}.$

Un estadístico $T(X_1, ..., X_n)$ es suficiente para la familia de distribuciones de X (o suficiente para el parámetro θ) si la distribución de $(X_1, ..., X_n)$ condicionada a cualquier valor de $T(X_1, ..., X_n)$ es independiente de θ .

Teorema de factorización de Neyman-Fisher: Un estadístico $T(X_1, ..., X_n)$ es suficiente si y sólo si, para cualquier valor de θ :

$$f_{\theta}^{n}(x_1,\ldots,x_n) = h(x_1,\ldots,x_n)g_{\theta}(T(x_1,\ldots,x_n)), \quad \forall (x_1,\ldots,x_n) \in \chi^n$$

donde el primer factor es independiente de θ , y el segundo sólo depende de (x_1, \ldots, x_n) a través de $T(x_1, \ldots, x_n)$.

Propiedades de los estadísticos suficientes:

- Si $T(X_1, ..., X_n)$ es suficiente para $\{P_\theta; \theta \in \Theta\}$, lo es para $\{P_\theta; \theta \in \Theta'\}$ con $\Theta' \subseteq \Theta$.
- Si $T(X_1, ..., X_n)$ es suficiente para $\{P_\theta; \theta \in \Theta\}$ y $U(X_1, ..., X_n)$ es otro estadístico tal que $T = f(U), U(X_1, ..., X_n)$ es también suficiente para $\{P_\theta; \theta \in \Theta\}$.
- Cualquier transformación biunívoca de un estadístico suficiente es también suficiente.

3.2. ESTADÍSTICOS COMPLETOS

Un estadístico $T(X_1, ..., X_n)$ es completo para la familia de distribuciones de X si, para cualquier función medible unidimensional, g, se tiene:

$$E_{\theta}[g(T)] = 0, \ \forall \theta \in \Theta \ \Rightarrow \ P_{\theta}(g(T) = 0) = 1, \ \forall \theta \in \Theta.$$

3.3. SUFICIENCIA Y COMPLETITUD EN FAMILIAS EXPONENCIALES

Familia exponencial k-paramétrica: $\{P_{\theta}; \theta \in \Theta\}$, con funciones de densidad o funciones masa de probabilidad $\{f_{\theta}; \theta \in \Theta\}$, es exponencial k-paramétrica si:

- ullet Θ es un intervalo de \mathbb{R}^k .
- $\forall \theta \in \Theta \ \{x / f_{\theta}(x) > 0\} = \chi \to \text{independiente de } \theta.$
- $\forall \theta \in \Theta$, $f_{\theta}(x) = \exp\left\{\sum_{h=1}^{k} Q_{h}(\theta)T_{h}(x) + S(x) + D(\theta)\right\}$, $\forall x \in \chi$, siendo T_{1}, \ldots, T_{k}, S funciones medibles de $x, y Q_{1}, \ldots, Q_{k}, D$ funciones de θ .

Teorema de suficiencia y completitud en familias exponenciales: Si la familia de distribuciones de X, $\{P_{\theta}; \theta \in \Theta\}$, es exponencial k-paramétrica, la familia de distribuciones de cualquier muestra aleatoria simple también lo es:

$$\forall \theta \in \Theta, \ f_{\theta}^{n}(x_{1}, \dots, x_{n}) = \exp \left\{ \sum_{h=1}^{k} Q_{h}(\theta) \left(\sum_{i=1}^{n} T_{h}(x_{i}) \right) + \sum_{i=1}^{n} S(x_{i}) + nD(\theta) \right\}, \ (x_{1}, \dots, x_{n}) \in \chi^{n}.$$

Además:

- El estadístico $\left(\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i)\right)$ es suficiente para θ .
- Si $k \leq n$ y el conjunto imagen de la función $Q(\theta) = (Q_1(\theta), \dots, Q_k(\theta))$ contiene a un abierto de \mathbb{R}^k , el estadístico $\left(\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i)\right)$ es también completo.