Matemática Computacional

Exercícios de Interpolação

maria irene falcão

Mestrado em Matemática e Computação

Exercícios

Exercício 1. Considere os pontos $x_1 = 0, x_2 = 0.4$ e $x_3 = 0.6$ e suponha que se pretende obter uma aproximação para o valor de uma dada função f no ponto x = 0.25, usando:

(i) interpolação linear; (ii) interpolação quadrática.

Determine essa aproximação, recorrendo à forma de Lagrange do polinómio interpolador, obtenha um majorante para o erro e compare-o com o erro efetivamente cometido, quando:

a) $f(x) = \sin x$; b) $f(x) = \sqrt{x+2}$; c) $f(x) = \log(x+1)$.

Exercício 2. Forme uma tabela dos valores da função $y(x) = \sin x$ nos pontos $x_1 = 0.2$, $x_2 = 0.4$, $x_3 = 0.5$, $x_4 = 0.55$, $x_5 = 0.6$, $x_6 = 0.63$ e $x_7 = 0.67$.

- a) Recorrendo à função **tabDifDiv**, determine a tabela das diferenças divididas da função tabelada.
- b) Usando valores adequados da tabela anterior, obtenha, por interpolação cúbica, uma estimativa para sen 0.32.
- c) Obtenha uma estimativa para o erro cometido na alínea anterior. Compare com o erro efetivamente cometido.

Exercício 3. Considere a seguinte tabela de valores de uma determinada função y:

- a) Forme a tabela de diferenças divididas dos valores tabelados.
- b) Estime, por interpolação por um polinómio de grau 3, o valor de y(0.3).
- c) Obtenha uma estimativa para o erro cometido na alínea anterior.
- d) Esboce o gráfico do polinómio interpolador dos pontos da tabela dada.

Exercício 4. Pretende-se construir uma tabela de valores da função $f(x) = \cos x$, em pontos igualmente espaçados no intervalo [0,1], de modo que, ao usar interpolação por um polinómio do segundo grau usando pontos dessa tabela para estimar o valor de $\cos x$ para qualquer

1

 $x \in [0,1]$, se obtenha uma aproximação com precisão de três casas decimais. Qual deverá ser o número mínimo de entradas da tabela?

Quantas entradas deveria ter a tabela se pretendêssemos usar interpolação cúbica?

Exercício 5. Considere o seguinte extrato de uma tabela de diferenças divididas de uma função y:

x	y	$y[\cdot,\cdot]$	$y[\cdot,\cdot,\cdot]$
1	0.6		
1.25	A	-0.4	0.2
1.25	Α	B	0.2
1.75	0.375		

- a) Determine os valores de A e B.
- b) Indique a expressão do polinómio P_2 que interpola a função y nos pontos 1, 1.25, 1.75.
- c) Calcule $P_2(1.2)$.
- d) Sabendo que $y^{(n)}(x) = (-1)^n \frac{3 \times 4^n n!}{(4x+1)^{n+1}}$, determine:
 - (i) um majorante para $|y(1.2) P_2(1.2)|$;
 - (ii) um majorante para o valor absoluto da diferença dividida y[1, 1.25, 1.75, 2].

Exercício 6. A função gama Γ é uma função especial com muitas aplicações em diversas áreas de matemática, e é definida por

$$\Gamma(x) = \int_0^x t^{x-1} e^{-t} dt, \quad x > 0.$$

Para valores inteiros do argumento, pode provar-se que $\Gamma(n)=(n-1)!,\ n\in\mathbb{N}$. A tabela seguinte contém valores da função Γ em 6 pontos igualmente espaçados no intervalo [1,2].

x	$\Gamma(x)$		
1.0	1.0000000000		
1.2	0.9181687424		
1.4	0.8872638175		
1.6	0.8935153493		
1.8	0.9313837710		
2.0	1.0000000000		

a) Determine o polinómio de grau 5 interpolador nos pontos dessa tabela e use-o para estimar o valor de $\Gamma(x)$ para x=1.1,1.3,1.5,1.7 e 1.9.

- b) Obtenha informação sobre a função pré-definida **gamma** e use-a para calcular o erro das aproximações obtidas na alínea anterior.
- c) Esboce o gráfico do polinómio obtido na alínea a) e da função Γ , no intervalo [1,2]. **Nota:** Para esboçar o gráfico da função Γ , use a função pré-definida gamma.
- Exercício 7. Obtenha ajuda sobre as funções pré-definidas polyfit e polyval; em particular, veja como poderá usar a função polyfit para construir o polinómio interpolador de um determinado conjunto de pontos. Use essas funções na resolução de alguns dos execícios anteriores.

Exercício 8. Determine k de modo que a seguinte função seja uma função spline cúbica:

$$s(x) = \begin{cases} x^3 - x^2 + 3x + 1, & 0 \le x \le 1, \\ -x^3 + kx^2 - 3x + 3, & 1 \le x \le 2. \end{cases}$$

Exercício 9.

- a) Obtenha informação sobre a função pré-definida spline. Sendo $x=(x_1,\ldots,x_n)$, $y=(y_1,\ldots,y_n)$ e $z=(u_1,\ldots,u_m)$, qual é o resultado de invocar o comando valspl= spline(x,y,z), no MATLAB? E qual será o resultado de spl= spline(x,y)?
- b) O que acontece no caso em que o vetor y tem mais duas componentes do que o vetor x, isto é, $y=(y_1,\ldots,y_{n+2})$?
- c) Obtenha ajuda sobre as funções unmkpp e ppval.

Exercício 10. Considere a seguinte tabela de pontos:

- a) Seja S_c a função *spline* cúbica interpoladora dos pontos dessa tabela, satisfazendo as condições finais: $S_c'(0) = 0.2$ e $S_c'(3) = -1$.
 - (i) Determine, usando a função spline, os valores $S_c(0.5)$, $S_c(1.2)$ e $S_c(2.8)$.
 - (ii) Esboce o gráfico de S_c e assinale, sobre esse gráfico, os pontos da tabela.
 - (iii) Usando a função \mathbf{unmkpp} , determine a expressão de cada uma das cúbicas que formam S_c .
- b) Repita a alínea anterior, mas construindo S_{sn} , a função spline sem-nó interpoladora dos pontos da tabela.
- c) Seja P_3 o polinómio cúbico interpolador dos pontos da tabela dada. Sobreponha ao gráfico de S_{sn} o gráfico de P_3 . Que conclui? Como justifica tal resultado?

Exercício 11. Seja S_n a função *spline* cúbica completa interpoladora da função $f(x) = \exp(x)$ em n+1 pontos igualmente espaçados no intervalo [0,1].

- a) Obtenha os valores da função *spline* com 11 nós, S_{10} , nos pontos 0.21, 0.33, 0.75 e 0.99 e compare-os com o valores de f nesses pontos.
- b) Esboce os gráficos da função f e da função spline S_{10} , no intervalo [0,1], e marque também os pontos de interpolação.

Exercício 12. Considere a função de Runge

$$f(x) = \frac{1}{1 + 25x^2}, \quad x \in [-1, 1].$$

- a) Para $n \in \mathbb{N}$, seja P_{n-1} o polinómio interpolador de f em n pontos igualmente espaçados no intervalo [-1,1]. Escreva uma script que esboce o gráfico de f, P_2 , P_4 , P_{10} e P_{20} .
- b) Seja S_n a função spline cúbica completa interpoladora de f nos n+1 nós igualmente espaçados

$$x_k = -1 + (k-1)h$$
, $k = 1, ..., n+1$; $h = 2/n$.

Esboce o gráfico de f e de cada uma das funções spline S_4 , S_{10} e S_{20}

c) Comente os resultados obtidos.

Trabalhos

Trabalho 1. Considere a seguinte tabela:

x	y	x	y
10.0	0.42	12.16	3.40
10.6	0.52	12.44	4.62
11.0	0.55	12.5	4.64
11.6	0.65	13.0	4.64
12.0	1.52	13.2	4.64
12.04	1.87	13.5	4.64
12.08	2.35	14.0	4.64

- a) Represente graficamente os 14 pontos dessa tabela.
- b) Escolha 6 pontos da tabela e construa o polinómio P_5 e a função *spline* cúbica sem-nó interpoladores desses pontos. Represente-os graficamente, marcando os pontos da tabela.
- c) Repita a alínea anterior escolhendo 9 pontos de interpolação (e construindo o polinómio P_8 e a função spline sem-nó); finalmente, use todos os pontos da tabela para construir P_{13} e a função spline sem-nó interpoladores desses pontos.
- d) Comente os resultados obtidos.

Trabalho 2. Considere a seguinte tabela de pontos

e a função

$$S_N(x) = \begin{cases} 1 + 6x - 32x^3, & 0 \le x < \frac{1}{4} \\ 2 - 24(x - \frac{1}{4})^2 + 32(x - \frac{1}{4})^3, & \frac{1}{4} \le x < \frac{1}{2} \\ 1 - 6(x - \frac{1}{2}) + 32(x - \frac{1}{2})^3, & \frac{1}{2} \le x < \frac{3}{4} \\ 24(x - \frac{3}{4})^2 - 32(x - \frac{3}{4})^3, & \frac{3}{4} \le x \le 1 \end{cases}$$

- a) Mostre que S_N é a spline cúbica natural interpoladora dos pontos da tabela apresentada acima
- b) Sejam S_C e S_{SN} as splines cúbicas completa e sem nó, respetivamente, interpoladoras dos mesmos pontos.
 - i) Indique a expressão de S_C e S_{SN} em [0, 1/4].
 - ii) Indique a expressão de S_C e S_{SN} em [3/4,1].
 - iii) Represente graficamente S_N , S_C e S_{SN} .

Trabalho 3. Interpolação inversa

Se tivermos uma tabela de pontos (x_i, y_i) com $y_i = f(x_i)$ valores de uma função y = f(x) nos nós x_i , e se soubermos que a função f é invertível, podemos trocar o papel das abcissas x_1, \ldots, x_n e das ordenadas y_1, \ldots, y_n e construir o polinómio interpolador dos valores x_1, \ldots, x_n nos nós y_1, \ldots, y_n , ou seja, construir o polinómio interpolador da função inversa $x = f^{-1}(y)$. Diz-se, neste caso, que se trata de interpolação inversa.

- a) Justifique por que razão este processo não funciona se f não for monótona no intervalo de interpolação.
- b) Use interpolação inversa para determinar uma estimativa para:
 - i) a raíz real da equação $x^3 x 1 = 0$.
 - ii) $\sqrt[3]{8.1232}$, supondo que a sua "máquina" não calcula valores de raízes cúbicas.

Trabalho 4. Interpolação nos nós de Chebyshev

Chamam-se nós de Chebyshev (de grau n) os pontos definidos por

$$z_k^{(n)} = \cos\left(\frac{(2k-1)\pi}{2n}\right)$$
; $k = 1, \dots, n$.

Estes pontos são os zeros do chamado polinómio de Chebyshev de grau n, definido por

$$T_n(x) = \cos(n \arccos x), \ x \in [-1, 1].$$

Os polinómios de Chebyshev constituem uma importante família de polinómios ortogonais, com muitas aplicações em diversas áreas da matemática.

- a) Usando a função **plot**, represente graficamente, no intervalo [-1,1], os nós de Chebyshev de grau 11.
- b) Considere o produto

$$\pi(x) = (x - x_1) \dots (x - x_{11})$$

com as duas escolhas de pontos seguintes:

(i)
$$x_k = -1 + (k-1)/5$$
; $k = 1, ..., 11$;

(ii)
$$x_k = z_k^{(11)}$$
; $k = 1, \dots, 11$.

Esboce os gráficos de $|\pi(x)|$ para cada uma dessas escolhas de nós. Que observa?

Nota: De facto, pode mostrar-se que a escolha $x_k=z_k^{(n)}$ minimiza

$$\max_{x \in [-1,1]} |(x-x_1) \dots (x-x_n)|.$$

c) Considere novamente a função de Runge

$$f(x) = \frac{1}{1 + 25x^2}, \ x \in [-1, 1]$$

e, para $n\in\mathbb{N}$, seja P_{n-1} o polinómio de grau $\leq n-1$ interpolador de f nos nós de Chebyshev de grau n, isto é, nos pontos $x_k=z_k^{(n)}; k=1,\ldots,n$. Construa os polinómios P_2,P_4 e P_{10} e P_{20} e esboce o gráficos de f e de cada um desses polinómios.

d) Relembrando os resultados do Exercício 12, faça um pequeno comentário aos resultados obtidos.