第一次作业 A 卷 (7.5 分)

1. 判断题(0.5分)

- (1) T 有穷自动机接受的语言是正则语言。
- (2) T 若 r1 和 r2 是 Σ 上的正则表达式,则 r1|r2 也是。
- (3) **F** 设 M 是一个 NFA,并且 $L(M) = \{x,y,z\}$,则 M 的状态数至少为 4 个。
- (4) **T** 对任何一个 NFA M, 都存在一个 DFA M', 使得 L(M')=L(M)。
- (5) T 对一个右线性文法 G, 必存在一个左线性文法 G, 使得 L(G)=L(G'), 反之亦然。
- (6) T 任何 LL(1)文法都是无二义性的。
- (7) **T** 每一个 SLR(1)文法也都是 LR(1)文法。
- (8) T 存在一种算法,能判定任何上下文无关文法是否是 LL(1)的。
- (9) F 任何一个 LL(1)文法都是一个 LR(1)文法, 反之亦然。
- (10) \mathbf{F} LR(1)分析中括号中的 1 指,用产生式 A→α 进行分析,看当前读入符号是否在 $\mathbf{FIRST}(\alpha)$ 中。
- 2. 描述下列正则表达式所表示的语言,或对于下列语言分别写出它们的正则表达式(1分)
- (1) **0**(0|1)*0 以 0 开头并且以 0 结尾的,由 0 和 1 组成的符号串
- (2) ((ε|0)1*)* 所有 01 串
- (3) (0|1)*0(0|1)(0|1) 倒数第 3 位为 0 的 01 串
- (4) 0*10*10*10* 含 3 个 1 的 01 串
- (5) (a|b)*aab(a|b)*

含 aab 的由 a 和 b 组成的符号串

(6) 设计正则表达式,接受除以4余3的八进制数。

[1-7][0-7]*(3|7)|3|7

- (7) 英文字母组成的所有符号串,要求符号串中的字母依照词典顺序排列。 $(a|A)^*(b|B)^*....(z|Z)^*$
- (8) 具有偶数个 0 和奇数个 1 的有 0 和 1 组成的符号串的全体。用 EO(even 0 and odd 1)表示 $EE \to ((00|11)|(01|10)(00|11)^*(01|10))^*$ 表示(even 0 and odd 0) $EO \to (01|10)(00|11)^*0$ $EE \mid 1$ EE
- (9) 不包含子串 011 的由 0 和 1 组成的符号串的全体。 $1^*|1^*0(0|10)^*(1|\epsilon)$
- (10) 英语单词有一条拼写规则: sh 可用在单词开头或结尾,但不会用在中间——除非是 ship 结尾,设计正则表达式识别符合规则的字母串。

(sh)?([a-r t-z]*(s[a-g i-z]⁺)?)* (sh|ship| ϵ)

3 有正则表达式: (2分)

(1)

$012345694789456947894789\underline{10}$

(2)

$$\begin{array}{l} \epsilon\text{-closure}(\{0\}) \!\!=\!\! \{0\} \!\!=\!\! A \\ \epsilon\text{-closure}(\delta(A,a)) = \!\! \{1\} \!\!=\!\! B \\ \epsilon\text{-closure}(\delta(A,b)) \!\!=\!\! \{0\} \!\!=\!\! C \\ \epsilon\text{-closure}(\delta(B,b)) \!\!=\!\! \{2\} \} \!\!=\!\! C \\ \epsilon\text{-closure}(\delta(C,b)) \!\!=\!\! \{3\} \} \!\!=\!\! D \\ \epsilon\text{-closure}(\delta(D,a)) \!\!=\!\! \{4,5,6,7,9,10\} \!\!=\!\! E \\ \epsilon\text{-closure}(\delta(E,a)) \!\!=\!\! \{4,5,6,7,9,10\} \!\!=\!\! E \\ \epsilon\text{-closure}(\delta(E,a)) \!\!=\!\! \{4,5,7,8,9,10\} \!\!=\!\! E \\ \epsilon\text{-closure}(\delta(E,b)) \!\!=\!\! \{4,5,7,8,9,10\} \!\!=\!\! E \\ \epsilon\text{-closure}(\delta(F,a)) \!\!=\!\! \{4,5,7,8,9,10\} \!\!=\!\! E \\ \epsilon\text{-closure}(\delta(F,b)) \!\!=\!\! \{4,5,7,8,9,10\} \!\!=\!\! E \\ \epsilon\text{-closure}(\delta$$

状态	输入符号		
	а	b	
А	В	-	
В	-	С	
С	-	D	
D	E	F	
Е	E	F	
F	E	F	

ABCDDFEFEFF

(3)

STEP1: 根据终态和非终态初始划分为两个集合{ABC}和{DEF}

STEP2: { ABC } $\overset{a/b}{\rightarrow}$ {A} {B} {C} { DEF } $\overset{a/b}{\rightarrow}$ {DEF}

由于,DEF三个 状态无法区分,用D 状态来代替EF,因此,最小化的DFA 有4个状态,分别为ABCD。

4. 对文法**G[S]** (2分)

 $S \rightarrow a |\Lambda|(T)$

 $T \rightarrow T, S|S$

(1) 给出(a,(a,a))和(((a,a),\Lambda,(a)),a)的最左推导。

$$S {\Rightarrow} (T) {\Rightarrow} (T,S) {\Rightarrow} (S,S) {\Rightarrow} (a,S) {\Rightarrow} (a,(T)) {\Rightarrow} (a,(T,S)) {\Rightarrow} (a,(S,S)) {\Rightarrow} (a,(a,S)) {\Rightarrow} (a,(a,a))$$

 $S \Rightarrow (T) \Rightarrow (T,S) \Rightarrow (S,S) \Rightarrow ((T),S) \Rightarrow ((T,S),S) \Rightarrow ((T,S),S) \Rightarrow ((T,S),S),S) \Rightarrow (((T,S),S,S),S) \Rightarrow ((T,S),S,S) \Rightarrow$

(2) 对文法G, 进行改写, 然后对每个非终结符写出不带回溯的递归子程序。

改写文法,新增一个终结符N,消除左递归

 $S {\rightarrow} a | {\wedge} | (T)$

 $T\rightarrow SN$

 $N\rightarrow$, $SN|\epsilon$

每个非终结符写出不带回溯的递归子程序,如下: char CH;//存放当前的输入符号

```
void P S()//非终结符 S 的子程序
   if(CH=='a') READ(CH);//产生式 S→a
   else if(CH=='^') READ(CH);//产生式 S→^
   else if(CH=='(')//产生式 S→(T)
       READ(CH);
       P_T();
       if (CH==')') then READ(CH) else ERROR
   }
   else ERROR;
}
void P_T()//非终结符 T 的子程序
   if(IsIn(CH,FIRST SN)) //FIRST SN为T→SN的右部的FIRST集合
    {
       P_S();
        P_N();
   }
void P_N()//非终结符 N 的子程序
   if(CH==',')//产生式 N→,SN
    {
       READ(CH);
       P_S();
       P N();
   }
   else//产生式 N→ε
        if(IsIn(CH,FOLLOW N)) //FOLLOW N为N的FOLLOW集合
           return;
       else ERROR;
    }
}
```

(3) 经改写后的文法是否是LL(1)的?给出它的预测分析表。

```
各非终结符的FIRST集合如下: FIRST(S)=\{a,\Lambda,\ (\ \} FIRST(T)=\{a,\Lambda,\ (\ \} FIRST(N)=\{\ ,\ ,\epsilon\} 各非终结符的 FOLLOW 集合如下: FOLLOW(S)=\{\ \}\ \cup\ FIRST(N)\cup FOLLOW(T)\cup FOLLOW(N)=\{\$,\ ,\ ,)\} FOLLOW(T)=\{\}\}
```

FOLLOW(N)=FOLLOW(T)={)}

其预测分析表如下:

	a	٨	()	,	\$
S	$S \rightarrow a$	$S \rightarrow \Lambda$	$S \rightarrow (T)$			
T	$T \rightarrow SN$	$T \rightarrow SN$	$T \rightarrow SN$			
N				$N \rightarrow \epsilon$	N →,SN	

预测分析表中无多重定义项,因此改写后的文法是LL(1)文法。

(4) 给出输入串(a,a)的分析过程,并说明该串是否为G的句子。输入串(a,a)的分析过程,如下:

步骤	栈	输入	输出
1	\$S	(a,a)\$ (a,a)\$ a,a)\$ a,a)\$ a,a)\$,a)\$,a)\$,a)\$ s)\$	S→(T)
2	\$)T((匹配
3	\$)T		T→SN
4	\$)NS		S→a
5	\$)Na		a匹配
6	\$)N		N→, SN
7	\$)NS,		,匹配
8	\$)NS		S→a
9	\$)Na		a 匹配
10	\$)N		N→ε
11	\$))匹配
12	\$)		接受

5. 考虑文法 (2分)

 $S \rightarrow AS \mid b$

 $A \rightarrow SA \mid a$

(1) 构造此文法的 LR(0)项目集规范族

设增广文法G':

- $(0) S' \rightarrow S$
- $(1) S \rightarrow AS$
- $(2) S \rightarrow b$
- $(3) A \rightarrow SA$
- $(4) A \rightarrow a$

(2) 构造 SLR 分析表

 $FIRST(S) = \{a,b\}$ $FIRST(A) = \{a,b\}$ $FOLLOW(S) = \{a,b,\$\}$ $FOLLOW(A) = \{a,b\}$

SLR 分析表

状态	Α	ACTION (动作)			GOTO (状态转换)	
	a	b	\$	S	A	
0	S3	S4		1	2	
1	S3	S4	ACC	6	5	
2	S3	S4		7	2	
3	r4	r4				
4	r2	r2	r2			
5	r3/S3	r3/S4		7	2	
6	S3	S4		6	5	
7	r1/S3	r1/S4	r1	6	5	

(3) 对输入串 abab, 给出 SLR 分析器运行过程

分析过程如下:

状态栈	符号栈	输入串	分析动作	下一状态
0	\$	abab\$	S3	3
03	\$a	bab\$	r4	GOTO(0,A)=2
02	\$A	bab\$	S4	4
024	\$Ab	ab\$	r2	GOTO(2,S)=7
027	\$AS	ab\$		

(4) 构造规范 LR 分析表

计算得到 LR(1)的项目集规范族如下:

规范 LR 分析表如下:

LR(1)分析表

状态	ACTION (动作)			GOTO (状态转换)	
八心	a	ь	\$	S	A
0	S3	S4		1	2
1	S3	S7	ACC	6	5
2	S3	S4		8	2
3	r4	r4			
4	r1	r2	r2		
5	r3/S3	r3/S7		9	10
6	S3	S7		6	5
7	r2	r2			
8	r1/S3	r1/S7	r1	6	5

9	r1/S3	r1/S7	6	5
10	S3	S7	9	10

(5) 利用 LR(1)项目集合并的方法构造 LALR 分析表

从 LR(1)分析表中,可以看出 I_2 和 I_{10} 是同心集,令 I_{210} = I_2 U I_{10} , I_8 和 I_9 是同心集,令 I_{89} = I_8 U I_9 , I_4 和 I_7 是同心集, I_{47} = I_4 U I_7

计算得到 LALR(1)的项目集如下:

I1:

$$S' \rightarrow S \bullet$$
, \$
 $A \rightarrow S \bullet A$, a/b
 $A \rightarrow \bullet S A$, a/b
 $A \rightarrow \bullet a$, a/b
 $S \rightarrow \bullet A S$, a/b
 $S \rightarrow \bullet b$, a/b

I5:
A→SA•, a/b
$S \rightarrow A \bullet S$, a/b
S→•AS, a/b
S→•b, a/b
A→•SA, a/b
A→•a, a/b

I10:

$$S \rightarrow A \bullet S$$
, a/b
 $S \rightarrow \bullet AS$, a/b
 $S \rightarrow \bullet b$, a/b
 $A \rightarrow \bullet SA$, a/b
 $A \rightarrow \bullet a$, a/b

goto(I10,S)=I89 goto(I10,A)=I210 goto(I10,a)=I3 goto(I10,b)=I47

LALR 分析表如下:

LALR(1)分析表

状态	ACTION(动作)			GOTO (状态转换)	
	a	ь	\$	S	A
0	S3	S47		1	210
1	S3	S47	ACC	6	5
210	S3	S47		89	210
3	r4	r4			
47	r2	r2	r2		
5	r3/S3	r3/S47		89	210
6	S3	S47		6	5
89	r1/S3	r1/S47	r1	6	5