Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА КИБЕРНЕТИКИ

Отчет по курсу «Методы оптимизации»

Выполнил: Студент группы Б22-534 Баранов А. Т. Преподаватель: Елкина Д. Ю.

Содержание

Задание №1 (Вариант 51)	1
Условие	1
Решение]
Пункт А	1
Пункт Б	2
Пункт В	4
Вадание №2(Вариант 51)	Ę
Условие	Ę
Решение	Ę
Пункт А	Ę
Пункт Б	ç
Пункт В	11
Вадание №3(Вариант 51)	13
Условие	13
Решение	13
Составление двойственной задачи	13
Решение двойственной задачи по второй теореме двойственности	13
Решение двойственной задачи по третьей теореме двойственности . :	14

Задание №1 (Вариант 51)

Условие

Найти решение задачи линейного программирования геометрически.

$$F(x_1,x_2) = 3x_1 + x_2 \to \max(\min)$$

a).
$$\begin{cases} 2x_1 + x_2 \le 2 \\ -x_1 + 3x_2 \le 3 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$
 6).
$$\begin{cases} x_1 - 3x_2 \le 2 \\ x_1 + x_2 \ge 10 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$
 B).
$$\begin{cases} -x_1 + x_2 \ge 11 \\ x_1 - 4x_2 \ge 8 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Решение

Для всех пунктов нам понадобится знать вектор градиента функции $F(x_1,x_2)$.

$$\overrightarrow{grad}F(x_1,x_2) = \left\{\frac{\partial F}{\partial x_1}(x_1,x_2), \frac{\partial F}{\partial x_2}(x_1,x_2)\right\} = \{3,1\}$$

Пункт А

Приведем неравенство к более наглядному виду, чтобы удобнее было строить график:

$$\begin{cases} x_2 \le -2x_1 + 2 \\ x_2 \le \frac{1}{3}x_1 + 1 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Код для построения графиков, использующий библиотеку matplotlib для Python, выдаст следующий результат:

Рис. 1: График к пункту А задания 1.

В условную область попадают все точки, кроме второй. Подставим подходящие точки в функцию F и выведем её значения в этих точках:

```
Значение F в точке 1 равно 2.43
Значение F в точке 3 равно 3.00
Значение F в точке 4 равно 1.00
Значение F в точке 5 равно 0.00
```

```
Otbet: \max F(x_1,x_2)=3, \operatorname{argmax} F(x_1,x_2)=(1,0); \min F(x_1,x_2)=0, \operatorname{argmin} F(x_1,x_2)=(0,0)
```

Пункт Б

Приведем неравенство к наглядному виду:

$$\begin{cases} x_2 \ge \frac{1}{3}x_1 - \frac{2}{3} \\ x_2 \ge -x_1 + 10 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Код для построения графика. Его вывод:

Рис. 2: График к пункту Б задания 1.

Условная область неограничена. Градиент функции направлен внутрь первой четверти. Функция F неограничена сверху. Её максимума не существует.

Осталось найти минимум F. Подходящие точки под номерами 1 и 3. Подставим подходящие точки в функцию F и найдём её min:

```
Значение F в точке 1 равно 26.00
Значение F в точке 3 равно 10.00
```

Otbet: $\max F(x_1, x_2) \notin \mathbb{R}$, $\arg \max F(x_1, x_2) \notin \mathbb{R}^2$, $\min F(x_1, x_2) = 10$, $\arg \min F(x_1, x_2) = (0, 10)$

Пункт В

Приведем неравенство к более наглядному виду:

$$\begin{cases} x_2 \geq x_1 + 11 \\ x_2 \leq \frac{1}{4}x_1 - 2 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{cases}$$

Код для построения графика. Его вывод:

Рис. 3: График к пункту В задания 1.

Как видно, мы имеем пустую условную область: $D=\emptyset$. Значит и $F(D)=\emptyset$. Максимума и минимума не существует.

 $\textbf{Otbet:} \ \nexists \max F(x_1,x_2), \not \exists \operatorname{argmax} F(x_1,x_2), \not \exists \min F(x_1,x_2), \not \exists \operatorname{argmin} F(x_1,x_2)$

Задание №2(Вариант 51)

Условие

Найти решение задачи линейного программирования симплекс-методом для целевой функции $F(x_1,x_2)=3x_1+x_2$.

$$F(x_1,x_2)=3x_1+x_2\to \max \text{ при условии} \begin{cases} 2x_1+x_2\leq 2\\ -x_1+3x_2\leq 3\\ x_1\geq 0\\ x_2\geq 0 \end{cases} \tag{A}$$

$$F(x_1,x_2)=3x_1+x_2\to \max (\min) \text{ при условии} \begin{cases} x_1-3x_2\leq 2\\ x_1+x_2\geq 10\\ x_1\geq 0\\ x_2\geq 0 \end{cases} \tag{5}$$

$$F(x_1,x_2)=3x_1+x_2\to \max \text{ при условии} \begin{cases} -x_1+x_2\geq 11\\ x_1-4x_2\geq 8\\ x_1\geq 0\\ x_2\geq 0 \end{cases} \tag{6}$$

Решение

Пункт А

Поставим задачу: наша компания продает товары A и Б. Количество продаж каждого товара - x_1 и x_2 соответственно. Прибыль компании, $F(x_1,x_2)=3x_1+x_2$, нужно максимизировать. При этом на изготовление каждого товара мы тратим ресурсы U и V. У нас есть ограничения на наличие ресурсов на складе. Пусть x_3,x_4 — остаток ресурса U и V на складе соответственно. Интерпретируем задачу математически:

$$\begin{cases} F = 3x_1 + x_2 \to max \\ 2x_1 + x_2 \le 2 \\ -x_1 + 3x_2 \le 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases} \longrightarrow \begin{cases} F - 3x_1 - x_2 = 0 \\ 2x_1 + x_2 + x_3 = 2 \\ -x_1 + 3x_2 + x_4 = 3 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases}$$

Итак, нам нужно максимизировать $F=3x_1+x_2$. Используем для этого симплекс-метод. Он предполагает последовательную максимизацию функции.

Будем выходить из начальной точки: $x_1=x_2=x_3=x_4=0$. Выберем переменную: x_1 или x_2 – которую выгодней сделать максимально возможной при наших условиях. Из вида функции видно, что увеличение $x_1\geq 0$ в большей степени увеличивает значение F, чем x_2 . Поэтому стараемся максимизировать x_1 максимально возможно при данных условиях, при этом оставляя $x_2=0$. Но насколько мы можем увеличить x_1 , при этом сохраняя $x_2=0$ постоянным?

$$\begin{cases} 2x_1 + x_2 + x_3 = 2 \\ -x_1 + 3x_2 + x_4 = 3 \end{cases} \Leftrightarrow \begin{cases} x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ -x_1 + 3x_2 + x_4 = 3 \end{cases}$$

$$x_i \ge 0, i \in \overline{1,4}$$

Из первого уравнения системы видим $x_{1,max}=1$, а из второго уравнения видно, что можно увеличивать x_1 , не ограничиваясь. Так как у нас система, то $x_{1,max}=1$ — меньшее неотрицательное.

Увеличим x_1 до $x_{1,max}=1$. Теперь мы не можем увеличивать x_1 , потому что достигнут лимит по условиям. В таком случае зафиксируем $x_1=1$ и продолжим максимизировать F. При этом хотелось бы выразить F через другие переменные, еще можно увеличить. Сделаем так, чтобы x_1 пропал из всех уравнений, кроме одного. Сложим или вычтем уравнения таким образом, чтобы это получить:

$$\begin{cases} F = 3x_1 + x_2 \\ x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ -x_1 + 3x_2 + x_4 = 3 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases} \Leftrightarrow \begin{cases} 3x_1 + x_2 - F = 0 \\ x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ -x_1 + 3x_2 + x_4 = 3 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases} \Leftrightarrow \begin{cases} -x_2 - \frac{3}{2}x_3 - F = -3 \\ x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ -x_1 + 3x_2 + x_4 = 3 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases} \Leftrightarrow \begin{cases} -x_2 - \frac{3}{2}x_3 - F = -3 \\ x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ -x_1 + 3x_2 + x_4 = 3 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases}$$

Вот во что превратилось выражение для F: $F=-x_2-\frac{3}{2}x_3+3$. Анализируя это выражение, приходим к выводу, что мы достигли максимума F, так как, какую бы переменную не увеличивай, F уменьшится. Мы решили задачу нахождения максимума, осталось только дать ответ. Итак, мы зафиксировали $x_1=1$, при этом, чтобы удовлетворить второе условие, $x_4=4$. Из первого условия $x_3=0$, а $x_2=0$, так как мы его намеренно не меняли.

Подставим данные значения в получившуюся целевую функцию:

$$F = -x_2 - \frac{3}{2}x_3 + 3 = -0 - \frac{3}{2}*0 + 3 = 3 = \max F. \operatorname{argmax} F = (x_1, x_2) = (1, 0)$$

Данные рассуждения повторились бы, если бы целевая функция могла увеличиться еще. И наш цикл повторился бы еще раз.

Данный способ - алгебраический способ решения задачи линейного программирования. Можно проиллюстрировать работу этого алгоритма на графике **??**:

Точка старта - начало координат. x_1 было увеличивать выгоднее, поэтому мы пошли по оси Ox вправо, пока не достигли граничного значения в точке 3:(1,0). Нам повезло, мы попали в точку максимума на первом цикле. В общем случае делается обход границы области определения.

На практике алгоритм данного метода можно описать множеством таблиц — симплекстаблиц. Каждый цикл — это переход между симплекс-таблицами.

Построим множество симплекс-таблиц и с помощью них решим ту же задачу оптимизации:

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extsf{pe}$ шающий столбец
x_3	2	1	1	0	2	1 ←min
x_4	-1	3	0	1	3	-3 < 0
F	-3 ←min	-1	0	0	0	

Таблица 1

В данном случае нашу функцию можно представить как $F=3x_1+x_2$. Теперь становится ясно, за что отвечает отрицательный минимум. Выбрали столбец. Теперь в последнем столбце считаем максимальное увеличение x_1 . Как уже было показано ранее $x_{1,max}=1$. Сначала мы выбрали элемент, который станет базисным, а теперь мы выбрали элемент, который станет свободным, отдавая место x_1 – это x_3 . Делаем то же самое, что и в системе уравнений: складываем, вычитаем, домножаем строчки. Причем, как в линейной алгебре, можно создавать любую линейную комбинацию, главное учитывать особенности данной таблицы — множители перед F и последний столбец, который не меняется от домножения:

F	-3	-1	0	0	0
2F	-6	-2	0	0	0
-F	3	1	0	0	0

Таблица 2

Теперь сделаем x_1 базисным:

	Базис	азис $egin{array}{ c c c c c c c c c c c c c c c c c c c$		x_4	b_i	$\dfrac{b_i}{ extsf{pe}$ шающий столбец	
	x_3	2	1	1	0	2	1 ←min
(*2)	x_4	-2	6	0	2	6	-3 < 0
(*2)	2F	-6 ←min	-2	0	0	0	

Таблица 3

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extsf{pe}$ шающий столбец
x_1	2	1	1	0	2	
x_4	0	7	1	2	8	
2F	0	1	3	0	6	Bce > 0

Таблица 4

Таким образом выражение для нашей функции превратилось в $2F=-x_2-3x_3+6$ – сравните с ответом выше. Отсутствие отрицательных элементов в строчке при F — окончание алгоритма симплекс-метода.

Аргументы максимума находятся как $x_i = \begin{cases} 0, & x_i$ – не базисный , далее подставляются $\frac{b_i}{x_{\text{базисный},i}} & x_i$ – базисный

в исходную функцию. Значение после подстановки и в правой нижней ячейке при учете множителя перед F должны совпасть. Причем на любой итерации, не обязательно на конечной.

Как видно из таблицы, базисные элементы оптимального метода равны $x_1=1, x_4=4$, а $x_2=0, x_3=0.$

 $\max F(x_1,x_2)=3$, $\operatorname{argmax} F(x_1,x_2)=(1,0)$, т.к. $x_1=1,x_2=0$ из строки выше.

ОТВЕТ:
$$\max F(x_1, x_2) = 3$$
, $\operatorname{argmax} F(x_1, x_2) = (1, 0)$

Далее решение будет идти без подробностей.

Пункт Б

Приведем задачу к каноническому виду(для max), путём введения базиса x_3, x_4 :

$$\begin{cases} F = 3x_1 + x_2 \to max \\ x_1 - 3x_2 \le 3 \\ x_1 + x_2 \ge 10 \\ x_1 \ge 0, x_2 \ge 0 \end{cases} \longrightarrow \begin{cases} F - 3x_1 - x_2 = 0 \\ x_1 - 3x_2 + x_3 = 3 \\ -x_1 - x_2 + x_4 = -10 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases}$$

 $F(x_1,x_2) \to \max$ Построим симплекс-таблицу и с помощью неё решим задачу оптимизации:

Базис	x_1	x_2	x_3	x_4	b_i	b_i разрешающий столбец
x_3	1	-3	1	0	3	3 ←min
x_4	-1	-1	0	1	-10	10
F	-3 ←min	-1	0	0	0	

Таблица 5

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_1	1	-3	1	0	3	-1 < 0
x_4	0	-4	1	1	-7	$\frac{7}{4} \leftarrow \min$
F	0	-10 ←min	3	0	9	

Таблица 6

	Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
*4	x_1	4	-12	4	0	12	-1 < 0
*(-1)	x_4	0	4	-1	-1	7	$\frac{7}{4} \leftarrow \min$
*2	2F	0	-20 ←min	6	0	18	

Таблица 7

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_1	4	0	1	-3	33	-11 < 0
x_2	0	4	-1	-1	7	- 7 < 0
2F	0	0	1	-5 ←min	53	

Таблица 8

Так как мы пришли к выражению $2F=-x_3+5x_4+53$, то мы должны максимизировать x_4 , однако мы можем максимизировать его бесконечно, что означает неограниченность области определения.

Otbet: $\max F(x_1,x_2) \notin \mathbb{R}, \operatorname{argmax} F(x_1,x_2) \notin \mathbb{R}^2$

$$F(x_1,x_2) o \min$$
 Пусть $G = -F(x_1,x_2)$, тогда $F o \min \Leftrightarrow G o \max$.

Таким образом, мы решаем задачу:

$$\begin{cases} G = -3x_1 - x_2 \to max \\ x_1 - 3x_2 \le 3 \\ x_1 + x_2 \ge 10 \\ x_1 \ge 0, x_2 \ge 0 \end{cases} \longrightarrow \begin{cases} G + 3x_1 + x_2 = 0 \\ x_1 - 3x_2 + x_3 = 3 \\ -x_1 - x_2 + x_4 = -10 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases}$$

В симплекс-методе мы начинаем с точки (0, 0), но очевидно что она не входит в область определения, поэтому мы сделаем первый шаг, который уменьшит G, но дойдет до точки из области определения.

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_3	1	-3	1	0	3	-1 < 0
x_4	-1	-1	0	1	-10	10 ←min
G	3	1 ←min	0	0	0	

Таблица 9

	Базис	x_1	x_2	x_3	x_4	b_i	b_i разрешающий столбец
	x_3	1	-3	1	0	3	-1 < 0
*(-1)	x_4	1	1	0	-1	10	10 ←min
	G	3	1 ←min	0	0	0	

Таблица 10

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_3	4	0	1	-3	33	
x_2	1	1	0	-1	10	
G	2	0	0	1	-10	Bce > 0

Таблица 11

Мы сместились в точку $x_1=0, x_2=10, x_3=33, x_4=0.$ Она входит в область определения. Мы пришли к следующему выражению: $G=-2x_1-x_4.$ Мы привели $G\to\max$. А значит и $F=-G=2x_1+x_4\to\min$. Мы знаем, что $\mathop{\rm argmin} F=(0,10)$, тогда $\min F=F(0,10)=3*0+1*10=10$, что подтверждает геометрический способ решения данного задания.

ОТВЕТ: $\min F = 10, \operatorname{argmin} F = (0, 10)$

Пункт В

Приведем задачу к каноническому виду(для max), путём введения базиса x_3, x_4 :

$$\begin{cases} F(x_1, x_2) = 3x_1 + x_2 \to \max \\ -x_1 + x_2 \ge 11 \\ x_1 - 4x_2 \ge 8 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases} \longrightarrow \begin{cases} F - 3x_1 - x_2 = 0 \\ -x_1 + x_2 - x_3 = 11 \\ x_1 - 4x_2 - x_4 = 8 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases}$$

Начинаем рассчитывать симплекс-таблицы:

Базис	x_1	x_2	x_3	x_4	b_i	$\displaystyle \frac{b_i}{$ разрешающий столбец
x_3	-1	1	1	0	11	-11 < 0
x_4	1	-4	0	1	8	8 ←min
F	-3 ←min	-1	0	0	0	

Таблица 12

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_3	0	-3	1	1	19	$-\frac{19}{3} < 0$
x_1	1	-4	0	1	8	-2 < 0
F	0	-13 ←min	0	3	24	

Таблица 13

Мы сместились в точку (8,0), максимизируя целевую функцию F по x_1 . Точка (8,0), исходя из системы неравенств, задающую условие, не удовлетворяет ему. Точка (8,0) не пренадлежит области определения. При этом мы достигли максимума F по x_1 и двигаться дальше не можем, потому что F по x_2 дальше не максимизируется. Отсюда вывод, что область определения функции пуста. Максимума функции, как и точки максимума не существует.

Эту ситуацию наглядно показывает график из задания №1.

Ответ: $\exists \max F(x_1, x_2),
\exists \operatorname{argmax} F(x_1, x_2).$

Задание №3(Вариант 51)

Условие

Составить и решить геометрически и сиплекс-методом задачу, двойственную данной:

$$F = 3x_1 + x_2 \to \max$$

$$\begin{cases} 2x_1 + x_2 \le 2 \\ -x_1 + 3x_2 \le 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Решение

Составление двойственной задачи

Согласно решению задания №1 пункта А, мы нашли решение этой прямой задачи:

$$\max F(x_1,x_2) = 3, \operatorname{argmax} F(x_1,x_2) = (1,0);$$

Поэтому, по коэффициентам в системе и по определению, составляем задачу, двойственную данной:

$$F^* = 2y_1 + 3y_2 \rightarrow \min$$

$$\begin{cases} 2y_1 - y_2 \ge 3 \\ y_1 + 3y_2 \ge 1 \\ y_1 \ge 0 \\ y_2 \ge 0 \end{cases}$$

Решение двойственной задачи по второй теореме двойственности

Теорема. Вторая теорема двойственности

$$\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*) \text{ и } \mathbf{y}^* = (y_1^*, y_2^*, \dots, y_n^*) - \text{ оптимальные решения прямой}$$

$$\left(\sum_{j=1}^n a_{ij} x_j^* - b_i\right) y_i^* = 0 \ \forall i = \overline{1, m};$$

$$\left(\sum_{i=1}^n a_{ij} y_i^* - c_j\right) x_j^* = 0 \ \forall j = \overline{1, n};$$

 \mathbf{x}^* был найден в задании №1, пункт A и задании №2, пункт A: $\mathbf{x}^*=(1,0)$

Подставим в первое равенство:

$$\begin{split} \left(\sum_{j=1}^{2}a_{1j}x_{j}^{*}-b_{1}\right)y_{1}^{*} &=\left(2\cdot1+1\cdot0-2\right)y_{1}^{*}=0\cdot y_{1}^{*}=0\Leftrightarrow y_{1}^{*}\geq0\\ \left(\sum_{j=1}^{2}a_{2j}x_{j}^{*}-b_{2}\right)y_{2}^{*} &=\left(-1\cdot1+3\cdot0-3\right)y_{2}^{*}=-4\cdot y_{2}^{*}=0\Leftrightarrow y_{2}^{*}=0 \end{split}$$

Подставим полученное во второе равенство:

$$\left(\sum_{i=1}^{2}a_{i1}y_{i}^{*}-c_{1}\right)x_{1}^{*}=\left(2\cdot y_{1}^{*}-1\cdot y_{2}^{*}-3\right)x_{1}^{*}=\left(2\cdot y_{1}^{*}-1\cdot 0-3\right)\cdot 1=2\cdot y_{1}^{*}-3=0 \Leftrightarrow y_{1}^{*}=\frac{3}{2}\left(\sum_{i=1}^{2}a_{i2}y_{i}^{*}-c_{2}\right)x_{2}^{*}=\left(1\cdot y_{1}^{*}+3\cdot y_{2}^{*}-1\right)x_{2}^{*}=\left(1\cdot y_{1}^{*}+3\cdot 0-1\right)\cdot 0=0 \Leftrightarrow y_{2}^{*}\geq 0$$

Таким образом $\mathbf{y}^* = \left(\frac{3}{2},0\right)$ — оптимальное решение. Подставим в функцию: $F^* = 2\cdot\frac{3}{2}+3\cdot0 = 3 = F_{\min}^*$

Решение двойственной задачи по третьей теореме двойственности

Теорема. Третья теорема двойственности

 $\mathbf{y}^* = \vec{c} \cdot A_B^{-1}$, где \vec{c} — коэффициенты в функции при базисных переменных, A_B — матрица, составленная из компонент векторов, вошедших в оптимальных базис.

Согласно заданию №2, пункт А выводим первую и последнюю симплекс-таблицы:

Бази	С	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extsf{pe}$ шающий столбец
x_3		2	1	1	0	2	1 ←min
x_4		-1	3	0	1	3	-3 < 0
F		-3 ←min	-1	0	0	0	

Таблица 14: Начальная симплекс-таблица

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extsf{pe}$ шающий столбец
x_1	2	1	1	0	2	
x_4	0	7	1	2	8	
2F	0	1	3	0	6	Bce > 0

Таблица 15: Оптимальная симплекс-таблица

Смотрим в последнюю таблицу: базисные элементы x_1 и x_4 .

- 1. Коэффициенты в функции перед x_1 и x_4 : $\vec{c} = \begin{pmatrix} 3 & 0 \end{pmatrix}$
- 2. Берём из первой таблицы столбцы при x_1 и x_4 и получаем матрицу $\begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}$.
- 3. Находим для неё обратную матрицу $\begin{pmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 1 \end{pmatrix}$

По теореме находим y^* :

$$\mathbf{y}^* = \begin{pmatrix} y_1^* & y_2^* \end{pmatrix} = \vec{c} \cdot A_B^{-1} = \begin{pmatrix} 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & 0 \end{pmatrix};$$

Подставив в функцию, получаем то же, что получили предыдущим способом: $F^* = F^*_{\min} = 3$

Теорема. Первая теорема двойственности

Если одна из пары двойственных задач имеет оптимальное решение, то и другая имеет оптимальное решение, причем значения целевых функций задач при их оптимальных планах равны между собой: $F(x^*) = F^*(y^*)$. Если же целевая функция одной из пары двойственных задач не ограничена, то другая задача вообще не имеет планов (ОДР пуста).

Как мы можем видеть, значения найденной нами функции $F^*=F^*_{min}$ совпало с ответом к заданиям №1, пункт A и №2, пункт A: $F^*\left(y_1^*,y_2^*\right)=F^*_{min}=F\left(x_1^*,x_2^*\right)=F_{max}=3$

Otbet: $\operatorname{argmin} F^* = \begin{pmatrix} \frac{3}{2} & 0 \end{pmatrix}, \min F^* = 3.$