Algèbre linéaire.

Espaces vectoriels. Feuille n°1.

1. Systèmes libres. Systèmes générateurs.

Exercice 1:

On considère les vecteurs de \mathbb{R}^3 suivants :

$$a = (2, 1, -3)$$
, $b = (3, 2, -5)$, $c = (1, -1, 1)$ et $d = (6, 2, -7)$.

Montrer que d est une combinaison linéaire des vecteurs a,b,c. Le système $\{a,b,c\}$ est-il générateur dans \mathbb{R}^3 ? Forme-t-il une base de \mathbb{R}^3 ?

Exercice 2:

On considère les vecteurs de \mathbb{R}^4 suivants :

$$a = (1, 2, -1, -2)$$
, $b = (2, 3, 0, -1)$, $c = (1, 2, 1, 3)$, $d = (1, 3, -1, 0)$ et $e = (7, 14, -1, 2)$.

Montrer que e est une combinaison linéaire des vecteurs a,b,c,d. Le système $\{a,b,c,d\}$ est-il générateur dans \mathbb{R}^4 ? Forme-t-il une base de \mathbb{R}^4 ?

Exercice 3:

Montrer que les vecteurs (a,b) et (c,d) de \mathbb{R}^2 sont liés si et seulement si ad-bc=0. Montrer qu'ils forment une base de \mathbb{R}^2 si et seulement si $ad-bc\neq 0$.

Exercice 4:

Dans l'espace vectoriel \mathbb{R}^2 , on considère les vecteurs v=(1,2) et w=(-2,m).

- À quelle condition sur le paramètre m le vecteur w est-il proportionnel au vecteur v?
- En supposant que w n'est pas proportionnel à v, montrer que tout vecteur de \mathbb{R}^2 est une combinaison linéaire de v et w.

Exercice 5:

Pour chacune des suites de vecteurs suivantes, dans les espaces vectoriels \mathbb{R}^n ou \mathbb{C}^n , on indiquera s'il s'agit d'un suite libre, génératrice, d'une base; si l'on montre que la suite est liée, on donnera une relation linéaire explicite entre les v_j . Le cas échéant, on devra discuter suivant le paramètre m.

Exercice 6:

Soit l'espace vectoriel $E = \mathbb{R}^3$. On considère les vecteurs a = (2, 3, -1), b = (1, -1, -2), c = (3, 7, 0) et d = (5, 0, -7). Montrer que Vect(a, b) = Vect(c, d).

Exercice 7:

Parmi les familles de vecteurs de \mathbb{R}^3 énumérées ci-dessous, lesquelles sont libres?

- (a) $S_1 = \{(1,2,1), (2,3,1), (0,1,1)\}$
- (b) $S_2 = \{(1,2,1), (2,3,1), (0,1,2), (3,6,4)\}$
- (c) $S_3 = \{(2, -3, 4), (3, -1, 7), (5, -4, 2)\}$

Exercice 8:

Dans l'espace vectoriel \mathbb{R}^3 , on considère les vecteurs v=(1,-2,-5) et w=(-2,4,m).

- À quelle condition sur le paramètre m le vecteur w est-il proportionnel au vecteur v?
- On suppose que w n'est pas proportionnel à v et l'on considère l'ensemble P de toutes les combinaisons linéaires de v et w. Montrer qu'on a

$$P = \{ (x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0 \},$$

où a, b, c sont des nombres réels, non tout les trois nuls, que l'on déterminera.

Exercice 9:

Dans l'espace vectoriel \mathbb{R}^3 , on considère les vecteurs $v_1=(-2,4,1)$, $v_2=(1,-2,0)$ et $v_3=(3,b,-1)$.

- À quelle condition sur le paramètre b le vecteur v_3 est-il une combinaison linéaire de v_1 et v_2 ?
- On suppose cette condition vérifiée. Montrer que v_1 est une combinaison linéaire de v_2 et v_3 et que v_2 est une combinaison linéaire de v_1 et v_3 .
- On suppose que cette condition n'est pas vérifiée. Montrer que tout vecteur de \mathbb{R}^3 est une combinaison linéaire de v_1 , v_2 et v_3 .

Exercice 10:

Soit l'espace vectoriel \mathbb{R}^4 . On considère le sous-espace F engendré par les vecteurs (1,2,-1,0), (4,8,-4,-3), (0,1,3,4) et (2,5,1,4). Extraire de ce système générateur de F un système de vecteurs libres.

Exercice 11:

Décrire le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs

$$a = (1, -1, 1, 0)$$
, $b = (1, 1, 0, 1)$, $c = (2, 0, 1, 1)$.

Exercice 12:

Dans l'espace \mathbb{R}^4 , le vecteur x=(2,3,1,5) est-il combinaison linéaire des vecteurs

$$a = (1, 3, 1, 2),$$
 $b = (2, 5, 1, 1),$ $c = (3, 1, 4, 2),$ $d = (3, 2, 5, 5)$?

Exercice 13:

Trouver une relation de dépendance linéaire entre les quatre vecteurs suivants de \mathbb{R}^3 .

$$a = (3, 1, -1),$$
 $b = (-1, 1, 2),$ $c = (1, -1, 1),$ $d = (5, -2, 3)$

Exercice 14:

On considère l'espace vectoriel $\mathbb{R}_2[X]$ et les polynômes

$$P_1(x) = (x-1)^2$$
, $P_2(x) = (2x+1)^2$ et $P_3(x) = ux + 3$,

où u est un paramètre réel.

- a) À quelle condition sur le paramètre u le vecteur P_3 est-il une combinaison linéaire de P_1 et P_2 ?
- b) On suppose cette condition vérifiée. Montrer que P_1 est une combinaison linéaire de P_2 et P_3 et que P_2 est une combinaison linéaire de P_1 et P_3 .
- c) On suppose que cette condition n'est pas vérifiée. Montrer que tout vecteur de $\mathbb{R}_2[X]$ est une combinaison linéaire de P_1 , P_2 et P_3 .

Exercice 15:

Dans l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$ des fonctions de \mathbb{R} dans \mathbb{R} , on considère les éléments c, s, u, v, w définis par

$$c(x) = \cos x$$
, $s(x) = \sin x$, $u(x) = \cos 2x$, $v(x) = 1$, $w(x) = \cos(x + \frac{\pi}{4})$,

quel que soit le réel x.

- a) Montrer que s n'est pas proportionnel à c .
- **b**) Montrer que v n'est pas une combinaison linéaire de c et s (Indication : raisonner par l'absurde et donner diverses valeurs à la variable x).
 - c) Est-ce-que u est une combinaison linéaire de c et s? Même question pour w.

Exercice 16:

Montrer que les fonctions $x \mapsto x^2$, $x \mapsto \cos(x)$ et $x \mapsto \exp(x)$ forment un système indépendant dans $\mathcal{C}(\mathbb{R};\mathbb{R})$.

Exercice 17:

On considère l'ensemble des suites numériques réelles qui vérifient

$$\forall n > 0 \ u_{n+2} = u_{n+1} + u_n \ .$$

On note u la suite numérique réelle appartenant à ce sous-espace et vérifiant $u_0=1$ et $u_1=0$. On note de même v la suite numérique réelle vérifiant $v_0=0$ et $v_1=1$. Montrer que le système $\{u,v\}$ est un système libre et générateur de ce sous-espace vectoriel.

Exercice 18:

Soit E un espace vectoriel réel. On se donne u et v deux vecteurs de E. Montrer qu'ils forment un système libre si et seulement si le système formé par les vecteurs u+v et u-v est libre.

Exercice 19:

Soit E un espace vectoriel réel. Soient u, v et w trois vecteurs de E dont on suppose qu'ils forment un système libre.

- a) Le vecteur u + v + w est-il combinaison linéaire des vecteurs u + v et v + w?
- b) Le système formé par les vecteurs u + v + w, u + v et v + w est-il libre?

Exercice 20:

Dans cet exercice, on considère \mathbb{R} comme un espace vectoriel sur \mathbf{Q} (cela signifie que les "scalaires" sont exclusivement des nombres rationnels).

- a) Montrer que $\sqrt{2}$ n'est pas proportionnel à 1.
- b) Soit x, y deux rationnels tels que $x + y\sqrt{2} \neq 0$. Montrer que le nombre réel

$$\frac{1}{x + y\sqrt{2}}$$

est une combinaison linéaire de 1 et $\sqrt{2}$.

c) Soit K l'ensemble de toutes les combinaisons linéaires de 1 et $\sqrt{2}$. Montrer que K est un corps pour les opérations d'addition et de multiplication usuelles.

2. Généralités. Sous-espaces vectoriels.

Exercice 1:

On considère l'espace vectoriel réel \mathbb{R}^3 . Soit F la partie de \mathbb{R}^3 formés des vecteurs (x,y,z) qui vérifient l'identité 2x-y-2z=0. Montrer qu'il s'agit d'un sous-espace vectoriel.

Exercice 2:

Dans l'espace vectoriel \mathbb{R}^2 les sous-ensembles suivants sont-ils des sous-espaces vectoriels :

$$E_1 = \{ (x, y) : 2x - y = 0 \}$$
, $E_2 = \{ (x, y) : 2x - y = 1 \}$
 $E_3 = \{ (x, y) : x^2 - y^2 = 0 \}$, $E_4 = \mathbb{Z} \times \mathbb{Z}$?

Exercice 3:

On considère l'ensemble $\mathbb{R}^{\mathbb{R}}$ des applications de \mathbb{R} dans \mathbb{R} . C'est un espace vectoriel réel. Les sous-ensembles suivants sont-il des sous-espaces vectoriels?

$$E_1 = \{ f : f(0) = 1 \}, E_2 = \{ f : f(1) = 0 \}, E_3 = \{ f : f(1) = 2f(0) \},$$

 $E_4 = \{ f : f(1) = f(0) + 2 \}, E_5 = \{ f : (\forall x \in \mathbb{R}) f(x) \le 0 \}$

et enfin l'ensemble E_8 des polynômes de degré 3. Considérons le sous-espace vectoriel des applications de \mathbb{R} dans \mathbb{R} dérivables. Les sous-ensembles

$$E_6 = \{f : f' + f = 0\}$$
 , $E_7 = \{f : f' + f = 1\}$

sont-ils des sous-espaces vectoriels?

Exercice 4:

Soit E un espace vectoriel réel et F un sous-espace vectoriel strict de E (c'est à dire distinct de E). On note C le complémentaire de F dans E.

a) Montrer que

$$\forall x \in F, \forall y \in C : x + y \in C :$$

- b) En déduire que C n'est pas un sous-espace vectoriel de E et que le sous-espace engendré par C est E tout entier.
- c) Soient F et G deux sous-espaces vectoriels de E . On suppose que $F \not\subset G$ et que $G \not\subset F$. Montrer que $F \cup G$ n'est pas un sous-espace vectoriel de E .

Exercice 5:

Soient F, G, H trois sous-espaces vectoriels d'un même espace vectoriel E, tels que : (i) F + H = G + H; (ii) $F \cap H = G \cap H$; (iii) $F \subset G$. Montrer que F = G. Le résultat subsiste-t-il si l'on supprime une des hypothèses?

Exercice 6:

On considère l'ensemble des suites numériques réelles qui vérifient

$$\forall n \ge 0 \ u_{n+2} = u_{n+1} + u_n \ .$$

Montrer qu'il s'agit d'un sous-espace vectoriel de l'espace vectoriel des suites numériques réelles.

Exercice 7:

Soit a, b deux nombres réels tels que $a^2 + 4b = 0$. Soit S l'ensemble des suites $(w_n)_{n \in \mathbb{N}}$ de nombres réels telles que

$$\forall n \in \mathbb{N} \quad w_{n+2} = aw_{n+1} + bw_n$$
.

Montrer que les suites $u = (u_n)$ et $v = (v_n)$ définies par

$$\forall n \in \mathbb{N} \quad u_n = (\frac{a}{2})^n \quad et \quad v_n = n(\frac{a}{2})^n$$

appartiennent à S et que toute suite appartenant à S est une combinaison linéaire de u et v.

Exercice 8:

Dans cet exercice, on considère \mathbb{R} comme un espace vectoriel sur \mathbf{Q} (cela signifie que les "scalaires" sont exclusivement des nombres rationnels).

- Montrer que $\sqrt{2}$ n'est pas proportionnel à 1.
- En déduire que le système $\{1, \sqrt{2}\}$ est libre sur \mathbb{Q} .

3. Généralités. Exemples d'espaces vectoriels

Exercice 1:

On considère l'ensemble des fonctions continues sur \mathbb{R} à valeur dans \mathbb{R} qui valent 0 en x = 1. On le note $\mathcal{C}(\mathbb{R}; \mathbb{R})$. S'agit-il d'un espace vectoriel sur \mathbb{R} ?

Même question avec l'ensemble des fonctions continues sur $\mathbb R$ à valeur dans $\mathbb R$ qui valent 2016 en x=1 .

Exercice 2:

On considère l'ensemble des suites numériques réelles (applications de \mathbb{N} dans \mathbb{R}). On le note $\mathbb{R}^{\mathbb{N}}$. On note $u : n \mapsto u(n) = u_n$ une telle application. S'agit-il d'un espace vectoriel sur \mathbb{R} ?

Même question avec l'ensemble des suites numériques réelles qui vérifient que $u_0 = 0$ et avec l'ensemble des suites numériques réelles qui vérifient que $u_{10} = 2016$.

Même question avec l'ensemble des suites numériques réelles qui vérifient que

$$\forall n \geq 0 \; ; u_{n+1} = \alpha u_n + 1$$

(où $\alpha \in \mathbb{R}$).

Exercice 3:

Soit n un entier naturel. Soient (a_0, \ldots, a_n) un ensemble de n+1 réels. On appelle fonction polynomiale réelle la fonction

$$x \mapsto a_0 + a_1 x + \ldots + a_n x^n = \sum_{i=0}^n a_i x^i$$
.

Montrer que l'ensemble des fonctions polynomiales réelles est un espace vectoriel sur \mathbb{R} . En est-il de même pour l'ensemble des fonctions polynomiales qui valent 1 en x=0?

Exercice 4:

Notons \mathcal{F}_2 l'ensemble des fonctions vectorielles (à valeurs dans \mathbb{R}^2) de la variable réelle t. On notera $F: t \mapsto F(t) = (F_1(t), F_2(t))$ une telle fonction. S'agit-il d'un espace vectoriel sur \mathbb{R} ? Soit n un entier naturel non nul. Que peut-on dire de l'ensemble \mathcal{F}_n des fonctions vectorielles (à valeurs dans \mathbb{R}^n) de la variable réelle t?

Exercice 5:

Soit a une fonction continue de \mathbb{R} dans \mathbb{R} . On considère l'ensemble \mathcal{E}_a des fonctions dérivables sur \mathbb{R} qui vérifient f'(x) = a(x)f(x). Montrer que \mathcal{E}_a est un espace vectoriel réel.

Soit b une seconde fonction continue de \mathbb{R} dans \mathbb{R} dont on suppose qu'elle n'est pas identiquement nulle. On considère l'ensemble $\mathcal{E}_{a,b}$ des fonctions dérivables sur \mathbb{R} qui vérifient f'(x) = a(x)f(x) + b(x). Est-ce un espace vectoriel?

Exercice 6:

Dans \mathbb{R}^2 , on définit une addition par :

$$\forall (x,y) \in \mathbb{R}^2, \ \forall (x',y') \in \mathbb{R}^2, \qquad (x,y) + (x',y') = (x+x',y+y'),$$

et une multiplication externe par :

$$\forall (x,y) \in \mathbb{R}^2, \ \forall \lambda \in \mathbb{R}, \qquad \lambda \cdot (x,y) = (\lambda x, 0).$$

Montrer que $(\mathbb{R}^2, +, \cdot)$ vérifie tous les axiomes d'espace vectoriel sauf un.