Ligthweight Cryptography

Marc Beunardeau

April 29, 2015

Table of contents

Introduction

Software Requirements

State of the Art

Trivium

PRESENT

PRINCE

PRIDE

Presentation

The Linear Layer

Differential Attack

Differential Analysis

Attack

SPECK

Presentation

Fault Attack

Bit-Flip Attack

Random Bit Fault

Itroduction

- Developpement of tiny devices (RFID, wireless sensors....)
- ▶ Need for new algorithms (\neq AES)
- Pervasive environement (invasive attacks)

- ► Clock Cycles per encryption
- Memory
- Security
- Consumption

Generalities

- ▶ Introduced by Cannière and Preneel in 2005
- Stream cipher
- ▶ 1100 cycles for initialisation
- 1 cycle per bits
- 2 faults attack
- optimized for hardware

Structure

Generalities

- ▶ Bogdanov & Al in 2007
- SP-network
- ▶ 32 rounds
- ▶ 80, 128 bits keys, 64 bits block
- 32 cycles per block (hardware implementation)
- ▶ Cube attack : 2¹⁵ chosen plain text, 2³² encryption
- optimized for hardware

Structure

Generalities

- ▶ Introduced by
- ► SP-network
- Low latency
- Small aera when fully unrolled
- ▶ 128 bits key, 64 bits block
- ▶ 1 cycle per block (unrolled hardware implementation)
- α reflection : $Dec_{(k_0||k_0'||k_1)}(.) = Enc_{(k_0'||k_0||k_1 \oplus \alpha)}(.)$
- 3-4 faults attack

Structure

Generalities

- ▶ Introduced by Albrecht & Al in 2014
- SPN block cipher with focus on linear layer
- ▶ 64 bits blocks
- ▶ 128bits key
- ▶ 20 rounds

Performances

- ▶ 68 cycles per block
- ▶ 138 bytes of flash memory (943 flash + 33 S-RAM bytes, and 575 cycles for AES)

Structure

A Round of PRIDE

Key Scheduling

- $k = k_0 || k_1$
- $\qquad \qquad \mathbf{k}_1 = k_{1_0} ||k_{1_1}||k_{1_2}||k_{1_3}||k_{1_4}||k_{1_5}||k_{1_6}||k_{1_7}||$
- $f_i(k_1) = k_{1_0} ||g_i^{(0)}(k_{1_1})||k_{1_2}||g_i^{(1)}(k_{1_3})||k_{1_4}||g_i^{(2)}(k_{1_5})||k_{1_6}||g_i^{(3)}(k_{1_7})$
- $g_i^j(x) = x + i \times C_j \mod 256$

S-boxes

Involution

▶ Differential : 1/4

▶ Linear : 1/2

20 Clock cycles

Interleaving

$$\begin{split} P^n_{b_1,...b_k}: (\mathbb{F}_2^{b_1} \times \mathbb{F}_2^{b_2} \times ... \mathbb{F}_2^{b_k})^n &\longrightarrow (\mathbb{F}_2^{b_1})^n \times (\mathbb{F}_2^{b_2})^n ... \times (\mathbb{F}_2^{b_k})^n \\ (x_1,...,x_n) &\longrightarrow ((x_1^{(1)},...,x_n^{(1)}),...,(x_1^{(k)},...,x_n^{(k)})) \end{split}$$
 where $x_i = (x_i^{(1)},...,x_i^{(k)})$ with $x_i^{(j)} \in \mathbb{F}_2^{b_j}$

Presentation The Linear Layer

Example k = 2, n = 3

Interleaving

- ▶ $G_i = [I|L_i^T]$ matrix generator of a $(2n, 2^n)$ code of minimal distance d_i over \mathbb{F}_2
- $L := P^{-1} \circ (L_1 \times L_2 \times L_3 \times L_4) \circ P$
- ▶ $[I|L^T]$ matrix generator of a $(2n, 2^n)$ code of minimal distance $mind_i$ over \mathbb{F}_2^4

Finding the Linear Layer

- ▶ Set n = 64, k = 4, $b_i = 1$
- ▶ Look for $L_0...L_3 \in \mathcal{M}_{16}(\mathbb{F}_2)$ with branch number 4 and achieving high depdencie.
- Set a set of assembly instruction
- Check after N instruction if the matrix fulffil our criteria for L₀ (N = 7 achieved)
- ▶ Derive $L_i = PL_{i-1}Q$ with P, Q permutation (found with Constraint Integer Programing) and the density of $L_i \lor L_{i-1}$ is maximum

Principle

- Find differential characteristics :
- ▶ $\Delta X = X_1 \oplus X_2$ a constant
- ▶ $\Delta Y = Encr(X_1) \oplus Encr(X_2) = cst$ for a high number(>> $1/2^{|K|}$) of pair (X_1, X_2)
- Retrieve information on the key

Notations

- $ightharpoonup I_r$ input of the r-th round
- ► X_r after the round key additional of the r-th round
- \triangleright Y_r after the S-box layer of the r-th round
- $ightharpoonup Z_r$ after the permutation of the r-th round
- W_r after the matrix of the r-th round
- O_r the output of the r-th round
- \blacktriangleright $X[n_1, n_2...]$ the $n_1, n_2...$ nibbles of state X

Differential Analysis Attack

S-Boxes

	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xa	0xb	0xc	0xd	0xe	0xf
0x0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x1	0	0	0	0	4	4	4	4	0	0	0	0	0	0	0	0
0x2	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0x3	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
0x4	0	4	0	0	0	0	4	0	0	2	2	0	2	0	0	2
0x5	0	4	0	0	0	4	0	0	0	2	2	0	2	0	0	2
0x6	0	4	0	0	4	0	0	0	0	2	2	0	0	2	2	0
0x7	0	4	0	0	0	0	0	4	0	2	2	0	0	2	2	0
0x8	0	0	4	4	0	0	0	0	4	0	4	0	0	0	0	0
0x9	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
0xa	0	0	0	0	2	2	2	2	4	0	4	0	0	0	0	0
0xb	0	0	4	4	0	0	0	0	0	0	0	0	2	2	2	2
0xc	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2	0
0xd	0	0	2	2	0	0	2	2	0	2	0	2	0	2	0	2
0xe	0	0	2	2	0	0	2	2	0	2	0	2	2	0	2	0
0xf	0	0	2	2	2	2	0	0	0	2	0	2	0	2	0	2

2 Rounds Characterisitcs

ΔI_r	0x0	0x8	0x0													
ΔX_r	0x0	0x8	0x0													
ΔY_r	0x0	0x8	0x0													
ΔZ_r	0x4	0x0														
ΔW_r	0x0	0x4	0x4	0x4	0x0											
ΔI_{r+1}	0x0	0x0	0x0	0x0	0x0	0x8	0x0	0x0	0x0	0x8	0x0	0x0	0x0	0x8	0x0	0x0
ΔX_{r+1}	0x0	0x0	0x0	0x0	0x0	0x8	0x0	0x0	0x0	0x8	0x0	0x0	0x0	0x8	0x0	0x0
ΔY_{r+1}	0x0	0x0	0x0	0x0	0x0	0x8	0x0	0x0	0x0	0x8	0x0	0x0	0x0	0x8	0x0	0x0
ΔZ_{r+1}	0x0	0x4	0x4	0x4	0x0											
ΔW_{r+1}	0x4	0x0														
ΔI_{r+2}	0x0	0x8	0x0													

Differential Analysis Attack

Differential Analysis

ΔI_1	0000	0000	0000	0000	0000	????	0000	0000	0000	????	0000	0000	0000	????	0000	0000
ΔX_1	0000	0000	0000	0000	0000	????	0000	0000	0000	????	0000	0000	0000	????	0000	0000
ΔY_1	0000	0000	0000	0000	0000	1000	0000	0000	0000	1000	0000	0000	0000	1000	0000	0000
ΔZ_1	0000	0100	0100	0100	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
ΔW_1	0100	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
ΔI_2	0000	1000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
ΔX_{17}	0000	0000	0000	0000	0000	1000	0000	0000	0000	1000	0000	0000	0000	1000	0000	0000
ΔY_{17}	0000	0000	0000	0000	0000	????	0000	0000	0000	????	0000	0000	0000	????	0000	0000
ΔZ_{17}	0000	0?00	0?00	0?00	0000	0?00	0?00	0?00	0000	0?00	0?00	0?00	0000	0?00	0?00	0?00
ΔW_{17}	0?00	0?00	0?00	0?00	00?0	???0	0??0	0??0	???0	00?0	0??0	0??0	0?00	0?00	0?00	0?00
ΔI_{18}	00?0	?0??	0??0	0000	0?00	??0?	0??0	0000	0000	????	0???	0000	0000	????	0?00	0000
ΔX_{18}	00?0	?0??	0??0	0000	0?00	??0?	0??0	0000	0000	????	0???	0000	0000	????	0?00	0000
ΔY_{18}	????	????	????	0000	????	????	????	0000	0000	????	????	0000	0000	????	????	0000
ΔO_{18}	????	????	????	0000	????	????	????	0000	0000	????	????	0000	0000	????	????	0000

Data Collection

- ► Choose 2⁴8 stuctures fix in nibbles 1,2,3,4,5,7,8,9,11,12,13,15,16 (2²³ pairs)
- ▶ Verifiy $\Delta C[4, 8, 9, 12, 13, 16] = 0$ (2⁻¹ pairs left)

Key Recovery(1)

- Guess $(k_0 \oplus \mathcal{P}^{-1}(f_1(k_1)))[6]$
- ▶ Look for 2^4 pairs st. $\Delta Y_1[6] = 8$
- ▶ 2⁻⁵ pairs left
- ▶ same with $(k_0 \oplus \mathcal{P}^{-1}(f_1(k_1)))[10]$ and $(k_0 \oplus \mathcal{P}^{-1}(f_1(k_1)))[14]$
- ▶ 2⁻¹³ pairs left

Key Recovery(2)

• Guess $k_0[i]$, $i \in \{1, 2, 3, 5, 7, 10, 11, 14\}$

Generalities

- ▶ Introduced by Beaulieu & Al (NSA) in 2013
- ARX network
- ▶ 48-128 bits blocks
- ▶ 96-256 bits key
- ▶ 22-34 rounds

Performances (64 bits block/128 bits key)

- ▶ 186 bytes of memory
- ▶ 150 cycles per block

Presentation

Structure

Key Scheduling

$$K = (I_{m-2}||I_{m-1}||...||I_0||k_0)$$

$$I_{i+m-1} = k_{i-1} + S^{-\alpha}(I_{i-1}) \oplus i$$

$$\qquad k_i = S^{\beta}(k_{i-1}) \oplus l_{i+m-1}$$

▶
$$l_i, k_0 \in \mathbb{F}_2^n$$

▶
$$m \in \{2, 3, 4\}$$

Principle

- ▶ Inject a fault in a chosen state of the computation
- ▶ Compare *C* and *C** the correct and faulty cipher texts
- Retrive information on the key

Bit-Flip Attack Random Bit Fault

We control the position of the error (unrealistic)

$$x^T = (S^{-\alpha}(x^{T-1}) + y^{T-1}) \oplus k^{T-1}$$

$$c_j = (x_{j-1-\alpha \mod n} \& y_{j-1}) | (c_{j-1} \& (x_{j-1-\alpha \mod n} | y_{j-1}))$$

- $c_0 = 0$ is known
- ▶ Inject a fault in y_0^{T-1}
- ▶ Deduce x_{α}^{T-1} then k_0^{T-1}
- ▶ Inject a fault in higher bits of y^{T-1}

Bit-Flip Attack Random Bit Fault

We don't control the position of the error

Locate the error