Image Processing and Computer Graphics

Image Processing

Class 5
Variational Methods

Discrete vs. continuous energies

• So far we have only considered discrete energy minimization problems $u^* = \mathrm{argmin}_u \, E(u)$ with a <u>vector</u> $u \in \mathbb{R}^N$

• Alternative approach: continuous formulation $u^*(\mathbf{x}) = \operatorname{argmin}_{u(\mathbf{x})} E(u(\mathbf{x}))$ with a <u>function</u> $u(\mathbf{x}) : \Omega \to \mathbb{R}$

- In this case, the energy function becomes an energy functional
- Optimization is based on the calculus of variation (Variationsrechnung)
- Yields necessary condition(s) for a minimum: Euler-Lagrange equations
- Discretization postponed to these equations

Discrete or continuous energies?

Advantage of continuous energies

 It is not ensured that a discrete energy is consistent with the continuous one.
 Typical example: measuring line lengths.

Disadvantage

 Gradients in direction of a function have to be computed.

However, this is not as difficult as it seems...

Optimum contours for a discrete energy

Optimum contours for a continous energy

Author: Maria Klodt

Consistency

- Discretization of continuous quantities can lead to artifacts if done wrong
- For instance, we want the solution of a problem to be independent of the rotation of the grid (rotation invariance)
- A discretization is called consistent if it converges to the continuous model with finer grid sizes
- Example: discrete approximation of the gradient magnitude
 - Inconsistent discretization

$$|\nabla u| \approx |u_{i+1,j} - u_{i-1,j}| + |u_{i,j+1} - u_{i,j-1}|$$

There is an error independent of the grid size

Consistent discretization

$$|\nabla u| \approx \sqrt{(u_{i+1,j} - u_{i-1,j})^2 + (u_{i,j+1} - u_{i,j-1})^2}$$

All errors depend on the grid size

Calculus of variation

- In the discrete setting we obtained a necessary condition for a minimum by computing the gradient of the function E(u) with respect to the unknown vector $u \in \mathbb{R}^N$.
- This gradient $\frac{\partial E(u)}{\partial u}$ was computed by the tool of partial derivatives $\frac{\partial E(u)}{\partial u_i}$
- How do we get the gradient of a <u>functional</u> $\frac{\partial E(u(\mathbf{x}))}{\partial u(\mathbf{x})}$ with respect to a function $u(\mathbf{x})$?
- The answer is the calculus of variation and the Gâteaux derivative.
- It has been invented by the French mathematician René Gâteaux (who died in World War I) and has been published posthumously 1919.
- Similar ideas date back to the works of Leonhard Euler and Joseph-Louis Lagrange in the 18th century. The necessary conditions are hence called Euler-Lagrange equations.

Euler and Lagrange

Leonhard Euler (1707-1783)

- Born in Basel, Switzerland
- One of the most important mathematicians in history (Euler angle, Euler number, Euler formula,...)
- 13 children
- Published almost 900 papers and books, most of them in the last 20 years of his life
- Became totally blind in 1771

Joseph-Louis Lagrange (1736-1813)

- Born in Turin, Italy
- One of 11 children, but only two of them lived to adulthood
- Autodidact
- Became professor in Turin at the age of 19
- Later he worked in Berlin and Paris
- Worked together with Euler on the calculus of variation

Gâteaux derivative

- A functional maps each element u of a vector space (e.g. a function) to a scalar E(u).
- The Gâteaux derivative generalizes the directional derivative to infinitedimensional vector spaces

$$\left. \frac{\partial E(u)}{\partial u} \right|_h = \lim_{\epsilon \to 0} \frac{E(u + \epsilon h) - E(u)}{\epsilon} = \left. \frac{dE(u + \epsilon h)}{d\epsilon} \right|_{\epsilon = 0}$$

This can be interpreted as the projection of the gradient to the direction h

$$\left. \frac{\partial E(u)}{\partial u} \right|_h = \left\langle \frac{dE(u)}{du}, h \right\rangle = \int \frac{dE(u)}{du}(\mathbf{x}) h(\mathbf{x}) d\mathbf{x}$$

• This gradient $\frac{dE(u)}{du}(\mathbf{x})$ is needed to minimize E(u)

Denoising example

A continuous denoising energy is defined by the functional

$$E(u(\mathbf{x})) = \int_{\Omega} (u(\mathbf{x}) - I(\mathbf{x}))^2 + \alpha |\nabla u(\mathbf{x})|^2 d\mathbf{x}$$

- Rather than on a vector, the optimization problem is on a function
- Short writing: usually one does not explicitly indicate the dependency of the functions on x

$$E(u) = \int_{\Omega} (u - I)^2 + \alpha |\nabla u|^2 dx$$

Necessary condition for a minimum:

$$\left. \frac{\partial E(u)}{\partial u} \right|_{h} = 0 \quad \forall h$$

Deriving the Euler-Lagrange equation

Compute the Gâteaux derivative and simplify

$$\frac{\partial E(u)}{\partial u}\Big|_{h} = \lim_{\epsilon \to 0} \frac{E(u + \epsilon h) - E(u)}{\epsilon} = \frac{dE(u + \epsilon h)}{d\epsilon}\Big|_{\epsilon = 0}$$

$$= \frac{d}{d\epsilon} \int_{\Omega} (u + \epsilon h - I)^{2} + \alpha |\nabla(u + \epsilon h)|^{2} d\mathbf{x}\Big|_{\epsilon = 0}$$

$$= \frac{d}{d\epsilon} \int_{\Omega} (u + \epsilon h - I)^{2} + \alpha \left(\frac{d}{dx}(u + \epsilon h)\right)^{2} + \alpha \left(\frac{d}{dy}(u + \epsilon h)\right)^{2} d\mathbf{x}\Big|_{\epsilon = 0}$$

$$= \int_{\Omega} 2(u + \epsilon h - I)h + 2\alpha \left(\frac{d}{dx}(u + \epsilon h)\frac{dh}{dx} + \frac{d}{dy}(u + \epsilon h)\frac{dh}{dy}\right) d\mathbf{x}\Big|_{\epsilon = 0}$$

$$= \int_{\Omega} 2(u - I)h + 2\alpha (u_{x}h_{x} + u_{y}h_{y}) d\mathbf{x}$$

• Partial integration to turn h_x and h_y into h

$$\frac{\partial E(u)}{\partial u}\bigg|_{h} = \int_{\Omega} 2(u-I)h - 2\alpha(u_{xx}h + u_{yy}h) d\mathbf{x} + (u_{x}h)_{\partial\Omega_{x}} + (u_{y}h)_{\partial\Omega_{y}}$$
$$= \int_{\Omega} (2(u-I) - 2\alpha(u_{xx} + u_{yy}))h d\mathbf{x} + ((\mathbf{n}^{\top}\nabla u)h)_{\partial\Omega}$$

where $\partial\Omega$ denotes the boundary and ${\bf n}$ the boundary normal.

Gradient and boundary conditions

In a minimum, the directional derivative must be 0 for all directions

$$\frac{\partial E(u)}{\partial u}\bigg|_{h} = \int_{\Omega} (2(u-I) - 2\alpha(u_{xx} + u_{yy}))h \, d\mathbf{x} + ((\mathbf{n}^{\top} \nabla u)h)_{\partial\Omega} = 0$$

Yields two conditions:

The gradient must be zero → Euler-Lagrange equation:

$$\frac{dE(u)}{du} = 2(u - I) - 2\alpha(u_{xx} + u_{yy}) = 0$$

2. Boundary conditions:

$$(\mathbf{n}^{\top}\nabla u)_{\partial\Omega} = 0$$

These boundary conditions are called **natural boundary conditions** as they naturally emanate from the Gâteaux derivative. In the special case here, they coincide with **Neumann boundary conditions**.

Implementation

Discretization of

$$\frac{dE(u)}{du} = (u - I) - \alpha(u_{xx} + u_{yy}) = 0$$

leads to a (in this case) linear system of equations

$$\frac{\partial E}{\partial u_{i,j}} = (u_{i,j} - I_{i,j}) - \alpha(u_{i-1,j} + u_{i,j-1} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1}) = 0$$

- This is the same linear system one has to solve for minimizing the discrete energy from last class.
- Same linear solvers can be applied
- The two different discretization stages do not always lead to the same algorithm

Smoothing results – do they remind you of some other method?

Tikhonov regularization vs. Gaussian smoothing

Tikhonov regularization $\alpha = 20$

Gaussian smoothing $\sigma^2 = 40$

Discontinuity preserving regularization

- A quadratic regularizer leads to blurred edges
- Why? Well, we said the result should be smooth everywhere, right?
- Not true for edges
 - → we must allow for some exceptions (so-called **outliers**)
- This can be done by using non-quadratic regularizers
- Two ways to understand this (leading to the same solution)
 - 1. Nonlinear diffusion methods (Computer Vision course)
 - 2. Statistical interpretation of regularization

Statistical interpretation – the Bayesian approach

- Energy minimization can also emerge from a probabilistic approach taking into account likelihoods and prior probablities
- It builds upon the Bayes formula:

a posteriori probability

marginal probability

evidence/likelihood

a priori probability

Find solution u that maximizes the posterior probability

$$p(u|I) \rightarrow \max$$

- → maximum a-posteriori (MAP) approach
- Marginal does not depend on u → can be ignored in the maximization
 p(u|I) ∝ p(I|u)p(u)

MAP estimation

$$p(u|I) \propto p(I|u)p(u) \rightarrow \max$$

Noise model for the data: i.i.d. Gaussian noise
 (i.i.d. = independently and identically distributed)

$$p(I|u) \propto \prod_{\mathbf{x} \in \Omega} \exp\left(-(u(\mathbf{x}) - I(\mathbf{x}))^2\right)$$

• A-priori model: gradient is likely to be small (smoothness) \rightarrow i.i.d. zero mean Gaussian noise with variance $1/2\alpha$ on the gradient

$$p(u) \propto \prod_{\mathbf{x} \in \Omega} \exp\left(-\frac{|\nabla u(\mathbf{x})|^2}{1/\alpha}\right)$$

 Turn maximization into minimization of the negative logarithm (which is monotonous) → energy minimization problem

$$-\log p(I|u) - \log p(u) = \int_{\Omega} (u-I)^2 + \alpha |\nabla u|^2 d\mathbf{x} \rightarrow \min$$

Statistical interpretation

- Other noise models lead to different penalizers in the energy functional
- Expecting outliers in the smoothness assumption, the Gaussian noise model should be replaced, e.g., by a Laplace distribution

$$p(u) \propto \prod_{\mathbf{x} \in \Omega} \exp\left(-\frac{|\nabla u(\mathbf{x})|}{1/\alpha}\right)$$

 Leads to an energy functional that preserves image edges

$$E(u) = \int_{\Omega} (u - I)^2 + \alpha |\nabla u| d\mathbf{x}$$

More general:

$$E(u) = \int_{\Omega} (u - I)^2 + \alpha \Psi(|\nabla u|^2) d\mathbf{x}$$

• (Quadratic) Tikhonov regularizer is another special case: $\Psi(s^2) = s^2$

Laplace distribution

Corresponding Euler-Lagrange equation (verify at home):

$$\operatorname{div}\left(\Psi'\left(|\nabla u|^2\right)\nabla u\right) - \frac{u-I}{\alpha} = 0$$

where $\Psi'(s^2)$ is the derivative of $\Psi(s^2)$ with respect to its argument.

So we get

$$\Psi(s^2) = \sqrt{s^2} \quad \Rightarrow \quad \Psi'(s^2) = \frac{1}{2\sqrt{s^2}}$$

$$\operatorname{div}\left(\frac{\nabla u}{2|\nabla u|}\right) - \frac{u - I}{\alpha} = 0$$

Do you see the trouble?

Gradient descent

- The Euler-Lagrange equation is nonlinear in the unknowns
 → discretization leads to a nonlinear system of equations
- A general way to minimize discrete or continuous energies (even if the gradient is nonlinear) is by gradient descent
- Iterative technique: start with an initial value, iteratively move in direction of largest decrease in energy (negative gradient direction)

Converges to the next (with regard to the initialization) local minimum

Is the problem convex or non-convex?

Let's see....

- Initialize u⁰
- Introduce artificial time

$$\frac{\partial u}{\partial t} = -\frac{dE(u)}{du} = \operatorname{div}\left(\frac{\nabla u}{2|\nabla u|}\right) - \frac{u-I}{\alpha}$$

- Compute solution for $t \to \infty$
- Discrete steps of size τ forward in time

$$u^{k+1} = u^k + \tau \left(\operatorname{div} \left(\frac{\nabla u^k}{2|\nabla u^k|} \right) - \frac{u^k - I}{\alpha} \right)$$

- Will converge, if τ is "small enough" (more in course Computer Vision)
- Set $\Psi' = \frac{1}{\sqrt{|\nabla u|^2 + \epsilon^2}}$, $\epsilon = 0.01$, then $\tau \leq \frac{\epsilon}{4}$
 - → slow convergence

$$\operatorname{div}\left(\Psi'\left(|\nabla u|^2\right)\nabla u\right) - \frac{u-I}{\alpha} = 0$$

 Keep the nonlinear prefactor fixed (now we have again a linear system) and compute updates in an iterative manner

$$\operatorname{div}\left(\Psi'^k \nabla u^{k+1}\right) - \frac{u^{k+1} - I}{\alpha} = 0$$

- This scheme is called lagged diffusivity and has been proven to converge if the linear system in each step is solved exactly
- In practice, only few iterations of the iterative linear solver are computed before Ψ' is updated → increased efficiency
- Much faster than gradient descent

TV regularization vs. Tikhonov regularization

TV regularization $\alpha = 20$

Tikhonov regularization $\alpha = 20$

Summary

- The energy minimization framework also works with continuous models.
- Energy functions then turn into energy functionals where the unknowns are infinite-dimensional.
- Gradients of such functionals can be derived from the calculus of variation and the Gâteaux derivative. They lead to the Euler-Lagrange equation(s).
- The Bayes formula and the MAP approach lead to a statistical interpretation of many energy minimization problems
- We can design an edge-preserving smoothing method by choosing certain non-quadratic penalizers
- Optimization by gradient descent or the lagged diffusivity approach

Literature

- L. D. Elsgolc: Calculus of Variations, Pergamon Press, 1961. Reprint by Dover 2007.
- O. Scherzer, J. Weickert: Relations between regularization and diffusion filtering, Journal of Mathematical Imaging and Vision, 12:43-63, 2000.