CHAPTER 25

Lecture No. 25

Question: It can be shown that the algebraic multiplicity of an eigenvalue λ is always greater than or equal to the dimension of the eigenspace corresponding to λ . Find h in the matrix A below such that the eigenspace for $\lambda=4$ is two-dimensional

$$\left[\begin{array}{cccc} 4 & 2 & 3 & 3 \\ 0 & 2 & h & 3 \\ 0 & 0 & 4 & 14 \\ 0 & 0 & 0 & 2 \end{array}\right].$$

Solution: For the basis of eigenspace we will solve the system $(A-4I)\mathbf{x}=\mathbf{0}$, i.e.,

$$A - 4I = \begin{bmatrix} 0 & 2 & 3 & 3 \\ 0 & -2 & h & 3 \\ 0 & 0 & 0 & 14 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

the augmented matrix of the homogeneous system is

$$\begin{bmatrix} 0 & 2 & 3 & 3 & 0 \\ 0 & -2 & h & 3 & 0 \\ 0 & 0 & 0 & 14 & 0 \\ 0 & 0 & 0 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 2 & 3 & 3 & 0 \\ 0 & -2 & h & 3 & 0 \\ 0 & 0 & 0 & 14 & 0 \\ 0 & 0 & 0 & -2 & 0 \end{bmatrix}.$$

We have $x_4 = 0$, $x_2 = \frac{hx_3}{2}$ also we have $x_2 = \frac{3x_3}{2}$, which gives the value of h = 3. For h = 3 the solution of the system $(A - 4I)\mathbf{x} = \mathbf{0}$ in parametric form is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 3/2 \\ 1 \\ 0 \end{bmatrix}$$

which shows that basis for the eigenspace corresponding to $\lambda = 4$ is 2.

25.1 Diagonalization

Example: If $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$ then calculate D^2, D^3 and D^k where $k \ge 1$.

Solution: The expressions are

$$D^{2} = \begin{bmatrix} 5^{2} & 0 \\ 0 & 3^{2} \end{bmatrix}, \qquad D^{3} = \begin{bmatrix} 5^{3} & 0 \\ 0 & 3^{3} \end{bmatrix}$$

and

$$D^k = \left[\begin{array}{cc} 5^k & 0 \\ 0 & 3^k \end{array} \right].$$

Remark: If $A = PDP^{-1}$ for some invertible P and diagonal D, then A^k is also easy to compute.

Example: Let $\begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$. Find a formula for A^k , given that $A = PDP^{-1}$ where

$$P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}.$$

Solution: The standard formula for the inverse of a 2×2 matrix yields

$$P^{-1} = \left[\begin{array}{cc} 2 & 1 \\ -1 & -1 \end{array} \right].$$

Then we can check that $A = PDP^{-1}$, also

$$A^2 = PD^2P^{-1}, \qquad A^3 = PD^3P^{-1}$$

and

$$A^k = PD^kP^{-1}.$$

Diagonalizable Matrix: A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is, if $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D.

Theorem: The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

Example: Diagonalize the following matrix, if possible

$$A = \left[\begin{array}{rrr} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{array} \right].$$

Solution: Step I. Find all the eigenvalues of the matrix A

$$\det(A - \lambda I) = 0 \Rightarrow -\lambda^3 - 3\lambda^2 + 4 = 0$$
$$-(\lambda - 1)(\lambda + 2)^2 = 0.$$

Step II. Find three linearly independent eigenvectors of A.

Basis for
$$\lambda = 1$$
: $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
Basis for $\lambda = -2$: $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}.$$

Step III. Construct P from the vectors in step II.

The order of the vectors is unimportant.

$$P = [\mathbf{v}_1 \ \mathbf{v}_3 \ \mathbf{v}_3] = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Step IV. Construct D from the corresponding eigenvalues

It is essential that the order of the eigenvalues matches the order chosen for the columns of P.

$$D = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array} \right]$$

Verification: It is a good idea to check that P and D really work.

$$AP = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$

$$PD = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$

Example: Diagonalize the following matrix, if possible.

$$A = \left[\begin{array}{rrr} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{array} \right]$$

Solution: The characteristic equation of the given matrix is

$$\det(A - \lambda I) = 0 \Rightarrow -\lambda^3 - 3\lambda^2 + 4 = 0$$
$$-(\lambda - 1)(\lambda + 2)^2 = 0.$$

The eigenvalues are $\lambda = 1$ and $\lambda = -2$. The eigenspace for each eigenvalue is one dimensional

Basis for
$$\lambda = 1$$
: $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, Basis for $\lambda = -2$: $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$.

There are no other eigenvalues, and every eigenvector of A is a multiple of either \mathbf{v}_1 or \mathbf{v}_2 .

Hence A is not diagonalizable.

Theorem: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Example: Determine if the following matrix is diagonalizable

$$A = \left[\begin{array}{ccc} 5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2 \end{array} \right].$$

25.2 Matrices Whose Eigenvalues Are Not Distinct

Theorem: Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, ..., \lambda_p$.

- 1. For $1 \leq k \leq p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
- 2. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens if and only if
 - (i) the characteristic polynomial factors completely into linear factors and
 - (ii) the dimension of the eigenspace for each λ_k equals the multiplicity of λ_k .
- 3. If A is diagonalizable and \mathcal{B}_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets $\mathcal{B}_1, ..., \mathcal{B}_p$ forms an eigenvector basis for \mathbb{R}^n .

Example: Diagonalize the following matrix, if possible.

$$A = \left[\begin{array}{cccc} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{array} \right].$$

Solution: Since A is a triangular matrix, the eigenvalues are 5 and -3, each with algebraic multiplicity 2

Basis for
$$\lambda = 5$$
: $\mathbf{v}_1 = \begin{bmatrix} -8 \\ 4 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} -16 \\ 4 \\ 0 \\ 1 \end{bmatrix}$

Basis for
$$\lambda = -3$$
: $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

The set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent. So the matrix $P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4]$ is invertible and $A = PDP^{-1}$, where

$$P = \begin{bmatrix} -8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 1 & 0 & -3 \end{bmatrix}.$$

25.3 Some Practice Problems

Question: Let $A = \begin{bmatrix} -3 & 12 \\ -2 & 7 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Suppose you are told that \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of A. Use this information to diagonalize A.

Question: Let A be a 4×4 matrix with eigenvalues 5, 3, and -2, and suppose you know that the eigenspace for $\lambda = 3$ is two-dimensional. Do you have enough information to determine if A is diagonalizable?

Question: Diagonalize the given matrix, if possible

$$\begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -2 & -2 \\ 3 & -3 & -2 \\ 2 & -2 & -2 \end{bmatrix}.$$

Question: A is a 7×7 matrix with three eigenvalues. One eigenspace is two-dimensional, and one of the other eigenspaces is three dimensional. Is it possible that A is not diagonalizable? Justify your answer.

Question: A is a 3×3 matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A diagonalizable? Why?