

Astronomical classification on

Dataset

Yifei Wang

Background

What is Dark Energy?

DESI (Dark Energy Spectroscopic Instrument)

Why is DESI Spectral Data Ideal for Classification?

Target Variables

SPECTYPE=("STAR","GALAXY","QSO")

GALAXY: 79%

STAR: 16%

QSO: 5%

IMBALANCED!

subtype	
	21696490
K	2323062
G	1572042
HIZ	1114057
LOZ	748526
M	533414
F	354030
WD	52585
Α	27586
В	3785
CV	386

Objectives

1.Build a classification model for SPECTYPEon a random sample

2.Build a classification model for subtype on the subset of stars

Dataset

https://data.desi.lbl.gov/public/

28,425,963 Samples

- Random Sample(size = 10,000)

136 Features

- Feature Engineering

Independent Variables

Z,ZERR,CHI2

FLUX

MORPHTYPE

Technical Parameters: How to detect?

COEFFs: dim=4,5,10

Data Cleaning

NAs
Useless Columns: Indexes
Data Leaks
Scaling

```
for col in df. columns:
    print(col+":", df[col]. dtype)
z: float64
zerr: float64
chi2: float64
spectype: category
morphtype: category
ebv: float64
flux_g: float64
flux r: float64
flux_z: float64
flux_w1: float64
flux w2: float64
flux_ivar_g: float64
flux_ivar_r: float64
flux_ivar_z: float64
flux_ivar_w1: float64
flux ivar w2: float64
fiberflux g: float64
fiberflux r: float64
fiberflux z: float64
fibertotflux_g: float64
```

Dealing with Outliers

df['zwa	rn']. va	lue_counts()
	count	
zwarn		
0	7373	
5	662	
2053	540	
4	468	
518	202	
2564	176	
1	115	
516	106	
2	91	

2049	75
646	49
2560	43
519	24
512	22
7	16
2048	10
6	10
2055	8
2566	5
3	2
2562	2
2052	1

Dealing with Outliers

df['deltachi2'].describe()

deltachi2

count 1.000000e+04

mean 1.046260e+04

std 6.986589e+04

min 0.000000e+00

25% 1.424442e+01

50% 2.280390e+02

75% 1.193293e+03

max 2.046469e+06

dtype: float64

df[df['zwarn']==0]['deltachi2'].describe() deltachi2 count 7.373000e+03 1.401333e+04 8.078843e+04 std 9.005392e+00 min len (df) 1.578616e+02 25% 7373 4.837253e+02 50% 2.279004e+03 2.046469e+06 max dtype: float64

Feature Engineering

```
z: float64
zerr: float64
chi2: float64
spectype: category
morphtype: category
ebv: float64
flux g: float64
flux r: float64
flux z: float64
flux w1: float64
flux_w2: float64
flux_ivar_g: float64
flux ivar r: float64
```

```
flux_ivar_z: float64
flux_ivar_w1: float64
flux ivar w2: float64
fiberflux g: float64
fiberflux r: float64
fiberflux z: float64
fibertotflux_g: float64
fibertotflux r: float64
fibertotflux z: float64
gaia_phot_g_mean_mag: float64
gaia_phot_bp_mean_mag: float64
gaia_phot_rp_mean_mag: float64
```

Visualization

PCA

```
chi2
                                                       flux_r
                                             flux g
                                                                flux z
                                      ebv
                  zerr
PC1 -0. 165966 -0. 082550 0. 071949 -0. 000090 0. 224187 0. 239503 0. 240204
              0. 141737 -0. 121760 -0. 047044 0. 323007
PC2 0. 231722
                                                     0.301345
     flux_w1 flux_w2 flux_ivar_g ... flux_ivar_w2 fiberflux_g \
    0.195565
              0.176801
                         -0. 146488 ... -0. 028543
                                                          0.292089
PC1
                          0. 267001 ... 0. 173839
    0.256805
              0.237756
                                                          0.015682
    fiberflux_r fiberflux_z fibertotflux_g fibertotflux_r fibertotflux_z \
PC1
       0.313657
                    0.302737
                                   0.287254
                                                   0.311077
                                                                  0.300790
PC2
       0.020597
                  0.024465
                                   0.014057
                                                   0.018982
                                                                  0.022724
    gaia_phot_g_mean_mag gaia_phot_bp_mean_mag gaia_phot_rp_mean_mag
                                      0.206049
PC1
                                                             0.205442
                0.204483
PC2
               -0.248240
                                     -0.256246
                                                            -0.254486
[2 rows x 23 columns]
Explained variance ratio: [0.3549595 0.17472376]
```

Model Overview

Continuous&Categorical IVs Multi-class

Random Forest

CatBoost/ LightGBM?

Linear? SVM? Bayesian?

Cross-Validation

Automatic Stratified K-fold

```
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
```

```
Cross-validation scores (F1 macro):
```

Fold 1: 0.9736

Fold 2: 0.9810

Fold 3: 0.9639

Fold 4: 0.9674

Fold 5: 0.9815

Hyperparameters Tuning

sklearn.model_selection.RandomizedSearchCV

```
Best parameters: {'max_depth': 10, 'max_features': 'sqrt', 'min_samples
Best F1 macro: 0.9746097099090865
```

Outcome

Star Classification

Large Dataset

Multiple Imbalanced Class

LightGBM

print (df. shape)
df. head()

(4750477, 30)

	count
subtype	
K	2274717
G	1542632
M	508679
F	345419
WD	50880
Α	25320
В	2468
CV	362

Star Baseline: RF

Subset n_samples=10000

RF is slow so no cross validation

Accuracy is high, Marco is low

Tend to recognize majority classes

Some subtypes are poorly

recognized

	precision	recall	f1-score	support
A B CV F G K M WD	0. 92 0. 00 0. 00 0. 98 0. 97 0. 99 1. 00 0. 96	0. 74 0. 00 0. 00 0. 89 0. 99 1. 00 1. 00 0. 97	0. 82 0. 00 0. 00 0. 93 0. 98 0. 99 1. 00 0. 96	115 9 1 1453 6496 9566 2149 211
accuracy macro avg weighted avg	0. 73 0. 98	0. 70 0. 99	0. 99 0. 71 0. 98	20000 20000 20000

Star Model: LightGBM

Train on 80% of the data
Still slow, No Cross-validation
Marco increased
Recongnized every class

	precision	recall	f1-score	support	
A	0.97	0. 96	0.97	5064	
Λ	0.91	0.90	0.97	5004	
В	0.95	0.84	0.89	494	
CV	1.00	1.00	1.00	72	
F	0.99	0.99	0.99	69084	
G	1.00	1.00	1.00	308526	
K	1.00	1.00	1.00	454944	
M	1.00	1.00	1.00	101736	
WD	1.00	1.00	1.00	10176	
accuracy			1.00	950096	
macro avg	0.99	0.97	0.98	950096	
weighted avg	1.00	1.00	1.00	950096	

Feature Importance

Conclusion

RandomForest is good for classifying the Type Most important feature: z

LightGBM is good for classifying the Subtype Most important feature: coefficients

Future work

Train a Model that better recognizes B Model Compression

Reference

DESI Collaboration et al. (2016). The DESI Experiment Part I: Science, Targeting, and Survey Design. arXiv:1611.00036.

https://arxiv.org/abs/1611.00036

Thank you