Théorèmes d'isomorphismes et actions de groupes.

1 Exercice 1. Groupes monogènes

Soit G un groupe monogène. Montrer que soit $G \cong \mathbb{Z}$, soit $G \cong \mathbb{Z}/n\mathbb{Z}$ pour un entier strictement positif n.

Soit $g \in G$ tel que $\langle g \rangle = G$. Considérons le morphisme

$$\phi: \mathbb{Z} \longrightarrow G$$
$$k \longmapsto g^k.$$

On a im $\phi = \langle g \rangle = G$. De plus, par le premier théorème d'isomorphisme

$$\mathbb{Z}/\ker\phi\cong\operatorname{im}\phi=G.$$

- \triangleright Si ker ϕ est le sous-groupe trivial $\{0\}$, on a donc $G \cong \mathbb{Z}$.
- \triangleright Si ker ϕ est un sous-groupe non trivial de \mathbb{Z} , alors ker $\phi = n\mathbb{Z}$, et on a donc $G \cong \mathbb{Z}/n\mathbb{Z}$.

2 Exercice 2.

Soit n > 0 un entier.

- **1.** Montrer que $\mathbb{Z}/n\mathbb{Z}$ contient $\varphi(n)$ éléments d'ordre n, où $\varphi(n)$ désigne le nombre d'entiers $k \in [0, n-1]$ premiers à n.
- **2.** Montrer que pour tout d > 0 divisant n, $\mathbb{Z}/n\mathbb{Z}$ admet un unique sous-groupe d'ordre d formé des multiples de $\overline{n/d}$.
- **3.** En déduire que pour tout diviseur d > 0 de n, $\mathbb{Z}/n\mathbb{Z}$ contient $\varphi(d)$ éléments d'ordre d et que $\sum_{0 < d \mid n} \varphi(d) = n$.

- 1. Soit $k \in [0, n-1]$. Montrons que $\langle \bar{k} \rangle = \mathbb{Z}/n\mathbb{Z}$ si et seulement si $\operatorname{pgcd}(k, n) = 1$.
 - \triangleright Si $\langle \bar{k} \rangle = \mathbb{Z}/n\mathbb{Z}$ alors il existe $a \in \mathbb{Z}$ tel que

$$a\bar{k} = \underbrace{\bar{k} + \dots + \bar{k}}_{a \text{ fois}} = \bar{1}.$$

Ainsi, il existe $b \in \mathbb{Z}$ tel que ak-1=bn, soit ak+bn=1. On en conclut, par le théorème de Bézout, que k et n sont premiers entre-eux.

▷ Si pgcd(k, n) = 1 alors il existe $a, b \in \mathbb{Z}$ tels que ak+bn = 1 et donc $ak \equiv 1 \pmod{n}$. Ainsi, $k + \cdots + k \equiv 1 \pmod{n}$. Or, $\langle \overline{1} \rangle = \mathbb{Z}/n\mathbb{Z}$ et donc, comme $\langle \overline{1} \rangle \subseteq \langle \overline{k} \rangle$ on a que

$$\langle \bar{k} \rangle = \mathbb{Z}/n\mathbb{Z}.$$

Par bijection, on a donc

$$\varphi(n) = \#\{k \in [0, n-1] \mid \operatorname{pgcd}(k, n) = 1\}$$

éléments d'ordre n.

- 2. On sait que $\langle \overline{n/d} \rangle$ est un groupe, et d $\overline{n/d} = \overline{n} = \overline{0}$. Ainsi, on a que $\#\langle \overline{n/d} \rangle = d$. Il ne reste qu'à montrer l'unicité. Soit un sousgroupe $H \leq \mathbb{Z}/n\mathbb{Z}$ d'ordre d. Soit $\overline{a} \in H$ tel que $d\overline{a} = 0$. Ainsi, il existe $b \in \mathbb{Z}$ tel que da = nb, d'où a = nb/d et donc $\overline{a} = b$ $\overline{n/d}$. On en déduit que $\overline{a} \in \langle \overline{n/d} \rangle$. On conclut que $H = \langle \overline{n/d} \rangle$ par inclusion et égalité des cardinaux.
- 3. Soit \bar{a} un élément d'ordre d, et donc $\#\langle \bar{a} \rangle = d$. Par la question 2 et l'exercice 1, on a $\langle \bar{a} \rangle = \langle n/d \rangle \cong \mathbb{Z}/d\mathbb{Z}$. Or, par la question 1, il y a $\varphi(d)$ éléments d'ordre d dans $\mathbb{Z}/d\mathbb{Z}$. Ainsi, il y a $\varphi(d)$ éléments d'ordre d dans $\mathbb{Z}/n\mathbb{Z}$.

Posons $A_d := \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} \mid \#\langle \bar{a} \rangle = d\}$. Si $d \nmid n$ alors $A_d = \emptyset$ car l'ordre d'un élément divise n (théorème de LAGRANGE). Si $d \mid n$ alors $\#A_d = \varphi(d)$ (question 2). De plus,

$$\mathbb{Z}/n\mathbb{Z} = \bigsqcup_{d|n} A_d,$$

d'où

$$n = \sum_{\substack{d|n\\-2/12}} \#A_d = \sum_{\substack{d|n\\-2/12}} \varphi(d).$$

3 Exercice 3.

- **1.** Montrer que le groupe $\mathbb{Z}/n\mathbb{Z}$ est simple si, et seulement si, n est premier.
- **2.** Soit G un groupe fini abélien. Montrer que G est simple si et seulement si $G \cong \mathbb{Z}/p\mathbb{Z}$ avec p un nombre premier.
- 1. Le groupe $\mathbb{Z}/n\mathbb{Z}$ est commutatif. Ainsi, tout sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ est distingué. On a donc que $\mathbb{Z}/n\mathbb{Z}$ est simple si, et seulement si, $\mathbb{Z}/n\mathbb{Z}$ ne possède pas de sous-groupes non triviaux. De plus, un entier n n'a que des diviseurs triviaux (1 ou n) si et seulement si n est premier. Et, avec le théorème de LAGRANGE, on sait que l'ordre de tout sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ divise n. D'où l'équivalence.
- 2. Le groupe G est commutatif. Ainsi, tout sous-groupe de G est distingué. On a donc que G est simple si, et seulement si, G ne possède pas de sous-groupes non triviaux. Ainsi, par le théorème de LAGRANGE, l'ordre du groupe G est premier.

4 Exercice 4.

Soit G un groupe et H un sous-groupe de G d'indice 2. Montrer que H est distingué dans G. Montrer que le résultat n'est pas vrai si on remplace 2 par 3.

Soit $g \in G \setminus H$. On a la partition $G = H \sqcup gH$. Ainsi gH est le complément de H dans G. Similairement, Hg est le complément de H dans G. Ainsi, on a gH = Hg.

Si $h \in H$, alors hH = H = Hh car H est un sous-groupe contenant les éléments h et h^{-1} .

On en conclut, dans les deux cas, que $H \triangleleft G$.

Pour montrer que le résultat est faux en remplaçant 2 par 3, on considère $G := \mathfrak{S}_3$ et $H := \{ \mathrm{id}, (1\ 2) \}$ un sous-groupe de G. Le sous-groupe H a pour indice $[G:H] = |\mathfrak{S}_3|/|H| = 3$. Cependant, H n'est

pas un sous-groupe distingué de G:

$$(1\ 2\ 3)(1\ 2)(1\ 2\ 3)^{-1} = (2\ 3) \not\in H.$$

5 Exercice 5.

Soit p un nombre premier.

- 1. Rappeler pourquoi le centre d'un p-groupe est non trivial.
- **2.** Montrer que tout groupe d'ordre p^2 est abélien, classifier ces groupes.
- **3.** Soit G un groupe d'ordre p^n . Montrer que G admet un sous-groupe distingué d'ordre p^k pour tout $k \in [0, n]$.
- 1. Soit G un p-groupe non trivial. On fait agir G sur G par conjugaison. Ainsi, par la formule des classes, on a

$$p^n = \#G = \#Z(G) + \sum_{g \in \Re} \underbrace{[G : C_G(g)]}_{p^x_i > 1},$$

où $\mathcal R$ est un système de représentants des classes de conjugaisons de G contenant plus d'un élément.

On sait donc que $p \mid \sum_{g \in \mathcal{R}} [G : C_G(g)]$ et $p \mid \#G$, ce qui permet d'en déduire que $p \mid \#Z(G)$. D'où, Z(G) n'est pas trivial.

- 2. Le centre de G est un sous-groupe, d'où par le théorème de LAGRANGE et par la question 1, on sait que l'ordre de Z(G) est p ou p^2 .
 - Dans le cas où Z(G) est d'ordre p^2 , on a Z(G) = G, d'où G abélien.
 - \triangleright Supposons $\# \mathbf{Z}(G) = p$. Soit $x \in G \setminus \mathbf{Z}(G)$, et considérons le sous-groupe

$$Z(x) := \{ g \in G \mid gx = xg \} \le G.$$

En deux temps, montrons que $Z(G) \leq Z(x) \leq G$.

– On a l'inclusion $Z(G) \subseteq Z(x)$ mais cette inclusion est stricte car $x \in Z(x) \setminus Z(G)$.

- Montrons que $Z(x) \neq G$. Par l'absurde, si Z(x) = G, alors x commute avec tout élément de G, et donc $x \in Z(G)$, **absurde**.

Quel est l'ordre de Z(x)? C'est nécessairement p ou p^2 , mais dans chacun des cas, on arrive à une contradiction avec les inclusions strictes plus-haut. C'est **absurde**.

6 Exercice 6. Troisième théorème d'isomorphisme

Soit H un groupe et soient H et K des sous-groupes tels que $H \triangleleft G$ et $H \leq K$. On notera $\pi_H : G \rightarrow G/H$.

- 1. Montrer que le groupe $\pi_H(K)$ est distingué dans G/H si et seulement si K est distingué dans G.
- **2.** Justifier que H est distingué dans K et que l'on a un isomorphisme $\pi_H(K) \cong K/H$.
- **3.** On suppose K distingué dans G. On note $\pi_K: G \to G/K$ la projection canonique.
 - a) Montrer que π_K induit un unique morphisme de groupes $\bar{\pi}_K$: $G/H \to G/K$ tel que $\pi_K = \bar{\pi}_K \circ \pi_H$.
 - **b)** Montrer que le noyau de $\bar{\pi}_K$ est $\pi_H(K) \cong K/H$.
 - c) En déduire le troisième théorème d'isomorphisme.

1. On procède en deux temps.

Dans un premier temps, supposons que $K \triangleleft G$ et montrons que l'on a $\pi_H(K) \triangleleft G/H$. Soit $\bar{g} \in G/H$ et soit $g \in G$ un élément tel que $\pi_H(g) = \bar{g}$ qui existe par surjectivité de π_H . Alors,

$$\pi_H(K) = \pi_H(gHg^{-1}) = \bar{g} \; \pi_H(K) \; \bar{g}^{-1},$$

d'où $\pi_H(K) \triangleleft G/H$.

Dans un second temps, supposons

$$\forall \bar{g} \in G/H, \quad \bar{g} \ \pi_H(K) \ \bar{g}^{-1} = \pi_H(K).$$
- 5/12 -

Soit $g \in G$ et $k \in K$, et montrons que $gkg^{-1} \in K$. On sait que l'on a $\bar{g} = gH$ et $\pi_H(k) = kH$. Alors,

$$gkg^{-1}H \subseteq (gH)(kH)(g^{-1}H) = k'H \subseteq K,$$

pour un certain $k' \in K$ (on applique ici l'hypothèse). Ainsi, comme $e \in H$, on a en particulier $gkg^{-1} \in K$. On en déduit ainsi que $K \triangleleft G$.

2. Pour tout $k \in K$, on a que $kHk^{-1} = H$ car $k \in G$, on en déduit $H \triangleleft K$. Montrons que $\pi_H(K) \cong K/H$. On a même égalité de ces deux ensembles si l'on voit K/H comme l'ensemble des classes à gauches de H. En effet,

$$\pi_H(k) = kH$$
 d'où $\pi_H(K) = \{kH \mid k \in K\},\$

et

$$K/H = \{kH \mid k \in K\}.$$

On a donc l'égalité.

3. a) On factorise par le quotient :

qui est possible car $K = \ker \pi_K \supseteq H$. Le morphisme $\bar{\pi}_K : G/H \to G/K$ est l'unique morphisme faisant commuter le diagramme ci-dessus.

b) Par construction,

$$\ker \bar{\pi}_K = \{ \bar{g} \in G/H \mid \pi_K(g) = K \}$$

$$= \{ \pi_H(g) \mid g \in \ker \pi_K \}$$

$$= \pi_H(\ker \pi_K) = \pi_H(K) \underset{\text{O2}}{\cong} K/H.$$

c) Appliquons le premier théorème d'isomorphisme à $\bar{\pi}_K$, qui est surjectif :

$$(G/H)/(K/H) = (G/H)/\ker \bar{\pi}_K \cong \operatorname{im} \bar{\pi}_K = G/K,$$

c'est le troisième théorème d'isomorphisme.

7 Exercice 7. Sous-groupe d'un quotient

Soit G un groupe, et H un sous-groupe distingué de G. On note la projection canonique $\pi_H: G \to G/H$.

- **1.** a) Soit K un sous-groupe de G. Montrer $\pi_H^{-1}(\pi_H(K)) = KH$.
 - b) En déduire que π_H induit une bijection croissante entre les sous-groupes de G/H et les sous-groupes de G contenant H.
- **2.** Montrer que les sous-groupes distingués de G/H sont en correspondance avec les sous-groupes distingués de G contenant H.
- 3. Montrer que la correspondance précédente préserve l'indice : si K est un sous-groupe de G d'indice fini contenant H, alors on a $[G:K] = [G/H, \pi_H(K)]$.
- **1. a)** On a

$$\pi_H^{-1}(\pi_H(K)) = \{ g \in G \mid \pi_H(g) \in \pi_H(K) \}$$

$$= \{ g \in H \mid gH = kH \text{ avec } k \in K \}$$

$$= \bigcup_{k \in K} kH$$

$$= \{ kh \mid k \in K, h \in H \}$$

$$= KH.$$

- b) L'image directe par π_H envoie un sous-groupe de G contenant H sur sous-groupe de G/H. De plus, l'image réciproque par π_H envoie un sous-groupe de G/H sur un sous-groupe de G contenant H. Montrons la bijection puis la croissance.
 - \triangleright Si $\pi_H(K_1) = \pi_H(K_2)$ où K_1, K_2 sont deux sousgroupes de G contenant H alors

$$K_1 = K_1 H = \pi_H^{-1}(\pi_H(K_1)) = \pi_H^{-1}(\pi_H(K_2)) = K_2 H = K_2.$$

D'où l'injectivité.

 \triangleright On sait déjà que $\pi_H: G \to G/H$ est surjective, alors l'image directe $\tilde{\pi}_H: S_G \to S_{G/H}$ où S_G est l'ensemble des sous-groupes de G.

- \triangleright L'image directe et l'image réciproque par π_H est une application croissante.
- 2. On procède en deux temps.
 - \triangleright Soit $L \triangleleft G/H$. Pour tout $g \in G$ et tout $x \in \pi_H^{-1}(L)$, on a

$$\pi_H(gxg^{-1}) = (gxg^{-1})H = (gH)(xH)(gH)^{-1} \in L,$$

car L est distingué dans G/H. Ainsi $xgx^{-1} \in \pi_H^{-1}(L)$ et donc $\pi_H^{-1}(L)$ est distingué dans G.

 \triangleright Soit $K \triangleleft G$ un sous-groupe distingué contenant H. Pour tout $xH \in G/H$ et tout $kH \in \pi_H(K)$ avec $k \in K$, on a

$$(xH)(kH)(xH)^{-1} = (xkx^{-1})H.$$

Comme $K \triangleleft G$, on a $xkx^{-1} \in K$ d'où $(xkx^{-1})H \in \pi_H(K)$. On en déduit que $\pi_H(K)$ est distingué dans le groupe quotient G/H.

3.

8 Exercice 8. Combinatoire algébrique

Soit \mathbb{k} un corps fini à q éléments et $n \in \mathbb{N}^*$. On définit $\operatorname{PGL}_n(\mathbb{k})$ comme le quotient $\operatorname{GL}_n(\mathbb{k})/\mathbb{k}^{\times}$, où \mathbb{k}^{\times} correspond au sous-groupe distingué formé de la forme λI_n avec $\lambda \in \mathbb{k} \setminus \{0\}$. On considère l'action de $\operatorname{GL}_n(\mathbb{k})$ sur l'ensemble des droites vectorielles de \mathbb{k}^n .

- 1. Déterminer le cardinal des groupes finis $GL_n(\mathbb{k})$, $SL_n(\mathbb{k})$ et $PGL_n(\mathbb{k})$. Indication : compter les bases de \mathbb{k}^n .
- **2.** On prend désormais n=2.
 - **a)** Montrer que le nombre de droites vectorielles de \mathbb{k}^2 est égal à q+1.
 - b) En déduire qu'il existe un morphisme de groupes injectif

$$\operatorname{PGL}_2(\mathbb{k}) \hookrightarrow \mathfrak{S}_{q+1}.$$

- 3. Montrer que $GL_2(\mathbb{F}_2) = SL_2(\mathbb{F}_2) = PGL_2(\mathbb{F}_2) \cong \mathfrak{S}_3$.
- 4. Montrer que $\operatorname{PGL}_2(\mathbb{F}_3) \cong \mathfrak{S}_4$.

 8/12 -

1. L'application

$$\operatorname{GL}_n(\mathbbm{k}) \longrightarrow \{ \text{bases de } \mathbbm{k}^n \}$$

 $(C_1 \quad C_2 \quad \cdots \quad C_n) \longmapsto (C_1, \ldots, C_n)$

est une bijection. Construisions une base de \mathbb{k}^n :

- (1) On choisit le premier vecteur C_1 dans $\mathbb{k}^n \setminus \{0\}$, on a donc $q^n 1$ choix.
- (2) On choisit le second vecteur C_2 dans $\mathbb{k}^n \setminus \text{vect}(C_1)$, on a donc $q^n q$ choix.
- (3) On choisit le troisième vecteur C_3 dans $\mathbb{k}^n \setminus \text{vect}(C_1, C_2)$, on a donc $q^n q^2$ choix.
- (4) Et cetera.

D'où,

$$\#\mathrm{GL}_n(\mathbb{k}) = \prod_{i=0}^{n-1} (q^n - q^i).$$

L'application det : $GL_n(\mathbb{k}) \to \mathbb{k}^{\times}$ est un morphisme de groupes surjectif. De plus, ker det = $SL_n(\mathbb{k})$. On a ainsi, par le premier théorème d'isomorphisme,

$$\operatorname{GL}_n(\mathbb{k})/\operatorname{SL}_n(\mathbb{k}) \cong \mathbb{k}^{\times}.$$

Ainsi,

$$\#SL_n(\mathbb{k}) = \frac{\#GL_n(\mathbb{k})}{\#\mathbb{k}^{\times}} = \frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q - 1}.$$

Finalement, on a $\operatorname{PGL}_n(\mathbb{k}) := \operatorname{GL}_n(\mathbb{k})/\mathbb{k}^{\times}$ d'où

$$\#PGL_n(\mathbb{k}) = \frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q-1}.$$

2. a)

9 Exercice 9. Formule de Burnside

Soit G un groupe fini agissant sur un ensemble fini X. On note N le nombre d'orbites de l'action.

- **1.** Soit $Y := \{(g, x) \in G \times X \mid g \cdot x = x\}$. Interpréter le cardinal de Y comme somme sur les éléments de X d'une part, et de G d'autre part.
- 2. En décomposant X en union d'orbites, montrer la formule de BURNSIDE :

$$N = \frac{1}{\#G} \sum_{g \in G} \# \text{Fix}(G).$$

- **3.** Soit n un entier. Quel est le nombre moyen de points fixes des éléments de \mathfrak{S}_n pour l'action naturelle sur [1, n].
- **4.** On suppose que G agit transitivement sur X et que X contient au moins deux éléments. Montrer qu'il existe un $g \in G$ agissant sans point fixe.
- **5.** En déduire qu'un groupe fini n'est jamais l'union des conjugués d'un sous-groupe strict.

10 Exercice 10. Automorphismes intérieurs.

Soit G un groupe. Pour $g \in G$, on note $\phi_g : G \to G$ la fonction définie par $h \mapsto ghg^{-1}$. On note $\operatorname{Int}(G)$ l'ensemble des ϕ_g pour $g \in G$.

- 1. Soit $g \in G$, montrer que ϕ_g est un automorphisme de groupes.
- **2.** Montrer que la fonction $\phi: G \to \operatorname{Int}(G)$ qui à g associe ϕ_g est un morphisme de groupes.
- **3.** Montrer l'isomorphisme $G/\mathbb{Z}(G)\cong \operatorname{Int}(G)$ où $\mathbb{Z}(G)$ est le centre du groupe G.
- **4.** (Plus difficile) Montrer que si le groupe des automorphismes Aut(G) de G est cyclique alors G est abélien.
- **5.** (Aussi difficile) Supposons que $\operatorname{Aut}(G)$ est trivial. Démontrer que tous les éléments de G sont d'ordre au plus 2, puis que G est soit trivial, soit isomorphe à $\mathbb{Z}/2\mathbb{Z}$.

11 Exercice 11.

Soit $n \in \mathbb{N}$ et $k \in [0, n]$. On note $\wp_k([1, n])$ l'ensemble des parties à k éléments de [1, n].

- **1.** Montrer que \mathfrak{S}_n agit naturellement sur $\wp_k(\llbracket 1, n \rrbracket)$.
- 2. Justifier que cette action est transitive.
- **3.** Calculer le stabilisateur de $[1, k] \in \wp_k([1, n])$.
- **4.** En appliquant la formule orbite-stabilisateur, retrouver la valeur de $\binom{n}{k}$.
- 1. Posons l'action de groupes :

$$\forall \sigma \in \mathfrak{S}_n, \forall i \in \wp_k(\llbracket 1, n \rrbracket), \qquad \sigma \cdot I = \sigma(I) = \{\sigma(i) \mid i \in I\}.$$

La partie $\sigma(I)$ contient k éléments de [1, n]. Et, de plus, l'application $\sigma \mapsto (I \mapsto \sigma(I))$ est

Table des matières

Théorèmes d'isomorphismes et actions de groupes.		
1	Exercice 1. Groupes monogènes	
2	Exercice 2	
3	Exercice 3	
4	Exercice 4	
5	Exercice 5	
6	Exercice 6. Troisième théorème d'isomorphisme	
7	Exercice 7. Sous-groupe d'un quotient	
8	Exercice 8. Combinatoire algébrique	
9	Exercice 9. Formule de Burnside	
10	Exercice 10. Automorphismes intérieurs	
11	Exercice 11	