PERFORMANCE AND ENERGY

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- □ Homework 1 due on Jan 17th (midnight)
- □ TA office hours were posted
 - One/two more TAs may be added
- This lecture
 - Amdal's Law
 - Energy and power
 - Instruction set architecture (ISA)

Recall: Principles of Comp. Design

- Designing better computer systems requires better utilization of resources
 - Parallelism
 - Multiple units for executing partial or complete tasks
 - Principle of locality (temporal and spatial)
 - Reuse data and functional units
 - Common Case
 - Use additional resources to improve the common case
 - 10% of the program accounts for 90% of execution time (90-10 rule)

Amdahl's Law

□ The law of diminishing returns

 $= \frac{\text{Execution time after improvement}}{\text{Amount of improvement}} + \text{Execution time unaffected}$

Amdahl's Law

The law of diminishing returns

 $= \frac{\text{Execution time after improvement}}{\text{Amount of improvement}} + \text{Execution time unaffected}$

Execution time_{new} = Execution time_{old}
$$\times \left((1 - Fraction_{enhanced}) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}} \right)$$

Amdahl's Law

The law of diminishing returns

Execution time after improvement

 $= \frac{\text{Execution time affected by improvement}}{\text{Amount of improvement}} + \text{Execution time unaffected}$

$$Execution time_{new} = Execution time_{old} \times \left((1 - Fraction_{enhanced}) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}} \right)$$

$$Speedup_{overall} = \frac{Execution time_{old}}{Execution time_{new}} = \frac{1}{(1 - Fraction_{enhanced}) + \frac{Fraction_{enhanced}}{Speedup_{enhanced}}}$$

Example Problem

Our new processor is 10x faster on computation than the original processor. Assuming that the original processor is busy with computation 40% of the time and is waiting for IO 60% of the time, what is the overall speedup?

Example Problem

Our new processor is 10x faster on computation than the original processor. Assuming that the original processor is busy with computation 40% of the time and is waiting for IO 60% of the time, what is the overall speedup?

f=0.4 s=10
Speedup = 1 /
$$(0.6 + 0.4/10) = 1/0.64 = 1.5625$$

CPI example

- \Box Computer A: Cycle Time = 250ps, CPI = 2.0
- \Box Computer B: Cycle Time = 500ps, CPI = 1.2
- □ Same ISA
- Which is faster, and by how much?

CPI example

- \square Computer A: Cycle Time = 250ps, CPI = 2.0
- \Box Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- □ Which is faster, and by how much?

$$= I \times 2.0 \times 250 \text{ps} = I \times 500 \text{ps}$$

A is faster...

$$= I \times 1.2 \times 500 \text{ps} = I \times 600 \text{ps}$$

$$\frac{\text{CPU Time}_{B}}{\text{CPU Time}_{A}} = \frac{I \times 600 \text{ps}}{I \times 500 \text{ps}} = 1.2 \longleftarrow$$

...by this much

Measuring Performance

- □ What program to use for measuring performance?
- Benchmarks Suites
 - A set of representative programs that are likely relevant to the user
 - Examples:
 - SPEC CPU 2006: CPU-oriented programs (for desktops)
 - SPECweb: throughput-oriented (for servers)
 - EEMBC: embedded processors/workloads

SPEC CPU Benchmark

- Programs used to measure performance
 - Supposedly typical of actual workload
- Standard Performance Evaluation Corp (SPEC)
 - Develops benchmarks for CPU, I/O, Web, ...
- □ SPEC CPU2006
 - Elapsed time to execute a selection of programs
 - Negligible I/O, so focuses on CPU performance
 - Normalize relative to reference machine
 - Summarize as geometric mean of performance ratios
 - CINT2006 (integer) and CFP2006 (floating-point)

$$\int_{i=1}^{n} Execution time ratio_{i}$$

Power and Energy

- \square Power = Voltage x Current (P = VI)
 - Instantaneous rate of energy transfer (Watt)
- \Box Energy = Power x Time (E = PT)
 - The cost of performing a task (Joule)

Power and Energy

- \square Power = Voltage x Current (P = VI)
 - Instantaneous rate of energy transfer (Watt)
- \Box Energy = Power x Time (E = PT)
 - The cost of performing a task (Joule)

Power and Energy

- \square Power = Voltage x Current (P = VI)
 - Instantaneous rate of energy transfer (Watt)
- \Box Energy = Power x Time (E = PT)
 - The cost of performing a task (Joule)

CPU Power and Energy

- All consumed energy is converted to heat
 - CPU power is the rate of heat generation
 - Excessive peak power may result in burning the chip
- Static and dynamic energy components
 - Energy = (Power_{Static} + Power_{Dynamic}) x Time
 - Power_{Static} = Voltage x Current_{Static}
 - Power_{Dynamic} \propto Capacitance x Voltage² x (Activity x Frequency)