Seq2seq model (Encoder-Decoder model)

Michel RIVEILL michel.riveill@univ-cotedazur.fr

Remember

Remember

RNN in action

LSTM cell

Cell made up of three "gates": these are calculation zones which regulate the flow of information (by carrying out specific

actions).

Forget gate (porte d'oubli)

Input gate (porte d'entrée)

Output gate (porte de sortic

- Cell state (état de la cellu
 - Like residual
- Hidden state (état caché)

GRU – gated recurrent unit

GRU = a light LSTM Cell

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

- It combines the forget and input into a single update gate.
- It also merges the cell state and hidden state.
- → This is simpler than LSTM.

Bi-directional RNNs

RNNs can process the input sequence in forward and in the reverse direction

Popular in speech recognition used also with text

Different RNN architecture

Seq2seq model (Encoder-Decoder model)

len(input) != len(output)
And generally, the two lengths are unknow

Auto-encoder architure

Seq2seq - original approach

- Extend encoder-decoder architecture
 - to a sequence data
 - in order to develop an architecture capable of generating contextually appropriate, arbitrary length, output sequences

Seq2Seq model

Applications with text

- Machine translation
- ▶ Text summarization
- Question answering
- Dialogue modeling

But also

- Forecasting
- Image captioning

Image captioning model

Seq2seq – original approach

Extend encoder-decoder architecture to a sequence data

arbitrary length y_1 Encoder **RNN** Context RNN Encoder Vector **RNN RNN RNN** Decoder x_2 x_1 x_3 arbitrary length

Sequence-to Sequence Architectures

- ▶ Three main part:
 - ▶ Encoder: processes the input sequence (ordinary sequence-to-vector RNN)
 - Context: output of the encoder
 - is usually a simple function of its final hidden state (h + c)
 - aims to encapsulate the information for all input elements in order to help the decoder make accurate predictions
 - Decoder: is conditioned on the context to generate the output sequence
 - the context acts as the initial hidden state of the decoder part of the model
 - produces output at each step

How to train seq2seq architecture

Without teacher forcing

model.fit(input_sent, output_sent)

With teacher forcing

Decoder part

An error is propagated during the training phase \rightarrow penalizes it

The teacher containt the ground truth

How to infer with seq2seq architecture

- \rightarrow Without/With teacher forcing \rightarrow no access to a ground Truth
- Greedy approach
- Encode the sentence
- 2. iterate to successively decode each time step, reusing the time steps already decoded
 - Then reuse step by step the prediction

Deux oiseaux volent dans le ciel

<start> Two birds flying in the sky

Pros and Cons of Teacher Forcing

Pros:

- If we do not use Teacher Forcing
 - the hidden states of the model will be updated by a sequence of wrong predictions
 - errors will accumulate
 - > and it is difficult for the model to learn from that.
- Training with Teacher Forcing converges faster.

Cons:

- > Unfortunately, during inference, there is no ground truth available
 - the RNN model will have to re-inject its own prediction for the next prediction.
- ▶ There is a difference between
 - learning (no propagation of error)
 - inference (propagation of error),
 - which leads to poor performance and model instability.
- ▶ This phenomenon is known as **exposure bias** in the litterature.

Train seq2seq model Step 1: encode input sentence

Train seq2seq model Step 1: encode input sentence

Remember: it's an iterative process until the end of the input sentence

Train seq2seq model Step 1: encode input sentence

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Train seq2seq model Step 2: decode the sentence

Remember: teacher, help in this task

Train seq2seq model Step 2: decode the sentence

Remember: it's also an iterative process until the end of the teacher sentence

Train seq2seq model Step 2: decode the sentence

How to build Teacher Seq2Seq model

- For example
 - Translation from Spanish to English
- Input sequence = Spanish = (None, None, in_features)
 - in_features: spanish_vocab_size=52 l
 - Use spanish_vectorizer
- Output sequence = English = (None, None, out_features)
 - out_features: english_vocab_size = 262
 - Use english_vectorizer
- ► Embedding dim → as usual (50, 100, 150, 300)
- Latent dim
 - ▶ Represent the size of the latent space (64, 128, 256 or more)
 - Latent space = 2*latent_dim for LSTM / latent_dim for GRU

How to build Teacher Seq2Seq model

```
# Define context
context = [enc_state_h, enc_state_c]
```

How to build Teacher Seq2Seq model

```
# Define decoder layers
   layer embedding = Embedding(en vocab size, emb dim, name="en embedding")
   layer lstm = LSTM(latent dim, return_sequences=True, return state=True)
                                                  #We use return states in inference.
   layer_dense = Dense(en_vocab_size, activation='softmax')
# Define decoder
   dec inputs = Input (shape=(None,))
   #Why input shape=(None, None)?
   dec = layer_embedding (dec inputs)
   dec, , = layer lstm(dec, initial state=context)
   dec outputs = layer dense(dec)
```

Define the Encoder_Decoder model

model = Model ([enc_inputs, dec_inputs], dec_outputs)

Seq2Seq model with teacher

Predict with seq2seq model Step 1: Use encode to define context

Predict with seq2seq model Step 2: decode the first output

ENCODER RNN

Predict with seq2seq model Step 2: step by step... decode sentence

Decode step by step

Reuse at each step, the previous output

ENCODER RNN

Predict with seq2seq model Step 2: step by step... decode sentence

Decode step by step

Reuse at each step, the previous output

Stop, when generate "stop" label

ENCODER RNN

How to predict?

Build encoder and decoder model

```
encoder model = Model(enc inputs, context)
dec inputs = Input(shape=(None,))
dec_input_h = Input(shape=(latent_dim,))
dec input c = Input(shape=(latent dim,))
dec = layer_embedding(dec inputs)
                                               # Same cell as previously
                                                       # Same cell as
dec, dec h, dec c = layer_lstm(dec inputs,
previously
              initial state=[dec input h, dec input c])
decoder outputs = layer_dense(dec) # Same cell as previously
decoder_model = Model( [dec_inputs, dec_input_h, dec_input_c],
                         [decoder outputs, dec h, dec c])
```

Encoder model

Decoder model

How to predict?

```
def decode sequence(input seq):
   # Encode the input as state vectors.
    states value = encoder model.predict(input seq)
   # Iterate over decoded sentence. Target seq is the input of the decoder
    target_seq = np.zeros((len(input seq), I))
    target seq[:, 0] = « initialize the first input »
    output sequence = [] # Output sequence is the output of the decoder
    For in range(max output length):
        output value, h, c = decoder model.predict( [target seq] + states value)
       # Update the target sequence (of length 1) and state
        target seq[:, 0] = decode(output value)
        states value = [h, c]
       # extend output sequence
        output sequence += [target seq]
    return output sequence # eventually format it
```

Must necessarily be adapted, as must the architecture of the network according to the problem:
- presence or absence of the embedding layer - binary classification, categorical classification or mono or multi regression

Sequence-to-Sequence (seq2seq)

With a Seq2Seq model, we assume that the entire input sequence can be represented by a vector that is the only interaction between the encoder and the decoder.

ENCODER RNN

Lab - Build a Deep Learning Translator

- Must necessarily be **finished before next week** as we will continue adding attentions to this model
- Dataset: download your own pair of language and prepare the dataset (code next slide)
 - https://www.manythings.org/anki/
 - For good performance, it is necessary to have a large dataset
 - But unfortunately, training a recurrent network is time consuming
 - We will therefore work with a reduced number of sentences
- Build a seq2seq neural network
 - 2 possibilities
 - At character level
 - At word level (preferable)
 - Over-fit your network (very low error rate) with a teacher
 - We use only a training set (we predict on test)
 - A very small validation split in order to visualize the overfitting
 - No EarlyStopping
- Build model for inference and predict

Data preparation

```
def step1(sent): # sent = on sentence in a language
    def unicode to ascii(s): # In order to reduce the possibility
        return ''.join(c for c in unicodedata.normalize('NFD', s) if
unicodedata.category(c) != 'Mn')
    sent = unicode to ascii(sent.lower().strip()) # Only lower charater
    # replacing everything with space except (a-z, A-Z, ".", "?", "!", ",",
    sent = re.sub(r"[^a-zA-Z?.!,¿]+", " ", sent) # To be adapted
according to the languages chosen
    # creating a space between a word and the punctuation following it.
E.g. "he is a boy." \Rightarrow "he is a boy."
    # Reference:- https://stackoverflow.com/questions/3645931/python-
padding-punctuation-with-white-spaces-keeping-punctuation
    sent = re.sub(r"([?.!,i])", r" \setminus 1 ", sent) # To be adapted
according to the languages chosen
   return '<start> ' + sent.strip() + ' <end>'
                                                   # Suppress extra space
```

Data preparation

```
# Loading data
def read_data(path, num_examples):
    # path : path to spa-eng.txt file
    # num_examples : Limit the total number of training example for faster training
    lines = io.open(path, encoding='UTF-8').read().strip().split('\n')
    print(lines[0])
    sentences1, sentences2= zip(*[[step1(sent) for sent in
l.split('\t')[:2]] for l in lines[:num_examples]])
    return np.array(sentences1), np.array(sentences2)
```

Data preparation

```
# Search vocabulary and max length for each language
def voc(lang):
    # a list of sentences in the same language
    lengths = [len(txt.split()) for txt in lang]
    vocab = set([w for txt in lang for w in txt.split()])
    return max(lengths), list(vocab), len(vocab) +2 # for padding and OOV
max length1, vocab1, vocab size1 = voc(sentences1)
# Build vectorizer layer
vectorizer1 = layers.TextVectorization(standardize=None,
                                           output mode='int',
                                           vocabulary=vocab1,
                                           name= "language1")
# Do the same for language 2
```