INTERRO DE COURS 3

Exercice 1 – Déterminer la nature des séries suivantes et préciser leur somme en cas de convergence.

 $1. \sum_{n \ge 1} \frac{1}{3^n}$

Solution : On reconnait la série géométrique de raison $\frac{1}{3}$ à laquelle on a ôté le premier terme. Comme $\left|\frac{1}{3}\right| < 1$, la série converge et

$$\sum_{k=1}^{+\infty} \frac{1}{3^k} = \sum_{k=0}^{+\infty} \left(\frac{1}{3}\right)^k - 1 = \frac{1}{1 - \frac{1}{3}} - 1 = \frac{3}{2} - 1 = \frac{1}{2}.$$

 $2. \sum_{n\geq 1} \left(\frac{2}{3}\right)^n$

Solution : On reconnait la série géométrique de raison $\frac{2}{3}$ à laquelle on a ôté le premier terme. Comme $\left|\frac{2}{3}\right| < 1$, la série converge et

$$\sum_{k=1}^{+\infty} \left(\frac{2}{3}\right)^k = \sum_{k=0}^{+\infty} \left(\frac{2}{3}\right)^k - 1 = \frac{1}{1 - \frac{2}{3}} - 1 = 3 - 1 = 2.$$

 $3. \sum_{n\geq 0} \frac{5}{6}$

Solution : Le terme général de cette série, à savoir $\frac{5}{6}$, ne tend pas vers 0 (il tend vers $\frac{5}{6}$), donc la série diverge.

4. $\sum_{n>1} \left(\frac{3}{2}\right)^n$

Solution : On reconnait la série géométrique de raison $\frac{3}{2} > 1$ donc la série diverge.

5. $\sum_{n\geq 0} \frac{1}{4^n}$

Solution : On reconnait la série géométrique de raison $\frac{1}{4}$. Comme $\left|\frac{1}{4}\right| < 1$, la série converge et

$$\sum_{k=0}^{+\infty} \frac{1}{4^k} = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}.$$

6. $\sum_{n\geq 1} \frac{3}{2^n}$

Solution : On reconnait la série géométrique de raison $\frac{1}{2}$ à laquelle on a ôté le premier terme. Comme $\left|\frac{1}{2}\right| < 1$, la série converge et

$$\sum_{k=1}^{+\infty} \frac{3}{2^k} = 3\sum_{k=0}^{+\infty} \frac{1}{2^k} - 3 = 3 \times \frac{1}{1 - \frac{1}{2}} - 3 = 6 - 3 = 3$$

7. $\sum_{n>0} -n^2$

Solution : Le terme général de cette série, à savoir $-n^2$, ne tend pas vers 0 (il tend vers $-\infty$), donc la série diverge.

 $8. \sum_{n\geq 0} \frac{4}{5^n}$

Solution:

$$\sum_{n\geq 0} \frac{4}{5^k} = \sum_{n\geq 0} 4\frac{1}{5^k}.$$

La série géométrique de raison $\frac{1}{5}$ converge car $\left|\frac{1}{5}\right| < 1$, donc la série $\sum_{n \ge 0} \frac{4}{5^n}$ converge et

$$\sum_{k=0}^{+\infty} \frac{4}{5^k} = 4 \sum_{k=0}^{+\infty} \frac{1}{5^k} = 4 \times \frac{1}{1 - \frac{1}{5}} = 4 \times \frac{5}{4} = 5.$$

9. $\sum_{n>0} \frac{4}{2^n} - \frac{2}{3^n}$

Solution: Étudions la somme partielle de cette série.

$$\sum_{k=0}^{n} \frac{4}{2^k} - \frac{2}{3^k} = \sum_{k=0}^{n} \frac{4}{2^k} - \sum_{k=0}^{n} \frac{2}{3^k} = 4 \sum_{k=0}^{n} \frac{1}{2^k} - 2 \sum_{k=0}^{n} \frac{1}{3^k}.$$

On reconnait les sommes partielles des séries géométriques de raison $\frac{1}{2} \in]-1:1[$ et $\frac{1}{3} \in]-1;1[$ donc la série converge et

$$\sum_{k=0}^{+\infty} \frac{4}{2^k} - \frac{2}{3^k} = 4\sum_{k=0}^{+\infty} \frac{1}{2^k} - 2\sum_{k=0}^{+\infty} \frac{1}{3^k} = 4 \times \frac{1}{1 - \frac{1}{2}} - 2 \times \frac{1}{1 - \frac{1}{3}} = 4 \times 2 - 2 \times \frac{3}{2} = 8 - 3 = 5$$

 $10. \sum_{n\geq 1} \frac{1}{5^n}$

Solution : On reconnait la somme partielle de la série géométrique de raison $\frac{1}{5}$ à laquelle on a ôté le premier terme. Comme $\left|\frac{1}{5}\right| < 1$, la série converge et

$$\sum_{k=1}^{+\infty} \frac{1}{5^k} = \sum_{k=0}^{+\infty} \left(\frac{1}{5}\right)^k - 1 = \frac{1}{1 - \frac{1}{5}} - 1 = \frac{5}{4} - 1 = \frac{1}{4}.$$