人工智能中的数学讲义

方聪

北京大学

摘要

本讲义收录了人工智能中的数学课程中的主要概念与课程习题。概率与统计讲义内容摘录于陈家鼎、郑忠国《概率与统计》教材与复熹和张原概率与统计课程课件。图论内容摘录于耿素云、屈婉玲、王捍贫《离散数学教程》。本讲义版权归上述作者,不会出版。讲义仅供于上该课程的同学们学习参考,讲义的错误会不断修正。感谢张乙沐、张海涵对讲义整理的帮助。

1.1 随机事件及其运算

1.1.1 随机事件

样本空间和样本点: 随机实验 E 中所有可能结果组成的集合称为 E 的**样本空间**,记为 Ω 。样本空间中的元素称为样本点,记为 ω

• E_1 : 抛掷硬币, 观察正面 H, 反面 T 出现的情况。

$$\Omega_1 = \{H, T\}.$$

• E_2 : 抛掷一枚硬币 3 次, 观察正面 H, 反面 T 出现的情况。

 $\Omega_2 = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

• E₃: 抛掷一枚硬币 3 次, 观察正面出现的次数。

$$\Omega_3 = \{0, 1, 2, 3\}.$$

随机现象的某些样本点组成的集合称为**随机事件**,简称为事件,常用 A, B, C, \cdots 表示

例如,E 为抛掷一枚骰子,事件 A = "出现奇数点",即 A = $\{1,3,5\}$,是样本空间 Ω = $\{1,2,3,4,5,6\}$ 的一个子集

事件的频率:设 μ 是n次实验中事件A发生的次数,则事件A发生的频率 $\frac{\mu}{n}$,随着实验次数n增大,频率会在某一数值p附近摆动,称为该事件的概率,记为P(A)=p

由于频率 $\frac{\mu}{n}$ 总在 0,1 之间, 我们有:

$$0 \leqslant P(A) \leqslant 1$$

例如投一枚硬币 n 次,出现 μ 次正面,则 $\frac{\mu}{n} \stackrel{n \to \infty}{\to} p$ 。其中,主观概率 p 为事件的置信度,概率是可能性大小的度量。大概率事情易发生,小概率事情不易发生。

1.1.1.1 事件的交和并

定义 2.1 设有事件 A 和事件 B, 如果 A 发生,则 B 必发生,那么称事件 B 包含事件 A (或称事件 A 在 B 中),并记为

$$A \subset B \ (\mbox{\it id}\ B \supset A)$$

定义 2.2 如果事件 A 包含事件 B, 同时事件 B 包含事件 A, 则事件 A 和事件 B 相等, 并记为

$$A = B$$

定义 2.3 设 A 和 B 都是事件,则 "A 或 B" 表示这样的事件 C: C 发生当且仅当 A 或 B 中至少有一个发生,该事件 C 叫做 A 与 B 的并,记为 $A \cup B$ 。

例 2.1 (对应郑书例 2.1) 在桌面上,投掷两枚匀称的硬币,A 表示"恰好一枚国旗朝上",B 表示"两枚国旗朝上",C 表示"至少一枚国旗朝上",则 $C = A \cup B$.

对于并运算,有以下性质,我们恒记必然事件为U,不可能事件为V:

$$A \cup B = B \cup A$$

$$A \cup U = U \,, \ A \cup V = V$$

定义 2.4 设 A 和 B 都是事件,则 "A 且 B" 表示这样的事件 C: C 发生当且仅当 A 和 B 都发生,该事件 C 叫做 A 与 B 的交,记为 $A \cap B$,也简记为 AB。

在例 2.1 中, $A \cap C = A$, $B \cap C = C$, $A \cap B = A$

对于交运算,有以下性质:

$$A \cap B = B \cap A$$
$$A \cap U = A, \ A \cap V = V$$

1.1.1.2 事件的余和差

定义 2.5 设 A 是事件,称"非 A"是 A 的对立事件(或称余是事件),其含义为,"非 A"发生当且仅当 A 不发生,常常用 \overline{A} 表示"非 A",也用 A^c 表示"非 A"。

由定义知 $\overline{(A)} = A$, $\overline{U} = V$, $\overline{V} = U$

定义 2.6 设 A 和 B 都是事件,则两个事件的差 "A 减去 B" 表示这样的事件 C: C 发生当且仅 当 A 发生而 B 不发生,该事件 C 记为 A-B (或 $A \setminus B$)

由定义知, $A - B = A \cap \overline{B}$ 画图法确定关系。

1.1.1.3 事件运算的性质

事件的基本运算还有以下性质:

- $A \cup (B \cup C) = (A \cup B) \cup C$ "并"的结合律
- $A \cap (B \cap C) = (A \cap B) \cap C$ "交"的结合律
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 分配律
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 分配律
- $A \cup A = A$, $A \cap A = A$
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$ 对偶律
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 対偶律

多个事件的交和并:

设 A_1,A_2,\cdots,A_n 是 n 个事件,则 " A_1,A_2,\cdots,A_n " 的并是指这样的事件: 它发生当且仅当 A_1,A_2,\cdots,A_n 中至少一个发生,常常用 $\mathop{\cup}_{i=1}^n A_i$ 表示 A_1,A_2,\cdots,A_n 的并

设 A_1, A_2, \dots, A_n 是 n 个事件,则 " A_1, A_2, \dots, A_n " 的交是指这样的事件: 它发生当且仅当 A_1, A_2, \dots, A_n 这 n 个事件都发生,常常用 $\bigcap_{i=1}^n A_i$ 表示 A_1, A_2, \dots, A_n 的交,也用 $A_1A_2 \dots A_n$ 表示这个 "交"

实际应用中, 还需定义无穷多事件的并与交

设 $A_1,A_2,\cdots,A_i,\cdots$ 是一列事件,则 B 是指这样的事件:B 发生当且仅当这些 $A_i(i=1,2,\cdots)$ 中至少一个发生,这个 B 叫做诸 A_i 的并,记为 $\underset{i=1}{\overset{\infty}{\cup}}A_i$,有时也写为 $A_1\cup A_2\cup\cdots$ 设 $A_1,A_2,\cdots,A_i,\cdots$ 是一列事件,则 C 是指这样的事件:C 发生当且仅当这些 $A_i(i=1,2,\cdots)$

设 $A_1, A_2, \cdots, A_i, \cdots$ 是一列事件,则 C 是指这样的事件:C 发生当且仅当这些 $A_i (i = 1, 2, \cdots)$ 都发生,这个 C 叫做诸 A_i 的交,记为 $\bigcap_{i=1}^{\infty} A_i$,有时也写为 $A_1 A_2 \cdots$

例: 取 $X \in \mathbb{R}$, 事件 A_i 为 $X \in [\frac{1}{i+1}, \frac{1}{i}]$, 事件 B_i 为 $X \in [0, \frac{1}{i}]$ 。则事件 $\overset{n}{\underset{i=1}{\cup}} A_i$ 发生等价于 $X \in [\frac{1}{n+1}, 1]$,事件 $\overset{n}{\underset{i=1}{\cap}} B_i$ 发生等价于 $X \in [0, \frac{1}{n}]$ 。进而当 $n \to \infty$ 时事件 $\overset{\infty}{\underset{i=1}{\cup}} A_i$ 发生等价于 $X \in (0, 1]$,事件 $\overset{\infty}{\underset{i=1}{\cap}} B_i$ 发生等价于 X = 0。

并的更一般定义是,设 $\{A_a, a \in \Gamma\}$ 是一族事件(其中 Γ 是任何非空集,每个 $a \in \Gamma$ 对应一个事件 A_a),这些事件 A_a 的 "并" 是指这样的事件 B: B 发生当且仅当至少一个 A_a 发生,这个 B 常常 记为 $\bigcup_{a \in \Gamma} A_a$,类似可以定义一族事件的交 $\bigcap_{a \in \Gamma} A_a$

例 2.3: (对应郑书例 2.3) 一射手向一个目标连续射击,设 A_1 = "第一次射击,命中", A_i = "前 i-1 次射击都未命中,第 i 次射击命中"($i=2,3,\cdots$),B= "终于命中",则 $B= \underset{i=1}{\overset{\infty}{\cup}} A_i$ **例 2.4:** (对应郑书例 2.4) 一射手向一个目标连续射击,设 A_i = "第 i 次射击,未命中目标"($i=2,3,\cdots$)则 $\underset{i=1}{\overset{\infty}{\cap}} A_i$ = "每次均未命中目标" 不难验证,对可列个事件的并和交有以下规律:

- $A \cup (\bigcap_{i=1}^{\infty} B_i) = \bigcap_{i=1}^{\infty} (A \cup B_i)$ 分配律
- $A \cap (\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} (A \cap B_i)$ 分配律
- $\overline{(\bigcup_{i=1}^{\infty} A_i)} = \bigcap_{i=1}^{\infty} \overline{A_i}$ 对偶律
- $(\bigcap_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} \overline{A_i}$ 对偶律

1.1.1.4 互斥事件

互不相容的事件

如果事件 A 和事件 B 不能都发生,即 $A \cap B = V$,则称 A 和 B 是互不相容的事件(也称互斥的事件)

称事件 $A_1, \cdots A_n$ 互不相容,若对任何 $i \neq j (i, j = 1, \cdots n)$, A_i 与 A_j 互不相容

例如,抛掷两枚硬币,事件"恰好一枚国徽朝上"和事件"两枚都是国徽朝上"是互不相容的。不难看出,对任何事件 A,A 和 \overline{A} 是互不相容的

• 加法公式: $A_1, A_2, ...$ 互不相容, 则:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

• $P(A \cup B) = P(A) + P(B) - P(AB)$

1.2 概率的公理化定义

概率空间子类: 设 Ω 为样本空间, \mathcal{F} 为 Ω 的一些子集构成的集类。若 \mathcal{F} 满足以下三个条件: (1) $\Omega \in \mathcal{F}$, (2) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$, (3) $\{A_n\}_{n \in \mathbb{N}} \subsetneq \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$, 则称 \mathcal{F} 为概率空间子类

例:

- $\mathcal{F} = \{\emptyset, \Omega\}$ 平凡概率空间子类
- $\mathcal{F} = \{\emptyset, \Omega, A, \overline{A}\}$ 包含 A 的最小概率空间子类
- $\mathcal{F} = \{A | A \subset \Omega\}$ Ω 上的最大概率空间子类
- $\Omega = \{\omega_1, \dots, \omega_n\}$,则 Ω 所有子集构成的概率空间子类共有 2^n 个元素

定义:设 \mathcal{F} 是满足上述条件的概率空间子集类。概率 $P = P(\cdot)$ 是 \mathcal{F} 上面定义的实值函数,满足:

- 非负性: $P(A) \ge 0$ 对于一切 $A \in \mathcal{F}$
- 规范性: P(Ω) = 1
- 可列可加性: 若 $A_n \in \mathcal{F}(n=1,2,\cdots)$ 两两不相交,则

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

 (Ω, \mathcal{F}, P) 为概率空间

例 1: 假定 $\Omega = \{\omega_1, \dots, \omega_n\}$, \mathcal{F} 为全体子集构成的概率空间子类。设 p_1, \dots, p_n 为 n 个非负实数,且满足 $\sum_{i=1}^n p_i = 1$ 。令

$$\mathbb{P}(\emptyset) = 0, \quad \mathbb{P}(A) = \sum_{j=1}^{k} p_{i_j}, \quad A = \{\omega_{i_1}, \dots, \omega_{i_k}\}, k = 1, \dots, n$$

则 \mathbb{P} 为 (Ω, \mathcal{F}) 上概率。

概率 P 有以下性质:

- $(1) P(\emptyset) = 0;$
- (2) 若 $A \in \mathcal{F}$, 则 $P(A^c) = 1 P(A)$;
- (3) 若 A_1, \dots, A_n 都属于 \mathcal{F} 且两两不相交,则

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$
 (1.2.1)

(4) 若 $A \subset B$, $A \in \mathcal{F}$, $B \in \mathcal{F}$, 则 $P(A) \leqslant P(B)$, 且

$$P(B - A) = P(B) - P(A)$$
(1.2.2)

(5) 若 $A_n \subset A_{n+1}$, $A_n \in \mathcal{F}(n=1,2,\cdots)$, 则

$$P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$
 (1.2.3)

(6) 若 $A_n \supset A_{n+1}$, $A_n \in \mathcal{F}(n=1,2,\cdots)$, 则

$$P(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(A_n)$$
 (1.2.4)

$$P(\bigcup_{n=1}^{\infty} A_n) \leqslant \sum_{n=1}^{\infty} P(A_n)$$
 (1.2.5)

2.1 古典概型

模型定义: 若随机现象有如下两个特征:

- (1) 在实验中它的全部可能性只有有限个;
- (2) 基本事件发生或出现是等可能的;

则称其对应的数学模型为古典概型

取

$$\Omega = \{\omega_1, \omega_2, \cdots, \omega_n\}, \quad \mathcal{F} = \{A | A \subset \Omega\}$$

 $\Diamond P$ 为 (Ω, \mathcal{F}) 上的概率测度,满足

$$P(\{w_1\}) = \dots = P(\{w_n\})$$

则 $(\Omega, \mathcal{F} P)$ 为古典概型对应的概率空间。

计算公式: 对 $A = \{\omega_{i_1}, \dots, \omega_{i_k}\} \in \mathcal{F}$,利用概率的有限可加性可知:

$$P(A) = \sum_{j=1}^{k} P(\{\omega_{i_j}\}) = \frac{k}{n} = \frac{|A|}{|\Omega|}$$

排列: 从含有 n 个不同元素的总体中抽取 r 个进行排列

- (1) 放回情形: 共有 n^r 种排列方式
- (2) 不放回情形: 共有 $A_n^r := n(n-1)\cdots(n-r+1)$ 种排列方式 当 r=n 时,为全排列,此时 $A_n^n=n!$ 。

组合: (1) 从 n 个不同元素中取出 r 个而不考虑其顺序,称为组合,其总数为 $C_n^r = \frac{n!}{r!(n-r)!} = \frac{A_n^r}{r!}$ (2) 把 n 个不同元素分成 k 个部分,且第 i 个部分有 r 个元素, $1 \le i \le k$,且 $r_1 + r_2 + \cdots + r_k = n$,则有 $\frac{n!}{r_1!r_2\cdots r_k!}$ 种方法

- (3) 把 n 个元素全部带有标注,其中 n_1 个带标注 1, n_2 个带标注 2, \cdots , n_k 个带标注 k。现在从此 n 个元素中取出 r 个,使得带有标注 i 的元素有 r_i 个,其中 $1 \le i \le k$ 且 $r_1 + r_2 + \cdots + r_k = r$ 。则不同取法的总数为 $C_{n_1}^{r_1}C_{n_2}^{r_2}\cdots C_{n_k}^{r_k}$ 。
- (4) 从 n 个不同元素中有重复的取出 r 个,不计顺序,则不同的取法有 C_{n+r-1}^r (有重复组合数) **组合公式**: 对一切正整数 a,b,

$$\sum_{i=0}^{n} C_{a}^{i} C_{b}^{n-i} = C_{a+b}^{n}$$

约定当 k > n 时, $C_n^k = 0$ 。特别地,

$$\sum_{i=0}^{n} (C_n^i)^2 = C_{2n}^n$$

例 1: (对应郑书例 3.1) 某人同时抛掷两枚骰子,问:得到 7点(两颗骰子的点数之和的概率是多少?)

解: 我们用甲乙分别表示这两颗骰子,每颗骰子共有 6 种可能的点数: 1,2,3,4,5,6,两颗骰子共有 6×6=36 种可能结果: $(i,j)(i=1,\cdots,6)(j=1,\cdots,6)$,这里 i 表示骰子甲的点数,j 表示骰子乙的点数,显然这些结果出现的机会是相等的,它们构成了等概完备事件组,事件"得到 7点"由 6 种结果(基本事件)组成: (1,6),(2,5),(3,4),(4,3),(5,2),(6,1),故事件"得到 7点"的概率为 $\frac{6}{36}=\frac{1}{6}$ \square

例 2: 甲口袋有 5 个白球, 3 个黑球, 乙口袋中有 4 个白球, 6 个黑球, 从两个口袋中各任取一球, 求取到的两个球颜色相同的概率。

解:从两个口袋中各取一球,共有 $C_8^1C_1^10$ 种等可能取法。两球颜色相同可能情况为:从甲乙口袋均取出白球,从甲乙口袋均取出黑球,共有 $C_5^1C_4^1+C_3^1C_6^1$ 种取法,于是

$$P$$
(取到的两个球颜色相同) = $\frac{C_5^1C_4^1 + C_3^1C_6^1}{C_8^1C_{10}^1} = \frac{19}{40}$

例 3: (巴拿赫问题) 某数学家有两盒火柴,每盒有 n 根,每次使用时,他任取一盒并从中抽出一根,问他发现一盒空而同时另一盒还有 $r(0 \le r \le n)$ 的概率为多少 (发现为空表示最后一次抽到空盒)?

解: 设两盒火柴分别为 A, B, 由对称性,所求概率为事件 E = "发现 A 盒空而 B 盒还有 r 根" 的概率的 2 倍。

先计算样本空间中的样本点个数,由于共取了2n-r+1次,故有 2^{2n-r+1} 个样本点。

考察事件 E,等效为前 2n-r 次 A 盒恰好取 n 次,次序不论,最后一次必定取到 A 盒,此种样本点共有 C_{2n-r}^n 个,因此

$$P(E) = \frac{C_{2n-r}^n}{2^{2n-r+1}}.$$

所求概率为 $\frac{C_{2n-r}^n}{2^{2n-r}}$.

2.2 条件概率与独立性

2.2.1 条件概率

条件概率:设 $(\Omega, \mathcal{F} P)$ 为概率空间, $B \in \mathcal{F}$ 满足 P(B) > 0。称

$$P(A|B) = \frac{P(AB)}{P(B)}, A \in \mathcal{F}$$

为 B 发生条件下 A 发生的条件概率。

条件概率 $P(\cdot|B)$ 为 \mathcal{F} 上的概率, 即满足:

- $P(A|B) \geqslant 0$, $\forall A \in \mathcal{F}$
- $P(\Omega|B) = 1$
- $\forall \{A_n\} \subset \mathcal{F}, A_n \cap A_m = \emptyset, \forall n \neq m,$

$$P(\sum_{n=1}^{\infty} A_n | B) = \sum_{n=1}^{\infty} P(A_n | B)$$

容易得到, $P(B|\Omega) = P(B)$ 。

乘法公式: $P(AB) = P(B \mid A)P(A)$

乘法公式的推广: $P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$, 其中 $P(A_1A_2\cdots A_{n-1}>0$ 。

例 1: 将 52 张扑克牌 (不含大王、小王) 随机地分为 4 堆, 每堆 13 张, 问: 各堆都含有 A 牌 (即 1 点) 的概率是多少?

解: 将 4 堆扑克牌编号: 第 1 堆,第 2 堆,第 3 堆,第 4 堆,用 A_1, A_2, A_3, A_4 依次表示 4 个 A 牌,设 i_1, i_2, i_3, i_4 是 1,2,3,4 的一个排列,令 $E_{i_1 i_2 i_3 i_4}$ = "第 i_1 堆有 A_1 但没有 A_2, A_3, A_4 ,第 i_2 堆有 A_2 但没有 A_1, A_3, A_4 ,第 i_3 堆有 A_3 但没有 A_1, A_2, A_4 ,第 i_4 堆有 A_4 但没有 A_1, A_2, A_3 ",E = "各堆都含有 A",则

$$E = \bigcup_{i_1 i_2 i_3 i_4} E_{i_1 i_2 i_3 i_4}$$

这些事件两两不相容,易知 $P(E) = 4!P(E_{1234})$,令 $E_k = \{$ 第 k 堆含有 A_k 但不含有其他的 $A_i(j \neq k)\}$ (k = 1, 2, 3, 4),则

$$P(E_{1234}) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)P(E_4|E_1E_2E_3)$$

易知

$$P(E_1) = C_{48}^{12}/C_{52}^{13}, \quad P(E_2|E_1) = C_{36}^{12}/C_{39}^{13},$$

$$P(E_3|E_1E_2) = C_{24}^{12}/C_{26}^{13}, \quad P(E_4|E_1E_2E_3) = 1,$$

于是

$$P(E_{1234}) = \frac{C_{48}^{12}C_{36}^{12}C_{24}^{12}}{C_{52}^{13}C_{39}^{13}C_{26}^{13}} = \frac{13^4}{52 \times 51 \times 50 \times 49},$$

$$P(E) = 4!P(E_{1234}) \approx 0.105$$

例 2: (罐子模型)设罐中有b个黑球,r个红球,每次随机取出一个球,取出后将原球放回,还加进c个同色球和d个异色球,记 B_i 为"第i次取出的是黑球", R_j 为"第j次取出的是红球"。若连续从罐中取出三个球,其中有两个红球,一个黑球,则由乘法公式我们可得

$$P(B_1R_2R_3) = P(B_1)P(R_2|B_1)P(R_3|B_1R_2) = \frac{b}{b+r} \cdot \frac{r+d}{b+r+c+d} \cdot \frac{r+d+c}{b+r+2c+2d},$$

$$P(R_1B_2R_3) = P(R_1)P(B_2|R_1)P(R_3|R_1B_2) = \frac{r}{b+r} \cdot \frac{b+d}{b+r+c+d} \cdot \frac{r+d+c}{b+r+2c+2d},$$

$$P(R_1R_2B_3) = P(R_1)P(R_2|R_1)P(B_3|R_1R_2) = \frac{r}{b+r} \cdot \frac{r+c}{b+r+c+d} \cdot \frac{b+2d}{b+r+2c+2d},$$

以上概率与黑球在第几次被抽出有关。罐子模型也称波利亚(Polya)模型,这个模型的各种变化如下:

(1) 当 c = -1, d = 0 时,为不返回抽样,此时前次抽取结果会影响后次抽取结果,但只要抽取的黑球和红球个数确定,则概率不依赖其抽出球的次序,有

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br(r-1)}{(b+r)(b+r-1)(b+r-2)}$$

(2) 当 c=0, d=0 时,为返回抽样,此时前次抽取结果不会影响后次抽取结果,上述三种概率相等,有

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br^2}{(b+r)^3}$$

(3) 当 c > 0, d = 0 时,为传染病模型,此时每次取出球后会增加下一次取到同色球的概率,或者说,每发现一个传染病患者,以后都会增加再传染的概率。同样的,上述三种概率相等,且都等于

$$P(B_1R_2R_3) = P(R_1B_2R_3) = P(R_1R_2B_3) = \frac{br(r+c)}{(b+r)(b+r+c)(b+r+2c)}$$

可以看出,当 d=0时,只要取出的黑球和红球个数确定,则概率不依赖于其抽出球的顺序。

(4) 当 c = 0, d > 0 时,为安全模型,可以解释为,每当事故发生,会抓紧安全工作,从而下一次发生事故的概率会减少,而当事故未发生时,安全工作会松懈,下一次发生事故的概率会增大,上述三种概率分别为:

$$P(B_1R_2R_3) = \frac{b}{(b+r)} \cdot \frac{r+d}{b+r+d} \cdot \frac{r+d}{b+r+2d},$$

M

$$P(R_1 B_2 R_3) = \frac{r}{(b+r)} \cdot \frac{b+d}{b+r+d} \cdot \frac{r+d}{b+r+2d},$$

$$P(R_1 R_2 B_3) = \frac{r}{(b+r)} \cdot \frac{r}{b+r+d} \cdot \frac{b+2d}{b+r+2d}$$

例:设 n 件产品中有 m 件不合格品,从中任取两件,已知两件中有一件是合格品,求另一件也是合格品的概率。

 \mathbf{M} : 记事件 A "有一件是合格品",B "另一件也是合格品"。则

P(A) = P (取出一件合格品,一件不合格品) +P (取出两件都是合格品)

$$= \frac{C_m^1 C_{n-m}^1}{C_n^2} + \frac{C_{n-m}^2}{C_n^2} = \frac{2m(n-m) + (n-m)(n-m-1)}{n(n-1)}$$
$$= \frac{(n-m)(n+m-1)}{n(n-1)}$$

$$P(AB) = P$$
 (取出两件都是合格品) = $\frac{C_{n-m}^2}{C_n^2} = \frac{(n-m)(n-m-1)}{n(n-1)}$

于是所求概率为

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{\frac{(n-m)(n-m-1)}{n(n-1)}}{\frac{(n-m)(n+m-1)}{n(n-1)}} = \frac{n-m-1}{n+m-1}$$

2.2.2 事件的独立性

事件的独立性: 设 $(\Omega, \mathcal{F} P)$ 为概率空间,称 $A, B \in \mathcal{F}$ 相互独立(独立),若

$$P(AB) = P(A)P(B)$$

性质: (1) 若 A, B 独立, 且 P(B) > 0, 则

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

即条件概率等于无条件概率。

(2) 若 A, B 独立,则 $A 与 \overline{B}$, $\overline{A} 与 B$, $\overline{A} 与 \overline{B}$ 亦独立。

$$P(A\overline{B}) = P(A) - P(AB) = P(A) - P(A)P(B) = P(A)P(\overline{B})$$

(3) 零概率事件及其对立的事件与任意的事件都独立。

例: 袋中有 a 只黑球和 b 只白球,令 A: "第一次摸到黑球",B: "第二次摸到黑球"。讨论 A 和 B 的独立性。

(1) 放回情形。因为

$$P(A) = \frac{a}{a+b}, P(AB) = \frac{a^2}{(a+b)^2}, P(\overline{A}B) = \frac{ab}{(a+b)^2},$$

所以

$$P(B) = P(AB) + P(\overline{A}B) = \frac{a^2 + ab}{(a+b)^2} = \frac{a}{a+b}$$

故

$$P(A)P(B) = P(AB)$$

(2) 不放回情形。易知

$$P(A) = P(B) = \frac{a}{a+b}, P(\overline{A}B) = \frac{ab}{(a+b)(a+b-1)}$$

故

$$P(A)P(B) \neq P(AB)$$

定义: 设 $\{A_k\}_{k \leq n} \subset \mathcal{F}$ 。称 A_1, A_2, \cdots, A_n 相互独立,若

$$P(\bigcap_{j=1}^{k} A_{i_j}) = \prod_{j=1}^{k} P(A_{i_j}), \quad 1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n, k \leqslant n$$

注意:独立 ⇒ 两两独立,但是反之不对:

伯恩斯坦反列:一个均匀的正四面体,其第一、二、三面分别涂上红、黄、蓝三种颜色第四面同时涂上以上三种颜色。以 A,B,C 分别表示投一次四面体出现红、黄、蓝颜色朝下的事件,则

$$P(A) = P(B) = P(C) = \frac{1}{2}, \quad P(AB) = P(BC) = P(AC) = \frac{1}{4}$$

从而 A, B, C 两两独立, 但是,

$$P(ABC) = \frac{1}{4} \neq P(A)P(B)P(C)$$

独立性与概率计算: 设 A_1, A_2, \cdots, A_n 相互独立, 则

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = 1 - \prod_{i=1}^n P(\overline{A_i})$$

例:设有某型号的高射炮,每门炮(发射一发)击中敌机的概率为 0.6,现在若干门炮同时发射(每炮射一发),问:若要以 99%的把握击中来犯的一架敌机,至少需要配置几门高射炮?

解: 设 n 是需要配置的高射炮的门数,记 A_i = "第 i 门炮击中敌机" $(i=1,\cdots,n)$,A = "敌机被击中"。由于 $A=\bigcup\limits_{i=1}^n A_i$,于是要找到 n,使得

$$P(A) = P(\bigcup_{i=1}^{n} A_i) \geqslant 0.99$$

由于 $P(A) = 1 - P(\overline{A}) = 1 - P(\bigcup_{i=1}^{n} \overline{A_i})$, 且 $\overline{A_1}, \dots, \overline{A_n}$ 相互独立, 故

$$P(A) = 1 - P(\overline{A_1}) \cdots P(\overline{A_n}) = 1 - 0.4^n$$

为使不等式成立,必须且只需 $1-0.4^n \ge 0.99$ 。由此得

$$n \geqslant \lg 0.01/\lg 0.4 = 5.026$$

故至少需配置 6 门高射炮方能以 99% 的把握击中敌机。

例: 设 A, B, C 三事件相互独立, 证明 A - B 与 C 独立。

解: 因为

$$P((A - B)C) = P(AC - BC) = P(AC) - P(ABC)$$

$$= P(A)P(C) - P(A)P(B)P(C)$$

$$= (P(A) - P(A)P(B))P(C)$$

$$= (P(A) - P(AB))P(C) = P(A - B)P(C).$$

所以 A-B 与 C 独立。

2.3 全概率公式和贝叶斯公式

2.3.1 全概率公式

完备事件组: 若 $\{B_n\}_{n\geqslant 1}\subset \mathcal{F}$ 满足两两互斥且 $\sum\limits_{n=1}^{\infty}B_n=\Omega$,则称 $\{B_n\}_{n\geqslant 1}$ 为完备事件组。

全概率公式: 假定 $\{B_n\}_{n\geqslant 1}$ 为完备事件组,则

$$P(A) = \sum_{n=1}^{\infty} P(B_n) P(A|B_n), \forall A \in \mathcal{F}$$

注意: 在上式中, 若 $P(B_n) = 0$, 则规定 $P(B_n)P(A|B_n) = 0$ 。

例: 一保险公司相信人群可以分为 2 类: 一类是容易出事故的; 另一类是不容易出事故的。已知前者在一年内出事故的概率为 0.4, 后者在一年内出事故的概率为 0.2。前者约占人群的 30%。今有一人前来投保, 他在一年内出事故的可能性有多大?

解: 设 A = "他在一年内出事故",B = "他是容易出事故的",则 B, \overline{B} 构成完备事件组,有

$$P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B})$$

图 2.1: 完备事件组

图 2.2: 全概率公式

由于
$$P(B)=0.3, P(A|B)=0.4, P(\overline{B})=0.7, P(A|\overline{B})=0.2$$
,于是
$$P(A)=0.3\times0.4+0.7\times0.2=0.26$$

例: 甲口袋有 1 个黑球,2 个白球,乙口袋有 3 个白球,每次从两口袋中任取一球,交换后放入另一口袋中,求交换 n 次之后,黑球仍然在甲口袋的概率。

设事件 A_i 为 "第 i 次交换后黑球仍然在甲口袋中",记 $p_i=P(A), i=0,1,2,\cdots$,则有 $p_0=1$,且

$$P(A_{i+1} \mid A_i) = \frac{2}{3}, \quad P(A_{i+1} \mid A_i^c) = \frac{1}{3}$$

由全概率公式得

$$p_n = \frac{2}{3}p_{n-1} + \frac{1}{3}(1 - p_{n-1}) = \frac{1}{3}p_{n-1} + \frac{1}{3}, \quad n \geqslant 1$$

得到递推公式

$$p_n - \frac{1}{2} = \left(\frac{1}{3}\right) \left(p_{n-1} - \frac{1}{2}\right), \quad n \geqslant 1$$

将 $p_0 = 1$ 代入上式可得

$$p_n - \frac{1}{2} = \left(\frac{1}{3}\right)^n \left(\frac{1}{2}\right)$$

因此

$$p_n = \frac{1}{2} \left[1 + \left(\frac{1}{3} \right)^n \right]$$

2.3.2 贝叶斯公式

贝叶斯公式: 假定 $\{B_n\}_{n\geqslant 1}$ 为完备事件组, $A\in\mathcal{F}$ 满足 P(A)>0,则

$$P(B_n|A) = \frac{P(B_n)P(A|B_n)}{\sum_{n=1}^{\infty} P(B_n)P(A|B_n)}$$

例: 一项血液化验有 95% 的把握诊断某种疾病,但这项化验用于健康人也会有 1% 的"假阳性"结果(即如果一个健康人接受这项化验,化验结果误诊此病人患该疾病的概率为 1%)。假定该疾病的患者事实上只占总人口的 0.5%。若某人化验结果为阳性,则此人确实患有该疾病的概率是多少?**解:** 令 A 表示"此人确实患该疾病",B 表示"其化验结果为阳性",则所求概率为

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\overline{A})P(B|\overline{A})}$$
$$= \frac{0.95 \times 0.005}{0.95 \times 0.005 + 0.01 \times 0.995}$$
$$= \frac{95}{294} \approx 0.323$$

 \Box **例:** 一架飞机失踪了,推测它等可能的坠落在 3 个区域。令 $\alpha_i(i=1,2,3)$ 表示飞机在第 i 个区域坠落但没有被发现的概率。已知对区域 1 的搜索没有发现飞机,求在此条件下,飞机坠落在第 i(i=1,2,3) 个区域的条件概率。

 \mathbf{M} : 令 B_i 表示 "飞机坠毁在第 i 个区域", i=1,2,3, A 表示 "在第 1 个区域没有搜索到飞机", 则

$$P(B_1|A) = \frac{P(B_1)P(A|B_1)}{\sum_{i=1}^{3} P(B_i)P(A|B_i)} = \frac{\frac{\alpha_1}{3}}{\frac{\alpha_1}{3} + 1 \times \frac{1}{3} + 1 \times \frac{1}{3}} = \frac{\alpha_1}{\alpha_1 + 2}$$

对 j = 2, 3,

$$P(B_j|A) = \frac{P(B_j)P(A|B_j)}{\sum_{i=1}^{3} P(B_i)P(A|B_i)} = \frac{\frac{1}{3}}{\frac{\alpha_1}{3} + 1 \times \frac{1}{3} + 1 \times \frac{1}{3}} = \frac{1}{\alpha_1 + 2}$$

随机游走:考虑数轴上一质点,假定它只在整数点上运动。当前时刻它处于位置 a (整数),下一时刻(单位间隔时间)以概率 p 向正向,概率 1-p 向负向运动一个单位,称这样的质点运动为随机游动,当 $p=q=\frac{1}{2}$ 时,称为对称随机游走。

(1) 无限制随机游走:对随机游走,以 S_n 表示 n 时刻质点的位置,假定 $S_0=0$ 。我们计算经过 n 次运动后到达位置 k 的概率。

由于质点在 n 时刻位于 k, 在 n 次游动中, 质点向右移动次数 x 比向左运动 y 多 k 次:

$$x - y = k$$
, $x + y = n$
$$x = \frac{n+k}{2}$$
, $y = \frac{n-k}{2}$

为使 x 为整数, k 和 n 的奇偶性需要相同, 即

$$P(S_n = k) = \begin{cases} C_n^{\frac{n+k}{2}} p^{\frac{n+k}{2}} (1-p)^{\frac{n-k}{2}}, & n, k$$
奇偶性相同 0, n, k 奇偶性不同

(2) 两端带有吸收壁的随机游走:设a,b为正整数。假定质点初始位置为a,在位置0和a+b均有一个吸收壁,求质点被吸收的概率。

记 q_n 为质点初始位置是 n 而最终在 a+b 被吸收的概率,显然,

$$q_0 = 0, \quad q_{a+b} = 1$$

若质点某时刻位于 n, $n = 1, \dots, a+b-1$ 。则其在位置 a+b 被吸收有两种可能: (1) 运动到 n-1 位置被 a+b 吸收, (2) 运动到 n+1 位置被 a+b 吸收, 由全概率公式得

$$q_n = q_{n-1}q + q_{n+1}p, \quad n = 1, \dots, a+b-1$$

由于 p+q=1, 上式可以写为

$$p(q_{n+1}-q_n)=q(q_n-q_{n-1}), \quad n=1,\cdots,a+b-1$$

记 $r = \frac{q}{p}$,则

$$q_{n+1} - q_n = r(q_n - q_{n-1}), \quad n = 1, \dots, a+b-1$$

可以分两种情况讨论:(i)若 r=1,即 $p=q=\frac{1}{2}$ 。则

$$q_{n+1} - q_n = q_n - q_{n-1} = \dots = q_1 - q_0$$

 $q_{n+1} = q_0 + (n+1)(q_1 - q_0), \quad n = 1, \dots a + b - 1$

结合边值条件,有

$$q_n = \frac{n}{a+b}, n = 1, \cdots, a+b-1$$

(ii) 若 $r \neq 1$, 即 $p \neq q$:

$$q_{n+1} - q_n = r(q_n - q_{n-1}) = \dots = r^n(q_1 - q_0)$$

即

$$q_n - q_0 = \sum_{i=0}^{n-1} (q_{i+1} - q_i) = \sum_{i=0}^{n-1} r^i (q_1 - q_0) = \frac{1 - r^n}{1 - r} (q_1 - q_0), \quad n = 1, \dots, a + b - 1$$

结合边值条件,得

$$q_1 = \frac{1 - r}{1 - r^{a+b}}$$

则

$$q_n = \frac{1 - r^n}{1 - r^{a+b}}$$

3.1 随机变量

为了进一步研究随机现象,我们需要引入随机变量的概念。

定义:(随机变量的直观描述)如果条件 S 下的结果可以用某个变量 X 来描述,X 的值不能预先确定,而随着条件 S 的不同可能变化,但是对任何实数 c,事件 "X 取值不超过 c" 是有概率的,将这样一种变量 X 称为随机变量。

定义:(随机变量的数学描述)如果条件 S 下的所有可能结果组成了集合 $\Omega = \{\omega\}$, $X = X(\omega)$ 是 在 Ω 上有定义的实值函数,而且对任何实数 c,事件 " $\{\omega: X(\omega) \leq c\}$ "是有概率的,将 X 称为随机变量。

例:(对应郑书例 1.2)盒中有 5 个球, 其中有 2 个白球, 3 个黑球. 从中任取 3 个球, 将其中所含的白球的数目记为 X.

建模: 将球编号, 1~3 表示黑球, 4,5 表示白球.

记摸到球的编号为 $\omega = (i, j, k)$, 其中 $1 \le i < j < k \le 5$. $|\Omega| = C_5^3 = 10$.

其中满足 X=0 的 ω 有 $C_2^0C_3^3=1$ 个; 满足 X=1 的 ω 有 $C_2^1C_3^2=6$ 个; 满足 X=2 的 ω 有 $C_2^2C_3^1=3$ 个.

设事件: $\{X=1\}=\{\omega:X(\omega)=1\},\quad \{X\leqslant 1\}=\{\omega:X(\omega)\leqslant 1\}.$

将 $P({X = 1})$ 简记为 P(X = 1).

$$P(X=1) = \frac{6}{10}, \ P(X \le 1) = \frac{7}{10}.$$

例:(对应郑书例 1.6) 某公共汽车站每隔 10 min 会有一两某路公交车到达. 某乘客随机在任意时刻到达车站.

显然,他的候车时间 X (单位: min) 为随机变量. X 的取值范围 $0 \le X \le 10$ 。事件 $\{X \le c\}$ 是有概率的,这是一种几何概型,我们会在后面给出计算过程,例如:

$$P(X \leqslant 3) = \frac{3}{10}, \quad P(2 \leqslant X \leqslant 6) = \frac{4}{10}.$$

3.2 离散型随机变量

定义: X 是离散型随机变量指: X 取有限个值 x_1, \dots, x_n , 或可列无穷个值 $x_1, x_2, \dots . X$ 的概率分 布 (列) 指:

$$p_k = P(X = x_k), \quad k = 1, \dots, n \ \ \vec{\boxtimes} k = 1, 2, \dots.$$

将 X 的可能值以及相应的概率列为表3.1。表3.1称为 X 的概率分布表,它能够清楚完整的表示 X

表 3.1: 概率分布表

的取值以及概率的分布情况。

定义: 设 X 的可能取值是 x_1, x_2, \cdots (有限个或者可列无穷个),则称

$$p_k = P(X = x_k) \quad (k = 1, 2, \cdots)$$

为 X 的概率分布,这时也称为 X 的概率函数或者概率分布律

关于 $\{p_k\}$, 有以下性质:

(1)
$$p_k \ge 0 \ (k = 1, 2, \cdots)$$
 (2) $\sum_k p_k = 1$

回忆本讲例 1 的 X (抽到的白球数) 它的概率分布表如表3.2所示:

$$\begin{array}{c|cccc} X & 0 & 1 & 2 \\ \hline p & 0.1 & 0.6 & 0.3 \end{array}$$

表 3.2: X 的概率分布表

对离散型随机变量,有以下几种常见的概率分布:

3.2.1 两点分布(伯努利分布)

定义随机变量 X 的可能值是 0 和 1 且概率分布为:

$$P(X = 1) = p, \quad P(X = 0) = 1 - p.$$

称 X 服从**两点分布**(也称伯努利分布),记为 $X \sim B(1,p)$ (参数 $0 \le p \le 1$)

我们定义示性函数 1_A : 事件 A 发生则取 1; A 不发生则取 0.

例: (对应郑书例 2.1) 100 件产品中有 3 件次品. 从中任取一件.

设事件 A= "取到合格品" , ,随机变量 $X=1_A$, X 的可能取值为 0 和 1 。取到每件产品的概率 均等,概率分布为

$$P(X=1) = \frac{97}{100}, P(X=0) = \frac{3}{100}$$

X 服从参数 p=0.97 的两点分布。

3.2.2 二项分布

设随机变量所有可能值为 0,1,…,n,且

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}, k = 0, 1, \dots, n$$

称 X 服从参数为 n, p 的二项分布,记作 $X \sim B(n, p)$ (参数 $n \ge 1, 0 \le p \le 1$)

二项分布有明显的实际背景,例如在单次实验中事件 A 发生的概率是 p,进行独立重复实验 n 次,记事件 A 发生的次数为 X,则 $X \sim B(n,p)$ 。

定理 2.1: 对于二项分布, 分布列 P(X = k) 的最大值点 k_0 如下:

若 $(n+1)p \notin \mathbb{Z}$, 则 $k_0 = [(n+1)p]$;

若 $(n+1)p \in \mathbb{Z}$, 则 $k_0 = (n+1)p$ 或 (n+1)p-1.

证明: 显然

$$\frac{p_n(k+1)}{p_n(k)} = \frac{n-k}{k+1} \cdot \frac{p}{1-p}$$

由于 $\frac{n-k}{k+1}\cdot\frac{p}{1-p}>1$ 等价于 k<(n+1)p-1, 于是有:

- (a) $\leq k < (n+1)p-1$ $\forall p_n(k+1) > p_n(k)$
- (b) $\leq k > (n+1)p-1$ $\exists k > (n+1)p-1$
- (c) $\stackrel{\text{def}}{=} k = (n+1)p-1$ $\stackrel{\text{def}}{=} p_n(k+1) = p_n(k)$

(i) 若 $(n+1)p \notin \mathbb{Z}$,设 $k_0 = [(n+1)p] < (n+1)p < k_0+1$,当 k < m 时, $k \le k_0-1 < (n+1)p-1$, 因此 $p_n(k) < p_n(k+1)$;当 $k \ge k_0$ 时,k > (n+1)p-1,因此 $p_n(k) > p_n(k+1)$,所以 k_0 为最大值。

(ii) 若 $(n+1)p \in \mathbb{Z}$,设 $k_0 = (n+1)p$,有 $p_n(k_0) = p_n(k_0+1)$,进而利用性质 (a) 和性质 (b) 知 k_0 为最大值。

3.2.3 泊松分布

定义:设随机变量 X 的所有可能取值是全体非负整数,且

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

则称 X 服从参数为 λ 的泊松分布,记为 $X \sim \mathcal{P}(\lambda)$ (参数: $\lambda > 0$)。

泊松分布常见于生物学,物理学,工业的应用中,例如电话交换台收到的电话呼唤次数,放射性物质在一定时间内放出的粒子数。

定理: 泊松分布的分布列最大值点 $k_0 = [\lambda]$ 。

证明: 注意到 $p_{k+1} = \frac{\lambda}{k+1} p_k$, 故由分布函数知

若 $k+1 \leqslant \lambda$,则 $p_{k+1} \geqslant p_k$

若 $k+1 \geqslant \lambda$,则 $p_{k+1} \leqslant p_k$

因此当 $k_0 = [\lambda]$ 时,分布列取最大值。

例: 已知某商场一天来的顾客服从参数为 λ 的泊松分布,而每个来商场的顾客购物概率为 p,证明此商场一天内购物的顾客数服从参数为 λp 的泊松分布。

 \mathbf{M} : 用 Y 表示商场内一天购物的顾客数,则由全概率公式知,对任意正整数 k 有

$$P(Y = k) = \sum_{i=k}^{\infty} P(X = i) P(Y = k \mid X = i) = \sum_{i=k}^{\infty} \frac{\lambda^i e^{-\lambda}}{i!} C_i^k p^k (1 - p)^{i-k}$$

$$= \frac{(\lambda p)^k}{k!} e^{-\lambda} \sum_{i=k}^{\infty} \frac{[\lambda (1 - p)]^{i-k}}{(i - k)!} = \frac{(\lambda p)^k}{k!} e^{-\lambda} e^{\lambda (1 - p)} = \frac{(\lambda p)^k}{k!} e^{-\lambda p}$$

3.2.4 超几何分布

定义:若随机变量 X 的概率分布满足:

$$P(X = k) = \frac{C_D^k C_{N-D}^{n-k}}{C_N^n}, \quad k = 0, 1, \dots, n.$$

则称 X 服从超几何分布, 记为 $X \sim H(N, D, n)$ (参数 N, D, n 满足 $N \geqslant D \geqslant 0$)

设一批产品有 N 个产品, D 个次品, 任取 n 个, 抽到的次品数为 X。如果进行放回抽样则 X 服从二项分布, 如果进行不放回抽样则 X 服从超几何分布。

定理 2.3: 给定 n. 当 $N \to \infty$, $\frac{D}{N} \to p$ 时,

$$\lim_{N \to \infty} \frac{C_D^k C_{N-D}^{n-k}}{C_N^n} = C_n^k p^k (1-p)^{n-k}, \quad k \geqslant 0$$

证明:由于0 ,当<math>N充分大时,n < D < N,且n是固定的,易知

$$\begin{split} \frac{C_D^k C_{N-D}^{n-k}}{C_N^n} &= \frac{D!}{k!(D-k)!} \cdot \frac{(N-D)!}{(n-k)!(N-D-n+k)!} \cdot \frac{n!(N-n)!}{N!} \\ &= \frac{n!}{k!(n-k)!} \cdot \frac{D(D-1) \cdots (D-k+1)}{N^k} \\ &\cdot \frac{(N-D)(N-D-1) \cdots (N-D-n+k+1)}{N^{n-k}} \\ &\cdot \frac{N^n}{N(N-1) \cdots (N-n+1)} \\ &= C_n^k (\prod_{i=1}^k \frac{D-i+1}{N}) (\prod_{i=1}^{n-k} \frac{N-D-i+1}{N}) (\prod_{i=1}^n \frac{N}{N-i+1}) \\ &\to C_n^k p^k (1-p)^{n-k} \quad (N\to\infty) \end{split}$$

该定理的直观解释是,如果一批产品的总量 N 很大,其中次品占比为 p,则从整批产品随机抽取 n 个,抽到次品的个数 k 近似服从参数为 p,n 的二项分布。

3.2.5 几何分布

定义:若随机变量 X 的所有可能值是全体整数,且概率分布满足:

$$P(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \cdots.$$

则称 X 服从几何分布,记为 $X \sim G(p)$,参数 0 。

例如,某个射手向目标连续射击,如果他单次射中目标的概率为 p,则他首次射中目标所需要的射击次数 X 是一个随机变量,且满足几何分布。

几何分布具备无记忆性: $P(X - n = k \mid X > n) = P(X = k)$.

例:设 X 是只取自然数的离散随机变量,若 X 的分布具有无记忆性,证明 X 的分布一定为几何分布。

证明: 由无记忆性知

$$P(X > n + m | X > m) = \frac{P(X > n + m)}{P(X > m)} = P(X > n),$$

将n换为n-1仍有

$$P(X > n + m - 1) = P(X > n - 1)P(X > m).$$

两式相减有

$$P(X = n + m) = P(X = n)P(X > m).$$

设 P(X = 1) = p, 若取 n = m = 1 有

$$P(X=2) = p(1-p).$$

若取 n=2, m=1 则有

$$P(X = 3) = P(X = 2)P(X > 1) = p(1 - p)^{2}.$$

若令 $P(X = k) = p(1 - p)^{k-1}$, 则用数学归纳法得

$$P(X = k + 1) = P(X = k)P(X > 1) = p(1 - p)^{k}, \quad k = 0, 1, \dots$$

这表明 X 的分布为几何分布。

3.2.6 离散均匀分布

定义: 若随机变量 X 的概率分布满足:

$$P(X = k) = \frac{1}{N}, \quad k = 1, \dots, N.$$

则称 X 服从离散均匀分布。

3.3 连续随机变量

定义: 连续型随机变量指: 存在 p(x) 使得

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} p(x)dx, \quad \forall a < b.$$

称 $p(\cdot)$ 为 X 的概率密度 (函数), 也记为 $p_X(\cdot)$.

连续随机变量有以下性质:

- (1) 非负: $p(x) \ge 0$
- (2) 规范: $\int_{-\infty}^{\infty} p(x)dx = 1$
- (3) P(X = x) = 0 在任意一点选中的概率都为 0.
- (4) $p(\cdot)$ 在 x 连续, 即 $P(X \in [x, x + \Delta x]) = p(x)\Delta x + o(\Delta x)$,

以下是常见的连续随机变量:

3.3.1 均匀分布

定义:如果随机变量 X 的分布密度为:

$$p(x) = \begin{cases} \frac{1}{b-a}; & \text{ 若} a \leqslant x \leqslant b \\ 0, & \text{ 其他.} \end{cases}$$

则称 X 服从区间 [a,b] (或 (a,b)) 上的均匀分布,记为 $X \sim U(a,b)$ (参数 a < b):

均匀分布的分布函数也可以写为 $p(x) = \frac{1}{b-a} 1_{\{a \le x \le b\}}$.

例如,某公共汽车站每隔 10 分钟会有一班公交车到达,一位搭乘该车的乘客在任意时刻到达车站 是等可能的,则他的候车时间 X 是一个随机变量,且满足 [0,10] 上的均匀分布。

3.3.2 指数分布

定义:如果随机变量 X 的分布密度为:

$$p(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

则称 X 服从参数为 λ 的指数分布,记为 $X \sim \text{Exp}(\lambda)$ (参数 $\lambda > 0$)

若 X 服从参数为 λ 的指数分布,则对任何 $0 \le a < b$ 有:

$$P(a < X < b) = \lambda \int_{a}^{b} e^{-\lambda x} dx = e^{-\lambda a} - e^{-\lambda b}$$
$$P(X > a) = e^{-\lambda a}$$

定理: (无记忆性): $P(X - s > t \mid X > s) = e^{-\lambda t}, \forall t, s \ge 0.$

不难看出,
$$P(X-s>t\mid X>s)=rac{P(X-s>t)}{P(X>s)}=rac{e^{-\lambda(s+t)}}{e^{-\lambda t}}=e^{-\lambda t}=P(X>t)$$

注意到,无记忆性是指数分布独有的,即设 X 是非负的随机变量, $P(X-s>t\mid X>s)=e^{-\lambda t}$ 对 $\forall t,s\geqslant 0$ 恒成立的充分必要条件是 X 服从指数分布。

证明: 之前已经证明了充分性,现只需证明必要性: 设X是非负随机变量满足 $P(X-s>t\mid X>s)=e^{-\lambda t}$,则

$$P(X > s) > 0$$
, $P(X > s + t) = P(X > s)P(X > t)$

 $\diamondsuit f(u) = P(X > u), \quad \emptyset f(s+t) = f(s)f(t)$

于是 $f(1) = f(\frac{1}{n} \times n) = (f(\frac{1}{n}))^n$

从而
$$f(\frac{m}{n}) = f(\frac{1}{n} \times m) = (f(\frac{1}{n}))^m = (f(1))^{\frac{m}{n}}$$

故对任意正有理数 r,有 $f(r) = (f(1))^r$ 。由于 0 < f(1) < 1 且 f(u) 是关于 u 的减函数,因此对任意 $u \ge 0$,有 $f(u) = (f(1))^u$ 。

令 $\lambda = -\ln f(1)$, 则 $f(u) = e^{-\lambda u}$, 即

$$P(X > u) = e^{-\lambda u} = \int_{+\infty}^{u} e^{-\lambda x} dx$$

$$P(a < X < b) = \int_{a}^{b} \lambda e^{-\lambda x} dx \quad (0 \le a < b)$$

说明 X 服从指数分布。

3.3.3 正态分布

定义: 如果随机变量 X 的分布密度为:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

则称 X 服从参数为 μ , σ 的正态分布,记为 $X \sim N\left(\mu,\sigma^2\right)$ (参数 $\mu \in \mathbb{R},\sigma > 0$)

参数 $\mu = 0$, $\sigma^2 = 1$ 时的正态分布称为标准正态分布 N(0,1) , 分布密度是:

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

归一性: $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1$:

设 $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, 将积分的平方写为二重积分:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \times \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = \frac{1}{2\pi} \iint_{\mathbb{R}^2} e^{-\frac{x^2+y^2}{2}} dx dy.$$

做极坐标变换:

$$x = r \cos \theta, y = r \sin \theta \Rightarrow \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{vmatrix} = r.$$

因此, 二重积分可以写为

$$\frac{1}{2\pi} \int_0^{2\pi} \left(\int_0^{\infty} e^{-\frac{r^2}{2}} r dr \right) d\theta = \int_0^{\infty} e^{-R} dR = 1$$

对于其他正态分布的密度函数 $p(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$:令 $y=\frac{x-\mu}{\sigma}$,则

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = 1.$$

定义函数 Φ:

$$\Phi(x) = \int_{-\infty}^{x} \phi(x) dx.$$

容易看出 $\Phi(-x) = 1 - \Phi(x)$.

$$P(a < X < b) = \int_{a}^{b} \frac{1}{\sigma} \phi\left(\frac{x - \mu}{\sigma}\right) dx = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).$$

推论: 设随机变量 $X \sim N(\mu, \sigma^2)$, 则对一切正数 k, 有

$$P(\mu - k\sigma < X < \mu + k\sigma) = \Phi(k) - \Phi(-k) = 2\Phi(k) - 1$$

例如查表得 $\Phi(3) = 0.9987$, 因此

$$P(\mu - 3\sigma < X < \mu + 3\sigma) = \Phi(3) - \Phi(-3) = 0.9974$$

该结果说明正态随机变量 X 的取值基本落在区间 $(\mu - 3\sigma, \mu + 3\sigma)$ 内。

3.3.4 伽马分布

定义:如果随机变量 X 的分布密度为:

$$p(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0.$$

则称随机变量 X 服从伽马分布,记为 $X \sim \Gamma(\alpha, \beta)$ (参数 $\alpha, \beta > 0$)

其中, 称 $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy$ 为 Γ 函数。

若 $\Gamma(\alpha)$ 为 Γ 函数,则函数具备以下性质:

(1)
$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$

证明:

$$\int_{0}^{\infty} y^{\alpha} e^{-y} dy = -y^{\alpha} e^{-y} \Big|_{0}^{\infty} + \int_{0}^{\infty} \alpha y^{\alpha - 1} e^{-y} dy = \alpha \int_{0}^{\infty} y^{\alpha - 1} e^{-y} dy$$

(2) $\Gamma(1) = 1; \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

证明:

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty \frac{1}{\sqrt{y}} e^{-y} dy = \sqrt{2} \int_0^\infty e^{-\frac{x^2}{2}} dx = \sqrt{\pi}.$$

(3) $\alpha = 1$ 时就是指数分布参数为 β .

3.4 随机变量的严格定义

定义: 假设 (Ω, \mathcal{F}, P) 是概率空间, $X : \Omega \to \mathbb{R}$ 满足:

对任意
$$x \in \mathbb{R}$$
 都有 $\{X \leq x\} \in \mathcal{F}$,

则称 X 是一个随机变量.

定义: 令 $F(x) = P(X \le x), x \in \mathbb{R}$. 称 F 为随机变量 X 的分布函数, 也记为 F_X .

定理: 分布函数 $F = F_X$ 的三条性质:

- (1) 单调性: 若 $x \leq y$, 则 $F(x) \leq F(y)$.
- (2) 规范性: $\lim_{x\to-\infty} F(x) = 0$; $\lim_{x\to\infty} F(x) = 1$.
- (3) 右连续性: $\lim_{y\to x+} F(y) = F(x)$.
- 离散型: $P(X = x_i) = p_i$. $x_i 为 F_X$ 的跳点, p_i 为跳跃幅度.
- 连续型: $F_X(x) = \int_{-\infty}^x p(z)dz$, 且

$$p(x) = F_X'(x).$$

反过来, 若 F_X "几乎" 连续可导, 则为连续型 (定理 4.3, 4.4).

- 尾分布函数: G(x) = P(X > x) = 1 F(x). 连续型: p(x) = -G'(x).
- \emptyset . $X \sim \text{Exp}(\lambda)$.

$$G(x) = e^{-\lambda x}, \quad \forall x > 0,$$

$$\Rightarrow G'(x) = -\lambda G(x). \quad \lambda : \ \text{x.e.}$$

- 由 $F_X(x)$ 可求出 $P(X \in B), \forall B$.
- 若 $F_X = F_Y$, 则称 X 与 Y 同分布, 记为 $X \stackrel{d}{=} Y$.
- X = Y, 即 P(X = Y) = 1, 则 $F_X = F_Y$. 反之不然.