Atividade 8

Resolução dos exercícios obrigatórios, feita por Guilherme de Abreu Barreto¹.

Capítulo 14.2

Exercício 19

Determine o limite, se existir, ou mostre que o limite não existe:

$$\lim_{(x,y,z) o(\pi, heta,1)}e^{y^2} an(xz)$$

Resolução

O limite existe pois a função está definida para $x=\pi$, $y=\theta$ e z=1:

$$\lim_{(x,y,z) o (\pi, heta,1)} e^{y^2} an(xz) = e^{ heta^2} an(\pi) = e^{ heta^2} \cdot 0 = 0 = e^{y^2} an(xz)$$

Exercício 31

Determine o maior conjunto no qual a função é contínua:

$$F(x,y) = rac{1+x^2+y^2}{1-x^2-y^2}$$

Resolução

$$rac{1+x^2+y^2}{1-x^2-y^2} = rac{1+x^2+y^2}{1-(x^2+y^2)}$$

Assim, A função F(x,y) está definida para $\{(x,y): x^2+y^2\neq 1\}$, sendo o domínio da função o maior conjunto contínuo de valores para a mesma.

Capítulo 14.3

Exercício 45

Use a definição de derivadas parciais como limites 4 para encontrar $f_x(x,y)$ e $f_y(x,y)$ em

$$f(x,y) = xy^2 - x^3y$$

Resolução

$$\begin{split} f_x(x,y) &= \lim_{h \to 0} \frac{(x+h)y^2 - (x+h)^3y - xy^2 + x^3y}{h} \\ &= \lim_{h \to 0} \frac{xy^2 + hy^2 - x^3y - 3x^2hy - 3xh^2y - h^3y - xy^2 + x^3y}{h} \\ &= \lim_{h \to 0} \frac{h(y^2 - 3x^2y - 3xhy - h^2y)}{h} = y^2 - 3x^2y \, \blacksquare \\ f_y(x,y) &= \lim_{h \to 0} \frac{x(y+h)^2 - x^3(y+h) - xy^2 + x^3y}{h} \\ &= \lim_{h \to 0} \frac{xy^2 + 2yhx + h^2x - x^3y - x^3h - xy^2 + x^3y}{h} \\ &= \lim_{h \to 0} \frac{h(2yx + hx - x^3)}{h} = -x^2 + 2xy \, \blacksquare \end{split}$$

Exercício 65

Determine a derivada parcial f_{xyz} para $f(x,y,z)=e^{xyz^2}$.

Resolução

1. nUSP 12543033; Turma 04