AD18511 – DEEP LEARNING LABORATORY

DATE:

EX.NO: 10 IMPLEMENTATION OF VGG ARCHITECTURE.

AIM:

To use the VGG (Visual Geometric group) architecture to CIFAR-10 datasets using Tensorflow.

DESCRIPTION:

- ➤ VGG stands for Visual Geometry Group; it is a standard deep Convolutional Neural Network (CNN) architecture with multiple layers.
- The —deep refers to the number of layers with VGG-16 or VGG-19 consisting of 16 and 19 convolutional layers.
- The VGG architecture is the basis of ground-breaking object recognition models. Developed as a deep neural network, the VGGNet also surpasses baselines on many tasks and datasets beyond ImageNet. Moreover, it is now still one of the most popular image recognition architectures.
- The VGG network is constructed with very small convolutional filters. The VGG-16 consists of 13 convolutional layers and three fully connected layers.
- ➤ Input:The VGGNet takes in an image input size of 224×224
- Convolutional Layers: VGG's convolutional layers leverage a minimal receptive field, i.e., 3×3, the smallest possible size that still captures up/down and left/right.
- Hidden Layers: All the hidden layers in the VGG network use ReLU. VGG does not usually leverage Local Response Normalization (LRN) as it increases memory consumption and training time.
- Fully-Connected Layers: The VGGNet has three fully connected layers. Out of the three layers, the first two have 4096 channels each, and the third has 1000 channels, 1 for each class.

PROGRAM:

import tensorflow as tf from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, classification_report import numpy as np

Load and preprocess CIFAR-10 dataset (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0

OUTPUT:

Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz 170498071/170498071 [==============] - 14s Ous/step model = models.Sequential() model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=(32, 32, 3), padding='same')) model.add(layers.BatchNormalization(scale=False)) # Add BatchNormalization layer model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same')) model.add(layers.MaxPooling2D((2, 2)))

```
model.add(layers.Conv2D(128, (3, 3), activation='relu', input_shape=(32, 32, 3), padding='same'))
model.add(layers.BatchNormalization(scale=False)) # Add BatchNormalization layer
model.add(layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(256, (3, 3), activation='relu', input shape=(32, 32, 3), padding='same'))
model.add(layers.BatchNormalization(scale=False)) # Add BatchNormalization layer
model.add(layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(512, (3, 3), activation='relu', input shape=(32, 32, 3), padding='same'))
model.add(layers.BatchNormalization(scale=False)) # Add BatchNormalization layer
model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(512, (3, 3), activation='relu', input shape=(32, 32, 3), padding='same'))
model.add(layers.BatchNormalization(scale=False)) # Add BatchNormalization layer
model.add(layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(4096, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(4096, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(10, activation='softmax'))
# creating the model
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape Pa	aram #
conv2d (Conv2D)	(None, 32, 32, 64)	1792
batch_normalization Normalization)	(Batch (None, 32, 32, 64) 192
conv2d_1 (Conv2D)	(None, 32, 32, 64)	36928
max_pooling2d (Max	xPooling2D) (None, 16, 1	16, 64) 0
conv2d_2 (Conv2D)	(None, 16, 16, 128)	73856
batch_normalization_chNormalization)	_1 (Bat (None, 16, 16, 12	8) 384
conv2d_3 (Conv2D)	(None, 16, 16, 128)) 147584

max_pooling2d_1 (MaxPoolin g2D)	(None, 8, 8, 128) 0				
conv2d_4 (Conv2D) (Non	ne, 8, 8, 256) 295168				
batch_normalization_2 (Bat (No chNormalization)	one, 8, 8, 256) 768				
conv2d_5 (Conv2D) (Non	ne, 8, 8, 256) 590080				
max_pooling2d_2 (MaxPoolin (g2D)	(None, 4, 4, 256) 0				
conv2d_6 (Conv2D) (Non	ne, 4, 4, 512) 1180160				
batch_normalization_3 (Bat (No chNormalization)	one, 4, 4, 512) 1536				
conv2d_7 (Conv2D) (Non	ne, 4, 4, 512) 2359808				
max_pooling2d_3 (MaxPoolin g2D)	(None, 2, 2, 512) 0				
conv2d_8 (Conv2D) (Non	ne, 2, 2, 512) 2359808				
batch_normalization_4 (Bat (No chNormalization)	one, 2, 2, 512) 1536				
conv2d_9 (Conv2D) (Non	ne, 2, 2, 512) 2359808				
max_pooling2d_4 (MaxPoolin (None, 1, 1, 512) 0 g2D)					
flatten (Flatten) (None, 51	2) 0				
dense (Dense) (None, 4	.096) 2101248				
dropout (Dropout) (None,	4096) 0				
dense_1 (Dense) (None,	4096) 16781312				
dropout_1 (Dropout) (None	e, 4096)				
dense_2 (Dense) (None,	10) 40970				

Total params: 28332938 (108.08 MB) Trainable params: 28329994 (108.07 MB) Non-trainable params: 2944 (11.50 KB)

```
Epoch 1/10
1.6695 - val accuracy: 0.4469
Epoch 2/10
1.3521 - val_accuracy: 0.5481
Epoch 3/10
0.8926 - val accuracy: 0.6929
Epoch 4/10
0.8881 - val_accuracy: 0.7111
Epoch 5/10
0.8698 - val accuracy: 0.7427
Epoch 6/10
0.8138 - val accuracy: 0.7857
Epoch 7/10
1.0362 - val_accuracy: 0.7885
Epoch 8/10
0.7054 - val_accuracy: 0.7873
Epoch 9/10
2.1532 - val_accuracy: 0.7867
Epoch 10/10
4.2583 - val_accuracy: 0.8076
```

```
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0, 1])
plt.legend(loc='lower right')
plt.show()
```


test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f"Test accuracy: {test_acc}")

OUTPUT:

313/313 - 2s - loss: 4.2583 - accuracy: 0.8076 - 2s/epoch - 6ms/step Test accuracy: 0.8076000213623047

Make predictions predictions = np.argmax(model.predict(test_images), axis=-1)

OUTPUT:

313/313 [=======] - 2s 6ms/step

Make predictions

predictions = np.argmax(model.predict(test_images), axis=-1)

Generate classification report

report = classification_report(test_labels, predictions)

Print confusion matrix and classification report print("Confusion Matrix:\n", cm) print("Classification Report:\n", report)

Confusion Matrix:

 $[[825\ 8\ 43\ 37\ 10\ 3\ 7\ 26\ 6\ 35]$

[7923832053148]

[46 0 655 31 76 81 56 43 0 12]

[4 3 29 549 35 258 62 44 2 14]

[4 1 16 20 795 39 25 97 1 2]

[1 1 9 73 19 838 7 50 0 2]

[2 1 28 33 19 16 886 10 2 3]

[4 1 4 12 14 26 1 931 0 7]

[79 52 10 11 4 2 17 10 748 67]

[8 26 2 5 1 3 4 14 11 926]]

Classification Report:

	precision	recall	f1-score	e suppor	t
0	0.84	0.82	0.83	1000	
1	0.91	0.92	0.92	1000	
2	0.81	0.66	0.73	1000	
3	0.71	0.55	0.62	1000	
4	0.82	0.80	0.81	1000	
5	0.66	0.84	0.74	1000	
6	0.83	0.89	0.86	1000	
7	0.76	0.93	0.84	1000	
8	0.97	0.75	0.84	1000	
9	0.83	0.93	0.88	1000	
accura	ıcy		0.81	10000	
macro	avg 0.8	31 0.	81 0.	81 10	000
weighted	d avg 0.	81 ().81 ().81 10	0000

RESULT:

Thus the VGG architecture has been implemented successfully.