

Reinforcement Learning: Advanced Policy Gradients

Mohammad Hossein Rohban, Ph.D.

Hosein Hasani

Spring 2023

Courtesy: Most of slides are adopted from CS 285 Berkeley.

Off-Policy Policy Gradients

$$\theta^{\star} = \arg\max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

$$\nabla_{\theta} J(\theta) = E_{\underline{\tau \sim p_{\theta}(\tau)}} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$

This is the problem!

 Neural networks change only a little bit with each gradient step

Can't just skip this!

 On-policy learning can be extremely inefficient!

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run it on the robot)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Policy Gradients Objective with Importance Sampling

$$\theta^{\star} = \arg\max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

what if we don't have samples from $p_{\theta}(\tau)$? (we have samples from some $\bar{p}(\tau)$ instead)

$$J(\theta) = E_{\tau \sim \bar{p}(\tau)} \left[\underbrace{\frac{p_{\theta}(\tau)}{\bar{p}(\tau)}}_{r(\tau)} r(\tau) \right]$$

importance weight

$$p_{\theta}(\tau) = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\frac{p_{\theta}(\tau)}{\bar{p}(\tau)} = \frac{p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)}{p(\mathbf{s}_1) \prod_{t=1}^{T} \bar{\pi}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)} = \frac{\prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}{\prod_{t=1}^{T} \bar{\pi}(\mathbf{a}_t | \mathbf{s}_t)}$$

importance sampling

$$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$$

$$= \int \frac{q(x)}{q(x)}p(x)f(x)dx$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx$$

$$= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

Deriving the Policy Gradient with Importance Sampling

$$\theta^* = \arg\max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

a convenient identity

$$p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau) = \nabla_{\theta}p_{\theta}(\tau)$$

can we estimate the value of some new parameters θ' ?

$$J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} r(\tau) \right]$$

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{\nabla_{\theta'} p_{\theta'}(\tau)}{p_{\theta}(\tau)} r(\tau) \right] = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} \nabla_{\theta'} \log p_{\theta'}(\tau) r(\tau) \right]$$

now estimate locally, at $\theta = \theta'$: $\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$

Off-Policy Policy Gradient

$$\theta^* = \arg\max_{\theta} J(\theta) \qquad J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} \nabla_{\theta'} \log \pi_{\theta'}(\tau) r(\tau) \right] \quad \text{when } \theta \neq \theta'$$

$$\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} = \frac{\prod_{t=1}^{T} \pi_{\theta'}(\mathbf{a}_t | \mathbf{s}_t)}{\prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}$$

$$= E_{\tau \sim p_{\theta}(\tau)} \left[\left(\prod_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \right) \left(\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right] \quad \text{what about causality?}$$

$$= E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'}|\mathbf{s}_{t'})} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \left(\prod_{t''=t}^{t'} \frac{\pi_{\theta'}(\mathbf{a}_{t''}|\mathbf{s}_{t''})}{\pi_{\theta}(\mathbf{a}_{t''}|\mathbf{s}_{t''})} \right) \right) \right]$$

future actions don't affect current weight

ignore this part!

Off-Policy Policy Gradient: First Order Approximation

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'}|\mathbf{s}_{t'})} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$

exponential in T

Approximation:

$$\nabla_{\theta'} J(\theta') \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})}{\pi_{\theta}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t} \qquad (\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \sim \pi_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{s}_{i,t})}{\pi_{\theta}(\mathbf{s}_{i,t})} \frac{\pi_{\theta'}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})}{\pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$$

ignore this part!

Recap: Policy Gradients

REINFORCE algorithm:

1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)

2.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}^{i}, \mathbf{a}_{t'}^{i}) \right) \right)$$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}^{\pi}$$

"reward to go"

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{A}_{i,t}^{\pi}$$

main steps of policy gradient algorithm:

- 1. Estimate $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ for current policy π 2. Use $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ to get *improved* policy π'

Familiar to policy iteration algorithm:

- 1. evaluate $A^{\pi}(\mathbf{s}, \mathbf{a})$ 2. set $\pi \leftarrow \pi'$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} \gamma^{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

claim:
$$J(\theta') - J(\theta) = E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_t \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right]$$

could be interpret as policy improvement!

$$\begin{aligned} \text{claim: } J(\theta') - J(\theta) &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right] \\ \text{proof: } J(\theta') - J(\theta) &= J(\theta') - E_{\mathbf{s}_0 \sim p(\mathbf{s}_0)} \left[V^{\pi_{\theta}}(\mathbf{s}_0) \right] \\ &= J(\theta') - E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t V^{\pi_{\theta}}(\mathbf{s}_t) - \sum_{t=1}^{\infty} \gamma^t V^{\pi_{\theta}}(\mathbf{s}_t) \right] \\ &= J(\theta') + E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_{\theta}}(\mathbf{s}_{t+1}) - V^{\pi_{\theta}}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right] + E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_{\theta}}(\mathbf{s}_{t+1}) - V^{\pi_{\theta}}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (r(\mathbf{s}_t, \mathbf{a}_t) + \gamma V^{\pi_{\theta}}(\mathbf{s}_{t+1}) - V^{\pi_{\theta}}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right] \end{aligned}$$

$$J(\theta') - J(\theta) = E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right]$$
 expectation under $\pi_{\theta'}$ advantage under π_{θ}

$$E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] = \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

$$= \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

is it OK to use $p_{\theta}(\mathbf{s}_t)$ instead?

Can we ignore distribution mismatch?

$$\sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] \approx \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

why do we want this to be true?

$$J(\theta') - J(\theta) \approx \bar{A}(\theta') \implies \theta' \leftarrow \arg \max_{\theta'} \bar{A}(\theta)$$

is it true? and when?

 $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

2. Use
$$\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$$
 to get improved policy π'

 $\bar{A}(\theta')$

Bounding the distribution change

Claim: $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

Simple case: assume π_{θ} is a deterministic policy $\mathbf{a}_t = \pi_{\theta}(\mathbf{s}_t)$

 $\pi_{\theta'}$ is close to π_{θ} if $\pi_{\theta'}(\mathbf{a}_t \neq \pi_{\theta}(\mathbf{s}_t)|\mathbf{s}_t) \leq \epsilon$

$$p_{\theta'}(\mathbf{s}_t) = \underline{(1-\epsilon)^t} p_{\theta}(\mathbf{s}_t) + (1-(1-\epsilon)^t) \underline{p_{\text{mistake}}(\mathbf{s}_t)}$$

probability we made no mistakes

some other distribution

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \leq 2(1 - (1 - \epsilon)^t)$$
useful identity: $(1 - \epsilon)^t \geq 1 - \epsilon t$ for $\epsilon \in [0, 1]$ $\leq 2\epsilon t$

not a great bound, but a bound!

Bounding the distribution change (cont.)

Claim: $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

General case: assume π_{θ} is an arbitrary distribution

$$\pi_{\theta'}$$
 is close to π_{θ} if $|\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t) - \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)| \leq \epsilon$ for all \mathbf{s}_t

Useful lemma: if
$$|p_X(x) - p_Y(x)| = \epsilon$$
, exists $p(x, y)$ such that $p(x) = p_X(x)$ and $p(y) = p_Y(y)$ and $p(x = y) = 1 - \epsilon$
 $\Rightarrow p_X(x)$ "agrees" with $p_Y(y)$ with probability ϵ

$$\Rightarrow \pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t)$$
 takes a different action than $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ with probability at most ϵ

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$$

$$\le 2\epsilon t$$

Bounding the distribution change (cont.)

 $\pi_{\theta'}$ is close to π_{θ} if $|\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t) - \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)| \leq \epsilon$ for all \mathbf{s}_t

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \leq 2\epsilon t$$

$$E_{p_{\theta'}(\mathbf{s}_t)}[f(\mathbf{s}_t)] = \sum_{\mathbf{s}_t} p_{\theta'}(\mathbf{s}_t) f(\mathbf{s}_t) \geq \sum_{\mathbf{s}_t} p_{\theta}(\mathbf{s}_t) f(\mathbf{s}_t) - |p_{\theta}(\mathbf{s}_t) - p_{\theta'}(\mathbf{s}_t)| \max_{\mathbf{s}_t} f(\mathbf{s}_t)$$

$$\geq E_{p_{\theta}(\mathbf{s}_t)}[f(\mathbf{s}_t)] - 2\epsilon t \max_{\mathbf{s}_t} f(\mathbf{s}_t)$$

$$\sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] \geq O(Tr_{\max}) \text{ or } O\left(\frac{r_{\max}}{1 - \gamma}\right) \\
\sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] - \sum_{t} 2\epsilon t C$$

maximizing this maximizes a bound on the thing we want!

Where are we at so far?

$$\theta' \leftarrow \arg\max_{\theta'} \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$
such that $|\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) - \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})| \leq \epsilon$

for small enough ϵ , this is guaranteed to improve $J(\theta') - J(\theta)$

a more convenient bound: $|\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t) - \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)| \leq \sqrt{\frac{1}{2}D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t)|\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t))}$

Some Useful Preliminaries: Taylor Series

Approximation of a differentiable function around a given point with sum of terms of the function's derivatives:

$$f\left(x
ight)pprox f\left(x_{0}
ight)+\left(x-x_{0}
ight)^{T}
abla f\left(x_{0}
ight)+rac{1}{2}\left(x-x_{0}
ight)^{T}H\left(x-x_{0}
ight)+\cdots$$

Some Useful Preliminaries: Constrained Optimization

equality constraints: method of Lagrange multipliers

optimize
$$f(x)$$

subject to: $g(x) = 0$ $\mathcal{L}(x, \lambda) = f(x) + \lambda g(x)$

Inequality constraints: KKT

optimize
$$f(x)$$

$$subject to:$$

$$g_i(x) \le 0,$$

$$h_j(x) = 0$$

$$\mathcal{L}(x, \mu, \lambda) = f(x) + \mu^T g(x) + \lambda^T h(x)$$

$$subject to:$$

$$\mu_i \ge 0$$

$$\mu^T g(x) = 0$$

Some Useful Preliminaries: KL-Divergence

A Common distance measure for distributions:

$$D_{KL}(p||q) = \int_x p(x) log rac{p(x)}{q(x)} dx$$

Other useful distance measures:

- Total variation distance
- Wasserstein distance
- Jensen–Shannon divergence

• ...

Some Useful Preliminaries: Fisher Information

likelihood function: $p_{\theta}(x)$

score function: $\nabla_{\theta} log p_{\theta}(x)$

Fisher information: measuring the amount of information that a random variable (x) carries about likelihood parameters (θ) :

$$[I(\theta)]_{i,j} = E_{x \sim p_{\theta}(x)} [\left(\frac{\partial}{\partial \theta_{i}} log p_{\theta}(x)\right) \left(\frac{\partial}{\partial \theta_{j}} log p_{\theta}(x)\right)]$$
 variance (covariance) of score function
$$= -E_{x \sim p_{\theta}(x)} [\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} log p_{\theta}(x)]$$

curvature of score function

Importance of step size in RL

- Supervised learning: Step too far → next updates will fix it
- Reinforcement learning: Policy is determining data collection!
 - Step too far → bad policy
 - Next batch: collected under bad policy
 - May not be able to recover from a bad choice, collapse in performance!
- Learning rate tuning is hard
 - Poor conditioning could be more dangerous in RL settings
 - More sophisticated optimizers can reduce numerical issues
 - Need for advanced learning rate adjustment methods!

Natural Policy Gradient

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

Could be shown as a constraint problem:

$$\theta' \leftarrow \arg\max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } \underline{\|\theta' - \theta\|^2 \le \epsilon}$$

controls how far we go

Can we rescale the gradients to reduce the problem with poor conditioning?

$$\theta' \leftarrow \arg\max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } D(\pi_{\theta'}, \pi_{\theta}) \leq \epsilon$$

parameterization-independent divergence measure

Natural Policy Gradient

$$\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } D(\pi_{\theta'}, \pi_{\theta}) \leq \epsilon$$

parameterization-independent divergence measure

usually KL-divergence: $D_{\text{KL}}(\pi_{\theta'} || \pi_{\theta}) = E_{\pi_{\theta'}}[\log \pi_{\theta} - \log \pi_{\theta'}]$

Taylor expansion:

$$D_{\mathrm{KL}}(\pi_{\theta'} || \pi_{\theta}) \approx (\theta' - \theta)^T \underline{\mathbf{F}}(\theta' - \theta)$$

Fisher-information matrix

$$\mathbf{F} = E_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s})^{T}]$$

$$\text{can estimate with samples}$$

Natural Policy Gradient

$$D_{\mathrm{KL}}(\pi_{\theta'} || \theta_{\pi}) \approx (\theta' - \theta)^T \mathbf{F} (\theta' - \theta)$$

$$\theta' \leftarrow \arg\max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } D(\pi_{\theta'}, \pi_{\theta}) \leq \epsilon$$

$$\theta \leftarrow \theta + \alpha \mathbf{F}^{-1} \nabla_{\theta} J(\theta)$$

natural gradient: pick α

trust region policy optimization: pick ϵ

can solve for optimal α while solving $\mathbf{F}^{-1}\nabla_{\theta}J(\theta)$

(figure from Peters & Schaal 2008)

Trust Region Method

- We often optimize a surrogate objective
- Surrogate objective may be trustable only in a small region
- Limit search to small trust region

Cs885, waterloo 2022

Trust Region Policy Optimization

Recall from "Policy Gradient as Policy Iteration":

for small enough ϵ , this is guaranteed to improve $J(\theta') - J(\theta)$

Policy Gradient with Constraints

How do we enforce the constraint?

$$\theta' \leftarrow \arg\max_{\theta'} \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$
such that $D_{\text{KL}}(\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) || \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})) \leq \epsilon$

$$\mathcal{L}(\theta', \lambda) = \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] - \lambda \left(D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \| \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})) - \epsilon \right)$$

- 1. Maximize $\mathcal{L}(\theta', \lambda)$ with respect to θ'
- 2. $\lambda \leftarrow \lambda + \alpha(D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t)||\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)) \epsilon)$

Intuition: raise λ if constraint violated too much, else lower it an instance of dual gradient descent

Natural Gradient Based on Trust Region

Recall:

$$\theta' \leftarrow \arg \max_{\theta'} \nabla_{\theta} J(\theta)^T (\theta' - \theta)$$

such that $D_{\text{KL}}(\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t) || \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)) \le \epsilon$

$$D_{\mathrm{KL}}(\pi_{\theta'} || \pi_{\theta}) \approx \frac{1}{2} (\theta' - \theta)^T \mathbf{F} (\theta' - \theta)$$

$$\alpha = \sqrt{\frac{2\epsilon}{\nabla_{\theta} J(\theta)^T \mathbf{F}^{-1} \nabla_{\theta} J(\theta)}}$$

Proximal Policy Optimization

 TRPO is conceptually and computationally challenging in large part because of the constraint in the optimization.

$$D_{KL}(\pi_{\theta'}(.|s)||\pi_{\theta}(.|s)) \le \epsilon$$

- What is the effect of the constraint?
- Recall KL-Divergence:

$$D_{KL}(\pi_{\theta'}(.|s)||\pi_{\theta}(.|s)) = \Sigma_a \pi_{\theta'}(a|s) \log \frac{\pi_{\theta'}(a|s)}{\pi_{\theta}(a|s)}$$

We are effectively constraining the ratio $\frac{\pi_{\theta'}(a|s)}{\pi_{\theta}(a|s)}$

Proximal Policy Optimization

• Let's design a simpler objective that directly constrains $\frac{\pi_{\theta'}(a|S)}{\pi_{\theta}(a|S)}$

$$\underset{\theta'}{\operatorname{argmax}} E_{\{s \sim \mu_{\theta}, a \sim \pi_{\theta}\}} \min \begin{cases} \frac{\pi_{\theta'}(a|s)}{\pi_{\theta}(a|s)} A^{\pi_{\theta}}(s, a), \\ \frac{\pi_{\theta'}(a|s)}{\pi_{\theta}(a|s)}, 1 - \epsilon, 1 + \epsilon) A^{\pi_{\theta}}(s, a) \end{cases}$$

could be easily implemented with auto-diff packages

where
$$clip(x, 1 - \epsilon, 1 + \epsilon) =$$

$$\begin{cases} 1 - \epsilon & if \ x < 1 - \epsilon \\ x & if \ 1 - \epsilon \le x \le 1 + \epsilon \\ 1 + \epsilon & if \ x > 1 + \epsilon \end{cases}$$

PPO vs TRPO

Review

- Policy gradient = policy iteration
- Optimize advantage under new policy state distribution
- Using old policy state distribution optimizes a bound, if the policies are close enough
- Results in constrained optimization problem
- Gradient ascent: first order approximation to objective
- Regular gradient ascent has the wrong constraint (in parameter space): use natural gradient with D_{KL} constraint
- PPO simply uses the importance sampling ratio for regularization

Policy Gradient in Practice

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\underline{\theta}} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}$$
pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

Implementing Policy Gradient

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

maximum likelihood:
$$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})$$
 $J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})$

Just implement "pseudo-loss" as a weighted maximum likelihood:

$$\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$$
 cross entropy (discrete) or squared error (Gaussian)

Implementing Policy Gradient

Policy gradient:

```
# Given:
# actions - (N*T) x Da tensor of actions
# states - (N*T) x Ds tensor of states
# q_values - (N*T) x 1 tensor of estimated state-action values
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods = tf.multiply(negative_likelihoods, q_values)
loss = tf.reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)
```

$$ilde{J}(heta) pprox rac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{ heta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}|\hat{Q}_{i,t})$$
q_values

Related Papers

- Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning: introduces REINFORCE algorithm
- Sutton, McAllester, Singh, Mansour (1999). Policy gradient methods for reinforcement learning with function approximation: actor-critic algorithms with value function approximation
- Mnih, Badia, Mirza, Graves, Lillicrap, Harley, Silver, Kavukcuoglu (2016). Asynchronous methods for deep reinforcement learning: A3C, parallel online actor-critic
- Schulman, Moritz, L., Jordan, Abbeel (2016). High-dimensional continuous control using generalized advantage estimation: $TD(\lambda)$ actor-critic

Related Papers

- Degris, White, Sutton. (2012). Off-policy actor-critic: off-policy actor-critic with importance sampling
- Silver et al. (2014). Deterministic policy gradient algorithms: DPG
- Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous Q-learning with actor network for approximate maximization: DDPG
- Kakade (2001). A Natural Policy Gradient: natural policy gradient
- Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: TRPO
- Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization algorithms: PPO