- 1. State the three axioms of projective geometry.
- **Axiom 1.** For any pair of distinct points there is unique line incident with these points. \Box
- **Axiom 2.** For any pair of distinct lines there is unique point incident with these lines. \Box
- **Axiom 3.** There are four points no three of which are incident with the same line. \Box
- 2. Define the following:
 - (a) The points A, B, and C are **affine independent**.

Solution: They are not colinear.

(b) P is an **affine combination** of the points P_1 , P_2 , P_3 , and P_4 .

Solution: There are scalars α_1 , α_2 , α_3 , and α_4 with $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1$ and

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_2 + \alpha_4 P_4.$$

(c) The map $f: \mathbb{A}^2 \to \mathbb{A}^2$ is an **affine map**.

Solution: For any points $P, Q \in \mathbb{A}^2$ and scalar t the equality

$$f((1-t)P + tQ) = (1-t)f(P) + tf(Q)$$

holds.

Alternate Solution: For any points $P,Q\in\mathbb{A}^2$ and scalars α and β with $\alpha+\beta=1$ the equality

$$f(\alpha P + \beta Q) = \alpha f(P) + \beta f(Q)$$

holds. \Box

3. Recall that the lines in \mathbb{A}^2 are the sets of the form

$$L(a,b,c) = \{(x,y) : ax + by + c = 0\}$$

where a and b are not both zero. Let A = (3,2) and B = (1,4), and $\ell = L(1,-1,3)$. Find $\ell \cap \overleftrightarrow{AB}$.

Solution: The points on \overrightarrow{AB} are affine combinations of A and B, that is they are of the form

$$(x,y) = (1-t)A + tB = (1-t)(3,2) + t(1,4) = (3-2t,2+2t).$$

For one of these points to be on ℓ we have

$$x - y + 3 = 1(3 - 2t) - 1(2 + 2t) + 3 = 4 - 4t = 0$$

and therefore t = 1. This gives (x, y) = (3 - 2(1), 2 + 2(1)) = (1, 4).

$$\ell \cap \overleftrightarrow{AB} = (1,4)$$

4. Definition. The point P is one third of the way from P_0 to P_1 iff

$$P = \frac{2}{3}P_0 + \frac{1}{3}P_1.$$

(a) For the points $P_0 = (1,0)$ and $P_1 = (0,1)$ draw the point that is one third of the way from P_0 to P_1 .

Solution:

(b) Let $f: \mathbb{A}^2 \to \mathbb{A}^2$ be an affine map and P the point that is one third of the way from P_0 to P_1 . Prove that f(P) is one third of the way from $f(P_0)$ to $f(P_1)$.

Solution: We are given that

$$P = \frac{2}{3}P_0 + \frac{1}{3}P_1$$

and that if α and β are scalars with $\alpha + \beta = 1$ then

$$f(\alpha P_0 + \beta P_1) = \alpha f(P_0) + \beta f(P_1).$$

We wish to show

$$f(P) = \frac{2}{3}f(P_0) + \frac{1}{3}(P_1).$$

This follows from the equations just given by letting $\alpha = \frac{2}{3}$ and $\beta = \frac{1}{3}$.

5. Theorem. If P_1 , P_2 , and P_3 are affinely independent points in \mathbb{A}^2 , then any point $P \in \mathbb{A}^2$ is affine combination of P_1 , P_2 , and P_3 .

Use this theorem to prove that if f and g are affine maps that agree on an affinely independent set, then f(P) = g(P) for all P.

Solution: Let P_0 , P_1 , and P_2 be three affinely independent points on which f and g agree. That is

$$f(P_1) = g(P_1),$$
 $f(P_2) = g(P_2),$ $f(P_3) = g(P_3).$

Let P be any point of \mathbb{A}^2 . Then we

6. (15 points) Let $f: \mathbb{A}^2 \to \mathbb{A}^2$ be a bijective affine map with inverse f^{-1} . Prove f^{-1} is also an affine map.

7. (15 points) (a) State <i>Desargues' Theorem</i> .
(b) Draw a picture to illustrate Desargues' Theorem.