zh

Document Analysis with Deep Learning

Use Case Talk Series, Zurich, Oct 31, 2018

Thilo Stadelmann

Document recognition?

Documents

- Ubiquitous in human communication and every scenario involving an office
- Somewhat structured for human expert; unstructured w.r.t machines
- Great use case for various AI techniques, including computer vision techniques

Own scientific community

• IAPR's biannual Intl. Conference on Document Analysis & Recognition (ICDAR): character & symbol recognition, printed/handwritten text recognition, graphics analysis & recognition, document analysis & understanding, historical documents & digital libraries, document based forensics, camera & video based scene text analysis

Industrial examples

Roadmap

monitoring

Conclusions

0. Prologue on document analysis

1. Print media monitoring

Task

Challenge

Nuisance

1. Print media monitoring – ML solution

ARGUS DATA INSIGHTS*

Confédération suisse

Meier, Stadelmann, Stampfli, Arnold & Cieliebak (2017). *«Fully Convolutional Neural Networks for Newspaper Article Segmentation»*. ICDAR'2017. Stadelmann, Tolkachev, Sick, Stampfli & Dürr (2018). *«Beyond ImageNet - Deep Learning in Industrial Practice»*. In: Braschler et al., *«Applied Data Science»*, Springer.

2. Music scanning

Confederaziun svizra Swiss Confederation

Innosuisse - Swiss Innovation Agency

Tuggener, Elezi, Schmidhuber, Pelillo & Stadelmann (2018). "DeepScores – A Dataset for Segmentation, Detection and Classification of Tiny Objects". ICPR'2018.

Zürcher Fachhochschule

8

Tuggener, Elezi, Schmidhuber, Pelillo & Stadelmann (2018). "DeepScores – A Dataset for Segmentation, Detection and Classification of Tiny Objects". ICPR'2018.

Zürcher Fachhochschule

9

Tuggener, Elezi, Schmidhuber, Pelillo & Stadelmann (2018). "DeepScores – A Dataset for Segmentation, Detection and Classification of Tiny Objects". ICPR'2018.

Innosuisse - Swiss Innovation Agency

Tuggener, Elezi, Schmidhuber, Pelillo & Stadelmann (2018). «DeepScores – A Dataset for Segmentation, Detection and Classification of Tiny Objects». ICPR'2018.

Zürcher Fachhochschule

11

Tuggener, Elezi, Schmidhuber, Pelillo & Stadelmann (2018). «DeepScores – A Dataset for Segmentation, Detection and Classification of Tiny Objects». ICPR'2018. Tuggener, Elezi, Schmidhuber & Stadelmann (2018). «Deep Watershed Detector for Music Object Recognition». ISMIR'2018.

Tuggener, Elezi, Schmidhuber, Pelillo & Stadelmann (2018). "DeepScores – A Dataset for Segmentation, Detection and Classification of Tiny Objects". ICPR'2018. Tuggener, Elezi, Schmidhuber & Stadelmann (2018). "Deep Watershed Detector for Music Object Recognition". ISMIR'2018.

Output Featuremaps:

N*M*256

BBox map M^b:

N*M*2

 \rightarrow = 1x1 convolution

Zürcher Fachhochschule

Base Network

one half of the size of a typical processed MUSCIMA++ input. The images are random picks amongst inputs with man

zh

2. OMR deep dive OMR vs state of the art object detectors

YOLO/SSD-type detectors

Schweizerische Eidgenossenschaft Confederation suisse Confederation svizzara Confederation svizza Swiss Confederation Innosuisse – Swiss Innovation Agency

Source: https://pjreddie.com/darknet/yolov2/ (11.09.2018)

R-CNN

- Two-step proposal and refinement scheme
- Very large amount of proposals at high resolution needed

zh aw

2. OMR deep dive (contd.) The deep watershed detector

zh

2. OMR deep dive (contd.) The deep watershed detector

2. OMR deep dive (contd.) The deep watershed detector

2. OMR deep dive (contd.)

The (deep) watershed transform

Innosuisse – Swiss Innovation Agency

2. OMR deep dive (contd.)

The (deep) watershed transform

a) One-dimensional energy function of five classes without any structural constraints.

b) Energy function for the same five classes with fixed boundary energy.

c) Energy function for the same five classes this time with small energy markers at the class centers.

2. OMR deep dive (contd.)

Output heads of the deep watershed detector

zhaw

2. Music scanning – industrialization (Work in progress)

Recent results on class imbalance and robustness challenges

1. Added sophisticated data augmentation in every page's margins

- 2. Put additional effort (and compute) into hyperparameter tuning and longer training
- 3. Trained also on scanned (more real-worldish) scores

→ Improved our mAP from 16% (on purely synthetic data) to 73% on more challenging real-world data set (additionally, using Pacha et al.'s evaluation method as a 2nd benchmark: from 24.8% to 47.5%)

Elezi, Tuggener, Pelillo & Stadelmann (2018). «DeepScores and Deep Watershed Detection: current state and open issues». WoRMS @ ISMIR'2018. Pacha, Hajic, Calvo-Zaragoza (2018). «A Baseline for General Music Object Detection with Deep Learning». Appl. Sci. 2018, 8, 1488, MDPI.

Conclusions

- Document analysis is a very fruitful use case for Deep Learning (for business + R&D)
- Latest research is applied and deployed in «normal» businesses (non-AI, SME)
- It does not need big-, but some data (effort usually underestimated)
- DL/RL training for new use cases can be tricky (→ needs thorough experimentation)

On me:

- Prof. Al/ML, head ZHAW Datalab, board Data+Service
- thilo.stadelmann@zhaw.ch
- +41 58 934 72 08
- https://stdm.github.io/

On the topics:

- Document analysis: https://stdm.github.io/research/#recent
- Data+Service Alliance: www.data-service-alliance.ch
- Collaboration: datalab@zhaw.ch
- → Happy to answer questions & requests.

APPENDIX

ML @ Information Engineering Group

Institute of Applied Information Technology, ZHAW School of Engineering

Negative

Robust Deep Learning

Voice Recognition

Document Analysis

Learning to Learn & Control

