R Notebook

Hide

```
library(readx1)

file_path <- "C:/Users/KHOOBTEK/Desktop/Final_Data_Translated.xlsx"

data <- read_excel(file_path)

head(data)</pre>
```

Year <dbl></dbl>	Overall Index <dbl></dbl>	Interest Rate <dbl></dbl>	Inflation Rate <dbl></dbl>	Exchan
1379	2978.30	14.79	0.140	
1380	3758.80	13.80	0.130	
1381	5062.80	13.00	0.158	
1382	11379.37	13.00	0.156	
1383	12113.01	13.00	0.152	
1384	9459.36	13.00	0.104	

6 rows

Hide

NA

```
summary(data)

Year Overall Index Interest Rate Inflation Rate Exchange R ate Oil Price

Min. :1379 Min. : 2978 Min. :13.00 Min. :0.0900 Min. :800.0 Min. : 18.00
```

```
1st Qu.:1385    1st Qu.: 10017    1st Qu.:14.95    1st Qu.:0.1227    1st Qu.:
917.5 1st Qu.: 34.75
Median: 1390 Median: 31973 Median: 16.00 Median: 0.1570 Median: 1
905.5 Median: 54.50
Mean :1390 Mean : 337073 Mean :17.36 Mean :0.2217 Mean : 7
001.6 Mean : 60.25
3rd Qu.:1396 3rd Qu.: 116882 3rd Qu.:20.00 3rd Qu.:0.3155
                                                         3rd Qu.: 4
950.0 3rd Qu.: 83.75
Max.
      :1402 Max. :2195092 Max. :25.00 Max. :0.5230 Max. :50
900.0 Max. :108.00
```

```
Hide
if (!requireNamespace("nortest", quietly = TRUE)) {
 install.packages("nortest")
library(nortest)
for (var in c("Overall Index", "Interest Rate", "Inflation Rate", "Exchange R
ate", "Oil Price")) {
 cat("\n=======\n")
 cat("Variable:", var, "\n")
 cat("======\n\n")
 ad result <- ad.test(data[[var]])</pre>
 print(ad result)
_____
Variable: Overall Index
_____
   Anderson-Darling normality test
data: data[[var]]
A = 4.8328, p-value = 2.293e-12
```

```
_____
Variable: Interest Rate
_____
  Anderson-Darling normality test
data: data[[var]]
A = 0.89836, p-value = 0.01833
_____
Variable: Inflation Rate
_____
  Anderson-Darling normality test
data: data[[var]]
A = 1.2371, p-value = 0.002512
_____
Variable: Exchange Rate
Anderson-Darling normality test
data: data[[var]]
A = 3.8774, p-value = 5.5e-10
```

```
for (var in c("Overall Index", "Interest Rate", "Inflation Rate", "Exchange R
ate", "Oil Price")) {
 cat("\n=======\n")
 cat("Variable:", var, "\n")
 cat("======\n\n")
 ks result <- ks.test(data[[var]], "pnorm", mean(data[[var]], na.rm = TRUE),</pre>
sd(data[[var]], na.rm = TRUE))
 print(ks result)
_____
Variable: Overall Index
_____
   Exact one-sample Kolmogorov-Smirnov test
data: data[[var]]
D = 0.39358, p-value = 0.0007315
alternative hypothesis: two-sided
```

______ Variable: Interest Rate ______ Warning: ties should not be present for the one-sample Kolmogorov-Smirnov tes Asymptotic one-sample Kolmogorov-Smirnov test data: data[[var]] D = 0.18137, p-value = 0.4088 alternative hypothesis: two-sided _____ Variable: Inflation Rate _____ Warning: ties should not be present for the one-sample Kolmogorov-Smirnov tes Asymptotic one-sample Kolmogorov-Smirnov test data: data[[var]] D = 0.23483, p-value = 0.1417 alternative hypothesis: two-sided _____ Variable: Exchange Rate

Exact one-sample Kolmogorov-Smirnov test

```
for (var in c("Overall Index", "Interest Rate", "Inflation Rate", "Exchange R
ate", "Oil Price")) {
  cat("\n===========\n")
  cat("Variable:", var, "\n")
  cat("===========\n\n")

  shapiro_result <- shapiro.test(data[[var]])
  print(shapiro_result)
}</pre>
```

```
data$Year_Group <- cut(
   data$Year,
   breaks = c(1379, 1383, 1387, 1391, 1395, 1399, 1403),
   labels = c("1379-1382", "1383-1386", "1387-1390", "1391-1394", "1395-1398",
   "1399-1402"),
   include.lowest = TRUE,
   right = FALSE
)</pre>
```

Hide

```
table(data$Year_Group)
```

```
1379-1381 1382-1384 1385-1387 1388-1390 1391-1393 1394-1396 1397-1399 1400-14 02

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
```

```
Hide
numeric vars <- c("Overall Index", "Interest Rate", "Inflation Rate", "Exchan</pre>
ge Rate", "Oil Price")
for (var in numeric vars) {
 cat("\n=======\n")
 cat("Variable:", var, "\n")
 cat("======\n\n")
 cat(">>> Bartlett Test <<<\n")</pre>
 print(
  bartlett.test(
    as.formula(paste0("`", var, "` ~ Year Group")),
    data = data
  )
 cat("\n\n")
_____
Variable: Overall Index
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Overall Index by Year Group
```

```
Bartlett's K-squared = 81.114, df = 7, p-value = 8.164e-15
_____
Variable: Interest Rate
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Interest Rate by Year_Group
Bartlett's K-squared = Inf, df = 7, p-value < 2.2e-16
Variable: Inflation Rate
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Inflation Rate by Year Group
Bartlett's K-squared = 8.7885, df = 7, p-value = 0.2682
_____
```

```
Variable: Exchange Rate
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Exchange Rate by Year_Group
Bartlett's K-squared = 82.511, df = 7, p-value = 4.233e-15
_____
Variable: Oil Price
______
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Oil Price by Year_Group
Bartlett's K-squared = 5.4547, df = 7, p-value = 0.6047
```

```
# زدر صورت نیاز) car (در صورت نیاز)

if (!requireNamespace("car", quietly = TRUE)) {

install.packages("car")

}

library(car)

Loading required package: carData
```

```
برای هر متغیر Levene آزمون #
numeric vars <- c("Overall Index", "Interest Rate", "Inflation Rate", "Exchan</pre>
ge Rate", "Oil Price")
for (var in numeric vars) {
 cat("\n======\n")
 cat("Variable:", var, "\n")
 cat("======\n\n")
 cat(">>> Levene Test <<<\n")</pre>
 print(
   leveneTest(
    as.formula(paste0("`", var, "` ~ Year Group")),
    data = data
 cat("\n\n")
______
Variable: Overall Index
_____
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
    Df F value Pr(>F)
group 7 2.2105 0.08954 .
    16
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
_____
```

```
Variable: Interest Rate
_____
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
    Df F value Pr(>F)
group 7 1.5764 0.2128
    16
______
Variable: Inflation Rate
_____
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
   Df F value Pr(>F)
group 7 0.6186 0.7334
    16
_____
Variable: Exchange Rate
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
    Df F value Pr(>F)
group 7 1.1343 0.3904
    16
```

```
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Overall Index by Year_Group
Fligner-Killeen:med chi-squared = 6.623, df = 7, p-value = 0.4692
______
Variable: Interest Rate
_____
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Interest Rate by Year Group
Fligner-Killeen:med chi-squared = 8.7819, df = 7, p-value = 0.2687
Variable: Inflation Rate
_____
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Inflation Rate by Year Group
```

```
Fligner-Killeen:med chi-squared = 3.0459, df = 7, p-value = 0.8807
_____
Variable: Exchange Rate
______
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Exchange Rate by Year_Group
Fligner-Killeen:med chi-squared = 6.5089, df = 7, p-value = 0.4817
_____
Variable: Oil Price
______
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Oil Price by Year Group
Fligner-Killeen:med chi-squared = 2.0776, df = 7, p-value = 0.9554
```

```
for (var in numeric vars) {
 برای مشاهده توزیع QQ ترسیم هیستوگرام و نمودار \#
 par(mfrow = c(1, 2))
 hist(data[[var]],
      main = paste("Histogram of", var),
      xlab = var,
      col = "lightgray",
      breaks = 10,
      prob = TRUE)
  curve(dnorm(x, mean(data[[var]]), sd(data[[var]])),
       col = "red", lwd = 2, add = TRUE)
 qqnorm(data[[var]], main = paste("QQ Plot of", var))
  qqline(data[[var]], col = "blue", lwd = 2)
 بازنشانی پارامترهای گرافیکی #
 par(mfrow = c(1, 1))
```

Histogram of Overall Index

QQ Plot of Overall Index

Histogram of Interest Rate

QQ Plot of Interest Rate

Histogram of Inflation Rate

QQ Plot of Inflation Rate

Histogram of Exchange Rate

QQ Plot of Exchange Rate

Histogram of Oil Price

QQ Plot of Oil Price

Hide

NA

NA

```
# Inflation Rate
data$Inflation Rate Transformed <- bcPower(data<math>$Inflation Rate, lambda = -0
.476)
# Interest Rate (Inverse Transform)
data$Interest Rate Transformed <- 1 / data$`Interest Rate`</pre>
# Oil Price
data$Oil Price Transformed <- bcPower(data$`Oil Price`, lambda = 0.426)</pre>
بررسی نرمالیت نهایی #
transformed vars <- c(</pre>
  "Overall Index Transformed",
  "Exchange Rate Transformed",
  "Inflation Rate Transformed",
  "Interest Rate Transformed",
  "Oil Price Transformed"
for (var in transformed vars) {
  cat("\n=== Normality Check for", var, "===\n")
 print(shapiro.test(data[[var]]))
=== Normality Check for Overall Index Transformed ===
    Shapiro-Wilk normality test
data: data[[var]]
W = 0.94795, p-value = 0.2445
=== Normality Check for Exchange Rate Transformed ===
    Shapiro-Wilk normality test
```

```
data: data[[var]]
W = 0.8397, p-value = 0.001416
=== Normality Check for Inflation Rate Transformed ===
    Shapiro-Wilk normality test
data: data[[var]]
W = 0.94206, p-value = 0.1813
=== Normality Check for Interest Rate Transformed ===
    Shapiro-Wilk normality test
data: data[[var]]
W = 0.93403, p-value = 0.12
=== Normality Check for Oil_Price_Transformed ===
    Shapiro-Wilk normality test
data: data[[var]]
W = 0.94605, p-value = 0.2221
```

```
cat("Variable:", var, "\n")
  cat("======\n\n")
 cat(">>> Bartlett Test <<<\n")</pre>
 print(
  bartlett.test(
    as.formula(paste0(var, " ~ Year_Group")),
    data = data
 cat("\n\n")
_____
Variable: Overall_Index_Transformed
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Overall_Index_Transformed by Year_Group
Bartlett's K-squared = 9.2669, df = 7, p-value = 0.2341
_____
Variable: Exchange_Rate_Transformed
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
```

```
data: Exchange Rate Transformed by Year Group
Bartlett's K-squared = 26.309, df = 7, p-value = 0.0004435
_____
Variable: Inflation Rate Transformed
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Inflation_Rate_Transformed by Year_Group
Bartlett's K-squared = 7.3421, df = 7, p-value = 0.3942
Variable: Interest_Rate_Transformed
_____
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Interest Rate Transformed by Year Group
Bartlett's K-squared = Inf, df = 7, p-value < 2.2e-16</pre>
```

```
Variable: Oil_Price_Transformed
>>> Bartlett Test <<<
   Bartlett test of homogeneity of variances
data: Oil Price Transformed by Year Group
Bartlett's K-squared = 3.6369, df = 7, p-value = 0.8205
```

```
for (var in numeric vars) {
 cat("\n=======\n")
 cat("Variable:", var, "\n")
 cat("======\n\n")
 cat(">>> Levene Test <<<\n")</pre>
 print(
   leveneTest(
    as.formula(paste0(var, " ~ Year Group")),
    data = data
 cat("\n\n")
_____
Variable: Overall Index Transformed
_____
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
    Df F value Pr(>F)
```

```
group 7 0.8478 0.5652
   16
_____
Variable: Exchange_Rate_Transformed
_____
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
   Df F value Pr(>F)
group 7 0.9707 0.4843
   16
_____
Variable: Inflation Rate Transformed
_____
>>> Levene Test <<<
Levene's Test for Homogeneity of Variance (center = median)
   Df F value Pr(>F)
group 7 0.4781 0.8366
    16
Variable: Interest_Rate_Transformed
_____
>>> Levene Test <<<
```

```
_____
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Overall_Index_Transformed by Year_Group
Fligner-Killeen:med chi-squared = 4.7814, df = 7, p-value = 0.6866
_____
Variable: Exchange_Rate_Transformed
______
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Exchange_Rate_Transformed by Year Group
Fligner-Killeen:med chi-squared = 5.136, df = 7, p-value = 0.6434
_____
Variable: Inflation Rate Transformed
_____
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
```

```
data: Inflation Rate Transformed by Year Group
Fligner-Killeen:med chi-squared = 3.2318, df = 7, p-value = 0.8628
_____
Variable: Interest_Rate_Transformed
_____
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Interest_Rate_Transformed by Year_Group
Fligner-Killeen:med chi-squared = 7.7125, df = 7, p-value = 0.3586
_____
Variable: Oil Price Transformed
_____
>>> Fligner-Killeen Test <<<
   Fligner-Killeen test of homogeneity of variances
data: Oil Price Transformed by Year Group
Fligner-Killeen:med chi-squared = 1.4953, df = 7, p-value = 0.9825
```

```
for (var in numeric vars) {
 برای مشاهده توزیع QQ ترسیم هیستوگرام و نمودار \#
 par(mfrow = c(1, 2))
 hist(data[[var]],
      main = paste("Histogram of", var),
      xlab = var,
      col = "lightgray",
      breaks = 10,
      prob = TRUE)
  curve(dnorm(x, mean(data[[var]]), sd(data[[var]])),
       col = "red", lwd = 2, add = TRUE)
 qqnorm(data[[var]], main = paste("QQ Plot of", var))
  qqline(data[[var]], col = "blue", lwd = 2)
 بازنشانی پارامترهای گرافیکی #
 par(mfrow = c(1, 1))
```

Histogram of Overall_Index_Transform QQ Plot of Overall_Index_Transform

Histogram of Interest_Rate_Transform QQ Plot of Interest_Rate_Transforme

Histogram of Inflation_Rate_Transform QQ Plot of Inflation_Rate_Transform

Histogram of Exchange_Rate_Transfor QQ Plot of Exchange_Rate_Transform

Histogram of Oil_Price_Transforme

QQ Plot of Oil_Price_Transformed


```
# چاپ VIF
cat("\n=========\n")
```

```
cat("Variance Inflation Factors (VIF):\n")
Variance Inflation Factors (VIF):
```

Hide

Hide

```
print(vif_values)

Interest_Rate_Transformed Inflation_Rate_Transformed Exchange_Rate_Transformed Oil_Price_Transformed

3.001090 1.850678 3.185
271 1.338095
```

Hide

```
# گام 6: ساخت مدل رگرسیون خطی اصلی #

model <- lm(`Overall_Index_Transformed` ~ `Interest_Rate_Transformed` +

`Inflation_Rate_Transformed` + `Exchange_Rate_Transformed` +

`Oil_Price_Transformed`, data = data)

# نمایش خلاصه ای از مدل #

cat("\n========\n")
```

```
("n"/نتایج مدل رگرسیون خطی اولیه (با متغیرهای تبدیلشده) (n"/ نتایج مدل رگرسیون خطی اولیه (با متغیرهای تبدیلشده)
```

Hide

```
summary(model)
Call:
lm(formula = Overall Index Transformed ~ Interest Rate Transformed +
   Inflation Rate Transformed + Exchange Rate Transformed +
   Oil Price Transformed, data = data)
Residuals:
     Min 1Q Median 3Q Max
-0.156347 -0.037062 -0.000229 0.058333 0.103735
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       Interest Rate Transformed 0.171163 2.468426 0.069 0.9454
Inflation Rate Transformed -0.023808 0.020098 -1.185 0.2508
Exchange Rate Transformed 0.204104 0.023258 8.776 4.13e-08 ***
Oil Price Transformed 0.017663 0.006831 2.586 0.0181 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.08186 on 19 degrees of freedom
Multiple R-squared: 0.9279, Adjusted R-squared: 0.9128
F-statistic: 61.17 on 4 and 19 DF, p-value: 1.379e-10
```

Hide

residuals_model <- residuals(model)</pre>

```
# آزمون شاپیرو-ویلک بر روی پسماندها
shapiro_res <- shapiro.test(residuals_model)
cat("\n==========\n")
```

```
cat("Shapiro-Wilk Test on Residuals\n")
Shapiro-Wilk Test on Residuals
```

Hide

Hide

```
print(shapiro_res)

Shapiro-Wilk normality test

data: residuals_model
W = 0.94657, p-value = 0.228
```

```
# QQ Plot پسماندها
qqnorm(residuals_model, main = "QQ Plot of Residuals")
qqline(residuals_model, col = "red")
```

QQ Plot of Residuals

Residuals vs. Fitted

Hide

```
اگر الگوی قیفی شکل یا روند خاصی در نمودار دیده شد، احتمال واریانس ناهمسان و #
.جود دارد
```

```
if (!requireNamespace("lmtest", quietly = TRUE)) {
   install.packages("lmtest")
}
library(lmtest)
Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':
```

```
as.Date, as.Date.numeric
```

```
bptest(model) # آزمون بروس-پگان

studentized Breusch-Pagan test

data: model

BP = 7.5887, df = 4, p-value = 0.1079
```

Hide

```
cook_values <- cooks.distance(model)
plot(cook_values,
    ylab = "Cook's Distance",
    main = "Cook's Distance for Each Observation")
abline(h = 4/(nrow(data) - length(coef(model)) - 1), col = "red")</pre>
```

Cook's Distance for Each Observation


```
Hide
```

```
influential_points <- which(cooks.distance(model_temp) > 0.2)
print(influential_points)
1 24
1 24
```

```
data cleaned <- data[-influential points, ]</pre>
model temp cleaned <- lm(`Overall Index Transformed` ~ `Interest_Rate_Transfo</pre>
                        `Inflation Rate Transformed` + `Exchange Rate Transf
ormed` +
                        `Oil Price Transformed`, data = data cleaned)
summary(model temp cleaned)
Call:
lm(formula = Overall Index Transformed ~ Interest Rate Transformed +
   Inflation Rate Transformed + Exchange Rate Transformed +
   Oil Price Transformed, data = data cleaned)
Residuals:
     Min
               10 Median 30
                                          Max
-0.131290 -0.031205 -0.006619 0.053827 0.077457
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                          2.89862
                                    0.29787 9.731 2.31e-08 ***
Interest Rate Transformed -0.20025 1.99285 -0.100 0.9211
Inflation Rate Transformed -0.01784 0.01595 -1.119 0.2788
Exchange Rate Transformed 0.20952 0.02001 10.470 7.87e-09 ***
Oil Price Transformed 0.01285 0.00586 2.193 0.0425 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 0.06458 on 17 degrees of freedom Multiple R-squared: 0.9474, Adjusted R-squared: 0.935 F-statistic: 76.55 on 4 and 17 DF, p-value: 1.217e-10
```

```
# انجام تحلیل واریانس برای مدل رگرسیون
anova_results <- anova(model_temp_cleaned)
# مایش جدول ANOVA
cat("\n========\n")
```

Hide

```
cat("مار (ANOVA Table) \n") جدول تحلیل واریانس (ANOVA Table)
```

Hide

```
cat("======\n\n")
```

```
      print (anova_results)

      Analysis of Variance Table

      Response: Overall_Index_Transformed

      Df Sum Sq Mean Sq F value Pr(>F)

      Interest_Rate_Transformed
      1 0.77165 0.77165 185.0428 1.445e-10 ***

      Inflation_Rate_Transformed
      1 0.04619 0.04619 11.0761 0.003981 **

      Exchange_Rate_Transformed
      1 0.43891 0.43891 105.2531 1.062e-08 ***

      Oil_Price_Transformed
      1 0.02005 0.02005 4.8092 0.042507 *

      Residuals
```

```
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
```

```
# تـوضيحات تـكميـلى
cat("\n-----\n")
```

Hide

```
cat("تفسیر جدول ANOVA:\n") تفسیر جدول ANOVA:
```

Hide

```
cat("- مجموع مربعات برای هر متغیر.\n")
- مجموع مربعات برای هر متغیر.\Sum Sq': مجموع مربعات برای
```

Hide

```
cat("- میانگین مربعات برای هر متغیر.\n")
- میانگین مربعات برای هر متغیر. 'Mean Sq' ستون.
```

Hide

```
("n").برای هر متغیر F مقدار آماره 'F value' ستون - ").برای هر متغیر F مقدار آماره 'F value' ستون -
```

Hide

```
cat("- ستون 'Pr(>F) ': مقدار '(n").\n")
- برای آزمون فرضیه اثرگذاری p مقدار 'Pr(>F) ستون.
```

Hide

```
cat("-----\n\n")
```

```
دریافت مقادیر باقیمانده ها و نقاط برازش شده #
```

Scatterplot of Residuals vs. Fitted Values


```
pch = 19,
    col = "green")
abline(h = 0, col = "red", lwd = 2)
```

Scatterplot of Squared Residuals vs. Fitted Values

Scatterplot of Absolute Residuals vs. Fitted Values

Hide

```
# اجرای آزمون گلدفیلد-کوانت # goldfeld_quandt_test <- gqtest(model_temp_cleaned, order.by = fitted(model_temp_cleaned))

# تمایش نتایج # cat("\n=========\n")
```

Hide

```
cat("نتایج آزمون گلدفیلد-کوانت (Goldfeld-Quandt)\n") نتایج آزمون گلدفیلد-کوانت (Goldfeld-Quandt)
```

```
cat("=========\n\n")
```

Hide

```
print(goldfeld_quandt_test)

Goldfeld-Quandt test

data: model_temp_cleaned

GQ = 0.27958, df1 = 6, df2 = 6, p-value = 0.9269

alternative hypothesis: variance increases from segment 1 to 2
```

Hide

```
# بارگذاری کتابخانه مورد نیاز باز

if (!requireNamespace("lmtest", quietly = TRUE)) {

install.packages("lmtest")

}

library(lmtest)

# برای مدل تمیز شده Breusch-Pagan اجرای آزمون به

bp_test <- bptest(model_temp_cleaned)

# مایش نتایج آزمون دat("\n==========\n")
```

Hide

```
cat("نتایج آزمون Breusch-Pagan (BP Test)\n")
Breusch-Pagan (BP Test)
```

```
print(bp_test)

studentized Breusch-Pagan test

data: model_temp_cleaned

BP = 3.677, df = 4, p-value = 0.4515
```

Hide

```
راهنمای تفسیر #
cat("\n-----\n")
```

Hide

```
cat("راهنمای تفسیر):\n")
دراهنمای تفسیر
```

Hide

```
cat("- اگر p-value < 0.05 واریانس) رد می شود p-value < 0.05 اگر -"). اشد، فرضیه صفر (همگنی واریانس) رد می شود p-value < 0.05 اگر
```

Hide

Hide

```
cat("----\n\n")
```

```
# نصب کتابخانه مورد نیاز
if (!requireNamespace("sandwich", quietly = TRUE)) {
```

```
install.packages("sandwich")
}

if (!requireNamespace("lmtest", quietly = TRUE)) {
    install.packages("lmtest")
}

library(sandwich)

library(lmtest)

# محاسبه ضرایب استوار #

robust_se <- coeftest(model_temp_cleaned, vcov = vcovHC(model_temp_cleaned, t
ype = "HC3"))

# ستوار الستوار الستوار *

cat("\n============\n")
```

```
cat("مرایب رگرسیونی با خطای استاندارد استوار)
ضرایب رگرسیونی با خطای استاندارد استوار
```

Hide

```
print(robust_se)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.8986228 0.2622252 11.0539 3.497e-09 ***

Interest_Rate_Transformed -0.2002462 1.8217187 -0.1099 0.9138

Inflation_Rate_Transformed -0.0178413 0.0112854 -1.5809 0.1323

Exchange_Rate_Transformed 0.2095238 0.0176502 11.8709 1.187e-09 ***

Oil_Price_Transformed 0.0128507 0.0077685 1.6542 0.1164
```

```
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
```

```
# cat("\n----\n")
```

Hide

```
cat("راهنمای تفسیر ضرایب) :راهنمای تفسیر ضرایب
```

Hide

```
cat("- منرایب استوار در صورت وجود ناهمگنی واریانس قابل اعتمادتر هستند -") - منرایب استوار در صورت وجود ناهمگنی واریانس قابل اعتمادتر هستند .
```

Hide

```
cat("- مورتی که ضرایب معنادار باقی بمانند، مدل قابل قبول است -").\n")
در صورتی که ضرایب معنادار باقی بمانند، مدل قابل قبول است -
```

Hide

```
cat("-----\n")
```

```
# نمایش خلاصه مدل وزنی
cat("\n==========\n")
```

```
cat("اخلاصه مدل رگرسیون وزنی \n")
خلاصه مدل رگرسیون وزنی
```

Hide

```
summary(wls model)
Call:
lm(formula = Overall Index Transformed ~ Interest Rate Transformed +
   Inflation Rate Transformed + Exchange Rate Transformed +
   Oil Price Transformed, data = data cleaned, weights = weights)
Weighted Residuals:
   Min 1Q Median 3Q Max
-0.36170 -0.14777 -0.02628 0.20256 0.30573
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                     (Intercept)
Interest Rate Transformed -0.806682 1.284992 -0.628 0.5385
Exchange Rate Transformed 0.210794 0.012538 16.812 5.00e-12 ***
Oil Price Transformed 0.010754 0.004558 2.359 0.0305 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

```
Residual standard error: 0.2456 on 17 degrees of freedom

Multiple R-squared: 0.969, Adjusted R-squared: 0.9617

F-statistic: 132.9 on 4 and 17 DF, p-value: 1.384e-12
```

```
آزمون واریانس باقیمانده ها در مدل وزنی #
cat("\n=============\n")
```

Hide

```
cat("ارمون همگنی واریانس در مدل وزنی \n")
آزمون همگنی واریانس در مدل وزنی
```

Hide

Hide

```
bptest(wls_model)

studentized Breusch-Pagan test

data: wls_model

BP = 1031.6, df = 4, p-value < 2.2e-16</pre>
```

```
# نصب كتابخانه مورد نياز

if (!requireNamespace("MASS", quietly = TRUE)) {

  install.packages("MASS")

}

library(MASS)

# مدل مقاوم با استفاده از الگوريتم
```

```
robust model <- rlm(`Overall Index Transformed` ~ `Interest Rate Transformed`</pre>
                  `Inflation Rate Transformed` + `Exchange Rate Transform
ed`+
                  `Oil Price Transformed`, data = data cleaned)
خلاصه مدل مقاوم #
cat("\n======\n")
```

```
("n"/خلاصه مدل مقاوم")
خلاصه مدل مقاوم
```

```
cat("======\\n\n")
_____
```

```
Hide
summary(robust model)
Call: rlm(formula = Overall Index Transformed ~ Interest Rate Transformed +
   Inflation Rate Transformed + Exchange Rate Transformed +
   Oil Price Transformed, data = data cleaned)
Residuals:
     Min 1Q Median 3Q Max
-0.142652 -0.032023 -0.007332 0.051666 0.068809
Coefficients:
                       Value Std. Error t value
(Intercept)
                        2.9449 0.3043 9.6776
Interest Rate Transformed -0.2915 2.0358 -0.1432
Inflation_Rate_Transformed -0.0170 0.0163 -1.0447
Exchange_Rate_Transformed 0.2072 0.0204 10.1353
Oil Price Transformed 0.0112 0.0060 1.8732
```

Residual standard error: 0.0652 on 17 degrees of freedom