

PROVINCIAL EXAMINATION NOVEMBER 2022 GRADE 10

PHYSICAL SCIENCES (PHYSICS)
(PAPER 1)

TIME: 2 hours

MARKS: 100

11 pages and 2 formula sheets

INSTRUCTIONS AND INFORMATION

- 1. Write your name in the appropriate space on the ANSWER BOOK.
- 2. This question paper consists of 8 questions. Answer ALL the questions.
- 3. Start each question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. You may use a non-programmable calculator.
- 6. You may use appropriate mathematical instruments.
- 7. USE the DATA SHEETS that are attached.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your final numerical answers to a minimum of TWO decimal places.
- 10. Write neatly and legibly.

(2)

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question numbers (1.1 to 1.8) in the ANSWER BOOK, e.g. 1.9 E.

- 1.1 Which of the following physical quantities is not a vector?
 - A Distance
 - B Force
 - C Velocity
 - D Acceleration (2)
- 1.2 In the equation $\Delta X = v_i \Delta t + \frac{1}{2} a \Delta t^2$, the part $v_i \Delta t$ represents the ...
 - A time.
 - B velocity.
 - C acceleration.
 - D displacement.
- 1.3 Which of the following is obtained by calculating gradient of displacement versus time graph?
 - A Time
 - B Velocity
 - C Acceleration
 - D Displacement (2)
- 1.4 In the diagram below, a pendulum bob of mass **m** is released from point **A** and swings past points **B**, **C** and **D**. Ignore all effects of air resistance.

In which of the following positions will the value of the gravitational potential energy of the pendulum bob be the smallest?

- A A
- В В
- C C
- D D

(2)

PHYSICAL SCIENCES (PHYSICS)		4
(PAPER 1)	GRADE 10	-

- 1.5 The number of sound vibrations per second is the:
 - A Period
 - B Frequency
 - C Amplitude
 - D Wavelength
- 1.6 Two identical spheres, **A** and **B**, on insulated stands, carry different charges. The spheres are brought into contact and separated again.

If the charge on sphere ${\bf A}$ AFTER the separation is q, the charge on sphere ${\bf B}$ after the separation is ...

- A –q.
- B q.
- C zero.
- D 2q. (2)
- 1.7 Consider the circuit diagram below:

What is the voltage across the parallel resistors?

- A 5V
- B 7V
- C 2V
- D 4V

(2)

(2)

- 1.8 Which of the following statements best describes resistance in parallel?
 - A Adding more resistors in parallel decreases the total current of the circuit
 - B Adding more resistors in parallel decreases the effective resistance of the circuit
 - C Removing a resistor in parallel increases the total current of the circuit
 - D Removing a resistor in parallel decreases the effective resistance of the circuit

(2) **[16]**

QUESTION 2 (Start on a new page.)

- 2.1 Define the term *vector*. (2)
- 2.2 Peter stands at the front door of his house. Avogadro Street is 25 m away from the front door. Peter walks to Avogadro Street and back to the front door of his house.

- 2.2.1 What is the distance that Peter has walked? (2)
- 2.2.2 Write Peter's final displacement? (2)
- 2.2.3 Is displacement a vector or a scalar? Give a reason for your answer. (2)

[8]

QUESTION 3 (Start on a new page.)

Car **A** driving at 135 km.h⁻¹ approaches a stationery car **B**. The driver of car **B** noticed that car **A** is approaching him at a very high speed. The driver of car **B** reacted suddenly by accelerating his car from rest at 1,5 m·s⁻² for 11,5 s. After 11,5 s car **B** continued driving with a

3.1	Convert 135 km.h ⁻¹ to m⋅s ⁻¹ .	(2)
3.2	Determine the velocity of car B while trying to avoid car A .	(4)
3.3	How far has car B driven after 11,5 seconds?	(4)
3.4	The driver of car A suddenly hit the brakes and managed to stop after 40 m. What acceleration does car A experience to come to a standstill after 4 seconds?	(4) [14]

QUESTION 4 (Start on a new page.)

Study the velocity versus time graph below for the motion of a car travelling east.

4.1 Define the term *acceleration*. (2)

4.2 Use the graph to describe the motion of the car in the following sections:

4.2.1 **AB** (2)

4.2.2 **CD** (2)

4.2.3 **EF** (2)

4.3 Calculate the acceleration of the car between **D** and **E**. (4)

4.4 In which section, **AB** or **BC**, is the acceleration of the car the greatest? Give a reason for your answer. (2) [14]

QUESTION 5 (Start on a new page.)

A rollercoaster cart of mass 2 kg is released from rest at point **A**, 30 metres above the ground. The cart moves along a frictionless surface **ABC** as shown below.

- 5.1 Define the term *gravitational potential energy*. (2)
- 5.2 Prove with calculations that the mechanical energy of the cart at point **A** is 588 J. (3)
- 5.3 State the *law of conservation of mechanical energy* in words. (2)
- 5.4 Calculate the velocity of the cart when it is at point **B**. (4)
- How will the mechanical energy of the cart at point **C** compare with the mechanical energy of the cart at point **B**? Write only GREATER THAN, LESS THAN or EQUAL TO. Give a reason for your answer. (2)

 [13]

QUESTION 6 (Start on a new page.)

The diagram represents the pattern of waves with frequency 30 Hz, moving from the left to right.

(2) 6.1 Define the term transverse wave. 6.2 Label points A, B and C. (3)(2) 6.3 How much time has lapsed while the wave moved from R to T? Are points **R** and **S** on the wave in phase? Explain your answer. 6.4 (2)6.5 Calculate the speed of the wave. (3)[12]

QUESTION 7 (Start on a new page.)

Two identical insulated spheres, **A** and **B**, suspended by a light inextensible string from a ceiling, are held a distance apart, as shown below.

Sphere **A** carries a charge of + 2nC, while sphere **B** is neutral.

7.1 Explain what is meant by *neutral charge*.

(2)

Sphere **A** is brought near the neutral sphere **B** and the spheres are allowed to touch each other. Immediately after touching, sphere **B** moves away from sphere **A**. Sphere **B** now has an excess of 20 electrons.

- 7.2 State the *principle of conservation of charge* in words. (2)
- 7.3 Briefly explain how the neutral sphere **B** is attracted to sphere **A**. (2)
- 7.4 Calculate the magnitude of the charge of sphere **B**. (3)
- 7.5 Calculate the charge on each sphere after they have separated. (3)

[12]

PHYSICAL SCIENCES (PHYSICS)	
(PAPER 1) GRADE 10	

QUESTION 8 (Start on a new page.)

In the circuit diagram below, each cell has a voltage of 1,5 V. Use the diagram to answer the questions that follow.

- 8.1 What is the reading on V_1 ? (1)
- 8.2 Calculate the following:
 - 8.2.1 Total resistance of the circuit (3)
 - 8.2.2 Reading on \mathbf{A}_1 (2)
 - 8.2.3 The reading on V_2 (2)
- 8.3 Determine the magnitude of the charge that flows through **A**₁ in 6 minutes. (3) [11]

TOTAL: 100

DATA FOR PHYSICAL SCIENCES GRADE 10 PAPER 1 (PHYSICS)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 10 VRAESTEL 1 (FISIKA)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m⋅s ⁻²
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m⋅s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J·s
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	m _e	9,11 x 10 ⁻³¹ kg

TABLE 2: FORMULAE/TABEL 2: FORMULES

MOTION/BEWEGING

$v_f = v_i + a\Delta t$	$\Delta \mathbf{x} = \mathbf{v}_{i} \Delta \mathbf{t} + \frac{1}{2} \mathbf{a} \Delta \mathbf{t}^2$
$v_f^2 = v_i^2 + 2a\Delta x$	$\Delta X = \left(\frac{V_f + V_i}{2}\right) \Delta t$

WORK, ENERGY AND POWER/ARBEID, ENERGIE EN DRYWING

$U = mgh \ or/of \ E_P = mgh$	$K = \frac{1}{2} \text{ mv}^2 \text{ or/of } E_k = \frac{1}{2} \text{ mv}^2$
$E_M = E_k + E_p$ or/of $E_M = K + U$	

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$
$E = hf \ or/of \ E = h\frac{c}{\lambda}$	

ELECTROSTATICS/ELEKTROSTATIKA

n_Q	$Q_1 + Q_2$
e	$Q = \frac{Q}{2}$

ELECTRIC CIRCUITS/ELEKTRIESE STROOMBANE

$Q = I \Delta t$	$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots$
$R_s = R_1 + R_2 + \dots$	$V = \frac{W}{Q}$