

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Original) A method for semantic representation of one or more XML language inquiries across relational and non-relational data sources comprising:
 - receiving at least one inquiry;
 - defining at least one node object for every operation within the at least one received inquiry;
 - translating each of the at least one node objects using operators; and
 - generating a semantic representation from the operators;wherein the semantic representation explicitly describes a meaning of the one or more XML language inquiries.
2. (Original) The method of claim 1, wherein the semantic representation is an intermediate language representation formed for interpretation and execution by a target query engine.
3. (Original) The method of claim 2, wherein the non-relational data sources comprise one or more of a text document, a spreadsheet, and a non-relational database.
4. (Original) The method of claim 1, wherein the generating step further comprises breaking down high level operations of the received inquiry into explicit parts.
5. (Original) The method of claim 4, wherein the explicit parts are common across multiple XML languages.

6. (Original) The method of claim 1, wherein the operators comprise one or more of special operators, data sources, literals, Boolean operators, sequence operators, arithmetic operators, string operators, value comparison operators, node comparison operators, tuple spaces, function definition and invocation, XML navigation, XML construction, XML property accessors, type operators, language specific operators, and data manipulation operators.
7. (Original) The method of claim 1, further comprising forming a graph data structure of the at least one node object.
8. (Original) The method of claim 1, wherein the at least one received inquiry comprises one or more of an XML query language and an XML view definition language.
9. (Original) The method of claim 1, wherein the at least one received inquiry comprises one or more of an XPath, an XSLT, an XQuery, a DML, an OPath, and an Annotated Schema inquiry.
10. (Original) The method of claim 1, wherein the semantic language representation allows XML queries over XML views of relational data.
11. (Original) A semantics interpreter for expressing a meaning of one or more of an XML query and an XML view across multiple data sources comprising:
 - an input for receiving the one or more of an XML query and an XML view which form an inquiry;
 - a graph structure generator for defining node objects for every operation within the inquiry;
 - a translator for assigning operators for each node object wherein the operators break down operations of the inquiry into explicit parts; and

an output for providing the explicit parts as an intermediate language representation for expressing the meaning of the one or more of an XML query and an XML view.

12. (Original) The semantic interpreter of claim 11, wherein the multiple data sources comprise relational and non-relational data sources.

13. (Original) The semantic interpreter of claim 12, wherein the non-relational data sources comprise one or more of a text document, a spreadsheet, and a non-relational database.

14. (Original) The semantic interpreter of claim 11, wherein the operators comprise one or more of special operators, data sources, literals, Boolean operators, sequence operators, arithmetic operators, string operators, value comparison operators, node comparison operators, tuple spaces, function definition and invocation, XML navigation, XML construction, XML property accessors, type operators, language specific operators, and data manipulation.

15. (Original) The semantic interpreter of claim 11, wherein the explicit parts are common across multiple XML languages.

16. (Original) The semantic interpreter of claim 11, wherein the intermediate language representation is formed for interpretation and execution by a target query engine.

17. (Currently Amended) A computer-readable medium having computer-executable instructions for performing a method of intermediate language representation of a received inquiry comprising:

receiving one or more of an XML query and an XML view forming the received inquiry;

defining node objects for every operation within the received inquiry;

translating each node using operators which break down operations of the received inquiry into explicit parts; and

generating instructions corresponding to the explicit parts forming an intermediate language representation for subsequent queries over one or more of relational and non-relational data sources, wherein the intermediate language representation comprises an explicit description of a meaning on the received inquiry.

18. (Original) The computer-readable medium of claim 17, wherein the operators comprise one or more of special operators, data sources, literals, Boolean operators, sequence operators, arithmetic operators, string operators, value comparison operators, node comparison operators, tuple spaces, function definition and invocation, XML navigation, XML construction, XML property accessors, type operators, language specific operators, and data manipulation.

19. (Original) The computer-readable medium of claim 17, wherein the explicit parts are common across multiple XML languages.

20. (Original) The computer-readable medium of claim 17, wherein the received inquiry comprises one or more of an XML query language and an XML view definition language.

21. (Original) A computer system for generating a semantic representation of an inquiry comprising:

a processor for executing computer instructions and

at least one module comprising:

an input function for receiving one or more of an XML query and an XML view which forms the inquiry;

a graph structure generator for defining node objects for every operation within the inquiry;

a translator function for assigning operators for each node object wherein the operators break down operations of the inquiry into explicit parts; and

an output for providing the explicit parts as an intermediate language representation for expressing a meaning of the XML query and the XML view;

wherein the at least one module comprises one or more of one or more software modules and one or more hardware modules.

22. (Original) The computer system of claim 21, wherein the operators comprise one or more of special operators, data sources, literals, Boolean operators, sequence operators, arithmetic operators, string operators, value comparison operators, node comparison operators, tuple spaces, function definition and invocation, XML navigation, XML construction, XML property accessors, type operators, language specific operators, and data manipulation.

23. (Original) The computer system of claim 21, wherein the explicit parts are common across multiple XML languages.