

# SYNCOAM Co., Ltd

Version: 0.8

Date: December 07, 2005

# SEPS225

## 128 x 128 Dots, 262K Colors PM-OLED Display Driver and Controller

#### 1. Product Preview

- 262k colors OLED single chip display driver IC
- Data Interface
  - Parallel interface: 68/80series MPU(8/16/18-bit)
  - Serial interface : SPI 4-wire interfaceRGB interface : 18/16/6-bit interface
- Driver Output
  - 128× RGB columns(384), 128 rows
- Display RAM Capacity
  - $-128 \times 18(RGB) \times 128 = 294,912 \text{ bits}$
- Various Instructions Set
  - Power save mode
  - Reduced current driving available
  - Window mode
  - Partial display: programmable panel display size
  - Vertical scroll & Horizontal panning
- OLED Column Drive
  - Driving current control: 8-bit, 0uA ~ 255uA by 1uA step control
  - Pre\_charge current control: 8-bit, 0uA ~ 2040uA by 8uA step control
  - Pre\_charge time control : programmable pre\_charge time (0clock  $\sim$  14clocks) based on internal oscillator clock
- OLED Row Drive
  - Current sink: Max 100mA
- Internal Oscillator Circuit
  - Internal / External clock selectable
  - Frame rate : 90 frames/sec( 75.0 ~ 150.0 frames/sec adjustable)
- Supply Voltage
  - VDD : 2.4 ~ 3.3V - VDDH : 8.0 ~ 18.0V
- Package : Au Bumped
- Ordering information

| SEPS225T0A | TCP Package |
|------------|-------------|
| SEPS225F0A | COF Package |

## 2. Block Diagram



Block Diagram

3. Pin Description

| Pin Name | Number<br>Of Pins | I/O | Connected<br>To | Description                                                                                                                                                                                                                                                                                           |  |  |  |  |
|----------|-------------------|-----|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CPU      | 1                 | I   | VSS or VDD      | Selects the CPU type                                                                                                                                                                                                                                                                                  |  |  |  |  |
| CIU      | 1                 | 1   | V33 01 VDD      | Low: 80-Series CPU, High: 68-Series CPU                                                                                                                                                                                                                                                               |  |  |  |  |
| PS       | 1                 | I   | VSS or VDD      | Selects parallel/Serial interface type  Low: serial, High: parallel                                                                                                                                                                                                                                   |  |  |  |  |
| CSB      | 1                 | I   | MPU             | Selects the SEPS225.  Low: SEPS225 is selected and can be accessed  High: SEPS225 is not selected and cannot be accessed                                                                                                                                                                              |  |  |  |  |
| RS       | 1                 | I   | MPU             | Selects the data / command<br>Low : command, High : parameter / data                                                                                                                                                                                                                                  |  |  |  |  |
| RDB/E    | 1                 | I   | MPU             | For an 80-system bus interface, read strobe signal(active low) For an 68-system bus interface, bus enable strobe(active high) When using SPI, fix it to VDD or VSS level                                                                                                                              |  |  |  |  |
| WRB/RWB  | 1                 | I   | MPU             | For an 80-system bus interface, write strobe signal(active low) For an 68-system bus interface, read/write select Low: Write, High: Read When using SPI, fix it to VDD or VSS level                                                                                                                   |  |  |  |  |
| DB[17:0] | 18                | I/O | MPU             | Serves as a 18_bit bi-directional data bus  PS Description  8_bit bus: DB[17:10]  9_bit bus: DB[17:9]  1 16_bit bus: DB[17:10], DB[8:1]  18_bit bus: DB[17:0]  DB[17] SCL: Synchronous clock input  0 DB[16] SDI: Serial data input  DB[15] SDO: Serial data output  Fix unused pins to the VSS level |  |  |  |  |
| OSCA1    | 1                 | I   | Oscillation-    | Fine adjustment for oscillation Tie 39 $k\Omega$ ohms to OSCA1 between OSCA2                                                                                                                                                                                                                          |  |  |  |  |
| OSCA2    | 1                 | 0   | Resistor        | When the external clock mode is selected, OSCA1 is used external clock input                                                                                                                                                                                                                          |  |  |  |  |
| RESETB   | 1                 | I   | MPU             | Reset SEPS225(active low)                                                                                                                                                                                                                                                                             |  |  |  |  |
| S[383:0] | 384               | О   | PANEL           | SEPS225 Display column outputs                                                                                                                                                                                                                                                                        |  |  |  |  |
| G[127:0] | 128               | О   | PANEL           | SEPS225 Display row outputs                                                                                                                                                                                                                                                                           |  |  |  |  |
| VDDH     | 4                 | -   | POWER           | External Column Driving Power Supply(8V ~ 18V)                                                                                                                                                                                                                                                        |  |  |  |  |
| VSSH     | 4                 | -   | POWER           | Return Ground for VDDH                                                                                                                                                                                                                                                                                |  |  |  |  |
| VDD      | 2                 | -   | POWER           | Logic power supply(2.4V ~ 3.3V)                                                                                                                                                                                                                                                                       |  |  |  |  |
| VSS      | 2                 | -   | POWER           | Logic ground.                                                                                                                                                                                                                                                                                         |  |  |  |  |
| IREF     | 1                 | -   | Resistor        | Tie 70 kΩ ohms to VSS                                                                                                                                                                                                                                                                                 |  |  |  |  |
| TEST1    | 1                 | I   | VSS or VDD      | Selects the test mode                                                                                                                                                                                                                                                                                 |  |  |  |  |
| PRER     | 1                 | О   | -               | Pre_charge R                                                                                                                                                                                                                                                                                          |  |  |  |  |
| PREG     | 1                 | 0   | -               | Pre_charge G                                                                                                                                                                                                                                                                                          |  |  |  |  |
| PREB     | 1                 | 0   | -               | Pre_charge B                                                                                                                                                                                                                                                                                          |  |  |  |  |
| EXPORT1  | 1                 | 0   | -               | OSC Test                                                                                                                                                                                                                                                                                              |  |  |  |  |
| VSYNCO   | 1                 | 0   | -               | Vertical Sync. Output                                                                                                                                                                                                                                                                                 |  |  |  |  |
|          |                   |     |                 |                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|          | 1                 | I   | -               | vertical Sync, input when KGD mode is selected                                                                                                                                                                                                                                                        |  |  |  |  |
| VSYNC    |                   | I   | -               | Vertical Sync. Input when RGB mode is selected  Horizontal Sync. Input when RGB mode is selected                                                                                                                                                                                                      |  |  |  |  |
|          | 1<br>1<br>1       |     | -               | Horizontal Sync. Input when RGB mode is selected  Dot clock Input when RGB mode is selected                                                                                                                                                                                                           |  |  |  |  |

## 4. Functional Description

#### **MPU** Interface

The SEPS225 has three high-speed system interface: a 68-system, an 80-system 8/9/16/18 bit bus, and a clock synchronous serial(SPI: Serial Peripheral Interface). Among the interface modes, a specific mode is selected by the setting of PS pin and MEMORY\_WRITE\_MODE register(16h).

The SEPS225 has 3-type registers: an index register(IR) 8-bits, a write data register(WDR), and a read data register(RDR). The IR stores index information for the control registers and the DDRAM. The WDR temporarily stores data to be written into control registers and the DDRAM, and the RDR temporarily stores data read from the DDRAM.

Data written into the DDRAM from the MPU is first written into the WDR and then it is automatically written into the DDRAM by internal operation. Data is read through the RDR when reading from the DDRAM, and the first read data is invalid and the second and the following data are valid.

Execution time for instruction excluding oscillation start is 0 clock cycle and instructions can be written in succession.

| RS | 80 mode 68 mode |     | node | Omaration |                                                     |  |  |  |
|----|-----------------|-----|------|-----------|-----------------------------------------------------|--|--|--|
| KS | RDB             | WRB | RWB  | E         | Operation                                           |  |  |  |
| 0  | 0               | 1   | 1    | 1         | Reads internal status                               |  |  |  |
| 0  | 1               | 0   | 0    | 1         | Writes indexes into IR                              |  |  |  |
| 1  | 0               | 1   | 1    | 1         | Reads from DDRAM through RDR                        |  |  |  |
| 1  | 1               | 0   | 0    | 1         | Writes into control registers and DDRAM through WDR |  |  |  |

## 1) 18-bit Bus Interface(Index 16h)

| DFM1 | DFM0 | TRI | Operation            |
|------|------|-----|----------------------|
| 0    | 0    | Х   | 18-bit bus operation |



## **Index/Command Write**



## **DDRAM Read/Write**



## 2) 16-bit Bus Interface

| DFM1 | DFM0 | TRI | Operation            |
|------|------|-----|----------------------|
| 0    | 1    | Х   | 16-bit bus operation |



## **Index/Command Write**



## DDRAM Read/Write



## 3) 9-bit Bus Interface

| DFM1 | DFM0 | TRI | Operation           |
|------|------|-----|---------------------|
| 1    | 0    | Х   | 9-bit bus operation |



## **Index/Command Write**



## DDRAM Read/Write



## 4) 8-bit Bus Interface

| DFM1 | DFM0 | TRI | Operation    |
|------|------|-----|--------------|
| 1    | 0    | 0   | Dual 8-bit   |
| 1    | 1    | 1   | Triple 6-bit |



## **Index/Command Write**



#### DDRAM Write/Read



## DDRAM Write/Read (TRI mode)



## 5) Clock Synchronized Serial Interface (SPI)

Setting PS pin to the "0" level allows clock synchronized serial data(SPI) transfer, using the chip select pin(CSB), RS pin, serial transfer clock pin(SCL) and serial data input(SDI).

When chip is not selected, internal shift register and counter is resets to initial value. Input data through SDI pin are latched at the rising edge of serial transfer clock(SCL). SDI inputs are converted to 16-bit or 18-bit data and transferred to memory at the  $16^{th}/18^{th}$  rising edge serial clock, respectively.

Serial data input(SDI) is identified to display data or command by RS pin.

| RS | Function        |
|----|-----------------|
| L  | Command         |
| Н  | Parameter/ Data |

after 8-bit data transfer, serial transfer clock(SCL) goes to "H" at the non-access period. SDI and SCL signals are sensitive to external noise. To prevent miss operation chip selector state should be released(CSB = "H") after 8-bit data transfer as shown in the following.

\*Note: When the SPI mode is selected, DB[15] pin must be unconnected.

PS = "0", DFM[1:0] = "11", TRI = "0"



PS = "0", DFM[1:0] = "11", TRI = "1"







#### 6) RGB Interface

When the RGB\_IF register bit0 is set to "0", SEPS225 enters into the RGB interface mode and DDRAM write cycle is synchronized by DOTCLK.



#### 18-bit RGB interface

The 18-bit RGB interface is selected by setting RIM[1:0] bits to "00". DDRAM write operation is Synchronized with DOTCLK and ENABLE. Display data are transmitted to DDRAM in synchronization with 18-bit RGB data bus(DB[17:0]) and the data enable(ENABLE).

#### **DDRAM Write**



#### 16-bit RGB interface

The 16-bit RGB interface is selected by setting RIM[1:0] bits to "01". DDRAM write operation is Synchronized with DOTCLK and ENABLE. Display data are transmitted to DDRAM in synchronization with 16-bit RGB data bus(DB[17:10], DB[8:1]) and the data enable(ENABLE).



#### **DDRAM Write**



## 18/16-bit RGB interface timing



#### 6-bit RGB interface

The 6-bit RGB interface is selected by setting RIM[1:0] bits to "10". DDRAM write operation is Synchronized with DOTCLK and ENABLE. Display data are transmitted to DDRAM in synchronization with 6-bit RGB data bus(DB[17:12]) and the data enable(ENABLE).



#### **DDRAM Write**



#### 6-bit RGB interface timing



## DDRAM(Display Data RAM) Addressing

The DDRAM stores pixel data for the display. It is composed of 128-row by 128-column x 18-bit addressable array. Address counter provides row and column address to DDRAM for access display pixel data from MPU.

Relationship Between DDRAM Address and Display Position G127 00h G126 G1 01h G2 G125 02h G3 G124 03h G123 04h G4 G5 G122 05h G122 G5 79h G123 G4 7Ah 7Bh G124 G3 7Ch G125 G2 G126 G1 7Eh G127 G0 7Fh Column RD=0 RD=1 0 2 3 124 125 127 Data CD=0 D0 D1 D2 D3 D124 D125 D126 D127 S0 S1 S2 S381 S382 S383 CD=1 D127 D126 D125 D124 -----D3 D2 D1 D0 S382

S383

RD: Row scan shift direction register bit.

CD: Column data shift direction register bit.

S381

S0

S1

S2

#### **Window Address Function**

When data is written to the on-chip DDRAM, a window address-range which is specified by the horizontal address register(start: MX1[7:0], end: MX2[7:0]) or the vertical address register(start: MY1[7:0], end: MY2[7:0]) can be written to consecutively. Data is written to addresses in the direction specified by the HC, VC(increment/decrement), and HV bit(H or V direction). When the image data is being written, data can be written consecutively without thinking of a data wrap by doing this.

The window must be specified within the DDRAM address area described below, Addresses must be set within the window address.

[Restriction on window address-range setting]  $(horizontal\ direction)\ 00h \leq MX1[7:0] < MX2[7:0] \leq 7Fh$   $(vertical\ direction)\ 00h \leq MY1[7:0] < MY2[7:0] \leq 7Fh$ 

Window address-range specification.

MX1[7:0] = 10h, MY1[7:0] = 2Fh MY1[7:0] = 20h, MY2[7:0] = 3Fh HC, VC = 1,1 (increment) HV = 0 (horizontal writing)

#### Example of Address Operation in the Window Address Specification



#### **Reset Status**

The **SEPS225** is initialized as following description when RESETB terminal is set to "L". Usually RESETB terminal is connected reset terminal of MPU, so that the chip can be initialized simultaneously with MPU. The **SEPS225** should be initialized when the power is on.

#### **INITIAL SETTING CONDITION (default setting)**

1. Frame frequency: 90Hz

2. OSC : internal OSC

3. Internal OSC: ON

4. DDRAM write horizontal address: MX1 = 00h, MX2 = 7Fh

5. DDRAM write vertical address: MY1 = 00h, MY2 = 7Fh

6. Display data RAM write: HC = 1, VC = 1, HV = 0

7. RGB data swap: OFF

8. Row scan shift direction: G0, G1, ..., G126, G127

9. Column data shift direction: S0, S1, ..., S382, S383

10. Display ON/OFF: OFF

11. Panel display size: FX1 = 00h, FX2 = 7Fh, FY1 = 00h, FY2 = 7Fh

12. Display data RAM read column/row address: FAC = 00h, FAR = 00h

13. Precharge time(R/G/B): 0 clock

14. Precharge current(R/G/B): 0 uA

15. Driving current(R/G/B): 0 uA

#### **POWER ON SEQUENCE**



# 5. Instruction Description

**Normal Display** 

| Norma |     | pray   |        |        |        |         |        |        |        |                             |         |
|-------|-----|--------|--------|--------|--------|---------|--------|--------|--------|-----------------------------|---------|
| ADDR  | RW  | IB7    | IB6    | IB5    | IB4    | IB3     | IB2    | IB1    | IB0    | Description                 | Default |
| 00h   | R   | IDX7   | IDX6   | IDX5   | IDX4   | IDX3    | IDX2   | IDX1   | IDX0   | INDEX                       | 00h     |
| 01h   | R   | HC     | VC     | HV     | SWAP   | RD      | CD     | DC1    | DC0    | STATUS_RD                   | C0h     |
| 02h   | R/W | SELEXP | SELRES | 0      | 0      | 0       | 0      | SELCLK | OSCDSB | OSC_CTL                     | C0h     |
| 03h   | R/W | FR3    | FR2    | FR1    | FR0    | DFR3    | DFR2   | DFR1   | DFR0   | CLOCK_DIV                   | 30h     |
| 04h   | R/W | 0      | 0      | 0      | 0      | 0       | RC     | 0      | PS     | REDUCE_CURRENT              | 00h     |
| 05h   | R/W | 0      | 0      | 0      | 0      | 0       | 0      | 0      | SRN    | SOFT_RST                    | 00h     |
| 06h   | R/W | PREM   | 0      | 0      | 0      | 0       | 0      | 0      | DON    | DISP_ON_OFF                 | 00h     |
| 08h   | R/W | 0      | 0      | 0      | 0      | PTR3    | PTR2   | PTR1   | PTR0   | PRECHARGE_TIME_R            | 00h     |
| 09h   | R/W | 0      | 0      | 0      | 0      | PTG3    | PTG2   | PTG1   | PTG0   | PRECHARGE_TIME_G            | 00h     |
| 0Ah   | R/W | 0      | 0      | 0      | 0      | PTB3    | PTB2   | PTB1   | PTB0   | PRECHARGE_TIME_B            | 00h     |
| 0Bh   | R/W | PCR7   | PCR6   | PCR5   | PCR4   | PCR3    | PCR2   | PCR1   | PCR0   | PRECHARGE_CURRENT_R         | 00h     |
| 0Ch   | R/W | PCG7   | PCG6   | PCG5   | PCG4   | PCG3    | PCG2   | PCG1   | PCG0   | PRECHARGE_CURRENT_G         | 00h     |
| 0Dh   | R/W | PCB7   | PCB6   | PCB5   | PCB4   | PCB3    | PCB2   | PCB1   | PCB0   | PRECHARGE_CURRENT_B         | 00h     |
| 10h   | R/W | DCR7   | DCR6   | DCR5   | DCR4   | DCR3    | DCR2   | DCR1   | DCR0   | DRIVING_CURRENT_R           | 00h     |
| 11h   | R/W | DCG7   | DCG6   | DCG5   | DCG4   | DCG3    | DCG2   | DCG1   | DCG0   | DRIVING_CURRENT_G           | 00h     |
| 12h   | R/W | DCB7   | DCB6   | DCB5   | DCB4   | DCB3    | DCB2   | DCB1   | DCB0   | DRIVING_CURRENT_B           | 00h     |
| 13h   | R/W | SWAP   | SM     | RD     | CD     | 0       | SPT    | DC1    | DC0    | DISPLAY_MODE_SET            | 00h     |
|       |     | 0      | 0      | RIM1   |        | 0       | 0      | 0      |        |                             |         |
| 14h   | R/W |        |        | DOP    | RIM0   |         |        |        | EIM    | RGB_IF                      | 11h     |
| 15h   | R/W | VSYOEN | VSYOP  |        | ENP    | HSYP    | VSYP   | 0      | 0      | RGB_POL                     | 00h     |
| 16h   | R/W | 0      | DFM1   | DFM0   | TRI    | 0       | HC     | VC     | HV     | MEMORY_WRITE_MODE  MX1 ADDR | 06h     |
| 17h   | R/W | MX1_7  | MX1_6  | MX1_5  | MX1_4  | MX1_3   | MX1_2  | MX1_1  | MX1_0  | _                           | 00h     |
| 18h   | R/W | MX2_7  | MX2_6  | MX2_5  | MX2_4  | MX2_3   | MX2_2  | MX2_1  | MX2_0  | MX2_ADDR                    | 7Fh     |
| 19h   | R/W | MY1_7  | MY1_6  | MY1_5  | MY1_4  | MY1_3   | MY1_2  | MY1_1  | MY1_0  | MY1_ADDR                    | 00h     |
| 1Ah   | R/W | MY2_7  | MY2_6  | MY2_5  | MY2_4  | MY2_3   | MY2_2  | MY2_1  | MY2_0  | MY2_ADDR                    | 7Fh     |
| 20h   | R/W | MAC7   | MAC6   | MAC5   | MAC4   | MAC3    | MAC2   | MAC1   | MAC0   | MEMORY_ACCESS_POINTER X     | 00h     |
| 21h   | R/W | MAR7   | MAR6   | MAR5   | MAR4   | MAR3    | MAR2   | MAR1   | MAR0   | MEMORY_ACCESS_POINTER Y     | 00h     |
| 22h   |     |        |        | ı      | 1      | M[17:0] | ı      | ı      | 1      | DDRAM_DATA_ACCESS_PORT      |         |
| 28h   | R/W | DUTY7  | DUTY6  | DUTY5  | DUTY4  | DUTY3   | DUTY2  | DUTY1  | DUTY0  | DUTY                        | 7Fh     |
| 29h   | R/W | DSL7   | DSL6   | DSL5   | DSL4   | DSL3    | DSL2   | DSL1   | DSL0   | DSL                         | 00h     |
| 2Eh   | R/W | FAC7   | FAC6   | FAC5   | FAC4   | FAC3    | FAC2   | FAC1   | FAC0   | D1_DDRAM_FAC                | 00h     |
| 2Fh   | R/W | FAR7   | FAR6   | FAR5   | FAR4   | FAR3    | FAR2   | FAR1   | FAR0   | D1_DDRAM_FAR                | 00h     |
| 31h   | R/W | SAC7   | SAC6   | SAC5   | SAC4   | SAC3    | SAC2   | SAC1   | SAC0   | D2_DDRAM_SAC                | 00h     |
| 32h   | R/W | SAR7   | SAR6   | SAR5   | SAR4   | SAR3    | SAR2   | SAR1   | SAR0   | D2_DDRAM_SAR                | 00h     |
| 33h   | R/W | FX1_7  | FX1_6  | FX1_5  | FX1_4  | FX1_3   | FX1_2  | FX1_1  | FX1_0  | SCR1_FX1                    | 00h     |
| 34h   | R/W | FX2_7  | FX2_6  | FX2_5  | FX2_4  | FX2_3   | FX2_2  | FX2_1  | FX2_0  | SCR1_FX2                    | 7Fh     |
| 35h   | R/W | FY1_7  | FY1_6  | FY1_5  | FY1_4  | FY1_3   | FY1_2  | FY1_1  | FY1_0  | SCR1_FY1                    | 00h     |
| 36h   | R/W | FY2_7  | FY2_6  | FY2_5  | FY2_4  | FY2_3   | FY2_2  | FY2_1  | FY2_0  | SCR1_FY2                    | 7Fh     |
| 37h   | R/W | SX1_7  | SX1_6  | SX1_5  | SX1_4  | SX1_3   | SX1_2  | SX1_1  | SX1_0  | SCR2_SX1                    | 00h     |
| 38h   | R/W | SX2_7  | SX2_6  | SX2_5  | SX2_4  | SX2_3   | SX2_2  | SX2_1  | SX2_0  | SCR2_SX2                    | 7Fh     |
| 39h   | R/W | SY1_7  | SY1_6  | SY1_5  | SY1_4  | SY1_3   | SY1_2  | SY1_1  | SY1_0  | SCR2_SY1                    | 00h     |
| 3Ah   | R/W | SY2_7  | SY2_6  | SY2_5  | SY2_4  | SY2_3   | SY2_2  | SY2_1  | SY2_0  | SCR2_SY2                    | 7Fh     |
| 3Bh   | R/W | 0      | SSA1   | SSA0   | 0      | SSC1    | SSC0   | 0      | SSM    | SCREEN_SAVER_CONTEROL       | 00h     |
| 3Ch   | R/W | SST7   | SST6   | SST5   | SST4   | SST3    | SST2   | SST1   | SST0   | SS_SLEEP_TIMER              | 00h     |
| 3Dh   | R/W | 0      | 0      | SMS1   | SMS0   | 0       | 0      | SMF1   | SMF0   | SCREEN_SAVER_MODE           | 00h     |
| 3Eh   | R/W | FSUT7  | FSUT6  | FSUT5  | FSUT4  | FSUT3   | FSUT2  | FSUT1  | FSUT   | SS_SCR1_FU                  | 00h     |
| 3Fh   | R/W | FSMS7  | FSMS6  | FSMS5  | FSMS4  | FSMS3   | FSMS2  | FSMS1  | FSMS0  | SS_SCR1_MXY                 | 00h     |
| 40h   | R/W | SSUT7  | SSUT6  | SSUT5  | SSUT4  | SSUT3   | SSUT2  | SSUT1  | SSUT0  | SS_SCR2_FU                  | 00h     |
| 41h   | R/W | SSMS7  | SSMS6  | SSMS5  | SSMS4  | SSMS3   | SSMS2  | SSMS1  | SSMS0  | SS_SCR2_MXY                 | 00h     |
| 42h   | R/W | 0      | 0      | SSMD1  | SSMD0  | 0       | 0      | FSMD1  | FSMD0  | MOVING_DIRECTION            | 00h     |
| 47h   | R/W | ISX1_7 | ISX1_6 | ISX1_5 | ISX14  | ISX1_3  | ISX1_2 | ISX1_1 | ISX1_0 | SS_SCR2_SX1                 | 00h     |
| 48h   | R/W | ISX2_7 | ISX2_6 | ISX2_5 | ISX2_4 | ISX2_3  | ISX2_2 | ISX2_1 | ISX2_0 | SS_SCR2_SX2                 | 00h     |
| 49h   | R/W | ISY1_7 | ISY1_6 | ISY1_5 | ISY1_4 | ISY1_3  | ISY1_2 | ISY1_1 | ISY1_0 | SS_SCR2_SY1                 | 00h     |
| 4Ah   | R/W | ISY2_7 | ISY2_6 | ISY2_5 | ISY2_4 | ISY2_3  | ISY2_2 | ISY2_1 | ISY2_0 | SS_SCR2_SY2                 | 00h     |
|       |     |        |        |        |        |         |        |        |        |                             | 1       |

#### INDEX (00h)

| R/W | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|-----|-------|------|------|------|------|------|------|------|
| R   | IDX7  | IDX6 | IDX5 | IDX4 | IDX3 | IDX2 | IDX1 | IDX0 |

IDX[7:0]: Index address of registers.

## STATUS\_RD (01h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R       | HC    | VC   | HV   | SWAP | RD   | CD   | DC1  | DC0  |
| Default | 1     | 1    | 0    | 0    | 0    | 0    | 0    | 0    |

The status read instruction reads the internal status of the SEPS225.

HC: Horizontal address increment/decrement at memory write mode.

VC: Vertical address increment/decrement at memory write mode.

HV : Automatic update method of the AC (means internal address counter).

HV=0(horizontal), HV=1(vertical)

SWAP: Swap between R and B.

RD: Row scan shift direction.

CD: Column data shift direction.

DC[1:0]: Display data output control.

## OSC\_CTL (02h)

|         | Bit 7  | Bit6   | Bit5 | Bit4 | Bit3 | Bit2 | Bit1   | Bit0   |
|---------|--------|--------|------|------|------|------|--------|--------|
| R/W     | SELEXP | SELRES | 0    | 0    | 0    | 0    | SELCLK | OSCDSB |
| Default | 1      | 1      | 0    | 0    | 0    | 0    | 0      | 0      |

SELEXP: OSC

When SELEXP = 0, EXPORT1 internal clock

When SELEXP = 1, EXPORT1 "0" level

SELRES: Internal oscillator mode selection.

When SELRES = 0, Oscillator operates with external resister

When SELRES = 1, Oscillator operates with internal resister

#### SELCLK, OSCDSB:

| ,      |        |                   |
|--------|--------|-------------------|
| SELCLK | OSCDSB |                   |
| X 0    |        | CLOCK OFF         |
| 0      | 1      | Internal OSC ON   |
| 1      | 1      | External CLK mode |

## IREF (80h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | IREF |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

IREF: Control reference voltage generation.

When IREF = 0, Reference voltage controlled by external resister

When IREF = 1, Reference voltage controlled by internal resister

## CLOCK\_DIV (03h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | FR3   | FR2  | FR1  | FR0  | DFR3 | DFR2 | DFR1 | DFR0 |
| Default | 0     | 0    | 1    | 1    | 0    | 0    | 0    | 0    |

FR[3:0] : OSC frequency setting.

|     |     |     |     | 7 0        |  |  |
|-----|-----|-----|-----|------------|--|--|
| FR3 | FR2 | FR1 | FR0 | Frame Rate |  |  |
| 0   | 0   | 0   | 0   | 75 Hz      |  |  |
| 0   | 0   | 0   | 1   | 80 Hz      |  |  |
| 0   | 0   | 1   | 0   | 85 Hz      |  |  |
| 0   | 0   | 1   | 1   | 90 Hz      |  |  |
| 0   | 1   | 0   | 0   | 95 Hz      |  |  |
| 0   | 1   | 0   | 1   | 100 Hz     |  |  |
| 0   | 1   | 1   | 0   | 105 Hz     |  |  |
| 0   | 1   | 1   | 1   | 110 Hz     |  |  |

| FR3 | FR2 | FR1 | FR0 | Frame Rate |
|-----|-----|-----|-----|------------|
| 1   | 0   | 0   | 0   | 115 Hz     |
| 1   | 0   | 0   | 1   | 120 Hz     |
| 1   | 0   | 1   | 0   | 125 Hz     |
| 1   | 0   | 1   | 1   | 130 Hz     |
| 1   | 1   | 0   | 0   | 135 Hz     |
| 1   | 1   | 0   | 1   | 140 Hz     |
| 1   | 1   | 1   | 0   | 145 Hz     |
| 1   | 1   | 1   | 1   | 150 Hz     |

DFR[3:0]: Display frequency divide ration.

| DFR3 | DFR2 | DFR1 | DFR0 | OSC CLK |
|------|------|------|------|---------|
| 0    | 0    | 0    | 0    | 1       |
| 0    | 0    | 0    | 1    | 1       |
| 0    | 0    | 1    | 0    | 1/2     |
| 0    | 0    | 1    | 1    | 1/3     |
| 0    | 1    | 0    | 0    | 1/4     |
| 0    | 1    | 0    | 1    | 1/5     |
| 0    | 1    | 1    | 0    | 1/6     |
| 0    | 1    | 1    | 1    | 1/7     |

| DFR3 | DFR2 | DFR1 | DFR0 | OSC CLK |
|------|------|------|------|---------|
| 1    | 0    | 0    | 0    | 1/8     |
| 1    | 0    | 0    | 1    | 1/9     |
| 1    | 0    | 1    | 0    | 1/10    |
| 1    | 0    | 1    | 1    | 1/11    |
| 1    | 1    | 0    | 0    | 1/12    |
| 1    | 1    | 0    | 1    | 1/13    |
| 1    | 1    | 1    | 0    | 1/14    |
| 1    | 1    | 1    | 1    | 1/15    |

## REDUCE\_CURRENT (04h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | 0    | 0    | 0    | 0    | RC   | 0    | PS   |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

RC: Reduced driving current.

When RC = 0, normal

When RC = 1, 1/2driving current(address 0x10, 0x11, 0x12)

PS: Power save mode.

When PS = 0, normal

When PS = 1, disp off, analog reset, internal oscillator off

## SOFT\_RST (05h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | 0    | 0    | 0    | 0    | 0    | 0    | SRN  |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

SRN: Soft reset active high.

When SRN = 0, normal mode

When SRN = 1, all internal register value will be default

## DISP\_ON\_OFF (06h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | PREM  | 0    | 0    | 0    | 0    | 0    | 0    | DON  |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

PREM: Precharge mode select.

When PREM = 0, Scan signal is high level at pre\_charge period

When PREM = 1, Scan signal is low level at pre\_charge period

DON: Display ON/OFF.

When DON = 0, Turns the display off When DON = 1, Turns the display on

## PRECHARGE\_TIME\_R (08h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | 0    | 0    | 0    | PTR3 | PTR2 | PTR1 | PTR0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## PRECHARGE\_TIME\_G (09h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | 0    | 0    | 0    | PTG3 | PTG2 | PTG1 | PTG0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## PRECHARGE\_TIME\_B (0Ah)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | 0    | 0    | 0    | PTB3 | PTB2 | PTB1 | PTB0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

PTR[3:0]: Precharge time R. PTG[3:0]: Precharge time G. PTB[3:0]: Precharge time B.

<sup>\*</sup> PTR[3:0]/PTG[3:0]/PTB[3:0] is used for precharge time selection of Red/Green/Blue pixel. The range is from 0 to 14 based on internal OSC.

| PTR3/ | PTR2/ | PTR1/ | PTR0/ |                         |
|-------|-------|-------|-------|-------------------------|
| PRG3/ | PRG2/ | PRG1/ | PRG0/ | Precharge Time (CLK)    |
| PRB3  | PRB2  | PRB1  | PRB0  |                         |
| 0     | 0     | 0     | 0     | No Precharge Time (Clk) |
| 0     | 0     | 0     | 1     | 1 Precharge Time (Clk)  |
| 0     | 0     | 1     | 0     | 2 Precharge Time (Clk)  |
| 0     | 0     | 1     | 1     | 3 Precharge Time (Clk)  |
| 0     | 1     | 0     | 0     | 4 Precharge Time (Clk)  |
| 0     | 1     | 0     | 1     | 5 Precharge Time (Clk)  |
| 0     | 1     | 1     | 0     | 6 Precharge Time (Clk)  |
| 0     | 1     | 1     | 1     | 7 Precharge Time (Clk)  |
| 1     | 0     | 0     | 0     | 8 Precharge Time (Clk)  |
| 1     | 0     | 0     | 1     | 9 Precharge Time (Clk)  |
| 1     | 0     | 1     | 0     | 10 Precharge Time (Clk) |
| 1     | 0     | 1     | 1     | 11 Precharge Time (Clk) |
| 1     | 1     | 0     | 0     | 12 Precharge Time (Clk) |
| 1     | 1     | 0     | 1     | 13 Precharge Time (Clk) |
| 1     | 1     | 1     | 0     | 14 Precharge Time (Clk) |
| 1     | 1     | 1     | 1     | Reserved                |

## PRECHARGE\_CURRENT\_R (0Bh)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | PCR7  | PCR6 | PCR5 | PCR4 | PCR3 | PCR2 | PCR1 | PCR0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## PRECHARGE\_CURRENT\_G (0Ch)

|   |         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---|---------|-------|------|------|------|------|------|------|------|
|   | R/W     | PCG7  | PCG6 | PCG5 | PCG4 | PCG3 | PCG2 | PCG1 | PCG0 |
| I | Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## PRECHARGE\_CURRENT\_B (0Dh)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | PCB7  | PCB6 | PCB5 | PCB4 | PCB3 | PCB2 | PCB1 | PCB  |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

PCR[7:0]: Precharge current R. PCG[7:0]: Precharge current G. PCB[7:0]: Precharge current B.

## DRIVING\_CURRENT\_R (10h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | DCR7  | DCR6 | DCR5 | DCR4 | DCR3 | DCR2 | DCR1 | DCR0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## DRIVING\_CURRENT\_G (11h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | DCG7  | DCG6 | DCG5 | DCG4 | DCG3 | DCG2 | DCG1 | DCG0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

#### DRIVING CURRENT B (12h)

| 2 2 12 1 22 1 |       |      | (====) |      |      |      |      |      |
|---------------|-------|------|--------|------|------|------|------|------|
|               | Bit 7 | Bit6 | Bit5   | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| R/W           | DCB7  | DCB6 | DCB5   | DCB4 | DCB3 | DCB2 | DCB1 | DCB0 |
| Default       | 0     | 0    | 0      | 0    | 0    | 0    | 0    | 0    |

DCR[7:0] : DCR driving current R. DCG[7:0] : DCG driving current G. DCB[7:0] : DCB driving current B.

<sup>\*</sup> Precharge current = setting value \* 8uA.

<sup>\*</sup> Driving current = setting value \* 1uA.

## DISPLAY\_MODE\_SET(13h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | SWAP  | SM   | RD   | CD   | 0    | SPT  | DC1  | DC0  |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

SWAP: RGB swap.

|        | S | WAP= | 0 | SWAP = 1 |   |   |  |  |
|--------|---|------|---|----------|---|---|--|--|
| Input  | R | G    | В | R        | G | В |  |  |
| Output | R | G    | В | В        | G | R |  |  |

SM: Scan mode.

RD: Row scan shift direction.

| SM | RD |     |     |     |     | G[12 | 27:0] |     |     |     |     |
|----|----|-----|-----|-----|-----|------|-------|-----|-----|-----|-----|
| 0  | 0  | 0   | 1   | 2   |     |      |       |     | 125 | 126 | 127 |
| 0  | 1  | 127 | 126 | 125 |     | •    |       |     | 2   | 1   | 0   |
| 1  | 0  | 0   | 2   | 4   | ••• | 126  | 1     | 3   | ••• | 125 | 127 |
| 1  | 1  | 127 | 125 | 123 | ••• | 1    | 126   | 124 | ••• | 2   | 0   |

CD: Column data shift direction.

When CD= 0, D0 to D127 shift

When CD= 1, D127 to D0 shift

SPT: Split

When SPT = 0, One screen mode

When SPT = 1, Two screen mode

DC[1:0]: Column data display control.

| DC1 | DC0 | Data Output             |
|-----|-----|-------------------------|
| 0   | 0   | Normal Display(default) |
| 0   | 1   | All Low Display         |
| 1   | 0   | All High Display        |
| 1   | 1   | Reserved                |

## RGB\_IF (14h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | 0    | RIM1 | RIM0 | 0    | 0    | 0    | EIM  |
| Default | 0     | 0    | 0    | 1    | 0    | 0    | 0    | 1    |

## RIM[1:0]: RGB interface mode.

| RIM1 | RIM0 | Result               |
|------|------|----------------------|
| 0    | 0    | 18_Bit RGB interface |
| 0    | 1    | 16_Bit RGB interface |
| 1    | 0    | 6_Bit RGB interface  |
| 1    | 1    | Reserved             |

EIM: External interface mode.

When EIM = 0, RGB When EIM = 1, MPU

## RGB\_POL (15h)

|         | Bit 7  | Bit6  | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|--------|-------|------|------|------|------|------|------|
| R/W     | VSYOEN | VSYOP | DOP  | ENP  | HSYP | VSYP | 0    | 0    |
| Default | 0      | 0     | 0    | 0    | 0    | 0    | 0    | 0    |

VSYOEN: Vsync. Output enable(0: VSYO disable). VSYOP: Vsync. Output polarity(0: active low). DOP: Dot clock polarity(0: sampled at rising edge).

ENP: Enable polarity(0: active low). HSYP: Hsync. Polarity(0: active low). VSYP: Vsync. Polarity(0: active low).

## MEMORY\_WRITE\_MODE (16h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | DFM1 | DFM0 | TRI  | 0    | HC   | VC   | HV   |
| Default | 0     | 0    | 0    | 0    | 0    | 1    | 1    | 0    |

## DFM[1:0],TRI:

| DFM1 | DFM0 | TRI | BIT    | Result                        |
|------|------|-----|--------|-------------------------------|
| 0    | 0    | X   | 18_bit | Single transfer, 262k support |
| 0    | 1    | X   | 16_bit | Single transfer, 65k support  |
| 1    | 0    | X   | 9_bit  | Dual transfer, 262k support   |
| 1    | 1    | 0   | 8_bit  | Dual transfer, 65k support    |
| 1    | 1    | 1   | 8_bit  | Triple transfer, 262k support |

HC: Horizontal address increment/decrement.

When HC= 0, Horizontal address counter is decreased

When HC= 1, Horizontal address counter is increased

VC: Vertical address increment/decrement.

When VC= 0, Vertical address counter is decreased

When VC= 1, Vertical address counter is increased

HV: Set the automatic update method of the AC after the data is written to the DDRAM.

When HV= 0, The data is continuously written horizontally

When HV= 1, The data is continuously written vertically



## MX1\_ADDR (17h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | MX1_7 | MX1_6 | MX1_5 | MX1_4 | MX1_3 | MX1_2 | MX1_1 | MX1_0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

## MX2\_ADDR (18h)

|       | Bit 7 | Bit6  | Bit5  | Bit4  | Bit4 Bit3 |       | Bit1  | Bit0  |
|-------|-------|-------|-------|-------|-----------|-------|-------|-------|
| R/W   | MX2_7 | MX2_6 | MX2_5 | MX2_4 | MX2_3     | MX2_1 | MX2_1 | MX2_0 |
| Defau | lt 0  | 1     | 1     | 1     | 1         | 1     | 1     | 1     |

#### MY1\_ADDR (19h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | MY1_7 | MY1_6 | MY1_5 | MY1_4 | MY1_3 | MY1_2 | MY1_1 | MY1_0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

## MY2\_ADDR (1Ah)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | MY2_7 | MY2_6 | MY2_5 | MY2_4 | MY2_3 | MY2_1 | MY2_1 | MY2_0 |
| Default | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

#### MX1[7:0] / MX2[7:0]

Specify the horizontal start/end position of a window for access in memory. Data can be written to DDRAM from the address specified by MX1[7:0] to the address specified by MX2[7:0].

## MY1[7:0] / MY2[7:0]

Specify the vertical start/end position of a window for access in memory. Data can be written to DDRAM from the address specified by MY1[7:0] to the address specified by MY2[7:0].



## MEMORY\_ACCESSPOINTER X (20h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | MAC7  | MAC6 | MAC5 | MAC4 | MAC3 | MAC2 | MAC1 | MAC0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## MEMORY\_ACCESSPOINTER Y (21h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | MAR7  | MAR6 | MAR5 | MAR4 | MAR3 | MAR2 | MAR1 | MAR0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## MAC[7:0] / MAR[7:0]

Specify the horizontal start/vertical start position of a window for write in memory Data can be written to DDRAM from MAC[7:0]/MAR7:0] to MX2[7:0]/MY2[7:0]



## DDRAM\_DATA\_ACCESS\_PORT (22h)

|         | Bit 17 | Bit16 | Bit15 | Bit14 | Bit13 | Bit12 | Bit11 | Bit10 | Bit9 | Bit8 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|--------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|
| R/W     | DB17   | DB16  | DB15  | DB14  | DB13  | DB12  | DB11  | DB10  | DB9  | DB8  | DB7  | DB6  | DB5  | DB4  | DB3  | DB2  | DB1  | DB0  |
| Default |        | R     |       |       |       |       |       | G     |      |      |      |      |      | I    | 3    |      |      |      |

DDRAM[17:0]: After index register 22h is select, Internal DDRAM memory can be accessed.

## **DUTY (28h)**

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | DUTY7 | DUTY6 | DUTY5 | DUTY4 | DUTY3 | DUTY2 | DUTY1 | DUTY0 |
| Default | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

DUTY[7:0]: Display duty ratio(16~127).

## DSL (29h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | DSL7  | DSL6 | DSL5 | DSL4 | DSL3 | DSL2 | DSL1 | DSL0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

DSL[7:0] : Display start line(0~127-16).



## D1\_DDRAM\_FAC (2Eh)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | FAC7  | FAC6 | FAC5 | FAC4 | FAC3 | FAC2 | FAC1 | FAC0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## D1\_DDRAM\_FAR (2Fh)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | FAR7  | FAR6 | FAR5 | FAR4 | FAR3 | FAR2 | FAR1 | FAR0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

 $FAC [7:0]: First \ screen \ display \ horizontal \ address \ for \ display.$ 

FAR[7:0]: First screen display vertical address for display.



## D2\_DDRAM\_SAC (31h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | SAC7  | SAC6 | SAC5 | SAC4 | SAC3 | SAC2 | SAC1 | SAC0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## D2\_DDRAM\_SAR (32h)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | SAR7  | SAR6 | SAR5 | SAR4 | SAR3 | SAR2 | SAR1 | SAR0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

 $SAC \cite{Cond} screen display horizontal address for display.$ 

SAR[7:0] : Second screen display vertical address for display.

## SCR1\_FX1 (33h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | FX1_7 | FX1_6 | FX1_5 | FX1_4 | FX1_3 | FX1_2 | FX1_1 | FX1_0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

## SCR1\_FX2 (34h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | FX2_7 | FX2_6 | FX2_5 | FX2_4 | FX2_3 | FX2_2 | FX2_1 | FX2_0 |
| Default | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

## SCR1\_FY1 (35h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | FY1_7 | FY1_6 | FY1_5 | FY1_4 | FY1_3 | FY1_2 | FY1_1 | FY1_0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

## SCR1\_FY2 (36h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | FY2_7 | FY2_6 | FY2_5 | FY2_4 | FY2_3 | FY2_2 | FY2_1 | FY2_0 |
| Default | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

FX1[7:0] / FX2[7:0] : The start/end address of active column outputs for the first screen (00h ~ 7Fh). (FX1[7:0] < FX2[7:0])

FY1[7:0] / FY2[7:0] : The start/end address of active row outputs for the second screen (00h ~ 7Fh). (FY1[7:0] < FY2[7:0])



The row outputs out of active area are always VDDH excluding display off.

## SCR2\_SX1 (37h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | SX1_7 | SX1_6 | SX1_5 | SX1_4 | SX1_3 | SX1_2 | SX1_1 | SX1_0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

## SCR2\_SX2 (38h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | SX2_7 | SX2_6 | SX2_5 | SX2_4 | SX2_3 | SX2_2 | SX2_1 | SX2_0 |
| Default | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

## SCR2\_SY1 (39h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | SY1_7 | SY1_6 | SY1_5 | SY1_4 | SY1_3 | SY1_2 | SY1_1 | SY1_0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

## SCR2\_SY2 (3Ah)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | SY2_7 | SY2_6 | SY2_5 | SY2_4 | SY2_3 | SY2_2 | SY2_1 | SY2_0 |
| Default | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

SX1[7:0]: 2<sup>nd</sup> Screen display size horizontal start. SX2[7:0]: 2<sup>nd</sup> Screen display size horizontal end. SY1[7:0]: 2<sup>nd</sup> Screen display size vertical start. SY2[7:0]: 2<sup>nd</sup> Screen display size vertical end.

## SCREEN\_SAVER\_CONTEROL (3Bh)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | SSA1 | SSA0 | 0    | SSC1 | SSC0 | 0    | SSM  |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

SA[1:0]: 1st, 2nd Screen auto sleep saver.

| SSA1 | SSA0 | 2 <sup>nd</sup> Screen | 1st Screen |
|------|------|------------------------|------------|
| 0    | 0    | OFF                    | OFF        |
| 0    | 1    | OFF                    | ON         |
| 1    | 0    | ON                     | OFF        |
| 1    | 1    | ON                     | ON         |

 $SC[1:0]:1^{st}$ ,  $2^{nd}$  Screen on/off saver control.

| SSC1 | SSC0 | 2 <sup>nd</sup> Screen | 1st Screen |
|------|------|------------------------|------------|
| 0    | 0    | OFF                    | OFF        |
| 0    | 1    | OFF                    | ON         |
| 1    | 0    | ON                     | OFF        |
| 1    | 1    | ON                     | ON         |

SSM: Screen Saver Mode on/off(0: off, 1: on).

When SSM= 0, Screen Saver mode OFF(default)

When SSM= 1, Screen saver mode ON

#### SS\_SLEEP\_TIMER (3Ch)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | SST7  | SST6 | SST5 | SST4 | SST3 | SST2 | SST1 | SST0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

SST [7:0]: Screen saver sleep timer.

Note) Based on 64 frames sync.

Ex) when setting value = 10:

Screen saver will enter sleep mode after 10\*64 frame display.

## SCREEN\_SAVER\_MODE (3Dh)

|         | Bit 7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------|-------|------|------|------|------|------|------|------|
| R/W     | 0     | 0    | SMS1 | SMS0 | 0    | 0    | SMF1 | SMF0 |
| Default | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

## SMF[2:0]: 1st Screen mode set.

| SMF1 | SMF0 | 1st Screen    |  |  |
|------|------|---------------|--|--|
| 0    | 0    | Reserved      |  |  |
| 0    | 1    | Left Panning  |  |  |
| 1    | 0    | Right Panning |  |  |
| 1    | 1    | Reserved      |  |  |

## SMS[2:0]: 2<sup>nd</sup> Screen mode set.

| 01110[=10 | ·] · = | recri mie die seti     |  |  |
|-----------|--------|------------------------|--|--|
| SMS1      | SMS0   | 2 <sup>nd</sup> Screen |  |  |
| 0         | 0      | Box move               |  |  |
| 0         | 1      | Log on                 |  |  |
| 1         | 0      | Reserved               |  |  |
| 1         | 1      | Wrap_around            |  |  |



## SS\_SCR1\_FU (3Eh)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | FSUT7 | FSUT6 | FSUT5 | FSUT4 | FSUT3 | FSUT2 | FSUT1 | FSUT0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

FSUT[7:0]: 1st Screen update timer based on frame sync.

## SS\_SCR1\_MXY (3Fh)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | FSMS7 | FSMS6 | FSMS5 | FSMS4 | FSMS3 | FSMS2 | FSMS1 | FSMS0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

FSMS[7:0]: 1st Screen moving step. FSMS[7:4]: Vertical moving step. FSMS[3:0]: Horizontal moving step.

## SS\_SCR2\_FU (40h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | SSUT7 | SSUT6 | SSUT5 | SSUT4 | SSUT3 | SSUT2 | SSUT1 | SSUT0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

SSUT[7:0]: 2<sup>nd</sup> Screen update timer based on frame sync.

### SS\_SCR2\_MXY (41h)

|         | Bit 7 | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/W     | SSMS7 | SSMS6 | SSMS5 | SSMS4 | SSMS3 | SSMS2 | SSMS1 | SSMS0 |
| Default | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

SSMS[7:0]: 2<sup>nd</sup> Screen moving step. SSMS[7:4]: Vertical moving step. SSMS[3:0]: Horizontal moving step.

## MOVING\_DIRECTION (42h)

|         | Bit 7 | Bit6 | Bit5  | Bit4  | Bit3 | Bit2 | Bit1  | Bit0  |
|---------|-------|------|-------|-------|------|------|-------|-------|
| R/W     | 0     | 0    | SSMD1 | SSMD0 | 0    | 0    | FSMD1 | FSMD0 |
| Default | 0     | 0    | 0     | 0     | 0    | 0    | 0     | 0     |

## FSMD[1:0]: 1st Screen moving direction.

| FSMD1 | FSMD0 | 1st Screen  |  |  |  |
|-------|-------|-------------|--|--|--|
| 0     | 0     | UP, LEFT    |  |  |  |
| 0     | 1     | UP, RIGHT   |  |  |  |
| 1     | 0     | DOWN, LEFT  |  |  |  |
| 1     | 1     | DOWN, RIGHT |  |  |  |

## SSMD[1:0]: 2<sup>nd</sup> Screen moving direction.

| SSMD1 | SSMD0 | 2 <sup>nd</sup> Screen |
|-------|-------|------------------------|
| 0     | 0     | UP, LEFT               |
| 0     | 1     | UP, RIGHT              |
| 1     | 0     | DOWN, LEFT             |
| 1     | 1     | DOWN, RIGHT            |

## SS\_SCR2\_SX1 (47h)

|         | Bit 7  | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| R/W     | ISX1_7 | ISX1_6 | ISX1_5 | ISX1_4 | ISX1_3 | ISX1_2 | ISX1_1 | ISX1_0 |
| Default | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

### SS SCR2 SX2 (48h)

|         |        | ,      |        |        |        |        |        |        |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | Bit 7  | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
| R/W     | ISX2_7 | ISX2_6 | ISX2_5 | ISX2_4 | ISX2_3 | ISX2_2 | ISX2_1 | ISX2_0 |
| Default | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

## SS\_SCR2\_SY1 (49h)

|         | Bit 7  | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| R/W     | ISY1_7 | ISY1_6 | ISY1_5 | ISY1_4 | ISY1_3 | ISY1_2 | ISY1_1 | ISY1_0 |
| Default | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

## SS\_SCR2\_SY2 (4Ah)

|         | Bit 7  | Bit6  | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|---------|--------|-------|--------|--------|--------|--------|--------|--------|
| R/W     | ISY2_7 | ISY_6 | ISY2_5 | ISY2_4 | ISY2_3 | ISY2_2 | ISY2_1 | ISY2_0 |
| Default | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      |

ISX1[7:0] : 2<sup>nd</sup> Screen image box horizontal start address.

ISX2[7:0] : 2<sup>nd</sup> Screen image box horizontal end address.

ISY1[7:0]: 2<sup>nd</sup> Screen image box vertical start address.

ISY2[7:0]: 2<sup>nd</sup> Screen image box vertical end address.

## 6. Electric Characteristics

1) Absolute Maximum Rating

| ITEM                | SYMBOL                         | CONDITION    | PORT | RATINGS          | UNIT       |
|---------------------|--------------------------------|--------------|------|------------------|------------|
| Supply voltage (1)  | VDD                            |              | VDD  | - 0.3 ~ +4.0     | V          |
| Supply voltage (2)  | VDDH                           | VSS/VSSH(0V) | VDDH | - 0.3 ~ +19.5    | V          |
| Input voltage       | VI                             | Reference    | *1   | - 0.3 ~ +VDD+0.3 | V          |
| Storage temperature | Ta = +25 rage temperature Tstg |              |      | - 65 ~ +150      | $^{\circ}$ |

<sup>\*1 :</sup> DB[17:0], CPU, PS, CSB, RS, RDB, WRB, RESETB.

2) Recommended Operation Conditions

| ITEM                  | SYMBOL | PORT     | MIN  | TYP | MAX  | UNIT | REMARK |
|-----------------------|--------|----------|------|-----|------|------|--------|
| Supply voltage        | VDD    | VDD      | 2.4  | 2.8 | 3.3  | V    |        |
|                       | VDDH   | VDDH     | 8.0  | 16  | 18.0 | V    |        |
| Operating voltage     | VDC    | S[383:0] | 0    | 16  | 18.0 | V    |        |
| Operation temperature | Topr   |          | - 40 |     | 85   | °C   |        |

## 3) DC Characteristics

| ITEM                                      | SYMBOL | CONDITION                                                | MIN     | TYP | MAX   | UNIT | PORT |
|-------------------------------------------|--------|----------------------------------------------------------|---------|-----|-------|------|------|
| High level input voltage                  | VIH    |                                                          | 0.8XVDD |     | VDD   | V    |      |
| Low level input voltage                   | VIL    |                                                          | 0       |     | 0.4   | V    |      |
| High level output voltage                 | VOH1   | IOH = -0.4 mA                                            | VDD-0.4 |     |       | V    |      |
| Low level input voltage                   | VOL1   | IOL = -0.4 mA                                            |         |     | 0.4   | V    |      |
| High level output voltage                 | VOH2   | IOH = -0.1 mA                                            | VDD-0.4 |     |       | V    |      |
| Low level output voltage                  | VOL2   | IOL = -0.1 mA                                            |         |     | 0.4   | V    |      |
| Input leakage current                     | ILI    | VI = VSS or VDD                                          | -1      |     | 1     | uA   |      |
| Output leakage current                    | ILO    | VI = VSS or VDD                                          | -1      |     | 1     | uA   |      |
| Static current (1)                        | ISB    | CSB = VDD, VDD = 2.8V<br>$Ta = 25 ^{\circ}\text{C}$      |         |     | TBD   | uA   |      |
| Static current (2)                        | SITBP  | CSB = VDD, VDD = $2.8V$<br>Ta = $25$ °C, Power save mode |         |     | TBD   | uA   |      |
| Current Consumption (1)                   | IVDD1  | VDD = 2.8V $IDC = 200uA$                                 |         |     | TBD   | uA   |      |
| Current Consumption (2)                   | IVDD2  | VDD = 2.8V $IDC = 100uA$                                 |         |     | TBD   | uA   |      |
| Current Consumption (3)                   | IVDD3  | VDD = 2.8V $IDC = 50uA$                                  |         |     | TBD   | uA   |      |
| Oscillator frequency                      | FOSC1  | $VDD = 2.8V$ $Ta = 25 ^{\circ}C$                         | 1.445   |     | 2.985 | MHz  |      |
| Oscillator frequency By external resistor | FSO1   | $RF = 39k\Omega$                                         | 1.445   |     | 3.012 | MHz  |      |
| Frame scan rate                           | Frame  | VDD = 2.8V, Ta = 25 $^{\circ}$ C                         | 75      | 90  | 150   | Hz   |      |
| Column output current range               | IDC    | 4 < VDC < VDDH -2V                                       | 0       |     | 255   | uA   |      |
| Column output current match               | IDCM   | 4 < VDC < VDDH -2V                                       |         |     | ±3    | %    |      |
| Row switch on current sink                | IDR    | Common is on,<br>IDR=TBDuA, PWM TBDcks                   |         |     | 100   | mA   |      |
| Row switch on resistance                  | RDR    | Common is on, VDC<br>IFM = 30 mA                         |         | 20  | 25    | Ω    |      |

## 4) AC Characteristics

# 4-1) System BUS Read/Write Timing (80 series CPU interface)



 $(VDD = 2.8V, Ta = 25^{\circ}C)$ 

|                       |                  |           |     | ,   |      |          |
|-----------------------|------------------|-----------|-----|-----|------|----------|
| ITEM                  | SYMBOL           | CONDITION | MIN | MAX | UNIT | PORT     |
| Address hold timing   | tah8             |           | 5   |     | ns   | CSB      |
| Address setup timing  | t <sub>AS8</sub> | -         | 5   | -   | ns   | RS       |
| System cycle timing   | tcyc8            |           | 100 |     | ns   |          |
| Write "L" pulse width | twrlw8           | -         | 45  | -   | ns   | WRB      |
| Write "H" pulse width | twrhw8           |           | 45  |     | ns   |          |
| Data setup timing     | t <sub>DS8</sub> |           | 30  |     | ns   | DD[15 0] |
| Data hold timing      | t <sub>DH8</sub> | -         | 10  | -   | ns   | DB[17:0] |

notice ) All the timing reference is 10% and 90% of VDD.



 $(VDD = 2.8V, Ta = 25^{\circ}C)$ 

|                             |        |            |     | (   | <b></b> , | <b>-</b> 00) |
|-----------------------------|--------|------------|-----|-----|-----------|--------------|
| ITEM                        | SYMBOL | CONDITION  | MIN | MAX | UNIT      | PORT         |
| Address hold timing         | tahs   |            | 5   |     | ns        | CSB          |
| Address setup timing        | tass   | -          | 5   | -   | ns        | RS           |
| System cycle timing         | tcyc8  |            | 200 |     | ns        |              |
| Read "L" pulse width        | trdlr8 | -          | 90  | -   | ns        | RDB          |
| Read "H" pulse width        | trdhr8 |            | 90  |     | ns        |              |
| Read data output delay time | trdd8  | OL 15 E    | -   |     | ns        | DD[45 0]     |
| Data hold timing            | trdh8  | CL = 15 pF | 0   | 60  | ns        | DB[17:0]     |

notice ) All the timing reference is 10% and 90% of VDD.

## 4-2) System BUS Read/Write Timing (68 series CPU interface)



 $(VDD = 2.8V, Ta = 25^{\circ})$ 

|                       |                  |           |     | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,    | <u> </u> |
|-----------------------|------------------|-----------|-----|-----------------------------------------|------|----------|
| ITEM                  | SYMBOL           | CONDITION | MIN | MAX                                     | UNIT | PORT     |
| Address hold timing   | t <sub>AH6</sub> |           | 5   |                                         | ns   | CSB      |
| Address setup timing  | tase             | -         | 5   | 1                                       | ns   | RS       |
| System cycle timing   | tcyc6            |           | 100 |                                         | ns   |          |
| Write "L" pulse width | telw6            | -         | 45  | -                                       | ns   | Е        |
| Write "H" pulse width | tehw6            |           | 45  |                                         | ns   |          |
| Data setup timing     | tDS6             |           | 40  |                                         | ns   | DD[15 0] |
| Data hold timing      | t <sub>DH6</sub> | -         | 10  | -                                       | ns   | DB[17:0] |

notice) All the timing reference is 10% and 90% of VDD.



 $(VDD = 2.8V, Ta = 25^{\circ}C)$ 

|                             |                  |            |     | (.22       | ,    |          |
|-----------------------------|------------------|------------|-----|------------|------|----------|
| ITEM                        | SYMBOL           | CONDITION  | MIN | MAX        | UNIT | PORT     |
| Address hold timing         | t <sub>AH6</sub> |            | 10  |            | ns   | CSB      |
| Address setup timing        | t <sub>AS6</sub> | -          | 10  | -          | ns   | RS       |
| System cycle timing         | tcyc6            |            | 200 |            | ns   |          |
| Read "L" pulse width        | telr6            | -          | 90  | -          | ns   | E        |
| Read "H" pulse width        | tehr6            |            | 90  |            | ns   |          |
| Read data output delay time | trdd6            | OI 15 E    | 0   | <b>5</b> 0 | ns   | DD[15 0] |
| Data hold timing            | trdh6            | CL = 15 PF | 0   | 70         | ns   | DB[17:0] |

notice) All the timing reference is 10% and 90% of VDD.

## 4-3) Serial Interface Timing



 $(VDD = 2.8V, Ta = 25^{\circ}C)$ 

| ITEM                | SYMBOL | CONDITION | MIN | MAX | UNIT | PORT |
|---------------------|--------|-----------|-----|-----|------|------|
| Serial clock cycle  | tcycs  |           | 60  |     | ns   |      |
| SCL "H" pulse width | tshw   | -         | 25  | -   | ns   | SCL  |
| SCL "L" pulse width | tslw   |           | 25  |     | ns   |      |
| Data setup timing   | toss   |           | 25  |     | ns   | CDI  |
| Data hold timing    | tons   | -         | 25  | -   | ns   | SDI  |
| CSB-SCL timing      | tcss   |           | 25  |     | ns   | COD  |
| CSB-hold timing     | tcsн   | -         | 25  | -   | ns   | CSB  |

notice ) All the timing reference is 10% and 90% of VDD.

## 4-4) External Clock Input Timing



## $(VDD = 2.8V, Ta = 25^{\circ}C)$

|                          |        |           |     | ( : | ,    | /    |
|--------------------------|--------|-----------|-----|-----|------|------|
| ITEM                     | SYMBOL | CONDITION | MIN | MAX | UNIT | PORT |
| Osc1 "H" pulse width (1) | tckHW1 |           | TBD | TBD | us   | 0001 |
| Osc1 "L" pulse width (1) | tcklw1 |           | TBD | TBD | us   | OSC1 |
| Osc1 "H" pulse width (2) | tckhw2 |           | TBD | TBD | us   | 0001 |
| Osc1 "L" pulse width (2) | tcklw2 |           | TBD | TBD | us   | OSC1 |

## 4-5) Reset Input Timing



 $(VDD = 2.8V, Ta = 25^{\circ}C)$ 

| ITEM                   | SYMBOL | CONDITION | MIN | MAX | UNIT | PORT   |
|------------------------|--------|-----------|-----|-----|------|--------|
| Reset time             | tr     |           |     | 1.5 | us   |        |
| RESETB "L" pulse width | trw    |           | 5   |     | us   | RESETB |

## 7. Application Example

## 1) Connection With CPU

1-1) 80 Series CPU Interface(18-bit bus)



## 1-2) 68 Series CPU Interface(18-bit bus)



## 1-3) CPU Connection With Serial Interface



## **Revision History**

| Rev. # | Contents                   | page | Name            | Date         |
|--------|----------------------------|------|-----------------|--------------|
| 0.0    | Original                   |      | YK Kim/ A Ahn   | 2005. 05. 30 |
| 0.1    | Preliminary                |      | YK Kim/ A Ahn   | 2005. 06. 09 |
| 0.2    | Delete Pre_charge current  |      | YK Kim/ A Ahn   | 2005. 08. 19 |
| 0.3    | Address 3Bh Changed        | P32  | YK Kim/ A Ahn   | 2005. 09. 01 |
| 0.4    | Table Changed              | P17  | YK Kim/ A Ahn   | 2005. 09. 07 |
| 0.5    | Power on sequence Addition | P16  | YK Kim/ A Ahn   | 2005. 09. 14 |
| 0.6    | DC Characteristics Changed | P36  | YK Kim/ SS Kang | 2005. 09. 22 |
| 0.7    | Add Pre_charge current     |      | YK Kim/ A Ahn   | 2005. 09. 22 |
| 0.8    | Add RGB Interface          | P1,2 | YK Kim/ A Ahn   | 2005. 12. 07 |