Introduction to equations with matrices

Math 352 Differential Equations

April 14, 2014

The machinery of linear algebra

- Fundamental algebraic construction of linear algebra: linear combinations.
- Vector spaces are places where it makes sense to form linear combos.
- Coefficients can be real, complex, . . .
- ▶ The objects being combined are often called vectors, even if they are not vectors like $\langle 2, -3, 4, 12 \rangle$ or $2\vec{i} 6\vec{j}$.
- Suppose that y_1 , y_2 , y_3 , ... y_n are differentiable and that a_1 , ... a_n are real numbers (scalars).
- ▶ Then $a_1y_1 + a_2y_2 + \cdots + a_ny_n$ is also differentiable.
- ▶ So, the set of differentiable functions forms what is called a *real vector space*.

Linear systems

A system of linear (algebraic) equations is a system like this:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = b_3$

For example, initial value problems give rise to such systems, as did undetermined coefficients:

$$c_1 + c_2 = 2 \\ -4c_1 + 2c_2 = -10$$

Matrix form of a system

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

It's cleaner and allows us to focus on the arithmetic.

$$\begin{pmatrix} 1 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ -10 \end{pmatrix}$$

Solutions of matrix equations

- ▶ The vector of x_i is the variable of the matrix equation.
- ▶ A solution of the matrix equation is a choice of x_i that makes all the individual linear equations true.

Two matrix equations are *equivalent* if they have exactly the same set of solutions.

Matrices are solved by transforming them into equivalent equations whose solutions are obvious.

An obvious matrix

Lots of other matrix equations' solutions are obvious, but this is what I really meant:

$$\begin{pmatrix} \mathbf{1} & 2 & 0 & 0 & 2/3 \\ 0 & 0 & \mathbf{1} & 0 & -1 \\ 0 & 0 & 0 & \mathbf{1} & -10 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

Reduced echelon form

We say a matrix A is in reduced echelon form if:

- the first nonzero entry of each row is a 1
 - such an entry is called a pivot' orleading 1"
- each pivot is the only nonzero entry in its column
- each of the pivots after the first one appears to the right of the previous pivot
- each row without a pivot follows all rows with a pivot

Such a matrix certainly has an obvious solution set, and:

Every matrix is equivalent to exactly one matrix in reduced echelon form.

How do we find a reduced echelon equivalent?

- The same way we solve the equations to which the matrix equation corresponds: by adding and subtracting the rows from one another.
- We'll need to keep track of the RHS too, so add it as the last column of the matrix. We'll manipulate this matrix:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Gaussian elimination

- ► There are three operations on matrices that preserve solution sets.
- If you do any of these operations to a matrix, you obtain an equivalent one.
- Swapping rows
 - obviously, this won't affect the solutions: underlying set of equations is the same
- Multiplying a row by a nonzero number
 - this changes the equations, but not the solution set
- Adding a nonzero multiple of a row to another row
 - also doesn't change the solution set.

There's a fairly transparent algorithm using these operations that transforms each matrix into its unique reduced echelon equivalent.

In practice: upper-triangular

If you are row-reducing a matrix by hand, reduced echelon form is overkill a lot of the time.

- Reduce to an upper-triangular matrix
- All nonzero entries on or above the main diagonal
 - that is, the upper-left-to-lower-right diagonal
 - ▶ with slope −1

Entering vectors in Sage

- Initialize a vector value with vector()
- u = vector(QQ, [1, 3/2, -1])
- Use QQ to display fractions instead of decimals
- ▶ u
- **▶** (1, -3/2, 1)
- ightharpoonup v = vector(RR, [1, 3/2, -1]); v
 - ► (1.0000000000000, 1.5000000000000, -1.0000000000000)

Entering matrices

Either enter a matrix as a vector of its rows

or as a list with specification of number of rows

$$\blacktriangle$$
 A = matrix(QQ, 2, [1,2,3,4,5,6])

Obtain reduced echelon form with rref:

Row operations

- Want to use Sage to check your work in performing row operations?
 - The matrix methods below may be useful.
 - ► These methods are *destructive*: they change the entries of the matrix on which they're called.
- A.rescale_row(i,a)
 - multiply row i by a
- A.add_multiple_of_row(i,j,a)
 - ▶ add a times row j to row i
- A.swap_rows(i,j)
 - ▶ swap rows *i* and *j*

Sage lab assignment

Use Sage to solve the systems of linear equations.

$$3x + 3y + 12z = 6$$
 $2x + 10y + 2z = 6$
 $x + y + 4z = 2$ $x + 5y + 2z = 6$
 $2x + 5y + 20z = 10$ $x + 5y + z = 3$
 $-x + 2y + 8z = 4$ $-3x - 15y + 3z = -9$

$$2x + y - z + 2w = -6
3x + 4y + w = 1
x + 5y + 2z + 6w = -3
5x + 2y - z - w = 3$$