Computer Science & IT

Discrete Mathematics

Mathematical Logic

Lecture No. 05

Recap of Previous Lecture

Topics to be Covered

Topic: Predicate

It is part of a sentence or clause stating something about

the subject.

Ram is a politician -> This statement may be tome?
Subject Predicate

Consider, P: is a politician { i.e., P is used to denote the predicate "is a politician"

:. P(Ram): Ram is a politicion Parodicale P'is applied

Over the subject Ram

Parodicale P'is applied may be followed. let Predicate, S: 18 a sportsman.

S(Ram): Ram is a sportsman. I May be true or falsely

S(Mohan): Mohan is a sportsman. I May be true or falsely

P: is a politician S: is a Sportsman

P(xx): x is a politician S(xx): x is a Sportzman

 $P(x) \longrightarrow S(x)$: if x is a politician than x is a sportsman I if 'x' is not a politician, then P(x) will seturn Palse, and implication will return toue isorespective of the touth value of Predicate S(x). If I is a politician fic. Pex is true? then I must also be a sportsman for implication to be true? Sif Pow=T& Sow=f then?
Pow-sow ix foline.

P(xx) \rightarrow S(y) . For this predicate to be true, either x should not be a politician (cr) if x is a politician then y must be sportsman

P(x) \vee S(x): for this statement to be true, either \propto should be a politician or \propto should be sportamen P(x) 1 S(x)
L x must be politician as well as Sportsman

P(x) \longleftrightarrow S(y): x is a politician iff y is a sportament.

Ly will between the in two cases

(i) $P(x) = T \notin S(y) = T$ $f(ii) P(x) = F \notin S(y) = F$

Topic: Predicate with multiple subjects


```
Let Predicate, F: 18 a priend of F(x,y): x 18 a priend of y Predicate applied over x \neq y
```

Consider Predicate, Gi 18 greater than Grandis greater than b. G(2,3): 2 is greater than 3 : G(2,3) Will return Palse

G(5,1): it returns tour.

Let Predicate F(x, y, t) denotes that

Person 'x' can Pool, Person 'y', at time 't'

Topic: Quantifiers

- In predicate logic, predicates are used alongside quantifiers to express the extent to which a predicate is true over a range of elements.

 There are two types of quantifiers of discourse the content of the cont
- 1. Universal Quantifier (for all)
- 2. Existential Quantifier (for som. / for at least one)

Topic: Universal Quantifier (∀)

t: for all

tr: for all x in the (universe of discourse)

 $\forall x \neq P(x)$: for all x, x is politician it will beturn true only if all Person in the domain are politician Li Truth value at this predicate?
I formula Will depend on the fortuth value produced by t

it represent the B domain af the elements/objects on which Predicate will be applied

* W.r.t. tx {P(x)} + will return true only if Predicat P' is not fabre for any element af the domain H will return false if and only if predicat is Palse for at least one element of domain. Note: - If universe (domain) is empty, then for all (+) will always return true.

Note: $4x \{ P(x) \}$ quantifier

Scope of the quantifier

* For this predicate formula to be frue, Pcoo - Scoo should be true for all x.

+ If there is any or' in the domain for which 'P' is force but 'S' is Palse then Predicate formula will return Palse otherwise it will always return true.

1) If P is Palace for any I in domain then tx (P(x)) will be Palre and hence implication will return tone. 2) If P is true for all x, then S must also be true for all x, for implication to be true

(1) $\forall x \in P(x) \rightarrow S(x)$ for all x, if P is true then S must be true

 $\frac{2}{|f|} + \frac{1}{|x|} + \frac{1}$

Predicate formula is Which of the following always true. $(\forall x \{ P(x) \rightarrow S(x) \}) \longrightarrow (\forall x \{ P(x) \} \rightarrow \forall x \{ S(x) \})$ (∀x { P(x) → S(x)}) because its touth value many touth value U={1,2,3} LHS = (True tx/Pow-Sou) $P(x) = F \left\{ \frac{1}{4x} \left\{ \frac{1}{8x} \right\} = F \right\} = F \left\{ \frac{1}{4x} \left\{ \frac{1}{8x} \right\} = F \right\}$ is false P(2) = T) bat ____ East 2(3)= t

Topic: Existential Quantifier (3)

]: for some (or) for at least one

Ix: for some x in the universe of discourse for at least one 'x' in the universe of discourse.

P: is a Politician

Expression : Some x are politicion At least one x is politicion

It will beturn true if at least one person in the set of domain is a politician

Note: I will return true is and only if predicate

is true for at least one element of domain

Note: If universe (domain) is Empty, then

there exists (I) will always return fabre

Note

Tx { Pcx)}

Tx { Pcx)}

Tx { Pcx) - G(x)}

quantifier

quantifier

quantifier

quantifier

- The part of the logical expression to which a quantifier can be applied is called the scope of the quantifier.
- Scope of the quantifier is either represented explicitly using bracket or comma, or The Scope of a quantifier is the shortest full sentence/predicate formula which follows it. Everything inside this shortest full sentence is said to be in the scope of the quantifier.
 Quantifier

 A variable whose occurrence is bounded by a quantifier is called a bounded variable. Variables not bounded by any quantifiers are called free variables.

- $(\forall y H(y) \rightarrow \exists z W(z, y)) \rightarrow \exists z G(z)$
- $\exists y(\forall y H(y) \rightarrow \exists z W(z, y)) \rightarrow \exists z G(z)$
- $(\forall y H(y) \rightarrow \exists z G(z)) \rightarrow \exists z W(z, y)$
- $(\forall z H(y) \rightarrow \exists y W(z, y)) \rightarrow \exists z G(z)$
- $(\forall y \ H(y) \rightarrow \exists z \exists y \ W(z, y)) \rightarrow \exists z \ G(z)$
- $(\forall y \ H(y) \rightarrow \exists z \ W(z, y)) \rightarrow \exists x \ G(z)$

 $\exists y (\forall y, H(y) \rightarrow \exists z W(z, y)) \rightarrow \exists z G(z)$

all 'y' which

One not bounded

by any quantifich

Will be quantified

bounded Variable

> bounded Variable

bounded Variable

We can re-write the predicate Purmula as

be quantified

multiple

 $\exists x \{ \forall H(y) \longrightarrow \exists z W(z,x) \} \longrightarrow \exists z G(z)$

$$(\forall y H(y) \rightarrow \exists z W(z, y)) \rightarrow \exists x G(z)$$
bounded

bounded

tree

variable

Voter can not quantify a single variable using multiple quantifiers, even if we see something like that then Variable will be quantified using inner-most quantifier 9 3 X H(y) -> 3 XW(Z,y) 'y' al predicate H
is under the scope of }= but it will be quantified
is under the scope of }= but it will be quantified

Ty as well as ty

Le, ty

Topic: Note

Let, P(x): x is true.

a universe? boolean expression

	Form	Meaning
1 احم	$\forall x P(x)$	All one true/Not of least one is Palse
2	$\exists x P(x)$	Some are true / Not all are Palse
3	$\sim \forall x P(x)$	Not all ax true / At least one is false
4	$\sim \exists x P(x)$	Not at least one true/All are false
5	$\forall x \sim P(x)$	All are false / Not at least one true
6	$\exists x \sim P(x)$	At least one false / Not all are true
47	$\sim \forall x \sim P(x)$	Not all are false / At least one true
→8	$\sim \exists x \sim P(x)$	Not at least one false / All are true

Topic: Equivalences

1.
$$\forall x P(x) \equiv \neg \exists x (\neg P(x))$$

2.
$$\exists x P(x) \equiv \ \ \forall x (\ \ P(x))$$

3.
$$\sim \forall x P(x) \equiv \exists x (\sim P(x))$$

$$\exists x \, P(x) \equiv \forall x (\sim P(x))$$

Topic: Negation of a statement formula

In order to regate a given statement,

We need to replace \exists by \forall and \forall by \exists and finally we need to regate the scope of the Corresponding quantilies.

9. Write the negation of the statement formula $\forall x \{ P(x) - g(x) \}$ Negation al statement formula te {P(x) - g(x)} = ~ tx {P(x) - g(x)} $= \frac{1}{2} \left(\Re(x) - \Re(x) \right) \right\}$ fwp n wof fx =

g. The statement formula

Hx {B(x) 1 I(x)} is/one $\mathcal{B} \sim \exists x \left\{ \mathcal{B}(x) \longrightarrow \sim \mathcal{I}(x) \right\}$ $\{(x)I \leftarrow (x)B_{x} \} \times E_{x}$

equivalent to $A = \sim (\sim A)$ $\forall x \{ B(x) \land I(x) \} \equiv \neg \{ \neg \{ \forall x \{ B(x) \land I(x) \} \} \}$ $= \gamma \left\{ \exists_{\mathbf{X}} \left\{ \sim (\mathbf{B}(\mathbf{x}) \wedge \mathbf{I}(\mathbf{x})) \right\} \right\}$ $(x)I \sim V(x)B(x) \propto E$ $\{\infty\} \sim \exists x \{ B(x) \rightarrow \sim I(x) \}$

2 mins Summary

Topic Quantifiers

Topic Scope of the quantifier

Topic Negation of a statement formula

THANK - YOU