Chapitre 20

Limites et comparaisons

Isaac Newton (1642 – 1727)

« Je ne sais pas ce que j'ai pu sembler être aux yeux du monde, mais à mes yeux je n'ai été qu'un enfant, jouant sur le rivage et heureux de trouver de temps à autre un galet plus lisse ou un coquillage plus beau que les autres, alors que le grand océan de la vérité s'étendait devant moi, encore inexploré. »

 $\begin{tabular}{l} Is a ac\ Newton \\ The\ Portsmouth\ Papers \\ \end{tabular}$

Newton

Physicien, mathématicien, alchimiste, passionné d'astronomie, grand argentier de l'État et homme d'Église, Sir Isaac Newton fut un génie comme l'histoire en a peu connu.

Père du principe de la gravitation universelle, des lois du mouvement, du principe d'actionréaction, du télescope, du calcul différentiel... Newton a marqué l'histoire par son œuvre, impressionnante tant par sa profondeur que son étendue.

Sommaire

I. Adhérence, intérieur et voisinages	
1) Adhérence	
2) Intérieur	
3) Voisinages	4
II. Limites : définition	5
1) Les neuf cas	5
2) Fonctions convergentes	
3) Unicité de la limite	
4) Limites par valeurs inférieures et supérieures	
5) Cas d'une fonction non définie en un point	9
III. Opérations sur les limites	9
1) Une fonction convergente est localement bornée	9
2) Opérations algébriques sur les limites	
3) Composition des limites	10
IV. Limites et inégalités	12
1) Passage à la limite dans les inégalités larges	
2) Rétro-passage à la limite dans les inégalités strictes	12
3) Théorèmes d'encadrement	13
4) Théorème de la limite monotone	
V. Relations de comparaison	15
1) Définitions	
2) En pratique	
3) Cas particuliers très importants	
4) Inversion des ordres de comparaison	16
5) Exemples	
6) Équivalents remarquables	
7) Développements asymptotiques	
8) Développements asymptotiques remarquables	19
9) Croissance comparées	
10) Propriétés	
11) L'équivalence conserve localement le signe	20

Limites et comparaisons 2/20

Dans tout ce chapitre, I est un intervalle de $\mathbb R$ tel que $\ell(I)>0$.

I. Adhérence, intérieur et voisinages

1) Adhérence

Définition LIM.1

L'adhérence de I dans $\overline{\mathbb{R}}$, notée \overline{I} est définie par

 $\overline{I}\coloneqq I\cup \big\{\text{les bornes de }I\big\}.$

Exemples

- $\overline{]0,1[} = [0,1]$
- $\overline{]0,1]} = [0,1]$
- $\overline{]0,+\infty[} = [0,+\infty[\cup\{+\infty\}]]$
- $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$

On rappelle que « $-\infty$ » et « $+\infty$ » ne sont que des symboles et en aucun cas des nombres.

Exercice LIM. 2

- 1) A-t-on $\overline{\overline{I}} = \overline{I}$?
- 2) A-t-on $\overline{I} \cap \mathbb{R} = I$?

2) Intérieur

Définition LIM. 3

L'intérieur de I, noté \mathring{I} ou $\overset{\frown}{I}$ est défini par

 $\mathring{I} \coloneqq I \setminus \{\text{les bornes de } I\}.$

Exemple

•
$$[0,1] =]0,1[$$

Exercice LIM.4

Caractériser les intervalles d'intérieur vide.

3) Voisinages

Dans ce paragraphe, on introduit le formalisme des voisinages. Il est tout à fait analogue au formalisme « APCR » qu'on a introduit pour les suites.

Définition LIM.5

Soit $a \in \overline{I}$.

• Soit P(f) un prédicat de f, fonction réelle.

Soit $f: I \longrightarrow \mathbb{R}$.

On dit que P(f) est vrai au voisinage de a et on note « P(f) au $\mathscr{V}(a)$ » ssi

$$\Rightarrow$$
 quand $a \in \mathbb{R}$: $\exists \delta > 0 : P(f|_{I \cap [a-\delta,a+\delta]})$ est vraie

$$ightarrow \underline{quand\ a=+\infty}$$
 : $\exists A\in\mathbb{R}:\ P\Big(fig|_{I\cap[A,+\infty[}\Big) \ \text{est\ vraie}$

$$\rhd \underline{quand\ a=-\infty}: \quad \exists A \in \mathbb{R}:\ P\Big(f\big|_{I\cap]-\infty,A]}\Big) \ est \ vraie$$

• Soit Q(x) un prédicat de $x \in \mathbb{R}$.

On dit que Q(x) est vrai au voisinage de a et on note « Q(x) au $\mathscr{V}(a)$ » ssi

$$ightharpoonup$$
 quand $a \in \mathbb{R}$: $\exists \delta > 0: \forall x \in]a - \delta, a + \delta[, Q(x)]$

$$ightharpoonup$$
 quand $a = +\infty$: $\exists A \in \mathbb{R} : \forall x \in [A, +\infty[, Q(x)]$

$$\triangleright$$
 quand $a = -\infty$: $\exists A \in \mathbb{R} : \forall x \in]-\infty, A], Q(x)$

Exemples

• P(f) = « f est croissante ».

On considère la fonction $f: \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto x^2 - 42. \end{array} \right.$ Alors,

$$\triangleright$$
 f est croissante au $\mathscr{V}(+\infty)$.

$$\triangleright f$$
 est décroissante au $\mathscr{V}(-\infty)$.

$$\triangleright f$$
 n'est ni croissante ni décroissante au $\mathcal{V}(0)$.

• $sin(\cdot)$ est strictement croissante au $\mathcal{V}(0)$.

$$\bullet \ \left\{ \begin{array}{l} \mathbb{R} +^* \longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{x} \end{array} \right. \text{ n'est pas bornée au } \mathscr{V}(0) \text{ ie } \forall \delta > 0, \left\{ \begin{array}{l}]0, \delta[\longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{x} \end{array} \right. \text{ n'est pas bornée.}$$

•
$$\cos(x) > 0$$
 au $\mathcal{V}(0)$.

•
$$\frac{1}{x} \leqslant 1$$
 au $\mathscr{V}(+\infty)$.

•
$$\frac{\exp(\sqrt{x})}{2} > x^{42}$$
 au $\mathscr{V}(+\infty)$.

II. Limites: définition

1) Les neuf cas

Définition LIM.6

Soit $f: I \longrightarrow \mathbb{R}$.

Soient $a \in \overline{I}$ et $\ell \in \overline{\mathbb{R}}$.

On dit que f tend vers ℓ en a ou que f(x) tend vers ℓ quand x tend vers a, et on note

$$f(x) \mathop{\longrightarrow}_{x \to a} \ell \qquad \text{ ou } \qquad f(x) \mathop{\longrightarrow}_{a} \ell \qquad \text{ ou } \qquad f \mathop{\longrightarrow}_{a} \ell$$

 $\overset{\Delta}{\text{SS1}}$...

a) Premier cas : $a \in \mathbb{R}$ et $\ell \in \mathbb{R}$

Définition LIM. 7

$$f(x) \underset{x \to a}{\longrightarrow} \ell$$
 ssi $\forall \varepsilon > 0, \ \exists \delta > 0: \ \forall x \in I, \ |x - a| \leqslant \delta \implies |f(x) - \ell| \leqslant \varepsilon$

Autrement dit : « Quitte à être très proche de a, je peux être, après application de la fonction $f(\cdot)$ aussi proche que je veux de ℓ »

Remarque

• Dans cette définition, on peut remplacer le « $|f(x) - \ell| \le \varepsilon$ » par « $|f(x) - \ell| \le 2\varepsilon$ » ou par « $|f(x) - \ell| \le 50\varepsilon$ », etc.

Exemples

•
$$\sqrt{x} \xrightarrow[x \to 0]{} 0$$
.

« Si x est petit, \sqrt{x} est petit. »

•
$$\sqrt{x} \xrightarrow{x \to 2} \sqrt{2}$$
.

« Si x est proche de 2, \sqrt{x} est proche de $\sqrt{2}$. »

Fait LIM.8

Si f est définie en a (ie si $a \in I$) alors

$$f(x) \underset{x \to a}{\longrightarrow} \ell \implies \ell = f(a).$$

Démonstration. — Soit $\varepsilon > 0$ et soit $\delta > 0$ tel que $\forall x \in I, |x - a| \leq \delta \implies |f(x) - \ell| \leq \varepsilon$.

Comme $a \in I$ et $|a - a| \leq \delta$, on a $|f(a) - \ell| \leq \varepsilon$.

Ainsi, on a montré que

$$\forall \varepsilon > 0, |f(a) - \ell| \leq \varepsilon.$$

On sait que dans ce cas, on a nécessairement $|f(a) - \ell| = 0$, ie $f(a) = \ell$.

Remarque

Ainsi, le cas intéressant est quand $a \notin I$.

Exemples

- $\frac{\sin(x)}{x} \xrightarrow[x \to 0]{} 1$.
- On considère $f: \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow \mathbb{R} \\ x \longmapsto \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{sinon} \end{array} \right.$ Alors, f n'a pas de limite en 0.
- b) Deuxième cas : $a\in\mathbb{R}$ et $\ell=+\infty$

Définition LIM.9

$$f(x) \underset{x \to a}{\longrightarrow} +\infty \qquad \quad \stackrel{\triangle}{\text{ssi}} \qquad \quad \forall A \in \mathbb{R}, \ \exists \delta > 0: \ \forall x \in I, \ |x - a| \leqslant \delta \implies f(x) \geqslant A$$

Une fonction f qui tend vers $+\infty$ en a ne peut pas être définie en a.

Remarque

• Dans cette définition, on peut remplacer le « $\forall A \in \mathbb{R}$ » par « $\forall A \geqslant 0$ ».

Exemple

$$\bullet \ \, \text{On considère} \, \, f: \left\{ \begin{array}{l} \mathbb{R}_+^* \longrightarrow \mathbb{R} \\ \\ x \longmapsto \frac{1}{x} \end{array} \right. \, \, \text{Alors on a} \, \, f(x) \underset{x \to 0}{\longrightarrow} +\infty.$$

c) Troisième cas : $a = +\infty$ et $\ell \in \mathbb{R}$

Définition LIM. 10

$$f(x) \underset{x \to +\infty}{\longrightarrow} \ell$$
 ssi $\forall \varepsilon > 0, \exists x_0 \in \mathbb{R} : \forall x \in I, x \geqslant x_0 \implies |f(x) - \ell| \leqslant \varepsilon$

Exemples

- $\bullet \quad \frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0.$
- $\operatorname{arctan}(x) \underset{x \to +\infty}{\longrightarrow} \frac{\pi}{2}$

d) Quatrième cas : $a=+\infty$ et $\ell=+\infty$

Définition LIM. 11

$$f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$$
 ssi $\forall A \in \mathbb{R}, \exists x_0 \in \mathbb{R} : \forall x \in I, x \geqslant x_0 \implies f(x) \geqslant A$

Exemples

- $x \xrightarrow[x \to +\infty]{} +\infty$
- $\exp(x) \xrightarrow[x \to +\infty]{} +\infty$.
- $[x] \xrightarrow[x \to +\infty]{} +\infty$

e) Autres cas

Exercice LIM. 12

- 1) Quels sont les autres cas?
- 2) Donner les définitions dans ces cas-là.

2) Fonctions convergentes

Définition LIM.13

Soit $a \in \overline{I}$ et soit $f: I \longrightarrow \mathbb{R}$. On dit que f converge en a ssi $\exists \ell \in \mathbb{R}: f(x) \underset{x \to a}{\longrightarrow} \ell$.

3) Unicité de la limite

Proposition-définition LIM. 14

Soient $f: I \longrightarrow \mathbb{R}$, $a \in \overline{I}$ et $\ell_1, \ell_2 \in \overline{\mathbb{R}}$.

• Alors,

$$\begin{cases} f(x) \underset{x \to a}{\longrightarrow} \ell_1 \\ f(x) \underset{x \to a}{\longrightarrow} \ell_2 \end{cases} \implies \ell_1 = \ell_2.$$

• Dans ce cas, cet unique $\ell \in \overline{\mathbb{R}}$ est appelé la limite de f en a et est noté

$$\lim_{x \to a} f(x) \qquad ou \qquad \lim_a f(x) \qquad ou \qquad \lim_a f.$$

Démonstration. — On laisse au lecteur le soin, à titre d'exercice, de démontrer cette assertion.

4) Limites par valeurs inférieures et supérieures

Définition LIM. 15

Soit $f: I \longrightarrow \mathbb{R}$, soit $a \in \overline{I} \cap \mathbb{R}$ et soit $\ell \in \overline{\mathbb{R}}$.

• On dit que f(x) tend vers ℓ quand x tend vers a par valeurs supérieures ssi

$$f|_{I\cap]a,+\infty[}(x)\underset{x\to a}{\longrightarrow}\ell.$$

On note alors

$$f(x) \underset{x \to a}{\underset{\rightarrow}{\longrightarrow}} \ell$$
 ou $f(x) \underset{x \to a^+}{\longrightarrow} \ell$ ou $f(x) \underset{a^+}{\longrightarrow} \ell$ ou $f \xrightarrow{a^+} \ell$.

• De même, on définit « f(x) tend vers ℓ quand x tend vers a par valeurs inférieures » et les notations correspondantes.

Exemples

• Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$. Alors, on a

$$f \xrightarrow[0^+]{0} 1 \qquad \Longleftrightarrow \qquad \forall \varepsilon > 0, \exists \delta > 0 : \forall x \in]0, \delta[, |f(x) - 1| \leqslant \varepsilon.$$

ullet On considère la fonction $g: \left\{ egin{align*} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto \lfloor x \rfloor \end{array}
ight.$. Alors, on a

$$\begin{cases} \lim_{x \to 0^+} g(x) = 0 \\ \lim_{x \to 0^-} g(x) = -1 \end{cases} \text{ et } g(0) = 0.$$

Proposition LIM. 16

Soit $f: I \longrightarrow \mathbb{R}$, soit $a \in I$ et soit $\ell \in \mathbb{R}$. Alors, on a

$$f(x) \underset{x \to a}{\longrightarrow} \ell \quad \iff \quad \begin{cases} f(x) \underset{x \to a^{-}}{\longrightarrow} \ell \\ f(a) = \ell \\ f(x) \underset{x \to a^{+}}{\longrightarrow} \ell. \end{cases}$$

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

5) Cas d'une fonction non définie en un point

Définition LIM. 17

Soit $a \in \mathring{I}$ et soit $f : I \setminus \{a\} \longrightarrow \mathbb{R}$. Soit $\ell \in \overline{\mathbb{R}}$.

On dit que f tend vers ℓ en a ssi

$$f(x) \underset{\stackrel{x \to a}{\longrightarrow} \ell}{\longrightarrow} \ell$$
 et $f(x) \underset{\stackrel{x \to a}{\longrightarrow} \ell}{\longrightarrow} \ell$.

On note alors

$$f(x) \underset{\neq}{\xrightarrow{x \to a}} \ell.$$

Exemples

• Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $a \in \mathbb{R}$. On verra bientôt que

$$f$$
 est dérivable en a $\stackrel{\triangle}{ssi}$ $\exists \ell \in \mathbb{R} : \frac{f(x) - f(a)}{x - a} \underset{\neq}{\overset{\longrightarrow}{\longrightarrow}} \ell.$

$$\bullet \ \ \mathsf{On} \ \mathsf{a} \ \frac{1}{x^2} + 1 \underset{\underset{\neq}{\longrightarrow} 0}{\longrightarrow} +\infty.$$

III. Opérations sur les limites

1) Une fonction convergente est localement bornée

Proposition LIM. 18

Soient $f: I \longrightarrow \mathbb{R}$, $a \in \overline{I}$ et $\ell \in \mathbb{R}$. Alors,

$$f(x) \mathop{\longrightarrow}_{x \to a} \ell \quad \implies \quad f \text{ est born\'ee au } \mathcal{V}(a).$$

Démonstration. — Cf. cours.

Remarque

• On remarquera évidemment l'analogie avec le résultat suivant portant sur les suites

$$\forall (u_n)_n \in \mathbb{R}^{\mathbb{N}}, \quad (u_n)_n \text{ converge } \Longrightarrow (u_n)_n \text{ born\'ee}.$$

Exemple

• On considère $f: \left\{ \begin{array}{ll} \mathbb{R}_+^* & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{1}{x} \end{array} \right.$

 \triangleright On a $f(x) \underset{x \to +\infty}{\longrightarrow} 0$. Donc, f est bornée au $\mathscr{V}(+\infty)$.

ightharpoonup Mais, f n'est pas bornée sur \mathbb{R}_+^* .

2) Opérations algébriques sur les limites

On dispose pour les limites de fonctions de résultats analogues à ceux pour les limites de suites. On laisse au lecteur le soin de les énoncer et de les démontrer.

Exemples

Soit $a \in \overline{I}$, soient $f, g: I \longrightarrow \mathbb{R}$ et soient $\ell_1, \ell_2 \in \mathbb{R}$.

• On a

$$\begin{cases}
f \longrightarrow \ell_1 \\
g \longrightarrow \ell_2
\end{cases} \implies \left(f + g \longrightarrow \ell_1 + \ell_2 \quad \text{et} \quad fg \longrightarrow \ell_1 \ell_2\right).$$

• On a

$$\left. egin{array}{l} f & \longrightarrow +\infty \\ g & \text{born\'ee au } \mathscr{V}(a) \end{array} \right\} \implies f + g & \longrightarrow +\infty.$$

• etc.

3) Composition des limites

a) Cas fonctions - fonctions

Théorème LIM.19

Soient I et J des intervalles et soient $f: I \longrightarrow J$ et $g: J \longrightarrow \mathbb{R}$.

Soit $a \in \overline{I}$, soit $b \in \overline{J}$. Soit $\ell \in \overline{\mathbb{R}}$.

Alors, on a

$$\left. \begin{array}{c} f(x) \underset{x \to a}{\longrightarrow} b \\ g(X) \underset{X \to b}{\longrightarrow} \ell \end{array} \right\} \implies g \circ f(x) \underset{x \to a}{\longrightarrow} \ell.$$

Démonstration. — Cf. cours.

Exemples

• On a $\sin\left(\frac{1}{x}\right) \underset{x \to +\infty}{\longrightarrow} 0$. En effet, on a

$$\frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0 \quad \text{ et } \quad \sin(X) \underset{X \to 0}{\longrightarrow} 0.$$

• On a $\ln\left(\frac{\ln(x)}{\ln(x)+1}\right) \underset{x\to +\infty}{\longrightarrow} 0.$

En effet,

⊳ on a

$$\frac{\ln(x)}{\ln(x)+1} = \frac{\ln(x)}{\ln(x)\left(1+\frac{1}{\ln(x)}\right)} = \frac{1}{1+\underbrace{\frac{1}{\ln(x)}}_{x\to +\infty}} \xrightarrow[x\to +\infty]{} 1;$$

 \triangleright et $ln(X) \xrightarrow[X \to 1]{} 0$.

b) Application : calcul d'une limite en un point fini en se ramenant à 0

On veut calculer $\lim_{x \to a} f(x)$:

- On pose x = a + h.
- On pose g(h) = f(a+h).
- On calcule $\lim_{h\to 0} g(h)$.
- Par composition des limites, le résultat trouvé vaut $\lim_{h\to 0} f(a+h)$.

Exemple

• Calculons $\lim_{\substack{x \to \pi \\ <}} \frac{\sin(x)}{\sqrt{\pi - x}}$.

Cf. cours.

c) Cas suites – fonctions

Le résultat précédent se transpose au cas où l'on compose une suite par une fonction. En effet, si $f: \mathbb{R} \longrightarrow \mathbb{R}$ et si $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^N$, on peut considérer la « suite composée $f \circ (u_n)_n$ », qui n'est autre que $(f(u_n))_{n \in \mathbb{N}}$.

Théorème LIM. 20

Soient $f: I \longrightarrow \mathbb{R}$ et $(u_n)_n \in I^{\mathbb{N}}$.

Soit $a \in \overline{I}$. Soit $\ell \in \overline{\mathbb{R}}$.

Alors, on a

$$\left. \begin{array}{l} u_n \longrightarrow a \\ f(x) \underset{x \to a}{\longrightarrow} \ell \end{array} \right\} \implies f(u_n) \longrightarrow \ell.$$

Exemple

• On a $\arctan(\sqrt{n}+1) \longrightarrow \frac{\pi}{2}$. En effet,

 \triangleright on a $\sqrt{n}+1\longrightarrow +\infty$;

$$ightharpoonup$$
 et $\operatorname{arctan}(x) \underset{x \to +\infty}{\longrightarrow} \frac{\pi}{2}$.

Exercice LIM. 21

Énoncer le théorème dans le cas « suites – suites ».

d) Application : cos(·) n'a pas de limite en l'infini

Théorème LIM. 22

- 1) La fonction $f: \left\{ \begin{array}{ll} \mathbb{R}_+^* & \longrightarrow \mathbb{R} \\ x & \longmapsto \cos\left(\frac{1}{x}\right) \end{array} \right.$ n'admet pas de limite en 0.
- 2) La fonction $\cos(\cdot)$ n'admet pas de limite en $+\infty$.

Démonstration. — Cf. cours.

IV. Limites et inégalités

1) Passage à la limite dans les inégalités larges

$Proposition \ \mathsf{LIM}.\,\mathbf{23}$

Soit $f: I \longrightarrow \mathbb{R}$ et soit $a \in \overline{I}$. Soit $\ell \in \mathbb{R}$.

Alors, on a

$$\left. \begin{array}{l} f \geqslant 0 \text{ au } \mathscr{V}(a) \\ f(x) \mathop{\longrightarrow}\limits_{x \rightarrow a} \ell \end{array} \right\} \implies \ell \geqslant 0.$$

Démonstration. — Cf. cours.

Remarques

- On verra plus loin qu'on a une réciproque partielle quand on a des inégalités strictes. C'est le rétro-passage à la limite dans les inégalités strictes.
- Attention, évidemment, on ne peut pas passer à la limite dans les inégalités strictes.

Exercice LIM. 24

Trouver un contre-exemple à l'implication fausse

$$\begin{cases} f > 0 \text{ au } \mathcal{V}(a) \\ f(x) \underset{x \to a}{\longrightarrow} \ell \end{cases} \implies \ell > 0.$$

Corollaire LIM. 25

Soient $f, g: I \longrightarrow \mathbb{R}$ et soit $a \in \overline{I}$. Soient $\ell_1, \ell_2 \in \mathbb{R}$. Soit $M \in \mathbb{R}$.

On suppose que $f \xrightarrow{a} \ell_1$ et $g \xrightarrow{a} \ell_2$.

Alors, on a

- 1) $f \leqslant g \text{ au } \mathcal{V}(a) \implies \ell_1 \leqslant \ell_2$
- 2) $f \leqslant M$ au $\mathscr{V}(a) \implies \ell_1 \leqslant M$
- 3) $f \geqslant M$ au $\mathscr{V}(a) \implies \ell_1 \geqslant M$

2) Rétro-passage à la limite dans les inégalités strictes

Proposition LIM. 26

Soit $f: I \longrightarrow \mathbb{R}$ et soit $a \in \overline{I}$. Soit $\ell \in \mathbb{R}$ tel que $f(x) \xrightarrow{a} \ell$.

Alors, on a

$$\ell > 0 \implies \exists \varepsilon_0 > 0 : (f \geqslant \varepsilon_0 \text{ au } \mathscr{V}(a)).$$

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

Limites et comparaisons 12/20

3) Théorèmes d'encadrement

a) Données

Dans ce paragraphe, on considère :

- $f, g: I \longrightarrow \mathbb{R}$ des fonctions;
- $a \in \overline{I}$ un élément de I ou l'une des ses bornes ;
- $\ell \in \overline{\mathbb{R}}$.
- b) Théorème des gendarmes

Théorème LIM.27 (Théorème des gendarmes)

$$\left. \begin{array}{l} f \leqslant g \leqslant h \text{ au } \mathscr{V}(a) \\ f \underset{a}{\longrightarrow} \ell \\ h \underset{a}{\longrightarrow} \ell \end{array} \right\} \implies g \underset{a}{\longrightarrow} \ell.$$

Démonstration. — Laissée en exercice.

c) Réflexe : calcul d'une limite nulle par contrôle de la valeur absolue

Corollaire LIM. 28

$$\left. \begin{array}{l} |f| \leqslant g \text{ au } \mathscr{V}(a) \\ g \mathop{\longrightarrow}\limits_{a} 0 \end{array} \right\} \implies f \mathop{\longrightarrow}\limits_{a} 0$$

Corollaire LIM. 29

$$\left. \begin{array}{l} f \text{ born\'ee au } \mathcal{V}(a) \\ g \mathop{\longrightarrow}\limits_{a} 0 \end{array} \right\} \implies fg \mathop{\longrightarrow}\limits_{a} 0$$

d) Étude d'un exemple

• Déterminons $\lim_{\substack{x \to 0 \\ \neq}} x \sin\left(\frac{1}{x}\right)$.

Cf cours

e) Divergence par minoration

Proposition LIM. 30

On suppose que $f \leq g$ au $\mathcal{V}(a)$. Alors, on a

$$\bullet \ \ f \xrightarrow[a]{} + \infty \ \ \Longrightarrow \ \ g \xrightarrow[a]{} + \infty$$

$$\bullet \ g \xrightarrow{a} -\infty \ \Longrightarrow \ f \xrightarrow{a} -\infty$$

4) Théorème de la limite monotone

Théorème LIM. 31

Soit $f: I \longrightarrow \mathbb{R}$ une fonction croissante.

1) Soit $a \in \mathring{I}$ (donc, $a \in I$ et donc $a \in \mathbb{R}$).

Alors,
$$\lim_{x\to a^-} f(x)$$
 et $\lim_{x\to a^+} f(x)$ existent et sont finies et on a

$$\lim_{x\to a^-} f(x)\leqslant f(a)\leqslant \lim_{x\to a^+} f(x).$$

2) Si b est la borne supérieure de I (on a $b \in \overline{\mathbb{R}}$).

Alors, $\lim_{x\to b^-} f(x)$ existe dans $\overline{\mathbb{R}}$ et on a :

- a) si f est bornée au $\mathcal{V}(b),$ alors $\lim_{x\to b^-}f(x)\in\mathbb{R}\,;$
- b) sinon, $\lim_{x \to b^{-}} f(x) = +\infty$
- 3) Si b est la borne inférieure de I (on a $b \in \overline{\mathbb{R}}$).

Alors, $\lim_{x \to b^+} f(x)$ existe dans $\overline{\mathbb{R}}$ et on a :

- a) si f est bornée au $\mathcal{V}(b)$, alors $\lim_{x\to b^+} f(x) \in \mathbb{R}$;
- b) sinon, $\lim_{x \to b^+} f(x) = -\infty$

Remarque

• On a évidemment un énoncé analogue quand f est décroissante et on laisse au lecteur le soin de l'énoncer.

Exemple

• On considère la fonction $f: \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow \mathbb{R} \\ x \longmapsto \begin{cases} -1 & \text{si } x < 2 \\ 0 & \text{si } x = 2 \\ 1 & \text{si } x > 2 \end{array} \right.$ Alors, f est croissante.

Démonstration. — Cf. cours.

V. Relations de comparaison

Dans cette partie, on fixe $a \in \overline{I}$ et on considère f et g deux fonctions définies sur I ou sur $I \setminus \{a\}$.

1) Définitions

a) Négligeabilité

Définition LIM.32

On dit que f est négligeable devant g au $\mathcal{V}(a)$ et on note

$$\begin{split} f &= \mathop{\mathrm{o}}_a(g) &\quad \text{ou} \quad f(x) &= \mathop{\mathrm{o}}_a(g(x)) \\ &\quad \text{ou} \quad f(x) &= \mathop{\mathrm{o}}_{x \to a}(g(x)) \quad \text{ou} \quad f(x) &= \mathrm{o}(g(x)) \text{ quand } x \to a \\ \\ &\quad \stackrel{\triangle}{\mathrm{ssi}} \ \exists \varepsilon : I \longrightarrow \mathbb{R} \quad : \quad \begin{cases} f &= \varepsilon g \text{ au } \mathscr{V}(a) \\ \varepsilon &\xrightarrow{a} 0. \end{cases} \end{split}$$

b) Équivalence

Définition LIM. 33

On dit que f est équivalente à g au $\mathcal{V}(a)$ et on note

$$\begin{split} f &\underset{a}{\sim} g &\quad \text{ou} \quad f(x) \underset{x \to a}{\sim} g(x) \\ &\quad \text{ou} \quad f(x) \underset{x \to a}{\sim} g(x) \quad \text{ou} \quad f(x) \sim g(x) \text{ quand } x \to a \\ \\ &\quad \overset{\triangle}{\text{ssi}} \ \exists \theta : I \longrightarrow \mathbb{R} \quad : \quad \begin{cases} f = \theta g \text{ au } \mathscr{V}(a) \\ \theta \xrightarrow{a} 1. \end{cases} \end{split}$$

c) Domination

Définition LIM. 34

On dit que f est dominée par g au $\mathcal{V}(a)$ et on note

$$\begin{split} f &= \mathop{\mathrm{O}}_a \left(g \right) \quad \text{ ou } \quad f(x) &= \mathop{\mathrm{O}}_a \left(g(x) \right) \\ & \text{ ou } \quad f(x) &= \mathop{\mathrm{O}}_{x \to a} \left(g(x) \right) \quad \text{ ou } \quad f(x) &= \mathrm{O}(g(x)) \text{ quand } x \to a \\ & \quad \stackrel{\triangle}{\mathrm{ssi}} \ \exists M \in \mathbb{R} : |f| \leqslant M|g| \text{ au } \mathscr{V}(a). \end{split}$$

Limites et comparaisons 15/20

2) En pratique

En pratique, comme pour les équivalents de suites, on compare f à g en étudiant le quotient $\frac{f}{g}$. Si g ne s'annule pas au $\mathcal{V}(a)$ sauf éventuellement en a, on a

En pratique

$$f = \underset{a}{\mathbf{o}}(g) \iff \frac{f}{g} \xrightarrow{a} 0$$

$$f \underset{a}{\sim} g \iff \frac{f}{g} \underset{a}{\longrightarrow} 1$$

$$f = \mathop{\rm O}_a\left(g\right) \iff \frac{f}{g} \text{ est born\'ee au } \mathscr{V}(a)$$

3) Cas particuliers très importants

Dans des cas simples mais importants, le langage des équivalents, petits « o » et grands « O » permet de reformuler des propriétés remarquables des fonctions.

À retenir!

Trois réflexes

• Soit $\ell \in \mathbb{R}$ tel que $\ell \neq 0$. Alors,

$$f \underset{a}{\sim} \ell \iff f(x) \xrightarrow{a} \ell.$$

$$f = \underset{a}{\text{o}}(1) \iff f(x) \xrightarrow{a} 0$$

$$f = \mathop{\mathrm{O}}_{a}(1) \iff f \text{ est born\'ee au } \mathscr{V}(a)$$

4) Inversion des ordres de comparaison

Proposition LIM.35

Quand on inverse des fonctions, on inverse leur ordre de comparaison :

$$f = \underset{a}{o}(g) \implies \frac{1}{g} = \underset{a}{o}\left(\frac{1}{f}\right).$$

Exemples **5**)

- a) Exemples guand $x \to +\infty$
- ln(x) = o(x)
- $x = o(x^3)$
- $\bullet \ \frac{1}{x} = \mathrm{o}(1)$
- $\frac{x^2}{5} 2x + \frac{1}{x} \sim \frac{x^2}{5}$
- $4x\sqrt{x} + \ln(x) \sim 4x\sqrt{x}$

 $\bullet \ \boxed{\frac{1}{x} + \frac{8}{x^2} \sim \frac{1}{x}}$ L'idée de ce dernier équivalent est que

- $\Rightarrow \frac{8}{x^2}$ tend vite vers 0;
- $\Rightarrow \frac{1}{x}$ tend moins vite vers 0;
- $ightharpoonup donc, \frac{8}{r^2} = o\left(\frac{1}{r}\right).$

b) Exemples quand $x \to 0$

Ici, il faut comprendre que pour les puissance de x, les ordres de comparaison quand $x \to 0$ sont inverses de ceux, usuels, quand $x \to +\infty$.

Ainsi, on a

$$\forall a, b \in \mathbb{R}, \quad a > b \implies x^a = \underset{x \to 0}{\text{o}} (x^b).$$

Ici, on a donc

$$\Rightarrow x^2 = o(\sqrt{x}) \text{ donc } 5x^2 = o(\sqrt{x})$$

$$\Rightarrow x = o(\sqrt{x}) \text{ donc } -6x = o(\sqrt{x})$$

$$\Rightarrow x^3 = o(\sqrt{x}) \text{ donc } -x^3 = o(\sqrt{x})$$

et donc

$$\triangleright 5x^2 = o(\sqrt{x})$$

$$\triangleright -6x = o(\sqrt{x})$$

$$> -x^3 = o(\sqrt{x})$$

et donc

$$5x^2 + \sqrt{x} - 6x - x^3 \sim \sqrt{x}.$$

• Qui est le plus petit entre $\frac{1}{x}$ et $\frac{1}{x^2}$ au $\mathcal{V}(0)$? Cf. cours

c) Exemples quand $x \rightarrow 1$

On s'intéresse aux fonctions définies au voisinage de 1 telles que f(1) = 0 ou $f(x) \xrightarrow{1} \pm \infty$. On veut connaître la vitesse à laquelle elle tendent vers 0 ou, au contraire, la vitesse à laquelle elles « explosent ».

•
$$\frac{1}{x-1} + 3\ln(x) \sim \frac{1}{x-1}$$

•
$$(x-1)^2 = o(x-1)$$

•
$$6(x-1) + 3(x-1)^2 + \frac{2}{3}(x-1)^3 \sim_{x \to 1} 6(x-1)$$

6) Équivalents remarquables

Proposition LIM. 36

On a

- $\sin(x) \sim x$
- $\ln(1+x) \sim x$
- $\exp(x) 1 \underset{0}{\sim} x$
- $\bullet \ \sqrt{1+x} 1 \underset{0}{\sim} \frac{x}{2}$
- Plus généralement, si $\alpha \in \mathbb{R}^*$, on a $\left[(1+x)^{\alpha} 1 \underset{0}{\sim} \alpha x \right]$.
- En particulier (pour $\alpha = -1$), on a $\frac{1}{1+x} 1 \underset{0}{\sim} -x$.

 $D\acute{e}monstration.$ — Il s'agit de faire apparaı̂tre des taux d'accroissement. On laisse au lecteur le soin de le mettre en œuvre.

7) Développements asymptotiques

a) Notation

Notation LIM. 37

Soit $a \in \overline{I}$.

Soient $f, g, h: I \longrightarrow \mathbb{R}$.

On note

$$f = g + \underset{a}{\circ}(h) \quad \text{ ou } \quad f(x) = g(x) + \underset{a}{\circ}(h(x))$$

$$\text{ ou } \quad f(x) = g(x) + \underset{x \to a}{\circ}(h(x))$$

$$\text{ ou } \quad f(x) = g(x) + \underset{a}{\circ}(h(x)) \text{ quand } x \to a$$

$$\overset{\triangle}{\text{ssi}} \quad f - g = \underset{a}{\circ}(h).$$

Remarques

- On a alors $f = g + \varphi$, où φ est une fonction vérifiant $\varphi = \underset{a}{\circ} (h)$.
- Si besoin est, on pourra aussi écrire

$$f = g + \varepsilon h$$

où $\varepsilon(\cdot)$ est une fonction qui tend vers 0 en a.

b) Dictionnaire Petits « o » \longleftrightarrow Équivalents

Proposition LIM. 38

$$\begin{split} f \mathop{\sim}_a g &\iff & f = g + \mathop{\circ}_a(f) \\ &\iff & f = g + \mathop{\circ}_a(g). \end{split}$$

 $D\'{e}monstration.$ — On a les équivalences successives :

$$f \underset{a}{\sim} g \iff \frac{f}{g} \xrightarrow{a} 1$$

$$\iff \frac{f}{g} - 1 \xrightarrow{a} 0$$

$$\iff \frac{f - g}{g} \xrightarrow{a} 0$$

$$\iff f - g = \underset{a}{\circ} (g)$$

$$\iff f = g + \underset{a}{\circ} (g).$$

8) Développements asymptotiques remarquables

a) Le résultat

Proposition LIM. 39

On a, quand $x \to 0$,

- $\bullet \ \exp(x) = 1 + x + \mathrm{o}(x)$
- $\sqrt{1+x} = 1 + \frac{1}{2}x + o(x)$
- $\forall \alpha \neq 0$, $(1+x)^{\alpha} = 1 + \alpha x + o(x)$
- $\frac{1}{1+x} = 1 x + o(x)$

Démonstration. — Il s'agit de la traduction dans le langage des développements asymptotiques des équivalents remarquables donnés plus haut qui, rappelons-le, sont des traductions dans le langage des équivalents de limites de taux d'accroissement et donc d'existences de nombres dérivés.

Remarques

Plus généralement :

• si f est dérivable en 0 et si $f'(0) \neq 0$, on a

$$f(x) - f(0) \underset{0}{\sim} f'(0)x$$

ie
$$f(x) = f(0) + f'(0)x + \underset{0}{\circ} (x).$$

• si f est dérivable en a et si $f'(a) \neq 0$, on a

$$f(a+h) = f(a) + f'(a)h + o_0(h)$$

ce qui s'écrit aussi f(x) = f(a) + f'(a)(x - a) + o(x - a).

b) Application

Calculons
$$\lim_{x\to 0} \frac{2\exp(x) - \sqrt{1+x} - \frac{1}{1+x}}{x}$$
. Cf. cours.

9) Croissance comparées

Proposition LIM. 40

Soient $\alpha, \beta \in \mathbb{R}$ et soient a, b > 0. On a

•
$$\alpha < \beta \implies x^{\alpha} = \underset{+\infty}{\text{o}} (x^{\beta})$$

•
$$\alpha > 0 \implies \ln(x)^{\beta} = \underset{+\infty}{\text{o}} (x^{\alpha})$$

•
$$a > 1 \implies x^{\alpha} = \underset{+\infty}{\text{o}} (a^x)$$

•
$$a < b \implies a^x = \underset{+\infty}{\circ} (b^x)$$

Exemple

• On a
$$\ln(x)^{50} = \underset{+\infty}{\circ} (\sqrt{x})$$
.

10) Propriétés

Les relations \sim , o et $\underset{a}{\circ}$ vérifient exactement les mêmes propriétés que leurs analogues séquentiels.

Exemples

$$\bullet \begin{cases}
f \sim g \\
g \neq 0 \text{ au } \mathscr{V}(a)
\end{cases} \implies \frac{1}{f} \sim \frac{1}{g}$$

$$\bullet \begin{cases}
f = o(g) \\
a \\
\lambda \in \mathbb{R}^*
\end{cases} \implies f = o(\lambda g)$$

$$\begin{cases}
f_1 = \underset{a}{\circ}(g) \\
\bullet \quad f_2 = \underset{a}{\circ}(g) \\
\lambda \in \mathbb{R}
\end{cases} \implies f_1 + \lambda f_2 = \underset{a}{\circ}(g)$$

Autrement dit, l'ensemble des fonctions $f:I\longrightarrow \mathbb{R}$ telles que $f=\mathop{\mathrm{o}}_a(g)$ est un \mathbb{R} -espace vectoriel.

11) L'équivalence conserve localement le signe strict

Proposition LIM.41

Soient $f, g: I \longrightarrow \mathbb{R}$ et soit $a \in \overline{I}$.

$$\bullet \ \begin{cases} f \underset{a}{\sim} g \\ f > 0 \text{ au } \mathcal{V}(a) \end{cases} \implies g > 0 \text{ au } \mathcal{V}(a)$$

• Plus généralement, $f \underset{a}{\sim} g \implies f$ et g ont même signe strict au $\mathscr{V}(a)$.