	II Kanpueranore recipi
recuespureckous	V diw-c+id (w+ z= assucence Berisp
v qepn petaususi C	B-1:- Z=a+ib (noxbusinas resu. cb-la
	C Ou Re-Bey .006.
usque variariema.	V Orp. $ Z = \sqrt{01^2 + \beta^2}$ Hogorbaetes usqueu rounnercous was $Z = a + \beta$
mars n ens ab-pol	
	1 0 - 6 121: 1) 121 > 0 1 / 2/20 \$> 2=0.
	2 12.W = 121.1W
	3) 2 - (21 w - 1w . 4)
	4) 1212=2,2
	$VE.g. Z. Z = (a+iB)(a-iB) = a^2 - iB^2 = a^2 + B^2$
	5) 12+W16/21+1W1- Heporbenci-Bo Tpeyn.

10.80=211		
принент компек	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,
	Δ 3 olu. φ onp. c tormorpho g con $2\pi K$, $K \in \mathbb{Z}$ V Onp. $Arg = 2\varphi + 2\pi K$ $K \in \mathbb{Z}$ - whonever the been opymented \mathbb{Z} or \mathbb{Z} - equivalent, \mathbb{Z} $Arg = \mathbb{Z}$ horsog \mathbb{Z} \mathbb)
7 - boccorolp	$Z_{1}=12.1(\cos\varphi_{1}+i\sin\varphi_{2})=7$ $Z_{1}=12.1(\cos\varphi_{1}+i\sin\varphi_{2})+i\sin(\varphi_{1}+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})$ $Z_{1}=12.1(\cos\varphi_{1}+i\sin\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})$ $Z_{1}=12.1(\cos\varphi_{1}+i\sin\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})$ $Z_{1}=12.1(\cos\varphi_{1}+i\sin\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})$ $Z_{1}=12.1(\cos\varphi_{1}+i\sin\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})$ $Z_{1}=12.1(\cos\varphi_{1}+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})$ $Z_{1}=12.1(\cos\varphi_{1}+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2})$ $Z_{1}=12.1(\cos\varphi_{1}+i\sin(\varphi_{1}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2})+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+i\sin(\varphi_{1}+\varphi_{2}+i)+i\sin(\varphi_{1}+\varphi_{2}+i)+i\sin(\varphi_{1}+\varphi_{2}+i\sin(\varphi_$))

+++++	2) anowonwith green 1-:
возверение в степень К. ч Рармуна Мунира	V Teop Myorga $Z = 121(\cos \varphi + i \sin \varphi), n \in N = 7 Z^h = 121^h \cdot (\cos(n\varphi) + i \sin(n\varphi))$ (everyobrue teop. of yuni.)
эмстоненционнов форми к.п.	V Bonneroventina Populgia Diversi (gov-bo us uni ousninge) ei P = cos Q + i sin Q, Q Eli
	DE-g. ein=-1; e = i
	V Opp. Dischonaryumuning gophum was 2 2=121.ext (neprung gymania)
	PE.g.: 2,-22=12,1122/.eip. eip=12/1/72/.ei(P,+82/.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	V Onp. ZEO, hEN, uspugu nã crenque as Z usisoloceras unose u. 2., rouse 270 h = Z.
	a. 0/2= { h e C/ h = 2}
	DE.g. h=02 @ m=22 @ /h/2/2/2/19/10/2/
	UE.g. Phyor 2×0: 2=121 (cas (1+1 sin(1)), h = h f. cas (2+1 sin(2)),
	$w^{h} = w ^{h} \cdot (\cos n \varphi) + (\sin \varphi) = z + (\cos \varphi) \cdot (\cos \varphi)$ $1 = \varphi + 2\pi k + (\cos \varphi) \cdot (\cos \varphi)$ $ \psi = \varphi + 2\pi k + (\cos \varphi) \cdot (\cos \varphi)$ $ \psi = \varphi + 2\pi k + (\cos \varphi) \cdot (\cos \varphi)$ $ \psi = \varphi + 2\pi k + (\cos \varphi) \cdot (\cos \varphi)$

Date: 11.09.2025 Num: 00022

