Two Approaches to Belief Revision

Ted Shear¹ Jonathan Weisberg² Branden Fitelson³

¹Philosophy @ UC Davis ebshear@ucdavis.edu

²Philosophy @ Toronto jonathan.weisberg@utoronto.ca

³Philosophy & Religion @ Northeastern branden@fitelson.org

Shear, Weisberg & Fitelson

Two Approaches to Belief Revision

Comparison Future Work

- Our agents possess *both* numerical credence functions, $b(\cdot)$, and qualitative belief sets, **B**. When $p \in \mathbf{B}$, we write B(p). We're interested in (non-reductive!) joint constraints on b/\mathbf{B}
- Our agents revise both their b's and their B's, upon learning (exactly) some proposition *E*. On the credence side:
 - (1) $b(\cdot)$ is a classical (Kolmogorov) probability function.
 - (2) given a prior $b(\cdot)$, the posterior $b'(\cdot)$ is generated via conditionalizing $b(\cdot)$ on E — i.e., $b'(\cdot) = b(\cdot \mid E)$.
- On the belief side, our agents entertain (classical, possible worlds) propositions on some finite agenda A.
 - (3) **B** is the set of members of \mathcal{A} that our agent believes; and
 - (4) given a *prior* belief set **B**, the *posterior* belief set \mathbf{B}' is generated by revising the prior by E - i.e., $\mathbf{B}' = \mathbf{B} \star E$.
- ¹Our results generalize beyond $b'(p) = b(p \mid E)$. Any "minimum distance" [4] Bayesian update (on E) satisfying (i) b'(E) > b(E), (ii) b'(E) > t (where t is the agent's EUT Lockean threshold), and (iii) $b(E \supset X) \ge b'(X)$ will suffice.

Two Approaches to Belief Revision

• Today, we'll sketch a new approach to (qualitative) belief revision based on *epistemic utility theory* (EUT) and contrast it with the traditional AGM theory of belief revision.

Comparison

• The EUT approach involves a (normative) Lockean thesis. It's well known (lottery and preface paradoxes, etc. [9, 2]) that Lockean approaches to full belief fail to satisfy **Cogency**.

> **Cogency.** An agent's belief set **B** should (at any given time) be deductively consistent and closed under logic.

Future Work

- Our main focus will be on divergences between EUT & AGM that are *orthogonal* to the classic debates about **Cogency**.
- That is, we will investigate the ways in which EUT and AGM diverge regarding diachronic constraints on *cogent* agents.
- The upshot will be that as a constraint on cogent agents, and from an EUT perspective — AGM is *epistemically* risk-seeking (at least, in one sense). First, some setup.

Comparison

Shear, Weisberg & Fitelson

EUT Revision

Two Approaches to Belief Revision

Future Work

• The fundamental EUT principle [12, 15]: **B** should maximize *expected epistemic utility* — as calculated using $b(\cdot)$.

- We take a veritistic (i.e., accuracy-centered) approach to epistemic utility according to which the only feature of epistemic attitudes that matters is their accuracy.
- More precisely, we will adopt the following naïve, accuracy-centered epistemic utility function for belief.

$$u(B(p), w) \stackrel{\text{def}}{=} \begin{cases} r & \text{if } p \text{ is true at } w \\ -w & \text{if } p \text{ is false at } w \end{cases}$$

• The only constraint we will impose on r and w is

(†)
$$1 \ge \mathbf{w} > \left(\frac{1+\sqrt{5}}{2}\right) \cdot \mathbf{r} > 0.^2$$

Shear, Weisberg & Fitelson

Two Approaches to Belief Revision

Shear, Weisberg & Fitelson

² We assume r > 0, and $w > \phi \cdot r$ (where ϕ is the *Golden Ratio*) since these assumptions imply threshold ranges for (cogent) EUT agents, which allow them (in some cases) to *violate* (some) AGM postulates (as we explain below).

• The *expected epistemic utility* (*EEU*) of a *belief* B(p), from the point of view of a credence function $b(\cdot)$, is given by

$$EEU(\mathsf{B}(p),b) \stackrel{\text{\tiny def}}{=} \sum_{w \in W} b(w) \cdot u(\mathsf{B}(p),w)$$

• The *overall EEU* of an agent's belief *set* **B**, from the point of view of her credence function $b(\cdot)$ is defined as

$$EEU(\mathbf{B}, b) \stackrel{\text{def}}{=} \sum_{p \in \mathbf{B}} EEU(\mathbf{B}(p), b)$$

Theorem (Dorst [5], Easwaran [7]) A belief set **B** (on \mathcal{A}) *maximizes EEU relative to b* if and only if, for every $p \in \mathbf{B}$

$$b(p) > \frac{\mathfrak{w}}{\mathfrak{r} + \mathfrak{w}}.$$

MEEU entails (normative) Lockeanism, with threshold $\frac{w}{r+w}$.

³This explains (†), since (a) $\mathbf{w} \le \phi \cdot \mathbf{r}$ permits B(p) when $b(p) \le \phi - 1$, and (b) allowing $\mathbf{r} = 0$ implies an EUT threshold of 1. See, also, *fn.* 2 and slide 14.

Shear, Weisberg & Fitelson

Two Approaches to Belief Revision

5

J

etup **EUT Revision** AGM Revision Comparison Future Work References Extras ○ ○○○●○○ ○○ ○○ ○○○○○

- To get a feel for how EUT Revision works, it is instructive to note that * does *not* generally satisfy the following (AGM) principle, which has recently been employed by Leitgeb [14].
 - (P2) If an agent learns something that she *already* believes, then her belief set should *remain unchanged*.

[More formally,
$$X \in \mathbf{B} \Rightarrow \mathbf{B}' = \mathbf{B} \star X = \mathbf{B}$$
.]

- Informally, the reason * violates (P2) is that even if an agent already believes q learning q can lower her credence in some other p proposition she also believes.
- Indeed, learning something one already believes (*q*) can drop one's credence in another proposition one also believes (*p*) below one's EUT Lockean threshold.
- However, there is a precise upper-bound on the "degree" to which (P2) can fail from the perspective of EUT.

• We just explained how EUT implies a *synchronic* coherence constraint — specifically, a normative Lockean thesis.

- Since our agents are (Bayesian) *conditionalizers*, this immediately suggests a natural *diachronic* requirement.
- Our diachronic requirement will be that upon learning *E* via conditionaliation our agent beleives exactly those propositions that are sufficiently probable, a posteriori.

EUT Revision. If an agent with a prior belief set **B** learns (exactly) E, then her posterior **B**' should maximize EEU relative to her *conditional* credence function $b(\cdot \mid E)$.

• Formally, $\mathbf{B}' = \mathbf{B} \times E$, where

$$\mathbf{B} \times E \stackrel{\text{\tiny def}}{=} \left\{ p \mid b'(p) = b(p \mid E) > \frac{\mathbf{w}}{\mathbf{r} + \mathbf{w}} \right\}.^{4}$$

⁴As we mentioned above (in *fn.* 1), our main results generalize to any "minimum distance" [4] Bayesian update (on *E*), subject to the following three constraints: (i) b'(E) > b(E), (ii) $b'(E) > \frac{w}{r+w}$, and (iii) b(E) > b'(X).

Shear, Weisberg & Fitelson

EUT Revision

Two Approaches to Belief Revision

6

Setup EUT Revision ○○○○●○

AGM Revisio

Comparison

Future Work

Future Work

References

Extras

• The following proposition provides a bound on *how much* an EUT agent's credence in one of her beliefs can be lowered by learning something else that she already believes.

Proposition. Suppose $b(p) > \frac{w}{r+w}$ and $b(q) > \frac{w}{r+w}$ (*i.e.*, that our EUT agent believes both p and q) and $1/2 < \frac{w}{r+w} \le 1$. Then, $b(p \mid q) > \frac{w-r}{w}$, and $b(p \mid q) - b(p) < \frac{r^2}{rw+w^2}$.

- And, in the limit as an agent's credences in p and q approach 1, (P2) will be satisfied by EUT revision.
- This goes some way toward explaining why (P2) may *seem* like a plausible diachronic constraint on full belief, since it is "approximately" true if full beliefs have sufficiently high credence (and it is *exactly* true in the extremal case).
- More generally, *extremal* EUT agents (*i.e.*, agents such that w = 1 and r = 0, who would have Lockean thresholds of 1) will *always* satisfy *all* of the AGM constraints [10, 11].

Shear, Weisberg & Fitelson

EUT Revision AGM Revision Future Work • The AGM theory of belief revision (Alchourron, Gärdenfors & Makinson [1]) is the most widely investigated and influential account of qualitative belief revision. • AGM's underlying principle is the principle of Conservativity (also sometimes called the principle of informational economy, or minimal mutilation). **Conservativity**. When an agent learns *E*, she should revise to a posterior belief set \mathbf{B}' such that (a) \mathbf{B}' accommodates E, (b) \mathbf{B}' is *deductively cogent*, and (c) \mathbf{B}' constitutes the minimal change to **B** which satisfies (a) and (b). • A precise way to understand **Conservativity** is: **B**' should be such that (a) $E \in \mathbf{B}'$, (b) \mathbf{B}' is deductively cogent, and (c) among those sets satisfying (a) and (b), \mathbf{B}' is closest to \mathbf{B} . AGM revision can be axiomatized... ⁵Here, distance between belief sets may be measured using Hamming

distance, or any of a wide variety of other distance measures [13, 3, 6].

Shear, Weisberg & Fitelson

Two Approaches to Belief Revision

Comparison Future Work

(*4) If *E* is consistent with **B**, then $\mathbf{B} \star E \supseteq \mathsf{Cn}(\mathbf{B} \cup \{E\})$

Proposition. * does *not* satisfy **Vacuity**.

Proof: Let w = 0.17 & r = 0.03 (i.e., t = 0.03) 0.85). Consider a simple urn model, where we will be sampling an object at random from the urn depicted on the right. Then let *E* and *X* be interpreted as follows:

- $E \stackrel{\text{def}}{=}$ 'The object sampled will be red'
- $X \stackrel{\text{def}}{=}$ 'The object sampled will be a circle'

Note: $E \supset X$ is the only proposition with probability above 0.85. So, the rational Bayesian prior belief set is the *singleton*:

$$\mathbf{B} = \{E \supset X\}.$$

[See Extras Slide 23 for the full probability distribution]

Conditionalizing on E yields the "posterior urn" depicted on the right. Note: the proposition $E \supset X$ drops below threshold.

$$b(E \supset X \mid E) = 2/3$$

Thus, when our Bayesian revises by *E*, she ends up with the following posterior:

$$\mathbf{B}' = \mathbf{B} \times E = \{E, E \vee X, E \vee \neg X\}.$$

So, we have the following facts in this case:

- Both **B** and **B**' are deductively cogent.
- *E* is consistent with $\mathbf{B} = \{E \supset X\}$.
- $X \in Cn(\mathbf{B} \cup \{E\})$, since $\mathbf{B} = \{E \supset X\}$.
- But, $X \notin \mathbf{B} \times E$.

Shear, Weisberg & Fitelson

Two Approaches to Belief Revision

Future Work

Extras

15

(*3) $\mathbf{B} * E \subseteq \mathsf{Cn}(\mathbf{B} \cup \{E\})$

Inclusion

 Intuitively, Inclusion requires that a revision does not include any *more* than the logical closure of the union of the original beliefs with the learned proposition.

Comparison

Proposition. $\mathbf{B} \times E \subseteq \mathsf{Cn}(\mathbf{B} \cup \{E\})$

Proof: Suppose $X \in \mathbf{B} \times E$. Then, $b(X \mid E) > t$. And, it is a theorem of probability calculus that $\Pr(E \supset X) \ge \Pr(X \mid E)$. Therefore, $b(E \supset X) > t$. So, $E \supset X \in \mathbf{B}$. Hence, by *modus ponens* (for material implication), $X \in \mathsf{Cn}(\mathbf{B} \cup \{E\})$. □

• A similar argument shows that EUT revision satisfies the more general principle **Superexpansion**. Suppose $P \in \mathbf{B} \times (X \wedge Y)$. Then, $b(P \mid X \wedge Y) > t$. It is a theorem of probability calculus that $\Pr((X \wedge Y) \supset P) \ge \Pr(P \mid X \wedge Y)$. Therefore, $b((X \wedge Y) \supset P) > t$. So, $(X \wedge Y) \supset P \in \mathbf{B}$. So, by **Success** and *modus ponens*, $P \in \mathsf{Cn}((\mathbf{B} \times X) \cup \{Y\})$.

EUT Revision Comparison Future Work • Counterexamples to **Vacuity** for (*cogent*) EUT agents are only possible for certain Lockean threshold (t) ranges. • Examples of the kind we reported above (with 4 worlds) must have a Lockean threshold of at least $\frac{1}{\sqrt{2}} \approx 0.707$. • Thus, 4-world EUT counterexamples to **Vacuity** can only exist for EUT agents who are such that: $w > (1 + \sqrt{2}) \cdot r$ (*i.e.*, w must be greater than approximately 2.414 times r). • There are also 3-world EUT counterexamples to **Vacuity**, and some of these have lower EUT thresholds than $\frac{1}{\sqrt{2}}$. • But, we have established the following *lower bound*: • **Theorem**. All (*cogent*) EUT agents with Lockean thresholds such that $t < \phi - 1 \approx 0.618$ must satisfy **Vacuity**. • An immediate corollary of this theorem (and well-known results regarding extremal t = 1 agents [10, 11]) is: Cogent EUT agents are AGM agents — unless $t \in [\phi - 1, 1)$.

Shear, Weisberg & Fitelson

Two Approaches to Belief Revision

Future Work

• The crucial difference between AGM and EUT (aside, of course, from **Cogency**) is **Vacuity/Subexpansion**.

 Because EUT satisfies Inclusion, it will never require (cogent) agents to *gain more* new beliefs than AGM. But, EUT may require (cogent) agents to *lose* more beliefs than AGM.

Comparison

- This feature (in conjunction with the fact that AGM *may* require an agent to gain more new beliefs than EUT) shows that EUT is (in a sense) *less demanding* of (cogent) agents.
- In this sense, AGM's diachronic requirements are *more* epistemically risk-seeking than EUT's are.⁶
- We close with a final theorem, which illuminates the tight connection between EUT's violations of Vacuity and its "risk aversion" (vs AGM, and as a constraint on cogent agents).

⁶Pettigrew [16] has independently argued (*via* the use of an epistemic *Hurwicz Criterion*) that **Cogency** implies its own variety of *risk-seeking*.

Theorem

EUT violates Vacuity (wrt **B**, *E)* \Leftrightarrow *E is consistent with* **B** *and*

$$\mathbf{B} \times E \subset \mathbf{B} \times E$$
.

Proof.

- (\Rightarrow) Suppose EUT violates Vacuity (wrt **B** and *E*). Then, (a) *E* is consistent with **B**; and, (b) $\mathbf{B} \times E \not\supseteq \mathsf{Cn}(\mathbf{B} \cup \{E\})$. By (b), there exists an X such that $X \in Cn(\mathbf{B} \cup \{E\})$ but $X \notin \mathbf{B} \times E$. It follows from (a), Vacuity and Inclusion that $Cn(\mathbf{B} \cup \{E\}) = \mathbf{B} * E$. Therefore, $X \in \mathbf{B} * E$ and $X \notin \mathbf{B} \times E$. And, by Inclusion, $\mathbf{B} \times E \subseteq \mathsf{Cn}(\mathbf{B} \cup \{E\}) = \mathbf{B} \times E$.
- (*⇐*) Suppose *E* is consistent with **B** and $\mathbf{B} \times E \subset \mathbf{B} \times E$. Then, there exists an X such that $X \in \mathbf{B} * E$ but $X \notin \mathbf{B} * E$. Because E is consistent with **B**, Vacuity and Inclusion imply that $\mathbf{B} * E = \mathsf{Cn}(\mathbf{B} \cup \{E\})$. Therefore, $X \in Cn(\mathbf{B} \cup \{E\})$; but, $X \notin \mathbf{B} \times E$.

Shear, Weisberg & Fitelson

Two Approaches to Belief Revision

Future Work

References

Shear, Weisberg & Fitelson

EUT Revision

2. $\mathbf{B} \div p \stackrel{\text{def}}{=} \left\{ p \mid b^{\star}(p) > \frac{\mathbf{w}}{\mathbf{r} + \mathbf{w}} \right\}$

Comparison

• We are working out the consequences of this definition...

Future Work

Two Approaches to Belief Revision

Future Work

[1]	C. Alchourron, P. Gärdenfors, and D. Makinson. <i>On the logic of theory change:</i>							
	Partial meet contraction and revision functions, 1985.							

- [2] D. Christensen, Putting Logic in its Place, 2007.
- [3] M. Deza and E. Deza, Encyclopedia of Distances, 2009.
- [4] P. Diaconis and S. Zabell, *Updating Subjective Probability*, 1982.
- [5] K. Dorst, Lockeans Maximize Expected Accuracy, 2015.
- [6] C. Duddy and A. Piggins, A measure of distance between judgment sets, 2012.
- [7] K. Easwaran, Dr. Truthlove or: How I Learned to Stop Worrying and Love Bayesian Probability, 2015.
- [8] J. van Eijck and B. Renne, Belief as Willingness to Bet, 2014.
- [9] R. Foley, Working Without a Net, 1992.
- [10] W. Harper, Rational belief change, popper functions and counterfactuals, 1975.
- [11] J. Hawthorne, A primer on rational consequence relations, popper functions, and their ranked structure, 2013.
- [12] C. Hempel, Deductive-nomological vs. statistical explanation, 1962.
- [13] K. Georgatos, Geodesic Revision, 2008.
- [14] H. Leitgeb, The review paradox: On the diachronic costs of not closing rational belief under conjunction, 2013.
- [15] I. Levi. Gambling with Truth. 1967.
- [16] R. Pettigrew, Accuracy and Risk: a Jamesian investigation in formal epistemology, 2015.

• It would be useful to investigate (general) EUT Revision from a "non-classical probability" perspective (e.g., Popper functions [10, 11], imprecise probability functions, etc.). • It would be nice to have a purely qualitative characterization/axiomatization of EUT Revision. Ideally, we'd like to have one for arbitrary Lockean thresholds. • Jan van Eijck & Bryan Renne [8] recently provided a modal logic for belief given a Lockean threshold of 1/2. A near-term task is to investigate how their modal logic may be used to define a system of belief revision for a threshold of 1/2. • Because we can state both EUT [4] and AGM [13] in terms of "minimal distance" revision, this yields a general "geodesic update" framework in which we can also define contraction.

1. Let b^* be the closest probability function to b s.t. $b^*(p) \leq \frac{w}{r+w}$

Extras • Given the other AGM axioms, **Superexpansion** and **Subexpansion** imply **Inclusion** and **Vacuity**, respectively, assuming only the following weak additional postulate. • Idempotence. B * T = B. 1. $Y \in \mathbf{B} * X$ Assumption 2. **B** * X =**B** * $(\top \land X)$ (1), Extensionality 3. $Y \in \mathbf{B} * (\top \wedge X)$ (1), (2), Logic 4. $Y \in Cn((\mathbf{B} * \top) \cup \{X\})$ (3), Logic, **Superexpansion** 5. $Cn((\mathbf{B} * \top) \cup \{X\}) = Cn(\mathbf{B} \cup \{X\})$ **Idempotence**, Logic 6. $Y \in Cn(\mathbf{B} \cup \{X\})$ (4), (5), Logic П 1. X is consistent with **B** Assumption 2. $Y \in Cn(\mathbf{B} \cup \{X\})$ Assumption 3. $Y \in Cn((\mathbf{B} * \top) \cup \{X\})$ (2), **Idempotence**, Logic 4. $Y \in \mathbf{B} * (\top \wedge X)$ (3), **Subexpansion** 5. $Y \in \mathbf{B} * X$ (4), Extensionality

19

Alternative Axiomatization of AGM, using **Idempotence**.

(*1) $\mathbf{B} * E = Cn(\mathbf{B} * E)$

Closure

(*2) $E \in \mathbf{B} * E$

Success

(*5) If *E* is not a contradiction, then $\mathbf{B} * E$ is consistent **Consistency**

(*6) If $X \Leftrightarrow Y$, then $\mathbf{B} * X = \mathbf{B} * Y$

Extensionality

(*7) $\mathbf{B} * (X \wedge Y) \subseteq Cn((\mathbf{B} * X) \cup \{Y\})$

Superexpansion

(*8) If *Y* is consistent with $Cn(\mathbf{B} * X)$, then

Subexpansion

 $\mathbf{B} * (X \wedge Y) \supseteq \mathsf{Cn}((\mathbf{B} * X) \cup \{Y\})$

(*9) $\mathbf{B} * \top = \mathbf{B}$

EUT Revision

Idempotence

Shear, Weisberg & Fitelson

Two Approaches to Belief Revision

Extras

1. **B** is consistent.

6. **B** * X = Cn(B).

9. **B** * X =**B**

7. **B** * X = Cn(B * X)

8. Cn(B * X) = Cn(B)

3. *X* ∈ **B**.

2. **B** is closed, *i.e.*, $\mathbf{B} = \mathsf{Cn}(\mathbf{B})$.

4. *X* is consistent with **B**.

5. $\mathbf{B} * X = Cn(\mathbf{B} \cup \{X\})$.

Future Work

Assumption

Assumption

Assumption

(1), (3), Logic

(5), (3), Logic

(6), (7), Logic

(7), (8), (2), Logic

Closure

(4), Vacuity, Inclusion

p	b(p)	$b(p \mid E)$	$p \in \mathbf{B}$?	$p \in \mathbf{B} \times E$?	$p \in \mathbf{B} * E$?	$p \in Cn(\mathbf{B} \cup \{E\})?$
$E \wedge X$	2/10	2/3	No	No	Yes	Yes
$E \wedge \neg X$	1/10	1/3	No	No	No	No
$\neg E \wedge X$	4/10	0	No	No	No	No
$\neg E \wedge \neg X$	3/10	0	No	No	No	No
E	3/10	1	No	Yes	Yes	Yes
X	6/10	2/3	No	No	Yes	Yes
$E \equiv X$	5/10	2/3	No	No	Yes	Yes
$E \equiv \neg X$	5/10	1/3	No	No	No	No
$\neg E$	7/10	0	No	No	No	No
$\neg X$	4/10	1/3	No	No	No	No
$E \vee X$	7/10	1	No	Yes	Yes	Yes
$E \vee \neg X$	6/10	1	No	Yes	Yes	Yes
$\neg E \lor X$	9/10	2/3	Yes	No	No	Yes
$\neg E \lor \neg X$	8/10	1/3	No	No	No	No

Table: Full counterexample to Vacuity for EUT Revision

Comparison

Snear, weisb	erg & FiteIson	Two Approaches to Belief Revision					
Setup 00	EUT Revision	AGM Revision	Comparison 000000	Future Work o	References	Extras	
•	assume de	imes claimed ductive cons d in the Con s	istency as a	diachronic 1	requirement		
•		orrect — AGN nsistency as		_	-		
•	•	$\{x, consider the $	•		nt, belief set nic) claim.		
•	according to belief set B abandon ei	by implies the AGM, if and then "rether their be $\mathbf{B} * \top$ will vie	agent start evises by a dief in <i>P</i> or	s out with th tautology ⊤, their belief i	ne prior " they must		
•	reject Iden requiremen	s the AGM-er npotence <i>or</i> nt. But, such ∴ AGM-ers r	assume con a rejection	sistency as a of Idempote	a <i>universal</i> e nce would		

Figure: Derivation of (P2) from Closure, Inclusion, and Vacuity