ME951 - Estatística e Probabilidade I

Parte 1

Notas de aula de ME414 produzidas pelos professores **Samara Kiihl**, **Tatiana Benaglia** e **Benilton Carvalho** modificadas e alteradas pela Profa. **Larissa Avila Matos**

Introdução

Estatísticas

Vídeo: Chaves e as Estatísticas

"Your recent Amazon purchases, Tweet score and location history makes you 23.5% welcome here."

Entendendo sobre Variabilidade

Entendendo sobre Variabilidade

Introdução

■ No livro Mankind in the Making, de 1903, H.G. Wells escreveu:

... e não estamos muito longe do tempo em que se entenderá que, para exercermos a cidadania de maneira eficiente, será tão necessário saber calcular e pensar em médias, máximos e mínimos, quanto é agora necessário saber ler e escrever.

Por que usar métodos estatísticos?

Três aspectos principais da estatística:

- Planejamento: planejar como obter os dados para responder às perguntas de interesse.
- Descrição: resumir os dados obtidos.
- Inferência: tomar decisões e fazer predições baseando-se nos dados.

Por que usar métodos estatísticos?

- Os tópicos de estudo de um certo pesquisador são tão diversos quanto as perguntas de interesse.
- No entanto, muitas vezes esses estudos podem ser realizados com técnicas simples de amostragem, análise de dados e conceitos fundamentais de inferência estatística.

- Problema comum em medicina: como avaliar a eficácia de um procedimento médico?
- Estudo: stents são eficazes no tratamento de pacientes com risco de Acidente Vascular Cerebral (AVC)?
- Stents são usados para a recuperação de pacientes que já sofreram AVC.

Figura: Stents no tratamento de AVC

Os pesquisadores do estudo investigaram se havia benefícios também para pacientes com risco de AVC.

■ Pergunta de interesse: O uso de stent reduz o risco de AVC?

Os pesquisadores coletaram dados de 451 pacientes com risco de AVC que se voluntariaram para o estudo. Cada paciente foi alocado aleatoriamente em um dos grupos:

- Grupo de Tratamento paciente recebe stent e medicação.
- Grupo Controle paciente recebe a mesma medicação do grupo tratamento, mas não recebe stent.

Cada paciente foi avaliado em duas ocasiões: primeiros 30 dias e após 1 ano.

Patient	group	0-30 days	0-365 days
1	treatment	no event	no event
2	treatment	stroke	stroke
3	treatment	no event	no event
:	:	:	
450	control	no event	no event
451	control	no event	no event

- Avaliar cada paciente individualmente desta planilha de dados é eficaz?
- Como poderíamos resumir?

	$0-30 \mathrm{days}$		0-36	0-365 days	
	stroke	no event	stroke	no event	
treatment	33	191	45	179	
control	13	214	28	199	
Total	46	405	73	378	

- 33 pacientes do grupo tratamento tiveram um AVC durante os primeiros 30 dias.
- Dentre os 224 pacientes do grupo tratamento, 45 tiveram AVC durante o primeiro ano.
- Qual a proporção de pacientes do grupo tratamento que sofreram AVC durante o primeiro ano?

$$45/224 = 0.2 = 20\%$$

	0-30 days		$0-365 \mathrm{\ days}$	
	stroke	no event	stroke	no event
treatment	33	191	45	179
control	13	214	28	199
Total	46	405	73	378

- Podemos calcular **estatísticas sumárias** a partir da tabela.
- Estatística Sumária: número obtido a partir de informações dos dados coletados para resumí-los.
- \blacksquare Proporção de pacientes do grupo tratamento que sofreram AVC: 45/224=0.2=20%
- Proporção de pacientes do grupo controle que sofreram AVC: 28/227 = 0.12 = 12%

- No grupo tratamento, temos 8% a mais de pacientes que sofreram AVC.
- Isto está de acordo com a expectativa dos pesquisadores do estudo? (relembre a pergunta de interesse)
- 8% é uma diferença **considerável**?
- Uma diferença de 8% poderia acontecer ao acaso, mesmo que os dois tratamentos na verdade oferecessem o mesmo risco de AVC?
- Utilizando metodologia estatística, os pesquisadores chegaram à conclusão de que stents são prejudiciais para pacientes com risco de AVC.

CUIDADO!

Não podemos generalizar os resultados do estudo para todo tipo de paciente e todo tipo de stent.

Estatística Descritiva: Introdução

Estatística Descritiva

- Estatística descritiva se refere a métodos para resumir dados.
- Gráficos, tabelas, médias, porcentagens,...

Exemplo: Dados do Censo

É mais simples olharmos gráficos ou 35.723.254 questionários?

Fonte: http://www.censo2010.ibge.gov.br

Estatística Descritiva: Estrutura básica de dados

Estrutura dos dados

Para que possamos resumir os dados, é importante primeiramente entender como eles são organizados e também os diversos tipos de cada variável.

Exemplo: spam

Conjunto de dados: informação de 50 emails recebidos.

Exemplo: spam

Primeiras linhas do conjunto de dados (ou matriz de dados):

spam	num_char	line_breaks	format	number
0	21.705	551	1	small
0	7.011	183	1	big
1	0.631	28	0	none
0	2.454	61	0	small
0	41.623	1088	1	small
0	0.057	5	0	small
0	0.809	17	0	small
0	5.229	88	1	small
0	9.277	242	1	small
0	17.170	578	1	small

Exemplo: spam

Cada linha representa um email recebido.

Colunas:

- spam: 1 se spam e 0 caso contrário.
- num_char: número de caracteres no email.
- line_breaks: número de quebras de linha no email.
- format: 1 se formato é HTML, 0 caso contrário.
- number: indica se o email não continha nenhum número (none), um número pequeno (small) ou um número grande (big).

- Variável é uma condição ou característica de um elemento de estudo.
- Pode assumir valores diferentes em diferentes elementos.
- Peso, altura, curso, são exemplos de variáveis: para cada pessoa, os valores mudam.

Qualitativa

- Nominal: Não existe ordenação (ex: sexo, estado civil, profissão)
- Ordinal: Existe uma certa ordem (ex: escolaridade, estágio da doença, classe social)

Quantitativa

- Discreta: os valores possíveis formam um conjunto finito ou enumerável (ex: número de filhos)
- Contínua: os valores possíveis estão dentro de um intervalo, aberto ou fechado, dos números reais (ex: peso, altura, salário)

Coletamos três variáveis entre os alunos da classe:

- Número de irmãos
- Altura
- Se já fez algum curso de estatística anteriormente

Qual o tipo de cada variável?

Resumindo Dados Categóricos: Frequências e Proporções

Dados categóricos

- O primeiro passo para resumir numericamente os dados de uma variável é olhar para todos os valores possíveis e contar quantas vezes cada um aparece.
- Exemplo: No conjunto de dados spam, temos a variável categórica number que indica se no conteúdo do email encontramos números e se eles eram grandes ou pequenos.
- Podemos fazer uma **Tabela de frequência**, ou seja, simplesmente contar quantos foram os emails em cada categoria da variável number:

```
big none small Sum
545 549 2827 3921
```

Exemplo: Doctor Who

Qual ator atuou no maior número de episódios da série Doctor Who?

Exemplo: Doctor Who

Informações do site IMDB (1963-1989, 2005-2015): tabela de frequências e proporções:

	Ator	Frequência	Proporção
1	William Hartnell	136	0.16
2	Patrick Troughton	127	0.15
3	Jon Pertwee	129	0.15
4	Tom Baker	173	0.20
5	Peter Davison	70	0.08
6	Colin Baker	35	0.04
7	Sylvester McCoy	42	0.05
8	Christopher Ecclestone	20	0.02
9	David Tennant	52	0.06
10	Matt Smith	51	0.06
11	Peter Capaldi	29	0.03

Resumindo Dados Categóricos: Representação Gráfica

Gráfico de Barras

Exemplo: Doctor Who

Gráfico de barras das frequências

Exemplo: Doctor Who

Gráfico de barras das proporções

Resumindo Dados Quantitativos

Descrevendo Dados Quantitativos

- Como estudar a distribuição de frequências de uma variável quantitativa?
- Quantitativa Discreta: listar todos os valores possíveis nos dados e contar quantas vezes cada valor ocorre.
- Exemplo: Licença Médica
- Os dados a seguir representam o número de dias de licença médica de 50 funcionários de uma fábrica nas últimas 6 semanas:

```
[1] 2 2 0 0 5 8 3 4 1 0 0 7 1 7 1 5 4 0 4 0 1 8 9 7 0 1 7 2 5 5 4 3 3 0 0 2 5 1 [39] 3 0 1 0 2 4 5 0 5 7 5 1
```

Exemplo: Licença Médica

Como o número de valores distintos nos dados é pequeno, podemos usar uma tabela para apresentar a frequência de cada valor:

	Dias	de	licença	Frequência	Proporção
1			0	12	0.24
2			1	8	0.16
3			2	5	0.10
4			3	4	0.08
5			4	5	0.10
6			5	8	0.16
7			7	5	0.10
8			8	2	0.04
9			9	1	0.02

Exemplo: Licença Médica

Exemplo: Licença Médica

Descrevendo Dados Quantitativos

Como estudar a distribuição de frequências de uma variável quantitativa?

■ Quantitativa Contínua: listar todos os valores possíveis nos dados e contar quantas vezes cada valor ocorre??? É eficiente?

Histograma

- Ordene os dados do menor para o maior.
- Escolha intervalos de maneira que cada observação possa ser incluída em exatamente um deles.
- Neste curso: os intervalos são abertos à esquerda e fechados à direita (a, b].
- Construa uma tabela de frequências.
- Desenhe o gráfico: a altura corresponde à frequência do intervalo.

■ Os dados a seguir representam o QI de 40 crianças de 12 anos de idade:

```
[1] 114 122 103 118 99 105 134 125 117 106 109 104 111 127 133 111 117 103 120 [20] 98 100 130 141 119 128 106 109 115 113 121 100 130 125 117 119 113 104 108 [39] 110 102
```

Ordenando:

[1] 98 99 100 100 102 103 103 104 104 105 106 106 108 109 109 110 111 111 113 [20] 113 114 115 117 117 117 118 119 119 120 121 122 125 125 127 128 130 130 133 [39] 134 141

■ Dados ordenados:

```
[1] 98 99 100 100 102 103 103 104 104 105 106 106 108 109 109 110 111 111 113 [20] 113 114 115 117 117 117 118 119 119 120 121 122 125 125 127 128 130 130 133 [39] 134 141
```

■ Intervalos:

```
(95, 100]: 4 (100, 105]: 6
(105, 110]: 6 (110, 115]: 6
(115, 120]: 7 (120, 125]: 4
(125, 130]: 4 (130, 135]: 2
(135, 140]: 0 (140, 145]: 1
```

Warning: Use of `dadosQI\$QI` is discouraged. Use `QI` instead.

Ramo-e-folhas

- O ramo-e-folhas representa graficamente os dados sem perder nenhuma informação.
- Cada valor é dividido em duas partes: a primeira (ramo) é colocada à esquerda da linha vertical, e a segunda (folhas) à direita.

■ Dados:

```
[1] 114 122 103 118 99 105 134 125 117 106 109 104 111 127 133 111 117 103 120 [20] 98 100 130 141 119 128 106 109 115 113 121 100 130 125 117 119 113 104 108 [39] 110 102
```

■ Ramo-e-folhas:

```
The decimal point is 1 digit(s) to the right of the |

9 | 89

10 | 0023344

10 | 566899

11 | 011334

11 | 5777899

12 | 012

12 | 5578

13 | 0034

13 |

14 | 1
```

Exemplo: Notas dos Alunos

Um professor apresenta à classe as notas do exame usando um gráfico de ramo-e-folhas.

```
The decimal point is 1 digit(s) to the right of the |
6 | 588
7 | 01136779
8 | 1223334677789
9 | 011234458
```

- Qual o total de alunos?
- Qual a menor nota?
- Qual a maior nota?

Exemplo: Notas dos Alunos

Ramos-e-Folhas x Histograma

Qual o tipo de informação você obtém através de um gráfico de ramo-e-folhas mas não não através de um histograma?

Dados do seu Facebook

No link http://wolfr.am/OvitOo você pode obter diversos gráficos descritivos usando informações do seu perfil do Facebook.

Dados sobre vacinas nos EUA

No link http://graphics.wsj.com/infectious-diseases-and-vaccines/ temos vários gráficos mostrando muito bem o efeito de vacinas ao longo dos anos para cada estado americano, para várias doenças.

ENEM 2010

O quadro seguinte mostra o desempenho de um time de futebol no último campeonato. A coluna da esquerda mostra o número de gols marcados e a coluna da direita informa em quantos jogos o time marcou aquele número de gols.

Gols	Quantidade de
marcados	partidas
0	5
1	3
2	4
3	3
4	2
5	2
7	1

Se X, Y e Z são, respectivamente, a média, a mediana e a moda dessa distribuição, então

A)
$$X = Y < Z$$
.

B)
$$Z < X = Y$$
.

C)
$$Y < Z < X$$
.

D)
$$Z < X < Y$$
.

E)
$$Z < Y < X$$
.

Leitura

- OpenIntro: seções 1.1, 1.2, 1.6, 1.7
- Ross: seções 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4