4. Kolokvij iz Fizike II 24. 5. 2006

- 1. Milimeter debelo ploščico iz natrija postavimo v prečno magnetno polje z gostoto 1.6 T. Ko v vzdolžni smeri po ploščici teče tok z jakostjo 10 A, izmerimo na stranskih kontaktih Hallovo napetost $4.1\,\mu\text{V}$. Izračunaj Fermijevo energijo natrija! Efektivna masa prostih elektronov v natriju je $1.2\,m_{\rm e}$.
- 2. Za kristal NaCl ugotovi odvisnost na ionski par preračunane interakcijske energije od razmika v okolici ravnovesnega razmika $r_0 = 0.281\,\mathrm{nm}$ in izračunaj frekvenco nihanja iona natrija v takem potencialu. Odbojni potencial opiše funkcija $C/r^{7.7}$, Madelungova konstanta pa je 1.75.
- 3. Izračunaj specifično upornost čistega silicija pri sobni temperaturi ter spremembo specifične upornosti, če se temperatura spremeni za $\pm 5 \, \mathrm{K}$. Širina energijske reže v siliciju je $1.1 \, \mathrm{eV}$, efektivne mase elektronov in vrzeli so $0.26 \, \mathrm{oziroma} \, 0.39 \, m_{\mathrm{e}}$, gibljivosti elektronov in vrzeli pa $0.15 \, \mathrm{oziroma} \, 0.05 \, \mathrm{m}^2/\mathrm{Vs}$.
- 4. Z uporabo semi-empirične masne formule *oceni*, kateri element (Z=?, A=?) ima najvišjo vezavno energijo na nukleon (torej, pri katerem elementu so nukleoni najmočneje vezani)!