Lecture 3: Intro to numeries 5.220 E
Logistics: - Moerak office hours (11-noon Wed)
- test if you can see HW1 problems
- Last time: Balance laus accumulation source tour
· General balance law: $\frac{\partial u}{\partial t} + \sqrt{j} = \hat{f}_s$
· pose fluid mans balance: $\frac{2}{2}(pφ) + \nabla (pq) = \hat{f}_s$
1) Darcy's law: $q = -K \nabla h$ 2) Four him of state: $0 = o(h)$ he house
2) Equation of stak: p=p(h) h= head
· Divergeuce & Gradieut:
- gradient: V scalar -> vector
- divergence: V• vector → scales
Today: - Finish incompressible flow
=> Motivate our approach to numerics
- Finite différences
- Différentiation matrices
Example: Flow around well
-> Conservative Finite Differences

In compressible Flow

- porosity does not change with time $\phi \neq \phi(\varepsilon)$ but $\phi = \phi(\underline{x})$
- fcs pressure variations in infiltration problems p = const.

Substitute Hum!

Hum!

$$\frac{2}{3}(4p) + p \nabla \cdot q = p + s$$
 $\nabla \cdot q = f s$
 $\nabla \cdot q = 0$
 $h = 1$
 $h = 0$
 $h = 0$

substitute Dorcy's law:

$$\nabla \cdot q = f_s$$

$$q = -K \nabla h$$
Poissons Equ

if K = coust.

$$-K \nabla \cdot \nabla h = f_s$$

$$-K \nabla^2 h = f_s$$

$$\nabla^2 h = \frac{3h}{2x^2} + \frac{3h}{3y^2} + \frac{3h}{3z^2}$$

Boundary value problem (BUP)

A well-possed problem requires boundery conditions (BC)

BC: a) Dirichlet BC

prescribe the solution

$$h(\underline{x}) = h_{\underline{B}}(\underline{x}) \quad \underline{x} \in 2Q_{\underline{B}}$$

by Neuman BC

prescribe the flux

In calculus we define
the derivative of function
$$f(x)$$

es $f(x) = \frac{df}{dx} = \lim_{x \to 0} \frac{f(x+6x)-f(x)}{\Delta x}$

Finite differences (one-sided difference)
$$f(x_0) \approx f(x_0 + 4x) - f(x_0)$$

$$f(x_0) \approx f(x_0 + 4x) + O(4x)$$

lu propor numerice class you prove that error ex >> first-order accurak

dou't take limit

Central difference
$$f(x) = \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2 \Delta x}$$

=> second-order accurate

Differentiation Hatrix

Derivative is a linear différential operator

it talus a function and returns différent function

(x) - D((x))

$$f(x) = \mathcal{D}(f(x))$$

derivative operater

The discrete equivalent of f(x) is a vector.

f = f(x). Similarly we can oblin df = f(x)

What is the discrete equivalent of 2?

df = Pf

une de la matrix, because it is liver une it relates two vectors.

-> Differentiation matrix

=> D hes simple bi-diagonal structure Note: Boundaires regulre slifferent treatment.