- 2. Una señal analógica periódica $x_a(t)$, de período T=4s, es muestreada obteniendo la señal discreta x[n] de N muestras y sea $X_N(k)$ su DFT. Se pide:
 - a) Si utilizamos una frecuencia de muestreo de fs = 10Hz y tomamos N = 80 muestras. ¿Que restricciones debemos imponer sobre $x_a(t)$ para evitar el aliasing? ¿Cual es la resolución frecuencial de $X_N(k)$, en Hz? ¿Cuantos armónicos estarán presentes en $X_N(k)$?
 - b) Explique el procedimiento para reconstruir la señal analógica $x_a(t)$ a partir de $X_N(k)$. Que condiciones debemos imponer sobre los valores de la frecuencia de muestreo fs y el número de muestras a tomar N.

Frecuencia Fundamental: 1/4 Hz , $\omega f = 2\pi/Ta = \pi/2$ rad/s

Otras frecuencias son ω armonicos = $k \cdot \omega f = k \cdot \pi/2 \text{ rad/s}$

Como la señal es periodica se puede representar con una serie de cosenos y senos con diferentes frecuencias , los valores de coseno y senos se repetiran cada ω _armonicos + $2\pi\cdot k$

El armónico fundamental corresponde a la frecuencia más baja presente en la señal que no es cero. Es el primer armónico, y todos los demás armónicos son múltiplos enteros de esta frecuencia.

Expectro de Xa (jω) generico :

Existe un maximo $\omega M=k\cdot\omega f$, que para que no se produzca aliasing debe ser la mitad de la frecuencia de muestreo $\omega s>=2\omega M$

Se toman 10 muestras cada 1 segundo , y se consiguen 80 muestras tiempo de muestreo = 80/10 = 8 s

Se puede observar que se han muestreado 2 periodos

Para que se cumpla el teorema de muestreo las caracteristicas de Xa deben ser:

La señal Xa, debe tener una componente de frecuencia maxima en

$$\omega M = \omega s/2 = 2\pi 10/2 = \pi 10$$

$$\omega = (2\pi)f$$

Para evitar solapamiento o aliasing:

$$\omega M = 10\pi$$
 , ω fund = $\pi/2$

Divido por 2π:

$$FM = 5 Hz$$
, $Fmin = 1/4 Hz$

La resolución de frecuencia es simplemente la frecuencia de muestreo dividida por la cantidad de muestras .

10 Hz

Resolucion: 1/8 Hz

80 muestras

Cantidad de armonicos : Como se toman dos ciclos de Xa para hacer el muestreo de 80 muestras , en el caso limite de que hayan 80 frecuencias involucradas en X[n] habran 40 que se repetiran , ya que se toman dos ciclos , por lo tanto habremos to mado como maximo 40 armonicos

b) Indicar el procedimiento para recontruir xa(t) a partir de Xn[k]

Vuelvo a la señal con la que hice la DFT :

$$x[n] = \begin{cases} \frac{1}{N} \sum_{n=0}^{N-1} X[k] W_N^{-kn} & 0 \le n \le N-1 \\ 0 & \text{en otro caso} \end{cases}$$

Se utiliza un filtro pasabajos H[Ω] con frecuencia de corte : $\Omega c = \Omega M = \pi$ (ejemplo con fM = 5 Hz)

Divido por el periodo de muestreo Ts , para pasar a $\omega = \Omega/Ts$ y obtenfo $Xa(\omega)$

Aplico la antitransformada:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega, \ t \in \mathbb{R}$$

Obtengo nuevamente Xa(t)

