PATENT ABSTRACTS OF JAPAN

(11) Publication number: 62120494 A

(43) Date of publication of application: 01.06.87

(51) Int. CI

C25D 11/38 B60K 15/02 B65D 25/14 C23C 22/24

// C23C 28/00

(21) Application number: 60259588

(22) Date of filing: 19.11.85

(71) Applicant:

NISSHIN STEEL CO LTD

(72) Inventor:

AOKI TOMOHISA FUJITA MITSURU KUSANAGI YOSHIHIRO HIROSE YUSUKE

(54) RUST PREVENTING STEEL SHEET FOR FUEL **TANK**

(57) Abstract:

PURPOSE: To improve the resistance of a vessel for lower alcohol to corrosion by lower alcohol by plating a steel sheet as the base material of the vessel with Al or an Al alloy having a specified composition and by forming a thick chromate film on the resulting Al or Al alloy layer.

CONSTITUTION: One side of an Al killed steel sheet as the material of a vessel for lower alcohol such as methanol or ethanol or the mixture of gasoline with lower alcohol is plated with AI or an AI-(3W13%)Si alloy contg.

one or more among 0.1W1.0% Cr, 0.1W1.0% Mn and 0.1W0.5% Ti as required. A thick chromate film is then formed on the surface of the resulting AI or AI alloy layer by 35W70mg/m2 (expressed in terms of Cr). A vessel made of the treated steel sheet has the superior resistance to corrosion by lower alcohol.

COPYRIGHT: (C)1987,JPO&Japio

@特 許 公 鍜(B2)

 $\Psi 4 - 68399$

® Int. Cl. ^s	兼別記号	庁内整理番号	99 公告	平成4年(1992)11月2日
C 25 D 11/38 B 60 K 15/03	C	7179—4K	•	•
C 25 D 11/38 B 60 K 15/03 B 65 D 25/14 C 23 C 22/24	Z	8540-3E		·.
28/00	В	7217—1K 8920—3D	B 60 K 15/02	A
* .		• • • • • • •		発明の数 2 (全5頁)

燃料タンク用防錆鋼板 69発明の名称

> 顧 昭60-259588 第 昭62-120494 **604**5 多公

顧 昭60(1985)11月19日 金出 ❸昭62(1987)6月1日

日新製鋼株式会社阪神研究所 大阪府堺市石津西町 5 番地 智 の発明 者

大阪府堺市石津西町 5番地 日新製鋼株式会社阪神研究所 仍発 明 者 田 充

大阪府界市石津西町 5 番地 日新製鋼株式会社阪神研究所 の発 明 者 芳 弘

大阪府堺市石津西町 5番地 日新製鋼株式会社阪神研究所 祐 仍発 183

東京都千代田区丸の内3丁目4番1号

日新製鋼株式会社 の出 騒 人 四代 理 人 弁理士 進 藤

審 査 官 鳴井

の特許請求の範囲

1 少なくとも片面がAlまたはAl-(3~13%) Si系合金で被覆された鋼板の被覆層表面に皮膜量 がクロム換算で35~70mg/元であるクロメート皮 含む燃料タンク用防錆鋼板。

2 少なくとも片面が0.1~1.0%のCr、0.1~1.0 %のMnおよび0.1~0.5%のTiの1種または2種 以上を含むAI-(3~13%) Si系合金で被覆され た鋼板の被覆層表面に皮膜量がクロム換算で35~ 10 いる。 70mg/nfであるクロメート皮膜を形成したことを 特徴とする低級アルコールを含む燃料タンク用防 豬鋼板。

発明の詳細な説明

(産業上の利用分野)

本発明は低級アルコールを含む燃料の貯蔵に使 用しても錆が発生しない燃料タンク用防錆鋼板に 関する。

(従来技術)

2

近年メタノールやエタノールなどの低級アルコ ールは自国で製造でき、しかも安価で燃焼させて も有害なガスを生じないことから、自動車用燃料 であるガソリンの代替燃料として世界的に注目さ 膜を形成したことを特徴とする低級アルコールを 5 れ、すでにブラジルではニート・エタノール(純 エタノール)が自動車用燃料として多用に使用さ れ、またアメリカ合衆国やヨーロッパなどの一部 でもメタノールやエタノールをガソリンに捉入し たアルコール混合ガソリンの使用が実用化されて

> しかしながら低級アルコールやその混合ガソリ ンを自動車用燃料に使用する場合、燃料タンクが 従来のガソリン用のものであると、腐食されてし まうものであつた。

一般に自動車用燃料タンクとしては、燃料によ 15 りタンク内面側が腐食され、穴あきが発生した り、燃料循環系統でフイルターの目詰まりを生じ させるような浮遊性の腐食生成物が生じないこと およびタンク外面側が塩害腐食により穴あきが発

生しないことなどの特性が要求されるが、燃料が ガソリンの場合、従来このような特性を充たすも のとして、ターンシートと称するpb-Sn合金め つき鋼板(特公昭57ー61833号)や亜鉛めつき鋼 板に厚クロメート処理を施したもの(特公昭53ー 19981号) が使用されていた。しかしこれらの鋼 板は低級アルコールやその混合ガソリンにより腐 食されやすく、pb-Sn合金めつき鋼板の場合は pb-Sn合金が浮遊性の腐食生成物を多量に生成 し、厚クロメート処理を施した亜鉛めつき鋼板の 10 ポと厚くなるように形成すればよいことを見出し 場合は燃料がメタノールやその混合ガソリンであ ると孔食状の腐食および白錆が発生してしまうも のであつた。

(発明が解決しようとする問題点)

ような燃料が低級アルコールやその混合ガソリン であると腐食の問題があつた点に鑑み、燃料がガ ソリンの場合はもとより、低級アルコールやその 混合ガソリンであつても腐食が問題にならない燃 料タンク用防錆鋼板を提供するものである。

(問題点を解決するための手段)

本発明者らは上記のような防錆鋼板を開発すべ く種々検討した結果、少なくとも片面がAlまた はA1-(3~13%) Si系合金で被覆された網板の であるクロメート皮膜を形成した防銹鋼板および 少なくとも片面が0.1~1.0%のCr、0.1~1.0%の Mnおよび0.1~0.5%のTiの 1種または 2種以上 を含むA1-(3~13%) Si系合金で被覆された網 板の被覆層表面に皮膜量がクロム換算で35~70 30 た。 m/ nlであるクロメート皮膜を形成した防錆鋼板 が低級アルコールやその混合ガソリンに優れた瞑 食性を発揮することを見出し、本発明を完成した のである。

以下本発明を詳細に脱明する。

本発明者らは低級アルコールおよびその混合ガ ソリンに対する表面処理鋼板の腐食性を検討した 結果、AlまたはAl-Si系合金被覆鋼板が優れた 耐食性を発揮するのを見出した。これは被覆層の 場合被覆層表面に安定な酸化皮膜が形成されてい るため、低級アルコールやその混合ガソリンに対 して優れた耐食性を発揮するものと推定される。

しかしながらAlまたはAlーSi系合金被覆鋼板

が溶融めつき鋼板である場合、被覆層中にピンホ ール等のめつき欠陥が存在すると、その欠陥部か ら孔食状に腐食されることが判明した。またAl またはAlーSi系合金被覆鋼板がクラツド鋼板や **事業的つき側板など溶融めつき以外で製造したも** のである場合も白錆が発生することが判明した。

そこで本発明者らはかかる問題を解決すべく 種々検討した結果、被覆層表面にクロメート皮膜 を厚く、とくに皮膜量がクロム換算で35~70mg/ たのである。ここでクロメート皮膜の皮膜量がク ロム換算量で35個/ポ未満であると、鋼板を純低 級アルコール、例えば純メタノールに浸渍した場 合孔食状の腐食や白錆が発生しやすくなり、燃料 本発明は従来の燃料タンク用防錆鋼板にはこの 15 タンク材料として十分な耐食性が得られず、また 70mg/㎡を越えると、耐食性の点では問題はない が、コストが上昇し、燃料タンクに組み立て時の 半田付性が低下してしまう。

> クロメート皮膜は従来の公知組成のクロメート 20 処理液で形成したものでよく、またその形成も浸 **漬、スプレー、電解、塗布など公知の方法によつ** たものでよい。

AlまたはAl-Si系合金被覆鋼板の種類として は上記のような皮膜盤のクロメート皮膜を形成す 被覆層表面に皮膜量がクロム換算で35~70mg/㎡ 25 れば、製造法に関係なく、例えば溶融めつき法、 蒸着めつき法、粉末めつき法、熔融塩めつき法、 非水溶液電気めつき法あるいはクラッド法で製造 したものでも低級アルコールおよびその混合ガソ リンに優れた耐食性を発揮することが確認され

しかし燃料タンクに加工する際の加工性を考慮 すると、AI被覆鋼板は溶融めつき法以外の方法 で製造したものが好ましく、逆にAlーSi系合金 被覆鋼板は溶融めつき法により製造したものが好 35 ましい。これはAI被覆鋼板の場合溶融めつき法 により製造すると、被覆層と鋼板との界面に加工 性の劣るAl-Si系合金層が厚く形成され、加工 すると被覆層にクラツクが発生し、その部分の耐 食性が低下してしまうからである。これに対して そのものではAlまたはAl-Si系合金被覆鋼板の 40 Al-Si系合金被覆鋼板は溶融めつきの際めつき 浴にSiが添加されているので、加工性の劣るAl -Fe系合金層の成長が抑制され、加工により被 覆層にクラックが発生することがない。

AlーSi系合金被覆鋼板を溶解めつきにより製

5

造したものにする場合は被覆層がSiを3~13%含 んだものにする。これは被覆層のSi量を3%未満 にすると溶融めつきの際、Al-Fe系合金層の成 長を充分抑制できず、13%を越えて添加しても合 金層抑制効果が13%で飽和してしまうため、無駄 5 になつてしまうからである。

またAI-Si系合金被覆鋼板を溶散めつきによ り製造したものにする場合は被覆層を上配のよう にSiを3~13%含んだものにするとともに、さら に0.1~1.0%のCr、0.1~1.0%のMnおよび0.1~ 10 0.5%のTiの 1 種または 2 種以上を含んだものに するのが好ましい。これは溶融めつきの際、めつ き原板よりFeがめつき浴中に溶解して、浴中に 板状のFe-Al-Si系金属間化合物が生成し、こ れが被覆層に含まれて被覆層の加工性が低下する 15 Na雰囲気中で60秒間焼鈍し、引続いて真空圧 3 が、めつき浴中にCrまたはMnを添加すると、上 紀金属間化合物が粉状化されて、加工性が一層向 上するからであり、またTiを添加すると、被覆 腦の結晶が微細化されて、加工性が向上するから 1.0%にするのは、0.1%未満では金属間化合物を 充分粉末化できず、1.0%を越えて添加しても、 1.0%添加の場合と金属間化合物の粉状化程度は 変わらないからである。またTi量を0.1~0.5%に が認められず、0.5%を越えて添加しても、0.5% 添加の場合と加工性向上程度は同じであるからで ある。

次に実施例により本発明を説明する。 (実施例)

板厚0.8mmのAIキルド低炭素鋼板を素材として まず次のように種々の被覆鋼板を製造した。

(1) 溶融AI-Si系合金めつき鋼板

鋼板を脱脂した後、温度が700℃の50%H₂-N.雰囲気中で30秒間焼鈍し、引続いて温度が660 35 の試料を採取して、エリクセン試験機で 5 mm張出 **℃の同雰囲気下にある下配合金めつき浴に浸液し** て溶酔めつきした。

(a) Al-Siめつき鋼板

Si 8.5%

残AIおよび不可避的不純物

(b) Al-Si-Crめつき側板 Si 8.5% Cr 0.5%

残AIおよび不可對的不純物 (c) Al-Si-Mnめつき側板

Si 8.5%

Mn 0.5%

残Alおよび不可避的不純物

(d) Al-Si-Tiめつき側板

Si 8.5%

Ti 0.3%

残AIおよび不可避的不純物

(2) 蒸着めつき鋼板

鋼板を脱脂した後、温度が700℃の50%H₂ー ×10-*Torr、基板温度(板温)250℃、蒸着レー トlum/minなる条件でAlを素着めつきした。

(3) Alクラッド解板

鋼板を芯材に、板厚1.0mの1100(H24) A1板を である。被覆層中のCrおよびMn量をともに0.1~ 20 皮材に用いて、両者を脱脂後合わせて250℃に加 熱してまず圧下率70%で1次冷延を、次に350℃ で15時間拡散焼鈍を、さらに圧下率20%で2次冷 延を施し、Alクラッド鋼板とした。

次に以上のようにして製造した被覆鋼板に するのは、0.1%未満では充分な加工性向上効果 25 CrO.50 8 / L、H.PO.20 8 / Lから成る浴温50 ℃のクロメート処理浴に浸漬して、電流密度、電 解時間を調節することにより皮膜量がクロム換算 で10~70mg/㎡のクロメート皮膜を形成した。

> その後このクロメート皮膜を形成した被覆鋼板 30 と従来の燃料タンク用鑇鋼板であるPb-8%Sn 合金めつき鋼板(片面めつき付着量45~1/1/1)お よびクロム換算で皮膜量が45g/㎡であるクロメ ート皮膜を有する電気亜鉛めつき鋼板(片面めつ き付着量40g/㎡) より幅が50mm、長さが100mm 加工を行い、それを第1表に示すメタノールまた はメタノール混合ガソリンに室温で8箇月間浸漬 することにより加工部およびその周辺の腐食状況 を調査した。第1表にこの結果を示す。

7

1

丧

\Box									
区分	No	被覆鋼板		クロメー ト皮膜の Cr付着量	侵潰メタノールおよびメタノー ル混合ガソリン				
分		製造法	種類	被覆量(度/元)	(四/㎡)	W 15	N15-1	N100	M100-1
李	1	熔融めつき	A1-8.5%Si	20	3 5	0	0	0	0
本発明材		<u> </u>			70	0	0	0	0
材	2	溶融めつき	A1-8.5%Si-0.5%Cr	20	3 5	0	0	0	0
			,	İ	70	0	0	0	0
	3	溶融めつき	A1-8.5%Si-0.5%Mn	20	3 5	0	0	0	0
	Į		·		70	0	0	0	0
	4	熔融めつき	A1-8.5%Si-0.3%Ti	20	35	0	0	0	0
			·		70	0	0	0	0
	5	蒸着めつき	#GA1	10	. 35	0	0	0	0
					70	0	0	0	0
	6	クラツド	₽\$A1	160	35	0	0	0	0
					70	0	0	0	0
杢	7	溶融めつき	A1-8.5%Si	20	25	0	0	Δ	- Δ
本発明外材	8	溶験めつき	A1-8.5%Si-0.5%Cr	20	25	Ö	0	Δ	Δ
殺	8	溶融めつき	A1-8.5%Si-0.5%Mn	20	25	0	0	Δ	Δ
	10	熔融めつき	A1-8.5%Si-0.3%Ti	20	25	0	0	Δ	Δ
	11	蒸着めつき	#GA1	10	25	0	0	A	A
	12	クラツド	#GA1	160	25	0	0	A	A
従来材	13	熔融めつき	Рь—8%Sn	45	0	××	××	×××	××
粉	14	電気めつき	≱tiZn	40	4 5	Δ	Δ	×	×

(注1) 侵渡試験液の種類

M15 メタノール15vo1%混合ガソリン

M15-1 (メタノール15vol%+水1%)混合ガソリン

M100 純メタノール

M100-1 メタノール99vol%+水1vol%

(注2) 腐食程度の評価基準

配号 腐食程度

××× 被覆層溶解

×× 全面白錆

× 全面孔食、白餅

配号 腐食程度

△ 一部孔食、白錆

▲ 一部白錆

〇 変化なし

第1表に示すごとく、皮膜量がクロム換算で35~70mg/元のクロメート皮膜が被覆層表面に形成された本発明のAlまたはAlー(3~13%) Si系合 5金被覆網板は純メタノール、水含有メタノールおよびメタノール提合ガソリンに対しても優れた耐食性を発揮する。これに対してクロメート皮膜が被覆層表面に形成されたAlまたはAlー(3~13%) Si系合金被覆網板でもクロメート皮膜量が35 10mg/元未満であると、メタノール混合ガソリンに対しては良好な耐食性を発揮するが、純メタノールに対しては、軽度ではあるが、孔食あるいは白崎が発生し、腐食されてしまう。また従来の燃料

タンク用防路鋼板であるPb-8%Sn合金めつき 鋼板の場合はメタノールおよびメタノール提合ガ ソリンにより散しく腐食され、多量の腐食生成物 が発生する。同様に電気亜鉛めつき鋼板の場合も Pb-8%Sn合金めつき鋼板程ではないが、かな り腐食されてしまう。

10

(果 ()

以上のごとく、本発明の燃料タンク用防錆鋼板は低級アルコールおよびその混合ガソリンに対して優れた耐食性を発揮し、それらの燃料用タンクに使用することができる。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.