FCC TEST REPORT

For

GENERALSCAN ELECTRONICS CO., LIMITED

Barcode Scanner

Model No.: GS R1000BT-HP, GS M100BT, GS M100BT-HP, GS M100BT-PRO, GS M500BT, GS R1000BT, GS R1000BT-PRO, GS R1500BT-HW, GS R5000BT, GS R5000BT-51C, GS R5000BT-5MQ, GS WT1000, GS WT1000-HP, GS WT1500-HW, GS MT6100-HP, GS MT6500-SE, GS WG7100, GS WG7500, GS HM8100, GS HM8500

Prepared For : GENERALSCAN ELECTRONICS CO., LIMITED

Address : Room A608, 6 Floor, Building 3, Ya Di Science Park, He Tai Road,

BaiYun District, Guangzhou, China.510425

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW190122007-01

Date of Receipt : Jan. 22, 2019

Date of Test : Jan. 22~Feb. 19, 2019

Date of Report : Feb. 19, 2019

Contents

1. General Information	upote.	Ann	hotek	Anbor	br	los You
1.1. Client Information	botek	Aupor	·**······	ek pob	Her A	5
1.2. Description of Device (EUT))	Anbol	e. Anv		upotek	
1.3. Auxiliary Equipment Used D	Ouring Test		notek An		Hotek	e
1.4. Description of Test Modes	Ant		wotek.	Anbore	Vu. Yok	6
1.5. List of channels	otek	Vupore	V _U ,	, nbotek	Anbo.	
1.6. Description Of Test Setup 1.7. Test Equipment List 1.8. Measurement Uncertainty	4970	anboten	Anbe	uote/	- Aupo	8
1.7. Test Equipment List	'up.	botek	Anbore	No.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,notell And
1.8. Measurement Uncertainty	Aupor	β	ek goboti	Sir Wulde		10
1.9 Description of Test Facility		AUL				Par 10
2. Summary of Test Results		otek An	90. bu	dek	Repoter	11
3. Conducted Emission Test		1016K	kupote.	Ann Ask	patek	12
3.1. Test Standard and Limit	Pre. b	'Un	"Apotek	Anbor		12
3.2. Test Setup	nbotek	Aupo.	Ar. Motek	Aupote.	Anb	12
3.3. Test Procedure	Hotek	pobote.	Anv	,y	rek Vu	12
3.4. Test Data	Ans	6bots	Anbo.		HOrek	12
Radiation Spurious Emission and B 4.1. Test Standard and Limit	and Edge.		ote ^k pot	ioge Vi		15
4.1. Test Standard and Limit	dna	ore An		upote ^K	Anbo	15
4.2. Test Setup	109	boten	Yupo		Pupote.	15
4.3. Test Procedure		- Matek	Mpore	An Nok	10dm	16
4.2. Test Setup	pore	Yn. sek	botek	Anbo		17
5. Maximum Peak Output Power Test. 5.1. Test Standard and Limit	Kupoter	Anbe	w	k bupo,	N. M.	25
5.1. Test Standard and Limit	pote ^k	Mpor			poter	25
5.2. Test Setup	by.	do _{na} Yan	oter And		- potek	25
5.2. Test Setup	Anu		"botek	'upor	br.	25
5.4. Test Data	rek W	upo, b	" rek	Kupoter	Anb	25
6. 20DB Occupy Bandwidth Test	rek	"pole"	VUL.	- wotek	Vupor	29
6.1. Test Standard	·····	Modek	Aupor	P.,	al ^k	29
6.2. Test Setup	Anbo	otel	k kupote	Ann		29
6.3. Test Procedure	pobote	Anv		ote ^k An	,o	29
6.4. Test Data	000	iek Vup.		Hotek	Mupore	29
7. Carrier Frequency Separation Test 7.1. Test Standard and Limit 7.2. Test Setup		uotek	upore A		Mootek	33
7.1. Test Standard and Limit	P.		. nbotek	Anbo		33
7.2. Test Setup	ooten	Anbu		hupote	Anv	33
7.3. Test Procedure	botek	Auporg	Vu.,	N/bote	h Anb	33
7.4. Test Data	bris.	Anbote	Anbo		otek	33
Number of Hopping Channel Test Number of Hopping Channel Test S.1. Test Standard and Limit	Anos	·//	tek Pupo	V. Viu		37
8.1. Test Standard and Limit	Vupo,	- Min		boter	Yupo.	37
8.2. Test Setup	8/4	poter A	Up. P	- Dotek	Pupote	37
8.3. Test Procedure		otek	Anbor	VIII.	, , ibote	
8.1. Test Standard and Limit 8.2. Test Setup	201-	bri.	Anboten	Anbo	(e	37
9. Dwell Time Test	Kopote.	Anv	, otek	Anbore	P.II.	39

FCC ID:2ADNT-R1000BTHP

9.1. Test Standard and Limit	39
9.2. Test Setup	39
9.3. Test Procedure	39
9.4. Test Data	39
10. 100kHz Bandwidth of Frequency Band Edge Requirement	43
10.1. Test Standard and Limit	43
10.2. Test Setup	43
10.3. Test Procedure	43
10.4. Test Data	43
11. Antenna Requirement	48
11.1. Test Standard and Requirement.	48
11.2. Antenna Connected Construction	48
APPENDIX I TEST SETUP PHOTOGRAPH	49
APPENDIX II EXTERNAL PHOTOGRAPH	51
APPENDIX III INTERNAL PHOTOGRAPH	o55

TEST REPORT

Applicant : GENERALSCAN ELECTRONICS CO., LIMITED

Manufacturer : GENERALSCAN ELECTRONICS CO., LIMITED

Product Name : Barcode Scanner

GS R1000BT-HP, GS M100BT, GS M100BT-HP, GS M100BT-PRO, GS M500BT,

GS R1000BT, GS R1000BT-PRO, GS R1500BT-HW, GS R5000BT,

Model No. : GS R5000BT-51C, GS R5000BT-5MQ, GS WT1000, GS WT1000-HP,

GS WT1500-HW, GS MT6100-HP, GS MT6500-SE, GS WG7100, GS WG7500,

GS HM8100, GS HM8500

Trade Mark : N.A.

Rating(s) : Input: DC 5V, 500A(with DC 3.7V, 500mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : **ANSI C63.10: 2013**

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Jan. 22~Feb. 19, 2019	
Anbotek Product Safety	
Prepared by	Anb otek Anb
*Approved * (Engineer / Oliav Yang)	And motek A
mbotek Anbore K sotek Anbotek Anbo tok Anbo	
Snavy Meng	
Reviewer (Supervisor / Snowy Men	botek Anbore
(Supervisor / Snowy Men	g) Anbotek Anbo
"Of My	
SOW VI	tek Auportek A
tek about Am tek and Silver	botek Anbotek
Approved & Authorized Signer	hotek Anbote
(Manager / Sally Zhang)	Ant hotek Anbotek

1. General Information

1.1. Client Information

Applicant	: GENERALSCAN ELECTRONICS CO., LIMITED
Address	Room A608, 6 Floor, Building 3, Ya Di Science Park, He Tai Road, BaiYun District, Guangzhou, China.510425
Manufacturer	: GENERALSCAN ELECTRONICS CO., LIMITED
Address	Room A608, 6 Floor, Building 3, Ya Di Science Park, He Tai Road, BaiYun District, Guangzhou, China.510425
Factory	: GENERALSCAN ELECTRONICS CO., LIMITED
Address	Room A608, 6 Floor, Building 3, Ya Di Science Park, He Tai Road, BaiYun District, Guangzhou, China.510425

1.2. Description of Device (EUT)

Product Name	:	Barcode Scanner	ek Anbotek Anbotek Anbotek A		
Model No.	:	GS R1000BT, GS R1000BT-PROGS R5000BT-51C, GS R5000BT-51C, GS R5000BT-51C, GS MT6100-1GS HM8100, GS HM8500	GS M100BT-HP, GS M100BT-PRO, GS M500BT, O, GS R1500BT-HW, GS R5000BT, I7-5MQ, GS WT1000, GS WT1000-HP, HP, GS MT6500-SE, GS WG7100, GS WG7500, except the model name, so we prepare "		
Trade Mark	:	N.A.	Anbotek Anbotek Anbotek Anbotek		
Test Power Supply	:	DC 5V for PC/ DC 3.7V Battery inside			
Test Sample No.	:	S1(Normal Sample), S2(Engineering Sample)			
		Operation Frequency:	2402MHz~2480MHz		
		Transfer Rate:	1/2/3 Mbits/s		
Product		Number of Channel:	79 Channels		
Description	:	Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK		
		Antenna Type:	PCB Antenna		
		Antenna Gain(Peak):	3.03 dBi		

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2)This report is for BT 4.0 EDR module.

1.3. Auxiliary Equipment Used During Test

1		All toll all the second and the seco
		Manufacturer: FUJITSU LIMITED
		M/N: LH531
		S/N: 518127-01R2300775
		DC Rating: DC 19V, 4.22A
Notebook	:	CE, FCC DOC, CCC
		Adapter:
		M/N: ADP-602HA
		Input: 100V-240V~ 50/60Hz, 1.5A
		Output: DC 19V, 3.16A

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

TEST MODE:

Mode 1	Anbotes Anb Notek Anb	CH00	Annbotek	Anbotek Anbo
Mode 2	GFSK	CH39	tek who	ek Anboten Anbe
Mode 3	Anbore And abotek	CH78	otek v	botek Anbote And bote
Mode 4	anboutek Anbotek	CH00	ip wotek	Anbotek Anbote Ans
Mode 5	π/4-DQPSK	СН39	Andhotek	TX+ Charging Mode/TX Only
Mode 6	Anbotek Anbo otek Anb	CH78	Anthotek	Anbotek Anbot
Mode 7	Anbotes Anbo notek	CH00	ek abol	ek Anbotek Anbo
Mode 8	8-DPSK	CH39	tek bi.	botek Anboten Anbu
Mode 9	k Anbore And And botek	CH78	bo-stek A.	anbotek Anboten Anbo

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

FCC ID:2ADNT-R1000BTHP

1.5. List of channels

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
00	2402	Anb 17	2419	34	2436	51	2453	68	2470
01	2403	18	2420	35	2437	52	2454	69	2471
02	2404	19	2421	36	2438	53 oten	2455	70	2472
03	2405	20	2422	37	2439	54	2456	71	2473
04	2406	21	2423	38	2440	55	2457	72	2474
05	2407	22	2424	39	2441	56	2458	73	2475
05	2408	23	2425	40	2442	57	2459	74	2476
Let 07 AT	2409	24	2426	41 Anb	2443	58	2460	75	2477
08	2410	25	2427	42 N	2444	59	2461	76	2478
09	2411	26	2428	43	2445	60	2462	ote ^X 77	2479
10	2412	27 📉	2429	44	2446	61 mbo	2463	78	2480
p.I.Pole	2413	28	2430	45	2447	62	2464		
12	2414	29	2431	46	2448	63	2465		
13	2415	30	2432	47,,,,,,,	2449	64	2466		
14	2416	31	2433	48	2450	65	2467	5,00	
15	2417	32	2434	49	2451	66	2468		
16	2418	33	2435	50	2452	67	2469		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

1.6. Description Of Test Setup

CE

RE

1.7. Test Equipment List

he.	- K 010	VILL	You You	per.	ate.	VUD.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
otek 1. nbotek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 05, 2018	1 Year
2	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
Anbot 7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year
10.	Horn Antenna	A-INFO	LB-180400-KF	J211060628	Nov. 20, 2018	1 Year
MI.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A MOON	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	IVYTECH	IV3605	1804D360510	Apr. 02, 2018	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	Nov. 01, 2018	1 Year

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	Anbotek Anbote Am
		Ur = 3.8 dB (Vertical)	Anbotek Anbot An
		Anbotek Anbote And	k Anbotek Anbotek
Conduction Uncertainty	:	Uc = 3.4 dB	otek Anbotek Anbo

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(1)	Conducted Peak Output Power	PASS
15.247(a)(1)	20dB Occupied Bandwidth	PASS
15.247(a)(1)	Carrier Frequencies Separation	PASS
15.247(a)(1)	Hopping Channel Number	PASS
15.247(a)(1)	Dwell Time	PASS
15.247(d)	Band Edge	PASS
Remark: "N/A" is an abbre	Min tek abotek Anbo K Alek	PASS

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	7 Anbore America	Anbotek Anbo tek		
	<u> </u>	Maximum RF	Line Voltage (dBuV)		
	Frequency	Quasi-peak Level	Average Level		
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
	500kHz~5MHz	56 56	46		
	5MHz~30MHz	60 August 1997	50 Anti		

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation Low channel(TX+Charging Mode) which is the worst case, only the worst case is recorded in the report. Please to see the following pages.

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 120V, 60Hz for PC

Comment: Live Line

Tem.: 16.7℃ Hum.: 49%

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 120V, 60Hz for PC

Comment: Neutral Line

Tem.: 16.7°C Hum.: 49%

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.20	09 and 15.205	Anthotok	Anbotek A	'upo stek
7	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	obotek - Anbo	o Pur	300 000
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Ar	Pore VIII	and 30 And
5	1.705MHz-30MHz	30	Anbotek	Anbor P	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3.ek
	88MHz~216MHz	150	43.5	Quasi-peak	3 _{botek}
	216MHz~960MHz	200	46.0	Quasi-peak	kek 3 sabotek
y c	960MHz~1000MHz	500	54.0	Quasi-peak	atek 3 nobe
	Above 1000MHz	500	54.0	Average	3
	Above 1000MHZ	botek - Anbot	74.0	Peak	3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying

aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation Middle channel(TX Only) which is the worst case, only the worst case is recorded in the report

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Note: The data is in TX only mode, and this is the worst mode.

Test Results (30~1000MHz)

Job No.: SZAWW190122007-01 Temp.(°C)/Hum.(%RH): 24.8°C/54%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: Mode 2 Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW190122007-01 Temp.(°C)/Hum.(%RH): 24.8°C/54%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: Mode 2 Polarization: Vertical

Test Results (1GHz-25GHz)

Test Mode: C	CH00			Test	channel: Lowe	st		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	38.83	34.04	6.58	34.09	45.36	74.00	-28.64	boteV
7206.00	32.84	37.11	7.73	34.50	43.18	74.00	-30.82	vap Nek
9608.00	32.37	39.31	9.23	34.79	46.12	74.00	-27.88	V
12010.00	*	stek .	hbotek P	upote	Pur potek	74.00	Anbo.	V
14412.00	*	otek	nbotek	Aupoten	Au	74.00	Anbot	V V
4804.00	43.42	34.04	6.58	34.09	49.95	74.00	-24.05	H
7206.00	34.73	37.11	7.73	34.50	45.07	74.00	-28.93	H
9608.00	31.93	39.31	9.23	34.79	45.68	74.00	-28.32	Anboro
12010.00	*nbote	Anbo	18K	abotek	Anboten	74.00	Anbotek	PH H
14412.00	tek * Anb	Vey Vi	loor b	abotek	Anbotek	74.00	Anbotek	$H^{\gamma n'}$
20			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	27.35	34.04	6.58	34.09	33.88	54.00	-20.12	V
7206.00	21.35	37.11	7.73	34.50	31.69	54.00	-22.31	V
9608.00	20.34	39.31	9.23	34.79	34.09	54.00	-19.91	V
12010.00	potek * A	lpor.	potek .	Anbotes	Aupo	54.00	Anbot	V
14412.00	Anbote*	Aupor	An botek	Anbote	Ambo	54.00	ek Ant	V
4804.00	31.75	34.04	6.58	34.09	38.28	54.00	-15.72	^{Anboke}
7206.00	23.63	37.11	7.73	34.50	33.97	54.00	-20.03	μΉ
9608.00	20.19	39.31	9.23	34.79	33.94	54.00	-20.06	Ĥυρ
12010.00	*	potek	Aupore	An notek	Anbotek	54.00	nbote	⁶ Н р
14412.00	*	nbotek	Aupote	Anv	Anbote	54.00	P. 20	ote ^K H

Test Results (1GHz-25GHz)

Гest Mode: (CH39		channel: Midd	dle				
Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	37.50	34.38	6.69	34.09	44.48	74.00	-29.52	boteV
7323.00	31.96	37.22	7.78	34.53	42.43	74.00	-31.57	Vap
9764.00	31.58	39.46	9.35	34.80	45.59	74.00	-28.41	V
12205.00	*	stek	abotek p	upote	W. Dolek	74.00	Aupo	V
14646.00	* Anti	ntek .	nbotek	Aupoten	An	74.00	Aupor	V V
4882.00	41.82	34.38	6.69	34.09	48.80	74.00	-25.20	H
7323.00	33.73	37.22	7.78	34.53	44.20	74.00	-29.80	H
9764.00	31.02	39.46	9.35	34.80	45.03	74.00	-28.97	Anbote H
12205.00	* Anbote	Anbo	rek Vi	botek	Anboten	74.00	anbotek	Ĥ
14646.00	cek * Anbo	Vek by	100r B	potek	Anboten	74.00	anbotek	H
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	26.29	34.38	6.69	34.09	33.27	54.00	-20.73	V
7323.00	20.63	37.22	7.78	34.53	31.10	54.00	-22.90	V
9764.00	19.70	39.46	9.35	34.80	33.71	54.00	-20.29	V
12205.00	poter * A	lpor.	abotek	Aupoten	Augo	54.00	Anbot	V
14646.00	Anbot&k	Anbore	All botek	Anbote	Anbo	54.00	lek Ant	V
4882.00	30.54	34.38	6.69	34.09	37.52	54.00	-16.48	Yupoten
7323.00	22.82	37.22	7.78	34.53	33.29	54.00	-20.71	PAH.
9764.00	19.44	39.46	9.35	34.80	33.45	54.00	-20.55	Ηn
12205.00	stek *	botek	Aupore.	And motek	Anbotek	54.00	Abote	Н
14646.00	*	botek	Anboten	Nun-	k abote	54.00	P. P. 11.	ote ^K H

Test Results (1GHz-25GHz)

Test Mode: (CH78			Test	channel: Highe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	36.70	34.72	6.79	34.09	44.12	74.00	-29.88	boteV
7440.00	31.43	37.34	7.82	34.57	42.02	74.00	-31.98	Vel Vel
9920.00	31.11	39.62	9.46	34.81	45.38	74.00	-28.62	V
12400.00	*	tek	abotek p	upor	An. Potek	74.00	Aupor	V
14880.00	* And	otek	nbotek	Aupoten	Au., Potek	74.00	Aupor	V V
4960.00	40.86	34.72	6.79	34.09	48.28	74.00	-25.72	H
7440.00	33.13	37.34	7.82	34.57	43.72	74.00	-30.28	H
9920.00	30.48	39.62	9.46	34.81	44.75	74.00	-29.25	Anbot H
12400.00	* Anbote	Aupe	16K	botek	Vupore, K	74.00	Anbotek	H4
14880.00	cek * Amb	Sex V.	100 PSK	abotek	Anboten	74.00	anbotek	H
201			A	verage Value	e	0.0		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	25.70	34.72	6.79	34.09	33.12	54.00	-20.88	V
7440.00	20.23	37.34	7.82	34.57	30.82	54.00	-23.18	V
9920.00	19.34	39.62	9.46	34.81	33.61	54.00	-20.39	V
12400.00	poter * A	loo stek	abotek.	Aupole	And	54.00	Anbot	V
14880.00	Anbotek	Aupor	Abotek	Anbore	AUPO	54.00	lek Aut	V
4960.00	29.87	34.72	6.79	34.09	37.29	54.00	-16.71	H
7440.00	22.37	37.34	7.82	34.57	32.96	54.00	-21.04	MA
9920.00	19.03	39.62	9.46	34.81	33.30	54.00	-20.70	Hal
12400.00	otek *	potek	Aupor	And	Anbotek	54.00	A shote	Н
14880.00	*	hotek	Anboten	Ann	c abote	54.00	-V. P.V.	otel H

Remark

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Radiated Band Edge:

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.2	247 (b)(3)	Annatek	Anbotek	Anbor	Air
Test Limit	125mW	A. nbotek	Anbolo	And	Anbotek	Aupor	ik bi

5.2. Test Setup

5.3. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above,
- 2. Spectrum Setting:

RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = \max hold

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode :	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature :	24℃
Test Result	:	PASS	Humidity :	55%RH

Channel Frequency (MHz)	Peak Power output (dBm)	Limit (dBm)	Results	Modulation
2402	7.926	20.96	PASS	BDR
2441	7.118	20.96	PASS	BDR
2480	7.862	20.96	PASS	BDR
2402	8.269	20.96	PASS	EDR
2441	7.557 And Ote 1	20.96	PASS	EDR
2480	8.065	20.96	PASS	EDR

Remark: The EDR was tested on (π /4QPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

6. 20DB Occupy Bandwidth Test

6.1. Test Standard

Test Standard	FCC Part15 C Section 15.247 (a)(1)				p.
---------------	------------------------------------	--	--	--	----

6.2. Test Setup

6.3. Test Procedure

Using the following spectrum analyzer settings:

- 1. Span= approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel.
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

6.4. Test Data

Test Item : 20dB BW Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 24°C

Test Result : PASS Humidity : 55%RH

	1.	VII.	- NO P.	10.	
o'i	Channel	Frequency(MHz)	20dB Down BW(kHz)	Modulation Mode	
00	Low	2402	948.7	BDR	
	Middle	2441	943.1	BDR	
	High	2480	930.1	BDR Ambouek	
-	Low	2402	1333	EDR	
187	Middle	2441	1333 Anbore	EDR	
300	High	2480	1328	EDR	

Remark: The EDR was tested on (π /4QPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

7. Carrier Frequency Separation Test

7.1. Test Standard and Limit

0	Test Standard	FCC Part15 C Section 15.247 (a)(1)	Anbotek	Anbo	P
	Test Limit	>25KHz or >two-thirds of the 20 dB bandwidth	Anbotek	Anboatek	P

7.2. Test Setup

7.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer settings:

- 1. Span= Wide enough to capture the peaks of two adjacent channels
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

7.4. Test Data

Test Item	:	Frequency Separation	Test Mode :	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature :	24℃
Test Result	:	PASS	Humidity :	55%RH

Channel	Frequency	Separation Read	Limit	Modulation Mode
	(MHz)	Value (kHz)	(kHz)	
Low	2402	1000	948.7	BDR
Middle	2441	1000	943.1	BDR
High	2480	1000	930.1	BDR Anboa
Low	2402	1000	888.7	Annote EDR Anno
Middle	2441	1000	888.7	EDR
High	2480	1000	885.3	EDR

Remark: 1. The EDR was tested on (π /4QPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

2. The limit of mode (EDR) is 2/3 of 20dB BW.

Test Mode: BDR----Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

8. Number of Hopping Channel Test

8.1. Test Standard and Limit

ol,	Test Standard	FCC Part15 C S	ection 15.24	7 (a)(1)	An botek	Anbotek	Anbo	p.,
	Test Limit	>15 channels	Anbotek	Anboro	Air	Anboten	Anboatek	

8.2. Test Setup

8.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer setting:

- 1. Span= the frequency band of operation
- 2. Set the RBW = 100kHz.
- 3. Set the VBW = 300kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8.4. Test Data

Test Item :	Number of Hopping Frequency	Test Mode :	CH Low ~ CH High
Test Voltage :	DC 3.7V Battery inside	Temperature :	24°C
Test Result :	PASS	Humidity :	55%RH

Hopping Channel Frequency Range	Quantity of Hopping Channel	Quantity of Hopping Channel		
2402-2480MHz	79 Anbo	>15		
Remark: The EDR was tested on ($\pi/4$ C	PPSK, 8DPSK) modes, only the worst data	of (8DPSK) is attached in the		

Remark: The EDR was tested on (π /4QPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

BDR Mode

EDR Mode

9. Dwell Time Test

9.1. Test Standard and Limit

ol,	Test Standard	FCC Part15 (C Section 15.2	47 (a)(1)	Am	Anbotek	Anbo	p.
	Test Limit	0.4 sec	Anbotek	Anboro	Air	Anboten	Anbo	

9.2. Test Setup

9.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span= zero span, centered on a hopping channel
- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 1 MHz.
- 4. Sweep time = as necessary to capture the entire dwell time per hopping channel.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

9.4. Test Data

Test Item	:	Time of Occupancy	Test Mode	:	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature	:	24℃

Test Result : PASS Humidity : 55%RH

Package Type	Pulse width (ms)	Time slot length(ms)	Dwell time (ms)	Limit (s)	Modulation
DH1	0.386	time slot length *1600/2 /79 * 31.6	123.52	0.4	BDR
DH3	1.645	time slot length *1600/4 /79 * 31.6	263.20	0.4	BDR
DH5	2.888	time slot length *1600/6 /79 * 31.6	308.05	0.4	BDR
3DH1	0.390	time slot length *1600/2 /79 * 31.6	124.80	0.4	EDR
3DH3	1.640	time slot length *1600/4 /79 * 31.6	262.40	0.4	EDR
3DH5	2.888	time slot length *1600/6 /79 * 31.6	308.05	0.4	EDR

Remark: The EDR was tested on (π /4QPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---DH1

Test Mode: BDR---DH3

Test Mode: BDR---DH5

Test Mode: EDR---3DH1

Test Mode: EDR---3DH3

Test Mode: EDR---3DH5

10. 100kHz Bandwidth of Frequency Band Edge Requirement

10.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

10.2. Test Setup

10.3. Test Procedure

The EUT must have its hopping/Non-hopping function enabled. Using the following spectrum analyzer setting:

- 1. Set the RBW = 100kHz.
- 2. Set the VBW = 300kHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = \max hold.
- 6. Allow trace to fully stabilize.

10.4. Test Data

Test Item	:	Band edge		Test Mode	:	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Anbo	Temperature	:	24°C
Test Result	:	PASS		Humidity	:	55%RH

Remark: The EDR was tested on $(\pi/4\text{QPSK}, 8\text{DPSK})$ modes, only the worst data of $(\pi/4\text{DQPSK})$ is attached in the following pages.

For Hopping Mode

BDR mode

EDR mode

For Non-Hopping Mode

BDR mode -- Lowest

BDR mode -- Highest

For Non-Hopping Mode

EDR mode -- Lowest

EDR mode -- Highest

Conducted Emission Method

Test Mode: BDR---Low

Test Mode: BDR---Mid

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Mid

Test Mode: EDR---High

11. Antenna Requirement

11.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished
	by the responsible party shall be used with the device. The use of a permanently
	A MOLE AND MAN AND AND AND AND AND AND AND AND AND A
	attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the
	manufacturer may design the unit so that a broken antenna can be replaced by the user, but
Requirement	the use of a standard antenna jack or electrical connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.
	Point-to-point operations may employ transmitting antennas with directional gain greater
	than 6dBi provided the maximum conducted output power of the intentional radiator is
	reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

11.2. Antenna Connected Construction

The antenna is PCB Antenna which permanently attached, and the best case gain of the antenna is 3.03 dBi. It complies with the standard requirement.

Code:AB-RF-05-a

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

----- End of Report --