CLAIMS

1. A compound of formula

$$(R^{1})_{p}$$
 R^{6}
 $R^{5})_{r}$
 R^{6}
 R^{7}
 R^{7}
 R^{4}
 R^{2}
 R^{3}
 R^{4}

or

5

$$(R^{1})_{p}$$
 R^{6}
 R^{3}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{6}
 R^{5}
 R^{6}
 R^{6}

the pharmaceutically acceptable acid or base addition salts thereof, the quaternary amines thereof, the stereochemically isomeric forms thereof, the tautomeric forms thereof and the *N*-oxide forms thereof, wherein:

R¹ is hydrogen, halo, haloalkyl, cyano, hydroxy, Ar, Het, alkyl, alkyloxy, alkylthio, alkyloxyalkyl, alkylthioalkyl, Ar-alkyl or di(Ar)alkyl;

p is an integer equal to 1, 2, 3 or 4;

10 R² is hydrogen, hydroxy, thio, alkyloxy, alkyloxy, alkylthio, mono

or di(alkyl)amino or a radical of formula wherein Y is CH₂,

O, S, NH or N-alkyl;

R³ is alkyl, Ar, Ar-alkyl, Het or Het-alkyl;

R⁴ is hydrogen, alkyl or benzyl;

is hydrogen, halo, haloalkyl, hydroxy, Ar, alkyl, alkyloxy, alkylthio, alkyloxyalkyl, alkylthioalkyl, Ar-alkyl or di(Ar)alkyl; or

two vicinal R⁵ radicals may be taken together to form together with the phenyl ring to which they are attached a naphthyl;

r is an integer equal to 1, 2, 3, 4 or 5; and R⁶ is hydrogen, alkyl, Ar or Het;
R⁷ is hydrogen or alkyl;
R⁸ is oxo; or
R⁷ and R⁸ together form the radical -CH=CH-N=;
Z is CH₂ or C(=O);

alkyl is a straight or branched saturated hydrocarbon radical having from 1 to 6 carbon atoms; or is a cyclic saturated hydrocarbon radical having from 3 to 6 carbon atoms; or is a cyclic saturated hydrocarbon radical having from 3 to 6 carbon atoms attached to a straight or branched saturated hydrocarbon radical having from 1 to 6 carbon atoms; wherein each carbon atom can be optionally substituted with halo, hydroxy, alkyloxy or oxo;

Ar is a homocycle selected from the group of phenyl, naphthyl, acenaphthyl, tetrahydronaphthyl, each optionally substituted with 1, 2 or 3 substituents, each substituent independently selected from the group of hydroxy, halo, cyano, nitro, amino, mono- or dialkylamino, alkyl, haloalkyl, alkyloxy, haloalkyloxy, carboxyl, alkyloxycarbonyl, aminocarbonyl, morpholinyl and mono- or dialkylaminocarbonyl;

Het is a monocyclic heterocycle selected from the group of N-phenoxypiperidinyl, pyrrolyl, pyrazolyl, imidazolyl, furanyl, thienyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridinyl, pyrimidinyl, pyrazinyl and pyridazinyl; or a bicyclic heterocycle selected from the group of quinolinyl, quinoxalinyl, indolyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl, benzisothiazolyl, benzofuranyl, benzothienyl, 2,3-dihydrobenzo[1,4]dioxinyl or benzo[1,3]dioxolyl; each monocyclic and bicyclic heterocycle may optionally be substituted on a carbon atom with 1, 2 or 3 substituents selected from the group of halo, hydroxy, alkyl or alkyloxy;

halo is a substituent selected from the group of fluoro, chloro, bromo and iodo and haloalkyl is a straight or branched saturated hydrocarbon radical having from 1 to 6 carbon atoms or a cyclic saturated hydrocarbon radical having from 3 to 6 carbon atoms, wherein one or more carbon atoms are substituted with one or more halo-atoms.

2. A compound according to claim 1 wherein Z is CH₂.

35

30

5

10

15

3. A compound according to any one of the preceding claims wherein R⁵ is hydrogen, halo, haloalkyl, hydroxy, Ar, alkyl, alkyloxy, alkylthio, alkyloxyalkyl, alkylthioalkyl, Ar-alkyl or di(Ar)alkyl.

```
5
     4. A compound according to claim 1 or 2 wherein
     \mathbb{R}^1
                     is hydrogen, halo, cyano, Ar, Het, alkyl, and alkyloxy;
                     is an integer equal to 1, 2, 3 or 4;
     p
     \mathbb{R}^2
                     is hydrogen, hydroxy, alkyloxy, alkyloxyalkyloxy, alkylthio or a radical
10
                     of formula
     R^3
                     is alkyl, Ar, Ar-alkyl or Het;
     R^4
                     is hydrogen, alkyl or benzyl;
     R^5
                     is hydrogen, halo or alkyl; or
     two vicinal R<sup>5</sup> radicals may be taken together to form together with the phenyl ring to
                     which they are attached a naphthyl;
15
                     is an integer equal to 1; and
     r
     R^6
                     is hydrogen;
     R^7
                     is hydrogen or alkyl;
     R^8
                     is oxo; or
     R<sup>7</sup> and R<sup>8</sup>
20
                     together form the radical -CH=CH-N=;
     alkyl is a straight or branched saturated hydrocarbon radical having from 1 to 6
             carbon atoms; or is a cyclic saturated hydrocarbon radical having from 3 to 6
             carbon atoms; or is a a cyclic saturated hydrocarbon radical having from 3 to 6
             carbon atoms attached to a straight or branched saturated hydrocarbon radical
25
             having from 1 to 6 carbon atoms; wherein each carbon atom can be optionally
             substituted with halo or hydroxy;
     Ar
             is a homocycle selected from the group of phenyl, naphthyl, acenaphthyl,
             tetrahydronaphthyl, each optionally substituted with 1, 2 or 3 substituents, each
             substituent independently selected from the group of halo, haloalkyl, cyano,
30
             alkyloxy and morpholinyl;
     Het
             is a monocyclic heterocycle selected from the group of N-phenoxypiperidinyl,
             furanyl, thienyl, pyridinyl, pyrimidinyl; or a bicyclic heterocycle selected from
             the group of benzothienyl, 2,3-dihydrobenzo[1,4]dioxinyl or benzo[1,3]-
             dioxolyl; each monocyclic and bicyclic heterocycle may optionally be
35
             substituted on a carbon atom with 1, 2 or 3 alkyl substituents; and
```

halo is a substituent selected from the group of fluoro, chloro and bromo.

- 5. A compound according to any one of the preceding claims wherein the compound is a compound of formula (Ia) and wherein R^1 is hydrogen, halo, Ar, Het, alkyl or alkyloxy; p = 1; R^2 is hydrogen, alkyloxy or alkylthio; R^3 is naphthyl, phenyl or Het, each optionally substituted with 1 or 2 substituents selected from the group of halo and haloalkyl; R^4 is hydrogen or alkyl; R^5 is hydrogen, alkyl or halo; r is equal to 1 and R^6 is hydrogen.
- 6. A compound according to any one of claims 1, 3, 4 or 5, wherein the compound is a compound according to formula (Ia) wherein R¹ is hydrogen, halo, alkyl, or Het; R² is alkyloxy; R³ is naphthyl, phenyl or Het, each optionally substituted with halo; R⁴ is alkyl; R⁵ is hydrogen or halo; R⁶ is hydrogen; Z is CH₂ or C(=O).
- 7. A compound which is degraded in vivo to yield a compound according to any one of the preceding claims.
 - 8. A compound according to any one of the preceding claims for use as a medicine.
- 9. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, a therapeutically effective amount of a compound as defined in any one of claims 1 to 6.
- 10. Use of a compound according to any one of claims 1 to 6 or a composition
 according to claim 9 for the manufacture of a medicament for the treatment of mycobacterial diseases.
- 11. A process for preparing a compound according to claim 1, characterized by
 a) reacting an intermediate of formula (II-a) and (II-b) with paraformaldehyde in a
 suitable solvent

$$(R^{5})_{r}$$

with R^1 to R^8 , p and r as defined in claim 1;

b) reacting an intermediate of formula (III-a) and (III-b) with a suitable base in a suitable solvent,

$$(R^{5})_{r}$$

$$(R^{5})_{r}$$

$$(R^{1})_{p}$$

$$(R^{5})_{r}$$

with R^1 to R^8 , p and r as defined in claim 1 and W_1 representing a suitable leaving group;

or, if desired, converting compounds of formula (Ia) or (Ib) into each other following art-known transformations, and further, if desired, converting the compounds of formula (Ia) or (Ib), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or into a therapeutically active non-toxic base addition salt by treatment with a base, or conversely, converting the acid addition salt form into the free base by treatment with alkali, or converting the base addition salt into the free acid by treatment with acid; and, if desired, preparing stereochemically isomeric forms, quaternary amines, tautomeric forms or *N*-oxide forms thereof.

10