Ultrasonic Humidifier

Name- Sejal Jain

Email- jainsejal307@gmail.com

Objective:

To design and implement a system that allows users to control an **ultrasonic humidifier** both manually (via a push button) and remotely (via Bluetooth using a smartphone). The system provides status indication using an LED and uses a MOSFET for safe and reliable switching of the humidifier power supply.

Introduction

Ultrasonic humidifiers are commonly used in smart homes and greenhouses. This project provides flexible control of a humidifier using:

- Bluetooth (HC-05)
- Manual push button
- Visual feedback (LED)

The controller is built around an **Arduino Uno R3**, which simplifies prototyping and allows easy expansion.

Components Used:

Component	Description	Quantity
Arduino Uno R3	Microcontroller board	1
HC-05 Bluetooth Module	Serial Bluetooth communication	1
Ultrasonic Humidifier	Mist generator	1
IRF540N MOSFET	Power control for humidifier	1
Push Button	Manual ON/OFF switch	1
LED (Red/Green)	Status indicator	1
Resistors ($10k\Omega$, 220Ω)	Pull-up/down and current limiting	3
Capacitor (100nF)	Decoupling (optional but recommended)	1–2
DC Barrel Jack	12V input to Arduino	1
Screw Terminal (2-pin)	Humidifier and power connection	2
Male Header (1x6)	HC-05 interface	1
PWR_FLAG (KiCad symbol	Required for ERC compliance	2

Control Logic:

Input Sources:

- Bluetooth commands ("ON", "OFF")
- Button press (toggle)

Processing:

- Software checks input from serial and button
- Maintains state in humidifier state variable

Output Control:

- Sets humidifier ON/OFF via MOSFET
- Mirrors the same status to LED

System Architecture and Working

- Power Supply: 12V DC adapter powers both Arduino and humidifier.
- **MOSFET Control**: IRF540N is driven by a digital pin from the Arduino to switch the humidifier.
- HC-05 Bluetooth Module:
 - o Communicates with Arduino via UART.
 - o Accepts commands like 'ON' or 'OFF'.
- Push Button:
 - o Toggles the humidifier state manually.
- Status LED:
 - o Turns ON when humidifier is ON, OFF otherwise.

Circuit Overview:

The circuit includes:

- Arduino Uno R3 for control logic.
- **HC-05** connected to RX/TX pins (D0, D1).
- **MOSFET Gate** connected to D4 (humidifier control).
- LED connected to D3 via 220Ω resistor.
- **Button** connected to D2 with a pull-down resistor.
- Power Supply connected to both Arduino VIN and the humidifier via screw terminal.

• PWR_FLAGs connected to GND and 5V to clear ERC errors in KiCad.

Figure 1 Circuit diagram of a Ultrasonic humidifier for reference

Anticipated Challenges & Solutions:

Signal InterferenceUse short wires, add 100nF decoupling capacitor near HC-05Voltage Level Shifting (TXAdd voltage divider $(1k\Omega + 2k\Omega)$ to step down to HC-05)Powering HumidifierUse logic-level N-channel MOSFET with proper heatsinking if neededButton DebouncingAdd software delay after button press detectionIncorrect ERC in KiCadAdd PWR_FLAG symbols to 5V, GND to satisfy Electrical Rules CheckPCB Trace OverheatingUse wider traces for power lines (>40 mils for humidifier trace)Reverse Polarity / OvercurrentAdd diode protection and fuse (optional for production models)	Challenge	Proposed Solution	
to HC-05) Arduino TX to 3.3V Powering Humidifier Use logic-level N-channel MOSFET with proper heatsinking if needed Button Debouncing Add software delay after button press detection Add PWR_FLAG symbols to 5V, GND to satisfy Electrical Rules Check PCB Trace Overheating Use wider traces for power lines (>40 mils for humidifier trace) Add diode protection and fuse (optional for	O	, 1	
Safely proper heatsinking if needed Button Debouncing Add software delay after button press detection Incorrect ERC in KiCad Add PWR_FLAG symbols to 5V, GND to satisfy Electrical Rules Check PCB Trace Overheating Use wider traces for power lines (>40 mils for humidifier trace) Reverse Polarity / Add diode protection and fuse (optional for		. , , , ,	
Incorrect ERC in KiCad Add PWR_FLAG symbols to 5V, GND to satisfy Electrical Rules Check PCB Trace Overheating Use wider traces for power lines (>40 mils for humidifier trace) Reverse Polarity / Add diode protection and fuse (optional for	O	8	
race Overheating Reverse Polarity / satisfy Electrical Rules Check Use wider traces for power lines (>40 mils for humidifier trace) Add diode protection and fuse (optional for	Button Debouncing	Add software delay after button press detection	
humidifier trace) Reverse Polarity / Add diode protection and fuse (optional for	Incorrect ERC in KiCad	· · · · · · · · · · · · · · · · · · ·	
•	PCB Trace Overheating	•	
	•	` 1	

Production Optimization Recommendations

Aspect Optimization

Microcontroller Replace Arduino Uno with ATmega328P standalone +

minimal components

PCB Size Reduce PCB area by using SMD components and

integrating regulator if needed

Connectivity Add screw terminal blocks for secure external

power/humidifier connection

Power Add onboard 5V regulator (AMS1117 or similar) for

Regulation microcontroller if not using Arduino

App Control Integrate Blynk or custom app for a better GUI experience **Enclosure** Add mounting holes in PCB and consider heat dissipation

Design vents

Conclusion

This project successfully demonstrates a dual-mode (manual and Bluetooth) control system for an ultrasonic humidifier using Arduino Uno. It integrates embedded programming, power electronics, and PCB design into a compact and production-ready solution.