Learning about the Attention Mechanism and the Transformer model

Baptiste AMATO Alexandre Jouandin Vincent Marois

Alexis Durocher

Gabriel Hurtado

Motivation

- Transformer [VSP+17] model is a SoTA Machine Translation model,
- No recurrence, only uses the Attention Mechanism [BCB14],
- ⇒ Can we reproduce the paper's results with our implementation and what can we learn about the model?

The Dataset

- IWSLT 2016 TED talk translation task (French → English),
- 220k train samples, 1025 validation, 1305 test,
- Avg. sentence length: 20 (train) 21 (val) 19 (test).

- (a) Sentence Length Distribution.
- **(b)** Cumulated Distribution.

The Transformer Model

Figure 2: The Transformer model Architecture and the Attention Heads.

- Encoder-Decoder architecture,
- Less computation-heavy than RNNs for translation,
- Multi-Head Attention: Allows model to jointly attend to information from different representation subspaces.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv preprint arXiv:1409.0473, 2014.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All You Need. In Advances in neural information processing systems, pages 5998-6008, 2017.

Experiments

- Model converging on the IWSLT dataset,
- Early inference tests not satisfying: Further training & Beam Search should help.

Figure 3: Training and Validation loss on 90% of the IWSLT dataset (15) epochs).

Memory Use Analysis

Figure 4: GPU Memory Use over the 1^{st} 4 iterations.

- Initial increase of memory use, particularly when computing loss,
- Stabilization over epoch at \sim 6 Gb,
- ⇒ PyTorch most likely optimizing in the background.

Challenges

- Heavy model (65M parameters) & Aggregation of multiple, fine-tuned specifications \Rightarrow Non-trivial training,
- Non-intuitive training behavior: "No recurrence", but stack of layers and use of subsequent masking on an additional dimension,
- Inference is nonetheless step-by-step,
- Question of reproducibility and transparency remains open.