

TAREA
VII

"INFERENCIA

Υ

DIAGNOSTICO"

ECONOMETRIA

PROFESOR: RODRIGO ORTEGA AYUDANTE: DIEGO BASCUÑAN

INTEGRANTE:

BARBARA LIZAMA

PROBLEMA

Estimar un modelo de producción para una función tipo Cobb Douglas y estimar un modelo de producción lineal y compararlos indicando cual es el mejor modelo para estimar la producción.

OBJETIVO

Realizar diversas pruebas de hipótesis con análisis de modelos de regresión múltiples, interpretando sus resultados, viendo los valores calculados y así establecer diversas conclusiones en relación a estas hipótesis planteadas.

1) Estime un modelo de producción para una función tipo Cobb Douglas.

$$Y = AL^{\alpha} K^{\beta}$$

Primero que todo se debe configurar la función tipo Cobb Douglas en un modelo econométrico de la muestra con la aplicación de logaritmo de la siguiente manera:

$$\begin{split} Ln(y) &= Ln \; (A \; L^a \; K \; ^b) \\ Ln(y) &= Ln \; (A) + Ln \; (L^a) + Ln \; (K \; ^b) \\ Ln(y) &= Ln \; (A) + a \; ^a \; Ln \; (L) + b \; ^a \; Ln \; (K) \\ Ln(y) &= \beta o + \beta 1 \; ^a \; Ln \; (L) + \beta 2 \; ^a \; Ln \; (K) \\ \textit{llustración 1 Modelo n°1 Econométrico} \end{split}$$

a) ¿El modelo es globalmente significativo?, respalde su respuesta con el test de hipótesis correspondiente.

H0:
$$\beta 1 = 0$$
, $\beta 2 = 0$
Ha: H0 no es verdadera
Ilustración 2 Test de Hipótesis

ANOVA				Alpha	0,05	
	df	SS	MS	F	p-value	sig
Regression	2	1,4982971	5 0,74914858	588,730546	2,884E-10	yes
Residual	9 0,01145233 0,00127248					
Total	11	1,50974949				

Ilustración 3 Resultado Real Statistics

Se puede concluir que se rechaza la hipótesis nula, dado que el P-value es menor al alpha, por lo cual si existe regresión lineal y si es significativo globalmente el modelo.

b) ¿Que representan los coeficientes α y β estimados?, ¿Cuáles son sus posibles valores en la población?

Los coeficientes en el caso del α representa el β 1 y en el caso del β representa el β 2.

Los valores posibles son los siguientes:

	Inferior 95% Superior 95		
Ln(L) β1	-0,18488	1,42053	
$Ln(K) \beta 2$	0,26937	0,55523	

c) ¿Con cuál factor productivo, la producción es más sensible? Respalde la respuesta con un test de hipótesis.

H0:
$$\beta$$
1 = 0 H0: β 2 = 0
Ha: β 1 ≠ 0 Ha: β 2 ≠ 0
Ilustración 5 Test de hipótesis

	Coeficientes	P value	
Ln(L) β1	0,61782	0,11565	
$Ln(K)\beta 2$	0,41230	0,00011	

Ilustración 6 Datos Coeficientes y P value

Revisando los cálculos de los p values para ambos test de hipótesis se puede concluir que en el caso del β1 no se puede rechazar la hipótesis nula y se puede indicar que con este factor productivo la producción es más sensible, o sea con el factor valoración de la mano de obra de la economía ya que presenta un 0,61782% versus un 0,41230% valoración del stock de capital de la economía.

En el caso del β 2 se rechaza la hipótesis nula, dado que el P-value es menor al alpha.

d) ¿Qué tipo de retornos a escala exhibe la función de producción? Respalde la respuesta con test de hipótesis.

Al realizar las sumas de los betas (β 1+ β 2) nos da 1,03012 por lo cual a la cercanía al 1 se puede indicar que tiene un rendimiento constante a escala.

H0:
$$\alpha$$
+ β = 1
Ha: α + β \neq 1
Ilustración 7 Test de hipótesis

$$F(1, 9) = 0.01$$

 $Prob > F = 0.9206$

0.01

Ilustración 8 Resultados Stata

En este caso no se puede rechazar la hipótesis nula, dado que el P-value es mayor al alpha.

e) Un gobierno necesita invertir un monto W en alguno de los factores productivos. ¿En qué factor le recomendarían invertir? ¿Por qué?

El factor productivo en el que se le recomienda al gobierno invertir un monto W es el factor valoración de la mano de obra de la economía ya que es el que muestra un mayor incentivo para producir. Con un aumento de 1% en la producción, se incrementa 0,61782% en mano de obra.

2) Estime un modelo de producción lineal, y compárelo con el modelo tipo Cobb Douglas, de modo de concluir "Cual es el mejor modelo para estimar la producción"

$$Y = L + K$$

 $Y = \beta o + \beta 1 * L + \beta 2 * K$ Ilustración 9 Modelo n° 2 Producción Lineal

	p value local	varianza	R^2	p value global
β1	0,115646189	0,03567186	99,241%	2,8837,E-10
β2	0,000108188			

Ilustración 10 Modelo nº 1 Logaritmo

	p value local	varianza	R^2	p value global
β1	0,000122707	146379,04	99,632%	1,1113,E-11
β2	1,57175E-07			

llustración 11 Modelo n° 2 Lineal

Ambos casos tienen una significancia global en el modelo, en el caso de la significancia local se puede decir que en ambos modelos el $\beta 2$ es significativo, pero en el $\beta 1$ para el primer modelo no es significativo pero en el modelo 2 si lo es, pero al realizar la resta se puede decir que el modelo 2 muestra un mayor porcentaje de significancia global. En el caso de la varianza se debería quedar con el modelo 1 ya que es que tiene menor variabilidad.

Para el R^2 se puede deducir que el modelo 2 explica mejor las variables analizadas dado que es mayor su porcentaje.

Para concluir el mejor modelo para estimar la producción es el modelo 2 ya que su significancia global y su r^2 son mayores al otro modelo.

CONCLUSION

Por medio de las diferentes pruebas que se realizó durante el informe se puede concluir que las variables mano de obra y stock de capital son significativas tanto global como localmente en el modelo 2.

Cuando se revisó la bondad de ajuste en ambos modelos fue más de un 99% de la explicación del modelo tanto 1 como 2 pero si se busca un modelo para estimar la producción se debería quedar con el modelo lineal número 2.