

## Algorithmique des tableaux (C5-160211-INFO)

Licence 1 - Année 2019/2020 TP 4 - Ensemble





Le langage *Python* met à disposition une collection appelée *set* pour représenter un ensemble de valeurs. Celle-ci est basée sur une technique de hachage qui sort du cadre de ce cours de 1<sup>ère</sup> année. On se propose toutefois de refaire les mêmes fonctionnalités à l'aide d'un *tableau trié*.

## Toutes les fonctions que vous allez écrire <sup>5</sup> prendront comme premier argument un tableau trié sans doublon.

Certaines fonctionnalités à réaliser correspondent clairement à des algorithmes déjà faits en TP ou vus en cours. Afin de garantir à tous une implémentation sans faute de la dichotomie, nous vous d'utiliser le module bisect vu en cours.

## Liste des fonctions à réaliser

| Fonctionnalité        | Nom de fonction                                      | Équivalent dans set  | Commentaire                                                  |
|-----------------------|------------------------------------------------------|----------------------|--------------------------------------------------------------|
| Création <sup>6</sup> | set_create (L)                                       | set                  | Tri avec suppression des doublons                            |
| Taille                | $set\_len(E) \rightarrow $                           | len                  | Nombre d'éléments                                            |
| Appartenance          | $set\_in(E, x) \rightarrow $                         | in                   | Vrai ssi $x \in E$                                           |
| Non-Appartenance      | $set\_not\_in(E, x) \rightarrow $                    | not in               | Vrai ssi $x \notin E$                                        |
| Ajout                 | set_add(E, x)                                        | add                  | Ajoute un élément.<br>Ne fait rien s'il y est déjà présent.  |
| Suppression           | set_rm(E, x)                                         | remove               | Supprime un élément.<br>Ne fait rien s'il n'est pas présent. |
| Disjoint              | $set\_isdisjoint(E1, E2) \rightarrow $               | isdisjoint           | Vrai ssi $E1 \cap E2 = \emptyset$                            |
| Sous-ensemble         | $set\_issub(E1, E2) \rightarrow $                    | issubset             | Vrai ssi $E1 \subseteq E2$                                   |
| Super-ensemble        | $set\_issup(E1, E2) \rightarrow $                    | issuperset           | Vrai ssi $E1 \supseteq E2$                                   |
| Union                 | $set\_union(E1, E2) \rightarrow \langle set \rangle$ | union                | $E = E1 \cup E2$                                             |
| Intersection          | $set\_inter(E1, E2) \rightarrow \langle set \rangle$ | intersection         | $E = E1 \cap E1$                                             |
| Différence            | $set\_diff(E1, E2) \rightarrow \langle set \rangle$  | difference           | $E = E1 \setminus E2$                                        |
| Différence Symétrique | $set\_xor(E1, E2) \rightarrow < set >$               | symmetric_difference | $E = (E1 \setminus E2) \cup (E1 \setminus E2)$               |