A combinatorial algorithm to compute presentations of mapping-class groups of orientable surfaces with one boundary component

Lluís Bacardit*

Abstract

We give an algorithm which computes a presentation for a subgroup, denoted $\mathcal{AM}_{g,1,p}$, of the automorphism group of a free group. It is known that $\mathcal{AM}_{g,1,p}$ is isomorphic to the mapping-class group of an orientable genus-g surface with one boundary component and p punctures. We define a variation of Auter space.

 $2010\,Mathematics\,\,Subject\,\,Classification.$ Primary: 57N05, 20F05; Secondary: 20F28, 20F34.

Key words. Mapping-class groups, presentations, automorphism groups, Auter space.

1 Introduction

Let S be an orientable genus-g surface with b boundary components and p punctures. We denote by $\mathcal{M}(S)$ the group of isotopy classes of orientation-preserving homeomorphisms of S which permute the set of punctures and pointwise fix the boundary components. Since the group $\mathcal{M}(S)$ only depends, up to isomorphism, on the genus g of S, the number b of boundary components of S and the number p of punctures of S, we denote $\mathcal{M}(S)$ by $\mathcal{M}_{g,b,p}$. We call $\mathcal{M}_{g,b,p}$ the mapping-class group of S.

Presentations for $\mathcal{M}_{g,b,p}$ were obtained after a sequence of papers started by Hatcher and Thurston [11], and followed by Harer [10], Wajnryb [17],[18]; Matsumoto [14] and, Labruère and Paris [13]. For p = 0, Gervais [9] used [17] to deduce another presentations for $\mathcal{M}_{g,b,0}$. Before [11] very little was known about

^{*}The research was funded by MIC (Spain) through Project MTM2008-01550.

the presentation of $\mathcal{M}_{g,b,p}$. Birman and Hilden [4] gave a presentation for $\mathcal{M}_{2,0,0}$, and McCool [15] proved that $\mathcal{M}_{g,b,p}$ is finitely presented.

Benvenuti [3] uses a variation of the curve complex, called ordered curve complex, to obtain presentations for $\mathcal{M}_{g,b,p}$ from an inductive process. This inductive process starts from presentation for the sphere and the torus with "few" boundary components and/or punctures. Hirose [12] uses the curve complex and induction on g and b to deduce Gervais presentation. Both of these papers are independent of [11].

Our algorithm is independent of [11]. We feel that our point of view goes back to McCool [15]. Section 7 contains the presentation given by our algorithm. This presentation has generators ze_i , ze_ie_j where z ranges over a finite set \mathcal{L} and e_i , e_j range over z. There are three type of relations:

- (a). $ze_i = 1$, $ze_{i'}e_{j'} = 1$, for some generators ze_i , $ze_{i'}e_{j'}$.
- (b). $z_1e_ie_j=z_2e_{i'}e_{j'}$, for some generators $z_1e_ie_j$, $z_2e_{i'}e_{j'}$.
- (c). $ze_i \cdot ze_i e_j = ze_j \cdot ze_j e_i$, for every generator $ze_i e_j$.

Armstrong, Forrest and Vogtmann [1] give a new presentation for $\operatorname{Aut}(F_n)$, the automorphism group of the free group of rank n. This presentation for $\operatorname{Aut}(F_n)$ is obtained by studying the action of $\operatorname{Aut}(F_n)$ on a subcomplex of the spine of Auter space. Following Armstrong, Forrest and Vogtmann [1], we obtain our algorithm by studying the action of an algebraic analogous of $\mathcal{M}_{g,1,p}$ on a subcomplex of the spine of a variation of Auter space.

2 Preliminaries

Throughout the paper n will be a non-negative integer, F_n will be a free group of rank n, $\operatorname{Aut}(F_n)$ will be the automorphism group of F_n and $\operatorname{Out}(F_n)$ will be the automorphism group of F_n modulo inner automorphisms. Given $v, w \in F_n$, we denote by [v, w] the element $v^{-1}w^{-1}vw$ of F_n . We denote by [w] the conjugacy class of w.

Let S be an orientable genus-g surface with b boundary components and p punctures. A homeomorphism f of S which fixes the basepoint of $\pi_1(S)$ and permutes the set of punctures of S induces an automorphism $f_* \in \operatorname{Aut}(\pi_1(S))$. The isotopy class of f defines an automorphism of $\pi_1(S)$ up to inner automorphisms, that is, an element of $\operatorname{Out}(\pi_1(S))$. For (b,p)=(0,0), by Dehn-Nielsen-Baer Theorem, $\mathcal{M}_{g,0,0}$ is isomorphic to a index 2 subgroup of $\operatorname{Out}(\pi_1(S))$. For $(g,p) \neq (0,0)$ by a modification of Dehn-Nielsen-Baer Theorem, $\mathcal{M}_{g,b,p}$ is isomorphic to an infinite index subgroup of $\operatorname{Out}(\pi_1(S))$.

Suppose now b = 1, that is, S has exactly one boundary component. If we choose the basepoint of $\pi_1(S)$ to be a boundary point of S and we restrict

ourselves to homeomorphisms of S which pointwise fix the boundary, then the isotopy class of a homeomorphism of S defines an element of $\operatorname{Aut}(\pi_1(S))$. Since S has one boundary component, the fundamental group of S is a free group. We denote by

$$\Sigma_{g,1,p} = \langle x_1, y_1, x_2, y_2, \dots, x_g, y_g, t_1, t_2, \dots, t_p \mid \rangle$$

a presentation of $\pi_1(S,*)$ where * is a boundary point of S, for every $1 \leq k \leq p$ the generator t_k represents a loop around the k-th puncture of S and the word $[x_1, y_1][x_2, y_2] \cdots [x_g, y_g]t_1t_2 \cdots t_p$ represents a loop around the boundary component of S.

2.1 Definition. We denote by $\mathcal{AM}_{g,1,p}$ the subgroup of $\operatorname{Aut}(\Sigma_{g,1,p})$ consisting of automorphisms of $\Sigma_{g,1,p}$ which fix the word $[x_1,y_1][x_2,y_2]\cdots[x_g,y_g]t_1t_2\cdots t_p$ of $\Sigma_{g,1,p}$ and fix the set of conjugacy classes $[t_1^{-1}],[t_2^{-1}],\ldots,[t_p^{-1}]$ of $\Sigma_{g,1,p}$.

Using a modification of Dehn-Nielsen-Baer Theorem, it can be proved that $\mathcal{M}_{g,1,p}$ is isomorphic to $\mathcal{AM}_{g,1,p}$, see [8] with some changes of notation and some different conventions. We call $\mathcal{AM}_{g,1,p}$ the algebraic mapping-class group of an orientable genus-g surface with one boundary component and p punctures.

3 Auter space \mathbb{A}_n

- **3.1 Definition.** Let (Γ, v_0, ϕ) be a 3-tuple such that
 - 1. Γ is a finite connected graph with no separating edges.
 - 2. Γ is a metric graph with total volume 1.
 - 3. v_0 is a distinguished vertex of Γ .
 - 4. Every vertex of Γ but v_0 has valence at least 3; v_0 has valence at least 2.
 - 5. $\phi: \pi_1(\Gamma, v_0) \to F_n$ is an isomorphism called "marking".

A point in \mathbb{A}_n is an equivalence class of 3-tuples (Γ, v_0, ϕ) , where (Γ, v_0, ϕ) is equivalent to (Γ', v'_0, ϕ') if there exists an isometry $h : \Gamma \to \Gamma$ such that $h(v_0) = v'_0$ and the isomorphism $h_* : \pi_1(\Gamma, v_0) \to \pi_1(\Gamma', v'_0)$ satisfies $\phi = \phi' \circ h_*$.

We call
$$\mathbb{A}_n$$
 Auter space.

Auter space \mathbb{A}_n was introduced by Hatcher and Vogtmann [2] as an analogous for $\operatorname{Aut}(F_n)$ of Outer space. Often in the literature the marking is defined as $\phi^{-1}: F_n \to \pi_1(\Gamma, v_0)$.

If Γ has k+1 edges, then (Γ, v_0, ϕ) defines an open k-simplex of \mathbb{A}_n denoted $\sigma(\Gamma, v_0, \phi)$. We can obtain $\sigma(\Gamma, v_0, \phi)$ by varying the length of the edges of Γ . The k-simplex $\sigma(\Gamma, v_0, \phi)$ can be parametrized by Δ^k , the standard open k-simplex of \mathbb{R}^k , as follows: $(\Gamma_s, v_0, \phi) \in \sigma(\Gamma, v_0, \phi)$ is the point of \mathbb{A}_n such that

the length of the edges of Γ_s equal the barycentric coordinates of $s \in \Delta^k$. It is important that Δ^k is open. Since a non-trivial isometry of Γ permutes same edges of Γ , such an isometry gives a non-trivial element of $H_1(\Gamma)$. Hence, every $s \in \Delta$ defines a different point of $\sigma(\Gamma, v_0, \phi)$.

Some faces of $\sigma(\Gamma, v_0, \phi)$ belong to \mathbb{A}_n . If an edge of Γ is incident to two different vertices, then we can reduce the length of that edge to zero, and increase the length of the other edges, to obtain a new graph Γ' with one edge minus. We say that we have *collapsed* one edge of Γ . We have a quotient map $\Gamma \to \Gamma'$ which defines a point (Γ', v'_0, ϕ') of \mathbb{A}_n . We say that $\sigma(\Gamma', v'_0, \phi')$ is a face of $\sigma(\Gamma, v_0, \phi)$. Faces of $\sigma(\Gamma', v'_0, \phi')$ are faces of $\sigma(\Gamma, v_0, \phi)$. We cannot collapse an edge which is incident to a unique vertex. Hence, some face of $\sigma(\Gamma, v_0, \phi)$ are missing. In particular, \mathbb{A}_n is not a simplicial complex.

There exists a deformation retract, denoted SA_n , of A_n which is a simplicial complex. We can define SA_n as follows. For every simplex of A_n , there exists a vertex of SA_n . Two vertices of SA_n expand an edge if the simplex of A_n which defines one of the two vertices of SA_n is a face of the simplex of A_n which defines the other vertex of SA_n ; i+1 vertices of SA_n expand a i-simplex of SA_n if every pair of vertices expand an edge.

There exists a natural inclusion of SA_n into A_n by sending every vertex of SA_n to the barycenter of the corresponding simplex, and every *i*-simplex of SA_n to the convex hull of the corresponding barycenters. This inclusion is a deformation retract. See [2].

Collapsing an edge of Γ has an inverse process which *splits* a vertex of Γ into two new vertices, and, the two new vertices are joined by a new edge. Often in the literature splitting of a vertex is called blowing up an edge. If $\tilde{\Gamma}$ is obtained from Γ by splitting a vertex, then we can identify, in a natural way, every edge of Γ with an edge of $\tilde{\Gamma}$. Collapsing the only edge of $\tilde{\Gamma}$ which is not identified with an edge of Γ we obtain Γ . There exists a quotient map $\tilde{\Gamma} \to \Gamma$. If $\tilde{\Gamma}$ is obtained from Γ by splitting a vertex different from v_0 , then the quotient map $\tilde{\Gamma} \to \Gamma$ defines a point $(\tilde{\Gamma}, \tilde{v}_0, \tilde{\phi})$ of A_n If $\tilde{\Gamma}$ is obtained from Γ by splitting v_0 , then the point $(\tilde{\Gamma}, \tilde{v}_0, \tilde{\phi})$ of A_n depends of the election, between the two possibilities, of the new distinguished vertex \tilde{v}_0 . The simplex $\sigma(\Gamma, v_0, \phi)$ is a face of $\sigma(\tilde{\Gamma}, \tilde{v}_0, \tilde{\phi})$.

We give a combinatorial definition of the topological type of Γ , that is, Γ when we forget its metric. When we forget the metric of Γ we can see (Γ, v_0, ϕ) as a vertex of SA_n , in fact, the vertex of SA_n defined by the simplex $\sigma(\Gamma, v_0, \phi)$ of A_n . We translate to our combinatorial definition the processes of collapsing an edges and splitting a vertex. Our combinatorial definition of the topological type of Γ is different from the one given in [6].

3.2 Definition. Let

- 1. $V(\Gamma)$ be the set of vertices of Γ .
- 2. $E(\Gamma)$ be the set of edges of Γ .

3. $\overline{E}(\Gamma) = \{\overline{e} \mid e \in E(\Gamma)\}\$ be a set disjoint with $E(\Gamma)$.

We extend $\overline{}$ to an involution of $E(\Gamma) \cup \overline{E}(\Gamma)$. We fix an orientation of every edge of Γ . We say that $e \in E(\Gamma)$ starts at $v_1 \in V(\Gamma)$ and finishes at $v_2 \in V(\Gamma)$ if e is incident to v_1 and v_2 ; and e is oriented from v_1 to v_2 . In this case we say that \overline{e} starts at v_2 and finishes at v_1 .

Given $v \in V(\Gamma)$, we define the following subset of $E(\Gamma) \cup \overline{E}(\Gamma)$.

$$v^* = \{ a \in E(\Gamma) \cup \overline{E}(\Gamma) \mid a \text{ starts at } v \}.$$

We set $V^*(\Gamma) = \{v^* \mid v \in V(\Gamma)\}.$

The topological type of Γ is completely determined by $(V(\Gamma), E(\Gamma), V^*(\Gamma))$.

Notice that v^* is the star of $v \in V(\Gamma)$ and $V^*(\Gamma)$ is a partition of $E(\Gamma) \cup \overline{E}(\Gamma)$. Condition 1 of Definition 3.1 can be translated by saying that $E(\Gamma)$ is finite and, for every $v \in V(\Gamma)$, there exist $a, b \in v^*$ such that $a \neq b, \overline{b}$ and $\overline{a}, \overline{b} \notin v^*$. Condition 4 of Definition 3.1 can be translated by saying that for every $v \in V(\Gamma) - \{v_0\}$, v^* has at least 3 elements; v_0^* has at least 2 elements.

3.3 Definition. Let $e \in E(\Gamma)$ such that $e \in v_1^*$, $\overline{e} \in v_2^*$, where $v_1, v_2 \in V(\Gamma)$ and $v_1 \neq v_2$. We can collapse e. When we collapse the edge e we have a graph with topological type

$$(V(\Gamma) \cup \{v\} - \{v_1, v_2\}, E(\Gamma) - \{e\}, V^*(\Gamma) \cup \{v^*\} - \{v_1^*, v_2^*\})$$

where $v \notin V(\Gamma)$ and $v^* = v_1^* \cup v_2^* - \{e, \overline{e}\}.$

3.4 Definition. Let $v \in V(\Gamma) - \{v_0\}$ and A, B a partition of v^* such that both A and B have at least two elements, there exists $a \in A$ such that $\overline{a} \notin A$ and there exists $b \in B$ such that $\overline{b} \notin B$. When we split the vertex v with respect to A and B we have a graph with topological type

$$(V(\Gamma) \cup \{v_1, v_2\} - \{v\}, E(\Gamma) \cup \{e\}, V^*(\Gamma) \cup \{v_1^*, v_2^*\} - \{v^*\}),$$

where $v_1, v_2 \notin V(\Gamma)$, $e \notin E(\Gamma)$, $v_1^* = A \cup \{e\}$ and $v_2^* = B \cup \{\overline{e}\}$. To split v_0 we have to choose between v_1 or v_2 as the new distinguished vertex. Since the distinguished vertex can have valence two, the subset of v_0^* corresponding to the new distinguished vertex may have only one element.

4 Ordered Auter space $\operatorname{ord}\mathbb{A}_{g,p}$

Our motivation for defining ordered Auter space is that when a graph is embedded into an orientable surface, the star of every vertex of the graph which is mapped to an interior point of the surface gets a cyclic order, and, the star of a vertex which is mapped to a boundary point of the surface gets a linear order. When we want to collapse an edge or to split a vertex we have to do it respecting the orders of the stars.

4.1 Definition. Let $(\Gamma, v_0, \phi, \text{ord})$ be a 4-tuple where (Γ, v_0, ϕ) satisfies conditions in Definition 3.1, ord is a linear order of v_0^* and a cyclic order of v^* for every $v \in V(\Gamma) - \{v_0\}$.

Suppose $V(\Gamma) = \{v_0, v_1, v_2, ..., v_q\}$ and

$$\operatorname{ord}(v_0^*) = (a_1^0, a_2^0, \dots, a_{r_0}^0),$$

$$\operatorname{ord}(v_1^*) = (a_1^1, a_2^1, \dots, a_{r_1}^1),$$

$$\operatorname{ord}(v_2^*) = (a_1^2, a_2^2, \dots, a_{r_2}^2),$$

$$\vdots$$

$$\operatorname{ord}(v_q^*) = (a_1^q, a_2^q, \dots, a_{r_q}^q).$$

For $i \neq 0$, since $\operatorname{ord}(v_i^*)$ is cyclically ordered, the subindices of $\operatorname{ord}(v_i^*)$ are modulo r_i

We consider the following element of $\pi_1(\Gamma, v_0)$ and the following conjugacy classes of $\pi_1(\Gamma, v_0)$.

where $b_1^0 = a_1^0$, for every $1 \le i \le p$, $1 \le j \le l_i$ the subsequence $(\overline{b}_j^i, b_{j+1}^i)$ appears in (4.1.1), $b_{l_0}^0 = \overline{a}_{r_q}^q$, and every element of $E(\Gamma) \cup E(\Gamma)$ appears exactly once in (4.1.2).

We denote by $w(\Gamma, v_0, \text{ ord})$ the set $\{w_0, [w_1], [w_2], \dots, [w_p]\}$.

4.2 Example. Let $(\Gamma, v_0, \text{ ord})$ be a 3-tuple where $V(\Gamma) = \{v_0, v_1, v_2\}, E(\Gamma) = \{e_1, e_2, e_3, e_4, e_5\}$ and

$$\operatorname{ord}(v_0^*) = (e_1, e_2),
 \operatorname{ord}(v_1^*) = (\overline{e}_1, e_3, \overline{e}_3, e_4, e_5),
 \operatorname{ord}(v_2^*) = (\overline{e}_2, \overline{e}_5, \overline{e}_4).$$

Then $w(\Gamma, v_0, \text{ord}) = \{w_0, [w_1], [w_2], [w_3]\}$ where

$$\begin{array}{rcl} w_0 & = & e_1 e_3 e_4 \overline{e}_2, \\ [w_1] & = & [\overline{e}_1 e_2 \overline{e}_5], \\ [w_2] & = & [\overline{e}_3], \\ [w_3] & = & [\overline{e}_4 e_5]. \end{array}$$

Notice that for every $v \in V(\Gamma)$, $\operatorname{ord}(v^*)$ is completely determined by $w(\Gamma, v_0, \operatorname{ord})$.

4.3 Definition. Let $(\Gamma, v_0, \phi, \text{ord})$ be a 4-tuple such that $w(\Gamma, v_0, \text{ord})$ has p conjugacy classes.

We denote $\frac{n-p}{2}$ by g. We will see that n-p is even. Hence, g is a non-negative integer.

We define $\operatorname{ord} A_{g,p}$ as the space of equivalence classes of 4-tuples $(\Gamma, v_0, \phi, \operatorname{ord})$ such that $\phi : \pi_1(\Gamma, v_0) \to \Sigma_{g,1,p}, \ w(\Gamma, v_0, \operatorname{ord}) = \{w_0, [w_1], [w_2], \dots, [w_p]\}$ and

$$\phi(w_0) = [x_1, y_1][x_2, y_2] \cdots [x_g, y_g]t_1t_2 \cdots t_p,
\{\phi([w_1]), \phi([w_2]), \dots, \phi([w_p])\} = \{[t_1^{-1}], [t_2^{-1}], \dots, [t_p^{-1}]\}.$$

The 4-tuples $(\Gamma, v_0, \phi, \text{ord})$ and $(\Gamma', v_0', \phi', \text{ord}')$ represent the same point of $\text{ord}\mathbb{A}_{g,p}$ if there exists an isometry $h: \Gamma \to \Gamma'$ such that $h(v_0) = v_0'$, the isomorphism $h_*: \pi_1(\Gamma, v_0) \to \pi_1(\Gamma', v_0')$ satisfies $\phi = \phi' \circ h_*$, and $h: \Gamma \to \Gamma'$ preserves the orders, that is, $\text{ord}(v^*) = (a_1, a_2, \dots, a_r)$ implies $\text{ord}'(h(v)^*) = (h(a_1), h(a_2), \dots, h(a_r))$ for every $v \in V(\Gamma)$.

We call $\operatorname{ord} \mathbb{A}_{q,p}$ ordered Auter space.

We define $\operatorname{ordSA}_{g,p}$ for $\operatorname{ordA}_{g,p}$ as we defined SA_n for A_n . In particular, $\operatorname{ordSA}_{g,p}$ is a simplicial complex, and, $\operatorname{ordSA}_{g,p}$ is a deformation retract of $\operatorname{ordA}_{g,p}$.

The following definitions are based on Definition 3.3 and Definition 3.4, respectively.

4.4 Definition. Let $e \in E(\Gamma)$. Suppose $e = a_{k_1}^i$, $\overline{e} = a_{k_2}^j$, where $i \neq j$ and $1 \leq k_1 \leq r_i$, $1 \leq k_2 \leq r_j$. Since $i \neq j$, we can collapse e. We can suppose $j \neq 0$. To adapt Definition 3.3 to ordSA_{g,p} we set

$$\operatorname{ord}(v^*) = (a_{k-1}^i, a_{k_2}^i, \dots, a_{k_1-1}^i, a_{k_2+1}^j, a_{k_2+2}^j, \dots, a_{r_j}^j, a_1^j, a_2^j, \dots, a_{k_2-1}^j, a_{k_1+1}^i, a_{k_1+2}^i, \dots, a_{r_1}^i).$$

4.5 Example. Let $(\Gamma, v_0, \text{ ord})$ be as in Example 4.2. When we collapse e_1 we obtain $(\Gamma', v'_0, \text{ ord}')$ such that $v'_0 = v_0$, $V(\Gamma') = \{v_0, v_2\}$, $E(\Gamma') = \{e_2, e_3, e_4, e_5\}$ and

$$\operatorname{ord}'(v_0^*) = (e_3, \overline{e}_3, e_4, e_5, e_2),$$

$$\operatorname{ord}'(v_2^*) = (\overline{e}_2, \overline{e}_5, \overline{e}_4).$$

We have $w(\Gamma', v_0', \text{ord}') = \{w_0', [w_1'], [w_2'], [w_3']\}$ where

$$w'_0 = e_3 e_4 \overline{e}_2,$$

 $[w'_1] = [e_2 \overline{e}_5],$
 $[w'_2] = [\overline{e}_3],$
 $[w'_3] = [\overline{e}_4 e_5].$

Let $(\Gamma, v_0, \phi, \text{ord})$ be a vertex of $\text{ordSA}_{g,p}$. When we collapse an edge of Γ according to Definition 4.4 we obtain $(\Gamma', v'_0, \phi', \text{ord}')$. As it is see in Example 4.5, $w(\Gamma', v'_0, \phi', \text{ord}')$ has p conjugacy classes. Hence, $(\Gamma', v'_0, \phi', \text{ord}')$ is a vertex of $\text{ordSA}_{g,p}$.

4.6 Definition. Let $v \in V(\Gamma)$. Let A, B be a partition of v^* . Suppose $\operatorname{ord}(v^*) = (a_1, a_2, \ldots, a_r)$ and $A = (a_{k_1}, a_{k_1+1}, \ldots, a_{k_2})$, where $1 \leq k_1 < k_2 \leq r$. We can split the vertex v with respect to A, B. To adapt Definition 3.4 to $\operatorname{ordSA}_{g,p}$ we set

$$\operatorname{ord}(v_1^*) = (e, a_{k_1}, a_{k_1+1}, \dots, a_{k_2}),$$

$$\operatorname{ord}(v_2^*) = (a_1, a_2, \dots, a_{k_1-1},$$

$$\overline{e}, a_{k_2+1}, a_{k_2+2}, \dots a_r).$$

4.7 Example. Let $(\Gamma, v_0, \text{ord})$ be as in Example 4.2. When we split v_1 with respect to $\{\overline{e}_3, e_4\}$, $\{\overline{e}_1, e_3, e_5\}$ we obtain $(\tilde{\Gamma}, \tilde{v}_0, \text{ord})$ such that $\tilde{v}_0 = v_0$, $V(\tilde{\Gamma}) = \{v_0, v_{1,1}, v_{1,2}, v_2\}$, $E(\tilde{\Gamma}) = \{e, e_1, e_2, e_3, e_4, e_5\}$ and

$$\widetilde{\operatorname{ord}}(v_0^*) = (e_1, e_2),
\widetilde{\operatorname{ord}}(v_{1,1}^*) = (e, \overline{e}_3, e_4),
\widetilde{\operatorname{ord}}(v_{1,2}^*) = (\overline{e}_1, e_3, \overline{e}, e_5),
\widetilde{\operatorname{ord}}(v_2^*) = (\overline{e}_2, \overline{e}_5, \overline{e}_4).$$

We have $w(\tilde{\Gamma}, \tilde{v}_0, \text{ord}) = {\tilde{w}_0, [\tilde{w}_1], [\tilde{w}_2], [\tilde{w}_3]}$ where

$$\begin{array}{lll} \tilde{w}_0 & = & e_1 e_3 e_4 \overline{e}_2, \\ [\tilde{w}_1] & = & [\overline{e}_1 e_2 \overline{e}_5], \\ [\tilde{w}_2] & = & [\overline{e}_3 \overline{e}], \\ [\tilde{w}_3] & = & [\overline{e}_4 e e_5]. \end{array}$$

Let $(\Gamma, v_0, \phi, \text{ord})$ be a vertex of $\text{ordSA}_{g,p}$. When we split a vertex of Γ according to Definition 4.6 we obtain $(\tilde{\Gamma}, \tilde{v}_0, \tilde{\phi}, \text{ord})$. As it is see in Example 4.7, $w(\tilde{\Gamma}, \tilde{v}_0, \tilde{\phi}, \text{ord})$ has p conjugacy classes. Hence, $(\tilde{\Gamma}, \tilde{v}_0, \tilde{\phi}, \text{ord})$ is a vertex of $\text{ordSA}_{g,p}$.

Since a graph satisfying Definition 3.1 can have at most 3n-2 edges, the dimension of \mathbb{A}_n is 3n-3. On the other hand, \mathbb{A}_n is not a manifold. The dimension of $\operatorname{ord}\mathbb{A}_{g,p}$ is 6g+3p-3; $\operatorname{ord}\mathbb{A}_n$ is a manifold.

By [2, PROPOSITION 2.1] \mathbb{A}_n is contractible. Since $\mathbb{S}\mathbb{A}_n$ is a deformation retract of \mathbb{A}_n , we see that $\mathbb{S}\mathbb{A}_n$ is contractible.

4.8 Proposition. $ord \mathbb{A}_{q,p}$ is contractible.

Hatcher and Vogtmann proof [2, PROPOSITION 2.1] using spheres complexes. It is not clear how to translate to the context of spheres complexes an ordered graph. On the other hand, the proof of Culler and Vogtmann [6] that Outer space is contractible can be applied to $\operatorname{ord} \mathbb{A}_{g,p}$: adding a basepoint is straightforward, all the geometric arguments in [6] can be applied to $\operatorname{ord} \mathbb{A}_{g,p}$ respecting the orders as Definition 4.4 and Definition 4.6 and McCool [16], [7] proved that $\mathcal{AM}_{g,1,p}$ is generated by Nielsen automorphism which "respect" the orders (recall that Nielsen automorphisms are a special case of Whitehead automorphisms).

Recall n = 2g + p. There exists a natural map $\operatorname{ord} \mathbb{A}_{g,p} \to \mathbb{A}_n$ which "forgets" the ordering, that is, $(\Gamma, v_0, \phi, \operatorname{ord}) \mapsto (\Gamma, v_0, \phi)$. Recall that ord is completely determined by $w(\Gamma, v_0, \operatorname{ord})$. Since $\phi : \pi_1(\Gamma, v_0) \to \Sigma_{g,1,p}$ is an isomorphism, we have

$$w(\Gamma, v_0, \text{ ord}) = \{\phi^{-1}([x_1, y_1][x_2, y_2] \cdots [x_g, y_g]t_1t_2 \cdots t_p), \\ [\phi^{-1}(t_1^{-1})], [\phi^{-1}(t_2^{-1})], \dots, [\phi^{-1}(t_p^{-1})])\}$$

Hence, the natural map $\operatorname{ord} \mathbb{A}_{g,p} \to \mathbb{A}_n$ is injective.

We want to see that n-p is even.

For n=1, we have p=1 and n-p=0 is even. We do induction on n.

By Definition 4.4 we can collapse a maximal subtree of $(\Gamma, v_0, \text{ord})$. Hence, we can suppose that $V(\Gamma) = \{v_0\}$. Put $\text{ord}(v_0^*) = (a_1, a_2, \dots a_{2n})$ and $w(\Gamma, v_0, \text{ord}) = \{w_0, [w_1], [w_2], \dots, [w_p]\}$. Let $1 \leq j \leq 2n$ such that $a_j = \overline{a_1}$. Then $w_0 = a_1 u$ in reduced form, for some $u \in F_n$. Let $(\Gamma', v_0', \text{ord}')$ be obtained from $(\Gamma, v_0, \text{ord})$ be deleting the edges a_1, a_j . We have $\text{ord}'(v_0') = (a_2, a_3, \dots, a_{j-1}, a_{j+1}, a_{j+2}, \dots, a_{2n})$. We put n' = n - 1 the rank of $\pi_1(\Gamma', v_0')$ and p' the number of conjugacy classes of $w(\Gamma', v_0', \text{ord}')$. By induction hypothesis n' - p' is even.

If $w_0 = a_1 u' a_j u''$ cyclically reduced, then $w(\Gamma', v'_0, \text{ord}') = \{u'', [u'], [w_1], [w_2], \ldots, [w_p]\}$. Notice that $u' \neq 1$, $u'' \neq 1$ because $a_1 u' a_j u''$ is cyclically reduced. Hence, p' = p + 1 and n - p = (n' + 1) - (p' - 1) = n' - p' + 2 is even.

If there exists $1 \leq k \leq p$ such that $[w_k] = [a_j w'_k]$, then $w(\Gamma', v'_0, \text{ord}') = \{w'_k u', [w_1], [w_2], \dots, [w_{k-1}], [w_{k+1}], \dots, [w_p]\}$. Hence, p' = p - 1 and n - p = (n' + 1) - (p' + 1) = n' - p' is even.

5 The Degree Theorem

Recall $\pi_1(\Gamma, v_0) \simeq F_n$.

We denote the valence of $v \in V(\Gamma)$ by $|v^*|$.

5.1 Definition. The degree of (Γ, v_0) is $2n - |v_0^*|$. Equivalently, the degree of (Γ, v_0) is $\sum_{v \in V(\Gamma) - \{v_0\}} (|v^*| - 2)$.

To see the equivalence of the two definitions see [2, p. 636].

From the first definition of the degree of (Γ, v_0) we see that when we collapse an edge of Γ which is not incident with v_0 the degree is preserved, and, when we collapse an edge of Γ which is incident with v_0 the degree decreases. Hence, graphs of degree at most i expand a subcomplex D_i of SA_n . Hatcher and Vogtmann [2] proof the following.

5.2 Theorem. D_i is i-dimensional and (i-1)-connected.

In particular, D_2 is a simply-connected 2-complex.

We define $\operatorname{ord} D_i$ for $\operatorname{ordSA}_{q,p}$ as we define D_i for SA_n .

All the arguments of Hatcher and Vogtmann to proof [2, THEOREM 3.3] can be applied to $\operatorname{ord} A_{g,p}$. In particular, what they call "canonical splitting" and "sliding in the ϵ -cone" are combinations of splitting vertices and collapsing edges. We have the following.

5.3 Theorem. $ordD_i$ is i-dimensional and (i-1)-connected.

In particular, $\operatorname{ord} D_2$ is a simply-connected 2-complex.

6 The action of $AM_{g,1,p}$ on ord \mathbb{A}_n

Recall that $\operatorname{Aut}(F_n)$ acts on \mathbb{A}_n by "changing" the markings: for every $\varphi \in \operatorname{Aut}(F_n)$ we define $\varphi \cdot (\Gamma, v_0, \phi) = (\Gamma, v_0, \varphi \circ \phi)$. This action restricts to $S\mathbb{A}_n$ and to D_2 . The stabilizer of a vertex of $S\mathbb{A}_n$ by this action is a finite group which permutes some edges and invert some edge orientations. The quotient complex $\operatorname{Aut}(F_n)\backslash S\mathbb{A}_n$ is finite. See [1, Section 3], [2, Section 5]. Armstrong, Forrest and Vogtmann [1] apply a result of Brown [5] to $\operatorname{Aut}(F_n)\backslash D_2$ to compute a new presentation of $\operatorname{Aut}(F_n)$. Following this argument, we want to obtain a presentation of $A\mathfrak{M}_{g,1,p}$.

We can define an action of $\mathcal{AM}_{g,1,p}$ on $\operatorname{ord}\mathbb{A}_{g,p}$ by "changing" the markings: for every $\varphi \in \mathcal{AM}_{g,1,p}$ we define $\varphi \cdot (\Gamma, v_0, \phi, \operatorname{ord}) = (\Gamma, v_0, \varphi \circ \phi, \operatorname{ord})$. This action restricts to $\operatorname{ordSA}_{g,p}$ and to $\operatorname{ord}D_2$. The stabilizer of a vertex of $\operatorname{ordSA}_{g,p}$ by this action is trivial and the quotient complex $\mathcal{AM}_{g,1,p} \backslash \operatorname{ordSA}_{g,p}$ is finite, but much bigger than $\operatorname{Aut}(F_n) \backslash \operatorname{SA}_n$. By Theorem 5.3, $\operatorname{ord}D_2$ is simply-connected. Hence, $\mathcal{AM}_{g,1,p}$ is isomorphic to the fundamental group of $\mathcal{AM}_{g,1,p} \backslash \operatorname{ord}D_2$. In the next section we give an algorithm which computes a presentation of the fundamental group of $\mathcal{AM}_{g,1,p} \backslash \operatorname{ord}D_2$.

7 The algorithm

Recall n = 2g + p.

Vertices of $\operatorname{ordSA}_{g,p}$ are represented by 4-tuples $(\Gamma, v_0, \phi, \operatorname{ord})$ such that $w(\Gamma, v_0, \operatorname{ord})$ has p conjugacy classes. Recall that $\varphi \in \mathcal{AM}_{g,1,p}$ acts on $\operatorname{ordSA}_{g,p}$ by "changing" the marking, that is, $\varphi \cdot (\Gamma, v_0, \phi, \operatorname{ord}) = (\Gamma, v_0, \varphi \circ \phi, \operatorname{ord})$. Hence, the quotient map $\operatorname{ordSA}_{g,p} \to \mathcal{AM}_{g,1,p} \backslash \operatorname{ordSA}_{g,p}$, $(\Gamma, v_0, \phi, \operatorname{ord}) \mapsto (\Gamma, v_0, \operatorname{ord})$ "forgets" the marking. We can represent vertices of $\mathcal{AM}_{g,1,p} \backslash \operatorname{ordSA}_{g,p}$ by 3-tuples $(\Gamma, v_0, \operatorname{ord})$ such that $w(\Gamma, v_0, \operatorname{ord})$ has p conjugacy classes. Vertices of the subcomplex $\mathcal{AM}_{g,1,p} \backslash \operatorname{ord} D_2$ can be represented by 3-tuples $(\Gamma, v_0, \operatorname{ord})$ such that (Γ, v_0) has degree at most 2.

We want to compute a presentation for the fundamental group of complex $\mathcal{AM}_{g,1,p}\backslash \mathrm{ord}D_2$. Recall that the degree of (Γ, v_0) can be defined as $\sum_{v\in V(\Gamma)-\{v_0\}}(|v^*|-2)$. Hence, if (Γ, v_0) has degree 2 then Γ has at most three vertices: v_0 and two more vertices of valence 3.

Let \mathcal{L} be a list of vertices $(\Gamma, v_0, \text{ord})$ of $\mathcal{AM}_{g,1,p} \backslash \text{ord} D_2$ such that Γ has 3 vertices

Let $z = (\Gamma, v_0, \text{ ord})$ be an element of \mathcal{L} . Suppose $E(\Gamma) = \{e_1, e_2, \dots e_k\}$.

We construct a tree T(z) as follows. There exists a vertex z of T(z). Let e_i be an edge of Γ which can be collapsed, that is, e_i is incident to two different vertices. When we collapse e_i we have a quotient 3-tuple $z^i = (\Gamma^i, v_0^i, \operatorname{ord}^i)$. There exists a vertex z^i of T(z) and an edge ze_i of T(z) from z to z^i . We identify edges of z^i with edges of z. Let e_j be an edge of Γ^i which can be collapsed. When we collapse e_j in Γ^i we have a quotient 3-tuple $z^{(i,j)} = (\Gamma^{(i,j)}, v_0^{(i,j)}, \operatorname{ord}^{(i,j)})$. There exists a vertex $z^{(i,j)}$ of T(z) and an edge ze_ie_j from z^i to $z^{(i,j)}$. We repeat this process for every edge which can be collapsed.

Our generating set for the fundamental group of $\mathcal{AM}_{g,1,p}\backslash \text{ord}D_2$ is the set of edges of T(z), where z ranges over \mathcal{L} .

The group $\operatorname{Sym}_k \times C_2^{\times k}$ acts on $E(\Gamma) \cup \overline{E}(\Gamma)$ by permuting edges $(C_2^{\times k})$ is the Cartesian product of k copies of the cyclic group of order 2). Hence, $\operatorname{Sym}_k \times C_2^{\times k}$ acts on the set of 3-tuples $(\Gamma, v_0, \operatorname{ord})$ by permuting edges and inverting edge orientations. Two 3-tuples $(\Gamma, v_0, \operatorname{ord})$ and $(\Gamma', v'_0, \operatorname{ord}')$ represent the same vertex of $\mathcal{AM}_{g,1,p} \setminus \operatorname{ordSA}_{g,p}$ if and only if they are in the same orbit by the action of $\operatorname{Sym}_k \times C_2^{\times k}$. Since every vertex of T(z) is a 3-tuple $(\Gamma, v_0, \operatorname{ord})$, we see that $\operatorname{Sym}_k \times C_2^{\times k}$ acts on T(z). We can identify $(\operatorname{Sym}_k \times C_2^{\times k}) \setminus T(z)$ with the 1-skeleton of a subcomplex of $\mathcal{AM}_{g,1,p} \setminus \operatorname{ord} D_2$. We can identify

$$(\operatorname{Sym}_k \times C_2^{\times k}) \backslash \Big(\bigcup_{z \in \mathcal{L}} T(z)\Big)$$

with the 1-skeleton of a subcomplex of $\mathcal{AM}_{q,1,p}\backslash \mathrm{ord}D_2$.

We attach some 2-cells to $(\operatorname{Sym}_k \times C_2^{\times k}) \setminus (\bigcup_{z \in \mathcal{L}} T(z))$. If there exists the generator $ze_i e_j$, we attach a 2-cell though the egde-path $ze_i, ze_i e_j, \overline{ze_j e_i}, \overline{ze_j}$. With

these attached 2-cells, the 2-complex $(\operatorname{Sym}_k \times C_2^{\times k}) \setminus (\bigcup_{z \in \mathcal{L}} T(z))$ is homeomorphic to $\mathcal{AM}_{g,1,p} \setminus \operatorname{ord} D_2$. We fix a maximal subtree of $(\operatorname{Sym}_k \times C_2^{\times k}) \setminus (\bigcup_{z \in \mathcal{L}} T(z))$.

Our presentation for the fundamental group of $\mathcal{AM}_{g,1,p}\backslash \mathrm{ord}D_2$ has three types of relations:

- (a). $ze_i = 1$, $ze_{i'}e_{j'} = 1$ if the edges ze_i , $ze_{i'}e_{j'}$ are in our maximal subtree.
- (b). $z_1e_ie_j=z_2e_{i'}e_{j'}$ if the generator $z_1e_ie_j$ exists and $g\cdot z_2^{i'}=z_1^i$ for some $g\in \operatorname{Sym}_k\times C_2^{\times k}$ such that either $g\cdot e_{j'}=e_j$ or $g\cdot e_{j'}=\overline{e}_j$.
- (c). $ze_i \cdot ze_i e_j = ze_j \cdot ze_j e_i$ if there exists the generator $ze_i e_j$.

We illustrate the algorithm with two easy examples. The main difficulty of the algorithm is to find \mathcal{L} . Once \mathcal{L} is known our, it is straightforward to apply the algorithm. Example 7.2 shows that the algorithm can be applied in "pieces", each piece corresponding to an element of \mathcal{L} .

7.1 Example. We take (g, p) = (1, 0). The list \mathcal{L} has a single element. We can represent the element of \mathcal{L} by

$$z = (V(\Gamma), E(\Gamma), V^*(\Gamma), \text{ ord}) = (\{v_0, v_1, v_2\}, \{e_1, e_2, e_3, e_4\}, \{v_0^*, v_1^*, v_2^*\}, \text{ ord}),$$

where $\operatorname{ord}(v_0^*) = (e_1, e_2)$, $\operatorname{ord}(v_1^*) = (\overline{e}_1, e_3, e_4)$ and $\operatorname{ord}(v_2^*) = (\overline{e}_2, \overline{e}_3, \overline{e}_4)$. To simplify the notation we put

$$z = \operatorname{ord}(v_0^*); \operatorname{ord}(v_1^*), \operatorname{ord}(v_2^*) = (e_1, e_2); (\overline{e}_1, e_3, e_4), (\overline{e}_2, \overline{e}_3, \overline{e}_4).$$

We can collapse all 4 edges of z and we have

$$z^{1} = (e_{3}, e_{4}, e_{2}); (\overline{e}_{2}, \overline{e}_{3}, \overline{e}_{4}),$$

$$z^{2} = (e_{1}, \overline{e}_{3}, \overline{e}_{4}); (\overline{e}_{1}, e_{3}, e_{4}),$$

$$z^{3} = (e_{1}, e_{2}); (\overline{e}_{1}, \overline{e}_{4}, \overline{e}_{2}, e_{4}),$$

$$z^{4} = (e_{1}, e_{2}); (\overline{e}_{1}, e_{3}, \overline{e}_{2}, \overline{e}_{3}).$$

We see $z^1 = g^{2,1} \cdot z^2$, $z^3 = g^{4,3} \cdot z^4$, where $g^{2,1}$, $g^{4,3} \in \text{Sym}_4 \times C_2^{\times 4}$ and

$$g^{2,1} = \begin{cases} e_1 & \mapsto e_3, \\ e_3 & \mapsto \overline{e}_4, \\ e_4 & \mapsto \overline{e}_2, \end{cases} \quad \text{and} \quad g^{4,3} = \begin{cases} e_1 & \mapsto e_1, \\ e_2 & \mapsto e_2, \\ e_3 & \mapsto \overline{e}_4. \end{cases}$$

We can collapse some edges of z^1 and z^3 and we have

$$\begin{array}{lll} z^{(1,3)} &= (\overline{e}_4, \overline{e}_2, e_4, e_2), \\ z^{(1,4)} &= (e_3, \overline{e}_2, \overline{e}_3, e_2), \\ z^{(1,2)} &= (e_3, e_4, \overline{e}_3, \overline{e}_4); \end{array} \quad \text{and} \quad \begin{array}{ll} z^{(3,1)} &= (\overline{e}_4, \overline{e}_2, e_4, e_2), \\ z^{(3,2)} &= (e_1, e_4, \overline{e}_1, \overline{e}_4). \end{array}$$

We see $z^{(1,2)}$, $z^{(1,3)}$, $z^{(1,4)}$, $z^{(3,1)}$ and $z^{(3,2)}$ are in the same orbit by $\operatorname{Sym}_4 \times C_2^{\times 4}$. Hence, they represent the same vertex of $(\operatorname{Sym}_4 \times C_2^{\times 4}) \setminus T(z)$.

We take the maximal subtree of $(\operatorname{Sym}_4 \times C_2^{\times 4}) \setminus T(z)$ with edges ze_1, ze_3 and ze_1e_2 . Then $\mathcal{AM}_{1,0}$ has presentation with generators:

$$ze_1, ze_2, ze_3, ze_4,$$

 $ze_1e_3, ze_1e_4, ze_1e_2,$
 $ze_2e_1, ze_2e_3, ze_2e_4,$
 $ze_3e_1, ze_3e_2,$
 $ze_4e_1, ze_4e_2;$

and relations:

$$\begin{aligned} ze_1 &= 1, \ ze_3 = 1, \ ze_1e_2 = 1, \\ ze_2e_1 &= ze_1e_3, \ ze_2e_3 = ze_1e_4, \ ze_2e_4 = ze_1e_2, \ ze_4e_1 = ze_3e_1, \ ze_4e_2 = ze_3e_2, \\ ze_1 \cdot ze_1e_2 &= ze_2 \cdot ze_2e_1, \ ze_1 \cdot ze_1e_3 = ze_3 \cdot ze_3e_1, \ ze_1 \cdot ze_1e_4 = ze_4 \cdot ze_4e_1, \\ ze_2 \cdot ze_2e_3 &= ze_3 \cdot ze_3e_2, \ ze_2 \cdot ze_2e_4 = ze_4 \cdot ze_4e_2. \end{aligned}$$

An easy simplification shows $\mathcal{AM}_{1,1,0} = \langle ze_2, ze_4 \mid ze_2 \cdot ze_2 = ze_4 \cdot ze_2 \cdot ze_4 \rangle$. \square

7.2 Example. We take (g,p)=(0,3). The list \mathcal{L} is

$$\begin{split} z_1 &= (e_1, e_2, e_3, e_4); (\overline{e}_1, e_5, \overline{e}_2), (\overline{e}_3, \overline{e}_5, \overline{e}_4), \\ z_2 &= (e_1, e_2, e_3, e_4); (\overline{e}_1, \overline{e}_4, e_5), (\overline{e}_2, \overline{e}_5, \overline{e}_3), \\ z_3 &= (e_1, \overline{e}_1, e_2, e_3); (\overline{e}_2, e_4, e_5), (\overline{e}_3, \overline{e}_5, \overline{e}_4), \\ z_4 &= (e_1, e_2, \overline{e}_2, e_3); (\overline{e}_1, e_4, e_5), (\overline{e}_3, \overline{e}_5, \overline{e}_4), \\ z_5 &= (e_1, e_2, e_3, \overline{e}_3); (\overline{e}_1, e_4, e_5), (\overline{e}_2, \overline{e}_5, \overline{e}_4), \\ z_6 &= (e_1, e_2, e_3, \overline{e}_1); (\overline{e}_2, e_4, e_5), (\overline{e}_3, \overline{e}_5, \overline{e}_4). \end{split}$$

For z_1 we have

$$z_{1} = (e_{1}, e_{2}, e_{3}, e_{4}); (\overline{e}_{1}, e_{5}, \overline{e}_{2}), (\overline{e}_{3}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{1}^{1} = (e_{5}, \overline{e}_{2}, e_{2}, e_{3}, e_{4}); (\overline{e}_{3}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{1}^{2} = (e_{1}, \overline{e}_{1}, e_{5}, e_{3}, e_{4}); (\overline{e}_{3}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{1}^{3} = (e_{1}, e_{2}, \overline{e}_{5}, \overline{e}_{4}, e_{4}); (\overline{e}_{1}, e_{5}, \overline{e}_{2}),$$

$$z_{1}^{4} = (e_{1}, e_{2}, e_{3}, \overline{e}_{3}, \overline{e}_{5}); (\overline{e}_{1}, e_{5}, \overline{e}_{2}),$$

$$z_{1}^{5} = (e_{1}, e_{2}, e_{3}, e_{4}); (\overline{e}_{1}, \overline{e}_{4}, \overline{e}_{3}, \overline{e}_{2}).$$

Generators for z_1 are:

$$z_1e_1, z_1e_2, z_1e_3, z_1e_4, z_1e_5,$$

$$z_1e_1e_5, z_1e_1e_3, z_1e_1e_4,$$

$$z_1e_2e_5, z_1e_2e_3, z_1e_2e_4,$$

$$z_1e_3e_1, z_1e_3e_2, z_1e_3e_5,$$

$$z_1e_4e_1, z_1e_4e_2, z_1e_4e_5,$$

$$z_1e_5e_1, z_1e_5e_2, z_1e_5e_3, z_1e_5e_4.$$

We have

$$\begin{split} z_1^{(1,5)} &= (\overline{e}_4, \overline{e}_3, \overline{e}_2, e_2, e_3, e_4), \\ z_1^{(1,3)} &= (e_5, \overline{e}_2, e_2, \overline{e}_5, \overline{e}_4, e_4), \\ z_1^{(1,4)} &= (e_5, \overline{e}_2, e_2, e_3, \overline{e}_3, \overline{e}_5), \\ z_1^{(2,5)} &= (e_1, \overline{e}_1, \overline{e}_4, \overline{e}_3, e_3, e_4), \\ z_1^{(2,3)} &= (e_1, \overline{e}_1, e_5, \overline{e}_5, \overline{e}_4, e_4), \\ z_1^{(2,4)} &= (e_1, \overline{e}_1, e_5, e_3, \overline{e}_3, \overline{e}_5), \\ z_1^{(3,5)} &= (e_1, e_2, \overline{e}_2, \overline{e}_1, \overline{e}_4, e_4), \\ z_1^{(4,5)} &= (e_1, e_2, e_3, \overline{e}_3, \overline{e}_2, \overline{e}_1). \end{split}$$

We see that $z_1^{(2,4)} = g \cdot z_1^{(2,5)}, z_1^{(3,5)} = g' \cdot z_1^{(1,3)}, z_1^{(4,5)} = g'' \cdot z_1^{(1,5)}$ for some $g, g', g'' \in \operatorname{Sym}_5 \times C_2^{\times 5}$.

Relations for z_1 are:

$$\begin{split} z_1e_1 &= 1, \ z_1e_2 = 1, \ z_1e_3 = 1, \ z_1e_4 = 1, \ z_1e_5 = 1, \\ z_1e_1e_5 &= 1, \ z_1e_1e_3 = 1, \ z_1e_1e_4 = 1, \ z_1e_2e_5 = 1, \ z_1e_2e_3 = 1, \\ z_1e_1 \cdot z_1e_1e_5 &= z_1e_5 \cdot z_1e_5e_1, \ z_1e_1 \cdot z_1e_1e_3 = z_1e_3 \cdot z_1e_3e_1, \\ z_1e_1 \cdot z_1e_1e_4 &= z_1e_4 \cdot z_1e_4e_1, \\ z_1e_2 \cdot z_1e_2e_5 &= z_1e_5 \cdot z_1e_5e_2, \ z_1e_2 \cdot z_1e_2e_3 = z_1e_3 \cdot z_1e_3e_2, \\ z_1e_2 \cdot z_1e_2e_4 &= z_1e_4 \cdot z_1e_4e_2, \\ z_1e_3 \cdot z_1e_3e_5 &= z_1e_5 \cdot z_1e_5e_3, \\ z_1e_4 \cdot z_1e_4e_5 &= z_1e_5 \cdot z_1e_5e_4. \end{split}$$

An easy simplification shows that for z_1 generators are $z_1e_2e_4$, $z_1e_3e_5$, $z_1e_4e_5$ and for z_1 there are no relations.

From z_2 we have

$$\begin{split} z_2 &= (e_1, e_2, e_3, e_4); (\overline{e}_1, \overline{e}_4, e_5), (\overline{e}_2, \overline{e}_5, \overline{e}_3), \\ z_2^1 &= (\overline{e}_4, e_5, e_2, e_3, e_4); (\overline{e}_2, \overline{e}_5, \overline{e}_3), \\ z_2^2 &= (e_1, \overline{e}_5, \overline{e}_3, e_3, e_4); (\overline{e}_1, \overline{e}_4, e_5), \\ z_2^3 &= (e_1, e_2, \overline{e}_2, \overline{e}_5, e_4); (\overline{e}_1, \overline{e}_4, e_5), \\ z_2^4 &= (e_1, e_2, e_3, e_5, \overline{e}_1); (\overline{e}_2, \overline{e}_5, \overline{e}_3), \\ z_2^5 &= (e_1, e_2, e_3, e_4); (\overline{e}_1, \overline{e}_4, \overline{e}_3, \overline{e}_2). \end{split}$$

Generators for z_2 are:

$$z_2e_1, z_2e_2, z_2e_3, z_2e_4, z_2e_5,$$

$$z_2e_1e_5, z_2e_1e_2, z_2e_1e_3,$$

$$z_2e_2e_1, z_2e_2e_5, z_2e_2e_4,$$

$$z_2e_3e_1, z_2e_3e_5, z_2e_3e_4,$$

$$z_2e_4e_2, z_2e_4e_3, z_2e_4e_5,$$

$$z_2e_5e_1, z_2e_5e_2, z_2e_5e_3, z_2e_5e_4.$$

We see
$$z_1^4 = g_{2,1}^{2,4} \cdot z_2^2$$
, $z_1^1 = g_{2,1}^{3,1} \cdot z_2^3$, $z_2^1 = g_{2,2}^{4,1} \cdot z_2^4$, $z_1^5 = g_{2,1}^{5,5} \cdot z_2^5$, where

$$g_{2,1}^{2,4} = \begin{cases} e_1 & \mapsto & e_1, \\ e_3 & \mapsto & \overline{e}_3, \\ e_4 & \mapsto & \overline{e}_5, \\ e_5 & \mapsto & \overline{e}_2; \end{cases} \quad g_{2,1}^{3,1} = \begin{cases} e_1 & \mapsto & e_5, \\ e_2 & \mapsto & \overline{e}_2, \\ e_4 & \mapsto & e_4, \\ e_5 & \mapsto & \overline{e}_3; \end{cases} \quad g_{2,2}^{4,1} = \begin{cases} e_1 & \mapsto & \overline{e}_4, \\ e_2 & \mapsto & \overline{e}_2, \\ e_4 & \mapsto & e_4, \\ e_5 & \mapsto & \overline{e}_3; \end{cases}$$

$$g_{2,1}^{5,5} = \begin{cases} e_1 & \mapsto & e_1, \\ e_2 & \mapsto & e_2, \\ e_3 & \mapsto & e_3, \\ e_4 & \mapsto & e_4. \end{cases}$$

Relations for z_2 are:

$$\begin{aligned} z_2e_1 &= 1, z_2e_2 = 1, \\ z_2e_2e_1 &= z_1e_4e_1, \ z_2e_2e_5 = z_1e_4e_2, \ z_2e_2e_4 = z_1e_4e_5, \\ z_2e_3e_1 &= z_1e_1e_5, \ z_2e_3e_5 = z_1e_1e_3, \ z_2e_3e_4 = z_1e_1e_4, \\ z_2e_4e_2 &= z_2e_1e_5, \ z_2e_4e_3 = z_2e_1e_2, \ z_2e_4e_5 = z_2e_1e_3, \\ z_2e_5e_1 &= z_1e_5e_1, \ z_2e_5e_2 = z_1e_5e_2, \ z_2e_5e_3 = z_1e_5e_3, \ z_2e_5e_4 = z_1e_5e_4, \\ z_2e_1 \cdot z_2e_1e_5 &= z_2e_5 \cdot z_2e_5e_1, \ z_2e_1 \cdot z_2e_1e_2 = z_2e_2 \cdot z_2e_2e_1, \\ z_2e_1 \cdot z_2e_1e_3 &= z_2e_3 \cdot z_2e_3e_1, \\ z_2e_2 \cdot z_2e_2e_5 &= z_2e_5 \cdot z_2e_5e_2, \ z_2e_2 \cdot z_2e_2e_4 = z_2e_4 \cdot z_2e_4e_2, \\ z_2e_3 \cdot z_2e_3e_5 &= z_2e_5 \cdot z_2e_5e_3, \ z_2e_3 \cdot z_2e_3e_4 = z_2e_4 \cdot z_2e_4e_3, \\ z_2e_4 \cdot z_2e_4e_5 &= z_2e_5 \cdot z_2e_5e_4. \end{aligned}$$

An easy simplification shows no new generators are needed, the relations $z_1e_4e_5=z_1e_2e_4\cdot z_1e_3e_5\cdot z_1e_2e_4$, $z_1e_4e_5\cdot z_1e_3e_5=z_1e_2e_4\cdot z_1e_4e_5$ are needed.

From z_3 we have

$$z_{3} = (e_{1}, \overline{e}_{1}, e_{2}, e_{3}); (\overline{e}_{2}, e_{4}, e_{5}), (\overline{e}_{3}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{3}^{2} = (e_{1}, \overline{e}_{1}, e_{4}, e_{5}, e_{3}); (\overline{e}_{3}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{3}^{3} = (e_{1}, \overline{e}_{1}, e_{2}, \overline{e}_{5}, \overline{e}_{4}); (\overline{e}_{2}, e_{4}, e_{5}),$$

$$z_{3}^{4} = (e_{1}, \overline{e}_{1}, e_{2}, e_{3}); (\overline{e}_{2}, \overline{e}_{3}, \overline{e}_{5}, e_{5}),$$

$$z_{3}^{5} = (e_{1}, \overline{e}_{1}, e_{2}, e_{3}); (\overline{e}_{2}, e_{4}, \overline{e}_{4}, \overline{e}_{3}).$$

Generators for z_3 are:

$$z_3e_2, z_3e_3, z_3e_4, z_3e_5,$$

 $z_3e_2e_4, z_3e_2e_5, z_3e_2e_3,$
 $z_3e_3e_2, z_3e_3e_5, z_3e_3e_4,$
 $z_3e_4e_2, z_3e_4e_3,$
 $z_3e_5e_2, z_3e_5e_3.$

We see
$$z_1^2 = g_{3,1}^{2,2} \cdot z_3^2$$
, $z_1^2 = g_{3,1}^{3,2} \cdot z_3^3$, where

$$g_{3,1}^{2,2} = \begin{cases} e_1 & \mapsto & e_1, \\ e_3 & \mapsto & e_4, \\ e_4 & \mapsto & e_5, \\ e_5 & \mapsto & e_3; \end{cases} \quad g_{3,1}^{3,2} = \begin{cases} e_1 & \mapsto & e_1, \\ e_2 & \mapsto & e_5, \\ e_4 & \mapsto & \overline{e}_4, \\ e_5 & \mapsto & \overline{e}_3. \end{cases}$$

Relations for z_3 are:

$$\begin{aligned} z_3e_2,\ z_3e_4 &= 1,\ z_3e_5 &= 1,\\ z_3e_2e_4 &= z_1e_2e_5,\ z_3e_2e_5 &= z_1e_2e_3,\ z_3e_2e_3 &= z_1e_2e_4,\\ z_3e_3e_2 &= z_1e_2e_5,\ z_3e_3e_5 &= z_1e_2e_3,\ z_3e_3e_4 &= z_1e_2e_4,\\ z_3e_2\cdot z_3e_2e_4 &= z_3e_4\cdot z_3e_4e_2,\ z_3e_2\cdot z_3e_2e_5 &= z_3e_5\cdot z_3e_5e_2,\\ z_3e_2\cdot z_3e_2e_3 &= z_3e_3\cdot z_3e_3e_2,\\ z_3e_3\cdot z_3e_3e_5 &= z_3e_5\cdot z_3e_5e_3,\ z_3e_3\cdot z_3e_3e_4 &= z_3e_4\cdot z_3e_4e_3.\end{aligned}$$

An easy simplification shows that neither new generators nor new relations are needed.

From z_4 we have

$$z_{4} = (e_{1}, e_{2}, \overline{e}_{2}, e_{3}); (\overline{e}_{1}, e_{4}, e_{5}), (\overline{e}_{3}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{4}^{1} = (e_{4}, e_{5}, e_{2}, \overline{e}_{2}, e_{3}); (\overline{e}_{3}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{4}^{3} = (e_{1}, e_{2}, \overline{e}_{2}, \overline{e}_{5}, \overline{e}_{4}); (\overline{e}_{1}, e_{4}, e_{5}),$$

$$z_{4}^{4} = (e_{1}, e_{2}, \overline{e}_{2}, e_{3}); (\overline{e}_{1}, \overline{e}_{3}, \overline{e}_{5}, e_{5}),$$

$$z_{4}^{5} = (e_{1}, e_{2}, \overline{e}_{2}, e_{3}); (\overline{e}_{1}, e_{4}, \overline{e}_{4}, \overline{e}_{3}).$$

Generators for z_4 are:

$$z_4e_1, z_4e_3, z_4e_4, z_4e_5,$$

 $z_4e_1e_4, z_4e_1e_5, z_4e_1e_3,$
 $z_4e_3e_1, z_4e_3e_5, z_4e_3e_4,$
 $z_4e_4e_1, z_4e_4e_3,$
 $z_4e_5e_1, z_4e_5e_3.$

We see
$$z_1^4 = g_{4,1}^{1,4} \cdot z_4^1$$
, $z_1^1 = g_{4,1}^{3,1} \cdot z_4^3$, where

$$g_{4,1}^{1,4} = \begin{cases} e_2 & \mapsto & e_3, \\ e_3 & \mapsto & \overline{e}_5, \\ e_4 & \mapsto & e_1, \\ e_5 & \mapsto & e_2; \end{cases} \quad g_{4,1}^{3,1} = \begin{cases} e_1 & \mapsto & e_5, \\ e_2 & \mapsto & e_2, \\ e_4 & \mapsto & \overline{e}_4, \\ e_5 & \mapsto & \overline{e}_3. \end{cases}$$

Relations for z_4 are:

$$\begin{aligned} z_4e_4 &= 1, \ z_4e_4 = 1, \ z_4e_5 = 1, \\ z_4e_1e_4 &= z_1e_4e_1, \ z_4e_1e_5 = z_1e_4e_2, \ z_4e_1e_3 = z_1e_4e_5, \\ z_4e_3e_1 &= z_1e_1e_5, \ z_4e_3e_5 = z_1e_1e_3, \ z_4e_3e_4 = z_1e_1e_4, \\ z_4e_1 \cdot z_4e_1e_4 &= z_4e_4 \cdot z_4e_4e_1, \ z_4e_1 \cdot z_4e_1e_5 = z_4e_5 \cdot z_4e_5e_1, \\ z_4e_1 \cdot z_4e_1e_3 &= z_4e_3 \cdot z_4e_3e_1, \\ z_4e_3 \cdot z_4e_3e_5 &= z_4e_5 \cdot z_4e_5e_3, \ z_4e_3 \cdot z_4e_3e_4 = z_4e_4 \cdot z_4e_4e_3. \end{aligned}$$

An easy simplification shows that neither new generators nor new relations are needed.

From z_5 we have

$$z_{5} = (e_{1}, e_{2}, e_{3}, \overline{e}_{3}); (\overline{e}_{1}, e_{4}, e_{5}), (\overline{e}_{2}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{5}^{1} = (e_{4}, e_{5}, e_{2}, e_{3}, \overline{e}_{3}); (\overline{e}_{2}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{5}^{2} = (e_{1}, \overline{e}_{5}, \overline{e}_{4}, e_{3}, \overline{e}_{3}); (\overline{e}_{1}, e_{4}, e_{5}),$$

$$z_{5}^{4} = (e_{1}, e_{2}, e_{3}, \overline{e}_{3}); (\overline{e}_{1}, \overline{e}_{2}, \overline{e}_{5}, e_{5}),$$

$$z_{5}^{5} = (e_{1}, e_{2}, e_{3}, \overline{e}_{3}); (\overline{e}_{1}, e_{4}, \overline{e}_{4}, \overline{e}_{2}).$$

Generators for z_5 are:

$$z_5e_1, z_5e_2, z_5e_4, z_5e_5,$$

 $z_5e_1e_4, z_5e_1e_5, z_5e_1e_2,$
 $z_5e_2e_1, z_5e_2e_5, z_5e_2e_4,$
 $z_5e_4e_1, z_5e_4e_2,$
 $z_5e_5e_1, z_5e_5e_2.$

We see
$$z_1^3 = g_{5,1}^{1,3} \cdot z_5^1$$
, $z_1^3 = g_{5,1}^{2,3} \cdot z_5^2$, where

$$g_{5,1}^{1,3} = \begin{cases} e_2 & \mapsto & \overline{e}_5, \\ e_3 & \mapsto & \overline{e}_4, \\ e_4 & \mapsto & e_1, \\ e_5 & \mapsto & e_2; \end{cases} \qquad g_{5,1}^{2,3} = \begin{cases} e_1 & \mapsto & e_1, \\ e_3 & \mapsto & \overline{e}_2, \\ e_4 & \mapsto & e_5, \\ e_5 & \mapsto & \overline{e}_4. \end{cases}$$

Relations for z_5 are:

$$\begin{split} z_5e_1 &= 1, \ z_5e_4 = 1, \ z_5e_5 = 1, \\ z_5e_1e_4 &= z_1e_3e_1, \ z_5e_1e_5 = z_1e_3e_2, \ z_5e_1e_2 = z_1e_2e_4, \\ z_5e_2e_1 &= z_1e_3e_1, \ z_5e_2e_5 = z_1e_3e_4, \ z_5e_2e_4 = z_1e_3e_5, \\ z_5e_1 \cdot z_5e_1e_4 &= z_5e_4 \cdot z_5e_4e_1, \ z_5e_1 \cdot z_5e_1e_5 = z_5e_5 \cdot z_5e_5e_1, \\ z_5e_1 \cdot z_5e_1e_2 &= z_5e_2 \cdot z_5e_3e_1, \\ z_5e_2 \cdot z_5e_2e_5 &= z_5e_5 \cdot z_5e_5e_2, \ z_5e_2 \cdot z_5e_2e_4 = z_5e_4 \cdot z_5e_4e_2. \end{split}$$

An easy simplification shows that neither new generators nor new relations are needed.

From z_6 we have

$$z_{6} = (e_{1}, e_{2}, e_{3}, \overline{e}_{1}); (\overline{e}_{2}, e_{4}, e_{5}), (\overline{e}_{3}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{6}^{2} = (e_{1}, e_{4}, e_{5}, e_{3}, \overline{e}_{1}); (\overline{e}_{3}, \overline{e}_{5}, \overline{e}_{4}),$$

$$z_{6}^{3} = (e_{1}, e_{2}, \overline{e}_{5}, \overline{e}_{4}, \overline{e}_{1}); (\overline{e}_{2}, e_{4}, e_{5}),$$

$$z_{6}^{4} = (e_{1}, e_{2}, e_{3}, \overline{e}_{1}); (\overline{e}_{2}, \overline{e}_{3}, \overline{e}_{5}, e_{5}),$$

$$z_{6}^{5} = (e_{1}, e_{2}, e_{3}, \overline{e}_{1}); (\overline{e}_{2}, e_{4}, \overline{e}_{4}, \overline{e}_{3}).$$

Generators for z_6 are:

$$z_6e_2, z_6e_3, z_6e_4, z_6e_5,$$

 $z_6e_2e_4, z_6e_2e_5, z_6e_2e_3,$
 $z_6e_3e_2, z_6e_3e_5, z_6e_3e_4,$
 $z_6e_4e_2, z_6e_4e_3,$
 $z_6e_5e_2, z_6e_5e_3.$

We see $z_2^4 = g_{6,2}^{2,4} \cdot z_6^2$, $z_2^4 = g_{6,2}^{3,4} \cdot z_6^3$, where

$$g_{6,2}^{2,4} = \begin{cases} e_1 & \mapsto & e_1, \\ e_3 & \mapsto & e_5, \\ e_4 & \mapsto & e_2, \\ e_5 & \mapsto & e_3; \end{cases} \quad g_{6,2}^{3,4} = \begin{cases} e_1 & \mapsto & e_1, \\ e_2 & \mapsto & e_2, \\ e_4 & \mapsto & \overline{e}_5, \\ e_5 & \mapsto & \overline{e}_3. \end{cases}$$

Relations for z_6 are:

$$\begin{aligned} z_6e_2, z_6e_4 &= 1, \ z_6e_5 &= 1, \\ z_6e_2e_4 &= z_2e_4e_2, \ z_6e_2e_5 &= z_2e_4e_3, \ z_6e_2e_3 &= z_2e_4e_5, \\ z_6e_3e_2 &= z_2e_4e_2, \ z_6e_3e_5 &= z_2e_4e_3, \ z_6e_3e_4 &= z_2e_4e_5, \\ z_6e_2 \cdot z_6e_2e_4 &= z_6e_4 \cdot z_6e_4e_2, \ z_6e_2 \cdot z_6e_2e_5 &= z_6e_5 \cdot z_6e_5e_2, \\ z_6e_2 \cdot z_6e_2e_3 &= z_6e_3 \cdot z_6e_3e_2, \\ z_6e_3 \cdot z_6e_3e_5 &= z_6e_5 \cdot z_6e_5e_3, \ z_6e_3 \cdot z_6e_3e_4 &= z_6e_4 \cdot z_6e_4e_3. \end{aligned}$$

An easy simplification shows that neither new generators nor new relations are needed.

We conclude

$$\mathcal{AM}_{0,1,3} = \left\langle z_1 e_2 e_4, \ z_1 e_3 e_5, \ z_1 e_4 e_5 \ \middle| \ \begin{array}{l} z_1 e_4 e_5 = z_1 e_2 e_4 \cdot z_1 e_3 e_5 \cdot z_1 e_2 e_4, \\ z_1 e_4 e_5 \cdot z_1 e_3 e_5 = z_1 e_2 e_4 \cdot z_1 e_4 e_5 \end{array} \right\rangle$$
$$= \left\langle z_1 e_2 e_4, \ z_1 e_3 e_5 \ \middle| \ z_1 e_3 e_5 \cdot z_1 e_2 e_4 \cdot z_1 e_3 e_5 = z_1 e_2 e_4 \cdot z_1 e_3 e_5 \cdot z_1 e_2 e_4 \right\rangle.$$

Acknowledgments

I am grateful to Warren Dicks for introducing me to algebraic mapping-class groups and to Luis Paris for his advices during a post-doc in Dijon.

References

- [1] Heather Armstrong, Bradley Forrest, and Karen Vogtmann. A presentation for $Aut(F_n)$. J. Group Theory, 11(2):267–276, 2008.
- [2] Heather Armstrong, Bradley Forrest, and Karen Vogtmann. A presentation for $Aut(F_n)$. J. Group Theory, 11(2):267–276, 2008.
- [3] Silvia Benvenuti. Finite presentations for the mapping class group via the ordered complex of curves. Adv. Geom., 1(3):291–321, 2001.
- [4] Joan S. Birman and Hugh M. Hilden. On the mapping class groups of closed surfaces as covering spaces. In *Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook, N.Y., 1969)*, pages 81–115. Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J., 1971.
- [5] Kenneth S. Brown. Presentations for groups acting on simply-connected complexes. J. $Pure\ Appl.\ Algebra,\ 32(1):1-10,\ 1984.$
- [6] Marc Culler and Karen Vogtmann. Moduli of graphs and automorphisms of free groups. *Invent. Math.*, 84(1):91–119, 1986.
- [7] Warren Dicks and Edward Formanek. Automorphism subgroups of finite index in algebraic mapping class groups. J. Algebra, 189(1):58–89, 1997.
- [8] Warren Dicks and Edward Formanek. Algebraic mapping-class groups of orientable surfaces with boundaries. In *Infinite groups: geometric, combinatorial and dynamical aspects*, volume 248 of *Progr. Math.*, pages 57–116. Birkhäuser, Basel, 2005.
- [9] Sylvain Gervais. A finite presentation of the mapping class group of a punctured surface. *Topology*, 40(4):703–725, 2001.
- [10] John Harer. The second homology group of the mapping class group of an orientable surface. *Invent. Math.*, 72(2):221–239, 1983.
- [11] A. Hatcher and W. Thurston. A presentation for the mapping class group of a closed orientable surface. *Topology*, 19(3):221–237, 1980.
- [12] Susumu Hirose. A complex of curves and a presentation for the mapping class group of a surface. Osaka J. Math., 39(4):795–820, 2002.

- [13] Catherine Labruère and Luis Paris. Presentations for the punctured mapping class groups in terms of Artin groups. *Algebr. Geom. Topol.*, 1:73–114 (electronic), 2001.
- [14] Makoto Matsumoto. A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities. *Math. Ann.*, 316(3):401–418, 2000.
- [15] James McCool. Some finitely presented subgroups of the automorphism group of a free group. J. Algebra, 35:205–213, 1975.
- [16] James McCool. Generating the mapping class group (an algebraic approach). *Publ. Mat.*, 40(2):457–468, 1996.
- [17] Bronislaw Wajnryb. A simple presentation for the mapping class group of an orientable surface. *Israel J. Math.*, 45(2-3):157–174, 1983.
- [18] Bronislaw Wajnryb. Artin groups and geometric monodromy. *Invent. Math.*, 138(3):563–571, 1999.