Before we begin

- 1. Open R/Rstudio or whatever you use.
- 2. Prepare a folder for the workshop and set it as working directory.
- 3. Install packages and download the data.

Instructions and slides available at https://github.com/jmonlong/HGSS_Rworkshops/ (in the Advanced-Tidyverse-Bioconductor-2018 folder).

HGSS R Workshop : Tidyverse and Bioconductor

Jean Monlong

Human Genetics department

March 26, 2018

Sponsored by the McGill Initiative in Computational Medicine (MiCM)

Today's topic

- Manipulating, analyzing and visualizing large data.frame in the Tidyverse.
- ▶ Tricks: cleaner and faster code.
- ► Access and manipulate genomics ranges.
- ▶ Tricks: Gene enrichment analysis, heatmaps.

Disclaimer

- ▶ Some things might be too technical. Follow what you can.
- ► Feel free to interrupt or suggest other ways.
- ▶ Lunch break: 12:15pm 1:15pm

data.table package and fread

fread function

- + Very fast.
- + Usually no need for additional parameters.
- Has its specific format (data.table)...
- + ... which can be converted into data.frame.
- + Very fast.

Example

```
library(data.table)
myDT = fread("myFile.tsv")
myDF = as.data.frame(myDT)

myDT = fread("gunzip -c myFile.tsv.gz")
```

Exercise

- 1. Read the Gencode file (gencodeForWorkshop.tsv.gz) with read.table.
- 2. Same with fread.
- 3. Have a look at the data.
- 4. For each gene type, compute
 - ▶ the number of genes
 - the average gene size
 - ▶ the proportion of genes larger than 1 Kbp

Hint: one data.frame with the results.

5. 4. again but for chr Y only.

Avoid loops, use sapply/lapply

- + Avoid manual init/update of objects.
- + No temporary object polluting the environment.
- + More optimized.
- + Easy to parallelize.
 - More painful to debug.
 - An error and everything must be computed again.

```
perm.1 = lapply(1:1000, function(ii){
   data.frame(perm=ii, est=..SOMETHING..)
})

perm.df = do.call(rbind, perm.1)
## or
perm.df = as.data.frame(rbindlist(perm.1))
```

Minimize copy-pasting, use functions

- + Easier to propagate changes.
- + Easier to reuse in another analysis.
- + Cleaner/smaller code.

```
superFun <- function(df, arg1, opt2=0){
   ## Something with df, arg1 and opt2
  return(XXX)
}</pre>
```

Exercise

Improve the previous exercise with functions.

Parallel processing

Easiest solution with parallel package

- ▶ Using mclapply instead of lapply.
- ▶ mc.cores= the number of processors to use.

Example

```
perm.1 = mclapply(1:1000, function(ii){
  data.frame(perm=ii, est=..SOMETHING..)
}, mc.cores=4)
```

Exercise

Parallelize the previous exercise.

The Tidyverse

https://www.tidyverse.org/

R packages for data science

The tidyverse is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures.

Install the complete tidyverse with:

install.packages("tidyverse")

data.frames

- ▶ Mix between matrix and list
- ► Array form.
- Columns can have different data types.

matrix

```
samp1 samp2 samp3
gene1 -1.3 -1.8 -4.1
gene2 -1.5 -1.2 4.9
```

data. frame

```
      gene
      sample
      expression

      gene1
      samp1
      -1.3

      gene2
      samp1
      -1.5

      gene1
      samp2
      -1.8

      gene2
      samp2
      -1.2

      gene1
      samp3
      -4.1

      gene2
      samp3
      4.9
```

Pros/Cons

- + Dense representation of large data.
 - Accepts only one data type.
 - <u>manual</u> combination with other information often required.

- + Flexible.
- + Accepts several data types.
- + Can represent all the data needed for an analysis.
- Takes more space/memory due to repetitions.

dplyr package

"A Grammar of Data Manipulation"

dplyr provides functions which can be combined for data manipulation.

```
mutate add a new column using others.
```

```
filter filter rows (similar as subset function).
```

```
select specific columns only.
```

```
arrange order rows using specific columns.
```

```
group_by groups rows according to specific columns.
```

```
summarize summarizes each group of rows.
```

do applies a function to a group of rows.

- + Works with pipes.
- + Fast.
 - Has its own format $tbl_{-}df_{-}$...
- $+ \dots$ which is almost the same as data.frame.

Pipes are cool!

- ▶ Pipe functions instead of embedding them.
- ▶ More readable.
- ▶ Easier to combine several functions.
- ▶ Avoid temporary objects.
- ▶ Pipe argument %>%.

Example

Grouping rows

Operation by block

- ▶ Using group_by() function.
- ▶ Further operations are applied separately per group of rows.

Example

Tips

- ▶ n() gives the number of rows in the group.
- ungroup removes groups.
- desc() means descending order (in arrange()).

Exercise

- 1. Print the top 10 genes with the most exons.
- 2. Same exercise as before with group_by instead of lapply.
 - ► For each gene type, compute
 - the number of genes
 - ▶ the average gene size
 - ▶ the proportion of genes larger than 1 Kbp
 - Idem for chr Y only.
- 3. Idem with summarize (i.e. no functions).

ggplot2 package

Introduction

A package to construct pretty and/or complex graphs. Many aspects of the graph are arranged automatically but everything can be customized. Easy layers addition.

ggplot2

Input: data.frame

- ▶ Each row represents one "observation".
- ▶ Columns represent the different information about the "observations".

Concept

- ▶ Start with a ggplot(...) and the input data.frame.
- ▶ aes(...) defines how to use the input's columns.
- ▶ Add layers : geom_*(...), scale_*(...), ...

Example

```
library(ggplot2)
ggplot(myDf, aes(x=colA, y=colB, colour=colC, linetype=colD))
    + geom_point() + geom_line() + scale_y_log10()
```

Useful online resources

- ▶ http://docs.ggplot2.org/current/
- ▶ http://www.cookbook-r.com/Graphs/

Exercise

- 1. Show the distribution of the gene size (histogram), colored by gene type.
- 2. Show for each chromosome the number of genes, colored by gene type.
- * Plot the proportion of gene types in each chromosome.

Tips: simplify (e.g. IG^*/TR^*) gene types and keep most common ones.

Lunch Break

Take-home messages

- fread instead of read.table.
- ▶ lapply instead of loops (also easy to parallelize).
- ▶ Functions instead of copy-pasting.
- ▶ data.frames and the Tidyverse for exploration and visualization.

More in appendix

- ▶ Reading a file chunk by chunk.
- ▶ Working with file slices for BED/VCF/BAM files using indexing.
- ▶ Using computing clusters in R.

GenomicRanges package

Genomic regions can be represented by GRanges objects. Used in many packages/analysis.

```
library (GenomicRanges)
## Creating GRanges
gr = GRanges('chr1:103-404')
gr = GRanges('chr1', IRanges(103, 404))
gr = makeGRangesFromDataFrame(df, keep.extra.columns = TRUE)
## Changing the chromosome labels
seqlevels(genc) = gsub("chr","",seqlevels(genc))
## or
seqlevels(genc) = paste0("chr", seqlevels(genc))
## Other
width(gr)
promoters(gr)
resize(gr, width=width(gr)+1000, fix='center')
```

AnnotationHub

The AnnotationHub package allows you to access genomic files and anotations (e.g. UCSC files, Epigenome RoadMap, Encode).

- query function to search/list resources.
- ▶ Download by accessing the element.
- ► Eventually, import to import BigWig files.

```
library(AnnotationHub)
ah = AnnotationHub()
his.q = query(ah, c('Gm12878','H3K4me3','hg19'))
his.gr = his.q[[1]]
## If BigWig file, import only relevant region.
his.gr = import(his.q[[1]], which=reg.gr)
```

Exercise

- 1. Create a *GRanges* with the protein-coding genes in chr 1.
- 2. Create a *GRanges* with the promoters protein-coding genes in chr 1. Promoter regions must be 1bp-long.
- 3. Find and download broad H3K4me3 peaks for Gm12878.
- 4. Find and download CpG islands for Hg19.
- 5. Expand CpG islands by 10 Kbp using the resize function.
- 6. Find and download Whole Genome Bisulfite Sequencing methylation data for Hg19.
- 7. Retrieve methylation information around 1000 randomly selected CpG islands (from question 5).

Enrichment heatmaps

Bioconductor package Enriched Heatmap creates heatmap of overlaps between two GRanges. Typical example: Binding sites on known domains.

Example

Exercise

- 1. Heatmap of the histone mark around genes promoters in chr 1.
- 2. Heatmap of the methylation level in and around the 1000 random CpG islands.

Overlaps between two *GRanges* sets

Which function fit your exact need?

overlaps Any Test overlaps of one GRanges into second GRanges.

count Overlaps For each region in one GRanges , count how many overlaps from another.

findOverlaps Finds overlaps between two GRanges objects.

distance ToNearest Computes the distance from each regions in a GRanges object to the nearest in another GRangesobject.

subset ByOverlaps Keep the regions from one GRanges that overlaps another.

Overlaps between two *GRanges* sets

findOverlaps function

- ▶ Two *GRanges* objects as input.
- ▶ Extra parameters available for specific overlaps.
- ▶ Returns the index of regions in object 1 and 2 that overlap.
- ▶ queryHits and subjectHits functions to retrieves those index.

Example

Better one big overlap than many small ones

Exercise

For each gene type, how many genes overlap an H3K4me3 histone mark in Gm12878 ?

Hints

 $\texttt{lapply}, \ \textit{tapply}, \ \textit{dplyr}, \ \text{GRanges} {\leftrightarrow} \textit{data.frame}$

GenomicRanges + dplyr

Convert the results of findOverlaps to a *data.frame* and pipe it to *dplyr*.

```
findOverlaps(gr1, gr2) %>% as.data.frame %>%
   mutate(col1=gr1$col1[queryHits], ...subjectHits...) %>%
        group_by(col1) %>% summarize(...)
```

Exercise

1. In one pipe/line: For each gene type, how many genes overlap an H3K4me3 histone mark in Gm12878?

Gene Ontology enrichment

The clusterProfiler package provides functions for Gene Ontology enrichment and Gene Set Enrichment Analysis.

Convert gene names to Entrez IDs

Some functions work better with Entrez IDs.

Exercise

- 1. Find genes overlapping H3K4me3 marks with a score larger than 900.
- 2. GO enrichment analysis on these genes.
- 3. If you get an error (or for "fun"), try to convert the gene names to Entrez IDs.

Gviz for multi-track graphs

More info

See slides/code/links from MonBUG Gviz demo.

Exercise

Try to make a graph of the gene annotation and histone mark scores in chr3 between 110 Mbp and 116 Mbp.

Final recommendations

- ▶ Use **names** that makes sense (to you and future you).
- ▶ Nothing in the console, everything in an organized script.
- ► The script should be **sequential and commented** when complex.
- ▶ Save the graphs in the code, not manually through RStudio.
- ▶ Split long scripts and save temporary files.
- ▶ Overwriting objects is fine if in the same paragraph.
- ▶ Use functions/pipes to avoid environment/code pollution.
- ▶ Use **R** Markdown to produce a readable report while keeping the code.

Appendix

Chunk-by-chunk approach

When you can analyze the data in slices.

- + Only a slice of the file in memory.
- A bit painful/ugly.

```
con = file(file.name)
while(length((chunk.df = read.table(con,nrows=1000)))>0){
    ... Instructions
}
close(con)
```

Bioconductor packages

- ▶ GFF format with import (rtracklayer package).
- ▶ VCF format with readVcf (VariantAnnotation package).
 - + Parse the format.
 - Sometimes parse too much \rightarrow complicated object.
 - + Read indexed files.

Exercise

- 1. Read gencode.gtf.gz in another object using import.
- 2. Have a look at the data.

Using file indexing

Why indexing?

To quickly import a slice of a file. In genomics, one region.

Indexing workflow

- 1. Order file by position (chr + start).
- 2. Compress with bgzip.
- 3. Index.

How?

With command lines or with R functions.

Indexing files with R

data.table package is faster to order large files than conventional R.

```
library(data.table)
dt = fread("file.bed")
setkey(dt, chr, start)
write.table(dt, file="file-ordered.bed")
library(Rsamtools)
bgzip("file-ordered.bed")
indexTabix("file-ordered.bed.bgz")
```

Using indexed files

```
reg = GRanges(...)
library(VariantAnnotation)
vcf <- readVcf("variants.vcf.gz", "hg19", reg)
library(rtracklayer)
gtf = import(TabixFile("annotation.gtf.bgz"), which=reg)</pre>
```

Exercise

- 1. Read variants in VCF between coordinates 30 Mb and 31 Mb.
- 2. Order, write, compress and index the gencode file.
- * Tile the Mb in 10 bins. In each bin count the number of variants in the VCF.

Using computing clusters directly with BatchJobs

What you need

- ▶ A function that can independently the code
 - Load packages.
 - ► Load necessary data.
 - ▶ Run the code.
- ▶ A parameter list (used to define the jobs).
- ▶ Some global objects (same for all jobs). Optional.
- ▶ Your favorite cluster configured (or your computer).

More info

Checkout PopSV documentation on BatchJobs. To use Guillimin, Abacus, Briaree or Mammouth ask me for the configuration files.

BatchJobs example

```
library(BatchJobs)
reg = makeRegistry("perm")
jobFun <- function(ii, necessaryData){</pre>
    library(...)
    ... Instructions using 'ii' and 'necessaryData'
    data.frame(perm=ii, ...)
batchMap(reg, jobFun, 1:10, more.args=list(necessaryData=myData))
submitJobs(reg))
showStatus(reg)
perm.l = reduceResultsList(reg)
```

Heatmaps

heatmap built-in function: heatmap, dendogram, one information annotation for the columns/rows.

Heatmaps

 ${\tt heatmap.2}$ function from gplots package: density distribution in legend and heatmap.

Heatmaps

Heatmap function from ComplexHeatmap package: more columns/rows annotation with graphs and panels.

