Python de cero a experto

Autor: Luis Miguel de la Cruz Salas

Python de cero a experto by Luis M. de la Cruz Salas is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International

Conducción de calor

Jean-Baptiste Joseph Fourier fue un matemático y físico francés que ejerció una fuerte influencia en la ciencia a través de su trabajo *Théorie analytique de la chaleur*. En este trabajo mostró que es posible analizar la conducción de calor en cuerpos sólidos en términos de series matemáticas infinitas, las cuales ahora llevan su nombre: *Series de Fourier*. Fourier comenzó su trabajo en 1807, en Grenoble, y lo completó en París en 1822. Su trabajo le permitió expresar la conducción de calor en objetos bidimensionales (hojas muy delgadas de algún material) en términos de una ecuación diferencial:

$$rac{\partial u}{\partial t} = \kappa \left(rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2}
ight)$$

donde u representa la temperatura en un instante de tiempo t y en un punto (x,y) del plano Cartesiano y κ es la conductividad del material.

La solución a la ecuación anterior se puede aproximar usando el método de diferencias y una fórmula explícita de dicha solución es la siguiente:

$$u_{i,j}^{n+1} = u_{i,j}^n + rac{h_t \kappa}{h^2} \Big(u_{i+1,j}^n + u_{i-1,j}^n + u_{i,j+1}^n + u_{i,j-1}^n - 4 u_{i,j}^n \Big)$$

donde:

- $ullet u_{i,j} = u(x_i,y_j), u_{i+1,j} = u(x_{i+1},y_j), u_{i-1,j} = u(x_{i-1},y_j), u_{i,j+1} = u(x_i,y_{j+1}), u_i$
- El superíndice indica el instante de tiempo, entonces el instante actual es n=t y el instante siguiente es $n+1=t+h_t$, con h_t el paso de tiempo.
- En este ejemplo $h_x=h_y$.

Usando esta aproximación, vamos a realizar una ejemplo de conducción de calor, pero para ello necesitamos conocer las herramientas de numpy y de matplotlib.

Ejemplo 1.

Calculemos la transferencia de calor por conducción en una placa cuadrada unitaria usando el método de diferencias finitas. El problema se describe de la siguiente manera:

$$rac{\partial u}{\partial t} = \kappa \left(rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2}
ight)$$

u(x, y, t = 0) = 0	Condición inicial	(1)
$\overline{u(0,y,t)=20}$	Condiciones	(2)
u(1,y,t)=5	de	(3)
u(x,0,t)=50	frontera	(4)
u(x,1,t)=8		(5)

SOLUCIÓN.

In [1]:

Los pasos a seguir son los siguientes.

import numpy as np

1. Definir los parámetros físicos y numéricos del problema:

```
In [2]:
         # Parámetros físicos
         k = 1.0 # Conductividad
         Lx = 1.0 # Longitud del dominio en dirección x
         Ly = 1.0 # Longitud del dominio en dirección y
         # Parámetros numéricos
         Nx = 9 \# Número de incógnitas en dirección x
         Ny = 9 # Número de incógnitas en dirección y
         h = Lx / (Nx+1) # Espaciamiento entre los puntos de la rejilla
         ht = 0.0001
                       # Paso de tiempo
         N = (Nx + 2)*(Ny + 2) # Número total de puntos en la rejilla
       2. Definir la rejilla donde se hará el cálculo (malla):
        x = np.linspace(0,Lx,Nx+2) # Arreglo con las coordenadas en x
         y = np.linspace(0,Ly,Ny+2) # Arreglo con las coordenadas en y
         print(x)
         print(y)
             0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
             0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1
In [4]:
         xg, yg = np.meshgrid(x,y) # Creamos la rejilla para usarla en Matplotlib
         print(xg)
         print(yg)
              0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
              0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
              0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
         [0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
         [0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
         [0.
              0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
              0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
              0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
              0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
              0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
              0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]]
              0. 0. 0. 0. 0. 0. 0. 0.
```

In [5]: import matplotlib.pyplot as plt

```
In [6]: plt.scatter(xg, yg) # Graficamos la rejilla
```

Out[6]: <matplotlib.collections.PathCollection at 0x7fd64a79b130>

3. Definir las condiciones iniciales y de frontera:

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

```
u(x,y,t=0)=0 Condición inicial (6)

u(0,y,t)=20 Condiciones (7)

u(1,y,t)=5 de (8)

u(x,0,t)=50 frontera (9)

u(x,1,t)=8 (10)
```

```
In [7]:
     u = np.zeros(N).reshape(Nx+2, Ny+2) # Arreglo para almacenar la aproximación
     print(u)
           = 20 # Pared izquierda
     u[0,:]
     u[Nx+1,:] = 5
               # Pared derecha
           = 50 # Pared inferior
     u[:,0]
     u[:,Ny+1] = 8
               # Pared superior
     print(u)
```

```
[[50. 20. 20. 20. 20. 20. 20. 20. 20. 20.
                                    8.1
[50.
         0.
            0.
                0.
                   0.
                      0.
                          0.
                             0.
                                    8.1
         0.
[50.
     0.
            0.
                0.
                   0.
                      0.
                          0.
                             0.
                                 0.
                                    8.]
[50.
                0.
     0.
         0.
            0.
                   0.
                      0.
                          0.
                             0.
                                 0.
                                    8.]
[50.
     0.
         0.
            0.
                0.
                   0.
                      0.
                          0.
                             0.
                                 0.
                                    8.]
                      0.
[50.
     0.
            0.
                0.
                   0.
[50.
            0.
                0.
                   0.
                      0.
                          0.
                             0.
     0.
         0.
                                 0.
                                    8.]
[50.
     0.
         0.
            0.
                0.
                   0.
                      0.
                          0.
                             0.
                                 0.
                                    8.]
[50.
     0.
         0.
            0.
                0.
                   0.
                      0.
                          0.
                             0.
                                 0.
                                    8.]
[50.
     0.
            0.
                0.
                   0.
                      0.
                          0.
                             0.
                                 0.
                                    8.]
                                    Ω 11
```

```
In [8]: f = plt.imshow(u)
   plt.colorbar(f)
```

Out[8]: <matplotlib.colorbar.Colorbar at 0x7fd649ea5520>

4. Implementar el algoritmo de solución:

$$u_{i,j}^{n+1} = u_{i,j}^n + rac{\kappa}{h^2} \Big(u_{i+1,j}^n + u_{i-1,j}^n + u_{i,j+1}^n + u_{i,j-1}^n - 4 u_{i,j}^n \Big)$$

17.2629661414254

- 13.602554907075358
- 11.121464292079526
- 9.370340343338656
- 8.089431314598079
- 7.121431307338295
- 6.3681582882854775
- 5.7667100290256075
- 5.275727580531657
- 4.867291496014421
- 4.522054027452314
- 4.226261372943586
- 3.9698959855402296
- 3.745493517737013
- 3.547373613271126
- 3.3711295389631717
- 3.2132828772489206
- 3.0710454523767496
- 2.9421521475712167
- 2.9421321473712107
- 2.824741357872151
- 2.7172679513259683
- 2.6184387521297467
- 2.5271638648303663
- 2.4425193146763595
- 2.363717902820954
- 2.290086125094306
- 2.2210456430727876
- 2.1560982312045556
- 2.094813422134956
- 2.036818279028632
- 1.9817888683696612
- 1.9294431092766995
- 1.8795347490871392
- 1.8318482687809046
- 1.7861945617665094
- 1.7424072597326863
- 1.700339602469993
- 1.6598617667041742 1.620858583384764
- 1.5832275844672883
- 1.5468773296753073
- 1 6117060716044017
- 1.5117259715044917
- 1.4777000231834065
- 1.4447332996949114
- 1.4127660064863383
- 1.381743954309308
- 1.3516178818527333
- 1.322342870562428
- 1.2938778383566352
- 1.2661851009139355
- 1.2392299908820428
- 1.212980526778256
- 1.1874071245620865
- 1.1624823458905373
- 1.138180677942807
- 1.114478340447452
- 1.0913531161802335
- 1.0687842017418048
- 1.0467520758851223
- 1.025238383054624 1.0042258301337272

- 0.9836980946818262
- 0.9636397431848914
- 0.9440361580507419
- 0.9248734722567947
- 0.9061385107087614
- A 227212727/07627

Out[9]: <matplotlib.colorbar.Colorbar at 0x7fd649de49d0>

Ejercicio 1.

Realiza los siguiente gráficos de la solución anterior:

- 1. Contornos llenos (contourf) y líneas de contorno negras sobrepuestas (contour).
- 2. Almacena el error en cada iteración y grafícalo en semi-log.
- 3. Realiza las dos gráficas anteriores en un solo renglón.

Flujo de calor

Fourier también estableció una ley para el flujo de calor que se escribe como:

$$ec{q} = -\kappa
abla u = -\kappa \left(rac{\partial u}{\partial x}, rac{\partial u}{\partial y}
ight)$$

Ejemplo 2.

Usando la información calculada de la temperatura (almacenada en el arreglo u), vamos a calcular el flujo de calor usando la siguiente fórmula en diferencias:

$$ec{q}_{i,j} = (qx_{i,j},qy_{i,j}) = -rac{\kappa}{2h}(u_{i+1,j} - u_{i-1,j},u_{i,j+1} - u_{i,j-1})$$

SOLUCIÓN.

Out[10]: <matplotlib.quiver.Quiver at 0x7fd649dd63a0>

Ejercicio 2.

Grafica el campo vectorial del flujo de calor, junto con los contornos de la temperatura (contourf y contour). Haz que tu gráfica se vea con razón de aspecto correcta de 1 por 1.

Seguimiento de partículas

Si soltamos una partícula en un flujo, dicha partícula seguirá la dirección del flujo y delineará una trayectoria como se muestra en la siguiente figura. Para calcular los puntos de la trayectoria debemos resolver una ecuación como la siguiente:

$$rac{\partial ec{x}}{\partial t} = ec{v} \qquad ext{con} \qquad ec{x}(t=0) = ec{x}_o$$

donde $\vec{x}=(x,y)$ representa la posición de la partícula y $\vec{v}=(vx,vy)$ su velocidad. El método más sencillo para encontrar las posiciones de la partícula es conocido como de *Euler hacia adelante* y se escribe como:

$$ec{x}_i^{n+1} = ec{x}_i^n + h_t * ec{v}_i^n$$

donde \vec{x}_i^n representa la posición de la partícula i en el instante n, h_t es el paso de tiempo y \vec{v}_i es la velocidad en la partícula i en el instante n.

Ejemplo 3.

Calcular y graficar las trayectorias de varias partículas usando el campo vectorial generado por el flujo de calor del ejemplo 2.

SOLUCIÓN.

Escribimos la fórmula de Euler hacia atrás en componentes como sigue:

$$x_i^{n+1} = x_i^n + h_t * v x_i^n (11)$$

$$y_i^{n+1} = y_i^n + h_t * v y_i^n (12)$$

1. Definimos un punto inicial de forma aleatoria en el cuadrado unitario:

```
In [14]: xo = np.random.rand()
yo = np.random.rand()
print(xo,yo)
```

0.34213983697308825 0.1557185306844998

2. Definimos arreglos para almacenar las coordenadas de la trayectoria:

```
In [15]:
           Pasos = 10
          xp = np.zeros(Pasos)
          yp = np.zeros(Pasos)
           xp[0] = xo
          yp[0] = yo
           print(xp)
          print(yp)
          [0.34213984 0.
                                   0.
                                               0.
                                                           0.
                                                                       0.
                                   0.
                                               0.
           0.
          [0.15571853 0.
                                                                       0.
                                   0.
                                               0.
                                                           0.
                       0.
                                   0.
                                               0.
                                                          ]
In [16]:
           plt.plot(xp[0], yp[0], 'o-')
           plt.xlim(0,1)
           plt.ylim(0,1)
```

Out[16]: (0.0, 1.0)

3. Implementamos el método de Euler hacia adelante:

```
In [17]:
          # Interpolación de la velocidad
          def interpolaVel(qx, qy, xpi, ypi, h):
              # localizamos la partícula dentro de la rejilla:
              li = int(xpi/h)
              lj = int(ypi/h)
              return (qx[li,lj], qy[li,lj])
In [18]:
          ht = 0.1
          for n in range(1,Pasos):
              vx, vy = interpolaVel(qx, qy, xp[n-1], yp[n-1], h)
              xp[n] = xp[n-1] + ht * vx
              yp[n] = yp[n-1] + ht * vy
In [20]:
          plt.plot(xp, yp, '.-')
          plt.xlim(0,1)
          plt.ylim(0,1)
Out[20]: (0.0, 1.0)
          1.0
          0.8
          0.6
```

Ejercicio 3.

0.0

0.4

0.2

Dibuja la trayectoria de la siguiente manera.

0.4

• El primer punto color naranja transparente y contorno negro.

0.6

0.8

1.0

- Las posiciones siguientes de color negro sobre puestas sobre la trayectoria.
- La trayectoria de color gris.

0.2

Verifica que la trayectoria no se salga del cuadrado unitario.

Ejercicio 4.

Dibuja varias trayectorias que inicien en sitios diferentes.

Ejercicio 5.

Implementa una interpolación bilineal para calcular la velocidad.

Proyecto 1.

Resolver numéricamente las ecuaciones de Lorenz y dibujar las trayectorias en el espacio fase x-y-z para N posiciones iniciales elegidas aletoriamente.

$$rac{dx}{dt} = \sigma(y-x), \qquad rac{dy}{dt} = x(
ho-z)-y, \qquad rac{dz}{dt} = xy-eta z$$

para
$$\sigma=10$$
, $\beta=8/3$, $\rho=28$.

Proyecto 2.

Resolver el siguiente IVP para un conjunto de inicial de partículas.

$$rac{dec{x}}{dt} = ec{u}(t,ec{x})$$

donde $\vec{x}=(x,y)$ y $\vec{u}=(u,v)$, por lo tanto:

$$rac{dx}{dt} = u(t,ec{x}), \qquad rac{dy}{dt} = v(t,ec{x}),$$

Para $(x,y) \in [0,1] imes [0,1]$ y una velocidad definida como sigue:

$$u = -A\cos(\alpha\pi y)\sin(\alpha\pi x) \tag{13}$$

$$v = A\sin(\alpha\pi y)\cos(\alpha\pi x) \tag{14}$$

Tip:

En ambos proyectos usar el método de Euler hacia adelante para resolver las ecuaciones: Dado:

$$\frac{dy(t)}{dt} = f(t, y)$$
 para $a < t < b$ (15)

$$y(t=a) = y_o (16)$$

El método de Euler hacia adelante es:

$$y_{n+1} = y_n + h_t * f(t, y_n), \qquad ext{para} \, n = 0, 1, 2, \dots, N_t - 1$$

donde

$$h_t = (b-a)/N_t \tag{17}$$

$$y_n = y(t = a + n * h_t) \tag{18}$$

$$y_{n+1} = y(t = a + (n+1) * h_t)$$
(19)

10 of 11

In []:	