Week 4: Named Entity Recognition (Cont.)

Nhung Nguyen slides courtesy of NaCTeM

Machine learning-based approaches

NER as a tagging problem (BIO scheme)

classes = 2 * # entity types + 1

Classification approach

Predicting tags

```
probability(tag|token) = function f
```

- Local approach: tags are independent each other
 - Any classifiers for sequence can be used, e.g., RNN, LSTM, BiLSTM
- Global approach: tags are dependent each other
 - Hidden Markov Model (HMM)
 - Conditional Random Fields (CRF)

Conditional Random Fields

Sequence model

- Relax the independence assumption by arranging the output variables in a linear chain
- Hidden Markov Model (HMM):
 - \circ A sequence of input: $X = \{x_t\}_{t=1}^T$
 - \circ A sequence of states: $Y = \{Y_t\}_{t=1}^T$
 - $\circ~y_t$ is only dependent on the previous state y_{t-1}
 - $\circ \; x_t$ is only dependent on the current state y_t
- Joint distribution:

$$p(y,x) = \Pi_{t-1}^T p(y_{t-1}|y_t) p(x_t|y_t)$$

Conditional Random Fields (CRFs)

- a discriminative sequence model for sequence labelling
- finds the most probable label sequence y* given an observation sequence x

$$y^* = \operatorname{argmax}_y p(y|x)$$

where *x* consists of the sequence of tokens from input text

Linear-chain CRFs

Computation of probability

$$p(y|x) = rac{1}{Z_x} ext{exp}(\Sigma_{t=1}^T \Sigma_{k=1}^K w_k f_k(y_t, y_{t-1}, x_t))$$
 summation over all tokens

Normalisation factor: to make sure the sum of probability is equal to 1

$$Z_x = \Sigma_y ext{exp}(\Sigma_{t=1}^T \Sigma_{k=1}^K w_k f_k(y_t, y_{t-1}, x_t))$$

Feature function

Characterises the input

$$f(y_t, y_{t-1}, x_t) = \begin{cases} 1, & \text{if 1st letter of } x_t \text{ is uppercase} \\ 0, & \text{otherwise} \end{cases}$$

Example

 y_{t-1} = O, y_t = B-PERSON, 1st letter of x_t is uppercase

Feature types

- Contextual
 - current word wo
 - words around wo in [-3,...,+3] window
- Part-of-speech tag (when available)
- Trigger words
 - for person (Mr, Miss, Dr, PhD)
 - for location (city, street)
 - for organisation (Ltd., Co.)

Feature types (Cont.)

- Length (in terms of number of tokens)
- Orthographic (binary and not mutually exclusive)
 - o initial-caps, all-caps, lonely-initial
 - all-digits contains-dots, punctuation-mark
 - single-char, contains-hyphen, URL
 - roman-numeral
- Suffixes (length 1 to 4)
 - each component of the NE
 - whole NE

Feature types (Cont.)

Gazetteers

- geographical locations
- first names, surnames
- company names
- many others
- o whole NE is in gazetteer?
- any component of the NE appears in gazetteer?

The more useful features you incorporate, the more powerful your learner gets!

- current word w_o
- words around w_o in [-3,...,+3] window

w _o	W ₋₃	W ₋₂	w ₋₁	w ₁	w ₂	W ₃
Adam						
Smith						
works						
for						
IBM						
in						
London						

- current word w_o
- words around w_o in [-3,...,+3] window

w _o	W ₋₃	W ₋₂	w ₋₁	w ₁	w ₂	W ₃
Adam	null					
Smith	null					
works	null					
for	Adam					
IBM	Smith					
in	works					
London	for					
	IBM					

- current word w_o
- words around w_o in [-3,...,+3] window

w _o	W ₋₃	W ₋₂	w ₋₁	w ₁	w ₂	W ₃
Adam	null	null				
Smith	null	null				
works	null	Adam				
for	Adam	Smith				
IBM	Smith	works				
in	works	for				
London	for	IBM				
	IBM	in				

- current word w_o
- words around w_o in [-3,...,+3] window

w _o	W ₋₃	W ₋₂	w ₋₁	w ₁	w ₂	w ₃
Adam	null	null	null			
Smith	null	null	Adam			
works	null	Adam	Smith			
for	Adam	Smith	works			
IBM	Smith	works	for			
in	works	for	IBM			
London	for	IBM	in			
	IBM	in	London			

- current word w_o
- words around w_o in [-3,...,+3] window

w _o	W ₋₃	W ₋₂	w ₋₁	w ₁	w ₂	w ₃
Adam	null	null	null	Smith	works	for
Smith	null	null	Adam	works	for	IBM
works	null	Adam	Smith	for	IBM	in
for	Adam	Smith	works	IBM	in	London
IBM	Smith	works	for	in	London	
in	works	for	IBM	London		null
London	for	IBM	in		null	null
	IBM	in	London	null	null	null

Examples of features: Orthographic

- Is initial letter capitalised?
- Are all letters capitalised?

w _o	InitC	AIIC	W ₋₃	W ₋₂	W ₋₁	w ₁	w ₂	w ₃
Adam			null	null	null	Smith	works	for
Smith			null	null	Adam	works	for	IBM
works			null	Adam	Smith	for	IBM	in
for			Adam	Smith	works	IBM	in	London
IBM			Smith	works	for	in	London	
in			works	for	IBM	London		null
London			for	IBM	in		null	null
			IBM	in	London	null	null	null

Examples of features: Orthographic

- Is initial letter capitalised?
- Are all letters capitalised?

w _o	InitC	AIIC	W _3	W ₋₂	w _1	w ₁	w ₂	W ₃
Adam	1	0	null	null	null	Smith	works	for
Smith	1	0	null	null	Adam	works	for	IBM
works	0	0	null	Adam	Smith	for	IBM	in
for	0	0	Adam	Smith	works	IBM	in	London
IBM	1	1	Smith	works	for	in	London	
in	0	0	works	for	IBM	London		null
London	1	0	for	IBM	in		null	null
	0	0	IBM	in	London	null	null	null

Pros vs. Cons

- Pros:
 - Features are intuitive
 - The solution: Neural Network! It is easy to interpret and debug the model
 - High performance
- Cons:
 - Feature engineering → domain knowledge