Automated Short Answer Grading (ASAG) Mini Project Presentation

Lana Anvar (80522012) Neha A S (80522016)

M.Sc. (Five Year Integrated) in Computer Science (Artificial Intelligence & Data Science)

29 April 2025

Agenda

- Introduction
- 2 Literature Review
- Objectives and Scope
- Methodology
- Results
- 6 BERT Methodology
- Conclusion and Future Work

Problem Statement

 Core Issue: Automating the grading of short textual answers to reduce manual effort, minimize bias, and enable scalable assessment.

Motivation

- Manual grading of short answers is time-consuming, subjective, and inconsistent.
- The rise of MOOCs demands scalable and fair assessment.
- NLP + ML = automated, objective, real-time evaluation.

Literature Review: Word2Vec + PySpark Approach

Reference: Automated Short Answer Grading with Word Embedding-Based Semantic Similarity Using PySpark' by Akhilesh P. et al., 2024

- **Technique:** Word2Vec embeddings + Cosine Similarity to measure semantic similarity between student and reference answers.
- Scalability: Used PySpark for distributed processing, enabling high-volume grading.
- Outcome: Regression-based evaluation yielded:
 - MSE = 0.2727
 - MAE = 0.4644
 - $R^2 = 0.67$
- Strengths:
 - Language-model-based grading.
 - Fair, unbiased scoring using diverse training data.
 - Good semantic understanding over keyword matching.

Literature Review: Gaps Identified

Limitations in the Word2Vec + PySpark ASAG Model:

- Over-reliance on Word2Vec Static Embeddings: Word2Vec generates static word representations and does not capture context variability (e.g., polysemy, syntax).
- Minimal Feature Diversity and Shallow Modeling: There was no use of advanced learning algorithms beyond basic similarity calculations."
- Lack of Interpretability and Feature Transparency: The use of only word embeddings and cosine similarity provides little transparency into what linguistic elements influenced the grading.
- Dataset Size: Relied heavily on preprocessed columns like student_modified and ref_modified, and used a relatively small, specific dataset.

Objectives

- Develop an Automated Short Answer Grading (ASAG) System: Design a system to automatically evaluate and grade student responses.
- Extract Multi-Dimensional Textual Features: TF-IDF similarity, BLEU score, ROUGE-L F1 score, Jaccard similarity, word overlaps, etc.
- **Solution Evaluate using Regression Models**: Linear Regression, Random Forest, SVR, and Gradient Boosting using MAE, MSE, and R^2 .

Dataset Used: ASAG Dataset

The ASAG dataset supports research in the automatic evaluation of student responses based on model answers.

Content Highlights:

- 646 total entries
- Domain-specific questions paired with reference answers
- Student responses in free-text form
- Cosine similarity scores between student and reference answers
- Human-assigned grades reflecting answer relevance/correctness

Dataset Overview and Column Selection I

Dataset Overview:

- 646 student responses.
- Columns available:
 - Student answers
 - Reference model answers
 - Grades
 - Preprocessed versions (modified/demoted forms)
 - Precomputed embeddings (Word2Vec-based)
 - Precalculated similarity scores and alignments
 - Question text and IDs

Columns Used:

Column Name	Purpose
student_answer	Raw student response text
ref_answer	Corresponding reference model answer
grades_round	Human-assigned score (target variable)

Dataset Overview and Column Selection II

Columns Not Used and Justification:

- Preprocessed Forms (student_modified, ref_modified, etc.):
- Embedding Columns (embed_stud, embed_ref_demoted, etc.):
- Similarity/Alignment Columns (cos_similarity, aligned_score, etc.):
- Question Metadata (question, question_id):

Focus on raw inputs and ground truth labels ensured flexibility, transparency, and control over feature extraction.

Annotation Process in ASAG Dataset

Annotation Process:

Each student answer is evaluated and scored numerically, likely using expert rubrics. These scores reflect:

- Semantic similarity to model answers
- Factual accuracy
- Appropriateness in context

System Architecture

Feature Extraction

Linguistic and Statistical Features Extracted:

- TF-IDF Cosine Similarity
- BLEU Score (N-gram precision)
- ROUGE-L F1 Score (Longest Common Subsequence)
- Jaccard Similarity
- Character Word Count Ratios:
 - Character Length Ratio and Difference
 - Word Count Ratio and Difference
- Token Overlap Ratio

Models Used

Regression Algorithms Implemented:

- Linear Regression:
- Ridge and Lasso Regression:
- ElasticNet
- **Support Vector Regression (SVR):** Performed best with MAE = 0.393, capturing non-linear patterns effectively.
- Random Forest Regressor
- Gradient Boosting Regressor

Ensemble Learning:

 Voting Regressor: Combined predictions from top models (SVR, RF, GB) to boost robustness.

Model Evaluation

Model	MSE	MAE	R ²
Linear Regression	0.281	0.453	0.378
Ridge Regression	0.281	0.453	0.377
Lasso Regression	0.452	0.606	-0.001
ElasticNet	0.452	0.606	-0.001
SVR	0.266	0.393	0.412
Random Forest	0.297	0.454	0.343
Gradient Boosting	0.306	0.470	0.322
Ensemble Model	0.272	0.431	0.399

Table: Model Evaluation Metrics

Comparison of Results: Best Model vs Paper

Metric	SVR	Results from Paper
MSE	0.266	0.2727
MAE	0.393	0.4644
R ²	0.412	0.67

Table: Comparison of key metrics between the best model and results reported in the paper.

Visualizations

Prediction vs Actual Grades

Objectives (BERT Methodology)

- Develop a BERT-based ASAG System: Fine-tune a pre-trained BERT model for grading short student responses.
- 2 Leverage Contextual Embeddings: Use BERT's [CLS] token output to capture the full meaning of student and reference answers.
- Build a Regression Head: Add a linear regression layer on top of BERT to predict continuous grades.
- Optimize and Fine-tune the Model: Train using MSE loss, AdamW optimizer, and gradient clipping for stability.
- **Second Second Second Metrics:** Assess model performance with MSE, MAE, and R^2 scores.

Why BERT for ASAG?

- Contextualized Word Representations:BERT processes both the student and reference answers in context, enhancing semantic understanding.
- Bidirectional Understanding: Reads text both left-to-right and right-to-left, providing better contextual knowledge.
- Fine-Tuned for ASAG Task:Pretrained on a large corpus, then fine-tuned for predicting grades, adapting to the nuances of student answers.

BERT Regression Architecture

BERT Tokenization & Embeddings

- Jointly tokenize [CLS] ref [SEP] student [SEP] via BertTokenizer.
- Pad / truncate to 256 tokens.
- Feed into bert-base-uncased to get [CLS] pooled output.

BERT Regression Model Architecture

Model Components:

- BERT Encoder:
 - Pretrained bert-base-uncased model to extract deep semantic features from the combined reference and student answers.
- Dropout Layer:
 - Defined with 30% probability to prevent overfitting
- Linear Regression Layer:
 - A fully connected layer that maps BERT's output (768 dimensions) to a single scalar (predicted grade).

Forward Pass Logic:

- Input token IDs and attention masks are passed to BERT.
- Extract the [CLS] pooled output representing the entire input.
- Apply dropout to the pooled output.
- Pass the output through a Linear layer to predict the grade.

BERT Model Training

• Optimizer: AdamW, LR = 2×10^{-5}

Loss: MSE

• Epochs: 10, Batch size: 16

• Gradient clipping (max_norm=1.0), dropout (p = 0.3)

BERT Model Evaluation

• MSE: 0.189 MAE: 0.300 R²: 0.581

Comparison of Results: Best Model vs Paper

Metric	BERT	Results from Paper
MSE	0.189	0.2727
MAE	0.300	0.4644
R ²	0.581	0.67

Table: Comparison of key metrics between the best model and results reported in the paper.

BERT Model Visualizations

(a) True vs. Predicted Grades

Conclusion

- ASAG system delivers fair, consistent, and scalable grading.
- Machine Learning models and BERT both improved prediction accuracy.
- BERT further enhanced semantic understanding beyond surface-level features.
- Results show lower error rates and strong correlation between true and predicted grades.

Future Enhancements

- Expand dataset size and diversity for better model generalization.
- Explore more advanced models like RoBERTa, DeBERTa, and GPT-based architectures.
- Improve preprocessing to handle grammar errors, spelling mistakes, and informal language.
- Focus on explainable AI techniques for transparent and fair grading.
- Implement active learning to continuously improve model based on human feedback.

Thank You!

Questions?

Let's talk about grading smarter.