Linear Algebra: Exercises

1 Sets, Maps, and Complex Numbers

1.1 Sets

Exercise 1.1. Let

$$A = \{x \in \mathbb{R} | x^2 - 4x + 3 \le 0\}, B = \{x \in \mathbb{R} | |x - 1| \le 1\},\$$

and

$$C = \{x \in \mathbb{R} | x^2 - 5x + 6 \le 0\}.$$

Compute $(A \cup B) \cap C$ and $(A \cap B) \cup C$.

Exercise 1.2. Let A, B, C, D be arbitrary sets. Prove that

a)
$$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$$
.

$$e) \ (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

b)
$$A \cup (B \setminus A) = A \cup B$$
.

$$f) \ (A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D).$$

c)
$$(A \setminus B) \setminus C = A \setminus (B \cup C)$$
.

$$g)$$
 $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

$$d) A \setminus (A \setminus B) = A \cap B.$$

$$h)$$
 $(A \cap B) \times C = (A \times C) \cap (B \times C)$.

i) Is it true that $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$. If not, give a counterexample.

j) If
$$(A \cap C) \subset (A \cap B)$$
 and $(A \cup C) \subset (A \cup B)$, then $C \subset B$.

1.2 Maps

Exercise 1.3. Let $f: X \to Y$ be a map and $A, B \subset X; C, D \subset Y$. Prove that

a)
$$f(A \cup B) = f(A) \cup f(B)$$
,

d)
$$f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$$
,

b)
$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$
,

$$e) A \subset f^{-1}(f(A)),$$

c)
$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$
,

$$f) C \supset f(f^{-1}(C)).$$

g) $f(A \cap B) \subset f(A) \cap f(B)$. Give an example to show that the converse is not true.

Exercise 1.4. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x,2y) and $A = \{(x,y) \in \mathbb{R}^2 | (x-4)^2 + y^2 = 4\}$. Find $f(A), f^{-1}(A)$.

Exercise 1.5. Which of the following maps are injective, surjective, bijective?

a)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = 3 - 2x$$
,

e)
$$f: [4, 9] \rightarrow [21, 96], f(x) = x^2 + 2x - 3$$
,

b)
$$f:(-\infty,0] \to [4,+\infty), f(x) = x^2 + 4$$
,

$$f)$$
 $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x - 2|x|,$

c)
$$f:(1,+\infty)\to(-1,+\infty), f(x)=x^2-2x,$$
 g) $f:(-1,1)\to\mathbb{R}, f(x)=\ln\frac{1+x}{1-x},$

$$(g) \ f: (-1,1) \to \mathbb{R}, f(x) = \ln \frac{1+x}{1-x},$$

d)
$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{3\}, f(x) = \frac{3x+1}{x-1}$$
,

h)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{1}{\pi}$$

Exercise 1.6. Let $f(x) = -x^2 - 2x + 3$.

- a) Find a such that $f: \mathbb{R} \to (-\infty, a]$ is surjective.
- b) Find b such that $f:[b,+\infty)\to(-\infty,3]$ is injective.

Exercise 1.7. Let X, Y, Z be sets and $f: X \to Y, g: Y \to Z$ be maps. Prove that

- a) If f and g are injective, then $g \circ f$ is injective.
- b) If f and q are surjective, then $q \circ f$ is surjective.
- c) If f and g are bijective, then $g \circ f$ is bijective.
- d) If f is surjective and $g \circ f$ is injective, then g is injective.
- e) Give an example to show that $g \circ f$ is injective, but g is not.
- f) If g is is injective and $g \circ f$ is surjective, then f is surjective.
- q) Give an example to show that $q \circ f$ is surjective but f is not.

1.3 Algebraic Structures

Exercise 1.8. Consider the commutativity, associativity of the following binary operator * on \mathbb{R} and \circ on \mathbb{R}^2 and find the identity element, the inverse element.

$$a) \ x * y := xy + 1,$$

$$b) \ x * y := \frac{1}{2}xy,$$

c)
$$(x_1, x_2) \circ (y_1, y_2) := (\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2}).$$

Exercise 1.9. Let X, Y be sets, $*: Y \times Y \to Y$ is a commutative, associative binary operator with identity element e and $f: X \to Y$ be an bijection. Consider the binary operator on X as follow: $x_1 \circ x_2 = f^{-1}(f(x_1) * f(x_2))$. Prove that \circ is a commutative, associative binary operator with identity element.

Exercise 1.10. Which of the following sets is a group?

a)
$$(m\mathbb{Z}, +)$$
, where $m\mathbb{Z} = \{n \in \mathbb{Z} | n \text{ is divisible by } m\}$.

b)
$$(2^{\mathbb{Z}}, \times)$$
, where $2^{\mathbb{Z}} = \{2^n, n \in \mathbb{Z}\}.$

c) $(P_n(X), +)$, where $P_n(X)$ is the all real polynomials of degree not exceeding n.

Exercise 1.11. Let X be arbitrary set and consider the binary operator $x * y = x, \forall x, y \in X$. Prove that (X, *) is a semigroup.

Exercise 1.12. Lett X be a semigroup with the multiplication.

- a) Prove that if $ab = ba \forall a, b \in X$, then $(ab)^n = a^n b^n, n > 1$.
- b) Let $a, b \in X$ such that $(ab)^2 = a^2b^2$. Can we conclude that ab = ba?

Exercise 1.13. Prove that

a)
$$(\mathbb{Q}, +, \times)$$
 is a field.

b) The $(\mathbb{Z}, +, \times)$ is a ring but not a field.

Exercise 1.14. Which of the following sets is a ring? a field?

a)
$$X = \{a + b\sqrt{2} | a, b \in \mathbb{Z} \},\$$

b)
$$Y = \{a + b\sqrt{2} | a, b \in \mathbb{Q} \}$$

where the addition and multiplication are the common addition and multiplication

$$(a+b\sqrt{2}) + (c+d\sqrt{2}) = (a+c) + (b+d)\sqrt{2},$$

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}.$$

1.4 Complex Numbers

Exercise 1.15. Find the canonical forms of the following complex numbers.

a)
$$(1+i\sqrt{3})^9$$
,

c)
$$(2+i\sqrt{12})^5(\sqrt{3}-i)^{11}$$
,

$$b) \frac{(1+i)^{21}}{(1-i)^{13}},$$

$$d) \frac{2+3i}{5+4i}$$
.

Exercise 1.16. Solve the following equations in the field of complex numbers.

a)
$$z^2 + z + 1 = 0$$
,

$$e) \frac{(z+i)^4}{(z-i)^4} = 1,$$

b)
$$z^2 + 2iz - 5 = 0$$
.

$$f(z^8)(\sqrt{3}+i) = 1-i,$$

c)
$$z^4 - 3iz^2 + 4 = 0$$
.

$$g) \ \overline{z^7} = \frac{1}{z^3},$$

d)
$$z^6 - 7z^3 - 8 = 0$$
.

$$h) z^4 = z + \overline{z}.$$

2 Matrices

2.1 Matrix Operations

Exercise 2.1. Let
$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -1 \\ 0 & 3 & -2 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 1 \\ -2 & 3 & 0 \\ 1 & 2 & 4 \end{bmatrix}, C = \begin{bmatrix} -1 & 2 & 1 \\ 3 & 4 & 1 \\ 2 & 0 & 2 \end{bmatrix}.$$

Compute
$$A + BC$$
, $A^TB - C$, $A(BC)$, $(A + 3B)(B - C)$.

Exercise 2.2. Let
$$A = \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$.

- a) Compute $F = A^2 3A$,
- b) Find the matrix X satisfies $(A^2 + 5I)X = B^T(3A A^2)$.

Exercise 2.3. Find the matrix X such that:

a)
$$\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} + 2X = \begin{bmatrix} 1 & -2 \\ 5 & 7 \end{bmatrix}.$$

$$b) \ \frac{1}{2}X - \left[\begin{array}{ccc} 1 & -3 & 2 \\ 3 & -4 & 1 \\ 2 & -5 & 3 \end{array} \right] \left[\begin{array}{ccc} 2 & 5 & 6 \\ 1 & 2 & 5 \\ 1 & 3 & 2 \end{array} \right] = \left[\begin{array}{ccc} 0 & -6 & 6 \\ -2 & 9 & 2 \\ -4 & -8 & 6 \end{array} \right].$$

Exercise 2.4. Find all 2×2 matrices such that

a)
$$A^2 = I$$
.

b)
$$A^2 = 0$$
.

Exercise 2.5. Compute A^n , where

$$a) A = \begin{bmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{bmatrix}$$

$$b) \ A = \left[\begin{array}{ccc} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{array} \right]$$

Exercise 2.6. Show that the linear transformation y = Ax with matrix

$$A = \begin{bmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{bmatrix}, \text{ and } x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

is a counterclockwise rotation in the Cartesian x_1x_2 -coordinate system in the plane about the origin, where a is angle of rotation.

2.2 Determinants

Exercise 2.7. Compute the following determinants

$$a) A = \begin{vmatrix} 1 & 0 & 2 & -1 \\ 3 & 0 & 0 & 5 \\ 2 & 1 & 4 & -3 \\ 1 & 0 & 5 & 0 \end{vmatrix}$$

$$c) \ C = \begin{vmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 - x^2 & 2 & 3 \\ 2 & 3 & 1 & 5 \\ 2 & 3 & 1 & 9 - x^2 \end{vmatrix}$$

$$b) \ B = \begin{vmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{vmatrix}$$

$$d) \ D = \begin{vmatrix} 1+x & 1 & 1 & 1 \\ 1 & 1-x & 1 & 1 \\ 1 & 1 & 1+z & 1 \\ 1 & 1 & 1 & 1-z \end{vmatrix}.$$

Exercise 2.8. Prove that if A is a skew-symmetric (or antisymmetric or antimetric) matrix of order n, where n is odd, then det(A) = 0.

Exercise 2.9. Let A be a square matrix of order 2017. Prove that

$$\det(A - A^T)^{2017} = 2017(\det A - \det A^T).$$

Exercise 2.10. Let A, B be square matrices of order 2017 satisfy $AB + B^T A^T = 0$. Prove that $\det A = 0$ or $\det B = 0$.

Exercise 2.11. Let A, B be real square matrices of the same order. Prove that

$$\det(A^2 + B^2) \ge 0.$$

Exercise 2.12. Let $A = [a_{ij}]_{n \times n}$ be a complex matrix such that $a_{ij} = -\overline{a_{ji}}$. Prove that $\det(A)$ is a real number.

Exercise 2.13. Let A be an $n \times n$ square matrix satisfies $A^2 + 2017I = 0$. Prove that det A > 0.

Exercise 2.14. Prove that if A is a real square matrix satisfies $A^3 = A + I$, then det A > 0.

2.3 Rank of matrices

Exercise 2.15. Find the rank of the following matrices

a)
$$A = \begin{bmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -1 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{bmatrix}$$
.
b) $B = \begin{bmatrix} 4 & 3 & -5 & 2 & 3 \\ 8 & 6 & -7 & 4 & 2 \\ 4 & 3 & -8 & 2 & 7 \\ 4 & 3 & 1 & 2 & -5 \\ 8 & 6 & -1 & 4 & -6 \end{bmatrix}$.

2.4 Inverse of a Matrix

Exercise 2.16. Find the inverses of the matrices

a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
,
c) $C = \begin{bmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & 1 \end{bmatrix}$
b) $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 9 & 8 & 7 \end{bmatrix}$,
d) $D = \begin{bmatrix} 1 & -a & 0 & 0 \\ 0 & 1 & -a & 0 \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Exercise 2.17. Let A, B be square matrices of the same order satisfy AB = A + B. Prove that AB = BA.

2.5 Systems of Linear Equations

Exercise 2.18. Solve the following systems of linear equations

a)
$$\begin{cases} x_1 - 2x_2 + x_3 &= 4 \\ 2x_1 + x_2 - x_3 &= 0 \\ -x_1 + x_2 + x_3 &= -1 \end{cases}$$
d)
$$\begin{cases} (2 - a)x_1 + x_2 + x_3 &= 0 \\ x_1 + (2 - a)x_2 + x_3 &= 0 \end{cases}$$

$$x_1 + (2 - a)x_3 + x_3 &= 0$$

$$x_1 + x_2 + (2 - a)x_3 &= 0 \end{cases}$$
e)
$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 &= 2 \\ 7x_1 - 4x_2 + x_3 + 3x_4 &= 5 \\ 5x_1 + 7x_2 - 4x_3 - 6x_4 &= 3 \end{cases}$$

$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 &= 2 \end{cases}$$

$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 &= 2 \end{cases}$$

$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 &= 2 \end{cases}$$

$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 &= 2 \end{cases}$$

$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 &= 2 \end{cases}$$

$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 &= 3 \end{cases}$$

$$\begin{cases} 3x_1 - 4x_2 + x_3 + 3x_4 &= 3 \end{cases}$$

$$\begin{cases} 3x_1 - 3x_2 + 3x_3 &= 1 \\ -4x_1 + 2x_2 + x_3 &= 3 \end{cases}$$

$$\begin{cases} -2x_1 + x_2 + 4x_3 &= 4 \end{cases}$$

$$\begin{cases} 1x_1 + 2x_2 + 3x_3 &= 1 \end{cases}$$

$$\begin{cases} 3x_1 - 5x_2 - 6x_3 &= -10 \end{cases}$$

Exercise 2.19. Let A be a $m \times n$ matrix. Prove that the dimension of the set of solutions of the homogeneous system Ax = 0 is

$$n - \operatorname{rank} A$$
.

Exercise 2.20. Find the dimension and a basis of the set of solutions of the homogeneous system

$$\begin{cases} x_1 - x_2 + 2x_3 + 2x_4 - x_5 = 0 \\ x_1 - 2x_2 + 3x_3 - x_4 + 5x_5 = 0 \\ 2x_1 + x_2 + x_3 + x_4 + 3x_5 = 0 \\ 3x_1 - x_2 - 2x_3 - x_4 + x_5 = 0 \end{cases}$$

Exercise 2.21. Using Kirchhoff's laws and Gauss elimination method, find the currents in the following networks.

a)

b)

3 Vector Space

3.1 Basic concepts

Exercise 3.1. Determine whether V is a vector space?

a) $V = \{(x, y, z) | x, y, z \in \mathbb{R} \}$, the operations are defined as

$$(x, y, z) + (x', y', z') = (x + x', y + y', z + z')$$

$$k(x,y,z) = (|k|\,x,|k|\,y,|k|\,z), \quad k \in \mathbb{R}.$$

b) $V = \{x = (x_1, x_2) | x_1 > 0, x_2 > 0\} \subset \mathbb{R}^2$, the operations are defined as

$$(x_1, x_2) + (y_1, y_2) = (x_1y_1, x_2y_2)$$

$$k(x_1, x_2) = (x_1^k, x_2^k), \quad k \in \mathbb{R}.$$

3.2 Subspaces

Exercise 3.2. Let V_1, V_2 be linear subspaces of V and $V_1 + V_2 := \{x_1 + x_2 \mid x_1 \in V_1, x_2 \in V_2\}$. Prove that:

- a) $V_1 \cap V_2$ is a linear subspace of V.
- b) $V_1 + V_2$ is a linear subspace of V.

Exercise 3.3. Let V_1, V_2 be subspaces of V. Assume that

- i) $\{v_1, v_2, \cdots, v_m\}$ be a generator of V_1 , and
- ii) $\{u_1, u_2, \dots, u_n\}$ be a generator of V_2 .

Prove that $\{v_1, \dots, v_m, u_1, u_2, \dots, u_n\}$ is a generator of $V_1 + V_2$.

Exercise 3.4. Prove that $V = V_1 \oplus V_2$ if and only if each $v \in V$ has a unique representation

$$v = v_1 + v_2, (v_1 \in V_1, v_2 \in V_2).$$

¹We say that V is a direct sum of V_1 and V_2 and write $V = V_1 \oplus V_2$ if $V_1 + V_2 = V, V_1 \cap V_2 = \{0\}$.

Exercise 3.5. Express $v = (1, 2, 5) \in \mathbb{R}^3$ as a linear combination of the vectors u_1, u_2, u_3 where $u_1 = (1, -3, 2), u_2 = (2, -4, -1), u_3 = (1, -5, 7).$

Exercise 3.6. Express the polynomial $v = t^2 + 4t - 3$ over \mathbb{R} as a linear combination of the polynomials $p_1 = t^2 - 2t + 5$, $p_2 = 2t^2 - 3t$, $p_3 = t + 3$.

3.3 Linear Dependence and Independence

Exercise 3.7. Determine whether the following vectors are linearly dependent or linearly independent.

- a) $v_1 = (1, 2, 3), v_2 = (3, 6, 7).$
- b) $v_1 = (4, -2, 6), v_2 = (-6, 3, -9).$
- c) $v_1 = (2, 3, -1), v_2 = (3, -1, 5), v_3 = (-1, 3, -4).$
- d) $u = t^3 + 4t^2 2t + 3$, $v = t^3 + 6t^2 t + 4$, $w = 3t^3 + 8t^2 8t + 7$.

3.4 Bases and dimension

Exercise 3.8. Let $v_1 = (2, 0, 1, 3, -1), v_2 = (1, 1, 0, -1, 1), v_3 = (0, -2, 1, 5, -3), v_4 = (1, -3, 2, 9, -5).$

- a) Find the dimension and a basis of span (v_1, v_2, v_3, v_4) .
- b) Let $V_1 = \operatorname{span}(v_1, v_2), V_2 = \operatorname{span}(v_3, v_4)$. Find the dimension and a basis of $V_1 + V_2, V_1 \cap V_2$.

Exercise 3.9. Let $u_1 = (1, 3, -2, 1), u_2 = (-2, 3, 1, 1), u_3 = (2, 1, 0, 1), u = (1, -1, -3, m)$. Find m such that $u \in \text{span}(u_1, u_2, u_3)$.

Exercise 3.10. Let V_1, V_2 be finite dimensional spaces. Then

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2).$$

Exercise 3.11. Let

$$v_1 = 1 + x^2 + x^3$$
, $v_2 = x - x^2 + 2x^3$, $v_3 = 2 + x + 3x^3$, $v_4 = -1 + x - x^2 + 2x^3$

be vectors on $P_3[x]$.

- a) Find the rank of $\{v_1, v_2, v_3, v_4\}$.
- b) Find the dimension and a basis of span (v_1, v_2, v_3, v_4) .

Exercise 3.12. Let $v_1 = 1, v_2 = 1 + x, v_3 = x + x^2, v_4 = x^2 + x^3$ be vectors on $P_3[x]$.

- a) Prove that $\mathbb{B} = \{v_1, v_2, v_3, v_4\}$ is a basis of $P_3[x]$.
- b) Find the coordinates of $v = 2 + 3x x^2 + 2x^3$ with respect to this basis.
- c) Find the coordinates of $v = a_0 + a_1x + a_2x^2 + a_3x^3$ with respect to this basis.

Exercise 3.13. Let $E = \{1, x, x^2, x^3\}$ be the standard basis of $P_3[x]$ and $B = \{1, 1 + x, (1 + x)^2, (1 + x)^3\}$.

- a) Prove that B is a basis of $P_3[x]$.
- b) Find the transformation matrix from E to B and B to E.
- c) Find the coordinates of $v = 2 + 2x x^2 + 3x^3$ with respect to the basis B.

4 Linear Transformation

4.1 Kernel, Image

Exercise 4.1. Let $T: V \to W$ be a linear map. Prove that

a) Ker(T) is a subspace of V.

c) f is injective if and only if $Ker f = \{0\}$.

b) Im(T) is a subspace of W.

- d) f is surjective if and only if $\operatorname{Im} f = W$.
- e) $\dim \operatorname{Ker}(T) + \dim \operatorname{Im}(T) = \dim V$ (the rank-nullity theorem).

Exercise 4.2. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Prove that the following are equivalent

- a) f is injective.
- b) f is surjective.
- c) f is bijective.

4.2 Matrices and Linear Mappings

Exercise 4.3. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be a function defined by $f(x_1, x_2, x_3) = (3x_1 + x_2 - x_3, 2x_1 + x_3)$.

- a) Prove that f is a linear transformation.
- b) Find the matrix of f with respect to the standard bases.
- c) Find a basis of Ker f.

Exercise 4.4. Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be be a function defined by

$$f(x_1, x_2, x_3) = (x_1 + x_2 - x_3, x_1 - x_2 + x_3, -x_1 + x_2 + x_3).$$

Find the matrix of f with respect to the basis $B = \{v_1 = (1,0,0), v_2 = (1,1,0), v_3 = (1,1,1)\}$.

Exercise 4.5. Let the function $f: P_2[x] \to P_4[x]$ be a map defined as: $f(p) = p + x^2p, \forall p \in P_2[x]$

- a) Prove that f is a linear map.
- b) Find the matrix of f with respect to the bases $E_1 = \{1, x, x^2\}$ of $P_2[x]$ and $E_2 = \{1, x, x^2, x^3, x^4\}$ of $P_4[x]$.
- c) Find the matrix of f with respect to the bases $E_1' = \{1 + x, 2x, 1 + x^2\}$ of $P_2[x]$ and $E_2 = \{1, x, x^2, x^3, x^4\}$ of $P_4[x]$.

Exercise 4.6. Let $A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 0 & 5 \\ 6 & -2 & 4 \end{bmatrix}$ be the matrix of the linear transformation $f: P_2[x] \to P_2[x]$

with respect to the basis $\bar{B} = \{v_1, v_2, v_3\}$, where

$$v_1 = 3x + 3x^2, v_2 = -1 + 3x + 2x^2, v_3 = 3 + 7x + 2x^2.$$

a) Find
$$f(v_1), f(v_2), f(v_3)$$
.

b) Find
$$f(1+x^2)$$
.

Exercise 4.7. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Prove that $\operatorname{rank}(AB) \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$.

Exercise 4.8. Let A, B be $m \times n$ matrices. Prove that $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

4.3 Eigenvalues and Eigenvectors

Exercise 4.9. Find eigenvalues and a basis for each eigenspace of the following matrices:

a)
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
 c) $C = \begin{bmatrix} 2 & -1 & 0 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$ e) $E = \begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{bmatrix}$

Exercise 4.10. Let $f: P_2[x] \to P_2[x]$ be a linear transformation defined by

$$f(a_0 + a_1x + a_2x^2) = (5a_0 + 6a_1 + 2a_2) - (a_1 + 8a_2)x + (a_0 - 2a_2)x^2$$

Find eigenvalues and eigenvectors of f.

4.4 Diagonalizations

Exercise 4.11. Diagonalization the following matrices

a)
$$A = \begin{bmatrix} -14 & 12 \\ -20 & 17 \end{bmatrix}$$

b) $B = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$

$$c) \ C = \left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right] \qquad \qquad e) \ E = \left[\begin{array}{ccccc} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{array} \right].$$

$$f) \ F = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix}$$

$$g) \ G = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

Exercise 4.12. Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be a function defined as

$$f(x_1, x_2, x_3) = (2x_1 - x_2 - x_3, x_1 - x_2, -x_1 + x_2 + 2x_3).$$

 $Diagonalization\ the\ transformation\ f.$

Exercise 4.13. Find a basis of \mathbb{R}^3 such that the matrix of $f: \mathbb{R}^3 \to \mathbb{R}^3$ with respect to this basis is a diagonal matrix, where

$$f(x_1, x_2, x_3) = (2x_1 + x_2 + x_3, x_1 + 2x_2 + x_3, x_1 + x_2 + 2x_3).$$

Exercise 4.14. Prove that if A is an n-by-n matrix with real or complex entries and if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A (with multiplicities), then

- a) The eigenvalues of A^{-1} (assume that A is invertible) are $\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}$ (with multiplicities),
- b) The eigenvalues of A^2 are $\lambda_1^2, \cdots, \lambda_n^2$ (with multiplicities),
- c) The eigenvalues of A^p are $\lambda_1^p, \dots, \lambda_n^p$ (with multiplicities), where $1 \leq p \in \mathbb{N}$.

Exercise 4.15. Let
$$A = \begin{pmatrix} 4 & -12 \\ -12 & 11 \end{pmatrix}$$
. Compute A^n .

Exercise 4.16. The Fibonacci sequence is defined by: $F_0 = 0$, $F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$ if $n \ge 1$. Prove the following Cauchy-Binet formula

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

5 Quadratic Form- Euclidean Space

5.1 Inner product spaces

Exercise 5.1. Determine if the following are inner products on $P_3[x]$?

a)
$$p \cdot q = p(0)q(0) + p(1)q(1) + p(2)q(2)$$

b)
$$p \cdot q = p(0)q(0) + p(1)q(1) + p(2)q(2) + p(3)q(3)$$

c)
$$p \cdot q = \int_{-1}^{1} p(x)q(x)dx$$
.

In case it is, compute $p \cdot q$, where $p = 2 - 3x + 5x^2 - x^3$, $q = 4 + x - 3x^2 + 2x^3$.

Exercise 5.2. Let $\mathbb{B} = \{e_1, e_2, ..., e_n\}$ be a basis of an n-dimensional vector space V. If $u, v \in V$, then $\begin{cases} [u]_{\mathbb{B}} = (a_1, a_2, ..., a_n), \\ [v]_{\mathbb{B}} = (b_1, b_2, ..., b_n) \end{cases}$ be the coordinate columns of u and v. We define

$$u \cdot v = a_1b_1 + a_2b_2 + \dots + a_nb_n.$$

- a) Prove that this is an inner product on V.
- b) Apply for $V = \mathbb{R}^3$, where $e_1 = (1,0,1)$, $e_2 = (1,1,-1)$, $e_3 = (0,1,1)$, u = (2,-1,-2), v = (2,0,5) and compute $u \cdot v$.
- c) Apply for $V = P_2[x]$, where $\mathbb{B} = \{1, x, x^2\}$, $u = 2 + 3x^2$, $v = 6 3x 3x^2$ and compute $u \cdot v$.
- d) Apply for $V = P_2[x]$, where $\mathbb{B} = \{1 + x, 2x, x x^2\}$, $u = 2 + 3x^2, v = 6 3x 3x^2$ and compute $u \cdot v$.

5.2 Length (Norm) of vectors

Exercise 5.3. Let V be an Euclidean space. Prove that for all $u, v \in V$,

$$\begin{cases} \|u+v\|^2 + \|u-v\|^2 = 2\left(\|u\|^2 + \|v\|^2\right), \\ u \perp v \Leftrightarrow \|u+v\|^2 = \|u\|^2 + \|v\|^2. \end{cases}$$

5.3 Orthogonality

Exercise 5.4. Apply the Gram-Schmidt process to the vectors $\{u_1, u_2, u_3, u_4\}$, where

$$u_1 = (1, 1, 1, 1), u_2 = (0, 1, 1, 1), u_3 = (0, 0, 1, 1), u_4 = (0, 0, 0, 1).$$

Exercise 5.5. Let the inner product on $P_2[x]$ be defined as $p \cdot q = \int_{-1}^{1} p(x)q(x)dx$, where $p, q \in P_2[x]$.

- a) Apply the Gram-Schmidt process to the basis $\mathbb{B} = \{1, x, x^2\}$ to get an orthonormal basis A.
- b) Find the change of basis matrix for converting the basis $\mathbb B$ to the basis $\mathcal A$
- c) Find the coordinate vector $[r]_A$ if $r = 2 3x + 3x^2$

Exercise 5.6. Let

$$v_1 = (1, 1, 0, 0, 0), v_2 = (0, 1, -1, 2, 1), v_3 = (2, 3, -1, 2, 1)$$

and
$$V = \{ x \in \mathbb{R}^5 | x \perp v_i, i = 1, 2, 3 \}$$

- a) Prove that V is a subspace of \mathbb{R}^5 .
- b) $Find \dim V$.

5.4 Projection

Exercise 5.7. Let $v_1 = (6, 3, -3, 6), v_2 = (5, 1, -3, 1)$. Find the projection of v = (1, 2, 3, 4) onto $U = \operatorname{span}(v_1, v_2)$.

Exercise 5.8. Find the projection of u on v, where

a)
$$u = (1, 3, -2, 4)$$
 onto $v = (2, -2, 4, 5)$, b) $u = (4, 1, 2, 3, -3), v = (-1, -2, 5, 1, 4)$.

5.5 Orthogonal diagonalization

Exercise 5.9. Orthogonal diagonalization of the following symmetric matrices

$$a) \ A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

$$c) \ C = \left[\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$b) \ B = \left[\begin{array}{cc} -7 & 24 \\ 24 & 7 \end{array} \right]$$

$$d) \ D = \left[\begin{array}{rrr} 7 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 5 \end{array} \right]$$

5.6 Quadratic forms

Exercise 5.10. Determine the definiteness of the following quadratic form on \mathbb{R}^3 .

a)
$$\omega_1(x_1, x_2, x_3) = x_1^2 + 5x_2^2 - 4x_3^2 + 2x_1x_2 - 4x_1x_3$$
, c) $2x_1^2 + x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3$,

c)
$$2x_1^2 + x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3$$

b)
$$\omega_2(x_1, x_2, x_3) = x_1x_2 + 4x_1x_3 + x_2x_3,$$
 d) $\omega_3 = 5x^2 + 2y^2 + z^2 - 6xy + 2xz - 2yz.$

d)
$$\omega_3 = 5x^2 + 2y^2 + z^2 - 6xy + 2xz - 2yz$$

Exercise 5.11. Find a such that the following quadratic forms are positive definite:

a)
$$5x_1^2 + x_2^2 + ax_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$$
.

a)
$$5x_1^2 + x_2^2 + ax_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$$
. c) $x_1^2 + x_2^2 + 5x_3^2 + 2ax_1x_2 - 2x_1x_3 + 4x_2x_3$.

b)
$$2x_1^2 + x_2^2 + 3x_3^2 + 2ax_1x_2 + 2x_1x_3$$
.

Exercise 5.12. Lagrange reduction of quadratic forms to canonical (diagonal) form

a)
$$\omega_1(x_1, x_2, x_3) = x_1^2 + 5x_2^2 - 4x_3^2 + 2x_1x_2 - 4x_1x_3$$
, d) $5x_1^2 + x_2^2 + ax_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$.

d)
$$5x_1^2 + x_2^2 + ax_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$$

b)
$$\omega_2(x_1, x_2, x_3) = x_1x_2 + 4x_1x_3 + x_2x_3$$

b)
$$\omega_2(x_1, x_2, x_3) = x_1x_2 + 4x_1x_3 + x_2x_3$$
, e) $2x_1^2 + x_2^2 + 3x_3^2 + 2ax_1x_2 + 2x_1x_3$.

c)
$$\omega_3 = 5x^2 + 2y^2 + z^2 - 6xy + 2xz - 2yz$$
.

$$c) \ \omega_3 = 5x^2 + 2y^2 + z^2 - 6xy + 2xz - 2yz. \\ f) \ x_1^2 + x_2^2 + 5x_3^2 + 2ax_1x_2 - 2x_1x_3 + 4x_2x_3.$$

Exercise 5.13. Orthogonal diagonalization of the following quadratic forms

a)
$$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2$$

c)
$$2x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 + 2x_2x_3$$

$$b) \ 7x_1^2 - 7x_2^2 + 48x_1x_2$$

$$d) \ 5x_1^2 + x_2^2 + x_3^2 - 6x_1x_2 + 2x_1x_3 - 2x_2x_3.$$

5.7 Quadratic lines and surfaces

Exercise 5.14. Classify the following quadratic curves

a)
$$2x^2 - 4xy - y^2 + 8 = 0$$

$$d) \ 2x^2 + 4xy + 5y^2 = 24$$

$$b) x^2 + 2xy + y^2 + 8x + y = 0$$

$$e) \ x^2 + xy - y^2 = 18$$

13

$$c) \ 11x^2 + 24xy + 4y^2 - 15 = 0$$

$$f) \ x^2 - 8xy + 10y^2 = 10.$$

Exercise 5.15. Classify the following quadratic surfaces

a)
$$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 = 4$$
,

c)
$$2x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 - 2x_2x_3 = 16$$
,

b)
$$5x^2 + 2y^2 + z^2 - 6xy + 2xz - 2yz = 1$$
, d) $7x^2 - 7y^2 + 24xy + 50x - 100y - 175 = 0$,

$$1) 7x^2 - 7y^2 + 24xy + 50x - 100y - 175 = 0.$$

e)
$$7x^2 + 7y^2 + 10z^2 - 2xy - 4xz + 4yz - 12x + 12y + 60z = 24$$
,

$$f) \ 2xy + 2yz + 2xz - 6x - 6y - 4z = 0.$$

Exercise 5.16. Let $Q(x_1, x_2, x_3) = 9x_1^2 + 7x_2^2 + 11x_3^2 - 8x_1x_2 + 8x_1x_3$.

$$a) \ \ Find \ \max_{x_1^2 + x_2^2 + x_3^2 = 1} Q\left(x_1, x_2, x_3\right), \\ \min_{x_1^2 + x_2^2 + x_3^2 = 1} Q\left(x_1, x_2, x_3\right).$$

$$b) \ \ Find \max_{x_1^2 + x_2^2 + x_3^2 = 16} Q\left(x_1, x_2, x_3\right), \min_{x_1^2 + x_2^2 + x_3^2 = 16} Q\left(x_1, x_2, x_3\right).$$