Τύποι Vieta

13.11 Να βρείτε το άθροισμα και το γινόμενο των οιζών των παρακάτω εξισώσεων:

a)
$$x^2 + 3x - 2 = 0$$
 B) $x^2 - 5x + 7 = 0$

$$\beta) x^2 - 5x + 7 = 0$$

$$\gamma$$
) $-\sqrt{3} \cdot x^2 - \sqrt{27} \cdot x + \sqrt{12} = 0$

$$\delta) - \sqrt{\frac{3}{5}} \cdot x^2 + \sqrt{15} \cdot x - \frac{1}{\sqrt{15}} = 0$$

13.12 Η εξίσωση $\alpha x^2 + \beta x + \gamma = 0$, με $\alpha \neq 0$, έχει ρίζα το 6 και ισχύει ότι $\frac{\gamma}{\alpha} = -12$. Να υπολογίσετε τον λόγο $\frac{\beta}{\alpha}$.

13.13 Η εξίσωση $\alpha x^2 + \beta x + \gamma = 0$, με $\alpha \neq 0$, έχει ρίζα το 2 και ισχύει ότι β = 3α. Να υπολογίσετε τον λόγο $\frac{\gamma}{\alpha}$.

13.14 Η εξίσωση $\alpha x^2 + \beta x + 8 = 0$ (1) έχει ρίζες τους αριθμούς χι και χ2 για τους οποίους ισχύει $x_1 + x_2 = 6 \text{ kal } x_1 x_2 = 4.$

- α) Να βρείτε τους αριθμούς α και β.
- β) Να λύσετε την εξίσωση (1).

13.15 Η εξίσωση $\alpha x^2 + \beta x + \gamma = 0$, με $\alpha \neq 0$, έχει ρίζες τους αριθμούς:

$$x_1 = 4 - 2\sqrt{3}$$
 kai $x_2 = 4 + 2\sqrt{3}$

Nα βρείτε την τιμή του κλάσματος $\frac{\alpha - \beta}{\alpha - \gamma}$.

13.16 Δίνεται η εξίσωση:

$$(\lambda + 2)x^2 + 2\lambda x + \lambda - 1 = 0$$

με παράμετρο λ ≠ -2.

- α) Να βρείτε τις τιμές του λ για τις οποίες η εξίσωση έχει δύο ρίζες πραγματικές και άνισες.
- β) Αν χι και χ2 είναι οι ρίζες της παραπάνω εξίσωσης, να βρείτε το λ ώστε $x_1x_2 = -3$.

(Τ.Θ. - 2ο θέμα)

13.17 Δίνεται η εξίσωση:

$$(\lambda + 2)x^2 + 2\lambda x + \lambda - 1 = 0$$

με παράμετρο $\lambda \neq -2$. Να βρείτε τις τιμές του λ για τις οποίες:

- α) η εξίσωση έχει δύο ρίζες πραγματικές και άνισες.
- β) το άθροισμα των ριζών της εξίσωσης είναι ίσο με 2.

(Τ.Θ. - 2ο θέμα)

13.18 Το γινόμενο των ριζών της εξίσωσης:

$$x^2 - 2(\lambda + 1)x + \lambda^2 + 3 = 0$$

είναι 7. Να βρείτε:

- α) τον αριθμό λ,
- β) το άθροισμα των ριζών της παραπάνω εξίσωσης.

13.19 Το άθροισμα των ριζών της εξίσωσης:

$$(\lambda^2 + 1)x^2 + 2(\lambda - 4)x + 1 = 0$$

είναι $\frac{1}{5}$.

Να βρείτε:

- α) τον αριθμό λ, πιμοσχά κισίν ομοπάτ
- β) το γινόμενο των ριζών της προηγούμενης εξίσω-

13.20 An η exispos $\alpha x^2 + \beta x + \gamma = 0$, we aby $\neq 0$. έχει ρίζες τις x1 και x2, να αποδείξετε ότι η εξίσωση:

$$\gamma^2 x^2 + 2\beta \gamma x + \beta^2 = 0$$

έχει διπλή ρίζα την $\frac{1}{x_1} + \frac{1}{x_2}$.

13.21 Αν χι και χ είναι οι ρίζες της εξίσωσης $x^2 - 3x + 1 = 0$, να βρείτε τις τιμές των παραστάσεων:

- a) $x_1 + x_2$ b) x_1x_2 y) $x_1^2 + x_2^2$

- δ) $x_1^3 + x_2^3$ ε) $\frac{1}{x_1} + \frac{1}{x_2}$ στ) $\frac{x_1}{x_2} + \frac{x_2}{x_1}$

13.22 Αν χι και χρ είναι οι ρίζες της εξίσωσης $x^2 + 5x - 4 = 0$, να βρείτε τις τιμές των παραστάσεων:

$$\alpha$$
) $x_1 + x_2$

$$\beta$$
) x_1x_2

β)
$$x_1x_2$$
 γ) $x_1^2 + x_2^2$

$$\delta) \ x_1^3 x_2 + x_1 x_2^3$$

$$\epsilon$$
) $(x_1-x_2)^2$

δ)
$$x_1^3x_2 + x_1x_2^3$$
 ε) $(x_1 - x_2)^2$ στ) $\frac{1}{x_1^2} + \frac{1}{x_2^2}$

13.23 Αν χι και χ είναι οι ρίζες της εξίσωσης $x^2 + 4x + 2 = 0$, να βρείτε τις τιμές των παραστάσεων:

a)
$$\frac{1}{x_1^2} + \frac{1}{x_2^2}$$
 B) $\frac{1}{x_1^3} + \frac{1}{x_2^3}$ γ) $\frac{x_1}{x_2^2} + \frac{x_2}{x_1^2}$

$$\beta$$
) $\frac{1}{x_1^3} + \frac{1}{x_2^3}$

$$\gamma$$
) $\frac{x_1}{x_2^2} + \frac{x_2}{x_1^2}$

13.24 Αν χι και χ είναι οι ρίζες της εξίσωσης $2x^2 + 3x - 4 = 0$, να βρείτε τις τιμές των παραστάσεων:

a)
$$\sqrt{x_1^2 + x_2^2}$$

$$\beta$$
) $(2x_1-3)(2x_2-3)$

$$(x_1+1)^2+(x_2+1)^2$$

$$\gamma$$
) $(x_1+1)^2+(x_2+1)^2$ δ) $(x_1^2-x_1x_2)(x_1x_2-x_2^2)$

13.25 Αν χι και χ είναι οι ρίζες της εξίσωσης $x^2 + 6x + 3 = 0$, να βρείτε τις τιμές των παραστάσεων:

$$\alpha$$
) $x_1^3x_2 + 2x_1^2x_2^2 + x_1x_2^3$ β) $\frac{1}{x_1 - 3} + \frac{1}{x_2 - 3}$

$$\beta$$
) $\frac{1}{x_1-3}+\frac{1}{x_2-3}$

$$|x_1^3 - x_2^3|$$

$$\delta$$
) $x_1^5 + x_2^5$

13.26 Αν χι και χ2 είναι οι ρίζες της εξίσωσης $-x^2 + 7x - 9 = 0$, να βρείτε τις τιμές των παραστάσεων:

a)
$$x_1^4 + x_2^4$$

a)
$$x_1^4 + x_2^4$$
 b) $\sqrt{\frac{x_1}{x_2}} + \sqrt{\frac{x_2}{x_1}}$

$$\gamma$$
) $\sqrt{x_1} + \sqrt{x_2}$

$$\delta$$
) $|x_1 - x_2|$

13.27 Έστω x1 και x2 οι ρίζες της εξίσωσης: $\alpha x^2 + \beta x + \gamma = 0$ $\mu \epsilon \alpha, \beta, \gamma \neq 0$

Αν ισχύει ότι $\beta + \gamma = 0$, να υπολογίσετε την παράσταση $\frac{1}{x_1} + \frac{1}{x_2}$.

13.28 Αν x1 και x2 είναι οι ρίζες της εξίσωσης:

$$x^2 - 194x + 1 = 0$$

να βρείτε την τιμή της παράστασης:

$$A = \sqrt[4]{x_1} + \sqrt[4]{x_2}$$

13.30 Να βρείτε εξίσωση 2ου βαθμού που να έχει ρίζες τους αριθμούς:

α)
$$-3$$
 και 5 β) $\frac{1}{2}$ και -2

13.31 Δίνονται οι αριθμοί:

$$A = \frac{1}{3 - \sqrt{7}} \quad \text{kai} \quad B = \frac{1}{3 + \sqrt{7}}$$

α) Να αποδείξετε ότι:

$$A + B = 3$$
 $\kappa \alpha i$ $A \cdot B = \frac{1}{2}$

β) Να κατασκευάσετε μια εξίσωση 2ου βαθμού που να έχει ρίζες τους αριθμούς Α και Β.

(Τ.Θ. - 2ο θέμα)

13.32 Δίνονται οι αριθμοί:

$$A = \frac{1}{5 + \sqrt{5}} \quad \text{kai} \quad B = \frac{1}{5 - \sqrt{5}}$$

α) Να αποδείξετε ότι:

i)
$$A + B = \frac{1}{2}$$
 ii) $A \cdot B = \frac{1}{20}$

ii)
$$A \cdot B = \frac{1}{20}$$

β) Να κατασκευάσετε μια εξίσωση 2ου βαθμού με ρίζες τους αριθμούς Α και Β.

(Τ.Θ. - 2ο θέμα)

13.42 Έστω α και β πραγματικοί αριθμοί για τους οποίους ισχύουν:

$$\alpha\beta = 4$$
 $\kappa\alpha$ $\alpha^2\beta + \alpha\beta^2 = 20$

α) Να αποδείξετε ότι $\alpha + \beta = 5$.

β) Να κατασκευάσετε εξίσωση 2ου βαθμού με ρίζες τους αριθμούς α, β και να τους βρείτε.

(Τ.Θ. - 2ο θέμα)

13.43 Έστω α και β πραγματικοί αριθμοί για τους οποίους ισγύουν:

$$\alpha + \beta = 2$$
 $\kappa \alpha i$ $\alpha^2 \beta + \alpha \beta^2 = -30$

α) Να αποδείξετε ότι $\alpha\beta = -15$.

β) Να κατασκευάσετε εξίσωση 2ου βαθμού με ρίζες τους αριθμούς α, β και να τους βρείτε.

(Τ.Θ. - 2ο θέμα)

13.44 Έστω α και β πραγματικοί αριθμοί για τους οποίους ισχύουν:

$$\alpha + \beta = -1$$
 $\kappa \alpha i$ $\alpha^3 \beta + 2\alpha^2 \beta^2 + \alpha \beta^3 = -12$

- α) Να αποδείξετε ότι $\alpha\beta = -12$.
- β) Να κατασκευάσετε εξίσωση 2ου βαθμού με ρίζες τους αριθμούς α, β και να τους βρείτε.

(Τ.Θ. - 2ο θέμα)

13.45 Δίνονται δύο πραγματικοί αριθμοί α και β τέτοιοι, ώστε:

$$\alpha + \beta = 12$$
 $\kappa \alpha i$ $\alpha^2 + \beta^2 = 272$

α) Με τη βοήθεια της ταυτότητας:

$$(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$$

να αποδείξετε ότι $\alpha\beta = -64$.

- β) Να κατασκευάσετε μια εξίσωση 2ου βαθμού που έχει ρίζες τους αριθμούς α και β.
- γ) Να προσδιορίσετε τους αριθμούς α και β.

(Τ.Θ. - 2ο θέμα)

13.46 Να βρείτε μια εξίσωση 2ου βαθμού που να έχει ρίζες x₁ και x₂ για τις οποίες ισχύουν:

$$\begin{cases} 3x_1x_2 + 2x_1 + 2x_2 = 19 \\ 2x_1x_2 - x_1 - x_2 = 1 \end{cases}$$

→ Προσδιορισμός παραμέτρου

13.50 Δίνεται η εξίσωση:

$$x^2 + (\lambda - 1)x + 2\lambda - 6 = 0$$
 (1)

- α) Να αποδείξετε ότι η εξίσωση (1) έχει πραγματικές ρίζες για κάθε τιμή της παραμέτρου λ.
- β) Να βρείτε για ποια τιμή του λ η εξίσωση (1) έχει ρίζες:
 - αντίθετες,
- ii) αντίστροφες.
- 13.51 Να βρείτε για ποιες τιμές του πραγματικού αριθμού λ η εξίσωση:

$$x^2 - 6x - 3(2 - \lambda) = 0$$

έχει ρίζες:

- α) ομόσημες,
- β) ετερόσημες.

- **13.52** Να βρείτε τον πραγματικό αριθμό λ, ώστε η εξίσωση $x^2 + 4x + \lambda + 2 = 0$ να έχει:
- α) μία διπλή ρίζα,
- β) δύο ρίζες ετερόσημες,
- γ) δύο ρίζες αρνητικές,
- δ) δύο ρίζες θετικές,
- ε) δύο ρίζες αντίστροφες.
- **13.53** Να βρείτε για ποιες τιμές του λ η εξίσωση $x^2 + (\lambda 5)x \lambda + 4 = 0$ έχει:
- α) μία διπλή ρίζα,
- β) δύο ρίζες αντίστροφες,
- γ) δύο ρίζες αντίθετες,
- δ) δύο ετερόσημες ρίζες,
- ε) δύο θετικές ρίζες,
- στ) δύο αρνητικές ρίζες.
- 13.54 Οι ρίζες της εξίσωσης:

$$x^2 - (5\lambda - 6\mu)x - 1 = 0$$
 (1)

είναι αντίθετες και οι ρίζες της εξίσωσης:

$$\lambda x^2 + 13x - \lambda \mu + \lambda^2 = 0 \quad (2)$$

με $\lambda \neq 0$, είναι αντίστροφες.

- α) Να βρείτε τις τιμές των παραμέτρων λ και μ.
- β) Να λύσετε τις εξισώσεις (1) και (2).
- **13.55** Να βρείτε για ποιες τιμές του πραγματικού αριθμού λ η εξίσωση:

$$3x^2 + (\lambda + 3)x + \lambda - 2 = 0$$

13.56 Αν η εξίσωση:

$$-5x^2+(4-\lambda)x+3-\lambda=0$$

έχει ετερόσημες ρίζες, να αποδείξετε ότι η θετική ρίζα έχει μεγαλύτερη απόλυτη τιμή από την αρνητική ρίζα.

13.57 Δίνεται η εξίσωση:

$$x^2 - 2\lambda x + 4(\lambda - 1) = 0$$
 (1)

με παράμετρο $\lambda \in \mathbb{R}$.

- α) Να βρείτε τη διακρίνουσα της εξίσωσης (1).
- β) Να αποδείξετε ότι η εξίσωση (1) έχει ρίζες πραγματικές για κάθε λ ∈ R.
- γ) Αν x₁ και x₂ είναι οι ρίζες της παραπάνω εξίσωσης, να βρείτε για ποια τιμή του λ ισχύει:

$$x_1 + x_2 = x_1 x_2$$