Fundamentos 1

Lógica Proposicional

Conteúdo

- Prova da n\u00e3o validade de um argumento.
- Inconsistência das premissas.
- Lista de exercícios.

- Ou Sofisma
- Um argumento é não valido se houver uma linha na tabela verdade relativa ao argumento dado em que os valores lógicos da premissa são verdadeiros e o valor lógico da conclusão é falso.

• p \rightarrow q, \sim p |— \sim q - Sofisma

р	q	~p	~q	p→q	
V	V	F	F	V	
V	F	F	V	F	
F	V	V	F	V	
F	F	V	V	V	

Premissas

 Podemos mostrar a não validade sem a tabela.

- Exemplo: p → q, ~p |— ~q
 - Sabemos que para ser não valido a conclusão deve ser falsa, logo ~q é falso e sendo assim q é verdadeiro.

 Podemos mostrar a n\u00e3o validade sem a tabela.

- Exemplo: p → q, ~p |— ~q
 - Valor(q) = V
 - As premissas devem ser verdadeiras, então ~p deve ser verdadeiro. Assim valor(p) = F

 Podemos mostrar a não validade sem a tabela.

- Exemplo: $p \rightarrow q$, $\sim p \mid --- \sim q$
 - Valor(q) = V, Valor(p) = F
 - Valor(p→q) = (F → V) = V
 Valor(~p) = Valor(~F) = V Premissas

 - Valor(~q) = Valor(~V) = F
 Conclusão

 Um argumento se diz inconsistente se as suas premissas n\u00e3o podem ser simultaneamente verdadeira (inconsistentes)

- Dois métodos para mostrar inconsistência
 - Tabela Verdade
 - Dedução de uma contradição

• \sim (p v \sim q), p v \sim r, q \rightarrow r

р	q	r	~q	~	p v ~q	~(p v ~q)	p v ∼r	q→r
V	V	V	F	F	V	F	V	V
V	V	F	F	V	V	F	V	F
V	F	V	V	F	V	F	V	V
V	F	F	V	V	V	F	V	V
F	V	V	F	F	F	V	F	V
F	V	F	F	V	F	V	V	F
F	F	V	V	F	V	F	F	V
F	F	F	V	V	V	F	V	V

• \sim (p v \sim q), p v \sim r, q \rightarrow r

	р	q	r	~q	~r	pv~q	~(p v ~q)	p v ∼r	q→r
	V	V	V	F	F	V	F	V	V
As premissas são							F	V	F
inconsistentes, pois as						F	V	V	
	três não são verdadeiras						F	V	V
a	ao mesmo tempo						V	F	V
	F	V	Ш	F	V	F	V	V	F
	F	F	V	V	F	V	F	F	V
	F	F	F	V	V	V	F	V	V

- Método 2: Deduzir uma Contradição
- ~(p v ~q), p v ~r , q → r
 - 1) $\sim (p \vee \sim q)$
 - 2) p v ~r
 - 3) $q \rightarrow r$
 - 4) ~p ^ ~~q 1 De Morgan
 - 5) ~p ^ q 4 Dupla Negação
 - 5 Simplificação
 - 7) r 3,6 Modus Ponens
 - 8) ~p 5 Simplificação
 - 9) ~r 2,8 Silogismo Disjuntivo
 - 10) r^~r 7,9 Conjunção

Contradição

- Método 2: Deduzir uma Contradição
- ~(p v ~q), p v ~r , q → r
 - 1) $\sim (p \vee \sim q)$
 - 2) p v ~r
 - 3) $q \rightarrow r$
 - 4) ~p ^ ~~q 1 De Morgan
 - 5) ~p ^ q 4 Dupla Negação
 - 5 Simplificação
 - 7) r 3,6 Modus Ponens
 - 8) ~p 5 Simplificação
 - 9) ~r 2,8 Silogismo Disjuntivo
 - 10) r^~r 7,9 Conjunção

Contradição

- Método 2: Deduzir uma Contradição
- ~(p v ~q), p v ~r , q → r
 - 1) $\sim (p \vee \sim q)$
 - 2) p v ~r
 - 3) $q \rightarrow r$
 - 4) 1 De Morgan

- 1) $\sim (p \vee \sim q)$
- 2) p v ~r
- 3) $q \rightarrow r$.
- 4) ~p ^ ~~q 1 De Morgan
- 5) 4 Dupla Negação

- Método 2: Deduzir uma Contradição
- \sim (p v \sim q), p v \sim r, q \rightarrow r
 - 1) $\sim (p \vee \sim q)$
 - 2) p v ~r
 - 3) $q \rightarrow r$
 - 4) ~p ^ ~~q 1 De Morgan
 - 5) ~p ^ q 4 Dupla Negação
 - 5 Simplificação

- Método 2: Deduzir uma Contradição
- ~(p v ~q), p v ~r , q → r
 - 1) $\sim (p \vee \sim q)$
 - 2) p v ~r
 - 3) $q \rightarrow r$
 - 4) ~p ^ ~~q
 - 1 De Morgan

5) ~p ^ q

4 Dupla Negação

6) q

5 Simplificação

7) ~p

5 Simplificação

8)

3,6 Modus Ponens

- 1) $\sim (p \vee \sim q)$
- 2) p v ~r
- 3) $q \rightarrow r$.
- 4) ~p ^ ~~q 1 De Morgan
- 5) ~p ^ q 4 Dupla Negação
- 6) q 5 Simplificação
- 7) ~p5 Simplificação
- 8) r 3,6 Modus Ponens
- 9) 2,7 Silogismo Disjuntivo

- 1) $\sim (p \vee \sim q)$
- 2) P V ~r
- 3) $q \rightarrow r$
- 4) ~p ^ ~~q 1 De Morgan
- 5) ~p ^ q 4 Dupla Negação
- 5 Simplificação
- 7) ~p 5 Simplificação
- 3,6 Modus Ponens
- 9) ~r 2,7 Silogismo Disjuntivo

- Método 2: Deduzir uma Contradição
- \sim (p v \sim q), p v \sim r, q \rightarrow r
 - 1) $\sim (p \vee \sim q)$
 - 2) p v ~r
 - 3) $q \rightarrow r$
 - 4) ~p ^ ~~q 1 De Morgan
 - 5) ~p ^ q 4 Dupla Negação
 - 6) q 5 Simplificação
 - 7) ~p 5 Simplificação
 - 8) r 3,6 Modus Ponens
 - 9) ~r 2,7 Silogismo Disjuntivo
 - o) r^~r 8,9 Conjunção

Contradição

Exercícios

- Demonstrar a não validade do argumento
 - 1. $p \vee \sim q$, $\sim (\sim r \land s)$, $\sim (\sim p \land \sim s) \mid --- \sim q \rightarrow r$
 - 2. $p \land q \rightarrow (p \rightarrow r) \lor s, p \land \sim r \mid --- \sim p \lor \sim q$
- Demonstrar a inconsistência das premissas
 - 1. $x=1 \rightarrow y < x, y < x \rightarrow y = 0, \sim (y=0 \lor x \neq 1)$
 - 2. $\sim p \vee \sim q, p \wedge s, \sim s \vee r, r \rightarrow r \wedge q$
 - 3. $\sim (p \vee q), r \rightarrow s, \sim q \wedge r$

Demonstrar a não validade do argumento

$$V(p) = V(q) = V(r) = V(s) =$$

Demonstrar a não validade do argumento

•
$$p \land q \rightarrow (p \rightarrow r) \lor s, p \land \sim r \mid --- \sim p \lor \sim q$$

$$V(p) = V(q) = V(r) = V(s) =$$

Demonstrar a inconsistência das premissas

1)
$$x=1 \rightarrow y < x$$

- 2) $y < x \rightarrow y = 0$
- 3) $\sim (y=0 \lor x \neq 1)$
- 4) ????

Demonstrar a inconsistência das premissas

- 1) ~p v ~q
- 2) p ^ s
- 3) ~S V r
- 4) $r \rightarrow r \land q$
- 5) ???

Demonstrar a inconsistência das premissas

- 1) $\sim (p \vee q)$
- $r \rightarrow s$
- 3) $q \wedge r$
- 4) ????