Spezielle Abbildungen im \mathbb{R}^2

- Jede bijektive, lineare Abbildung von $\mathbb{R}^2 \to \mathbb{R}^2$ kann als Komposition von Skalierung, Scherung, Spiegelung angeben werden.
- Zoom-Abbildung
 - $Z\lambda$: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$
 - $-(x, y) \rightarrow \lambda(x, y)$
 - Stauchung für $\lambda > 1$
 - Streckung für $0 < \lambda < 1$
- Skalierung
 - Sl, μ : $\mathbb{R}^2 \to \mathbb{R}^2$
 - $-(x, y) \rightarrow (\lambda x, \mu y)$
- Spiegeln an Koordinatenachsen
 - Spx: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$
 - $-(x, y) \rightarrow (x, -y)$
- Scherung
 - Schx(α): $\mathbb{R}^2 \rightarrow \mathbb{R}^2$
 - $-(x, y) -> (x + ytan(\alpha), y)$
 - $M_{kan}^{kan}(Sch) = (1, tan(\alpha), 0, 1)$

- Drehung/Rotation um Ursprung
 - Ra: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$
 - $M_{kan}^{kan}(R_{\alpha})=(cos(\alpha),-sin(\alpha),sin(\alpha),cos(\alpha))$
- Orthogonale Projektion
 - Px: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$
 - $-(x, y) \rightarrow (x, 0)$
 - $M_{kan}^{kan}(P_x) = (1,0,0,0)$

Spezielle Abbildungen im \mathbb{R}^3

- siehe Skriptum S. 60
- Skalierung
- Spiegelung

• Rotation

[[Lineare Abbildungen]]