

QR Codes

Inhalt

1 Einleitung	2
2 Aufbau von QR Codes	
3 Codierung des Alphabets	5
4 Fehlerkorrektur	6
Was ist Fehlerkorrektur?	6
Fehlerkorrektur bei QR Codes	7
Hamming-Code	9
5 Maskierung	12
6 Gefahren von QR Codes	15
Anhang A: ISO-8859-1	16
ISO-8859-1 Tabelle	16
Umrechnung Hexadezimalsystem <-> Binärsystem	16
Anwendung	18
Lösungen	19
Quellen	23

1 Einleitung

Sie haben bestimmt schon viele QR Codes angetroffen. Diese praktischen Bildchen erlauben es, schnell auf Informationen zuzugreifen und werden zum Beispiel auf Werbeplakaten oder Flyern eingesetzt. Doch wie funktioniert das Prinzip? Was steckt dahinter? Das werden Sie in diesem Skript lernen.

QR Code steht für *Quick Response Code*, weil er schnell ausgelesen und verarbeitet werden kann. Solche Codes werden zum Speichern digitaler Daten auf Papier (oder ähnlichen Medien) benutzt. Die Daten werden also in analoger Form gespeichert. Ein Handy (oder ein anderer Barcodeleser) kann dann diese Daten wieder auslesen, digitalisieren und verarbeiten.

QR Codes wurden erstmals 1994 genutzt, erfunden von der Firma Denso, die eine Tochtergesellschaft von Toyota ist. Diese Firma hat die Codes eingesetzt, um die Produktion von Autobauteilen zu automatisieren und zu kontrollieren. Seit 2000 sind QR Codes ein ISO-Standard. Der Standard wurde einige Male erweitert, weshalb es verschiedene Versionen von QR Codes gibt.

2 Aufbau von QR Codes

Aufgabe 1:

Betrachten Sie die beiden QR Codes im Titel des Skriptes und dazu diese fünf:

- a) Welche Gemeinsamkeiten gibt es (rein optisch) zwischen den sieben Codes?
- b) Worin unterscheiden sich die Codes?
- c) Ihnen sind sicher die Quadrate in drei der vier Ecken aufgefallen. Wozu könnten diese dienen? Warum gibt es sie nicht in allen vier Ecken?

(Die Lösungen zu allen Aufgaben finden Sie gegen Ende des Skriptes, ab Seite 19)

Ein QR Code ist immer ein Quadrat, aufgebaut aus sogenannten *Modulen*. Jedes Modul kann entweder weiss oder schwarz gefärbt sein. Ausserdem sind immer die folgenden Bereiche vorhanden:

- Die roten Bereiche (*Position detection patterns*) sind dazu da, die Begrenzung und die Orientierung des Codes anzugeben.
- Der Bereich, der direkt an die roten Bereiche angrenzt, wird leer gelassen, damit die roten Bereiche gut sichtbar sind (hier grün markiert).
- Mit zunehmender Grösse (*Version*) des Codes werden weitere Muster (*Alignment patterns*, hier dunkelblau) hinzugefügt, um die Ausrichtung des Codes besser erkennbar zu machen.
 - Ein QR Code kann verschiedene Grössen haben. Version 1 besteht aus 21x21 Modulen, Version 2 aus 25x25 Modulen, Version 3 aus 29x29 Modulen usw. Die grösste Version, Version 40, besteht aus 177x177 Modulen. Pro Versionsschritt werden immer 4 Module in der Seitenlänge addiert.
- Die Timing patterns (hier gelb) helfen dem Decoder, die Lage der einzelnen Module zu bestimmen. Sie geben sozusagen die Zeilen und Spalten vor. Sie bestehen abwechselnd aus schwarzen und weissen Modulen.
- In den pinken Bereichen wird (für grössere QR Codes) die Versionsnummer angegeben, d.h. es wird angegeben, wie gross der Code ist. Die beiden Bereiche enthalten zweimal dieselbe Information – für den Fall dass der eine Bereich nicht gelesen werden kann.
- Im hellblauen Bereich ist Information über das Format des Codes gespeichert. Diese Informationen geben wichtige Details an, z.B. welche Maske verwendet wurde und welche Fehlerkorrektur angewandt wurde. Zu diesen Details folgt später mehr.
 - Wie die Versions-Information ist auch die Format-Information doppelt vorhanden. Einmal im Gegenuhrzeigersinn um das obere linke *Position detection pattern*, das zweite Mal zuerst links unten aufwärts, dann rechts oben von links nach rechts.

Der Rest des QR-Codes besteht aus den Daten, also z.B. dem Text, welche den eigentlichen Inhalt ausmachen. Das "Gerüst" wird wie folgt befüllt:

Quelle: http://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/QR_Code_Unmasked.svg/528px-QR_Code_Unmasked.svg.png

Beginnend bei der unteren rechten Ecke werden die Daten (eine Folge von 0 und 1) eingetragen. Zuerst kommen (in grau) die eigentlichen Daten, danach (in grün) die Bits, welche für die Fehlerkorrektur zuständig sind. Falls am Schluss noch Platz übrig ist, wird dieser einfach leer gelassen.

Aufgabe 2:

Hier ist ein QR Code, der noch nicht fertig gestellt ist. Füllen Sie die hellgelb markierten Bereiche richtig auf. Die fehlenden Bits für den Anfang in der rechten unteren Ecke lauten:

1000 0011 1000 0110 1000 0101 1100 0001 1010 0001 1101 0110

3 Codierung des Alphabets

Am Anfang jedes QR Codes steht eine Information (d.h. ein Text / eine URL / eine Zahl), die dargestellt werden soll. Wie wird diese Information in Nullen und Einsen umgewandelt, so dass man dies im QR Code eintragen kann?

Abhängig davon, welche Zeichen im Text vorkommen, kann man den Text mit verschiedenen Zeichensätzen codieren:

Zahlen (0-9)

Kommen nur Ziffern vor, kann ein QR Code theoretisch bis 7089 Zeichen speichern

• Alphanumerisch (0-9A-Z \$%*+-./:)

Kommen nur Grossbuchstaben, Zahlen und 9 vorgegebene Sonderzeichen vor, können bis zu 4296 Zeichen gespeichert werden

• ISO-8859-1

Wenn der Text nur aus Zeichen besteht, die in ISO-8859-1 vorkommen (das sind unter anderem Gross- und Kleinbuchstaben, Ziffern, viele Satzzeichen und kombinierte Buchstaben für den westeuropäischen Sprachraum), können bis zu 2953 Zeichen codiert werden

KANJI

Wenn der Text nur aus KANJI (japanische Schriftzeichen) besteht, können maximal 1817 Zeichen gespeichert werden.

Nachdem der passende Zeichensatz bestimmt ist, werden die folgenden Informationen in die Bitfolge geschrieben:

1. Die Kennnummer des Zeichensatzes

Jeder der vier Zeichensätze hat eine eindeutige Nummer, sozusagen der Name des Zeichensatzes

2. Die Anzahl der Zeichen, die der Text hat

Damit man weiss, wie viel Text jetzt kommt

3. Der Text selbst

4. Die Ende-Kennung; sie ist immer 0000

Wenn man 0000 liest, heisst das, dass der Text jetzt fertig ist

Beispiel "Märchenbuch":

1. Kennnummer:

Um den Text "Märchenbuch" zu codieren, wird zuerst der passende Zeichensatz ausgewählt. In diesem Fall ist das ISO-8859-1. Dieser Zeichensatz hat die Kennnummer **0100**.

2. Anzahl Zeichen:

Im zweiten Schritt wird gezählt, wie viele Zeichen der Text enthält. In diesem Fall sind es 11 Zeichen. Bei kleinen QR-Codes wird diese Zahl mit 8 Bit codiert - bei grösseren QR-Codes würde die Zahl mit 16 Bit codiert werden. Die Zahl 11 soll also im Binärsystem geschrieben werden und zwar mit 8 Stellen (8 Bits). Das ergibt **0000 1011.**

3. Der Text selbst:

Anschliessend werden die einzelnen Zeichen codiert. Für ISO-8859-1 ist im Anhang A auf Seite 16 angegeben, wie diese Codierung erfolgt. Das "M" wird zu **0100 1101**, das "ä" zu **1110 0100** und so weiter.

4. Ende-Kennung:

Den Abschluss bildet die Ende-Kennung. Sie ist immer **0000**, ausser wenn nicht mehr genug Platz ist. Dann wird sie abgekürzt.

Insgesamt wird aus dem Text "Märchenbuch" somit diese Bitfolge:

- 0100
- 0000 1011
- 0100 1101 1110 0100 0111 0010 0110 0011 0110 1000 0110 0101 0110 1110 0110 0010 0111 0101 0110 0011 0110 1000
- 0000

Aufgabe 3:

Codieren Sie den Text "Kanti Wil" analog zum Beispiel Märchenbuch. Verwenden Sie dazu auch ISO-8859-1. Hinweis: Den Leerschlag finden Sie in der Tabelle unter "NBSP"

4 Fehlerkorrektur

Sie wissen bereits, wie aus gegebenen Informationen eine Bitfolge hergestellt wird und wie diese danach in einen QR Code eingetragen wird. Der nächste Schritt ist die Fehlerkorrektur.

Was ist Fehlerkorrektur?

Aufgabe 4:

Lassen Sie sich vom Lehrer / der Lehrerin den Zaubertrick mit den Kärtchen demonstrieren.

- a) Wie funktioniert der Trick?
- b) Funktioniert er auch noch, wenn zwei Kärtchen umgedreht werden?

Was steckt hinter dem Trick?

Die zwei zusätzlichen Zeilen und Spalten dienen der "Fehlerkorrektur". Mit diesen zwei zusätzlichen Reihen wird sichergestellt, dass im ursprünglichen Bild eine gewisse Bedingung erfüllt ist (in jeder Zeile und Spalte eine gerade Anzahl schwarze Kärtchen).

Sobald im geänderten Bild diese Bedingung an einer Stelle nicht mehr erfüllt ist, muss ein "Fehler", d.h. eine Veränderung vorliegen. Weil man sehen kann, in welcher Zeile und in welcher Spalte der Fehler liegt, lässt sich das gedrehte Kärtchen eindeutig bestimmen. Die Fehlerkorrektur sorgt also nicht nur

dafür, dass man feststellen kann, dass irgendetwas falsch ist, sondern sie erlaubt es auch, den Fehler genau zu lokalisieren und damit zu korrigieren.

Wenn Bitfolgen von Nullen und Einsen übertragen werden sollen, dann passieren immer ein paar Übertragungsfehler. Deshalb werden in solchen Fällen zusätzliche Fehlerkorrekturbits angehängt oder eingefügt, um gewisse Bedingungen zu erfüllen, ähnlich wie bei den Kärtchen.

Wird die Bitfolge übertragen, kann der Empfänger jederzeit überprüfen, ob die Bedingungen erfüllt sind. Wenn nicht, ist bei der Übertragung etwas schief gelaufen. Mit Hilfe der Fehlerkorrektur kann der Empfänger sogar genau bestimmen, welches Bit falsch empfangen worden ist und es berichtigen.

Fehlerkorrektur bei QR Codes

Bei QR Codes sind solche fehlerkorrigierenden Codes sehr wichtig. Da sich die QR Codes meistens auf Papier befinden, können Verschmutzungen vorkommen oder es kann sein, dass das Papier an einer Stelle zerknittert ist. Dann wird der QR Code vom Barcodeleser falsch gelesen und es könnte zu Fehlern kommen.

Aufgabe 5:

Die folgenden vier QR Codes enthalten alle dieselbe Information. Sie besitzen allerdings verschiedene "Fehlerkorrekturlevels". Das Fehlerkorrekturlevel gibt an, wie viel Fehlerkorrektur zusätzlich zu der eigentlichen Information im QR Code vorhanden ist.

- a) Falls Sie auf Ihrem Handy noch keine App zum Lesen von QR Codes haben, dann laden Sie sich jetzt eine herunter. Es gibt viele solche Gratis-Apps, z.B. "Barcode Scanner" für Android oder "NeoReader" für iPhone. (Falls Sie mit dem NeoReader arbeiten, schalten Sie in den Einstellungen "Scan bestätigen" ein).
- b) Untersuchen Sie die unten stehenden Codes. Wie viel Prozent des Codes kann man abdecken / unkenntlich machen / zerstören / ..., so dass die App die im Code enthaltenen Daten noch lesen kann? Schätzen Sie für jeden Code eine Prozentzahl. Sie bekommen die Codes auch auf einem separaten Blatt, etwas grösser, damit Sie gut damit arbeiten können.

QR Code	Fehlerkorrekturlevel	Toleriert % Fehler
	M	

QR Code	Fehlerkorrekturlevel	Toleriert % Fehler
	Н	
	L	
	Q	

Bei Level H kann bis zu 30% des QR Codes verschmutzt oder abgedeckt sein und die Information wird trotzdem noch erkannt. Dank dieser Tatsache können so genannte *Design QR Codes*, die mit Logos oder Bildern versehen sind, immer noch gelesen werden.

Beispiele für Design QR Codes (von http://www.qrcode-generator.de/design):

Neben den "verdeckten" Bereichen sind bei Design QR Codes zusätzlich oft die Ecken abgerundet und es werden verschiedene Farben verwendet. Allerdings können gewisse Barcodescanner Probleme mit dem Lesen bekommen, wenn der Code zu fest "verschönert" wird.

Doch wie funktioniert diese Fehlerkorrektur bei QR Codes? Die Korrektur basiert auf dem Solomon-Reed Algorithmus, der leider sehr fortgeschrittene mathematische Kenntnisse erfordert, wenn man ihn verstehen will. Weil dies den Rahmen des Ergänzungsfachs sprengen würde, schauen wir uns ein einfacheres Verfahren zu Fehlerkorrektur an, das zwar nicht bei QR Codes aber sonst in verschiedenen Bereichen der Informatik verwendet wird.

Hamming-Code

Der Hamming-Code ist ein Verfahren zur Fehlerkorrektur, das von Richard Hamming (1915-1998) entwickelt worden ist. Mit ihm können Bitfolgen so modifiziert werden, dass bei einer Übertragung ein falsches Bit erkannt und korrigiert werden kann.

Hamming -Code anhand eines Beispiels:

Codieren:

Daten, die codiert werden sollen: 0110100010011

1. Platz für Kontrollbits machen

An allen Stellen, die Zweierpotenzen sind, wird Platz für ein Kontrollbit gemacht:

(Hier sind an den Stellen 1, 2, 4, 8, 16 Kontrollbits)

2. Erstes Kontrollbit

Für das erste Kontrollbit wird immer ein Bit der Folge angeschaut, dann eines ausgelassen, dann wieder eines angeschaut... Beginn ist beim ersten Kontrollbit (d.h. Bit 1).

```
__ 0_110 1000100 11
```

In den markierten Bits muss eine gerade Anzahl 1 vorkommen. Hier haben wir vier 1 in den markierten Bits, d.h. das Kontrollbit muss eine 0 sein. Somit haben wir:

3. Zweites Kontrollbit

Für das zweite Kontrollbit werden immer zwei Bits angeschaut, dann zwei ausgelassen usw. Beginn ist beim zweiten Kontrollbit (d.h. Bit 2).

In den markierten Bits muss eine gerade Anzahl 1 vorkommen. Hier haben wir zwei 1 in den markierten Bits, d.h. das Kontrollbit muss eine 0 sein. Somit haben wir:

4. Drittes Kontrollbit

Beginn ist bei Bit 4 (drittes Kontrollbit) und es werden immer 4 Bits angeschaut, dann 4 ausgelassen usw.

```
000 110 1000100 11
```

In den markierten Bits muss eine gerade Anzahl 1 vorkommen. Hier haben wir drei 1 in den markierten Bits, d.h. das Kontrollbit muss eine 1 sein. Somit haben wir:

```
0001110 1000100 11
```

5. Viertes Kontrollbit

Beginn ist bei Bit 8 (viertes Kontrollbit) und es werden immer 8 Bits angeschaut, dann 8 ausgelassen usw.

```
0001110 1000100 11
```

In den markierten Bits muss eine gerade Anzahl 1 vorkommen. Hier haben wir zwei 1 in den markierten Bits, d.h. das Kontrollbit muss eine 0 sein. Somit haben wir:

```
000111001000100 11
```

6. Fünftes Kontrollbit

Beginn ist bei Bit 16 (fünftes Kontrollbit) und es werden immer 16 Bits angeschaut, dann 16 ausgelassen usw.

```
000111001000100 11
```

In den markierten Bits muss eine gerade Anzahl 1 vorkommen. Hier haben wir zwei 1 in den markierten Datenbits, d.h. das Kontrollbit muss eine 0 sein. Somit haben wir:

```
000111001000100011
```

Et voilà: Die Codierung ist fertig!

Merke:

Beim Kontrollbit an der Stelle n: Beginne bei Bit n und markiere n Bits, lasse n Bits weg usw. Die Anzahl 1 muss immer gerade sein.

Überprüfen:

Zu überprüfende Bitfolge: 01001000100100101101

1. Erstes Kontrollbit überprüfen

Für das erste Kontrollbit wird immer ein Bit der Daten angeschaut, dann eines ausgelassen, dann wieder eines angeschaut... Beginn ist beim ersten Kontrollbit (d.h. Bit 1).

```
010010001000101101
```

Ziel: Eine gerade Anzahl 1. Hier haben wir vier davon, also ist dieses Kontrollbit ok.

2. Zweites Kontrollbit überprüfen

Für das zweite Kontrollbit werden immer zwei Bits angeschaut, dann zwei ausgelassen usw. Beginn ist beim zweiten Kontrollbit (d.h. Bit 2).

010010001000101101

Ziel: Eine gerade Anzahl 1. Hier haben wir drei davon, also ist dieses Kontrollbit nicht ok.

3. Drittes Kontrollbit überprüfen

Beginn ist bei Bit 4 (drittes Kontrollbit) und es werden immer 4 Bits angeschaut, dann 4 ausgelassen usw.

010**0100**0100**0101**101

Ziel: Eine gerade Anzahl 1. Hier haben wir drei davon, also ist dieses Kontrollbit nicht ok.

4. Viertes Kontrollbit überprüfen

Beginn ist bei Bit 8 (viertes Kontrollbit) und es werden immer 8 Bits angeschaut, dann 8 ausgelassen usw.

0100100**01000101**101

Ziel: Eine gerade Anzahl 1. Hier haben wir drei davon, also ist dieses Kontrollbit nicht ok.

5. Fünftes Kontrollbit überprüfen

Beginn ist bei Bit 16 (fünftes Kontrollbit) und es werden immer 16 Bits angeschaut, dann 16 ausgelassen usw.

010010001000101101

Ziel: Eine gerade Anzahl 1. Hier haben wir zwei davon, also ist dieses Kontrollbit ok.

6. Falsche Kontrollbits addieren

Die falschen Kontrollbits sind die Bits 2, 4 und 8. Die Summe davon ist 2 + 4 + 8 = 14, d.h. bei der vorliegenden Zeichenfolge ist das 14. Bit falsch. Mathe-Magie! :-)

0100100010001**0**1101 falsches Bit

0100100010001**1**11101 so wäre es richtig

Merke:

Beim Kontrollbit an der Stelle n: Beginne bei Bit n und markiere n Bits, lasse n Bits weg usw. Die Anzahl 1 muss gerade sein, sonst ist das Kontrollbit falsch.

Addiere alle falschen Kontrollbits um das gekippte Bit zu erhalten.

Aufgabe 6:

- a) Codieren Sie die Bitfolge 1001011010111001 mit dem Hamming-Code.
- b) Sie empfangen die Folge 111000011100101010. Wurde sie richtig übertragen? Wenn nein: Welches Bit ist falsch?

Wie funktioniert der Hamming-Code?

Das erste Kontrollbit schaut auf die Stellen 1, 3, 5, 7, 9, ... Schreibt man diese Zahlen um als Summen von Zweierpotenzen, so sind es die Stellen 1, 2+1, 4+1, 4+2+1, 8+1, ... also alle Stellen, die in dieser Summendarstellung "+1" enthalten.

Aufgabe 7:

Füllen Sie die Tabelle aus. Geben Sie jeweils an, welche Stellen das Kontrollbit überprüft und wie die Stellennummer als Summe von Zweierpotenzen geschrieben wird.

1.	Kontrollbit	2. F	Kontrollbit	3. l	Kontrollbit	4. Kontrollbit			
Stelle	Summe	Stelle	Summe	Stelle	Summe	Stelle	Summe		
1	1								
3	2+1								
5	4+1								
7	4+2+1								
9	8+1								
Alle folgen	Stellen, die des enthalten: +1								

Wenn das erste Kontrollbit (Stelle 1) also falsch ist, muss der Fehler an einer Stelle sein, deren Summe "+1" enthält. Wenn das zweite Kontrollbit (Stelle 2) falsch ist, muss der Fehler an einer Stelle sein, die "+2" enthält, und so weiter.

Erhält man als falsche Kontrollbits die Stellen 1, 2 und 8, so muss die fehlerhafte Stellennummer "+1", "+2" und "+8" enthalten – und sonst nichts, denn sonst wäre ein weiteres Kontrollbit falsch! Die falsche Stelle ist also 1 + 2 + 8 = 11.

5 Maskierung

Nun wissen Sie, wie man den gesamten QR Code mit den schwarzen und weissen Modulen ausfüllt. Den Anfang machen die Datenbits, danach folgen Fehlerkorrekturbits. Was jetzt noch passieren kann, ist dass es sehr grosse zusammenhängende schwarze oder weisse Flächen gibt.

Wenn Sie sich fertige QR Codes anschauen, dann stellen Sie fest, dass es selten grosse einfarbige Flächen gibt – meist sind die Codes sehr "unruhig". Beim letzten Schritt der QR Code-Erstellung, der sogenannten Maskierung, wird sichergestellt, dass genau dies der Fall ist.

Aufgabe 8:

Warum macht man diesen letzten Schritt? Was könnte theoretisch passieren, wenn ein QR Code einfach mit den erhaltenen Daten und Fehlerkorrekturbits gefüllt wird?

Bei der Maskierung wird eine Art "Folie" über den QR Code gelegt. Auf der Folie sind Bereiche markiert, in welchen die Module des QR Codes umgedreht werden sollen, d.h. aus schwarz wird weiss und umgekehrt.

Beispiel:

es grosse einfarbige Flächen

In diesem QR Codes gibt Diese Maske wird über den Code gelegt. Ein weisses Feld bedeutet, dass der Code so belassen wird, gelb heisst, die Farbe wird an dieser Stelle geändert

Der ursprüngliche Code plus die darübergelegte Maske

Im Endresultat gibt es viel weniger einfarbige Flächen

Aufgabe 9: Maskieren Sie den gegebenen QR Code mit der Maske:

Für QR Codes gibt es acht verschiedene Masken:

Quelle: http://research.swtch.com/gart

Die Masken bestehen jeweils aus einem Muster, das immer wiederholt wird. Man sieht bei den obigen Masken, dass wichtige Bereiche wie die *Position Detection Patterns* in den Ecken, die *Alignment Patterns* und natürlich auch Versions- und Formatinformationen nicht maskiert werden. Denn bei diesen Informationen ist es zwingend, dass sie unverändert und sofort lesbar sind.

Wenn ein QR Code fertig ausgefüllt ist, werden alle dieser acht Masken darauf angewendet. Dies ergibt acht verschiedene fertige QR Codes. Von diesen acht wird derjenige ausgewählt, der am wenigsten "störende Eigenschaften" aufweist. Diese "störenden Eigenschaften" sind im Standard für QR Codes festgelegt. Für die acht möglichen Codes wird anhand von vorgegebenen Kriterien ausgerechnet, wie "schlecht" der Code ist. Derjenige QR Code mit den wenigsten "Strafpunkten" wird als Endresultat gewählt.

http://qrbcn.com/imatgesbloc/Three_QR_Code.pdf

Damit ist der QR Code endgültig fertig und kann von Anwendern auf der ganzen Welt gescannt werden.

6 Gefahren von QR Codes

QR Codes sind praktisch. Man kann damit schnell auf eine Webseite verlinken, Nachrichten austauschen, Kontaktdaten verschicken etc. Doch wie so vieles heutzutage bieten sie auch Angriffspunkte für Hacker.

Aufgabe 10:

- a) Recherchieren Sie im Internet. Welche Gefahren können von QR Codes ausgehen?
- b) Was kann ein Hacker im schlimmsten Fall mit den Daten auf Ihrem Handy anfangen? Was wäre für Sie das Schlimmste?
- c) Für wie gefährlich halten Sie QR Codes? Wie realistisch ist ein Angriff?
- d) Wie kann man sich gegen die Gefahren schützen?

Anhang A: ISO-8859-1

ISO-8859-1 Tabelle

Code	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
0							'n	ioht	beleg	nf.						
1							,,	iicini	neiei	jι						
2	SP	İ	"	#	\$	%	&	'	()	*	+		-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	Ν	0
5	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	[١]	۸	_
6	,	а	b	С	d	е	f	g	h	i	j	k	ı	m	n	0
7	р	q	r	S	t	u	٧	W	х	У	z	{		}	~	
8							,	vioht	beleg	nf.						
9							,,	nom	neieí	jι						
Α	NBSP	i	¢	£	¤	¥		§	-	0	а	«	٦	SHY	®	_
В	o	±	2	3	•	μ	¶			1	0	»	1/4	1/2	3/4	ن
С	À	Á	Â	Ã	Ä	A	Æ	Ç	È	É	Ê	Ë	ì	ĺ	Î	Ϊ
D	Ð	Ñ	Ò	Ó	Ô	Ő	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
E	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	ĺ	î	Ϊ
F	ð	ñ	Ò	ó	ô	ő	Ö	÷	Ø	ù	ú	û	ü	ý	þ	ÿ

Quelle: http://de.wikipedia.org/wiki/ISO_8859-1

Umrechnung Hexadezimalsystem <-> Binärsystem

Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire
0	0	000	00000000	16	10	020	00010000	32	20	040	00100000	48	30	060	00110000
1	1	001	00000001	17	11	021	00010001	33	21	041	00100001	49	31	061	00110001
2	2	002	00000010	18	12	022	00010010	34	22	042	00100010	50	32	062	00110010
3	3	003	00000011	19	13	023	00010011	35	23	043	00100011	51	33	063	00110011
4	4	004	00000100	20	14	024	00010100	36	24	044	00100100	52	34	064	00110100
5	5	005	00000101	21	15	025	00010101	37	25	045	00100101	53	35	065	00110101
6	6	006	00000110	22	16	026	00010110	38	26	046	00100110	54	36	066	00110110
7	7	007	00000111	23	17	027	00010111	39	27	047	00100111	55	37	067	00110111
8	8	010	00001000	24	18	030	00011000	40	28	050	00101000	56	38	070	00111000
9	9	011	00001001	25	19	031	00011001	41	29	051	00101001	57	39	071	00111001
10	A	012	00001010	26	1A	032	00011010	42	2A	052	00101010	58	3A	072	00111010
11	В	013	00001011	27	1B	033	00011011	43	2B	053	00101011	59	3B	073	00111011
12	С	014	00001100	28	1C	034	00011100	44	2C	054	00101100	60	3C	074	00111100
13	D	015	00001101	29	1D	035	00011101	45	2D	055	00101101	61	3D	075	00111101

14 15	E F	016 017	00001110 00001111	30 31	1E 1F	036 037	00011110 00011111	46 47	2E 2F	056 057	00101110 00101111	62 63	3E 3F	076 077	00111110 00111111
Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79	40 41 42 43 44 45 46 47 48 49 4A 4D 4E 4F	100 101 102 103 104 105 106 107 110 111 112 113 114 115 116	01000000 01000001 01000010 01000011 01000100 01000101 01000111 010010	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5F	120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137	01010000 01010001 01010010 01010011 01010100 01010110 01010110 01010111 01011000 0101101	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	60 61 62 63 64 65 66 67 68 69 6A 6C 6D 6E 6F	140 141 142 143 144 145 146 147 150 151 152 153 154 155 156	01100000 01100001 01100010 01100011 01100100	112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127	70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F	160 161 162 163 164 165 166 170 171 172 173 174 175 176	01110000 01110001 01110010 01110011 01110100 01110101 01110110
Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	80 81 82 83 84 85 86 87 88 88 88 80 88 85 86 87 88 88 88 88 88 88 88 88 88 88 88 88	200 201 202 203 204 205 206 207 211 212 213 214 215 216 217	10000000 10000010 10000010 10000010 10000100 10000101 10000111 10001001 10001001 10001011 10001100 10001101 10001101 10001110 10001111	144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159	90 91 92 93 94 95 96 97 98 99 9D 9E 9F	220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237	10010000 10010001 10010010 10010011 10010100 10010101 1001011 10011010 10011001	160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE	240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257	10100000 10100001 10100010 10100011 10100100 10100101 10100111 10101000 10101001 10101010	176 177 178 179 180 181 182 183 184 185 186 187 188 189 190	B0 B1 B2 B3 B4 B5 B6 B7 B8 BB BB BC BD BE BF	260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277	10110000 10110001 10110010 10110011 101101
Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire	Dec	Hex	Oct	Binaire
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207	C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE	301 302 303 304 305 306 307 310 311 312 313 314 315 316	11000000 11000001 11000010 11000011 11000100 11000101 11000111 11001010 1100100	208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223	D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF	321 322 323 324 325 326 327 330 331 332 333 334 335 336	11010000 11010001 11010010 11010011 11010100 11010101 11010111 11010111 11011001 110110101 110110101 11011100 110111101 110111101 110111101	224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239	E0 E1 E2 E3 E4 E5 E6 E7 E8 EB EC ED EE	341 342 343 344 345 346 347 350 351 352 353 354 355 356	11100000 11100001 11100010 11100011 11100100 11100101 11100110 11100101 11101000 11101010 11101010 11101101 11101101 11101110	240 241 242 243 244 245 246 247 248 250 251 252 253 254 255	F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE	360 361 362 363 364 365 366 367 371 372 373 374 375 376 377	11110000 11110010 11110010 11110010 11110101 11110101 11110110

Anwendung

Gesucht: Binäre Bitfolge, die das Zeichen "B" in ISO 8859-1 codiert.

Vorgehen:

- Das Zeichen in der ISO-Tabelle suchen:
 Der Code dafür ist 42 (hexadezimal)
- Den hexadezimalen Code mit der Umrechnungstabelle in Binärcode umwandeln:
 42 Hex entspricht 01000010 Binär

Die Codierung von B ist also 01000010.

Lösungen

Aufgabe 1:

- a) Gleiches Muster in drei Ecken (oben links und rechts, unten links), bei grösseren Codes eine kleine Version dieses Quadrates in regelmässigen Abständen.
- b) In der Grösse (Anzahl "Module"), bei grösseren Codes gibt es mehr von den kleinen Quadraten
- c) Die so genannten "Position Detection Patterns" sind dazu da, die Begrenzung des QR Codes zu erfassen. Es gibt sie nur in drei Ecken, damit die Orientierung des Codes immer klar ist, auch wenn man ihn auf dem Kopf oder gedreht einscannt.

Aufgabe 2:

Aufgabe 3:

- 0100
- 0000 1000
- 0100 1011 0110 0001 0110 1110 0111 0100 0110 1001 1010 0000 0101 0111 0110 1001 0110 1100
- 0000

Aufgabe 4:

- a) Der Lehrer hat sichergestellt, dass in jeder Zeile und in jeder Spalte eine gerade Anzahl x vorkommt. Wird ein Kärtchen vertauscht, dann sorgt das dafür, dass in der betreffenden Zeile und der betreffenden Spalte die Anzahl x ungerade wird. Damit kann nach der Vertauschung schnell festgestellt werden, welches das umgedrehte Kärtchen ist.
- b) Ja, wenn zwei Kärtchen aus verschiedenen Zeilen und Spalten umgedreht werden. Wenn es zwei Kärtchen aus der gleichen Zeile sind, dann kann man im Nachhinein nur feststellen, dass es a) zwei Kärtchen aus einer Zeile waren und b) in welchen Spalten sie liegen. Die betreffende Zeile lässt sich aber nicht angeben.

Aufgabe 5:

Fehlerkorrekturlevel	Toleriert % Fehler
M	15%
Н	30%
L	7%
Q	25%

Aufgabe 6:

- a) 101000100110101111001
- b) Die Kontrollbits 1, 2 und 8 sind falsch, d.h. das 11. Bit müsste eine 1 sein statt einer 0.

Aufgabe 7:

1 . l	Kontrollbit	2. F	Kontrollbit	3. l	Kontrollbit	4. Kontrollbit			
Stelle	Summe	Stelle Summe		Stelle	Summe	Stelle	Summe		
1	1	2	2	4	4	8	8		
3	2+1	3	2+1	5	4+1	9	8+1		
5	4+1	6	4+2	6	4+2	10	8+2		
7	4+2+1	7	4+2+1	7	4+2+1	11	8+2+1		
9	8+1	10	8+2	12 8+4		12	8+4		
	e Stellen, die ndes enthalten: +1		Stellen, die des enthalten: +2		e Stellen, die ndes enthalten: +4	Alle Stellen, die folgendes enthalten: +8			

Aufgabe 8:

Die Maskierung sorgt dafür, dass bestimmte Muster, wie das Position Detection Pattern, in Datenmodulen unterdrückt wird. Dadurch wird eine schnelle Erkennung des Symbols garantiert.

Es könnte sonst passieren, dass die Daten- oder Fehlerkorrekturbits im Code per Zufall genau so angeordnet sind, dass fälschlicherweise ein Muster entsteht, das dem Alignment Pattern oder dem Position Detection Pattern entspricht. Dann hätte ein Decoder Mühe, den Code richtig zu lesen.

Aufgabe 9:

Aufgabe 10:

- a) Wenn man mit seinem Handy einen QR Code scannt, kann dieser einen Link auf eine Webseite enthalten. Je nachdem, wie die App eingestellt ist, führt sie einen eventuell direkt auf die Webseite – ohne Nachfrage. Theoretisch kann von dieser Website aus Schadsoftware auf das Handy geladen werden, ohne dass der Benutzer es merkt. Diese läuft dann in Zukunft im Hintergrund mit und kann Daten aufzeichnen etc.
- b) Mögliche Szenarien sind
 - Auslesen von Passwörtern
 - Daten werden hoch- und runtergeladen, was zu einer h\u00f6heren Handyrechnung f\u00fchren kann
 - Teure Telefonnummern können angerufen werden
 - Die Kontakte können ausgelesen werden. Einige Leute sind ziemlich naiv und speichern ihre Passwörter dort...
 - "Der Feind" kann GPS-Daten auslesen, d.h. er weiss, wo man sich befindet
 - Die Fotos auf dem Handy können ausgelesen werden
 - Der gescannte Link kann auf eine Phishing-Seite führen. Die sieht vielleicht aus wie eine ganz normale Seite (paypal, ebay,...), ist aber ein Fake und nur dazu da, Passwörter auszulesen.
 - Wenn es ein Firmenhandy ist, dann freut sich der Hacker natürlich umso mehr, wenn er Zugangsdaten und Passwörter bekommt...
 - ...
- c) Wenn ein russischer Hacker mich damit angreifen will, muss er zuerst in die Schweiz kommen und dort einen QR Code an irgendeine Bahnhofswand oder so kleben (oder einfacher: übers Internet). Diese muss ich dann scannen und ihr blind vertrauen. Dann muss ich auch noch genau das richtige Betriebssystem auf dem Handy haben, damit der Angriff erfolgreich ist. Es gibt Angriffe in dieser Form, sie sind auch schon erfolgreich gewesen, aber es gibt deutlich gefährlichere Dinge, die man im Internet anstellen kann.

d)

- Man sollte seine Handy-App so einstellen, dass sie nicht direkt auf eine Website führt
- Sehr grosse QR Codes sollten einem suspekt vorkommen.
- Bei Android-Smartphones: Besser keine Apps via QR Code installieren! Das könnte irgendeine suspekte App sein!
- Auch auf Werbeplakaten von bekannten Firmen finden sich gefährliche QR Codes. Je nach Plakat ist es nämlich sehr einfach, den vorhandenen Code mit einem anderen zu überkleben.

Quellen

- http://www.grcode.com, Stand 20.12.12
- Einführung in QR Codes von Martin Stoev http://martinstoev.de/public/articles/qrcode/ausarbeitung/index.html, Stand 20.12.12
- ISO/IEC18004:2000
- Wikipedia-Seite zu QR Codes http://de.wikipedia.org/wiki/QR-Code, Stand 22.12.12
- Aufbau QR Codes und BCH Codes: http://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders, Stand 1.1.13
- Understanding QR Codes
 http://marksprague.wordpress.com/qr-codes-technology/understanding-qr-codes/, Stand
 3.1.13
- Abenteuer Informatik, IT zum Anfassen von Routenplaner bis Onlinebanking, Jens Gallenbacher, 3. Auflage, 2012
- CS Unplugged http://www.csunplugged.org/error-detection, Stand 3.1.13
- QR Code Generator http://gogr.me/de/, Stand 1.1.13
- Bilder Design QR Codes
 http://www.grcode-generator.de/design, Stand 9.1.13
- ISO-8559-1: http://de.wikipedia.org/wiki/ISO_8859-1, Stand 10.1.13
- Umrechnung Hex-Bin:
- http://www.table-ascii.com/, Stand 10.1.13
- QR Code Tutorial: http://www.thonky.com/qr-code-tutorial/introduction/, Stand 10.1.13
- QR Art Codes: http://research.swtch.com/gart, Stand 10.3.13
- http://qrbcn.com/imatgesbloc/Three_QR_Code.pdf, Stand 10.3.13