Paper 2			
Question	Scheme	Marks	
number			
1 a	$9x < 6 \Rightarrow x < \dots$	M1	
	$x < \frac{2}{3}$	A1	
	3	(2)	
b	(3x+1)(x-3)<0	M1	
	(3x+1)(x-3) < 0 $x = -\frac{1}{3}$ $x = 3$	A1	
	12	M1 A1	
	$-\frac{1}{3} < x < 3$	(4)	
		B1ft	
С	$-\frac{1}{3} < x < \frac{2}{3}$	(1)	
Total 7 marks			

Part	Mark	Notes
(a)	M1	For a complete method to find a value for <i>x</i>
		They must obtain a value for x with at most one processing
		error.
		The inequality must be correct in this part of the question.
	A1	For $x < \frac{2}{3}$ Accept awrt 0.67
(b)	M1	For attempting to factorise or otherwise solve the given
		quadratic using any method.
		If there is no method, [use of a calculator] then both roots must
		be fully correct for evidence of this mark.
		See general guidance for the definition of an attempt.
		Accept $<$, $>$, = or even no sign at all for this mark.
	A1	For both correct critical values.
		$x = -\frac{1}{3} \qquad x = 3 \qquad \text{Accept awrt } -0.33$
	M1	For a correct inside region using their values
		$\left -\frac{1}{3} \right < x < '3'$
	A1	$-\frac{1}{3}$ < $x < 3$ For $-\frac{1}{3} < x < 3$ For $-\frac{1}{3}$ < $x < \frac{2}{3}$
(c)	B1ft	For $-\frac{1}{3} < x < \frac{2}{3}$
		Ft their values from parts (a) and (b), providing they are
		inequalities. Do not follow through an equals sign given in part
		(a).
		Allow recovery for a fully correct answer seen.