

function
$$h(x)$$
. $f(x)$.

convo = $h(x) \otimes f(x)$

= $\int_{-\infty}^{+\infty} h(x) \cdot f(x) \cdot dx$.

Receptive Field

- Correspondence between a feature map pixel and an image pixel is not unique
- Map a feature map pixel to the center of the receptive field on the image in the SPP-net paper

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition". ECCV 2014.

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/3_convnets.pdf

			5×5 pixels
			5.
			Detael 2X2 pixel
intage. = i	nput	W	$f = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
3 3 3	2 1 0	\[\lambda = \]	$\begin{pmatrix} 2 & 1 & 2 \\ 2 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$
2 0	2 3 2 2 3 0 T	W -	349 12 12 12 12 2 4 2 2 0 1 0 1 2 3 5 6 7 8

$$W = \begin{bmatrix} 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix}$$

$$W = \begin{bmatrix} \\ \\ \end{bmatrix}$$

O. 1

O. 2

Suman

O. 3

O. 4

O. 3

O. 4

O. 4

O. 5

output of the first con $W_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ $W_2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ output $= \begin{bmatrix} 16 & 31 \\ 31 \end{bmatrix}$

$$\left[\begin{array}{c} 1 + 2 + 3 \\ \hline 3 \end{array} \right] = 6$$

$$\begin{array}{c} 1 + 2 + 4 \\ \hline 3 + \end{array}$$