

Agenda

1 Introduction

4 User Interface

2 Preprocessing

5 MLOps

3 Model Deployment

6 Discussion

1) Introduction

Introduction & Our goal

The objective is to create a model that predicts the **exemption VAT** code for invoices.

To achieve the objective, we were provided with a dataset concerning invoices and their associated characteristics.

²) Preprocessing

Our data

Our Dataset was initially composed by more than 130.000 rows and 45 columns.

Unbalanced classes

Null values

Initially, there were numerous columns with over half of their values null.

We dropped columns with more than 60% null values.

The remaining NaN values were filled with the most frequent class within the variable.

Unbalanced Classes (1/2)

Unbalanced Classes (2/2)

Focus on Ateco

For the ATECO code, our approach involves two steps: first, extracting the initial two digits of each code, and then consolidating classes with limited observations into an 'others' category.

Focus on IvaM

For our response variable, we opted to group classes with fewer observations, employing a lower threshold of 250 to maintain high sensitivity in the model.

3) Model Deployment

Our approach

Model comparison

Final approach - Random Forest

4) User Interface

User interface

Trade-off between precision of the model and usability of the interface

Performed feature selection to to attain the optimal model, leveraging only four features.

http://127.0.0.1:7867

User interface

Excemption code Predictor

Enter data into the specified fields and click predict to have the exemption code:

5 MLOps

MLOps - Machine Learning supply chain

MLOps - Our Proposal

1 Automation of data collection.

2 Automation of data preprocessing.

Implementation of new data to continuously train the model.

6) Discussion

Discussion

Overall we are satisfied with the performance of our model. But we are aware of its inability to predict the exemption code included into the class "Others", however we would be able to fix this by using a more balanced dataset.

Thank You!

for the Attention

Vincenzo Camerlengo 773731

Daniele De Robertis 787291

Raffaele Torelli 775831