USB 总线接口芯片 CH375

中文手册 (二): USB 基本传输命令 版本: 4 http://wch.cn

1、附加命令

代码	命令名称	输入数据	输出数据	命令用途	
04H	SET_USB_SPEED	总线速度		设置 USB 总线速度	
OAH	GET_DEV_RATE	数据 07H	数据速率	获取 USB 设备的数据速率类型	
OBH	SET_RETRY	数据 25H		设置 USB 事务操作的重试次数	
		重试次数			
0FH	DELAY_100US		延时状态	延时 100uS	
13H	SET_USB_ADDR	地址值		设置 USB 地址	
1CH	SET_ENDP6	工作方式	(等 3uS)	设置 USB 主机端点的接收器	
1DH	SET_ENDP7	工作方式	(等 3uS)	设置 USB 主机端点的发送器	
27H	RD_USB_DATAO		数据长度	从当前 USB 中断的端点缓冲区	
2711			数据流	读取数据块	
41H	CLR_STALL	端点号	产生中断	控制传输:清除端点错误	
45H	SET_ADDRESS	地址值	产生中断	控制传输:设置 USB 地址	
46H	GET_DESCR	描述符类型	产生中断	控制传输: 获取描述符	
49H	SET_CONFIG	配置值	产生中断	控制传输:设置 USB 配置	
4DH	AUTO_SETUP		产生中断	自动配置 USB 设备	
4EH	ISSUE_TKN_X	同步标志	女 4 古 吹	发出同步令牌,执行事务	
		事务属性	产生中断		
4FH	ISSUE_TOKEN	事务属性	产生中断	发出令牌,执行事务	
50H	DISK_BOC_CMD		产生中断	执行 BulkOnly 传输协议的命令	
52H	DISK_RESET		产生中断	复位 USB 存储设备	
5DH	DISK_MAX_LUN		产生中断	获取 USB 存储设备的最大单元号	

如果输入数据是 USB 端点的收发器的工作方式,参考下表。

7474107 (X)112 000 10 M(H) (X) (H H) = 1 (F) (1 (X) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F						
工作方式字节	名称	工作方式的	位分析说明			
	同步触发标志	如果位7为1则位6为新的同步触发标志:				
位 7~位 6		00 或者 01=保持当前同步触发标志不变				
		10=同步触发标志置 0	11=同步触发标志置 1			
位 5∼位 4	(保留位)	(未定义,必须为0)				
位 3∼位 0	事务响应方式	必须是 0000				

1.1. 命令 SET_USB_SPEED

该命令设置 USB 总线速度(部分型号的芯片不支持该功能)。该命令需要输入 1 个数据,用于选择 USB 总线速度,00H 对应于 12Mbps 全速方式,02H 对应于 1.5Mbps 低速方式。CH375 的 USB 总线速度默认为 12Mbps 全速方式,并且在执行 SET_USB_MODE 命令设置 USB 工作模式后也会自动恢复到 12Mbps 全速方式。

1.2. 命令 GET_DEV_RATE

该命令获取当前连接的 USB 设备的数据速率类型。该命令需要输入 1 个数据 07H,输出为数据速

率类型,其位 4 为 1 则是 1.5Mbps 低速 USB 设备,否则是 12Mbps 全速 USB 设备。该命令仅在 USB 模式 5 (已启用的 USB 主机方式,不产生 SOF 包) 状态下有效。

1.3. 命令 SET_RETRY

该命令设置 USB 事务操作的重试次数。该命令需要输入两个数据,分别是数据 25H 和重试次数。重试次数的位 7 和位 6 指定 CH375 收到 NAK 应答时的处理方式,位 7 为 1 并且位 6 为 0 则无限重试(可以用 ABORT_NAK 命令临时放弃当前的重试),位 7 为 1 并且位 6 为 1 则有限重试 200mS 到 2S 左右,位 7 为 0 则将 NAK 作为结果通知单片机或者作为错误处理。重试次数的位 5~位 0 指定当 USB 设备应答超时后 CH375 的重试次数,为 0 则超时后不重试。

芯片复位后或者重新设置 USB 模式后的默认重试次数是 85H,所以收到 NAK 应答后将无限重试, USB 设备应答超时后将重试 5 次。

1.4. 命令 DELAY 100US

该命令用于延时 100uS,只支持并口方式。在延时期间并口输出数据 0,延时结束后并口输出数据为非 0 (通常是芯片版本号),单片机根据读出的数据判断延时是否结束。

1.5. 命令 SET_USB_ADDR

该命令设置 USB 设备地址。该命令需要输入 1 个数据,用于选择被操作的 USB 设备的地址。复位后或者 USB 设备连接或者断开后,USB 设备地址总是 00H,单片机通过默认地址 00H 与 USB 设备通讯,如果通过标准 USB 请求设置了 USB 设备的地址,那么也必须通过该命令设置相同的 USB 设备地址,以便 CH375 通过新地址与 USB 设备通讯。

1.6. 命令 SET ENDP6

该命令设置 USB 主机端点或者端点 2 的接收器。该命令需要输入 1 个数据,指定新的工作方式。例如,如果执行 IN 事务并希望收到 DATAO 而放弃 DATA1,那么必须通过该命令设置主机端点的接收器的同步触发标志为 0,相应的工作方式字节是 80H。通常情况下,该命令在 3uS 时间之内完成。

1.7. 命令 SET ENDP7

该命令设置 USB 主机端点或者端点 2 的发送器。该命令需要输入 1 个数据,指定新的工作方式。例如,如果执行 SETUP 或者 OUT 事务并希望发送 DATAO,那么必须通过该命令设置主机端点的发送器的同步触发标志为 0,相应的工作方式字节是 80H。如果希望发送 DATA1,则工作方式字节是 COH。通常情况下,该命令在 3uS 时间之内完成。

1.8. 命令 RD_USB_DATAO

该命令从当前 USB 中断的端点缓冲区中读取数据块。在 USB 主机方式下,该命令与 RD_USB_DATA 命令的功能完全相同,唯一区别是该命令的效率稍高。

1.9. 命令 CLR STALL

该命令是清除端点错误的控制传输命令。该命令需要输入 1 个数据,指定将被清除错误的 USB 设备的端点地址,对于 OUT 端点,有效地址是 01H~0FH,对于 IN 端点,有效地址是 81H~8FH。该命令用于简化标准 USB 请求 CLEAR_FEATURE,CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS,则说明命令执行成功,否则说明命令执行失败。

1.10. 命令 SET ADDRESS

该命令是设置 USB 地址的控制传输命令。该命令需要输入 1 个数据,指定新的 USB 设备地址,有效地址是 $00H\sim7FH$ 。该命令用于简化标准 USB 请求 SET_ADDRESS,CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS,则说明命令执行成功,否则说明命令执行失败。

1.11. 命令 GET DESCR

该命令是获取描述符的控制传输命令。该命令需要输入 1 个数据,指定将要获取的描述符的类型,有效类型是 1 或者 2,分别对应于 DEVICE 设备描述符和 CONFIGURATION 配置描述符,其中,配置描述符还包括接口描述符和端点描述符。该命令用于简化标准 USB 请求 GET_DESCRIPTOR,CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS,则说明命令执行成功,否则说明命令执行失败。由于 CH375 的控制传输缓冲区只有 64 个字节,所以当描述符的长度超过 64 字节时,CH375 将返回操作状态 USB_INT_BUF_OVER,对于该 USB 设备,单片机可以通过 ISSUE TOKEN 或者 ISSUE TKN X 命令自行处理控制传输。

1.12. 命令 SET CONFIG

该命令是设置 USB 配置的控制传输命令。该命令需要输入 1 个数据,指定新的 USB 配置值,配置值为 0 则取消配置,否则应该取自该 USB 设备的配置描述符中。该命令用于简化标准 USB 请求 SET_CONFIGURATION,CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS,则说明命令执行成功,否则说明命令执行失败。

1.13. 命令 AUTO SETUP

该命令用于自动配置 USB 设备。该命令用于简化普通 USB 设备的初始化步骤,相当于 GET_DESCR、SET_ADDRESS、SET_CONF I GURATION 等多个命令序列。CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS,则说明命令执行成功,否则说明命令执行失败。

1.14. 命令 ISSUE_TKN_X

该命令使 CH375 发出同步令牌,执行事务。该命令需要输入两个数据,分别是同步标志和事务属性。同步标志的位 7 为主机端点的接收器的同步触发标志,位 6 为主机端点的发送器的同步触发标志,位 5~位 0 必须为 0。事务属性的低 4 位指定事务的令牌 PID,高 4 位指定 USB 设备的目的端点号。CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS,则说明命令执行成功,否则说明命令执行失败。该命令与 ISSUE_TOKEN 命令的唯一区别是该命令在执行事务前总是先设置同步触发标志(相当于再加上 SET_ENDP?命令)。

1.15. 命令 ISSUE TOKEN

该命令使 CH375 发出令牌,执行事务。该命令需要输入 1 个数据,作为事务属性。事务属性的低 4 位指定事务的令牌 PID,高 4 位指定 USB 设备的目的端点号。CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS,则说明命令执行成功,否则说明命令执行失败,单片机可以根据操作状态进一步分析失败原因。

对于发送数据的 SETUP 事务和 OUT 事务,应该先通过 WR_USB_DATA7 命令写入准备发送的数据,然后再通过 ISSUE_TOKEN 命令执行事务;对于接收数据的 IN 事务,应该先通过 ISSUE_TOKEN 命令执行事务,当事务执行成功后,再通过 RD_USB_DATA 命令读出已经接收的数据。

例如,事务属性字节为 09H 时,则 CH375 从 USB 设备的默认端点 0 接收数据;事务属性字节为 21H 时,则 CH375 向 USB 设备的端点 2 发送数据;事务属性字节为 29H 时,则 CH375 从 USB 设备的端点 2 接收数据,该端点的地址是 82H。

下面是 CH375 支持的 USB 令牌 PID。

PID 字节	名称	说明
ODH	DEF_USB_PID_SETUP	发起控制传输,发送建立数据
01H	DEF_USB_PID_OUT	执行 0UT 事务,发送数据
09H	DEF_USB_PID_IN	执行 IN 事务,接收数据

1.16. 命令 DISK_BOC_CMD

该命令对 USB 存储设备执行 BulkOnly 传输协议的命令。在执行该命令之前,单片机必须先通过 WR_USB_DATA7 命令向 CH375 写入相应的 CBW 包,CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS 则说明命令执行成功,对于有返回数据的操作,可以由 RD USB DATA 命令获取返回数据。

1.17. 命令 DISK RESET

该命令通过控制传输复位 USB 存储设备。CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS 则说明命令执行成功。当 USB 存储设备发生错误时,CH375 会分析错误原因并根据需要自动选择是否复位 USB 设备。

完整的复位过程包括:通过该命令复位 USB 存储设备,通过 CLR_STALL 命令复位 Bulk-IN 端点,通过 CLR_STALL 命令复位 Bulk-OUT 端点。

1.18. 命令 DISK MAX LUN

该命令通过控制传输获取 USB 存储设备的最大逻辑单元号。CH375 在命令执行完成后向单片机请求中断,单片机可以读取中断状态作为该命令的操作状态。如果操作状态是 USB_INT_SUCCESS,那么可以由 RD_USB_DATA 命令获取数据,数据通常是 1 个字节。

2、外部固件

2.1. 概述

ISSUE_TOKEN 命令或者 ISSUE_TKN_X 命令用于执行基本的 USB 传输事务,是 USB 主机方式下固件编程中最基本的操作。

在此基础上,外部单片机可以按照 USB 协议的要求,自行处理 CH375 尚未直接提供简化命令的控制传输。再进一步,单片机可以按照 USB 协议的要求,自行处理各种特定类设备的 USB 协议,实现对 USB 设备的控制和数据交换。CH375 内置了 Mass-Storage 海量存储设备的 Bulk-Only 传输协议,对于使用 CBI 传输协议的 USB 存储设备,仍然需要外部单片机基于 ISSUE_TOKEN 命令或者 ISSUE_TKN_X 命令和控制传输命令自行处理。

2.2. 外部固件参考流程

在 CH375 评估板资料中提供了外部固件的参考程序,下述流程是外部单片机通过控制传输执行标准 USB 请求 GET_STATUS,获取 USB 设备的状态,供外部单片机设计固件程序时参考。

- (1) 控制传输的建立阶段
 - ① 发出 WR_USB_DATA7 命令将 8 个字节的请求数据写入输出缓冲区,请求数据依次是 80H、00H、00H、00H、00H、00H、00H,长度为 8。

- ② 发出 ISSUE_TKN_X 命令执行事务,同步标志为 00H,事务属性字节是 0DH,向默认端点 0 发出 SETUP 令牌及发送 DATAO。如果使用 ISSUE_TOKEN 命令执行事务,那么必须先用工作方式字节为 80H 的 SET_ENDP7 命令设置主机端点的发送器的同步触发标志为 0。
- ③ 单片机等待事务完成中断或者等待中断通知。
- ④ 事务完成后, CH375 将 INT#引脚设置为低电平, 向单片机请求中断;
- ⑤ 单片机进入中断服务程序,或者在主程序中收到中断的通知后退出等待。
- ⑥ 发出 GET STATUS 命令获取中断状态。
- ⑦ CH375 在 GET STATUS 命令完成后将 INT#引脚恢复为高电平,取消中断请求。
- ⑧ 单片机分析获得的中断状态,如果不是 USB_INT_SUCCESS 则操作失败,进行异常处理;如果是 USB_INT_SUCCESS 则事务执行成功,建立阶段完成。

(2) 控制传输的数据阶段

- ① 发出 ISSUE_TKN_X 命令执行事务,同步标志为 80H,事务属性字节是 09H,向默认端点 0 发出 IN 令牌及接收 DATA1。
- ② 单片机等待事务完成:事务完成后,CH375 请求单片机中断。
- ③ 发出 GET_STATUS 命令获取中断状态,CH375 撤消中断请求。
- ④ 单片机分析获得的中断状态,如果操作失败则进行异常处理;如果是 USB_INT_SUCCESS 则事务执行成功。
- ⑤ 发出 RD USB DATAO 命令获取 USB 设备返回的数据,并保存作为控制传输的返回结果。
- ⑥ 因为该控制传输只需要一次 IN 事务, 所以数据阶段完成。

(3) 控制传输的状态阶段

- ① 发出 WR USB DATA7 命令将 0 长度的状态数据写入输出缓冲区,长度为 0。
- ② 发出 ISSUE_TKN_X 命令执行事务,同步标志为 40H,事务属性字节是 01H,向默认端点 0 发出 0UT 令牌及发送 DATA1。
- ③ 单片机等待事务完成:事务完成后,CH375 请求单片机中断。
- ④ 发出 GET STATUS 命令获取中断状态, CH375 撤消中断请求。
- ⑤ 单片机分析获得的中断状态,如果操作失败则进行异常处理;如果是 USB_INT_SUCCESS 则事务执行成功,状态阶段完成。
- (4) 控制传输完成,在数据阶段中返回的数据作为标准 USB 请求 GET_STATUS 的返回数据,通常返回数据的长度是 2 字节。