

CONDITION BASED MONITORING AND PROGRNOSTICS APPROACH FOR AN AGING AIRCRAFT MAINTENANCE SYSTEM USING DEEP NEURAL NETS

Jim Brakefield

CBM & Prognostic Outline

Background: the plant, current practice

Converting University research into engineering

Neural Net background

Deep NN & Long Short Term Memory NN

OBSI C-5 Modernization

C-5 Modernization

- Replaced 1750 with PowerPC
- Replaced Jovial with C++
- Replaced Flight Engineer console with military laptop
- Replaced Tape Deck with PC-card
- Replaced printer
- Replaced Ground station with laptop
- Implemented SQL database
- Implemented interactive flight data viewer

C-5 Instrumentation Background

- C-5 Flight data recording
 - -800+ sensors
 - Most are discrete (digital)
 - Fault codes:
 - Implemented via scripting language using state & time
 - Variable recording rates
 - Typically use linear interpolation of analog signals
 - Use straight line interpolation of discrete signals

C-5 Turbine Inlet Temperature

Flight data file showing sensor problems: spikes, drop-out, offset error From OBSI QLD briefing 2003

CBM Algorithm Background

- Statistical Techniques
 - Extensive literature & numerous methods
 - Hot areas:
 - Bayesian Networks
 - Support Vector Machines
 - Independent Component Analysis
- Artificial Neural Net Techniques
 - Often used as a general purpose adaptive fit
 - AKA "non-linear modeling"
 - Advanced capabilities: Deep NN, LSTM

Other Applicable Technology

- Frequency Domain analysis
 - Bacharowski (2006)
 - Electronic signature analysis (ORNL)
- Accurate Modeling
 - Turso & Litt (2004)
- 3-layer Neural Net examples
 - Turso & Litt (2004)
 - Brotherton & Johnson (2001)

Implementation Perspective

- 2D map of data & computation dimensions
 - Effect of Moore's Law
- 2D map of complexity & maturity dimensions
 - Practicality
- Wetware versus software
 - The biological models give reassurance

Perspective: Data & Computation Dimensions

- Moore's law =>
 - With time, can approach problems using more memory & greater processing
- Computer Science has evolved along with hardware
 - Small Data & Efficient Computation =>
 - Exact reasoning using small data sets
 - Emphasis on efficient algorithms
 - Large Data =>
 - Statistical & Inexact Reasoning on large data sets
 - Big Computation =>
 - Genetic algorithms & gradient based learning
 - Both =>
 - Hybrids of Genetic Algorithms & Neural Nets

Perspective: Practicality

- Additional dimensions:
 - Algorithm Complexity
 - Occam's razor: Bias or prejudice against complexity
 - The world is getting more complex anyway
 - Automation (adaptive systems) is the solution
 - Algorithm Maturity
 - Engineering requires "well behaved" algorithms
 - Having a choice of algorithms so as to avoid over constraining the implementation

Biological neuron

Wetware Modeling

- O'Reilly & Frank (2006)
 - LSTM versus biology
 - Training efficiency match
- Koopman etal (2003)
 - LSTM versus spiking models
 - Performance match
- Izhikevich (2004)
 - Can generate many spiking behaviors via parameter adjustment

LSTM performance comparison

SIR 2 Store, 2 Shared Items

Fig 11b O'Reilly (2006)

LSTM generalization error

Phono Loop Generalization

Fig. 14b O'Reilly (2006)

3-layer Neural Net

Single Neuron

x_1 x_2 w_1 x_2 w_3 \vdots w_n b y

Neural Network

From pg. 3 Kushal (2006)

Neural Net Technology

- Kohonen Self-Organizing Map
 - Unsupervised classification
- 3-Layer
 - Assumes feature detectors are known
 - Many variations
- Multi-Layer
 - Learns feature detectors
 - Success with Convolutional Nets
 - Not suited for time domain (IMHO)
- Recursive
 - Full generality
 - Success with LSTM
 - Can handle long & variable time patterns

Convolutional NN

Fig. 2 LeCun 1998

OnBoard Software Inc.
A Division of MTC Technologies

Pg. 6 Kushal 2006

LSTM "neuron"

Fig. 3.1 Gers (2001)

LSTM Neural Net

Fig. 2 Hochreiter (1997)

LSTM Applications

- Signal integrity
 - Noise spikes
 - Offset errors (drop outs, calibration error)
 - Gain errors (e.g. transducer malfunction)
- Condition codes
 - Match existing
 - Refine existing
- Anomaly detection
 - Requires trainer

Summary

- Convolutional Nets can learn feature detectors
- LSTM Nets can handle variable time delays
- LSTM Nets comparable in performance to biological models
- LSTM can learn fault conditions

JIM BRAKEFIELD SR. SOFTWARE ENGINEER

12621 Silicon Dr. Ste. 113 San Antonio, TX 78249

Fax: (210) 932-1280

Main: (210) 932-1683

Direct: (210) 477-5376

www.onboard-software.com

jbrakefield@onboard-software.com

LSTM References

- S. Hochreiter & J. Schmidhuber 1997: *Long Short-Term Memory*, Neural Computation 9(8):1735-1780.
- F. Gers 2001: Long Short-Term Memory in Recurrent Neural Networks, Ph.D. Thesis, Ecole Polytechnique Federale De Lausanne.
- D. Wierstra, F. Gomez & J. Schmidhuber 2005: *Modeling Systems with Internal State using Evolino*, GECCO'05 pp1795-1802 ACM Press.
- Y. Bengio, P. Simard & P. Frasconi 1994: *Learning long-term dependencies with gradient descent is difficult*, IEEE Trans. Neural Networks 5(2)157-166.

Deep Neural Net References

- Y. LeCun et al. 2005: *Off-Road Obstacle Avoidance through End-to-End Learning*, NIPS 2005 & DARPA Q458.
- Y. LeCun et al. 1998: *Gradient-Based Learning Applied to Document Recognition*, Proceedings of the IEEE vol. 86, no. 11, pp. 2278-2324.
- G. Hinton, S. Osindero & Y. Teh 2006: A fast learning algorithm for deep belief nets, Neural Computation (to be published).
- A. Kushal: *Gradient Based Learning*, courses.ece.uiuc.edu/ece598/ ffl/paper_presentations/AkashKushal_NN.pdf

Current Best Practice References

- W. Bacharowski 2006: *Improving Machinery Vibration Analysis*, SIGNAL PATH designer #104, National Semiconductor.
- J. Turso & J. Litt 2004: *Intelligent, Robust Control of Deteriorated Turbofan Engines via Linear Parameter Varying Quadratic Lyapunov Function Design*, First Intelligent Systems Technical Conference.
- Oak Ridge National Laboratory: *Electrical Signature*Analysis (ESA) for aging aircraft and other defense applications.
 http://www.ornl.gov/sci/esa/basis background sub.shtml
- T. Brotherton & T. Johnson 2001: *Anomaly Detection for Advanced Military Aircraft Using Neural Networks*, Proceedings of the 2001 IEEE Aerospace Conference, Big Sky Montana.

Neurological Modeling References

- R. O'Reilly & M. Frank 2006: *Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia*, Neural Computation 18:283-328.
- E. Izhikevich 2004: Which Model to Use for Cortical Spiking Neurons, IEEE Trans. Neural Networks 15:1063-1070. http://vesicle.nsi.edu/users/izhikevich/publications/whichmod.htm

General References

- T. Hastie, R. Tibshirani & J. Friedman 2001: *The Elements of Statistical Learning*, Springer.
- R. Neapolitan 2004: *Learning Bayesian Networks*, Prentice Hall.
- N. Cristianini & J. Shawe-Taylor 2000: *Support Vector Machines*, Cambridge.
- J. Stone 2004: *Independent Component Analysis*, MIT Press.
- Judith Dayhoff 1990: *Neural network architectures: An introduction*, Van Nostrand Reinhold.
- Michael Arbib ed. 2002: *The Handbook of Brain Theory and Neural Networks*, 2nd ed., The MIT Press.
- T. Kohonen 2001: Self-Organizing Maps, 3rd ed., Springer.
- J. Sheppard & M. Kaufman 2004: *Advances in Diagnosis and Prognosis*, Autotestcon-2004 seminar.
- C. Villarreal & I. Cicek 2004: Automated Troubleshooting Tools for Minimizing Downtime and Reducing the Labor and Material Costs of C-5 Aircraft, Autotestcon-2004 pp 504-510.

Researcher's Web Sites

Jurgen Schmidhuber: www.idsia.ch/~juergen/rnn.html

Extensive LSTM references

Sepp Hochreiter: <u>ni.cs.tu-berlin.de/~hochreit</u>

Simplest LSTM software

Felix Gers: www.felixgers.de

Ph.D. thesis on LSTM

Faustin Gomez: http://www.idsia.ch/~tino/

Genetic Evolution of LSTM

Randall C. O'Reilly: psych.colorado.edu/~oreilly

PDP++

Yann LeCun: <u>yann.lecun.com</u>

Convolutional NN, tutorials & video examples

Geoffrey E. Hinton: www.cs.toronto.edu/~hinton

Convolutional NN, ibid.

LSTM Software

- Hochreiter: ni.cs.tu-berlin.de/~hochreit/soft.shtml
 - Simplest LSTM code
- LSTM Toolbox: idelnx81.hh.se/bioinf/index.html
 - In Matlab
- **SigmaPi:** sigmapi.sourceforge.net
 - Complete package based on LSTM
- O'Reilly: www.cnbc.cmu.edu/Resources/PDP++
 - Extensive neural simulation package, includes LSTM
- Gers: C++www.felixgers.de/SourceCode Data.html
 - As part of his thesis