ИФИМ КВИН

3-ий семестр факультет КиБ, конспект лекций

Математический анализ

Aemop:

Тропин А.Г.

Coaemop:

Коверко Е.А.

Лектор:

Севастьянов Е.А.

e-mail: andrewtropin@gmail.com

github: abcdw/mephi

Предисловие

Данный конспект был составлен для упрощения процесса подготовки к экзамену по математическому анализу.

Хочется выразить отдельную благодарность Коверко Егору, который предоставил большую часть материала и помог в написании. Спасибо тем, кто помогал в исправлении ошибок и опечаток, в частности Роману Рагозину, Севумяну Роберту, Илье Дайлиденку.

Данный материал распространяется как есть, авторы и соавторы не предоставляют никаких гарантий.

Оглавление

1	Ф	Рункциональные последовательности и ряды				
1	Чи	словые ряды	7			
	1.1	Определение	7			
	1.2	Действия с рядами	8			
	1.3	Ряды с неотрицательными членами	8			
	1.4	Интегральный признак сходимости рядов с неотрицательными членами	11			
	1.5	Признак сходимости для знакочередующихся рядов	12			
	1.6	Преобразование Абеля	13			
	1.7	Признаки Дирихле и Абеля	13			
	1.8	Безусловно и условно сходящиеся ряды	14			
2	Φy	нкциональные последовательности и ряды	15			
	2.1	Поточечная сходимость	15			
	2.2	Равномерная сходимость	16			
	2.3	Признаки равномерной сходимости рядов Дирихле и Абеля	17			
	2.4	Равномерная сходимость и непрерывность	18			
	2.5	Равномерная сходимость и интегрирование	19			
	2.6	Равномерная сходимость и дифференцирование	20			
3	Сте	Степенные ряды				
	3.1	Радиус сходимости и круг сходимости	21			
	3.2	Степенные ряды в действительной области. Общие свойства	22			
	3.3	Ряд Тейлора. Разложение функции в степенные ряды	23			
	3.4	Разложение основных элементарных в ряд Тейлора.	24			
	3.5	Формулы Эйлера	27			
4	Ряд	цы Фурье	29			
	4.1	Ортогональные системы	29			
	4.2	Коэффициенты Фурье	29			
	4.3	Ряд Фурье	32			
	4.4	Тригонометрический ряд Фурье	33			
	4.5	Обобщение на неограниченные функции	38			
	4.6	Достаточные условия сходимости тригонометрического ряда Фурье в точке	36			
	4.7	Гладкость функции и скорость убывания коэффициентов Фурье	40			
II	T/I	Інтегралы	43			
			45			
5	Кратные интегралы					
	5.1	Определение интеграла Римана на <i>n</i> -ом промежутке	45			
	5.2	Условие существования кратного интеграла	46			

	5.3	Кратный интеграл по множеству	7					
	5.4	Мера(объем) множества	7					
	5.5	Свойства кратных интегралов	8					
	5.6	Сведение кратного инетграла к повторному	9					
	5.7	Замена переменных в кратных интегралах	1					
6	Kpi	иволинейные интегралы 5	5					
	6.1	Криволинейный интеграл первого рода	5					
	6.2	Криволинейный интеграл второго рода	6					
	6.3	Формула Грина	8					
7	Поп	верхностные интегралы 6	1					
	7.1	Поверхности в \mathbb{R}^3	1					
	7.2	Касательная плоскость и нормаль к поверхности в \mathbb{R}^3	2					
	7.3	Площадь поверхности	2					
	7.4	Ориентация поверхности в \mathbb{R}^3	3					
	7.5	Определение поверхностного интеграла первого рода	4					
	7.6	Поверхностный интеграл второго рода	5					
8	Эле	Элементы векторного анализа и теории поля 6						
	8.1	Определения	7					
	8.2	Формула Гаусса-Остроградского	8					
	8.3	Формула Стокса	9					
	8.4	Инвариантность понятий дивергенция и ротор	0					
	8.5	Потенциальные векторные поля	1					
	8.6	Соленоидальные векторные поля	3					
9	Бес	сконечные произведения и Г-функция Эйлера	5					
	9.1	Бесконечные произведения	5					
	9.2	Определение Г-функции Эйлера. Некоторые ее свойства	6					
	9.3	Представление синуса в виде бесконечного произведения и формула дополне-						
		ния для Г-функции	7					
	9.4	Интегральное представление для Г-функции Эйлера	8					
	9.5	Формула Стирлинга	0					

Часть І

Функциональные последовательности и ряды

Глава 1

Числовые ряды

§ 1.1. Определение

Определение 1.1.1. $U_0 + U_1 + U_2 + U_3 + \cdots = \sum_{k=0}^{\infty} U_k$

Определение 1.1.2 (Частичная сумма). $S_n = \sum_{k=0}^n U_k$

Определение 1.1.3. Ряд сходится, если $\exists \lim_{n \to \infty} \sum_{k=0}^{n} U_k = S$

Теорема 1.1.1 (Критерий Коши). *Ряд сходится, тогда и только тогда, когда он удовлетворяет условию Коши:*

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon), \ \forall n \ge N, \forall p : \ |\sum_{k=n+1}^{n+p} U_k| = |U_{n+1} + \dots + U_{n+p}| = |S_{n+p} - S_n| < \varepsilon$$

Доказательство. $\sum U_k$ - сходится $\Leftrightarrow \{S_n\}$ - сходится

$$\forall \varepsilon > 0, \ \exists N : \forall n \ge N, \forall p : \ |S_{n+p} - S_n| < \varepsilon$$

Следствие (Необходимое условие сходимости). Если $\sum U_k$ сходится, то $U_k \to 0$, при $k \to \infty$

Доказательство. Если $\sum U_k$ сходится, то выполняется Критерий Коши. При p=1

$$\forall \varepsilon > 0, \exists N, \forall n \ge N : |S_{n+1} - S_n| = |U_{n+1}| < \varepsilon$$

Следствие. Отбрасывание или добавление любого конечного числа членов ряда на его сходимость не влияет.

Пример 1.1.1. $\sum\limits_{0}^{\infty}z^{n}$, $S_{n}(z)=\sum\limits_{0}^{n}z^{n}=\frac{1-z^{n+1}}{1-z}$. При $n\to\infty$, $S_{n}(z)=\frac{1}{1-z}$, |z|<1. $S_{n}(z)$ не имеет придела при $|z|\geq 1$.

§ 1.2. Действия с рядами

Теорема 1.2.1. Pяды $\sum U_k$ и $\sum V_k$ $cxoдятся, \alpha$ — комплексное число, тогда

$$\sum \alpha U_k = \alpha \sum U_k \tag{1.2.1}$$

$$\sum (U_k \pm V_k) = \sum U_k \pm \sum V_k \tag{1.2.2}$$

Доказательство свойства ((1.2.1)):

$$\sum_{k=0}^{\infty} \alpha U_k = \lim_{n \to \infty} \sum_{k=0}^{n} \alpha U_k = \alpha \lim_{n \to \infty} \sum_{k=0}^{n} U_k = \alpha \sum_{k=0}^{\infty} U_k$$

Доказательство свойства ((1.2.2)):

$$\sum_{0}^{\infty} U_k \pm \sum_{0}^{\infty} V_k = \lim_{n \to \infty} \sum_{0}^{n} U_k \pm \lim_{n \to \infty} \sum_{0}^{n} V_k =$$

$$= \lim_{n \to \infty} \sum_{0}^{n} U_k \pm \sum_{0}^{n} V_k = \lim_{n \to \infty} \sum_{0}^{n} (U_k \pm V_k) = \sum_{0}^{n} (U_k \pm V_k)$$

Замечание 1.2.1. Из сходимости $\sum (U_k \pm V_k) \not\Rightarrow$ сходимость $\sum U_k$ и $\sum V_k$ Замечание 1.2.2. Если $\sum U_k$ сходится, то можно группировать, не меняя порядка. Пример 1.2.1.

$$\sum (1-1)$$

$$(1-1) + (1-1) + \dots$$

$$1 - (1-1) - (1-1) \dots$$

Комментарий. Нельзя раскрывать скобки и переставлять члены.

§ 1.3. Ряды с неотрицательными членами

 $U_k \geq 0, \ S_n = \sum\limits_0^n U_k$ - неубывающая последовательность.

$$\sum\limits_{0}^{n}U_{k}$$
 - сходится $\Leftrightarrow\{S_{n}\}$ — ограничена

Комментарий. Сходимость ряда эквивалентна ограниченности S_n

Теорема 1.3.1.

$$U_k > 0, V_k > 0, \ \forall k$$
:

- 1. Если $0 \le U_k \le V_k$, то если $\sum V_k$ сходится $\Rightarrow \sum U_k$ сходится и если $\sum U_k$ расходится $\Rightarrow \sum V_k$ расходится.
- 2. Если $\lim_{n\to\infty}\frac{U_k}{V_k}=A>0$, то ряды сходятся или расходятся одновременно.

Доказательство.

- 1. $\forall n$ верно неравенство $0 \leq \sum_{k=0}^{n} U_k \leq \sum_{k=0}^{n} V_k$
- 2. $\forall \varepsilon > 0 \ \varepsilon < A \ \exists N : \forall n \ge N \Rightarrow 0 < A \varepsilon < \frac{U_k}{V_k} < A + \varepsilon$ $0 < (A - \varepsilon) \cdot V_k < U_k < (A + \varepsilon) \cdot V_k$

Пусть U_k сходится, тогда, из доказанного выше 1ого пункта, следует $(A-\varepsilon) \cdot V_k$ сходится $\Rightarrow \sum V_k$ сходится $\Rightarrow \sum (A+\varepsilon) \cdot V_k$ сходится $\Rightarrow \sum U_k$ сходится.

Замечание 1.3.1. Вместо существования предела $\lim_{n \to \infty} \frac{U_k}{V_k}$ достаточно предположить, что существуют такие числа р и q > 0, такие что $0 < q < \frac{U_k}{V_k} < p, \ \forall k$

Теорема 1.3.2 (Признак Даламбера).

$$\sum U_k, \ U_k > 0$$

- 1. Если $\exists q$ такое что: $\forall k \; \frac{U_{k+1}}{U_k} \leq q < 1$, то U_k сходится
- 2. Ecnu $\exists \lim_{k\to\infty} \frac{U_{k+1}}{U_k} = q$, mo:
 - $npu \ q < 1 \ cxo \partial umc$
 - $npu \ q > 1$ pacxodumcs
 - $npu \ q=1$ неизвестно (нужно провести дополнительные исследования)

Доказательство. Идея доказательства - сравнение с геометрической прогрессией.

1. • $k=0,1,\ldots,n,\,U_k=U_0\cdot \frac{U_1}{U_0}\frac{U_2}{U_1}\cdots \frac{U_k}{U_{k-1}} < U_0\cdot q^k$ Комментарий. $\frac{U_k}{U_{k-1}} < q,\,\,\forall k$

q < 1, тогда $\sum U_0 \cdot q^k$ — сходящаяся геометрическая прогрессия.

• $U_k = U_0 \cdot \frac{U_1}{U_0} \frac{U_2}{U_1} \cdot \cdot \cdot \cdot \frac{U_k}{U_{k-1}} \ge U_0 > 0$ Комментарий. $\frac{U_k}{U_{k-1}} \ge 1, \ \forall k$

 $U_k \not\to 0 \Rightarrow$ не выполняется необходимое условие сходимости.

- 2. Пусть $\lim_{k\to\infty}\frac{U_{k+1}}{U_k}=q$ $\forall \varepsilon>0,\ \exists K:\ \forall k\geq K$ выполняется неравенство $q-\varepsilon<\frac{U_{k+1}}{U_k}< q+\varepsilon$
 - Если q<1,выберем такое ε , что $q+\varepsilon<1$, для $\forall k\geq K(\varepsilon)$. $\frac{U_{k+1}}{U_k}< q+\varepsilon<1\Rightarrow \text{сходится по первой части}.$
 - Если q>1, то выберем ε так, чтобы $q-\varepsilon>1$, для $\forall k\geq K(\varepsilon)$. $\frac{U_{k+1}}{U_k}>q-\varepsilon>1,\ \Rightarrow \ \text{расходится по первой части}.$

Теорема 1.3.3 (Признак Коши).

$$\sum U_k, U_k \geq 0$$

- 1. Если $\exists q<1$ и $\forall k>K$: выполняется $\sqrt[k]{U_k}\leq q<1$, то ряд сходится, а если $\forall k\sqrt[k]{U_k}\geq 1$, то расходится.
- 2. Echu $\exists \lim_{k \to \infty} \sqrt[k]{U_k} = q, (q \ge 0), mo$
 - $npu \ q < 1 \ cxoдumcя$
 - $npu \ q > 1 \ pacxodumcs$
 - $npu \ q = 1$ нужны дополнительные исследования

3амечание 1.3.2. $\lim_{n\to\infty} \sqrt[n]{U_n}$ можно рассматривать вместо $\overline{\lim_{k\to\infty}} \sqrt[k]{U_k}$

Доказательство. Сравнение с геометрической прогрессией

- 1. Если $\forall k \ \sqrt[k]{U_k} \leq q < 1 \Rightarrow U_k \leq q^k$ сходящаяся геометрическая прогрессия. Если $\forall k \ \sqrt[k]{U_k} \geq 1 \Rightarrow U_k \geq 1$ не выполняется необходимое условие сходимости.
- 2. Если $\lim_{k\to\infty} \sqrt[k]{U_k} = q$, то $\forall \varepsilon > 0 \ \exists K = K(\varepsilon) : \forall k \ge K, \ (q-\varepsilon) < \sqrt[k]{U_k} < (q+\varepsilon)$ $(q-\varepsilon)^k < U_k < (q+\varepsilon)^k$
 - При q<1 выберем ε так, чтобы $q+\varepsilon<1$, тогда $U_k<(q+\varepsilon)^k<1$ сходящаяся геометрическая прогрессия.
 - При q>1 выберем ε так, чтобы $q-\varepsilon>1$, тогда $U_k>(q-\varepsilon)^k>1$ не выполняется необходимое условие сходимости.

Определение 1.3.1. Дана $\{a_n\}$ и пусть $\overline{\lim_{n\to\infty}}a_n$ — наибольший из частичных пределов, тогда:

$$\forall \{a\} \ \exists \overline{\lim}_{n \to \infty} a_n = A \ or \ \infty$$

Комментарий. A — число.

- Если $\overline{\lim_{n\to\infty}}a_n=+\infty\Rightarrow\{a_n\}$ неограничена сверху $\Rightarrow\overline{\lim_{k\to\infty}}\sqrt[k]{U_k}=+\infty$ неограничена сверху. U_k неограничена сверху и не выполняется необходимое условие.
- Если $\overline{\lim_{n\to\infty}} a_n = A$, тогда $\forall \varepsilon \in (A-\varepsilon, A+\varepsilon)$ бесконечно много членов $\{a_n\}$:
 - $\varlimsup_{k\to\infty}\sqrt[k]{U}_k=q<1$. Выберем ε так, чтобы $q+\varepsilon<1\Rightarrow \exists K: \forall k\geq K,\ \sqrt[k]{U}_k< q+\varepsilon<1$ по признаку Коши.
 - $\varlimsup_{k\to\infty}\sqrt[k]{U}_k=q>1$. Выберем ε так, чтобы $q-\varepsilon>1\Rightarrow \forall K\; \exists k\geq K:\sqrt[k]{U}_k\;>\; q-\varepsilon\;>\; 1$ $\Rightarrow U_k\;>\; 1$

§ 1.4. Интегральный признак сходимости рядов с неотрицательными членами

Теорема 1.4.1. Если f(x) неотрицательна и убывает на $x \ge 1$, то ряд

$$\sum_{n=1}^{\infty} f(n) < \infty \tag{1.4.1}$$

сходится тогда и только тогда, когда сходится интеграл:

$$\int_{1}^{+\infty} f(x)dx \tag{1.4.2}$$

mo ecmo $\int_{1}^{+\infty} f(x)dx < \infty$.

- $\sum a_n < \infty cxo\partial umcs$
- $\sum a_n = \infty pacxodumcs$

Доказательство. Если $k \le x \le k+1, \ k=1,2,\ldots,$ то, в силу убывания функции получаем неравенство:

$$f(k) > f(x) > f(k+1)$$

Интегрируя по отрезку [k, k+1] получим:

$$f(k) \ge \int_{k}^{k+1} f(x)dx \ge f(k+1), \ k = 1, 2, \dots$$

$$\sum_{k=1}^{n} f(k+1) \le \int_{1}^{n+1} f(x)dx \le \sum_{k=1}^{n} f(k)$$
 (1.4.3)

Пусть $S_n = \sum_{k=1}^n f(k)$, тогда (1.4.3) примет вид:

$$S_{n+1} - f(1) \le \int_{1}^{n+1} f(x)dx \le S_n$$
 (1.4.4)

Если ряд (1.4.1) сходится и его сумма равна S, то $S_n \leq S$, и $\int_1^{n+1} f(x) dx \leq S$, $\forall n \in \mathbb{N}$. $\forall b > 1, n+1 > b$ имеем:

$$\int_{1}^{b} f(x)dx \le \int_{1}^{n+1} f(x)dx \le S$$

В силу неотрицательности функции f(x) интеграл сходится.

Пусть наоборот, интеграл (1.4.2) сходится, тогда из (1.4.4) следует:

$$S_{n+1} \le f(1) + \int_{1}^{n+1} f(x)dx \le f(1) + \int_{1}^{\infty} f(x)dx$$

Тем самым, последовательность сумм $\{S_n\}$ ряда (1.4.1) ограничена сверху, и поэтому этот ряд сходится.

Пример 1.4.1.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R} \tag{1.4.5}$$

Положим $f(x)=\frac{1}{x^{\alpha}}$, тогда $f(n)=\frac{1}{n^{\alpha}}$ Поскольку $\int\limits_{1}^{+\infty}\frac{dx}{x^{\alpha}}$:

- При $\alpha > 1$ сходится
- При $\alpha \le 1$ расходится

Тогда ряд (1.4.5) сходится тогда и только тогда, когда $\alpha>1$. При $\alpha<0$ дробь $\frac{1}{n^{\alpha}}\geq 1$.

§ 1.5. Признак сходимости для знакочередующихся рядов

Рассмотрим ряды с действительными числами, которые то положительные, то отрицательные.

Теорема 1.5.1 (Лейбница). Если

$$\lim_{n \to \infty} U_n = 0 \tag{1.5.1}$$

$$U_n \ge U_{n+1} > 0, \ n = 1, 2, \dots$$
 (1.5.2)

то знакочередеющийся ряд

$$\sum_{n=1}^{+\infty} (-1)^{n+1} U_n \tag{1.5.3}$$

cxo dumcs, npu этом $ecnu\ S-cymma\ psda$, $a\ S_n-ero\ n$ -ая частичная cymma, $mo\ \forall n: n=1,2,\dots$

$$|S - S_n| \le U_{n+1} \tag{1.5.4}$$

Доказательство. Заметим, что частичная суммы S_n с четными номерами возрастают:

$$S_{2k} = (U_1 - U_2) + (U_3 - U_4) + \dots + (U_{2k-1} - U_{2k}), \ k = 1, 2, \dots$$

Так что выполняется неравенство $S_{2k+2} \geq S_{2k}$. Кроме того, они ограничены сверху:

$$S_{2k} = U_1 - (U_2 - U_3) - \dots - (U_{2k-2} - U_{2k-1}) - U_{2k}, \ S_{2k} < U_1$$

Поэтому последовательность $\{S_{2k}\}$ сходится

$$\lim_{k \to \infty} S_{2k} = S \tag{1.5.5}$$

Поскольку $S_{2k+1} = S_{2k} + U_{2k+1}$ и $U_{2k+1} \to 0$ при $k \to \infty$, то

$$\lim_{k \to \infty} S_{2k+1} = S \tag{1.5.6}$$

Из (1.5.5) и (1.5.6) следует, что $\lim_{n\to\infty} S_n = S$

При этом, нетрудно увидеть, что

$$S_{2k} \le S \le S_{2k+1} \le S_{2k-1}, \ \forall k \tag{1.5.7}$$

Из неравенства (1.5.7) следует, что

$$S - S_{2k} \le S_{2k+1} - S_{2k} = U_{2k+1}$$

$$S_{2k-1} - S \le S_{2k-1} - S_{2k} = U_{2k}, \ k = 1, 2, \dots$$

Это и означает, что $\forall n \in \mathbb{N}$ выполняется неравенство (1.5.4).

§ 1.6. Преобразование Абеля

Теорема 1.6.1. Пусть $a_k \in \mathbb{C}, b_k \in \mathbb{C}, k = 1, ..., n; B_k = b_1 + \cdots + b_k, mor \partial a$

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} (a_k - a_{k+1}) b_k + a_n B_n$$
(1.6.1)

Доказательство. Очевидно, $b_1 = B_1, b_k = B_k - B_{k-1}, k = 2, 3, \dots, n$

Поэтому
$$a_1b_1 + a_2b_2 + \dots + a_nb_n = a_1B_1 + a_2(B_2 - B_1) + a_3(B_3 - B_2) + \dots a_n(B_n - B_{n-1}) = (a_1 - a_2)B_1 + (a_2 - a_3)B_2 + \dots + (a_{n-1} - a_n)B_{n-1} + a_nB_n$$

Называется преобразованием Абеля
$$\sum\limits_{k=1}^{n}a_{k}b_{k}$$
.

Следствие (лемма Абеля). *Если* $a_1 \le a_2 \le \cdots \le a_n$ или $a_1 \ge a_2 \ge \cdots \ge a_n$, $a_k \in \mathbb{R}, \ \forall k = 1, 2, \dots, n, \ |b_1 + \cdots + b_k| \le B, \ (b_k \in \mathbb{C}), \ mo$

$$\left| \sum_{k=1}^{n} a_k b_k \right| \le B(|a_1| + 2|a_n|)$$

Доказательство.
$$\left|\sum_{k=1}^{n} a_k b_k\right| \leq \sum_{k=1}^{n-1} |a_k - a_{k+1}| |B_k| + |a_n B_n| \leq B\left(\sum_{k=1}^{n-1} |a_k - a_{k+1}| + |a_n|\right) = B\left(\left|\sum_{k=1}^{n-1} (a_k - a_{k+1})\right| + |a_n|\right) = B(|a_1 - a_n| + |a_n|) \leq B(|a_1| + 2|a_n|).$$

§ 1.7. Признаки Дирихле и Абеля

Теорема 1.7.1 (признак Дирихле). Пусть дан ряд

$$\sum_{n=1}^{\infty} a_n b_n \tag{1.7.1}$$

- 1. $a_n \in \mathbb{R}^n, b_n \in \mathbb{C}, n = 1, 2, ...$
- 2. $\{a_n\}, \{a_n\} \downarrow 0 \ (\{a_n\} \uparrow 0)$
- 3. $\{B_n\}$ последовательность частичных сумм ряда $\sum b_n$ ограничена

Тогда ряд (1.7.1) сходится.

Доказательство. $\exists B>0, \ |B_n|\leq B \ \forall n\Rightarrow \forall m\geq n\geq 2: |b_n+\cdots+b_m|=|B_m-B_{n-1}|\leq 2B$ Возьмем $\varepsilon>0$. По скольку $a_n\to 0$, то $\exists N=N(\varepsilon): \forall n>N(\varepsilon)$ имеем $|a_n|<\frac{\varepsilon}{6B}$. Поэтому, $\forall n>N(\varepsilon)$ и $\forall m\geq n$ получим:

$$|a_n b_n + \dots + a_m b_m| \le 2B(|a_n| + 2|a_m|) < 2B\left(\frac{\varepsilon}{6B} + 2\frac{\varepsilon}{6B}\right) = \varepsilon$$

Ряд (1.7.1) удовлетворяет Критерию Коши сходимости рядов.

Замечание 1.7.1. Признак Лейбница - это частный случай признака Дирихле.

Теорема 1.7.2 (признак Абеля). Если последовательность действительных чисел a_n монотонна и ограничена, ряд $\sum_{n=1}^{\infty} b_n, b_n \in \mathbb{C}$ сходится, то ряд (1.7.1) также сходится.

Доказательство. $a_n = a + \alpha_n, \{\alpha_n\}$ — монотонно стремящаяся к нулю последовательность. Поэтому

$$\sum a_n b_n = \sum (a + \alpha_n) b_n = a \sum b_n + \sum \alpha_n b_n,$$

где $a \sum b_n$ сходится по условию, а $\sum \alpha_n b_n$ сходится по признаку Дирихле.

 $\{B_n\}$ — последовательность частичных сумм $\sum b_n$ ограничена, $\{\alpha_n\}$ — монотонно стремящаяся к нулю последовательность.

§ 1.8. Безусловно и условно сходящиеся ряды

Определение 1.8.1. Пусть $\{k_n\}$, $n=1,2,\ldots$ — последовательность, в которой каждое натуральное число встречается только один раз. $\{k_n\}$ — однозначное отображение a_n в $a_n^*=a_{k_n}$, $(n=1,2,\ldots)$.

Будем говорить, что ряд $\sum a_n^*$ является перестановкой ряда $\sum a_n$.

Определение 1.8.2. Говорят, что $\sum a_n$ сходится безусловно, если каждая перестановка сходится.

Теорема 1.8.1. Ряд $\sum a_n, (a_n \in \mathbb{C})$ сходится безусловно тогда и только тогда, когда он сходится абсолютно.

Доказательство. Достаточность.

Если ряд $\sum a_n$ сходится абсолютно, то все его перестановки сходятся к одному и тому же числу — сумме исходного ряда.

Пусть $\sum a_n^*$ — перестановка ряда $\sum a_n$. S_n^* — ее частичная сумма.

По Коши: $\forall \varepsilon > 0 \ \exists N : m \geq n > N$

$$|a_n| + \dots + |a_m| < \varepsilon \tag{1.8.1}$$

Выберем p так, чтобы все натуральные числа $1, 2, \ldots, N$ содержались в множестве k_1, k_2, \ldots, k_p (смотри определение), тогда при n > p a_1, \ldots, a_N в разности $S_n - S_n^*$ уничтожаются, так что $|S_n - S_n^*| < \varepsilon$ в силу (1.8.1).

Значит $\{S_n^*\}$ сходится к тому же пределу, что и $\{S_n\}$.

Определение 1.8.3. Сходящийся, но не абсолютно сходящийся ряд называется условно сходящимся.

Из теоремы (1.8.1) (из необходимости условия) \Rightarrow Теорема (1.8.2)

Теорема 1.8.2. Условно сходящийся ряд не может сходится безусловно, то есть у него всегда существует расходящаяся перестановка.

Доказательство. Без Доказательства.

Теорема 1.8.3 (Римана). Если ряд с действительными членами условно сходится, то каким бы не было действительное число S, существует перестановка ряда такая, что ее сумма равна S

Доказательство. Без Доказательства.

Глава 2

Функциональные последовательности и ряды

§ 2.1. Поточечная сходимость

Пусть на некотором множестве \mathbb{E} задана последовательность комплексно значимых функций $f_n, n = 1, 2, \ldots, (f_n \in \mathbb{C})$. Элементы $x \in \mathbb{E}$ будем называть точками.

Определение 2.1.1. $\{f_n\}$ называется ограниченной на \mathbb{E} , если $\exists M>0: \forall n\in\mathbb{N}, \forall x\in\mathbb{E}$ выполняется

$$|f_n(x)| \leq M$$

Определение 2.1.2. $\{f_n\}$ называется сходящейся поточечно на множестве \mathbb{E} , если при любом фиксированном $x \in \mathbb{E}$, числовая последовательность $\{f_n(x)\}$ сходится. Если последовательность сходится на \mathbb{E} , то $f(x) := \lim_{n \to \infty} f_n(x), x \in \mathbb{E}$ называется пределом последовательности. Пусть $\{U_n(x)\}_{n=1}^{\infty}, x \in \mathbb{E}, (U_n \in \mathbb{C})$ — последовательность числовых функций.

Определение 2.1.3. Множество числовых рядов

$$\sum_{n=1}^{\infty} U_n(x) \tag{2.1.1}$$

в каждой из которых точка x фиксированная называется рядом на множестве \mathbb{E} , а функция $U_n(x)$ — его член.

 $S_n(x) = \sum\limits_{k=1}^n U_k(x), x \in \mathbb{E}$ называется n-ой частичной суммой ряда (2.1.1).

$$\sum\limits_{k=n+1}^{\infty}U_k(x)$$
 - его n -ым остатком.

Определение 2.1.4. Ряд (2.1.1) называется сходящимся поточечно на множестве \mathbb{E} , если последовательность $\{S_n(x)\}$ сходится поточечно на \mathbb{E} . При этом $\lim_{n\to\infty} S_n(x) = S(x), x\in \mathbb{E}$ называется суммой ряда (2.1.1).

$$S(x) = \sum_{n=1}^{\infty} U_n(x).$$

Определение 2.1.5. Если ряд (2.1.1) при любом $x \in \mathbb{E}$ сходится абсолютно, то он называется абсолютно сходящимся на множестве \mathbb{E} .

Замечание 2.1.1. Беззаботная перестановка членов ряда может привести к ошибке.

§ 2.2. Равномерная сходимость

Определение 2.2.1. Говорят, что функциональная последовательность $\{f_n\}_{n=1}^{\infty}$ сходится равномерно на \mathbb{E} , если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N, \forall x \in \mathbb{E}$ имеем

$$|f_n(x) - f(x)| < \varepsilon$$

Ясно, что каждая равномерно сходящаяся последовательность, сходится поточечно.

Комментарий. Обозначение равномерной сходимости: $f_n \stackrel{\mathbb{E}}{\Rightarrow} f$

Теорема 2.2.1 (Критерий Коши равномерной сходимости последовательностей). Для того, чтобы $\{f_n\}$ равномерно сходилась на $\mathbb{E} \iff \forall \varepsilon > 0 \; \exists N : n,m > N, \forall x \in \mathbb{E} :$

$$|f_n(x) - f_m(x)| < \varepsilon \tag{2.2.1}$$

Доказательство.

• Необходимость:

$$f_n \stackrel{\mathbb{E}}{\Longrightarrow} f$$
, тогда $\forall \varepsilon > 0$, $\exists N \in \mathbb{N} : \forall n > N, \forall x \in \mathbb{E} |f_n(x) - f(x)| < \frac{\varepsilon}{2}$. $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, $(\forall n, m > N, \forall x \in \mathbb{E})$.

• Достаточность:

Пусть выполняется условие Коши, тогда $\{f_n(x)\}$, удовлетворяет критерию Коши сходимости числовых последовательностей и следовательно сходящегося числового предела, который обозначим f(x).

Тогда перейдя к пределу при $m \to \infty$ получим $\forall n > N, \forall x \in \mathbb{E} : |f_n(x) - f(x)| < \varepsilon$.

Иногда полезен критерий, следующий из определения (2.2.1)

Теорема 2.2.2. Пусть $\lim_{x \to \infty} f_n(x) = f(x), \forall x \in \mathbb{E}.$

Положим $r_n = \sup |f_n(x) - f(x)|, x \in \mathbb{E} - pавномерное уклонение.$

Тогда $f_n \stackrel{\mathbb{L}}{\Longrightarrow} f \iff r_n \to 0, \ n \to \infty.$ (Переформулировка определения).

Доказательство. Без доказательства.

Пример 2.2.1.
$$f_n(x) = x^n, \mathbb{E} = [0, 1)$$

$$\lim_{n \to \infty} f_n(x) = 0, \forall \in \mathbb{E}, r_n = \sup_{x \in [0, 1)} |x^n - 0| = 1 \not\to 0, n \to \infty.$$

 $\{x^n\}$ не является равномерно сходящейся на \mathbb{E} .

Пример 2.2.2.
$$f_n(x) = x^n - x^{n+1}$$
, $\mathbb{E} = [0, 1]$.

In passe p 2.2.2.
$$f_n(x) = x - x$$
 , $\mathbb{E} = [0, 1]$. $f_n(x) \to 0, \forall x \in \mathbb{E}, \ f'_n(x) = nx^{n-1} - (n+1)x^n = 0.$ $x_n = \frac{n}{n+1}, \ f_n(x_n) = x_n^n(1-x_n) < \frac{1}{n+1}.$ $r_n < \frac{1}{n+1}.$

Определение 2.2.2.

$$\sum_{n=1}^{\infty} U_n(x), \ x \in \mathbb{E}$$
 (2.2.2)

называется равномерно сходящейся, если на множестве Е равномерно сходится последовательность частичных сумм.

Пусть $S_k(x)$ — частичные k-ые суммы ряда (2.2.2),

$$m \ge n : U_n(x) + \dots + U_m(x) = S_m(x) - S_n(x)$$

тогда из теоремы (2.2.1) (критерий Коши равномерной сходимости последовательности) \Rightarrow Теорема (2.2.3) (критерий Коши равномерной сходимости ряда).

Теорема 2.2.3 (Критерий Коши равномерной сходимости ряда). Для того, чтобы ряд (2.2.2) равномерно сходился на множестве $\mathbb{E} \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N}, \forall n, m > N, \forall x \in \mathbb{E}$:

$$|U_n(x) + \dots + U_m(x)| < \varepsilon \tag{2.2.3}$$

Доказательство. Без доказательства.

Следствие (Необходимый признак равномерной сходимости). У равномерно сходящегося ряда общий член равномерно стремится к нулю.

Теорема 2.2.4 (Признак Вейерштрасса). Пусть $\{U_n\}$ — последовательность функций, определенных на \mathbb{E} и пусть $|U_n(x)| \leq a_n, \forall x \in \mathbb{E}, \forall n \in \mathbb{N}$. Тогда если $\sum a_n < \infty$ сходится, то следовательно $\sum U_n(x)$ сходится равномерно на \mathbb{E} .

Доказательство. Если $\sum a_n$ сходится, то $\forall \varepsilon > 0$ $\left| \sum_{k=n}^m U_k(x) \right| \leq \sum_{k=n}^m a_k < \varepsilon$, при любом $x \in \mathbb{E}$, если только m и n достаточно велики, теорема (1.1.1) (критерий Коши сходимости числового ряда). Равномерная сходимость нашего ряда вытекает из теоремы (2.2.3).

Замечание 2.2.1. $\sum a_n$ называется мажорирующим рядом $\sum U_n(x)$.

Замечание 2.2.2. Условия признака Вейерштрасса не являются необходимыми для равномерной сходимости ряда.

§ 2.3. Признаки равномерной сходимости рядов Дирихле и Абеля

Теорема 2.3.1. Пусть дан ряд

$$\sum_{n=1}^{\infty} a_n(x)b_n(x), \ x \in \mathbb{E}$$
 (2.3.1)

такой что:

- 1. $a_n(x) \in \mathbb{R}, \ b_n(x) \in \mathbb{C}, \ n = 1, 2, ...$
- 2. $a_n(x) \stackrel{\mathbb{E}}{\rightrightarrows} 0$ (Равномерная сходимость к нулю), $\{a_n(x)\}$ монотонна.
- 3. Последовательность частичных сумм $\{B_n(x)\}$ ряда $\sum b_n(x)$ ограничена на множестве \mathbb{E} .

Тогда ряд (2.3.1) равномерно сходится на множестве \mathbb{E} .

Доказательство. В силу условия 3, $\exists B>0: |B_n(x)|\leq B, \ \forall x\in\mathbb{E}, \ \forall n\in\mathbb{N}.$ $\forall x\in\mathbb{E}, m\geq n\geq 2: |b_n(x)+\cdots+b_m(x)|=|B_m(x)-B_{n-1}(x)|\leq 2B.$ $\forall \varepsilon>0$ из условия $2\Rightarrow\exists N=N(\varepsilon): n>N(\varepsilon), \forall x\in\mathbb{E}$ выполняется неравенство:

$$0 \le |a_n(x)| < \frac{\varepsilon}{6R}.$$

Примениев лемму Абеля (1.6), получим:

$$|a_n(x)b_n(x) + \dots + a_m(x)b_m(x)| \le 2B(|a_n(x) + 2a_m(x)|) < \varepsilon$$
$$\forall x \in \mathbb{E}, m \ge n \ge N(\varepsilon)$$

В силу критерия Коши (2.2.3), ряд (2.3.1) сходится равномерно.

Теорема 2.3.2 (Признак Абеля).

$$\sum_{n=1}^{\infty} a_n(x)b_n(x) \tag{2.3.2}$$

- 1. Echu $a_n(x) \in \mathbb{R}, b_n(x) \in \mathbb{C}, n = 1, 2, \dots, x \in \mathbb{E}.$
- 2. $\{a_n(x)\}$ ограничена на множестве \mathbb{E} и монотонна $\forall x \in \mathbb{E}$.
- 3. Ряд $\sum b_n(x)$ равномерно сходится на \mathbb{E} .

Тогда ряд (2.3.2) равномерно сходится.

Доказательство. Доказательство легко провести так, как была доказана теорема (1.7.1). \square

Пример 2.3.1. $\sum_{n=1}^{\infty} \frac{c_n}{n^x}$ — ряд Дирихле.

Если этот ряд сходится в точке x_0 , то он сходится равномерно $\forall x \in \mathbb{E}, \mathbb{E} = [x_0, +\infty)$. Можно воспользоваться Признаком Абеля:

$$a_n(x) = \frac{1}{n^{x-x_0}}, \ b_n = \frac{c_n}{n^{x_0}}$$

 $Упражнение\ 1.$ Рассмотреть и доказать абсолютную сходимость при $x>x_0+1$

§ 2.4. Равномерная сходимость и непрерывность

Теорема 2.4.1. Пусть $f_n \stackrel{\mathbb{E}}{\Longrightarrow} f$, $x_0 - npe$ дельная точка множества \mathbb{E} и пусть $\lim_{x \to x_0} f_n(x) = A_n$, (n = 1, 2, ...). Тогда $\{A_n\}$ сходится и

$$\lim_{x \to x_0} f(x) = \lim_{n \to \infty} A_n \tag{2.4.1}$$

Иными словами, 2 предельных перехода в данном случае коммутируют.

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x)$$

Доказательство. Пусть $\varepsilon > 0$. В силу равномерной сходимости последовательности $\{f_n\} \exists N : n > N, m > N, x \in \mathbb{E},$

$$|f_n(x) - f_m(x)| < \varepsilon \tag{2.4.2}$$

Переходя в неравенстве (2.4.2) к приделу при $x \to x_0$ получим

$$|A_n - A_m| < \varepsilon, \ (n, m > N) \tag{2.4.3}$$

Поэтому $\{A_n\}$ — последовательность для которой выполняется признак Коши сходимости последовательности \Rightarrow она сходится.

Обазначим ее предел A

$$|f(x) - A| \le |f(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A| \tag{2.4.4}$$

Выберем n:

$$|f(x) - f_n(x)| < \frac{\varepsilon}{3}, \ \forall x \in \mathbb{E}$$
 (2.4.5)

Это возможно в силу равномерной сходимости.

$$|A_n - A| < \frac{\varepsilon}{3} \tag{2.4.6}$$

Затем, для этого n подберем такую окрестность $U(x_0): x \in U(x_0), x \neq x_0$, следовательно:

$$|f_n(x) - A_n| < \frac{\varepsilon}{3} \tag{2.4.7}$$

Из неравенств (2.4.4) - (2.4.7) получим

$$|f(x) - A| < \varepsilon, \ \forall x \in U(x_0), \ x \neq x_0$$

Это равносильно равенству (2.4.1)

Теорема 2.4.2. Последовательность функций, непрерывных в точке $x \in \mathbb{E} f_n \stackrel{\mathbb{E}}{\Rightarrow} f$, то функция f непрерывна в точке x_0 .

Доказательство. Без доказательства.

Замечание 2.4.1. Обратное не верно, то есть последовательность непрерывных функций может неравномерно сходиться.

Из теоремы (2.4.2) и определения $(2.2.2) \Rightarrow$ теорема (2.4.3)

Теорема 2.4.3. Если функции $U_n(x)$, (n = 1, 2, ...), $x \in \mathbb{E}$ непрерывны в точке $x_0 \in \mathbb{E}$ и ряд $\sum_{n=1}^{\infty} U_n(x)$ равномерно сходится на \mathbb{E} , то его сумма f(x) также непрерывна в точке x_0 .

§ 2.5. Равномерная сходимость и интегрирование

Теорема 2.5.1. Пусть f_n — последовательность действительных, значимых, интегрируемых на отрезке [a,b] функций. Тогда функция f также интегрируема на [a,b] u

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x)dx$$
 (2.5.1)

Существование предела заранее не предполагается.

Доказательство. $\forall \varepsilon > 0, \exists n :$

$$|f_n(x) - f(x)| < \varepsilon, \ x \in [a, b] \tag{2.5.2}$$

Зафиксируем n и выберем разбиение $[a,b],\ \triangle_1,\ldots,\triangle_S$ так, чтобы выполнялось неравенство

$$\sum_{i} \omega(f_n, \Delta_i) |\Delta_i| < \varepsilon \tag{2.5.3}$$

Комментарий. $\omega(f, E) = \sup -\inf$ — колебание функции.

Функции f_n интегрируемы на [a,b]. По скольку $\omega(f, \triangle_i) \leq \omega(f_n, \triangle_i) + 2\varepsilon$, (i = 1, ..., S) (смотри (2.5.2)).

$$\sum_{i} \omega(f, \triangle_{i}) |\triangle_{i}| \le \varepsilon + 2\varepsilon(b - a)$$

Отсюда следует, что $f \in \mathbb{R}[a,b]$. Для доказательства (2.5.1) выберем n > N:

$$|f_n(x) - f(x)| < \varepsilon, \ (a \le x \le b), \ n > N$$

$$\left| \int_a^b f(x)dx - \int_a^b f_n(x)dx \right| \le \int_a^b |f(x) - f_n(x)|dx < \varepsilon(b - a)$$

Отсюда вытекает (2.5.1).

Теорема 2.5.2. $U_n \in R[a,b]$ (Интегрируема). Если

$$f(x) = \sum_{n=1}^{\infty} U_n(x), \ (a \le x \le b)$$
 (2.5.4)

 Πpu чем psd (2.5.4) cxodumcs на [a,b], morda

$$\int_{a}^{b} f(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} f(x)dx$$

Иными словами ряд (2.5.4) можно интегрировать частями.

Доказательство. Без доказательства.

Замечание 2.5.1. При нарушении равномерности ряд, состоящий из интегрируемых функций может иметь интегрируемую сумму.

§ 2.6. Равномерная сходимость и дифференцирование

 $f_n(x) = \frac{\sin nx}{\sqrt{n}}, x \in \mathbb{R}$ показывает, что из равномерной сходимости последовательности функций не следует даже поточечная сходимость последовательностей функций производных.

То есть нужны более сильные предположения, чтобы заключать, что $f'_n \to f_n$, при $f_n \to f$.

Теорема 2.6.1. Пусть $f_n(x) \to f(x)$, $x \in [a,b]$, $n \to \infty$, $f_n \in C[a,b]$, (n = 1, 2, ...). Если $\{f'_n(x)\}$ сходится равномерно на [a,b], то $f_n(x)$ дифференцируема u

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

Доказательство. Обозначим через f^* предел последовательности f'_n . Ввиду теоремы (2.4.2) f^* непрерывна на [a,b].

Применим теорему (2.5.1) к последовательости $\{f_n\}$ на промежутке [a,x], где $x \in [a,b]$

$$\int_{a}^{x} f^{*}(t)dt = \lim_{a \to \infty} \int_{a}^{x} f'(t)dt = \lim_{a \to \infty} (f_{n}(x) - f_{n}(a)) = f(x) - f(a)$$

Так как интеграл слева ввиду непрерывности функции f^* имеет производную равную f', то ту же производную имеет и f(x).

$$f'(x) = f^*(x) = \lim_{n \to \infty} f'(x), x \in [a, b]$$

Перефразируем теорему (2.6.1) с точки зрения рядов:

Пусть сходящийся ряд $\sum_{n=1}^{\infty} U_n(x) =: f(x), x \in [a,b]$ и пусть $U_n(x) \in C^1[a,b], (n=1,2,\dots)$.

Если ряд $\sum_{n=1}^{\infty} U_n'(x)$ сходится равномерно на [a,b], то сумма f(x) дифференцируема, и $f'(x) = \sum_{n=1}^{\infty} U_n'(x), x \in [a,b].$

Глава 3

Степенные ряды

§ 3.1. Радиус сходимости и круг сходимости

Определение 3.1.1. Степенной ряд — ряд вида

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n, \ z, z_0 \in \mathbb{C}, n = 0, 1, \dots$$
(3.1.1)

 a_n — коэффициенты ряда.

 $\xi = z - z_0$, тогда $\sum_{n=0}^{\infty} a_n \xi^n$,

$$\sum_{n=0}^{\infty} a_n z^n \tag{3.1.2}$$

Теорема 3.1.1. Степенной ряд (3.1.2), $\alpha = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}$

$$R = \frac{1}{\alpha} \tag{3.1.3}$$

 $(\alpha=0\Longleftrightarrow R=\infty,\ \alpha=+\infty\Longleftrightarrow, R=0),\ mor да\ pяд\ (3.1.2)$ абсолютно сходится, если $|z|< R,\ u\ paccxoдumcs,\ ecлu\ |z|> R.$

Доказательство. Положим $C_n = a_n z^n$. По критерию Коши заключаем, что сумма $\sum C_n$ сходится при $\overline{\lim_{n \to \infty}} \sqrt[n]{|C_n|} = |z| \cdot \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} = \frac{|z|}{R} < 1$, то есть |z| < R; и рассходится, если |z| > R.

Определение 3.1.2. Число R называется радиусом сходимости ряда (3.1.2). $|z| < R, z \in \mathbb{C}$ называется кругом сходимости ряда (3.1.2).

Следствие (1-ая т. Абеля). Если степенной ряд сходится при $z \neq 0$, то он абсолютно сходится при любом |z| < |z*|.

Замечание 3.1.1. О сходимости на границе окружности |z| = R ничего не говорится в теореме (3.1.1), так как возможны все варианты.

Теорема 3.1.2. Если R — радиус сходимости (R > 0) ряда (3.1.2), то на любом круге |z| < r, где r — фиксированно, и r < R.

Этот ряд сходится абсолютно и равномерно.

Доказательство. При z=r по теореме (3.1.1) ряд (3.1.2) сходится абсолютно, то есть $\sum_{n=0}^{\infty} |a_n| r^n$ сходится, а так как для любой точки z круга $|z| \le r$ выполняется неравенство:

$$|a_n z^n| \le |a_n| r^n, \ \forall n$$

то по признаку Вейерштрассе на этом круге ряд (3.1.2) сходится равномерно.

Следствие. Степеной ряд непрерывный в каждой точке своего круга |z| < R сходится.

Теорема 3.1.3 (2-ая т. Абеля). Если R - paduyc сходимости, $\sum_{n=0}^{\infty} a_n z^n$ и этот ряд сходится npu |z| = R, то он сходится на отрезке [0, R] равномерно.

Доказательство. Пусть $0 \le x \le R$, представим ряд $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x}{R}\right)^n$. По скольку члены ряда $\sum a_n R^n$ не зависит от x, то его сходимость означает его равномерную сходимость. $\left\{\left(\frac{x}{R}\right)^n\right\}$ ограничена на отрезке [0,R] и монотонна в каждой точке.

Поэтому в силу признака Абеля равномерной сходимости рядов (2.3.2) ряд (3.1.2) равномерно сходится на отрезке [0, R].

Лемма 3.1.1. Радиусы сходимости R, R_1, R_2 соответственно рядов $\sum_{n=0}^{\infty} a_n z^n, \sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1},$ $\sum_{n=0}^{\infty} n a_n z^{n-1}$ равны: $R = R_1 = R_2$.

$$\mathcal{A}$$
оказательство. Действительно, так как $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n+1}} = \lim_{n\to\infty} \sqrt[n]{n} = 1$, то
$$\overline{\lim_{n\to\infty}} \sqrt[n]{|a_n|} = \overline{\lim_{n\to\infty}} \sqrt[n]{|a_n|} = \overline{\lim_{n\to\infty}} \sqrt[n]{|na_n|}.$$

Пример 3.1.1. $\sum a_n(z-z_0)^n$. Областью сходимости такого ряда является круг $|z-z_0| < R$, с точностью до граничных точек.

§ 3.2. Степенные ряды в действительной области. Общие свойства.

В параграфах 3.2 - 3.4 будем рассматривать

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n, \tag{3.2.1}$$

где a_n, x, x_0 — действительные числа.

Если R — радиус сходимости ряда ряда (3.2.1), то очевидно ряд (3.2.1) сходится, если |x| < R и расходится, если |x| > R.

Число R — по-прежнему называется радиусом сходимости ряда (3.2.1), а интервал (x_0-R,x_0+R) — его интервал сходимости.

Теорема 3.2.1. Если R — радиус сходимости ряда

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n,$$
 (3.2.2)

 $\epsilon \partial e R > 0$, то:

1. функция f имеет в интервале $(x_0 - R, x_0 + R)$ производные всех порядков, они называются почленным дифферинциалом ряда (3.2.2):

$$f^{(m)}(x) = \sum_{n=m}^{\infty} n(n-1)\dots(n-m+1)a_n(x-x_0)^{n-m}, \ m=1,2,\dots$$
 (3.2.3)

2. $\forall x \in (x_0 - R, x_0 + R)$

$$\int_{x_0}^{x} f(t)dt = \sum_{n=0}^{\infty} a_n \frac{(x-x_0)^{n+1}}{n+1}$$
 (3.2.4)

 $3. \ (3.2.2)$ - (3.2.4) имеют одинаковые радиусы сходимости R.

Доказательство. В силу леммы (3.1.1) ряды (3.2.3), (3.2.4) имеют тот же радиус сходимости, что и ряд (3.2.2). Всякий ряд с R > 0 сходится на отрезке $[x_0 - r, x_0 + r]$, 0 < r < R (теорема (3.1.2)).

Поэтому утверждения 1 и 2 непосредственно следуют из общих теорем о сходимости рядов ((1.6) и (1.7.2)).

Теорема 3.2.2. Если функция f раскладывается в некоторой окрестности точки x_0 в степенной ряд:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

mo

$$a_n = \frac{f^{(n)}(x_0)}{n!}, \ n = 0, 1, \dots$$
 (3.2.5)

и следовательно справедливо:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$
 (3.2.6)

Следствие. Если в некоторой окрестности точки функция раскладывается в степенной ряд, то это разложение единственно.

Доказательство. Продифференцировав m раз равенство (3.2.2), получим (в силу (3.2.3)):

$$f^{(m)}(x) = m(m-1)\dots 2\cdot 1\cdot a_m + (m+1)m\dots a_{m-1}(x-x_0) + (m+2)(m+1)\dots 3\cdot a_{m-2}(x-x_0)^2\dots$$

Положим $x = x_0$, тогда получаем:

$$f^{(m)}(x_0) = m! \ a_m, \ m = 0, 1, \dots$$

§ 3.3. Ряд Тейлора. Разложение функции в степенные ряды.

Определение 3.3.1. Пусть f определена в некоторой окрестности точки x_0 и имеет в этой точке производные всех порядков, тогда ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \tag{3.3.1}$$

Называется рядом Тейлора функции f в точке x_0 .

Следующий пример показывает, что функция, бесконечно дифференцируемая в одной точке может быть не равна разложению по Тейлору в окрестности этой точки.

Пример 3.3.1.

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$f^{(n)}(0) = 0, n = 0, 1, \dots$$

Отсюда следует, что все члены ряда Тейлора (3.2.2) в точке $x_0 = 0$, и не совпадают с функцией f(x) в никакой окрестности точки x_0 .

Утверждение 3.3.1. Пусть функция f(x) определена в некоторой окрестности $(x_0 - h, x_0 + h).$

$$S_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
(3.3.2)

$$r_n(x) = f(x) - S_n(x)$$
 (3.3.3)

Тогда, для того, чтобы функция f(x) на интервале $(x_0 - h, x_0 + h)$ равна сумме своего ряда (3.1.1), то есть:

$$(S_n(x) \to f(x), \ n \to \infty) \Longleftrightarrow \lim_{n \to \infty} r_n(x) = 0, \ \forall x \in (x_0 - h, x_0 + h)$$
 (3.3.4)

Теорема 3.3.1. Пусть функция f и все ее производные ограничены в совокупности на интервале $(x_0 - h, x_0 + h)$, то есть существует такая M = const, M > 0: $\forall x \in (x_0 - h, x_0 + h), \ n = 0, 1, \ldots, \ выполняется неравенство:$

$$|f^{(n)}(x)| \le M \tag{3.3.5}$$

Тогда на интервале $(x_0 - h, x_0 + h)$ функция f раскладывается в ряд Тейлора:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n,$$
(3.3.6)

 $e \partial e |x - x_0| < h.$

Доказательство.

$$\forall a: \lim_{n \to \infty} \frac{a^n}{n!} = 0 \tag{3.3.7}$$

По формуле Тейлора с остаточным членом в форме Лагранжа, для $x \in (x_0 - h, x_0 + h)$, для $\forall M$ имеем:

$$f(x) = S_n(x) + r_n(x),$$

где $r_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$, где $\xi=x_0+\theta(x-x_0)$, где $0<\theta<1$. Используя (3.3.5) получим:

$$|r_n(x)| = \frac{|f^{(n+1)}(\xi)(x - x_0)^{n+1}|}{(n+1)!} \le \frac{M|x - x_0|^{n+1}}{(n+1)!}, \ \forall x \in (x_0 - h, x_0 + h).$$

Остюда из (3.3.7) следует (3.3.4). Согласно утверждению (3.3.1) теорема доказана.

§ 3.4. Разложение основных элементарных в ряд Тейлора.

• Разложение в ряд функции e^x , $\cos x$, $\sin x$. Использую теорему (3.3.1), получаем:

$$f^{(n)}(x) = e^x$$
, $\sin(x + \frac{\pi}{2}n)$, $\cos(x + \frac{\pi}{2}n)$, $n = 0, 1, \dots$

Так что
$$|f^{(n)}(x)| \le e^h$$
, $f(x) = e^x$, $|x| \le h$
 $|f^{(n)}(x)| \le 1$, $f(x) = \sin x$, $\cos x$, $\forall x \in \mathbb{R}$

Так как коэффициенты Тейлора для этих функций известны, то мы можем записать разложение при любом x:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (3.4.1)

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 (3.4.2)

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \tag{3.4.3}$$

• Разложение в ряд функции $\operatorname{sh} x$, $\operatorname{ch} x$. Заменив в (3.4.1) x на -x получим

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$$
 (3.4.4)

Отсюда из (3.4.1) получаем:

$$\operatorname{sh} x = \frac{1}{2} \left(e^x - e^{-x} \right) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$
 (3.4.5)

$$\operatorname{ch} x = \frac{1}{2} \left(e^x + e^{-x} \right) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$
 (3.4.6)

В правых частях этих формул разложения степенных функций в ряды единственно в силу теоремы (3.2).

• Разложение в ряд функции ln(1+x). Рассмотрим:

$$\frac{1}{1+t} = 1 - t + t^2 - t^3 + \dots + (-1)^n t^n + \dots, |t| < 1$$
(3.4.7)

Интегрирую его почленно по теореме (3.2.1) от 0 до $x \in (-1,1)$ получим:

$$\int_{0}^{x} \frac{dt}{1+t} = \ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots,$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}, \ \forall x \in (-1,1)$$

Ряд правой части равенства (3.4) сходится по признаку Лейбница \Rightarrow согласно теореме Абеля (3.1.3), разложение (3.4) имеет место в промежутке (-1,1]

• Разложение в ряд $(1+x)^{\alpha}, \alpha \neq 0, 1, \dots$ Формула Тейлора для этой функции имеет вид:

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + r_n(x)$$
 (3.4.8)

Соответствующий степенной ряд называют

$$1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} x^n$$
(3.4.9)

биномиальным рядом.
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n+1}{\alpha - n} \right| = 1$$
, в силу утверждения, $r_n(x) \to 0$.

3амечание 3.4.1. Поведение ряда (3.4.9) в точках ± 1 , характерезуется следующей таблицой:

Таблица 3.1: таблица, характеризующая ряд (3.4.9)

	$\alpha > 0$	абсолютно сходится
x = 1	$-1 < \alpha < 0$	условно сходится
	$\alpha \leq -1$	расходится
x = -1	$\alpha > 0$	абсолютно сходится
	$\alpha < 0$	рассходится

Согласно второй теореме Абеля (3.1.3) всякий раз, когда ряд (3.4.9) сходится при $x=\pm 1$, его сумма равна $(1+x)^{\alpha}$.

• Разложение в ряд $\arctan x$ Рассмотрим ряд:

$$\frac{1}{1+t^2} = 1 - t^2 + t^4 - t^6 + \dots + (-1)^n t^{2n} + \dots, |t| < 1$$
 (3.4.10)

Интегрирую его почленно по теореме (3.2.1) от 0 до $x \in (-1,1)$ получим:

$$\int_{0}^{x} \frac{dt}{1+t^{2}} = \operatorname{arctg} x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)} + \dots$$

Ряд правой части равенства (3.4) сходится по признаку Лейбница \Rightarrow согласно теореме Абеля (3.1.3), разложение (3.4) имеет место на отрезке (-1,1). В частности, при x=1, получим:

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

• Разложение в ряд $\arcsin x$ Рассмотрим ряд:

$$\frac{1}{\sqrt{1-t^2}} = 1 + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} t^{2n}, \ |t| < 1$$
 (3.4.11)

Интегрирую его почленно по теореме (3.2.1) от 0 до $x \in (-1,1)$ получим:

$$\int_{0}^{x} \frac{dt}{\sqrt{1-t^2}} = \arcsin x = x + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}, \ |x| \le 1$$

Справедливость этого разложения при $x=\pm 1$ устанавливается с помощью второй теоремы Абеля (3.1.3).

§ 3.5. Формулы Эйлера

Ряды разложения (3.4.1) - (3.4.3) функций e^x , $\sin x$, $\cos x$ сходятся всюду в комплексной плоскости \mathbb{C} . По этой причине естественны следующие определения(e^z , $\sin z$, $\cos z$, $z \in \mathbb{C}$):

$$e^z = \exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 (3.5.1)

$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$
 (3.5.2)

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} \tag{3.5.3}$$

Заменив z сначала на iz, а затем на -iz получим:

$$e^{iz} = \sum_{n=0}^{\infty} \frac{i^n z^n}{n!}$$
 (3.5.4)

$$e^{-iz} = \sum_{n=0}^{\infty} \frac{(-1)^n i^n z^n}{n!}$$
 (3.5.5)

Заметим, что $i^{2k}=(-1)^k, i^{2k+1}=(-1)^k i, k=0,1,\ldots$

$$\frac{1}{2}(e^{iz} + e^{-iz}) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$
$$\frac{1}{2i}(e^{iz} - e^{-iz}) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

Сравнив эти формулы с (3.5.2), (3.5.3) заключаем, что

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \tag{3.5.6}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} \tag{3.5.7}$$

Из этих формул следует формула:

$$\cos z + i\sin z = e^{iz} \tag{3.5.8}$$

Формулы (3.5.6), (3.5.7) и (3.5.8) называются формулами Эйлера. Если в формуле (3.5.8) $z=\varphi,\ \varphi\in\mathbb{R},$ то

$$\cos\varphi + i\sin\varphi = e^{i\varphi}$$

Поэтому $z \in \mathbb{C}, |z| = r, z = r(\cos \varphi + i \sin \varphi)$

$$z = re^{i\varphi}$$

Определение 3.5.1. $W(x)=U(x)+iV(x),\ x\in\mathbb{R}, V(x)\in\mathbb{R}$ Положим $\frac{dW}{dx}=U'(x)+iV'(x),$ тогда

$$\int_{a}^{b} W(x)dx = \int_{a}^{b} U(x)dx + i \int_{a}^{b} V(x)dx$$

Глава 4

Ряды Фурье

§ 4.1. Ортогональные системы

В параграфах (4.1) - (4.3) \mathbb{X} — линейное бесконечномерное пространство(действительное или комплексное, со скалярным произведением).

$$X(\cdot, \cdot), ||x|| = \sqrt{(x, x)}.$$

 \mathbb{K} — некоторое счетное или конечное множество.

Определение 4.1.1. Система векторов $\{x_k : k \in \mathbb{K}\}, x \in \mathbb{X}$ — ортогональная система(ОС). $(x_i, x_j) = 0, \forall i, j \in \mathbb{K}, i \neq j$ (и система не нулевая). Если $(x_i, x_i) = 1$, то система называется ортонормированной.

Теорема 4.1.1. Ортогональная система векторов линейно независима, то есть линейно не зависима каждая ее конечная подсистема.

Доказательство. Определение линейной независимости:

$$\alpha_1 x_1 + \dots + \alpha_i x_i + \dots = 0 \iff \alpha_i = 0, \ \forall i$$

Скалярно умножим все члены на x_i , тогда получим:

$$\alpha_1(x_1, x_i) + \dots + \alpha_i(x_i, x_i) + \dots = (0, x_i)$$
$$\alpha_i(x_i, x_i) = 0$$
$$\alpha_i = 0$$

Равенство (4.1) следует из определения (4.1.1), равенство (4.1) следует из того, что $(x_i, x_i) \neq 0$ (так как система не нулевая).

§ 4.2. Коэффициенты Фурье

Определение 4.2.1. Пусть $\{e_k: k \in \mathbb{K}\}$ — ОНС в \mathbb{X} , $\{(x, e_k)\}$, $x \in \mathbb{X}$ называется коэффициентами Фурье элемента x в ОНС e_k .

Лемма 4.2.1. Если система векторов e_1, \ldots, e_n пространства $\mathbb{X} - OH$, то $\forall x \in \mathbb{X}$ вектор $h = x - x_e$, где

$$x_e = \sum_{k=1}^{n} (x, e_k)e_k \tag{4.2.1}$$

ортоганален подпространству $\mathbb{L}=\langle e_1,\ldots,e_n\rangle$ (натянотому на векторы e_1,\ldots,e_n)

Доказательство. Достаточно проверить, что скалярное произведение $(h,e_j)=0, \ \forall j=1,\ldots,n$

$$(h, e_j) = (x, e_j) - \sum_{k=1}^{n} (x, e_k)(e_k, e_j) = (x, e_j) - (x, e_j) = 0$$

Лемма 4.2.2 (теорема Пифагора). Если векторы x_1, \ldots, x_n попарно ортогональны $u \ x = x_1 + \cdots + x_n$, то $||x||^2 = ||x_1||^2 + \cdots + ||x_n||^2$

Доказательство.
$$(x,x) = (\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i) = \sum_{i,j=1}^{n} (x_i, x_j) = \sum_{i=1}^{n} (x_i, x_i)$$

Теорема 4.2.1 (экстремальное свойство коэффициентов Фурье). Если $e_1, \ldots, e_n - OHC$ пространства \mathbb{X} , то $\forall x \in \mathbb{X} \ u \ \forall y = \alpha_1 e_1 + \cdots + \alpha_n e_n$ имеет место неравенство:

$$||x - \sum_{k=1}^{n} (x, e_k)e_k|| \le ||x - \sum_{k=1}^{n} \alpha_k e_k||,$$

в котором равенство возможно при условии: $\alpha_k = (x, e_k) \ \forall k = 1, \dots, n$.

Доказательство. Представим x-y в виде $x-y=(x_e-y)+h$, где x_e,h определены в лемме (4.2.1).

По лемме (4.2.1) $h \perp (x_e - y) \in \mathbb{L}$. По теореме Пифагора (лемма 4.2.2):

$$||x - y||^2 = ||x_e - y||^2 + ||h||^2 = ||x_e - y||^2 + ||x - x_e||^2 \ge ||x - x_e||^2$$

равенство возможно, когда коэффициенты α_k совпадают с коэффициентами Фурье.

Замечание 4.2.1. Теорема (4.2.1) показывает, что вектор x_e является наилучшей в смысле нормы пространства \mathbb{X} , аппроксимацией вектора x подпространства $\mathbb{L} = \langle e_1, \dots, e_n \rangle$, так что наименьшее уклонением вектора x от \mathbb{L} равно $||x - x_e||$.

Теорема 4.2.2 (неравенство Бесселя). Если $\{e_1, \ldots, e_n\} - OHC$ в \mathbb{X} , то $\forall x \in \mathbb{X}$ справедливо неравенство:

$$\sum_{k=1}^{n} |(x, e_k)|^2 \le ||x||^2 \tag{4.2.2}$$

 $Ecnu \{e_k : k \in \mathbb{K}\} - OHC, mo \forall x \in \mathbb{X}$

$$\sum |(x, e_k)|^2 \le ||x||^2 \tag{4.2.3}$$

Доказательство. По лемме (4.2.1)

$$x = \sum_{k=1}^{n} (x, e_k)e_k + h,$$

при чем система векторов e_1, \ldots, e_n, h — ортогональна в X по теореме Пифагора получаем:

$$||x||^2 = \sum_{k=1}^n |(x, e_k)|^2 + ||h||^2$$
(4.2.4)

остюда следует (4.2.2), (так как это имеет место для любой конечной системы векторов), отсюда следует (4.2.3).

Замечание 4.2.2. Из (4.2.4) следует формула наименьшего отклонения:

$$||x - x_e||^2 \equiv ||x - \sum_{k=1}^n (x, e_k)e_k||^2 = ||x||^2 - \sum_{k=1}^n |(x, e_k)|^2$$
(4.2.5)

Переформулируем понятие коэффициентов Фурье для произвольной ОС(не обязательно нормированной) $\{f_k\}$.

Для этого по этой системе построим ОНС.

 $\{e_k = \frac{f_k}{\|f_k\|}\}$, используем ортгональное разложение:

$$x = x_e + h, \ x = \sum_{k=1}^{n} (x, e_k)e_k + h = \sum_{k=1}^{n} \frac{(x, f_k)}{\|f_k\|^2} f_k + h$$

Определение 4.2.2. $\{e_k = \frac{(x,f_k)}{\|f_k\|^2}\}$ — называется коэффициентами Фурье вектора x в ОС $\{f_k\}$. Заменим в неравенстве (4.2.3), e_k на $\frac{f_k}{\|f_k\|}$ получим неравенство Бесселя для произвольной ОС.

$$\sum_{k \in \mathbb{K}} \frac{|(x, f_k)|^2}{\|f_k\|^2} \le \|x\|^2, \ \{f_k, k \in \mathbb{K}\}$$
(4.2.6)

Или, в других обозначения:

$$\sum_{k \in \mathbb{K}} |C_k|^2 ||f_k||^2 \le ||x||^2$$

Пример 4.2.1. В пространстве $\mathbb{X} = \mathcal{R}_2([-\pi, \pi], \mathbb{C}).$

Рассмотрим ОС $\{e^{ikt}: k \in \mathbb{Z}\}.$

В соответствии с определением (4.2.2) коэффициенты Фурье C_k функции f в системе $\{e_{ik}\}$ выражаются формулами:

$$C_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt}dt$$
 (4.2.7)

из неравенства Бесселя (4.2.6) $\forall f \in \mathcal{R}_2([-\pi,\pi],\mathbb{C})$

$$\sum_{k=-\infty}^{\infty} |C_k|^2 \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)|^2 dt \tag{4.2.8}$$

Пример 4.2.2. Аналогично находим коэффициенты Фурье.

 $\{\frac{1}{2}a_0, a_k, b_k : k \in \mathbb{N}\}$ функции $f \in \mathcal{R}([-\pi, \pi], \mathbb{C})$ в ОС $\{1, \cos kx, \sin kx : k \in \mathbb{N}\}$:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt dt, \ k = 0, 1, \dots$$
 (4.2.9)

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt dt, \ k = 1, 2, \dots$$
 (4.2.10)

по неравенству Бесселя все принимает вид:

$$\frac{|a_0|^2}{2} + \sum_{k=1}^{\infty} (|a_k|^2 + |b_k|^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} |f(t)|^2 dt$$
 (4.2.11)

3амечание 4.2.3. Сравнивая равенства (4.2.9), (4.2.10) и (4.2.7) с учетом формулы Эйлера получаем:

$$C_k = \begin{cases} \frac{1}{2}(a_k - ib_k), & k \ge 0\\ \frac{1}{2}(a_k + ib_{-k}), & k < 0 \end{cases}$$
 (4.2.12)

§ 4.3. Ряд Фурье

Определение 4.3.1. Если $\{f_1, \dots, f_k, \dots\}$ — ОС в \mathbb{X} , а $x \in \mathbb{X}$, то можно составить ряд:

$$x \sim \sum_{k=1}^{\infty} C_k f_k,$$

где $C_k = \frac{(x, f_k)}{\|f_k\|^2}$.

Этот ряд называется рядом Фурье вектора x по ОС $\{f_k\}$.

Ряд Фурье по ОНС $\{e_k\}$ имеет вид:

$$x \sim \sum_{k=1}^{\infty} (x, e_k) e_k$$

Определение 4.3.2. Говорят, что ряд $\sum_{k=1}^{\infty} y_k, y_k \in \mathbb{X}$ сходится в \mathbb{X} к вектору $x \in \mathbb{X}$ (сходится по норме($\|\cdot\|$) пространства \mathbb{X}), если

$$\lim_{n \to \infty} ||x - \sum_{k=1}^{n} y_k|| = 0$$

При этом пишем $x \stackrel{\mathbb{X}}{=} \sum_{k=1}^{\infty} y_k$ по норме пространства \mathbb{X} .

Теорема 4.3.1. $\{e_k : k \in \mathbb{N}\} - OHC \ e \ \mathbb{X}, x \in \mathbb{X}, \ edge$ $x \stackrel{\mathbb{X}}{=} \sum_{k=1}^{\infty} (x, e_k) e_k \iff \kappa o e \partial a \ \|x\|^2 = \sum_{k=1}^{\infty} |(x, e_k)|^2.$

Это равенство называется равенством Парсеваля и представляет собой обобщение теоремы Пифагора на случай бесконечномерного пространства.

Определение 4.3.3. Система $\{x_k : k \in \mathbb{K}\}$ векторов в пространстве \mathbb{X} называется полной в множестве $\mathbb{E} \subset \mathbb{X}$, если любой вектор $x \in E$ можно сколь угодно точно в смысле нормы пространства \mathbb{X} приблизить к конечной линейной комбинации векторов системы.

Теорема 4.3.2. Пусть $\{e_1, \ldots, e_n, \ldots\} - OHC$ в \mathbb{X} , тогда следующее условие эквивалентны:

- 1. $\{e_k\}$ полна в множестве $\mathbb{E} \subset \mathbb{X}$.
- 2. $\forall x \in \mathbb{E} \subset \mathbb{X}$ имеет место разложение (в ряд Фурье) $x \stackrel{\mathbb{X}}{=} \sum\limits_{k=1}^{\infty} (x, e_k) e_k$
- 3. $\forall x \in \mathbb{E} \subset \mathbb{X}$ имеет место равенство Парсеваля: $||x||^2 = \sum_{k=1}^{\infty} |(x, e_k)|^2$.

 $\ensuremath{\mathcal{A}\xspace}$ оказательство. Из $1\Rightarrow 2$ в силу экстремального свойства коэффициентов Фурье.

Из $2 \Rightarrow 3$ по теореме (4.3.1)

Из $3 \Rightarrow 1$, по скольку по формуле уклонений

$$||x - \sum_{k=1}^{n} (x, e_k)||^2 = ||x||^2 - \sum_{k=1}^{n} |(x, e_k)|^2 \to 0$$
, при $n \to \infty$

§ 4.4. Тригонометрический ряд Фурье

$$\mathbb{X} = \mathbb{R}_{2}([-\pi, \pi], \mathbb{C}), e_{k} = \{e^{ikx} : k \in \mathbb{Z}\}, f \in \mathbb{R}([-\pi, \pi], \mathbb{C})$$

$$C_{k}(f) = C_{k} = \frac{1}{2} \int_{0}^{\pi} f(x)e^{-ikx}dx$$
(4.4.1)

Сопоставим функцию

$$f(x) \sim \sum_{k=-\infty}^{+\infty} C_k e^{ikx} \tag{4.4.2}$$

Определение 4.4.1. Если нам дан тригонометрический ряд Фурье в комплексной записи, то его n-ая частная сумма равна:

$$S_n(x) = S_n(f, x) = \sum_{k=-n}^{n} C_k e^{ikx}$$
(4.4.3)

Определение 4.4.2. Ряд Фурье функции $f \in \mathbb{R}([-\pi,\pi],\mathbb{C})$ по системе $\{1,\cos kx,\sin kx: k \in \mathbb{N}\}$ называется тригонометрическим рядом Фурье и записывается следующим образом:

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$
 (4.4.4)

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx, \ k = 0, 1, \dots$$
 (4.4.5)

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx, \ k = 1, 2, \dots$$
 (4.4.6)

Если функция f — действительная, то $a_k,b_k\in\mathbb{R}$ и $\underline{C_k}=\overline{C_k}$ $(k=0,1,\dots).$

Определение 4.4.3. Тригонометрические многочлены $D_n(x) = \sum_{k=-n}^n e^{ikx}, K_n(x) = \frac{1}{n+1} \sum_{m=0}^n D_m(x)$ называются соответственно ядром Дирихле и ядром Фейера.

$$a_1, \dots, a_n \to a$$
, при $n \to \infty$ $\frac{a_1 + \dots + a_n}{n} \to a$, при $n \to \infty$

а обратное не верно.

$$D_n(x) = \sum_{k=-n}^{n} e^{ikx}$$
 (4.4.7)

$$K_n(x) = \frac{1}{n+1} \sum_{m=0}^{n} D_m(x)$$
(4.4.8)

Теорема 4.4.1. При n = 0, 1, ... имеем:

$$D_n(x) = \frac{\sin((n + \frac{1}{2})x)}{\sin\frac{x}{2}}$$
 (4.4.9)

$$K_n(x) = \frac{1}{n+1} \frac{1 - \cos((n+1)x)}{1 - \cos x}$$
(4.4.10)

$$\frac{1}{\pi} \int_{-\pi}^{\pi} D_n(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(x) dx = 1$$
 (4.4.11)

кроме того,

$$K_n(x) \ge 0, K_n(x) \le \frac{2}{(n+1)(1-\cos\delta)}, \, \epsilon \partial e \, 0 < \delta \le |x| \le \pi$$
 (4.4.12)

Доказательство. Согласно (4.4.7)

$$D_n(x) = \frac{e^{i(n+1)x} - e^{-inx}}{e^{ix} - 1}$$
(4.4.13)

чтобы получить (4.4.9) домножим здесь числитель и знаменатель на $e^{-ix/2}$. Подставим (4.4.13), в определение ядра $K_n(x)$, получим:

$$K_n(x) = \frac{1}{n+1} \cdot \frac{e^{-ix} - 1}{(e^{-ix} - 1)(e^{ix} - 1)} \sum_{m=0}^{n} (e^{i(m+1)x} - e^{-imx}) = \frac{1}{n+1} \cdot \frac{1}{2 - (e^{ix} + e^{-ix})} \sum_{m=0}^{n} [(e^{imx} + e^{-imx}) - (e^{i(m+1)x} + e^{-i(m+1)x})] = \frac{1}{n+1} \cdot \frac{1}{2 - 2\cos x} (2 - (e^{i(m+1)x} + e^{-i(m+1)x}))$$

откуда следует (4.4.10).

Значит $K_n(x) \ge 0$ и выполняется (4.4.12). А (4.4.11) непосредственно следует из (4.4.7). \square

Далее предпологаем, что функция f, изначально определенная на $[-\pi,\pi]$, продолжена на \mathbb{R} как 2π -периодическая функция.

Если $f \in C[-\pi, \pi]$, то ее 2π -периодическое продолжение непрерывно на \mathbb{R}

$$(f \in C_{2\pi}) \iff f(-\pi) = f(\pi)$$

Лемма 4.4.1 (интегральное представление частичной суммы ряда Фурье).

$$\forall x \in \mathbb{R}: \ S_n(f, x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) D_n(t) dt$$
 (4.4.14)

Доказательство. Пусть S_n — частичная сумма, тогда:

$$S_n(f,x) = \sum_{k=-n}^n C_k e^{ikx} = \sum_{k=-n}^n \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u) e^{-iku} du \cdot e^{ikx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u) \sum_{k=-n}^n e^{ik(x-u)} du = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u) D_n(x-u) du = \frac{1}{2\pi} \int_{x-\pi}^{x+\pi} f(x-t) D_n(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) D_n(t) dt$$

Комментарий. Использовалась замена: x - u = t.

Отметим, что последнее равенство выполняется, поскольку в следствии периодичности функции безразлично по какому инетрвалу интегрировать, лишь бы его длина была равна 2π .

Определение 4.4.4. Средние арифмитические частичных сумм:

$$S_n(f,x), \delta_n(f,x) = \delta_n(x) = \frac{S_0(x) + \dots + S_n(x)}{n+1}$$
 (4.4.15)

Называются полиномами Фейера.

Теорема 4.4.2 (теорема Фейера). Если функция $f \in C_{2\pi}$, то

$$\delta_n(x) \stackrel{\mathbb{R}}{\Rightarrow} f(x)$$
 (4.4.16)

Доказательство. Согласно формулам (4.4.15), (4.4.14) и (4.4.7) имеем:

$$\delta_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) K_n(t) dt$$
 (4.4.17)

поэтому из (4.4.11) следует, что:

$$f(x) - \delta_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - f(x - t)) K_n(t) dt$$
 (4.4.18)

 $\varepsilon>0,\ M=\max|f(x)|,\ x\in\mathbb{R}.$ Поскольку функция f — равномерно непрерывна, то найдется такое $\delta>0,$ что:

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}$$
 (4.4.19)

Согласно (4.4.12) можно затем выбрать такое $N = N(\varepsilon, \delta)$, что

$$n > N, \delta \le |t| \le \pi \Rightarrow K_n(t) \le \frac{\varepsilon}{4M}$$
 (4.4.20)

Из (4.4.19) и $K_n(t) \ge 0$ получаем:

$$\int_{-\delta}^{\delta} |f(x) - f(x - t)| |K_n(t)| dt < \frac{\varepsilon}{2} \int_{-\pi}^{\pi} K_n(t) dt = \pi \varepsilon, \ n = 1, 2, \dots$$
 (4.4.21)

$$\left\{ \int_{-\pi}^{\delta} + \int_{\delta}^{\pi} \right\} = |f(x) - f(x - t)| |K_n(t)| dt \le \frac{\varepsilon}{4M} \int_{-\pi}^{\pi} 2M dt = \pi \varepsilon, \ \forall n > N$$
 (4.4.22)

В силу (4.4.19), (4.4.21) и (4.4.22) получаем:

$$|f(x) - \delta_n(x)| < \varepsilon, \ \forall x \in \mathbb{R}, \ \forall n > N$$
 (4.4.23)

Следствие. Если две непрерывные 2π -периодические функции f, g имеют один и тот же ряд Фурье, то $f(x) = g(x), \ \forall x \in \mathbb{R}$

Доказательство. Действительно, если $\delta_n(x)$ — среднее арифметическое этого ряда, то:

$$\delta_n(x) \to f(x), \ \delta_n \to g(x)$$

Следствие. Если $f \in C_{2\pi}$ и $\int_{-\pi}^{\pi} f(x)e^{-inx}dx \equiv 0$, то $\forall n \in \mathbb{Z} : f(x) \equiv 0$. Таким образом OC $\{e^{ikx} : k \in \mathbb{Z}\}$ нельзя дополнить ненулевым элементом.

Доказательство. Это вытекает из предыдущего следствия, если положить g=0.

Следствие. Ряд Фурье функции $f \in C_{2\pi}$ либо сходится в каждой точке x к функции f(x), либо вовсе расходится в этой точке.

Доказательство. НАПИСАТЬ ДОКАЗАТЕЛЬСТВО.

Замечание 4.4.1. Ряд Фурье для выражения функции в самом деле может в некоторых точках расходится.

Теорема 4.4.3 (теорема Вейерштрасса). Если $f \in C_{2\pi}$, то $\forall \varepsilon > 0$ существует такой тригонометрический многочлен $T(x): \forall x \in \mathbb{R}$:

$$|f(x) - T(x)| < \varepsilon$$

Доказательство. Без доказательства.

Из теоремы (4.4.3) следует теорема (4.4.4).

Теорема 4.4.4 (теорема Вейерштрасса). Если $f \in C[a,b]$, то $\forall \varepsilon > 0$ существует такой алгеброический многочлен P(x): $\forall x \in [a,b]$:

$$|f(x) - P(x)| < \varepsilon$$

Доказательство. Положив $t=\frac{x-a}{b-a}\pi$, и $x=\frac{b-a}{\pi}t+a$, получим функцию $\varphi(t)=f(a+\frac{b-a}{\pi}t)$ на отрезке $[0,\pi]$. Продолжим ее в начале четным образом $\varphi(-t)=\varphi(t),\ t\in [\pi,0)$. Найдем по теореме (4.4.3) такой тригонометрический полином $T(x):|\varphi(t)-T(t)|<\frac{\varepsilon}{2},\ \forall t\in\mathbb{R}$. Всякий тригонометрический полином раскладывается по Тейлору, сходится равномерно на любом конечном интервале.

Пусть P_n — частичная сумма ряда Тейлора для T(t) такая что: $|T(t)-P_n(t)|<\frac{\varepsilon}{2},\ 0\leq t\leq \pi.$ Тогда $|\varphi_n(t)-P_n(t)|<\varepsilon$, при $0\leq t\leq \pi$. Сделав обратную замену в $P_n(t): t=\frac{x-a}{b-a}\pi$, получим многочлен $Q_n(x)$, удовлетворяющий условию: $|f(x)-Q_n(x)|<\varepsilon,\ a\leq x\leq b.$

Получаем еще одно следствие от теоремы Фейера — полнота тригонометрической системы функций $C_2[-\pi,\pi]$ и более общо $\mathcal{R}_2[-\pi,\pi]$.

Теорема 4.4.5 (о полноте тригонометрической системы). Любая функция f из множества $f \in \mathcal{R}[-\pi,\pi]$ может быть сколь угодно точно приближена в среднем, то есть по норме:

- 1. Кусочно-постоянной функции $[-\pi, \pi]$
- 2. Непрерывными на отрезке $[-\pi,\pi]$ функциями, принимающие равные значения на концах $[-\pi,\pi]$
- 3. Тригонометрическими полиномами

Доказательство. Достаточно рассмотреть случай действительно значимых функций.

1. Поскольку f — интегрируема, то: $\forall \varepsilon > 0 \; \exists$ разбиение $-\pi = x_0 < x_1 < \dots < x_n = \pi$ отрезка $[-\pi,\pi]$, что: $0 \leq \triangle := \int_{-\pi}^{\pi} f(x)dx - \sum_{i=1}^{n} m_i \triangle x_i < \varepsilon$, где

$$m_i = \inf\{f(x)\}, \ x \in [x_{i-1}, x_i), \ \triangle x_i = x_i - x_{i-1}$$

Полагая
$$g(x)=egin{cases} m_i, \text{ если } x\in[x_{i-1},x_i) \\ 0, \text{ если } x=\pi \end{cases}, \ M_f=\sup\{|f(x)|\}, |x|\leq\pi.$$
 Получим:
$$\int\limits_{-\pi}^\pi (f(x)-g(x))^2 dx \leq \int\limits_{-\pi}^\pi (|f(x)|+|g(x)|)(|f(x)|-|g(x)|) dx \leq 0.$$

Получим:
$$\int_{-\pi}^{\pi} (f(x) - g(x))^2 dx \le \int_{-\pi}^{\pi} (|f(x)| + |g(x)|)(|f(x)| - |g(x)|) dx \le \int_{-\pi}^{\pi} (|f(x)| + |g(x)|)(|f(x)| - |g(x)|) dx$$

$$2M_f \int_{-\pi}^{\pi} (f(x) - g(x)) dx = 2M_f \triangle \le 2M_f \varepsilon.$$

2. Достаточно уметь приблежать к среднему кусочно постоянной функции. Пусть g такая функция, с точками разрыва x_1, \ldots, x_n . Удобно присваивать $-\pi = x_1, x_n = \pi$. Очевидно, какого бы ни было $\varepsilon > 0 \; \exists \delta > 0$, что δ -окрестности точек x_1, \ldots, x_n не пересекаются и $2\delta_n M < \varepsilon$, где $M = \sup\{|g(x)| : |x| \le \pi\}$ Заменим функцию g на каждом из отрезков $[-\pi, -\pi + \delta], [x_1 - \delta, x_1 + \delta], (i = 2, ..., n - 1), [\pi - \delta, \pi]$ линейной функцией, принимающей на концах этих отрезков соответственно: $0, g(-\pi + \delta), g(x_i - \delta), g(x_i + \delta), (i = 2, ..., n - 1), g(\pi - \delta), 0.$ Получим кусоно линейную, непрерывную на кусочном отрезке $[-\pi, \pi]$ функцию $h, h(-\pi) = h(\pi) = 0$, $|h(x)| \leq M, \ \forall x \in [-\pi, \pi].$

Значит

$$\int_{-\pi}^{\pi} (g-h)^2 dx \le 2M \int_{-\pi}^{\pi} (|g-h|) dx =$$
 (4.4.24)

$$2M\sum_{i=1}^{n}\int_{x_{i}-\delta}^{x_{i}+\delta}(|g-h|)dx \leq 2M(2M-2\delta)n < 4M\varepsilon$$

$$(4.4.25)$$

3. Осталось показа, что можно приблизить любую функцию класса 2. Но по теореме Фейера для любой функции типа h, найдется такой тригонометрический многочлено, :отр

$$\forall \varepsilon > 0, \ T : |h(x) - T(x)| < \varepsilon, \ \forall x \in [-\pi, \pi]$$
$$\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} (h(x) - T(x))^2 dx\right)^{\frac{1}{2}} < \varepsilon$$

Ссылаясь на неравенство треугольника, пространства $\mathcal{R}_{\in}[-\pi,\pi]$ заключаем, что теорема доказана.

Из полноты тригонометрической системы, из теоремы (4.3.2) (третьего условия полноты ОС) и форумлы наименьших уклонений следует теорема (4.4.6).

Теорема 4.4.6. $f \in \mathcal{R}_2([-\pi, \pi], \mathbb{C})$, имеем:

1. $f(x) \stackrel{\mathcal{R}_2}{=} \frac{a_0(f)}{2} + \sum_{k=1}^{\infty} a_k(f) \cos kx + b_k(f) \sin kx$, или в комплексной записи: $f(x) \stackrel{\mathcal{R}_2}{=} \sum_{-\infty}^{+\infty} C_k(f) e^{ikx}$, где сходимость понимается, как сходимость по норме.

2.
$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = |\frac{a_0(f)}{2}|^2 + \sum_{k=1}^{\infty} |a_k(f)|^2 + |b_k(f)|^2$$
, или в комплексной записи: $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{-\infty}^{+\infty} |C_k(f)|^2$.

3.
$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x) - S_n(f, x)|^2 dx = \sum_{k=n+1}^{\infty} |a_k(f)|^2 + |b_k(f)|^2 = 4 \sum_{k=n+1}^{\infty} |C_k(f)|^2, f \in \mathcal{R}([-\pi, \pi], \mathbb{R}).$$

§ 4.5. Обобщение на неограниченные функции

Определение 4.5.1. Пусть $0 . Будем писать <math>f \in \mathcal{R}^p[a,b]$, если существует конечное число точек $x_i, j = 0, 1, 2, \ldots, n$, таких что:

- 1. $a = x_0 < x_1 < \cdots < x_n = b$
- 2. Функция f интегрируема по Римману на любом отрезке $f \in \mathcal{R}[\alpha, \beta], \ [\alpha, \beta] \subset (x_{j-1}, x_j)$
- 3. Интеграл $\int\limits_{x_{j-1}}^{x_j} |f(x)|^p dx, \ j=1,2,\ldots,n$ сходится.

Замечание 4.5.1. Формулы (4.4.1), (4.4.5) и (4.4.6), определяющие коэффициенты Фурье $C_k(f), a_k(f), b_k(f)$ имеют смысл для $\forall f \in \mathcal{R}^1[-\pi, \pi]$, так как тогда $f(x)e^{-ikx}, f(x)\cos kx, f(x)\sin kx \in \mathcal{R}^1[-\pi, \pi]$.

Определение 4.5.2 (неравенство Гельдера).

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g(x)|^{q} dx\right)^{\frac{1}{q}}$$

где $q > 1, \ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1$

$$\int_{a}^{b} |f(x)| dx \le (b-a)^{1-\frac{1}{p}} \left(\int_{a}^{b} |f(x)|^{p} dx \right)^{\frac{1}{p}}$$
$$\left(\frac{1}{b-a} \int_{a}^{b} |f(x)|^{r} dx \right)^{\frac{1}{r}} \le \left(\frac{1}{b-a} \int_{a}^{b} |f(x)|^{h} dx \right)^{\frac{1}{h}}$$

если $h > 1, \ 0 < r < h < \infty.$

Утверждение 4.5.1. теоремы (4.4.5) и (4.4.6) остаются в силе, если в них пространство $\mathcal{R}_2[-\pi,\pi]$ расширить до линейного пространства $\mathcal{R}^2[-\pi,\pi]$:

$$(f,g) = \int f(x)\overline{g(x)}dx$$

Доказательство. Смотри теорему (4.4.5).

Лемма 4.5.1. Если $f \in \mathcal{R}^p[a,b](p>0)$, то $\forall \varepsilon > 0 \exists g \in \mathcal{R}[a,b] : \int_a^b |f(x) - g(x)|^p dx < \varepsilon$.

Доказательство. Доказать самостоятельно.

§ 4.6. Достаточные условия сходимости тригонометрического ряда Фурье в точке

Лемма 4.6.1 (Римана). Если $f \in \mathcal{R}^1[a,b]$, то

$$\int_{a}^{b} f(x)e^{i\lambda x}dx \to 0 \tag{4.6.1}$$

$$\int_{a}^{b} f(x)e^{i\lambda x}dx \to 0 \tag{4.6.1}$$

$$\int_{a}^{b} f(x)\cos\lambda x dx \to 0 \tag{4.6.2}$$

$$\int_{a}^{b} f(x) \sin \lambda x dx \to 0, npu \ \lambda \to \infty, \ \lambda \in \mathbb{R}$$
 (4.6.3)

Доказательство. Будем считать, что функция f(x) — действительная, так как в случае f(x) — комплексная легко сводится к этому, согласно лемме (4.5.1) при $p=1, \forall \varepsilon > 0, \exists g$ (кусочно-постоянная):

$$\int_{a}^{b} |f(x) - g(x)| dx < \frac{\varepsilon}{2} \tag{4.6.4}$$

Пусть $g(x)=m, x\in [x_{j-1},x_j], j=1,\ldots,n.$ $(x_0=a,x_n=b),$ тогда:

$$\int_{a}^{b} g(x)e^{i\lambda x}dx = \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} m_{j}e^{i\lambda x}dx = \left. \frac{1}{ix} \sum_{j=1}^{n} (m_{j}e^{i\lambda x}) \right|_{x_{j-1}}^{x_{j}} \to 0, \text{ при } \lambda \to \infty$$

Отсюда из (4.6.4) получим:

$$\left| \int_{a}^{b} f(x)e^{i\lambda x} dx \right| = \left| \int_{a}^{b} (f(x) - g(x))e^{i\lambda x} dx + \int_{a}^{b} g(x)e^{i\lambda x} dx \right| \le \int_{a}^{b} |f(x) - g(x)|e^{i\lambda x} dx + \left| \int_{a}^{b} g(x)e^{i\lambda x} dx \right| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Итак, (4.6.1) доказано.

Отделяя действительные и мнимые части, получаем (4.6.2), (4.6.3)

Определение 4.6.1. Говорят, что функция f, заданная в проколотой окрестности точки x, удовлетворяет условиям Дини, если при $x \in \mathbb{R}$ выполняется:

1. В точке x существуют оба предела:

$$f(x - 0) = \lim_{t \to +0} f(x - t)$$
$$f(x + 0) = \lim_{t \to +0} f(x + t)$$

2.
$$\int\limits_0^\delta \frac{f(x-t)-f(x-0)}{t}dt$$
 , $\int\limits_0^\delta \frac{f(x+t)-f(x+0)}{t}dt$ сходятся абсолютно на $[0,\delta],\ \forall \delta>0$

Теорема 4.6.1. $f - 2\pi$ -периодическая функция $f \in \mathcal{R}^1[-\pi, \pi], \ x \in \mathbb{R}$.

$$\sum_{\infty} C_k(f)e^{ikx} = \frac{f(x-0) + f(x+0)}{2}$$
(4.6.5)

Доказательство. $S_n(f,x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t)D_n(t)dt = \frac{1}{2\pi} \int_{-\pi}^{0} f(x-t)D_n(t)dt + \frac{1}{2\pi} \int_{0}^{\pi} f(x-t)D_n(t)dt = \frac{1}{2\pi} \int_{0}^{\pi} f(x+t)D_n(t)dt + \frac{1}{2\pi} \int_{0}^{\pi} f(x-t)D_n(t)dt = \frac{1}{2\pi} \int_{0}^{\pi} (f(x-t)+f(x+t))D_n(t)dt = \frac{1}{2\pi} \int_{0}^{\pi} \frac{f(x-0)+f(x+0)}{2}D_n(t)dt + \frac{1}{\pi} \int_{0}^{\pi} \left(\frac{f(x-t)-f(x-0)}{2} + \frac{f(x+t)-f(x+0)}{2}\right)D_n(t)dt = \frac{f(x-0)+f(x+0)}{2} + \frac{1}{\pi} \int_{0}^{\pi} \left(\frac{f(x-t)-f(x-0)}{2\sin\frac{t}{2}} + \frac{f(x+t)-f(x+0)}{2\sin\frac{t}{2}}\right)\sin((n+\frac{1}{2})t) dt$

Поскольку, $2\sin\frac{t}{2} \sim t$, $t \to 0$, то из условий Дини следует, что $g_x(t) \in \mathcal{R}^1[0,\pi]$ абсолютно интегрируема. На основании леммы Римана:

$$\int\limits_0^\pi g_x(t)\sin((n+\frac{1}{2})t)dt\to 0, \text{при } n\to\infty$$

Отсюда из (4.6) следует (4.6.5)

Следствие. Пусть f — ограниченная функция c периодом 2π , имеющая разрыв первого рода и пусть имеет левые и правые производные. Тогда ряд Фурье сходится всюду, а его сумма в точке разрыва непрерывна и равна: $f(x) = \frac{1}{2}(f(x+0) + f(x-0))$

§ 4.7. Гладкость функции и скорость убывания коэффициентов Фурье

Определение 4.7.1. Функцию f называют кусочно дифференцируемой, если существует ее разбиение $a=x_0 < x_1 < \cdots < x_n = b$, такое что на каждом интервале $(x_{j-1},x_j)f-$ дифференцируема, а в точках x_{j-1},x_j существуют конечные значения $f(x_{j-1}+0),f(x_j-0),f'_+(x_{j-1}),f'_-(x_j)$, при $\forall j=1,\ldots,n,\ f'\in Q[a,b]$

Через $C_{2\pi}^{(k)}(k=0,1,\dots)$ обозначим класс 2π -периодических (комплексно-значимых) функций, имеющих на \mathbb{R} k-ую непрерывную производную. $f^{(k)}, (f^{(k)} \in C_{2\pi} = C_{2\pi}^{(0)})$.

Лемма 4.7.1 (о дифференцировании ряда Фурье). Если f — непрерывна, $f \in C_{2\pi}$ и f кусочно дифференцируема на $[-\pi,\pi]$, то $f' \sim \sum_{-\infty}^{+\infty} C_k(f') e^{ikx}$ может быть получен формальным дифференцированием ряда Фурье $f \sim \sum_{-\infty}^{+\infty} C_k(f) e^{ikx}$ самой функции, то есть:

$$C_k(f') = ikC_k(f), \ k \in \mathbb{Z}$$

$$(4.7.1)$$

Доказательство. Интегрированием по частям находим:

$$C_k(f') = \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(x)e^{-ikx} dx = \frac{1}{2\pi} f(x)e^{-ikx} \Big|_{-\pi}^{\pi} + \frac{ik}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx = ikC_k(f)$$

Теорема 4.7.1. Пусть $f \in C_{2\pi}^{(m-1)}, \ (m \in \mathbb{N}), \ f^{(m-1)} - кусочно-дифференцируема$ на $[-\pi,\pi]$. Тогда:

$$C_k(f^{(m)}) = (ik)^m C_k(f), \ k \in \mathbb{Z}$$
 (4.7.2)

$$|C_{\pm k}(f)| = \frac{\gamma_k}{k^m} = \bar{o}\left(\frac{1}{k^m}\right), \ k \to \infty, k \in \mathbb{N}$$
(4.7.3)

Причем $\sum_{k=1}^{\infty} \gamma_k^2 < \infty, \ \gamma_k \downarrow 0, \ \gamma_k = \bar{o}\left(\frac{1}{k}\right).$

 $\Delta \rho$ оказательство. Соотношение (4.7.2) получается в результате m-кратного использования (4.7.1).

 $C_k(f^{(m)}) = ikC_k(f^{(m-1)}) = \cdots = (ik)^mC_k(f), \ k \in \mathbb{Z}.$ Полагаю $\gamma_k = |C_k(f^{(m)})|$, с учетом неравенства Бесселя:

$$\sum_{-\infty}^{+\infty} \gamma_k^2 \le \frac{1}{2\pi}$$

Из (4.7.2) получаем (4.7.3).

Теорема 4.7.2. $f \in C_{2\pi}^{(m-1)}, \ m \in \mathbb{N}, \ f^{(m-1)} - кусочно-дифференцируема на <math>[-\pi,\pi], \ mor\partial a$ ряд Фурье сходится абсолютно и равномерно на \mathbb{R} , причем

$$\max_{x \in \mathbb{R}} |f(x) - S_n(f, x)| = \bar{\bar{o}}\left(\frac{1}{n^{m-1/2}}\right), \ n \to \infty$$
 (4.7.4)

Доказательство. Поскольку $f \in C_{2\pi}$ и удовлетворяет условиям Дини в любой точке, то

$$f(x) = \lim_{n \to \infty} S_n(f, x), \ \forall x \in \mathbb{R}$$

Поэтому, с учетом (4.7.3) имеем:

$$|f(x) - S_n(f, x)| = \left| \sum_{|k| \ge n+1} C_k(f) e^{ikx} \right| \le \left| \sum_{|k| \ge n+1} |C_k(f) e^{ikx}| \right| =$$
 (4.7.5)

$$2\sum_{k=n+1}^{\infty} \frac{\gamma_k}{k^m} \le 2\left(\sum_{k=n+1}^{\infty} \gamma_k^2\right)^{\frac{1}{2}} \left(\sum_{k=n+1}^{\infty} \frac{1}{k^{2m}}\right)^{\frac{1}{2}} \tag{4.7.6}$$

(В силу неравенства Коши-Буняковского). Так как

$$\left(\sum_{k=n+1}^{\infty} \frac{1}{k^{2m}}\right)^{\frac{1}{2}} \le \left(\int_{n+1}^{\infty} \frac{dx}{x^{2m}}\right)^{\frac{1}{2}} = \frac{1}{\sqrt{2m-1}} \cdot \frac{1}{n^{m-1/2}}$$

To из (4.7.6) получаем (4.7.4)

Замечание 4.7.1. Поскольку $a_k(f) = C_k(f) + C_{-k}(f)$, $b_k(f) = i(C_k(f) - C_{-k}(f))$, то из (4.7.3) следует, что

$$|a_k(f)| = \frac{\alpha_k}{k^m}, |b_k(f)| = \frac{\beta_k}{k^m}, k \in \mathbb{N}, \sum \alpha_k^2 < \infty, \sum \beta_k^2 < \infty$$

Часть II Интегралы

Глава 5

Кратные интегралы

§ 5.1. Определение интеграла Римана на *n*-ом промежутке

Пусть $\mathbb{R}^n - n$ -мерное арифметическое евклидово пространство(ЕП). (\mathbb{R}^2 отождествляется oxy, \mathbb{R}^3 с oxyz). (x_1, \ldots, x_n) $\in \mathbb{R}^n$ далее обозначается через x.

Определение 5.1.1. Множество $I = \{x \in \mathbb{R}^n : a_i \leq x \leq b_i, i = 1, \dots, n\}$ называется промежутком или координатным параллелепипедом. По аналогии с одномерным случаем записывают:

$$a = (a_1, \dots, a_n), b = (b_1, \dots, b_n)$$

Определение 5.1.2. Число $|I|:=\prod_{i=1}^n (b_i-a_i)$ называют объемом, либо мерой промежутка. Объем(меру) обозначают символами: $v(I), \mu(I)$.

При $n=1, \mu(I)$ — длина отрезка

При $n = 2, \mu(I)$ — площадь прямоугольника

При $n = 3, \mu(I)$ — объем прямоугольного параллелепипеда

Разобьем каждый из координатных отрезков $[a_i, b_i]$, $i = 1, \ldots, n$ на конечное число более мелких отрезков. Эти разбиения индуцируют разбиение промежутка I на более мелкие промежутки, получающиеся прямым произведением промежутков a_i, b_i .

Определение 5.1.3 (Декартово произведение). $X \times Y := \{(x,y) : x \in X, y \in Y\}$

Определение 5.1.4. Описанное представление промежутка I в виде объеденения промежутков i, j из более мелких промежутков i, j назовем разбиением и обозначим $T(k = k_T)$.

Определение 5.1.5. $\lambda(T) = \max\{d(I_1), \dots, d(I_k)\}$. $d(I_j)$ называется диаметром разбиения T. Пусть $f(x) = f(x_1, \dots, x_n)$ — функция, определенная на промежутке I, $T = \{I_1, \dots, I_k\}$ — разбиение промежутка I. $\xi = (\xi^1, \dots, \xi^k)$ — некоторый набор точек ξ^j , таких что $\xi^j \in I_j$.

Определение 5.1.6. Сумма $\sigma(f,T,\xi):=\sum\limits_{j=1}^k f(\xi^j)|I_j|$ называется интегральной суммой Римана.

Определение 5.1.7. Если существует конечный предел $\mathcal{J}, \ \sigma(f, T, \xi), \ \lambda(T) \to 0$, то его называют интегралом Римана от функции f на промежутке I:

$$\mathcal{J} = \int_{I} f(x)dx := \lim_{\lambda(T) \to 0} \sigma(f, T, \xi)$$
 (5.1.1)

Функцию f называют интегрируемой на промежутке I. Множество таких функций обозначим $\mathcal{R}(I)$. Уточним, что равенство (5.1.1) означает: $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall T = \{I_1, \ldots, I_k\}, \lambda(T) < \delta$ и при любом выборе точек $\xi^j \in I_j, j = 1, \ldots, k$ выполняется неравенство:

$$\left| \mathcal{J} - \sum_{j=1}^{k} f(\xi^j) |I_j| \right| < \varepsilon$$

Равносильные отображения интеграла таковы:

$$\int_{I} f(x_1, \dots, x_n) \ dx_1 \dots dx_n, \ \underbrace{\int \dots \int_{n}}_{n} f(x_1, \dots, x_n) \ dx_1 \dots dx_n, \ n \in \mathbb{N}$$

Мы видим, что данное определение повторяет определение интеграла Римана, и при m=1 совпадает. Схожесть опеределений позволяет найти сходные методы о решении вопроса условий существования.

§ 5.2. Условие существования кратного интеграла

Теорема 5.2.1. Если $f \in \mathcal{R}(I)$, то f ограниченна на I. Пусть функция f определена на I, $I \in \mathbb{R}^n$. $T = \{I_j\}$ — разбиение промежутка I.

$$m_j = \inf_{x \in I_j} f(x), \ M_j = \sup_{x \in I_j} f(x)$$

Определение 5.2.1. Величины $s(f,T) = \sum\limits_j m_j |I_j|, \ S(f,T) = \sum\limits_j M_j |I_j|$ называются соотвтетственно нижней и верхней суммой Дарбу на промежутке отвечающему разбиению T этого промежутка.

Комментарий. Совершенно аналогично доказывается при m=1 теорема (5.2.2).

Теорема 5.2.2. Для того, чтобы ограниченная на промежутке функция f была интегрируема на $I \iff$

$$\lim_{\lambda(T) \to 0} (S(f, T) - s(f, T)) = 0 \tag{5.2.1}$$

Замечание 5.2.1 (критерий интегрируемости Римана). Если обозначить колебания $M_j - m_j$, I_j через $\Omega(f, I_j)$, то (5.2.1) можно записать в виде:

$$\lim_{\lambda(T)\to 0} \sum_{j} \Omega(f, I_j)|I_j| = 0$$

Определение 5.2.2. Говорят, что множество \mathbb{E} *п*-мерного пространства имеет меру 0 в смысле Жордана или имеет нулевой *п*-мерный объем, если для $\forall \varepsilon > 0$ существует покрытие множества \mathbb{E} конечной системой $\{I_j\}$ *п*-мерных промежутков. $\sum\limits_j |I_j|$ объемов которых меньше ε . В этом случае пишем: $\mu(\mathbb{E}) = 0$

Теорема 5.2.3. Пусть функция f ограничена на n-мерном промежутке $I \subset \mathbb{R}^n$ и \mathbb{E}_f — множество ее точек разрыва. Тогда, если $\mu(\mathbb{E}_f) = 0$, то $f \in \mathcal{R}(I)$ (интегрируема).

Комментарий. Эта теорема при n=1 обычно устанавливается в разделе "определенный интеграл". В общем случае доказывается аналогично.

§ 5.3. Кратный интеграл по множеству

Пусть функция f определена на $\mathbb{E} \subset \mathbb{R}^n$, условимся символом $f_{\mathbb{E}}(x)$ обозначать функцию =0 вне \mathbb{E} .

Определение 5.3.1. Интеграл функции по множеству \mathbb{E} определяется соотношением:

$$\int_{\mathbb{R}} f(x)dx := \int_{I} f_{\mathbb{E}}(x)dx \tag{5.3.1}$$

где I — наименьший промежуток, содержащий \mathbb{E} .

Если стоящий справа интеграл существует, то он называется интегрируемым по Риману на \mathbb{E} . Совокупность всех интегрируемых на множестве \mathbb{E} функций обозначим $\mathcal{R}(\mathbb{E})$.

Определение 5.3.2. Множество $\mathbb{E} \subset \mathbb{R}^n$ назовем допустимым, если оно ограничено в \mathbb{R}^n и его граница $\partial \mathbb{E}$ есть множество меры нуль (в смысле Жордана).

Пример 5.3.1. Куб, тетраэдер, шар и т. д. являются допустимыми множествами.

Комментарий. Граница $\partial \mathbb{E}$ множества \mathbb{E} состоит из точек, в любой окрестности которых имеются как точки из \mathbb{E} , так и точки из дополнения \mathbb{E} до \mathbb{R}^n .

Теорема 5.3.1. Пусть \mathbb{E} — допустимое множество в \mathbb{R}^n . f — функция, определенная на \mathbb{E} и пусть множество точек разрыва \mathbb{E}_f множества \mathbb{E} имеют нулевую меру, тогда функция $f \in \mathcal{R}(\mathbb{E})$ (интегрируема).

 \mathcal{A} оказательство. Функция $f_{\mathbb{E}}$ по сравнению с функцией f может иметь дополнительные разрывы на $\partial \mathbb{E}$, которые, по условию, имеет меру нуль. Поэтому множество точек разрыва функции $f_{\mathbb{E}}$ так же имеет нулевую меру.

Отсюда из определения (5.3.1) и теоремы (5.2.3) следует, что функция интегрируема.

§ 5.4. Мера(объем) множества

Определение 5.4.1. Мерой Жордана(или объемом) ограниченного множества $\mathbb E$ назовем величину $\mu(\mathbb E):=\int\limits_{\mathbb E} dx$, если указанный интеграл(Римана) существует. В последнем случае множество $\mathbb E$ называют измеримым в смысле Жордана.

Теорема 5.4.1. Допустимое множество измеримо в смысле Жордана.

Доказательство. Рассмотрим характеристическую функцию:

$$\aleph_{\mathbb{E}}(x) = \begin{cases} 1, & x \in \mathbb{E} \\ 0, & x \notin \mathbb{E} \end{cases}$$

Комментарий. \aleph — Алеф.

Очевидно, функция $\aleph_{\mathbb{E}}(x)$ имеют разрывы в граничных и только в граничных точках множества \mathbb{E} .

По определению (5.3.1):

$$\int_{\mathbb{E}} 1 \cdot dx = \int_{I} \aleph_{\mathbb{E}}(x) dx \tag{5.4.1}$$

где I — наименьший промежуток, содержащий множество \mathbb{E} .

А так как множество точек разрыва $\aleph_{\mathbb{E}}(x)$ совпадает с границей $\partial \mathbb{E}$ и $\mu(\partial \mathbb{E}) = 0$, то по

теореме (5.2.3) интеграл (5.4.1) существует. $\mu(\mathbb{E})$ носит комплексный смысл, если \mathbb{E} — измеримое множество, и

$$\int\limits_{I}\aleph_{\mathbb{E}}(x)dx=\lim_{\lambda(T)\to 0}s(\aleph_{\mathbb{E}},T)=\lim_{\lambda(T)\to 0}S(\aleph_{\mathbb{E}},T),\ (I\supset\mathbb{E})$$

TO

$$s(\aleph_{\mathbb{E}}, T) = \sum_{j} m_{j} |I_{j}|, \ S(\aleph_{\mathbb{E}}, T) = \sum_{j} M_{j} |I_{j}|$$

где s, S — нижняя и верхняя суммы Дарбу. Но в силу определения функции $\aleph_{\mathbb{E}} : s(\aleph_{\mathbb{E}}, T)$ равна сумме объемов промежутков I_j , лежащих в множестве \mathbb{E} (это объем вписанного в \mathbb{E} многогранника), а $S(\aleph_{\mathbb{E}}, T)$ равна сумме объемов тех промежутков I_j , которые имеют общие точки с множеством \mathbb{E} (Объем описанного многогранника).

Утверждение 5.4.1. Мера $\mu(\mathbb{E})$ есть общий предел, при $\lambda(T) \to 0$ объемов, вписанных в \mathbb{E} и описанных около \mathbb{E} многогранников.

Замечание 5.4.1. Можно показать, что измеримы по Жордану только измеримые множества \iff множество $\mathbb E$ является измеримым по Жордану \iff его границы имеют меру нуль в смысле Жордана.

3амечание 5.4.2. При n=2 понятие измеримого по Жордану множества совпадает с понятием квадрируемой плоской фигуры и меры Жордана с ее площадью.

§ 5.5. Свойства кратных интегралов

На кратные интегралы по ограниченной функции переносятся все свойства интегралов по отрезку.

Доказатаельства аналогичны одномерному случаю:

1. <u>Линейность</u> интеграла по множеству. f_1, \ldots, f_n интегрируема на множестве $\mathbb{E}, \ \lambda_1, \ldots, \lambda_n$ $\lambda_1 f_1, \ldots, \lambda_n f_n$ так же интегрируема на \mathbb{E} и

$$\int_{\mathbb{E}} (\lambda_1 f_1(x) + \dots + \lambda_n f_n(x)) dx = \lambda_1 \int_{\mathbb{E}} f_1(x) dx + \dots + \lambda_n \int_{\mathbb{E}} f_n(x) dx$$

2. <u>Аддитивность</u> интеграла по множеству. Если $\mathbb{E}_1, \mathbb{E}_2$ — допустимые множества в \mathbb{R}^n и $\mu(\mathbb{E}_1 \cap \mathbb{E}_2) = 0$ ($\mathbb{E}_1 \cap \mathbb{E}_2 = 0$ в частности), а f — функция, определенная на $\mathbb{E}_1 \cup \mathbb{E}_2$, то при условии существования интегралов имеет место равенство:

$$\int_{\mathbb{E}_1 \cup \mathbb{E}_2} f(x) dx = \int_{\mathbb{E}_1} f(x) dx + \int_{\mathbb{E}_2} f(x) dx$$

3. Общая оценка. Если $f \in \mathcal{R}(\mathbb{E})$, то $|f| \in \mathcal{R}(\mathbb{E})$ и имеет место неравенство:

$$\left| \int_{\mathbb{E}} f(x) dx \right| \le \int_{\mathbb{E}} |f(x)| dx$$

4. Интегрирование неравенств. Если функции $f, g \in \mathcal{R}(\mathbb{E})$ и $f(x) \leq g(x), x \in \mathbb{E}$, то:

$$\int_{\mathbb{E}} f(x)dx \le \int_{\mathbb{E}} g(x)dx$$

5. Следствие из 4.

Если f интегрируема и $m \leq f(x) \leq M, x \in \mathbb{E}$

$$m\mu(\mathbb{E}) \le \int_{\mathbb{F}} f(x) dx \le M\mu(\mathbb{E})$$

6. Теорема о среднем.

Если в дополнении условия 5. множество \mathbb{E} линейно связано, а f — непрерывна на \mathbb{E} , то существует $\xi \in \mathbb{E}$, такое что:

$$\int f(x)dx = f(\xi)\mu(\mathbb{E})$$

§ 5.6. Сведение кратного инетграла к повторному

Теорема 5.6.1. $X \times Y \subset \mathbb{R}^{m+n}$ является прямым произведением промежутков: $X \subset \mathbb{R}^m$ и $Y \subset \mathbb{R}^n$.

Если для f(x,y) определенной на $X \times Y, (x \in X, y \in Y)$ существует интеграл:

$$\int_{X\times Y} f(x,y)dxdy \tag{5.6.1}$$

и для любого $x \in X$ существует:

$$\mathcal{J}(x) = \int_{Y} f(x, y) dy \tag{5.6.2}$$

то существует так же и повторный интеграл:

$$\int_{X} dx \int_{Y} f(x, y) dy \tag{5.6.3}$$

и выполняется равенство:

$$\int_{X\times Y} f(x,y)dxdy = \int_{X} dx \int_{Y} f(x,y)dy$$
 (5.6.4)

Доказательство. Любое разбиение T промежутка $X \times Y$ индуцируется собственными разбиениями T_x, T_y . При этом, каждый промежуток разбиения T есть прямое произведения $X_i \times Y_j, \ X_i, Y_j$ — разбиения T_x, T_y .

Очевидно, $|X_i \times Y_j| = |X_i| \cdot |Y_j|$.

Положим $m_{ij} = \inf_{x \in X_i, \ y \in Y_j} f(x,y), \ M_{ij} = \sup_{x \in X_i, \ y \in Y_j} f(x,y),$ так что выполняется следующее неравенство:

$$m_{ij} \le f(x,y) \le M_{ij}, \ \forall (x,y) \in X_i \times Y_j \tag{5.6.5}$$

Фиксируем $\forall x \in X_i : x = \xi_i$. Учитывая (5.6.5) получим:

$$|m_{ij}|Y_j| \le \int\limits_{Y_i} f(\xi_i, y) dy \le M_{ij}|Y_j|$$

Просуммировав все по j получим:

$$\sum_{j} m_{ij} |Y_j| \le \mathcal{J}(\xi_i) = \int_{Y} f(\xi_i, y) dy \le \sum_{j} M_{ij} |Y_j|$$

Отсюда имеем:

$$\sum_{i} |X_{i}| \sum_{j} m_{ij} |Y_{j}| \le \sum_{i} \mathcal{J}(\xi_{i}) |X_{i}| \le \sum_{i} |X_{i}| \sum_{j} M_{ij} |Y_{j}|$$
(5.6.6)

По середине мы получили интегральную сумму для функции $\mathcal{J}(x)$. Крайние челны — это суммы Дарбу s(f,T),S(f,T) для кратного интеграла (5.6.1). Например $\sum_{i,j} m_{ij} |X_i \times Y_j|$. Таким образом неравенство (5.6.6) перепишется в виде:

$$s(f,T) \le \sum_{i} \mathcal{J}(\xi_i)|X_i| \le S(f,T) \tag{5.6.7}$$

Так как кратный интеграл (5.6.1) существует по условию, то при $\lambda(T) \to 0$ обе суммы Дарбу неравенства (5.6.7) стремятся к этому интегралу, откуда

$$\left| \lim_{\lambda(T) \to 0} \sum_{i} \mathcal{J}(\xi_i) |X_i| \right| = \int_{X \times Y} f(x, y) dx dy$$

Левая часть этого равенства есть повторный интеграл:

$$\int\limits_{Y} \mathcal{J}(x)dx = \int\limits_{Y} dx \int\limits_{Y} f(x,y)dy$$

3амечание 5.6.1. Применяя эту теорему несколько раз, можно свести вычисление по k-мерному промежутку к вычислению k одномерных интегралов.

Следствие. Пусть $\mathbb{D} \subset Oxy$ — область, ограниченная двумя кривыми $\mathcal{J} = \varphi(x), \mathcal{J} = \psi(x), (\varphi(x) \leq \psi(x))$ и двумя прямыми x = a и x = b. Тогда, если для f(x,y) существует $\iint_{\mathbb{D}} f(x,y) dx dy, \ x \in [a,b]$.

 $\mathcal{J}(x) = \int\limits_{\varphi(x)}^{\psi(x)} f(x,y) dy, \ mo \ cyществует \ так же noвторный интеграл: \int\limits_a^b dx \int\limits_{\varphi(x)}^{\psi(x)} f(x,y) dy \ u$ вы-nonhsemcs paseнcmso

$$\iint\limits_{\mathbb{D}} f(x,y)dxdy = \int\limits_{a}^{b} dx \int\limits_{\varphi(x)}^{\psi(x)} f(x,y)dy.$$

§ 5.7. Замена переменных в кратных интегралах

Напомним, что обтображение:

$$x = \varphi(t) = \begin{cases} x_1 = \varphi_1(t_1, \dots, t_n) \\ \dots \\ x_n = \varphi_n(t_1, \dots, t_n) \end{cases}$$

называется регулярным в области $\mathbb{D} \subset \mathbb{R}^n$, если:

- 1. $\varphi_1, \dots, \varphi_n$ имеют в \mathbb{D} непрерывные частные производные по всем аргументам.
- 2. Матрица Якоби:

$$\varphi'(t) := \begin{pmatrix} \frac{\partial \varphi_1}{\partial t_1} & \cdots & \frac{\partial \varphi_1}{\partial t_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_n}{\partial t_1} & \cdots & \frac{\partial \varphi_n}{\partial t_n} \end{pmatrix}$$
 (5.7.1)

Определитель(якобиан):

$$\det \varphi'(t) = \begin{vmatrix} \frac{\partial \varphi_1}{\partial t_1} & \cdots & \frac{\partial \varphi_1}{\partial t_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_n}{\partial t_1} & \cdots & \frac{\partial \varphi_n}{\partial t_n} \end{vmatrix} =: \frac{\mathbb{D}(\varphi_1, \dots, \varphi_n)}{\mathbb{D}(t_1, \dots, t_n)}$$

Отличен от нуля в \mathbb{D} . Матрица Якоби (5.7.1) называется производной отображения φ , а линейный оператор в \mathbb{R}^n называется дифференциалом φ в точке t, в области \mathbb{D} , ($\mathbb{D}_{\varphi}(t)$). Регулярное отображение является локально обратимым.

Лемма 5.7.1. Пусть φ — регулярное отображение области $\mathbb{D} \subset \mathbb{R}^n_t$, I — замкнутый промежуток, лежащий в \mathbb{D} , $(I \subset \mathbb{D})$. $\varphi(I)$ — образ промежутка I, $(\varphi(I) \subset R^n_x)$. Тогда, существует такая точка $\tau \in I$, что:

$$\mu(\varphi(I)) = |\det \varphi'(\tau)| \cdot |I|$$

Комментарий. $|I| = \mu(I)$

Пояснение. Лемма при n=1 следует из формулы Лагранжа: $\varphi(b)-\varphi(a)=\varphi(\tau)(b-a),$ где $\tau\in[a,b]=I,$ поскольку при $\varphi'(\tau)\neq 0$ функция φ монотонна и

$$|\varphi(b) - \varphi(a)| = \mu(\varphi(I))$$

Если $n \geq 2$ и отображение φ является линейным преобразованием

$$x = \varphi(t) = \begin{cases} x_1 = a_{11}t_1 + \dots + a_{1n}t_n \\ \dots \\ x_n = a_{n1}t_1 + \dots + a_{nn}t_n \end{cases}$$

с матрицей $A = (a_{ij}) = \varphi'(t), \ x = At$, то образ промежутка $\varphi(I)$ является параллелепипедом $\varphi(I) \subset \mathbb{R}^n_x$, объем которого равен:

$$|\det A| \cdot |I| = |\det \varphi'| \cdot |I|$$

При n=3, I — прямоугольный параллелепипед, построенный на векторах: $h^1=(h_1,0,0), h^2=(0,h_2,0), h^3=(0,0,h_3),$ тогда $\varphi(h^i)=(a_{1i}h_i,a_{2i}h_i,a_{3i}h_i), \ i=1,2,3.$ Отсюда объем параллелепипеда, построенного на векторах $\varphi(h^1), \varphi(h^2), \varphi(h^3)$ как на ребрах, равен

$$| \langle \varphi(h^1), \varphi(h^2), \varphi(h^3) \rangle | = |\det A| \cdot |h_1 h_2 h_3|$$

Рассматривая уже общий, нелинейный случай, следует принять во внимание, что в малой окрестности точки $t \in \mathbb{D}$ является почти линейным отображением:

$$\varphi(t+h) = \varphi(t) + \mathbb{D}_{\varphi}(t) + \bar{o}(h)$$
, при $h \to 0$

Поэтому, если размеры промежутка I малы, то с малой относительной погрешностью можно сказать:

$$\mu(\varphi(I)) \approx |\det \varphi'(t)| \cdot |I|, \ t \in I$$

В такой ситуации и используется лемма (I - малый промежуток).

Теорема 5.7.1. Пусть $\varphi : \mathbb{E}_t \to \mathbb{E}_x$ — отображение измеримого (по Жордану) множества $\mathbb{E}_t \subset \mathbb{R}^n_t$, $\mathbb{E}_x \subset \mathbb{R}^n_x$, при чем отображение φ регулярно в некоторой области \mathbb{D} , содержащей замыкание $\overline{\mathbb{E}}_t$, \mathbb{E}_t , ($\overline{\mathbb{E}}_t \subset \mathbb{D}$). Тогда, если $f(x) \in \mathcal{R}(\mathbb{E}_x)$, то $f(\varphi(t))|\det \varphi'(t)| \in \mathcal{R}(\mathbb{E}_t)$ и имеет место равенство:

$$\int_{\mathbb{E}_{\tau}} f(x)dx = \int_{\mathbb{E}_{t}} f(\varphi(t))|\det \varphi'(t)|dt$$
(5.7.2)

Доказательство. Случай, когда \mathbb{E}_t — промежуток, а f(x) ограничена и непрерывна на \mathbb{E}_x . В этом случае функция $g(t) = f(\varphi(t))|\det \varphi'(t)|$ так же ограничена и непрерывна на \mathbb{E}_t , а следовательно и интегрируема на \mathbb{E}_t . Любому разбиению T промежутка \mathbb{E}_t на промежутке I_1, \ldots, I_k соответствует разложение множества $\varphi(\mathbb{E}_t) = \mathbb{E}_x$ на множество $\varphi(I_j), j = 1, \ldots, k$. Все эти множества измеримы, связаны и пересекаются попарно лишь по множествам меры нуль. Поэтому, в силу аддитивности интеграла:

$$\int_{\mathbb{E}_x} f(x)dx = \sum_{j=1}^k \int_{\omega(I)} f(x)dx \tag{5.7.3}$$

По теореме о среднем:

$$\int_{\varphi(I_j)} f(x)dx = f(\xi^j)\mu(\varphi(I_j)), \ \xi^j \in \varphi(I_j)$$
(5.7.4)

Пусть $\eta^j = \varphi^{-1}(\xi^j) \in I_j$, так что $\xi^j = \varphi(\eta^j)$.

Поскольку по лемме $\mu(\varphi(I_j)) = |\det \varphi'(\tau^j)| \cdot |I_j|$, где $\tau^j \in I_j$, то из (5.7.3) и (5.7.4) получаем:

$$\int_{\mathbb{E}_{\tau}} f(x)dx = \sum_{j=1}^{k} f(\varphi(\eta^{j})) \left| \det \varphi'(\tau^{j}) \right| \cdot |I_{j}| =: \sigma_{1}$$
(5.7.5)

Составим сумму: $\sigma_2 := \sum_{j=1}^k f(\varphi(\eta^j)) |\det \varphi'(\eta^j)| \cdot |I_j|$, которая является интегрируемой суммой для функции $g(t), t \in \mathbb{E}_t$. Поскольку $g(t) \in \mathcal{R}$, то:

$$\lim_{\lambda(T)\to 0} \sigma_2 = \int_{\mathbb{R}_+} g(t)dt \tag{5.7.6}$$

Положим $\psi(t) = |\det \varphi'(t)|$ и оценим разность $\sigma_1 - \sigma_2$:

$$\sigma_1 - \sigma_2 = \sum_{j=1}^k f(\xi^j) (\psi(\tau^j) - \psi(\eta^j)) |I_j|$$

Функция $\psi(t)$ непрерывна на замкнутом множестве \mathbb{E}_t и по теореме Кантора равномерно непрерывна на \mathbb{E}_t , так что $\forall \varepsilon > 0 \; \exists \delta > 0, \; \lambda(T) < \delta$:

$$|\psi(\tau^j) - \psi(\eta^j)| < \varepsilon, \ \forall j$$
$$\rho(\tau^j, \eta^j) < \delta$$

Отсюда, при $\lambda(T) < \delta$:

$$|\sigma_1 - \sigma_2| \le \max_{x \in \mathbb{E}_x} |f(x)| \cdot \varepsilon \sum_{j=1}^k |I_j| = C\varepsilon$$

где C не зависит от ε , C = const.

$$\lim_{\lambda(T)\to 0} (\sigma_1 - \sigma_2) = 0 \tag{5.7.7}$$

Равенство (5.7.2) теперь следует из (5.7.5), (5.7.6) и (5.7.7).

Доказательство теоремы в общем случае можно провести, придерживаясь рассмотренной схемы. \Box

Следствие. Величина интеграла от f по множеству $\mathbb{E} \subset \mathbb{R}^n$ не зависит от выбора декартовых координат в \mathbb{R}^n .

Доказательство. Пусть \mathbb{E}_x , \mathbb{E}_t — запись множества \mathbb{E} . p — точка множества \mathbb{E} , $x=(x_1,\ldots,x_n)$ — ее координаты в первой системе, $t=(t_1,\ldots,t_n)$ — во второй системе. Тогда $f(p)=f_x(x_1,\ldots,x_n)=f_t(t_1,\ldots,t_n)$, где $f_t=f_x\circ\varphi$ (суперпозиция). Поскольку переход от одной системы декартовых координат к другой имеет якобиан по модулю равный единице, то есть:

$$\int_{\mathbb{E}_x} f_x(x) dx = \int_{\mathbb{E}_t} f_x(\varphi(t)) |\det \varphi'(t)| dt = \int_{\mathbb{E}_t} f_t(t) dt$$

Глава 6

Криволинейные интегралы

§ 6.1. Криволинейный интеграл первого рода

Пусть $\Gamma = \{M(S) : 0 \le S \le S_0\}$ определенная кривая в \mathbb{R}^3 , в частности \mathbb{R}^2 .

M(S) = (x(S), y(S), z(S)) — ее параметрическое представление, где в качестве переменной взята длина дуги S.

Кривая, у которой переменная длина дуги отсчитывается от точки A обозначим: $\Gamma = \widehat{AB}$. Противоположно ориентированную прямую, у которой переменная длина дуги отсчитывается от точки B обозначим $\Gamma = \widehat{BA}$.

Определение 6.1.1. Пусть на токах M(S), кривой $\Gamma = \widehat{AB}$ задана некотороая функция F. Выражение $\int\limits_{\Gamma} F(x,y,z) dS$ опеределенное по формуле:

$$\int_{\Gamma} F(x, y, z) dS = \int_{0}^{S_0} F(x(S), y(S), z(S)) dS$$
 (6.1.1)

называется криволинейным интегралом первого рода (КИПР) от функции F по кривой Γ . Этот интеграл обозначается символами:

$$\int\limits_{\Gamma} F(M(S)) dS, \ \int\limits_{\Gamma} F dS, \ \int\limits_{\widehat{AB}} F dS$$

Отметим свойства интеграла (6.1.1):

- 1. $\int\limits_{\Gamma} dS = S_0$ длина кривой Γ .
- 2. Если F непрерывна на Γ (то есть F(x(S),y(S),z(S)) непрерывная на отрезке $S\in [0,S_0]$), то $\int\limits_{\Gamma} F dS$ существует.
- 3. КИПР не зависит от ориентации кривой:

$$\int_{\widehat{BA}} FdS = \int_{\widehat{AB}} FdS$$

Определение 6.1.2. Кривую Γ называют гладкой, если в ее параметрическом представлении:

$$x=\varphi(t),\ y=\psi(t),\ z=\chi(t),\ a\leq t\leq b \tag{6.1.2}$$

все функции непрерывно дифференцируемы на отрезке [a,b] и $\varphi'(t)^2 + \psi'(t)^2 + \chi'(t)^2 > 0, \ \forall t \in [a,b].$

Теорема 6.1.1. Пусть Γ — гладкая кривая с параметрическим представлением (6.1.2), F — непрерывная на Γ функция. Тогда:

$$\int_{\Gamma} F(x, y, z) dS = \int_{a}^{b} F(\varphi(t), \psi(t), \chi(t)) \sqrt{\varphi'(t)^{2} + \psi'(t)^{2} + \chi'(t)^{2}} dt$$
(6.1.3)

Доказательство. Кривая Γ спрямляема. Переменную дуги S=S(t) можно принять в качестве параметра, и тогда $\int\limits_{\Gamma} F dS$ существует. Учитывая, что $S'(t)=\sqrt{\varphi'(t)^2+\psi'(t)^2+\chi'(t)^2}$ получим (6.1.3).

Замечание 6.1.1. Если плоская кривая Γ является графиком функци $y = f(x), a \le x \le b$, то ее представлением является функция x = x, y = f(x). И тогда формула (6.1.3) примет вид:

$$\int_{\Gamma} F(x,y)dS = \int_{a}^{b} F(x,f(x))\sqrt{1+f'(x)^{2}}dx$$

§ 6.2. Криволинейный интеграл второго рода

Пусть Γ — гладкая ориентированная кривая, $\vec{r} = \vec{r}(S) = \{x(S), y(S), z(S)\}, \ 0 \le S \le S_0$ — ее векторное представление, в котором за параметр S взята переменная длина ее дуги. $\vec{\tau} = \frac{d\vec{r}}{dS} = \{\frac{dx}{dS}, \frac{dy}{dS}, \frac{dz}{dS}\}$ — единичный касательный вектор к кривой Γ , его направление соответствует выбранному направлению отсчета длины дуг. Если α, β, γ — углы, которые $\vec{\tau}$ образует с координатными осями, то $\vec{\tau} = \{\cos \alpha, \cos \beta, \cos \gamma\}$. Получаем $\cos \alpha = \frac{dx}{dS}, \cos \beta = \frac{dy}{dS}, \cos \gamma = \frac{dz}{dS}$.

Пусть на Γ задана вектор-функция $\vec{a}=\vec{a}(x,y,z)=\vec{a}(x(S),y(S),z(S)),\ 0\leq S\leq S_0.$ Пусть P,Q,R — координаты вектора $\vec{a}:\vec{a}=\{P,Q,R\}.$ Функции P,Q,R являются функциями точки кривой $\Gamma.$

Определение 6.2.1. $\int_{\Gamma} \vec{a} d\vec{r}$ определенное по формуле:

$$\int_{\Gamma} (\vec{a}, \vec{\tau}) dS \tag{6.2.1}$$

называется криволинейным интегралом второго рода (КИВР) по кривой $\Gamma = \widehat{AB}$.

Для интеграла $\int\limits_{\Gamma} \vec{a} d\vec{r}$ используется так же обозначение:

$$\int_{\Gamma} Pdx + Qdy + Rdz$$

где Pdx + Qdy + Rdz — записанное в координатной форме скалярное произведение векторов $\vec{a} = \{P,Q,R\}$ и $d\vec{r} = \{dx,dy,dz\}$. Учитывая, что $(\vec{a},\vec{\tau}) = P\cos\alpha + Q\cos\beta + R\cos\gamma$, то определение (6.2.1) можно записать в виде:

$$\int_{\Gamma} \vec{a}d\vec{r} \equiv \int_{\Gamma} Pdx + Qdy + Rdz := \int_{\Gamma} (P\cos\alpha + Q\cos\beta + R\cos\gamma)dS$$
 (6.2.2)

Следующие свойства КИВР под силу доказать каждому:

- 1. $\vec{a} = \vec{a}(x,y,z), \ \Gamma = \widehat{AB}, \text{ то} \int\limits_{\Gamma} \vec{a} d\vec{r}$ существует.
- 2. КИВР меняет знак при изменении ориентации кривой Г:

$$\int\limits_{\widehat{BA}} \vec{a} d\vec{r} = -\int\limits_{\widehat{AB}} \vec{a} d\vec{r}$$

Теорема 6.2.1. Если $\Gamma = \widehat{AB}$ — гладкая ориентированная кривая. $\vec{r} = \vec{r}(t) = \{\varphi(t), \psi(t), \chi(t)\}, \ a \leq t \leq b$ — ее векторное представление $(\vec{r}(a) = A, \ \vec{r}(b) = B),$ то получим:

$$\int_{\Gamma} \vec{a} d\vec{r} = \int_{a}^{b} (\vec{a}, \vec{r}') dt \tag{6.2.3}$$

Доказательство. Поскольку

$$\vec{\tau} = \frac{d\vec{r}}{dS} = \frac{d\vec{r}}{dt} \cdot \frac{dt}{dS} = \frac{\vec{r}'}{S'} \tag{6.2.4}$$

(здесь штрихом обозначены производные по t), то

$$\int\limits_{\Gamma} \vec{a} d\vec{r} \stackrel{(6.2.1)}{=} \int\limits_{\Gamma} (\vec{a}, \vec{\tau}) dS \stackrel{(6.1.3)}{=} \int\limits_{a}^{b} (\vec{a}, \vec{\tau}) S' dt \stackrel{(6.2.4)}{=} \int\limits_{a}^{b} (\vec{a}, \vec{r'}) dt$$

Замечание 6.2.1. В координатной форме формула (6.2.3) примет вид:

$$\int_{\Gamma} P dx + Q dy + R dz = \int_{a}^{b} (Px' + Qy' + Rz') dt$$
 (6.2.5)

Следствие. Если плоская кривая $\Gamma = \widehat{AB}$ является графиком функции $y = f(x), \ a \leq x \leq b,$ $A = (a, f(a)), \ B = (b, f(b)), \ mo \ формула \ (6.2.3) \ (npu \ x = t, \ R \equiv 0) \ npuнимает \ вид:$

$$\int_{\Gamma} Pdx + Qdy + Rdz = \int_{a}^{b} (P(x, f(x)) + Q(x, f(x)))f'(x)dx$$
 (6.2.6)

3амечание 6.2.2. Если $\vec{a}=\{P,0,0\},\ Q\equiv R\equiv 0,\ {
m To}\ \int\limits_{\Gamma}\vec{a}d\vec{r}$ обозначается $\int\limits_{\Gamma}dx,$ таким образом интеграл:

$$\int_{\Gamma} P(x, y, z) dx = \int_{\Gamma} P \cos \alpha \ dS \tag{6.2.7}$$

аналогично

$$\int_{\Gamma} Q dy := \int_{\Gamma} Q \cos \beta \ dS, \int_{\Gamma} R dz := \int_{\Gamma} R \cos \gamma \ dS \tag{6.2.8}$$

Отсюда, воспользовавшись адитивностью обычного интеграла, получим:

$$\int_{\Gamma} Pdx + Qdy + Rdz = \int_{\Gamma} Pdx + \int_{\Gamma} Qdy + \int_{\Gamma} Rdz$$

Следствие. В условиях предыдущего следствия:

$$\int_{\Gamma} Pdx = \int_{a}^{b} P(x, f(x))dx \tag{6.2.9}$$

Определение 6.2.2. Если кривая Γ — кусочно-гладкая, то есть представима в виде объединения конечного числа гладких ориентированных кривых $\Gamma_1, \ldots, \Gamma_k, \ \vec{a} = \{P, Q, R\}$, определенный на точках кривой Γ , то пологают:

$$\int\limits_{\Gamma} F dS := \sum_{i=1}^k \int\limits_{\Gamma_i} F dS, \int\limits_{\Gamma} \vec{a} d\vec{r} := \sum_{i=1}^k \int\limits_{\Gamma_i} \vec{a} d\vec{r}$$

§ 6.3. Формула Грина

Пусть на плоскости \mathbb{R}^2 задана система координат по Oxy.

Определение 6.3.1. Ориентация простого замкнутого контура Γ , лежащего на этой плоскости называется положительной, если она соответствует движению **против** часовой стрелки. Противоположная ориентация называется отрицательной.

Напомним, что простым замкнутым контуром в \mathbb{R}^n называют $x = \varphi(t) = (\varphi_1(t), \dots, \varphi_n(t)),$ $a \le t \le b$, у которой нет других кратных точек.

Определение 6.3.2. Пусть граница $\partial \mathbb{G}$, ограниченной плоской области \mathbb{G} , состоит из конечного числа простых замкнутых контуров. Совокупность этих контуров, ориентированных так, что при обходе каждого из них, область \mathbb{G} остается слева(справа), называется положительной(отрицательной) ориентацией: $\partial \mathbb{G}^+(\partial \mathbb{G}^-)$.

Определение 6.3.3. Грацница $\partial \mathbb{G}$ области \mathbb{G} называется кусочно-гладкой, если она состоит из конечного числа простых кусочно-гладких контуров.

Замечание 6.3.1. Если граница $\partial \mathbb{G}$ области \mathbb{G} является кусочно гладкой, то ее площадь равна нулю, а само множество \mathbb{G} квадрируемо.

Теорема 6.3.1. Если граница плоской, ограниченной области \mathbb{G} является кусочно-гладкой, а функции $P, Q, \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}$ — непрерывны на замыкании $\overline{\mathbb{G}}$ области \mathbb{G} , то:

$$\iint_{\mathbb{G}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial \mathbb{G}^+} P dx + Q dy$$
 (6.3.1)

эта формула называется формулой Грина.

Доказательство. Проведем его для произвольных областей.

Определение 6.3.4. Назовем область \mathbb{G} областью \mathbb{G}_{v} , если \mathbb{G} имеет вид:

$$\mathbb{G} = \{(x, y) : a < x < b, \ \varphi(x) < y < \psi(x)\}$$
 (6.3.2)

где $\varphi(x), \psi(x)$ — кусочно-гладкие функции на [a,b]. Поменяв здесь x и y ролями получим определение области \mathbb{G}_x . Области, которые можно разрезать на куски вида \mathbb{G}_x либо \mathbb{G}_y назовем простыми областями.

Лемма 6.3.1. Пусть в теореме (6.3.1) \mathbb{G} — область по \mathbb{G}_y , тогда:

$$\iint_{\mathbb{G}} \frac{\partial P}{\partial y} dx dy = -\int_{\partial \mathbb{G}^+} P dx \tag{6.3.3}$$

Доказательство. Сводя двойной интеграл к повторному, применяя формулу Ньютона-Лейбница и формулу (6.2.9) получим:

$$\iint_{\mathbb{G}} \frac{\partial P}{\partial y} dx dy = \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} \frac{\partial P}{\partial y} dy = \int_{a}^{b} \left[P(x, \psi(x)) - P(x, \varphi(x)) \right] dx = \tag{6.3.4}$$

$$-\int_{a}^{b} P(x,\varphi(x))dx - \int_{b}^{a} P(x,\psi(x))dx = -\int_{\widehat{AB}} P(x,y)dx - \int_{\widehat{CD}} P(x,y)dx$$
 (6.3.5)

заметим, что $\int\limits_{\widehat{BC}} Pdx = \int\limits_{\widehat{DA}} Pdx = 0$, и что сумма: $\int\limits_{\widehat{AB}} Pdx + \int\limits_{\widehat{BC}} Pdx + \int\limits_{\widehat{CD}} Pdx + \int\limits_{\widehat{DA}} Pdx = \int\limits_{\partial\mathbb{G}^+} Pdx$. Поэтому из (6.3.5) получаем (6.3.3).

Аналогично, если \mathbb{G} — область типа \mathbb{G}_x , то:

$$\iint_{\mathbb{G}} \frac{\partial Q}{\partial x} dx dy = \int_{\partial \mathbb{G}^+} Q dy \tag{6.3.6}$$

Лемма 6.3.2. Если в теореме (6.3.1) область \mathbb{G} допускает разбиение на области \mathbb{G}_x , \mathbb{G}_y , то выполняется (6.3.3).

Доказательство. Двойной интеграл в области \mathbb{G} в силу адитивности есть сумма по кускам \mathbb{G}_x , \mathbb{G}_y , на которые разрезана \mathbb{G} . Для каждого справедливо (6.3.3). Но соседние куски на общей части границ индуцируют противоположные ориентации. Поэтому, при сложении интегралов по границам всех кусков в результате взаимных уничтожений, останется $\int \partial \mathbb{G}$.

Аналогично, если разрезается на \mathbb{G}_x , то справедливо (6.3.6). Запищем для произвольной области выражения (6.3.3) и (6.3.6), умножив (6.3.3) на -1. После сложения полученных соотношений, пользуясь свойством адитивности интеграла, получим формулу Грина.

Следствие.

$$\mu(\mathbb{G}) = \iint\limits_{\mathbb{G}} dx dy \stackrel{(I)}{=} \int\limits_{\partial \mathbb{G}^+} x dy \stackrel{(II)}{=} - \int\limits_{\partial \mathbb{G}^+} y dx \stackrel{(III)}{=} \frac{1}{2} \int\limits_{\partial \mathbb{G}^+} x dy - y dx$$

$$(I) - P = 0, Q = x$$

 $(II) - P = -y, Q = 0$

(III) — если возъмем полусумму

Глава 7

Поверхностные интегралы

§ 7.1. Поверхности в \mathbb{R}^3

Пусть $\mathbb{D} \subset \mathbb{R}^2$, $\overline{\mathbb{D}}$ — ее замыкание.

Определение 7.1.1. S — образ непрерывного отображения x=x(u,v), y=y(u,v), z=z(u,v) замкнутой области $\overline{\mathbb{D}} \subset \mathbb{R}^2_{uv}$ в пространство \mathbb{R}^3_{xyz} называется непрерывной поверхностью

Само отображение называется параметрическим представлением поверхности. Переменные u,v — параметры поверхности S.

$$S = \{ \vec{r}(u, v) : (u, v) \in \overline{\mathbb{D}} \}$$

$$(7.1.1)$$

Вектор $\vec{r}(u,v)$ — где \vec{r} — радиус вектор в \mathbb{R}^3 с начала в начале координат и концом в точке(x(u,v),y(u,v),z(u,v)). Представление (7.1.1) назовем векторным представлением поверхности S. Отметим, что одна и та же поверхность S может иметь различные параметрические представления.

Определение 7.1.2. Поверхность S назовем простой, если на ней нет кратных точек, то есть для любой точки $M \in S$ отображается лишь одна точка $(u, v) \in \overline{\mathbb{D}}$.

Определение 7.1.3. Если за параметры в одной из представленных поверхностей S можно взять какие-либо две координаты пространства \mathbb{R}^3 , то такое представление называется явным. Например, таковым является представление:

$$S: x = x, y = y, z = \varphi(x, y): (x, y) \in \overline{\mathbb{D}}$$

значит S — график $z=\varphi(x,y):(x,y)\in\overline{\mathbb{D}}.$ Очевидно, что поверхность, допускающая явное представление, не имеет кратных точек.

Определение 7.1.4. Если в определении (7.1.1) отображение является непрерывно дифференцируемым, то S называется непрерывно дифференцируемой поверхностью.

Пример 7.1.1. $x = R\cos\varphi\cos\psi, y = R\sin\varphi\cos\psi, z = R\sin\psi$, где $0 \le \varphi \le 2\pi, -\frac{\pi}{2} \le \psi \le \frac{\pi}{2}$ является сферой с центром в начале координат и радиусом R у которой весь меридиан $\varphi = 0$ состоит из кратных точек.

§ 7.2. Касательная плоскость и нормаль к поверхности в \mathbb{R}^3

Пусть $S = \{\vec{r}(u,v): (u,v) \in \overline{\mathbb{D}}\}$ — непрерывно дифференцируемая поверхность, $(u_0,v_0) \in \mathbb{D}, \vec{r}'_u$ — производная вектор-функции $\vec{r} = \vec{r}(u,v_0)$, то есть \vec{r}'_u — касательный вектор к кривой $\vec{r} = \vec{r}(u,v_0)$, называемой координатной линией, \vec{r}'_v — касательный вектор к координатной линии $\vec{r} = \vec{r}(u_0,v)$.

Определение 7.2.1. Точка $M_0 = \vec{r}(u_0, v_0)$ поверхности S называется неособой, если в ней векторы \vec{r}'_u, \vec{r}'_v не колинеарны: $[\vec{r}'_u, \vec{r}'_v] \neq 0$ в противном случае точка M_0 называется особой.

Определение 7.2.2. Плоскость, проходящая через неособую точку $M_0 = \vec{r}(u_0, v_0)$ поверхности S, параллельно векторам \vec{r}'_u, \vec{r}'_v называется касательной плоскостью к поверхности S в этой точке. Если $\vec{r}_0 = \vec{r}(u_0, v_0), \vec{r}$ — радиус вектор произвольной точки на касательной плоскости, то ее уравнение в векторной записи имеет вид:

$$\langle \vec{r} - \vec{r}_0, \vec{r}'_u, \vec{r}'_v \rangle = 0$$
 (7.2.1)

Определение 7.2.3. Если $M_0 = \vec{r}(u_0, v_0)$ — неособая точка, то вектор

$$\vec{\nu} = \frac{[\vec{r}'_u, \vec{r}'_v]}{|[\vec{r}'_u, \vec{r}'_v]|} \tag{7.2.2}$$

а так же ему противоположный назовем единичной нормалью к поверности в точке M_0 .

Определение 7.2.4. Непрерывно дифиренцируемая поверхность без особых точек называется гладкой поверхностью. Объединение конечного числа гладких поверхностей назовем кусочно гладкой поверхностью, она может состоять из парочки кусков.

§ 7.3. Площадь поверхности

Пусть

$$S = \{ \vec{r}(u, v) : (u, v) \in \overline{\mathbb{D}} \}$$

$$(7.3.1)$$

непрерывно дифференцируемая поверхность, где $\overline{\mathbb{D}}$ — квадрируемая замкнутая область. Пусть I — промежуток, содержащий множество $\overline{\mathbb{D}}$. T — некоторое разбиение промежутка I. Прономеруем каким-либо образом те промежутки разбиения, которые содержатся в $\overline{\mathbb{D}}$ и обозначим их $I_j, j=1,\ldots,k$.

Возьмем какой-либо промежуток I_j . Пусть $I_j = [u, u+h] \times [v, v+t], t>0, h>0$ и где для краткости записи пропущен индекс j у переменных: u, v, h, t. Тогда

$$\vec{r}(u+h,v) - \vec{r}(u,v) = \vec{r}'_u \cdot h + \bar{\bar{o}}(h), h \to 0$$

 $\vec{r}(u,v+t) - \vec{r}(u,v) = \vec{r}'_v \cdot t + \bar{\bar{o}}(t), t \to 0$

При определении площади поверхности образы промежутков I_j будем заменять прямолинейными параллелограмами, построенными на векторах $\vec{r}'_u \cdot h$, $\vec{r}'_v \cdot t$. Обозначим площадь этого параллелограма $\Delta \delta_i$, получаем:

$$\triangle \delta_i = |[\vec{r}_u' \cdot h, \vec{r}_v' \cdot t]| = |[\vec{r}_u', \vec{r}_v']| ht = |[\vec{r}_u', \vec{r}_v']|_{\mu_j} |I_j|, \ \mu_j = (u_j, v_j)$$

Наряду с поверхностью S рассмотрим чешуйчатую поверхность, составленную из всех параллелограмов, построенных для каждого прямоугольника I_j , $(j=1,\ldots,k)$ на соответуствующих ему векторах \vec{r}'_u , \vec{r}'_v . Ее площадь равна:

$$\sum_{j=1}^{k} |[\vec{r}'_{u}, \vec{r}'_{v}]|_{\mu_{j}} |I_{j}|$$

которую можно считать приближенным значением поверхности S, при чем все более точным при $\lambda(T) \to 0$. Таким образом мы принимаем определение (7.3.1).

Определение 7.3.1. Площадью $\mu_2(S)$ поверхности S называется величина:

$$\mu_2(S) := \iint_{\mathbb{D}} |[\vec{r}'_u, \vec{r}'_v]| du dv \tag{7.3.2}$$

Лемма 7.3.1 (тождество Лагранжа). Для любых двух векторов:

$$|[\vec{a}, \vec{b}]|^2 = \det \begin{pmatrix} (\vec{a}, \vec{a}) & (\vec{a}, \vec{b}) \\ (\vec{b}, \vec{a}) & (\vec{b}, \vec{b}) \end{pmatrix} = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a}, \vec{b})^2$$

называется тождеством Лагранжа.

Доказательство. Для доказательства достаточно: $|[\vec{a}, \vec{b}]| = |\vec{a}||\vec{b}| \sin \widehat{a} \widehat{b} \ (\vec{a}, \vec{b}) = |\vec{a}||\vec{b}| \cos \widehat{a} \widehat{b}$ Детерминант в лемме называется детерминантом Грамма векторов \vec{a}, \vec{b} .

Введем обозначение:

$$E = g_{11} = |(\vec{r}'_u, \vec{r}'_u)|$$

$$F = g_{12} = g_{21} = |(\vec{r}'_u, \vec{r}'_v)|$$

$$G = g_{22} = |(\vec{r}'_v, \vec{r}'_v)|$$
(7.3.3)

Из леммы $\vec{a} = \vec{r}'_u$, $\vec{b} = \vec{r}'_v$. Из леммы $|[\vec{r}'_u, \vec{r}'_v]| = EGF^2 = \det(g_{ij})$, поэтому формула (7.3.2) примет вид:

$$\mu_2(S) = \iint_{\mathbb{D}} \sqrt{EG - F^2} du dv \equiv \iint_{\mathbb{D}} \sqrt{\det(g_{ij})} du dv$$
 (7.3.4)

в частности, если S — график функции $z=f(x,y), (x,y)\in \overline{\mathbb{D}},$ то $u=x,\ v=y,$ $\vec{r}=\{x,y,f(x,y)\}$ и следовательно $\vec{r}'_u=\{1,0,f'_x\},\ \vec{r}'_v=\{-1,1,f'_y\}.$ Тогда получим:

$$\det(g_{ij}) = \det\begin{pmatrix} 1 + f_x'^2 & f_x' \cdot f_y' \\ f_x' \cdot f_y' & 1 + f_y'^2 \end{pmatrix} = 1 + f_x'^2 + f_y'^2$$
$$\mu_2(S) = \iint_{\mathbb{D}} \sqrt{1 + f_x'^2 + f_y'^2} dx dy$$

Замечание 7.3.1. Использую формулу замены переменного в двойном интеграле не трудно доказать, что определение (7.3.1) площади поверхности не зависит от выбора ее представления.

§ 7.4. Ориентация поверхности в \mathbb{R}^3

Рассмотрим \mathbb{R}^3 , то есть Oxyz. Пусть S — гладкая поверхность

$$\vec{r} = \vec{r}(u, v) : (u, v) \in \overline{\mathbb{D}}$$

$$(7.4.1)$$

ее векторное представление.

$$\vec{\nu} = \frac{\vec{n}}{|\vec{n}|}, \vec{n} = [\vec{r}'_u, \vec{r}'_v] \tag{7.4.2}$$

 $\vec{\nu}$ — ее единичная нормаль. Поскольку представление (u,v) непрерывно дифференцируемо, то вектор $\vec{\nu}$ (так же как и вектор $-\vec{\nu}$) является непрерывной функцией на $\overline{\mathbb{D}}$.

Определение 7.4.1. Всякая непрерывная на $\overline{\mathbb{D}}$ единичная нормаль $\vec{v} = \vec{v}(u,v)$ гладкой поверхности S называется ориентацией поверхности S, если \vec{v} является так же однозначной непрерывной функцией переменной точки $\mu(x,y,z) = \vec{r}(u,v)$ на самой поверхности S. В этом случае поверхность S называется ориентированной (или двусторонней), в противном случае неориентированной (односторонней). Поверхность у которой фиксированна одна из ориентаций, называется ориентированной стороной поверхности.

Очевидно, что поверхность может иметь только две ориентации, который называют противоположными, одна положительная, другая отрицательная. $\mu(x,y,z) = \vec{r}(u,v)$. Примером ориентации поверхности является всякая простая гладкая поверхность. Ориентированной является и сфера(хотя сфера и не является простой поверхностью). Примером неориентированной поверхности является лента Мебиуса, непрерывная поверхность в определении нарушается.

Пусть гладкая ориентированная поверхность S с представлением $\vec{r}=\vec{r}(u,v),\ (u,v)\in\overline{\mathbb{D}},$ ориентирована нормалью $\vec{\nu}=\frac{\vec{n}}{|\vec{n}|},$ где $\vec{n}=[\vec{r}'_u,\vec{r}'_v].$ И пусть граница $\partial\mathbb{D}$ в области \mathbb{D} является непрерывной кривой, ориентированной положительно:

$$\partial \mathbb{D} = \{ u(t), v(t) : a \le t \le b \}$$

Очевидно, что эта ориентация порождает определенную ориентацию края $\partial S = \{\vec{r} = \vec{r}(u(t), v(t)) : a \le t \le b\}.$

Определение 7.4.2. Указанная выше ориентация края ∂S поверхности S называется согласованной с ориентацией $\vec{\nu}$ поверхности S. Для простой поверхности, в частности для графика z=f(x,y) вектор нормали $\vec{\nu}(-\vec{\nu})$ согласован с положительной (отрицательной) ориентацие кривой ∂S по правилу штопора.

Ориентация контура ∂S соответствует направлению вращения ручки штопора, а направлению нормали соответствует движение штопора.

Определение 7.4.3. Кусочно-гладкая поверхность $S = S_1 \cap S_2 \cap \cdots \cap S_k$ называется ориентированной, если ее можно представить как результат такой склейки гладких поверхностей $S_i, i = 1, \ldots, k$, при которой общие части краев ∂S_i поверхности S_i принадлежат не более, чем двум этим поверхностям и проходят в противоположных направлениях, при ориентации краев ∂S_i , согласованных по правилу штопора с ориентациями указанных двух поверхностей. Объединение краев ∂S_i , принадлежащих одному такому краю, называется краем поверхности S.

Примерами кусочно-гладких ориентированных (двусторонних) поверхностей являются поверхности параллелепипедов, цилиндров.

Можно показать, что определение (7.4.3) в важном частном случае совпадает со следующим определением.

Определение 7.4.4. Если кусочно-гладкая поверхность S является границей области $\mathbb{G} \subset \mathbb{R}^3$, то еденичная нормаль $\vec{\nu}$ к этой поверхности (там где она существует), направленная внутрь области называется внутренней нормалью (относительно области \mathbb{G}), а противоположная нормаль $-\vec{\nu}$ — внешней нормалью. Эти нормали называются ориентациями границы $\partial \mathbb{G}$ области \mathbb{G} .

§ 7.5. Определение поверхностного интеграла первого рода

Пусть $S = \{\vec{r}(u,v) : (u,v) \in \overline{\mathbb{D}}\}$ — гладкая поверхность, \mathbb{D} — квадрируемая область. F — функция, заданная на поверхности S, то есть $F = F(\vec{r}(u,v)) = F(x(u,v),y(u,v),z(u,v)), (u,v) \in \overline{\mathbb{D}}$.

Определение 7.5.1. Интеграл первого рода $\iint\limits_S \mathcal{F} dS$ по поверхности S называется интеграл:

$$\iint_{S} \mathcal{F}(x, y, z) dS := \iint_{D} \mathcal{F}(\vec{r}(u, v)) \sqrt{EG - F^{2}} du dv$$
 (7.5.1)

Если функция \mathcal{F} — непрерывная на поверхности S, то интеграл (7.5.1) безусловно существует.

Пример 7.5.1. Функция $\mathcal{F} \equiv 1$ на поверхности S, тогда получаем:

$$\iint\limits_{S} dS = \iint\limits_{\mathbb{D}} \sqrt{EG - F^2} du dv = \mu_2(S)$$

Пример 7.5.2. Если поверхность S задана явно, $z = f(x, y), (x, y) \in \overline{\mathbb{D}}$, то:

$$\iint\limits_{S} \mathcal{F}(x,y,z)dS = \iint\limits_{\mathbb{D}} \mathcal{F}(x,y,f(x,y))\sqrt{1 + f_x'^2 + f_y'^2}dxdy$$

Определение 7.5.2. Поверхностный интеграл первого рода по кусочно-гладкой поверхности определяется как сумма интегралов по ее гладким частям.

§ 7.6. Поверхностный интеграл второго рода

Пусть $\vec{\nu}=\{\cos\alpha,\cos\beta,\cos\gamma\}$ — непрерывная еденичная нормаль на ориентированной гладкой поверхности S, представление которой задано в квадрируемой области. Ориентированную с помощью этой нормали поверхность обозначим через S^+ . Пусть $\vec{a}=\vec{a}(x,y,z)=\{P,Q,R\}$ — векторная функция заданная на поверхности S (так что (P,Q,R) — числовые функции на поверхности S).

Определение 7.6.1. Поверхностным интегралом второго рода по ориентированной поверхности S^+ называется интеграл: $\iint\limits_{S^+} \vec{a} \, d\vec{S} := \iint\limits_{S} (\vec{a}, \vec{\nu}) dS$. Для интегралов $\iint\limits_{S} \vec{a} \, d\vec{S}$ используется также обозначение:

$$\iint\limits_{S^{+}} P dy dz + Q dx dz + R dx dy \tag{7.6.1}$$

таким образом получим:

$$\iint\limits_{S^{+}} P dy dz + Q dx dz + R dx dy = \iint\limits_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) dS \tag{7.6.2}$$

Для случая, когда поочередно две функции из P,Q,R тождественно равны нулю, очевидны интегралы:

$$\iint_{S^{+}} P dy dz := \iint_{S} P \cos \alpha dS$$

$$\iint_{S^{+}} Q dx dz := \iint_{S} Q \cos \beta dS$$

$$\iint_{S^{+}} R dx dy := \iint_{S} R \cos \gamma dS$$
(7.6.3)

Выражение (7.6.1) теперь можно рассматривать как сумму трех только что определенных интегралов.

Следующие утверждения очевидны:

- 1. \vec{a} непрерывен на поверхности S, то $\iint\limits_{S^+} \vec{a} \, d\vec{S}$ существует.
- 2. Если ориентированную с помощью вектора $-\vec{\nu}$ поверхность S обозначить через S^- , то:

$$\iint\limits_{S^{-}} \vec{a} \, d\vec{S} = -\iint\limits_{S^{+}} \vec{a} \, d\vec{S}$$

Теорема 7.6.1. Пусть $S = \{\vec{r}(u,v), (u,v) \in \overline{\mathbb{D}}\}$ — гладкая поверхность, S^+ — поверхность S, ориентированная c помощью вектора $\vec{v} = \frac{\vec{n}}{|\vec{n}|}$, где $\vec{n} = [\vec{r}'_u, \vec{r}'_v]$, тогда поверхностный интеграл второго рода:

$$\iint_{S^{+}} \vec{a} \, d\vec{S} = \iint_{\mathbb{D}} \langle \vec{a}, \vec{r}'_{u}, \vec{r}'_{v} \rangle du dv = \iint_{\mathbb{D}} \begin{vmatrix} P & Q & R \\ x'_{u} & y'_{u} & z'_{u} \\ x'_{v} & y'_{v} & z'_{v} \end{vmatrix} du dv$$
 (7.6.4)

где $P = P(x(u,v),y(u,v),z(u,v)),\ Q = Q(x(u,v),y(u,v),z(u,v)),\ R = R(x(u,v),y(u,v),z(u,v)),$ $\vec{r}'_u = \{x'_u,y'_u,z'_u\},\ \vec{r}'_v = \{x'_v,y'_v,z'_v\}.$ В частности, полагая поочередное равенство двух функций и P,Q,R нулю, найдем интегралы (7.6.3).

Доказательство.

$$\iint\limits_{S^+} \vec{a} \, d\vec{S} := \iint\limits_{S} (\vec{a}, \vec{\nu}) dS = \iint\limits_{\mathbb{D}} \left(\vec{a}, \frac{\vec{n}}{|\vec{n}|} \right) |\vec{n}| du dv = \iint\limits_{\mathbb{D}} < \vec{a}, \vec{r}'_u, \vec{r}'_v > du dv$$

Пример 7.6.1. Поверхность S имеет явное представление: $z = f(x,y), (x,y) \in \overline{\mathbb{D}}$. Тогда $x = u, y = v, z = f(u,v), (u,v) \in \overline{\mathbb{D}}$ — ее параметрическое представление:

$$\begin{vmatrix} P & Q & R \\ x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{vmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & f'_u \\ 0 & 1 & f'_v \end{vmatrix} = \{ -f'_u, -f'_v, 1 \}$$
 (7.6.5)

Поэтому, если $\vec{a}=\{0,0,R\},$ то $<\vec{a},\vec{r}'_u,\vec{r}'_v>=(\vec{a},\vec{n})=R.$ Отсюда из формулы (7.6.4) получаем:

$$\iint\limits_{S^{+}} R dx dy := \iint\limits_{S^{+}} \vec{a} \, d\vec{S} = \iint\limits_{\mathbb{D}} R(x, y, f(x, y)) dx dy \tag{7.6.6}$$

Замечание 7.6.1. Поскольу в примере (7.6.1) проекция вектора \vec{n} на вектор \vec{k} равна еденице, то $\cos \gamma = \Pi \mathbf{p}_{\vec{k}} \vec{\nu} > 0$. $\vec{\nu}$ образует угол с осью Oz, то есть направленно вверх от поверхности S, поэтому поверхность S^+ называют верхней стороной S, а противположно ориентированную поверхность S^- — нижней стороной.

Пример 7.6.2. Пусть S_0 — цилиндрическая поверхность, направляющей которой является некоторая гладкая кривая, лежащая в плоскости Oxy, а образующая параллельная оси Oz. S_0^+ — поверхность S_0 , ориентированная непрерывной нормалью $\vec{\nu}$, тогда $\cos \gamma = \Pi \mathbf{p}_{Oz} \vec{\nu} = 0$ и

$$\iint_{S_0} R dx dy = \iint_{S_0} R \cos \gamma dS = 0 \tag{7.6.7}$$

Определение 7.6.2. Поверхностный интеграл второго рода по кусочно-гладкой ориентированной поверхности S определим как сумму интегралов второго рода по гладким частям, составим эту поверхность, при условии, что ориентация каждой из этих частей совпадает с выбранной ориентацие поверхности.

Глава 8

Элементы векторного анализа и теории поля

§ 8.1. Определения

Вместо терминов числовая функция в точке и вектор-функции точки будем употреблять такие равнозначные к ним понятия: скалярное поле и векторное поле (тем самым подчеркивается, что значение функции не зависит от выбора системы координат).

Определение 8.1.1. Пусть в области $\mathbb G$ задана $\vec a = \vec a(M)$ и существует $u = u(M), \ M \in \mathbb G,$ такая что

$$\vec{a}(M) = \text{grad } u(M) \tag{8.1.1}$$

Тогда функция u(M) называется потенциалом поля \vec{a} . Поле обладающее потенциалом называется потенциальным полем.

Введем $\nabla = \{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\}$ (оператор Набла). Тогда $\nabla U = \{\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z}\}$ и равенство (8.1.1) можно записать в виде $\vec{a}(M) = \nabla U$.

Определение 8.1.2. Пусть поле $\vec{a} = \{P, Q, R\}$ дифференцируемо в области \mathbb{G} , числовая функция

div
$$\vec{a} = (\nabla, \vec{a}) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

называется дивиргенцией поля \vec{a} в области \mathbb{G} . Векторная функция

$$\operatorname{rot} \vec{a} = [\vec{\nabla}, \vec{a}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left\{ \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\}$$

называется ротором или вихрем поля А.

Определение 8.1.3. Если векторное поле \vec{a} задано на кусочно-гладкой замкнутой кривой Γ , то

$$\oint_{\Gamma} \vec{a} \, d\vec{r}$$

называется циркуляцией векторного поля \vec{a} по кривой Γ .

Определение 8.1.4. Если кусочно-гладкая поверхность S ориентирована с помощью единичной нормали $\vec{\nu}$, то для векторного поля \vec{a} , заданного на поверхности S:

$$\iint\limits_{S}(\vec{a}\,,\vec{\nu}\,)dS$$

называется потоком векторного поля, через поверхность S.

§ 8.2. Формула Гаусса-Остроградского

Теорема 8.2.1. Пусть \mathbb{G} — ограниченная область $\subset \mathbb{R}^3_{xyz}$ с кусочно-гладкой границей ∂G , P,Q,R — функции, непрерывные вместе со своими частными производными: $\frac{\partial P}{\partial x}, \frac{\partial Q}{\partial y}, \frac{\partial R}{\partial z}, \ (x,y,z) \in \overline{\mathbb{G}}. \ \vec{a} = \{P,Q,R\}, \ mor\partial a$

$$\iiint_{\mathbb{G}} div \ \vec{a} \, dx dy dz = \iint_{\partial \mathbb{G}} (\vec{a}, \vec{\nu}) dS \tag{8.2.1}$$

 $rde \vec{v} - eduничная нормаль к <math>\partial \mathbb{G}$, внешняя относительно области \mathbb{G} . То есть поток векторного поля через границу области равен интегралу от дивиргенции поля по самой области. (8.2.1) называется формулой Остроградского-Гаусса.

$$\iiint \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx dy dz = \iint_{\partial \mathbb{G}^+} P dy dz + Q dx dz + R dx dy$$
 (8.2.2)

где $\partial \mathbb{G}^+$ ориентирована внешней нормалью $\vec{\nu}$.

Доказательство. \mathbb{R}^3

Определение 8.2.1. $\mathbb{G} \subset \mathbb{R}^3$, \mathbb{G}_z , S_0 с образующими параллельными оси Oz, S_1, S_2, φ, ψ , $\mathbb{D} \subset \mathbb{R}^2$ с кусочно-гладкой границей $\partial \mathbb{D}$. $\mathbb{G}_z = \{(x,y,z) : (x,y) \in \mathbb{D}, \varphi(x,y) < z < \psi(x,y)\}$. Аналогично определяются области \mathbb{G}_y и \mathbb{G}_x , цилиндрической поверхности, образующие которой параллельны Oy и Ox. Простой областью называется область, допускающая разбиение на области каждого из типов: \mathbb{G}_x , \mathbb{G}_y , \mathbb{G}_z .

Лемма 8.2.1. Пусть в теореме (8.2.1) \mathbb{G} — область типа \mathbb{G}_z , тогда

$$\iiint_{\mathbb{G}} \frac{\partial R}{\partial z} dx dy dz = \iint_{\partial \mathbb{G}^+} R dx dy \tag{8.2.3}$$

Доказательство.

$$\iiint_{\mathbb{G}} \frac{\partial R}{\partial z} dx dy dz = \iint_{\mathbb{D}} dx dy \int_{\varphi(x,y)}^{\psi(x,y)} \frac{\partial R}{\partial z} dz = \iint_{\mathbb{D}} \left(R(x,y,\psi(x,y)) - R(x,y,\varphi(x,y)) \right) dx dy = \iint_{\mathbb{D}} R(x,y,\psi(x,y)) dx dy - \iint_{\mathbb{D}} R(x,y,\varphi(x,y)) dx dy \stackrel{\text{(7.6.6)}}{=} \iint_{S_{2}^{+}} R dx dy + \iint_{S_{1}^{-}} R dx dy$$
(8.2.4)

где S_2^+ — верхняя сторона поверхности S_2 , а S_1^- — нижняя сторона поверхности S_1 . Поскольку двойной $\iint\limits_{S_0^+} Rdxdy = 0$ (см. (7.6.7)), $\partial \mathbb{G} = S_1 \cup S_2 \cup S_0$, то согласно (7.6.2) из (8.2.4) получаем (8.2.3).

Лемма 8.2.2. Если область \mathbb{G} можно разбить на конечное число областей типа \mathbb{G}_z , то выполняется (8.2.3).

Доказательство. Очевидно, что на поверхности, по которой прилигают две такие области, индуцируются противоположные ориентации, поэтому при положительном интегрировании по границе, произойдут взаимные уничтожения, в результате которых останется лишь интеграл $\partial \mathbb{G}^+$ исходной области \mathbb{G} .

Если область \mathbb{G} можно разложить на области типа $\mathbb{G}_y, \mathbb{G}_x$, то соответственно имеют место соотношения:

$$\iiint_{\mathbb{G}} \frac{\partial Q}{\partial y} dx dy dz = \iint_{\mathbb{G}^+} Q dx dz \tag{8.2.5}$$

$$\iiint_{\mathbb{G}} \frac{\partial Q}{\partial x} dy dz dx = \iint_{\mathbb{G}^+} Q dy dz$$
 (8.2.6)

если область \mathbb{G} простая, то складывая (8.2.3), (8.2.5) и (8.2.6). Получим для области \mathbb{G} равенство (8.2.2).

§ 8.3. Формула Стокса

Теорема 8.3.1. \vec{a} непрерывно дифференцируемая вектор-функция в области \mathbb{G} , содержащей ориентированную кусочно-гладкую поверхность $S = S_1 \cup \cdots \cup S_k, \ S_1, \ldots, S_k$ — гладкие куски поверхности и пусть ∂S — ее край с ориентацией, согласованной с заданной ориентацией поверхности S, тогда:

$$\int_{\partial S} \vec{a} \, d\vec{r} = \iint_{S} rot \, \vec{a} \, d\vec{S} \tag{8.3.1}$$

таким образом циркуляция векторного поля на границе поверхности равна потоку поля через поверхность. Наглядное согласование ориентации ∂S с ориентацией поверхности означает следующие: наблюдатель, двигающийся по краю ∂S (этот край может состоять из нескольких контуров), и, смотрящий из конца нормали \vec{v} , видит непосредственно прилегающую к нему часть поверхности слева от себя (\vec{v} — определяет ориентацию того куска S_i , на котором в данный момент находится наблюдатель). Формула (8.3.1) называется формулой Стокса. Если $S \subset \mathbb{R}^2$, то получаем формулу Грина.

Доказательство. Очевидно, достаточно провести доказательство для гладкой поверхности, так как написав формулу Стокса для каждой поверхности S_i $(i=1,\ldots,k)$, и положив получившиеся равенства получим формулу (8.3.1).

Чтобы доказательство упростить проведем его с дополнительными условиями на гладкой поверхности $S:S=\{\vec{r}(u,v):(u,v)\in\overline{\mathbb{D}}\}$ — давжды непрерывно дифференцируемая ориентированная поверхность, без особых точек в пространстве \mathbb{R}^3_{xyz} , \mathbb{D} — плоская ограниченная область у которой область $\partial\mathbb{D}$ — есть простой кусочно-гладкий контур. Пусть $u=u(t),v=v(t),\ t\in[a,b]$ — параметрическое представление контуров $\partial\mathbb{D}^+,\partial S$ — край поверхности S с представлением: $\vec{r}=\vec{r}(u(t),v(t)),\ a\leq t\leq b,\ S^+$ — поверхность S, оиентированная нормалью $\vec{\nu}=\frac{(\vec{r}'_u,\vec{r}'_v)}{|(\vec{r}'_u,\vec{r}'_v)|}=\{\cos\alpha,\cos\beta,\cos\gamma\}.$

Поскольку (rot
$$\vec{a}$$
, $\vec{\nu}$) = $(\vec{\nu}, [\nabla, \vec{a}]) = \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$, то в координатной записи формула

(8.3.1) примет вид:

$$\int_{\partial S} P dx + Q dy + R dz = \iint_{S^{+}} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dx dz + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy \quad (8.3.2)$$

поэтому достаточно проверить, что:

$$\int\limits_{\partial S} P dx = \iint\limits_{S^{+}} \frac{\partial P}{\partial z} dx dz - \frac{\partial P}{\partial y} dx dy$$

$$\int\limits_{\partial S} Q dy = \iint\limits_{S^{+}} \frac{\partial Q}{\partial x} dx dy - \frac{\partial Q}{\partial z} dy dz$$

$$\int\limits_{\partial S} R dz = \iint\limits_{S^{+}} \frac{\partial R}{\partial y} dy dz - \frac{\partial R}{\partial x} dx dz$$

сложив эти формулы, получим формулу (8.3.2). Проверим пример формулы:

$$\begin{split} \int\limits_{\partial S} P(x,y,z) dx &= \int\limits_{a}^{b} P(\vec{r}(u(t),v(t)) \cdot x_t'(u(t),v(t)) dt = \int\limits_{a}^{b} P(\vec{r}(u(t),v(t))) \left(\frac{\partial x}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial x}{\partial v} \frac{\partial v}{\partial t} \right) dt = \\ \int\limits_{\partial \mathbb{D}^+} P(\vec{r}(u,v)) \frac{\partial x}{\partial u} du + P(\vec{r}(u,v)) \frac{\partial x}{\partial v} dv = \iint\limits_{\mathbb{D}} \left[\frac{\partial}{\partial u} \left(P \frac{\partial x}{\partial v} \right) - \frac{\partial}{\partial v} \left(P \frac{\partial x}{\partial u} \right) \right] du dv = \\ \iint\limits_{\mathbb{D}} \left[\left(\frac{\partial P}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial P}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial u} \right) \frac{\partial x}{\partial v} + P \frac{\partial^2 x}{\partial v \partial u} - \left(\frac{\partial P}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial P}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial v} \right) \frac{\partial x}{\partial u} - P \frac{\partial^2 x}{\partial u \partial v} \right] du dv = \\ \iint\limits_{\mathbb{D}} \left[\frac{\partial P}{\partial z} \frac{\mathbb{D}(z,x)}{\mathbb{D}(u,v)} - \frac{\partial P}{\partial y} \frac{\mathbb{D}(x,y)}{\mathbb{D}(u,v)} \right] du dv = \iint\limits_{S^+} \frac{\partial P}{\partial z} dx dz - \iint\limits_{S^+} \frac{\partial P}{\partial y} dx dy \end{split}$$

§ 8.4. Инвариантность понятий дивергенция и ротор

Далее $\vec{a} = \vec{a}(M), \ M \in \mathbb{G}$ — непрерывно дифференцируемое векторное поле в трехмерной области \mathbb{G} .

Теорема 8.4.1. Пусть $\mathbb{V} \subset \mathbb{G}$ — окрестность (например шаровая). $|\mathbb{V}|$ — ее объем. d — диаметр, тогда:

$$div \ \vec{a}(M_0) = \lim_{d \to 0} \frac{\int_{\mathbb{V}} (\vec{a}, \vec{\nu}) dS}{|\mathbb{V}|}$$
(8.4.1)

 $\vec{\nu}$ — внешняя нормаль к границе $\partial \mathbb{V}$ области \mathbb{V} .

Доказательство. Используя формулу Остроградского-Гаусса и теорему о среднем получим:

$$|\mathbb{V}| \cdot \operatorname{div} \vec{a}(M') = \iint_{\partial \mathbb{V}} (\vec{a}, \vec{\nu}) dS$$
(8.4.2)

где $M' \in \mathbb{V}$. При $d \to 0 : M' \to M_0$, div $M' \to \text{div } M_0$. Отсюда из (8.4.2) следует (8.4.1).

Правая часть формулы (8.4.1) не зависит от выбора координат. Поэтому div \vec{a} инвариантна.

Если считать \vec{a} полем скоростей течения жидкости или газа, то дивиргенцию можно интерпретировать как плотность распределения источников в плотности течения.

Теорема 8.4.2. Пусть $M_0 \in \mathbb{G}$, $\vec{\nu}$ — произвольный фиксированный единичный вектор Π — плоскость, проходящая через точку M_0 перпендикуляроно $\vec{\nu}$. S — окрестность (например круговая) точки M_0 плоскости Π ($S \subset \Pi \cap \mathbb{G}$), |S| — ее площадь, d — ее диаметр. И пусть контур \vec{S} согласованно ориентирован c нормалью $\vec{\nu}$. Тогда:

$$(rot \ \vec{a}(M_0), \vec{\nu}) = \lim_{d \to 0} \frac{\int_{\partial S} \vec{a} d\vec{r}}{|S|}$$

$$(8.4.3)$$

Доказательство. Из формулы Стокса и теоремы о среднем получим:

$$|S| \cdot (\operatorname{rot} \vec{a}(M'), \vec{\nu}) = \int_{\partial S} \vec{a} d\vec{r}, \ M' \in S$$
(8.4.4)

если $d \to 0$, то $M' \to M_0$, (rot $\vec{a}(M'), \vec{\nu}) \to$ (rot $\vec{a}(M_0), \vec{\nu}$). Отсюда из (8.4.4) получаем (8.4.3).

Правая часть равенства (8.4.3) не зависит от выбор системы координат. Выбрав в качестве $\vec{\nu}$ три линейно независимых вектора получим по формуле (8.4.3) три проекции rot \vec{a} на эти векторы. Этими своими проекциями ротор однозначно определяется. Поскольку они не зависят от выбора системы координат, следовательно rot \vec{a} не зависит от системы координат.

§ 8.5. Потенциальные векторные поля

Поверхность S, для которой

Определение 8.5.1. Множество $\mathbb{E} \subset \mathbb{R}^3$ называется односвязанным, если для любого кусочногладкого замкнутого контура, принадлежащего \mathbb{E} , существует допустимая поверхность, краем которой он являлся и которая так же лежит в \mathbb{E} .

Если \mathbb{E} — плоская область $\mathbb{G} \subset \mathbb{R}^2$, то определение (8.5.1) равносильно условию: для любого кусочно-гладкого контура, ограниченная им облать \mathbb{D} содержится в \mathbb{G} (то есть односвязная плоская область не имеет дыр).

В пространстве примером односвязных областей являются выпуклые области, множество точек лежащих между двумя коцентрическими сферами.

Теорема 8.5.1. Пусть в односвязной области $\mathbb{G} \subset \mathbb{R}^3$ задано непрерывно дифференцируемое векторное поле $\vec{a} = \{P, Q, R\}$, тогда эквивалентны следующие пять свойств:

- 1. $\vec{a} = \vec{a}(M) nomeнциальна в <math>\mathbb{G}$
- 2. Pdx+Qdy+Rdz является в $\mathbb G$ полным дифференциалом некоторой функции u=u(M), которая и является потенциалом поля $\vec a$
- 3. Для любой точки $A \in \mathbb{G}$ и $B \in \mathbb{G} \int \vec{a} \, d\vec{r}$ не зависит от кривой \widehat{AB} , соединяющей эти точки в области \mathbb{G} (предполагается, что \widehat{AB} простая кусочно-гладкая кривая)

- 4. $\int \vec{a} \, d\vec{r} = 0$ для любого кусочно-гладкого контура $\Gamma \subset \mathbb{G}$
- 5. $rot\ \vec{a}=0\ в\ области\ \mathbb{G}$

Доказательство. 1. Из 2 следует 1.

Пусть в $\mathbb G$ существует функция U(M)=U(x,y,z):dU=Pdx+Qdy+Rdz. Тогда $P=\frac{\partial U}{\partial x},Q=\frac{\partial U}{\partial y},R=\frac{\partial U}{\partial z},$ так что $\vec{a}=\mathrm{grad}\ U.$

2. Из 1 следует 5.

Пусть
$$\vec{a} = \text{grad } U = \nabla U$$
, тогда rot $\vec{a} = [\nabla, \vec{a}] = [\nabla, \nabla U] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial U}{\partial x} & \frac{\partial U}{\partial y} & \frac{\partial U}{\partial z} \end{vmatrix} = 0$. Равен-

ство смешанных производных обеспечено непрерывной дифференцируемостью функции P,Q,R.

3. Из 5 следует 4.

Пусть rot $\vec{a} = 0$ в области \mathbb{G} . В силу односвязности области \mathbb{G} существует допустимая поверхность $S \subset \mathbb{G}$ для которой Γ является краем. Тогда по теореме Стокса:

$$\int_{\Gamma} \vec{a} \, d\vec{r} = \iint_{S} \operatorname{rot} \, \vec{a} \, d\vec{S} = 0$$

4. Из 4 следует 3.

Пусть $\int\limits_{\Gamma} \vec{a} \, d\vec{r} = 0$, $\forall \Gamma \in \mathbb{G}$ (кусочно-гладкой). $A \in \mathbb{G}, B \in \mathbb{G}$, $(\widehat{AB})_1, (\widehat{AB})_2$ — кусочно гладкие простые кривые, соединяющие в \mathbb{G} точки A, B. Если эти кривые не имеют общих точек, то кривая $\Gamma := (\widehat{AB})_1 \cup (\widehat{AB})_2$ является простым кусочно-гладким контуром, лежащим в \mathbb{G} , тогда:

$$\oint_{\Gamma} = \int_{(\widehat{AB})_1} - \int_{(\widehat{AB})_2} = 0 \implies \int_{(\widehat{AB})_1} = \int_{(\widehat{AB})_2}$$

если же $(\widehat{AB})_1 \cap (\widehat{AB})_2 \neq 0$, то в области $\mathbb G$ нужна третья кривая $(\widehat{AB})_3$, которая не пересекается ни с одной из прежних. Тогда по доказанному: $\int = \int = \int (\widehat{AB})_1 = (\widehat{AB})_2 = (\widehat{AB})_3$

5. из 3 следует 2.

Зафиксируем какую-либо точку $M_0 \in \mathbb{G}$ и определим функцию U(M) по формуле:

$$U(M) = \int_{\widehat{M_0M}} \vec{a} \, d\vec{r} = \int_{\widehat{M_0M}} Pdx + Qdy + Rdz, \ M \in \mathbb{G}$$
 (8.5.1)

где $\widehat{M_0M}$ — какая-либо простая кусочно-гладкая кривая, соединяющая в $\mathbb G$ точки M_0 и M. Формула (8.5.1) в силу свойства 3 определяет функцию U(M) однозначно. Покажем что:

$$dU = Pdx + Qdy + Rdz (8.5.2)$$

в любой точке $M(x,y,z)\in \mathbb{G}$. Пусть $M'(x+h,y,z)\in \mathbb{G},\widehat{MM'}$ — отрезок с концами M и M'. Тогда:

$$U(M') - U(M) = \int_{\widehat{MM'}} Pdx + Qdy + Rdz = \int_{x}^{x+h} P(t, y, z)dt$$

откуда получаем:

$$\frac{\partial U}{\partial x} = \lim_{h \to 0} \frac{U(x+h,y,z) - U(x,y,z)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} P(t,y,z) dt = P(x,y,z)$$

Аналогично получим $\frac{\partial U}{\partial y}=Q, \ \frac{\partial U}{\partial z}=R.$ Поскольку функции P,Q,R непрерывны, то функция U(M) дифференцируема и равенство (8.5.2) доказано.

Замечание 8.5.1. Потенциал U(M) поля \vec{a} определен с точностью до аддитивной постоянной. Из формулы (8.5.1) следует, что потенциальное поле $\vec{a}: \int \vec{a} \, d\vec{r} = U(B) - U(A)$.

Замечание 8.5.2. Линиями потенциала называют $U, \vec{F} = -\text{grad } U.$

§ 8.6. Соленоидальные векторные поля

Определение 8.6.1. Непрерывная в области $\mathbb{G} \subset \mathbb{R}^3$ векторное поле \vec{a} называется соленои-дальным, если для любой ограниченной области $\mathbb{V} \subset \mathbb{G}$ с кусочно-гладкой границей $\partial \mathbb{V} \subset \mathbb{G}$ его поток через эту границу равен 0. Очевидно, что понятия соленоидальности не зависит от выбора ориентации на границе $\partial \mathbb{V}$ обалсти \mathbb{V} .

Теорема 8.6.1. Для того, чтобы непрерывно дифференцируемое векторное поле \vec{a} было соленоидальным в области \mathbb{G} необходимо и достаточно, чтобы на всех точках области выполнялось равенство:

$$div \ \vec{a} = 0 \tag{8.6.1}$$

Доказательство. Необходимость. Пусть \vec{a} соленоидально в $\mathbb{G}, M \in \mathbb{G}, r_0 \in \mathbb{G}$. Тогда $r_0 > 0, \forall r : r < r_0$ и с центром в точке M содержится в \mathbb{G} . Для этих шаров:

$$\iint\limits_{\partial \mathbb{V}_r} \vec{a} \, d\vec{S} = 0$$

$$\iint \vec{a} \, d\vec{S}$$

$$\operatorname{div} \vec{a}(M) = \lim_{r \to 0} \frac{\iint\limits_{\mathbb{V}_r} \vec{a} \, d\vec{S}}{|\mathbb{V}_R|} = 0$$

<u>Достаточность</u>. Если выполнено (8.6.1), то в силу формулы Остроградского-Гаусса: для любого $\mathbb{V} \subset \mathbb{G}$ с кусочно-гладкой границей $\partial \mathbb{V}$ имеем:

$$\iint\limits_{\partial \mathbb{V}_r} \vec{a} \, d\vec{S} = \iiint\limits_{\mathbb{V}} \operatorname{div} \, \vec{a} \, dx dy dz = 0$$

Пример 8.6.1. Если \vec{b} — дважды непрерывно дифференцируемое в области $\mathbb G$ поле, то rot \vec{b} является соленоидальным в области $\mathbb G$ полем.

div rot
$$\vec{b} = (\nabla, [\nabla, \vec{b}]) = 0$$

Глава 9

Бесконечные произведения и Г-функция Эйлера

§ 9.1. Бесконечные произведения

Определение 9.1.1. Пусть $\{b_n\}$ — поселдовательность положительных чисел. Формально бесконечное произведение ее членов $b_1b_2\dots b_n\dots$ называется бесконечным произведением. Обозначается так:

$$b_1b_2\cdots = \prod_{n=1}^{\infty} b_n = \prod b_n$$

Определение 9.1.2. Конечное произведение $\prod_n = b_1 \dots b_n$ называется n-ым частичным произведением.

Определение 9.1.3. Если последовательность произведений \prod_n сходится к числу $\prod \neq 0$ ($\prod > 0$), то бесконечное произведение называется сходящимся к \prod . Если $\prod = 0$, то бесконечное произведение расходится к нулю, а если $\prod_n \to \infty$, то оно называется расходящимся к бесконечности. Если предела нет, то оно называется расходящимся.

Утверждение 9.1.1 (необходимый признак сходимости). Если $\prod b_n$ сходится, то $b_n \to 1$ при $n \to \infty$.

Доказательство. Если $\prod_n \to \prod \neq 0$, то

$$b_n = \frac{\prod_n}{\prod_{n=1}} \to \frac{\prod}{\prod} = 1, \ n \to \infty$$

Утверждение 9.1.2. Сходимость бесконечного произведения $\prod b_n$ влечет за собой сходимость ряда $\sum \ln b_n$ и наоборот. Причем

$$\ln \prod_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \ln b_n$$

Доказательство. Имеем

$$\ln \prod_{n} = \sum_{k=1}^{n} \ln b_{k} =: S_{n}, \ \prod_{n} = e^{S_{n}}$$
(9.1.1)

из непрерывности логарифмической и показательной функции следует, что если $\prod_n \to \prod$, то $S_n \to \ln \prod$ и обратно, если $S_n \to S$, то $\prod_n \to e^S$.

Определение 9.1.4. Бесконечное произведение называется абсолютно сходящимся, если абсолютно сходится ряд $\sum \ln b_n$. Сходящееся произведение, не являющееся абсолютно сходящимся, называется условно сходящимся. Очевидно, что абсолютно сходящееся произведение сходится в обычном смысле. Поскольку мы считаем $b_n > 0$, то $b_n = 1 + a_n$, где $a_n > -1$. Тогда имеем:

$$\prod_{n=1}^{\infty} b_n = \prod_{n=1}^{\infty} (1 + a_n)$$

Теорема 9.1.1. Бесконечное произведение $\prod\limits_{n=1}^{\infty}(1+a_n)$ абсолютно сходится тогда и только тогда, когда $\sum\limits_{n=1}^{\infty}|a_n|$ сходится.

Доказательство. Действительно, $1+a_n\to 1 \Longleftrightarrow a_n\to 0$, так что $|\ln(1+a_n)|\sim |a_n|, n\to\infty$. Ряды $\sum |\ln(1+a_n)|$ и $\sum |a_n|$ сходятся и расходятся одновременно.

§ 9.2. Определение Г-функции Эйлера. Некоторые ее свойства

По определению $\Gamma(x)$

$$\Gamma(x) = \frac{1}{x} \prod_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^x}{1 + \frac{x}{n}}, \ x \neq 0, -1, -2, \dots$$
 (9.2.1)

Представим общий член произведения так:

$$\frac{(1+\frac{1}{n})^x}{1+\frac{x}{n}} = 1 + \frac{x(x-1)}{2} \cdot \frac{1}{n^2} + \bar{o}\left(\frac{1}{n^2}\right), \ n \to \infty$$

Отсюда в силу теоремы (9.1.1) вытекает, что наше параметрическое представление абсолютно сходится.

Отметим некоторые свойства Г-функции Эйлера:

1.

$$\Gamma(x) = \lim_{n \to \infty} P_n(x), \ P_n(x) = (n+1)^x \frac{n!}{x(x+1)\dots(x+n)}$$
(9.2.2)

Из того, что *n*-ое частичное произведение имеет вид:

$$\frac{\prod_{k=1}^{n} \left(\frac{k+1}{k}\right)^{x}}{x(1+x)(1+\frac{x}{2})\dots(1+\frac{x}{n})} = \frac{(n+1)^{x}n!}{x(x+1)\dots(x+n)} = P_{n}(x)$$

2. Функциональное уравнения для Г-функции:

$$\Gamma(x+1) = x\Gamma(x), \ \Gamma(1) = 1 \tag{9.2.3}$$

действительно, $\frac{\Gamma(x+1)}{\Gamma(x)} = \lim_{n \to \infty} \frac{P_n(x+1)}{P_n(x)} = \lim_{n \to \infty} \frac{(n+1)x}{(x+1)+n} = x$. В качестве следствия получаем: $\Gamma(m+1) = m!$.

§ 9.3. Представление синуса в виде бесконечного произведения и формула дополнения для Г-функции

Теорема 9.3.1 (разложение функции ctg на простейшие дроби). *Имеет место формула:*

$$\pi \operatorname{ctg} \alpha \pi = \frac{1}{\alpha} + \sum_{k=1}^{\infty} \frac{2\alpha}{\alpha^2 - k^2} = \lim_{n \to \infty} \sum_{k=-n}^{n} \frac{1}{\alpha - k}, \ \alpha \in \mathbb{R} \ (\mathbb{Z})$$
 (9.3.1)

Доказательство. Формулу (9.3.1) достаточно установить для $\alpha \in (0, \frac{1}{2})$. Справедливость ее для остальных $\alpha \notin \mathbb{Z}$ следует из нечетности выражений слева и справа в формуле (9.3.1) и их 1-периодичности.

На отрезке $[-\pi,\pi]$ рассмотрим функцию $g(x)=\cos\alpha x$, где $\alpha\in[-\frac{1}{2},\frac{1}{2}]$. Продолжим ее на $\mathbb R$ как периодическую с периодом 2π . Тогда g(x) будет четной и непрерывной на $\mathbb R$. Так как g(x) — непрерывная и кусочно-гладкая функция, то ее ряд Фурье равномерно сходится на $I=[0,2\pi]$ к функции g(x). Поэтому при всех $x\in I$ имеем разложение:

$$g(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

где $b_k = 0$ в силу четности g(x).

$$\frac{a_0}{2} = \frac{\sin \alpha \pi}{\alpha \pi}$$
$$a_k = (-1)^k \frac{2\alpha}{\alpha^2 - k^2} \cdot \frac{\sin \alpha \pi}{\pi}$$

таким образом:

$$g(x) = \cos \alpha x = \frac{\sin \alpha \pi}{\pi} \left(\frac{1}{\alpha} + \sum_{k=1}^{\infty} (-1)^k \frac{2\alpha}{\alpha^2 - k^2} \cos kx \right), \ x = \pi$$

Теорема 9.3.2 (Эйлера). $\forall \alpha \in \mathbb{R}$,

$$\sin \pi \alpha = \pi \alpha \prod_{k=1}^{\infty} \left(1 - \frac{\alpha^2}{k^2} \right) \tag{9.3.2}$$

Доказательство. Равенство (9.3.2) эквивалентно при $\alpha \in (0,1)$ равенству:

$$\ln\left(\frac{\sin\pi\alpha}{\pi\alpha}\right) = \sum_{k=1}^{\infty} \ln\left(1 - \frac{\alpha^2}{k^2}\right) =: S(\alpha)$$
 (9.3.3)

Ряд справа сходится равномерно при $\alpha \in [-\alpha_0, \alpha_0]$, где $0 < \alpha_0 < 1$. Пусть $S(\alpha)$ — сумма этого ряда. Так как:

$$\ln\left(1 - \frac{\alpha^2}{k^2}\right) = \frac{2\alpha}{\alpha^2 - k^2}$$

и $\sum\limits_{k=1}^{\infty} \frac{2\alpha}{\alpha^2-k^2}$ равномерно сходится на $[-\alpha_0,\alpha_0]$, то существует производная $S'(\alpha)$ и выполняется равенство:

$$S'(\alpha) = \sum_{k=1}^{\infty} \frac{2\alpha}{\alpha^2 - k^2}, \ \alpha \in (-1, 1)$$

отсюда и из (9.3.1) получим:

$$S'(\alpha) = \pi \operatorname{ctg} \alpha \pi - \frac{1}{\alpha}, \ \alpha \in (-1, 1)$$
$$S(\alpha) = \ln \frac{\sin \pi \alpha}{\alpha} + C, \ C = const$$

так как $\lim_{\alpha \to 0} S(\alpha) = 0$ (ряд (9.3.3) сходится равномерно), то

$$C = -\lim \ln \frac{\sin \pi \alpha}{\alpha} = -\ln \pi$$

так что

$$S(\alpha) = \ln \frac{\sin \pi \alpha}{\pi \alpha}$$

и равенство (9.3.3), а также (9.3.2) доказаны.

Следствие. При $\alpha = \frac{1}{2}$ получим формулу Валлиса:

$$\frac{2}{\pi} = \prod_{k=1}^{\infty} \left(1 - \frac{1}{4n^2} \right) \tag{9.3.4}$$

Теорема 9.3.3 (формула дополнения Эйлера). При $x \notin \mathbb{Z}$:

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x} \tag{9.3.5}$$

Доказательство. Используя определение Г-функции и следующие равенство:

$$\Gamma(1-x) = -x\Gamma(-x) = \prod_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{-x}}{1-\frac{x}{n}}$$

докажем эту теорему. Перемножая $\Gamma(x)$ и $\Gamma(1-x)$, получим:

$$\Gamma(x) \cdot \Gamma(1-x) = \frac{\pi}{\sin \pi x}$$

Следствие. $\Pi pu \ x = \frac{1}{2} \ находим:$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \tag{9.3.6}$$

§ 9.4. Интегральное представление для Г-функции Эйлера

Лемма 9.4.1 (формула Гаусса). Пусть $P_n(x) = (n+1)^x \frac{n!}{x(x+1)...(x+n)}$. При x > 0:

$$P_n(x) = \left(1 + \frac{1}{n}\right)^x \int_{0}^{n} \left(1 - \frac{t}{n}\right)^n t^{x-1} dt$$

Доказательство. С помощью замены переменной и интегрирования по частям, получаем:

$$\left(1 + \frac{1}{n}\right)^{x} \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{x-1} dt = (n+1)^{x} \int_{0}^{1} (1-y)^{n} y^{x-1} dy = (n+1)^{x} \frac{1}{x} \int_{0}^{1} (1-y)^{n} dy^{x} = (n+1)^{x} \frac{1}{x} \int_{0}^{1} (1-y)^{n} dy^{x} = (n+1)^{x} \frac{n}{x} \int_{0}^{1} (1-y)^{n-1} y^{x} dy = \dots = (n+1)^{x} \frac{n!}{x(x+1)\dots(x+n-1)} \int_{0}^{1} y^{x+n-1} dy = (n+1)^{x} \frac{n!}{x(x+1)\dots(x+n)} = P_{n}(x)$$

Теорема 9.4.1 (Интегральное представление Γ -функции). x > 0

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt \tag{9.4.1}$$

При 0 < x < 1: Интеграл имеет особую точку t = 0 и сходится в ее окрестности. В окрестности ∞ подинтегральное выражение ограничено функцией $e^{-t/2}$ и сходится в этой окрестности.

Доказательство. Рассмотрим разность

$$R_n(x) = \int_0^n t^{x-1} e^{-t} dt - P_n(x) \left(1 + \frac{1}{n} \right)^{-x} = \int_0^n t^{x-1} \left(e^{-t} - \left(1 - \frac{t}{n} \right)^n \right) dt$$
 (9.4.2)

покажем, что при $t \in [0, n]$:

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n \le \frac{1}{n}e^{-t}t^2 \tag{9.4.3}$$

действительно, любое неравенство является следствием неравенства $1+y \le e^y \left(1-\frac{t}{n}\right) \le e^{-t/n}$. Правое неравенство получено ссылкой на этоже неравенство, а так же на неравенство Бернулли: $(1+y)^n \ge 1+ny, \ (y>-1)$. Учитывая все это, получаем:

$$e^{-t} - \left(1 - \frac{t}{n}\right)^n = e^{-t} \left(1 - e^t \left(1 - \frac{t}{n}\right)^n\right) \le e^{-t} \left(1 - \left(1 + \frac{t}{n}\right)^n \left(1 - \frac{t}{n}\right)^n\right) = e^{-t} \left(1 - \left(1 - \frac{t^2}{n^2}\right)^n\right) \le e^{-t} n \frac{t^2}{n^2} = \frac{1}{n} e^{-t} t^2$$

учитывая (9.4.2) и (9.4.3) получаем:

$$0 \le R_n(x) < \int_0^n \frac{t^{x-1}e^{-t}}{n} dt < \frac{1}{n} \int_0^\infty t^{x-1}e^{-t} dt = \frac{\Gamma(x)}{n} \Rightarrow R_n(x) \to 0, n \to \infty$$

отсюда
$$\int_{0}^{\infty} t^{x-1}e^{-t}dt = \lim_{n \to \infty} \int_{0}^{n} t^{x-1}e^{-t}dt = \lim_{n \to \infty} \left(R_n(x) + P_n(x)\left(1 + \frac{1}{n}\right)^{-x}\right) = \lim_{n \to \infty} P_n(x) = \Gamma(x).$$

Замечание 9.4.1. С помощью интегрирования по частям и теоремы (9.4.1) вводится следующая формула Коши, справедливая при значениях $x \in (-(n+1), n), n \in \mathbb{N}$:

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} (e^{-t} - \varphi_n(t)) dt, \ \varphi_n(t) = \sum_{k=0}^{n} (-t)^k \frac{1}{k!}$$

Следствие (интеграл Эйлера-Пуассона).

$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}, \ \Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} dt = 2 \int_{0}^{+\infty} e^{-x^2} dx, \ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

Дальнейшее изучение свойств Г-функций будем проводить, исходя из ее интегрального представления и основываясь на теории интегралов, зависящих от параметров.

§ 9.5. Формула Стирлинга

$$\Gamma(x+1) = \sqrt{2\pi x} \left(\frac{x}{e}\right)^x \left(1 + \frac{1}{12x} + \frac{1}{288x^2} + \bar{o}\left(\frac{1}{x^3}\right)\right), \ x \to \infty$$

Теорема 9.5.1.

$$\Gamma(n+1) = n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, \ n \to \infty, \ n \in \mathbb{N}$$
 (9.5.1)

 $(\sqrt[n]{n!} \sim \frac{n}{e}, \ n \to \infty).$

Лемма 9.5.1. $\Pi pu \ \forall n = 1, 2, \dots \ umeem:$

$$e < \left(1 + \frac{1}{n}\right)^{n + \frac{1}{2}} < e^{1 + \frac{1}{12n(n+1)}}$$
 (9.5.2)

Доказательство. $|x|<1, \ln\frac{1+x}{1-x}=\ln(1+x)-\ln(1-x)=\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{x^n}{n}-\sum\limits_{n=1}^{\infty}\left(-\frac{x^n}{n}\right)=2x\sum\limits_{k=0}^{\infty}\frac{x^{2k}}{2k+1}=2x(1+\frac{1}{3}x^2+\frac{1}{5}x^4+\dots),$ отсюда при 0< x<1 получим:

$$2x < \ln \frac{1+x}{1-x} < 2x \left(1 + \frac{1}{3} \frac{x^2}{1-x^2}\right)$$
$$1 < \frac{1}{2x} \ln \frac{1+x}{1-x} < 1 + \frac{1}{3} \frac{x^2}{1-x^2}$$

или, что тоже самое,

$$1 < \frac{t}{2} \ln \frac{t+1}{t-1} < 1 + \frac{1}{3} \frac{1}{t^2 - 1}, \ t > 1, \ t = 2n+1, \ n \in \mathbb{N}$$
$$1 < \left(n + \frac{1}{2}\right) \ln \left(1 + \frac{1}{n}\right) < 1 + \frac{1}{12} \frac{1}{n(n+1)}$$

потенциируя, получаем (9.5.2).

Лемма 9.5.2 (формула Валлиса).

$$\pi = \lim_{n \to \infty} \frac{1}{n} \left(2^{2n} \frac{(n!)^2}{(2n)!} \right)^2 \tag{9.5.3}$$

Доказательство. Действительно, согласно формуле (9.3.4):

$$\frac{\pi}{2} = \prod_{k=1}^{\infty} \left(1 - \frac{1}{4k^2} \right)^{-1} = \lim_{n \to \infty} \prod_{k=1}^{n} \frac{(2k)^2}{(2k-1)(2k+1)}$$
(9.5.4)

запишем \prod_n в виде:

$$\prod_{n} = \frac{1}{2n+1} \left(\frac{(2n)!!}{(2n-1)!!} \right)^{2} = \frac{1}{2n+1} \left(\frac{((2n)!!)^{2}}{(2n)!} \right)^{2} = \frac{1}{2n+1} \left(\frac{2^{2n}(n!)^{2}}{(2n)!} \right)^{2}$$

отсюда и из (9.5.4) получаем (9.5.3).

Доказательство. (теоремы (9.5.1)). Положим:

$$x_n = \frac{n!e^n}{n^{n+\frac{1}{2}}} \tag{9.5.5}$$

требуется доказать, что

$$\lim_{n \to \infty} x_n = \sqrt{2\pi} \tag{9.5.6}$$

поскольку $\frac{x_n}{x_{n+1}} = \frac{1}{e} \left(1 + \frac{1}{n}\right)^{n+\frac{1}{2}}$, то в силу (9.5.2) получаем:

$$1 < \frac{x_n}{x_{n+1}} < \frac{e^{\frac{1}{12n}}}{e^{\frac{1}{12(n+1)}}} = e^{\frac{1}{12n(n+1)}}$$

$$(9.5.7)$$

из левого неравенства следует, что последовательность x_n убывает и следовательно имеет конечный предел $a, (a \ge 0)$:

$$\lim_{n \to \infty} x_n = a \tag{9.5.8}$$

положим $y_n = x_n e^{-\frac{1}{12n}}$, $n \in \mathbb{N}$. Очевидно, $\lim_{n \to \infty} y_n = a$. В силу правого из неравенств (9.5.7) $y_n < y_{n+1}$, так что a > 0. Получаем, что $x_n = a(1 + \varepsilon_n)$, где $\varepsilon_n \to 0$, $n \to \infty$. Отсюда из (9.5.5) получим:

$$n! = a \frac{n^{n+\frac{1}{2}}}{e^n} (1 + \varepsilon_n)$$
$$(2n)! = a \frac{2^{2n+\frac{1}{2}} n^{2n+\frac{1}{2}}}{e^{2n}} (1 + \varepsilon_{2n})$$

Подставив эти выражения в формулу Валлиса (9.5.3) получаем:

$$\pi = \lim_{n \to \infty} \frac{1}{n} \left(a \sqrt{\frac{n}{2}} \cdot \frac{(1+\varepsilon_n)^2}{1+\varepsilon_{2n}} \right)^2$$

$$\pi = \lim_{n \to \infty} \frac{1}{n} \left(2^{2n} \left(\frac{an^{n+\frac{1}{2}}(1+\varepsilon_n)}{e^n} \right)^2 \cdot \frac{1}{a} \cdot \frac{e^{2n}}{2^{2n+\frac{1}{2}}n^{2n+\frac{1}{2}}(1+\varepsilon_{2n})} \right)^2 =$$

$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{a(1+\varepsilon_n)^2}{1+\varepsilon_{2n}} \cdot \sqrt{\frac{n}{2}} \right)^2 = \frac{a^2}{2} \Longrightarrow a = \sqrt{2\pi}$$

что и требовалось доказать (смотри (9.5.6) и (9.5.8)).