Hugo Marquerie 12/02/2025

Intersección σ -álgebra

Proposición 1. Sean Σ_1, Σ_2 dos σ -álgebras en un conjunto $X \neq \emptyset$

$$\implies \Sigma_1 \cap \Sigma_2$$
 es una σ -álgebra en X .

Demostración: Comprobamos las propiedades de la sigma-algebra/Definición 1:

- (i) Se tiene que $X \in \Sigma = \Sigma_1 \cap \Sigma_2$ porque $X \in \Sigma_1, \Sigma_2$.
- (ii) $E \in \Sigma \implies E \in \Sigma_1, \Sigma_2 \implies E^c \in \Sigma_1, \Sigma_2 \implies E^c \in \Sigma.$

(iii) Sea
$$\{E_n\}_{n=1}^{\infty} \subset \Sigma \implies \{E_n\}_{n=1}^{\infty} \subset \Sigma_1, \Sigma_2 \implies \bigcup_{n=1}^{\infty} E_n \in \Sigma_1, \Sigma_2 \implies \bigcup_{n=1}^{\infty} E_n \in \Sigma.$$

Concluimos que $\Sigma_1 \cap \Sigma_2$ es una σ -álgebra en X.

Referenciado en

• Prop-sigma-algebra-generada