Modelos Determinísticos de Investigação Operacional Universidade do Minho

RELATÓRIO

Incêndios Florestais

Questão 1

Modelo Primal

Parâmetros:

n - número de nodos na rede

 c_{ij} – tempo de propagação entre os nodos ij, \forall i, j \in [1,...,n]

o – nodo de origem

Variáveis de decisão:

 x_{ij} — número de caminhos que passam no arco entre i e j ; i, j $\in [1, ..., n]$

Função objetivo:

$$Min Z = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \times c_{ij}$$

Sujeito a:

a)
$$\sum_{i=1}^{n} x_{0i} = n - 1$$

b)
$$\sum_{i=1}^{n} x_{ij} = \sum_{i=1}^{n} x_{ji} - 1$$
, $j \in [1, ..., n]$

$$c) \ \mathbf{x_{ij}} \geq \mathbf{0}, \ \forall \ \mathbf{i,j} \in [1,...,n]$$

Função Objetivo: o objetivo é minimizar a soma dos custos dos arcos que ligam os nodos.

Restrições:

- a) O número de caminhos a partir da origem é n-1 (precisa de chegar a todos os nodos exceto origem).
- b) O número de caminhos que chegam até ao nodo j é igual ao número de caminhos que saem do nodo j mais um, uma vez que um dos caminhos definidos é até j.
- c) Todos os caminhos são maiores ou iguais a 0.

Modelo Dual

Parâmetros:

n - número de nodos na rede

 c_{ij} – tempo de propagação entre os nodos ij, $\forall \ i,j \in [1,..,n]$

o – nodo de origem

Variáveis de decisão:

 t_i — instante de tempo em que o fogo chega ao nodo i, i $\in [1..n]$

Função objetivo:

$$\operatorname{Max} Z = \sum_{i=1}^{n} t_i$$

Sujeito a:

$$a) t_0 = 0$$

$$b) t_j - t_i \le c_{ij,} \ \forall \ i,j \in [1,..,n]$$

$$c$$
) t_i ≥ 0, \forall i ∈ [1,...,n]

Função Objetivo: o objetivo é maximizar os instantes de tempo em que o fogo chega a cada um dos nodos.

Restrições:

- a) O instante de tempo em que o fogo atinge o nodo inicial é zero
- b) A diferença temporal entre a chegada do fogo ao nodo j em relação ao nodo i é menor ou igual ao tempo de propagação entre os nodos i e j. Assim, com a função objetivo é de maximização, será escolhido o tempo mais curto de propagação até um dado nodo.
- c) O instante de tempo em que o fogo chega a determinado nodo é maior ou igual a zero.

Solução do problema para a instância

Resolvendo a instância sugerida, o valor da solução obtida é de 1880 tanto no modelo dual como no modelo primal. Para além disso, é possível verificar na árvore de caminhos mais curtos que de facto as soluções são equivalentes.

Solução do Primal

nPathsN	0	0	0	0	0	0	0 nPathsS	42	0	0	0	0	0	0
	0	0	0	0	0	0	0	16	0	18	0	0	0	1
	0	0	0	0	0	0	0	14	0	0	3	7	4	0
	0	0	0	0	0	0	0	3	7	1	2	6	1	1
	0	0	0	0	0	0	0	2	6	0	1	5	0	0
	0	0	0	0	0	0	0	1	1	3	0	0	2	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nPathsE	6	5	4	3	2	1	0 nPathsO	0	0	0	0	0	0	0
	25	24	5	4	3	2	0	0	0	0	0	0	0	0
	1	0	17	13	5	0	0	0	0	0	0	0	0	0
	10	2	0	0	0	2	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	4	0	0	4	1	0	0	0	0	0	0	0	0
	0	0	2	1	0	1	0	0	0	0	0	0	0	0

Solução do Dual

J							L
_	0	4	8	12	14	16	20
	10	14	16	19	21	24	27
_	20	24	26	28	30	34	36
_	30	32	36	38	40	44	46
	41	41	45	47	51	54	57
	52	52	54	58	60	62	65
	61	63	64	68	70	72	74

Questão 2

Nota: Assume-se que a célula a proteger é conhecida, tal como a célula de ignição. Assume-se também que está protegida se o instante de chegada é posterior à constante g. Caso a célula a proteger não fosse conhecida, a função objetivo alterar-se ia para *maxmin* dos tempos de chegada do fogo a cada nodo. No entanto, não foi essa a nossa interpretação do enunciado mas fica aqui registada a outra possível interpretação dada à questão.

Parâmetros:

n - número de nodos na rede

 c_{ii} – tempo de propagação entre os nodos ij, \forall $i \in [1,...,n]$, \forall $j \in \{1,...,n\}$

Δ - constante de retardamento

g - constante que define se a célula está protegida

b – número de recursos disponíveis

o – nodo de origem

p – nodo a proteger

Variáveis de decisão:

$$x_i \left\{ \begin{array}{c} 1 \quad \text{se \'e colocado um recurso no nodo i, } \ i \in [1,..,n] \\ 0 \ \textit{caso contr\'ario} \end{array} \right.$$

 t_i — instante de tempo de chegada do fogo ao nodo i, $i \in [1,...,n]$

Função objetivo:

$$Max Z = t_p$$

Sujeito a:

- a) $t_0 = 0$
- b) $t_p \ge g$
- c) $\sum_{i=1}^{n} x_i \leq b$
- d) $t_i t_i \le c_{ij} + \Delta x_i$; $\forall i \in [1,..,n]$; $\forall j \in \{1,..,n\}$
- e) $t_i \ge 0$; $\forall i \in [1,...,n]$;
- f) $x_i \in \{0,1\}$

Função Objetivo: o objetivo é maximizar o instante de chegada do fogo à célula protegida

Restrições:

- d) O instante de tempo em que o fogo chega à origem é 0
- e) O instante de tempo em que o fogo chega à célula a ser protegida tem de ser superior à constante que indica que a célula está protegida
- f) A soma dos recursos usados tem de ser inferior ou igual aos recursos disponíveis
- g) A diferença temporal entre o instante de chegada do fogo a uma célula e uma adjacente é igual ao menor tempo de propagação entre a célula e as suas adjacentes, tendo em consideração a possibilidade de as adjacentes estarem protegidas e assim alterarem o tempo de propagação.
- h) O instante de tempo em que o fogo chega a cada célula é superior ou igual a 0
- i) Um recurso é ou não colocado (variável binária)

Resolução no OPL (ver fogos2.xlsx)

Devem ser colocados recursos nas células (1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (7,6), (6,7).

O fogo atingirá a célula a proteger passados 106 instantes de tempo.

Dado que o fogo precisa de se propagar para sudeste, e não o pode fazer na diagonal, é natural que os aumentos mais significativos sejam a cada 2 novos recursos, já que colocando um recurso a sul ou este, apenas faz com que o fogo escolha uma outra direção com valor similar anteriormente. Para além disso, é evidente que a adição de mais um recurso até aos 19 recursos é a que mais impacto tem na proteção da célula.

Questão 3

Nota: Assume-se que em cada cenário apenas pode ocorrer uma ignição, isto é, havendo ignição num nodo tal que t = 0, mais nenhum nodo pode ter t = 0 com a ignição definida no primeiro nó.

Parâmetros:

n - número de nodos na rede

 c_{ij} – tempo de propagação entre os nodos ij, $\forall~i\in[1,..,n],~\forall~j\in\{1,..,n\}$

Δ - constante de retardamento

d – duração do fogo

b - número de recursos disponíveis

p – probabilidade de ignição no nodo i, \forall i \in [1,..,n]

Variáveis de decisão:

$$x_i \begin{cases} 1 & \text{se \'e colocado um recurso no nodo i, } i \in [1,..,n] \\ & 0 & caso & contr\'ario \end{cases}$$

 t_{ij} — instante de tempo em que o nodo i arde após ignição em j, $i \in [1,...,n]$, $j \in [1,...,n]$

$$b_{ij} \left\{ \begin{array}{ll} 1 & \text{se nodo i arde d instantes após ignição em j, i} \in [1, ..., n], j \in [1, ..., n] \\ & 0 & \textit{caso contrário} \end{array} \right.$$

Função objetivo:

Min Z =
$$\sum_{i=1}^{n} \sum_{j=1}^{n} p_{j} * b_{ij}$$

Sujeito a:

a)
$$t_{ii} = 0, i \in [1,...,n]$$

b)
$$\sum_{i=1}^{n} x_i \leq b$$

c)
$$t_{jk} - t_{ik} \le c_{ij} + \Delta x_i$$
; $\forall i \in [1,..,n]$; $\forall j \in \{1,..,n\}, \forall k \in \{1,..,n\}$

d)
$$t_{ij} \ge 0$$
; $\forall i \in [1,...,n], \forall j \in [1,...,n]$;

e)
$$t_{ij} \ge d(1 - b_{ij}); \forall i \in [1,..,n], \forall j \in [1,..,n];$$

f)
$$b_{ii} \in \{0,1\}; \forall i \in [1,..,n], \forall j \in [1,..,n];$$

g)
$$x_i \in \{0,1\}, \forall i \in [1,...,n], \forall j \in [1,...,n];$$

Função Objetivo: o objetivo é minimizar o nº de células ardidas, tendo associado o peso da probabilidade de isso acontecer

Restrições:

- a) O instante de tempo em que o fogo chega ao nodo que deu origem à ignição, é sempre
 0.
- b) A soma dos recursos usados tem de ser inferior ou igual aos recursos disponíveis.
- c) A diferença temporal entre o instante de chegada do fogo a uma célula e uma adjacente é igual ao menor tempo de propagação entre a célula e as suas adjacentes, tendo em consideração a possibilidade de as adjacentes estarem protegidas e assim alterarem o tempo de propagação. Esta restrição aplica-se a cada uma das possíveis ignições.
- d) O instante de tempo em que o fogo chega a cada célula é superior ou igual a 0
- e) Se o instante de chegada do fogo a um nó for superior a d, então a célula não arde d instantes após a ignição ($b_{ij} = 0$). Se o instante de chegada do fogo for inferior a d, então a célula arde.
- f) b é uma variável binária.
- g) x é uma variável binária.

Resolução no OPL (ver fogos3.xlsx)

Devem ser colocados recursos nas células (3,1), (2,2), (2,3), (2,4), (2,5), (3,6), (4,2), (5,3).

O valor esperado de área ardida será de 2.538 nodos.

É possível verificar que à medida que a duração aumenta, a área ardida parece aumentar não linearmente, mas sim exponencialmente, o que faz sentido, uma vez que quanto maior

a duração, maior a área ardida e consequentemente maior a frente de fogo ativa que se pode espalhar para mais nodos. Ainda assim, na resolução do modelo para durações superiores a 30, o software demorava mais de 1 minuto a resolver, pelo que se considerou dispensável a inserção de mais valores para efeitos de análise.