$12a_{0270} (K12a_{0270})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -798268399u^{41} + 6250449929u^{40} + \dots + 10357680512b - 2584646788, \\ &- 358149411u^{41} + 2967411165u^{40} + \dots + 5178840256a - 14354766596, \\ u^{42} &- 8u^{41} + \dots + 19u + 4 \rangle \\ I_2^u &= \langle u^4a^2 - 3u^3a^2 + 3u^4a + 4a^2u^2 + 2u^4 - 5a^2u + 3u^2a - 6u^3 + a^2 + 3au + 8u^2 + 3b - 3a - 10u + 2, \\ 2u^4a^2 - 2u^3a^2 + 3u^4a + 8a^2u^2 - 2u^3a + a^3 - 6a^2u + 11u^2a + 6a^2 - 5au + 10a + u, \\ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle \\ I_3^u &= \langle -u^3 + u^2 + b + a - 3u + 2, -2u^3a + 2u^2a - 2u^3 + a^2 - 6au + u^2 + 4a - 5u + 2, u^4 - u^3 + 3u^2 - 2u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 65 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -7.98 \times 10^8 u^{41} + 6.25 \times 10^9 u^{40} + \dots + 1.04 \times 10^{10} b - 2.58 \times 10^9, \ -3.58 \times 10^8 u^{41} + 2.97 \times 10^9 u^{40} + \dots + 5.18 \times 10^9 a - 1.44 \times 10^{10}, \ u^{42} - 8u^{41} + \dots + 19u + 4 \rangle$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0691563u^{41} - 0.572988u^{40} + \dots + 3.90826u + 2.77181 \\ 0.0770702u^{41} - 0.603460u^{40} + \dots - 0.703314u + 0.249539 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.146226u^{41} - 1.17645u^{40} + \dots + 3.20495u + 3.02135 \\ 0.0770702u^{41} - 0.603460u^{40} + \dots - 0.703314u + 0.249539 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.816169u^{41} - 0.664619u^{40} + \dots + 6.14207u + 0.645428 \\ 0.0288129u^{41} - 0.231921u^{40} + \dots + 1.24875u + 0.105032 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0196220u^{41} + 0.147935u^{40} + \dots + 6.11036u + 0.584750 \\ -0.00663609u^{41} + 0.0909429u^{40} + \dots + 1.05555u + 0.165094 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0115304u^{41} - 0.109146u^{40} + \dots + 7.16076u + 1.81175 \\ 0.0576259u^{41} - 0.463842u^{40} + \dots - 0.502505u + 0.210065 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0525162u^{41} + 0.477755u^{40} + \dots - 5.10962u - 1.50031 \\ -0.0197372u^{41} + 0.196786u^{40} + \dots + 0.707841u - 0.276625 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{1891553825}{2589420128}u^{41} - \frac{14308919975}{2589420128}u^{40} + \cdots + \frac{33847466689}{2589420128}u - \frac{1329586633}{647355032}u^{40} + \cdots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{42} + 13u^{41} + \dots + 147u + 4$
c_2, c_6	$u^{42} - u^{41} + \dots - 11u + 2$
c_3, c_4, c_7	$u^{42} - u^{41} + \dots - 17u + 2$
c_5, c_{10}	$u^{42} - 2u^{41} + \dots - u + 2$
c_8, c_9, c_{11} c_{12}	$u^{42} + 8u^{41} + \dots - 19u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{42} + 41y^{41} + \dots - 1601y + 16$
c_2, c_6	$y^{42} + 13y^{41} + \dots + 147y + 4$
c_3, c_4, c_7	$y^{42} + 49y^{41} + \dots + 163y + 4$
c_5, c_{10}	$y^{42} - 8y^{41} + \dots + 19y + 4$
c_8, c_9, c_{11} c_{12}	$y^{42} + 52y^{41} + \dots - 593y + 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.199296 + 0.987147I		
a = -1.16462 - 1.63691I	9.23309 - 0.66880I	0. + 2.09820I
b = -0.07090 + 1.52196I		
u = -0.199296 - 0.987147I		
a = -1.16462 + 1.63691I	9.23309 + 0.66880I	02.09820I
b = -0.07090 - 1.52196I		
u = 0.838964 + 0.514549I		
a = 0.469470 - 0.436996I	2.90089 - 0.20752I	-6.26688 + 0.I
b = -0.043564 + 1.403040I		
u = 0.838964 - 0.514549I		
a = 0.469470 + 0.436996I	2.90089 + 0.20752I	-6.26688 + 0.I
b = -0.043564 - 1.403040I		
u = 0.915478 + 0.320876I		
a = -0.717082 + 0.350239I	2.31734 - 5.40050I	-8.00000 + 6.13743I
b = -0.16817 - 1.42645I		
u = 0.915478 - 0.320876I		
a = -0.717082 - 0.350239I	2.31734 + 5.40050I	-8.00000 - 6.13743I
b = -0.16817 + 1.42645I		
u = 0.450384 + 1.002590I		
a = -0.392271 + 0.489442I	0.60208 - 6.73872I	0
b = -0.762687 - 0.383581I		
u = 0.450384 - 1.002590I		
a = -0.392271 - 0.489442I	0.60208 + 6.73872I	0
b = -0.762687 + 0.383581I		
u = -0.302006 + 0.836923I		
a = 1.67864 + 1.44506I	8.07529 + 5.48503I	-0.70916 - 2.91852I
b = 0.22550 - 1.51897I		
u = -0.302006 - 0.836923I		
a = 1.67864 - 1.44506I	8.07529 - 5.48503I	-0.70916 + 2.91852I
b = 0.22550 + 1.51897I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.060244 + 0.788682I		
a = 0.605228 + 0.925856I	1.48615 + 2.15029I	-3.71859 - 3.19032I
b = 0.693973 - 0.485377I		
u = -0.060244 - 0.788682I		
a = 0.605228 - 0.925856I	1.48615 - 2.15029I	-3.71859 + 3.19032I
b = 0.693973 + 0.485377I		
u = 0.509270 + 0.583804I		
a = -0.220296 + 1.029270I	-1.98852 - 1.21898I	-14.0512 + 3.6292I
b = -0.264495 + 0.109372I		
u = 0.509270 - 0.583804I		
a = -0.220296 - 1.029270I	-1.98852 + 1.21898I	-14.0512 - 3.6292I
b = -0.264495 - 0.109372I		
u = 0.588709 + 1.120860I		
a = -1.07852 + 1.38460I	6.68238 - 10.46650I	0
b = -0.26708 - 1.48568I		
u = 0.588709 - 1.120860I		
a = -1.07852 - 1.38460I	6.68238 + 10.46650I	0
b = -0.26708 + 1.48568I		
u = 0.701442 + 0.208159I		
a = -0.779517 - 0.388802I	-3.10427 - 2.84153I	-15.5735 + 6.4385I
b = -0.556875 - 0.244623I		
u = 0.701442 - 0.208159I		
a = -0.779517 + 0.388802I	-3.10427 + 2.84153I	-15.5735 - 6.4385I
b = -0.556875 + 0.244623I		
u = 0.439199 + 1.197000I		
a = 0.69981 - 1.54440I	8.27660 - 4.56148I	0
b = 0.13274 + 1.47292I		
u = 0.439199 - 1.197000I		
a = 0.69981 + 1.54440I	8.27660 + 4.56148I	0
b = 0.13274 - 1.47292I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.220775 + 0.575673I		
a = -0.342696 - 0.818451I	1.40137 - 1.70947I	-0.06449 + 5.59686I
b = 0.139249 + 0.831769I		
u = 0.220775 - 0.575673I		
a = -0.342696 + 0.818451I	1.40137 + 1.70947I	-0.06449 - 5.59686I
b = 0.139249 - 0.831769I		
u = 0.11412 + 1.52011I		
a = 0.001825 - 1.058650I	8.31413 - 3.12469I	0
b = 0.013978 + 1.115610I		
u = 0.11412 - 1.52011I		
a = 0.001825 + 1.058650I	8.31413 + 3.12469I	0
b = 0.013978 - 1.115610I		
u = -0.453394 + 0.093145I		
a = -0.29248 + 1.41477I	5.82303 - 2.87870I	0.05391 + 2.88471I
b = 0.09646 + 1.48180I		
u = -0.453394 - 0.093145I		
a = -0.29248 - 1.41477I	5.82303 + 2.87870I	0.05391 - 2.88471I
b = 0.09646 - 1.48180I		
u = 0.09947 + 1.57211I		
a = -0.005582 + 0.932064I	5.22550 - 3.18763I	0
b = -0.027777 - 0.190004I		
u = 0.09947 - 1.57211I		
a = -0.005582 - 0.932064I	5.22550 + 3.18763I	0
b = -0.027777 + 0.190004I		
u = -0.01154 + 1.67140I		
a = -0.049530 + 0.747153I	10.24920 + 2.39200I	0
b = 0.911882 - 0.498339I		
u = -0.01154 - 1.67140I		
a = -0.049530 - 0.747153I	10.24920 - 2.39200I	0
b = 0.911882 + 0.498339I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.08120 + 1.67874I		
a = 0.80016 + 1.97320I	16.9456 + 6.9601I	0
b = 0.33059 - 1.55890I		
u = -0.08120 - 1.67874I		
a = 0.80016 - 1.97320I	16.9456 - 6.9601I	0
b = 0.33059 + 1.55890I		
u = 0.12364 + 1.71287I		
a = 0.056715 + 0.692130I	10.09190 - 9.06080I	0
b = -0.920998 - 0.474791I		
u = 0.12364 - 1.71287I		
a = 0.056715 - 0.692130I	10.09190 + 9.06080I	0
b = -0.920998 + 0.474791I		
u = -0.03891 + 1.71786I		
a = -0.51740 - 2.10632I	18.9080 + 0.2132I	0
b = -0.20263 + 1.61169I		
u = -0.03891 - 1.71786I		
a = -0.51740 + 2.10632I	18.9080 - 0.2132I	0
b = -0.20263 - 1.61169I		
u = 0.17216 + 1.75098I		
a = -0.74841 + 1.91623I	16.6556 - 13.6886I	0
b = -0.34100 - 1.54865I		
u = 0.17216 - 1.75098I		
a = -0.74841 - 1.91623I	16.6556 + 13.6886I	0
b = -0.34100 + 1.54865I		
u = 0.12140 + 1.76169I		
a = 0.47312 - 2.07005I	18.7265 - 6.9926I	0
b = 0.21928 + 1.60308I		
u = 0.12140 - 1.76169I		
a = 0.47312 + 2.07005I	18.7265 + 6.9926I	0
b = 0.21928 - 1.60308I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.148412 + 0.075498I		
a = 1.14844 + 3.46411I	-0.422743 - 1.307230I	-4.54925 + 5.05506I
b = 0.362523 + 0.421697I		
u = -0.148412 - 0.075498I		
a = 1.14844 - 3.46411I	-0.422743 + 1.307230I	-4.54925 - 5.05506I
b = 0.362523 - 0.421697I		

II. $I_2^u = \langle u^4a^2 + 3u^4a + \cdots - 3a + 2, \ 2u^4a^2 + 3u^4a + \cdots + 6a^2 + 10a, \ u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1 \rangle$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{3}u^{4}a^{2} - u^{4}a + \dots + a - \frac{2}{3} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{3}u^{4}a^{2} - u^{4}a + \dots + 2a - \frac{2}{3} \\ -\frac{1}{3}u^{4}a^{2} - u^{4}a + \dots + a - \frac{2}{3} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ -\frac{1}{3}u^{4}a^{2} - u^{4}a + \dots + a - \frac{2}{3} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{3}u^{4}a^{2} + \frac{2}{3}u^{4} + \dots + a + \frac{2}{3} \\ -\frac{2}{3}u^{4}a^{2} + u^{4}a + \dots + a + \frac{2}{3} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{3} + 3u^{2} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 + 4u^3 16u^2 + 12u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{15} + 10u^{14} + \dots + 3u - 1$
$c_2, c_3, c_4 \\ c_6, c_7$	$u^{15} + 5u^{13} + \dots + 3u + 1$
c_5, c_{10}	$(u^5 + u^4 - u^2 + u + 1)^3$
c_8, c_9, c_{11} c_{12}	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{15} - 10y^{14} + \dots + 47y - 1$
$c_2, c_3, c_4 \\ c_6, c_7$	$y^{15} + 10y^{14} + \dots + 3y - 1$
c_5, c_{10}	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^3$
c_8, c_9, c_{11} c_{12}	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.233677 + 0.885557I		
a = -0.387789 - 0.623465I	1.81981 - 2.21397I	-3.11432 + 4.22289I
b = -0.497623 + 0.756574I		
u = 0.233677 + 0.885557I		
a = 0.085680 - 0.388688I	1.81981 - 2.21397I	-3.11432 + 4.22289I
b = 0.555046 + 0.543774I		
u = 0.233677 + 0.885557I		
a = -0.25505 + 3.12360I	1.81981 - 2.21397I	-3.11432 + 4.22289I
b = -0.057423 - 1.300350I		
u = 0.233677 - 0.885557I		
a = -0.387789 + 0.623465I	1.81981 + 2.21397I	-3.11432 - 4.22289I
b = -0.497623 - 0.756574I		
u = 0.233677 - 0.885557I		
a = 0.085680 + 0.388688I	1.81981 + 2.21397I	-3.11432 - 4.22289I
b = 0.555046 - 0.543774I		
u = 0.233677 - 0.885557I		
a = -0.25505 - 3.12360I	1.81981 + 2.21397I	-3.11432 - 4.22289I
b = -0.057423 + 1.300350I		
u = 0.416284		
a = -0.0435290	-0.882183	-11.6090
b = 0.366895		
u = 0.416284		
a = -2.38044 + 1.97405I	-0.882183	-11.6090
b = -0.183448 - 1.049270I		
u = 0.416284		
a = -2.38044 - 1.97405I	-0.882183	-11.6090
b = -0.183448 + 1.049270I		
u = 0.05818 + 1.69128I		
a = 0.091113 - 0.799543I	10.95830 - 3.33174I	-2.08126 + 2.36228I
b = -0.778812 + 0.748610I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.05818 + 1.69128I		
a = -0.117137 - 0.758678I	10.95830 - 3.33174I	-2.08126 + 2.36228I
b = 0.789470 + 0.718695I		
u = 0.05818 + 1.69128I		
a = -0.01461 + 2.73936I	10.95830 - 3.33174I	-2.08126 + 2.36228I
b = -0.01066 - 1.46731I		
u = 0.05818 - 1.69128I		
a = 0.091113 + 0.799543I	10.95830 + 3.33174I	-2.08126 - 2.36228I
b = -0.778812 - 0.748610I		
u = 0.05818 - 1.69128I		
a = -0.117137 + 0.758678I	10.95830 + 3.33174I	-2.08126 - 2.36228I
b = 0.789470 - 0.718695I		
u = 0.05818 - 1.69128I		
a = -0.01461 - 2.73936I	10.95830 + 3.33174I	-2.08126 - 2.36228I
b = -0.01066 + 1.46731I		

$$III. \\ I_3^u = \langle -u^3 + u^2 + b + a - 3u + 2, \ -2u^3 a - 2u^3 + \dots + 4a + 2, \ u^4 - u^3 + 3u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - u^{2} - a + 3u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - u^{2} + 3u - 2 \\ u^{3} - u^{2} - a + 3u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - u^{2} + 3u - 2 \\ u^{3} - u^{2} - a + 4u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - u^{2} + 2u^{3} + 3au - u^{2} - 2a + 5u - 1 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + u^{2} + a - 3u + 2 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ -au - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + 2u \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^3 4u^2 + 12u 12$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^8$
c_2, c_3, c_4 c_6, c_7	$(u^2+1)^4$
c_5, c_{10}	$u^8 - u^6 + 3u^4 - 2u^2 + 1$
c_8,c_9	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$
c_{11}, c_{12}	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^8$
c_2, c_3, c_4 c_6, c_7	$(y+1)^8$
c_5,c_{10}	$(y^4 - y^3 + 3y^2 - 2y + 1)^2$
c_8, c_9, c_{11} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.395123 + 0.506844I		
a = -0.956685 + 0.227186I	-0.21101 - 1.41510I	-7.82674 + 4.90874I
b = 1.000000I		
u = 0.395123 + 0.506844I		
a = -0.95668 + 2.22719I	-0.21101 - 1.41510I	-7.82674 + 4.90874I
b = -1.000000I		
u = 0.395123 - 0.506844I		
a = -0.956685 - 0.227186I	-0.21101 + 1.41510I	-7.82674 - 4.90874I
b = -1.000000I		
u = 0.395123 - 0.506844I		
a = -0.95668 - 2.22719I	-0.21101 + 1.41510I	-7.82674 - 4.90874I
b = 1.000000I		
u = 0.10488 + 1.55249I		
a = -0.043315 - 0.358800I	6.79074 - 3.16396I	-4.17326 + 2.56480I
b = 1.000000I		
u = 0.10488 + 1.55249I		
a = -0.04332 + 1.64120I	6.79074 - 3.16396I	-4.17326 + 2.56480I
b = -1.000000I		
u = 0.10488 - 1.55249I		
a = -0.043315 + 0.358800I	6.79074 + 3.16396I	-4.17326 - 2.56480I
b = -1.000000I		
u = 0.10488 - 1.55249I		
a = -0.04332 - 1.64120I	6.79074 + 3.16396I	-4.17326 - 2.56480I
b = 1.000000I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^{15}+10u^{14}+\cdots+3u-1)(u^{42}+13u^{41}+\cdots+147u+4)$
c_2, c_6	$((u^{2}+1)^{4})(u^{15}+5u^{13}+\cdots+3u+1)(u^{42}-u^{41}+\cdots-11u+2)$
c_3, c_4, c_7	$((u^{2}+1)^{4})(u^{15}+5u^{13}+\cdots+3u+1)(u^{42}-u^{41}+\cdots-17u+2)$
c_5,c_{10}	$((u5 + u4 - u2 + u + 1)3)(u8 - u6 + 3u4 - 2u2 + 1)(u42 - 2u41 + \dots - u + 2)$
c_8, c_9	$(u^4 - u^3 + 3u^2 - 2u + 1)^2(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^3$ $\cdot (u^{42} + 8u^{41} + \dots - 19u + 4)$
c_{11}, c_{12}	$(u^4 + u^3 + 3u^2 + 2u + 1)^2(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^3$ $\cdot (u^{42} + 8u^{41} + \dots - 19u + 4)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^8)(y^{15}-10y^{14}+\cdots+47y-1)(y^{42}+41y^{41}+\cdots-1601y+16)$
c_{2}, c_{6}	$((y+1)^8)(y^{15}+10y^{14}+\cdots+3y-1)(y^{42}+13y^{41}+\cdots+147y+4)$
c_3, c_4, c_7	$((y+1)^8)(y^{15}+10y^{14}+\cdots+3y-1)(y^{42}+49y^{41}+\cdots+163y+4)$
c_5,c_{10}	$(y^4 - y^3 + 3y^2 - 2y + 1)^2 (y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^3$ $\cdot (y^{42} - 8y^{41} + \dots + 19y + 4)$
c_8, c_9, c_{11} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^3$ $\cdot (y^{42} + 52y^{41} + \dots - 593y + 16)$