物理实验报告

陈建烨 12411913 2025.3.4 P4123

一. 实验名称: 时间测量中随机误差的分布规律

二. 实验目的

- 1.了解随机误差的离散性和分布规律。
- 2.了解误差分析的基本方法。
- 3.了解测量不确定度的计算方法。

三.实验原理

1.重复测量电子节拍器的周期 T_0 ,测量结果为 T_1,T_2,\cdots,T_n ,其中n为测量次数。如果测量次数足够多,那么测量结果 T_i 的分布就会趋近于正态分布。

$$p(T)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(T-ar{T})^2}{2\sigma^2}}$$

其中
$$ar{T}=rac{1}{n}\Sigma T_i$$
, $\sigma=\sqrt{rac{\Sigma(T_i-ar{T})^2}{n-1}}$ 由正太分布的统计规律得

$$P(|T - \bar{T}| < \sigma) \approx 68.3\%$$

 $P(|T - \bar{T}| < 2\sigma) \approx 95.4\%$
 $P(|T - \bar{T}| < 3\sigma) \approx 99.7\%$

2.计算周期量的A类不确定度可以使用 $\{U_A=rac{\sigma*t_p}{\sqrt{n}}\}$,其中 σ 为测量结果的标准差,n为测量次数, t_p 为置信系数。计算周期量的B类不确定度可以使用 $U_B=rac{\sqrt{\Delta_{lh}^2+\Delta_{lk}^2}}{C}*k_p$,其中C、 k_p 为置信系数。所以U= $\sqrt{U_A^2+U_B^2}$ 。3.节拍器周期 T_0 的测量值为 $T_0=\bar{T}\pm U$,P=0.95。

四.实验仪器

1.电子节拍器 2.秒表

五.实验内容

- 1.用秒表测量电子节拍器周期 T_i ,测量次数为N=200。
- 2.计算周期量的平均值 \overline{T} 和标准差 σ 。
- 3.根据测量结果的离散程度和极差 $R=max(T_i)-min(T_i)$,设置合理步长 ΔT ,个数为M。
- 4统计每个区间的频数 N_i ,计算频率 $f_i=rac{N_i}{N}$ 和概率密度 $p_i=rac{f_i}{NT}$,绘制概率分布直方图p-T。
- 5.计算正太分布函数p(T),并绘制正太分布曲线。
- 6.在p-T图中绘制p(T)正太分布的散点图,检验测量结果是否符合正太分布。
- 7.分别统计在 $|ar{T}-\sigma|$ 、 $|ar{T}-2\sigma|$ 、 $|ar{T}-3\sigma|$ 范围内的概率,与理论值比较
- 8.计算周期量的A类不确定度 U_A 和B类不确定度 U_B ,计算周期量的总不确定度U,得出结论

六.实验数据

见时间统计分布规律实验数据记录表

七.数据处理

基本统计量

$$ar{T} = rac{1}{n} \Sigma T_i = 3.09$$
 $\sigma = \sqrt{rac{\Sigma (T_i - ar{T})^2}{n-1}} = 0.135$

 $R = max(T_i) - min(T_i) = 0.72$

将数据分为M=12个区间,步长 $\Delta T=0.06$,区间范围为[2.88,3.54],区间频数见下表

(2.76, 2.82]	(2.82, 2.88]	(2.88, 2.94]	(2.94, 3.00]	(3.00, 3.06]	(3.06, 3.12]	(3.12, 3.18]	(3.18, 3.24]	(3.24, 3.30]	(3.3
3	2	14	16	19	16	21	18	22	5

八.误差分析

九.实验结论

十.思考题