

讲师简介

杨振涛 Chris (Gentle) Yang — e/acc

PECommunity.cn 平台工程社区发起人 vivo 互联网研发总监

- @CNCF app delivery TAG
- @TODO Group
- TED Translator/Reviewer

当前专注于:

- # 研发组织管理
- # 工程师体验与工程文化建设
- #企业开源治理 OSPO
- 从 Jenkins 时代起关注和实践 CI/CD 与 DevOps, 到云原生时代关注平台工程等最新实践, 在软件生产力的道路上持续耕耘, 并提出 **EngEx** 即 "工程师体验"概念。
- 期望继续探索 AIGC 时代的软件生产力以及工程师技能要求与开发者体验。

内容目录

- 01 中国的平台工程故事
- 02 平台工程火热背后的问题与挑战
- 03 平台工程的新思路与关键实践
- 04 平台工程案例: 失败与成功
- 05 给不同规模研发团队的新启示

msup®

软件是怎么发布的?

~ 2004 Hudson

~2006 AWS ~2010 DevOps Source Version Control Infrastructure as Code Provisioning Configuration Management

Development

Ops

Automation

Test

Continuous Integration/
Continuous Delivery or Deployment (CI/CD)

Visualizations

Logging

~ 2015-2019

CNCF

~2017 GitOps ~2022 Platform Engineering

https://github.com/PECommunity/awesome-platform-engineering

https://www.gartner.com/en/articles/gartner-top-10-strategic-technology-trends-for-2024 https://www.gartner.com/en/articles/gartner-top-10-strategic-technology-trends-for-2023

msup®

图1:2023年中国信息与通信技术成熟度曲线

2023年中国信息与通信技术成熟度曲线

Gartner.

https://mp.weixin.qq.com/s/zxw3UFb0oy3vKTou2ZaTJg

msup®

01 中国的平台工程故事

《极客有约》平台工程专题直播

案例访谈: 阿里 字节 KodeRover **7w**+ 在线观看

WHAT

HOW

• 平台工程是一门**设计、构建、维护和改进软件开 发工具链和工作流程**的学科,可在云原生时代通 过全面一致的工具和流程为软件工程组织提供自 助服务功能。

• 平台工程提供了以"**内部开发者平台**" 为代表的集成产品,涵盖了应用程序 全生命周期的操作需求。

WHY

- 软件系统复杂度
 - 业务复杂度
 - 技术复杂度
 - 架构复杂度
 - 运行态复杂度
- 开发人员认知负荷
- 规模化 DevOps 难题

平台工程 Platform Engineering

PECommunity.cn

- 内部开发者平台/门户 IDP
- 平台即产品 PaaP
- 自服务 Self-service
- IaC & DCM & GitOps

Measure

- 软件生产力
 - 业务开发团队的交付速率与质量
 - · 以DORA为代表的各种模型和框架
- 开发者体验
 - DevEx
- 平台自身
 - 平台能力 & 平台成熟度

Glossary

msup®

- Platform 平台
- Platform engineering 平台工程
- Platform consumer 平台客户
- Internal developer platform 内部开发者平台 IDP
- Platform as a Production 平台即产品 PaaP
- Golden Paths 黄金路径
- Thinnest viable platform 最薄可用平台 TVP
- Team Topologies 团队拓扑
- Cognitive Load 认知负荷

- Architecture Decision Record 架构决策日志 ADR
- Open Decision Framework 开放决策框架 ODF
- Jobs to be done 焦糖布丁理论/待办任务 JTBD
- Flywheel effect 飞轮效应
- Value Stream Mapping 价值流图 VSM
- Second system effect 第二系统效应
- KPI
- OKR
- SLO/SLI/SLA
- MVP
- POC
- NPS/CSAT/CES
- DevOps
- SRE

https://github.com/PECommunity/platform-engineering-glossary

02 平台工程火热背后的问题与挑战

对现状不满

规模化DevOps的复杂度和低成功率

各种"左移"为何移不动?

开发者面临越来越高的认知负荷 CNCF全景图有超1000+卡片

"谁开发,谁运维"?做不到! 系统控制权争夺战 Dev&Ops摩擦

有更高要求

研发团队之间如何协作 才能更少摩擦、更多丝滑, 从而获得研发效能和开发者体验的双赢

> 平台及平台团队期望 更高的用户满意度和NPS

软件系统的控制权:提供开发者控制面

破题思路

03 平台工程的新思路与关键实践

• CNCF app delivery TAG – Platform WG 平台白皮书: 平台工程的关键属性

https://tag-app-delivery.cncf.io/zh

关键实践

• CNCF app delivery TAG – Platform WG 平台白皮书: 平台工程团队的核心职责

100

IDP 内部开发者 门户? 平台? 社区?

关键实践 TVP & PaaP

平台的存在是为了满足平台用户需求

你的平台团队有平台产品经理角色吗?

_	ted technology model centers on prortant ways.	oroducto and platforms, which
	Products	Platforms
Purpose	Create business value by enhancing end users' experiences	Provide capabilities to products and the enterprise
Primary users	Customers and employees	Digital-product developers, along with functional employees who use platforms directly
Responsible personnel	Business-minded teams of tech specialists, designers, product managers, and functional employees	Technology-minded teams of digital and IT specialists
Pace of innovation	Rapid: upgrades happen as quickly as possible to keep up with users' needs	Variable: changes to support products and modernize underlying systems are made as priorities dictate
Examples	B2C: website/online search B2B: order configuration	B2C: inventory management B2B: pricing
McKinsey & Comp	any	

https://towardsdatascience.com/what-i-learned-building-platforms-at-stitch-fix-fc5e0ec72c86

关键实践 组织架构与协作模式

https://towardsdatascience.com/what-i-learned-building-platforms-at-stitch-fix-fc5e0ec72c86

关键实践 DevEx 与 度量

- DORA Metrics [*]
- Flow Metrics [*]
- Space Framework [*]
- Service Level Indicators [*]
- Platform Costs (FinOps)
- Platform' s security posture [*]
- DX25 is a new measurement framework developed by DX's research team — which includes the creators of DORA and SPACE.

https://dora.dev/quickcheck

用户满意 -> 组织满意 -> 自我满意

generate CI results

(time it takes to get

a change released to

 Code review turnaround time · Deployment lead time

production

metrics · Perceived productivity

System and

Deployment Frequency

Number of successful deployments to production, how rapidly are your team releasing to users?

Deploying via smaller, more frequent releases makes updates easier to understand, manage, and fix.

Velocity

How long does it take from commit to the code running in production?

Lower lead time to successfully implement changes indicates a more agile and responsive team and process.

X Lead Time for Changes

How often are your deployments causing a failure in production?

A low CFR indicates that changes are infrequently impacting the stability, availability, and user experience of the software.

Stability

How long does it take the team to properly recover from a failure once it is identified?

A low MTTR indicates that the team is effective at resolving significant issues in production, resulting in a better end-user experience.

Median Time to Restore

DORA

关键实践 DevEx 与 度量 Engineering Metrics Benchmarks: What Makes Elite Teams?

Category	Metric	Elite	Good	Fair	Needs Improvement
	Merge Frequency (per dev/week)	> 2	2 - 1.5	1.5 - 1	<1
	Coding Time (hours)	< 0.5	0.5 - 2.5	2.5 - 24	> 24
Efficiency	PR Pickup Time (hours)	<1	1-3	3 - 14	> 14
	PR Review Time (hours)	< 0.5	0.5 - 3	3 - 18	> 18
	Deploy Time (hours)	< 3	3 - 69	69 - 197	> 197
	Cycle Time (hours)	< 19	19 - 66	66 - 218	> 218
DODA	Deployment Frequency (per service)	> 1/day	> 2/week	1 - 2/week	< 1/week
DORA	Change Failure Rate (%)	< 1%	1% - 8%	8% - 39%	> 39%
	MTTR (hours)	< 7	7 - 9	9 -10	> 10
,	PR Size (code changes)	< 98	98 - 148	148 - 218	> 218
	Rework Rate (%)	< 2	2% - 5%	5% - 7%	> 7%
Quality and Predictability	Refactor Rate (%)	< 9%	9% - 15%	15% - 21%	> 21%
Ž	Planning Accuracy (per sprint)	> 85%	85% - 60%	60% - 40%	< 40%
	Capacity Accuracy (per sprint)	Ideal Range 85% - 115%	Under Commit above 130%	Potential Under Commit 116% - 130%	Potential Over Commit 70% - 84%

https://linearb.io/blog/engineering-metrics-benchmarks-what-makes-elite-teams

04 平台工程案例0: AIGC - v0.dev by Vercel

v0: submit PPT/PDF form

v1: add attribute : reference link

v2: display submitted PPT/PDF files in a grid layout with filter & order

Filter		Order	
Filter by type	~	Order by date	~
8	B		

案例1: 通用电气

一个价值 70 亿美元的教训! 如何避免平台工程变成"大灾难"?

https://www.infoq.cn/article/kfKwKQiGwv0Zbht0fkLW

PlatformCon 2022: Steve Pereira 分享了通用电气如何在类似平台项目上浪费了 70 亿美元的案例。

https://www.youtube.com/watch?v=T4xVQqvPRZs

What they wanted

Lean Startup

Eric Ries

FastWorks

laaS/PaaS

Datacenters

• On demand infra, pipelines, apps, etc etc

loT

Sensors, microservices, data

Cache, search, apps, templates, inner source etc etc

Analytics

Data lakes, lakehouses, warehouses, etc etc

Dashboards, APM, alerting, case mgmt, search, apps etc etc

Marketplace

Partnerships & sales

Reselling, internal and public use

Timeline	
2015	DOES: Learning in public, solid start
2016	Predicted \$15B Revenue by 2020
2020	GE Digital Revenue \$1B, >\$7B spent
2022	> 25 IoT Cloud Platform Vendors

CEO, Visible Value Streat
 Consulting

案例2: Salesforce等

平台工程的失败模式及如何避免,来自一线的宝贵经验

https://www.infoq.cn/article/oAygLIEZHJGmJf7l6vIr

"以下是我在为Salesforce 和其他公司创建 IDP 过程中得到的一些收获"

——Orgspace 的联合创始人兼首席执行官

DONTs

- 先把平台建好,他们一定会用的
- 这是唯一正确的路径
- 讨人喜欢的平台
- 搭积木式的架构方式
- "瑞士奶酪"平台
- 致命的成本旋涡

DOs

- 从产品经理的角度审视平台。
- 推销你的平台,但不要过度吹嘘。
- 将你的平台视为产品,并确定你的主要客户和利益相关方。
- 接受你不能重新创造 Heroku 或 AWS 的事实,除非你有数亿美元可以花。
- 了解并迭代 MVP, 它将帮助您赢得下一轮投资。

案例3: BACK Stack

有可能会发展为CNCF生态 平台工程标准技术栈

BACK Stack: Backstage & Argo & Crossplane & Kyverno

https://static.sched.com/hosted_files/kccncna2023/3b/Kubecon-2023-Backstack.pdf

案例4:Nethopper

为你的IDP实现提供的平台工程框架

KAOPS: Kubernetes Application Operations Platform as a Service

https://www.nethopper.io/

基于当前对平台工程的认知共识,并结合失败与成功案例,

行业内取得了哪些 阶段性成果呢?

msup®

成果1 CNCF 平台工程 白皮书 & 成熟度模型

方面		暂时性的	可操作	可扩展	可优化
投入	如何分配工作人员和资金给平台能力?	自愿或临时的	专职团队	作为产品	已启用的生态
采用	用户为什么和如何发现和使用内部平台和平台能力?	不稳定的	外部推动	内部拉力	参与性
接口	用户如何与平台进行交互并使用平台能力?	自定义程序	标准工具化	自定义解决方案	综合服务
Operations	平台及其能力是如何规划、确定优先次序、开发和维护的?	按需求	集中跟踪	集中启用	管理服务
衡量	-收集、整合反馈和学习的流程是什么? _	临时的	一致的收集	见解	定量与定性

 $\underline{https://tag-app-delivery.cncf.io/zh/wgs/platforms/platforms-maturity-model/v1}$

成果2 CNOE: Cloud Native Operational Excellence

使命

CNOE旨在通过内置的最佳实践,帮助平台工程师更快、更安全地构建IDP平台

愿景

CNOE努力成为领先软件公司构建 云原生内部开发者平台的首选框架

价值主张

- 云原生
- 社区最佳实践
- 模块化

https://cnoe.io

Adobe, Amazon Web Services, Autodesk, Salesforce, Twilio

Platform Architecture

CNOE 参考架构

https://cnoe.io/docs/reference-implementation

学习资源推荐: 微软 平台工程指南

平台工程旅程

Developer self-service capabilities

identity

& automation

Team

insights

Dev portal

Application templates

- Languages
- Source
- APIs
- Resources
- Pipelines

Web consumer

Web employee Mobile consumer

Work item

& Issue tracking

Mobile A employee So

Al/Data Science

Service

loT

...

Application platform

Runtime

Compute, network K8s & & Storage PaaS

Security & Compliance

Identity Policies Compliance & Secrets & RBAC & Auditing

Continuous Improvement

Usage Observe & Insights Experiment

Ops

Monitoring & Incident Mgmt

Engineering systems

IC Dev

IDE / Editor Dev Box Collaboration

Source code Sync & Async control Collab

Build

Security Scanning Test

Continuous Integration & Deployment

CD / GitOps

https://learn.microsoft.com/en-us/platform-engineering

05 获得的新启示

规模化组织

文化导入,组织架构适配

战略挂钩,业务价值支撑

- 加速拥抱云原生
- 优化你的团队拓扑
- 度量平台的成功

- · 平台工程会是终点吗?
- 云原生时代软件工程的理想态
- Everything is code!

初创团队

MVP & TVP

共同参与

For Platformers!

@平台工程洞察

PECommunity.cn

TOP1冷冷®

nn 1nn

100

100

主办方 **msup**®

100 100 100

微信官方公众号: 壹佰案例 关注查看更多年度实践案例