Point Processing Report

2017013632 石大川

INDEX

Increase Brightness & Decrease Brightness	2
Increase Contrast & Decrease Contrast	3
	5
Histogram Equalization	6
Histogram Matching	7
Conlusion	8

Increase Brightness & Decrease Brightness

• Purpose: 均匀增大/减小亮度

• *LUT*: 对每个像素的每个通道的亮度加上/减去同一个值,且保证运算后的值∈ [0,255]

$$J_k(r,c) = \begin{cases} 0, & \text{if } I_k(r,c) - g < 0 \\ I_k(r,c) - g, & \text{if } I_k(r,c) \end{cases}$$
 $g \ge 0 \text{ and } k \in \{1,2,3\} \text{ is the band index.}$

Figure 1. LUT for increasing brightness.

$$J_k(r,c) = \begin{cases} 0, & \text{if } I_k(r,c) - g < 0 \\ I_k(r,c) - g, & \text{if } I_k(r,c) \end{cases}$$

$$g \ge 0 \text{ and } k \in \{1,2,3\} \text{ is the band index.}$$

Figure 2. LUT for decreasing brightness.

• Example & Analysis: 如 <u>Figure 3</u> 所示,对于中间的原图分别增加和较少 60 的亮度值,均值和方差的变化为:

$$\begin{array}{c} \textit{Mean: } 65.38 \xleftarrow{\textit{brightness-60}} 118.55 \xrightarrow{\textit{brightness+60}} 175.36 \\ \textit{Std Dev: } 57.76 \xleftarrow{\textit{brightness-60}} 66.50 \xrightarrow{\textit{brightness+60}} 61.82 \end{array}$$

可见:

- 均值变化的绝对值约为60
- 0 方差变化较小

这是符合预期的。此外均值变化的绝对值并非准确的60是因为一些运算后 ∉ [0,255]的值被截断了。

Figure 3. Iamges and corresponding pdfs for point processing with respect to brightness.

Increase Contrast & Decrease Contrast

• Purpose: 增加/减小亮度值之间的区别程度

• LUT: 以(127,127)为中心旋转 LUT 曲线

Let
$$T_k(r,c) = a[I_k(r,c)-127]+127$$
, where $a > 1.0$

$$J_k(r,c) = \begin{cases} 0, & \text{if } T_k(r,c) < 0, \\ T_k(r,c), & \text{if } 0 \le T_k(r,c) \le 255, \\ 255, & \text{if } T_k(r,c) > 255. \end{cases}$$

Figure 4. LUT for increasing contrast.

$$T_k(r,c) = a[I_k(r,c) - 127] + 127,$$
 where $0 \le a < 1.0$ and $k \in \{1,2,3\}$.

Figure 5. LUT for decreasing contrast.

• Example & Analysis:

Figure 6. Iamges and corresponding pdfs for point processing with respect to contrast.

如 <u>Figure 6</u> 所示,对于中间的原图分别将对比度 LUT 函数的斜率设为 0.5 和 2.0,均值和方差的变化为:

$$\begin{array}{c} \textit{Mean: } 122.79 \xleftarrow{contrast*0.5} 118.55 \xrightarrow{contrast*2.0} 117.85 \\ \textit{Std Dev: } 33.25 \xleftarrow{contrast*0.5} 66.50 \xrightarrow{contrast*2.0} 101.68 \\ \end{array}$$

可见:

- o 均值变化幅度较小
- o 对比度* 0.5时区别程度减小, pdf图表现为向中间聚拢, 方差较小

○ 对比度* 2.0时区别程度增大, pdf图表现为向两端扩散, 方差较大这是符合预期的。

Gamma Compression & Gamma Expansion

- Purpose: 拉伸图像图像高亮/高暗部分, 压缩图像高暗/高亮部分
- LUT: 按照公式做指数变换

$$J(r,c) = 255 \cdot \left[\frac{I(r,c)}{255}\right]^{\gamma}$$
 for $\gamma < 1.0$

Figure 7. LUT for gamma commpression.

$$J(r,c) = 255 \cdot \left[\frac{I(r,c)}{255}\right]^{\gamma}$$
 for $\gamma > 1.0$

Figure 8. LUT for gamma expansion.

• Example & Analysis:

Figure 9. Iamges and corresponding pdfs for point processing with respect to gamma.

如 <u>Figure 9</u> 所示,对于中间的原图分别将 Gamma 变换 LUT 函数的指数设为 0.5 和 2.0,均值和方差的变化为:

$$\begin{array}{c} \textit{Mean: } 165.22 \xleftarrow{\textit{gamma}^{\circ}0.5} 118.55 \xrightarrow{\textit{gamma}^{\circ}2.0} 72.49 \\ \textit{Std Dev: } 54.11 \xleftarrow{\textit{gamma}^{\circ}0.5} 66.50 \xrightarrow{\textit{gamma}^{\circ}2.0} 64.43 \end{array}$$

可见:

- 做 Gamma Compression 时因为拉伸了高亮部分且压缩了高暗部分, 亮度均值增加了
- 做 Gamma Expansion 时因为拉伸了高暗部分且压缩了高亮部分,来 个年度均值减小了
- o 标准差变化较小

这是符合预期的。

Histogram Equalization

- Purpose: 对于每个通道将 cdf 拉成近似均匀分布
- LUT: 如下公式中P_I是输入的cdf, 先统计输入图像的 histogram, 再累加得 到该其 cdf, 将图像输入到 cdf 中即得到近似均与的 pdf

$$J(r,c) = 255 \cdot P_I[I(r,c)+1].$$

Figure 10. LUT for gamma commpression.

• Example & Analysis:

如 <u>Figure 11</u> 所示,对于左边的原图做 Histogram Equalization 均值和方差的变化为:

Mean:
$$59.34 \xrightarrow{\text{Histogram Equalization}} 125.97$$
Std Dev: $39.06 \xrightarrow{\text{Histogram Equalization}} 73.97$

可见:

- 均值接近 0~255 的均值 127
- o cdf的拉伸使得标准差变大了
- 变换后 cdf 图的两个端点处出现了峰值,对于端点取值的处理可能还有不妥之处。

这是基本符合预期的。

Figure 11. Iamges and corresponding pdfs for point processing with respect to histogram equalization.

Histogram Matching

- Purpose: 让 Origin Picture 的 cdf 尽量贴合 Target Picture 的 cdf
- LUT: 按上一节中的方法分别得到 Origin Picture 和 Target Picture 的 cdf, 然后对于 Origin Picture cdf 中的每个 bin 在 Target Picture cdf 中寻找向上取值最接近的 bin, 并记录此时两个 cdf 中相应 bin 的位置获得 LUT 的映射map, 向其中代入 Origin Picture 得到 Remapped Picture

$$C(x,y) = g\{f[A(x,y)]\} = P_3^{-1}\{P_1[A(x,y)]\}$$

Figure 12. LUT for histogram matching.

• Example & Analysis:

Figure 13. Iamges and corresponding pdfs for point processing with respect to histogram matching.

如 <u>Figure 13</u>所示,对于左边的原图以中间的图为 Target 做 Histogram Matching, 得到 Remapped Picture 后均值和方差的变化为:

Mean: $118.55 \xrightarrow{\text{Histogram Matching Target To } 191.70} 125.97$ Std Dev: $39.06 \xrightarrow{\text{Histogram Matching Target To } 63.43} 73.97$

可见:

- o Remapped Picture 的均值接近 Target Picture 的均值
- o Remapped Picture 的方差接近 Target Picture 的方差
- o 观感上 Remapped Picture 中掺入了 Target Picture 的风格

这是符合预期的。

More Examples are shown in Figure 14

Conlusion

这次作业加深了我对于上述五种 point processing 原理的理解,也让我对这 五种变换有了更具体,更直观的感受。此外也让我对于 numpy 的使用变得更加熟 练了。

Figure 14. More examples for histogram matching.