Math143Hw8

Trustin Nguyen

October 26, 2023

Exercise 1: Check the following statements from class:

(a) If $\varphi: X \to Y$ is an isomorphism that sends P to Q, then $\varphi^*: \mathcal{O}_Q(Y) \to \mathcal{O}_P(X)$ is an isomorphism.

Proof. Since ϕ is an isomorphism, we find that there is a ψ such that $\psi \phi = id$. So we have

$$\psi \varphi(P) = \psi(Q) = P$$

Furthermore, we can say there exists a ψ^* : $\Gamma(X) \to \Gamma(Y)$ such that $\psi^* \varphi^* = \mathrm{id}$ and $\varphi^* \psi^* = \mathrm{id}$. Then proved in lecture was that φ^* : $O_Q(Y) \to O_P(X)$ is well defined if we have the mapping:

$$\varphi^*(\frac{g}{h}) = \frac{\varphi^*(g)}{\varphi^*(h)}$$

and also,

$$\varphi^*(h)(P) = h(\varphi(P)) = h(Q) \neq 0$$

Now if we define ψ^* as:

$$\psi^*(\frac{g}{h}) = \frac{\psi^*(g)}{\psi^*(h)}$$

for g, h in $\Gamma(X)$ and $\frac{g}{h} \in O_P(X)$. Then using the fact that $\psi(Q) = P$, we get:

$$\psi^*(h)(Q) = h(\psi(Q)) = h(P) \neq 0$$

This tells us that $\frac{\psi^*(g)}{\psi^*(h)} \in O_Q(Y)$ and the denominator is not the zero polynomial. Now we see that:

$$\phi^*\psi^*(\frac{g}{h}) = \frac{\phi^*\psi^*(g)}{\phi^*\psi^*(h)} = \frac{g}{h}$$

since $\phi^*\psi^*=id_{\Gamma(X)}$. Now because $\psi^*\phi^*=id_{\Gamma(Y)}$, we have:

$$\psi^* \varphi^* (\frac{g}{h}) = \frac{\psi^* \varphi^* (g)}{\psi^* \varphi^* (h)} = \frac{g}{h}$$

So both compositions are identities. So ϕ^* is an isomorphism.

(b) Let P = (0,0). Prove directly from the definition that $I_P(x,y) = 1$.

Proof. By definition, we have:

$$I_P(x,y) = \dim_k \left(\frac{O_P(\mathbb{A}^2)}{(x,y)} \right)$$

Let f(x,y), g(x,y) have non-zero constant term. We will show that $\frac{k_1}{f(x,y)}$ is a generator of $O_P(\mathbb{A}^2)/(x,y)$. Suppose that $\frac{k_2}{g(x,y)} \in O_P(\mathbb{A}^2)/(x,y)$. Then observe that we desire a $k_0 \in k$ such that:

$$\left(\frac{k_1}{f(x,y)}\right) \cdot k_0 = \frac{k_2}{g(x,y)}$$

we get:

$$k_1k_0g(x,y) = k_2f(x,y)$$

$$k_1k_0g_0 = k_2f_0 \mod(x,y)$$

$$k_0 = k_2f_0k_1^{-1}g_0^{-1} \in k$$

So we have found a k_0 . Then $\frac{k_1}{f(x,y)}$ is a generator of $O_P(\mathbb{A}^2)/(x,y)$. So it is one-dimensional.

(c) Suppose f and g have no repeated factors, P is a smooth point of V(f) and V(g) and the tangent lines to V(f) and V(g) at P are distinct. Prove that $I_P(f,g) = 1$.

Proof. If $P \neq 0$, then first compute the pullback and everything will be preserved, such as the multiplicity of P in f, g, the distinct tangent lines, and that P is smooth. Because the tangent lines are distinct, we know that $I_P(f,g) = \text{mult}_P(f) \text{mult}_P(g)$. Because P is smooth, by the formula for a tangent line:

$$f_x(p)(x - x_0) + f_y(p)(y - y_0) = 0$$

$$g_x(p)(x - x_0) + g_y(p)(y - y_0) = 0$$

we know that there is exactly one tangent line for f, called T_f , and one for g, called T_g . So $V(T_f)$, $V(T_g)$ are the tangent cones of f, g. And we see that both T_f , T_g are homogeneous of degree 1, therefore, $\operatorname{mult}_P(f) = 1$ and $\operatorname{mult}_P(g) = 1$. So the product is equal to $I_P(f,g) = 1$.

Exercise 2: Let P = (0,0) and $k = \mathbb{C}$. Compute the following intersection numbers using the properties from class. There may be many possible routes to do so!

(a)
$$I_P(x^2 - y, y^2 - x^3)$$

Answer. We have

$$\begin{split} I_P(x^2-y,y^2-x^3) &= I_P(y^2-y,x^2-y) \\ &= I_P(y,x^2-y) + I_P(y-1,x^2-y) \\ &= I_P(y,x^2) \\ &= 2I_P(x,y) \\ &= 2 \end{split}$$

(b)
$$I_P(x - y^2, x + y^2)$$

Answer. We have

$$\begin{split} I_{P}(x-y^{2},x+y^{2}) &= I_{P}(2x,x+y^{2}) \\ &= I_{P}(x,x+y^{2}) \\ &= I_{P}(x,y^{2}) \\ &= 2I_{P}(x,y) \\ &= 2 \end{split}$$

(c)
$$I_P(x^3 + xy, 3x^2y + xy^2)$$

Answer. We have

$$\begin{split} I_P(x^3 + xy, 3x^2y + xy^2) &= I_P(xy, x^3 + xy) + I_P(x^3 + xy, 3x + y) \\ &= I_P(xy, x^3) + I_P(x^3 - 3x^2, 3x + y) \\ &= I_P(x, x^2) + I_P(x^3 - 3x^2, 3x + y) \\ &= \infty \end{split}$$

(d)
$$I_P(x + y + y^2x, x + y + x^2 - y^2 + y^3)$$

Answer. We have

$$\begin{split} I_P(x+y+y^2x,x+y+x^2-y^2+y^3) &= I_P(x^2-y^2+y^3-y^2x,x+y+y^2x) \\ &= I_P(y^2(y-x)+(-1)(x-y)(x+y),x+y+y^2x) \\ &= I_P((y^2-1)(y-x)(x+y),x+y+y^2x) \\ &= I_P(y^2-1,x+y+y^2x) + I_P(y-x,x+y+y^2x) + I_P(x+y,x+y+y^2x) \\ &= 0 + I_P(y-x,x+y+y^2x) + I_P(x+y,x+y+y^2x) \\ &= I_P(y-x,2y+y^2x) + I_P(x+y,y^2x) \\ &= I_P(y,y-x) + I_P(y-x,2+yx) + I_P(x+y,y^3) \\ &= I_P(y,x) + 0 + 3I_P(x+y,y) \\ &= I_P(x,y) + 3I_P(x,y) \\ &= 4I_P(x,y) \\ &= 4 \end{split}$$

Exercise 3: Let $g, h \in k[x, y]$ and let P = (0, 0).

(a) Prove that $I_P(y, g + h) \ge \min(\{I_P(y, g), I_P(y, h)\})$

Proof. If g(x,0)=0, then $y\mid g$ and so we can say that $I_P(y,g+h)=I_P(y,h)$ because $g\in (y)$. The vanishing of g and y have a common component so $I_P(y,g)=\infty$, and therefore, $I_P(y,h)\geqslant I_P(y,h)$ which is true. If both g(x,0)=0=h(x,0), then the above equation turns to:

$$I_P(y) \geqslant \min(I_P(y), I_P(y))$$

which is true. So suppose that $y \nmid g$, h. Then we can write $I_P(y,g) = I_P(y,g')$ and the same for $h \to h'$ for g', h' polynomials in terms of x. And then (y,g+h) = (y,g'+h'). So we have:

$$g'(x) = g_0 + g_1 + \cdots$$

 $h'(x) = h_0 + h_1 + \cdots$

Let g_i be the first non-zero homogeneous form in g' and h_k be the first non-zero homogeneous form in h'. Then we have:

$$g' = x^{i}(g_0 + g_1 + \cdots)$$

 $h' = x^{k}(h_0 + h_1 + \cdots)$

by factoring out the x's and note that g_0 , $h_0 \neq 0$. Then

$$\begin{split} I_P(y,g') &= I_P(x^i,y) + I_P(g_0 + g_1 + \cdots, y) \quad I_P(y,h') = I_P(x^k,y) + kI_P(h_0 + h_1 + \cdots, y) \\ &= i + 0 \end{split}$$

We note that $I_P(g_0 + g_1 + \dots, y) = 0$ because the y vanishes on (0,0) but the $g_0 + g_1 + \dots$ does not because $g_0 \neq 0$. So the RHS turns out to be

While

$$I_{P}(y, g + h) = I_{P}(y, g' + h')$$

and we note that g' + h' has multiplicity greater than or equal to g' and h'. So in the same process above,

$$g' + h' = (g' + h')_0 + (g' + h')_1 + \cdots$$

and the first non zero homogeneous form is at least min(i, k). So repeating the process gives us $I_P(y, g + h) \ge \min(i, k)$, so we are done.

(b) It turns out part (a) is true whenever we replace y with a polynomial f such that $f_1 \neq 0$ (but you do not need to prove this). However, it can be false when $f_1 = 0$. Find an example of polynomials f, g and h so that $I_P(f, g + h) < \min(\{I_P(f, g), I_P(f, h)\})$.

Proof. The counterexample is at the end if explanation isn't needed.

To construct an example, we see that:

$$I_{P}(f, g + h) \geqslant mult_{P}(f) mult_{P}(g + h)$$

$$\geqslant mult_{P}(f) min(mult_{P}(g), mult_{P}(h))$$

$$= min(mult_{P}(f) mult_{P}(g), mult_{P}(f) mult_{P}(h))$$

So we want $I_P(f,g) \neq \text{mult}_P(f) \text{ mult}_P(g)$ and $I_P(f,h) \neq \text{mult}_P(f) \text{ mult}_P(h)$. Otherwise, we get $I_P(f,g+h) \geqslant \min(I_P(f,g),I_P(f,h))$. So this means that the f, g share some tangent line and f, h share some tangent line. But we want g+h to not share a tangent line with f to minimize $I_P(f,g+h)$. Considering:

We see that g = x + y, h = x - y satisfy the requirements and g + h = 2x has no tangent lines in common with $x^2 - y^2$. So to verify:

$$\begin{split} I_P(f,g) &= I_P(x^2 - y^2, x + y) \quad I_P(f,h) = I_P(x^2 - y^2, x - y) \quad I_P(f,g+h) = I_P(x^2 - y^2, 2x) \\ &= \infty \qquad \qquad = I_P(x - y, x) + I_P(x + y, x) \\ &= 1 + 1 = 2 \end{split}$$

And indeed, $I_P(f, g + h) < \infty$. Let P = (0, 0). We have:

$$I_P(x^2-y^2,2x) < min(I_P(x^2-y^2,x-y),I_P(x^2-y^2,x+y))$$

Exercise 4: Nodes: Let $f \in k[x,y]$ be a polynomial with no repeated factors. We say that f has a node at P if P has multiplicity P in V(f) and the tangent cone of P is two distinct lines. Prove that P is a node of V(f) if and only if $f_{xy}(P) \neq f_{xx}(P)f_{yy}(P)$. Here $f_{xy} = \frac{d}{dx}\left(\frac{d}{dy}f\right)$ and $f_{xx} = \frac{d^2}{dx^2}f$ and $f_{yy} = \frac{d^2}{dy^2}f$ are second derivatives.

Proof. Suppose that P has multiplicity 2 in V(f). Then it also has multiplicity 2 in the pullback where if $P = (p_1, p_2)$:

$$\varphi(x, y) = (x + p_1, y + p_2)$$

and

$$\varphi^* f(x, y) = f(x + p_1, y + p_2)$$

So we will consider ϕ^*f and $(0,0) \in V(\phi^*f)$. Since we know that it has multiplicity 2 also, we have that $V(\phi^*f_2)$ is the tangent cone, which decomposes into $V(L_1L_2)$ where L_1, L_2 are distinct lines. Then

$$L_1: y = a_1x$$

$$L_2: y = a_2x$$

And

$$L_1L_2 = (y - a_1x)(y - a_2x) = y^2 - (a_1 + a_2)xy + a_1a_2x^2$$

Notice that since

$$f = f_2 + f_3 + \cdots + f_m$$

Then $f_{xy}(P)$, $f_{xx}(P)$, $f_{yy}(P)$ are determined only by $(f_2)_{xx}(P)$, $(f_2)_{yy}(P)$, $(f_2)_{xy}(P)$, as the homogeneous terms of higher degree will still contain a x or y variable and evaluate to 0 upon plugging in P = (0,0). Then:

$$(f_2)_{xx} = 2a_1a_2$$

 $(f_2)_{xy} = -(a_1 + a_2)$
 $(f_2)_{yy} = 2$

Then

$$f_{xy}^{2}(P) = \alpha_{1}^{2} + 2\alpha_{1}\alpha_{2} + \alpha_{2}^{2} = 4\alpha_{1}\alpha_{2} = f_{xx}(P)f_{yy}(P)$$

implies that

$$a_1^2 - 2a_1a_2 + a_2^2 = 0$$

which means that $(a_1 - a_2)^2 = 0$ or $a_1 = a_2$ which is a contradiction. So $f_{xy}^2(P) \neq f_{xx}(P)f_{yy}(P)$. This argument also works in reverse because we made no non-arbitrary assumptions about f_2 . So its iff.

Exercise 5: Cusps: Let $f \in k[x,y]$ be a polynomial with no repeated factors and suppose P is a point of multiplicity 2 in V(f). Furthermore, suppose now that the tangent cone of V(f) is a single line V(L).

(a) Show that $I_P(f, L) \ge 3$. If equality holds, we say V(f) has a cusp at P.

Proof. We know that intersection multiplicity is preserved with a change of coordinates, so we can look at $I_{(0,0)}(\phi^*f,\phi^*L)$ where ϕ^* is some translation. By the fact that:

$$I_P(f,g) \geqslant mult_P(f) mult_P(g)$$

we have

$$I_{(0,0)}(\varphi^*f, \varphi^*L) \ge \text{mult}_{(0,0)}(\varphi^*f) \text{mult}_{(0,0)}(\varphi^*L) = 2$$
.

But because (0,0) as a point in f has multiplicity 2 with tangent line L in common, equality does not hold, so in fact,

$$I_{(0,0)}(\phi^*f,\phi^*L) \ge 3$$

the translation is an isomorphism, and is invertible, so we know that $I_P(f,L) \geqslant 3$.

(b) Suppose P = (0,0) and L = y. Show that P is a cusp if and only if $f_{xxx}(P) \neq 0$, where f_{xxx} is the third partial derivative of f with respect to x.

Proof. We have that

$$f = f_2 + f_3 + \cdots$$

Since P = (0,0), with multiplicity 2, we know that $V(f_2) = V(y)$, as the tangent cone. Then $V(f_2) = V(A) \cup V(B) = V(y)$, but V(y) is irreducible, so we know that A = y, B = y, as neither of the vanishings can be empty. Now looking at the f_3 term,

$$f_3 = a_3 x^3 + a_2 x^2 y + a_1 x y^2 + y^3$$

Calculating $(f_3)_{xxx}(P)$, we get:

$$(f_3)_{xxx}(P) = 6a_3$$

In the context of f, we have:

$$f_{xxx}(P) = (f_2)_{xxx}(P) + (f_3)_{xxx}(P) + (f_4)_{xxx}(P) + \cdots$$

And because all terms of $(f_i)_{xxx}$ for i > 3 contain either an x or a y, we know that evaluation at P returns 0, so:

$$f_{xxx}(P) = (f_3)_{xxx}(P) = 6a_3$$

Suppose that $f_{xxx}(P) \neq 0$. We will prove a cusp, with a chain of iffs. Then

$$f_{xxx}(P) \neq 0 \iff 6a_3 \neq 0 \iff a_3 \neq 0$$

Then a_3x^3 is a summand of f and y \nmid f. We know that

$$I_P(f, L) = I_P(y^2 + f_3 + \dots, y) = I_P(f_3 + \dots, y)$$

reducing the right polynomial $f_3 + f_4 + \cdots$ into a polynomial in terms of just x, we get:

$$\begin{split} I_P(f,L) &= I_P(a_3x^3 + a_4x^4 + \dots + a_nx^n, y) \\ &= I_P(a_3 + a_4x + \dots + a_nx^{n-3}, y) + I_P(x^3, y) \\ &= 3I_P(x,y) + I_P(a_3 + a_4x + \dots + a_nx^{n-3}, y) \\ &= 3 + I_P(a_3 + a_4x + \dots + a_nx^{n-3}, y) \end{split}$$

But we know that $a_3 \neq 0$. So $(0,0) \notin V(a_3 + a_4x + \cdots + a_nx^{n-3})$. This means that the intersection multiplicity for the right summand is 0. So we have

$$I_P(f, L) = 3$$

The chain of iffs means that this is a biconditional.

(c) Show that if P is a cusp, then V(f) has only one irreducible component passing through P.

Proof. If P is a cusp at V(f), then we can do some change of coordinates by translation or rotations to get that (0,0) has the same multiplicity as P and that it is in V(f') where the tangent line at P is V(y). If $V(f) = V(g) \cup V(h)$ where both algebraic sets are proper subsets of V(f), then suppose that they both contain P. We must have:

$$I_P(f,g) = I_P(g,y) + I_P(h,y)$$

We have three possibilities:

- The tangent cone of V(g) is y^i for $i \ge 2$ (Sharing common tangent line with y). Then:

$$I_{P}(g,y) = I_{P}(x^{k} + x^{k+1} + \cdots)$$

where $k \ge 3$. And we know that there is at least one x^i term because $y \nmid g$. Then $I_P(g,y) \ge 3$, which is a contradiction because $I_P(h,y) \ge 1$ and the total $I_P = 3$

- The tangent cone of V(g) shares no common factor with y. Then $I_P(g,y) = \text{mult}_P(g) \, \text{mult}_P(y) = \text{mult}_P(g)$. Then $I_P(f,y) = \text{mult}_P(g) + \text{mult}_P(h)$. Wlog, assume $\text{mult}_P(g) = 1$. Then $g = k_0x + \cdots$ and $h = k_2x^2 + k_3xy + k_4y^2 + \cdots$. But this is a contradiction because $V(g) \cup V(h) = V(gh) = V(f)$. And gh and gh and gh now have different tangent cones, where the tangent cone of gh is $a_3x^3 + a_2x^2y + a_1xy^2 + a_0y^3$ where $a_3 \neq 0$. So it does not contain a V(y) line.
- If the tangent cone of V(g), V(h) share at least one common factor, then we know that $I_P(g,y)=(x^2+\cdots)$ because the tangent cone is divisible by y and terms that contain only x are those that are homogeneous of degree at least 2. Then $I_P(g,y)+I_P(h,y)\geqslant 4\neq 3$. So contradiction.

So there is only one irreducible component passing through P.

Optional: You may wish to look back at Homework 5 problems 1 and 2. One had a node and one had a cusp - do you see which is which and prove it?

Answer. The cusp is (0,0) in $V(x^3 - y^2)$ because $f_{xxx}((0,0)) = 6 \neq 0$. This one is:

The node is (0,0) in $V(y^2-x^3+x^2)$ because $f_{xx}(P)=2$, $f_{yy}(P)=2$, and $f_{xy}(P)=0$. We have $f_{xy}^2(P)=0 \neq 4=f_{xx}(P)f_{yy}(P)$. This one is:

