### 11. Clustering

Network Data Analysis - NDA'21 M. Danisch and A. Giovanidis

Sorbonne-LIP6







Decembre 08, 2021

# Bibliography

M.D. & A.G. 2021

▶ Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar Chapter 7.

### What is clustering?

M.D. & A.G. 2021

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



# What is clustering?

M.D. & A.G. 2021

- Clustering is an unsupervised learning method (i.e. no predefined classes)
- It is different from classification (supervised learning)

#### Why is it useful?

M.D. & A.G. 2021

#### Understanding the data / get insights on the data:

- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group people sharing similar interest
- Group movies with similar genres or actors

# Why is it usefull (applications of cluster analysis)? A.G. 2021

Summarization: Reduce the size of large data sets



Clustering precipitation in Australia

### Custering is an ill-defined problem

How many clusters?



► An Impossibility Theorem for Clustering, Jon Kleinberg, NeurIPS 2015.

- 1. **Well-separated:** any point in a cluster is closer to every other point in this cluster than to any point not in this cluster.
- 2. **Center-based:** any point in a cluster is closer to the center of this cluster, than to the center of any other cluster.
- 3. **Contiguous:** any point in a cluster is closer to one or more other points in the cluster than to any point not in the cluster.
- 4. **Density-based:** a cluster is a dense region of points, separated by low-density regions from other regions of high density (other clusters).

# Several types of clusterings

M.D. & A.G. 2021

A clustering is a set of clusters. Important distinction between hierarchical and partitional sets of clusters.

- ▶ Partitional clustering: A partition (split/division) of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset.
- ► **Hierarchical clustering:** A set of nested clusters organized as a hierarchical tree.

# Several types of clusterings

#### Other distinctions:

- Exclusive versus non-exclusive: In non-exclusive clusterings, points may belong to multiple clusters. Can represent multiple classes or "border" points.
- ▶ Fuzzy versus non-fuzzy: In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1. Weights must sum to 1.
- Partial versus complete: In some cases, we only want to cluster some of the data.
- ► Heterogeneous versus homogeneous: Clusters of widely different sizes, shapes, and densities.



























- Randomly chose k initial centroids
- While True:
  - Create k clusters by assigning each point to closest centroid
  - Compute k new centroids by averaging points in each clustering
  - ▶ If centroids don't change:
    - Break

k-means can be seen as a heuristic to minimize the distortion:

distortion = 
$$\sum_{i=1}^{k} \sum_{j=1}^{n} \delta_{i,j} ||\mathbf{x}_i - \mu_j||_2^2$$

or SSD: Sum-of-Square-Deviations, with

- $\blacktriangleright$   $\mu_i$  the vector of centroid j and
- ▶  $\delta_{i,j} = 1$  if the sample  $\mathbf{x}_i$  is in cluster j and 0 otherwise.

$$\|\mathbf{x}_i - \mu_j\|_2^2 = \sum_{p=1}^P (x_{i,p} - \mu_{j,p})^2$$
 is the **Euclidean distance**.

➤ An exact solution to the above problem would be NP-hard.

#### Limitation of k-means: clusters

M.D. & A.G. 2021

- K-means has problems when clusters are of differing
  - Sizes
  - Densities
  - Non-spherical shapes
- ▶ K-means has problems when the data contains outliers.

Normalising the data and removing outliers can help!

Limitation of k-means: initialisation



Using multiple runs or kmeans++ can help!

Limitation of k-means: initialisation

M.D. & A.G. 2021



Using multiple runs or kmeans++ can help!

Limitation of k-means: How to choose k? M.D. & A.G. 2021



The elbow method: choose k=3, where the elbow is located

# Limitation of k-means: How to choose k? M.D. & A.G. 2021

**Silhouette value.** A measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation).

For data point i in cluster  $C_k$ , let

$$a(i) = \frac{1}{|C_k| - 1} \sum_{j \in C_k, i \neq j} d(i, j)$$
 and  $b(i) = \min_{l \neq k} \frac{1}{|C_l|} \sum_{j \in C_l} d(i, j)$ 

The silhouette score of one data point i:  $s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$ 

Silouette score of a partition = average of the s(i)'s.

▶ Elbow method with silhouette score instead of distortion

#### Distance choice

M.D. & A.G. 2021

The Euclidean distance creates ball-shaped clusters:

$$d_{E}(\mathbf{x}_{i}, \ \mu_{j}) = ||\mathbf{x}_{i} - \mu_{j}||_{2} = \sqrt{\sum_{p=1}^{P} (x_{i,p} - \mu_{j,p})^{2}}$$

Alternative distance metrics for other shapes

- ► Mahalanobis:  $d_M(\mathbf{x}_i, \mu_j) = \sqrt{(\mathbf{x}_i \mu_j)^T \mathbf{S}^{-1} (\mathbf{x}_i \mu_j)}$
- ▶ norm-1:  $d_{L1}(\mathbf{x}_i, \ \mu_j) = \sum_{p=1}^{P} |x_{i,p} \mu_{j,p}|$
- ▶ Hyperbolic:  $d_H(\mathbf{x}_i, \ \mu_j) = arcosh\left(1 + 2\frac{||\mathbf{x}_i \mu_j||_2^2}{(1 ||\mathbf{x}_i||_2^2)(1 ||\mu_j||_2^2)}\right)$

M.D. & A.G. 2021



M.D. & A.G. 2021



M.D. & A.G. 2021



M.D. & A.G. 2021 Mean-shift (with one centroid)

# points: 86

# points: 119

M.D. & A.G. 2021



Mean-shift (with one centroid)

M.D. & A.G. 2021

# points: 139

The centroid moves towards a higher density region

Mean-shift (with one centroid)

M.D. & A.G. 2021

# points: 152

The centroid moves towards a higher density region

Mean-shift (with one centroid)

M.D. & A.G. 2021

# points: 152

The centroid moves towards a higher density region

└ Mean-shift

Mean-shift



└ Mean-shift

Mean-shift



└ Mean-shift

Mean-shift



└ Mean-shift

Mean-shift



└ Mean-shift

Mean-shift



└ Mean-shift

Mean-shift



└ Mean-shift

Mean-shift



└ Mean-shift

Mean-shift



└ Mean-shift

Mean-shift



## Mean-shift

- ► Start with a given (large) number of circular sliding windows centered at randomly selected centroids and having radius *r*.
- While True;
  - Compute k new centroids by averaging examples in each sliding windows (the centroids are shifted towards regions of higher density)
  - ▶ If centroids don't change:
    - Break
- ▶ If multiple sliding windows overlap, then only the window containing the most points is preserved.
- Each data point is assigned to the nearest centroid.































NDA 2021-2022

└─Other clustering algorithms └─DBSCAN

**DBSCAN** 



└─Other clustering algorithms └─DBSCAN

**DBSCAN** 



**DBSCAN** 



**DBSCAN** 



**DBSCAN** 



∟<sub>DBSCAN</sub>

**DBSCAN** 



**DBSCAN** 



M.D. & A.G. 2021

It groups together points that are closely packed together (=points with many nearby neighbours)

- 2 parameters:  $\epsilon$  (=radius) and *minPts*.
- 3 types of points: core points, reachable points, outliers
  - ▶ Find the points in the  $\epsilon$ -neighborhood of every point, and identify the core points with more than *minPts* neighbors.
  - Find the connected components of core points on the neighbor graph, ignoring all non-core points.
  - Assign each non-core point to a nearby cluster if the cluster is an  $\epsilon$ -neighbor (call it a border point), otherwise assign it to noise (outlier).

#### **DBSCAN**

M.D. & A.G. 2021

#### Choosing $\epsilon$ and minPts ?

- ▶ The idea is that for points in a cluster, their  $k^{th}$  nearest neighbors are at roughly the same distance
- ▶ Noise points have the  $k^{th}$  nearest neighbor at farther distance
- ightharpoonup So, plot sorted distance of every point to its  $k^{th}$  nearest neighbor

M.D. & A.G. 2021

# GMM: Gaussian Mixture Model



M.D. & A.G. 2021

#### GMM: Gaussian Mixture Model



M.D. & A.G. 2021

#### GMM: Gaussian Mixture Model



# GMM: Gaussian Mixture Model







#### GMM: Gaussian Mixture Model

► Model: *K* gaussians (e.g. in one-dimension/feature):

$$p(x) = \sum_{k=1}^{K} \Phi_k N(x|\mu_k, \sigma_k)$$

$$N(x|\mu_k, \sigma_k) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right)$$

$$\sum_{k=1}^K \Phi_k = 1$$

- ▶ Want to maximize likelihood  $\prod_{i=1}^{n} p(x_i)$
- Chicken and egg problem:
  - ▶ need  $(\Phi_k, \mu_k, \sigma_k)$  for all k to guess source of points
  - ▶ need to know source to estimate  $(\Phi_k, \mu_k, \sigma_k)$

#### GMM: Gaussian Mixture Model

#### Expectation-Maximization algorithm:

- start with randomly placed Gaussians  $(\Phi_k, \mu_k, \sigma_k)$
- ▶ (E-step) for each i, k compute  $\gamma_{i,k} \sim \text{did } x_i$  came from k?
- (M-step) adjust  $(\Phi_k, \mu_k, \sigma_k)$  to fit points assigned to them
- iterate until convergence

$$\gamma_{i,k} = \frac{\Phi_k \mathcal{N}(\mathbf{x}|\mu_k, \sigma_k)}{\sum\limits_{k=1}^K \Phi_k \mathcal{N}(\mathbf{x}|\mu_k, \sigma_k)} \qquad \qquad \mu_k = \frac{\sum\limits_{i=1}^N \gamma_{i,k} \mathbf{x}_i}{\sum\limits_{i=1}^N \gamma_{i,k}} \qquad \sigma_k^2 = \frac{\sum\limits_{i=1}^N \gamma_{i,k} (\mathbf{x}_i - \mu_k)^2}{\sum\limits_{i=1}^N \gamma_{i,k}}$$

M.D. & A.G. 2021













M.D. & A.G. 2021













#### Hierarchical clustering

Two types of hierarchical clustering:

- 1. **Agglomerative.** This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.
- 2. **Divisive.** This is a "top-down" approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

# Aglomerative hierarchical clustering

Maximum (or complete) linkage clustering:

$$d(A,B) = \max\{d(a,b) : a \in A, b \in B\}$$

Minimum (or single) linkage clustering:

$$d(A,B) = \min\{d(a,b) : a \in A, b \in B\}$$

Average linkage clustering:

$$d(A,B) = \frac{1}{|A| \cdot |B|} \sum_{a \in A} \sum_{b \in B} d(a,b)$$

Validation

- For supervised classification we have a variety of measures to evaluate how good our model is: Accuracy, precision, recall
- ► For clustering, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- "Clusters are in the eye of the beholder"!
- We still want some tools:
  - ▶ To avoid finding patterns in noise
  - ▶ To compare clustering algorithms
  - ► To compare two sets of clusters
  - ► To compare two clusters

Two types of numerical measures to judge cluster validity:

- 1. Internal Index: Used to measure the goodness of a clustering structure without respect to external information. (e.g. distortion, silhoutte score)
- External Index: Used to measure the extent to which cluster labels match externally supplied class labels. (e.g. Entropy, Adjusted Rand Index)

#### Entropy

1. Given a discrete random variable X with possible value  $\{1,..,n\}$ , entropy is defined as

$$H(X) = -\sum_{i=1}^{n} P(X = i) \log_2(P(X = i))$$

2. Entropy measures how uncertain is an event, the larger the entropy the more uncertain is the event.

#### Validation: External Index

M.D. & A.G. 2021

Table 5.9. K-means Clustering Results for LA Document Data Set

| Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity |
|---------|---------------|-----------|---------|-------|----------|--------|---------|--------|
| 1       | 3             | 5         | 40      | 506   | 96       | 27     | 1.2270  | 0.7474 |
| 2       | 4             | 7         | 280     | 29    | 39       | 2      | 1.1472  | 0.7756 |
| 3       | 1             | 1         | 1       | 7     | 4        | 671    | 0.1813  | 0.9796 |
| 4       | 10            | 162       | 3       | 119   | 73       | 2      | 1.7487  | 0.4390 |
| 5       | 331           | 22        | 5       | 70    | 13       | 23     | 1.3976  | 0.7134 |
| 6       | 5             | 358       | 12      | 212   | 48       | 13     | 1.5523  | 0.5525 |
| Total   | 354           | 555       | 341     | 943   | 273      | 738    | 1.1450  | 0.7203 |

 $m_j = \text{size of cluster } j, \ m = \text{number of documents}$   $p_{ij} = \text{probability that a random document of cluster } j \text{ belongs to topic } i.$  For example,  $p_{13} = 1/685$ .

► Entropy of a cluster:

$$e_j = -\sum_{i=1}^n p_{ij} \log_2(p_{ij})$$

► Entropy of a clustering:  $\sum_{i} \frac{m_{i}}{m} e_{j}$ 

Purity of a cluster: purity<sub>i</sub> = max<sub>i</sub>(p<sub>ij</sub>)

Purity of a clustering:  $\sum_{i} \frac{m_{i}}{m} purity_{j}$