1

GEOMETRIE ANALITICĂ ÎN SPATIU

Exercitiul 1. Se consideră vectorii

$$\overrightarrow{u} = 2\overrightarrow{i} - 5\overrightarrow{j} + 3\overrightarrow{k}, \overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$$
. Se cere:

- a) unghiul dintre vectorii \overrightarrow{u} și \overrightarrow{v} ;
- b) proiecția vectorului \overrightarrow{u} pe direcția lui \overrightarrow{v} ;
- c) înălțimea corespunzătoare bazei \overrightarrow{u} a paralelogramului construit pe suporturile vectorilor \overrightarrow{u} și \overrightarrow{v} .

Exercițiul 2. Se dau vectorii $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = \overrightarrow{i} - \overrightarrow{j}$, $\overrightarrow{c} = -\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$. Să se calculeze:

- a) versorul vectorului \overrightarrow{a} :
- b) \overrightarrow{a} . \overrightarrow{b} , \overrightarrow{a} . \overrightarrow{c} , \overrightarrow{b} . \overrightarrow{c} , \overrightarrow{a} \times \overrightarrow{b} , \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}),
- c) aria paralelogramului construit cu vectorii \overrightarrow{a} şi \overrightarrow{b} ;
- d) volumul tetraedrului construit pe vectorii \overrightarrow{a} , \overrightarrow{b} și \overrightarrow{c} ;
- e) înălțimile paralelogramului construit pe vectorii \overrightarrow{a} și \overrightarrow{c} ;
- f) înălțimile paralelipipedului construit pe vectorii \overrightarrow{a} , \overrightarrow{b} și \overrightarrow{c} ; g) vectorul bisector al unghiului format de vectorii \overrightarrow{a} și \overrightarrow{c} .

Exercițiul 3. Să se determine al patrulea vârf al tetraedrului ABCD cu A(4, -2, 2), B(3,1,1), C(4,2,0) știind că $D \in Oz$ și că volumul tetraedrului este egal cu 4. Să se determine lungimea înălțimii coborâte din D.

Exercițiul 4. Se dau dreptele

$$(d_1): \frac{x-1}{3} = \frac{y}{4} = \frac{z-1}{2}, (d_2): \begin{cases} 2x+y-z+1=0\\ x+y-2z=0 \end{cases}$$
.

- a) Să se determine vectorii directori ai celor două drepte și câte un punct pe fiecare dintre ele.
- b) Să se determine poziția relativă a celor două drepte(coplanare, perpendiculare, paralele).
- c) Să se determine coordonatele puctului care este proiecția originii pe dreapta (d_2) .
- d) Să se determine coordonatele simetricului punctului O față de dreapta (d_2) și distanța de la O la (d_2) .

Exercițiul 5. Să se determine ecuațiile perpendicularei coborâte din M(2,3,1) pe dreapta (d): $\frac{x-1}{3} = \frac{y}{-1} = \frac{z-2}{3}$.

Exercițiul 6. Să se calculeze unghiul dintre dreptele $(d_1): \frac{x-1}{1} = \frac{y+2}{4} = \frac{z}{1}, (d_2):$ $\frac{x}{-1} = \frac{y}{8} = \frac{z}{1}$ și să se scrie ecuația planului determinat de ele, dacă este posibil.

Exercițiul 7. Să se scrie ecuația planului care conține punctul P(1,3,-2) și este perpendicular pe dreapta determinată de punctele A(2,5,1) și B(0,1,-3).

Exercițiul 8. Să se determine ecuațiile dreptei proiecție a dreptei

(d):
$$\begin{cases} 2x + y - z + 1 = 0 \\ x + y - 2z = 0 \end{cases}$$
 pe planul (P): $x + y + 2z = 0$.

Exercițiul 9. Să se scrie ecuația planului (π) paralel cu planul (P_1) : 3x - y + z - 6 = 0 și care trece prin mijlocul segmentului determinat de punctele $M_1(1,3,2)$ și $M_2(1,-5,-4)$.

Exercițiul 10. Să se scrie ecuația planului (π) care trece prin mijlocul segmentului $[M_1M_2]$, unde $M_1(1,-1,2)$ și $M_2(4,-3,1)$, este paralel cu dreapta $(d): \frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{1}$ și este perpendicular pe planul $(P_1): x-2y-z-1=0$.

Exercițiul 11. Să se scrie ecuația planului care trece prin origine și este perpendicular pe planele

$$(P): 2x - y + 3z - 1 = 0,$$

$$(Q): x + 2y + z = 0.$$

Exercițiul 12. Să se scrie ecuația planului care trece prin dreapta de intersecție a planelor x - y + z - 3 = 0 și x + y - z + 1 = 0 și e paralel cu axa Ox.

Exercițiul 13. Fie dreapta

(d):
$$\begin{cases} x - y - 3z + 2 = 0 \\ 2x + y + 2z - 3 = 0 \end{cases}$$

şi planul (P) : x + y + z + 1 = 0. *Se cere*:

- a) să se scrie ecuația planului ce conține dreapta (d) și e perpendicular pe planul (P);
 - b) să se scrie ecuațiile dreptei simetrice dreptei (d) față de planul (P).

Exercițiul 14. Sa se determine ecuația planului care trece prin intersectia planelor: (P): x+5y+z=0 și (Q): x-z+4=0 și care formeaza cu planul (R): x-4y-8z+12=0 un unghi de masură $\frac{\pi}{4}$.

Exercițiul 15. Se consideră punctul M(2,1,-3), dreapta (d): x-2=y=2z+1 și planul (P): x+2y-3z+4=0.

- a) Să se afle distanțele de la punctul M la (P) și la dreapta (d).
- b) Să se afle unghiul dintre dreaptă și plan.

Exercițiul 16. Să se determine condiția ca planele de ecuații (P_1) : x - cy - bz = 0 și respectiv (P_2) : y - az - cx = 0, (P_3) : z - bx - ay = 0 să treacă prin aceeași dreaptă.

Exercițiul 17. Să se scrie ecuația planului care conține punctul P(1,3,-2) și este perpendicular pe dreapta determinată de punctele A(2,5,1) și B(0,1,-3).

Exercițiul 18. Să se scrie ecuația planului care conține dreptele de ecuații:

$$\begin{cases} x = 1 \\ y = 3 + 2\alpha \\ z = 4 + \alpha \end{cases}, \begin{cases} x = 1 + 4\beta \\ y = 3 + 2\beta \\ z = 4 + 2\beta \end{cases}.$$

Exercițiul 19. Să se scrie ecuația planului care conține dreptele de ecuații:

$$\begin{cases} x = 1 + \alpha \\ y = 3 - 2\alpha \\ z = -2 + 2\alpha \end{cases}, \begin{cases} x = 4 + \beta \\ y = 2 - 2\beta \\ z = -1 + 2\beta \end{cases}.$$

Exercițiul 20. Fie dreapta

Exercitive 21.
$$(d): \left\{ \begin{array}{l} x-y-3z+2=0 \\ 2x+y+2z-3=0 \end{array} \right.$$

y = y + z + 1 = 0. Se cere:

- a) să se scrie ecuația planului ce conține dreapta (d) și e perpendicular pe planul (P):
- b) să se scrie ecuația planului care conține dreapta (d) și face un unghi de 60° cu planul (P);
- c) să se scrie ecuația planului care conține dreapta (d) și face un unghi de 30^{0} cu dreapta

$$(d_1): \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-3}{1}$$

d) să se scrie ecuațiile dreptei simetrice dreptei (d) față de planul (P).

Exercitiul 22. Se dau punctele A(3, -1, 3), B(5, 1, 1), C(0, 4, -3), D(1, -2, 5), dreptele

Rectiful 22. Se dau punctele
$$(d_1): \begin{cases} x+2y+3z-1=0 \\ 2x-y-z-3=0 \end{cases}$$
 $(d_2): \begin{cases} \frac{x-4}{1}=\frac{y+2}{0}=\frac{z+1}{3} \\ y=t-1 \\ z=1+3t \end{cases}$

şi planele (P): 2x - y - z - 2 = 0, (Q): x + 2y + 2z + 1 = 0, (R): $x + 7y + 7z + \lambda = 0$, $\lambda \in \mathbf{R}$. Se cer:

- a) ecuațiile carteziene, parametrice și ecuația vectorială a dreptelor determinate de punctele A, B și respectiv A, C;
- b) ecuația carteziană și vectorială a planului ce conține punctul C și este perpendiculară pe dreapta determinată de punctele A, B;
- c) ecuația carteziană a planului ce trece prin punctul C și este perpendicular pe dreapta AB;
 - d) locul geometric al punctelor egal depărtate de Ași B;
- e) ecuația carteziană şi vectorială a planului ce conține punctul A şi este paralel cu dreptele (d_1) şi (d_2) ;
 - f) coordonatele simetricului punctului D față de dreapta $(d_4) = (\mathcal{P}) \cap (\mathcal{Q})$;
 - g) coordonatele simetricului punctului D față de planul (Q);
 - h) ecuațiile carteziene ale proiecției ortogonale a dreptei (d_2) pe planul (\mathcal{P}) ;
 - i) ecuațiile carteziene ale simetricei dreptei (d_2) față de planul (\mathcal{P}) ;
 - j) ecuațiile carteziene ale simetricului planului (\mathcal{P}) față de planul (\mathcal{Q});
 - k) distanța dintre planele obținute la punctele b) și c);
 - l) distanța de la punctul D la planul (Q);
 - m) măsura unghiului dintre dreptele AB și AC;
 - n) măsura unghiului dintre planele (\mathcal{P}) și (\mathcal{Q});
 - o) măsura unghiului dintre drepta (d_1) și planul (Q);
 - p) valoarea lui λ pentru care $(\mathcal{P}), (\mathcal{Q})$ și (\mathcal{R}) se intersectează după o dreaptă.

2. Probleme rezolvate

Exemplul 1. Să se scrie ecuația vectorială și ecuația generală a planului (π) care conține punctul $M_0(-3,1,4)$ și are normala $\overrightarrow{N} = \overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}$.

Rezolvare. Ecuația vectorială. Fie M(x, y, z) un punct din plan.

$$\overrightarrow{M_0M} = \overrightarrow{OM} - \overrightarrow{OM}_0 = (x+3) \overrightarrow{i} + (y-1) \overrightarrow{j} + (z-4) \overrightarrow{k}.$$
Ecuația vectorială: $\langle \overrightarrow{i} + 2 \overrightarrow{j} - 3 \overrightarrow{k}, (x+3) \overrightarrow{i} + (y-1) \overrightarrow{j} + (z-4) \overrightarrow{k} \rangle = 0.$
Ecuația generală: $1 \cdot (x+3) + 2 \cdot (y-1) - 3 \cdot (z-4) = 0 \Leftrightarrow x + 2y - 3z + 13 = 0.$

Exercițiul 23. Să se scrie ecuația planului care trece prin mijlocul segmentului determinat de punctele $M_1(1,3,2)$ și $M_2(1,-5,-4)$ și paralel cu planul 3x-y+z-6=0.

Rezolvare. Coordonatele punctului P, mijlocului segmentului M_1M_2 , sunt (1, -1, -1). Planul trece prin acest punct.

Din condiția că planul căutat este paralel cu cu planul 3x - y + z - 6 = 0 rezultă că o normalele la plan sunt aceleași, $\overline{N} = 3\overline{i} - \overline{j} + \overline{k}$.

Scriem ecuația planului care trece printr-un punct dar și are o direcție normală dată. 3x - y + z + D = 0, P(1, -1, -1) se găsește pe plan $3 \cdot 1 - (-1) + (-1) + D =$ $0 \Rightarrow D = -3 \Rightarrow 3x - y + z - 3 = 0.$

Exercițiul 24. Să se scrie ecuațiile canonice și parametrice ale dreptei $(d): \left\{ \begin{array}{l} 2x-y-z+3=0\\ x+4y-5z-3=0 \end{array} \right. .$

(d):
$$\begin{cases} 2x - y - z + 3 = 0 \\ x + 4y - 5z - 3 = 0 \end{cases}$$

Rezolvare. Dreapta este dată ca intersecție de două plane. Direcția dreptei este dată de $\overline{u} = \overline{N_1} \times \overline{N_2}$, unde $\overline{N_1}, \overline{N_2}$ sunt vectori normali ai planelor care determină dreapta.

$$\overline{u} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & -1 & -1 \\ 1 & 4 & -5 \end{vmatrix} = -9\overline{i} + 9\overline{j} + 9\overline{k}$$

Considerăm un punct de pe dreaptă luând, de exemplu, z=0 rezultă x=-1,y=

1. Ecuațiile canonice ale dreptei vor fi
$$\frac{x+1}{-9} = \frac{y-1}{9} = \frac{z}{9} \Leftrightarrow \frac{x+1}{-1} = \frac{y-1}{1} = \frac{z}{1}.$$

Ecuațiile parametrice ale dreptei sunt:

$$\frac{x+1}{-1} = \frac{y-1}{1} = \frac{z}{1} = \lambda \Rightarrow \begin{cases} x = -\lambda - 1 \\ y = \lambda + 1 \\ z = \lambda \end{cases}.$$

Exercițiul 25. Fie (d_1) și (d_2) două drepte paralele cu vectorii $\overrightarrow{u_1} = \overrightarrow{i} + \overrightarrow{k}$, respec- $\overrightarrow{u_2} = -\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$. Să se scrie ecuațiile parametrice ale dreptei perpendiculare simultan pe (d_1) şi (d_2) şi care trece prin punctul A(2,3,0).

Rezolvare. Fie \overrightarrow{u} direcția dreptei (d) ceruta prin enunț. $\overrightarrow{u} \perp \overrightarrow{u_1}, \overrightarrow{u} \perp \overrightarrow{u_2} \Rightarrow \overrightarrow{u}$

$$\overrightarrow{u_1} \times \overrightarrow{u_1} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 0 & 1 \\ -1 & 1 & 2 \end{vmatrix} = -\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k}.$$

este coliniar cu
$$\overrightarrow{u_1} \times \overrightarrow{u_1}$$
, \overrightarrow{i} \overrightarrow{j} \overrightarrow{k} \overrightarrow{k} \overrightarrow{i} \overrightarrow{i} \overrightarrow{j} \overrightarrow{k} \overrightarrow{k} \overrightarrow{i} \overrightarrow{i} \overrightarrow{i} \overrightarrow{j} \overrightarrow{k} \overrightarrow{k} \overrightarrow{i} \overrightarrow{i} \overrightarrow{i} \overrightarrow{j} \overrightarrow{k} \overrightarrow{k}

Facultativ

6

3. Conice și cuadrice

Exercițiul 26. Să se determine intersecția elipsei

$$3x^2 + 8y^2 = 35$$
 cu dreapta $x + 2y - 5 = 0$.

Exercițiul 27. Să se arate că ecuația

$$x^2 + y^2 - 4x - 4y + 9 = 0$$

reprezintă ecuația unui cerc și să se scrie ecuațiile tangentelor duse din origine la acest cerc.

Exercițiul 28. Să se determine ecuațiile tangentelor duse prin punctul M(3,2) la curba de ecuație $x^2 + 4y^2 - 4 = 0$.

Exercițiul 29. Ce valoare trebuie să aibă λ pentru ca dreapta $x-y+\lambda=0$ să fie tangentă la curba $\frac{x^2}{4}-\frac{y^2}{9}+1=0$? După determinarea lui λ să se afle coordonatele punctelor de contact al tangentei.

Exercițiul 30. Să se determine punctele de intersecție al parabolei $y^2 = 18x$ cu dreapta 6x + y - 6 = 0.

Exercițiul 31. Să se traseze graficele conicelor:

a)
$$x^2 + 4y^2 - 8y = 0$$
, b) $x^2 - 4y^2 + 8y = 0$,

c)
$$4x^2 - y^2 + 8x + 2y = 1$$
,

d)
$$4x^2 - y^2 - 16x + 2y + 15 = 0$$
,

e)
$$y^2 - 6x - 2y = 0$$
, f) $y^2 + 6x + 2y = 0$,

g)
$$x^2 + 6x - y = 0$$
, h) $x^2 + 4x + y + 4 = 0$,

i)
$$y^2 - x - 2y = 0$$
,

$$j) y^2 + x + 2y + 2 = 0.$$

Soluție. a) $x^2 + 4y^2 - 8y = 0 \Leftrightarrow x^2 + 4(y^2 - 2y + 1) - 4 = 0 \Leftrightarrow x^2 + 4(y - 1)^2 - 4 = 0 \Leftrightarrow$

$$\frac{x^2}{4} + (y-1)^2 - 1 = 0$$
 elipsa cu centrul în $(0,1), a = 2, b = 1$

c) $4x^2 - y^2 + 8x + 2y = 1 \Leftrightarrow 4(x^2 + 2x + 1) - (y^2 - 2y + 1) - 4 = 0 \Leftrightarrow 4(x + 1)^2 - (y - 1)^2 - 4 = 0 \Leftrightarrow (x + 1)^2 - \frac{(y - 1)^2}{4} - 1 = 0$ hiperbolă cu centrul în (-1, 1), a = 1, b = 2. Asimptotele hiperbolei $(x + 1)^2 - \frac{(y - 1)^2}{4} = 0 \Leftrightarrow 4(x + 1)^2 - (y - 1)^2 = 0 \Leftrightarrow y - 1 = \pm 2(x + 1)$

d) $4x^2 - y^2 - 16x + 2y + 15 = 0 \Leftrightarrow 4(x^2 - 4x + 4) - (y^2 - 2y + 1) = 0 \Leftrightarrow 4(x-2)^2 - (y-1)^2 = 0 \Leftrightarrow y-1 = \pm 2(x-2)$ două drepte secante

e) $y^2 - 6x - 2y = 0 \Leftrightarrow (y^2 - 2y + 1) = 6x + 1 \Leftrightarrow (y - 1)^2 = 6\left(x + \frac{1}{6}\right)$ Parabolă cu vârful în $\left(-\frac{1}{6}, 1\right), p = 3$

Exercițiul 32. Să se reprezinte grafic următoarele domenii:

a)
$$\mathcal{D} = \{(x,y)|x^2 + y^2 \le -2x\};$$

b)
$$\mathcal{D} = \{(x,y)|x^2 + y^2 \le 4, x^2 + \frac{y^2}{4} \le 1, x \ge 0\};$$

c) $\mathcal{D} = \{(x,y)|x^2 + y^2 \le 2, x \le y^2, x \ge -y^2, y \le 0\};$
d) $\mathcal{D} = \{(x,y)|x^2 \ge y^2, x \le y, 0 \le y \le 1\};$

c)
$$\mathcal{D} = \{(x,y)|x^2 + y^2 \le 2, x \le y^2, x \ge -y^2, y \le 0\};$$

d)
$$\mathcal{D} = \{(x,y)|x^2 \ge y^2, x \le y, 0 \le y \le 1\};$$

e)
$$\mathcal{D} = \{(x, y) | y^2 \ge x^2, y \le 2x + 3\};$$

f)
$$\mathcal{D} = \{(x,y)|x^2 + (y-1)^2 \le 1, y \le x^2, x \ge 0\}.$$

Soluție. c)
$$\mathcal{D}=\{(x,y)|x^2+y^2\leq 2, x\leq y^2, x\geq -y^2, y\leq 0\}$$
 $x^2+y^2=2$ cerc cu centrul în origine și rază $\sqrt{2}$

$$x^2 + y^2 = 2$$
 cerc cu centrul în origine și rază $\sqrt{2}$

$$x = y^2, x = -y^2$$
 parabole

Domeniul este: intersecția dintre interiorul cercului, exteriorul parabolelor, cadranele trei şi patru.

f)
$$\mathcal{D} = \{(x,y)|x^2 + (y-1)^2 \le 1, y \le x^2, x \ge 0\}$$

 $x^2 + (y-1)^2 = 1$ cerc cu centrul în $(0,1)$ şi raza 1
 $y = x^2$ parabola

Domeniul este intersecția dintre interiorul cercului și exteriorul parabolei aflată în cadranul I.

Exercițiul 33. Să se recunoască următoarele curbe din plan:

a)
$$x^2 + y^2 - 2x + 2y = 0$$
, b) $y^2 - 9x^2 = 0$.

c)
$$2x^2 + y^2 + 4y - 2 = 0$$
; d) $\frac{x^2}{49} + \frac{y^2}{9} = 0$,

e)
$$\frac{x^2}{8} - y^2 - \frac{1}{2} = 0$$
, f) $\frac{x^2}{8} - y = 0$,

g)
$$x^2 + y^2 - 2y + 2 = 0$$
, h) $y - 20x^2 = 0$.

Soluție. a)
$$x^2 + y^2 - 2x + 2y = 0 \Rightarrow (x-1)^2 + (y+1)^2 - 2 = 0$$

Cerc $C(1, -1), R = \sqrt{2}$

b)
$$y^2 - 9x^2 = 0 \Rightarrow (y - 3x)(y + 3x) = 0$$
 două plane secante

c)
$$2x^2 + y^2 + 4y - 2 = 0 \Rightarrow 2x^2 + (y+2)^2 - 6 = 0 \Rightarrow$$

$$\frac{x^2}{3} + \frac{(y+2)^2}{6} - 1 = 0$$
 elipsă

d)
$$\frac{x^2}{49} + \frac{y^2}{9} = 0 \Leftrightarrow x = 0, y = 0.$$

Exercițiul 34. Să se recunoască suprafețele în spațiu:
a)
$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{25} - 1 = 0$$
, b) $\frac{x^2}{4} - \frac{y^2}{9} = z$,

c)
$$x^2 + y^2 = 2z$$
, d) $\frac{x^2}{4} - \frac{y^2}{9} - 1 = 0$,
e) $x^2 + y^2 - z^2 + 2z = 0$, f) $x - z + 2z = 0$

e)
$$x^2 + y^2 - z^2 + 2z = 0$$
, f) $x - z + 2y + 3 = 0$,

g)
$$x^2 - y^2 + z^2 + 2y = 0$$
, h) $x^2 - y^2 = 2z$,
 $x^2 - y^2 + z^2$

i)
$$-\frac{x^2}{4} - \frac{y^2}{9} + \frac{z^2}{25} - 1 = 0$$
, j) $\frac{x^2}{4} + \frac{y^2}{9} = 2z$,

e)
$$x^{2} + y^{2} - z^{2} + 2z = 0$$
, f) $x - z + 2y + 3 = 0$, g) $x^{2} - y^{2} + z^{2} + 2y = 0$, h) $x^{2} - y^{2} = 2z$, i) $-\frac{x^{2}}{4} - \frac{y^{2}}{9} + \frac{z^{2}}{25} - 1 = 0$, j) $\frac{x^{2}}{4} + \frac{y^{2}}{9} = 2z$, k) $\frac{x^{2}}{1} + \frac{y^{2}}{16} + \frac{z^{2}}{4} = 0$, l) $\frac{x^{2}}{9} + \frac{y^{2}}{16} - \frac{z^{2}}{25} - 1 = 0$,

m)
$$\frac{x^2}{1} + \frac{y^2}{16} - \frac{z^2}{4} - 1 = 0$$
, n) $\frac{y^2}{16} - \frac{z^2}{25} = 0$,
o) $\frac{x^2}{1} + \frac{y^2}{16} - 2z = 0$, p) $\frac{y^2}{16} - \frac{z^2}{25} - 1 = 0$,
r) $x^2 - y^2 - z^2 = 0$, s) $x^2 + y^2 = 2z$,

o)
$$\frac{x^2}{1} + \frac{y^2}{16} - 2z = 0$$
, p) $\frac{y^2}{16} - \frac{z^2}{25} - 1 = 0$,

r)
$$x^{\frac{1}{2}} - y^{\frac{1}{2}} - z^2 = 0$$
, s) $x^2 + y^2 = 2z$,

t)
$$\frac{y^2}{9} + \frac{z^2}{16} = 4 - x^2$$
, $u(\frac{x^2}{9}) - \frac{y^2}{16} + z^2 + 1 = 0$.

Soluție. a)
$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{25} - 1 = 0$$
 elipsoid

b)
$$\frac{x^2}{4} - \frac{y^2}{9} = z \Leftrightarrow \frac{x^2}{2} - \frac{y^2}{\frac{9}{2}} = 2z$$
 paraboloid hiperbolic

c)
$$x^2 + y^2 = 2z$$
 paraboloid eliptic

d)
$$\frac{x^2}{4} - \frac{y^2}{9} - 1 = 0$$
 cilindru eliptic

e)
$$x^2+y^2-z^2+2z=0\Rightarrow x^2+y^2-(z^2-2z+1)+1=0\Rightarrow x^2+y^2-(z-1)^2+1=0$$
 hiperboloid cu două pânze f) $x-z+2y+3=0$, plan r) $x^2-y^2-z^2=0$ suprafață conică

f)
$$x - z + 2y + 3 = 0$$
, plan

r)
$$x^2 - y^2 - z^2 = 0$$
 suprafață conică