1. 由题意:
$$A = \{0, 1, 2, 3\}, B = \{5, 6, 7, 8, 9\};$$
 则 $A \cup B = \{0, 1, 2, 3, 5, 6, 7, 8, 9\}, AB = \emptyset$ $\bar{A} = \{4, 5, 6, 7, 8, 8, 9\}, \bar{B} = \{0, 1, 2, 3, 4\}$

$$\begin{aligned} 2.\bar{A} &= \{x \in \Omega: \ x < 1 \ or \ x > 5\}, \ \ A \cup B = \{x \in \Omega: \ 1 \leq x < 7\} \\ B\bar{C} &= \{x \in \Omega: \ 3 < x < 7\}, \ \ \bar{A} \cap \bar{B} \cap \bar{C} = \{x \in \Omega: \ 0 \leq x < 1 \ or \ x \geq 7\} \\ (A \cup B)C &= \emptyset \end{aligned}$$

- 3.(1) $\bar{A}=$ "掷三枚硬币,至少有一次为反面";
- (2) \bar{B} = "抽检一批产品,最多有两个次品";
- (3) $\bar{C}=$ "射击三次,至少命中两次"
- 4.原命题等价于对于任意正整数n:

$$\overline{igcup_{i=1}^n A_i} = igcap_{i=1}^n \overline{A_i}, \ \overline{igcap_{i=1}^n A_i} = igcup_{i=1}^n \overline{A_i}$$

首先对于左边的式子,当n = 1时显然成立,当n = 2时,由 $\overline{A_1} \cup \overline{A_2} = \overline{A_1} \cap \overline{A_2}$,可知上式成立当假设当n = k时,上面的式子成立,即:

$$\overline{igcup_{i=1}^k A_i} = igcap_{i=1}^k \overline{A_i}$$

当n = k + 1时:

$$\overline{\bigcup_{i=1}^{k+1} A_i} = \overline{A_1 \bigcup A_2 \dots \bigcup A_{k-1} \bigcup (A_k \bigcup A_{k-1})} = \overline{A_1} \bigcap \overline{A_2} \dots \bigcap \overline{A_{k-1}} \bigcap (\overline{A_k \bigcup A_{k+1}})$$

$$= \overline{A_1} \bigcap \overline{A_2} \dots \bigcap \overline{A_{k-1}} \bigcap (\overline{A_k} \bigcap \overline{A_{k+1}}) = \bigcap_{i=1}^{k+1} \overline{A_i}$$

也满足左式, 所以有数学归纳法可得左式成立;

对于右式,可以由左式得到:

$$\bigcap_{i=1}^{n}A_{i}=\bigcap_{i=1}^{n}\overline{\overline{A_{i}}}=\overline{igcup_{i=1}^{n}\overline{A_{i}}}=\overline{igcup_{i=1}^{n}\overline{A_{i}}}=\overline{igcup_{i=1}^{n}\overline{A_{i}}}$$

5.(1)由于 $A, B \in F$,根据事件域的定义, $A \cup B \in F$

(2)
$$AB=\overline{\overline{A}\cup\overline{B}}$$
, 由 $A,B\in F o\overline{A},\overline{B}\in F, o\overline{\overline{A}\cup\overline{B}}\in F$,可得 $AB\in F$

 $(3)A \setminus B = A \cap \overline{B}$, 由于 $\overline{B} \in F$, $\to A \cap \overline{B} \in F$ (由2的结论), 可得 $A \setminus B \in F$

 $(4)A\triangle B=(A\cap \overline{B})\cup (\overline{A}\cap B)$, 由于 $A\cap \overline{B},\overline{A}\cap B\in F$ (由3的结论),可得 $A\triangle B\in F$

6.(1).证明 $A(B \cup C) = (AB) \cup (AC)$

对于任意 $\omega \in A(B \cup C) \to \omega \in A$, $\omega \in B$ 或 $\omega \in C$, 当 $\omega \in B \to \omega \in AB \to \omega \in (AB) \cup (AC)$, 同理当 $\omega \in C$, $\omega \in (AB) \cup (AC)$

而对于任意 $\omega\in(AB)\cup(AC)\to\omega\in AB$ 或 $\omega\in AC$, 当 $\omega\in AB$, $\omega\in A$ 且 $\omega\in B\cup C$,则 $\omega\in A(B\cup C)$,同理当 $\omega\in AC$, $\omega\in A(B\cup C)$

综上, $A(B \cup C) = (AB) \cup (AC)$

(2). 证明 $A \cup (BC) = (A \cup B)(A \cup C)$

对于任意 $\omega \in A \cup (BC)$, 则 $\omega \in A$ 或 $\omega \in BC$, 当 $\omega \in A$, $\omega \in A \cup B$ 且 $\omega \in A \cup C$, 得出 $\omega \in (A \cup B)(A \cup C)$, 当 $\omega \in BC$, 则 $\omega \in B$ 且 $\omega \in C$, 则 $\omega \in A \cup B$ 且 $\omega \in A \cup C$, 得 $\omega \in (A \cup B)(A \cup C)$

对于任意 $\omega \in (A \cup B)(A \cup C)$, 得 $\omega \in A \cup B$ 且 $\omega \in A \cup C$, 则当 $\omega \in A$ 时, $\omega \in A \cup (BC)$, 否则, $\omega \in B$ 且 $\omega \in C$, 得 $\omega \in BC$, 则 $\omega \in A \cup (BC)$

综上, $A \cup (BC) = (A \cup B)(A \cup C)$

- 7. 证明 :(1) 当取 $A=\Omega \ o \ AB=B=\Omega_B$,则 $\Omega_B \in F_B$
 - (2). 对于 $\overline{AB} \in F_B$, 对于任意 $\omega \in AB \to \omega \in B$, 则 $AB \subset \Omega_B$, 则 $\overline{AB} = B AB$, 所以对于任意 $\omega \in \overline{AB}$, $\omega \in \Omega_B$, 推出 $\overline{AB} \in F_B$
 - (3) 对于任意 $A_1B \in F_B$, $A_2B \in F_B$, $A_1B \cup A_2B = (A1 \cup A2)B$, 而 $A_1 \in F$, $A_2 \in F$, 可推出 $(A1 \cup A2) \in F$, 则 $(A1 \cup A2)B \in F_B$

由以上三条可以推出 F_B 为 Ω_B 上的事件域