Real-Time Train Occupancy Monitoring System

Our concept for the Real-Time Train Occupancy Monitoring System is inspired by the technology DB Lightgate company(Deutsche Bahn).

Their innovation scans passing trains using advanced optical sensors to capture real-time data on:

- Passenger occupancy rates
- Train classification
- Number of carriages
- Speed

This data is processed instantly and can be seamlessly integrated into customer systems, enabling informed decisions, efficient transport management, and enhanced passenger experience.

Passenger Experience

The system delivers essential data to address passenger needs effectively. By providing real-time capacity information, passengers can choose the right connections and locate available seats tailored to their preferences. This boosts customer satisfaction and helps passengers reach their destinations more quickly, reliably, and comfortably. Moreover, active guidance for passengers aids in improving punctuality across the entire rail system.

LOGICAL VIEW

LOGICAL VIEW

KAFKA TOPICS

- 1. train-occupancy-levels → Collects real-time occupancy data.
- 2.train-notifications → Sends notifications for overcrowding, delays, or issues.
- 3. operational-scheduling → Optimizes train schedules.
- 4. passenger-real-time-info → Provides passengers information for seat availability.

JOHN MAURICE P. SISON

MICROSERVICES

Service	Role	Topics Published/Consumed
Service A (Data Input)	Accepts train data (manual input)	Publishes to train-occupancy-levels
L Service B (C)perational Management) L Decision making based on occupancy		Consumes train-occupancy-levels, Publishes to operational-scheduling
Service C (Notification System)	Sends alerts based on occupancy/delays	Consumes train-occupancy-levels , Publishes to train-notifications
Service D (Passenger Info Service)	Filters & formats data for passengers (user-friendly alerts)	Consumes operational-scheduling, Publishes to passenger-real-time-info
Service E (Passenger App)	Fetches & displays real-time train data	Consumes passenger-real-time-info and train-notifications
Service F (Logging & Analytics)	Logs system data for analysis	Consumes all topics for auditing

JOHN MAURICE P. SISON

PROCESS VIEW

DEVELOPMENT VIEW

<u>DEVELOPMENT</u>

DEPLOYMENT VIEW

USE CASES

USE CASES

Admin Inputs Train Occupancy Data

Passenger Monitors Train Occupancy

KAFKA TOPICS

- 1. train-occupancy-levels → Collects real-time occupancy data.
- 2.train-notifications → Sends notifications for overcrowding, delays, or issues.
- 3. operational-scheduling → Optimizes train schedules.
- 4. passenger-real-time-info → Provides passengers information for seat availability.

JOHN MAURICE P. SISON

MICROSERVICES

Service	Role	Topics Published/Consumed
Service A (Data Input)	Accepts train data (manual input)	Publishes to train-occupancy-levels
Service B (Operational Management)	Decision making based on occupancy	Consumes train-occupancy-levels, Publishes to operational-scheduling
Service C (Notification System)	Sends alerts based on occupancy/delays	Consumes train-occupancy-levels , Publishes to train-notifications
Service D (Passenger Info Service)	Filters & formats data for passengers (user-friendly alerts)	Consumes operational-scheduling, Publishes to passenger-real-time-info
Service E (Passenger App)	Fetches & displays real-time train data	Consumes passenger-real-time-info and train-notifications
Service F (Logging & Analytics)	Logs system data for analysis	Consumes all topics for auditing

JOHN MAURICE P. SISON

TRAIN DATA FORM

Field	Туре	Description
train_id	string	Unique identifier for the train.
train_class	string	Class of the train (e.g., "Express", "Economy").
carriages	integer	The number of carriages in the train.
occupancy_level	float	The current occupancy level of the train (0 to 1).
speed	float	The current speed of the train in km/h.

carriage details	list	The list of carriages
Γ		
max seats	int	Maximum number of seats
occupied seats	int	Maximum number of occupied seats

TRAIN CLASSIFICATION

Class	Description	Priority	Expected Speed
Express	Premium Express - Faster	High	200–300+ km/h
Economy	Standard Passenger - Average	Average	100–180 km/h

DECISION MAKING - OPERATIONAL ACTIONS

Criteria	Condition	Action	Reason	Action Message
Overcrowded	occupancy_level >= 100% and speed >= 200	ADD_TRIP	Critical demand, train is fast	"A new train will be added shortly due to high demand."
High but slower train	occupancy_level >= 100% and speed < 200	ADD_CARRIAGES	Overcrowded but not fast enough to duplicate	"Additional carriages are being added to the train for better capacity."
⚠ High demand	85% <= occupancy_level < 100%	ADD_CARRIAGES	High load, better add wagons	"Additional carriages are being added to the train for better capacity."
✓ Stable usage	60% <= occupancy_level < 90%	MAINTAIN_SCHE DULE	Balanced load	"The train is operating on its regular schedule, no changes."
© Underused	50% <= occupancy_level < 70%	MERGE_ROUTE	Moderate underutilization	"Two similar routes are being combined to optimize schedules."

DECISION MAKING - OPERATIONAL ACTIONS - CONTD.

Low demand	25% <= occupancy_level < 40%	REDUCE_FREQUENCY	Low usage, fewer trips needed	"The train frequency is reduced due to lower demand."
Critically low	occupancy_level < 25%	CANCEL_TRIP	Very low demand	"The scheduled train has been cancelled due to very low demand."
Slow business train	train_class in ['A','B'] and speed < 80	ROUTE_REVIEW	Business train not meeting standards	"The train's route or speed is under review for better performance."
✓ Speedy economy train	train_class in ['C','D'] and speed > 110	ROUTE_REVIEW	Possible safety/efficiency issue	"The train's route or speed is under review for better performance."
Too many wagons & underused	carriages > 12 and occupancy_level < 30%	CANCEL_TRIP	Long train not justified by ridership	"The scheduled train has been cancelled due to very low demand."
▶ Invalid input check (optional)	occupancy_level > 150% or carriages <= 0	INVALID	Data integrity issue	"Data integrity issue"

OPERATIONAL ACTIONS - MESSAGE

Action Code	Description	
ADD_TRIP	Schedule another train during peak hours	
ADD_WAGONS	Increase number of wagons to meet demand	
REMOVE_WAGONS	Decrease wagons due to underutilization	
REDUCE_FREQUENCY	Limit trips to off-peak hours	

ROUTE_REVIEW	Flag for route/speed reassessment
CANCEL_TRIP	Suggest cancellation if demand is extremely low
MAINTAIN_SCHEDULE	Keep current schedule, no change
MERGE_ROUTE	Suggest route merge for optimization
INVALID	Data integrity issue

SAMPLE OUTPUT - ADD_TRIP

```
{
  "train_id": "TR_ADD_TRIP",
  "train_class": "Express",
  "speed": 210.0,
  "carriages": [
     { "carriage_number": 1, "max_seats": 100, "occupied_seats": 95 },
     { "carriage_number": 2, "max_seats": 100, "occupied_seats": 96 }
  ]
}
```


SAMPLE OUTPUT - ADD_CARRIAGES

```
"train_id": "T002",
"train_class": "Express",
"carriages": 4,
"carriage_details": [
{"carriage_number": 1, "max_seats": 40, "occupied_seats": 38},
{"carriage_number": 2, "max_seats": 40, "occupied_seats": 39},
{"carriage_number": 3, "max_seats": 40, "occupied_seats": 40},
{"carriage_number": 4, "max_seats": 40, "occupied_seats": 36}
"speed": 150.0
```


SAMPLE OUTPUT - MAINTAIN_SCHEDULE

```
"train_id": "TR_MAINTAIN",
"train_class": "Economy",
"speed": 90.0,
"carriages": [
{ "carriage_number": 1, "max_seats": 100, "occupied_seats": 60 },
{ "carriage_number": 2, "max_seats": 100, "occupied_seats": 80 }
```


SAMPLE OUTPUT - MERGE ROUTE

```
"train_id": "TR_MERGE",
"train_class": "Economy",
"speed": 80.0,
"carriages": [
{ "carriage_number": 1, "max_seats": 100, "occupied_seats": 50 },
{ "carriage_number": 2, "max_seats": 100, "occupied_seats": 65 }
```


SAMPLE OUTPUT - REDUCE_FREQUENCY

```
"train_id": "TR_REDUCE",
"train_class": "Economy",
"speed": 70.0,
"carriages": [
{ "carriage_number": 1, "max_seats": 100, "occupied_seats": 30 },
 { "carriage_number": 2, "max_seats": 100, "occupied_seats": 25 }
```

SAMPLE OUTPUT - CANCEL_TRIP

```
"train_id": "TR_CANCEL",
"train_class": "Economy",
"speed": 60.0,
"carriages": [
{ "carriage_number": 1, "max_seats": 100, "occupied_seats": 10 },
{ "carriage_number": 2, "max_seats": 100, "occupied_seats": 15 }
```

SAMPLE OUTPUT - ROUTE REVIEW

TRAIN DATA - (>150% occupancy or carriages <= 0)

```
"train_id": "TR_INVALID_OCCUPANCY",
"train_class": "Economy",
"speed": 80.0,
"carriages": 2,
"carriage_details": [
{ "carriage_number": 1, "max_seats": 100, "occupied_seats": 200 },
{ "carriage_number": 2, "max_seats": 100, "occupied_seats": 120 }
"train_id": "TR_INVALID_CARRIAGE_COUNT",
"train_class": "Express",
"speed": 150.0,
"carriages": 0,
"carriage_details": []
```

SAMPLE OUTPUT - INVALID

TRAIN DATA - Express but too slow OR Economy but too fast

```
"train_id": "TR_REVIEW_EXPRESS",
"train_class": "Express",
"speed": 70.0,
"carriages": [
{ "carriage_number": 1, "max_seats": 100, "occupied_seats": 70 },
{ "carriage_number": 2, "max_seats": 100, "occupied_seats": 75 }
"train_id": "TR_REVIEW_ECONOMY",
"train_class": "Economy",
"speed": 120.0,
"carriages": [
{ "carriage_number": 1, "max_seats": 100, "occupied_seats": 70 },
{ "carriage_number": 2, "max_seats": 100, "occupied_seats": 75 }
```

THANK YOU

REAL-TIME TRAIN OCCUPANCY MONITORING SYSTEM BY:

JOHN MAURICE P. SISON