

Bayesian hierarchical model Prior Prior

Prior Distributions

Priors

- Reflect our prior expectations (and uncertainty) about values of parameters (without knowledge of the data)
 - Past observations
 - Personal beliefs
 - Use of a biological model

Continuous distributions Used to specify prior distributions of various continuous parameters Exponential Lognormal Gamma Beta Dirichlet

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

- α = shape
- β = inverse scale

Scaled gamma:

α=β

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Used to specify the prior distributions of simplex parameters

- · Base frequencies
- Relative rates in GTR model

Continuous distributions

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

• α_1 , α_2 , ... = shape parameters

Image modified from Paul Lewis's slides 9

11

Discrete distributions

- Bernoulli distribution
- Binomial
- Multinomial
- Poisson

10

Default priors

	BEAST	MrBayes
Rate matrix parameters	Gamma(0.05,10)	Dirichlet(1,1,1,1,1,1)
Base frequencies	Uniform(0,1)	Dirichlet(1,1,1,1)
Shape parameter (α)	Exponential(0.5)	Exponential(2)
Proportion invariable	Uniform(0,1)	Uniform(0,1)

Uninformative priors

- Flat or uniform prior
- Jeffreys prior
 - · Invariant to reparameterisation
 - · Only works well for models with a single parameter
- Reference priors
 - Maximise expected distance between prior and posterior
 - Allows data to have maximum effect on posterior

Tree Prior

Speciation model

- Tree shape described by a stochastic branching process
- · Yule process
 - The root lineage splits into two
 - · Lineages split at a constant rate
 - Simulates speciation process
- Birth-death process
 - · Allow lineages to go extinct

Tree prior

- 1. Use a **flat prior** (*MrBayes*)
 - · All trees have equal probability
 - · Also need a prior for branch lengths or node times
- 2. Use a biological model (BEAST and MrBayes)
 - Among species: speciation model
 - Within species: coalescent model

Priors on rooted trees

14

Speciation model

- Tree shape described by a stochastic branching process
- Yule process
 - The root lineage splits into two
 - Lineages split at a constant rate
 - Simulates speciation process
- · Birth-death process
 - · Allow lineages to go extinct

Choosing a tree prior

- Test whether inferences are robust to the choice of tree prior
- Mixed data sets: multiple sequences from each species
 - · Birth-death prior generally works well
- Compare tree priors using Bayesian model selection

18

Bayesian model selection

 Bayesian model selection is usually based on the marginal probability of the data, conditioned on the model:

Pr(D|M)

- This is a weighted average of the likelihood
- Weights are given by the prior distribution

Marginal likelihood of the model

Bayesian Model Selection

Bayesian model selection

- Compare marginal likelihoods of competing models
- Ratio of marginal likelihoods is the **Bayes factor**

$$BF = \frac{Pr(D | M_1)}{Pr(D | M_2)}$$

$$logBF = logPr(D|M_1) - logPr(D|M_2)$$

- Models do not need to be nested
- Do not need to correct for number of parameters

Bayesian model selection

Interpreting the Bayes factor

BF	logBF	Evidence against M ₂
1-3	0 – 1	Not worth mentioning
3 – 20	1 – 3	Positive
20 – 150	3 – 5	Strong
> 150	> 5	Very strong

Kass & Raftery (1995) J Am Stat Assoc 23

Bayesian model selection

Useful references

• The impact of the tree prior on molecular dating of data sets containing a mixture of interand intraspecies sampling

Ritchie, Lo, & Ho (2017) Syst Biol, 66: 413-425.

