Question 1

Correct

Marked out of 1.00

Flag question

A binary number is a combination of 1s and 0s. Its nth least significant digit is the nth digit starting from the right starting with 1. Given a decimal number, convert it to binary and determine the value of the the 4th least significant digit.

Example

number = 23

- Convert the decimal number 23 to binary number: $23^{10} = 2^4 + 2^2 + 2^1 + 2^0 = (10111)_2$.
- The value of the 4th index from the right in the binary representation is 0.

Function Description

Complete the function fourthBit in the editor below.

fourthBit has the following parameter(s):

int number: a decimal integer

Returns:

int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

Constraints

 $0 \le \text{number} < 2^{31}$

Input Format for Custom Testing

Answer: (penalty regime: 0 %)

Reset answer

```
1 • /*
     * Complete the 'fourthBit' function below.
 2
 3
     * The function is expected to return an INTEGER.
    * The function accepts INTEGER number as parameter.
 6
 7
   int fourthBit(int number)
 8
9 ₹ {
        int binary[32];
10
        int i=0;
11
        while(number > 0)
12
13 v
            binary[i]=number%2;
14
            number/=2;
15
            i++;
16
17
        if(i>=4)
18
19 🔻
            return binary[3];
20
21
        else
22
23
        return 0;
24 }
```

	Test	Expected	Got	
~	<pre>printf("%d", fourthBit(32))</pre>	0	0	~
~	printf("%d", fourthBit(77))	1	1	~

Passed all tests! <

Question 2

Correct

Marked out of 1.00

Flag question

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the pth element of the list, sorted ascending. If there is no pth element, return 0.

Example

$$n = 20$$

$$p = 3$$

The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Function Description

Complete the function pthFactor in the editor below.

pthFactor has the following parameter(s):

int n: the integer whose factors are to be found

int p: the index of the factor to be returned

Returns:

int: the long integer value of the pth integer factor of n or, if there is no factor at that index, then 0 is returned

Constraints

$$1 \le n \le 10^{15}$$

$$1 \le p \le 10^9$$

Reset answer

```
* Complete the 'pthFactor' function below.
 2
 3
     * The function is expected to return a LONG_INTEGER.
     * The function accepts following parameters:
     * 1. LONG_INTEGER n
 6
     * 2. LONG INTEGER p
     */
8
   long pthFactor(long n, long p)
10
11 v
    int count=0;
12
     for(long i=1;i<=n;++i)</pre>
13
14 ▼
         if(n%i==0)
15
16 ▼
             count++;
17
            if(count==p)
18
19 ▼
                 return i;
20
21
22
23
24
    return 0;
25 }
```

	Test	Expected	Got	
~	<pre>printf("%ld", pthFactor(10, 3))</pre>	5	5	~
~	printf("%ld", pthFactor(10, 5))	0	0	~
~	printf("%ld", pthFactor(1, 1))	1	1	~

Passed all tests! <