The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to receive him; not on the chance of his not attacking, but rather on the fact that we have made our position unassailable.

—The Art of War, Sun Tzu

Information and Network Security

USMACS503

- Cryptography and Network Security: Principles and Practice 5th Edition, William Stallings, Pearson, 2010.
- Cryptography and Network Security, Atul Kahate, Tata McGraw-Hill, 2013.

Unit 1

- Introduction: Security Trends, The OSI Security Architecture, Security Attacks, Security Services, Security Mechanisms
- Classical Encryption Techniques: Symmetric Cipher Model, Substitution Techniques, Transposition Techniques Steganography
- Block Cipher Principles, The Data Encryption Standard, The Strength of DES, AES (round details not expected), Multiple Encryption and Triple DES, Block Cipher Modes of Operation, Stream Ciphers
- Public-Key Cryptography and RSA: Principles of Public-Key
- Cryptosystems, The RSA Algorithm, Key Management: Public-Key Cryptosystems, Key Management, Diffie-Hellman Key Exchange

Definitions

- Computer Security generic name for the collection of tools designed to protect data and to thwart hackers
- > Network Security measures to protect data during their transmission
- Internet Security measures to protect data during their transmission over a collection of interconnected networks

What security is about in general?

- Security is about protection of assets
 - D. Gollmann, Computer Security, Wiley
- Prevention
 - take measures that prevent your assets from being damaged (or stolen)
- Detection
 - take measures so that you can detect when, how, and by whom an asset has been damaged
- Reaction
 - take measures so that you can recover your assets

Real world example

Prevention

locks at doors, window bars, secure the walls around the property, hire a guard

Detection

missing items, burglar alarms, closed circuit TV

Reaction

attack on burglar (not recommended ©), call the police, replace stolen items,
make an insurance claim

Internet shopping example

Prevention

 encrypt your order and card number, enforce merchants to do some extra checks, using PIN even for Internet transactions, don't send card number via Internet

Detection

an unauthorized transaction appears on your credit card statement

Reaction

- complain, dispute, ask for a new card number, sue (if you can find of course ☺)
- Or, pay and forget (a glass of cold water) ☺

Information security in past & present

- Traditional Information Security
 - keep the cabinets locked
 - put them in a secure room
 - human guards
 - electronic surveillance systems
 - in general: physical and administrative mechanisms
- Modern World
 - Data are in computers
 - Computers are interconnected

Information and Network Security

Terminology

Computer Security

- 2 main focuses: Information and Computer itself
- tools and mechanisms to protect data in a computer (actually an automated information system), even if the computers/system are connected to a network
- tools and mechanisms to protect the information system itself (hardware, software, firmware, *ware ☺)

Against?

- against hackers (intrusion)
- against viruses
- against denial of service attacks
- etc. (all types of malicious behavior)

Terminology

- Network and Internet Security
 - measures to prevent, detect, and correct security violations that involve the transmission of information in a network or interconnected networks

Security Trends

Top Cybersecurity Trends in 2023

Sustainable Balanced Cybersecurity Programs

Security objectives

Confidentiality

- Data confidentiality
 - Assures that private or confidential information is not made available or disclosed to unauthorized individuals
- Privacy
 - Assures that individuals control or influence what information related to them may be collected and stored and by whom and to whom that information may be disclosed

Integrity

- Data integrity
 - Assures that information changed only in a specified and authorized manner
- System integrity
 - Assures that a system performs its intended function in an unimpaired manner, free from deliberate or inadvertent unauthorized manipulation of the system

Availability

Assures that systems work promptly and service is not denied to authorized users

OSI Security Architecture

- > ITU-T X.800 "Security Architecture for OSI"
- > defines a systematic way of defining and providing security requirements

Aspects of Security

- > consider 3 aspects of information security:
 - security attack
 - security mechanism
 - security service

Security Attack

- any action that compromises the security of information owned by an organization
- information security is about how to prevent attacks, or failing that, to detect attacks on information-based systems
- often threat & attack used to mean same thing
- have a wide range of attacks
- > can focus of generic types of attacks
 - passive
 - active

Passive Attacks

Active Attacks

ATTACKS

Taxonomy of attacks with relation to security goals Security Attacks Denial of Modification Snooping service Traffic Masquerading Threat to analysis availability Replaying Threat to confidentiality Repudiation Threat to integrity

ATTACKS

Attacks threatening Confidentiality

Snooping:

unauthorized access/interception of data for prevention data is made non intelligent by using encipherment techniques

• Traffic Analysis:

by monitoring online traffic and guessing imps

Attacks threatening Integrity

Modification

modifies the information for benefit/ delete/delays

- Masquedrading(spoofing) attacker impersonates somebody else
- Replaying obtains a copy of a message sent by a user and later tries to replay it
- **Repudiation** performed by one of the two parties in communication

ATTACKS

Attacks threatening Availablity

Denial of service:

may slow down or totally interrupt the service bogus requests for crashing the server/ delete server's response/intercepting the client's request for overloading the server

• Traffic Analysis:

by monitoring online traffic and guessing imps

Table 1.1 Categorization of passive and active attacks

Attacks	Passive/Active	Threatening
Snooping Traffic analysis	Passive	Confidentiality
Modification Masquerading Replaying	Active	Integrity
Repudiation		
Denial of service	Active	Availability

Security services

Security mechanisms

Security mechanisms

Encipherment

hiding/covering data, cryptography & stegnagraphy

Data Integrity

appends to data a short checkvalue

Digital Signature

electronically signs and verified

Authentication exchanged

exchange messages to prove identity

Traffic padding

inserting bogus data to divert traffic analysis

Security mechanisms

Routing Control

selecting and continuously changing routes

Notarization

selecting a third party to control the communication (to repudiation)

Access Control

uses methods to prove that a user has access right to the data

Services vs Mechanism

Table 1.2 Relation between security services and security mechanisms

Security Service	Security Mechanism	
Data confidentiality	Encipherment and routing control	
Data integrity	Encipherment, digital signature, data integrity	
Authentication	Encipherment, digital signature, authentication exchanges	
Nonrepudiation	Digital signature, data integrity, and notarization	
Access control	Access control mechanism	

Model for Network Security

Model for Network Security

- using this model requires us to:
 - design a suitable algorithm for the security transformation
 - generate the secret information (keys) used by the algorithm
 - develop methods to distribute and share the secret information
 - specify a protocol enabling the principals to use the transformation and secret information for a security service

Model for Network Access Security

Information System

