Внешний курс

Основы информационной безопасности

Прокопьева М. Е.

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Прокопьева Марина Евгеньевна
- студент
- Российский университет дружбы народов

Цель работы

Цель работы

Пройти курс на степике и узнать много нового (или нет)

Выполнение

Выполнение

UDP - протокол сетевого уровня TCP - протокол транспортного уровня HTTPS - протокол прикладного уровня IP - протокол сетевого уровня, поэтому ответ HTTPS

Ранее было упомянуто, что протокол TCP - transmission control protocol - работает на транспортном уровне

Рис. 2: нет названия

В адресе типа IPv4 не может быть чисел больше 255, поэтому первые два варианта не подходят

Рис. 3: нет названия

DNS-сервер, Domain name server — приложение, предназначенное для ответов на DNS-запросы по соответствующему протоколу Обязательное условие – Сопоставление сервером доменных имен доменного имени с IP-адресом называется разрешением имени и адреса

	● 1 Mn
2.1 Как работает интернет: базовые сетевые протоколы 15 из 15 шагов пройдено 9 из 9 баллов пол	учено
DNS cepsep	
Выберите один вариант из списка	Верно решили 933 учащихся
Здорово, всё верно.	Из всех попыток 66 % верных
сопоставляет IP адреса доменным именам сегментирует данные на транспортном уровне выбирает маршрут пакета в сети выполняет адресацию на хосте Следующий шаг Решить снова	
Ваши решения Вы получили: 1 балл	

Распределение протоколов в модели ТСР/ІР:

- Прикладной уровень (Application Layer): HTTP, RTSP, FTP, DNS.
- Транспортный уровень (Transport Layer): TCP, UDP, SCTP, DCCP.
- Сетевой (Межсетевой) уровень (Network Layer): IP.
- Уровень сетевого доступа (Канальный) (Link Layer): Ethernet, IEEE 802.11, WLAN, SLIP, Token Ring

протокол http передает не зашифрованные данные, а протокол https уже будет передавать зашифрованные данные

Рис. 6: нет названия

https передает зашифрованные данные, одна из фаз - передача данных, другая должна быть рукопожатием

Рис. 7: нет названия

TLS определяется и клиентом, и сервером, чтобы было возможно подключиться

Рис. 8: нет названия

остальные варианты в протоколе предусмотрены

	● 1 M⊓
2.1 Как работает интернет: базовые сетевые протоколы 15 из 15 шагов пройдено 9 из 9 баллов пол	учено
В фазе "рукопожатия" протокола TLS не предусмотрено	
Выберите один вариант из списка « « » Абсолютно точно.	Верно решил 931 учащийся Из всех попыток 44 % верных
формирование общего секретного ключа между клиентом и сервером аутентификация (как минимум одной из сторон) выбираются алгоритмы шифрования/аутентификации шифрование данных Следующий шаг Решить снова Ваши решения	

Рис. 9: нет названия

Куки точно не хранят пароли и IP-адреса, а id сессии и идентификатор хранят

Рис. 10: нет названия

куки не делают соединение более надежным

Рис. 11: нет названия

Сессионные куки хранятся в течение сессии, то есть пока используется веб-сайт

Рис. 13: нет названия

Необходимо три узла - входной, промежуточный и выходной

	● 1 M⊓
2.3 Браузер ТОR. Анонимизация 6 из 6 шагов пройдено 4 из 4 баллов получено	
Сколько промежуточных узлов в луковой сети TOR?	
Выберите один вариант из списка Отличное решение!	Верно решили 959 учащихся Из всех попыток 77 % верных
○ 2 ● 3 ○ 4	
Следующий шаг	
Ваши решения Вы получили: 1 балл	

Рис. 14: нет названия

ІР-адрес не должен быть известен охранному и промежуточному узлам

Рис. 15: нет названия

Отправитель генерирует общий секретный ключ со узлами, через которые идет передача, то есть со всеми

Рис. 16: нет названия

Для получаения пакетов не нужно использовать TOR

Рис. 17: нет названия

это определение Wi-Fi

Рис. 18: нет названия

Для целей работы в Интернете Wi-Fi обычно располагается как канальный уровень

Рис. 19: нет названия

WEP (Wired Equivalent Privacy) – устаревший и небезопасный метод проверки подлинности

Рис. 20: нет названия

Нужно аутентифицировать устройства и позже передаются зашифрованные данные

Рис. 21: нет названия

WPA2 Personal для личного использования

Рис. 22: нет названия

Шифрование диска — технология защиты информации, переводящая данные на диске в нечитаемый код, который нелегальный пользователь не сможет легко расшифровать.

	○ 1 Mn
3.1 Шифрование диска 5 из 5 шагов пройдено 3 из 3 баллов получено	
Можно ли зашифровать загрузочный сектор диска	
Выберите один вариант из списка	Верно решили 949 учащихся Из всех попыток 89% верных
Правильно, молодец!	
ДаНет	
Следующий шаг	
Ваши решения Вы получили: 1 балл	
	Следующий шаг 🕻

Рис. 23: нет названия

Шифрование диска основано на симметричном шифровании

Рис. 24: нет названия

Отмечены программы, с помощью которых можно зашифровать жетский диск

Рис. 25: нет названия

Стойкий пароль - тот, который тяжлее подобрать, он должен быть со спец. символами и длинный

Рис. 26: нет названия

Все варианты, кроме менеджера паролей, совершенно не надежные

Рис. 27: нет названия

Опасно хранить пароли в открытом виде, поэтому хранят их хэши

Рис. 29: нет названия

Соль не поможет

Все приведенные меры защищают от утечек данных

Рис. 31: нет названия

Фишинговые ссылки очень похожи на ссылки известных сервисов, но с некоторыми отличиями

Рис. 32: нет названия

32/48

Ответ дан в соответствии с определением

Рис. 34: нет названия

Троян маскируется под обычную программу

Рис. 35: нет названия

Суть сквозного шифрования состоит в том, что сообзения передаются по узлам связи в зашифрованном виде

Рис. 37: нет названия

Для ответа на вопрос используется определение ассмиетричного шифрования с двумя ключами

Рис. 38: нет названия

O 1 U 1

36/48

Отмечены алгоритмы цифровой подписи

	● 1 M□
4.1 Введение в криптографию 7 из 7 шагов пройдено 5 из 5 баллов получено	
К алгоритмам цифровой подписи относятся	
Выберите все подходящие ответы из списка Правильно, молодец!	Верно решили 834 учащихся Из всех попыток 19% верных
Вы решили сложную задачу, поздравляем! Вы можете помочь остальным учащимся в комментариях, отвечая на их вопросы, или сравнить своё решение с другими на форуме решений.	
□ AES □ SHA2 ☑ RSA ☑ EODSA ☑ FOCT P 34.10-2012	

Рис. 40: нет названия

В информационной безопасности аутентификация

сообщения или аутентификация источника данных-это свойство, которое гарантирует, что сообщение не было изменено во время передачи (целостность данных) и что принимающая сторона может проверить источник сообщения

Определение обмена ключами Диффи-Хэллмана.

Рис. 42: нет названия

По определению цифровой подписи протокол ЭЦП относится к протоколам $c^{39/48}$

На первом этапе получатель сообщения строит собственный вариант хэшфункции подписанного документа. На втором этапе происходит расшифровка хэш-функции, содержащейся в сообщении с помощью открытого ключа отправителя. На третьем этапе производится сравнение двух хэшфункций. Их совпадение гарантирует одновременно подлинность содержимого документа и его авторства

Электронная подпись обеспечивает все указанное, кроме конфиденциальности

Рис. 45: нет названия

Для отправки налоговой отчетности в ФНС используется усиленная квалифицированная электронная подпись

Рис. 46: нет названия

Q1

Известные платежные системы - Visa, MasterCard, МИР

Рис. 48: нет названия

При онлайн платежах используется многофакторная аутентификация

Рис. 50: нет названия

Proof-of-Work, или PoW, (доказательство выполнения работы) — это алгоритм достижения консенсуса в блокчейне

Рис. 51: нет названия

Консенсус блокчейна — это процедура, в ходе которой участники сети достигают согласия о текущем состоянии данных в сети

Рис. 52: нет названия

O1

Прошла курс на степике

Основы кибербезопасности

100% материалов пройдено 53/53 баллов получено

Описание

Содержание

Новости

Комментарии

Отзывы 47/48

Выводы

Выводы

Прошла курс на степике