

SECOND SEMESTER 2022-2023

Course Handout Part II

Date: 16-01-2023

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CE F416

Course Title : Computer Applications in Civil Engineering

Instructor-in-Charge : Prof. Arkamitra Kar Instructor : Ms. Pujitha Ganapathi C

Scope and Objective of the Course:

- Introduction to matrix methods of structural analysis.
- Introduction on how to use the commercially available software, relevant to civil engineering structures
- Emphasis on MS-Excel, STAAD Pro V8i, RISA-2D, R.
- Analysis and design of reinforced concrete beams, slabs, columns, and foundations using software packages mentioned above.

Expected Course Outcome:

After attending this course, the student will develop an ability to:

- Apply the basics of the matrix method of analysis of structures
- Analyze and design civil structural elements using commercial software packages, according to the guidelines of Indian Standard Codes of Practice
- Apply knowledge of software commonly found in practice STAAD Pro, RISA, MS Excel.
- Apply these acquired skills for providing solutions to real-life civil engineering structures.

Student Learning Outcomes (SLOs) assessed in this course – (a), (b), (j), and (k).

Textbooks:

1. Amin Ghali, Adam Neville, and Tom G. Brown, "Structural Analysis: A Unified Classical and Matrix Approach", 2009, 6th Ed., CRC Press.

Reference books

- 1. IS 456:2000 "Code of practice for Plain and Reinforced concrete", Bureau of Indian Standards, New Delhi.
- 2. Special Publication (SP)-16, Design aids for reinforced concrete to IS 456:1978, Bureau of Indian Standards, New Delhi.
- 3. IS 875 Part III (2015) "Code of practice for Design Loads (Other than Earthquake) for Buildings and Structures Part 3 Wind Loads", Bureau of Indian Standards, New Delhi.
- 4. IS 1893 Part 1 (2016) "Criteria for Earthquake Resistant Design of Structures", Bureau of Indian Standards, New Delhi.

Course Plan:

Lecture No.	Topics Covered	Learning Outcomes Chapter Text B		SLO
1-2	Objectives & Methods of Analysis & Design	Study the objectives and methods of RC Design; Compute Loads & Forces acting on structures.	1,2	(a)
3-4	Matrix method of structural analysis	Study static and kinematic indeterminacies; Analyze structures using flexibility & stiffness methods	4,5	(a)
5	Introduction to civil engineering software	Study the documentation for software used in civil engineering applications, with emphasis on structural engineering; Study their application to existing practical problems	22	(a), (j)
6 - 16	Application of MS- Excel	Formulate MS-Excel programs to analyze and design structural elements	MS-Office	(b), (k)
17 - 18	Application of RISA	Analyze 2-D structural elements Using RISA	Software Documentation	(b)
19 - 34	Application of STAAD Pro	Analyze and Design beams, columns, slabs, and foundations using STAAD Prov8i.	Software Documentation	(b), (j), (k)
35-42	Application of R	Apply R statistical package to develop prediction models	Software Documentation	(b), (j), (k)

Laboratory Schedule

Week	Week Lab Work Description		
1	Formulate MS-Excel programs to analyze loads on structures		
2	Formulate MS-Excel programs to design beams and columns	(b), (j), (k)	
3	Formulate MS-Excel programs to design foundations		
4	Analyze 2-D trusses and beams Using RISA		
5	Analyze and Design beams, using STAAD Pro v8i.		
6	Analyze and Design beams, using STAAD Pro v8i.		
7	Analyze and Design beams, using STAAD Pro v8i.		
8	8 Analyze and Design columns using STAAD Pro v8i.		
9	9 Analyze and Design foundations using STAAD Pro v8i.		
10			
11	Apply R statistical package to develop prediction models		
12			

*Student Learning Outcomes (SLOs):

SLOs are outcomes (a) through (k) plus any additional outcomes that may be articulated by the program.

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Evaluation Scheme

Sl. No.	Evaluation component	Duration	Weightage	Date, time	Nature of component
1.	Mid-sem Exam	90 mins.	30%	17/03 4.00 - 5.30PM	ОВ
2.	Project	-	10%	-	OB
3.	Lab Assignments	As per Timetable	20%	Weekly	OB
4.	Surprise Tests (5)	15 mins	5%	=	OB
5.	Comprehensive Exam	180 mins.	35%	18/05 AN	ОВ

Chamber Consultation Hour: To be announced in the class.

Notices: All Notices concerning the course will be displayed through CMS and on **the Announcement Board** of the Google Classroom.

Make up policy: Makeup will be given only to genuine cases with prior permission.

Evaluation: Curved gradation policy will be adopted; however, the student is expected to score <u>at least 30%</u> of the total marks to achieve a completed grade.

Weekly assignments: 20% of the total marks will be awarded for *weekly lab assignments*, which will be *evaluated during the laboratory classes*.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester, and no academic dishonesty is acceptable.

Instructor-in-charge CE F416

