Discrete Structures I

Introduction to Number Theory

Greatest Common Divisor

This Lecture

- Quotient remainder theorem
- Greatest common divisor & Euclidean algorithm
- · Linear combination and GCD, extended Euclidean algorithm
- Prime factorization and other applications

The Quotient-Remainder Theorem

For b > 0 and any a, there are unique numbers $q ::= quotient(a,b), \quad r ::= remainder(a,b), \quad such that$ $a = qb + r \quad and \quad 0 \ r < b.$

We also say $q = a \operatorname{div} b$ and $r = a \operatorname{mod} b$.

When b=2, this says that for any a, there is a unique q such that a=2q or a=2q+1.

$$q = \lfloor \frac{a}{2} \rfloor$$

When b=3, this says that for any a, $q=\lfloor\frac{a}{3}\rfloor$ there is a unique q such that a=3q or a=3q+1 or a=3q+2.

The Quotient-Remainder Theorem

```
For b > 0 and any a, there are unique numbers q := quotient(a,b), r := remainder(a,b), such that a = qb + r and 0 ? r < b.
```

Given any b, we can divide the integers into many blocks of b numbers.

For any a, there is a unique "position" for a in this line.

Clearly, given a and b, q and r are uniquely defined.

Common Divisors

c is a common divisor of a and b means $c \mid a$ and $c \mid b$. gcd(a,b) := the greatest common divisor of a and b.

Say a=8, b=10, then 1,2 are common divisors, and gcd(8,10)=2.

Say a=10, b=30, then 1,2,5,10 are common divisors, and gcd(10,30)=10.

Say a=3, b=11, then the only common divisor is 1, and gcd(3,11)=1.

Claim. If p is prime, and p does not divide a, then gcd(p,a) = 1.

Greatest Common Divisors

Given a and b, how to compute gcd(a,b)?

Can try every number, but can we do it more efficiently?

Let's say a>b.

- 1. If a=kb, then gcd(a,b)=b, and we are done.
- 2. Otherwise, by the Division Theorem, a = qb + r for r>0.

Greatest Common Divisors

Let's say a>b.

a=99, $b=27 \Rightarrow 99 = 3x27 + 18$

- 1. If a=kb, then gcd(a,b)=b, and we are done.
- 2. Otherwise, by the Division Theorem, a = qb + r for r>0.

$$a=12, b=8 \Rightarrow 12 = 8 + 4$$
 $gcd(12,8) = 4$ $gcd(8,4) = 4$ $a=21, b=9 \Rightarrow 21 = 2x9 + 3$ $gcd(21,9) = 3$ $gcd(9,3) = 3$

gcd(99,27) = 9

gcd(27,18) = 9

Euclid: gcd(a,b) = gcd(b,r)!

Euclid's GCD Algorithm

$$a = qb + r$$

Euclid: gcd(a,b) = gcd(b,r)

Example 1

```
gcd(a,b)
if b = 0, then answer = a.
else
write a = qb + r
answer = gcd(b,r)
```

$$GCD(102, 70)$$
 $102 = 70 + 32$
= $GCD(70, 32)$ $70 = 2 \times 32 + 6$
= $GCD(32, 6)$ $32 = 5 \times 6 + 2$
= $GCD(6, 2)$ $6 = 3 \times 2 + 0$
= $GCD(2, 0)$

Return value: 2.

Example 2

```
gcd(a,b)
if b = 0, then answer = a.
else
write a = qb + r
answer = gcd(b,r)
```

Example 3

```
gcd(a,b)
if b = 0, then answer = a.
else
write a = qb + r
answer = gcd(b,r)
```

```
GCD(662, 414) 662 = 1 \times 414 + 248

= GCD(414, 248) 414 = 1 \times 248 + 166

= GCD(248, 166) 248 = 1 \times 166 + 82

= GCD(166, 82) 166 = 2 \times 82 + 2

= GCD(82, 2) 82 = 41 \times 2 + 0

= GCD(2, 0)
```

Return value: 2.

Correctness of Euclid's GCD Algorithm

$$a = qb + r$$

Euclid: gcd(a,b) = gcd(b,r)

When r = 0:

Then gcd(b, r) = gcd(b, 0) = b since every number divides 0.

But a = qb so gcd(a, b) = b = gcd(b, r), and we are done.

Correctness of Euclid's GCD Algorithm

Euclid: gcd(a,b) = gcd(b,r)

When r > 0:

Let d be a common divisor of b, r

$$\Rightarrow$$
 b = k_1 d and r = k_2 d for some k_1 , k_2 .

$$\Rightarrow$$
 a = qb + r = qk₁d + k₂d = (qk₁ + k₂)d \Rightarrow d is a divisor of a

Let d be a common divisor of a, b

$$\Rightarrow$$
 a = k_3 d and b = k_1 d for some k_1 , k_3 .

$$\Rightarrow$$
 r = a - qb = k_3 d - q k_1 d = (k_3 - q k_1)d => d is a divisor of r

So d is a common factor of a, b iff d is a common factor of b, r

$$\Rightarrow$$
 d = gcd(a, b) iff d = gcd(b, r)

How fast is Euclid's GCD Algorithm?

Naive algorithm: try every number,

Then the running time is about 2b iterations.

Euclid's algorithm:

In two iterations, the b is decreased by half. (why?)

Then the running time is about 2log(b) iterations.

Exponentially faster!!

Linear Combination vs Common Divisor

Greatest common divisor

d is a common divisor of a and b if d|a and d|b

gcd(a,b) = greatest common divisor of a and b

Smallest positive integer linear combination

d is an integer linear combination of a and b if d=sa+tb for integers s,t.

spc(a,b) = smallest positive integer linear combination of a and b

Theorem: gcd(a,b) = spc(a,b)