Discussion Section 3 (CS145)

2015-10-16

Week 03

Outline

- Homework 2 will be posted on Monday (Oct 19)
 - Due Oct 26 at noon (beginning of the class)
- Review:
 - Clustering Algorithms
 - Hierarchical Clustering
 - B+Tree & BIRCH
 - DBSCAN

Why clustering

- Discover some hidden interesting patterns.
 - Example:
 - (1) abbreviation: UCLA, University of California Los Angeles
 - (2) cognates (cross-language): Vienna theater, Vienna theatre
 - (3) similar expression: Florida fine cars, Florida fine auto
 - (4) Arabic numerals vs English words: 24 hours, twenty-four hours

What is a good clustering

- (1) Keep similar objects together and dissimilar objects apart.
- (2) In other words, high *intra-class* similarity and low *inter-class* similarity.

- Goal: Group data objects into a tree of clusters
- Approaches:
 - Agglomerative
 - A "bottom up" approach
 - Each object starts as its own cluster
 - A pair of clusters are merged at each iteration until all objects form a single big cluster
 - Divisive
 - A "top down" approach
 - All objects start as one big cluster
 - Clusters are split at each iteration until each cluster contains only one object

Agglomerative Approach

- Step 1: Calculate the distance matrix
- Step 2: Join two members with the closest distance and recalculate the distance matrix
- Step 3: repeat step 2 until all members form a single cluster

	Feature X	Feature Y	Feature Z
Α	X _A	Y _A	Z _A
В	X _B	Y _B	Z _B
С	X _C	Y _C	Z _C
D	X _D	Y _D	Z _D
Ε	X _E	Y _E	Z _E

Low similarity (large distance)

- Agglomerative Approach
 - Step 1: Calculate the distance matrix
 - Step 2: Join two members with the closest distance and recalculate the distance matrix
 - Step 3: repeat step 2 until all members form a single cluster

Low similarity (large distance)

- Agglomerative Approach
 - Step 1: Calculate the distance matrix
 - Step 2: Join two members with the closest distance and recalculate the distance matrix
 - Step 3: repeat step 2 until all members form a single cluster

Distance Measure Between Clusters

1. Minimum Distance (Single Linkage)

3. Mean Distance

2. Maximum Distance (Complete Linkage)

4. Average Distance

(average of all pairs)

Agglomerative Approach

(large distance)

- Step 1: Calculate the distance matrix
- Step 2: Join two members with the closest distance and recalculate the distance matrix
- Step 3: repeat step 2 until all members form a single cluster

- Agglomerative Approach
 - Step 1: Calculate the distance matrix
 - Step 2: Join two members with the closest distance and recalculate the distance matrix
 - Step 3: repeat step 2 until all members form a single cluster

- Challenges
 - Hard to choose merge/split points
 - Never undo merging/splitting
 - Do not scale well
 - Data may not fit in memory

- Balanced Iterative Reducing and Clustering Using Hierarchies
- Why BIRCH?
 - Overcome the bottleneck of datasets not being able to fit in main memory
- Organize the clustering features in CF tree, which is structurally similar to B+ tree

- A popular index structure in Relational Database Management System
- Advantage
 - Suitable for dynamic updates
 - Balanced
 - Minimum space usage guarantee (50%)

- B+ Tree is Balanced
 - The depth is the same for each path from the root to a leaf
 - Every node except the root must be at least half full
 - In this case, each intermediate node and leaf node must have 2 pointers

B+ Tree: Insertion

Case 1: the node has empty space

B+ Tree: Insertion

Case 2: the node is full

- More about B+ Tree
 - Visualization

Toolhttps://www.cs.usfca.edu/~galles/visualizatio
n/BPlusTree.html

- Clustering Features: A summary of statistics of the cluster
 - -CF = (N, LS, SS)
 - N Number of data points
 - LS Linear sum of N points $\sum_{i=1}^{N} X_i$
 - SS Square sum of N points $\sum_{i=1}^{N} X_i^2$
 - A CF entry has sufficient information to calculate the centroid, radius, diameter, and other distance measures

CF Tree

- Parameters
 - B = branching factor (max children in a non-leaf node)
 - L = number of entries in leaf node
 - T = threshold for diameter or radius of the cluster in a leaf
- CF entry in parent = sum of CF entries of a child of that entry

Building the CF tree

Branching factor = 2 Number of entries in leaf node = 3 Cluster tightness threshold = T

Leaf node with two entries

Building the CF tree

Data Objects

1

2

3

4

5

6

Branching factor = 2

Number of entries in leaf node = 3

Cluster tightness threshold = T

- Object 3 is closer to entry 1
- However, adding object 3 exceed Cluster 1 threshold

Building the CF tree

Data Objects 1 2 3 4 5 6

Branching factor = 2 Number of entries in leaf node = 3 Cluster Tightness Threshold = T

entry 1 entry 2 entry 3

Cluster1 Cluster3 Cluster2

Leaf node with three entries

Building the CF tree

Data Objects

1

2

3

4

5

6

Branching factor = 2 Number of entries in leaf node = 3 Cluster tightness threshold = T

- Object 4 is closer to entry 3
- Cluster 2 remains compact after adding object 4

Building the CF tree

Data Objects

1

2

3

4

5

6

Branching factor = 2 Number of entries in leaf node = 3 Cluster Tightness Threshold = T

Add to cluster 2; Update CF entry

Building the CF tree

Data Objects

1

2

3

4

5

6

Branching factor = 2 Number of entries in leaf node = 3 Cluster Tightness Threshold = T

- Object 5 is closer to entry 2
- However, adding object 5 exceed Cluster 3 threshold
- Exceeds the limit for number of entries in leaf node

Building the CF tree

Split the leaf node; Propagate CF entries one level up

Building the CF tree

- Object 6 is closer to entry 1.2
- Cluster 3 remains compact

Building the CF tree

Add to cluster 3, Update CF entry

Density-based clustering

• Features:

- Discover clusters of arbitrary shape.
- Handle noise.
- One scan.

DBSCAN

- Inputs:
 - (1) Radius: 1 cm
 - (2) Minimum # of neighbors: 3

- Identify Three kinds of objects:
 - (1) Core object (red)
 - (2) Outlier (blue)
 - (3) Border object (yellow)

Basic Concepts: ε-neighborhood & core objects

 The neighborhood within a radius ε of a given object is called the ε-neighborhood of the object

- If the ε-neighborhood of an object contains at least a minimum number, MinPts, of objects then the object is called a core object
 - → **Example:** $\varepsilon = 1$ cm, MinPts=3 **m** and **p** are core objects because their ε -neighborhoods contain at least 3 points

Directly density-Reachable Objects

An object **p** is directly density-reachable from object **q** if **p** is within the ε-neighborhood of **q** and **q** is a core object

→ Example:

q is directly density-reachable from m
 m is directly density-reachable from p
 and vice versa

Density-Reachable Objects

An object **p** is **density-reachable** from object **q** with respect to ε and **MinPts** if there is a chain of objects **p**₁,...**p**_n where **p**₁=**q** and **p**_n=**p** such that **p**_{i+1} is directly reachable from **p**_i with respect to ε and MinPts

→ Example:

q is density-reachable from **p** because **q** is directly density-reachable from **m** and **m** is directly density-reachable from **p**

p is not density-reachable from **q** because **q** is not a core object

Density-Connectivity

An object p is density-connected to object q with respect to ε and MinPts if there is an object O such as both p and q are density reachable from O with respect to ε and MinPts

→ Example:

p,q and m are all density connected

DBSCAN algorithm

- (1) Arbitrary select a point p.
- (2) Retrieve all points density-reachable from p.
- (3) If p is a core point, a cluster is formed.
- (4) If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- (5) Continue the process until all the points have been processed.

DBSCAN algorithm

DBSCAN algorithm

