Theorem (3.2.10). Let f be the function defined by $f(x) = x^3$. Let g be the function defined by $g(x) = x^4$. f(x) is $\mathcal{O}(g(x))$, but g(x) is not $\mathcal{O}(f(x))$.

Proof. f(x) is $\mathcal{O}(g(x))$ with constant witnesses C=1, and k=1, by the definition of big-O. That is, $|f(x)| \leq C|g(x)|$, for all x>1.

If g(x) were $\mathcal{O}(f(x))$, then there would exist constant witnesses C and k such that $|g(x)| \leq C|f(x)|$. For x > 1, we would have $x^4 \leq C \cdot x^3$, which implies that $x \leq C$. But no constant C exists satisfying the unbounded domain for x. Therefore it is not the case that g(x) is $\mathcal{O}(f(x))$.