## **SOLUTIONS MANUAL**

# Computer Systems Organization and Architecture

John D. Carpinelli

## **Table of Contents**

| Chapter 1  |   |
|------------|---|
| Chapter 2  | 8 |
| Chapter 3  |   |
| Chapter 4  |   |
| Chapter 5  |   |
| Chapter 6  |   |
| Chapter 7  |   |
| Chapter 8  |   |
| Chapter 9  |   |
| Chapter 10 |   |
| Chapter 11 |   |
| Chapter 12 |   |

| 1. | x | у | z | x + y' | y + z | (x + y')(y + z) | xy | xz | y'z | xy + xz + y'z |
|----|---|---|---|--------|-------|-----------------|----|----|-----|---------------|
|    | 0 | 0 | 0 | 1      | 0     | 0               | 0  | 0  | 0   | 0             |
|    | 0 | 0 | 1 | 1      | 1     | 1               | 0  | 0  | 1   | 1             |
|    | 0 | 1 | 0 | 0      | 1     | 0               | 0  | 0  | 0   | 0             |
|    | 0 | 1 | 1 | 0      | 1     | 0               | 0  | 0  | 0   | 0             |
|    | 1 | 0 | 0 | 1      | 0     | 0               | 0  | 0  | 0   | 0             |
|    | 1 | 0 | 1 | 1      | 1     | 1               | 0  | 1  | 1   | 1             |
|    | 1 | 1 | 0 | 1      | 1     | 1               | 1  | 0  | 0   | 1             |
|    | 1 | 1 | 1 | 1      | 1     | 1               | 1  | 1  | 0   | 1             |

| 2. a) | w | х | у | z | wx | xz | y' | wx + xz + y' | b) | w | х | y | z | w + x + y + z |
|-------|---|---|---|---|----|----|----|--------------|----|---|---|---|---|---------------|
|       | 0 | 0 | 0 | 0 | 0  | 0  | 1  | 1            |    | 0 | 0 | 0 | 0 | 0             |
|       | 0 | 0 | 0 | 1 | 0  | 0  | 1  | 1            |    | 0 | 0 | 0 | 1 | 1             |
|       | 0 | 0 | 1 | 0 | 0  | 0  | 0  | 0            |    | 0 | 0 | 1 | 0 | 1             |
|       | 0 | 0 | 1 | 1 | 0  | 0  | 0  | 0            |    | 0 | 0 | 1 | 1 | 1             |
|       | 0 | 1 | 0 | 0 | 0  | 0  | 1  | 1            |    | 0 | 1 | 0 | 0 | 1             |
|       | 0 | 1 | 0 | 1 | 0  | 1  | 1  | 1            |    | 0 | 1 | 0 | 1 | 1             |
|       | 0 | 1 | 1 | 0 | 0  | 0  | 0  | 0            |    | 0 | 1 | 1 | 0 | 1             |
|       | 0 | 1 | 1 | 1 | 0  | 1  | 0  | 1            |    | 0 | 1 | 1 | 1 | 1             |
|       | 1 | 0 | 0 | 0 | 0  | 0  | 1  | 1            |    | 1 | 0 | 0 | 0 | 1             |
|       | 1 | 0 | 0 | 1 | 0  | 0  | 1  | 1            |    | 1 | 0 | 0 | 1 | 1             |
|       | 1 | 0 | 1 | 0 | 0  | 0  | 0  | 0            |    | 1 | 0 | 1 | 0 | 1             |
|       | 1 | 0 | 1 | 1 | 0  | 0  | 0  | 0            |    | 1 | 0 | 1 | 1 | 1             |
|       | 1 | 1 | 0 | 0 | 1  | 0  | 1  | 1            |    | 1 | 1 | 0 | 0 | 1             |
|       | 1 | 1 | 0 | 1 | 1  | 1  | 1  | 1            |    | 1 | 1 | 0 | 1 | 1             |
|       | 1 | 1 | 1 | 0 | 1  | 0  | 0  | 1            |    | 1 | 1 | 1 | 0 | 1             |
|       | 1 | 1 | 1 | 1 | 1  | 1  | 0  | 1            |    | 1 | 1 | 1 | 1 | 1             |

|    |   | I | ı | ı |        | 1 .   |         |        |                                   |
|----|---|---|---|---|--------|-------|---------|--------|-----------------------------------|
| c) | W | X | У | Z | w'x'yz | w xyz | w'x'yz' | w'xyz' | w'x'yz + w'xyz + w'x'yz' + w'xyz' |
|    | 0 | 0 | 0 | 0 | 0      | 0     | 0       | 0      | 0                                 |
|    | 0 | 0 | 0 | 1 | 0      | 0     | 0       | 0      | 0                                 |
|    | 0 | 0 | 1 | 0 | 0      | 0     | 1       | 0      | 1                                 |
|    | 0 | 0 | 1 | 1 | 1      | 0     | 0       | 0      | 1                                 |
|    | 0 | 1 | 0 | 0 | 0      | 0     | 0       | 0      | 0                                 |
|    | 0 | 1 | 0 | 1 | 0      | 0     | 0       | 0      | 0                                 |
|    | 0 | 1 | 1 | 0 | 0      | 0     | 0       | 1      | 1                                 |
|    | 0 | 1 | 1 | 1 | 0      | 1     | 0       | 0      | 1                                 |
|    | 1 | 0 | 0 | 0 | 0      | 0     | 0       | 0      | 0                                 |
|    | 1 | 0 | 0 | 1 | 0      | 0     | 0       | 0      | 0                                 |
|    | 1 | 0 | 1 | 0 | 0      | 0     | 0       | 0      | 0                                 |
|    | 1 | 0 | 1 | 1 | 0      | 0     | 0       | 0      | 0                                 |
|    | 1 | 1 | 0 | 0 | 0      | 0     | 0       | 0      | 0                                 |
|    | 1 | 1 | 0 | 1 | 0      | 0     | 0       | 0      | 0                                 |
|    | 1 | 1 | 1 | 0 | 0      | 0     | 0       | 0      | 0                                 |
|    | 1 | 1 | 1 | 1 | 0      | 0     | 0       | 0      | 0                                 |

| 3. | a | b | ab | (ab)'            | a' | b' | a'+b' |
|----|---|---|----|------------------|----|----|-------|
| •  | 0 | 0 | 0  | 1<br>1<br>1<br>0 | 1  | 1  | 1     |
|    | 0 | 1 | 0  | 1                | 1  | 0  | 1     |
|    | 1 | 0 | 0  | 1                | 0  | 1  | 1     |
|    | 1 | 1 | 1  | 0                | 0  | 0  | 0     |

| a | b | a + b | (a+b)' | a' | b' | ab' |
|---|---|-------|--------|----|----|-----|
| 0 | 0 | 0     | 1      | 1  | 1  | 1   |
| 0 | 1 | 1     | 0      | 1  | 0  | 0   |
| 1 | 0 | 1     | 0      | 0  | 1  | 0   |
| 1 | 1 | 1     | 0      | 0  | 0  | 0   |

- 4. a) w' + x' + y' + z'
  - b) w' + x' + y'z
  - c) (w' + x') + (w' + y') + (w' + z') + (x' + y') + (x' + z') + (y' + z') = w' + x' + y' + z'

| 5. a) | wx\yz | 00 | 01 | 11        | 10 |
|-------|-------|----|----|-----------|----|
|       | 00    | 1  | Ð  | 0         | 0  |
|       | 01    | 0  | J  | 1         | 0  |
|       | 11    | 0  | 0  | $\exists$ | 9  |
|       | 10    | a  | 0  | 9         |    |
|       |       |    |    |           |    |

| b) | $wx \backslash yz$ | 00 | 01 | 11 | 10 |
|----|--------------------|----|----|----|----|
|    | 00                 |    | 1  | 0  | J  |
|    | 01                 | 1  | 1  | 1  | 0  |
|    | 11                 | 1  | 1  | 1  | 0  |
|    | 10                 | 1  | 0  | 0  | 1  |

$$w'x'y' + w'xz + wxy + wx'z'$$
  
or  
 $x'y'z' + w'y'z + xyz + wyz'$ 

$$x'z' + w'y' + xz + xy'$$
  
or  
 $x'z' + w'y' + xz + y'z'$ 

$$w'z' + xy$$

x'

c)

| 7. a) | wx\yz | 00 | 01 | 11 | 10 |
|-------|-------|----|----|----|----|
|       | 00    | 0  | 1  | 0  | 0  |
|       | 01    | 0  | 1  | 1  | 0  |
|       | 11    | U  | 1  | 1/ | 1  |
|       | 10    | 0  | 0  | 0  | 0  |



$$wx + xz + w'y'z$$

$$y'z' + xy' + wz'$$

Already minimal











wx + xy



- 11. Change the AND gates to NAND gates. The rest of the circuit is unchanged.
- 12. Remove the tri-state buffers and do one of the following:
  - a) Change each 2-input AND gate to a 3-input AND gate. Each gates' inputs should be its two original inputs and *E*, or
  - b) Have each AND gate's output serve as an input to another 2-input AND gate, one gate for each original AND gate. The second input to the new 2-input AND gates is *E*.





15. Set up Karnaugh maps for each output, then develop minimal logic expressions and design the appropriate logic circuits.

$$\begin{split} (X > Y) &= X_{I}Y_{I}' + X_{0}Y_{I}'Y_{0}' + X_{I}X_{0}Y_{0}' \\ (X = Y) &= X_{I}'X_{0}'Y_{I}'Y_{0}' + X_{I}'X_{0}Y_{I}'Y_{0} + X_{I}X_{0}'Y_{I}Y_{0}' + X_{I}X_{0}Y_{I}Y_{0} = (X_{I} \oplus Y_{I})'(X_{0} \oplus Y_{0})' \\ (X < Y) &= X_{I}'Y_{I} + X_{I}'X_{0}'Y_{0} + X_{0}'Y_{I}Y_{0} \end{split}$$



16. 
$$C_3 = X_2 Y_2 + (X_2 \oplus Y_2)(X_1 Y_1 + (X_1 \oplus Y_1)(X_0 Y_0 + (X_0 \oplus Y_0)C_0))$$
$$C_4 = X_3 Y_3 + (X_3 \oplus Y_3)(X_2 Y_2 + (X_2 \oplus Y_2)(X_1 Y_1 + (X_1 \oplus Y_1)(X_0 Y_0 + (X_0 \oplus Y_0)C_0)))$$





20. The four inputs can be in one of 24 = 4! possible orders. Since each sorter has two possible states (MAX = X MIN = Y, or MAX = Y MIN = X), n sorters can have up to  $2^n$  states. Four sorters can have only  $2^4 = 16$  states, not enough to sort all 24 possible input orders. Five sorters have  $2^5 = 32$  states, which could be sufficient. (This argument establishes a lower bound; it does not guarantee the existence of a 5-sorter network that can sort four inputs. Since the sorting network of Figure 1.24(b) matches this bound, it is a minimal network.)



22. A flip-flop is clocked if the increment signal and clock are asserted, and all flip-flops to its right are 1.



23. Each clock is driven by Q of the flip-flop to its right instead of Q'. The clock of the rightmost flip-flop is unchanged. All other signals are unchanged.





| 1. a) | Present State | D | Next State |
|-------|---------------|---|------------|
|       | 0             | 0 | 0          |
|       | 0             | 1 | 1          |
|       | 1             | 0 | 0          |
|       | 1             | 1 | 1          |



| b) | Present State | T | Next State |
|----|---------------|---|------------|
|    | 0             | 0 | 0          |
|    | 0             | 1 | 1          |
|    | 1             | 0 | 1          |
|    | 1             | 1 | 0          |



| 2. | Present State | S | R | Next State |
|----|---------------|---|---|------------|
|    | 0             | 0 | 0 | 0          |
|    | 0             | 0 | 1 | 0          |
|    | 0             | 1 | 0 | 1          |
|    | 0             | 1 | 1 | U          |
|    | 1             | 0 | 0 | 1          |
|    | 1             | 0 | 1 | 0          |
|    | 1             | 1 | 0 | 1          |
|    | 1             | 1 | 1 | U          |
|    | U             | 0 | 0 | U          |
|    | U             | 0 | 1 | 0          |
|    | U             | 1 | 0 | 1          |
|    | U             | 1 | 1 | U          |



3. Add the following states to the state table. Since all additions are self-loops, it is not necessary to change the state diagram.

| Present State | C | $I_{\underline{I}}$ | $I_0$ | Next State  | R | G | A |
|---------------|---|---------------------|-------|-------------|---|---|---|
| $S_{NOCAR}$   | 0 | 0                   | 1     | $S_{NOCAR}$ | 1 | 0 | 0 |
| $S_{NOCAR}$   | 0 | 1                   | 0     | $S_{NOCAR}$ | 1 | 0 | 0 |
| $S_{NOCAR}$   | 0 | 1                   | 1     | $S_{NOCAR}$ | 1 | 0 | 0 |
| $SP_{AID}$    | 1 | 0                   | 1     | $SP_{AID}$  | 0 | 1 | 0 |
| $SP_{AID}$    | 1 | 1                   | 0     | $SP_{AID}$  | 0 | 1 | 0 |
| $SP_{AID}$    | 1 | 1                   | 1     | $SP_{AID}$  | 0 | 1 | 0 |
| $S_{CHEAT}$   | 0 | 0                   | 1     | $S_{CHEAT}$ | 1 | 0 | 1 |
| $S_{CHEAT}$   | 0 | 1                   | 0     | $S_{CHEAT}$ | 1 | 0 | 1 |
| $S_{CHEAT}$   | 0 | 1                   | 1     | $S_{CHEAT}$ | 1 | 0 | 1 |





5.



6. Address Data (Mealy) Data (Moore)

| 1 Iddi Cbb | Data (Meary) | Data (Moore) |
|------------|--------------|--------------|
| 0000       | 0000         | 0000         |
| 0001       | 0010         | 0010         |
| 0010       | 0100         | 0100         |
| 0011       | 0110         | 0110         |
| 0100       | 1000         | 1000         |
| 0101       | 1010         | 1010         |
| 0110       | 1101         | 1100         |
| 0111       | 1110         | 1110         |
| 1000       | 0000         | 0000         |
| 1001       | 0010         | 0010         |
| 1010       | 0100         | 0100         |
| 1011       | 0110         | 0110         |
| 1100       | 1000         | 1001         |
| 1101       | 1010         | 1011         |
| 1110       | 1101         | 1100         |
| 1111       | 1110         | 1110         |



| Present State | Ι | Next State | M |
|---------------|---|------------|---|
| 00            | 0 | 00         | 0 |
| 00            | 1 | 01         | 0 |
| 01            | 0 | 00         | 0 |
| 01            | 1 | 10         | 0 |
| 10            | 0 | 11         | 0 |
| 10            | 1 | 10         | 0 |
| 11            | 0 | 00         | 1 |
| 11            | 1 | 01         | 1 |

$$\begin{split} N_I &= P_I ' P_0 I + P_I P_0 ' \\ N_0 &= P_I ' P_0 ' I + P_I P_0 ' I ' + P_I P_0 I \\ M &= P_I P_0 \end{split}$$



8.



9.

| Address | Data (Mealy) | Data (Moore) |
|---------|--------------|--------------|
| 000     | 000          | 000          |
| 001     | 010          | 010          |
| 010     | 000          | 000          |
| 011     | 100          | 100          |
| 100     | 111          | 110          |
| 101     | 100          | 100          |
| 110     | 000          | 001          |
| 111     | 010          | 011          |

10. State value assignments  $(P_3 - P_0)$ :  $S_0 = 0000$   $S_5 = 0001$   $S_{10} = 0010$   $S_{15} = 0011$   $S_{20} = 0100$   $S_{25} = 0101$   $S_{30} = 0110$   $S_{PAID} = 0111$   $S_{NOCAR} = 1000$   $S_{CHEAT} = 1001$ 

$$\begin{split} N_3 &= C' \\ N_2 &= P_3'CI_1I_0 + P_3'(P_2 + P_1)CI_1I_0' + P_3'(P_2 + P_1P_0)CI_1'I_0 + P_2CI_1'I_0' \\ N_1 &= P_3'(P_2 + P_1 + P_0)CI_1I_0 + P_3'(P_2 + P_1)CI_1I_0' + P_3'(P_1P_0 + P_1P_0' + P_2P_1P_0)CI_1'I_0 + P_1P_0CI_1'I_0' \\ N_0 &= P_3'(P_2 + P_1 + P_0')CI_1I_0 + P_3'(P_0 + P_2P_1)CI_1I_0' + P_3'(P_0' + P_2P_1)CI_1'I_0 + P_3'P_0CI_1'I_0' + P_3P_0CI_1'I_0' + P_3'(P_2' + P_1' + P_0')C' \\ &+ P_3'(P_2' + P_1' + P_0')C' \end{split}$$

 $R = S_{PAID}'$ 

 $G = S_{PAID}$ 

 $A = S_{CHEAT}$ 

11. State value assignments  $(P_3 - P_0)$ :  $S_0 = 0000$   $S_5 = 0001$   $S_{10} = 0010$   $S_{15} = 0011$   $S_{20} = 0100$   $S_{25} = 0101$   $S_{30} = 0110$   $S_{PAID} = 0111$   $S_{NOCAR} = 1000$   $S_{CHEAT} = 1001$ 

$$\begin{split} N_3 &= C' \\ N_2 &= P_3' C I_1 I_0 + P_3' (P_2 + P_1) C I_1 I_0' + P_3' (P_2 + P_1 P_0) C I_1' I_0 + P_2 C I_1' I_0' \\ N_1 &= P_3' (P_2 + P_1 + P_0) C I_1 I_0 + P_3' (P_2 + P_1') C I_1 I_0' + P_3' (P_1' P_0 + P_1 P_0' + P_2 P_1 P_0) C I_1' I_0 + P_1 P_0 C I_1' I_0' \\ N_0 &= P_3' (P_2 + P_1 + P_0') C I_1 I_0 + P_3' (P_0 + P_2 P_1) C I_1 I_0' + P_3' (P_0' + P_2 P_1) C I_1' I_0 + P_3' P_0 C I_1' I_0' + P_3 P_0 C \\ &+ P_3' (P_2' + P_1' + P_0') C' \\ R &= G' \\ G &= P_3' (P_2 + P_1) C I_1 I_0 + P_3' P_2 P_0 C I_1 + P_3' P_2 P_1 C (I_1 + I_0) + P_3' P_2 P_1 P_0 C \\ A &= P_3' (P_2 + P_1 + P_0) C' \end{split}$$

| 12. | Address | Data                                                            |
|-----|---------|-----------------------------------------------------------------|
|     | 0000XXX | 1001101 1001101 1001101 1001101 0000100 0001100 0010100 0101100 |
|     | 0001XXX | 1001101 1001101 1001101 1001101 0001100 0010100 0011100 0110100 |
|     | 0010XXX | 1001101 1001101 1001101 1001101 0010100 0011100 010010          |
|     | 0011XXX | 1001101 1001101 1001101 1001101 0011100 010010                  |
|     | 0100XXX | 1001101 1001101 1001101 1001101 0100100 0101100 0110100 0111010 |
|     | 0101XXX | 1001101 1001101 1001101 1001101 0101100 0110100 0111010 0111010 |
|     | 0110XXX | 1001101 1001101 1001101 1001101 0110100 0111010 0111010 0111010 |
|     | 0111XXX | 1000100 1000100 1000100 1000100 0111010 0111010 0111010 0111010 |
|     | 1000XXX | 1000100 1000100 1000100 1000100 0000100 0000100 0000100 0000100 |
|     | 1001XXX | 1001101 1001101 1001101 1001101 0000100 0000100 0000100 0000100 |
|     | 1010XXX | 1000100 1000100 1000100 1000100 1000100 1000100 1000100 1000100 |
|     | 1011XXX | 1000100 1000100 1000100 1000100 1000100 1000100 1000100 1000100 |
|     | 1100XXX | 1000100 1000100 1000100 1000100 1000100 1000100 1000100 1000100 |
|     | 1101XXX | 1000100 1000100 1000100 1000100 1000100 1000100 1000100 1000100 |
|     | 1110XXX | 1000100 1000100 1000100 1000100 1000100 1000100 1000100 1000100 |
|     | 1111XXX | 1000100 1000100 1000100 1000100 1000100 1000100 1000100 1000100 |



| 13. <i>N</i> <sub>2</sub> : | $P_2P_1\backslash P_0U$ | 00  | 01 | 11 | 10 |
|-----------------------------|-------------------------|-----|----|----|----|
| _                           | 00                      | 0   | 0  | 0  | 0  |
|                             | 01                      | 0   | 0  | 1  | 0  |
|                             | 11                      | 0   | 0  | 0  | 0  |
|                             | 10                      | (1) | 1) | 0  | 1  |

| $N_1$ : | $P_2P_1\backslash P_0U$ | 00 | 01     | 11 | 10 |
|---------|-------------------------|----|--------|----|----|
|         | 00                      | 0  | 0      | 1  | 0  |
|         | 01                      | Θ  | $\cap$ | 0  | A  |
|         | 11                      | 0  | 0      | 0  | 0  |
|         | 10                      | 0  | 0      | 0  | 0  |

14. The next state logic is the same as for the Moore machine.

$$\begin{split} N_2 &= P_2 P_0' + P_2 U' + P_1 P_0 U \\ N_1 &= P_1 P_0' + P_1 U' + P_2' P_1' P_0 U \\ N_0 &= P_0' U + P_0 U' \\ C &= P_2' P_1' P_0' U' + P_2 P_1' P_0 U \\ V_2 &= P_2' P_1 P_0 U + P_2 P_1' P_0' + P_2 P_1' P_0 U' \\ V_1 &= P_2' P_1' P_0 U + P_2' P_1 P_0' + P_2' P_1 P_0 U' \\ V_0 &= (P_2' + P_1') P_0' U + (P_2' + P_1) P_0 U' \end{split}$$

15. All possible next state values are already used.

16. State value assignments 
$$(P_3 - P_0)$$
:  $S_0 = 0000$   $S_5 = 0001$   $S_{10} = 0010$   $S_{15} = 0011$   $S_{20} = 0100$   $S_{25} = 0101$   $S_{30} = 0110$   $S_{PAID} = 0111$   $S_{NOCAR} = 1000$   $S_{CHEAT} = 1001$   $S_A = 1010$   $S_B = 1011$   $S_C = 1100$   $S_D = 1101$   $S_E = 1110$   $S_F = 1111$ 

Add to state table:

| Present State | C | $I_1$ | $I_0$ | Next State | R | G | $\boldsymbol{A}$ |
|---------------|---|-------|-------|------------|---|---|------------------|
| 1010          | X | X     | X     | 1000       | 0 | 0 | 0                |
| 1011          | X | X     | X     | 1000       | 0 | 0 | 0                |
| 1100          | X | X     | X     | 1000       | 0 | 0 | 0                |
| 1101          | X | X     | X     | 1000       | 0 | 0 | 0                |
| 1110          | X | X     | X     | 1000       | 0 | 0 | 0                |
| 1111          | X | X     | X     | 1000       | 0 | 0 | 0                |

Add to state diagram:



$$N_3 = C' + P_3(P_2 + P_1)$$

$$N_2 = P_3'CI_1I_0 + P_3'(P_2 + P_1)CI_1I_0' + P_3'(P_2 + P_1P_0)CI_1'I_0 + P_2CI_1'I_0'$$

$$N_1 = P_3'(P_2 + P_1 + P_0)CI_1I_0 + P_3'(P_2 + P_1')CI_1I_0' + P_3'(P_1'P_0 + P_1P_0' + P_2P_1P_0)CI_1'I_0 + P_1P_0CI_1'I_0'$$

$$N_0 = P_3'(P_2 + P_1 + P_0')CI_1I_0 + P_3'(P_0 + P_2P_1)CI_1I_0' + P_3'(P_0' + P_2P_1)CI_1'I_0 + P_3'P_0CI_1'I_0' + P_3P_0CI_1'I_0' + P_3P_0CI_1' + P_3P_0$$

$$R = S_{PAID}'$$

$$G = S_{PAID}$$

$$A = S_{CHEAT}$$

17. 
$$N_3 = P_2 P_1 P_0 U' + P_3 (P_2' + P_1' + P_0' + U)$$

$$N_2 = P_3 P_2 (P_0 + U) + P_2 P_1 + P_3' P_1 P_0' U'$$

$$N_1 = P_3' (P_2 + P_1)U' + P_2 P_1 P_0 U' + P_1 U$$

$$N_0 = (P_3' + P_2)P_1'U + P_3'P_2U + P_0U'$$

$$C = P_2'P_1'P_0'$$

$$V_2 = P_3 P_1' P_0 + P_3 P_2 P_0'$$

$$V_1 = P_3' P_1 P_0' + P_2 P_1 P_0$$

$$V_0 = P_3'P_2'P_0 + P_2P_1P_0 + P_3P_1'P_0$$

18.







20. States are of the form ABCYZ, where A|B|C=0 if a player may signal, or 1 if the player may not signal. YZ represents the player answering the question (01 = player 1, 10 = player 2, 11 = player 3, 00 = no player). Although not shown in the diagram, there is an arc from every state back to state 00000 with condition R.



| Address    | Data      | Address    | Data      | Address    | Data      |
|------------|-----------|------------|-----------|------------|-----------|
| XXXXX XX1X | 00000000  | 00110 XX00 | 00110 010 | 10010 XX00 | 10010 010 |
| 00000 000X | 00000000  | 00110 XX01 | 01100 010 | 10010 XX01 | 11000 010 |
| 00000 010X | 00001 000 | 01000 X00X | 01000 000 | 10011 XX00 | 10011 001 |
| 00000 100X | 00010 000 | 01000 010X | 01001 000 | 10011 XX01 | 10100 001 |
| 00000 110X | 00011 000 | 01000 110X | 01011 000 | 10100 0X0X | 10100 000 |
| 00001 XX00 | 00001 100 | 01001 XX00 | 01001 100 | 10100 100X | 10110 000 |
| 00001 XX01 | 10000 100 | 01001 XX01 | 11000 100 | 10100 110X | 10100 000 |
| 00010 XX00 | 00010 010 | 01011 XX00 | 01011 001 | 10110 XX00 | 10110 010 |
| 00010 XX01 | 01000 010 | 01011 XX01 | 01100 001 | 10110 XX01 | 11100 010 |
| 00011 XX00 | 00011 001 | 01100 000X | 01100 000 | 11000 0X0X | 11000 000 |
| 00011 XX01 | 00100 001 | 01100 010X | 01101 000 | 11000 100X | 11000 000 |
| 00100 000X | 00100 000 | 01100 1X0X | 01100 000 | 11000 110X | 11011 000 |
| 00100 010X | 00101 000 | 01101 XX00 | 01101 100 | 11011 XX00 | 11011 001 |
| 00100 100X | 00110 000 | 01101 XX01 | 11100 100 | 11011 XX01 | 11100 001 |
| 00100 110X | 00100 000 | 10000 0X0X | 10000 000 | 11100 XX0X | 11100 000 |
| 00101 XX00 | 00101 100 | 10000 100X | 10010 000 | All others | 00000000  |
| 00101 XX01 | 10100 100 | 10000 110X | 10011 000 |            |           |

21. States are of the form ABCYZ, where A|B|C=0 if a player may signal, or 1 if the player may not signal. YZ represents the player answering the question (01 = player 1, 10 = player 2, 11 = player 3, 00 = no player). Although not shown in the diagram, there is an arc from every state back to state 00000 with condition R.



| Address    | Data      | Address    | Data      | Address    | Data      |
|------------|-----------|------------|-----------|------------|-----------|
| XXXXX XX1X | 0000 000  | 00110 XX00 | 00110 010 | 10010 XX00 | 10010 010 |
| 00000 000X | 00000000  | 00110 XX01 | 01100 000 | 10010 XX01 | 11000 000 |
| 00000 010X | 00001 100 | 01000 X00X | 01000 000 | 10011 XX00 | 10011 001 |
| 00000 100X | 00010 010 | 01000 010X | 01001 100 | 10011 XX01 | 10100 000 |
| 00000 110X | 00011 001 | 01000 110X | 01011 001 | 10100 0X0X | 10100 000 |
| 00001 XX00 | 00001 100 | 01001 XX00 | 01001 100 | 10100 100X | 10110 010 |
| 00001 XX01 | 10000 000 | 01001 XX01 | 11000 000 | 10100 110X | 10100 000 |
| 00010 XX00 | 00010 010 | 01011 XX00 | 01011 001 | 10110 XX00 | 10110 010 |
| 00010 XX01 | 01000 000 | 01011 XX01 | 01100 000 | 10110 XX01 | 11100 000 |
| 00011 XX00 | 00011 001 | 01100 000X | 01100 000 | 11000 0X0X | 11000 000 |
| 00011 XX01 | 00100 000 | 01100 010X | 01101 100 | 11000 100X | 11000 000 |
| 00100 000X | 00100 000 | 01100 1X0X | 01100 000 | 11000 110X | 11011 001 |
| 00100 010X | 00101 100 | 01101 XX00 | 01101 100 | 11011 XX00 | 11011 001 |
| 00100 100X | 00110 010 | 01101 XX01 | 11100 000 | 11011 XX01 | 11100 000 |
| 00100 110X | 00100 000 | 10000 0X0X | 10000 000 | 11100 XX0X | 11100 000 |
| 00101 XX00 | 00101 100 | 10000 100X | 10010 010 | All others | 0000 000  |
| 00101 XX01 | 10100 000 | 10000 110X | 10011 001 |            |           |

22.



23.



24.



25.  $P_1$ :  $P_0X'Y$ 

 $P_0$ :  $P_0XY'$  should be  $P_0X'Y'$ 

B:  $P_0$  should be  $P_0$ 

26.

CLR: 0XY' should be 1XY'

Counter input  $D_0$ : 0X'Y should be 0XY

A: 1 should be 0

| Address | Correct Data   |
|---------|----------------|
| 0011    | 0 <u>1</u> 110 |
| 0100    | 0101 <u>1</u>  |
| 1011    | 00111          |

- 1. a) Data movement b) Data operation c) Program control d) Data operation e) Data operation
- 2. a) Data operation b) Program control c) Data movement d) Data movement e) Data operation
- 3. a) Direct b) Implied c) Implicit
- 4. a) Implicit b) Direct c) Implicit
- 5. a) Implicit b) Direct c) Implicit
- 6. a) Register Direct b) Immediate c) Implicit d) Immediate e) Direct
- 7. a) Implicit b) Direct c) Indirect d) Register Indirect e) Register Direct
- 8. a) Register Direct b) Register Indirect c) Implicit d) Implicit e) Immediate
- 9. a) AC = 11 b) AC = 12 c) AC = 10 d) AC = 11 e) AC = 10 f) AC = 33 g) AC = 41
- 10. a) AC = 11 b) AC = 12 c) AC = 30 d) AC = 31 e) AC = 10 f) AC = 23 g) AC = 31
- 11. a) AC = 11 b) AC = 12 c) AC = 20 d) AC = 21 e) AC = 10 f) AC = 43 g) AC = 21
- 12. a) MUL X,B,C b) MOV X,B c) LOAD B d) PUSH A ADD X,X,A MUL X,C MUL C PUSH B ADD X,X,D ADD X,A ADD A PUSH C ADD X,D ADD D MUL STORE X PUSH D ADD **ADD** POP X
- 13. b) MOV T,A c) LOAD A d) PUSH A MUL T,A,B MUL B MUL T,T,C MUL T,B PUSH B ADD X,E,F MUL T,C MUL C MUL MUL X,X,D MOV X,E STORE T PUSH C ADD X,F ADD X,X,T LOAD E MUL MUL X,D ADD F PUSH D ADD X,T MULT D **PUSH E** ADD T PUSH F STORE X ADD MUL ADD POP X

| SUB X<br>MUL '<br>ADD ' | X,A,X MUI<br>T,E,F MO'<br>T,T,D SUE<br>X,X,T MO'<br>MUI<br>ADI                                     | L T,C<br>V X,A<br>B X,T<br>V T,E<br>L T,F<br>D T,D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOAD B MUL C STORE T LOAD A SUB T STORE X LOAD E MUL F ADD D MUL X STORE X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) PUSH A PUSH B PUSH C MUL SUB PUSH D PUSH E PUSH F MUL ADD MUL POP X |
|-------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Processor               | Time per instruction                                                                               | # Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fastest                                                                |
| 3                       | 100 113                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lastest                                                                |
| Processor               | Time per instruction                                                                               | # Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| 0                       | 35 ns                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 280 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fastest                                                                |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1450050                                                                |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |
| Processor               | Time per instruction                                                                               | # Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| 0                       | 35 ns                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 420 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fastest                                                                |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
|                         |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
| 3                       | 100 ns                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |
| ·                       |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |
| Processor               | Time per instruction                                                                               | # Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |
| 0                       | 35 ns                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 420 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fastest                                                                |
| 1                       | 50 ns                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 550 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
| 2                       | 70 ns                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 560 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
| 3                       | 100 ns                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
|                         | MVAC LDAC 1002H ADD MVAC LDAC 1003H ADD MVAC LDAC 1004H ADD MVAC LDAC 1005H ADD                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADD<br>MVA<br>LDA<br>ADD<br>MVA<br>ADD<br>MVA<br>LDA<br>ADD<br>MVA<br>LDA<br>ADD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AC<br>C 1007H<br>AC<br>C 1008H<br>AC<br>C 1009H<br>AC<br>C 100AH       |
|                         | Processor  O 1 2 3  Processor  O 1 2 3 | SUB X,A,X   MUL   MUL T,E,F   MO   ADD T,T,D   SUE   MUL X,X,T   MO   MUL   ADI   ADI   MUL   ADI   ADI | SUB X,A,X   MUL T,C     MUL T,E,F   MOV X,A     ADD T,T,D   SUB X,T     MUL T,F     MUL T,F     ADD T,D     MUL X,T     MUL T,C     MUL T,C     MUL T,C     MUL X,T     MUL X,T     MUL T,C     MUL T,C     MUL X,T     MUL T,C     MUL | SUB X,A,X                                                              |

```
LXI H, 1001H
20.
               MVI B,0AH
               XRA A
               ADD M
         Loop:
               INX H
               DCR B
               JNZ Loop
               STA 1000H
                                                        LDAC FB
21.
               CLAC
               INAC
                                                          MVAC
                                                          LDAC FA
               STAC FA
                                FA = 1
               INAC
                                                          ADD
               STAC FB
                                FB = 2
                                                          STAC FB
                                                                           FB = FB + FA
               STAC Count
                                Count = 2
                                                          LDAC Count
                                FN = 2
               STAC FN
                                                          INAC
               MVAC
                                                          STAC Count
                                                                           Count = Count + 1
               LDAC
                                                          MVAC
               SUB
                                                          LDAC n
               JMPZ Done
                                If n = 2 then done
                                                          SUB
                                                                           If Count = n then
         Loop: LDAC FA
                                                          JMPZ DoneB
                                                                            done, result in FB
               MVAC
                                                          JUMP Loop
                                                                           Not done, loop back
               LDAC FB
                                                   DoneA: LDAC FA
                                                          STAC FN
                                                                           FN = FA
               ADD
               STAC FA
                                FA = FA + FB
                                                          JUMP Done
               LDAC Count
                                                   DoneB: LDAC FB
               INAC
                                                          STAC FN
                                                                           FN = FB
               STAC Count
                                Count = Count + 1
                                                   Done:
               MVAC
               LDAC n
               SUB
                                 If Count = n then
               JMPZ DoneA
                                 done, result in FA
22.
               LDA n
                                D = n
               MOV D,A
               MVI B,1
                                B = FA
               MVI A,2
               MOV C,A
                                C = FB
               DCR D
               DCR D
               JZ Done
                                Initially A = FA
         Loop: ADD B
               MOV B,A
                                FA = FA + FB
               DCR D
                                If D = 0 then done
               JZ Done
               ADD C
                                FB = FB + FA
               MOV C,A
               DCR D
                                If D = 0 then done
               JNZ Loop
                                Not done, loop back
        Done: STA FN
                                Store FN
```



















10. a.) 
$$CE = A_7' A_6' A_5' A_4' (IO/\overline{M})'$$
  $OE = RD$ 

b.) 
$$CE = A_7' A_6' A_5' A_4 (IO/\overline{M})'$$
  $OE = RD$ 

c.) 
$$CE = A_7 A_6 A_5 A_4 (IO/\overline{M})'$$
  $OE = RD$ 

| 11. |    | Big Endian | Little Endian |
|-----|----|------------|---------------|
| 11. | (۵ | 22 12H     | 22 78H        |
|     | a) | 23 34H     | 23 56H        |
|     |    | 24 56H     | 24 34H        |
|     |    | 25 78H     | 25 12H        |
|     | b) | 22 09H     | 22 27H        |
|     |    | 23 27H     | 23 09H        |
|     | c) | 22 05H     | 22 12H        |
|     | ĺ  | 23 55H     | 23 12H        |
|     |    | 24 12H     | 24 55H        |
|     |    | 25 12H     | 25 05H        |

12. Start each value at location 4*X*, where  $X \in I \ge 0$ , 20 for example.

13.



14. This is the same as the previous problem, except  $IO/\overline{M}$  is not included.



16. This is the same as the previous problem, except  $IO/\overline{M}$  is not included.



18. This is the same as the previous problem, except  $IO/\overline{M}$  is not included.









#### 22. Memory subsystem:



#### 22 (continued). I/O subsystem:



- 1. a)  $\alpha: W \leftarrow X, Y \leftarrow Z$ 
  - b)  $\alpha: W \leftarrow X$ 
    - $\alpha'$ :  $Y \leftarrow Z$
  - c)  $\alpha': W \leftarrow X$
- 2. a)







- 3. a)  $\alpha: X \leftarrow Y$ 
  - $\beta: X \leftarrow Y'$
  - b)  $\alpha: X \leftarrow 0$ 
    - $\beta: X \leftarrow X'$
- 4. a)









- 8. a) 0011 0010 0000 0100
  - b) 0100 1100 1000 0001
  - c) 0011 0010 0000 0101
  - d) 0100 1100 1000 0001
  - e) 1011 0010 0000 0100
  - f) 1100 1100 1000 0001
  - g) 1001 0000 0010 0000
  - h) 0000 1001 1001 0000
- 9. a) 0000 0111 0010 1010
  - b) 0100 0001 1100 1010
  - c) 0000 0111 0010 1011
  - d) 1100 0001 1100 1010
  - e) 1000 0111 0010 1010
  - f) 1100 0001 1100 1010
  - g) 0011 1001 0101 0000
  - h) 0000 1000 0011 1001
- 10. a) 1011 0010 1111 0000
  - b) 0010 1100 1011 1100
  - c) 1011 0010 1111 0000
  - d) 0010 1100 1011 1100
  - e) 0011 0010 1111 0000
  - f) 0010 1100 1011 1100
  - g) 1001 0111 1000 0000
  - h) 0000 0101 1001 0111





- 13. a)  $X \leftarrow 0, X[(n-2)-1]$ 
  - b)  $X \leftarrow X[(n-2)-0, (n-1)]$
  - c)  $X \leftarrow X[0, (n-1)-1]$
  - d)  $X[(n-2)-0] \leftarrow X[(n-3)-0],0$
  - e)  $X[(n-2)-0] \leftarrow X[(n-1)-1]$
  - f)  $X \leftarrow X[(n-5)-0],0000$
  - g)  $X \leftarrow 0000, X[(n-1)-4]$

14. Define  $X_I X_0 = 00$  ( $S_0$ ), 01 ( $S_1$ ), 10 ( $S_2$ ), 11 ( $S_3$ ). I is the input bit.

> $X_1 X_0 T$ :  $M \leftarrow 0$  $X_1 X_0 T$ :  $X_0 \leftarrow 1, M \leftarrow 0$  $X_1'X_0I'$ :  $X_0 \leftarrow 0$

> $X_1 X_0 I$ :  $X_1 \leftarrow 1, X_0 \leftarrow 0$

 $X_1X_0T$ :  $X_0 \leftarrow 1, M \leftarrow 1$ 

 $X_1X_0I'$ :  $X_1 \leftarrow 0, X_0 \leftarrow 0, M \leftarrow 0$ 

 $X_1X_0I$ :  $X_1 \leftarrow 0, M \leftarrow 0$ 

15.



16. Define  $X_1X_0 = 00$  ( $S_0$ ), 01 ( $S_1$ ), 10 ( $S_2$ ), 11 ( $S_3$ ). *I* is the input bit.

Brute force solution (one RTL

Simpler solution (one RTL statement per state)

Simplest solution (combining states)

statement per input value per state)

 $X_2'X_1'X_0'$ :  $X_0 \leftarrow I, M \leftarrow 0$  $X_2'X_1'X_0'I'$ :  $M \leftarrow 0$  $X_2'X_1'X_0$ :  $X_1 \leftarrow 1, X_0 \leftarrow I$  $X_0 \leftarrow 1, M \leftarrow 0$  $X_2'X_1'X_0'I$ :  $X_2 \leftarrow 1, X_1 \leftarrow 0, X_0 \leftarrow I$  $X_2'X_1X_0'$ :  $X_1 \leftarrow 1, X_0 \leftarrow 0$  $X_2'X_1'X_0I'$ :  $X_2'X_1X_0$ :  $X_2 \leftarrow 1, X_0 \leftarrow I, M \leftarrow I'$  $X_1 \leftarrow 1, X_0 \leftarrow 1$  $X_2'X_1'X_0I$ :  $X_2X_1'X_0'$ :  $X_2 \leftarrow 0, X_0 \leftarrow I$  $X_2'X_1X_0'I'$ :  $X_2 \leftarrow 1, X_1 \leftarrow 0$  $X_2 \leftarrow 0, X_1 \leftarrow 1, X_0 \leftarrow I$  $X_2X_1'X_0$ :  $X_2'X_1X_0'I$ :  $X_2 \leftarrow 1, X_1 \leftarrow 0, X_0 \leftarrow 1$  $X_1 \leftarrow 0, X_0 \leftarrow I, M \leftarrow 0$  $X_2X_1X_0'$ :

 $X_2'X_1X_0I'$ :  $X_2 \leftarrow 1, X_0 \leftarrow 0, M \leftarrow 1$  $X_2X_1X_0$ :  $X_0 \leftarrow I, M \leftarrow I'$ 

 $X_2'X_1X_0I$ :  $X_2 \leftarrow 1$  $X_2X_1'X_0'I'$ :  $X_2 \leftarrow 0$ 

 $X_2 \leftarrow 0, X_0 \leftarrow 1$  $X_2X_1'X_0'I$ :

 $X_2X_1'X_0I'$ :  $X_2 \leftarrow 0, X_1 \leftarrow 1, X_0 \leftarrow 0$ 

 $X_2X_1'X_0I$ :  $X_2 \leftarrow 0, X_1 \leftarrow 1$ 

 $X_2'X_1'X_0' + X_2'X_1X_0I' + X_2X_1X_0'$ :  $M \leftarrow X_2'X_1X_0I'$  $X_1 \leftarrow 0, M \leftarrow 0$  $X_2X_1X_0'I'$ :

 $X_1 \leftarrow 0, X_0 \leftarrow 1, M \leftarrow 0$ 

 $X_2X_1X_0I'$ :  $X_0 \leftarrow 0$ 

 $X_2X_1X_0'I$ :

17.



 $X_2 \leftarrow X_1, X_1 \leftarrow X_0, X_0 \leftarrow I$ 

```
18.
      library IEEE;
      use IEEE.std_logic_1164.all;
      entity string_checker is
          port(
             I,clk: in std_logic;
                M: out std_logic
          );
      end string_checker;
      architecture a_string_checker of string_checker is
          type states is (S0, S1, S2, S3);
          signal present_state, next_state: states;
      begin
          state_check_string: process(present_state,I)
             begin
                 case present_state is
                    when S0 \Rightarrow M<='0';
                       if (I='0') then next_state <= S0;</pre>
                           else next_state <= S1;</pre>
                       end if;
                    when S1 \Rightarrow M<='0';
                       if (I='0') then next_state <= S0;</pre>
                           else next_state <= S2;</pre>
                       end if;
                    when S2 \Rightarrow M<='0';
                       if (I='0') then next_state <= S3;</pre>
                           else next_state <= S2;</pre>
                       end if;
                    when S3 \Rightarrow M<='1';
                       if (I='0') then next_state <= S0;</pre>
                           else next_state <= S1;</pre>
                       end if;
                 end case;
             end process state_check_string;
          state_transition: process(clk)
             begin
                 if rising_edge(clk) then present_state <= next_state;</pre>
                 end if;
             end process state_transition;
```

end a\_string\_checker;

```
19.
      library IEEE;
      use IEEE.std_logic_1164.all;
      entity string_checker is
         port(
             I,clk: in std_logic;
             X1,X0: buffer std_logic;
                M: out std_logic
          );
      end string_checker;
      architecture a_string_checker of string_checker is
      begin
         cct_string_checker: process(X1,X0,I,clk)
             begin
                if rising_edge(clk) then
                   X1 \ll (X1 \text{ and (not } X0)) \text{ or }
                         ((not X1) and X0 and I);
                    X0 \ll (\text{(not }X1) \text{ and (not }X0) \text{ and I)} or
                         (X1 and (not X0) and (not I)) or
                         (X1 and X0 and I);
                end if;
                 M \le X1 \text{ AND } X0;
             end process cct_string_checker;
      end a_string_checker;
```

```
20.
       library IEEE;
       use IEEE.std_logic_1164.all;
       entity string_checker is
           port(
               I,clk: in std_logic;
                  M: out std_logic
           );
       end string_checker;
       architecture a_string_checker of string_checker is
           type states is (S0, S1, S2, S3, S4, S5, S6, S7);
           signal present_state, next_state: states;
       begin
           state_check_string: process(present_state,I)
              begin
                  case present_state is
                      when S0 \Rightarrow M<='0';
                          if (I='0') then next_state <= S0;</pre>
                             else next_state <= S1;</pre>
                          end if;
                      when S1 \Rightarrow M<='0';
                          if (I='0') then next_state <= S2;</pre>
                             else next_state <= S3;</pre>
                          end if;
                      when S2 => M <= '0';
                          if (I='0') then next_state <= S4;
                             else next_state <= S5;</pre>
                          end if;
                      when S3 \Rightarrow M<='0';
                          if (I='0') then next_state <= S6;</pre>
                             else next_state <= S7;</pre>
                          end if;
                      when S4 => M <= '0';
                          if (I='0') then next_state <= S0;</pre>
                             else next_state <= S1;</pre>
                          end if;
                      when S5 => M <= '0';
                          if (I='0') then next_state <= S2;</pre>
                             else next_state <= S3;</pre>
                          end if;
                      when S6 => M <= '1';
                         if (I='0') then next_state <= S4;
                             else next_state <= S5;</pre>
                          end if;
                      when S7 => M <= '0';
                          if (I='0') then next_state <= S6;</pre>
                             else next_state <= S7;</pre>
                          end if;
                  end case;
               end process state_check_string;
           state_transition: process(clk)
              begin
                  if rising_edge(clk) then present_state <= next_state;</pre>
               end process state_transition;
       end a_string_checker;
```

```
21.
      library IEEE;
      use IEEE.std_logic_1164.all;
      entity string_checker is
          port(
                 I,clk: in std_logic;
             X2,X1,X0: buffer std_logic;
                    M: out std_logic
          );
      end string checker;
      architecture a string checker of string checker is
      begin
          cct_string_checker: process(X1,X0,I,clk)
             begin
                 if rising_edge(clk) then
                    X2 <= X1;
                    X1 <= X0;
                    X0 <= I;
                 end if;
                  M \le X2 and X1 and (not X0);
             end process cct_string_checker;
      end a_string_checker;
22.
      library IEEE;
      use IEEE.std_logic_1164.all;
      entity toll_booth_controller is
          port(
             I1,I0,C,clk: in std_logic;
                   R,G,A: out std_logic
          );
      end toll_booth_controller;
      architecture a_toll_booth_controller of toll_booth_controller is
          type states is (SN, S0, S5, S10, S15, S20, S25, S30, SP, SC);
          signal present_state, next_state: states;
      begin
          state_toll_booth_controller: process(present_state,I1,I0)
             begin
                 case present_state is
                    when SN => R<='1'; G<='0'; A<='0';
                        if (C='1') then next_state <= S0;
                           else next_state <= SN;
                        end if;
                    when S0 => R <= '1'; G <= '0'; A <= '0';
                        if (C='0') then next_state <= SC;</pre>
                           elsif (I1 = '0' AND I0 = '1') then next_state <= S5;
                           elsif (I1 = '1' AND I0 = '0') then next_state <= S10;</pre>
                           elsif (I1 = '1' AND I0 = '1') then next_state <= S25;</pre>
                           else next_state <= S0;
                        end if;
                    when S5 => R <= '1'; G <= '0'; A <= '0';
                        if (C='0') then next_state <= SC;</pre>
                           elsif (I1 = '0' AND I0 = '1') then next_state <= S10;</pre>
                           elsif (I1 = '1' AND I0 = '0') then next_state <= S15;</pre>
                           elsif (I1 = '1' AND I0 = '1') then next_state <= S30;</pre>
                           else next_state <= S5;</pre>
                        end if;
```

```
when S10 => R <= '1'; G <= '0'; A <= '0';
                  if (C='0') then next_state <= SC;</pre>
                      elsif (I1 = '0' AND I0 = '1') then next_state <= S15;</pre>
                      elsif (I1 = '1' AND I0 = '0') then next_state <= S20;</pre>
                      elsif (I1 = '1' AND I0 = '1') then next_state <= SP;</pre>
                      else next_state <= S10;</pre>
                  end if;
              when S15 => R <= '1'; G <= '0'; A <= '0';
                  if (C='0') then next_state <= SC;</pre>
                      elsif (I1 = '0' AND I0 = '1') then next_state <= S20;</pre>
                      elsif (I1 = '1' AND I0 = '0') then next_state <= S25;
                      elsif (I1 = '1' AND I0 = '1') then next_state <= SP;</pre>
                      else next_state <= S15;</pre>
                  end if;
              when S20 => R<='1'; G<='0'; A<='0';
                  if (C='0') then next state <= SC;
                      elsif (I1 = '0' AND I0 = '1') then next_state <= S25;
                      elsif (I1 = '1' AND I0 = '0') then next_state <= S30;</pre>
                      elsif (I1 = '1' AND I0 = '1') then next_state <= SP;</pre>
                      else next_state <= S20;</pre>
                  end if;
              when S25 => R <= '1'; G <= '0'; A <= '0';
                  if (C='0') then next_state <= SC;</pre>
                      elsif (I1 = '0' AND I0 = '1') then next_state <= S30;
                      elsif (I1 = '1') then next_state <= SP;</pre>
                      else next_state <= S25;</pre>
                  end if;
              when S30 => R <= '1'; G <= '0'; A <= '0';
                  if (C='0') then next_state <= SC;</pre>
                      elsif (I1 = '1' OR I0 = '1') then next_state <= SP;</pre>
                      else next_state <= S30;</pre>
                  end if;
              when SP \Rightarrow R<='0'; G<='1'; A<='0';
                  if (C='0') then next_state <= SN;
                      else next_state <= SP;</pre>
                  end if;
              when SC \Rightarrow R<='1'; G<='0'; A<='1';
                  if (C='1') then next state <= S0;
                      else next_state <= SC;</pre>
                  end if;
           end case;
       end process state_toll_booth_controller;
   state_transition: process(clk)
       begin
           if rising_edge(clk) then present_state <= next_state;
       end process state_transition;
end a_toll_booth_controller;
```

```
23.
       library IEEE;
       use IEEE.std_logic_1164.all;
       entity toll_booth_controller is
          port(
              I1,I0,C,clk: in std_logic;
             X3,X2,X1,X0: buffer std_logic;
                   R,G,A: out std_logic
          );
       end toll_booth_controller;
       architecture a_toll_booth_controller of toll_booth_controller is
          cct_toll_booth_controller: process(X3,X2,X1,X0,I1,I0,C,clk)
             begin
                 if rising_edge(clk) then
                    X3 <= not C;
                    X2 \ll (\text{(not }X3) \text{ and } C \text{ and } I1 \text{ and } I0) \text{ or }
                           ((not X3) and (X2 or X1) and C and I1 and (not I0)) or
                          ((not X3) and (X2 or (X1 and X0)) and C and (not I1) and I0)
                             or (X2 and C and (not I1) and (not I0));
                    X1 \leftarrow ((not X3) and (X2 or X1 or X0) and C and I1 and I0)or
                           ((not X3) and (X2 or (not X1)) and C and I1 and (not I0)) or
                          ((not X3) and (((not X1) and X0) or (X1 and (not X0)) or
                            (X2 and X1 and X0)) and C and (not I1) and I0) or
                          (X1 and X0 and C and (not I1) and (not I0));
                    X0 \le ((not X3) and (X2 or X1 or (not X0)) and C and I1 and I0) or
                          ((not X3) and (X0 or (X2 and X1)) and C and I1 and (not I0))
                           or ((not X3) and ((not X0) or (X2 and X1)) and C and
                            (not I1) and I0) or ((not X3) and X0 and C and (not I1) and
                            (not IO)) or (X3 and X0 and (not C)) or ((not X3) and
                            ((not X2) or (not X1) or (not X0)) and (not C));
                 end if;
                  R \le X3 or (not X2) or (not X1) or (not X0);
                  G <= (not X3) and X2 and X1 and X0;
                  A <= X3 and (not X2) and (not X1) and X0;
              end process cct_toll_booth_controller;
       end a_toll_booth_controller;
```

## **Chapter 6**

1. JMP11:  $PC \leftarrow AR$ 

JMP12:  $PC \leftarrow PC + 1$ INC21:  $AC \leftarrow AC + 1$ INC22:  $AC \leftarrow AC + 1$ 

ADD11:  $DR \leftarrow M, AC \leftarrow AC + 1$ 

ADD12:  $AC \leftarrow AC + DR$ SKIP1:  $PC \leftarrow PC + 1$ 

2. Instruction Instruction Code Operation

ADDADD 00AAAAAA  $AC \leftarrow AC + M[AAAAAA] + M[AAAAAA + 1]$ ANDSKIP 01AAAAAA  $AC \leftarrow AC \land M[AAAAAA], PC \leftarrow PC + 1$ INCAND 1XAAAAAA  $AC \leftarrow (AC + 1) \land M[AAAAAA]$ 

3. This is one of many possible solutions.





- 5. Change the input to the counter to X, X', Y,  $X \lor Y$ . Change INC input IA3 to IA2. Change CLR input IA2 to IA3.
- 6. (*IR* must have 3 bits instead of 2.)



FETCH3:  $IR \leftarrow DR[7..5], AR \leftarrow DR[5..0]$ 

CLEAR1:  $AC \leftarrow 0$ 

- 7. i) *IR* must have 3 bits instead of 2. It receives bus bits 7..5 as its inputs. During FETCH3, bit 5 of *DR* is sent to both *IR* and *AR*.
  - ii) AC needs a CLR input (ACCLR is a new control signal which connects to the new CLR input.)
- 8. Arbitrarily assign *CLEAR1* to decoder output 15.
  - i) New input to counter: 1,IR[2..1], $(IR_2 \land IR_1 \land IR_0)$ .
  - ii) Add *CLEAR1* to the inputs of the OR gate driving counter *CLR*.
  - iii) New control signal ACCLR = CLEAR1.
- 9. Test program: 0: CLEAR

| Instruction | State  | Operations performed                        | Next state |
|-------------|--------|---------------------------------------------|------------|
| CLEAR       | FETCH1 | $AR \leftarrow 0$                           | FETCH2     |
|             | FETCH2 | $DR \leftarrow \text{E0H}, PC \leftarrow 1$ | FETCH3     |
|             | FETCH3 | $IR \leftarrow 111, AR \leftarrow 20H$      | CLEAR1     |
|             | CLEAR1 | $AC \leftarrow 0$                           | FETCH1     |

10. (IR must have 4 bits instead of 2.)



FETCH3:  $IR \leftarrow DR[7..4], AR \leftarrow DR[5..0]$ 

MVAC1:  $R \leftarrow AC$ MOVR1:  $AC \leftarrow R$ 

- 11. i.) *IR* must have 4 bits instead of 2. It receives bus bits 7..4 as its inputs. During FETCH3, bit *DR*[5..4] is sent to both *IR* and *AR*. This is shown below.
  - ii) Register *R* is added to the CPU. It receives data from the bus and sends data to the bus through tri-state buffers. It requires only a *LD* signal. This is shown below.
  - iii) The ALU is modified as shown below.



- 12. Arbitrarily assign MVAC1 and MOVR1 to decoder outputs 6 and 7, respectively.
  - i) New input to counter:  $(IR_3 \land IR_2 \land IR_1)'$ , IR[3..2],  $(IR_3 \land IR_2 \land IR_1 \land IR_0)$ .
  - ii) Add MVAC1 and MOVR1 to the inputs of the OR gate driving counter CLR.
  - iii) New control signals RLOAD = MVACI and RBUS = MOVRI.
  - iv) Add MOVR1 to the inputs of the OR gate generating ACLOAD.
- 13. Test program: 0: MVAC 1: MOVR

| Instruction | State  | Operations performed                        | Next state |
|-------------|--------|---------------------------------------------|------------|
| MVAC        | FETCH1 | $AR \leftarrow 0$                           | FETCH2     |
|             | FETCH2 | $DR \leftarrow \text{E0H}, PC \leftarrow 1$ | FETCH3     |
|             | FETCH3 | $IR \leftarrow 1110, AR \leftarrow 20H$     | MVAC1      |
|             | MVAC1  | $R \leftarrow 1$                            | FETCH1     |
| MOVR        | FETCH1 | $AR \leftarrow 1$                           | FETCH2     |
|             | FETCH2 | $DR \leftarrow \text{F0H}, PC \leftarrow 2$ | FETCH3     |
|             | FETCH3 | $IR \leftarrow 1111, AR \leftarrow 30H$     | MOVR1      |
|             | MOVR1  | <i>AC</i> ← 1                               | FETCH1     |

14. All operations except AND are performed by the parallel adder.

| Micro-operation | Adder inputs                                             |
|-----------------|----------------------------------------------------------|
| ADD1            | AC + BUS + 0 $AC + AC + 0$ $0 + BUS' + 0$ $AC + BUS + 1$ |
| shl             | AC + AC + 0                                              |
| neg             | 0 + BUS' + 0                                             |
| ad1             | AC + BUS + 1                                             |



15.  $PCLOAD = JUMP3 \lor JMPZY3 \lor JPNZY3$ 

 $PCINC = FETCH2 \lor LDAC1 \lor LDAC2 \lor STAC1 \lor STAC2 \lor JMPZN1 \lor JMPZN2 \lor JPNZN1 \lor JPNZN2$ 

 $DRLOAD = FETCH2 \lor LDAC1 \lor LDAC2 \lor LDAC4 \lor STAC1 \lor STAC2 \lor STAC4 \lor JUMP1 \lor JUMP2 \\ \lor JMPZY1 \lor JMPZY2 \lor JPNZY1 \lor JPNZY2$ 

 $TRLOAD = LDAC2 \lor STAC2 \lor JUMP2 \lor JMPZY2 \lor JPNZY2$ 

IRLOAD = FETCH3

16. RLOAD = MVACI

 $ACLOAD = LDAC5 \lor MOVRI \lor ADDI \lor SUBI \lor INACI \lor CLACI \lor ANDI \lor ORI \lor XORI \lor NOTI$  $ZLOAD = ADDI \lor SUBI \lor INACI \lor CLACI \lor ANDI \lor ORI \lor XORI \lor NOTI$ 

| 17. | State | ALUS[17]      |
|-----|-------|---------------|
|     | LDAC5 | 0010XX0       |
|     | MOVR1 | 0 0 1 0 X X 0 |
|     | ADD1  | 1010XX0       |
|     | SUB1  | 1 1 0 0 X X 0 |
|     | INAC1 | 1001XX0       |
|     | CLAC1 | 0000XX0       |
|     | AND1  | X X X X 0 0 1 |
|     | OR1   | X X X X 0 1 1 |
|     | XOR1  | X X X X 1 0 1 |
|     | NOT1  | X X X X 1 1 1 |

 $ALUS1 = ADD1 \lor SUB1 \lor INAC1$ 

ALUS2 = SUB1

 $ALUS3 = LDAC5 \lor MOVR1 \lor ADD1$ 

 $ALUS4 = SUB1 \lor INAC1$ 

 $ALUS5 = XOR1 \lor NOT1$ 

 $ALUS6 = OR1 \lor NOT1$ 

 $ALUS7 = AND1 \lor OR1 \lor XOR1 \lor NOT1$ 

18. The student can execute the following program using the Relatively Simple CPU simulator to verify that each instruction performs properly.

```
0: LDAC 0000
                          (AC \leftarrow 1)
     NOP
     MVAC
                          (R \leftarrow 1)
     ADD
                          (AC \leftarrow 2, Z \leftarrow 0)
                          (AC \leftarrow 3, Z \leftarrow 0)
     INAC
     XOR
                          (AC \leftarrow 2, Z \leftarrow 0)
     AND
                          (AC \leftarrow 0, Z \leftarrow 1)
9: JMPZ 000D
                          (jump is taken)
                          (skipped by JMPZ 000D)
     NOP
D: JPNZ 0009
                          (jump is not taken)
                          (AC \leftarrow FF, Z \leftarrow 0)
     NOT
     JMPZ 0009
                          (jump is not taken)
     JPNZ 0018
                          (jump is taken)
     NOP
                          (skipped by JMPZ 0018)
18: CLAC
                          (AC \leftarrow 0, Z \leftarrow 1)
     OR
                          (AC \leftarrow 1, Z \leftarrow 0)
     SUB
                          (AC \leftarrow 0, Z \leftarrow 1)
     MOVR
                          (AC \leftarrow 1)
     STAC 0030
                          (M[30] ← 1)
                          (AC \leftarrow 1, Z \leftarrow 0)
     AND
     JUMP 0000
                          (start again)
```



- 20. *R* needs two additional inputs: *CLR*, driven by new control signal *RCLR*, and *DCR*, driven by new control signal *RDCR*.
- 21. i.) Add hardware to generate  $ISETR = I_7' \land I_6' \land I_5' \land I_4 \land I_3' \land I_2' \land I_1' \land I_0'$ ,  $SETR1 = ISETR \land T3$ , and  $SETR2 = ISETR \land T4$ .
  - ii) Add *SETR1* to the OR gate driving *INC* of the time counter and *SETR2* to the OR gate driving *CLR* of the time counter.
  - iii) New control signals RCLR = SETR1 and RDCR = SETR2.
- 22. Test program: 0: SETR

| Instruction | State  | Operations performed                 | Next state |
|-------------|--------|--------------------------------------|------------|
| SETR        | FETCH1 | $AR \leftarrow 0$                    | FETCH2     |
|             | FETCH2 | $DR \leftarrow 11H, PC \leftarrow 1$ | FETCH3     |
|             | FETCH3 | $IR \leftarrow 11, AR \leftarrow 1$  | SETR1      |
|             | SETR1  | $R \leftarrow 0$                     | SETR2      |
|             | SETR2  | $R \leftarrow FF$                    | FETCH1     |

23.



ADDB1:  $AC \leftarrow AC + B$ SUBB1:  $AC \leftarrow AC - B$ ANDB1:  $AC \leftarrow AC \wedge B$ ORB1:  $AC \leftarrow AC \vee B$ XORB1:  $AC \leftarrow AC \oplus B$ 

- 24. i.) No ALU changes are needed!
  - ii) Register *B* is added to the CPU. It sends data to the bus through tri-state buffers but does not receive data from the bus (since it is never loaded). This is shown below.



- 25. i.) Add the hardware shown below to generate *IADDB*, *ISUBB*, *IANDB*, *IORB*, and *IXORB*, and add hardware to generate *ADDB1* = *IADDB* ^ *T3*, *SUBB1* = *ISUBB* ^ *T3*, *ANDB1* = *IANDB* ^ *T3*, *ORB1* = *IORB* ^ *T3*, and *XORB1* = *IXORB* ^ *T3*.
  - ii) OR together ADDB1, SUBB1, ANDB1, ORB1, and XORB1 to generate BBUS.
  - iii) Add the same five signals to the OR gate driving *CLR* of the counter.
  - iv) Change ALUS[1..7] such that ADDI is replaced by  $ADDI \vee ADDBI$ , and so on for SUBI, ANDI, ORI, and XORI, yielding:

 $ALUS1 = ADD1 \lor ADDB1 \lor SUB1 \lor SUBB1 \lor INAC1$ 

 $ALUS2 = SUB1 \lor SUBB1$ 

 $ALUS3 = LDAC5 \lor MOVR1 \lor ADD1 \lor ADDB1$ 

 $ALUS4 = SUB1 \lor SUBB1 \lor INAC1$ 

 $ALUS5 = XOR1 \lor XORB1 \lor NOT1$ 

 $ALUS6 = OR1 \lor ORB1 \lor NOT1$ 

 $ALUS7 = AND1 \lor ANDB1 \lor OR1 \lor ORB1 \lor XOR1 \lor XORB1 \lor NOT1$ 



26. Initially AC = 1 and B = 2. Fetch cycles not shown.

| Instruction | State | Operations performed           |
|-------------|-------|--------------------------------|
| ORB         | ORB1  | $AC \leftarrow 1 \lor 2 = 3$   |
| ADDB        | ADDB1 | $AC \leftarrow 3 + 2 = 5$      |
| ANDB        | ANDB1 | $AC \leftarrow 5 \land 2 = 0$  |
| XORB        | XORB1 | $AC \leftarrow 0 \oplus 2 = 2$ |
| SUBB        | SUBB1 | $AC \leftarrow 2 - 2 = 0$      |

- 27. i.) Remove *CLAC1* and *INAC1* as inputs to the OR gate which generates *ACLOAD*.
  - ii) Add control inputs to AC: *CLR* = *CLAC1*, and *INC* = *INAC1*.
  - iii) Change the input to Z as shown below. ZLOAD is unchanged.



## 28. <u>State diagram and RTL code</u>:

FETCH1:  $AR \leftarrow PC$ 

FETCH2:  $DR \leftarrow M, PC \leftarrow PC + 1$ 

FETCH3:  $IR \leftarrow DR[7..6], AR \leftarrow DR[5..0]$ 

COM1:  $AC \leftarrow AC'$ JREL1:  $DR \leftarrow M$ 

JREL2:  $PC \leftarrow PC + DR[5..0]$ 

OR1:  $DR \leftarrow M$ OR2:  $AC \leftarrow AC \lor DR$ 

SUB11:  $DR \leftarrow M$ 

SUB12:  $AC \leftarrow AC + DR'$ 



The <u>register section</u> is the same as Figure 6.6, except for the data input to PC, shown below.



Control signals:  $ARLOAD = FETCH1 \lor FETCH3$ PCLOAD = JREL2PCINC = FETCH2PCBUS = FETCH1 $DRLOAD = MEMBUS = READ = FETCH2 \lor JREL1 \lor OR1 \lor SUB11$  $DRBUS = FETCH3 \lor JREL2 \lor OR2 \lor SUB12$  $ACLOAD = COM1 \lor OR2 \lor SUB12$ IRLOAD = FETCH3ALU: From AC ALU51=0R2 х ALUSZ = SUB1Z From Bus Control unit: FETCH1 4 FETCH 2 1 IR[1.0]0 O FETCH3 LO No CH E FETCH3-8 COM1  $\mathcal{C}$ 9 O SREL1 10 JRELZ 11 D OR1 12 E 13 ORZ R s*uB11* 15 50B12

## 29. State diagram and RTL code:

FETCH1:

 $AR \leftarrow PC$ 



```
ADD2: AC \leftarrow AC + DR
FETCH2:
              DR \leftarrow M, PC \leftarrow PC + 1
FETCH3:
              IR \leftarrow DR[7..5], AR \leftarrow PC
                                                OR1:
                                                         DR \leftarrow M, PC \leftarrow PC + 1
LDI1:
              DR \leftarrow M, PC \leftarrow PC + 1
                                                OR2:
                                                         AC \leftarrow AC \lor DR
LDI2:
              AC \leftarrow DR
                                                JUMP1: DR \leftarrow M
STO1:
              DR \leftarrow M, PC \leftarrow PC + 1
                                                JUMP2: PC \leftarrow DR
              AR \leftarrow DR
                                                JREL1: PC \leftarrow PC + 000DR[4..0]
STO2:
STO3:
              DR \leftarrow AC
                                                SKIP1: PC \leftarrow PC + 1
STO4:
              M \leftarrow DR
                                                RST1: PC \leftarrow 0, AC \leftarrow 0
Control signals:
                                ARLOAD = FETCH1 \lor FETCH3 \lor STO2
                                PCLOAD = JUMP2 \lor JREL2
                                  PCINC = FETCH2 \lor LDI1 \lor STO1 \lor ADD1 \lor OR1 \lor SKIP1
                                 PCCLR = RST1
                                 PCBUS = FETCH1 \lor FETCH3
                                PCMUX = JUMP2
                               DRLOAD = FETCH2 \lor LDI1 \lor STO1 \lor STO3 \lor ADD1 \lor OR1 \lor JUMP1
                                 DRBUS = FETCH3 \lor LDI2 \lor STO2 \lor STO4 \lor ADD2 \lor OR2 \lor JUMP2 \lor JREL1
                               ACLOAD = LDI2 \lor ADD2 \lor OR2
                                 ACCLR = RST1
                                 ACBUS = STO3
                                IRLOAD = FETCH3
                     MEMBUS = READ = FETCH2 \lor LDI1 \lor STO1 \lor ADD1 \lor OR1 \lor JUMP1
```

ADD1:  $DR \leftarrow M, PC \leftarrow PC + 1$ 

BUSMEM = WRITE = STO4

## Register section:





## Control unit:



| FETCH1 = | TO                      | ADD1 =  | IADD ^ T3       |
|----------|-------------------------|---------|-----------------|
| FETCH2 = | T1                      | ADD2 =  | IADD ^ T4       |
| FETCH3 = | <i>T</i> 2              | OR1 =   | <i>IOR ^ T3</i> |
| LDI1 =   | ILDI ^ T3               | OR2 =   | <i>IOR ^ T4</i> |
| LDI2 =   | ILDI ^ T4               | JUMP1 = | IJUMP ^ T3      |
| STO1 =   | <i>ISTO ^ T3</i>        | JUMP2 = | IJUMP ^ T4      |
| STO2 =   | ISTO ^ T4               | JREL1 = | IJREL ^ T3      |
| STO3 =   | ISTO ^ T5               | JREL2 = | IJREL ^ T4      |
| STO4 =   | <i>ISTO</i> ^ <i>T6</i> | SKIP1 = | ISKIP ^ T3      |
|          |                         | RST1 =  | IRST ^ T3       |

## 30. Modified state diagram:



#### Modified RTL code:

LDSP1:  $DR \leftarrow M$ ,  $AR \leftarrow AR + 1$ ,  $PC \leftarrow PC + 1$ PUSHAC1:  $SP \leftarrow SP - 1, DR \leftarrow AC$ LDSP2:  $TR \leftarrow DR$ ,  $DR \leftarrow M$ ,  $PC \leftarrow PC + 1$ PUSHAC2:  $AR \leftarrow SP$ LDSP3:  $SP \leftarrow DR, TR$ PUSHAC3:  $M \leftarrow DR$ CALL1:  $DR \leftarrow M$ ,  $AR \leftarrow AR + 1$ ,  $PC \leftarrow PC + 1$ POPAC1:  $AR \leftarrow SP$ CALL2:  $TR \leftarrow DR$ ,  $DR \leftarrow M$ ,  $PC \leftarrow PC + 1$ POPAC2:  $DR \leftarrow M, SP \leftarrow SP + 1$ CALL3:  $TR2 \leftarrow DR$ ,  $DR \leftarrow PC[15..8]$ ,  $SP \leftarrow SP - 1$  POPAC3:  $AC \leftarrow DR$ CALL4:  $AR \leftarrow SP$ PUSHR1:  $SP \leftarrow SP - 1, DR \leftarrow R$ CALL5:  $M \leftarrow DR$ ,  $AR \leftarrow AR - 1$ ,  $SP \leftarrow SP - 1$ PUSHR2:  $AR \leftarrow SP$  $M \leftarrow DR$ CALL6:  $DR \leftarrow PC[7..0]$ PUSHR3: CALL7:  $M \leftarrow DR$ POPR1:  $AR \leftarrow SP$ CALL8:  $PC \leftarrow TR2,DR$ POPR2:  $DR \leftarrow M, SP \leftarrow SP + 1$ RET1:  $AR \leftarrow SP$ POPR3:  $R \leftarrow DR$ RET2:  $DR \leftarrow M, SP \leftarrow SP + 1, AR \leftarrow AR + 1$ RET3:  $TR \leftarrow DR, DR \leftarrow M, SP \leftarrow SP + 1$ RET4:  $PC \leftarrow DR, TR$ 

#### Modified register section: (shown below)

- New registers: SP (with LD, DEC, INC), TR2 (with LD, receives data directly from DR)
- New control signal: AR adds a DEC signal
- New data path: *DR* can receive data from *BUS*[15..8] or *BUS*[7..0]
- All other connections remain the same as shown in Figure 6.15.



#### New control signals:

ARDEC = CALL5SPLOAD = LDSP3

 $SPINC = RET2 \lor RET3 \lor POPAC2 \lor POPR2$ 

 $SPDEC = CALL3 \lor CALL5 \lor PUSHAC1 \lor PUSHR1$ 

 $SPBUS = CALL4 \lor RET1 \lor PUSHAC2 \lor POPAC1 \lor PUSHR2 \lor POPR1$ 

DRSEL = CALL3 TR2LOAD = CALL3TR2BUS = CALL8

#### Modified control signals:

 $ARLOAD = (original \ value) \lor CALL4 \lor RET1 \lor PUSHAC2 \lor POPAC1 \lor$ 

PUSHR2 ∨ POPR1

 $ARINC = (original value) \lor LDSP1 \lor CALL1 \lor RET2$ 

 $PCLOAD = (original value) \lor CALL8 \lor RET4$ 

 $PCINC = (original value) \lor LDSP1 \lor LDSP2 \lor CALL1 \lor CALL2$ 

PCBUS = (original value)  $\vee$  CALL3  $\vee$  CALL6

 $DRLOAD = (original \ value) \lor LDSP1 \lor LDSP2 \lor CALL1 \lor CALL2 \lor$ 

 $CALL3 \lor CALL6 \lor RET2 \lor RET3 \lor PUSHAC1 \lor POPAC2 \lor$ 

 $PUSHR1 \lor POPR2$ 

 $DRHBUS = (original value) \lor LDSP3 \lor RET4$ 

 $DRLBUS = (original \ value) \lor CALL5 \lor CALL7 \lor PUSHAC3 \lor POPAC3 \lor$ 

*PUSHR3* ∨ *POPR3* 

TRLOAD = (original value)  $\lor LDSP2 \lor CALL2 \lor RET3$ 

 $TRBUS = (original value) \lor LDSP3 \lor CALL8 \lor RET4$ 

RLOAD = (original value)  $\lor POPR3$ 

 $RBUS = (original value) \lor PUSHR1$ 

 $ACLOAD = (original value) \lor POPAC3$ 

ACBUS = (original value)  $\vee PUSHAC1$ 

ALUSI = (original value)  $\lor POPAC3$ 

MEMBUS = (original value)  $\lor LDSP1 \lor LDSP2 \lor CALL1 \lor CALL2 \lor RET2$ 

 $\vee$  RET3  $\vee$  POPAC2  $\vee$  POPR2

 $BUSMEM = (original \ value) \lor CALL5 \lor CALL7 \lor PUSHAC3 \lor PUSHR3$ 

 $WRITE = (original value) \lor CALL5 \lor CALL7 \lor PUSHAC3 \lor PUSHR3$ 

#### Control unit modifications:

- Increase the counter size to 4 bits. The decoder now outputs  $T_0$   $T_{10}$ .
- Add a second instruction decoder as shown below.
- Modify the *INC* and *CLR* inputs to the counter as follows:

 $INC = (original\ value) \lor LDSP1 \lor LDSP2 \lor CALL1 \lor CALL2 \lor CALL3 \lor CALL4 \lor CALL5 \lor CALL6 \\ \lor CALL7 \lor RET1 \lor RET2 \lor RET3 \lor PUSHAC1 \lor PUSHAC2 \lor POPAC1 \lor POPAC2 \\ \lor PUSHR1 \lor PUSHR2 \lor POPR1 \lor POPR2$ 

 $CLR = (original \ value) \lor LDSP3 \lor CALL8 \lor RET4 \lor PUSHAC3 \lor POPAC3 \lor PUSHR3 \lor POPR3$ 



```
LDSP1 = ILDSP \wedge T3
                         PUSHAC1 = IPUSHAC \land T3
LDSP2 = ILDSP \wedge T4
                         PUSHAC2 = IPUSHAC \land T4
                         PUSHAC3 = IPUSHAC \land T5
LDSP3 = ILDSP \land T5
CALL1 = ICALL \land T3
                         POPAC1 = IPOPAC \land T3
CALL2 = ICALL \land T4
                          POPAC2 = IPOPAC \land T4
CALL3 = ICALL \land T5
                          POPAC3 = IPOPAC \land T5
CALL4 = ICALL \land T6
                          PUSHR1 = IPUSHR \land T3
CALL5 = ICALL \land T7
                          PUSHR2 = IPUSHR \wedge T4
CALL6 = ICALL \land T8
                          PUSHR3 = IPUSHR ^ T5
CALL7 = ICALL \land T9
                          POPR1 = IPOPR \land T3
CALL8 = ICALL \land T10
                           POPR2 = IPOPR \land T4
                           POPR3 = IPOPR \land T5
 RET1 = IRET \wedge T3
 RET2 = IRET \wedge T4
 RET3 = IRET ^ T5
 RET4 = IRET ^ T6
```

# **Chapter 7**

1. IR MAP

00 0011

01 0101

10 0111

11 1000

 $\mathsf{MAP} = IR_{I} \wedge IR_{0}, \, IR_{I} \oplus IR_{0}, IR_{0}', (IR_{I} \wedge IR_{0})'$ 

| 2. | State  | Address  | S | A | A | P | P | D | P            | A | A | ADDR |
|----|--------|----------|---|---|---|---|---|---|--------------|---|---|------|
|    |        |          | E | R | I | C | C | R | L            | N | C |      |
|    |        |          | L | P | D | I | D | M | $\mathbf{U}$ | D | I |      |
|    |        |          |   | C | R | N | R |   | S            |   | N |      |
|    | FETCH1 | 0000 (0) | 0 | 1 | 0 | 0 | 0 | 0 | 0            | 0 | 0 | 0001 |
|    | FETCH2 | 0001 (1) | 0 | 0 | 0 | 1 | 0 | 1 | 0            | 0 | 0 | 0010 |
|    | FETCH3 | 0010 (2) | 1 | 0 | 1 | 0 | 0 | 0 | 0            | 0 | 0 | XXXX |
|    | ADD1   | 0011 (3) | 0 | 0 | 0 | 0 | 0 | 1 | 0            | 0 | 0 | 0100 |
|    | ADD2   | 0100 (4) | 0 | 0 | 0 | 0 | 0 | 0 | 1            | 0 | 0 | 0000 |
|    | AND1   | 0101 (5) | 0 | 0 | 0 | 0 | 0 | 1 | 0            | 0 | 0 | 0110 |
|    | AND2   | 0110 (6) | 0 | 0 | 0 | 0 | 0 | 0 | 0            | 1 | 0 | 0000 |
|    | JMP1   | 0111 (7) | 0 | 0 | 0 | 0 | 1 | 0 | 0            | 0 | 0 | 0000 |
|    | INC1   | 1000 (8) | 0 | 0 | 0 | 0 | 0 | 0 | 0            | 0 | 1 | 0000 |

3.  $\begin{array}{|c|c|c|}\hline \mathbf{M1} & \mathbf{M2} \\ \hline \mathbf{NOP} & \mathbf{NOP} \\ \hline DR \leftarrow M & PC \leftarrow PC + 1 \\ \hline AC \leftarrow AC' & AC \leftarrow AC + 1 \\ \hline DR \leftarrow DR + 1 & PC \leftarrow PC + DR[5..0] \\ \hline AR \leftarrow PC \\ \hline IR , AR \leftarrow DR \\ \hline AC \leftarrow AC \mbox{\normalization} \\ \hline AC \leftarrow AC \mbox{\normalization} \\ \hline \end{array}$ 

 $M \leftarrow DR$ 

Required Micro-operations in these two rows must be allocated the same relative to each other The remaining operations are assigned arbitrarily 4. Test program: 0: ADD 4

1: AND 5 2: INC

3: JMP 0 4: 27H

5: 39H

| Instruction | State  | Address | Micro-operations | Operations performed                                     | Next Address |
|-------------|--------|---------|------------------|----------------------------------------------------------|--------------|
| ADD 4       | FETCH1 | 0000    | ARPC             | $AR \leftarrow 0$                                        | 0001         |
|             | FETCH2 | 0001    | DRM, PCIN        | $DR \leftarrow 04H, PC \leftarrow 1$                     | 0010         |
|             | FETCH3 | 0010    | AIDR             | $IR \leftarrow 00, AR \leftarrow 04H$                    | 1000         |
|             | ADD1   | 1000    | DRM              | <i>DR</i> ← 27H                                          | 1001         |
|             | ADD2   | 1001    | PLUS             | $AC \leftarrow 0 + 27H = 27H$                            | 0000         |
| AND 5       | FETCH1 | 0000    | ARPC             | $AR \leftarrow 1$                                        | 0001         |
|             | FETCH2 | 0001    | DRM, PCIN        | $DR \leftarrow 45H, PC \leftarrow 2$                     | 0010         |
|             | FETCH3 | 0010    | AIDR             | $IR \leftarrow 01, AR \leftarrow 05H$                    | 1010         |
|             | AND1   | 1010    | DRM              | <i>DR</i> ← 39H                                          | 1011         |
|             | AND2   | 1011    | AND              | $AC \leftarrow 27\text{H} \land 39\text{H} = 31\text{H}$ | 0000         |
| INC         | FETCH1 | 0000    | ARPC             | $AR \leftarrow 2$                                        | 0001         |
|             | FETCH2 | 0001    | DRM, PCIN        | $DR \leftarrow \text{COH}, PC \leftarrow 3$              | 0010         |
|             | FETCH3 | 0010    | AIDR             | $IR \leftarrow 11, AR \leftarrow 00H$                    | 1110         |
|             | INC1   | 1110    | ACIN             | $AC \leftarrow 21H + 1 = 22H$                            | 0000         |
| JMP 0       | FETCH1 | 0000    | ARPC             | $AR \leftarrow 3$                                        | 0001         |
|             | FETCH2 | 0001    | DRM, PCIN        | $DR \leftarrow 80H, PC \leftarrow 4$                     | 0010         |
|             | FETCH3 | 0010    | AIDR             | $IR \leftarrow 10, AR \leftarrow 00H$                    | 1100         |
|             | JMP1   | 1100    | PCDR             | $PC \leftarrow 0$                                        | 0000         |

## 5. Use the same test program as in problem 4.

| Instruction | State  | Address | M1   | M2   | Operations performed                                     | Next Address |
|-------------|--------|---------|------|------|----------------------------------------------------------|--------------|
| ADD 4       | FETCH1 | 0000    | ARPC | NOP  | $AR \leftarrow 0$                                        | 0001         |
|             | FETCH2 | 0001    | DRM  | PCIN | $DR \leftarrow 04H, PC \leftarrow 1$                     | 0010         |
|             | FETCH3 | 0010    | AIDR | NOP  | $IR \leftarrow 00, AR \leftarrow 04H$                    | 1000         |
|             | ADD1   | 1000    | DRM  | NOP  | <i>DR</i> ← 27H                                          | 1001         |
|             | ADD2   | 1001    | PLUS | NOP  | $AC \leftarrow 0 + 27H = 27H$                            | 0000         |
| AND 5       | FETCH1 | 0000    | ARPC | NOP  | $AR \leftarrow 1$                                        | 0001         |
|             | FETCH2 | 0001    | DRM  | PCIN | $DR \leftarrow 45H, PC \leftarrow 2$                     | 0010         |
|             | FETCH3 | 0010    | AIDR | NOP  | $IR \leftarrow 01, AR \leftarrow 05H$                    | 1010         |
|             | AND1   | 1010    | DRM  | NOP  | <i>DR</i> ← 39H                                          | 1011         |
|             | AND2   | 1011    | AND  | NOP  | $AC \leftarrow 27\text{H} \land 39\text{H} = 31\text{H}$ | 0000         |
| INC         | FETCH1 | 0000    | ARPC | NOP  | $AR \leftarrow 2$                                        | 0001         |
|             | FETCH2 | 0001    | DRM  | PCIN | $DR \leftarrow \text{COH}, PC \leftarrow 3$              | 0010         |
|             | FETCH3 | 0010    | AIDR | NOP  | $IR \leftarrow 11, AR \leftarrow 00H$                    | 1110         |
|             | INC1   | 1110    | ACIN | NOP  | $AC \leftarrow 21H + 1 = 22H$                            | 0000         |
| JMP 0       | FETCH1 | 0000    | ARPC | NOP  | $AR \leftarrow 3$                                        | 0001         |
|             | FETCH2 | 0001    | DRM  | PCIN | $DR \leftarrow 80H, PC \leftarrow 4$                     | 0010         |
|             | FETCH3 | 0010    | AIDR | NOP  | $IR \leftarrow 10, AR \leftarrow 00H$                    | 1100         |
|             | JMP1   | 1100    | PCDR | NOP  | $PC \leftarrow 0$                                        | 0000         |

## 6. Use the same test program as in problem 4.

| Instruction | State  | Address | Control Signals                | Operations performed                                     | Next Address |
|-------------|--------|---------|--------------------------------|----------------------------------------------------------|--------------|
| ADD 4       | FETCH1 | 0000    | PCBUS, ARLOAD                  | $AR \leftarrow 0$                                        | 0001         |
|             | FETCH2 | 0001    | READ, MEMBUS,<br>DRLOAD, PCINC | $DR \leftarrow 04H, PC \leftarrow 1$                     | 0010         |
|             | FETCH3 | 0010    | DRBUS, ARLOAD,<br>IRLOAD       | $IR \leftarrow 00, AR \leftarrow 04H$                    | 1000         |
|             | ADD1   | 1000    | READ, MEMBUS,<br>DRLOAD        | <i>DR</i> ← 27H                                          | 1001         |
|             | ADD2   | 1001    | DRBUS, ACLOAD                  | $AC \leftarrow 0 + 27H = 27H$                            | 0000         |
| AND 5       | FETCH1 | 0000    | PCBUS, ARLOAD                  | $AR \leftarrow 1$                                        | 0001         |
|             | FETCH2 | 0001    | READ, MEMBUS,<br>DRLOAD, PCINC | $DR \leftarrow 45H, PC \leftarrow 2$                     | 0010         |
|             | FETCH3 | 0010    | DRBUS, ARLOAD,<br>IRLOAD       | $IR \leftarrow 01, AR \leftarrow 05H$                    | 1010         |
|             | AND1   | 1010    | READ, MEMBUS,<br>DRLOAD        | <i>DR</i> ← 39H                                          | 1011         |
|             | AND2   | 1011    | DRBUS, ALUSEL,<br>ACLOAD       | $AC \leftarrow 27\text{H} \land 39\text{H} = 31\text{H}$ | 0000         |
| INC         | FETCH1 | 0000    | PCBUS, ARLOAD                  | $AR \leftarrow 2$                                        | 0001         |
|             | FETCH2 | 0001    | READ, MEMBUS,<br>DRLOAD, PCINC | $DR \leftarrow \text{COH}, PC \leftarrow 3$              | 0010         |
|             | FETCH3 | 0010    | DRBUS, ARLOAD,<br>IRLOAD       | $IR \leftarrow 11, AR \leftarrow 00H$                    | 1110         |
|             | INC1   | 1110    | ACINC                          | $AC \leftarrow 21H + 1 = 22H$                            | 0000         |
| JMP 0       | FETCH1 | 0000    | PCBUS, ARLOAD                  | $AR \leftarrow 3$                                        | 0001         |
|             | FETCH2 | 0001    | READ, MEMBUS,<br>DRLOAD, PCINC | $DR \leftarrow 80H, PC \leftarrow 4$                     | 0010         |
|             | FETCH3 | 0010    | DRBUS, ARLOAD,<br>IRLOAD       | $IR \leftarrow 10, AR \leftarrow 00H$                    | 1100         |
|             | JMP1   | 1100    | DRBUS, PCLOAD                  | $PC \leftarrow 0$                                        | 0000         |

## 7. Modified state diagram: (same as for problem 6.6)



Modified RTL code: (same as for problem 6.6)

FETCH3:  $IR \leftarrow DR[7..5], AR \leftarrow DR[5..0]$ 

CLEAR1:  $AC \leftarrow 0$ 

#### Microsequencer modifications:

Change the mapping hardware so that its inputs are IR[2..0] and its outputs are 1,IR[2..1], $(IR_2 \land IR_1 \land IR_0)$ .

Register modifications: (same as for problem 6.7)

- i) *IR* must have 3 bits instead of 2. It receives bus bits 7..5 as its inputs. During FETCH3, bit 5 of *DR* is sent to both *IR* and *AR*.
- ii) AC needs a CLR input (ACCLR is a new control signal which connects to the new CLR input.)

#### Microcode modifications:

- i) Add mico-operation *ACCL*, which sets  $AC \leftarrow 0$ . Connect this bit of the microsequencer to the *CLR* input of *AC*.
- ii) Add the following to microcode memory. Set the ACCL field to 0 for all other microinstructions.

| State  | Address   | S            | A | A | P | P | D | P | A | A | A | ADDR |
|--------|-----------|--------------|---|---|---|---|---|---|---|---|---|------|
|        |           | $\mathbf{E}$ | R | Ι | C | C | R | L | N | C | C |      |
|        |           | L            | P | D | I | D | M | U | D | I | C |      |
|        |           |              | C | R | N | R |   | S |   | N | L |      |
| CLEAR1 | 1111 (15) | 0            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0000 |

<u>Verification</u>: Test program: 0: CLEAR

| Instruction | State  | Address | Micro-operations | Operations performed                   | Next Address |
|-------------|--------|---------|------------------|----------------------------------------|--------------|
| CLEAR       | FETCH1 | 0000    | ARPC             | $AR \leftarrow 0$                      | 0001         |
|             | FETCH2 | 0001    | DRM, PCIN        | $DR \leftarrow 04H, PC \leftarrow 1$   | 0010         |
|             | FETCH3 | 0010    | AIDR             | $IR \leftarrow 111, AR \leftarrow 04H$ | 1111         |
|             | CLEAR1 | 1111    | ACCL             | $AC \leftarrow 00$                     | 0000         |

- 8. The modifications are the same as in problem 7 with the following exceptions.
  - i) Label output 0 of the M1 decoder ACCL. (This can be done because the NOP of M1 is never used. If it was used, a new micro-operation code would have to be created.) The code for ACCL is M1 = 000.
  - ii) Connect ACCL to ACCLR.
  - iii) Add the following to microcode memory.

| State  | Address | SEL | M1  | M2 | ADDR |
|--------|---------|-----|-----|----|------|
| CLEAR1 | 1111    | 0   | 000 | 0  | 0000 |

<u>Verification</u>: Test program: 0: CLEAR

| Instruction | State  | Address | M1   | M2   | Operations performed                   | Next Address |
|-------------|--------|---------|------|------|----------------------------------------|--------------|
| CLEAR       | FETCH1 | 0000    | ARPC | NOP  | $AR \leftarrow 0$                      | 0001         |
|             | FETCH2 | 0001    | DRM  | PCIN | $DR \leftarrow 04H, PC \leftarrow 1$   | 0010         |
|             | FETCH3 | 0010    | AIDR | NOP  | $IR \leftarrow 111, AR \leftarrow 04H$ | 1111         |
|             | CLEAR1 | 1111    | ACCL | NOP  | $AC \leftarrow 00$                     | 0000         |

- 9. The modifications are the same as in problem 7 with the following exceptions.
  - i) Add control signal output *ACCLR* to the control signals in microcode memory. Set it to 0 for all microinstructions except the microinstruction at address 1111.
  - ii) Add the following to microcode memory.

| State  | Address   | S | A | P | P | D | A | A | I | A            | P | D | A | ADDR |
|--------|-----------|---|---|---|---|---|---|---|---|--------------|---|---|---|------|
|        |           | E | R | C | C | M | C | C | R | L            | C | R | C |      |
|        |           | L | L | L | Ι | R | L | I | L | U            | В | В | C |      |
|        |           |   | O | O | N |   | O | N | O | S            | U | U | L |      |
|        |           |   | A | A | C |   | A | C | A | $\mathbf{E}$ | S | S | R |      |
|        |           |   | D | D |   |   | D |   | D | L            |   |   |   |      |
| CLEAR1 | 1111 (15) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0            | 0 | 0 | 1 | 0000 |

Verification: Test program: 0: CLEAR

| Instruction | State  | Address | Control Signals | Operations performed                   | Next Address |
|-------------|--------|---------|-----------------|----------------------------------------|--------------|
| CLEAR       | FETCH1 | 0000    | PCBUS, ARLOAD   | $AR \leftarrow 0$                      | 0001         |
|             | FETCH2 | 0001    | READ, MEMBUS,   | $DR \leftarrow 04H, PC \leftarrow 1$   | 0010         |
|             |        |         | DRLOAD, PCINC   |                                        |              |
|             | FETCH3 | 0010    | DRBUS,          | $IR \leftarrow 111, AR \leftarrow 04H$ | 1111         |
|             |        |         | ARLOAD,         |                                        |              |
|             |        |         | IRLOAD          |                                        |              |
|             | CLEAR1 | 1111    | ACCLR           | $AC \leftarrow 00$                     | 0000         |

## 10. Modified state diagram: (same as for problem 6.10)

(IR must have 4 bits instead of 2.)



Modified RTL code: (same as for problem 6.10)

FETCH3:  $IR \leftarrow DR[7..4], AR \leftarrow DR[5..0]$ 

MVAC1:  $R \leftarrow AC$ MOVR1:  $AC \leftarrow R$ 

#### Microsequencer modifications:

- i) Change the mapping hardware so that its inputs are IR[3..0] and its outputs are  $(IR_3 \land IR_2 \land IR_1), IR[3..2], (IR_3 \land IR_2 \land IR_1 \land IR_0)$ .
- ii) Add micro-operation RAC ( $R \leftarrow AC$ ); connect it to an OR gate that generates ACBUS and have it directly drive RLOAD.
- iii) Add micro-operation ACR ( $AC \leftarrow R$ ); connect it to directly to RBUS and connect it to an OR gate that generates ACLOAD.

### Register and ALU modifications: (same as for problem 6.11)

- i.) *IR* must have 4 bits instead of 2. It receives bus bits 7..4 as its inputs. During FETCH3, bit *DR*[5..4] is sent to both *IR* and *AR*. This is shown below.
- ii) Register *R* is added to the CPU. It receives data from the bus and sends data to the bus through tri-state buffers. It requires only a *LD* signal. This is shown below.
- iii) The ALU is modified as shown below.



### Microcode modifications:

Add the following to microcode memory. Set the RAC and ACR fields to 0 for all other microinstructions.

| State | Address  | S            | A | A | P | P | D | P | A | A | R | A | ADDR |
|-------|----------|--------------|---|---|---|---|---|---|---|---|---|---|------|
|       |          | $\mathbf{E}$ | R | Ι | C | C | R | L | N | C | A | C |      |
|       |          | L            | P | D | I | D | M | U | D | I | C | R |      |
|       |          |              | C | R | N | R |   | S |   | N |   |   |      |
| MVAC1 | 0110 (6) | 0            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0000 |
| MOVR1 | 0111 (7) | 0            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0000 |

<u>Verification</u>: Test program: 0: MVAC (Initially AC = 1)

1: MOVR

| Instruction | State  | Address | Micro-operations | Operations performed                        | Next Address |
|-------------|--------|---------|------------------|---------------------------------------------|--------------|
| MVAC        | FETCH1 | 0000    | ARPC             | $AR \leftarrow 0$                           | 0001         |
|             | FETCH2 | 0001    | DRM, PCIN        | $DR \leftarrow \text{E0H}, PC \leftarrow 1$ | 0010         |
|             | FETCH3 | 0010    | AIDR             | $IR \leftarrow 1110, AR \leftarrow 20H$     | 0110         |
|             | MVAC1  | 0110    | RAC              | $R \leftarrow 01H$                          | 0000         |
| MOVR        | FETCH1 | 0000    | ARPC             | $AR \leftarrow 1$                           | 0001         |
|             | FETCH2 | 0001    | DRM, PCIN        | $DR \leftarrow \text{F0H}, PC \leftarrow 2$ | 0010         |
|             | FETCH3 | 0010    | AIDR             | $IR \leftarrow 1111, AR \leftarrow 30H$     | 0111         |
|             | MOVR1  | 0111    | ACR              | $AC \leftarrow 01H$                         | 0000         |

- 11. The modifications are the same as in problem 10 with the following exceptions.
  - i) Add micro-operations RAC ( $R \leftarrow AC$ ) and ACR ( $AC \leftarrow R$ ) to M2 with the following assignments.

| <b>M2</b> | Micro-operation |
|-----------|-----------------|
| 00        | NOP             |
| 01        | PCIN            |
| 10        | RAC             |
| 11        | ACR             |

- ii) Use a 2-to-4 decoder to generate the control signals for M2.
- iii) Modify the existing microinstructions to accommodate the new values for M2 (0  $\rightarrow$  00, 1  $\rightarrow$  01).
- iv) Add the following to microcode memory.

| State | Address | SEL | M1  | M2 | ADDR |
|-------|---------|-----|-----|----|------|
| MVAC1 | 0110    | 0   | 000 | 10 | 0000 |
| MOVR1 | 0111    | 0   | 000 | 11 | 0000 |

<u>Verification</u>: Test program: 0: MVAC (Initially AC = 1)

1: MOVR

| Instruction | State  | Address | M1   | M2   | Operations performed                        | Next Address |
|-------------|--------|---------|------|------|---------------------------------------------|--------------|
| MVAC        | FETCH1 | 0000    | ARPC | NOP  | $AR \leftarrow 0$                           | 0001         |
|             | FETCH2 | 0001    | DRM  | PCIN | $DR \leftarrow \text{E0H}, PC \leftarrow 1$ | 0010         |
|             | FETCH3 | 0010    | AIDR | NOP  | $IR \leftarrow 1110, AR \leftarrow 20H$     | 0110         |
|             | MVAC1  | 0110    | NOP  | RAC  | $R \leftarrow 01H$                          | 0000         |
| MOVR        | FETCH1 | 0000    | ARPC | NOP  | $AR \leftarrow 1$                           | 0001         |
|             | FETCH2 | 0001    | DRM  | PCIN | $DR \leftarrow \text{F0H}, PC \leftarrow 2$ | 0010         |
|             | FETCH3 | 0010    | AIDR | NOP  | $IR \leftarrow 1111, AR \leftarrow 30H$     | 0111         |
|             | MOVR1  | 0111    | NOP  | ACR  | $AC \leftarrow 01H$                         | 0000         |

- 12. The modifications are the same as in problem 10 with the following exceptions.
  - i) Add control signals *RLOAD*, *RBUS*, *ACBUS*, and *ALUS2* to the control signals in microcode memory. Set them to 0 for all microinstructions except those at addresses 0110 and 0111.
  - ii) Add the following to microcode memory.

| State | Address  | S | A | P | P | D | A | A | I | A            | P | D | R | R | P | A | ADDR |
|-------|----------|---|---|---|---|---|---|---|---|--------------|---|---|---|---|---|---|------|
|       |          | E | R | C | C | M | C | C | R | L            | C | R | L | В | C | L |      |
|       |          | L | L | L | I | R | L | I | L | $\mathbf{U}$ | В | В | O | U | В | U |      |
|       |          |   | O | 0 | N |   | O | N | 0 | S            | U | U | A | S | U | S |      |
|       |          |   | A | A | C |   | A | C | A | $\mathbf{E}$ | S | S | D |   | S | 2 |      |
|       |          |   | D | D |   |   | D |   | D | L            |   |   |   |   |   |   |      |
| MVAC1 | 0110 (6) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0            | 0 | 0 | 1 | 0 | 1 | 0 | 0000 |
| MOVR1 | 0111 (7) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0            | 0 | 0 | 0 | 1 | 0 | 1 | 0000 |

<u>Verification</u>: Test program: 0: MVAC (Initially AC = 1)

1: MOVR

| Instruction | State  | Address | Control Signals                | Operations performed                        | Next Address |
|-------------|--------|---------|--------------------------------|---------------------------------------------|--------------|
| MVAC        | FETCH1 | 0000    | PCBUS, ARLOAD                  | $AR \leftarrow 0$                           | 0001         |
|             | FETCH2 | 0001    | READ, MEMBUS,<br>DRLOAD, PCINC | $DR \leftarrow \text{E0H}, PC \leftarrow 1$ | 0010         |
|             | FETCH3 | 0010    | DRBUS, ARLOAD,<br>IRLOAD       | $IR \leftarrow 1110, AR \leftarrow 20H$     | 0110         |
|             | MVAC1  | 0110    | ACBUS, RLOAD                   | $R \leftarrow 01H$                          | 0000         |
| MOVR        | FETCH1 | 0000    | ARPC                           | $AR \leftarrow 1$                           | 0001         |
|             | FETCH2 | 0001    | DRM, PCIN                      | $DR \leftarrow \text{F0H}, PC \leftarrow 2$ | 0010         |
|             | FETCH3 | 0010    | AIDR                           | $IR \leftarrow 1111, AR \leftarrow 30H$     | 0111         |
|             | MOVR1  | 0111    | RBUS, ACLOAD,<br>ALUS2         | <i>AC</i> ← 01H                             | 0000         |

### 13. Some points that might be included:

- The mapping hardware change is equivalent to changing the inputs to the counter in the hardwired controller.
- The changes in the state diagram and register hardware are the same for either control unit.
- The microcode may require less hardware changes in the control unit than the hardwired control unit, especially if no new micro-operations are needed.

## 14. Modified state diagram and RTL code: (same as for problem 6.19)



Register and ALU modifications: (same as for problem 6.20)

*R* needs two additional inputs: *CLR*, driven by new control signal *RCLR*, and *DCR*, driven by new control signal *RDCR*. There are no ALU modifications.

#### Microcode and microsequencer modifications:

- i) Add micro-operations CLRR ( $R \leftarrow 0$ ) and DECR ( $R \leftarrow R 1$ ) to the microcode. These fields are set to zero for all existing microinstructions.
- ii) Change the mapping function to  $(IR_4 \vee IR_3)$ ,  $(IR_4 \vee IR_2)$ ,  $(IR_4 \vee IR_1)$ ,  $(IR_4 \vee IR_0)$ ,  $IR_4$ , 0.

iii) Add the following microinstructions to the microprogram.

| State | Address | Condition | BT | All other micro-operations | CLRR | DECR | ADDR |
|-------|---------|-----------|----|----------------------------|------|------|------|
| SETR1 | 62      | 1         | J  | 0                          | 1    | 0    | 63   |
| SETR2 | 63      | 1         | J  | 0                          | 0    | 1    | 1    |

Verification: Test program: 0: SETR

| Instruction | State  | Active signals | Operations performed                   | Next state |
|-------------|--------|----------------|----------------------------------------|------------|
| SETR        | FETCH1 | PCBUS, ARLOAD  | $AR \leftarrow 0$                      | FETCH2     |
|             | FETCH2 | READ, MEMBUS,  | $DR \leftarrow 10H, PC \leftarrow 1$   | FETCH3     |
|             |        | DRLOAD, PCINC  |                                        |            |
|             | FETCH3 | DRBUS, ARLOAD, | $IR \leftarrow 10H, AR \leftarrow 01H$ | SETR1      |
|             |        | IRLOAD         |                                        |            |
|             | SETR1  | CLRR           | $R \leftarrow 00H$                     | SETR2      |
|             | SETR2  | DECR           | $R \leftarrow \text{FFH}$              | FETCH1     |

## 15. <u>Modified state diagram and RTL code</u>: (same as for problem 6.23)



ADDB1:  $AC \leftarrow AC + B$ SUBB1:  $AC \leftarrow AC - B$ ANDB1:  $AC \leftarrow AC \wedge B$ ORB1:  $AC \leftarrow AC \vee B$ XORB1:  $AC \leftarrow AC \oplus B$ 

Register and ALU modifications: (same as for problem 6.24)

- i.) No ALU changes are needed!
- ii) Register *B* is added to the CPU. It sends data to the bus through tri-state buffers but does not receive data from the bus (since it is never loaded). This is shown below.



## Microcode and microsequencer modifications:

- i) Add micro-operations BPLU ( $AC \leftarrow AC + B$ ), BMIN ( $AC \leftarrow AC B$ ), BAND ( $AC \leftarrow AC \land B$ ), BOR ( $AC \leftarrow AC \lor B$ ), and BXOR ( $AC \leftarrow AC \oplus B$ ) to the microcode. These fields are set to zero for all existing microinstructions.
- ii) Change the mapping function to  $IR_3$ , $IR_2$ , $IR_1$ , $IR_0$ ,0, $IR_4$ .
- iii) Change ALUS[1..7] such that ADDI is replaced by  $ADDI \lor ADDBI$ , and so on for SUBI, ANDI, ORI, and XORI, yielding:

 $ALUS1 = ADD1 \lor ADDB1 \lor SUB1 \lor SUBB1 \lor INAC1$ 

 $ALUS2 = SUB1 \lor SUBB1$ 

 $ALUS3 = LDAC5 \lor MOVR1 \lor ADD1 \lor ADDB1$ 

 $ALUS4 = SUB1 \lor SUBB1 \lor INAC1$ 

 $ALUS5 = XOR1 \lor XORB1 \lor NOT1$ 

 $ALUS6 = OR1 \lor ORB1 \lor NOT1$ 

 $ALUS7 = AND1 \lor ANDB1 \lor OR1 \lor ORB1 \lor XOR1 \lor XORB1 \lor NOT1$ 

iv) Add the following microinstructions to the microprogram.

| State | Address | Cond. | BT | All other | BPLU | BMIN | BAND | BOR | BXOR | ADDR |
|-------|---------|-------|----|-----------|------|------|------|-----|------|------|
|       |         |       |    | μ-ops     |      |      |      |     |      |      |
| ADDB1 | 33      | 1     | J  | 0         | 1    | 0    | 0    | 0   | 0    | 1    |
| SUBB1 | 37      | 1     | J  | 0         | 0    | 1    | 0    | 0   | 0    | 1    |
| ANDB1 | 49      | 1     | J  | 0         | 0    | 0    | 1    | 0   | 0    | 1    |
| ORB1  | 53      | 1     | J  | 0         | 0    | 0    | 0    | 1   | 0    | 1    |
| XORB1 | 57      | 1     | J  | 0         | 0    | 0    | 0    | 0   | 1    | 1    |

<u>Verification</u>: Test program shown below. Fetch cycles not shown

| Instruction | State | Micro-operations | Operations performed           |
|-------------|-------|------------------|--------------------------------|
| ORB         | ORB1  | BOR              | $AC \leftarrow 1 \lor 2 = 3$   |
| ADDB        | ADDB1 | BPLU             | $AC \leftarrow 3 + 2 = 5$      |
| ANDB        | ANDB1 | BAND             | $AC \leftarrow 5 \land 2 = 0$  |
| XORB        | XORB1 | BXOR             | $AC \leftarrow 0 \oplus 2 = 2$ |
| SUBB        | SUBB1 | BMIN             | $AC \leftarrow 2 - 2 = 0$      |

16. PCLOAD = PCDT  $RBUS = ACR \lor PLUS \lor MINU \lor AND \lor OR \lor XOR$ 

TRLOAD = TRDR  $ALUS1 = PLUS \lor MINU \lor ACIN$ 

PCBUS = ARPC ALUS2 = MINU

 $DRHBUS = ARDT \lor PCDT \qquad \qquad ALUS3 = ACDR \lor ACR \lor PLUS$ 

 $\begin{array}{lll} DRLBUS = ACDR \lor MDR & ALUS4 = MINU \lor ACIN \\ ACBUS = DRAC \lor RAC & ALUS5 = XOR \lor NOT \\ READ = DRM & ALUS6 = OR \lor NOT \\ \end{array}$ 

WRITE = MDR  $ALUS7 = AND \lor OR \lor XOR \lor NOT$ 

 $MEMBUS = DRM \qquad \qquad ACLOAD = ACDR \lor ACR \lor PLUS \lor MINU \lor ACIN \lor ACZO \lor$ 

 $BUSMEM = MDR \qquad \qquad AND \lor OR \lor XOR \lor NOT$ 

17. The subroutine now consists only of its last two instructions:

| State | A  | C | В | A | A | A | P            | P | D | D | I | R | Z | T | A | A            | P | M | A            | A            | A | 0 | X | N | M | A  |
|-------|----|---|---|---|---|---|--------------|---|---|---|---|---|---|---|---|--------------|---|---|--------------|--------------|---|---|---|---|---|----|
|       | d  | 0 | T | R | R | R | $\mathbf{C}$ | C | R | R | R | A | A | R | C | $\mathbf{C}$ | L | I | $\mathbf{C}$ | $\mathbf{C}$ | N | R | 0 | 0 | D | D  |
|       | d  | n |   | P | Ι | D | I            | D | M | A | D | C | L | D | D | R            | U | N | Ι            | $\mathbf{Z}$ | D |   | R | T | R | D  |
|       | r  | d |   | C | N | T | N            | T |   | C | R |   | U | R | R |              | S | U | N            | O            |   |   |   |   |   | R  |
|       | e  | i |   |   |   |   |              |   |   |   |   |   |   |   |   |              |   |   |              |              |   |   |   |   |   |    |
|       | S  | t |   |   |   |   |              |   |   |   |   |   |   |   |   |              |   |   |              |              |   |   |   |   |   |    |
|       | S  | i |   |   |   |   |              |   |   |   |   |   |   |   |   |              |   |   |              |              |   |   |   |   |   |    |
|       |    | 0 |   |   |   |   |              |   |   |   |   |   |   |   |   |              |   |   |              |              |   |   |   |   |   |    |
|       |    | n |   |   |   |   |              |   |   |   |   |   |   |   |   |              |   |   |              |              |   |   |   |   |   |    |
| SUB1  | 61 | 1 | J | 0 | 0 | 0 | 1            | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0            | 0 | 0 | 0            | 0            | 0 | 0 | 0 | 0 | 0 | 62 |
| SUB2  | 62 | 1 | R | 0 | 0 | 1 | 0            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0            | 0 | 0 | 0            | 0            | 0 | 0 | 0 | 0 | 0 | X  |

- 18. i) The microsequencer is the same as shown in Figure 7.8, except the micro-operations fields are input to decoders which generate the micro-operations.
  - ii) From the microcode of Table 7.17, the following groups of micro-operations must occur simultaneously at least once, and therefore must be located in different fields:
    - PCIN, DRM, and ARIN
    - ARPC, and IRDR
    - PCIN, DRM, and TRDR
    - ZALU, and each of the arithmetic and logic micro-operations (PLUS, MINU, ACIN, ACZO, AND, OR, XOR, and NOT)
  - iii) Since some microinstructions (such as NOP1) perform no micro-operations, each field requires a NOP.

One possible partitioning of the micro-operations, and its resultant microcode, are shown below.

| N    | <b>1</b> 1 | M2   | M3  |
|------|------------|------|-----|
| NOP  | PLUS       | NOP  | NOP |
| TRDR | MINU       | PCIN | DRM |
| ARIN | ACIN       | IRDR |     |
| ARPC | ACZO       | ZALU |     |
| ARDT | AND        | ACDR |     |
| PCDT | OR         | ACR  |     |
| DRAC | XOR        | MDR  |     |
| RAC  | NOT        |      |     |

| State  | A  | C | В | M1   | M2   | M3  | A  |
|--------|----|---|---|------|------|-----|----|
|        | d  | 0 | T |      |      |     | D  |
|        | d  | n |   |      |      |     | D  |
|        | r  | d |   |      |      |     | R  |
|        | e  | i |   |      |      |     |    |
|        | S  | t |   |      |      |     |    |
|        | S  | i |   |      |      |     |    |
|        |    | 0 |   |      |      |     |    |
|        |    | n | _ |      |      |     |    |
| FETCH1 | 1  | 1 | J | ARPC | NOP  | NOP | 2  |
| FETCH2 | 2  | 1 | J | NOP  | PCIN | DRM | 3  |
| FETCH3 | 3  | X | M | ARPC | IRDR | NOP | X  |
| NOP1   | 0  | 1 | J | NOP  | NOP  | NOP | 1  |
| LDAC1  | 4  | 1 | J | ARIN | PCIN | DRM | 5  |
| LDAC2  | 5  | 1 | J | TRDR | PCIN | DRM | 6  |
| LDAC3  | 6  | 1 | J | ARDT | NOP  | NOP | 7  |
| LDAC4  | 7  | 1 | J | NOP  | NOP  | DRM | 33 |
| LDAC5  | 33 | 1 | J | NOP  | ACRD | NOP | 1  |
| STAC1  | 8  | 1 | J | ARIN | PCIN | DRM | 9  |
| STAC2  | 9  | 1 | J | TRDR | PCIN | DRM | 10 |
| STAC3  | 10 | 1 | J | ARDT | NOP  | NOP | 11 |
| STAC4  | 11 | 1 | J | DRAC | NOP  | NOP | 34 |
| STAC5  | 34 | 1 | J | NOP  | MDR  | NOP | 1  |
| MVAC1  | 12 | 1 | J | NOP  | NOP  | NOP | 1  |
| MOVR1  | 16 | 1 | J | NOP  | NOP  | NOP | 1  |
| JUMP1  | 20 | 1 | J | ARIN | NOP  | DRM | 21 |
| JUMP2  | 21 | 1 | J | TRDR | NOP  | DRM | 22 |
| JUMP3  | 22 | 1 | J | PCDT | NOP  | NOP | 1  |

| State  | A<br>d<br>d<br>r | C<br>o<br>n<br>d | B<br>T | M1   | M2   | M3  | A<br>D<br>D<br>R |
|--------|------------------|------------------|--------|------|------|-----|------------------|
|        | s<br>s           | t<br>i<br>o<br>n |        |      |      |     |                  |
| JMPZ1  | 24               | Z¢               | J      | NOP  | NOP  | NOP | 41               |
| JMPZY1 | 25               | 1                | J      | ARIN | NOP  | DRM | 26               |
| JMPZY2 | 26               | 1                | J      | TRDR | NOP  | DRM | 27               |
| JMPZY3 | 27               | 1                | J      | PCDT | NOP  | NOP | 1                |
| JMPZN1 | 41               | 1                | J      | NOP  | PCIN | NOP | 42               |
| JMPZN2 | 42               | 1                | J      | NOP  | PCIN | NOP | 1                |
| JPNZ1  | 28               | Z                | J      | NOP  | NOP  | NOP | 45               |
| JPNZY1 | 29               | 1                | J      | ARIN | NOP  | DRM | 30               |
| JPNZY2 | 30               | 1                | J      | TRDR | NOP  | DRM | 31               |
| JPNZY3 | 31               | 1                | J      | PCDT | NOP  | NOP | 1                |
| JPNZN1 | 45               | 1                | J      | NOP  | PCIN | NOP | 46               |
| JPNZN2 | 46               | 1                | J      | NOP  | PCIN | NOP | 1                |
| ADD1   | 32               | 1                | J      | PLUS | ZALU | NOP | 1                |
| SUB1   | 36               | 1                | J      | MINU | ZALU | NOP | 1                |
| INAC1  | 40               | 1                | J      | ACIN | ZALU | NOP | 1                |
| CLAC1  | 44               | 1                | J      | ACCL | ZALU | NOP | 1                |
| AND1   | 48               | 1                | J      | AND  | ZALU | NOP | 1                |
| OR1    | 52               | 1                | J      | OR   | ZALU | NOP | 1                |
| XOR1   | 56               | 1                | J      | XOR  | ZALU | NOP | 1                |
| NOT1   | 60               | 1                | J      | NOT  | ZALU | NOP | 1                |

19. The microsequencer is the same as shown in Figure 7.8, except the micro-operations fields outputs the control signals directly, as shown in the following table.

| LDAC5         33         1         J         ACLOAD, ALUS3, DRLBUS         1           STAC1         8         1         J         ARINC, PCINC, DRLOAD, MEMBUS, READ         9           STAC2         9         1         J         PCINC, DRLOAD, TRLOAD, MEMBUS, READ         10           STAC3         10         1         J         ARLOAD, DRHBUS, TRBUS         11           STAC4         11         1         J         DRLOAD, ACBUS         34           STAC5         34         1         J         DRLBUS, BUSMEM, WRITE         1           MVAC1         12         1         J         RLOAD, ACBUS         1           MOVRI         16         1         J         ACLOAD, ACBUS         1           JUMP1         20         1         J         ACLOAD, ACBUS         1           JUMP2         21         1         J         ACLOAD, ACBUS         1           JUMP3         20         1         J         ACLOAD, ACBUS         1           JUMP4         20         1         J         ARINC, DRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         DRLOAD, TRLOAD, MEMBUS, READ         26 </th <th>State</th> <th>Address</th> <th>Condition</th> <th>BT</th> <th>Active control signals</th> <th>ADDR</th>     | State  | Address | Condition | BT | Active control signals                | ADDR |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-----------|----|---------------------------------------|------|
| FETCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FETCH1 | 1       | 1         | J  | ARLOAD, PCBUS                         | 2    |
| NOP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FETCH2 | 2       | 1         | J  | PCINC, DRLOAD, MEMBUS, READ           | 3    |
| LDAC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FETCH3 | 3       | X         | M  | ARLOAD, IRLOAD, PCBUS                 | X    |
| LDAC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NOP1   | 0       | 1         | J  | None                                  | 1    |
| LDAC3         6         1         J         ARLOAD, DRHBUS, TRBUS         7           LDAC4         7         1         J         DRLOAD, MEMBUS, READ         33           LDAC5         33         1         J         ACLOAD, ALUS3, DRLBUS         1           STAC1         8         1         J         ARINC, PCINC, DRLOAD, MEMBUS, READ         9           STAC2         9         1         J         PCINC, DRLOAD, TRLOAD, MEMBUS, READ         10           STAC3         10         1         J         ARLOAD, DRHBUS, TRBUS         11           STAC4         11         1         J         DRLOAD, ACBUS         34           STAC5         34         1         J         DRLOAD, ACBUS         34           STAC5         34         1         J         DRLOAD, ACBUS         1           MOVR1         16         1         J         ACLOAD, ACBUS         1           JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         21           JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS <t< td=""><td>LDAC1</td><td>4</td><td>1</td><td>J</td><td>ARINC, PCINC, DRLOAD, MEMBUS, READ</td><td>5</td></t<> | LDAC1  | 4       | 1         | J  | ARINC, PCINC, DRLOAD, MEMBUS, READ    | 5    |
| LDAC4         7         1         J         DRLOAD, MEMBUS, READ         33           LDAC5         33         1         J         ACLOAD, ALUS3, DRLBUS         1           STAC1         8         1         J         ARINC, PCINC, DRLOAD, MEMBUS, READ         9           STAC2         9         1         J         PCINC, DRLOAD, TRLOAD, MEMBUS, READ         10           STAC3         10         1         J         ARLOAD, DRHBUS, TRBUS         11           STAC4         11         1         J         DRLOAD, ACBUS         34           STAC5         34         1         J         DRLBUS, BUSMEM, WRITE         1           MVAC1         12         1         J         RLOAD, ACBUS         1           MOVR1         16         1         J         ACLOAD, ACBUS         1           JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         21           JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMP2Y1         25         1         J         ARINC, DRLOAD, MEMBUS                                                                                                  | LDAC2  | 5       | 1         | J  | PCINC, DRLOAD, TRLOAD, MEMBUS, READ   | 6    |
| LDAC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LDAC3  | 6       | 1         | J  | ARLOAD, DRHBUS, TRBUS                 | 7    |
| STAC1         8         1         J         ARINC, PCINC, DRLOAD, MEMBUS, READ         9           STAC2         9         1         J         PCINC, DRLOAD, TRLOAD, MEMBUS, READ         10           STAC3         10         1         J         ARLOAD, DRHBUS, TRBUS         11           STAC3         10         1         J         ARLOAD, DRHBUS, TRBUS         11           STAC4         11         1         J         DRLOAD, ACBUS         34           STAC5         34         1         J         DRLOAD, ACBUS         1           MVAC1         12         1         J         RLOAD, ACBUS         1           MOVR1         16         1         J         ACLOAD, ACBUS         1           MOVR1         16         1         J         ACLOAD, ACBUS         1           JUMP1         20         1         J         ACLOAD, ACBUS         1           JUMP1         20         1         J         ACLOAD, ACBUS         1           JUMP1         20         1         J         ACLOAD, ACBUS         1           JUMP2         21         1         J         ACLOAD, ACLOAD, MEMBUS, READ         20           <                                                                                                                                 | LDAC4  | 7       | 1         | J  | DRLOAD, MEMBUS, READ                  | 33   |
| STAC2         9         1         J         PCINC, DRLOAD, TRLOAD, MEMBUS, READ         10           STAC3         10         1         J         ARLOAD, DRHBUS, TRBUS         11           STAC4         11         1         J         DRLOAD, ACBUS         34           STAC5         34         1         J         DRLBUS, BUSMEM, WRITE         1           MVAC1         12         1         J         RLOAD, ACBUS         1           MOVRI         16         1         J         ACLOAD, ALUS3, RBUS         1           JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         21           JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCINC         42           JMPZN1         41         1         J         PCINC         1                                                                                                                 | LDAC5  | 33      | 1         | J  | ACLOAD, ALUS3, DRLBUS                 | 1    |
| STAC3         10         1         J         ARLOAD, DRHBUS, TRBUS         11           STAC4         11         1         J         DRLOAD, ACBUS         34           STAC5         34         1         J         DRLBUS, BUSMEM, WRITE         1           MVAC1         12         1         J         RLOAD, ACBUS         1           MOVR1         16         1         J         ACLOAD, ALUS3, RBUS         1           JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         21           JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZ1         24         Z¢         J         None         41           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZN3         27         1         J         PCINC         42           JMPZN1         41         1         J         PCINC         1 <t< td=""><td>STAC1</td><td>8</td><td>1</td><td>J</td><td>ARINC, PCINC, DRLOAD, MEMBUS, READ</td><td>9</td></t<>                             | STAC1  | 8       | 1         | J  | ARINC, PCINC, DRLOAD, MEMBUS, READ    | 9    |
| STAC4         11         1         J         DRLOAD, ACBUS         34           STAC5         34         1         J         DRLBUS, BUSMEM, WRITE         1           MVAC1         12         1         J         RLOAD, ACBUS         1           MOVR1         16         1         J         ACLOAD, ALUS3, RBUS         1           JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         21           JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZ1         24         Z¢         J         None         41           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCINC         42           JMPZN1         41         1         J         PCINC         1           JPNZY1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30                                                                                                                                       | STAC2  | 9       | 1         | J  | PCINC, DRLOAD, TRLOAD, MEMBUS, READ   | 10   |
| STAC5         34         1         J         DRLBUS, BUSMEM, WRITE         1           MVAC1         12         1         J         RLOAD, ACBUS         1           MOVR1         16         1         J         ACLOAD, ALUS3, RBUS         1           JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         21           JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZ1         24         Z¢         J         None         41           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCINC         42           JMPZN1         41         1         J         PCINC         1           JPNZ1         28         Z         J         None         45           JPNZ1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           J                                                                                                                                     | STAC3  | 10      | 1         | J  | ARLOAD, DRHBUS, TRBUS                 | 11   |
| STAC5         34         1         J         DRLBUS, BUSMEM, WRITE         1           MVAC1         12         1         J         RLOAD, ACBUS         1           MOVR1         16         1         J         ACLOAD, ALUS3, RBUS         1           JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         21           JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZ1         24         Z¢         J         None         41           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCINC         42           JMPZN1         41         1         J         PCINC         1           JPNZ1         28         Z         J         None         45           JPNZ1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           J                                                                                                                                     | STAC4  | 11      | 1         | J  | DRLOAD, ACBUS                         | 34   |
| MOVR1         16         1         J         ACLOAD, ALUS3, RBUS         1           JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         21           JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZ1         24         Z¢         J         None         41           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZN1         41         1         J         PCINC         42           JMPZN2         42         1         J         PCINC         1           JPNZ1         28         Z         J         None         45           JPNZY1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31                                                                                                                             |        | 34      | 1         | J  | DRLBUS, BUSMEM, WRITE                 | 1    |
| JUMP1         20         1         J         ARINC, DRLOAD, MEMBUS, READ         21           JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZ1         24         Z¢         J         None         41           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCINC         42           JMPZN1         41         1         J         PCINC         42           JMPZN2         42         1         J         PCINC         1           JPNZ1         28         Z         J         None         45           JPNZY1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZN3         31         1         J         PCLOAD, DRHBUS, TRBUS         1                                                                                                                                         | MVAC1  | 12      | 1         | J  | RLOAD, ACBUS                          | 1    |
| JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZ1         24         Z¢         J         None         41           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZN1         41         1         J         PCINC         42           JMPZN2         42         1         J         PCINC         1           JPNZ1         28         Z         J         None         45           JPNZY1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J         PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J         PCLOAD, DRHBUS, TRBUS         1      <                                                                                                                         | MOVR1  | 16      | 1         | J  | ACLOAD, ALUS3, RBUS                   | 1    |
| JUMP2         21         1         J         DRLOAD, TRLOAD, MEMBUS, READ         22           JUMP3         22         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZ1         24         Z¢         J         None         41           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZN1         41         1         J         PCINC         42           JMPZN2         42         1         J         PCINC         1           JPNZ1         28         Z         J         None         45           JPNZY1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J         PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J         PCLOAD, DRHBUS, TRBUS         1      <                                                                                                                         | JUMP1  | 20      | 1         | J  | ARINC, DRLOAD, MEMBUS, READ           | 21   |
| JUMP3         22         1         J PCLOAD, DRHBUS, TRBUS         1           JMPZ1         24         Z¢         J None         41           JMPZY1         25         1         J ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J PCLOAD, DRHBUS, TRBUS         1           JMPZN1         41         1         J PCINC         42           JMPZN2         42         1         J PCINC         1           JPNZ1         28         Z         J None         45           JPNZY1         29         1         J ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J PCINC         46           JPNZN2         46         1         J PCINC         1           ADD1         32         1         J ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J ACLOAD, ZALU, ALUS1, ALUS2, A                                                                                                         |        | 21      | 1         | J  |                                       | 22   |
| JMPZ1         24         Z¢         J         None         41           JMPZY1         25         1         J         ARINC, DRLOAD, MEMBUS, READ         26           JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZN1         41         1         J         PCINC         42           JMPZN2         42         1         J         PCINC         1           JPNZ1         28         Z         J         None         45           JPNZY1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J         PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J         PCINC         46           JPNZN2         46         1         J         PCINC         1           ADD1         32         1         J         ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1           SUB1<                                                                                                                                     |        | 22      | 1         | J  |                                       | 1    |
| JMPZY2         26         1         J DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J PCLOAD, DRHBUS, TRBUS         1           JMPZN1         41         1         J PCINC         42           JMPZN2         42         1         J PCINC         1           JPNZ1         28         Z         J None         45           JPNZY1         29         1         J ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J PCINC         46           JPNZN2         46         1         J PCINC         1           ADD1         32         1         J ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                           | JMPZ1  | 24      | Z¢        | J  | None                                  | 41   |
| JMPZY2         26         1         J         DRLOAD, TRLOAD, MEMBUS, READ         27           JMPZY3         27         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZN1         41         1         J         PCINC         42           JMPZN2         42         1         J         PCINC         1           JPNZ1         28         Z         J         None         45           JPNZY1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J         PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J         PCINC         46           JPNZN2         46         1         J         PCINC         1           ADD1         32         1         J         ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J         ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                           | JMPZY1 | 25      |           | J  | ARINC, DRLOAD, MEMBUS, READ           | 26   |
| JMPZY3         27         1         J         PCLOAD, DRHBUS, TRBUS         1           JMPZN1         41         1         J         PCINC         42           JMPZN2         42         1         J         PCINC         1           JPNZ1         28         Z         J         None         45           JPNZY1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J         PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J         PCINC         46           JPNZN2         46         1         J         PCINC         1           ADD1         32         1         J         ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J         ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                           | JMPZY2 | 26      | 1         | J  | · · · · · · · · · · · · · · · · · · · | 27   |
| JMPZN1         41         1         J PCINC         42           JMPZN2         42         1         J PCINC         1           JPNZ1         28         Z         J None         45           JPNZY1         29         1         J ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J PCINC         46           JPNZN2         46         1         J PCINC         1           ADD1         32         1         J ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 27      | 1         | J  |                                       | 1    |
| JMPZN2         42         1         J PCINC         1           JPNZ1         28         Z         J None         45           JPNZY1         29         1         J ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J PCINC         46           JPNZN2         46         1         J PCINC         1           ADD1         32         1         J ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |         | 1         | J  | ·                                     | 42   |
| JPNZ1         28         Z         J         None         45           JPNZY1         29         1         J         ARINC, DRLOAD, MEMBUS, READ         30           JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J         PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J         PCINC         46           JPNZN2         46         1         J         PCINC         1           ADD1         32         1         J         ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J         ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 42      | 1         | J  |                                       | 1    |
| JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J         PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J         PCINC         46           JPNZN2         46         1         J         PCINC         1           ADD1         32         1         J         ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J         ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 28      | Z         | J  | None                                  | 45   |
| JPNZY2         30         1         J         DRLOAD, TRLOAD, MEMBUS, READ         31           JPNZY3         31         1         J         PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J         PCINC         46           JPNZN2         46         1         J         PCINC         1           ADD1         32         1         J         ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J         ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JPNZY1 | 29      | 1         | J  | ARINC, DRLOAD, MEMBUS, READ           | 30   |
| JPNZY3         31         1         J         PCLOAD, DRHBUS, TRBUS         1           JPNZN1         45         1         J         PCINC         46           JPNZN2         46         1         J         PCINC         1           ADD1         32         1         J         ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J         ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JPNZY2 | 30      | 1         | J  |                                       | 31   |
| JPNZN1         45         1         J         PCINC         46           JPNZN2         46         1         J         PCINC         1           ADD1         32         1         J         ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J         ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JPNZY3 | 31      | 1         | J  |                                       | 1    |
| JPNZN2         46         1         J         PCINC         1           ADD1         32         1         J         ACLOAD, ZALU, ALUS1, ALUS3, RBUS         1           SUB1         36         1         J         ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 45      | 1         | J  | ·                                     | 46   |
| ADD1 32 1 J ACLOAD, ZALU, ALUS1, ALUS3, RBUS 1 SUB1 36 1 J ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 46      | 1         | J  |                                       | 1    |
| SUB1 36 1 J ACLOAD, ZALU, ALUS1, ALUS2, ALUS4, RBUS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 32      | 1         | J  | ACLOAD, ZALU, ALUS1, ALUS3, RBUS      | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |         |           |    |                                       | 1    |
| INVACT   40   I   J   ACLUAD, ZALU, ALUSI, ALUS4   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INAC1  | 40      | 1         | J  | ACLOAD, ZALU, ALUS1, ALUS4            | 1    |
| CLAC1 44 1 J ACLOAD, ZALU 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         | -         |    |                                       | 1    |
| AND1 48 1 J ACLOAD, ZALU, ALUS7, RBUS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |         |           |    | ,                                     |      |
| OR1 52 1 J ACLOAD, ZALU, ALUS6, ALUS7, RBUS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |         |           |    |                                       | 1    |
| XOR1 56 1 J ACLOAD, ZALU, ALUS5, ALUS7, RBUS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |         |           |    |                                       | +    |
| NOT1 60 1 J ACLOAD, ZALU, ALUS5, ALUS6, ALUS7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |         |           |    |                                       |      |

20. This solution is the same as for Problem 6.18. The student can execute the following program using the Relatively Simple CPU simulator to verify that each instruction performs properly.

```
0: LDAC 0000
                           (AC \leftarrow 1)
     NOP
     MVAC
                           (R \leftarrow 1)
                           (AC \leftarrow 2, Z \leftarrow 0)
     ADD
     INAC
                           (AC \leftarrow 3, Z \leftarrow 0)
     XOR
                           (AC \leftarrow 2, Z \leftarrow 0)
                           (AC \leftarrow 0, Z \leftarrow 1)
     AND
9: JMPZ 000D
                           (jump is taken)
                           (skipped by JMPZ 000D)
     NOP
D: JPNZ 0009
                           (jump is not taken)
     NOT
                           (AC \leftarrow FF, Z \leftarrow 0)
     JMPZ 0009
                           (jump is not taken)
     JPNZ 0018
                           (jump is taken)
     NOP
                           (skipped by JMPZ 0018)
18: CLAC
                           (AC \leftarrow 0, Z \leftarrow 1)
     OR
                           (AC \leftarrow 1, Z \leftarrow 0)
     SUB
                           (AC \leftarrow 0, Z \leftarrow 1)
     MOVR
                           (AC \leftarrow 1)
     STAC 0030
                           (M[30] \leftarrow 1)
                           (AC \leftarrow 1, Z \leftarrow 0)
     AND
     JUMP 0000
                           (start again)
```

21. The state diagram, RTL code, register section, and ALU are the same as for Problem 6.28.

#### State diagram and RTL code:



The <u>register section</u> is the same as Figure 6.6, except for the data input to *PC*, shown below.



Control signals:  $ARLOAD = FETCH1 \lor FETCH3$  PCLOAD = JREL2 PCINC = FETCH2 PCBUS = FETCH1  $DRLOAD = MEMBUS = READ = FETCH2 \lor JREL1 \lor OR1 \lor SUB11$   $DRBUS = FETCH3 \lor JREL2 \lor OR2 \lor SUB12$   $ACLOAD = COM1 \lor OR2 \lor SUB12$  IRLOAD = FETCH3



The microsequencer hardware is the same as shown in Figures 7.3 and 7.4, except the micro-operations are replaced by control signals.

#### Microcode:

| State  | Address   | S | A | P | P | P | D | D | A | I | A | A            | ADDR |
|--------|-----------|---|---|---|---|---|---|---|---|---|---|--------------|------|
|        |           | E | R | C | C | C | M | R | C | R | L | L            |      |
|        |           | L | L | L | Ι | В | R | В | L | L | U | $\mathbf{U}$ |      |
|        |           |   | О | O | N | U |   | U | О | O | S | S            |      |
|        |           |   | A | A | C | S |   | S | A | A | 1 | 2            |      |
|        |           |   | D | D |   |   |   |   | D | D |   |              |      |
| FETCH1 | 0000 (0)  | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0            | 0001 |
| FETCH2 | 0001 (1)  | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0            | 0010 |
| FETCH3 | 0010 (2)  | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0            | XXXX |
| COM1   | 1000 (8)  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0            | 0000 |
| JREL1  | 1010 (10) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0            | 1011 |
| JREL2  | 1011 (11) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0            | 0000 |
| OR1    | 1100 (12) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0            | 1101 |
| OR2    | 1101 (13) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0            | 0000 |
| SUB11  | 1110 (14) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0            | 1111 |
| SUB12  | 1111 (15) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1            | 0000 |

22. The state diagram, RTL code, register section, and ALU are the same as for Problem 6.29.

#### State diagram and RTL code:



```
AR \leftarrow PC
                                                 ADD1: DR \leftarrow M, PC \leftarrow PC + 1
FETCH1:
FETCH2:
              DR \leftarrow M, PC \leftarrow PC + 1
                                                 ADD2: AC \leftarrow AC + DR
                                                          DR \leftarrow M, PC \leftarrow PC + 1
FETCH3:
              IR \leftarrow DR[7..5], AR \leftarrow PC
                                                 OR1:
LDI1:
              DR \leftarrow M, PC \leftarrow PC + 1
                                                 OR2:
                                                          AC \leftarrow AC \lor DR
                                                 JUMP1: DR \leftarrow M
LDI2:
              AC \leftarrow DR
STO1:
              DR \leftarrow M, PC \leftarrow PC + 1
                                                 JUMP2: PC \leftarrow DR
STO2:
              AR \leftarrow DR
                                                 JREL1: PC \leftarrow PC + 000DR[4..0]
STO3:
              DR \leftarrow AC
                                                 SKIP1: PC \leftarrow PC + 1
STO4:
              M \leftarrow DR
                                                 RST1: PC \leftarrow 0, AC \leftarrow 0
Control signals:
                                ARLOAD = FETCH1 \lor FETCH3 \lor STO2
                                PCLOAD = JUMP2 \lor JREL2
                                   PCINC = FETCH2 \lor LDI1 \lor STO1 \lor ADD1 \lor OR1 \lor SKIP1
                                  PCCLR = RST1
                                 PCBUS = FETCH1 \lor FETCH3
                                 PCMUX = JUMP2
                                DRLOAD = FETCH2 \lor LDI1 \lor STO1 \lor STO3 \lor ADD1 \lor OR1 \lor JUMP1
                                  DRBUS = FETCH3 \lor LDI2 \lor STO2 \lor STO4 \lor ADD2 \lor OR2 \lor JUMP2 \lor JREL1
                                ACLOAD = LDI2 \lor ADD2 \lor OR2
                                  ACCLR = RST1
                                  ACBUS = STO3
                                 IRLOAD = FETCH3
                      MEMBUS = READ = FETCH2 \lor LDI1 \lor STO1 \lor ADD1 \lor OR1 \lor JUMP1
```

BUSMEM = WRITE = STO4

### Register section:





The microsequencer hardware is the same as shown in Figures 7.3 and 7.4, except the micro-operations are output to decoders to generate the actual micro-operation signals, and the mapping function is 1,IR[2..0],0.

### Micro-operation field assignments:

|   | M1                 |   | M2                             |
|---|--------------------|---|--------------------------------|
| 0 | NOP                | 0 | NOP                            |
| 1 | $AR \leftarrow PC$ | 1 | $IR \leftarrow DR[75]$         |
| 2 | $DR \leftarrow M$  | 2 | $PC \leftarrow PC + 1$         |
| 3 | $AC \leftarrow DR$ | 3 | $PC \leftarrow 0$              |
| 4 | $AR \leftarrow DR$ | 4 | $PC \leftarrow DR$             |
| 5 | $DR \leftarrow AC$ | 5 | $PC \leftarrow PC + 000DR[40]$ |
| 6 | $M \leftarrow DR$  | 6 | $AC \leftarrow AC + DR$        |
| 7 | $AC \leftarrow 0$  | 7 | $AC \leftarrow AC \lor DR$     |

#### Microcode:

| State  | Address | SEL | M1  | M2  | ADDR  |
|--------|---------|-----|-----|-----|-------|
| FETCH1 | 00000   | 0   | 001 | 000 | 00001 |
| FETCH2 | 00001   | 0   | 101 | 010 | 00010 |
| FETCH3 | 00010   | 1   | 001 | 001 | XXXX  |
| STO3   | 00100   | 0   | 101 | 000 | 00101 |
| STO4   | 00101   | 0   | 110 | 000 | 00000 |
| LDI1   | 10000   | 0   | 010 | 010 | 10001 |
| LDI2   | 10001   | 0   | 011 | 000 | 00000 |
| STO1   | 10010   | 0   | 010 | 010 | 10011 |
| STO2   | 10011   | 0   | 100 | 000 | 00100 |
| ADD1   | 10100   | 0   | 010 | 010 | 10101 |
| ADD2   | 10101   | 0   | 000 | 110 | 00000 |
| OR1    | 10110   | 0   | 010 | 010 | 10111 |
| OR2    | 10111   | 0   | 000 | 111 | 00000 |
| JUMP1  | 11000   | 0   | 010 | 000 | 11001 |
| JUMP2  | 11001   | 0   | 000 | 100 | 00000 |
| JREL1  | 11010   | 0   | 000 | 101 | 00000 |
| SKIP1  | 11100   | 0   | 000 | 010 | 00000 |
| RST1   | 11110   | 0   | 111 | 011 | 00000 |

23. The state diagram, RTL code, and register section are the same as in Problem 6.30.

#### Modified state diagram:



#### Modified RTL code:

| LDSP1: $DR \leftarrow M, AR \leftarrow AR + 1, PC \leftarrow PC + 1$          | PUSHAC1: | $SP \leftarrow SP - 1, DR \leftarrow AC$ |
|-------------------------------------------------------------------------------|----------|------------------------------------------|
| LDSP2: $TR \leftarrow DR$ , $DR \leftarrow M$ , $PC \leftarrow PC + 1$        | PUSHAC2: | $AR \leftarrow SP$                       |
| LDSP3: $SP \leftarrow DR, TR$                                                 | PUSHAC3: | $M \leftarrow DR$                        |
| CALL1: $DR \leftarrow M$ , $AR \leftarrow AR + 1$ , $PC \leftarrow PC + 1$    | POPAC1:  | $AR \leftarrow SP$                       |
| CALL2: $TR \leftarrow DR$ , $DR \leftarrow M$ , $PC \leftarrow PC + 1$        | POPAC2:  | $DR \leftarrow M, SP \leftarrow SP + 1$  |
| CALL3: $TR2 \leftarrow DR$ , $DR \leftarrow PC$ [158], $SP \leftarrow SP - 1$ | POPAC3:  | $AC \leftarrow DR$                       |
| CALL4: $AR \leftarrow SP$                                                     | PUSHR1:  | $SP \leftarrow SP - 1, DR \leftarrow R$  |
| CALL5: $M \leftarrow DR$ , $AR \leftarrow AR - 1$ , $SP \leftarrow SP - 1$    | PUSHR2:  | $AR \leftarrow SP$                       |
| CALL6: $DR \leftarrow PC[70]$                                                 | PUSHR3:  | $M \leftarrow DR$                        |
| CALL7: $M \leftarrow DR$                                                      | POPR1:   | $AR \leftarrow SP$                       |
| CALL8: $PC \leftarrow TR2,DR$                                                 | POPR2:   | $DR \leftarrow M, SP \leftarrow SP + 1$  |
| RET1: $AR \leftarrow SP$                                                      | POPR3:   | $R \leftarrow DR$                        |
| RET2: $DR \leftarrow M, SP \leftarrow SP + 1, AR \leftarrow AR + 1$           |          |                                          |
| RET3: $TR \leftarrow DR, DR \leftarrow M, SP \leftarrow SP + 1$               |          |                                          |
| RET4: $PC \leftarrow DR,TR$                                                   |          |                                          |

### Modified register section: (shown below)

- New registers: SP (with LD, DEC, INC), TR2 (with LD, receives data directly from DR)
- New control signal: AR adds a DEC signal
- New data path: DR can receive data from BUS[15..8] or BUS[7..0]
- All other connections remain the same as shown in Figure 6.15.



#### New micro-operations:

| SPDT: | $SP \leftarrow DR, TR$  | DRPL: | $DR \leftarrow PC[70]$ |
|-------|-------------------------|-------|------------------------|
| T2DR: | $TR2 \leftarrow DR$     | PCTR: | $PC \leftarrow TR2,TR$ |
| DRPH: | $DR \leftarrow PC[158]$ | SPIN: | $SP \leftarrow SP + 1$ |
| SPDC: | $SP \leftarrow SP - 1$  | DRR:  | $DR \leftarrow R$      |
| ARSP: | $AR \leftarrow SP$      | RDR:  | $R \leftarrow DR$      |
| ARDC: | $AR \leftarrow AR - 1$  |       |                        |

New mapping function: IR[7,3..0]00 (The extra MSB in ADDR is 0 for all current instructions.)

 $\begin{array}{rcl} ARDEC = & ARDC \\ SPLOAD = & SPDT \\ SPINC = & SPIN \\ SPDEC = & SPDC \\ SPBUS = & ARSP \\ DRSEL = & DRPH \\ TR2LOAD = & T2DR \\ TR2BUS = & PCTR \\ \end{array}$ 

#### Modified control signals:

```
ARLOAD =
             (original value) \vee ARSP
  ARINC =
            (original value) \vee PCTR
            (original value) \lor DRPH \lor DRPL \lor DRR
PCLOAD =
DRLOAD =
            (original value) ∨ DRPH ∨ DRPL ∨ DRR
DRHBUS =
            (original value) ∨ SPDT
DRLBUS =
            (original value) \vee T2DR \vee RDR
TRLOAD =
            (original value) \vee LDSP2 \vee CALL2 \vee RET3
  TRBUS =
            (original value) ∨ PCTR
 RLOAD =
            (original value) ∨ RDR
   RBUS =
            (original value) ∨ DRR
```

### New microinstructions:

| State   | Address  | SEL | Micro-operations | ADDR     |
|---------|----------|-----|------------------|----------|
| LDSP1   | 100 0000 | 0   | DRM, ARIN, PCIN  | 100 0001 |
| LDSP2   | 100 0001 | 0   | TRDR, DRM, PCIN  | 100 0010 |
| LDSP3   | 100 0010 | 0   | SPDT             | 000 0001 |
| CALL1   | 100 1000 | 0   | DRM, ARIN, PCIN  | 100 1001 |
| CALL2   | 100 1001 | 0   | TRDR, DRM, PCIN  | 100 1010 |
| CALL3   | 100 1010 | 0   | T2DR, DRPH, SPDC | 100 1011 |
| CALL4   | 100 1011 | 0   | ARSP             | 100 0100 |
| CALL5   | 100 0100 | 0   | MDR, ARDC, SPDC  | 100 0101 |
| CALL6   | 100 0101 | 0   | DRPL             | 100 0110 |
| CALL7   | 100 0110 | 0   | MDR              | 100 0111 |
| CALL8   | 100 0111 | 0   | PCTR             | 000 0001 |
| RET1    | 100 1100 | 0   | ARSP             | 100 1101 |
| RET2    | 100 1101 | 0   | DRM, SPIN, ARIN  | 100 1110 |
| RET3    | 100 1110 | 0   | TRDR, DRM, SPIN  | 100 1111 |
| RET4    | 100 1111 | 0   | PCDT             | 000 0001 |
| PUSHAC1 | 101 0000 | 0   | SPDC, DRAC       | 101 0001 |
| PUSHAC2 | 101 0001 | 0   | ARSP             | 101 0010 |
| PUSHAC3 | 101 0010 | 0   | MDR              | 000 0001 |
| POPAC1  | 101 0100 | 0   | ARSP             | 101 0101 |
| POPAC2  | 101 0101 | 0   | DRM, SPIN        | 101 0110 |
| POPAC3  | 101 0110 | 0   | ACDR             | 000 0001 |
| PUSHR1  | 101 1000 | 0   | SPDC, DRR        | 101 1001 |
| PUSHR2  | 101 1001 | 0   | ARSP             | 101 1010 |
| PUSHR3  | 101 1010 | 0   | MDR              | 000 0001 |
| POPR1   | 101 1100 | 0   | ARSP             | 101 1101 |
| POPR2   | 101 1101 | 0   | DRM, SPIN        | 101 1110 |
| POPR3   | 101 1110 | 0   | RDR              | 000 0001 |

# **Chapter 8**

- 1. a) 64 = 01000000 64' = 11000000
  - b) 33 = 0010 0001 33' = 1101 1111
  - c)  $-1 = 1111 \ 1111 \ -1' = 0000 \ 0001$
- 2. Non-negative Unsigned two's-complement
  - a) 29 = 0001 1101 0001 1101
  - b) -128 = N/A 1000 0000
  - c)  $199 = 1100\ 0111$  N/A
- 3. Signed-Magnitude Signed-Two's Complement
  - a) -63 = 1011 1111 1100 0001
  - b) 147 = N/A N/A
  - c)  $85 = 0101\ 0101$   $0101\ 0101$
- 4. a) 0011 1101 (180 119 = 61)
  - b) N/A (56 + 205 = 261, overflow)
  - c)  $1111\ 1111\ (139 + 116 = 255)$
  - d) N/A (116 139 = -23, negative number)
- 5. a) N/A (-76 119 = -193, overflow)
  - b)  $0000\ 0101\ (56 + -51 = 5)$
  - c)  $1111 \ 1111 \ (-117 + 116 = -1)$
  - d) N/A (116 -117 = 233, overflow)
- 6. The worst cases are +127 + (-1) = +126 and +0 + (-128) = -128, both of which produce valid results.

| 7. | Conditions                                | Micro-operations                              | i | C | U    | V    | Y    | Z | FINISH |
|----|-------------------------------------------|-----------------------------------------------|---|---|------|------|------|---|--------|
|    | START                                     |                                               | X | X | XXXX | XXXX | 1110 |   | 0      |
|    | 1                                         | $U \leftarrow 0, i \leftarrow 4$              | 4 |   | 0000 |      |      | 0 |        |
|    | 2                                         | $i \leftarrow i - 1$                          | 3 |   |      |      |      | 0 |        |
|    | 3,Z´3                                     | shr(CUV), $cir(Y)$ , goto 2                   |   | 0 | 0000 | 0xxx | 0111 |   |        |
|    | <i>Y</i> <sub>0</sub> <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$     | 2 | 0 | 1001 |      |      | 0 |        |
|    | 3,Z'3                                     | shr(CUV), $cir(Y)$ , goto 2                   |   | 0 | 0100 | 10xx | 1011 |   |        |
|    | <i>Y</i> <sub>0</sub> <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$     | 1 | 0 | 1101 |      |      | 0 |        |
|    | 3,Z'3                                     | shr(CUV), $cir(Y)$ , goto 2                   |   | 0 | 0110 | 110x | 1101 |   |        |
|    | <i>Y</i> <sub>0</sub> <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$     | 0 | 0 | 1111 |      |      | 1 |        |
|    | 3,Z3                                      | $shr(CUV)$ , $cir(Y)$ , $FINISH \leftarrow 1$ |   | 0 | 0111 | 1110 | 1110 |   | 1      |

Result: 9 \* 14 = 126, or 1001 \* 1110 = 0111 1110

| 8. | Conditions                | Micro-operations                          | i | C | U    | V    | Z | FINISH |
|----|---------------------------|-------------------------------------------|---|---|------|------|---|--------|
|    | START                     |                                           | X | X | XXXX | 1110 |   | 0      |
|    | 1                         | $U \leftarrow 0, i \leftarrow 4$          | 4 |   | 0000 |      | 0 |        |
|    | 2                         | $i \leftarrow i - 1$                      | 3 |   |      |      | 0 |        |
|    | 3,Z'3                     | shr(CUV), goto 2                          |   | 0 | 0000 | 0111 |   |        |
|    | $V_0$ <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$ | 2 | 0 | 1001 |      | 0 |        |
|    | 3,Z'3                     | shr(CUV), goto 2                          |   | 0 | 0100 | 1011 |   |        |
|    | $V_0$ <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$ | 1 | 0 | 1101 |      | 0 |        |
|    | 3,Z'3                     | shr(CUV), goto 2                          |   | 0 | 0110 | 1101 |   |        |
|    | $V_0$ <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$ | 0 | 0 | 1111 |      | 1 |        |
|    | 3,Z3                      | $shr(CUV)$ , $FINISH \leftarrow 1$        |   | 0 | 0111 | 1110 |   | 1      |

Result: 9 \* 14 = 126, or 1001 \* 1110 = 0111 1110

| 9. | Conditions             | Micro-operations                                               | i | U    | V    | Y    | $Y_{-1}$ | Z | FINISH |
|----|------------------------|----------------------------------------------------------------|---|------|------|------|----------|---|--------|
|    | START                  |                                                                | X | XXXX | XXXX | 1011 | X        |   | 0      |
|    | 1                      | $U \leftarrow 0, Y_{-1} \leftarrow 0, i \leftarrow 4$          | 4 | 0000 |      |      | 0        | 0 |        |
|    | $Y_0Y_{-1}$ <b>2,2</b> | $U \leftarrow U + X' + 1, i \leftarrow i - 1$                  | 3 | 1010 |      |      |          | 0 |        |
|    | 3,Z'3                  | $ashr(UV)$ , $cir(Y)$ , $Y_{-1} \leftarrow Y_0$ , goto 2       |   | 1101 | 0xxx | 1101 | 1        |   |        |
|    | 2                      | $i \leftarrow i - 1$                                           | 2 |      |      |      |          | 0 |        |
|    | 3,Z'3                  | $ashr(UV)$ , $cir(Y)$ , $Y_{-1} \leftarrow Y_0$ , goto 2       |   | 1110 | 10xx | 1110 | 1        |   |        |
|    | $Y_0 Y_{-1}$ 2,2       | $U \leftarrow U + X, i \leftarrow i - 1$                       | 1 | 0100 |      |      |          | 0 |        |
|    | 3,Z'3                  | $ashr(UV)$ , $cir(Y)$ , $Y_{-1} \leftarrow Y_0$ , goto 2       |   | 0010 | 010x | 0111 | 0        |   |        |
|    | $Y_0Y_{-1}$ <b>2,2</b> | $U \leftarrow U + X' + 1, i \leftarrow i - 1$                  | 0 | 1100 |      |      |          | 1 |        |
|    | 3,Z3                   | $ashr(UV), cir(Y), Y_{-1} \leftarrow Y_0, FINISH \leftarrow 1$ |   | 1110 | 0010 | 1011 |          |   | 1      |

Result: 6 \* -5 = -30, or 0110 \* 1011 = 1110 0010

10. 
$$1: U \leftarrow 0, V_{-1} \leftarrow 0, i \leftarrow n$$

$$V_0 V'_{-1} 2: U \leftarrow U + X' + 1$$

$$V'_0 V_{-1} 2: U \leftarrow U + X$$

$$2: i \leftarrow i - 1$$

$$3: \operatorname{ashr}(UVV_{-1})$$

$$Z' 3: \operatorname{goto} 2$$

$$Z3: FINISH \leftarrow 1$$



| 11. | Conditions            | Micro-operations                                              | i | С | U    | V    | Y    | Z | OVERFLOW | FINISH |
|-----|-----------------------|---------------------------------------------------------------|---|---|------|------|------|---|----------|--------|
|     | START                 |                                                               | X | X | 0110 | 1011 | XXXX |   |          | 0      |
|     | <b>1</b> <sub>1</sub> | $CU \leftarrow U + XC + 1$                                    |   | 0 | 1100 |      |      |   |          |        |
|     | $I_2$                 | $U \leftarrow U + X$                                          |   |   | 0110 |      |      |   |          |        |
|     | 2                     | $Y \leftarrow 0$ , $OVERFLOW \leftarrow 0$ , $i \leftarrow 4$ | 4 |   |      |      | 0000 | 0 | 0        |        |
|     | 3                     | $shl\ CUV, shl\ Y, i \leftarrow i - 1$                        | 3 | 0 | 1101 | 0110 | 0000 | 0 |          |        |
|     | C'4 <sub>1</sub>      | $CU \leftarrow U + XC + 1$                                    |   | 1 | 0011 |      |      |   |          |        |
|     | $C4_2,Z'4_2$          | $Y_0 \leftarrow 1$ , goto 3                                   |   |   |      |      | 0001 |   |          |        |
|     | 3                     | $shl\ CUV, shl\ Y, i \leftarrow i - 1$                        | 2 | 0 | 0110 | 1100 | 0010 | 0 |          |        |
|     | C'4 <sub>1</sub>      | $CU \leftarrow U + XC + 1$                                    |   | 0 | 1100 |      |      |   |          |        |
|     | $C'4_2,Z'4_2$         | $U \leftarrow U + X$ , goto 3                                 |   | 0 | 0110 |      |      |   |          |        |
|     | 3                     | $shl\ CUV, shl\ Y, i \leftarrow i - 1$                        | 1 | 0 | 1101 | 1000 | 0100 | 0 |          |        |
|     | C'4 <sub>1</sub>      | $CU \leftarrow U + X + 1$                                     |   | 1 | 0011 |      |      |   |          |        |
|     | $C4_2,Z'4_2$          | $Y_0 \leftarrow 1$ , goto <b>3</b>                            |   |   |      |      | 0101 |   |          |        |
|     | 3                     | $shl\ CUV, shl\ Y, i \leftarrow i - 1$                        | 0 | 0 | 0111 | 0000 | 1010 | 1 |          |        |
|     | C'4 <sub>1</sub>      | $CU \leftarrow U + XC + 1$                                    |   | 0 | 1101 |      |      |   |          |        |
|     | $C'4_2$ , $Z4_2$      | $U \leftarrow U + X$ , $FINISH \leftarrow 1$                  |   |   | 0111 |      |      |   |          | 1      |

Result:  $107 \div 10 = 10 \text{ R } 7$ , or  $0110 \ 1011 \div 1010 = 1010 \text{ R } 0111$ 

| 12. | Conditions    | Micro-operations                                     | i | С | U    | V    | Y    | Z | FINISH |
|-----|---------------|------------------------------------------------------|---|---|------|------|------|---|--------|
|     | START         |                                                      | X | X | 0110 | 1011 | XXXX |   | 0      |
|     | 1             | NONE                                                 |   |   |      |      |      |   |        |
|     | 2             | $Y \leftarrow 0, \ C \leftarrow 0,$                  | 4 | 0 |      |      | 0000 | 0 |        |
|     |               | $OVERFLOW \leftarrow 0, i \leftarrow 4$              |   |   |      |      |      |   |        |
|     | 3             | shl $CUV$ , shl $Y$ , $i \leftarrow i - 1$           | 3 | 0 | 1101 | 0110 | 0000 | 0 |        |
|     | (C+G)4, $Z'4$ | $Y_0 \leftarrow 1, U \leftarrow U + X + 1,$          |   |   | 0011 |      | 0001 |   |        |
|     |               | goto <i>3</i>                                        |   |   |      |      |      |   |        |
|     | 3             | shl $CUV$ , shl $Y$ , $i \leftarrow i - 1$           | 2 | 0 | 0110 | 1100 | 0010 | 0 |        |
|     | Z'4           | goto <b>3</b>                                        |   |   |      |      |      |   |        |
|     | 3             | shl $CUV$ , shl $Y$ , $i \leftarrow i - 1$           | 1 | 0 | 1101 | 1000 | 0100 | 0 |        |
|     | (C+G)4, $Z'4$ | $Y_0 \leftarrow 1, U \leftarrow U + X + 1,$          |   |   | 0011 |      | 0101 |   |        |
|     |               | goto <i>3</i>                                        |   |   |      |      |      |   |        |
|     | 3             | shl <i>CUV</i> , shl <i>Y</i> , $i \leftarrow i - 1$ | 0 | 0 | 0111 | 0000 | 1010 | 1 |        |
|     | Z4            | $FINISH \leftarrow 1$                                |   |   |      |      |      |   | 1      |

Result:  $107 \div 10 = 10 \text{ R } 7$ , or  $0110 \ 1011 \div 1010 = 1010 \text{ R } 0111$ 

13. 
$$1:OVERFLOW \leftarrow G$$

$$G1:FINISH \leftarrow 1$$

$$2:Y \leftarrow 0, C \leftarrow 0, i \leftarrow n$$

$$3: shl CUV, shl Y, i \leftarrow i - 1$$

$$(C + G)4:Y_0 \leftarrow 1, U \leftarrow U + XC + 1$$

$$Z'4: goto 3$$

$$Z 4:FINISH \leftarrow 1$$

(Only 1, G1, and 2, and the OVERFLOW hardware are changed; the rest is the same as in the chapter.)



(Only  $I_2$ , and  $I_2$ , and the OVERFLOW hardware are changed; the rest is the same as in the chapter.)

```
15.
                             I_0: NU \leftarrow U_{n-1}, NX \leftarrow X_{n-1}
                       U_{n-1}\mathbf{1}_0: UV \leftarrow (UV)' + 1
                       X_{n-1}\mathbf{1}_0: X \leftarrow X' + 1
                           G1: FINISH \leftarrow 1, OVERFLOW \leftarrow 1
                      NUG1: UV \leftarrow (UV)' + 1
                       NXG1: X \leftarrow X' + 1
                              2: Y \leftarrow 0, C \leftarrow 0, OVERFLOW \leftarrow 0, i \leftarrow n
                              3: shl CUV, shl Y, i \leftarrow i - 1
                   (C+G)4: Y_0 \leftarrow 1, U \leftarrow CU + X' + 1
                           Z'4: goto 3
               (NU \oplus NX)5: Y \leftarrow Y' + 1, U \leftarrow U' + 1
                         NX5: X \leftarrow X' + 1
                              5: FINISH ← 1
16.
                             I_0: NU \leftarrow U_{n-1}, NX \leftarrow X_{n-1}
                       U_{n-1}\mathbf{1}_0: UV \leftarrow (UV)' + 1
                       X_{n-1}\mathbf{1}_0: X \leftarrow X' + 1
                             \mathbf{1}_1: CU \leftarrow U + X\mathbf{c} + 1
                             1_2: U \leftarrow U + X
                          C1_2: FINISH \leftarrow 1, OVERFLOW \leftarrow 1
                     NUC1_2: UV \leftarrow (UV)' + 1
                     NXC1_2: X \leftarrow X' + 1
                              2: Y \leftarrow 0, C \leftarrow 0, OVERFLOW \leftarrow 0, i \leftarrow n
                              3: shl CUV, shl Y, i \leftarrow i - 1
                          C4_1: U \leftarrow U + XC + 1
                         C'4_1: CU \leftarrow U + XC + 1
                          C4_2: Y_0 \leftarrow 1
                         C'4_2: U \leftarrow U + X
                          Z'4_2: goto 3
              (NU \oplus NX)5: Y \leftarrow Y' + 1, U \leftarrow U' + 1
                         NX5: X \leftarrow X' + 1
                              5: FINISH ← 1
```

17. a) 
$$PMI: CU \leftarrow 0$$
 1110,  $OVERFLOW \leftarrow 0$   $CPM2,2: U_s \leftarrow 1$ ,  $U \leftarrow 0010$ ,  $FINISH \leftarrow 1$  Result:  $U_sU = 1$  0010 = -2

*PM 1*: 
$$U_s \leftarrow 0$$
,  $CU \leftarrow 1~0000$   
*PM 2,2*:  $OVERFLOW \leftarrow 1$ ,  $FINISH \leftarrow 1$   
Result: Overflow

c) 
$$PM1: CU \leftarrow 0 \ 1110, OVERFLOW \leftarrow 0$$
  
 $CPM2,2: U_s \leftarrow 0, U \leftarrow 0010, FINISH \leftarrow 1$   
Result:  $U_sU = 0 \ 0010 = +2$ 

*PM'1*: 
$$U_s \leftarrow 0$$
,  $CU \leftarrow 1~0000$   
*PM'2*,2: *OVERFLOW*  $\leftarrow 1$ , *FINISH*  $\leftarrow 1$   
Result: Overflow

18. 
$$PM'1: U_s \leftarrow X_s, CU \leftarrow X + Y$$

$$PM1: CU \leftarrow X + Y + 1, OVERFLOW \leftarrow 0$$

$$CZ'PM2: U_s \leftarrow X_s$$

$$CZPM2: U_s \leftarrow 0$$

$$C'PM2: U_s \leftarrow X_s + U \leftarrow U + 1$$

$$2: OVERFLOW \leftarrow PM' \land C, FINISH \leftarrow 1$$



(Only *PM1*, *PM'2* (deleted), and 2, and the OVERFLOW hardware are changed; the rest is the same as in the chapter.)

b)

d)

| 19. a) | Conditions                                | Micro-operations                                                     | i | C | U    | V    | Y    | Z | FINISH |
|--------|-------------------------------------------|----------------------------------------------------------------------|---|---|------|------|------|---|--------|
|        | START                                     |                                                                      | X | X | XXXX | XXXX | 1001 |   | 0      |
|        | 1                                         | $U_s \leftarrow 1, V_s \leftarrow 1, U \leftarrow 0, i \leftarrow 4$ | 4 |   | 0000 |      |      | 0 |        |
|        | <i>Y</i> <sub>0</sub> <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$                            | 3 | 0 | 0111 |      |      | 0 |        |
|        | 3,Z´3                                     | shr(CUV), $cir(Y)$ , goto 2                                          |   | 0 | 0011 | 1xxx | 1100 |   |        |
|        | 2                                         | $i \leftarrow i - 1$                                                 | 2 |   |      |      |      | 0 |        |
|        | 3,Z'3                                     | shr(CUV), $cir(Y)$ , goto 2                                          |   | 0 | 0001 | 11xx | 0110 |   |        |
|        | 2                                         | $i \leftarrow i - 1$                                                 | 1 |   |      |      |      | 0 |        |
|        | 3,Z´3                                     | shr(CUV), $cir(Y)$ , goto 2                                          |   | 0 | 0000 | 111x | 0011 |   |        |
|        | <i>Y</i> <sub>0</sub> <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$                            | 0 | 0 | 0111 |      |      | 1 |        |
|        | 3,Z3                                      | $shr(CUV)$ , $cir(Y)$ , $FINISH \leftarrow 1$                        |   | 0 | 0011 | 1111 | 1001 |   | 1      |

Result:  $+7 \times -9 = -63$ , or  $0.0111 \times 1.1001 = 1.001111111$ 

| b) | Conditions | Micro-operations                                                     | i | С | U    | V    | Y    | Z | FINISH |
|----|------------|----------------------------------------------------------------------|---|---|------|------|------|---|--------|
|    | START      |                                                                      | X | X | XXXX | XXXX | 0000 |   | 0      |
|    | 1          | $U_s \leftarrow 1, V_s \leftarrow 1, U \leftarrow 0, i \leftarrow 4$ | 4 |   | 0000 |      |      | 0 |        |
|    | 2          | $i \leftarrow i - 1$                                                 | 3 |   |      |      |      | 0 |        |
|    | 3,Z´3      | shr(CUV), $cir(Y)$ , goto 2                                          |   | 0 | 0000 | 0xxx | 0000 |   |        |
|    | 2          | $i \leftarrow i - 1$                                                 | 2 |   |      |      |      | 0 |        |
|    | 3,Z'3      | shr(CUV), $cir(Y)$ , goto 2                                          |   | 0 | 0000 | 00xx | 0000 |   |        |
|    | 2          | $i \leftarrow i - 1$                                                 | 1 |   |      |      |      | 0 |        |
|    | 3,Z´3      | shr(CUV), $cir(Y)$ , goto 2                                          |   | 0 | 0000 | 000x | 0000 |   |        |
|    | 2          | $i \leftarrow i - 1$                                                 | 0 | 0 | 0000 |      |      | 1 |        |
|    | ZT3,3,Z3   | $U_s \leftarrow 0, V_s \leftarrow 0,$                                |   | 0 | 0000 | 0000 | 0000 |   | 1      |
|    |            | $shr(CUV)$ , $cir(Y)$ , $FINISH \leftarrow 1$                        |   |   |      |      |      |   |        |

Result:  $-13 \times +0 = +0$ , or  $1\ 1101 \times 0\ 0000 = 0\ 0000\ 0000$ 

| c) | Conditions                | Micro-operations                                                     | i | С | U    | V    | Y    | Z | FINISH |
|----|---------------------------|----------------------------------------------------------------------|---|---|------|------|------|---|--------|
|    | START                     |                                                                      | X | X | XXXX | XXXX | 1111 |   | 0      |
|    | 1                         | $U_s \leftarrow 0, V_s \leftarrow 0, U \leftarrow 0, i \leftarrow 4$ | 4 |   | 0000 |      |      | 0 |        |
|    | $Y_0$ <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$                            | 3 | 0 | 1111 |      |      | 0 |        |
|    | 3,Z'3                     | shr(CUV), $cir(Y)$ , goto 2                                          |   | 0 | 0111 | 1xxx | 1111 |   |        |
|    | $Y_0$ <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$                            | 2 | 1 | 0110 |      |      | 0 |        |
|    | 3,Z'3                     | shr(CUV), $cir(Y)$ , goto 2                                          |   | 0 | 1011 | 01xx | 1111 |   |        |
|    | $Y_0$ <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$                            | 1 | 1 | 1010 |      |      | 0 |        |
|    | 3,Z'3                     | shr(CUV), $cir(Y)$ , goto 2                                          |   | 0 | 1101 | 001x | 1111 |   |        |
|    | $Y_0$ <b>2</b> , <b>2</b> | $CU \leftarrow U + X, i \leftarrow i - 1$                            | 0 | 1 | 1100 |      |      | 1 |        |
|    | 3,Z3                      | $shr(CUV)$ , $cir(Y)$ , $FINISH \leftarrow 1$                        |   | 0 | 1110 | 0001 | 1111 |   | 1      |

Result:  $+15 \times +15 = +225$ , or  $0.1111 \times 0.1111 = 0.1110.0001$ 

20.



21. Add the following RTL statement. The rest of the algorithm is unchanged.

G'1: 
$$U_s \leftarrow U_s \oplus X_s, Y_s \leftarrow U_s \oplus X_s$$

22. Add the following RTL statement. The rest of the algorithm is unchanged.

$$C'I_2$$
:  $U_s \leftarrow U_s \oplus X_s, Y_s \leftarrow U_s \oplus X_s$ 

- 23. a)  $PM1: CU \leftarrow 0.98, OVERFLOW \leftarrow 0$   $CPM2,2: U_s \leftarrow 1, U \leftarrow 0.2, FINISH \leftarrow 1$ Result:  $U_sU = 1.02 = -2$
- b)  $PMI: CU \leftarrow 0$  64,  $OVERFLOW \leftarrow 0$   $CPM2.2: U_s \leftarrow 1$ ,  $U \leftarrow 36$ ,  $FINISH \leftarrow 1$ Result:  $U_sU = 1$  36 = -36
- c)  $PM : CU \leftarrow 0.30$   $PM : 2.2: U_s \leftarrow 0, OVERFLOW \leftarrow 0, FINISH \leftarrow 1$ Result:  $U_sU = 0.30 = +30$
- Conditions Micro-operations  $C_d$  $Y \mid Z_{Y0} \mid$ Z FINISH iU24. a) **START** 23 0 0 X X XX $\mathbf{X}\mathbf{X}$ 1  $U_s \leftarrow 0, V_s \leftarrow 0,$ 0 00  $U \leftarrow 00, i \leftarrow 2, C_d \leftarrow 0$  $Z'_{Y0}$  2  $C_dU \leftarrow C_dU + X$ , 0 17 22 0  $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2  $Z'_{Y0}$  2  $C_dU \leftarrow C_dU + X$ , 0 34 21 0  $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2  $\overline{Z'}_{Y0} 2$  $C_dU \leftarrow C_dU + X$ , 0 51 20 1  $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2  $Z_{Y0}$ 2 0  $i \leftarrow i - 1$ *3,Z′3*  $dshr(C_dUV)$ , dshr(Y), goto 2 05 02 0 0 1x $Z'_{Y0}$  2  $C_dU \leftarrow C_dU + X$ , 0 22 01 0  $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2  $C_dU \leftarrow C_dU + X$ ,  $Z'_{Y0}$  2 0 39 00 1  $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2  $Z_{Y0}$ **2**  $i \leftarrow i - 1$ 0  $dshr(C_dUV), dshr(Y),$ 3,Z3 03 91  $FINISH \leftarrow 1$

Result:  $+17 \times +23 = +391$ 

| b) | Conditions        | Micro-operations                                    | i | $C_d$ | U  | V  | Y  | $Z_{Y0}$ | Z | FINISH |
|----|-------------------|-----------------------------------------------------|---|-------|----|----|----|----------|---|--------|
|    | START             |                                                     | X | X     | XX | XX | 32 | 0        |   | 0      |
|    | 1                 | $U_s \leftarrow 1, V_s \leftarrow 1,$               | 2 | 0     | 00 |    |    |          | 0 |        |
|    |                   | $U \leftarrow 00, i \leftarrow 2, C_d \leftarrow 0$ |   |       |    |    |    |          |   |        |
|    | $Z'_{Y0}$ 2       | $C_dU \leftarrow C_dU + X$ ,                        |   | 0     | 71 |    | 31 | 0        |   |        |
|    |                   | $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2             |   |       |    |    |    |          |   |        |
|    | $Z'_{Y0}$ 2       | $C_dU \leftarrow C_dU + X$ ,                        |   | 1     | 42 |    | 30 | 1        |   |        |
|    |                   | $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2             |   |       |    |    |    |          |   |        |
|    | $Z_{Y0}$ <b>2</b> | $i \leftarrow i - 1$                                | 1 |       |    |    |    |          | 0 |        |
|    | 3,Z'3             | $dshr(C_dUV)$ , $dshr(Y)$ , goto <b>2</b>           |   | 0     | 14 | 2x | 03 |          |   |        |
|    | $Z'_{Y0} 2$       | $C_dU \leftarrow C_dU + X$ ,                        |   | 0     | 85 |    | 02 | 0        |   |        |
|    |                   | $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2             |   |       |    |    |    |          |   |        |
|    | $Z'_{Y0} 2$       | $C_dU \leftarrow C_dU + X$ ,                        |   | 1     | 56 |    | 01 | 0        |   |        |

|             | $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2 |   |   |    |    |    |   |   |   |
|-------------|-----------------------------------------|---|---|----|----|----|---|---|---|
| $Z'_{Y0} 2$ | $C_dU \leftarrow C_dU + X$ ,            |   | 2 | 27 |    | 00 | 1 |   |   |
|             | $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2 |   |   |    |    |    |   |   |   |
| $Z_{Y0}$ 2  | $i \leftarrow i - 1$                    | 0 |   |    |    |    |   | 1 |   |
| 3,Z3        | $dshr(C_dUV)$ , $dshr(Y)$ ,             |   |   | 22 | 72 |    |   |   | 1 |
|             | $FINISH \leftarrow 1$                   |   |   |    |    |    |   |   |   |

Result:  $+71 \times -32 = -2272$ 

| c) | Conditions        | Micro-operations                                    | i | $C_d$ | U  | V  | Y  | $Z_{Y0}$ | Z | FINISH |
|----|-------------------|-----------------------------------------------------|---|-------|----|----|----|----------|---|--------|
|    | START             |                                                     | X | X     | XX | XX | 10 | 0        |   | 0      |
|    | 1                 | $U_s \leftarrow 0, V_s \leftarrow 0,$               | 2 | 0     | 00 |    |    |          | 0 |        |
|    |                   | $U \leftarrow 00, i \leftarrow 2, C_d \leftarrow 0$ |   |       |    |    |    |          |   |        |
|    | $Z_{Y0}$ 2        | $i \leftarrow i - 1$                                | 1 |       |    |    |    |          | 0 |        |
|    | 3,Z'3             | $dshr(C_dUV)$ , $dshr(Y)$ , goto <b>2</b>           |   | 0     | 00 | 0x | 01 |          |   |        |
|    | $Z'_{Y0} 2$       | $C_dU \leftarrow C_dU + X$ ,                        |   | 0     | 39 |    | 00 | 1        |   |        |
|    |                   | $Y_{d0} \leftarrow Y_{d0} - 1$ , goto 2             |   |       |    |    |    |          |   |        |
|    | $Z_{Y0}$ <b>2</b> | $i \leftarrow i - 1$                                | 0 |       |    |    |    |          | 1 |        |
|    | 3,Z3              | $dshr(C_dUV)$ , $dshr(Y)$ ,                         |   | 0     | 03 | 90 |    |          |   | 1      |
|    |                   | $FINISH \leftarrow 1$                               |   |       |    |    |    |          |   |        |

Result:  $-39 \times -10 = +390$ 

### 25.



28. a) 20 ns

b) 
$$S_{\infty} = \frac{T_1}{T_k} = \frac{15 + 10 + 15}{20} = 2$$

c) 
$$n * 40 > 20 * (n + 2)$$
, which yields  $n > 2$ 

d) 
$$\frac{n*40}{2(n+2)} = 1.5$$
, which yields  $n = 6$ 

| 29. | Addresses | xxx000 | xxx001 | xxx010 | xxx011 | xxx100 | xxx101 | xxx110 | xxx111 |
|-----|-----------|--------|--------|--------|--------|--------|--------|--------|--------|
|     | 0-7       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|     | 8-15      | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      |
|     | 16-23     | 0      | 2      | 4      | 6      | 8      | 10     | 12     | 14     |
|     | 24-31     | 0      | 3      | 6      | 9      | 12     | 15     | 18     | 21     |
|     | 32-39     | 0      | 4      | 8      | 12     | 16     | 20     | 24     | 28     |
|     | 40-47     | 0      | 5      | 10     | 15     | 20     | 25     | 30     | 35     |
|     | 48-55     | 0      | 6      | 12     | 18     | 24     | 30     | 36     | 42     |
|     | 56-63     | 0      | 7      | 14     | 21     | 28     | 35     | 42     | 49     |

30.











### 33. The following symbols are used in this design.



# **Chapter 9**

1. Mask: 1111 1111 0000 0000 Data: 1111 0000 xxxx xxxx

- 2. a) The fifth location from the top
  - b) The third, seventh, and eighth locations from the top
  - c) No locations match this criteria
- 3. a) 20 bit tag 16 bit data Valid bit
  - b) 7 bit tag 16 bit data Valid bit 24 bits
  - c) 8 bit tag 16 bit data Valid bit 8 bit tag 16 bit data Valid bit Way 1 Way 2 50 bits

| d) | 9 bit tag | 16 bit data | Valid | 9 bit tag | 16 bit | Valid | 9 bit tag | 16 bit | Valid | 9 bit tag | 16 bit | Valid |
|----|-----------|-------------|-------|-----------|--------|-------|-----------|--------|-------|-----------|--------|-------|
| ,  |           |             | bit   |           | data   | bit   |           | data   | bit   |           | data   | bit   |
|    |           | Way 1       |       |           | Way 2  |       |           | Way 3  |       |           | Way 4  |       |
|    | 104 bits  |             |       |           |        |       |           |        |       |           |        |       |

- 4. a) 18 bit tag | 8 bit data | Valid bit |
- 27 bits

37 bits

- b) 4 bit tag 8 bit data Valid bit
- 13 bits

| c) | 5 bit tag | 8 bit data | Valid bit | 5 bit tag | 8 bit data | Valid bit | 28 bits |
|----|-----------|------------|-----------|-----------|------------|-----------|---------|
|    |           | Way 1      |           |           | Way 2      |           |         |

| d) | 6 bit tag | 8 bit data |     | 6 bit tag | 8 bit |         | 6 bit tag | 8 bit |     | 6 bit tag | 8 bit | Valid |
|----|-----------|------------|-----|-----------|-------|---------|-----------|-------|-----|-----------|-------|-------|
|    |           |            | bit |           | data  | bit     |           | data  | bit |           | data  | bit   |
|    |           | Way 1      |     |           | Way 2 |         | =         | Way 3 |     |           | Way 4 | _     |
|    |           |            |     |           |       | 60 bits |           |       |     |           |       |       |

- 5. a) 32 or 33 bits: 15 for the address tag
  - 8 for the first data value
  - 8 for the second data value
  - 1 for the valid bit
  - 1 for the dirty bit (only if the cache uses write-back)

# 6. Only changes shown

| Instruction | Address bits       | Data 1 | Data 2 | Valid | Comments  |
|-------------|--------------------|--------|--------|-------|-----------|
| LDAC 4234   | 000 0000 0000 0000 | 01     | 34     | 1     |           |
|             | 000 0000 0000 0001 | 42     | 0B     | 1     |           |
|             | 010 0001 0001 1010 | 55     | 29     | 1     |           |
| CLAC        | No changes         |        |        |       | Cache hit |
| JMPZ 000A   | 000 0000 0000 0010 | 06     | 0A     | 1     |           |
|             | 000 0000 0000 0011 | 00     | 05     | 1     |           |
| INAC        | 000 0000 0000 0101 | 0A     | 03     | 1     |           |
| MVAC        | No changes         |        |        |       | Cache hit |
| ADD         | 000 0000 0000 0110 | 08     | 02     | 1     |           |
| STAC 0927   |                    |        |        |       | Cache hit |
|             | 000 0000 0000 0111 | 29     | 09     | 1     | (opcode)  |
|             | 000 0100 1001 0011 |        | 02     | 1     |           |
| JUMP 0000   | 000 0000 0000 1000 | 05     | 00     | 1     |           |
|             | 000 0000 0000 1001 | 00     |        | 1     |           |

# 7. Only changes shown

| Instruction | Address bits | Tag | Data | Valid | Dirty | Comments     |
|-------------|--------------|-----|------|-------|-------|--------------|
| LDAC 4234   | 0            | 000 | 01   | 1     | 0     |              |
|             | 1            | 000 | 34   | 1     | 0     |              |
|             | 2            | 000 | 42   | 1     | 0     |              |
|             | 4            | 423 | 55   | 1     | 0     |              |
| CLAC        | 3            | 000 | 0B   | 1     | 0     |              |
| JMPZ 000A   | 4            | 000 | 06   | 1     | 0     | Replace data |
|             | 5            | 000 | 0A   | 1     | 0     |              |
|             | 6            | 000 | 00   | 1     | 0     |              |
| INAC        | A            | 000 | 0A   | 1     | 0     |              |
| MVAC        | В            | 000 | 03   | 1     | 0     |              |
| ADD         | C            | 000 | 08   | 1     | 0     |              |
| STAC 0927   | D            | 000 | 02   | 1     | 0     |              |
|             | E            | 000 | 27   | 1     | 0     |              |
|             | F            | 000 | 09   | 1     | 0     |              |
|             | 7            | 092 | 02   | 1     | 1     |              |
| JUMP 0000   | 0            | 001 | 05   | 1     | 1     | Replace data |
|             | 1            | 001 | 00   | 1     | 1     | Replace data |
|             | 2            | 001 | 00   | 1     | 1     | Replace data |

# 8. Only changes shown

| Instruction | Address bits | Tag | Data 0 | Data 1 | Data 2 | Data 3 | Valid | Dirty | Comments          |
|-------------|--------------|-----|--------|--------|--------|--------|-------|-------|-------------------|
| LDAC 4234   | 0            | 000 | 01     | 34     | 42     | 0B     | 1     | 0     |                   |
|             | 1            | 423 | 55     | 29     |        |        | 1     | 0     |                   |
| CLAC        | No changes   |     |        |        |        |        |       |       | Cache hit         |
| JMPZ 000A   | 1            | 000 | 06     | 0A     | 00     | 05     | 1     | 0     | Replace data      |
| INAC        | 2            | 000 | 00     | 00     | 0A     | 03     | 1     | 0     |                   |
| MVAC        | No changes   |     |        |        |        |        |       |       | Cache hit         |
| ADD         | 3            | 000 | 08     | 02     | 27     | 09     | 1     | 0     |                   |
| STAC 0927   |              |     |        |        |        |        |       |       | Cache hit (instr) |
|             | 1            | 092 |        |        |        | 02     | 1     | 1     | Replace data      |
| JUMP 0000   | 0            | 001 | 05     | 00     | 00     |        | 1     | 0     | Replace data      |

# 9. Only changes shown

| Instruction | Address bits | Tag 1 | Data 1 | Valid 1 | Dirty 1 | Tag 2 | Data 2 | Valid 2 | Dirty 2 | Comments |
|-------------|--------------|-------|--------|---------|---------|-------|--------|---------|---------|----------|
| LDAC 4234   | 0            | 000   | 01     | 1       | 0       |       |        |         |         | _        |
|             | 1            | 000   | 34     | 1       | 0       |       |        |         |         |          |
|             | 2            | 000   | 42     | 1       | 0       |       |        |         |         |          |
|             | 4            | 423   | 55     | 1       | 0       |       |        |         |         |          |
| CLAC        | 3            | 000   | 0B     | 1       | 0       |       |        |         |         |          |
| JMPZ 000A   | 4            | 423   | 55     | 1       | 0       | 000   | 06     | 1       | 0       | _        |
|             | 5            | 000   | 0A     | 1       | 0       |       |        |         |         |          |
|             | 6            | 000   | 00     | 1       | 0       |       |        |         |         |          |
| INAC        | A            | 000   | 0A     | 1       | 0       |       |        |         |         | _        |
| MVAC        | В            | 000   | 03     | 1       | 0       |       |        |         |         | _        |
| ADD         | С            | 000   | 08     | 1       | 0       |       |        |         |         |          |
| STAC 0927   | D            | 000   | 02     | 1       | 0       |       |        |         |         | _        |
|             | E            | 000   | 27     | 1       | 0       |       |        |         |         |          |
|             | F            | 000   | 09     | 1       | 0       |       |        |         |         |          |
|             | 7            | 092   | 02     | 1       | 1       |       |        |         |         |          |
| JUMP 0000   | 0            | 000   | 01     | 1       | 0       | 001   | 05     | 1       | 0       | _        |
|             | 1            | 000   | 34     | 1       | 0       | 001   | 00     | 1       | 0       |          |
|             | 2            | 000   | 42     | 1       | 0       | 001   | 00     | 1       | 0       |          |

### 10. Only changes shown

| Instruction | Address bits | Tag 1 | Data 1 | Valid 1 | Dirty 1 | Tag 2 | Data 2 | Valid 2 | Dirty 2 | Comments    |
|-------------|--------------|-------|--------|---------|---------|-------|--------|---------|---------|-------------|
| LDAC 4234   | 0            | 000   | 01/34  | 1       | 0       |       |        |         |         | _           |
|             | 1            | 000   | 42/0B  | 1       | 0       |       |        |         |         |             |
|             | 2            | 423   | 55/29  | 1       | 0       |       |        |         |         |             |
| CLAC        | No change    |       |        |         |         |       |        |         |         | Cache hit   |
| JMPZ 000A   | 2            | 423   | 55/29  | 1       | 0       | 000   | 06/0A  | 1       | 0       | _           |
|             | 3            | 000   | 00/05  | 1       | 0       |       |        |         |         |             |
| INAC        | 5            | 000   | 0A/03  | 1       | 0       |       |        |         |         | _           |
| MVAC        | No change    |       |        |         |         |       |        |         |         | Cache hit   |
| ADD         | 6            | 000   | 08/02  | 1       | 0       |       |        |         |         | _           |
| STAC 0927   |              |       |        |         |         |       |        |         |         | Hit (instr) |
|             | 7            | 000   | 27/09  | 1       | 0       |       |        |         |         |             |
|             | 3            | 000   | 00/05  | 1       | 0       | 092   | /02    | 1       | 1       |             |
| JUMP 0000   | 0            | 000   | 01/34  | 1       | 0       | 001   | 05/00  | 1       | 0       |             |
|             | 1            | 000   | 42/0B  | 1       | 0       | 001   | 00/    | 1       | 0       |             |

# 11. Only changes shown Note: Both LRU

Note: Both LRU and FIFO replacement policies replace the same values for this program.

| Instruction | Address   | Tag1 | Data1       | Valid1 | Dirty1 | Tag2 | Data2       | Valid2 | Dirty2 | Comments    |
|-------------|-----------|------|-------------|--------|--------|------|-------------|--------|--------|-------------|
| LDAC 4234   | 0         | 000  | 01/34/42/0B | 1      | 0      |      |             |        |        |             |
|             | 1         | 423  | 55/29//     | 1      | 0      |      |             |        |        |             |
| CLAC        | No change |      |             |        |        |      |             |        |        | Cache hit   |
| JMPZ 000A   | 1         | 423  | 55/29//     | 1      | 0      | 000  | 06/0A/00/05 | 1      | 0      |             |
| INAC        | 2         | 000  | 00/00/0A/03 | 1      | 0      |      |             |        |        |             |
| MVAC        | No change |      |             |        |        |      |             |        |        | Cache hit   |
| ADD         | 3         | 000  | 08/02/27/09 | 1      | 0      |      |             |        |        |             |
| STAC 0927   |           | 423  | 55/29//     | 1      | 0      |      | //02        |        |        | Hit (instr) |
|             | 1         |      |             |        |        | 092  |             | 1      | 1      | Replace     |
| JUMP 0000   | 0         | 000  | 01/34/42/0B | 1      | 0      | 001  | 05/00/00/   | 1      | 0      |             |

12. Hit ratio = 4.5%

| Instruction | Tag  | Data | Valid | Dirty | Comments  |
|-------------|------|------|-------|-------|-----------|
| LDAC 4234   | 0000 | 01   | 1     | 0     |           |
|             | 0001 | 34   | 1     | 0     |           |
|             | 0002 | 42   | 1     | 0     |           |
|             | 4234 | 55   | 1     | 0     |           |
| STAC 4235   | 0003 | 0B   | 1     | 0     |           |
|             | 0004 | 35   | 1     | 0     |           |
|             | 0005 | 42   | 1     | 0     |           |
|             | 4235 | 55   | 1     | 1     |           |
| MVAC        | 0006 | 03   | 1     | 0     |           |
| INAC        | 0007 | 0A   | 1     | 0     |           |
| ADD         | 0008 | 08   | 1     | 0     |           |
| JPNZ 0020   | 0009 | 07   | 1     | 0     |           |
|             | 000A | 20   | 1     | 0     |           |
|             | 000B | 00   | 1     | 0     |           |
| LDAC 4235   | 0020 | 01   | 1     | 0     |           |
|             | 0021 | 35   | 1     | 0     |           |
|             | 0022 | 42   | 1     | 0     |           |
|             | 4235 | 55   | 1     | 1     | Cache hit |
| JUMP 0029   | 0023 | 05   | 1     | 0     |           |
|             | 0024 | 29   | 1     | 0     |           |
|             | 0025 | 00   | 1     | 0     |           |
| AND         | 0029 | 0C   | 1     | 0     |           |

13. Hits in italics Hit ratio = 40.9%

| Instruction | Tag  | Data  | Valid | Dirty | Comments                 |
|-------------|------|-------|-------|-------|--------------------------|
| LDAC 4234   | 0000 | 01/34 | 1     | 0     |                          |
|             | 0001 | 42/0B | 1     | 0     |                          |
|             | 211A | 55/55 | 1     | 0     |                          |
| STAC 4235   |      |       |       |       | Hit (instr)              |
|             | 0002 | 35/42 | 1     | 0     |                          |
|             | 211A | 55/55 | 1     | 1     | Hit (4235)               |
| MVAC        | 0003 | 03/0A | 1     | 0     |                          |
| INAC        |      |       |       |       | Cache hit                |
| ADD         | 0004 | 08/07 | 1     | 0     |                          |
| JPNZ 0020   |      |       |       |       | Hit (instr)              |
|             | 0005 | 20/00 | 1     | 0     |                          |
|             |      |       | 1     | 0     | Hit (00)                 |
| LDAC 4235   | 0010 | 01/35 | 1     | 0     | Hit (instr)              |
|             | 0011 | 42/05 | 1     | 0     | Hit (05) - replaces data |
|             | 211A |       |       |       | Hit (55) - replaces data |
| JUMP 0029   |      |       |       |       | Hit (instr)              |
|             | 0012 | 29/00 | 1     | 0     | Replaces data            |
| AND         | 0014 | 00/0C | 1     | 0     | Replaces data            |

14. Hit ratio = 4.5%

| Instruction | Address | Tag | Data | Valid | Dirty | Comments             |
|-------------|---------|-----|------|-------|-------|----------------------|
| LDAC 4234   | 0       | 000 | 01   | 1     | 0     |                      |
|             | 1       | 000 | 34   | 1     | 0     |                      |
|             | 2       | 000 | 42   | 1     | 0     |                      |
|             | 4       | 423 | 55   | 1     | 0     |                      |
| STAC 4235   | 3       | 000 | 0B   | 1     | 0     |                      |
|             | 4       | 000 | 35   | 1     | 0     | Replaces data        |
|             | 5       | 000 | 42   | 1     | 0     |                      |
|             | 5       | 423 | 55   | 1     | 1     | Replaces data        |
| MVAC        | 6       | 000 | 03   | 1     | 0     |                      |
| INAC        | 7       | 000 | 0A   | 1     | 0     |                      |
| ADD         | 8       | 000 | 08   | 1     | 0     |                      |
| JPNZ 0020   | 9       | 000 | 07   | 1     | 0     |                      |
|             | A       | 000 | 20   | 1     | 0     |                      |
|             | В       | 000 | 00   | 1     | 0     |                      |
| LDAC 4235   | 0       | 002 | 01   | 1     | 0     | Replaces data        |
|             | 1       | 002 | 35   | 1     | 0     | Replaces data        |
|             | 2       | 002 | 42   | 1     | 0     | Replaces data        |
|             |         |     |      |       |       | Hit (read from 4235) |
| JUMP 0029   | 3       | 002 | 05   | 1     | 0     | Replaces data        |
|             | 4       | 002 | 29   | 1     | 0     | Replaces data        |
|             | 5       | 002 | 00   | 1     | 0     | Replaces data        |
| AND         | 9       | 002 | 0C   | 1     | 0     | Replaces data        |

15. Hits in italics Hit ratio = 50.0%

| Instruction | Address | Tag | Data  | Valid | Dirty | Comments                 |
|-------------|---------|-----|-------|-------|-------|--------------------------|
| LDAC 4234   | 0       | 000 | 01/34 | 1     | 0     | Hit (34)                 |
|             | 1       | 000 | 42/0B | 1     | 0     |                          |
|             | 2       | 423 | 55/   | 1     | 0     |                          |
| STAC 4235   |         |     |       |       |       | Hit (STAC)               |
|             | 2       | 000 | 35/42 | 1     | 0     | Hit (42) - Replaces data |
|             | 2       | 423 | 55/55 | 1     | 1     | Hit (4235) Replaces data |
| MVAC        | 3       | 000 | 03/0A | 1     | 0     |                          |
| INAC        |         |     |       |       |       | Hit (INAC)               |
| ADD         | 4       | 000 | 08/07 | 1     | 0     |                          |
| JPNZ 0020   |         |     |       |       |       | Hit (STAC)               |
|             | 5       | 000 | 20/00 | 1     | 0     | Hit (00)                 |
| LDAC 4235   | 0       | 002 | 01/35 | 1     | 0     | Hit (35) - Replaces data |
|             | 1       | 002 | 42/05 | 1     | 0     | Replaces data            |
|             |         |     |       |       |       | Hit (4235)               |
| JUMP 0029   |         |     |       |       |       | Hit (JUMP)               |
|             | 2       | 002 | 29/00 | 1     | 0     | Hit (00) - Replaces data |
| AND         | 4       | 002 | 00/0C | 1     | 0     | Replaces data            |

16. Hits in italics LRU value underlined Hit ratio = 4.5%

| Instruction | Address | Τασ1 | Data 1          | V1 | D1 | Тао2 | Data2     | V2 | D2 | Тао3 | Data3     | V3 | D3 | Τασ4 | Data4     | V4 | D4       |
|-------------|---------|------|-----------------|----|----|------|-----------|----|----|------|-----------|----|----|------|-----------|----|----------|
| LDAC 4234   | 0       | 0000 | 01              | 1  | 0  | 108D |           | 1  | 0  | rugs | Datas     | 13 | DJ | ıαg. | Data      | ٧. | <u> </u> |
| LD/1C 4234  | 1       | 0000 | 34              | 1  | 0  | 100D | 33        | 1  |    |      |           |    |    |      |           |    |          |
|             | 2       | 0000 | <u>34</u><br>42 | 1  | 0  |      |           |    |    |      |           |    |    |      |           |    |          |
| STAC 4235   | 3       | 0000 | 0B              | 1  | 0  |      |           |    |    |      |           |    |    |      |           |    | _        |
| STAC 4255   | _       |      |                 | _  | ~  | 100D |           | 1  | _  | 0001 | 25        | 1  | _  |      |           |    |          |
|             | 0       | 0000 | <u>01</u>       | 1  | 0  | 108D | 55        | 1  | 0  | 0001 | 35        | 1  | 0  |      |           |    |          |
|             | 1       | 0000 | <u>34</u>       | 1  | 0  | 0001 | 42        | 1  | 0  | 108D | 55        | 1  | 1  |      |           |    |          |
| MVAC        | 2       | 0000 | <u>42</u>       | 1  | 0  | 0001 | 03        | 1  | 0  |      |           |    |    |      |           |    |          |
| INAC        | 3       | 0000 | <u>0B</u>       | 1  | 0  | 0001 | 0A        | 1  | 0  |      |           |    |    |      |           |    |          |
| ADD         | 0       | 0000 | <u>01</u>       | 1  | 0  | 108D | 55        | 1  | 0  | 0001 | 35        | 1  | 0  | 0002 | 08        | 1  | 0        |
| JPNZ 0020   | 1       | 0000 | <u>34</u>       | 1  | 0  | 0001 | 42        | 1  | 0  | 108D | 55        | 1  | 1  | 0002 | 07        | 1  | 0        |
|             | 2       | 0000 | 42              | 1  | 0  | 0001 | 03        | 1  | 0  | 0002 | 20        | 1  | 0  |      |           |    |          |
|             | 3       | 0000 | <u>0B</u>       | 1  | 0  | 0001 | 0A        | 1  | 0  | 0002 | 00        | 1  | 0  |      |           |    |          |
| LDAC 4235   | 0       | 0008 | 01              | 1  | 0  | 108D | <u>55</u> | 1  | 0  | 0001 | 35        | 1  | 0  | 0002 | 08        | 1  | 0        |
|             | 1       | 0008 | 35              | 1  | 0  | 0001 | 42        | 1  | 0  | 108D | 55        | 1  | 1  | 0002 | 07        | 1  | 0        |
|             | 2       | 0000 | <u>42</u>       | 1  | 0  | 0001 | 03        | 1  | 0  | 0002 | 20        | 1  | 0  | 0008 | 42        | 1  | 0        |
| JUMP 0029   | 3       | 0000 | <u>0B</u>       | 1  | 0  | 0001 | 0A        | 1  | 0  | 0002 | 00        | 1  | 0  | 0008 | 05        | 1  | 0        |
|             | 0       | 8000 | 01              | 1  | 0  | 0009 | 29        | 1  | 0  | 0001 | <u>35</u> | 1  | 0  | 0002 | 08        | 1  | 0        |
|             | 1       | 0008 | 01              | 1  | 0  | 0009 | 00        | 1  | 0  | 108D | <u>55</u> | 1  | 0  | 0002 | 07        | 1  | 0        |
| AND         | 1       | 0008 | 01              | 1  | 0  | 0009 | 00        | 1  | 0  | 000A | 0C        | 1  | 0  | 0002 | <u>07</u> | 1  | 0        |

17. Hits in italics LRU value underlined Hit ratio = 40.9%

| Instruction | Address | Tag1 | Data1        | V1 | D1 | Tag2 | Data2 | V2 | D2 |
|-------------|---------|------|--------------|----|----|------|-------|----|----|
| LDAC 4234   | 0       | 0000 | 01/34        | 1  | 0  |      |       |    |    |
|             | 1       | 0000 | 42/02        | 1  | 0  |      |       |    |    |
|             | 2       | 211A | 55/          | 1  | 0  |      |       |    |    |
| STAC 4235   |         |      |              |    |    |      |       |    |    |
|             | 2       | 211A | <u>55/55</u> | 1  | 0  | 0000 | 35/42 | 1  | 1  |
| MVAC        | 3       | 0000 | 03/0A        | 1  | 0  |      |       |    | _  |
| INAC        |         |      |              |    |    |      |       |    |    |
| ADD         | 0       | 0000 | 01/34        | 1  | 0  | 0001 | 08/07 | 1  | 0  |
| JPNZ 0020   |         |      |              |    |    |      |       |    |    |
|             | 1       | 0000 | 42/02        | 1  | 0  | 0002 | 20/00 | 1  | 0  |
| LDAC 4235   | 0       | 0008 | 01/35        | 1  | 0  | 0001 | 08/07 | 1  | 0  |
|             | 1       | 0008 | 42/05        | 1  | 0  | 0002 | 20/00 | 1  | 0  |
|             | 1       | 0008 | 42/05        | 1  | 0  | 211A | 29/00 | 1  | 0  |
| JUMP 0029   |         |      |              |    |    |      |       |    |    |
|             | 2       | 0009 | 29/00        | 1  | 0  | 0000 | 35/42 | 1  | 1  |
| AND         | 0       | 0008 | 01/35        | 1  | 0  | 0009 | 0C/   | 1  | 0  |

18. 
$$T_M = hT_C + (1 - h)T_P = (.75 * 8 \text{ ns}) + (.25 * 65 \text{ ns}) = 22.25 \text{ ns}$$

19. 
$$T_C = (T_M - (1 - h)T_P)/h = (39.9 \text{ ns} - .35 * 75 \text{ ns}) / .65 = 21 \text{ ns}$$

20. 
$$T_P = (T_M - hT_C)/(1 - h) = (24 \text{ ns} - .8 * 10 \text{ ns}) / .2 = 80 \text{ ns}$$

21. 
$$h = (T_M - T_P)/(T_C - T_P) = (40 \text{ ns} - 55 \text{ ns}) / (10 \text{ ns} - 55 \text{ ns}) = 0.333 \text{ ns}$$

22. The next jump instruction is always overwritten by its predecessor; h = 0.

23. (Only changes shown)

 $LDAC\ 4234 \qquad \begin{array}{c|cccc} Address & Frame & Valid & Comments \\ \hline 0 & 0 & 1 \\ \hline 4 & 1 & 1 \end{array}$ 

JUMP 1000 No changes

STAC 4235 1 2 1 4235 already in memory

JUMP 2000 No changes

JUMP 0010 2 3 1

JUMP 3000 No changes

JUMP 0100 3 0 1 0 0

JUMP 1100 0 1 0

LDAC 4234 STAC 4235 JUMP 0010 JUMP 3000 JUMP 0100 JUMP 1100 24. JUMP 1000 **JUMP 2000** PFV PFV PFV PFV PFV P F V 001 121121001 301 301 4 1 1 4 1 1 2 3 1 231 2 3 1 0 1 1

LDAC 4234 STAC 4235 JUMP 0010 JUMP 3000 JUMP 0100 JUMP 1100 25. JUMP 1000 **JUMP 2000** PFV PFV PFV PFV PFV PFV 001 121 1 2 1 001301 301 4 1 1 411 231 231 231 011

- 26. a) 1554H
  - b) 2000H
  - c) Fault
- 27. a) F231H
  - b) Fault
  - c) 4401H
- 28. a) 1C35H
  - b) 0A38H
  - c) Fault
- 29. a) C543H
  - b) 4077H
  - c) 8401H
- 30. a) 2000H
  - b) 0D61H
  - c) 3FFFH

- 31. a) 9512H
  - b) 3456H
  - c) 63EDH
- 32. a) 2 C 1
  - b) 9 6 1
  - c) E A 1

# Chapter 10

1.



2.





OTPT1:  $DR \leftarrow M$ ,  $PC \leftarrow PC + 1$ ,  $AR \leftarrow AR + 1$ 

OTPT2:  $TR \leftarrow DR$ ,  $DR \leftarrow M$ ,  $PC \leftarrow PC + 1$ 

OTPT3:  $AR \leftarrow DR,TR$ OTPT4:  $DR \leftarrow AC$ 

OTPT5: Output port  $\leftarrow DR$ 

3. Add the following connections using the same decoder used to generate the states of the INPT execute routine. The rest of the circuit is unchanged.



5. MEMBUS = (old value of MEMBUS) \( \times \text{INPT1} \times \text{INPT2} \( \times \text{INPT4} \)

PCINC = (old value of PCINC)  $\vee$  INPT1  $\vee$  INPT2

TRLOAD = (old value of TRLOAD) ∨ INPT2 ARLOAD = (old value of ARLOAD) ∨ INPT3 DRHBUS = (old value of DRHBUS) ∨ INPT3 TRBUS = (old value of TRBUS) ∨ INPT3 DRLBUS = (old value of DRLBUS) ∨ INPT5

6. The control unit changes are the same as for Problem 10.4. The control signal changes are as follows.

```
ARINC = (old\ value\ of\ ARINC) \lor OTPT1
```

MEMBUS = (old value of MEMBUS)  $\vee$  OTPT1  $\vee$  OTPT2

BUSMEM = (old value of BUSMEM) \( \times \) OTPT5

PCINC = (old value of PCINC)  $\vee$  OTPT1  $\vee$  OTPT2

TRLOAD = (old value of TRLOAD) \( \times \) OTPT2

ARLOAD = (old value of ARLOAD) \( \times \) OTPT3

DRHBUS = (old value of DRHBUS) \( \times \) OTPT3

DRLBUS = (old value of TRBUS) \( \times \) OTPT5

DRLBUS = (old value of DRLBUS) \( \times \) OTPT5

- 7. i) Modify the mapping function to map instruction code 0010 0000 to microcode address 100 0000.
  - ii) Add microcode signal *IO*, which is 1 only for the microinstruction at address 67.
  - iii) Add the following microinstructions to memory. (Only active control signals are shown.)

```
64: DRLOAD, MEMBUS, PCINC, ARINC
65: TRLOAD, DRLOAD, MEMBUS, PCINC
66: ARLOAD, DRHBUS, TRBUS
67: DRLOAD, MEMBUS
68: ACLOAD, DRLBUS
U J 68
U J 01
```

- 8. i) Modify the mapping function to map instruction code 0010 0001 to microcode address 100 1000.
  - ii) Add microcode signal *IO*, which is 1 for the microinstruction at address 76.
  - iii) Add the following microinstructions to memory. (Only active control signals are shown.)

```
72: DRLOAD, MEMBUS, PCINC, ARINC
73: TRLOAD, DRLOAD, MEMBUS, PCINC
74: ARLOAD, DRHBUS, TRBUS
75: DRLOAD, ACBUS
76: BUSMEM, DRLBUS
U J 76
U J 76
U J 76
U J 76
```

- 9. Time (ns) 0 10 20 40 45 60 80 85 90 100 Routine | MAIN | IRQ1 | IRQ2 | IRQ1 | IRQ3 | IRQ4 | IRQ3 | IRQ1 | MAIN |
- 10. Time (ns) 0 10 30 50 70 90 100 Routine | MAIN | IRQ6 | IRQ5 | IRQ4 | IRQ3 | MAIN |
- 11. Time (ns) 0 10 20 40 50 60 80 90 100 Routine | MAIN | IRQ4 | IRQ6 | IRQ4 | IRQ1 | IRQ3 | IRQ1 | MAIN |
- 12. Daisy chaining is easier to modify when it is necessary to add peripherals to a computer system. It also requires fewer pins on the CPU. Other points may also be considered for this question.









16.



17.



18. i) Add the following hardware to implement *INT*.



ii) Change the following state signals:

FETCH1 = 
$$T0 \land (IP' \lor IE')$$
  
FETCH2 =  $T1 \land INT'$   
FETCH3 =  $T2 \land INT'$ 

iii) Add hardware to generate the following new state signals:

INT1 = 
$$T0 \land (IP \land IE)$$
  
INT2 =  $T1 \land INT$   
INT3 =  $T2 \land INT$   
INT4 =  $T3 \land INT$   
INT5 =  $T4 \land INT$   
INT6 =  $T5 \land INT$   
INT7 =  $T6 \land INT$ 

iv) Modify the following internal control unit signals:

19. Replace state FETCH1 and its input and output arcs with the following.



20.  $IE \land IP \land FETCH1: AR \leftarrow SP$   $(IE' \lor IP') \land FETCH1: AR \leftarrow PC$ INT2 - INT7 are the same as in the chapter text. 21.  $ARLOAD = (\text{Original value of } ARLOAD) \vee INT1 \\ ARDEC = (\text{Original value of } ARDEC) \vee INT3 \\ SPBUF = (\text{Original value of } SPBUF) \vee INT1 \\ SPDEC = (\text{Original value of } SPDEC) \vee INT2 \vee INT3 \\ DRLOAD = (\text{Original value of } DRLOAD) \vee INT2 \vee INT4 \vee INT6 \\ DRLBUS = (\text{Original value of } DRLBUS) \vee INT3 \vee INT5 \vee INT7 \\ PCHBUS = (\text{Original value of } PCHBUS) \vee INT2 \\ PCLBUS = (\text{Original value of } PCLBUS) \vee INT4 \\ PCLOAD = (\text{Original value of } PCLOAD) \vee INT7 \\ BUSMEM = (\text{Original value of } BUSMEM) \vee INT3 \vee INT5 \\ WRITE = (\text{Original value of } WRITE) \vee INT3 \vee INT5 \\ MEMBUS = (\text{Original value of } MEMBUS) \vee INT6 \\ IACK = INT5 \vee INT6$ 



- 23. LDAC 2000 OTPT 8000 LDAC 2001 OTPT 8001 LDAC 2002 OTPT 8002
- 24. Replace the FETCH1 input to the OR gate which drives the INC signal of the Time Counter with FETCH1 ^ *BR*′.
- 25. No changes are required, since the CPU does not interact with the data bus while a DMA transfer is active.
- 26. i) COH 10H 00H 00H 20H 99H 00H ii) C1H 11H 00H 08H 28H 99H 01H
  - iii) C0H 10H 80H 00H 01H 99H 02H
- 27. a)  $1 \text{ start} + 0 \text{ parity} + \frac{1}{2} \text{ stop bits} = \frac{2}{2} \text{ bits overhead}; \frac{2}{2} \div (\frac{2}{2} + 8) = 23.8\%.$ 
  - b) 1 start + 1 parity + 2 stop bits = 4 bits overhead;  $4 \div (4 + 7) = 36.4\%$ .
  - c) 1 start + 1 parity + 1 stop bits = 3 bits overhead; 3 ÷ (3 + 5) = 37.5%.
- 28. a) Asynchronous:  $2 \div (2 + 8) = 20.0\%$ ; HDLC:  $48 \div (48 + 96) = 33.3\%$ ; Asynchronous has less overhead
  - b) Asynchronous:  $2\frac{1}{2} \div (2\frac{1}{2} + 7) = 26.3\%$ ; HDLC:  $48 \div (48 + 168) = 22.2\%$ ; HDLC has less overhead
  - c) Asynchronous:  $2 \div (2 + 8) = 20.0\%$ ; HDLC:  $48 \div (48 + 192) = 20.0\%$ ; Both have the same overhead.
- 29. LDAC 1111 OTPT 9800H LDAC 1112H OTPT 9801H

- 30. a) Token packet: 24 bits
  Data packet: 6168 bits
  Handshaking packet: 8 bits
  TOTAL: 6200 bits
  - b)  $56 \div 6200 = 0.90\%$
  - c)  $1536 \times (1 \text{ start bit} + 8 \text{ data bits} + 1 \text{ stop bit}) = 15,360 \text{ bits}$

### **Chapter 11**

- 1. a)  $25 \text{ ns} \times 100\% \text{ vs.}$  (24 ns  $\times$  99%) + (24 ns  $\times$  4 instructions  $\times$  1%) average time 25 ns vs. 23.76 ns + 0.96 ns
  - 25 ns > 24.72 ns, therefore the second CPU has better performance
  - b)  $25 \text{ ns} \times 100\% = (24 \text{ ns} \times (100 x)\%) + (96 \text{ ns} \times x\%); x = 1.389\%$
  - c)  $25 \text{ ns} \times 100\% = (24 \text{ ns} \times 99\%) + (24 \text{ ns} \times x \text{ instructions} \times 1\%); x = 5.167 \text{ instructions}$
  - d)  $x \text{ ns} \times 100\% = (24 \text{ ns} \times 99\%) + (96 \text{ ns} \times 1\%); x = 24.72 \text{ ns}$
  - e)  $25 \text{ ns} \times 100\% = (x \text{ ns} \times 99\%) + (4x \text{ ns} \times 1\%); x = 24.272 \text{ ns}$
- 2. a)  $15 \text{ ns} \times 100\% \text{ vs.}$  ( $12 \text{ ns} \times 98\%$ ) + ( $12 \text{ ns} \times 6 \text{ instructions} \times 2\%$ ) average time 15 ns > 13.2 ns, therefore the second CPU has better performance
  - b)  $15 \text{ ns} \times 100\% = (12 \text{ ns} \times (100 x)\%) + (72 \text{ ns} \times x\%); x = 5\%$
  - c)  $15 \text{ ns} \times 100\% = (12 \text{ ns} \times 98\%) + (12 \text{ ns} \times x \text{ instructions} \times 2\%); x = 13.5 \text{ instructions}$
  - d)  $x \text{ ns} \times 100\% = (12 \text{ ns} \times 98\%) + (72 \text{ ns} \times 2\%); x = 13.2 \text{ ns}$
  - e)  $15 \text{ ns} \times 100\% = (x \text{ ns} \times 98\%) + (6x \text{ ns} \times 2\%); x = 13.636 \text{ ns}$
- 3. a)  $18 \text{ ns} \times 100\% \text{ vs.}$  (16 ns  $\times$  96%) + (16 ns  $\times$  5 instructions  $\times$  4%) average time 18 ns > 18.56 ns, therefore the first CPU has better performance
  - b)  $18 \text{ ns} \times 100\% = (16 \text{ ns} \times (100 x)\%) + (80 \text{ ns} \times x\%); x = 3.125\%$
  - c)  $18 \text{ ns} \times 100\% = (16 \text{ ns} \times 96\%) + (16 \text{ ns} \times x \text{ instructions} \times 4\%); x = 4.125 \text{ instructions}$
  - d)  $x \text{ ns} \times 100\% = (16 \text{ ns} \times 96\%) + (80 \text{ ns} \times 4\%); x = 18.56 \text{ ns}$
  - e)  $18 \text{ ns} \times 100\% = (x \text{ ns} \times 96\%) + (5x \text{ ns} \times 4\%); x = 15.517 \text{ ns}$
- 4. a) Clock period = 80 nsSteady state speedup = (40 + 80 + 50)/80 = 2.125
  - b) 160/80 = 2
- 5. a) Clock period = 60 nsSteady state speedup = (30 + 25 + 60 + 40)/60 = 2.583
  - b) 150/60 = 2.5
- 6. a) Clock period = 70 nsSteady state speedup = (20 + 25 + 20 + 70 + 40)/70 = 2.5
  - b) 160/70 = 2.286
- 7. a) Clock period = 50 nsSteady state speedup = (40 + 45 + 35 + 50)/50 = 3.4
  - b) 160/50 = 3.2
- 8. a) Clock period = 40 nsSteady state speedup = (30 + 25 + 20 + 40 + 40)/40 = 3.875
  - b) 150/40 = 3.75
- 9. a) Clock period = 45 nsSteady state speedup = (20 + 25 + 20 + 25 + 45 + 40)/45 = 3.889
  - b) 160/45 = 3.556
  - c) Combine stages 1 and 2, and combine stages 3 and 4

- 10. 10 global registers + 8 windows × (4 input registers + 10 local registers) = 122 registers
   Note: Common output registers are not counted since they are already counted as common input registers of the next window.
- 11.  $160 \text{ registers} = 16 \text{ global registers} + W \text{ windows} \times (8 \text{ input registers} + 16 \text{ local registers}); W = 6 \text{ windows}$
- 12.  $192 \text{ registers} = 12 \text{ global registers} + 10 \text{ windows} \times (6 \text{ input registers} + L \text{ local registers});$ L = 12 local registers
- 13.  $188 \text{ registers} = 20 \text{ global registers} + 12 \text{ windows} \times (\text{C input registers} + 10 \text{ local registers});$  C = 4 common input (and common output) registers
- 14. a) 2 no-ops
  - b) 2 no-ops
- 15. a)  $1:RI \leftarrow R2 + R3$  N1:No-op  $2:R4 \leftarrow RI + R2$  N2:No-op  $3:R3 \leftarrow RI + R4$   $4:R5 \leftarrow R2 + R6$   $5:R6 \leftarrow RI + R2$  N3:No-op $6:R7 \leftarrow R5 + R6$

| Stage\Cycle | 1 | 2  | 3  | 4  | 5  | 6  | 7 | 8  | 9  | 10 | 11 |
|-------------|---|----|----|----|----|----|---|----|----|----|----|
| 1           | 1 | N1 | 2  | N2 | 3  | 4  | 5 | N3 | 6  |    |    |
| 2           | - | 1  | N1 | 2  | N2 | 3  | 4 | 5  | N3 | 6  |    |
| 3           | - | -  | 1  | N1 | 2  | N2 | 3 | 4  | 5  | N3 | 6  |

b)  $1:R1 \leftarrow R2 + R3$   $4:R5 \leftarrow R2 + R6$   $2:R4 \leftarrow R1 + R2$   $5:R6 \leftarrow R1 + R2$  $3:R3 \leftarrow R1 + R4$ 

 $6:R7 \leftarrow R5 + R6$ 

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-------------|---|---|---|---|---|---|---|---|
| 1           | 1 | 4 | 2 | 5 | 3 | 6 |   |   |
| 2           | - | 1 | 4 | 2 | 5 | 3 | 6 |   |
| 3           | - | - | 1 | 4 | 2 | 5 | 3 | 6 |

c)  $1:R1 \leftarrow R2 + R3$   $2:R4 \leftarrow R1 + R2$   $3:R3 \leftarrow R1 + R4$   $4:R5 \leftarrow R2 + R6$   $5:R6 \leftarrow R1 + R2$  $6:R7 \leftarrow R5 + R6$ 

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|
| 1           | 1 | 2 | S | 3 | S | 4 | 5 | S | 6 |    |    |
| 2           | - | 1 | 2 | S | 3 | S | 4 | 5 | S | 6  |    |
| 3           | - | - | 1 | 2 | S | 3 | S | 4 | 5 | S  | 6  |

d)  $1:RI \leftarrow R2 + R3$   $2:R4 \leftarrow RI + R2$   $3:R3 \leftarrow RI + R4$   $4:R5 \leftarrow R2 + R6$  $5:R6 \leftarrow RI + R2$ 

 $6:R7 \leftarrow R5 + R6$ 

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-------------|---|---|---|---|---|---|---|---|
| 1           | 1 | 2 | 3 | 4 | 5 | 6 |   |   |
| 2           | ı | 1 | 2 | 3 | 4 | 5 | 6 |   |
| 3           | - | - | 1 | 2 | 3 | 4 | 5 | 6 |

| 16. a) | $1:R1 \leftarrow R2 + R3$ |
|--------|---------------------------|
|        | N1:No-op                  |
|        | N2:No-op                  |
|        | $2:R4 \leftarrow R1 + R2$ |
|        | N3:No-op                  |
|        | N4:No-op                  |
|        | $3:R3 \leftarrow R1 + R4$ |
|        | $4:R5 \leftarrow R2 + R6$ |
|        | $5:R6 \leftarrow R1 + R2$ |
|        | N5:No-op                  |
|        | N6:No-op                  |
|        | $6:R7 \leftarrow R5 + R6$ |

| Stage\Cycle | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|-------------|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | N1 | N2 | 2  | N3 | N4 | 3  | 4  | 5  | N5 | N6 | 6  |    |    |    |
| 2           | - | 1  | N1 | N2 | 2  | N3 | N4 | 3  | 4  | 5  | N5 | N6 | 6  |    |    |
| 3           | - | -  | 1  | N1 | N2 | 2  | N3 | N4 | 3  | 4  | 5  | N5 | N6 | 6  |    |
| 4           | - | -  | -  | 1  | N1 | N2 | 2  | N3 | N4 | 3  | 4  | 5  | N5 | N6 | 6  |

| b) | $1:RI \leftarrow R2 + R3$   |
|----|-----------------------------|
|    | $4:R5 \leftarrow R2 + R6$   |
|    | N1:No-op                    |
|    | $2:R4 \leftarrow R1 + R2$   |
|    | $5 \cdot D6 \times D1 + D2$ |

| Stage\Cycle | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
|-------------|---|---|----|----|----|----|----|----|----|----|----|
| 1           | 1 | 4 | N1 | 2  | 5  | N2 | 3  | 6  |    |    |    |
| 2           | - | 1 | 4  | N1 | 2  | 5  | N2 | 3  | 6  |    |    |
| 3           | - | 1 | 1  | 4  | N1 | 2  | 5  | N2 | 3  | 6  |    |
| 4           | - | - | -  | 1  | 4  | N1 | 2  | 5  | N2 | 3  | 6  |

$$5: R6 \leftarrow RI + R2$$

$$N2: No-op$$

$$3: R3 \leftarrow RI + R4$$

$$6: R7 \leftarrow R5 + R6$$

c)  $1:R1 \leftarrow R2 + R3$ 

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| 1           | 1 | S | S | 2 | S | S | 3 | 4 | 5 | S  | S  | 6  |    |    |    |
| 2           | - | 1 | S | S | 2 | S | S | 3 | 4 | 5  | S  | S  | 6  |    |    |
| 3           | - | - | 1 | S | S | 2 | S | S | 3 | 4  | 5  | S  | S  | 6  |    |
| 4           | - | - | - | 1 | S | S | 2 | S | S | 3  | 4  | 5  | S  | S  | 6  |

| , | $2:R4 \leftarrow R1 + R2$  |
|---|----------------------------|
|   | $3:R3 \leftarrow R1 + R4$  |
|   | $4: R5 \leftarrow R2 + R6$ |
|   | $5: R6 \leftarrow R1 + R2$ |
|   | $6: R7 \leftarrow R5 + R6$ |
|   | ,                          |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------------|---|---|---|---|---|---|---|---|---|
| 1           | 1 | 2 | 3 | 4 | 5 | 6 |   |   |   |
| 2           | - | 1 | 2 | 3 | 4 | 5 | 6 |   |   |
| 3           | - | - | 1 | 2 | 3 | 4 | 5 | 6 |   |
| 4           | - | - | - | 1 | 2 | 3 | 4 | 5 | 6 |

| d) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $2:R4 \leftarrow R1 + R2$ |
|    | $3:R3 \leftarrow R1 + R4$ |
|    | $4:R5 \leftarrow R2 + R6$ |
|    | $5:R6 \leftarrow R1 + R2$ |
|    | $6:R7 \leftarrow R5 + R6$ |

| 17. a) | $1:R1 \leftarrow R2 + R3$ |
|--------|---------------------------|
|        | N1:No-op                  |
|        | N2:No-op                  |
|        | $2:R4 \leftarrow R1 + R2$ |
|        | N3:No-op                  |
|        | N4:No-op                  |
|        | $3:R3 \leftarrow R1 + R4$ |
|        | $4:R5 \leftarrow R2 + R6$ |
|        | $5:R6 \leftarrow R1 + R2$ |
|        | N5:No-op                  |
|        | N6:No-op                  |
|        | $6:R7 \leftarrow R5 + R6$ |

| Stage\Cycle | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-------------|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | N1 | N2 | 2  | N3 | N4 | 3  | 4  | 5  | N5 | N6 | 6  |    |    |    |    |
| 2           | ı | 1  | N1 | N2 | 2  | N3 | N4 | 3  | 4  | 5  | N5 | N6 | 6  |    |    |    |
| 3           | 1 | -  | 1  | N1 | N2 | 2  | N3 | N4 | 3  | 4  | 5  | N5 | N6 | 6  |    |    |
| 4           | - | -  | -  | 1  | N1 | N2 | 2  | N3 | N4 | 3  | 4  | 5  | N5 | N6 | 6  |    |
| 5           | - | -  | -  | -  | 1  | N1 | N2 | 2  | N3 | N4 | 3  | 4  | 5  | N5 | N6 | 6  |

| b) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $4:R5 \leftarrow R2 + R6$ |
|    | N1:No-op                  |
|    | $2:R4 \leftarrow R1 + R2$ |
|    | $5:R6 \leftarrow R1 + R2$ |
|    | N2:No-op                  |
|    | $3:R3 \leftarrow R1 + R4$ |
|    | $6:R7 \leftarrow R5 + R6$ |

| Stage\Cycle | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|-------------|---|---|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | 4 | N1 | 2  | 5  | N2 | 3  | 6  |    |    |    |    |
| 2           | - | 1 | 4  | N1 | 2  | 5  | N2 | 3  | 6  |    |    |    |
| 3           | - | - | 1  | 4  | N1 | 2  | 5  | N2 | 3  | 6  |    |    |
| 4           | - | - | -  | 1  | 4  | N1 | 2  | 5  | N2 | 3  | 6  |    |
| 5           | - | - | -  | -  | 1  | 4  | N1 | 2  | 5  | N2 | 3  | 6  |

| c) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $2:R4 \leftarrow R1 + R2$ |
|    | $3:R3 \leftarrow R1 + R4$ |
|    | $4:R5 \leftarrow R2 + R6$ |
|    | $5:R6 \leftarrow R1 + R2$ |
|    | $6:R7 \leftarrow R5 + R6$ |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 1           | 1 | S | S | 2 | S | S | 3 | 4 | 5 | S  | S  | 6  |    |    |    |    |
| 2           | - | 1 | S | S | 2 | S | S | 3 | 4 | 5  | S  | S  | 6  |    |    |    |
| 3           | - | - | 1 | S | S | 2 | S | S | 3 | 4  | 5  | S  | S  | 6  |    |    |
| 4           | - | - | - | 1 | S | S | 2 | S | S | 3  | 4  | 5  | S  | S  | 6  |    |
| 5           | - | - | - | - | 1 | S | S | 2 | S | S  | 3  | 4  | 5  | S  | S  | 6  |

| d) | $1:R1 \leftarrow R2 + R3$       |
|----|---------------------------------|
|    | $2:R4 \leftarrow R1 + R2$       |
|    | $3:R3 \leftarrow R1 + R4$       |
|    | $4:R5 \leftarrow R2 + R6$       |
|    | $5:R6 \leftarrow R1 + R2$       |
|    | $6 \cdot R7 \leftarrow R5 + R6$ |

| 1 | 2   | 3                     | 4                                | 5                                                | 6                                        | 7                                                         | 8                                                                 | 9                                                                                                                                                                                                                           | 10                              |
|---|-----|-----------------------|----------------------------------|--------------------------------------------------|------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1 | 2   | 3                     | 4                                | 5                                                | 6                                        |                                                           |                                                                   |                                                                                                                                                                                                                             |                                 |
| - | 1   | 2                     | 3                                | 4                                                | 5                                        | 6                                                         |                                                                   |                                                                                                                                                                                                                             |                                 |
| - | -   | 1                     | 2                                | 3                                                | 4                                        | 5                                                         | 6                                                                 |                                                                                                                                                                                                                             |                                 |
| - | -   | -                     | 1                                | 2                                                | 3                                        | 4                                                         | 5                                                                 | 6                                                                                                                                                                                                                           |                                 |
| - | -   | -                     | -                                | 1                                                | 2                                        | 3                                                         | 4                                                                 | 5                                                                                                                                                                                                                           | 6                               |
|   | 1 1 | 1 2<br>1 2<br>- 1<br> | 1 2 3<br>1 2 3<br>- 1 2<br>1<br> | 1 2 3 4<br>1 2 3 4<br>- 1 2 3<br>1 2<br>1 2<br>1 | 1 2 3 4 5<br>- 1 2 3 4<br>1 2 3<br>1 2 3 | 1 2 3 4 5 6<br>- 1 2 3 4 5<br>1 2 3 4<br>1 2 3 4<br>1 2 3 | 1 2 3 4 5 6<br>- 1 2 3 4 5 6<br>1 2 3 4 5<br>1 2 3 4 5<br>1 2 3 4 | 1     2     3     4     5     6       -     1     2     3     4     5     6       -     -     1     2     3     4     5     6       -     -     1     2     3     4     5     6       -     -     1     2     3     4     5 | 1     2     3     4     5     6 |

| 18. a) | $1:R1 \leftarrow R2 + R3$ |
|--------|---------------------------|
|        | N1:No-op                  |
|        | $2:R1 \leftarrow R1 + R2$ |
|        | $3:R2 \leftarrow R3 + R4$ |
|        | $4:R5 \leftarrow R6 + R7$ |
|        | N2:No-op                  |
|        | $5:R5 \leftarrow R5 + R7$ |
|        | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2  | 3  | 4  | 5 | 6  | 7  | 8  | 9 | 10 |
|-------------|---|----|----|----|---|----|----|----|---|----|
| 1           | 1 | N1 | 2  | 3  | 4 | N2 | 5  | 6  |   |    |
| 2           | - | 1  | N1 | 2  | 3 | 4  | N2 | 5  | 6 |    |
| 3           | - | -  | 1  | N1 | 2 | 3  | 4  | N2 | 5 | 6  |

| b) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $3:R2 \leftarrow R3 + R4$ |
|    | $4:R5 \leftarrow R6 + R7$ |
|    | $2:R1 \leftarrow R1 + R2$ |
|    | $5:R5 \leftarrow R5 + R7$ |
|    | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-------------|---|---|---|---|---|---|---|---|
| 1           | 1 | 3 | 4 | 2 | 5 | 6 |   |   |
| 2           | • | 1 | 3 | 4 | 2 | 5 | 6 |   |
| 3           | - | - | 1 | 3 | 4 | 2 | 5 | 6 |

c) 
$$1:RI \leftarrow R2 + R3$$
  
 $2:RI \leftarrow RI + R2$   
 $3:R2 \leftarrow R3 + R4$   
 $4:R5 \leftarrow R6 + R7$   
 $5:R5 \leftarrow R5 + R7$   
 $6:R6 \leftarrow R1 + R2$ 

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------------|---|---|---|---|---|---|---|---|---|----|
| 1           | 1 | 2 | 3 | S | 4 | 5 | S | 6 |   |    |
| 2           | - | 1 | 2 | 3 | S | 4 | 5 | S | 6 |    |
| 3           | - | - | 1 | 2 | 3 | S | 4 | 5 | S | 6  |

| d) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $2:R1 \leftarrow R1 + R2$ |
|    | $3:R2 \leftarrow R3 + R4$ |
|    | $4:R5 \leftarrow R6 + R7$ |
|    | $5:R5 \leftarrow R5 + R7$ |
|    | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-------------|---|---|---|---|---|---|---|---|
| 1           | 1 | 2 | 3 | 4 | 5 | 6 |   |   |
| 2           | - | 1 | 2 | 3 | 4 | 5 | 6 |   |
| 3           | - | - | 1 | 2 | 3 | 4 | 5 | 6 |

| 19. a) | $1:R1 \leftarrow R2 + R3$ |
|--------|---------------------------|
|        | N1:No-op                  |
|        | N2:No-op                  |
|        | $2:R1 \leftarrow R1 + R2$ |
|        | $3:R2 \leftarrow R3 + R4$ |
|        | $4:R5 \leftarrow R6 + R7$ |
|        | N3:No-op                  |
|        | N4:No-op                  |
|        | $5:R5 \leftarrow R5 + R7$ |
|        | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 |
|-------------|---|----|----|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | N1 | N2 | 2  | 3  | 4  | N3 | N4 | 5  | 6  |    |    |    |
| 2           | - | 1  | N1 | N2 | 2  | 3  | 4  | N3 | N4 | 5  | 6  |    |    |
| 3           | - | -  | 1  | N1 | N2 | 2  | 3  | 4  | N3 | N4 | 5  | 6  |    |
| 4           | - | -  | -  | 1  | N1 | N2 | 2  | 3  | 4  | N3 | N4 | 5  | 6  |

| b) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $3:R2 \leftarrow R3 + R4$ |
|    | $4:R5 \leftarrow R6 + R7$ |
|    | N1:No-op                  |
|    | $2:R1 \leftarrow R1 + R2$ |
|    | $5:R5 \leftarrow R5 + R7$ |
|    | N2:No-op                  |
|    | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
|-------------|---|---|---|----|----|----|----|----|----|----|----|
| 1           | 1 | 3 | 4 | N1 | 2  | 5  | N2 | 6  |    |    |    |
| 2           | - | 1 | 3 | 4  | N1 | 2  | 5  | N2 | 6  |    |    |
| 3           | - | • | 1 | 3  | 4  | N1 | 2  | 5  | N2 | 6  |    |
| 4           | - | - | - | 1  | 3  | 4  | N1 | 2  | 5  | N2 | 6  |

| c) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $2:R1 \leftarrow R1 + R2$ |
|    | $3:R2 \leftarrow R3 + R4$ |
|    | $4:R5 \leftarrow R6 + R7$ |
|    | $5:R5 \leftarrow R5 + R7$ |
|    | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|
| 1           | 1 | 2 | S | S | 3 | 4 | S | S | 5 | 6  |    |    |    |
| 2           | - | 1 | 2 | S | S | 3 | 4 | S | S | 5  | 6  |    |    |
| 3           | - | - | 1 | 2 | S | S | 3 | 4 | S | S  | 5  | 6  |    |
| 4           | - | - | - | 1 | 2 | S | S | 3 | 4 | S  | S  | 5  | 6  |

| d) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $2:R1 \leftarrow R1 + R2$ |
|    | $3:R2 \leftarrow R3 + R4$ |
|    | $4:R5 \leftarrow R6 + R7$ |
|    | $5:R5 \leftarrow R5 + R7$ |
|    | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------------|---|---|---|---|---|---|---|---|---|
| 1           | 1 | 2 | 3 | 4 | 5 | 6 |   |   |   |
| 2           | - | 1 | 2 | 3 | 4 | 5 | 6 |   |   |
| 3           | • | ı | 1 | 2 | 3 | 4 | 5 | 6 |   |
| 4           | - | - | - | 1 | 2 | 3 | 4 | 5 | 6 |

| 20. a) | $1:R1 \leftarrow R2 + R3$ |
|--------|---------------------------|
|        | N1:No-op                  |
|        | N2:No-op                  |
|        | $2:R1 \leftarrow R1 + R2$ |
|        | $3:R2 \leftarrow R3 + R4$ |
|        | $4:R5 \leftarrow R6 + R7$ |
|        | N3:No-op                  |
|        | N4:No-op                  |
|        | $5:R5 \leftarrow R5 + R7$ |
|        | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
|-------------|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | N1 | N2 | 2  | 3  | 4  | N3 | N4 | 5  | 6  |    |    |    |    |
| 2           | ı | 1  | N1 | N2 | 2  | 3  | 4  | N3 | N4 | 5  | 6  |    |    |    |
| 3           | 1 | -  | 1  | N1 | N2 | 2  | 3  | 4  | N3 | N4 | 5  | 6  |    |    |
| 4           | - | -  | -  | 1  | N1 | N2 | 2  | 3  | 4  | N3 | N4 | 5  | 6  |    |
| 5           | - | -  | -  | -  | 1  | N1 | N2 | 2  | 3  | 4  | N3 | N4 | 5  | 6  |

| b) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $3:R2 \leftarrow R3 + R4$ |
|    | $4:R5 \leftarrow R6 + R7$ |
|    | N1:No-op                  |
|    | $2:R1 \leftarrow R1 + R2$ |
|    | $5:R5 \leftarrow R5 + R7$ |
|    | N2:No-op                  |
|    | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|-------------|---|---|---|----|----|----|----|----|----|----|----|----|
| 1           | 1 | 3 | 4 | N1 | 2  | 5  | N2 | 6  |    |    |    |    |
| 2           | - | 1 | 3 | 4  | N1 | 2  | 5  | N2 | 6  |    |    |    |
| 3           | - | - | 1 | 3  | 4  | N1 | 2  | 5  | N2 | 6  |    |    |
| 4           | - | - | - | 1  | 3  | 4  | N1 | 2  | 5  | N2 | 6  |    |
| 5           | - | - | - | -  | 1  | 3  | 4  | N1 | 2  | 5  | N2 | 6  |

| c) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $2:R1 \leftarrow R1 + R2$ |
|    | $3:R2 \leftarrow R3 + R4$ |
|    | $4:R5 \leftarrow R6 + R7$ |
|    | $5:R5 \leftarrow R5 + R7$ |
|    | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
| 1           | 1 | 2 | S | S | 3 | 4 | S | S | 5 | 6  |    |    |    |    |
| 2           | ı | 1 | 2 | S | S | 3 | 4 | S | S | 5  | 6  |    |    |    |
| 3           | 1 | ı | 1 | 2 | S | S | 3 | 4 | S | S  | 5  | 6  |    |    |
| 4           | ı | ı | ı | 1 | 2 | S | S | 3 | 4 | S  | S  | 5  | 6  |    |
| 5           | - | - | - | - | 1 | 2 | S | S | 3 | 4  | S  | S  | 5  | 6  |

| d) | $1:R1 \leftarrow R2 + R3$ |
|----|---------------------------|
|    | $2:R1 \leftarrow R1 + R2$ |
|    | $3:R2 \leftarrow R3 + R4$ |
|    | $4:R5 \leftarrow R6 + R7$ |
|    | $5:R5 \leftarrow R5 + R7$ |
|    | $6:R6 \leftarrow R1 + R2$ |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------------|---|---|---|---|---|---|---|---|---|----|
| 1           | 1 | 2 | 3 | 4 | 5 | 6 |   |   |   |    |
| 2           | ı | 1 | 2 | 3 | 4 | 5 | 6 |   |   |    |
| 3           | - | - | 1 | 2 | 3 | 4 | 5 | 6 |   |    |
| 4           | - | - | - | 1 | 2 | 3 | 4 | 5 | 6 |    |
| 5           | - | - | - | - | 1 | 2 | 3 | 4 | 5 | 6  |

| 21. | Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6  | 7  | 8  |
|-----|-------------|---|---|---|---|---|----|----|----|
|     | 1           | 1 | 2 | 3 | S | S | 10 |    |    |
|     | 2           | - | 1 | 2 | 3 | S | S  | 10 |    |
|     | 3           | - | - | 1 | 2 | 3 | S  | S  | 10 |

| 22. | Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|-----|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
|     | 1           | 1 | 2 | 3 | 4 | 5 | N | N | 2 | 3 | 4  | 5  | N  | N  |    |    |
|     | 2           | - | 1 | 2 | 3 | 4 | 5 | N | N | 2 | 3  | 4  | 5  | N  | N  |    |
|     | 3           | - | - | 1 | 2 | 3 | 4 | 5 | N | N | 2  | 3  | 4  | 5  | N  | N  |

| 23. | Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|-----|-------------|---|---|---|---|---|---|---|---|---|----|----|
|     | 1           | 1 | 4 | 5 | 2 | 3 | 4 | 5 | 2 | 3 |    |    |
|     | 2           | - | 1 | 4 | 5 | 2 | 3 | 4 | 5 | 2 | 3  | _  |
|     | 3           | - | - | 1 | 4 | 5 | 2 | 3 | 4 | 5 | 2  | 3  |

| 24. a) | $1:R1 \leftarrow R1 + R2$ |
|--------|---------------------------|
|        | $2:R3 \leftarrow R3 + R4$ |
|        | $3:R5 \leftarrow R1 + R5$ |
|        | 4:JUMP 9                  |
|        | N1:No-op                  |
|        | N2:No-op                  |
|        | $9:R2 \leftarrow R1 + R3$ |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9 |
|-------------|---|---|---|---|----|----|----|----|---|
| 1           | 1 | 2 | 3 | 4 | N1 | N2 | 9  |    |   |
| 2           | - | 1 | 2 | 3 | 4  | N1 | N2 | 9  |   |
| 3           | - | - | 1 | 2 | 3  | 4  | N1 | N2 | 9 |

| b) | $1:R1 \leftarrow R1 + R2$ |
|----|---------------------------|
|    | 4:JUMP 9                  |
|    | $2:R3 \leftarrow R3 + R4$ |
|    | $3:R5 \leftarrow R1 + R5$ |
|    | $9:R2 \leftarrow R1 + R3$ |

| $Stage \backslash Cycle$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|--------------------------|---|---|---|---|---|---|---|
| 1                        | 1 | 4 | 2 | 3 | 9 |   |   |
| 2                        | - | 1 | 4 | 2 | 3 | 9 |   |
| 3                        | - | - | 1 | 4 | 2 | 3 | 9 |

c) 
$$1:RI \leftarrow RI + R2$$
  
 $2:R3 \leftarrow R3 + R4$   
 $3:R5 \leftarrow RI + R5$   
 $4:JUMP 9$   
 $9:R2 \leftarrow RI + R3$ 

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------------|---|---|---|---|---|---|---|---|---|
| 1           | 1 | 2 | 3 | 4 | S | S | 9 |   |   |
| 2           | - | 1 | 2 | 3 | 4 | S | S | 9 |   |
| 3           | - | - | 1 | 2 | 3 | 4 | S | S | 9 |

25. a) 
$$1:RI \leftarrow RI + R2$$
$$2:R3 \leftarrow R3 + R4$$
$$N1:No-op$$
$$3:R5 \leftarrow RI + R5$$
$$4:JUMP 9$$
$$N2:No-op$$
$$N3:No-op$$
$$9:R2 \leftarrow RI + R3$$

| Stage\Cycle | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
|-------------|---|---|----|----|----|----|----|----|----|----|----|
| 1           | 1 | 2 | N1 | 3  | 4  | N2 | N3 | 9  |    |    |    |
| 2           | - | 1 | 2  | N1 | 3  | 4  | N2 | N3 | 9  |    |    |
| 3           | - | 1 | 1  | 2  | N1 | 3  | 4  | N2 | N3 | 9  |    |
| 4           | - | - | -  | 1  | 2  | N1 | 3  | 4  | N2 | N3 | 9  |

| b) | $1:R1 \leftarrow R1 + R2$ |
|----|---------------------------|
|    | 4:JUMP 9                  |
|    | $2:R3 \leftarrow R3 + R4$ |
|    | $3:R5 \leftarrow R1 + R5$ |
|    | N:No-op                   |
|    | $9:R2 \leftarrow R1 + R3$ |

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-------------|---|---|---|---|---|---|---|---|---|
| 1           | 1 | 4 | 2 | 3 | N | 9 |   |   |   |
| 2           | - | 1 | 4 | 2 | 3 | N | 9 |   |   |
| 3           | - | - | 1 | 4 | 2 | 3 | N | 9 |   |
| 4           | - | - | - | 1 | 4 | 2 | 3 | N | 9 |

c) 
$$1:R1 \leftarrow R1 + R2$$
  
 $2:R3 \leftarrow R3 + R4$   
 $3:R5 \leftarrow R1 + R5$   
 $4:JUMP 9$   
 $9:R2 \leftarrow R1 + R3$ 

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|
| 1           | 1 | 2 | 3 | S | 4 | S | S | 9 |   |    |    |
| 2           | - | 1 | 2 | 3 | S | 4 | S | S | 9 |    |    |
| 3           | - | - | 1 | 2 | 3 | S | 4 | S | S | 9  |    |
| 4           | - | - | - | 1 | 2 | 3 | S | 4 | S | S  | 9  |

26. a) 
$$1:RI \leftarrow 3$$

$$2:R2 \leftarrow R2 + R3$$

$$3:R3 \leftarrow R3 + R4$$

$$4:R4 \leftarrow RI + R2$$

$$5:RI \leftarrow RI - 1$$

$$N1:No-op$$

$$6:IF (RI \neq 0) \text{ THEN GOTO 2}$$

$$N2:No-op$$

$$N3:No-op$$

$$7:R5 \leftarrow R6 + R7$$

$$8:R6 \leftarrow R7 + R8$$

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
|-------------|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | 2 | 3 | 4 | 5 | N1 | 6  | N2 | N3 | 2  | 3  | 4  | 5  | N1 | 6  | N2 | N3 | 2  | 3  | 4  | 5  | N1 | 6  | N2 | N3 | 7  | 8  |    |    |
| 2           | - | 1 | 2 | 3 | 4 | 5  | N1 | 6  | N2 | N3 | 2  | 3  | 4  | 5  | N1 | 6  | N2 | N3 | 2  | 3  | 4  | 5  | N1 | 6  | N2 | N3 | 7  | 8  |    |
| 3           | - | - | 1 | 2 | 3 | 4  | 5  | N1 | 6  | N2 | N3 | 2  | 3  | 4  | 5  | N1 | 6  | N2 | N3 | 2  | 3  | 4  | 5  | N1 | 6  | N2 | N3 | 7  | 8  |

b) 
$$1:RI \leftarrow 3$$
  
 $N:No-op$   
 $5:RI \leftarrow RI - 1$   
 $2:R2 \leftarrow R2 + R3$   
 $6:IF (RI \neq 0)$  THEN GOTO 2  
 $3:R3 \leftarrow R3 + R4$   
 $4:R4 \leftarrow R1 + R2$   
 $7:R5 \leftarrow R6 + R7$   
 $8:R6 \leftarrow R7 + R8$ 

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | N | 5 | 2 | 6 | 3 | 4 | 5 | 2 | 6  | 3  | 4  | 5  | 2  | 6  | 3  | 4  | 7  | 8  |    |    |
| 2           | ı | 1 | N | 5 | 2 | 6 | 3 | 4 | 5 | 2  | 6  | 3  | 4  | 5  | 2  | 6  | 3  | 4  | 7  | 8  |    |
| 3           | - | - | 1 | N | 5 | 2 | 6 | 3 | 4 | 5  | 2  | 6  | 3  | 4  | 5  | 2  | 6  | 3  | 4  | 7  | 8  |

c) 
$$1:RI \leftarrow 3$$
  
 $2:R2 \leftarrow R2 + R3$   
 $3:R3 \leftarrow R3 + R4$   
 $4:R4 \leftarrow RI + R2$   
 $5:RI \leftarrow RI - 1$   
 $6:IF (RI \neq 0) \text{ THEN GOTO 2}$   
 $7:R5 \leftarrow R6 + R7$   
 $8:R6 \leftarrow R7 + R8$ 

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | 2 | 3 | 4 | 5 | S | 6 | S | S | 2  | 3  | 4  | 5  | S  | 6  | S  | S  | 2  | 3  | 4  | 5  | S  | 6  | S  | S  | 7  | 8  |    |    |
| 2           | - | 1 | 2 | 3 | 4 | 5 | S | 6 | S | S  | 2  | 3  | 4  | 5  | S  | 6  | S  | S  | 2  | 3  | 4  | 5  | S  | 6  | S  | S  | 7  | 8  |    |
| 3           | - | - | 1 | 2 | 3 | 4 | 5 | S | 6 | S  | S  | 2  | 3  | 4  | 5  | S  | 6  | S  | S  | 2  | 3  | 4  | 5  | S  | 6  | S  | S  | 7  | 8  |

27. 
$$1:RI \leftarrow 3$$

$$2:R2 \leftarrow R2 + R3$$

$$3:R3 \leftarrow R3 + R4$$

$$4:R4 \leftarrow R1 + R2$$

$$5:R1 \leftarrow R1 - 1$$

N:No-op

6: IF  $(R1 \neq 0)$  THEN GOTO 2

 $7:R5 \leftarrow R6 + R7$ 

 $8:R6 \leftarrow R7 + R8$ 

## Underlined instructions are annulled

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | 2 | 3 | 4 | 5 | N | 6 | 7 | 8 | 2  | 3  | 4  | 5  | N  | 6  | 7  | 8  | 2  | 3  | 4  | 5  | N  | 6  | 7  | 8  |    |    |
| 2           | - | 1 | 2 | 3 | 4 | 5 | N | 6 | 7 | 8  | 2  | 3  | 4  | 5  | N  | 6  | 7  | 8  | 2  | 3  | 4  | 5  | N  | 6  | 7  | 8  |    |
| 3           | - | - | 1 | 2 | 3 | 4 | 5 | N | 6 | 7  | 8  | 2  | 3  | 4  | 5  | N  | 6  | 7  | 8  | 2  | 3  | 4  | 5  | N  | 6  | 7  | 8  |

28. a) 
$$1:RI \leftarrow 3$$

$$2:R2 \leftarrow R2 + R3$$

$$3:R3 \leftarrow R3 + R4$$

$$4:R4 \leftarrow R1 + R2$$

$$5:R1 \leftarrow R1 - 1$$

N:No-op

6:IF  $(R1 \neq 0)$  THEN GOTO 2

$$7:R5 \leftarrow R6 + R7$$

$$8:R6 \leftarrow R7 + R8$$

## Underlined instructions are annulled

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|-------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1           | 1 | 2 | 3 | 4 | 5 | N | 6 | 2 | 3 | 4  | 5  | N  | 6  | 2  | 3  | 4  | 5  | N  | 6  | 2  | 3  | 7  | 8  |    |    |
| 2           | - | 1 | 2 | 3 | 4 | 5 | N | 6 | 2 | 3  | 4  | 5  | N  | 6  | 2  | 3  | 4  | 5  | N  | 6  | 2  | 3  | 7  | 8  |    |
| 3           | _ | _ | 1 | 2 | 3 | 4 | 5 | Ν | 6 | 2  | 3  | 4  | 5  | Ν  | 6  | 2  | 3  | 4  | 5  | Ν  | 6  | 2  | 3  | 7  | 8  |

b) 
$$1:RI \leftarrow 3$$

$$2:R2 \leftarrow R2 + R3$$

$$3:R3 \leftarrow R3 + R4$$

$$4:R4 \leftarrow R1 + R2$$

$$5:R1 \leftarrow R1 - 1$$

N:No-op

6:IF  $(R1 \neq 0)$  THEN GOTO 2

$$7:R5 \leftarrow R6 + R7$$

$$8:R6 \leftarrow R7 + R8$$

## Underlined instructions are annulled

| Stage\Cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10       | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18       | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
|-------------|---|---|---|---|---|---|---|---|---|----------|----|----|----|----|----|----|----|----------|----|----|----|----|----|----|----|----|----|
| 1           | 1 | 2 | 3 | 4 | 5 | N | 6 | 7 | 8 | 2        | 3  | 4  | 5  | N  | 6  | 7  | 8  | 2        | 3  | 4  | 5  | N  | 6  | 7  | 8  |    |    |
| 2           | - | 1 | 2 | 3 | 4 | 5 | N | 6 | 7 | 8        | 2  | 3  | 4  | 5  | N  | 6  | 7  | 8        | 2  | 3  | 4  | 5  | N  | 6  | 7  | 8  |    |
| 3           | - | - | 1 | 2 | 3 | 4 | 5 | N | 6 | <u>7</u> | 8  | 2  | 3  | 4  | 5  | N  | 6  | <u>7</u> | 8  | 2  | 3  | 4  | 5  | N  | 6  | 7  | 8  |

## **Chapter 12**

e) diameter = 4;

f) diameter = 4;

g) diameter = 1;

- 1. a) diameter = 1; bandwidth = 500 Mb/s; bisection bandwidth = 500 Mb/s b) diameter = 32; bandwidth = 32000 Mb/s; bisection bandwidth = 1000 Mb/s c) diameter = 10; bandwidth = 31000 Mb/s; bisection bandwidth = 500 Mb/s d) diameter = 16; bandwidth = 56000 Mb/s; bisection bandwidth = 4000 Mb/s e) diameter = 8; bandwidth = 64000 Mb/s; bisection bandwidth = 8000 Mb/s f) diameter = 6; bandwidth = 96000 Mb/s; bisection bandwidth = 16000 Mb/s g) diameter = 1; bandwidth = 1008000 Mb/s; bisection bandwidth = 512000 Mb/s 2. a) diameter = 1; bisection bandwidth = 10 Mb/s bandwidth = 10 Mb/s; b) diameter = 8; bandwidth = 160 Mb/s; bisection bandwidth = 20 Mb/s c) diameter = 6; bandwidth = 150 Mb/s; bisection bandwidth = 10 Mb/s d) diameter = 8; bisection bandwidth = 40 Mb/s bandwidth = 240 Mb/s;
- 3.  $d(\text{tree}) = 2*\lfloor \lg n \rfloor$ , d(ring) = n/2;  $2*\lfloor \lg n \rfloor < n/2$  for  $13 \le n \le 15$  and  $n \ge 17$
- 4.  $d(\text{mesh}) = \sqrt{n}$ ,  $d(\text{tree}) = 2*\lfloor \lg n \rfloor$ ;  $\sqrt{n} < 2*\lfloor \lg n \rfloor$  for  $2 \le n \le 196$

bandwidth = 320 Mb/s;

bandwidth = 320 Mb/s;

bandwidth = 1200 Mb/s;

5.  $b(hc) = (n/2) * lg n * l, b(cc) = (\lfloor n/2 \rfloor * \lceil n/2 \rceil) * l; (n/2) * lg n * l < (\lfloor n/2 \rfloor * \lceil n/2 \rceil) * l for <math>n \ge 5$ 

bisection bandwidth = 80 Mb/s

bisection bandwidth = 80 Mb/s

bisection bandwidth = 640 Mb/s

- 6. a)  $bb(mesh) = 2\sqrt{16} * 100 \text{ Mb/s} = 800 \text{ Mb/s} = (\lfloor 16/2 \rfloor * \lceil 16/2 \rceil) * l_{cc}; l_{cc} = 12.5 \text{ Mb/s}$ 
  - b)  $800 \text{ Mb/s} = 16/2 * l_{hc}; l_{hc} = 100 \text{ Mb/s}$
  - c)  $800 \text{ Mb/s} = 2 \lceil \sqrt{16} / 2 \rceil * l_{mesh}; l_{mesh} = 200 \text{ Mb/s}$
- 7. The hardware complexity is  $O(n^2)$ .



$$8. \qquad \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 6 & 2 & 4 & 7 & 5 & 3 \end{pmatrix}$$

9. 
$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 7 & 5 & 2 & 1 & 0 & 3 \end{pmatrix}$$

10. 
$$\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 7 & 2 & 6 & 0 & 1 & 5 \end{pmatrix}$$

11. Circled switches were set randomly.





| 13. a) | Module         | Address Range  | Addresses                        |
|--------|----------------|----------------|----------------------------------|
| •      | $M_0$          | 0 to 8M − 1    | 00 0XXX XXXX XXXX XXXX XXXX XXXX |
|        | $\mathbf{M}_1$ | 8M to 16M – 1  | 00 1XXX XXXX XXXX XXXX XXXX XXXX |
|        | $M_2$          | 16M to 24M – 1 | 01 0XXX XXXX XXXX XXXX XXXX XXXX |
|        | $M_3$          | 24M to 32M – 1 | 01 1XXX XXXX XXXX XXXX XXXX XXXX |
|        | $M_4$          | 32M to 40M – 1 | 10 0XXX XXXX XXXX XXXX XXXX XXXX |
|        | $M_5$          | 40M to 48M – 1 | 10 1XXX XXXX XXXX XXXX XXXX XXXX |
|        | $M_6$          | 48M to 56M – 1 | 11 0XXX XXXX XXXX XXXX XXXX XXXX |
| •      | $M_7$          | 56M to 64M – 1 | 11 1XXX XXXX XXXX XXXX XXXX XXXX |

| b) | Module         | Address Range   | Addresses                         |
|----|----------------|-----------------|-----------------------------------|
|    | $\mathbf{M}_0$ | 0  to  32M - 1  | 00X XXXX XXXX XXXX XXXX XXXX XXXX |
|    | $M_1$          | 32M to 64M – 1  | 01X XXXX XXXX XXXX XXXX XXXX XXXX |
|    | $M_2$          | 64M to 96M – 1  | 10X XXXX XXXX XXXX XXXX XXXX XXXX |
|    | $M_3$          | 96M to 128M – 1 | 11X XXXX XXXX XXXX XXXX XXXX XXXX |

| c) | Module | Address Range  | Addresses                       |
|----|--------|----------------|---------------------------------|
| •  | $M_0$  | 0 to 4M − 1    | 0 00XX XXXX XXXX XXXX XXXX XXXX |
|    | $M_1$  | 4M  to  8M - 1 | 0 01XX XXXX XXXX XXXX XXXX XXXX |
|    | $M_2$  | 8M to 12M – 1  | 0 10XX XXXX XXXX XXXX XXXX XXXX |
|    | $M_3$  | 12M to 16M – 1 | 0 11XX XXXX XXXX XXXX XXXX XXXX |
|    | $M_4$  | 16M to 20M – 1 | 1 00XX XXXX XXXX XXXX XXXX XXXX |
|    | $M_5$  | 20M to 24M – 1 | 1 01XX XXXX XXXX XXXX XXXX XXXX |
|    | $M_6$  | 24M to 28M – 1 | 1 10XX XXXX XXXX XXXX XXXX XXXX |
|    | $M_7$  | 28M to 32M – 1 | I 11XX XXXX XXXX XXXX XXXX XXXX |

| 14. a) | Module         | Address Range                          | Addresses                        |
|--------|----------------|----------------------------------------|----------------------------------|
| ·      | $M_0$          | $i \mod 8 = 0 \ (0 \le i \le 64M - 1)$ | XX XXXX XXXX XXXX XXXX XXXX X000 |
|        | $M_1$          | $i \mod 8 = 1 \ (0 \le i \le 64M - 1)$ | XX XXXX XXXX XXXX XXXX XXXX X001 |
|        | $M_2$          | $i \mod 8 = 2 \ (0 \le i \le 64M - 1)$ | XX XXXX XXXX XXXX XXXX XXXX X010 |
|        | $M_3$          | $i \mod 8 = 3 \ (0 \le i \le 64M - 1)$ | XX XXXX XXXX XXXX XXXX XXXX X011 |
|        | $M_4$          | $i \mod 8 = 4 \ (0 \le i \le 64M - 1)$ | XX XXXX XXXX XXXX XXXX XXXX X100 |
|        | $M_5$          | $i \mod 8 = 5 \ (0 \le i \le 64M - 1)$ | XX XXXX XXXX XXXX XXXX XXXX X101 |
|        | $M_6$          | $i \mod 8 = 6 \ (0 \le i \le 64M - 1)$ | XX XXXX XXXX XXXX XXXX X110      |
| •      | M <sub>7</sub> | $i \mod 8 = 7 (0 \le i \le 64M - 1)$   | XX XXXX XXXX XXXX XXXX XXXX X111 |

| b) | Module | Address Range                           | Addresses                         |
|----|--------|-----------------------------------------|-----------------------------------|
| •  | $M_0$  | $i \mod 4 = 0 \ (0 \le i \le 128M - 1)$ | XXX XXXX XXXX XXXX XXXX XXXX XXXX |
| •  | $M_1$  | $i \mod 4 = 1 \ (0 \le i \le 128M - 1)$ | XXX XXXX XXXX XXXX XXXX XXXX XXXI |
| •  |        |                                         | XXX XXXX XXXX XXXX XXXX XXXX XXI0 |
| •  | $M_3$  | $i \mod 4 = 3 \ (0 \le i \le 128M - 1)$ | XXX XXXX XXXX XXXX XXXX XXXX XXII |

| c) | Module         | Address Range                          | Addresses                       |
|----|----------------|----------------------------------------|---------------------------------|
|    | $M_0$          | $i \mod 8 = 0 \ (0 \le i \le 32M - 1)$ | X XXXX XXXX XXXX XXXX XXXX X000 |
|    | $\mathbf{M}_1$ | $i \mod 8 = 1 \ (0 \le i \le 32M - 1)$ | X XXXX XXXX XXXX XXXX XXXX X001 |
| -  | $M_2$          | $i \mod 8 = 2 \ (0 \le i \le 32M - 1)$ | X XXXX XXXX XXXX XXXX XXXX X010 |
|    | $M_3$          | $i \mod 8 = 3 \ (0 \le i \le 32M - 1)$ | X XXXX XXXX XXXX XXXX XXXX X011 |
|    | $M_4$          | $i \mod 8 = 4 \ (0 \le i \le 32M - 1)$ | X XXXX XXXX XXXX XXXX XXXX X100 |
| -  | $M_5$          | $i \mod 8 = 5 \ (0 \le i \le 32M - 1)$ | X XXXX XXXX XXXX XXXX XXXX X101 |
|    | $M_6$          | $i \mod 8 = 6 \ (0 \le i \le 32M - 1)$ | X XXXX XXXX XXXX XXXX XXXX X110 |
| -  | $M_7$          | $i \mod 8 = 7 \ (0 \le i \le 32M - 1)$ | X XXXX XXXX XXXX XXXX XIII      |

| 15. | Action   | Result     | Cache 0               | Cache 1               | Cache 2               | Cache 3               | Shared              |
|-----|----------|------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|
|     | P0 read  | Read miss  | 1000:K <sub>1</sub> E |                       |                       |                       | 1000:K <sub>1</sub> |
|     | P2 write | Write miss | 1000:XX I             |                       | 1000:K <sub>2</sub> M |                       | 1000:K <sub>1</sub> |
|     | P1 read  | Read miss  |                       | 1000:K <sub>2</sub> S | 1000:K <sub>2</sub> S |                       | 1000:K <sub>2</sub> |
|     | P0 write | Write miss | 1000:K <sub>3</sub> M | 1000:XX I             | 1000:XX I             |                       | 1000:K <sub>2</sub> |
|     | P3 read  | Read miss  | 1000:K <sub>3</sub> S |                       |                       | 1000:K <sub>3</sub> S | $1000:K_3$          |
|     | P1 write | Write miss | 1000:XX I             | 1000:K <sub>4</sub> M |                       | 1000:XX I             | 1000:K <sub>3</sub> |
|     | P1 read  | Read hit   |                       | 1000:K <sub>4</sub> M |                       |                       | 1000:K <sub>4</sub> |

16. Action Result Cache 0 Cache 1 Cache 2 Cache 3 Shared P2 write Write miss 1100:K<sub>1</sub> M  $1100:K_0$ P1 read Read miss 1100:K<sub>1</sub> S 1100:K<sub>1</sub> S  $1100:K_1$ P3 write Write miss 1100:XX I 1100:XX I | 1100:K<sub>2</sub> M | 1100:K<sub>1</sub> P2 read Read miss 1100:K<sub>2</sub> S | 1100:K<sub>2</sub> S | 1100:K<sub>2</sub> P0 read Read miss 1100:K<sub>2</sub> S 1100:K<sub>2</sub> S | 1100:K<sub>2</sub> S | 1100:K<sub>2</sub> P1 write Write miss | 1100:XX I | 1100:K<sub>3</sub> M | 1100:XX I | 1100:XX I | 1100:K<sub>2</sub> P2 write Write miss 1100:XX I | 1100:K<sub>2</sub> M |  $1100:K_3$ 

17. Data dependencies:  $1 \rightarrow 3$  (A);  $2 \rightarrow 3$  (D);  $2 \rightarrow 4$  (D)

Data anti-dependencies  $3 \rightarrow 4$  (A) Data output dependencies:  $1 \rightarrow 4$  (A)

18. Data dependencies:  $1 \rightarrow 2$  (A);  $2 \rightarrow 5$  (A);  $3 \rightarrow 4$  (D)

Data anti-dependencies  $2 \rightarrow 4$  (B);  $1 \rightarrow 6$  (C);  $2 \rightarrow 3$  (D);  $3 \rightarrow 6$  (F)

Data output dependencies:  $1 \rightarrow 2$  (A)

19. Data dependencies:  $1 \rightarrow 2$  (A);  $1 \rightarrow 3$  (A);  $2 \rightarrow 3$  (B);  $2 \rightarrow 4$  (B);  $2 \rightarrow 7$  (B);  $3 \rightarrow 5$  (C);

 $3 \to 7$  (C);  $4 \to 6$  (A);  $6 \to 8$  (A);  $7 \to 8$  (E)

Data anti-dependencies  $1 \rightarrow 2$  (B);  $1 \rightarrow 3$  (C);  $2 \rightarrow 3$  (C);  $2 \rightarrow 4$  (A);  $2 \rightarrow 6$  (A);  $3 \rightarrow 4$  (A);

 $3 \to 6$  (A);  $4 \to 5$  (D);  $5 \to 7$  (E);  $6 \to 8$  (F)

Data output dependencies:  $1 \rightarrow 4$  (A);  $1 \rightarrow 6$  (A);  $4 \rightarrow 6$  (A);

20.

| i  | j  | k | С                                               |
|----|----|---|-------------------------------------------------|
| 13 | 13 | 1 | [2 0 1]                                         |
|    |    |   | 2 0 2                                           |
|    |    |   | $\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$       |
| 13 | 13 | 2 | $\begin{bmatrix} 2+0 & 0+0 & 1+2 \end{bmatrix}$ |
|    |    |   | 2+2 0+1 2+0                                     |
|    |    |   | $\begin{bmatrix} 0+4 & 2+4 & 0+0 \end{bmatrix}$ |
| 13 | 13 | 3 | $\begin{bmatrix} 2+2 & 0+1 & 3+0 \end{bmatrix}$ |
|    |    |   | 4+2 1+4 2+1                                     |
|    |    |   | $\begin{bmatrix} 4+2 & 6+0 & 0+4 \end{bmatrix}$ |
| -  | 1  | - | [4 1 3]                                         |
|    |    |   | 6 5 3 6 6 4                                     |
|    |    |   | [6 6 4]                                         |



Н

()

