

Note on the Heat Capacities and Energies of SiCI4, TiCI4 and SnCI4

Robert C. Herman

Citation: The Journal of Chemical Physics 6, 406 (1938); doi: 10.1063/1.1750279

View online: http://dx.doi.org/10.1063/1.1750279

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/6/7?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Doped silicon nanocrystals from organic dopant precursor by a SiCl4-based high frequency nonthermal plasma

Appl. Phys. Lett. 105, 183110 (2014); 10.1063/1.4901278

Inductively coupled plasma etching of through-cell vias in III–V multijunction solar cells using SiCl4/Ar J. Vac. Sci. Technol. B **31**, 06FF05 (2013); 10.1116/1.4822015

Polarization consistent basis sets. V. The elements Si-Cl

J. Chem. Phys. **121**, 3463 (2004); 10.1063/1.1756866

Theoretical study of low-lying electronic states of TiCl and ZrCl

J. Chem. Phys. 111, 3989 (1999); 10.1063/1.479701

A Note on the Morphology of Heat Capacity Curves

Am. J. Phys. 41, 332 (1973); 10.1119/1.1987219

Note on the Heat Capacities and Energies of SiCl₄, TiCl₄ and SnCl₄

ROBERT C. HERMAN
Palmer Physical Laboratory, Princeton, New Jersey
(Received June 10, 1938)

THE interest in thermodynamic functions calculated from spectroscopic data is the reason for tabulating some information that has been available to us for some time. The heat capacities and energies of SiCl₄, TiCl₄ and SnCl₄ were calculated by means of well-known formulae.¹ The frequencies (liquid) employed were taken from Kohlrausch² and are given in Table I along with their degeneracies in parentheses. Since the molecules investigated are nonpolar there should be no great difference in the calculated functions if we employ the frequencies

TABLE I.

	$\nu_1(1)$	ν ₂ (2)	ν ₃ (3)	ν ₄ (3)
SiCl ₄	422 cm ⁻¹	148 cm ⁻¹	608 cm ⁻¹	220 cm ⁻¹
TiCl ₄	386	119	491	139
SnCl ₄	367	104	401	136

TABLE II. Heat capacities in cal./mole deg.

T°C	SiCl4		TiCl4		SnCl4	
	$C_{ m vib}$	C_{p}	$C_{ m vib}$	C_p	C_{vib}	Cp
0	13.19	21.14	14.50	22,45	15.24	23.19
10	13.41	21.36	14.68	22.63	15.39	23.34
20	13.63	21.58	14.85	22.80	15.53	23.84
30	13.83	21.78	15.01	22,96	15.66	23.61
40	14.02	21.97	15.16	23.11	15.78	23.73
50	14.20	22.15	15.29	23.24	15.90	23.85
60	14.37	22.32	15.42	23.37	16.00	23.95
70	14.52	22.47	15.54	23.49	16.09	24.04
80	14.68	22.63	15.65	23.60	16.19	24.14
90	14.81	22.76	15.75	23.70	16.26	24.21
100	14.94	22.89	15.85	23.80	16.34	24.29
200	15.92	23.87	16.55	24.50	16.89	24.84
300	16.48	24.43	16.94	24.89	17.19	25.14

¹ For instance, see Fowler, Statistical Mechanics (Macmillan, 1936).

² Kohlrausch, Der Smekal-Raman-Effekt (Berlin, 1931).

Table III. $E^0-E_0^0$ cal./mole.

T°C	SiCl ₄	TiCl4	SnCl ₄
0	3576	4031	4217
20	3962	4444	4645
50	4557	5075	5294
100	5583	6152	6400
200	7726	8377	8664
300	9936	10650	10970

TABLE IV.

	T° C	C_p cal./mole deg.
SiCl	90-234	22.5
TiCl.	136-271	24.5
SnCl ₄	149-273	24.5

obtained from the liquids rather than the gases. In fact, for gaseous SnCl₄ the frequencies ν_1 and ν_3 are 367 and 400 cm^{-1 3} as compared to 367 and 401 cm⁻¹ for the liquid. The heat capacity in cal./mole deg. for each gas in its standard state is tabulated in Table II and in Table III we have tabulated the energies in cal./mole. Since these molecules have low frequencies and anharmonicity corrections are not available, the calculation was not carried beyond 300°C. Table IV gives the only experimental heat capacity data4 that could be found for these tetrachlorides in the gaseous phase and as can be seen the calculated values agree fairly well. The ice point on the Kelvin scale has been taken as 273.1°K and the fundamental constants employed were those given by Birge.5

³ Braune and Engelbrecht, Zeits. f. physik. Chemie **B19**, 303 (1932).

⁴ Regnault, Mém. de l'Acad. **26**, 1 (1862). ⁵ Birge, Phys. Rev. Sup. **1**, 1 (1929).