Formulario di Elettronica dello stato solido

Lorenzo Rossi Anno Accademico 2020/2021

Email: lorenzo14.rossi@mail.polimi.it

GitHub: https://github.com/lorossi

Quest'opera è distribuita con Licenza Creative Commons Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet}$

Versione aggiornata al 22/06/2021

Indice

1	Riguardo al formulario		
2	Richiami di Base 2.1 Serie	2 2 2	
3	Struttura cristallina 3.1 Packing factor	3 3	
4	Radiazione di corpo nero 4.1 Cavità di corpo nero all'equilibrio, monodimensionale	4	
5		5 5 5	
6	Meccanica quantistica 6.1 Teorema di Bloch 6.2 Operatori 6.3 Tunnelling 6.4 Incidenza 6.5 Buca di potenziale 6.5.1 A pareti infinite 6.5.2 A pareti finite 6.5.3 Parabolica 6.5.4 Coppie di buche	6 6 6 7 7 7 7 8	
7	Teoria semi classica del trasporto 7.1 Tight Binding	9 10 10	
8	8.1 Effetto Hall	11 11 11	
9	Distribuzioni	11	

1 Riguardo al formulario

Quest'opera è distribuita con Licenza Creative Commons - Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet}(\textcircled{\bullet})$

Questo formulario verrà espanso (ed, eventualmente, corretto) periodicamente fino a fine corso (o finché non verrà ritenuto completo).

Link repository di GitHub: https://github.com/lorossi/formulario-stato-solido

L'ultima versione può essere scaricata direttamente cliccando su questo link.

In questo formulario ho cercato prima di tutto di mettere le formule importanti per la risoluzione degli esercizi, preferendole a quelle utili alla comprensione della materia.

2 Richiami di Base

2.1 Serie

• Serie geometrica $s_n = \sum_{n=0}^{+\inf} q^n = 1 + q + q^2 + \dots$ converge a $s_n = \frac{1}{1-q}$ se |q| < 1

• Serie armonica $s_n = \sum_{n=0}^{+\inf} \frac{1}{n^{\alpha}}$ converge se $\alpha > 1$

2.2 Elettromagnetismo

• Forza
$$|F| = \frac{|V|}{|x|}$$

• Forza vettoriale $\vec{F} = -\vec{\nabla}V = -\frac{1}{q}\vec{\nabla}U$

• Campo elettrico E = -qV

• Energia $\delta E=qF\delta x,\, \frac{\partial E}{\partial T}=qFv_g$

3 Struttura cristallina

• Packing factor
$$PF = \frac{4/3 \cdot \pi r^3}{a^3}$$

- Densità del reticolo
$$l = \frac{\text{n}^{\circ} \text{atomi / cella}}{\text{area cella}}$$

• Interferenza del passo reticolare (diffrazione alla Bragg) $2a\sin\theta=n\lambda$ con n ordine di diffrazione

3.1 Packing factor

Struttura	Metalli che la presentano in natura	Packing Factor
Cubico	Po	$\frac{\pi}{6} \approx 0.52$
GBB	Cr, Fe, Mo, Ta	$\pi \frac{\sqrt{3}}{8} \approx 0.68$
FCC	Ag, Au, Cu, Ni, Pb	$\pi \frac{\sqrt{2}}{6} \approx 0.74$

3.2 Indici di Miller

Ipotesi: il piano interseca in $\{m, n, 0\}$

- Indici di Miller $\{n,m,0\}$
- Distanza interplanare $d = \frac{a}{\sqrt{n^2 + m^2}}$

4 Radiazione di corpo nero

- Legge di Wien $\lambda_p \cdot T = c_{\text{wien}}$
- Legge di Stefan-Boltzmann $\int\limits_0^{\inf} R_T d\nu = \sigma T^4$
- Potenza emessa dal corpo nero $P=\sigma T^4A=RA,$ con A area della superficie del corpo

4.1 Cavità di corpo nero all'equilibrio, monodimensionale

- Lunghezze d'onda permesse $a=n\frac{\lambda}{2}$
- Frequenze permesse $\nu = \frac{c}{2a} n$ con n intero e non nullo
- Free spectral range FSR = $\nu_n \nu_{n-1} = \frac{c}{2a}$

5 Onde e particelle

5.1 Onde

- Frequenza / lunghezza d'onda $\nu = \frac{c}{\lambda}$

- Energia associata ad un'onda $E=h\nu=\hbar\omega$

• Vettore d'onda $k = \frac{2\pi}{h}$

• Velocità di fase $v_f = \frac{d\omega}{dt}$

• Velocità di gruppo $v_g=\frac{\partial \omega}{\partial k}=\frac{1}{\hbar}\frac{\partial E}{\partial k}=\frac{\hbar k}{m}$

5.1.1 Pacchetti d'onda

• Formula generale $\Psi(x,t) = \int g(k)e^{i(kx-\omega t)}dk$

• Densità di probabilità $|\Psi(x,t)|^2 = \exp\left\{-\frac{(x-v_gt)^2}{2\alpha(1+\beta^2t^2/\alpha^2)}\right\}\sqrt{\frac{\pi^2}{\alpha^2+\beta^2t^2}}$

• Deviazione standard $\sigma_x(t) = \sqrt{\frac{\alpha^2 + \beta^2 t^2}{\alpha}}$

• Pacchetto gaussiano:

– Velocità $v_g = \frac{\partial \omega}{\partial k}$

- Dispersione $\beta = \frac{1}{2} \frac{\partial^2 E}{\partial^2 k}$

– Oscillazione $\omega = \omega_0 + v_g \cdot (k - k_0) + \beta \cdot (k - k_o)^2$

– Il picco si sposta con $v = v_g$

5.2 Particelle

• Energia $E = E_k + U$

– Energia cinetica $E_k = \frac{1}{2}mv^2 = \frac{h^2}{2m\lambda^2}$

– Principio di equipartizione dell'energia, particella con l gradi di libertà: $E_k = \frac{l}{2}kT$

5

– Energia potenziale di una particella in un potenziale $V\colon U=qV$

• Relazione di De Broglie $\lambda = \frac{h}{p}, \, p = \hbar k$

• Relazione di dispersione $E = \frac{h^2 k^2}{2m}$

• Vettore d'onda $k = \frac{\sqrt{2mE}}{\hbar}$

• Lunghezza d'onda $\lambda = \frac{h}{\sqrt{2mE}}$

6 Meccanica quantistica

- Principio di indeterminazione di Heisenberg $\Delta x \Delta p \geq \frac{\hbar}{2}$
- Equazione di Schrödinger $i\hbar \frac{\partial \Psi}{\partial t}(x,t) = \hat{H}\Psi(x,t)$
- Flusso quantistico $J = \frac{\hbar k}{m} |\Psi|^2$

6.1 Teorema di Bloch

Ipotesi:

- Struttura reticolare con passo a
- Il potenziale è periodico V(x+a) = V(x)
- La funzione d'onda si ripete a meno di un fattore di fase $\psi(x+a) = \psi(x)e^{ika}$
- La densità di probabilità è periodica $|\psi(x+a)|^2 = |\psi(x)|^2$

Allora: $|\psi(x)| = u_k(x)e^{-ikx}$ con $u_k(x)$ funzione di Bloch (periodica), quindi $u_k(x+a) = u_k(x)$. e e^{-ikx} inviluppo.

Normalmente è costruita da $\sin^2 o \cos^2$, con i massimi in corrispondenza dei centri delle barriere. Inoltre $\psi(x+a) = u_k(x+a)e^{ikx}e^{ika}$, con e^{ika} sfasamento.

6.2 Operatori

- Operatore Hamiltoniano $\hat{H}=-\frac{\hbar^2}{2mi}\frac{\partial^2}{\partial x^2}+V$
- Operatore quantità di moto (momento) $\hat{p}=-i\hbar\frac{\partial}{\partial x}$
- Operatore energia cinetica $\hat{E}_{tot} = -i \frac{\hbar^2}{2m} \frac{\partial^2}{\partial t^2}$
- Operatore energia totale $\hat{E}_k = i\hbar \frac{\partial}{\partial t}$
- Operatore potenziale $\hat{V} = V$
- Commutatore $H = [\hat{A}, \hat{B}] = \hat{A}\hat{B} \hat{B}\hat{A} = \hat{C}$
 - Se $\hat{C} = 0$, allora i due operatori *commutano*.

6.3 Tunnelling

- Probabilità di tunnelling $|T|^2 \approx 16 \left(\frac{\alpha k}{\alpha^2 + k^2}\right)^2 \exp\left\{-2\alpha a\right\} \approx \exp\left\{-2\alpha a\right\}$
 - Trasmissione risonante $p = |T|^2 = 1$
- Tempo medio di tunnelling $\langle t \rangle = \frac{t_{a/r}}{p_t} = \frac{2a}{v p_{\rm tun}}$

• Approssimazione WKB:

– Probabilità
$$p = |T|^2 = P_T = \exp\{-2\alpha a\}$$

– Penetrazione media
$$x_p = \frac{\hbar}{\sqrt{2m(V_0 - E)}} = \frac{1}{\alpha}$$

– L'approssimazione è valida se e solo se $\alpha a \gg 1$

• Approssimazione di Fowler–Nordheim barriera triangolare

– Probabilità
$$P_T = \exp\left\{-\frac{4}{3}\frac{\sqrt{2m}}{\hbar qV}W(V-E)^{3/2}\right\}$$

6.4 Incidenza

• Coefficiente di riflessione
$$R = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2$$

• Coefficiente di trasmissione
$$T = \left(\frac{2k_1}{k_1 + k_2}\right)^2 = 1 - R^2$$

6.5 Buca di potenziale

6.5.1 A pareti infinite

• Autovalori
$$E_n = \frac{h^2}{8ma^2}n^2$$
, spaziatura $\propto n^2$

6.5.2 A pareti finite

• Funzioni pari
$$\tan\left(\frac{a}{2\hbar}\sqrt{2mE}\right) = \sqrt{\frac{V_0 - E}{E}}$$

• Funzioni dispari tan
$$\left(\frac{a}{2\hbar}\sqrt{2mE}\right) = -\sqrt{\frac{E}{V_0-E}}$$

• La soluzione delle equazioni avviene per via grafica

6.5.3 Parabolica

• Profilo di potenziale
$$U = \frac{1}{2}\alpha x^2$$

• Pulsazione caratteristica
$$\omega = \sqrt{\frac{\alpha}{m}}$$
, con alpha coefficiente del quadrato di x

7

• Autovalori
$$E_n = \left(n + \frac{1}{2}\right) \hbar \omega$$
, spaziatura $\propto n$

6.5.4 Coppie di buche

• Funzione degli autovalori $\tan\left(k\frac{a}{2}\right) = -\frac{\hbar^2 k}{mU_0}$

• Soluzioni della funzione:

- Pari tan(ka) = 0

– Dispari $\tan(ka) = -\frac{\hbar^2 k}{m_0 u_0}$

• Proporzionalità della ddp $|\psi|^2 \propto \cos\left(\frac{E_2 - E_1}{\hbar}t\right) = \cos\left(2\pi \frac{E_2 - E_1}{h}t\right)$

– Oscillazione degli autovalori $\omega = \frac{E_2 - E_1}{\hbar}$

– Frequenza degli autovalori $\nu = \frac{E_2 - E_1}{h}$

7 Teoria semi classica del trasporto

• Formula fondamentale $\frac{dk}{dt} = \frac{F}{\hbar} \Rightarrow k = \frac{F}{\hbar}t + k_0$

• Velocità termica $v_{th} = \sqrt{\frac{3kT}{m}}$

7.1 Tight Binding

• Massa efficace dell'elettrone $m^* = \frac{\mathfrak{F}}{a} = \frac{\hbar^2}{\frac{\partial^2 E}{\partial k^2}}$

• Relazione di dispersione $E(k) = E_{0-} + 2\gamma \cos(ka)$

• Oscillazioni di Bloch $\omega = \frac{aqF}{\hbar}, \, \nu = \frac{aqF}{h}$

• Libero cammino medio $\lambda = v_{th} \cdot \tau_m$

• Modello di Drude:

– Formula $\frac{dk}{dt} + \frac{k}{\tau_m} = \frac{F}{\hbar}$ vale solo per gli elettroni

8

– Soluzione generale $k = \frac{q\tau_m F}{\hbar} \left(1 - e^{t/\tau_m}\right)$

– Soluzione stazionaria $\frac{\partial k}{\partial t} = 0 \rightarrow \bar{k} = \frac{qF}{\hbar} \tau_m$

• Masse DOS:

– Elettroni $m_{DOS_n}^{\star} = g^{\scriptscriptstyle 2/\!\scriptscriptstyle 3} \cdot m_t^{\star^{\scriptscriptstyle 2/\!\scriptscriptstyle 3}} \cdot m_l^{\star^{\scriptscriptstyle 1/\!\scriptscriptstyle 3}}$

- Lacune $m_{DOS_p}^{\star} = \left(m_{hh}^{\star^{3/2}} + m_{lh}^{\star^{3/2}}\right)^{2/3}$

• Masse di conduzione:

- Elettroni
$$\frac{n^{\circ}m_{c_n}^{\star}}{m_{c_n}^{\star}} = \frac{n^{\circ}m_l^{\star}}{m_l^{\star}} + \frac{n^{\circ}m_t^{\star}}{m_t^{\star}}$$
- Lacune $\frac{1}{m_{c_p}^{\star}} = \frac{m_{hh}^{\star}^{1/2} + m_{lh}^{\star}^{1/2}}{m_{hh}^{\star}^{3/2} + m_{lh}^{\star}^{3/2}}$

7.1.1 Semiconduttori

- Distribuzione di Fermi $f(E) = \frac{1}{1 + e^{\frac{E E_F}{kT}}}$
- Densità di stati di energia:

- Caso 1D
$$g(E) = \frac{1}{\pi \hbar} \sqrt{\frac{2m_{DOS}^{\star}}{E - E_F}}$$

- Caso 2D $g(E) = \frac{m_{DOS}^{\star}}{\hbar^2 \pi}$
- Caso 3D $g(E) = \frac{(2m_{DOS}^{\star})^{3/2}}{2\pi^2 \hbar^3} \sqrt{E - E_F}$

• Densità di portatori:

$$\begin{split} &-N_c = \frac{2}{h^3} \left(2\pi m_{DOS_n}^{\star} kT\right)^{3/2} \approx 10^{19} \\ &-N_v = \frac{2}{h^3} \left(2\pi m_{DOS_p}^{\star} kT\right)^{3/2} \approx 10^{19} \\ &-\text{Concentrazione intrinseca } n_i = \sqrt{N_c N_v} e^{-\frac{E_g}{2kt}} \\ &-\text{Elettroni } n = \int\limits_{E_F}^{\infty} g(E) f(E) \, dE \approx N_c \cdot e^{-\frac{-E_c - E_f}{kt}} \\ &-\text{Lacune } p = \int\limits_{0}^{E_F} g(E) \left(1 - f(E)\right) \, dE \approx N_v \cdot e^{\frac{E_v - E_f}{kt}} \end{split}$$

• Concentrazione di drogante neutro:

- Donore
$$n_0 = \frac{n}{1 + \frac{1}{2}e^{\frac{E_n - E_f}{kt}}}$$
- Acceptore $p_0 = \frac{p}{1 + \frac{1}{4}e^{\frac{E_f - E_p}{kt}}}$

• Energia media dell'elettrone $\langle E \rangle = \frac{1}{n} \int\limits_{E_F}^{\inf} E \cdot g(E) f(E) \, dE$

- Caso 2D
$$\langle E \rangle = \frac{E_F}{2}$$

– Caso 3D
$$\langle E \rangle = \frac{3}{5} E_F$$

- Energia cinetica dell'elettrone $E_k = \frac{\hbar^2 k^2}{2m_{\pi}^*}$
- Legge di Matthiessen $\frac{1}{\mu_n} = \frac{1}{\mu_{n,f}} + \frac{1}{\mu_{n,i}}$
- Saturazione della velocità:
 - Velocità limite $v_{\rm sat} = \sqrt{\frac{\hbar \, \omega_0}{2 m^\star}}$
 - Velocità dell'elettrone sopra questo valore $v_n = \frac{\mu_n F}{1 + F/F_{sat}} = \frac{\mu_n F}{1 + \mu_n F/v_{sat}}$
- Rapporto delle grandezze al variare della temperatura:

- Mobilità
$$\frac{\mu(T_2)}{\mu(T_1)} = \left(\frac{T_2}{T_1}\right)^{-3/2}$$

$$- \text{ Nc } \frac{N_c(T_2)}{N_c(T_1)} = \left(\frac{T_2}{T_1}\right)^{3/2}$$

– Densità intrinseca
$$\frac{n_i(T_2)}{n_i(T_1)} = \left(\frac{T_2}{T_1}\right)^{^{3/2}} e^{-\frac{E_g}{2k}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$

— Conducibilità
$$\frac{\sigma(T_2)}{\sigma(T_1)} = e^{-\frac{E_g}{2k}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$

7.2 Weak binding

• Valore di aspettazione dell'energia al margine della funzione di Brillouin $< E> = \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2 = E_n^+ - |u_n|$

7.2.1 Metalli

• Energia di Fermi
$$E_F(T)=E_F(0K)\left[1-\frac{\pi^2}{12}\left(\frac{kT}{E_F(0K)}\right)^2\right]$$

• Densità di portatori approssimazione $n \approx \int\limits_0^{E_F} g(E) dE$

7.3 Formule valide sia per lacune che per elettroni

• Mobilità
$$\mu = \frac{q\tau_m}{m^*}$$

- Velocità di deriva $v = \mu F$
- Conducibilità $\sigma = qn\mu$

• Resistività
$$\rho = \frac{1}{\sigma}$$

• Densità di corrente $j = qn\mu F = \sigma F$

7.4 Livelli di energia

• Livello di Fermi $E_f = \frac{\left(3\pi^2 n\right)^{2/3}}{2m_n^*}\hbar^2$

• Livello di energia intrinseco $E_i = \frac{E_C + E_V}{2} + \frac{KT}{2} \ln \left(\frac{m_p^*}{m_n^*} \right)$

8 Correnti macroscopiche

• Effetto termoionico $J=AT^2e^{-\dfrac{w}{kt}},\,A=\dfrac{4\pi m^{\star}qk^2}{h^3}$

• Equazione di continuità della corrente $\frac{\partial n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} + g_n - r_n, \frac{\partial p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} + g_n - r_n$

8.1 Effetto Hall

• Mobilità dei portatori $\mu_p = \frac{1}{B} \frac{V_H}{V_L} \frac{L}{W}$

• Densità di drogante $p=N_A=\frac{j_P}{q\mu_p F}$

8.2 Correnti di diffusione

• Legge di Einstein $D_n = \frac{kT}{q}\mu_n$

• 1° legge di Fick $\Phi_n=-D_n\frac{\partial n}{\partial x},\,\Phi_p=-D_p\frac{\partial p}{\partial x}$

• 2° legge di Fick $\frac{\partial n}{\partial t} = D_n \frac{\partial^2}{\partial t^2}, \frac{\partial p}{\partial t} = D_p \frac{\partial^2}{\partial t^2}$

9 Distribuzioni

• Fermi Dirac $f_{FD}(e) = \frac{1}{1 + e^{\frac{E - E_f}{kt}}}$

• Maxwell Boltzmann $f_{MB}(e) = e^{-\frac{E - E_f}{kt}}$