Ejercicio 6

Equipo

2024-03-26

6. Uso del modelo de regresión lineal simple.

A continuación se presentan los datos de los pesos de los huevos de 11 nidadas de pingüinos Macaroni, cada nidada tiene dos huevos, uno más pequeño (x) que el otro (y).

X	79	93	100	105	101	96	96	109	70	71	87
У	123	138	154	161	155	149	152	160	117	123	138

I. Ajuste del modelo de regresión.

Ajustaremos una recta de regresión para estimar el peso promedio del huevo mayor (y) dado el peso del huevo menor (x).

En el siguiente Cuadro podemos observar que el p-valor asociado a la prueba F es de menor a 0.05, por lo que se rechaza la hipótesis nula de que los coeficientes asociados a las variables explicativas son cero. En este caso, como hay una solo variable explicativa, esta prueba coincide con la prueba t - student individual para la $\beta_1 = 1.1693983$, que también rechaza la hipótesis nula de que $\beta_1 = 0$.

Cuadro 2:					
	Dependent variable:				
	У				
X	1.169***				
	s.e.(0.088)				
	t-value: 13.225				
	$\Pr(> t)$: 3.35e-07				
Constant	35.674***				
	s.e.(8.171)				
	t-value: 4.366				
	$\Pr(> t)$: 0.00181				
Observations	11				
\mathbb{R}^2	0.951				
Adjusted \mathbb{R}^2	0.946				
Residual Std. Error	3.702 (df = 9)				
F Statistic	174.895^{***} (df = 1; 9); p-value: $3.351e-07$				
Note:	*p<0.1; **p<0.05; ***p<0.01				