รายงานวิชา 2603430 การวิเคราะห์อนุกรมเวลา (2567/1)

การทำนายราคากากถั่วเหลืองในประเทศเนปาล

สมาชิก

1.นางสาวพิรญาณ์ ยิ่งพิศิษฐ	เลขประจำตัวนิสิต	6542086026
2.นายประเมศฐ์ เชาวน์ธนสิทธิ์	เลขประจำตัวนิสิต	6542067026
3.นายจักรภัทร วีระวิทยานันต์	เลขประจำตัวนิสิต	6542016026
4.นางสาวชญาภรณ์ สวัสดีมงคล	เลขประจำตัวนิสิต	6542022826
5.นายชนนน วงษ์คนดี	เลขประจำตัวนิสิต	6542023426

หลักกสูตรสถิติศาสตร์บัณฑิต คณะพาณิชยศาสตร์และการบัญชี จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อวิเคราะห์และพยากรณ์ราคาขั้นต่ำรายวันของถั่วเหลือง Okara ในประเทศ เนปาล โดยใช้ข้อมูลราคาขั้นต่ำย้อนหลังตั้งแต่ปี 2013-2021 ซึ่งข้อมูลดังกล่าวมีความผันผวนตามฤดูกาล การ วิเคราะห์ข้อมูลเบื้องต้นเผยให้เห็นรูปแบบความสัมพันธ์ของฤดูกาลและความนิ่งของข้อมูล โดยใช้ เทคนิค Augmented Dickey-Fuller Test เพื่อยืนยันความนิ่งของข้อมูล สำหรับการพยากรณ์ข้อมูล ใช้โมเดล SARIMA, ETS และ GRU ในการเปรียบเทียบผลลัพธ์ พบว่าโมเดล GRU มีประสิทธิภาพสูงสุด โดยมีค่าความ คลาดเคลื่อนเฉลี่ยต่ำที่สุด (MAE = 7.36) และค่าความคลาดเคลื่อนรากที่สองต่ำสุด (RMSE = 10.51) เมื่อเทียบ กับโมเดลอื่น การศึกษานี้ชี้ให้เห็นว่า GRU เป็นทางเลือกที่เหมาะสมสำหรับการพยากรณ์ข้อมูลและสนับสนุนการ ตัดสินใจในอุตสาหกรรมการเกษตรของเนปาลในอนาคต

คำสำคัญ: การพยากรณ์ราคา, กากถั่วเหลือง, ARIMA, Exponential Smoothing, Neural Network, ประเทศ เนปาล, การเกษตร

บทน้ำ

ที่มาและความสำคัญของปัญหา

ในปัจจุบันความผันผวนของราคาสินค้าเกษตรกรรมโดยเฉพาะอย่างยิ่งถั่วเหลือง Okara ในประเทศเนปาล ส่งผลกระทบต่อการตัดสินใจในอุตสาหกรรมการผลิตและการเกษตรอย่างหลีกเลี่ยงไม่ได้ เนื่องจาก Okara ถือเป็น หนึ่งในวัตถุดิบที่สำคัญสำหรับการผลิตโปรตีนจากพืชซึ่งเป็นที่ต้องการอย่างสูงในตลาดโลก การพยากรณ์ราคาถั่ว เหลือง Okara จึงมีบทบาทสำคัญในเชิงเศรษฐกิจเพื่อช่วยสนับสนุนการวางแผนและบริหารจัดการใน ภาคอุตสาหกรรม และยังมีส่วนช่วยในการลดความเสี่ยงที่เกิดจากความไม่แน่นอนของราคาในตลาดปัญหาหลักที่ พบคือข้อมูลราคาที่มีความแปรปรวนสูงและมีช่องว่างข้อมูลบางส่วน ทำให้การวิเคราะห์แนวโน้มและการพยากรณ์ ราคามีข้อจำกัด งานวิจัยนี้จึงได้มุ่งเน้นการพัฒนาวิธีการปรับปรุงข้อมูลที่ขาดหาย (Imputation) การใช้โมเดลที่ เหมาะสมสำหรับการพยากรณ์ และการเปรียบเทียบประสิทธิภาพของโมเดลเหล่านี้ เพื่อเพิ่มความถูกต้องและลด ความเสี่ยงของข้อผิดพลาดในการพยากรณ์ราคา

วัตถุประสงค์

- 1.เพื่อสร้างตัวแบบอนุกรมเวลาที่สามารถอธิบายราคาถั่วเหลือง Okara ในประเทศเนปาลอย่างมี ประสิทธิภาพ
- 2.เพื่อเปรียบเทียบประสิทธิภาพของโมเดลการพยากรณ์ราคาถั่วเหลือง Okara ในช่วงเวลาต่าง ๆ และ เลือกตัวแบบที่เหมาะสมที่สุด

นิยามศัพท์เฉพาะ

อนุกรมเวลา หมายถึง ข้อมูลที่รวบรวมและจัดเก็บในลำดับของช่วงเวลาที่ต่อเนื่องกัน เพื่อแสดงการ เปลี่ยนแปลงของข้อมูลในแต่ละช่วง เช่น ราคาขั้นต่ำของถั่วเหลือง Okara รายเดือนในเนปาล ซึ่งถูกใช้ในการ วิเคราะห์แนวโน้มและฤดูกาล

Okara หมายถึง ผลพลอยได้จากกระบวนการผลิตนมถั่วเหลืองหรือเต้าหู้ มีลักษณะเป็นของแข็งที่มีไฟเบอร์ โปรตีน และสารอาหารอื่น ๆ สูง ถูกนำมาใช้ในอุตสาหกรรมอาหาร เช่น การผลิตโปรตีนจากพืชหรือผลิตภัณฑ์แปร รูปอื่น ๆ

ความผันผวนของราคา Okara หมายถึง การเปลี่ยนแปลงของราคาขั้นต่ำของ Okara ในแต่ละช่วงเวลา ซึ่งอาจได้รับอิทธิพลจากปัจจัยภายนอก เช่น สภาพอากาศ ฤดูกาล และความต้องการในตลาด

ฤดูกาลของราคา Okara หมายถึง รูปแบบการเปลี่ยนแปลงของราคาขั้นต่ำของ Okara ที่แสดงลักษณะซ้ำ ๆ ตามช่วงเวลา เช่น ราคาลดลงในฤดูฝน (เดือนมิถุนายนถึงกันยายน) และราคาสูงขึ้นในฤดูหนาว (เดือนมกราคม ถึงมีนาคม)

แนวโน้มราคา Okara หมายถึง ทิศทางการเปลี่ยนแปลงของราคาขั้นต่ำของ Okara ในระยะยาว ซึ่งอาจ เป็นขาขึ้น ขาลง หรือคงที่ ขึ้นอยู่กับปัจจัยทางเศรษฐกิจและการเกษตร

ขอบเขตการศึกษา

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อสร้างตัวแบบที่สามารถพยากรณ์ราคาขั้นต่ำของถั่วเหลือง Okara ใน ประเทศเนปาลได้อย่างมีประสิทธิภาพ โดยใช้ข้อมูลราคาขั้นต่ำรายวันจากปี ค.ศ. 2013 ถึง ค.ศ. 2021 จาก แหล่งข้อมูลของ Federal Reserve Bank of St. Louis (FRED) การศึกษานี้จะมุ่งเน้นการเปรียบเทียบโมเดลที่ หลากหลาย เช่น SARIMA, ETS และ GRU เพื่อวิเคราะห์ประสิทธิภาพและเลือกตัวแบบที่เหมาะสมที่สุด

ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

ตัวแบบ SARIMA (Seasonal Autoregressive Integrated Moving Average) เป็นเครื่องมือสำคัญในการ วิเคราะห์ข้อมูลอนุกรมเวลาที่มีลักษณะเป็นฤดูกาล โดย SARIMA ใช้การผสมผสานระหว่างองค์ประกอบเชิงสถิติ ได้แก่ การถดถอยอัตโนมัติ (Autoregressive: AR) การเคลื่อนที่เฉลี่ย (Moving Average: MA) การรวมความ แตกต่าง (Integrated: I) และฤดูกาล (Seasonal) ซึ่งทำให้เหมาะสมสำหรับการพยากรณ์ข้อมูลที่มีแนวโน้ม ซับซ้อนและมีฤดูกาลชัดเจน

ตัวแบบ ETS (Error-Trend-Seasonality) เป็นเทคนิคการพยากรณ์ที่ให้ความสำคัญกับองค์ประกอบสาม ประการ ได้แก่ ความผิดพลาด (Error) แนวโน้ม (Trend) และฤดูกาล (Seasonality) โดย ETS เน้นการคำนวณ ข้อมูลที่ไม่มีแนวโน้มและฤดูกาลที่ซับซ้อนมากนัก เหมาะสำหรับข้อมูลที่มีรูปแบบคงที่หรือเปลี่ยนแปลงเล็กน้อย ตามเวลา

ตัวแบบ GRU (Gated Recurrent Unit) เป็นโครงข่ายประสาทเทียมที่ถูกออกแบบมาเพื่อจัดการกับข้อมูล ที่มีลักษณะเป็นลำดับต่อเนื่อง เช่น ข้อมูลอนุกรมเวลา GRU สามารถเรียนรู้ความสัมพันธ์ระยะยาวในข้อมูลได้ดี โดยใช้พารามิเตอร์ที่น้อยกว่า LSTM ทำให้เหมาะสมสำหรับข้อมูลที่มีข้อจำกัดด้านปริมาณหรือความซับซ้อน

Kalman Filter เป็นเทคนิคการเติมข้อมูลขาดหายที่ใช้สำหรับข้อมูลอนุกรมเวลา โดยมีจุดเด่นในการ ประมวลผลข้อมูลที่มีแนวโน้ม ฤดูกาล และสัญญาณรบกวน (Noise) ได้อย่างแม่นยำ เทคนิคนี้ช่วยเพิ่มความ สมบูรณ์ของข้อมูล ทำให้ผลการวิเคราะห์และพยากรณ์มีความน่าเชื่อถือมากขึ้น

การจัดเตรียมข้อมูลและการแบ่งข้อมูล

จากข้อมูลราคาขั้นต่ำรายวันของถั่วเหลือง Okara ในประเทศเนปาล ตั้งแต่ปี ค.ศ. 2013 ถึงปี ค.ศ. 2021 มีจำนวนทั้งหมด 2663 แถว พบว่าข้อมูลแสดงลักษณะตามฤดูกาล (Seasonality) อย่างชัดเจน แต่มีแนวโน้ม แนวโน้ม (Trend) ที่ไม่ชัดเจน โดยราคามักลดลงในช่วงฤดูฝน (เดือนมิถุนายนถึงกันยายน) และเพิ่มขึ้นในช่วงฤดู หนาว (เดือนมกราคมถึงมีนาคม) ซึ่งเป็นช่วงที่ถั่วเหลืองในเนปาลมีการเก็บเกี่ยวอย่างมีคุณภาพ นอกจากนี้ การ วิเคราะห์ ACF และ PACF ยืนยันว่าข้อมูลมีความสัมพันธ์เชิงเวลาในหลายช่วง (lag) ซึ่งสะท้อนถึงรูปแบบที่เกิดซ้ำ ตามฤดูกาล

การจัดการข้อมูล

เราจะจัดการข้อมูลหลังจากที่ได้ทำการแยกชุดข้อมูลเป็น train กับ test dataset แล้ว เพื่อป้องกัน data leakage

ข้อมูลขาดหาย (Missing Data) ข้อมูลที่ใช้มีวันที่ขาดหายไปทั้งหมด 226 วัน ซึ่งอาจเกิดจากความไม่ ต่อเนื่องในการเก็บข้อมูล โดยการเติมค่าข้อมูลที่ขาดหายนี้ได้ใช้วิธี Kalman Filter ซึ่งเป็นเทคนิคที่เหมาะสม สำหรับข้อมูลอนุกรมเวลาที่มีแนวโน้มและฤดูกาล

ค่าผิดปกติ (Outliers) ใช้ฟังก์ชัน tsoutliers() เพื่อตรวจสอบค่าผิดปกติ พบว่ามีค่าที่เบี่ยงเบนจาก แนวโน้มปกติในบางช่วง เช่น ราคาที่ลดลงอย่างฉับพลันในฤดูฝน ค่าผิดปกติเหล่านี้ได้รับการแทนที่ด้วยค่าที่ คำนวณจาก Kalman Filter เพื่อให้ข้อมูลสม่ำเสมอและลดผลกระทบต่อการวิเคราะห์

การตรวจสอบความนิ่งของข้อมูล (Stationarity Check) ใช้การทดสอบ Augmented Dickey-Fuller (ADF) Test เพื่อประเมินความนิ่งของข้อมูล พบว่า ค่า p-value < 0.05 แสดงว่าข้อมูลสามารถทำให้เป็น นิ่งได้ (Stationary)

การแบ่งชุดข้อมูล (Data Splitting) เพื่อเตรียมข้อมูลสำหรับการสร้างแบบจำลองและประเมินผล ได้ แบ่งข้อมูลออกเป็น

- ชุดข้อมูลฝึก (Training Set): ใช้ข้อมูล 80% แรกของชุดข้อมูล (จากปี ค.ศ. 2013 ถึงประมาณปี ค.ศ. 2019)
- ชุดข้อมูลทดสอบ (Testing Set): ใช้ข้อมูล 20% ที่เหลือ (จากปี ค.ศ. 2019 ถึงปี ค.ศ. 2021)

การแยกส่วนข้อมูล (Decomposition) ใช้การแยกส่วนข้อมูลแบบ Additive Decomposition ด้วย ฟังก์ชัน stl() เพื่อแยกองค์ประกอบของข้อมูลออกเป็นแนวโน้ม (Trend) ฤดูกาล (Seasonality) และส่วนที่เหลือ (Remainder) พบว่าข้อมูลมีรูปแบบฤดูกาลที่เกิดซ้ำทุก 365 วัน (1 ปี)

การตรวจสอบความสัมพันธ์ การวิเคราะห์ความสัมพันธ์ด้วย ACF และ PACF แสดงให้เห็นว่าข้อมูลมี ความสัมพันธ์อย่างมีนัยสำคัญที่ lag 1 ถึง 4 ซึ่งชี้ให้เห็นถึงความสำคัญของฤดูกาลและแนวโน้มที่ส่งผลต่อข้อมูล

กระบวนการจัดเตรียมข้อมูลและการแบ่งข้อมูลนี้ช่วยให้ได้ชุดข้อมูลที่สมบูรณ์และเหมาะสมสำหรับการสร้าง แบบจำลองการพยากรณ์ เช่น SARIMA, ETS, หรือ GRU การวิเคราะห์ข้อมูลที่ละเอียดและการจัดการข้อมูลที่ เหมาะสมนี้จะช่วยเพิ่มความแม่นยำในการพยากรณ์ราคาขั้นต่ำของถั่วเหลือง Okara และสนับสนุนการตัดสินใจใน อุตสาหกรรมการเกษตรของเนปาลได้อย่างมีประสิทธิภาพ

ขั้นตอนการสร้างตัวแบบเพื่อการวิเคราะห์ข้อมูล

1. ตัวแบบ SARIMA

ขณะดำเนินการใช้ SARIMA เพื่อสร้างโมเดล ได้เกิดข้อผิดพลาด โดยมีสาเหตุมาจากการกำหนดค่า lag ที่ เกินขีดจำกัดสูงสุดที่ระบบรองรับ ซึ่งกำหนดไว้ที่ 350

เพื่อแก้ไขปัญหาดังกล่าว วิธีการที่เหมาะสมคือการรวมข้อมูล (Aggregate) ให้มีความถี่ที่ต่ำลง เช่น การ ปรับข้อมูลให้อยู่ในระดับรายเดือน (Monthly) โดยใช้ราคาที่ต่ำที่สุดของแต่ละเดือน ซึ่งช่วยลดความซับซ้อนของ ข้อมูลและทำให้สามารถนำไปใช้งานกับโมเดล ได้อย่างเหมาะสม

เมื่อทำการตรวจสอบคุณสมบัติความนิ่งด้วย ADF test พบว่า ค่า p-value น้อยกว่า 0.01 ซึ่งน้อยกว่า 0.05 จึงปฏิเสธ H0 นั่นคือ ข้อมูลอนุกรมเวลามีคุณสมบัติความนิ่ง และเมื่อทดสอบด้วย KPSS test พบว่า ค่า p-value มากกว่า 0.1 ซึ่งมากกว่า 0.05 จึงไม่สามารถปฏิเสธ H0 นั่นคือ ข้อมูลอนุกรมเวลามีคุณสมบัติความนิ่ง ดังนั้น จากผลการทดสอบทั้งสองจึงสรุปได้ว่า ข้อมูลอนุกรมเวลามีคุณสมบัติความนิ่ง

แต่เมื่อวิเคราะห์กราฟ ACF และ PACF กลับพบว่าข้อมูล ยังคงมีแนวโน้ม(trend)เป็นองค์ประกอบอยู่ จึงได้นำข้อมูลอนุกรมเวลามาทำการ differencing 1 ครั้ง และเมื่อวิเคราะห์กราฟพบว่าข้อมูลมีความนิ่งแล้ว

จากนั้นจึงเริ่มต้นพิจารณา PACF plot พบว่าที่ lag ค่า partial autocorrelation มีค่าไม่แตกต่างจาก 0 อย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95% จึงสรุปได้ว่า p order = 3 และ P order = 0

จากนั้นจึงเริ่มต้นพิจารณา ACF plot พบว่าที่ lag ค่า autocorrelation มีค่าไม่แตกต่างจาก 0 อย่างมี นัยสำคัญที่ระดับความเชื่อมั่น 95% จึงสรุปได้ว่า q order = 3 และ Q order = 3

จากการวิเคราะห์ทั้งหมด จึงได้ว่า ค่า(p,d,q) และ (P, D, Q) เป็น SARIMA(3, 1, 3)x(0, 0, 3) $_{\scriptscriptstyle 12}$

เมื่อทำการทดสอบ short-term correlation ของ residual ด้วย Ljung-Box test พบว่า ค่า p-value เท่ากับ 0.8394 ซึ่งมากกว่าค่า alpha ที่ 0.05 หมายความว่าไม่มี short-term correlation ของ residual บ่งชี้ว่า แบบจำลองมีแนวโน้มที่จะ fit ข้อมูลได้ดีในแง่ของการอธิบายโครงสร้างเชิงเวลา (time dependency) ของข้อมูล

ต่อมาทำการวิเคราะห์ normality ด้วย histogram พบว่า มีลักษณะเป็นรูประฆังคว่ำ จึงสามารถสรุปได้ ว่า residual ส่วนที่เหลือจากการใช้ตัวแบบ SARIMA มาอธิบายข้อมูลนั้น มีการแจกแจงแบบปกติ และเมื่อทำการ สร้าง ACF plotของค่า residual พบว่าที่lag 1 ค่า autocorrelation มีค่าไม่แตกต่างจาก 0 อย่างมีนัยสำคัญที่ ระดับความเชื่อมั่น 95%

จากการทดสอบ residual ทั้งหมดพบว่า residual นั่นเป็น purely random process แล้ว จึงสามารถ สรุปได้ว่าตัวแบบ SARIMA(3, 1, 3)x(0, 0, 3)₁₂ เป็นตัวแบบที่มีประสิทธิภาพ เหมาะสำหรับการใช้ทำนายราคาใน อนาคต และนำมาเปรียบเทียบประสิทธิภาพของตัวแบบ

ตารางที่ 1 แสดงค่า MAE, RMSE และ MAPE ของตัวแบบ SARIMA(3, 1, 3)x(0, 0, 3) $_{\scriptscriptstyle 12}$

Model	MAE	RMSE	MAPE
SARIMA	11.34787	14.82118	39.39234%

2.ตัวแบบ Exponential Smoothing

จากผลการทดสอบด้วย ADF และ KPSS สามารถสรุปได้ว่าข้อมูลราคารายเดือนมีความนิ่ง (Stationary) ซึ่งบ่งชี้ว่าไม่มีแนวโน้ม (Trend) นอกจากนี้ จากการสังเกตกราฟ deompose รายเดือน พบว่าการเปลี่ยนแปลง ของข้อมูลตามฤดูกาลมีลักษณะคงที่และสม่ำเสมอในทุกช่วงเวลา จึงเลือกอทดสอบ ETS ทั้งหมด 3 โมเดล ได้แก่ ETS(M, N, M), ETS(M, N, A) และ ETS(A, N, A)

ตารางที่ 2 แสดงค่า AIC, BIC และ AICc เปรียบเทียบกันทั้ง 3 โมเดล

Model	AIC	BIC	AICc
ETS(M, N, M)	692.3304	727.4875	700.1992
ETS(M, N, A)	687.4437	722.6008	695.3126
ETS(A, N, A)	686.6299	721.7870	694.4987

จากตารางจะได้ว่าค่า AIC, BIC และ AICc ที่ต่ำที่สุดคือโมเดล ETS(A, N, A)

เมื่อทำการทดสอบ short term correlation ของ residual ในโมเดล ETS(A, N, A) ด้วย Ljung-Box test พบว่า ค่า p-value เท่ากับ 0.2922

ต่อมาทำการวิเคราะห์ normality ด้วยกราฟ histogram พบว่า มีลักษณะเป็นรูประฆังคว่ำ จึงสามารถ สรุปได้ว่า residual ส่วนที่เหลือจากการใช้ตัวแบบ ETS(A, N, A) มาอธิบายข้อมูลนั้น มีการแจกแจงแบบปกติ และ เมื่อทำการสร้าง ACF plot ของค่า residual พบว่าที่ lag 1 ค่า autocorrelationมีค่าไม่แตกต่างจาก 0 อย่างมี นัยสำคัญที่ระดับความเชื่อมั่น 95%

จากการทดสอบ residual ด้วย Ljung–Box test พบว่า residual นั่นเป็น purely random process แล้ว จึงสามารถสรุปได้ว่าตัวแบบ ETS(A, N, A) เป็นตัวแบบที่มีประสิทธิภาพ เหมาะสำหรับการใช้ทำนายราคาใน อนาคต และนำมาเปรียบเทียบประสิทธิภาพของตัวแบบ

ตารางที่ 3 แสดงค่า MAE, RMSE และ MAPE ของตัวแบบ ETS(A, N, A)

Model	MAE	RMSE	MAPE
ETS(A, N, A)	10.4866	12.48023	29.2627%

3.ตัวแบบ GRU(Gated Recurrent Unit)

ข้อมูลที่ใช้ประกอบด้วย เดือนและ ปี เป็นฟีเจอร์หลัก และ ราคาต่ำสุด เป็นค่าที่ต้องการทำนาย โดยมีการ สร้างชุดข้อมูลลำดับเวลา (time_steps = 12) และปรับข้อมูลให้อยู่ในช่วง [0, 1] ด้วย MinMaxScaler โมเดล GRU มีโครงสร้างดังนี้:

- 1. GRU Layer ที่ 1:
 - มี 128 units
 - ใช้ฟังก์ชันการกระตุ้น tanh
 - return_sequences=True เพื่อส่งคืนลำดับข้อมูลทั้งหมดไปยัง GRU Layer ถัดไป
- 2. Dropout Layer ที่ 1:
 - ตั้ง rate=0.2 เพื่อลด overfitting
- 3. GRU Layer ที่ 2:
 - มี 64 units
 - ใช้ฟังก์ชันการกระตุ้น tanh
 - return sequences=False เพื่อส่งคืนเฉพาะ hidden state สุดท้าย
- 4. Dropout Layer ที่ 2:

- ตั้ง rate=0.2 เพื่อลด overfitting
- 5. Dense Layer ที่ 1:
 - มี 32 nodes
 - ใช้ฟังก์ชันการกระตุ้น relu
- 6. Dense Layer สุดท้าย:
 - มี 1 node
 - ไม่มีฟังก์ชันการกระตุ้น (เหมาะสำหรับการทำนายค่าเชิงตัวเลข เช่น การพยากรณ์)
- 7. Loss Function: ใช้ mean_squared_error (MSE) สำหรับวัดค่าความสูญเสีย
- 8. Optimizer: ใช้ Adam ซึ่งปรับอัตราการเรียนรู้แบบอัตโนมัติ

ตารางที่ 4 แสดงค่า MAE, RMSE และ MAPE ของตัวแบบ GRU

Model	MAE	RMSE	MAPE
GRU	9.8327	11.0970	27.47 %

การเปรียบเทียบประสิทธิภาพของตัวแบบในการพยากรณ์

จากตัวชีวัดประสิทธิภาพการทำนายทั้งสามตัวแบบ เพื่อทำนายราคาขั้นต่ำรายเดือนของถั่วเหลือง Okara ใน ประเทศเนปาล ได้ผลดังนี้

ตารางที่ 4 แสดงค่า MAE, RMSE และ MAPE ของตัวแบบอนุกรมเวลาทั้ง 3 ตัวแบบ

Model	MAE	RMSE	MAPE
SARIMA	11.34787	14.82118	39.39234%
ETS	10.4866	12.48023	29.2627%
GRU	9.8327	11.0970	27.47 %

จากการทำนายบน test set ของทั้ง 3 ตัวแบบอนุกรมเวลา พบว่า ตัวแบบ GRU เป็นตัวแบบที่ให้ผล MAE, RMSE และ MAPE น้อยที่สุด ดังนั้นตัวแบบ GRU จึงเป็นตัวแบบที่เหมาะสมที่สุดในการทำนาย ราคาขั้นต่ำรายเดือนของถั่วเหลือง Okara ในประเทศเนปาล

สรุปผล อภิปรายผล และข้อเสนอแนะ

สรุปผล

จากข้อมูลราคาขั้นต่ำรายวันของถั่วเหลือง Okara ในประเทศเนปาลย้อนหลังตั้งแต่ปี พ.ศ.2013-2021 ที่ ผ่านการวิเคราะห์สร้างตัวแบบอนุกรมเวลาไปจนถึงขั้นตอนการวัดประสิทธิภาพ สามารถสรุปผลออกมาได้ดังนี้

ตัวแบบทั้งสามที่ได้ศึกษา ประกอบด้วย SARIMA, Exponential Smoothing และ GRU**(Gated Recurrent Unit) ทั้งสามโมเดล สามารถอธิบายราคาขั้นต่ำของ**ถั่วเหลือง Okaraในประเทศเนปาล ได้โดยสรุป ดังนี้

ตัวแบบ Gated Recurrent Unit เป็นตัวแบบที่มีประสิทธิภาพสูงที่สุด เนื่องจากให้ค่า MAE, RMSE และ MAPE ในการทำนายบน test set ต่ำที่สุด จึงสามารถสรุปได้ว่าตัวแบบ Gated Recurrent Unit เป็น ตัวแบบที่มีประสิทธิภาพสูงที่สุดในการทำนายราคาขั้นต่ำรายวันของถั่วเหลือง Okara ในประเทศเนปาล อภิปรายผล

ผลลัพธ์ที่ได้ไม่เพียงช่วยสร้างความเข้าใจในความสัมพันธ์ของข้อมูลราคาในอดีต แต่ยังสามารถนำไปใช้ เป็นเครื่องมือในการสนับสนุนการตัดสินใจทั้งในระดับบุคคลและระดับนโยบาย ซึ่งจะช่วยส่งเสริมความยั่งยืนใน อุตสาหกรรมเกษตรกรรมของประเทศเนปาลในระยะยาว

ข้อเสนอแนะ

เพื่อปรับปรุงความแม่นยำของการทำนายราคากากถั่วเหลือง Okara ควรพิจารณาตัวแปรอื่นๆ (Explanatory Variables) ร่วมด้วย เช่น สภาพภูมิอากาศ (อุณหภูมิ, ปริมาณน้ำฝน), นโยบายรัฐบาลที่เกี่ยวข้อง กับการเกษตร, หรือข้อมูลการค้าระหว่างประเทศ เพื่อให้ตัวแบบสามารถจับความสัมพันธ์ที่ซับซ้อนได้มากขึ้น

รายการอ้างอิง

Ribeiro, S. M. (2022). *Imputation by decomposition and by time series nature: Novel imputation methods for missing data in time series* (Master's thesis, Universidade Federal de Minas Gerais). Retrieved from_https://github.com/silvanaribeiro/imputationLibrary

ภาคผนวก

EDA

ภาพที่ 1 แสดงถึงราคาขึ้นต่ำ Okara ในช่วงปี 2013-2021

ภาพที่ 2แสดงการแยกส่วนข้อมูลแบบ Additive โดยแสดงส่วนของ Tread,Seasonal และ Remainder

Augmented Dickey-Fuller Test

data: veg.ts
Dickey-Fuller = -4.3999, Lag order = 13, p-value = 0.01
alternative hypothesis: stationary

ภาพที่ 3 แสดงความเป็น stationaryของข้อมูลโดยค่า p-valueที่ได้จากการหา ADF Test มีค่า 0.01 ซึ่งมีค่าน้อย กว่า 0.05

Auto correlation function

Partial auto correlation function

ภาพที่ 4 และ 5 แสดงถึงกราฟ ACF (Auto-Correlation Function) และ PACF (Partial Auto-Correlation Function) เพื่อแสดงความสัมพันธ์ของข้อมูลในช่วง lag ต่าง ๆ

Preprocessing

6	Okara	2013-06-21	45
7	Okara	2013-06-25	40
8	Okara	2013-06-26	35
37	Okara	2013-08-01	22
38	Okara	2013-08-02	26
39	Okara	2013-08-04	24

ภาพที่1 แสดงตารางสรุปจำนวนข้อมูลที่ขาดหายในแต่ละช่วงเวลา (Missing Data Report)

```
#Padding Missing Date
veg_pad = pad(veg, interval = "day")
veg_pad$Commodity = "Okara"
```

6	Okara	2013-06-21	45
7	Okara	2013-06-22	NA
8	Okara	2013-06-23	NA
9	Okara	2013-06-24	NA
10	Okara	2013-06-25	40

ภาพที่ 2 แสดงการใช้ฟังก์ชัน pad จาก library padr เพื่อเติมค่าวันที่ที่ขาดหาย

Counts of Missing Values by Month and Year

ภาพที่ 3 และ 4 แสดงการ พิจารณา Missing valueทั้งหมด

```
#2. Splitting Training set And Test Set
#note : split point is October 14, 2019
train_set = veg_pad %>%
  filter(Date >= "2013-06-16", Date <= "2019-10-06")
test_set = veg_pad %>%
  filter(Date > "2019-10-06")
```

ภาพที่ 5 แสดงตารางสรุปช่วงเวลาที่ใช้สำหรับชุดข้อมูลฝึก (Training Set) และชุดข้อมูลทดสอบ (Testing Set)

```
impute_ts_kalman <- function(df) {
  ts = ts(df[,3])
  ts_imputed = na_kalman(ts,model = "StructTS",smooth = TRUE)
  temp = df
  df_imputed = cbind(temp,data.frame(ts_imputed))
  df_imputed = df_imputed[,-3]
  names(df_imputed)[3] <- "Imputed_Minimum"
  return(df_imputed)
}</pre>
```

ภาพที่ 6 แสดงฟังก์ชันของการเติมค่าที่ขาดหายด้วยวิธีคาลมาน (Kalman Imputation)

ภาพที่ 7 แสดงการตรวจหาค่าผิดปกติ (Outliers) ในชุดข้อมูลอนุกรมเวลาที่ผ่านการเติมค่าข้อมูลขาดหายแล้วซึ่ งพบค่าผิดปกติ 2 จุดในชุดข้อมูล

```
temptrain = cbind(train_imputed,data.frame(train.ts))
    temptrain = temptrain[,-3]
names(temptrain)[3] <- "Imputed_Minimum"</pre>
    train_process = impute_ts_kalman(temptrain)
    outlier_data = temptrain %>%
    filter(rowSums(is.na(.)) > 0)
trainjoin_df2 = inner_join(train_process, outlier_data, by = "Date")
ภาพที่ 8 แสดงการรวมกระบวนการเติมค่าข้อมูลขาดหายและการตรวจสอบค่าผิดปกติในชุดข้อมูลฝึก (Training
```

Set)

	Commodity	Date	<pre>Imputed_Minimum</pre>
571	okara	2015-01-07	159.829
592	Okara	2015-01-28	112.951

ภาพที่ 9 แสดงผลลัพธ์จากการเติมค่าที่หายไปด้วย วิธีKalman Imputation

Model building - SARIMA

```
Error in makeARIMA(trarma[[1L]], trarma[[2L]], Delta, kappa, SSinit):
maximum supported lag is 350

ภาพที่ 1 แสดง Error ที่เกิดขึ้นจากการที่ข้อมูลมี Seasonal เป็นแบบ daily ทำให้มี lag เกิน 350 lag

> print(adf_test)

Augmented Dickey-Fuller Test

data: train_ts
Dickey-Fuller = -7.4374, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

ภาพที่ 2 แสดงค่า p-value จาก ADF test สำหรับ train dataset

> print(kpss_test)

KPSS Test for Level Stationarity

data: train_ts
KPSS Level = 0.18692, Truncation lag parameter = 3, p-value = 0.1

ภาพที่ 3 แสดงค่า p-value จาก KPSS test สำหรับ train dataset
```

Series train_set\$Minimum

ภาพที่ 4 แสดกราฟ ACF ของ train dataset แบบ monthly

Series train_set\$Minimum

ภาพที่ 5 แสดกราฟ PACF ของ train dataset แบบ monthly

PACF of Differenced Train Series

ภาพที่ 6 แสดงกราฟ PACF หลังจากการทำ First-Order Differencing

ACF of Differenced Train Series

ภาพที่ 7 แสดงกราฟ ACF หลังจากการทำ First-Order Differencing

ภาพที่ 8 แสดงภาพ plot graph ของค่า residual หลังจากการทำ SARIMA (3, 1, 3)x(0, 0, 3) $_{12}$

ภาพที่ 9 แสดงภาพ ผลลัพธ์จากการใช้ตัวแบบ SARIMA (3, 1, 3)x(0, 0, 3) $_{\scriptscriptstyle 12}$ ในการทำนายข้อมูล

Model building - ETS

ภาพที่ 1 แสดงการแยกส่วนข้อมูล โดยแสดงส่วนของ Trend, Seasonal และ Remainder ของ train dataset แบบ monthly

```
> manual_ets_model1 <- ets(train_ts, model = "MNM")</pre>
> summary(manual_ets_model1)
ETS(M,N,M)
Call:
ets(y = train_ts, model = "MNM")
  Smoothing parameters:
    alpha = 0.1236
    gamma = 1e-04
  Initial states:
    1 = 41.8242
    sigma: 0.2357
     AIC
            AICC
692.3304 700.1992 727.4875
Training set error measures:
                                       MPE
                                                  MAPE
                ME
                       RMSE
                                MAE
                                                           MASE
                                                                      ACF1
Training set 1.4392 8.469181 6.797757 -2.434829 18.28993 0.7426121 0.03551126
ภาพที่ 2 แสดงตัวแบบ ETS แบบ Multiplicative Error, No Trend, Multiplicative Seasonality
> manual_ets_model2 <- ets(train_ts, model = "MNA")</pre>
> summary(manual_ets_model2)
ETS(M,N,A)
ets(y = train_ts, model = "MNA")
  Smoothing parameters:
    alpha = 0.1175
    gamma = 1e-04
  Initial states:
    1 = 41.2693
    s = -21.5742 - 4.1784 19.7787 22.1622 27.0716 19.3636
           5.5029 1.1241 -6.8618 -21.6029 -18.2308 -22.555
  sigma: 0.2296
     AIC
            AICc
687.4437 695.3126 722.6008
Training set error measures:
                          RMSE
                                   MAE
                                             MPE
                                                     MAPE
                                                               MASE
                                                                           ACF1
Training set 1.066514 8.145093 6.449563 -1.448732 16.88829 0.7045741 -0.01568734
ภาพที่ 3 แสดง ตัวแบบETS แบบ Multiplicative Error, No Trend, Additive Seasonality
```

```
> manual_ets_model3 <- ets(train_ts, model = "ANA")</pre>
> summary(manual_ets_model3)
ETS(A,N,A)
Call:
ets(y = train_ts, model = "ANA")
  Smoothing parameters:
    alpha = 0.1025
    gamma = 1e-04
  Initial states:
    1 = 41.8012
    s = -21.4335 - 4.8328 19.8819 22.3653 27.3581 19.7522
            6.053 1.7354 -8.951 -22.1405 -17.7873 -22.0009
  sigma: 8.9555
     AIC
             AICc
                        BIC
686.6299 694.4987 721.7870
Training set error measures:
                   MF
                           RMSE
                                    MAE
                                             MPE
                                                     MAPE
                                                                MASE
                                                                             ACF1
Training set 1.152021 8.100516 6.35306 -1.11949 16.49127 0.6940317 -0.006859548
ภาพที่ 4 แสดง ตัวแบบ ETS แบบ Additive Error, No Trend, Additive Seasonality
```


ภาพที่ 5 แสดงการ ทำนายของตัวแบบ ETS แบบ Additive Error, No Trend, Additive Seasonality

Box-Ljung test

data: residuals_ets3
X-squared = 22.931, df = 20, p-value = 0.2922

ภาพที่ 6 แสดงค่า p-value ของ Box – Ljung test ใน ตัวแบบ ETS(A, N, A)

Histogram of Residuals Light of the state o

ภาพที่ 7 แสดงกราฟ Histogram ของ residual ในตัวแบบ ETS(A, N, A)

ภาพที่ 8 แสดงกราฟ ACF ของ residual ในตัวแบบ ETS(A, N, A)

Model building -GRU

```
Epoch 1/150
<ipython-input-62-4c11d222ce9c>:28: FutureWarning: Series.fillna with 'method' is
deprecated and will raise in a future version. Use obj.ffill() or obj.bfill()
instead.
test df['Lag1'] = test df['Minimum'].shift(1).fillna(method='bfill')
<ipython-input-62-4c11d222ce9c>:32: FutureWarning: Series.fillna with 'method' is
deprecated and will raise in a future version. Use obj.ffill() or obj.bfill()
instead.
test_df['MovingAvg3'] =
test_df['Minimum'].rolling(window=3).mean().fillna(method='bfill')
/usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204:
UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When
using Sequential models, prefer using an `Input(shape)` object as the first layer
in the model instead.
 super(). init (**kwargs)
                 6s 279ms/step - loss: 0.1986 - mae: 0.3824 - val_loss:
0.1552 - val mae: 0.3422
Epoch 2/150
                     —— 0s 18ms/step - loss: 0.1296 - mae: 0.2894 - val loss:
0.0666 - val mae: 0.1886
Epoch 3/150
4/4 -
                      - 0s 15ms/step - loss: 0.0505 - mae: 0.1704 - val loss:
0.0297 - val mae: 0.1530
Epoch 4/150
4/4 -
                   ---- 0s 15ms/step - loss: 0.0478 - mae: 0.1833 - val_loss:
0.0503 - val mae: 0.1984
Epoch 5/150
4/4 -----
               ----- 0s 15ms/step - loss: 0.0516 - mae: 0.1791 - val_loss:
0.0448 - val mae: 0.1844
Epoch 6/150
                     —— 0s 15ms/step - loss: 0.0437 - mae: 0.1704 - val loss:
0.0266 - val mae: 0.1496
Epoch 7/150
4/4 -
                     — 0s 15ms/step - loss: 0.0299 - mae: 0.1355 - val_loss:
0.0233 - val mae: 0.1267
Epoch 8/150
                   --- 0s 19ms/step - loss: 0.0352 - mae: 0.1563 - val_loss:
4/4 -
0.0243 - val_mae: 0.1248
Epoch 9/150
                 ——— 0s 16ms/step - loss: 0.0283 - mae: 0.1396 - val loss:
4/4 ----
0.0236 - val mae: 0.1231
Epoch 10/150
4/4 -
                   --- 0s 17ms/step - loss: 0.0298 - mae: 0.1379 - val loss:
0.0215 - val mae: 0.1165
Epoch 11/150
4/4 -
                      - 0s 17ms/step - loss: 0.0216 - mae: 0.1208 - val_loss:
0.0208 - val mae: 0.1146
Epoch 12/150
                    --- 0s 16ms/step - loss: 0.0245 - mae: 0.1268 - val_loss:
4/4 -
```

```
0.0212 - val mae: 0.1148
Epoch 13/150
                   --- Os 14ms/step - loss: 0.0224 - mae: 0.1143 - val_loss:
4/4 -----
0.0201 - val_mae: 0.1109
Epoch 14/150
4/4 -----
                  ---- 0s 17ms/step - loss: 0.0236 - mae: 0.1270 - val loss:
0.0196 - val mae: 0.1106
Epoch 15/150
              Os 16ms/step - loss: 0.0254 - mae: 0.1301 - val_loss:
4/4 -----
0.0202 - val mae: 0.1137
Epoch 16/150
4/4 -----
                  ---- 0s 20ms/step - loss: 0.0240 - mae: 0.1254 - val_loss:
0.0203 - val mae: 0.1144
Epoch 17/150
4/4 -----
                    — 0s 16ms/step - loss: 0.0249 - mae: 0.1262 - val loss:
0.0198 - val mae: 0.1133
Epoch 18/150
4/4 ---
                   --- 0s 16ms/step - loss: 0.0223 - mae: 0.1216 - val loss:
0.0188 - val mae: 0.1108
Epoch 19/150
               _____ 0s 16ms/step - loss: 0.0261 - mae: 0.1268 - val_loss:
4/4 -----
0.0183 - val mae: 0.1092
Epoch 20/150
4/4 -----
                 ——— 0s 16ms/step - loss: 0.0180 - mae: 0.1005 - val_loss:
0.0190 - val mae: 0.1103
Epoch 21/150
                    Os 26ms/step - loss: 0.0215 - mae: 0.1121 - val loss:
4/4 -----
0.0197 - val mae: 0.1130
Epoch 22/150
4/4 ---
                   --- 0s 23ms/step - loss: 0.0222 - mae: 0.1163 - val loss:
0.0202 - val_mae: 0.1147
Epoch 23/150
               Os 15ms/step - loss: 0.0246 - mae: 0.1273 - val_loss:
4/4 -----
0.0184 - val_mae: 0.1088
Epoch 24/150
4/4 -----
                  ——— 0s 16ms/step - loss: 0.0215 - mae: 0.1172 - val loss:
0.0184 - val mae: 0.1095
Epoch 25/150
4/4 -----
                    Os 21ms/step - loss: 0.0215 - mae: 0.1096 - val loss:
0.0197 - val mae: 0.1146
Epoch 26/150
4/4 -
                    — 0s 17ms/step - loss: 0.0219 - mae: 0.1188 - val_loss:
0.0213 - val mae: 0.1190
Epoch 27/150
               OS 16ms/step - loss: 0.0176 - mae: 0.1081 - val_loss:
4/4 -----
0.0217 - val_mae: 0.1202
Epoch 28/150
4/4 -----
                 ——— 0s 15ms/step - loss: 0.0263 - mae: 0.1256 - val loss:
0.0180 - val mae: 0.1098
Epoch 29/150
                 ——— 0s 17ms/step - loss: 0.0203 - mae: 0.1089 - val_loss:
4/4 -----
0.0166 - val mae: 0.1049
```

```
Epoch 30/150
               _____ 0s 15ms/step - loss: 0.0222 - mae: 0.1145 - val_loss:
4/4 -----
0.0167 - val mae: 0.1061
Epoch 31/150
                    Os 16ms/step - loss: 0.0171 - mae: 0.1056 - val loss:
0.0182 - val mae: 0.1115
Epoch 32/150
4/4 -
                  ---- 0s 16ms/step - loss: 0.0185 - mae: 0.1098 - val_loss:
0.0195 - val_mae: 0.1153
Epoch 33/150
                  ---- 0s 15ms/step - loss: 0.0235 - mae: 0.1209 - val_loss:
4/4 --
0.0176 - val mae: 0.1102
Epoch 34/150
               Os 19ms/step - loss: 0.0197 - mae: 0.1080 - val_loss:
4/4 -----
0.0180 - val mae: 0.1113
Epoch 35/150
                   ---- 0s 16ms/step - loss: 0.0170 - mae: 0.1043 - val_loss:
4/4 ---
0.0167 - val mae: 0.1073
Epoch 36/150
                 Os 22ms/step - loss: 0.0201 - mae: 0.1164 - val_loss:
0.0156 - val mae: 0.1040
Epoch 37/150
4/4 -----
               ----- 0s 15ms/step - loss: 0.0206 - mae: 0.1167 - val loss:
0.0162 - val mae: 0.1058
Epoch 38/150
4/4 -----
              ——— 0s 15ms/step - loss: 0.0225 - mae: 0.1173 - val loss:
0.0156 - val mae: 0.1047
Epoch 39/150
                  ---- 0s 20ms/step - loss: 0.0215 - mae: 0.1123 - val_loss:
0.0153 - val mae: 0.1043
Epoch 40/150
4/4 --
                  —— 0s 15ms/step - loss: 0.0204 - mae: 0.1190 - val_loss:
0.0181 - val mae: 0.1129
Epoch 41/150
                   --- 0s 16ms/step - loss: 0.0174 - mae: 0.1018 - val_loss:
4/4 -
0.0155 - val mae: 0.1049
Epoch 42/150
              Os 28ms/step - loss: 0.0197 - mae: 0.1148 - val_loss:
4/4 -----
0.0139 - val mae: 0.0977
Epoch 43/150
                  ——— 0s 15ms/step - loss: 0.0192 - mae: 0.1107 - val_loss:
0.0149 - val_mae: 0.1030
Epoch 44/150
                  —— 0s 15ms/step - loss: 0.0162 - mae: 0.0962 - val_loss:
0.0152 - val mae: 0.1046
Epoch 45/150
                   —— 0s 16ms/step - loss: 0.0146 - mae: 0.1020 - val_loss:
4/4 -
0.0136 - val mae: 0.0991
Epoch 46/150
                ---- 0s 15ms/step - loss: 0.0164 - mae: 0.1006 - val_loss:
4/4 -----
0.0142 - val_mae: 0.1022
Epoch 47/150
```

```
4/4 Os 15ms/step - loss: 0.0159 - mae: 0.0990 - val_loss:
0.0140 - val mae: 0.0998
Epoch 48/150
4/4 -
                 ——— 0s 16ms/step - loss: 0.0161 - mae: 0.0969 - val_loss:
0.0141 - val mae: 0.0992
Epoch 49/150
                Os 16ms/step - loss: 0.0154 - mae: 0.0995 - val_loss:
4/4 -----
0.0145 - val mae: 0.1010
Epoch 50/150
4/4 -
                    — 0s 25ms/step - loss: 0.0129 - mae: 0.0893 - val loss:
0.0139 - val_mae: 0.0995
Epoch 51/150
                  —— 0s 17ms/step - loss: 0.0197 - mae: 0.1085 - val_loss:
4/4 -
0.0130 - val mae: 0.0952
Epoch 52/150
4/4 -
                 ——— 0s 15ms/step - loss: 0.0125 - mae: 0.0883 - val_loss:
0.0125 - val_mae: 0.0944
Epoch 53/150
4/4 -----
               ---- 0s 21ms/step - loss: 0.0151 - mae: 0.0974 - val loss:
0.0155 - val mae: 0.1059
Epoch 54/150
                    -- 0s 16ms/step - loss: 0.0158 - mae: 0.0957 - val loss:
4/4 -
0.0128 - val mae: 0.0977
Epoch 55/150
4/4 ---
                 ---- 0s 16ms/step - loss: 0.0160 - mae: 0.1023 - val_loss:
0.0116 - val mae: 0.0929
Epoch 56/150
4/4 -----
               ______ 0s 16ms/step - loss: 0.0184 - mae: 0.1065 - val loss:
0.0130 - val_mae: 0.0967
Epoch 57/150
4/4 ----
               ----- 0s 17ms/step - loss: 0.0154 - mae: 0.0995 - val loss:
0.0117 - val mae: 0.0916
Epoch 58/150
                    — 0s 16ms/step - loss: 0.0162 - mae: 0.0984 - val_loss:
0.0131 - val mae: 0.0978
Epoch 59/150
4/4 -
                  ---- 0s 22ms/step - loss: 0.0138 - mae: 0.0864 - val_loss:
0.0125 - val mae: 0.0951
Epoch 60/150
4/4 -----
                  ---- 0s 26ms/step - loss: 0.0155 - mae: 0.0981 - val loss:
0.0138 - val mae: 0.1009
Epoch 61/150
               ——— 0s 16ms/step - loss: 0.0124 - mae: 0.0877 - val_loss:
4/4 ----
0.0113 - val mae: 0.0934
Epoch 62/150
                    — 0s 16ms/step - loss: 0.0133 - mae: 0.0944 - val_loss:
0.0106 - val_mae: 0.0913
Epoch 63/150
                  ---- 0s 18ms/step - loss: 0.0137 - mae: 0.0951 - val_loss:
4/4 --
0.0114 - val mae: 0.0931
Epoch 64/150
                   --- 0s 15ms/step - loss: 0.0126 - mae: 0.0923 - val_loss:
4/4 -
```

```
0.0119 - val mae: 0.0945
Epoch 65/150
                   --- 0s 25ms/step - loss: 0.0118 - mae: 0.0838 - val_loss:
4/4 -----
0.0131 - val_mae: 0.0989
Epoch 66/150
4/4 ---
                  ---- 0s 16ms/step - loss: 0.0151 - mae: 0.0980 - val loss:
0.0120 - val mae: 0.0949
Epoch 67/150
               Os 25ms/step - loss: 0.0119 - mae: 0.0869 - val_loss:
4/4 -----
0.0115 - val mae: 0.0929
Epoch 68/150
4/4 ----
                  ---- 0s 16ms/step - loss: 0.0099 - mae: 0.0775 - val_loss:
0.0113 - val mae: 0.0920
Epoch 69/150
4/4 -----
                    — 0s 18ms/step - loss: 0.0109 - mae: 0.0885 - val loss:
0.0129 - val mae: 0.0965
Epoch 70/150
4/4 ---
                   --- 0s 15ms/step - loss: 0.0149 - mae: 0.0966 - val loss:
0.0098 - val mae: 0.0873
Epoch 71/150
               OS 16ms/step - loss: 0.0099 - mae: 0.0807 - val_loss:
4/4 -----
0.0095 - val mae: 0.0866
Epoch 72/150
4/4 -----
                  ——— 0s 15ms/step - loss: 0.0111 - mae: 0.0847 - val loss:
0.0106 - val mae: 0.0893
Epoch 73/150
                     -- 0s 16ms/step - loss: 0.0114 - mae: 0.0850 - val loss:
4/4 -----
0.0110 - val mae: 0.0910
Epoch 74/150
4/4 ---
                    --- 0s 19ms/step - loss: 0.0112 - mae: 0.0874 - val loss:
0.0086 - val mae: 0.0810
Epoch 75/150
               OS 17ms/step - loss: 0.0088 - mae: 0.0752 - val_loss:
4/4 -----
0.0086 - val_mae: 0.0810
Epoch 76/150
4/4 -----
                  ---- 0s 24ms/step - loss: 0.0137 - mae: 0.0862 - val loss:
0.0122 - val mae: 0.0929
Epoch 77/150
4/4 ----
                    -- 0s 18ms/step - loss: 0.0117 - mae: 0.0872 - val loss:
0.0106 - val mae: 0.0887
Epoch 78/150
4/4 --
                    — 0s 18ms/step - loss: 0.0112 - mae: 0.0834 - val_loss:
0.0075 - val mae: 0.0777
Epoch 79/150
               OS 16ms/step - loss: 0.0113 - mae: 0.0847 - val_loss:
4/4 -----
0.0075 - val_mae: 0.0783
Epoch 80/150
4/4 -----
                  ——— 0s 15ms/step - loss: 0.0113 - mae: 0.0867 - val loss:
0.0103 - val mae: 0.0875
Epoch 81/150
                 ——— 0s 16ms/step - loss: 0.0103 - mae: 0.0850 - val_loss:
0.0091 - val mae: 0.0842
```

```
Epoch 82/150
               ----- 0s 24ms/step - loss: 0.0105 - mae: 0.0844 - val_loss:
4/4 -----
0.0071 - val mae: 0.0746
Epoch 83/150
                      - 0s 18ms/step - loss: 0.0076 - mae: 0.0669 - val loss:
0.0074 - val mae: 0.0771
Epoch 84/150
4/4 -
                  ---- 0s 19ms/step - loss: 0.0105 - mae: 0.0804 - val_loss:
0.0084 - val mae: 0.0804
Epoch 85/150
4/4 -
                   --- 0s 36ms/step - loss: 0.0065 - mae: 0.0624 - val_loss:
0.0078 - val mae: 0.0788
Epoch 86/150
               Os 25ms/step - loss: 0.0077 - mae: 0.0730 - val_loss:
4/4 -----
0.0083 - val mae: 0.0799
Epoch 87/150
                   --- 0s 30ms/step - loss: 0.0065 - mae: 0.0651 - val_loss:
0.0089 - val mae: 0.0817
Epoch 88/150
                  ---- 0s 21ms/step - loss: 0.0080 - mae: 0.0756 - val_loss:
0.0072 - val mae: 0.0758
Epoch 89/150
4/4 -
               ———— 0s 25ms/step - loss: 0.0067 - mae: 0.0667 - val_loss:
0.0070 - val mae: 0.0741
Epoch 90/150
              Os 30ms/step - loss: 0.0073 - mae: 0.0696 - val_loss:
4/4 -----
0.0084 - val mae: 0.0788
Epoch 91/150
                  ---- 0s 20ms/step - loss: 0.0091 - mae: 0.0750 - val_loss:
0.0073 - val mae: 0.0720
Epoch 92/150
4/4 -
                  —— 0s 23ms/step - loss: 0.0066 - mae: 0.0649 - val_loss:
0.0067 - val mae: 0.0719
Epoch 93/150
                   --- 0s 22ms/step - loss: 0.0077 - mae: 0.0716 - val_loss:
4/4 -
0.0075 - val mae: 0.0755
Epoch 94/150
              Os 32ms/step - loss: 0.0081 - mae: 0.0721 - val_loss:
4/4 -----
0.0085 - val mae: 0.0790
Epoch 95/150
                  ---- 0s 28ms/step - loss: 0.0093 - mae: 0.0741 - val_loss:
0.0072 - val_mae: 0.0736
Epoch 96/150
4/4 -
                  ——— 0s 25ms/step - loss: 0.0075 - mae: 0.0708 - val_loss:
0.0077 - val mae: 0.0747
Epoch 97/150
                   --- 0s 39ms/step - loss: 0.0087 - mae: 0.0714 - val_loss:
4/4 -
0.0098 - val mae: 0.0829
Epoch 98/150
                 ——— 0s 26ms/step - loss: 0.0105 - mae: 0.0835 - val_loss:
4/4 ---
0.0077 - val_mae: 0.0749
Epoch 99/150
```

```
______ 0s 29ms/step - loss: 0.0058 - mae: 0.0603 - val loss:
0.0065 - val mae: 0.0734
Epoch 100/150
4/4 -
                 ——— 0s 29ms/step - loss: 0.0092 - mae: 0.0731 - val_loss:
0.0076 - val mae: 0.0737
Epoch 101/150
                ---- 0s 30ms/step - loss: 0.0091 - mae: 0.0773 - val loss:
4/4 ----
0.0090 - val mae: 0.0761
Epoch 102/150
4/4 -
                    — 0s 24ms/step - loss: 0.0073 - mae: 0.0709 - val loss:
0.0070 - val mae: 0.0708
Epoch 103/150
4/4 -
                  ---- 0s 30ms/step - loss: 0.0072 - mae: 0.0671 - val_loss:
0.0079 - val mae: 0.0755
Epoch 104/150
4/4 -
                 ——— 0s 36ms/step - loss: 0.0063 - mae: 0.0608 - val_loss:
0.0077 - val_mae: 0.0750
Epoch 105/150
4/4 ----
                ----- 0s 15ms/step - loss: 0.0064 - mae: 0.0653 - val loss:
0.0066 - val mae: 0.0704
Epoch 106/150
                     -- 0s 15ms/step - loss: 0.0061 - mae: 0.0629 - val loss:
4/4 -
0.0070 - val_mae: 0.0702
Epoch 107/150
                  ---- 0s 16ms/step - loss: 0.0077 - mae: 0.0693 - val_loss:
4/4 -
0.0079 - val mae: 0.0760
Epoch 108/150
4/4 -----
                ------ 0s 15ms/step - loss: 0.0094 - mae: 0.0772 - val loss:
0.0070 - val mae: 0.0683
Epoch 109/150
                Os 15ms/step - loss: 0.0079 - mae: 0.0767 - val_loss:
4/4 ----
0.0075 - val mae: 0.0680
Epoch 110/150
                    — 0s 15ms/step - loss: 0.0075 - mae: 0.0682 - val_loss:
0.0092 - val mae: 0.0815
Epoch 111/150
                   --- 0s 16ms/step - loss: 0.0086 - mae: 0.0769 - val_loss:
4/4 -
0.0071 - val mae: 0.0711
Epoch 112/150
4/4 -----
                   ---- 0s 21ms/step - loss: 0.0074 - mae: 0.0708 - val loss:
0.0072 - val mae: 0.0673
Epoch 113/150
                Os 16ms/step - loss: 0.0065 - mae: 0.0685 - val_loss:
4/4 ----
0.0085 - val mae: 0.0679
Epoch 114/150
                    — 0s 17ms/step - loss: 0.0088 - mae: 0.0761 - val_loss:
0.0082 - val_mae: 0.0766
Epoch 115/150
                    --- 0s 17ms/step - loss: 0.0090 - mae: 0.0784 - val_loss:
4/4 -
0.0077 - val mae: 0.0739
Epoch 116/150
                    --- 0s 16ms/step - loss: 0.0080 - mae: 0.0685 - val_loss:
4/4 -
```

```
0.0062 - val mae: 0.0700
Epoch 117/150
                   ---- 0s 15ms/step - loss: 0.0072 - mae: 0.0673 - val_loss:
4/4 ---
0.0076 - val_mae: 0.0667
Epoch 118/150
4/4 ---
                   ---- 0s 17ms/step - loss: 0.0062 - mae: 0.0674 - val loss:
0.0104 - val mae: 0.0870
Epoch 119/150
               ----- 0s 17ms/step - loss: 0.0076 - mae: 0.0704 - val_loss:
4/4 -----
0.0081 - val mae: 0.0745
Epoch 120/150
4/4 -----
                   ---- 0s 19ms/step - loss: 0.0109 - mae: 0.0833 - val_loss:
0.0077 - val mae: 0.0679
Epoch 121/150
                    — 0s 16ms/step - loss: 0.0075 - mae: 0.0719 - val loss:
0.0080 - val mae: 0.0665
Epoch 122/150
4/4 ---
                   --- 0s 21ms/step - loss: 0.0083 - mae: 0.0759 - val loss:
0.0090 - val mae: 0.0797
Epoch 123/150
               OS 15ms/step - loss: 0.0087 - mae: 0.0686 - val_loss:
4/4 -----
0.0080 - val mae: 0.0734
Epoch 124/150
                  ---- 0s 18ms/step - loss: 0.0081 - mae: 0.0732 - val_loss:
4/4 -----
0.0075 - val mae: 0.0671
Epoch 125/150
                     -- 0s 16ms/step - loss: 0.0080 - mae: 0.0699 - val loss:
4/4 ---
0.0081 - val mae: 0.0673
Epoch 126/150
4/4 -
                    — 0s 16ms/step - loss: 0.0071 - mae: 0.0697 - val loss:
0.0071 - val mae: 0.0686
Epoch 127/150
               Os 16ms/step - loss: 0.0067 - mae: 0.0638 - val_loss:
4/4 -----
0.0074 - val mae: 0.0716
Epoch 128/150
4/4 ----
                  ---- 0s 26ms/step - loss: 0.0081 - mae: 0.0651 - val loss:
0.0078 - val mae: 0.0690
Epoch 129/150
4/4 ----
                     -- 0s 18ms/step - loss: 0.0084 - mae: 0.0712 - val loss:
0.0070 - val mae: 0.0674
Epoch 130/150
4/4 -
                    — 0s 15ms/step - loss: 0.0066 - mae: 0.0650 - val_loss:
0.0068 - val mae: 0.0675
Epoch 131/150
               OS 16ms/step - loss: 0.0079 - mae: 0.0726 - val_loss:
4/4 -----
0.0074 - val mae: 0.0694
Epoch 132/150
4/4 ----
                  ——— 0s 15ms/step - loss: 0.0064 - mae: 0.0658 - val loss:
0.0091 - val mae: 0.0762
Epoch 133/150
                 OS 16ms/step - loss: 0.0065 - mae: 0.0696 - val_loss:
0.0071 - val mae: 0.0668
```

```
Epoch 134/150
               ---- 0s 20ms/step - loss: 0.0075 - mae: 0.0688 - val_loss:
4/4 -----
0.0070 - val mae: 0.0663
Epoch 135/150
                     — 0s 26ms/step - loss: 0.0120 - mae: 0.0881 - val loss:
0.0071 - val mae: 0.0658
Epoch 136/150
4/4 -
                    — 0s 18ms/step - loss: 0.0047 - mae: 0.0564 - val_loss:
0.0078 - val_mae: 0.0655
Epoch 137/150
                   --- 0s 17ms/step - loss: 0.0070 - mae: 0.0692 - val_loss:
4/4 -
0.0081 - val mae: 0.0704
Epoch 138/150
               ----- 0s 18ms/step - loss: 0.0074 - mae: 0.0683 - val_loss:
4/4 -----
0.0092 - val mae: 0.0769
Epoch 139/150
                   --- 0s 16ms/step - loss: 0.0070 - mae: 0.0689 - val_loss:
0.0069 - val mae: 0.0662
Epoch 140/150
                  —— 0s 15ms/step - loss: 0.0056 - mae: 0.0600 - val_loss:
0.0060 - val mae: 0.0689
Epoch 141/150
4/4 -----
                ----- 0s 17ms/step - loss: 0.0059 - mae: 0.0662 - val_loss:
0.0071 - val mae: 0.0657
Epoch 142/150
4/4 -----
               ---- 0s 16ms/step - loss: 0.0047 - mae: 0.0599 - val loss:
0.0101 - val mae: 0.0786
Epoch 143/150
                   ---- 0s 19ms/step - loss: 0.0088 - mae: 0.0731 - val_loss:
0.0074 - val mae: 0.0700
Epoch 144/150
4/4 -
                  ---- 0s 31ms/step - loss: 0.0061 - mae: 0.0658 - val_loss:
0.0071 - val mae: 0.0701
Epoch 145/150
                   —— 0s 16ms/step - loss: 0.0081 - mae: 0.0709 - val_loss:
4/4 -
0.0065 - val mae: 0.0684
Epoch 146/150
               Os 16ms/step - loss: 0.0060 - mae: 0.0625 - val_loss:
4/4 -----
0.0086 - val mae: 0.0734
Epoch 147/150
                  ---- 0s 17ms/step - loss: 0.0059 - mae: 0.0624 - val_loss:
0.0114 - val_mae: 0.0816
Epoch 148/150
4/4 -
                    —— 0s 18ms/step - loss: 0.0080 - mae: 0.0692 - val_loss:
0.0075 - val mae: 0.0670
Epoch 149/150
                   ---- 0s 15ms/step - loss: 0.0074 - mae: 0.0690 - val_loss:
4/4 -
0.0063 - val mae: 0.0705
Epoch 150/150
                 OS 16ms/step - loss: 0.0065 - mae: 0.0653 - val_loss:
4/4 ----
0.0069 - val mae: 0.0689
                      - 0s 28ms/step - loss: 0.0183 - mae: 0.1199
```

Test Loss: 0.01831411011517048 Test MAE: 0.11991134285926819

1/1 os 400ms/step

ภาพที่ 1 แสดงผลลัพธ์การ Run ของตัวแบบ GRU

ภาพที่ 2 แสดงผลลัพธ์จากการทำนายโดยตัวแบบ GRU