1	Fig. 5 shows another embodiment of the
2	reaction apparatus.
3	
4	DETAILED DESCRIPTION
5	
6	The catalytic reaction apparatus seen in Fig.
7	1 depicts a preferred embodiment of the present
8	invention. The apparatus comprises a combustion
9	chamber 4, a convection chamber 17 extending into
10	chamber 4, and a reaction chamber 16. The combustion
11	chamber 4 is defined by the zone enclosed or surrounded
12	by refractory insulation 6. The reaction chamber 16 is
13	defined by the volume enclosed by tubular reactor
14	conduit 1. The tubular reactor conduit 1 is formed in
15	a U-tube or hairpin configuration having parallel
16	upright legs $1a$ and $1b$, and a U-shaped bend $1c$, and can
17	be removed from the combustion chamber upon removal of
18	a top flange 18. Leg $1\underline{b}$ of the tubular reactor conduit
19	1 passes concentrically through the convection chamber
20	17 defined by the space enclosed between the convection
21	conduit 10 and the leg $1\underline{b}$ of the tubular reactor
22	conduit 1. The reaction chamber including $1a$, $1b$, and
23	$1\underline{c}$ is packed with catalyst from the inlet fitting or
24	means 2, where reactants enter, to the outlet port or

- 1 means 3 where products exit. Convection conduit opens
- 2 at 13 to chamber 4, and discharges at 11.
- 3 An axially extending, vertically disposed
- 4 radiant burner 7 is supported by a burner gas conduit
- 5 12 that conveys a mixture of fuel and oxidant from an
- 6 inlet means 8 to the radiant burner. In this
- 7 embodiment, the radiant burner 7 comprises a gas
- 8 permeable metal fiber zone 14 and a non-permeable zone
- 9 16. Fuel and oxidant pass through the permeable metal
- 10 fiber zone 14 where they are ignited on the surface
- 11 thereby combusting and releasing heat to form an
- 12 incandescent zone that radiates energy outward in an
- 13 arc 15. The arc angles γ_1 and γ_2 of 14 and 16 are
- 14 such (angle of 14 is between 45° and 180°) that the
- 15 radiating pattern maximizes the flux of radiant energy
- 16 to the surfaces of the tubular reactor legs 1a and 1b,
- 17 and also U-bend 1c, while minimizing the flux of
- 18 radiant energy to the internal wall 19 of combustion
- 19 chamber 4. Fuel and oxidant are initially ignited on
- 20 the surface of the permeable metal fiber zone 14 using
- 21 an igniter 9. Once ignited, the combustion reaction on
- 22 the surface of the metal fiber zone 14 facing 1a and 1b
- 23 is self-sustaining.
- The radiant arc angle of 14 is selected so
- 25 that the direct radiant flux from the burner that
- 26 bisects the projected surface of the reaction chamber

- 1 tube wall is a minimum of 50% of the total radiation
- 2 flux that emanates from the active radiant burner
- 3 surface. As an illustration of the condition, Fig. 2
- 4 depicts a geometric representation of the preferred
- 5 embodiment of the present invention. The active
- 6 radiant zone 14 emits radiation along a line of sight
- 7 defined by a radiant arc 15 that impinges on the
- 8 reaction chamber conduit legs 1a and 1b and the inner
- 9 surface 19 of the combustion chamber. The emitted
- 10 radiation is bisected by hypothetical plane 50 passing
- 11 through the centerline of the U-tube reaction chamber.
- 12 The projected area of the reaction chamber surfaces per
- 13 unit tube length receiving direct radiation from the
- 14 burner within the controlled radiant arc is given by
- 15 a + a = 2a, where ''a'' is the outer diameter of each
- 16 leq. The total radiation within the arc 15 is given by
- 17 c + c + a + a + b = 2c + 2a + b. The dimensions ''a'',
- 18 ''b'' and ''c'' are as shown. In the preferred
- 19 embodiment of the present invention, the ratio of 2a
- 20 divided by 2c + 2a + b is typically greater than 0.5 or
- 21 50%.
- In the present invention, the radiant burner
- 23 combustion intensity is controlled in the range of
- 24 150,000 btu/ft 2 /h and 350,000 btu/ft 2 /h wherein the
- 25 combustion intensity is defined as the higher heating
- 26 value of the fuel combusted divided by the permeable