NAVNEEL MONDAL

DATE: 14-09-2023

AI ML ASSIGNMENT-3

Reg No: 21BCE2654

1. Download the dataset: penguins_size.csv is downloaded.

2. Load The dataset:

```
import numpy as np
import pandas as pd

df = pd.read_csv('/content/penguins_size.csv')
df.head()
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body
0	Adelie	Torgersen	39.1	18.7	181.0	
1	Adelie	Torgersen	39.5	17.4	186.0	
2	Adelie	Torgersen	40.3	18.0	195.0	
3	Adelie	Torgersen	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	

3.1. Perform Univariate Analysis

```
7
8 from matplotlib import rcParams
9 import seaborn as sns
10
11 sns.distplot(df.body_mass_g)
12
13
```

3.2. Perform Bivariate Analysis

```
12
13
14 sns.jointplot(x='culmen_length_mm', y='culmen_depth_mm', data=df)
15
16
```


3.3. Perform Multi-Variate Analysis

4. Perform descriptive statistics on the dataset.

```
5. Check for Missing values and deal with them.
       df.isnull().any() #Checking is there any null values in our dataset
                             False
       species
                             False
       island
       culmen_length_mm
                              True
       culmen_depth_mm
                              True
                              True
       flipper_length_mm
       body_mass_g
                              True
                              True
       sex
       dtype: bool
       df.isnull().sum()
     species
                             0
     island
                             0
     culmen_length_mm
                             2
                             2
      culmen_depth_mm
     flipper_length_mm
                             2
                             2
     body_mass_g
                            10
      sex
     dtype: int64
       df.isnull().any()
                             False
      species
      island
                             False
      culmen_length_mm
                             False
      culmen_depth_mm
                             False
      flipper_length_mm
                             False
      body_mass_g
                             False
```

False

sex

dtype: bool

6. Find the outliers and replace the outliers.

33
34 sns.boxplot(df.body_mass_g)
35

Hence there are no outliers in the dataset.

7. Check for Categorical columns and perform encoding.

```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

df['sex'] = le.fit_transform(df['sex'])

df['species'] = le.fit_transform(df['species'])

df['island'] = le.fit_transform(df['island'])

df.head()

43
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_ler
0	0	2	39.10	18.7	
1	0	2	39.50	17.4	
2	0	2	40.30	18.0	
3	0	2	44.45	17.3	
4	0	2	36.70	19.3	

8. Check the correlation of independent variables with the target (TARGET IS SPECIES and remaining are independent).

```
df.corr().species.sort_values(ascending=False)
                       1.000000
species
flipper_length_mm
                       0.850819
body_mass_g
                       0.747547
culmen_length_mm
                       0.728706
sex
                      -0.003823
island
                      -0.635659
culmen_depth_mm
                      -0.741282
Name: species, dtype: float64
```

9. Split the data into dependent and independent variables.

```
48
49 X=df.drop(columns=['species'],axis=1)
50 X.head()
51
```

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm k
0	2	39.10	18.7	181.0
1	2	39.50	17.4	186.0
2	2	40.30	18.0	195.0

```
52 Y=df['species']
53 Y.head()
54
55
```

```
0 0
1 0
2 0
3 0
4 0
Name: species, dtype: int64
```

10. Scaling the independent data.

```
from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)
X_scaled.head()
60
```

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm
0	1.0	0.254545	0.666667	0.152542
1	1.0	0.269091	0.511905	0.237288
2	1.0	0.298182	0.583333	0.389831
3	1.0	0.449091	0.500000	0.423729
4	1.0	0.167273	0.738095	0.355932

11. Split the data into training and testing.

```
from sklearn.model_selection import train_test_split

X_train,X_test,Y_train,Y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=0)

64
```

12. Check the training and testing data shape.

X_train.shape

(275, 6)

X_test.shape

(69, 6)

Y_train.shape

(275,)

Y_test.shape

(69,)

