## Homework 6

## Denis Ostroushko

2022-10-22

```
library(MASS) # for stepwise regression
    # pro tip: load MASS before tidyverse, otherwise it really messes with select() and other essential d
    # function
library(tidyverse)
library(kableExtra)
library(readxl)
library(gridExtra)
library(ggeffects)
library(mltools) # one hot encoding outside of caret package
library(data.table) # need this for mltools to work
library(olsrr) #another package for stepwise regression
```

## 12.2

```
infants <- readxl::read_xls('/Users/denisostroushko/Desktop/UofM MS/MS Fall 2022/Puhb 7405/Data Sets/In
colnames(infants) <- c("head_c", "length", "gest_weeks", "birth_w", "m_age", "toxemia")
# process the data and keep variables for analysis
infants_f <- infants %>%
    select(birth_w, gest_weeks, m_age)
```

12.2 -  $\ensuremath{\mathrm{A}}$  Model Specifications and T-tests

# Correlation Between Mother's Age and Infant's Birth Weight: 0.1263





 ${\bf Model\ specification:}$ 

 $E[Y] = \hat{\beta}_0 + \hat{\beta}_1*Gestional~Weeks + \hat{\beta}_2*Mother's~Age + \hat{\beta}_3*Mother's~Age^2$  Model Summary

| Model Term           | Estimate  | Std. Error | T-value | P-value |
|----------------------|-----------|------------|---------|---------|
| Intercept            | -1442.928 | 496.023    | -2.909  | 0.005   |
| Gestational Weeks    | 75.667    | 10.652     | 7.103   | 0.000   |
| Mother's Age         | 30.252    | 36.813     | 0.822   | 0.413   |
| Mother's Age Squared | -0.582    | 0.656      | -0.887  | 0.377   |

Comemnts on Model summary:

 $\bullet~$  R and Adjusted R: 0.3904 0.3714

- Coefficients for Age and Age ^ 2

### **Evaluate Extra Sum of Squares**

Focus: Evaluate SSR(Age^2 | Gest, Age)

| Model Term           | DF | SS         | MS         | F-statistic | $P(F^* > F)$ |
|----------------------|----|------------|------------|-------------|--------------|
| Gestational Weeks    | 1  | 3755985.30 | 3755985.30 | 60.4451134  | 0.0000       |
| Mother's Age         | 1  | 15505.20   | 15505.20   | 0.2495254   | 0.6186       |
| Mother's Age Squared | 1  | 48879.84   | 48879.84   | 0.7866239   | 0.3773       |
| Residuals            | 96 | 5965322.40 | 62138.78   | NA          | NA           |

- Extra SS
- Extra R^2
- Connection with the t-test

#### Visualize Model Effects

# Model Estiamted Effects of Mother's Age on Infant's Birth Weight



Additional Elements: — Birth Weight Mean Value: 1114

• Comment on Standard Error and fit, we can fit a line with slope = +

#### Interpretation of Mother's Age Coefficients

From google, interpretation of the quadratic coefficient:

" A positive quadratic coefficient causes the ends of the parabola to point upward. A negative quadratic coefficient causes the ends of the parabola to point downward. The greater the quadratic coefficient, the narrower the parabola. The lesser the quadratic coefficient, the wider the parabola."

https://stats.stackexchange.com/questions/108657/how-to-interpret-coefficients-of-x-and-x2-in-same-regression

It may be useful to describe the effect of a unit change at some low value, some high value and somewhere in between.

### 12.2 - B

Correlation Transformation for variables  $Y, X_1, ..., X_{p-1}$ , denoted by V:

$$V^* = \frac{1}{\sqrt{n-1}} \times \left(\frac{V - \bar{V}}{sd(V)}\right)$$

```
correlation_transformation <-
  function(X, n = nrow(infants_f_cor_tr)){
    1/(sqrt(n - 1)) * (X - mean(X))/sd(X)
}
infants_f$m_age_sq <- infants_f$m_age^2
infants_f_cor_tr <- infants_f
infants_f_cor_tr <- data.frame(lapply(infants_f_cor_tr, correlation_transformation))</pre>
```

Table 1: Original Scale Regression Estimates

| Model Term           | Estimate  | Std. Error | T-value | P-value |
|----------------------|-----------|------------|---------|---------|
| Intercept            | -1442.928 | 496.023    | -2.909  | 0.005   |
| Gestational Weeks    | 75.667    | 10.652     | 7.103   | 0.000   |
| Mother's Age         | 30.252    | 36.813     | 0.822   | 0.413   |
| Mother's Age Squared | -0.582    | 0.656      | -0.887  | 0.377   |

Table 2: Correlation Transformation Regression Estimates

| Model Term           | Estimate | Std. Error | T-value | P-value |
|----------------------|----------|------------|---------|---------|
| Intercept            | 0.000    | 0.008      | 0.000   | 1.000   |
| Gestational Weeks    | 0.610    | 0.086      | 7.103   | 0.000   |
| Mother's Age         | 0.576    | 0.701      | 0.822   | 0.413   |
| Mother's Age Squared | -0.616   | 0.694      | -0.887  | 0.377   |

- intercept is zero as expected in corr transformed
- P-values are different for m age
- Same conclusions apply

#### 12.2 - C

Transformation back to the original scale:

For variables  $X_1, ..., X_{p-1}$ :

$$\hat{\beta}_i = \hat{\beta}_i^* \times \frac{sd(Y)}{sd(X_i)}$$

Table 3: Original Model Estiamtes and C.I.

| Model Term           | Coefficient | 95% C.I. Lower Bound | 95% C.I. Upper Bound |
|----------------------|-------------|----------------------|----------------------|
| Gestation Weeks      | 75.667      | 54.522               | 96.811               |
| Mother's Age         | 30.252      | -42.821              | 103.324              |
| Mother's Age Squared | -0.582      | -1.884               | 0.721                |

Table 4: Estimaes obtained via Back-Transformation and C.I.

| Model Term           | Coefficient | 95% C.I. Lower Bound | 95% C.I. Upper Bound |
|----------------------|-------------|----------------------|----------------------|
| Gestation Weeks      | 75.678      | 54.522               | 96.811               |
| Mother's Age         | 30.268      | -42.821              | 103.324              |
| Mother's Age Squared | -0.582      | -1.884               | 0.721                |

```
transform_back <-
  function(Beta_star, s_x, s_y){
    Beta_star * (s_y / s_x)
}</pre>
S_Y <- sd(infants_f$birth_w)
```

Hid code to prepare the table.

recall the the original model with the transformed variables was called <code>inf\_lm</code>. Used it for Extra SS, t-tests and model effects. We can obtain standard errors and confidence intervals for the estimates to compare with the transformation back from the correlation transformation procedure.

```
conf <- data.frame(confint(inf_lm)) # just the confidence intervals
conf <- cbind(coefficients(inf_lm), conf )</pre>
```

so we can use linear transformations good to know

## 13.4

```
cig <- read_xlsx('/Users/denisostroushko/Desktop/UofM MS/MS Fall 2022/Puhb 7405/Data Sets/E-CID-3.xlsx'
cig$Y1 <- with(cig, log(NNAL_vt4_creat / NNAL_vt0_creat))
cig$Y2 <- with(cig, log(TNE_vt4_creat / TNE_vt0_creat))
cig <- cig %>%
    select(Y1, Y2, arm, age, gender, white, educ2, income30, FTND)
colnames(cig)[length(cig)] <- "ftnd"</pre>
```

#### 13.4 - A

- Arm will result in 4 -1 variables
- · Age is untouched
- FTND is treated as continuous

• Others need to be converted to factor variables

```
cig <- cig %>% select(
   Y1, Y2, age, arm, gender, educ2, income30, ftnd
)

cig$arm <- as.factor(cig$arm)

cig <- data.frame(one_hot(as.data.table(cig))) %>% select(-arm_5)

cig[,4:(length(cig)-1)] <- lapply(cig[,4:(length(cig)-1)], as.factor)

n_unique <- function(x){length(unique(x))}

meta_data <-

data.frame(
   class = sapply(cig, class),
   n_unique = sapply(cig, n_unique)
)</pre>
```

Table 5: Sumamry of Covariates

| Predictors                | Assigned Class | N of Unique Values |
|---------------------------|----------------|--------------------|
| age                       | numeric        | 51                 |
| $arm\_6$                  | factor         | 2                  |
| $\operatorname{arm}_{-7}$ | factor         | 2                  |
| $arm\_8$                  | factor         | 2                  |
| gender                    | factor         | 2                  |
| educ2                     | factor         | 2                  |
| income30                  | factor         | 2                  |
| $\operatorname{ftnd}$     | numeric        | 8                  |

## 13.4 - B Regression on Y1

```
y1_lm1 <- lm(Y1 ~ . - Y2, data = cig )
```

Table 6: Original Scale Regression Estimates

| Model Term        | Estimate | Std. Error | T-value | P-value |
|-------------------|----------|------------|---------|---------|
| Intercept         | 0.027    | 0.281      | 0.094   | 0.925   |
| Age               | -0.003   | 0.004      | -0.701  | 0.484   |
| Arm 6             | -0.690   | 0.175      | -3.940  | 0.000   |
| Arm 7             | -0.068   | 0.174      | -0.392  | 0.696   |
| Arm 8             | -0.426   | 0.179      | -2.380  | 0.018   |
| Gender            | -0.112   | 0.109      | -1.031  | 0.304   |
| Education         | -0.066   | 0.112      | -0.588  | 0.557   |
| Income $>=$ \$30K | -0.229   | 0.119      | -1.922  | 0.056   |
| FTND              | 0.046    | 0.042      | 1.093   | 0.276   |

#### • Bonferroni Adjustments

```
-P-value=0.05
```

- Bonferroni adjusted P-value=0.0063

corrected p-value = p-value / number of predictors

```
sum_bonf_adj <- sum2 %>% select(`Model Term`, `P-value`)
sum_bonf_adj$`Significant at Adj. Level` =
  with(sum_bonf_adj,
        ifelse(`P-value` < 0.05 / n_predictors , "*", "")
        )

sum_bonf_adj %>%
  kbl( booktabs = T, caption = "Regression of Y1 Bonferroni Adjusted Comparison") %>%
  kable_styling(latex_options = c("striped", "HOLD_position")) %>%
  column_spec(3, width = "2cm")
```

Table 7: Regression of Y1 Bonferroni Adjusted Comparison

| Model Term        | P-value | Significant at<br>Adj. Level |
|-------------------|---------|------------------------------|
| Intercept         | 0.925   |                              |
| Age               | 0.484   |                              |
| Arm 6             | 0.000   | *                            |
| Arm 7             | 0.696   |                              |
| Arm 8             | 0.018   |                              |
| Gender            | 0.304   |                              |
| Education         | 0.557   |                              |
| Income $>=$ \$30K | 0.056   |                              |
| FTND              | 0.276   |                              |

#### • HOLM Adjustments

- order p-values smallest to largest
- if first p-value if smaller than 0.05/8 = 0.0063 then conclude significance, and move to next predictor, otherwise stop, none are significant
- next predictor will be tested at 0.05/7 = 0.0071

```
holm_data <-
   sum2 %>% select(`Model Term`, `P-value`) %>% arrange(`P-value`) %>%
   filter(`Model Term` != "Intercept")

holm_data$`Comparison P-value` <- 1
holm_data$`Significant at Adj. Level` <- ""

cur_adj_n <- n_predictors

for(i in 1:nrow(holm_data)){
   cur_level <- 0.05 / cur_adj_n
   holm_data[i,3] <- cur_level</pre>
```

```
if(holm_data[i,2] <= cur_level ){
    cur_adj_n <- cur_adj_n - 1
    holm_data[i,3] <- cur_level
    holm_data[i,4] <- "*"
}

holm_data[,2:3] <- lapply(holm_data[,2:3], round_3)

holm_data %>%
    kbl( booktabs = T, caption = "Regression of Y1 HOLM Adjusted Comparison") %>%
    kable_styling(latex_options = c("striped", "HOLD_position")) %>%
    column_spec(c(3,4), width = "2cm")
```

Table 8: Regression of Y1 HOLM Adjusted Comparison

| Model Term        | P-value | Comparison<br>P-value | Significant at<br>Adj. Level |
|-------------------|---------|-----------------------|------------------------------|
| Arm 6             | 0.000   | 0.006                 | *                            |
| Arm 8             | 0.018   | 0.007                 |                              |
| Income $>=$ \$30K | 0.056   | 0.007                 |                              |
| FTND              | 0.276   | 0.007                 |                              |
| Gender            | 0.304   | 0.007                 |                              |
| Age               | 0.484   | 0.007                 |                              |
| Education         | 0.557   | 0.007                 |                              |
| Arm 7             | 0.696   | 0.007                 |                              |

#### • Hochberg Adjustments

- Sort P-values largest to smallest
- Compare the largest to 0.05, if significant, declare all significant
- Otherwise, compare the next one to 0.05/2 = 0.025
- Keep comparing to 0.05/3, 0.05/4, etc.. until we find a comparison where

```
hoch_data <-
   sum2 %>% select(`Model Term`, `P-value`) %>% arrange(-`P-value`) %>%
   filter(`Model Term` != "Intercept")

hoch_data$`Comparison P-value` <- 0.05
hoch_data$`Significant at Adj. Level` <- ""

cur_adj_n <- 1

for(i in 1:nrow(hoch_data)){

   cur_level <- 0.05 / cur_adj_n
   hoch_data[i,3] <- cur_level

   if(hoch_data[i,2] > cur_level){
      cur_adj_n <- cur_adj_n + 1

      holm_data[i,3] <- cur_level
}</pre>
```

```
hoch_data[,4] <- ifelse(hoch_data[,2] < hoch_data[,3], "*", "")
hoch_data[,2:3] <- lapply(hoch_data[,2:3], round_3)
hoch_data %>%
  kbl( booktabs = T, caption = "Regression of Y1 HOCHBERG Adjusted Comparison") %>%
  kable_styling(latex_options = c("striped", "HOLD_position")) %>%
  column_spec(c(3,4), width = "2cm")
```

Table 9: Regression of Y1 HOCHBERG Adjusted Comparison

| Model Term        | P-value | Comparison<br>P-value | Significant at<br>Adj. Level |
|-------------------|---------|-----------------------|------------------------------|
| Arm 7             | 0.696   | 0.050                 |                              |
| Education         | 0.557   | 0.025                 |                              |
| Age               | 0.484   | 0.017                 |                              |
| Gender            | 0.304   | 0.013                 |                              |
| FTND              | 0.276   | 0.010                 |                              |
| Income $>=$ \$30K | 0.056   | 0.008                 |                              |
| Arm 8             | 0.018   | 0.007                 |                              |
| Arm 6             | 0.000   | 0.006                 | *                            |

#### • SUMMARY OF COEFFICIENT SELECTION FOR Y1 REGRESSION

#### Regression on Y2

```
y2_lm1 <- lm(Y2 ~ . - Y1, data = cig )
```

Table 10: Original Scale Regression Estimates

| Model Term        | Estimate | Std. Error | T-value | P-value |
|-------------------|----------|------------|---------|---------|
| Intercept         | -0.183   | 0.438      | -0.418  | 0.677   |
| Age               | -0.002   | 0.006      | -0.243  | 0.808   |
| Arm 6             | -0.278   | 0.273      | -1.017  | 0.310   |
| Arm 7             | 0.195    | 0.272      | 0.718   | 0.474   |
| Arm 8             | -0.095   | 0.279      | -0.341  | 0.734   |
| Gender            | -0.096   | 0.170      | -0.567  | 0.572   |
| Education         | -0.198   | 0.175      | -1.129  | 0.260   |
| Income $>=$ \$30K | -0.218   | 0.186      | -1.176  | 0.241   |
| FTND              | 0.056    | 0.066      | 0.855   | 0.394   |

• Bonferroni Adjustments

```
sum_bonf_adj <- sum2 %>% select(`Model Term`, `P-value`)
sum_bonf_adj$`Significant at Adj. Level` =
  with(sum_bonf_adj,
        ifelse(`P-value` < 0.05 / n_predictors , "*", "")
        )</pre>
```

```
sum_bonf_adj %>%
kbl( booktabs = T, caption = "Regression of Y2 Bonferroni Adjusted Comparison") %>%
kable_styling(latex_options = c("striped", "HOLD_position")) %>%
column_spec(3, width = "2cm")
```

Table 11: Regression of Y2 Bonferroni Adjusted Comparison

| Model Term      | P-value | Significant at<br>Adj. Level |
|-----------------|---------|------------------------------|
| Intercept       | 0.677   |                              |
| Age             | 0.808   |                              |
| Arm 6           | 0.310   |                              |
| Arm 7           | 0.474   |                              |
| Arm 8           | 0.734   |                              |
| Gender          | 0.572   |                              |
| Education       | 0.260   |                              |
| Income >= \$30K | 0.241   |                              |
| FTND            | 0.394   |                              |

#### • HOLM Adjustments

```
holm_data <-
  sum2 %>% select(`Model Term`, `P-value`) %>% arrange(`P-value`) %>%
  filter(`Model Term` != "Intercept")
holm_data$`Comparison P-value` <- 1</pre>
holm_data$`Significant at Adj. Level` <- ""
cur_adj_n <- n_predictors</pre>
for(i in 1:nrow(holm_data)){
  cur_level <- 0.05 / cur_adj_n</pre>
  holm_data[i,3] <- cur_level</pre>
  if(holm_data[i,2] <= cur_level ){</pre>
    cur_adj_n \leftarrow cur_adj_n - 1
    holm_data[i,3] <- cur_level
    holm_data[i,4] <- "*"
  }
}
holm_data[,2:3] <- lapply(holm_data[,2:3], round_3)</pre>
holm_data %>%
  kbl( booktabs = T, caption = "Regression of Y2 HOLM Adjusted Comparison") %>%
    kable_styling(latex_options = c("striped", "HOLD_position")) %>%
    column_spec(c(3,4), width = "2cm")
```

Table 12: Regression of Y2 HOLM Adjusted Comparison

| Model Term        | P-value | Comparison<br>P-value | Significant at<br>Adj. Level |
|-------------------|---------|-----------------------|------------------------------|
| Income $>=$ \$30K | 0.241   | 0.006                 |                              |
| Education         | 0.260   | 0.006                 |                              |
| Arm 6             | 0.310   | 0.006                 |                              |
| FTND              | 0.394   | 0.006                 |                              |
| Arm 7             | 0.474   | 0.006                 |                              |
| Gender            | 0.572   | 0.006                 |                              |
| Arm 8             | 0.734   | 0.006                 |                              |
| Age               | 0.808   | 0.006                 |                              |

#### • Hochberg Adjustments

```
hoch_data <-
  sum2 %>% select(`Model Term`, `P-value`) %>% arrange(-`P-value`) %>%
  filter(`Model Term` != "Intercept")
hoch_data$`Comparison P-value` <- 0.05</pre>
hoch_data$`Significant at Adj. Level` <- ""</pre>
cur_adj_n <- 1</pre>
for(i in 1:nrow(hoch_data)){
  cur_level <- 0.05 / cur_adj_n</pre>
  hoch_data[i,3] <- cur_level</pre>
  if(hoch_data[i,2] > cur_level){
    cur_adj_n <- cur_adj_n + 1</pre>
    holm_data[i,3] <- cur_level</pre>
  }
}
hoch_data[,4] <- ifelse(hoch_data[,2] < hoch_data[,3], "*", "")</pre>
hoch_data[,2:3] <- lapply(hoch_data[,2:3], round_3)</pre>
hoch_data %>%
  kbl( booktabs = T, caption = "Regression of Y2 HOCHBERG Adjusted Comparison") %>%
    kable_styling(latex_options = c("striped", "HOLD_position")) %>%
    column_spec(c(3,4), width = "2cm")
```

Table 13: Regression of Y2 HOCHBERG Adjusted Comparison

| Model Term        | P-value | Comparison<br>P-value | Significant at<br>Adj. Level |
|-------------------|---------|-----------------------|------------------------------|
| Age               | 0.808   | 0.050                 |                              |
| Arm 8             | 0.734   | 0.025                 |                              |
| Gender            | 0.572   | 0.017                 |                              |
| Arm 7             | 0.474   | 0.013                 |                              |
| FTND              | 0.394   | 0.010                 |                              |
| Arm 6             | 0.310   | 0.008                 |                              |
| Education         | 0.260   | 0.007                 |                              |
| Income $>=$ \$30K | 0.241   | 0.006                 |                              |

## 13.4 - C

## Step Wise Regression on Y1

Table 14: Regression of Y1, Best Candidate Models

|     | n | predictors                                       |
|-----|---|--------------------------------------------------|
| 2   | 1 | arm_6                                            |
| 17  | 2 | arm_6 arm_8                                      |
| 65  | 3 | arm_6 arm_8 income30                             |
| 139 | 4 | arm_6 arm_8 gender income30                      |
| 210 | 5 | arm_6 arm_8 gender income30 ftnd                 |
| 231 | 6 | age arm_6 arm_8 gender income30 ftnd             |
| 252 | 7 | age arm_6 arm_8 gender educ2 income30 ftnd       |
| 255 | 8 | age arm_6 arm_7 arm_8 gender educ2 income30 ftnd |

Table 15: Regression of Y1, Parameters of Selected Model

| Predictors           | R-squared | Adj. R-squared | AIC     |
|----------------------|-----------|----------------|---------|
| arm_6 arm_8 income30 | 0.148     | 0.134          | 445.969 |



Table 16:

| Model Term      | Estimate | Std. Error | T-value | P-value |
|-----------------|----------|------------|---------|---------|
| Intercept       | -0.077   | 0.086      | -0.897  | 0.371   |
| Arm 6           | -0.645   | 0.128      | -5.033  | 0.000   |
| Arm 8           | -0.403   | 0.132      | -3.045  | 0.003   |
| Income >= \$30K | -0.246   | 0.117      | -2.106  | 0.036   |

### Step Wise Regression on Y2

```
k <- ols_step_best_subset(y2_lm1)

k %>% dplyr::select(n, predictors) %>%
   kbl(booktabs = T,
        caption = "Regression of Y2, Best Candidate Models") %>%
   kable_styling(latex_options = c("striped", "HOLD_position"))
```

Table 18: Regression of Y1, Parameters of Selected Model

| Predictors     | R-squared | Adj. R-squared | AIC     |
|----------------|-----------|----------------|---------|
| arm_7 income30 | 0.035     | 0.025          | 617.082 |

Table 17: Regression of Y2, Best Candidate Models

|     | n | predictors                                       |
|-----|---|--------------------------------------------------|
| 3   | 1 | arm_7                                            |
| 25  | 2 | arm_7 income30                                   |
| 80  | 3 | arm_7 educ2 income30                             |
| 135 | 4 | $arm\_6 arm\_7 educ2 income30$                   |
| 207 | 5 | $arm\_6 arm\_7 educ2 income30 ftnd$              |
| 244 | 6 | arm_6 arm_7 gender educ2 income30 ftnd           |
| 254 | 7 | arm_6 arm_7 arm_8 gender educ2 income30 ftnd     |
| 255 | 8 | age arm_6 arm_7 arm_8 gender educ2 income30 ftnd |



Table 19:

| Model Term      | Estimate | Std. Error | T-value | P-value |
|-----------------|----------|------------|---------|---------|
| Intercept       | -0.372   | 0.115      | -3.224  | 0.001   |
| Arm 7           | 0.382    | 0.180      | 2.130   | 0.034   |
| Income >= \$30K | -0.275   | 0.180      | -1.522  | 0.130   |

## Appendix: 12.2

## Correlation: 0.9929



```
xlab("Age") +
ylab("Age Squared") +
ggtitle(paste("Correlation: ", round(cor(infants_f$m_age_centered, infants_f$m_age_centered^2),4))) +
theme_minimal()
```

## Correlation: -0.0367



# Correlation Between Mother's Age and Infant's Birth Weight: 0.1263





