CODE

- h_w = height of entire wall from base to top, or clear height of wall segment or wall pier considered, mm
- h_{wcs} = height of entire structural wall above the critical section for flexural and axial loads, mm
- h_x = maximum center-to-center spacing of longitudinal bars laterally supported by corners of crossties or hoop legs around the perimeter of a column or wall boundary element, mm
- H = effect of service load due to lateral earth pressure, ground water pressure, or pressure of bulk materials, N
- I = moment of inertia of section about centroidal axis,
 mm⁴
- I_b = moment of inertia of gross section of beam about centroidal axis, mm⁴
- I_{cr} = moment of inertia of cracked section transformed to concrete, mm⁴
- I_e = effective moment of inertia for calculation of deflection, mm⁴
- I_g = moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement, mm⁴
- I_s = moment of inertia of gross section of slab about centroidal axis, mm⁴
- I_{se} = moment of inertia of reinforcement about centroidal axis of member cross section, mm⁴
- k = effective length factor for compression members
- k_c = coefficient for basic concrete breakout strength in tension
- k_{cp} = coefficient for pryout strength
- k_f = concrete strength factor
- k_n = confinement effectiveness factor
- K_{tr} = transverse reinforcement index, mm
- e span length of beam or one-way slab; clear projection of cantilever, mm
- ℓ_a = additional embedment length beyond centerline of support or point of inflection, mm
- ℓ_{be} = length of boundary element from compression face of member, mm
- ℓ_c = length of compression member, measured centerto-center of the joints, mm
- ℓ_{cb} = arc length of bar bend along centerline of bar, mm
- ℓ_d = development length in tension of deformed bar, deformed wire, plain and deformed welded wire reinforcement, or pretensioned strand, mm
- ℓ_{dc} = development length in compression of deformed bars and deformed wire, mm
- ℓ_{db} = debonded length of prestressed reinforcement at end of member, mm

COMMENTARY

 K_t = torsional stiffness of member; moment per unit rotation

 K_{05} = coefficient associated with the 5 percent fractile

 ℓ_{anc} = length along which anchorage of a tie must occur,

 ℓ_b = width of bearing, mm

