Package 'BlockMissingData'

September 12, 2023

vpe Package	
itle Integrating Multi-Source Block-Wise Missing Data in Model Selection	
ersion 0.1.0	
uthor Fei Xue [aut, cre], Annie Qu [aut]	
aintainer Fei Xue <feixue@purdue.edu></feixue@purdue.edu>	
escription Model selection method with multiple block-wise imputation for blockwise missing data; see Xue, F., and Qu, A. (2021) <doi:10.1080 01621459.2020.1751176="">.</doi:10.1080>	
icense MIT + file LICENSE	
ncoding UTF-8	
oxygenNote 7.2.3	
nports doParallel, foreach, glmnet, glmnetcr, MASS, Matrix, pryr, stats	
eedsCompilation no	
epository CRAN	
ate/Publication 2023-09-12 08:22:35 UTC	
topics documented:	
imputeglm.predict	2
dex	8

2 imputeglm.predict

imputeglm.predict

Imputation using generalized linear models for missing values

Description

The function performs imputation using generalized linear models for missing values in a dataset. It fits these models for each specified response variable separately, utilizing other specified variables, and returns the estimated coefficients and predicted values for each variable. The function handles different distribution families, such as Gaussian, Binomial, and Ordinal, for GLM estimation.

Usage

```
imputeglm.predict(X, ind_y, ind_x = -ind_y, miss, newdata, family = "gaussian")
```

Arguments

X	Data matrix containing all the variables that may contain missing values.
ind_y	A vector specifying the indices of response variables in the dataset.
ind_x	A vector specifying the indices of predictor variables in the dataset. By default, it is set to -ind_y, which means all variables other than the response variables are considered as predictors.
miss	A logical matrix indicating the missing values in the dataset.
newdata	Data matrix for which imputed values are required. It should have the same column names as the original dataset.
family	A character indicating the distribution family of the GLM. Possible values are "gaussian" (default), "binomial", and "ordinal".

Value

A list containing the imputed values for each response variable.

В	A matrix of estimated coefficients, where each column contains the coefficients for a response variable, and each row corresponds to a predictor variable (in-
	cluding the intercept term)
PRED	A matrix of predicted values (or imputations), where each column contains the predicted values for a response variable, and each row corresponds to an obser-

vation in the newdata (if provided)

Author(s)

Fei Xue and Annie Qu

imputeglm.predict 3

Examples

```
library(MASS)
# Number of subjects
n <- 700
# Number of total covariates
# Number of missing groups of subjects
ngroup <- 4
# Number of data sources
nsource <- 4
# Starting indexes of covariates in data sources
cov_index=c(1, 13, 25, 37)
# Starting indexes of subjects in missing groups
sub_index=c(1, 31, 251, 471)
# Indexes of missing data sources in missing groups, respectively ('NULL' represents no missing)
miss_source=list(NULL, 3, 2, 1)
# Create a design matrix
set.seed(1)
sigma=diag(1-0.4,p,p)+matrix(0.4,p,p)
X <- mvrnorm(n,rep(0,p),sigma)</pre>
# Introduce some block-wise missing
for (i in 1:ngroup) {
  if (!is.null(miss_source[[i]])) {
    if (i==ngroup) {
      if (miss_source[[i]]==nsource) {
        X[sub_index[i]:n, cov_index[miss_source[[i]]]:p] = NA
      } else {
     X[sub_index[i]:n, cov_index[miss_source[[i]]]:(cov_index[miss_source[[i]]+1]-1)] = NA
     }
    } else {
      if (miss_source[[i]]==nsource) {
        X[sub_index[i]:(sub_index[i+1]-1), cov_index[miss_source[[i]]]:p] = NA
        X[sub_index[i]:(sub_index[i+1]-1), cov_index[miss_source[[i]]]:
        (cov_index[miss_source[[i]]+1]-1)] = NA
   }
 }
}
# Define missing data pattern
miss <- is.na(X)
```

```
# Choose response and predictor variables
ind_y <- 25:36
ind_x <- 13:24
# Data that need imputation
newdata <- X[31:250,]
# Use the function
result <- imputeglm.predict(X = X, ind_y = ind_y, ind_x = ind_x, miss = miss, newdata = newdata)</pre>
```

MBI

Variable selection method with multiple block-wise imputation (MBI)

Description

Fit a variable selection method with multiple block-wise imputation (MBI).

Usage

```
MBI(
 Χ,
 у,
  cov_index,
  sub_index,
 miss_source,
  complete,
  lambda = NULL,
  eps1 = 0.001,
  eps2 = 1e-07,
  eps3 = 1e-08,
 max.iter = 1000,
 lambda.min = ifelse(n > p, 0.001, 0.05),
  nlam = 100,
 beta0 = NULL,
  a = 3.7,
  gamma.ebic = 0.5,
  alpha1 = 0.5^{(0:12)},
 h1 = 2^{(-(8:30))},
  ratio = 1
)
```

Arguments

X	Design matrix for block-wise missing covariates.
у	Response vector.
cov_index	Starting indexes of covariates in data sources.
sub_index	Starting indexes of subjects in missing groups.
miss_source	Indexes of missing data sources in missing groups, respectively ('NULL' represents no missing).

complete	Logical indicator of whether there is a group of complete cases. If there is a group of complete cases, it should be the first group. 'TRUE' represents that there is a group of complete cases.
lambda	A user supplied sequence of tuning parameter in penalty. If NULL, a sequence is automatically generated.
eps1	Convergence threshold at certain stage of the algorithm. Default is 1e-3.
eps2	Convergence threshold at certain stage of the algorithm. Default is 1e-7.
eps3	Convergence threshold at certain stage of the algorithm. Default is 1e-8.
max.iter	The maximum number of iterations allowed. Default is 1000.
lambda.min	Smallest value for lambda, as a fraction of the maximum value in lambda. Default depends on the size of input.
nlam	The number of lambda values. Default is 100.
beta0	Initial value for regression coefficients. If NULL, they are initialized automatically.
а	Tuning parameter in the SCAD penalty. Default is 3.7.
gamma.ebic	Parameter in the EBIC criterion. Default is 0.5.
alpha1	A sequence of candidate values for the step size in the conjugate gradient algorithm. Default is 0.5^(0:12).
h1	A sequence of candidate values for the parameter in the numerical calculation of the first derivative of the objective function. Default is $2^{(-8:30)}$.

Details

ratio

The function uses the penalized generalized method of moments with multiple block-wise imputation to handle block-wise missing data, commonly found in multi-source datasets.

Parameter in the numerical calculation of the first derivative. Default is 1.

Value

beta	Estimated coefficients matrix with length(lambda) rows and dim(X)[2] columns.
lambda	The actual sequence of lambda values used.
bic1	BIC criterion values. '0' should be ignored.
notcon	Value indicating whether the algorithm is converged or not. '0' represents convergence; otherwise non-convergence.
intercept	Intercept sequence of length length(lambda).
beta0	Estimated coefficients matrix for standardized X

Author(s)

Fei Xue and Annie Qu

References

Xue, F., and Qu, A. (2021) Integrating Multisource Block-Wise Missing Data in Model Selection (2021), Journal of the American Statistical Association, Vol. 116(536), 1914-1927.

Examples

```
library(MASS)
# Number of subjects
n <- 30
# Number of total covariates
# Number of missing groups of subjects
ngroup <- 2
# Number of data sources
nsource <- 2
# Starting indexes of covariates in data sources
cov_index=c(1, 3)
# Starting indexes of subjects in missing groups
sub_index=c(1, 16)
# Indexes of missing data sources in missing groups, respectively ('NULL' represents no missing)
miss_source=list(NULL, 1)
# Indicator of whether there is a group of complete cases. If there is a group of complete cases,
# it should be the first group.
complete=TRUE
# Create a block-wise missing design matrix X and response vector y
set.seed(1)
sigma=diag(1-0.4,p,p)+matrix(0.4,p,p)
X <- mvrnorm(n,rep(0,p),sigma)</pre>
beta_true <- c(2.5, 0, 3, 0)
y <- rnorm(n) + X%*%beta_true
for (i in 1:ngroup) {
  if (!is.null(miss_source[[i]])) {
    if (i==ngroup) {
      if (miss_source[[i]]==nsource) {
        X[sub_index[i]:n, cov_index[miss_source[[i]]]:p] = NA
     X[sub_index[i]:n, cov_index[miss_source[[i]]]:(cov_index[miss_source[[i]]+1]-1)] = NA
    } else {
      if (miss_source[[i]]==nsource) {
        X[sub_index[i]:(sub_index[i+1]-1), cov_index[miss_source[[i]]]:p] = NA
      } else {
        X[sub_index[i]:(sub_index[i+1]-1), cov_index[miss_source[[i]]]:
        (cov_index[miss_source[[i]]+1]-1)] = NA
     }
    }
```

```
}
}

# Now we can use the function with this simulated data
#start.time = proc.time()
result <- MBI(X=X, y=y, cov_index=cov_index, sub_index=sub_index, miss_source=miss_source,
complete=complete, nlam = 15, eps2 = 1e-3, h1=2^(-(8:20)))
#time = proc.time() - start.time

theta=result$beta
bic1=result$bic1
best=which.min(bic1[bic1!=0])
beta_est=theta[best,]</pre>
```

Index

```
\begin{array}{l} {\rm imputeglm.predict,\,2} \\ {\rm MBI,\,4} \end{array}
```