1. Energía de un oscilador armónico

Un objeto de m oscila armónicamente en un resorte con una amplitud de A. Si se sabe que su aceleración máxima es a, encuentre su energía total.

2. Oscilador amortiguado

Un oscilador amortiguado tiene un periodo de 3 s. Su amplitud disminuye en un 5% durante cada ciclo. (a); En cuánto disminuye la energía por cada ciclo? (b) ¿Cuál es la constante de tiempo τ ?

3. Oscilador amortiguado: Sub-amortiguado, criticamente amortiguado o sobre amortiguado

Se tiene un oscilador amortiguado con parámetros ω_0 y γ . En términos de ellos de las condiciones para que se tenga un oscilador sub-amortiguado, amortiguado o sobre amortiguado.

Indicaciones: Sólo en los incisos que dicen aplicación numérica se espera un número como respuesta.

Taller Semana 4

1. Circuito RLC en paralelo

Considere un circuito RLC conectado en paralelo con una fuente de corriente alterna $I_{\rm in} = I_0 \sin(\omega_{\rm ext} t)$, como se muestra a continuación.

- 1.1 Encuentre la ecuación diferencial que satisface la diferencia de potencial V(t) del condensador. Explique detalladamente como llega a dicha ecuación.
- 1.2 Calcule la frecuencia angular natural ω_0 , la frecuencia angular ω , la frecuencia angular de resonancia ω_R el ancho de la curva de resonancia $\Delta\omega$ y el factor de calidad Q del sistema en términos de R, L y C.

2. Resortes

Dos objetos, A y B, cada uno de masa m, están conectados por resortes como se muestra en la gráfica. El resorte de acople tiene una constante de fuerza k_c , y los otros dos resortes tienen constante de fuerza k_0 . Si la masa B se mantiene quieta, A vibra con una frecuencia $\nu_{\rm A}$ de 1.81 Hz. Cuando las dos oscilan, la frecuencia del modo normal más bajo ν_1 es 1.14 Hz.

- 2.1 Escriba las ecuaciones de movimiento de cada masa.
- 2.2 Muestre que las frecuencias angulares de los modos normales son:

$$\omega_1 = \omega_0 = \sqrt{k_0/m}$$
 $\omega_2 = \sqrt{\omega^2 + 2k_c/m}$

y que la frecuencia angular de A cuando B está quieta $(x_B = 0)$ es

$$\omega_A = \sqrt{\omega^2 + k_c/m}$$

2.3 Aplicación numérica: calcule la frecuencia para el modo normal más alto ν_2 y la razón k_c/k_0 .