Solution for Midterm of STAT 3004

1

(a)

Let p be the proportion of deaths from lung cancer in this plant, and denote p_0 as the proportion in the general population. Then we want to test

$$H_0: p=p_0 \quad H_1: p
eq p_0$$

(b)

Two-sided test, since only check whether there is a difference.

(c)

Since $np_0(1-p_0)=20\times 0.12\times 0.88<5$, then we should use the exact method. Since $\hat{p}=0.25>p_0=0.12$, the textbook uses the formula

$$p ext{-value} = 2 imes ext{Pr}(X \geq x) = \min \left[2\sum_{k=x}^n inom{n}{k} p_0^k (1-p_0)^{n-k}, 1
ight]$$

then the code can be written as

```
> min(2*sum(choose(20, 5:20) * 0.12^(5:20) * (1-
0.12)^(15:0)),1)
[1] 0.1654388
```

Or with the probability mass function (pmf) of Binomial distribution,

$$\Pr(X \ge x) = 1 - \Pr(X \le x - 1) = 1 - F(x - 1),$$

where $F(x) = \Pr(X \leq x)$, that is

```
> min(2*(1-pbinom(5-1, 20, 0.12)), 1)
[1] 0.1654388
```

Also, it can be written as

$$\Pr(X \ge x) = \Pr(X > x + 1) = G(x + 1),$$

where G(x) = 1 - F(x).

```
> min(2*pbinom(5-1, 20, 0.12, lower.tail=FALSE), 1)
[1] 0.1654388
```

Furthermore, we can directly call the function built in R software,

But the formula of *p*-value is different from the textbook,

$$p ext{-value} = \Pr(X \geq x) + \Pr(X \leq y)$$
,

where

$$y = rgmax_{0 \leq m \leq np_0} \left(\Pr(X \leq m) \leq \Pr(X \geq x)
ight) \,.$$

2

(a)

Let X be the BMI, then the test statistic is

$$T=rac{ar{X}-\mu}{s/\sqrt{n}}\sim t_{n-1}$$

and hence the 95% CI can be constructed from

$$\Pr(|T| < t_{n-1,0.975}) = 0.95,$$

that is,

$$\mu \in \left(ar{X} - t_{n-1,0.975} rac{s}{\sqrt{n}}, ar{X} + t_{n-1,0.975} rac{s}{\sqrt{n}}
ight) = (24.29007, 25.70993)\,.$$

(b)

Consider the hypothesis testing

$$H_0: \mu=\mu_0 \quad H_1: \mu
eq\mu_0 \ ,$$

where $\mu_0=24$, then

$$t_{obs} = rac{ar{x} - \mu_0}{s/\sqrt{n}} = 2.820657 > 2.002465 = t_{57,0.975} \ ,$$

so we would reject the null hypothesis and conclude that the BMI of the considered group is NOT equal to 24.0.

(c)

Reject, since 24.0 does not lie in the 95% CI.

3

(a)

Let σ_1^2, σ_2^2 be the variance of the two populations respectively, then we test

$$H_0:\sigma_1^2=\sigma_2^2 \qquad H_1:\sigma_1^2
eq\sigma_2^2\,.$$

The test statistic is

$$F = rac{\sigma_1^2}{\sigma_2^2} \sim F_{n_1-1,n_2-1} \ .$$

Since

$$rac{s_1^2}{s_2^2} = 0.06659729 < F_{36,18,0.025} = 0.465444\,,$$

we would reject H_0 and argue that $\sigma_1^2
eq \sigma_2^2$.

(b)

Let μ_1, μ_2 be the mean of the two populations respectively, then we test

$$H_0: \mu_1 = \mu_2 \qquad H_1: \mu_1
eq \mu_2 \ .$$

We should use two sample t test with unequal variance based on (a), and the test statistic is

$$T = rac{ar{X}_1 - ar{X}_2}{\sqrt{rac{\hat{\sigma}_1^2}{n_1} + rac{\hat{\sigma}_2^2}{n_2}}} \sim \mathcal{T}(d)\,,$$

where d can be computed using Satterthwaite's approximation,

$$d = rac{\left(\hat{\sigma}_1^2/n_1 + \hat{\sigma}_2^2/n_2
ight)^2}{\left(\hat{\sigma}_1^2/n_1
ight)^2/(n_1-1) + \left(\hat{\sigma}_2^2/n_2
ight)^2/(n_2-1)} = 19.24095\,.$$

Since

$$t_{obs} = rac{ar{x}_1 - ar{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}} = -2.152988 < -2.091251 = t_{d,0.025}$$

then we would reject H_0 and argue that these two populations do NOT have the same mean age.

4

(a)

advantages:

- the tests with rank require no or very limited assumptions to be made about the format of the data
- the ranks can alleviate the issue induced by outlying observations
- the ranks would be meaningful in the analysis of ordinal data, while treating them as continuous measurements are inappropriate.

disadvantages:

- the ranks would discard information captured by the continuous measurements
- the tests with rank focus on hypothesis testing instead of estimation of effects
- tied values would reduce the number of points to be analyzed, and hence might be problematic

(b)

Since the sample size n=14<20, then we need to use the exact version. The differences are as follows,

SUBJECT
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

$$d_i$$
 16
 -7
 -2
 38
 12
 2
 23
 -14
 6
 -13
 -3
 36
 8
 40

and there are C=9 plus signs. The p-value is

$$p ext{-value} = 2\sum_{k=C}^{n} inom{n}{k} rac{1}{2^n} = 0.4239502\,,$$

so we cannot reject H_0 .

(c)

First rank the data by absolute value of the difference,

SUBJECT	1	2	3	4	5	6	7	8	9	10	11	12	13	14
d_i	16	-7	-2	38	12	2	23	-14	6	-13	-3	36	8	40
order	10	5	1	13	7	2	11	9	4	8	3	12	6	14
rank	10	5	1.5	13	7	1.5	11	9	4	8	3	12	6	14

Since the number of pairs with nonzero d_i is 14 < 16, then we cannot use the normal approximation. The rank sum for positive differences

$$R_1 = 10 + 13 + 7 + 1.5 + 11 + 4 + 12 + 6 + 14 = 78.5$$

From Table 10 in the textbook's Appendix, the critical values for $\alpha=0.05, n=14$ are (21,84), and since R_1 lies in this range, then we cannot reject H_0 .

Alternatively, the critical values can also be obtained by

```
> qsignrank(0.025,14)
[1] 22
> qsignrank(0.975,14)
[1] 83
```

that is, (22, 83).

5

(a)

Let p_1, p_2 be the proportions of subjects who withdrew in these two groups respectively. Then the sample proportions are

$$\hat{p}_1 = rac{27}{314} = 0.08598726\,, \quad \hat{p}_2 = rac{20}{308} = 0.06493506\,.$$

(b)

We can test for association by computing the test statistic,

$$X^2 = \sum_{i,j} rac{(O_{ij}-E_{ij})^2}{E_{ij}}$$

The expected E_{ij} can be calculated as

	YES	NO
Calcitriol	$314 imesrac{47}{622}=23.72669$	$314 imes rac{575}{622} = 290.2733$
Calcium	$308 imes rac{47}{622} = 23.27331$	$308 imes rac{575}{622} = 284.7267$

Note that none of the E_{ij} are < 5, we can validly use the chi-square test, and $X^2 \sim \chi_1^2$ under H_0 .

Since

$$X_{obs}^2 = 0.9865047 < 3.841459 = \chi_{1,0.95}^2 \, ,$$

then we cannot reject H_0 , and conclude that there is NO enough evidence to say that there is association between these two groups.

Alternatively, with Yates' continuity correction,

$$X_{Yates}^2 = \sum_{i,j} rac{(|O_{ij} - E_{ij}| - 1/2)^2}{E_{ij}}$$

then

$$X_{{
m Yates},obs}^2 = 0.7081442 < 3.841459 = \chi_{1,0.95}^2 \ .$$

(c)

No need to use Fisher's exact test since none of the expected value < 5. If required, the procedures are described in the equation 10.10 of the textbook.

• rearrange the rows and columns of the observed table so the smaller row total is in the first row and the smaller column total is in the first column,

	YES	NO
Calcium	20	288
Calcitriol	27	287

- start with the table with 0 in the (1,1) cell. The other cells in this table are then determined from the row and column margins. This gives the 0-table with $\Pr(K=0)$.
- construct the next table by increasing the (1,1) cell by 1, this is the 1-table with $\Pr(K=1)$.
- continue increasing cell (1, 1), until one of the other cells reaches
 0.

The p-value is

$$p = 2 \min\{\Pr(K \le 20), \Pr(K \ge 20), 0.5\}$$
.

Or directly from R,

```
table = matrix(c(20, 27, 288, 287), 2)
p_lower=fisher.test(table,alternative = "1")$p.value
p_upper=fisher.test(table,alternative = "g")$p.value
2*min(p_lower,p_upper,0.5) #0.4003627

# or
fisher.test(table)$p.value #0.3639729
```