Gaussian generative models

Topics we'll cover

- 1 Classification using multivariate Gaussian generative modeling
- 2 The form of the decision boundaries

results from filty

Back to the winery data

Go from 1 to 2 features: test error goes from 29% to 8%.

With all 13 features: test error rate goes to zero. We apply bought rule for we fit a multivariet Gaussi to the 13 feature for winey the dampfuls. And another for winey 3. Then apply Briggs rule for clampting 3.

Then apply Briggs rule for clampting p(x) = constd * (x-u) \(\frac{1}{2} (x-u) \)

The multivariate Gaussian

 $N(\mu, \Sigma)$: Gaussian in \mathbb{R}^d

ullet mean: $\mu \in \mathbb{R}^d$

• covariance: $d \times d$ matrix Σ

I we see it is product so the dearn bonds will be quadrat

Density
$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

If we write $S = \Sigma^{-1}$ then S is a $d \times d$ matrix and

$$(x - \mu)^T \Sigma^{-1} (x - \mu) = \sum_{i,j} S_{ij} (x_i - \mu_i) (x_j - \mu_j),$$

a quadratic function of x.

Binary classification with Gaussian generative model

- Estimate class probabilities π_1, π_2
- Fit a Gaussian to each class: $P_1 = \mathcal{N}(\mu_1, \Sigma_1), \ P_2 = \mathcal{N}(\mu_2, \Sigma_2)$

If we take Derest P(x) then 103, we set

Given a new point x, predict class 1 if

x, predict class 1 if
$$\pi_1 P_1(x) > \pi_2 P_2(x) \Leftrightarrow x^T M x + 2 w^T x \ge \theta,$$

where:

quadrat bound)
$$M = \frac{1}{2}(\Sigma_2^{-1} - \Sigma_1^{-1}) + \text{different exterior matters}$$
 lines bolow
$$W = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

and θ is a threshold depending on the various parameters.

Linear or quadratic decision boundary.

Common covariance: $\Sigma_1 = \Sigma_2 = \Sigma$

Linear decision boundary: choose class 1 if

$$\times \cdot \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{w} \geq \theta.$$

Example 1: Spherical Gaussians with $\Sigma = I_d$ and $\pi_1 = \pi_2$.

Example 2: Again spherical, but now $\pi_1 > \pi_2$.

Example 3: Non-spherical.

Sane cover matri

Classification rule: $w \cdot x \ge \theta$

- Choose w as above
- ullet Common practice: fit heta to minimize training or validation error

Different covariances: $\Sigma_1 \neq \Sigma_2$

Differ Covari metri So $T_{\times} \ge \theta$, where: Quadratic boundary: choose class 1 if $x^T M x + 2w^T x \ge \theta$, where: not lineal, as before

$$M = \frac{1}{2}(\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$w = \Sigma_1^{-1}\mu_1 - \Sigma_2^{-1}\mu_2$$

Example 1: $\Sigma_1 = \sigma_1^2 I_d$ and $\Sigma_2 = \sigma_2^2 I_d$ with $\sigma_1 > \sigma_2$

Example 2: Same thing in 1-d. $\mathcal{X} = \mathbb{R}$.

Example 3: A parabolic boundary.

Multiclass discriminant analysis

k classes: weights π_j , class-conditional densities $P_j = N(\mu_j, \Sigma_j)$.

Each class has an associated quadratic function

$$f_j(x) = \log (\pi_j P_j(x))$$

To classify point x, pick arg $\max_i f_i(x)$.

If $\Sigma_1 = \cdots = \Sigma_k$, the boundaries are **linear**.

all avarian matries are equal then dearn forty is linear