Results are obtained with \boldsymbol{h}_0^P estimated

ESTIMATED PARAMETERS ON WEDNESDAYS MLE UNDER P (10 YEARS), h_0^P IS ESTIMATED									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
ω	4.9786e - 12	6.8729e - 12	4.3520e - 12	2.1243e - 12	4.4677e - 12	4.6459e - 12	5.3720e - 08	1.3455e - 08	2.5847e - 08
std	(2.5440e - 12)	(9.3121e - 12)	(3.3343e - 12)	(1.0334e - 12)	(4.6145e - 12)	(6.3843e - 12)	(6.9933e - 08)	(4.3955e - 08)	(5.4676e - 08)
α	2.8645e - 06	3.0251e - 06	3.3176e - 06	3.4298e - 06	3.2345e - 06	3.8367e - 06	5.0097e - 06	4.7858e - 06	4.2950e - 06
std	(1.6263e - 07)	(1.4965e - 07)	(9.8398e - 08)	(9.1024e - 08)	(9.6257e - 08)	(4.4114e - 07)	(3.0257e - 07)	(5.1022e - 07)	(6.3185e - 07)
β	0.7557	0.7817	0.7784	0.7764	0.7524	0.7372	0.7188	0.7196	0.7324
std	(0.0087)	(0.0088)	(0.0038)	(0.0033)	(0.0085)	(0.0091)	(0.0105)	(0.0042)	(0.0127)
γ	281.1031	255.9455	244.4738	239.6074	262.2241	247.7985	221.2435	227.1399	232.8472
std	(14.0370)	(9.1797)	(4.2966)	(3.8619)	(6.0705)	(12.6628)	(4.5813)	(15.0732)	(19.3888)
λ	-0.6686	0.1149	0.8450	1.5824	1.6283	1.5275	1.1783	1.1495	1.7780
std	(0.1859)	(0.1649)	(0.4299)	(0.2289)	(0.1371)	(0.1714)	(0.1272)	(0.1072)	(0.5702)
h_0^P	1.7769e - 04	1.5068e - 04	2.7730e - 04	1.5454e - 04	4.7571e - 05	3.8895e - 05	3.3682e - 05	1.1355e - 04	1.7244e - 03
std	(1.0680e - 04)	(9.0269e - 05)	(2.0641e - 04)	(1.2388e - 04)	(2.5907e - 05)	(3.4979e - 05)	(2.8698e - 05)	(8.0638e - 05)	(2.0224e - 03)
persistency	0.9814	0.9796	0.9766	0.9732	0.9747	0.9709	0.9635	0.9641	0.9617
std	(0.0010)	(0.0008)	(0.0015)	(0.0012)	(0.0007)	(0.0029)	(0.0022)	(0.0029)	(0.0057)
logLikValue	3.0532	3.0791	3.1540	3.2141	3.2362	3.2307	3.2014	3.2182	3.2902