Machine Learning from Data -IDC

HW5 - Theory+ SVM

ID1: 203909320 ID2: 311132468

1. a.

a. Let K, L be two kernels (operating on the same space) and let α, β be two positive scalars.

Prove that $\alpha K + \beta L$ is a kernel.

Answer:

Given αK is a kernel hence there exists a mapper function ψ_1 such that:

$$\alpha K(x,y) = \langle \sqrt{\alpha} \, \psi_1(x), \sqrt{\alpha} \, \psi_1(y) \rangle$$

For the same way, for βL :

$$\beta L(x,y) = \langle \sqrt{\beta} \, \psi_2(x), \sqrt{\beta} \, \psi_2(y) \rangle$$

Now, we are requested to prove the following:

$$\widehat{K}(x,y) = \alpha K(x,y) + \beta L(x,y) \,\forall \, \alpha, \beta > 0$$

$$\widehat{K}(x,y) = \alpha K(x,y) + \beta L(x,y) = \langle \sqrt{\alpha} \,\psi_1(x), \sqrt{\alpha} \,\psi_1(y) \rangle + \langle \sqrt{\beta} \,\psi_2(x), \sqrt{\beta} \,\psi_2(y) \rangle =$$

$$= \langle \sqrt{\alpha} \,\psi_1(x) + \sqrt{\beta} \,\psi_2(x), \sqrt{\alpha} \,\psi_1(y) + \sqrt{\beta} \,\psi_2(y) \rangle$$

Due to linearity of the inner product space (which is a vector space)

We note that we expressed $\widehat{K}(x,y)$ as an inner product of the mappers to a given kernels, thus a kernel itself!

1. b.

- b. Provide (two different) examples of non-zero kernels K, L (operating on the same space), so that:
 - i. K L is a kernel.
 - ii. K L is not a kernel.

Answers:

1.b.i.

Assume K and L are both polynomial kernels with dimension of 1 as follows:

$$K(x,y) = 2(x \cdot y), L(x,y) = (x \cdot y)$$

Applying $K - L \rightarrow 2(x \cdot y) - (x \cdot y) = (x \cdot y)$ which is a polynomial kernel hence $\rightarrow K - L$ is a kernel.

1.b.ii.

Assume K and L are both polynomial kernels with dimension of 1 as follows:

$$K(x,y) = (x \cdot y)$$
, $L(x,y) = 2(x \cdot y)$

Applying
$$K - L \rightarrow (x \cdot y) - 2(x \cdot y) = -(x \cdot y)$$
.

is this kernel a valid one? Let's check for positive semi- definite as it inherits the properties of the inner product vector space:

$$K-L_{(x,x)}=-(x\cdot x)\stackrel{?}{\geq}\mathbf{0}$$

we know that $(x \cdot x) = \|x\|^2 \ge 0$. So, for $-(x \cdot x) \ge 0$ to be true, the following has to exist $\to (x \cdot x) = 0$, **but!** $K, L \ne 0$ hence, $K - L_{(x,x)} < 0$ and it stands with contradiction to the positive semi-definite property of a kernel (and a inner product). Hence:

$$K - L_{(x,x)} < 0 \rightarrow NOT A KERNEL$$

2. Use Lagrange Multipliers to find the maximum and minimum values of the function subject to the given constraints:

Function:
$$f(x, y, z) = x^2 + y^2 + z^2$$
. Constraint: $g(x, y, z) = \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\beta^2} = 1$, where $\alpha > \beta > 0$

Answer:

$$f(x,y,z) = x^2 + y^2 + z^2 \implies \nabla f = (2x, 2y, 2z)$$

$$s.t \quad g(x,y,z) = \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\beta^2} - 1 = 0 \implies \nabla g = \left(\frac{2x}{\alpha^2}, \frac{2y}{\beta^2}, \frac{2z}{\beta^2}\right)$$

f and g continuously differentiable real valued functions hence there exists a number λ which for him the following holds:

$$\overrightarrow{\nabla}f = -\lambda \overrightarrow{\nabla}g$$

$$\begin{cases}
1)2x = -\lambda \cdot \frac{2x}{\alpha^2} & 1) 2x \left(1 + \frac{\lambda}{\alpha^2}\right) = 0 \implies x = 0 \text{ or } \lambda = -\alpha^2 \\
2)2y = -\lambda \cdot \frac{2x}{\beta^2} & 2) 2y \left(1 + \frac{\lambda}{\beta^2}\right) = 0 \implies y = 0 \text{ or } \lambda = -\beta^2 \\
3)2z = -\lambda \cdot \frac{2x}{\beta^2} & 3) 2z \left(1 + \frac{\lambda}{\beta^2}\right) = 0 \implies z = 0 \text{ or } \lambda = -\beta^2 \\
4) \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\beta^2} = 1
\end{cases}$$

$$4) \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\beta^2} - 1 = 0$$

We conclude that the multiplier λ yields us a degree of freedom in equations 2) & 3). If , $\lambda=-\beta^2$, then we can choose any y,z we want due to that DOF.

Let's look for some optional solutions:

we'll observe the constrain g and apply the trivial solutions x=0 or y=z=0:

1) Case1:
$$x = 0 \Rightarrow \frac{y^2}{\beta^2} + \frac{z^2}{\beta^2} - 1 = 0 \Rightarrow^{y=z} 2 \cdot y^2 = \beta^2 \Rightarrow y = z = \pm \frac{\beta}{\sqrt{2}}$$

$$\left(0, \pm \frac{\beta}{\sqrt{2}}, \pm \frac{\beta}{\sqrt{2}}\right)$$
2) Case2: $y = z = 0 \Rightarrow \frac{x^2}{\alpha^2} - 1 = 0 \Rightarrow x^2 = \alpha^2 \Rightarrow x = \pm \alpha$

$$(\pm \alpha, 0, 0)$$

Using the given input inequality where $\alpha>\beta>0$ we get that the points $(\pm\alpha,0,0)$ yields maximal f whereas the points $\left(0,\pm\frac{\beta}{\sqrt{2}},\pm\frac{\beta}{\sqrt{2}}\right)$ yields minimal f:

$$Max(f) = \alpha^2$$

 $Min(f) = \beta^2$

3. Let
$$X = \mathbb{R}^3$$
. Let

 $C = H = \{h(a, b, c) = \{(x, y, z) \text{ s. } t \mid x | \le a, |y| \le b, |z| \le c\} \text{ s. } t. a, b, c \in \mathbb{R}_+\} \text{ the }$ set of all origin centered boxes. Describe a polynomial sample complexity algorithm L that learns C using H. State the time complexity and the sample complexity of your suggested algorithm. Prove all your steps.

Answer:

We look to find the hypothesis which is a bounding box that separates the samples to binary groups: 1 or 0.

The learner will be defined as follows:

Find a,b,c:

- $a = \max(|x_i|) \text{ s. t } C(x_i, y_i, z_i) = 1 \text{ for each } i \in [1, 2, 3, ..., m]$
- $b = \max(|y_i|) s.t C(x_i, y_j, z_j) = 1$ for each $i \in [1, 2, 3, ..., m]$
- $c = \max(|z_i|) \text{ s. t } C(x_i, y_i, z_i) = 1 \text{ for each } i \in [1, 2, 3, ..., m]$

Now with learnt a,b,c the bounding box can be defined as the box originated in (0,0,0), and stretches accordingly to all axis:

- $x_{bound}^+ = a$; $x_{bound}^- = -a$
- $y_{bound}^+ = b; \ y_{bound}^- = -b$ $z_{bound}^+ = c; \ z_{bound}^- = -c$

Finally, Return $h(a, b, c) \in H$

Time complexity analysis:

We iterated over the samples 3 to find each time an optimal parameter (first a, then b, and last c) thus we bound our time complexity with big O notation s.t O(3m) = O(m)

Sample complexity analysis:

We'll divide the space between the concept and the hypothesis into 6 parts. Let there be a', b', c' that will represent the concept centered box s.t for each instance X the following holds:

$$\forall X \in \mathbb{R}^3$$
, $concept(X) = 1$ for $(|X_x| \le a' \land |X_y| \le b' \land |X_z| \le c')$

Now it is possible to define the space of each of these bounding boxes:

$$B_1 = B_2 = (a' - a) \cdot b \cdot c$$

 $B_3 = B_4 = a \cdot (b' - b) \cdot c$
 $B_5 = B_6 = a \cdot b \cdot (c' - c)$

 $B_5 = B_6 = a \cdot b \cdot (c'-c)$ Such that the probability of the data D to be in either B_1 or B_2 or B_3 or B_4 or B_5 or B_6 overall the space X^m is $P_{B1} = P_{B2} = P_{B3} = P_{B4} = P_{B5} = P_{B6} = \frac{\varepsilon}{6}$

Now, assuming the data D visits each of the 6 spaces, the error between the hypothesis and the concept denoted:

$$Err(L(D), concept) = Err(h, concept) = \varepsilon$$

For a given ε and δ , the required number of samples will be yielded from the following:

$$P(\{D \in X^m : Err(h = L(D), concept) > \varepsilon\}) \le \delta$$

$$P(\{D \in X^m : Err(h = L(D), concept) > \varepsilon\}) \le \sum_{i=1}^{6} \left(P(X - B_i)\right)^m \le 6\left(1 - \frac{\varepsilon}{6}\right)^m \le 6e^{-\frac{m\varepsilon}{6}} \Longrightarrow$$

$$6e^{-\frac{m\varepsilon}{6}} \le \delta \Longrightarrow \ln(6) - \frac{m\varepsilon}{6} \le \ln(\delta) \Longrightarrow \ln\left(\frac{6}{\delta}\right) \le \frac{m\varepsilon}{6}$$

$$m \ge \frac{6}{\varepsilon} \ln\left(\frac{6}{\delta}\right)$$

We note also that our sample complexity is polynomial on all the inspected parameters.

We conclude that if we want a confidence of $1-\delta$ that our hypothesis will have the Err of ε , we require at least $\frac{6}{\varepsilon} \ln \left(\frac{6}{\delta}\right)$ instances.