Descarga de datos Gaia para diagrama Color-Magnitud

Astrofísica, código SIA 2018038-1 Benjamín Calvo-Mozo

Presenta:
Angel Daniel Martínez Cifuentes
Monitor de la asignatura

Observatorio Astronómico Nacional Sede Bogotá, Facultad de Ciencias Observatorio Astronómico Nacional

- En esta sesión se realiza un ejemplo para hacer el diagrama color-magnitud de un cúmulo abierto seleccionado.
- El cúmulo seleccionado son las "Pleiades" (Melotte 22).

1. Averiguar datos con el SIMBAD

El SIMBAD (Set of Indications, Measurements, and Bibliography for Astronomical Data) es una base de datos que nos permite conocer información básica acerca de un objeto astronómico.

Para acceder, ingresar a http://simbad.u-strasbg.fr/simbad/

En la columna "Queries", seleccionar "basic search". Esto nos permite hacer una búsqueda del objeto

En "basic query", escribir pleiades y dar clic en "SIMBAD search"

Acá ya tenemos información del objeto, tal como sus coordenadas, redshift, paralaje y tamaño angular.

2. Descarga de datos de GAIA

Gaia es una proyecto ambicioso misión de la Agencia Espacial Europea (ESA), que tiene por objetivo hacer un mapa 3D de astrometría y fotometría de todo el cielo con alto grado de presición. En este caso, vamos a sacar información de las Pleiades.

Para ello, ingresar a https://gea.esac.esa.int/archive/. Allí, se dirigen a "Search"

Una vez en Gaia, la búsqueda se puede hacer por nombre del objeto, seleccionando un radio alrededor de este (rectángulo rojo) ó por medio de una búsqueda avanzada "Advanced (ADQL)" (flecha roja).

En este caso, hacemos la búsqueda "Advanced (ADQL)". A diferencia del primer método, esta búsqueda avanzada nos permite discriminar los objetos celestes por paralaje (es decir, por distancia). Esto es importante, puesto que en la región seleccionada, el instrumento también capta información de estrellas que están más lejos, de las cuales no queremos información para hacer el estudio.

La página aparece de la siguiente forma

A continuación, se escribe en "Job name" el nombre del archivo de descarga. Debajo de este, se escribe el código que permite descargar el catálogo para las pleiades.

El código a escribir es de la siguiente forma:

```
SELECT *
FROM gaiadr2.gaia_source
WHERE 1=CONTAINS(
   POINT('ICRS', ra, dec),
   CIRCLE('ICRS', 56.7500, 24.1167, 1.2))
AND parallax>=7.28 AND parallax<=7.42
ORDER BY parallax ASC</pre>
```

Donde:

<u>SELECT * FROM gaiadr2.gaia source</u> hace una búsqueda en el Data Release 2 (dr2) de Gaia. Este corresponde al último data release, de 2018.

<u>POINT('ICRS',ra,dec)</u> establece que las coordenadas del punto central van a ser ascención recta (ra) y declinación (dec) en ICRS (International Celestial Reference System).

<u>CIRCLE('ICRS'</u>, 56.7500, 24.1167, 5) Son las coordenadas del punto central (ra,dec), así como el radio que se quiere abarcar. Para saber estas coordenadas, revisar el SIMBAD (Nota: las coordenadas se escriben en grados).

<u>AND</u> parallax>=7.28 <u>AND</u> parallax<=7.42 selecciona un rango de paralaje alrededor del central. Para saber el paralaje, remitirse a SIMBAD. Todos los paralajes están en miliarcosegundos (mas).

Luego de dar clic en "Submit Query" (flecha azul), les debe aparecer un archivo de descarga. Para esto, lo pueden descargar dando clic en el ícono debajo de la flecha roja. Esto les descarga una tabla con extensión "VOT". Si desean, pueden seleccionar otro tipo de extensión. En este ejemplo, trabajamos con una tabla VOT, donde la abrimos en python. Es necesario que luego de descargar el archivo, lo decompriman.

3. WEBDA

WEBDA es una página que brinda información acerca de cúmulos abiertos.

Con esta herramienta nos es posible averiguar el reddening, esto con el fin de corregir por extinción.

Para ello, ingresar a https://webda.physics.muni.cz/navigation.html

En "Display the Page of the Cluster", escribir el nombre del cúmulo abierto. Dar Enter

Description	Information	Interrogation
Database Level	Database Content	Cluster Selection on
 The Database Source catalogues	 Global Content New data included	Available DataAvailable Data and Parameters
Cluster Level	Lists of Open Cluster by	Cluster Selection on
Embedded clustersDuplicate Names	 Right Ascension Galactic Longitude Distance (d < 1kpc) Available Data 	 <u>Parameters</u> <u>Names</u> <u>Plots</u>
Star level	Lists of Cluster Containing	
Stellar ContentData Description	• <u>Am</u> , or <u>Ap</u> Stars, • <u>Be Stars</u>	Display the Page of the Cluster
	Blue Stragglers Red Giants	pleiades
	Spectroscopic Binaries Wolf-Rayet Stars	
Bibliography level	The bibliography	Query the Bibliography by
	• <u>AAA 1969-2004</u>	• <u>Subject Keywords</u>
	• CSCA 1900-1994	Authors' Names

Lists of parameters

The Cross-Identifications

Aparece una página con información del cúmulo. En este caso, el reddening es de 0.030

3. Análisis en Python

Para la lectura de la tabla VOT, se va a usar el lenguaje de Python. Este lenguaje ofrece grandes facilidades para el trabajo de astronomía en general, ofreciendo una amplia variedad de paquetes para la lectura, edición y escritura de datos.

Uso de software en astronomía. Tomado de Momcheva & Tollerud, 2015.

3.1. Importación de librerías

Para poder hacer la lectura y análisis de los datos, se hace necesario importar algunas librerías de Python. Para esto, se crea un archivo de texto con extensión "py", por ejemplo, pleiades.py. A continuación, se comienza a escribir el archivo de texto como:

```
import numpy as np
import matplotlib.pyplot as plt
from astropy.io.votable import parse_single_table
```

Donde se importa la librería <u>numpy</u> para facilitar la realización de operaciones matemáticas. La librería <u>matplotlib.pyplot</u> permite mostrar gráficos, mientras que el paquete <u>parse single table</u> de la librería <u>astropy.io.votable</u> permite leer la tabla VOT descargada.

Nota: Para realizar comentarios en Python, se comienza la línea con el símbolo numeral (#), igualmente, para comentar un bloque de líneas, se puede escribir tres comillas (""") antes y después del bloque.

3.1. Importación de librerías: Ejemplo

A continuación se muestra un ejemplo con el uso de las librerías numpy y matplotlib:

```
import numpy as np
import matplotlib.pyplot as plt

# A continuación, se crea una serie de puntos "x" con numpy
# que corren desde 1 hasta 9 en pasos de 1. Luego, se crea
# una función "y" de esos puntos.

x = np.arange(1,10,1) # También se le llama Array.
y = np.log10(x)

# Ahora se grafica con matplotlib

plt.plot(x,y) # para graficar
plt.show() # para mostrar
```

3.1. Importación de librerías: Ejemplo

Ejecutando el código anterior, resulta la gráfica:

Que representa la función logaritmo en base 10, de x=1 a x=9.

3.1. Python: Funciones

Ahora se muestra cómo usar una función en python:

```
import numpy as np
import matplotlib.pyplot as plt

"""

A continuación, se hace una función (una recta). La recta
   tiene 3 parámetros, la pendiente, la variable "x" y el punto de
   corte. Hacemos que a nuestra función le entren esos 3 valores.

"""

def recta(m,x,b):  # Cuidado con la indentación!!!
   result = m*x + b # Acá escribimos la ecuación...
   return result  # y acá ponemos lo que queremos que salga
```

En Python, es importante tener en cuenta la <u>indentación</u> ó número de espacios. Es decir, luego de los dos puntos (:) de la definición de la función, todo lo que esté dentro de la función tiene que estar indentado con el mismo número de espacios. Lo mismo sucede para los ciclos for y los condicionales if. Esto ayuda a distinguir qué pertenece a una función y que no.

3.1. Python: Funciones

Ahora se muestra cómo usar una función en python:

```
import numpy as np
import matplotlib.pyplot as plt
11 11 11
 A continuación, se hace una función (una recta). La recta
 tiene 3 parámetros, la pendiente, la variable "x" y el punto de
 corte. Hacemos que a nuestra función le entren esos 3 valores.
0.00
def recta(m,x,b): # Cuidado con la indentación!!!
   result = m*x + b # Acá escribimos la ecuación...
   return result # y acá ponemos lo que queremos que salga
x = np.arange(0,10,0.5) # Array de 0 a 10 en pasos de 0.5
y = recta(0.1, x, 1) # llamamos la función y ponemos m,x,b
plt.plot(x,y,'o-',color='blue') # opciones adicionales
plt.title("Ejemplo") # Título de la gráfica
plt.xlabel("Eje x") # muestra label del eje x
plt.grid()
          # muestra rejilla
plt.show()
             # para mostrar
```

3.1. Python: Funciones

La gráfica mostrada es:

3.1. Python: Ciclos "for"

Ahora se muestra cómo usar un ciclo for en python:

```
import numpy as np
H H H
A continuación se crea un array de
 datos "x". Posteriormente, se crea un
 ciclo "for" el cual imprime cada uno
 de los valores que existen en el
 array, así como su cuadrado.
0.00
# Array de 0 a 20 en pasos de 2
x = np.arange(0,21,2)
# range(len(x)) va de 0 a la longitud
# del array "x"
for i in range(len(x)):
    # Cuadrado de cada número
    y = x[i]**2
    print(i, x[i], y) # Impresión
```

Output:

```
0 0 0
1 2 4
2 4 16
3 6 36
4 8 64
5 10 100
6 12 144
7 14 196
8 16 256
9 18 324
10 20 400
```

3.1. Python: Condicional "if"

A continuación, un ejemplo del uso del condicional "if":

```
import numpy as np
0.00
A continuación se crea un array de
datos "x". Posteriormente en un ciclo
 for, se imprime "Si!" si el seno del
número es mayor o igual a cero,
mientras que imprime "No" si el número
 es negativo, con el valor del seno.
0.00
x = np.arange(0,11,1)
for i in range(len(x)):
    y = np.sin(x[i])
   # Se impone la condición requerida
    if (y>=0):
        print("Si! ",y)
    else:
        print("No ",y)
```

Output:

```
Si!
     0.0
Si!
    0.8414709848078965
     0.9092974268256817
Si!
Si!
    0.1411200080598672
No
    -0.7568024953079282
No
    -0.9589242746631385
No
    -0.27941549819892586
Si! 0.6569865987187891
Si! 0.9893582466233818
Si! 0.4121184852417566
No -0.5440211108893698
```

El archivo cuenta con ~100 columnas de información para 192 estrellas:

pleiades-result.ods - LibreOffice Calc Edit View Insert Format Styles Sheet Data Tools Window Help											
A	B	C C	D	E	F	G			J	K	
solution_id	designation	source_id	random_index	ref_epoc h	ra	ra_error	dec	dec_error	parallax	parallax_error	
1.6357214584098E+018	Gaia DR2 69819027020489088	6.98190270205E+16	1443512955	2015.5	56.3506264398507	0.038765800179222	24.885785528205	0.022140501300144	7.28029849583488	0.04073943421077	
1.6357214584098E+018	Gaia DR2 65194584193758336	6.51945841938E+16	368338854	2015.5	56.2637487779286	0.046520146068	23.8392156579051	0.02490008541085	7.280531682174	0.049804696143116	
1.6357214584098E+018	Gaia DR2 69860293066219136	6.98602930662E+16	1604450881	2015.5	56.4127550455118	0.040641418207138	25.2242151932888	0.025872479478516	7.28129715504148	0.043833253182	
1.6357214584098E+018	Gaia DR2 66791624833561856	6.67916248336E+16	1660805298	2015.5	56.9352215329473	0.125568510678254	24.615337095197	0.08278083628409	7.28176179865179	0.13889636162805	
1.6357214584098E+018	Gaia DR2 64959662365552384	6.49596623656E+16	1190570900	2015.5	56.7806885697608	0.028339954519361	23.2261630380272	0.015923889898123	7.28224931819945	0.0314296961733	
1.6357214584098E+018	Gaia DR2 65207709613871744	6.52077096139E+16	1220591689	2015.5	56.8499255516615	0.041320253905158	23.9142775168609	0.028275815742381	7.28304822597255	0.0456813139784	
1.6357214584098E+018	Gaia DR2 68327402058399232	6.83274020584E+16	737371342	2015.5	55.8676061483245	0.092855170179838	24.8918022654087	0.046777140786553	7.28328155334381	0.0909546039446	
1.6357214584098E+018	Gaia DR2 65204342359530112	6.52043423595E+16	1444521724	2015.5	56.5597817585291	0.187109280734678	23.8506191463602	0.127175003843917	7.28383108878733	0.2083503363809	
1.6357214584098E+018	Gaia DR2 65136791113382912	6.51367911134E+16	619256788	2015.5	55.7038490600911	0.13107457144416	23.5800095892191	0.07209038659345	7.28698017932371	0.1422934466905	
1.6357214584098E+018	Gaia DR2 66562342296619520	6.65623422966E+16	1148631364	2015.5	57.7392220953743	0.330736841513518	24.4122133582218	0.140532916443774	7.28852171549123	0.348582980425	
1.6357214584098E+018	Gaia DR2 66517468482370176	6.65174684824E+16	396694451	2015.5	57.0751187240123	0.046151367441684	23.8912799774354	0.025943351313359	7.2888015773188	0.04484805112795	
1.6357214584098E+018	Gaia DR2 66785504503382528	6.67855045034E+16	786324053	2015.5	56.4629705919684	0.2415532449446	24.4362430774374	0.1228529353647	7.28907903208718	0.2767230059004	
1.6357214584098E+018	Gaia DR2 66728265476081408	6.67282654761E+16	2319040	2015.5	56.7305554173766	0.204077915640302	24.187804297877	0.102927997398753	7.29109478907833	0.203188738803	
1.6357214584098E+018	Gaia DR2 64916751349465856	6.49167513495E+16	979161474	2015.5	57.2429428574147	0.067963947907825	23.0940277469212	0.034037466177618	7.29173334167551	0.0710265599196	
1.6357214584098E+018	Gaia DR2 66483795939004416	6.6483795939E+16	278490086	2015.5	57.9931680492722	0.117155857051533	23.9718921736	0.04845055585148	7.29305884179314	0.1236266831749	
1.6357214584098E+018	Gaia DR2 64960663095015680	6.4960663095E+16	625633226	2015.5	56.7379851390767	0.063184662362092	23.2504768717384	0.046245934766179	7.29320107673309	0.0734871433374	
1.6357214584098E+018	Gaia DR2 64998905483757568	6.49989054838E+16	1022511078	2015.5	57.082698469419	0.055331076236829	23.6031441263372	0.042796376517702	7.29360069170137	0.06370223928472	
1.6357214584098E+018	Gaia DR2 66800244832257280	6.68002448323E+16	403953359	2015.5	56.5238107840016	0.153557080693367	24.6136895763317	0.09560794374246	7.29410730664766	0.1596502278694	
1.6357214584098E+018	Gaia DR2 66515196441155712	6.65151964412E+16	1002277781	2015.5	57.4685403384097	0.256609254951324	24.0617945203422	0.112461843883724	7.29570980219096	0.281077059560	
1.6357214584098E+018	Gaia DR2 64964717544035200	6.4964717544E+16	1498842636	2015.5	56.6370591931073	0.031710987453894	23.305137236563	0.02049533055459	7.29618735534681	0.0348507762277	
1.6357214584098E+018	Gaia DR2 66793583338514816	6.67935833385E+16	590764604	2015.5	56.705118995118	0.038418937003118	24.5998317456271	0.021462290323151	7.29666767344176	0.040297054729	
1.6357214584098E+018	Gaia DR2 65156891560085504	6.51568915601E+16	882159815	2015.5	55.6095480094006	0.133263675260858	23.8606138355378	0.08586586647563	7.29789741562707	0.1456266650138	
1.6357214584098E+018	Gaia DR2 66536331978799616	6.65363319788E+16	124156937	2015.5	57.7393011580449	0.075818566284404	24.1083750820635	0.030168565962137	7.30120136645655	0.07304648812110	
1.6357214584098E+018	Gaia DR2 65011412428446592	6.50114124284E+16	91714454	2015.5	56.7894224630907	0.072480163547155	23.741985965151	0.042155555021735	7.30201556184856	0.0823546922929	

Para las estrellas con datos "vacíos" se hará un tratamiento adicional.

						pleiades-	result.ods	- LibreOffic	e Calc							• •
Edit View Ir	nsert F	ormat Styles	Sheet Data Tools	Window H	łelp											
BD	BE	BF	BG	ВН	BI	BJ	ВК	BL	ВМ	BN	ВО	ВР	BQ	BR	BS	ВТ
	phot_r p_n_ob s	phot_rp_mean_f lux	phot_rp_mean_flux_er ror	phot_rp_mea n_flux_over_e rror	phot_rp_mean _mag	phot_bp_rp _excess_fac tor	phot_proc_ mode	bp_rp	bp_g	g_rp	radial_velocity	radial_velocity_error	irv nn ti		rv_templ ate_logg	rv_te mplat phot_v e_fe_h
10.974874	19	745046.85849	1010.02247505532	737.65375	10.081461	1.2028544	C	0.8934126	0.37763786	0.5157747	6.11648576020686	0.3266368174263	8	5750	4.5	0 NOT_A
14.032303	17	89864.761012	573.943112075198	156.57434	12.377947	1.2954676	C	1.654356	0.79261017	0.86174583	7.53193736571772	3.56919023195915	10	4000	3	0 NOT_A
16.832731	19	16174.075869	67.6999567596219	238.90822	14.239871	1.4634796	C	2.5928602	1.4122143	1.180646			0			NOT_A
10.57283	20	994608.40963	951.35242491892	1045.4679	9.76779	1.1976155	C	0.80504	0.33293152	0.47210884	4.97004924829152	0.5457421279649	7	5750	4.5	0 NOT_A
12.543378	19	240210.48885	393.059057078813	611.1308	11.31044	1.2499564	C	1.2329378	0.5420828	0.690855	5.48985810095172	1.04573399642795	3	5000	4.5	0 NOT_A
15.335216	2	59494.309079	4719.27104847608	12.606673	12.825731	2.2256114	1	2.5094843	0.8854418	1.6240425			0			NOT_A
16.525978	20	19931.057453	70.9213347121112	281.0305	14.013094	1.4412532	C	2.5128841	1.3601189	1.1527653			0			NOT_A
19.254768	22	2936.3589527	12.9881642238526	226.0796	16.092398	1.570121	C	3.1623707	1.8431454	1.3192253			0			NOT_
10.948258	18	751899.45712	2088.26728904649	360.05902	10.071521	1.1987841	С	0.8767376	0.37185287	0.5048847	6.15536277582414	0.8553208228573	4	5750	4.5	0 NOT_
	2	2076827.2684	88327.67800881	23.512758	8.968419		1			1.1445618	5.0530592936496	0.628684206536	3	5500	3.5	0 NOT_
17.980503	15	6727.4623769	30.5727503278382	220.04767	15.192292	1.5251802	C	2.7882109	1.5380573	1.2501535			0			NOT_
19.02947	19	3314.1354871	15.7708133740782	210.1436	15.960995	1.5469192	C	3.0684757	1.7737675	1.2947083			0			NOT_
14.542317	22	65955.715081	230.599521453036	286.01843	12.713789	1.3295248	C	1.8285284	0.8938074	0.934721			0			NOT_
8.975611	47	3398225.379	2341.45602802807	1451.33	8.433789	1.1769571	C	0.5418215	0.21513367	0.3266878	15.4964245090331	3.00186310920535	18	6750	4.5	0 NOT_
13.041759	16	169739.00102	886.785247908716	191.40936	11.687466	1.2535602	C	1.3542929	0.6186447	0.73564816			0			NOT_
17.373875	34	11753.481062	18.3606056471935	640.14667	14.586504	1.4940283	C	2.7873707	1.559721	1.2276497			0			VARIA
19.654491	20	2018.0180991	13.0334113355261	154.83423	16.499607	1.620592	C	3.1548843	1.8019485	1.3529358			0			NOT_
18.986437	20	3769.7632169	12.9531951699397	291.0296	15.821135	1.5741208	C	3.1653023	1.8430634	1.3222389			0			NOT_
16.812847	17	14799.419837	38.4556982193346	384.84335	14.3363085	1.5057039	C	2.4765387	1.2816353	1.1949034			0			NOT_
20.25343	16	1194.5888458	16.5486584963753	72.18645	17.068874	1.733908	С	3.184555	1.7557182	1.4288368			0			NOT_
14.2811	21	85045.886856	308.396985811194	275.76758	12.437787	1.3523229	C	1.8433132	0.8865719	0.95674133	5.10036492032763	9.87441289893151	6	4000	3	0 NOT_
16.66138	19	17837.504277	57.9458249687494	307.83072	14.133585	1.450293	C	2.5277958	1.3660879	1.1617079			0			NOT_
14.147157	19	81810.699938	438.078250773749	186.74905	12.479895	1.299393	C	1.6672621	0.7987261	0.868536	13.6572380306138	5.73818188663904	8	4250	4.5	0 NOT_
11.023655	18	714710.16029	1559.28021968581	458.35904	10.1265955	1.2042117	C	0.897059	0.37849236	0.5185671	9.04713897539344	0.30951774605979	7	5500	4.5	0 NOT_
10.000555	10	1000 70 100	17.70.40.055.400.750		10 705000	1 70001	^	0045400	4.05.40040	14400470						NOT.

Ahora bien, ya se puede proceder a leer y trabajar con el archivo:

```
import numpy as np
import matplotlib.pyplot as plt
from astropy.io.votable import parse_single_table
# Se lee la tabla con el nombre del archivo
data = parse single table("pleiades.vot").array
bp_rp = data['bp_rp'] # Indice de color de Gaia
G = data['phot_g_mean_mag'] # Magnitud absoluta de Gaia
rp = data['phot_rp_mean_mag'] # Banda Grp de Gaia (797 nm)
temp = data['teff_val']  # Temperatura efectiva
# Se muestra el diagrama color-magnitud de Gaia
plt.plot(bp_rp,G,'.') # Para que muestre puntos
# Para que el label quede con notación de LATEX, se escribe:
plt.xlabel(r"Indice de color G$_{BP}$ - G$_{RP}$")
plt.vlabel(r"Magnitud absoluta G")
plt.grid()
plt.gca().invert_yaxis() # Para invertir el eje "y"
plt.show()
```

Esto da como resultado la siguiente imagen para el diagrama colormagnitud con magnitudes de Gaia.

Las longitudes de onda central en las cuales trabaja Gaia, así como las de Johnson-Cousins son:

	Gaia						son-Co	usins	
Band	G	$G_{ m BP}$	G_{RP}	$G_{ m RVS}$	U	В	V	$R_{\rm C}$	$I_{\rm C}$
$\lambda_{\rm o}$ (nm)	673	532	797	860	361	441	551	647	806
$\Delta\lambda$ (nm)	440	253	296	28	64	95	85	157	154

Tomado de Jordi et. al, 2010

Donde $\Delta\lambda$ es el FWHM. Las transformaciones de color-color son de la forma:

$$C_1 = a + bC_2 + cC_3^2 + dC_2^3 (1)$$

Donde los coeficientes de transformación vienen dados como:

		(B-V)	$(B-V)^2$	$(B-V)^3$	σ
$V-G_{\mathrm{BP}}$	0.0264	-0.4144	0.1599	-0.0105	0.05
$V-G_{\mathrm{RP}}$	0.1245	1.0147	0.1329	-0.0044	0.46
$G_{\mathrm{BP}}-G_{\mathrm{RP}}$	0.0981	1.4290	-0.0269	0.0061	0.43

Tomado de Jordi et. al, 2010. Tabla 3

Así, al invertir la ecuación (1), es posible obtener el índice de color (B-V). Por ejemplo, si $C_1=(G_{BP}-G_{RP})$ y $C_2=(B-V)$, entonces (1) queda:

$$G_{BP} - G_{RP} = 0.0981 + 1.4290(B - V) - 0.0269(B - V)^{2} + 0.0061(B - V)^{3}$$
 (2)

De esta forma ya se tiene el índice de color. Ahora bien, para hallar la magnitud absoulta, se calcula el filtro en el Visible V a partir de $V-G_{RP}$

$$V - G_{RP} = 0.1245 + 1.0147(B - V) + 0.1329(B - V)^{2} - 0.0044(B - V)^{3}$$
 (3)

Sin embargo, como ya se conoce el índice de color (inversión de (2)) y además se tiene la magnitud G_{RP} (de la lectura del archivo en python), entonces V es:

$$V = G_{RP} + 0.1245 + 1.0147(B - V) + 0.1329(B - V)^{2} - 0.0044(B - V)^{3}$$
 (4)

Para realizar la inversión de la ecuación (2) en python, se puede de la siguiente forma usando funciones de python y numpy

$$G_{BP} - G_{RP} = 0.0981 + 1.4290(B - V) - 0.0269(B - V)^{2} + 0.0061(B - V)^{3}$$
 (2)

```
def B_V(BP_RP):
    GG = np.ones(2000)*BP_RP  # Parte de la izquierda de (2)
    a = 0.0981  # Definición de coeficientes
    b = 1.4290
    c = -0.0269
    d = 0.0061

B_V = np.linspace(-2,4,2000)
    right = a + b*(B_V) + c*(B_V)**2 + d*(B_V)**3  # Parte de la derecha de (2)
    # La siguiente función calcula cuando la resta cambia de signo. ¿Para qué?
    idx = np.argwhere(np.diff(np.sign(GG - right))).flatten()

# idx da el valor del PIXEL para el cual GG y right son iguales. Para saber
    # qué valor de B-V corresponde el pixel, se llama de la siguiente manera:
    return B_V[idx][0]
```

En el anterior código, se han creado dos gráficas, una función constante "GG" (que depende del valor del índice de Gaia y representa la parte izquierda de (2)), y "right" que depende del índice de color (parte de la derecha de (2)). Posteriormente, se busca cuál es la intersección de las dos curvas, en cuyo caso nos da el valor del índice de color.

La anterior función tiene la siguiente representación gráfica:

Observar que en la región de la izquierda de la línea punteada, la resta GG-right es positiva, mientras que a la derecha, la resta es negativa. Por eso se busca el pixel en el cual la resta cambia de signo. De esta forma, el índice de color (de Johnson-Cousins) para el índice de color de Gaia dado (en este ejemplo, de 1), es igual a 0.63.

Ahora se halla el valor del filtro en el Visible

$$V = G_{RP} + 0.1245 + 1.0147(B - V) + 0.1329(B - V)^{2} - 0.0044(B - V)^{3}$$
 (4)

Una vez se tiene el valor del índice (B-V), se ingresa en la ecuación (4). Para esto se crea otra función en python, la cual ingresa el valor del índice además del valor de G_{RP} . La función retorna el valor del filtro en el Visible.

```
def V(B_V,RP): # RP es el valor de G_RP (valor que ya se leyó)

A = 0.1245 # Constantes según la ecuación (4)
b = 1.0147
c = 0.1329
d = -0.0044

V = RP + a + b*(B_V) + c*(B_V)**2 + d*(B_V)**3 # Ecuación (4)

return V
```

Así, con las magnitudes convertidas, la magnitud absoluta resulta en:

$$M_V = V - 5\log(d) + 5 - 3.2E(B - V) \tag{5}$$

Donde el término E(B-V) representa el "reddening", valor que se puede obtener de WEBDA. La distancia está en parsec.

```
def Magnitude(V,d,E):
    M = V - 5*np.log10(d) + 5 - 3.2*E
    return M
```

En el archivo "pleiades.py", encontrarán el programa en python que se siguió en el ejemplo.

3.4. Resultado

Al final de la ejecución del código, se muestra algo como:

3.4. Trabajo

Al agregar una escala de colores, por ejemplo respecto a la escala de temperatura, el diagrama luce como el de la derecha (en la diapositiva 26 se leyó la temperatura).

Para ello, buscar la función "scatter" de matplotlib, opciones "cmap" (mapa de colores) y "c" (color). Es recomendable buscar ejemplos de cómo usar dicha función.

Por otro lado, para agregar la barra de colores, se usa la función colorbar, también de matplotlib.

