

Pressure and fluid velocity measurement

IC 231 – Measurement & Instrumentation

Overview

- 1. What is pressure?
- 2. What is the physics of pressure in different media?
- 3. What is the difference between different pressure types?
- 4. How can we measure pressure? Two principles!
- 5. What are applications of pressure measurement sensors?

Overview

What is pressure?

Surface of snow is stable up to a certain force per unit area. The function of snowshoes is to distribute the weight force over a larger area

→ Pressure is reduced and a person will not sink

$$\frac{Force}{Area} = Pressure$$

$$\frac{mg}{A} = \frac{F}{A} = p$$

Pressure p is a:

- scalar quantity
- Proportial to force
- Inverse proportional to Area

Pressure of an ideal gas

Static pressure of an ideal gas:

$$p = \frac{nRT}{V}$$

p: pressure

n: Number of particles

R: ideal Gas constant

T: Temperature

V: Volume

Consequences for closed container:

Pressure increases with...

- increasing density $(n \uparrow)$
- Increasing temperature (T ↑)

Pressure decreases with...

increasing Volume (V ↑)

Assumption of an ideal gas:

- There is no force between particles
- The collision between particles is frictionless (elastic)
- Large number of molecules

Hydrostatic pressure

Water tank:

Case 2:

$$p(h) =$$

Assumptions:

- Liquid incompressible
- Cross section constant

Hydrostatic pressure

What will be the deflection of membrane?

a)
$$p_A > p_B$$

b)
$$p_A = p_B$$

c)
$$p_A < p_B$$

Correct answer: c)

Pressure of water and atmosphere

Above ground we can assume a linear increase of atmospheric pressure with an decrease of 12 Pa per meter height.

$$1 \text{ Pa} = 1 \frac{\text{N}}{\text{m}^2}$$

Pressure and flow – Lumped models

ODE:

$$L\ddot{q} + R\dot{q} + \frac{1}{C}q = u_1$$
 with charge q

Using
$$i = \dot{q}$$

$$L \frac{di}{dt} + Ri + \frac{1}{C} \int i \, dt = u_1$$

Fluid Inductance → Kinetic Energy of Mass flow

Fluid Resistance → Pressure drop in pipes

Fluid capacitance → Elastic elements that store fluid

Fluidic current → Volume flow rate

→ A pressure difference between two points leads to a volume flow

Effort	Flow	Inertance (Kinetic)			Resistance (Dissipative)			Compliance (Potential)		
		Symbol	Element	Equation	Symbol	Element	Equation	Symbol	Element	Equation
Ψ	ζ			$\Psi_I = M\ddot{\zeta}$			$\Psi_R = D\dot{\zeta}$			$\Psi_C = K\zeta$
Voltage u $[V]$	$q [C] \rightarrow Charge$ $\dot{q} = i [C/s = A] \rightarrow current$	-om-	Inductance L[H]	$u = L\ddot{q}$	- ⊅	Resistor $R[\Omega]$	$u = R\dot{q}$	-	Capacitance $C[F]$	$u = \frac{1}{C}q$
Pressure <i>p</i> [bar]	$V[m^3] \rightarrow Volume$ $\dot{V}[m^3/s]$ Volumetric flow rate		Fluidic Inductance $L[\text{bar} \cdot (m^3/s^2))^{-1}]$	$\Delta p = L_h \ddot{V}$		Fluidic resistance $R[\text{bar} \cdot (m^3/s))^{-1}]$	$\Delta p = R_f \dot{V}$	- WV-	Fluidic Cap. $C [m^3 \cdot bar^{-1}]$	$\Delta p = \frac{1}{C}V$
	Ψ Voltage u [V]	Ψ $\dot{\zeta}$ Voltage $u[V]$ $q[C] \rightarrow Charge$ $\dot{q} = i[C/s = A] \rightarrow current$ $V[m^3] \rightarrow Volume$	$Ψ \qquad \dot{\zeta}$ Voltage u [V] $ q \text{ [C]} \rightarrow \text{Charge} $ $ \dot{q} = i \text{ [C/s = A]} \rightarrow \text{current} $ $ V \text{ [m³]} \rightarrow \text{Volume} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol Element Equation $\Psi \qquad \qquad \dot{\zeta} \qquad \qquad \Psi_I = M\ddot{\zeta}$ Voltage $u \ [V] \qquad \begin{array}{c} q \ [C] \rightarrow \text{Charge} \\ \dot{q} = i \ [C/s = A] \rightarrow \text{current} \end{array}$ Inductance $L \ [H] \qquad u = L\ddot{q}$ Procesure $n \ [har] \qquad V \ [m^3] \rightarrow \text{Volume}$	Symbol Element Equation Symbol $\Psi \qquad \qquad \dot{\zeta} \qquad \qquad \Psi_I = M\ddot{\zeta}$ Voltage $u \ [V] \qquad \stackrel{q \ [C] \to \ Charge}{\dot{q} = i \ [C/s = A] \to \ current} \qquad \qquad \begin{matrix} 000 \\ \dot{q} = i \ [C/s = A] \to \ current \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} 1 \\ \hline 000 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix}$	Symbol Element Equation Symbol Element $ \Psi \qquad \qquad \dot{\zeta} \qquad \qquad \Psi_I = M\ddot{\zeta} $ Voltage $u[V]$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Symbol Element Equation $\Psi_I = M\ddot{\zeta}$ $\Psi_I = M\ddot{\zeta}$ $\Psi_I = M\ddot{\zeta}$ $\Psi_I = D\dot{\zeta}$ Voltage $u[V]$ $v[D]$ $v[D]$ $v[D]$ Inductance $v[D]$	Symbol Element Equation Symbol Element Equation $\Psi_{R} = D\dot{\zeta}$ Voltage u [V] v [v [v [v [v [v] v [v [v] v [v] v [v [v] v [v] v [v [v] v [v] v [v [v] v [v] v [v [v] v [v] v [v [v] v [v [v] v [v] v [v [v] v [v] v [v] v [v [v] v] v [v] v [v] v] v [v] v [v] v] v] v [v] v] v] v] v [v] v] v] v] v] v [v] v] v] v] v] v [v]	$\Psi \qquad \qquad$

Pressure and flow - Bernoulli equation

Balance equation for specific energy. Specific energy is the energy per unit mass $\left(\left[\frac{J}{ka}\right] = \left[\frac{m^2}{s^2}\right]\right)$

$$\frac{u^2}{2} + gh + \frac{p}{\rho} = const.$$

kinetic energy + gravitational energy + pressure energy = const

Assumptions:

- Incompressible fluid
- No friction

Multiplication with ρ yields a pressure equation:

$$\rho \frac{u^2}{2} + \rho g h + p = \rho * const$$

kinetic pressure + hydrostatic pressure + internal static pressure = total pressure

Pressure and flow

Resting fluid

→ Pressure is isotropic

Vertical pressure = horizontal pressure ->
Static pressure

Moving fluid

→ Pressure is anisotropic

Dynamic pressure increases and static pressure decreases by the increase of flow velocity.

Pressure and flow

Incompressible fluid: Density is constant

$$\frac{\Delta m_1}{\Delta t} = \frac{\Delta m_2}{\Delta t} \rightarrow \frac{\rho \Delta V_1}{\Delta t} = \frac{\rho \Delta V_2}{\Delta t} \rightarrow \frac{\rho A_1 \Delta x_1}{\Delta t} = \frac{\rho A_2 \Delta x_2}{\Delta t}$$

 u_i : Fluid velocity

From Bernoulli's equation:

$$\rho \frac{u_1^2}{2} + \rho gz + p_1 = \rho \frac{u_2^2}{2} + \rho gz + p_2$$

$$p_1 - p_2 = \Delta p_{12} = \frac{\rho}{2} (u_2^2 - u_1^2)$$

$$\Delta p_{12} = \frac{\rho}{2} \left(\left(\frac{A_1}{A_2} \right)^2 u_1^2 - u_1^2 \right)$$

$$u_1 = \sqrt{\frac{2\Delta p_{12}}{\rho \left(\left(\frac{A_1}{A_2}\right)^2 - 1\right)}}$$

 \rightarrow If A₁, A₂ and ρ is known we can measure the flow velocity u₁ by measuring the differential static pressure.

Applications: Venturi-Meter

Applications: Venturi-Meter

Applications: Pitot-Tube

How else can we measure flow velocity, if we cannot have two cross sections area?

→ Simultaneous measurement of horizontal and vertical pressure

$$p_{stagnation} = p_{static} + p_{dynamic}$$

$$p_{stagnation} = p_{stat} + \frac{1}{2}\rho u^{2}$$

$$u = \sqrt{\frac{2}{\rho}} (p_{stagnation} - p_{static})$$

Applications: Pitot-Tube

http://www.formula1-dictionary.net/pitot_tube.html

MEMS: Micro-Electro-Mechanical System

What means Micro?

- → In most cases components range from ~ 1 µm 100 µm
- → Devices range from 10 µm some mm

What means **Electro**?

- → Electronics are inbuild...
 - as transducers
 - for signal processing (e.g., amplifier, ADC, mixer,....)

What means **Mechanical**?

- → The system has mechanical components either as
 - Actuator
 - Sensor

What means **System?**

→ All components are fully embedded, interfaced and optimised

Digital Micromirror Device (DMD)

Array of micromirrors

https://en.wikipedia.org/wiki/Digital_Light_Processing

MEMS: Micro-Electro-Mechanical System

What means Micro?

- → In most cases components range from ~ 1 µm 100 µm
- → Devices range from 10 µm some mm

What means **Electro**?

- → Electronics are inbuild...
 - as transducers
 - for signal processing (e.g., amplifier, ADC, mixer,....)

What means **Mechanical**?

- → The system has mechanical components either as
 - Actuator
 - Sensor

What means **System?**

→ All components are fully embedded, interfaced and optimised

Digital Micromirror Device (DMD)

Array of micromirrors

Goal of pressure sensor:

Transformation of a pressure **p** into an electrical signal (mostly a voltage **U**)

Option 1:

Measurement of an elastic deformation of a gas-tight (hermetic seal) or liquid tight membrane

Without pressure

Membrane

Pressure p

1. Capacitive

→ Measurement of the distance of two capacitor electrode plates.

2. Piezoresistive measurement

Mechanical deformation leads to a change in the resistance of a material. This can be detected using an electrical circuit.

Top View membrane

$$S = \frac{U_S}{\Delta p} = U_0 \bar{\pi} \left[\frac{3R_M^2 (1 - \nu)}{4t^2} \right]$$

S Sensitivity

 $\bar{\pi}$ Piezoresistive coeffcient

 Δp Pressure difference

 R_{m} Radius Membrane

Poisson ratio (ratio of transverse strain to axial strain)

t Thickness membrane

Fixed Frame Membrane

25-05-2022 Erwin Fuhrer

Sensor for relative pressure

 p_{ref} = environmental pressure

Sensor for aboslute pressure

- Tyre pressure
- Measurement of flow (Pitottube)

- Barometric measurements
- Altitude meter
- Vaccum technology (e.g., packaging technology)

Sensor for difference pressure

- Medical systems
- Cooling and heating technology
- Venturi measurement

Goal of pressure sensor:

Transformation of a pressure **p** into an electrical signal

Option 2:

Thermal mass flow meter

From slide 8:

Substrate

$$\Delta p = p_2 - p_1 = R_f \dot{V}(\Delta T)$$

Advantages:

Membrane base pressure sensor

- Highly sensitive
- Absolute/Relative/Difference pressure sensor
- Measure static pressure from small reservoirs

Thermal mass flow pressure sensor

- Highly sensitive
- Mechanically stable against overpressure
- No moving parts

https://www.apogeeinstruments.com/content/SB-100-manual.pdf

https://omronfs.omron.com/en_US/ecb/products/pdf/en-D6F-PH_users_manual.pdf

