Introdução a Sistemas de Controle

Prof. Nilo Rodrigues

Sistemas de Controle e Automação

Introdução

- Importância do controle automático na otimização do desempenho de sistemas dinâmicos.
- Sistema de controle: Interconexão de componentes formando uma configuração de sistemas que produzirá uma resposta desejada do sistema.

Histórico

 Primeiro controlador: Regulador centrífugo construído por James Watt para o controle de velocidade de uma máquina a vapor, no século XVIII.

Histórico

- 1922 Minorsky: Controladores automáticos para pilotagem de embarcações e demonstrou como a estabilidade poderia ser determinada a partir de equações diferenciais que descrevem o sistema.
- 1932 Nyquist: Desenvolveu um procedimento relativamente simples para a determinação da estabilidade de sistemas de malha fechada com base na resposta de malha aberta a excitações senoidais estacionárias.
- 1934 Hazen: Introduziu o termo servomecanismos para sistemas de controle de posição.

Histórico

- Década de 40: Métodos de resposta em frequência tornaram possível projetar sistemas de controle linear de malha fechada.
- Início década de 50: Evans desenvolveu o método do Lugar das Raízes.
- 1960: Uso do computador e emprego de variáveis de estado.
- 1960-1980: Controle ótimo de sistemas determinísticos e estocásticos.
- Hoje: Uso de computadores digitais e aplicação em outras áreas: sistemas biológicos, econômicos, etc.

Definições

Variável controlada x Variável manipulada:

- □ Controlada é a grandeza ou a condição que é medida e controlada. Normalmente é a saída do sistema.
- Manipulada é a grandeza ou a condição modificada pelo controlador, de modo que afete o valor da variável controlada.

Sistemas a Controlar ou Plantas:

□ Um sistema a controlar pode ser parte de um equipamento ou apenas um conjunto de componentes de um equipamento que funcione de maneira integrada, com o objetivo de realizar determinada operação.

Definições

Distúrbios:

□ É um sinal que tende a afetar de maneira adversa o valor da variável de saída de um sistema.

Controle com Realimentação:

□ Também chamado de controle em malha fechada referese a uma operação que, na presença de distúrbios, tende a diminuir a diferença entre a saída de um sistema e alguma entrada de referência e atua com base nessa diferença.

Exemplos de Sistemas de Controle

Controle de temperatura de um forno elétrico

Exemplos de Sistemas de Controle

Controle de temperatura dentro de um veículo

Sistema de Controle com Realimentação:

Qualquer sistema que estabeleça uma relação de comparação entre a saída e a entrada de referência, utilizando a diferença como meio de controle.

Sistema de Controle de Malha Fechada:

O sinal de erro atuante, que é a diferença entre o sinal de entrada e o sinal de realimentação, realimenta o controlador, de modo que minimize o erro e acerte a saída do sistema ao valor desejado.

Sistema de Controle de Malha Aberta:

- Aqueles em que o sinal de saída não exerce ação de controle no sistema, ou seja, o sinal de saída não é medido nem realimentado para comparação com a entrada.
- Assim, a cada entrada de referência corresponde a uma condição fixa de operação, logo a precisão depende de uma calibração.
- Como não há medição na saída, a malha aberta é usada na prática em sistemas com ausência de distúrbios.

• Exemplo:

□ Deseja-se aquecer o interior de uma sala, tendo em vista que a temperatura externa é 0°C. Para isto dispõe-se de um aquecedor e um termômetro para leitura da temperatura interna. O objetivo de controle é manter a temperatura da sala em 22°C para que o homem possa dormir, mesmo na ocorrência de eventos externos.

Exemplo:

□ 1ª Estratégia: O homem fecha a chave e então vai dormir.

 Se o aquecedor possuir capacidade suficiente, a temperatura da sala irá crescer indefinidamente.

Exemplo:

□ 2ª Estratégia: O homem lê o termômetro e usa a seguinte tática: Se Ts≤22ºC ele liga a chave e se Se Ts>22ºC ele desliga a chave.

Neste caso a temperatura estará controlada, porém o homem não dormirá!

Exemplo:

□ 3ª Estratégia: Substituímos o trabalho do homem por um dispositivo formado por dois metais com coeficientes de dilatação térmica diferentes (bimetal).

Neste caso a temperatura estará controlada e o homem poderá dormir!

- Os sistemas de controle em MF permitem que a resposta seja relativamente insensível a distúrbios e variações internas nos parâmetros do sistema (pode-se usar componentes mais baratos).
- Por outro lado, a realimentação em sistemas de MF pode provocar correções de erro além do necessário e levar o sistema à instabilidade, fato que não ocorre em sistemas de MA.
- Sistemas em que as entradas são conhecidas com antecipação e que são isentos de distúrbios, é conveniente o uso de controle de malha aberta. Os sistemas de controle de malha fechada são mais vantajosos somente no caso em que houver distúrbios e/ou alterações não previsíveis nos componentes do sistema.

Na próxima aula...

Transformada de Laplace e Funções de Transferência

Prof. Nilo Rodrigues