1. Evaluate the following

(a)
$$\iint_{\substack{0 \le x \le a \\ 0 \le y \le b}} ye^{xy} dxdy$$
 (b)
$$\iint_{\substack{0 \le x \le a \\ 0 \le y \le b}} \frac{dxdy}{\sqrt{c^2 + (x - y)^2}}$$

(c)
$$\iint_{\substack{y \le x \le 8 - y \\ 2 \le y \le 4}} ydxdy$$
 (d)
$$\iint_{\substack{0 \le x \le 1 \\ x^2 \le y \le x}} ydxdy$$

(c)
$$\iint\limits_{\substack{y \le x \le 8 - y \\ 2 \le y \le 4}} y dx dy$$
 (d)
$$\iint\limits_{\substack{0 \le x \le 1 \\ x^2 \le y \le x}} y dx dy$$

- 2. Evaluate $\iint xydxdy$ where A is the domain bounded by the x-axis, ordinate x = 2a and the arc of the parabola $x^2=4ay$.
- 3. Evaluate $\iint xydxdy$ where A is the region common to the circles $x^2+y^2=x$, $x^2+y^2=y$.
- 4. Evaluate $\iint x^{1/2} y^{1/2} (1-x-y)^3 dxdy$ over the region A bounded by the triangle with vortices (0, 0), (1, 0) and (0, 1).
- 5. Integrate f(x, y) = x/y over the region in the first quadrant bounded by the lines y = x, y = 2x, x = 1 and x = 2.
- 6. Evaluate $\iint ydxdy$ over A, where A is the region bounded by the parabolas:

(a)
$$y^2 = 4x$$
 and $x^2 = 4y$

(b)
$$y^2 = x$$
 and $x^2 = y$

- 7. Evaluate the following integrals:
 - (a) $\iint x dx dy$ over the region bounded by $y = x^2$ and $y = x^3$.
 - (b) $\iint y dx dy$ over the region bounded by $y = x^2$ and $y = x^3$.
 - (c) $\iint x^2 dx dy$ over the region bounded by y = x, y = 2x, x = 2.
 - (d) $\iint y dx dy$ over the region above y = 0, bounded by $y^2 = 4x$ and $y^2 = 5 x$.
 - (e) $\iint xydxdy$ over the domain bounded by y x = 0, x + y = 1 and y = 0.
 - (f) $\iint dxdy$ over the region lying between y = 2x and $y = x^2$ lying to the left of x = 1.
 - (g) $\iint dxdy$ over the region lying in the first quadrant and bounded by $y^2 = x^3$ and y = x.
- 8. Write an equivalent double integral with order of integration reversed for $\int_{0}^{\sqrt{2}} \int_{\frac{1}{|x|^{2}}}^{\sqrt{4-2y^{2}}} y dx dy$.

Check your answer by evaluating both the double integrals.

9. Write an equivalent double integral with order of integration reversed:

(a)
$$\int_{0}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} 3y dx dy$$
 (b) $\int_{0}^{a} \int_{x}^{a^2/x} (x+y) dx dy$

10. Evaluate $\iint \sqrt{4-x^2-y^2} dxdy$ over the semicircle $x^2+y^2=2x$ in the positive quadrant.

- 11. Evaluate $\iiint (x+y+z+1)^2 dx dy dz$ throughout the region defined by $x \ge 0, y \ge 0, z \ge 0, x+y+z \le 1$.
- 12. Evaluate the following triple integrals

$$\iiint_{x^2+y^2+z^2 \le 1} z^2 dx dy dz$$
(a)
$$\iiint_{x^2+y^2+z^2 \le 1} (z^2+z) dx dy dz$$

$$\iiint_{x^2+y^2+z^2 \le 1} x dx dy dz$$
(b)
$$\iiint_{x^2+y^2+z^2 \le 1} x dx dy dz$$
(c)
$$\lim_{x^2+y^2+z^2 \le 1} x dx dy dz$$
(d)
$$\lim_{x^2+y^2+z^2 \le 1} x dx dy dz$$

13. Test the series for convergence

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^n + n}{2^n - n^3}$$
 (b) $\sum_{n=1}^{\infty} \sin(\frac{1}{n})$ (c) $\sum_{n=1}^{\infty} \frac{e^{-1/n}}{n}$

14. How many term of the series

$$\sum_{n=1}^{\infty} (-1)^n e^{-n}$$
, does one need to take for the error to be less than 10^{-10} ?

15. Does the series converges or diverges?

(a)
$$\sum_{n=1}^{\infty} \frac{n!(n+1)!}{(3n)!}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \cos(\frac{1}{n})$
(c) $\sum_{n=1}^{\infty} \frac{n+5}{n\sqrt{n+3}}$ (d) $\sum_{n=1}^{\infty} \frac{3+\cos n}{e^n}$

16. Consider the sequence defined by $a_n = \frac{(-1)^n + n}{(-1)^n - n}$. Does this sequence converge and, if it is

does, to what limit?

17. Find the value of the series

$$\sum_{n=1}^{\infty} \frac{1+2^n}{3^{n-1}}$$

18. Does the series converge absolutely, converge conditionally, or diverge?

(a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{\sqrt{n^2+1}}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{\pi^n}$

19. For each of the following, say whether it converges or diverges and explain why.

(a)
$$\sum_{n=1}^{\infty} \frac{n^3}{n^5 + 3}$$
 (b) $\sum_{n=1}^{\infty} \frac{3^n}{4^n + 4}$ (c) $\sum_{n=1}^{\infty} \frac{n}{2^n}$

- 20. For what values of p does the series $\sum_{n=1}^{\infty} \frac{n^p}{n^3 + 2}$ converges?
- 21. Determine whether the series is convergent or divergent using the test of your choice. Make sure you state the test used and all of the criteria needed.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n + 1}$ (c) $\sum_{n=1}^{\infty} \frac{\cos 3n}{1 + (1.2)^n}$

22. Check the convergence /divergence of $\sum_{n=1}^{\infty} \frac{2}{n^2 + 3 + 4n}$.