COAL LECTURE 2

RAM \rightarrow LOW ADDRESSES (BELOW) TO HIGH

we split into $4 \rightarrow 32$ bits

 $8 \rightarrow 64 \text{ bits}$

 $2 \rightarrow 16 \text{ bits}$

CPU does **three** works

- \rightarrow first it tells what to read or write on ram (physical wire \rightarrow contain 32 wires) specific pattern send to ram
- → set of wires contain address (address where to write/from where to read)
- → data (what to write/read)

X.	= 25	
y	= 17-z	
	= 9	
У	= 24	

x value will be 25 bcz we see it from low to high

here comes the prob CPU is very fast but everything else is slow

CPU → working area → register(register **stores data and instructions for quick processing.**) cpu goes to ram → fetch data from ram → decode → execute

ax is the name of register → mov 25 to ax register

machine size depends on the size of accumulator register

 $intel\ architecture\ manual\ \rightarrow \underline{\ https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html}$

Figure 2-8. Intel® Core™ i7 Processor

DDR 3 → RAM 8 PROCESSORS L1 AND L2 → CACHE

Figure 3-1. IA-32 Basic Execution Environment for Non-64-Bit Modes

General-Purpose Registers									
31	16	15	8 7		0	16-bit	32-bit		
		AH		AL		AX	EAX		
		BH		BL		BX	EBX		
		CH		CL		CX	ECX		
		DH		DL		DX	EDX		
		BP				EBP			
		SI					ESI		
		DI					EDI		
		SP			\neg		ESP		

Figure 3-5. Alternate General-Purpose Register Names