Area of Triangles

October 15, 2013

1 x1793ca122616912c

Which triangle has the larger area?

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

Hint 1 We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $2 \times 3 = 6$, and the areas of the two additional right triangles are:

$$\frac{1 \cdot 3}{2} = 1.5$$

$$\frac{1 \cdot 3}{2} = 1.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$6 - 1.5 - 1.5 = 3$$

Triangle 1 has an area of 3 units^2 . What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $3 \times 3 = 9$, and the areas of the two additional right triangles are:

$$\frac{1 \cdot 3}{\frac{2}{2}} = 1.5$$

$$\frac{3 \cdot 3}{2} = 4.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$9 - 1.5 - 4.5 = 3$$

Triangle 2 has an area of 3 units^2 .

Hint 5 Triangle 1 and Triangle 2 have the same area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: e107ed58.. 2013-10-15

2 x3370ec68c3438ee8

Which triangle has the larger area?

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

 ${f Hint~1}$ We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $3 \times 6 = 18$, and the areas of the two additional right triangles are:

$$\frac{3 \cdot 6}{2} = 9$$

$$\frac{1 \cdot 3}{2} = 1.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$18 - 9 - 1.5 = 7.5$$

Triangle 1 has an area of 7.5 units^2 . What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $3 \times 5 = 15$, and the areas of the two additional right triangles are:

$$\frac{1\cdot 3}{2} = 1.5$$

$$\frac{3\cdot 4}{2} = 6$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$15 - 1.5 - 6 = 7.5$$

Triangle 2 has an area of 7.5 units².

Hint 5 Triangle 1 and Triangle 2 have the same area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: d020f305.. 2013-10-15

3 x3460395511aba88f

Which triangle has the larger area?

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

Hint 1 We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $2 \times 3 = 6$, and the areas of the two additional right triangles are:

$$\frac{1\cdot 3}{\frac{2}{2}} = 1.5$$

$$\frac{2\cdot 3}{2} = 3$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$6 - 1.5 - 3 = 1.5$$

Triangle 1 has an area of 1.5 units². What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $3 \times 3 = 9$, and the areas of the two additional right triangles are:

$$\frac{1 \cdot 3}{\frac{2}{2}} = 1.5$$

$$\frac{3 \cdot 3}{2} = 4.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$9 - 1.5 - 4.5 = 3$$

Triangle 2 has an area of 3 units².

Hint 5 Triangle 2 has the larger area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: a90205ed.. 2013-10-15

4 x4964c4a44ebbeaa5

Which triangle has the larger area?

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

Hint 1 We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $3 \times 6 = 18$, and the areas of the two additional right triangles are:

$$\frac{3 \cdot 6}{2} = 9$$

$$\frac{1 \cdot 3}{2} = 1.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$18 - 9 - 1.5 = 7.5$$

Triangle 1 has an area of 7.5 units². What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $3 \times 5 = 15$, and the areas of the two additional right triangles are:

$$\frac{1 \cdot 3}{\frac{2}{2}} = 1.5$$

$$\frac{3 \cdot 4}{2} = 6$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$15 - 1.5 - 6 = 7.5$$

Triangle 2 has an area of 7.5 units².

Hint 5 Triangle 1 and Triangle 2 have the same area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR **Version:** a77372c8.. 2013-10-15

$5 ext{ x} 545 ext{fee} 0 ext{c} 9 ext{a} 9 ext{c} ext{d} 8 ext{e}$

Which triangle has the larger area?

Ans Triangle 1

Triangle 2

They have the same area. Not enough information ${f Hint~1}$ We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $5 \times 7 = 35$, and the areas of the three additional right triangles are:

$$\frac{2 \cdot 2}{\frac{2}{2}} = 2$$

$$\frac{3 \cdot 7}{\frac{2}{2}} = 10.5$$

$$\frac{5 \cdot 5}{2} = 12.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$35 - 2 - 10.5 - 12.5 = 10$$

Triangle 1 has an area of 10 units². What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $6 \times 7 = 42$, and the areas of the three right triangles are:

$$\frac{3 \cdot 4}{2} = 6$$

$$\frac{3 \cdot 7}{2} = 10.5$$

$$\frac{3 \cdot 6}{2} = 9$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$42 - 6 - 10.5 - 9 = 16.5$$

Triangle 2 has an area of 16.5 units².

Hint 5 Triangle 2 has a larger area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: 96b97490.. 2013-10-15

6 x7da40cef9abd818a

Which triangle has the larger area?

Triangle 1:

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

Hint 1 We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 FFor Triangle 1, the enclosing rectangle has an area of $5 \times 7 = 35$, and the areas of the three additional right triangles are:

$$\frac{2 \cdot 2}{2} = 2$$

$$\frac{3 \cdot 7}{2} = 10.5$$

$$\frac{5 \cdot 5}{2} = 12.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$35 - 2 - 10.5 - 12.5 = 10$$

Triangle 1 has an area of 10 units². What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $5 \times 7 = 35$, and the areas of the three right triangles are:

$$\frac{2 \cdot 3}{2} = 3$$

$$\frac{3 \cdot 7}{2} = 10.5$$

$$\frac{4 \cdot 5}{2} = 10$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$35 - 3 - 10.5 - 10 = 11.5$$

Triangle 2 has an area of 11.5 units².

Hint 5 Triangle 2 has a larger area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: fb9363ff.. 2013-10-15

7 xb0caf8e9a6dec91f

Which triangle has the larger area?
Triangle 1: Triangle 2:

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

Hint 1 We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $2 \times 3 = 6$, and the areas of the two additional right triangles are:

$$\frac{1\cdot 3}{\frac{2\cdot 3}{2}} = 1.5$$

$$\frac{2\cdot 3}{2} = 3$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$6 - 1.5 - 3 = 1.5$$

Triangle 1 has an area of 1.5 units². What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $3 \times 1 = 3$, and the area of the right triangle is:

$$\frac{1\cdot 3}{2} = 1.5$$

Now we can subtract the areas of the additional triangle from the area of the rectangle.

$$3 - 1.5 = 1.5$$

Triangle 2 has an area of 1.5 units².

Hint 5 Triangle 1 and Triangle 2 have the same area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: eb4fe914.. 2013-10-15

8 xb6b2062e3175da4d

Which triangle has the larger area?

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

Hint 1 We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $2 \times 3 = 6$, and the areas of the two additional right triangles are:

$$\frac{1 \cdot 3}{\frac{2}{2}} = 1.5$$

$$\frac{2 \cdot 3}{2} = 3$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$6 - 1.5 - 3 = 1.5$$

Triangle 1 has an area of 1.5 units². What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $3 \times 3 = 9$, and the areas of the two additional right triangles are:

$$\frac{2\cdot 3}{\frac{2}{2}} = 3$$

$$\frac{3\cdot 3}{2} = 4.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$9 - 3 - 4.5 = 1.5$$

Triangle 2 has an area of 1.5 units².

Hint 5 Triangle 1 and Triangle 2 have the same area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: 58d35ba4.. 2013-10-15

9 xc81137bfb1ce5ecb

Which triangle has the larger area?

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

Hint 1 We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $3 \times 6 = 18$, and the areas of the two additional right triangles are:

$$\frac{3 \cdot 6}{\frac{2}{2}} = 9$$

$$\frac{1 \cdot 3}{2} = 1.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$18 - 9 - 1.5 = 7.5$$

Triangle 1 has an area of 7.5 units². What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $3 \times 3 = 9$, and the areas of the two additional right triangles are:

of
$$3 \times 3 = 9$$
, and $3 \times 3 = 9$, and $3 \times 3 = 1.5$

$$\frac{3 \cdot 3}{2} = 4.5$$
where $3 \times 3 = 4.5$
where $3 \times 3 = 9$, and $3 \times 3 = 9$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$9 - 1.5 - 4.5 = 3$$

Triangle 2 has an area of 3 units².

Hint 5 Triangle 1 has the larger area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: c2178db8.. 2013-10-15

10 xe6b2fe97c9c92959

Which triangle has the larger area?

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

Hint 1 We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $3 \times 3 = 9$, and the areas of the two additional right triangles are:

$$\frac{3 \cdot 3}{\frac{1 \cdot 3}{2}} = 4.5$$

$$\frac{1 \cdot 3}{\frac{1}{2}} = 1.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$9 - 4.5 - 1.5 = 3$$

Triangle 1 has an area of 3 units². What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $3 \times 3 = 9$, and the areas of the two additional right triangles are:

$$\frac{1\cdot 3}{2} = 1.5$$

$$\frac{3\cdot 3}{2} = 4.5$$

Now we can subtract the areas of the additional triangle from the area of the rectangle.

$$9 - 1.5 - 4.5 = 3$$

Triangle 2 has an area of 3 units².

Hint 5 Triangle 1 and Triangle 2 have the same area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: 7e93f912.. 2013-10-15

11 xfa691da601125822

Which triangle has the larger area?

Ans Triangle 1

Triangle 2

They have the same area.

Not enough information

Hint 1 We can enclose each of the triangles in a rectangle to help us calculate the areas.

Hint 2 The area of an original triangle can be found by subtracting the areas of the additional right triangles from the area of the enclosing rectangle.

Hint 3 For Triangle 1, the enclosing rectangle has an area of $3 \times 6 = 18$, and the areas of the two additional right triangles are:

$$\frac{3 \cdot 6}{2} = 9$$
$$\frac{1 \cdot 3}{2} = 1.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$18 - 9 - 1.5 = 7.5$$

Triangle 1 has an area of 7.5 units². What about Triangle 2?

Hint 4 For Triangle 2, the enclosing rectangle has an area of $3 \times 5 = 15$, and the areas of the two additional right triangles are:

$$\frac{2\cdot 3}{2} = 3$$

$$\frac{3\cdot 3}{2} = 4.5$$

Now we can subtract the areas of the additional triangles from the area of the rectangle.

$$15 - 3 - 4.5 = 7.5$$

Triangle 2 has an area of 7.5 units^2 .

Hint 5 Triangle 1 and Triangle 2 have the same area.

Tags: CC.6.G.A.1, Area of Triangle 1.1, SB.6.1.H.1.SR

Version: fc7c17b1.. 2013-10-15

12 x10ae6a535164e8ee

What is the area of the triangle below?

Ans [[? input-number 1]] units 2 9

Hint 1 We can enclose this triangle in a rectangle with area $6 \times 4 = 24$.

Hint 2 The areas of the three additional right triangles are:

$$\frac{3 \cdot 6}{2} = 9$$

$$\frac{1 \cdot 4}{2} = 2$$

$$\frac{2 \cdot 4}{2} = 4$$

Hint 3 The area of the original triangle can be found by subtracting the area of the additional right triangles from the area of the rectangle.

$$24 - 9 - 2 - 4 = 9$$

Hint 4 The original triangle has an area of 9 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: acb63299.. 2013-10-15

13 x39cafa2f0f4b797d

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] $ft^2 6$

Hint 1 The triangle is half of a rectangle that has a length of 6 feet and a width of 2 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 3

This right triangle is half of a square with area $2 \times 2 = 4$ ft², so this right triangle has an area of 2 ft².

Hint 4 The other right triangle is half of a rectangle with area $4 \times 2 = 8$ ft², so the other right triangle also has an area of 4 ft².

Hint 5 Adding the two pieces together, we see that the area is 2 + 4 = 6 ft².

Hint 6 The triangle has an area of 6 ft².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: 5a1febb0.. 2013-10-13

14 x43322953ff4acf5b

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] ft^2 12

Hint 1 The triangle is half of a rectangle that has a length of 6 feet and a width of 4 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 3

This right triangle is half of a rectangle with area $4 \times 3 = 12$ ft², so this right triangle has an area of 6 ft².

Hint 4 The other right triangle is also half of a rectangle with $4 \times 3 = 12$ ft², so the other right triangle also has an area of 6 ft².

Hint 5 Adding the two pieces together, we see that the area is 6 + 6 = 12 ft².

Hint 6 The triangle has an area of 12 ft².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: 069a19cf.. 2013-10-11

15 x599468861ee68b78

What is the area of the triangle below?

Ans [[? input-number 1]] $units^2$ 13

Hint 1 We can enclose this triangle in a rectangle with area $7 \times 4 = 28$.

Hint 2 The areas of the three additional right triangles are:

$$\frac{3\cdot 5}{2} = 7.5$$

$$\frac{1\cdot 7}{2} = 3.5$$

$$\frac{2\cdot 4}{2} = 4$$

Hint 3 The area of the original triangle can be found by subtracting the area of the additional right triangles from the area of the rectangle.

$$28 - 7.5 - 3.5 - 4 = 13$$

Hint 4 The original triangle has an area of 13 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: c3e4c245.. 2013-10-15

16 x64ba6e1bf7bb9781

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] ft^2 7.5

Hint 1 The triangle is half of a rectangle that has a length of 5 feet and a width of 3 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 3

This right triangle is half of a rectangle with area $3 \times 2 = 6$ ft², so this right triangle has an area of 3 ft².

Hint 4 The other right triangle is half of a square with area $3 \times 3 = 9$ ft², so the other right triangle also has an area of 4.5 ft².

Hint 5 Adding the two pieces together, we see that the area is 3 + 4.5 = 7.5 ft².

Hint 6 The triangle has an area of 7.5 ft^2 .

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: 3fa4bafa.. 2013-10-13

17 x7720fa616a7c50ad

What is the area of the triangle below?

Ans [[? input-number 1]] $units^2$ 10

Hint 1 We can enclose this triangle in a rectangle with area $7 \times 5 = 35$.

Hint 2 The areas of the three additional right triangles are:

$$\frac{2\cdot 2}{2} = 2$$

$$\frac{3\cdot7}{2} = 10.5$$

$$\frac{5\cdot 5}{2} = 12.5$$

Hint 3 The area of the original triangle can be found by subtracting the area of the additional right triangles from the area of the rectangle.

$$35 - 2 - 10.5 - 12.5 = 10$$

Hint 4 The original triangle has an area of 10 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: 5d81dce5.. 2013-10-14

18 x77adf2fae5d65eb7

What is the area of the triangle below?

Ans [[? input-number 1]] units² 7

Hint 1 We can enclose this triangle in a square with area $4 \times 4 = 16$.

Hint 2 The areas of the three additional right triangles are:

$$\frac{2\cdot 3}{2} = 3$$

$$\frac{1\cdot 4}{2} = 2$$

$$\frac{2\cdot 4}{2} = 4$$

Hint 3 The area of the original triangle can be found by subtracting the area of the additional right triangles from

the area of the square.

$$16 - 3 - 2 - 4 = 7$$

Hint 4 The original triangle has an area of 7 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: 200a0956.. 2013-10-15

19 x98290a8f0805fe87

What is the area of the triangle below?

Ans [[? input-number 1]] units 2 19.5

Hint 1 We can enclose this triangle in a rectangle with area $7 \times 6 = 42$.

Hint 2 The areas of the three additional right triangles are:

$$\frac{3\cdot 6}{2} = 9$$

$$\frac{3 \cdot 7}{\frac{2}{2}} = 10.5$$

$$\frac{1 \cdot 6}{2} = 3$$

$$42 - 9 - 10.5 - 3 = 19.5$$

Hint 4 The original triangle has an area of 19.5 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR **Version:** 2461bfb6.. 2013-10-15

20 x9ecb73e3e695cec9

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] $ft^2 6$

Hint 1 The triangle is half of a rectangle that has a length of 6 feet and a width of 2 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 3

This right triangle is half of a rectangle with area $4 \times 2 = 8$ ft², so this right triangle has an area of 4 ft².

Hint 4

The other right triangle is half of a square with area $2 \times 2 = 4$ ft², so the other right triangle also has an area of 2 ft².

Hint 5 Adding the two pieces together, we see that the area is 4 + 2 = 6 ft².

Hint 6 The triangle has an area of 6 ft².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR **Version:** c0cfb580.. 2013-10-13

21 xa171035eb92f1d61

What is the area of the triangle below?

Ans [[? input-number 1]] $units^2$ 13.5

Hint 1 We can enclose this triangle in a rectangle with area $7 \times 4 = 28$.

Hint 2 The areas of the three additional right triangles are:

$$\frac{3 \cdot 6}{2} = 9$$

$$\frac{1 \cdot 7}{2} = 3.5$$

$$\frac{1 \cdot 4}{2} = 2$$

$$28 - 9 - 3.5 - 2 = 13.5$$

Hint 4 The original triangle has an area of 13.5 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR **Version:** 1a858c9b.. 2013-10-15

22 xaac6b55019ebdd1b

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] ft^2 15

Hint 1 The triangle is half of a rectangle that has a length of 6 feet and a width of 5 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 3

This right triangle is half of a rectangle with area $5 \times 4 = 20$ ft², so this right triangle has an area of 10 ft².

Hint 4

The other right triangle is also half of a rectangle with area $5 \times 2 = 10$ ft², so the other right triangle also has an area of 5 ft².

Hint 5 Adding the two pieces together, we see that the area is 10 + 5 = 15 ft².

Hint 6 The triangle has an area of 15 ft².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: b72d8127.. 2013-10-13

23 xad0626bc47031702

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] ft^2 12

Hint 1 The triangle is half of a rectangle that has a length of 6 feet and a width of 4 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 3

This right triangle is half of a square with area $4 \times 4 = 16$ ft², so this right triangle has an area of 8 ft².

Hint 4

The other right triangle is half of a rectangle with area $4 \times 2 = 8$ ft², so the other right triangle also has an area of 4 ft².

Hint 5 Adding the two pieces together, we see that the area is 8 + 4 = 12 ft².

Hint 6 The triangle has an area of 12 ft^2 .

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: fad08542.. 2013-10-13

24 xae049f335aa2934b

What is the area of the triangle below?

Ans [[? input-number 1]] units² 7

Hint 1 We can enclose this triangle in a rectangle with area $5 \times 4 = 20$.

Hint 1 The triangle is half of a rectangle that has a length of 6 feet and a width of 3 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 2 The areas of the three additional right triangles are:

$$\frac{3 \cdot 5}{2} = 7.5$$

$$\frac{1 \cdot 3}{2} = 1.5$$

$$\frac{2 \cdot 4}{2} = 4$$

$$20 - 9 - 1.5 - 4 = 7$$

Hint 4 The original triangle has an area of 7 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR **Version:** 62f3ad3a.. 2013-10-15

25 xb4a8756ea356923f

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] ft^2 9

Hint 3

This right triangle is half of a rectangle with area $4 \times 3 = 12$ ft², so this right triangle has an area of 6 ft².

Hint 4

The other right triangle is also half of a rectangle with area $3 \times 2 = 6$ ft², so the other right triangle also has an area of 3 ft².

Hint 5 Adding the two pieces together, we see that the area is 6 + 3 = 9 ft².

Hint 6 The triangle has an area of 9 ft^2 .

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR **Version:** 1c04f7a8.. 2013-10-13

26 xc9cdb5fd57efcf6e

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] ft^2 15

Hint 1 The triangle is half of a rectangle that has a length of 6 feet and a width of 5 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 3

This right triangle is half of a rectangle with area $5 \times 2 = 10$ ft², so this right triangle has an area of 5 ft².

Hint 4 The other right triangle is also half of a rectangle with area $5 \times 4 = 20$ ft², so the other right triangle also has an area of 10 ft².

Hint 5 Adding the two pieces together, we see that the area is 5 + 10 = 15 ft².

Hint 6 The triangle has an area of 15 ft².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: 534cc23c.. 2013-10-13

27 xdc9172796068c87c

What is the area of the triangle below?

Ans [[? input-number 1]] units² 11

Hint 1 We can enclose this triangle in a rectangle with area $7 \times 4 = 28$.

Hint 2 The areas of the three additional right triangles are:

$$\frac{1 \cdot 5}{\frac{2}{2}} = 2.5$$

$$\frac{3 \cdot 7}{\frac{2}{2}} = 10.5$$

$$\frac{2 \cdot 4}{2} = 4$$

$$28 - 2.5 - 10.5 - 4 = 11$$

Hint 4 The original triangle has an area of 11 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR **Version:** a5a14f2c.. 2013-10-15

28 xdf8aca7477e01663

What is the area of the triangle below?

Ans [[? input-number 1]] units² 13.5

Hint 1 We can enclose this triangle in a rectangle with area $7 \times 5 = 35$.

Hint 2 The areas of the three additional right triangles are:

$$\frac{4 \cdot 6}{2} = 12$$

$$\frac{1 \cdot 7}{2} = 3.5$$

$$\frac{1 \cdot 5}{2} = 2.5$$

Hint 3 The area of the original triangle can be found by subtracting the area of the additional right triangles from the area of the rectangle.

$$35 - 12 - 3.5 - 2.5 = 17$$

Hint 4 The original triangle has an area of 17 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR **Version:** 44f2209b.. 2013-10-15

29 xeb71abaf1aa8154d

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] ft^2 17.5

Hint 1 The triangle is half of a rectangle that has a length of 7 feet and a width of 5 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 3

This right triangle is half of a rectangle with area $7 \times 2 = 14$ ft², so this right triangle has an area of 7 ft².

Hint 4 The other right triangle is also half of a rectangle with area $7 \times 3 = 21$ ft², so the other right triangle also has an area of 10.5 ft².

Hint 5 Adding the two pieces together, we see that the area is 7 + 10.5 = 17.5 ft².

Hint 6 The triangle has an area of 17.5 ft².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR **Version:** baebff16.. 2013-10-13

$30 ext{ xf2f666ecec4b1cac}$

What is the area of the triangle below?

Ans [[? input-number 1]] units² 8

Hint 1 We can enclose this triangle in a rectangle with area $4 \times 3 = 15$.

 ${\bf Hint} \ {\bf 2} \quad {\bf The \ areas \ of \ the \ three \ additional \ right \ triangles}$

$$\frac{1 \cdot 3}{2} = 1.5$$

$$\frac{1 \cdot 3}{2} = 1.5$$

$$\frac{2 \cdot 4}{2} = 4$$

Hint 3 The area of the original triangle can be found by subtracting the area of the additional right triangles from the area of the rectangle.

$$15 - 1.5 - 1.5 - 4 = 8$$

Hint 4 The original triangle has an area of 8 units².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: b04403c0.. 2013-10-15

31 xfad327ad9be41e38

What is the area of Triangle ABC below? All sides lengths are measured in feet.

Ans [[? input-number 1]] ft^2 9

Hint 1 The triangle is half of a rectangle that has a length of 6 feet and a width of 3 feet.

Hint 2 It's a little easier to see that the triangle is half of the rectangle if we split the original triangle into two right triangles.

Hint 3

This right triangle is half of a rectangle with area $3 \times 2 = 6$ ft², so this right triangle has an area of 3 ft².

Hint 4

The other right triangle is also half of a rectangle with area $4 \times 3 = 12$ ft², so the other right triangle also has an area of 6 ft².

Hint 5 Adding the two pieces together, we see that the area is 3 + 6 = 9 ft².

Hint 6 The triangle has an area of 9 ft².

Tags: CC.6.G.A.1, Area of Triangle 1.2, SB.6.1.H.1.CR

Version: 080107c1.. 2013-10-13