ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 5

1. Ricordiamo che $E = \{\phi_n\}_{n \in \mathbb{Z}}$, dove

$$\phi_n(t) = \frac{1}{\sqrt{2\pi}} e^{int}$$
 per ogni $t \in (-\pi, \pi)$ e $n \in \mathbb{Z}$, (#)

è una base ortonormale di $L^2(-\pi,\pi)$.

- (a) Calcolare la norma di $\mathbf{1}_{[0,\pi)}$ in $L^2(-\pi,\pi)$.
- (b) Calcolare i coefficienti della funzione $\mathbf{1}_{[0,\pi)} \in L^2(-\pi,\pi)$ rispetto alla base ortonormale E.
- (c) Dimostrare che

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

[Suggerimento: esprimere la norma calcolata in (a) in termini dei coefficienti calcolati in (b).]

(d) Dimostrare che

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

- [Suggerimento: $\sum_{k=1}^{\infty} \frac{1}{k^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \sum_{k=1}^{\infty} \frac{1}{(2k)^2}$.] (e) Sia $f \in L^2(-\pi,\pi)$ data da $f(t) = t^2$ per $t \in (-\pi,\pi)$. Calcolare la norma di f in $L^2(-\pi,\pi)$ e i coefficienti di frispetto ad E.
- (f) Dimostrare che

$$\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}.$$

- 2. Sia $(a,b) \subseteq \mathbb{R}$ un intervallo limitato.
 - (a) Trovare un omeomorfismo $p:(a,b)\to (-\pi,\pi)$ dato da un polinomio di primo grado.
 - (b) Trovare una costante $\lambda > 0$ tale che la mappa $\Phi : L^2(-\pi, \pi) \to L^2(a, b)$ definita da

$$\Phi f = \lambda f \circ p \qquad \forall f \in L^2(-\pi, \pi)$$

è un isomorfismo isometrico tra spazi di Hilbert, cio
è Φ è lineare, invertibile e

$$\langle \Phi f, \Phi g \rangle_{L^2(a,b)} = \langle f, g \rangle_{L^2(-\pi,\pi)} \qquad \forall f, g \in L^2(-\pi,\pi)$$

- (c) Costruire, usando Φ , una base ortonormale di $L^2(a,b)$ a partire dalla base ortonormale $E=\{\phi_n\}_{n\in\mathbb{N}}$ di $L^2(-\pi,\pi)$ definita in (#).
- 3. Dato $\underline{w} \in \ell^{\infty}$, definiamo la mappa $D_{\underline{w}} : \ell^2 \to \ell^2$ ponendo $D_{\underline{w}}\underline{x} = (w_k x_k)_{k \in \mathbb{N}}$ per ogni $\underline{x} \in \ell^2$ (in altre parole, $D_{\underline{w}}$ è l'operatore di moltiplicazione per \underline{w}).
 - (a) Dimostrare che $D_{\underline{w}}$ è un operatore lineare.
 - (b) Dimostrare che $D_{\underline{w}}$ è limitato.
 - (c) Determinare la norma $||D_{\underline{w}}||_{\text{op}}$ di $D_{\underline{w}}$.
 - (d) Dimostrare che D_w è iniettivo se e solo se $w_k \neq 0$ per ogni $k \in \mathbb{N}$.
- (e) Dimostrare che $D_{\underline{w}}: \ell^2 \to \ell^2$ è invertibile (con inversa limitata) se e solo se $\inf_{k \in \mathbb{N}} |w_k| > 0$. 4. Sia $N \in \mathbb{N}, N \ge 1$. Sia $S_N: \ell^2 \to \ell^2$ definito da

$$(S_N \underline{x})_k = \begin{cases} 0 & \text{se } k < N, \\ k^{-1/2} x_{k-N} & \text{se } k \ge N, \end{cases}$$

per ogni $\underline{x} \in \ell^2$.

- (a) Dimostrare che $S_N \in \mathcal{B}(\ell^2)$.
- (b) Determinare la norma di S_N .
- (c) Determinare se S_N è invertibile.
- 5. Data $h \in C[0,1]$, sia $T_h: L^2(0,1) \to L^2(0,1)$ definito da $T_h f = h f$ per ogni $f \in L^2(0,1)$ (in altre parole, T_h è l'operatore di moltiplicazione per h).
 - (a) Dimostrare che $T_h \in \mathcal{B}(L^2(0,1))$.
 - (b) Determinare la norma $||T_h||_{op}$ di T_h .
 - (c) Esibire $h \in C[0,1]$ non costante tale che T_h è invertibile (con inversa limitata).
 - (d) Esibire $h \in C[0,1]$ non costante tale che T_h non è iniettivo.

Supponiamo ora che h(t) = t per ogni $t \in [0, 1]$.

- (e) Dimostrare che T_h è iniettivo, ma non è suriettivo.
- (f) Dimostrare che l'immagine di T_h è densa in $L^2(0,1)$, ma non chiusa.

[Suggerimento: dimostrare che $C_c(0,1) \subseteq \operatorname{Im} T$.]

- 6. Ricordiamo che un sottoinsieme di uno spazio metrico è detto limitato se è contenuto in una palla. Siano X e Y spazi normati, $\bar{x} \in X$ e $T \in \mathcal{L}(X,Y)$. Dimostrare che le seguenti proprietà sono equivalenti:
 - (i) $T: X \to Y$ è un operatore limitato;
 - (ii) $T: X \to Y$ è continuo in \bar{x} ;
 - (iii) esiste una palla aperta A in X tale che T(A) è un insieme limitato in Y;
 - (iv) esiste una palla chiusa C in X tale che T(C) è un insieme limitato in Y;
 - (v) per ogni sottoinsieme limitato D di X, l'insieme T(D) è limitato in Y.
- 7. Siano $[a,b],[c,d]\subseteq\mathbb{R}$ intervalli chiusi e limitati. Sia $K\in C([a,b]\times[c,d])$ e sia $T_K:C[c,d]\to C[a,b]$ l'operatore integrale con nucleo integrale K.
 - (a) Dimostrare che, per ogni $x \in [a, b]$ e $\epsilon > 0$, la funzione $f_{x,\epsilon} : [c, d] \to \mathbb{C}$ definita da

$$f_{x,\epsilon}(y) = \frac{\overline{K(x,y)}}{|K(x,y)| + \epsilon} \quad \forall y \in [c,d]$$

è continua e $||f_{x,\epsilon}||_{\infty} \leq 1$.

(b) Dimostrare che, per ogni $x \in [c, d]$ e $\epsilon > 0$,

$$||T_K f_{x,\epsilon}||_{\infty} \ge \int_c^d \frac{|K(x,y)|^2}{|K(x,y)| + \epsilon} dy$$

(c) Dimostrare che

$$\lim_{\epsilon \to 0^+} \int_c^d \frac{|K(x,y)|^2}{|K(x,y)| + \epsilon} \, dy = \int_c^d |K(x,y)| \, dy$$

(d) Dimostrare che

$$||T_K||_{\text{op}} = \sup_{x \in [a,b]} \int_c^d |K(x,y)| \, dy.$$

8. Siano $(a,b),(c,d)\subseteq\mathbb{R}$ intervalli limitati, dotati della misura di Lebesgue. Sia $K:(a,b)\times(c,d)\to\mathbb{C}$ una funzione misurabile tale che

$$M_K := \underset{x \in (a,b)}{\operatorname{ess sup}} \int_c^d |K(x,y)| \, dy < \infty, \qquad N_K := \underset{y \in (c,d)}{\operatorname{ess sup}} \int_a^b |K(x,y)| \, dx < \infty \tag{\dagger}$$

(a) Dimostrare che, per ogni $f \in L^2(c,d)$,

$$\int_a^b \left| \int_c^d |K(x,y)f(y)| \, dy \right|^2 \, dx < \infty.$$

[Suggerimento: scrivere $|K(x,y)f(y)| = |K(x,y)|^{1/2}(|K(x,y)|^{1/2}|f(y)|)$ e applicare la disuguaglianza di Hölder con p=2 all'integrale in y.]

(b) Dimostrare che, per ogni $f \in L^2(c,d)$ la funzione

$$y \mapsto K(x,y)f(y)$$

è in $L^1(c,d)$ per quasi ogni $x \in (a,b)$.

In base ai punti precedenti, per ogni $f \in L^2(c,d)$ l'espressione

$$T_K f(x) = \int_a^d K(x, y) f(y) dy \tag{\ddagger}$$

è ben definita per quasi ogni $x \in (a, b)$ e definisce una funzione misurabile $T_K f$.

(c) Dimostrare che l'operatore integrale $T_K: L^2(c,d) \to L^2(a,b)$ con nucleo integrale K definito da (\ddagger) è lineare e limitato e che

$$||T_K||_{\operatorname{op}}^2 \leq M_K N_K$$

dove M_K e N_K sono le quantità in (†).

Supponiamo ora che (a, b) = (c, d) = (0, 1).

(d) Dimostrare che la funzione K data da

$$K(x,y) = \begin{cases} |x-y|^{-1/2} & \text{se } x \neq y, \\ 0 & \text{altrimenti} \end{cases}$$

per ogni $x, y \in (0, 1)$ soddisfa la condizione (†), ma $K \notin L^2((0, 1) \times (0, 1))$.

(e) Dimostrare che la funzione K data da $K(x,y) = (xy)^{-1/3}$ per ogni $x,y \in (0,1)$ non soddisfa la condizione (†), ma $K \in L^2((0,1) \times (0,1))$.

[Questo esercizio dà una condizione alternativa sul nucleo integrale K, rispetto alla condizione $K \in L^2((a,b) \times (c,d))$ discussa a lezione, che garantisce la limitatezza su L^2 del corrispondente operatore integrale T_K . La condizione in (\dagger) è un caso particolare del cosiddetto $test\ di\ Schur$.]