

Appunti Simulazione

Formulario

Anno Accademico 2021-2022

 $Last\ Update:\ January\ 18,\ 2023$

Contents

1		tribuzioni e Densità	4
	1.1	Geometrica	4
	1.2	Esponenziale	4
	1.3	Poissoniana	4
	1.4	Stimare i Parametri	4
		1.4.1 Media x	4
		1.4.2 Varianza σ^2	4
2		odness of Fit	5
	2.1	Dati senza Intervalli	1
	2.2	Dati con Intervalli	6

"Oi, con quanto sentimento defeco sul tuo naso, così che ti coli sul mento."

Wolfgang Amadeus Mozart

Chapter 1

Distribuzioni e Densità

1.1 Geometrica

???

1.2 Esponenziale

• Distribuzione: $1 - e^{-\lambda t}$

• Densità: $\lambda * e^{-\lambda t}$

1.3 Poissoniana

• Distribuzione: $\frac{(\lambda t)^n * e^{-\lambda t}}{n!}$

• Densità: $\frac{(\lambda t)^n * e^{-\lambda t}}{n!}$

1.4 Stimare i Parametri

1.4.1 Media *x*

• Totale: Valori(categorie) * f_i

- Media effettiva x: SOMMA(Totale)/n

1.4.2 Varianza σ^2

Chapter 2

Goodness of Fit

2.1 Dati senza Intervalli

Devi utilizzare questa sezione solo quando hai dei dati **Senza Intervalli**, devi anche fare attenzione che il **numero di osservazioni** n > 30!!

Calcoli da effettuare:

- 1. Riportare i dati in una tabella in Calc:
 - Colonna 1: categorie
 - Colonna 2: f_i
- 2. Raggruppare le categorie se $\exists categoria < 5$:
 - Parti dall'ultimo a salire (dal basso verso l'alto delle categorie)
 - Raggruppale tutte nell'ultima categoria che le faccia diventare maggiori di 5 sommando le frequenze.
 - Esempio:

5

3. Calcolare:

- (a) $n = \sum (frequenze)$
- (b) $f(i) = f_i/n$: non serve
- (c) p(i): dipende dalla distribuzione, vedere AGGIUNGERE REF
- (d) $F_i = n * p(i)$: numero di intervalli unitari teorici con i arrivi
- (e) $G_i = \frac{(f_i F_i)^2}{F_i}$
- (f) $V = \sum G_i$: sommare tutti i valori di G
- (g) df = Numero Categorie 1 Numero Parametri Distribuzione

Una volta terminati i calcoli devi guardare la riga nella tabella del χ^2 (AG-GIUNGERE REF) con lo stesso valore di df: devi controllare che il valore V ricada negli intervalli che non superino il P_{95} .

2.2 Dati con Intervalli

Devi utilizzare questa sezione solo quando hai dei dati divisi in **Intervalli**, devi anche fare attenzione che il **numero di osservazioni** n > 30!!

Calcoli da effettuare:

- 1. Riportare i dati in una tabella in Calc:
 - Colonna 1: categorie, probabilmente devi aggiungerle tu, parti da 0 in poi
 - Colonna 2: intervallo, del tipo $x_1 x_2$. Fai sempre attenzione che $x_2 \ge x_1$!!! In caso li inverti.
 - Colonna 3: frequenza f_i
- 2. Aggiungere Colonna x_1 (intervallo più piccolo)
- 3. Aggiungere $Colonna x_2$ (intervallo più grande)
- 4. Aggiungere media tra x_2 e x_1
- 5. Calcolare:
 - (a) frequenza pesata = $media_{intervalli} * f_i$
 - (b) $n = \sum (\text{frequenze})$

- (c) media = \sum (frequenze pesate)/n
- (d) differenza medie = $(media_{intervalli} media)^2$
- (e) frequenza pesata $2 = \text{differenza medie} * f_i$
- (f) frequenza relativa = $f_i * n$
- (g) capire la distribuzione se non è data.
- (h) $f(i) = f_i/n$: non serve
- (i) p(i) = calcolare secondo la distribuzione
- (j) $F_i = n * p(i)$: numero di intervalli unitari teorici con i arrivi
- (k) $G_i = \frac{(f_i F_i)^2}{F_i}$
- (l) $V = \sum G_i$: sommare tutti i valori di G
- (m) df = Numero Categorie 1 Numero Parametri Distribuzione
- 6. Raggruppare le categorie se $\exists categoria < 5$:
 - Parti dall'ultimo a salire (dal basso verso l'alto delle categorie)
 - Raggruppale tutte nell'ultima categoria che le faccia diventare maggiori di 5 sommando le frequenze.
 - Esempio:

