Ismétlés nélküli permutációinak számáról szóló tétel

Tétel:

Egy n elemű A halmaz ismétlés nélküli permutációinak száma:

$$P_n=n!=\prod_{k=1}^n k$$

Bizonyítás:

Teljes indukcióval.

$$n = 0,1:1$$
 féle, $0! = 1! = 1$

Ha A egy (n+1) elemű halmaz, $f:\{1,2,\ldots,n+1\}\to A$ bijektív Ha $f(1)=x\in A$, akkor $f(2),f(3),\ldots,f(n+1)$ az az $A\setminus\{x\}$ halmaz egy permutációját adja.

 $A \setminus \{x\}$ elemszáma n, tehát n! módon fejezhetem be azt a felsorolást, ami x-el kezdődött.

De x választási lehetősége (n+1) féle \Rightarrow Az A permutációinak száma:

$$(n+1)\cdot n! = (n+1)!$$

Bizonyítás2:

Az n elemből az első helyre n féleképpen választhatunk, a másodikra n-1 féleképpen, ... Így az összes lehetőségek száma $n \cdot (n-1) \cdot \ldots \cdot 1 = n!$

Ismétléses permutációk számáról szóló tétel

Tétel:

Ha egy n hosszú sorozatban r db különböző elem van és ezek i_1,i_2,\ldots,i_r -szer ismétlődnek $(i_1+i_2+\ldots+i_r=n)$, akkor a képezhető ismétléses permutációk száma:

$$^iP_n^{i_1,i_2,...i_r}=rac{n!}{i_1!\cdot i_2!\cdot\ldots\cdot i_r!}$$

Bizonyítás:

Tfh.: az i_1 darab egyforma elem mégis különböző.

Ekkor ezeknek az egymás közti sorrendje i_1 ! féle lehetne, és az ismétléses permutációk száma i_1 ! -szorosára nőne.

Ugyanezt eljátszva a többi elemmel a permutációk száma $i_1! \cdot i_2! \cdot \ldots \cdot i_r!$ -szorosára nőne, és akkor kapnánk meg az n! lehetőséget.

Bizonyítás2:

Ha minden elem között különbséget teszünk, akkor n! lehetséges sorrend van. Ha azonban az azonos típusú elemek köött nem teszünk különbséget, akkor ebben a számításban többször számoltuk az egyes sorrendeket.

Mivel minden $1 \le k \le r$ -re adott i_k db pozíción i_k ! különböző sorrendben helyezhetjük el a k-adik típusú elemeket, ezért minden sorrendet $i_1! \cdot i_2! \cdot \ldots \cdot i_r$!-szor számoltunk. Így a különböző sorrendek száma:

$$\frac{n!}{i_1! \cdot i_2! \cdot \ldots \cdot i_r!}$$

Ismétlés nélküli variációk számáról szóló tétel

Tétel:

Egy n elemű halmaz k-ad osztályú ismétlés nélküli variációinak száma:

$$V_n^k = rac{n!}{(n-k)!}$$

Bizonyítás:

Jelölje a keresett mennyiséget V_n^k

Minden felsorolása A-nak (n! összesen) felbontható az első k és a következő (n-k) elemre.

$$\underbrace{a_1 \ a_2 \ \dots \ a_k}_{k \ db} \qquad \underbrace{a_{k+1} \dots a_n}_{n-k \ db}$$

Itt az első k elem V_n^k -féle lehet, az utolsó (n-k) elem (n-k)!-féle lehet.

Ekkor:
$$V_n^k \cdot (n-k)! = n! \Leftrightarrow V_n^k = \frac{n!}{(n-k)!}$$

Ismétléses variációk számáról szóló tétel

Tétel:

Egy n elemű halmaz k-ad osztályú ismétléses veriációinak száma:

$$^{i}V_{n}^{k}=n^{k}$$

Bizonyítás2:

A sorozat első elemét n féleképpen választhatjuk, a második elemét n-féleképpen választhatjuk ..., a sorozat k-adik elemét n-féleképpen választhatjuk. $\Rightarrow n \cdot n \cdot \dots \cdot n = n^k$

Ismétlés nélküli kombinációk számáról szóló tétel

Tétel:

Egy n elemű halmaz k-ad osztályú ismétlés nélküli kombinációinak száma:

$$C_n^k = inom{n!}{k! \cdot (n-k)!}$$

Bizonvítás:

A keresett szám: C_n^k

A variációt megadhatjuk 2 lépésben:

- 1, Melyik elemet választom $\to C_n^k$
- 2, Milyen sorrendben $\rightarrow k!$

$$V_n^k = C_n^k \cdot k! \Leftrightarrow C_n^k = rac{n!}{k! \cdot (n-k)!}$$

Bizonvítás2:

Először válasszuk a halmaz elemei közül k darabot a sorrendet figyelembevéve.

Ezt
$$\frac{n!}{(n-k)!}$$
-féleképpen tehetjük meg.

Ha a sorrendtól eltekintünk, akkor az előző számlálásnál minden k elemű részhalmaz pontosan k!-szor szerepel. Ezzel leosztva kapjuk a k elemű részhalmazok számát.

Ismétléses kombinációk számáról szóló tétel

Tétel:

Egy n elemű halmaz k-ad osztályú ismétléses kombinációinak száma:

$${}^iC_n^k=inom{n+k-1}{k}$$

Bizonvítás:

Legyen $A = \{a_1, a_2, \dots, a_n\}$ Ekkor minden egyes lehetőségnek megfeleltetünk egy 0-1 sorozatot:

$$\underbrace{1,1,\ldots,1}_{a_1\text{-ek sz\'a ma}},0,\underbrace{1,1,\ldots,1}_{a_2\text{-ek sz\'a ma}},0,\ldots,0,\underbrace{1,1,\ldots,1}_{a_n\text{-ek sz\'a ma}}$$

Ekkor a sorozatban k db 1-es van (választott elemek száma), n-1 darab 0 van (szeparátorok száma). Összesen n-1+k pozíció, ezekból k-t választunk. Ilyen sorozat $\binom{n+k-1}{k}$ db van.

Binomiális tétel

Tétel:

Ha x és y számok (pl.: $\mathbb R$), akkor $2 < n \in \mathbb N$ esetén: $(x+y)^n = \sum\limits_{k=0}^n \binom{n}{k} x^{n-k} y^k$

Bizonyítás:

$$(x+y)^n = (x+y) \cdot (x+y) \cdot \ldots \cdot (x+y)$$

Ha elvégezzük a beszorzást, akkor x^ny^{n-k} alakú tagokat kapunk, és ezen tagot annyiszor kapjuk meg, ahányszor n tényezőből k darab x-et választunk.

Polinomiális tétel

Tétel:

 $(x_1+x_2+\ldots+x_r)^n$ kifejezésben olyan $x_1^{i_1}\cdot x_2^{i_2}\cdot\ldots\cdot x_r^{i_r}$ tagok vannak, melyekre $i_1+i_2+\ldots+i_r=n$ és ennek a tagnak az együtthatója: $rac{n!}{i_1!\cdot i_2!\cdot\ldots\cdot i_r!}$

$$\frac{n!}{i_1! \cdot i_2! \cdot \ldots \cdot i_r!}$$

Bizonyítás:

$$x_1^{i_1} \cdot x_2^{i_2} \cdot \ldots \cdot x_r^{i_r}$$
 hányféle változatban jelenik meg = hányféle permutációja van ismétlésesen = $\frac{n!}{i_1! \cdot i_2! \cdot \ldots \cdot i_r!}$

Gráf csúcsainak fokszámösszegére vonatkozó tétel

Tétel:

Egy
$$G = (V, E, arphi)$$
 véges gráfban $\sum\limits_{v \in V} deg(v) = 2 \cdot |E|$

Bizonyítás:

Készítsünk egy táblázatot:

	e_1	e_2	
v_1	0	1	
v_2	2	0	
	•••		

Sorok = V, Oszlopok = E, írjunk majdnem mindenhova 0-t, kivéve oda, ha a megfelelő csúcs az él egyik végpontja akkor 1-est, ha hurokél akkor 2-est írjunk oda.

A v_j sorának összege: $deg(v_j)$

Az e_k oszlopának összege: 2

A táblázat összege: $\sum\limits_{v \in V} deg(v) = 2 \cdot |E|$

Bizonyítás2:

Élszám szerinti teljes indukció:

|E|=0 esetén az egyenlet mindkét oldala 0 🗸

Tfh.: |E| = n esetén igaz az állítás.

Ekkor kell, hogy ha adott egy gráf, melynek n+1 éle van, akkor annak egy élét elhagyva egy n élű gráfot kapunk. Erre teljesül az állítás az indukciós feltevés miatt. Az elhagyott élt hozzátéve az egyenlőség mindkét oldala 2-vel nő.

Állítás út létrehozásáról sétából gráf két csúcsa között

Állítás:

Ha egy G gráfban v_1 és v_2 között van séta, akkor van közöttük út is.

Bizonyítás:

Ha van séta és van csúcs amit kétszer is meglátogatok, akkor a két csúcs közötti séta-részt hagyjuk el. Ezt ismételjük addig amég van olyan csúcs amit kétszer látogatunk meg. Végül így egy utat kapunk.

$$v_1 ---> v_i ---> v_i ---> v_2 \quad \Rightarrow \quad v_1 ---> v_i ---> v_2$$