Tree Automata (UMC 205)

Himesh(23775), Kuldeep(23684), Shobhnik(23697)

5th April 2025

Outline

- Introduction
- Tree Domains and Labeled Trees
- Oeterministic Tree Automata
- Mondeterministic Tree Automata
- 5 Properties of Tree Automata
- 6 Decision Problems
- Applications
- References

Outline

- Introduction
- 2 Tree Domains and Labeled Trees
- Operation

 Deterministic Tree Automata
- 4 Nondeterministic Tree Automata
- Properties of Tree Automata
- 6 Decision Problems
- Applications
- References

From Strings to Trees

- Most automata models work on strings over finite alphabets
- But many problems have inputs more structured than strings
- Trees arise in a variety of contexts:
 - Arithmetic expressions
 - Logical formulas
 - Parse trees of grammars
 - HTML documents
- Tree automata provide a natural way to process such structured inputs

Examples of Tree Structures

Parse tree of grammar $S \to AA$ $A \to a|c|AB$ $B \to b$ derivation tree for "acb"

Outline

- Introduction
- Tree Domains and Labeled Trees
- Operation

 Deterministic Tree Automata
- 4 Nondeterministic Tree Automata
- Properties of Tree Automata
- 6 Decision Problems
- Applications
- References

Tree Domains and Labeled Trees

Definition

An *n*-ary tree domain, dom_t , is a prefix closed subset of $\{0,1,2,\ldots,n-1\}^*$ such that if $ui \in \mathsf{dom}_t$ then $uj \in \mathsf{dom}_t$ for every j < i.

Definition

A Γ -labeled n-ary tree is a pair $t = (\mathsf{dom}_t, \mathsf{val}_t)$, where dom_t is an n-ary tree domain and $\mathsf{val}_t : \mathsf{dom}_t \to \Gamma$ is a labeling function.

Example

For the tree representing $\sqrt{x \cdot (y+3)}$:

- Root is named ε (labeled $\sqrt{\ }$)
- Its child is 0 (labeled ·)
- Other vertices are 00 (labeled x), 01 (labeled +)
- And 010 (labeled y), 011 (labeled 3)

Tree Operations

Building Trees

Given Γ -labeled trees $t_0 = (\mathsf{dom}_{t_0}, \mathsf{val}_{t_0})$ and $t_1 = (\mathsf{dom}_{t_1}, \mathsf{val}_{t_1})$, and $A \in \Gamma$, the tree $A(t_0, t_1)$ is given by $t = (\mathsf{dom}_t, \mathsf{val}_t)$ where:

$$\mathsf{dom}_t = \{ arepsilon \} \cup \{ 0u | u \in \mathsf{dom}_{t_0} \} \cup \{ 1u | u \in \mathsf{dom}_{t_1} \}$$
 $\mathsf{val}_t(u) = egin{cases} \mathcal{A} & \text{if } u = arepsilon \\ \mathsf{val}_{t_0}(v) & \text{if } u = 0v \\ \mathsf{val}_{t_1}(v) & \text{if } u = 1v \end{cases}$

Tree Operations

Building Trees

Given Γ -labeled trees $t_0 = (\text{dom}_{t_0}, \text{val}_{t_0})$ and $t_1 = (\text{dom}_{t_1}, \text{val}_{t_1})$, and $A \in \Gamma$, the tree $A(t_0, t_1)$ is given by $t = (\text{dom}_t, \text{val}_t)$ where:

$$\mathsf{dom}_t = \{\varepsilon\} \cup \{0u|u \in \mathsf{dom}_{t_0}\} \cup \{1u|u \in \mathsf{dom}_{t_1}\}$$

$$\mathsf{val}_t(u) = \begin{cases} A & \text{if } u = \varepsilon \\ \mathsf{val}_{t_0}(v) & \text{if } u = 0v \\ \mathsf{val}_{t_1}(v) & \text{if } u = 1v \end{cases}$$

Subtrees

Given a Γ -labeled tree $t = (\text{dom}_t, \text{val}_t)$ and $\text{vertex/position } p \in \text{dom}_t$, subtree rooted at position p is the tree $t|_p = (\text{dom}_{t|_p}, \text{val}_{t|_p})$ given by:

$$\mathsf{dom}_{t|_p} = \{u|pu \in \mathsf{dom}_t\}$$
 $\mathsf{val}_{t|_p}(u) = \mathsf{val}_t(pu)$

Outline

- Introduction
- Tree Domains and Labeled Trees
- Operation

 Op
- Mondeterministic Tree Automata
- Properties of Tree Automata
- 6 Decision Problems
- Applications
- References

Deterministic Tree Automata (DTA)

Definition

A deterministic tree automaton (DTA) on Σ -labeled *n*-ary trees is $M = (Q, \Sigma, \delta, F)$ where:

- Q is a finite set of states
- $F \subseteq Q$ is a set of final/accepting states
- $\delta = \bigcup_{i=0}^n \delta_i$ is the transition function, where $\delta_i : Q^i \times \Sigma \to Q$

Deterministic Tree Automata (DTA)

Definition

A deterministic tree automaton (DTA) on Σ -labeled *n*-ary trees is $M = (Q, \Sigma, \delta, F)$ where:

- Q is a finite set of states
- $F \subseteq Q$ is a set of final/accepting states
- $\delta = \bigcup_{i=0}^n \delta_i$ is the transition function, where $\delta_i : Q^i \times \Sigma \to Q$

Run of a DTA

The run of a DTA $M=(Q,\Sigma,\delta,F)$ on a tree $t=(\mathsf{dom}_t,\mathsf{val}_t)$ is a Q-labeled tree $\rho=(\mathsf{dom}_\rho,\mathsf{val}_\rho)$ where $\mathsf{dom}_\rho=\mathsf{dom}_t$ and for any vertex $u\in\mathsf{dom}_t$ with i children:

$$\mathsf{val}_{\rho}(u) = \delta_i(\mathsf{val}_{\rho}(u0), \dots \mathsf{val}_{\rho}(u(i-1)), \mathsf{val}_t(u))$$

Acceptance and Language

Acceptance

A run $\rho = (dom_{\rho}, val_{\rho})$ of M on t is accepting if $val_{\rho}(\varepsilon) \in F$.

A tree t is accepted by M if M has an accepting run on t.

Acceptance and Language

Acceptance

A run $\rho = (dom_{\rho}, val_{\rho})$ of M on t is accepting if $val_{\rho}(\varepsilon) \in F$.

A tree t is accepted by M if M has an accepting run on t.

Language

The language recognized by M is the set of all Σ -labeled n-ary trees it accepts:

$$L(M) = \{t | M \text{ accepts } t\}$$

Acceptance and Language

Acceptance

A run $\rho = (dom_{\rho}, val_{\rho})$ of M on t is accepting if $val_{\rho}(\varepsilon) \in F$.

A tree t is accepted by M if M has an accepting run on t.

Language

The language recognized by M is the set of all Σ -labeled n-ary trees it accepts:

$$L(M) = \{t | M \text{ accepts } t\}$$

Definition

A set A of Σ -labeled n-ary trees is regular if there is a DTA M such that A = L(M).

Example: Boolean Expression Evaluator

DTA for Boolean Expressions

Let $\Sigma=\{0,1,\neg,\wedge,\vee\}$. Consider the DTA $M_p=ig(\{q_0,q_1,q_r\},\Sigma,\delta,\{q_1\}ig)$ where:

$$egin{align} \delta_0(0) &= q_0 & \delta_0(1) &= q_1 \ \delta_1(q_0,\neg) &= q_1 & \delta_1(q_1,\neg) &= q_0 \ \end{pmatrix}$$

For ∧:

$$\delta_2(q_i,q_j,\wedge) = egin{cases} q_1 & ext{if } q_i=q_j=q_1 \ q_0 & ext{if } \{q_i,q_j\}\cap \{q_r\}=\emptyset ext{ and } \{q_i,q_j\}\cap \{q_0\}
eq\emptyset \end{cases}$$

For \vee :

$$\delta_2(q_i,q_j,ee) = egin{cases} q_0 & ext{if } q_i=q_j=q_0 \ q_1 & ext{if } \{q_i,q_j\}\cap\{q_r\}=\emptyset ext{ and } \{q_i,q_j\}\cap\{q_1\}
eq\emptyset \end{cases}$$

For all other cases, M_p transitions to state q_r .

Example: Boolean Expression Evaluator

Input tree $\neg((0 \land 1) \lor (0 \land 0))$

Run of DTA M_p on the input

- Since the label of the root in the run is $q_1 \in F$, this input is accepted
- $L(M_p)=$ set of syntactically correct boolean expressions that evaluate to true

Example: Arithmetic Modulo 3

DTA for Arithmetic Expressions

For $\Sigma=\{0,1,2,+,\cdot\}$. Consider the DTA $M_a=(\{q_0,q_1,q_2,q_r\},\Sigma,\delta,\{q_0\})$ where:

$$\delta_0(0)=q_0 \qquad \qquad \delta_0(1)=q_1 \qquad \qquad \delta(2)=q_2 \ \delta_2(q_i,q_j,+)=q_{(i+j) \bmod 3} \qquad \qquad \text{if } \{q_i,q_j\}\cap \{q_r\}=\emptyset \ \delta_2(q_i,q_j,\cdot)=q_{(i\cdot j) \bmod 3} \qquad \qquad \text{if } \{q_i,q_j\}\cap \{q_r\}=\emptyset$$

In all other cases not considered above, δ returns q_r .

- ullet Trees over Σ represent arithmetic expressions
- If they are syntactically correct, M_a 's run will have root labeled q_i , where i is the remainder when the value of the expression is divided by 3
- ullet Since the final state is q_0 , the automaton accepts expressions that evaluate to multiples of 3

Outline

- Introduction
- Tree Domains and Labeled Trees
- Oeterministic Tree Automata
- Mondeterministic Tree Automata
- Properties of Tree Automata
- 6 Decision Problems
- Applications
- References

Nondeterministic Tree Automata

Definition

A nondeterministic tree automaton (NTA) on Σ -labeled n-ary trees is $M=(Q,\Sigma,\delta,F)$ where Q is a finite set of states, $F\subseteq Q$ is a set of final/accepting states, and $\delta=\cup_{i=0}^n\delta_i$ is the transition function, where $\delta_i:Q^i\times\Sigma\to 2^Q$.

Nondeterministic Tree Automata

Definition

A nondeterministic tree automaton (NTA) on Σ -labeled n-ary trees is $M=(Q,\Sigma,\delta,F)$ where Q is a finite set of states, $F\subseteq Q$ is a set of final/accepting states, and $\delta=\cup_{i=0}^n\delta_i$ is the transition function, where $\delta_i:Q^i\times\Sigma\to 2^Q$.

Theorem

Let A be a tree language recognized by an NTA. Then A is regular.

Nondeterministic Tree Automata

Definition

A nondeterministic tree automaton (NTA) on Σ -labeled n-ary trees is $M=(Q,\Sigma,\delta,F)$ where Q is a finite set of states, $F\subseteq Q$ is a set of final/accepting states, and $\delta=\cup_{i=0}^n\delta_i$ is the transition function, where $\delta_i:Q^i\times\Sigma\to 2^Q$.

Theorem

Let A be a tree language recognized by an NTA. Then A is regular.

Proof Sketch.

The standard subset construction extends to tree automata:

- Convert NTA $N = (Q, \Sigma, \delta, F)$ to DTA $D = (2^Q, \Sigma, \delta', F')$
- $F' = \{ P \subseteq Q \mid P \cap F \neq \emptyset \}$
- $\delta_0' = \delta_0$ and $\delta_k'(Q_1, Q_2, \dots, Q_k, f) = \{q \mid \exists q_1, q_2, \dots, q_k, q_i \in Q_i \text{ and } q \in \delta_k(q_1, q_2, \dots, q_k, f)\}$

Outline

- Introduction
- 2 Tree Domains and Labeled Trees
- Oeterministic Tree Automata
- 4 Nondeterministic Tree Automata
- Properties of Tree Automata
- O Decision Problems
- Applications
- References

Claim

Every finite set of trees is regular

Claim

Every finite set of trees is regular

Proof.

Let $T = \{t_1, t_2..., t_n\}$, be the set of finite number of trees

- States:
 - Let $S = \{\text{all subtrees of } t_i \in T\}$ (finite set)
 - $Q = S \cup \{q_{\mathsf{sink}}\}$
- Accepting States:
 - $F = \{t_1, t_2, \ldots, t_n\} \subseteq Q$
- Transition Function δ:
 - For node 'a' with children in states s_1, \ldots, s_k :

$$\delta(s_1,\ldots,s_k,a) = \begin{cases} s & \text{if } \exists s \in S \text{ matches subtree rooted at 'a'} \\ q_{\text{sink}} & \text{otherwise} \end{cases}$$

DTA for Parse Trees

Claim

The set of derivation trees/parse trees of a context-free grammar G = (N, T, P, S) is regular.

DTA for Parse Trees

Claim

The set of derivation trees/parse trees of a context-free grammar G = (N, T, P, S) is regular.

Proof.

Take $\Sigma = N \cup T$. The automaton recognizing the parse trees is:

- **States:** $Q = T \cup N \cup \{*\}$
- Final States: $F = \{S\}$
- Transitions:
 - For i = 0: $\delta_0(a) = a$ where $a \in T$
 - For i > 0: $\delta_i(\alpha_1, \dots, \alpha_i, X) = \begin{cases} X & \text{if } X \to \alpha_1 \dots \alpha_i \in P \\ * & \text{otherwise} \end{cases}$

Non Regularity

Can you think of a tree language that is not regular ?

Non Regularity

Can you think of a tree language that is not regular?

Example Non-Regular Tree Languages

$$L = \{A(t,t) \mid t \in T(\Sigma)\}\$$

where $T(\Sigma)$ is the collection of all full binary trees with leaves labeled by b and internal vertices labeled by A.

Proof by contradiction: If L is recognized by a DTA with finitely many states, then we can find two distinct trees $t_1 \neq t_2$ such that the DTA reaches the same state after reading either tree, which implies $A(t_1, t_2) \in L$, a contradiction.

Closed under Union

Union

Let L_1 and L_2 be two recognizable tree languages and $T_1=(Q_1,\delta_1,F_1)$ and $T_2=(Q_2,\delta_2,F_2)$ be the corresponding tree automata. Then $L_1\cup L_2$ is also a recognizable tree language and is accepted by the automaton $T_1\times T_2$

Closed under Union

Union

Let L_1 and L_2 be two recognizable tree languages and $T_1=(Q_1,\delta_1,F_1)$ and $T_2=(Q_2,\delta_2,F_2)$ be the corresponding tree automata. Then $L_1\cup L_2$ is also a recognizable tree language and is accepted by the automaton $T_1\times T_2$

Construction

- $Q = Q_1 \times Q_2$
- $\delta = \delta_1 \times \delta_2$ i.e $\delta(t) : (Q_1 \times Q_2)^k \to Q_1 \times Q_2$ for $t \in \Sigma_k$
- $\bullet \ F = (F_1 \times Q_2) \cup (F_2 \times Q_1)$

Closed under Complement

Complement

Let L be a recognizable tree language and $T=(Q,\delta,F)$ be the corresponding automaton over the alphabet Σ . Then the complement of L is also a recognizable tree language and is accepted by the automaton $T'=(Q,\delta,Q\backslash F)$

Closed under Intersection

Intersection

Let L_1 and L_2 be two recognizable tree languages and $T_1=(Q_1,\delta_1,F_1)$ and $T_2=(Q_2,\delta_2,F_2)$ be the corresponding automata. Then $L_1\cap L_2$ is also a recognizable tree language and is accepted by the automaton $T_1\cap T_2$

Closed under Intersection

Intersection

Let L_1 and L_2 be two recognizable tree languages and $T_1=(Q_1,\delta_1,F_1)$ and $T_2=(Q_2,\delta_2,F_2)$ be the corresponding automata. Then $L_1\cap L_2$ is also a recognizable tree language and is accepted by the automaton $T_1\cap T_2$

Construction

- $Q = Q_1 \times Q_2$
- $\delta = \delta_1 \times \delta_2$
- $F = F_1 \times F_2$

Outline

- Introduction
- 2 Tree Domains and Labeled Trees
- Oeterministic Tree Automata
- 4 Nondeterministic Tree Automata
- Properties of Tree Automata
- Oecision Problems
- Applications
- References

Decision Problems

Theorem

Given an NTA $M = (Q, \Sigma, \delta, F)$ there is a algorithm to determine if $L(M) = \emptyset$.

Decision Problems

Theorem

Given an NTA $M = (Q, \Sigma, \delta, F)$ there is a algorithm to determine if $L(M) = \emptyset$.

Proof Sketch.

Inductively compute the set of states that can be reached on some input:

$$E_0 = \{ q \mid \exists a \in \Sigma \text{ and } q \in \delta_0(a) \}$$

$$E_i = E_{i-1} \cup \bigcup \{ q \mid \exists a \in \Sigma, \exists \ q_0, \dots q_{k-1} \in E_{i-1}, q \in \delta_k(q_0, q_1, \dots q_{k-1}, a) \}$$

Since M has finitely many states, for some ℓ (at most |Q|), $E_{\ell} = E_{\ell+1} = \{q \mid \exists t.q \text{ is reached on } t\}$. Therefore, $L(M) = \emptyset$ iff $E_{\ell} \cap F = \emptyset$.

Decision Problems

Theorem

Given an NTA $M = (Q, \Sigma, \delta, F)$ there is a algorithm to determine if $L(M) = \emptyset$.

Proof Sketch.

Inductively compute the set of states that can be reached on some input:

$$E_0 = \{ q \mid \exists a \in \Sigma \text{ and } q \in \delta_0(a) \}$$

$$E_i = E_{i-1} \cup \bigcup \{ q \mid \exists a \in \Sigma, \exists \ q_0, \dots q_{k-1} \in E_{i-1}, q \in \delta_k(q_0, q_1, \dots q_{k-1}, a) \}$$

Since M has finitely many states, for some ℓ (at most |Q|), $E_{\ell} = E_{\ell+1} = \{q \mid \exists t.q \text{ is reached on } t\}$. Therefore, $L(M) = \emptyset$ iff $E_{\ell} \cap F = \emptyset$.

Time Complexity : $O(|Q||\delta|)$

where $|\delta|$ is the number of transitions and |Q| is the number of states.

Universality

Corollary

Given a DTA M, there is a polynomial time algorithm to check if L(M) contains all Σ -labeled trees.

Outline

- Introduction
- Tree Domains and Labeled Trees
- Oeterministic Tree Automata
- 4 Nondeterministic Tree Automata
- 5 Properties of Tree Automata
- 6 Decision Problems
- Applications
- References

Game Setup

A game graph or arena is a $G=(Q_A,Q_B,E)$, where Q_A and Q_B are finite disjoint sets of vertices, and $E\subseteq (G_A\cup G_B)\times (G_A\cup G_B)$ is the edge relation with the property that every vertex has at least one outgoing edge.

Game Setup

A game graph or arena is a $G = (Q_A, Q_B, E)$, where Q_A and Q_B are finite disjoint sets of vertices, and $E \subseteq (G_A \cup G_B) \times (G_A \cup G_B)$ is the edge relation with the property that every vertex has at least one outgoing edge.

Game Rules

- Initially the "token" is placed in some vertex
- In each move, the token is moved along an adjacent edge
- Who makes a move is decided by whose vertex it is

Game Setup

A game graph or arena is a $G = (Q_A, Q_B, E)$, where Q_A and Q_B are finite disjoint sets of vertices, and $E \subseteq (G_A \cup G_B) \times (G_A \cup G_B)$ is the edge relation with the property that every vertex has at least one outgoing edge.

Game Rules

- Initially the "token" is placed in some vertex
- In each move, the token is moved along an adjacent edge
- Who makes a move is decided by whose vertex it is

Winnig Criteria

Reachability to any final state $q \in F$ where $F \subseteq Q_A \cup Q_B$

Game Setup

A game graph or arena is a $G = (Q_A, Q_B, E)$, where Q_A and Q_B are finite disjoint sets of vertices, and $E \subseteq (G_A \cup G_B) \times (G_A \cup G_B)$ is the edge relation with the property that every vertex has at least one outgoing edge.

Game Rules

- Initially the "token" is placed in some vertex
- In each move, the token is moved along an adjacent edge
- Who makes a move is decided by whose vertex it is

Winnig Criteria

Reachability to any final state $q \in F$ where $F \subseteq Q_A \cup Q_B$

Can you figure out the initial states for which Bob has winning strategy?

Theorem. The collection of winning strategies for Bob from position q is a regular tree language. The tree automaton recognizing this language can be effectively constructed.

Theorem. The collection of winning strategies for Bob from position q is a regular tree language. The tree automaton recognizing this language can be effectively constructed.

Proof Sketch:

- States: Either game positions \overline{Q} (copy of $Q_A \cup Q_B$) or error state *.
- Transition Rules:
 - $\delta_0(q) = \bar{q}$ if $q \in F$
 - $\delta_1(ar{q}_1,q)=ar{q}$ if $(q,q_1)\in E$ and $q\in Q_B$
 - $\delta_i(\overline{q_1}, \overline{q_2}, \dots, \overline{q_i}, q) = \overline{q}$ if $q \in Q_A$ and $(q, q_1), \dots, (q, q_i)$ are the only outgoing edges of q

Formal Automaton Definition:

$$M = (\overline{Q} \cup \{*\}, \ Q_A \cup Q_B, \ \delta, \ \{q\})$$

Theorem: It can be decided whether Bob has a winning strategy from position *q*. Moreover if there is a winning strategy, it can be effectively constructed.

Theorem: It can be decided whether Bob has a winning strategy from position q. Moreover if there is a winning strategy, it can be effectively constructed.

Proof : One can check the emptiness of the language associated with the DTA recognizing winning strategies from previous theorem.

Outline

- Introduction
- 2 Tree Domains and Labeled Trees
- Oeterministic Tree Automata
- Mondeterministic Tree Automata
- Properties of Tree Automata
- 6 Decision Problems
- Applications
- References

Refrences

• Automata on Trees by Mahesh Viswanathan

Thank You!