CS162 Operating Systems and Systems Programming Lecture 16

Memory 4: Demand Paging Policies

March 16th, 2021
Profs. Natacha Crooks and Anthony D. Joseph http://cs162.eecs.Berkeley.edu

Recall 61C: Average Memory Access Time

Used to compute access time probabilistically:

```
AMAT = Hit Rate<sub>L1</sub> x Hit Time<sub>L1</sub> + Miss Rate<sub>L1</sub> x Miss Time<sub>L1</sub>

Hit Rate<sub>L1</sub> + Miss Rate<sub>L1</sub> = 1

Hit Time<sub>L1</sub> = Time to get value from L1 cache.

Miss Time<sub>L1</sub> = Hit Time<sub>L1</sub> + Miss Penalty<sub>L1</sub>

Miss Penalty<sub>L1</sub> = AVG Time to get value from lower level (DRAM)

So, AMAT = Hit Time<sub>L1</sub> + Miss Rate<sub>L1</sub> x Miss Penalty<sub>L1</sub>
```


What about more levels of hierarchy?

```
\begin{split} \text{AMAT = Hit Time}_{\text{L1}} + \text{Miss Rate}_{\text{L1}} & \text{x Miss Penalty}_{\text{L1}} \\ \text{Miss Penalty}_{\text{L1}} = \text{AVG time to get value from lower level (L2)} \\ &= \text{Hit Time}_{\text{L2}} + \text{Miss Rate}_{\text{L2}} & \text{x Miss Penalty}_{\text{L2}} \\ \text{Miss Penalty}_{\text{L2}} = \text{Average Time to fetch from below L2 (DRAM)} \end{split}
```

```
L1 Cache
L2 Cache
DRAM
```

And so on ... (can do this recursively for more levels!)

Recall: Caching Applied to Address Translation

- Question is one of page locality: does it exist?
 - Instruction accesses spend a lot of time on the same page (accesses sequential)
 - Stack accesses have definite locality of reference
 - Data accesses have less page locality, but still some...
- Can we have a TLB hierarchy?
 - Sure: multiple levels at different sizes/speeds

Management & Access to the Memory Hierarchy

Recall: Demand Paging Mechanisms

- PTE makes demand paging implementatable
 - Valid ⇒ Page in memory, PTE points at physical page
 - Not Valid ⇒ Page not in memory; use info in PTE to find it on disk when necessary
- Suppose user references page with invalid PTE?
 - Memory Management Unit (MMU) traps to OS
 - » Resulting trap is a "Page Fault"
 - What does OS do on a Page Fault?:
 - » Choose an old page to replace
 - » If old page modified ("D=I"), write contents back to disk
 - » Change its PTE and any cached TLB to be invalid
 - » Load new page into memory from disk
 - » Update page table entry, invalidate TLB for new entry
 - » Continue thread from original faulting location
 - TLB for new page will be loaded when thread continued!
 - While pulling pages off disk for one process, OS runs another process from ready queue
 - » Suspended process sits on wait queue

Recall: Steps in Handling a Page Fault

Recall: Working Set Model

• As a program executes it transitions through a sequence of "working sets" consisting of varying sized subsets of the address space

Demand Paging Cost Model

- Since Demand Paging like caching, can compute average access time! ("Effective Access Time")
 - EAT = Hit Rate \times Hit Time + Miss Rate \times Miss Time
 - EAT = Hit Time + Miss Rate \times Miss Penalty
- Example:
 - Memory access time = 200 nanoseconds
 - Average page-fault service time = 8 milliseconds
 - Suppose p = Probability of miss, I-p = Probably of hit
 - Then, we can compute EAT as follows:

EAT =
$$200 \text{ns} + p \times 8 \text{ ms}$$

= $200 \text{ns} + p \times 8,000,000 \text{ns}$

- If one access out of 1,000 causes a page fault, then EAT = $8.2 \mu s$:
 - This is a slowdown by a factor of 40!
- What if want slowdown by less than 10%?
 - EAT < 200ns x I.I \Rightarrow p < 2.5 x I0⁻⁶
 - This is about I page fault in 400,000!

What Factors Lead to Misses in Page Cache?

• Compulsory Misses:

- Pages that have never been paged into memory before
- How might we remove these misses?
 - » Prefetching: loading them into memory before needed
 - » Need to predict future somehow! More later

Capacity Misses:

- Not enough memory. Must somehow increase available memory size.
- Can we do this?
 - » One option: Increase amount of DRAM (not quick fix!)
 - » Another option: If multiple processes in memory: adjust percentage of memory allocated to each one!

Conflict Misses:

Technically, conflict misses don't exist in virtual memory, since it is a "fully-associative" cache

Policy Misses:

- Caused when pages were in memory, but kicked out prematurely because of the replacement policy
- How to fix? Better replacement policy

Administrivia

- Midterm 2: Coming up on Thursday 3/18 5-6:30PM
 - Topics: up and including Lecture 16: Scheduling, Deadlock, Address Translation, Virtual Memory, Caching, TLBs, Demand Paging
 - Will REQUIRE you to have your zoom proctoring setup working again
 - » You must have screen sharing (entire desktop not just the browser), audio unmuted, and your camera working
 - » Make sure to get your setup debugged and ready!
- Review Session: Tuesday 3/16 (5-7pm)
 - See Piazza and/or CS I 62 website

Page Replacement Policies

- Why do we care about Replacement Policy?
 - Replacement is an issue with any cache
 - Particularly important with pages
 - » The cost of being wrong is high: must go to disk
 - » Must keep important pages in memory, not toss them out
- FIFO (First In, First Out)
 - Throw out oldest page. Be fair let every page live in memory for same amount of time.
 - Bad throws out heavily used pages instead of infrequently used
- RANDOM:
 - Pick random page for every replacement
 - Typical solution for TLB's. Simple hardware
 - Pretty unpredictable makes it hard to make real-time guarantees
- MIN (Minimum):
 - Replace page that won't be used for the longest time
 - Great (provably optimal), but can't really know future...
 - But past is a good predictor of the future ...

Replacement Policies (Con't)

- LRU (Least Recently Used):
 - Replace page that hasn't been used for the longest time
 - Programs have locality, so if something not used for a while, unlikely to be used in the near future.
 - Seems like LRU should be a good approximation to MIN.
- How to implement LRU? Use a list:

- On each use, remove page from list and place at head
- LRU page is at tail
- Problems with this scheme for paging?
 - Need to know immediately when page used so that can change position in list...
 - Many instructions for each hardware access
- In practice, people approximate LRU (more later)

Example: FIFO (strawman)

- Suppose we have 3 page frames, 4 virtual pages, and following reference stream:
 - -ABCABDADBCB
- Consider FIFO Page replacement:

Ref:	Α	В	С	Α	В	D	Α	D	В	С	В
Page:											
1	Α					D				С	
2		В					Α				
3			С						В		

- FIFO: 7 faults
- When referencing D, replacing A is bad choice, since need A again right away

Example: MIN / LRU

- Suppose we have the same reference stream:
 - -ABCABDADBCB
- Consider MIN Page replacement:

Ref: Page:	Α	В	С	Α	В	D	Α	D	В	С	В
l age.	Α									С	
2		В									
3			С			D					

- MIN: 5 faults
 - Where will D be brought in? Look for page not referenced farthest in future
- What will LRU do?
 - Same decisions as MIN here, but won't always be true!

Is LRU guaranteed to perform well?

- Consider the following: A B C D A B C D A B C D
- LRU Performs as follows (same as FIFO here):

Α	В	С	D	Α	В	С	D	Α	В	С	D
Α			D			С			В		
	В			Α			D			С	
		С			В			Α			D
			1						A D C D D O O O O O O O O O O O O O O O O	A B A B A A A A A A A A A A A A A A A A	A D C B A A A A A A A A A A A A A A A A A A

- Every reference is a page fault!
- Fairly contrived example of working set of N+1 on N frames

When will LRU perform badly?

- Consider the following: A B C D A B C D A B C D
- LRU Performs as follows (same as FIFO here):

Ref:	Α	В	С	D	Α	В	С	D	Α	В	С	D
Page:												
Ι	Α			D			С			В		
2		В			Α			D			С	
3			С			В			Α			D

- Every reference is a page fault!
- MIN Does much better:

Ref:	Α	В	С	D	Α	В	С	D	Α	В	С	D
Page:												
Ι	Α									В		
2		В					С					
3			С	D				opring 20			10.21	

Graph of Page Faults Versus The Number of Frames

- One desirable property: When you add memory the miss rate drops (stack property)
 - Does this always happen?
 - Seems like it should, right?
- No: Bélády's anomaly
 - Certain replacement algorithms (FIFO) don't have this obvious property!

Adding Memory Doesn't Always Help Fault Rate

- Does adding memory reduce number of page faults?
 Yes for LRU and MIN

 - Not necessarily for FIFO! (Called Bélády's anomaly)

Ref: Page:	Α	В	С	D	Α	В	Ε	Α	В	С	D	E
1	Α			D			Ε					
2		В			Α					С		
3			С			В					D	
Ref: Page:	Α	В	С	D	Α	В	Е	Α	В	С	D	Ε
1	Α						Е				D	
2		В						Α				П
3			С						В			

- After adding memory:
 - With FIFO, contents can be completely different
 - In contrast, with LRU or MIN, contents of memory with X pages are a subset of contents with X+1 Page Crooks & Joseph CS162 © UCB Spring 2021

Approximating LRU: Clock Algorithm

Single Clock Hand:

Lec 16.25

Advances only on page fault!

Check for pages not used recently

Mark pages as not used recently

- Clock Algorithm: Arrange physical pages in circle with single clock hand
 - Approximate LRU (approximation to approximation to MIN)
 - Replace an old page, not the oldest page
- Details:
 - Hardware "use" bit per physical page (called "accessed" in Intel architecture):
 - » Hardware sets use bit on each reference
 - » If use bit isn't set, means not referenced in a long time
 - » Some hardware sets use bit in the TLB; must be copied back to page TLB entry gets replaced
 - On page fault:
 - » Advance clock hand (not real time)
 - - $I \rightarrow$ used recently; clear and leave alone

0→ selected candidate for replacement

Crooks & Joseph CS162 © UCB Spring 2021

Clock Algorithm: More details

- Will always find a page or loop forever?
 - Even if all use bits set, will eventually loop all the way around ⇒ FIFO
- What if hand moving slowly?
 - Good sign or bad sign?
 - » Not many page faults
 - » or find page quickly
- What if hand is moving quickly?
 - Lots of page faults and/or lots of reference bits set
- One way to view clock algorithm:
 - Crude partitioning of pages into two groups: young and old
 - Why not partition into more than 2 groups?

Nth Chance version of Clock Algorithm

- Nth chance algorithm: Give page N chances
 - OS keeps counter per page: # sweeps
 - On page fault, OS checks use bit:
 - \rightarrow clear use and also clear counter (used in last sweep)
 - \rightarrow 0 \rightarrow increment counter; if count=N, replace page
 - Means that clock hand has to sweep by N times without page being used before page is replaced
- How do we pick N?
 - Why pick large N? Better approximation to LRU
 - » If N ~ IK, really good approximation
 - Why pick small N? More efficient
 - » Otherwise might have to look a long way to find free page
- What about "modified" (or "dirty") pages?
 - Takes extra overhead to replace a dirty page, so give dirty pages an extra chance before replacing?
 - Common approach:
 - \gg Clean pages, use N=1
 - » Dirty pages, use N=2 (and write back to disk when N=1)

Recall: Meaning of PTE bits

• Which bits of a PTE entry are useful to us for the Clock Algorithm? Remember Intel PTE:

 Page Frame Number
 Free (OS)
 0 スロA ○ ▼ UWP

 31-12
 11-9
 8 7 6 5 4 3 2 1 0

- The "Present" bit (called "Valid" elsewhere):
 - » P==0: Page is invalid and a reference will cause page fault
 - » P== I: Page frame number is valid and MMU is allowed to proceed with translation
- The "Writable" bit (could have opposite sense and be called "Read-only"):
 - » W==0: Page is read-only and cannot be written.

PTE:

- » W==1: Page can be written
- The "Accessed" bit (called "Use" elsewhere):
 - » A==0: Page has not been accessed (or used) since last time software set $A\rightarrow 0$
 - » A==1: Page has been accessed (or used) since last time software set $A\rightarrow 0$
- The "Dirty" bit (called "Modified" elsewhere):
 - » D==0: Page has not been modified (written) since PTE was loaded
 - » D==1: Page has changed since PTE was loaded

Clock Algorithms Variations

- Do we really need hardware-supported "modified" bit?
 - No. Can emulate it using read-only bit
 - » Need software DB of which pages are allowed to be written (needed this anyway)
 - » We will tell MMU that pages have more restricted permissions than the actually do to force page faults (and allow us notice when page is written)
 - Algorithm (Clock-Emulated-M):
 - » Initially, mark all pages as read-only (W \rightarrow 0), even writable data pages. Further, clear all software versions of the "modified" bit \rightarrow 0 (page not dirty)
 - » Writes will cause a page fault. Assuming write is allowed, OS sets software "modified" bit \rightarrow 1, and marks page as writable (W \rightarrow 1).
 - » Whenever page written back to disk, clear "modified" bit \rightarrow 0, mark read-only

Clock Algorithms Variations (continued)

- Do we really need a hardware-supported "use" bit?
 - No. Can emulate it similar to above (e.g. for read operation)
 - » Kernel keeps a "use" bit and "modified" bit for each page
 - Algorithm (Clock-Emulated-Use-and-M):
 - » Mark all pages as invalid, even if in memory. Clear emulated "use" bits \rightarrow 0 and "modified" bits \rightarrow 0 for all pages (not used, not dirty)
 - » Read or write to invalid page traps to OS to tell use page has been used
 - » OS sets "use" bit \rightarrow I in software to indicate that page has been "used". Further:

 - 1) If read, mark page as read-only, $W \rightarrow 0$ (will catch future writes)
 2) If write (and write allowed), set "modified" bit \rightarrow 1, mark page as writable ($W \rightarrow 1$)
 - » When clock hand passes, reset emulated "use" bit $\rightarrow 0$ and mark page as invalid again
 - » Note that "modified" bit left alone until page written back to disk
- Remember, however, clock is just an approximation of LRU!
 - Can we do a better approximation, given that we have to take page faults on some reads and writes to collect use information?
 - Need to identify an old page, not oldest page!
 - Answer: second chance list

Second-Chance List Algorithm (VAX/VMS)

- Split memory in two: Active list (RW), SC list (Invalid)
- Access pages in Active list at full speed
- Otherwise, Page Fault
 - Always move overflow page from end of Active list to front of Second-chance list (SC) and mark invalid
 - Desired Page On SC List: move to front of Active list, mark RW
 - Not on SC list: page in to front of Active list, mark RW; page out LRU victim at end of SC list Lec 16.31

Second-Chance List Algorithm (continued)

- How many pages for second chance list?
 - If $0 \Rightarrow FIFO$
 - If all \Rightarrow LRU, but page fault on every page reference
- Pick intermediate value. Result is:
 - Pro: Few disk accesses (page only goes to disk if unused for a long time)
 - Con: Increased overhead trapping to OS (software / hardware tradeoff)
- With page translation, we can adapt to any kind of access the program makes
 - Later, we will show how to use page translation / protection to share memory between threads on widely separated machines
- History: The VAX architecture did not include a "use" bit. Why did that omission happen???
 - Strecker (architect) asked OS people, they said they didn't need it, so didn't implement it
 - He later got blamed, but VAX did OK anyway

Free List

- Keep set of free pages ready for use in demand paging
 - Freelist filled in background by Clock algorithm or other technique ("Pageout demon")
 - Dirty pages start copying back to disk when enter list
- Like VAX second-chance list
 - If page needed before reused, just return to active set
- Advantage: faster for page fault
 - Can always use page (or pages) immediately on fault

Reverse Page Mapping (Sometimes called "Coremap")

- When evicting a page frame, how to know which PTEs to invalidate?
 - Hard in the presence of shared pages (forked processes, shared memory, ...)
- Reverse mapping mechanism must be very fast
 - Must track down all page tables pointing at given page frame when freeing a page
 - Must track down all PTEs when seeing if pages "active"
- Implementation options:
 - For every page descriptor, keep linked list of page table entries that point to it
 - » Management nightmare expensive
 - Linux: Object-based reverse mapping
 - » Link together memory region descriptors instead (much coarser granularity)

Allocation of Page Frames (Memory Pages)

- How do we allocate memory among different processes?
 - Does every process get the same fraction of memory? Different fractions?
 - Should we completely swap some processes out of memory?
- Each process needs *minimum* number of pages
 - Want to make sure that all processes that are loaded into memory can make forward progress
 - Example: IBM 370 6 pages to handle SS MOVE instruction:
 - » instruction is 6 bytes, might span 2 pages
 - » 2 pages to handle from
 - » 2 pages to handle to
- Possible Replacement Scopes:
 - Global replacement process selects replacement frame from set of all frames;
 one process can take a frame from another
 - Local replacement each process selects from only its own set of allocated frames

Fixed/Priority Allocation

- Equal allocation (Fixed Scheme):
 - Every process gets same amount of memory
 - Example: 100 frames, 5 processes → process gets 20 frames
- Proportional allocation (Fixed Scheme)
 - Allocate according to the size of process
 - Computation proceeds as follows:

 s_i = size of process p_i and $S = \sum s_i$

m = total number of physical frames in the system

$$a_i$$
 = (allocation for p_i) = $\frac{s_i}{S} \times m$

- Priority Allocation:
 - Proportional scheme using priorities rather than size
 - » Same type of computation as previous scheme
 - Possible behavior: If process p_i generates a page fault, select for replacement a frame from a process with lower priority number
- Perhaps we should use an adaptive scheme instead???
 - What if some application just needs more memory?

Page-Fault Frequency Allocation

 Can we reduce Capacity misses by dynamically changing the number of pages/application?

- Establish "acceptable" page-fault rate
 - If actual rate too low, process loses frame
 - If actual rate too high, process gains frame
- Question: What if we just don't have enough memory?

Lec 16.38

Thrashing

• If a process does not have "enough" pages, the page-fault rate is very high.

This leads to:

- low CPU utilization
- operating system spends most of its time swapping to disk
- Thrashing ≡ a process is busy swapping pages in and out with little or no actual progress
- Questions:
 - How do we detect Thrashing?
 - What is best response to Thrashing?

Locality In A Memory-Reference Pattern

- Program Memory Access Patterns have temporal and spatial locality
 - Group of Pages accessed along a given time slice called the "Working Set"
 - Working Set defines minimum number of pages for process to behave well
- Not enough memory for Working Set \Rightarrow Thrashing
 - Better to swap out process?

Working-Set Model

- $\Delta \equiv$ working-set window \equiv fixed number of page references
 - Example: 10,000 instructions
- WS_i (working set of Process P_i) = total set of pages referenced in the most recent Δ (varies in time)
 - if Δ too small will not encompass entire locality
 - if Δ too large will encompass several localities
 - if Δ = ∞ ⇒ will encompass entire program
- D = $\Sigma |WS_i| \equiv \text{total demand frames}$
- if $D > m \Rightarrow Thrashing$
 - Policy: if D > m, then suspend/swap out processes
 - This can improve overall system behavior by a lot!

What about Compulsory Misses?

- Recall that compulsory misses are misses that occur the first time that a page is seen
 - Pages that are touched for the first time
 - Pages that are touched after process is swapped out/swapped back in

• Clustering:

- On a page-fault, bring in multiple pages "around" the faulting page
- Since efficiency of disk reads increases with sequential reads, makes sense to read several sequential pages
- Working Set Tracking:
 - Use algorithm to try to track working set of application
 - When swapping process back in, swap in working set

Linux Memory Details?

- Memory management in Linux considerably more complex than the examples we have been discussing
- Memory Zones: physical memory categories
 - ZONE_DMA: < 16MB memory, DMA-able on ISA bus
 - ZONE_NORMAL: $16MB \rightarrow 896MB$ (mapped at 0xC0000000)
 - ZONE_HIGHMEM: Everything else (> 896MB)
- Each zone has I freelist, 2 LRU lists (Active/Inactive)
- Many different types of allocation
 - SLAB allocators, per-page allocators, mapped/unmapped
- Many different types of allocated memory:
 - Anonymous memory (not backed by a file, heap/stack)
 - Mapped memory (backed by a file)
- Allocation priorities
 - Is blocking allowed/etc.

Linux Virtual Memory Map (Pre-Meltdown)

64-Bit Virtual Address Space

Lec 16.45

Pre-Meltdown Virtual Map (Details)

- Kernel memory not generally visible to user
 - Exception: special VDSO (virtual dynamically linked shared objects) facility that maps kernel code into user space to aid in system calls (and to provide certain actual system calls such as gettimeofday())
- Every physical page described by a "page" structure
 - Collected together in lower physical memory
 - Can be accessed in kernel virtual space
 - Linked together in various "LRU" lists
- For 32-bit virtual memory architectures:
 - When physical memory < 896MB
 - » All physical memory mapped at 0xC0000000
 - When physical memory >= 896MB
 - » Not all physical memory mapped in kernel space all the time
 - » Can be temporarily mapped with addresses > 0xCC000000
- For 64-bit virtual memory architectures:
 - All physical memory mapped above 0xFFFF800000000000

Post Meltdown Memory Map

- Meltdown flaw (2018, Intel x86, IBM Power, ARM)
 - Exploit speculative execution to observe contents of kernel memory

- Some details:
 - » Reason we skip 4096 for each value: avoid hardware cache prefetch
 - » Note that value detected by fact that one cache line is loaded
 - » Catch and ignore page fault: set signal handler for SIGSEGV, can use setjump/longjmp....
- Patch: Need different page tables for user and kernel
 - Without PCID tag in TLB, flush TLB twice on syscall (800% overhead!)
 - Need at least Linux v 4.14 which utilizes PCID tag in new hardware to avoid flushing when change address space
- Fix: better hardware without timing side-channels
 - Will be coming, but still in works

Summary

- Replacement policies
 - FIFO: Place pages on queue, replace page at end
 - MIN: Replace page that will be used farthest in future
 - LRU: Replace page used farthest in past
- Clock Algorithm: Approximation to LRU
 - Arrange all pages in circular list
 - Sweep through them, marking as not "in use"
 - If page not "in use" for one pass, then can replace
- Nth-chance clock algorithm: Another approximate LRU
 - Give pages multiple passes of clock hand before replacing
- Second-Chance List algorithm: Yet another approximate LRU
 - Divide pages into two groups, one of which is truly LRU and managed on page faults.
- Working Set:
 - Set of pages touched by a process recently
- Thrashing: a process is busy swapping pages in and out
 - Process will thrash if working set doesn't fit in memory
 - Need to swap out a process