ANALYSE VARIATIONNELLE ET OPTIMISATION

Éléments de Cours, exercices et problèmes corrigés

D. AZÉ J.-B. HIRIART-URRUTY

Ava	Avant-Propos			
Ab	réviat	tions et Notations	11	
Pai	rtie I	Éléments de Cours		
1	Rap	pels et compléments d'analyse	17	
	1.1			
	1.2	Différentiabilité		
	1.3	Fonctions convexes	21	
2	Intr	oduction à la problématique de l'optimisation	25	
	2.1	Le problème de l'optimisation avec contrainte	25	
		2.1.1 Existence d'une ou plusieurs solutions		
		2.1.2 Conditions nécessaires et conditions suffisantes d'optimalité	29	
		2.1.3 Résolution numérique	29	
	2.2	1	30	
		2.2.1 Notations		
		1		
		2.2.3 Un théorème général de dualité		
		2.2.4 Polyèdres dans \mathbb{R}^n	38	
3	Intr	oduction à la programmation linéaire	45	
	3.1	1 6	45	
	3.2	1 6	49	
		3.2.1 Le théorème de dualité et quelques conséquences	49	
		3.2.3 Application : systèmes d'inéquations linéaires		
	3 3	Perturbation des données	58	

4	Con	ditions d'optimalité	63
	4.1		63
		4.1.1 Cas de contraintes d'égalité	63
		4.1.2 Cas de contraintes d'inégalité	66
		4.1.3 Cas de contraintes d'inégalité et d'égalité	70
	4.2	Conditions du second ordre	77
	4.3	Dualisation de LAGRANGE	81
5	Intr	oduction aux espaces de Hilbert	83
	5.1	Définitions basiques	
	5.2	Le Théorème de projection	86
	5.3	Bases hilbertiennes	90
6	Intr	oduction à la formulation variationnelle de problèmes aux limites	95
	6.1	Introduction	
	6.2	Un premier exemple type	
	6.3	Un deuxième exemple type	
	6.4	D'autres exemples	
	6.5	Introduction à la méthode des éléments finis	
 Pa	rtie II	Exercices et problèmes corrigés	
7	Exe	rcices en dimension finie	
		N° 1 Intérieur relatif d'un convexe.	
		N° 2 Résultats de séparation	
		N° 3 Cône polaire.	
		N° 4 Fermeture de l'enveloppe positive I.	
		N° 5 Fermeture de l'enveloppe positive II.	
		N° 6 Lemme de Farkas.	
		N° 7 Caractérisation de la non vacuité d'un polyèdre	
		N° 8 Lemme de Gordan.	
		N° 9 Cône normal à un polyèdre convexe	
		N° 10 Distance à un demi-espace.	115
		N° 11 Existence de points extrémaux d'un convexe	
		N° 12 Quelques propriétés des polyèdres	
		N° 13 Intérieur d'un cône polyédral	
		N° 14 Dualité en programmation linéaire	119
		N° 15 Fonction d'appui d'un convexe	120
		N° 16 Caractère borné de l'ensemble des solutions primales en	
		programmation linéaire	121
		N° 17 Caractère borné de l'ensemble des solutions duales en	
		programmation linéaire	122
		N° 18 Persistence de l'ensemble des solutions primales en	
		programmation linéaire	124
		N° 19 Théorème de Carathéodory	125
		N° 20 Théorème de Minkowski	126

N° 21	Directions extrémales d'un cône convexe	127
N° 22	Points extrémaux d'un polyèdre	
N° 23	Theorème de Weyl I	
N° 24	Théorème de Weyl II.	
N° 25	Analyse variationnelle de formes quadratiques convexes	
N° 26	Généralisation de l'inégalité de CAUCHY-SCHWARZ	
N° 27	Caractérisation de la positivité d'une fonction quadratique	
N° 28	Minimisation du quotient de deux fonctions quadratiques	
N° 29	Minimisation d'une fonction bi-quadratique	
N° 30	L'inégalité de KANTOROVITCH en bref	
N° 31	Test de positivité du complément de SCHUR via l'Optimisation.	152
N° 32	Le théorème de D'ALEMBERT-GAUSS par l'Optimisation	
N° 33	Un problème de régression en Statistique	
N° 34	Minimisation d'une énergie électrostatique	
N° 35	Minimisation d'une somme d'angles en 3D	
N° 36	Minimisation d'une énergie à volume fixé	
N° 37	Maximisation d'un volume sous une contrainte de ficelage	
N° 38	Maximisation de l'aire d'un triangle de périmètre donné	
N° 39	Maximisation de l'aire d'un quadrilatère de périmètre donné.	
N° 40	Minimisation des aires des parties latérales d'un tétraèdre	
N° 41	Le théorème de PYTHAGORE en 3D. Minimisation de l'aire	
	d'une plaque posée sur les trois axes de coordonnées	177
N° 42	Maximisation du volume d'un container dans une coque	
	ellipsoïdale.	182
N° 43	Minimisation d'une énergie dans un problème de type	
	COULOMB	185
N° 44	Analyse variationnelle de la factorisation polaire d'une matrice	187
N° 45	Un problème d'approximation matricielle	
N° 46	Maximisation d'une fonction produit sur la sphère-unité	
N° 47	Minimisation d'une fonction de type produit sur le	
	simplexe-unité. Une application géométrique dans le plan	192
N° 48	Minimisation d'une fonction quadratique sur le simplexe-unité.	
N° 49	La projection sur le simplexe-unité	
N° 50	Minimisation d'une fonction du type entropie sur le	
	simplexe-unité.	203
N° 51	Minimisation partielle d'une fonction quadratique.	
	Application à l'inégalité de BERGSTRÖM	205
N° 52	Position d'équilibre d'un fil élastique suspendu	
N° 53	Interprétation des conditions nécessaires d'optimalité à	
	l'aide de la décomposition de MOREAU	215
N° 54	Etude de cas : un exemple de modélisation : le choix du	
	meilleur investissement financier.	217
N° 55	Etude de cas : un exemple de modélisation : un problème	
	d'optimisation linéaire avec contraintes en probabilités	222
N° 56	Convexes du plan d'aire maximale.	
N° 57	Convexes compacts du plan de largeur constante	

	N° 58	Enveloppe convexe <i>vs.</i> enveloppe plénière d'un ensemble de matrices.	. 230
	N° 59	Deux convexes compacts voisins (de matrices) comparés par	. 230
	1(0)	leurs fonctions d'appui.	. 232
	N° 60	Différenciation des points extrémaux d'un convexe compact	
		à l'aide d'une fonction.	. 234
	N° 61	Une involution dans la famille des fonctions convexes de la	
		variable positive réelle.	. 235
		Une fonction de valeurs propres	. 237
	N° 63	Caractérisation par log-convexité de la fonction gamma	
		d'Euler	. 239
	N° 64	\mathcal{E}	
		convexe du plan.	. 241
	N° 65	Volume du polaire d'un convexe à l'aide de sa fonction	
	3.70.66	d'appui.	. 243
		Minimisation du parcours de visite de trois droites de l'espace	245
	N° 67		
		périodes pour les solutions d'une équation différentielle	0.47
	N10 (0	vectorielle autonome.	. 24/
	N° 68	Convexité du quotient d'une fonction quadratique par une	250
		norme	. 230
8	Exercices e	n dimension infinie	253
Ů	N° 69	Densité des fonctions régulières dans \mathbf{L}^1	
	N° 70	Régularisation par convolution	
	N° 71	Intégration par parties.	
	N° 72	Nullité de la distribution associée à une fonction	
	N° 73	Espaces de Sobolev à une variable	. 258
	N° 74	Théorème de Lax-Milgram	. 260
	N° 75	Théorème de Stampacchia	
	N° 76	Formulation variationnelle	
	N° 77	Calcul d'un cône polaire.	
	N° 78	Le problème du brachystochrone.	
	N° 79	Principe variationel d'Ekeland.	. 268
	N° 80	Applications du principe variationel d'Ekeland en théorie du	
	3.10.01	point fixe.	. 270
	N° 81	Non existence de la projection sur un sous–espace vectoriel	25.4
	NO 02	fermé d'un espace préhilbertien	. 274
	N° 82	Détermination de la projection sur un sous—espace vectoriel	276
	NIO 02	fermé (de codimension 2) d'un espace préhilbertien	. 2/6
	N° 83	Un problème de commande optimale traité comme un	
		problème de projection sur un sous-espace affine d'un	277
	NIO QA	espace préhilbertien	. 411
	IN 04	vectoriels fermés	270
	Nº 95	Minimisation d'une fonctionnelle intégrale.	
		Un problème de localisation de FERMAT	
	14 00	on probleme de rocansation de l'ERMAL	. 203

	N° 87	Convergence faible vs. convergence forte d'une suite dans	207
	NIO OC	un espace de HILBERT.	287
	N° 88		200
	N 10 00	converger (fortement).	
	N° 89	- O	
	N° 90		292
	N° 91	Projection de l'origine sur un demi–espace fermé d'un espace de HILBERT	294
	N° 92		
		HILBERT. Décomposition de MOREAU.	. 295
	N° 93	Règles de calcul sur les cônes polaires.	
	N° 94		
		convexe fermé d'un espace de HILBERT.	301
	N° 95		
	1, ,0	sur deux sous-espaces vectoriels fermés d'un espace de	
		HILBERT.	304
	N° 96	Trois applications du principe variationnel d'EKELAND	
		Une utilisation du principe variationnel d'EKELAND en	500
	1	analyse convexe.	311
	Nº 98	La règle de FERMAT asymptotique.	
		Désaccord entre deux normes dans les conditions	
	14)	d'optimalité du 2 nd ordre	315
	Nº 10	0 Un problème d'approximation en norme minimale	
		Of Calcul sous-différentiel et de transformées de	, . 517
	11 10		220
	N10 10	Legendre-Fenchel de fonctions radiales.	320
	IN IC	2 Formulation abstraite de l'algorithme ROF en traitement	224
	NIO 10	d'images	324
	N° 10	3 Séparation d'une fonction convexe et d'une fonction concav	e.326
Sources			329
Rihlingra	nhie		331
51011081 a	·Piiic .		

Avant-Propos

En nous adressant avec cet ouvrage aux étudiants (et leurs enseignants) de niveaux **L3** et **M1** de mathématiques, nous avons conscience d'être déjà sur la pointe d'une pyramide...aucune comparaison donc avec des livres de cuisine ou de jeux populaires. Cela étant, soucieux de la *formation* des jeunes à laquelle nous avons consacré plusieurs décennies (des classes de secondaire jusqu'au doctorat à l'université), nous offrons ici une contribution supplémentaire qui pourra rendre quelques services.

Comme l'indique le titre de l'ouvrage, celui-ci comporte des éléments de Cours et une collection d'exercices et problèmes corrigés. Par "éléments de Cours" nous entendons un corpus *introductif* à l'Analyse variationnelle et l'Optimisation, qui, suivant les cursus, demande à être complété. L'approche est très progressive, dans un contexte de dimension finie tout d'abord, puis le cadre hilbertien, en soulignant les idées de base essentielles, et non les points "tétrapilectoniques" (*i.e.*, désignant l'art de couper les cheveux en quatre; néologisme attribué à U. ECO (1932-)). Si le cadre *convexe* joue un grand rôle, c'est qu'il est à la fois *formateur* et *explicatif*, y compris à l'égard de contextes qui, eux, n'ont rien de convexe. Pour les problèmes d'optimisation non convexes, l'accent est porté sur les points prépondérants que sont : les conditions d'optimalité, la dualisation, les techniques modernes comme celles issues du principe variationnel d'EKELAND.

Les exercices et problèmes corrigés (plus d'une centaine) constituent le coeur de l'ouvrage. En effet, comme l'étudiant-lecteur devrait le savoir, on ne progresse en mathématiques qu'en en faisant, en "séchant" sur des questions même...Chaque exercice est doté d'une, deux ou trois étoiles : ceux avec une étoile peuvent être immédiatement abordés, dès le L3; ceux avec deux étoiles sont "normaux" au niveau M1; ceux avec trois étoiles sont plus difficiles ou débordent du niveau ciblé, disons qu'ils relèvent déjà du M2. Le travail sur un exercice est l'occasion de tester ses connaissances, leur forme d'acquisition (active ou seulement passive), et aussi de réfléchir en "levant le nez de sa feuille"; c'est ici l'occasion de rappeler ce que disait R. BARTHES (1915-1980), homme des pays de l'Adour s'il en est : "Ne vous est-il jamais arrivé, lisant un livre, de vous arrêter sans cesse dans votre lecture, non par désintérêt, mais au contraire par afflux d'idées, d'excitations, d'associations? En un mot, ne vous est-il pas arrivé de lire en levant la tête?".

Nous terminons en remerciant les Editions Cépaduès d'accueillir notre livre, contribuant ainsi, selon leurs dires publicitaires, à "diffuser le savoir et le savoir-faire toulousains".

Toulouse, 2004-2009

Les auteurs.