

German Baltazar, Anyinssan Nava, David Lizama

06/20/2022

Context

Intelligent systems that require interaction with a human are usually required to follow a conversation as human as possible.

This task is achieved by **determining the context** of the conversation prior to
the selection of the generated phrase.

Classify daily-life phrases into three different categories:

Deploy a functional API with the trained models

Dataset

- Subcategory of the sequence labelling evaluation for spoken language (SILICONE) that cover daily life situations. Four categories: 1. Commissive
 - Directive Inform
 - **4.** Question
 - The first two were joined into the regular chat class.
- Trained two different neural network models: ANN and ALBERT

Utterance (string)

i guess you are

right.but what...

i suggest a walk

over to the gym...

that's a good

idea . i hear...

sounds great to

me ! if they ar ...

auestion

(string)

directive

Dialogue Act

Class 0: Chat

Class 0: Chat

inform

commissive

Class 1: Inform

good.let 's go

directive

Class 0: Chat

Class 2: Question

now .

all right .

commissive

Class 0: Chat

ann 4

Anchitecture

- Simplifying the model (one hidden layer and 4 neurons).
- Regularization and dropout. Embedding using low

"https://tfhub.dev/google/tf2-pre

- dimensions.
 - view/nnlm-en-dim50/1" Training 20 epochs
 - Optimizer: Adam Dropout of 30%

Laver	(type)

dense 1 (Dense)

Model: "sequential"

Output Shape Param # keras layer (KerasLayer) (None, 50) 48190600

(None, 3)

204

15

dense (Dense) (None, 4) dropout (Dropout) (None, 4)

Total params: 48,190,819

Trainable params: 48,190,819 Non-trainable params: 0

Epoch

- Several observations
 were misclassified
 between Talk: 0 and
 Informative: 1.
- Accuracy of 0.73 in Test set.
- A few false negatives
 when the true label is a
 question.

ALBERT 4

Anchitecture

- Transfer learning of the ALBERT model
- Frozen weights
- ALBERT embeddings

"https://tfhub.dev/tensorflow/alb ert_en_preprocess/3"

- Training 13 epochs
- Optimizer: AdamW
- Dropout of 10%

Computationally expensive

Results 4

- Low number of epochswith low accuracyDifficult to separate
- regular chat from inform
- Require more training time and complexity on the model

A deployment made by German Baltazar, Anyinssan Nava, and David Lizana.

Powered by S Enhance IT

How does it work?

Insert a phrase on the text field, and our NLP algorithm will classify it into one of three different categories:

After writing your phrase, click on the Submit button to evaluate your text!

Submit

Our classifications

ANN {{label}}

Technical difficulties for importing necessary libraries.
Classifies and determines the percentage of being classified

Only capable of running the ANN

- Our API

model.

Conclusions 4

- 1. Similar performance was achieved using two different models.
- 2. Regularization, low dimensionality and dropout were import to avoid overfitting.
- 3. A higher performance could be achieved with most observations and more training time.
- **4.** A more exhausted cleaning processing might help too.
- 5. Running on better equipment may prevent from running out of GPU use.
- Successful deployment of the model using API.
- 7. The model could be a useful preliminary stage for an interactive communication platform with human beings.

Appendix

1.	Dataset information	15
2.	Data class distribution	16
3.	Original sentence lengths	17
4.	Pre-processed sentence lengths	18
5.	ANN loss function	19
6.	ANN accuracy comparison	20
7.	ALBERT loss function	21
8.	ALBERT accuracy comparison	22

Dataset Information

https://huggingface.co/datasets/silicone/tree/main/dummy/dyda_da/1.0.0

	Training Set	Validation Set	Test Set
Original size	87,170	8,069	7,740
Deleting duplicates	72,391	7,682	7,469

Original Sentence Lengths

19

ANN Accuracy Comparison

Training Set	Validation Set	Test Set
67.77%	70.54%	73.08%

ALBERT Accuracy Comparison

Training Set	Validation Set	Test Set
71.45%	68.59%	73.12%