Stat 88 Chapter 1 Exercise Solutions

Question 1

- a. NET is the percent of people in each broad group
- b. 0.66
- c. 78.6%
- d. 18 29 should have a smaller percent
- e. Consistent with (d)

Question 2

- a. $\frac{1}{3}$
- b. $\frac{1}{2}$
- c. False, $\frac{2}{3}$

Question 3

- a. Not possible
- b. $\frac{1}{2}$
- c. The chance that the student got an A given that the student did not get a B is larger

Question 4

- a. Not correct, too big
- b. Not correct, too big

Question 5

Between 20% and 100%

Stat 88 Chapter 2 Exercise Solutions

Question 1

ii)

Question 2

- a. $(\frac{8}{8})(\frac{6}{7})(\frac{4}{6})(\frac{2}{5})$
- b. $\left(\frac{800}{800}\right)\left(\frac{600}{799}\right)\left(\frac{400}{798}\right)\left(\frac{200}{797}\right)$
- c. i) $(\frac{8}{8})(\frac{6}{8})(\frac{4}{8})(\frac{2}{8})$
 - ii) $\left(\frac{800}{800}\right)\left(\frac{600}{800}\right)\left(\frac{400}{800}\right)\left(\frac{200}{800}\right)$

Question 3

- a. 26 * 25 * 24 * 23 * 22 * 21
- b. $\frac{1}{26*25*24*23*22*21}$
- c. $\frac{6*5*4*3*2*1-1}{26*25*24*23*22*21}$

Question 4

- a. True
- b. True
- c. False

Question 5

- a. $1 (\frac{364}{365})^n$
- b. $1 \left(\frac{365}{365}\right) \left(\frac{364}{365}\right) \dots \left(\frac{365 (n-1)}{365}\right)$

Question 6

$$\frac{\frac{1}{2} * \frac{1}{3}}{\frac{1}{6} + \frac{1}{3}}$$

Question 7

Option (iv):
$$\frac{2}{3}$$

Question 8

- a. $\frac{5}{100}$
- b. $\frac{5}{100}$
- c. $2 \cdot \frac{5}{100} \cdot \frac{95}{99}$

Stat 88 Chapter 2 Exercise Solutions

a. 0.95

b.
$$\frac{(0.95*0.8)}{(0.95*0.8+0.2*0.85)}$$

Question 10

a.
$$1 - (\frac{N-1}{N})^n$$

b. $\frac{n}{N}$

Question 11

$$\frac{(0.8*0.15)}{(0.85*0.2+0.8*0.15)}$$

Question 12

a. $P(\text{evidence} \mid \text{one of } 10,000 \text{ other possible suspects}) = \frac{1}{1000}$, not $P(\text{innocent} \mid \text{evidence})$

b. $\frac{1}{11}$

Stat 88 Chapter 3 Exercise Solutions

Question 1

b.
$$\sum_{i=1}^{5} \frac{i}{36}$$

c.
$$P(5 \le S \le 9) = \frac{4}{36} + \frac{5}{36} + \frac{6}{36} + \frac{5}{36} + \frac{4}{36}$$

Question 2

a.
$$P(R > 16) = \sum_{k=17}^{20} {20 \choose k} (\frac{1}{2})^k (\frac{1}{2})^{20-k}$$

b.
$$(1 - (part \, a))^3$$

Question 3

a.
$$\binom{10}{4} \left(\frac{18}{38}\right)^4 \left(\frac{20}{38}\right)^6$$

b.
$$\sum_{k=0}^{4} {10 \choose k} (\frac{18}{38})^k (\frac{20}{38})^{10-k}$$

c.
$$\binom{9}{2} \left(\frac{18}{38}\right)^2 \left(\frac{20}{38}\right)^7 \left(\frac{18}{38}\right)$$

d.
$$\sum_{k=0}^{4} {10 \choose k} (\frac{18}{38})^k (\frac{20}{38})^{10-k}$$

Question 4

Let X be the amount of money he makes. $P(X > 0) = \sum_{k=6}^{90} {90 \choose k} (\frac{2}{38})^k (\frac{36}{38})^{90-k}$

Question 5

a.
$$\frac{\binom{4}{2}\binom{48}{11}}{\binom{52}{13}}$$

b.
$$\frac{\binom{4}{3}\binom{48}{10}}{\binom{52}{13}} + \frac{\binom{4}{4}\binom{48}{9}}{\binom{52}{13}}$$

c.
$$\frac{\binom{12}{6}\binom{40}{7}}{\binom{52}{13}}$$

Question 6

a.
$$\frac{\binom{70}{10}\binom{130}{30}}{\binom{200}{40}}$$

b.
$$\sum_{i=11}^{40} \frac{\binom{70}{i} \binom{130}{40-i}}{\binom{200}{40}}$$

c.
$$\sum_{i=11}^{40} \frac{\binom{70}{i}\binom{130}{40-i}}{\binom{200}{40}}$$

$$n > -1,000,000 \cdot log(0.5)$$

 $n > 693,148$

Stat 88 Chapter 3 Exercise Solutions

Question 8

- a. $1 (\frac{1}{4})^{15}$
- b. $(\frac{1}{2})^{15}$

Question 9

- a. No
- b. Yes

- a. No
- b. Yes

Stat 88 Chapter 4 Exercise Solutions

Question 1

a. $0.8^4 * 0.2$

b. 0.8^{16}

Question 2

Question 3

$$0.7^9(0.3) + 0.3^9(0.7)$$

Question 4

a. $0.8^4 + 0.2^4$

b.
$$\binom{5}{2}(0.8)^2(0.2)^3 + \binom{5}{3}(0.8)^3(0.2)^2$$

c. $\binom{5}{3}(0.8)^3(0.2)^2(0.8)$

d.
$$\binom{3}{3}(0.8)^3(0.2)^0(0.8) + \binom{4}{3}(0.8)^3(0.2)(0.8) + \binom{5}{3}(0.8)^3(0.2)^2(0.8) + \binom{6}{3}(0.8)^3(0.2)^3(0.8)$$

a.
$$P(3 \text{ aces dealt in } 38 \text{ cards}, 39\text{th is an ace}) = \frac{\binom{4}{3}\binom{48}{35}}{\binom{52}{38}} * \frac{1}{14}$$

Stat 88 Chapter 4 Exercise Solutions

b. $P(\text{at most 3 aces dealt in first 20 cards}) = \sum_{i=0}^{3} \frac{\binom{4}{i}\binom{48}{20-i}}{\binom{52}{20}}$

Question 6

$$1 - e^{-1/2}$$

Question 7

a.
$$1 - \sum_{i=0}^{2} e^{-2} \frac{2^k}{k!}$$

b.
$$(e^{-2})^{20}$$

c.
$$\binom{20}{2} \left(e^{-2} \frac{2^3}{3!}\right)^2 \left(1 - e^{-2} \frac{2^3}{3!}\right)^{18}$$

Question 8

a.
$$e^{-9} \frac{9^{12}}{12!}$$

b.
$$1 - \sum_{k=0}^{12} e^{-9} \frac{9^k}{k!}$$

c.
$$(1 - e^{-8}) * e^{-1}$$

Question 9

F(x) = 0 if x < 6
F(x) =
$$1 - \sum_{k=0}^{5} {x \choose k} (\frac{1}{38})^k (\frac{37}{38})^{x-k}$$
 otherwise

Question 10

$$\binom{24}{10} * (0.7)^{14} * 0.3^{10}$$

Question 11

Let
$$p = 1 - \sum_{k=0}^{5} \frac{e^{-10}10^k}{k!}$$

 $1 - \sum_{j=0}^{90} {100 \choose j} p^j (1-p)^{100-j}$

Question 12

a.
$$\frac{\left(\frac{e^{-4}*4^3}{3!}\right)\left(\frac{e^{-4}*4^7}{7!}\right)}{\frac{e^{-8}*8^{10}}{10!}}$$

b. Binomial, $10, \frac{1}{2}$

Stat 88 Chapter 5 Exercise Solutions

Question 1

a.
$$-0.45$$

b.
$$-1.45$$

c.
$$3(0.2) + 2(0.25) + 1(0.35) + 0(0.2) = 1.45$$

d.
$$9(0.2) + 4(0.25) + 1(0.35) + 0(0.2) = 3.15$$

Question 2

b.
$$\sum_{k=11}^{15} {15 \choose k} 0.5^k 0.5^{15-k}$$

Question 3

a. Possible values: 1, 2, 3, 4, 5. Each of the probabilities is $\frac{1}{5}$

- b. 3
- c. No
- d. $\frac{51}{2} + 1$

Question 4

- a. $200(17(2/38) + (-1)(36/38)) \approx -10.53$ dollars
- b. No

Question 5

- a. No, both are Binomial(3, 0.5)
- b. No

		X = 0	X = 1	X=2	X = 3
	Y = 0	$\frac{1}{16}$	$\frac{1}{16}$	0	0
c.	Y=1	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{2}{16}$	0
	Y=2	0	$\frac{2}{16}$	$\frac{3}{16}$	$\frac{1}{16}$
	Y = 3	0	0	$\frac{1}{16}$	$\frac{1}{16}$

- d. $\frac{8}{16}$
- e. 0.5
- f. Agrees

Question 6

a. 2

Stat 88 Chapter 5 Exercise Solutions

b. 6

c.
$$6 * (\frac{5}{6})^{12}$$

Question 7

$$70(0.4) - 30(0.4) = 16 = 2(70(0.4)) - 40$$

Question 8

a. $\frac{1}{n}$

b. 1

c. B has the distribution Poisson(1)

d. Yes

Question 9

a. parameters: iii, v. statistics: i, ii, iv

b. unbiased estimators: i, ii, iii, v

Question 10

a. 2p - 1

b. $2\frac{X}{100} - 1$

Question 11

$$\tfrac{\left(\frac{(X_1+X_2+\ldots+X_n)}{n}-2\right)}{-5}$$

Question 12

a. Binomial(3, 0.5), 1.5

b.
$$E(Y \mid X = 0) = 0.5 \ E(Y \mid X = 1) = 1.1667 \ E(Y \mid X = 2) = 1.8333 \ E(Y \mid X = 3) = 2.5$$

c. 1.5

Question 13

1.2495

Question 14

a. 3

Stat 88 Chapter 5 Exercise Solutions

b. 30

c. $\frac{11}{5}$

Question 15

19.89 minutes

Stat 88 Chapter 6 Exercise Solutions

Question 1

$$E(X) = 2.1, SD(X) = 0.7$$

Question 2

$$E(X) = 22, SD(X) = 2$$

Question 3

- a. P(X = 10) = 1
- b. P(X = -10) = 0.5, P(X = 30) = 0.5
- c. $P(X=0) = \frac{4}{5}, P(X=50) = \frac{1}{5}$

Question 4

- a. Equal
- b. SD(X)

Question 5

$$SD(X) = \sqrt{5p + \frac{54}{4} - (3.5)^2}$$

Question 6

- a. $P(X \ge 80) \le \frac{1}{2}$
- b. $P(10 < X < 70) \ge 1 (\frac{1}{2})^2$
- c. $P(10 \le X \le 70) \ge 1 (\frac{1}{2})^2$

Question 7

Best lower bound: 0, Best upper bound: 0.16

Question 8

$$E(X) \ge 0.5m$$

Question 9

 $\frac{416}{1000}$

Question 10

a. Yes

Stat 88 Chapter 6 Exercise Solutions

b. Yes

c. Yes

Stat 88 Chapter 7 Exercise Solutions

Question 1

$$E(V) = 75, Var(V) = 289, SD(V) = 17$$

Question 2

$$E(R) = 20, SD(R) = 3.65$$

Question 3

- a. E(X) = -5.26, SD(X) = 40.19
- b. 43.13%

Question 4

- a. $E(X_1) = 3.5, SD(X_1) = 1.71$
- b. $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$ where $\sigma = \sqrt{\frac{N^2 1}{12}}$
- c. $\frac{2\sigma}{\sqrt{n}}$ where $\sigma = \sqrt{\frac{N^2-1}{12}}$
- d. As n gets large, $SD(\hat{N})$ gets small, so the distribution of \hat{N} gets more concentrated around its expectation

Question 5

$$E(X) = 3.2, SD(X) = 1.78$$

Question 6

- a. $E(X+Y) = \mu + \lambda$, $SD(X+Y) = \sqrt{\mu + \lambda}$
- b. $Poisson(\mu + \lambda)$

Question 7

$$E(X) = 6, SD(X) = 2.45$$

Question 8

- a. $E(M_T) = 15, SD(M_T) = 1.75$
- b. $E(M_C) = 15, SD(M_C) = 1.75$
- c. False

Question 9

a. (ii)

Stat 88 Chapter 7 Exercise Solutions

b. (iii)

Question 10

No

Question 11

a. Binomial(1300, 0.95)

b.
$$E(X) = 1300 * 0.95, SD(X) = \sqrt{1300 * 0.95 * 0.05}$$

c.
$$\sum_{k=1251}^{1300} {1300 \choose k} * (0.95)^k (0.05)^{1300-k}$$

a.
$$E(U) < E(W) < E(C)$$

b.
$$SD(C) = SD(U) < SD(W)$$

Stat 88 Chapter 8 Exercise Solutions

Question 1

- a. 8000, 424.26
- b. Normal(8000, 424.26)
- c. 40, 2.12
- d. Normal(40, 2.12)

Question 2

0.106

Question 3

- a. Right skewed
- b. Resembles a
- c. Same as a
- d. Approximately normal with mean 70,000 and SD 1,500

Question 4

- a. 60,000
- b. 1725.52

Question 5

68798.55

- a. Binomial(100, 0.5)
- b. Normal, mean = 50, SD = 5
- c. 68%
- d. 0.729
- e. 45, 55, 44.5, 55.5
- f. 0.729

Stat 88 Chapter 9 Exercise Solutions

Question 1

- a. H_0 : The unknown mean is 98.6. The temperatures $X_1, X_2, \ldots, X_{100}$ are i.i.d. with $\mu = E(X_1) = 98.6$
- b. H_A : $\mu < 98.6$
- c. $\bar{X} = \frac{1}{100} \sum_{i=1}^{100} X_i$. Small values support the alternative
- d. By the CLT, the distribution of \bar{X} is approximately normal; the mean depends on the hypothesis. $E_{H_0}(\bar{X}) = 98.6$. Under both hypotheses, $SD(\bar{X}) = \frac{\sigma}{\sqrt{100}} \approx \frac{1.5}{\sqrt{100}} = 0.15$.

The p-value is $P_{H_0}(\bar{X} < 98.2) \approx \Phi((98.2 - 98.6)/0.15)) \approx 0.004$.

e. p < 5%, so the data support the alternative more than they support the null.

Question 2

- a. H_0 : The null hypothesis is Mendel's model. The plants are 1064 i.i.d. Bernoulli (0.25) random variables.
- b. H_A : Mendel's model is not good.
- c. Let X be the number of short plants in the sample. Under H_0 , the distribution of X is binomial (1064, 0.25) so $E_{H_0}(X) = 1064 \times 0.25 = 266$. So use T = |X 266| as the statistic. Large values of T favor the alternative. You could also use |Y 0.25| as the statistic where Y is the proportion of short plants in the sample. But you would have to convert to counts in the next part.
- d. The observed value of T is |277 266| = 11. So the p-value is $P_{H_0}(T \ge 11) = P_{H_0}(|X 266| \ge 11) = P_{H_0}(X \le 266 11) + P_{H_0}(X \ge 266 + 11) \approx 0.46.$
- e. The data support Mendel's model. The p-value is substantial, and much bigger than 5%.

Question 3

- a. Yes
- b. No
- c. Alternative

Question 4

- a. False
- b. False

Question 5

X < 180 or X > 220

Question 6

[16.1828, 16.4572]

Stat 88 Chapter 9 Exercise Solutions

- a. [2.6455, 2.9545]
- b. False
- c. [7.793, 12.207]

Question 8

- a. Not possible
- b. 20
- c. n = 625
- d. 17.37% to 22.63%

Question 9

 H_0 : The treatment did nothing.

 H_A : The treatment did something, good or bad.

Let X be the number of test takers in the treatment group. Under H_0 , X is hypergeometric (200, 145, 95) and $E_{H_0}(X) = 95(145/200) = 68.875$.

Test statistic: T = |X - 68.875|. Large values favor the alternative.

Observed statistic: |75 - 68.875| = 6.125.

p-value:
$$P_{H_0}(X \le 68.875 - 6.125) + P_{H_0}(X \ge 68.875 + 6.125)$$

= $P_{H_0}(X \le 62) + P_{H_0}(X \ge 75) = \sum_{g=0}^{62} \frac{\binom{145}{g}\binom{55}{95-g}}{\binom{200}{95}} + \sum_{g=75}^{95} \frac{\binom{145}{g}\binom{55}{95-g}}{\binom{200}{95}} \approx 28.5\%$

Not statistically significant. The data are consistent with H_0 .

Question 10

- a. 0.0143
- b. Yes

Question 11

Let I_i be the indicator of the event that Robot i is faster after modification. Then I_1, I_2, \ldots, I_{12} are i.i.d. Bernoulli (p) for some p.

 H_0 : p = 0.5

 H_A : p > 0.5

Use the number of negative signs $X = \sum_{i=1}^{12} I_i$ as the statistic; large values favor the alternative. The data are consistent with the null.

- a. city
- b. (iii) and (iv)

Stat 88 Chapter 9 Exercise Solutions

- c. False
- d. the average income of a dults in the city, 40,000
- e. the average income of adults in the city, 2,000

Stat 88 Chapter 10 Exercise Solutions

Question 1

- a. $3 * 50^3$
- b. $F(x) = 1 \frac{50^3}{x^3}, x > 50.$ $F(x) = 0, x \le 50.$
- c. 75
- d. 1875
- e. 87.6%

Question 2

- a. 2.5 minutes after 3:07
- b. $(\frac{3}{5})^7$
- c. $F_X(x) = 0$ for $x \le 3:07$ and $F_X(x) = 1$ for $x \ge 3:12$. For x between 3:07 and 3:12 write x = 3:07 + t. $F_X(x) = P(X \le x)$ is the chance that all seven students arrive before time x. That's $(t/5)^7$.

Question 3

- a. e^{-3}
- b. e^{-2}

Question 4

$$\begin{array}{l} \frac{-log(\frac{1}{3})}{\frac{log(2)}{28.8}} \\ \textbf{Question 5} \end{array}$$

$$w = 1.645 * \sqrt{20^2 * 5} + 750$$

Question 6

159.15

Question 7

a.
$$((4-1.5) - 1.96 * \sqrt{(\frac{1.5^2}{300} + \frac{2^2}{200})}, (4-1.5) + 1.96 * \sqrt{(\frac{1.5^2}{300} + \frac{2^2}{200})})$$

b.
$$((0.5 - 0.2) - 1.96 * \sqrt{(\frac{0.5*0.5}{300} + \frac{0.2*0.8}{200})}, (0.5 - 0.2) + 1.96 * \sqrt{(\frac{0.5*0.5}{300} + \frac{0.2*0.8}{200})})$$

Question 8

Sample A is i.i.d. Bernoulli (p_A) and sample B is i.i.d. Bernoulli (p_B) . The sample proportion X_A is approximately normal with mean p_A and variance $\frac{p_A q_A}{500}$. The sample proportion X_B is approximately normal with mean p_B and variance $\frac{p_B q_B}{700}$. X_A and X_B are independent.

Stat 88 Chapter 10 Exercise Solutions

 H_0 : $p_A = p_B = p$ in the above.

 H_A : $p_A > p_B$.

Test statistic: $T = X_A - X_B$. Large values favor the alternative.

Under H_0 we have $p_A = p_B = p$ which is estimated from the data as $\hat{p} = 0.2 \cdot \frac{5}{12} + 0.16 \cdot \frac{7}{12} = 0.1767$.

 $E_{H_0}(T) = 0$ and $Var_{H_0}(T) = \frac{\hat{p}(1-\hat{p})}{500} + \frac{\hat{p}(1-\hat{p})}{700}$ so $SD_{H_0}(T) \approx 2.3\%$.

z-score: $\frac{(0.04-0)}{0.023} = 1.739$

p-value: 0.041

The data support the alternative.

Question 9

0.346

Question 10

a. 0 to ∞

b. F(v) = 0 for v < 0, $1 - e^{-5v}$ for v > 0

c. Exponential(5)

Question 11

False

Question 12

The GPAs from Sample A $X_1, X_2, \ldots, X_{100}$ are i.i.d. with $E(X_1) = \mu_X$

The GPAs from Sample B Y_1, Y_2, \dots, Y_{150} are i.i.d. with $E(Y_1) = \mu_Y$

The X_i s and Y_i s are independent.

 H_0 : $\mu_X = \mu_Y = \mu$ in the above.

 H_A : μ_X is not equal to μ_Y .

Test statistic: $T = |\bar{X} - \bar{Y}|$. Large values favor the alternative. $E_{H_0}(T) = 0$ and $Var_{H_0}(T) \approx \frac{0.5^2}{100} + \frac{0.3^2}{150}$ so $SD_{H_0}(T) \approx 0.0557$.

z-score: $\frac{(0.2-0)}{0.0557} = 3.592$

p-value: 0.00033

The data support the alternative.

Stat 88 Chapter 11 Exercise Solutions

Question 1

The two are not the same. The bias of the estimator in the report is $\frac{-1}{n}$. The variances are the same.

Question 2

- a. Underestimates θ
- b. $\frac{-2}{n+1}\theta$. For large n the size of the bias is small.
- c. $\frac{n+1}{n-1}T_1$
- d. $SD(T_2) = \frac{n+1}{n-1}SD(T_1)$. $SD(T_2)$ is bigger by a factor of $\frac{n+1}{n-1} = 1 + \frac{2}{n-1}$. For large n, $SD(T_2)$ is not much bigger than $SD(T_1)$

Question 3

$$\hat{Y} = \frac{E(XY)}{E(X^2)}X$$

Question 4

 $MSE(a^*) = E((Y - a^*X)^2) = E(Y^2) - 2a^*E(XY) + a^{*2}E(X^2) = E(Y^2) - \frac{(E(XY))^2}{E(X^2)}$ after plugging in a^* from the previous exercise.

The result follows because $MSE(a^*) \ge 0$.

Question 5

- a. if a > 0 then r(X, V) = 1.
 - If a < 0 then r(X, V) = -1.
- b. if a > 0 then r(X, W) = r(X, Y).

If
$$a < 0$$
 then $r(X, W) = -r(X, Y)$.

Question 6

- a. 1 or -1 depending on whether r(X,Y) > 0 or r(X,Y) < 0.
- b. 0

Question 7

- a. r(X,Y)
- b. $\hat{Y}^* = rX^*$ where r = r(X, Y)

Question 8

a. 0.779

Stat 88 Chapter 11 Exercise Solutions

b. 0.678

Question 9

Let r(X,Y)=r for short. $Var(\hat{Y})=r^2\sigma_Y^2$ and $Var(D)=(1-r^2)\sigma_Y^2$. The sum of the two is Var(Y).

Question 10

a.
$$MSE(c) = E((X - c)^2)$$

b.
$$\hat{c} = \mu_X$$

c.
$$MSE(\hat{c}) = \sigma_X^2$$

Question 11

a.
$$E(D_X D_Y) = (-1)(1 - \frac{2}{3})\frac{1}{3} + 0(0 - \frac{2}{3})\frac{1}{3} + 1(1 - \frac{2}{3})\frac{1}{3} = 0$$
. Thus $r(X, Y) = \frac{1}{\sigma_X \sigma_Y} E(D_X D_Y) = 0$.

b. No