Pythagorean quadruple

A **Pythagorean quadruple** is a <u>tuple</u> of <u>integers</u> a, b, c, and d, such that $a^2 + b^2 + c^2 = d^2$. They are solutions of a <u>Diophantine equation</u> and often only positive integer values are considered. However, to provide a more complete geometric interpretation, the integer values can be allowed to be negative and zero (thus allowing <u>Pythagorean triples</u> to be included) with the only condition being that d > 0. In this setting, a Pythagorean quadruple (a, b, c, d) defines a <u>cuboid</u> with integer side lengths |a|, |b|, and |c|, whose <u>space diagonal</u> has integer length d; with this interpretation, Pythagorean quadruples are thus also called *Pythagorean boxes*. In this article we will assume, unless otherwise stated, that the values of a Pythagorean quadruple are all positive integers.

Parametrization of primitive quadruples

Alternate parametrization

Properties

Relationship with quaternions and rational orthogonal matrices

Primitive Pythagorean quadruples with small norm

See also

References

External links

All four primitive
Pythagorean quadruples
with only single-digit values

Parametrization of primitive quadruples

A Pythagorean quadruple is called **primitive** if the <u>greatest common divisor</u> of its entries is 1. Every Pythagorean quadruple is an integer multiple of a primitive quadruple. The <u>set</u> of primitive Pythagorean quadruples for which a is odd can be generated by the formulas

$$egin{aligned} a &= m^2 + n^2 - p^2 - q^2, \ b &= 2(mq + np), \ c &= 2(nq - mp), \ d &= m^2 + n^2 + p^2 + q^2, \end{aligned}$$

where m, n, p, q are non-negative integers with greatest common divisor 1 such that m + n + p + q is odd. [3][4][1] Thus, all primitive Pythagorean quadruples are characterized by the identity

$$(m^2 + n^2 + p^2 + q^2)^2 = (2mq + 2np)^2 + (2nq - 2mp)^2 + (m^2 + n^2 - p^2 - q^2)^2.$$

Alternate parametrization

All Pythagorean quadruples (including non-primitives, and with repetition, though a, b, and c do not appear in all possible orders) can be generated from two positive integers a and b as follows:

If a and b have different parity, let p be any factor of $a^2 + b^2$ such that $p^2 < a^2 + b^2$. Then $c = \frac{a^2 + b^2 - p^2}{2p}$ and $d = \frac{a^2 + b^2 + p^2}{2p}$. Note that p = d - c.

A similar method exists^[5] for generating all Pythagorean quadruples for which a and b are both even. Let $l=\frac{a}{2}$ and $m=\frac{b}{2}$ and let n be a factor of l^2+m^2 such that $n^2< l^2+m^2$. Then $c=\frac{l^2+m^2-n^2}{n}$ and $d=\frac{l^2+m^2+n^2}{n}$. This method generates all Pythagorean quadruples exactly once each when l and m run through all pairs of natural numbers and n runs through all permissible values for each pair.

No such method exists if both a and b are odd, in which case no solutions exist as can be seen by the parametrization in the previous section.

Properties

The largest number that always divides the product abcd is $12.^{6}$ The quadruple with the minimal product is (1, 2, 2, 3).

Relationship with quaternions and rational orthogonal matrices

A primitive Pythagorean quadruple (a, b, c, d) parametrized by (m, \underline{n}, p, q) corresponds to the first column of the matrix representation $E(\alpha)$ of conjugation $\alpha(\cdot)\alpha$ by the Hurwitz quaternion $\alpha = m + ni + pj + qk$ restricted to the subspace of quaternions spanned by i, j, k, which is given by

$$E(lpha) = egin{pmatrix} m^2 + n^2 - p^2 - q^2 & 2np - 2mq & 2mp + 2nq \ 2mq + 2np & m^2 - n^2 + p^2 - q^2 & 2pq - 2mn \ 2nq - 2mp & 2mn + 2pq & m^2 - n^2 - p^2 + q^2 \end{pmatrix},$$

where the columns are pairwise <u>orthogonal</u> and each has <u>norm</u> d. Furthermore, we have that $\frac{1}{d}E(\alpha)$ belongs to the <u>orthogonal group</u> $SO(3,\mathbb{Q})$, and, in fact, *all* 3×3 orthogonal matrices with <u>rational</u> coefficients arise in this manner. [7]

Primitive Pythagorean quadruples with small norm

There are 31 primitive Pythagorean quadruples in which all entries are less than 30.

```
(1, 2, 2, 3) (2,10,11,15) (4,13,16,21) (2,10,25,27) (2, 3, 6, 7) (1,12,12,17) (8,11,16,21) (2,14,23,27) (1, 4, 8, 9) (8, 9,12,17) (3, 6,22,23) (7,14,22,27) (4, 4, 7, 9) (1, 6,18,19) (3,14,18,23) (10,10,23,27) (2, 6, 9,11) (6, 6,17,19) (6,13,18,23) (3,16,24,29) (6, 6, 7,11) (6,10,15,19) (9,12,20,25) (11,12,24,29)
```

```
(3, 4,12,13) (4, 5,20,21) (12,15,16,25) (12,16,21,29) (2, 5,14,15) (4, 8,19,21) (2, 7,26,27)
```

See also

- Beal conjecture
- Euler brick
- Euler's sum of powers conjecture
- Euler-Rodrigues formula for 3D rotations
- Fermat cubic
- Jacobi–Madden equation
- <u>Lagrange's four-square theorem</u> (every natural number can be represented as the sum of four integer squares)
- Legendre's three-square theorem (which natural numbers cannot be represented as the sum of three squares of integers)
- Prouhet—Tarry—Escott problem
- Quaternions and spatial rotation
- Taxicab number

References

- 1. R. Spira, *The diophantine equation* $x^2 + y^2 + z^2 = m^2$, Amer. Math. Monthly **Vol. 69** (1962), No. 5, 360–365.
- 2. R. A. Beauregard and E. R. Suryanarayan, *Pythagorean boxes*, Math. Magazine **74** (2001), 222–227.
- 3. R.D. Carmichael, *Diophantine Analysis*, New York: John Wiley & Sons, 1915.
- 4. L.E. Dickson, Some relations between the theory of numbers and other branches of mathematics, in Villat (Henri), ed., Conférence générale, Comptes rendus du Congrès international des mathématiciens, Strasbourg, Toulouse, 1921, pp. 41–56; reprint Nendeln/Liechtenstein: Kraus Reprint Limited, 1967; Collected Works 2, pp. 579–594.
- 5. Sierpiński, Wacław, Pythagorean Triangles, Dover, 2003 (orig. 1962), p.102–103.
- 6. MacHale, Des, and van den Bosch, Christian, "Generalising a result about Pythagorean triples", *Mathematical Gazette* 96, March 2012, pp. 91-96.
- 7. J. Cremona, Letter to the Editor, Amer. Math. Monthly 94 (1987), 757–758.

External links

- Weisstein, Eric W. "Pythagorean Quadruple" (https://mathworld.wolfram.com/PythagoreanQuadruple.html). MathWorld.
- Weisstein, Eric W. "Lebesgue's Identity" (https://mathworld.wolfram.com/LebesgueIdentity.ht ml). MathWorld.
- Carmichael. <u>Diophantine Analysis (https://gutenberg.org/ebooks/20073)</u> at <u>Project Gutenberg</u>

This page was last edited on 7 February 2022, at 18:11 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.