# SOS - Group Theory Final Report

#### Anumalasetty Varshith



Mentored by Arpon Basu

3 August 2023

#### Over - view

- Definition of Isomorphism
- 2 4 steps to prove Isomorphism
- An Example

# Isomorphism

### Definition of Group Isomorphism

An isomorphism  $\phi$  from a group G to a group  $\overline{G}$  is a one-to-one mapping (or function) from G onto  $\overline{G}$  that preserves the group operation.

Symbolically,

$$\phi(ab) = \phi(a)\phi(b) \ \forall a, b \text{ in } G$$

If there is an isomorphism from G onto  $\overline{G}$ , we say that G and  $\overline{G}$  are isomorphic and write  $G \approx \overline{G}$ .

- There are four separate steps involved in proving that a group G is isomorphic to a group  $\overline{G}$ .
  - Step 1 Mapping. Define a candidate for the isomorphism; that is, define a function  $\phi$  from G to  $\overline{G}$ .

## Isomorphism

- Step 2
  - One one. Prove that  $\phi$  is one-to-one; that is, assume that  $\phi(a) = \phi(b)$  and prove that a = b.
- Step 3 Onto. Prove that  $\phi$  is onto; that is, for any element  $\overline{g}$  in  $\overline{G}$ , find an element g in G such that  $\phi(g) = \overline{g}$ .
- Step 4
  O.P. Prove that  $\phi$  is operation-preserving; that is, show that  $\phi(ab) = \phi(a)\phi(b)$  for all a and b in G.

An Example

### An Example

Prove that the mapping from G to G by  $\phi_M(A)=MAM^{-1}$  for all A in G is an isomorphism, where  $G=SL(2,\mathbb{R})$  where  $SL(2,\mathbb{R})$  is the group of 2x2 real matrices with determinant 1. Let  $G=SL(2,\mathbb{R})$ , the group of 2x2 real matrices with determinant 1. Let M be any 2x2 real matrix with determinant 1. Then we can define a mapping from G to G itself by  $\phi_M(A)=MAM^{-1}$  for all A in G. To verify that  $\phi_M$  is an isomorphism, we carry out the four steps.

#### Step 1

 $\phi_M$  is a function from G to G. Here, we must show that  $\phi_M(A)$  is indeed an element of G whenever A is. This follows from properties of determinants:

$$det(MAM^{-1}) = (det M)(det A)(det M)^{-1} = 1 \cdot 1 \cdot 1^{-1} = 1.$$

Thus,  $MAM^{-1}$  is in G.

• Step 2

 $\phi_M$  is one-to-one. Suppose that  $\phi_M(A) = \phi_M(B)$ . Then  $MAM^{-1} = MBM^{-1}$  and, by left and right cancellation, A = B.

Step 3

 $\phi_M$  is onto. Let B belong to G. We must find a matrix A in G such that  $\phi_M(A)=B$ . How shall we do this? If such a matrix A is to exist, it must have the property that  $MAM^{-1}=B$ . But this tells us exactly what A must be! For we can solve for A to obtain  $A=MBM^{-1}$  and verify that  $\phi_M(A)=MAM^{-1}=M(M^{-1}BM)M^{-1}=B$ .

## An Example

#### Step 4

 $\phi_{M}$  is operation-preserving. Let A and B belong to G. Then,

$$\phi_M(AB) = M(AB)M^{-1} = MA(M^{-1}M)BM^{-1} = (MAM^{-1})(MBM^{-1}) = \phi_M(A)\phi_M(B)$$

The mapping  $\phi_M$  is called conjugation by M.

Therefore  $\phi$  mapping from G to G by  $\phi_M(A) = MAM^{-1}$  for all A in G is an **Isomorphism** 

