

Titre du rapport

Nom des auteurs

Dï
; 1_2 partement Sciences du Numï
; 1_2 rique - Premiï
; 1_2 re annï
; 1_2 e 2019-2020

Table des matières

1	Intr	roduction	3
2	2.1 2.2 2.3	dem de frï $ lefti{1}{2}$ quence - Dï $ lefti{1}{2}$ modulation par filtrage Construction du signal modulï $ lefti{1}{2}$ en frï $ lefti{1}{2}$ quence	3 3 3 3 4
	2.4	2.3.1 Synth�se du filtre passe-bas	4 4 4
3	Mod 3.1 3.2	dem de fr�quence V21 - D�modulateur FSK D�modulateur FSK - Contexte de synchronisation id�ale	4 4
4	Con	nclusion	5
5	Rï¿	$\frac{1}{2}$ fï; $\frac{1}{2}$ rences	6
\mathbf{T}	able	e des figures	
	1 2 3 4	Signal modulï $ led{l}_{2}^{\frac{1}{2}}$ en frï $ led{l}_{2}^{\frac{1}{2}}$ quence	3 4 5 5

1 Introduction

L'objectif de ce projet \ddot{i}_{2}^{1} tait de ...

2 Modem de fri; ½quence - Di; ½modulation par filtrage

2.1 Construction du signal moduli $;\frac{1}{2}$ en fri $;\frac{1}{2}$ quence

La premiï $le{l}_{2}^{\frac{1}{2}}$ re $\ddot{\imath}_{l}^{\frac{1}{2}}$ tape du projet consiste $\ddot{\imath}_{l}^{\frac{1}{2}}$ r $\ddot{\imath}_{l}^{\frac{1}{2}}$ aliser la modulation de fr $\ddot{\imath}_{l}^{\frac{1}{2}}$ quence, i.e. transformer l'information binaire $\ddot{\imath}_{l}^{\frac{1}{2}}$ transmettre en un signal modul $\ddot{\imath}_{l}^{\frac{1}{2}}$ en fr $\ddot{\imath}_{l}^{\frac{1}{2}}$ quence (exemple sur la figure 1). Le signal modul $\ddot{\imath}_{l}^{\frac{1}{2}}$ en fr $\ddot{\imath}_{l}^{\frac{1}{2}}$ quence x(t) est $\ddot{g}\ddot{\imath}_{l}^{\frac{1}{2}}$ n $\ddot{\imath}_{l}^{\frac{1}{2}}$ r $\ddot{\imath}_{l}^{\frac{1}{2}}$ de la mani $\ddot{\imath}_{l}^{\frac{1}{2}}$ re suivante :

FIGURE 1 – Signal modul \ddot{i}_{1} en fr \ddot{i}_{2} quence

$$x(t) = (1 - NRZ(t)) \times \cos(2\pi F_0 t + \phi_0) + NRZ(t) \times \cos(2\pi F_1 t + \phi_1)$$
(1)

oï¿ $\frac{1}{2}$ NRZ(t) est un signal de type NRZ polaire formï¿ $\frac{1}{2}$ ï¿ $\frac{1}{2}$ partir de la suite de bits ï¿ $\frac{1}{2}$ transmettre en codant les 0 et les 1 par des niveaux 0 et 1 de durï¿ $\frac{1}{2}$ e T_s secondes. ϕ_0 et ϕ_1 sont des variables alï¿ $\frac{1}{2}$ atoires indï¿ $\frac{1}{2}$ pendantes uniformï¿ $\frac{1}{2}$ ment rï¿ $\frac{1}{2}$ parties sur $[0, 2\pi]$ qui peuvent ï¿ $\frac{1}{2}$ tre obtenues sous matlab en utilisant rand*2*pi.

2.1.1 G \ddot{i}_{2}^{1} n \ddot{i}_{2}^{1} ration du signal NRZ

1.

2.

3.

2.1.2 Gï; $\frac{1}{2}$ nï; $\frac{1}{2}$ ration du signal modulï; $\frac{1}{2}$ en frï; $\frac{1}{2}$ quence

_

2.2 Canal de transmission $\ddot{i}_{6,\frac{1}{2}}$ bruit additif, blanc et Gaussien

Nous allons considi $\frac{1}{2}$ rer que le canal de propagation ajoute au signal $\frac{1}{2}$ mis un bruit que l'on suppose blanc et Gaussien et qui modi $\frac{1}{2}$ lise les perturbations introduites.

La puissance du bruit Gaussien $\ddot{i}_{,\frac{1}{2}}$ ajouter devra $\ddot{i}_{,\frac{1}{2}}$ tre d $\ddot{i}_{,\frac{1}{2}}$ duite du rapport signal sur bruit (SNR : Signal to Noise Ratio) souhait $\ddot{i}_{,\frac{1}{2}}$ pour la transmission donn $\ddot{i}_{,\frac{1}{2}}$ en dB :

$$SNR_{dB} = 10\log_{10}\frac{P_x}{P_h}$$

oï; $\frac{1}{2}$ P_x repri; $\frac{1}{2}$ sente la puissance du signal moduli; $\frac{1}{2}$ en fri; $\frac{1}{2}$ quence et P_b la puissance du bruit ajouti; $\frac{1}{2}$.

2.3 Dï; ½ modulation par filtrage

La figure 2 pri $\tilde{i}_{2}^{\frac{1}{2}}$ sente le ri $\tilde{i}_{2}^{\frac{1}{2}}$ cepteur implanti $\tilde{i}_{2}^{\frac{1}{2}}$ pour retrouver, i $\tilde{i}_{2}^{\frac{1}{2}}$ partir du signal moduli $\tilde{i}_{2}^{\frac{1}{2}}$ en fri $\tilde{i}_{2}^{\frac{1}{2}}$ quence bruiti $\tilde{i}_{2}^{\frac{1}{2}}$, le message binaire envoyi $\tilde{i}_{2}^{\frac{1}{2}}$.

FIGURE 2 – D $\ddot{i}_{\dot{i}}$ 2 modulation par filtrage.

Un filtre passe-bas permet de filtrer les morceaux de cosinus $\ddot{\imath}_{l,\frac{1}{2}}$ la fr $\ddot{\imath}_{l,\frac{1}{2}}$ quence $F_0=6000$ Hz, tandis qu'un filtre passe-haut permet de filtrer les morceaux de cosinus $\ddot{\imath}_{l,\frac{1}{2}}$ la fr $\ddot{\imath}_{l,\frac{1}{2}}$ quence $F_1=2000$ Hz. Une d $\ddot{\imath}_{l,\frac{1}{2}}$ tection d' $\ddot{\imath}_{l,\frac{1}{2}}$ nergie r $\ddot{\imath}_{l,\frac{1}{2}}$ alis $\ddot{\imath}_{l,\frac{1}{2}}$ e tous les T_s secondes permet de r $\ddot{\imath}_{l,\frac{1}{2}}$ cup $\ddot{\imath}_{l,\frac{1}{2}}$ rer, $\ddot{\imath}_{l,\frac{1}{2}}$ partir des signaux filtr $\ddot{\imath}_{l,\frac{1}{2}}$ s, les bits 0 et 1 transmis.

2.3.1 Synth" $\frac{1}{2}$ se du filtre passe-bas

A COMPLETER

2.3.2 Synthï; ½se du filtre passe-haut

A COMPLETER

2.3.3 Filtrage, traci $\frac{1}{2}$ s, commentaires sur les ri $\frac{1}{2}$ sultats obtenus

A COMPLETER

2.3.4 Di; $\frac{1}{2}$ tection d'i; $\frac{1}{2}$ nergie

A COMPLETER

2.4 Application de la recommandation V21

A COMPLETER

3 Modem de frquence V21 - D2modulateur FSK

3.1 D \ddot{i}_{12} modulateur FSK - Contexte de synchronisation id \ddot{i}_{12} ale

La figure 3 pri $\bar{i}_{2}^{\frac{1}{2}}$ sente le ri $\bar{i}_{2}^{\frac{1}{2}}$ cepteur modifii $\bar{i}_{2}^{\frac{1}{2}}$ implanti $\bar{i}_{2}^{\frac{1}{2}}$ afin de retrouver, i $\bar{i}_{2}^{\frac{1}{2}}$ partir du signal moduli $\bar{i}_{2}^{\frac{1}{2}}$ en fri $\bar{i}_{2}^{\frac{1}{2}}$ quence suivant la recommandation V21, le message binaire envoyi $\bar{i}_{2}^{\frac{1}{2}}$.

A COMPLETER

FIGURE 3 – Di \tilde{i}_{2}^{1} modulation FSK. Synchronisation supposi \tilde{i}_{2}^{1} e idi \tilde{i}_{2}^{1} ale.

3.2 D�modulateur FSK avec gestion d'une erreur de synchronisation de phase porteuse

A COMPLETER

4 Conclusion

A compli
; $\frac{1}{2} \mathrm{ter}$

5 Ri $;\frac{1}{2}$ fi $;\frac{1}{2}$ rences