```
% Finite Element Methods HW4.
% This is the answer to Question 1
figure();
   A = gallery('poisson',11);
   subplot(1,1,1),spy(A),title('spy of 11x11 Poisson matrix');
methods = ["Jacobi";
   "Block Jacobi";
   "Gauss-Siedel";
   "Block Gauss-Siedel";
   "Symmetric Gauss-Siedel";
   "Block Symmetric Gauss-Siedel";
   "SOR, omega = 1.6";
   "Block SOR, omega = 1.5"];
iterations = [k_J;
   k_BJ;
   k GS;
   k BGS;
   k SGS;
   k_BSGS;
   k SOR;
   k_BSOR];
for i = [11, 31, 63]
   A = gallery('poisson',i);
   I = eye(size(A,1));
   b = ones(size(A,1),1);
   x = zeros(size(A,1),1);
   tol = 10^-6;
   %Jacobi
   M = diag(diag(A));
   [x_J,k_J] = statit(A,M,[], b, x,tol);
   %Block Jacobi
   M = triu(tril(A,1),-1);
   D B = M;
   [x_BJ,k_BJ] = statit(A,M,[], b, x,tol);
   %Gauss-Siedel
   M = tril(A);
```

```
[x GS,k GS] = statit(A,M,[], b, x,tol);
    %Block Gauss-Siedel
    M = tril(A,1);
    [x_BGS, k_BGS] = statit(A,M,[], b, x,tol);
    %Symmetric Gauss-Siedel
    M 1 = tril(A)/sqrt(D);
    M_2 = transpose(M_1);
    M = M_1 * M_2;
    [x\_SGS,k\_SGS] = statit(A,M,M_2, b, x,tol);
    %Block symmetric Gauss-Siedel
    M_1 = tril(A,1)/chol(D_B);
    M_2 = transpose(M_1);
    M = M_1*M_2;
    [x_BSGS, k_BSGS] = statit(A, M, M_2, b, x, tol);
    SOR (omega = 1.6)
    omega = 1.6;
    M = D/omega + tril(A,-1);
    [x_SOR, k_SOR] = statit(A,M,[], b, x,tol);
    %Block SOR (omega = 1.5)
    omega = 1.5;
    M = D_B/omega + tril(A, -3);
    [x_BSOR, k_BSOR] = statit(A, M, [], b, x, tol);
    %Final output
    disp("Iterations for Poisson matrix on an " + i + " by "+i+" grid is:")
    table(methods, iterations)
end
Iterations for Poisson matrix on an 11 by 11 grid is:
ans =
  8×2 table
                                       iterations
               methods
```

"Jacobi"	5000
"Block Jacobi"	5000
"Gauss-Siedel"	5000
"Block Gauss-Siedel"	2828
"Symmetric Gauss-Siedel"	2833
"Block Symmetric Gauss-Siedel"	1004
"SOR, omega = 1.6"	1404
"Block SOR, omega = 1.5 "	937

Iterations for Poisson matrix on an 31 by 31 grid is:

ans =

8×2 table

methods	iterations
"Jacobi"	5000
"Block Jacobi"	5000
"Gauss-Siedel"	5000
"Block Gauss-Siedel"	2828
"Symmetric Gauss-Siedel"	2833
"Block Symmetric Gauss-Siedel"	1004
"SOR, omega = 1.6"	1404
"Block SOR, omega = 1.5"	937

Iterations for Poisson matrix on an 63 by 63 grid is:

ans =

8×2 table

methods	iterations
"Jacobi"	5000
"Block Jacobi"	5000
"Gauss-Siedel"	5000
"Block Gauss-Siedel"	2828
"Symmetric Gauss-Siedel"	2833
"Block Symmetric Gauss-Siedel"	1004
"SOR, omega = 1.6"	1404
"Block SOR, omega = 1.5 "	937

Published with MATLAB® R2022a