Safety Methodology – CENELEC and Safety PoC – Radio Communication

- 1. Introduction
- 2. **CENELEC Assessment**
- 3. SSRS CENELEC compliance
- 4. System Safety Analysis PoC
- 5. Conclusion

Introduction

- Activity in the frame of WP4 V&V
- CENELEC Assessment activities
- SSRS compliance with CENELEC requirements
- SSRS based System Safety Analysis

CENELEC Assessment

- Main CENELEC activity: Quality Assurance
 - Activity drived by SQS
 - Documentation :
 - QA Plan
 - Review process
 - Software Configuration Management Plan
 - Competencies matrix
 - Consider the Quality assurance application to the field
- Quality and Safety Assessment: Internal Assessment
 - Activity performed by CENELEC recognize experts (N. Schäfer, F. Vallée, J.L. Boulanger)
 - Documentation:
 - Internal DoW
 - Internal Assessment Plan
 - START after first QA Plan release

SSRS CENELEC compliance

- EN50128:2011 Software for Railway control and protection system, applied to SSRS model
- Application on concrete case: Uwe's Manage Radio
 Communication model
- Different parts of the standard concerned for the model:
 - So far, V&V is not considered for the evaluation
 - 7.2 Software requirements
 - § 7.3 Architecture and Design
 - § 7.3.1 Interface
 - § 7.3.2 Design
 - § 7.4 Component design
- Address Safety requirements for CENELECs not fulfilled
 - These requirements will have to be closely considered

SSRS CENELEC compliance

- Main features and concerns to consider:
 - New field of application for CENELEC : Model Driven Engineering
 - Necessity to generate required documentation for CENELEC compliance
 - Separation between SSRS text, and SSRS model
 - Potential discrepancy between SCADE System model and SysML
 Papyrus model → need of methodology defined
 - Expression of HW and SW functional and safety constraints
 - Consider the requirements traceability matter
 - Inputs: Subset26, subset76, FIS,...
 - SCADE System facility certifiable
 - Using PRoR with SysML model
 - Ensure connection between both
 - Implement software components properties in the model

System Safety Analysis PoC

Inputs

- SRS Subset26, subset88 & subset91
- Uwe's Radio Management SCADE System model
 - Functional Interoperability Specification
 - Functional and Organic architecture
 - Data structure
 - Considered as SSRS model sample

System Safety Methodology

- EVC Functional description and breakdown (SSRS Top-Down)
- Defined a HW environment and structure (Organic Architecture)
- Connect with Train level SRS System Analysis (Basic Events)
- Define the feared events at the considered Level
- Realize Safety Analysis at bottom level (Bottom-Up)

System Safety Analysis PoC

System Safety Analysis PoC

System Safety Analysis PoC – Subset88

- ETCS Application Levels 1 &2 Safety analysis Provides the Safety Analysis at train system level
- Content:
 - Fault Tree Analysis, based on functional analysis (according to ETCS level and mode). → in part 1

WARNING: FTA = Dysfunctional Analysis (different from a Reliability Bloc Diagram (BDD) = Functional Analysis

- Failure Mode, Effects and Criticality Analysis (according to ETCS level and mode). → in part 2
- Basic Event (FTA) considered
 - Kernel 5
 - Kernel 6

System Safety Analysis PoC - Subset88

System Safety Analysis PoC – Application

- Focusing on Kernel-6 System Basic Event: Manage communication session failure
 - → Considered as EVC feared event (Top Tree for FTA)
- Functional Breakdown (from the Model)
 - SessionStateManager
 - EstablishingACommunicationSession
 - MaintainingACommunicationSession
 - TerminatingACommunicationSession
 - RegisteringToTheRadioNetwork
- Link the functional Blocks to the Feared Events
 - Functional analysis at the bottom level (signals)
 - Define concerned IO signal at different levels

System Safety Analysis PoC – Application

- Propagate the local component failure to the system
- **Need of:**
 - Funtional meaning and role of each signal
 - Components functional description
 - Data Dictionnary (interprete the model properly)
- **Proof Of Concept based on Safety Architect tool**
 - Interface with SysML in the box
 - Fitted for Safety Analysis on Model Based Design for Rail Software

5 - Conclusion

- CENELEC activities already started through quality assurance
- Quality Assessment on the starting blocks (after first QA Plan release)
- Safety Activities linked to the CENELEC AND the V&V tools
 - Need of concrete proof on concept on Safety (to be finished for end of october)
 - Need on stable scope and method for SSRS (on going activities driven by PF Jauquet)
 - Need of choices on tools (SysML is defined, need of clarify SCADE System or Papyrus, so far both are acceptable)
- Thank you Questions?

