Grado en Física

MECÁNICA CUÁNTICA I

Problemas

Tema 4: Formalismo

- 1. Calcula las siguientes relaciones de conmutación entre operadores:
 - (a) $[\hat{a}_+, \hat{a}_-]$ y $[\hat{a}_-, \hat{a}_+]$

con \hat{a}_+ y \hat{a}_- los operadores creación y destrucción respectivamente

- (b) $[\hat{p}_x, \hat{x}]$
- (c) Considerando un sistema de 2 dimensiones (x,y) calcula $[\hat{x}, \hat{p}_y]$
- 2. Para el oscilador armónico unidimensional el operador Hamiltoniano puede escribirse como:

$$\hat{H} = \hbar \, \omega \, (\hat{a}_- \hat{a}_+ - 1/2)$$

donde los operadores creación y destrucción vienen dados por:

$$\hat{a}_{\pm} = \frac{1}{\sqrt{2 \, \hbar \, m \, \omega}} \left(\mp i \, \hat{p} + m \, \omega \, \hat{x} \right)$$

Comprueba que al aplicar el operador Hamiltoniano \hat{H} sobre la función $\hat{a}_-\psi$, se reduce la energía en $\hbar\omega$

- 3. Construye la función para el segundo estado excitado de una partícula de masa m en un potencial armónico, $\Psi_2(x)$, partiendo del estado fundamental y utilizando el operador creación.
- 4. Para el oscilador armónico se cumple que:

$$\hat{a}_-\Psi_n = d_n\Psi_{n-1}$$

donde \hat{a}_{-} es el operador destrucción definido en el problema anterior. Calcula el factor $d_{n}.$

5. Demuestra las siguientes identidades para los operadores $\hat{A},\,\hat{B}$ y \hat{C} :

(a)
$$[\hat{A}, \hat{B}] = -[\hat{B}, \hat{A}]$$

(b)
$$[\hat{A} + \hat{B}, \hat{C}] = [\hat{A}, \hat{C}] + [\hat{B}, \hat{C}]$$

(c)
$$[\hat{A}, \hat{B}\,\hat{C}] = [\hat{A}, \hat{B}]\,\hat{C} + \hat{B}\,[\hat{A}, \hat{C}]$$

- 6. Supongamos que los operadores \hat{A} y \hat{B} conmutan con su conmutador, es decir, $[\hat{A}, [\hat{A}, \hat{B}]] = 0$ y $[\hat{B}, [\hat{A}, \hat{B}]] =$. Muestra que:
 - (a) $[\hat{A}, \widehat{B^n}] = n \, \widehat{B^{n-1}} \, [\hat{A}, \hat{B}]$
 - (b) $[\widehat{A}^{n}, \widehat{B}] = n \widehat{A}^{n-1} [\widehat{A}, \widehat{B}]$
- 7. Calcula las relaciones de conmutación entre distintas componentes del operador momento angular $\hat{L_x}$, $\hat{L_y}$, $\hat{L_z}$, considerando un sistema en 3 dimensiones:
 - (a) $[\hat{L}_x, \hat{L}_y]$ (b) $[\hat{L}_x, \hat{L}_x]$ (c) $[\hat{L}_x, \hat{L}_z]$
- 8. Muestra que para el oscilador armónico se cumple:

$$[\hat{H}, \hat{a}_+] = +\hbar \,\omega \hat{a}_+$$

si \hat{a}_+ es el operador de creación y $[\hat{H}, \hat{a}_-] = -\hbar \,\omega \,\hat{a}_-$ si \hat{a}_- es el operador de destrucción.

9. Prueba que el operador momento es un operador Hermítico: $\hat{p}=\hat{p}^{\dagger}$ Para ello prueba que:

$$<\Psi|\hat{p}|\Phi> = <\Phi|\hat{p}|\Psi>^*$$

con $|\Psi\rangle$ and $|\Phi\rangle$ dos estados normalizados.

10. Supongamos un sistema que tiene dos estados linealmente independientes:

$$|1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

cuyo Hamiltoniano toma la forma específica:

$$H = \begin{pmatrix} h & g \\ g & h \end{pmatrix}$$

donde g y h son constantes reales. Teniendo en cuenta que la forma más general de un estado es una combinación lineal de los dos estados anteriores, y el sistema en t=0 se encuentra en el estado 1, calcula cuál será su estado en un tiempo t.