目 录

摘	要	I.
ABS	TRACT	II
目	录I	II
第一	·章 绪论	1
	1.1 课题背景和意义	1
	1.2 国内外研究现状	1
	1.2.1 全驱动型灵巧手	1
	1.2.2 欠驱动型灵巧手	1
	1.3 本文研究内容	1
第二	章 仿生手指的设计	2
	2.1 手指机械结构设计	2
	2.1.1 手指的仿生结构分析	2
	2.1.2 连杆模型的设计	2
	2.1.3 腱绳模型的设计	2
	2.1.4 模型的优劣对比与选择	2
	2.1.5 手指的方案总览	2
	2.2 手指驱动方式与装配方法	3
	2.2.1 手指的驱动方式	3
	2.2.2 四指摇摆驱动模块	3
	2.2.3 手指的装配方法	3
	2.3 五指设计的特点	4
	2.3.1 食指	4
	2.3.2 中指	4
	2.3.3 无名指	4
	2.3.4 小指	4
	2.3.5 大拇指	4
	2.4 五指分布的排列方案	5
第三	章 手腕关节的设计	6
	3.1 手腕关节的机械结构设计	6
	3.1.1 手腕关节的仿生结构分析与自由度设计	6

	3.1.2 手腕的结构设计	6
	3.1.3 手腕与手掌的连接设计	6
3.2	手腕关节的驱动方式与装配方法	6
	3.2.1 手腕关节的驱动方式	6
	3.2.2 手腕关节的装配方法	6
3.3	手腕关节主要作用	6
第四章	灵巧手小臂的设计	7
4.1	小臂的结构设计	7
	4.1.1 手腕内置模块的分析	7
	4.1.2 手腕与小臂的连接设计	7
	4.1.3 小臂的装配方法	7
4.2	小臂内置驱动模块的分配	7
	4.2.1 四指弯曲驱动模块	7
	4.2.2 大拇指驱动模块	7
	4.2.3 手腕驱动模块	7
4.3	小臂内部驱动线布置	7
	4.3.1 四指弯曲舵机与驱动线布置	7
	4.3.2 大拇指驱动舵机与驱动线布置	7
	4.3.3 手腕驱动舵机与驱动线布置	7
第五章	控制系统的设计	7
5.1	舵机的选型与控制方法	7
	5.1.1 PWM 舵机及其控制方法	7
	5.1.2 总线舵机及其控制方法	7
	5.1.3 各驱动模块的舵机选型方案	7
5.2	控制板选择与使用方法	7
	5.1.1 集成舵机控制板	7
	5.1.2 URT-1 总线舵机调试板	7
	5.1.3 Arduino UNO 控制板	7
5.3	上位机的介绍及使用	7
	5.3.1 FD 调试软件	7
	5.3.2 Zide 调试软件	7
	5.3.3 UartAssit 串口调试助手	7

第六章	传感系统的集成	. 7
6.1	传感器选择	.7
	6.1.1 应变片静态力传感器	.7
	6.1.2 PVDF 动态力传感器	.7
6.2	传感器的布置方案	8
	6.2.1 指尖布置方案	.8
	6.2.2 指腹布置方案	8
6.3	柔性皮肤制作方案	8
	6.3.1 浇筑材料选择	8
	6.3.2 浇筑模具建模	8
	6.3.3 浇筑步骤	8
6.4	触觉信号测试	8
	6.4.1 应变片静态力传感器信号测试分析	8
	6.4.2 PVDF 动态力传感器信号测试分析	8
第七章	实验方案及成果	8
7.1	手势控制实验	8
	7.1.1 实验设计	.8
	7.1.2 上位机程序	.8
	7.1.3 实验效果展示	8
7.2	抓握传感实验	8
	3,-3,	.8
	7.2.2 抓握手势设计	8
	7.2.3 传感信号采集	8
第八章	总结与展望	8
8.1	工作总结	8
8.2	工作展望	8
	献	
	附录名称1	
致 i	谢1	2