Lemon minibot

Navigation system robot car

Authors:Tony Guo

Abstract

Content

Chapter 1 Introduction

Hardware

2.1 Custom car structure

Lemon minibot 的架構為標準兩輪差速小車(diff-drive robot car),小車可由任何適當材料組合而成,僅需留意小車是否水平及空間是否可充足放置零組件;以turtlebot3 buger為示意圖為例,建構小車時需測量輪胎半徑(wheelRad)、輪胎間距(wheelSep)及雷達位移(x,y,h)。

2.2 Motor controller (Mega 控制器)

為擷取兩組馬達AB編碼器以及控制兩組馬達,因此自行設計控制器。

2.2.1 Motor & A/B encoder

擁有AB增量型編碼器的馬達都有6pin,分別為馬達正負極、編碼器電源以及AB相輸出,接下來將說明如何使用編碼器訊號測量轉向以及轉速,在這之前也必須先知道馬達的PPR (Pulses per rev)值,意味著轉一圈會經過幾個脈衝;再者如果馬達有經過減速機,則須將PPR乘上減速比。

Lemon minibot 所使用的的編碼器為AB增量型編碼器,編碼器輸出為AB相,如下圖,A與B之間相位差為90度。

2.2.2 Positive edge triggered d flip flop

正緣觸發D正反器 (positive edge triggered d flip flop),可以將AB相轉換成單一輸出的轉向;當clock背A相正緣觸發時會將Q輸出B相的值,而依照2.2.1 AB相圖可知,正反轉會輸出不同的值,並以此作為正反轉訊號。

2.2.3 Counter & shift resister

CD4040為12bits計數器 (Counter), CD4021為8bits的位移暫存器 (Shift resister);解釋期運作原理,將訊號由計數 器的PIN10輸入,輸入脈衝數換成二進位 制由Q1~Q12輸出,再經過位移暫存器輸 入至微控器。

2.2.4 Monster Shield

Monster Shield為<u>意法半導體</u>所生產的馬達模組, 內含H-bridge可以控制馬達正反轉,且輸出電流可高達 30A。

2.2.5 Power

Lemon minibot 使用一顆2 usb port 的行動電源以及一顆14.8V 2600mah的鋰電池。

2.2.6 UART

Lemon minibot 將透過UART與raspberry pi 溝通。

2.2.7 Circuit & PCB

2.3 Raspberry pi 2/3

Lemon minibot 使用raspberry pi 當作主控器, 運行 ubuntu mate 16.04 與 ROS (機器人作業系統) 以用來控制與接收 (電腦端)訊號。

電腦端及pi端安裝方式,請參考<專題筆記:ROS#1安裝>,電腦端及pi端安裝方式相同,但是pi若沒有接上螢幕,則Open GL 將不會被開啟而導致無法使用 VNC開啟 GUI介面。

2.4 YDLIDAR X4

Lemon minibot 使用EAI的ydlidar X4光達來 建置2D地圖;因為其消耗功率大,除了通訊USB 接口外,必須另外連接行動電源供電。

Concept

3.1 Transform (TF)

為記載各個裝置位置,使用TF可以設置其 相關位置。

● Map: 固定的地圖

● Odom: 移動路徑

● Base_link: 由sensor推算之座標

● Base_footprint: Base_link 之投影

● Laser_link: 光達位置

3.2 Pose & Odometry

3.2.1 Orientation 四元數

欲表現三空間的鋼體運動,常見的有歐拉角與四元數, 其中歐拉角具有奇異性(例: Gimbal lock problem),可想而 知,若只使用三個變數表示三維運動,可能有多種不同的運動 方式產生相同結果;因此使用具有四個變數的"四元數"來表示 其運動較為恰當,且也具有歐拉角與四元數之間的轉換公式。 右圖為歐拉角示意圖。

四元數表示法如下:

$$\mathbf{q} = q_0 + q_1 i + q_2 j + q_3 k$$

四元數為一位實數以及三位虛數所構成,滿足

$$\begin{cases} i^2 = j^2 = k^2 \\ ij = k, ji = -k \\ jk = i, kj = -i \\ ki = j, ik = -j \end{cases}$$

也可使用一個純量及一個向量表示

$$\mathbf{q} = [s \ v], s = q_o \in \mathbb{R}, \mathbf{v} = [q_1 \ q_2 \ q_3]^T \in \mathbb{R}^3$$

假設某個旋轉是繞著單位向量 $\mathbf{n} = \begin{bmatrix} n_x & n_y & n_z \end{bmatrix}^T$ 進行旋轉 $\boldsymbol{\Theta}$ 角,那麼以四元數表示為

$$\mathbf{q} = \begin{bmatrix} \cos(\frac{\Theta}{2}) & n_x \sin(\frac{\Theta}{2}) & n_y \sin(\frac{\Theta}{2}) & n_z \sin(\frac{\Theta}{2}) \end{bmatrix}$$

接下來欲把空間一點 $\mathbf{p} = [x \ y \ z] \in \mathbb{R}^3$ 經過 \mathbf{q} 做旋轉,則新座標 \mathbf{p}' 等於

$$\mathbf{p}' = \mathbf{q}\mathbf{p}\mathbf{q}^{-1}$$
 化成 $\mathbf{p}' = \mathbf{R}\mathbf{p}$

則R為

$$\mathbf{R} = \begin{bmatrix} 1 - 2q_2^2 - 2q_3^2 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & 1 - 2q_1^2 - 2q_3^2 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 - 2q_0q_1 & 1 - 2q_1^2 - 2q_2^2 \end{bmatrix}$$

3.2.2 EKF

3.3 Kinematic model

設左輪角速度 ω_l 、右輪角速度 ω_r ,則速度如下

$$\begin{cases} v_{l} = wheelRad * \omega_{l} \\ v_{r} = wheelRad * \omega_{r} \end{cases}$$

$$V = \frac{v_{r} + v_{l}}{2} = wheelRad * \frac{\dot{\omega}_{r} + \dot{\omega}_{l}}{2}$$

$$\alpha = \frac{v_{r} - v_{l}}{wheelSep}$$

$$\begin{cases} V_{x} = V \cos \alpha \\ V_{y} = V \sin \alpha \end{cases}$$

$$\begin{cases} X = X + V_x * dt \\ Y = Y + V_y * dt \end{cases}$$

Package

4.1 Base.py

透過Uart 連接Mega 控制器,傳送馬達控制訊號以及接收馬達轉速訊號,並積分轉換成 odom

Node:/base

Subscribe:/car/cmd_vel

Publish: /tf, /odom

4.2 keyboard_teleop.py

透過鍵盤傳送速度訊號

Node: /teleop

Publish:/car/cmd_vel

4.3 Joystick

使用遊戲搖桿

Node:/joy

Publish:/joy

4.5 teleop_joy.cpp

遊戲搖桿轉換成控制訊號

Node:/teleop

Subscribe:/joy

Publish:/car/cmd_vel

4.4 YDLIDAR X4

連接YDLIDAR X4並輸出雷射掃描資訊

Node:/ydlidar_node

Publish:/scan

4.5 TF

設定座標轉換

4.6 rf2o

將雷射掃描資訊轉換成里程計odometry

Node:/rf2o_laser_odometry

Subscribe:/laser_scan

Publish: /odom

4.7 robot pose ekf

使用EKF融合

Node:/rf2o_laser_odometry

Subscribe:/odom,/imu_data,/vo

Publish:/robot_pose_ekf/odom_combined

4.8 ar track alvar

4.9 Gmapping

Control Mode Flow

5.1 Locate Ar-Tag & SLAM

Sensor	Detect	Control	Algorithm	Core
Camara	Ar tag Detector	Motor Controller	Gmapping	Core
Laser lidar	Speaker recognition	Ramdom Walk	Navigation	

5.2 Goal sitting through speaker recognition

Sensor	Detect	Control	Algorithm	Core
Camara	Ar tag Detector	Motor Controller	Gmapping	Core
Laser lidar	Speaker recognition	Random Walk	Navigation	

Chapter 6 Build guide