- **Z7** 〇 を原点とする座標平面上に,放物線 $C_1: y^2 = 8px \ (p>0)$ と楕円 C_2 がある。 C_2 は中心が 〇,長軸が y 軸上,短軸が x 軸上にあり,短軸の長さが 2 で,点 $\left(\frac{1}{2}, \sqrt{3}\right)$ を通る。
- (1) C_1 の焦点の座標と準線の方程式をそれぞれpを用いて表せ。
 - (2) C_2 の方程式を求めよ。また、 C_1 と C_2 の共有点のx座標をpを用いて表せ。
- (3) C_1 の焦点を P とし、(2)の共有点のうち、第 1 象限にあるものを Q とする。また、 C_2 の 焦点を F、F′とする。FQ+F′Q+PQ=7 となるとき、p の値を求めよ。 (配点 40)

- **Z8** 2次方程式 $x^2+2x+2=0$ の虚数解のうち、虚部が正であるものを α とする。また、O を原点とする複素数平面上で、 α を表す点を A、 $\frac{1}{\alpha}$ を表す点を B とする。
 - (1) $|\alpha|$, $\arg \alpha$ を求めよ。ただし、 $0 \leq \arg \alpha < 2\pi$ とする。

B

- (2) α^n (nは自然数)を表す点を P とする。3 点 O, B, P が, この順に同一直線上に並ぶような最小の n の値を求めよ。
- (3) (2)のnの値に対して、 α^n を表す点をCとする。3点O, A, Cを通る円周上に点Qを、 $\angle ACQ = \frac{\pi}{4} \ となるようにとるとき、<math>Q$ を表す複素数を求めよ。 (配点 40)

- **Z9** 数列 $\{a_n\}$ は公比が正である等比数列で、 $a_1=1$ 、 $a_2+a_3=\frac{3}{4}$ を満たしている。また、数列 $\{b_n\}$ は $b_1=b$ 、 $b_{n+1}=3b_n-2$ $(n=1,\ 2,\ 3,\ \cdots\cdots)$ を満たしている。ただし、b は定数である。
 - (1) anを nを用いて表せ。
 - (2) b_n を n, b を用いて表せ。また、 $\lim_{n\to\infty}\frac{b_n}{3^n}=1$ となるとき、b の値を求めよ。
 - (3) pを 0 でない実数とする。 $\lim_{n\to\infty}\frac{b_n}{3^n}=1$ のとき, $\lim_{n\to\infty}\sum_{k=1}^n p^k a_k(b_k-1)=1-2p$ となるような p の値を求めよ。 (配点 40)