Math Statistics Semiweekly HW 10

Ozaner Hansha October 20, 2020

Question 1

Problem: Show that if $\hat{\theta}$ is an asymptotically unbiased & asymptotically unvarianced (i.e. $\lim_{n\to\infty} \operatorname{Var}(\hat{\theta}) = 0$) estimator for θ , then it is consistent.

Solution: First let us establish the following inequalities for any $\epsilon \in \mathbb{R}^+$, and any $n \in \mathbb{N}$:

$$0 \le P(|\hat{\theta}_n - \theta| \ge \epsilon) \le \frac{E[|\hat{\theta}_n - \theta|]}{\epsilon}$$

The LHS being the result of the nonnegativity of probabilities, and the RHS being an application of Markov's inequality. Now note that since the equality above holds for any $n \in \mathbb{N}$, we can take the limit of each term w.r.t to n:

$$\lim_{n\to\infty} 0 \leq \lim_{n\to\infty} P(|\hat{\theta}_n - \theta| \geq \epsilon) \leq \lim_{n\to\infty} \frac{E[|\hat{\theta}_n - \theta|]}{\epsilon}$$

$$0 \leq \lim_{n\to\infty} P(|\hat{\theta}_n - \theta| \geq \epsilon) \leq \lim_{n\to\infty} \frac{E[|\hat{\theta}_n - \theta|]}{\epsilon}$$
(limit of a constant)
$$= \lim_{n\to\infty} \frac{E\left[\sqrt{(\hat{\theta}_n - \theta)^2}\right]}{\epsilon}$$
(Jenson's inequality for a concave function)
$$= \frac{\sqrt{\lim_{n\to\infty} E\left[(\hat{\theta}_n - \theta)^2\right]}}{\epsilon}$$
(linearity & powers of limits)
$$= \frac{\sqrt{\lim_{n\to\infty} \left(\operatorname{Bias}(\hat{\theta}_n)^2 + \operatorname{Var}(\hat{\theta}_n)\right)}}{\epsilon}$$
(bias-variance decomposition)
$$= \frac{\sqrt{\lim_{n\to\infty} \operatorname{Bias}(\hat{\theta}_n)^2 + \lim_{n\to\infty} \operatorname{Var}(\hat{\theta}_n)}}{\epsilon}$$
(linearity of limits)
$$= \frac{\sqrt{(\lim_{n\to\infty} \operatorname{Bias}(\hat{\theta}_n)^2 + \lim_{n\to\infty} \operatorname{Var}(\hat{\theta}_n)}}{\epsilon}$$
(powers of limits)
$$= \frac{\sqrt{0^2 + 0}}{\epsilon}$$
(asymptotically unbiased & unvarianced)

And so, put in a cleaner form, we have:

$$0 \le \lim_{n \to \infty} P(|\hat{\theta}_n - \theta| \ge \epsilon) \le 0$$

And so, by the squeeze theorem, we have that $\hat{\theta}_n$ satisfies:

$$\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| \ge \epsilon) = 0$$

Which is precisely the definition of a (weakly) consistent estimator. ■