No se permite el uso de ningún tipo de material. Todas las respuestas deben estar justificadas.

Ejercicio 1. (2 puntos) Sea a > 1. Se define por recurrencia la sucesión $(a_n) \subset \mathbb{R}$ mediante

$$a_n = \sqrt{a \cdot a_{n-1}}$$
 para todo $n > 1$ y $a_1 = \sqrt{a}$.

¿Es (a_n) una sucesión convergente? En caso afirmativo, calcular su límite.

Ejercicio 2. (2 puntos) Sea $A \subset \mathbb{R}$ un subconjunto de \mathbb{R} .

- a) Demostrar que el interior y el exterior de A son conjuntos abiertos.
- b) Demostrar que la frontera de A es un conjunto cerrado.

Ejercicio 3. (2 puntos) Estudiar la continuidad y la derivabilidad en \mathbb{R} de la función f(x) definida por

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0; \\ 1 & \text{si } x = 0. \end{cases}$$

Ejercicio 4. (2 puntos) Determinar, si existen, los extremos de la función

$$f(x) = |x - 1| + |x - 2|$$

en el intervalo cerrado [0, 4].

Ejercicio 5. (2 puntos) Se sabe que la serie $\sum_{n=1}^{\infty} a_n$ es convergente, su suma es 4, y además $a_1 = -2$ y $a_2 = 1$. Estudiar el carácter de la serie

$$\sum_{n=1}^{\infty} (a_{n+2} - a_n).$$

En caso de convergencia, calcular su suma.

Tiempo: 2 horas