**Цель работы:** научиться экспериментально определять действующие значения и начальные фазы токов и напряжений в цепи; освоить метод расчета цепей синусоидального тока комплексным методом, построение векторных диаграмм; экспериментально проверить выполнение законов Кирхгофа.

### 1. Задание на предварительный расчет.

### 1.1. Схема замещения электрической цепи

Схема электрической цепи для предварительного расчета представлена на рисунке 1. Формируем комплексную схему замещения для данной схемы, см. рисунок 2.



Рисунок 1 – Схема электрической цепи для предварительного расчета

Исходные данные для расчета представлены в таблице 1.

Таблица 1 – Исходные данные для расчета

| № стенда | Номер варианта | f, кГц | Ветвь L, R <sub>2</sub> |         | Ветвь $C, R_3$ |         |
|----------|----------------|--------|-------------------------|---------|----------------|---------|
|          |                |        | L                       | ф, град | C              | ф, град |
| 13       | 1              | 1      | $L_{H}$                 | 20      | $C_D$          | 55      |

Параметры цепи:

$$U = 2 B;$$
  
 $L = L_H = 44,1 \text{ м}\Gamma_H;$   
 $C_D = 101,8 \text{ H}\Phi.$ 

Определяем сопротивление катушки индуктивности и емкости на заданной частоте

$$\begin{split} X_{L} &= 2\pi \cdot f \cdot L = 2\pi \cdot 1 \cdot 10^{3} \cdot 44, 1 \cdot 10^{-3} = 277 \, \text{Om}, \\ X_{C} &= \frac{1}{2\pi \cdot f \cdot C} = \frac{1}{2\pi \cdot 1 \cdot 10^{3} \cdot 101, 8 \cdot 10^{-9}} = 1563, 4 \, \text{Om}, \end{split}$$

Активные сопротивления ветвей равны

$$R_1 = 100 \text{ Om};$$

$$R_2 = \frac{X_L}{tg \varphi_2} = \frac{277}{tg 20^\circ} = 761 \text{Om},$$

$$R_3 = \frac{X_C}{tg \varphi_3} = \frac{1563.4}{tg 55^\circ} = 1095 \text{Om}.$$

Комплексная схема замещения цепи представлена на рисунке 2.



Рисунок 2 – Комплексная схема замещения цепи

#### 1.2. Расчет комплексных значений токов в ветвях

Сопротивления ветвей в комплексном виде

$$\begin{split} \underline{Z}_1 = R_1 = &100 \text{ Om,} \\ \underline{Z}_2 = R_2 + jX_L = &761 + j277 = 809,8 e^{+j\ 20^{\circ}} \text{ Om,} \\ \underline{Z}_3 = R_3 - jX_C = &1095 - j1563,4 = 1908,7 e^{-j\_55^{\circ}} \text{ Om,} \end{split}$$

Комплексное действующее напряжение источника равно

$$U = Ue^{j \cdot 0} = 2e^{j \cdot 0^{\circ}} B.$$

Входное сопротивление цепи в комплексном виде

$$\begin{split} \underline{Z} &= \underline{Z}_1 + \frac{\underline{Z}_2 \cdot \underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3} = 100 + \frac{809.8e^{+j\ 20^\circ} \cdot 1908.7e^{-j\_55^\circ}}{761 + j277 + 1095 - j1563.4} = \\ &= 100 + \frac{809.8e^{+j\ 20^\circ} \cdot 1908.7e^{-j\_55^\circ}}{1856 + j1286.4} = 100 + \frac{809.8e^{+j\ 20^\circ} \cdot 1908.7e^{-j\_55^\circ}}{2258.2e^{-j\ 34.7^\circ}} = \\ &= 100 + 684.6e^{-j\ 0.3^\circ} = 100 + 684.5 - j3.2 = 784.5 - j3.2 = 784.6e^{-j\ 0.2^\circ} \ \mathrm{Om}. \end{split}$$

Токи ветвей в комплексном виде равны:

$$\begin{split} \underline{I}_1 = & \frac{\underline{U}}{\underline{Z}} = \frac{2e^{j\ 0^{\circ}}}{784,6e^{-j\ 0,2^{\circ}}} = 2,549 \cdot 10^{-3} e^{+j\ 0,2^{\circ}} A, \\ \underline{I}_2 = & \underline{I}_1 \cdot \frac{\underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3} = 2,549 \cdot 10^{-3} e^{+j\ 0,2^{\circ}} \cdot \frac{1908,7e^{-j=55^{\circ}}}{2258,2e^{-j\ 34,7^{\circ}}} = 2,155 \cdot 10^{-3} e^{-j\ 20,1^{\circ}} A, \\ \underline{I}_3 = & \underline{I}_1 \cdot \frac{\underline{Z}_2}{\underline{Z}_2 + \underline{Z}_3} = 2,549 \cdot 10^{-3} e^{+j\ 0,2^{\circ}} \cdot \frac{809,8e^{+j\ 20^{\circ}}}{2258,2e^{-j\ 34,7^{\circ}}} = 0,914 \cdot 10^{-3} e^{+j\ 54,9^{\circ}} A. \end{split}$$

Проверка расчетов:

$$\underline{I}_1 = \underline{I}_2 + \underline{I}_3,$$
 
$$\underline{I}_2 + \underline{I}_3 = 2,155 \cdot 10^{-3} \, \mathrm{e}^{-\mathrm{j} \, 20,1^\circ} + 0,914 \cdot 10^{-3} \, \mathrm{e}^{+\mathrm{j} \, 54,9^\circ} = (2,024 - \mathrm{j}0,739) \cdot 10^{-3} + \\ + (0,525 + \mathrm{j}0,748) \cdot 10^{-3} = (2,549 + \mathrm{j}0,009) \cdot 10^{-3} = 2,549 \cdot 10^{-3} \, \mathrm{e}^{+\mathrm{j} \, 0,2^\circ} \, \mathrm{A} - \\ \mathrm{проверка \, выполняется}.$$

#### 1.3. Баланс мощностей

Мощность источника:

- полная мощность в комплексном виде

$$\underline{S}_{\text{M}} = \underline{U} \cdot \underline{I}_{1}^{*} = 2e^{j \cdot 0^{\circ}} \cdot 2,549 \cdot 10^{-3} e^{-j \cdot 0,2^{\circ}} = 5,098 \cdot 10^{-3} e^{-j \cdot 0,2^{\circ}} = 5,098 \cdot 10^{-3} - j0,018 \cdot 10^{-3} \text{BA};$$

- активная мощность

$$P_{\rm H} = 5.098 \cdot 10^{-3} \, \rm Br;$$

- реактивная мощность

$$Q_{\rm H} = -0.018 \cdot 10^{-3} \text{ BAp.}$$

Мощность приемника:

- активная мощность

$$\begin{split} P_\Pi = & I_1^{\ 2} \cdot R_1 + I_1^{\ 2} \cdot R_1 + I_3^{\ 2} \cdot R_3, \\ P_\Pi = & (2,549 \cdot 10^{-3})^2 \cdot 100 + (2,155 \cdot 10^{-3})^2 \cdot 761 + (0,914 \cdot 10^{-3})^2 \cdot 1095 = 5,099 \cdot 10^{-3} \mathrm{Bt}; \\ & \text{- реактивная мощность} \end{split}$$

$$Q_\Pi = {\rm I_2}^2 \cdot {\rm X_L} + {\rm I_3}^2 \cdot (-{\rm X_C}),$$
 
$$Q_\Pi = (2{,}155 \cdot 10^{-3})^2 \cdot 277 + (0{,}914 \cdot 10^{-3})^2 \cdot (-1563{,}4) = -0{,}019 \cdot 10^{-3} \, {\rm BAp}.$$
 Погрешность расчетов составила

$$\begin{split} \delta_{\mathrm{P}} &= \left| \frac{\mathrm{P}_{\mathrm{H}} - \mathrm{P}_{\mathrm{\Pi}}}{\mathrm{P}_{\mathrm{H}}} \right| \cdot 100\% = \left| \frac{5,098 \cdot 10^{-3} - 5,099 \cdot 10^{-3}}{5,098 \cdot 10^{-3}} \right| \cdot 100\% = 0,02\%, \\ \delta_{\mathrm{Q}} &= \left| \frac{\mathrm{Q}_{\mathrm{H}} - \mathrm{Q}_{\mathrm{\Pi}}}{\mathrm{Q}_{\mathrm{H}}} \right| \cdot 100\% = \left| \frac{-0,018 \cdot 10^{-3} - (-0,019 \cdot 10^{-3})}{-0,018 \cdot 10^{-3}} \right| \cdot 100\% = 0,25\%. \end{split}$$

# 1.4. Расчет потенциалов точек и построение векторной диаграммы

Комплексные напряжения на элементах цепи равны

$$\begin{split} & \underline{U}_{R.1} = \underline{I}_1 \cdot R_1 = 2,549 \cdot 10^{-3} \, e^{+j \cdot 0,2^{\circ}} \cdot 100 = 0,255 e^{+j \cdot 0,2^{\circ}} \, B, \\ & \underline{U}_{R.2} = \underline{I}_2 \cdot R_2 = 2,155 \cdot 10^{-3} \, e^{-j \cdot 20,1^{\circ}} \cdot 761 = 1,64 e^{-j \cdot 20,1^{\circ}} \, B, \\ & \underline{U}_{R.3} = \underline{I}_3 \cdot R_3 = 0,914 \cdot 10^{-3} \, e^{+j \cdot 54,9^{\circ}} \cdot 1095 = 1,01 e^{+j \cdot 54,9^{\circ}} \, B, \\ & \underline{U}_L = \underline{I}_2 \cdot j X_L = 2,155 \cdot 10^{-3} \, e^{-j \cdot 20,1^{\circ}} \cdot 277 e^{+j \cdot 90^{\circ}} = 0,597 e^{+j \cdot 69,9^{\circ}} \, B, \\ & \underline{U}_C = \underline{I}_3 \cdot (-j X_C) = 0,914 \cdot 10^{-3} \, e^{+j \cdot 54,9^{\circ}} \cdot 1563,4 e^{-j \cdot 90^{\circ}} = 1,429 e^{-j \cdot 35,1^{\circ}} \, B. \end{split}$$

Значение потенциалов точек цепи в комплексном виде равны  $\varphi_{_0} = 0\,\mathrm{B},$ 

$$\begin{split} \underline{\varphi}_1 &= \underline{\varphi}_0 + \underline{U}_{R.1} = 0 + 0.255 e^{+j\ 0.2^{\circ}} = 0.255 e^{+j\ 0.2^{\circ}} B, \\ \underline{\varphi}_A &= \underline{\varphi}_1 + \underline{U}_{R.2} = 0.255 e^{+j\ 0.2^{\circ}} + 1.64 e^{-j\ 20.1^{\circ}} = 1.881 e^{-j\ 17.4^{\circ}} B, \\ \underline{\varphi}_B &= \underline{\varphi}_1 + \underline{U}_{R.3} = 0.255 e^{+j\ 0.2^{\circ}} + 1.01 e^{+j\ 54.9^{\circ}} = 1.167 e^{+j\ 44.6^{\circ}} B, \\ \underline{\varphi}_2 &= \underline{\varphi}_3 + \underline{U} = 0 + 2 e^{+j\ 0^{\circ}} = 2 e^{+j\ 0^{\circ}} B. \end{split}$$

Векторная диаграмма изображена на рисунке 3, масштаб построения  $M_U = 0.5 \, \mathrm{B}/10 \, \mathrm{дел}, \, M_I = 1 \, \mathrm{mA}/10 \, \mathrm{дел}.$ 



Рисунок 3 – Векторная диаграмма токов и напряжения

## 2. Задание на эксперимент

2.1. Собираем цепь для эксперимента, представленную на рисунке 4.



Рисунок 4 – Схема цепи для эксперимента

- 2.2. Устанавливаем напряжение на генераторе и частоту согласно предварительному расчету. Измеряем потенциалы и фазы точек 1, 2, а и b и заносим в таблицу 2. Значение тока  $I_1$  рассчитываем по значению потенциала  $\phi_1$ .
- 2.3. Уменьшаем частоту генератора в 2 раза, выполняем эксперимент аналогично п. 2.1, результаты заносим в таблицу 2.

Таблица 2 – Результаты эксперимента и предварительного расчета

| Измеряемые                                          | При частоте f               |              |      | При частоте 0,5f |
|-----------------------------------------------------|-----------------------------|--------------|------|------------------|
| величины                                            | По предваритель-            | Получено при | σ, % | Получено при     |
|                                                     | ному расчету                | эксперименте |      | эксперименте     |
| $\underline{\mathbf{I}}_1$ , $MA$                   | 2,549e <sup>+j 0,2°</sup>   |              |      |                  |
| $\underline{\mathbf{I}}_2$ , мА                     | $2,155e^{-j\ 20,1^{\circ}}$ |              |      |                  |
| $\underline{\mathbf{I}}_3$ , $\mathbf{M}\mathbf{A}$ | 0,914e <sup>+j 54,9°</sup>  |              |      |                  |
| $\underline{\varphi}_1$ , B                         | $0,255e^{+j\ 0,2^{\circ}}$  |              |      |                  |
| $\underline{\varphi}_2$ , B                         | 2e <sup>+j 0°</sup>         |              |      |                  |
| $\underline{\varphi}_{\mathrm{A}}$ , B              | 1,881e <sup>-j 17,4°</sup>  |              |      |                  |
| $\underline{\varphi}_{\mathtt{B}},\mathtt{B}$       | 1,167e <sup>+j 44,6°</sup>  |              |      |                  |

Погрешность измерений рассчитываем, используя выражение

$$\delta_{\varphi} = \frac{|\varphi_{\text{PAC}} - \varphi_{\text{ЭКСП}}|}{\varphi_{\text{ЭКСП}}} \cdot 100\%$$
 и  $\delta_{\text{I}} = \frac{|\mathbf{I}_{\text{PAC}} - \mathbf{I}_{\text{ЭКСП}}|}{\mathbf{i}_{\text{ЭКСП}}} \cdot 100\%$ .