Danny Tan CS 2134 HW 1

- 1a) O(n)
- 1b) $O(n^2)$
- $1c) O(n^3)$
- $1d) O(n^2)$
- $1e) O(n^3)$
- 1f) O(n)
- 1g) $O(n^2 \log(n))$
- 1h) O(n!)
- 1i) O(n!)
- 2a) O(1)
- 2b) O(n)
- $2c) O(n^2)$
- 2d) O(n²)
- 2a) $O(n^3)$ 2e) $O(n^3)$
- 2f) O(n)
- $2g) O(n^2)$
- 2h) O(n³)
- 2i) O(log(n))
- 2j) O(n log(n))
- 2k) O(log(n))

- $4.n \log^2 n$
- 5. n log n
- 6. n and n/2 is same
- 7. √ n

4)
$$2^{13}/2^{11}=4$$

- a) 4 * 0.05 s = 0.2 s
- b) $4^2 * 0.05 \text{ s} = 0.8 \text{ s}$
- c) $4^4 * 0.05 \text{ s} = 12.8 \text{ s}$
- 5) $O(n^2)$ because every time n is increased by 2, the time is increase by 4 or 2^2
- 6) $3n^2 + 2n \log n + 6n + 19 \le 4n^2$ for all $n \ge 13$ therefore by the definition of the Big O notation, $3n^2 + 2n \log n + 6n + 19 = O(n^2)$

7)

N	maxSubSum1 O(n^3)	maxSubSum2 O(n^2)	maxSubSum4 O(n)
128	0.001069	4.6e-05	3e-06
256	0.007678	0.000171	3e-06
512	0.060455	0.000565	3e-06
1024	0.488088	0.002048	6e-06
2048	3.91782	0.008078	1.5e-05
4096	31.379741	0.035846	2.2e-05

8)

0)			
N	maxSubSum1 O(n^3)	maxSubSum2 O(n^2)	maxSubSum4 O(n)
256	0.008552	0.000184	0.000006
512	0.068416	0.000736	0.000012
1024	0.547328	0.002944	0.000024
2048	4.378624	0.011776	0.000048
4096	35.028992	0.047104	0.000096

9)
$$2^{18} / 2^7 = 2^{11}$$

For first algorithm $O(n^3)$, it will take $(2^{11})^3 * 0.001069 = 9.18 * 10^6$ seconds to compute $n = 2^{18}$.

For second algorithm $O(n^2)$, it will take $(2^{11})^2 * 4.6e-05 = 192.94$ seconds to compute $n = 2^{18}$.

For fourth algorithm O(n), it will take $2^{11} * 3e-06 = 0.006144$ seconds to compute $n = 2^{18}$.

10) For first algorithm $O(n^3)$, it will take 15 weeks, 1 day and 6 hours. For second algorithm $O(n^2)$, it will take 3 minutes and 12.94 seconds. For third algorithm O(n), it will take 0.006144 seconds.

11)

N	В	С	D	Е
256	1e-06	0.000145	7.9e-05	0.035087
512	3e-06	0.000555	0.000292	0.272358
1024	2e-06	0.002118	0.001087	2.152884
2048	5e-06	0.008525	0.004226	17.419535
4096	1e-05	0.033426	0.017208	139.633662

- 12) True
- 13) True