Ensembles inductifs

caractérisation 2

Proposition.

 $X \subseteq E$ induit de (E, R):

$$X = \bigcup_{i \in \mathbb{N}} X_i$$
 avec $X_0 = B, X_{i+1} = X_i \cup R(X_i)$

 $X \subseteq \bigcup_{i \in \mathbb{N}} X_i$ par induction sur X:

règles de construction de X

- $B = X_0 \in \bigcup_{i \in \mathbb{N}} X_i$
- Si $(x_1,\ldots,x_n)\in\bigcup_{i\in\mathbb{N}}X_i$ alors $\in X_{i_0}$ donc image $\in X_{i_0+1}\subseteq\bigcup_{i\in\mathbb{N}}X_i$

donc $\bigcup_{i\in\mathbb{N}}X_i$ partie close donc contient la plus petite partie close c.-à-d. X

XU - UCBL1 - LC 2019/2020

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 23

Ensembles inductifs

caractérisation 2

Proposition.

 $X \subseteq E$ induit de (E, R):

$$X = \bigcup_{i \in \mathbb{N}} X_i$$
 avec $X_0 = B, X_{i+1} = X_i \cup R(X_i)$

 $X \supseteq \bigcup_{i \in \mathbb{N}} X_i$ par induction sur \mathbb{N} :

règles de construction de N

- $X_0 = B \subseteq X$
- Si $X_i \subseteq X$, $R(X_i) \subseteq X$ car X clos par R donc $X_{i+1} \subseteq X$

donc $\{i \in \mathbb{N} \mid X_i \subseteq X\}$ clos par $\{\to 0; n \to n+1\}$ donc \supseteq plus petite close = \mathbb{N}

XU - UCBL1 - LC 2019/2020

Un jeu de slides n'est pas un poly de référence 24

Ensembles inductifs

caractérisation 2

Proposition.

 $X \subseteq E$ induit de (E, R):

$$X = \bigcup_{i \in \mathbb{N}} X_i$$
 avec $X_0 = B, X_{i+1} = X_i \cup R(X_i)$

Idée : X = éléments accessibles depuis B par nombre fini d'étapes de R

Idée' : X = éléments permettant de « descendre » et atteindre B en nombre fini d'étapes de R à l'envers

Ensembles inductifs

caractérisation 2

Ordre strict sur E: relation binaire sur E, irreflexive et transitive

Ordre strict < bien fondé : il n'existe pas de $(x_i)_{i \in \mathbb{N}}$ t.q. pour tout $i, x_{i+1} < x_i$

Idée : « descendre » et atteindre minimum en nombre fini d'étapes

E et < bien fondé sur E

 $\begin{cases} \rightarrow & u \quad \text{pour tout } u \text{ minimal pour } < \\ u \quad \rightarrow \quad v \quad \text{pour tout } u < v \end{cases}$

schéma inductif définissant ${\cal E}$

- → fonctions...
- → preuves...

XU - UCBL1 - LC 2019/2020

Un jeu de slides n'est pas un poly de référence 26

Ensembles inductifs

caractérisation 2

E et < bien fondé sur E

Fonctions récursives : appels sur valeurs décroissantes pour < pour un < bien choisi

Preuve par induction bien fondée : comme avant clos par schéma. . .

Reformulation : soit $F \subseteq E$ les éléments satisfaisant la propriété

Si pour tout $x \in E$, lorsque pour tout $y \in F$ et y < x alors $x \in F$ alors pour tout $x \in E$, $x \in F$

EX. factorisation

XU - UCBL1 - LC 2019/2020

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 27

Logique propositionnelle

syntaxe

 $X = \{x_1, \dots, x_n, \dots\}$ un ensemble infini de variables propositionnelles

Ensemble ${\mathcal F}$ des formules du calcul propositionnel : ensemble inductif

- (B.1) : x variable propositionnelle alors $x \in \mathcal{F}$
- (B.2) : ⊥ ∈ *F*
- (I.1) Si $F \in \mathcal{F}$ alors $\neg F \in \mathcal{F}$
- (I.2) : Si $F \in \mathcal{F}$ et $G \in \mathcal{F}$ alors $F \diamond G \in \mathcal{F}$ où $\diamond \in \{\Rightarrow, \lor, \land\}$

Notation : $F \Leftrightarrow G : (F \Rightarrow G) \land (G \Rightarrow F)$

Précédence : ¬ plus forte priorité, puis ∧, puis ∨, puis ⇒ Associativité : à gauche pour ∨ et ∧, à droite pour ⇒

XU - UCBL1 - LC 2019/2020

Un jeu de slides n'est pas un poly de référence 28

Logique propositionnelle

sémantique

Sens des formules → interprétation dans algèbre de Boole

Interprétation (du calcul propositionnel) : fonction $I: X \mapsto \mathbb{B}$

Étendue I à \mathcal{F} :

- · Cas des variables déjà traité,
- $I(\bot) = 0$,
- $F \in \mathcal{F}$ alors $I(\neg F) = \overline{I(F)}$
- $F \in \mathcal{F}$ et $G \in \mathcal{F}$ alors $I(F \vee G) = I(F) + I(G)$
- $F \in \mathcal{F}$ et $G \in \mathcal{F}$ alors $I(F \wedge G) = I(F) \cdot I(G)$
- $F \in \mathcal{F}$ et $G \in \mathcal{F}$ alors $I(F \Rightarrow G) = I(F) \Rightarrow I(G)$

Seule vérité autorisée

Algèbre de Boole

G. Boole 1815-1864

Booléens : oui, non ; 0, 1 ; haut, bas ; bleu, rouge, etc.

Relation d'ordre : 0 < 1

Opérations classiques :

 $\bullet \ \ \bar{} : \mathbb{B} \to \mathbb{B}$

complément

• $+: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$

 \bigcup , ou, \max

 $\bullet \ \cdot : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$

 \cap , et, min

• ...

Algèbre de Boole

	а	b	a · b
	1	1	1
	1	0	0
	0	1	0
	0	0	0

G. Boole 1815-1864

XU - UCBL1 - LC 2019/2020

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 31

Algèbre de Boole

G. Boole 1815-1864

Propriétés :

- 0 minimum, 1 maximum
- $x \cdot 1 = x$ $x \cdot 0 = 0$
- x + 0 = x x + 1 = 1
- Complément : $x \cdot \overline{x} = 0$ $x + \overline{x} = 1$
- Commutativité de min et max
- Associativité de min et max
- Distributivité
- Morgan : $\overline{x} \cdot \overline{y} = \overline{x+y} \quad \overline{x} + \overline{y} = \overline{x \cdot y}$

XU - UCBL1 - LC 2019/2020

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 32

Algèbre de Boole

tables de vérité

Idée: notation par extension

- Une ligne par valeurs possibles des variables
- Présentation des sous fonctions en colonnes

Fonctions booléennes : par extention → une par table de vérité combien ?

Interprétations

satisfaction, déduction...

- I(F) = 1 : I satisfait F, noté $I \models F$.
- Si Σ ens. de formules, si $I \models F$ pour toute $F \in \Sigma$: I satisfait Σ $(I \models \Sigma)$

Si I(p) = I(q) = I(r) = 0 alors $I = p \lor q \Rightarrow r$

Si I(p) = I(r) = 0 et I(q) = 1 alors I ne satisfait pas $p \lor q \Rightarrow r$

Si I(p) = 1 alors $I \models \{p \lor q, \neg p \Rightarrow r\}$

Si I(p) = 1 alors I ne satisfait pas $\{p \lor q, \neg p\}$

Interprétations

satisfaction, déduction...

- I(F) = 1 : I satisfait F, noté $I \models F$.
- Si Σ ens. de formules, si $I \models F$ pour toute $F \in \Sigma$: I satisfait Σ $(I \models \Sigma)$
- F tautologie ($\models F$) si pour toute interprétation $I, I \models F$

$$p \lor \neg p$$
, $p \Rightarrow p$, $(p \Rightarrow r) \lor (\neg p \Rightarrow r)$
 $(p \Rightarrow r) \land (\neg p \Rightarrow r)$

XU - UCBL1 - LC 2019/2020

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 35

Interprétations

satisfaction, déduction...

- I(F) = 1 : I satisfait F, noté $I \models F$.
- Si Σ ens. de formules, si $I \models F$ pour toute $F \in \Sigma$: I satisfait Σ $(I \models \Sigma)$
- F tautologie ($\models F$) si pour toute interprétation $I, I \models F$
- Σ contradictoire si aucune interprétation I telle que $I \models \Sigma$

$$\{p \land \neg p\}, \{p, \neg q, p \Rightarrow q\}$$
$$\{p \land q\}, \{p, q, p \Rightarrow q\}$$

XU - UCBL1 - LC 2019/2020

Un jeu de slides n'est pas un poly de référence 36

Interprétations

satisfaction, déduction...

- I(F) = 1: I satisfait F, noté $I \models F$.
- Si Σ ens. de formules, si $I \models F$ pour toute $F \in \Sigma$: I satisfait Σ $(I \models \Sigma)$
- F tautologie ($\models F$) si pour toute interprétation $I, I \models F$
- Σ contradictoire si aucune interprétation I telle que $I \models \Sigma$
- Σ déduit sémantiquement F ($\Sigma \models F$) si toute interprétation satisfaisant Σ satisfait aussi F

$\begin{aligned} \{p,p\Rightarrow q\} &\vDash q, \quad \{p\vee q,p\Rightarrow q\} \vDash q \\ \{p,q\Rightarrow p\} \text{ ne permet pas de déduire } q \end{aligned}$

Interprétations

satisfaction, déduction...

- I(F) = 1: I satisfait F, noté $I \models F$.
- Si Σ ens. de formules, si $I \models F$ pour toute $F \in \Sigma$: I satisfait Σ $(I \models \Sigma)$
- F tautologie ($\models F$) si pour toute interprétation $I, I \models F$
- Σ contradictoire si aucune interprétation I telle que $I \models \Sigma$
- Σ déduit sémantiquement F ($\Sigma \models F$) si toute interprétation satisfaisant Σ satisfait aussi F
- F et G sémantiquement équivalentes ($F \equiv G$) si $\{F\} \models G$ et $\{G\} \models F$.

$$p \Rightarrow q \equiv \neg p \lor q, \quad p \equiv \neg \neg p$$
$$p \Rightarrow q \not\equiv q \Rightarrow p, \quad (p \land q) \lor (p \Rightarrow q) \not\equiv q$$

Logique propositionnelle

modélisation

Un logicien écoute un de ses étudiants énumérer ses sentiments à propos des cours que ce dernier suit :

- 1. J'aime la logique ou j'aime l'informatique,
- 2. Si j'aime l'informatique alors j'aime la logique.

Le logicien conclut que l'étudiant aime la logique.

Pourquoi?

XU - UCBL1 - LC 2019/2020

Un jeu de slides n'est pas un poly de référence 39

Logique propositionnelle

modélisation

a et b deux variables représentant respectivement "j'aime la logique" et "j'aime l'informatique"

Les deux phrases de l'étudiant représentées par :

- 1. $a \lor b$
- 2. $b \Rightarrow a$

Déduction du logicien représentée par : a

Démontrer $a \lor b, b \Rightarrow a \vDash a$? plusieurs façons. . .

- Par table de vérité
- Par raisonnement sémantique:

Trouver *I* telle que $I \models \{a \lor b, b \Rightarrow a\}$ et montrer $I \models a$.

• Si $I \models a$ alors fini

• Si $I \models b$, alors puisque $I \models b \Rightarrow a$, on a $I \models a$

XU - UCBL1 - LC 2019/2020

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 40