Measure comparison

```
knitr::opts_chunk$set(echo = TRUE)
source("../Rcode/data_analysis.R")

library(jsonlite)

# Read the JSON file containing the measurement data
file_name <- "../data/frequecy.json"

# Define the models and parameters of interest
models <- c("lm", "tweedy_1.5_0", "quantile_regression")
parameters <- c("t_value", "t_value", "coefficient")

plot_models(file_name,models,parameters)</pre>
```

Plot of t_value for Im CI:(-7.5121025 , -3.168615)

Plot of t_value for tweedy_1.5_0 CI:(-7.68328 , -3.17828)

Plot of coefficient for quantile_regression CI:(-53.161125 , -19.82347

plot_distritubtions(file_name, models, parameters)

Histogram of t_value for Im

Histogram of t_value for tweedy_1.5_0

Histogram of coefficient for quantile_regression


```
library(jsonlite)

# Read the JSON file containing the measurement data
file_name <- "../data/similar.json"

# Define the models and parameters of interest
models <- c("lm", "tweedy_1.5_0", "quantile_regression")
parameters <- c("t_value", "t_value", "coefficient")

plot_models(file_name, models, parameters)</pre>
```

Plot of t_value for Im CI:(-1.9369375 , 2.019465)

Plot of t_value for tweedy_1.5_0 CI:(-1.9404825 , 2.01816)

Plot of coefficient for quantile_regression CI:(-16.30503 , 17.173527

plot_distritubtions(file_name, models, parameters)

Histogram of t_value for Im

Histogram of t_value for tweedy_1.5_0

Histogram of coefficient for quantile_regression

