

CREATE WITH

MATH

a) $(49)^{\frac{1}{2}} = ()^{\frac{1}{2}} =$ b) $(125)^{\frac{1}{2}} = ()^{\frac{1}{2}} =$

6 Fill in the blanks.

Base	Perpendicular	Hypotenuse	Is the hypotenuse rational or irrational?	VE VE VE
√7	1			1 /5
√8	1			75 1

As per the pythagoras theorem, we know that hypotenuse² = base² + perpendicular²

- hypotenuse² = $(\sqrt{7})^2 + 1^2 \Rightarrow 8$ hypotenuse = $\sqrt{8}$
- hypotenuse² = $(\sqrt{8})^2 + 1^2 \Rightarrow 9$ hypotenuse = $\sqrt{9} \Rightarrow 3$

Bas	se	Perpendicular	Hypotenuse	Is the hypotenuse rational or irrational?
√7		1	√8	Irrational
√8	-	1	$\sqrt{9} = 3$	Rational

Base = $\sqrt{12}$ Perpendicular = $\sqrt{14}$

Solution:

We know that,

hypotenuse(h)² = base(b)² + perpendicular(p)² Step 1 : b = $\sqrt{12}$, p = $\sqrt{14}$ and h = ? (\checkmark)

Step 3:
$$h^2 = (\sqrt{12})^2 + (\sqrt{4})^2$$

$$2 + 2 (x)$$

Step 4: $h^2 = 12 + 2 (x)$ It should have been $h^2 = 12 + 4$

Step 5:
$$h^2 = 14$$
 (x)
It should have been $h^2 = 16$

 $\sqrt{19}$ lies between which two integers on the number line?

a) 2 and 3 b) 3 and 4 c) 4 and 5

Solution:

We know that $\sqrt{1}$ = 1, $\sqrt{4}$ = 2, $\sqrt{9}$ = 3, $\sqrt{16}$ = 4, and $\sqrt{25}$ = 5 Thus we can say that $\sqrt{19}$ lies between $\sqrt{16}$ and $\sqrt{25}$ Or $\sqrt{19}$ lies between 4 and 5.

It is as shown on the number line:

$$\sqrt{16} = 4$$

 $\sqrt{25} = 5$

Hence $\sqrt{19}$ lies between 4 and 5. Option(c) is the right answer.

b) $(125)^{\frac{1}{3}} = (5)^{\frac{3}{3}})^{\frac{1}{3}} = 5$

Given:

Expression 1 : 49^{1/2}

Expression 2:125^{1/3}

Solution:

$$(49)^{1/2} = (7^2)^{1/2} = 7$$

$$(125)^{1/3} = (5^3)^{1/3} = 5$$

a) $(49)^{\frac{1}{2}} = (7^{2})^{\frac{1}{2}} = 7$

Application

13 feet

Given:

Perpendicular height (p) = 12 feet Length of base (b) = 5 feet Hypotenuse (h)² = base (b)² + perpendicular (p)²

Solution:

On substituting,

$$h^2 = 5^2 + 12^2$$

$$h^2 = 25 + 144$$

$$h = \sqrt{169}$$

$$\Rightarrow$$
 h = 13 feet

hypotenuse(h)² = base(b)² + perpendicular(p) Spaceship A : p = 3 , b = 4 Spaceship B : p = 6 , b = 8 Spaceship C : p = 5 , b = 10

Solution:

Spaceship A: $h^2 = p^2 + b^2 \Rightarrow 3^2 + 4^2$

$$h^2 = 25 \Rightarrow h = \sqrt{25} \Rightarrow h = 5$$
 (Rational)

Spaceship B:

$$h^2 = p^2 + b^2 \Rightarrow 6^2 + 8^2$$

$$h^2 = 100 \Rightarrow h = \sqrt{100} \Rightarrow h = 10$$
 (Rational)

Spaceship C: $h^2 = p^2 + b^2 \Rightarrow 5^2 + 10^2$

$$h^2 = 125 \Rightarrow h = \sqrt{125} \Rightarrow h = 11.1803..$$
 (Irrational)

Spaceship C

3 Beautiful images from the spacecraft were clicked and a new planet was discovered. The

expected mass of the planet (in 1014 kg) is given by the expression, $20 = 1/3 \text{ m}^2 + 18$. Simplify the expression, and find the value of m.

Mass (in 10^{14} kg) = 20 = 1/3 m² + 18

Solution:

On solving we get,

 $2 \times 3 = m^2$

Hence,

$$m = \sqrt{6} \times 10^{14} \, kg$$

 $m = \sqrt{6} \times 10^{14}$

√50 miles

√32 miles

Given:

Base(b) = $\sqrt{50}$ miles Perpendicular(p) = $\sqrt{32}$ miles

Solution:

Hypotenuse
$$(h)^2$$
 = base $(b)^2$ + perpendicular $(p)^2$

$$h^2 = (\sqrt{50})^2 + (\sqrt{32})^2$$
$$h^2 = 50 + 32$$

$$h^2 = 82$$

$$h = \sqrt{82}$$
 miles

$$h = \sqrt{82 \text{ miles}}$$

5 The spacecraft measured the mass of a tiny asteroid. Solve the given expression to find the mass.

$$(121)^{\frac{1}{2}} = ()^{\frac{1}{2}} =$$
 tonnes

Mass of asteroid =
$$(121)^{1/2}$$

$$= (11^2)^{1/2}$$

Fuel required = $(6)^{1/2} \times (5)^{1/2}$ gallons

Solution:

Fuel required =
$$(6)^{1/2} \times (5)^{1/2}$$

$$= (6 \times 5)^{\frac{1}{2}}$$

=
$$(30)^{\frac{1}{2}}$$
 \Rightarrow $\sqrt{30}$ gallons

Create

The diagram below is the proposed design of a new solar panel for the spacecraft. It looks like a combination of squares and right triangles, and can be extended to make larger panels.

Step 1 Choose the dimensions (x) of the solar panel and complete the table using the pattern you derived, (hypotenuse)* = (base)² + (perpendicular)².

Step 2 Observe the pattern of the squares on the design and extend it to create the squares with sides 6x and 8x.

Hint: The vertical and slant diagonals of the previous squares alternatively

becomes the side of the next square.

Step 3 Color different sections of the solar panel to bring out the pattern of squares and

Dimension	Value	Rational or Irrational	Reason
×			
a			
ь			
c			

hypotenuse² = base² + perpendicular² or $h^2 = b^2 + p^2$

Solution:

Choose x = 2 units.

$$a^2 = x^2 + x^2$$

 $\Rightarrow a^2 = 2^2 + 2^2 = 4 + 4 = 8$

$$\Rightarrow a = \sqrt{8}$$

$$b^2 = (2x)^2 + (2x)^2$$

 $\Rightarrow b^2 = 4x^2 + 4x^2 = 8x^2 = 8 \times 2^2 = 8 \times 4 = 32$

$$\Rightarrow$$
 b = $\sqrt{32}$

$$c^2 = (4x)^2 + (4x)^2$$

$$\Rightarrow$$
 c² = 16x² + 16x² = 32x² = 32 × 2² = 32 × 4 = 128

$$\Rightarrow$$
 c = $\sqrt{128}$

hypotenuse² = base² + perpendicular²

Solution:

Using the above equation and tabulating the data into the table we have,

Dimension	Value	Rational or Irrational	Reason
x	2	Rational	2 can be represented in the form of p/q.
а	√8	Irrational	8 is not a perfect square. Square root of non-perfect squares is irrational.
b	√32	Irrational	32 is not a perfect square Square root of non-perfect squares is irrational.
c	√128	Irrational	128 is not a perfect squar Square root of non-perfect squares is irrational.

