Optimal binary decision tree

Mohammad Mahdi Heydari

Amirkabir University of Technology

June 1, 2019

1/15

Overview

- Introduction
- 2 Decision Problem
- Approximation DT
- 4 Create Test Set

Introduction

Introduction

- An optimal binary decision tree is one which minimizes the expected number of tests required to identify the unknown object.
- Large amount of effort had been put into finding efficient algorithms for constructing optimal binary decision tree.
- On supposition that $P \neq NP$, such algorithm does not exist.
- It supplies motivation for finding efficient heuristics for constructing near-optimal decision trees.

Definition

Sets

Let $X = \{x_1, ..., x_n\}$ be a finite set of objects and let $\tau = \{T_1, ..., T_t\}$ be a finite set of tests. for each test T_i , $1 \le i \le t$ and object x_j , $1 \le j \le n$, we either have $T_i(x_j) = true$ or $T_i(x_j) = false$. T_i also denotes the set $\{x \in X | T_i(x) = true\}$.

Problem

The problem is to construct an identification procedure for the objects in X such that the expected number of tests required to completely identify an element of X is minimal. At each non-terminal node, a test is specified and terminal nodes specify objects in X.

Definition

Procedure

To apply the identification procedure one first applies the test specified at the root to the unknown object; if it is false one takes the left branch, otherwise the right. This procedure is repeated at the root of each successive subtree until one reaches a terminal node which names the unknown object.

Cost

Let $p(x_i)$ be the length of the path from the root to the terminal node naming x_i , that is, the number of tests required to identify x_i . Then the cost of this tree will be:

$$\sum_{x_i \in X} p(x_i)$$

Optimization vs. Decision

Decision Problem

Decision

The decision tree problem $DT(\tau, X, w)$ is to determine whether there exists a decision tree with cost less than or equal to w given τ and X.

Theorem

 $DT(\tau, X, w)$ is NP-complete.

Proof.

 $DT \in NP$. since a non-deterministic Turing machine can guess the decision tree and then see if its weight is less than or equal to w.

Decision Problem

Proof.

To show that DT is NP-complete, we show that $EC3\alpha DT$, where EC3 is the problem of finding an exact cover for a set X, and where each of the subsets available for use contains exactly 3 elements. More precisely, we are given a set $X=x_1,...,x_n$ and a family $\tau=T_1,...,T_t$ of subsets of X, such that $|T_i|=3$ for $1\leq i\leq t$, and we wish to find a subset S of τ such that $\bigcup_{T_i\in S}T_i=X$ and $((T_i,T_j\subseteq S \text{ and } i\neq j)\Rightarrow T_i\cap T_j=\emptyset)$. The exact

cover problem EC (where there is no restriction on the size of each T_i) is known to be NP-complete. To show that EC3 is NP-complete, we show $3DM\alpha EC3$, where 3DM is the problem of finding a "three-dimensional matching".

Approximation DT

Given a set of binary m-bit strings S, choosing some bit i always partitions the items into two sets S_0 and S_1 where S_0 contains those items with bit i = 0 and S_1 contains those items with i = 1. A greedy strategy for splitting a set S chooses the bit i which minimizes the difference between the size of S_0 and S_1 . In other words, it chooses the bit which most evenly partitions the set. Using this strategy, consider the following greedy algorithm for constructing decision trees of the DT type given a set of n items X:

Approximation DT

```
\begin{array}{ll} \operatorname{GREEDY-DT}(X) \\ 1 & \operatorname{if} X = \emptyset \\ 2 & \operatorname{then \ return \ NIL} \\ 3 & \operatorname{else} \ \operatorname{Let} i \text{ be the bit which most evenly partitions } X \text{ into } X^0 \text{ and } X^1 \\ 4 & \operatorname{Let} T \text{ be a tree node with left child } left[T] \text{ and right child } right[T] \\ 5 & left[T] \leftarrow \operatorname{GREEDY-DT}(X^0) \\ 6 & right[T] \leftarrow \operatorname{GREEDY-DT}(X^1) \\ 7 & \operatorname{return} T \end{array}
```

A straightforward implementation on this algorithm runs in time $O(mn^2)$. While the algorithm does not always give an optimal solution, it does approximate it within a factor of ln(n) + 1.

Create Test Set

Split Approaches:

- Oblique
- Axis-Parallel √

Split Measures

Information Gain

$$Info(D) = -\sum_{i=1}^{m} p_i \ log_2(p_i)$$
 $Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$
 $Gain(A) = Info(D) - Info_A(D)$

Gini

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$
 $Gini_A(D) = \frac{|D_1|}{|D|} Gini(D_1) + \frac{|D_2|}{|D|} Gini(D_2)$
 $\Delta Gini(A) = Gini(D) - Gini_A(D)$

References

- Hyafil, Laurent & L. Rivest, Ronald. (1976). Constructing Optimal Binary Decision Trees is NP-Complete. Inf. Process. Lett.. 5. 15-17. 10.1016/0020-0190(76)90095-8.
- Adler, Micah & Heeringa, Brent. (2008). Approximating Optimal Binary Decision Trees. 10.1007/978-3-540-85363-3_1.
- Data Mining: Concepts and Techniques, Second Edition Jiawei Han and Micheline Kamber (2006)

Any Question?