Gaussian Hilbert spaces

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

July 11, 2015

1 Gaussian measures

Let γ be a Borel probability measure on \mathbb{R} . For $a \in \mathbb{R}$, if $\gamma = \delta_a$ then we call γ a **Gaussian measure with mean** a **and variance** 0. If $\sigma > 0$ and γ has density

$$p(t, a, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(t-a)^2}{2\sigma^2}\right), \quad t \in \mathbb{R},$$

with respect to Lebesgue measure λ_1 on \mathbb{R} , then we call γ a Gaussian measure with mean a and variance σ^2 .

A Borel probability measure γ on \mathbb{R}^n is called **Gaussian** if for each $\xi \in (\mathbb{R}^n)^*$, the pushforward measure $\xi_* \gamma$ is a Gaussian measure on \mathbb{R} . The characteristic function of a Borel probability measure μ on \mathbb{R}^n is

$$\widetilde{\mu}(y) = \int_{\mathbb{R}^n} e^{i\langle y, x \rangle} d\mu(x), \qquad y \in \mathbb{R}^n.$$

We call a linear operator $C \in \mathcal{L}(\mathbb{R}^n)$ **positive** when $\langle Cx, x \rangle \geq 0$ for all $x \in \mathbb{R}^n$. It can be proved² that a Borel probability measure γ on \mathbb{R}^n is Gaussian if and only if there is some $a \in \mathbb{R}^n$ and some positive self-adjoint $C \in \mathcal{L}(\mathbb{R}^n)$ such that

$$\widetilde{\gamma}(y) = \exp\left(i\left\langle y, a\right\rangle - \frac{1}{2}\left\langle Cy, y\right\rangle\right), \qquad y \in \mathbb{R}^n.$$

We say that γ has **mean** a and **covariance operator** C. If C is invertible (which is equivalent to $\langle Cx, x \rangle > 0$ for all nonzero $x \in \mathbb{R}^n$), then the density of γ with respect to Lebesgue measure λ_n on \mathbb{R}^n is

$$x \mapsto \frac{1}{\sqrt{(2\pi)^n \det C}} \exp\left(-\frac{1}{2} \left\langle C^{-1}(x-a), x-a \right\rangle\right), \quad \mathbb{R}^n \to \mathbb{R}.$$

 $^{^{1}}$ We remark that \mathbb{R}^{n} is a real Hilbert space, and differently than a complex Hilbert space it need not be true that a positive linear operator is self-adjoint.

²http://individual.utoronto.ca/jordanbell/notes/gaussian.pdf, Theorem 5.

The standard Gaussian measure on \mathbb{R}^n , denoted γ_n , is the Gaussian measure on \mathbb{R}^n with mean 0 and covariance operator I:

$$d\gamma_n(x) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2}\langle x, x\rangle\right) d\lambda_n(x),$$

where λ_n is Lebesgue measure on \mathbb{R}^n . Throughout the remainder of this note, when we speak of Gaussian measures we assume unless we say otherwise that they have mean 0.

$\mathbf{2} \quad \mathbb{R}^{I}$

Let I be the positive integers. For nonempty subsets J and K of I with $J \subset K$, let $\pi_{K,J} : \mathbb{R}^K \to \mathbb{R}^J$ be the projection map, and for $i \in I$ let $\pi_i = \pi_{I,\{i\}}$. For a topological space X, let \mathscr{B}_X be the Borel σ -algebra of X.

If $B_i \in \mathcal{B}_{\mathbb{R}}$ for each $i \in I$ and $\{i \in I : B_i \neq \mathbb{R}\}$ is finite, we call

$$\prod_{i\in I} B_i \subset \mathbb{R}^I$$

a **cylinder set**. The σ -algebra generated by the collection of all cylinder sets is called the **product** σ -algebra, and is denoted by $\mathscr{B}_{\mathbb{R}}^{I}$. The product measure $\gamma_{I} = \prod_{i \in I} \gamma_{1}$ is the unique probability measure³ on the product σ -algebra $\mathscr{B}_{\mathbb{R}}^{I}$ such that for each cylinder set $\prod_{i \in I} B_{i}$,

$$\gamma_I \left(\prod_{i \in I} B_i \right) = \prod_{i \in I} \gamma_1(B_i).$$

Because I is countable and \mathbb{R} is a second-countable topological space, the Borel σ -algebra of \mathbb{R}^I , with the product topology, is equal to the product σ -algebra on \mathbb{R}^I :

$$\mathscr{B}_{\mathbb{R}^I}=\mathscr{B}_{\mathbb{R}}^I.$$

Thus γ_I is a Borel probability measure on \mathbb{R}^I .

On the one hand, \mathbb{R}^I is a real vector space. On the other hand, with the product topology it is a topological space. It can be proved that with the separating family of seminorms $\{|\pi_i|: i \in I\}$ it is a Fréchet space,⁵ whose topology (the product topology) is induced by the complete translation invariant metric

$$d(x,y) = \sum_{i \in I} 2^{-i} \frac{|x_i - y_i|}{1 + |x_i - y_i|}, \quad x, y \in \mathbb{R}^I.$$

We remark that because \mathbb{R}^I is a countable product of second-countable topological spaces, it is itself a second-countable topological space, and so is separable.

³http://individual.utoronto.ca/jordanbell/notes/productmeasure.pdf

⁴http://individual.utoronto.ca/jordanbell/notes/kolmogorov.pdf, Theorem 7.

⁵Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitch-hiker's Guide*, third ed., p. 207, Example 5.78.

The **dual space of** \mathbb{R}^I , denoted $(\mathbb{R}^I)^*$, is the collection of continuous linear maps $\mathbb{R}^I \to \mathbb{R}$. It turns out that the dual space $(\mathbb{R}^I)^*$ of \mathbb{R}^I is equal to the collection of those $x \in \mathbb{R}^I$ such that $\{i \in I : \pi_i(x) \neq 0\}$ is finite,⁶ with the dual pair

$$\langle x, y \rangle = \sum_{i \in I} x_i y_i, \quad x \in \mathbb{R}^I, \quad y \in (\mathbb{R}^I)^*.$$

3 Gaussian Hilbert spaces

Because \mathbb{R}^I is a second-countable topological space, its Borel σ -algebra $\mathscr{B}_{\mathbb{R}^I}$ is countably generated, and because γ_I is a probability measure on $\mathscr{B}_{\mathbb{R}^I}$ it is a fortiori σ -finite, so the real Hilbert space $L^2(\gamma_I)$ is separable.⁷

Let \mathscr{H} be a real separable Hilbert space, with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, let e_i , $i \in I$, be an orthonormal basis for \mathscr{H} , and let V be the linear span of this basis. In particular, V is a dense linear subspace of \mathscr{H} . For $v \in V$, define

$$\phi(v) = \sum_{i \in I} \langle v, e_i \rangle \, \pi_i.$$

Using

$$\int_{\mathbb{R}} x_i d\gamma_1(x_i) = 0, \qquad \int_{\mathbb{R}} x_i^2 d\gamma_1(x_i) = 1,$$

we calculate 8

$$\|\phi(v)\|_{L^{2}(\gamma_{I})}^{2} = \int_{\mathbb{R}^{I}} |\phi(v)(x)|^{2} d\gamma_{I}(x)$$

$$= \sum_{i \in I} \int_{\mathbb{R}^{I}} \langle v, e_{i} \rangle^{2} \pi_{i}(x)^{2} d\gamma_{I}(x)$$

$$+ \sum_{i \in I} \int_{\mathbb{R}^{I}} \langle v, e_{i} \rangle \langle v, e_{j} \rangle \pi_{i}(x) \pi_{j}(x) d\gamma_{I}(x)$$

$$= \sum_{i \in I} \langle v, e_{i} \rangle^{2}$$

$$= \|v\|^{2},$$

showing that $\phi: V \to L^2(\gamma_I)$ is a linear isometry. Because (i) V is a dense linear subspace of \mathscr{H} , (ii) the operator $\phi: V \to L^2(\gamma_I)$ is bounded, and (iii) $L^2(\gamma_I)$ is a Hilbert space, there is a unique bounded linear operator $\Phi: \mathscr{H} \to L^2(\gamma_I)$ whose restriction to V is equal to ϕ . For $v \in \mathscr{H}$ there is a sequence v_n in V that tends to v, and because Φ is continuous and $\|\cdot\|: \mathscr{H} \to \mathbb{R}$ is continuous,

$$\|\Phi(v)\| = \lim_{n \to \infty} \|\Phi(v_n)\| = \lim_{n \to \infty} \|\phi(v_n)\| = \lim_{n \to \infty} \|v_n\| = \|v\|,$$

 $^{^6{\}rm Charalambos}$ D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 528, Theorem 16.3.

⁷Donald L. Cohn, *Measure Theory*, second ed., p. 102, Proposition 3.4.5.

 $^{^8 \}verb|http://individual.utoronto.ca/jordanbell/notes/parseval.pdf|$

⁹Walter Rudin, Functional Analysis, second ed., p. 39, Exercise 19.

showing that Φ is a linear isometry.

Define $F: \mathcal{H} \to \mathbb{C}$ by

$$F(v) = \int_{\mathbb{R}^I} \exp(i\Phi(v)(x)) d\gamma_I(x).$$

Because $|e^{is}-e^{it}| \leq |s-t|$, and using the Cauchy-Schwarz inequality, for $v,w \in \mathcal{H}$,

$$|F(v) - F(w)| \le \int_{\mathbb{R}^I} |\exp(i\Phi(v)(x)) - \exp(i\Phi(w)(x))| \, d\gamma_I(x)$$

$$\le \int_{\mathbb{R}^I} |\Phi(v)(x) - \Phi(w)(x)| \, d\gamma_I(x)$$

$$= \int_{\mathbb{R}^I} |\Phi(v - w)(x)| \, d\gamma_I(x)$$

$$\le ||\Phi(v - w)||_{L^2(\gamma_I)}$$

$$= ||v - w||,$$

which shows in particular that F is continuous. For $v \in V$, let $I_v = \{i \in I : \langle v, e_i \rangle\} \neq 0$, which is finite. We calculate using Fubini's theorem

$$F(v) = \int_{\mathbb{R}^{I}} \exp\left(i \sum_{i \in I} \langle v, e_{i} \rangle \pi_{i}(x)\right) d\gamma_{I}(x)$$

$$= \int_{\mathbb{R}^{I}} \prod_{i \in I} \exp(i \langle v, e_{i} \rangle \pi_{i}(x)) d\gamma_{I}(x)$$

$$= \prod_{i \in I_{v}} \int_{\mathbb{R}} \exp(i \langle v, e_{i} \rangle t) d\gamma_{1}(t)$$

$$= \prod_{i \in I_{v}} \widetilde{\gamma}_{1}(\langle v, e_{i} \rangle)$$

$$= \prod_{i \in I_{v}} \exp\left(-\frac{1}{2} |\langle v, e_{i} \rangle|^{2}\right)$$

$$= \exp\left(-\frac{1}{2} ||v||^{2}\right).$$

For $v \in \mathcal{H}$, there is a sequence $v_n \in V$ that tends to v, and because F and $w \mapsto \exp\left(-\frac{1}{2}\|w\|^2\right)$ are continuous,

$$F(v) = \lim_{n \to \infty} F(v_n) = \lim_{n \to \infty} \exp\left(-\frac{1}{2} \|v_n\|^2\right) = \exp\left(-\frac{1}{2} \|v\|^2\right).$$

That is, for all $v \in \mathcal{H}$,

$$\int_{\mathbb{R}^{I}} \exp(i\Phi(v)(x)) d\gamma_{I}(x) = \exp\left(-\frac{1}{2} \|v\|^{2}\right).$$

For distinct $v_1, \ldots, v_n \in \mathcal{H}$, write $X = \Phi(v_1) \otimes \cdots \otimes \Phi(v_n)$, which is measurable $\mathbb{R}^I \to \mathbb{R}^n$, and let μ be the pushforward measure of γ_I by X, namely the joint distribution of the random variables $\Phi(v_1), \ldots, \Phi(v_n)$. For $y \in \mathbb{R}^n$ we calculate using the change of variables theorem¹⁰ and Fubini's theorem

$$\widetilde{\mu}(y) = \int_{\mathbb{R}^n} e^{i\langle y, u \rangle} d\mu(u)$$

$$= \int_{\mathbb{R}^I} e^{i\langle y, X(x) \rangle} d\gamma_I(x)$$

$$= \int_{\mathbb{R}^I} e^{i(y_1 \Phi(v_1)(x) + \dots + y_n \Phi(v_n)(x))} d\gamma_I(x)$$

$$= \int_{\mathbb{R}^I} e^{i\Phi(y_1 v_1 + \dots + y_n v_n)(x)} d\gamma_I(x)$$

$$= \exp\left(-\frac{1}{2} \|y_1 v_1 + \dots + y_n v_n\|^2\right)$$

$$= \exp\left(-\frac{1}{2} \sum_{i,j} \langle v_i, v_j \rangle y_i y_j\right),$$

which shows that μ is a Gaussian measure on \mathbb{R}^n with covariance matrix $C_{i,j} = \langle v_i, v_j \rangle$.¹¹ Thus $\{\Phi(v)\}_{v \in \mathscr{H}}$ is a stochastic process with sample space $(\mathbb{R}^I, \mathscr{B}_{\mathbb{R}^I}, \gamma_I)$, index set \mathscr{H} , and state space \mathbb{R} , which we call the **Gaussian process with covariance** $\langle \cdot, \cdot \rangle$.

Let T be a separable metric space and suppose that $c: T \times T \to \mathbb{R}$ is continuous and that for any $t_1, \ldots, t_n \in T$, $\{c(t_i, t_j)\}_{1 \le i, j \le n}$ is a symmetric positive semidefinite matrix. For each $t \in T$ let δ_t be a formal symbol, and let V be the linear span of $\{\delta_t: t \in T\}$. For $v, w \in V$, there are distinct $t_1, \ldots, t_n \in T$ and real numbers $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$ such that $v = \sum_{i=1}^n \alpha_i \delta_{t_i}$ and $w = \sum_{i=1}^n \beta_i \delta_{t_i}$, and we define

$$[v, w] = \sum_{1 \le i, j \le n} \alpha_i \beta_j c(t_i, t_j).$$

For $a \in \mathbb{R}$,

$$[av, w] = \sum_{1 \le i, j \le n} (a\alpha_i)\beta_j c(t_i, t_j) = a \sum_{1 \le i, j \le n} \alpha_i \beta_j c(t_i, t_j) = a[v, w].$$

For $u, v, w \in V$ there are distinct $t_1, \ldots, t_n \in T$ and real numbers

$$\alpha_1, \dots, \alpha_n, \qquad \beta_1, \dots, \beta_n, \qquad \gamma_1, \dots, \gamma_n$$
 such that $v = \sum_{i=1}^n \alpha_i \delta_{t_i}, \ w = \sum_{i=1}^n \beta_i \delta_{t_i}, \ u = \sum_{i=1}^n \gamma_i \delta_{t_i}, \ \text{and}$
$$[u+v,w] = \sum_{1 \leq i,j \leq n} (\alpha_i + \gamma_i) \beta_j c(t_i,t_j) = [u,w] + [v,w].$$

¹⁰Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitch-hiker's Guide*, third ed., p. 484, Theorem 13.46.

¹¹See Barry Simon, Functional Integration and Quantum Physics, p. 16, Theorem 2.3A.

Because $\{c(t_i, t_j)\}_{1 \le i,j \le n}$ is symmetric, [v, w] = [w, v]. Finally, because the matrix $\{c(t_i, t_j)\}_{1 \le i,j \le n}$ is positive semidefinite,

$$[v,v] = \sum_{1 \le i,j \le n} \alpha_i \alpha_j c(t_i,t_j) \ge 0.$$

This establishes that $[\cdot, \cdot]$ is a positive semidefinite inner product on V. Then $|v| = \sqrt{[v, v]}$,

$$|v|^2 = \sum_{1 \le i, j \le n} \alpha_i \alpha_j c(t_i, t_j),$$

is a seminorm on V, and $N=\{v\in V: |v|=0\}$ is a closed linear subspace of V. Let

$$V/N = \{v + N : v \in V\},\$$

For $v, w \in V$ and $r, s \in N$, because |r| = 0 and |s| = 0, by the Cauchy-Schwarz inequality (which is indeed true for a positive semidefinite inner product)¹² we have $|[v, s]|^2 \le |v||s| = 0$ and $|[r, w]|^2 \le |r||w| = 0$, hence

$$[v+r, w+s] = [v, w] + [v, s] + [r, w] + [r, s] = [v, w].$$

Therefore it makes sense to define

$$\langle v + N, w + N \rangle = [v, w].$$

If $\langle v+N,w+N\rangle=0$ then [v,v]=0, i.e. |v|=0 and so $v\in N$, i.e. $v+N=0\in V/N$, and therefore $\langle\cdot,\cdot\rangle$ is an inner product on V/N. Then there is a Hilbert space $(\mathscr{H},\langle\cdot,\cdot\rangle)$ and a linear isometry $i:V/N\to\mathscr{H}$ whose image is a dense subset of \mathscr{H} , called a **completion** of V/H, and this completion is unique up to a unique isomorphism of Hilbert spaces.¹³

T is separable so it has a countable dense subset S. For $t \in T$, either $t \in S$ or $t \notin S$. If $t \notin S$, there is a sequence of distinct s_k in S that tends to t, and because c is continuous,

$$|\delta_{s_k} - \delta_t|^2 = c(s_k, s_k) - c(s_k, t) - c(t, s_k) + c(t, t) \rightarrow c(t, t) - c(t, t) - c(t, t) + c(t, t),$$

so $\delta_{s_k} \to \delta_t$ in V, which shows that $\delta: T \to V$ is continuous. Let W be the \mathbb{Q} -linear span of $\{\delta_s: s \in S\}$. W is countable, and it follows from the above that W is dense in V. Define $\pi: V \to V/N$ by $\pi(v) = v + N$, which is an onto continuous linear map. Then the image of W under $i \circ \pi: V \to \mathscr{H}$ is dense in \mathscr{H} , thus $(\mathscr{H}, \langle \cdot, \cdot \rangle)$ is a separable Hilbert space.

Now let $\{\Phi(v)\}_{v\in\mathscr{H}}$ be the Gaussian process with covariance $\langle\cdot,\cdot\rangle$, and define $q:T\to L^2(\gamma_I)$ by

$$q=\Phi\circ i\circ\pi\circ\delta.$$

¹²A. Ya. Helemskii, *Lectures and Exercises on Functional Analysis*, p. 68, Theorem 1.

¹³A. Ya. Helemskii, Lectures and Exercises on Functional Analysis, p. 172, Proposition 3.

For distinct $t_1, \ldots, t_n \in T$, the vectors $v_j = (i \circ \pi \circ \delta)(t_j) \in \mathcal{H}$, $1 \leq j \leq n$, are distinct. Then $(\Phi(v_1) \otimes \cdots \otimes \Phi(v_n))_* \gamma_I$ is the Gaussian measure on \mathbb{R}^n with covariance matrix

$$C_{i,j} = \langle v_i, v_j \rangle = \langle (i \circ \pi \circ \delta)(t_i), (i \circ \pi \circ \delta)(t_j) \rangle = [\delta_{t_i}, \delta_{t_j}] = c(t_i, t_j).$$

That is, the joint distribution of the random variables q_{t_1}, \ldots, q_{t_n} is the Gaussian measure on \mathbb{R}^n with covariance matrix $C_{i,j} = c(t_i, t_j)$.