Exam Math_132

Rappel de cours

Méthode de Newton

- Identification des racines d'une fonction. (ie. une racine est une valeur r tel que f(r) = 0.
- La méthode se fait par approximation à partir d'une valeur supposée proche de la racine
- Developper la suite $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$. Le plus loin on va dans la suite, le plus proche on est de la racine.

Exercice 1

La suite $(x_n)_n$ est

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} avec x_0 = 2$$

On a $f(x) = xe^{-x}$, donc $f'(x) = (1 - x)e^{-x}$

$$x_{n+1} = x_n - \frac{x_n e^{-x_n}}{(1 - x_n)e^{-x_n}} = x_n - \frac{x_n}{1 - x_n} = x_n + \frac{x_n}{x_n - 1}$$

On a x-1 < x, donc $\frac{x}{x-1} > 1$ lorsque x > 1. On a $x_0 \ge 2 > 1$, à chaque pas on ajoute une valeur positive donc $x_n > 2$.

$$x_{n+1} - x_n = x_n + \frac{x_n}{x_n - 1} - x_n = \frac{x_n}{x_n - 1}$$

On a x-1 < x, donc $\frac{x}{x-1} > 1$ lorsque x > 1. On a $x_0 \ge 2 > 1$, donc $x_{n+1} - x_n > 1$. La suite est strictement croissante donc elle divergence quand $x \to \infty$.