18/11 LECTURE 14 - ENDEPENDENCE - EXAMPLES. Eglyol. Pick 'r' cells from n' cells independently sic, frick a cell from n'alls war & repeat this exp. T'times indep. $\Omega = [n]^{r} \qquad b(\omega) = \frac{1}{n^{r}} \qquad \omega = (\omega_{0}, \dots, \omega_{r}) \in \Omega_{0}$ Eg 1402; Spelia Cashs of Eg 1401 (1) n=2. -> r inclep fair (oin tosses (rinder bits) (2) n=6 -> r indep die rolls. (3) n/21 -> r persons inclub. pick a hush-code from 1, - - , 10 0 n persons pick indepently a no: whereby ith person picks F 14.3 : a nos en [i] U.A.R.

$$\Omega = \prod_{i=1}^{n} [i] \quad (D(\omega)) = \prod_{i=1}^{n} \frac{1}{i} = \frac{1}{n!} \quad \omega = (\omega_{1}, \ldots, \omega_{n}) \in \Omega_{n}$$

$$= \prod_{i=1}^{n} \{1, \ldots, i\} = \{1\} \times \{1, 2\} \times \{1, 4\} \times \dots \times \{1, 2-\ldots, n\}.$$

Fg 14.4: Consider (SL, D) as above.

Let
$$W = (W_1, - , W_n) \in \Omega$$
. Permutations

$$W_1 = 1 \qquad \rightarrow \qquad 1 \qquad - \rightarrow \qquad C \qquad 1 \qquad C \qquad S_1$$

$$W_2 = 2 \qquad \rightarrow \qquad 1 \qquad - \rightarrow \qquad C \qquad S_2$$

$$W_3 = 2 \longrightarrow 3 \in S_3$$

$$\omega_{4}=3 \rightarrow 1342 \rightarrow 54$$

 $W_n = \text{bosition of } n$ among existing (n+) numbers - $\sigma^n \in S_n$. Returnively, in σ^{i-1} , we put i in the w_i^{th} position &

get T. $\Omega \rightarrow \omega \longmapsto \sigma^{n} \in S_{n}$ $\mathbb{H}(\sigma) = \sigma = ?$ In a fixed $\sigma \in S_n$. drance who of Esi time, induced probons n TO PROVE THAT IP(\(\tau^2 = \tau^2 \)) = \(\Limin \) \(\tau^2 = \limin \). \(\tau^2 = \limin \). INDUCTION: nolds for i=1 trivially. Assume (1) holds for n-10 Let TI be of ES, restricted to Sny. (remove in from or). i.e., if n=4& o= 1342 then tt = 132. $\mathbb{P}(\sigma^{\prime} = \sigma) = \mathbb{P}(\sigma^{\prime} = \sigma(\sigma^{\prime} = \pi)) \mathbb{P}(\sigma^{\prime} = \pi)$

Let j = (n) be the position on n in T. (Hove eg. position of 4)

1/2 3 in or) $= P(\omega_n = i \mid \sigma^{n+} = \pi) P(\sigma^{n+} = \pi)$ ant depends on $(w_1, ..., w_{n+1})$. It $\in S_{n+1}$ $C = \{\sigma^{n+} = \Pi \} = B \times [n], B \subseteq [1] \times (2] \times \cdots [n+]$ $D = \{\omega_n = j\} = [1] \times (2] \times \cdots [n+] \times A \text{ where } A = hj \}.$ Since our prob spale is prod spale, C&D are indepo (hell) So $P(W_h = J \mid C^{A-1} = T) = P(D \mid C) = I.$ SO $P(T^1 = T) = I$ (by induction step) => or is a rand. permutation in Sn. 100

LEMMA 4.4.4 gf A,B, C are independent events than so are AUBS C
and ANB & C.
Prof : P((AUB)nC) = P((AnC) U (BnC))
= IP(Anc) + P(Bnc) - P(ANBnc) (IE)
= (P(A)P(C) + (P(B)(P(C) - P(ANB)P(C) (indep-)
$= \mathbb{P}(\mathbb{C}) \left(\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \right)$
= (P(C) (P(AUB)) (TE)
My An An B & Co
Ex. Generalize above to more events. For eg. A, B, C, D one inclup.
14.5 then so are AUB & CND.
Formula There are n types of combons. A combon of type i is selected with prob. Pi of (Pizo & Zpi = 1).
R indeb. coupons are selected.

Find book. I at least one type i compone I at least one type i or $\Omega = [nJ^R - P(w) = \frac{R}{L}Pw_e]$ We E(nJ, l=1,..., n at kut one type J. 89N° A: = 3 at least one type i coupon. $P(A_i^c) = 1 - P(A_i^c) = 1 - P(no confor of type i)$ $So A_i^c = (C)(i)^R P(A_i^c) = (1 - P_i)^R Since A_i^c is a productor$ $R(A_i^c) = (1 - P_i)^R Since A_i^c is a productor$ $R(A_i^c) = (1 - P_i)^R Since A_i^c is a productor$ $R(A_i^c) = (1 - P_i)^R Since A_i^c is a productor$ (P(A°) = (-+1)k. P(A; UA;) = P(A;) + P(A;) - P(A; n A;) $1 - P(A_i U A_j) = I - P(A_i U A_j)$ $A_{i} \cap A_{j} = (n) \setminus \{i', j\}^{k} \quad (P(A_{i} \cap A_{j}) = (i-b_{i}-b_{j})^{k}$ $P(A_i \cup A_j) = (-p_i - p_j)^k$ $P\left(\bigcap_{i=1}^{n} A_{i} \right) = 3 \qquad \text{if } R < n \qquad P\left(\bigcap_{i=1}^{n} A_{i} \right) = 0 .$

Eg 4.7 (Gambler's ruin problem). Two gamblers A&B. Keep tossing a p-bland coin independently. 9 H, B pays 1\$ to A & Eft, A pays 1\$ to B. Initially A has E\$ & B has n-i\$. Grame over if A or B have o \$. A winner if A has n \$ Solution' p-biased coin P(H) = P, P(T) = 1-P = 9 $P_{c} = P(A \text{ wins starting with } c s) = P(A_{c})$ A_{c}^{c} $P_{i} = P(A_{i}) = P(A_{i} | H) P(H) + P(A_{i} | T,) P(T_{i})$ Given H_{i} , A has $l_{H} \neq 8$ B has $n-l-1 \neq 1$ game continues if

1717

Since the next tosses one indeb of first toss, this is same as starting the game with (it) & In A. 80 P(A: H) = P(A:H) = PeH - ; P(A: T) = P. => Pi = PP+ 9 Piptq=1 => pPi+ qPi = pPi+ +qPi-1 Pett Po = 9 (Po - Pitt) $P_0 = 1 \cdot P_0 = 0$ use this I Pe-Pi+ = (ar) P1. Add $P_i - P_{i-1}$ $\Rightarrow P_i - P_1 = P_i \left(\begin{pmatrix} q_i \end{pmatrix} + \cdots + \begin{pmatrix} q_i \end{pmatrix}^{i+1} \right)$ +:--+P,-P2

$$1 = R_{0} = P_{1} \left[(+(P_{0}) + \cdot + \cdot + (P_{0})^{N-1}) \right]$$

$$= P_{1} \left[(-(P_{0})^{N}) \right] \qquad P_{1} = 1.$$

$$= P_{1} \left[(-(P_{0})^{N}) \right] \qquad P_{2} = 1.$$

$$= P_{1} = 1.$$

$$= P_{1} = 1.$$

$$= P_{2} \left[(-(P_{0})^{N}) \right] \qquad P_{2} = 1.$$

$$= P_{3} = 1.$$

$$= P_{4} \left[(-(P_{0})^{N}) \right] \qquad P_{2} = 1.$$

$$= P_{4} = 1.$$

$$= P_{5} = 1.$$

$$= P_{6} = 1.$$

$$= P_{7} = 1.$$

$$= P_{7}$$

Check Pi+ Ri=1. +i=0,-, n.