Structure des sous-espaces propres

Soit u un endomorphisme de l'espace vectoriel E.

Définition

On dit qu'un sous-espace vectoriel F de E est **stable par** u si $u(F) \subset F$. Dans ce cas, l'application $u_{|F}: F \to F$ définie par $u_{|F}(x) = u(x)$ est un endomorphisme de F appelé la restriction de u à F.

Exemple

Soit $E = \mathbb{K}_n[X]$ et u l'endomorphisme de E définie par

$$\forall P \in E, \ u(P) = P'.$$

1. Les sous espaces

$$\forall i = 1, \dots, n, \quad E_i = \text{Vect}(1, X, \dots, X^i)$$

sont des sous espaces stables par u de E.

2. Le sous espace vectoriel F = Vect(1+X) n'est pas stable par u.

Proposition

Soit $F \subset E$ un sous-espace vectoriel stable par u. Alors $u_{|F} \in \mathcal{L}(F)$ est un endomorphisme dont le polynôme caractéristique $P_{u_{|F}}$ divise P_u . En particulier, $\sigma(u_{|F}) \subset \sigma(u)$.

Démonstration: Soit $(\varepsilon_1, \dots, \varepsilon_k)$ une base de F que nous complétons en une base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_k, \varepsilon_{k+1}, \dots, \varepsilon_k)$ de E. Dans cette base, la matrice de u est de la forme

$$M(u,B) = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

où $A \in \mathcal{M}_k(\mathbb{K}), B \in \mathcal{M}_{k,n-k}(\mathbb{K})$ et $C \in \mathcal{M}_{n-k}(\mathbb{K})$. De plus, la matrice A est la matrice de $u_{|F}$ dans la base $(\varepsilon_1, \dots, \varepsilon_k)$ de F. Ainsi

$$P_{u}(\lambda) = \begin{vmatrix} A - \lambda I_{k} & B \\ 0 & C - \lambda I_{n-k} \end{vmatrix}$$
$$= det(A - \lambda I_{k}) \cdot det(C - \lambda I_{n-k})$$
$$= P_{u|F}(\lambda) \cdot P(\lambda).$$

Donc $P_{u|F}(\lambda)$ divise $P_u(\lambda)$.

Proposition

Soit λ une valeur propre de u. Alors

- 1. le sous espace propre E_{λ} est un sous-espace vectoriel de E stable par u de dimension au moins 1.
- 2. La restriction $u_{|E_{\lambda}}$ de u à E_{λ} est une homothétie de rapport λ et sa matrice dans toute base de E_{λ} est λI_m avec $m = dim(E_{\lambda})$.
- 3. En particulier, $(\lambda X)^m$ divise $P_u(X)$

Démonstration : On sait que E_{λ} est un sous-espace vectoriel de E. Comme λ est une valeur propre de u, le sous espace E_{λ} contient au moins un vecteur non nul et donc

$$m = \dim(E_{\lambda}) \ge 1.$$

De plus, si $x \in E_{\lambda}$ alors $u(x) = \lambda x \in E_{\lambda}$ ce qui montre que $u(E_{\lambda}) \subset E_{\lambda}$ et

$$\forall x \in E_{\lambda}, \ u_{\mid E_{\lambda}}(x) = \lambda x$$

La matrice de $u_{|E_{\lambda}}$ dans toute base de E_{λ} est donc λI_m . En particulier, le polynôme caractéristique de $u_{|E_{\lambda}}$ est $(\lambda - X)^m$. Or $P_{u_{|E_{\lambda}}}$ divise P_u et donc $(\lambda - X)^m$ divise $P_u(X)$.

Définition

Soit λ une valeur propre de u.

- 1. On appelle **multiplicité algébrique de** λ la multiplicité de λ comme racine du polynôme caractéristique P_u de u. Elle sera noté $m_a(\lambda)$.
- 2. On appelle **multiplicité géométrique de** λ la dimension du sous espace propre E_{λ} associé à λ . Elle sera noté $m_q(\lambda)$.

Proposition

 $Si \lambda$ est une valeur propre de l'endomorphisme u alors

$$1 \le m_q(\lambda) \le m_a(\lambda)$$
.

Démonstration D'après la proposition précédente

$$\dim(E_{\lambda}) = m_g(\lambda) \ge 1,$$

et $(\lambda - X)^{m_g(\lambda)}$ divise $P_u(X)$. Donc λ est une racine de P_u de multiplicité au moins égale à $m_g(\lambda)$. Finalement,

$$m_g(\lambda) \le m_a(\lambda).$$

Proposition

Les sous espaces propres de l'endomorphisme u sont en somme directe.

Démonstration : Soient $\lambda_1, \lambda_2, \dots, \lambda_k$ des valeurs propres distinctes de u. On veut montrer que

$$\sum_{i=1}^{k} E_{\lambda_i} = \bigoplus_{1 \le i \le k} E_{\lambda_i}.$$

On procède par récurrence sur k. Si k = 1 il n'y a rien à montrer.

Si k = 2 alors il suffit de montrer que

$$E_{\lambda_1} \cap E_{\lambda_2} = \{0\}.$$

Pour cela, soit $x \in E_{\lambda_1} \cap E_{\lambda_2}$. Alors

$$\begin{cases} u(x) = \lambda_1 x \\ u(x) = \lambda_2 x. \end{cases}$$

Ainsi

$$(\lambda_1 - \lambda_2)x = 0.$$

Comme $\lambda_1 \neq \lambda_2$, on déduit que

$$x = 0$$
.

Supposons que le résultat est vrai pour k et soient $\lambda_1, \lambda_2, \dots, \lambda_{k+1}$ des valeurs propres distinctes de u. Soient $(x_1, \dots, x_n) \in E_{\lambda_1} \times E_{\lambda_2} \times \dots \times E_{\lambda_{k+1}}$ tel que

$$\sum_{i=1}^{k+1} x_i = 0 \ .$$

Alors

$$u\left(\sum_{i=1}^{k+1} x_i\right) = \sum_{i=1}^{k+1} \lambda_i x_i = 0.$$

Ainsi

$$\sum_{i=1}^{k} (\lambda_i - \lambda_{k+1}) x_i = 0.$$

Comme les sous-espaces propres $E_{\lambda_1}, \dots, E_{\lambda_k}$ sont en somme directe, on déduit

$$\forall i = 1, \dots, k, \quad (\lambda_i - \lambda_{k+1}) x_i = 0.$$

Ainsi, $x_i = 0$ pour tout $i = 1, \dots, k$. Finalement $x_{k+1} = 0$ aussi.

Corollaire

Toute famille de vecteurs propres associés à des valeurs propres distinctes d'un endomorphisme u est une famille libre.

Corollaire

Soit E un espace vectoriel de dimension n. Si un endomorphisme $u \in \mathcal{L}(E)$ admet exactement n valeurs propres distinctes alors u est diagonalisable.

Démonstration : Soient $\lambda_1, \lambda_2, \dots, \lambda_n$ les n valeurs propres distinctes de u. Soient v_1, \dots, v_n une famille de vecteurs propres de u associés respectivement $\lambda_1, \lambda_2, \dots, \lambda_n$. Il s'agit d'une famille libre de cardinal $n = \dim E$. Donc (v_1, \dots, v_n) est une base de E formée de vecteurs propres de u.

Exemple

Soit u l'endomorphisme de \mathbb{K}^3 dont la matrice dans la base canonique est donnée par

$$A := \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right)$$

u est-il diagonalisable?

Le polynôme caractéristique de u est

$$P_{u}(\lambda) = \begin{vmatrix} 1 - \lambda & 2 & 3 \\ 4 & 5 - \lambda & 6 \\ 7 & 8 & 9 - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 1 - \lambda & 1 + \lambda & 1 \\ 4 & 1 - \lambda & 1 + \lambda \\ 7 & 1 & 1 - \lambda \end{vmatrix} \quad (C_{3} \curvearrowright C_{3} - C_{2} \text{ puis } C_{2} \curvearrowright C_{2} - C_{1})$$

$$= \begin{vmatrix} 1 - \lambda & \lambda & 1 \\ 4 & -2\lambda & 1 + \lambda \\ 7 & \lambda & 1 - \lambda \end{vmatrix} = \lambda \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 4 & -2 & 1 + \lambda \\ 7 & 1 & 1 - \lambda \end{vmatrix}$$

$$= \lambda \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 6 - 2\lambda & 0 & 3 + \lambda \\ 6 + \lambda & 0 & -\lambda \end{vmatrix} \quad (C_{1} \curvearrowright C_{1} - C_{3}, C_{2} \curvearrowright C_{2} - C_{3})$$

$$= -\lambda(\lambda^{2} - 15\lambda - 18).$$

L'équation $\lambda^2 - 15\lambda - 18$ possède deux racines réelles distinctes et non nulles, car $\Delta = 15^2 - 4 \cdot 18 > 0$. Finalement, u admet trois valeurs propres distinctes et donc u est diagonalisable.

Critère de diagonalisabilité

Le théorème suivant donne une première condition nécessaire et suffisante pour qu'un endomorphisme soit diagonalisable.

Théorème

Un endomorphisme $u \in \mathcal{L}(E)$ est diagonalisable si, et seulement si, $E = \bigoplus_{\lambda \in \sigma(u)} E_{\lambda}$.

Démonstration : (i) Si $E = \bigoplus_{\lambda \in \sigma(u)} E_{\lambda}$, alors on forme une base de E en juxtaposant les bases de chacun des espaces propres. Une telle base est formée de vecteurs propres de u et u est donc diagonalisable.

(ii) Réciproquement, si E admet une base $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ formée de vecteurs propres, alors

$$E = \operatorname{Vect}(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) \subset \bigoplus_{\lambda \in \sigma(u)} E_\lambda \subset E.$$

Finalement,

$$E = \bigoplus_{\lambda \in \sigma(u)} E_{\lambda}.$$

Théorème

Un endomorphisme $u \in \mathcal{L}(E)$ est diagonalisable si, et seulement si, les conditions suivantes sont satisfaites :

- 1. le polynôme caractéristique P_u de u est scindé;
- 2. pour toute valeur propre λ de u,

$$m_g(\lambda) = m_a(\lambda).$$

Démonstration : Notons $\lambda_1, \dots, \lambda_r$ les valeurs propres distinctes de u. Il s'agit des racines distinctes de P_u . On sait que

$$m_a(\lambda_i) \leq m_a(\lambda_i).$$

 \Longrightarrow) Supposons que u est diagonalisable. Alors P_u est scindé et

$$\sum_{i=1}^{r} m_a(\lambda_i) = n \quad \text{et} \quad \sum_{i=1}^{r} m_g(\lambda_i) = n.$$

En particulier,

$$0 = \sum_{i=1}^{r} \underbrace{\left(m_a(\lambda_i) - m_g(\lambda_i)\right)}_{>0}$$

et donc $m_a(\lambda_i) = m_q(\lambda_i)$.

 \iff Réciproquement, supposons que P_u est scindé et $m_a(\lambda_i) = m_g(\lambda_i)$. Donc

$$P_u(X) = \prod_{i=1}^{n} (\lambda_i - X)^{m_a(\lambda_i)} = \prod_{i=1}^{n} (\lambda_i - X)^{m_g(\lambda_i)}.$$

Ainsi

$$\dim(\bigoplus_{1\leq i\leq r} E_{\lambda_i}) = \sum_{i=1}^r m_g(\lambda_i) = \sum_{i=1}^r m_a(\lambda_i) = n.$$

Finalement, $E = \underset{1 \le i \le r}{\oplus} E_{\lambda_i}$ et u est diagonalisable.

Exemple

1. Montrer que la matrice suivante est diagonalisable :

$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 2 & -1 \\ 1 & 1 & -1 \end{pmatrix}$$

- 2. Chercher une matrice inversible P et une matrice diagonale D telles que $D = P^{-1}AP$.
- 3. En déduire A^n , pour tout $n \in \mathbb{N}$.

Solution : 1) On cherche le polynôme caractéristique de A :

$$P_{A} = \begin{vmatrix} 2 - X & 1 & -2 \\ 1 & 2 - X & -1 \\ 1 & 1 & -1 - X \end{vmatrix} = \begin{vmatrix} 1 - X & 1 & -2 \\ X - 1 & 2 - X & -1 \\ 0 & 1 & -1 - X \end{vmatrix}$$
$$= (1 - X) \begin{vmatrix} 1 & 1 & -2 \\ -1 & 2 - X & -1 \\ 0 & 1 & -1 - X \end{vmatrix} = (1 - X) \begin{vmatrix} 1 & 1 & -2 \\ 0 & 3 - X & -3 \\ 0 & 1 & -1 - X \end{vmatrix}$$
$$= X(X - 1)(2 - X)$$

Donc A admet trois valeurs propres distinctes de multiplicité 1. La matrice A est donc diagonalisable.

- 2) Pour trouver une matrice inversible P et une matrice diagonale D telles que $D = P^{-1}AP$, il suffit de chercher les sous espaces propre de A.
 - Recherche de $E_0 = \ker(A)$. On cherche v = (x, y, z) tel que

$$\begin{cases} 2x + y - 2z &= 0\\ x + 2y - z &= 0\\ x + y - z &= 0 \end{cases}$$

Il vient que y = 0 et x = z. Donc $E_0 = \ker(A)$ est engendré par $v_1 = (1, 0, 1)$.

• Recherche de $E_1 = \ker(A - I)$. $v = (x, y, z) \in \ker(A - I)$ si, et seulement si,

$$A - I = \begin{pmatrix} 1 & 1 & -2 \\ 1 & 1 & -1 \\ 1 & 1 & -2 \end{pmatrix}$$

ce qui équivaut à

$$\begin{cases} x+y-2z &= 0\\ x+y-z &= 0\\ x+y-2z &= 0 \end{cases}$$

De sorte que u = x(1, -1, 0). Donc $E_1 = \text{Vect}(v_2)$ avec $v_2 = (1, -1, 0)$.

• Recherche de $E_2 = \ker(A - 2I)$. On a $v = (x, y, z) \in \ker(A - 2I)$ si, et seulement si,

$$A - 2I = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & -1 \\ 1 & 1 & -3 \end{pmatrix}$$

Ainsi

$$\begin{cases} y - 2z = 0 \\ x - z = 0 \\ x + y - 3z = 0 \end{cases}$$

de sorte que v = x(1, 2, 1). Donc $E_2 = \text{Vect}(v_3)$ avec $v_3 = (1, 2, 1)$.

Ainsi (v_1, v_2, v_3) est une base de \mathbb{R}^3 formée de vecteurs propres de A et

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$

De plus,

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = D$$

3) Soit $n \in \mathbb{N}$. $A^n = PD^nP^{-1}$. On cherche

$$P^{-1} = \frac{1}{2} \begin{pmatrix} -1 & -1 & 3\\ 2 & 0 & -2\\ 1 & 1 & -1 \end{pmatrix}$$

D'où

$$A^{n} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} -1 & -1 & 3 \\ 2 & 0 & -2 \\ 1 & 1 & -1 \end{pmatrix}$$

D'où pour $n \ge 1$ on a

$$A^{n} = \begin{pmatrix} 1 + 2^{n-1} & 2^{n-1} & -1 - 2^{n-1} \\ -1 + 2^{n} & 2^{n} & 1 - 2^{n} \\ 2^{n-1} & 2^{n-1} & -2^{n-1} \end{pmatrix}$$

Exercice

Déterminer l'ensemble des suites $(a_n)_n$, $(b_n)_n$ et $(c_n)_n$ vérifiant les relations de récurrence suivantes :

$$n \in \mathbb{N}, \quad \begin{cases} a_{n+1} = 2a_n + b_n - 2c_n \\ b_{n+1} = a_n + 2b_n - c_n \\ c_{n+1} = a_n + b_n - c_n \end{cases}$$
 (*)

Pour quelles valeurs des premiers termes a_0, b_0 et c_0 , a-t-on que la suite $(a_n)_n$ ci-dessus est bornée?

Posons

$$X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}.$$

Alors le système (*) est équivalent à

$$X_{n+1} = AX_n \text{ où } A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 2 & -1 \\ 1 & 1 & -1 \end{pmatrix}$$

D'où

$$X_n = A^n X_0.$$

En utilisant les résultats de l'exemple précédent, on sait que

$$\forall n \ge 1, \quad A^n = \begin{pmatrix} 1 + 2^{n-1} & 2^{n-1} & -1 - 2^{n-1} \\ -1 + 2^n & 2^n & 1 - 2^n \\ 2^{n-1} & 2^{n-1} & -2^{n-1} \end{pmatrix}$$

Donc les solutions sont :

$$\begin{cases} a_n = (1+2^{n-1})a_0 + 2^{n-1}b_0 + (-1-2^{n-1})c_0 \\ b_n = (-1+2^n)a_0 + 2^nb_0 + (1-2^n)c_0 \\ c_n = 2^{n-1}a_0 + 2^{n-1}b_0 - 2^{n-1}c_0 \end{cases}$$

Autrement dit:

$$\begin{cases} a_n = 2^{n-1}(a_0 + b_0 - c_0) + a_0 - c_0 \\ b_n = 2^n(a_0 + b_0 - c_0) - a_0 + c_0 \\ c_n = 2^{n-1}(a_0 + b_0 - c_0) \end{cases}$$

On voit que la suite $(a_n)_n$ est bornée si, et seulement si,

$$a_0 + b_0 - c_0 = 0.$$

Exemple

Pour quelles valeurs du paramètre a la matrice

$$A_a = \begin{pmatrix} 6 & 2 & 0 \\ 2 & 3 & 0 \\ a^2 - 7a & a - 7 & a \end{pmatrix}$$

est-elle diagonalisable?

Solution : On cherche d'abord le polynôme caractéristique de A_a :

$$P_{A_a}(X) = \begin{vmatrix} 6 - X & 2 & 0 \\ 2 & 3 - X & 0 \\ a^2 - 7a & a - 7 & a - X \end{vmatrix}$$
$$= (a - X) \begin{vmatrix} 6 - X & 2 \\ 2 & 3 - X \end{vmatrix}$$
$$= (a - X)(X^2 - 9X + 14)$$
$$= (a - X)(X - 2)(X - 7)$$

La matrice A_a admet trois valeurs propres distinctes simples si, et seulement si, $a \neq 2$ et $a \neq 7$. Ainsi, si $a \neq 2$ et $a \neq 7$ alors la matrice A est diagonalisable.

- Supposons que a=2. Alors 2 est une valeur double de A_a . On cherche le sous-espace propre $E_2 = \ker(A_2 2I)$. Un calcul simple montre que $u = (x, y, z) \in E_2$ si et seulement si 2x + y = 0. Donc $u_1 = (1, -2, 0)$ et $u_2 = (0, 0, 1)$ est une base de $E_2 = \ker(A_2 2I)$. On déduit tout de suite que A_2 est diagonalisable.
- Supposons que a = 7. Alors 7 est une valeur double de A_7 . On cherche le sous-espace propre $E_7 = \ker(A_7 7I)$. Un calcule simple montre que $u = (x, y, z) \in E_7$ si et seulement si x 2y = 0. Donc $v_1 = (2, 1, 0)$ et $v_2 = (0, 0, 1)$ est une base de $E_7 = \ker(A_7 2I)$. On déduit tout de suite que A_7 est diagonalisable.

Exemple

Pour quelles valeurs du paramètre a la matrice $A_a = \begin{pmatrix} 6 & 2 & 0 \\ 2 & 3 & 0 \\ a & 1 & 2 \end{pmatrix}$ est-elle diagonalisable?

Solution : Comme dans l'exemple précédent $P_A(x) = (x-2)^2(x-7)$ et A admet deux valeurs propres $\lambda = 7$ (simple) et $\lambda = 2$ double. En cherchant le sous espace propre E_2 on trouve le système d'équations

$$2x + y = 0$$
$$(2 - a)x = 0$$

Si $a \neq 2$ alors x = y = 0 et le sous espace propre E_2 est de dimension 1 et A n'est pas diagonalisable. Par contre, si a = 2 alors le sous espace propre E_2 est de dimension 2 et A est diagonalisable.

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 2 & -3 & 3 \\ 9 & -10 & 9 \\ 5 & -5 & 4 \end{pmatrix}$$

- 1. Calculer le polynôme caractéristique de u.
- 2. L'endomorphisme u est-il bijectif?
- 3. L'endomorphisme u est-il diagonalisable? Si oui déterminer une matrice inversible P et une matrice diagonale D telles que $P^{-1}AP = D$.

Solution: (1) Le polynôme caractéristique:

$$P_{u}(X) = \begin{vmatrix} 2-X & -3 & 3 \\ 9 & -10-X & 9 \\ 5 & -5 & 4-X \end{vmatrix}$$

$$= \begin{vmatrix} 2-X & -3 & 0 \\ 9 & -10-X & -1-X \\ 5 & -5 & -1-X \end{vmatrix} \quad (C3 \curvearrowright C3 + C2)$$

$$= \begin{vmatrix} 2-X & -3 & 0 \\ 4 & -5-X & 0 \\ 5 & -5 & -1-X \end{vmatrix} \quad (L2 \curvearrowright L2 - L3)$$

$$= -(1+X)(X^{2} + 3X + 2) = -(1+X)^{2}(X + 2).$$

- (2) Ainsi $\sigma_{\mathbb{R}}(u) = \{-2, -1\}$. La valeur propre $\lambda = -2$ est simple et le valeur propre $\lambda = -1$ est double.
- (3) Par ailleurs, $det(u) = P_u(0) = -2 \neq 0$ et donc u est bijectif.

(4) Recherche du sous espace propre E_{-2} : Un vecteur $(x, y, z) \in E_{-2}$ si, et seulement si,

$$(A+2I)\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3\\9 & -8 & 9\\5 & -5 & 6 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

ce qui équivaut à

$$3x = y$$
 et $3z = 5x$.

Finalement, le sous espace propre E_{-2} est la droite vectorielle engendrée par $v_1 = \begin{pmatrix} 3 \\ 9 \\ 5 \end{pmatrix}$

Recherche du sous espace propre E_{-1} : Un vecteur $(x, y, z) \in E_{-1}$ si, et seulement si,

$$(A+I)\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 3 & -3 & 3\\9 & -9 & 9\\5 & -5 & 5 \end{pmatrix} \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

ce qui équivaut à

$$x - y + z = 0.$$

Finalement, le sous espace propre E_{-1} est le plan vectoriel engendré par $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

(5) Comme

$$m_a(-2) = m_g(-2) = 1$$
 et $m_a(-1) = m_g(-1) = 2$

on déduit que u est diagonalisable.

(6) Par ailleurs, la famille (v_1, v_2, v_3) est une base de E formée de vecteurs propres de u. La matrice de u dans cette base est la matrice diagonale :

$$D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Restriction, somme des endomorphismes diagonalisables

Proposition

Soit $u \in \mathcal{L}(E)$ un endomorphisme diagonalisable. Si $F \subset E$ est un sous-espace vectoriel stable par u alors la restriction $u_{|F} \in \mathcal{L}(F)$ est un endomorphisme diagonalisable.

Démonstration : On sait déjà que $\sigma(u_{|F}) \subset \sigma(u)$ et que $P_{u_{|F}}$ divise P_u . Puisque P_u est scindé, alors $P_{u_{|F}}$ aussi.

(1) Soit $\lambda_1, \dots, \lambda_r$ les valeurs propres distinctes de u. Comme $E = \bigoplus_{1 \leq i \leq r} E_{\lambda_i}$ et F est stable par u, montrons que

$$F = \bigoplus_{1 \le i \le r} (E_{\lambda_i} \cap F).$$

Attention si F n'est pas stable, ceci est faux en général. 1

- Comme u est diagonalisable il existe une base B formée de vecteurs propres de u. Grâce au théorème de la base incomplète, on peut compléter une base de F par des vecteurs (v_1, \dots, v_q) de B pour former une base de E. Ainsi $G = \text{Vect}(v_1, \dots, v_q)$ est un sous espace stable par u et $F \oplus G = E$. Ici nous n'avons pas besoin du fait que F est stable.
- Soit λ une valeur propre de u. Alors

$$E_{\lambda} = (E_{\lambda} \cap F) \oplus (E_{\lambda} \cap G)$$

En effet, il est clair que $(E_{\lambda} \cap F) \cap (E_{\lambda} \cap G) = \{0\}$. De plus, pour un $x \in E_{\lambda}$, il existe $x_F \in F$ et $x_G \in G$ tel que $x = x_F + x_G$. Par suite

$$\begin{cases} u(x) = \underbrace{u(x_F)}_{\in F} + \underbrace{u(x_G)}_{\in G} \\ u(x) = \lambda x = \lambda x_F + \lambda x_G \end{cases}$$

de sorte que

$$u(x_F) = \lambda x_F$$
 et $u(x_G) = \lambda x_G$

Finalement

$$x_F \in E_\lambda \cap F$$
 et $x_G \in E_\lambda \cap G$.

La propriété souhaitée est montrée.

• Maintenant,

$$E = \bigoplus_{1 \le i \le r} E_{\lambda_i} = (\bigoplus_{1 \le i \le r} E_{\lambda_i} \cap F) \oplus (\bigoplus_{1 \le i \le r} E_{\lambda_i} \cap G)$$

Finalement,

$$F = \bigoplus_{1 \le i \le r} E_{\lambda_i} \cap F.$$

- (2) Soit $\lambda \in \sigma(u)$.
 - 1. Si $E_{\lambda} \cap F = \{0_E\}$ alors λ n'est pas une valeur propre de $u_{|F}$.
 - 2. Si $E_{\lambda} \cap F \neq \{0_E\}$ alors λ est une valeur propre de $u_{|F}$ et

$$E_{\lambda} \cap F \subset E_{\lambda}(u_{|F}).$$

De plus, $x \in E_{\lambda}(u_{|F})$ signifie que $x \in F$ et $u(x) = u_{|F}(x) = \lambda x$ de sorte que $x \in E_{\lambda} \cap F$ et finalement,

$$E_{\lambda}(u_{|F}) \subset E_{\lambda} \cap F$$
.

Ainsi $E_{\lambda} \cap F = E_{\lambda}(u_{|F})$. Comme

$$F = \bigoplus_{\lambda \in \sigma(u)} (E_{\lambda} \cap F) = \bigoplus_{\lambda \in \sigma(u|F)} E_{\lambda}(u|F),$$

 $u_{|F}$ est diagonalisable.

Remarque

Les sous espaces propres d'un endomorphisme diagonalisable u sont les sous espaces engendrés par des vecteurs propres de u.

^{1.} Par exemple pour l'endomorphisme u de \mathbb{R}^2 dont la matrice dans la base canonique est $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ on a $E_1 = \text{vect}(e_1)$ et $E_2 = \text{vect}(e_2)$. Si $F = \text{vect}(e_1 + e_2)$ alors $F \cap E_1 = \{0\} = F \cap E_2$. Dans ce cas F n'est pas stable par u car $u(1,1) = (1,2) \notin F$.

Théorème:

Supposons que u et v sont des endomorphismes de E diagonalisables qui commutent, i.e. $u \circ v = v \circ u$. Alors il existe une base de E dans laquelle les matrices de u et de v sont simultanément diagonales.

Démonstration: Soit λ une valeur propre de u. Si $x \in E_{\lambda}(u) = \ker(u - \lambda i d_E)$ alors

$$u(v(x)) = v(u(x)) = v(\lambda x) = \lambda v(x)$$

où nous avons utilisé le fait u et v commutent. Ainsi $v(x) \in \ker(u - \lambda \mathrm{id}_E)$. Il vient que tout espace propre de u est un sous-espace stable par v. D'après la proposition précédente, $v_{|E_{\lambda}}$ est diagonalisable (car E_{λ} est stable par v qui est diagonalisable).

Notons $\lambda_1, \lambda_2, \dots, \lambda_k$ les valeurs propres distinctes de u. Choisissons alors, pour chaque $i=1,\dots,k$ une base B_i de $E_{\lambda_i} = \ker(u-\lambda_i \mathrm{id}_E)$ formée de vecteurs propres de v. On considère le système de vecteurs $B = (B_1, B_2, B_3, \dots, B_k)$ obtenue en juxtaposant les différentes bases B_i des E_{λ_i} . On obtient ainsi une base de E car $E = \bigoplus_{i=1}^k E_{\lambda_i}$. Chaque vecteur de la base B est un vecteur propre pour v, par construction, et c'est également par construction un vecteur dans E_{λ_i} pour un certain i. C'est donc un vecteur propre à la fois pour v et pour v. Ainsi on a construit une base formée de vecteurs propres communs pour v et v.

Remarque

Notons que s'il existe une base (e_1, \dots, e_n) de E dans laquelle les matrices de deux endomorphismes u et v sont simultanément diagonales alors u et v commutent. En effet, pour tout $i=1,\dots,n$, le vecteur e_i est un vecteur propre de u et de v associé aux valeurs propres λ et μ de u et v respectivement, et donc

$$u(v(e_i)) = u(\mu e_i) = \mu u(e_i) = \mu \lambda e_i = v(u(e_i)).$$

Finalement, $u \circ v = v \circ u$.

Corollaire

Dans la situation du théorème précédent, toute combinaison linéaire de u et v est diagonalisable, et $u \circ v$ également.

Exemples

1. La condition que u et v commutent est indispensable. Par exemple les matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{ et } \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

sont diagonalisables mais ne commutent pas, et la matrice $A + B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ n'est pas diagonalisable.

2. Les matrices $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ commutent et sont diagonalisables donc $C + D = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ est diagonalisable.

On remarque qu'il existe des bases de diagonalisation pour C qui ne sont pas des bases de diagonalisation pour D.

On clos ce chapitre par une description pratique de ce que nous avons à faire pour savoir si une matrice est diagonalisable et la diagonaliser le cas échéant.

- 1. On calcule le polynôme caractéristique P_A sous la forme la plus factorisée possible. On détermine ainsi l'ensemble des valeurs propres de A, et la multiplicité de chacune d'elles.
- 2. Si P_A n'est pas scindé alors la matrice A n'est pas diagonalisable. Rappelons que si on travaille dans \mathbb{C} on sait que le polynôme caractéristique P_A est scindé.
- 3. Si P_A est scindé alors on passe à l'étape suivante.
- 4. Calcul de la dimension des espaces propres. Pour toute valeur propre λ de A de multiplicité $m_a(\lambda) > 1$, on calcule

$$m_q(\lambda) = \dim E_{\lambda}(A).$$

- (a) Si pour toute valeur propre λ de A on a $m_g(\lambda) = m_a(\lambda)$, alors la matrice A est diagonalisable. Dans ce cas,
 - i. On calcule une base B_{λ} de chaque espace propre $E_{\lambda}(A)$ en résolvant le système $(A \lambda I_n)X = 0$.
 - ii. On forme une base B de E en juxtaposant toutes ces bases B_{λ} . On appelle P la matrice de passage de la base canonique à cette nouvelle base (obtenue, en rangeant en colonne les coordonnées des vecteurs de la base B).
 - iii. On a alors $A = PDP^{-1}$ où D est la matrice diagonale obtenue en rangeant sur la diagonale les valeurs propres de A dans l'ordre de la base B.
 - iv. On ne calcule l'inverse P^{-1} de la matrice P que si on en a besoin.
- 5. Si $m_g(\lambda) \neq m_a(\lambda)$ alors A n'est pas diagonalisable et on verra ce qu'on peut faire au chapitre suivant.