COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Announcements

Homework 3 due tomorrow

Homework 4 up

Take-home midterm tentative dates:

- Posted 3pm am Monday 3/13
- Due 1pm Wednesday 3/15

Last Time

CPA Security

Functions that "look like" random functions

Syntax:

- Key space **{0,1}**^λ
- Domain X (usually $\{0,1\}^m$, m may depend on λ)
- Co-domain/range Y (usually $\{0,1\}^n$, may depend on λ)
- Function $F:\{0,1\}^{\lambda} \times X \rightarrow Y$

PRF Security Definition

Definition: \mathbf{F} is a secure PRF if, for all probabilistic polynomial time (PPT) \mathfrak{F} , there exists a negligible function $\mathbf{\varepsilon}$ such that

$$Pr[1 \leftarrow PRF-Exp_0(\hat{\lambda}, \lambda)]$$

$$- Pr[1 \leftarrow PRF-Exp_1(\hat{\lambda}, \lambda)] \leq \varepsilon(\lambda)$$

Using PRFs to Build Encryption

Enc(k, m):

- Choose random r←X
- Compute $y \leftarrow F(k,r)$
- Compute c←y⊕m
- Output (r,c)

Correctness:

- y'=y since **F** is deterministic
- $m' = c \oplus y = y \oplus m \oplus y = m$

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute and output m'←c⊕y'

Counter Mode

Enc(k, m):

- Choose random $\mathbf{r} \leftarrow \{0,1\}^{\lambda/2}$ Write **i** as $\lambda/2$ -bit string
- For **i=1,...,|m|**,
 - Compute $y_i \leftarrow F(k,r||i|)^T$
 - Compute $c_i \leftarrow y_i \oplus m_i$
- Output (r,c) where $c=(c_1,...,c_{|m|})$

Dec(k, (r,c)):

- For **i=1,...,l**,
 - Compute $y_i \leftarrow F(k,r||i|)$
 - Compute $\mathbf{m}_i \leftarrow \mathbf{y}_i \oplus \mathbf{c}_i$
- Output m=m₁,...,m_l

Handles any message of length at most $2^{\lambda/2}$

 Includes all polynomiallength messages

Counter Mode

Counter Mode Decryption

This Time

Pseudorandom Permutations/Block Ciphers

Modes of Operation

Pseudorandom Permutations (also known as block ciphers)

Functions that "look like" random permutations

Syntax:

- Key space **{0,1}**^λ
- Domain X (usually $\{0,1\}^n$, n usually depends on λ)
- Range X
- Function $F:\{0,1\}^{\lambda} \times X \rightarrow X$
- Function $F^{-1}:\{0,1\}^{\lambda} \times X \rightarrow X$

Correctness: $\forall k,x, F^{-1}(k, F(k, x)) = x$

Pseudorandom Permutations

Pseudorandom Permutations

Pseudorandom Permutations

Theorem: A PRP (F,F^{-1}) is secure iff F is a secure

as a PRF

Secure as PRP \Rightarrow Secure as PRF

• Assume , hybrids

Hybrid 0: $x \in X$ Challenger $y \leftarrow F(k,x)$

Secure as PRP \Rightarrow Secure as PRF

• Assume , hybrids

Challenger $H \leftarrow Perms(X,X)$ $y \leftarrow F(k,x)$

Secure as PRP \Rightarrow Secure as PRF

• Assume , hybrids

Secure as PRP \Rightarrow Secure as PRF

• Assume , hybrids

Hybrids 0 and 1 are indistinguishable by PRP security

Hybrids 1 and 2?

- In Hybrid 1, 🐧 sees random **distinct** answers
- In Hybrid 2, 🐧 sees random answers
- Except with probability $\approx q^2/2^{n+1}$, random answers will be distinct anyway

Secure as PRF \Rightarrow Secure as PRP

• Assume , hybrids

Proof essentially identical to other direction

Suppose (F,F⁻¹) is a secure PRP

Is (F⁻¹,F) also a secure PRP?

How to use block ciphers for encryption

Counter Mode (CTR)

Electronic Code Book (ECB)

Enc(k, m):

- Break m into t blocks m; of n bits
- For each block m_i , let $c_i = F(k, m_i)$
- Output $c = (c_1, ..., c_t)$

Dec(k, c):

- Break c into t blocks c; of n bits
- For each block c_i , let $m_i = F^{-1}(k, c_i)$
- Output $m = (m_1, ..., m_t)$

substitution cipher for **n**-bit alphabet

Electronic Code Book (ECB)

ECB Decryption

Security of ECB?

Is ECB mode CPA secure?

Is ECB mode *one-time* secure?

Security of ECB

Plaintex

Ciphertext

Ideal

Cipher Block Chaining (CBC) Mode

(For now, assume all messages are multiples of the block length)

CBC Mode Decryption

Theorem: If **(F,F-1)** is a secure pseudorandom permutation, then CBC mode encryption is CPA secure

Proof Sketch

Assume toward contradiction an adversary ** for CBC mode

Hybrids...

Proof Sketch

Hybrid 0,1 differ by replacing calls to **F** with calls to random permutation **H**

Indistinguishable by PRP security

Same for Hybrids 2,3

All that is left is to show indistinguishability of 1,2

Idea:

- As long as, say, the sequence of left messages queried by does not result in two calls to on the same input, all outputs will be random (distinct) outputs
- For each message, first query to F will be uniformly random
- Second query gets XORed with output of first query to F ⇒ ≈ uniformly random

Idea:

- Since queries to F are (essentially) uniformly random, probability of querying same input twice is exponentially small
- Ciphertexts will be essentially random
- True regardless of encrypting m_0 or m_1

Stateful Variants of CBC

Chained CBC

IV is set to last block of previous ciphertext

Deterministic IV

- Sender keeps a counter
- To encrypt, IV is set to counter, and counter is incremented

Both variants mean no need to send IV

Chained CBC

Is Chained CBC Secure?

Deterministic IV

ctr ++

Is Deterministic IV Secure?

Output Feedback Mode (OFB)

Turn block cipher into self stream cipher

OFB Decryption

What happens if a block is lost in transmission?

Cipher Feedback (CFB)

Turn block cipher into self-synchronizing stream cipher

CFB Decryption

What happens if a block is lost in transmission?

Security of OFB, CFB modes

Security very similar to CBC

Define 4 hybrids

- 0: encrypt left messages
- 1: replace PRP with random permutation
- 2: encrypt right messages
- 3: replace random permutation with PRP
- 0,1 and 2,3 are indistinguishable by PRP security
- 1,2 are indistinguishable since ciphertexts are essentially random

Summary

PRPs/Block Ciphers

Modes of operations: ECB, Counter, CBC, OFB, CFB

Next Time

Constructing PRPs/block ciphers