Национальный исследовательский университет «МЭИ»

Институт радиотехники и электроники Кафедра радиотехнических систем

Отчет о проделанной работе по НИР

ФИО студента. тасканов в.е.
Группа: <u>ЭР-15-16</u>
Дата:
Подпись:
ФИО преподавателя: Шатилов А.Ю.
Оценка:

Содержание

1.Добавление расчета координат НС	3
1.1. Алгоритм расчета для ГНСС GPS	3
1.1.2. Алгоритм расчета координат	6
1.3. Алгоритм расчета для ГНСС ГЛОНАСС	7
1.3.2. Алгоритм расчета координат	9
2. Реализация алгоритмов в программе	13
2.1. Скачивание файла	13
2.2. Обработка файла	13
2.2.1. Обработка файла GPS	13
2.2.1. Обработка файла ГЛОНАСС	13
2.3. Расчет координат	14
2.4. Расчет времени	14

1.Добавление расчета координат НС

Алгоритм расчета координат в программе будет следующий:

- Скачиваем файл с данными альманаха,
- Обрабатываем файл,
- Рассчитываем координаты

Файл будет скачивать с сервера «инфомационно-аналитечкского центра коррдинатно-временного и навигационного обеспечения, по адресу: «ftp://ftp.glonass-iac.ru/MCC/ALMANAC/», где далее следует выбор года и даты нужного альманаха. На сервере содержится два файла с разными расширениями – адр (для ГНСС GPS) и адl (для ГНСС ГЛОНАСС).

Скачав файл необходимо его оцифровать (перенести нужные данные в программу для реализации последующих алгоритмов).

Оцифровка файлов для GPS и ГЛОНАСС значительно отличается, поэтому разделим их на разные функции.

1.1. Алгоритм расчета для ГНСС GPS

В файле с расширением – agp, содержатся альманахи, записанные в виде строк:

```
МССЈ 200108 – Блокнот
<u>Ф</u>айл <u>П</u>равка Фор<u>м</u>ат <u>В</u>ид <u>С</u>правка
                        00871
07 01 2020
       0 2087 405504 09 01 2020 59904.000 -0.25749207E-03 -0.10913936E-10 -0.24811015E-08
-0.22440493E+00 0.31148988E+00 0.24107289E+00 0.92692375E-02 0.51535981E+04 0.40129888E+00
07 01 2020 00872
 2 0 2087 405504 09 01 2020 59904.000 -0.38242340E-03 -0.72759576E-11 -0.25465852E-08
-0.24777687E+00 0.30480462E+00 -0.53421688E+00 0.19700527E-01 0.51535654E+04 0.49287593E+00
07 01 2020 00873
         0 2087 405504 09 01 2020 59904.000 -0.68664551E-04 -0.72759576E-11 -0.24156179E-08
 0.10692251E+00 0.30714494E+00 0.24356914E+00 0.26187897E-02 0.51535933E+04 0.32618165E-01
07 01 2020 00874
 4 1 2087 405504 09 01 2020 59904.000 -0.31471252E-04 -0.36379788E-11 -0.25320332E-08
 0.45012069E + 00 \quad 0.30539781E + 00 \quad -0.86515725E + 00 \quad 0.45394897E - 03 \quad 0.51536631E + 04 \quad 0.80713654E + 00 \quad 0.80713654E + 0.80713654E + 0.80713644E + 0.80713644E + 0.80713644E + 0.80713644E + 0.80713644E + 0.80713644E + 0.807136444E + 0.80713644E + 0.80714644E + 0.80714644E + 0.80714644E + 0.80714644E + 0.8071464E + 0.80714644E + 0.80714644E + 0.8071464E + 0
07 01 2020 00875
           0 2087 405504 09 01 2020 59904.000 -0.57220459E-05 0.00000000E+00 -0.24483597E-08
 0.97382665E-01 0.30297548E+00 0.25501275E+00 0.57921410E-02 0.51535308E+04 -0.68326879E+00
07 01 2020 00876
  6 \qquad 0 \qquad 2087 \quad 405504 \qquad 09 \ 01 \ 2020 \quad 59904.000 \ -0.17738342E-03 \ -0.10913936E-10 \ -0.24847395E-08 
-0.22703457E+00 0.31136209E+00 -0.37527728E+00 0.17843246E-02 0.51536895E+04 0.50334632E+00
07 01 2020 00877
           0 2087 405504 09 01 2020 59904.000 -0.18882751E-03 -0.72759576E-11 -0.24629117E-08
 0.77744925E+00 0.30363160E+00 -0.77044582E+00 0.13245106E-01 0.51536509E+04 0.17412102E+00
07 01 2020 00878
 8 0 2087 405504 09 01 2020 59904.000 -0.20027161E-04 0.00000000E+00 -0.26266207E-08
-0.56470180E+00 0.30871850E+00 -0.68337798E-01 0.49986839E-02 0.51535586E+04 -0.83613443E+00
07 01 2020 00879
       0 2087 405504 09 01 2020 59904.000 -0.12874603E-03 -0.72759576E-11 -0.25574991E-08
 0.43520999E+00 0.30307466E+00 0.54175544E+00 0.17147064E-02 0.51534614E+04 -0.74238789E+00
07 01 2020 00880
10 0 2087 405504 09 01 2020 59904.000 -0.20313263E-03 -0.14551915E-10 -0.23974280E-08
 0.10593116E+00 0.30713922E+00 -0.86190462E+00 0.52723885E-02 0.51536206E+04 -0.24406230E+00
07 01 2020
                        00881
                                                                                                                       Стр 8, стлб 52
                                                                                                                                                      100% Windows (CRLF)
                                                                                                                                                                                                    UTF-8
```

Рисунок 1 – Пример скаченного файла с расширением адр

Где, строка 1, соответствует:

1	Число получения альманаха
2	месяц получения альманаха
3	год получения альманаха
4	время получения альманаха от
	начала суток, с UTC

Строка 2

1	номер PRN
2	обобщенный признак здоровья (0 -
	здоров)
3	неделя GPS (альманаха) (номер
	недели полный)

4	время недели GPS, с (альманаха)
	(количество секунд от начала
	недели)
5	число
6	месяц
7	год
8	время альманаха, с
9	поправка времени KA GPS
	относительно системного времени, с,
10	скорость поправки времени КА GPS
	относительно системного времени,
	c/c
11	Om0 - скорость долготы узла,
	полуциклы/c, [^]

Строка 3

1	Om0 - долгота узла, полуциклы, Ω_{0-n}
2	I - наклонение, полуциклы,
3	w - аргумент перигея, полуциклы, ω_n
4	Е – эксцентриситет,
5	SQRT(A) - корень из большой полуоси, м**0.5, sqrt(A0)
6	$M0$ - средняя аномалия, полуциклы, $^{M_{0-n}}$

1.1.2. Алгоритм расчета координат

Далее полученные значения подставляются в алгоритм расчета координат, который возьмем из ИКД GPS:

1.1.2.1. Определим время, отсчитываемое от опорной эпохи эфемерид:

$$t_k = t - t_{oc}$$

1.1.2.2. Определим среднее движение:

$$n_0 = \sqrt{\frac{\mu}{A_0^3}}$$

1.1.2.3. Определим скорректированное среднее движение:

$$n_A = n_0 + \Delta n$$

1.1.2.4. Определим среднюю аномалию:

$$M_k = M_0 + n_A \cdot t_k$$

1.1.2.5. Решим уравнение Кеплера минимум 3-мя итерациями и определим E_{ι} :

$$M_k = E_k - e_n \cdot \sin(E_k) \Longrightarrow E_k = M_k + e_n \cdot \sin(E_k)$$

1.1.2.6. Определим истинную аномалию:

$$v_k = arctg\left(\frac{\sqrt{1 - e_n^2} \sin(E_k)}{\left(\cos(E_k) - e_n\right)}\right)$$

1.1.2.7. Определим скорректированный радиус орбиты спутника:

$$A_k = A_0 + (A)t_k$$

$$r_k = A_k \left(1 - e_n \cos(E_k) \right) + \delta \kappa_k$$

1.1.2.8. Определим аргумент широты:

$$\Phi_k = v_k + \omega$$

$$u_k = \Phi_k + \delta u_k$$

1.1.2.9. Определим координаты НС в орбитальной плоскости:

$$\begin{cases} x_k = r_k \cdot \cos(u_k) \\ y_k = r_k \cdot \sin(u_k) \end{cases}$$

1.1.2.10. Определим скорректированную долготу восходящего узла Ω_k определяется из соотношения:

$$\dot{\hat{\Omega}} = \dot{\hat{\Omega}}_{REF} + \Delta \dot{\hat{\Omega}}$$

$$\Omega_k = \Omega_{0-n} + \left(\dot{\hat{\Omega}} - \dot{\hat{\Omega}}_e\right) - \dot{\hat{\Omega}}_e t_{oe}$$

1.1.2.11. Определим скорректированное наклонение орбиты спутника

$$i_k = i_{0-n} + \overline{(i_{0-n} - DQT)t_k} + \delta u_k$$

1.1.2.12. Определим координаты НС в геоцентрической системе координат:

$$\begin{cases} x_k = x_k \cos \Omega_k - y_k \cos i_k \sin \Omega_k \\ y_k = x_k \sin \Omega_k + y_k \cos i_k \cos \Omega_k \\ z_k = y_k \sin i_k \end{cases}$$

1.3. Алгоритм расчета для ГНСС ГЛОНАСС

В файле с расширением – agl, содержатся альманахи, записанные в виде строк:

Рисунок 2 – Пример скаченного файла с расширением agl

Где, строка 1, соответствует:

1	Число получения альманаха
2	месяц получения альманаха
3	год получения альманаха
4	время получения альманаха от
	начала суток, с UTC

Строка 2

1	номер КА в группировке
2	номер частотного слота (-7 - 24)
3	признак здоровья по альманаху (0 - 1)
4	число
5	месяц

6	год
7	время прохождения первого узла, на
	которое все дано, с
8	поправка ГЛОНАСС-UTC, с
9	поправка GPS-ГЛОНАСС, с
10	поправка времени КА ГЛОНАСС
	относительно системного времени, с

Строка 3

1	Lam - долгота узла, полуциклы
2	dI - коррекция наклонения,
	полуциклы
3	w - аргумент перигея, полуциклы
4	Е - эксцентриситет
5	dT - поправка к драконическому
	периоду, с
6	dTT - поправка к драконическому
	периоду, с/виток

1.3.2. Алгоритм расчета координат

Далее полученные значения подставляются в алгоритм расчета координат, который возьмем из ИКД ГЛОНАСС:

1.3.2.1. Определяется интервал прогноза в секундах:

$$\Delta t_{mp} = \Delta N_A \cdot 86400 + (t_i - t_{\lambda_A}),$$

$$\Delta N_{A} = \begin{cases} N - N_{A} - \left\langle \left\langle \frac{N - N_{A}}{1461} \right\rangle \right\rangle \cdot 1461 \text{ если } N_{4} \neq 27, \\ \\ N - N_{A} - \left\langle \left\langle \frac{N - N_{A}}{1460} \right\rangle \right\rangle \cdot 1460 \text{ если } N_{4} = 27; \end{cases}$$

Где:

N – календарный номер суток внутри четырехлетнего периода, начиная с високосного года, на которых находится заданный момент времени ti в секундах по шкале МДВ;

NA – календарный номер суток по шкале МДВ внутри четырехлетнего интервала, передаваемый НКА в составе неоперативной информации;

- $\langle \langle {\bf x} \rangle \rangle$ вычисление целого, ближайшего к х.
 - 1.3.2.2. Рассчитывается количество целых витков W на интервале прогноза:

$$W = \left\langle \frac{\Delta t_{mp}}{T_{cp} + \Delta T_A} \right\rangle,$$

где $\langle x \rangle$ выделение целой части x;

1.3.2.3. Определяется текущее наклонение:

$$i = \left(\frac{i_{cp}}{180^{\circ}} + \Delta i_{A}\right) \cdot \pi$$
 рад,

1.3.2.4. Определяются средний драконический период на витке W+1 и среднее движение:

$$\begin{split} T_{\text{mp}} &= T_{\text{cp}} + \Delta T_{\text{A}} + (2W+1) \cdot \Delta \dot{T}_{\text{A}}, \\ n &= 2\pi \, / \, T_{\text{mp}}, \end{split}$$

1.3.2.5. Методом последовательных приближений $m=0,\ 1,\ 2...$ рассчитывается большая полуось орбиты а:

$$a^{(m+1)} = \sqrt[3]{\left(\frac{T_{\text{ock}}^{(m)}}{2\pi}\right)^2 \cdot GM} \; ; \label{eq:amultiple}$$

$$p^{(m+1)} = a^{(m+1)} (1 - (\epsilon_A)^2);$$

$$T_{\text{ocx}}^{(\text{m+l})} = \frac{T_{\text{ap}}}{1 - \frac{3}{2} \cdot J_2^0 \left(\frac{a_{\text{e}}}{p^{(\text{m+l})}}\right)^2 \left[\left(2 - \frac{5}{2} \cdot \sin^2 i\right) \cdot \frac{\left(1 - \left(\epsilon_{\text{A}}\right)^2\right)^{\frac{3}{2}}}{\left(1 + \epsilon_{\text{A}} \cdot \cos\left(\omega_{\text{A}}\pi\right)\right)^2} + \frac{\left(1 + \epsilon_{\text{A}} \cdot \cos\left(\omega_{\text{A}}\pi\right)\right)^3}{1 - \left(\epsilon_{\text{A}}\right)^2}\right]},$$

1.3.2.6. Определяются текущие значения долготы восходящего узла орбиты и аргумента перигея с учетом их векового движения под влиянием сжатия Земли:

$$\lambda = \lambda_{A} \cdot \pi - \left\{ \omega_{3} + \frac{3}{2} J_{2}^{0} \cdot n \cdot \left(\frac{a_{e}}{p} \right)^{2} \cos i \right\} \Delta t_{mp};$$

$$\omega = \omega_{A} \cdot \pi - \frac{3}{4} J_{2}^{0} n \left(\frac{a_{e}}{p} \right)^{2} (1 - 5 \cos^{2} i) \cdot \Delta t_{mp},$$

1.3.2.7. Рассчитывается значение средней долготы на момент прохождения текущего восходящего узла:

$$L_1 = \omega + E_0 - \varepsilon_A \sin E_0$$

$$E_0 = -2 \cdot a \, tan \! \left(\sqrt{\frac{1 - \epsilon_A}{1 + \epsilon_A}} \cdot tan \frac{\omega}{2} \right) \! . \label{eq:epsilon}$$

Где

1.3.2.8. Определяется текущее значение средней долготы НКА:

$$L = L_1 + n(\Delta t_{np} - (T_{cp} + \Delta T_A)W - \Delta \dot{T}_A W^2).$$

1.3.2.9. Определяется эксцентрическая аномалия путем решения уравнения Кеплера

$$L-\omega = E - \epsilon \cdot \sin E$$
.

Как правило, используется схема последовательных приближений m=0,1,2, и т.д.:

$$E^{(m+1)} = L - \omega + \epsilon \cdot \sin E^{(m)}.$$

1.3.2.10. Вычисляются истинная аномалия и аргумент широты НКА u:

$$\upsilon = 2 \arctan \left(\sqrt{\frac{1 + \varepsilon_A}{1 - \varepsilon_A}} \tan \frac{E}{2} \right);$$

$$u = \upsilon + \omega.$$

1.3.2.11. Рассчитываются координаты центра масс НКА в геоцентрической прямоугольной пространственной системе координат:

$$p = a(1 - (\epsilon_A)^2);$$

$$r = \frac{p}{1 + \epsilon_A \cos \upsilon};$$

$$x(t_i) = r(\cos \lambda \cos u - \sin \lambda \sin u \cos i);$$

$$y(t_i) = r(\sin \lambda \cos u + \cos \lambda \sin u \cos i);$$

$$z(t_i) = r \sin u \sin i.$$

2. Реализация алгоритмов в программе

2.1. Скачивание файла

Для скачивания файла модернизируем раннее созданный алгоритм «download» и для удобства последующих вызовов перенесем его в отдельный файл функции, который назовем: «FTPdownload», на вход которой подается разные пути и названия файла.

Функция содержит заголовочный файл – «FTPdownload.h», в котором хранятся применяемые классы и методы, а также файл с кодом реализации скачивания файла – «FTPdownload.CPP»

2.2. Обработка файла

Для обработки файлов также создадим отдельные функции, для ГЛОНАСС – «parserGLNS», а для GPS – «parserGPS»

2.2.1. Обработка файла GPS

Алгоритм обработки файла строится на методе «fscanf», которая обрабатывает последовательно каждое заданное значение, далее переносим полученные значения в массив значений «almanax_GPS».

Функция содержит заголовочный файл – «parserGPS.h», в котором хранятся применяемые классы и методы, а также файл с кодом реализации обработки файла – «parserGPS.C»

2.2.1. Обработка файла ГЛОНАСС

Алгоритм обработки файла строится на методе «fscanf», которая обрабатывает последовательно каждое заданное значение, далее переносим полученные значения в массив значений «almanax_GLNS».

Функция содержит заголовочный файл – «parserGLNS.h», в котором хранятся применяемые классы и методы, а также файл с кодом реализации обработки файла – «parserGLNS.C»

2.3. Расчет координат

Расчет координат для ГЛОНАСС и GPS выведем также в отдельные функции.

Для ГЛОНАСС — ephemeridsGLNS», расчет соответствует формулам из $\pi.1.3.2;$

Функция содержит заголовочный файл – «ephemeridsGLNS.h», в котором хранятся применяемые классы и методы, а также файл с кодом реализации обработки файла – «ephemeridsGLNS».cpp»

Для GPS – «ephemerids», расчет соответствует формулам из п.1.1.2;

Функция содержит заголовочный файл – «ephemerids.h», в котором хранятся применяемые классы и методы, а также файл с кодом реализации обработки файла – «ephemerids.cpp»

2.4. Расчет времени

В процессе расчета координат возникнет проблема – получения времени расчета на которое нужно спрогнозировать координаты.

Для этого запишем класс – «timeCalc», в котором будет производиться перерасчет времени в нужный формат для трех ГНСС – ГЛОНАСС, GPS и GALILEO.

Для создания класса необходимо подать начальные значения: число, месяц, год, часы, минуты, секунды и миллисекунды.

Далее начальные значения преобразуются в секунды, с помощью библиотеки «ctime», а также подсчитывается количество поправок ко времени, для расчета в системе GPS и GALILEO.

В классе имеется три функции расчета времени:

- «timeGLNS» для расчета времени в системе ГЛОНАСС,
- «timeGPS» для расчета времени в системе GPS,
- «timeGLL» для расчета времени в системе GALILEO.