

Verfahren zum spezifischen Schnellnachweis getränkeschädlicher Mikroorganismen

- 5 Die Erfindung betrifft ein Verfahren zum spezifischen Schnellnachweis getränkeschädlicher Mikroorganismen durch in situ-Hybridisierung. Weiter betrifft die Erfindung spezifische Oligonukleotidsonden, die im Rahmen des Nachweisverfahrens eingesetzt werden sowie Kits, die diese Oligonukleotidsonden enthalten.
- 10 Unter dem Oberbegriff „Alkoholfreie Getränke“ (AfG) werden Getränkegruppen wie Fruchtsäfte, Fruchtnektare, Fruchtkonzentrate, Fruchtpürees, Erfrischungsgetränke und Wässer zusammengefasst.
- 15 Generell können alkoholfreie Getränke aufgrund ihrer sehr vielseitigen Zusammensetzung aus Nähr- und Wuchsstoffen als potenziell gefährdet durch das Wachstum eines breiten Spektrums von Mikroorganismen eingestuft werden.
- Nach heutigem Kenntnisstand werden hauptsächlich Hefen, Schimmelpilze, Milchsäurebakterien, Essigsäurebakterien, Bazillen und Alicyclobazillen im AfG-
- 20 Bereich vorgefunden und somit als "getränkeschädliche Mikroorganismen" beschrieben.
- Die Kontaminationen mit diesen Mikroorganismen führen in der Regel nicht zu gesundheitlichen Schäden des Konsumenten, sie gehen aber meist mit Trübungen, Geschmacks- und Geruchsveränderungen des Endprodukts einher und führen durch
- 25 einen daraus resultierenden Imageverlust zu hohen wirtschaftlichen Einbußen für die produzierende Industrie.
- In Fruchtsäften und Fruchtnektaren können sich aufgrund der meist natürlicherweise hohen Konzentration an Fruchtsäuren und einem damit verbundenen niedrigen pH-
- 30 Wert (pH-Bereich 2,5 bis 4,5) i.d.R. nur acidophile oder acidotolerante Mikroorganismen (z.B. Milchsäurebakterien, Alicyclobazillen, säuretolerante Hefe-

Best Available Copy

- 2 -

und Schimmelpilzarten) vermehren und somit zu einer Schädigung dieser Getränke führen.

Eine Maßnahme zur Einschränkung des Verderbs durch Mikroorganismen stellt die
5 Carbonisierung von Getränken dar. Dieses Verfahren wird sehr häufig bei der Herstellung von Erfrischungsgetränken eingesetzt. Durch die Zugabe von CO₂ wird im Produkt ein nahezu anaerobes Milieu geschaffen und nur mikroaerophile, fakultativ anaerobe und anaerobe Mikroorganismen (z.B. Milchsäurebakterien, Essigsäurebakterien und Hefen) sind in der Lage, dieses Milieu zu tolerieren.

10

Stille Getränke werden in den meisten Fällen einem Pasteurisierungsprozess unterzogen, um eine lange Stabilität und Qualität dieser Produkte zu gewährleisten. Durch die Pasteurisierung sollen möglichst umfassend alle vegetativen Mikroorganismen abgetötet werden. Allerdings findet dadurch keine Eliminierung 15 der durch Bazillen und Alicyclobazillen gebildeten Sporen statt. Zudem sind auch einige Schimmelpilzarten in der Lage, diesen Prozess ohne Schaden zu überstehen und nachfolgend Produktschäden hervorzurufen.

Ein entscheidender Faktor in der Gewährleistung der biologischen Qualität von
20 Getränken ist die Fahndung nach der Ursache der Kontamination, um diese endgültig zu beseitigen.

Im Allgemeinen werden dabei zwei Kontaminationswege unterschieden: Als Primärkontamination werden Kontaminationen bezeichnet, bei denen Mikroorganismen durch die Rohstoffe oder durch Verunreinigungen im Prozess in
25 das Produkt eingetragen werden.

Sekundärkontaminationen sind Kontaminationen, die nach der eigentlichen Produktion des Getränks im Abfüllbereich auftreten.

Die Herausforderung, die sich durch diese verschiedenen Faktoren an die
30 mikrobiologische Qualitätskontrolle stellt, besteht darin, umfassend und schnell alle

- 3 -

im Produkt vorhandenen Keime zu identifizieren, um möglichst rasch entsprechende Gegenmaßnahmen einleiten zu können.

- Bislang erfolgt der konventionelle Nachweis von AfG-Schädlingen durch mehrtägige
- 5 Anreicherung der Untersuchungsprobe in einem Selektivmedium und anschließende Lichtmikroskopie. Zudem müssen zur genauen Bestimmung des AfG-Verderbers weitere physiologische Tests (wie Gram-Färbung, Zuckerverwertungsreihen) durchgeführt werden.
- Die Nachteile dieser ausschließlich kultivierungsabhängigen Methode liegen in der
- 10 langen Analysedauer, welche erhebliche logistische Kosten in den getränkeproduzierenden Betrieben verursacht. Darüber hinaus droht nach der Auslieferung von Produkten, deren mikrobiologischer Befund noch nicht einwandfrei feststand ein beträchtlicher Imageverlust für das betreffende Unternehmen, wenn im Fall von Kontaminationen Rückholaktionen von verdorbenen
- 15 Produktchargen nötig werden.

Im Folgenden werden die getränkeschädlichen Mikroorganismen und deren Nachweis, wie er im Stand der Technik erfolgt, im Detail beschrieben.

20 Hefen und Schimmelpilze:

- Zu denjenigen Mikroorganismen, die eine Hitzebehandlung überleben und anschließend Probleme in den Getränken verursachen können, zählen vor allem die Schimmelpilze *Byssochlamys fulva* und *B. nivea*, *Neosartorya fischeri* und *Talaromyces flavus* sowie einige Hefen. In carbonisierten Getränken sind die
- 25 säuretoleranten, fermentativen Vertreter der Hefen (*Saccharomyces spp.*, *Dekkera spp.* und *Zygosaccharomyces bailii*) vorherrschend. Neben der Beeinträchtigung der Produkte durch Geschmacksveränderungen und Trübung geht von diesen „gärfähigen Hefen“ eine potenzielle Gefahr durch fallweise Explosion („Bombagen“) der Abfüllbehältnisse aus.

- 4 -

Der Nachweis von Hefen und Schimmelpilzen im AfG-Bereich erfolgt derzeit über die Kultivierung auf entsprechenden Nährmedien (z.B. SSL-Bouillon, OFS-Medium, Malzextrakt-Medium, Würze-Agar) und dauert zwischen 2 und 7 Tagen. Ein Nachweis auf Gattungs- oder gar Artebene ist sehr zeitaufwendig und wird in der Regel nicht durchgeführt.

Milchsäurebakterien:

Die Vertreter der Milchsäurebakterien sind gram-positive, nicht sporenbildende, Katalase-negative Stäbchen oder Kokken, die sich durch einen sehr hohen Nährstoffanspruch (vor allem an Vitaminen, Aminosäuren, Purinen und Pyrimidinen) auszeichnen. Wie der Name schon andeutet, sind alle Milchsäurebakterien in der Lage, als Gärprodukt Milchsäure herzustellen.

Aufgrund ihres anaeroben Wachstums und der für anaerobe Mikroorganismen atypische hohe Toleranz und Unempfindlichkeit gegenüber Sauerstoff werden sie als aerotolerante Anaerobier bezeichnet.

Bis dato werden u.a. die Gattungen Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Carnobacterium, Bifidobacterium, Enterococcus, Pediococcus, Weissella und Streptococcus unter dem Begriff „Milchsäurebakterien“ geführt.

Milchsäurebakterien haben in der Lebensmittelindustrie eine ambivalente Rolle. Einerseits ist ihr Vorhandensein in manchen Prozessen, wie z.B. der Herstellung von Sauerkraut, erwünscht und somit nicht wegzudenken. Andererseits kann ihr Vorkommen in Bier oder Fruchtsäften zu einem Verderb dieser Produkte führen. Das Wachstum dieser Bakterien äußert sich vornehmlich durch Trübung, Säuerung, Gas- und Schleimbildung.

- 5 -

In der AfG-Industrie sind hauptsächlich die Bakteriengattungen Leuconostoc, Lactococcus, Lactobacillus, Oenococcus, Weissella und Pediococcus als Kontaminanten von Bedeutung.

- Milchsäurebakterien werden durch 5- bis 7-tägige Inkubation bei 25 °C auf MRS-Agar (pH 5,7) nachgewiesen.

Essigsäurebakterien:

Mit dem Trivialnamen „Essigsäurebakterien“ werden Bakterien der Gattungen Acetobacter, Gluconobacter, Gluconoacetobacter und Acidomonas bezeichnet.

- 10 Bakterien dieser Gattungen sind gram-negative, obligat aerobe, Oxidase-negative Stäbchen, deren optimale Vermehrungstemperatur um 30 °C liegt. Essigsäurebakterien sind in der Lage, sich auch bei pH-Werten um 2,2 bis 3,0 zu vermehren und können daher in Getränken mit diesem pH-Wert Produktschäden hervorrufen.

- 15 Phylogenetisch werden Bakterien dieser Gattung als Mitglieder der Alphaproteobakterien eingestuft.

- Die Produktschädigungen gehen zumeist mit Trübungen und
20 Geschmacksveränderungen durch die Bildung von Essigsäure und Gluconsäure einher.

Für den Nachweis von Essigsäurebakterien haben sich vor allem ACM-Agar (Inkubationszeit: 14 Tage) und DSM-Agar (Inkubationszeit: 3 bis 5 Tage) bewährt.

- 25 Bazillen:
Bazillen sind gram-positive aerobe, z.T. fakultativ anaerobe, zumeist Katalase-positive sporenbildende Stäbchen. In der AfG-Industrie wurde bis dato hauptsächlich *Bacillus coagulans* als Verderbniserreger identifiziert.

- 6 -

Der Nachweis erfolgt durch Ausstrich des Untersuchungsmaterials auf Dextrose-Caseinpepton-Agar oder Hefeextrakt-Pepton-Dextrose-Stärke-Agar und anschließender Inkubation bei 55 °C (Inkubationszeit: 3 Tage). Um eine Aktivierung bzw. eine Auskeimung der *B. coagulans*-Sporen zu erreichen, wird vor der 5 eigentlichen Inkubation eine Erwärmung der Probe bei 80 °C für 10 min empfohlen.

Alicyclobazillen:

Alicyclobazillen sind gram-positive, aerobe, thermophile und Katalase-positive sporenbildende Stäbchen. Vertreter dieser Gattung bilden ω -alicyclische Fettsäuren 10 als zelluläre Hauptfettsäuren.

In der AfG-Industrie wurde bis dato weltweit hauptsächlich *Alicyclobacillus acidoterrestris* als Verderbniserreger nachgewiesen. In seltenen Fällen wurden auch *A. acidocaldarius* und *A. acidiphilus* in verdorbenen Getränken identifiziert.

15 Der optimale Wachstumstemperaturbereich für *Alicyclobacillus spp.* liegt zwischen 26 und 55 °C. Der pH-Bereich, in dem sich Bakterien dieser Gattung vermehren können, liegt zwischen 2,2 und 5,8.

Das Wachstum von *A. acidoterrestris* führt in Fruchtsäften zu Verderb, der sich 20 infolge der Bildung von Guajakol und Di-Bromphenol in Geruchs- und Geschmacksveränderungen äußert. Eine Kontamination mit diesem Organismus verläuft zumeist inapparent, was bedeutet, dass nur in seltenen Fällen eine Trübung in den infizierten Getränken auftritt.

Alicyclobazillen können über mehrtägige Kultivierung bei 44 bis 46 °C auf 25 Orangenserum-Agar, Kartoffel-Dextrose-Agar, K-Agar, YSG-Agar oder BAM-Agar nachgewiesen werden. Zudem ist zur sicheren Bestätigung des Befundes eine Reihe physiologischer Tests notwendig. Um eine Aktivierung bzw. eine Auskeimung der *Alicyclobacillus ssp.*-Sporen zu erreichen, wird vor der eigentlichen Inkubation eine Erwärmung der Probe bei 80 °C für 10 min empfohlen.

Die bisher in der Routineanalytik eingesetzten Nachweisverfahren für getränkeschädliche Mikroorganismen sind sehr langwierig und teilweise zu ungenau und verhindern somit schnelle und wirkungsvolle Gegenmaßnahmen zum Erhalt des kontaminierten Produktes. Die Ungenauigkeit resultiert beim Nachweis aus einer 5 fehlenden Differenzierung bis auf Gattungs- und/oder Artebene.

Als logische Konsequenz aus den Schwierigkeiten, welche bei traditionellen Kultivierungsverfahren beim Nachweis von getränkeschädlichen Mikroorganismen auftreten, bieten sich daher Nachweisverfahren auf Nukleinsäurebasis zur schnellen, 10 sicheren und spezifischen Identifizierung von Verderbniserregern in alkoholfreien Getränken an.

Bei der PCR, der Polymerase-Kettenreaktion, wird mit spezifischen Primern ein charakteristisches Stück des jeweiligen Mikroorganismengenoms amplifiziert. Findet 15 der Primer seine Zielstelle, so kommt es zu einer millionenfachen Vermehrung eines Stücks der Erbsubstanz. Bei der anschließenden Analyse, z.B. mittels eines DNA-Fragmenten auftrennenden Agarose-Gels, kann eine qualitative Bewertung stattfinden. Im einfachsten Fall führt dies zu der Aussage, dass die Zielstellen für die verwendeten Primer in der untersuchten Probe vorhanden waren. Weitere Aussagen 20 sind nicht möglich; diese Zielstellen können sowohl von einem lebenden Bakterium, als auch von einem toten Bakterium oder von nackter DNA stammen. Da die PCR-Reaktion auch bei Anwesenheit eines toten Bakteriums oder nackter DNA positiv ausfällt, kommt es hier häufig zu falsch positiven Ergebnissen. Eine Weiterführung dieser Technik stellt die quantitative PCR dar, bei der versucht wird, eine Korrelation 25 zwischen der Menge an vorhandenen Mikroorganismen und der Menge an amplifizierter DNA herzustellen. Vorteile der PCR liegen in ihrer hohen Spezifität, leichten Anwendbarkeit und im geringen Zeitaufwand. Wesentliche Nachteile sind ihre hohe Anfälligkeit für Kontaminationen und damit falsch positive Ergebnisse sowie die bereits erwähnte fehlende Möglichkeit, zwischen lebenden und toten 30 Zellen bzw. nackter DNA zu unterscheiden.

- Einen einzigartigen Ansatz, die Spezifität der molekularbiologischen Methoden wie der PCR mit der Möglichkeit der Mikroorganismenvisualisierung, wie sie die Antikörper-Methoden ermöglichen, zu verbinden, bietet die Methode der
- 5 Fluoreszenz-In-Situ-Hybridisierung (FISH; Amann, R. I., W. Ludwig und K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial. Rev. 59, S. 143-169). Hierbei können Mikroorganismenarten, -gattungen oder -gruppen hochspezifisch identifiziert und visualisiert werden.
- 10 Die FISH-Technik basiert auf der Tatsache, dass es in Mikroorganismenzellen bestimmte Moleküle gibt, die aufgrund ihrer lebenswichtigen Funktion im Laufe der Evolution nur wenig mutiert sind: Die 16S, 18S, 23S und 26S ribosomale Ribonukleinsäure (rRNA). Sie sind Bestandteile der Ribosomen, den Orten der
- 15 Proteinbiosynthese, und können aufgrund ihrer ubiquitären Verbreitung, ihrer Größe, und ihrer strukturellen und funktionellen Konstanz als spezifische Marker dienen (Woese, C. R., 1987. Bacterial evolution. Microbiol. Rev. 51, S. 221-271).
- Ausgehend von einer vergleichenden Sequenzanalyse können phylogenetische Beziehungen allein aufgrund dieser Daten aufgestellt werden. Dazu müssen diese
- 20 Sequenzdaten in ein Alignment gebracht werden. Im Alignment, welches sich auf Kenntnisse über die Sekundärstruktur und Tertiärstruktur dieser Makromoleküle stützt, werden die homologen Positionen der ribosomalen Nukleinsäuren in Einklang miteinander gebracht.
- 25 Ausgehend von diesen Daten können phylogenetische Berechnungen durchgeführt werden. Der Einsatz modernster Computertechnologie macht es möglich, auch großangelegte Berechnungen schnell und effektiv auszuführen, sowie große Datenbanken, welche die Alignment-Sequenzen der 16S, 18S, 23S und 26S rRNA beinhalten, anzulegen. Durch den schnellen Zugriff auf dieses Datenmaterial können
- 30 neu erhaltene Sequenzen in kurzer Zeit phylogenetisch analysiert werden. Diese

rRNA Datenbanken können dazu verwendet werden, art- und gattungsspezifische Gensonden zu konstruieren. Hierbei werden alle verfügbaren rRNA Sequenzen miteinander verglichen und für bestimmte Sequenzstellen Sonden entworfen, die spezifisch eine Mikroorganismenart, -gattung oder -gruppe erfassen.

5

- Bei der FISH (Fluoreszenz-In-Situ-Hybridisierung)-Technik werden diese Gensonden, die zu einer bestimmten Region auf der ribosomalen Zielsequenz komplementär sind, in die Zelle eingeschleust. Die Gensonden sind i.d.R. kleine, 16 bis 20 Basen lange, einzelsträngige Desoxyribonukleinsäurestücke und richten sich 10 gegen eine Zielregion, welche typisch für eine Mikroorganismenart oder eine Mikroorganismengruppe ist. Findet die fluoreszenzmarkierte Gensonde in einer Mikroorganismenzelle ihre Zielsequenz, so bindet sie daran und die Zellen können aufgrund ihrer Fluoreszenz mit Hilfe eines Fluoreszenzmikroskops detektiert werden.
- 15 Die FISH-Analyse wird grundsätzlich auf einem Objektträger durchgeführt, da die Mikroorganismen bei der Auswertung durch Bestrahlung mit einem hochenergetischen Licht visualisiert, also sichtbar gemacht werden. Hierin liegt allerdings einer der Nachteile der klassischen FISH-Analyse: da auf einem Objektträger naturgemäß nur relativ kleine Volumina analysiert werden können, ist 20 die Sensitivität der Methode unbefriedigend und für eine verlässliche Analyse nicht ausreichend.

- Mit der vorliegenden Erfindung werden daher die Vorteile der klassischen FISH-Analyse mit denen der Kultivierung verknüpft. Durch einen vergleichsweise kurzen 25 Kultivierungsschritt wird sichergestellt, dass die nachzuweisenden Mikroorganismen in ausreichender Zahl vorliegen, bevor der Nachweis der Mikroorganismen mittels spezifischer FISH durchgeführt wird.

- Die Durchführung der in der vorliegenden Anmeldung beschriebenen Verfahren zum 30 spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen

- 10 -

- Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia,
Saccharomyces und Saccharomycodes, insbesondere der Spezies
Zygosaccharomyces bailii, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsooides*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei*
- 5 (*Issatchenka orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardenensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*,
Saccharomyces exiguum, *S. cerevisiae*, *Saccharomycodes ludwigii* oder zum
spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen
Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der
- 10 Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* oder
zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen
Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter,
Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der
- 15 Spezies *Lactobacillus collinoides*, *Leuconostoc mesenteroides*, *L. pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus ssp.*,
A. acidoterrestris, *A. cycloheptanicus* und *A. herbarius* umfasst somit die folgenden
Schritte:
- 20 - Kultivieren der in der untersuchten Probe enthaltenen getränkeschädlichen
Mikroorganismen
- Fixieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen
- Inkubieren der fixierten Mikroorganismen mit mindestens einer
Oligonukleotidsonde, ggf. zusammen mit einer Kompetitorsonde, um eine
Hybridisierung herbeizuführen,
- 25 - Entfernen bzw. Abwaschen der nicht hybridisierten Oligonukleotidsonden und
- Detektieren der mit den Oligonukleotidsonden hybridisierten getränkeschädlichen
Mikroorganismen.

Im Rahmen der vorliegenden Erfindung wird unter „Kultivieren“ die Vermehrung der in der Probe enthaltenen Mikroorganismen in einem geeigneten Kultivierungsmedium verstanden.

- 5 Zum Nachweis von Hefen und Schimmelpilzen kann die Kultivierung z.B. in SSL-Bouillon für 24 h bei 25 °C erfolgen. Zum Nachweis von Milchsäurebakterien kann die Kultivierung z.B. in MRS-Bouillon für 48 h bei 30 °C erfolgen. Zum Nachweis von Essigsäurebakterien kann die Kultivierung z.B. auf DSM-Agar für 48 h bei 28 °C erfolgen. Zum Nachweis von Bazillen, vornehmlich *B. coagulans*, kann die
10 Kultivierung z.B. auf Dextrose-Caseinpepton-Agar für 48 h bei 55 °C erfolgen. Zum Nachweis von Alicyclobazillen kann die Kultivierung z.B. in BAM-Bouillon für 48 h bei 44 °C erfolgen.
Der Fachmann kann die geeigneten Kultivierungsverfahren für jeden zu untersuchenden Mikroorganismus bzw. jede Mikroorganismengruppe dem Stand der
15 Technik entnehmen.

- Im Rahmen der vorliegenden Erfindung wird unter „Fixieren“ der Mikroorganismen eine Behandlung verstanden, mit der die Hülle der Mikroorganismen für Nukleinsäuresonden durchlässig gemacht wird. Zur Fixierung wird üblicherweise
20 Ethanol verwendet. Kann die Zellwand trotz dieser Behandlung nicht von den Nukleinsäuresonden penetriert werden, so sind dem Fachmann ausreichend weitere Maßnahmen bekannt, die zu demselben Ergebnis führen. Dazu zählen beispielsweise der Einsatz von Methanol, Mischungen von Alkoholen, einer niederprozentigen Paraformaldehydlösung oder einer verdünnten Formaldehydlösung, enzymatische
25 Behandlungen oder ähnliches. Es kann sich in einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ein enzymatischer Schritt zum vollständigen Aufschluss der Mikroorganismen anschließen. Als Enzyme sind hier bspw. Lysozym, Proteinase K und Mutanolysin zu nennen. Dem Fachmann sind hier genügend geeignete Verfahren bekannt, und er wird auf einfache Weise feststellen

können, welches Mittel für den Zellaufschluss eines bestimmten Mikroorganismus besonders geeignet ist.

Im Rahmen der vorliegenden Erfindung werden für die „Hybridisierung“ die
5 fixierten Mikroorganismen mit fluoreszenzmarkierten Oligonukleotidsonden inkubiert. Diese Oligonukleotidsonden können nach dem Fixieren die Zellhülle penetrieren und an die der Oligonukleotidsonde entsprechende Zielsequenz im Zellinneren binden. Die Bindung ist als Ausbildung von Wasserstoffbrücken zwischen komplementären Nukleinsäurestücken zu verstehen.

10 Die Oligonukleotidsonde kann dabei komplementär zu einer chromosomalen oder episomalen DNA sein, aber auch zu einer mRNA oder rRNA des nachzuweisenden Mikroorganismus. Von Vorteil ist es, eine Oligonukleotidsonde zu wählen, die zu einem Bereich komplementär ist, der in einer Kopienzahl von mehr als 1 im
15 nachzuweisenden Mikroorganismus vorhanden ist. Die nachzuweisende Sequenz liegt bevorzugt 500 bis 100.000 mal pro Zelle vor, besonders bevorzugt 1.000 bis 50.000 mal. Aus diesem Grunde wird bevorzugt eine Sequenz aus der rRNA als Zielsequenz verwendet, da die Ribosomen in der Zelle als Orte der Proteinbiosynthese viele tausendmal in jeder aktiven Zelle vorliegen.

20 Bei der Nukleinsäuresonde im Sinne der Erfindung kann es sich um eine DNA- oder RNA-Sonde handeln, die in der Regel zwischen 12 und 100 Nukleotide umfassen wird, bevorzugt zwischen 15 und 50, besonders bevorzugt zwischen 17 und 25 Nukleotide. Die Auswahl der Nukleinsäuresonden geschieht unter dem
25 Gesichtspunkt, ob eine komplementäre Sequenz in dem nachzuweisenden Mikroorganismus vorliegt. Durch diese Auswahl einer definierten Sequenz kann eine Mikroorganismenart, eine Mikroorganismengattung oder eine ganze Mikroorganismengruppe erfasst werden. Komplementarität sollte bei einer Sonde von 15 Nukleotiden über 100 % der Sequenz gegeben sein. Bei Oligonukleotiden mit

mehr als 15 Nukleotiden sind je nach Länge ein bis mehrere Fehlpaarungsstellen erlaubt.

Zur Erhöhung der Spezifität von Nukleinsäuresonden können Kompetitorsonden
5 eingesetzt werden. Unter dem Begriff "Kompetitorsonden" werden im Rahmen der vorliegenden Erfindung insbesondere Oligonukleotide verstanden, die eventuell auftretende ungewollte Bindungen der Nukleinsäuresonden abdecken und dabei eine höhere Sequenzähnlichkeit zu nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies aufweisen als zu den nachzuweisenden Mikroorganismengattungen
10 bzw. -spezies. Durch den Einsatz von Kompetitorsonden kann verhindert werden, dass die Nukleinsäuresonde an die Nukleinsäuresequenz der nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies bindet und zu falschen Signalen führt. Die unmarkierte Kompetitorsonde wird immer zusammen mit der entsprechenden markierten Oligonukleotidsonde eingesetzt.

15 Die Kompetitorsonde sollte komplementär sein zu einer Nukleinsäuresequenz mit hoher Sequenzähnlichkeit zur Nukleinsäuresequenz der nachzuweisenden Mikroorganismengattungen bzw. -spezies. Besonders bevorzugt ist die Kompetitorsonde komplementär zur rRNA von nicht nachzuweisenden
20 Mikroorganismengattungen bzw. -spezies.

Bei der Kompetitorsonde kann es sich im Sinne der Erfindung um eine DNA- oder RNA-Sequenz handeln, die in der Regel zwischen 12 und 100 Nukleotide umfassen wird, bevorzugt zwischen 15 und 50, besonders bevorzugt zwischen 17 und 25
25 Nukleotide. Durch die Auswahl einer definierten Sequenz kann die Hybridisierung der markierten Oligonukleotidsonde an die Nukleinsäuresequenz einer Bakterienart, einer Bakteriengattung oder einer ganzen Bakteriengruppe abgeblockt werden. Komplementarität zu der abzublockenden Nukleinsäuresequenz sollte bei einer Sonde von 15 Nukleotiden über 100 % der Sequenz gegeben sein. Bei

Oligonukleotiden mit mehr als 15 Nukleotiden sind je nach Länge ein bis mehrere Fehlpaarungsstellen erlaubt.

- Im Rahmen der erfindungsgemäßen Verfahren haben die erfindungsgemäßen
- 5 Nukleinsäuresondenmoleküle die nachstehend angegebenen Längen und Sequenzen
(alle Nukleinsäuresondenmoleküle sind in 5'-3'-Richtung notiert).
- Die erfindungsgemäßen Nukleinsäuresondenmoleküle sind zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen *Zygosaccharomyces*,
- 10 *Hanseniaspora*, *Candida*, *Brettanomyces*, *Dekkera*, *Pichia*, *Saccharomyces* und *Saccharomycodes*, insbesondere der Spezies *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsoides*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardenensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*, *Saccharomyces exiguis*, *S. cerevisiae*, *Saccharomycodes ludwigii* oder zum spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen *Mucor*, *Byssochlamys*, *Neosartorya*, *Aspergillus* und *Talaromyces*, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen *Lactobacillus*, *Leuconostoc*, *Oenococcus*, *Weissella*, *Lactococcus*, *Acetobacter*, *Gluconobacter*, *Gluconoacetobacter*, *Bacillus* und *Alicyclobacillus*, insbesondere der Spezies *Lactobacillus collinoides*, *Leuconostoc mesenteroides*, *L. pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus ssp.*, *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius* geeignet und werden dementsprechend in dem erfindungsgemäßen Nachweisverfahren eingesetzt.

- Im Rahmen der vorliegenden Erfindung können Sonden, die unterschiedliche Arten
- 30 von Mikroorganismen nachweisen, zusammen eingesetzt werden, um dadurch den

gleichzeitigen Nachweis von unterschiedlichen Arten von Mikroorganismen zu ermöglichen. Dies führt ebenfalls zu einer Beschleunigung des Nachweisverfahrens.

- a) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Hefen
5 nachweisen:

SEQ ID No. 1: 5'- GTTGACCAAGATTCTCCGCTC

Die Sequenz SEQ ID No. 1 ist vor allem zum Nachweis von Mikroorganismen der
10 Gattung *Zygosaccharomyces* geeignet.

SEQ ID No. 2: 5'- GTTGACCAAGATTTCGGCTCT

SEQ ID No. 3: 5'- GTTGACCAAATTTCGGCTCT

SEQ ID No. 4: 5'- GTTGTCCAAATTCTCCGCTCT

15 Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 2 bis SEQ ID No. 4 werden als unmarkierte Kompetitorsonden für den Nachweis von Mikroorganismen der Gattung *Zygosaccharomyces* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1 eingesetzt, um das Binden der markierten, für Mikroorganismen der
20 Gattung *Zygosaccharomyces* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Mikroorganismen der Gattung *Zygosaccharomyces* sind, zu verhindern.

SEQ ID No. 5: 5'- CCCGGTCGAATTAAAAACC

25 SEQ ID No. 6: 5'- GCCCGGTCGAATTAAAAC

SEQ ID No. 7: 5'- GGCCCGGTCGAATTAAAAA

SEQ ID No. 8: 5'- AGGCCCGGTCGAATTAAA

SEQ ID No. 9: 5'- AAGGCCCGGTCGAATTAA

SEQ ID No. 10: 5'- ATATCGAGCGAACGCC

30 SEQ ID No. 11: 5'- AAAGATCCGGACCGGCCG

- 16 -

	SEQ ID No. 12	5'- GGAAAGATCCGGACCGGC
	SEQ ID No. 13	5'- GAAAGATCCGGACCGGCC
	SEQ ID No. 14	5'- GATCCGGACCGGCCGACC
	SEQ ID No. 15	5'- AGATCCGGACCGGCCGAC
5	SEQ ID No. 16	5'- AAGATCCGGACCGGCCGA
	SEQ ID No. 17	5'- GAAAGGCCCGGTGAAATT
	SEQ ID No. 18	5'- AAAGGCCCGGTGAAATT
	SEQ ID No. 19	5'- GGAAAGGCCCGGTGAAAT
	SEQ ID No. 20	5'- AGGAAAGGCCCGGTGAA
10	SEQ ID No. 21	5'- AAGGAAAGGCCCGGTGAA

Die Sequenzen SEQ ID No. 5 bis SEQ ID No. 21 sind vor allem zum Nachweis von *Zygosaccharomyces bailii* geeignet.

15 SEQ ID No. 22: 5'- ATAGCACTGGGATCCTCGCC

Die Sequenz SEQ ID No. 22 ist vor allem zum Nachweis von *Zygosaccharomyces fermentati* geeignet.

20 SEQ ID No. 23: 5'- CCAGCCCCAAAGTTACCTTC
 SEQ ID No. 24: 5'- TCCTTGACGTAAAGTCGCAG

Die Sequenzen SEQ ID No. 23 und SEQ ID No. 24 sind vor allem zum Nachweis von *Zygosaccharomyces microellipsoides* geeignet.

25
 SEQ ID No. 25: 5'- GGAAGAAAACCAGTACGC
 SEQ ID No. 26: 5'- CCGGTCGGAAGAAAACCA
 SEQ ID No. 27: 5'- GAAGAAAACCAGTACGCG
 SEQ ID No. 28: 5'- CCCGGTCGGAAGAAAACC
30 SEQ ID No. 29: 5'- CGGTCGGAAGAAAACCAG

	SEQ ID No. 30:	5'-GGTCGGAAGAAAAACCAGT
	SEQ ID No. 31:	5'-AAGAAAACCAGTACGCGG
	SEQ ID No. 32:	5'-GTACGCGGAAAAATCCGG
	SEQ ID No. 33:	5'-AGTACGCGGAAAAATCCG
5	SEQ ID No. 34:	5'-GCGGAAAAATCCGGACCG
	SEQ ID No. 35:	5'-CGGAAGAAAACCAGTACG
	SEQ ID No. 36:	5'-GCCCGGTCGGAAGAAAAC
	SEQ ID No. 37:	5'-CGCGGAAAAATCCGGAC
	SEQ ID No. 38:	5'-CAGTACGCGGAAAAATCC
10	SEQ ID No. 39:	5'-AGAAAACCAGTACGCGGA
	SEQ ID No. 40:	5'-GGCCCGGTCGGAAGAAAA
	SEQ ID No. 41:	5'-ATAAACACCACCCGATCC
	SEQ ID No. 42:	5'-ACGCGGAAAAATCCGGAC
	SEQ ID No. 43:	5'-GAGAGGCCCGGTCGGAAG
15	SEQ ID No. 44:	5'-AGAGGCCCGGTCGGAAGA
	SEQ ID No. 45:	5'-GAGGCCCGGTCGGAAGAA
	SEQ ID No. 46:	5'-AGGCCCGGTCGGAAGAAA
	SEQ ID No. 47:	5'-CCGAGTGGGTCAAGTAAAT
	SEQ ID No. 48:	5'-CCAGTACGCGGAAAAATC
20	SEQ ID No. 49:	5'-TAAACACCACCCGATCCC
	SEQ ID No. 50:	5'-GGAGAGGCCCGGTCGGAA
	SEQ ID No. 51:	5'-GAAAACCAGTACGCGGAA
	SEQ ID No. 52:	5'-TACGCGGAAAAATCCGGA
	SEQ ID No. 53:	5'-GGCCACAGGGACCCAGGG
25	SEQ ID No. 54:	5'-TCACCAAGGGCCACAGGG
	SEQ ID No. 55:	5'-GGGCCACAGGGACCCAGG
	SEQ ID No. 56:	5'-TTCACCAAGGGCCACAGGG
	SEQ ID No. 57:	5'-ACAGGGACCCAGGGCTAG
	SEQ ID No. 58:	5'-AGGGCCACAGGGACCCAG
30	SEQ ID No. 59:	5'-GTTCACCAAGGGCCACAG

	SEQ ID No. 60:	5'- GCCACAGGGACCCAGGGC
	SEQ ID No. 61:	5'- CAGGGACCCAGGGCTAGC
	SEQ ID No. 62:	5'- AGGGACCCAGGGCTAGCC
	SEQ ID No. 63:	5'- ACCAAGGGCCACAGGGAC
5	SEQ ID No. 64:	5'- CCACAGGGACCCAGGGCT
	SEQ ID No. 65:	5'- CACAGGGACCCAGGGCTA
	SEQ ID No. 66:	5'- CACCAAGGGCCACAGGGA
	SEQ ID No. 67:	5'- GGGACCCAGGGCTAGCCA
	SEQ ID No. 68:	5'- AGGAGAGGCCCGGTCGGA
10	SEQ ID No. 69:	5'- AAGGAGAGGCCCGGTCGG
	SEQ ID No. 70:	5'- GAAGGAGAGGCCCGGTCG
	SEQ ID No. 71:	5'- AGGGCTAGCCAGAAGGAG
	SEQ ID No. 72:	5'- GGGCTAGCCAGAAGGAGA
	SEQ ID No. 73:	5'- AGAAGGAGAGGCCCGGTC
15	SEQ ID No. 74:	5'- CAAGGGCCACAGGGACCC
	SEQ ID No. 75:	5'- CCAAGGGCCACAGGGACC

Die Sequenzen SEQ ID No. 25 bis SEQ ID No. 75 sind vor allem zum Nachweis von *Zygosaccharomyces mellis* geeignet.

20	SEQ ID No. 76:	5'- GTCGGAAAAACCAGTACG
	SEQ ID No. 77:	5'- GCCCGGTCGGAAAAACCA
	SEQ ID No. 78:	5'- CCGGTCGGAAAAACCACT
	SEQ ID No. 79:	5'- CCCGGTCGGAAAAACCACT
25	SEQ ID No. 80:	5'- TCGGAAAAACCAGTACGC
	SEQ ID No. 81:	5'- CGGAAAAACCAGTACGCG
	SEQ ID No. 82:	5'- GGAAAAACCAGTACGCGG
	SEQ ID No. 83:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 84:	5'- AGTACGCGGAAAAATCCG
30	SEQ ID No. 85:	5'- GCGGAAAAATCCGGACCG

	SEQ ID No. 86:	5'- GGTCGGAAAAACCAGTAC
	SEQ ID No. 87:	5'- ACTCCTAGTGGTGCCCTT
	SEQ ID No. 88:	5'- GCTCCACTCCTAGTGGTG
	SEQ ID No. 89:	5'- CACTCCTAGTGGTGCCCT
5	SEQ ID No. 90:	5'- CTCCACTCCTAGTGGTGC
	SEQ ID No. 91:	5'- TCCACTCCTAGTGGTGCC
	SEQ ID No. 92:	5'- CCACTCCTAGTGGTGCCC
	SEQ ID No. 93:	5'- GGCTCCACTCCTAGTGGT
	SEQ ID No. 94:	5'- AGGCTCCACTCCTAGTGG
10	SEQ ID No. 95:	5'- GGCCCGGT CGGAAAAACC
	SEQ ID No. 96:	5'- GAAAAACCAGTACCGGA
	SEQ ID No. 97:	5'- CGCGGAAAATCCGGACC
	SEQ ID No. 98:	5'- CAGTACCGGGAAAAATCC
	SEQ ID No. 99:	5'- CGGTCGGAAAAACCAGTA
15	SEQ ID No. 100:	5'- AAGGCCCGGT CGGAAAAAA
	SEQ ID No. 101:	5'- CAGGCTCCACTCCTAGTG
	SEQ ID No. 102:	5'- CTCCTAGTGGTGCCCTTC
	SEQ ID No. 103:	5'- TCCTAGTGGTGCCCTTCC
	SEQ ID No. 104:	5'- GCAGGCTCCACTCCTAGT
20	SEQ ID No. 105:	5'- AGGCCCGGT CGGAAAAAC
	SEQ ID No. 106:	5'- ACGCGGAAAATCCGGAC
	SEQ ID No. 107:	5'- CCAGTACCGGGAAAAATC
	SEQ ID No. 108:	5'- CTAGTGGTGCCCTTCCGT
	SEQ ID No. 109:	5'- GAAAGGCCCGGT CGGAAA
25	SEQ ID No. 110:	5'- AAAGGCCCGGT CGGAAAA
	SEQ ID No. 111:	5'- TACGCGGAAAATCCGGA
	SEQ ID No. 112:	5'- GGAAAGGCCCGGT CGGAA
	SEQ ID No. 113:	5'- ATCTCTTCCGAAAGGTCG
	SEQ ID No. 114:	5'- CATCTCTTCCGAAAGGTC
30	SEQ ID No. 115:	5'- CTCTTCCGAAAGGTCGAG

- 20 -

SEQ ID No. 116: 5'- CTTCCGAAAGGTCGAGAT
SEQ ID No. 117: 5'- TCTCTTCCGAAAGGTCGA
SEQ ID No. 118: 5'- TCTTCCGAAAGGTCGAGA
SEQ ID No. 119: 5'- CCTAGTGGTGCCCTTCG
5 SEQ ID No. 120: 5'- TAGTGGTGCCCTTCGTC
SEQ ID No. 121: 5'- AGTGGTGCCCTTCGTCA
SEQ ID No. 122: 5'- GCCAAGGTTAGACTCGTT
SEQ ID No. 123: 5'- GGCCAAGGTTAGACTCGT
SEQ ID No. 124: 5'- CCAAGGTTAGACTCGTTG
10 SEQ ID No. 125: 5'- CAAGGTTAGACTCGTTGG
SEQ ID No. 126: 5'- AAGGTTAGACTCGTTGGC

Die Sequenzen SEQ ID No. 76 bis SEQ ID No. 126 sind vor allem zum Nachweis von *Zygosaccharomyces rouxii* geeignet.

15

SEQ ID No. 127: 5'- CTCGCCTCACGGGGTTCTCA

Die Sequenz SEQ ID No. 127 ist vor allem zum gleichzeitigen Nachweis von *Zygosaccharomyces mellis* und *Zygosaccharomyces rouxii* geeignet.

20

SEQ ID No. 128: 5'- GGCCC GGTCGAAATTAAA
SEQ ID No. 129: 5'- AGGCC CGGTGAAATTAA
SEQ ID No. 130: 5'- AAGGCC CGGTGAAATTAA
SEQ ID No. 131: 5'- AAAGGCC CGGTGAAATT
25 SEQ ID No. 132: 5'- GAAAGGCC CGGTGAAAT
SEQ ID No. 133: 5'- ATATCGAGCGAAACGCC
SEQ ID No. 134: 5'- GGAAAGGCC CGGTGAAAA
SEQ ID No. 135: 5'- AAAGATCCGGACC GGCG
SEQ ID No. 136: 5'- GGAAAGATCCGGACC GGCG
30 SEQ ID No. 137: 5'- GAAAGATCCGGACC GGCG

- 21 -

- SEQ ID No. 138: 5'- GATCCGGACCGGCCGACC
SEQ ID No. 139: 5'- AGATCCGGACCGGCCGAC
SEQ ID No. 140: 5'- AAGATCCGGACCGGCCGA
SEQ ID No. 141: 5'- AGGAAAGGCCGGTCGAA
5 SEQ ID No. 142: 5'- AAGGAAAGGCCGGTCGA

Die Sequenzen SEQ ID No. 128 bis SEQ ID No. 142 sind vor allem zum Nachweis von *Zygosaccharomyces bisporus* geeignet.

- 10 SEQ ID No. 143: 5'-CGAGCAAAACGCCTGCTTG
SEQ ID No. 144: 5'-CGCTCTGAAAGAGAGTTGCC

Die Sequenzen SEQ ID No. 143 und SEQ ID No. 144 sind vor allem zum Nachweis von *Hanseniaspora uvarum* geeignet.

- 15 SEQ ID No. 145: 5'-AGTTGCCCTACACTAGAC
SEQ ID No. 146: 5'-GCTTCTCCGTCCCCGCGCCG

Die Sequenzen SEQ ID No. 145 und SEQ ID No. 146 sind vor allem zum Nachweis 20 von *Candida intermedia* geeignet.

- SEQ ID No. 147: 5'- AGATTYTCCGCTCTGAGATGG

Das Nukleinsäuresondenmoleküle gemäß SEQ ID No. 147 wird als unmarkierte 25 Kompetitorsonde für den Nachweis von *Candida intermedia* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 146 eingesetzt, um das Binden der markierten, für *Candida intermedia* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für *Candida intermedia* sind, zu verhindern.

- 22 -

SEQ ID No. 148: 5'- CCTGGTTCGCCAAAAAGGC

Die Sequenz SEQ ID No. 148 ist vor allem zum Nachweis von *Candida parapsilosis* geeignet.

5

SEQ ID No. 149: 5'-GATTCTCGGCCCATGGG

Die Sequenz SEQ ID No. 149 ist vor allem zum Nachweis von *Candida crusei* (*Issatchenka orientalis*) geeignet.

10

SEQ ID No. 150: 5'- ACCCTCTACGGCAGCCTGTT

Die Sequenz SEQ ID No. 150 ist vor allem zum gleichzeitigen Nachweis von *Dekkera anomala* und *Brettanomyces (Dekkera) bruxellensis* geeignet.

15

SEQ ID No. 151: 5'- GATCGGTCTCCAGCGATTCA

Die Sequenz SEQ ID No. 151 ist vor allem zum Nachweis von *Brettanomyces (Dekkera) bruxellensis* geeignet.

20

SEQ ID No. 152: 5'- ACCCTCCACGGCGGCCTGTT

Die Sequenz SEQ ID No. 152 ist vor allem zum Nachweis von *Brettanomyces (Dekkera) naardenensis* geeignet.

25

SEQ ID No. 153: 5'- GATTCTCCGCGCCATGGG

Die Sequenz SEQ ID No. 153 ist vor allem zum Nachweis von *Pichia membranaefaciens* geeignet.

30

- 23 -

SEQ ID No. 154: 5'-TCATCAGACGGGATTCTCAC

Die Sequenz SEQ ID No. 154 ist vor allem zum gleichzeitigen Nachweis von *Pichia minuta* und *Pichia anomala* geeignet.

5

SEQ ID No. 155: 5'-CTCATCGCACGGGATTCTCAC

SEQ ID No. 156: 5'-CTGCCACACGGGATTCTCAC

Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 155 und SEQ ID No. 156
10 werden als unmarkierte Kompetitorsonden für den gemeinsamen Nachweis von
Pichia minuta und *Pichia anomala* gemeinsam mit der Oligonukleotidsonde gemäß
SEQ ID No. 154 eingesetzt, um das Binden der markierten, für *Pichia minuta* und
Pichia anomala spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die
nicht spezifisch für *Pichia minuta* und *Pichia anomala* sind, zu verhindern.

15

SEQ ID No. 157: 5'-AGTTCCCCCTCCTCTAAGC

Die Sequenz SEQ ID No. 157 ist vor allem zum Nachweis von *Saccharomyces exiguum* geeignet.

20

SEQ ID No. 158: 5'-CTGCCACAAGGACAAATGGT

SEQ ID No. 159: 5'-TGCCCCCTTCTAAGCAAAT

Die Sequenzen SEQ ID No. 158 und SEQ ID No. 159 sind vor allem zum Nachweis
25 von *Saccharomyces ludwigii* geeignet.

SEQ ID No. 160: 5'-CCCCAAAGTTGCCCTCTC

Die Sequenz SEQ ID No. 160 ist vor allem zum Nachweis von *Saccharomyces cerevisiae* geeignet.

SEQ ID No. 161: 5'-GCCGCCCAAAGTCGCCCTCTAC
SEQ ID No. 162: 5'-GCCCGAGTCGCCCTCTAC

5 Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 161 und SEQ ID No. 162 werden als unmarkierte Kompetitorsonden für den Nachweis von *Saccharomyces cerevisiae* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 160 eingesetzt, um das Binden der markierten, für *Saccharomyces cerevisiae* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für
10 *Saccharomyces cerevisiae* sind, zu verhindern.

b) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Schimmelpilze nachweisen:

15 SEQ ID No. 163: 5'-AAGACCAGGCCACCTCAT

Die Sequenz SEQ ID No. 163 ist vor allem zum Nachweis von *Mucor racemosus* geeignet.

20 SEQ ID No. 164: 5'-CATCATAGAACACCGTCC

Die Sequenz SEQ ID No. 164 ist vor allem zum Nachweis von *Byssochlamys nivea* geeignet.

25 SEQ ID No. 165: 5'-CCTTCCGAAGTCGAGGTTTT

Die Sequenz SEQ ID No. 165 ist vor allem zum spezifischen Nachweis von *Neosartorya fischeri* geeignet.

30 SEQ ID No. 166: 5'-GGGAGTGTGCCAACTC

- 25 -

Die Sequenz SEQ ID No. 166 ist vor allem zum gleichzeitigen Nachweis von *Aspergillus fumigatus* und *A. fischeri* geeignet.

5 SEQ ID No. 167: 5'- AGCGGTGGTCGCAACCCT

Die Sequenz SEQ ID No. 167 ist vor allem zum Nachweis von *Talaromyces flavus* geeignet.

10 SEQ ID No. 168: 5'- CCGAAGTCGGGTTTGC GG

Die Sequenz SEQ ID No. 168 ist vor allem zum gleichzeitigen Nachweis von *Talaromyces bacillisporus* und *T. flavus* geeignet.

15 c) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Milchsäurebakterien nachweisen:

SEQ ID No. 169: 5'- GATAGCCGAAACCACCTTTC

SEQ ID No. 170: 5'- GCCGAAACCACCTTCAAAC

20 SEQ ID No. 171: 5'- GTGATAGCCGAAACCACCTT

SEQ ID No. 172: 5'- AGTGATAGCCGAAACCACCT

SEQ ID No. 173: 5'- TTAACGGGATGCGTCGAC

SEQ ID No. 174: 5'- AAGTGATAGCCGAAACCACC

SEQ ID No. 175: 5'- GGTTGAATACCGTCAACGTC

25 SEQ ID No. 176: 5'- GCACAGTATGTCAAGACCTG

SEQ ID No. 177: 5'- CATCCGATGTGCAAGCACTT

SEQ ID No. 178: 5'- TCATCCGATGTGCAAGCACT

SEQ ID No. 179: 5'- CCGATGTGCAAGCACTTCAT

SEQ ID No. 180: 5'- CCACTCATCCGATGTGCAAG

30 SEQ ID No. 181: 5'- GCCACAGTCGCCACTCATC

	SEQ ID No. 182:	5'- CCTCCCGCGTTGTCACCGGC
	SEQ ID No. 183:	5'- ACCAGTTCGCCACAGTCGC
	SEQ ID No. 184:	5'- CACTCATCCGATGTGCAAGC
	SEQ ID No. 185:	5'- CCAGTTGCCACAGTTGCC
5	SEQ ID No. 186:	5'- CTCATGGATGTGCAAGCAC
	SEQ ID No. 187:	5'- TCCGATGTGCAAGCACTTCA
	SEQ ID No. 188:	5'- CGCCACTCATCCGATGTGCA
	SEQ ID No. 189:	5'- CAGTTGCCACAGTTGCCA
	SEQ ID No. 190:	5'- GCCACTCATCCGATGTGCAA
10	SEQ ID No. 191:	5'- CGCCACAGTTGCCACTCAT
	SEQ ID No. 192:	5'- ATCCGATGTGCAAGCACTTC
	SEQ ID No. 193:	5'- GTTGCACAGTTGCCACT
	SEQ ID No. 194:	5'- TCCTCCCGCGTTGTCACCGG
	SEQ ID No. 195:	5'- CGCCAGGGTTCATCCTGAGC
15	SEQ ID No. 196:	5'- AGTTGCCACAGTTGCCAC
	SEQ ID No. 197:	5'- TCGCCACAGTTGCCACTCA
	SEQ ID No. 198:	5'- TTAACGGGATGCGTTGACT
	SEQ ID No. 199:	5'- TCGCCACTCATCCGATGTGC
	SEQ ID No. 200:	5'- CCACAGTTGCCACTCATCC
20	SEQ ID No. 201:	5'- GATTAAACGGGATGCGTTCG
	SEQ ID No. 202:	5'- TAACGGGATGCGTTGACTT
	SEQ ID No. 203:	5'- AACGGGATGCGTTGACTTG
	SEQ ID No. 204:	5'- CGAAGGTTACCGAACCGACT
	SEQ ID No. 205:	5'- CCGAAGGTTACCGAACCGAC
25	SEQ ID No. 206:	5'- CCCGAAGGTTACCGAACCGA
	SEQ ID No. 207:	5'- TTCCTCCCGCGTTGTCACCG
	SEQ ID No. 208:	5'- CCGCCAGGGTTCATCCTGAG
	SEQ ID No. 209:	5'- TCCTTCCAGAAGTGTAGGCC
	SEQ ID No. 210:	5'- CACCAGTTGCCACAGTTCG
30	SEQ ID No. 211:	5'- ACGGGATGCGTTGACTTGC

	SEQ ID No. 212:	5'- GTCCTTCCAGAAGTGATAGC
	SEQ ID No. 213:	5'- GCCAGGGTTCATCCTGAGCC
	SEQ ID No. 214:	5'- ACTCATCCGATGTGCAAGCA
	SEQ ID No. 215:	5'- ATCATTGCCTTGGTGAACCG
5	SEQ ID No. 216:	5'- TCCGCCTTGTCAACGGCAG
	SEQ ID No. 217:	5'- TGAACCGTTACTCCACCAAC
	SEQ ID No. 218:	5'- GAAGTGATAGCCGAAACCAC
	SEQ ID No. 219:	5'- CCGCGTTGTCACCGGCAGT
	SEQ ID No. 220:	5'- TTCGCCACTCATCCGATGTG
10	SEQ ID No. 221:	5'- CATTAAACGGGATGCGTCG
	SEQ ID No. 222:	5'- CACAGTTCGCCACTCATCCG
	SEQ ID No. 223:	5'- TTGCCACAGTTGCCACTC
	SEQ ID No. 224:	5'- CTCCGCCTTGTACCGGCA
	SEQ ID No. 225:	5'- ACGCCGCCAGGGTTACCT
15	SEQ ID No. 226:	5'- CCTTCCAGAAGTGATAGCCG
	SEQ ID No. 227:	5'- TCATTGCCTTGGTGAACCGT
	SEQ ID No. 228:	5'- CACAGTATGTCAAGACCTGG
	SEQ ID No. 229:	5'- TTGGTGAACCGTTACTCCAC
	SEQ ID No. 230:	5'- CTTGGTGAACCGTTACTCCA
20	SEQ ID No. 231:	5'- GTGAACCGTTACTCCACCA
	SEQ ID No. 232:	5'- GGCTCCCGAAGGTTACCGAA
	SEQ ID No. 233:	5'- GAAGGTTACCGAACCGACTT
	SEQ ID No. 234:	5'- TGGCTCCCGAAGGTTACCGA
	SEQ ID No. 235:	5'- TAATACGCCGCGGGTCCTTC
25	SEQ ID No. 236:	5'- GAACCGTTACTCCACCAACT
	SEQ ID No. 237:	5'- TACGCCGCCGGTCCTCCAG
	SEQ ID No. 238:	5'- TCACCAGTTGCCACAGTTC
	SEQ ID No. 239:	5'- CCTTGGTGAACCGTTACTCC
	SEQ ID No. 240:	5'- CTCACCAGTTGCCACAGTT
30	SEQ ID No. 241:	5'- CGCCGCCAGGGTTACCTG

SEQ ID No. 242: 5'- CCTTGGTGAACCATTACTCC
SEQ ID No. 243: 5'- TGGTGAACCATTACTCCACC
SEQ ID No. 244: 5'- GCCGCCAGGGTTCATCCTGA
SEQ ID No. 245: 5'- GGTGAACCATTACTCCACCA
5 SEQ ID No. 246: 5'- CCAGGGTTGATCCTGAGCCA
SEQ ID No. 247: 5'- AATACGCCGCCAGGGTCCTTCC
SEQ ID No. 248: 5'- CACGCCGCCAGGGTTCATCC
SEQ ID No. 249: 5'- AGTTCGCCACTCATCCGATG
SEQ ID No. 250: 5'- CGGGATGCGTTCGACTTGCA
10 SEQ ID No. 251: 5'- CATTGCCTTGGTGAACCGTT
SEQ ID No. 252: 5'- GCACGCCGCCAGGGTTCATC
SEQ ID No. 253: 5'- CTTCCTCCGCCGTTGTCACC
SEQ ID No. 254: 5'- TGGTGAACCGTTACTCCACC
SEQ ID No. 255: 5'- CCTTCCTCCGCCGTTGTCAC
15 SEQ ID No. 256: 5'- ACGCCGCCGGTCCTTCAGA
SEQ ID No. 257: 5'- GGTGAACCGTTACTCCACCA
SEQ ID No. 258: 5'- GGGTCCTCCAGAACGTGATA
SEQ ID No. 259: 5'- CTTCCAGAACGTGATAGCCGA
SEQ ID No. 260: 5'- GCCTTGGTGAACCATTACTC
20 SEQ ID No. 261: 5'- ACAGTTGCCACTCATCCGA
SEQ ID No. 262: 5'- ACCTTCCTCCGCCGTTGTC
SEQ ID No. 263: 5'- CGAACCGACTTGGGTGTTG
SEQ ID No. 264: 5'- GAACCGACTTGGGTGTTG
SEQ ID No. 265: 5'- AGGTTACCGAACCGACTTG
25 SEQ ID No. 266: 5'- ACCGAACCGACTTGGGTGT
SEQ ID No. 267: 5'- TTACCGAACCGACTTGGGT
SEQ ID No. 268: 5'- TACCGAACCGACTTGGGTG
SEQ ID No. 269: 5'- GTTACCGAACCGACTTGGG

- 29 -

Die Sequenzen SEQ ID No. 169 bis SEQ ID No. 269 sind vor allem zum Nachweis von *Lactobacillus collinoides* geeignet.

- SEQ ID No. 270: 5'- CCTTTCTGGTATGGTACCGTC
5 SEQ ID No. 271: 5'- TGCACCGCGGAYCCATCTCT

Die Sequenzen SEQ ID No. 270 und SEQ ID No. 271 sind vor allem zum Nachweis von Mikroorganismen der Gattung Leuconostoc geeignet.

- 10 SEQ ID No. 272: 5'- AGTTGCAGTCCAGTAAGCCG
SEQ ID No. 273: 5'- GTTGCAGTCCAGTAAGCCGC
SEQ ID No. 274: 5'- CAGTTGCAGTCCAGTAAGGCC
SEQ ID No. 275: 5'- TGCAGTCCAGTAAGCCGCCT
SEQ ID No. 276: 5'- TCAGTTGCAGTCCAGTAAGC
15 SEQ ID No. 277: 5'- TTGCAGTCCAGTAAGCCGCC
SEQ ID No. 278: 5'- GCAGTCCAGTAAGCCGCCTT
SEQ ID No. 279: 5'- GTCAGTTGCAGTCCAGTAAG
SEQ ID No. 280: 5'- CTCTAGGTGACGCCGAAGCG
SEQ ID No. 281: 5'- ATCTCTAGGTGACGCCGAAG
20 SEQ ID No. 282: 5'- TCTAGGTGACGCCGAAGCGC
SEQ ID No. 283: 5'- TCTCTAGGTGACGCCGAAGC
SEQ ID No. 284: 5'- CCATCTCTAGGTGACGCCGA
SEQ ID No. 285: 5'- CATCTCTAGGTGACGCCGA
SEQ ID No. 286: 5'- TAGGTGACGCCGAAGCGCCT
25 SEQ ID No. 287: 5'- CTAGGTGACGCCGAAGCGCC
SEQ ID No. 288: 5'- CTTAGACGGCTCCTTCCTAA
SEQ ID No. 289: 5'- CCTTAGACGGCTCCTTCCTA
SEQ ID No. 290: 5'- ACGTCAGTTGCAGTCCAGTA
SEQ ID No. 291: 5'- CGTCAGTTGCAGTCCAGTAA
30 SEQ ID No. 292: 5'- ACGCCGAAGCGCCTTTAAC

SEQ ID No. 293: 5'- GACGCCGAAGCGCCTTTAA
SEQ ID No. 294: 5'- GCCGAAGCGCCTTTAACCT
SEQ ID No. 295: 5'- CGCCGAAGCGCCTTTAACT
SEQ ID No. 296: 5'- GTGACGCCGAAGCGCCTTT
5 SEQ ID No. 297: 5'- TGACGCCGAAGCGCCTTTA
SEQ ID No. 298: 5'- AGACGGCTCCTTCCTAAAAG
SEQ ID No. 299: 5'- ACGGCTCCTTCCTAAAAGGT
SEQ ID No. 300: 5'- GACGGCTCCTTCCTAAAAGG
SEQ ID No. 301: 5'- CCTTCCTAAAAGGTTAGGCC

10

Die Sequenzen SEQ ID No. 272 bis SEQ ID No. 301 sind vor allem zum gleichzeitigen Nachweis von *Leuconostoc mesenteroides* und *L. pseudomesenteroides* geeignet.

15 SEQ ID No. 302: 5'- GGTGACGCCAAAGCGCCTT
SEQ ID No. 303: 5'- AGGTGACGCCAAAGCGCCT
SEQ ID No. 304: 5'- TAGGTGACGCCAAAGCGCCT
SEQ ID No. 305: 5'- CTCTAGGTGACGCCAAAGCG
SEQ ID No. 306: 5'- TCTAGGTGACGCCAAAGCGC
20 SEQ ID No. 307: 5'- CTAGGTGACGCCAAAGCGCC
SEQ ID No. 308: 5'- ACGCCAAAGCGCCTTTAAC
SEQ ID No. 309: 5'- CGCCAAAGCGCCTTTAACT
SEQ ID No. 310: 5'- TGACGCCAAAGCGCCTTTA
SEQ ID No. 311: 5'- TCTCTAGGTGACGCCAAAGC
25 SEQ ID No. 312: 5'- GTGACGCCAAAGCGCCTTT
SEQ ID No. 313: 5'- GACGCCAAAGCGCCTTTAA
SEQ ID No. 314: 5'- ATCTCTAGGTGACGCCAAAG
SEQ ID No. 315: 5'- CATCTCTAGGTGACGCCAA
SEQ ID No. 316: 5'- TCCATCTCTAGGTGACGCCA
30 SEQ ID No. 317: 5'- CCATCTCTAGGTGACGCCA

SEQ ID No. 318: 5'- CTGCCTTAGACGGCTCCCC
SEQ ID No. 319: 5'- CCTGCCTTAGACGGCTCCCC
SEQ ID No. 320: 5'- GTGTCATGCGACACTGAGTT
SEQ ID No. 321: 5'- TGTGTCATGCGACACTGAGT
5 SEQ ID No. 322: 5'- CTTTGTGTCATGCGACACTG
SEQ ID No. 323: 5'- TTGTGTCATGCGACACTGAG
SEQ ID No. 324: 5'- TGCCTTAGACGGCTCCCCCT
SEQ ID No. 325: 5'- AGACGGCTCCCCCTAAAAGG
SEQ ID No. 326: 5'- TAGACGGCTCCCCCTAAAAG
10 SEQ ID No. 327: 5'- GCCTTAGACGGCTCCCCCTA
SEQ ID No. 328: 5'- GCTCCCCCTAAAAGGTTAGG
SEQ ID No. 329: 5'- GGCTCCCCCTAAAAGGTTAG
SEQ ID No. 330: 5'- CTCCCCCTAAAAGGTTAGGC
SEQ ID No. 331: 5'- TCCCCCTAAAAGGTTAGGCC
15 SEQ ID No. 332: 5'- CCCTAAAAGGTTAGGCCACC
SEQ ID No. 333: 5'- CCCCTAAAAGGTTAGGCCAC
SEQ ID No. 334: 5'- CGGCTCCCCCTAAAAGGTTA
SEQ ID No. 335: 5'- CCCCCTAAAAGGTTAGGCCA
SEQ ID No. 336: 5'- CTTAGACGGCTCCCCCTAAA
20 SEQ ID No. 337: 5'- TTAGACGGCTCCCCCTAAAA
SEQ ID No. 338: 5'- GGGTCGCAACTCGTTGTAT
SEQ ID No. 339: 5'- CCTTAGACGGCTCCCCCTAA
SEQ ID No. 340: 5'- ACGGCTCCCCCTAAAAGGTT
SEQ ID No. 341: 5'- GACGGCTCCCCCTAAAAGGT
25

Die Sequenzen SEQ ID No. 302 bis SEQ ID No. 341 sind vor allem zum Nachweis von *Leuconostoc pseudomesenteroides* geeignet.

SEQ ID No. 342: 5'- ACGCCGCAAGACCATCCTCT
30 SEQ ID No. 343: 5'- CTAATACGCCGCAAGACCAT

SEQ ID No. 344: 5'- TACGCCGCAAGACCATCCTC
SEQ ID No. 345: 5'- GTTACGATCTAGCAAGCCGC
SEQ ID No. 346: 5'- AATACGCCGCAAGACCATCC
SEQ ID No. 347: 5'- CGCCGCAAGACCATCCTCTA
5 SEQ ID No. 348: 5'- GCTAATACGCCGCAAGACCA
SEQ ID No. 349: 5'- ACCATCCTCTAGCGATCCAA
SEQ ID No. 350: 5'- TAATACGCCGCAAGACCATC
SEQ ID No. 351: 5'- AGCCATCCCTTCTGGTAAG
SEQ ID No. 352: 5'- ATACGCCGCAAGACCATCCT
10 SEQ ID No. 353: 5'- AGTTACGATCTAGCAAGCCG
SEQ ID No. 354: 5'- AGCTAATACGCCGCAAGACC
SEQ ID No. 355: 5'- GCCGCAAGACCATCCTCTAG
SEQ ID No. 356: 5'- TTACGATCTAGCAAGCCGCT
SEQ ID No. 357: 5'- GACCATCCTCTAGCGATCCA
15 SEQ ID No. 358: 5'- TTGCTACGTCACTAGGAGGC
SEQ ID No. 359: 5'- ACGTCACTAGGAGGCGGAAA
SEQ ID No. 360: 5'- TTTGCTACGTCACTAGGAGG
SEQ ID No. 361: 5'- GCCATCCCTTCTGGTAAGG
SEQ ID No. 362: 5'- TACGTCACTAGGAGGCGGAA
20 SEQ ID No. 363: 5'- CGTCACTAGGAGGCGGAAAC
SEQ ID No. 364: 5'- AAGACCATCCTCTAGCGATC
SEQ ID No. 365: 5'- GCACGTATTTAGCCATCCCT
SEQ ID No. 366: 5'- CTCTAGCGATCCAAAAGGAC
SEQ ID No. 367: 5'- CCTCTAGCGATCCAAAAGGA
25 SEQ ID No. 368: 5'- CCATCCTCTAGCGATCCAAA
SEQ ID No. 369: 5'- GGCACGTATTTAGCCATCCC
SEQ ID No. 370: 5'- TACGATCTAGCAAGCCGCTT
SEQ ID No. 371: 5'- CAGTTACGATCTAGCAAGCC
SEQ ID No. 372: 5'- CCGCAAGACCATCCTCTAGC
30 SEQ ID No. 373: 5'- CCATCCCTTCTGGTAAGGT

SEQ ID No. 374: 5'- AGACCATCCTCTAGCGATCC
SEQ ID No. 375: 5'- CAAGACCATCCTCTAGCGAT
SEQ ID No. 376: 5'- GCTACGTCACTAGGAGGCCGG
SEQ ID No. 377: 5'- TGCTACGTCACTAGGAGGCCGG
5 SEQ ID No. 378: 5'- CTACGTCACTAGGAGGCCGGAA
SEQ ID No. 379: 5'- CCTCAACGTCAGTTACGATC
SEQ ID No. 380: 5'- GTCACTAGGAGGCCGGAAACC
SEQ ID No. 381: 5'- TCCTCTAGCGATCCAAAAGG
SEQ ID No. 382: 5'- TGGCACGTATTAGCCATCC
10 SEQ ID No. 383: 5'- ACGATCTAGCAAGCCGCTT
SEQ ID No. 384: 5'- GCCAGTCTCTCAACTCGGCT
SEQ ID No. 385: 5'- AAGCTAATACGCCGCAAGAC
SEQ ID No. 386: 5'- GTTGCTACGTCACTAGGAG
SEQ ID No. 387: 5'- CGCCACTCTAGTCATTGCCT
15 SEQ ID No. 388: 5'- GGCCAGCCAGTCTCTCAACT
SEQ ID No. 389: 5'- CAGCCAGTCTCTCAACTCGG
SEQ ID No. 390: 5'- CCCGAAGATCAATTAGCGG
SEQ ID No. 391: 5'- CCAGCCAGTCTCTCAACTCG
SEQ ID No. 392: 5'- CCAGCCAGTCTCTCAACTCG
20 SEQ ID No. 393: 5'- TCATTGCCTCACTTCACCCG
SEQ ID No. 394: 5'- GCCAGCCAGTCTCTCAACTC
SEQ ID No. 395: 5'- CACCCGAAGATCAATTAGC
SEQ ID No. 396: 5'- GTCATTGCCTCACTTCACCC
SEQ ID No. 397: 5'- CATTGCCTCACTTCACCCGA
25 SEQ ID No. 398: 5'- ATTGCCTCACTTCACCCGAA
SEQ ID No. 399: 5'- CGAAGATCAATTAGCGGCT
SEQ ID No. 400: 5'- AGTCATTGCCTCACTTCACC
SEQ ID No. 401: 5'- TCGCCACTCTAGTCATTGCC
SEQ ID No. 402: 5'- TTGCCTCACTTCACCCGAAG
30 SEQ ID No. 403: 5'- CGGCCAGTCTCTCAACTCGG

	SEQ ID No. 404:	5'- CTGGCACGTATTTAGCCATC
	SEQ ID No. 405:	5'- ACCCGAAGATCAATTAGCG
	SEQ ID No. 406:	5'- TCTAGCGATCCAAAAGGACC
	SEQ ID No. 407:	5'- CTAGCGATCCAAAAGGACCT
5	SEQ ID No. 408:	5'- GCACCCATCGTTACGGTAT
	SEQ ID No. 409:	5'- CACCCATCGTTACGGTATG
	SEQ ID No. 410:	5'- GCCACTCTAGTCATTGCCTC
	SEQ ID No. 411:	5'- CGTTTGCTACGTCACTAGGA
	SEQ ID No. 412:	5'- GCCTCAACGTCAGTTACGAT
10	SEQ ID No. 413:	5'- GCCGGCCAGTCTCTCAACTC
	SEQ ID No. 414:	5'- TCACTAGGAGGGCGGAAACCT
	SEQ ID No. 415:	5'- AGCCTCAACGTCAGTTACGA
	SEQ ID No. 416:	5'- AGCCAGTCTCTCAACTCGGC
	SEQ ID No. 417:	5'- GGCCAGTCTCTCAACTCGGC
15	SEQ ID No. 418:	5'- CAAGCTAATAACGCCGCAAGA
	SEQ ID No. 419:	5'- TTGCCCCACTCTAGTCATTGC
	SEQ ID No. 420:	5'- CCGAAGATCAATTAGCGGC
	SEQ ID No. 421:	5'- CGCAAGACCATCCTCTAGCG
	SEQ ID No. 422:	5'- GCAAGACCATCCTCTAGCGA
20	SEQ ID No. 423:	5'- GCGTTGCTACGTCACTAGG
	SEQ ID No. 424:	5'- CCACTCTAGTCATTGCCTCA
	SEQ ID No. 425:	5'- CACTCTAGTCATTGCCTCAC
	SEQ ID No. 426:	5'- CCAGTCTCTCAACTCGGCTA
	SEQ ID No. 427:	5'- TTACCTTAGGCACCGGCCTC
25	SEQ ID No. 428:	5'- ACAAGCTAATAACGCCGCAAG
	SEQ ID No. 429:	5'- TTTACCTTAGGCACCGGCCT
	SEQ ID No. 430:	5'- TTTTACCTTAGGCACCGGCC
	SEQ ID No. 431:	5'- ATTTTACCTTAGGCACCGGC
	SEQ ID No. 432:	5'- GATTITACCTTAGGCACCGGG
30	SEQ ID No. 433:	5'- CTCACTTCACCCGAAGATCA

SEQ ID No. 434: 5'- ACGCCACCAGCGTTCATCCT
SEQ ID No. 435: 5'- GCCAAGCGACTTGGGTACT
SEQ ID No. 436: 5'- CGGAAAATTCCCTACTGCAG
SEQ ID No. 437: 5'- CGATCTAGCAAGCCGCTTTC
5 SEQ ID No. 438: 5'- GGTACCGTCAAGCTGAAAAC
SEQ ID No. 439: 5'- TGCCTCACTTACCCGAAGA
SEQ ID No. 440: 5'- GGCCGGCCAGTCTCTCAACT
SEQ ID No. 441: 5'- GGTAAGGTACCGTCAAGCTG
SEQ ID No. 442: 5'- GTAAGGTACCGTCAAGCTGA
10 SEQ ID No. 443: 5'- CCGCAAGACCATCCTCTAGG
SEQ ID No. 444: 5'- ATTAGCCATCCCTTCTGG

Die Sequenzen SEQ ID No. 342 bis SEQ ID No. 444 sind vor allem zum Nachweis von *Oenococcus oeni* geeignet.

15 SEQ ID No. 445: 5'- AACCCCTTCATCACACACAG
SEQ ID No. 446: 5'- CGAAACCCCTTCATCACAC
SEQ ID No. 447: 5'- ACCCTTCATCACACACAGC
SEQ ID No. 448: 5'- TACCGTCACACACTGAAC
20 SEQ ID No. 449: 5'- AGATACCGTCACACACTG
SEQ ID No. 450: 5'- CACTCAAGGGCGGAAACC
SEQ ID No. 451: 5'- ACCGTCACACACTGAACACA
SEQ ID No. 452: 5'- CGTCACACACTGAACAGT
SEQ ID No. 453: 5'- CCGAAACCCCTTCATCACA
25 SEQ ID No. 454: 5'- CCGTCACACACTGAACAG
SEQ ID No. 455: 5'- GATACCGTCACACACTGA
SEQ ID No. 456: 5'- GGTAAGATAACCGTCACAC
SEQ ID No. 457: 5'- CCCTTCATCACACACGCG
SEQ ID No. 458: 5'- ACAGTGTTCACGAGCCG
30 SEQ ID No. 459: 5'- CAGTGTTCACGAGCCGA

SEQ ID No. 460: 5'- ACAAAAGCGTTCGACTTGC
SEQ ID No. 461: 5'- CGGATAACGCTTGGAAACA
SEQ ID No. 462: 5'- AGGGCGGAAACCCTCGAA
SEQ ID No. 463: 5'- GGGCGGAAACCCTCGAAC
5 SEQ ID No. 464: 5'- GGCAGGAAACCCTCGAAC
SEQ ID No. 465: 5'- TGAGGGCTTCACTTCACTCAG
SEQ ID No. 466: 5'- AGGGCTTCACTTCACTCAGAC
SEQ ID No. 467: 5'- GAGGGCTTCACTTCAGA
SEQ ID No. 468: 5'- ACTGCACTCAAGTCATCC
10 SEQ ID No. 469: 5'- CCGGATAACGCTTGGAAC
SEQ ID No. 470: 5'- TCCGGATAACGCTTGGAA
SEQ ID No. 471: 5'- TATCCCCTGCTAAGAGGT
SEQ ID No. 472: 5'- CCTGCTAAGAGGTAGGTT
SEQ ID No. 473: 5'- CCCTGCTAAGAGGTAGGT
15 SEQ ID No. 474: 5'- CCCCTGCTAAGAGGTAGG
SEQ ID No. 475: 5'- TCCCCCTGCTAAGAGGTAG
SEQ ID No. 476: 5'- ATCCCCCTGCTAAGAGGTA
SEQ ID No. 477: 5'- CCGTCCCTTCTGGTAAG
SEQ ID No. 478: 5'- GCCGTTCCCTTCTGGTAA
20 SEQ ID No. 479: 5'- AGCCGTTCCCTTCTGGTA
SEQ ID No. 480: 5'- GCACGTATTTAGCCGTT
SEQ ID No. 481: 5'- CACGTATTTAGCCGTT
SEQ ID No. 482: 5'- GGCACGTATTTAGCCGTT
SEQ ID No. 483: 5'- CACTTCCTCTACTGCAC
25 SEQ ID No. 484: 5'- CCACTTCCTCTACTGCA
SEQ ID No. 485: 5'- TCCACTTCCTCTACTGCA
SEQ ID No. 486: 5'- CTTCCTCTACTGCAC
SEQ ID No. 487: 5'- TAGCCGTTCCCTTCTGGT
SEQ ID No. 488: 5'- TTAGCCGTTCCCTTCTGG
30 SEQ ID No. 489: 5'- TTATCCCCTGCTAAGAGG

SEQ ID No. 490: 5' - GTTATCCCCTGCTAAGAG
SEQ ID No. 491: 5' - CCCGTTGCCACTCTTG
SEQ ID No. 492: 5' - AGCTGAGGGCTTCACCT
SEQ ID No. 493: 5' - GAGCTGAGGGCTTCACCT
5 SEQ ID No. 494: 5' - GCTGAGGGCTTCACCTC
SEQ ID No. 495: 5' - CTGAGGGCTTCACCTCA

Die Sequenzen SEQ ID No. 445 bis SEQ ID No. 495 sind vor allem zum Nachweis von Bakterien der Gattung Weissella geeignet.

10 SEQ ID No. 496: 5' CCCGTGTCCCGAAGGAAC
SEQ ID No. 497: 5' GCACGAGTATGTCAAGAC
SEQ ID No. 498: 5' GTATCCCGTGTCCCGAAG
SEQ ID No. 499: 5' TCCCGTGTCCCGAAGGAA
15 SEQ ID No. 500: 5' ATCCCGTGTCCCGAAGGA
SEQ ID No. 501: 5' TATCCCGTGTCCCGAAGG
SEQ ID No. 502: 5' CTTACCTTAGGAAGCGCC
SEQ ID No. 503: 5' TTACCTTAGGAAGCGCCC
SEQ ID No. 504: 5' CCTGTATCCCGTGTCCCG
20 SEQ ID No. 505: 5' CCACCTGTATCCCGTGT
SEQ ID No. 506: 5' CACCTGTATCCCGTGTCC
SEQ ID No. 507: 5' ACCTGTATCCCGTGTCCC
SEQ ID No. 508: 5' CTGTATCCCGTGTCCCGA
SEQ ID No. 509: 5' TGTATCCCGTGTCCCGAA
25 SEQ ID No. 510: 5' CACGAGTATGTCAAGACC
SEQ ID No. 511: 5' CGGTCTTACCTTAGGAAG
SEQ ID No. 512: 5' TAGGAAGCGCCCTCCTTG
SEQ ID No. 513: 5' AGGAAGCGCCCTCCTGC
SEQ ID No. 514: 5' TTAGGAAGCGCCCTCCTT
30 SEQ ID No. 515: 5' CTTAGGAAGCGCCCTCCT

SEQ ID No. 516: 5' CCTTAGGAAGGCCCTCC
SEQ ID No. 517: 5' ACCTTAGGAAGGCCCTC
SEQ ID No. 518: 5' TGCACACAATGGTGAGC
SEQ ID No. 519: 5' TACCTTAGGAAGGCCCT
5 SEQ ID No. 520: 5' ACCACCTGTATCCGTGT
SEQ ID No. 521: 5' GCACCACCTGTATCCGT
SEQ ID No. 522: 5' CACCACCTGTATCCGTG
SEQ ID No. 523: 5' GCGGTTAGGCAACCTACT
SEQ ID No. 524: 5' TGCAGGTTAGGCAACCTAC
10 SEQ ID No. 525: 5' TTGCGGTTAGGCAACCTA
SEQ ID No. 526: 5' GGTCTTACCTTAGGAAGC
SEQ ID No. 527: 5' GCTAATACAACGCGGGAT
SEQ ID No. 528: 5' CTAATACAACGCGGGATC
SEQ ID No. 529: 5' ATACAACGCGGGATCATC
15 SEQ ID No. 530: 5' CGGTTAGGCAACCTACTT
SEQ ID No. 531: 5' TGCACCACCTGTATCCG
SEQ ID No. 532: 5' GAAGGCCCTCCTGCG
SEQ ID No. 533: 5' GGAAGGCCCTCCTGCG
SEQ ID No. 534: 5' CGTCCCTTCTGGTTAGA
20 SEQ ID No. 535: 5' AGCTAATACAACGCGGG
SEQ ID No. 536: 5' TAGCTAATACAACGCGGG
SEQ ID No. 537: 5' CTAGCTAATACAACGCGG
SEQ ID No. 538: 5' GGCTATGTATCATCGCCT
SEQ ID No. 539: 5' GAGCCACTGCCCTTACA
25 SEQ ID No. 540: 5' GTCGGCTATGTATCATCG
SEQ ID No. 541: 5' GGTGGCTATGTATCATC
SEQ ID No. 542: 5' CAGGTCGGCTATGTATCA
SEQ ID No. 543: 5' CGGCTATGTATCATGCC
SEQ ID No. 544: 5' TCGGCTATGTATCATCGC
30 SEQ ID No. 545: 5' GTCTTACCTTAGGAAGCG

SEQ ID No. 546: 5' TCTTACCTTAGGAAGCGC

Die Sequenzen SEQ ID No. 496 bis SEQ ID No. 546 sind vor allem zum Nachweis von Bakterien der Gattung Lactococcus geeignet.

5

d) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Essigsäurebakterien nachweisen:

	SEQ ID No. 547:	5'- GTACAAACCGCCTACACGCC
10	SEQ ID No. 548:	5'- TGTACAAACCGCCTACACGC
	SEQ ID No. 549:	5'- GATCAGCACGATGTCGCCAT
	SEQ ID No. 550:	5'- CTGTACAAACCGCCTACACG
	SEQ ID No. 551:	5'- GAGATCAGCACGATGTCGCC
	SEQ ID No. 552:	5'- AGATCAGCACGATGTCGCCA
15	SEQ ID No. 553:	5'- ATCAGCACGATGTCGCCATC
	SEQ ID No. 554:	5'- TCAGCACGATGTCGCCATCT
	SEQ ID No. 555:	5'- ACTGTACAAACCGCCTACAC
	SEQ ID No. 556:	5'- CCGCCACTAAGGCCGAAACC
	SEQ ID No. 557:	5'- CAGCACGATGTCGCCATCTA
20	SEQ ID No. 558:	5'- TACAAACCGCCTACACGCC
	SEQ ID No. 559:	5'- AGCACGATGTCGCCATCTAG
	SEQ ID No. 560:	5'- CGGCTTTAGAGATCAGCAC
	SEQ ID No. 561:	5'- TCCGCCACTAAGGCCGAAAC
	SEQ ID No. 562:	5'- GACTGTACAAACCGCCTACA
25	SEQ ID No. 563:	5'- GTCCGCCACTAAGGCCGAAA
	SEQ ID No. 564:	5'- GGGGATTTCACATCTGACTG
	SEQ ID No. 565:	5'- CATAACAAGCCCTGGTAAGGTT
	SEQ ID No. 566:	5'- ACAAGCCCTGGTAAGGTTCT
	SEQ ID No. 567:	5'- ACAAACCGCCTACACGCCCT
30	SEQ ID No. 568:	5'- CTGACTGTACAAACCGCCTA

SEQ ID No. 569: 5'- TGACTGTACAAACCGCCTAC
SEQ ID No. 570: 5'- ACGATGTCGCCATCTAGCTT
SEQ ID No. 571: 5'- CACGATGTCGCCATCTAGCT
SEQ ID No. 572: 5'- CGATGTCGCCATCTAGCTTC
5 SEQ ID No. 573: 5'- GCACGATGTCGCCATCTAGC
SEQ ID No. 574: 5'- GATGTCGCCATCTAGCTTCC
SEQ ID No. 575: 5'- ATGTCGCCATCTAGCTTCCC
SEQ ID No. 576: 5'- TGTGCCCATCTAGCTTCCA
SEQ ID No. 577: 5'- GCCATCTAGCTTCCACTGT
10 SEQ ID No. 578: 5'- TCGCCATCTAGCTTCCACT
SEQ ID No. 579: 5'- CGCCATCTAGCTTCCACTG
SEQ ID No. 580: 5'- GTCGCCATCTAGCTTCCCAC
SEQ ID No. 581: 5'- TACAAGCCCTGGTAAGGTT
SEQ ID No. 582: 5'- GCCACTAAGGCCGAAACCTT
15 SEQ ID No. 583: 5'- ACTAAGGCCGAAACCTTCGT
SEQ ID No. 584: 5'- CTAAGGCCGAAACCTTCGTG
SEQ ID No. 585: 5'- CACTAAGGCCGAAACCTTCG
SEQ ID No. 586: 5'- AAGGCCGAAACCTTCGTGCG
SEQ ID No. 587: 5'- CCACTAAGGCCGAAACCTTC
20 SEQ ID No. 588: 5'- TAAGGCCGAAACCTTCGTGC
SEQ ID No. 589: 5'- AGGCCGAAACCTTCGTGCGA
SEQ ID No. 590: 5'- TCTGACTGTACAAACCGCCT
SEQ ID No. 591: 5'- CATCTGACTGTACAAACCGC
SEQ ID No. 592: 5'- ATCTGACTGTACAAACCGCC
25 SEQ ID No. 593: 5'- CTTCGTGCGACTTGCATGTG
SEQ ID No. 594: 5'- CCTTCGTGCGACTTGCATGT
SEQ ID No. 595: 5'- CTCTCTAGAGTGCCCCACCCA
SEQ ID No. 596: 5'- TCTCTAGAGTGCCCCACCAA
SEQ ID No. 597: 5'- ACGTATCAAATGCAGCTCCC
30 SEQ ID No. 598: 5'- CGTATCAAATGCAGCTCCA

SEQ ID No. 599: 5'- CGCCACTAAGGCCGAAACCT
SEQ ID No. 600: 5'- CCGAACCTCGTGCAGCTT
SEQ ID No. 601: 5'- GCCGAAACCTCGTGCAGCT
SEQ ID No. 602: 5'- AACCTCGTGCAGCTTGAT
5 SEQ ID No. 603: 5'- CGAACCTCGTGCAGCTTG
SEQ ID No. 604: 5'- ACCTTCGTGCAGCTTGATG
SEQ ID No. 605: 5'- GAAACCTCGTGCAGCTTG
SEQ ID No. 606: 5'- GGCGAAACCTCGTGCAGCT
SEQ ID No. 607: 5'- AAACCTCGTGCAGCTTGCA
10 SEQ ID No. 608: 5'- CACGTATCAAATGCAGCTCC

Die Sequenzen SEQ ID No. 547 bis SEQ ID No. 608 sind vor allem zum gleichzeitigen Nachweis von Bakterien der Gattungen Acetobacter und Gluconobacter geeignet.

15 SEQ ID No. 609: 5'- GCTCACCGGCTTAAGGTCAA
SEQ ID No. 610: 5'- CGCTCACCGGCTTAAGGTCA
SEQ ID No. 611: 5'- TCGCTCACCGGCTTAAGGTCA
SEQ ID No. 612: 5'- CTCACCGGCTTAAGGTCAAA
20 SEQ ID No. 613: 5'- CCCGACCGTGGTCGGCTGCG
SEQ ID No. 614: 5'- GCTCACCGGCTTAAGGTCAA
SEQ ID No. 615: 5'- CGCTCACCGGCTTAAGGTCA
SEQ ID No. 616: 5'- TCGCTCACCGGCTTAAGGTCA
SEQ ID No. 617: 5'- CTCACCGGCTTAAGGTCAAA
25 SEQ ID No. 618: 5'- CCCGACCGTGGTCGGCTGCG
SEQ ID No. 619: 5'- TCACCGGCTTAAGGTCAAAC
SEQ ID No. 620: 5'- CAACCCTCTCACACTCTA
SEQ ID No. 621: 5'- ACAACCCTCTCACACTCT
SEQ ID No. 622: 5'- CCACAACCCTCTCACACT
30 SEQ ID No. 623: 5'- AACCCCTCTCACACTCTAG

SEQ ID No. 624: 5'- CACAACCCTCTCTCACACTC
SEQ ID No. 625: 5'- TCCACAACCCTCTCTCACAC
SEQ ID No. 626: 5'- TTCCACAACCCTCTCTCACAC
SEQ ID No. 627: 5'- ACCCTCTCTCACACTCTAGT
5 SEQ ID No. 628: 5'- GAGCCAGGTTGCCGCCTCG
SEQ ID No. 629: 5'- AGGTCAAACCAACTCCCATG
SEQ ID No. 630: 5'- ATGAGCCAGGTTGCCGCCTT
SEQ ID No. 631: 5'- TGAGCCAGGTTGCCGCCTTC
SEQ ID No. 632: 5'- AGGCTCCTCCACAGGCGACT
10 SEQ ID No. 633: 5'- CAGGCTCCTCCACAGGCGAC
SEQ ID No. 634: 5'- GCAGGCTCCTCCACAGGCGA
SEQ ID No. 635: 5'- TTCGCTCACCGGCTTAAGGT
SEQ ID No. 636: 5'- GTTCGCTCACCGGCTTAAGG
SEQ ID No. 637: 5'- GGTCGCTCACCGGCTTAAG
15 SEQ ID No. 638: 5'- ATTCCACAACCCTCTCTCAC
SEQ ID No. 639: 5'- TGACCCGACCGTGGTCGGCT
SEQ ID No. 640: 5'- CCCTCTCTCACACTCTAGTC
SEQ ID No. 641: 5'- GAATTCCACAACCCTCTCTC
SEQ ID No. 642: 5'- AGCCAGGTTGCCGCCTCGC
20 SEQ ID No. 643: 5'- GCCAGGTTGCCGCCTCGCC
SEQ ID No. 644: 5'- GGAATTCCACAACCCTCTCT
SEQ ID No. 645: 5'- GGAATTCCACAACCCTCTC
SEQ ID No. 646: 5'- AACGCAGGCTCCTCCACAGG
SEQ ID No. 647: 5'- CGGCTTAAGGTCAAACCAAC
25 SEQ ID No. 648: 5'- CCGGCTTAAGGTCAAACCAA
SEQ ID No. 649: 5'- CACCGGCTTAAGGTCAAACCC
SEQ ID No. 650: 5'- ACCGGCTTAAGGTCAAACCA
SEQ ID No. 651: 5'- ACCAACATCCAGCACACAT
SEQ ID No. 652: 5'- TCGCTGACCCGACCGTGGTC
30 SEQ ID No. 653: 5'- CGCTGACCCGACCGTGGTCG

SEQ ID No. 654: 5'- GACCCGACCGTGGTCGGCTG
SEQ ID No. 655: 5'- GCTGACCCGACCGTGGTCGG
SEQ ID No. 656: 5'- CTGACCCGACCGTGGTCGGC
SEQ ID No. 657: 5'- CAGGCAGACTTGCGCCTTGA
5 SEQ ID No. 658: 5'- TCATGCGGTATTAGCTCCAG
SEQ ID No. 659: 5'- ACTAGCTAATCGAACGCAGG
SEQ ID No. 660: 5'- CATGCGGTATTAGCTCCAGT
SEQ ID No. 661: 5'- CGCAGGCTCCTCACAGGCG
SEQ ID No. 662: 5'- ACGCAGGCTCCTCACAGGC
10 SEQ ID No. 663: 5'- CTCAGGTGTCATGCGGTATT
SEQ ID No. 664: 5'- CGCCTTGACCCTCAGGTGT
SEQ ID No. 665: 5'- ACCCTCAGGTGTCATGCGGT
SEQ ID No. 666: 5'- CCTCAGGTGTCATGCGGTAT
SEQ ID No. 667: 5'- TTTGACCCTCAGGTGTCATG
15 SEQ ID No. 668: 5'- GACCCTCAGGTGTCATGCGG
SEQ ID No. 669: 5'- TGACCCTCAGGTGTCATGCG
SEQ ID No. 670: 5'- GCCTTGACCCTCAGGTGTC
SEQ ID No. 671: 5'- TTGACCCTCAGGTGTCATGC
SEQ ID No. 672: 5'- CCCTCAGGTGTCATGCGGTA
20 SEQ ID No. 673: 5'- CCTTGACCCTCAGGTGTCA
SEQ ID No. 674: 5'- CTTGACCCTCAGGTGTCAT
SEQ ID No. 675: 5'- AGTTATCCCCACCCATGGA
SEQ ID No. 676: 5'- CCAGCTATCGATCATCGCCT
SEQ ID No. 677: 5'- ACCAGCTATCGATCATCGCC
25 SEQ ID No. 678: 5'- CAGCTATCGATCATCGCCTT
SEQ ID No. 679: 5'- AGCTATCGATCATCGCCTTG
SEQ ID No. 680: 5'- GCTATCGATCATCGCCTTGG
SEQ ID No. 681: 5'- CTATCGATCATCGCCTTGGT
SEQ ID No. 682: 5'- TTCGTGCGACTTGCATGTGT
30 SEQ ID No. 683: 5'- TCGATCATCGCCTTGGTAGG

SEQ ID No. 684: 5'- ATCGATCATGCCCTGGTAG
SEQ ID No. 685: 5'- CACAGGCGACTTGC GCCTT
SEQ ID No. 686: 5'- CCACAGGCGACTTGC GCCTT
SEQ ID No. 687: 5'- TCCACAGGCGACTTGC GCCT
5 SEQ ID No. 688: 5'- TCCTCCACAGGCGACTTGCG
SEQ ID No. 689: 5'- CCTCCACAGGCGACTTGCGC
SEQ ID No. 690: 5'- CTCCACAGGCGACTTGCGCC
SEQ ID No. 691: 5'- ACAGGCGACTTGCGC TTG
SEQ ID No. 692: 5'- GCTCACCGGCTTAAGGTCAA
10 SEQ ID No. 693: 5'- CGCTCACCGGCTTAAGGTCA
SEQ ID No. 694: 5'- TCGCTCACCGGCTTAAGGTCA
SEQ ID No. 695: 5'- CTCACCGGCTTAAGGTCAA
SEQ ID No. 696: 5'- CCCGACCGTGGTCGGCTGCG
SEQ ID No. 697: 5'- TCACCGGCTTAAGGTCAA
15 SEQ ID No. 698: 5'- CAACCCCTCTCACACTCTA
SEQ ID No. 699: 5'- ACAACCCCTCTCACACTCT
SEQ ID No. 700: 5'- CCACAACCCCTCTCACACT
SEQ ID No. 701: 5'- AACCCCTCTCACACTCTAG
SEQ ID No. 702: 5'- CACAACCCCTCTCACACTC
20 SEQ ID No. 703: 5'- TCCACAACCCCTCTCACAC
SEQ ID No. 704: 5'- TTCCACAACCCCTCTCACACA
SEQ ID No. 705: 5'- ACCCTCTCTCACACTCTAGT
SEQ ID No. 706: 5'- GAGCCAGGTTGCCGCCTCG
SEQ ID No. 707: 5'- AGGTCAAACCAACTCCCAG
25 SEQ ID No. 708: 5'- ATGAGCCAGGTTGCCGCCTT
SEQ ID No. 709: 5'- TGAGCCAGGTTGCCGCCTTC
SEQ ID No. 710: 5'- AGGCTCCTCCACAGGCGACT
SEQ ID No. 711: 5'- CAGGCTCCTCCACAGGCGAC
SEQ ID No. 712: 5'- GCAGGCTCCTCCACAGGCGA
30 SEQ ID No. 713: 5'- TTCGCTCACCGGCTTAAGGT

SEQ ID No. 714: 5'- GTTCGCTCACCGGCTTAAGG
SEQ ID No. 715: 5'- GGTCGCTCACCGGCTTAAG
SEQ ID No. 716: 5'- ATTCCACAACCCCTCTCAC
SEQ ID No. 717: 5'- TGACCCGACCGTGGTCGGCT
5 SEQ ID No. 718: 5'- CCCTCTCTCACACTCTAGTC
SEQ ID No. 719: 5'- GAATTCCACAACCCCTCTC
SEQ ID No. 720: 5'- AGCCAGGTTGCCGCCTCGC
SEQ ID No. 721: 5'- GCCAGGTTGCCGCCTCGCC
SEQ ID No. 722: 5'- GGAATTCCACAACCCCTCT
10 SEQ ID No. 723: 5'- GGGATTCCACAACCCCTCTC
SEQ ID No. 724: 5'- AACGCAGGCTCCTCACAGG
SEQ ID No. 725: 5'- CGGCTTAAGGTCAAACCAAC
SEQ ID No. 726: 5'- CCGGCTTAAGGTCAAACCAAA
SEQ ID No. 727: 5'- CACCGGCTTAAGGTCAAACC
15 SEQ ID No. 728: 5'- ACCGGCTTAAGGTCAAACCA
SEQ ID No. 729: 5'- ACCAACATCCAGCACACAT
SEQ ID No. 730: 5'- TCGCTGACCCGACCGTGGTC
SEQ ID No. 731: 5'- CGCTGACCCGACCGTGGTC
SEQ ID No. 732: 5'- GACCCGACCGTGGTCGGCTG
20 SEQ ID No. 733: 5'- GCTGACCCGACCGTGGTCGG
SEQ ID No. 734: 5'- CTGACCCGACCGTGGTCGGC
SEQ ID No. 735: 5'- CAGGCGACTTGCGCCTTGA
SEQ ID No. 736: 5'- TCATGCGGTATTAGCTCCAG
SEQ ID No. 737: 5'- ACTAGCTAATCGAACGCAGG
25 SEQ ID No. 738: 5'- CATGCGGTATTAGCTCCAGT
SEQ ID No. 739: 5'- CGCAGGCTCCTCACAGGGCG
SEQ ID No. 740: 5'- ACGCAGGCTCCTCACAGGGC
SEQ ID No. 741: 5'- CTCAGGTGTATGCGGTATT
SEQ ID No. 742: 5'- CGCCTTGACCCCTCAGGTGT
30 SEQ ID No. 743: 5'- ACCCTCAGGTGTATGCGGT

SEQ ID No. 744: 5'- CCTCAGGTGTCATGCGGTAT
SEQ ID No. 745: 5'- TTTGACCCCTCAGGTGTCATG
SEQ ID No. 746: 5'- GACCCTCAGGTGTCATGCGG
SEQ ID No. 747: 5'- TGACCCCTCAGGTGTCATGCG
5 SEQ ID No. 748: 5'- GCCTTGACCCCTCAGGTGTC
SEQ ID No. 749: 5'- TTGACCCCTCAGGTGTCATGC
SEQ ID No. 750: 5'- CCCTCAGGTGTCATGCGGTA
SEQ ID No. 751: 5'- CCTTGACCCCTCAGGTGTCA
SEQ ID No. 752: 5'- CTTTGACCCCTCAGGTGTCA
10 SEQ ID No. 753: 5'- AGTTATCCCCCACCCATGGA
SEQ ID No. 754: 5'- CCAGCTATCGATCATCGCCT
SEQ ID No. 755: 5'- ACCAGCTATCGATCATCGCC
SEQ ID No. 756: 5'- CAGCTATCGATCATCGCCTT
SEQ ID No. 757: 5'- AGCTATCGATCATCGCCTTG
15 SEQ ID No. 758: 5'- GCTATCGATCATCGCCTTGG
SEQ ID No. 759: 5'- CTATCGATCATCGCCTTGGT
SEQ ID No. 760: 5'- TTCGTGCGACTTGCATGTGT
SEQ ID No. 761: 5'- TCGATCATCGCCTTGGTAGG
SEQ ID No. 762: 5'- ATCGATCATCGCCTTGGTAG
20 SEQ ID No. 763: 5'- CACAGGCGACTTGCCTT
SEQ ID No. 764: 5'- CCACAGGCGACTTGCCTT
SEQ ID No. 765: 5'- TCCACAGGCGACTTGCCT
SEQ ID No. 766: 5'- TCCTCCACAGGCGACTTGC
SEQ ID No. 767: 5'- CCTCCACAGGCGACTTGC
25 SEQ ID No. 768: 5'- CTCCACAGGCGACTTGC
SEQ ID No. 769: 5'- ACAGGCGACTTGCCTT
SEQ ID No. 770: 5'- TCACCGGCTTAAGGTCAAAC
SEQ ID No. 771: 5'- CAACCCTCTCACACTCTA
SEQ ID No. 772: 5'- ACAACCCTCTCACACTCT
30 SEQ ID No. 773: 5'- CCACAACCCTCTCACACT

SEQ ID No. 774: 5'- AACCCCTCTCTCACACTCTAG
SEQ ID No. 775: 5'- CACAAACCCTCTCTCACACTC
SEQ ID No. 776: 5'- TCCACAAACCCTCTCTCACAC
SEQ ID No. 777: 5'- TTCCACAACCCTCTCTCACAC
5 SEQ ID No. 778: 5'- ACCGTCTCTCACACTCTAGT
SEQ ID No. 779: 5'- GAGCCAGGTTGCCGCCTTCG
SEQ ID No. 780: 5'- AGGTCAAACCAACTCCCATG
SEQ ID No. 781: 5'- ATGAGCCAGGTTGCCGCCTT
SEQ ID No. 782: 5'- TGAGCCAGGTTGCCGCCTTC
10 SEQ ID No. 783: 5'- AGGCTCCTCCACAGGCGACT
SEQ ID No. 784: 5'- CAGGCTCCTCCACAGGCGAC
SEQ ID No. 785: 5'- GCAGGCTCCTCCACAGGCGA
SEQ ID No. 786: 5'- TTCGCTCACCGGCTTAAGGT
SEQ ID No. 787: 5'- GTTCGCTCACCGGCTTAAGG
15 SEQ ID No. 788: 5'- GGTCGCTCACGGGCTTAAG
SEQ ID No. 789: 5'- ATTCCACAACCCTCTCTCAC
SEQ ID No. 790: 5'- TGACCCGACCGTGGTCGGCT
SEQ ID No. 791: 5'- CCCTCTCTCACACTCTAGTC
SEQ ID No. 792: 5'- GAATTCCACAACCCTCTCTC
20 SEQ ID No. 793: 5'- AGCCAGGTTGCCGCCTTCGC
SEQ ID No. 794: 5'- GCCAGGTTGCCGCCTTCGCC
SEQ ID No. 795: 5'- GGAATTCCACAACCCTCTCT
SEQ ID No. 796: 5'- GGAATTCCACAACCCTCTC
SEQ ID No. 797: 5'- AACGCAGGCTCCTCCACAGG
25 SEQ ID No. 798: 5'- CGGCTTAAGGTCAAACCAAC
SEQ ID No. 799: 5'- CCGGCTTAAGGTCAAACCAA
SEQ ID No. 800: 5'- CACCGGCTTAAGGTCAAACCC
SEQ ID No. 801: 5'- ACCGGCTTAAGGTCAAACCA
SEQ ID No. 802: 5'- ACCCAACATCCAGCACACAT
30 SEQ ID No. 803: 5'- TCGCTGACCCGACCGTGGTC

SEQ ID No. 804: 5'- CGCTGACCCGACCGTGGTCG
SEQ ID No. 805: 5'- GACCCGACCGTGGTCGGCTG
SEQ ID No. 806: 5'- GCTGACCCGACCGTGGTCGG
SEQ ID No. 807: 5'- CTGACCCGACCGTGGTCGGC
5 SEQ ID No. 808: 5'- CAGGCGACTTGCGCCTTGA
SEQ ID No. 809: 5'- TCATGCGGTATTAGCTCCAG
SEQ ID No. 810: 5'- ACTAGCTAATCGAACGCAGG
SEQ ID No. 811: 5'- CATGCGGTATTAGCTCCAGT
SEQ ID No. 812: 5'- CGCAGGCTCCTCACAGGCG
10 SEQ ID No. 813: 5'- ACGCAGGCTCCTCACAGGC
SEQ ID No. 814: 5'- CTCAGGTGTCATGCGGTATT
SEQ ID No. 815: 5'- CGCCTTGACCCTCAGGTGT
SEQ ID No. 816: 5'- ACCCTCAGGTGTCATGCGGT
SEQ ID No. 817: 5'- CCTCAGGTGTCATGCGGTAT
15 SEQ ID No. 818: 5'- TTTGACCCCTCAGGTGTATG
SEQ ID No. 819: 5'- GACCCTCAGGTGTCATGCGG
SEQ ID No. 820: 5'- TGACCCCTCAGGTGTATGCG
SEQ ID No. 821: 5'- GCCTTGACCCTCAGGTGTC
SEQ ID No. 822: 5'- TTGACCCCTCAGGTGTATGC
20 SEQ ID No. 823: 5'- CCCTCAGGTGTCATGCGGTA
SEQ ID No. 824: 5'- CCTTGACCCCTCAGGTGTCA
SEQ ID No. 825: 5'- CTTTGACCCCTCAGGTGTAT
SEQ ID No. 826: 5'- AGTTATCCCCCACCATGGA
SEQ ID No. 827: 5'- CCAGCTATCGATCATCGCCT
25 SEQ ID No. 828: 5'- ACCAGCTATCGATCATCGCC
SEQ ID No. 829: 5'- CAGCTATCGATCATGCCCT
SEQ ID No. 830: 5'- AGCTATCGATCATGCCCTTG
SEQ ID No. 831: 5'- GCTATCGATCATGCCCTTGG
SEQ ID No. 832: 5'- CTATCGATCATGCCCTTGGT
30 SEQ ID No. 833: 5'- TTCGTGCGACTTGCATGTGT

SEQ ID No. 834: 5'- TCGATCATGCCTTGGTAGG
SEQ ID No. 835: 5'- ATCGATCATGCCTTGGTAG
SEQ ID No. 836: 5'- CACAGGCGACTTGCGCCTT
SEQ ID No. 837: 5'- CCACAGGCGACTTGCGCCT
5 SEQ ID No. 838: 5'- TCCACAGGCGACTTGCGCCT
SEQ ID No. 839: 5'- TCCTCCACAGGCGACTTGCG
SEQ ID No. 840: 5'- CCTCCACAGGCGACTTGCGC
SEQ ID No. 841: 5'- CTCCACAGGCGACTTGCGCC
SEQ ID No. 842: 5'- ACAGGCGACTTGCGCCTTG

10

Die Sequenzen SEQ ID No. 609 bis SEQ ID No. 842 sind vor allem zum gleichzeitigen Nachweis von Bakterien der Gattungen Acetobacter, Gluconobacter und Gluconoacetobacter geeignet.

15 e) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Bazillen nachweisen:

SEQ ID No. 843: 5'- AGCCCCGGTTTCCC GGCGTT
SEQ ID No. 844: 5'- CGCCTTCCTTTCCCTCCA
20 SEQ ID No. 845: 5'- GCCCCGGTTTCCC GGCGTTA
SEQ ID No. 846: 5'- GCCGCCTTCCTTTCCCTC
SEQ ID No. 847: 5'- TAGCCCCGGTTTCCC GGCGT
SEQ ID No. 848: 5'- CCGGGTACCGTCAAGGCGCC
SEQ ID No. 849: 5'- AAGCCGCCTTCCCTTTCC
25 SEQ ID No. 850: 5'- CCCCGGTTTCCC GGCGTTAT
SEQ ID No. 851: 5'- CCGGCGTTATCCCAGTCTTA
SEQ ID No. 852: 5'- AGCCGCCTTCCTTTCCCT
SEQ ID No. 853: 5'- CCGCCTTCCTTTCCCTC
SEQ ID No. 854: 5'- TTAGCCCCGGTTTCCC GGCG
30 SEQ ID No. 855: 5'- CCCGGCGTTATCCCAGTCTT

SEQ ID No. 856: 5'- GCCGGGTACCGTCAAGGCGC
SEQ ID No. 857: 5'- GGCCGGGTACCGTCAAGGCG
SEQ ID No. 858: 5'- TCCCAGCGTTATCCCAGTCT
SEQ ID No. 859: 5'- TGGCCGGGTACCGTCAAGGC
5 SEQ ID No. 860: 5'- GAAGCCGCCCTTCCTTTTC
SEQ ID No. 861: 5'- CCCGGTTTCCCAGCGTTATC
SEQ ID No. 862: 5'- CGGCGTTATCCCAGTCTTAC
SEQ ID No. 863: 5'- GGCGTTATCCCAGTCTTACA
SEQ ID No. 864: 5'- GCGTTATCCCAGTCTTACAG
10 SEQ ID No. 865: 5'- CGGGTACCGTCAAGGCGCCG
SEQ ID No. 866: 5'- ATTAGCCCCGGTTTCCCAGG
SEQ ID No. 867: 5'- AAGGGGAAGGCCCTGTCTCC
SEQ ID No. 868: 5'- GGCCCTGTCTCCAGGGAGGT
SEQ ID No. 869: 5'- AGGCCCTGTCTCCAGGGAGG
15 SEQ ID No. 870: 5'- AAGGCCCTGTCTCCAGGGAG
SEQ ID No. 871: 5'- GCCCTGTCTCCAGGGAGGTC
SEQ ID No. 872: 5'- CGTTATCCCAGTCTTACAGG
SEQ ID No. 873: 5'- GGGTACCGTCAAGGCGCCG
SEQ ID No. 874: 5'- CGGCAACAGAGTTTACGAC
20 SEQ ID No. 875: 5'- GGGGAAGGCCCTGTCTCCAG
SEQ ID No. 876: 5'- AGGGGAAGGCCCTGTCTCCA
SEQ ID No. 877: 5'- GCAGCCGAAGCCGCCTTCC
SEQ ID No. 878: 5'- TTCTTCCCCGGCAACAGAGT
SEQ ID No. 879: 5'- CGGCACTTGTTCTTCCCCGG
25 SEQ ID No. 880: 5'- GTTCTTCCCCGGCAACAGAG
SEQ ID No. 881: 5'- GGCACTTGTTCTTCCCCGGC
SEQ ID No. 882: 5'- GCACTTGTCTTCCCCGGCA
SEQ ID No. 883: 5'- CACTTGTCTTCCCCGGCAA
SEQ ID No. 884: 5'- TCTTCCCCGGCAACAGAGTT
30 SEQ ID No. 885: 5'- TTGTTCTTCCCCGGCAACAG

SEQ ID No. 886: 5'- ACTTGTCTTCCCCGGCAAC
SEQ ID No. 887: 5'- TGTTCTTCCCCGGCAACAGA
SEQ ID No. 888: 5'- CTTGTTCTTCCCCGGCAACA
SEQ ID No. 889: 5'- ACGGCACTTGTTCTTCCCCG
5 SEQ ID No. 890: 5'- GTCCGCCGCTAACCTTTAA
SEQ ID No. 891: 5'- CTGGCCGGTACCGTCAAGG
SEQ ID No. 892: 5'- TCTGGCCGGTACCGTCAAG
SEQ ID No. 893: 5'- TTCTGGCCGGTACCGTCAA
SEQ ID No. 894: 5'- CAATGCTGGCAACTAAGGTC
10 SEQ ID No. 895: 5'- CGTCCGCCGCTAACCTTTA
SEQ ID No. 896: 5'- CGAAGCCGCCTTCCTTTT
SEQ ID No. 897: 5'- CCGAAGCCGCCTTCCTTT
SEQ ID No. 898: 5'- GCCGAAGCCGCCTTCCTTT
SEQ ID No. 899: 5'- AGCCGAAGCCGCCTTCCTT
15 SEQ ID No. 900: 5'- ACCGTCAAGGCGCCGCCCTG
SEQ ID No. 901: 5'- CCGTGGCTTCTGGCCGGT
SEQ ID No. 902: 5'- GCTTCTGGCCGGTACCGT
SEQ ID No. 903: 5'- GCCGTGGCTTCTGGCCGGG
SEQ ID No. 904: 5'- GGCTTCTGGCCGGTACCG
20 SEQ ID No. 905: 5'- CTTCTGGCCGGTACCGTC
SEQ ID No. 906: 5'- TGGCTTCTGGCCGGTACC
SEQ ID No. 907: 5'- GTGGCTTCTGGCCGGTAC
SEQ ID No. 908: 5'- CGTGGCTTCTGGCCGGGTA
SEQ ID No. 909: 5'- TTTCTGGCCGGTACCGTCA
25 SEQ ID No. 910: 5'- GGGAAAGGCCCTGTCTCCAGG
SEQ ID No. 911: 5'- CGAAGGGGAAGGCCCTGTCT
SEQ ID No. 912: 5'- CCGAAGGGGAAGGCCCTGTC
SEQ ID No. 913: 5'- GAAGGGGAAGGCCCTGTCTC
SEQ ID No. 914: 5'- GGCGCCGCCCTGTTGAACG
30 SEQ ID No. 915: 5'- AGGCGCCGCCCTGTTGAAC

SEQ ID No. 916: 5'- AAGGCGCCGCCCTGTCGAA
SEQ ID No. 917: 5'- CCCGGCAACAGAGTTTACG
SEQ ID No. 918: 5'- CCCCCGGCAACAGAGTTTAC
SEQ ID No. 919: 5'- CCATCTGTAAGTGGCAGCCG
5 SEQ ID No. 920: 5'- TCTGTAAGTGGCAGCCGAAG
SEQ ID No. 921: 5'- CTGTAAGTGGCAGCCGAAGC
SEQ ID No. 922: 5'- CCCATCTGTAAGTGGCAGCC
SEQ ID No. 923: 5'- TGTAAGTGGCAGCCGAAGCC
SEQ ID No. 924: 5'- CATCTGTAAGTGGCAGCCGA
10 SEQ ID No. 925: 5'- ATCTGTAAGTGGCAGCCGAA
SEQ ID No. 926: 5'- CAGCCGAAGCCGCCTTCCT
SEQ ID No. 927: 5'- GGCAACAGAGTTTACGACC
SEQ ID No. 928: 5'- CCGGCAACAGAGTTTACGA
SEQ ID No. 929: 5'- TTCCCCGGCAACAGAGTTT
15 SEQ ID No. 930: 5'- CTTCCCCGGCAACAGAGTTT
SEQ ID No. 931: 5'- TCCCCGGCAACAGAGTTTA
SEQ ID No. 932: 5'- CCGTCCGCCGCTAACCTTT

Die Sequenzen SEQ ID No. 843 bis SEQ ID No. 932 sind vor allem zum Nachweis
20 von *Bacillus coagulans* geeignet.

f) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Alicyclobazillen
nachweisen:

25 SEQ ID No. 933: 5'- CCTCCTCCGACTTACGCCGG
SEQ ID No. 934: 5'- CCTCCGACTTACGCCGGCAG
SEQ ID No. 935: 5'- TTCCTCCGACTTACGCCGGC
SEQ ID No. 936: 5'- TCCTCCGACTTACGCCGGCA
SEQ ID No. 937: 5'- TCCGACTTACGCCGGCAGTC
30 SEQ ID No. 938: 5'- CCGACTTACGCCGGCAGTCA

SEQ ID No. 939: 5'- GCCTCCTCCGACTTACGCC
SEQ ID No. 940: 5'- CCTTCCTCCGACTTACGCCG
SEQ ID No. 941: 5'- GCTCTCCCCGAGCAACAGAG
SEQ ID No. 942: 5'- CTCTCCCCGAGCAACAGAGC
5 SEQ ID No. 943: 5'- CGCTCTCCCCGAGCAACAGAGA
SEQ ID No. 944: 5'- CTCCGACTTACGCCGGCAGT
SEQ ID No. 945: 5'- TCTCCCCGAGCAACAGAGCT
SEQ ID No. 946: 5'- CGACTTACGCCGGCAGTCAC
SEQ ID No. 947: 5'- TCGGCACTGGGGTGTGTCCC
10 SEQ ID No. 948: 5'- GGCACTGGGGTGTGTCCCCC
SEQ ID No. 949: 5'- CTGGGGTGTGTCCCCCAAC
SEQ ID No. 950: 5'- CACTGGGGTGTGTCCCCCA
SEQ ID No. 951: 5'- ACTGGGGTGTGTCCCCCAA
SEQ ID No. 952: 5'- GCACTGGGGTGTGTCCCCC
15 SEQ ID No. 953: 5'- TGGGGTGTGTCCCCCAACA
SEQ ID No. 954: 5'- CACTCCAGACTTGCTCGACC
SEQ ID No. 955: 5'- TCACTCCAGACTTGCTCGAC
SEQ ID No. 956: 5'- CGGCACTGGGGTGTGTCCCC
SEQ ID No. 957: 5'- CGCCTCCTCCGACTTACGC
20 SEQ ID No. 958: 5'- CTCCCCGAGCAACAGAGCTT
SEQ ID No. 959: 5'- ACTCCAGACTTGCTCGACCG
SEQ ID No. 960: 5'- CCCATGCCGCTCTCCCCGAG
SEQ ID No. 961: 5'- CCATGCCGCTCTCCCCGAGC
SEQ ID No. 962: 5'- CCCCATGCCGCTCTCCCCGA
25 SEQ ID No. 963: 5'- TCACTCGGTACCGTCTCGCA
SEQ ID No. 964: 5'- CATGCCGCTCTCCCCGAGCA
SEQ ID No. 965: 5'- ATGCCGCTCTCCCCGAGCAA
SEQ ID No. 966: 5'- TTCGGCACTGGGGTGTGTCC
SEQ ID No. 967: 5'- TGCCGCTCTCCCCGAGCAAC
30 SEQ ID No. 968: 5'- TTCACTCCAGACTTGCTCGA

SEQ ID No. 969: 5'- CCCGCAAGAAGATGCCTCCT
SEQ ID No. 970: 5'- AGAAGATGCCTCCTCGCGGG
SEQ ID No. 971: 5'- AAGAAGATGCCTCCTCGCGGG
SEQ ID No. 972: 5'- CGCAAGAAGATGCCTCCTCG
5 SEQ ID No. 973: 5'- AAGATGCCTCCTCGCGGGCG
SEQ ID No. 974: 5'- CCGCAAGAAGATGCCTCCTC
SEQ ID No. 975: 5'- GAAGATGCCTCCTCGCGGGC
SEQ ID No. 976: 5'- CCCCCGCAAGAAGATGCCTCC
SEQ ID No. 977: 5'- CAAGAAGATGCCTCCTCGCG
10 SEQ ID No. 978: 5'- TCCTTCGGCACTGGGGTGTG
SEQ ID No. 979: 5'- CCGCTCTCCCCGAGAACAG
SEQ ID No. 980: 5'- TGCCTCCTCGCGGGCGTATC
SEQ ID No. 981: 5'- GACTTACGCCGGCAGTCACC
SEQ ID No. 982: 5'- GGCTCCTCTCTCAGCGGCC
15 SEQ ID No. 983: 5'- CCTTCGGCACTGGGTGTGT
SEQ ID No. 984: 5'- GGGGTGTGTCCCCCAACAC
SEQ ID No. 985: 5'- GCCGCTCTCCCCGAGAACAA
SEQ ID No. 986: 5'- AGATGCCTCCTCGCGGGCGT
SEQ ID No. 987: 5'- CACTCGGTACCGTCTCGCAT
20 SEQ ID No. 988: 5'- CTCACTCGGTACCGTCTCGC
SEQ ID No. 989: 5'- GCAAGAAGATGCCTCCTCGC
SEQ ID No. 990: 5'- CTCCAGACTGCTCGACC
SEQ ID No. 991: 5'- TTACGCCGGCAGTCACCTGT
SEQ ID No. 992: 5'- CTTCGGCACTGGGGTGTGTC
25 SEQ ID No. 993: 5'- CTCGCCGGCGTATCCGGCAT
SEQ ID No. 994: 5'- GCCTCCTCGCGGGCGTATCC
SEQ ID No. 995: 5'- ACTCGGTACCGTCTCGCATG
SEQ ID No. 996: 5'- GATGCCTCCTCGCGGGCGTA
SEQ ID No. 997: 5'- GGGTGTGTCCCCCAACACC
30 SEQ ID No. 998: 5'- ACTTACGCCGGCAGTCACCT

SEQ ID No. 999: 5'- CTTACGCCGGCAGTCACCTG
SEQ ID No. 1000: 5'- ATGCCTCCTCGCGGGCGTAT
SEQ ID No. 1001: 5'- GCGCCGCGGGCTCCTCTCTC
SEQ ID No. 1002: 5'- GGTGTGTCCCCCAACACCT
5 SEQ ID No. 1003: 5'- GTGTGTCCCCCAACACCTA - - -
SEQ ID No. 1004: 5'- CCTCGCGGGCGTATCCGGCA
SEQ ID No. 1005: 5'- CCTCACTCGGTACCGTCTCG
SEQ ID No. 1006: 5'- TCCTCACTCGGTACCGTCTC
SEQ ID No. 1007: 5'- TCGCGGGCGTATCCGGCATT
10 SEQ ID No. 1008: 5'- TTTCACTCCAGACTTGCTCG
SEQ ID No. 1009: 5'- TACGCCGGCAGTCACCTGTG
SEQ ID No. 1010: 5'- TCCAGACTTGCTCGACCGCC
SEQ ID No. 1011: 5'- CTCGGTACCGTCTCGCATGG
SEQ ID No. 1012: 5'- CGCGGGCGTATCCGGCATT
15 SEQ ID No. 1013: 5'- GCGTATCCGGCATTAGCGCC
SEQ ID No. 1014: 5'- GGGCTCCTCTCTCAGCGGCC
SEQ ID No. 1015: 5'- TCCCCGAGCAACAGAGCTTT
SEQ ID No. 1016: 5'- CCCCAGCAACAGAGCTTA
SEQ ID No. 1017: 5'- CCGAGCAACAGAGCTTACA
20 SEQ ID No. 1018: 5'- CCATCCCATGGTTGAGCCAT - - -
SEQ ID No. 1019: 5'- GTGTCCCCCAACACCTAGC
SEQ ID No. 1020: 5'- GCGGGCGTATCCGGCATTAG
SEQ ID No. 1021: 5'- CGAGCGGCTTTGGGTITC
SEQ ID No. 1022: 5'- CTTCACTCCAGACTTGCTC
25 SEQ ID No. 1023: 5'- TTCCCTCGGCACTGGGTGT
SEQ ID No. 1024: 5'- CCGCCTTCCTCCGACTTACG
SEQ ID No. 1025: 5'- CCCGCCTTCCTCCGACTTAC
SEQ ID No. 1026: 5'- CCTCCTCGCGGGCGTATCCG
SEQ ID No. 1027: 5'- TCCTCGCGGGCGTATCCGGC
30 SEQ ID No. 1028: 5'- CATTAGCGCCCGTTCCGGG

SEQ ID No. 1029: 5'- GCATTAGCGCCGTTCCGG
SEQ ID No. 1030: 5'- GGCATTAGCGCCGTTCCG
SEQ ID No. 1031: 5'- GTCTCGCATGGGGCTTCCA
SEQ ID No. 1032: 5'- GCCATGGACTTCACTCCAG
5 SEQ ID No. 1033: 5'- CATGGACTTCACTCCAGAC

Die Sequenzen SEQ ID No. 933 bis SEQ ID No. 1033 sind vor allem zum Nachweis von Bakterien der Gattung *Alicyclobacillus* geeignet.

10

SEQ ID No. 1034: 5'- CCTTCCTCCGGCTTACGCCGGC
SEQ ID No. 1035: 5'- CCTTCCTCCGACTTGCGCCGGC
SEQ ID No. 1036: 5'- CCTTCCTCCGACTTCACCGGC

15 Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 1034 bis SEQ ID No. 1036 werden als unmarkierte Kompetitorsonden für den Nachweis von Bakterien der Gattung *Alicyclobacillus* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 933 eingesetzt, um das Binden der markierten, für Bakterien der Gattung *Alicyclobacillus* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die 20 nicht spezifisch für Bakterien der Gattung *Alicyclobacillus* sind, zu verhindern.

SEQ ID No. 1037: 5'- ACCGTCTCACAAAGGAGCTT
SEQ ID No. 1038: 5'- TACCGTCTCACAAAGGAGCTT
SEQ ID No. 1039: 5'- GTACCGTCTCACAAAGGAGCT
25 SEQ ID No. 1040: 5'- GCCTACCGTGTATTATCCG
SEQ ID No. 1041: 5'- CCGTCTCACAAAGGAGCTTC
SEQ ID No. 1042: 5'- CTACCGTGTATTATCCGGC
SEQ ID No. 1043: 5'- GGTACCGTCTCACAAAGGAGC
SEQ ID No. 1044: 5'- CGTCTCACAAAGGAGCTTCC
30 SEQ ID No. 1045: 5'- TCTCACAAAGGAGCTTCCAC

SEQ ID No. 1046: 5'- TACCCGTGTATTATCCGGCA
SEQ ID No. 1047: 5'- GTCTCACAAAGGAGCTTCCA
SEQ ID No. 1048: 5'- ACCCGTGTATTATCCGGCAT
SEQ ID No. 1049: 5'- CTCGGTACCGTCTCACAAAGG
5 SEQ ID No. 1050: 5'- CGGTACCGTCTCACAAAGGAG-
SEQ ID No. 1051: 5'- ACTCGGTACCGTCTCACAAAG
SEQ ID No. 1052: 5'- CGGCTGGCTCCATAACGGTT
SEQ ID No. 1053: 5'- ACAAGTAGATGCCTACCCGT
SEQ ID No. 1054: 5'- TGGCTCCATAACGGTTACCT
10 SEQ ID No. 1055: 5'- CAAGTAGATGCCTACCCGTG
SEQ ID No. 1056: 5'- CACAAGTAGATGCCTACCCG
SEQ ID No. 1057: 5'- GGCTCCATAACGGTTACCTC
SEQ ID No. 1058: 5'- ACACAAGTAGATGCCTACCC
SEQ ID No. 1059: 5'- CTGGCTCCATAACGGTTACC
15 SEQ ID No. 1060: 5'- GCTGGCTCCATAACGGTTAC
SEQ ID No. 1061: 5'- GGCTGGCTCCATAACGGTTA
SEQ ID No. 1062: 5'- GCTCCATAACGGTTACCTCA
SEQ ID No. 1063: 5'- AAGTAGATGCCTACCCGTGT
SEQ ID No. 1064: 5'- CTCCATAACGGTTACCTCAC
20 SEQ ID No. 1065: 5'- TGCCTACCGTGTATTATCC-
SEQ ID No. 1066: 5'- TCGGTACCGTCTCACAAAGGA
SEQ ID No. 1067: 5'- CTCACAAGGAGCTTCCACT
SEQ ID No. 1068: 5'- GTAGATGCCTACCCGTGTAT
SEQ ID No. 1069: 5'- CCTACCCGTGTATTATCCGG
25 SEQ ID No. 1070: 5'- CACTCGGTACCGTCTCACAA
SEQ ID No. 1071: 5'- CTCAGCGATGCAGTTGCATC
SEQ ID No. 1072: 5'- AGTAGATGCCTACCCGTGTA
SEQ ID No. 1073: 5'- GCGGCTGGCTCCATAACGGT
SEQ ID No. 1074: 5'- CCAAAGCAATCCAAGGTTG
30 SEQ ID No. 1075: 5'- TCCATAACGGTTACCTCAC

SEQ ID No. 1076: 5'- CCCGTGTATTATCCGGCATT
SEQ ID No. 1077: 5'- TCTCAGCGATGCAGTTGCAT
SEQ ID No. 1078: 5'- CCATAACGGTTACCTCACCG
SEQ ID No. 1079: 5'- TCAGCGATGCAGTTGCATCT
5 SEQ ID No. 1080: 5'- GGCGGCTGGCTCCATAACGG
SEQ ID No. 1081: 5'- AAGCAATCCAAGGTTGAGC
SEQ ID No. 1082: 5'- TCACTCGGTACCGTCTCACA
SEQ ID No. 1083: 5'- CCGAGTGTATTCCAGTCTG
SEQ ID No. 1084: 5'- CACAAGGAGCTTCCACTCT
10 SEQ ID No. 1085: 5'- ACAAGGAGCTTCCACTCTC
SEQ ID No. 1086: 5'- TCACAAGGAGCTTCCACTC
SEQ ID No. 1087: 5'- CAGCGATGCAGTTGCATCTT
SEQ ID No. 1088: 5'- CAAGGAGCTTCCACTCTCC
SEQ ID No. 1089: 5'- CCAGTCTGAAAGGCAGATTG
15 SEQ ID No. 1090: 5'- CAGTCTGAAAGGCAGATTGC
SEQ ID No. 1091: 5'- CGGCGGCTGGCTCCATAACG
SEQ ID No. 1092: 5'- CCTCTCTCAGCGATGCAGTT
SEQ ID No. 1093: 5'- CTCTCTCAGCGATGCAGTTG
SEQ ID No. 1094: 5'- TCTCTCAGCGATGCAGTTGC
20 SEQ ID No. 1095: 5'- CTCTCAGCGATGCAGTTGCA
SEQ ID No. 1096: 5'- CAATCCAAGGTTGAGCCTT
SEQ ID No. 1097: 5'- AATCCAAGGTTGAGCCTTG
SEQ ID No. 1098: 5'- AGCAATCCAAGGTTGAGCC
SEQ ID No. 1099: 5'- CTCACTCGGTACCGTCTCAC
25 SEQ ID No. 1100: 5'- GCAATCCAAGGTTGAGCCT
SEQ ID No. 1101: 5'- GCCTTGGACTTTCACTTCAG
SEQ ID No. 1102: 5'- CATAACGGTTACCTCACCGA
SEQ ID No. 1103: 5'- CTCCTCTCTCAGCGATGCAG
SEQ ID No. 1104: 5'- TCGGCGGCTGGCTCCATAAC
30 SEQ ID No. 1105: 5'- AGTCTGAAAGGCAGATTGCC

SEQ ID No. 1106: 5'- TCCTCTCTCAGCGATGCAGT
SEQ ID No. 1107: 5'- CCCAAGGTTGAGCCTGGAC
SEQ ID No. 1108: 5'- ATAACGGTTACCTCACCGAC
SEQ ID No. 1109: 5'- TCCCAAGGTTGAGCCTGGAA
5 SEQ ID No. 1110: 5'- ATTATCCGGCATTAGCACCC
SEQ ID No. 1111: 5'- CTACGTGCTGGTAACACAGA
SEQ ID No. 1112: 5'- GCCGCTAGCCCCGAAGGGCT
SEQ ID No. 1113: 5'- CTAGCCCCGAAGGGCTCGCT
SEQ ID No. 1114: 5'- CGCTAGCCCCGAAGGGCTCG
10 SEQ ID No. 1115: 5'- AGCCCCGAAGGGCTCGCTCG
SEQ ID No. 1116: 5'- CCGCTAGCCCCGAAGGGCTC
SEQ ID No. 1117: 5'- TAGCCCCGAAGGGCTCGCTC
SEQ ID No. 1118: 5'- GCTAGCCCCGAAGGGCTCGC
SEQ ID No. 1119: 5'- GCCCGAAGGGCTCGCTCGA
15 SEQ ID No. 1120: 5'- ATCCAAGGTTGAGCCTGG
SEQ ID No. 1121: 5'- GAGCCTTGGACTTCACTTC
SEQ ID No. 1122: 5'- CAAGGTTGAGCCTTGGACTT
SEQ ID No. 1123: 5'- GAGTTTCCACTCTCCTTGT
SEQ ID No. 1124: 5'- CCAAGGTTGAGCCTTGGACT
20 SEQ ID No. 1125: 5'- CGGGCTCCTCTCAGCGAT
SEQ ID No. 1126: 5'- GGAGCTTCCACTCTCCTTG
SEQ ID No. 1127: 5'- GGGCTCCTCTCAGCGATG
SEQ ID No. 1128: 5'- TCTCCTTGTGCGCTCTCCCCG
SEQ ID No. 1129: 5'- TCCTTGTGCGCTCTCCCCGAG
25 SEQ ID No. 1130: 5'- AGCTTCCACTCTCCTTGT
SEQ ID No. 1131: 5'- CCACTCTCCTTGTGCGCTCTC
SEQ ID No. 1132: 5'- GGCTCCTCTCAGCGATGC
SEQ ID No. 1133: 5'- CCTTGTGCGCTCTCCCCGAGC
SEQ ID No. 1134: 5'- CACTCTCCTTGTGCGCTCTCC
30 SEQ ID No. 1135: 5'- ACTCTCCTTGTGCGCTCTCCC

- 60 -

SEQ ID No. 1136: 5'- CTCTCCTTGTGCGCTCTCCCC
SEQ ID No. 1137: 5'- GCGGGCTCCTCTCTCAGCGA
SEQ ID No. 1138: 5'- GGCTCCATCATGGTTACCTC

- 5 Die Sequenzen SEQ ID No. 1037 bis SEQ ID No. 1138 sind vor allem zum Nachweis von *Alicyclobacillus acidoterrestris* geeignet.

SEQ ID No. 1139: 5'- CCGTCTCCTAACGGAGCTTCCA

- 10 Das Nukleinsäuresondenmolekül gemäß SEQ ID No. 1139 wird als unmarkierte Kompetitorsonde für den Nachweis von *Alicyclobacillus acidoterrestris* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1044 eingesetzt, um das Binden der markierten, für *Alicyclobacillus acidoterrestris* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für *Alicyclobacillus acidoterrestris* sind,
15 zu verhindern.

SEQ ID No. 1140: 5'- TCCCTCCTAACGGTTACCTCA

SEQ ID No. 1141: 5'- TGGCTCCATAA(A/T)GGTTACCTCA

- 20 Die Nukleinsäuresondenmoleküle gemäß SEQ ID-No. 1140 bis SEQ ID No. 1141 werden als unmarkierte Kompetitorsonden für den Nachweis von *Alicyclobacillus acidoterrestris* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1057 eingesetzt, um das Binden der markierten, für *Alicyclobacillus acidoterrestris* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für
25 *Alicyclobacillus acidoterrestris* sind, zu verhindern.

SEQ ID No. 1142: 5'- CTTCCCTCCGGCTTGCGCCGG

SEQ ID No. 1143: 5'- CGCTCTTCCCGA(G/T)TGACTGA

SEQ ID No. 1144: 5'- CCTCGGGCTCCTCCATC(A/T)GC

Die Sequenzen SEQ ID No. 1142 bis SEQ ID No. 1144 sind vor allem zum gleichzeitigen Nachweis von *Alicyclobacillus cycloheptanicus* und *A. herbarius* geeignet.

- 5 Gegenstand der Erfindung sind auch Abwandlungen der obigen Oligonukleotidsequenzen, die trotz der Abweichungen in der Sequenz und/oder Länge eine spezifische Hybridisierung mit Ziel-Nukleinsäuresequenzen des jeweiligen Mikroorganismus zeigen und sich dadurch für den Einsatz des erfindungsgemäßen Verfahrens eignen und einen spezifischen Nachweis des 10 jeweiligen Mikroorganismus gewährleisten. Hierunter fallen insbesondere
- 10 a) Nukleinsäuremoleküle, die (i) mit einer der obigen Oligonukleotidsequenzen (SEQ ID No. 1, 5 bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144) in mindestens 80 %, bevorzugt in mindestens 90 % und besonders bevorzugt in mindestens 92 %, 94 %, 96 % der Basen 15 übereinstimmen, oder die (ii) sich von obigen Oligonukleotidsequenzen durch eine oder mehrere Deletionen und/oder Additionen unterscheiden und eine spezifische Hybridisierung mit Nukleinsäuresequenzen von getränkeschädlichen Hefen der Gattungen *Zygosaccharomyces*, *Hanseniaspora*, *Candida*, *Brettanomyces*, *Dekkera*, *Pichia*, *Saccharomyces* 20 und *Saccharomycodes*, insbesondere der Spezies *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsoides*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardenensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*, 25 *Saccharomyces exiguum*, *S. cerevisiae*, *Saccharomycodes ludwigii* oder von getränkeschädlichen Schimmelpilzen der Gattungen *Mucor*, *Byssochlamys*, *Neosartorya*, *Aspergillus* und *Talaromyces*, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* oder von 30 getränkeschädlichen Bakterien der Gattungen *Lactobacillus*, *Leuconostoc*,

- Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter,
Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies
Lactobacillus collinoides, *Leuconostoc mesenteroides*, *L.
pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus
ssp.*, *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius* ermöglichen.
5 Dabei bedeutet „spezifische Hybridisierung“, dass unter den hier
beschriebenen oder dem Durchschnittsfachmann im Zusammenhang mit in
situ-Hybridisierungstechniken bekannten stringenten
Hybridisierungsbedingungen nur die ribosomale RNA der Ziel-Organismen,
10 nicht aber die rRNA von Nicht-Ziel-Organismen an das Oligonukleotid
bindet.
- b) Nukleinsäuremoleküle, die mit einer zu den unter a) genannten
Nukleinsäuremolekülen oder einer zu den Sonden SEQ ID No. 1, 5 bis 146,
148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144
15 komplementären Sequenz unter stringenten Bedingungen (s.u.) hybridisieren.
- c) Nukleinsäuremoleküle, die eine Oligonukleotidsequenz von SEQ ID No. 1, 5
bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis
1144 oder die Sequenz eines Nukleinsäuremoleküls nach a) oder b) umfassen
und zusätzlich zu den genannten Sequenzen bzw. deren Abwandlungen nach
20 a) oder b) mindestens ein weiteres Nukleotid aufweisen und eine spezifische
Hybridisierung mit Nukleinsäuresequenzen von Ziel-Organismen
ermöglichen.
- Ebenso sind Gegenstand der Erfindung Abwandlungen der obigen
25 Kompetitorsondensequenzen, die trotz der Abweichungen in der Sequenz und/oder
Länge eine spezifische Hybridisierung mit Nukleinsäuresequenzen von nicht
nachzuweisenden Mikroorganismengattungen bzw. -spezies gewährleisten und
dadurch das Binden der Oligonukleotidsonde an die Nukleinsäuresequenzen der
nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies verhindern. Sie
30 eignen sich für den Einsatz des erfindungsgemäßen Verfahrens und gewährleisten

einen spezifischen Nachweis des jeweiligen Mikroorganismus. Hierunter fallen insbesondere

- a) Nukleinsäuremoleküle, die (i) mit einer der obigen Oligonukleotidsequenzen (SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141) in mindestens 80 %, bevorzugt in mindestens 90 % und besonders bevorzugt in mindestens 92 %, 94 %, 96 % der Basen übereinstimmen, oder die (ii) sich von obigen Oligonukleotidsequenzen durch eine oder mehrere Deletionen und/oder Additionen unterscheiden und das Binden einer spezifischen Oligonukleotidsonde an die Nukleinsäuresequenz eines nicht nachzuweisenden Mikroorganismus verhindern.
- b) Nukleinsäuremoleküle, die mit einer zu den unter a) genannten Nukleinsäuremolekülen oder einer zu den Sonden SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141 komplementären Sequenz unter stringenten Bedingungen (s.u.) hybridisieren.
- c) Nukleinsäuremoleküle, die eine Oligonukleotidsequenz von SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141 oder die Sequenz eines Nukleinsäuremoleküls nach a) oder b) umfassen und zusätzlich zu den genannten Sequenzen bzw. deren Abwandlungen nach a) oder b) mindestens ein weiteres Nukleotid aufweisen und das Binden einer spezifischen Oligonukleotidsonde an die Nukleinsäuresequenz eines nicht nachzuweisenden Mikroorganismus verhindern.

Der Grad der Sequenzidentität eines Nukleinsäuresondenmoleküls mit den Oligonukleotidsonden mit der SEQ ID No. 1 bis SEQ ID No. 1144 kann mit üblichen Algorithmen bestimmt werden. Geeignet ist hierzu beispielsweise das Programm zur Bestimmung der Sequenzidentität, das unter <http://www.ncbi.nlm.nih.gov/BLAST> (auf dieser Seite z.B. der Link „Standard nucleotide-nucleotide BLAST [blastn]“) zugänglich ist.

- 64 -

„Hybridisieren“ kann im Rahmen dieser Erfindung gleichbedeutend sein mit „komplementär“. Im Rahmen dieser Erfindung sind auch solche Oligonukleotide umfasst, die mit dem (theoretischen) Gegenstrang eines erfindungsgemäßen Oligonukleotids, einschließlich der erfindungsgemäßen Abwandlungen der SEQ ID

- 5 No. 1 bis SEQ ID No. 1144, hybridisieren.

Der Begriff „stringente Bedingungen“ steht allgemein für Bedingungen, unter denen eine Nukleinsäuresequenz präferenziell an ihre Zielsequenz hybridisieren wird, und zu einem deutlich geringeren Ausmaß oder gar nicht an andere Sequenzen.

- 10 Stringente Bedingungen sind z.T. Sequenz-abhängig und werden unter verschiedenen Umständen unterschiedlich sein. Längere Sequenzen hybridisieren spezifisch bei höheren Temperaturen. Im Allgemeinen werden stringente Bedingungen so ausgewählt, dass die Temperatur etwa 5°C unter dem thermischen Schmelzpunkt (T_m) für die spezifische Sequenz bei einer definierten Ionenstärke und 15 einem definierten pH liegt. Die T_m ist die Temperatur (unter definierter Ionenstärke, pH und Nukleinsäurekonzentration), bei der 50 % der zu der Zielsequenz komplementären Moleküle zu der Zielsequenz im Gleichgewichtszustand hybridisieren.
- 20 Die erfindungsgemäßen Nukleinsäuresondenmoleküle können im Rahmen des Nachweisverfahrens mit verschiedenen Hybridisierungslösungen eingesetzt werden. Verschiedene organische Lösungsmittel können hierbei in Konzentrationen von 0 % bis 80 % eingesetzt werden. Durch das Einhalten von stringenten Hybridisierungsbedingungen wird gewährleistet, dass das
- 25 Nukleinsäuresondenmolekül auch tatsächlich mit der Zielsequenz hybridisiert. Moderate Bedingungen im Sinne der Erfindung sind z.B. 0 % Formamid in einem Hybridisierungspuffer wie er nachfolgend beschrieben ist. Stringente Bedingungen im Sinne der Erfindung sind beispielsweise 20 % bis 80 % Formamid im Hybridisierungspuffer.

- Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von Hefen der Gattungen *Zygosaccharomyces*, *Hanseniaspora*, *Candida*, *Brettanomyces*, *Dekkera*, *Pichia*, *Saccharomyces* und *Saccharomycodes*, insbesondere der Spezies *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. 5 microellipsoides*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardenensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*, *Saccharomyces exiguum*, *S. cerevisiae*, *Saccharomycodes ludwigii* enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 20 % bis 60 %
- 10 Formamid, besonders bevorzugt 40 % Formamid. Sie hat außerdem eine Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l, bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 %
- 15 Mol/l, in einem pH-Wert-Bereich von 6,0 bis 9,0, bevorzugt 7,0 bis 8,0. Die besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.
- Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von
- 20 Schimmelpilzen der Gattungen *Mucor*, *Byssochlamys*, *Neosartorya*, *Aspergillus* und *Talaromyces*, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 10 % bis 60 % Formamid, besonders bevorzugt 20 %
- 25 Formamid. Sie hat außerdem eine Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l,

bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 % bis 0,2 %, vorzugsweise in einer 5 Konzentration von 0,005 % bis 0,05 %, besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 Mol/l, in einem pH-Wert-Bereich von 6,0 10 bis 9,0, bevorzugt 7,0 bis 8,0. Die besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, 15 Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies *Lactobacillus collinoides*, *Leuconostoc mesenteroides*, *L. pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus* ssp., *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius* enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 10 % bis 60 20 % Formamid, besonders bevorzugt 20 % Formamid. Sie hat außerdem eine Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l, bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 25 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 30 Mol/l, in einem pH-Wert-Bereich von 6,0 bis 9,0, bevorzugt 7,0 bis 8,0. Die

besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

- Es versteht sich, dass der Fachmann die angegebenen Konzentrationen der
- 5 Bestandteile des Hybridisierungspuffers derart auswählen kann, dass die gewünschte Stringenz der Hybridisierungsreaktion erzielt wird. Besonders bevorzugte Ausführungsformen geben stringente bis besonders stringente Hybridisierungsbedingungen wieder. Unter Einsatz dieser stringenten Bedingungen kann der Fachmann feststellen, ob ein bestimmtes Nukleinsäuremolekül einen
- 10 spezifischen Nachweis von Nukleinsäuresequenzen von Ziel-Organismen ermöglicht und somit im Rahmen der Erfindung zuverlässig eingesetzt werden kann.

- Die Konzentration der Nukleinsäuresonde im Hybridisierungspuffer ist abhängig von der Art ihrer Markierung und der Anzahl der Zielstrukturen. Um eine schnelle und effiziente Hybridisierung zu ermöglichen, sollte die Anzahl der
- 15 Nukleinsäuresondenmoleküle die Anzahl der Zielstrukturen um mehrere Größenordnungen überschreiten. Allerdings ist bei der Fluoreszenz in situ-Hybridisierung (FISH) darauf zu achten, dass eine zu hohe Menge an fluoreszenzmarkierten Nukleinsäuresondenmolekülen zu erhöhter
- 20 Hintergrundfluoreszenz führt. Die Konzentration der Nukleinsäuresondenmoleküle sollte deshalb in einem Bereich zwischen 0,5 bis 500 ng/µl liegen. Die im Rahmen der erfindungsgemäßen Verfahren bevorzugte Konzentration beträgt 1 bis 10 ng jedes verwendeten Nukleinsäuresondenmoleküls pro µl Hybridisierungslösung. Das verwendete Volumen der Hybridisierungslösung sollte zwischen 8 µl und 100 ml
- 25 liegen, bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Verfahren beträgt es 30 µl.

- Die Konzentration der Kompetitorsonde im Hybridisierungspuffer ist abhängig von der Anzahl der Zielstrukturen. Um eine schnelle und effiziente Hybridisierung zu ermöglichen, sollte die Anzahl der Kompetitorsondenmoleküle die Anzahl der
- 30

Zielstrukturen um mehrere Größenordnungen überschreiten. Die Konzentration der Kompetitorsondenmoleküle sollte deshalb in einem Bereich zwischen 0,5 bis 500 ng/ μ l liegen. Die im Rahmen der erfindungsgemäßen Verfahren bevorzugte Konzentration beträgt 1 bis 10 ng jedes verwendeten Kompetitorsondenmoleküls pro μ l Hybridisierungslösung. Das verwendete Volumen der Hybridisierungslösung sollte zwischen 8 μ l und 100 ml liegen, bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Verfahren beträgt es 30 μ l.

Die Dauer der Hybridisierung beträgt üblicherweise zwischen 10 Minuten und 12 10 Stunden; bevorzugt erfolgt die Hybridisierung für etwa 1,5 Stunden. Die Hybridisierungstemperatur beträgt bevorzugt zwischen 44 °C und 48 °C, besonders bevorzugt 46 °C, wobei der Parameter der Hybridisierungstemperatur, wie auch die Konzentration an Salzen und Detergazien in der Hybridisierungslösung in Abhängigkeit von den Nukleinsäuresonden, insbesondere deren Längen und dem 15 Grad der Komplementarität zur Zielsequenz in der nachzuweisenden Zelle optimiert werden kann. Der Fachmann ist mit einschlägigen Berechnungen hierzu vertraut.

Nach erfolgter Hybridisierung sollten die nicht hybridisierten und überschüssigen Nukleinsäuresondenmoleküle entfernt bzw. abgewaschen werden, was üblicherweise 20 mittels einer herkömmlichen Waschlösung erfolgt. Diese Waschlösung kann, falls gewünscht, 0,001 % bis 0,1 % eines Detergens wie SDS, bevorzugt 0,005 % bis 0,05 %, besonders bevorzugt 0,01 %, sowie Tris-HCl in einer Konzentration von 0,001 Mol/l bis 0,1 Mol/l, bevorzugt 0,01 Mol/l bis 0,05 Mol/l, besonders bevorzugt 0,02 Mol/l enthalten, wobei der pH-Wert von Tris-HCl im Bereich von 6,0 bis 9,0, 25 vorzugsweise bei 7,0 bis 8,0, besonders bevorzugt bei 8,0 liegt. Ein Detergens kann enthalten sein, ist aber nicht zwingend erforderlich. Weiter enthält die Waschlösung üblicherweise NaCl, wobei die Konzentration je nach benötigter Stringenz von 0,003 Mol/l bis 0,9 Mol/l, bevorzugt von 0,01 Mol/l bis 0,9 Mol/l, beträgt. Des weiteren kann die Waschlösung EDTA enthalten, wobei die Konzentration vorzugsweise

0,005 Mol/l beträgt. Ferner kann die Waschlösung auch dem Fachmann geläufige Konservierungsmittel in geeigneten Mengen enthalten.

Allgemein kommen bei dem Waschschnitt Pufferlösungen zum Einsatz, die
5 prinzipiell sehr ähnlich aussehen können wie die Hybridisierungspuffer (gepufferte Natriumchloridlösung), nur dass der Waschschnitt in der Regel in einem Puffer mit niedrigerer Salzkonzentration bzw. bei höherer Temperatur durchgeführt wird. Zur theoretischen Abschätzung der Hybridisierungsbedingungen kann folgende Formel verwendet werden:

10

$$Td = 81,5 + 16,6 \lg[\text{Na}^+] + 0,4 \times (\% \text{ GC}) - 820/n - 0,5 \times (\% \text{ FA})$$

Td = Dissoziations temperatur in °C

[Na⁺] = Molarität der Natriumionen

15 % GC = Anteil der Guanin- und Cytosinnukleotide an der Anzahl der Basen

n = Länge des Hybrids

%FA = Formamidgehalt

Mit Hilfe dieser Formel kann z.B. der Formamidanteil (der wegen der Toxizität des
20 Formamids möglichst gering sein sollte) des Waschpuffers durch einen entsprechend niedrigeren Natriumchloridgehalt ersetzt werden. Allerdings ist dem Fachmann aus der umfangreichen Literatur zu in situ-Hybridisierungsmethoden bekannt, dass und auf welche Weise die genannten Bestandteile variiert werden können. Bezüglich der Stringenz der Hybridisierungsbedingungen gilt das oben im Zusammenhang mit dem
25 Hybridisierungspuffer Gesagte.

Das „Abwaschen“ der nicht gebundenen Nukleinsäuresondenmoleküle erfolgt
üblicherweise bei einer Temperatur im Bereich von 44 °C bis 52 °C, bevorzugt von
44 °C bis 50 °C und besonders bevorzugt bei 46 °C für eine Dauer von 10 bis 40
30 Minuten, vorzugsweise für 15 Minuten.

Die spezifisch hybridisierten Nukleinsäuresondenmoleküle können anschließend in den jeweiligen Zellen detektiert werden. Voraussetzung hierfür ist, dass das Nukleinsäuresondenmolekül nachweisbar ist, z.B. dadurch dass das

5 Nukleinsäuresondenmolekül durch kovalente Bindung mit einem Marker verknüpft ist. Als detektierbare Marker werden z.B. fluoreszierende Gruppen wie z.B. CY2 (erhältlich von Amersham Life Sciences, Inc., Arlington Heights, USA), CY3 (ebenfalls erhältlich von Amersham Life Sciences), CY5 (ebenfalls zu beziehen von Amersham Life Sciences), FITC (Molecular Probes Inc., Eugene, USA), FLUOS

10 (erhältlich von Roche Diagnostics GmbH, Mannheim, Deutschland), TRITC (erhältlich von Molecular Probes Inc. Eugene, USA), 6-FAM oder FLUOS-PRIME verwendet, die dem Fachmann alle wohlbekannt sind. Auch chemische Marker, radioaktive Marker oder enzymatische Marker wie Meerrettich-Peroxidase, saure Phosphatase, alkalische Phosphatase und Peroxidase können verwendet werden. Für

15 jedes dieser Enzyme ist eine Reihe von Chromogenen bekannt, die anstelle des natürlichen Substrates umgesetzt werden können und entweder zu farbigen oder zu fluoreszierenden Produkten umgesetzt werden können. Beispiele für solche Chromogene sind in der nachfolgenden Tabelle angegeben:

20

Tabelle

Enzyme	Chromogen
25 1. Alkalische Phosphatase und saure Phosphatase	4-Methylumbelliferylphosphat (*), Bis(4-Methylumbelliferylphosphat), (*) 3-O- Methylfluoreszein, Flavon-3- Diphosphatriammoniumsalz (*), p-Nitrophenylphosphatdinatriumsalz

	2. Peroxidase	Tyraminhydrochlorid (*), 3-(p-Hydroxyphenyl)- Propionsäure (*), p-Hydroxy-
5		phenethylalkohol(*), 2,2'-Azino-di-3-ethylbenzthiazolinsulfonsäure (ABTS), ortho-Phenylendiamindihydrochlorid,
10	3. Meerrettichperoxidase	o-Dianisidin, 5-Aminosalicylsäure, p-Ucresol (*), 3,3'-dimethoxybenzidin, 3-Methyl-2- benzothiazolinhydrazon, Tetramethylbenzidin $H_2O_2 + \text{Diammoniumbenzidin}$
15	4. β -D-Galaktosidase	$H_2O_2 + \text{Tetramethylbenzidin}$ o-Nitrophenyl- β -D-galaktopyranosid, 4-Methylumbelliferyl- β -D-galaktosid
	5. Glukoseoxidase	ABTS, Glukose und Thiazolylblau

*Fluoreszenz

Schließlich ist es möglich, die Nukleinsäuresondenmoleküle so zu gestalten, dass an
ihrem 5'- oder 3'-Ende eine weitere zur Hybridisierung geeignete
Nukleinsäuresequenz vorhanden ist. Diese Nukleinsäuresequenz umfasst wiederum
ca. 15 bis 100, bevorzugt 15 bis 50 Nukleotide. Dieser zweite Nukleinsäurebereich
kann wiederum von einem Nukleinsäuresondenmolekül erkannt werden, welches
durch eines der oben erwähnten Mittel nachweisbar ist.

Eine weitere Möglichkeit besteht in der Kopplung der nachweisbaren
Nukleinsäuresondenmoleküle mit einem Hapten, das anschließend mit einem das
Hapten erkennenden Antikörper in Kontakt gebracht werden kann. Als Beispiel für
solch ein Hapten kann Digoxigenin angeführt werden. Dem Fachmann sind über die
angegebenen Beispiele hinaus noch weitere wohlbekannt.

Die abschließende Auswertung ist in Abhängigkeit von der Art der Markierung der verwendeten Sonde mit einem Lichtmikroskop, Epifluoreszenzmikroskop, Chemoluminometer, Fluorometer u.a. möglich.

5

Ein wichtiger Vorteil der in dieser Anmeldung beschriebenen Verfahren zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen

Zygosaccharomyces, *Hanseniaspora*, *Candida*, *Brettanomyces*, *Dekkera*, *Pichia*, *Saccharomyces* und *Saccharomycodes*, insbesondere der Spezies

10 *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsoïdes*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardenensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*, *Saccharomyces exiguum*, *S. cerevisiae*, *Saccharomycodes ludwigii* oder zum

15 spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen *Mucor*, *Byssochlamys*, *Neosartorya*, *Aspergillus* und *Talaromyces*, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen

20 *Lactobacillus*, *Leuconostoc*-*Oenococcus*, *Weissella*, *Lactococcus*-*Acetobacter*, *Gluconobacter*, *Gluconoacetobacter*, *Bacillus* und *Alicyclobacillus*, insbesondere der Spezies *Lactobacillus collinoides*, *Leuconostoc mesenteroides*, *L. pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus ssp.*, *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius* gegenüber den weiter oben

25 beschriebenen Nachweismethoden ist die außergewöhnliche Schnelligkeit. Im Vergleich zu herkömmlichen Kultivierungsverfahren, die bis zu zehn Tage benötigen, liegt das Ergebnis bei Anwendung der erfindungsgemäßen Verfahren innerhalb von 24 bis 48 Stunden vor.

Ein weiterer Vorteil liegt in der Befähigung, eine genaue Unterscheidung der nachzuweisenden, getränkerelevanten Mikroorganismen vorzunehmen. Mit bislang geläufigen Verfahren wurde beim Nachweis keine Differenzierung der Mikroorganismen bis auf Gattungs- und/oder Arrebene vorgenommen, da die

- 5 Differenzierung entweder gar nicht möglich oder zu zeitaufwendig war.

Ein weiterer Vorteil liegt in der Spezifität dieses Verfahrens. Durch die verwendeten Nukleinsäuresondenmoleküle können hochspezifisch getränkeschädliche Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera,

- 10 Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsoides*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*,
- 15 15 *Saccharomyces exiguum*, *S. cerevisiae*, *Saccharomycodes ludwigii* oder getränkeschädliche Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* oder getränkeschädliche
- 20 Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella; Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies *Lactobacillus collinoides*, *Leuconostoc mesenteroides*, *L. pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus* ssp., *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius*
- 25 nachgewiesen werden. Durch die Visualisierung der Mikroorganismen kann eine gleichzeitige visuelle Kontrolle stattfinden. Falsch positive Ergebnisse, wie sie häufig bei der Polymerase-Ketten-Reaktion auftreten, sind somit ausgeschlossen.

Ein weiterer Vorteil der erfindungsgemäßen Verfahren liegt in der leichten Handhabbarkeit. So können durch die Verfahren leicht große Mengen an Proben auf das Vorhandensein der genannten Mikroorganismen getestet werden.

- 5 Schließlich stellt die Möglichkeit des gleichzeitigen Nachweises mehrerer der genannten Keime durch den Einsatz von entsprechenden Mischungen von Sonden einen wesentlichen Vorteil gegenüber dem Stand der Technik dar. Dadurch können alle in der Praxis relevanten getränkeschädlichen Mikroorganismen in wenigen Versuchsansätzen nachgewiesen werden.
- 10 Verschiedene Sonden können dabei mit unterschiedlichen Markierungen versehen sein, so dass die verschiedenen, nachgewiesenen Mikroorganismen auf einfache und zuverlässige Weise diskriminiert werden können. Z. B. kann ein erstes Oligonukleotid spezifisch mit einem grünen Fluoreszenzfarbstoff markiert werden und zum
- 15 Nachweis einer ersten Mikroorganismengattung oder –art dienen. Ein zweites Oligonukleotid wird ebenfalls spezifisch, etwa mit einem roten Fluoreszenzfarbstoff, markiert und dient dem Nachweis einer zweiten Mikroorganismengattung oder –art. Die als Kompetitorsonden bezeichneten Oligonukleotide bleiben unmarkiert und verhindern das Binden des markierten ersten und/oder zweiten Oligonukleotids an Bakterien, die nicht zur nachzuweisenden Gattung oder Spezies gehören. Die verschiedenen Marker, z.B. ein grüner Fluoreszenzfarbstoff einerseits und ein roter Fluoreszenzfarbstoff andererseits, sind voneinander auf einfache Weise unterscheidbar, z.B. durch den Einsatz verschiedener Filter in der Fluoreszenzmikroskopie.
- 20 25 Die erfindungsgemäßen Verfahren können vielfältig angewendet werden.

So können beispielsweise alkoholfreie Getränke (z.B. Fruchtsäfte, Fruchtnektare, Fruchtkonzentrate, Fruchtpürees, Erfrischungsgetränke und Wässer) auf die Anwesenheit der nachzuweisenden Mikroorganismen untersucht werden.

Auch können beispielsweise Umweltproben auf das Vorhandensein der nachzuweisenden Mikroorganismen untersucht werden. Diese Proben können hierzu z.B. aus dem Boden entnommen oder auch Teile von Pflanzen sein.

- 5 Das erfindungsgemäße Verfahren kann weiter zur Untersuchung von Abwasserproben oder Silageproben eingesetzt werden.

Das erfindungsgemäße Verfahren kann weiter zur Untersuchung medizinischer Proben, z.B. von Stuhlproben, Blutkulturen, Sputum, Gewebeproben (auch Schnitte),
10 Wundmaterial, Urin, Proben aus dem Respirationstrakt, Implantate und Katheteroberflächen eingesetzt werden.

Ein weiteres Anwendungsgebiet für das erfindungsgemäße Verfahren ist die Kontrolle von Lebensmitteln. In bevorzugten Ausführungsformen werden die
15 Lebensmittelproben aus Milch oder Milchprodukten (Joghurt, Käse, Quark, Butter, Buttermilch), Trinkwasser, alkoholischen Getränken (z.B. Bier, Wein, Spirituosen), Backwaren oder Fleischwaren entnommen.

Ein weiteres Anwendungsgebiet für das erfindungsgemäße Verfahren ist die
20 Untersuchung pharmazeutischer und kosmetischer Produkte, z.B. Salben, Cremes, Tinkturen, Säfte, Lösungen, Tropfen etc.

Erfindungsgemäß werden weiterhin Kits zur Durchführung der entsprechenden Verfahren zur Verfügung gestellt. Die in diesen Kits enthaltene
25 Hybridisierungsanordnung ist z.B. in der deutschen Patentanmeldung 100 61 655.0 beschrieben. Auf die in diesem Dokument enthaltene Offenbarung bezüglich der in situ-Hybridisierungsanordnung wird hiermit ausdrücklich Bezug genommen.

Außer der beschriebenen Hybridisierungsanordnung (als VIT-Reaktor bezeichnet)
30 umfassen die Kits als wichtigsten Bestandteil die jeweilige Hybridisierungslösung

mit den weiter oben beschriebenen für die nachzuweisenden Mikroorganismen spezifischen Nukleinsäuresondenmolekülen (VIT-Lösung). Weiterhin ist jeweils enthalten der entsprechende Hybridisierungspuffer (Solution C) und ein Konzentrat der entsprechenden Waschlösung (Solution D). Weiterhin sind enthalten

- 5 gegebenenfalls Fixierungslösungen (Solution A und Solution B) sowie gegebenenfalls eine Einbettlösung (Finisher). Gegebenenfalls sind Lösungen zur parallelen Durchführung einer Positivkontrolle (Positive Control) sowie einer Negativkontrolle (Negative Control) enthalten.
- 10 Das folgende Beispiel soll die Erfindung erläutern, ohne sie einzuschränken:

Beispiel

Spezifischer Schnellnachweis getränkeschädlicher Mikroorganismen in einer Probe

- 15 Eine Probe wird in geeigneter Weise 20 bis 48 h kultiviert. Zum Nachweis von Hefen und Schimmelpilzen kann die Kultivierung z.B. in SSL-Bouillon für 24 h bei 25 °C erfolgen. Zum Nachweis von Milchsäurebakterien kann die Kultivierung z.B. in MRS-Bouillon für 48 h bei 30 °C erfolgen. Zum Nachweis von
- 20 Essigsäurebakterien kann die Kultivierung z.B. auf DSM-Agar für 48 h bei 28 °C erfolgen. Zum Nachweis von Bazillen, vornehmlich *B. coagulans* kann die Kultivierung z.B. auf Dextrose-Caseinpepton Agar für 48 h bei 55 °C erfolgen. Zum Nachweis von Alicyclobazillen kann die Kultivierung z.B. in BAM-Bouillon für 48 h bei 44 °C erfolgen.
- 25 Zu einem Aliquot der Kultur wird dasselbe Volumen Fixierungslösung (Solution B, Ethanol absolut) zugegeben. Alternativ kann auch ein Aliquot der Kultur zentrifugiert werden (4 000 g, 5 min, Raumtemperatur) und – nach Verwerfen des Überstandes – das Pellet in 4 Tropfen Fixierungslösung (Solution B) aufgenommen
- 30 werden.

- 77 -

- Zur Durchführung der Hybridisierung wird ein geeignetes Aliquot der fixierten Zellen (bevorzugt 5 µl) auf einen Objektträger aufgebracht und getrocknet (46 °C, 30 min oder bis vollständig trocken). Alternativ können die Zellen auch auf andere
- 5 Trägermaterialien (z. B. eine Mikrotiterplatte oder einen Filter) aufgebracht werden. Anschließend werden die getrockneten Zellen vollständig dehydratisiert durch erneuten Zusatz der Fixierungslösung (Solution B). Der Objektträger wird erneut getrocknet (Raumtemperatur, 3 min oder bis vollständig trocken).
- 10 Anschließend wird auf die fixierten, dehydratisierten Zellen die Hybridisierungslösung (VIT-Lösung, Hybridisierungspuffer mir markierten Sondenmolekülen) mit den weiter oben beschriebenen für die nachzuweisenden Mikroorganismen spezifischen Nukleinsäuresondenmolekülen aufgebracht. Das bevorzugte Volumen beträgt 40 µl. Der Objektträger wird anschließend in einer mit
- 15 Hybridisierungspuffer (Solution C) befeuchteten Kammer, bevorzugt dem VIT-Reaktor (siehe DE 100 61 655.0), inkubiert (46 °C, 90 min).
- Anschließend wird der Objektträger aus der Kammer entnommen, die Kammer mit Waschlösung befüllt (Solution D, 1:10 verdünnt in destilliertem Wasser) und der
- 20 Objektträger in dieser inkubiert (46 °C, 15 min).
- Anschließend wird die Kammer mit destilliertem Wasser befüllt, der Objektträger kurz eingetaucht und anschließend in seitlicher Stellung luftgetrocknet (46 °C, 30 min oder bis vollständig trocken).
- 25 Anschließend wird der Objektträger in einem geeigneten Medium (Finisher) eingebettet.
- Abschließend wird die Probe mit Hilfe eines Fluoreszenzmikroskops analysiert.
- 30

PATENTANSPRÜCHE

1. Verfahren zum Nachweis von getränkeschädlichen Mikroorganismen in einer Probe, wobei der Nachweis mittels mindestens einer Oligonukleotidsonde
5 erfolgt, die eine Nukleinsäuresequenz aufweist, ausgewählt aus der Gruppe bestehend aus (sämtliche Sequenzen in 5' → 3'-Richtung):

	SEQ ID No. 1:	5'- GTTTGACCAAGATTCTCCGCTC
	SEQ ID No. 5:	5'- CCCGGTCGAATTAAAACC
10	SEQ ID No. 6:	5'- GCCCCGGTCGAATTAAAAC
	SEQ ID No. 7:	5'- GGCCC GGTCGAATTAAAA
	SEQ ID No. 8:	5'- AGGCCCGGT CGAATTAAA
	SEQ ID No. 9:	5'- AAGGCCCGGT CGAATTAA
	SEQ ID No. 10:	5'- ATATT CGAGCGAACGCC
15	SEQ ID No. 11:	5'- AAAGATCCGGACCGGCCG
	SEQ ID No. 12	5'- GGAAAGATCCGGACCGGC
	SEQ ID No. 13	5'- GAAAGATCCGGACCGGCC
	SEQ ID No. 14	5'- GATCCGGACCGGCCGACC
	SEQ ID No. 15	5'- AGATCCGGACCGGCCGAC
20	SEQ ID No. 16	5'- AAGATCCGGACCGGCCGA
	SEQ ID No. 17	5'- GAAAGGCCCGGT CGAATT
	SEQ ID No. 18	5'- AAAGGCCCGGT CGAATT
	SEQ ID No. 19	5'- GGAAAGGCCCGGT CGAAT
	SEQ ID No. 20	5'- AGGAAAGGCCCGGT CGAA
25	SEQ ID No. 21	5'- AAGGAAAGGCCCGGT CGA
	SEQ ID No. 22:	5'- ATAGCACTGGGATCCTCGCC
	SEQ ID No. 23:	5'- CCAGCCCCAAAGTTACCTTC
	SEQ ID No. 24:	5'- TCCTTGACGTAAAGTCGCAG
	SEQ ID No. 25:	5'- GGAAGAAAACCAGTACGC

	SEQ ID No. 26:	5'- CCGGTCGGAAGAAAACCA
	SEQ ID No. 27:	5'- GAAGAAAACCAGTACGCG
	SEQ ID No. 28:	5'- CCCGGTCGGAAGAAAACC
	SEQ ID No. 29:	5'- CGGTCGGAAGAAAACCAG
5	SEQ ID No. 30:	5'- GGTGGAAAGAAAACCAGT
	SEQ ID No. 31:	5'- AAGAAAACCAGTACGCGG
	SEQ ID No. 32:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 33:	5'- AGTACGCGGAAAAATCCG
	SEQ ID No. 34:	5'- GCGGAAAAATCCGGACCG
10	SEQ ID No. 35:	5'- CGGAAGAAAACCAGTACG
	SEQ ID No. 36:	5'- GCCCGGTCGGAAGAAAAC
	SEQ ID No. 37:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 38:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 39:	5'- AGAAAACCAGTACGCGGA
15	SEQ ID No. 40:	5'- GGCCCCGTCGGAAGAAAA
	SEQ ID No. 41:	5'- ATAAACACCAACCCGATCC
	SEQ ID No. 42:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 43:	5'- GAGAGGCCCGGTCGGAAG
	SEQ ID No. 44:	5'- AGAGGCCCGGTCGGAAGA
20	SEQ ID No. 45:	5'- GAGGCCCGGTCGGAAGAA
	SEQ ID No. 46:	5'- AGGCCCGGTCGGAAGAAA
	SEQ ID No. 47:	5'- CCGAGTGGGTCACTAAAT
	SEQ ID No. 48:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 49:	5'- TAAACACCAACCCGATCCC
25	SEQ ID No. 50:	5'- GGAGAGGCCCGGTCGGAA
	SEQ ID No. 51:	5'- GAAAACCAGTACGCGGAA
	SEQ ID No. 52:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 53:	5'- GGCCACAGGGACCCAGGG
	SEQ ID No. 54:	5'- TCACCAAGGGCACAGGG
30	SEQ ID No. 55:	5'- GGGCCACAGGGACCCAGG

SEQ ID No. 56: 5'- TTCACCAAGGGCCACAGG
SEQ ID No. 57: 5'- ACAGGGACCCAGGGCTAG
SEQ ID No. 58: 5'- AGGGCCACAGGGACCCAG
SEQ ID No. 59: 5'- GTTCACCAAGGGCCACAG
5 SEQ ID No. 60: 5'- GCCACAGGGACCCAGGGC
SEQ ID No. 61: 5'- CAGGGACCCAGGGCTAGC
SEQ ID No. 62: 5'- AGGGACCCAGGGCTAGCC
SEQ ID No. 63: 5'- ACCAAGGGCCACAGGGAC
SEQ ID No. 64: 5'- CCACAGGGACCCAGGGCT
10 SEQ ID No. 65: 5'- CACAGGGACCCAGGGCTA
SEQ ID No. 66: 5'- CACCAAGGGCCACAGGGA
SEQ ID No. 67: 5'- GGGACCCAGGGCTAGCCA
SEQ ID No. 68: 5'- AGGAGAGGCCCGGTGGA
SEQ ID No. 69: 5'- AAGGAGAGGCCCGGTGG
15 SEQ ID No. 70: 5'- GAAGGAGAGGCCCGGTG
SEQ ID No. 71: 5'- AGGGCTAGCCAGAAGGAG
SEQ ID No. 72: 5'- GGGCTAGCCAGAAGGAGA
SEQ ID No. 73: 5'- AGAAGGAGAGGCCCGGT
SEQ ID No. 74: 5'- CAAGGGCCACAGGGACCC
20 SEQ ID No. 75: 5'- CCAAGGGCCACAGGGACC
SEQ ID No. 76: 5'- GTCGGAAAAACCAAGTACG
SEQ ID No. 77: 5'- GCCCGGTGGAAAAACCA
SEQ ID No. 78: 5'- CCGGTGGAAAAACCAAGT
SEQ ID No. 79: 5'- CCCGGTGGAAAAACCAAG
25 SEQ ID No. 80: 5'- TCGGAAAAACCAAGTACGC
SEQ ID No. 81: 5'- CGGAAAAACCAAGTACGCG
SEQ ID No. 82: 5'- GGAAAAACCAAGTACGCGG
SEQ ID No. 83: 5'- GTACGCGGAAAAATCCGG
SEQ ID No. 84: 5'- AGTACGCGGAAAAATCCG
30 SEQ ID No. 85: 5'- GCGGAAAAATCCGGACCG

SEQ ID No. 86: 5'- GGTCGGAAAAACCAGTAC
SEQ ID No. 87: 5'- ACTCCTAGTGGTGCCCTT
SEQ ID No. 88: 5'- GCTCCACTCCTAGTGGTG
SEQ ID No. 89: 5'- CACTCCTAGTGGTGCCCT
5 SEQ ID No. 90: 5'- CTCCACTCCTAGTGGTGC
SEQ ID No. 91: 5'- TCCACTCCTAGTGGTGCC
SEQ ID No. 92: 5'- CCACTCCTAGTGGTGCC
SEQ ID No. 93: 5'- GGCTCCACTCCTAGTGGT
SEQ ID No. 94: 5'- AGGCTCCACTCCTAGTGG
10 SEQ ID No. 95: 5'- GGCCC GGTCGGAAAAACC
SEQ ID No. 96: 5'- GAAAAACCAGTACCGGA
SEQ ID No. 97: 5'- CGCGGAAAAATCCGGACC
SEQ ID No. 98: 5'- CAGTACCGGGAAAAATCC
SEQ ID No. 99: 5'- CGGTCGGAAAAACCAGTA
15 SEQ ID No. 100: 5'- AAGGCCCGGTGGAAAAA
SEQ ID No. 101: 5'- CAGGCTCCACTCCTAGTG
SEQ ID No. 102: 5'- CTCCTAGTGGTGCCCTTC
SEQ ID No. 103: 5'- TCCTAGTGGTGCCCTTC
SEQ ID No. 104: 5'- GCAGGCTCCACTCCTAGT
20 SEQ ID No. 105: 5'- AGGCCCGGTGGAAAAAC
SEQ ID No. 106: 5'- ACGCGGAAAAATCCGGAC
SEQ ID No. 107: 5'- CCAGTACCGGGAAAAATC
SEQ ID No. 108: 5'- CTAGTGGTGCCCTTC
SEQ ID No. 109: 5'- GAAAGGCCCGGTGGAAA
25 SEQ ID No. 110: 5'- AAAGGCCCGGTGGAAAA
SEQ ID No. 111: 5'- TACCGGGAAAAATCCGGA
SEQ ID No. 112: 5'- GGAAAGGCCCGGTGGAA
SEQ ID No. 113: 5'- ATCTCTCCGAAAGGTCG
SEQ ID No. 114: 5'- CATCTCTCCGAAAGGTC
30 SEQ ID No. 115: 5'- CTCTCCGAAAGGTCGAG

SEQ ID No. 116: 5'- CTTCCGAAAGGTCGAGAT
SEQ ID No. 117: 5'- TCTCTTCCGAAAGGTCGA
SEQ ID No. 118: 5'- TCTTCCGAAAGGTCGAGA
SEQ ID No. 119: 5'- CCTAGTGGTGCCCTTCCG
5 SEQ ID No. 120: 5'- TAGTGGTGCCCTTCCGTC
SEQ ID No. 121: 5'- AGTGGTGCCCTTCCGTCA
SEQ ID No. 122: 5'- GCCAAGGTTAGACTCGTT
SEQ ID No. 123: 5'- GGCCAAGGTTAGACTCGT
SEQ ID No. 124: 5'- CCAAGGTTAGACTCGTTG
10 SEQ ID No. 125: 5'- CAAGGTTAGACTCGTTGG
SEQ ID No. 126: 5'- AAGGTTAGACTCGTTGGC
SEQ ID No. 127: 5'- CTCGCCTCACGGGGTCTCA
SEQ ID No. 128: 5'- GGCCC GGTCGAAATTAAA
SEQ ID No. 129: 5'- AGGCCCGGTCGAAATTAA
15 SEQ ID No. 130: 5'- AAGGCCCGGTCGAAATTAA
SEQ ID No. 131: 5'- AAAGGCCCGGTCGAAATT
SEQ ID No. 132: 5'- GAAAGGCCCGGTCGAAAT
SEQ ID No. 133: 5'- ATATTCGAGCGAAACGCC
SEQ ID No. 134: 5'- GGAAAGGCCCGGTCGAAA
20 SEQ ID No. 135: 5'- AAAGATCCGGACC GGCG
SEQ ID No. 136: 5'- GGAAAGATCCGGACC GGCG
SEQ ID No. 137: 5'- GAAAGATCCGGACC GGCG
SEQ ID No. 138: 5'- GATCCGGACC GGCG ACC
SEQ ID No. 139: 5'- AGATCCGGACC GGCG AC
25 SEQ ID No. 140: 5'- AAGATCCGGACC GGCG GA
SEQ ID No. 141: 5'- AGGAAAGGCCCGGTCGAA
SEQ ID No. 142: 5'- AAGGAAAGGCCCGGTCGAA
SEQ ID No. 143: 5'- CGAGCAAAACGCCTGCTTG
SEQ ID No. 144: 5'- CGCTCTGAAAGAGAGTTGCC
30 SEQ ID No. 145: 5'- AGTTGCCCTACACTAGAC

SEQ ID No. 146: 5'-GCTTCTCCGTCCCGCGCCG
SEQ ID No. 148: 5'- CCTGGITCGCCAAAAAGGC
SEQ ID No. 149: 5'-GATTCTCGGCCCATGGG
SEQ ID No. 150: 5'- ACCCTCTACGGCAGCCTGTT
5 SEQ ID No. 151: 5'- GATCGGTCTCCAGCGATTCA
SEQ ID No. 152: 5'- ACCCTCCACGGCGGCCTGTT
SEQ ID No. 153: 5'- GATTCTCCGCGCCATGGG
SEQ ID No. 154: 5'- TCATCAGACGGGATTCTCAC
SEQ ID No. 157: 5'-AGTTGCCCTCTCTAAGC
10 SEQ ID No. 158: 5'-CTGCCACAAGGACAAATGGT
SEQ ID No. 159: 5'-TGCCCCCTTTCTAAGCAAAT
SEQ ID No. 160: 5'-CCCCAAAGTTGCCCTCTC
SEQ ID No. 163: 5'-AAGACCAGGCCACCTCAT
SEQ ID No. 164: 5'- CATCATAGAACACCGTCC
15 SEQ ID No. 165: 5'- CCTTCCGAAGTCGAGGTTT
SEQ ID No. 166: 5'- GGGAGTGTGCCAACTC
SEQ ID No. 167: 5'- AGCGGTCGTTCGCAACCC
SEQ ID No. 168: 5'- CCGAAGTCGGGTTTGC
SEQ ID No. 169: 5'- GATAGCCGAAACCACCTTC
20 SEQ ID No. 170: 5'-GCCGAAACCACCTTCAAAC
SEQ ID No. 171: 5'- GTGATAGCCGAAACCACCT
SEQ ID No. 172: 5'- AGTGTAGCCGAAACCACCT
SEQ ID No. 173: 5'- TTTAACGGATGCGTTGAC
SEQ ID No. 174: 5'- AAGTGTAGCCGAAACCAC
25 SEQ ID No. 175: 5'- GGTTGAATAACCGTCAACGTC
SEQ ID No. 176: 5'- GCACAGTATGTCAAGACCTG
SEQ ID No. 177: 5'- CATCCGATGTGCAAGCACTT
SEQ ID No. 178: 5'- TCATCCGATGTGCAAGCACT
SEQ ID No. 179: 5'- CCGATGTGCAAGCACTTCAT
30 SEQ ID No. 180: 5'- CCACTCATCCGATGTGCAAG

SEQ ID No. 181: 5'- GCCACAGTCGCCACTCATC
SEQ ID No. 182: 5'- CCTCCGCGTTGTCACCGGC
SEQ ID No. 183: 5'- ACCAGTCGCCACAGTCGC
SEQ ID No. 184: 5'- CACTCATCCGATGTGCAAGC
5 SEQ ID No. 185: 5'- CCAGTCGCCACAGTCGCC
SEQ ID No. 186: 5'- CTCATCCGATGTGCAAGCAC
SEQ ID No. 187: 5'- TCCGATGTGCAAGCACTTCA
SEQ ID No. 188: 5'- CGCCACTCATCCGATGTGCA
SEQ ID No. 189: 5'- CAGTCGCCACAGTCGCCA
10 SEQ ID No. 190: 5'- GCCACTCATCCGATGTGCAA
SEQ ID No. 191: 5'- CGCCACAGTCGCCACTCAT
SEQ ID No. 192: 5'- ATCCGATGTGCAAGCACTTC
SEQ ID No. 193: 5'- GTTCGCCACAGTCGCCACT
SEQ ID No. 194: 5'- TCCTCCGCGTTGTCACCGG
15 SEQ ID No. 195: 5'- CGCCAGGGTTCATCCTGAGC
SEQ ID No. 196: 5'- AGTCGCCACAGTCGCCAC
SEQ ID No. 197: 5'- TCGCCACAGTCGCCACTCA
SEQ ID No. 198: 5'- TTAACGGGATGCGTCGACT
SEQ ID No. 199: 5'- TCGCCACTCATCCGATGTGC
20 SEQ ID No. 200: 5'- CCACAGTCGCCACTCATCC
SEQ ID No. 201: 5'- GATTAAACGGGATGCGTTCG
SEQ ID No. 202: 5'- TAACGGGATGCGTCGACTT
SEQ ID No. 203: 5'- AACGGGATGCGTCGACTTG
SEQ ID No. 204: 5'- CGAAGGTTACCGAACCGACT
25 SEQ ID No. 205: 5'- CCGAAGGTTACCGAACCGAC
SEQ ID No. 206: 5'- CCCGAAGGTTACCGAACCGA
SEQ ID No. 207: 5'- TTCCCTCCGCGTTGTCACCG
SEQ ID No. 208: 5'- CCGCCAGGGTTCATCCTGAG
SEQ ID No. 209: 5'- TCCTTCCAGAAGTGATAGCC
30 SEQ ID No. 210: 5'- CACCAGTCGCCACAGTCG

SEQ ID No. 211: 5'-ACGGGATGCGTCGACTTGC
SEQ ID No. 212: 5'-GTCCTTCCAGAAGTGATAGC
SEQ ID No. 213: 5'-GCCAGGGTTCATCCTGAGCC
SEQ ID No. 214: 5'-ACTCATCCGATGTGCAAGCA
5 SEQ ID No. 215: 5'-ATCATTGCCTTGGTGAACCG
SEQ ID No. 216: 5'-TCCGCGTTGTCACCGGCAG
SEQ ID No. 217: 5'-TGAACC GTTACTCCACCAAC
SEQ ID No. 218: 5'-GAAGTGATAGCCGAAACCAC
SEQ ID No. 219: 5'-CCGCGTTGTCACCGGCAGT
10 SEQ ID No. 220: 5'-TTCGCCACTCATCCGATGTG
SEQ ID No. 221: 5'-CATTAAACGGGATGCGTCG
SEQ ID No. 222: 5'-CACAGTTCGCCACTCATCCG
SEQ ID No. 223: 5'-TTCGCCACAGTTCGCCACTC
SEQ ID No. 224: 5'-CTCCGCGTTGTCACCGGCA
15 SEQ ID No. 225: 5'-ACGCCGCCAGGGTTCATCCT
SEQ ID No. 226: 5'-CCTTCCAGAAGTGATAGCCG
SEQ ID No. 227: 5'-TCATTGCCTTGGTGAACCGT
SEQ ID No. 228: 5'-CACAGTATGTCAAGACCTGG
SEQ ID No. 229: 5'-TTGGTGAACCGTTACTCCAC
20 SEQ ID No. 230: 5'-CTTGGTGAACCGTTACTCCA
SEQ ID No. 231: 5'-GTGAACCGTTACTCCACCAA
SEQ ID No. 232: 5'-GGCTCCCGAAGGTTACCGAA
SEQ ID No. 233: 5'-GAAGGTTACCGAACCGACTT
SEQ ID No. 234: 5'-TGGCTCCCGAAGGTTACCGA
25 SEQ ID No. 235: 5'-TAATACGCCGC GGGTCTTC
SEQ ID No. 236: 5'-GAACCGTTACTCCACCAACT
SEQ ID No. 237: 5'-TACGCCGC GGGTCTTCAG
SEQ ID No. 238: 5'-TCACCAGTTGCCACAGTTC
SEQ ID No. 239: 5'-CCTTGGTGAACCGTTACTCC
30 SEQ ID No. 240: 5'-CTCACCAAGTTGCCACAGTT

SEQ ID No. 241: 5'- CGCCGCCAGGGTTCATCCTG
SEQ ID No. 242: 5'- CCTTGGTGAACCATTACTCC
SEQ ID No. 243: 5'- TGGTGAACCATTACTCCACC
SEQ ID No. 244: 5'- GCGGCCAGGGTTCATCCTGA
5 SEQ ID No. 245: 5'- GGTGAACCATTACTCCACCA
SEQ ID No. 246: 5'- CCAGGGTTCATCCTGAGCCA
SEQ ID No. 247: 5'- AATACGCCGCGGGTCTTCC
SEQ ID No. 248: 5'- CACGCCGCCAGGGTTCATCC
SEQ ID No. 249: 5'- AGTCGCCACTCATCCGATG
10 SEQ ID No. 250: 5'- CGGGATGCGTTGACTTGCA
SEQ ID No. 251: 5'- CATTGCCTTGGTGAACCGTT
SEQ ID No. 252: 5'- GCACGCCGCCAGGGTTCATC
SEQ ID No. 253: 5'- CTTCCTCCCGCGTTGTCACC
SEQ ID No. 254: 5'- TGGTGAACCGTTACTCCACC
15 SEQ ID No. 255: 5'- CCTTCCTCCCGCGTTGTCAC
SEQ ID No. 256: 5'- ACGCCGCCGGGTCTTCCAGA
SEQ ID No. 257: 5'- GGTGAACCGTTACTCCACCA
SEQ ID No. 258: 5'- GGGTCCTCCAGAAGTGATA
SEQ ID No. 259: 5'- CTTCCAGAAGTGATAGCCGA
20 SEQ ID No. 260: 5'- GCCTTGGTGAACCATTACTC
SEQ ID No. 261: 5'- ACAGTTGCCACTCATCCGA
SEQ ID No. 262: 5'- ACCTTCCTCCCGCGTTGTC
SEQ ID No. 263: 5'- CGAACCGACTTGGGTGTTG
SEQ ID No. 264: 5'- GAACCGACTTGGGTGTTGC
25 SEQ ID No. 265: 5'- AGGTTACCGAACCGACTTTG
SEQ ID No. 266: 5'- ACCGAACCGACTTGGGTGT
SEQ ID No. 267: 5'- TTACCGAACCGACTTGGGT
SEQ ID No. 268: 5'- TACCGAACCGACTTGGGTG
SEQ ID No. 269: 5'- GTTACCGAACCGACTTGGG
30 SEQ ID No. 270: 5'- CCTTCCTGGTATGGTACCGTC

SEQ ID No. 271: 5'- TGCACCGCGGAYCCATCTCT
SEQ ID No. 272: 5'- AGTTGCAGTCCAGTAAGCCG
SEQ ID No. 273: 5'- GTTGCAGTCCAGTAAGCCGC
SEQ ID No. 274: 5'- CAGTTGCAGTCCAGTAAGGCC
5 SEQ ID No. 275: 5'- TGCAGTCCAGTAAGCCGCCT
SEQ ID No. 276: 5'- TCAGTTGCAGTCCAGTAAGC
SEQ ID No. 277: 5'- TTGCAGTCCAGTAAGCCGCC
SEQ ID No. 278: 5'- GCAGTCCAGTAAGCCGCC
SEQ ID No. 279: 5'- GTCAGTTGCAGTCCAGTAAG
10 SEQ ID No. 280: 5'- CTCTAGGTGACGCCGAAGCG
SEQ ID No. 281: 5'- ATCTCTAGGTGACGCCGAAG
SEQ ID No. 282: 5'- TCTAGGTGACGCCGAAGCGC
SEQ ID No. 283: 5'- TCTCTAGGTGACGCCGAAGC
SEQ ID No. 284: 5'- CCATCTCTAGGTGACGCCGA
15 SEQ ID No. 285: 5'- CATCTCTAGGTGACGCCGAA
SEQ ID No. 286: 5'- TAGGTGACGCCGAAGCGCCT
SEQ ID No. 287: 5'- CTAGGTGACGCCGAAGCGCC
SEQ ID No. 288: 5'- CTTAGACGGCTCCTCCTAA
SEQ ID No. 289: 5'- CCTTAGACGGCTCCTCCTA
20 SEQ ID No. 290: 5'- ACGTCAGTTGCAGTCCAGTA
SEQ ID No. 291: 5'- CGTCAGTTGCAGTCCAGTAA
SEQ ID No. 292: 5'- ACGCCGAAGCGCCTTTAAC
SEQ ID No. 293: 5'- GACGCCGAAGCGCCTTTAA
SEQ ID No. 294: 5'- GCCGAAGCGCCTTTAACCT
25 SEQ ID No. 295: 5'- CGCCGAAGCGCCTTTAACT
SEQ ID No. 296: 5'- GTGACGCCGAAGCGCCTTT
SEQ ID No. 297: 5'- TGACGCCGAAGCGCCTTTA
SEQ ID No. 298: 5'- AGACGGCTCCTCCTAAAAG
SEQ ID No. 299: 5'- ACGGCTCCTCCTAAAAGGT
30 SEQ ID No. 300: 5'- GACGGCTCCTCCTAAAAGG

SEQ ID No. 301: 5'- CCTTCCTAAAAGGTTAGGCC
SEQ ID No. 302: 5'- GGTGACGCCAAAGCGCCTT
SEQ ID No. 303: 5'- AGGTGACGCCAAAGCGCCT
SEQ ID No. 304: 5'- TAGGTGACGCCAAAGCGCCT
5 SEQ ID No. 305: 5'- CTCTAGGTGACGCCAAAGCG
SEQ ID No. 306: 5'- TCTAGGTGACGCCAAAGCGC
SEQ ID No. 307: 5'- CTAGGTGACGCCAAAGCGCC
SEQ ID No. 308: 5'- ACGCCAAAGCGCCTTTAAC
SEQ ID No. 309: 5'- CGCCAAAGCGCCTTTAAC
10 SEQ ID No. 310: 5'- TGACGCCAAAGCGCCTTTA
SEQ ID No. 311: 5'- TCTCTAGGTGACGCCAAAGC
SEQ ID No. 312: 5'- GTGACGCCAAAGCGCCTTT
SEQ ID No. 313: 5'- GACGCCAAAGCGCCTTTAA
SEQ ID No. 314: 5'- ATCTCTAGGTGACGCCAAAG
15 SEQ ID No. 315: 5'- CATCTCTAGGTGACGCCAA
SEQ ID No. 316: 5'- TCCATCTCTAGGTGACGCCA
SEQ ID No. 317: 5'- CCATCTCTAGGTGACGCCAA
SEQ ID No. 318: 5'- CTGCCTTAGACGGCTCCCC
SEQ ID No. 319: 5'- CCTGCCTTAGACGGCTCCCC
20 SEQ ID No. 320: 5'- GTGTCATGCGACACTGAGTT
SEQ ID No. 321: 5'- TGTGTCATGCGACACTGAGT
SEQ ID No. 322: 5'- CTTTGTGTCATGCGACACTG
SEQ ID No. 323: 5'- TTGTGTCATGCGACACTGAG
SEQ ID No. 324: 5'- TGCCTTAGACGGCTCCCCCT
25 SEQ ID No. 325: 5'- AGACGGCTCCCCCTAAAAGG
SEQ ID No. 326: 5'- TAGACGGCTCCCCCTAAAAG
SEQ ID No. 327: 5'- GCCTTAGACGGCTCCCCCTA
SEQ ID No. 328: 5'- GCTCCCCCTAAAAGGTTAGG
SEQ ID No. 329: 5'- GGCTCCCCCTAAAAGGTTAG
30 SEQ ID No. 330: 5'- CTCCCCCTAAAAGGTTAGGC

SEQ ID No. 331: 5'- TCCCCCTAAAAGGTTAGGCC
SEQ ID No. 332: 5'- CCCTAAAAGGTTAGGCCACC
SEQ ID No. 333: 5'- CCCCTAAAAGGTTAGGCCAC
SEQ ID No. 334: 5'- CGGCTCCCCCTAAAAGGTTA
5 SEQ ID No. 335: 5'- CCCCCCTAAAAGGTTAGGCCA
SEQ ID No. 336: 5'- CTTAGACGGCTCCCCCTAAA
SEQ ID No. 337: 5'- TTAGACGGCTCCCCCTAAAA
SEQ ID No. 338: 5'- GGGTTCGCAACTCGTTGTAT
SEQ ID No. 339: 5'- CCTTAGACGGCTCCCCCTAA
10 SEQ ID No. 340: 5'- ACGGCTCCCCCTAAAAGGTT
SEQ ID No. 341: 5'- GACGGCTCCCCCTAAAAGGT
SEQ ID No. 342: 5'- ACGCCGCAAGACCATCCTCT
SEQ ID No. 343: 5'- CTAATACGCCGCAAGACCAT
SEQ ID No. 344: 5'- TACGCCGCAAGACCATCCTC
15 SEQ ID No. 345: 5'- GTTACGATCTAGCAAGCCGC
SEQ ID No. 346: 5'- AATACGCCGCAAGACCATCC
SEQ ID No. 347: 5'- CGCCGCAAGACCATCCTCTA
SEQ ID No. 348: 5'- GCTAATACGCCGCAAGACCA
SEQ ID No. 349: 5'- ACCATCCTCTAGCGATCCAA
20 SEQ ID No. 350: 5'- TAATACGCCGCAAGACCATC
SEQ ID No. 351: 5'- AGCCATCCCTTCTGGTAAG
SEQ ID No. 352: 5'- ATACGCCGCAAGACCATCCT
SEQ ID No. 353: 5'- AGTTACGATCTAGCAAGCCG
SEQ ID No. 354: 5'- AGCTAATACGCCGCAAGACC
25 SEQ ID No. 355: 5'- GCCGCAAGACCATCCTCTAG
SEQ ID No. 356: 5'- TTACGATCTAGCAAGCCGCT
SEQ ID No. 357: 5'- GACCATCCTCTAGCGATCCA
SEQ ID No. 358: 5'- TTGCTACGTCACTAGGAGGC
SEQ ID No. 359: 5'- ACGTCACTAGGAGGCGGAAA
30 SEQ ID No. 360: 5'- TTTGCTACGTCACTAGGAGG

SEQ ID No. 361: 5'- GCCATCCCTTCTGGTAAGG
SEQ ID No. 362: 5'- TACGTCACTAGGAGGCAGAA
SEQ ID No. 363: 5'- CGTCACTAGGAGGCAGAAAC
SEQ ID No. 364: 5'- AAGACCATCCTCTAGCGATC
5 SEQ ID No. 365: 5'- GCACGTATTAGCCATCCCT
SEQ ID No. 366: 5'- CTCTAGCGATCCAAAAGGAC
SEQ ID No. 367: 5'- CCTCTAGCGATCCAAAAGGA
SEQ ID No. 368: 5'- CCATCCTCTAGCGATCCAAA
SEQ ID No. 369: 5'- GGCACGTATTAGCCATCCC
10 SEQ ID No. 370: 5'- TACGATCTAGCAAGCCGCTT
SEQ ID No. 371: 5'- CAGTTACGATCTAGCAAGCC
SEQ ID No. 372: 5'- CCGCAAGACCATCCTCTAGC
SEQ ID No. 373: 5'- CCATCCCTTCTGGTAAGGT
SEQ ID No. 374: 5'- AGACCATCCTCTAGCGATCC
15 SEQ ID No. 375: 5'- CAAGACCATCCTCTAGCGAT
SEQ ID No. 376: 5'- GCTACGTCACTAGGAGGCAG
SEQ ID No. 377: 5'- TGCTACGTCACTAGGAGGCAG
SEQ ID No. 378: 5'- CTACGTCACTAGGAGGCAGA
SEQ ID No. 379: 5'- CCTCAACGTCAAGTACGATC
20 SEQ ID No. 380: 5'- GTCACTAGGAGGCAGAAACC
SEQ ID No. 381: 5'- TCCTCTAGCGATCCAAAAGG
SEQ ID No. 382: 5'- TGGCACGTATTAGCCATCC
SEQ ID No. 383: 5'- ACGATCTAGCAAGCCGCTT
SEQ ID No. 384: 5'- GCCAGTCTCTCAACTCGGCT
25 SEQ ID No. 385: 5'- AAGCTAATACGCCGCAAGAC
SEQ ID No. 386: 5'- GTTGCTACGTCACTAGGAG
SEQ ID No. 387: 5'- CGCCACTCTAGTCATTGCCT
SEQ ID No. 388: 5'- GGCCAGCCAGTCTCTCAACT
SEQ ID No. 389: 5'- CAGCCAGTCTCTCAACTCGG
30 SEQ ID No. 390: 5'- CCCGAAGATCAATTAGCGG

SEQ ID No. 391: 5'- CCGGCCAGTCTCTCAACTCG
SEQ ID No. 392: 5'- CCAGCCAGTCTCTCAACTCG
SEQ ID No. 393: 5'- TCATTGCCTCACTTCACCCG
SEQ ID No. 394: 5'- GCCAGCCAGTCTCTCAACTC
5 SEQ ID No. 395: 5'- CACCCGAAGATCAATTCAAGC
SEQ ID No. 396: 5'- GTCATTGCCTCACTTCACCC
SEQ ID No. 397: 5'- CATTGCCTCACTTCACCCGA
SEQ ID No. 398: 5'- ATTGCCTCACTTCACCCGAA
SEQ ID No. 399: 5'- CGAAGATCAATTCAAGCGGCT
10 SEQ ID No. 400: 5'- AGTCATTGCCTCACTTCACC
SEQ ID No. 401: 5'- TCGCCACTCTAGTCATTGCC
SEQ ID No. 402: 5'- TTGCCTCACTTCACCCGAAG
SEQ ID No. 403: 5'- CGGCCAGTCTCTCAACTCGG
SEQ ID No. 404: 5'- CTGGCACGTATTTAGCCATC
15 SEQ ID No. 405: 5'- ACCCGAAGATCAATTCAAGCG
SEQ ID No. 406: 5'- TCTAGCGATCCAAAAGGACC
SEQ ID No. 407: 5'- CTAGCGATCCAAAAGGACCT
SEQ ID No. 408: 5'- GCACCCATCGTTACGGTAT
SEQ ID No. 409: 5'- CACCCATCGTTACGGTATG
20 SEQ ID No. 410: 5'- GCCACTCTAGTCATTGCCTC
SEQ ID No. 411: 5'- CGTTTGCTACGTCACTAGGA
SEQ ID No. 412: 5'- GCCTCAACGTCAAGTACGAT
SEQ ID No. 413: 5'- GCCGGCCAGTCTCTCAACTC
SEQ ID No. 414: 5'- TCACTAGGAGGCGGAAACCT
25 SEQ ID No. 415: 5'- AGCCTCAACGTCAAGTACGA
SEQ ID No. 416: 5'- AGCCAGTCTCTCAACTCGGC
SEQ ID No. 417: 5'- GGCCAGTCTCTCAACTCGGC
SEQ ID No. 418: 5'- CAAGCTAATACGCCGCAAGA
SEQ ID No. 419: 5'- TTCGCCACTCTAGTCATTGC
30 SEQ ID No. 420: 5'- CCGAACGATCAATTCAAGCGGC

SEQ ID No. 421: 5'- CGCAAGACCATCCTCTAGCG
SEQ ID No. 422: 5'- GCAAGACCATCCTCTAGCGA
SEQ ID No. 423: 5'- GCGTTGCTACGTCACTAGG
SEQ ID No. 424: 5'- CCACTCTAGTCATTGCCTCA
5 SEQ ID No. 425: 5'- CACTCTAGTCATTGCCTCAC
SEQ ID No. 426: 5'- CCAGTCTCTCAACTCGGCTA
SEQ ID No. 427: 5'- TTACCTTAGGCACCGGCCTC
SEQ ID No. 428: 5'- ACAAGCTAATACGCCGCAAG
SEQ ID No. 429: 5'- TTTACCTTAGGCACCGGCCT
10 SEQ ID No. 430: 5'- TTTTACCTTAGGCACCGGCC
SEQ ID No. 431: 5'- ATTTTACCTTAGGCACCGGC
SEQ ID No. 432: 5'- GATTTACCTTAGGCACCGGG
SEQ ID No. 433: 5'- CTCACTTCACCCGAAGATCA
SEQ ID No. 434: 5'- ACGCCACCAGCGTTCATCCT
15 SEQ ID No. 435: 5'- GCCAAGCGACTTGGGTACT
SEQ ID No. 436: 5'- CGGAAAATTCCCTACTGCAG
SEQ ID No. 437: 5'- CGATCTAGCAAGCCGCTTC
SEQ ID No. 438: 5'- GGTACCGTCAAGCTGAAAAC
SEQ ID No. 439: 5'- TGCCTCACTTCACCCGAAGA
20 SEQ ID No. 440: 5'- GGCCGGCCAGTCTCTCAACT
SEQ ID No. 441: 5'- GGTAAGGTACCGTCAAGCTG
SEQ ID No. 442: 5'- GTAAGGTACCGTCAAGCTGA
SEQ ID No. 443: 5'- CCGCAAGACCATCCTCTAGG
SEQ ID No. 444: 5'- ATTTAGCCATCCCTTCTGG
25 SEQ ID No. 445: 5'- AACCCCTTCATCACACACCG
SEQ ID No. 446: 5'- CGAAACCCCTTCATCACACAC
SEQ ID No. 447: 5'- ACCCTTCATCACACACACGC
SEQ ID No. 448: 5'- TACCGTCACACACTGAAC
SEQ ID No. 449: 5'- AGATAACCGTCACACACTG
30 SEQ ID No. 450: 5'- CACTCAAGGGCGGAAACC

SEQ ID No. 451: 5'- ACCGTACACACTGAACA
SEQ ID No. 452: 5'- CGTCACACACTGAACAGT
SEQ ID No. 453: 5'- CCGAAACCCTTCATCACA
SEQ ID No. 454: 5'- CCGTCACACACTGAACAG
5 SEQ ID No. 455: 5'- GATACCGTACACACTGA
SEQ ID No. 456: 5'- GGTAAGATAACCGTCACAC
SEQ ID No. 457: 5'- CCCTTCATCACACACGCG
SEQ ID No. 458: 5'- ACAGTGTTCACGAGCCG
SEQ ID No. 459: 5'- CAGTGTTCACGAGCCGA
10 SEQ ID No. 460: 5'- ACAAAGCGTTCGACTTGC
SEQ ID No. 461: 5'- CGGATAACGCTTGGAAACA
SEQ ID No. 462: 5'- AGGGCGGAAACCCCTCGAA
SEQ ID No. 463: 5'- GGGCGGAAACCCCTCGAAC
SEQ ID No. 464: 5'- GGCAGGAAACCCCTCGAAC
15 SEQ ID No. 465: 5'- TGAGGGCTTCACTCAG
SEQ ID No. 466: 5'- AGGGCTTCACTCAGAC
SEQ ID No. 467: 5'- GAGGGCTTCACTCAGA
SEQ ID No. 468: 5'- ACTGCACTCAAGTCATCC
SEQ ID No. 469: 5'- CCGGATAACGCTTGGAAAC
20 SEQ ID No. 470: 5'- TCCGGATAACGCTTGGAA
SEQ ID No. 471: 5'- TATCCCCTGCTAAGAGGT
SEQ ID No. 472: 5'- CCTGCTAAGAGGTAGGTT
SEQ ID No. 473: 5'- CCCTGCTAAGAGGTAGGT
SEQ ID No. 474: 5'- CCCCTGCTAAGAGGTAGG
25 SEQ ID No. 475: 5'- TCCCCCTGCTAAGAGGTAG
SEQ ID No. 476: 5'- ATCCCCCTGCTAAGAGGTAA
SEQ ID No. 477: 5'- CCGTTCCCTTCTGGTAAG
SEQ ID No. 478: 5'- GCCGTTCCCTTCTGGTAA
SEQ ID No. 479: 5'- AGCCGTTCCCTTCTGGTA
30 SEQ ID No. 480: 5'- GCACGTATTAGGCCGTT

SEQ ID No. 481: 5'- CACGTATTTAGCCGTTCC
SEQ ID No. 482: 5'- GGCACGTATTTAGCCGTT
SEQ ID No. 483: 5'- CACTTCCTCTACTGCAC
SEQ ID No. 484: 5'- CCACTTCCTCTACTGCA
5 SEQ ID No. 485: 5'- TCCACTTCCTCTACTGC
SEQ ID No. 486: 5'- CTTTCCTCTACTGCACTC
SEQ ID No. 487: 5'- TAGCCGTTCCCTTCTGGT
SEQ ID No. 488: 5'- TTAGCCGTTCCCTTCTGG
SEQ ID No. 489: 5'- TTATCCCCTGCTAAGAGG
10 SEQ ID No. 490: 5'- GTTATCCCCTGCTAAGAG
SEQ ID No. 491: 5'- CCCGTTGCCACTCTTG
SEQ ID No. 492: 5'- AGCTGAGGGCTTCACTT
SEQ ID No. 493: 5'- GAGCTGAGGGCTTCAC
SEQ ID No. 494: 5'- GCTGAGGGCTTCAC
15 SEQ ID No. 495: 5'- CTGAGGGCTTCAC
SEQ ID No. 496: 5' CCCGTGTCCCGAAGGAAC
SEQ ID No. 497: 5' GCACGAGTATGTCAAGAC
SEQ ID No. 498: 5' GTATCCCGTGTCCCGAAG
SEQ ID No. 499: 5' TCCCGTGTCCCGAAGGAA
20 SEQ ID No. 500: 5' ATCCCGTGTCCCGAAGGA
SEQ ID No. 501: 5' TATCCCGTGTCCCGAAGG
SEQ ID No. 502: 5' CTTACCTTAGGAAGCGCC
SEQ ID No. 503: 5' TTACCTTAGGAAGCGCCC
SEQ ID No. 504: 5' CCTGTATCCCGTGTCCCG
25 SEQ ID No. 505: 5' CCACCTGTATCCCGTGT
SEQ ID No. 506: 5' CACCTGTATCCCGTGTCC
SEQ ID No. 507: 5' ACCTGTATCCCGTGTCCC
SEQ ID No. 508: 5' CTGTATCCCGTGTCCCGA
SEQ ID No. 509: 5' TGTATCCCGTGTCCCGAA
30 SEQ ID No. 510: 5' CACGAGTATGTCAAGACC

SEQ ID No. 511: 5' CGGTCTTACCTTAGGAAG
SEQ ID No. 512: 5' TAGGAAGCGCCCTCCTTG
SEQ ID No. 513: 5' AGGAAGCGCCCTCCTGC
SEQ ID No. 514: 5' TTAGGAAGCGCCCTCCTT
5 SEQ ID No. 515: 5' CTTAGGAAGCGCCCTCCT
SEQ ID No. 516: 5' CCTTAGGAAGCGCCCTCC
SEQ ID No. 517: 5' ACCTTAGGAAGCGCCCTC
SEQ ID No. 518: 5' TGCACACAATGGTTGAGC
SEQ ID No. 519: 5' TACCTTAGGAAGCGCCCT
10 SEQ ID No. 520: 5' ACCACCTGTATCCCGTGT
SEQ ID No. 521: 5' GCACCACCTGTATCCCGT
SEQ ID No. 522: 5' CACCACCTGTATCCCGTG
SEQ ID No. 523: 5' GCGGTTAGGCAACCTACT
SEQ ID No. 524: 5' TGC GGTTAGGCAACCTAC
15 SEQ ID No. 525: 5' TTGCGGTTAGGCAACCTA
SEQ ID No. 526: 5' GGTCTTACCTTAGGAAGC
SEQ ID No. 527: 5' GCTAATACAACGCGGGAT
SEQ ID No. 528: 5' CTAATACAACGCGGGATC
SEQ ID No. 529: 5' ATACAACGCGGGATCATC
20 SEQ ID No. 530: 5' CGGTTAGGCAACCTACTT
SEQ ID No. 531: 5' TGCACCACCTGTATCCCG
SEQ ID No. 532: 5' GAAGCGCCCTCCTGCGG
SEQ ID No. 533: 5' GGAAGCGCCCTCCTGCG
SEQ ID No. 534: 5' CGTCCCTTCGGTTAGA
25 SEQ ID No. 535: 5' AGCTAATACAACGCGGG
SEQ ID No. 536: 5' TAGCTAATACAACGCGGG
SEQ ID No. 537: 5' CTAGCTAATACAACGCGG
SEQ ID No. 538: 5' GGCTATGTATCATCGCCT
SEQ ID No. 539: 5' GAGCCACTGCCTTTACA
30 SEQ ID No. 540: 5' GTCGGCTATGTATCATCG

SEQ ID No. 541: 5' GGTCGGCTATGTATCATC
SEQ ID No. 542: 5' CAGGTCGGCTATGTATCA
SEQ ID No. 543: 5' CGGCTATGTATCATCGCC
SEQ ID No. 544: 5' TCGGCTATGTATCATCGC
5 SEQ ID No. 545: 5' GTCTTACCTTAGGAAGCG
SEQ ID No. 546: 5' TCTTACCTTAGGAAGCGC
SEQ ID No. 547: 5'- GTACAAACCGCCTACACGCC
SEQ ID No. 548: 5'- TGTACAAACCGCCTACACGC
SEQ ID No. 549: 5'- GATCAGCACGATGTCGCCAT
10 SEQ ID No. 550: 5'- CTGTACAAACCGCCTACACG
SEQ ID No. 551: 5'- GAGATCAGCACGATGTCGCC
SEQ ID No. 552: 5'- AGATCAGCACGATGTCGCCA
SEQ ID No. 553: 5'- ATCAGCACGATGTCGCCATC
SEQ ID No. 554: 5'- TCAGCACGATGTCGCCATCT
15 SEQ ID No. 555: 5'- ACTGTACAAACCGCCTACAC
SEQ ID No. 556: 5'- CCGCCACTAAGGCCGAAACC
SEQ ID No. 557: 5'- CAGCACGATGTCGCCATCTA
SEQ ID No. 558: 5'- TACAAACCGCCTACACGCC
SEQ ID No. 559: 5'- AGCACGATGTCGCCATCTAG
20 SEQ ID No. 560: 5'- CGGCTTTAGAGATCAGCAC
SEQ ID No. 561: 5'- TCCGCCACTAAGGCCGAAAC
SEQ ID No. 562: 5'- GACTGTACAAACCGCCTACA
SEQ ID No. 563: 5'- GTCCGCCACTAAGGCCGAAA
SEQ ID No. 564: 5'- GGGGATTTCACATCTGACTG
25 SEQ ID No. 565: 5'- CATAACAAGCCCTGGTAAGGT
SEQ ID No. 566: 5'- ACAAGCCCTGGTAAGGTTCT
SEQ ID No. 567: 5'- ACAAACCGCCTACACGCCCT
SEQ ID No. 568: 5'- CTGACTGTACAAACCGCCTA
SEQ ID No. 569: 5'- TGACTGTACAAACCGCCTAC
30 SEQ ID No. 570: 5'- ACGATGTCGCCATCTAGCTT

SEQ ID No. 571: 5'- CACGATGTCGCCATCTAGCT
SEQ ID No. 572: 5'- CGATGTCGCCATCTAGCTTC
SEQ ID No. 573: 5'- GCACGATGTCGCCATCTAGC
SEQ ID No. 574: 5'- GATGTCGCCATCTAGCTTCC
5 SEQ ID No. 575: 5'- ATGTCGCCATCTAGCTTCCC
SEQ ID No. 576: 5'- TGTGCCCATCTAGCTTCCA
SEQ ID No. 577: 5'- GCCATCTAGCTTCCACTGT
SEQ ID No. 578: 5'- TCGCCATCTAGCTTCCACT
SEQ ID No. 579: 5'- CGCCATCTAGCTTCCACTG
10 SEQ ID No. 580: 5'- GTCGCCATCTAGCTTCCCAC
SEQ ID No. 581: 5'- TACAAGCCCTGGTAAGGTT
SEQ ID No. 582: 5'- GCCACTAAGGCCGAAACCTT
SEQ ID No. 583: 5'- ACTAAGGCCGAAACCTTCGT
SEQ ID No. 584: 5'- CTAAGGCCGAAACCTTCGTG
15 SEQ ID No. 585: 5'- CACTAAGGCCGAAACCTTCG
SEQ ID No. 586: 5'- AAGGCCGAAACCTTCGTGCG
SEQ ID No. 587: 5'- CCACTAAGGCCGAAACCTTC
SEQ ID No. 588: 5'- TAAGGCCGAAACCTTCGTG
SEQ ID No. 589: 5'- AGGCCGAAACCTTCGTGCGA
20 SEQ ID No. 590: 5'- TCTGACTGTACAAACCGCT
SEQ ID No. 591: 5'- CATCTGACTGTACAAACCGC
SEQ ID No. 592: 5'- ATCTGACTGTACAAACCGCC
SEQ ID No. 593: 5'- CTTCGTGCGACTTGCATGT
SEQ ID No. 594: 5'- CCTTCGTGCGACTTGCATGT
25 SEQ ID No. 595: 5'- CTCTCTAGAGTGCCCCACCCA
SEQ ID No. 596: 5'- TCTCTAGAGTGCCCCACCCA
SEQ ID No. 597: 5'- ACGTATCAAATGCAGCTCCC
SEQ ID No. 598: 5'- CGTATCAAATGCAGCTCCC
SEQ ID No. 599: 5'- CGCCACTAAGGCCGAAACCT
30 SEQ ID No. 600: 5'- CCGAACCTTCGTGCGACTT

SEQ ID No. 601: 5'- GCCGAAACCTCGTGCAGCT
SEQ ID No. 602: 5'- AACCTCGTGCAGCTTGAT
SEQ ID No. 603: 5'- CGAACACCTCGTGCAGACTTG
SEQ ID No. 604: 5'- ACCTCGTGCAGCTTGATG
5 SEQ ID No. 605: 5'- GAAACCTCGTGCAGACTTGC
SEQ ID No. 606: 5'- GGCGAAACCTCGTGCAGAC
SEQ ID No. 607: 5'- AAACCTCGTGCAGCTTGCA
SEQ ID No. 608: 5'- CACGTATCAAATGCAGCTCC
SEQ ID No. 609: 5'- GCTCACCGGCTTAAGGTCAA
10 SEQ ID No. 610: 5'- CGCTCACCGGCTTAAGGTCA
SEQ ID No. 611: 5'- TCGCTCACCGGCTTAAGGTC
SEQ ID No. 612: 5'- CTCACCGGCTTAAGGTCAA
SEQ ID No. 613: 5'- CCCGACCGTGGTCGGCTGCG
SEQ ID No. 614: 5'- GCTCACCGGCTTAAGGTCAA
15 SEQ ID No. 615: 5'- CGCTCACCGGCTTAAGGTCA
SEQ ID No. 616: 5'- TCGCTCACCGGCTTAAGGTC
SEQ ID No. 617: 5'- CTCACCGGCTTAAGGTCAA
SEQ ID No. 618: 5'- CCCGACCGTGGTCGGCTGCG
SEQ ID No. 619: 5'- TCACCGGCTTAAGGTCAAAC
20 SEQ ID No. 620: 5'- CAACCCCTCTCACACTCTA
SEQ ID No. 621: 5'- ACAACCCCTCTCACACTCT
SEQ ID No. 622: 5'- CCACAACCCCTCTCACACT
SEQ ID No. 623: 5'- AACCCCTCTCACACTCTAG
SEQ ID No. 624: 5'- CACAACCCCTCTCACACTC
25 SEQ ID No. 625: 5'- TCCACAACCCCTCTCACAC
SEQ ID No. 626: 5'- TTCCACAACCCCTCTCACAC
SEQ ID No. 627: 5'- ACCCTCTCTCACACTCTAGT
SEQ ID No. 628: 5'- GAGCCAGGTTGCCGCCTCG
SEQ ID No. 629: 5'- AGGTCAAACCAACTCCCAGT
30 SEQ ID No. 630: 5'- ATGAGCCAGGTTGCCGCCTT

- 99 -

SEQ ID No. 631: 5'- TGAGCCAGGTTGCCGCCTTC
SEQ ID No. 632: 5'- AGGCTCCTCCACAGGCGACT
SEQ ID No. 633: 5'- CAGGCTCCTCCACAGGCGAC
SEQ ID No. 634: 5'- GCAGGCTCCTCCACAGGCGA
5 SEQ ID No. 635: 5'- TTCGCTCACCGGCTTAAGGT
SEQ ID No. 636: 5'- GTTCGCTCACCGGCTTAAGG
SEQ ID No. 637: 5'- GGTCGCTCACCGGCTTAAG
SEQ ID No. 638: 5'- ATTCCACAACCCCTCTCAC
SEQ ID No. 639: 5'- TGACCCGACCGTGGTCGGCT
10 SEQ ID No. 640: 5'- CCCTCTCTCACACTCTAGTC
SEQ ID No. 641: 5'- GAATTCCACAACCCCTCTCTC
SEQ ID No. 642: 5'- AGCCAGGTTGCCGCCTTCGC
SEQ ID No. 643: 5'- GCCAGGTTGCCGCCTTCGCC
SEQ ID No. 644: 5'- GGAATTCCACAACCCCTCTCT
15 SEQ ID No. 645: 5'- GGGATTCCACAACCCCTCTC
SEQ ID No. 646: 5'- AACGCAGGCTCCTCCACAGG
SEQ ID No. 647: 5'- CGGCTTAAGGTCAAACCAAC
SEQ ID No. 648: 5'- CCGGCTTAAGGTCAAACCAA
SEQ ID No. 649: 5'- CACCGGCTTAAGGTCAAACC
20 SEQ ID No. 650: 5'- ACCGGCTTAAGGTCAAACCA
SEQ ID No. 651: 5'- ACCAACATCCAGCACACAT
SEQ ID No. 652: 5'- TCGCTGACCCGACCGTGGTC
SEQ ID No. 653: 5'- CGCTGACCCGACCGTGGTCG
SEQ ID No. 654: 5'- GACCCGACCGTGGTCGGCTG
25 SEQ ID No. 655: 5'- GCTGACCCGACCGTGGTCGG
SEQ ID No. 656: 5'- CTGACCCGACCGTGGTCGGC
SEQ ID No. 657: 5'- CAGGCGACTTGCGCCTTGA
SEQ ID No. 658: 5'- TCATGCGGTATTAGCTCCAG
SEQ ID No. 659: 5'- ACTAGCTAATCGAACGCAGG
30 SEQ ID No. 660: 5'- CATGCGGTATTAGCTCCAGT

SEQ ID No. 661: 5'- CGCAGGCTCCTCCACAGGCG
SEQ ID No. 662: 5'- ACGCAGGCTCCTCCACAGGC
SEQ ID No. 663: 5'- CTCAGGTGTCATGCGGTATT
SEQ ID No. 664: 5'- CGCCTTGACCCTCAGGTGT
5 SEQ ID No. 665: 5'- ACCCTCAGGTGTCATGCGGT
SEQ ID No. 666: 5'- CCTCAGGTGTCATGCGGTAT
SEQ ID No. 667: 5'- TTTGACCCTCAGGTGTCATG
SEQ ID No. 668: 5'- GACCCTCAGGTGTCATGCGG
SEQ ID No. 669: 5'- TGACCCTCAGGTGTCATGCG
10 SEQ ID No. 670: 5'- GCCTTGACCCTCAGGTGTC
SEQ ID No. 671: 5'- TTGACCCTCAGGTGTCATGC
SEQ ID No. 672: 5'- CCCTCAGGTGTCATGCGGTA
SEQ ID No. 673: 5'- CCTTGACCCTCAGGTGTCA
SEQ ID No. 674: 5'- CTTTGACCCTCAGGTGTCAT
15 SEQ ID No. 675: 5'- AGTTATCCCCCACCATGGA
SEQ ID No. 676: 5'- CCAGCTATCGATCATGCCCT
SEQ ID No. 677: 5'- ACCAGCTATCGATCATGCC
SEQ ID No. 678: 5'- CAGCTATCGATCATGCCCT
SEQ ID No. 679: 5'- AGCTATCGATCATGCCCTG
20 SEQ ID No. 680: 5'- GCTATCGATCATGCCCTGG
SEQ ID No. 681: 5'- CTATCGATCATGCCCTGGT
SEQ ID No. 682: 5'- TTCGTGCGACTTGCATGTGT
SEQ ID No. 683: 5'- TCGATCATGCCCTGGTAGG
SEQ ID No. 684: 5'- ATCGATCATGCCCTGGTAG
25 SEQ ID No. 685: 5'- CACAGGCGACTTGCAGCCTT
SEQ ID No. 686: 5'- CCACAGGCGACTTGCAGCCT
SEQ ID No. 687: 5'- TCCACAGGCGACTTGCAGCCT
SEQ ID No. 688: 5'- TCCTCCACAGGCGACTTGCAG
SEQ ID No. 689: 5'- CCTCCACAGGCGACTTGCAGC
30 SEQ ID No. 690: 5'- CTCCACAGGCGACTTGCAGC

SEQ ID No. 691: 5'- ACAGGCGACTTGCACGGCTTG
SEQ ID No. 692: 5'- GCTCACCGGCTTAAGGTCAA
SEQ ID No. 693: 5'- CGCTCACCGGCTTAAGGTCA
SEQ ID No. 694: 5'- TCGCTCACCGGCTTAAGGTCA
5 SEQ ID No. 695: 5'- CTCACCCGGCTTAAGGTCAAA
SEQ ID No. 696: 5'- CCCGACCGTGGTCGGCTGCG
SEQ ID No. 697: 5'- TCACCCGGCTTAAGGTCAAAC
SEQ ID No. 698: 5'- CAACCCCTCTCTCACACTCTA
SEQ ID No. 699: 5'- ACAACCCCTCTCTCACACTCT
10 SEQ ID No. 700: 5'- CCACAACCCCTCTCACACT
SEQ ID No. 701: 5'- AACCCCTCTCTCACACTCTAG
SEQ ID No. 702: 5'- CACAACCCCTCTCTCACACTC
SEQ ID No. 703: 5'- TCCACAACCCCTCTCACAC
SEQ ID No. 704: 5'- TTCCACAACCCCTCTCTCACAC
15 SEQ ID No. 705: 5'- ACCCTCTCTCACACTCTAGT
SEQ ID No. 706: 5'- GAGCCAGGTTGCCGCCCTCG
SEQ ID No. 707: 5'- AGGTCAAACCAACTCCCATG
SEQ ID No. 708: 5'- ATGAGCCAGGTTGCCGCCCT
SEQ ID No. 709: 5'- TGAGCCAGGTTGCCGCCCTC
20 SEQ ID No. 710: 5'- AGGCTCCTCCACAGGCGACT
SEQ ID No. 711: 5'- CAGGCTCCTCCACAGGCGAC
SEQ ID No. 712: 5'- GCAGGCTCCTCCACAGGCGA
SEQ ID No. 713: 5'- TTTCGCTCACCGGCTTAAGGT
SEQ ID No. 714: 5'- GTTCGCTCACCGGCTTAAGG
25 SEQ ID No. 715: 5'- GGTTCGCTCACCGGCTTAAG
SEQ ID No. 716: 5'- ATTCCACAACCCCTCTCTCAC
SEQ ID No. 717: 5'- TGACCCGACCGTGGTCGGCT
SEQ ID No. 718: 5'- CCCTCTCTCACACTCTAGTC
SEQ ID No. 719: 5'- GAATTCCACAACCCCTCTCTC
30 SEQ ID No. 720: 5'- AGCCAGGTTGCCGCCCTCGC

SEQ ID No. 721: 5' - GCCAGGTTGCCGCCTCGCC
SEQ ID No. 722: 5' - GGAATTCCACAACCCCTCTCT
SEQ ID No. 723: 5' - GGGAAATTCCACAACCCCTCTC
SEQ ID No. 724: 5' - AACGCAGGCTCCTCCACAGG
5 SEQ ID No. 725: 5' - CGGCTTAAGGTCAAACCAAC
SEQ ID No. 726: 5' - CCGGCTTAAGGTCAAACCAA
SEQ ID No. 727: 5' - CACCGGCTTAAGGTCAAACC
SEQ ID No. 728: 5' - ACCGGCTTAAGGTCAAACCA
SEQ ID No. 729: 5' - ACCAACATCCAGCACACAT
10 SEQ ID No. 730: 5' - TCGCTGACCCGACCGTGGTC
SEQ ID No. 731: 5' - CGCTGACCCGACCGTGGTCG
SEQ ID No. 732: 5' - GACCCGACCGTGGTCGGCTG
SEQ ID No. 733: 5' - GCTGACCCGACCGTGGTCGG
SEQ ID No. 734: 5' - CTGACCCGACCGTGGTCGGC
15 SEQ ID No. 735: 5' - CAGGCGACTTGCCTTGA
SEQ ID No. 736: 5' - TCATGCGGTATTAGCTCCAG
SEQ ID No. 737: 5' - ACTAGCTAATCGAACGCAGG
SEQ ID No. 738: 5' - CATGCGGTATTAGCTCCAGT
SEQ ID No. 739: 5' - CGCAGGCTCCTCACAGGCG
20 SEQ ID No. 740: 5' - ACGCAGGCTCCTCACAGGC
SEQ ID No. 741: 5' - CTCAGGTGTATGCGGTATT
SEQ ID No. 742: 5' - CGCCTTGACCCCTCAGGTGT
SEQ ID No. 743: 5' - ACCCTCAGGTGTATGCGGT
SEQ ID No. 744: 5' - CCTCAGGTGTATGCGGTAT
25 SEQ ID No. 745: 5' - TTTGACCCCTCAGGTGTATG
SEQ ID No. 746: 5' - GACCCCTCAGGTGTATGCGG
SEQ ID No. 747: 5' - TGACCCCTCAGGTGTATGCG
SEQ ID No. 748: 5' - GCCTTGACCCCTCAGGTGTC
SEQ ID No. 749: 5' - TTGACCCCTCAGGTGTATGC
30 SEQ ID No. 750: 5' - CCCTCAGGTGTATGCGGT

SEQ ID No. 751: 5'- CCTTGACCCCTCAGGTGTCA
SEQ ID No. 752: 5'- CTTGACCCCTCAGGTGTCA
SEQ ID No. 753: 5'- AGTTATCCCCACCCATGGA
SEQ ID No. 754: 5'- CCAGCTATCGATCATCGCCT
5 SEQ ID No. 755: 5'- ACCAGCTATCGATCATCGCC
SEQ ID No. 756: 5'- CAGCTATCGATCATCGCCTT
SEQ ID No. 757: 5'- AGCTATCGATCATCGCCTTG
SEQ ID No. 758: 5'- GCTATCGATCATCGCCTTGG
SEQ ID No. 759: 5'- CTATCGATCATCGCCTTGGT
10 SEQ ID No. 760: 5'- TTCGTGCGACTTGCATGTGT
SEQ ID No. 761: 5'- TCGATCATCGCCTTGGTAGG
SEQ ID No. 762: 5'- ATCGATCATCGCCTTGGTAG
SEQ ID No. 763: 5'- CACAGGCGACTTGCACCTT
SEQ ID No. 764: 5'- CCACAGGCGACTTGCACCTT
15 SEQ ID No. 765: 5'- TCCACAGGCGACTTGCACCT
SEQ ID No. 766: 5'- TCCTCCACAGGCGACTTGC
SEQ ID No. 767: 5'- CCTCCACAGGCGACTTGC
SEQ ID No. 768: 5'- CTCCACAGGCGACTTGC
SEQ ID No. 769: 5'- ACAGGCGACTTGCACCTT
20 SEQ ID No. 770: 5'- TCACCGGCTTAAGGTCAAAC
SEQ ID No. 771: 5'- CAACCCTCTCTCACACTCTA
SEQ ID No. 772: 5'- ACAACCCTCTCTCACACTCT
SEQ ID No. 773: 5'- CCACAACCCTCTCTCACACT
SEQ ID No. 774: 5'- AACCTCTCTCACACTCTAG
25 SEQ ID No. 775: 5'- CACAACCCTCTCTCACACTC
SEQ ID No. 776: 5'- TCCACAACCCTCTCTCACAC
SEQ ID No. 777: 5'- TTCCACAACCCTCTCTCACAC
SEQ ID No. 778: 5'- ACCCTCTCTCACACTCTAGT
SEQ ID No. 779: 5'- GAGCCAGGTTGCCGCCTCG
30 SEQ ID No. 780: 5'- AGGTCAAACCAACTCCCAGT

SEQ ID No. 781: 5'- ATGAGCCAGGTTGCCGCCTT
SEQ ID No. 782: 5'- TGAGCCAGGTTGCCGCCTTC
SEQ ID No. 783: 5'- AGGCTCCTCCACAGGCGACT
SEQ ID No. 784: 5'- CAGGCTCCTCACAGGCGAC
5 SEQ ID No. 785: 5'- GCAGGCTCCTCACAGGCGA
SEQ ID No. 786: 5'- TTCGCTCACCGGCTTAAGGT
SEQ ID No. 787: 5'- GTTCGCTCACCGGCTTAAGG
SEQ ID No. 788: 5'- GGTCGCTCACCGGCTTAAG
SEQ ID No. 789: 5'- ATTCCACAACCCTCTCAC
10 SEQ ID No. 790: 5'- TGACCCGACCGTGGTCGGCT
SEQ ID No. 791: 5'- CCCTCTCTCACACTCTAGTC
SEQ ID No. 792: 5'- GAATTCCACAAACCCTCTCTC
SEQ ID No. 793: 5'- AGCCAGGTTGCCGCCTCGC
SEQ ID No. 794: 5'- GCCAGGTTGCCGCCTCGCC
15 SEQ ID No. 795: 5'- GGAATTCCACAAACCCTCTCT
SEQ ID No. 796: 5'- GGGATTCCACAAACCCTCTC
SEQ ID No. 797: 5'- AACGCAGGCTCCTCACAGG
SEQ ID No. 798: 5'- CGGCTTAAGGTCAAACCAAC
SEQ ID No. 799: 5'- CCGGCTTAAGGTCAAACCAA
20 SEQ ID No. 800: 5'- CACCGGCTTAAGGTCAAACCAAC
SEQ ID No. 801: 5'- ACCGGCTTAAGGTCAAACCA
SEQ ID No. 802: 5'- ACCAACATCCAGCACACAT
SEQ ID No. 803: 5'- TCGCTGACCCGACCGTGGTC
SEQ ID No. 804: 5'- CGCTGACCCGACCGTGGTCG
25 SEQ ID No. 805: 5'- GACCCGACCGTGGTCGGCTG
SEQ ID No. 806: 5'- GCTGACCCGACCGTGGTCGG
SEQ ID No. 807: 5'- CTGACCCGACCGTGGTCGGC
SEQ ID No. 808: 5'- CAGGCGACTTGCGCCTTGA
SEQ ID No. 809: 5'- TCATGCGGTATTAGCTCCAG
30 SEQ ID No. 810: 5'- ACTAGCTAATCGAACGCAGG

SEQ ID No. 811: 5'- CATGCGGTATTAGCTCCAGT
SEQ ID No. 812: 5'- CGCAGGCTCCTCCACAGGCG
SEQ ID No. 813: 5'- ACGCAGGCTCCTCCACAGGC
SEQ ID No. 814: 5'- CTCAGGTGTATGCGGTATT
5 SEQ ID No. 815: 5'- CGCCTTGACCCTCAGGTGT
SEQ ID No. 816: 5'- ACCCTCAGGTGTATGCGGT
SEQ ID No. 817: 5'- CCTCAGGTGTATGCGGTAT
SEQ ID No. 818: 5'- TTTGACCCTCAGGTGTATG
SEQ ID No. 819: 5'- GACCCTCAGGTGTATGCGG
10 SEQ ID No. 820: 5'- TGACCCTCAGGTGTATGCG
SEQ ID No. 821: 5'- GCCTTGACCCTCAGGTGTC
SEQ ID No. 822: 5'- TTGACCCTCAGGTGTATGC
SEQ ID No. 823: 5'- CCCTCAGGTGTATGCGGT
SEQ ID No. 824: 5'- CCTTGACCCTCAGGTGTCA
15 SEQ ID No. 825: 5'- CTTGACCCTCAGGTGTAT
SEQ ID No. 826: 5'- AGTTATCCCCACCCATGGA
SEQ ID No. 827: 5'- CCAGCTATCGATCATGCC
SEQ ID No. 828: 5'- ACCAGCTATCGATCATGCC
SEQ ID No. 829: 5'- CAGCTATCGATCATGCC
20 SEQ ID No. 830: 5'- AGCTATCGATCATGCC
SEQ ID No. 831: 5'- GCTATCGATCATGCC
SEQ ID No. 832: 5'- CTATCGATCATGCC
SEQ ID No. 833: 5'- TTCGTGCGACTTGCATGT
SEQ ID No. 834: 5'- TCGATCATGCC
25 SEQ ID No. 835: 5'- ATCGATCATGCC
SEQ ID No. 836: 5'- CACAGGCGACTTGC
SEQ ID No. 837: 5'- CCACAGGCGACTTGC
SEQ ID No. 838: 5'- TCCACAGGCGACTTGC
SEQ ID No. 839: 5'- TCCTCCACAGGCGACTTGC
30 SEQ ID No. 840: 5'- CCTCCACAGGCGACTTGC

SEQ ID No. 841: 5'- CTCCACAGGCGACTTGC GCC
SEQ ID No. 842: 5'- ACAGGCGACTTGC GCCT TTG
SEQ ID No. 843: 5'- AGCCCCGGTTTCCC GGCG TT
SEQ ID No. 844: 5'- CGCCTT C CTTT CCTCCA
5 SEQ ID No. 845: 5'- GCCCCGGTTTCCC GGCG TT
SEQ ID No. 846: 5'- GCCGCC TTT C CTTT CCTC
SEQ ID No. 847: 5'- TAGCCCCGGTTTCCC GGCG GT
SEQ ID No. 848: 5'- CCGGGT ACCGTCAAGGCG CC
SEQ ID No. 849: 5'- AAGCCGC CTT C CTTT CC
10 SEQ ID No. 850: 5'- CCCCGGTTTCCC GGCG TT
SEQ ID No. 851: 5'- CCGGCGTTATCCCAGT CTTA
SEQ ID No. 852: 5'- AGCCGC CTT C CTTT CCT
SEQ ID No. 853: 5'- CCGCCTT C CTTT CCTCC
SEQ ID No. 854: 5'- TTAGCCCCGGTTTCCC GGCG
15 SEQ ID No. 855: 5'- CCCGGCGTTATCCCAGT CTT
SEQ ID No. 856: 5'- GCCGGGT ACCGTCAAGGCG C
SEQ ID No. 857: 5'- GGCCGGGT ACCGTCAAGGCG
SEQ ID No. 858: 5'- TCCC GGCG TTATCCCAGT CTT
SEQ ID No. 859: 5'- TGGCCGGGT ACCGTCAAGG C
20 SEQ ID No. 860: 5'- GAAGCCGC CTT C CTTT C
SEQ ID No. 861: 5'- CCCGGTTTCCC GGCG TT
SEQ ID No. 862: 5'- CGCGTTATCCCAGT CTT
SEQ ID No. 863: 5'- GGCGTTATCCCAGT CTT
SEQ ID No. 864: 5'- GCGTTATCCCAGT CTT
25 SEQ ID No. 865: 5'- CGGGT ACCGTCAAGGCG CC
SEQ ID No. 866: 5'- ATTAGCCCCGGTTTCCC GGCG
SEQ ID No. 867: 5'- AAGGGGAAGGCCCTGTCTCC
SEQ ID No. 868: 5'- GGCCCTGTCTCCAGGGAGGT
SEQ ID No. 869: 5'- AGGCCCTGTCTCCAGGGAGG
30 SEQ ID No. 870: 5'- AAGGCCCTGTCTCCAGGGAG

SEQ ID No. 871: 5'- GCCCTGTCTCCAGGGAGGTC
SEQ ID No. 872: 5'- CGTTATCCCAGTCTTACAGG
SEQ ID No. 873: 5'- GGGTACCGTCAAGGCGCCGC
SEQ ID No. 874: 5'- CGGCAACAGAGTTTACGAC
5 SEQ ID No. 875: 5'- GGGGAAGGCCCTGTCTCCAG
SEQ ID No. 876: 5'- AGGGGAAGGCCCTGTCTCCA
SEQ ID No. 877: 5'- GCAGCCGAAGCCGCCTTCC
SEQ ID No. 878: 5'- TTCTTCCCCGGCAACAGAGT
SEQ ID No. 879: 5'- CGGCACTTGTTCTTCCCCGG
10 SEQ ID No. 880: 5'- GTTCTTCCCCGGCAACAGAG
SEQ ID No. 881: 5'- GGCACTTGTTCTTCCCCGGC
SEQ ID No. 882: 5'- GCACTTGTTCTTCCCCGGCA
SEQ ID No. 883: 5'- CACTTGTTCTTCCCCGGCAA
SEQ ID No. 884: 5'- TCTTCCCCGGCAACAGAGTT
15 SEQ ID No. 885: 5'- TTGTTCTTCCCCGGCAACAG
SEQ ID No. 886: 5'- ACTTGTTCTTCCCCGGCAAC
SEQ ID No. 887: 5'- TGTTCTTCCCCGGCAACAGA
SEQ ID No. 888: 5'- CTTGTTCTTCCCCGGCAACA
SEQ ID No. 889: 5'- ACGGCACTTGTTCTTCCCCG
20 SEQ ID No. 890: 5'- GTCCGCCGCTAACCTTTAA
SEQ ID No. 891: 5'- CTGGCCGGGTACCGTCAAGG
SEQ ID No. 892: 5'- TCTGGCCGGGTACCGTCAAG
SEQ ID No. 893: 5'- TTCTGGCCGGGTACCGTCAA
SEQ ID No. 894: 5'- CAATGCTGGCAACTAAGGTC
25 SEQ ID No. 895: 5'- CGTCCGCCGCTAACCTTTA
SEQ ID No. 896: 5'- CGAAGCCGCCTTCCTTTT
SEQ ID No. 897: 5'- CCGAAGCCGCCTTCCTTT
SEQ ID No. 898: 5'- GCCGAAGCCGCCTTCCTTT
SEQ ID No. 899: 5'- AGCCGAAGCCGCCTTCCTT
30 SEQ ID No. 900: 5'- ACCGTCAAGGCGCCGCCCTG

SEQ ID No. 901: 5'- CCGTGGCTTCTGGCCGGT
SEQ ID No. 902: 5'- GCTTCCTGGCCGGTACCGT
SEQ ID No. 903: 5'- GCCGTGGCTTCTGGCCGGG
SEQ ID No. 904: 5'- GGCTTCTGGCCGGTACCG
5 SEQ ID No. 905: 5'- CTTCTGGCCGGTACCGTC
SEQ ID No. 906: 5'- TGGCTTCTGGCCGGTACC
SEQ ID No. 907: 5'- GTGGCTTCTGGCCGGTAC
SEQ ID No. 908: 5'- CGTGGCTTCTGGCCGGTA
SEQ ID No. 909: 5'- TTTCTGGCCGGTACCGTCA
10 SEQ ID No. 910: 5'- GGGAAAGGCCCTGTCTCCAGG
SEQ ID No. 911: 5'- CGAAGGGGAAGGCCCTGTCT
SEQ ID No. 912: 5'- CCGAAGGGGAAGGCCCTGTC
SEQ ID No. 913: 5'- GAAGGGGAAGGCCCTGTCTC
SEQ ID No. 914: 5'- GGCGCCGCCCTGTTGAAC
15 SEQ ID No. 915: 5'- AGGCGCCGCCCTGTTGAAC
SEQ ID No. 916: 5'- AAGGCGCCGCCCTGTTCGAA
SEQ ID No. 917: 5'- CCCGGCAACAGAGTTTACG
SEQ ID No. 918: 5'- CCCCCGCAACAGAGTTTAC
SEQ ID No. 919: 5'- CCATCTGTAAGTGGCAGCCG
20 SEQ ID No. 920: 5'- TCTGTAAGTGGCAGCCGAAG
SEQ ID No. 921: 5'- CTGTAAGTGGCAGCCGAAGC
SEQ ID No. 922: 5'- CCCATCTGTAAGTGGCAGCC
SEQ ID No. 923: 5'- TGTAAGTGGCAGCCGAAGCC
SEQ ID No. 924: 5'- CATCTGTAAGTGGCAGCCGA
25 SEQ ID No. 925: 5'- ATCTGTAAGTGGCAGCCGAA
SEQ ID No. 926: 5'- CAGCCGAAGCCGCCCTTCCT
SEQ ID No. 927: 5'- GGCAACAGAGTTTACGACC
SEQ ID No. 928: 5'- CCGGCAACAGAGTTTACGA
SEQ ID No. 929: 5'- TTCCCCGGCAACAGAGTTT
30 SEQ ID No. 930: 5'- CTTCCCCGGCAACAGAGTTT

SEQ ID No. 931: 5'- TCCCCGGCAACAGAGTTTA
SEQ ID No. 932: 5'- CCGTCCGCCGCTAACCTTT
SEQ ID No. 933: 5'- CTTCCTCCGACTTACGCCGG
SEQ ID No. 934: 5'- CCTCCGACTTACGCCGGCAG
5 SEQ ID No. 935: 5'- TTCCCTCCGACTTACGCCGGC
SEQ ID No. 936: 5'- TCCTCCGACTTACGCCGGCA
SEQ ID No. 937: 5'- TCCGACTTACGCCGGCAGTC
SEQ ID No. 938: 5'- CCGACTTACGCCGGCAGTCA
SEQ ID No. 939: 5'- GCCTTCCTCCGACTTACGCC
10 SEQ ID No. 940: 5'- CCTTCCTCCGACTTACGCCG
SEQ ID No. 941: 5'- GCTCTCCCCGAGCAACAGAG
SEQ ID No. 942: 5'- CTCTCCCCGAGCAACAGAGC
SEQ ID No. 943: 5'- CGCTCTCCCCGAGCAACAGAGA
SEQ ID No. 944: 5'- CTCCGACTTACGCCGGCAGT
15 SEQ ID No. 945: 5'- TCTCCCCGAGCAACAGAGCT
SEQ ID No. 946: 5'- CGACTTACGCCGGCAGTCAC
SEQ ID No. 947: 5'- TCGGCACTGGGGTGTGTCCC
SEQ ID No. 948: 5'- GGCACTGGGGTGTGTCCCC
SEQ ID No. 949: 5'- CTGGGGTGTGTCCCCCAAC
20 SEQ ID No. 950: 5'- CACTGGGGTGTGTCCCCCA
SEQ ID No. 951: 5'- ACTGGGGTGTGTCCCCCAA
SEQ ID No. 952: 5'- GCACTGGGGTGTGTCCCC
SEQ ID No. 953: 5'- TGGGGTGTGTCCCCCAACA
SEQ ID No. 954: 5'- CACTCCAGACTTGCTCGACC
25 SEQ ID No. 955: 5'- TCACTCCAGACTTGCTCGAC
SEQ ID No. 956: 5'- CGGCACTGGGGTGTGTCCCC
SEQ ID No. 957: 5'- CGCCTTCCTCCGACTTACGC
SEQ ID No. 958: 5'- CTCCCCGAGCAACAGAGCTT
SEQ ID No. 959: 5'- ACTCCAGACTTGCTCGACCG
30 SEQ ID No. 960: 5'- CCCATGCCGCTCTCCCCGAG

SEQ ID No. 961: 5'- CCATGCCGCTCTCCCCGAGC
SEQ ID No. 962: 5'- CCCCCATGCCGCTCTCCCCGA
SEQ ID No. 963: 5'- TCACTCGGTACCGTCTCGCA
SEQ ID No. 964: 5'- CATGCCGCTCTCCCCGAGCA
5 SEQ ID No. 965: 5'- ATGCCGCTCTCCCCGAGCAA
SEQ ID No. 966: 5'- TTCGGCACTGGGGTGTGCC
SEQ ID No. 967: 5'- TGCCGCTCTCCCCGAGCAAC
SEQ ID No. 968: 5'- TTCACTCCAGACTTGCTCGA
SEQ ID No. 969: 5'- CCCGCAAGAAGATGCCTCCT
10 SEQ ID No. 970: 5'- AGAAGATGCCTCCTCGCGGG
SEQ ID No. 971: 5'- AAGAAGATGCCTCCTCGCGG
SEQ ID No. 972: 5'- CGCAAGAAGATGCCTCCTCG
SEQ ID No. 973: 5'- AAGATGCCTCCTCGCGGGCG
SEQ ID No. 974: 5'- CCGCAAGAAGATGCCTCCTC
15 SEQ ID No. 975: 5'- GAAGATGCCTCCTCGCGGGC
SEQ ID No. 976: 5'- CCCCCGCAAGAAGATGCCTCC
SEQ ID No. 977: 5'- CAAGAAGATGCCTCCTCGCG
SEQ ID No. 978: 5'- TCCTTCGGCACTGGGGTGTG
SEQ ID No. 979: 5'- CCGCTCTCCCCGAGCAACAG
20 SEQ ID No. 980: 5'- TGCCTCCTCGCGGGCGTATC
SEQ ID No. 981: 5'- GACTTACGCCGGCAGTCACC
SEQ ID No. 982: 5'- GGCTCCTCTCTCAGCGGCC
SEQ ID No. 983: 5'- CCTTCGGCACTGGGGTGTGT
SEQ ID No. 984: 5'- GGGGTGTGTCCCCCAACAC
25 SEQ ID No. 985: 5'- GCCGCTCTCCCCGAGCAACA
SEQ ID No. 986: 5'- AGATGCCTCCTCGCGGGCGT
SEQ ID No. 987: 5'- CACTCGGTACCGTCTCGCAT
SEQ ID No. 988: 5'- CTCACTCGGTACCGTCTCGC
SEQ ID No. 989: 5'- GCAAGAAGATGCCTCCTCGC
30 SEQ ID No. 990: 5'- CTCCAGACTTGCTCGACCGC

SEQ ID No. 991: 5'- TTACGCCGGCAGTCACCTGT
SEQ ID No. 992: 5'- CTTCGGCACTGGGGTGTGTC
SEQ ID No. 993: 5'- CTCGCGGGCGTATCCGGCAT
SEQ ID No. 994: 5'- GCCTCCTCGCGGGCGTATCC
5 SEQ ID No. 995: 5'- ACTCGGTACCGTCTCGCATG
SEQ ID No. 996: 5'- GATGCCTCCTCGCGGGCGTA
SEQ ID No. 997: 5'- GGGTGTGTCCCCCAACACC
SEQ ID No. 998: 5'- ACTTACGCCGGCAGTCACCT
SEQ ID No. 999: 5'- CTTACGCCGGCAGTCACCTG
10 SEQ ID No. 1000: 5'- ATGCCTCCTCGCGGGCGTAT
SEQ ID No. 1001: 5'- GCGCCGCCGGCTCCTCTCTC
SEQ ID No. 1002: 5'- GGTGTGTCCCCCAACACCT
SEQ ID No. 1003: 5'- GTGTGTCCCCCAACACCTA
SEQ ID No. 1004: 5'- CCTCGCGGGCGTATCCGGCA
15 SEQ ID No. 1005: 5'- CCTCACTCGGTACCGTCTCG
SEQ ID No. 1006: 5'- TCCTCACTCGGTACCGTCTC
SEQ ID No. 1007: 5'- TCGCGGGCGTATCCGGCATT
SEQ ID No. 1008: 5'- TTTCACTCCAGACTTGCTCG
SEQ ID No. 1009: 5'- TACGCCGGCAGTCACCTGTG
20 SEQ ID No. 1010: 5'- TCCAGACTTGCTCGACCGCC
SEQ ID No. 1011: 5'- CTCGGTACCGTCTCGCATGG
SEQ ID No. 1012: 5'- CGCGGGCGTATCCGGCATT
SEQ ID No. 1013: 5'- GCGTATCCGGCATTAGCGCC
SEQ ID No. 1014: 5'- GGGCTCCTCTCAGCGGCC
25 SEQ ID No. 1015: 5'- TCCCCGAGCAACAGAGCTTT
SEQ ID No. 1016: 5'- CCCCGAGCAACAGAGCTTTA
SEQ ID No. 1017: 5'- CCGAGCAACAGAGCTTACA
SEQ ID No. 1018: 5'- CCATCCCATTGGTTGAGCCAT
SEQ ID No. 1019: 5'- GTGTCCCCCAACACCTAGC
30 SEQ ID No. 1020: 5'- GCGGGCGTATCCGGCATTAG

SEQ ID No. 1021: 5'- CGAGCGGCTTTGGGTTTC
SEQ ID No. 1022: 5'- CTTTCACTCCAGACTTGCTC
SEQ ID No. 1023: 5'- TTCCTTCGGCACTGGGTGT
SEQ ID No. 1024: 5'- CCGCCTCCTCCGACTTACG
5 SEQ ID No. 1025: 5'- CCCGCCTCCTCCGACTTAC
SEQ ID No. 1026: 5'- CCTCCTCGCGGGCGTATCCG
SEQ ID No. 1027: 5'- TCCTCGCGGGCGTATCCGC
SEQ ID No. 1028: 5'- CATTAGCGCCCGTTCCGG
SEQ ID No. 1029: 5'- GCATTAGCGCCCGTTCCGG
10 SEQ ID No. 1030: 5'- GGCATTAGCGCCCGTTCCG
SEQ ID No. 1031: 5'- GTCTCGCATGGGGCTTCCA
SEQ ID No. 1032: 5'- GCCATGGACTTCACTCCAG
SEQ ID No. 1033: 5'- CATGGACTTCACTCCAGAC
SEQ ID No. 1037: 5'- ACCGTCTCACAAAGGAGCTT
15 SEQ ID No. 1038: 5'- TACCGTCTCACAAAGGAGCTT
SEQ ID No. 1039: 5'- GTACCGTCTCACAAAGGAGCT
SEQ ID No. 1040: 5'- GCCTACCCGTGTATTATCCG
SEQ ID No. 1041: 5'- CCGTCTCACAAAGGAGCTTC
SEQ ID No. 1042: 5'- CTACCCGTGTATTATCCGGC
20 SEQ ID No. 1043: 5'- GGTACCGTCTCACAAAGGAGC
SEQ ID No. 1044: 5'- CGTCTCACAAAGGAGCTTCC
SEQ ID No. 1045: 5'- TCTCACAAAGGAGCTTCCAC
SEQ ID No. 1046: 5'- TACCCGTGTATTATCCGGCA
SEQ ID No. 1047: 5'- GTCTCACAAAGGAGCTTCCA
25 SEQ ID No. 1048: 5'- ACCCGTGTATTATCCGGCAT
SEQ ID No. 1049: 5'- CTCGGTACCGTCTCACAAAGG
SEQ ID No. 1050: 5'- CGGTACCGTCTCACAAAGGAG
SEQ ID No. 1051: 5'- ACTCGGTACCGTCTCACAAAG
SEQ ID No. 1052: 5'- CGGCTGGCTCCATAACGGTT
30 SEQ ID No. 1053: 5'- ACAAGTAGATGCCTACCCGT

SEQ ID No. 1054: 5'- TGGCTCCATAACGGTTACCT
SEQ ID No. 1055: 5'- CAAGTAGATGCCTACCCGTG
SEQ ID No. 1056: 5'- CACAAGTAGATGCCTACCCG
SEQ ID No. 1057: 5'- GGCTCCATAACGGTTACCTC
5 SEQ ID No. 1058: 5'- ACACAAGTAGATGCCTACCC
SEQ ID No. 1059: 5'- CTGGCTCCATAACGGTTACC
SEQ ID No. 1060: 5'- GCTGGCTCCATAACGGTTAC
SEQ ID No. 1061: 5'- GGCTGGCTCCATAACGGTTA
SEQ ID No. 1062: 5'- GCTCCATAACGGTTACCTCA
10 SEQ ID No. 1063: 5'- AAGTAGATGCCTACCCGTGT
SEQ ID No. 1064: 5'- CTCCATAACGGTTACCTCAC
SEQ ID No. 1065: 5'- TGCCTACCCGTGTATTATCC
SEQ ID No. 1066: 5'- TCGGTACCGTCTCACAGGA
SEQ ID No. 1067: 5'- CTCACAAAGGAGCTTCCACT
15 SEQ ID No. 1068: 5'- GTAGATGCCTACCCGTGTAT
SEQ ID No. 1069: 5'- CCTACCCGTGTATTATCCGG
SEQ ID No. 1070: 5'- CACTCGGTACCGTCTCACAA
SEQ ID No. 1071: 5'- CTCAGCGATGCAGTTGCATC
SEQ ID No. 1072: 5'- AGTAGATGCCTACCCGTGTA
20 SEQ ID No. 1073: 5'- GCGGCTGGTCCATAACGGT
SEQ ID No. 1074: 5'- CCAAAGCAATCCAAGGTTG
SEQ ID No. 1075: 5'- TCCATAACGGTTACCTCAC
SEQ ID No. 1076: 5'- CCCGTGTATTATCCGGCATT
SEQ ID No. 1077: 5'- TCTCAGCGATGCAGTTGCAT
25 SEQ ID No. 1078: 5'- CCATAACGGTTACCTCACCG
SEQ ID No. 1079: 5'- TCAGCGATGCAGTTGCATCT
SEQ ID No. 1080: 5'- GGCGGCTGGTCCATAACGG
SEQ ID No. 1081: 5'- AAGCAATCCAAGGTTGAGC
SEQ ID No. 1082: 5'- TCACTCGGTACCGTCTCAC
30 SEQ ID No. 1083: 5'- CGGAGTGTATTCCAGTCTG

SEQ ID No. 1084: 5'- CACAAGGAGCTTCCACTCT
SEQ ID No. 1085: 5'- ACAAGGAGCTTCCACTCTC
SEQ ID No. 1086: 5'- TCACAAGGAGCTTCCACTC
SEQ ID No. 1087: 5'- CAGCGATGCAGTTGCATCTT
5 SEQ ID No. 1088: 5'- CAAGGAGCTTCCACTCTCC
SEQ ID No. 1089: 5'- CCAGTCTGAAAGGCAGATTG
SEQ ID No. 1090: 5'- CAGTCTGAAAGGCAGATTGC
SEQ ID No. 1091: 5'- CGGCGGCTGGCTCCATAACG
SEQ ID No. 1092: 5'- CCTCTCTCAGCGATGCAGTT
10 SEQ ID No. 1093: 5'- CTCTCTCAGCGATGCAGTTG
SEQ ID No. 1094: 5'- TCTCTCAGCGATGCAGTTGC
SEQ ID No. 1095: 5'- CTCTCAGCGATGCAGTTGCA
SEQ ID No. 1096: 5'- CAATCCAAGGTTGAGCCTT
SEQ ID No. 1097: 5'- AATCCAAGGTTGAGCCTT
15 SEQ ID No. 1098: 5'- AGCAATCCAAGGTTGAGCC
SEQ ID No. 1099: 5'- CTCACTCGGTACCGTCTCAC
SEQ ID No. 1100: 5'- GCAATCCAAGGTTGAGCCT
SEQ ID No. 1101: 5'- GCCTTGGACTTCACTTCAG
SEQ ID No. 1102: 5'- CATAACGGTTACCTCACCGA
20 SEQ ID No. 1103: 5'- CTCCTCTCTCAGCGATGCAG
SEQ ID No. 1104: 5'- TCGGCGGCTGGCTCCATAAC
SEQ ID No. 1105: 5'- AGTCTGAAAGGCAGATTGCC
SEQ ID No. 1106: 5'- TCCTCTCTCAGCGATGCAGT
SEQ ID No. 1107: 5'- CCCAAGGTTGAGCCTTGGAC
25 SEQ ID No. 1108: 5'- ATAACGGTTACCTCACCGAC
SEQ ID No. 1109: 5'- TCCAAGGTTGAGCCTTGGGA
SEQ ID No. 1110: 5'- ATTATCCGGCATTAGCACCCC
SEQ ID No. 1111: 5'- CTACGTGCTGGTAACACAGA
SEQ ID No. 1112: 5'- GCCGCTAGCCCCGAAGGGCT
30 SEQ ID No. 1113: 5'- CTAGECCCCGAAGGGCTCGCT

SEQ ID No. 1114: 5'- CGCTAGCCCCGAAGGGCTCG
SEQ ID No. 1115: 5'- AGCCCCGAAGGGCTCGCTCG
SEQ ID No. 1116: 5'- CCGCTAGCCCCGAAGGGCTC
SEQ ID No. 1117: 5'- TAGCCCCGAAGGGCTCGCTC
5 SEQ ID No. 1118: 5'- GCTAGCCCCGAAGGGCTCGC
SEQ ID No. 1119: 5'- GCCCCGAAGGGCTCGCTCGA
SEQ ID No. 1120: 5'- ATCCCAAGGTTGAGCCTTGG
SEQ ID No. 1121: 5'- GAGCCTTGGACTTCACTTC
SEQ ID No. 1122: 5'- CAAGGTTGAGCCTTGGACTT
10 SEQ ID No. 1123: 5'- GAGCTTCCACTCTCCTTGT
SEQ ID No. 1124: 5'- CCAAGGTTGAGCCTTGGACT
SEQ ID No. 1125: 5'- CGGGCTCCTCTCTCAGCGAT
SEQ ID No. 1126: 5'- GGAGCTTCCACTCTCCTTG
SEQ ID No. 1127: 5'- GGGCTCCTCTCTCAGCGATG
15 SEQ ID No. 1128: 5'- TCTCCTTGTGCGCTCTCCCCG
SEQ ID No. 1129: 5'- TCCTTGTGCGCTCTCCCCGAG
SEQ ID No. 1130: 5'- AGCTTCCACTCTCCTTGT
SEQ ID No. 1131: 5'- CCACTCTCCTTGTGCGCTCTC
SEQ ID No. 1132: 5'- GGCTCCTCTCTCAGCGATGC
20 SEQ ID No. 1133: 5'- CCTTGTGGCTCTCCCCGAGC
SEQ ID No. 1134: 5'- CACTCTCCTTGTGCGCTCTCC
SEQ ID No. 1135: 5'- ACTCTCCTTGTGCGCTCTCCC
SEQ ID No. 1136: 5'- CTCTCCTTGTGCGCTCTCCCC
SEQ ID No. 1137: 5'- GCGGGCTCCTCTCAGCGA
25 SEQ ID No. 1138: 5'- GGCTCCATCATGGTTACCTC
SEQ ID No. 1142: 5'- CTTCCCTCCGGCTTGCGCCGG
SEQ ID No. 1143: 5'- CGCTCTCCCCGA(G/T)TGACTGA
SEQ ID No. 1144: 5'- CCTCGGGCTCCTCCATC(A/T)GC

2. Verfahren nach Anspruch 1, wobei getränkenschädliche Mikroorganismen der Gattung *Zygosaccharomyces* mittels der Oligonukleotidsonde SEQ ID No. 1 nachgewiesen werden.

5 3. Verfahren nach Anspruch 1, wobei der getränkenschädliche Mikroorganismus *Zygosaccharomyces bailii* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 5 bis SEQ ID No. 21, nachgewiesen wird.

10 4. Verfahren nach Anspruch 1, wobei der getränkenschädliche Mikroorganismus *Zygosaccharomyces fermentati* mittels der Oligonukleotidsonde SEQ ID No. 22 nachgewiesen wird.

15 5. Verfahren nach Anspruch 1, wobei der getränkenschädliche Mikroorganismus *Zygosaccharomyces microellipsoides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 23 bis SEQ ID No. 24, nachgewiesen wird.

20 6. Verfahren nach Anspruch 1, wobei der getränkenschädliche Mikroorganismus *Zygosaccharomyces mellis* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 25 bis SEQ ID No. 75, nachgewiesen wird.

25 7. Verfahren nach Anspruch 1, wobei der getränkenschädliche Mikroorganismus *Zygosaccharomyces rouxii* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 76 bis SEQ ID No. 126, nachgewiesen wird.

8. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Zygosaccharomyces mellis* und *Zygosaccharomyces rouxii* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 127 nachgewiesen werden.
- 5 9. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Zygosaccharomyces bisporus* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 128 bis SEQ ID No. 142, nachgewiesen wird.
- 10 10. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Hanseniaspora uvarum* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 143 und SEQ ID No. 144, nachgewiesen wird.
- 15 11. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Candida intermedia* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 145 und SEQ ID No. 146, nachgewiesen wird.
- 20 12. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Candida parapsilosis* mittels der Oligonukleotidsonde SEQ ID No. 148 nachgewiesen wird.
- 25 13. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Candida crusei (Issatchenkia orientalis)* mittels der Oligonukleotidsonde SEQ ID No. 149 nachgewiesen wird.
- 30 14. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Brettanomyces (Dekkera) anomala* und *Dekkera bruxellensis* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 150 nachgewiesen werden.

15. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Brettanomyces (Dekkera) bruxellensis* mittels der Oligonukleotidsonde SEQ ID No. 151 nachgewiesen wird.

5

16. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Brettanomyces (Dekkera) naardenensis* mittels der Oligonukleotidsonde SEQ ID No. 152 nachgewiesen wird.

10

17. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Pichia membranaefaciens* mittels der Oligonukleotidsonde SEQ ID No. 153 nachgewiesen wird.

15

18. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Pichia minuta* und *Pichia anomala* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 154 nachgewiesen werden.

20

19. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Saccharomyces exiguum* mittels der Oligonukleotidsonde SEQ ID No. 157 nachgewiesen wird.

25

20. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Saccharomyces ludwigii* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 158 und SEQ ID No. 159, nachgewiesen wird.

21. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Saccharomyces cerevisiae* mittels der Oligonukleotidsonde SEQ ID No. 160 nachgewiesen wird.

30

22. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Mucor racemosus* mittels der Oligonukleotidsonde SEQ ID No. 163 nachgewiesen wird.
- 5 23. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Byssochlamys nivea* mittels der Oligonukleotidsonde SEQ ID No. 164 nachgewiesen wird.
- 10 24. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Neosartorya fischeri* mittels der Oligonukleotidsonde SEQ ID No. 165 nachgewiesen wird.
- 15 25. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Aspergillus fumigatus* und *A. fischeri* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 166 nachgewiesen werden.
- 20 26. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Talaromyces flavus* mittels der Oligonukleotidsonde SEQ ID No. 167 nachgewiesen wird.
27. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Talaromyces bacillisporus* und *T. flavus* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 168 nachgewiesen werden.
- 25 28. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Lactobacillus collinoides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 169 bis SEQ ID No. 269, nachgewiesen wird.

29. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung *Leuconostoc* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 270 bis SEQ ID No. 271, nachgewiesen werden.

5

30. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Leuconostoc mesenteroides* und *L. pseudomesenteroides* gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 272 bis SEQ ID No. 301, nachgewiesen werden.

10

31. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Leuconostoc pseudomesenteroides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 302 bis SEQ ID No. 341, nachgewiesen wird.

15

32. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Oenococcus oeni* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 342 bis SEQ ID No. 444, nachgewiesen wird.

20

33. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung *Weissella* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 445 bis SEQ ID No. 495, nachgewiesen werden.

25

34. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung *Lactococcus* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 496 bis SEQ ID No. 546, nachgewiesen werden.

30

35. Verfahren nach Anspruch 1, wobei getränkenschädliche Mikroorganismen der Gattungen Acetobacter und Gluconobacter gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 547 bis SEQ ID No. 608, nachgewiesen werden.

5

36. Verfahren nach Anspruch 1, wobei getränkenschädliche Mikroorganismen der Gattungen Acetobacter, Gluconobacter und Gluconoacetobacter gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 609 bis SEQ ID No. 842, nachgewiesen werden.

10

37. Verfahren nach Anspruch 1, wobei der getränkenschädliche Mikroorganismus *Bacillus coagulans* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 843 bis SEQ ID No. 932, nachgewiesen wird.

15

38. Verfahren nach Anspruch 1, wobei getränkenschädliche Mikroorganismen der Gattung *Alicyclobacillus* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 933 bis SEQ ID No. 1033, nachgewiesen werden.

20

39. Verfahren nach Anspruch 1, wobei der getränkenschädliche Mikroorganismus *Alicyclobacillus acidoterrestris* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1037 bis SEQ ID No. 1138, nachgewiesen wird.

25

40. Verfahren nach Anspruch 1, wobei die getränkenschädlichen Mikroorganismen *Alicyclobacillus cycloheptanicus* und *A. herbarius* gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1142 bis SEQ ID No. 1144, nachgewiesen werden.

30

41. Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 5
42. Verfahren nach Anspruch 41,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 2 bis SEQ ID No. 4, verwendet wird.
- 10
43. Verfahren nach Anspruch 11,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 15
44. Verfahren nach Anspruch 43,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 146 zusammen mit der Kompetitorsonde SEQ ID No. 147 verwendet wird.
- 20
45. Verfahren nach Anspruch 18,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 25
46. Verfahren nach Anspruch 45,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 154 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 155 bis SEQ ID No. 156, verwendet wird.
- 30
47. Verfahren nach Anspruch 21,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.

48. Verfahren nach Anspruch 47,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 160 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend
5 aus SEQ ID No. 161 bis SEQ ID No. 162, verwendet wird.
49. Verfahren nach Anspruch 38,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 10 50. Verfahren nach Anspruch 49,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 933 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1034 bis SEQ ID No. 1036, verwendet wird.
- 15 51. Verfahren nach Anspruch 39,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 20 52. Verfahren nach Anspruch 51,—
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1044 zusammen mit der Kompetitorsonde SEQ ID No. 1139 verwendet wird.
- 25 53. Verfahren nach Anspruch 51,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1057 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1140 und SEQ ID No. 1141, verwendet wird.

54. Verfahren nach einem der Ansprüche 1 bis 53,
dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
- a) Kultivieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen,
 - b) Fixieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen,
 - 5 c) Inkubieren der fixierten Mikroorganismen mit mindestens einer Oligonukleotidsonde, ggf. zusammen mit einer Kompetitorsonde,
 - d) Entfernen nicht hybridisierter Oligonukleotidsonden,
 - e) Detektieren und Visualisieren sowie ggf. Quantifizieren der getränkeschädlichen Mikroorganismen mit den hybridisierten Oligonukleotidsonden.
- 10
55. Verfahren nach einem der Ansprüche 1 bis 54,
dadurch gekennzeichnet, dass es sich bei der Probe um eine Probe aus alkoholfreien Getränken handelt.
- 15 56. Kit zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 55, enthaltend mindestens ein Oligonukleotid nach Anspruch 1.

V7588.ST25.txt
SEQUENCE LISTING

<110> vermicon AG
<120> Method for the specific fast detection of microorganisms which
are harmful to beverages
<130> V 7588
<140> PCT/
<141> 2004-09-23
<150> DE 103 44 057.7
<151> 2003-09-23
<160> 1144
<170> PatentIn version 3.3
<210> 1
<211> 21
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 1
gtttgaccag attctccgct c

21

<210> 2
<211> 22
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 2
gtttgaccag attttccgct ct

22

<210> 3
<211> 22
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 3
gtttgaccaa attttccgct ct

22

<210> 4
<211> 22
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 4
gtttgtccaa attctccgct ct

22

<210> 5

v7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 5
cccggtcgaa ttaaaaacc 18

<210> 6
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 6
gccccggtcga attaaaac 18

<210> 7
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 7
ggcccggtcg aattaaaa 18

<210> 8
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 8
aggcccggtc gaattaaa 18

<210> 9
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 9
aaggccccgt cgaattaa 18

<210> 10
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 10

V7588.ST25.txt

atattcgagc gaaacgcc

18

<210> 11
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 11
aaagatccgg accggccg

18

<210> 12
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 12
ggaaagatcc ggaccggc

18

<210> 13
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 13
gaaagatccg gaccggcc

18

<210> 14
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 14
gatccggacc ggccgacc

18

<210> 15
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 15
agatccggac cggccgac

18

<210> 16
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 16
aagatccgga ccggccga 18

<210> 17
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 17
gaaaggcccc gtcgaatt 18

<210> 18
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 18
aaaggcccc tcgaatta 18

<210> 19
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 19
ggaaaggccc ggtcgaa 18

<210> 20
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 20
aggaaaaggcc cggtcgaa 18

<210> 21
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 21
aggaaaaggc cgggtcga 18

<210> 22

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 22
atagcactgg gatccctcgcc 20

<210> 23
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 23
ccagccccaa agttacacctc 20

<210> 24
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 24
tccttgacgt aaagtgcgcag 20

<210> 25
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 25
ggaagaaaaac cagtacgc 18

<210> 26
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 26
ccggtcggaa gaaaacca 18

<210> 27
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 27

V7588.ST25.txt

gaagaaaacc agtacgcg

18

<210> 28
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 28
cccggtcggaa agaaaacc

18

<210> 29
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 29
cggtcggaaag aaaaccag

18

<210> 30
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 30
ggtcggaaaga aaaccagt

18

<210> 31
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 31
aagaaaaacca gtacgcgg

18

<210> 32
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 32
gtacgcggaa aaatccgg

18

<210> 33
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>		
<223>	oligonucleotide	
<400>	33	
	agtacgcgga aaaatccg	18
<210>	34	
<211>	18	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	34	
	gcggaaaaat ccggaccg	18
<210>	35	
<211>	18	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	35	
	cggaaagaaaa ccagtacg	18
<210>	36	
<211>	18	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	36	
	ccccgggtcg aagaaaac	18
<210>	37	
<211>	18	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	37	
	cgcggaaaaa tccggacc	18
<210>	38	
<211>	18	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	38	
	cagtacgcgg aaaaatcc	18
<210>	39	

v7588.ST25.txt

<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 39		18
agaaaaccag tacgcgga		
<210> 40		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 40		18
ggcccggtcg gaagaaaa		
<210> 41		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 41		18
ataaacacca cccatacc		
<210> 42		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 42		18
acgcggaaaa atccggac		
<210> 43		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 43		18
gagaggcccc gtcggaag		
<210> 44		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 44		

V7588.ST25.txt

agaggcccg tcggaaga

18

<210> 45
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 45
gaggcccggt cggaagaa

18

<210> 46
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 46
aggcccggtc ggaagaaa

18

<210> 47
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 47
ccgagtgggt cagtaaat

18

<210> 48
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 48
ccagtacgcg gaaaaatc

18

<210> 49
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 49
taaacaccac ccgatccc

18

<210> 50
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 50
ggagaggccc ggtcggaa

18

<210> 51
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 51
gaaaacccagt acgcggaa

18

<210> 52
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 52
tacgcggaaa aatccgga

18

<210> 53
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 53
ggccacaggg acccaggg

18

<210> 54
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 54
tcaccaaggg ccacaggg

18

<210> 55
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 55
gggccacagg gaccagg

18

<210> 56

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 56
ttcaccaagg gccacagg 18

<210> 57
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 57
acaggggaccc agggctag 18

<210> 58
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 58
agggccacag ggacccag 18

<210> 59
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 59
gttcaccaag ggccacag 18

<210> 60
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 60
gccacaggga cccagggc 18

<210> 61
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 61

V7588.ST25.txt

cagggaccca gggctagc

18

<210> 62
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 62
agggacccag ggctagcc

18

<210> 63
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 63
accaagggcc acaggcac

18

<210> 64
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 64
ccacaggcac ccagggct

18

<210> 65
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 65
cacagggacc cagggcta

18

<210> 66
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 66
caccaagggc cacaggga

18

<210> 67
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 67
gggacccagg gctagcca 18

<210> 68
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 68
aggagaggcc cggtcgga 18

<210> 69
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 69
aaggagaggc ccggtcgg 18

<210> 70
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 70
gaaggagagg cccggtcg 18

<210> 71
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 71
aggctagcc agaaggag 18

<210> 72
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 72
gggctagcca gaaggaga 18

<210> 73

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 73
agaaggagag gccccgtc

18

<210> 74
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 74
caaggccac agggaccc

18

<210> 75
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 75
ccaaggccca cagggacc

18

<210> 76
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 76
gtcgaaaaaa ccagtacg

18

<210> 77
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 77
gccccgtcgg aaaaacca

18

<210> 78
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 78

V7588.ST25.txt

ccggtcgaa aaaccagt

18

<210> 79
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 79
cccggtcgga aaaaccag

18

<210> 80
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 80
tcggaaaaac cagtacgc

18

<210> 81
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 81
cgaaaaaacc agtacgcg

18

<210> 82
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 82
gaaaaaacca gtacgcgg

18

<210> 83
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 83
gtacgcggaa aaatccgg

18

<210> 84
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 84
agtacgcgga aaaatccg

18

<210> 85
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 85
gcggaaaaat ccggaccg

18

<210> 86
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 86
ggtcggaaaa accagttac

18

<210> 87
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 87
actccttagtg gtgccctt

18

<210> 88
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 88
gctccactcc tagtggtg

18

<210> 89
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 89
cactccttagt ggtgccct

18

<210> 90

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 90
ctccactcct agtgggtgc

18

<210> 91
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 91
tccactccta gtgggtgcc

18

<210> 92
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 92
ccactcctag tggtgccc

18

<210> 93
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 93
ggctccactc ctagtggt

18

<210> 94
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 94
aggctccact cctagtgg

18

<210> 95
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 95

V7588.ST25.txt

ggcccggtcg gaaaaacc

18

<210> 96
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 96
gaaaaaccag tacgcgga

18

<210> 97
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 97
cgcggaaaaa tccggacc

18

<210> 98
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 98
cagtacgcgg aaaaatcc

18

<210> 99
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 99
cggtcggaaa aaccagta

18

<210> 100
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 100
aaggccccgt cgaaaaaa

18

<210> 101
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 101
caggctccac tcctagtg

18

<210> 102
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 102
tcctagtg gg tgcccttc

18

<210> 103
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 103
tcctagtg gt gccc tt cc

18

<210> 104
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 104
gcaggctcca ct cct agt

18

<210> 105
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 105
aggcccggtc gg aaaa ac

18

<210> 106
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 106
acgcggaaaa atccggac

18

<210> 107

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 107
ccagtacgcg gaaaaatc

18

<210> 108
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 108
ctagtggtgc cttccgt

18

<210> 109
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 109
gaaaggccccg gtcggaaa

18

<210> 110
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 110
aaaggccccg tcggaaaaa

18

<210> 111
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 111
tacgcggaaa aatccgga

18

<210> 112
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 112

V7588.ST25.txt

ggaaaggccc ggtcgaa

18

<210> 113
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 113
atctcttccg aaaggtcg

18

<210> 114
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 114
catctcttcc gaaaggtc

18

<210> 115
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 115
ctcttccgaa aggtcag

18

<210> 116
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 116
cttccgaaag gtcgagat

18

<210> 117
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 117
tctcttccga aaggtcga

18

<210> 118
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 118
tcttccgaaa ggtcgaga 18

<210> 119
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 119
cctagtggtg cccttccg 18

<210> 120
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 120
tagtgtgcc cttccgtc 18

<210> 121
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 121
agtggtgccc ttccgtca 18

<210> 122
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 122
gccaaaggta gactcggt 18

<210> 123
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 123
ggccaagggtt agactcggt 18

<210> 124

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 124
ccaaggtag actcggtt 18

<210> 125
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 125
caaggttaga ctcgttgg 18

<210> 126
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 126
aaggtagac tcgttggc 18

<210> 127
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 127
ctcgccctcac ggggttctca 20

<210> 128
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 128
gcgccggtcg aaattaaa 18

<210> 129
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 129

v7588.ST25.txt

aggcccggtc gaaattaa

18

<210> 130
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 130
aaggcccggt cgaaatta

18

<210> 131
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 131
aaaggcccg tcgaaatt

18

<210> 132
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 132
gaaaaggcccg gtcgaaat

18

<210> 133
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 133
atattcgagc gaaacgcc

18

<210> 134
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 134
ggaaaggccc ggtcgaaa

18

<210> 135
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 135
aaagatccgg accggccg 18

<210> 136
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 136
ggaaagatcc ggaccggc 18

<210> 137
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 137
gaaagatccg gaccggcc 18

<210> 138
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 138
gatccggacc ggccgacc 18

<210> 139
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 139
agatccggac cggccgac 18

<210> 140
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 140
aagatccgga ccggccga 18

<210> 141

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 141
aggaaaaggcc cggtcgaa

18

<210> 142
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 142
aaggaaaaggc ccggtcga

18

<210> 143
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 143
cgagcaaaac gcctgctttg

20

<210> 144
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 144
cgctctgaaa gagagttgcc

20

<210> 145
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 145
agttgcccccc tacactagac

20

<210> 146
<211> 19
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 146

V7588.ST25.txt

gcttctccgt cccgcgccg

19

<210> 147
<211> 21
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 147
agattytcgg ctctgagatg g

21

<210> 148
<211> 19
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 148
cctggttcgc caaaaaggc

19

<210> 149
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 149
gattctcgac cccatggg

18

<210> 150
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 150
accctctacg gcagcctgtt

20

<210> 151
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 151
gatcggtctc cagcgattca

20

<210> 152
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>		
<223> oligonucleotide		
<400> 152		
accctccacg gcggcctgtt		20
<210> 153		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 153		
gattctccgc gccatggg		18
<210> 154		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 154		
tcatcagacg ggattctcac		20
<210> 155		
<211> 22		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 155		
ctcatcgcac gggattctca cc		22
<210> 156		
<211> 22		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 156		
ctcgccacac gggattctca cc		22
<210> 157		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 157		
agttcccccc tcctctaagg		20
<210> 158		

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 158
ctgccacaag gacaaatggt

20

<210> 159
<211> 21
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 159
tgccccctct tctaaggaaa t

21

<210> 160
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 160
ccccaaagtt gccctctc

18

<210> 161
<211> 23
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 161
gcccggcccaa agtcgccttc tac

23

<210> 162
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 162
gccccagagt cgccttctac

20

<210> 163
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 163

V7588.ST25.txt

aagaccaggc cacctcat

18

<210> 164

<211> 18

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 164

catcatagaa caccgtcc

18

<210> 165

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 165

ccttccgaag tcgagggttt

20

<210> 166

<211> 17

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 166

gggagtggtg ccaactc

17

<210> 167

<211> 19

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 167

agcggtcggt cgcaaccct

19

<210> 168

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 168

ccgaagtgcgg ggttttgcgg

20

<210> 169

<211> 20

<212> DNA

<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 169
gatagcccaa accacctttc

20

<210> 170
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 170
gccgaaacca cctttcaaac

20

<210> 171
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 171
gtgatagccg aaaccacctt

20

<210> 172
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 172
agtgatagcc gaaaccacct

20

<210> 173
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 173
tttaacggga tgcgttcgac

20

<210> 174
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 174
aagtgatagc cgaaaccacc

20

<210> 175

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 175
ggttgaatac cgtcaacgtc

20

<210> 176
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 176
gcacagtatg tcaagacctg

20

<210> 177
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 177
catccgatgt gcaaggactt

20

<210> 178
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 178
tcatccgatg tgcaaggact

20

<210> 179
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 179
ccgatgtgca agcacttcat

20

<210> 180
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 180

ccactcatcc gatgtcaag v7588.ST25.txt 20

<210> 181
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 181
gccacaggtc gccactcatc 20

<210> 182
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 182
cctccgcgtt tgtcacccgc 20

<210> 183
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 183
accagttcgc cacagttcgc 20

<210> 184
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 184
cactcatccg atgtcaagc 20

<210> 185
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 185
ccagttcgcc acagttcgcc 20

<210> 186
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 186
ctcatccgat gtgcaaggcac

20

<210> 187
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 187
tccgatgtgc aagcacttca

20

<210> 188
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 188
cgccactcat ccgatgtgca

20

<210> 189
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 189
cagttcgcca cagttcgcca

20

<210> 190
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 190
gccactcatc cgatgtgcaa

20

<210> 191
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 191
cgccacagtt cgccactcat

20

<210> 192

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 192
atccgatgtg caagcacttc

20

<210> 193
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 193
gttgcacaca gttcgccact

20

<210> 194
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 194
tcctccgcgt ttgtcaccgg

20

<210> 195
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 195
cgccagggtt catcctgagc

20

<210> 196
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 196
agttcgccac agttcgccac

20

<210> 197
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 197

V7588.ST25.txt

tcgccacagt tcgccactca

20

<210> 198
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 198
ttaacggat gcgttcgact

20

<210> 199
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 199
tcgccactca tccgatgtgc

20

<210> 200
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 200
ccacagttcg ccactcatcc

20

<210> 201
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 201
gatttaacgg gatgcgttcg

20

<210> 202
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 202
taacggatg cgttcgactt

20

<210> 203
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 203
aacgggatgc gttcgacttg

20

<210> 204
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 204
cgaagggtac -cgaaccgact

20

<210> 205
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 205
ccgaaggta ccgaaccgac

20

<210> 206
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 206
cccgaaggtt accgaaccga

20

<210> 207
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 207
ttcctccgcg tttgtcaccg

20

<210> 208
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 208
ccgccagggt tcatcctgag

20

<210> 209

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 209
tccttccaga agtgatagcc

20

<210> 210
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 210
caccagttcg ccacagttcg

20

<210> 211
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 211
acgggatgcg ttcgacttgc

20

<210> 212
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 212
gtccttccag aagtgatagc

20

<210> 213
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 213
gccagggttc atcctgagcc

20

<210> 214
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 214

V7588.ST25.txt

actcatccga tgtgcaagca

20

<210> 215
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 215
atcattgcct tggtaaccg

20

<210> 216
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 216
tccgcgttg tcacccggcag

20

<210> 217
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 217
tgaaccgtta ctccaccaac

20

<210> 218
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 218
gaagtatag ccgaaaccac

20

<210> 219
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 219
ccgcgttgtt caccggcagt

20

<210> 220
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 220
ttcgccactc atccgatgtg

20

<210> 221
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 221
catttaacgg gatgcgttcg

20

<210> 222
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 222
cacagttcgc cactcatccg

20

<210> 223
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 223
ttcgccacag ttgccactc

20

<210> 224
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 224
ctccgcgttt gtcaccggca

20

<210> 225
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 225
acggccggcag ggttcatcct

20

<210> 226

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 226
ccttccagaa gtgatagccg 20

<210> 227
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 227
tcattgcctt ggtgaaccgt 20

<210> 228
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 228
cacagtatgt caagacacctgg 20

<210> 229
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 229
tttgtgaacc gttactccac 20

<210> 230
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 230
cttgggtgaac cgttactcca 20

<210> 231
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 231

V7588.ST25.txt

gtgaaccgtt actccaccaa

20

<210> 232

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 232

ggctcccgaa gtttaccgaa

20

<210> 233

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 233

gaaggttacc gaaccgactt

20

<210> 234

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 234

tggctccgaa aggttaccga

20

<210> 235

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 235

taatacggccg cgggtccttc

20

<210> 236

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 236

gaaccgttac tccaccaact

20

<210> 237

<211> 20

<212> DNA

<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 237
tacggccgg gtccttccag

20

<210> 238
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 238
tcaccaggttc gccacagttc

20

<210> 239
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 239
ccttggtgaa ccgttactcc

20

<210> 240
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 240
ctcaccagg tt cgccacagtt

20

<210> 241
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 241
cgccgccagg gttcatcctg

20

<210> 242
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 242
ccttggtgaa ccattactcc

20

<210> 243

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 243

tggtgaacca ttactccacc

20

<210> 244
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 244

gccgcaggg ttcatcctga

20

<210> 245
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 245

ggtgaaccat tactccacca

20

<210> 246
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 246

ccagggttca tcctgagcca

20

<210> 247
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 247

aatacgcgc gggcccttcc

20

<210> 248
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 248

V7588.ST25.txt

cacggccgcca gggttcatcc

20

<210> 249
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 249
agttcgccac tcatccgatg

20

<210> 250
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 250
cgggatgcgt tcgacttgca

20

<210> 251
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 251
cattgccttg gtgaaccgtt

20

<210> 252
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 252
gcacgcccgc agggttcatc

20

<210> 253
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 253
cttcctccgc gtttgtcacc

20

<210> 254
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 254
tggtaaccg ttactccacc

20

<210> 255
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 255
ccttcctccg cgtttgtcac

20

<210> 256
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 256
acgcgcggg tccttccaga

20

<210> 257
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 257
ggtgaaccgt tactccacca

20

<210> 258
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 258
gggtccttcc agaagtata

20

<210> 259
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 259
cttccagaag tgatagccga

20

<210> 260

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 260
gccttggta accattactc

20

<210> 261
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 261
acagttcgcc actcatccga

20

<210> 262
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 262
actttcctcc gcgttgtca

20

<210> 263
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 263
cgaaccgact ttgggtgttg

20

<210> 264
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 264
gaaccgacctt tgggtgtgc

20

<210> 265
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 265

V7588.ST25.txt

aggtaaccga accgactttg

20

<210> 266

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 266

accgaaccga ctttgggtgt

20

<210> 267

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 267

ttaccgaacc gactttgggt

20

<210> 268

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 268

taccgaaccg actttgggtg

20

<210> 269

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 269

gttaccgaac cgactttggg

20

<210> 270

<211> 21

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 270

cctttctgggt atggtaaccgt c

21

<210> 271

<211> 20

<212> DNA

<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 271
tgcaccgcgg ayccatctct

20

<210> 272
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 272
agttgcagtc cagtaagccg

20

<210> 273
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 273
gttgcagtcc agtaagccgc

20

<210> 274
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 274
cagttgcagt ccagtaagcc

20

<210> 275
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 275
tgcagtccag taagccgcct

20

<210> 276
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 276
tcagttgcag tccagtaagc

20

<210> 277

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 277
ttgcagtcca gtaagccgcc

20

<210> 278
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 278
gcagtccagt aagccgcctt

20

<210> 279
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 279
gtcagttgca gtccagtaga

20

<210> 280
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 280
ctctagggtga cgccgaagcg

20

<210> 281
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 281
atctctagggt gacgccgaag

20

<210> 282
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 282

V7588.ST25.txt

tcttaggtgac gccgaagcgc

20

<210> 283
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 283
tctcttagtg acgcccaga

20

<210> 284
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 284
ccatctctag gtgacgccga

20

<210> 285
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 285
catctctagg tgacgccgaa

20

<210> 286
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 286
taggtgacgc cgaagcgct

20

<210> 287
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 287
ctaggtgacg ccgaagcgcc

20

<210> 288
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 288
cttagacggc tccttcctaa

20

<210> 289
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 289
ccttagacgg ctccttccta

20

<210> 290
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 290
acgtcagttg cagtccagta

20

<210> 291
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 291
cgtcagttgc agtccagtaa

20

<210> 292
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 292
acgccgaagc gccttttaac

20

<210> 293
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 293
.gacgccgaag cgccttttaa

20

<210> 294

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 294
gccgaagcgc cttttaactt

20

<210> 295
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 295
cgccgaaggc ccttttaact

20

<210> 296
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 296
gtgacgcccga agcgcctttt

20

<210> 297
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 297
tgacgcccga ggcgcctttt

20

<210> 298
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 298
agacggctcc ttcctaaaag

20

<210> 299
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 299

V7588.ST25.txt

acggctcctt cctaaaaggt

20

<210> 300
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 300
gacggctcct tcctaaaagg

20

<210> 301
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 301
ccttcctaaa agtttaggcc

20

<210> 302
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 302
ggtgacgcca aagcgccccc

20

<210> 303
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 303
aggtgacgccc aaagcgccccc

20

<210> 304
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 304
taggtgacgc caaagcgccccc

20

<210> 305
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 305
ctcttaggtga cgccaaagcg

20

<210> 306
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 306
tcttagtgac gccaaagcgc

20

<210> 307
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 307
ctaggtgacg ccaaagcgcc

20

<210> 308
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 308
acgccaaagc gccttttaac

20

<210> 309
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 309
cgccaaagcg ccttttaact

20

<210> 310
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 310
tgacgccaaa gcgcccttttta

20

<210> 311

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 311
tctcttagtg acgccaaagg

20

<210> 312
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 312
gtgacgccaa agcgcccttt

20

<210> 313
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 313
gacgccaaag cgcctttaa

20

<210> 314
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 314
atctcttagt gacgccaaag

20

<210> 315
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 315
catctcttagg tgacgccaaag

20

<210> 316
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 316

V7588.ST25.txt

tccatctcta ggtgacgcca

20

<210> 317

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 317

ccatctctag gtgacgccaa

20

<210> 318

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 318

ctgccttaga cggctcccc

20

<210> 319

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 319

cctgccttag acggctcccc

20

<210> 320

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 320

gtgtcatgcg acactgagtt

20

<210> 321

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 321

tgtgtcatgc gacactgagt

20

<210> 322

<211> 20

<212> DNA

<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 322
ctttgtgtca tgcgacactg 20

<210> 323
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 323
tttgtcatg cgacactgag 20

<210> 324
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 324
tgcccttagac ggccccccct 20

<210> 325
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 325
agacggctcc ccctaaaagg 20

<210> 326
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 326
tagacggctc cccctaaaag 20

<210> 327
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 327
gccttagacg gctcccccta 20

<210> 328

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 328
gctcccccta aaaggtagg

20

<210> 329
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 329
ggctccccc aaaaggtag

20

<210> 330
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 330
ctccccctaa aaggtaggc

20

<210> 331
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 331
tccccctaaa aggttaggc

20

<210> 332
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 332
ccctaaaagg ttaggccacc

20

<210> 333
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 333

V7588.ST25.txt

ccccctaaaag gttaggccac

20

<210> 334
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 334
cggtcccccc taaaaggtaa

20

<210> 335
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 335
ccccctaaaa ggtaggcca

20

<210> 336
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 336
cttagacggc tccccctaaa

20

<210> 337
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 337
ttagacggct cccccctaaaa

20

<210> 338
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 338
gggttcgcaa ctcgttgtat

20

<210> 339
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 339
ccttagacgg ctccccctaa

20

<210> 340
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 340
acggctcccc ctaaaaagggt

20

<210> 341
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 341
gacggctccc cctaaaaggt

20

<210> 342
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 342
acggccgaag accatcctct

20

<210> 343
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 343
ctaatacgcc gcaagaccat

20

<210> 344
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 344
tacgcccggaa gaccatcctc

20

<210> 345

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 345
gttacgatct agcaagccgc 20

<210> 346
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 346
aatacgccgc aagaccatcc 20

<210> 347
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 347
cgccgcaaga ccatcctcta 20

<210> 348
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 348
gctaatacgc cgcaagacca 20

<210> 349
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 349
accatcctct agcgatccaa 20

<210> 350
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 350

V7588.ST25.txt

taatacggccg caagaccatc

20

<210> 351
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 351
agccatccct ttctggtaag

20

<210> 352
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 352
atacgccgca agaccatcct

20

<210> 353
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 353
agttacgatc tagcaagccg

20

<210> 354
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 354
agctaatacg ccgcaagacc

20

<210> 355
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 355
gccgcaagac catcctctag

20

<210> 356
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 356
ttacgatcta gcaagccgct

20

<210> 357
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 357
gaccatcctc tagcgatcca

20

<210> 358
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 358
ttgctacgtc actaggaggc

20

<210> 359
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 359
acgtcactag gaggcggaaa

20

<210> 360
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 360
tttgctacgt cactaggagg

20

<210> 361
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 361
gccatccctt tctggtaagg

20

<210> 362

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 362
tacgtcacta ggaggcgaa

20

<210> 363
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 363
cgtcactagg aggccgaaac

20

<210> 364
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 364
aagaccatcc tctagcgatc

20

<210> 365
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 365
gcacgtattt agccatccct

20

<210> 366
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 366
ctcttagcgat cccaaaaggac

20

<210> 367
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 367

V7588.ST25.txt

cctctagcga tccaaaagga

20

<210> 368
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 368
ccatcctcta gcgatccaaa

20

<210> 369
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 369
ggcacgtatt tagccatccc

20

<210> 370
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 370
tacgatctag caagccgctt

20

<210> 371
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 371
cagttacgat ctagcaagcc

20

<210> 372
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 372
ccgcaagacc atcctctagc

20

<210> 373
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 373
ccatcccttt ctggtaagg 20

<210> 374
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 374
agaccatcct ctagcgatcc 20

<210> 375
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 375
caagaccatc ctctagcgat 20

<210> 376
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 376
gctacgtcac taggaggcgg 20

<210> 377
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 377
tgctacgtca ctaggaggcg 20

<210> 378
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 378
ctacgtcact aggaggcgg 20

<210> 379

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 379
cctcaacgtc agttacgatc

20

<210> 380
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 380
gtcactagga ggcggaaacc

20

<210> 381
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 381
tcctctagcg atccaaaagg

20

<210> 382
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 382
tggcacgtat ttagccatcc

20

<210> 383
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 383
acgatcttagc aagccgcttt

20

<210> 384
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 384

v7588.ST25.txt

gccagtctct caactcggt

20

<210> 385
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 385
aagctaatac gccgcaagac

20

<210> 386
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 386
gtttgctacg tcactaggag

20

<210> 387
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 387
cgccactcta gtcattgcct

20

<210> 388
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 388
ggccagccag tctctcaact

20

<210> 389
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 389
cagccagttt ctcaactcggt

20

<210> 390
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 390
cccgaaagatc aattcagcgg 20

<210> 391
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 391
ccggccagtc tctcaactcg 20

<210> 392
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 392
ccagccagtc tctcaactcg 20

<210> 393
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 393
tcattgcctc acttcacccg 20

<210> 394
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 394
gccagccagt ctctcaactc 20

<210> 395
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 395
cacccgaaga tcaattcagc 20

<210> 396

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 396
gtcattgcct cacttcaccc

20

<210> 397
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 397
cattgcctca cttcacccga

20

<210> 398
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 398
attgcctcac ttcacccgaa

20

<210> 399
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 399
cgaagatcaa ttcagcggct

20

<210> 400
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 400
agtcatggcc tcacttcacc

20

<210> 401
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 401

V7588.ST25.txt

tcgccactct agtattgc

20

<210> 402

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 402

ttgcctca ctacccgaag

20

<210> 403

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 403

cggccagtct ctcaactcg

20

<210> 404

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 404

ctggcacgta tttagccatc

20

<210> 405

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 405

acccgaagat caattcagcg

20

<210> 406

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 406

tcttagcgatc caaaaaggacc

20

<210> 407

<211> 20

<212> DNA

<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 407
ctagcgatcc aaaaggacct

20

<210> 408
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 408
gcacccatcg tttacggtat

20

<210> 409
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 409
cacccatcgt ttacggttag

20

<210> 410
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 410
gcccactctag tcattgcctc

20

<210> 411
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 411
cgtttgctac gtcacttaga

20

<210> 412
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 412
gcctcaacgt cagttacgat

20

<210> 413

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 413
gccggccagt ctctcaactc

20

<210> 414
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 414
tcactaggag gcggaaacct

20

<210> 415
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 415
agcctcaacg tcagttacga

20

<210> 416
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 416
agccagtctc tcaactcgac

20

<210> 417
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 417
ggccagtctc tcaactcgac

20

<210> 418
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 418

V7588.ST25.txt

caagctaata cgccgcaaga

20

<210> 419
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 419
ttcgccactc tagtcattgc

20

<210> 420
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 420
ccgaagatca attcagggc

20

<210> 421
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 421
cgcaagacca tcctcttagcg

20

<210> 422
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 422
gcaagaccat cctcttagcg

20

<210> 423
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 423
gcgtttgcta cgtcactagg

20

<210> 424
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 424
ccactctagt cattgcctca

20

<210> 425
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 425
cactctagtc attgcctcac

20

<210> 426
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 426
ccagtctctc aactcggtca

20

<210> 427
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 427
ttaccttagg caccggcctc

20

<210> 428
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 428
acaagcta at acggcgcaag

20

<210> 429
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 429
tttaccttag gcaccggcct

20

<210> 430

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 430
ttttacctta ggcaccggcc

20

<210> 431
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 431
attttacctt aggcaccggc

20

<210> 432
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 432
gattttacctt taggcaccgg

20

<210> 433
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 433
ctcaacttcac ccgaagatca

20

<210> 434
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 434
acgccaccag cgttcatcct

20

<210> 435
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 435

V7588.ST25.txt

gccaaagcgac tttgggtact

20

<210> 436
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 436
cgaaaaattc cctactgcag

20

<210> 437
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 437
cgatcttagca agccgcttcc

20

<210> 438
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 438
ggtaccgtca agctgaaaac

20

<210> 439
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 439
tgcctcactt caccgaaaga

20

<210> 440
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 440
ggccggccag tctctcaact

20

<210> 441
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 441
ggtaaggtagc cgtcaagctg

20

<210> 442
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 442
gtaaggtagcc gtcaagctga

20

<210> 443
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 443
ccgcaagacc atccctctagg

20

<210> 444
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 444
atttagccat ccctttctgg

20

<210> 445
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 445
aacccttcata cacacacg

18

<210> 446
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 446
cgaaaccctt catcacac

18

<210> 447

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 447
acccttcatc acacacgc

18

<210> 448
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 448
taccgtcaca cactgaac

18

<210> 449
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 449
agataccgtc acacactg

18

<210> 450
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 450
cactcaaggg cgaaaaacc

18

<210> 451
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 451
accgtcacac actgaaca

18

<210> 452
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 452

V7588.ST25.txt

cgtcacacac tgaacagt

18

<210> 453
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 453
ccgaaaccct tcatcaca

18

<210> 454
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 454
ccgtcacacaca ctgaacag

18

<210> 455
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 455
gataccgtca cacactga

18

<210> 456
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 456
ggtaagatac cgtcacac

18

<210> 457
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 457
cccttcatca cacacgcg

18

<210> 458
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 458
acagtgtttt acgagccg

18

<210> 459
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 459
cagtgtttta cgagccga

18

<210> 460
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 460
acaaaggcggtt cgacttgc

18

<210> 461
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 461
cggataacgc ttggaaca

18

<210> 462
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 462
agggcgaaa ccctcgaa

18

<210> 463
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 463
gggcggaaac cctcgaac

18

<210> 464

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 464
ggcgaaacc ctcaaca

18

<210> 465
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 465
tgagggcttt cacttcag

18

<210> 466
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 466
agggctttca cttcagac

18

<210> 467
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 467
gagggctttc acttcaga

18

<210> 468
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 468
actgcactca agtcatcc

18

<210> 469
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 469

V7588.ST25.txt

ccggataacg cttggAAC

18

<210> 470

<211> 18

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 470

tccggataac gcttgAAa

18

<210> 471

<211> 18

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 471

tatccccctgc taagaggT

18

<210> 472

<211> 18

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 472

cctgctaaga ggttaggt

18

<210> 473

<211> 18

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 473

ccctgctaag aggttaggt

18

<210> 474

<211> 18

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 474

ccccctgctaa gaggtagg

18

<210> 475

<211> 18

<212> DNA

<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 475
tccccctgcta agaggtag

18

<210> 476
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 476
atccccctgct aagaggta

18

<210> 477
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 477
ccgttccttt ctggtaag

18

<210> 478
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 478
gccgttcctt tctggtaa

18

<210> 479
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 479
agccgttcct ttctggta

18

<210> 480
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 480
gcacgtattt agccgttc

18

<210> 481

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 481
cacgtattt gccgttcc 18

<210> 482
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 482
ggcacgtatt tagccgtt 18

<210> 483
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 483
cactttccct tactgcac 18

<210> 484
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 484
ccactttccct ctactgca 18

<210> 485
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 485
tccactttcc tctactgc 18

<210> 486
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 486

V7588.ST25.txt

ctttcctcta ctgcactc

18

<210> 487
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 487
tagccgttcc tttctgg

18

<210> 488
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 488
ttagccgttc ctttctgg

18

<210> 489
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 489
ttatccccctg ctaagagg

18

<210> 490
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 490
gttatccccct gctaagag

18

<210> 491
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 491
cccggttcgcc actctttg

18

<210> 492
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 492
agctgagggc tttcactt 18

<210> 493
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 493
gagctgaggg ctttcaact 18

<210> 494
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 494
gctgagggct ttcacttc 18

<210> 495
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 495
ctgagggc ttcaactca 18

<210> 496
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 496
cccggtgtcccc gaaggaac 18

<210> 497
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 497
gcacgagtat gtcaagac 18

<210> 498

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 498

gtatcccggtg tccccgaag

18

<210> 499
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 499

tccccgtgtcc cgaaggaa

18

<210> 500
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 500

atccccgtgtc ccgaaggaa

18

<210> 501
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 501

tatccccgtgt cccgaagg

18

<210> 502
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 502

cttacaccttag gaagcgcc

18

<210> 503
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 503

V7588.ST25.txt

ttaccttagg aagcgccc

18

<210> 504
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 504
cctgtatccc gtgtcccg

18

<210> 505
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 505
ccacaccttat cccgtgtc

18

<210> 506
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 506
cacctgtatc ccgtgtcc

18

<210> 507
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 507
acctgtatcc cgtgtccc

18

<210> 508
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 508
ctgtatcccg tgtccccga

18

<210> 509
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 509
tgtatcccggt gtcccgaa

18

<210> 510
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 510
cacgagtatg tcaagacc

18

<210> 511
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 511
cggtcttacc ttaggaag

18

<210> 512
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 512
taggaagcgc cctccttg

18

<210> 513
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 513
aggaagcgcc ctccttgc

18

<210> 514
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 514
ttaggaagcg ccctcctt

18

<210> 515

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 515
cttaggaagc gccctcct

18

<210> 516
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 516
ccttaggaag cgccctcc

18

<210> 517
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 517
accttaggaa gcgcctc

18

<210> 518
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 518
tgcacacaat ggttgagc

18

<210> 519
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 519
taccttaga agcgccct

18

<210> 520
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 520

V7588.ST25.txt

accacacctgta tccccgtgt

18

<210> 521
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 521
gcaccacctg tatccccgt

18

<210> 522
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 522
caccacacctg atcccggt

18

<210> 523
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 523
gcgggttaggc aacctact

18

<210> 524
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 524
tgcgggttagg caacctac

18

<210> 525
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 525
ttgcgggttag gcaaccta

18

<210> 526
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 526
ggtcttacct taggaagc 18

<210> 527
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 527
gctaatacaa cgcggat 18

<210> 528
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 528
ctaataacaac gcgggatc 18

<210> 529
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 529
atacaacgcg ggatcatc 18

<210> 530
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 530
cggttaggca acctactt 18

<210> 531
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 531
tgcaccaccc gtatcccc 18

<210> 532

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 532
gaagcgccct cttgcgg

18

<210> 533
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 533
gaaagcgccc tccttgcg

18

<210> 534
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 534
cgtccctttc tggtaga

18

<210> 535
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 535
agctaataaca acgcggga

18

<210> 536
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 536
tagctaataac aacgcggg

18

<210> 537
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 537

V7588.ST25.txt

ctagctaata caacgcgg

18

<210> 538
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 538
ggctatgtat catgcct

18

<210> 539
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 539
gagccactgc cttttaca

18

<210> 540
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 540
gtcggctatg tatcatcg

18

<210> 541
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 541
ggtcggctat gatatcatc

18

<210> 542
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 542
caggtcggct atgtatca

18

<210> 543
<211> 18
<212> DNA
<213> Artificial

<220> V7588.ST25.txt
<223> oligonucleotide
<400> 543
cggctatgta tcatcgcc

<210> 544
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 544
tcggctatgt atcatcgc

<210> 545
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 545
gtcttacacctt aggaagcg

<210> 546
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 546
tcttacacctt ggaagcgc

<210> 547
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 547
gtacaaaccg cctacacgccc

<210> 548
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 548
tgtacaaacc gcctacacgc

<210> 549

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 549

gatcagcacg atgtcgccat

20

<210> 550
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 550

ctgtacaaac cgcctacacg

20

<210> 551
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 551

gagatcagca cgatgtcgcc

20

<210> 552
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 552

tagatcagcac gatgtcgcca

20

<210> 553
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 553

atcagcacga tgtcgccatc

20

<210> 554
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 554

V7588.ST25.txt

tcagcacgat gtcgccatct

20

<210> 555
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 555
actgtacaaa ccgcctacac

20

<210> 556
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 556
ccgcaactaa ggccgaaacc

20

<210> 557
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 557
cagcacgatg tcgccccatcta

20

<210> 558
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 558
tacaaaccgc ctacacgccc

20

<210> 559
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 559
agcacgatgt cgccatctag

20

<210> 560
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 560
cggcttttag agatcagcac

20

<210> 561
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 561
tccgccacta aggccgaaac

20

<210> 562
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 562
gactgtacaa accgcctaca

20

<210> 563
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 563
gtccggccact aaggcccggaa

20

<210> 564
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 564
ggggatttca catctgactg

20

<210> 565
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 565
catacaagcc ctggtaaggt

20

<210> 566

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 566
acaagccctg gtaaggttct

20

<210> 567
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 567
acaaaccgcc tacacgcctc

20

<210> 568
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 568
ctgactgtac aaaccgccta

20

<210> 569
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 569
tgactgtaca aaccgcctac

20

<210> 570
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 570
acgatgtcgc catctagctt

20

<210> 571
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 571

V7588.ST25.txt

cacgatgtcg ccatctagct

20

<210> 572

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 572

cgatgtcgcc atctagcttc

20

<210> 573

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 573

gcacgatgtc gccatctagc

20

<210> 574

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 574

gatgtcgcca tctagcttcc

20

<210> 575

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 575

atgtcgccat ctagttcccc

20

<210> 576

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 576

tgtcgccatc tagttcccc

20

<210> 577

<211> 20

<212> DNA

<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 577
gccatctagc ttcccaactgt

20

<210> 578
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 578
tcgccccatcta gcttcccact

20

<210> 579
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 579
cgccatctag cttcccaactg

20

<210> 580
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 580
gtcgccatct agcttcccac

20

<210> 581
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 581
tacaaggccct ggtaaggttc

20

<210> 582
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 582
gccactaagg ccgaaacctt

20

<210> 583

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 583
actaaggccg aaaccttcgt

20

<210> 584
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 584
ctaaggccga aaccttcgtg

20

<210> 585
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 585
cactaaggccc gaaacacctcg

20

<210> 586
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 586
aaggccgaaa cttcgtgcg

20

<210> 587
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 587
ccactaaggc cgaaacacctc

20

<210> 588
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 588

V7588.ST25.txt

taaggccgaa acttcgtgc

20

<210> 589
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 589
aggccgaaac cttcgtgcga

20

<210> 590
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 590
tctgactgt acaaaccgcct

20

<210> 591
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 591
catctgactg tacaaaaccgc

20

<210> 592
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 592
atctgactgt acaaaccgcc

20

<210> 593
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 593
cttcgtgcga cttgcatttg

20

<210> 594
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 594
ccttcgtgcg acttgcatgt

20

<210> 595
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 595
ctctcttagag tgcccaccca

20

<210> 596
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 596
tctcttagagt gcccaccaa

20

<210> 597
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 597
acgttatcaaa tgcagctccc

20

<210> 598
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 598
cgttatcaaat gcagctcccc

20

<210> 599
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 599
cgccactaag gccgaaacct

20

<210> 600

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 600
ccgaaacctt cgtgcgactt

20

<210> 601
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 601
gccgaaacct tcgtgcgact

20

<210> 602
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 602
aaccttcgtg cgacttgcat

20

<210> 603
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 603
cgaaacacctc gtgcgacttg

20

<210> 604
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 604
actttcgtgc gacttgcatg

20

<210> 605
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 605

V7588.ST25.txt

gaaaccttcg tgcgacttgc

20

<210> 606
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 606
ggccgaaacc ttcgtgcgac

20

<210> 607
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 607
aacacttcgt gcgacttgca

20

<210> 608
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 608
cacgtatcaa atgcagctcc

20

<210> 609
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 609
gctcaccggc ttaaggtaa

20

<210> 610
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 610
cgctcaccgg cttaaggtaa

20

<210> 611
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 611
tcgctcaccg gcttaaggtc

20

<210> 612
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 612
ctcacccggt taaggtaaaa

20

<210> 613
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 613
ccccaccgtg gtcggctgcg

20

<210> 614
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 614
gctcacccgc ttaaggtaaa

20

<210> 615
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 615
cgctcacccg cttaaggtaa

20

<210> 616
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 616
tcgctcaccg gcttaaggtc

20

<210> 617

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 617
ctcacggct taaggtcaaa

20

<210> 618
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 618
cccgaccgtg gtcggctgcg

20

<210> 619
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 619
tcaccggctt aaggtaaac

20

<210> 620
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 620
caaccctctc tcacactcta

20

<210> 621
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 621
acaaccctct ctcacactct

20

<210> 622
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 622

V7588.ST25.txt

ccacaaccctt ctctcacact

20

<210> 623

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 623

aaccctctct cacactctag

20

<210> 624

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 624

cacaacccttc tctttacactc

20

<210> 625

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 625

tccacaaccc tctctcacac

20

<210> 626

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 626

ttccacaaccc ctctctcaca

20

<210> 627

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 627

accctctctc acactctagt

20

<210> 628

<211> 20

<212> DNA

<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 628
gagccagggtt gccgccttcg

20

<210> 629
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 629
aggtaaaacc aactccatg

20

<210> 630
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 630
atgagccagg ttgccgcctt

20

<210> 631
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 631
tgagccaggt tgccgccttc

20

<210> 632
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 632
aggctccccc acaggcgact

20

<210> 633
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 633
caggctccctc cacaggcgac

20

<210> 634

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 634
gcaggctcct ccacaggcga

20

<210> 635
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 635
ttcgctcacc ggcttaaggt

20

<210> 636
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 636
gttcgctcac cggcttaagg

20

<210> 637
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 637
ggttcgctca ccggcttaag

20

<210> 638
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 638
attccacaac cctctctcac

20

<210> 639
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 639

tgacccgacc gtggtcggct v7588.ST25.txt 20

<210> 640
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 640
ccctctctca cactctagtc 20

<210> 641
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 641
gaattccaca accctctctc 20

<210> 642
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 642
agccaggttg ccgccttcgc 20

<210> 643
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 643
gccaggttgc cgccttcgcc 20

<210> 644
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 644
ggaattccac aaccctctct 20

<210> 645
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 645
gggaattcca caaccctctc 20

<210> 646
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 646
aacgcaggct cctccacagg 20

<210> 647
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 647
cggcttaagg tcaaaccaac 20

<210> 648
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 648
ccggcttaag gtcaaaccaa 20

<210> 649
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 649
caccggctta aggtcaaacc 20

<210> 650
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 650
accggcttaa ggtcaaacca 20

<210> 651

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 651
acccaacatc cagcacacat

20

<210> 652
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 652
tcgctgaccc gaccgtggtc

20

<210> 653
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 653
cgctgaccgc accgtggtcg

20

<210> 654
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 654
gaccggaccg tggtcggctg

20

<210> 655
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 655
gctgaccgcg ccgtggtcgg

20

<210> 656
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 656

V7588.ST25.txt

ctgacccgac cgtggtcggc

20

<210> 657
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 657
caggcgactt gcgcctttga

20

<210> 658
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 658
tcatgcggta ttagctccag

20

<210> 659
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 659
actagcta at cgaacgcagg

20

<210> 660
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 660
catgcgttat tagctccagt

20

<210> 661
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 661
cgcaggctcc tccacaggcg

20

<210> 662
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 662
acgcaggctc ctccacaggg 20

<210> 663
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 663
ctcaggtgtc atgcggatt 20

<210> 664
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 664
cgcccttgac cctcaggtgt 20

<210> 665
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 665
accctcaggt gtcatgcggt 20

<210> 666
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 666
cctcaggtgt catgcggat 20

<210> 667
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 667
tttgaccctc aggtgtcatg 20

<210> 668

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 668
gaccctcagg tgtcatgcgg

20

<210> 669
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 669
tgaccctcag gtgtcatgcg

20

<210> 670
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 670
gccttgacc ctcaggtgtc

20

<210> 671
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 671
ttgaccctca ggtgtcatgc

20

<210> 672
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 672
ccctcaggtg tcatgcggta

20

<210> 673
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 673

V7588.ST25.txt

cctttgaccc tcaggtgtca

20

<210> 674
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 674
ctttgacctt caggtgtcat

20

<210> 675
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 675
agttatcccc cacccatgga

20

<210> 676
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 676
ccagctatcg atcatgcct

20

<210> 677
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 677
accagctatc gatcatcgcc

20

<210> 678
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 678
cagctatcga tcatgcctt

20

<210> 679
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 679
agctatcgat catgccttg

20

<210> 680
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 680
gctatcgatc atgccttgg

20

<210> 681
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 681
ctatcgatca tcgccttggt

20

<210> 682
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 682
ttcgtgcgac ttgcatgtgt

20

<210> 683
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 683
tcgatcatcg ccttggtagg

20

<210> 684
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 684
atcgatcatc gccttggtag

20

<210> 685

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 685
cacaggcgac ttgcgcctt 20

<210> 686
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 686
ccacaggcgca cttgcgcctt 20

<210> 687
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 687
tccacaggcg acttgcgccct 20

<210> 688
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 688
tcctccacag gcgacttgcg 20

<210> 689
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 689
cctccacagg cgacttgcg 20

<210> 690
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 690

V7588.ST25.txt

ctccacaggc gacttgcgcc

20

<210> 691
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 691
acaggcga ct tgccctttg

20

<210> 692
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 692
gctcacccgc ttaaggtcaa

20

<210> 693
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 693
cgctcacccg cttaaggtca

20

<210> 694
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 694
tcgctcacccg gcttaaggtc

20

<210> 695
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 695
ctcacccgct taaggtcaaa

20

<210> 696
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 696
cccgaccgtg gtcggctgcg 20

<210> 697
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 697
tcaccggcctt aaggtaaac 20

<210> 698
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 698
caaccctctc tcacactcta 20

<210> 699
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 699
acaaccctctc ctcacactct 20

<210> 700
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 700
ccacaaccct ctctcacact 20

<210> 701
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 701
aaccctctct cacactctag 20

<210> 702

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 702
cacaaccctc tctcacactc

20

<210> 703
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 703
tccacaaccc tctctcacac

20

<210> 704
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 704
ttccacaacc ctctctcaca

20

<210> 705
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 705
accctcttc acactctagt

20

<210> 706
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 706
gagccaggtt gccgccttcg

20

<210> 707
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 707

v7588.ST25.txt

aggtaaaacc aactcccatg

20

<210> 708
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 708
atgagccagg ttgccgcctt

20

<210> 709
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 709
tgagccaggt tgccgccttc

20

<210> 710
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 710
aggctcctcc acaggcgact

20

<210> 711
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 711
caggctcctc cacaggcgac

20

<210> 712
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 712
gcaggctcct ccacaggcgac

20

<210> 713
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 713
ttcgctcacc ggcttaaggt

20

<210> 714
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 714
gttcgctcac cggcttaagg

20

<210> 715
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 715
ggttcgctca ccggcttaag

20

<210> 716
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 716
attccacaac cctctctcac

20

<210> 717
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 717
tgacccgacc gtggtcggct

20

<210> 718
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 718
ccctctctca cactctagtc

20

<210> 719

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 719
gaattccaca accctctc

20

<210> 720
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 720
agccagggttgc cgcgcggc

20

<210> 721
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 721
gccagggttgc cgcgcggc

20

<210> 722
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 722
gaaattccac aaccctctc

20

<210> 723
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 723
ggaaattcca caaccctctc

20

<210> 724
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 724

V7588.ST25.txt

aacgcaggct cctccacagg

20

<210> 725
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 725
cggcttaagg tcaaaccAAC

20

<210> 726
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 726
ccggcttaag gtcaaaccAA

20

<210> 727
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 727
caccggctta aggtcaaacc

20

<210> 728
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 728
accggcttaa ggtcaaaccA

20

<210> 729
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 729
acccaacatc cagcacacat

20

<210> 730
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 730
tcgctgaccc gaccgtggtc 20

<210> 731
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 731
cgctgacccg accgtggtcg 20

<210> 732
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 732
gaccgcaccc tggtcggctg 20

<210> 733
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 733
gctgacccga ccgtggtcgg 20

<210> 734
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 734
ctgacccgac cgtggtcggc 20

<210> 735
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 735
caggcgactt gcgcctttga 20

<210> 736

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 736
tcatgcggta ttagctccag

20

<210> 737
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 737
actagcta at cgaacgcagg

20

<210> 738
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 738
catgcggtat tagctccagt

20

<210> 739
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 739
cgcaggctcc tceacaggcg

20

<210> 740
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 740
acgcaggctc ctccacaggc

20

<210> 741
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 741

v7588.ST25.txt

ctcaggtgtc atgcggatt

20

<210> 742
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 742
cgcccttgac cctcaggtgt

20

<210> 743
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 743
accctcagggt gtcatgcgg

20

<210> 744
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 744
cctcaggtgt catgcggat

20

<210> 745
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 745
tttgaccctc aggtgtcatg

20

<210> 746
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 746
gaccctcagg tgtcatgcgg

20

<210> 747
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 747
tgaccctcag gtgtcatgcg

20

<210> 748
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 748
gccttgacc ctcaggtgtc

20

<210> 749
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 749
ttgaccctca ggtgtcatgc

20

<210> 750
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 750
ccctcaggtg tcatgcggta

20

<210> 751
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 751
cctttagcc tcaggtgtca

20

<210> 752
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 752
ctttgaccct caggtgtcat

20

<210> 753

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 753
agtttatcccc caccatggga 20

<210> 754
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 754
ccagctatcg atcatgcct 20

<210> 755
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 755
accagctatc gatcatcgcc 20

<210> 756
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 756
cagctatcga tcatgcctt 20

<210> 757
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 757
agctatcgat catgccttg 20

<210> 758
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 758

V7588.ST25.txt

gctatcgatc atgccttgg

20

<210> 759
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 759
ctatcgatca tcgccttgg

20

<210> 760
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 760
ttcgtcgac ttgcatgtgt

20

<210> 761
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 761
tcgatcatcg ccttggtagg

20

<210> 762
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 762
atcgatcatc gccttggtag

20

<210> 763
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 763
cacaggcgac ttgcgccttt

20

<210> 764
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 764
ccacaggcga cttgcgcctt 20

<210> 765
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 765
tcccacaggcg acttgcgcct 20

<210> 766
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 766
tcctccacacag gcgacttgcg 20

<210> 767
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 767
cctccacagg cgacttgcg 20

<210> 768
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 768
ctccacaggc gacttgcgcc 20

<210> 769
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 769
acaggcgaact tgcgcctttg 20

<210> 770

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 770
tcaccggctt aaggtaaac

20

<210> 771
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 771
caacccttc tcacactcta

20

<210> 772
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 772
acaaccctc ctcacactct

20

<210> 773
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 773
ccacaaccct ctctcacact

20

<210> 774
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 774
aaccctctc cacactctag

20

<210> 775
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 775

v7588.ST25.txt

cacaaccctc tctcacactc

20

<210> 776
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 776
tccacaaccc tctctcacac

20

<210> 777
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 777
ttccacaacc ctctctcaca

20

<210> 778
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 778
accctcttc acactctagt

20

<210> 779
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 779
gagccagggtt gccgccttcg

20

<210> 780
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 780
aggtaaaacc aactcccatg

20

<210> 781
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 781
atgagccagg ttgccgcctt

20

<210> 782
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 782
tgagccaggt tgccgccttc

20

<210> 783
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 783
aggctcctcc acaggcgact

20

<210> 784
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 784
caggctcctc cacaggcgac

20

<210> 785
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 785
gcaggctcct ccacaggcgaa

20

<210> 786
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 786
ttcgctcacc ggcttaagg

20

<210> 787

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 787
gttcgctcac cggcttaagg

20

<210> 788
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 788
ggttcgctca ccggcttaag

20

<210> 789
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 789
attccacaaac cctctctcac

20

<210> 790
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 790
tgacctgacc gtggtcggct-

20

<210> 791
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 791
ccctctctca cactcttagtc

20

<210> 792
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 792

V7588.ST25.txt

gaattccaca accctctctc

20

<210> 793

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 793

agccagggttgc cgcgccttcgc

20

<210> 794

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 794

gccagggttgc cgcgccttcgc

20

<210> 795

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 795

ggaattccac aaccctctct

20

<210> 796

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 796

gggaattcca caaccctctc

20

<210> 797

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 797

aacgcaggct cttccacagg

20

<210> 798

<211> 20

<212> DNA

<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 798
cggcttaagg tcaaaccAAC
20

<210> 799
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 799
ccggcttaag gtcaaACCAA
20

<210> 800
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 800
caccggctta aggtCAAACC
20

<210> 801
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 801
accggcttaa ggtCAAACCA
20

<210> 802
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 802
acccaACATC cAGCACACATC
20

<210> 803
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 803
tcgCTGACCC GACCGTGGTC
20

<210> 804

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 804
cgctgaccgg accgtggtcg

20

<210> 805
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 805
gaccggaccg tggtcggctg

20

<210> 806
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 806
gctgaccgga ccgtggtcgg

20

<210> 807
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 807
ctgaccggac cgtggtcggc

20

<210> 808
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 808
caggcgactt ggcgccttga

20

<210> 809
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 809

v7588.ST25.txt

tcatgcgtta ttagctccag

20

<210> 810
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 810
actagcta at cgaacgcagg

20

<210> 811
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 811
catgcggtat tagctccagt

20

<210> 812
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 812
cgcaggctcc tccacaggcg

20

<210> 813
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 813
acgcaggctc ctccacaggc

20

<210> 814
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 814
ctcaggtgtc atgcggatt

20

<210> 815
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 815
cgcccttgac cctcaggtgt

20

<210> 816
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 816
accctcagg tgcattgcgtt

20

<210> 817
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 817
cctcagggtgt catgcggat

20

<210> 818
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 818
tttgacccttc aggtgtcatg

20

<210> 819
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 819
gaccctcagg tgtcatgcgg

20

<210> 820
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 820
tgaccctcag gtgtcatgca

20

<210> 821

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 821
gcctttgacc ctcaggtgtc

20

<210> 822
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 822
ttgaccctca ggtgtcatgc

20

<210> 823
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 823
ccctcagggtg tcatgcggta

20

<210> 824
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 824
cctttgaccc tcaggtgtca

20

<210> 825
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 825
ctttgaccct caggtgtcat

20

<210> 826
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 826

V7588.ST25.txt

agttagccccc caccatggaa

20

<210> 827
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 827
ccagctatcg atcatgcctt

20

<210> 828
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 828
accagctatc gatcatcgcc

20

<210> 829
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 829
cagctatcga tcatgcctt

20

<210> 830
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 830
agctatcgat catgccttg

20

<210> 831
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 831
gctatcgatc atgccttg

20

<210> 832
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 832
ctatcgatca tcgccttggt

20

<210> 833
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 833
ttcgtgcgac ttgcatgtgt

20

<210> 834
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 834
tcgatcatcg ccttggtagg

20

<210> 835
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 835
atcgatcatc gccttggtag

20

<210> 836
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 836
cacaggcgac ttgcgcctt

20

<210> 837
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 837
ccacaggcgac cttgcgcctt

20

<210> 838

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 838
tccacaggcg acttgccct

20

<210> 839
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 839
tcctccacag gcgacttgcg

20

<210> 840
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 840
cctccacagg cgacttgcg

20

<210> 841
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 841
ctccacaggc gacttgcgcc

20

<210> 842
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 842
acaggcgact tgccctttg

20

<210> 843
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 843

v7588.ST25.txt

agccccggtt tcccggtt 20

<210> 844
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 844
cgcccttcct ttttctcca 20

<210> 845
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 845
gccccggttt cccggcgtta 20

<210> 846
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 846
ggccgccttc ctttttcctc 20

<210> 847
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 847
tagccccgt ttccccggcgt 20

<210> 848
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 848
ccgggtaccg tcaaggcgcc 20

<210> 849
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 849
aagccgcctt tccttttcc

20

<210> 850
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 850
ccccggtttc ccggcggtat

20

<210> 851
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 851
ccggcggtat cccagtctta

20

<210> 852
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 852
agccgccttt cctttttcct

20

<210> 853
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 853
ccgcctttcc ttttcctcc

20

<210> 854
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 854
ttagcccccgg tttcccgccg

20

<210> 855

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 855
cccgccgtta tcccagtctt

20

<210> 856
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 856
gccgggtacc gtcaaggcgc

20

<210> 857
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 857
ggccgggtac cgtcaaggcg

20

<210> 858
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 858
tccccggcgtt atccccagtctt

20

<210> 859
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 859
tggccgggta ccgtcaaggc

20

<210> 860
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 860

V7588.ST25.txt

gaagccgcct ttccttttc

20

<210> 861
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 861
cccggttcc cggcgttatc

20

<210> 862
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 862
cggcggttac ccagtcttac

20

<210> 863
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 863
ggcggttatcc cagtcttaca

20

<210> 864
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 864
gcgttatccc agtcttacag

20

<210> 865
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 865
cgggtaccgt caaggcgccg

20

<210> 866
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 866
attagcccg gtttccggc

20

<210> 867
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 867
aaggggaagg ccctgtctcc

20

<210> 868
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 868
ggccctgtct ccagggaggt

20

<210> 869
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 869
aggccctgtc tccagggagg

20

<210> 870
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 870
aaggccctgt ctccagggag

20

<210> 871
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 871
gccctgtctc cagggaggc

20

<210> 872

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 872
cgttatccca gtcttacagg

20

<210> 873
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 873
gggtaccgtc aaggcgccgc

20

<210> 874
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 874
cggcaacaga gttttacgac

20

<210> 875
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 875
ggggaaggcc ctgtctccag

20

<210> 876
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 876
aggggaaggc cctgtctcca

20

<210> 877
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 877

V7588.ST25.txt

gcagccgaag ccgccttcc

20

<210> 878
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 878
ttcttccccg gcaacagagt

20

<210> 879
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 879
cggcacttgt tcttccccgg

20

<210> 880
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 880
gttcttcccc ggcaacagag

20

<210> 881
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 881
ggcacttgtt cttccccggc

20

<210> 882
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 882
gcacttgttc ttccccggca

20

<210> 883
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 883
cacttgttct tccccggcaa 20

<210> 884
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 884
tcttcccccgg caacagagtt 20

<210> 885
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 885
ttgttcttcc ccggcaacag 20

<210> 886
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 886
acttgttctt ccccggaac 20

<210> 887
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 887
tgttcttccc cgccaacaga 20

<210> 888
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 888
cttgttcttc cccggcaaca 20

<210> 889

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 889
acggcacttg ttcttccccg

20

<210> 890
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 890
gtccgcgcgt aaccttttaa

20

<210> 891
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 891
ctggccgggt accgtcaagg

20

<210> 892
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 892
tctggccggg taccgtcaag

20

<210> 893
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 893
ttctggccgg gtaccgtcaa

20

<210> 894
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 894

v7588.ST25.txt

caatgctggc aactaaggtc

20

<210> 895
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 895
cgtccgcgc taacccttta

20

<210> 896
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 896
cgaagccgcc tttcctttt

20

<210> 897
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 897
ccgaagccgc ctttcctttt

20

<210> 898
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 898
gccgaagccg ccttccttt

20

<210> 899
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 899
agccgaagcc gccttcctt

20

<210> 900
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 900
accgtcaagg cggccgcctg

20

<210> 901
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 901
ccgtggctt ctggccgggt

20

<210> 902
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 902
gctttctggc cgggtaccgt

20

<210> 903
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 903
gccgtggctt tctggccggg

20

<210> 904
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 904
ggctttctgg ccgggtaccg

20

<210> 905
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 905
ctttctggcc gggtaccgtc

20

<210> 906

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 906
tggcttctg gccgggtacc

20

<210> 907
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 907
gtggcttct ggccgggtac

20

<210> 908
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 908
cgtggctttc tggccgggtac

20

<210> 909
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 909
tttctggccg ggtaccgtca

20

<210> 910
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 910
ggaaaggccc tgtctccagg

20

<210> 911
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 911

V7588.ST25.txt

cgaaggggaa ggccctgtct

20

<210> 912
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 912
ccgaaggggaa aggccctgtct

20

<210> 913
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 913
gaaggggaaag gccctgtctc

20

<210> 914
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 914
ggcgccgccc tgttcgaacg

20

<210> 915
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 915
aggcgccgccc ctgttcgaac

20

<210> 916
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 916
aaggcgccgc cctgttcgaa

20

<210> 917
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 917
cccggaaca gagtttacg

20

<210> 918
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 918
ccccggcaac agagtttac

20

<210> 919
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 919
ccatctgtaa gtggcagccg

20

<210> 920
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 920
tctgttaagtgc cagccgaag

20

<210> 921
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 921
ctgttaagtgg cagccgaagc

20

<210> 922
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 922
cccatctgtta agtggcagcc

20

<210> 923

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 923
tgtaagtggc agccgaagcc

20

<210> 924
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 924
catctgtaag tggcagccga

20

<210> 925
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 925
atctgtaagt ggcagccgaa

20

<210> 926
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 926
cagccgaagc cgcctttcct

20

<210> 927
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 927
ggcaacagag ttttacgacc

20

<210> 928
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 928

v7588.ST25.txt

ccggcaacag agtttacga

20

<210> 929
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 929
ttccccggca acagagttt

20

<210> 930
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 930
cttcccccggc aacagagttt

20

<210> 931
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 931
tccccggcaa cagagtttta

20

<210> 932
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 932
ccgtccgccc ctaacctttt

20

<210> 933
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 933
cttcctccga cttacgccgg

20

<210> 934
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 934
cctccgactt acgccggcag 20

<210> 935
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 935
ttcctccgac ttacgccggc 20

<210> 936
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 936
tcctccgact tacgccggca 20

<210> 937
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 937
tccgacttac gccggcagtc 20

<210> 938
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 938
ccgacttacg ccggcagtca 20

<210> 939
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 939
gctttcctcc gacttacgcc 20

<210> 940

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 940
ccttcctccg acttacgccc

20

<210> 941
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 941
gctctccccg agcaacagag

20

<210> 942
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 942
ctctccccga gcaacagagc

20

<210> 943
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 943
cgctctcccc gagcaacaga

20

<210> 944
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 944
ctccgactta cgccggcagt

20

<210> 945
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 945

V7588.ST25.txt

tctccccgag caacagagct

20

<210> 946

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 946

cgacttacgc cggcagtcac

20

<210> 947

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 947

tcggcactgg ggtgtgtccc

20

<210> 948

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 948

ggcactgggg tgtgtccccc

20

<210> 949

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 949

ctggggtgtg tccccccaac

20

<210> 950

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 950

cactggggtg tgtcccccca

20

<210> 951

<211> 20

<212> DNA

<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 951
actggggtgt gtccccccaa 20

<210> 952
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 952
gcactgggt gtgtccccc 20

<210> 953
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 953
tgggtgtgt cccccaaca 20

<210> 954
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 954
cactccagac ttgctcgacc 20

<210> 955
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 955
tcactccaga cttgctcgac 20

<210> 956
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 956
cggcactggg gtgtgtcccc 20

<210> 957

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 957
cgcccttcctc cgacttacgc 20

<210> 958
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 958
ctccccgagc aacagagctt 20

<210> 959
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 959
actccagact tgctcgaccg 20

<210> 960
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 960
cccatgccgc tctccccc gag 20

<210> 961
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 961
ccatgccgt ctccccgagc 20

<210> 962
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 962

v7588.ST25.txt

ccccatgccg ctctccccga

20

<210> 963
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 963
tcactcggtt ccgtctcgca

20

<210> 964
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 964
catgccgcctc tcccccggca

20

<210> 965
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 965
atgcccgcctc ccccgagcaa

20

<210> 966
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 966
ttcggcactg gggtgtgtcc

20

<210> 967
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 967
tgccgccttc cccgagcaac

20

<210> 968
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 968
ttcactccag acttgctcga

20

<210> 969
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 969
cccgcaagaa gatgcctcct

20

<210> 970
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 970
agaagatgcc tcctcgcccc

20

<210> 971
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 971
aagaagatgc ctcctcgccgg

20

<210> 972
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 972
cgcaagaaga tgcctcctcg

20

<210> 973
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 973
aagatgcctc ctcgcgggccc

20

<210> 974

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 974
ccgcaagaag atgcctcctc

20

<210> 975
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 975
gaagatgcct cctcgcgggc

20

<210> 976
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 976
ccccgcaaga agatgcctcc

20

<210> 977
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 977
caagaagatg ctcctcgcg

20

<210> 978
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 978
tccttcggca ctggggtgtg

20

<210> 979
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 979

V7588.ST25.txt

ccgctctccc cgagcaacag

20

<210> 980
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 980
tgcctcctcg cggcgatc

20

<210> 981
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 981
gacttaggcc ggcagtcacc

20

<210> 982
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 982
ggctcctctc tcagcggccc

20

<210> 983
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 983
ccttcggcac tgggtgtgt

20

<210> 984
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 984
ggggtgtgtc cccccaacac

20

<210> 985
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 985
gcccgtctcc ccgagcaaca 20

<210> 986
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 986
agatgcctcc tcgcgggcgt 20

<210> 987
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 987
cactcggtac cgtctcgcat 20

<210> 988
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 988
ctcaactcggt accgtctcgc 20

<210> 989
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 989
gcaagaagat gcctcctcgc 20

<210> 990
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 990
ctccagactt gctcgaccgc 20

<210> 991

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 991
ttacgcccggc agtcacctgt 20

<210> 992
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 992
cttcggcact ggggtgtgtc 20

<210> 993
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 993
ctcgcggcg tatccggcat 20

<210> 994
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 994
gcctcctcgc gggcgtatcc 20

<210> 995
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 995
actcgggtacc gtctcgcatg 20

<210> 996
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 996

V7588.ST25.txt

gatgcctcct cgcggcgta

20

<210> 997
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 997
gggtgtgtcc ccccaacacc

20

<210> 998
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 998
acttacgcccgcagtcacacct

20

<210> 999
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 999
cttacgccccg cagtacacctg

20

<210> 1000
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1000
atgcctcctc gcggcgat

20

<210> 1001
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1001
gcgcgcggg ctccctctc

20

<210> 1002
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1002
ggtgtgtccc cccaacacct 20

<210> 1003
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1003
gtgtgtcccc ccaacaccta 20

<210> 1004
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1004
cctcgcgggc gtatccggca 20

<210> 1005
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1005
cctcactcgg taccgtctcg 20

<210> 1006
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1006
tcctcactcg gtaccgtctc 20

<210> 1007
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1007
tcgcgggcgt atccggcatt 20

<210> 1008

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1008
tttcactcca gacttgctcg

20

<210> 1009
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1009
tacggccgca gtcacacctgtg

20

<210> 1010
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1010
tccagacttg ctcgaccgcc

20

<210> 1011
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1011
ctcgggtaccg tctcgcatgg

20

<210> 1012
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1012
cgcggtaccg tccggcattta

20

<210> 1013
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1013

V7588.ST25.txt

gcgttatccgg cattagcgcc

20

<210> 1014
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1014
gggctcctct ctcagcggcc

20

<210> 1015
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1015
tccccgagca acagagcttt

20

<210> 1016
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1016
ccccgagcaa cagagcttta

20

<210> 1017
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1017
ccgagcaaca gagctttaca

20

<210> 1018
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1018
ccatccccatg gttgagccat

20

<210> 1019
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1019
gtgtccccc aacacctagc

20

<210> 1020
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1020
gcgggcgtat ccggcattag

20

<210> 1021
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1021
cgagcggctt tttgggtttc

20

<210> 1022
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1022
ctttcaactcc agacttgctc

20

<210> 1023
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1023
ttccttcggc actggggtgt

20

<210> 1024
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1024
ccgccttcct ccgacttacg

20

<210> 1025

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1025
cccgccttcc tccgacttac 20

<210> 1026
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1026
cctcctcgcg ggcgtatccg 20

<210> 1027
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1027
tcctcgcggg cgtatccggc 20

<210> 1028
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1028
cattagcgcc cgtttccggg 20

<210> 1029
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1029
gcattagcgcc ccgttccgg 20

<210> 1030
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1030

v7588.ST25.txt

ggcattagcg cccgtttccg

20

<210> 1031
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1031
gtctcgcatg gggctttcca

20

<210> 1032
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1032
gccatggact ttcactccag

20

<210> 1033
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1033
catggacttt cactccagac

20

<210> 1034
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1034
ccttcctccg gcttacgccc gc

22

<210> 1035
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1035
ccttcctccg acttgcgccg gc

22

<210> 1036
<211> 22
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1036
ccttcctccg actttcaccg gc

22

<210> 1037
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1037
accgtctcac aaggagctt

20

<210> 1038
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1038
taccgtctca caaggagctt

20

<210> 1039
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1039
gtaccgtctc acaaggagct

20

<210> 1040
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1040
gcctaccgt gtattatccg

20

<210> 1041
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1041
ccgtctcaca aggagtttc

20

<210> 1042

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1042
ctacccgtgt attatccggc 20

<210> 1043
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1043
ggtaccgtct cacaaggagc 20

<210> 1044
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1044
cgtctcacaa ggagcttcc 20

<210> 1045
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1045
tctcacaaa agctttccac 20

<210> 1046
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1046
tacccgtgtt ttatccggca 20

<210> 1047
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1047

V7588.ST25.txt

gtctcacaag gagctttcca

20

<210> 1048
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1048
acccgtgtat tatccggcat

20

<210> 1049
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1049
ctcggtaccg tctcacaagg

20

<210> 1050
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1050
cggtagccgc tcacaaggag

20

<210> 1051
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1051
actcggtagcc gtctcacaag

20

<210> 1052
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1052
cggtggctc cataacgggtt

20

<210> 1053
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1053
acaaggatgcctacccgt 20

<210> 1054
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1054
tggctccata acggttacct 20

<210> 1055
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1055
caagtagatgcctacccgt 20

<210> 1056
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1056
cacaaggatgtgcctacccg 20

<210> 1057
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1057
ggctccataacggttacctc 20

<210> 1058
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1058
acacaaggatgtgcctaccc 20

<210> 1059

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1059
ctggctccat aacggttacc 20

<210> 1060
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1060
gctggctcca taacggttac 20

<210> 1061
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1061
ggctggctcc ataacggta 20

<210> 1062
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1062
gctccataac gggttacctca 20

<210> 1063
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1063
aagttagatgc ctacccgtgt 20

<210> 1064
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1064

v7588.ST25.txt

ctccataacg gttacacctcac

20

<210> 1065
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1065
tgcctacccg tgtattatcc

20

<210> 1066
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1066
tcggtaaccgt ctcacaagga

20

<210> 1067
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1067
ctcacaagga gctttccact

20

<210> 1068
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1068
gttagatgcct acccggttat

20

<210> 1069
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1069
cctaccgtg tattatccgg

20

<210> 1070
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1070
caactcggtac cgtctcacaa 20

<210> 1071
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1071
ctcagcgatg cagttgcattc 20

<210> 1072
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1072
agttagatgcc taccctgtta 20

<210> 1073
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1073
gcggctggct ccataacgg 20

<210> 1074
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1074
ccaaagcaat cccaaaggttt 20

<210> 1075
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1075
tccataaacgg ttacctcacc 20

<210> 1076

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 1076
cccggttatt atccggcatt

20

<210> 1077
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 1077
tctcagcgat gcagttgcatt

20

<210> 1078
<211> 20
<212> DNA
<213> Artificial ..
<220>
<223> oligonucleotide
<400> 1078
ccataaacgg tacacctaccg

20

<210> 1079
<211> 20
<212> DNA
<213> Artificial ..
<220>
<223> oligonucleotide
<400> 1079
tcagcgatgc agttgcatct ..

20

<210> 1080
<211> 20
<212> DNA
<213> Artificial ..
<220>
<223> oligonucleotide ..
<400> 1080
ggcggctggc tccataacgg

20

<210> 1081
<211> 20
<212> DNA
<213> Artificial ..
<220>
<223> oligonucleotide ..
<400> 1081

v7588.ST25.txt

aagcaatccc aagggttggc

20

<210> 1082
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1082
tcactcggtta ccgtctcaca

20

<210> 1083
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1083
ccgagtgtta ttccagtgctg

20

<210> 1084
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1084
cacaaggagc tttccactct

20

<210> 1085
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1085
acaaggagct ttccactctc

20

<210> 1086
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1086
tcacaaggag ctttccactc

20

<210> 1087
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1087
cagcgatgca gttgcatctt

20

<210> 1088
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1088
caaggagctt tccactctcc

20

<210> 1089
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1089
ccagtctgaa aggtagattg

20

<210> 1090
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1090
cagtctaaaa ggcagattgc

20

<210> 1091
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1091
cggcggctgg ctccataacg

20

<210> 1092
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1092
cctctcttag cgatgcgtt

20

<210> 1093

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1093
ctctctcagc gatgcagttg

20

<210> 1094
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1094
tctctcagcg atgcagttgc

20

<210> 1095
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1095
ctctcagcga tgcagttgca

20

<210> 1096
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1096
caatcccaag gttgagcctt

20

<210> 1097
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1097
aatcccaagg ttgagccttg

20

<210> 1098
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1098

V7588.ST25.txt

agcaatccca aggttgagcc

20

<210> 1099
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1099
ctcaactcggt accgtctcac

20

<210> 1100
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1100
gcaatcccaa ggttgagcct

20

<210> 1101
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1101
gccttggact ttcacttcag

20

<210> 1102
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1102
cataacgggtt acctcaccga

20

<210> 1103
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1103
ctcctctctc agcgatgcag

20

<210> 1104
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1104 tcggcggctg gctccataac 20

<210> 1105
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1105 agtctgaaag gcagattgcc 20

<210> 1106
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1106 tcctctctca gcgatgcagt 20

<210> 1107
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1107 cccaagggtt agccttggac 20

<210> 1108
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1108 ataacggta cctcaccgac 20

<210> 1109
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1109 tcccaagggtt gagccttggac 20

<210> 1110

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1110
attatccggc attagcaccc

20

<210> 1111
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1111
ctacgtgctg gtaacacaga

20

<210> 1112
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1112
gccgcgttagcc ccgaagggt

20

<210> 1113
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1113
ctagccccga agggctcgct

20

<210> 1114
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1114
cgctagcccc gaagggtcg

20

<210> 1115
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1115

v7588.ST25.txt

agccccgaag ggctcgctcg

20

<210> 1116
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1116
ccgctagccc cgaaggggctc

20

<210> 1117
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1117
tagcccccga gggctcgctc

20

<210> 1118
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1118
gctagccccc aaggggctcgc

20

<210> 1119
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1119
gcccccgaagg gctcgctcga

20

<210> 1120
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1120
atcccaaggt tgaggccttgg

20

<210> 1121
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1121
gagccttggaa ctttcacttc

20

<210> 1122
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1122
caagggttgag ccttggactt

20

<210> 1123
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1123
gagctttcca ctctccttgt

20

<210> 1124
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1124
ccaaagggtga gccttggact

20

<210> 1125
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1125
cgggctcc tc tca gcat

20

<210> 1126
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1126
ggagcttcc acttccttg

20

<210> 1127

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1127
gggctccctct ctcagcgatg

20

<210> 1128
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1128
tctccttgtc gctctcccg

20

<210> 1129
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1129
tccttgcgc tctccccgag

20

<210> 1130
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1130
agctttccac ttccttgtc

20

<210> 1131
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1131
ccactctcct tgtcgtctc

20

<210> 1132
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1132

v7588.ST25.txt

ggctcctctc tcagcgatgc

20

<210> 1133
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1133
ccttgcgt ctcccgagc

20

<210> 1134
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1134
caactctc tt gtcgctctcc

20

<210> 1135
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1135
actctcc tt tcgctctccc

20

<210> 1136
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1136
ctctc tt gt cgctctcccc

20

<210> 1137
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1137
gcggggctc ctctcagcga

20

<210> 1138
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1138
ggctccatca tggttacctc

20

<210> 1139
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1139
ccgtctccata aggagtttc ca

22

<210> 1140
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1140
tccctccata acggttacct ca

22

<210> 1141
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1141
tggctccata awggttacct ca

22

<210> 1142
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1142
cttcctccgg cttgcgccgg

20

<210> 1143
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1143
cgctcttccc gaktgactga

20

<210> 1144

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1144
cctcgggctc ctccatcwgc

20

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.