A Simple Parcel Theory Model of Downdrafts in Atmospheric Convection

Thomas Schanzer
https://github.com/tschanzer/taste-of-research-21T3

Supervisor: Prof. Steven Sherwood

UNSW School of Physics

Monday 22 November 2021

Aim and Motivation

Downdrafts play an important role in the dynamics of the Earth's atmosphere and climate.

Question

Which processes and conditions initiate, and which maintain or inhibit, downdrafts?

Motivation

- Convection parametrisation in global climate models
- Forcasting dangerous downbursts

Literature

Knupp and Cotton (1985) ¹ identify four downdraft types from a review of observational and modelling research:

- Precipitation-associated,
- Penetrative,
- Cloud-edge,
- Overshooting.

In this work: precipitation-associated and penetrative downdrafts.

¹Knupp, KR & Cotton, WR 1985, 'Convective cloud downdraft structure: An interpretive survey', Reviews of geophysics (1985), vol. 23, no. 2, pp. 183–215.

Background: Parcel Theory

Parcel: small air mass with an imaginary, flexible but closed boundary.

Key assumptions:

Motion is purely vertical and buoyancy is the only force involved:

$$b=\frac{\rho_E-\rho_P}{\rho_P}g.$$

Raising and lowering the parcel is a reversible adiabatic process

Major complication: the atmosphere contains water!

- Descent is either dry adiabatic (no phase changes) or moist adiabatic (with phase changes)
- Phase equilibrium is maintained
- ► Air/vapour mixture is an ideal gas

Methods

Original model developed from first principles in Python.

► The Environment class interpolates real atmospheric temperature and moisture profiles to calculate derived quantities:

```
>>> sydney.density(5*units.km)
0.7206758681891053 kilogram/meter^3
```

- Various thermodynamic calculations (approximate and exact) are implemented from literature
- ► End goal: calculate parcel temperature → density → buoyancy as functions of height and numerically solve

$$\frac{d^2z}{dt^2}=b(z).$$

Results: Precipitation Enhances Downdrafts

Results: Entrainment Inhibits Downdrafts

Results: Atmospheric Dryness Enhances Downdrafts

Conclusions and Future Work

Conclusions:

- Precipitation evaporation increases strength and penetration
- Entrainment reduces them
- ► Atmospheric dryness increases them

Application: supplement basic sounding analysis methods used in weather forecasting

Future Work:

- Consider other forces at play, e.g. drag
- Model more advanced dynamics, e.g. entrainment from updrafts