Mathematik I für PhysikerInnen

AOR Dr. Thoralf Räsch Wintersemester 2022/23

Übungsaufgaben, Serie 4

Aufgabe 1 (3 Punkte). Beweisen oder widerlegen Sie für $a, b, c \in \mathbb{Z}$ folgende Teilbarkeitsaussagen (hierbei binden in der dargestellten Formel Konjunktion und Disjunktion stärker als Implikationen):

- (a) Aus a|b und a|c folgt $a|(b \cdot c)$.
- (b) Aus $a|(b \cdot c)$ folgt a|b oder a|c.
- (c) Aus a|b und b|c folgt a|c.

Aufgabe 2 (3 Punkte). Wir sagen für $a, b \in \mathbb{Z}$, dass " $a \equiv b \mod n$ " gilt, wenn n|(a-b) gilt. Zeigen Sie, dass \equiv eine Äquivalenzrelation darstellt, also die Eigenschaften "Reflexivität", "Symmetrie" und "Transitivität" erfüllt (vgl. Serie 3).

Aufgabe 3 (1+1 Punkte). Beweisen Sie in einem angeordneten Körper:

- (a) Es gilt für alle $x, y \in \mathbb{K}$ stets |xy| = |x||y| (Sie können dabei alles aus dem Skript, also der Vorlesung, benutzen, welches bis Satz 2.25(e) behandelt wurde.)
- (b) Es gilt $x^2 > 0$ für alle $x \neq 0$.

Aufgabe 4 (2+3 Punkte). Seien $x, y \in \mathbb{Q}$ gegeben, also $x = \frac{a}{b}$ und $y = \frac{c}{d}$ mit $a, c \in \mathbb{Z}$ und $b, d \in \mathbb{N} \setminus \{0\}$. Setze dann

$$x <_{\mathbb{Q}} y \iff ad <_{\mathbb{Z}} bc.$$

Hierbei bezeichne $<_{\mathbb{Z}}$ die auf den ganzen Zahlen wohlbekannte lineare Ordnung.

- (a) Zeigen Sie, dass $<_{\mathbb{Q}}$ wohldefiniert ist, das heißt, dass die Beziehung $x<_{\mathbb{Q}}y$ nicht von der konkreten (gekürzten oder ungekürzten) Bruchdarstellung von x und y abhängt.
- (b) Zeigen Sie, dass die Struktur $(\mathbb{Q},<_{\mathbb{Q}})$ einen angeordneten Körper darstellt. Invose Elemente von der Struktur $(\mathbb{Q},<_{\mathbb{Q}})$

Aufgabe 5 $(\frac{1}{2} + \frac{1}{2} + 1 + 1 + 1 \text{ Punkte})$. Es seien $z_1 = 3 + i$ und $z_2 = 2i + 1$ zwei komplexe Zahlen. Berechnen Sie $z_1+z_2,\,z_1-z_2,\,z_1\cdot z_2$ sowie $\frac{z_1}{z_2}$ und $\frac{1}{z_1}$. Schreiben Sie Ihr Ergebnis jeweils in der Form a + ib für $a, b \in \mathbb{R}$.

- (a) Gesucht sind Real- und Imaginärteil von $z_1 = (1+i)^6$ sowie $z_2 = \frac{(1+2i)(3+4i)}{2+\frac{1+i}{2-3i}}$.
- (b) Gesucht sind alle $z \in \mathbb{C}$ mit $z^4 = 16$.
- (c) Gesucht sind Polarkoordinaten von z = 1 i, berechnen Sie danach z^{10} .
- (d) Zerlegen Sie das Polynom $p(z)=z^3-1$ über den komplexen Zahlen in Linearfaktoren.

Aufgabe 7 (2+2 Punkte). Skizzieren Sie die beiden folgenden Mengen:

(a)
$$\{z \in \mathbb{C} : 1 < |z - 1 + i| < 2\}$$

(b)
$$\{z \in \mathbb{C} : |z-1| < |z-i| \}$$

Sie können hier insgesamt 25 Punkte erreichen. Der Zettel geht allerdings nur mit 22 Punkten in die offizielle

Wertung ein, so dass Sie hier den Rest als ${\bf Bonuspunkte}$ erreichen können.

Abgabe am Freitag, den 03. November, bis 12:00 Uhr

bei eCampus innerhalb Ihrer Tutoriumsgruppe.