Question 1

Let $A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}$. Use row and column operations on A to obtain a matrix B of the

form in Theorem 53. Use that work to find invertible matrices P, Q so that B = PAQ.

Proof. We perform the following row and column operations:

$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 \to r_2 - r_1} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & -1 \end{pmatrix} \xrightarrow{r_3 \to r_3 - r_2} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{c_3 \to c_3 + c_1 - 2c_2} \xrightarrow{c_4 \to c_4 - c_1 + c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Define this matrix we obtained as B. We will perform the same row and column operations above on I_3 and I_4 , respectively in order to define P and Q. We have that

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow[r_3 \to r_3 - 2r_1]{r_2 \to r_2 - r_1}
\begin{pmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{r_3 \to r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{pmatrix}$$

and

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow[c_4 \to c_4 - c_1 + c_2]{c_3 \to c_3 + c_1 - 2c_2}
\begin{pmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Let
$$P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$
, $Q = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. We see that

$$PAQ = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$= B$$

as required

 \Box

Question 2

Let
$$A = \begin{pmatrix} 1 & -2 & -4 \\ 1 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$$

- 1. Verify that A is invertible, by row-reducing the augmented matrix $(A|I_3)$.
- 2. Use (a) to find A^{-1} .
- 3. Express A as a product of elementary matrices.

Question 3

Find the explicit formula for the linear transformation $T: \mathbb{Q}^4 \to \mathbb{Q}^3$ which satisfies:

$$T\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \quad T\begin{pmatrix} 2\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \quad T\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \quad T\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}.$$

Question 4

Let $\mathbb{F} = \mathbb{Q}$ and $V = \mathcal{M}_{2\times 2}(\mathbb{F})$. Consider the linear map $T : \mathcal{M}_{2\times 2}(\mathbb{F}) \to \mathcal{M}_{2\times 2}(\mathbb{F})$ given by $T(A) = A^T$. Set $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ and $\gamma = \{E_{11}, E_{22}, E_{12} + E_{21}, E_{12} - E_{21}\}$.

- 1. Find P the change of coordinate matrix from γ to β coordinates.
- 2. Find P^{-1} the change of coordinate matrix from β to γ coordinates.
- 3. Find $A = [T]_{\beta}$.
- 4. Find $B = [T]_{\gamma}$.
- 5. Confirm that $A = PBP^{-1}$ using (a)-(d).

Question 5.

Let $T: \mathcal{M}_{n \times n}(\mathbb{F}) \to \mathcal{M}_{n \times n}(\mathbb{F})$ be the linear map given by $T(A) = A + A^T$.

- 1. Find N(T) and dim N(T).
- 2. What is im(T)?
- 3. Is $\mathcal{M}_{n\times n}(\mathbb{F}) = \operatorname{im}(T) \oplus N(T)$?

Question 6.

Let V, W be vector spaces over a field \mathbb{F} and $T: V \to W$ a linear map. Prove that T is injective if and only if $N(T) = \{\mathbf{0}_V\}$. (Make no assumption here about dim V, dim W.)

Proof. Suppose that T is injective. Let T(x) = 0, for some $x \in V$. Recall that T(0) = 0 for any linear map. Therefore by injectivity x = 0, so $N(T) = \{0\}$.

Conversely, suppose that $N(T) = \{0\}$. Let $x, y \in V$ such that T(x) = T(y). By linearity, we have that T(x - y) = 0, but this implies that x - y = 0, so x = y and T is injective.

Question 7

Let V, W be vector spaces over a field \mathbb{F} , and $T: V \to W$ a linear map. Find a condition on T which is equivalent to "T(S) spans W for any spanning set $S \subseteq V$ of V". (Hint: Write down the definition of T(S) is spanning to get started.)

Proof. We claim that this statement is equivalent to saying that T is surjective. Suppose that for any set $S \subseteq V$ that spans V, T(S) spans W. We prove that T is surjective. Let $w \in W$. We can write w as a linear combination of some number of vectors in T(S). That is, for some $k \in \mathbb{N}$ and $s_i \in S$, $c_i \in \mathbb{F}$, $i \in \{1, ..., k\}$,

$$w = \sum_{i=1}^{k} c_i T(s_i) = T\left(\sum_{i=1}^{k} c_i s_i\right)$$

so T is surjective.

Conversely, suppose that T is surjective. Let S be a spanning set of V. We will show that T(S) spans W. Let $w \in W$. By surjectivity, there exists $v \in V$ so that T(v) = w. We can rewrite

$$v = \sum_{i=1}^{k} c_i s_i$$

for some number of vectors $s_i \in S$ and $c_i \in \mathbb{F}$. Then

$$T\left(\sum_{i=1}^{k} c_i s_i\right) = w \implies \sum_{i=1}^{k} c_i T(s_i) = w$$

Notice that $T(s_i) \in T(S)$, from which it follows that T(S) spans W, and the proof is complete.

Question 8.

Let $P \in \mathcal{M}_{n \times n}(\mathbb{F})$. Prove the following three conditions are equivalent.

- 1. P is invertible.
- 2. There exists bases β, γ of \mathbb{F}^n so that $P = [I_{\mathbb{F}^n}]_{\beta}^{\gamma}$.
- 3. For any *n*-dimensional vector space V over \mathbb{F} , there exists bases β, γ of V so that $P = [I_V]_{\beta}^{\gamma}$.

Question 9.

Consider the relation \equiv on $\mathcal{M}_{m\times n}(\mathbb{F})$ defined by $A \equiv B$ if $A \to B$ using a combination of row and/or column operations.

- (a) Prove that \equiv is an equivalence relation on $\mathcal{M}_{m\times n}(\mathbb{F})$.
- (b) Find a condition on A,B which is equivalent to $A\equiv B$. (Hint: Theorem 53.)
- (c) Classify the equivalence classes for this relation, and prove that there are exactly $\min\{n,m\}$ such classes.

Proof.

(a):

We show reflexivity, symmetry, and transitivity in that order.

Reflexivity: Since IA = A, and I is considered a row operation, $A \equiv A$.

Symmetry: Suppose that $A \equiv B$ then for some invertible matrices P, Q we have that PAQ = B. But at the same time this means that $P^{-1}BQ^{-1} = A$ so $B \equiv A$.

Transitivity: Suppose that $A \equiv B$ and $B \equiv C$. Then for invertible matrices P, Q, R, S, PAQ = B and RBS = C, so (RP)A(QS) = R(PAQ)S = RBS = C. Since RP, QS are also invertible, we have that $A \equiv C$.

(b):

We claim that an equivalent condition is $\operatorname{rank} A = \operatorname{rank} B$. Suppose that $A \equiv B$. Then PAQ = B for some invertible matrices P, Q, but it is known that rank is preserved by multiplication with invertible matrices, so $\operatorname{rank} A = \operatorname{rank} PAQ = \operatorname{rank} B$.

Conversely, suppose that r := rank A = rank B. By Theorem 53, there exist row/column operations so that

$$A, B \to \left(\frac{I_r \mid 0}{0 \mid 0}\right).$$

We denote this matrix by J_r . that is, for invertible matrices P, Q, R, S, PAQ = I' = RBS. It follows that $R^{-1}PAQS^{-1} = B$, so $A \equiv B$ as desired.

(c):

We can classify the equivalence classes by matrix rank. That is, each equivalence class is of the form

$$[J_r] = \{ A \in \mathcal{M}_{m \times n}(\mathbb{F}) : \operatorname{rank} A = r \}.$$

The possible ranks of $m \times n$ matrices range from 0 to $\min\{n, m\}$, so there are $\min\{n, m\} + 1$ different values of r. We will verify that these equivalence classes are exhaustive and disjoint. Every $m \times n$ matrix must have a rank, so it belongs to at least one of the classes, but at the same time, a matrix can possibly only have one rank, so it necessarily belongs to exactly one equivalence class.

Question 10

Let V, W be finite dimensional vector spaces over \mathbb{F} , and $T: V \to W$ a linear map. Set $n = \dim V$, $m = \dim W$. Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{F}^n$ be two non-parallel vectors. Prove there exists bases β, γ of V, W respectively, so that $[T]_{\beta}^{\gamma} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{0} \ \cdots \ \mathbf{0})$. (Hint: use problems 7,8.)

Question 11.

Let $T: V \to V$ be linear. We say that a subspace $W \subseteq V$ is "T-invariant" if $T(W) \subseteq W$. For example, if $T: \mathbb{R}^3 \to \mathbb{R}^3$ is counter-clockwise rotation around the z-axis by angle θ , then $P_{xy} = \{(x, y, 0) \in \mathbb{R}^3\}$ is T-invariant, as is L_z (the z-axis).

- 1. Verify the claims made above, by showing that P_{xy} and L_z are T-invariant.
- 2. Show that $\mathbb{R}^3 = P_{xy} \oplus L_z$ by finding a basis $\beta = \beta_1 \cup \beta_2$ for \mathbb{R}^3 so that β_1 is a basis for P_{xy} and β_2 is a basis for L_z .
- 3. Using your basis β from (b), find $[T]_{\beta}$.

Question 12.

Let V be a finite dimensional vector space over \mathbb{F} , $T \in \mathcal{L}(V)$, and $W_1 \subseteq V$ a T-invariant subspace with basis β_1 . Set $k = \dim W_1$.

We will generalize what we saw in #11c.

- 1. Extend β_1 to a basis β of V. Show that $[T]_{\beta} = \begin{pmatrix} A & C \\ O_{n-k,k} & B \end{pmatrix}$, where A is $k \times k$, B is $(n-k) \times (n-k)$, and C is $k \times (n-k)$.
- 2. Suppose that W_2 is a subspace so that $V = W_1 \oplus W_2$. Let $\beta = \beta_1 \cup \beta_2$, where β_2 is any basis for W_2 .

Prove that if W_2 is T-invariant, then $[T]_{\beta} = \begin{pmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{pmatrix}$ is block diagonal.

3. Is the converse of (b) true or false? Justify your answer.

Question 13.

Determine if the statements below are true or false. If true, give a proof. If false, explain why, and/or provide a counterexample.

- 1. Let $\beta = \{e_1, \dots, e_n\}$ be the standard basis for \mathbb{F}^n , and $\gamma = \{v_1, \dots, v_n\}$ a basis for \mathbb{F}^n . Then there exists a sequence of row operations that takes β to γ . (That is, v_i is obtained from e_i using the same row operations for all i.)
- 2. Let V be a finite dimensional vector space over \mathbb{F} and $T: V \to V$ a linear map. If β , γ are bases for V so that $[T]^{\gamma}_{\beta} = I_n$, then $T = I_V$.
- 3. Let V be a finite dimensional vector space over \mathbb{F} and $S, T : V \to V$ linear maps. If rank T = rank S, then there exist bases $\beta, \beta', \gamma, \gamma'$ for V so that $[S]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma}$.
- 4. Let $A, B \in \mathcal{M}_{n \times n}(\mathbb{F})$. If $A^2 \sim B^2$, then $A \sim B$.