PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

H01S 3/085, 3/13

A1

(11) International Publication Number: WO 95/08206

(43) International Publication Date: 23 March 1995 (23.03.95)

(21) International Application Number:

PCT/US94/10176

(22) International Filing Date:

9 September 1994 (09.09.94)

(30) Priority Data:

122,711

14 September 1993 (14.09.93) US

- (71) Applicant: ACCUWAVE CORPORATION [US/US]; 1651 19th Street, Santa Monica, CA 90404 (US).
- (72) Inventors: RAKULJIC, George, Anthony; 2320 29th Street, Santa Monica, CA 90405 (US). YARIV, Amnon; 2257 Homet Road, San Marino, CA 91108 (US). LEYVA, Victor; 3525 Sawtelle Boulevard #105, Los Angeles, CA 90066 (US). SAYANO, Koichi; 2004 San Antonio Drive, Montibello, CA 90640 (US). TYLER, Charles, E.; 831 Cathedral Drive, Sunnyvale, CA 94087 (US).
- (74) Agent: BERMAN, Charles; Merchant, Gould, Smith, Edell, Welter & Schmidt, Suite 400, 11150 Santa Monica Boulevard, Los Angeles, CA 90025 (US).

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: WAVELENGTH STABILIZED LASER SOURCES USING FEEDBACK FROM VOLUME HOLOGRAMS

(57) Abstract

A laser (11) utilizes feedback from a volume holographic (12) grating used as a wavelength standard to lock the laser output wavelength to its desired value. This feedback can be non-optical, wherein the holographic filter output is used to actively control the wavelength through an external control mechanism. This feedback can also be optical, wherein a volume hologram reflection grating is used to generate optical feedback into the laser gain.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	rr	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	MIL	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

1

WAVELENGTH STABILIZED LASER SOURCES USING FEEDBACK FROM VOLUME HOLOGRAMS

BACKGROUND OF THE INVENTION

1. Field Of The Invention.

This invention relates to systems and methods for controlling the output wavelength of a coherent wave source using feedback from a volume hologram wavelength standard, and more particularly, to improved methods and devices for control of laser output wavelength to very high precision. The optical output from the laser is filtered by a highly selective volume hologram reflection grating, which acts as an external wavelength standard, and is fed back to the laser in the form of an optical or electrical signal to control its output wavelength.

- 2. Description Of Related Art.
- Volume hologram reflection gratings have been shown to be an extremely accurate and temperature-stable means of filtering a narrow passband of light from a broadband spectrum. This technology has been demonstrated in a practical application, where a holographic grating
- optical filter with a 1/8 Å full width at half maximum (FWHM) passband at the 6564.6 Å (H_{α}) solar absorption wavelength was fabricated. Moreover, such filters have arbitrarily selectable wavefront curvatures, center wavelengths, and output beam directions. The tempera-
- ture stability of the filter substrate, which was Iron (Fe) doped lithium niobate (LiNbO $_3$) in this application, was determined by measuring the wavelength shift of the filter as a function of temperature. This temperature-induced wavelength shift was approximately 1 Å per 30° C
- 30 at 6564.6 Å. (See, G.A. Rakuljic and V. Leyva, "Volume holographic narrow-band optical filter," Opt. Lett. vol. 18, pp. 459-461 (1993)).

Photorefractive crystals such as $LiNbO_3$ have been shown to be effective media for storing volume

2

holographic gratings such as for optical filters or holographic optical memories with high diffraction efficiency. In conjunction with techniques for writing high diffraction efficiency reflection gratings in these materials, methods of "fixing" the gratings so they cannot be erased by subsequent illumination have been developed. (See, e.g., J.J. Amodei and D.L. Staebler, "Holographic recording in lithium niobate," RCA Review, vol. 33, pp. 71-94 (1972); V. Leyva and G.A. Rakuljic, "Fixing Method for Narrow Bandwidth Volume Holograms in 10 Photorefractive Materials, "U.S. Patent Application Serial No. 07/965,746 (1992) <u>supra;</u> and G.A. Rakuljic and A. Yariv, "Photorefractive Systems and Methods," U.S. Patent Application Serial No. 07/908,298 (1992) In addition, plane gratings Bragg-matched to 15 supra). reflect at normal incidence in the infrared have been successfully recorded in LiNbO3 using a technique of writing from the side face in a transmission mode geometry with the correct incidence angle and shorter 20 wavelength light, where the photorefractive sensitivity of the material is much higher than in the infrared. (See, G.A. Rakuljic and V. Leyva, "Methods and Devices for using Photorefractive Materials at Infrared Wavelengths," U.S. Patent Application Serial No. 07/991,571 (1992) <u>supra</u>). 25

Accurate wavelength lasers are needed as transmitter sources for Wavelength Division Multiplexed (WDM) fiberoptic communications, pump lasers for various media such Erbium (Er) doped optical fiber amplifiers (EDFA) or solid state lasers, illumination sources for differential spectroscopy, and other applications requiring compact, precise wavelength sources. In telecommunications, semiconductor lasers have been used because of their small size, low cost, high efficiency, and ability to be modulated at high speed. These sources typically 35 operate in the 1.3 μ m band, which is at the zero dispersion point of conventional optical fibers, and more

30

3

recently in the 1.55 μm band because of the loss minima and the availability of Er-doped EDFA's in this wavelength band.

Conventional semiconductor lasers used in optical telecommunications have the inherent problem of wavelength uncertainty due to the large spectral width of their gain media. This allows laser oscillation over a wide range of wavelengths where the optical gain exceeds the total loss in the laser cavity.

10 Consequently, the output of a simple Fabry-Perot laser is multi-mode, so its wavelength can be specified only to within 100 to 200 Å of its target design wavelength. The more expensive distributed feedback (DFB) or distributed Bragg reflector (DBR) lasers incorporate distributed reflectors to produce a single-mode, fixed wavelength output, but this output can be specified only to about 40 Å accuracy. This is true even among lasers in the same manufacturing lot. Moreover, their operating wavelengths can drift during use due to temperature changes and aging of the laser.

In recent years, there has been tremendous interest in WDM because of the projected need for additional capacity in future lightwave communications systems. Current approaches to high capacity links rely on time division multiplexing (TDM), where extremely high speed modulation speeds are proposed (at up to 1 THz or more) to increase the information carrying capacity of a fiber. Multiple, parallel fiber links are another option, although each fiber will need its own set of repeaters, which can escalate costs tremendously in a long distance installation.

30

The advent of EDFA's has made WDM extremely attractive for fiber communications systems. A single EDFA can amplify a broad spectrum (approximately 400 Å wide) of light, enabling a single fiber to support multiple wavelength signals with a common amplifier. This allows a multi-fold increase in the information

4

carrying capacity of a single fiber, especially if the wavelength channels can be spaced close together within the amplification bandwidth of the EDFA. However, past attempts at WDM have been limited by the lack of sufficient wavelength accuracy of semiconductor lasers to take full advantage of WDM technology.

This uncertainty in semiconductor output wavelengths has limited the channel carrying capacity of multi-wavelength telecommunications systems. Even with sufficiently narrow bandwidth filters and couplers, channel carrying capacity in WDM communications systems is still limited by the absolute accuracy of the laser sources. This lack of wavelength accurate semiconductor lasers has hindered the widespread development and deployment of WDM telecommunications systems.

10

15

25

30

35

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described above, and to overcome other limitations that will become apparent upon reading and understanding the present specification, a laser utilizes feedback from a volume holographic grating used as a wavelength standard to lock the laser output wavelength to its desired value. This feedback can be non-optical, wherein the holographic filter output is used to actively control the wavelength through an external control mechanism, or optical, wherein a volume hologram reflection grating is used to generate optical feedback into the laser gain.

In the first embodiment, part of the output power of the laser is filtered using a volume hologram reflection grating and directed onto a detector. The volume hologram, used as a wavelength standard, is kept at a constant temperature for wavelength accuracy. The signal from the detector is then passed to a control system which uses this information to adjust the wavelength of the laser until the desired output wavelength is obtained. Variations of this system can

5

be used with any externally tunable laser, such as a dye, tunable solid state, or semiconductor laser. For example, a DFB semiconductor laser is tuned by varying its temperature via a thermoelectric Peltier cooler, a DBR laser is tuned by adjusting the current through the Bragg reflector section to change its index of refraction, and dye, solid state, and grating-tuned external cavity semiconductor lasers are tuned by an electrically or electro-mechanically controlled 10 birefringent filters, etalons, or gratings.

In a more specific example, as applied to an improved wavelength stabilized communications laser, a DFB laser is mounted on a temperature-controlled heat sink so that temperature control can be used as a wavelength tuning mechanism. Part of the output is coupled to a volume hologram Bragg matched to reflect at the desired operating wavelength of the laser to filter the signal to the detector. At the signal maximum, the laser will be operating at the desired wavelength. The wavelength of the laser is dithered by the control system to determine the local slope of the filter response, and adjusted until the detector reads the maximum signal, indicating that the laser is on band. As the laser output drifts off band, the control system adjusts the output back to 25 the center wavelength of the filter.

15

20

A variation of the above system uses two holographic gratings, either discrete or coextensively written in the same crystal, with center wavelengths shifted slightly above and below the desired wavelength, so the 30 operating point of the laser is between the peaks of the two filters. The center wavelengths of the two filters are selected so that opposite slopes of their spectral response curves intersect at the desired operating wavelength, thereby comprising crossed or crossover holographic filters. The output signals from the two detectors are subtracted by a difference amplifier and normalized by the total output so that the direction as

PCT/US94/10176 **WO** 95/08206

6

well as the magnitude of the deviation can be determined. This eliminates the need to dither the wavelength to determine the local slope of the wavelength deviation. The normalized difference signal is used by the processor and controller to determine the magnitude and direction of deviation of the laser output wavelength from the desired value and adjusts the temperature of the laser accordingly. The temperature controller continuously makes fine adjustments to the operating temperature to maintain the output of the laser at the set wavelength.

10

15

20

25

Another aspect of this invention is that the operating point at which stabilization is sensed, such as the intersection point between two the two spectral response curves, need not correspond to the wavelength of operation of the source that is being stabilized. An offset factor can be introduced to compensate for spectral response curves that are unlike, or are not precisely placed relative to the wavelength to be generated. This feature can also be used to detune the operating wavelength of the source for differential measurements or calibration purposes.

An accurate wavelength laser device with the additional feature of wavelength tunability (in discrete increments of approximately 1 Å or greater) can be configured using either of the approaches described above. Multiple gratings (or grating pairs in the crossed filter example) corresponding to the desired wavelengths are recorded in the photorefractive crystal 30 with the spacing between them much greater than the bandwidth of the individual gratings. The laser is tuned (by temperature or other means) to a wavelength in the vicinity of one of the filters or filter pairs using the same processor and controller architecture as in the previous examples. The laser wavelength control mechanism thereafter locks the output wavelength to the setpoint using the feedback signal from the holographic

7

filter(s).

Further, in accordance with the invention, these wavelength stabilization systems can be used with any coherent optical or infrared energy source wherein the wavelength is controllable, at least to a degree, by adjustment of some parameter. For telecommunications applications, the most promising sources are temperature-tuned DFB and electrically-tunable DBR lasers.

The second embodiment of this invention uses optical 10 feedback to lock the laser output wavelength to that of the holographic grating. This is done by using a holographic grating reflector, characterized by its narrow reflection bandwidth, as one of the cavity mirrors in a laser resonator, thereby using optical feedback as the wavelength control mechanism. The narrow bandwidth holographic grating reflector forces the laser to oscillate only at a specific wavelength, which is that of the volume grating. This technique, in principle, can be used with any laser gain medium where the 20 reflection off the holographic grating generates enough feedback in the optical resonator to enable laser oscillation.

A specific example of this invention is an external cavity semiconductor laser using a volume holographic reflection grating as the external reflector. One facet of an (inexpensive) Fabry-Perot semiconductor laser is anti-reflection (AR) coated, while the other facet is coated for high reflection. A holographic grating,

which is Bragg-matched for normal incidence reflection at the exact desired operating wavelength of the laser, is positioned to reflect the radiation emitted from the AR-coated side back into the laser. With proper alignment, laser oscillation occurs only in the external cavity bounded by the holographic grating and the high reflection facet of the semiconductor laser. The grating reflects only a narrow wavelength spectrum

8

(within 0.5 Å or so, depending on the grating thick-ness), therefore locking the laser output to a fixed wavelength with very high accuracy.

The volume holographic gratings are prepared by writing a plane wave reflection hologram in the storage medium, which in this embodiment is a photorefractive LiNbO3 crystal, so it is Bragg-matched to retro-reflect light at the desired operating wavelength of the laser at normal incidence. The grating is written directly 10 with the same wavelength as that of intended operation in the counter-propagating geometry for wavelengths within the photorefractive sensitivity range of the crystal. Alternatively, for longer wavelengths, the grating is written indirectly by using off-axis beams 15 from the side faces at a shorter wavelength, where the crystal has higher photosensitivity, to obtain the proper grating spacing, as described in G.A. Rakuljic and V. Leyva, U.S. Patent Application Serial No. 07/965,746, (1992) <u>supra</u>. The gratings are fixed so they will not be erased by illumination during operation.

The ability to achieve precise control of laser output wavelength has ramifications in a number of system applications. The sources in a WDM system, for example, can have much smaller band separations than heretofore possible, permitting more efficient use of the available transmission spectrum within an optical fiber or optical fiber amplifier. Two wavelength stabilized signals at different frequencies can be heterodyned to produce a difference output in the optical or microwave band. Pump energy for a laser can be provided in that part of its absorption spectrum at which most efficient amplification takes place. These and other benefits derive from the fact that the holographic filter serves as a stable secondary reference that serves as a wavelength standard in device and system operation and is readily stabilized because of

25

30

35

9

its insensitivity to temperature and voltage variations.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, reference is made to the following detailed description and the attached figures, where:

Figure 1 is a schematic diagram of the general concept of using volume holographic gratings to generate feedback (such as electrical or optical signals) to control the output wavelength of a laser to high precision;

Figure 2 illustrates a method for controlling the output wavelength of a laser using an electrical signal feedback from the reflection of a single holographic filter onto a detector to determine the actual output wavelength with reference to a fixed standard, and electrical, electro-mechanical, or thermal means to adjust the wavelength of the laser;

Figure 3 is a graph of the spectral response of the signal from the detector in the architecture of Figure 2, where the filter response is centered on λ_0 and the actual operating wavelength of the laser is shown as λ ;

Figure 4 is a schematic diagram of a wavelength stabilized laser system suitable for use in optical telecommunications, where in this example a DFB laser tuned by temperature control through a thermoelectric device is stabilized with electrical feedback from a volume holographic grating;

Figure 5 is a diagram of the embodiment illustrated in Figure 2, except that the holographic filter is used in the blocking mode and the processor is designed to detect the signal minimum to lock the laser output wavelength;

30

Figure 6 is a graph of the spectral responses of multiple holographic filters used in the embodiment illustrated in Figures 2 or 4 or 5, showing how a laser with a selectable wavelength capability can be

WO 95/08206

15

20

30

35

10

PCT/US94/10176

implemented using this method;

Figure 7 is a plot of a tuning curve for a rotating plane wave grating written with counter-propagating beams at 6795 Å in $LiNbO_3$ (with $n_0 = 2.3$) compared to several calibration points obtained from experimental measurements;

Figures 8a and 8b illustrate the crossed-filter method of wavelength stabilization using both (8a) discrete holographic gratings and (8b) two gratings 10 multiplexed in a single crystal;

Figures 9a, 9b, and 9c are spectrum graphs depicting the response of the crossed filters, and also illustrating how a signal offset can be introduced to allow tuning off the intersection point of the crossed filters;

Figure 10 is a graph of the spectral response from multiple crossed holographic filters for use with a laser similar to the one illustrated in Figure 2, but that can be operated at any one of a number of wavelengths;

Figure 11 is a schematic drawing illustrating a DFB laser suitable for application in telecommunications using the crossed-filter wavelength stabilization method;

25 Figure 12 is a schematic diagram of a volume hologram external cavity semiconductor laser;

Figure 13 is a spectrum graph of a holographic external cavity laser using a Toshiba TOLD 9215 visible laser diode with a volume hologram reflector at 6736.4 Å and the laser operating at low driving current (approximately 31 mA) and without active temperature control;

Figure 14 is a spectrum graph of the external cavity visible laser diode of Figure 12 at a higher driving current (37 mA);

Figure 15 is a spectrum graph of the holographic external cavity laser at 840 nm, where the reflector was

11

written in a 0.15% Fe-doped LiNbO₃ crystal using a Ti:Sapphire laser;

Figure 16 is a spectrum graph of a holographic external cavity laser operating at 1.3 μ m using an infrared holographic grating written using the method described in the parent applications, supra;

Figure 17 is a spectrum graph of a 665 nm holographic external cavity laser using a laser with an improved AR-coating on its facet;

Figure 18 is a schematic diagram of a holographic grating external cavity laser array, where the individual lasers are locked to the same wavelength using a single holographic grating for high power applications such as pumping solid state lasers or optical amplifiers;

Figure 19 is a schematic diagram of a holographic grating external cavity laser array, where the individual lasers are locked to a different wavelength by using an array of individual holographic gratings, each corresponding to the desired wavelength of that laser;

Figure 20 is a schematic diagram of a wavelength division multiplexing (WDM) system using the wavelength stabilized laser as an accurate wavelength source;

Figure 21 illustrates an application of the holographic feedback accurate wavelength laser as the pump for an optical medium such as a solid state laser or optical amplifier for improved pumping efficiency;

Figure 22 illustrates a method for microwave or 30 millimeter wave signal generation using two lasers operating at slightly different wavelengths; and

35

Figures 23a and 23b are diagrams of differential absorption spectroscopy apparatus using the volume hologram stabilized laser as an accurate wavelength source, where the approaches involve use of a laser with multi-wavelength capability (Figure 22a) and use of two lasers at known, fixed wavelengths (Figure 22b).

12

DETAILED DESCRIPTION OF THE INVENTION

In the following description of the present invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.

In Figure 1, the general concept is illustrated of the method of controlling the output wavelength of a laser system 11 using a volume holographic grating 12 in a photorefractive crystal or other suitable medium as an external reference element. Feedback from a volume hologram reflection grating, which serves as a wavelength standard external to the laser itself, is used to control its output wavelength. This feedback can be electrical, with active control of the laser wavelength, or optical, where the light reflected off the holographic grating is used in a passive process.

In the active feedback approach, light reflected off the holographic grating is passed to a detector, producing a signal which is a function of the laser output wavelength. The resulting signal is interpreted by the controller and used to tune the laser by some mechanism, such as by activating a thermoelectric cooler, changing the current through some device which controls the wavelength, or using a mechanical or electro-mechanical motion control apparatus to physically move the wavelength selective element. In the other approach to this method of using feedback from volume holograms, the feedback is implemented in optical form, where the reflection off a narrow bandwidth volume holographic grating is fed back directly into the laser as part of the laser cavity so the laser oscillates only at the fixed wavelength corresponding to that of the volume hologram.

25

30

35

13

HOLOGRAPHIC FILTER-LOCKED LASER WITH ACTIVE FEEDBACK CONTROL

In Figure 2, a schematic diagram is shown of a method for controlling the output wavelength of a semiconductor or other laser to very high precision. A laser 13 with some form of a wavelength control mechanism, such as a high quality distributed feedback (DFB) or distributed Bragg reflector (DBR) laser in optical telecommunications, is used as the source. Both lasers use distributed reflectors in the laser substrate itself to 10 obtain single mode operation despite the large spectral width of the gain medium. A DFB laser is tuned by mounting the laser on a thermoelectric cooler and controlling its temperature; a DBR laser is tuned by varying the current through its Bragg reflector section and therefore changing its index of refraction and Bragg wavelength.

Although semiconductor lasers are used as the example in many of the following embodiments, other laser types can be used in the methods and apparatus set forth in this invention. In the case of semiconductor lasers, the optical output can be modulated with a high speed RF or digital signal through an optional current driver 14. The crystal containing the gratings 15 is also mounted on a temperature controller 16 to maintain its operating wavelength to a fixed value and also to allow calibration or detuning to a certain degree by adjusting its temperature.

20

25

The output of the laser 13 is directed to a coupler or beamsplitter 17, where a small fraction of the output wave energy is sampled and the rest transmitted as the output signal and directed into a fiber optic communications link or other utilization device. The sampled fraction is directed to a photorefractive crystal 15 containing a narrow linewidth volume hologram reflection grating, which is configured to reflect this optical signal onto the detector 18. The diffraction

14

peak of the holographic filter is centered at the desired output wavelength of the laser. The processor 19 interprets the data from the detector 17 and adjusts the laser operating wavelength through the wavelength controller 20 by controlling its temperature or other relevant parameter.

In the normal incidence reflection (counterpropagating object and reference beam) geometry, the grating period of a holographic grating is given by

$$\Lambda_{\rm g} = \frac{\lambda_0}{2n_0} \tag{1}$$

and the full width at half maximum (FWHM) bandwidth of a volume holographic grating used as a normal incidence reflection filter is given by

$$\Delta \lambda = \frac{\lambda_0^2}{2n_0 l} \tag{2}$$

where λ₀ is the wavelength, n₀ is the index of refraction of the medium containing the grating, and *l* is the grating thickness. As a numerical example, a 1 cm thick grating in LiNbO₃ (n₀ = 2.2) for the 1.55 μm semiconductor laser wavelength will have a bandwidth of approximately 0.5 Å. Because of the narrow bandwidth of volume hologram gratings in photorefractive materials, the filter can sense small shifts off the peak wavelength. In addition, the wavelength satisfying the Bragg condition of the grating can be changed by small changes in the physical dimensions of the crystal, such as by temperature or applying an electric field to utilize the piezoelectric effect.

In the present example, the holographic gratings are written in a photorefractive material such as LiNbO₃ that also has the capability of having the gratings "fixed" (or sometimes described as "fixed" and "developed") to render them permanent. If the operating wavelength of

15

the filter is within the photorefractive sensitivity range of the material used (i.e., 350 to 700 nm for LiNbO₃), the gratings are written directly with the wavelengths and beam orientations desired. For the infrared region, which comprise the bulk of semiconductor lasers, plane reflection gratings are written by using visible light illuminating the crystal from the side in a transmission mode configuration so the gratings are Bragg-matched to infrared light in the reflection mode geometry, as described in the parent 10 applications, supra.

The detector output following reflection off the holographic filter as a function of wavelength is shown in Figure 3. Because of the degeneracy in wavelength for a given detector output, the controller must first determine the correct side of the filter response curve for the current operating wavelength. This is done by dithering the wavelength a small amount in either direction to determine the local slope of the response curve. The controller then shifts the wavelength until the detector output reaches a maximum, or the point where the local slope of the response curve is zero. As the laser operating wavelength shifts, the control system senses this deviation and adjusts the wavelength 25 back to the peak of the filter.

15

20

A practical example of this embodiment for telecommunications applications is illustrated in Figure 4. A high quality single mode DFB laser 21, of the type typically used as transmitters for fiber-optic telecommunications systems, is mounted on a heat sink with a thermoelectric Peltier device 22 for temperature control of its output wavelength. Alternatively, a DBR laser, where current is used to control the refractive index of the Bragg reflector section, may be used. Both of these laser types are commonly used in telecommunications, which is one of the main applications of this technology. Note that more generally, any laser with a

WO 95/08206

16

PCT/US94/10176

mechanism for controlling the wavelength, such as a tunable external cavity semiconductor, dye, or solid state laser can be used with this wavelength stabilization method.

In the example in Figure 4, the laser 21 is modulated 5 by a high speed analog RF or digital signal 23 through a current driver 24, and its output is directed into an optical fiber pigtail 25. A fiber coupler 26 splits off a small percentage of the output power and directs it 10 onto a volume hologram 27, which filters a narrow spectrum of light with a response curve centered at wavelength λ_0 , as shown in Figure 3. The reflection from the filter 27 is directed to a detector 28, whose signal is interpreted by the processor 29 and used to control 15 the wavelength of the laser 21 through the temperature controller 30 in the manner described above. remaining output of the laser 21 is directed from the fiber coupler 26 to the output fiber link or other utilization device.

Figure 5 illustrates an alternative approach to the 20 method shown in Figures 2 and 4, where the holographic filter 31 is used in an inverse fashion, i.e., as a blocking filter. In this case, the control algorithm in the processor 32 is designed so the wavelength con-25 troller 33 searches for the signal minimum from the detector 34. Again, as in the earlier examples, some form of dithering system, where the wavelength is initially varied a small amount in either direction, is necessary to determine the local slope of the filter 31 response. Once this slope is determined, the controller 30 33 tunes the laser 35 until the detector 34 reads a signal minimum. A current driver 36 is used to modulate the laser 35 output, and the fiber coupler 37 directs part of the laser's output power to the holographic filter 31. 35

For discrete multi-wavelength operation, multiple filters multiplexed in a single crystal and directing

their reflections to the single detector can be used. The peaks of each filter (as shown in Figure 6) correspond to the desired operating wavelengths are sufficiently separated in wavelength (e.g. > 5 Å at 1.55 μm and 0.5 Å FWHM bandwidth) so their crosstalk is negligible (e.g. < 20 dB). The laser is tuned manually to the vicinity of the peak corresponding to the desired operating wavelength, so the control system fine-tunes the laser to the exact value. To switch wavelengths, 10 the laser is manually tuned to the vicinity of the next grating, so the wavelength stabilization system can adjust the operating wavelength to the peak of the new grating. Although the Figure 6 illustration corresponds to the reflection filter architecture of Figures 2 and 4, the general concept can also be applied to the 15 approach in Figure 5, where multiple blocking filters instead of reflective filters are used, and the control algorithm searches for a signal minimum instead of the peak.

20 Alternatively, a variation of the architecture illustrated in Figure 5 uses a single holographic grating 31 that is tuned to different center wavelengths by tilting it with respect to the incident beam to tune the operating wavelength of the laser 35. For a plane grating written for a wavelength λ_0 at normal incidence, the Bragg condition as a function of deviation from the normal φ is given by

$$\lambda = \lambda_0 \int \frac{1 - \frac{\sin^2 \varphi}{n_0^2}}{n_0^2} \tag{3}$$

wherein n_0 is the index of refraction. As the grating 31 30 is tilted away from normal incidence, the center wavelength shifts to the blue, i.e., to shorter wavelengths. For a tuning range of 0 to 10% from the initial (normal incidence) wavelength, the angular range

18

PCT/US94/10176

is 0 to 70°. After the grating 31 is set to the desired wavelength, the laser wavelength controller 33 locks onto the new operating wavelength by searching for the minimum transmitted intensity.

Figure 7 shows a plot of the center wavelength vs. rotation angle for a 6795 A grating at normal incidence. The plot was obtained using Eqn. (3) above, and verified experimentally by the Assignee of the present application using a 2 mm thick LiNbO3 crystal.

10

15

20

25

30

5

WO 95/08206

CROSSED-FILTER LASER

A variation of the electrical signal feedback theme is used in the crossed-filter laser, shown in schematic form in Figures 8a and 8b. This is similar to the configuration shown in Figures 2 and 4, except that two volume hologram reflection gratings are used in a crossed filter configuration. The center wavelengths of these gratings, at λ_+ and λ_- respectively, are above and below that of the desired laser output λ_0 , as shown in Figure 9a. The spectral response curves are substantially alike in this example, in peak amplitude and bandwidth, but spaced apart. In the following discussion, the (+) subscript denotes the longer wavelength, or red-shifted, filter, while the (-) subscript denotes the shorter wavelength, or blueshifted, filter.

The wavelengths of the two filters λ_+ and λ_- are selected so the desired operating wavelength of the laser is at the intersection of opposing monotonically varying slopes of the spectral response curves of the two filters (see Figure 9a). This then forms what may be called a "crossed-filter" or "crossover filter" arrangement. Because the volume holograms have a narrow bandwidth and the crossover point is along the steepest 35 descent region of the difference curve (see Figure 9b), the crossed-filter response curve is extremely sharp, i.e. small changes in wavelength correspond to large

WO 95/08206

19

PCT/US94/10176

changes in detector output.

15

25

35

In this crossed filter approach, part of the laser 38 output, which is picked off by the fiber coupler 39, is sampled by two holographic gratings, as shown in Figures 8a and 8b. In the system illustrated in Figure 8a, a pair of discrete single wavelength holographic filters 40 and 41 are used; as an alternative, two filters can be written coextensively in a single crystal 42 to reflect their signals at different angles to their respective detectors 43 and 44 as shown in Figure 8b. This pair of holographic reflection gratings with wavelengths on either side of the desired operating wavelength, whether in discrete crystals or coextensive in a single medium, comprises the crossed filters.

The crossed filters 40 and 41 reflect their corresponding wavelength signals to their respective detectors 43 and 44 respectively. The output signals from the detectors 43 and 44 are sent to a difference/normalizing amplifier 45. The signals can be directly processed using an analog difference amplifier, or this can be done digitally using analog to digital converters and a digital subtraction system. A gain control is included in the amplifier 45 to enable the output signals from the detectors 43 and 44 to be adjusted so their peak amplitudes are equal. The difference/normalizing amplifier 45 calculates the difference between the intensities, I+ and I-, measured by the two detectors 43 and 44 normalized to the total intensity I₀, according to the following:

30
$$\Delta I = \frac{I_{+} - I_{-}}{I_{0}} = \frac{I_{+} - I_{-}}{I_{+} + I_{-}}$$
 (4)

The normalized difference signal ΔI is then sent through a processor 46 to a wavelength controller 47 which adds a voltage shift capability to the difference output for fine-tuning the operating wavelength. The wavelength controller 47 tunes the output wavelength of the laser

PCT/US94/10176 **WO** 95/08206

20

38 by adjusting its control parameter. Alternatively, an analog system using summing and difference operational amplifiers can be used in place of a digital processor 46 to obtain the same AI result to send to the 5 wavelength controller 47.

When the laser 38 is operating at its specified wavelength, the signals from the detectors 43 and 44 are equal, so there is zero voltage output from the difference amplifier 45 and the laser 38 is held at a 10 constant temperature. If the laser 38 wavelength shifts towards the red with respect to the wavelength setpoint λ_0 , then I, increases while I decreases. The normalized difference signal AI of the two detectors 43 and 44 is obtained from the difference amplifier 45 and sent to the processor 46, which directs the wavelength controller 47 to blue-shift the laser 38 output until the difference signal returns to zero. Conversely, if the laser 38 wavelength shifts to the blue, then I, decreases while I increases, and the controller 47 shifts the wavelength of the laser 38 in the reverse direction until its output wavelength is back to its setpoint and the difference signal is zero.

20

This process is illustrated graphically in Figures 9a and 9b, where the equilibrium point is at λ_0 , where $\Delta I =$ In this way, the holographic filter serves as an 25 external wavelength reference that is used to set the operating wavelength of the laser to very high precision, i.e. within a fraction of an Angstrom. Holographic filters, with their narrow bandwidth, are 30 preferred for this invention because of their precisely placed and configured spectral response characteristics. Conventional optical bandpass filters with similar response curves and characteristics are inherently less precise and more costly and can be considered only for applications where less stringent wavelength accuracy is 35 acceptable.

By incorporating a voltage offset mechanism or

21

algorithm in the processor 46, the laser 38 can be locked to wavelengths other than that corresponding to the intersection of the two filter response curves. This process is shown in Figure 9c, where it gives the system the capability for correcting small errors in wavelength during fabrication of the crossed filters by incorporating the offset in the control electronics or software, somewhat relaxing the tolerance requirements in fabricating the holographic gratings for the filters.

This also allows the laser 38 to be detuned slightly for calibration purposes or applications such as differential spectroscopy requiring operation at slightly shifted wavelengths.

Figure 10 is a graph of the spectral response and current difference from the two detectors of a multi-15 wavelength crossed-filter DFB laser with n wavelength multiplexed filter pairs. The multiple wavelength, crossed-filter DFB laser system with discrete tunability is constructed by recording multiple grating pairs in 20 the photorefractive crystal, with each set of gratings reflecting their signals to the same pair of detectors. The crossed-filter grating at wavelengths λ_1 , λ_2 , ..., λ_n are sufficiently separated in wavelength so that their crosstalk is negligible, e.g., approximately 1 A or 25 greater in a 1 cm thick filter for infrared wavelengths. Preferably, the separation is an order of magnitude greater than the FWHM bandwidth of one of the gratings, which is 0.5 Å for a 1 cm thick filter at 1.55 μ m. laser is first tuned (either by temperature control or 30 other means) to near a desired wavelength λ_i , within the range $(\lambda_{i-}, \lambda_{i+})$. A control circuit, such as described above, is used to fine-tune the output wavelength to exactly λ_i .

To switch operating wavelengths, the laser is tuned manually or by a program control to a wavelength between the peaks of the new filter pair, and the control circuit automatically makes fine adjustments until the

22

laser settles at the exact wavelength corresponding to the crossed-filter pair. Once the wavelength is set within the notch of the cross filter responses, the laser stabilizes at the intersection wavelength or at the pre-programmed offset value if this option is used.

Many lasers, especially low cost semiconductor lasers, have wide fabrication tolerances for their output wavelengths, and many are subject to drift with time and changes in operating conditions. The holographic grating, used in the manner of the present invention, provides a secondary wavelength standard that is essentially invariant. Applied voltages have little effects on wavelength stabilization, but if the effect is significant, the voltage can readily be set at a controlled level. Temperature has a known effect with 15 most lasers, but is so small (e.g., 1 Å per 30°C) that thermoelectric or other temperature stabilization is no problem in the current state of the art. The control of temperature within the range of 5° C retains the wavelength within a small fraction of an Angstrom 20 relative to the selected wavelength. Typically, devices in accordance with the invention are operated well within a 2 Å wide range relative to a predetermined center wavelength. However, by writing the holographic gratings with a wavelength stabilized system, and 25 employing a photorefractive crystal of adequate thickness and therefore volumetric capacity, the target wavelength can be maintained within of the order of 0.25 A, dependent upon the wavelength under consideration.

for telecommunications sources using the crossed filter wavelength control system as set forth in this invention. The DFB laser 48 is modulated through its current driver 49 by a high speed analog or digital signal source 50. The DFB laser 48 is mounted on a thermoelectric Peltier device 51 for temperature control of its output wavelength. The output is fed into an

23

optical fiber pigtail 52 and split by the coupler 53 into the output beam and a lower power sample beam directed to the crossed filters 54. The crossed filters 54, comprised of volume holographic gratings in a photorefractive or other suitable medium, are also temperature controlled for wavelength accuracy and direct their reflections to their respective detectors.

The output signals from the detectors 55 and 56 are digitized by analog-to-digital converters 57 and 58 and sent to the difference/normalizing amplifier 59, where 10 the difference between the two signals gives a direct quantification of the magnitude and direction of the wavelength deviation from the intersection of the two filter response curves. This difference signal is used by the wavelength control system, comprised of a processor 60 and temperature controller 61 to adjust the temperature of the laser 48 until the laser, 48 is on band and therefore the difference signal becomes zero. If operation at a slightly shifted wavelength from the intersection point is desired, an offset algorithm can be designed into the control system as described above.

20

25

30

The response of a DFB semiconductor laser and holographic filter to amplitude shift keying (ASK) modulation of the laser input current, as would be required for telecommunications applications, was investigated in a numerical modeling study. The laser output power spectrum and holographic filter response as functions of various sinusoidal and digital ASK modulation parameters were computed to determine the amount of loss in signal power and distortion in the modulation envelope due to the frequency chirping of the laser. The study showed that relatively low losses in the laser signal power spectrum (i.e., approximately 1 to 2 dB) and distortions in the amplitude modulation were experienced with a 1 A bandwidth holographic filter at data rates of up to 6 Gbits/sec. This showed that the chirp in a DFB laser under high speed modulation

PCT/US94/10176 **WO** 95/08206

24

will not shift its wavelength sufficiently beyond the bandwidth of the holographic filters used in these embodiments to pose a significant problem.

In a variation of the telecommunications source laser shown in Figure 11, the DFB laser 48 can be replaced by a current-tuned DBR laser. The temperature controller 61 and thermoelectric cooler 51 are still used to maintain the device at a constant temperature. The difference signal from the processor 60 is used to control the wavelength of the laser 48 through current, 10 which changes the index of refraction of the Bragg reflector substrate and therefore the Bragg conditions of the reflector. Also, in the case of the DBR laser, an external modulator is used instead of directly modulating the driving current as is commonly done in 15 the DFB laser.

Although tuning by the use of temperature control of a DFB laser is principally discussed in this specific example, other tuning techniques can also readily be employed, dependent on the laser. Some examples of 20 these are the use of voltage control, motor driven servo actuators, and electrically-tuned wavelength selectors for such lasers as tunable dye, grating-tuned external cavity semiconductor, and solid state lasers. of a current-tuned DBR laser has also been discussed above.

25

OPTICAL FEEDBACK FOR EXTERNAL CAVITY LASERS

In the previous examples, the volume hologram reflection grating filter was used to generate a signal 30 for feedback into a control system to maintain the wavelength of any of a number of laser types at a constant wavelength. In the following embodiment of this invention, optical rather than electrical signal feedback is used to achieve the same goal of stabilizing 35 the output wavelength of a laser with a volume hologram as the wavelength standard. The volume hologram is used

WO 95/08206

25

PCT/US94/10176

as a wavelength selective reflector for a laser cavity to generate optical feedback into the gain medium to generate the lasing action at only the desired wavelength. Any gain medium, provided the holographic mirror has sufficient reflection so the optical gain exceeds the loss in the system, can be used in this embodiment. For semiconductor lasers, simple Fabry-Perot lasers are used as the gain media in an external cavity configuration, with the holographic reflector serving as the external mirror.

Figure 12 illustrates the components of an external cavity laser 62 according to the present invention. A photorefractive material having a volume hologram reflection grating 63 is used as an end mirror of the external cavity, wherein the volume hologram reflection grating 63 is Bragg-matched to the desired wavelength of operation. In one example, the photorefractive material comprises a 2 mm thick, 0.05% Fe-doped LiNbO₃ crystal with an anti-reflection (AR) coating on one facet.

A laser diode 64, modulated by a signal source 65, is 20 used as the gain medium for the external cavity laser. In one example, a Toshiba TOLD 9215 visible laser diode 64 is used as the gain medium. The laser diode 64 is mounted on a heat sink coupled to a thermoelectric 25 Peltier cooler 66 operated by a temperature controller The temperature controller 67 also controls a second thermoelectric Peltier cooler 68 for the volume hologram reflection grating 63. Temperature control is used to avoid temperature dependent drift in the grating 30 63 wavelength, which is on the order of 1 A per 30° C when the photorefractive material is a LiNbO3 crystal. In addition, temperature control can be used to finetune the output wavelength of the external cavity laser 62 by changing the center wavelength of the holographic mirror formed by the gratings 63 in the photorefractive crystal.

Normally, the surface of the laser diode 64 is AR-

26

coated so that it is a superluminescent diode (SLD), thereby reducing the Fabry-Perot modes to zero. However, lasers with high quality, i.e. zero reflection, AR-coatings have been difficult to obtain. If the laser diode 64 is not coated for zero reflection, Fabry-Perot modes will appear as well for high driving currents. these cases, the laser must be operated at below threshold, which limits the output power.

The laser diode 64 in this example is coated for 90% reflection at one facet and 10% reflection at the other. The output from the 10% reflectivity side is directed to the holographic grating 63 in the photorefractive material, where it is retro-reflected at normal incidence back into the laser diode 64. This optical feedback from the volume hologram reflection grating 63 results in oscillation forming between the external reflector and the high reflectivity facet of the laser diode 64, with any oscillation between the two laser diode 64 facets being suppressed by the AR coating.

10

20

35

The output from the low reflectivity facet of the laser diode 64 is collimated by the aspheric objective lens 69 and directed to the holographic grating 63 in the photorefractive material, which acts as the external reflector for the external cavity laser 62. The grating 63 in the crystal reflects a narrow spectral band of 25 light around the chosen wavelength back to the laser diode 64 to generate feedback, while transmitting all out of band radiation. A high reflectivity grating 63 (on the order of 20% or greater) with sufficiently low absorption loss is used to obtain sufficient feedback in 30 the cavity for oscillation. In the example described above, the objective lens has a 4.5 mm focal length and the crystal containing the holographic grating 63 is located 6 inches from the laser diode 64.

The high reflectivity facet of the laser diode 64 and the narrow bandwidth mirror formed by the grating 63 comprise the external cavity within which oscillation

27

occurs for the laser 62. Because of the narrow spectral bandwidth (on the order of 0.5 Å for a 2 mm thick grating with an incident illumination of approximately 600 nm), the output of the external cavity laser 62 can be controlled to a very high degree of accuracy. The lasing wavelength of the external cavity laser 62 is only dependent on the wavelength of reflection of the holographic grating 63 in the crystal, which acts as the external wavelength standard. Therefore, the wavelength of operation is independent of the Fabry-Perot laser diode 64, so that when replaced with a different laser 64, there is no change to the output wavelength of the external cavity laser 62.

Plane gratings 63 for the external cavity reflector are written using a direct writing method of 15 illuminating the crystal with counter-propagating beams of the desired wavelength, provided the desired wavelength of operation is within the photorefractive sensitivity range of the crystal. Alternatively, the laser medium itself can be used to write the grating to 20 ensure they are self-aligned. This method requires that sufficient intensity be obtained from the laser 64 to write high efficiency, high quality holograms within a reasonable exposure time. For IR holographic mirrors, 25 the method is described by G.A. Rakuljic and V. Leyva, U.S. Patent Application No. 07/991,571, (1992) supra, where off-axis beams at shorter wavelengths are used to write a grating 63 Bragg-matched for normal incidence reflection at the desired wavelength.

Figures 13 and 14 are graphs illustrating the output wavelength of the holographic grating external cavity laser as measured by a spectrum analyzer for driving currents of 31 mA (Figure 13) and 37 mA (Figure 14). As shown in the graphs, the laser output is single mode, and its wavelength remains constant at 6736.6 A within the bandwidth of the holographic grating for a wide range of driving currents (and therefore output powers).

28

In addition, when the laser diode is mounted on a thermoelectric cooler operated by a temperature controller and the temperature varied, the output remains within the hologram bandwidth of less than 0.5 Å.

The holographic external cavity laser illustrated in schematic form in Figure 12 has been demonstrated at wavelengths as long as 840 nm, using a LiNbO₃ crystal with especially high dopant concentration for increased near IR sensitivity to store the gratings. A Ti:Sapphire laser was used to write the grating in a 0.15% Fedoped LiNbO₃ crystal with AR coatings using the direct writing method. This crystal was coupled with an ARcoated 840 nm laser from Spectra-Diode Laboratories, and the spectrum of the resulting external cavity laser is shown in Figure 15.

15

25

Figure 16 is a spectrum graph of a holographic external cavity laser operating in the 1.3 μm band using infrared holographic gratings written with the methods described in the parent patent applications, supra, using 488 nm light incident from the side faces of the crystal to obtain a retro-reflecting grating for 1.293 μm . The spectrum graph is plotted on a logarithmic scale to show the sidelobe levels of the laser output, which are at least 25 dB below the peak amplitude. As in the visible laser spectrum graphs of Figures 13 and 14, the laser shows single mode operation, and its output wavelength was found to be independent of driving current.

A nominally 670 nm Fabry-Perot semiconductor laser

with an improved AR-coating was recently used to
fabricate an external cavity laser demonstration. This
laser was coated at the facilities of the laser diode
group at the National Institute of Standards and
Technology in Boulder, Colorado. This coating was of

sufficiently high quality that the Fabry-Perot modes
were reduced to zero. The spectral graph of the output
of this external cavity laser is shown in Figure 17.

29

Since the operating wavelength of Fabry-Perot lasers can be specified to very high accuracy using the methods set forth in this embodiment of the present invention, inexpensive, compact, high wavelength accuracy sources can be constructed. The accuracy of the output wavelength allows these lasers to be used as closely spaced sources for WDM, secondary wavelength standards for instrumentation, and other applications requiring low cost, precision wavelength coherent sources. Since the operating wavelength is determined by a device 10 external to the laser itself, standardized wavelength sources can be produced in quantity despite the slight variations in operating points for individual Fabry-Perot lasers.

Variations of the holographic external cavity laser 15 just described can be used in a variety of related embodiments. The Fabry-Perot semiconductor laser can be replaced with any laser gain medium with a broad gain spectrum where accuracy in the output wavelength is desired, such as with a tunable dye or solid state gain medium. As in the holographic external cavity semiconductor laser, the wavelength of operation of these lasers is defined by the holographic external cavity mirror. However, since the semiconductor laser has a very high gain coefficient, lower reflectivities for the external cavity reflector often suffice, whereas much higher reflectivities may be required for other gain media such as solid state crystals or gas plasma tubes with comparatively lower gain coefficients.

The operating wavelength of the external cavity laser can be shifted slightly by detuning the center wavelength of the holographic grating. In one method, the temperature controller 67 shown with the crystal in Figure 12 is used to vary the temperature of the medium containing the grating, which changes the grating period 35 and therefore the reflection wavelength. In another method, the crystal is coated with a transparent

30

30

conductive layer and an electric field applied to change the dimensions of the crystal through the photovoltaic and piezoelectric effects. Either of these methods change the grating period and therefore the Bragg conditions for reflection, and the external cavity laser is forced to operate at the new wavelength.

In addition, other semiconductor laser types can benefit from this technology. One example is with an array of conventional or surface emitting semiconductor lasers (SELs), shown in Figure 18. The beams from each laser in the array 70 are collimated by a lenslet array 71 and reflected off a single holographic grating 72 to lock the outputs of all the lasers to a single wavelength λ₀ so they behave as a single laser for pumping the optical medium 73. A temperature controller 74 and thermoelectric coolers 75, 76 are used to keep the laser array 70 and photorefractive crystal 72 at their desired temperatures. In addition, the temperature of the photorefractive crystal 72 can be varied by the thermoelectric cooler 76 to change its operating wavelength.

In this way, it is possible to obtain a higher output power than with a single laser for use in applications requiring high power, such as for pumping optical amplifiers and solid state lasers. The accurate output wavelength of this external cavity laser array enables all of its output power to be concentrated at the absorption line of the amplifier or laser gain medium, increasing the efficiency of the pumping process. The use of a SEL is particularly suited for this application because of its broad area and larger active area than conventional semiconductor laser arrays.

25

30

35

Figure 19 illustrates an alternative architecture for a holographic external cavity laser array, wherein individual holograms 77a, 77b, ..., 77n at different wavelengths are used with the AR-coated laser array 78 to produce an array of accurate wavelength sources, each

31

at a different wavelength. The lenslet array 79 collimates the light from each laser onto its respective grating, 77a, 77b, ..., 77n, and the temperature controller 80 and thermoelectric coolers 81 and 82 are used to regulate the temperature of the laser array 78 and gratings 77a, 77b, ..., 77n. This embodiment of the external cavity laser array has application as a source for WDM communications systems, where all of the source lasers required for the system are grown on a single wafer. Another application is as a readout source of a wavelength multiplexed optical memory where individual semiconductor lasers are used to address a specific "page" of data stored at a given wavelength.

15 <u>APPLICATIONS</u>

Figure 20 illustrates an application of the wavelength stabilized laser in a WDM optical fiber communication system. The modulated outputs of the lasers 83 operating at wavelengths λ_1 , ... λ_n , 20 respectively, are collimated by lenses 84 and combined by a multiplexer 85. The multiplexer 85 can be of the conventional type or a holographic grating device to reduce coupling loss. The multi-wavelength beam is coupled through a fiber coupler to a length of optical 25 fiber 86. At the end of the fiber, a second lens 87 is used to send the beam to a demultiplexer 88, where high spectral resolution holographic gratings are used to separate each wavelength channel and direct these beams at different angles onto their separate photodetectors 30 89.

Semiconductor lasers using the wavelength stabilization methods described in this invention are particularly useful for WDM telecommunications systems using volume holographic technology to space channels considerably closer than is possible in the current art. In current WDM architectures, the wavelength accuracy of the semiconductor laser sources is the limiting factor

32

that restricts channel spacing. In most cases, the multiplexed channels must be in separate bands, i.e., 1.3 µm and 1.55 µm. With careful selection of DFB lasers, the uncertainty can be reduced to about 40 Å, but this still does not account for drift due to aging and other factors. The stabilization method set forth in this invention uses an external wavelength standard that the laser is locked to, allowing arbitrarily close channel separation, not accounting for chirp and other effects of high speed modulation.

Either of the two major approaches to laser wavelength stabilization, the electrical feedback scheme or the external cavity (optical feedback) method described in this invention, are possible sources for the WDM application. The electrical feedback approach, however, is the preferred first embodiment because of its simplicity in development and lowest technical risk. The DFB laser will be temperature-controlled and coupled to a holographic filter or crossed-filter pair, which send their signals to the detectors and wavelength control system. The output is fiber-coupled to the utilization device. The wavelengths are set so chirp and other FM effects from high speed modulation do not spill over into adjacent channels. The channel spacing is limited now by the bandwidth occupied by a DFB laser with high speed modulation, not by the inaccuracies of the laser output wavelengths.

15

25

30

Figure 21 illustrates application of an accurate wavelength laser 90 using the feedback techniques set forth in this invention to pump an optical medium 91, such as Er-doped optical fiber amplifiers, Er-doped fiber lasers, or diode-pumped solid state lasers, where the absorption band of the active gain medium is extremely narrow. By using an accurate laser with a volume hologram external wavelength standard operating at the exact wavelength of the absorption peak, all of the laser energy is applied to the pumping medium,

33

thereby increasing the pumping efficiency. In addition, these lasers are well suited as secondary wavelength references for test equipment such as interferometers or sources for spectroscopy, which also require sources with high wavelength accuracy.

Figure 22 illustrates a method for microwave or millimeter wave signal generation using two volume hologram stabilized lasers 92 and 93 operating at slightly different wavelengths. In this embodiment, the 10 two lasers 92 and 93 operating at known wavelengths λ_1 and λ_2 (corresponding to frequencies f_1 and f_2) are optically heterodyned using a beamsplitter 94 and directed to a detector 95. The beam incident on the detector 95 oscillates with a beat frequency $f_1 - f_2$, which is an approximately 3 mm wavelength signal when $\lambda_2 - \lambda_1 = 5$ Å and the lasers 92 and 93 operate in the 1.3 μ m band. Moreover, the frequency of this output signal can be varied by tuning the operating wavelength of one or both of the lasers 92 and 93.

Typically, the mixed output will be in the optical frequency portion of the electromagnetic wave spectrum, but it may also be in the millimeter or centimeter wavelength range of the microwave spectrum. Such results are achievable by virtue of the accuracy of the wavelength stabilization and the capability for further tuning. The mixed signal may further be modulated by a suitable electronic source, such as one utilizing the piezoelectric effect.

Figure 23a illustrates another application of this laser, which is as an accurate, detunable source for differential absorption spectroscopy. A single holographic grating stabilized laser 96 with a detuning capability is used to pass slight at slightly different wavelengths (at λ_1 and λ_2) through an unknown medium 97, focusing lens 98, and onto a detector 99. Measurements are made in succession at shifted wavelengths through the same area of the sample. The laser wavelength

PCT/US94/10176 WO 95/08206

34

controller 100 is used to set the output to λ_1 , then λ_2 , and the temperature controller 101 ensures stable operation by keeping the laser at a constant temperature. Although the beam will be positioned at exactly the same spot for both measurements, the disadvantage of this approach is the time interval between measurements.

Figure 23b illustrates a second example, wherein the beams from two different lasers 102 and 103 at known 10 wavelengths λ_1 and λ_2 are collimated by lenses 104 and 105, passed through the unknown medium 106, and focused by the lens 107 onto their individual detectors 108 and 109 to obtain simultaneous absorption measurements. wavelength differential can be easily changed by adjusting the wavelength of one or both of the lasers 102 and 103 using the control mechanisms discussed above. However, there will be a slightly different path for each beam through the sampled medium.

CONCLUSION 20

15

25

35

This concludes the description of the preferred embodiment of the invention. In summary, the present invention discloses a laser that utilizes feedback from a volume holographic grating used as a wavelength standard to lock the laser output wavelength to its desired value. This feedback can be non-optical, wherein the holographic filter output is used to actively control the wavelength through an external control mechanism. This feedback can also be optical, wherein a volume hologram reflection grating is used to 30 generate optical feedback into the laser gain.

The foregoing description of the preferred embodiment of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended

35

that the scope of the invention be limited not by its detailed description, but rather by the claims appended hereto.

36

WHAT IS CLAIMED IS:

20

25

1. A method of stabilizing an optical source's output wavelength, comprising the steps of:

generating a beam of electromagnetic wave energy at the output wavelength;

filtering the beam using one or more holograms of known center wavelengths to provide one or more feedback signals; and

controlling the optical source to alter its output 10 wavelength in accordance with the feedback signals.

- 2. The method as set forth in claim 1 above, where the controlling step comprises the step of directing the filtered beam to a detector to generate the feedback signal.
 - 3. A filter-locked laser, comprising:

a laser generating an output beam, wherein the output beam has an adjustable wavelength;

means for directing a part of the output beam onto a volume hologram that reflects a narrow spectrum of the output beam at a selected wavelength; and

wavelength control means for correlating an intensity of the reflected output beam with a wavelength of the output beam and for tuning the laser until a maximum intensity of the reflected output beam is achieved.

4. A laser as set forth in claim 3 above, wherein the volume hologram comprises a grating that reflects

30 the output beam at the selected wavelength and transmits the output beam at all other wavelengths onto a detector, and wherein the wavelength control means comprises means for tuning the laser until the detector reads a minimum optical power for the transmitted output beam.

37

5. A crossed-filter laser, comprising:
a plurality of holographic filters for reflecting

light beams at wavelengths slightly above and below that of a desired output wavelength for the laser; and

means for detecting relative magnitudes for the reflected light beams; and

means for adjusting the output wavelength for the laser to maintain a selected relationship between the relative magnitudes of the reflected light beams.

10

6. The method as set forth in claim 5 above, wherein the means for adjusting comprises means for selectively retroreflecting the light beams back to the laser using a wavelength selective volume hologram.

15

7. A method of controlling the wavelength of a wave generator that is responsive to a control parameter, comprising the steps of:

generating a beam of coherent electromagnetic wave 20 energy at an output wavelength;

holographically filtering a portion of the beam at the generated wavelength to provide at least one filter output signal in accordance with filter response characteristics that vary with the wavelength variation

from the region of the wavelength of the wave generator; determining the difference between the filter output signal and a predetermined output value; and

varying the control parameter of the wave generator to maintain a selected wavelength.

30

35

25

8. The method as set forth in claim 7, wherein the step of filtering comprises passing the beam through one or more wavelength selective devices to provide one or more filter output signals with different responses relative to the chosen wavelength.

38

PCT/US94/10176

9. The method as set forth in claim 8, wherein the filter output signals have substantially equal levels at the chosen wavelength and the step of filtering comprises reflecting a narrow spectral bandwidth of the beam.

WO 95/08206

- the step of filtering comprises using one or more wavelength selective devices to provide a plurality of filter output signals having different levels at the chosen wavelength, and offsetting the difference between the levels while adjusting the control parameter to maintain the selected wavelength.
- of filtering comprises the step of generating a peak value for the filter output signal at a center of the filter response, and wherein the method further includes the steps of determining a direction of deviation of the filter output signal from the peak value and adjusting the output wavelength of the beam until the filter output signal is at the peak value.
- 12. A method of controlling the wavelength of a
 25 coherent light source, comprising the steps of:
 reflecting light from the coherent light source off
 each of a plurality of frequency selective reflective
 images having like wavelength sensitivity response
 curves but centered in pairs about different
 30 wavelengths, wherein the wavelength sensitivity response
 curves of each pair of frequency selective reflective

detecting relative amplitudes of the reflected light from a selected pair of frequency selective reflective images; and

images intersect at a different selected nominal

wavelength;

adjusting the wavelength of the coherent light source

39

to maintain a selected relationship between the relative amplitudes of the wavelength sensitivity response curves for the selected pair of frequency selective reflective images.

5

10

20

- 13. The method as set forth in claim 12 above, wherein the wavelength sensitivity response curves of a pair have opposite slopes at the selected nominal wavelength, and wherein the method further includes the step of normalizing the relative amplitudes in accordance with a power level of the reflected light.
- 14. A system for generating a precisely controlled coherent beam wavelength, comprising:
- a laser generating an output beam in a selected wavelength range;
 - a holographic storage device including at least two reflective diffraction gratings having like response characteristics that intersect at a given wavelength in the selected wavelength range;

means for directing at least a portion of the output beam onto the diffraction gratings to generate reflections therefrom; and

means, responsive to relative amplitudes for the reflections from the diffraction gratings, for controlling the laser to maintain a desired wavelength.

- 15. A system as set forth in claim 14 above, wherein the laser comprises a distributed feedback 30 laser, and wherein the means for controlling the laser comprises means for varying a temperature of the holographic storage device.
- 16. A system as set forth in claim 15 above,
 35 wherein the means for controlling the laser comprises:
 means for deriving a difference signal between the
 relative amplitudes for the reflections from the

40

PCT/US94/10176

gratings;

WO 95/08206

25

30

35

means, responsive to the means for deriving, for adjusting an amplitude of the difference signal in accordance with a total power output; and

means, responsive to the means for adjusting, for controlling the laser in response to the amplitude of the difference signal.

17. A system for precisely controlling an output wavelength of a laser to maintain an operating point that is within about 2 Å or less of a predetermined value, comprising:

a laser, responsive to one or more control parameters, for generating an output beam in a region of the operating point;

a filter in the output beam's path, the filter comprising at least two holographic gratings that are reflective at different wavelengths and centered on opposite sides of the operating point, the filters

0 having like spectral response characteristics of opposite slopes intersecting at a given value having known relation to the operating point;

detection means for generating at least two different signals responsive to the output beams reflected from the filters;

means, responsive to the signals from the detection means, for generating a difference signal therefrom; and means, responsive to the difference signal, for adjusting the control parameters to vary the output wavelength of the laser.

18. A system as set forth in claim 17 above, wherein the laser comprises a distributed feedback semiconductor laser and the control parameters are temperature dependent.

41

19. A system as set forth in 18 above, further comprising a thermoelectric cooler mounted on a heat sink proximate the laser, wherein the means for generating a difference signal comprises means for normalizing the difference signal in accordance with reflected output beams.

20. A wavelength stabilized laser, comprising:
a laser having an output beam tunable through a

10 selected range in response to a control parameter;
means for providing a reference sample fraction of
the laser's output beam;

filter means, responsive to the reference sample fraction, for deriving a wavelength amplitude signal in response thereto, the filter means comprising a volume holographic filter incorporating at least one wavelength selective grating; and

detector means, responsive to the wavelength amplitude signal, for generating a signal to adjust the control parameter maintain the laser's output beam at a desired wavelength.

- 21. A laser as set forth in claim 20, above wherein the filter means comprises a pair of gratings having crossover filter characteristics.
 - 22. A laser as set forth in claim 20 above, wherein the filter means comprises a single wavelength selective grating.

30

15

20

- 23. A multi-channel transmission system, comprising:
- a plurality of semiconductor lasers, each laser having a nominal operating wavelength point
- 35 approximately 2 Å different from adjacent ones of the lasers;

means for modulating each of the lasers with separate

42

PCT/US94/10176

data signals;

WO 95/08206

35

control means, coupled to each of the lasers, for stabilizing the laser's operating wavelength to within about 2 Å or less of its nominal operating wavelength point, the control means comprising a plurality of holographic reflective filters for controlling the lasers in response to a difference in crossed spectral response characteristics thereof; and

means for wavelength multiplexing the modulated, 10 stabilized outputs of the lasers.

- 24. The invention as set forth in claim 23 above, wherein the output wavelengths of the lasers are fixed at their assigned wavelengths using feedback signals to the wavelength control device generated from volume holographic reflection gratings in the filters.
- 25. The invention as set forth in claim 24 above, further comprising means for controlling the lasers'
 20 output wavelengths by modifying their temperature and means for sensing wavelength deviation of the lasers' output using a volume holographic reflection grating.
- 26. The invention as set forth in claim 23 above,
 25 further comprising means for fixing the lasers' output
 wavelength at a desired value using optical feedback
 from a volume hologram reflector.
- 27. An apparatus for obtaining a precise desired wavelength output from a laser, comprising:

a holographic storage element having two or more grating pairs stored therein, wherein each grating pair defines a desired operating point wavelength of the laser, and wherein the grating pairs are sufficiently separated so that their crosstalk is negligible; and

means for tuning the laser to generate an output beam at a wavelength in a vicinity of one of the grating

43

pairs.

35

- 28. The invention as set forth in claim 27 above, wherein the gratings in each grating pair are centered at wavelengths shifted slightly above and below that of the desired operating point defined by that grating pair.
- 29. The invention as set forth in claim 28 above, 10 wherein the holographic grating pairs are distributed at regular wavelength intervals in the storage element to provide a discretely tunable distributed feedback laser.
- 30. The invention as set forth in claim 29 above, 15 wherein the laser comprises a temperature-tuned distributed feedback laser.
- 31. The invention as set forth in claim 27, wherein a spacing between the desired operating point 20 wavelengths is at least an order of magnitude greater than a full width half maximum bandwidth of one of the gratings.
- 32. The invention as set forth in claim 27 above,
 25 wherein the means for tuning further comprises:
 one or more detectors for analyzing characteristics
 of an output beam reflected from the grating pair and
 for generating detector output signals representative
 thereof; and
- ontrol means, coupled to the detectors, for determining differences between the detector output signals and for controlling the output beam's wavelength in response thereto, so that the differences between the detector output signals is a predetermined value.
 - 33. A wavelength division multiplexing communication system, comprising:

44

a plurality of accurate wavelength lasers using volume holographic gratings as external wavelength standards for generating a first set of light beams; means for combining the first set of light beams into

a second multiplexed light beam;

means for transmitting the second multiplexed light beam;

a plurality of volume hologram gratings in a photorefractive material for separating the second multiplexed light beam into third individual wavelength light beams; and

means for detecting the separated third individual light beams.

- 34. The invention as set forth in claim 33 above, wherein the first set of light beams each operate at a different wavelength.
- 35. The invention as set forth in claim 33 above,
 20 wherein the means for combining the first set of light
 beams into the second multiplexed light beam comprises
 means for wavelength multiplexing the first set of light
 beams to create the second multiplexed light beam.
- 36. The invention as set forth in claim 33 above, wherein the third individual wavelength light beams each operate at a different wavelength.
- 37. The invention as set forth in claim 33 above, wherein the lasers comprise crossed holographic filter distributed feedback lasers.
 - 38. The invention as set forth in claim 33 above, wherein the lasers comprise distributed feedback lasers, each locked to a single holographic grating wavelength standard.

45

39. The invention as set forth in claim 33 above, wherein the lasers comprise a plurality of external cavity lasers with wavelength selective volume hologram reflectors.

5

- 40. The invention as set forth in claim 33 above, wherein the means for combining the first set of light beams into the second multiplexed light beam comprises a plurality of volume hologram gratings in a photorefractive crystal.
 - 41. A system for decreasing noise levels in optical amplifier systems, comprising:

an accurate wavelength laser generating an optical output at wavelength λ_0 ;

an optical amplifier, coupled to the laser, for amplifying the optical output; and

a narrow bandwidth holographic filter, coupled to the optical amplifier, for filtering all but a desired wavelength from the optical output, wherein the filter comprises one or more holographic gratings having a center wavelength of λ_0 , and further, wherein the gratings are wide enough to reflect the optical output's full spectrum, but not surrounding noise.

25

20

- 42. The invention as set forth in claim 41 above, wherein the laser uses feedback from the filter to maintain the optical output at wavelength λ_0 .
- 30 43. The invention as set forth in claim 42 above, wherein the laser comprises a laser selected from a group comprising a crossed filter distributed feedback laser, a distributed feedback laser locked to a volume hologram filter, and a volume hologram external cavity laser.

46

PCT/US94/10176

44. A system for generating electromagnetic signals, comprising:

WO 95/08206

a first accurate wavelength laser generating a first optical output at a first wavelength λ_1 corresponding to a first frequency f_1 ;

a second accurate wavelength laser generating a second optical output at a second wavelength λ_2 corresponding to a second frequency f_2 ; and

means for optically heterodyning the first and second optical outputs to create a third optical output at a third wavelength λ_3 corresponding to a third frequency f_3 comprising a frequency difference $f_1 - f_2$.

- 45. The invention as set forth in claim 44 above, wherein the first and second lasers each comprise a laser using feedback from one or more volume holograms.
- 46. The invention as set forth in claim 44 above, wherein the first and second lasers are selected from a group comprising crossed filter distributed feedback lasers, volume holographic filter-locked distributed feedback lasers, and volume hologram external cavity lasers.
- 25 47. The invention as set forth in claim 44 above, wherein the wavelength λ_1 is separated from the wavelength λ_2 by 0.5Å at around 670 mm so that the wavelength λ_3 is approximately 9 mm.
- 30 48. The invention as set forth in claim 44 above, wherein the third wavelength λ_3 is in the micrometer range.
- 49. The invention as set forth in claim 44 above, 35 wherein the third wavelength λ_3 is in the millimeter range.

47

- 50. The invention as set forth in claim 44, wherein the first and second lasers each comprise a holographic reflector, and the invention further comprising means for tuning the wavelength λ_1 and the wavelength λ_2 by varying the wavelengths of the holographic reflectors.
- 51. A method of controlling the output wavelength of a lasing device having a laser medium bounded at one side by a reflector, comprising the steps of:

10

15

directing lasing illumination from the device along a beam axis bounded by the reflector;

reflecting back along the axis toward the reflector only a narrow band component of the beam at a selected output wavelength; and

transmitting coherent wave energy from the lasing device outwardly along the axis.

- 52. The method as set forth in claim 51 above, 20 wherein the selected output wavelength is in the visible.
- 53. An external cavity laser, comprising:
 a laser having a laser gain medium, a first face
 25 having a highly reflective surface defining a first
 cavity boundary and a second face having an antireflective surface in alignment with the laser gain
 medium and the first face;

an optically insensitive holographic reflective image device disposed at a selected distance from the laser and in alignment with the laser gain medium and the first face to define an external cavity therewith, the holographic reflective image device having a volumetrically distributed grating reflective at the desired operating frequency within a spectrum of less than about 1.0 A and a diffraction efficiency on the order of at least about 10%; and

WO 95/08206

48

PCT/US94/10176

means for exciting the laser to generate lasing action therein.

- 54. A laser as set forth in claim 53 above, wherein the wavelength of the holographic reflective image device is in the infrared.
- 55. A laser as set forth in claim 53 above, wherein the holographic reflective image device comprises a LiNbO₃ crystal doped with high Fe concentration to increase photosensitivity in a red region of the electromagnetic spectrum.
- 56. A laser as set forth in claim 53, further comprising means coupled to the holographic reflective image device for tuning a wavelength thereof, and further, wherein the laser gain medium comprises a Fabry-Perot laser.
- 20 57. A system for generating one or more accurate wavelength laser beams from a plurality of semiconductor lasers, comprising:
- a plurality of laser gain devices arranged in an array and each including a laser beam axis and a substantially non-reflecting facet perpendicular to the beam axis; and
- a planar wavelength selective photorefractive reflector disposed at a distance from the non-reflecting facets, the reflector including permanent holographic gratings Bragg-matched to the incident radiation from the laser gain device and transmissive at all other wavelengths, the reflected radiation selectively reinforcing coherent beams from the laser gain devices at wavelengths defined by the holographic gratings, whereby a plurality of spatially coherent beams at a selected wavelength are created.

49

58. A system as set forth in claim 57 above, wherein the reflector is a single holographic grating at a specific wavelength for producing a single wavelength output.

5

59. A system as set forth in claim 57 above, wherein the reflector is comprised of individual holographic gratings, each reflective at different incident radiational wavelengths.

10

30

35

60. A differential absorption spectroscopy apparatus for analysis of an unknown medium, comprising: an accurate wavelength laser, comprising a laser utilizing feedback from one or more volume holographic gratings for generating output beams that are directed through the unknown medium; and

a detector for detecting emissions and absorptions of the output beams by the unknown medium.

- of the invention as set forth in claim 60 above, wherein the accurate wavelength laser comprises a laser selected from a group comprising a volume holographic filter-locked distributed feedback laser, a crossed filter distributed feedback laser, and a holographic grating external cavity laser.
 - 62. The invention as set forth in claim 61 above, further comprising means for varying a wavelength of the laser so that the output beams are tuned to different wavelengths.
 - 63. The invention as set forth in claim 62 above, wherein the means for varying comprises temperature control means for controlling a temperature of the volume holographic gratings.

50

64. The invention as set forth in claim 62 above, wherein the means for varying comprises an electric field applied across transparent electrodes on a medium containing the volume holographic gratings.

5

further comprising a plurality of accurate wavelength lasers and one or more detectors, wherein output beams generated by the lasers are at known fixed wavelengths not equal to each other, and further, wherein the output beams from the lasers are passed through the unknown medium and onto respective detectors to obtain simultaneous emission and absorption measurements at different wavelengths.

15

25

30

35

66. A method of using a volume holographic reflection grating to lock a wavelength of an output beam from a laser to an external wavelength reference, comprising the steps of:

directing a portion of the output beam of the laser to the volume hologram reflection grating having a known grating period;

measuring an optical power of the output beam transmitted through the volume hologram reflection grating; and

adjusting the wavelength of the output beam of the laser until a minimum power is transmitted through the volume hologram reflection grating, thereby satisfying a Bragg condition for the volume hologram reflection grating.

67. The method as set forth in claim 66 above, wherein a center wavelength satisfying the Bragg condition of the volume hologram reflection is tunable, thereby providing a variable wavelength reference.

51

68. The method as set forth in claim 67 above, wherein a wavelength for the volume hologram reflection grating is tuned by tilting a medium containing the volume hologram reflection grating to shift the center wavelength towards shorter wavelengths.

69. A method of using a volume holographic reflection grating to lock a wavelength of an output beam from a laser to an external wavelength reference, comprising the steps of:

directing a portion of the output beam of the laser to the volume hologram reflection grating having a known grating period;

measuring an optical power of the output beam transmitted through the volume hologram reflection grating; and

10

15

20

35

adjusting the wavelength of the output beam of the laser until a maximum power is reflected from the volume hologram reflection grating, thereby satisfying a Bragg condition for the volume hologram reflection grating.

- 70. The method as set forth in claim 69 above, wherein a center wavelength satisfying the Bragg condition of the volume hologram reflection is tunable, thereby providing a variable wavelength reference.
- 71. The method as set forth in claim 70 above, wherein a wavelength for the volume hologram reflection grating is tuned by tilting a medium containing the volume hologram reflection grating to shift the center wavelength towards shorter wavelengths.
 - 72. A laser using a volume hologram reflection grating as an external wavelength reference, comprising: a variable wavelength laser including a wavelength control mechanism, wherein a portion of the laser's

output is directed to the volume hologram reflection

·

52

PCT/US94/10176

grating;

WO 95/08206

means for tuning a reflection wavelength of the volume hologram reflection grating; and

means for adjusting a wavelength of the laser's output until the power reflected by the volume hologram reflection grating is at a local maximum.

- 73. The device as set forth in claim 72 above, wherein the reflection wavelength of the volume hologram reflection grating is tuned by varying an incidence angle of the output onto the volume hologram reflection grating.
- 74. The device as set forth in claim 72 above,
 15 wherein the laser is selected from a group comprising
 tunable external cavity semiconductor lasers, dye
 lasers, tunable solid state lasers, current-tuned
 distributed Bragg reflector lasers, and temperaturetuned distributed feedback lasers.

20

25

35

75. A tunable wavelength standard device for controlling a laser's output wavelength to a fixed, known standard, comprising:

a volume hologram reflection grating fabricated for reflecting the laser's output at a fixed wavelength at normal incidence;

means for directing a portion of the laser's output to the volume hologram reflection grating to create a reflected output;

means for changing a center wavelength of the reflected output from the volume hologram reflection grating; and

means for detecting a transmitted power of the reflected output and for controlling the output wavelength of the laser until the transmitted power is at a local minimum.

53

76. The device as set forth in claim 75 above, wherein the means for changing the center wavelength comprises means for tilting a medium containing the volume hologram reflection grating relative to an incidence of the laser's output thereon, so that the center wavelength of the reflected output is shifted.

1/19

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

-38 **STABILIZED** LASER LASER **OUTPUT** 47 λ_ CROSSED WAVELENGTH HOLOGRAPHIC CONTROLLER **FILTERS** DIFFERENCE/ NORMALIZING 46 **AMPLIFIER** 45 **PROCESSOR** FIG. 8B

FIG. 11

FIG. 12

13/19

FIG. 18

FIG.19

FIG. 20

FIG.21

FIG.22

FIG. 23A

FIG.23B

INTERNATIONAL SEARCH REPORT

Intern nal Application No PC7/US 94/10176

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 H01S3/085 H01S3/ H01S3/13 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) H01S IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-4 PATENT ABSTRACTS OF JAPAN X vol. 9, no. 113 (P-356) 17 May 1985 & JP,A,60 000 424 (KITAGAWA SHIYUNJI) 5 January 1985 see abstract 1-50, OPTICS LETTERS., 60-76 vol.18, no.6, 15 March 1993, NEW YORK US pages 459 - 461, XP000346182 G.A.RAKULJIC ET AL. 'Volume holographic narrow-band optical filter' cited in the application see abstract see page 459, column 1, line 18 - line 21 see page 461, column 2, line 8 - line 34 Patent family members are listed in annex. Further documents are listed in the continuation of box C. "T" later document published after the international filing date * Special categories of cited documents: or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention "E" earlier document but published on or after the international cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or document of particular relevance; the claimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the citation or other special reason (as specified) document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. "P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search **25.** 01. 95 13 January 1995 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Galanti, M

Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Internation No
PCT/US 94/10176

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		PC1/03 34/101/0	
-	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Y	EP,A,O 001 714 (THE POST OFFICE) 2 May 1979 see abstract	1-4, 66-76	
Y	GB,A,2 226 127 (STC) 20 June 1990	5-50, 60-65	
	see the whole document		
X	ELECTRONICS LETTERS., vol.21, no.15, July 1985, ENAGE GB pages 648 - 649 P.MILLS ET AL. 'Single-mode operation of 1.55 um semiconductor lasers using a volume holographic grating' see the whole document	51-59	
X	APPLIED SPECTROSCOPY, vol.39, no.4, 1985, BALTIMORE US pages 582 - 586 W.B.WHITTEN ET AL. 'Molecular spectrometry with a holographically scanned cw dye laser and supersonic cooling' see abstract	51	
Y	US,A,4 840 456 (D.M.FYE) 20 June 1989 see abstract	44-49	
A	EP,A,0 284 908 (SIEMENS) 5 October 1988		
A	WO,A,93 11589 (HONEYWELL INC) 10 June 1993		
A	US,A,5 042 042 (N.HORI ET AL.) 20 August 1991		
A	PATENT ABSTRACTS OF JAPAN vol. 11, no. 171 (E-512) (2618) 2 June 1987 & JP,A,62 005 677 (MATSUSHITA) 12 January 1987 see abstract		

2

INTERNATIONAL SEARCH REPORT

ormation on patent family members

Interned hal Application No
PCT/US 94/10176

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0001714	02-05-79	GB-A,B 20070 JP-B- 10121 JP-C- 15545 JP-A- 540743 US-A- 43096	28-02-89 68 23-04-90 86 14-06-79
GB-A-2226127	20-06-90	NONE	
US-A-4840456	20-06-89	NONE	
EP-A-0284908	05-10-88	DE-D- 38851 JP-A- 632572 US-A- 48150	85 25-10-88
WO-A-9311589	10-06-93	US-A- 53234 AU-A- 34139 CA-A- 21191 EP-A- 06156 FI-A- 9426 NO-A- 9416	93 28-06-93 43 10-06-93 65 21-09-94 13 03-06-94
US-A-5042042	20-08-91	JP-A- 12516	81 06-10-89