EE-508: Hardware Foundations for Machine Learning GPU Programming

University of Southern California

Ming Hsieh Department of Electrical and Computer Engineering

Instructors:
Arash Saifhashemi

Shader vs Cuda Programming

Shading and Texture

An example of two kinds of shaders: Flat shading on the left and Phong shading on the right.

GPU vs CPU

GPU vs GPGPU

- GPU: Graphics Processing Unit
- GPGPU: General Purpose GPU
 - Using a GPU for non-graphics computations
 - E.g.: Al, deep learning, scientific simulations, and big data processing

A manrepairing mining equipment in the basement of a home in Zaarouriyeh. Source CNBC

NVIDIA HGX A100 consisting of 4 or 8 NVIDIA A100 Tensor Core GPUs

Shader Programming

- Small programs that run on the GPU to control how pixels and vertices are processed and displayed on the screen
- **Flexibility**: Shaders can also be used for general-purpose computing tasks. However, this use is somewhat limited by the design and structure of the shading languages (like GLSL or HLSL).
- Portability: Shaders written in languages like GLSL can run on a wide range of GPUs from different manufacturers, offering a degree of portability across platforms.

How is a Shader Program Run on GPU?

Shader Program Binaries:

 The application sends GPU shader program binaries through the graphics driver.

Set Pipeline Parameters:

• The application configures graphics pipeline settings, such as output image dimensions.

Vertex Buffer:

 The application supplies the GPU with a buffer containing vertex data (attributes that define the geometry of objects in 3D rendering).

Draw Command:

 The application issues a "draw" command to the GPU.

Source:

https://glasnost.itcarlow.ie/``powerk/General Graphics Notes/Theory/Shaders.htm

CUDA

- Compute Unified Device Architecture
 - A parallel computing platform and programming model to use NVIDIA GPUs for general purpose processing (GPGPU).
 - Flexibility: Provides a wide range of features for complex parallel computations.
 - Memory management, parallel execution of threads, and direct access to GPU hardware features.
 - Portability: Proprietary to NVIDIA GPUs.

Standard C Code

C with CUDA extensions

• Load Program: OS loads program into memory.

Quad-core CPU:

Source: phoenixnap.com

- Load Program: OS loads program into memory.
- Select Context: OS selects a CPU execution context.
 - An execution context includes information necessary for the CPU to execute the program, such as the state of registers.

Quad-core CPU:

Source: phoenixnap.com

- Load Program: OS loads program into memory.
- Select Context: OS selects a CPU execution context.
 - An execution context includes information necessary for the CPU to execute the program, such as the state of registers.
- Prepare Context: OS sets up execution context.
 - Setting the contents of the CPU's registers, initializing the program counter to point to the start of the program, and configuring other necessary state information.

Quad-core CPU:

Source: phoenixnap.con

- Load Program: OS loads program into memory.
- **Select Context**: OS selects a CPU execution context.
 - An execution context includes information necessary for the CPU to execute the program, such as the state of registers.
- Prepare Context: OS sets up execution context.
 - Setting the contents of the CPU's registers, initializing the program counter to point to the start of the program, and configuring other necessary state information.
- Interrupt CPU and Start Execution:
 - The OS interrupts the processor to switch its attention to the program's execution context.

Quad-core CPU:

Source: phoenixnap.con

- Load Program: OS loads program into memory.
- **Select Context**: OS selects a CPU execution context.
 - An execution context includes information necessary for the CPU to execute the program, such as the state of registers.
- Prepare Context: OS sets up execution context.
 - Setting the contents of the CPU's registers, initializing the program counter to point to the start of the program, and configuring other necessary state information.
- Interrupt CPU and Start Execution:
 - The OS interrupts the processor to switch its attention to the program's execution context.
- **Execute Instructions**: Processor executes the program's instructions.

Quad-core CPU:

Source: phoenixnap.com

How is a CUDA Program Run on GPU?

- Load Data into CPU Memory
- Copy and allocate Data to GPU Memory
- Execute GPU Kernel
- Synchronize and copy Results to CPU Memory:
 - After processing, transfer the results from the GPU's memory back to the CPU's memory.
- Use Results on CPU

Hardware Abstraction

Hardware will assign the thread blocks on SMs

Memory Hierarchy

Hardware will assign the thread blocks on SMs

Traditional Program Structure in CUDA

Function prototypes

```
float serialFunction(...);
   __global_ void kernel(...)
main()

    Allocate memory space on the device – cudaMalloc(&d in, bytes);

   • Transfer data from host to device - cudaMemCpy(d in, h in, ...);
    • Execution configuration setup: #blocks and #threads

    Kernel call - kernel <<<execution configuration>>> (args...);

    • Transfer results from device to host - cudaMemCpy (hout, dout, ...);
• Kernel: global void kernel(type args,...)
      Automatic variables (local variables declared inside a function) transparently assigned to registers
      Shared memory: shared___
      Intra-block synchronization: syncthreads();
```

CUDA Programming Language

Memory allocation

```
cudaMalloc((void**)&d_in, #bytes);
```

Memory copy

```
cudaMemcpy(d_in, h_in, #bytes, cudaMemcpyHostToDevice);
```

Kernel launch

```
kernel<<< #blocks, #threads >>>(args);
```

Memory deallocation

```
cudaFree(d_in);
```

• Explicit synchronization

```
cudaDeviceSynchronize();
```

NVCC Compiler

Simple CUDA Example

```
1 block
int main()
                                                 global:
                      N threads per block
                                                     In GPU, called from host/GPU
                                                 device :
    // Kernel invocation with N threads
                                                      In GPU, called from GPU
    VecAdd<<<1, N>>>(A, B, C);
                                                 host :
     Should wait for kernel to finish
                                                      In host, called from host
                               N instances of VecAdd spawned in GPU
// Kernel definition
  global__ void VecAdd(float* A, float* B, float* C)
                                                                  One function can
                                                                      be both
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
                                     Which of N threads am I?
         Only void allowed
                                     See also: blockIdx
```

Indexing and Memory Access

- Images are 2D data structures
 - height x width
 - Image[j][i], where $0 \le j < \text{height}$, and $0 \le i < \text{width}$

Image Layout in Memory

- Row-major layout
- Image[j][i] = Image[j x width + i]

Indexing and Memory Access: 1D Grid

- One GPU thread per pixel
- Grid of Blocks of Threads
 - gridDim.x, blockDim.x
 - blockIdx.x, threadIdx.x

Performance Considerations

- Main bottlenecks
 - Global memory access
 - CPU-GPU data transfers
- Memory access
 - Latency hiding
 - Occupancy
 - Memory coalescing
 - Data reuse
 - Shared memory usage
- SIMD (Warp) Utilization: Divergence
- Atomic operations: Serialization
- Data transfers between CPU and GPU
 - Overlap of communication and computation

Latency Hiding

- FGMT can hide long latency operations (e.g., memory accesses)
- Occupancy: ratio of active warps

- Idle or stalled warps appear in purple waves.
 - When a warp accesses global memory, it stalls (waiting for memory).
 - If there are enough active warps, the GPU can schedule another warp, hiding the latency.

Left Side (Good Warp Scheduling - Full Latency Hiding):

- •Many active warps (green waves) execute while some are waiting for memory (purple).
- •The GPU remains fully utilized, maximizing throughput.

Right Side (Bad Warp Scheduling - Partial Latency Hiding):

- Fewer warps are available for execution.
- When one warp stalls due to memory access, not enough warps are ready to take over.
- This leads to idle execution slots, reducing performance.

Memory Coalescing

- When accessing global memory, we want to make sure that concurrent threads access nearby memory locations
- Peak bandwidth utilization occurs when all threads in a warp access one cache line

Uncoalesced Memory Accesses

Coalesced Memory Accesses

Access direction in Kernel code


```
Structure of
Arrays
(SoA)
```

```
struct foo{
  float a[8];
  float b[8];
  float c[8];
  int d[8];
} A;
```


Array of Structures (AoS)

```
struct foo{
  float a;
  float b;
  float c;
  int d;
} A[8];
```



```
struct foo{
                float a[8];
Structure of
                float b[8];
  Arrays
                float c[8];
  (SoA)
                int d[8];
               } A;
               struct foo{
                float a;
 Array of
                float b;
Structures
                float c;
  (AoS)
                int d;
               } A[8];
```

Which one is better for a program on CPU?

```
struct foo{
                float a[8];
Structure of
                float b[8];
  Arrays
                float c[8];
   (SoA)
                int d[8];
                } A;
               struct foo{
                float a:
 Array of
                float b;
 Structures
                float c;
   (AoS)
                int d:
```

Which one is better for a program on CPU?

} A[8];

• If your operations require accessing multiple different fields of a structure at once, AoS might be more efficient because they will likely be in the same cache line.

```
struct foo{
                float a[8];
Structure of
                float b[8];
  Arrays
                float c[8];
  (SoA)
                int d[8];
               } A;
               struct foo{
                float a;
 Array of
                float b;
Structures
                float c;
  (AoS)
                int d;
               } A[8];
```

Which one is better for a program on GPU?

```
Structure of Arrays (SoA)
```

```
struct foo{
  float a[8];
  float b[8];
  float c[8];
  int d[8];
} A;
```


Array of Structures (AoS)

```
struct foo{
  float a;
  float b;
  float c;
  int d;
} A[8];
```


- Which one is better for a program on GPU?
 - SoA allows threads in a warp access contiguous memory addresses.

AoS vs SoA

```
struct Particle {
 float x, y, z; // Position
 float vx, vy, vz; // Velocity
 global void updateParticles(Particle *particles, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) {
   particles[i].x += particles[i].vx; // Uncoalesced
   particles[i].y += particles[i].vy;
   particles[i].z += particles[i].vz;
                               struct ParticleSoA {
                                 float *x, *y, *z;
                                 float *vx, *vv, *vz;
                               };
                                 global void updateParticles(float *x, float *y, float *z,
                                          float *vx, float *vy, float *vz, int N) {
                                 int i = blockIdx.x * blockDim.x + threadIdx.x;
                                 if (i < N) {
                                   x[i] += vx[i]; // Coalesced memory access
                                  y[i] += vy[i];
                                   z[i] += vz[i];
```

Data Reuse

Same memory locations accessed by neighboring threads


```
for (int i = 0; i < 3; i++) {
  for (int j = 0; j < 3; j++) {
    sum += gauss[i][j] * image[(i+row-1)*width + (j+col-1)];
  }
}</pre>
```

Data Reuse: Tiling

To take advantage of data reuse, we divide the input into tiles that can be

loaded into shared memory


```
__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
...
// Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
   for (int j = 0; j < 3; j++){
      sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];
   }
}</pre>
```

Branching in Threads

- Threads in a warp start together at the same program address, but they are free to branch and execute independently.
- Branch divergence occurs when threads inside warps branch to different execution paths

If threads of a warp **diverge** via a data dependent conditional branch, the warp **serially executes** each branch path taken, disabling threads that are not on that path, and when all paths complete, the threads **reconverge** to the original execution path.

Divergence in a warp

```
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0) {
   Do_this(threadIdx.x);
}
else {
   Do_that(threadIdx.x);
}
```


Divergence in a warp

```
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0) {
   Do_this(threadIdx.x);
}
else {
   Do_that(threadIdx.x);
}
```

- Half of the threads will diverge: Branching on whether a thread's index is even or odd.
- Threads within a warp must serially execute both paths of the branch, reducing parallelism.

Divergence-free execution

```
Compute(threadIdx.x);
if (threadIdx.x < 32) {
   Do_this(threadIdx.x * 2);
}
else {
   Do_that((threadIdx.x%32)*2+1);
}</pre>
```


Divergence-free execution

```
Compute(threadIdx.x);
if (threadIdx.x < 32) {
   Do_this(threadIdx.x * 2);
}
else {
   Do_that((threadIdx.x%32)*2+1);
}</pre>
```

All threads within a warp execute the same branch, either Do_this or Do_that, based on their thread index, significantly reduces branch divergence.

- A GPU-accelerated library from NVIDIA.
 - API extensions for providing
 - Supports standard BLAS APIs
 - GEMM APIs with support for fusions that are highly optimized for NVIDIA GPUs.

Fusion:

In **traditional non-fused execution**, multiple separate kernel launches are required:

- 1. Compute **GEMM** (Matrix-Matrix Multiplication).
- 2.Store results in **global memory**.
- 3. Apply an activation function (e.g., ReLU, Sigmoid).
- 4. Store the final results again.

```
C = A * B // GEMM Operation
C = C + Bias // Bias Addition
C = ReLU(C) // Apply Activation Function
```

Non-Fusion

- Three separate operations
- •Three memory accesses → Slower

C = ReLU(A * B + Bias)

Fusion

- Single kernel execution
- One memory access
- •Much faster on NVIDIA GPUs using Tensor Cores

- A GPU-accelerated library from NVIDIA.
 - API extensions for providing
 - Supports standard BLAS APIs
 - GEMM APIs with support for fusions that are highly optimized for NVIDIA GPUs.

Fusion:

In **traditional non-fused execution**, multiple separate kernel launches are required:

- 1. Compute **GEMM** (Matrix-Matrix Multiplication).
- 2.Store results in **global memory**.
- 3. Apply an activation function (e.g., ReLU, Sigmoid).
- 4. Store the final results again.

```
C = A * B // GEMM Operation
C = C + Bias // Bias Addition
C = ReLU(C) // Apply Activation Function
```

- A GPU-accelerated library from NVIDIA.
 - API extensions for providing
 - Supports standard BLAS APIs
 - GEMM APIs with support for fusions that are highly optimized for NVIDIA GPUs.

Fusion:

In **traditional non-fused execution**, multiple separate kernel launches are required:

- 1. Compute **GEMM** (Matrix-Matrix Multiplication).
- 2.Store results in **global memory**.
- 3. Apply an activation function (e.g., ReLU, Sigmoid).
- 4. Store the final results again.

```
// Using cuBLASLt to perform fused GEMM with Bias and ReLU
cublasLtMatmul(handle,
  gemmDesc,
  &alpha, A, descA,
  B, descB,
  &beta, bias, descBias,
  C, descC, workspace, workspaceSize, stream);
```

- A GPU-accelerated library from NVIDIA.
 - API extensions for providing
 - Supports **standard BLAS** APIs
 - GEMM APIs with support for fusions that are highly optimized for NVIDIA GPUs.
 - Extensions for **batched** operations, execution across **multiple GPUs**, and mixed and **low precision** execution with additional tuning for the best performance.

- A GPU-accelerated library from NVIDIA.
 - API extensions for providing
 - Supports **standard BLAS** APIs
 - **GEMM APIs** with support for fusions that are highly optimized for NVIDIA GPUs.
 - Extensions for **batched** operations, execution across **multiple GPUs**, and mixed and **low precision** execution with additional tuning for the best performance.
 - Optimized for different NVIDIA GPU architectures.

- A GPU-accelerated library from NVIDIA.
 - API extensions for providing
 - Supports **standard BLAS** APIs
 - GEMM APIs with support for fusions that are highly optimized for NVIDIA GPUs.
 - Extensions for **batched** operations, execution across **multiple GPUs**, and mixed and **low precision** execution with additional tuning for the best performance.
 - Optimized for different NVIDIA GPU architectures.
 - Alternative Libraries:
 - Other libraries like Intel MKL or OpenBLAS are popular for CPU-based systems.

- A GPU-accelerated library from NVIDIA.
 - API extensions for providing
 - Supports standard BLAS APIs
 - GEMM APIs with support for fusions that are highly optimized for NVIDIA GPUs.
 - Extensions for **batched** operations, execution across **multiple GPUs**, and mixed and **low precision** execution with additional tuning for the best performance.
 - Optimized for different NVIDIA GPU architectures.
 - Alternative Libraries:
 - Other libraries like Intel MKL or OpenBLAS are popular for CPU-based systems.

Writing custom CUDA kernels is an option but requires in-depth knowledge of GPU programming and is generally less efficient than using cuBLAS.

Example code using cuBLAS

```
int main() {
 int N = 256;
 float alpha = 1.0f, beta = 0.0f;
 float *d A, *d B, *d C; // Device pointers
  // Omitted: Memory allocation and initialization for d A, d B, d C
 cublasHandle t handle;
  cublasCreate(&handle); // Create cuBLAS handle
  // Matrix multiplication: C = A*B
 cublasSgemm (handle, CUBLAS OP N, CUBLAS OP N,
      N, N, N, &alpha, d A, N, d B, N,
      &beta, d C, N);
 cublasDestroy(handle); // Destroy cuBLAS handle
 // Omitted: Memory deallocation
 return 0;
```

Example code using cuBLAS

```
cublasStatus_t cublasSgemm(cublasHandle_t handle,
  cublasOperation_t transa, cublasOperation_t transb,
  int m, int n, int k,
  const float *alpha,
  const float *A, int lda,
  const float *B, int ldb,
  const float *beta,
  float *C, int ldc)
```

$$C = \alpha \cdot op(A) \cdot op(B) + \beta \cdot C$$

In this formula:

- A is the matrix located at pointer `d_A`.
- ullet B is the matrix located at pointer ullet d_B ullet .
- C initially contains the pre-multiplication matrix and is overwritten by the result. It is located at pointer $`\mathbf{d_C}`$.
- α and β are scalars passed by reference as `&alpha` and `&beta`, respectively.
 - $\mathrm{op}(A) = egin{cases} A & ext{if transa} == \mathrm{CUBLAS_OP_N} \ A^T & ext{if transa} == \mathrm{CUBLAS_OP_T} \ A^H & ext{if transa} == \mathrm{CUBLAS_OP_C} \end{cases}$

- m: Number of rows in matrices A and C.
- \cdot n: Number of columns in matrices B and C.
- k: Number of columns in matrix A and rows in matrix B.

Data Transfers between CPU and GPU

Data Transfers

- Synchronous and asynchronous transfers
- Streams (Command queues)
 - Sequence of operations that are performed in order
 - CPU-GPU data transfer
 - Kernel execution
 - D input data instances, B blocks
 - GPU-CPU data transfer
 - Default stream

Asynchronous Transfers

- Computation divided into nStreams
 - CUDA streams are sequences of operations that execute in issue-order on the GPU.
 - D input data instances, B blocks
 - Number of streams: nStreams, each stream

• Estimates

$$t_E + \frac{t_T}{nStreams}$$
 $t_T + \frac{t_E}{nStreams}$ $t_T > t_E \text{ (dominant transfers)}$

Example code using cuBLAS

```
cudaMemcpy(d_data, h_data, size, cudaMemcpyHostToDevice);
kernel<<<grid, block>>>(d_data);
cudaMemcpy(h_result, d_result, size, cudaMemcpyDeviceToHost)
```

Without Stream

```
for (int i = 0; i < nStreams; i++) {
   cudaMemcpyAsync(d_data[i], h_data[i], size, cudaMemcpyHostToDevice, stream[i]);
   kernel<<<grid, block, 0, stream[i]>>>(d_data[i]);
   cudaMemcpyAsync(h_result[i], d_result[i], size, cudaMemcpyDeviceToHost, stream[i]);
}
```

Overlap of Communication and Computation

- Applications with independent computation on different data instances can benefit from asynchronous transfers
- For instance, video processing

Collaborative Computing

Review

- Device allocation, CPU-GPU transfer, and GPU-CPU transfer
 - cudaMalloc();
 - cudaMemcpy();

```
// Allocate input
malloc(input, ...);
cudaMalloc(d input, ...);
cudaMemcpy(d input, input, ..., HostToDevice); // Copy to device memory
// Allocate output
malloc(output, ...);
cudaMalloc(d output, ...);
// Launch GPU kernel
gpu kernel<<<ble>blocks, threads>>> (d output, d input, ...);
// Synchronize
cudaDeviceSynchronize();
// Copy output to host memory
cudaMemcpy(output, d_output, ..., DeviceToHost);
```

Unified Memory

- Unified Virtual Address
- Since CUDA 6.0: Unified memory
- Since CUDA 8.0 + Pascal: GPU page faults
 - if the GPU accesses memory that has not been transferred to its local memory, a page fault occurs, and the necessary data is automatically migrated to the GPU.

Non-Unified Memory Example

```
int main(void) {
 int N = 1 << 20; // 1M elements</pre>
 float *x, *y; // Host pointers
 float *d x, *d y; // Device pointers
 // Step 1: Allocate memory on host
 x = (float*)malloc(N * sizeof(float));
 y = (float*)malloc(N * sizeof(float));
 // Step 2: Allocate memory on device
 cudaMalloc((void**)&d x, N * sizeof(float));
 cudaMalloc((void**)&d y, N * sizeof(float));
 // Step 3: Initialize arrays on the host
 for (int i = 0; i < N; i++) {
  x[i] = 1.0f;
  y[i] = 2.0f;
 // Step 4: Copy data from Host to Device
 cudaMemcpy(d x, x, N * sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(d y, y, N * sizeof(float), cudaMemcpyHostToDevice);
 // Step 5: Launch kernel on 1M elements on the GPU
 int blockSize = 256;
 int numBlocks = (N + blockSize - 1) / blockSize;
 add<<<numBlocks, blockSize>>>(N, d x, d y);
 // Step 6: Wait for GPU to finish before accessing results on host
 cudaDeviceSynchronize();
 // Step 7: Copy results back from Device to Host
 cudaMemcpy(y, d y, N * sizeof(float), cudaMemcpyDeviceToHost);
 // Step 8: Free device and host memory
 cudaFree(d x); cudaFree(d y);
 free(x); free(y);
 return 0;
```

```
// CUDA kernel to add elements of two arrays
__global__ void add(int n, float *x, float *y)
{
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = index; i < n; i += stride)
    y[i] = x[i] + y[i];
}</pre>
```

Non-Unified Memory Example

- Easier programming with Unified Memory
 - cudaMallocManaged();

```
int main (void)
 int N = 1 << 20;
  float *x, *y;
  // Allocate Unified Memory -- accessible from CPU or GPU
  cudaMallocManaged(&x, N*sizeof(float));
  cudaMallocManaged(&y, N*sizeof(float));
  // initialize x and y arrays on the host
  for (int i = 0; i < N; i++) {
   x[i] = 1.0f;
   y[i] = 2.0f;
  // Launch kernel on 1M elements on the GPU
  int blockSize = 256;
  int numBlocks = (N + blockSize - 1) / blockSize;
  add<<<numBlocks, blockSize>>>(N, x, y);
  // Wait for GPU to finish before accessing on host
  cudaDeviceSynchronize();
  // Free memory
  cudaFree(x);
  cudaFree(y);
  return 0;
```

```
// CUDA kernel to add elements of two arrays
__global__ void add(int n, float *x, float *y)
{
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = index; i < n; i += stride)
    y[i] = x[i] + y[i];
}</pre>
```