

Europäisches Patentamt
European Patent Office
Office pour le dépôt des brevets

⑪ Publication number:

0 254 588
A1

⑫

EUROPEAN PATENT APPLICATION

⑬ Application number: 87306570.0

⑬ Int. Cl.4: C 07 D 471/04
A 61 K 31/44

⑭ Date of filing: 24.07.87

⑮ Priority: 25.07.86 JP 173551/86
30.05.87 JP 133534/87

Takeda, Haruki
3555-10, Oaza-Shichihongi Kamisato-machi
Kodama-gun Saitama (JP)

⑯ Date of publication of application:
27.01.88 Bulletin 88/04

Iizumi, Kenichi
2-9, Kitano 1-chome
Mitaka-shi Tokyo (JP)

⑰ Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

Murakami, Kiyokazu
3-22, Nakatehara 2-chome Kohoku-ku
Yokohama-shi Kanagawa (JP)

⑲ Applicant: TOKYO TANABE COMPANY LIMITED
2-6, Nihonbashi-Honcho 2-chome
Chuo-ku Tokyo 103 (JP)

Hiaamitsu, Akira
1-2-457, Oaza-Higashimonzen
Omiya-shi Saitama (JP)

⑳ Inventor: Matsushige, Naoto
1-16-429 Nakaoiki 3-chome
Kawaguchi-shi Saitama (JP)

⑳ Representative: Holmes, Michael John et al
Frank B. Dehn & Co. Imperial House 15-19 Kingsway
London WC2B 6UZ (GB)

㉑ Imidazo[4,5-b] pyridine compounds, process for preparing same and pharmaceutical compositions containing same.

㉒ Imidazo[4,5-b]pyridine compounds of the general formula
[I] are provided:

EP 0 254 588 A1

where R¹ is straight-chain or branched C₁₋₈ alkoxy (which may be substituted with cycloalkyl) or C₂₋₄ fluoroalkoxy, R² is H, methyl or methoxy, and R³ and R⁴ are each H or methyl and may be the same or different. All these compounds exhibit good inhibition of potassium ion-dependent adenosine triphosphatase and excellent storage stability, so that they are usable for the treatment of gastric and/or duodenal ulcers.

D s ription**IMIDAZO[4,5-b]PYRIDINE COMPOUNDS, PROCESS FOR PREPARING SAME AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAME****5 BACKGROUND OF THE INVENTION****(1) Field of the Invention**

This invention relates to novel imidazo[4,5-b]pyridine compounds. The imidazo[4,5-b]pyridine compounds of this invention have excellent storage stability and can be used as drugs for the treatment of gastric and duodenal ulcers.

(2) Description of the Prior Art

In recent pathophysiological studies on gastric and duodenal ulcers, attention has been focused on the behavior of potassium ion-dependent adenosine triphosphatase [hereinafter referred to as (H⁺ + K⁺) ATPase] participating in the production of hydrochloric acid in the vesicles of the gastric endoplasmic reticulum, and the presence of an inhibitory effect on this enzyme is now considered to be a criterion of the usefulness of anti-ulcer agents (Gastroenterology, Vol. 1, p. 420, 1943; ibid., Vol. 73, p. 921, 1977). From this point of view, a class of compounds having a side chain comprising an unsubstituted to trisubstituted pyridylmethylsulfinyl group are now being developed as anti-ulcer agents, and one typical example thereof is Omeprazole having a benzimidazol skeleton (Japanese Patent Laid-Open No. 141783/79; British Medical Journal, Vol. 287, p. 12, 1983). On the other hand, it has been confirmed or suggested that certain imidazopyridine compounds have an inhibitory effect on the aforesaid enzyme. Typical examples thereof are compounds of the general formula

where one of X and Y is =CH- and the other is =N-, R¹ and R² are each a hydrogen atom, a lower alkoxy carbonyl group, a halogen atom, a lower alkyl group, an amino group or a hydroxyl group and may be the same or different, R³, R⁴ and R⁵ are each a hydrogen atom, a lower alkoxy group or a lower alkyl group and may be the same or different, A is a lower alkylene group, and l is 0 or 1. However, when Y is =CH-, X is =N-, and l is 0, R³, R⁴ and R⁵ should not all be hydrogen atoms. These compounds are reported in Japanese Patent Laid-Open No. 145182/86 and will hereinafter be referred to tentatively as the well-known imidazopyridine compounds.

However, it has been found that, when stored without any preventive measure, Omeprazole undergoes a higher degree of deterioration than might be expected. In order to overcome its low storage stability, it has been imperative to convert Omeprazole into its alkali salt (Japanese Patent Laid-Open No. 167587/84).

As to the well-known imidazopyridine compounds, the present inventors chose, as two typical examples thereof, 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-6-bromoimidazo[4,5-b]pyridine (hereinafter referred to tentatively as Compound α) and 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-6-methylimidazo[4,5-b]pyridine (hereinafter referred to tentatively as Compound β), and subjected them to various tests. As a result, it has been found that (1) similarly to Omeprazole, these compounds are also defective in storage stability and (2) while they exhibit a marked inhibitory effect on (H⁺ + K⁺) ATPase in the in vitro tests, this effect is not satisfactorily reflected in the in vivo tests for inhibitory effect on gastric secretion and for inhibitory effects on various experimental ulcers.

SUMMARY OF THE INVENTION

In view of these circumstances, the present inventors have made an exhaustive study of compounds related to the aforesaid well-known imidazopyridine compounds and have discovered that compounds obtained by substituting various alkoxy groups for the bromine atom or methyl group of Compounds α and β have excellent storage stability and exhibit a good anti-ulcer effect in various in vivo tests. The present invention has been completed on the basis of this discovery.

According to one feature of the present invention, there are provided imidazo[4,5-b]pyridine compounds of the general formula

5

10

where R¹ is a straight-chain or branched alkoxy group of 1 to 8 carbon atoms (which may be substituted with a cycloalkyl group which preferably contains 3 to 6 carbon atoms) or a fluoroalkyloxy group of 2 to 4 carbon atoms, R² is a hydrogen atom, a methyl group or a methoxy group, and R³ and R⁴ are each a hydrogen atom or a methyl group and may be the same or different.

According to another feature of the present invention, there are provided processes for preparing imidazo[4,5-b]pyridine compounds represented by the above general formula [I].

15

According to still another feature of the present invention, there are provided pharmaceutical compositions, containing an imidazo[4,5-b]pyridine compound represented by the above general formula [I], as an active ingredient.

It is to be understood that the imidazo[4,5-b]pyridine compounds represented by the general formula [I] also include their tautomers represented by the general formula

20

25

30

where R¹, R², R³ and R⁴ are as previously defined.

In the general formulae [I] and [I'], the alkoxy group represented by R¹ is selected from among methoxy, ethoxy, isopropoxy, n-propoxy, sec-butoxy, isobutoxy, tert-butoxy, n-butyloxy, n-pentyloxy, 3-methylbutyloxy, n-hexyloxy, n-heptyloxy, 5-methylhexyloxy, 2,4,4-trimethylpentyloxy, n-octyloxy, cyclopropylmethyloxy, 1-cyclopropylethoxy, cyclobutylmethyloxy, cyclopentylmethyloxy, 2-cyclopentylethoxy, 3-cyclopentylpropyloxy, cyclohexylmethyloxy, 2-cyclohexylethoxy and like groups. Similarly, the fluoroalkyloxy group represented by R¹ is selected from among 2,2,2-trifluoroethoxy, 2,2,3,3,3-pentafluoropropoxy, 1,1,1,3,3-hexafluoro-2-propyloxy, 2,2,3,3,4,4-heptafluorobutyloxy and like groups.

35

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

40

The imidazo[4,5-b]pyridine compounds represented by the above general formulas [I] and [I'] (hereinafter referred to briefly as the present compounds) can be prepared by oxidizing a sulfide compound of the general formula

45

50

where R¹, R², R³ and R⁴ are as previously defined. In the presence of a suitable solvent and with the aid of an oxidizing agent. The oxidizing agent may be used in an amount of 1.0 to 1.3 moles per mole of the sulfide compound [II]. Oxidizing agents useful for this purpose include, for example, peroxides such as m-chloroperbenzoic acid, perbenzoic acid, peracetic acid and the like. However, m-chloroperbenzoic acid is preferred because of its high stability. Suitable reaction solvents include, for example, halogenated hydrocarbons such as chloroform, tetrachloroethane, etc.; alcohols such as methanol, ethanol, propanol, butanol, etc.; and mixtures of two or more such solvents. However, from the viewpoint of selectivity and yield in the oxidation reaction, it is particularly preferable to use chloroform or a mixture of chloroform and methanol. The reaction is carried out at a temperature of -70 to 30°C, preferably -20 to 10°C, for a period of time ranging approximately from 1 minute to 24 hours, preferably from 5 minutes to 1 hour.

55

The sulfide compounds represented by the above general formula [II] can be prepared by condensing a thiol compound of the general formula

60

65

10 where R¹ is as previously defined, with a pyridine compound of the general formula

20 where R², R³ and R⁴ are as previously defined, in a reaction solvent. This reaction may be carried out in the presence or absence of a base. If it is carried out in the absence of base, the resulting sulfide compound [II] is in the form of a hydrochloride and, therefore, needs to be dehydrochlorinated by means of a deacidifying agent. The pyridine compound [IV] may be used in an amount equimolar to the thiol compound [III], and the base may be used in an amount of 2.0 to 3.0 moles per mole of the thiol compound [III]. Bases useful for this purpose include, for example, sodium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and the like. Suitable reaction solvents include, for example, alcohols such as methanol, ethanol, propanol, butanol, etc.; aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, etc.; water; and mixtures of two or more such solvents. The reaction is carried out at a temperature of 10 to 200°C, preferably 60 to 80°C, for a period of time ranging approximately from 1 minute to 12 hours, preferably from 5 minutes to 4 hours. The thiol compound [III] used as a starting material can be prepared according to many well-known processes including, for example, that described in The Journal of Organic Chemistry, Vol. 24, p. 1455, 1959.

35 Now, the beneficial effects of the present compounds [I] will be described hereinbelow. Specifically, they were tested for storage stability, *in vitro* inhibitory effect on (H⁺ + K⁺) ATPase, and *in vivo* inhibitory effects on gastric secretion and on various experimental ulcers. The test compounds used for this purpose were the compounds enumerated below and considered to be typical examples of the present compounds [I]. The designation given in parentheses after the chemical name of each compound means its tentative name as used herein and corresponds to the respective one of the examples which will be described later.

40 2-[2-(3,5-Dimethyl)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine (Example 1).
 2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine (Example 2).
 2-[2-(3,4,5-Trimethyl)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine (Example 3).
 2-[2-(4-Methoxy-5-methyl)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine (Example 4).
 2-[2-(4-Methoxy-5-methyl)pyridylmethylsulfanyl]-7-methoxyimidazo[4,5-b]pyridine (Example 7).
 45 2-[2-(3,4,5-Trimethyl)pyridylmethylsulfanyl]-5-ethoxyimidazo[4,5-b]pyridine (Example 8).
 2-[2-(3,5-Dimethyl)pyridylmethylsulfanyl]-5-isopropoxyimidazo[4,5-b]pyridine (Example 10).
 2-[2-(3,4,5-Trimethyl)pyridylmethylsulfanyl]-5-n-butylxyimidazo[4,5-b]pyridine (Example 12).
 2-[2-(4-Methoxy-5-methyl)pyridylmethylsulfanyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine (Example 13).
 50 2-[2-(3,5-Dimethyl)pyridylmethylsulfanyl]-5-ethoxyimidazo[4,5-b]pyridine (Example 14).
 2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-isopropoxyimidazo[4,5-b]pyridine (Example 15).
 2-[2-(4-Methoxy-5-methyl)pyridylmethylsulfanyl]-5-isopropoxyimidazo[4,5-b]pyridine (Example 16).
 55 2-[2-(4-Methoxy)pyridylmethylsulfanyl]-5-isopropoxyimidazo[4,5-b]pyridine (Example 17).
 2-[2-(3,5-Dimethyl)pyridylmethylsulfanyl]-5-n-propylxyimidazo[4,5-b]pyridine (Example 18).
 2-[2-(3,5-Dimethyl)pyridylmethylsulfanyl]-5-isobutylxyimidazo[4,5-b]pyridine (Example 19).
 2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-isobutylxyimidazo[4,5-b]pyridine (Example 20).
 2-[2-(4-Methoxy-5-methyl)pyridylmethylsulfanyl]-5-isobutylxyimidazo[4,5-b]pyridine (Example 21).
 60 2-[2-(4-Methoxy)pyridylmethylsulfanyl]-5-isobutylxyimidazo[4,5-b]pyridine (Example 22).
 2-[2-(3,5-Dimethyl)pyridylmethylsulfanyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine (Example 23).
 2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine (Example 24).
 65 2-[2-(4-Methoxy)pyridylmethylsulfanyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine (Example 25).
 2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine (Example 26).
 2-[2-(4-Methyl)pyridylmethylsulfanyl]-5-(2,2,3,3,4,4,4-heptafluorobutyloxy)imidazo[4,5-b]pyridine (Examp

30).

2-[2-(3,5-Dimethyl)pyridylmethylsulfinyl]-5-n-heptyloxyimidazo[4,5-b]pyridine (Example 33).

2-[2-(3,5-Dimethyl)pyridylmethylsulfinyl]-5-(3-methylbutyloxy)imidazo[4,5-b]pyridine (Example 34).

2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylsulfinyl]-6-(3-cyclopentylpropyloxy)imidazo[4,5-b]pyridine (Example 36).

5

(i) Storage stability

The storage stability of the present compounds [I] was tested by allowing each test compound to stand under severe conditions (i.e., a temperature of 60°C and a relative humidity of 75%) for 8 days and then determining its percentage of residue according to a thin-layer densitometric method (Bunseki Kagaku, Vol. 23, No. 9, p. 1016, 1974). More specifically, upon completion of the severe treatment, 100 µg of each test compound was applied to a thin-layer plate and this plate was developed with a chloroform-ethanol mixture (volume ratio 10:1). The thin-layer plate used for this purpose was a TLC Plate Aluminum Oxide 60F254 (manufactured by Merck Co.; 0.25 mm in thickness and 20 cm x 20 cm in size), and it was developed over a distance of 15 cm. Then, using a Shimazu Two-wavelength Chromatoscanner CS-910 (manufactured by Shimazu Seisakusho), the resulting spot was analyzed at a wavelength of 300-315 nm.

10

The results thus obtained are shown in Table 1. For purposes of comparison, the percentages of residue of Omeprazole (at a measuring wavelength of 300 nm) and Compounds α and β (at a measuring wavelength of 310 nm) were determined in the same manner as described above and are also shown in Table 1.

15

20

25

30

35

40

45

50

55

60

65

Table 1

5 Test compound	Storage stability (after treatment at 60°C and 75% RH for 8 days)
	10 Percentage of residue
Omeprazole	3
Compound α	0
Compound β	9
Example 1	98
Example 2	77
Example 3	99
Example 4	98
Example 7	53
Example 8	96
Example 10	92
Example 12	76
Example 13	88
Example 14	93
Example 15	87
Example 16	90
Example 17	75
Example 18	85
Example 19	78
Example 20	72
Example 21	69
Example 22	57
Example 23	95
Example 24	94
Example 25	51
Example 26	92
Example 30	73
Example 33	89
Example 34	76
Example 36	68

As is evident from Table 1, it can be recognized that the present compounds [I] have much better storage stability than Omeprazole and Compounds α and β .

(II) Inhibitory effect on ($H^+ + K^+$) ATPase

The inhibitory effect of the present compounds [II] on ($H^+ + K^+$) ATPase was tested by adding each test compound to a solution containing 300-500 µg, on a protein basis, of the enzyme, incubating this reaction mixture at 35-37°C for 5-30 minutes, and then determining the residual activity of ($H^+ + K^+$) ATPase present in the reaction mixture. The test compounds were dissolved in methanol or ethanol in advance and added to the reaction system in such an amount as to give a concentration of 1×10^{-3} M. The ($H^+ + K^+$) ATPase used in this test was prepared from fresh pieces of the fundus ventriculi of hog stomach according to the method of Saccocciani et al. (The Journal of Biological Chemistry, Vol. 251, No. 23, p. 7690, 1976). The residual activity of ($H^+ + K^+$) ATPase was determined by mixing magnesium chloride and potassium chloride with the incubated reaction mixture, adding adenosine triphosphate thereto, incubating this assay mixture 37°C for 5-15 minutes to effect an enzymic reaction, and colorimetrically determining the liberated inorganic phosphate by use of an ammonium molybdate reagent. The initial concentrations of magnesium chloride, potassium chloride and adenosine triphosphate were adjusted to 2 mM, 20 mM and 2 mM, respectively. Colorimetric determinations were made at a wavelength of 360-400 nm. As a control experiment, the residual activity of ($H^+ + K^+$) ATPase was determined by repeating the above-described procedure without adding any test compound to the reaction system. The results thus obtained are shown in Table 2. In this table, the inhibitory effect is indicated by the degree of inhibition which was obtained by calculating the difference between the measured value obtained in the control experiment and the measured value resulting from the addition of each test compound and expressing this difference as a percentage of the measured value obtained in the control experiment. For purposes of comparison, the inhibitory effect of Omeprazole and Compounds α and β on ($H^+ + K^+$) ATPase was tested in the same manner as described above and the results thus obtained are also shown in Table 2.

5

10

15

20

25

30

35

40

45

50

55

60

65

Table 2

Test compound	Inhibitory effect on ($H^+ + K^+$) ATPase (at 1×10^{-3} M)
	Degree of inhibition (%)
Omeprazole	38.7
Compound α	100
Compound β	100
Example 1	100
Example 2	96.6
Example 3	100
Example 4	100
Example 7	98.8
Example 8	100
Example 10	90.0
Example 12	98.5
Example 13	87.4
Example 14	100
Example 15	98.5
Example 16	96.1
Example 17	93.7
Example 18	92.3
Example 19	100
Example 20	100
Example 21	97.4
Example 22	94.6
Example 23	100
Example 24	100
Example 25	92.9
Example 26	100
Example 30	92.1
Example 33	95.4
Example 34	98.5
Example 36	93.0

As is evident from Table 2, it can be recognized that the in vitro inhibitory effect of the present compounds [I] on ($H^+ + K^+$) ATPase is much better than that of Omeprazole and is comparable to that of Compounds α

and β .

(iii) Inhibitory effect on gastric acid secretion

The inhibitory effect of the present compounds [I] on gastric acid secretion was tested by using male Wistar rats, weighing about 200 g, in groups of five. To these rats which had been fasted overnight, the test compounds were orally administered in a series of appropriately selected doses ranging from 1 to 100 mg/kg. Then, the pyloric end of the stomach was ligated. After the lapse of 4 hours, the total acidity of gastric juice of each rat was measured. More specifically, the test compounds were suspended in a 0.5% aqueous solution of carboxymethyl cellulose and administered to the rats 30 minutes before ligation. Gastric juice was collected by sacrificing and laparotomizing each rat. The total acidity of gastric juice was determined by titrating the gastric juice with a 0.1 N aqueous solution of sodium hydroxide until a pH of 7.0 was reached. As a control experiment, the total acidity of gastric juice of an untreated group was determined in the same manner as described above. The inhibitory effect of the test compounds on gastric acid secretion was evaluated on the basis of the dose (in mg/kg) required to inhibit gastric acid secretion, i.e. the total acidity of gastric juice, by 50% (hereinafter referred to as ED₅₀). The ED₅₀ value of each test compound was determined by calculating the difference in total acidity between the untreated group and each treated group, dividing the difference by the total acidity of the untreated group to obtain the degree of inhibition, and constructing a dose-response curve on the basis of the data thus obtained. The results are shown in Table 3. For purposes of comparison, the ED₅₀ values of Omeprazole and Compounds α and β were determined in the same manner as described above and are also shown in Table 3.

5

10

15

20

25

30

35

40

45

50

55

60

65

Table 3

	Test compound	Inhibitory effect on gastric acid secretion (p.o.)
		ED ₅₀ (mg/kg)
	Omeprazole	35
15	Compound α	73
	Compound β	41
20	Example 1	13
	Example 2	18
	Example 3	9
25	Example 4	15
	Example 7	22
	Example 8	12
30	Example 10	19
	Example 12	21
	Example 13	18
35	Example 14	15
	Example 15	13
	Example 16	16
40	Example 17	17
	Example 18	19
	Example 19	11
45	Example 20	10
	Example 21	13
	Example 22	15
50	Example 23	12
	Example 24	9
	Example 25	18
55	Example 26	15
	Example 30	19
	Example 33	17
60	Example 34	14
	Example 36	19

As is evident from Table 3, it can be recognized that the present compounds [I] exhibit a more marked in vivo inhibitory effect on gastric acid secretion than Compounds α and β.

(iv) Inhibitory eff cts on various experimental ulc rs

The inhibitory effects of the present compounds [I] on various experimental ulcers were tested by using male Wistar rats, weighing about 200 g, in groups of six and determining the respective ulceration index's for 5 types of experimental ulcers. In each test, the test compounds were suspended in a 0.5% aqueous solution of carboxymethyl cellulose and administered orally in a series of appropriately selected doses ranging from 1 to 100 mg/kg. The test procedures for 5 types of experimental ulcers were as follows:

5

(Shay's ulcer)

In rats which had been fasted for 48 hours, the pyloric end of the stomach was ligated and they were maintained for 14 hours without giving any food or water. Then, each rat was sacrificed and the area of the ulcer(s) formed in the forestomach part was measured. The ulceration index was calculated on the basis of the data thus obtained. The test compounds were administered 30 minutes before ligation.

10

(Water-immersion stress ulcer)

Rats which had been fasted for 15 hours were immobilized in stress cages and immersed chest-deep in a water bath at 21°C. After 10 hours, each rat was sacrificed and the length of the ulcer(s) formed in the glandular stomach part was measured. The ulceration index was calculated on the basis of the data thus obtained. The test compounds were administered 10 minutes before exposure to the stress.

15

(Hydrochloric acid-ethanol ulcer)

To rats which had been fasted for 24 hours, a 150 mM hydrochloric acid-60% ethanol mixture was orally administered in an amount of 0.5 ml per 100 g of body weight. After an hour, each rat was sacrificed and the length of the ulcer(s) formed in the glandular stomach part was measured. The ulceration index was calculated on the basis of the data thus obtained. The test compounds were administered 30 minutes before administration of the hydrochloric acid-ethanol mixture.

20

(Indomethacin ulcer)

To rats which had been fasted for 24 hours, Indomethacin was subcutaneously administered in a dose of 25 mg/kg. After 7 hours, each rat was sacrificed and the length of the ulcer(s) formed in the glandular stomach part was measured. The ulceration index was calculated on the basis of the data thus obtained. The test compounds were administered 30 minutes before administration of Indomethacin.

25

(Aspirin ulcer)

In rats which had been fasted for 24 hours, the pyloric end of the stomach was ligated. After 5 minutes, aspirin was orally administered thereto in a dose of 150 mg/kg. Seven hours after ligation, each rat was sacrificed and the length of the ulcer(s) formed in the glandular stomach part was measured. The ulceration index was calculated on the basis of the data thus obtained. The test compounds were administered 30 minutes before ligation.

30

The pharmacological effect of the test compounds on each of the aforesaid experimental ulcers was evaluated on the basis of the dose (in mg/kg) required to inhibit the formation of ulcers by 50% (hereinafter referred to as ID₅₀). The ID₅₀ value of each test compound was determined by calculating the difference in ulceration index between the untreated group and each treated group, dividing the difference by the ulceration index of the untreated group to obtain the degree of inhibition, and constructing a dose-response curve on the basis of the data thus obtained. The results are shown in Table 4. For purposes of comparison, the ID₅₀ values of Omeprazole and Compounds α and β were determined in the same manner as described above and are also shown in Table 4.

35

40

45

50

55

60

65

Table 4

Test compound Experi- mental ulcer	Inhibitory effects on various experimental ulcers, ID ₅₀ (mg/kg)			
	Omeprazole	Compound α	Compound β	Example 1
Shay's ulcer	30.3	100 or greater	42.0	11.0
Water-immersion stress ulcer	39.7	100 or greater	63.3	26.4
Hydrochloric acid- ethanol ulcer	13.6	63.3	25.4	5.1
Indomethacin ulcer	24.7	78.4	29.5	12.9
Aspirin ulcer	17.2	100 or greater	23.8	6.3

Test compound Experi- mental ulcer	Inhibitory effects on various experimental ulcers, ID ₅₀ (mg/kg)				
	Example 8	Example 13	Example 24	Example 26	Example 33
Shay's ulcer	15.1	17.4	10.8	14.7	19.2
Water-immersion stress ulcer	34.2	37.3	27.0	30.5	35.1
Hydrochloric acid- ethanol ulcer	8.2	9.6	3.5	7.9	10.3
Indomethacin ulcer	18.8	21.9	13.1	15.8	23.2
Aspirin ulcer	10.7	14.5	5.4	9.5	12.6

As is evident from Table 4, it can be recognized that the present compounds [I] have a very good inhibitory effect on various types of ulcers.

(v) Toxicity test

The acute toxicity (LD_{50}) of several typical examples of the present compounds [I] (i.e., the compounds of Examples 1, 8, 13, 19, 24, 26 and 33) was tested with 5-weeks-old male Wistar rats. The LD_{50} values of all compounds were greater than 4000 mg/kg in the case of oral administration, and greater than 500 mg/kg in the case of intraperitoneal administration. When Omeprazole was administered orally, its LD_{50} value was greater than 4000 mg/kg.

In consideration of the results of the above-described tests, the present compounds [I] may be said to be potent drugs useful for the treatment of gastric and duodenal ulcers and scarcely susceptible to inactivation during storage.

The present compounds [I] can be admixed with conventional pharmaceutical carriers to form various types of pharmaceutical compositions including solid preparations such as tablets, capsules, granules, powders, fine granules, etc., and liquid preparations such as injectable solutions, syrups, elixirs, suspensions, emulsions, etc. Solid preparations may be coated so as to provide them with enteric coatings. Liquid preparations may be made by reacting one of the present compounds [I] with an alkali to form a physiologically acceptable salt thereof and then dissolving this salt in water, or by dissolving one of the present compounds [I] in an aqueous solution of an alkali. The pharmaceutical carriers used for these purposes may be selected according to the desired dosage form. Examples of the pharmaceutical carriers include excipients, binders and disintegrants, such as corn starch, dextrin, α -, β - or γ -cyclodextrin, glucose, lactose, sucrose, methylcellulose, ethylcellulose, calcium carboxymethylcellulose, crystalline cellulose, magnesium stearate, sodium alginate, Witopsol W35, Witopsol E85, polyvinyl alcohol, synthetic aluminum silicate, etc.; lubricants and coating agents such as talc, waxes, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate, polyvinyl alcohol phthalate, styrene-maleic anhydride copolymer, polyvinyl acetal diethylaminoacetate, etc.; solubilizing agents such as glycerol, propylene glycol, mannitol, etc.; emulsifying or suspending agents such as polyoxyethylene stearate, polyoxyethylene cetyl alcohol ether, polyethylene glycol, polyvinyl pyrrolidone, etc.; stabilizers such as sorbitol, Tween 80, Span 60, fats and oils, etc.; and various solvents.

The dosage level of the present compounds [I] varies with the age of the patient, the severity of the disease, and the like. However, they are usually used in a daily dose of 0.5 to 2000 mg, preferably 3 to 200 mg, for adults. This daily dose may be administered in one to six divided doses, preferably in one to three divided doses.

The present invention is further illustrated by the following Reference Examples and Examples. The Reference Examples illustrates the preparation of sulfide compounds [III].

Reference Example A

1.81 g (0.01 mole) of 2-mercaptop-5-methoxyimidazo-[4,5-b]pyridine and 1.92 g (0.01 mole) of 2-chloromethyl-3,5-dimethylpyridine hydrochloride were added to 100 ml of ethanol containing 1.12 g (0.02 mole) of potassium hydroxide, and this mixture was heated under reflux for 2 hours. Upon cooling to room temperature, the resulting reaction solution was filtered to remove any insoluble matter, and the filtrate was concentrated under reduced pressure. The resulting residue was dissolved in 500 ml of chloroform, and this solution was washed with water, dried over anhydrous sodium sulfate and then evaporated to dryness under reduced pressure. The resulting residue was subjected to silica gel column chromatography using chloroform as the developing solvent. Thus, there was obtained 2.20 g (73.3% yield) of 2-[2-(3,5-dimethyl)-pyridylmethythio]-5-methoxyimidazo[4,5-b]pyridine in the form of colorless crystals having a melting point of 175-176°C.

The following 24 compounds were prepared in substantially the same manner as described above, except that the 2-mercaptop-5-methoxyimidazo[4,5-b]pyridine was replaced by 0.01 mole of each of the corresponding thiol compounds [III] and the 2-chloromethyl-3,5-dimethylpyridine hydrochloride was replaced by 0.01 mole of each of the corresponding pyridine compounds [IV].

- 2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylthio]-5-methoxyimidazo[4,5-b]pyridine, m.p. 154-155°C.
- 2-[2-(3,4,5-Trimethyl)pyridylmethylthio]-5-methoxyimidazo[4,5-b]pyridine, m.p. 150-151°C.
- 2-[2-(4-Methoxy-5-methyl)pyridylmethylthio]-5-methoxyimidazo[4,5-b]pyridine, m.p. 160-162°C.
- 2-[2-(4-Methyl)pyridylmethylthio]-5-methoxyimidazo-[4,5-b]pyridine, m.p. 134-137°C.
- 2-[2-(3,5-Dimethyl)pyridylmethylthio]-6-methoxyimidazo[4,5-b]pyridine, glassy material.
- 2-[2-(4-Methoxy-5-methyl)pyridylmethylthio]-7-methoxyimidazo[4,5-b]pyridine, glassy material.
- 2-[2-(3,4,5-Trimethyl)pyridylmethylthio]-5-ethoxyimidazo[4,5-b]pyridine, m.p. 127-128°C.
- 2-[2-(3,4,5-Trimethyl)pyridylmethylthio]-7-ethoxyimidazo[4,5-b]pyridine, m.p. 132-136°C.
- 2-[2-(3,5-Dimethyl)pyridylmethylthio]-5-isopropoxyimidazo[4,5-b]pyridine, m.p. 159-160°C.
- 2-[2-(4-Methyl)pyridylmethylthio]-5-sec-butyloxyimidazo[4,5-b]pyridine, glassy material.
- 2-[2-(3,4,5-Trimethyl)pyridylmethylthio]-5-n-butyloxyimidazo[4,5-b]pyridine, m.p. 119-120°C.
- 2-[2-(4-Methoxy-5-methyl)pyridylmethylthio]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine, m.p. 159-161°C.
- 2-[2-(3,5-Dimethyl)pyridylmethylthio]-5-ethoxyimidazo[4,5-b]pyridine, m.p. 146-147°C.
- 2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylthio]-5-isopropoxyimidazo[4,5-b]pyridine, m.p. 130-133°C.
- 2-[2-(4-Methoxy-5-methyl)pyridylmethylthio]-5-isopropoxyimidazo[4,5-b]pyridine, m.p. 92-94°C.
- 2-[2-(4-Methoxy)pyridylmethylthio]-5-isopropoxyimidazo[4,5-b]pyridine, m.p. 134-136°C.
- 2-[2-(3,5-Dimethyl)pyridylmethylthio]-5-n-propoxyimidazo[4,5-b]pyridine, m.p. 116-117°C.
- 2-[2-(3,5-Dimethyl)pyridylmethylthio]-5-isobutoxyimidazo[4,5-b]pyridine, m.p. 139-141°C.

2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylothio]-5-isobutyloxyimidazo[4,5-b]pyridine, m.p. 132-135°C.
 2-[2-(4-Methoxy-5-methyl)pyridylmethylothio]-5-isobutyloxyimidazo[4,5-b]pyridine, m.p. 153-154°C.
 2-[2-(4-Methoxy)pyridylmethylothio]-5-isobutyloxyimidazo[4,5-b]pyridine, m.p. 119-122°C.
 2-[2-(3,5-Dimethyl)pyridylmethylothio]-5-cyclopropylmethyloxyimidazo[4,5-b]pyridine, m.p. 126-128°C.
 5 2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylothio]-5-cyclopropylmethyloxyimidazo[4,5-b]pyridine, m.p. 150-153°C.
 2-[2-(4-Methoxy)pyridylmethylothio]-5-cyclopropylmethyloxyimidazo[4,5-b]pyridine, m.p. 115-117°C.

Reference Example B

10 2.50 g (0.01 mole) of 2-mercaptop-5-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine and 2.22 g (0.01 mole) of 2-chloromethyl-4-methoxy-3,5-dimethylpyridine hydrochloride were added to 100 ml of ethanol, and this mixture was stirred at 60°C for 2 hours. After the resulting reaction solution was concentrated under reduced pressure, 150 ml of a saturated aqueous solution of sodium hydrogen carbonate was added to the residue. This mixture was stirred and then extracted with 300 ml of chloroform. The extract thus obtained was dried over anhydrous sodium sulfate and then evaporated to dryness under reduced pressure. The desired product was isolated and purified by subjecting the resulting residue to silica gel column chromatography using a 50:1 mixture of chloroform and ethanol as the developing solvent. Thus, there was obtained 3.25 g (81.5% yield) of 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylothio]-5-(2,2,2-trifluoroethoxy)-imidazo[4,5-b]pyridine in the form of colorless crystals having a melting point of 178-180°C.

20 The following 11 compounds were prepared in substantially the same manner as described above, except that the 2-mercaptop-5-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine was replaced by 0.01 mole of each of the corresponding thiol compounds [III] and the 2-chloromethyl-4-methoxy-3,5-dimethylpyridine hydrochloride was replaced by 0.01 mole of each of the corresponding pyridine compounds [IV].

2-[2-(3,5-Dimethyl)pyridylmethylothio]-5-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine, m.p. 173-174°C.
 25 2-[2-(3,4,5-Trimethyl)pyridylmethylothio]-6-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine, m.p. 145-148°C.
 2-[2-(4-Methoxy-5-methyl)pyridylmethylothio]-7-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine, m.p. 157-159°C.
 2-[2-(4-Methyl)pyridylmethylothio]-5-(2,2,3,3,4,4,4-heptafluorobutyloxy)imidazo[4,5-b]pyridine, glassy material.
 2-[2-(3,5-Dimethyl)pyridylmethylothio]-5-n-pentyloxyimidazo[4,5-b]pyridine, m.p. 101-103°C.
 2-[2-(3,4,5-Trimethyl)pyridylmethylothio]-6-n-hexyloxyimidazo[4,5-b]pyridine, m.p. 96-99°C.
 30 2-[2-(3,5-Dimethyl)pyridylmethylothio]-5-n-heptyloxyimidazo[4,5-b]pyridine, m.p. 119-120°C.
 2-[2-(3,5-Dimethyl)pyridylmethylothio]-5-(3-methylbutyloxy)imidazo[4,5-b]pyridine, m.p. 101-104°C.
 2-[2-(4-Methoxy-5-methyl)pyridylmethylothio]-7-(2,4,4-trimethyl(pentyl)oxy)imidazo[4,5-b]pyridine, glassy material.
 35 2-[2-(3,5-Dimethyl-4-methoxy)pyridylmethylothio]-6-(3-cyclopentylpropoxy)imidazo[4,5-b]pyridine, glassy material.
 2-[2-(4-Methyl)pyridylmethylothio]-7-cyclohexylmethyloxyimidazo[4,5-b]pyridine, glassy material.

Example 1

1.50 g (0.005 mole) of 2-[2-(3,5-dimethyl)pyridylmethylothio]-5-methoxyimidazo[4,5-b]pyridine was dissolved in 150 ml of chloroform. To this solution was slowly added 0.86 g (0.005 mole) of m-chloroperbenzoic acid at 0-5°C, followed by stirring at that temperature for 10 minutes. While the resulting reaction solution was being kept at 0-5°C, 30 ml of a 5% aqueous solution of sodium hydrogen carbonate was injected thereinto and mixed therewith. Thereafter, the chloroform layer was separated, dried over anhydrous sodium sulfate, and then evaporated to dryness under reduced pressure. The resulting residue was recrystallized from ethyl acetate to obtain 1.18 g (74.7% yield) of 2-[2-(3,5-dimethyl)pyridylmethyliulfiny]-5-methoxyimidazo[4,5-b]pyridine in the form of colorless crystals. This product had a melting point of 175-177°C.

Infrared absorption spectrum (KBr, cm⁻¹): 1060(S=O).

Analysis:
 50 Calcd. for C₁₆H₁₈N₄O₂S (%) C, 56.94; H, 5.10; N, 17.71
 Found (%) C, 57.03; H, 5.04; N, 17.82

Examples 2-37

The compounds listed in Table 5 were prepared in substantially the same manner as described in Example 1, except that the 2-[2-(3,5-dimethyl)pyridylmethylothio]-5-methoxyimidazo[4,5-b]pyridine (0.005 mole) was replaced by each of the corresponding sulfide compounds [II] (0.005 mole), and the reaction temperature and the reaction time were suitably modified. These compounds were obtained in a yield ranging from 72.4% to 90.8%.

Table 5

Example No.	R ¹	R ²	R ³	R ⁴	Melting point °C (Recrystn. solvent)	IR (KBr) cm ⁻¹	Elemental analysis Molecular formula: upper row Calcd. (%) lower row Found (%)
2	5-OCH ₃	CH ₃	CH ₃	CH ₃	174 - 175 (ethyl ether)	1030 (S=O)	C ₁₆ H ₁₈ N ₄ O ₃ S: C, 55.47 H, 5.24 N, 16.18 C, 55.62 H, 5.37 N, 16.07
3	5-OCH ₃	CH ₃	CH ₃		188 - 190 (acetone-nitrile-chloroform)	1050 (S=O)	C ₁₆ H ₁₈ N ₄ O ₂ S: C, 58.16 H, 5.49 N, 16.96 C, 58.36 H, 5.55 N, 16.75
4	5-OCH ₃	OCH ₃	H		180 - 184 (ethyl acetate)	1030 (S=O)	C ₁₅ H ₁₆ N ₄ O ₃ S: C, 54.20 H, 4.85 N, 16.86 C, 54.12 H, 4.96 N, 16.68
5	5-OCH ₃	CH ₃	H		139 - 141 (ethyl acetate)	1050 (S=O)	C ₁₄ H ₁₄ N ₄ O ₂ S: C, 55.61 H, 4.67 N, 18.53 C, 55.79 H, 4.78 N, 18.48

Table 5 (continued)

Example No.	R^1	R^2	R^3	R^4	Melting point °C (Recrystn. solvent)	IR (KBr) cm^{-1} (S=O)	Elemental analysis		
							Molecular formula: upper row Calcd. (%) lower row Found (%)		
6	6-OCH ₃	H	CH ₃	CH ₃	163 - 166 (ethyl acetate)	1050	C ₁₅ H ₁₆ N ₄ O ₂ S:	C, 56.94 H, 5.10 N, 17.71 C, 56.76 H, 5.25 N, 17.59	
7	7-OCH ₃	OCH ₃	H	CH ₃	175 - 178 (ethyl acetate)	1050	C ₁₅ H ₁₆ N ₄ O ₃ S:	C, 54.20 H, 4.85 N, 16.86 C, 54.01 H, 4.92 N, 16.82	
8	5-OC ₂ H ₅	CH ₃	CH ₃	CH ₃	160 - 163 (ethyl acetate)	1050	C ₁₇ H ₂₀ N ₄ O ₂ S:	C, 59.28 H, 5.85 N, 16.27 C, 59.35 H, 5.92 N, 16.21	
9	7-OC ₂ H ₅	CH ₃	CH ₃	CH ₃	165 - 167 (ethyl acetate)	1050	C ₁₇ H ₂₀ N ₄ O ₂ S:	C, 59.28 H, 5.85 N, 16.27 C, 59.48 H, 5.89 N, 16.38	
10	5-OCH ₂ CH ₃	H	CH ₃	CH ₃	146 - 148 (methanol-ethyl ether)	1040	C ₁₇ H ₂₀ N ₄ O ₂ S:	C, 59.28 H, 5.85 N, 16.27 C, 59.49 H, 5.80 N, 16.27	

Table 5 (continued)

Example No.	R ¹	R ²	R ³	R ⁴	Melting point °C (Recrystn. solvent)	IR (KBr) cm ⁻¹ (S=O)	Elemental analysis Molecular formula: upper row Calcd. (%) lower row Found (%)
11	5-OCHCH ₂ CH ₃ CH ₃	CH ₃	H	H	glassy material (ethyl ether)	1040	C ₁₇ H ₂₀ N ₄ O ₂ S: C, 59.28 H, 5.85 N, 16.27 C, 59.20 H, 5.97 N, 16.48
12	5-O-n-C ₄ H ₉	CH ₃	CH ₃	CH ₃	glassy material (ethyl ether)	1040	C ₁₉ H ₂₄ N ₄ O ₂ S: C, 61.26 H, 6.49 N, 15.04 C, 61.54 H, 6.51 N, 15.11
13	5-OCH ₂	OCH ₃	H	CH ₃	154 - 157 (methanol-ethyl ether)	1050	C ₁₈ H ₂₀ N ₄ O ₃ S: C, 58.04 H, 5.41 N, 15.05 C, 58.02 H, 5.29 N, 14.92
14	5-OC ₂ H ₅	H	CH ₃	CH ₃	151 - 152 (ethyl acetate)	1060	C ₁₆ H ₁₈ N ₄ O ₂ S: C, 58.16 H, 5.49 N, 16.96 C, 58.42 H, 5.53 N, 16.98
15	5-OCH ₂ CH ₃	OCH ₃	CH ₃	CH ₃	124 - 126 (chloroform- ethyl ether)	1060 1080 (S=O)	C ₁₈ H ₂₂ N ₄ O ₃ S: C, 57.74 H, 5.92 N, 14.96 C, 57.96 H, 5.99 N, 14.81

Table 5 (continued)

Example No.	$\cdot R^1$	R^2	R^3	R^4	Melting Point °C (Recrystn. solvent)	IR (KBr) cm ⁻¹ (S=O)	Elemental analysis Molecular formula: upper row Calcd. (%) lower row Found (%)
16	$5-OCH_2-CH_3$	OCH_3	H	CH_3	169 - 173 (chloroform- ethyl ether)	1040	$C_{17}H_{20}N_4O_3S:$ C, 56.65 H, 5.59 N, 15.54 C, 56.54 H, 5.45 N, 15.60
17	$5-OCH_2-CH_3$	OCH_3	H	H	150 - 152 (chloroform- ethyl ether)	1060	$C_{16}H_{18}N_4O_3S:$ C, 55.48 H, 5.24 N, 16.17 C, 55.55 H, 5.37 N, 16.27
18	$5-OCH_2CH_2CH_3$	H	CH_3	CH_3	163 - 166 (ethyl acetate)	1060	$C_{17}H_{20}N_4O_2S:$ C, 59.28 H, 5.85 N, 16.27 C, 59.32 H, 5.87 N, 16.40
19	$5-OCH_2-CH_2-CH_3$	H	CH_3	CH_3	150 - 151 (ethyl acetate- hexane)	1060	$C_{18}H_{22}N_4O_2S:$ C, 60.31 H, 6.19 N, 15.63 C, 60.43 H, 6.25 N, 15.82
20	$5-OCH_2-CH_2-CH_3$	OCH_3	CH_3	CH_3	160 - 161 (ethyl ether)	1080	$C_{19}H_{24}N_4O_3S:$ C, 58.74 H, 6.23 N, 14.42 C, 58.55 H, 6.40 N, 14.21

Table 5 (continued)

Example No.	R ¹	R ²	R ³	R ⁴	Melting point °C (Recrystn. solvent)	IR (KBr)cm ⁻¹ (S=O)	Elemental analysis upper row Calcd. lower row Found (%)
21	5-OCH ₂ 	OCH ₃	H	CH ₃	142 - 144 (ethyl ether)	1080 (S=O)	C ₁₈ H ₂₂ N ₄ O ₃ S: C, 57.74 H, 5.92 N, 14.96 C, 57.97 H, 6.03 N, 14.99
22	5-OCH ₂ 	OCH ₃	H	H	157 - 159 (ethyl ether)	1050 (S=O)	C ₁₇ H ₂₀ N ₄ O ₃ S: C, 56.65 H, 5.59 N, 15.54 C, 56.90 H, 5.84 N, 15.47
23	5-OCH ₂ 	H	CH ₃	CH ₃	155 - 157 (chloroform- ethyl ether)	1060 (S=O)	C ₁₈ H ₂₀ N ₄ O ₂ : C, 60.65 H, 5.66 N, 15.72 C, 60.82 H, 5.75 N, 15.59
24	5-OCH ₂ 	OCH ₃	CH ₃	CH ₃	150 - 154 (ethyl acetate)	1060 1080 (S=O)	C ₁₉ H ₂₂ N ₄ O ₃ S: C, 59.05 H, 5.74 N, 14.50 C, 59.19 H, 5.90 N, 14.43
25	5-OCH ₂ 	OCH ₃	H	H	149 - 151 (ethyl acetate)	1040 (S=O)	C ₁₇ H ₁₈ N ₄ O ₃ S: C, 56.97 H, 5.06 N, 15.63 C, 57.20 H, 5.21 N, 15.62

Table 5 (continued)

Example No.	R ¹	R ²	R ³	R ⁴	Melting point °C (Recrystn. solvent)	IR. (KBr) cm ⁻¹	Elemental analysis Molecular formula: upper row Calcd. (%) lower row Found (%)
26	5-OCH ₂ CF ₃	OCH ₃	CH ₃	CH ₃	169 - 170 (ethyl acetate)	1060 1080 (S=O)	C ₁₇ H ₁₇ N ₄ O ₃ SF ₃ : C, 49.27 H, 4.13 N, 13.52 C, 49.25 H, 4.20 N, 13.56
27	5-OCH ₂ CF ₃	H	CH ₃	CH ₃	172 - 174 (ethyl acetate)	1070 (S=O)	C ₁₆ H ₁₅ N ₄ O ₂ SF ₃ : C, 50.00 H, 3.93 N, 14.58 C, 50.21 H, 4.01 N, 14.51
28	6-OCH ₂ CF ₃	CH ₃	CH ₃	CH ₃	165 - 168 (ethyl acetate)	1060 (S=O)	C ₁₇ H ₁₇ N ₄ O ₂ SF ₃ : C, 51.25 H, 4.30 N, 14.06 C, 51.40 H, 4.37 N, 14.13
29	7-OCH ₂ CF ₃	OCH ₃	H	CH ₃	159 - 162 (ethyl acetate)	1060 (S=O)	C ₁₆ H ₁₅ N ₄ O ₃ SF ₃ : C, 48.00 H, 3.78 N, 13.99 C, 48.09 H, 3.73 N, 13.87
30	5-OCH ₂ (CF ₂) ₂ CF ₃	CH ₃	H	H	colorless glassy material (ethyl ether)	1070 (S=O)	C ₁₇ H ₁₃ N ₄ O ₂ SF ₇ : C, 43.41 H, 2.79 N, 11.91 C, 43.54 H, 2.91 N, 11.88

Table 5 (continued)

Example No.	R ¹	R ²	R ³	R ⁴	Melting point °C (Recrystn. Solvent)	IR (KBr) cm ⁻¹ (S=O)	Elemental analysis Molecular formula: upper row Calcd. lower row Found (%)
31	5-O(CH ₂) ₄ CH ₃	H	CH ₃	CH ₃	119 - 122 (dichloromethane- ethyl ether)	1060	C ₁₉ H ₂₄ N ₄ O ₂ S: C, 61.27 H, 6.49 N, 15.04 C, 61.07 H, 6.63 N, 15.21
32	6-O(CH ₂) ₅ CH ₃	CH ₃	CH ₃	CH ₃	125 - 127 (dichloromethane)	1060	C ₂₁ H ₂₈ N ₄ O ₂ S: C, 62.97 H, 7.05 N, 13.99 C, 62.78 H, 7.01 N, 14.12
33	5-O(CH ₂) ₆ CH ₃	H	CH ₃	CH ₃	126 - 127 (ethyl acetate)	1070	C ₂₁ H ₂₈ N ₄ O ₂ S: C, 62.97 H, 7.05 N, 13.99 C, 63.20 H, 6.99 N, 13.83
34	5-O(CH ₂) ₂ -CH ₂ CH ₃	H	CH ₃	CH ₃	115 - 120 (ethyl ether)	1070	C ₁₉ H ₂₄ N ₄ O ₂ S: C, 61.27 H, 6.49 N, 15.04 C, 61.33 H, 6.62 N, 15.17
35	CH ₃ 7-OCH ₂ -CH-CH ₂ C-CH ₃ CH ₃	CH ₃	OCH ₃	H	colorless glassy material (ethyl ether)	1060	C ₂₂ H ₃₀ N ₄ O ₃ S: C, 61.37 H, 7.02 N, 13.01 C, 61.51 H, 7.26 N, 12.95

Table 5 (continued)

Example No.	R ¹	R ²	R ³	R ⁴	Melting point °C (Recrystn. solvent)	IR (KBr) cm ⁻¹	Elemental analysis		
							Molecular formula: upper row Calcd. (%) lower row Found (%)		
36	6-O(CH ₂) ₃ 	OCH ₃	CH ₃		colorless glassy material (ethyl ether)	1070 (S=O)	C ₂₃ H ₃₀ N ₄ O ₃ S:	C, 62.42 H, 6.83 N, 12.66 C, 62.19 H, 6.75 N, 12.78	
37		CH ₃	H	H	colorless glassy material (ethyl ether)	1070 (S=O)	C ₂₀ H ₂₄ N ₄ O ₂ S:	C, 62.48 H, 6.29 N, 14.57 C, 62.64 H, 6.17 N, 14.34	

Now, the preparation of several pharmaceutical compositions containing the present compounds [I] will be described hereinbelow.

(Tablets)

	<u>% by weight</u>	
(1) Compound of Example 1	25.0	5
(2) Lactose	41.0	
(3) Corn starch	15.0	
(4) Crystalline cellulose	15.0	10
(5) Hydroxypropyl cellulose	3.0	
(6) Magnesium stearate	1.0	
	100.0	
		15

The above ingredients (1)-(5) were blended together. After the addition of water, the resulting mixture was granulated and then dried. The granules so formed were adjusted to a predetermined size range, and the ingredient (6) was added thereto. The resulting mixture was compressed to form tablets each containing 100 mg of the active ingredient.

(Capsules)

	<u>% by weight</u>	
(1) Compound of Example 24	25.0	25
(2) Lactose	50.0	
(3) Corn starch	20.0	30
(4) Hydroxypropyl cellulose	3.0	
(5) Synthetic aluminum silicate	1.0	
(6) Magnesium stearate	1.0	35
	100.0	

According to conventional procedure, the above ingredients were blended together and then granulated. The granules so formed were filled into capsules, each of which contained 100 mg of the active ingredient.

Claims

1. An imidazo[4,5-b]pyridine compound of the general formula

where R¹ is a straight-chain or branched alkoxy group of 1 to 8 carbon atoms (which may be substituted with a cycloalkyl group) or a fluoroalkyloxy group of 2 to 4 carbon atoms, R² is a hydrogen atom, a methyl group or a methoxy group, and R³ and R⁴ are each a hydrogen atom or a methyl group and may be the same or different.

2. A compound as claimed in claim 1 wherein the straight-chain or branched alkoxy group is selected from the group consisting of methoxy, ethoxy, isopropoxy, n-propoxy, sec-butoxy, isobutoxy, n-butoxy, n-pentyloxy, 3-methylbutyl xy, n-hexyloxy, n-heptyloxy, 2,4,4-trimethylpentylxy, cycl propylmethoxy, 3-cyclopentylpr pyloxy and cycl hexylmethoxy, or the fluoroalkyloxy group is selected

from the group consisting of 2,2,2-trifluoroethyl and 2,2,3,3,4,4,4-heptafluorobutyloxy.

3. A compound as claimed in either of claims 1 and 2 wherein the substituted pyridyl group represented by the general formula

is selected from the group consisting of 2-(3,5-dimethyl)pyridyl, 2-(3,5-dimethyl-4-methoxy)pyridyl, 2-(3,4,5-trimethyl)pyridyl, 2-(4-methoxy-5-methyl)pyridyl, 2-(4-methoxy)pyridyl and 2-(4-methyl)pyridyl.

15

4. A compound as claimed in claim 1 which is any one of the following compounds,

2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine,
 2-[2-(3,4,5-trimethyl)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine,
 2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine,
 2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-7-methoxyimidazo[4,5-b]pyridine,
 2-[2-(3,4,5-trimethyl)pyridylmethylsulfinyl]-5-ethoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
 2-[2-(3,4,5-trimethyl)pyridylmethylsulfinyl]-5-n-butoxyimidazo[4,5-b]pyridine,
 2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-ethoxylimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
 2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
 2-[2-(4-methoxy)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-n-propoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-isobutoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-isobutoxyimidazo[4,5-b]pyridine,
 2-[2-(4-methoxy)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
 2-[2-(4-methoxy)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine,
 2-[2-(4-methyl)pyridylmethylsulfinyl]-5-(2,2,3,3,4,4,4-heptafluorobutyloxy)imidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-n-heptyloxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-(3-methylbutyloxy)imidazo[4,5-b]pyridine or
 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-6-(3-cyclopentylpropoxy)imidazo[4,5-b]pyridine.

30

5. A process for preparing an imidazo[4,5-b]pyridine compound of claim 1 wherein a sulfide compound of the general formula

where R¹, R², R³ and R⁴ are as defined in claim 1 is oxidised in the presence of a solvent and with the aid of an oxidising agent.

55

6. A sulfide compound of the general formula

where R¹ is a straight-chain or branched alkoxy group of 1 to 8 carbon atoms (which may be substituted with a cycloalkyl group) or a fluoroalkyloxy group of 2 to 4 carbon atoms, R² is a hydrogen atom, a methyl group or a methoxy group, and R³ and R⁴ are each a hydrogen atom or a methyl group and may be the same or different.

7. A compound as claimed in claim 6 which is any one of the following compounds,

- 2-[2-(3,5-dimethyl)pyridylmethylthio]-5-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylthio]-5-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,4,5-trimethyl)pyridylmethylthio]-5-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylthio]-5-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methyl)pyridylmethylthio]-5-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylthio]-6-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylthio]-7-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,4,5-trimethyl)pyridylmethylthio]-5-ethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,4,5-trimethyl)pyridylmethylthio]-7-ethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylthio]-5-isopropoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methyl)pyridylmethylthio]-5-sec-butyloxyimidazo[4,5-b]pyridine,
- 2-[2-(3,4,5-trimethyl)pyridylmethylthio]-5-n-butyloxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylthio]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylthio]-5-ethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylthio]-5-isopropoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylthio]-5-isopropoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy)pyridylmethylthio]-5-isopropoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylthio]-5-n-propoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylthio]-5-isobutylloxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylthio]-5-isobutylloxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylthio]-5-isobutylloxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy)pyridylmethylthio]-5-isobutylloxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylthio]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylthio]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy)pyridylmethylthio]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylthio]-5-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylthio]-5-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine,
- 2-[2-(3,4,5-trimethyl)pyridylmethylthio]-6-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylthio]-7-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine,
- 2-[2-(4-methyl)pyridylmethylthio]-5-(2,2,3,3,4,4,4-heptafluorobutoxy)imidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylthio]-5-n-pentyloxyimidazo[4,5-b]pyridine,
- 2-[2-(3,4,5-trimethyl)pyridylmethylthio]-6-n-hexyloxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylthio]-5-n-heptyloxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylthio]-5-(3-methylbutyloxy)imidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylthio]-7-(2,4,4-trimethylpentyl)imidazo[4,5-b]pyridine,
- 2-[2-(4-methyl)pyridylmethylthio]-6-(3-cyclopentylpropyl)imidazo[4,5-b]pyridine or
- 2-[2-(4-methyl)pyridylmethylthio]-7-cyclohexylmethoxyimidazo[4,5-b]pyridine.

8. A pharmaceutical composition comprising an imidazo[4,5-b]pyridine compound of claim 1.

9. A pharmaceutical composition as claimed in claim 8 where the imidazo[4,5-b]pyridine compound of claim 1 is selected from the group consisting of

- 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,4,5-trimethyl)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-7-methoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,4,5-trimethyl)pyridylmethylsulfinyl]-5-ethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,4,5-trimethyl)pyridylmethylsulfinyl]-5-n-butyloxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-ethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-n-propoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-isobutylloxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-isobutylloxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-5-isobutylloxyimidazo[4,5-b]pyridine,
- 2-[2-(4-methoxy)pyridylmethylsulfinyl]-5-isobutylloxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
- 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine ,

5 2-[2-(4-methoxy)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine,
 2-[2-(4-methyl)pyridylmethylsulfinyl]-5-(2,2,3,3,4,4,4-heptafluorobutyloxy)imidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-n-heptyoxyimidazo[4,5-b]pyridine,
 2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-(3-methylbutyloxy)imidazo[4,5-b]pyridine and
 2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-6-(3-cyclopentylpropyloxy)imidazo[4,5-b]pyridine.
 10. The use of a compound as claimed in any of claims 1 to 4 for the manufacture of a medicament for the treatment of gastric and/or duodenal ulcers.

10 Claims for the following contracting states: Spain, Austria and Greece

15 1. A process for preparing an imidazo[4,5-b]pyridine compound of the general formula

20 wherein R¹ is a straight-chain or branched alkoxy group of 1 to 8 carbon atoms (which may be substituted with a cycloalkyl group) or a fluoroalkoxy group of 2 to 4 carbon atoms, R² is a hydrogen atom, a methyl group or a methoxy group, and R³ and R⁴ are each a hydrogen atom or a methyl group and may be the same or different, wherein a sulfide compound of the general formula (I)

25 35 (wherein R¹, R², R³ and R⁴ are as previously defined) is oxidised in the presence of a solvent and with the aid of an oxidising agent.

40 2. A process as claimed in claim 1 wherein the compound of formula (I) is obtained by condensing a thiol compound of general formula (II)

45 50 (w herein R¹ is as defined in claim 1) with a pyridine compound of general formula (III)

55 60 65 70 75 80 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 120100 120101 120102 120103 120104 120105 120106 120107 120108 120109 120110 120111 120112 120113 120114 120115 120116 120117 120118 120119 120120 120121 120122 120123 120124 120125 120126 120127 120128 120129 120130 120131 120132 120133 120134 120135 120136 120137 120138 120139 120140 120141 120142 120143 120144 120145 120146 120147 120148 120149 120150 120151 120152 120153 120154 120155 120156 120157 120158 120159 120160 120161 120162 120163 120164 120165 120166 120167 120168 120169 120170 120171 120172 120173 120174 120175 120176 120177 120178 120179 120180 120181 120182 120183 120184 120185 120186 120187 120188 120189 120190 120191 120192 120193 120194 120195 120196 120197 120198 120199 120200 120201 120202 120203 120204 120205 120206 120207 120208 120209 120210 120211 120212 120213 120214 120215 120216 120217 120218 120219 120220 120221 120222 120223 120224 120225 120226 120227 120228 120229 120230 120231 120232 120233 120234 120235 120236 120237 120238 120239 120240 120241 120242 120243 120244 120245 120246 120247 120248 120249 120250 120251 120252 120253 120254 120255 120256 120257 120258 120259 120260 120261 120262 120263 120264 120265 120266 120267 120268 120269 120270 120271 120272 120273 120274 120275 120276 120277 120278 120279 120280 120281 120282 120283 120284 120285 120286 120287 120288 120289 120290 120291 120292 120293 120294 120295 120296 120297 120298 120299 120300 120301 120302 120303 120304 120305 120306 120307 120308 120309 120310 120311 120312 120313 120314 120315 120316 120317 120318 120319 120320 120321 120322 120323 120324 120325 120326 120327 120328 120329 120330 120331 120332 120333 120334 120335 120336 120337 120338 120339 120340 120341 120342 120343 120344 120345 120346 120347 120348 120349 12

4. A process as claimed in claim 2 or claim 3 where the solvent for the condensation step is selected from the group consisting of methanol, ethanol, propanol, butanol, dimethylformamide, dimethyl sulfoxide, water and mixtures of two or more such solvents, and the solvent for the oxidation step is selected from the group consisting of chloroform, tetrachloroethane, methanol, ethanol, butanol and mixtures of two or more such solvents.

5. A process as claimed in any of claims 2 to 4 where the base is selected from the group consisting of sodium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide and potassium hydroxide.

6. A process as claimed in any preceding claim where the oxidizing agent is selected from the group consisting of m-chloroperbenzoic acid, perbenzoic acid and peracetic acid.

7. A process as claimed in claim 1 where the straight-chain or branched alkoxy group is selected from the group consisting of methoxy, ethoxy, isopropoxy, n-propoxy, sec-butoxy, isobutoxy, n-butoxy, n-pentyloxy, 3-methylbutyloxy, n-hexyloxy, n-heptyloxy, 2,4,4-trimethylpentylxyloxy, cyclopropylmethoxy, 3-cyclopentylpropoxy and cyclohexylmethoxy, or the fluoroalkyloxy group is selected from the group consisting of 2,2,2-trifluoroethoxy and 2,2,3,3,4,4,4-heptafluorobutyloxy.

8. A process as claimed in claim 1 where the substituted pyridyl group represented by the general formula

is selected from the group consisting of 2-(3,5-dimethyl)pyridyl, 2-(3,5-dimethyl-4-methoxy)pyridyl, 2-(3,4,5-trimethyl)pyridyl, 2-(4-methoxy-5-methyl)pyridyl, 2-(4-methoxy)pyridyl and 2-(4-methyl)pyridyl.

9. A process as claimed in claim 1 where the imidazo[4,5-b]pyridine compound is selected from the group consisting of

2-[2-(3,5-dimethyl)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine,
2-[2-(3,4,5-trimethyl)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy-5-methyl)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy-5-methyl)pyridylmethylsulfanyl]-7-methoxyimidazo[4,5-b]pyridine,
2-[2-(3,4,5-trimethyl)pyridylmethylsulfanyl]-5-ethoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfanyl]-5-isopropoxyimidazo[4,5-b]pyridine,
2-[2-(3,4,5-trimethyl)pyridylmethylsulfanyl]-5-n-butoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy-5-methyl)pyridylmethylsulfanyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfanyl]-5-ethoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-isopropoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy-5-methyl)pyridylmethylsulfanyl]-5-isopropoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy)pyridylmethylsulfanyl]-5-isopropoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfanyl]-5-n-propoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfanyl]-5-isobutoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-isobutoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy-5-methyl)pyridylmethylsulfanyl]-5-isobutoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfanyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy)pyridylmethylsulfanyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-(2,2,2-trifluoroethoxy)imidazo[4,5-b]pyridine,
2-[2-(4-methyl)pyridylmethylsulfanyl]-5-(2,2,3,3,4,4,4-heptafluorobutyloxy)imidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfanyl]-5-n-heptyloxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfanyl]-5-(3-methylbutyloxy)imidazo[4,5-b]pyridine and
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfanyl]-6-(3-cyclopentylpropoxy)imidazo[4,5-b]pyridine.

10. A process for preparing a pharmaceutical composition useful for the treatment of gastric and/or duodenal ulcers which comprises incorporating an imidazo[4,5-b]pyridine compound as defined in claim 1 with one or more physiologically acceptable pharmaceutical carriers.

11. A process for preparing a pharmaceutical composition as claimed in claim 9 where an imidazo[4,5-b]pyridine compound is selected from the group consisting of

2-[2-(3,5-dimethyl)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine,
2-[2-(3,4,5-trimethyl)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy-5-methyl)pyridylmethylsulfanyl]-5-methoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy-5-methyl)pyridylmethylsulfanyl]-7-methoxyimidazo[4,5-b]pyridine,

0 254 588

2-[2-(3,4,5-trimethyl)pyridylmethylsulfinyl]-5-ethoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridin
2-[2-(3,4,5-trimethyl)pyridylmethylsulfinyl]-5-n-butylsulfinylimidazo[4,5-b]pyridin
2-[2-(4-methylxy-5-methyl)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-ethoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy)pyridylmethylsulfinyl]-5-isopropoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-n-propoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-isobutyloxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-isobutyloxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy-5-methyl)pyridylmethylsulfinyl]-5-isobutyloxyimidazo[4,5-b]pyridine,
2-[2-(4-methoxy)pyridylmethylsulfinyl]-5-isobutyloxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-cyclopropylmethoxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-5-(2,2,3,3,4,4,4-heptafluorobutyl)imidazo[4,5-b]pyridine,
2-[2-(4-methyl)pyridylmethylsulfinyl]-5-(2,2,3,3,4,4,4-heptafluorobutyl)imidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-n-heptyloxyimidazo[4,5-b]pyridine,
2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-(3-methylbutyloxy)imidazo[4,5-b]pyridine and
2-[2-(3,5-dimethyl-4-methoxy)pyridylmethylsulfinyl]-6-(3-cyclopentylpropoxy)imidazo[4,5-b]pyridine.

12. A process for preparing a pharmaceutical composition as claimed in claim 9 where said one or more physiologically acceptable pharmaceutical carriers are selected from the group consisting of corn starch, dextrin, α -, β - or γ -cyclodextrin, glucose, lactose, sucrose, methylcellulose, ethylcellulose, calcium carboxymethylcellulose, crystalline cellulose, magnesium stearate, sodium alginate, Witepsol W35, Witepsol E85, polyvinyl alcohol, synthetic aluminum silicate, talc, waxes, hydroxypropyl cellulose, hydroxy propyl methylcellulose, hydroxyethyl methylcellulose, cellulose acetate phthalate, hydroxypropyl methylcellulose phthalate, polyvinyl alcohol phthalate, styrene-maleic anhydride copolymer, polyvinyl acetal diethylaminoacetate, glycerol, propylene glycol, mannitol, polyoxyethylene stearate, polyoxyethylene cetyl alcohol ether, polyethylene glycol, polyvinyl pyrrolidone, sorbitol, Tween 80, Span 60, fats, oils and water.

35

40

45

50

55

60

65

European Patent
Office

EUROPEAN SEARCH REPORT

Application number

EP 87 30 6570

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)
A	EP-A-0 187 977 (OTSUKA PHARMACEUTICAL CO. LTD.) * examples 102-111, 115, 117-125; claims 16, 18-20, 22-28, 30b, 32 * & JP - A - 61 145 182 (Cat. D) ---	1,5,6, 8,10	C 07 D 471/04 A 61 K 31/44
A,P	CHEMICAL ABSTRACTS, vol. 106, no. 5, 2nd February 1987, page 556, column 2, abstract no. 33093t, Columbus, Ohio, US; & JP - A - 61 161 283 (KOTOBUKI SEIYAKU CO. LTD.) 21-07-1986 (Cat. A) ---	6	
A	GB-A-1 234 058 (EGYESULT GYOGYSZER ES TAPSZERGYAR AB) * page 1, lines 9-28; exame 15 * ---	6	
A	EP-A-0 134 400 (BYK GULDEN LOMBERG CHEMISCHE FABRIK GMBH) -----		C 07 D 471/00 A 61 K 31/00
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
BERLIN	13-10-1987	VAN AMSTERDAM L.J.P.	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			