Supplementary Explanation of Unbounded Knapsack Problem

Definition

Unbounded Knapsack Problem (UKP) is one of many modeled version of the original Knapsack Problem. The difference from 0/1 Knapsack Problem (0/1 KP) is that there are no limits to the number of items available. In other words, as along the sum is within weight limit, you can take as many copies of each item as possible.

Both UKP and 0/1 KP are fundamental problems in combinatorial optimization and have practical applications in real life. Whilst 0/1 KP handles binary decision scenarios, such as profit maximization within budget constraint, UKP handles scenarios where resources are unlimited, such as production planning.

Formulation

Let:

n be number of items w_i be the weight of the i-th item v_i be value of i-th item C be the knapsack capacity dp be a 2D array where dp[i][j] is maximum value

Formula

$$dp[i][j] = \max(dp[i-1][j], dp[i][j-w_i] + v_i)$$

Formula Explanation

dp[i-1][j]: Maximum value obtained not including i-th item $dp[i][j-w_i]+v_i$: Maxumum value obtained including i-th item. Subtract weight w_i from current capacity j

Example

Item	Weight	Value
1	3	4
2	1	2
3	2	3

Item			Weight			Value		
	4		3	3		5		
5			1			1		
	0	1	2	3	4	5	6	
0	0	0	0	0	0	0	0	
1	0	0	0	4	4	4	8	
2	0	2	2	4	6	6	8	
3	0	2	3	4	6	7	8	
4	0	2	3	5	6	7	9	
5	0	2	3	5	6	7	10	