Importing Required Library

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Importing students Score dataset

```
In [2]:
```

```
1 data=pd.read_csv('student.csv')
```

In [3]:

1 data

Out[3]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75
995	female	group E	master's degree	standard	completed	88	99	95
996	male	group C	high school	free/reduced	none	62	55	55
997	female	group C	high school	free/reduced	completed	59	71	65
998	female	group D	some college	standard	completed	68	78	77
999	female	group D	some college	free/reduced	none	77	86	86

1000 rows × 8 columns

Viewing first five rows of Data

```
In [4]:
```

1 data.head()

Out[4]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

Viewing last five rows of Data

In [5]:

1 data.tail()

Out[5]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
995	female	group E	master's degree	standard	completed	88	99	95
996	male	group C	high school	free/reduced	none	62	55	55
997	female	group C	high school	free/reduced	completed	59	71	65
998	female	group D	some college	standard	completed	68	78	77
999	female	group D	some college	free/reduced	none	77	86	86

Shape of Data

In [6]:

1 data.shape

Out[6]:

(1000, 8)

Fetching Information of Data

True

```
In [7]:
    data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
#
    Column
                                   Non-Null Count Dtype
     -----
0
    gender
                                   1000 non-null
                                                   object
1
    race/ethnicity
                                   1000 non-null
                                                   object
 2
    parental level of education 1000 non-null
                                                   object
 3
    lunch
                                   1000 non-null
                                                   object
 4
    test preparation course
                                   1000 non-null
                                                   object
5
    math score
                                   1000 non-null
                                                   int64
    reading score
                                   1000 non-null
                                                   int64
                                   1000 non-null
                                                   int64
    writing score
dtypes: int64(3), object(5)
memory usage: 62.6+ KB
In [8]:
    data['gender'].dtypes
Out[8]:
dtype('0')
In [9]:
   data['gender'].dtypes=='0'
Out[9]:
```

Fetching all Columns available in Data

Categorical value

```
In [11]:

1 cat_col = [fea for fea in data.columns if data[fea].dtype == '0']
```

Numerical value

```
In [12]:
```

1 num_col = [fea for fea in data.columns if data[fea].dtype != '0']

In [13]:

1 data[num_col]

Out[13]:

	math score	reading score	writing score
0	72	72	74
1	69	90	88
2	90	95	93
3	47	57	44
4	76	78	75
995	88	99	95
996	62	55	55
997	59	71	65
998	68	78	77
999	77	86	86

1000 rows × 3 columns

In [14]:

1 data[cat_col]

Out[14]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course
0	female	group B	bachelor's degree	standard	none
1	female	group C	some college	standard	completed
2	female	group B	master's degree	standard	none
3	male	group A	associate's degree	free/reduced	none
4	male	group C	some college	standard	none
995	female	group E	master's degree	standard	completed
996	male	group C	high school	free/reduced	none
997	female	group C	high school	free/reduced	completed
998	female	group D	some college	standard	completed
999	female	group D	some college	free/reduced	none

1000 rows × 5 columns

Check memory usage

In [16]:

1 data.memory_usage()

Out[16]:

Index	128
gender	8000
race/ethnicity	8000
parental level of education	8000
lunch	8000
test preparation course	8000
math score	8000
reading score	8000
writing score	8000
dtype: int64	

missing value

```
In [17]:
```

```
1 data.isnull()
```

Out[17]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
995	False	False	False	False	False	False	False	False
996	False	False	False	False	False	False	False	False
997	False	False	False	False	False	False	False	False
998	False	False	False	False	False	False	False	False
999	False	False	False	False	False	False	False	False

1000 rows × 8 columns

To check null value

```
In [17]:
```

```
data.isnull().sum().sum()
```

Out[17]:

0

To check duplicate value

```
In [18]:
```

```
1 data.duplicated().sum() #so there is no duplicate value in my data
```

Out[18]:

0

to check unique value where n indicate number

```
In [18]:
```

```
data.nunique()
Out[18]:
gender
                                 2
                                 5
race/ethnicity
parental level of education
                                 6
                                 2
                                 2
test preparation course
                                81
math score
reading score
                                72
writing score
                                77
dtype: int64
In [20]:
   data['gender'].unique()
```

Describe data with respect to statistics

```
In [19]:
```

Out[20]:

```
1 data.describe()
```

Out[19]:

	math score	reading score	writing score
count	1000.00000	1000.000000	1000.000000
mean	66.08900	69.169000	68.054000
std	15.16308	14.600192	15.195657
min	0.00000	17.000000	10.000000
25%	57.00000	59.000000	57.750000
50%	66.00000	70.000000	69.000000
75%	77.00000	79.000000	79.000000
max	100.00000	100.000000	100.000000

array(['female', 'male'], dtype=object)

In transform mode

Where T is transpose

In [22]:

1 data.describe().T

Out[22]:

	count	mean	std	min	25%	50%	75%	max
math score	1000.0	66.089	15.163080	0.0	57.00	66.0	77.0	100.0
reading score	1000.0	69.169	14.600192	17.0	59.00	70.0	79.0	100.0
writing score	1000.0	68.054	15.195657	10.0	57.75	69.0	79.0	100.0

To find Correlation

In [21]:

1 data.corr()

Out[21]:

	math score	reading score	writing score
math score	1.000000	0.817580	0.802642
reading score	0.817580	1.000000	0.954598
writing score	0.802642	0.954598	1.000000

To find covariance

In [24]:

1 data.cov()

Out[24]:

	math score	reading score	writing score
math score	229.918998	180.998958	184.939133
reading score	180.998958	213.165605	211.786661
writing score	184.939133	211.786661	230.907992

skewness of data

```
In [25]:
```

```
data.skew()
```

Out[25]:

math score -0.278935 reading score -0.259105 -0.289444 writing score

dtype: float64

Plotting of Data

In [26]:

```
sns.distplot(data['math score'])
```

Out[26]:

<AxesSubplot:xlabel='math score', ylabel='Density'>

To find the average score

```
In [22]:
```

```
(data['math score']+data['reading score']+data['writing score'])/3
```

Out[22]:

```
72.666667
0
1
       82.333333
2
       92.666667
3
       49.333333
       76.333333
995
       94.000000
996
       57.333333
997
       65.000000
       74.333333
998
999
       83.000000
```

Length: 1000, dtype: float64

Adding averagecolumn in dataset

```
In [25]:
```

data['Average']= (data['math score']+data['reading score']+data['writing score'])/3

In [26]:

1 data.head()

Out[26]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	Averaç
0	female	group B	bachelor's degree	standard	none	72	72	74	72.66666
1	female	group C	some college	standard	completed	69	90	88	82.33333
2	female	group B	master's degree	standard	none	90	95	93	92.66666
3	male	group A	associate's degree	free/reduced	none	47	57	44	49.33333
4	male	group C	some college	standard	none	76	78	75	76.33333
4									•

Using groupby operation with mean

In [28]:

1 data.groupby('gender').mean()

Out[28]:

	math score	reading score	writing score	Average	
gender					
female	63.633205	72.608108	72.467181	69.569498	
male	68.728216	65.473029	63.311203	65.837483	

```
In [29]:
```

```
data.groupby('gender').count()
```

Out[29]:

	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	Average
gender								
female	518	518	518	518	518	518	518	518
male	482	482	482	482	482	482	482	482

Question: you have to find out no of student whoever is having less than 30 marks

In [32]:

```
1 data[data['math score']<30].count()</pre>
```

Out[32]:

gender	14
race/ethnicity	14
parental level of education	14
lunch	14
test preparation course	14
math score	14
reading score	14
writing score	14
Average	14
dtype: int64	

Scipy.org for statistics lib

p value if p > 0.05 then the data will be normal distributed

In [37]:

```
1 data.columns
```

Out[37]:

In [38]:

```
1 data_num=data[num_col]
```

```
In [39]:
```

1 data_num.head()

Out[39]:

	math score	reading score	writing score
0	72	72	74
1	69	90	88
2	90	95	93
3	47	57	44
4	76	78	75

In [40]:

1 from scipy.stats import normaltest

Getting P value

In [41]:

normaltest(data_num['math score'])[1]*100

Out[41]:

0.04508029386993784

if p > 0.05 then my data will be normal distributed

In [42]:

1 sns.displot(data_num['math score'])

Out[42]:

<seaborn.axisgrid.FacetGrid at 0x1f37673ef10>

Outlier

In [44]:

1 sns.boxplot(data=data['math score'])

Out[44]:

<AxesSubplot:>


```
In [49]:
```

```
1 sns.boxplot(data=data['reading score'])
```

Out[49]:

<AxesSubplot:>

Quantile

```
In [50]:
```

```
1 q1 = data['math score'].quantile(0.25)
```

In [51]:

Inter Quantile Range

```
In [52]:
```

```
1 IQR= q3-q1
```

In [53]:

```
1 IQR
```

Out[53]:

20.0

```
In [54]:
```

```
1 upper_limit=q3+(1.5*IQR)
```

```
In [55]:
```

1 lower_limit=q1-(1.5*IQR)

In [56]:

1 upper_limit

Out[56]:

107.0

In [57]:

1 lower_limit

Out[57]:

27.0

In [58]:

1 data[data['math score']<lower_limit]</pre>

Out[58]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	Ave
17	female	group B	some high school	free/reduced	none	18	32	28	26.000
59	female	group C	some high school	free/reduced	none	0	17	10	9.000
145	female	group C	some college	free/reduced	none	22	39	33	31.330
338	female	group B	some high school	free/reduced	none	24	38	27	29.666
466	female	group D	associate's degree	free/reduced	none	26	31	38	31.666
787	female	group B	some college	standard	none	19	38	32	29.666
842	female	group B	high school	free/reduced	completed	23	44	36	34.330
980	female	group B	high school	free/reduced	none	8	24	23	18.33
4									•

```
In [59]:
  1 | data[data['math score']>upper_limit]
Out[59]:
                                                    test
                        parental level
                                                          math reading
                                                                         writing
   gender race/ethnicity
                                      lunch
                                             preparation
                                                                                 Average
                         of education
                                                          score
                                                                  score
                                                                          score
                                                 course
In [ ]:
  1
In [60]:
    data['math score'].quantile(1.00)
Out[60]:
100.0
In [61]:
    data['math score'].min()
Out[61]:
0
In [62]:
    data['math score'].max()
Out[62]:
100
In [63]:
    data['math score'].unique()
Out[63]:
                          47,
                                      71,
array([ 72,
               69,
                    90,
                                76,
                                            88,
                                                 40,
                                                       64,
                                                             38,
                                                                   58,
                                                                         65,
                                                                               78,
         50,
               18,
                    46,
                          54,
                                66,
                                      44,
                                            74,
                                                 73,
                                                       67,
                                                             70,
                                                                   62,
                                                                         63,
                                                                               56,
                    75,
                          57,
                                      53,
                                            59,
         97,
               81,
                                55,
                                                 82,
                                                       77,
                                                             33,
                                                                   52,
                                                                          0,
                                                                               79,
                                      49,
               45,
         39,
                    60,
                          61,
                                41,
                                            30,
                                                 80,
                                                       42,
                                                             27,
                                                                   43,
                                                                         68,
                                                                               85,
         98,
               87,
                    51,
                          99,
                                84,
                                      91,
                                           83,
                                                 89,
                                                       22, 100,
                                                                   96,
                                                                         94,
                                                                               48,
         35,
                          92,
                                      28,
                                                       95,
                                                                   29,
               34,
                    86,
                                37,
                                            24,
                                                 26,
                                                             36,
                                                                         32,
                                                                               93,
         19,
               23,
                     8], dtype=int64)
```

Graph Analysis

In [67]:

1 data

Out[67]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	Ave
0	female	group B	bachelor's degree	standard	none	72	72	74	72.666
1	female	group C	some college	standard	completed	69	90	88	82.33
2	female	group B	master's degree	standard	none	90	95	93	92.666
3	male	group A	associate's degree	free/reduced	none	47	57	44	49.33
4	male	group C	some college	standard	none	76	78	75	76.33
995	female	group E	master's degree	standard	completed	88	99	95	94.000
996	male	group C	high schoo l	free/reduced	none	62	55	55	57.33
997	female	group C	high schoo l	free/reduced	completed	59	71	65	65.000
998	female	group D	some college	standard	completed	68	78	77	74.33
999	female	group D	some college	free/reduced	none	77	86	86	83.000

1000 rows × 9 columns

localhost:8888/notebooks/FSDS-EDA OF STUDENTS SCORE.ipynb

In [68]:

1 sns.countplot(data['gender'])

Out[68]:

<AxesSubplot:xlabel='gender', ylabel='count'>

In [69]:

1 sns.countplot(data['race/ethnicity'])

Out[69]:

<AxesSubplot:xlabel='race/ethnicity', ylabel='count'>

In [70]:

1 df = data.groupby('gender').mean()

```
In [71]:
 1 df
Out[71]:
        math score reading score writing score
                                             Average
gender
         63.633205
                      72.608108
                                  72.467181 69.569498
 female
         68.728216
                      65.473029
                                  63.311203 65.837483
  male
In [72]:
 1 df['Average']
Out[72]:
gender
female
          69.569498
          65.837483
male
Name: Average, dtype: float64
In [73]:
 1 df['Average'][0]
Out[73]:
69.56949806949807
In [74]:
 1 df['Average'][1]
Out[74]:
65.8374827109267
In [75]:
 1 df['math score']
Out[75]:
gender
female
          63.633205
          68.728216
male
Name: math score, dtype: float64
In [76]:
   df['math score'][0]
Out[76]:
63.633204633204635
```

In [77]:

```
1 df['math score'][1]
```

Out[77]:

68.72821576763485

In [78]:

```
plt.figure(figsize=(10,10))
 2
   X=['Total avg','math avg']
   female_score=df['Average'][0],df['math score'][0]
   male_score=df['Average'][1],df['math score'][1]
   X_axis=np.arange(len(X))
   plt.bar(X_axis=0.2,male_score,0.4,label='male')
 7
   plt.bar(X axis+0.2,female score,0.4,label='female')
 8
   plt.xticks(X_axis,X)
9
   plt.ylabel('marks')
10
   plt.title('total avg vs math avg', fontweight='bold')
   plt.legend()
12
13
   plt.show()
```


In	[]:	
1		
In	[]:	
1		