João Reis, 98474

literária

Resumo - Este documento tem como objetivo documentar a implementação e a análise realizada sobre três abordagens diferentes de contagem: Contagem exata, Contagem com probabilidade decrescente e Lossy-Count. Ao longo deste documento é explicado o raciocínio de implementação destes algoritmos. No final é realizada uma análise e comparação dos resultados obtidos.

Abstract - This paper aims to document the implementation and analysis performed on three different counting approaches: Exact-Count, Counting with decreasing probability, and Lossy-Count. Throughout this paper the reasoning for implementing these algorithms is explained. At the end an analysis and comparison of the results obtained is performed.

*Key words* - Python, Exact Count, Decreasing Probability Counter  $(\frac{1}{2^k})$ , Lossy-Count, Most Frequent Letters, Erro Absoluto, Erro Relativo, Idioma

#### I. Introdução

Como terceiro trabalho da unidade curricular Algoritmos Avançados é proposto a resolução de um pequeno problema envolvendo ficheiros de texto, utilizando três abordagens diferentes.

Para testar estas abordagens é utilizado ficheiros de texto da famosa obra literária "*Hamlet*", escrita por William Shakespeare, obtidos através do Projeto Gutenberg.

As três abordagens implementadas são: contadores exatos; contadores aproximados, mais propriamente, um contador de probabilidade decrescente  $(\frac{1}{2^k})$ ; e, por fim, o algoritmo Lossy-Count.

Para executar o código, basta executar um dos comandos indicados abaixo.

```
$ python3 main.py
$ python3 main.py -t <threshold: float> -r
<repetitions: int>
```

As opções -t e -r são opcionais e servem para definir um threshold e o número de repetições, respectivamente.

Este relatório é acompanhado com todos os ficheiros python produzidos para implementar estas abordagens.

#### II. Objetivo

O objetivo do programa é identificar as letras mais frequentes em ficheiros de texto utilizando diferentes métodos e comparar a qualidade das estimativas desses métodos com o número exato.

Os métodos a ser implementados, como já foi referido anteriormente, são: contadores exatos; contadores aproximados, mais propriamente, um contador de probabilidade decrescente  $(\frac{1}{2^k})$ ; e o algoritmo

Lossy-Count.
Os ficheiros de texto utilizados são traduções da obra literária "*Hamlet*" nos seguintes idiomas: Português, Inglês e Alemão, para que as letras mais frequentes não fossem semelhantes nos ficheiros de texto da mesma obra

Após a implementação e da análise dos resultados de cada método, foi realizada uma análise em termos da eficiência computacional e das limitações para cada abordagem.

# III. PROCESSAMENTO DOS DADOS

Antes de implementar os métodos, é realizado um processamento dos ficheiros de texto. Primeiramente, o cabeçalho e o rodapé do *Project Gutenberg* são removidos, para ser considerada somente a obra literária.

De seguida, as stop words são removidas do texto, tal como qualquer tipo de pontuação. No final todas as letras passam para a sua forma maiúscula. A função read\_and\_process lê as obras literarias, aplica o processamento anteriormente explicado, e retorna uma única string com todas as letras que restaram do processamento.

#### IV. ABORDAGEM 1: CONTAGEM EXATA

Esta abordagem é bastante simples, apenas faz uma contagem exata do número de letras. Para tal, a função *exact\_counters*, que recebe a string com todas as letras como argumento, conta a frequência de cada letra aplicando a classe *Counter* da livraria *collections*.

1

```
def sort_dict(dic):
    """ Function that sort the dicionary by value and then, by keys """
    return dict(sorted(dic.items(), key = lambda x: (x[1], x[0]), reverse=True))

def exact_counters(content):
    """ Function that returns the exact frequency of each letter"""
    exact_freq = dict(Counter(content))
    return sort_dict(exact_freq)
```

Fig. 1 - Código em Python para aplicar a contagem exata

### V. ABORDAGEM 2: CONTAGEM APROXIMADA

O método de contagem aproximada aplicado é **contador de probabilidade decrescente**  $(\frac{1}{2^k})$ . Este algoritmo funciona da seguinte maneira: a contagem de uma letra é incrementada caso o número gerado aleatoriamente seja inferior ou igual à probabilidade calculada. Esta probabilidade segue a seguinte fórmula:  $\frac{1}{2^k}$ , onde k é valor da contagem dessa mesma letra. Se esse valor aleatório for maior que a probabilidade calculada, o valor da contagem dessa letra mantém-se.

Portanto, à medida que o valor de contagem aumenta, menor é a probabilidade de esse valor ser incrementado.

```
# Decreasing probability counter (1 / 2^k)
for letter in content:
    counter = 0

    if letter in estimate_freq.keys():
        counter = estimate_freq[letter]

    increment = decreasing_probability_counter( counter )

    counter += increment
    estimate_freq[letter] = counter
```

Fig. 2 - Código em Python para aplicar o contador de probabilidade decrescente (I)

Fig. 3 - Código em Python para aplicar o contador de probabilidade decrescente (II)

Este algoritmo é executado algumas vezes. Por defeito, o número de repetições é 10, mas o utilizador pode alterar este valor pelo comando de execução. Para cada repetição, é calculado o erro relativo da contagem de todas as letras. O resultado dessas repetições que obter menor erro relativo será considerado para as comparações com os outros métodos.

#### VI. ABORDAGEM 3: LOSSY-COUNT

O método de contagem aproximada aplicado é **Lossy-Count**. O algoritmo Lossy-Count é um algoritmo de contagem distribuída que permite aos usuários contar o

número de ocorrências de letras em grandes conjuntos de dados de forma rápida e precisa. É necessário definir um threshold

O primeiro passo para implementá-lo é dividir o conjunto total de letras em  $\frac{1}{thresold}$  partes. De seguida, incrementa-se a contagem de frequência de cada letra de cada parte. Após a contagem de um parte terminar, diminui-se todos os contadores uma (1) unidade. E volta-se a repetir todo este processo para todas as partes.

```
# Iterate through the content
for letter in content:
    # Increment the count of the letter
    if letter in estimate_freq:
        estimate_freq[letter] = 1
    else:
        estimate_freq[letter] = 1

# Decrease the error bound by threshold
error -= THRESHOLD

# If the error bound becomes negative, divide all counts by 2 and reset the error bound to 1
if error < 0:
    estimate_freq = { letter : estimate_freq[letter] - 1 for letter in estimate_freq.keys() }
    error = 1</pre>
```

Fig. 4 - Código em Python para aplicar o Lossy-Count

Analisando a figura anterior, a variável *error* é inicializada a zero (0). Para cada letra, incrementa-se a sua contagem, e decrementa-se a variável error pelo threshold definido.

Quando esse valor for negativo, significa que acabamos de analisar uma parte do conjunto todo, e decrementa-se todas as contagens uma (1) unidade.

Este processo é repetido até serem contabilizadas todas as letras.

Este algoritmo é aplicado para diferentes valores de k (3, 5 e 10), sendo k o número de letras mais frequentes a serem apresentadas.

### VII. RESULTADOS

Neste tópico, os resultados serão apresentados por idioma analisado. O número de repetições usado é 100, e o valor do threshold é 0,0001.

### A. Português

A próxima tabela indica as 10 letras mais frequentes em português, para cada um dos métodos implementados.

|   | tagem<br>xata |   | Contagem com<br>Probabilidade<br>Decrescente |    |   | y-Count<br>ld = 0,0001) |
|---|---------------|---|----------------------------------------------|----|---|-------------------------|
| A | 10904         |   | I                                            | 14 | A | 10896                   |
| Е | 10067         |   | A                                            | 14 | Е | 10059                   |
| О | 8035          |   | T                                            | 13 | О | 8027                    |
| S | 6484          |   | О                                            | 13 | S | 6476                    |
| R | 5785          | · | М                                            | 13 | R | 5777                    |
| I | 5063          |   | Е                                            | 13 | I | 5055                    |

| М | 4521 | С | 13 | M | 4513 |
|---|------|---|----|---|------|
| N | 4244 | R | 12 | N | 4236 |
| Т | 4029 | N | 12 | Т | 4021 |
| U | 3378 | U | 11 | U | 3370 |

Fig. 5 - Tabela com as 10 letras mais frequentes em português para cada método

Por análise da tabela, verifica-se que o algoritmo Lossy-Count tem uma maior precisão no que toca à ordem relativa das letras mais frequentes, enquanto que o algoritmo de contagem com probabilidade decrescente, apesar da contagem ser bastante desigual à contagem exata, o que é normal devido à estratégia de implementação, e apesar de a ordem relativa não estar correta, contém todas as letras que estão no top 10 da contagem exata, exceto a letra 'S'.

Em relação aos erros absolutos e relativos aos dois algoritmos, os resultados são os seguintes:

| Contagem com probabilidade decrescente |        |  |  |  |  |  |
|----------------------------------------|--------|--|--|--|--|--|
| Menor Erro Absoluto                    | 0      |  |  |  |  |  |
| Erro Absoluto Médio                    | 3077.1 |  |  |  |  |  |
| Maior Erro Absoluto                    | 10890  |  |  |  |  |  |
| Menor Erro Relativo                    | 0      |  |  |  |  |  |
| Erro Relativo Médio                    | 0.91   |  |  |  |  |  |
| Maior Erro Relativo                    | 0.99   |  |  |  |  |  |

Fig. 6 - Tabela com informações sobre os erros relativos e absolutos



Fig. 7 - Erro absoluto para cada letra, na contagem com probabilidade decrescente



Fig. 8 - Erro relativo para cada letra, na contagem com probabilidade decrescente

| Lossy-Count (threshold = 0,0001) |         |  |  |  |  |  |
|----------------------------------|---------|--|--|--|--|--|
| Menor Erro Absoluto              | 8       |  |  |  |  |  |
| Erro Absoluto Médio              | 8.0     |  |  |  |  |  |
| Maior Erro Absoluto              | 8       |  |  |  |  |  |
| Menor Erro Relativo              | 0.00073 |  |  |  |  |  |
| Erro Relativo Médio              | 0.0015  |  |  |  |  |  |
| Maior Erro Relativo              | 0.0024  |  |  |  |  |  |

Fig. 9 - Tabela com informações sobre os erros relativos e absolutos



Fig. 10 - Erro absoluto para para as top 10 letras, no Lossy-Count



Fig. 11 - Erro relativo para cada letra, no Lossy-Count

### B. Alemão

A próxima tabela indica as 10 letras mais frequentes em alemão, para cada um dos métodos implementados.

| Contagem<br>Exata |       | Contagem com<br>Probabilidade<br>Decrescente |    | <b>Lossy-Count</b> (threshold = 0,0001) |       |
|-------------------|-------|----------------------------------------------|----|-----------------------------------------|-------|
| Е                 | 18103 | I                                            | 14 | Е                                       | 18093 |
| N                 | 11727 | Е                                            | 14 | N                                       | 11717 |
| I                 | 8961  | A                                            | 14 | I                                       | 8951  |
| S                 | 7540  | U                                            | 13 | S                                       | 7530  |
| R                 | 6994  | Т                                            | 13 | R                                       | 6984  |
| Н                 | 6508  | S                                            | 13 | Н                                       | 6498  |
| Т                 | 5913  | R                                            | 13 | T                                       | 5903  |
| U                 | 5386  | N                                            | 13 | U                                       | 5376  |
| A                 | 5257  | Н                                            | 13 | A                                       | 5247  |
| D                 | 5002  | D                                            | 13 | D                                       | 4992  |

Fig. 12 - Tabela com as 10 letras mais frequentes em alemão para cada método

Por análise da tabela, verifica-se que o algoritmo Lossy-Count tem uma maior precisão no que toca à ordem relativa das letras mais frequentes, enquanto que o algoritmo de contagem com probabilidade decrescente, apesar da contagem ser bastante desigual à contagem exata, o que é normal devido à estratégia de implementação, e apesar de a ordem relativa não estar correta, contém todas as letras que estão no top 10 da contagem exata.

Em relação aos erros absolutos e relativos aos dois algoritmos, os resultados são os seguintes:

| Contagem com probabilidade decrescente |                  |  |  |  |  |
|----------------------------------------|------------------|--|--|--|--|
| Menor Erro Absoluto                    | 4                |  |  |  |  |
| Erro Absoluto Médio                    | 4130.2           |  |  |  |  |
| Maior Erro Absoluto                    | 18089            |  |  |  |  |
| Menor Erro Relativo                    | 0.5              |  |  |  |  |
| Erro Relativo Médio                    | 0.96             |  |  |  |  |
| Maior Erro Relativo                    | 0.99 (aprox., 1) |  |  |  |  |

Fig. 13 - Tabela com informações sobre os erros relativos e absolutos



Fig. 14 - Erro absoluto para cada letra, na contagem com probabilidade decrescente



Fig. 15 - Erro relativo para cada letra, na contagem com probabilidade decrescente

| <b>Lossy-Count</b> (threshold = 0,0001) |         |  |  |  |  |  |
|-----------------------------------------|---------|--|--|--|--|--|
| Menor Erro Absoluto                     | 10      |  |  |  |  |  |
| Erro Absoluto Médio                     | 10.0    |  |  |  |  |  |
| Maior Erro Absoluto                     | 10      |  |  |  |  |  |
| Menor Erro Relativo                     | 0.00055 |  |  |  |  |  |

| Erro Relativo Médio | 0.0014 |
|---------------------|--------|
| Maior Erro Relativo | 0.0020 |

Fig. 16 - Tabela com informações sobre os erros relativos e absolutos



Fig. 17 - Erro absoluto para para as top 10 letras, no Lossy-Count



Fig. 18 - Erro relativo para cada letra, no Lossy-Count

# C. Inglês

A próxima tabela indica as 10 letras mais frequentes em inglês, para cada um dos métodos implementados.

|   | Contagem<br>Exata |  | Contagem com<br>Probabilidade<br>Decrescente |    |   | y-Count<br>ld = 0,0001) |
|---|-------------------|--|----------------------------------------------|----|---|-------------------------|
| Е | 4661              |  | Е                                            | 13 | Е | 4658                    |
| Т | 2703              |  | Т                                            | 12 | T | 2700                    |
| S | 2699              |  | R                                            | 11 | S | 2696                    |
| R | 2663              |  | N                                            | 11 | R | 2660                    |
| A | 2651              |  | I                                            | 11 | A | 2648                    |
| N | 2313              |  | Н                                            | 11 | N | 2310                    |
| О | 2186              |  | C                                            | 11 | О | 2183                    |
| I | 2102              |  | A                                            | 11 | I | 2099                    |
| L | 1742              |  | U                                            | 10 | L | 1739                    |
| D | 1453              |  | S                                            | 10 | D | 1450                    |

Fig. 19 - Tabela com as 10 letras mais frequentes em inglês para cada método

Por análise da tabela, verifica-se novamente o que foi concluído da análise das tabelas anteriores.

Em relação aos erros absolutos e relativos aos dois algoritmos, os resultados são os seguintes:

| Contagem com probabilidade decrescente |                  |  |  |  |  |
|----------------------------------------|------------------|--|--|--|--|
| Menor Erro Absoluto                    | 40               |  |  |  |  |
| Erro Absoluto Médio                    | 1335.0           |  |  |  |  |
| Maior Erro Absoluto                    | 4648             |  |  |  |  |
| Menor Erro Relativo                    | 0.85             |  |  |  |  |
| Erro Relativo Médio                    | 0.97             |  |  |  |  |
| Maior Erro Relativo                    | 0.99 (aprox., 1) |  |  |  |  |

Fig. 13 - Tabela com informações sobre os erros relativos e absolutos



Fig. 14 - Erro absoluto para cada letra, na contagem com probabilidade decrescente



Fig. 15 - Erro relativo para cada letra, na contagem com probabilidade decrescente

| Lossy-Count (threshold = 0,0001) |         |  |  |  |  |  |
|----------------------------------|---------|--|--|--|--|--|
| Menor Erro Absoluto              | 3       |  |  |  |  |  |
| Erro Absoluto Médio              | 3.0     |  |  |  |  |  |
| Maior Erro Absoluto              | 3       |  |  |  |  |  |
| Menor Erro Relativo              | 0.00064 |  |  |  |  |  |
| Erro Relativo Médio              | 0.0013  |  |  |  |  |  |
| Maior Erro Relativo              | 0.0021  |  |  |  |  |  |

Fig. 16 - Tabela com informações sobre os erros relativos e absolutos



Fig. 17 - Erro absoluto para as top 10 letras, no Lossy-Count



Fig. 18 - Erro relativo para cada letra, no Lossy-Count

### VII. CONCLUSÃO

Em suma, após uma análise geral dos resultados, concluímos que, em termos de erros relativos e absolutos, o algoritmo Lossy-Count é significantemente mais preciso que o algoritmo de contagem com probabilidade decrescente.

Contudo, apesar da precisão deste algoritmo não ser tão alta, para um número elevado de eventos, o espaço ocupado é muito menor que o Lossy-Count.

## VII. Referências

- [1] Approximate Frequency Counts over Data Streams https://www.vldb.org/conf/2002/S10P03.pdf
- [2] Morris Algorithm for Counting https://iq.opengenus.org/morris-algorithm-for-counting/
- [3] Frequency Counting Algorithms over Data Streams | Michael Vogiatzis
   https://micvog.com/2015/07/18/frequency-counting-algorithms-over-data-streams/
- [4] List of common stop words in various languages. https://github.com/Alir3z4/stop-words