LGF_RampCI

Kurzbeschreibung

Dieser Baustein generiert eine Fahrkurve anhand einer Stützpunkttabelle. Zwischen den Punkten wird innerhalb der vorgegebenen Zeit linear interpoliert.

Baustein

Eingangsparameter

Parameter	Datentyp	Beschreibung				
defaultOutValue	LREAL	Wert für die Vorbelegung der Ausgangsgröße				
contStepNbr	INT	Nummer des nächsten Stützpunktes zum Weitermachen				
contStepTime	TIME	Restzeit zum Weitermachen bis zum Stützpunkt "contStepNbr"				
enDefaultOutValue	BOOL	Ausgangsgröße mit "defaultOutValue" vorbelegen				
start	BOOL	Stützpunkttabelle abfahren				
hold	BOOL	Aktuellen Wert am Ausgang halten				
continue	BOOL	Weitermachen				
cyclicOP	BOOL	Stützpunkttabelle zyklisch wiederholen				
updateTime	BOOL	Zeitwerte aktualisieren				
reset	BOOL	Neustart				
callOB	OB_CYCLIC	Aufrufender Weckalarm-OB				
setpoints	ARRY of "LGF_typeRampTimeTable"	Stützpunkttabelle. Informationen zum Datentyp "LGF_typeRampTimeTable" finden Sie unter dem Punkt "Globale Daten" .				

Ausgangsparameter

Parameter	Datentyp	Beschreibung
outputValue	LREAL	Ausgangsgröße
actTimeTable	BOOL	Stützpunkttabelle wird bearbeitet.
stepNumber	INT	aktuelle Stützpunktnummer (Stützpunkt, der angefahren wird)
remainTime	TIME	Restzeit bis Erreichen des nächsten Stützpunktes
totalTime	TIME	Gesamtzeit
remainTotalTime	TIME	Gesamtrestzeit
error	BOOL	FALSE: Kein Fehler
		TRUE: Während der Ausführung des FB ist ein Fehler aufgetreten.
status	WORD	16#0000-16#7FFF: Status des FB,
		16#8000-16#FFFF: Fehleridentifikation (siehe folgende Tabelle).
subFunctionStatus	WORD	Status oder Rückgabewert der aufgerufenen FCs und Systembausteine.

Status- und Fehleranzeigen

status	Bedeutung	Abhilfe / Hinweise				
16#0000	Kein Fehler	-				
16#7000	Initialwert	Neustart wurde durchgeführt.				
16#7001	Erster Aufruf	Steigende Flanke "start".				
16#7002	Folgeaufruf	Eingang "cyclicOP" gesetzt.				
16#8200	OB am Eingang "callOB" ist nicht projektiert / vorhanden.	Verschalten Sie am Eingang "callOB" den Konstantennamen eines projektierten Weckalarm-OB.				
16#8201	Untere Arraygrenze <> 0	Das Array mit den Stützpunkten muss mit dem Index 0 beginnen.				
16#8400	Fehler in Anweisung "QRY_CINT".	Prüfen Sie den Fehlercode in "subFunctionStatus"				

Hinweis

In "subFunctionStatus" wird der Status von aufgerufenen Anweisungen ausgegeben. Der Ausgangswert in "status" gibt in diesem Fall an, welche Anweisung den Fehler verursacht hat. Holen Sie sich in diesem Fall die Informationen aus der TIA Portal Online Hilfe zu den jeweiligen Anweisungen.

Globale Daten

Zusammen mit dem Baustein erhalten Sie automatisch den PLC-Datentyp "LGF_typeRampTimeTable", der sich aus den Parametern "outVal" für den Wert eines Stützpunktes und "time" für die Zeit bis zum Erreichen des nächsten Stützpunktes zusammensetzt. Die Deklaration erfolgt in einem eindimensionalen Array vom Datentyp "LGF_typeRampTimeTable" beginnend mit dem Index 0. Das Array wird in einem globalen Datenbaustein angelegt und dann an den Baustein "LGF_RampCI" übergeben.

Der Parameter "time" des letzten Stützpunktes muss mit 0s parametriert werden, da kein Nachfolgestützpunkt mehr vorhanden ist.

Funktionsweise

Mit dem Baustein lassen sich anhand parametrierter Stützpunkte Fahrkurven ausführen; in jedem Aufrufzyklus werden Werte nach einem Zeitplan ausgegeben, wobei zwischen den Stützpunkten interpoliert wird.

In jedem Zyklus werden die aktuell angefahrene Stützpunktnummer "stepNumber", die aktuelle Restzeit "remainTime" bis zum Erreichen des Stützpunktes, die Gesamtzeit "totalTime" und die Gesamtrestzeit bis zum Erreichen des Fahrkurvenendes "remainTotalTime" ausgegeben. Desweitern wird der Ausgang "actTimeTable" gesetzt, wenn gerade die projektierte Fahrkurve ausgegeben wird.

Der Zeittakt des aufrufen Weckalarm-OBs wird ermittelt, indem am Eingangsparameter "callOB" der aufrufende Weckalarm-OB verschaltet wird.

Über Steuereingänge können folgende Betriebsarten ausgewählt werden:

- Neustart
- Ausgang vorbelegen
- Fahrkurve ausgeben
- Bearbeitung anhalten
- Bearbeitungsschritt und -zeit vorgeben
- Zyklischen Betrieb einschalten
- Gesamtzeit und -restzeit aktualisieren

Überblick über die Betriebsarten

Betriebsart	enDefa ultOut Value	start	hold	contin ue	cyclic OP	updat eTime	reset	Ausgang / Aktion
Neustart							TRUE ↑	Baustein wird initialisiert.
Ausgang vorbelegen	TRUE	TRUE					FALSE	defaultOutVa lue
Fahrkurve ausgeben	FALSE	TRUE ↑	FALSE		FALSE		FALSE	outputValue (t); Endwert wird nach Bearbeitung gehalten
Fahrkurve anhalten	FALSE	TRUE	TRUE	FALSE			FALSE	aktueller Wert von outputValue (t) wird gehalten
Bearbeitungs- schritt und -	FALSE	TRUE	TRUE	TRUE ↑			FALSE	outputValue (alt)
zeit vorgeben			FALSE					Weitermach en mit para- metriertem Stützpunkt
Zyklischen Betrieb einschalten	FALSE	TRUE	FALSE		TRUE		FALSE	outputValue (t); nach Ende auto- matischer Neustart
Gesamtzeit und –restzeit aktualisieren						TRUE ↑	FALSE	Gesamtzeit und –restzeit werden aktualisiert.

Neustart

Mit einer steigenden Flanke am Eingang "reset" wird der Ausgang "outValue" auf 0.0 zurückgesetzt. Bei "enDefaultOutValue" = TRUE wird am Ausgang "defaultOutValue" ausgegeben. Die Gesamtzeit und Gesamtrestzeit werden aktualisiert und am Ausgang ausgegeben.

Ausgang vorbelegen

Soll die Fahrkurve mit einem bestimmten Ausgangswert beginnen, dann muss "enDefaultOutValue" = TRUE sein. In diesem Fall steht am Ausgang des Zeitplangebers der Wert "defaultOutValue" an. Die interne Abarbeitung der Fahrkurve läuft in dieser Zeit weiter. Wechselt "enDefaultOutValue" wieder auf FALSE, so wird zum aktuell aktiven Stützpunkt interpoliert.

Fahrkurve ausgeben

Mit einer steigenden Flanke am Eingangs "start" wird die Fahrkurve ausgegeben - solange "start" TRUE ist oder bis die Fahrkurve durch das Erreichen des letzten Stützpunktes beendet wurde. Durch eine erneute steigende Flanke wird die Fahrkurve nochmals ausgegeben. Zusätzlich wird bei jedem Einschalten die Gesamtzeit aktualisiert.

Zyklischen Betrieb einschalten

Wird zusätzlich zum Eingang "start" auch der Eingang "cyclicOP" auf TRUE gesetzt, kehrt die Fahrkurve nach Ausgabe des letzten Stützpunktwertes automatisch zum Startpunkt zurück und beginnt einen neuen Durchlauf.

Zwischen dem letzten Stützpunktwert und dem Startpunkt wird nicht interpoliert. Für einen stoßfreien Übergang muss gelten: letzter Stützpunktwert = Startpunkt.

Fahrkurve anhalten

Mit "hold" = TRUE wird der Wert der Ausgangsgröße (inkl. der Zeitbearbeitung) eingefroren. Bei Rücksetzen "hold" = FALSE wird an der Unterbrechungsstelle bzw. an einer parametrierten Stelle (Siehe "Bearbeitungsschritt und –zeit vorgeben) fortgefahren. Die Bearbeitungszeit der Fahrkurve verlängert sich um die Haltezeit "T1*".

Bearbeitungsschritt und -zeit vorgeben

Wird während dem Anhalten der Fahrkurve ("hold" = TRUE) der Eingangsparameter "continue" für das Fortsetzen auf TRUE gesetzt, dann wird nach dem Zurücksetzen des Eingangs "hold" die Stützpunktnummer "contStepNbr" (Zielstützpunkt) innerhalb der Zeit "contStepTime" angefahren (Interpolation). Die Gesamtrestzeit wird neu berechnet.

Gesamtzeit und Gesamtrestzeit aktualisieren

Bei Änderungen von Werten der Stützpunkte können sich die Gesamtzeit und die Gesamtrestzeit der Fahrkurve ändern. Da die Berechnung von "totalTime" und "remainTotalTime" bei vielen Stützpunkten die Bearbeitungszeit des Funktionsbausteins stark vergrößern kann, wird sie nur einmal bei einer steigenden Flanke am Eingang "updateTime" durchgeführt.

Funktionsverläufe

Weitere Informationen zu Bibliotheken im TIA Portal:

- Themenseite Bibliotheken
 https://support.industry.siemens.com/cs/ww/de/view/109738702
- Leitfaden zur Bibliothekshandhabung https://support.industry.siemens.com/cs/ww/de/view/109747503
- Programmierleitfaden für S7-1200/1500 im Kapitel "Bibliotheken" https://support.industry.siemens.com/cs/ww/de/view/81318674
- Programmierstyleguide
 https://support.industry.siemens.com/cs/ww/de/view/81318674