Data columns (total 4 columns): Age 306 non-null int64
Op_year 306 non-null int64
Axil Node 306 non-null int64
Surv_Status 306 non-null int64 dtypes: int64(4) memory usage: 9.6 KB None In [19]: cancer_df['survival_status'].value_counts() 225 Out[19]: 1 81 Name: survival_status, dtype: int64 Observation No missing values · All values found in Integer format · Seems unbalance dataset **Univariate Analysis** In [63]: # Analyze survival figures print("Patients survied 5 years or more") survived_df = cancer_df.loc[cancer_df['survival_status']== 1] print(survived.describe()) print('--'*40) # Analyze died figures print("Patients died within 5 years") died df = cancer df.loc[cancer df['survival status'] ==2] print(died df.describe()) Patients survied 5 years or more age year_of_treatement positive_axillary_node survival_status
 count
 225.000000
 225.000000
 225.000000
 225.0

 mean
 52.017778
 62.862222
 2.791111
 1.0

 count
 225.000000
 225.000000
 225.000000

 mean
 52.017778
 62.862222
 2.791111

 std
 11.012154
 3.222915
 5.870318

 min
 30.000000
 58.000000
 0.000000

 25%
 43.000000
 60.000000
 0.000000

 50%
 52.000000
 63.000000
 0.000000

 75%
 60.000000
 66.000000
 3.000000

 max
 77.000000
 69.000000
 46.000000

 1.0 0.0 1.0 1.0 1.0 1.0 Patients died within 5 years age year_of_treatement positive_axillary_node survival_status
 count
 81.000000
 81.000000
 81.000000
 81.000000
 81.0

 mean
 53.679012
 62.827160
 7.456790
 2.0

 std
 10.167137
 3.342118
 9.185654
 0.0

 min
 34.000000
 58.000000
 0.000000
 2.0

 25%
 46.000000
 59.000000
 1.000000
 2.0

 50%
 53.000000
 63.000000
 4.000000
 2.0

 75%
 61.000000
 65.000000
 11.000000
 2.0

 max
 83.000000
 69.000000
 52.000000
 2.0
 Observations • As earlier mention it is imbalance dataset, 225 patients who survival and 81 patients who died. • positive axillary node seems important factor, patients those who survived having auxillary node mean = '2.79111' and patients those who died having auxillary node mean = '7.456790', which can be significant feature to observe. • On other hand 'age' and 'year of treatement' feature are almost same for 'survived' and 'died' patients. Histogram, PDF **Auxillary Feature** In [67]: # First study auxillary feature sns.set style("whitegrid"); sns.FacetGrid(cancer df, hue = 'survival status', size = 6).map(sns.distplot, "positive axillary nod e").add legend(); plt.title("Auxillary Feature") plt.show() C:\Users\DEEL\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWarning: The 'norme d' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " C:\Users\DEEL\Anaconda3\lib\site-packages\matplotlib\axes\py:6462: UserWarning: The 'norme d' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " Auxillary Feature 0.5 0.4 0.3 survival_status 0.2 0.1 positive_axillary_node Age Feature In [72]: # Second study age feature sns.FacetGrid(cancer df, hue="survival status", size =6).map(sns.distplot, "age",bins=10).add legend plt.title("Age Feature") plt.show() C:\Users\DEEL\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWarning: The 'norme d' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " C:\Users\DEEL\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWarning: The 'norme d' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " Age Feature 0.035 0.030 0.025 0.020 survival status 1 2 0.015 0.010 0.005 0.000 20 **Years of Treatement** In [71]: # Second study 'years of treatement' feature sns.FacetGrid(cancer df, hue="survival status", size =6).map(sns.distplot, "year of treatement", bin s=10).add legend(); plt.title("Years Feature") plt.show() C:\Users\DEEL\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWarning: The 'norme d' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " C:\Users\DEEL\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py:6462: UserWarning: The 'norme d' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " Years Feature 0.16 0.14 0.12 0.10 survival_status 2 0.08 0.06 0.04 0.02 0.00 55.0 57.5 62.5 65.0 67.5 year_of_treatement **Observations** • We can clearly observe that 'auxillary / lymph' node is most useful feature. On other hand 'age' and 'year_of_treatement' feature not giving clear picture. • Also we should note that in year 65, there is largest number of died. **CDF** In [77]: # plot CDF for 'auxillary' feature of SURVIVED patients counts, bin edges = np.histogram(survived df['positive axillary node'], bins=10, density = **True**) pdf = counts/(sum(counts)) print(pdf); print(bin edges) cdf = np.cumsum(pdf)plt.plot(bin edges[1:],pdf) plt.plot(bin edges[1:], cdf) plt.legend(['Pdf for the patients who survive more than 5 years', 'Cdf for the patients who survive more than 5 years']) plt.show() 0.02222222 0.02666667 0.01777778 0.00444444 [0.8355556 0.08 0.00888889 0. 0.00444444] [0. 4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46.] 1.0 8.0 0.6 Pdf for the patients who survive more than 5 years Cdf for the patients who survive more than 5 years 0.4 0.2 0.0 30 **Observations** • Around 91% patients survived when their auxillary/ lymph node is less than 10 In [79]: # # plot CDF for 'auxillary' feature of DIED patients counts, bin edges = np.histogram(died df['positive axillary node'], bins=10, density = **True**) pdf = counts/(sum(counts)) print(pdf); print(bin_edges) cdf = np.cumsum(pdf) plt.plot(bin edges[1:],pdf) plt.plot(bin edges[1:], cdf) plt.legend(['Pdf for the patients who died after 5 years', 'Cdf for the patients who died after 5 years']) plt.show() [0.56790123 0.14814815 0.13580247 0.04938272 0.07407407 0. 0.01234568 0. 0. 0.01234568] [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] 1.0 0.8 0.6 - Pdf for the patients who died after 5 years Cdf for the patients who died after 5 years 0.4 0.2 Observation • As auxillary / lymph node is increases died possibilities increases. • 90% patients died who having lymph node is more than 20. In [80]: # plot CDF for 'age' feature of SURVIVED patients counts, bin edges = np.histogram(survived df['age'], bins=10, density = **True**) pdf = counts/(sum(counts)) print(pdf); print(bin edges) cdf = np.cumsum(pdf) plt.plot(bin_edges[1:],pdf) plt.plot(bin_edges[1:], cdf) plt.legend(['Pdf for the patients who survive more than 5 years', 'Cdf for the patients who survive more than 5 years']) plt.show() [0.05333333 0.10666667 0.12444444 0.09333333 0.16444444 0.16444444 0.09333333 0.11111111 0.06222222 0.02666667] [30. 34.7 39.4 44.1 48.8 53.5 58.2 62.9 67.6 72.3 77.] Pdf for the patients who survive more than 5 years Cdf for the patients who survive more than 5 years 0.8 0.6 0.4 0.2 70 In [81]: # plot CDF for 'auxillary' feature of DIED patients counts, bin edges = np.histogram(died df['age'], bins=10, density = **True**) pdf = counts/(sum(counts)) print(pdf); print(bin edges) cdf = np.cumsum(pdf) plt.plot(bin edges[1:],pdf) plt.plot(bin edges[1:], cdf) plt.legend(['Pdf for the patients who survive more than 5 years', 'Cdf for the patients who survive more than 5 years']) plt.show() $[0.03703704\ 0.12345679\ 0.19753086\ 0.19753086\ 0.13580247\ 0.12345679$ 0.09876543 0.04938272 0.02469136 0.01234568] [34. 38.9 43.8 48.7 53.6 58.5 63.4 68.3 73.2 78.1 83.] 1.0 0.8 0.6 Polf for the patients who survive more than 5 years. odf for the patients who survive more than 5 years 0.4 0.2 0.0 Observation • It is very hard to predict died causes basis on 'age' feature because both values seems equals. Median, Percentile, Quantile, IQR, MAD In [83]: #Median, Quantiles, Percentiles, IQR. print("\nMedians:") print(np.median(survived df["positive axillary node"])) #Median with an outlier print(np.median(np.append(survived_df["positive_axillary_node"],50))); print(np.median(died_df["positive_axillary_node"])) print("\nQuantiles:") print(np.percentile(survived_df["positive_axillary_node"], np.arange(0, 100, 25))) print(np.percentile(died_df["positive_axillary_node"],np.arange(0, 100, 25))) print("\n90th Percentiles:") print(np.percentile(survived df["positive axillary node"],90)) print(np.percentile(died df["positive axillary node"],90)) from statsmodels import robust print ("\nMedian Absolute Deviation") print(robust.mad(survived_df["positive_axillary_node"])) print(robust.mad(died_df["positive_axillary_node"])) Medians: 0.0 0.0 4.0 Quantiles: [0. 0. 0. 3.] [0. 1. 4. 11.] 90th Percentiles: 8.0 20.0 Median Absolute Deviation 5.930408874022408 **Box plot and Whiskers** In [87]: sns.boxplot(x='survival_status',y='positive_axillary_node', data=cancer_df) plt.show() 40 30 20 survival_status **Observations** • 25% patients(ie 50%-75%) who died having positive axillary / lymph node more than 4 or in other words. • 75% patients survived who having axillary lymph node is less than 4. Violin plots In [91]: sns.violinplot(x="survival_status", y="positive_axillary_node", data=cancer_df, size=5) plt.show() 60 50 40 30 20 10 -101 survival_status **Observations** • The number of positive auxillary /lymph nodes of the survivors is highly densed from 0 to 5. • Almost 80% of the patients have less than or equal to 5 positive lymph survived more than 5 years. • On other hand, if 80% patient died who having positive auxillary/ lymph node upto 10 or more. **Contour plot** In [102]: # contour plot using age and auxillary node # auxillary vs age for SURVIVED patients sns.jointplot(x="positive_axillary_node", y="age", data = survived_df , kind="kde"); # auxillary vs age for DIED patients sns.jointplot(x="positive_axillary_node", y="age", data = died_df , kind="kde"); # # 'year of treatement' vs age for SURVIVED patients # sns.jointplot(x="age", y="year of treatement", data=survived df, kind="kde"); # 'year of treatement' vs age for DIED patients sns.jointplot(x="age", y="year of treatement", data=died df, kind="kde"); plt.show() pearsonr = -0.086; p = 0.2 20 40 positive_axillary_node pearsonr = -0.096; p = 0.4 90 80 70 g 60 50 40 30 30 40 50 positive_axillary_node 72 pearsonr = 0.18; p = 0.0079 70 68 66 64 62 60 58 56 20 30 40 50 60 70 pearsonr = -0.16; p = 0.15 72.5 70.0 67.5 65.0 of treat 62.5 60.0 57.5 55.0 **Observations** • There is more chance of died when age is 50 and auxillary node is 4. · 'Auxillary node' is only feature which play key role, age feature is not useful. • It is noted that in 1965 year there was lot of dead number. 2-D Scatter Plot In [29]: # cancer_df.plot(kind='scatter', x='age',y='year_of_treatement') sns.set style('whitegrid') sns.FacetGrid(cancer_df,hue="survival_status",size=6) \ .map(plt.scatter, "age", "year of treatement") \ .add legend() plt.show() # try to plot all the points on graph # looking at first sight it is really hard to diffentiate blue and red points # Points are really scattered 64 survival_status year_of_tre • 1 62 50 60 70 80 age sns.set_style('whitegrid') sns.FacetGrid(cancer_df,hue="survival_status",size=6) \ .map(plt.scatter, "age", "positive axillary node") \ plt.show() 50 40 30 survival_status 2 20 30 40 70 80 50 60 In [40]: # year of treatement vs Auxillary sns.set_style('whitegrid') sns.FacetGrid(cancer_df,hue="survival_status",size=6) \ .map(plt.scatter,"year_of_treatement","positive_axillary_node") \ plt.show() 50 40 30 survival_status 20 10 66 year_of_treatement Observation • On x axis we have age and on y axis we have years of treament years of treatement • All points are scattered all over, no separation can be observe. Pair-Plot In [38]: plt.close(); sns.set_style("whitegrid"); sns.pairplot(cancer_df, hue ="survival_status", size = 3); plt.show() 50

> > 20

• It is hard to conclude anything is difficult with 'age' and 'year_of_treatement' feature.

number_of_positive_axillary_node

1.75

1.00

1.25

1.50

survival_status

2.0

Observations

60

· Auxillary/lymph node play significant role.

Haberman's Survival Data Set

· Age of patient at time of operation (numerical)

means the lymph nodes contain cancer.

number of positive lymph nodes.

import matplotlib.pyplot as plt

Load some data using head query

Patient's year of operation (year—1900, numerical)
Number of positive auxillary nodes detected (numerical)

• On the survival of patients who had undergone surgery for breast cancer.

Dataset: https://www.kaggle.com/gilsousa/habermans-survival-data-set

• The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago's

• Survival status (class attribute) 1 = the patient survived 5 years or longer 2 = the patient died within 5 years

Additional information About **Auxillary Note**, Lymph node status shows whether or not the lymph nodes in the underarm area (axillary nodes) contain cancer: Lymph node-negative means the lymph nodes do not contain cancer. Lymph node-positive

To predict whether a patient will survive after 5 years or not based upon the patient's age,his/her operation_year and the

cancer $df = pd.read csv(r'C:\Users\DEEL\Machine Learning\Assignments\habermans-survival-data-set\habermans-s$

cancer df = pd.read csv(r'C:\Users\DEEL\Machine Learning\Assignments\habermans-survival-dataset\habe

2

1

1

age year_of_treatement positive_axillary_node survival_status

Index(['Age', 'Op_year', 'Axil Node', 'Surv_Status'], dtype='object')

64 1 62 3 65 0

59

· A data set to learn basics

Billings Hospital.

Attribute Information

Source

Objective

In [51]: import pandas as pd

import os

aberman.csv')

rman.csv')

0 30 1 30

3 31

4 31

(306, 4)

30

import numpy as np

os.environ['PATH']

import seaborn as sns

Load haberman csv file.

print(cancer df.head())

In [7]: # understanding size and shape
print(cancer_df.shape)

In [10]: # Coloumns and additional information
 print (cancer_df.columns)
 print(cancer_df.info())

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 306 entries, 0 to 305