

FCC Part 15.407 TEST REPORT

For

Chengdu Vantron Technology, Ltd.

No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China

FCC ID: 2AAGE-VTDONGLE

Report Type	Original Report
Product Name:	Gateway
Model Name:	VT-loT-Dongle
Series Model Name:	VT-IoT-Dongle-CATM
Report Number :	RLK190919004-00C
Report Date :	2019/10/05
Reviewed By :	Zeus Chen Zeus Cher

Prepared By:

Bay Area Compliance Laboratories Corp.(Linkou Laboratory)

No. 6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.)

Tel: +886 (3)3961072; Fax: +886 (3) 3961027

www.bacl.com.tw

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

Revision History

Revision	Report Number	Issue Date	Description
1.0	RLK190919004-00C	2019/10/05	Original Report

Page 2 of 59

TABLE OF CONTENTS

1	GEN	NERAL INFORMATION	4
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
	1.2	OPERATION CONDITION OF EUT	
	1.3	Objective	
	1.4	Measurement Uncertainty	
	1.5	TEST FACILITY	
2	SYS	TEM TEST CONFIGURATION	7
	2.1	DESCRIPTION OF TEST CONFIGURATION	7
	2.2	SUPPORT EQUIPMENT AND EXTERNAL CABLE LIST	
	2.3	BLOCK DIAGRAM OF TEST SETUP	
	2.4	DUTY CYCLE	10
3	SUI	MMARY OF TEST RESULTS	12
4	FCC	\$1.1310, §2.1091, §15.407(F) - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	13
	4.1	Applicable Standard	
	4.2	RF Exposure Evaluation Result	14
5	FCC	§15.203 – ANTENNA REQUIREMENTS	16
	5.1	Applicable Standard	
	5.2	Antenna List and Details	16
6	FCC	\$15.207 - AC LINE CONDUCTED EMISSIONS	17
	6.1	Applicable Standard	17
	6.2	EUT SETUP AND TEST PROCEDURE.	
	6.3	TEST EQUIPMENT LIST AND DETAILS	18
	6.4	TEST ENVIRONMENTAL CONDITIONS	18
	6.5	TEST DATA AND TEST PLOT	19
7	FCC	C §15.209, §15.205 & §15.407(B) – UNWANTED EMISSION	21
	7.1	Applicable Standard	21
	7.2	EUT SETUP AND TEST PROCEDURE	
	7.3	TEST EQUIPMENT LIST AND DETAILS	24
	7.4	TEST ENVIRONMENTAL CONDITIONS	
	7.5	TEST DATA AND TEST PLOT	25
8	FCC	S §15.407(A)(E) –EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	35
	8.1	Applicable Standard	35
	8.2	TEST PROCEDURE	
	8.3	TEST EQUIPMENT LIST AND DETAILS	
	8.4	TEST ENVIRONMENTAL CONDITIONS	
	8.5	TEST DATA AND TEST PLOT	37
9	FCC	\$15.407(A)(1) – MAXIMUM OUTPUT POWER	47
	9.1	Applicable Standard	47
	9.2	TEST PROCEDURE	47
	9.3	TEST EQUIPMENT LIST AND DETAILS	
	9.4	TEST ENVIRONMENTAL CONDITIONS	48
	9.5	TEST DATA	49
10) FCC	§15.407(A) – POWER SPECTRAL DENSITY	51
	10.1	Applicable Standard	
	10.2	TEST PROCEDURE	
	10.3	TEST EQUIPMENT LIST AND DETAILS	
	10.4	TEST ENVIRONMENTAL CONDITIONS	
	10.5	TEST DATA AND TEST PLOT	53

1 General Information

1.1 Product Description for Equipment under Test (EUT)

1.1 Product Description for Equipment under rest (EOT)			
Applicant	Chengdu Vantron Technology, Ltd. No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China		
Manufacturer	Chengdu Vantron Technology, Ltd. No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China		
Product (Equipment)	Gateway		
Model Name	VT-IoT-Dongle		
Series Model Name	VT-IoT-Dongle-CATM		
EUT Function	IEEE 802.11 an(HT20/HT40) + ac(VHT20/VHT40/VHT80)		
Frequency Range	UNII-1: 5150 MHz ~ 5250 MHz UNII-3: 5745 MHz ~ 5850 MHz		
Number of Channels	For UNII-1: IEEE 802.11a/n HT20/ac VHT20: 4 Channels IEEE 802.11n HT40/ac VHT40: 2 Channels IEEE 802.11ac VHT80: 1 Channels For UNII-3: IEEE 802.11a/n HT20/ac VHT20: 5 Channels IEEE 802.11n HT40/ac VHT40: 2 Channels IEEE 802.11ac VHT80: 1 Channels		
Output Power	For UNII-1: IEEE 802.11a Mode: 19.01 dBm (0.0796 W) IEEE 802.11n HT20 Mode: 18.87 dBm (0.0771 W) IEEE 802.11n HT40 Mode: 18.24 dBm (0.0667 W) IEEE 802.11ac VHT20 Mode: 18.95 dBm (0.0785 W) IEEE 802.11ac VHT40 Mode: 18.41 dBm (0.0693 W) IEEE 802.11ac VHT80 Mode: 14.97 dBm (0.0314 W) For UNII-3: IEEE 802.11a Mode: 20.15 dBm (0.1035 W) IEEE 802.11n HT20 Mode: 19.88 dBm (0.0973 W) IEEE 802.11n HT40 Mode: 19.81 dBm (0.0957 W) IEEE 802.11ac VHT20 Mode: 19.96 dBm (0.0991 W) IEEE 802.11ac VHT40 Mode: 20.02 dBm (0.1005 W) IEEE 802.11ac VHT40 Mode: 14.44 dBm (0.0278 W)		
Modulation Type	OFDM		
Received Date	Sep. 23, 2019		
Date of Test	Sep. 25, 2019 - Oct. 03, 2019		
Related Submittal(s)/Grant(s)	FCC Part 15.247 DSS with FCC ID : 2AAGE-VTDONGLE FCC Part 15.247 DTS with FCC ID : 2AAGE-VTDONGLE		

^{*}All measurement and test data in this report was gathered from production sample serial number: 1803009 (Assigned by BACL, LinKou).

Page 4 of 59

*Model Discrepancy: Difference was LTE module use and contain FCC ID (Card Plug-in)

Model Name	Discrepancy	
VT-loT-Dongle	Contain LTE module FCC ID RI7LE910NAV2 Note 1	
VT-IoT-Dongle-CATM	Contain LTE module FCC ID 2AJYU-SIM7000A Note 1	

Note 1: LTE Module have already get FCC Grants

The major electrical and mechanical constructions of series models are identical to the basic model, except different Market segmentation. The model, VT-IoT-Dongle is the testing sample, and the final test data are shown on this test report.

1.2 Operation Condition of EUT

			
Power Operation (Voltage Range)	DC Type DC Power Supply: 5Vdc to connector port Battery External from USB Cable 5Vdc External DC Adapter		
	☐ Host System		

1.3 Objective

The Objective of this Test Report was to document the compliance of the Chengdu Vantron Technology, Ltd. Appliance (Model: VT-IoT-Dongle, Series Model: VT-IoT-Dongle-CATM) to the requirements of the following Standards:

- -Part 2, Subpart J, Part 15 Subparts A and E of the Federal Communication Commission's rules.
- -KDB 662911 D01 Multiple Transmitter Output v02r01
- -KDB 789033 D02 General U-NII Test Procedures New Rules v02r01
- ANSI C63.10-2013 of t American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.4 Measurement Uncertainty

Parameter	Expanded Measurement uncertainty
RF output power with Power Meter	± 0.55 dB
Occupied Channel Bandwidth	± 4.54 Hz
RF Conducted test with Spectrum	± 1.45 dB
AC Power Line Conducted Emission	± 2.66 dB
Radiated Below 1G	± 3.57 dB
Radiated Above 1G-18G	± 4.29 dB
Radiated Above 18G-40G	± 4.67 dB

1.5 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Linkou) to collect test data is located on

No.6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.).

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database. The FCC Registration No.: 0027578244. Designation No.: TW3546. The Test Firm Registration No.: 181430.

Page 6 of 59

2 System Test Configuration

2.1 Description of Test Configuration

The system was configured for testing in testing mode which was provided by manufacturer.

No special accessory, No modification was made to the EUT and No special equipment used during test.

IEEE 802.11 a/n HT20/ac VHT20						
Channel Frequency (MHz) Channel Frequency (MHz)						
36	5180	149	5745			
40	5200	153	5765			
44	5220	157	5785			
48	5240	161	5805			
-	-	165	5825			

For UNII-1: Channel 36, 40 and 48 were tested.

For UNII-3: Channel 149, 157 and 165 were tested.

IEEE 802.11 n HT40/ac VHT40						
Channel Frequency (MHz) Channel Frequency (MHz)						
38	5190	151	5755			
46	5230	159	5795			

For UNII-1: Channel 38 and 46 were tested.

For UNII-3: Channel 151 and 159 were tested.

IEEE 802.11 ac VHT80						
Channel Frequency (MHz) Channel Frequency (MHz)						
42 5210 155 5775						

For UNII-1: Channel 42 was tested. For UNII-3: Channel 155 was tested.

Modulation Used for Conformance Test							
Configuration	Configuration N _{TX} Data Rate Worst Data Rate						
802.11a mode	6 Mbps						
802.11n HT20 mode 4 MCS 0-32 MCS							
802.11n HT40 mode	4	MCS 0-32	MCS 0				
802.11ac VHT20 mode 4 MCS 0-10 NSS4 MCS 0							
802.11ac VHT40 mode	4	MCS 0-10 NSS4	MCS 0				
802.11ac VHT80 mode	4	MCS 0-10 NSS4	MCS 0				

Worst Case of Power Setting					
EUT Exercise Software			Command via Putty		
Configuration	N _{TX}	UNII Band	Low CH	Mid CH	High CH
802.11a mode	4	UNII-1	16	18	17
802.11a mode	1	UNII-3	20	20	20
802.11n HT20 mode	4	UNII-1	16	18	17
802.11h H120 mode	1	UNII-3	20	20	20
002 44 v UT40 voo de	1	UNII-1	15	-	17
802.11n HT40 mode		UNII-3	17	-	20
802.11ac VHT20 mode	1	UNII-1	16	18	17
802.11ac VH120 mode		UNII-3	20	20	20
002 44 a MITAO mada	1	UNII-1	15	-	17
802.11ac VHT40 mode		UNII-3	17	-	20
802.11ac VHT80 mode	e 1	UNII-1	-	14	-
		UNII-3	-	17	-

- The worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the Peak power and PSD across all date rates bandwidths, and modulations. Radiated below 1G were tested worst output power mode.
- Due to 802.11n HT20/T40 mode output power are less than 802.11ac VHT20/40. Therefore, 802.11ac VHT20/VHT40 cover 802.11n HT20/40 in the test, Include conducted and radiated, except power test.
- VT-IoT-Dongle and VT-IoT-Dongle-CATM all have two mode Wlan + WWan or BT + WWan for Co-location.
 AC Line put the worst case co-location mode in the report. Radiation co-location we put the worst case co-location mode (Wlan +WWan (FCC ID: RI7LE910NAV2)) in this Report.

2.2 Support Equipment and External Cable List

N1 -	B	D.C. and Carthagan	No and all November of
No.	Description	Manufacturer	Model Number
Α	Notebook PC	DELL	Latitude E6410
В	Notebook PC	Lenovo	Y520-151KBN
С	Notebook PC	APPLE	A1706
D	Adapter	FLEX	A1718 (Apple)
E	Adapter	Chicony Power	ADL135NCC3A (Lenovo)
F	Adapter	MYCELL	AC-B04
G	DC Power Source	GW Instek	SPS-2415

No.	Cable Description	Shielding Type	Length (m)	From	То
1	Connector Cable	Non-Shielded	1	EUT	Power Apply

2.3 Block Diagram of Test Setup

Page 9 of 59

2.4 Duty Cycle

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 section B:

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum power transmission duration, T, are required for each tested mode of operation.

Configuration	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Factor (dB)
802.11a mode	1.40	1.44	97.22	0.12
802.11n HT20-BF mode	1.31	1.34	97.76	0.10
802.11n HT40-BF mode	0.62	0.69	89.86	0.46
802.11ac VHT20-BF mode	1.31	1.34	97.76	0.10
802.11ac VHT40-BF mode	0.62	0.69	89.86	0.46
802.11ac VHT80-BF mode	0.27	0.33	81.82	0.87

3 Summary of Test Results

FCC Rules	Description of Test	Result
§1.1310, §2.1091, §15.407 (f)	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a), §15.407(b)(6)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.407(b)	Spurious Emissions	Compliance
§15.407(a)(e)	Emission Bandwidth	Compliance
§15.407(a)(1)	Maximum Peak Output Power	Compliance
§15.407(a)(1)(5)	Power Spectral Density	Compliance

Page 12 of 59

4 FCC §1.1310, §2.1091, §15.407(f) - Maximum Permissible Exposure (MPE)

4.1 Applicable Standard

According to §15.407(f), U-NII devices are subject to the radio frequency radiation exposure requirements specified in § 1.1307(b), and 2.1091 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1500	/	/	f/1500	30		
1500–100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary: Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_i \frac{S_i}{S_{Limit,i}} \leq 1$$

Page 13 of 59

4.2 RF Exposure Evaluation Result

MPE Evaluation:

	Frequency	Ant	enna Gain	Targe	t Power	Evaluation	Power Density	MPE Limit
Mode	Range (MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	(mW/cm²)	(mW/cm²)
Wi-Fi 2.4G	2412-2462	3.00	1.995	25.00	316.2278	20	0.1256	1.0
BLE	2402-2480	3.00	1.995	4.00	2.5119	20	0.0010	1.0
BR+EDR	2402-2480	3.00	1.995	9.00	7.9433	20	0.0032	1.0
Wi-Fi 5G UNII-1	5150-5250	3.00	1.995	20.00	100.0000	20	0.0397	1.0
Wi-Fi 5G UNII-3	5745-5850	3.00	1.995	21.00	125.8925	20	0.0500	1.0

Report No.: RLK190919004-00C

LTE module FCC ID: 2AJYU-SIM7000A

84.4.	Frequency	Ant	enna Gain	Targe	t Power	Evaluation	Power Density	MPE Limit
Mode	Range (MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	(mW/cm²)	(mW/cm ²)
LTE B2	1850-1910	0.48	1.117	25.70	371.54	20	0.0826	1.0
LTE B4	1710-1755	-0.73	0.845	25.70	371.54	20	0.0625	1.0
LTE B12	699-716	2.11	1.626	25.70	371.54	20	0.1202	0.466
LTE B13	777-787	2.11	1.626	25.70	371.54	20	0.1202	0.518

LTE module FCC ID: RI7LE910NAV2

84.4.	Frequency		Antenna Gain		t Power	Evaluation	Power Density	MPE Limit
Mode	Range (MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	(mW/cm²)	(mW/cm ²)
LTE B2	1850-1910	0.48	1.117	24.00	251.189	20	0.0558	1.0
LTE B4	1710-1755	-0.73	0.845	24.00	251.189	20	0.0422	1.0
LTE B5	824-849	2.65	1.841	24.00	251.189	20	0.0920	0.550
LTE B12	699-716	2.11	0.845	24.00	251.189	20	0.0812	0.466
LTE B13	777-787	2.11	1.626	24.00	251.189	20	0.0812	0.518
LTE B17	704-716	2.11	0.845	24.00	251.189	20	0.0812	0.469

MPE evaluation for simultaneous transmission:

Note:

- 1. Wi-Fi (2.4G) or Wi-Fi 5G and BT can't transmit simultaneously.
- 2. Wi-Fi (2.4G) and Wi-Fi 5G can't transmit simultaneously

Wi-Fi or BT & WWAN can transmit simultaneously , MPE evaluation is as below formula:

PD1/Limit1+PD2/Limit2+..... < 1, PD (Power Density)

Page 14 of 59

Bay Area Compliance Laboratories Corp.(Linkou Laboratory)	Report No.: RLK190919004-00C
The worst case is as below:	
Max MPE of Wi-Fi + Max MPE of LTE = 0.1256/1.0+0.1202/0.466 =0.3835 < 1.0	
Result: MPE evaluation of single and simultaneous transmission n	neet the requirement of standard.

5 FCC §15.203 – Antenna Requirements

5.1 Applicable Standard

According to § 15.203 and § 15.407(a)(3),

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.2 Antenna List and Details

Brand	Model	Antenna Type	Antenna Gain	Result
Jinchang	JCW425	PIFA	3.00 dBi	Compliance

The EUT has an internal antenna arrangement, which was permanently attached, fulfill the requirement of this section.

Page 16 of 59

Report No.: RLK190919004-00C

6 FCC §15.207 - AC Line Conducted Emissions

6.1 Applicable Standard

According to FCC §15.207 and §15.407(b)(6),

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \,\mu\text{H}/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Francisco (MILIA)	Conducted Limit (dBuV)			
Frequency (MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56 Note 1	56 to 46 Note 2		
0.5-5	56	46		
5-30	60	50		

Note 1: Decreases with the logarithm of the frequency. Note 2: A linear average detector is required

6.2 EUT Setup and Test Procedure

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	Receiver RBW
150 kHz - 30 MHz	9 kHz

During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

6.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.
		Conduction Ro	oom		
LISN	Rohde & Schwarz	ENV216	100010	2019/09/02	2020/09/01
EMI Test Receiver	Rohde & Schwarz	ESR3	102430	2019/03/27	2020/03/26
Pulse Limiter	SCHWARZBECK	VSTD 9561-F	00432	2019/08/28	2020/08/27
RF Cable	EMCI	EMCCFD300-BM- BM-8000	180526	2019/08/08	2020/08/07
Software	Audix	e3 v9	E3LK-03	N.C.R	N.C.R

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

6.4 Test Environmental Conditions

Temperature:	25	Relative Humidity:	62 %
ATM Pressure:	1010 hPa	Test Engineer:	Ray Huang
Test Date:	2019-10-03		

6.5 Test Data and Test Plot

Mode: AC 120 V/60 Hz, Co-location mode (Wi-Fi + WWan_(FCC ID: RI7LE910NAV2)), Line

		Read			Limit	0ver		
	Freq	Level	Level	Factor	Line	Limit	Remark	
	MHz	dBuV	dBuV	dB	dBuV	——dB		
1	0.157	20.04	39.98	19.94	65.60	-25.62	QP	
2	0.157	8.02	27.96	19.94	55.60	-27.64	Average	
3	0.191	23.75	43.69	19.94	64.01	-20.32	QP	
4	0.191	21.18	41.12	19.94	54.01	-12.89	Average	
5	0.284	30.40	50.33	19.93	60.71	-10.38	QP	
6	0.284	27.45	47.38	19.93	50.71	-3.33	Average	
7	0.346	21.29	41.24	19.95	59.05	-17.81	QP	
8	0.346	5.76	25.71	19.95	49.05	-23.34	Average	
9	0.378	27.50	47.46	19.96	58.32	-10.86	QP	
10	0.378	24.40	44.36	19.96	48.32	-3.96	Average	
11	20.795	0.63	20.80	20.17	60.00	-39.20	QP	
12	20.795	-8.63	11.54	20.17	50.00	-38.46	Average	

Note:

Level = Read Level + Factor

Over Limit (Margin) = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

$Mode: AC~120V/60~Hz,~Co-location~mode~(Wi-Fi+WWan_{(FCC~ID:~RI7LE910NAV2)}),~Neutral$

		read			LIMIT	over		
	Freq	Level	Level	Factor	Line	Limit	Remark	
	MHz	dBuV	dBuV	dB	dBuV	dB		
1	0.160	18.90	38.85	19.95	65.47	-26.62	QP	
2	0.160	6.93	26.88	19.95	55.47	-28.59	Average	
3	0.191	24.02	43.96	19.94	64.01	-20.05	QP	
4	0.191	20.53	40.47	19.94	54.01	-13.54	Average	
5	0.284	25.22	45.16	19.94	60.71	-15.55	QP	
6	0.284	25.00	44.94	19.94	50.71	-5.77	Average	
7	0.346	21.04	41.00	19.96	59.05	-18.05	QP	
8	0.346	9.83	29.79	19.96	49.05	-19.26	Average	
9	0.378	27.69	47.66	19.97	58.32	-10.66	QP	
10	0.378	24.73	44.70	19.97	48.32	-3.62	Average	
11	20.795	-11.22	9.10	20.32	60.00	-50.90	QP	
12	20.795	-13.94	6.38	20.32	50.00	-43.62	Average	

Note:

Level = Read Level + Factor

Over Limit (Margin) = Level – Limit Line

 $Factor = (LISN, ISN, PLC \ or \ current \ probe) \ Factor + Cable \ Loss + Attenuator$

7 FCC §15.209, §15.205 & §15.407(b) – Unwanted Emission

7.1 Applicable Standard

According to FCC §15.407(b),

Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of –27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz. As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	13.36-13.41	399.9-410	4.5-5.15
0.495-0.505	16.42-16.423	608-614	5.35-5.46
2.1735-2.1905	16.69475-16.69525	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Turn Table

Report No.: RLK190919004-00C

7.2 EUT Setup and Test Procedure

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.407 Limits.

The system was investigated from 30 MHz to 40 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10-2013.

Frequency Range	RBW	VBW	Detector	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	QP	-	QP
	1 MHz	3 MHz	PK	-	PK
Above 1 GHz	1 MHz	3 MHz	RMS	>98%	Ave
	1 MHz	1/T	PK	<98%	Ave

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

7.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.
		966A Roon	n		
Active Loop Antenna	EMCO	6502	0001-3322	2019/03/15	2020/03/14
Bilog Antenna/6 dB Attenuator	SUNOL SCIENCES & EMEC /EMCI	JB3/N-6-06	A111513/AT-N0668	2019/03/29	2020/03/28
Horn Antenna	ETS-Lindgren	3115	00109141	2019/07/05	2020/07/04
Horn Antenna	ETS-Lindgren	3160-09	00123852	2019/07/11	2020/07/10
Horn Antenna	ETS-Lindgren	3160-10	00123855	2019/07/12	2020/07/11
Preamplifier	A.H. Systems	PAM-0118P	478	2019/03/28	2020/03/27
Preamplifier	A.H. Systems	PAM-1840VH	174	2019/02/18	2020/02/17
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101434	2019/04/17	2019/04/16
Microflex Cable (1m)	EMCI	EMC106-SM-SM-2000	180515	2019/08/07	2019/08/06
Microflex Cable (2m)	МТЈ	H0919	00000-MT28A-100	2019/08/07	2019/08/06
Microflex Cable (8m)	UTIFLEX	UFA210A-1-3149- 300300	MFR 64639 232490- 001	2019/08/07	2019/08/06
Turn Table	Chaintek	T-200-S-1	003501	N.C.R	N.C.R
Antenna Tower	Chaintek	MBD-400-1	003504	N.C.R	N.C.R
Controller	Chaintek	3000-1	003507	N.C.R	N.C.R
Software	Audix	e3 v9	E3LK-01	N.C.R	N.C.R

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

7.4 Test Environmental Conditions

Temperature:	25	Relative Humidity:	55 %
ATM Pressure:	1011hPa	Test Engineer:	Leo Chang
Test Date:	2019-09-25 to 2019-09-27	-	-

Page 24 of 59

Report No.: RLK190919004-00C

7.5 Test Data and Test Plot

Wi-Fi 5G Mode:

Transmitting mode (Pre-scan with three orthogonal axis, and worse case as Y axis)

Below 1G (30 MHz-1 GHz) test the output power worst mode

Level = Read Level + Factor

Over Limit = Level – Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported

Above 1G (1 GHz-40 GHz) in UNII-1:

802.11a mode:

						Lo	w CH								
	Horizontal							Vertical							
Freq	Level	Limit Line	Over Limit		Factor	Remark	Freq	Level	Limit Line		Read Level	Factor	Remark		
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m			
5147.217	52.90	54.00	-1.10	52.55	0.35	Average	5146.696	52.05	54.00	-1.95	51.70	0.35	Average		
5147.217	69.39	74.00	-4.61	69.04	0.35	Peak	5146.696	67.50	74.00	-6.50	67.15	0.35	Peak		
5178.391	96.94		1	96.69	0.25	Average	5178.391	96.17			95.92	0.25	Average		
5178.391	107.05		;	106.80	0.25	Peak	5178.391	106.29			106.04	0.25	Peak		
2020.000	42.73	68.20	-25.47	50.26	-7.53	Peak	2020.000	41.00	68.20	-27.20	48.53	-7.53	Peak		
10360.000	47.45	68.20	-20.75	38.18	9.27	Peak	10360.000	48.45	68.20	-19.75	39.18	9.27	Peak		
15540.000	44.67	54.00	-9.33	30.48	14.19	Average	15540.000	44.59	54.00	-9.41	30.40	14.19	Average		
15540.000	56.33	74.00	-17.67	42.14	14.19	Peak	15540.000	56.09	74.00	-17.91	41.90	14.19	Peak		

						Mid	dle CH							
		Н	orizon	tal			Vertical							
Freq	Level	Limit Line			Factor	Remark	Freq	Level	Limit Line			Factor	Remark	
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		
5150.000	51.73	54.00	-2.27	51.39	0.34	Average	5150.000	50.82	54.00	-3.18	50.48	0.34	Average	
5150.000	65.69	74.00	-8.31	65.35	0.34	Peak	5150.000	64.73	74.00	-9.27	64.39	0.34	Peak	
5198.261	100.23		1	99.97	0.26	Average	5198.261	99.78		3	99.52	0.26	Average	
5198.261	110.14		1	109.88	0.26	Peak	5198.261	109.66		5	109.40	0.26	Peak	
5383.478	47.03	54.00	-6.97	46.86	0.17	Average	5385.652	46.92	54.00	-7.08	46.77	0.15	Average	
5383.478	60.60	74.00	-13.40	60.43	0.17	Peak	5385.652	60.88	74.00	-13.12	60.73	0.15	Peak	
2020.000	42.69	68.20	-25.51	50.22	-7.53	Peak	2020.000	41.18	68.20	-27.02	48.71	-7.53	Peak	
10400.000	47.34	68.20	-20.86	37.95	9.39	Peak	10400.000	47.13	68.20	-21.07	37.74	9.39	Peak	
15600.000	44.22	54.00	-9.78	30.05	14.17	Average	15600.000	44.38	54.00	-9.62	30.21	14.17	Average	
15600.000	57.25	74.00	-16.75	43.08	14.17	Peak	15600.000	57.40	74.00	-16.60	43.23	14.17	Peak	

	High CH												
	Horizontal								,	Vertica	al		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line			Factor	Remark
MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m	
5144.783	47.62	54.00	-6.38	47.26	0.36	Average	5146.087	47.61	54.00	-6.39	47.25	0.36	Average
5144.783	61.26	74.00	-12.74	60.90	0.36	Peak	5146.087	61.40	74.00	-12.60	61.04	0.36	Peak
5238.261	101.61		1	101.37	0.24	Average	5238.261	100.15		;	99.91	0.24	Average
5238.261	111.61		1	111.37	0.24	Peak	5238.261	110.15		i	109.91	0.24	Peak
5356.087	47.44	54.00	-6.56	47.24	0.20	Average	5377.391	47.11	54.00	-6.89	46.93	0.18	Average
5356.087	60.60	74.00	-13.40	60.40	0.20	Peak	5377.391	60.56	74.00	-13.44	60.38	0.18	Peak
2020.000	44.08	68.20	-24.12	51.61	-7.53	Peak	2020.000	40.37	68.20	-27.83	47.90	-7.53	Peak
10480.000	48.19	68.20	-20.01	39.00	9.19	Peak	10480.000	48.29	68.20	-19.91	39.10	9.19	Peak
15720.000	44.43	54.00	-9.57	30.13	14.30	Average	15720.000	45.82	54.00	-8.18	31.52	14.30	Average
15720.000	59.67	74.00	-14.33	45.37	14.30	Peak	15720.000	60.66	74.00	-13.34	46.36	14.30	Peak

802.11ac VHT20 mode:

		Н	orizon	tal					1	Vertica	al		
Freq	Level	Limit Line	Over Limit		Factor	Remark	Freq	Level	Limit Line		Read Level	Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
5148.240	52.77	54.00	-1.23	52.42	0.35	Average	5149.320	51.05	54.00	-2.95	50.70	0.35	Average
5148.240	69.72	74.00	-4.28	69.37	0.35	Peak	5149.320	66.83	74.00	-7.17	66.48	0.35	Peak
5182.170	96.01			95.76	0.25	Average	5178.030	93.57		7	93.32	0.25	Average
5182.170	107.41			107.16	0.25	Peak	5178.030	105.58		8	105.33	0.25	Peak
2020.000	41.29	68.20	-26.91	48.82	-7.53	Peak	2020.000	40.83	68.20	-27.37	48.36	-7.53	Peak
10360.000	48.36	68.20	-19.84	39.14	9.22	Peak	10360.000	47.98	68.20	-20.22	38.76	9.22	Peak
15540.000	44.62	54.00	-9.38	30.43	14.19	Average	15540.000	44.68	54.00	-9.32	30.49	14.19	Average
15540.000			-17.46			_	15540.000	56.55	74.00	-17.45	42.36	14.19	Peak

						Mid	ddle CH							
		Н	orizon	tal						,	Vertica	al		
Freq	Level	Limit Line		Read Level	Factor	Remark		Freq	Level	Limit Line	Over Limit		Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		-	MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m	
5147.700	51.69	54.00	-2.31	51.34	0.35	Average	514	9.200	49.86	54.00	-4.14	49.51	0.35	Average
5147.700	66.11	74.00	-7.89	65.76	0.35	Peak	514	9.200	63.86	74.00	-10.14	63.51	0.35	Peak
5198.400	99.67			99.42	0.25	Average	519	9.600	97.10		3	96.85	0.25	Average
5198.400	110.34			110.09	0.25	Peak	519	9.600	107.99)	107.74	0.25	Peak
5388.000	46.67	54.00	-7.33	46.52	0.15	Average	538	0.200	46.67	54.00	-7.33	46.49	0.18	Average
5388.000	60.53	74.00	-13.47	60.38	0.15	Peak	538	0.200	60.74	74.00	-13.26	60.56	0.18	Peak
2020.000	41.52	68.20	-26.68	49.05	-7.53	Peak	202	0.000	38.44	68.20	-29.76	45.97	-7.53	Peak
10400.000	49.20	68.20	-19.00	39.81	9.39	Peak		0.000	48.49			39.10		Peak
15600.000	44.50	54.00	-9.50	30.33	14.17	Average	1560	0.000	45.50	54.00			14.17	Average
15600.000	57.55	74.00	-16.45	43.38	14.17	Peak		0.000		74.00				_

						Н	ligh C	Н						
		Н	orizon	tal						'	Vertica	al		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark		Freq	Level	Limit Line	Over Limit			Remark
MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m			MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
5148.900						Average		5149.200	47.45	54.00	-6.55	47.10	0.35	Average
5148.900	62.72	74.00	-11.28	62.37	0.35	Peak		5149.200	62.15	74.00	-11.85	61.80	0.35	Peak
5238.300	100.42			100.18	0.24	Average		5237.700	98.44		1	98.20	0.24	Average
5238.300	111.42			111.18	0.24	Peak		5237.700	109.64		1	109.40	0.24	Peak
5354.700	46.74	54.00	-7.26	46.52	0.22	Average		5369.400	46.92	54.00	-7.08	46.74	0.18	Average
5354.700	61.30	74.00	-12.70	61.08	0.22	Peak		5369.400	61.50	74.00	-12.50	61.32	0.18	Peak
2020.000	41.91	68.20	-26.29	49.44	-7.53	Peak		2020.000	40.63	68.20	-27.57	48.16	-7.53	Peak
10480.000	48.66	68.20	-19.54	39.47	9.19	Peak	- 1	10480.000	47.97	68.20	-20.23	38.78	9.19	Peak
15720.000	45.44	54.00	-8.56	31.14	14.30	Average	- 1	15720.000	45.93	54.00	-8.07	31.63	14.30	Average
15720.000	59.24	74.00	-14.76	44.94	14.30	Peak		15720.000	59.90	74.00	-14.10	45.60	14.30	Peak

802.11ac VHT40 mode:

						LO	w CH						
		Н	orizon	tal					'	/ertica	al		
Freq	Level	Limit Line	Over Limit		Factor	Remark	Freq	Level	Limit Line	Over Limit		Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
5146.310	52.26	54.00	-1.74	51.90	0.36	Average	5146.420	50.68	54.00	-3.32	50.32	0.36	Average
5146.310	70.45	74.00	-3.55	70.09	0.36	Peak	5146.420	69.03	74.00	-4.97	68.67	0.36	Peak
5192.070	91.89	68.20			0.25	Average	5187.780	89.35		5	89.10	0.25	Average
5192.070	104.10	68.20			0.25	Peak	5187.780	101.67		7	101.42	0.25	Peak
2020.000	40.46	68.20	-27.74	47.99	-7.53	Peak	2020.000	40.89	68.20	-27.31	48.42	-7.53	Peak
10380.000	48.41	68.20	-19.79	39.05	9.36	Peak	10380.000	49.56	68.20	-18.64	40.20	9.36	Peak
15570.000	44.86	54.00	-9.14	30.68	14.18	Average	15570.000	45.13	54.00	-8.87	30.95	14.18	Average
15570.000	57.44	74.00	-16.56	43.26	14.18	Peak	15570.000	57.14	74.00	-16.86	42.96	14.18	Peak

						Hig	h CH						
		Н	orizont	al					,	Vertica	ıl		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line		Read Level	Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
5149.500	50.89	54.00	-3.11	50.54	0.35	Average	5147.700	49.16	54.00	-4.84	48.81	0.35	Average
5149.500	65.58	74.00	-8.42	65.23	0.35	Peak	5147.700	62.54	74.00	-11.46	62.19	0.35	Peak
5226.000	95.08	68.20			0.28	Average	5226.000	92.58	68.20)	0.28	Average
5226.000	107.51	68.20			0.28	Peak	5226.000	104.93	68.20			0.28	Peak
5373.000	46.73	54.00	-7.27	46.55	0.18	Average	5365.800	46.73	54.00	-7.27	46.54	0.19	Average
5373.000	60.91	74.00	-13.09	60.73	0.18	Peak	5365.800	60.60	74.00	-13.40	60.41	0.19	Peak
2020.000	40.19	68 20	-28.01	47.72	-7.53	Peak	2020.000	39.40	68.20	-28.80	46.93	-7.53	Peak
10460.000			-19.38			Peak	10460.000	48.78	68.20	-19.42	39.50	9.28	Peak
15690.000			-8.22			Average	15690.000	45.42	54.00	-8.58	31.12	14.30	Average
15690.000			-14.11			_	15690.000	59.47	74.00	-14.53	45.17	14.30	Peak

802.11ac VHT80 mode:

		Н	orizon	tal					'	/ertica	ı		
Freq	Level	Limit Line		Read Level	Factor	Remark	Freq	Level	Limit Line	Over Limit		Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
5147.850	52.52	54.00	-1.48	52.17	0.35	Average	5139.900	50.73	54.00	-3.27	50.35	0.38	Average
5147.850	68.25	74.00	-5.75	67.90	0.35	Peak	5139.900	66.24	74.00	-7.76	65.86	0.38	Peak
5212.650	86.02		2	85.76	0.26	Average	5213.400	83.24		1	82.97	0.27	Average
5212.650	100.51		L	100.25		Peak	5213.400	97.04		1	96.77	0.27	Peak
2020.000	41.86	68.20	-26.34	49.39	-7.53	Peak	2020.000	40.67	68.20	-27.53	48.20	-7.53	Peak
10420.000	49.68	68.20	-18.52	40.25	9.43	Peak	10420.000	49.12	68.20	-19.08	39.69	9.43	Peak
15630.000	45.29	54.00	-8.71	31.13	14.16	Average	15630.000	45.33	54.00	-8.67	31.17	14.16	Average
15630.000	57.98	74.00	-16.02	43.82	14.16	Peak	15630.000	57.88	74.00	-16.12	43.72	14.16	Peak

Page 28 of 59

Above 1G (1 GHz-40 GHz) in UNII-3:

802.11a mode:

						Low	/ CH						
		Н	orizon	tal					'	Vertica	al		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line				Remark
MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
5649.960	61.16	68.20	-7.04	60.14	1.02	Peak	5643.840	61.97	68.20	-6.23	60.99	0.98	Peak
5652.120	61.59	69.78	-8.19	60.56	1.03	Peak	5651.040	61.33	68.97	-7.64	60.30	1.03	Peak
5702.520	74.44	105.91	-31.47	73.12	1.32	Peak	5701.800	69.30	105.70	-36.40	67.98	1.32	Peak
5745.720	110.96	122.20	-11.24	109.68	1.28	Peak	5743.200	107.58	122.20	-14.62	106.30	1.28	Peak
5874.240	64.35	105.41	-41.06	62.23	2.12	Peak	5874.960	63.64	105.21	-41.57	61.51	2.13	Peak
5925.000	64.22	68.20	-3.98	61.74	2.48	Peak	5924.280	63.54	68.73	-5.19	61.06	2.48	Peak
5967.120	64.39	68.20	-3.81	61.95	2.44	Peak	5967.120	64.17	68.20	-4.03	61.73	2.44	Peak
2020.000	42.71	68.20	-25.49	50.24	-7.53	Peak	2020.000	41.87	68.20	-26.33	49.40	-7.53	Peak
11490.000	40.55	54.00	-13.45	29.85	10.70	Average	11490.000	39.84	54.00	-14.16	29.14	10.70	Average
11490.000	51.52	74.00	-22.48	40.82	10.70	Peak	11490.000	50.84	74.00	-23.16	40.14	10.70	Peak
17235.000	57.93	68.20	-10.27	40.96	16.97	Peak	17235.000	57.06	68.20	-11.14	40.09	16.97	Peak

						Midd	lle CH						
		Н	orizon	tal					,	Vertica	al		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line	Over Limit		Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
5639.880	61.69				0.95	Peak	5633.760		68.20				Peak
5650.680	60.98	68.71	-7.73	59.95	1.03	Peak	5651.040	61.74	68.97	-7.23	60.71	1.03	Peak
5701.440	62.36	105.60	-43.24	61.04	1.32	Peak	5700.720	62.28	105.40	-43.12	60.95	1.33	Peak
5783.520	109.95	122.20	-12.25	108.61	1.34	Peak	5783.520	107.19	122.20	-15.01	105.85	1.34	Peak
5874.600	63.76	105.31	-41.55	61.63	2.13	Peak	5874.960	64.39	105.21	-40.82	62.26	2.13	Peak
5923.920	64.84	69.00	-4.16	62.36	2.48	Peak	5925.000	64.00	68.20	-4.20	61.52	2.48	Peak
5959.560	64.28	68.20	-3.92	61.84	2.44	Peak	5940.120	64.95	68.20	-3.25	62.47	2.48	Peak
2020.000	41.51	68.20	-26.69	49.04	-7.53	Peak	2020.000	39.25	68.20	-28.95	46.78	-7.53	Peak
11570.000	41.02	54.00	-12.98	30.26	10.76	Average	11570.000	40.92	54.00	-13.08	30.16	10.76	Average
11570.000	50.56	74.00	-23.44	39.80	10.76	Peak	11570.000	51.62	74.00	-22.38	40.86	10.76	Peak
17355.000	58.00	68.20	-10.20	40.29	17.71	Peak	17355.000	57.22	68.20	-10.98	39.51	17.71	Peak

						High	n CH						
		Н	orizon	tal					,	Vertica	al		
Freq	Level	Limit Line		Read Level	Factor	Remark	Freq	Level	Limit Line	Over Limit		Factor	Remark
5643.480 5651.040 5701.080	61.74 60.76 61.09	105.50	-6.46 -8.21 -44.41	60.76 59.73 59.76	1.33	Peak Peak Peak	MHz 5632.320 5651.040 5700.360 5823.840	62.08 60.83 62.01	68.97 105.30	-6.12 -8.14 -43.29	61.17 59.80 60.68	1.03 1.33	Peak Peak Peak Peak
5823.480 5874.960 5924.640 5931.480	66.93 63.73	105.21 68.47	-38.28	64.80 61.25	1.51 2.13 2.48 2.49	Peak Peak	5874.600 5923.560 5934.360	65.00 64.16	105.31 69.26	-40.31	62.87 61.68	2.13	Peak Peak Peak Peak
2020.000 11650.000 11650.000 17475.000	42.00 41.27 51.39 57.13	54.00 74.00		49.53 30.37 40.49 39.07	-7.53 10.90 10.90 18.06	Average Peak	2020.000 11650.000 11650.000 17475.000	41.47 51.51	54.00 74.00	-22.49	30.57	10.90	Average Peak

Page 29 of 59

802.11ac VHT20 mode:

						Lo	w Cl	н						
		Н	orizon	tal						,	Vertica	al		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark		Freq	Level	Limit Line	Over Limit		Factor	Remark
MHz 5648.520 5653.200 5700.720 5743.200	61.86 74.18	68.20 70.58 105.40	-8.72 -31.22	60.98 60.81 72.85	1.05 1.33	Peak Peak Peak Peak Peak		MHz 5630.880 5650.680 5701.800 5746.080	61.88 60.90 70.80	68.71 105.70	-6.32 -7.81 -34.90	60.99 59.87 69.48	0.89 1.03 1.32	Peak Peak Peak Peak
5872.800 5924.640 5947.320	63.56 64.80	68.47 68.20	-3.40	61.08 62.33	2.48	Peak Peak Peak		5874.960 5924.280 5950.200		68.73		61.34	2.48	Peak Peak Peak
2020.000 11490.000 11490.000 17235.000	41.74 41.53 51.59 57.08	54.00 74.00	-26.46 -12.47 -22.41 -11.12	30.83 40.89	-7.53 10.70 10.70 16.97	Average Peak		2020.000 11490.000 11490.000 17235.000	40.68 41.18 51.45 57.16	54.00 74.00	-27.52 -12.82 -22.55 -11.04	48.21 30.48 40.75 40.19	-7.53 10.70 10.70 16.97	Average Peak

						Mic	ldle CH						
		H	orizon	tal					,	Vertica	al		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line			Factor	Remark
MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m	
5636.280	61.65	68.20	-6.55	60.71	0.94	Peak	5649.960	61.78	68.20	-6.42	60.76	1.02	Peak
5654.280	61.16	71.38	-10.22	60.10	1.06	Peak	5652.120	61.22	69.78	-8.56	60.19	1.03	Peak
5701.440	64.26	105.60	-41.34	62.94	1.32	Peak	5703.960	62.60	106.31	-43.71	61.28	1.32	Peak
5787.480	110.25	122.20	-11.95	108.93	1.32	Peak	5787.480	107.00	122.20	-15.20	105.68	1.32	Peak
5874.600	63.47	105.31	-41.84	61.34	2.13	Peak	5874.960	62.82	105.21	-42.39	60.69	2.13	Peak
5924.640	63.77	68.47	-4.70	61.29	2.48	Peak	5922.840	63.68	69.79	-6.11	61.20	2.48	Peak
5927.880	65.25	68.20	-2.95	62.76	2.49	Peak	5949.120	64.72	68.20	-3.48	62.26	2.46	Peak
2020.000	42.33	68.20	-25.87	49.86	-7.53	Peak	2020.000	40.20	68.20	-28.00	47.73	-7.53	Peak
11570.000	41.22	54.00	-12.78	30.46	10.76	Average	11570.000	41.20	54.00	-12.80	30.44	10.76	Average
11570.000	51.47		-22.53		10.76	_	11570.000	51.91		-22.09		10.76	Peak
17355.000	57.35	68.20	-10.85	39.64	17.71	Peak	17355.000	57.31	68.20	-10.89	39.60	17.71	Peak

						Hig	h CH						
		Н	orizon	tal						Vertica	al		
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Free	l Leve	Limit l Line			Factor	Remark
		$\overline{dBuV/m}$			dB/m		MH:	dBuV/	m dBuV/m	dB	dBuV	dB/m	
5647.800		68.20		61.03	1.01		5643.486	61.7	4 68.20	-6.46	60.76	0.98	Peak
5650.680	61.58	68.71	-7.13	60.55	1.03		5650.686	60.9	8 68.71	-7.73	59.95	1.03	Peak
5702.520	62.89	105.91	-43.02	61.57	1.32	Peak	5701.800	61.5	9 105.70	-44.11	60.27	1.32	Peak
5826.000	110.28	122.20	-11.92	108.74	1.54	Peak	5823.846	106.4	3 122.20	-15.77	104.91	1.52	Peak
5873.880	68.69	105.51	-36.82	66.57	2.12	Peak	5873.520	64.3	3 105.61	-41.28	62.22	2.11	Peak
5923.200	64.30	69.53	-5.23	61.82	2.48	Peak	5924.640	63.3	68.47	-5.12	60.87	2.48	Peak
5950.200	64.83	68.20	-3.37	62.37	2.46	Peak	5942.646	64.3	68.20	-3.85	61.88	2.47	Peak
2020.000	41.71	68.20	-26.49	49.24	-7.53	Peak	2020.000	39.7	7 68.20	-28.43	47.30	-7.53	Peak
11650.000	42.18	54.00	-11.82	31.28	10.90	Average	11650.000	42.5	9 54.00	-11.41	31.69	10.90	Average
11650.000	51.56	74.00	-22.44	40.66	10.90	Peak	11650.000	51.7	74.00	-22.30	40.80	10.90	Peak
17475.000	57.73	68.20	-10.47	39.67	18.06	Peak	17475.000	57.6	68.20	-10.55	39.59	18.06	Peak

802.11ac VHT40 mode:

Low CH													
Horizontal						Vertical							
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line			Factor	Remark
MHz	dBuV/m	dBuV/m	——dB	dBuV	dB/m		MHz	dBuV/m	dBuV/m	dB		dB/m	
5647.440		68.20			1.01	Peak	5647.440		68.20		62.27		Peak
5650.320	65.10	68.44	-3.34	64.07	1.03	Peak	5653.200	63.54	70.58	-7.04	62.49	1.05	Peak
5705.400	83.24	106.71	-23.47	81.91	1.33	Peak	5706.840	82.26	107.12	-24.86	80.94	1.32	Peak
5753.640	107.60	122.20	-14.60	106.31	1.29	Peak	5753.640	105.03	122.20	-17.17	103.74	1.29	Peak
5878.920	63.72	102.29	-38.57	61.54	2.18	Peak	5874.600	65.09	105.31	-40.22	62.96	2.13	Peak
5923.560	63.82	69.26	-5.44	61.34	2.48	Peak	5923.560	63.88	69.26	-5.38	61.40	2.48	Peak
5929.320	65.15	68.20	-3.05	62.66	2.49	Peak	5938.320	64.28	68.20	-3.92	61.80	2.48	Peak
2020.000	41.71	68.20	-26.49	49.24	-7.53	Peak	2020.000	40.97	68.20	-27.23	48.50	-7.53	Peak
11510.000	41.87	54.00	-12.13	31.14	10.73	Average	11510.000	41.58	54.00	-12.42	30.85	10.73	Average
11510.000	51.37		-22.63	40.64	10.73		11510.000	51.17	74.00	-22.83	40.44	10.73	Peak
17265.000	57.86	68.20	-10.34	40.77	17.09	Peak	17265.000	57.51	68.20	-10.69	40.42	17.09	Peak

High CH													
		Н	orizon	tal				,	Vertica	al			
Freq	Level	Limit Line	Over Limit	Read Level	Factor	Remark	Freq	Level	Limit Line			Factor	Remark
MHz	dBuV/m	${dBuV/m}$	dB	dBuV	dB/m			dBuV/m				•	
5645.640				62.18		Peak	5647.440 5651.400		68.20	-6.39 -7.47			Peak Peak
5652.120 5700.000		69.78 105.20				Peak Peak	5700.720		105.40				Peak
5793.960	107.49	122.20	-14.71	106.18	1.31	Peak	5796.840						Peak
5872.440	68.45	105.92	-37.47	66.36	2.09	Peak	5872.440		105.92				Peak
5922.480	65.16	70.06	-4.90	62.68	2.48	Peak	5921.040	64.12	71.12				Peak
5925.720	65.76	68.20	-2.44	63.28	2.48	Peak	5925.000	65.16	68.20	-3.04	62.68	2.48	Peak
2020.000	41.52	68.20	-26.68	49.05	-7.53	Peak	2020.000	40.65	68.20	-27.55	48.18	-7.53	Peak
1590.000	41.76	54.00	-12.24	30.99	10.77	Average	11590.000	41.83	54.00	-12.17	31.06	10.77	Average
1590.000	51.70	74.00	-22.30	40.93	10.77	Peak	11590.000	51.83	74.00	-22.17	41.06	10.77	Peak
7385.000	58.21	68.20	-9.99	40.42	17.79	Peak	17385.000	58.58	68.20	-9.62	40.79	17.79	Peak

802.11ac VHT80 mode:

Horizontal								,	Vertica	al			
		Limit	0ver	Read									
Freq	Level	Line	Limit	Level	Factor	Remark			Limit	0ver	Read		
							Freq	Level	Line	Limit	Level	Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m								
5648.880	64.06	68.20	-4.14	63.04	1.02	Peak	MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
5648.880	64.06	68.20	-4.14	63.04	1.02	Peak	5646.000	63.49	68.20	-4.71	62.50	0.99	Peak
5651.760	63.27	69.51	-6.24	62.24	1.03	Peak	5651.400	62.24	69.24	-7.00	61.21	1.03	Peak
5651.760	63.27	69.51	-6.24	62.24	1.03	Peak	5703.600	74.05	106.21	-32.16	72.72	1.33	Peak
5704.680	77.75	106.51	-28.76	76.43	1.32	Peak	5777.400	99.81	122.20	-22.39	98.48	1.33	Peak
5777.400	102.47	122.20	-19.73	101.14	1.33	Peak	5875.680	65.46	104.69	-39.23	63.33	2.13	Peak
5864.160	72.05	108.23	-36.18	70.05	2.00	Peak	5921.400	64.15	70.85	-6.70	61.69	2.46	Peak
5922.840	64.38	69.79	-5.41	61.90	2.48	Peak	5947.680	64.81	68.20	-3.39	62.35	2.46	Peak
5928.240	64.74	68.20	-3.46	62.25	2.49	Peak	2020.000	41.34	68.20	-26.86	48.87	-7.53	Peak
2020.000	41.34	68.20	-26.86	48.87	-7.53	Peak	11550.000	41.52	54.00	-12.48	30.77	10.75	Average
11550.000	42.17	54.00	-11.83	31.42	10.75	Average	11550.000	50.79	74.00	-23.21	40.04	10.75	Peak
11550.000	51.73	74.00	-22.27	40.98	10.75	Peak	17325.000	57.63	68.20	-10.57	40.04	17.59	Peak
17325.000	57.93	68.20	-10.27	40.34	17.59	Peak							

Above 1G (1 GHz-40 GHz): test the worst mode:

Level = Read Level + Factor

Over Limit = Level – Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported $\,$

Co-location mode (Wi-Fi +WWan (FCC ID: RI7LE910NAV2)):

VT-IoT-Dongle:

Below 1G

Above 1G

Co-location mdoe (Wi-Fi +WWan (FCC ID 2AJYU-SIM7000A))

VT-IoT-Dongle-CATM:

Below 1G

Above 1G

8 FCC §15.407(a)(e) – Emission Bandwidth and Occupied Bandwidth

8.1 Applicable Standard

According to FCC §15.407(a),

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

As per FCC §15.407(e): for equipment operating in the band 5725 – 5850 MHz, the minimum 6 dB bandwidth of U-NII devices shall be 500 kHz.

8.2 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01,

Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth; b) Set the VBW > RBW; c) Detector = Peak;
- d) Trace mode = max hold; e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%;

99% Occupied Bandwidth

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99% occupied bandwidth is *required* only as a condition for using the optional band-edge measurement techniques described in II.G.3.d). Measurements of 99% occupied bandwidth may also optionally be used in lieu of the EBW to define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

Page 35 of 59

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

8.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.				
Conducted Room									
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	100406	2019/09/11	2019/09/10				
Cable	MTJ	MT40S	620620-MT40S-100	2018/12/28	2019/12/28				

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

8.4 Test Environmental Conditions

Temperature:	22.9°C	Relative Humidity:	57 %
ATM Pressure:	1015hPa	Test Engineer:	lan Tu
Test Date:	2019-10-01	-	-

8.5 Test Data and Test Plot

UNII Band	Mode	Channel	Frequency (MHz)	26dB Emission Bandwidth (MHz)
		36	5180	23.8780
UNII-1	802.11a	40	5200	33.5750
		48	5240	29.3050
	802.11ac20	36	5180	28.5820
UNII-1		40	5200	37.3370
		48	5240	31.9100
UNII-1	802.11ac 40	38	5190	58.0000
		46	5230	75.1100
UNII-1	802.11ac 80	42	5210	91.0000

UNII Band	Mode	Channel	Frequency (MHz)	6dB Emission Bandwidth (MHz)	Limit (MHz)
		149	5745	16.3240	>0.5
	802.11a	157	5785	16.3240	>0.5
		165	5825	16.3240	>0.5
	802.11ac20 802.11ac 40	149	5745	17.5980	>0.5
UNII-3		157	5785	17.5980	>0.5
		165	5825	17.5400	>0.5
		151	5755	36.2100	>0.5
		159	5795	36.2400	>0.5
	802.11ac 80	155	5775	75.5700	>0.5

Page 37 of 59

Mode

802.11a

802.11ac20

802.11ac 40

802.11ac 80

UNII Band

UNII-1

UNII-3

UNII-1

UNII-3

UNII-1

UNII-3

UNII-1

UNII-3

5755

5795

5210

5775

151

159

42

155

Report No.: RLK190919004-00C

42.1129

65.7019 76.4110

78.1476

For UNII-1

802.11a mode

802.11ac VHT20 mode:

802.11ac VHT40 mode:

802.11ac VHT80 mode:

For UNII-3

802.11a mode

802.11ac VHT20 mode:

802.11ac VHT40 mode:

802.11ac VHT80 mode:

9 FCC §15.407(a)(1) – Maximum Output Power

9.1 Applicable Standard

According to FCC §15.407(a),

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

9.2 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01,

The use Power Meter

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a Power sensor.

Page 47 of 59

9.3 Test Equipment List and Details

Description	Manufacture	Model	Serial No.	Cal. Date.	Cal. Due.		
Conducted Room							
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	100406	2019/09/11	2019/09/10		
Cable	MTJ	MT40S	620620-MT40S-100	2018/12/28	2019/12/28		

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

9.4 Test Environmental Conditions

Temperature: 22.9°C		Relative Humidity:	57 %
ATM Pressure:	1015hPa	Test Engineer:	lan Tu
Test Date:	2019-10-01	-	-

Page 48 of 59

9.5 Test Data

Channel	Frequency (MHz) Average Output Power (dBm)		Limit (dBm)					
IEEE 802.11a mode								
36	5180	17.23	24.00					
40	5200	19.01	24.00					
48	5240	17.96	24.00					
149	5745	20.08	30.00					
157	5785	19.97	30.00					
165	5825	20.15	30.00					
IEEE 802.11n HT20 mode								
36	5180	16.71	24.00					
40	5200	18.87	24.00					
48	5240	17.75	24.00					
149	5745	19.75	30.00					
157	5785	19.77	30.00					
165	5825	19.88	30.00					
	IEEE 802.11ı	n HT40 mode						
38	5190	16.01	24.00					
46	5230	18.24	24.00					
151	5755	17.59	30.00					
159	5795	19.81	30.00					

Page 49 of 59

Channel	Frequency Average Output Po		Limit (dBm)			
	IFFF 802 11ac	VHT20 mode				
			04.00			
36	5180	16.83	24.00			
40	5200	18.95	24.00			
48	5240	17.89	24.00			
149	5745	19.86	30.00			
157	5785	19.91	30.00			
165	5825	19.96	30.00			
	IEEE 802.11ac	VHT40 mode				
38	5190	16.08	24.00			
46	5230	18.41	24.00			
151	5755	17.80	30.00			
159	5795	20.02	30.00			
	IEEE 802.11ac VHT80 mode					
42	5210	14.97	24.00			
155	5775	14.44	30.00			

10 FCC §15.407(a) - Power Spectral Density

10.1 Applicable Standard

According to FCC §15.407(a),

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

10.2 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 and ANSI 63.10: 2013 Sec 10.3.7. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in Section 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

Page 51 of 59

- a) Set the RBW to 1 MHz.
- b) Set the VBW to be at least 1 MHz (a VBW of 3 MHz is desirable).
- c) Set the frequency span to examine the spectrum across a convenient frequency segment (e.g., 600 MHz).
- d) Select the power averaging (rms) detector.
- e) Set the sweep time so that there is no more than a 1 ms integration period over each measurement bin.
- f) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

10.3 Test Equipment List and Details

Description	Manufacture	Model Serial No.		Cal. Date.	Cal. Due.		
Conducted Room							
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2018/11/14	2019/11/13		
Cable	WOKEN	SFL402	S02-160323-07	2019/02/11	2020/02/10		

^{*}Statement of Traceability: The testing equipment's listed above have finished the calibration by Electronics Testing Center, Taiwan (ETC) or other laboratories which were accredited by TAF or equivalent organizations. The calibration result could be traceable to the International System of Units (SI).

10.4 Test Environmental Conditions

Temperature:	22.9°C	Relative Humidity:	57 %
ATM Pressure:	1015hPa	Test Engineer:	lan Tu
Test Date:	2019-10-01	-	-

10.5 Test Data and Test Plot

UNII Band	Mode	Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	Duty Factor (dB)	Total Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)
		36	5180	7.69	0.12	7.81	11.00
UNII-1	802.11a	40	5200	9.56	0.12	9.68	11.00
		48	5240	8.43	0.12	8.55	11.00
		36	5180	7.30	0.10	7.40	11.00
UNII-1	802.11ac VHT20	40	5200	9.32	0.10	9.42	11.00
		48	5240	8.28	0.10	8.38	11.00
UNII-1	902 11ac VUT40	38	5190	3.46	0.46	3.92	11.00
	802.11ac VHT40	46	5230	5.67	0.46	6.13	11.00
UNII-1	802.11ac VHT80	42	5210	-0.79	0.87	0.08	11.00

UNII Band	Mode	Channel	Frequency (MHz)	Power Spectral Density (dBm/500 kHz)	Limit (dBm/500 kHz)
		149	5745	15.07	30.00
UNII-3	802.11a	157	5785	15.15	30.00
		165	5825	15.75	30.00
	802.11ac VHT20	149	5745	15.65	30.00
UNII-3		157	5785	15.91	30.00
		165	5825	16.21	30.00
UNII-3	802.11ac VHT40	151	5755	9.51	30.00
		159	5795	12.80	30.00
UNII-3	802.11ac VHT80	155	5775	6.70	30.00

Page 53 of 59

For UNII-1:

802.11a mode

802.11ac VHT20 mode:

802.11ac VHT40 mode:

802.11ac VHT80 mode

Page 56 of 59

For UNII-3:

802.11a mode:

802.11ac VHT20 mode:

802.11ac VHT40 mode:

802.11ac VHT80 mode

***** END OF REPORT *****

Page 59 of 59