

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 1

по курсу «Системы массового обслуживания»

ВАРИАНТ 44

Тема: _«Одноканальные системы массового обслуживания с отказами»_

Выполнил: Студент 4-го курса Мусатов Д. Ю

Группа: КМБО-03-18

Содержание

1	Задание	3
2	Краткие теоретические сведения	5
3	Результаты расчетов	6
	3.1 Задание 1	. 7
	3.2 Задание 2	. 12
	3.3 Задание 3	. 17
4	Анализ результатов и выводы	22
	4.1 Задание 1	. 22
	4.2 Задание 2	. 22
	4.3 Задание 3	. 23
5	Приложение	25

Содержание 2

1 Задание

Задание 1. Система массового обслуживания (D|M|1|0). Дано:

- 1. время между приходом заявок $\Delta T_3 = 0.688$;
- 2. параметр $\mu = 1.403$ показательного распределения времени обслуживания заявки прибором;

В момент поступлении каждой заявки на обслуживание в прибор определяется время её обслуживания $t_{\text{обсл}}$ в соответствии с показательным законом распределения с заданным параметром μ .

Предполагается, что в начальный момент времени t=0 в СМО нет заявок, т.е. состояние системы 0, и через заданное время $\Delta T_{\rm 3}$ в СМО поступит первая заявка (произойдет событие с номером 1). Момент наступления первого события (типа 1) равен $t_{\rm co6}(1)=\Delta T_{\rm 3}$. После события 1 система находится в состоянии 1, в котором она будет оставаться время $t_{\rm обсл}(1)$, определяемое в соответствии с показательным законом распределения с параметром μ .

Задание 2. Система массового обслуживания (M|D|1|0). Дано:

- 1. среднее число заявок $\lambda = 1.451$, поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром λ);
- 2. время обслуживания заявки прибором $T_{\rm of}$ (заданная постоянная величина).

Предполагается, что в начальный момент времени t=0 система находится в состоянии 0 и в этот момент определяется время поступления в систему первой заявки $t_3(1)$ в соответствии с показательным законом распределения с параметром λ .

Задание 3. Система массового обслуживания (M|M|1|0). Дано:

- 1. среднее число заявок $\lambda = 1.451$, поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром λ);
- 2. параметр $\mu = 1.403$ показательного распределения времени обслуживания заявки прибором;

Предполагается, что в начальный момент времени t=0 система находится в состоянии 0 и в этот момент определяется время поступления в систему первой заявки $t_3(1)$ в соответствии с показательным законом распределения с параметром λ , а в момент поступления каждой заявки на обслуживание в прибор определяется время её обслуживания

1 Задание 3

 $t_{
m oбcn}$ в соответствии с показательным законом распределения с параметром $\mu.$

Требуется:

- 1. Провести моделирование первых 100 событий в развитии каждой системы;
- 2. Составить таблицу 1 с данными о событиях:
 - номер события l;
 - момент наступления события $t_{coo}(l)$;
 - тип события Type(l);
 - состояние СМО C(l) после события l;
 - оставшееся время $t_{\text{ост}}(l)$ обслуживания прибором заявки после события l (если после события прибор свободен, $t_{\text{ост}}(l) = -1$);
 - время ожидания $t_{\text{ож3}}(l)$, через которое после события l в СМО появится новая заявка.
- 3. Составить таблицу 2 с данными о всех поступивших заявках:
 - номер заявки j;
 - момент $t_3(j)$ поступления заявки j в СМО;
 - время $t_{\text{обсл}}(j)$ обслуживания прибором заявки j;
 - момент $t_{\text{коб}}(j)$ окончания обслуживания заявки j и выхода ее из СМО. Если в момент появления заявки j в СМО прибор был занят, и заявка получила отказ в обслуживании, то $t_{\text{обсл}}(j) = 0$ и $t_{\text{коб}}(j) = t_3(j)$.

4. Найти:

- число заявок, поступивших в СМО на интервале $[0, t_{coo}(100)];$
- число полностью обслуженных заявок на интервале $[0, t_{coo}(100)];$
- число отклонённых заявок на интервале $[0, t_{coo}(100)];$
- долю отклонённых заявок в общем числе поступивших в СМО заявок на интервале $[0, t_{coo}(100)];$
- коэффициент простоя прибора на интервале $[0, t_{co6}(100)];$
- среднее время обслуживания заявки;
- экспериментальное среднее число заявок $\lambda_{\text{эксп}}$, поступавших в систему за единицу времени;
- относителные частоты пребывания СМО в состояниях

1 Задание 4

2 Краткие теоретические сведения

Системы массового обслуживания — математическая модель систем, предназначенных для обслуживания заявок, поступающих в неё, как правило, в случайные моменты времени. Обслуживанием заявок занимаются приборы, службы, аппараты. Рассматриваются элементарные одноканальные СМО без очередей с ординарными потоками с отказами. Это означает, что если приходит заявка, в прибор в это время занят, то ей ничего не остается, кроме как покинуть СМО.

Существует сложная классификация СМО, основными критериями являются:

- 1. организация отбора заявок;
- 2. характер образования очередей, если они есть;
- 3. количество каналов.

Основные показатели эффективности СМО:

- 1. Показатели эффективности использования СМО: среднее число заявок, которое может обслужить СМО за единицу времени, среднее продолжительность периода занятости СМО, коэффициент использования СМО (отношение средней продолжительности занятости к длине всего периода);
- 2. Показатели качества обслуживания заявок: среднее время ожидания заявки в очереди, среднее время пребывания в СМО, вероятность отказа без ожидания, вероятность, что заявка сразу будет принята; закон распределения времени пребывания заявки в СМО; средняя длина очереди (влияет на время ожидания в очереди); среднее число заявок в системе;
- 3. Показатели экономической и финансовой эффективности функционирования смо: средние расходы на обеспечение работы СМО в определенный период времени, средний доход за этот период времени и т.д.

В работе были также использованы средства языка Python, одно из них – random.exponential($1/\lambda$, size), возвращает случайное число с показательным параметром λ .

3 Результаты расчетов

В начальный момент времени $t_{\text{обсл}} = -1$, мы в зависимости от задания получаем величину $t_{\text{ожз}}(1)$. Для первого задания это фиксированное значение $\Delta T_3 = 0.688$, для второго и третьего мы генерируем случайное число, распределенное по показательному закону с параметром $\lambda = 1.451$. Через полученное время произойдет событие номер 1, его $t_{\text{соб}}(1) = t_{\text{ожз}}(1)$. Тип события Type(1) = 1, т. к. это новая заявка. Состояние СМО в этот момент C(1) = 1, потому как заявка тут же встает на обслуживание. Получаем $t_{\text{обсл}}(1)$ согласно заданию: в первом и третьем заданиях мы используем показательное распределение с параметром $\mu = 1.403$, для второго это фиксированная величина $T_{\text{об}} = 0.703$.

Номер заявки 1, момент её появления равен $t_3(1) = t_{\text{ож3}}(1)$. Момент, когда заявка закончит обслуживаться, мы получаем как $t_{\text{коб}}(1) = t_3(1) + t_{\text{обсл}}(1)$.

Далее в зависимости от того, что произойдет следующим, могут быть следующие случаи:

- 1. $t_{\text{ож3}}(l-1)$ окажется меньше $t_{\text{ост}}(l-1)$. Это означает, что следующая заявка придет раньше, чем прибор закончит свою работу. Значит такая заявка получит отказ, её $t_3(l) = t_{\text{тек}} + t_{\text{ост}}(l-1)$, $t_{\text{коб}}(l) = t_3(l)$. Тип события Type(l) = 2. $t_{\text{ож3}}(l)$ мы получаем заново согласно заданию, $t_{\text{ост}}(l) = t_{\text{ост}}(l-1) t_{\text{ож3}}(l-1)$.
- 2. $t_{\text{ож3}}(l-1)$ окажется больше, чем $t_{\text{ост}}(l-1)$, т.е. прибор закончит свою работу раньше, чем придет заявка. В этом случае произойдет событие типа Type(l)=3. $t_{\text{соб}}(l)=t_{\text{тек}}+t_{\text{ож3}}(l-1)$. C(l)=0, т. к. работа с заявкой завершена, $t_{\text{ост}}(l)=-1$, $t_{\text{ож3}}(l)$ мы получаем согласно заданию, $t_{\text{ост}}(l)=t_{\text{ост}}(l-1)-t_{\text{ож3}}(l-1)$. Остальные характеристики для заявки мы уже знаем.
- 3. момент, когда прибор простаивает. Произойдет событие типа Type(l)=1. $t_{\cos (l)}=t+t_{\text{ожз}}(l-1)$. $t_{\text{ост}}(l)$ мы получаем согласно заданию, $t_{\text{ожз}}(l)$ аналогично. $t_{3}(l)=t_{\cos (l)},t_{\cos (l)}=t_{\cot (l)},t_{\cos (l)}=t_{\cot (l)},t_{\cos (l)}=t_{\cot (l)}$. C(l)=1.

3.1 Задание 1.

Начальные данные:

$$\Delta T_3 = 0.688$$
 $\mu = 1.403$

Таблица 1.

l	$\mathrm{t_{coo}}(l)$	Type(l)	C(l)	$\mathrm{t_{oct}}(l)$	$\mathbf{t}_{\mathbf{o}\mathbf{x}3}(l)$
1	0.688	1	1	0.0966	0.688
2	0.7846	3	0	-1	0.5914
3	1.376	1	1	4.90287	0.688
4	2.064	2	1	4.21487	0.688
5	2.752	2	1	3.52687	0.688
6	3.44	2	1	2.83887	0.688
7	4.128	2	1	2.15087	0.688
8	4.816	2	1	1.46287	0.688
9	5.504	2	1	0.77487	0.688
10	6.192	2	1	0.08687	0.688
11	6.27887	3	0	-1	0.60113
12	6.88	1	1	0.69244	0.688
13	7.568	2	1	0.00444	0.688
14	7.57244	3	0	-1	0.68356
15	8.256	1	1	0.03276	0.688
16	8.28876	3	0	-1	0.65524
17	8.944	1	1	0.131	0.688
18	9.075	3	0	-1	0.557
19	9.632	1	1	1.55019	0.688
20	10.32	2	1	0.86219	0.688
21	11.008	2	1	0.17419	0.688
22	11.18219	3	0	-1	0.51381
23	11.696	1	1	2.31279	0.688
24	12.384	2	1	1.62479	0.688
25	13.072	2	1	0.93679	0.688
26	13.76	2	1	0.24879	0.688
27	14.00879	3	0	-1	0.43921
28	14.448	1	1	0.4699	0.688
29	14.9179	3	0	-1	0.2181

30 15.136 1 1 0.20321 0.688 31 15.33921 3 0 -1 0.48479 32 15.824 1 1 0.23847 0.688 33 16.06247 3 0 -1 0.44953 34 16.512 1 1 0.56976 0.688 35 17.08176 3 0 -1 0.11824 36 17.2 1 1 0.17457 0.688 37 17.37457 3 0 -1 0.51343 38 17.888 1 1 0.12094 0.688 39 18.00894 3 0 -1 0.56706 40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1	1	$\mathrm{t_{coo}}(l)$	Type(l)	C(l)	$\mathrm{t_{oct}}(l)$	$t_{osc3}(l)$
32 15.824 1 1 0.23847 0.688 33 16.06247 3 0 -1 0.44953 34 16.512 1 1 0.56976 0.688 35 17.08176 3 0 -1 0.11824 36 17.2 1 1 0.17457 0.688 37 17.37457 3 0 -1 0.51343 38 17.888 1 1 0.12094 0.688 39 18.00894 3 0 -1 0.56706 40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517	30					
33 16.06247 3 0 -1 0.44953 34 16.512 1 1 0.56976 0.688 35 17.08176 3 0 -1 0.11824 36 17.2 1 1 0.17457 0.688 37 17.37457 3 0 -1 0.51343 38 17.888 1 1 0.12094 0.688 39 18.00894 3 0 -1 0.56706 40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1	31	15.33921	3	0	-1	0.48479
34 16.512 1 1 0.56976 0.688 35 17.08176 3 0 -1 0.11824 36 17.2 1 1 0.17457 0.688 37 17.37457 3 0 -1 0.51343 38 17.888 1 1 0.12094 0.688 39 18.00894 3 0 -1 0.56706 40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618	32	15.824	1	1	0.23847	0.688
35 17.08176 3 0 -1 0.11824 36 17.2 1 1 0.17457 0.688 37 17.37457 3 0 -1 0.51343 38 17.888 1 1 0.12094 0.688 39 18.0894 3 0 -1 0.56706 40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618	33	16.06247	3	0	-1	0.44953
36 17.2 1 1 0.17457 0.688 37 17.37457 3 0 -1 0.51343 38 17.888 1 1 0.12094 0.688 39 18.00894 3 0 -1 0.56706 40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 50 22.704 1 1 1.08773	34	16.512	1	1	0.56976	0.688
37 17.37457 3 0 -1 0.51343 38 17.888 1 1 0.12094 0.688 39 18.00894 3 0 -1 0.56706 40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 <td>35</td> <td>17.08176</td> <td>3</td> <td>0</td> <td>-1</td> <td>0.11824</td>	35	17.08176	3	0	-1	0.11824
38 17.888 1 1 0.12094 0.688 39 18.00894 3 0 -1 0.56706 40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 <td>36</td> <td>17.2</td> <td>1</td> <td>1</td> <td>0.17457</td> <td>0.688</td>	36	17.2	1	1	0.17457	0.688
39 18.00894 3 0 -1 0.56706 40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 <td>37</td> <td>17.37457</td> <td>3</td> <td>0</td> <td>-1</td> <td>0.51343</td>	37	17.37457	3	0	-1	0.51343
40 18.576 1 1 0.27357 0.688 41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.39173 3 0 -1 0.28827 53 24.08 1 1 0.96024	38	17.888	1	1	0.12094	0.688
41 18.84957 3 0 -1 0.41443 42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 <td>39</td> <td>18.00894</td> <td>3</td> <td>0</td> <td>-1</td> <td>0.56706</td>	39	18.00894	3	0	-1	0.56706
42 19.264 1 1 0.60789 0.688 43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.4562 3 0 -1	40	18.576	1	1	0.27357	0.688
43 19.87189 3 0 -1 0.08011 44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002	41	18.84957	3	0	-1	0.41443
44 19.952 1 1 0.83317 0.688 45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1	42	19.264	1	1	0.60789	0.688
45 20.64 2 1 0.14517 0.688 46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1	43	19.87189	3	0	-1	0.08011
46 20.78517 3 0 -1 0.54283 47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1	44	19.952	1	1	0.83317	0.688
47 21.328 1 1 1.04618 0.688 48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912	45	20.64	2	1	0.14517	0.688
48 22.016 2 1 0.35818 0.688 49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112	46	20.78517	3	0	-1	0.54283
49 22.37418 3 0 -1 0.32982 50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312	47	21.328	1	1	1.04618	0.688
50 22.704 1 1 1.08773 0.688 51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512	48	22.016	2	1	0.35818	0.688
51 23.392 2 1 0.39973 0.688 52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1	49	22.37418	3	0	-1	0.32982
52 23.79173 3 0 -1 0.28827 53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	50	22.704	1	1	1.08773	0.688
53 24.08 1 1 0.96024 0.688 54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	51	23.392	2	1	0.39973	0.688
54 24.768 2 1 0.27224 0.688 55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	52	23.79173	3	0	-1	0.28827
55 25.04024 3 0 -1 0.41576 56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	53	24.08	1	1	0.96024	0.688
56 25.456 1 1 0.0002 0.688 57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	54	24.768	2	1	0.27224	0.688
57 25.4562 3 0 -1 0.6878 58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	55	25.04024	3	0	-1	0.41576
58 26.144 1 1 0.11102 0.688 59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	56	25.456	1	1	0.0002	0.688
59 26.25502 3 0 -1 0.57698 60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	57	25.4562	3	0	-1	0.6878
60 26.832 1 1 2.15912 0.688 61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	58	26.144	1	1	0.11102	0.688
61 27.52 2 1 1.47112 0.688 62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	59	26.25502	3	0	-1	0.57698
62 28.208 2 1 0.78312 0.688 63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	60	26.832	1	1	2.15912	0.688
63 28.896 2 1 0.09512 0.688 64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	61	27.52	2	1	1.47112	0.688
64 28.99112 3 0 -1 0.59288 65 29.584 1 1 1.67067 0.688	62	28.208	2	1	$0.7831\overline{2}$	0.688
65 29.584 1 1 1.67067 0.688	63	28.896	2	1	0.09512	0.688
	64	28.99112	3	0	-1	0.59288
66 30.272 2 1 0.98267 0.688	65	29.584	1	1	1.67067	0.688
	66	30.272	2	1	0.98267	0.688

1	$\mathrm{t_{coo}}(l)$	Type(l)	C(l)	$\mathrm{t_{oct}}(l)$	$\mathbf{t}_{\text{ож3}}(l)$
67	30.96	2	1	0.29467	0.688
68	31.25467	3	0	-1	0.39333
69	31.648	1	1	2.13042	0.688
70	32.336	2	1	1.44242	0.688
71	33.024	2	1	0.75442	0.688
72	33.712	2	1	0.06642	0.688
73	33.77842	3	0	-1	0.62158
74	34.4	1	1	0.69279	0.688
75	35.088	2	1	0.00479	0.688
76	35.09279	3	0	-1	0.68321
77	35.776	1	1	0.51202	0.688
78	36.28802	3	0	-1	0.17598
79	36.464	1	1	0.27249	0.688
80	36.73649	3	0	-1	0.41551
81	37.152	1	1	1.08446	0.688
82	37.84	2	1	0.39646	0.688
83	38.23646	3	0	-1	0.29154
84	38.528	1	1	0.29276	0.688
85	38.82076	3	0	-1	0.39524
86	39.216	1	1	0.39795	0.688
87	39.61395	3	0	-1	0.29005
88	39.904	1	1	1.83266	0.688
89	40.592	2	1	1.14466	0.688
90	41.28	2	1	0.45666	0.688
91	41.73666	3	0	-1	0.23134
92	41.968	1	1	0.28797	0.688
93	42.25597	3	0	-1	0.40003
94	42.656	1	1	0.18214	0.688
95	42.83814	3	0	-1	0.50586
96	43.344	1	1	0.1784	0.688
97	43.5224	3	0	-1	0.5096
98	44.032	1	1	0.16175	0.688
99	44.19375	3	0	-1	0.52625
100	44.72	1	1	2.72719	0.688

Таблица 2.

j	$\mathrm{t}_{\mathfrak{s}}(j)$	$\mathrm{t}_{\mathrm{o6c}\pi})(l)$	$\mathrm{t}_{\kappa o 6}(j)$
1	0.688	0.0966	0.7846
2	1.376	4.90287	6.27887
3	2.064	0	2.064
4	2.752	0	2.752
5	3.44	0	3.44
6	4.128	0	4.128
7	4.816	0	4.816
8	5.504	0	5.504
9	6.192	0	6.192
10	6.88	0.69244	7.57244
11	7.568	0	7.568
12	8.256	0.03276	8.28876
13	8.944	0.131	9.075
14	9.632	1.55019	11.18219
15	10.32	0	10.32
16	11.008	0	11.008
17	11.696	2.31279	14.00879
18	12.384	0	12.384
19	13.072	0	13.072
20	13.76	0	13.76
21	14.448	0.4699	14.9179
22	15.136	0.20321	15.33921
23	15.824	0.23847	16.06247
24	16.512	0.56976	17.08176
25	17.2	0.17457	17.37457
26	17.888	0.12094	18.00894
27	18.576	0.27357	18.84957
28	19.264	0.60789	19.87189
29	19.952	0.83317	20.78517

j	$\mathrm{t}_{\scriptscriptstyle 3}(j)$	${ m t}_{ m obc.\pi})(l)$	$\mathrm{t}_{\kappa o 6}(j)$
30	20.64	0	20.64
31	21.328	1.04618	22.37418
32	22.016	0	22.016
33	22.704	1.08773	23.79173
34	23.392	0	23.392
35	24.08	0.96024	25.04024
36	24.768	0	24.768
37	25.456	0.0002	25.4562
38	26.144	0.11102	26.25502
39	26.832	2.15912	28.99112
40	27.52	0	27.52
41	28.208	0	28.208
42	28.896	0	28.896
43	29.584	1.67067	31.25467
44	30.272	0	30.272
45	30.96	0	30.96
46	31.648	2.13042	33.77842
47	32.336	0	32.336
48	33.024	0	33.024
49	33.712	0	33.712
50	34.4	0.69279	35.09279
51	35.088	0	35.088
52	35.776	0.51202	36.28802
53	36.464	0.27249	36.73649
54	37.152	1.08446	38.23646
55	37.84	0	37.84
56	38.528	0.29276	38.82076
57	39.216	0.39795	39.61395
58	39.904	1.83266	41.73666
59	40.592	0	40.592
60	41.28	0	41.28
61	41.968	0.28797	42.25597
62	42.656	0.18214	42.83814
63	43.344	0.1784	43.5224
64	44.032	0.16175	44.19375
65	44.72	2.72719	47.44719

3.2 Задание 2.

Начальные данные:

$$\lambda = 1.451$$
 $T_{\text{ob}} = 0.703$

Таблица 1.

1	$\mathrm{t_{co6}}(l)$	Type(l)	C(l)	$\mathrm{t_{oct}}(l)$	$\mathrm{t}_{\scriptscriptstyle \mathrm{OK3}}(l)$
1	0.72857	1	1	0.703	1.25837
2	1.43157	3	0	-1	0.55537
3	1.98694	1	1	0.703	0.77466
4	2.68994	3	0	-1	0.07166
5	2.7616	1	1	0.703	0.30297
6	3.06457	2	1	0.40003	1.176
7	3.4646	3	0	-1	0.77597
8	4.24057	1	1	0.703	4.14699
9	4.94357	3	0	-1	3.44399
10	8.38756	1	1	0.703	0.30906
11	8.69662	2	1	0.39394	1.26971
12	9.09056	3	0	-1	0.87577
13	9.96633	1	1	0.703	0.77868
14	10.66933	3	0	-1	0.07568
15	10.74501	1	1	0.703	1.28207
16	11.44801	3	0	-1	0.57907
17	12.02708	1	1	0.703	1.49268
18	12.73008	3	0	-1	0.78968
19	13.51976	1	1	0.703	0.24491
20	13.76467	2	1	0.45809	0.45037
21	14.21504	2	1	0.00772	0.40394
22	14.22276	3	0	-1	0.39622
23	14.61898	1	1	0.703	0.41868
24	15.03766	2	1	0.28432	0.46095
25	15.32198	3	0	-1	0.17663
26	15.49861	1	1	0.703	0.06462
27	15.56323	2	1	0.63838	0.69326
28	16.20161	3	0	-1	0.05488
29	16.25649	1	1	0.703	1.08327

1	$\mathrm{t_{coo}}(l)$	Type(l)	C(l)	$\mathrm{t_{oct}}(l)$	$\mathrm{t}_{\mathrm{o} \mathrm{s} \mathrm{c} \mathrm{s}}(l)$
30	16.95949	3	0	-1	0.38027
31	17.33976	1	1	0.703	1.06603
32	18.04276	3	0	-1	0.36303
33	18.40579	1	1	0.703	0.7526
34	19.10879	3	0	-1	0.0496
35	19.15839	1	1	0.703	1.05874
36	19.86139	3	0	-1	0.35574
37	20.21713	1	1	0.703	0.22282
38	20.43995	2	1	0.48018	0.09745
39	20.5374	2	1	0.38273	0.3017
40	20.8391	2	1	0.08103	1.2103
41	20.92013	3	0	-1	1.12927
42	22.0494	1	1	0.703	0.3361
43	22.3855	2	1	0.3669	0.02693
44	22.41243	2	1	0.33997	0.08517
45	22.4976	2	1	0.2548	0.88014
46	22.7524	3	0	-1	0.62534
47	23.37774	1	1	0.703	1.49899
48	24.08074	3	0	-1	0.79599
49	24.87673	1	1	0.703	0.44802
50	25.32475	2	1	0.25498	0.00896
51	25.33371	2	1	0.24602	0.91697
52	25.57973	3	0	-1	0.67095
53	26.25068	1	1	0.703	0.80928
54	26.95368	3	0	-1	0.10628
55	27.05996	1	1	0.703	0.39914
56	27.4591	2	1	0.30386	1.37861
57	27.76296	3	0	-1	1.07475
58	28.83771	1	1	0.703	0.15187
59	28.98958	2	1	0.55113	0.91743
60	29.54071	3	0	-1	0.3663
61	29.90701	1	1	0.703	0.35981
62	30.26682	2	1	0.34319	0.60018
63	30.61001	3	0	-1	0.25699
64	30.867	1	1	0.703	1.4441
65	31.57	3	0	-1	0.7411

1	$\mathrm{t_{coo}}(l)$	Type(l)	C(l)	$\mathrm{t_{oct}}(l)$	$\mathbf{t}_{\text{ож3}}(l)$
66	32.3111	1	1	0.703	1.29457
67	33.0141	3	0	-1	0.59157
68	33.60567	1	1	0.703	0.6956
69	34.30127	2	1	0.0074	0.63383
70	34.30867	3	0	-1	0.62643
71	34.9351	1	1	0.703	1.79562
72	35.6381	3	0	-1	1.09262
73	36.73072	1	1	0.703	0.31699
74	37.04771	2	1	0.38601	1.6915
75	37.43372	3	0	-1	1.30549
76	38.73921	1	1	0.703	0.00266
77	38.74187	2	1	0.70034	0.64606
78	39.38793	2	1	0.05428	0.24947
79	39.44221	3	0	-1	0.19519
80	39.6374	1	1	0.703	0.50111
81	40.13851	2	1	0.20189	1.5449
82	40.3404	3	0	-1	1.34301
83	41.68341	1	1	0.703	0.03285
84	41.71626	2	1	0.67015	1.19214
85	42.38641	3	0	-1	0.52199
86	42.9084	1	1	0.703	0.0681
87	42.9765	2	1	0.6349	0.38664
88	43.36314	2	1	0.24826	0.90146
89	43.6114	3	0	-1	0.6532
90	44.2646	1	1	0.703	0.07681
91	44.34141	2	1	0.62619	0.93858
92	44.9676	3	0	-1	0.31239
93	45.27999	1	1	0.703	0.54825
94	45.82824	2	1	0.15475	0.14686
95	45.9751	2	1	0.00789	0.01837
96	45.98299	3	0	-1	0.01048
97	45.99347	1	1	0.703	0.089
98	46.08247	2	1	0.614	1.06432
99	46.69647	3	0	-1	0.45032
100	47.14679	1	1	0.703	0.52613

Таблица 2.

j	$\mathrm{t}_{\scriptscriptstyle 3}(j)$	$\mathrm{t}_{\mathrm{обсл}})(l)$	$\mathrm{t}_{\mathrm{ko6}}(j)$
1	0.72857	0.703	1.43157
2	1.98694	0.703	2.68994
3	2.7616	0.703	3.4646
4	3.06457	0	3.06457
5	4.24057	0.703	4.94357
6	8.38756	0.703	9.09056
7	8.69662	0	8.69662
8	9.96633	0.703	10.66933
9	10.74501	0.703	11.44801
10	12.02708	0.703	12.73008
11	13.51976	0.703	14.22276
12	13.76467	0	13.76467
13	14.21504	0	14.21504
14	14.61898	0.703	15.32198
15	15.03766	0	15.03766
16	15.49861	0.703	16.20161
17	15.56323	0	15.56323
18	16.25649	0.703	16.95949
19	17.33976	0.703	18.04276
20	18.40579	0.703	19.10879
21	19.15839	0.703	19.86139
22	20.21713	0.703	20.92013
23	20.43995	0	20.43995
24	20.5374	0	20.5374
25	20.8391	0	20.8391
26	22.0494	0.703	22.7524
27	22.3855	0	22.3855
28	22.41243	0	22.41243
29	22.4976	0	22.4976

j	$\mathrm{t}_{\scriptscriptstyle 3}(j)$	$\mathrm{t}_{\mathrm{oбc}\pi})(l)$	$\mathrm{t}_{\mathrm{ko6}}(j)$
30	23.37774	0.703	24.08074
31	24.87673	0.703	25.57973
32	25.32475	0	25.32475
33	25.33371	0	25.33371
34	26.25068	0.703	26.95368
35	27.05996	0.703	27.76296
36	27.4591	0	27.4591
37	28.83771	0.703	29.54071
38	28.98958	0	28.98958
39	29.90701	0.703	30.61001
40	30.26682	0	30.26682
41	30.867	0.703	31.57
42	32.3111	0.703	33.0141
43	33.60567	0.703	34.30867
44	34.30127	0	34.30127
45	34.9351	0.703	35.6381
46	36.73072	0.703	37.43372
47	37.04771	0	37.04771
48	38.73921	0.703	39.44221
49	38.74187	0	38.74187
50	39.38793	0	39.38793
51	39.6374	0.703	40.3404
52	40.13851	0	40.13851
53	41.68341	0.703	42.38641
54	41.71626	0	41.71626
55	42.9084	0.703	43.6114
56	42.9765	0	42.9765
57	43.36314	0	43.36314
58	44.2646	0.703	44.9676
59	44.34141	0	44.34141
60	45.27999	0.703	45.98299
61	45.82824	0	45.82824
62	45.9751	0	45.9751
63	45.99347	0.703	46.69647
64	46.08247	0	46.08247
65	47.14679	0.703	47.84979

3.3 Задание 3.

Начальные данные:

$$\lambda = 1.451 \qquad \mu = 1.403$$

Таблица 1.

1	$\mathrm{t_{coo}}(l)$	Type(l)	C(l)	$\mathrm{t_{oct}}(l)$	$\mathbf{t}_{\text{ож3}}(l)$
1	0.28501	1	1	0.79306	3.71808
2	1.07807	3	0	-1	2.92502
3	4.00309	1	1	0.02228	2.29029
4	4.02537	3	0	-1	2.26801
5	6.29338	1	1	0.27089	1.30639
6	6.56427	3	0	-1	1.0355
7	7.59977	1	1	0.90609	0.53155
8	8.13132	2	1	0.37454	0.05104
9	8.18236	2	1	0.3235	0.01962
10	8.20198	2	1	0.30388	1.75574
11	8.50586	3	0	-1	1.45186
12	9.95772	1	1	0.77105	0.41143
13	10.36915	2	1	0.35962	0.21877
14	10.58792	2	1	0.14085	1.01499
15	10.72877	3	0	-1	0.87414
16	11.60291	1	1	0.51795	0.77366
17	12.12086	3	0	-1	0.25571
18	12.37657	1	1	1.97923	0.10341
19	12.47998	2	1	1.87582	1.25457
20	13.73455	2	1	0.62125	0.24581
21	13.98036	2	1	0.37544	0.92224
22	14.3558	3	0	-1	0.5468
23	14.9026	1	1	2.56233	1.01332
24	15.91592	2	1	1.54901	0.6011
25	16.51702	2	1	0.94791	0.28221
26	16.79923	2	1	0.6657	2.09208
27	17.46493	3	0	-1	1.42638
28	18.89131	1	1	0.70872	0.21207
29	19.10338	2	1	0.49665	0.21383

l	$\mathrm{t_{co6}}(l)$	Type(l)	C(l)	$\mathrm{t_{oct}}(l)$	$\mathrm{t}_{\mathrm{ox}_3}(l)$
30	19.31721	2	1	0.28282	0.36131
31	19.60003	3	0	-1	0.07849
32	19.67852	1	1	0.25018	0.49068
33	19.9287	3	0	-1	0.2405
34	20.1692	1	1	1.31107	6.53485
35	21.48027	3	0	-1	5.22378
36	26.70405	1	1	0.07624	0.13045
37	26.78029	3	0	-1	0.05421
38	26.8345	1	1	0.12214	2.40383
39	26.95664	3	0	-1	2.28169
40	29.23833	1	1	0.23312	0.43311
41	29.47145	3	0	-1	0.19999
42	29.67144	1	1	0.59806	0.1619
43	29.83334	2	1	0.43616	0.12129
44	29.95463	2	1	0.31487	0.9066
45	30.2695	3	0	-1	0.59173
46	30.86123	1	1	2.65045	0.82928
47	31.69051	2	1	1.82117	0.83938
48	32.52989	2	1	0.98179	0.45624
49	32.98613	2	1	0.52555	0.03473
50	33.02086	2	1	0.49082	0.36707
51	33.38793	2	1	0.12375	0.2838
52	33.51168	3	0	-1	0.16005
53	33.67173	1	1	0.69925	1.23447
54	34.37098	3	0	-1	0.53522
55	34.9062	1	1	0.18535	0.34858
56	35.09155	3	0	-1	0.16323
57	35.25478	1	1	0.52156	1.26787
58	35.77634	3	0	-1	0.74631
59	36.52265	1	1	0.89187	0.66638
60	37.18903	2	1	0.22549	0.13724
61	37.32627	2	1	0.08825	1.74833
62	37.41452	3	0	-1	1.66008
63	39.0746	1	1	0.45633	0.02094
64	39.09554	2	1	0.43539	0.13873
65	39.23427	2	1	0.29666	0.89485

1	$\mathrm{t_{coo}}(l)$	Type(l)	C(l)	$\mathrm{t_{oct}}(l)$	$\mathbf{t}_{\text{ож}_3}(l)$
66	39.53093	3	0	-1	0.59819
67	40.12912	1	1	0.09378	0.02452
68	40.15364	2	1	0.06926	0.87323
69	40.2229	3	0	-1	0.80397
70	41.02687	1	1	0.21475	2.07735
71	41.24162	3	0	-1	1.8626
72	43.10422	1	1	2.02802	0.27604
73	43.38026	2	1	1.75198	0.82698
74	44.20724	2	1	0.925	1.69044
75	45.13224	3	0	-1	0.76544
76	45.89768	1	1	0.1155	0.19645
77	46.01318	3	0	-1	0.08095
78	46.09413	1	1	0.7717	0.66562
79	46.75975	2	1	0.10608	1.10826
80	46.86583	3	0	-1	1.00218
81	47.86801	1	1	0.09271	2.05646
82	47.96072	3	0	-1	1.96375
83	49.92447	1	1	0.14862	2.38933
84	50.07309	3	0	-1	2.24071
85	52.3138	1	1	0.67076	1.15314
86	52.98456	3	0	-1	0.48238
87	53.46694	1	1	0.72218	0.37218
88	53.83912	2	1	0.35	1.32876
89	54.18912	3	0	-1	0.97876
90	55.16788	1	1	0.06372	0.02344
91	55.19132	2	1	0.04028	0.12291
92	55.2316	3	0	-1	0.08263
93	55.31423	1	1	0.01917	1.00517
94	55.3334	3	0	-1	0.986
95	56.3194	1	1	0.47352	0.47495
96	56.79292	3	0	-1	0.00143
97	56.79435	1	1	0.22037	1.34323
98	57.01472	3	0	-1	1.12286
99	58.13758	1	1	1.39934	0.5608
100	58.69838	2	1	0.83854	0.1354

Таблица 2.

j	$\mathrm{t_3}(j)$	$\mathrm{t}_{\mathrm{o}6\mathrm{c}\pi})(l)$	$\mathrm{t}_{KOG}(j)$
1	0.28501	0.79306	1.07807
2	4.00309	0.02228	4.02537
3	6.29338	0.27089	6.56427
4	7.59977	0.90609	8.50586
5	8.13132	0	8.13132
6	8.18236	0	8.18236
7	8.20198	0	8.20198
8	9.95772	0.77105	10.72877
9	10.36915	0	10.36915
10	10.58792	0	10.58792
11	11.60291	0.51795	12.12086
12	12.37657	1.97923	14.3558
13	12.47998	0	12.47998
14	13.73455	0	13.73455
15	13.98036	0	13.98036
16	14.9026	2.56233	17.46493
17	15.91592	0	15.91592
18	16.51702	0	16.51702
19	16.79923	0	16.79923
20	18.89131	0.70872	19.60003
21	19.10338	0	19.10338
22	19.31721	0	19.31721
23	19.67852	0.25018	19.9287
24	20.1692	1.31107	21.48027
25	26.70405	0.07624	26.78029
26	26.8345	0.12214	26.95664
27	29.23833	0.23312	29.47145
28	29.67144	0.59806	30.2695
29	29.83334	0	29.83334

j	$\mathrm{t}_{\scriptscriptstyle 3}(j)$	${ m t}_{ m obc.\pi})(l)$	$t_{\kappao6}(j)$
30	29.95463	0	29.95463
31	30.86123	2.65045	33.51168
32	31.69051	0	31.69051
33	32.52989	0	32.52989
34	32.98613	0	32.98613
35	33.02086	0	33.02086
36	33.38793	0	33.38793
37	33.67173	0.69925	34.37098
38	34.9062	0.18535	35.09155
39	35.25478	0.52156	35.77634
40	36.52265	0.89187	37.41452
41	37.18903	0	37.18903
42	37.32627	0	37.32627
43	39.0746	0.45633	39.53093
44	39.09554	0	39.09554
45	39.23427	0	39.23427
46	40.12912	0.09378	40.2229
47	40.15364	0	40.15364
48	41.02687	0.21475	41.24162
49	43.10422	2.02802	45.13224
50	43.38026	0	43.38026
51	44.20724	0	44.20724
52	45.89768	0.1155	46.01318
53	46.09413	0.7717	46.86583
54	46.75975	0	46.75975
55	47.86801	0.09271	47.96072
56	49.92447	0.14862	50.07309
57	52.3138	0.67076	52.98456
58	53.46694	0.72218	54.18912
59	53.83912	0	53.83912
60	55.16788	0.06372	55.2316
61	55.19132	0	55.19132
62	55.31423	0.01917	55.3334
63	56.3194	0.47352	56.79292
64	56.79435	0.22037	57.01472
65	58.13758	1.39934	59.53692
66	58.69838	0	58.69838

4 Анализ результатов и выводы

4.1 Задание 1

- 1. число заявок, поступивших в СМО на интервале $[0, t_{coo}(100)]$ равно 65;
- 2. число полностью обслуженных заявок на интервале $[0, t_{coo}(100)]$ равно 35;
- 3. число отклонённых заявок на интервале $[0, t_{coo}(100)]$ равно 29;
- 4. доля отклонённых заявок в общем числе поступивших в СМО заявок на интервале $[0, t_{\cos}(100)]$ равна 0.44615;
- 5. коэффициент простоя прибора на интервале $[0, t_{cof}(100)]$ равен 0.35244;
- 6. среднее время обслуживания заявки равно 0.80775;
- 7. экспериментальное среднее число заявок $\lambda_{\text{эксп}}$, поступавших в систему за единицу времени равно 1.45349;
- 8. относительные частота пребывания СМО в нерабочем состоянии равна 0.35. В рабочем состоянии 0.65.

4.2 Задание 2

- 1. число заявок, поступивших в СМО на интервале $[0, t_{coo}(100)]$ равно 65;
- 2. число полностью обслуженных заявок на интервале $[0, t_{coo}(100)]$ равно 35;
- 3. число отклонённых заявок на интервале $[0, t_{coo}(100)]$ равно 29;
- 4. доля отклонённых заявок в общем числе поступивших в СМО заявок на интервале $[0, t_{\rm cof}(100)]$ равна 0.44615;
- 5. коэффициент простоя прибора на интервале $[0, t_{cof}(100)]$ равен 0.46267;
- 6. среднее время обслуживания заявки равно 0.703;
- 7. экспериментальное среднее число заявок $\lambda_{\text{эксп}}$, поступавших в систему за единицу времени равно 1.37867;
- 8. относительные частота пребывания СМО в нерабочем состоянии равна 0.35. В рабочем состоянии 0.65.

4.3 Задание 3

- 1. число заявок, поступивших в СМО на интервале $[0, t_{coo}(100)]$ равно 66;
- 2. число полностью обслуженных заявок на интервале $[0, t_{cof}(100)]$ равно 34;
- 3. число отклонённых заявок на интервале $[0, t_{coo}(100)]$ равно 31;
- 4. доля отклонённых заявок в общем числе поступивших в СМО заявок на интервале $[0,t_{\rm co6}(100)]$ равна 0.4697 ;
- 5. коэффициент простоя прибора на интервале $[0, t_{cof}(100)]$ равен 0.59121;
- 6. среднее время обслуживания заявки равно 0.6332;
- 7. экспериментальное среднее число заявок $\lambda_{\text{эксп}}$, поступавших в систему за единицу времени равно 1.12439;
- 8. относительные частота пребывания СМО в нерабочем состоянии равна 0.34. В рабочем состоянии 0.66.

Список литературы

- [1] Математическая статистика [Электронный ресурс]: метод. указания по выполнению лаб. работ / А.А. Лобузов М.: МИРЭА, 2017.
- [2] Боровков А. А. Математическая статистика. СПб.: Лань, 2010.- 704 с.
- [3] Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Юрайт, 2013. 479 с
- [4] Письменный Д.Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам: учеб. пособие для вузов. М.: Айрис-пресс, 2013.-288 с

Листинг 1: main.py

```
import matplotlib.pyplot as plt
 import numpy as np
3 import math
 import plotly graph objects as go
 import copy
 import xlsxwriter
 import pandas as pd
  from texttable import Texttable
  from tabulate import tabulate
  import latextable
11
  def gen wait time(lambda m):
      return round (np.random.exponential (1/lambda m),5)
13
14
  def gen serv time(myu):
15
      return round (np.random.exponential (1/myu),5)
16
17
  def savetable(array, numberOfTable):
      table = Texttable()
19
20
      table.set_cols_align(["c"] * len(array[0]))
21
      table.set_cols_dtype(['t'] * len(array[0]))
22
      table.set deco (Texttable.HEADER | Texttable.VLINES | Texttable.HLINES)
23
      table.add rows(array)
24
25
      path = "C:/Users/Danila/Documents/Study/7 semestor/Queuing systems/1-
26
         st laba/Report/table " + str(numberOfTable) + ".tex"
      my file = open(path, 'w+')
27
      my file.write(latextable.draw latex(table))
28
      my file.close()
29
30
31
  def queuing_system(flag, delt_T=0, delt_proc=0, lambda_m=0, myu=0):
32
      if flag == 1:
33
           if delt_T==0 or myu==0:
34
               return 0
35
          event counter=1
36
          time_serv=gen_serv_time(myu)
37
          counter_app=1
38
```

```
time_event=delt_T
39
           time app now=delt T
40
           QS condition after=1
41
           type event=1
42
           remaining_time=time_serv
43
           time end serv=time app now+time serv
44
           expectation_time_app=delt_T
45
           Table_1 = [[event_counter, round(time_event, 5), type_event,
46
              QS condition after, round (remaining time, 5), round (
              expectation_time_app,5)]]
           Table 2 = [[round(counter app, 5), round(time app now, 5), round(
47
              time serv,5), round(time end serv,5)]]
48
           if remaining time<delt T:</pre>
49
               type_event=3
50
               QS condition after=0
51
               expectation_time_app=delt_T-remaining_time
52
               remaining_time=-1
53
               time event+=time serv
54
           else:
55
               type event=2
56
               remaining time-=delt T
57
               expectation_time_app=delt_T
58
               counter app+=1
59
               time_app_now+=delt_T
60
               time event+=delt T
61
62
           while event counter < 100:
63
               if type_event==1:
64
                    event counter+=1
65
                    Table_1.append([event_counter,round(time_event,5),
66
                       type_event, QS_condition_after, round(remaining_time, 5),
                       round(expectation_time_app,5)])
                    Table 2.append([round(counter_app,5),round(time_app_now,5)]
67
                        , round (time serv, 5), round (time end serv, 5)])
                    if remaining_time<delt_T:</pre>
68
                        type_event=3
69
                        QS condition after=0
70
                        expectation time app=delt T-remaining time
71
                        time event+=remaining time
72
                        remaining time=-1
73
                    else:
74
                        type_event=2
75
```

```
remaining_time—=delt_T
76
                         expectation time app=delt T
77
                         counter_app+=1
78
                         time app now+=delt T
79
                         time event+=delt T
80
                elif type event==2:
81
                    event counter+=1
82
                    Table_1.append([event_counter,round(time_event,5),
83
                        type event, QS condition after, round (remaining time, 5),
                        round(expectation_time_app,5)])
                    Table 2.append([round(counter app,5),round(time app now,5)
84
                        ,0, round(time app now,5)])
                    if remaining_time<delt_T:</pre>
85
                         type event=3
86
                         QS condition after=0
87
                         expectation_time_app=delt_T-remaining_time
88
                         time event+=remaining time
89
                         remaining_time=-1
90
                    else:
91
                         type_event=2
92
                         remaining time—=delt T
93
                         expectation_time_app=delt T
94
                         counter app+=1
95
                         time app now+=delt T
96
                         time event+=delt T
97
                else:
98
                    event_counter+=1
99
                    Table 1.append([event counter, round(time event, 5),
100
                        type_event, QS_condition_after, round(remaining_time, 5),
                        round(expectation time app,5)])
                    time_serv=gen_serv_time(myu)
101
                    time event+=expectation time app
102
                    type event=1
103
                    QS condition after=1
104
                    remaining time=time serv
105
                    expectation_time_app=delt_T
106
                    time app now+=delt T
107
                    time_end_serv=time_app_now+time_serv
108
                    counter app+=1
109
           savetable (Table 1,1 1)
110
           savetable (Table 2,1 2)
111
112
       elif flag == 2:
113
```

```
114
                              if delt proc==0 or lambda m==0:
115
                                         return 0
116
                              event_counter=1
117
                              time serv=delt proc
118
                              counter_app=1
119
                              time_event=gen_wait_time(lambda_m)
120
                              time app now=time event
121
                              QS condition after=1
122
                              type_event=1
123
                              remaining_time=time_serv
124
                              time end serv=time app now+time serv
125
                              expectation_time_app=gen_wait_time(lambda_m)
126
                              Table 1 = [[event counter, round(time event, 5), type event,
127
                                       QS_condition_after, round(remaining_time,5), round(
                                       expectation time app,5)]]
                              Table 2 = [[round(counter\_app, 5), round(time\_app\_now, 5), round(time\_app\_no
128
                                       time_serv,5),round(time_end_serv,5)]]
129
                              if remaining_time<expectation_time_app:</pre>
130
                                         type event=3
131
                                         QS condition after=0
132
                                         expectation time app-=remaining time
133
                                         remaining time=-1
134
                                         time event+=time serv
135
                              else:
136
                                         type_event=2
137
                                         remaining time-expectation time app
138
                                         time_event+=expectation_time_app
139
                                         time app now+=expectation time app
140
                                         expectation_time_app=gen_wait_time(lambda_m)
141
                                         counter_app+=1
142
143
                              while event_counter < 100:
144
                                         if type event==1:
145
                                                     event counter+=1
146
                                                     Table 1.append([event counter, round(time event, 5),
147
                                                             type_event, QS_condition_after, round(remaining_time, 5),
                                                             round(expectation time app,5)])
                                                     Table 2.append([round(counter app,5),round(time app now,5)
148
                                                              , round(time serv, 5), round(time end serv, 5)])
                                                     if remaining time<expectation time app:</pre>
149
                                                                type_event=3
150
```

```
QS condition after=0
151
                         expectation time app-=remaining time
152
                         time_event+=remaining_time
153
                         remaining_time=-1
154
                    else:
155
                         type event=2
156
                         remaining_time-=expectation_time_app
157
                         time_event+=expectation_time_app
158
                         time app now+=expectation time app
159
                         expectation_time_app=gen_wait_time(lambda_m)
160
                         counter app+=1
161
162
                elif type_event==2:
163
                    event counter+=1
164
                    Table_1.append([event_counter,round(time_event,5),
165
                        type event, QS condition after, round (remaining time, 5),
                        round(expectation_time_app,5)])
                    Table 2. append ([round (counter_app, 5), round (time_app_now, 5)
166
                        ,0, round (time app now,5)])
                     if remaining_time<expectation_time_app:</pre>
167
                         type event=3
168
                         QS condition after=0
169
                         expectation time app-=remaining time
170
                         time event+=remaining time
171
172
                         remaining\_time=-1
173
                    else:
174
                         type event=2
175
                         remaining_time—expectation_time_app
176
                         time event+=expectation time app
177
                         time_app_now+=expectation_time_app
178
                         expectation time app=gen wait time(lambda m)
179
                         counter app+=1
180
181
                else:
182
                    event_counter+=1
183
                    Table 1.append([event counter, round(time event, 5),
184
                        type_event, QS_condition_after, round(remaining time, 5),
                        round(expectation time app,5)])
                    time serv=delt proc
185
                    time event+=expectation time app
186
                    type event=1
187
                    QS condition after=1
188
```

```
remaining_time=time_serv
189
                                                     time app now=time event
190
                                                     time_end_serv=time_app_now+time_serv
191
                                                     expectation_time_app=gen_wait_time(lambda_m)
192
                                                     counter app+=1
193
                              savetable (Table_1,2_1)
194
                              savetable (Table 2, 2, 2)
195
196
197
                   elif flag == 3:
198
                               if myu==0 or lambda m==0:
199
                                          return 0
200
                              event counter=1
201
                              time_serv=gen_serv_time(myu)
202
                              counter app=1
203
                              time_event=gen_wait_time(lambda_m)
204
                              time app now=time event
205
                              QS_condition_after=1
206
                              type event=1
207
                              remaining_time=time_serv
208
                              time end serv=time app now+time serv
209
                              expectation_time_app=gen_wait_time(lambda_m)
210
                              Table 1 = [[event counter, round(time event, 5), type event,
211
                                       QS_condition_after, round(remaining_time,5), round(
                                       expectation_time_app,5)]]
                              Table 2 = [[round(counter app, 5), round(time app now, 5), round(time app no
212
                                       time_serv,5),round(time_end_serv,5)]]
213
                               if remaining_time<expectation_time_app:</pre>
214
                                          type event=3
215
                                          QS_condition_after=0
216
                                          expectation_time_app—=remaining_time
217
                                          remaining time=-1
218
                                          time event+=time serv
219
                              else:
220
                                          type event=2
221
                                          remaining time-expectation time app
222
                                          time_event+=expectation_time_app
223
                                          time app now+=expectation time app
224
                                          expectation time app=gen wait time(lambda m)
225
                                          counter app+=1
226
227
                              while event counter < 100:
228
```

```
if type_event==1:
229
                    event counter+=1
230
                    Table _ 1 . append ([event _counter , round (time _event , 5) ,
231
                        type_event, QS_condition_after, round(remaining_time,5),
                        round(expectation time app,5)])
                    Table 2.append([round(counter app,5),round(time app now,5)
232
                        , round (time_serv,5), round (time_end_serv,5)])
                     if remaining time < expectation time app:
233
                         type event=3
234
                         QS condition after=0
235
                         expectation_time_app—=remaining_time
236
                         time event+=remaining time
237
                         remaining_time=-1
238
                    else:
239
                         type event=2
240
                         remaining time—expectation time app
241
                         time event+=expectation time app
242
                         time_app_now+=expectation_time_app
243
                         expectation time app=gen wait time(lambda m)
244
                         counter_app+=1
245
246
                elif type event==2:
247
                    event counter+=1
248
                    Table 1.append([event counter, round(time event, 5),
249
                        type_event, QS_condition_after, round(remaining_time, 5),
                        round(expectation time app,5)])
                    Table 2.append([round(counter_app,5),round(time_app_now,5)
250
                        ,0,round(time app now,5)])
                     if remaining_time<expectation_time_app:</pre>
251
                         type event=3
252
                         QS_condition_after=0
253
                         expectation time app-=remaining time
254
                         time event+=remaining time
255
256
                         remaining time=-1
257
                    else:
258
                         type event=2
259
                         remaining_time—expectation_time_app
260
                         time event+=expectation time app
261
                         time app now+=expectation time app
262
                         expectation time app=gen wait time(lambda m)
263
                         counter app+=1
264
265
```

```
else:
266
                     event counter+=1
267
                     Table_1.append([event_counter,round(time_event,5),
268
                        type_event, QS_condition_after, round(remaining_time,5),
                        round(expectation_time_app,5)])
                     time_serv=gen_serv_time(myu)
269
                     time_event+=expectation_time_app
270
                     type_event=1
271
                     QS condition after=1
272
                     remaining_time=time_serv
273
                     time_app_now=time_event
274
                     time_end_serv=time_app_now+time_serv
275
                     expectation_time_app=gen_wait_time(lambda_m)
276
                     counter app+=1
277
            savetable (Table_1,3_1)
278
            savetable (Table 2, 32)
279
280
281
282
283
       else:
284
            print("Your input flag don't exist")
285
286
287
       return 1
288
289
   delt_process = 0.703
290
  delt T=0.688
291
  lambda_m=1.451
292
  myu = 1.403
293
294
  queuing _system(1, delt_T, delt_process, lambda_m, myu)
  queuing_system(2,delt_T,delt_process,lambda_m,myu)
296
  queuing _system(3,delt_T,delt_process,lambda_m,myu)
```