Mo Tu We Th Fr Sa Su	$see^{2}o = tomio+1$ $sin 20 = \frac{1-cono}{2}$ $os = \frac{1+cono}{2}$ ex and Deter	Memo No. Date / mj/nants /m	20
onea of a tric	angle Area = $\frac{1}{2}IB$ c could find		m30+c53=1
03(2-6)	<u>.</u>	exted $\overline{\Sigma}$, (A	
175 HO15	(0') = smo ±. Al- Bl. sm ====================================		= a162-a26
	$ \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \pm \\ B \cdot B \cdot smo = \pm \\ \cdot B \cdot B \cdot smo = \pm \\ \cdot B \cdot smo = \\ \cdot B \cdot smo =$	let (R,B)	= 01bz-

Mo Tu We Th Fr Sa Su	Memo No.	
	Date /	
Examples:		
1		
2, Compute the arrest of the	paralle logram shown	
$\vec{A} = \langle 1, 3 \rangle$	$\beta^{2} = \langle -2, 2 \rangle$	
Area = Idet(A,B)	$ = det(\frac{13}{22}) = 2+6$	=8
= AB. Sino = 1A1/B/C00	$= \vec{B}' \cdot \vec{B}'' = 6 + 2 = 8$	
B' = <-3,1	1),(3,-1) = -6-2 =	H81 =8
Problems:		
1) a. Compute $ \frac{1}{3}\frac{2}{4} = 4-6$	=/-2	
(b) 13 4 = 4-1-6) = 10		
$(a) \begin{vmatrix} 1 & 4 \\ 1 & 2 \end{vmatrix} = 6 - 4 = 2$		
	1,400 7511	

21 Find the one

 $e = \frac{\det(\vec{x}, cB)}{\det(\vec{x}, \vec{y})} + \frac{1}{2} \det(\vec{x}, \vec{y})$