* No se permite el uso de ningún tipo de material *

EJERCICIO 1) (3 puntos) Sea X un conjunto. Dados subconjuntos $\{A_n\}_{n\in\mathbb{N}}$ se define el límite infimo y el límite supremo

$$\liminf_n A_n := igcup_{m \in \mathbb{N}} igcap_{n \geq m} A_n \qquad \qquad \limsup_n A_n := igcap_{m \in \mathbb{N}} igcup_{n \geq m} A_n$$

Decimos que la sucesión $(A_n)_n$ de subconjuntos de X converge a un subconjunto A de X, y escribimos $\lim_n A_n = A$, cuando la sucesión de funciones características $(\chi_{A_n})_n$ converge puntualmente a la función característica χ_A de A.

- (1) Demostrar que las siguientes condiciones son equivalentes:
- (1.a) $\lim_{n} A_{n}$ existe.
- (1.b) $\lim_{n} A_{n}^{c}$ existe.
- (1.c) $\liminf_n A_n = \limsup_n A_n = A y \lim_n A_n = A$.

Sea (Ω, Σ, μ) un espacio de medida $(\sigma$ -aditiva, no necesariamente finita), y sea $(A_n)_n$ una sucesión de conjuntos en Σ .

- (2) Demostrar que si $(A_n)_n$ converge a $A \subseteq \Omega$, entonces $A \in \Sigma$.
- (3) Supongamos $\lim_n A_n$ existe y que existe B tal que $\mu(B) < \infty$ y que contiene a todos los A_n 's. Demostrar que $\lim_n \mu(A_n) = \mu(\lim_n A_n)$. ¿De cual teorema de convergencia de funciones integrables es este resultado un caso particular?

EJERCICIO 2) (3 puntos)

- (1) Enunciar el teorema de Radon-Nikodym.
- (2) Sea $X := \{1, 2, ..., n\}, a_1, ..., a_n$ números reales positivos, y sean $\mu, \nu : \mathcal{P}(X) \to \mathbb{R}$ las medidas $\mu(A) := \sum_{j \in A} a_j$ y $\nu(A) := \operatorname{Card}(A) = \operatorname{cardinalidad} \operatorname{de} A$, para cada $A \subseteq X$. Demostrar que existe la derivada de Radon-Nikodym de μ con respecto a ν y encontrarla.

EJERCICIO 3) (4 puntos)

- (1) Dar las definiciones de medida signada y de conjunto positivo de una medida signada.
- (2) Enunciar el Teorema de descomposición de Jordan.
- (3) Sea λ la medida de Lebesgue en \mathbb{R} , \mathcal{A} la σ -álgebra de conjuntos λ -medibles, y sea $f \in L_1(\lambda)$. Definimos $\mu : \mathcal{A} \to \mathbb{R}$ por

$$\mu(A) := \int_A f d\lambda$$
 para todo $A \in \mathcal{A}.$

Demostrar que μ es una medida signada y encontrar su descomposición de Jordan.