Chapitre 1

Généralités sur les fonctions

1/ Opérations sur les fonctions

a) Égalité de deux fonctions

Définition

Soient u et v deux fonctions. On dit que u et v sont égales et on note u = v si :

- -u et v ont le même ensemble de définition D.
- Pour tout $x \in D$, u(x) = v(x).

Exemple : Les fonctions u et v sont-elles égales ?

1/
$$u$$
 et v sont définies par $u(x) = 3 - \frac{2}{x+1}$ et $v(x) = \frac{3x+1}{x+1}$

$$2/u$$
 et v sont définies par $u(x) = x$ et $v(x) = \frac{x^2}{x}$

$$1/u$$
 et v ont le même ensemble de définition : $\mathbb{R}\setminus\{-1\}$
Pour tout $x\in\mathbb{R}\setminus\{-1\}$,

$$u(x) = 3 - \frac{2}{x+1} = \frac{3(x+1) - 2}{x+1} = \frac{3x+1}{x+1} = v(x)$$

donc u = v.

2/u est définie sur \mathbb{R} et v est définie sur \mathbb{R}^* donc $u \neq v$.

b) Opérations sur les fonctions

- Définition .

Soient u et v deux fonctions définies sur D et λ un réel.

– On définit les fonctions $u+v, uv, \lambda u, u+\lambda$ de la façon suivante :

$$(u+v)(x) = u(x) + v(x) \qquad (uv)(x) = u(x) \times v(x)$$
$$(\lambda u)(x) = \lambda \times u(x) \qquad (u+\lambda)(x) = u(x) + \lambda$$

- Si, pour tout $x \in D$, $v(x) \neq 0$ alors on peut définir la fonction $\frac{u}{v}$ par :

$$\left(\frac{u}{v}\right)(x) = \frac{u(x)}{v(x)}$$

Exemple : Soit u et v les fonctions définies sur \mathbb{R} par $u(x) = x^2$ et v(x) = x + 3. Déterminer u + v, uv, 2u, u + 2 et $\frac{u}{u}$.

Pour tout réel
$$x$$
, $(u+v)(x) = x^2 + x + 3$; $(uv)(x) = x^2(x+3) = x^3 + 3x^2$; $(2u)(x) = 2x^2$ et $(u+2)(x) = x^2 + 2$

– Pour tout réel
$$x \neq -3$$
, $\left(\frac{u}{v}\right)(x) = \frac{x^2}{x+3}$

c) Composition de fonctions

Définition

Soit u une fonction définie sur D_u et v une fonction définie sur D_v et telle que pour tout $x \in D_v$, $v(x) \in D_u$.

On appelle fonction composée de v par u la fonction notée $u \circ v$ et définie sur D_v par : Pour tout $x \in D_v$, $u \circ v(x) = u(v(x))$

$$D_v \xrightarrow{\quad \quad \quad \quad \quad } D_u \xrightarrow{\quad \quad \quad \quad } \mathbb{R}$$

$$x \xrightarrow{\quad \quad } u(v(x))$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$u \circ v \qquad \qquad \qquad \downarrow$$

Remarque : Il faut faire attention à l'ordre des fonctions. $u \circ v$ et $v \circ u$ sont en général des fonctions différentes. Il se peut qu'elles aient des ensembles de définition différents voire que l'une existe mais pas l'autre.

Exemple: Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x} - 1$ et g la fonction définie sur \mathbb{R} par $g(x) = x^2 + 3$. Définir $g \circ f$ et $f \circ g$. Sont-elles égales?

- $g \circ f$ est définie sur $[0; +\infty[$ par $g \circ f(x) = g(f(x)) = (\sqrt{x} 1)^2 + 3 = x 2\sqrt{x} + 4$
- $f \circ g$ est définie sur \mathbb{R} par $f \circ g(x) = f(g(x)) = \sqrt{x^2 + 3} 1$
- $-g\circ f$ et $f\circ g$ ne sont pas égales car elles n'ont pas le même ensemble de définition. On peut ausi remarquer que $g\circ f(0)\neq f\circ g(0)$

2/ Sens de variation

a) Sens de variation de la fonction $u + \lambda$

_ Propriété _

Soit u une fonction défine sur un intervalle I et λ un réel.

Si u est monotone sur I alors u et $u+\lambda$ ont même sens de variation sur I.

- Démonstration

Cas où u est croissante

Soient a et b deux réels de I.

$$a \leqslant b \Longrightarrow u(a) \leqslant u(b)$$
 car u est croissante sur I .

$$\implies u(a) + \lambda \leqslant u(b) + \lambda$$

La fonction $u + \lambda$ est croissante sur I.

b) Sens de variation de la fonction λu

Propriété

Soit u une fonction défine et monotone sur un intervalle I et λ un réel.

- Si $\lambda > 0$ alors les fonctions u et λu ont même sens de variation sur I.
- Si $\lambda < 0$ alors les fonctions u et λu ont des sens de variation contraires sur I.

Démonstration

Cas où u est croissante

Soient a et b deux réels de I. Si $a \leq b$ alors $u(a) \leq u(b)$ car u est croissante sur I.

- Si $\lambda > 0$ alors $\lambda u(a) \leq \lambda u(b)$ donc λu est croissante sur I.
- Si $\lambda < 0$ alors $\lambda u(a) \ge \lambda u(b)$ donc λu est décroissante sur I.

c) Sens de variation de la fonction $u \circ v$

Propriété.

Soit u une fonction définie et monotone sur un intervalle J. Soit v une fonction définie et monotone sur un intervalle I et telle que pour tout $x \in I$, $v(x) \in J$.

- Si u et v ont même sens de variation alors $u \circ v$ est croissante sur I.
- Si u et v ont des sens de variation contraires alors $u \circ v$ est décroissante sur I.

- Démonstration

Cas où u est croissante

Soient a et b deux réels de I. Si $a \leq b$ alors $v(a) \in J$, $v(b) \in J$ et $v(a) \leq v(b)$ car v est croissante sur I.

- Si u est croissante sur J alors $u(v(a)) \leq u(v(b))$ donc $u \circ v(a) \leq u \circ v(b)$ donc $u \circ v$ est croissante sur I.
- Si u est décroissante sur J alors $u(v(a)) \geqslant u(v(b))$ donc $u \circ v(a) \geqslant u \circ v(b)$ donc $u \circ v$ est décroissante sur I.

3/ Représentations graphiques

a) Représentation graphique d'une fonction $x\mapsto u(x+a)+b$

Propriété

Soit u une fonction et v la fonction définie par v(x) = u(x+a) + b.

Dans un repère $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$, on appelle \mathscr{C}_u et \mathscr{C}_v les courbes représentatives des fonctions u et v.

 \mathscr{C}_v est l'image de \mathscr{C}_u par la translation de vecteur $-a\overrightarrow{i}+b\overrightarrow{j}$, autrement dit le vecteur de coordonnées $\begin{pmatrix} -a \\ b \end{pmatrix}$.

 $D\'{e}monstration$

Soient M(x; y) et M'(x - a; y + b).

$$M' \in \mathscr{C}_v \Leftrightarrow y + b = v(x - a) \Leftrightarrow y + b = u(x - a + a) + b \Leftrightarrow y = u(x) \Leftrightarrow M \in \mathscr{C}_v$$

b) Représentation graphique d'une fonction λu

Propriété -

Soit u une fonction et v la fonction λu Dans un repère $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$, on appelle \mathscr{C}_u et \mathscr{C}_v les courbes représentatives des fonctions u et v. Si M est le point de \mathscr{C}_u d'abscisse x alors on obtient le point d'abscisse x de \mathscr{C}_v en multipliant l'ordonnée de M par λ .

