Į	班号	半 早	姓名	成绩
Ļ	江 与	子写	灶石	万义 少贝

《离散数学(2)》期末考试卷

注意事项: 1、请大家仔细审题

2、千万不能违反考场纪律

题目:

一、判断题

(每小题 2 分, 共 20 分)

(20分)

- $(\sqrt{\ })$ 1. 若 A \oplus B = \emptyset , 则 A = B。
- $(\sqrt{\ })$ 2. $A \times B = \emptyset$ 当且仅当 $A = \emptyset$ 或 $B = \emptyset$ 。
- (x) 3. 设 A, B 为任意两个集合,则 $\rho(A) \cup \rho(B) = \rho(A \cup B)$ 。
- (x) 4. 设 R_1 、 R_2 为 A 上的等价关系,则 $R_1 \circ R_2$ 也为 A 上的等价关系。
- (x) 5. 若 R 是集合 A 上的二元关系,则 st (R) = ts (R)。
- (\mathbf{x}) 6. 设 \subseteq 为 A 的幂集 $\mathbf{p}(A)$ 上的包含关系,则< $\mathbf{p}(A)$, \subseteq > 是全序结构。
- (\mathbf{x}) 7. 设 \mathbf{Q}_{+} 为正有理数集合,则 $<\mathbf{Q}_{+}$, $\leq>$ 是良序结构。
- ($\sqrt{\ }$) 8. 自然数的幂集 $\rho(N)$ 与实数集 **R** 等势。
- (x)9. 任何图均有奇数个偶结点。
- (√) 10. n 阶二叉树有 (n-1)/2个分支结点。

错一道,扣2分

二、设 $A = \{1, 2, 3, 4\}$ 上的二元关系 R_1 和 R_2 定义如下: $R_1 = \{<1, 1>, <1, 2>, <2, 1>, <2, 3>, <3, 4>, <4, 1>\}$

 $R_2 = \{<1, 1>, <1, 3>, <2, 2>, <2, 4>, <3, 3>, <4, 4>\}$

- 1) 试分别指出 R_1 和 R_2 所具有的性质(即是否具有自反性,反自反性,对称性,反对称性和传递性这五种性质)。
- 2) 试求出 R_1^2 , $R_1 \circ R_2$ 和 R_2^+ 。

解:

1) R_1 不具有这五种性质中的任何一种; (5 问,错一问,扣 1 分)

R₂具有自反性,反对称性和传递性。(5 问,错一问,扣 1 分)

2) 试求出 R_1^2 , $R_1 \circ R_2$ 和 R_2^+ 。(分别为 **3** 分, **3** 分, **4** 分)

$$\mathfrak{M}: R_1^2 = \{ \langle 1,1 \rangle, \langle 1,2 \rangle, \langle 1,3 \rangle, \langle 2,1 \rangle, \langle 2,2 \rangle, \langle 2,4 \rangle, \langle 3,1 \rangle, \langle 4,1 \rangle, \langle 4,2 \rangle \}$$

$$R_1 \circ R_2 = \{ <1,1>, <1,2><1,3>, <1,4>, <2,1><2,3>, <3,4), <4,1>, <4,3> \}$$

$$R_2^+ = \{ <1,1>,<1,3>,<2,2>,<2,4>,<3,3>,<4,4> \}$$

三、设 A 上的二元关系 R 是全序,证明: $R \circ R$ 也是全序。 (14 分)

证明: 欲证 RoR 是全序,只需证明 RoR 是偏序,且对任意的两个元素 $x \in A, y \in A$,都有 xR^2y 或者 yR^2x 。

全序 R 显然是自反的、反对称的、传递的。 先证 RoR 是 A 上的偏序关系:

1) RoR 的自反性: 因 R 是自反的, 所以 $\forall x \in A$ 都有 $\langle x, x \rangle \in R$,

由 $< x, x > \in R$, $< x, x > \in R$ 得到 $< x, x > \in R \circ R$

因此, $R \circ R$ 有自反性 (3分)

2) RoR 的反对称性: 假设有 $< x, y > \in R \circ R$ 且 $< y, x > \in R \circ R$

则 $\exists r$ 使得 $< x, r > \in R, < r, y > \in R$

 $\exists s$ 使得 $< y, s > \in R, < s, x > \in R$

因为 R 具有传递性,所以有 $< s, r > \in R, < r, s > \in R$ 而 R 为反对称的,则 r = s

 $\therefore < x, r >, < r, y >, < y, r >, < r, x > \in R$

又因为 R 是具有传递性,所以有 $< x, y > \in R, < y, x > \in R$ 又因为 R 是反对称的,所以 x = y

 $:: R \circ R$ 有反对称性 (3分)

3) RoR 的传递性: 假设有 $\langle x, y \rangle \in R \circ R$ 且 $\langle y, z \rangle \in R \circ R$

则 $\exists r$ 使得 $< x, r > \in R, < r, y > \in R$

 $\exists s$ 使得 $< y, s > \in R, < s, z > \in R$

因为 R 具有传递性,所以有 $< x, y > \in R$, $< y, z > \in R$

所以有 $< x, z > \in R \circ R$

∴ R∘ R 有传递性 (4 分)

所以, RoR 是 A 上的偏序关系。

再证明对任意的两个元素 $x \in A, y \in A$,都有 xR^2y 或者 yR^2x

证明: $\forall x, y \in A$, 由于 R 为全序,则 $< x, y > \in R$ 或 $< y, x > \in R$

若 $< x, y > \in R$,则由 $< y, y > \in R$ 可得到 $< x, y > \in R \circ R$

若 $< y,x>\in R$,则由 $< x,x>\in R$ 可得到 $< y,x>\in R\circ R$

所以对任意的两个元素 $x \in A, y \in A$,都有 xR^2y 或者 yR^2x (4分) 综上所述: $R \circ R$ 为 A 上的全序关系。

四、设 f: $X \rightarrow Y$ 和 g: $Y \rightarrow Z$

(16分)

- 1) 若f和g都是单射,则gof也是单射;
- 2) 若gof是单射,则f是单射。

证明:

1) 若 x_1 , $x_2 \in X$ 且 $x_1 \neq x_2$

↓ f 单射
$$f(x_1) \neq f(x_2)$$
↓ g 単射
$$g(f(x_1)) \neq g(f(x_2))$$

$$(gof)(x_1) \neq (gof)(x_2)$$

故 gof 为单射 (8分)

2) 证明:用反证法:

假设 f 不是单射,则有 x_1 , $x_2 \in X$ 且 $x_1 \neq x_2$ 使

$$f(x_1) = f(x_2)$$
,

因此 $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2)$,

这与 gof 为单射矛盾。

所以假设不成立,即 f 为单射。(8分)

五、试求叶的权分别为 5, 10, 17, 23, 29, 37, 41, 49 的**最优叶加权二叉树**及其**叶加权路径长度**。 (12 分)

解:

1) 最优叶加权二叉树为:

<u>5</u> <u>10</u> 17 23 29 37 41 49

<u>15</u>	<u>17</u>	23	29	37	41	49
	32	<u>23</u>	<u>29</u>	37	41	49
	<u>32</u>		52	<u>37</u>	41	49
			52	69	<u>41</u>	<u>49</u>
			<u>52</u>	<u>69</u>		90
				<u>121</u>		<u>90</u>
						211

(4分)

最优加权二叉树

(4分)

2) 其叶加权路径长度 L=15+32+69+52+121+90+211=590。 (4分)

六、设 n 阶**连通无向图** G 恰有 n-1 条边,直接用**归纳法**证明: G 是**非循环的**。 (10 分)

证明: 施归纳于 n:

当 n = 1 时,由 G 有 n-1 条边可知:G 有 0 条边,即 G 没有自圈,G 是**非循环的,**因此命题为真。(2 分)

假设对任意 $k \ge 1$, 当 n = k 时命题为真。(1分)

当 n = k+1 时:因 G 为**连通的**,且有 k 条边,故任意结点 v 的度数 $d_G(v) \ge 1$ 。若 G 中任意结点 v 的度数 $d_G(v) \ge 2$,则 G 的度 $\ge 2(k+1)$,则 G 中边的个数 $\ge k+1$;这与 G 有 k 条边的条件矛盾!因此,G 中必有结点 v_1 的度数 $d_G(v_1)=1$ 。(3 分)

综上所述,命题为真。(1分)

七、设 n 阶简单有向图 $G = \langle V, E, \psi \rangle$ 的基础图为简单完全无向图,证明:

$$\sum_{v \in V} (d_G^+(v))^2 = \sum_{v \in V} (d_G^-(v))^2 \, . \tag{8 \%}$$

证明:对n阶简单有向图G有:

$$\sum_{v \in V} d_G^+(v) = \sum_{v \in V} d_G^-(v)$$

$$\text{EV}: \sum_{v \in V} (d_G^+(v) - d_G^-(v)) = 0 \qquad (3 \%)$$

又因为 G 的基础图为简单完全无向图,则对 G 中的任意节点 v:

$$d_G^+(v) + d_G^-(v) = \text{n-1} \ (2 \ \%)$$

故:
$$\sum_{v \in V} (d_G^+(v) - d_G^-(v))(d_G^+(v) + d_G^-(v)) = \sum_{v \in V} (d_G^+(v) - d_G^-(v))(n-1) = 0$$

$$\sum_{v \in V} (d_G^+(v)^2 - d_G^-(v)^2) = 0 \quad (3 \, \%)$$

因此:
$$\sum_{v \in V} (d_G^+(v))^2 = \sum_{v \in V} (d_G^-(v))^2$$