法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:大数据分析挖掘
 - 新浪微博: ChinaHadoop

第六讲

数据分析工具Pandas进阶

--梁斌

- Pandas层级索引
- 数据的分组与聚合
- 数据的分组运算
- Pandas透视表与交叉表
- 实战案例: 互联网电影资料库分析

- Pandas层级索引
- 数据的分组与聚合
- 数据的分组运算
- · Pandas透视表与交叉表
- 实战案例: 互联网电影资料库分析

Pandas层级索引

层级索引 (hierarchical indexing)

- MultiIndex对象
- 选取子集
 - 外层选取 ser_obj['outer_label']
 - 内层选取 ser_obj[:, 'inner_label']
- 常用于分组操作、透视表的生成等
- 交换分层顺序
 - swaplevel()
- 排序分层
 - sortlevel()

示例代码: 01_pandas_multi_index.ipynb

Pandas层级索引

层级索引(续)

		0	1	2	3
bar	one	-1.133800	0.548640	1.109034	0.643708
	two	-0.792654	0.518681	-0.611958	0.913413
baz	one	0.775624	-2.520829	-0.472691	-0.557803
	two	0.190005	0.435193	1.635680	1.584821
foo	one	-0.592235	-0.361735	1.336444	-1.280014
	two	-1.016622	1.409086	0.114743	0.408211
qux	one	0.662941	-1.258482	-0.373214	-0.974658
	two	-0.931004	0.596507	0.148323	0.475039

示例代码: 01_pandas_multi_index.ipynb

- Pandas层级索引
- 数据的分组与聚合
- 数据的分组运算
- · Pandas透视表与交叉表
- 实战案例: 互联网电影资料库分析

分组 (groupby)

- 对数据集进行分组,然后对每组进行统计分析
- SQL能够对数据进行过滤,分组聚合
- pandas能利用groupby进行更加复杂的分组运算
- 分组运算过程
 - split->apply->combine
 - 拆分:进行分组的根据
 - 应用:每个分组运行的计算规则
 - 合并:把每个分组的计算结果合并起来

分组 (续)

- 分组运算过程
 - split->apply->combine

分组 (续)

- GroupBy对象: DataFrameGroupBy, SeriesGroupBy
- GroupBy对象没有进行实际运算,只是包含分组的中间数据
- 对GroupBy对象进行分组运算/多重分组运算,如mean()
 - 非数值数据不进行分组运算
- size() 返回每个分组的元素个数

分组 (续)

- 按列名分组
 - obj.groupby('label')
- 按列名多层分组
 - obj.groupby(['label1' , 'label2'])->多层dataframe
- 按自定义的key分组
 - obj.groupby(self_def_key)
 - 自定义的key可为列表或多层列表
- unstack可以将多层索引的结果转换成单层的dataframe

分组 (续)

- GroupBy对象支持迭代操作
 - 每次迭代返回一个元组 (group_name, group_data)
 - 可用于分组数据的具体运算
- GroupBy对象可以转换成列表或字典
- Pandas也支持按列分组
- 其他分组方法
 - 通过字典分组
 - 通过函数分组,函数传入的参数为行索引或列索引
 - 通过索引级别分组

聚合 (aggregation)

- 数组产生标量的过程,如mean()、count()等
- 常用于对分组后的数据进行计算
- 内置的聚合函数
 - sum(), mean(), max(), min(), count(), size(), describe()
- 可自定义函数,传入agg方法中
 - grouped.agg(func)
 - func的参数为groupby索引对应的记录

聚合(续)

- 应用多个聚合函数
 - 同时应用多个函数进行聚合操作,使用函数列表
 - 对不同的列分别作用不同的聚合函数,使用dict

聚合 (续)

• 常用的内置聚合函数

函数名	说明			
count	分组中非NA值的数量			
sum	非NA值的和			
mean	非NA值的平均值			
median	非NA值的算术中位数			
std 、var	无偏(分母为n - 1)标准差和方差			
min, max	非NA值的最小值和最大值			
prod	非NA值的积			
first、last	第一个和最后一个非NA值			

- Pandas层级索引
- 数据的分组与聚合
- 数据的分组运算
- Pandas透视表与交叉表
- 实战案例: 互联网电影资料库分析

数据的分组运算

分组运算

- 原因:
 - 聚合运算改变了原始数据的shape
 - 如何保持原始数据的shape?
 - 使用merge的外连接,比较复杂
 - transform
- transform的计算结果和原始数据的shape保持一致
 - 如:grouped.transform(np.mean)
 - 也可传入自定义函数

示例代码: 03_pandas_grouped_apply_transform.ipynb

数据的分组运算

分组运算(续)

- grouped.apply(func)
 - func函数在各分组上调用,然后结果通过pd.concat组装到一起
 - 产生层级索引
 - 外层索引是分组名
 - 内层索引是df_obj的行索引
 - 禁止层级索引, group_keys=False
- apply可以用来处理不同分组内的缺失数据填充
 - 如:填充该分组的均值

示例代码: 03_pandas_grouped_apply_transform.ipynb

- Pandas层级索引
- 数据的分组与聚合
- 数据的分组运算
- Pandas透视表与交叉表
- 实战案例: 互联网电影资料库分析

Pandas透视表与交叉表

透视表 (pivot table)

- 根据一个或多个键对数据进行聚合
- 根据行和列的分组键将数据划分到各个区域中
- pd.pivot_table(df_data)
- index参数:透视表中的索引值
- columns参数:分组的列
- agggunc:应用在每个区域的聚合函数,默认为np.mean
- fill value:替换结果中的缺失值

示例代码: 04_pandas_pivottab_crosstab.ipynb

Pandas透视表与交叉表

交叉表 (cross table)

- 用于计算分组频率的特殊透视表
- pd.crosstab(index, columns)
 - index: 分组数据,交叉表的行索引
 - · columns: 交叉表的列索引

示例代码: 04_pandas_pivottab_crosstab.ipynb

- Pandas层级索引
- 数据的分组与聚合
- 数据的分组运算
- Pandas透视表与交叉表
- 实战案例: 互联网电影资料库分析

项目介绍

https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset

项目介绍

- https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset
- 背景:
 - 1. 是否有统一的方法判断一部电影的好坏?
 - 2. 能否通过以往评论预测下一部电影的评分?
 - 3. 海报人脸的个数与电影评分是否有关系?

示例代码:lecture06_proj.zip

项目任务

- 使用分组统计数据集的基本信息
 - 查看票房统计信息
 - imdb评分统计
 - 电影产量趋势
- 基于电影类型的分析
- 可视化分析结果

涉及知识点

- Pandas分组操作与统计
- Pandas绘图

示例代码:lecture06_proj.zip

分析步骤

- 1. 查看数据
- 2. 明确分析目标
 - 分组统计基本信息
 - 统计电影类型信息
- 3. 处理缺失数据 (可选)
- 4. 数据统计分析
 - 模块化常用功能
- 5. 保存分析结果
 - 1. 分析结果数据
 - 2. 可视化结果

df_obj.info() df_obj.shape() df_obj.head() df_obj.dropna() df_obj.fillna() pandas 分组聚合 计算 df_obj.to_csv() pandas绘图

参考

• Pandas高级索引/层级索引

http://pandas.pydata.org/pandas-docs/stable/advanced.html

Pandas中的GroupBy

http://pandas.pydata.org/pandas-docs/stable/groupby.html

Pandas透视表

http://pandas.pydata.org/pandas-docs/stable/reshaping.html

《Python for Data Analysis》

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

小象问答 @Robin_TY

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

