Code	RANDOM_FOREST.PY
Author	Nathaniel Heatwole, PhD (<u>heatwolen@gmail.com</u>) (<u>GitHub</u>) (<u>LinkedIn</u>)
Summary	Uses a random forest to predict survival for passengers in the Titanic disaster.
Methods/ process	 Random forest: Supervised learning method that fits many decision trees ("forest") and aggregates the results. Combines benefits of decision tree learning, while mitigating their tendency to overfit to their training data. Each decision tree fitted on: 1) random subset of features; and 2) random selection of training data observations (with replacement). Randomly withholding some information (that would otherwise be available to fit the model) reduces correlations between the trees. Trees can be split using various measures, including entropy¹ and Gini impurity² (minimum sought in either case). Root node (top of tree): quantity/threshold yielding the best split. Predictions of the many individual trees are homogenized using either plurality vote (classification) or average (regression). Out-of-bag testing can also be used (if entire dataset not used to generate tree). Steps: Import and clean training data. Conduct feature engineering (prepare data for use in a random forest model and maximize useful information to be extracted from it). Assess feature importance (Pearson correlation matrix, chi-squared, and coefficient of variation). Fit random forest to training data to predict survival.
Training data	<u>Titanic dataset</u> – containing data for 891 Titanic passengers (from Kaggle).
Output	Summary - Feature importance Plot - Actual versus predicted survival (with group-level summary stats)
Result	The predictions align with expectations: high predicted survival probabilities for survivors (mean: 0.87), and the opposite for non-survivors (mean: 0.09). Additionally, the predicted probability IQRs for the two groups are non-overlapping. Feature importance indicates fare, male, and age are the most consequential variables.

¹ Entropy is a measure of disorder. It is defined as the average (expected value) of information, and is equal to: sum[-p * ln(p)].

² Gini impurity measures how often a randomly chosen element would be incorrectly labeled (if group labels were assigned randomly using the distribution of labels in the training set). It is equal to: $\sup[p * (1 - p)]$.