Task1(" TITANIC SURVIVAL PREDICTION")

```
import pandas as pd
 In [96]:
           import numpy as np
           import matplotlib.pyplot as plt
           import seaborn as sns
           from sklearn.model_selection import train_test_split
           from sklearn.preprocessing import LabelEncoder
           from sklearn.impute import SimpleImputer
           from sklearn.linear model import LogisticRegression
           from sklearn.metrics import accuracy_score, confusion_matrix, classification_rep
 In [97]: sns.set(style='white')
          df = pd.read_csv(r"C:\Users\gonda\Titanic-Dataset.csv")
           df.head()
In [101...
Out[101...
                                                          Sex Age SibSp Parch
              PassengerId Survived Pclass
                                                Name
                                                                                       Ticket
                                               Braund,
                                                                                         A/5
           0
                        1
                                  0
                                             Mr. Owen
                                                          male 22.0
                                                                                 0
                                                                                               7.2
                                                                                       21171
                                                 Harris
                                              Cumings,
                                              Mrs. John
                                                Bradley
           1
                        2
                                                        female 38.0
                                  1
                                                                         1
                                                                                 0 PC 17599 71.2
                                              (Florence
                                                Briggs
                                                  Th...
                                             Heikkinen,
                                                                                    STON/O2.
           2
                        3
                                  1
                                          3
                                                  Miss.
                                                        female 26.0
                                                                         0
                                                                                               7.9
                                                                                     3101282
                                                 Laina
                                               Futrelle,
                                                  Mrs.
                                               Jacques
           3
                                  1
                                                        female 35.0
                                                                         1
                                                                                 0
                                                                                      113803 53.1
                                                 Heath
                                              (Lily May
                                                  Peel)
                                              Allen, Mr.
                        5
                                  0
           4
                                          3
                                               William
                                                          male 35.0
                                                                         0
                                                                                 0
                                                                                      373450
                                                                                               3.8
                                                 Henry
           df.info()
In [102...
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
dtypes: $float64(2)$, $int64(5)$, $object(5)$						

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [103...

df.describe()

Out[103...

	PassengerId	Survived	Pclass	Age	SibSp	Parch	
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.91(
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329

In [106...

```
plt.figure(figsize=(6,4))
sns.countplot(x='Survived', data=df, palette='Set3')
plt.title('Survival Count (0 = No, 1 = Yes)')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.show()
```

C:\Users\gonda\AppData\Local\Temp\ipykernel_15760\1414992181.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v 0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

```
sns.countplot(x='Survived', data=df, palette='Set3')
```

Survival Count (0 = No, 1 = Yes)


```
In [ ]:
In [107... plt.figure(figsize=(6, 4))
    sns.countplot(x='Sex', hue='Survived', data=df, palette='Set2')
    plt.title('Survival Count by Gender')
    plt.show()
```



```
In [110... plt.figure(figsize=(6, 4))
    sns.countplot(x='Pclass', hue='Survived', data=df, palette='Set1')
    plt.title('Survival by Passenger Class')
    plt.show()
```

Survival by Passenger Class


```
In [113...
    plt.figure(figsize=(8, 5))
    sns.histplot(df['Age'].dropna(), bins=30, kde=True, color='red')
    plt.title('Age Distribution of Passengers')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [67]: df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True)
In [68]: imputer = SimpleImputer(strategy='most_frequent')
```

```
df[['Age', 'Embarked']] = imputer.fit_transform(df[['Age', 'Embarked']])
In [69]: le_sex = LabelEncoder()
          le_embarked = LabelEncoder()
          df['Sex'] = le_sex.fit_transform(df['Sex'])
          df['Embarked'] = le_embarked.fit_transform(df['Embarked'])
In [70]: X = df.drop("Survived", axis=1)
          y = df["Survived"]
In [71]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
In [72]: model = LogisticRegression(max_iter=200)
          model.fit(X_train, y_train)
Out[72]:
               LogisticRegression
          LogisticRegression(max_iter=200)
In [73]: y_pred = model.predict(X_test)
In [74]: print("Accuracy:", accuracy_score(y_test, y_pred))
          print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
          print("Classification Report:\n", classification_report(y_test, y_pred))
         Accuracy: 0.7988826815642458
         Confusion Matrix:
         [[90 15]
         [21 53]]
         Classification Report:
                        precision recall f1-score support
                    0
                                    0.86
                                                0.83
                                                           105
                           0.81
                    1
                           0.78
                                     0.72
                                                0.75
                                                           74
                                                0.80
                                                           179
            accuracy
            macro avg
                           0.80
                                      0.79
                                                0.79
                                                           179
                                     0.80
                                                0.80
                                                           179
         weighted avg
                           0.80
 In [ ]:
In [120...
          plt.figure(figsize=(5, 4))
          sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d", cmap="OrRd",
          xticklabels=["Not Survived", "Survived"], yticklabels=["Not Survived", "Survived"
          plt.title("Confusion Matrix")
          plt.ylabel("True Label")
          plt.xlabel("Predicted Label")
          plt.show()
```


