

Properties' rent & sell analysis

What would be the best location to invest into purchasing a house in Mexico?

Paulo Gerardo Ramos Orozco July, 2019

Content

- o1. Context & Objective
- o2. Data Pre-processing
- o3. Analysis
- 04. Recommendations & Further analysis

Context & Objective

01

First it is necessary to review the data and set that as a baseline for the project, also define the objective and possible scope...

Data Extraction

Extraction of two public data sets from Google Big Query through SQL query language

Challenge: The storage allowance is 1 GB in Google Drive and 90 MB in local. Therefore, it was necessary to split the queries in parts to extract the data

Data Sets Description

Rent_Data201_All: 633907 rows & 27 columns. CSV format, encoding UTF-8

Sell_Data201_All: 2762514 rows & 27 columns. CSV format, encoding UTF-8

Used Tools

- Google Big Query SQL
- Google Drive
- Jupyter Notebook
- Python libraries: Pandas, Matplotlib, Sklearn, Stat, Numpy, OS, Glob
- Power Bi
- Git
- Excel

...the objective is...

To find the best location to invest in Mexico when buying a property and renting, using different variables like; square meters, zone, prices, etc.

Explore and validate the data bases to identify principal variables

Clean the data bases from non existing values and zeros

Transform and join the data bases to get the identical properties from both data sets

Generate visual analysis to identify which are the locations with higher rent and lower initial investment

Conclusions and main observations

Further potential analysis

Data Pre-processing

..then, the analysis continues with the data exploration, cleaning and transformation...

Data exploration

Main challenges:

- ➤ Big amount of information
- > Irrelevant data for the project's scope
- ➤ Identify similar data for both data sets
- > Find data structure
- > Discover errors in the data

Data cleaning

Main challenges:

- ✓ Standardize data types
- ✓ Clean outliers with quartiles
- ✓ Remove zeros on prices
- ✓ Remove "NaN" values
- ✓ Clear duplicates

Transformation

Main Challenges:

- ☐ Data sets with different sizes
- ☐ Variables validation using linear regression
- ☐ Join tables for a master file

...a join was made to find the exact match between rent & sell data. The final table has a total of 26900 rows and 9 columns...

								7	
property_type	place_name	state_name	lat	Ion	currency	surface_total_	in_m2	I sell_price 	rent_price
apartment	Quintana Roo	Quintana Roo	21.161908	-86.851528	MXN =		98	1790000	1650
house	Colima	Colima /	19.234996	-103.727212	MXN		200	2000000	850
store	Colima	Colima	19.244782	-103.724963	MXN		435	1350000	1000
house	Puebla	Puebla	19.056652	-98.228841	MXN		364	8140000	3000
apartment	Puebla	Pueb'	19.053259	-98.226545	MXN		/150	3400000	1700
apartment	Puebla	Py	19.035937	-98.223369	MXN		96	2327000	1200
apartment	Puebla	columns d between data sets	19.035937	-98.223369	MXN	These 2 columns where merge from the data sets	96	2100000	1200
apartment	Centro I These c		17.989	-92.942795	MXN		100	1900000	1300
house	- Cudutiu		18.840925	-98.934196	MXN		130	1800000	500
house	Cuautla the 2 da		18.840925	-98.934196	I V I Z X I X		130	1550000	500
house	Cuautla		18.840925	-98.934196	MXN		130	890000	500
house	Cuautla	Morelos	18.840925	-98.934196	MXN -	,	130	1500000	500
house	Cuautla	Morelos	18.840925	-98.934196	MXN		130	1400000	500
house	Cuautla	Morelos	18.850763	-98.943855	MXN		130	950000	700
house	Cuautla	Morelos	18.850763	-98.943855	MXN		130	1200000	700
house	Cuautla	Morelos	18.850763	-98.943855	MXN		130	1250000	700
house	Cuautla	Morelos	18.864874	-98.925911	MXN		400	2000000	680
house	Cuautla	Morelos	18.864874	-98.925911	MXN		400	2700000	680
L	C	NA	10.004074	00.035011	NAVA1		400	5300000	

Data Analysis

The first visual analysis was on this map where it can be observe how most of the data is concentrated in the center of the country...

A dynamic interaction can be performed in Power Bi which is in the repositoryfollowed is a visual analysis is the bar & line chart which compares average rent & sell prices in Mexico...

The main observation is that the group of states in the circles have low sell prices and high rents

... next is the average sell & rent prices by property type in all the country...

The average sell prices are similar for all property types, but there is a significant higher rent prices for "stores", making it the property type with the fastest ROI

... to validate the variables with more influence in the rent and sell price, a linear regression was performed...

ANOVA (Linear Regression)

				- 1.1				
	coef	std err	t	P> t	[0.025	0.975]	<i></i>	The state names were
const	6523.9140	118.049	55.265	0.000	6292.542	6755.286		converted to categorical
surface_total_in_m2	47.2473	0.164	288.927	0.000	46.927	47.568	_	variables, in order to run the
Aguascalientes	-1513.7605	283.224	-5.345	0.000	-2068.871	-958.650		linear regression and compare
Baja California	2249.0992	423.675	5.309	0.000	1418.707	3079.492		
Baja California Sur	-2156.2375	453.724	-4.752	0.000	-3045.524	-1266.951		the significance on each state
Campeche	307.3672	256.218	1.200	0.230	-194.814	809.548		(zone) and surface (square
Chiapas	-1272.6985	194.685	-6.537	0.000	-1654.277	-891.120		meters)
Chihuahua	1340.3112 _	_212.237_	315	0.000_	924.332	1756.290		,
Ciudad de México	1.513e+04	158.229	95.604	0.000	1.48e+04	1.54e+04		

It can be observed that the states (zones) have a higher influence on the price than the surface, being "Ciudad de Mexico" the one with highest significance in the model

...having a linear regression the next step is to validate the correlation between price and surface...

At country level the correlation between price and surface is clearly positive, meaning that as bigger the surface is, higher the prices

...finally the following charts zoom into the 5 states mentioned before to identify which are the best investment locations.

03. Data Analysis

Quinta Roo

Baja California

The best place to invest in Quintana Roo is Benito
Juarez, ROI = 112
months

invest in Baja
California is
Mexicali, ROI = 105
months

The best place to invest in Queretaro is Colonia San Francisco, ROI = 163 months

Recommendations & Further analysis

After a long path of data analytics the following recommendation were obtained in order to get the most of a real state investment and a further analysis is suggested to

Recommendations

- ✓ When making real state business, location is the most important variable
- ✓ The top 5 states to invest in Mexico are: Chihuahua, Tlaxcala, Queretaro, Quintana Roo, and Baja California
- ✓ Tlaxcala is the best option to invest being Tzompantepec the best location within the state
- ✓ The property type which will give the fastest ROI is "Store", followed by "apartment"

*All this is considering only price factor

Further Analysis

More variables can be considered: economics, life quality, crime rate, weather conditions, population, pollution.

To get these variables, **web scrapping** can be performed from
different public sources in the country

A ML model with classification can be implemented in order to get more value out of the data.

Thankyou

Time Invested in the Project:

Data Extraction (BigQuery SQL): 0.5 Hours
Data Transformation (Jupyter, Python, excel): 1.5 Hour
Data Visualization (Power Bi): 2 Hours
Validation & review: 1 Hour

Total hours: 5