宿題 1.コンテナの種類と特徴

基本的な情報

- bitset 固定長配列, bit 値を格納
- array 固定長配列,様々な型の値を格納
- vector 可変長配列, 高速, メモリ効率が良い
- deque 可変長配列,末尾・先頭への挿入・削除が高速
- list 前後の要素同士を結合した双方向連結リスト
- forward_list 前方のみと結合した片方向連結リスト
- set
- multiset多重集合(set と異なり、重複するデータの保持が可能)

要素の大小関係を自動で並び替え,分木に格納。大小のある型に対応,要素自体がキー

- unodered_set, unodered_multiset
 要素をキーのハッシュ値に基づくハッシュテーブルに格納、順序なし(unordered_set: 重複なし, unordered_multiset: 重複あり)
- map 連想配列,要素を検索可能なキー(様々な型が可能)と紐付け
- multimap 連想配列, ひとつのキーに複数の対応する要素をもつことが可能
- unodered_map, unodered_multimap
 連想配列, キーと要素のペアをハッシュで管理, 順序なし

ある要素への番号(またはキー)を指定したアクセスにかかる計算量

型	計算コスト(nは格納された要素数)
vector	0(1)
deque	0(1)
unoredered_map, unorederd_multimap	$0(1) \sim 0(n)$
map, multimap	$O(\log n)$
list, forward_list	0(n)

要素の挿入・削除にかかる計算量

型	計算コスト(nは格納された要素数)
vector	$0(1)\sim 0(n)$ (* 1)
deque	$0(1) \sim 0(n) (*2)$
list, forward_list	0(1)
set, multiset	$O(\log n)$
unoredered_set, unorederd_multiset	$0(1) \sim 0(n)$

(* 1):

末尾への削除, また末尾への挿入(平均的な場合)…0(1)

末尾への挿入(もっともコストの高い場合)…0(n)

上記以外への挿入・削除…O(n)

(* 2):

先頭・末尾への削除, また先頭・末尾への挿入(平均的な場合)…0(1)

先頭・末尾への挿入(もっともコストの高い場合)…O(n)

上記以外への挿入・削除…O(n)

要素の検索にかかる計算量

型	計算コスト(nは格納された要素数)
unoredered_set, unorederd_multiset	0(1)~0(n)
set, multiset	$O(\log n)$
vector	O(n)
deque	O(n)
list, forward_list	O(n)
map,multimap	O(n)
unordered_map, unordered_multimap	O(n)