2.] Guinen: - ni = dTi + ni

Here ni is the enouge measurement from i'm Landmark point to the object's. teme position(di) Corrupted with a gaussian noise (ni) having Zero mean and of variance

 $d\tau_{i}^{o} = \|[x_{T}, y_{T}]^{T} - [x_{i}, y_{i}]^{T}\|$ $= \|[x_{T} - x_{i}, y_{T} - y_{i}]^{T}\|$ $= \sqrt{(x_{T} - x_{i})^{2} + (y_{T} - y_{i})^{2}} \begin{bmatrix} Norm & of the vector \end{bmatrix}$ $n_{i} \sim \mathcal{N}(0, \sigma_{i}^{2})$

[x7, y7] -> Object's true location

$$P\left(\begin{bmatrix} \chi \\ y \end{bmatrix}\right) = \left(2\pi\sigma_{\chi}\sigma_{y}\right) e^{\frac{-1}{2}\left[\chi \right]} \left[\chi \left(2\pi\sigma_{\chi}\sigma_{y}\right)\right] \left[\chi \left(2\pi\sigma_{\chi}$$

brior for the location of the object for a given point [x y] [candidate.]

OBJECTIVE: - Given K & E1, 2, 3, 43, and that position of K can lie anywhere on the unit circle radius, find the optimization problem that needs to be solved to determine the MAP estimate of the object position.

Solution: We have Hi which is the range measurement of Object position from it Landmark point. with the linearity property x = Az + b. where $Z \sim N(0, \Xi)$ and $x \sim N(b, AA^{T})$ we know, that \Re_{i} is also a gaussian distribution we have, no = di+ ni >> ME = Mi + dri Comparing with the property equation, we know get ni~N(dri, 1) To find the MAP estimate of the object position [x, y], we have to find the maximum likelihood posterior of position [x,y] given ri. [y] MAP = argman P ([y]/9i) Applying Bayes Rule: $\begin{bmatrix} x \\ y \end{bmatrix}_{MAP} = \frac{\text{argmax}}{\left[\frac{\pi}{y} \right]} \frac{p(\pi_i | \left[\frac{\pi}{y} \right]) \times q(\pi_i)}{\left[\frac{\pi}{y} \right]} / p(\pi_i)$ (likelihood) eridance [Irvielivant to Estimation]

Part 2:

$$\ln \rho([x]) = \ln \left[(2\pi \sigma_x \sigma_y) \right] = \frac{-1}{2} \left[x y \right] \left[\sigma_x^2 \circ_z \right] \left[y \right] \\
= -\ln(2\pi) - \ln \sigma_x - \ln \sigma_y - \frac{1}{2} \left[x y \right] \left[\frac{1}{2} \sigma_x^2 \circ_z \right] \left[\frac{x}{y} \right] \\
= -\frac{1}{2} \left[\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \right] \rightarrow 3$$

$$\ln \begin{bmatrix} x \\ y \end{bmatrix}_{MAP} = \underset{\begin{bmatrix} x \\ y \end{bmatrix}}{\operatorname{alignax}} \underbrace{\frac{\xi}{\xi}}_{i=1} - \underbrace{\frac{1}{2} \left(\frac{\pi_{i} - d\tau_{i}}{\sigma_{i}} \right)^{2} - \frac{1}{2} \left[\frac{x^{2}}{\sigma_{i}^{2}} + \frac{y^{2}}{\sigma_{y}^{2}} \right]}_{\xi}$$

$$= \operatorname{alignax} - \underbrace{\frac{1}{2} \left[\frac{\xi}{\eta_{i} - d\tau_{i}} \right]^{2}}_{\xi} + \underbrace{\left[\frac{x^{2}}{\sigma_{x}^{2}} + \frac{y^{2}}{\sigma_{y}^{2}} \right]}_{\xi}$$

For a negative value inside argmax, we can take the argmin and remove the constant, giving us own Objective function as:-

$$\begin{bmatrix}
\ln\left[x\right] \\
y
\end{bmatrix}
MAP = argmin & \frac{x}{y} \frac{(n_i - d_{7i})^2}{\sigma_i^2} + \left[\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right] \rightarrow G$$

$$LIKELIHOOD PRIOR$$