Connected Component Analysis

Minyoung Chung Computer Graphics and Image Processing Laboratory Seoul National University

Contents

- Connected Component Labeling
 - Implementation

What is Connected-Component Labeling?

- Detection of connected objects in an image.
- Subsets of connected components are uniquely labeled.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	1	1	0	0	0	0
0	1	0	2	2	2	0
0	1	0	0	2	0	0
0	0	0	0	0	0	0

Connected-Component Labeling

- Connectivity
 - 4-connectivity

• 8-connectivity

- Binary Input Image.
 - "White" for *foreground*
 - "Gray" for *background*
- We are not interested in background region.

currentLabelCount = 1

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 1

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 1

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 2

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 3

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 3

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 3

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 3

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 3

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 3

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 3

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 4

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 4

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 4

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 4

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 4

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 5

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 5

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 5

```
int currentLabelCount = 1;
for( x : every pixels ) {
  if( background ) continue;
  // process if foreground.
  for( y : every neighbor pixels ) {
    if( single label(s) obtained ) {
       x.label = y.label;
       x.parent = y.parent;
    else { // neighbors have different labels
       Pixel z = find_min_label_pixel();
       x.label = z.label;
       x.parent = z.parent;
       Y.parent = z.parent;
  // if no neighbor pixel assigned.
  x.label = x.parent = (++currentLabelCount);
```


currentLabelCount = 5

Second pass (aggregation)

- Pass the image again pixel by pixel.
- Aggregate same parent pixels.
 - as same label.

currentLabelCount = 5

 $\begin{array}{c}
1 \rightarrow 1 \\
2 \rightarrow 2 \\
5 \rightarrow 3
\end{array}$

Second pass (aggregation)

- Pass the image again pixel by pixel.
- Aggregate same parent pixels.
 - as same label.

Q&A