# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

#### PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07153666 A

(43) Date of publication of application: 16.06.95

(51) Int. CI

H01L 21/027

G03F 7/26

G03F 7/26

H01L 21/3065

(21) Application number: 05300253

(22) Date of filing: 30.11.93

(71) Applicant:

**NEC CORP** 

(72) Inventor:

**SAMOTO NORIHIKO** 

#### (54) METHOD OF PATTERN FORMATION

#### (57) Abstract:

PURPOSE: To provide the formation method of a pattern whose cross section is T-shaped and which can be formed by lifting off a low-resistance electrode whose cross section is T-shaped.

CONSTITUTION: A lower-layer resist opening 13 is formed in a lower-layer resist 11 which is formed so as to be applied on a substrate 10, an upper-layer resist 14 is formed so as to be applied on it, a mixing layer 15 with the lower-layer resist is formed at least in an ammonia (NH<sub>3</sub>) atmosphere, within a temperature range of 20 to 110°C and for 60 minutes or lower, the upper-layer resist 13 is exposed to ultraviolet ray 16, and a pattern whose cross section is T-shaped is formed.

COPYRIGHT: (C)1995,JPO



(19)日本国特許庁(JP)

#### (12) 公開特許公報(A)

(11)特許出願公開番号

### 特開平7-153666

(43)公開日 平成7年(1995)6月16日

| (51) Int.Cl. <sup>6</sup> | 識別記号         | 庁内整理番号  | FΙ          |           |         | 技術表示箇所  |
|---------------------------|--------------|---------|-------------|-----------|---------|---------|
| HO1L 21/02                | 7            |         |             |           |         |         |
| G03F 7/26                 | 5 1 1        | 7124-2H |             |           |         |         |
|                           | 513          | 7124-2H |             |           |         |         |
|                           |              | 7352-4M | H01L        | 21/ 30    | 502 C   | ; · .   |
|                           |              | 7352-4M |             |           | 573     |         |
|                           |              | 審査請求    | <b>有 蘭邓</b> | 画の数3 OL   | (全 6 頁) | 最終頁に続く  |
| (21)出願番号                  | 特顯平5-300253  |         | (71)出頭人     | 000004237 |         |         |
|                           |              | •       |             | 日本電気株式    | 会社      |         |
| (22)出顧日                   | 平成5年(1993)11 | 月30日    |             | 東京都港区芝    | 五丁目7番1  | 号       |
|                           |              |         | (72)発明者     | 佐本 典彦     |         |         |
|                           |              |         |             | 東京都港区芝    | 五丁目7番1  | 号 日本電気株 |
|                           |              |         | ·           | 式会社内      |         |         |
|                           |              |         | (74)代理人     | 弁理士 京本    | 直樹(外    | 2名)     |
|                           |              |         |             |           | •       |         |
| · .                       |              |         |             |           |         |         |
|                           |              |         |             |           |         |         |
|                           |              |         |             |           |         |         |
|                           |              |         |             |           |         |         |
|                           |              |         |             |           |         |         |
| •                         |              |         |             |           |         |         |
|                           |              |         |             |           |         |         |

#### (54) 【発明の名称】 パターン形成方法

#### (57)【要約】

)

【目的】 低抵抗の断面T字型の電極リフトオフにより形成可能な断面T字型パターン形成方法を提供する。 【構成】 基板10上に塗布形成された下層レジスト1 1に下層レジスト開口13を形成し、その上に上層レジスト14を塗布形成し、少なくともアンモニア(NH,)雰囲気中にて、20℃から110℃の温度範囲で60分間以下の温度範囲で下層レジストとのミキシング層15を形成し、上層レジスト13を紫外線16により

露光し、断面T字型のバターンを形成する。



#### 【特許請求の範囲】

【請求項1】 二層レジスト構造において、露光現像に より断面T字型バターンを形成する方法において、半導 体基板上に塗布形成された下層レジストを露光し、現像 することにより所望の開口パターンを形成する工程と、 該開口バターンを覆うように紫外線に感度を有する上層 レジストを塗布形成し、該上層レジスト上に所望パター ンを紫外線にて露光し、現像する工程とを備えたことを 特徴とするパターン形成方法。

\*Cの温度範囲で、60分間以下の熱処理により、下層レ ジストとミキシング層を形成することを特徴とする請求 項1記載のパターン形成方法。

【請求項3】 前記下層レジストは、前記上層レジスト が感度を有する紫外線に感度を有さないことを特徴とす る請求項1記載のバターン形成方法。

#### 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】本発明は、バターンの形成方法に 関し、電界効果トランジスタのゲート電極として利用さ 20 れる電気抵抗の低減化が図られた断面T型電極をリフト オフによって形成可能とするバターン形成法に関する。 [0002]

【従来の技術】二層レジスト構造において、上層レジス トをフォトレジスト、下層レジストをEBレジストとし て、断面T字型パターンを形成する方法として、特開平 4-368135号公報「T型パターン形成方法」記載 のものが知られている。前記公報記載のT型パターン形 成方法の工程図を図4、図5に示す。

【0003】図4(a)に示すように、半導体基板21 上にEBレジスト22を塗布形成し、次いで、EBレジ スト22を覆うようにフォトレジスト23を塗布形成す る。次いで、図4(b)に示すように、紫外線24によ り所望パターンをフォトレジスト23に露光し、次い で、図4(c)に示すように、画像反転法により紫外線 24未露光部のフォトレジスト23を除去して、オーバ ーハング形成のレジストプロファイルを形成して、EB レジスト22を露呈させる。

【0004】次いで、図5(a)に示すように、露呈し たEBレジスト22に電子線25を所望位置に照射し、 EBレジスト反応層22aを形成した後、次いで図5

(b) に示す様に、現像により、EBレジスト反応層2 2aを除去し、T型パターンを形成する。次いで、図5 (c) に示すように、T型パターンの開口を通して、露 呈した半導体基板20を所望深さエッチングすることに より、リセス溝26を形成し、次いで、ゲート金属27 を蒸着し、図5 (d) に示すように、リフトオフにより レジスト22、23およびレジスト23上の不要のゲー ト金属27を除去することにより、断面T字型の金属パ ターンを形成している。

【0005】また異なるレジストのミキシング層を用い た微細パターン形成方法が特開平5-166717号公 報に記載されている。

#### [0006]

【発明が解決しようとする課題】との二層レジストによ りT型パターンの形成では、上層レジスト開口後、下層 レジストの開口を形成する方法であるため、上層レジス トと下層レジストのミキシング層が発生した場合、下層 レジスト用現像液による開口形成が不可能となる。ま 【請求項2】 前記上層レジストは、20℃から110 10 た、下層レジストの開口幅は、電子線露光装置の性能に より限界づけられ、それ以下の開口幅を形成することが 不可能である.また、上層レジスト開口後、下層レジス トの露光現像を行っているため、下層レジストの現像に は、上層レジストを溶解してしまう現像液は使用できな 64.

> 【0007】本発明の目的は、このような従来の欠点を 除去せしめ、抵抗の低減された微細な断面T字型の電極 をリフトオフにより形成可能とする断面T字型パターン 形成方法を提供することにある。

#### [0008]

【課題が解決しようとする手段】本発明では、下層レジ ストに開口を形成した後に、上層レジストを塗布すると とを特徴としているが、加熱処理により下層レジストと ミキシング層を形成する上層レジストを塗布形成する。 加熱処理温度の限定を行った理由は、加熱処理による下 層レジスト開口のパターンくずれを避けるためである。 また、ミキシング層形成の限定条件は、加熱処理によ り、初期下層レジスト開口幅を、ミキシング層厚の2倍 だけ縮小させ、電子線露光装置の性能に限界づけられる 開口幅より小さい開口幅を形成することを目的としたも のである。

[0009]また、上層レジストが感度を有する紫外線 に対して、下層レジストが感度有さないことを特徴とし ているが、これは、上層レジストの露光時に、下層レジ ストへかぶりが発生し、上層レジスト現像時に下層レジ ストが現像され、下層レジスト開口幅が拡大することを 避けることを目的としたものである。

【0010】さらに、上層レジストを塗布形成する前に 下層レジストを露光現像しているため、下層レジストに 用いる現像液が上層レジストを溶解しないものという限 定条件が付与されない。

#### [0011]

【作用】上層と下層のレジスト間のミキシング層の発生 の機構について、はっきり解明されているとはいえない が、つぎのように考えることができる。レジスト塗布形 成後の加熱処理により、各レジストの分子が拡散し、ミ キシング層の厚さが形成される。また、この加熱処理に より、分子同士が結合あるいは分解により、異分子に変 化し、各レジストの現像液では、除去困難になると考え 50 られる。このため、ミキシング層の厚さは、加熱温度と

時間に依存する。本発明では、20℃から110℃の温 度範囲で60分間の加熱処理により、15nmから25 nmのミキシング層を形成することが可能となり、ま た、上層レジスト露光時のかぶりがないため、0. 1 μ mの初期開口から、70nmの電極長のものを形成する ととが可能となっている。

【0012】本発明は加熱処理により、アンダーカット 形状を形成するとともに、ミキシング層を形成して微細 な断面T字型パターンを形成することを特徴とする。 [0013]

【実施例】以下、図面を参照して本発明の実施例を詳細 に説明する。

【0014】図1(a)に示すように、半導体基板10 (例えば、ガリウムひ素、GaAs) 上に下層レジスト 11として、ポジ型アクリル系レジスト(例えばポリメ タクリル酸メチル Polymethylmethac rylate (PMMA))を0.16μmの厚さで塗 布形成した後、電子線12により所望部分を露光して、 次いで、図1(b)に示すように、現像することにより 所望幅の下層レジスト開口13を形成した。

【0015】次いで、図1(c)に示すように、該下層 レジスト開口13を覆うように、紫外線に感度を有する 上層レジスト14としてポジ型レジスト (例えば、住友 化学工業社製PFI-15A)を1.0 μm塗布した 後、所望部分を紫外線116 (例えば波長365nmの i線)にて露光した後、少なくともアンモニア(N H<sub>3</sub>) 雰囲気中で20℃から110℃の温度範囲で60 分間の加熱処理工程によって、紫外線116により露光 された上層レジスト部分を該上層レジスト14対応の有 機アルカリ現像液に不溶とし、さらに、図1(d)に示 30 すように、該下層レジスト11と該上層レジスト14を 相互に拡散させてミキシング層15を形成した。 次い で、図2 (a) に示すように、上層レジスト 1 4 上面か ら紫外線16の全面照射を行い、次いで、図2(b)に 示すように、有機アルカリ現像液により紫外線16によ り露光された該上層レジスト14を現像除去することに より、前記下層レジスト開口13上に該開口寸法より大 きい前記上層レジスト14のリフトオフに適したアンダ ーカット形状開口17を形成する。

【0016】 この後、図2(c)に示すように、下層レ 40 【表1】

ジスト開口13を通して、半導体基板10を所望の深さ だけエッチングした後、電極金属18を(例えば、チタ ニウム (Ti) /白金 (Pt) /金 (Au)) の願で蒸 着し、次いで、図2 (b) に示すように、有機溶剤中に 浸漬し、下層レジスト11と上層レジスト14および上 層レジスト14上の不溶な電極金属18を除去すること により、断面T字型電極19を形成する。

【0017】以上の実施例において、下層レジストの露 光光源として電子線を用いたが、イオン、エックス線あ るいは遠紫外線でもよい。また、下層レジストとしてP MMAを用いたが、これに限定されるものではなく、紫 外線に感度を持たないレジストであれば良い。また、上 層レジストとしてPFⅠ-15Aを用いたが、これに限 定されるものではなく、紫外線に感度を持ち少なくとも 20℃から110℃の温度範囲での加熱処理により、下 層レジストとミキシング層を形成するレジストであれば よい。

【0018】以上説明したように、上層レジストは、下 層レジストが感度を有しない紫外線で露光されるため、 下層レジストは、かぶりの影響を受けない。また、上層 レジストの現像に使用する有機アルカリ液に、下層レジ ストは不溶であるため、上層レジストの開口幅と下層レ ジストの開口幅および相互の位置関係を独立に制御する ことが可能である。また、上層レジスト開口幅がアンダ ーカット形成を有し、なおかつ、下層レジスト開口幅よ り大なるように形成されるため、断面T字型の低抵抗電 極がリフトオフにより形成可能である。

【0019】また、上層レジストは、加熱処理を含む工 程を経ることにより、下層レジストとの相互拡散による 混合層を形成する。との混合層は、上層レジストに適応 する現像液に対して不溶であるため、最初に電子線によ り形成された下層レジストの開口幅を狭める効果があ る。20℃から110℃の温度範囲で、60分間の加熱 工程を含む処理を行うことにより、初期PMMAレジス ト開口幅L<sub>nux</sub> (nm)に対する加熱処理後のPM MAレジスト開口L」。(nm)と形成された断面T字 型電極の下部電極長L。(nm)の一例を、表1に示 す。

[0020]

表1.各工程におけるPMMA関ロ寸法と下部電信長

| 初期<br>PRNA網口紹(nm) | 加熱処理後の<br>PXMA間口値(ng) | 形成された新聞丁字型<br>電衝の下部電極長(m) |  |  |
|-------------------|-----------------------|---------------------------|--|--|
| 50                | 未開口                   | 杂形成                       |  |  |
| 108               | 80                    | 72                        |  |  |
| 187               | 120                   | 180                       |  |  |
| 218               | 180                   | 290                       |  |  |
| 287               | 240                   | 250                       |  |  |

ットでの検討結果を図3(a)および(b)に示す。初 期PMMAレジスト開口幅L,nna(nm)と加熱処 (a) に示す。また、初期PMMAレジスト開口幅L ァ m m A (nm)と形成された断面T字型電極の下部電 極長L。(nm)の関係を図3(b)に示す。図3 \*

$$L_{IR} = 0.886L_{PRRA} - 12.02$$

標準偏差σ=16.74(nm).

また、同様に初期PMMAレジスト開口幅が0.1μm 以上の領域において、図3(b)に示される初期PMM Aレジスト開口幅L, , , (nm)と形成された断面※

$$L_q = 0.98 L_{PHHA} - 21.59$$

標準偏差 $\sigma = 11.32 (nm)$ .

以上に示されるように、加熱処理後の開口寸法、および 形成された断面T字型電極の電極長は、何れも、初期P MMAレジスト開口寸法よりも30~50nm程度縮小 されることになる。

[0024]

【発明の効果】開口幅の小さいレジストパターンを形成 でき、微細な断面T字型電極を形成るうことができる。 断面T字型の低抵抗電極をリフトオフにより形成でき る。

#### 【図面の簡単な説明】

【図1】本発明の一実施例による微細電極形成方法を説 明するための工程図である。

【図2】本発明の一実施例による微細電極形成方法を説 明するための工程図で、図1の続きである。

【図3】本発明の効果を説明するための図で、(a)は 初期PMMAレジスト開口幅L,」」、(nm)と加熱 処理後のPMMAレジスト開口幅L..(nm)の関係 を示す図で、(b)はL, nn (nm)と断面T型電 極長し。(nm)の関係を示す図である。

【図4】従来の俄細電極形成方法を説明するための工程 50 26 電極金属

【0021】また、表1の結果に示されたロットと別ロ \* (a)、(b)に示される結果を最小二乗法によって、 計算を行うと、初期PMMAレジスト開口幅が0.1μ m以上の領域において、図3(a)に示される初期PM 理後のPMMAレジスト開口幅Lrg(nm)を、図3 20 MAレジスト開口幅Lpggg (nm)と加熱処理後の PMMAレジスト開口幅L, (nm)の関係は、 (1) 式で表される。

[0022]

(1)

※ T字型電極の下部電極長L。 (nm) の関係は、(1) 式と同様に最小二乗法により、(2)式で表される。 [0023]

30 図である。

【図5】従来の微細電極形成方法を説明するための工程 図で図4の続きである。

#### 【符号の説明】

- 10 半導体基板
- 11 下層レジスト
- 12 電子線
- 13 下層レジスト開口
- 14 上層レジスト
- 15 ミキシング層
- 116、16 紫外線
  - 17 アンダーカット形状開口
  - 18 電極金属
  - 19 断面T字型電極
  - 20 半導体基板
  - 21 下層レジスト
  - 23、23A、23B 電子線
  - 24 下層レジスト開口
  - 22 上層レジスト
  - 25 上層レジスト開口











#### [図4]







#### 【図2】











フロントページの続き

(51)Int.Cl.<sup>6</sup> H O l L 21/3065

識別記号 庁内整理番号

FΙ

技術表示箇所

HO1L 21/302

· K