

Ch01_패턴인식의 개요

인공지능의 가능성에 대한 철학적 논쟁 1

- ❖ 패턴인식을 공부하기 전에 생각해볼 문제
 - 컴퓨터는 단지 계산하는 기계에 불과한 것일까?
 - 컴퓨터도 인간과 같이 생각하고 언어를 이해할 수 있을까?

❖ 언어의 이해는 무엇?

- ❖ Chat GTP의 한계는?
 - 동음이의어: 배(ship? pear? -fold? Belly?), 눈, 벌, 등등
 - 다의어: 손을 씻다, 손이 필요하다,

인공지능의 가능성에 대한 철학적 논쟁 2

■ 인공지능의 가능성에 대한 긍정적 입장

모방게임

튜링 테스트의 진행방법은 인간과 기계를 다른 공간에 배치한 다음, 질문자(=판단자)가 그들과 텍스트로 대화를 나눕니다. 음성을 사용할 경우 기계나, 성별 등의 영향을 받을 수 있기에 텍스트를 활용합니다. 질문자는 어떤 공간에 누가 있는지 알 수 없습니다. 몇 번의 질문과 응답을 통해 질문자가 기계와 인간을 명확하게 구분하지 못한다면 기계가 지능을 가진 것으로 판단합니다

인공지능의 가능성에 대한 철학적 논쟁 3

■ 인공지능의 가능성에 대한 부정적 입장

중국어 방 논증

방에 중국어를 한 자로 모르는 사람을 집어넣고 중국어로 된 질문 목록과 중국어로 된 답변 목록을 미리 줍니다. 그리고 방 밖에 있는 중국인 심사관이 방 안에 중국어 질문을 주었을 때, 방 안에 있는 중국어를 모르는 사람이 그 질문에 답변을 목록에서 찾아서 중국어로 그럴듯하게 써서 심사관에게 전달합니다. 그러면 심사관은 방 안에 있는 사람을 중국어를 할 줄 아는 사람이라고 생각하게 됩니다. 하지만 방 안에 있는 사람은 질문과 답변 모두 이해하지 못하고 있습니다.

패턴인식의 정의

❖ 패턴인식이란 무엇인가?

 계산이 가능한 기계적인 장치(컴퓨터)가 어떠한 대상을 인식하는 문제를 다루는 인공지능의 한 분야

패턴인식 시스템의 구성 1

❖ 패턴인식 시스템의 설계 단계

- 단계1 : 데이터 수집 단계
 - 패턴인식 과정에서 가장 많은 시간을 소요하는 지루한 과정
 - 안정된 패턴인식 성능을 얻으려면 꼭 필요한 단계
 - 안정된 성능을 위해 얼마나 많은 표본 데이터가 필요한지 고려하여 데이터를 수집함
- 단계2 : 특징 선택 단계
 - 패턴인식 시스템의 성능에 결정적인 영향을 미치는 단계
 - 대상 패턴에 대한 충분한 사전 분석을 통하여 어떠한 특징을 선택할 것인지를 이 단계에서 결정
- 단계3 : 모델 선택 단계
 - 패턴인식을 위한 여러 접근법 중에서 어느 모델을 어떠한 알고리즘을 이용하여 어떻게 구성할 것인가를 결정하는 단계
 - 사전에 특징에 관한 선험적인 지식이 필요하며, 각 접근법에 따라 모델에 필요한 각종 파라미터를 설정해야 함

패턴인식 시스템의 구성 2

- 단계4 : 학습 단계
 - 수집된 데이터에서 추출한 특징 집합을 활용하여 선택한 모델이 있을 때 학습을 통해 비어 있는 블랭크(blank) 모델을 완전한 모델로 만드는 단계
 - 방법에 따라서 크게 교사 학습, 비교사 학습 그리고 강화 학습으로 나뉜다
- 단계5 : 인식 단계
 - 임의의 특징이 주어지면, 이 특징이 속한 클래스 혹은 카테고리를 결정하는 단계

특징과 패턴

❖특징이란?

■ 어떤 객체가 가지고 있는 객체 고유의 분별 가능한 측면, 질 혹은 특성

❖ 패턴이란?

■ 개별 객체의 특색(traits) 이나 특징(features)들의 집합

특징 1

(a) 특징 벡터

(b) 특징 공간(3D)

(c) 분산 그림(2D)

특징과 패턴

❖ 좋은 특징과 나쁜 특징

(b) 나쁜 특징

❖ 패턴의 유형

패턴인식 시스템의 설계

❖ 패턴인식 시스템의 처리 과정

패턴인식의 유형

❖ 문제의 유형

- 분류(classification)
 - 사전에 정의된 클래스들이 있고 새로운 입력 데이터가 어느 클래스에 속하는지 판단
 - 지도학습
- 군집화(clustering)
 - ▶ 사전에 정의된 클래스는 없고 입력데이터들의 유사도에 따라 묶어가는 방법
 - 비지도학습
- 회귀(regression)
 - ▶ 사전에 제공된 데이터의 상관관계를 분석하여 미래의 데이터를 예측
 - 지도학습
- ✓ 지도학습 vs. 비지도학습: 학습 시 정답을 알려주는지 여부

패턴인식의 분류기

❖ 분류기

- 패턴인식의 대부분을 이루는 분류 작업은 분류기(classifier)에 의하여 이루어짐
- 분류 작업이란 특징 벡터들로 이루어진 특징 공간을 이름이 있는 클래스들 간의 결정 영역으로 분할(partition)하는 것을 말함
- 이때 결정 영역의 경계들을 결정 경계(decision boundary)라고 함
- 특징 벡터 x의 분류는 어느 결정 영역에 이 특징 벡터가 속해있는지를 결정하고, x를 이 클래스 중의 하나로 할당하는 것

패턴인식의 성능 평가

❖ 혼동행렬

		실제 정답	
		True	False
분류 결과	True	True Positive	False Positive
	False	False Negative	True Negative

$$(Accuracy) = \frac{TP + TN}{TP + FN + FP + TN}$$

	Actual Positive	Actual Negative
Predicted Positive	TP	FP
Predicted Negative	FN	TN

•True Positive(TP) : 실제 True인 정답을 True라고 예측 (정답)

•False Positive(FP): 실제 False인 정답을 True라고 예측 (오답)

•False Negative(FN) : 실제 True인 정답을 False라고 예측 (오답)

•True Negative(TN) : 실제 False인 정답을 False라고 예측 (정답)

재현율이란실제 True인 것 중에서 모델이 True라고 예측한 것의 비율입니다.

정밀도란 모델이 True라고 분류한 것 중에서 실제 True인 것의 비율, 즉 날씨 예측 모델이 맑다로 예측했는데, 실제 날씨가 맑 았는지를 살펴보는 지표라고 할 수 있겠습니다.

FPR(False Positive Rate), 실제 False인 data 중에서 모델이 True라고 예측한 비율입니다. 즉, 모델이 실제 false data인데 True라고 잘못 예측(분류)한 것

취소율(recall rate) =
$$\frac{TP}{TP + FN}$$

정밀도(precision) = $\frac{TP}{TP + FP}$

참 긍정률(TPR, True Positive Rate) =
$$\frac{TP}{TP + FN}$$

거짓 긍정률(FPR, False Positive Rate) =
$$\frac{FP}{FP+TN}$$

패턴인식 알고리즘의 성능 평가 2

❖ Venn-diagram

A는 실제 날씨가 맑은 날입니다. 그리고 B는 모델에서 날씨가 맑은 날이라고 예측한 것입니다. 이때 b의 영역 은 TP로 실제 맑은 날씨를 모델이 맑다고 제대로 예측한 영역입니다. 이러한 영역 상에서 Precision과 Recall은 다음과 같습니다.

$$(Precision) = \frac{b}{b+c}$$

 $(Recall) = \frac{b}{a+b}$

모델의 입장에서 모두 맑은 날이라고만 예측하는 경우를 생각해봅시다. 그렇게 되면 TN(d)의 영역이 줄어들게 되고 그에 따라 FN(a)의 영역 또한 줄게 됩니다. 그러므로 Recall은 분모의 일부인 FN(a)영역이 줄기 때문에 Recall은 100%가됩니다. 즉, 여기서 B⊂A인 관계를형성합니다. 하지만, 주의할 것은 단순히 a의 영역만 줄어드는 것이 아니라 d의 영역과 a의 영역이 모두 c로 흡수된다는 것입니다. Precision의 경우에는 기존보다 FP(c)의 영역이 커져 Precision은 줄게 됩니다.

		실제 정답		
		True	False	
분류 결과	True	TP(20)	FP(40)	
	False	FN(30)	TN(10)	

		실제 정답		
		True	False	
분류 결과	True	TP(20)	FP(80)	

General Case에서 Recall은 20 / 50 = 40% Precision = 20 / 60 = 33.3%

분류모델이 모두 True라고 예측한 오른쪽의 case에서의 recall은 FN = 0이므로 100%이지만 그에 따라 FP가 늘어서 precision은 20/100 = 20%가 되었습니다. 이처럼 precision과 recall은 모두 높은 것이 좋지만, trade-off 관계에 있어서 함께 늘리기가 힘듭니다.

F1 score는 Precision과 Recall의 조화평균입니다.

$$(F1\text{-}score) = 2 \times \frac{1}{\frac{1}{Precision} + \frac{1}{Precision}} = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

패턴인식 알고리즘의 성능 평가 3

❖ ROC곡선

(a) 본인 점수와 사칭자 점수에 대한 확률 분포 함수

07_패턴인식 접근법

❖ 패턴인식의 접근법

- 템플릿 정합법(template matching)
 - 패턴인식에서 가장 오래되고 가장 쉬운 접근법
 - 비교 대상 패턴에 대한 템플릿(형틀)을 미리 마련해두고, 인식하고자 하는 패턴을 템플릿 구성 조건에 맞추는 정규화 과정을 거쳐서 상호상관 혹은 거리와 같은 유사도를 척도로 하여 패턴을 인식하는 방법
 - 동일한 카테고리에 속한 다양한 데이터에서 그 카테고리를 가장 잘 설명하는 일반화된 템플릿을 마련하는
 과정이 가장 중요
 - 알고리즘이 간단하여 계산 속도가 빠르지만, 대상 패턴의 특징 변화에 민감
- 통계적 접근법 (statistical)
 - 각 클래스에 속하는 패턴 집합의 통계적 분포에서 생성되는 결정 경계를 기반하여 미지의 패턴이 속한 클래스를 결정하는 방법 $P(\mathbf{x} \mid \mathbf{c_i})$
 - 패턴들의 통계적 모델은 해당클래스에서의 확률밀도함수
 가 됨
 - 통계적인 모수로 이루어진 각 클래스에 대한 확률밀도함수를 생성하는 과정을 학습이라고 함

패턴인식 접근법

- 신경망 접근법(neural networks)
 - 생물학적 신경세포의 연결 결합 관계를 모델링하여 입력 자극에 대한 처리 단위인 뉴런(neuron)으로 구성된 망(network)의 응답 과정으로 패턴을 분류
 - 패턴의 정보(knowledge)는 시냅스의 연결 강도 가중치들로 저장됨
 - 학습이 가능하고, 알고리즘적이지 않으며, 블랙박스와 같이 취급
 - 사전 지식을 최소화하고, 뉴런의 층이 충분하면 이론적으로 어떠한 복잡한 결정 영역도 만들 수 있는 매우
 매력적인 접근법
- 구조적 접근법(structure)
 - 패턴의 양적 특징들에 따른 분석을 하지 않고 패턴을 구성하는 기본 원형들 사이의 관계성에 관심을 두는 접근법
 - 연구 대상이 되는 대표 패턴 : 문자, 지문, 염색체

❖ 패턴인식의 접근법

패턴인식 응용 분야

❖ 패턴인식의 응용분야

- 문자인식 분야
 - 자동 우편물 분류기, 스캐너로 받아들인 텍스트 이미지를 컴퓨터에서 편집 가능한 코드화된 문자로 변환하는 장치, 필기체 문자 인식, 수표 및 지폐 인식, 차량 번호판 인식

- 생체 인식과 인간 행동 패턴 분석 분야
 - 음성 인식, 지문 인식, 홍채 인식, 얼굴 인식, DNA 매핑, 보행 패턴 분석 및 분류, 발화 습관 분석 및 분류 등에 활용
- 진단 시스템 분야
 - 자동차 오동작 진단, 의료 진단, EEG(뇌전도), ECG(심전도) 신호 분석 및 분류 시스템,
 Xray 판독 시스템에 활용

패턴인식 응용 분야

[표 1-1] 패턴인식의 관련 분야와 응용 분야

관련 분야	응용 분야
• 적응 신호 처리	• 영상처리/분할
• 기계 학습	• 컴퓨터 비젼
• 인공 신경망	• 음성 인식
• 로보틱스/비전	• 자동 목표물 인식
• 인지 과학	• 광학 문자 인식
• 수리 통계학	• 지진 분석
• 비선형 최적화	• 인간 기계 대화
• 데이터 분석	• 생체인식(지문, 정맥, 홍채 등)
• 퍼지/유전 시스템	• 산업용 검사
• 검지/추정 이론	• 금융 예측
• 형식 언어	• 의료 진단
• 구조적 모델링	• ECG 신호 분석
• 생체 사이버메틱스	
• 계산 신경과학	

❖ 간단한 영문자 인식 시스템

• 특징 1: 수직선의 개수(V)

• 특징 2: 수평선의 개수(H)

• 특징 3: 기울어진 수직선(O)

• 특징 4: 커브의 개수(C)

ᄆᅚ	특징			
문자	V	Н	0	С
L	1	1	0	0
Р	1	0	0	1
0	0	0	0	1
Е	1	3	0	0
Q	0	0	1	1

[그림 1-18] 트리-구조의 단순한 분류기

❖ 자동 어류 분류 시스템

- A: 어류를 실어 나르는 컨베이어 벨트
- B: 분류된 어류를 나르는 컨베이어 벨트 두 개
- C : 어류를 집을 수 있는 기능을 갖춘 로봇 팔
- D: CCD 카메라가 장착된 비전 시스템
- E: 영상을 분석하고 로봇 팔을 제어하는 컴퓨터

[그림 1-19] 자동 어류 분류 시스템의 구성

❖ 자동 어류 분류 시스템

- 어류는 연어(salmon) 혹은 농어(sea bass)만이라고 가정
- 분류 영역에 들어오는 새로운 어류에 대한 영상을 비전 시스템으로 획득
- 영상 처리 알고리즘을 통해 영상의 명암값을 정규화하고
- 영상으로 배경과 어류를 분리하는 분할(segmentation) 전처리 과정을 거침
- 평균적으로 농어가 연어보다 더 크다는 사전 지식을 바탕으로 영상으로 어류의 길이를 측정하는 특징 추출 진행
- 두 어류의 표본 집합을 통해 길이의 분포를 계산하고 분류 오류를 최소로 하는 결정 경계의 임계값 결정

- 인식률 개선을 위한 특징 추가
 - 안정적인 패턴인식 시스템을 만들려면 인식률이 95% 이상은 되어야 함
 - 어류의 평균 명암 스케일이 좋은 특징이 된다는 것을 발견함

- 인식률 개선
 - 길이와 평균 명암 스케일을 조합하여 2차원 특징 벡터를 작성
 - 간단한 선형 판별함수를 이용하여 분류 → 인식률 향상

평균 명암 스케일 사용한 경우

인식률 : 95.7%

[그림 1-22] 길이와 평균 명암 스케일을 특징으로 사용한 경우

- 비용 vs. 분류율
 - 비용함수를 최소화 하기 위해 결정 경계 조정

[그림 1-23] 비용 개념의 적용

평균 명암 스케일

평균 명암 스케일

26

- 일반화의 문제
 - 신경망 알고리즘을 이용하면 분류 시스템의 성능을 개선할 수 있음 → 99.9975%

평균 명암 스케일

[그림 1-24] 비선형 결정 경계