Biomedical Engineering: Mechanics & Materials, Device Design

Sample AB Major in Engineering Sciences

Prerequisites

MATH 3, 8, 13; or MATH 11; PHYS 13, 14; CHEM 5; ENGS 20 or COSC 1 and 10

Common Core (3 courses)

ENGS 21: Introduction to Engineering*

ENGS 22: Systems

ENGS 23: Distributed Systems and Fields

Distributive Core (2 courses)

ENGS 24: Science of Materials

ENGS 25: Introduction to Thermodynamics

Gateway (2 courses)

ENGS 33: Solid Mechanics* One from 31-32, 35-37

Electives (2 courses; 1 may be math or natural science)

ENGS 56: Introduction to Biomedical Engineering ENGS 76: Machine Engineering*

Culminating Experience: ENGS 86, 88, 89 or one advanced ENGS course that may also count as 1) one of the above electives and 2) toward the BE ENGS/ENGG requirement.

Total: Includes 9 or 10 courses through AB

LEGEND

Allowable or potentially allowable in the BE concentration Math or Natural Science course Introductory course: Not allowable in the BE concentration * Significant design content

Electives (3 courses; 2 may be math or natural science) $BE \rightarrow$

ENGS 34: Fluid Mechanics ENGS 71: Structural Analysis*

ENGS 72: Applied Mechanics: Dynamics ENGS 73: Materials Processing and Selection*

ENGS 142: Intermediate Solid Mechanics

ENGS 148: Structural Mechanics

ENGG 166: Quantitative Human Physiology*

ENGS 170: Neuroengineering

Sample BE Program

Math and Natural Science Requirement

9 course credits (minimum) including any completed for AB major requirements. (Typically 3 additional courses)

CHEM 6: General Chemistry
PHYS 19: Introductory Physics III

PHYS 24: Quantum Physics of Matter: An Introduction

ENGS/PHYS 30: Biological Physics

BIOL 12: Cellular Biology BIOL 14/30: Physiology

MATH 22: Linear Algebra with Applications

MATH 23: Differential Equations

Applied MATH/ENGS Requirement

One of ENGS 91, 92 and 93 must be completed for the BE and may be counted as either a MATH course or an ENGS course in fulfilling BE requirements.

ENGS 91: Numerical Methods

or ENGS 93: Statistical Methods in Engineering

ENGS/ENGG Requirement

- 13.5 courses minimum (15.5 is typical), including courses completed for the AB major, 6 total with significant design content*. ENGS 20 (or CS 1 + 10) counts as 0.5 ENGS credit.

– 3-course concentration, 1 with significant design content*

- ENGS 89 and 90

Engineering Electives: 3-course concentration

ENGS 130: Mechanical Behavior of Materials*

ENGS 165: Biomaterials*

ENGS 57/169: Intermediate Biomedical Engineering*

Capstone Design Experience

ENGS 89: Engineering Design Methodology and

Project Initiation*

ENGS 90: Engineering Design Methodology and

Project Completion*