

Numerical Differentiation - Lecture 01

Dr. Serhat Hosder

Associate Professor of Aerospace Engineering

Mechanical and Aerospace Engineering

290B Toomey Hall

Missouri S&T

Rolla, MO 65409

Phone: 573-341-7239

E-mail: hosders@mst.edu

Outline

- We will develop forward and backward difference approximations to derivatives
 - Taylor series expansions
 - Method of undetermined coefficients
 - Error terms
- Introduce operator notation and generalize firstorder accurate one-sided approximations to nth derivatives
- Develop second-order one-sided approximations
- Note that Chapter 23 in text book is on Numerical Differentiation

Numerical Differentiation

Assume that a function f(x) is analytic in the neighbourhood of some point x_{θ} (i.e., the function f(x) can be expanded in a Taylor series).

Consider the following data pairs:

$$(x_0-h, f(x_0-h)),$$

 $(x_0, f(x_0)),$
 $(x_0+h, f(x_0+h)).$

Expanding the function, $f(x_0+h)$ about x_0 in a Taylor's series, we obtain

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \frac{h^3}{3!}f'''(x_0) + \dots$$

AE/ME 5830

A Forward Difference Approximation

Solve for $f'(x_0)$:

$$f'(x_0) = \underbrace{\frac{f(x_0 + h) - f(x_0)}{h}}_{Approximation} - \underbrace{\frac{h}{2!} f''(x_0) - \frac{h^2}{3!} f'''(x_0) + \dots}_{Truncation Error}$$

Thus, a discrete (numerical) approximation for $f(x_0)$ is:

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

The error
$$= -\frac{h}{2}f''(\xi)$$
 where $\xi \in [x_0, x_0 + h]$ Error is $\vartheta(h)$

In shorthand notation,

$$f_i' = \frac{f_{i+1} - f_i}{h} + \mathsf{Error}$$

$$f_i' \approx \frac{f_{i+1} - f_i}{h} = \frac{\Delta f_i}{h}$$
 where Δ is called the Forward Difference Operator

A Backward Difference Approximation

Rewriting the data pairs as $(x_{i-1}, f_{i-1}), (x_i, f_i), (x_{i+1}, f_{i+1})$ and expanding the function, $f(x_{i-1})$ about the point x_i in a Taylor's series,

$$f_{i-1} = f_i - hf_i' + \frac{h^2}{2!} f_i'' - \dots$$

$$f'_{i} = \frac{f_{i} - f_{i-1}}{h} + \frac{h}{2!} f''_{i} - \frac{h^{2}}{3!} f''' + \dots$$

where

$$f_i' \approx \frac{f_i - f_{i-1}}{h}$$
 and

Error =
$$\frac{h}{2}f''_i - \frac{h^2}{6}f''' + \dots$$
 Error is $\theta(h)$

In terms of the backward difference operator

$$f_i' = \frac{f_i - f_{i-1}}{h} = \frac{\nabla f_i}{h}$$

AE/ME 5830

One-Sided Second Derivative

Let
$$f_i = f(x_i)$$

Expand f_{i+1} about x_i using a Taylor's series,

$$f_{i+1} = f_i + hf_i' + \frac{h^2}{2!} f_i'' + \frac{h^3}{3!} f_i''' + \dots \to (1)$$

and expand f_{i+2} about f_i using a Taylor's series

$$f_{i+2} = f_i + 2hf_i' + \frac{(2h)^2}{2!}f_i'' + \frac{(2h)^3}{3!}f_i''' + \dots \to (2)$$

In order to solve for f_i , we need to eliminate f_i .

To do this, multiply (1) by -2 and add to (2) to yield

$$f_{i+2} - 2f_{i+1} = -f_i + 0 + h^2 f_i'' + h^3 f_i''' + \mathcal{G}(h^4)$$

Solving for f_i'' yields

$$f_i'' = \frac{f_{i+2} - 2f_{i+1} + f_i}{h^2} - hf_i''' + \dots$$

AE/ME 5830 Spring 2018

6

Operator Notation

The approximation for the second derivative of f_i is:

$$f_i'' = \frac{f_{i+2} - 2f_{i+1} + f_i}{h^2}$$
 The error is $\mathcal{G}(h)$

This term can be regrouped as:

$$f_{i}'' = \frac{f_{i+2} - f_{i+1} - f_{i+1} + f_{i}}{h^{2}}$$

$$= \frac{\Delta f_{i+1} - \Delta f_{i}}{h^{2}} \qquad where \Delta f_{i} = f_{i+1} - f_{i}$$

$$= \frac{\Delta (f_{i+1} - f_{i})}{h^{2}}$$

$$= \frac{\Delta (\Delta f_{i})}{h^{2}} \implies f_{i}'' = \frac{\Delta^{2} f_{i}}{h^{2}}$$

Generalization to the nth derivative

Generalizing to the n^{th} derivative,

$$f_i^{(n)} = \frac{\Delta^n f_i}{h^n} + \mathcal{G}(h)$$

Using the Backward Difference operator, one obtains,

$$f_i^{(n)} = \frac{\nabla^n f_i}{h^n} + \mathcal{G}(h)$$

The principle of the 1st order forward (red) and backward (blue)

difference is depicted in the adjacent figure. We notice that the centered scheme (in green) approximates the slope better.

Higher Order Numerical Methods

To find the 2^{nd} order approximation of f'_i

$$f'_{i} = \frac{f_{i+1} - f_{i}}{h} - \frac{h}{2} f''_{i} - \frac{h^{2}}{6} f'''_{i} \dots$$
Substituting $f''_{i} = \frac{f_{i+2} - 2f_{i+1} + f_{i}}{h^{2}} - hf'''_{i} - \dots$

$$f'_{i} = \frac{f_{i+1} - f_{i}}{h} - \frac{h}{2} \left[\frac{f_{i+2} - 2f_{i+1} + f_{i}}{h^{2}} - hf'''_{i} - \dots \right] - \frac{h^{2}}{6} f'''_{i} - \dots$$

$$f'_{i} = \left(\frac{-f_{i+2} + 4f_{i+1} - 3f_{i}}{2h} \right) + \frac{h^{2}}{3} f'''_{i} + \dots$$

$$f_i' = \left(\frac{-f_{i+2} + 4f_{i+1} - 3f_i}{2h}\right) + 9(h^2)$$

Note that in this approach, one simply substitutes a difference approximation into the leading term of the truncation error of a lower order approximation. Many formulas can result from this approach.

Method of Undetermined Coefficients (1)

Find an expression for f'_i using data at i, i+1, and i+2.

$$f_{i+1} = f_i + hf_i' + \frac{h^2}{2!} f_i'' + \frac{h^3}{3!} f_i''' + \dots \rightarrow (1)$$

$$f_{i+2} = f_i + 2hf_i' + \frac{(2h)^2}{2!}f_i'' + \frac{(2h)^3}{3!}f_i''' + \dots \to (2)$$

$$(1) + \alpha(2) \Rightarrow$$

$$f_{i+1} + \alpha f_{i+2} = (1+\alpha)f_i + (1+2\alpha)hf_i' + \left(\frac{1}{2} + 2\alpha\right)h^2 f_i'' + \left(\frac{1}{6} + \frac{4}{3}\alpha\right)h^3 f_i'''$$

Choose α such to eliminate the leading term of the truncation error, i.e.,

find
$$\alpha$$
 from $\frac{1}{2} + 2\alpha = 0$

$$\Rightarrow \alpha = -\frac{1}{4}$$

Method of Undetermined Coefficients (2)

Using
$$\alpha = -\frac{1}{4}$$

$$\Rightarrow f'_{i} = 2\left(\frac{f_{i+1} - (\frac{1}{4})f_{i+2} - (\frac{3}{4})f_{i}}{h}\right)$$

$$= \left(\frac{-f_{i+2} + 4f_{i+1} - 3f_{i}}{2h}\right) + 9(h^{2})$$

Note this is what we got when we substituted a difference approximation into the leading truncation error term of the first order method.

Yet another (and often quite useful) approach:

Higher order differences can also obtained by passing the Lagrange polynomial through the points of interest, in this case f_i , f_{i+1} , f_{i+2} . This results in $P_2(x)$. One can then differentiate the polynomial to arrive at a difference formula and evaluate it at x_i . What will you get?

Summary

- Examined numerical differentiation by using Taylor series expansions
- Discussed one-sided forward and backward difference approximations
- Developed the truncation error terms for the formulas introduced
- Discussed different approaches for obtaining higher order derivative approximations
 - Undetermined coefficients
 - Differentiate the Lagrange polynomial (will see an example in our next lecture)