解析函数的孤立奇点及留数

钟思佳

东南大学数学系

May 30, 2018

Outline

留数 定义 计算 例1. 求下列函数的奇点,并指出其类型

(1)
$$f(z) = z^2 (\sin \frac{1}{z})^{-1}$$

(2)
$$f(z) = \frac{(z+1)^2 \sin z}{z^2 (z^2-1)^2}$$

(3)
$$f(z) = \frac{1}{z^2(e^z - 1)}$$

$$(4) f(z) = z \cos \frac{1}{z}$$

在∞处

If
$$f(z)$$
在 $z=\infty$ 的去心邻域 $R<|z|<+\infty$ 内解析,Laurent展式为 $f(z)=\sum_{n=-\infty}^{+\infty}c_nz^n$ 令 $t=\frac{1}{z},\; \varphi(t)=f(\frac{1}{t})$ 在 $t=0$ 的去心邻域 $0<|t|<\frac{1}{R}$ 内解析,

Laurent展式为 $\varphi(t) = \sum_{n=0}^{+\infty} c_n t^{-n}$

规定:

$$t=0$$
, $\varphi(t)$ 可去奇点 m级极点 本性奇点 $z=\infty$, $f(z)$ 可去奇点 m级极点 本性奇点

- ▶ $z = \infty$ 为可去奇点: $\Leftrightarrow f(z) = \sum_{n = -\infty}^{+\infty} c_n z^n \ (R < |z| < \infty)$ 不含正幂项 $\Leftrightarrow \lim_{z \to \infty} f(z)$ 存在
- ▶ $z = \infty$ 为(m级) 极点: $\Leftrightarrow f(z) = \sum_{n = -\infty}^{+\infty} c_n z^n$ $(R < |z| < \infty)$ 只含有有限个正幂项, $C_m \neq 0$, $C_n = 0$, $(n = m + 1, m + 2, \cdots) \Leftrightarrow \lim_{z \to \infty} f(z) = \infty$
- ▶ $z = \infty$ 为本性奇点: $\Leftrightarrow f(z) = \sum_{n = -\infty}^{\infty} c_n z^n \ (R < |z| < \infty)$ 有 无穷多个正幂项 $\Leftrightarrow \lim_{z \to \infty} f(z)$ 不存在且不为 ∞

例2.
$$\frac{\sin z}{z^3}$$
, ∞ 为什么类型奇点? 0?

留数

设
$$z = z_0$$
 是 $f(z)$ 的孤立奇点, 在 $0 < |z - z_0| < \delta$ 展成Laurent展式: $f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - z_0)^n$ 。 $L: 0 < |z - z_0| < \delta$ 包含 z_0 的任一条逆时针方向的简单闭曲线, 称

$$c_{-1} = \frac{1}{2\pi i} \oint_I f(z) dz$$

为f(z) 在 z_0 的留数,记为 $Res[f(z), z_0]$, i.e.

$$Res[f(z), z_0] = \frac{1}{2\pi i} \oint_I f(z) dz = c_{-1}.$$

无穷远点 ∞ 处的留数:

设f(z)在无穷远点 $z = \infty$ 的去心邻域 $R < |z| < +\infty$ 内解析,L: $R < |z| < \infty$ 包含 z_0 的任一条逆时针方向的简单闭曲 线,f(z)在 ∞ 处的留数定义为:

$$Res[f(z), \infty] = \frac{1}{2\pi i} \oint_{I^{-}} f(z) dz = -c_{-1}.$$

留数计算方法

- 1. if z_0 为 f(z)的可去奇点,则 $Res[f(z), z_0] = 0$
- 2. if z_0 为 f(z)的1级极点,则 $Res[f(z),z_0] = \lim_{z \to z_0} (z-z_0)f(z)$
- 3. if z_0 为 f(z) 的m级极点,则 $Res[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z))$
- 4. 设 $f(z) = \frac{P(z)}{Q(z)}$, P(z), Q(z)在 z_0 解析,且 $P(z_0) \neq 0$, $Q(z_0) = 0$, $Q'(z_0) \neq 0$, 则 $Res[f(z), z_0] = \frac{P(z_0)}{Q'(z_0)}$
- 5. $Res[f(z), \infty] = -Res[f(\frac{1}{z})\frac{1}{z^2}, 0]$

Remarks:

- ► 在(3) 中取*m* = 1 ⇒ (2)
- ▶ 由 (3) 的证明, if 级数小于m, 也可以当m来计算

例3. 求奇点并计算留数

(1)
$$f(z) = \frac{3z+2}{z^2(z+2)}$$

三种方法:

- 1. Laurent展开
- 2. 由定义: $Res[f(z), z_0] = c_{-1} = \frac{1}{2\pi i} \oint_L f(z) dz$, $Res[f(z), \infty] = -c_{-1} = \frac{1}{2\pi i} \oint_{L^-} f(z) dz$
- 3. 由计算方法