Fonctions logarithmiques

I. Fonction Logarithme Népérien

Activité

- 1. Montrer que la fonction $f: x \mapsto \frac{1}{x}$ admet une primitive sur $]0, +\infty[$.
- 2. La primitive de f sur $]0,+\infty[$ qui s'annule en 1 est appelée fonction logarithme népérien et se note par ln.
- 3. Étudier les variations de la fonction ln sur $]0, +\infty[$.
- 4. Déduire que $\forall (x,y) \in \mathbb{R}^{*2}_+ : \ln(x) > \ln(y) \Leftrightarrow x > y$.
- 5. Étudier le signe de la fonction ln sur $]0, +\infty[$.

1. Définition et propriétés

Définition : La fonction **logarithme népérien** est la primitive de la fonction $x \mapsto \frac{1}{x} \operatorname{sur}]0, +\infty[$ qui s'annule en 1, et se note par ln ou Log.

Remarque

Le domaine de définition de la fonction $x \mapsto \ln(u(x))$ est $D = \{x \in \mathbb{R} \mid u(x) > 0\}$.

Application 1

Déterminer l'ensemble de définition de la fonction f dans les cas suivants :

- 1. $f(x) = \ln(3x + 9)$
- $2. \ f(x) = \ln\left(\frac{x+1}{x-2}\right)$
- 3. $f(x) = \ln(x^2 2x)$
- 4. $f(x) = \ln(|2x 1|)$

Propriétés

- La fonction ln est continue et strictement croissante sur $]0, +\infty[$.
- $\forall (x,y) \in \mathbb{R}_+^{*2} : \ln(x) > \ln(y) \Leftrightarrow x > y.$
- $\forall (x,y) \in \mathbb{R}_+^{*2} : \ln(x) = \ln(y) \Leftrightarrow x = y.$

Application 2

Résoudre dans $\mathbb R$ les équations et les inéquations suivantes :

- 1. $\ln(x-1) = \ln(2-x)$
- 2. $\ln(x^2 2x) = 0$
- 3. $\ln(2x-1) \ge \ln(x)$
- 4. $\ln(x^2 3x + 3) < 0$

Propriétés

- $\ln(x) > 0 \Leftrightarrow x > 1$.
- $\ln(x) < 0 \Leftrightarrow 0 < x < 1$.

Application 3

Déterminer l'ensemble de définition de la fonction f dans les cas suivants :

- 1. $f(x) = \ln(\ln x)$
- 2. $f(x) = \sqrt{(x-2)\ln(x)}$

Propriétés

Soient a et b deux réels strictement positifs et $r \in \mathbb{Q}^*$, on a :

- $\ln(ab) = \ln(a) + \ln(b)$
- $\ln(a^r) = r \ln(a)$
- $\ln(\frac{1}{a}) = -\ln(a)$
- $\ln(\frac{a}{b}) = \ln(a) \ln(b)$

Exemples

- $\ln(\sqrt{8}) = \frac{1}{2}\ln(8) = \frac{1}{2}\ln(2^3) = \frac{3}{2}\ln(2)$.
- $\ln(\frac{3}{4}) + \ln(\frac{4}{3}) = \ln(3) \ln(4) + \ln(4) \ln(3) = 0.$

Application 4

- 1. Simplifier les expressions suivantes $A = \ln(9) + \ln\sqrt{3} \ln(81)$ et $B = \ln(\sqrt{2 + \sqrt{2}}) + \ln(\sqrt{2 \sqrt{2}})$.
- 2. Résoudre dans \mathbb{R} l'équation suivante (E): $\ln(x^2 1) + 2\ln(2) = \ln(4x 1)$.

Exercice

- 1. Soient a et b deux nombres de \mathbb{R}_+^* . Simplifier le nombre suivant : ...
- $A = \ln(ab^2) \ln(\sqrt[3]{a^2b^5}) + \ln(\frac{a}{\sqrt{b}}) \ln(\sqrt[4]{a^2b^6}).$
- 2. Résoudre dans \mathbb{R} l'équation suivante : $\ln(x-1) + \ln(x-3) = \ln(3)$.

Propriété

- L'équation $\ln(x) = 1$ admet une solution unique sur $[0, +\infty[$ qui se note par e $(e \approx 2, 71)$.
- Pour tout $r \in \mathbb{Q}$, on a : $\ln(e^r) = r$.

Exemple

Résolvons l'équation $4 \ln(x) = 3$.

Soit
$$x > 0$$
. On a $4 \ln(x) = 3 \Leftrightarrow \ln(x) = \frac{3}{4} \Leftrightarrow \ln(x) = \ln(e^{3/4}) \Leftrightarrow x = e^{3/4}$.

Puisque $e^{3/4} > 0$, alors l'ensemble de solutions de cette équation est $S = \{e^{3/4}\}$.

Application

- 1. Résoudre dans \mathbb{R} l'équation $x^2 4x + 3 = 0$.
- 2. En déduire les solutions de l'équation $\ln(x)^2 4\ln(x) + 3 = 0$.

Exercice

Résoudre dans \mathbb{R} ce qui suit :

1.
$$\ln^2 x - \ln x = 0$$

2.
$$\ln^2(x) + \ln(x) - 6 \ge 0$$

3.
$$(\ln x^2 + \ln y^5 = 16)$$
 et $(\ln x^3 + \ln y^3 = 6)$

4.
$$(x - y = 2)$$
 et $(\ln x + \ln y = \ln 3)$

2. Limites usuelles

Propriétés

•
$$\lim_{x\to+\infty} \ln x = +\infty$$

•
$$\lim_{x\to 0^+} \ln x = -\infty$$

•
$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

•
$$\lim_{x \to 0^+} x \ln x = 0$$

•
$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$$
 $(n \in \mathbb{N}^*)$

•
$$\lim_{x\to 0^+} x^n \ln x = 0$$
 $(n \in \mathbb{N}^*)$

•
$$\lim_{x \to 1} \frac{\ln x}{x - 1} = 1$$

•
$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

Exemple

Calculons $\lim_{x\to+\infty} \ln x - x$. On a $\lim_{x\to+\infty} \ln x - x = \lim_{x\to+\infty} x(\frac{\ln x}{x} - 1) = -\infty$ parce que $\lim_{x \to +\infty} \frac{\ln x}{x} - 1 = -1.$

Application

Calculer les limites suivantes :

1.
$$\lim_{x\to+\infty} \ln x - \sqrt{x}$$

4.
$$\lim_{x\to 0^+} \ln(\frac{x}{x+1})$$

1.
$$\lim_{x \to +\infty} \ln x - \sqrt{x}$$
 4. $\lim_{x \to 0^+} \ln(\frac{x}{x+1})$ 7. $\lim_{x \to +\infty} 2 \ln^2 x - \ln x + 1$

2.
$$\lim_{x\to+\infty} \frac{\ln x}{\sqrt{x}}$$

5.
$$\lim_{x \to +\infty} \frac{\ln x}{\ln(x^2+1)}$$

8.
$$\lim_{x\to 2^-} \ln(2-x)$$

3.
$$\lim_{x\to+\infty} \frac{\ln x+4}{x^2}$$

6.
$$\lim_{x \to +\infty} \ln(x^2 + 1) - x^5$$
 9. $\lim_{x \to 3} \frac{\ln(\frac{x}{3})}{x-3}$

9.
$$\lim_{x\to 3} \frac{\ln(\frac{x}{3})}{x-3}$$

3. Étude de la fonction $x \mapsto \ln x$

x	0	$+\infty$
1 ()	,	$+\infty$
ln(x)		
	$-\infty$	

Les branches infinies:

- On a $\lim_{x\to 0^+} \ln x = -\infty$, alors l'axe des ordonnées est une asymptote verticale de (C_{\ln}) .
- On a $\lim_{x\to +\infty} \ln x = +\infty$ et $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$, alors la courbe (C_{\ln}) admet une branche parabolique de direction l'axe des abscisses.

Concavité de la courbe de $x \mapsto \ln(x)$:

Pour tout x > 0, on a $(\ln(x))'' = -\frac{1}{x^2} < 0$, alors la courbe (C_{\ln}) est concave.

Représentation graphique de $x \mapsto \ln(x)$:

4. Dérivée de la fonction $x \mapsto \ln x$

Propriété

- ullet Si u est une fonction dérivable et strictement positive sur un intervalle I, alors la fonction $f: x \mapsto \ln(u(x))$ est dérivable sur I et on a : $(\forall x \in I): f'(x) = \frac{u'(x)}{u(x)}$.
- Si u est une fonction dérivable et ne s'annule pas sur l'intervalle I, alors la fonction $f: x \mapsto$ $\ln(|u(x)|)$ est dérivable sur I et on a : $(\forall x \in I): f'(x) = \frac{u'(x)}{u(x)}$

Exemple

On considère la fonction définie sur $]0, +\infty[$ par $f(x) = \ln(\sqrt{x})$.

Comme la fonction $x \mapsto \sqrt{x}$ est dérivable et strictement positive sur $[0, +\infty[$, alors la fonction f est dérivable sur $]0, +\infty[$.

Et on a : $(\forall x \in]0, +\infty[) : f'(x) = \frac{(\sqrt{x})'}{\sqrt{x}} = \frac{\frac{1}{2\sqrt{x}}}{\sqrt{x}} = \frac{1}{2x}.$

Application

- 1. Montrer que $f \mapsto \ln(x^2 x + 1)$ est dérivable sur \mathbb{R} puis déterminer sa dérivée.
- 2. Déterminer f' dans les cas suivants :

(a)
$$f(x) = \ln(\sqrt{x^2 + 4})$$

(b)
$$f(x) = \ln(\ln x)$$

(c)
$$f(x) = \frac{x}{\ln(2x-1)}$$

Corollaire

Soit u une fonction dérivable et ne s'annule pas sur un intervalle I. Les primitives de la fonction $x \mapsto \frac{u'(x)}{u(x)}$ sur I sont les fonctions $x \mapsto \ln |u(x)| + c$ tel que $c \in \mathbb{R}$.

Exemple

Déterminons les primitives de la fonction $f: x \mapsto \frac{x}{x^2+4} - \frac{1}{4x+3}$ sur l'intervalle $I =]-\frac{3}{4}, +\infty[$. On a $f(x) = \frac{1}{2} \frac{2x}{x^2+4} - \frac{1}{4} \frac{4}{4x+3}$.

Donc les primitives de la fonction f sur I sont $x \mapsto \frac{1}{2}\ln(x^2+4) - \frac{1}{4}\ln(4x+3) + c$.

Application

Déterminer l'ensemble des primitives de f dans les cas suivants :

1.
$$f(x) = \frac{x-1}{x^2-2x+1}$$

1.
$$f(x) = \frac{x-1}{x^2-2x+1}$$
 2. $f(x) = \frac{1}{x \ln(x)}$ 3. $f(x) = \frac{x}{x+1}$

$$3. \ f(x) = \frac{x}{x+1}$$

$$4. \ f(x) = \tan(x)$$

II. Fonction Logarithme de base a

1. Définition et propriétés

Définition

Soit a un réel strictement positif et différent de 1. La fonction logarithme de base a est la fonction, notée par $\log_a(x)$, définie sur $]0, +\infty[$ par :

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

Remarques

- $\log_e(x) = \ln(x)$
- $\log_a(a) = 1$
- $\log_a(1) = 0$
- $\log_a(a^r) = r \quad (r \in \mathbb{Q})$

Propriétés

Pour tout réels strictement positifs x et y et pour tout $r\in\mathbb{Q}$ on a :

- $\log_a(xy) = \log_a(x) + \log_a(y)$
- $\log_a(x^r) = r \log_a(x)$
- $\log_a(\frac{1}{x}) = -\log_a(x)$
- $\log_a(\frac{x}{y}) = \log_a(x) \log_a(y)$

Exemple

On a :
$$\log_{\frac{1}{2}}(2^4) = 4\log_{\frac{1}{2}}(2) = -4\log_{\frac{1}{2}}(\frac{1}{2}) = -4.$$

Application

Simplifier le nombre suivant : $A = \log_2(8) - \log_3(27) + \log_5(\frac{1}{125})$.

2. Étude de la fonction \log_a

Propriété

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$.

- Si a>1, alors la fonction \log_a est strictement croissante sur $]0,+\infty[.$
- Si 0 < a < 1, alors la fonction \log_a est strictement décroissante sur $]0, +\infty[$.

Preuve

La fonction \log_a est dérivable sur $]0,+\infty[$ et on a $(\forall x\in]0,+\infty[):\log_a'(x)=\frac{1}{x\ln(a)}$. Donc le signe de $\log_a'(x)$ dépend du signe de $\ln a$, ce qui nous amène à discuter deux cas :

- a > 1 (c.-à-d. $\ln a > 0$)
- 0 < a < 1 (c.-à-d. $\ln a < 0$)

x	0	$+\infty$
$\log_a(x)$	7	$+\infty$
	$-\infty$	

x	0	$+\infty$
$\log_a(x)$	$+\infty$	 -∞

Conséquence

Pour tout réels strictement positifs x et y. On a :

- Si a > 1, alors $\log_a(x) > \log_a(y) \Leftrightarrow x > y$.
- Si 0 < a < 1, alors $\log_a(x) > \log_a(y) \Leftrightarrow x < y$.

Application

Résoudre dans $\mathbb R$ les inéquations suivantes :

- 1. $\log_{\frac{1}{2}}(2-x) \le \log_{\frac{1}{2}}(x+4)$
- 2. $\log_3(2-x) \le \log_3(x+4)$

Définition

La fonction **logarithme décimal** est la fonction logarithme de base 10. Elle est notée log et on a :

$$(\forall x \in]0, +\infty[) : \log(x) = \frac{\ln(x)}{\ln(10)}$$

Remarques

- $\log(1) = 0$
- $\log(10) = 1$
- $\log(10^r) = r \quad (r \in \mathbb{Q})$

Exemple

$$\log(0,001) = \log(10^{-3}) = -3.$$

Application

Simplifier le nombre suivant : $A = \log(1000) - \log(0,0001) + \log(\frac{1}{10000})$.

Propriété

- $(\forall x > 0)(\forall r \in \mathbb{Q}) : \log(x) = r \Leftrightarrow x = 10^r$.
- $\log(x) > r \Leftrightarrow x > 10^r$.
- $\log(x) \le r \Leftrightarrow 0 < x \le 10^r$.

Exemple

Le pH d'une solution aqueuse est ph = $-\log([H_3O^+])$. Ainsi : $[H_3O^+] = 10^{-\text{ph}}$.

Application

Résoudre dans \mathbb{R} l'équation (E): $\log(x+11) + \log(x-4) = 2$.

Exercice de synthèse : extrait de rattrapage 2022

Soit f la fonction numérique définie sur $[0, +\infty[$ par $\begin{cases} f(x) = x^4(\ln x - 1); x > 0 \\ f(0) = 0 \end{cases}$ et (C) se courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$ (unité : 1cm).

- 1. Calculer $\lim_{x\to +\infty} f(x)$ puis déterminer la branche infinie de (C) au voisinage de $+\infty$.
- 2. a. Montrer que f est continue à droite en 0.
 - b. Étudier la dérivabilité de f à droite en 0 puis interpréter le résultat géométriquement.
- 3. a. Montrer que $f'(x) = 2x^3(2 \ln x 1)$ pour tout x de l'intervalle $]0, +\infty[$.
 - b. Dresser le tableau de variations de f.
- 4. a. Sachant que $f''(x) = 2x^2(6 \ln x 5) \ln x$ pour tout x de l'intervalle $]0, +\infty[$, étudier le signe de f''(x) sur $]0, +\infty[$.
 - b. Déduire que la courbe (C) admet deux points d'inflexion dont on déterminera les abscisses
- 5. a. Construire (C) dans le repère $(O; \vec{i}, \vec{j})$ (on prend : $\sqrt{e} \approx 1, 6$ et $e^2 \approx 7, 2$).
 - b. En utilisant la courbe (C), déterminer le nombre de solutions de l'équation $x^2(\ln x 1) = -1$.
- 6. On considère la fonction g définie sur \mathbb{R} par g(x) = f(|x|).
 - a. Montrer que la fonction g est paire.
 - b. Construire (C_q) la courbe représentative de g dans le même repère $(O; \vec{i}, \vec{j})$.