Notes on Axler's Linear Algebra Done Right

Zaid Khan

September 19, 2015

Contents

1	\mathbf{Vec}	tor Sp	aces 3
	1.1	R and	C
	1.2	Defini	tion of a Vector Space
	1.3	Subsp	aces
		1.3.1	Conditions to a be a subspace
		1.3.2	Sums of Subspaces
		1.3.3	Direct Sums
		1.3.4	Conditions for a Direct Sum
2	Fini	ite Din	nensional Vector Spaces 3
	2.1	Span a	and Linear Independence
		2.1.1	Span
		2.1.2	Finite Dimension
		2.1.3	Polynomials
		2.1.4	Linear Dependence
	2.2	Bases	4
		2.2.1	Basis
		2.2.2	Criterion for basis
		2.2.3	Direct Sums, Subspaces, and Bases 4
3	Line	ear Ma	aps 4
	3.1	The V	ector Space of Linear Maps
		3.1.1	Definition of Linear Maps
		3.1.2	Linear maps and basis of domain
		3.1.3	Algebraic Operations on L(V,W)
		3.1.4	Product of Linear Maps
		3.1.5	Algebraic Properties of Linear Maps 5
	3.2	Null S	paces and Ranges
		3.2.1	Null Space
		3.2.2	Injectivity and Null Spaces 6
		3.2.3	Definition of Range
		3.2.4	Ranges and Subspaces
		3.2.5	Definition of Surjective
		3.2.6	Fundamental Theorem of Linear Maps 6

1 Vector Spaces

1.1 R and C

1.2 Definition of a Vector Space

1.3 Subspaces

A subset U of a vector space V is called a **subspace** if U is also a vector space, using the same addition and scalar multiplication defined on V.

1.3.1 Conditions to a be a subspace

- Additive Identity: $0 \in U$.
- Closed under addition.
- Closed under multiplication.

1.3.2 Sums of Subspaces

Let $U_1 \dots U_m$ be subsets of V. The sum of $U_1 \dots U_m$ is the set of all possible sums of elements of $U_1 \dots U_m$.

$$U_1 + \ldots + U_m = \{u_1 + u_2 + \ldots + u_m : u_1 \in U_1, u_2 \in U_2 \ldots, u_m \in U_m\}$$

The sum of subspaces is the smallest subspace containing all the summands.

1.3.3 Direct Sums

A sum $U_1 \dots U_m$ is called a direct sum if each element of $U_1 + \dots + U_m$ can be written in only one way. To simplify, there is only one way to write each element of the resulting space using a sum of elements of $U_1 \dots U_m$.

1.3.4 Conditions for a Direct Sum

- Suppose that $U_1 ldots U_m$ are subspaces of V. Then $U_{1+} ldots + U_m$ is a direct sum if and only if the only way to create the 0-vector is to take each u_j in the sum expression $u_1 + \ldots + u_m = 0$ to be 0.
- Corollary: Suppose that U and W are subspaces of V. Then $U_1 + \ldots + U_m$ is a direct sum if and only if $U \cap W = 0$.

2 Finite Dimensional Vector Spaces

2.1 Span and Linear Independence

2.1.1 Span

The set of all linear combinations of a list of vectors $v_1 \dots v_m$ in V is called the span of $v_1 \dots v_m$. The span of the empty list () is defined to be $\{0\}$.

2.1.2 Finite Dimension

A vector space is finite dimensional if there is a list of vectors that spans the space. Note that lists are, by definition, finite dimensional.

2.1.3 Polynomials

• A function $p: \mathbb{F} \to \mathbb{F}$ is called a polynomial with cefficients in F if there exists $a_0 \dots a_m \in \mathbb{F}$ such that

$$p(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_m z^m \quad \forall z \in \mathbb{F}$$

.

• P(F) is the set of all polynomials in F.

2.1.4 Linear Dependence

- A list $v_1
 ldots v_m$ is linearly independent if the only choice of $a_1
 ldots a_m
 ldots
 ewline
 for that makes <math>a_1v_1 + \dots + a_mv_m = 0$ is $a_1 = \dots = a_m = 0$. That is to say, all the coefficients in the sum must be 0.
- The empty list is declared to be linearly independent.

2.2 Bases

2.2.1 Basis

A basis of V is a list of vectors in V that is linearly independent and spans V.

2.2.2 Criterion for basis

A list $v_1
ldots v_n$ of vectors in V is a basis of V if and only if every $v \in V$ can be written in the form $v = a_1v_1 + \ldots + a_nv_n$ where $a_1 \ldots a_n \in \mathbb{F}$ and the list is linearly independent.

2.2.3 Direct Sums, Subspaces, and Bases

If V is finite dimensional and U is a subspace of V, there exists a subspace W of V such that $V = W \oplus U$. To simply, every subspace of a finite dimensional vector space has a partner, which is also a subspace of V, which it forms a direct sum equal to V with.

3 Linear Maps

3.1 The Vector Space of Linear Maps

3.1.1 Definition of Linear Maps

A linear map from V to W is a function $T: V \mapsto W$ such that the following properties are true:

• Additivity:

$$T(u+v) = T(u) + T(v)$$

• Homogeneity:

$$T(\lambda v) = \lambda(Tv)$$

The set of all linear maps from V to W is denoted $\mathcal{L}(V, W)$.

3.1.2 Linear maps and basis of domain

Theorem 1. Suppose $v_1 \dots v_n$ is a basis of V and and $w_1 \dots w_n \in W$. Then $\exists T : V \mapsto W$ such that $Tv_j = w_j$ for each j in $1 \dots n$.

This theorem asserts that once we know the behavior of a linear map over the basis of vectors, the linear map is uniquely defined for all the vectors in the space.

3.1.3 Algebraic Operations on L(V,W)

- Addition: (S+T)(u) = Su + Tu
- Scalar Multiplication: $(\lambda T)(v) = \lambda(Tv)$

Theorem 2. $\mathcal{L}(V,W)$ is a vector space with the addition and scalar multiplication defined above.

3.1.4 Product of Linear Maps

The product of two linear maps is just function composition when the domains make sense.

3.1.5 Algebraic Properties of Linear Maps

- Associativity $(T_1T_2)T_3 = T_1(T_2T_3)$
- Identity
- Distributivity
- Linear maps take 0 to 0.

Multiplication of linear maps is not commutative.

3.2 Null Spaces and Ranges

3.2.1 Null Space

- For $T \in L(V, W)$, the **null space** of T, denoted **null T** is the subset of V containing those vectors that T maps to 0. This can also be called the kernel.
- Suppose $T \in L(V, W)$. Then null T is a subspace of V.

3.2.2 Injectivity and Null Spaces

- A function $T: V \mapsto W$ is called injective if Tu=TV implies u=v.
- Let $T \in L(V, W)$. Then T is injective iff null T = 0.

3.2.3 Definition of Range

For T a function for V to W, the range of T is the subset of W consisting of those vectors which are of the form Tv for some $v \in V$. This means the same as image.

3.2.4 Ranges and Subspaces

If $T \in L(V, W)$, then range T is a subspace of W.

3.2.5 Definition of Surjective

A function $T:V\mapsto W$ is called surjective if its range equals W. This means the same as onto.

3.2.6 Fundamental Theorem of Linear Maps

Suppose V is finite dimensional and $T \in L(V, W)$. Then range T is finite-dimensional and dim V = dim null T + dim range T.