Tabla de distribuciones

1. Distribuciones discretas univariadas

Distribución	Notación	$p_X(x)$	Soporte	Parámetros	$\mathbf{E}[X]$	$\mathbf{var}(X)$
Bernoulli	Ber(p)	$p^x(1-p)^{1-x}$	{0, 1}	$p \in (0,1)$	p	p(1-p)
Binomial	$\mathcal{B}(n,p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	$\llbracket 0,n rbracket$	$p \in (0,1), n \in \mathbb{N}$	np	np(1-p)
Geométrica	$\mathcal{G}(p)$	$(1-p)^{x-1}p$	N	$p \in (0,1)$	1/p	$(1-p)/p^2$
Binomial Negativa	$\mathcal{BN}(k,p)$	$\binom{x-1}{k-1}(1-p)^{x-k}p^k$	\mathbb{Z}_k	$p \in (0,1), k \in \mathbb{N}$	k/p	$k(1-p)/p^2$
Poisson	$\operatorname{Poi}(\mu)$	$(\mu^x e^{-\mu})/x!$	\mathbb{Z}_0	$\mu > 0$	μ	μ
Hipergeométrica	$\mathcal{H}(N,d,n)$	$\frac{\binom{d}{x}\binom{N-d}{n-x}}{\binom{N}{n}}$	$[\![m,M]\!]^\dagger$	$d \le N, n \le N \in \mathbb{N}$	$\frac{nd}{N}$	$\frac{nd(N-d)(N-n)}{N^2(N-1)}$

 $^{^{\}dagger}m = \max\{0, d + n - N\}, M = \min\{n, d\}$

Notación:

$$[\![a,b]\!]:=\{x\in\mathbb{Z}:a\leq x\leq b\}$$

$$\mathbb{Z}_k := \{ x \in \mathbb{Z} : x \ge k \}$$

1.1. Notas

- La función de probabilidad tabulada $p_X(x)$ vale para x en el soporte indicado, y vale 0 para cualquier otro valor de x.
- El número combinatorio (binomial coefficient) se define:

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} \qquad n \in \mathbb{N}, \ r = 0, \ 1 \dots n$$

y el combinatorio generalizado ($multinomial\ coefficient$):

$$\binom{n}{r_1 \, r_2 \dots r_k} = \frac{n!}{r_1! r_2! \dots r_k!} \qquad n \in \mathbb{N}, \ r_i = 0, 1 \dots n, \ \sum_{i=1}^k r_i = n.$$

• Algunos autores llaman Pascal a la distribución "binomial negativa".

2. Distribuciones continuas univariadas

Distribución	Notación	$f_X(x)$	Soporte	Parámetros	$\mathbf{E}[X]$	$\mathbf{var}(X)$
Uniforme	$\mathcal{U}[a,b]$	1/(b-a)	[a,b]	a < b	(a + b)/2	$(b-a)^2/12$
Exponencial	$\mathcal{E}(\lambda)$	$\lambda e^{-\lambda x}$	$[0,+\infty)$	$\lambda > 0$	$1/\lambda$	$1/\lambda^2$
Gamma	$\Gamma(u,\lambda)$	$\frac{\lambda^{\nu}}{\Gamma(\nu)} x^{\nu-1} e^{-\lambda x}$	$[0,+\infty)$	$\nu > 0, \lambda > 0$	$ u/\lambda$	$ u/\lambda^2$
Normal	$\mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	\mathbb{R}	$\mu \in \mathbb{R}, \sigma^2 > 0$	μ	σ^2
Chi cuadrado	χ_k^2	$\frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}x^{\frac{k}{2}-1}e^{-\frac{x}{2}}$	$\boxed{[0,+\infty)}$	$k \in \mathbb{N}$	k	2k
t-Student	$t_{ u}$	$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	\mathbb{R}	$\nu > 0$	0	$\frac{\nu}{\nu-2}*$
Weibull	$\mathrm{Wei}(c,lpha)$	$\frac{c}{\alpha} \left(\frac{x}{\alpha}\right)^{c-1} e^{-\left(\frac{x}{\alpha}\right)^c}$	$[0,+\infty)$	$c > 0, \alpha > 0$	$\alpha\Gamma(1+\frac{1}{c})$	$\alpha^2 \left[\Gamma \left(1 + \frac{2}{c} \right) - \Gamma^2 \left(1 + \frac{1}{c} \right) \right]$
Rayleigh	$\operatorname{Ray}(\sigma)$	$\frac{x}{\sigma^2}e^{-x^2/(2\sigma^2)}$	$[0,+\infty)$	$\sigma > 0$	$\sigma\sqrt{\pi/2}$	$\frac{4-\pi}{2}\sigma^2$
Pareto	$\operatorname{Par}(m, \alpha)$	$rac{lpha m^{lpha}}{x^{lpha+1}}$	$[m, +\infty)$	$m > 0, \alpha > 0$	$\frac{\alpha m}{\alpha - 1}$ †	$\frac{m^2\alpha}{(\alpha-1)^2(\alpha-2)} \ddagger$
Beta	$\beta(a,b)$	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$	(0,1)	a > 0, b > 0	a/(a+b)	$\frac{ab}{(a+b)^2(a+b+1)}$
Cauchy	$\operatorname{Cau}(x_0,\gamma)$	$\frac{1}{\pi\gamma} \left[\frac{\gamma^2}{(x-x_0)^2 + \gamma^2} \right]$	\mathbb{R}	$x_0 \in \mathbb{R}, \gamma > 0$	no existe	no existe

 $^{^\}dagger$ Válida si $\alpha>1.$ ‡ Válida si $\alpha>2.$ * Válida si $\nu>2$

2.1. Notas

- La función de densidad (o función de densidad puntual, fdp, pdf) tabulada $f_X(x)$ vale para todo x real en el soporte indicado, y vale 0 para cualquier otro valor de x.
- La función Gamma se define $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$. Crece muy rápidamente, y para evitar problemas numéricos en algunos algoritmos conviene adaptar las fórmulas para que aparezca el logaritmo de la función $\log |\Gamma(t)|$ (las barras de módulo no molestan pues usaremos habitualmente valores positivos). Algunas propiedades:

$$\Gamma(n) = (n-1)!$$
 para $n \in \mathbb{N}$

$$\Gamma(t+1) = t\Gamma(t)$$
 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

2.2. Algunas funciones de supervivencia

Sea T una variable aleatoria continua, $S(t) = \mathbf{P}(T > t)$ (función de supervivencia o *survival function*), vale que:

- si $T \sim \mathcal{E}(\lambda)$ entonces $S(t) = e^{-\lambda t}$ para $t \geq 0$.
- si $T \sim \Gamma(k,\lambda)$ con $k \in \mathbb{N}$ entonces $S(t) = \sum_{n=0}^{k-1} \frac{e^{-\lambda t} (\lambda t)^n}{n!}$ para t > 0.
- si $T \sim \text{Wei}(c, \alpha)$ entonces $S(t) = e^{-(t/\alpha)^c}$ para t > 0.
- si $T \sim \text{Ray}(\sigma)$ entonces $S(t) = e^{-t^2/(2\sigma^2)}$ para t > 0.
- si $T \sim \operatorname{Par}(m, \alpha)$ entonces $S(t) = (m/t)^{\alpha}$ para $t \geq m$.

3. Distribuciones multivariadas

3.1. Variable Multinomial

La variable aleatoria Multinomial $\mathcal{M}(n, p_1, p_2, \dots p_k)$ modela la cantidad de observaciones de cada resultado posible al repetir n veces de forma independiente un experimento que toma valores en $\{1 \dots k\}$ (variable categórica o Bernoulli generalizada) con probabilidades p_i para cada resultado $i \in \{1 \dots k\}$.

Su función de probabilidad es:

$$p_{\mathbf{X}}(n, x_1, x_2 \dots x_k) = \binom{n}{x_1 \, x_2 \dots x_k} p_1^{x_1} \cdot p_2^{x_2} \cdots p_k^{x_k}$$

con soporte $\{\mathbf{x} \in \{0 \dots n\}^k, \sum_{i=1}^k x_i = n\}$ y parámetros:

$$0 < p_i < 1, \qquad \sum_{i=1}^k p_i = 1, \qquad n \in \mathbb{N}.$$

Sus marginales son:

$$X_i \sim \mathcal{B}(n, p_i)$$

una de sus condicionales es:

$$(X_2, X_3, \dots, X_k)|X_1 = x_1 \sim \text{Mul}\left(n - x_1, \frac{p_2}{1 - p_1}, \frac{p_3}{1 - p_1}, \dots, \frac{p_k}{1 - p_1}\right)$$

y sus momentos:

$$\mathbf{E}(X_i) = np_i, \quad \mathbf{cov}(X_i, X_j) = \begin{cases} np_i(1 - p_i) & i = j \\ -np_ip_j & i \neq j \end{cases}.$$