Name:

Instructions

Use the provided answer sheet to select the most appropriate response for each multiple choice Computation/Knowledge question, skipping any sections already checked-off as mastered on your progress report.

Chapter 2 Computation

- 1. Let $f(z) = ye^{ix}$ whenever z = x + iy. Find f(4i).
 - **A.** 4
 - B. -4
 - C. ie^4
 - D. $-ie^4$
 - E. None of these.
- 2. Compute the domain of $f(z) = \frac{1}{z\overline{z}}$
 - A. $\{x + iy \in \mathbb{C} : x + y \neq 0\}$
 - B. $\{x + iy \in \mathbb{C} : x + y = 0\}$
 - C. $\{z \in \mathbb{C} : z \neq 0\}$
 - D. $\{z \in \mathbb{C} : z = 0\}$
 - E. None of these.
- 3. Find $\lim_{z \to 2i} \frac{z 2i}{z^2 + 4}$
 - A. $\frac{1}{2}i$
 - B. $\frac{1}{4}$

 - C. $-\frac{1}{2}$ **D.** $-\frac{1}{4}i$
 - E. None of these.
- 4. Find the value of $\frac{d}{dz}[f(z)g(z)]$ at z = 1 + i given f(1+i) = 3, f'(1+i) = 2i, g(1+i) = 1 i, and $q'(1+i) = \sqrt{2}$.
 - A. $2 3\sqrt{2}i + 2i$
 - **B.** $3\sqrt{2} + 2 + 2i$
 - C. $-\sqrt{2} + 5i$
 - D. $-2 + 2\sqrt{2}i + 3i$
 - E. None of these.
- 5. The function $f(z) = x^2 + y^2 + i(\frac{1}{2}y^2 4x)$ is differentiable at (x, y) = (1, 2). Find f'(1 + 2i).
 - **A.** 2-4i
 - B. 4 + 2i
 - C. -2 + 4i
 - D. -4 2i
 - E. None of these.

Chapter 3 Computation

- 6. Simplify $e^{1+i}e^{1-i}$.
 - A. $\cos(2) + i\sin(2)$
 - B. $\cos(1) i\sin(1)$
 - **C.** e^{2}
 - D. $e^2(\cos(1) + i\sin(1))$
 - E. None of these.
- 7. Simplify $e^{\frac{3-i\pi}{3}}$.
 - A. $e(1+\sqrt{3})$
 - B. $\frac{e}{2}(1-\sqrt{3})$
 - C. $\frac{e}{2}(-1+\sqrt{3})$
 - **D.** $e(-1-\sqrt{3})$
 - E. None of these.
- 8. Simplify Log(e + ei).
 - **A.** $1 + \frac{1}{2} \ln 2 + i \frac{\pi}{4}$
 - B. $\sqrt{2}e i\frac{\pi}{8}$
 - C. $e \frac{1}{2} \ln 2 i \frac{2\pi}{3}$
 - D. 1 + 7
 - E. None of these.
- 9. Simplify $\sqrt{2i}$.
 - A. $\pm(\sqrt{2}-\sqrt{2}i)$
 - **B.** $\pm (1+i)$
 - C. $\pm (\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}i)$
 - D. $\pm (-2 2i)$
 - E. None of these.
- 10. Let $z = 8e^{3i\pi/2}$. Which of these is the principle value of $z^{1/3}$?
 - **A.** $2e^{-i\pi/6}$
 - B. $2e^{i\pi/2}$
 - C. $2e^{7i\pi/6}$

Chapter 4a Computation

- 11. Find $\int_0^1 (3t^2 4it^3) dt$.
 - A. 3 + 4i
 - B. -1 + i
 - C. -3 4i
 - **D.** 1 i
 - E. None of these.
- 12. Find $\int_{\pi}^{3\pi} i e^{i\theta} d\theta$.
 - **A.** 0
 - B. 2π
 - C. $-2\pi i$
 - D. -2i
 - E. None of these.
- 13. Which of these is a parametrization of a parabola in the complex plane?
 - A. $z(t) = t^2 2it^2$
 - B. z(t) = -t + 2it
 - C. $z(t) = it^2$
 - **D.** $z(t) = 2t it^2$
 - E. None of these.
- 14. Which of these is a parametrization of the unit circle in the complex plane starting at i and rotating exactly once clockwise for $0 \le t \le 1$?
 - A. $z(t) = e^{it}$
 - B. $z(t) = e^{2\pi it}$
 - C. $z(t) = e^{\pi i(1/2 2t)}$
 - D. $z(t) = e^{\pi(t-i)}$
 - E. None of these.
- 15. Let $f(z) = 3e^z$ and C be the line segment joining 0 to $1 + \pi i$. Find $\int_C f(z)dz$.
 - A. -3e
 - B. e + 3i
 - C. 3 i
 - D. 3ie
 - E. None of these. (The answer is -3e 3.)

Chapter 2 Knowledge

- 16. If $\lim_{h\to 0} \frac{f(z+h)-f(z)}{z}$ exists, then f is differentiable at z.
 - A. True
 - B. False
- 17. If $\lim_{z\to w} f(z)$ exists and $\lim_{z\to w} g(z)$ exists, then $\lim_{z\to w} \frac{f(z)}{g(z)}$ always exists.
 - A. True
 - B. False
- 18. If $u_x \neq v_y$ at a point, then f(z) = u(z) + iv(z) is not differentiable at that point.
 - A. True
 - B. False
- 19. If $rv_r \neq -u_\theta$ at a point, then f(z) = u(z) + iv(z) is not differentiable at that point.
 - A. True
 - B. False
- 20. If f is differentiable for all complex numbers, then f is entire.
 - A. True
 - B. False

Chapter 3 Knowledge

- 21. e^z is a multi-valued expression.
 - A. True
 - B. False
- 22. $|e^{2z+1+i}| > 0$ for all complex z.
 - A. True
 - B. False
- 23. $\log(e^z)$ is a multi-valued expression.
 - A. True
 - B. False
- 24. Log(z) is well-defined for all complex numbers z.
 - A. True
 - B. False
- 25. The principle value of $z^{1/4}$ has a principle argument greater than $-\pi/4$ and less than or equal to $\pi/4$.
 - A. True
 - B. False

Chapter 4a Knowledge

- 26. $Re(\int_a^b w(t)dt) = \int_a^b Im(w(t))dt$.
 - A. True
 - B. False
- 27. The Mean Value Theorem holds for all complex functions.
 - A. True
 - B. False
- 28. Joining two contours end-to-end results in a contour.
 - A. True
 - B. False
- 29. Let -C be the reversal of the contour C. Then $\int_C f(z)dz = \int_{-C} f(z)dz$.
 - A. True
 - B. False
- 30. The value of $\int_C f(z)dz$ depends only on the starting and ending points of C.
 - A. True
 - B. False

Name:

Proofs

Solve at most one of the exercises from each chapter, skipping any chapters already checked-off as mastered on your progress report.

- 1. **Ch1** Prove or disprove that $|\overline{zw}| = |z||w|$.
- 2. **Ch2** Show that $\lim_{z\to i}(z-i)(\overline{z-i})^{-1}$ does not exist.
- 3. **Ch2** Give an example of a complex function that is continuous but not differentiable at 0, and explain why.
- 4. **Ch3** Prove that $z^{1/3}$ takes on exactly three values for each non-zero z.
- 5. **Ch3** Prove that $\frac{d}{dz}[\text{Log }z]$ is -i at z=i by using the derivative definition $\lim_{z\to i}\frac{\text{Log }z-\text{Log }i}{z-i}$.
- 6. **Ch4a** Prove that $\int_0^{\pi/2} e^{(2+i)\theta} d\theta = \frac{e^{\pi}-2}{5} + i(\frac{1+2e^{\pi}}{5})$.
- 7. **Ch4a** Use the fact that $\int_0^{\pi/2} e^{(2+i)\theta} d\theta = \frac{e^{\pi}-2}{5} + i(\frac{1+2e^{\pi}}{5})$ to compute $\int_0^{\pi/2} e^{2x} \sin(x) dx$ without using integration by parts.