1 Elementary number theory

1.1 The Peano Axioms

- The natural numbers \mathbb{N} are defined by the peano axioms:
 - For all $n, n+1 \neq 1$
 - If $m \neq n$, then $m+1 \neq n+1$
 - For any property P(n): If P(1) is true and $P(n) \Rightarrow P(n+1)$ for all n, then P(n) true $\forall n$. This is the induction axiom.
- Strong induction: If P(1) and for all n, $P(m) \forall m \leq n \Rightarrow P(n+1)$, then P(n) true for all n. This can be shown by applying ordinary induction to $Q(n) = P(m) \forall m \leq n'$.

1.2 Highest common factors

- For natural numbers a, b, a natural number c is the $\underline{\operatorname{hcf}}$ of a and b if:
 - 1. c|a and c|b
 - 2. If d|a and d|b then d|c
- Euclids Algorithm: for finding the hcf of a and b (wlog let $a \ge b$)
 - $a = q_1b + r_1$ $b = q_2r_1 + r_2$ $r_1 = q_3r_2 + r_3$ \vdots $r_{n-1} = q_{n+1}r_n + 0$
 - Then the output is r_n
 - Sequence terminates since $b > r_1 > r_2 \dots$
- Bezout's Lemma
 - For all $a,b\in\mathbb{N}$ we can write $xa+yb=\mathrm{hcf}(a,b)$ for some $x,y\in\mathbb{Z}$

- Can solve for x, y by reversing Euclid on a, b
- Bezout can be used to show that $\forall x \in \mathbb{Z}_p$ with $x \neq 0$, x is invertible in \mathbb{Z}_p

1.3 Modular Arithmetic

- We say that $x \in \mathbb{Z}_k$ is invertible if (x, k) = 1. This can be shown simply using Bezout
- Fermat's Little Theorem and Euler-Fermat
 - By considering some non-zero $a \in \mathbb{Z}_p$ and the elements $a, a \cdot 2, a \cdot 3, \ldots, a \cdot (p-1)$ it may be shown by pigeonhole that $a^{p-1}(p-1)! = (p-1)!$
 - Noting that (p-1)! is invertible as a product of invertibles, $a^{p-1} = 1$
 - More generally by considering the set $\{a \cdot j : (j,k) = 1\}$ in \mathbb{Z}_k we see that $a^{\phi(k)} = 1$ where $\phi(k)$ is the <u>Euler totient function</u>
- Wilson's Theorem: $(p-1)! \equiv -1 \pmod{p}$
 - Follows simply from pairing each element in \mathbb{Z}_p with its inverse. Then only 1 and -1 are left since they are their own inverse. Hence we have $(p-1)! = 1 \cdot 1 \cdot (-1) = -1$

1.4 Solving Congruence Equations

- Chinese Remainder Theorem: Let u and v be comprime. Then for any a, b, there is an x with $x \equiv a \pmod{u}$ and $x \equiv b \pmod{v}$. Such an x is unique \pmod{uv}
 - Existence: Follows from setting su + tv = 1 for some $s, t \in \mathbb{Z}$, then $tv \equiv 1 \pmod{u}$ and $su = 1 \pmod{v}$. Finally consider x = a(tv) + b(su) and we have such an x
 - Uniqueness: Suppose $x' \equiv a \equiv x \pmod{u}$ and $x' \equiv b \equiv x \pmod{v}$. Then u|(x-x') and v|(x-x') so uv|(x-x') since (u,v)=1. Therefore $x' \equiv x \pmod{uv}$

- An application: RSA Coding
 - Pick two primes p and q and let n = pq
 - Fix a 'coding exponent' e
 - To encode a message $x \in \mathbb{Z}_n$, raise it to the power of e in \mathbb{Z}_n i.e $x \to x^e$
 - To decode we wish to find a d such that $(x^e)^d = x$. Since $x^{\phi(n)} = 1$, $x^{k\phi(n)+1} = x$ for all $k \in \mathbb{Z}$
 - Hence we wish to find d such that $de = k\phi(n) + 1$, i.e $ed \equiv 1 \pmod{\phi(n)}$
 - To do this we can run Euclid on e and $\phi(n)$, assuming they are comprime
 - If we know p and q then $\phi(n) = pq p q 1$ and this is easy. If we don't know the primes, it is very hard even when we know what n is.

2 The Reals

- The Least Upper Bound Property
 - The field \mathbb{Q} is not complete this means that there are 'gaps'. For example the sequence: $\{3, 3.1, 3.14, 3.141, 3.1415, \ldots\}$ does not converge in \mathbb{Q}
 - The Real numbers \mathbb{R} 'fix' this issue by having the Least Upper Bound Property: For any non-empty subset S of \mathbb{R} which is bounded above, there exists a least upper bound, denoted $\sup(S)$ such that $\forall s \in S, \sup(S) \geq s$

2.1 Sequences and Convergence

• For a sequence $(a_n)_{n=1}^{\infty}$ we say that the sequence converges to a if:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t } \forall n \geq N, |a - a_n| < \varepsilon$$

- There are some key theorems which may help to determine whether a sequence converges:
 - If a sequence is monotonic and bounded above, it converges.
 - Comparison test
- For example the series:

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$
 converges by comparison with
$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 2$$

2.2 Irrational and Transcental Numbers

- We say that a number x is <u>irrational</u> if $x \in \mathbb{R} \setminus \mathbb{Q}$
- We say that a number x is <u>transcendental</u> if \nexists a polynomial f with integer coefficients such that f(x) = 0
 - The number $c=\sum_{n=1}^{\infty}\frac{1}{10^{n!}}$ is transcendental. To show this we need two facts:
 - 1. For all polynomials with integer coefficients and for all $x, y \in [0, 1]$, there exists k such that

$$|P(x) - P(y)| \le k|x - y|$$

- 2. A non-zero polynomial of degree d has at most d roots
- Suppose c is a root of a degree d polynomial P(x), i.e P(c) = 0. Then it can be shown that $|c - c_n| \le \frac{2}{10^{(n+1)!}}$
- It may then be shown that for sufficiently large n $|P(c_n) P(c)| \ge \frac{1}{10^{d \cdot n!}}$
- Hence by fact 1, $\frac{1}{10^{d \cdot n!}} \le \frac{2k}{10^{(n+1)!}}$, for some k which is false for sufficiently large n

3 Sets and functions

• The Inclusion-Exclusion Principle:

For finite sets $S_1, S_2, \dots S_n$:

$$|S_1 \cup S_2 \cup \ldots \cup S_n| = \sum_{|A|=1} |S_A| - \sum_{|A|=2} |S_A| + \ldots + (-1)^{n+1} \sum_{|A|=n} |S_A|$$

Where $S_A = \bigcap_{i \in A} S_i$ and summation is taken over all k-subsets of $\{1, 2, \dots, n\}$

- The theorem may be proven by seeing how many times each x is counted in the LHS and RHS
- Equivalence relations:
 - We say that a relation R on a set X is an equivalence relation if:
 - 1. R is reflexive $xRx \ \forall x \in X$
 - 2. R is symmetric $xRy \iff yRx \ \forall x, y \in X$
 - 3. R is transitive $xRy \wedge yRz \implies xRz \ \forall x,y,z \in X$
 - The equivalence classes of an equivalence relation on a set X partitions X

4 Countability

- We say that a set X is <u>countable</u> if:
 - $-\exists$ a injection $f:X\to\mathbb{N}$
 - $-\exists$ a surjection $f: \mathbb{N} \to X$
 - $-\exists$ a bijection $f: X \to \mathbb{N}$ or X is finite
- Some examples of countable sets are:
 - \mathbb{N} by definition
 - \mathbb{N}^k consider the injection $f: \mathbb{N}^k \to \mathbb{N}$ defined by $(n_1, n_2, \dots n_k) \mapsto p_1^{n_1} \cdot p_2^{n_2} \dots p_k^{n_k}$ for primes p_i

- A countable union of countable sets is countable this may be shown by 'diagonally' counting the elements of countable sets A_1, A_2, \ldots
- We say a set is <u>uncountable</u> if it is not countable. Some examples of uncountable sets are:
 - $-\mathbb{R}$ can be shown by Cantor's diagonalisation argument
 - $-\mathbb{R}\setminus\mathbb{A}$ consider $(\mathbb{R}\setminus\mathbb{A})\cup\mathbb{A}=\mathbb{R}$
 - $-\mathbb{P}(\mathbb{N})$ shown by diagonalisation or a surjection into \mathbb{R}
- Schroder-Bernstein Theorem:

If $f:A\to B$ and $g:B\to A$ are injections then \exists bijection $h:A\to B$

– To see why this is, consider the ancestor sequence of $a \in A$: $g^{-1}(a), f^{-1}g^{-1}(a), g^{-1}f^{-1}g^{-1}(x), \ldots$ Partition the sequences based on whether or not they terminate in even time, odd time or dont terminate. Then we can biject between these sets and their analogue in B.