MATH UN1208, Honors Math B

Columbia University, Spring 2020

Mateo Maturana

Contents

1	Jan	uary 22, 2020	1
	1.1		1
	1.2		2
	1.3 1.4		2
	1.5		4
2	Jan	uary 27, 2020	4
	2.1		4
	2.2		4
	$\frac{2.3}{2.4}$		5
3		• ,	7
	$\frac{3.1}{3.2}$		7
	$\frac{3.2}{3.3}$	1 , 1	8
4		$\begin{array}{ccc} \text{ruary } 3,2020 & 1 \\ \text{D} & (C_{1}+1) & 1 \end{array}$	
	$4.1 \\ 4.2$	Basis (Cont.)	
	4.2	Rank-Nullity Theorem	
5	Fob	ruary 5, 2020 1	9
J	5.1	• ,	
	5.2		
	5.3	Preview for Next Class	5
1	\mathbf{J}	anuary 22, 2020	
1.	1]	Introduction	
A	lmini	strative Stuff	
	• W	Vebpage/honorsmathB	
	• H	W 1 due in a week (1/29)	
		ffice Hours: T 9 - 11, F 1-2	
		idterm in class last Wed before Spring Break	
		extbook: Vol II this semester	
		Will cover almost all linear algebra, multivariable calculus with fund the calculus in dim ≤ 3	n

1.2 Linear Algebra Recap

- We defined a field (e.g. $\mathbb{R}, \mathbb{Q}, \mathbb{C}$)
- We defined vector spaces. Has vector addition and scalar multiplication obeying various laws. (e.g. $\mathbb{R}^n := \{\text{functions } [n] \to \mathbb{R}\}$ = $\{\text{n-tuples of elements in } \mathbb{R}\}$)
- We defined linear maps $V \to W$ (i.e. a function $F: V \to W$ such that $F(V_1 + V_2) = \overline{F(V_1)} + \overline{F(V_2)}$ and $F(cV_1) = cF(V_1)$)
- We defined a subspace of a vector space

$$W_1, W_2 \subseteq V$$
 subspaces $\Rightarrow W_1 \cap W_2$ is a subspace

1.3 Continuation

Definition. Given a linear map $f: V \to W$,

$$\ker f := \{v \in V \mid f(v) = 0\} \subseteq V$$

$$\operatorname{im} f := f(V) = \{w \in W \mid \exists v \in V, f(V) = W\}$$

Proposition. Given a linear $f: V \to W$,

- 1. f injective \iff ker $f = \{0\}$
- 2. f surjective \iff im f = W

"Pf". .

- 1. HW
- 2. Obvious

Definition. A linear $f: V \to W$ is an isomorphism if it is bijective.

Proposition. A linear map $f: V \to W$ is bijective if and only if it has a linear inverse.

Proof. Assume f is a bijection. Let $g:W\to V$ be the inverse. Need to check that g is linear. We know $f\circ g=Id_W$ and $g\circ f=Id_V$. Given $W_1,W_2\in W$,

$$g(W_1 + W_2) = g(f(g(W_1))) + f(g(W_2))$$

$$= g(f(g(W_1) + g(W_2)))$$

$$= g(W_1) + g(W_2)$$

$$g(cW_1) = g(cf(g(W_1)))$$

= $g(f(cg(W_1)))$
= $cg(W_1)$

Definition. V, W vector spaces/F

$$\mathcal{L}(V,W) := \{linear\ maps\ V \to W\} \subseteq \{functions\ V \to W\}$$

On HW: Check that $\mathcal{L}(V, W)$ is a vector space.

Proposition. If $f: U \to V$ and $g: V \to W$ are linear, then $g \circ f: V \to W$ is linear.

Proof.

$$(g \circ f)(cV_1) = g(f(cV_1))$$

$$= g(cf(V_1))$$

$$= cg(f(V_1))$$

$$= c(g \circ f)(V_1)$$

and similar for addition.

1.4 Linear maps from \mathbb{R}^n to \mathbb{R}^m

Definition. The <u>standard basis vectors</u> of \mathbb{R}^n are $e_i = (0, 0, \dots, 1, \dots, 0)$.

e.g.
$$e_1 = (1, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, \dots, 0, 1)$

Notation: if $X \in \mathbb{R}^n$, then $x = (x_1, \dots, x_n)$. Call x_i then ith component of x.

 $(e_i)_j = \delta_{ij}$ "Kronecker delta"

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Proposition. $\forall x \in \mathbb{R}^n$,

$$\forall i, x_i = a_i \Longleftrightarrow x = \sum_{i=1}^n a_i e_i$$

In other words, $x = \sum_{i=1}^{n} x_i e_i$.

Proof.

$$\sum_{i=1}^{n} x_i e_i = (1, 0, 0, \dots, 0) x_1 + (0, 1, \dots, 0) x_2 + \dots + (0, 0, \dots, 1) x_n$$
$$= (x_1, 0, 0, \dots, 0) + (0, x_2, 0, \dots) + \dots + (0, 0, \dots, x_n)$$
$$= (x_1, x_2, \dots, x_n)$$

In other words, any vector in \mathbb{R}^n can be uniquely written as a linear combinations of the e_i .

1.5 Matrices

Definition. For $m, n \in \mathbb{Z}_{\geq 0}$, an $m \times n$ matrix over F is a $m \times n$ box of elements of F.

$$e.g. \begin{bmatrix} 0 & 3 \\ -3 & \pi \\ 0 & 4 \end{bmatrix}$$

Better Definition. An $m \times n$ matrix A over F is a function $[m] \times [n] \to F$.

Notation: Write $A((i, j)) =: A_{ij}$

$$B = \begin{bmatrix} 1 & 0 \\ 2 & 5 \end{bmatrix} B_{11} = 1, B_{12} = 0, B_{21} = 2, B_{22} = 5$$

Set of $m \times n$ matrices over F is called $M_{m \times n}(F)$. It is a vector space!

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{pmatrix}$$
$$c \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = \begin{pmatrix} cA_{11} \\ cA_{21} \end{pmatrix}$$

Overall Result $\Rightarrow M_{m \times n}(F)$ is an F - vector space.

Will prove: $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is isomorphic to $M_{m \times n}(\mathbb{R})$.

2 January 27, 2020

2.1 TA Office Hours

M 9 - 11 (Carson) T 12-2 (Ahmed) W 9 - 12 (Sayan)

2.2 Classifying linear maps $\mathbb{R}^n \to \mathbb{R}^m$ by matrix

Want to defined a linear map $M: M_{m \times n}(\mathbb{R}) \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

$$A \mapsto (T : \mathbb{R}^n \to \mathbb{R}^m, T(x) = \begin{pmatrix} \sum_{j=1}^n A_{1j} x_j \\ \sum_{j=1}^n A_{2j}, x_j \\ \vdots \\ \sum_{j=1}^n A_{nj}, x_j \end{pmatrix})$$

We write

$$\begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n \end{bmatrix}$$

Check that $\mu(A)$ is linear $(T = \mu(A))$:

$$(T(x+y))_i = \sum_{j=1}^n A_{ij}(x_j + y_j)$$

$$= \sum_{j=1}^n A_{ij}x_j + \sum_{j=1}^n A_{ij}y_j$$

$$= (T(x))_i + (T(y))_i$$

$$= (T(x) + T(y))_i$$

$$(T(cx))_i = \sum_{j=1}^n A_{ij} cx_j$$
$$= c \sum_{j=1}^n A_{ij} x_j$$
$$= c(T(x))_i$$
$$= (cT(x))_i$$

2.3 Proof that matrices work as linear transformations of linear maps

Theorem 2.1. M is a linear isomorphism.

Proof. Let T_A denote $\mu(A)$.

Linearity: T_{A+B} sends x to the vector with i^{th} componen

$$\sum_{j=1}^{n} (A+B)_{ij} x_j = \sum_{j=1}^{n} (A_{ij} + B_j) x_j$$
$$= \sum_{j=1}^{n} A_{ij} x_j + \sum_{j=1}^{n} B_{ij} x_j$$

 $T_A + T_B$ sends x to vector w/ ith component.

$$\sum A_{ij}x_j + \sum B_{ij}x_j \checkmark$$

Scalar Multiplication - similar

Injective: Suffices to show that $\ker \mu = \{0\}$. Suppose $T_A(x) = \widehat{0}$ for all x. By plugginh in $e_i, \ldots, e_n \left[(e_i)_j = \delta_{ij} \right]$

$$(T_A(e_k))_i = \sum_{j=1}^n A_{ij}(e_k)_j = A_{ik} \cdot 1 = A_{ik} = 0 \Rightarrow A = 0$$

Surjective: Suppose we have a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$. Consider the vectors

$$T(e_k) = \begin{pmatrix} A_{1k} \\ \vdots \\ A_{mk} \end{pmatrix}$$

Now let $A \in M_{m \times n}(\mathbb{R})$ such that

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}$$

We have to check $T_A = T$. Need to check that $T_A(x) = T(x) \, \forall x \in \mathbb{R}^n$. Write $x = (x_1, \dots, x_n) = \sum_{i=1}^n x_i e_i$.

$$T_A(x) = T_A\left(\sum_{i=1}^{j} x_i e_i\right) = \sum_{i=1}^{n} x_i T_A(e_i)$$

$$T(x) = T\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i T(e_i)$$

So it suffices to show that $T_A(e_i) = T(e_i)$ for each i.

$$T(e_i) = \begin{pmatrix} A_{1i} \\ \vdots \\ A_{mi} \end{pmatrix}$$

$$T_A(e_i) = \begin{pmatrix} \sum_{j=1}^n A_{1i}(e_i)_j \\ \sum_{j=1}^n A_{2j}(e_j)_j \\ \vdots \\ \sum_{i=1}^n A_{nj}(e_i)_j \end{pmatrix} = \begin{pmatrix} A_{1i} \\ A_{2i} \\ \vdots \\ A_{mi} \end{pmatrix}$$

Lesson: Standard basis vectors are very useful!

2.4 Basis Vectors

Recall: A <u>linear combo</u> of $v_1, \ldots, v_n \in V$ is a vector of the form $\sum_{i=1}^n c_i v_i$ where F is a field and V is a vector space over F.

Definition. A <u>linear combo</u> of a set of vectors S is any vector of the form $\sum_{i=1}^{n} c_i v_i$ where $c_i \in F$ and $v_i \in S$.

Definition. A set of vectors $S \subseteq V$ <u>spans V</u> if every $v \in V$ is a linear combo of S.

i.e. $\forall v \in V, \exists v_i, \dots, v_n \in S \text{ and } c_i, \dots, c_n \in F \text{ such that } v = \sum_{i=1}^n c_i v_i.$ Write span(S) = V.

$$\underline{\mathrm{Ex}} \quad \mathrm{span}(\{e_1,\ldots,e_n\}) = \mathbb{R}^n$$

$$\underline{\mathbf{E}}\mathbf{x} \quad \{\} \text{ spans } \mathbb{R}^0 = \{0\}$$

$$\underline{\text{Ex}} \quad \text{span}(\{(1,0),(0,1),(3,2)\}) = \mathbb{R}^2$$

Definition. A set $S \subseteq V$ is linearly independent if whenever

$$\sum_{i=0}^{n} c_i v_i = 0 \Longrightarrow \ all \ c_i = 0$$

Note:

Linear Independence
$$\iff$$
 whenever $\sum_{i=1}^n c_i v_i = \sum_{i=1}^n d_i v_i, c_i = d_i$

3 January 29, 2020

3.1 Definitions from Last Class

Recall: Let $S \subseteq V \ V$ a v.s. /F

- 1. $S \underset{v}{\underline{\text{spans }}} V$ if for every $v \in V$, $\exists s_1, \dots, s_n \in S$ and $c_1, \dots, c_n \in F$ such that $v = \sum_{i=1}^n c_i s_i$.
- 2. S is linearly independent if whenever $\sum_{i=1}^{n} c_i s_i = \vec{0}$ with $c_i \in F$ and $s_i \in S$, we have $\forall i, c_i = 0$.

3.2 Examples of Linear Dependence/Independence

- 1. If $\vec{0} \in S$, then S is dependent. $c\vec{0} = \vec{0}$ for any c, so c can be $\neq 0$. Uniqueness fails.
- 2. $V = \mathbb{R}^3$. Take 3 vectors. These are independent.

$$(1,0,0) \quad (1,1,0) \quad (1,0,1)$$

$$c_1(1,0,0) + c_2(1,1,0) + c_3(1,0,1) = (0,0,0)$$

$$\begin{cases} c_1 + c_2 + c_3 = 0 \\ c_2 = 0 \\ c_3 = 0 \end{cases}$$

$$\Rightarrow c_i \text{ all } = 0$$

3. $V = \mathbb{R}^2$. Take 3 vectors. These are dependent.

$$(1,0)$$
 $(0,1)$ $(1,01)$

$$1 \cdot (1,0) + (-1) \cdot (0,1) + (-1)(1,-1) = (0,0).$$

Thus, coefficients not all = 0.

4. $V = \mathbb{R}^n$, set of standard basis elements is independent.

$$\sum_{i=1}^{n} c_i e_i = \vec{0} \Rightarrow c_i = 0$$

5. $S = \emptyset$ is independent. No coefficients to choose, so vacuous.

6. $S = \{V\}$ is independent $\iff V \neq \vec{0}$

7. $S = \{V_1, V_2\}$ is independent \iff there is no $c \in F$ such that $V_1 = CV_2$ or $V_2 = CV_1$.

S dependent $\iff \exists a, b \text{ not both zero such that } aV_1 + bV_2 = \vec{0}.$ If $a \neq 0$ then $V_1 = \frac{-b}{a}V_2$. If $b \neq 0$ then $V_2 = \frac{-a}{b}V_1$.

3.3 Basis

Definition. $S \subseteq V$ is a <u>basis</u> if S is linearly independent and S spans V.

 $\underline{\text{Ex}}$ Let $V = \text{all polynomials} / \mathbb{R}$.

Claim:
$$S = \{1, x, x^2, x^3, x^4, \ldots\}$$

= $\{x^n \mid n \in \mathbb{Z}_{\geq 0}\}$

S spans V by definition: every polynomial is $\sum_{i=1}^{n} c_i x_i = \text{linear combo of } x^i$.

S linearly independent: Check that $\sum_{i=1}^{n} c_i x^i = 0 \Rightarrow c_i = 0$ (from one long problem on final exam!)

Plug in $x = 0 \Rightarrow c_0 = 0$

$$\sum_{i=1}^{n} c_i i x^{i-1} = 0$$

Plug in $x = 0 \Rightarrow c_1 = 0$

etc... Keep differentiating

 $\underline{\mathbf{E}}\mathbf{x}$

$$f(x) = x(x-1)$$

$$g(x) = (x-1)(x-2)$$

$$h(x) = x(x-2)$$

Claim: These are independent.

$$c_1 f(x) + c_2 g(x) + c_3 h(x) = 0$$

Plug in $x = 0 \Rightarrow c_2 \cdot 2 = 0 \Rightarrow c_2 = 0$

Plug in $x = 1 \Rightarrow c_3(-1) = 0 \Rightarrow c_3 = 0$

Plug in $x = 2 \Rightarrow c_1 \cdot 2 = 0 \Rightarrow c_1 = 0$

Lemma 3.1 (Lemma of Preceding Elements). V v.s./F $v_1, \ldots v_n$ is a sequence of elements of V. Suppose that $\{v_1, \ldots, v_n\}$ is dependent.

 \Rightarrow Some v_k may be written as a linear combo of v_1, \ldots, v_{k-1} .

Proof. $\{v_1, \ldots, v_n\}$ dependent $\Rightarrow \exists c_1 \in F$ not all = 0 such that $\sum_{i=1}^n c_i v_i = \vec{0}$. Let c_k be the last nonzero coefficient.

Then
$$\sum_{i=1}^{k} c_i v_i = 0 \Rightarrow c_k v_k = -\sum_{i=1}^{k-1} c_i v_i$$
$$\Rightarrow v_k = -\frac{1}{c_k} \sum_{i=1}^{k-1} c_i v_i$$

Definition. A vector space is <u>finite dimensional</u> if it has a finite basis. It is infinite-dimensional if not.

 $\underline{\mathbf{E}}\mathbf{x}$ \mathbb{R}^n is a finite-dimensional vector space. (standard basis have n elements)

Theorem 3.2. Let $\{v_1, \ldots, v_n\}$ be a basis of V. Suppose $\{u_1, \ldots, u_k\}$ is independent. Then $k \leq n$. (i.e. a basis has max size over all independent sets)

Proof. Equivent: if k > n, then $\{u_1, \ldots, u_k\}$ are dependent.

 $u_1 \in \operatorname{span}\{v_1, \dots, v_n\}$

 (v_1, \ldots, v_n, u_1) is linearly dep.

 (u_1, v_1, \ldots, v_n) is linearly dep.

Lemma \Rightarrow some element is linear combination of previous elements.

If it's u_1 , then $v_1 = 0 \Rightarrow$ we're done.

If not, then $v_i \in \text{span}(u_1, v_1, \dots v_{i-1})$.

Therefore $\{u_1, v_1, v_2, \dots, v_{i-1}, v_{i+1}, \dots, v_n\}$ spans V

 $\Rightarrow \{u_1, v_1, \dots, \hat{v_i}(\text{hat} := \text{remove element}), \dots, v_n, u_2\} \text{ is dependent.}$

 $\Rightarrow \{u_1, u_2, v_1, \dots, \hat{v_i}, \dots, v_n\}$ is dependent.

Lemma \Rightarrow some element is combo of previous ones. If u_1 or u_2 is said element, we're done.

Proceed by induction: get that, since k > n, $\{u_1, u_2, \dots, u_n\}$ spans $V \Rightarrow u_{n+1}$ is linear combo of $\{u_1, \dots, u_n\}$ \Rightarrow we're done.

Corollary 3.2.1. Any two finite bases have some number of elements.

Proof

$$\{v_1, \dots v_n\}$$
 Thm $\Rightarrow k \leq n$
 $\{u_1, \dots, u_k\}$ Thm applied to Switching them $\Rightarrow n \leq k \Rightarrow k = n$.

Definition. V finite-dimensional v.s.

 $\dim(V) = number of elements in any basis of V$

 $\underline{\mathrm{Ex}}$ $\dim(\mathbb{R}^n) = n$

Proposition. If V is finite-dimensional, then any independent set $\{v_1, \ldots, v_k\}$ may be extended to a basis. (i.e. $\exists \{v_1, \ldots, v_n\}$ that is a basis)

Proof. If $\{v_1, \ldots, v_k\}$ spans V, we're done. Otherwise, pick some $v_{k+1} \in V$ - span $\{v_1, \ldots, v_k\}$. By lemma of preceding element, $\{v_1, \ldots, v_{k+1}\}$ still independent. Continue inductively.

4 February 3, 2020

4.1 Basis (Cont.)

Proposition. If V is finite-dimensional and $S = \{v_1, \ldots, v_n\}$ spans V, then there is a subset of S that is a basis for V.

Proof. If no v_i is a linear combination of v_1, \ldots, v_{i-1} , then we're done by lemma of preceding elements. Otherwise, consider the <u>first</u> v_j such that $v_j \in \text{span}$ $\{v_1, \ldots, v_{j-1}\}$. So throw out v_j and $\{v_1, \ldots, \hat{v_j}, \ldots, v_n\}$ still spans V. Continue inductively

Proposition. $S = \{v_1, \dots, v_n\} \subseteq V$ finite-dimensional. Any two of the following implies the third.

- 1. S is independent
- 2. S spans V
- $3. \dim V = n$

Proof.

- $(1) + (2) \Rightarrow (3)$ by definition of basis + dim.
- $(1) + 3 \Rightarrow 2$) We can fill out $\{v_i\}$ to be a basis by proposition last class. Such a basis has dim V = n elements, so we added nothing.
- $(2) + 3 \Rightarrow (3) \Rightarrow (3)$ By previous proposition we can take away elements to form a basis, but a basis has dim V = n elements, so we did nothing.

4.2 Construction Principle

Say we have two vector spaces V, W.

Theorem 4.1 (Construction Principle). Suppose v_1, \ldots, v_n is an ordered basis for V and $w_1, \ldots, w_m \in W$ Then $\exists!$ linear map $F: V \to W$ such that $F(v_i) = w_i \, \forall i$.

Proof. Define F as follows: if $v = \sum_{i=1}^{n} c_i v_i$, then let $F(v) = \sum_{i=1}^{n} c_i w_i$. Well-defined since expression for v in terms of v_i is unique. Also $F(v_i) = w_i$.

Linear: if $v = \sum c_i v_i$, $v' = \sum c_i' v_i$, then $F(v+v') = \sum (c_i + c_i') w_i = \sum c_i w_i + \sum c_i' w_i = F(v) + F(v')$. If $v = \sum c_i v_i$ and $c \in F$, then $cv = \sum (cc_i) v_i$. So $F(cv) = \sum cc_i w_i = c \sum c_i w_i = cF(v)$.

Uniqueness: Suppose G is another such function (i.e. G is linear and $G(v_i) = w_i \forall i$). Let $v \in V$ and write $v = \sum c_i v_i$. Then $G(v) = G(\sum c_i v_i) = \sum c_i G(v_i) = \sum c_i w_i = F(v)$. Works for any $v \in V$, therefore, F = G.

$$\underline{\operatorname{Ex}} \quad V = \operatorname{span} \{1, x, x^2, \dots, x^n\} \subset \mathcal{F}(\mathbb{RR})$$

$$= \operatorname{polynomials of degree} \leq n$$

Let $W = \mathbb{R}^{n+1}$. Thm $\Rightarrow \exists !$ a linear map sending x^i to e_{i+1} . Also, $\Rightarrow \exists !$ a linear map sending e_{i+1} to x^i . These are inverse maps! In particular $V \simeq W$. \simeq means isomorphism.

In general:

Corollary 4.1.1. Any finite dimensional vector space V with $\dim V = n$ is isomorphic to F^n .

Proof. Choose a basis for V and do the same as above example. \square

4.3 Rank-Nullity Theorem

Theorem 4.2 (Rank-Nullity). Let $T: V \to W$ linear, V finite dimensional. Then, $\operatorname{im}(T)$ is finite dimensional and

$$\dim(\ker T) + \dim(\operatorname{im} T) = \dim V$$

Proof. Let $\{v_1, \ldots, v_i\}$ be a basis of ker T. Extend to $\{v_1, \ldots, v_n\}$ a basis of V.

Claim: $T(v_{k+1}), \ldots, T(v_n)$ is a <u>basis</u> of im T (this suffices).

Span: Let $y \in \text{im } T$, so y = T(x) for some $x \in V$. Write $x = \sum_{i=1}^{n} c_i v_i, y = T(x) = T(\sum_{i=1}^{n} c_i v_i) = \sum_{i=1}^{n} c_i T(v_i) = \sum_{i=k+1}^{n} c_i T(v_i)$ since $T(v_i) = \vec{0}$ when $1 \le i \le k$.

Linear Independent:

$$\sum_{i=k+1}^{n} c_i T(v_i) = \vec{0} \Rightarrow T\left(\sum_{i=k+1}^{n} c_i v_i\right) = \vec{0}$$
$$\Rightarrow x = \sum_{i=k+1}^{n} c_i v_i \in \ker T$$

If $x \in kerT$, then we can write $x = \sum_{i=1}^{k} d_i v_i$

$$\vec{0} = x - x = \sum_{i=1}^{k} d_i v_i - \sum_{i=k+1}^{n} c_i v_i$$

 $\{v_1,\ldots,v_n\}$ linearly independent $\Rightarrow c_i=0$ and $d_i=0$.

Corollary 4.2.1. If dim $V = \dim W$ where V, W finite dimensional, and $T : V \to W$ linear, then T injective $\Leftrightarrow T$ surjective.

Proof. V injective $\Leftrightarrow \ker T = \{0\} \Leftrightarrow \dim \ker T = 0 \Leftrightarrow \dim \operatorname{im} T = \dim V = \dim W \Leftrightarrow \operatorname{im} T = W \Leftrightarrow T$ surjective. \square

Similar: if S and T are finite sets and |S| = |T| and $f: S \to T$, then f injective $\Leftrightarrow f$ surjective.

Ex Let
$$V = W = \mathcal{F}(\mathbb{Z}_{>0}, \mathbb{R})$$

$$T: V \to V$$

 $T(\{a_1, a_2, a_3, \ldots\}) = \{0, a_1, a_2, a_3, \ldots\}$

Claim T is linear, injective, not surjective.

$$T': V \to V$$

 $T'(\{a_1, a_2, \ldots\}) = \{a_2, a_3, a_4, \ldots\}$

T' is linear, surjective, <u>not</u> injective.

Note: Rank-nullity and corollary really only useful in finite dimensional case

5 February 5, 2020

5.1 Name

Proposition. Let V, W be finite dimensional over F and choose ordered bases $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots w_m\}$. Then $m : \mathcal{L}(V, M) \to M_{m \times n}(F)$ defined by m(T) = A where $T(v_j) = \sum_{i=1}^m A_{ij}w_i$ is an isomorphism of vector spaces.

Proof.

Linearity: If m(T) = A, m(S) = B, then we know

$$T(v_j) = \sum_{i=1}^{m} A_{ij} w_i$$
 $S(v_j) = \sum_{i=1}^{m} B_{ij} w_i$

$$(T+S)(v_j) = T(v_j) + S(v_j)$$

$$= \sum_{i=1}^m A_{ij}w_i + \sum_{i=1}^m B_{ij}w_i$$

$$= \sum_{i=1}^m (A_{ij} + B_{ij})w_i$$

$$= \sum_{i=1}^m (A+B)_{ij}w_i$$

So by definition of m, m(T+S) = A+B = m(T)+m(S). Scalar multiplication is similar.

Injectivity: If m(T) = m(S), then $T(v_j) = S(v_j)$ for all j. So by uniqueness part of construction theorem, T = S.

Surjectivity: Given A, let T be the linear map (given by construction theorem) taking v_j to $\sum_{i=1}^m A_{ij}w_i$. Then m(T) = A.

 $\underline{\mathbf{E}}\mathbf{x}$ $V = \mathbb{R}^2$ $W = \mathbb{R}^3$

Let T((x,y)) = (x+2y,-y,-x). Pick standard bases on \mathbb{R}^2 and \mathbb{R}^3 . What is m(T)?

$$(1,0) = e_1 \mapsto (1,0,-1) = 1 \cdot e_1 + 0 \cdot e_2 - 1 \cdot e_3$$

 $(0,1) = e_2 \mapsto (2,-1,0) = 2 \cdot e_1 - 1 \cdot e_2 + 0 \cdot e_3$

$$m(T) = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ -1 & 0 \end{bmatrix}$$

 $\underline{\mathbf{Ex}} \quad V = W = \{\text{polynomials over } \mathbb{R} \text{ of degree} \le 3\}$

Pick basis $\{1, x, x^2, x^3\}$. Consider $D: V \to V$. What is the matrix m(D)?

$$D(1) = 0 \quad D(x) = 1 \quad D(x^2) = 2x \quad D(x^3) = 3x^2$$

$$m(D) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

If m(T) = A, then how to compute T(v) in terms of A?

1. Write
$$v = \sum_{j=1}^{n} c_j v_j$$

2.
$$\begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} c_1 A_{11} + c_2 A_{12} + \dots + c_n A_{1n} \\ c_1 A_{21} + c_2 A_{22} + \dots + c_n A_{2n} \\ \vdots \\ c_1 A_{m1} + c_2 A_{m2} + \dots + c_n A_{mn} \end{bmatrix}$$

This is T(v) expressed in terms of $\{w_1, \ldots, w_n\}$.

$$T(v) = \left(\sum_{j=1}^{n} c_{j} A_{i1}\right) \cdot w_{1} + \left(\sum_{j=1}^{n} c_{j} A_{2j}\right) w_{2} + \dots + \left(\sum_{j=1}^{n} c_{j} c_{mj}\right) w_{m}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} c_{j} A_{ij}\right) w_{i}$$

$$= \sum_{i=1}^{n} c_{j} \left(\sum_{i=1}^{m} A_{ij} w_{i}\right)$$

Notation: Same if $m(T) = A \begin{cases} T(v) = w \\ Av = w \end{cases}$

5.2 Matrix Multiplication

$$U, V, W \ f.d./F$$
 $T: U \to V$ $S: V \to W$

Pick ordered bases $\{u_1, \ldots, u_m\}, \{v_1, \ldots, v_n\}, \text{ and } \{w_1, \ldots, w_p\}.$

Q: What is the relationship between $m(S), m(T), m(S \circ T)$?

We know m(S) is $M_{p\times n}$, m(T) is $M_{n\times m}$, and $m(S\circ T)$ is $M_{p\times m}$. Let A=m(S), B=m(T), and $C=m(S\circ T)$.

$$S(v_k) = \sum_{i=1}^n A_{ik} w_i \quad 1 \le k \le n$$

$$T(u_j) = \sum_{k=1}^n B_{kj} v_k \quad 1 \le j \le m$$

$$(S \circ T)(u_j) = S(T(u_j))$$

$$= S\left(\sum_{k=1}^n B_{kj} v_k\right)$$

$$= \sum_{k=1}^n B_{kj} S(v_k)$$

$$= \sum_{k=1}^n B_{kj} \sum_{i=1}^p A_{ik} w_i$$

$$= \sum_{k=1}^p \left(\sum_{k=1}^n A_{ik} B_{kj}\right) w_i$$

$$i.e. \quad C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

This defines $\underline{\text{matrix multiplication}} (AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$.

Theorem 5.1. With notation as above, m(S)m(T) = m(ST).

 $\underline{\mathbf{E}}\mathbf{x}$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad AB = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \quad AB = \begin{bmatrix} 3 & 4 \\ 3 & 8 \end{bmatrix} \quad BA = \begin{bmatrix} 1 & 2 \\ -1 & 10 \end{bmatrix}$$

Proposition. Let A, B, C be matrices/F.

- 1. (Associativity) If the produces make sense, (AB)C = A(BC).
- 2. (Right Distributivity) If A, B are same size and AC makes sense, then (A+B)C = AC + BC.
- 3. (Left Distributivity) If B, C are same size and AB makes sense, then A(B+C)=AB+AC.

Proof (Idea for 1). Use the fact that matrices classify linear maps. Pick v.s. U, V, W, X of correct dimension and ordered bases. Let A = m(R), B = m(S), C = m(T). We know $(R \circ S) \circ T = R \circ (S \circ T)$ because function compositions are associative. Apply m and then you get (AB)(C) = A(BC).

5.3 Preview for Next Class

$$\begin{cases} 3x + 2y = 0 \\ x - y = 0 \end{cases} (x, y) = (0, 0)$$

$$\begin{cases} 3x + 2y = 0 \\ 6x + 4y = 0 \end{cases}$$
 Entire line $(2t, -3t), t \in \mathbb{R}$