ALGEBRA LINEAL - Práctica $N^{\circ}8$ - Segundo cuatrimestre de 2020 Espacios vectoriales con producto interno

En esta práctica, todos los espacios vectoriales serán sobre $\mathbb R$ o sobre $\mathbb C$ únicamente.

Ejercicio 1. Sea V un espacio vectorial y sea \langle , \rangle un producto interno sobre V. Probar:

- i) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- ii) $\langle x, cy \rangle = \bar{c} \cdot \langle x, y \rangle$
- iii) $\langle x, y \rangle = \langle x, z \rangle \ \forall x \in V \Rightarrow y = z$

Ejercicio 2. Sea (V, \langle , \rangle) un espacio vectorial con producto interno. Probar que $|\langle x, y \rangle| = ||x||.||y||$ si y sólo si $\{x, y\}$ es un conjunto linealmente dependiente.

Ejercicio 3. Determinar si las siguientes funciones son o no productos internos. En caso afirmativo encontrar su matriz en la base canónica del espacio correspondiente.

i)
$$\Phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
, $\Phi(x, y) = 2.x_1.y_1 + 3.x_2.y_1 - x_2.y_2 + 3.x_1.y_2$

ii)
$$\Phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
, $\Phi(x,y) = x_1.y_1 + x_2.y_1 + 2.x_2.y_2 - 3.x_1.y_2$

iii)
$$\Phi: K^2 \times K^2 \to K$$
, $\Phi(x,y) = 2.x_1.y_1 + x_2.y_2 - x_1.y_2 - x_2.y_1$, con $K = \mathbb{R}$ y $K = \mathbb{C}$

iv)
$$\Phi: \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}, \ \Phi(x,y) = 2.x_1.\overline{y}_1 + x_2.\overline{y}_2 - x_1.\overline{y}_2 - x_2.\overline{y}_1$$

v)
$$\Phi: \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}, \ \Phi(x,y) = 2.x_1.\overline{y}_1 + (1+i).x_1.\overline{y}_2 + (1+i).x_2.\overline{y}_1 + 3.x_2.\overline{y}_2$$

vi)
$$\Phi: \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}, \ \Phi(x,y) = x_1.\overline{y}_1 - i.x_1.\overline{y}_2 + i.x_2.\overline{y}_1 + 2.x_2.\overline{y}_2$$

vii)
$$\Phi: K^3 \times K^3 \to K$$
, $\Phi(x,y) = 2.x_1.\overline{y}_1 + x_3.\overline{y}_3 - x_1.\overline{y}_3 - x_3.\overline{y}_1$, con $K = \mathbb{R}$ y $K = \mathbb{C}$

Ejercicio 4. Determinar para qué valores de a y b en \mathbb{R}

$$\Phi(x,y) = a.x_1.y_1 + b.x_1.y_2 + b.x_2.y_1 + b.x_2.y_2 + (1+b).x_3.y_3$$

es un producto interno en \mathbb{R}^3 .

Ejercicio 5. Probar que las siguientes funciones definen productos internos sobre los espacios vectoriales considerados:

i)
$$\langle , \rangle : K^{n \times n} \times K^{n \times n} \to K, \langle A, B \rangle = tr(A.B^*), \text{ con } K = \mathbb{R} \text{ y } K = \mathbb{C}$$

ii)
$$\langle , \rangle : C[0,1] \times C[0,1] \to \mathbb{R}, \ \langle f, g \rangle = \int_0^1 f(x).g(x) dx$$

iii)
$$\langle \, , \rangle : K^n \times K^n \to K, \ \langle x,y \rangle = \overline{y}.\, Q^*.Q.\, x^t, \ \text{con } K = \mathbb{R} \text{ y } K = \mathbb{C}$$
 donde $Q \in K^{n \times n}$ es una matriz inversible.

iv)
$$\langle \, , \rangle_T : V \times V \to K, \ \langle x,y \rangle_T = \langle T(x),T(y) \rangle, \ \text{con } K = \mathbb{R} \text{ y } K = \mathbb{C}$$
 donde V y W son espacios vectoriales sobre $K, \ \langle \, , \rangle$ es un producto interno sobre W y $T:V \to W$ es un monomorfismo.

Ejercicio 6. Restringir el producto interno del item ii) del ejercicio anterior a $\mathbb{R}_n[X]$ y calcular su matriz en la base $B = \{1, X, \dots, X^n\}$.

Ejercicio 7.

- i) Encontrar una base de \mathbb{R}^2 que sea ortonormal para el producto interno definido en el Ejercicio 3. iii) con $K = \mathbb{R}$.
- ii) Encontrar una base de \mathbb{C}^2 que sea ortonormal para el producto interno definido en el Ejercicio 3. vi).

Ejercicio 8. Sea V un espacio vectorial de dimensión n y sea $B = \{v_1, \dots, v_n\}$ una base de V.

- i) Probar que existe un único producto interno en V para el cual B resulta ortonormal.
- ii) Hallarlo en los casos

a)
$$V = \mathbb{C}^2$$
 y $B = \{(1, i), (-1, i)\}$

b)
$$V = \mathbb{R}^3$$
 y $B = \{(1, -1, 1), (1, 1, 0), (0, 1, 1)\}$

Ejercicio 9. Hallar el complemento ortogonal de los siguientes subespacios de V:

i)
$$V = \mathbb{R}^4$$
, $S_1 = \langle (1,1,0,-1), (-1,1,1,0), (2,-1,1,1) \rangle$ para el producto interno canónico.

ii)
$$V=\mathbb{R}^3,\ S_2=<(1,2,1)>$$
 para el producto interno definido por
$$\langle x,y\rangle=x_1.y_1+2.x_2.y_2+x_3.y_3-x_1.y_2-x_2.y_1.$$

iii)
$$V = \mathbb{C}^3$$
, $S_3 = \langle (i, 1, 1), (-1, 0, i) \rangle$

para el producto interno \langle,\rangle_T definido en el Ejercicio 5. iv) con $T:\mathbb{C}^3\to\mathbb{C}^3$

$$T(x) = \begin{pmatrix} i & -1+i & 0 \\ 1 & i & 0 \\ 1 & i+1 & i \end{pmatrix} . x^t \quad \text{y } \langle , \rangle \text{ el producto interno canónico sobre } \mathbb{C}^3.$$

iv)
$$V = \mathbb{C}^4$$
, $S_4 = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{C}^4 / \left\{ \begin{array}{l} x_1 + 2i \cdot x_2 - x_3 + (1+i) \cdot x_4 = 0 \\ x_2 + (2-i) \cdot x_3 + x_4 = 0 \end{array} \right\} \right\}$ para el producto interno $\langle x, y \rangle = x_1 \cdot \overline{y}_1 + 2 \cdot x_2 \cdot \overline{y}_2 + x_3 \cdot \overline{y}_3 + 3 \cdot x_4 \cdot \overline{y}_4$.

Ejercicio 10.

- i) Hallar bases ortonormales para los subespacios del ejercicio anterior para los productos internos considerados.
- ii) Definir explícitamente las proyecciones ortogonales sobre cada uno de dichos subespacios.
- iii) Hallar el punto de S_4 más cercano a (0, 1, 1, 0).

Ejercicio 11. Se define
$$\langle , \rangle : \mathbb{R}_n[X] \times \mathbb{R}_n[X] \to \mathbb{R}$$
 como $\langle f, g \rangle = \sum_{k=0}^n f\left(\frac{k}{n}\right) \cdot g\left(\frac{k}{n}\right)$.

- i) Probar que \langle , \rangle es un producto interno.
- ii) Para n = 2, calcular $\langle X \rangle^{\perp}$.

Ejercicio 12.

- i) Se considera $\mathbb{C}^{n\times n}$ con el producto interno $\langle A,B\rangle=tr(A.B^*)$. Hallar el complemento ortogonal del subespacio de las matrices diagonales.
- ii) Se considera $\mathbb{R}_3[X]$ con el producto interno $\langle f,g\rangle=\int_{-1}^1 f(x).g(x)\,dx$. Aplicar el proceso de Gram-Schmidt a la base $\{1,X,X^2,X^3\}$. Hallar el complemento ortogonal del subespacio S=<1>.
- iii) Se considera C[-1,1] con el producto interno $\langle f,g\rangle=\int_{-1}^1 f(x).g(x)\,dx$. Hallar el polinomio de grado menor o igual que 3 más próximo a la función $f(x)=\sin(\pi x)$.

Sugerencia: Observar que basta considerar el subespacio $S = \langle 1, x, x^2, x^3, \operatorname{sen}(\pi x) \rangle$.

Ejercicio 13. Sea V un espacio vectorial con producto interno \langle , \rangle . Sea $W \subseteq V$ un subespacio de dimensión finita de V. Probar que si $x \notin W$, entonces existe $y \in V$ tal que $y \in W^{\perp}$ y $\langle x, y \rangle \neq 0$.

Ejercicio 14. Calcular f^* para cada una de las transformaciones lineales siguientes:

i)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (3.x_1 + x_2, -x_1 + x_2)$

ii)
$$f: \mathbb{C}^3 \to \mathbb{C}^3$$
, $f(x_1, x_2, x_3) = (2.x_1 + (1-i).x_2, x_2 + (3+2i).x_3, x_1 + i.x_2 + x_3)$

iii)
$$B = \{(1, 2, -1), (1, 0, 0), (0, 1, 1)\}, \quad f : \mathbb{R}^3 \to \mathbb{R}^3 \text{ tal que } |f|_B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

iv)
$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$
, $f(p) = p'$, donde $\langle p, q \rangle = \int_0^1 p(x) \cdot q(x) dx$.

$$\mathrm{v)}\ \ P\in GL(n,\mathbb{C}),\quad f:\mathbb{C}^{n\times n}\to\mathbb{C}^{n\times n},\ f(A)=P^{-1}.A.P,\quad \ \mathrm{donde}\ \langle A,B\rangle=tr(A.B^*).$$

vi)
$$\mu_f : \mathbb{R}[X] \to \mathbb{R}[X], \quad \mu_f(p) = f.p, \quad \text{donde } f \in \mathbb{R}[X] \text{ y } \langle p, q \rangle = \int_0^1 p(x).q(x)dx.$$

Ejercicio 15. Sea (V, \langle, \rangle) un espacio vectorial con producto interno de dimensión finita. Sean f_1 y f_2 endomorfismos de V y sea k un escalar. Probar:

i)
$$(f_1 + f_2)^* = f_1^* + f_2^*$$

ii)
$$(k. f_1)^* = \overline{k}. f_1^*$$

iii)
$$(f_1 \circ f_2)^* = (f_2)^* \circ (f_1)^*$$

iv) Si f_1 es un isomorfismo, entonces f_1^* es un isomorfismo y $(f_1^*)^{-1} = (f_1^{-1})^*$

v)
$$((f_1)^*)^* = f_1$$

vi)
$$f_1^* \circ f_1 = 0 \Rightarrow f_1 = 0$$

Ejercicio 16. Sea (V, \langle, \rangle) un espacio vectorial con producto interno de dimensión finita y sea $f: V \to V$ una tranformación lineal. Probar que $\operatorname{Im}(f^*) = (\operatorname{Nu}(f))^{\perp}$ y $\operatorname{Nu}(f^*) = (\operatorname{Im}(f))^{\perp}$.

Ejercicio 17. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$f(x, y, z) = (-x - 3y - 2z, 4x + 6y + 2z, -3x - 3y).$$

Hallar un producto interno $\langle , \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ tal que f sea autoadjunta para \langle , \rangle .

Ejercicio 18. Sea (V, \langle, \rangle) un espacio vectorial con producto interno de dimensión finita y sea S un subespacio de V. Probar que la proyección ortogonal $P: V \to V$ sobre S es autoadjunta. Calcular sus autovalores.

Ejercicio 19.

i) En cada uno de los siguientes casos, encontrar una matriz $O \in \mathbb{R}^{n \times n}$ ortogonal tal que $O.A.O^t$ sea diagonal:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & -2 \\ 2 & -2 & 8 \end{pmatrix}$$

ii) Encontrar una matriz $U \in \mathbb{C}^{n \times n}$ unitaria tal que $U.A.U^*$ sea diagonal, siendo

$$A = \begin{pmatrix} 2 & -1 & -i & 0 \\ -1 & 2 & -i & 0 \\ i & i & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

Ejercicio 20. Sea (V, \langle, \rangle) un \mathbb{C} -espacio vectorial con producto interno de dimensión finita y sea $f: V \to V$ una transformación lineal. Se dice que f es normal si $f \circ f^* = f^* \circ f$.

- i) Probar que si f admite una base ortonormal de autovectores, entonces f es normal.
- ii) Probar que si f es normal valen las siguientes afirmaciones:
 - a) $||f(v)|| = ||f^*(v)|| \quad \forall v \in V$. En particular, $\operatorname{Nu}(f) = \operatorname{Nu}(f^*)$.
 - b) $\forall \lambda \in \mathbb{C}, f \lambda . id_V$ es normal.
 - c) Si v es un autovector de f de autovalor λ , entonces v es un autovector de f^* de autovalor $\overline{\lambda}$.
 - d) $E_{\lambda} = \{v \in V / f(v) = \lambda . v\}$ es f^* -invariante.
- iii) Probar que si f es normal, entonces admite una base ortonormal de autovectores. (Sugerencia: observar que $(E_{\lambda})^{\perp}$ es f-invariante y f*-invariante).
- iv) Deducir de lo anterior que las matrices unitarias son diagonalizables sobre \mathbb{C} . Encontrar un ejemplo de matriz ortogonal que no sea diagonalizable sobre \mathbb{R} .

Ejercicio 21. Hallar la matriz en la base canónica de las siguientes transformaciones ortogonales:

- i) $f:\mathbb{R}^2\to\mathbb{R}^2,$ rotación de ángulo $\frac{\pi}{3}.$
- ii) $f: \mathbb{R}^2 \to \mathbb{R}^2$, simetría respecto de la recta de ecuación $x_1 x_2 = 0$.
- iii) $f: \mathbb{R}^3 \to \mathbb{R}^3$, simetría respecto del plano de ecuación $x_1 + x_2 x_3 = 0$.
- iv) $f: \mathbb{R}^3 \to \mathbb{R}^3$, rotación de ángulo $\frac{\pi}{4}$ y eje < (1,0,1) >.

Ejercicio 22. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal cuya matriz en la base canónica es

$$\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \\ -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix}.$$

Decidir si f es una rotación, una simetría o una composición de una rotación y una simetría. Encontrar la rotación, la simetría o ambas.

Ejercicio 23. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal cuya matriz en la base canónica es

$$\begin{pmatrix} \frac{4}{9} & \frac{8}{9} & -\frac{1}{9} \\ -\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\ -\frac{7}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix}.$$

- i) Probar que f es una rotación.
- ii) Hallar $g: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $g \circ g = f$.

Ejercicio 24. Una función $f: \mathbb{R}^2 \to \mathbb{R}^2$ se llama isometría si verifica que

$$d(x,y) = d(f(x), f(y)) \quad \forall x, y \in \mathbb{R}^2.$$

- i) Probar que si $f: \mathbb{R}^2 \to \mathbb{R}^2$ es una isometría tal que f(0) = 0, f resulta una transformación lineal y además f es ortogonal.
- ii) Deducir que $f: \mathbb{R}^2 \to \mathbb{R}^2$ es una isometría si y sólo si existen $g: \mathbb{R}^2 \to \mathbb{R}^2$ transformación ortogonal y $v \in \mathbb{R}^2$ tales que f(x) = g(x) + v, $\forall x \in \mathbb{R}^2$.

Ejercicio 25. Cálculo de volúmenes. Consideremos \mathbb{R}^n con el producto interno canónico \langle , \rangle . El área del paralelogramo $P(v_1, v_2)$ que definen dos vectores v_1 y v_2 linealmente independientes en \mathbb{R}^n se puede calcular con la fórmula "base por altura", o sea, $||v_1|| . ||p_{< v_1>^{\perp}}(v_2)||$.

El volumen del paralelepípedo $P(v_1, v_2, v_3)$ que definen tres vectores v_1, v_2, v_3 linealmente independientes en \mathbb{R}^n sería "área de la base por altura", o sea, $\|v_1\| \cdot \|p_{< v_1>^{\perp}}(v_2)\| \cdot \|p_{< v_1, v_2>^{\perp}}(v_3)\|$.

Si esto se generaliza a k vectores linealmente independientes en \mathbb{R}^n , el volumen del paralelepípedo $P(v_1,\ldots,v_k)$ sería $\|v_1\|$. $\|p_{< v_1>^{\perp}}(v_2)\|$. $\|p_{< v_1,v_2>^{\perp}}(v_3)\|\ldots\|p_{< v_1,\ldots,v_{k-1}>^{\perp}}(v_k)\|$.

Se define entonces recursivamente el volumen del paralelepípedo $P(v_1, \ldots, v_k)$ definido por los vectores linealmente independientes $v_1, \ldots, v_k \in \mathbb{R}^n$ como:

$$\begin{cases} \operatorname{vol}(P(v_1)) = ||v_1|| \\ \operatorname{vol}(P(v_1, \dots, v_k)) = \operatorname{vol}(P(v_1, \dots, v_{k-1})) \cdot ||p_{\langle v_1, \dots, v_{k-1} \rangle^{\perp}}(v_k)|| & \operatorname{para} \ k \geq 2. \end{cases}$$

Vamos a probar que el volumen del paralelepípedo definido por los vectores linealmente independientes v_1, \ldots, v_n en \mathbb{R}^n es igual a $|\det(A)|$, donde $A \in \mathbb{R}^{n \times n}$ es la matriz cuyas columnas son los vectores v_1, \ldots, v_n .

- i) Dados $v_1, \ldots, v_k \in \mathbb{R}^n$ se define $G(v_1, \ldots, v_k) \in \mathbb{R}^{k \times k}$ como $G(v_1, \ldots, v_k)_{ij} = \langle v_i, v_j \rangle$. Probar:
 - a) Si $v_k \in \langle v_1, ..., v_{k-1} \rangle$, entonces $\det(G(v_1, ..., v_k)) = 0$.
 - b) Si $v_k \in \langle v_1, \dots, v_{k-1} \rangle^{\perp}$, entonces $\det(G(v_1, \dots, v_k)) = \det(G(v_1, \dots, v_{k-1})) \cdot ||v_k||^2$.
 - c) $\det(G(v_1,\ldots,v_k)) = \det(G(v_1,\ldots,v_{k-1})) \cdot \|p_{\langle v_1,\ldots,v_{k-1}\rangle^{\perp}}(v_k)\|^2$.
- ii) Probar que, si v_1, \ldots, v_k son vectores linealmente independientes, $(\operatorname{vol}(P(v_1, \ldots, v_k)))^2 = \det(G(v_1, \ldots, v_k))$.
- iii) Sean $v_1, \ldots, v_n \in \mathbb{R}^n$ linealmente independientes y sea $A \in \mathbb{R}^{n \times n}$ la matriz cuyas columnas son los vectores v_1, \ldots, v_n . Probar que $G(v_1, \ldots, v_n) = A^t$. A. Deducir que $\operatorname{vol}(P(v_1, \ldots, v_n)) = |\det(A)|$.
- iv) Calcular el área del paralelogramo definido por los vectores (2,1) y (-4,5) en \mathbb{R}^2 . Calcular el volumen del paralelepípedo definido por (1,1,3), (1,2,-1) y (1,4,1) en \mathbb{R}^3 .
- v) Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ un isomorfismo. Si $v_1, \ldots, v_n \in \mathbb{R}^n$ son linealmente independientes, probar que $\operatorname{vol}(P(f(v_1), \ldots, f(v_n))) = |\det f| \cdot \operatorname{vol}(P(v_1, \ldots, v_n))$.