

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICOS E INDUSTRIAL

CARRERA DE TELECOMUNICACIONES

INTEGRANTES:

- Aldaz Saca Fabricio Javier
- Balseca Castro Josue Guillermo
- Chimba Amaya Cristian Orlando
- Ibarra Rojano Gilber Andres
- León Armijo Jean Carlos
- Sivinta Almachi Jhon Richard
- Telenchana Tenelema Alex Roger
- Toapanta Gualpa Edwin Paul

INFORME DE PROYECTO

NIVEL: Octavo "A"

FECHA: 16/01/2024

DOCENTE: Ing. Juan Pablo Pallo Noroña

TEMA: "DISEÑO DE UNA RED DE FIBRA OPTICA CON TECNOLOGIA GPON"

I. INTRODUCCIÓN

La redes de fibra óptica en la actualidad ha venido emergiendo con gran fuerza por lo cual en el siguiente proyecto consiste en el "Diseño de una red de fibra óptica con el estándar GPON" que pretende tener como beneficiarios principales a todos los pobladores del lugar.

Mediante la implementación de este diseño se mejorará la calidad de vida de cada una de las familias del sector, pues se les permitirá tener una excelente comunicación que traerá como consecuencia el fortalecimiento en las relaciones entre todas las personas. Este proyecto se lo considera de interés local y nacional, pues estas personas necesitan mantener una comunicaciónaccesible, Además, los habitantes del sector no tendrán que emigrar a otros sitios paraconseguir comunicarse, esto asegura al mismo tiempo un gran aporte tecnológico hacia los estudiantes y docentes de las instituciones educativas y también para las futuras generaciones, ya que tendrán el acceso hacia la red de información global y les permitía conectarse con cualquier parte del mundo.

II. OBJETIVOS 1.OBJETIVO GENERAL

Diseñar una red de fibra óptica FTTX usando el estándar GPON de cinco cantones de la provincia del Cotopaxi.

2.OBJETIVOS ESPECIFICOS

- Dimensionar la red de fibra óptica mediante técnicas de ingeniería de tráfico.
- Elaborar la red de censo de los cantones de Salcedo, Latacunga, Pujilí, Saquisili y Sigchos con su respectivo Backup.
- Modelar la red de fibra óptica FTTX con el estándar GPON para los cinco cantones de Cotopaxi.

III. RESUMEN

A través de la presente investigación, se tiene la intención de llevar a cabo la planificación de la infraestructura externa para una red que cumple con el estándar GPON en la provincia de Cotopaxi. El propósito principal es optimizar los servicios de telecomunicaciones en la localidad, facilitando la transición de los usuarios existentes hacia esta nueva tecnología y estableciendo una red que pueda satisfacer la demanda futura del servicio.

Según los documentos analizados para el diseño de una red GPON para la provincia de Cotopaxi", el diseño de una red GPON se fundamentará en gran medida en los cálculos derivados del presupuesto óptico, sin superar el límite de 25 dB, ya que este parámetro define la distancia de la fibra óptica y la densidad de usuarios a la que se podrá brindar el servicio. Además, la implementación de la tecnología GPON ofrece la ventaja de integrar servicios como telefonía, datos e IPTV, lo que conlleva a una reducción de costos en términos de mantenimiento y operación al consolidarlos en una única red.

IV. Palabras Clave:

- GPON
- Fibra óptica
- Telecomunicaciones
- Demanda
- Red óptica
- ODN
- Planta externa
- Cableado estructurado
- Tráfico

V. ABSTRACT

Through this research, the intention is to carry out the planning of the external infrastructure for a network that complies with the GPON standard in the province of Cotopaxi. The main purpose is to optimize telecommunications services in the locality, facilitating the transition of existing users to this new technology and establishing a network capable of meeting future service demand.

According to the documents analyzed for the design of a GPON network for the province of Cotopaxi, the design of a GPON network will be largely based on calculations derived from the optical budget, without exceeding the 25 dB limit. This parameter defines the distance of the optical fiber and the user density to which the service can be provided. Additionally, the implementation of GPON technology offers the advantage of integrating services such as telephony, data, and IPTV, leading to a reduction in costs in terms of maintenance and operation by consolidating them into a single network.

Keywords: Multiplexing, FDM, TDM, channels.

VI. MATERIALES

Equipos y Softwares	Materiales
Computadora	Anexos Memoria Tecnica
Software AutoCAD	Hojas de Papel
Software – Microsoft Office	Esferográfico

VII. METODOLOGIA

VIII. DESARROLLO

CALCULOS DEL DISEÑO DE LA RED DE FIBRA ÓPTICA:

Para la proyección de los abonados, se empieza sacando el número de personas según datos del censo del INEC, para poder calcular la proyección en unos años entonces se escogió de acuerdo con el cantón Cotopaxi dividiéndolo después en los cinco distritos deseados que en este caso serán Salcedo, Sigchos, Pujilí y Saquisilí, para ello del valor total de personas no se encontró un censo actual del 2023 para ello se recupera los mismos datos hasta el 2020, entonces se divide en 4 distritos y una central.

	2010										
Provincia	Muje	res	Hombres		Tatal	<u>Mujeres</u>		Hombre	Total		
	Nº	%	Nº	%	Total	Nº	%	Nº	%	Total	
Cotopaxi	218.389	51,4	206.274	48,6	424.663	251.010	51,4	237.706	48,6	488.716	

ANO	Población D1	Población D2 - Central	Población	Población D4	Población D5
2010	32.160	91.442	34.488	43.643	91.134
2011	32.563	92.589	34.921	44.191	92.278
2012	32.962	93.722	35.348	44.731	93.407
2013	33.354	94.839	35.769	45.264	94.520
2014	33.740	95.936	36.183	45.788	95.613
2015	34.119	97.012	36.589	46.302	96.686
2016	34.489	98.066	36.986	46.804	97.736
2017	34.852	99.098	37.375	47.297	98.764
2018	35.207	100.106	37.756	47.778	99.769
2019	35.553	101.090	38.127	48.248	100.751
2020	35.890	102.049	38.489	48.706	101.706

Ilustración 1. Población Proyectada

AÑO	Población D1	Población calculada D1	Error %	Población D2	Población calculada D2	Error %	Población D3	Población calculada D3	Error %	Población D4	Población calculada D4	Error %	Población D5	Población calculada D5	Error %
2010	32.160	32.213	0,166067%	91.442	91.594	0,166207%	34.488	34.545	0,166063%	43.643	43.715	0,166093%	91.134	91.286	0,166119%
2011	32.563	32.587	0,071853%	92.589	92.656	0,071991%	34.921	34.946	0,071849%	44.191	44.222	0,071878%	92.278	92.344	0,071904%
2012	32.962	32.960	0,004706%	93.722	93.718	0,004570%	35.348	35.346	0,004710%	44.731	44.729	0,004682%	93.407	93.403	0,004656%
2013	33.354	33.334	0,061949%	94.839	94.780	0,061815%	35.769	35.747	0,061953%	45.264	45.236	0,061925%	94.520	94.461	0,061900%
2014	33.740	33.707	0,097653%	95.936	95.842	0,097520%	36.183	36.148	0,097657%	45.788	45.743	0,097629%	95.613	95.520	0,097604%
2015	34.119	34.081	0,111028%	97.012	96.905	0,110896%	36.589	36.548	0,111032%	46.302	46.250	0,111004%	96.686	96.579	0,110979%
2016	34.489	34.454	0,101061%	98.066	97.967	0,100930%	36.986	36.949	0,101064%	46.804	46.757	0,101037%	97.736	97.637	0,101013%
2017	34.852	34.828	0,069472%	99.098	99.029	0,069343%	37.375	37.350	0,069476%	47.297	47.264	0,069449%	98.764	98.696	0,069424%
2018	35.207	35.202	0,014889%	100.106	100.091	0,014761%	37.756	37.750	0,014893%	47.778	47.771	0,014866%	99.769	99.755	0,014842%
2019	35.553	35.575	0,062113%	101.090	101.153	0,062240%	38.127	38.151	0,062109%	48.248	48.278	0,062136%	100.751	100.813	0,062160%
2020	35.890	35.949	0,162924%	102.049	102.216	0,163050%	38.489	38.551	0,162921%	48.706	48.785	0,162947%	101.706	101.872	0,162970%
		Error Total	0,923716%		Error Total	0,923322%		Error Total	0,923727%		Error Total	0,923644%		Error Total	0,923571%
		Promedio	0,083974%		Promedio	0,153887%		Promedio	0,083975%		Promedio	0,083968%		Promedio	0,083961%

Ilustración 2. Error de Población Proyectada

Esquema Físico de la red Red de dispersión

Una red de dispersión está formada por cajas de distribución, principalmente cajas de distribución óptica (NAP), que están conectadas a grupos de usuarios en su área de influencia. Consideraciones del Reglamento CNT EP (2016):

Consideraciones de la normativa CNT EP (2016):

- Para el área de influencia de un NAP, se considera una ocupación no mayor al 80% dejando 20% restante para ampliación de la capacidad total de las NAP homologadas.
- La red de dispersión no deberá sobrepasar los 300 metros de distancia.
- No se deberá cruzar una vía principal o carretera de alto trafico vehicular con cables de acometida área, caso contrario se deberá instalar una NAP del otro lado de la vía principal.
- En el plano de georreferencia se deberá dibujar el perímetro de las áreas de dispersión por las cajas de distribución óptica y según el diseño ubicar este elemento en pared, poste o pozo.
- Una vez estructuradas el alcance de las zonas de dispersión, se los agrupa en distritos.

Cálculo del número de NAP's

La ciudad de cuenta se distribuyó en 5 distritos los cuales tendrán un total de 300 abonados cada uno, para el numero de NAP's porta splitters en el segundo nivel de división se aplica la siguiente ecuación

DISTRITO 1:

$$Total\ de\ Naps = \frac{Numero\ Total\ de\ usuarios}{Division\ segundo\ nivel}$$

$$Total\ de\ Naps = \frac{200}{8} = 25$$

DISTRITO 2:

$$Total\ de\ Naps = \frac{Numero\ Total\ de\ usuarios}{Division\ segundo\ nivel}$$

$$Total\ de\ Naps = \frac{700}{8} = 87.5 \cong 88$$

DISTRITO 3:

$$Total\ de\ Naps = \frac{Numero\ Total\ de\ usuarios}{Division\ segundo\ nivel}$$

$$Total\ de\ Naps = \frac{300}{8} = 37.5 \cong 38$$

DISTRITO 4:

$$Total~de~Naps = \frac{Numero~Total~de~usuarios}{Division~segundo~nivel}$$

$$Total~de~Naps = \frac{800}{8} = 100$$

DISTRITO 5:

$$Total\ de\ Naps = \frac{Numero\ Total\ de\ usuarios}{Division\ segundo\ nivel}$$

$$Total\ de\ Naps = \frac{500}{8} = 62.5 \cong 63$$

Por lo tanto, se necesita de 38 cajas de distribución área para cada distrito. Existen especificaciones técnicas del elemento como son:

ATRIBUTO	DETALLE
NUMERO	Orden de la NAP
FIBR-INGR	Cable de distribución de ingreso a la NAP
HILOS-CAJA	Hilo de fibra óptica que se queda en la caja
FIBR-SALI	Hilo de fibra óptica que sale de la NAP
CAPACIDAD	Tipo de Splitter en la NAP
SPLITTER	Tipo de Splitter en la NAP

Hay que señalar que se debe ubicar 2 NAP extras para cubrir la demanda por lo que existe sectores donde no se logró agrupar 8 viviendas para lo establecido al inicio o futuras construcciones.

DISTRITO 1:

Una vez adquirido el número de NAPs, se procede a calcular el número total de Splitter en el primer nivel de división. Aplicar la ecuación

Total de splitters 1:
$$4 = \frac{Total \ de \ NAPs}{Division \ de \ primer \ nivel}$$
Total de splitters 1: $4 = \frac{25}{4} = 6.25 \cong 6$

Se necesita de 6 Splitters en el primer nivel de división para cubrir la demanda. Obtenida esta información procedemos a calcular el número de mangas donde se colocarán 6 splitters, mediante la siguiente formula.

$$Total\ mangas = \frac{Total\ de\ Splitters\ 1:4}{Capacidad\ de\ Mangas}$$

$$Total\ mangas = \frac{6}{6} = 1$$

Se ubicará los 3 splitter dentro de las mangas de la siguiente manera

MANGA	NUMERO DE SPLITERS UTILIZADOS
MT01	3
MT02	3

DISTRITO 2:

Una vez adquirido el número de NAPs, se procede a calcular el número total de Splitter en el primer nivel de división. Aplicar la ecuación

$$Total~de~splitters~1:4 = \frac{Total~de~NAPs}{Division~de~primer~nivel}$$

Total de splitters 1:
$$4 = \frac{88}{4} = 22$$

Se necesita de 22 Splitters en el primer nivel de división para cubrir la demanda. Obtenida esta información procedemos a calcular el número de mangas donde se colocarán 6 splitters, mediante la siguiente formula.

$$Total\ mangas = \frac{Total\ de\ Splitters\ 1:4}{Capacidad\ de\ Mangas}$$

$$Total\ mangas = \frac{22}{6} = 3.6667 \cong 4$$

MANGA	NUMERO DE SPLITERS UTILIZADOS
MT01	2
MT02	2

DISTRITO 3:

Una vez adquirido el número de NAPs, se procede a calcular el número total de Splitter en el primer nivel de división. Aplicar la ecuación

$$Total~de~splitters~1:4 = \frac{Total~de~NAPs}{Division~de~primer~nivel}$$

Total de splitters 1:
$$4 = \frac{38}{4} = 9.5 \approx 10$$

Se necesita de 10 Splitters en el primer nivel de división para cubrir la demanda. Obtenida esta información procedemos a calcular el número de mangas donde se colocarán 6 splitters, mediante la siguiente formula.

$$Total\ mangas = \frac{Total\ de\ Splitters\ 1:4}{Capacidad\ de\ Mangas}$$

$$Total\ mangas = \frac{10}{6} = 1.666 \cong 2$$

MANGA	NUMERO DE SPLITERS UTILIZADOS
MT01	1
MT02	1

DISTRITO 4:

Una vez adquirido el número de NAPs, se procede a calcular el número total de Splitter en el primer nivel de división. Aplicar la ecuación

$$Total~de~splitters~1:4 = \frac{Total~de~NAPs}{Division~de~primer~nivel}$$

Total de splitters 1:
$$4 = \frac{100}{4} = 25$$

Se necesita de 25 Splitters en el primer nivel de división para cubrir la demanda. Obtenida esta información procedemos a calcular el número de mangas donde se colocarán 6 splitters, mediante la siguiente formula.

$$Total\ mangas = \frac{Total\ de\ Splitters\ 1:4}{Capacidad\ de\ Mangas}$$

$$Total\ mangas = \frac{25}{6} = 4.1666 \cong 4$$

MANGA	NUMERO DE SPLITERS UTILIZADOS
MT01	1
MT02	1

DISTRITO 5:

Una vez adquirido el número de NAPs, se procede a calcular el número total de Splitter en el primer nivel de división. Aplicar la ecuación

$$Total \ de \ splitters \ 1:4 = \frac{Total \ de \ NAPs}{Division \ de \ primer \ nivel}$$

Total de splitters 1:
$$4 = \frac{63}{4} = 15.75 \cong 16$$

Se necesita de 16 Splitters en el primer nivel de división para cubrir la demanda. Obtenida esta información procedemos a calcular el número de mangas donde se colocarán 6 splitters, mediante la siguiente formula.

$$Total\ mangas = \frac{Total\ de\ Splitters\ 1:4}{Capacidad\ de\ Mangas}$$

$$Total\ mangas = \frac{16}{6} = 2.6667 \cong 3$$

MANGA	NUMERO DE SPLITERS UTILIZADOS
MT01	2
MT02	1

Con este resultado las mangas a utilizar cumplen con parámetros que se detallan en la siguiente tabla.

ATRIBUTO	DETALLE
CLASE	Tipo de fibra que pasa por la manga

TIPO- SPLITTER	Tipo de Splitter con su respectiva división
FIBR-INGR	Cable feeder sangrado que ingresa a la
	manga
FIBR-SALI	Cable de distribución que sale de la manga

Se ubica las mangas cerca de los armarios de la red de cobre para una mayor facilidad de distribución. La subida a poste de fibra óptica desde el pozo al poste tendrá un recorrido de 20 metros, donde también se indica la fibra de ingreso y de salida de la manga

CARLEDE	EIDDA DE INCRECO A	MANGA DE SALIDA DE	
CABLE DE DISTRIBUCION	FIBRA DE INGRESO A LA MANGA	CABLE DE	
DISTRIBUCION	LA MANGA	DISTRIBUCION	
DISTRITO 2		DISTRIBUCION	
FD01_01_01_96(1-	FT01_01_96(61-68)	MT01	
16)	1101_01_00(01 00)	111101	
FD01_01_01_96(5-			
16)			
FD01_01_01_96(9-			
16)			
FD01_01_01_96(13-			
16)			
FD01_01_01_96(1-	FT01_02_96(67-72)	MT02	
16)			
FD01_01_01_96(5-			
16)			
FD01_01_01_96(9-			
16) FD01_01_01_96(13-			
16)			
DISTRITO 1	<u> </u>		
FD01_01_01_96(1-	FT01_01_96(73-78)	MT01	
16)	1101_01_00(10 10)	111101	
FD01_01_01_96(5-			
16)			
FD01_01_01_96(9-			
16)			
FD01_01_01_96(13-			
16)			
FD01_01_01_96(1-	FT01_02_96(79-84)	MT02	
16)			
FD01_01_01_96(5-			
16)			
FD01_01_01_96(9-			
16) FD01_01_01_96(13-			
16)			
DISTRITO 3			
DISTRITOS			

FD01_01_01_96(1-16) FD01_01_01_96(5-16) FD01_01_01_96(9-16) FD01_01_01_96(13-16)	FT01_01_96(85-90)	MT01
FD01_01_01_96(1- 16) FD01_01_01_96(5- 16) FD01_01_01_96(9- 16) FD01_01_01_96(13- 16) DISTRITO 4	FT01_02_96(91-96)	MT02
FD01_01_01_24(1- 16) FD01_01_01_24(5- 16) FD01_01_01_24(9- 16) FD01_01_01_24(13- 16)	FT01_01_24(13-18)	MT01
FD01_01_01_24(1- 16) FD01_01_01_96(5- 16) FD01_01_01_24(9- 16) FD01_01_01_24(13- 16)	FT01_02_24(19-24)	MT02
DISTRITO 5 FD01_01_01_24(1-16) FD01_01_01_24(5-16) FD01_01_01_01_24(9-16) FD01_01_01_01_24(13-16)	FT01_01_24(13-18)	MT01
FD01_01_01_24(1- 16) FD01_01_01_96(5- 16) FD01_01_01_24(9- 16) FD01_01_01_24(13- 16)	FT01_02_24(19-24)	MT02

Se detalla el modelo del plano de la central completa, para después pasar a las sucursales para mostrar de como se compone el modelo del diseño de planta externa del Cantón Cotopaxí.

Red Secundaria (Distribución)

La red secundaria es la parte de red de fibra óptica que une un armario de distribución y las cajas de dispersión. Básicamente, consta de varios bloques de conexión, cables aéreos, murales, subterráneos, empalmes y cajas de dispersión. Aquí se debe considerar que las cajas de los terminales tienen la capacidad para alimentar hasta 12 clientes, por lo que la ubicación de cada una de éstas debe ser estratégica. Además, cada armario de distribución tiene una capacidad para alimentar hasta 24 cajas terminales.

Entonces para la subdivisión se tomará en cuenta el número de abonados fijos:

Abonados D1	Abonados D2	Abonados D3	Abonados D4	Abonados D5	
200	700	300	800	500	2500

Distrito D-01

El Distrito D-01 cuenta 200 abonados proyectados, tomando en cuenta que cada caja de los terminales tiene la capacidad para alimentar hasta 12 clientes ya que CNT usa las cajas TYCO MDU 212, misma que cuenta con estas 12 salidas. Por lo tanto, el número decajas del distrito D-01 es:

Cajas Distrito
$$D_{01} = \frac{200}{12} = 16,67 \approx 17$$

Caja armario tiene la capacidad para alimentar hasta a 24 cajas terminales, por lo tanto:

Armarios Distrito
$$\frac{17}{24} = 0.70 \approx 1$$

$$D_{01} =$$

Cada caja terminal deberá ir en un poste debidamente identificado

Tabla 19 Número de Cajas Y armarios Distrito D-01

Distrito D-01			
Número de Cajas	Número de Armarios		
17	1		

Distrito D-02

El Distrito D-02 cuenta 82.732 abonados proyectados, tomando en cuenta que cada caja de los terminales tiene la capacidad para alimentar hasta 12 clientes ya que CNT usa las cajas TYCO MDU 212, misma que cuenta con estas 12 salidas. Por lo tanto, el número decajas del distrito D-02 es:

Cajas Distrito
$$\frac{700}{12} = 58,33 \approx 58$$

$$D_{02} = \frac{700}{12} = 58,33 \approx 58$$

Caja armario tiene la capacidad para alimentar hasta a 24 cajas terminales, por lo tanto:

Armarios Distrito
$$\frac{58}{D02} = 2.41 \approx 2$$

Cada caja terminal deberá ir en un poste debidamente identificado.

Tabla 20 Número de Cajas Y armarios Distrito D-02.

Distrito D-02		
Número de Cajas Número de Armarios		
58	2	

Distrito D-03

El Distrito D-03 cuenta 28.553 abonados proyectados, tomando en cuenta que cada caja de los terminales tiene la capacidad para alimentar hasta 12 clientes ya que CNT usa las cajas TYCO MDU 212, misma que cuenta con estas 12 salidas. Por lo tanto, el número decajas del distrito D-03 es:

Cajas Distrito
$$\frac{300}{D_{03}} = 25$$

Caja armario tiene la capacidad para alimentar hasta a 24 cajas terminales, por lo tanto:

Armarios Distrito
$$\frac{25}{24} = 1.041 \approx 1$$

$$D_{03} =$$

Cada caja terminal deberá ir en un poste debidamente identificado.

Tabla 21 Número de Cajas Y armarios Distrito D-3.

Distrito D-03		
Número de Cajas Número de Armarios		
25	1	

Distrito D-04

El Distrito D-04 cuenta 37.252 abonados proyectados, tomando en cuenta que cada caja de los terminales tiene la capacidad para alimentar hasta 12 clientes ya que CNT usa las cajas TYCO MDU 212, misma que cuenta con estas 12 salidas. Por lo tanto, el número decajas del distrito D-04 es:

Cajas Distrito
$$D_{04} = \frac{800}{12} = 66.67 \approx 67$$

Caja armario tiene la capacidad para alimentar hasta a 24 cajas terminales, por lo tanto:

Armarios Distrito
$$\frac{67}{24} = 2.79 \approx 3$$

$$D_{04} =$$

Cada caja terminal deberá ir en un poste debidamente identificado.

Tabla 22 Número de Cajas Y armarios Distrito D-04.

Distrito D-04		
Número de Cajas Número de Armarios		
67	3	

Distrito D-05

El Distrito D-04 cuenta 91.317 abonados proyectados, tomando en cuenta que cada caja de los terminales tiene la capacidad para alimentar hasta 12 clientes ya que CNT

usa las cajas TYCO MDU 212, misma que cuenta con estas 12 salidas. Por lo tanto, el número decajas del distrito D-05 es:

Cajas Distrito
$$\frac{500}{12} = 41,67 \approx 42$$

$$D_{05} = \frac{500}{12} = 41,67 \approx 42$$

Caja armario tiene la capacidad para alimentar hasta a 24 cajas terminales, por lo tanto:

Armarios Distrito
$$\frac{42}{24} = 1.75 \approx 2$$

$$D_{05} =$$

Cada caja terminal deberá ir en un poste debidamente identificado.

Tabla 23 Número de Cajas Y armarios Distrito D-05.

Distrito D-05			
Número de Cajas Número de Armarios			
42	2		

Red Primaria (Troncal)

Muestra el recorrido que existe entre la OLT y los armarios de distribución donde se colocaran los splitter de primer nivel, las distancias se obtuvieron de los planos los que trabaja CNT-EP, la red troncal está compuesta por cuatro Feeder que salen de la OLT.

Para ello se muestra respectivamente cada modelo de la red troncal con la unión de todos los distritos:

Distrito Latacunga

Distrito Salcedo

Distrito Pujili

Distrito Sigchos

Red de Canalización

Asignación de frecuencias:

Para este caso, tendremos que el país está ubicado en la región 2 detallado como EQA 40, donde la Región 2 comprende la zona limitada al este por la línea B y al oeste por la línea C. (Arcotel)

Para el rango de frecuencias tenemos algunas especificaciones del uso de esta banda de frecuencias que son las siguientes:

1452-1492 MHz

	REGIÓN 2 (RR-2020) ECUADOR			
Banda	Atribución	Banda	Atribución	Normativa Técnica Relacionada
1300-1350	RADIOLOCALIZACIÓN RADIONAVEGACIÓN AERONÁUTICA 5.337 RADIONAVEGACIÓN POR SATÉLITE (Tierra-espacio) 5.149 5.337A	1300-1350	RADIOLOCALIZACIÓN RADIONAVEGACIÓN AERONÁUTICA 5.337 RADIONAVEGACIÓN POR SATÉLITE (Tierra-espacio) 5.149 5.337A	
1350-1400	RADIOLOCALIZACIÓN 5.338A 5.149 5.334 5.339	1350-1400	RADIOLOCALIZACIÓN 5.338A 5.149 5.339	
1400-1427	EXPLORACIÓN DE LA TIERRA POR SATÉLITE (pasivo) RADIOASTRONOMÍA INVESTIGACIÓN ESPACIAL (pasivo) 5.340 5.341	1400-1427	EXPLORACIÓN DE LA TIERRA POR SATÉLITE (pasivo) RADIOASTRONOMÍA INVESTIGACIÓN ESPACIAL (pasivo) 5.340 5.341	
1427-1429	OPERACIONES ESPACIALES (Tierra-espacio) FIJO MÓVIL salvo móvil aeronáutico 5.341A 5.341B 5.341C 5.338A 5.341	1427-1429	FIJO MÓVIL salvo móvil aeronáutico 5.341B 5.338A 5.341 EQA.40	Res. SNT-2013-0166
1429-1452	FIJO MÓVIL 5.341B 5.341C 5.343 5.338A 5.341	1429-1452	FIIO MÓVIL 5.341B 5.343 5.338A 5.341 EQA.40	Res. SNT-2013-0166
1452-1492	FUO MÓVIL 5.341B 5.343 5.346A RADIODIFUSIÓN RADIODIFUSIÓN POR SATÉLITE 5.208B 5.341 5.344 5.345	1452-1492	FUO MÓVIL 5.341B 5.343 5.341 5.345 EQA-40	Res. SNT-2013-0166
1492-1518	FIJO MÓVIL 5.341B 5.343 5.341 5.344	1492-1518	FIJO MÓVIL 5.3418 5.343 5.341 EQA-40	Res. SNT-2013-0166
1518-1525	FIJO MÓVIL 5.343 MÓVIL POR SATÉLITE (espacio-Tierra) 5.348 5.348A 5.348B 5.351A 5.341 5.344	1518-1525	FIJO MÓVIL 5.343 MÓVIL POR SATÉLITE (espacio-Tierra) 5.348 5.351A 5.341 EQA.60	Res. SNT-2013-0166

Diseño del sistema de comunicación del radioenlace:

• Determinación de las coordenadas geográficas para el perfil del terreno:

Para realizar el enlace de radiofrecuencia se debe analizar las coordenadas en donde se
utilizaría un punto de referencia para la ubicación de la antena respecto a una distancia de
cada uno de los puntos de referencia para el radioenlace se lo realiza con la herramienta
Google Earth buscando las coordenadas geográficas de cada uno de los puntos.

Ilustración 3. Coordenadas Geográficas de cada uno de los puntos del enlace

Una vez realizado los puntos referenciales en la herramienta Google Earth se utiliza las coordenadas respectivas de cada uno de los puntos, cabe recalcar que se utilizó como subestación o repetidor el cerro Putzalahua, y una antena repetidora tziwa para no poder tener una obstrucción en la primera zona de Fresnel del radioenlace, entonces a partir del software Radio Mobile se indica la latitud y longitud de los puntos referenciales a cada uno de ellos para poder saber a qué distancia las antenas se encuentra de cada una:

Se referencia la latitud, y Longitud de los puntos referenciales:

Localizaciones de las Latitud Longitud antenas o subestaciones.				
Latacunga	0°56'7.00"S	78°37'3.10"O		
Salcedo	1° 2'43.98"S	78°35'24.27"O		
Sigchos	0°42'28.07"S	78°53'20.12"O		
Saquisilí	0°49'40.63"S	78°40'17.23"O		
Pujili	0°57'30.55"S	78°41'56.98"O		
Cerro Putzalahua	0°53'43.49"S	78°30'1.42"O		
Antena repetidora tziwa	0°44'6.57"S	78°50'10.13"O		

Tabla 1. Ubicación geográfica de los puntos de las antenas.

Se determina la distancia entre las antenas:

Localizaciones de las antenas o subestaciones.	Distancia
Latacunga – Cerro Putzalahua	13.70 Km
Cerro Putzalahua – Antena repetidora tziwa	41.21 Km
Antena repetidora tziwa Sigchos Antena Sigchos NET	6.65 Km
Cerro Putzalahua Saquisilí	20.45 Km
Cerro Putzalahua Pujili	23.26 Km
Cerro Putzalahua Salcedo	19.40 Km

Tabla 2. Distancia entre cada una de las antenas.

Perfil del terreno

Para el perfil del terreno se tiene en cuenta los datos y la imagen que obtenemos por parte del software entonces para cada uno de los enlaces se tendrá un perfil del terreno, teniendo en cuenta que tendremos una subestación o repetidor justamente para no obstruir la primera zona de Fresnel, se muestra en la herramienta RMpath del software radio Mobile más a detalle algunos parámetros que conseguimos de la zona de Fresnel.

ENLACE LATANCUNGA CON EL CERRO PUTZALAHUA:

Ilustración 4. Perfil del terreno enlace Latacunga y Antena Cerro putzalahua

ENLACE CERRO PUTZALAHUA CON ANTENA REPETIDORA TZIWA:

Ilustración 5. Perfil del terreno enlace antena repetidora tziwa y Antena Cerro putzalahua

ENLACE CERRO PUTZALAHUA CON PUJILÍ:

Ilustración 6. Perfil del terreno enlace cerro Teligote y subestación Netlife Cevallos.

ENLACE ANTENA REPETIDORA TZIWA CON SIGCHOS:

Ilustración 7. Perfil de elevación para el enlace antena repetidora tziwa y Sigchos.

ENLACE CERRO PUTZALAHUA CON SALCEDO:

Ilustración 8. Perfil de elevación para el enlace antena repetidora putzalahua y Salcedo.

ENLACE CERRO PUTZALAHUA CON SAQUISILÍ:

Ilustración 9. Perfil de elevación para el enlace Saquisilì y el cerro Putzalahua.

Así, también el perfil de la elevación conseguida por parte de la herramienta Google Earth para cada uno de los enlaces necesarios:

ENLACE LATANCUNGA CON EL CERRO PUTZALAHUA:

Ilustración 10. Perfil de elevación para el enlace LATACUNGA y el cerro Putzalahua

ENLACE CERRO PUTZALAHUA CON ANTENA REPETIDORA TZIWA:

Ilustración 11. Perfil de elevación para el enlace cerro Putzalahua y antena repetidora Tziwa.

ENLACE ANTENA REPETIDORA TZIWA CON SIGCHOS:

Ilustración 12. Perfil de elevación para el enlace antena repetidora tziwa y Sigchos.

ENLACE CERRO PUTZALAHUA CON SALCEDO:

Ilustración 13. Perfil de elevación para el enlace antena repetidora cerro Putzalahua y SALCEDO.

ENLACE CERRO PUTZALAHUA CON SAQUISILÍ:

Ilustración 14. Perfil de elevación para el enlace antena repetidora CERRO PUTZALAHUA y Saquisili.

ENLACE CERRO PUTZALAHUA CON PUJILÍ:

Ilustración 15. Perfil de elevación para el enlace antena repetidora CERRO PUTZALAHUA y PUJILI.

Obstáculo por cumbre

En el caso estudiado del radio enlace específicamente en los puntos de las subestaciones y antenas escogidas no existe una obstrucción más del 60% la zona de Fresnel, como se visualiza en los enlaces en las figuras anteriores de cada subestación, entonces cuando esta obstruida la zona Fresnel más del 40% no debemos calcular otro valor especifico, como tenemos en el cerro Putzalahua en una gran altitud tenemos el enlace por la por medio de la

propagación direccional por escoger antenas direccionales implementada el rango de alcance no afectaría específicamente este modelo ya que al implementar por línea de vista no lo hacemos con un rayo directo, por ser directiva no se tendrá obstrucción con el tipo de antena.

Altura de abultamiento

Se tiene en cuenta la distancia entre cada uno de los puntos referenciados, tenemos las distancias las cuales superan más de 10Km se debería corregir el terreno para así tener la consideración de una altura aproximada si afecta a la primera zona de fresnel o no, así se tiene entre el enlace Latacunga, Salcedo, Saquisili, Pujili, a la antena repetidora del cerro Putzalahua.

Se tiene en consideración que la altura de la antena es de 30 metros, en otros casos se aumenta la altura a 70 metros tomando en cuenta la altura del edificio y la altura de la antena, además del radio de la tierra a=6370 Kilómetros y para el factor de corrección es de K=4/3. Para el cálculo aplico:

ALTURA DE ABULTAMIENTO EN CUALQUIER PUNTO:

$$h_{ab} = \frac{d_1 d_2}{2ka}$$

Alturas para el perfil corregido será: $h_{ab} + h$

CÁLCULOS DE LA ALTURA DE ABULTAMIENTO PARA EL PERFIL CORREGIDO DEL ENLACE LATACUNGA – CERRO PUTZALAHUA:

Para los valores de d1 y d2, la distancia entre los dos puntos es de 13,70 Km se tomará en cuenta valores alternados de la distancia máxima:

$$h_{ab} = \frac{d_1 d_2}{2ka} = \frac{(0)3960}{2(\frac{4}{2})6370000} = 0$$

$$h_{ab} == \frac{{}^{(0)10580}}{{}^{2}\left(\frac{4}{3}\right)6370000} = 0$$

$$h_{ab} = \frac{(1700)9954}{2(\frac{4}{3})6370000} = 0,9962$$

$$h_{ab} = \frac{(3460)9130}{2(\frac{4}{3})6370000} = 1,859$$

$$h_{ab} = \frac{(4420)8180}{2(\frac{4}{2})6370000} = 2,1283$$

$$h_{ab} = \frac{(5050)5050}{2(\frac{4}{2})6370000} = 1,501$$

$$h_{ab} = \frac{(8180)4420}{2(\frac{4}{3})6370000} = 2,169$$

$$h_{ab} = \frac{(9130)3460}{2(\frac{4}{3})6370000} = 1,859$$

$$h_{ab} = \frac{(9954)1700}{2(\frac{4}{3})6370000} = 0,996$$

$$h_{ab} = \frac{(3960)0}{2(\frac{4}{3})6370000} = 0$$

d1(m)	d2(m)	h(altura)	hab	$h_{ab} + h$
0	3976	2720	0	2720,00
130	3004	2720	0,99618132	2721,00
200	2590	2686	1,8596821	2687,86
500	1980	2721	2,12846939	2723,13
1240	1240	2706	1,50132457	2707,50
1980	500	2731	2,12846939	2733,13
2590	200	2745	1,8596821	2746,86
3004	130	2752	0,99618132	2753,00
3976	0	2847	0	2847,00

Ilustración 16. Gráfico del Perfil de Corrección del Terreno del enlace Latacunga – cerro Putzalahua.

CÁLCULOS DE LA ALTURA DE ABULTAMIENTO PARA EL PERFIL CORREGIDO DEL ENLACE CERRO PUTZALAHUA – ANTENA REPETIDORA TZIWA:

Para los valores de d1 y d2, la distancia entre los dos puntos es de 41,21 Km se tomará en cuenta valores alternados de la distancia máxima:

$$h_{ab} = \frac{d_1 d_2}{2ka} = \frac{(0)5180}{2(\frac{4}{3})6370000} = 0$$

$$h_{ab} = \frac{(1310)4800}{2(\frac{4}{3})6370000} = 1,48$$

$$h_{ab} = \frac{\frac{(3620)4000}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 3,5162$$

$$h_{ab} = \frac{\frac{(4420)3500}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 3,741$$

$$h_{ab} = \frac{\frac{(6100)3000}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 2,80483$$

$$h_{ab} = \frac{\frac{(7100)2100}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 2,80$$

$$h_{ab} = \frac{\frac{(14400)1020}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 3,74$$

$$h_{ab} = \frac{\frac{(16500)700}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 3,51$$

$$h_{ab} = \frac{\frac{(19200)510}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 1,48$$

 $h_{ab} = \frac{(5180)0}{2(\frac{4}{3})6370000} = 0$

d1(m)	d2(m)	h(altura)	hab	$h_{ab} + h$
0	5180	2901	0	2901,00
510	4800	2746	1,48069074	2747,48
700	4000	2754	3,51628728	2757,52
1020	3500	2778	3,74693878	2781,75
1700	3000	2924	2,80102041	2926,80
2100	2100	2886	2,97598705	2888,98
3000	1700	2855	2,80102041	2857,80
3500	1020	2666	3,74693878	2669,75
4000	700	2700	3,51628728	2703,52
4800	510	2776	1,48069074	2777,48
5180	0	2801	0	2801,00

Ilustración 17. Gráfico del Perfil de corrección del Terreno del enlace cerro Teligote - antena clicknetsa pillarlo.

CÁLCULOS DE LA ALTURA DE ABULTAMIENTO PARA EL PERFIL CORREGIDO DEL SAQUISILI – CERRO PUTZALAHUA:

Para los valores de d1 y d2, la distancia entre los dos puntos es de 20,45 Km se tomará en cuenta valores alternados de la distancia máxima:

$$h_{ab} = \frac{d_1 d_2}{2ka} = \frac{(0)4500}{2(\frac{4}{2})6370000} = 0$$

$$h_{ab} = \frac{(0)3900}{2(\frac{4}{3})6370000} = 0$$

$$h_{ab} = \frac{(1700)9954}{2(\frac{4}{2})6370000} = 0,9962$$

$$h_{ab} = \frac{(3460)9130}{2(\frac{4}{3})6370000} = 1,859$$

$$h_{ab} == \frac{(4420)8180}{2(\frac{4}{3})6370000} = 2,1283$$

$$h_{ab} == \frac{(5050)5050}{2(\frac{4}{3})6370000} = 1,501$$

$$h_{ab} = \frac{(8180)4420}{2(\frac{4}{3})6370000} = 2,169$$

$$h_{ab} = \frac{(9130)3460}{2(\frac{4}{2})6370000} = 1,859$$

$$h_{ab} = \frac{(3900)1700}{2(\frac{4}{3})6370000} = 0,996$$

$$h_{ab} = \frac{(4500)0}{2(\frac{4}{3})6370000} = 0$$

d1(m)	d2(m)	h(altura)	hab	$h_{ab} + h$
0	4560	2720	0	2720,00
130	3900	2720	0,99618132	2721,00
200	2590	2686	1,8596821	2687,86
500	1980	2721	2,12846939	2723,13
1240	1240	2706	1,50132457	2707,50
1980	500	2731	2,12846939	2733,13
2590	200	2745	1,8596821	2746,86
3900	130	2752	0,99618132	2753,00
4560	0	2847	0	2847,00

Ilustración 18. Gráfico del Perfil de Corrección del Terreno del enlace Latacunga – cerro Putzalahua.

CÁLCULOS DE LA ALTURA DE ABULTAMIENTO PARA EL PERFIL CORREGIDO DEL PUJILI- CERRO PUTZALAHUA:

Para los valores de d1 y d2, la distancia entre los dos puntos es de 23,26 Km se tomará en cuenta valores alternados de la distancia máxima:

$$h_{ab} = \frac{d_1 d_2}{2ka} = \frac{(0)4500}{2(\frac{4}{3})6370000} = 0$$

$$h_{ab} = \frac{(0)3900}{2(\frac{4}{3})6370000} = 0$$

$$h_{ab} = \frac{(1700)9954}{(10)(10)(10)(10)(10)} = 0.9962$$

$$h_{ab} = \frac{(1700)9954}{2(\frac{4}{3})6370000} = 0,9962$$

$$h_{ab} == \frac{(3460)9130}{2(\frac{4}{3})6370000} = 1,859$$

$$h_{ab} = \frac{(4420)8180}{2(\frac{4}{3})6370000} = 2,1283$$

$$h_{ab} == \frac{(5050)5050}{2(\frac{4}{3})6370000} = 1,501$$

$$h_{ab} = \frac{(8180)4420}{2(\frac{4}{3})6370000} = 2,169$$

$$h_{ab} = \frac{(9130)3460}{2(\frac{4}{3})6370000} = 1,859$$

$$h_{ab} = \frac{(3900)1700}{2(\frac{4}{3})6370000} = 0,996$$

$$h_{ab} = \frac{(4500)0}{2(\frac{4}{3})6370000} = 0$$

d1(m)	d2(m)	h(altura)	hab	$h_{ab} + h$
0	4500	2720	0	2720,00
130	3900	2720	0,99618132	2721,00
200	2590	2686	1,8596821	2687,86
500	1980	2721	2,12846939	2723,13
1240	1240	2706	1,50132457	2707,50
1980	500	2731	2,12846939	2733,13
2590	200	2745	1,8596821	2746,86
3900	130	2752	0,99618132	2753,00
4500	0	2847	0	2847,00

Ilustración 19. Gráfico del Perfil de Corrección del Terreno del enlace Latacunga – cerro Putzalahua.

CÁLCULOS DE LA ALTURA DE ABULTAMIENTO PARA EL PERFIL CORREGIDO DEL SALCEDO – CERRO PUTZALAHUA:

Para los valores de d1 y d2, la distancia entre los dos puntos es de 19,40 Km se tomará en cuenta valores alternados de la distancia máxima:

$$h_{ab} = \frac{d_1 d_2}{2ka} = \frac{(0)4500}{2(\frac{4}{3})6370000} = 0$$

$$h_{ab} = \frac{\frac{(0)3000}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 0$$

$$h_{ab} = \frac{\frac{(130)2900}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 0,9962$$

$$h_{ab} = \frac{\frac{(200)1590}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 1,859$$

$$h_{ab} = \frac{\frac{(500)1140}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 1,501$$

$$h_{ab} = \frac{\frac{(1040)500}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 2,169$$

$$h_{ab} = \frac{\frac{(1590)200}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 1,859$$

$$h_{ab} = \frac{\frac{(2900)130}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 0,996$$

$$h_{ab} = \frac{\frac{(3000)0}{2(\frac{4}{3})6370000}}{\frac{2(\frac{4}{3})6370000}} = 0$$

d1 (m)	d2 (m)	h(altura)	hab	$h_{ab} + h$
0	3000	2720	0	2720,00
130	2900	2720	0,99618132	2721,00
200	1590	2686	1,8596821	2687,86
500	1040	2721	2,12846939	2723,13
740	740	2706	1,50132457	2707,50
1040	500	2731	2,12846939	2733,13
1590	200	2745	1,8596821	2746,86
2900	130	2752	0,99618132	2753,00
3000	0	2847	0	2847,00

Zona de Fresnel

Para el cálculo de la primera zona de fresnel tendremos en cuenta

Enlace: LATACUNGA - CERRO PUTZALAHUA

Datos

Distancia: 13,70 [Km]

Frecuencia: 1452- 1492 [MHz]

d1(m)	d2(m)	1ra zona de Fresnel
1133,33	13070	0,00
2266,67	11333,33	9,96
3400	10200	15,34
4533,33	9066,67	15,84
5666,67	7933,33	13,69
6800	6800	14,11
7933,33	5666,67	13,69
9066,67	4533,33	15,84
10200	3400	15,34
11333,33	2266,67	9,96
13070	0	0,00

Ilustración 21. Gráfico de la primera Zona de Fresnel LATACUNGA - CERRO PUTZALAHUA

Enlace: CERRO PUTZALAHUA – ANTENA REPETIDORA TZAWI

Datos

Distancia: 41,21 [Km]

Frecuencia: 1452- 1492 [MHz]

d1(m)	d2(m)	1ra zona de Fresnel
1133,33	41210	0,00
2266,67	39000	5,96
3400	33000	5,85
9050	29800	8,33
11400	24060	9,80
19080	19080	10,12
24060	11400	9,80
29800	9050	8,33
33000	3400	5,85
39000	2266,67	5,96
41210	1133,33	0,00

Ilustración 22. *Gráfico de la primera Zona de Fresnel CERRO PUTZALAHUA – ANTENA REPETIDORA TZAWI*

Enlace: CERRO PUTZALAHUA – ANTENA REPETIDORA TZIWA

Datos

Distancia: 6.45 [Km]

Frecuencia: 1452- 1492 [MHz]

d1(m)	d2(m)	1ra zona de Fresnel
0	6450	0,00
560	5950	5,96
790	4350	5,85
970	3050	8,33
1030	2690	9,80
1450	1450	10,12
2690	1030	9,80
3050	970	8,33
4350	790	5,85
5950	560	5,96
6450	0	0,00

Ilustración 23.. Gráfico de la primera Zona de Fresnel CERRO PUTZALAHUA – ANTENA REPETIDORA TZIWA

Enlace: SAQUISILI – CERRO PUTZALAHUA

Datos

Distancia: 20.45 [Km]

Frecuencia: 1452- 1492 [MHz]

d1(m)	d2(m)	1ra zona
41 (111)	42 (111)	de Fresnel

0	20046	0,00
1133,33	15800	9,96
2266,67	10060	15,34
3400	9090	15,84
5040	8040	13,69
7050	7050	14,11
8040	6090	13,69
9090	5040	15,84
10060	3400	15,34
15800	2266,67	9,96
20046	1133,33	0,00

Ilustración 24.. *Gráfico de la primera Zona de Fresnel SAQUISILI – CERRO PUTZALAHUA*

Enlace: PUJILI – CERRO PUTZALAHUA

Datos

Distancia: 23.26 [Km]

Frecuencia: 1452- 1492 [MHz]

d1(m)	d2(m)	1ra zona de Fresnel
0	23260	0,00
1133,33	20100	9,96
2266,67	15500	15,34
3400	9900	15,84
5040	8040	13,69
7050	7050	14,11

8040	6090	13,69
9900	5040	15,84
15500	3400	15,34
20100	2266,67	9,96
23260	0	0,00

Ilustración 25.. *Gráfico de la primera Zona de Fresnel SAQUISILI – CERRO PUTZALAHUA*

Enlace: SALCEDO - CERRO PUTZALAHUA

Datos

Distancia: 19.40 [Km]

Frecuencia: 1452- 1492 [MHz]

d1(m)	d2(m)	1ra zona de Fresnel
0	19400	0,00
1133,33	18500	9,96
2266,67	16500	15,34
3400	10400	15,84
5040	9040	13,69
7050	7050	14,11
9040	6090	13,69
10400	5040	15,84
16500	3400	15,34
18500	2266,67	9,96
19400	1000	0,00

Ilustración 26. *Gráfico de la primera Zona de Fresnel SALCEDO – CERRO PUTZALAHUA*

CÁLCULOS RESPECTIVOS PARA LA PROPAGACIÓN DE LAS ONDAS EN EL RADIO ENLACE:

Respecto a los datos obtenidos en la simulación se realiza los cálculos teóricos para la comparación entre parámetros del radioenlace, en cada uno de los puntos, los cuales son las subestaciones y la antena transmisora de la Universidad Técnica de Ambato, al repetidor tomado como la subestación del cerro Teligote, y se dirige hacías las estaciones de las empresas de Clicknetsa Pillaro y Netlife Cevallos.

Se tiene primero el valor de la frecuencia central entre el rango de frecuencias requerido para aquello:

Frecuencia central

$$f_o = \frac{f_{min} + f_{max}}{2}$$

$$f_o = \frac{1452 + 1492}{2}$$

$$f_o = 1472 (MHz)$$

Se cálculo a base de la potencia de la antena transmisora omnidireccional, y se obtiene un valor de Potencia de transmisión en dB:

Potencia de transmisión

$$dBm = 10 * log \left(\frac{P}{1mW}\right)$$
$$dBm = 10 * log \left(\frac{10 W}{1mW}\right)$$
$$Ptx = 40 dB$$

El valor de la sensibilidad del radio, se lo valora para los dispositivos que se utiliza para la transmisión del radio enlace:

Sensibilidad de radio =
$$S_r = -96 dB$$

ENLACE ENTRE EL PUNTO ENLACE LATACUNGA Y EL CERRO PUTZALAHUA:

De acuerdo con la simulación en Radio Mobile se obtiene los datos mostrados a continuación, aquellos valores son cálculos para realizar la comparación:

Ilustración 27. Enlace entre la ciudad de Latacunga y el cerro Puzalahua en el software Radio Mobile.

DATOS:

Altura de ambas antenas =30 [m] -120 (m)

Perdida de Conectores Tx = 1 [dB]

PIRE = 50,12 [KW]

E = 86.8 [dBuV/m]

Perdida de Conectores Rx = 1 [dB]

Sensibilidad = 1 [uV]

Umbral del Rx = 1 [uV]

Distancia = 13,70 [Km]

Azimuth = 149.88°

Para la zona de Fresnel:

$$r = 8,656 \sqrt{\frac{D [Km]}{f [GHz]}}$$

$$r = 8,656 \sqrt{\frac{13,70}{1,47}}$$

$$r = 14,54 [m]$$

$$r = 0,6 * r$$

$$r = 8,724 [m]$$

Se tendrá perdidas en el espacio libre, se cálcula:

$$F_{SL}(dB) = 32,4 + 20 * log(d) + 20 * log(f)$$

$$F_{SL}(dB) = 32,4 + 20 * log(13,70) + 20 * log(1,47)$$

$$F_{SL}(dB) = 124,37 [dB]$$

Para el margen de desvanecimiento:

Tabla de Confiabilidad	
Confiabilidad (%)	M.D. (dB)
90	10
99	20
99.9	30
99.99	40
99.999	50
99.9999	60
99.99999 70	

Tabla 3: Tabla Confiabilidad

$$FM = 30 * log(d) + 10 * log(6abf) - 10 * log(1 - R) - 70$$

$$d = 13,70 \text{ Km}$$

 $f = 1,47 \text{ [GHz]}$
 $R = 99,9\%$
 $A = 0,25$
 $B = 0,5$
 $FM = 30 * log(13,70) + 10 * log(6 * 0,25 * 0,5 * 1,47) - 10 * log(1 - 0,999) - 70$
 $FM = 25,23 \text{ } dB$

Para el cálculo del punto de reflexión:

Ilustración 28. Gráfico del punto de reflexión

Altura de transmisión: $h_{Tx} = h_{Tx} + h_{torre}$

Donde:

$$h_{tx} = altura \ del \ punto \ de \ transmision$$
 $h_{torre} = altura \ de \ la \ torre$

Altura del receptor: $h_{Rx} = h_{Rx} + h_{torre}$

Donde:

$$h_{rx}=$$
 altura del punto de recepcion $h_{torre}=$ altura de la torre $tan heta=rac{h_{rx}}{d}$ $d1=rac{h_{Tx}-h_{Rx}-d*tan heta}{2*tan heta}$

Para que no exista atenuación por reflexión se de cumplir que $\frac{d}{U} \leq 10 dB$

Donde:

$$U = \sqrt{d^2 + hRx^2}$$

d = distancia total en metros

Datos:
d = 13,70 Km
$h_{Tx} = 3971,7 m$
$h_{torre} = 30 \text{ m}$
$h_{Tx} = 3971, 7 m$
$h_{rx} = 2894,9 \text{ m}$
$h_{torre} = 30 \text{ m}$
LUITE

$$tan\theta = \frac{h_{Rx}}{d} = \frac{3971,7}{13,70 \times 10^3} = 0,28$$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

$$d1 = \frac{3971,7 - 2924,9 + 10,58 \times 10^3 * (0,28)}{2 * (0,28)}$$

$$d1 = 5,114 Km$$

$$U = \sqrt{d^2 + hRx^2}$$

$$U = \sqrt{(13,70 \times 10^3)^2 + (2924,90)^2}$$

$$U = 10,584 Km$$

$$\frac{d}{U} = \frac{5,114}{10,584} = 0,4831$$

$$En (dB) = 10 * log(0,4831) = -3,16 dB$$

Para el cálculo de Potencia de Recepción disponible:

$$PRx = P_{tx} - A_{LTx} + G_{Tx} - F_{SL} + G_{RX} - A_{LRx}$$

$$PRx = 40 dB - 1 dB + 8 dB - 124,4 dB + 8 dB - 1 dB$$

$$PRx = -70,40 dB$$

Cálculo del umbral de recepción:
$$P_{tx} = 40 \ dB$$

$$P_{rx} = -70,40 \ dB$$

$$PN = KTB$$

$$k = 1,38 \ x \ 10^{-23} \frac{J}{k} \ o \ Constante \ de \ Boltzman$$

$$T = Temperatura \ ambiente \ en \ k^0$$

$$B = Ancho \ de \ banda$$

$$B = 1492 - 1452 \ [MHz]$$

$$B = 40 \ [MHz]$$

$$PN = (1,38 \ x \ 10^{-23})(270)(40x10^6) = 9,32 \ x \ 10^{-18} = -170,31 \ dB = -140,31 \ dB$$

$$\frac{S}{N}(salida) = \frac{P_{tx}}{PN} = \frac{40}{-140,31} = -0.29$$

$$\frac{S}{N}(entrada) = \frac{P_{rx}}{PN} = \frac{-70,40}{-140,31} = 0.50$$

$$F = \frac{\frac{S}{N}(salida)}{\frac{S}{N}(entrada)} = \frac{-0,29}{0,50} = -0,58$$

$$U_{Rx} = -203,98 + 10 * log(40x10^6) + 3 dB + 10dB - 0,58$$

$$U_{Rx} = -157,58 dB$$

Para el Margen de Umbral:

$$MU = P_{Rx} - S_r$$

 $MU = -70,40 - (-96)$
 $MU = 18,60 dB$
 $MU > FM$
25, 60 $dB > 25,23 dB$

ENLACE ENTRE LA SUBESTACIÓN CERRO PUTZALAHUA Y ANTENA REPETIDORA TZIWA:

De acuerdo con la simulación en Radio Mobile se obtiene los datos mostrados a continuación, aquellos valores son cálculos para realizar la comparación:

Ilustración 29. Enlace entre el punto cerro Putzalahua y antena repetidora Tziwa en el software Radio Mobile.

DATOS:

Altura de ambas antenas =30 [m]

Perdida de Conectores Tx = 1 [dB]

PIRE = 50,12 [KW]

E = 72,7 [dBuV/m]

Perdida de Conectores Rx = 1 [dB]

Sensibilidad = 1 [uV]

Umbral del Rx = 1 [uV]

Distancia = 41,21 [Km]

Azimuth = $262,03^{\circ}$

Para la Zona de Fresnel:

$$r = 8,656 \sqrt{\frac{D [Km]}{f [GHz]}}$$

$$r = 8,656 \sqrt{\frac{41,21}{1,47}}$$

$$r = 9,5347 [m]$$

$$r = 0,6 * r$$

$$r = 5,7208 [m]$$

Se tendrá perdidas en el espacio libre, se cálcula:

$$F_{SL}(dB) = 32,4 + 20 * log(d) + 20 * log(f)$$

$$F_{SL}(dB) = 32,4 + 20 * log(41,21) + 20 * log(1,47)$$

$$F_{SL}(dB) = 117,0408 [dB]$$

Para el Margen de desvanecimiento:

$$FM = 30 * log(d) + 10 * log(6abf) - 10 * log(1 - R) - 70$$

$$d = 41,21 Km$$

$$f = 1,47 [GHz]$$

$$R = 99,9\%$$

$$A = 0,17$$

$$B = 0,5$$

$$FM = 30 * log(41,21) + 10 * log(6 * 0,17 * 0,5 * 1470) - 10 * log(1 - 0,999) - 70$$

$$FM = 12,56 dB$$

Cálculo del punto de reflexión:

Altura de transmisión: $h_{Tx} = h_{Tx} + h_{torre}$

Donde:

$$h_{tx} = altura \ del \ punto \ de \ transmision$$
 $h_{torre} = altura \ de \ la \ torre$

Altura del receptor: $h_{Rx} = h_{Rx} + h_{torre}$

Donde:

$$h_{rx}=$$
 altura del punto de recepcion $h_{torre}=$ altura de la torre $tan heta=rac{h_{rx}}{d}$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

Para que no exista atenuación por reflexión se de cumplir que $\frac{d}{U} \le 10 dB$

Donde:

$$U = \sqrt{d^2 + hRx^2}$$

d = distancia total en metros

DATOS:
d = 41,21 Km
$h_{Tx} = 2894,90 \text{ m}$
$h_{torre} = 30 \text{ m}$
$h_{Tx} = 2924, 90 \text{ m}$
$h_{rx} = 2895,60 \text{ m}$
$h_{torre} = 30 \text{ m}$
$h_{rr} = 2925.60 \text{ m}$

$$tan\theta = \frac{h_{Rx}}{d} = \frac{2925,60}{4,55 \times 10^3} = 0,643$$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

$$d1 = \frac{2894,90 - 2925,60 + 4,55 \times 10^3 * (0,643)}{2 * (0,643)}$$

$$d1 = 2,251 Km$$

$$U = \sqrt{d^2 + hRx^2}$$

$$U = \sqrt{(4,55 \times 10^3)^2 + (2895,60)^2}$$

$$U = 5,393 Km$$

$$\frac{d}{U} = \frac{2,251}{5,393} = 0,417$$

$$En (dB) = 10 * log(0,417) = -3,799 dB$$

Para el cálculo de la potencia de recepción disponible:

$$PRx = P_{tx} - A_{LTx} + G_{Tx} - F_{SL} + G_{RX} - A_{LRx}$$

$$PRx = 40 dB - 1 dB + 8 dB - 117 dB + 8 dB - 1 dB$$

$$PRx = -63 dB$$

Cálculo del umbral de recepción:

$$P_{tx} = 40 \, dB$$

$$P_{rx} = -63 \, dB$$

$$PN = KTB$$

$$k = 1,38 \, x \, 10^{-23} \frac{J}{k} \, o \, Constante \, de \, Boltzman$$

$$T = Temperatura \, ambiente \, en \, k^0$$

$$B = Ancho \, de \, banda$$

$$B = 1492 - 1452 \, [MHz]$$

$$B = 40 \, [MHz]$$

$$PN = (1,38 \, x \, 10^{-23})(270)(40x10^6) = 9,32 \, x \, 10^{-18} = -170,31 \, dB = -140,31 \, dB$$

$$\frac{S}{N}(salida) = \frac{P_{tx}}{PN} = \frac{40}{-139,71} = -0,286$$

$$\frac{S}{N}(entrada) = \frac{P_{rx}}{PN} = \frac{-63}{-139,71} = 0.45$$

$$F = \frac{\frac{S}{N}(salida)}{\frac{S}{N}(entrada)} = \frac{-0,29}{0,45} = -0,64$$

$$U_{Rx} = -203,98 + 10 * log(40x10^6) + 3 dB + 10dB - 0,64$$

$$U_{Rx} = -157,64 dB$$

Para el margen de umbral:

$$MU = P_{Rx} - S_r$$

 $MU = -63 - (-96)$
 $MU = 33 dB$
 $MU > FM$
33 $dB > 12,56 dB$

ENLACE ENTRE LA SUBESTACIÓN SIGCHOS Y ANTENA REPETIDORA TZIWA:

De acuerdo con la simulación en Radio Mobile se obtiene los datos mostrados a continuación, aquellos valores son cálculos para realizar la comparación:

Ilustración 30. Enlace entre el punto cerro SIGCHOS Y ANTENA REPETIDORA TZIWA en el software Radio Mobile.

DATOS:

Altura de ambas antenas =30 [m] y 128 (m)

Perdida de Conectores Tx = 1 [dB]

PIRE = 50,12 [KW]

E = 59.2 [dBuV/m]

Perdida de Conectores Rx = 1 [dB]

Sensibilidad = 1 [uV]

Umbral del Rx = 1 [uV]

Distancia = 6,65 [Km]

Azimuth = $10,99^{\circ}$

Para la Zona de Fresnel:

$$r = 3982 \sqrt{\frac{D [Km]}{f [GHz]}}$$

$$r = 3982 \sqrt{\frac{6,65}{1,47}}$$

$$r = 267,82 [m]$$

 $r = 0,6 * r$
 $r = 160,69 [m]$

Cálculos para perdidas en el espacio libre:

$$F_{SL}(dB) = 32,4 + 20 * log(d) + 20 * log(f)$$

$$F_{SL}(dB) = 32,4 + 20 * log(6,65) + 20 * log(1,47)$$

$$F_{SL}(dB) = 116,94 [dB]$$

Para el Margen de desvanecimiento:

$$FM = 30 * log(d) + 10 * log(6abf) - 10 * log(1 - R) - 70$$

 $d = 6,65 \ Km$
 $f = 1,47 \ [GHz]$
 $R = 99,9\%$
 $A = 0,167$
 $B = 0,5$
 $FM = 30 * log(6,65) + 10 * log(6 * 0,167 * 0,5 * 1,47) - 10 * log(1 - 0,999) - 70$
 $FM = 16,64 \ dB$

Cálculo del punto de reflexión, se utiliza las fórmulas antes mencionadas entonces:

Altura de transmisión: $h_{Tx} = h_{Tx} + h_{torre}$

Donde:

 $h_{tx} = altura \ del \ punto \ de \ transmision$ $h_{torre} = altura \ de \ la \ torre$

Altura del receptor: $h_{Rx} = h_{Rx} + h_{torre}$

Donde:

 $h_{rx}=altura\ del\ punto\ de\ recepcion$ $h_{torre}=altura\ de\ la\ torre$ $tan heta=rac{h_{rx}}{d}$ $d1=rac{h_{Tx}-h_{Rx}-d*tan heta}{2*tan heta}$

Para que no exista atenuación por reflexión se de cumplir que $\frac{d}{U} \le 10 dB$

Donde:

$$U = \sqrt{d^2 + hRx^2}$$

d = distancia total en metros

Datos:
d = 6,67 Km
$h_{Tx} = 3000 m$
$h_{torre} = 30 \text{ m}$
$h_{Tx} = 3000 \text{ m}$
$h_{rx} = 2801,80 \text{ m}$
$h_{torre} = 30 \text{ m}$
$h_{\rm h} = 2831.80 \rm m$

$$tan\theta = \frac{h_{Rx}}{d} = \frac{2831,80}{6,67 \times 10^3} = 0,1408$$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

$$d1 = \frac{3000 - 2801,80 + 20,10 \times 10^3 * (0,1408)}{2 * (0,1408)}$$

$$d1 = 10,38 \text{ Km}$$

$$U = \sqrt{d^2 + hRx^2}$$

$$U = \sqrt{(20,10 \times 10^3)^2 + (2831,80)^2}$$

$$U = 20,29 \text{ Km}$$

$$\frac{d}{U} = \frac{10,38}{20,29} = 0,51$$

$$En (dB) = 10 * log(0,51) = -2,924 dB$$

Para la Potencia de Recepción disponible:

$$PRx = P_{tx} - A_{LTx} + G_{Tx} - F_{SL} + G_{RX} - A_{LRx}$$

$$PRx = 40 dB - 1 dB + 8 dB - 129,9 dB + 8 dB - 1 dB$$

$$PRx = -75,90 dB$$

Cálculo del umbral de recepción:

$$P_{tx} = 40dB$$

$$P_{rx} = -75,90 dB$$

$$PN = KTB$$

$$k=1,38 \ x \ 10^{-23} rac{J}{k} \ o \ Constante \ de \ Boltzman$$

$$T=Temperatura \ ambiente \ en \ k^0$$

$$B=Ancho \ de \ banda$$

$$B=1492-1452 \ [MHz]$$

$$B=40 \ [MHz]$$

$$PN=(1,38 \ x \ 10^{-23})(270)(40x10^6)=9,32 \ x \ 10^{-18}=-170,31 \ dB=-140,31 \ dB$$

$$\frac{S}{N}(salida) = \frac{P_{tx}}{PN} = \frac{40}{-139,85} = -0,286$$

$$\frac{S}{N}(entrada) = \frac{P_{rx}}{PN} = \frac{-75,90}{-139,85} = 0.543$$

$$F = \frac{\frac{S}{N}(salida)}{\frac{S}{N}(entrada)} = \frac{-0,286}{0,543} = -0,53$$

$$U_{Rx} = -203,98 + 10 * log(40x10^6) + 3 dB + 10dB - 0,53$$

$$U_{Rx} = -157,53 dB$$

Margen de Umbral:

$$MU = P_{Rx} - S_r$$

 $MU = -46,02 - (-96)$
 $MU = 49,98 dB$
 $MU < FM$
16,64 $dB < 49,98 dB$

ENLACE ENTRE LA SUBESTACIÓN CERRO PUTZALAHUA Y SAQUISILI:

De acuerdo con la simulación en Radio Mobile se obtiene los datos mostrados a continuación, aquellos valores son cálculos para realizar la comparación:

Ilustración 31. Enlace entre el punto CERRO PUTZALAHUA Y SAQUISILI en el software Radio Mobile.

DATOS:

Altura de ambas antenas =30 [m]

Perdida de Conectores Tx = 1 [dB]

PIRE = 50,12 [KW]

E = 59.2 [dBuV/m]

Perdida de Conectores Rx = 1 [dB]

Sensibilidad = 1 [uV]

Umbral del Rx = 1 [uV]

Distancia = 20.6 [Km]

Azimuth = 10.99°

Para la Zona de Fresnel:

$$r = 8,656 \sqrt{\frac{D [Km]}{f [GHz]}}$$

$$r = 8,656 \sqrt{\frac{20,6}{1,47}}$$

$$r = 20,04 [m]$$

$$r = 0.6 * r$$

 $r = 12.02 [m]$

Cálculos para perdidas en el espacio libre:

$$F_{SL}(dB) = 32,4 + 20 * log(d) + 20 * log(f)$$

$$F_{SL}(dB) = 32,4 + 20 * log(20,06) + 20 * log(1,47)$$

$$F_{SL}(dB) = 129,9445 [dB]$$

Para el Margen de desvanecimiento:

$$FM = 30 * log(d) + 10 * log(6abf) - 10 * log(1 - R) - 70$$

d=20,06~Km

$$f = 1,47 [GHz]$$

$$R=99,9\%$$

$$A = 0.167$$

$$B = 0.5$$

$$FM = 30 * log(20,06) + 10 * log(6 * 0,167 * 0,5 * 1470) - 10 * log(1 - 0,999) - 70$$

$$FM = 31,83 dB$$

Cálculo del punto de reflexión, se utiliza las fórmulas antes mencionadas entonces:

Altura de transmisión: $h_{Tx} = h_{Tx} + h_{torre}$

Donde:

 $h_{tx} = altura \ del \ punto \ de \ transmision$

$$h_{torre} = altura de la torre$$

Altura del receptor: $h_{Rx} = h_{Rx} + h_{torre}$

Donde:

 $h_{rx} = altura \ del \ punto \ de \ recepcion$

 $h_{torre} = altura de la torre$

$$tan\theta = \frac{h_{rx}}{d}$$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

Para que no exista atenuación por reflexión se de cumplir que $\frac{d}{U} \le 10 dB$

Donde:

$$U = \sqrt{d^2 + hRx^2}$$

d = distancia total en metros

Datos:
d = 20,06 Km
$h_{Tx} = 2894,9 \text{ m}$
$h_{torre} = 30 \text{ m}$
$h_{Tx} = 2991, 9 m$
$h_{rx} = 2801,80 \text{ m}$
$h_{torre} = 30 \text{ m}$
$h_{rx} = 39875,80 \text{ m}$

$$tan\theta = \frac{h_{Rx}}{d} = \frac{2831,80}{20,10 \times 10^{3}} = 0,1408$$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

$$d1 = \frac{2894,90 - 39875 + 20,10 \times 10^{3} * (0,1408)}{2 * (0,1408)}$$

$$d1 = 10,38 \text{ Km}$$

$$U = \sqrt{d^{2} + hRx^{2}}$$

$$U = \sqrt{(20,10 \times 10^{3})^{2} + (2831,80)^{2}}$$

$$U = 20,29 \text{ Km}$$

$$\frac{d}{U} = \frac{10,38}{20,29} = 0,51$$

$$En (dB) = 10 * log(0,51) = -2,924 dB$$

Para la Potencia de Recepción disponible:

$$PRx = P_{tx} - A_{LTx} + G_{Tx} - F_{SL} + G_{RX} - A_{LRx}$$

$$PRx = 40 dB - 1 dB + 60 dB - 129,9 dB + 59,2 dB - 1 dB$$

$$PRx = -27.30 dB$$

Cálculo del umbral de recepción:

$$P_{tx}=40dB$$

$$P_{rx}=-27{,}30~dB$$

$$PN=KTB$$

$$k=1{,}38~x~10^{-23}\frac{J}{k}~o~Constante~de~Boltzman$$

$$T = Temperatura\ ambiente\ en\ k^0$$

$$B = Ancho\ de\ banda$$

$$B = 1492 - 1452\ [MHz]$$

$$B = 40\ [MHz]$$

$$PN = (1,38\ x\ 10^{-23})(270)(40x10^6) = 9,32\ x\ 10^{-18} = -170,31\ dB = -140,31\ dB$$

$$\frac{S}{N}(salida) = \frac{P_{tx}}{PN} = \frac{40}{-139,85} = -0,286$$

$$\frac{S}{N}(entrada) = \frac{P_{rx}}{PN} = \frac{-75,90}{-139,85} = 0.543$$

$$F = \frac{\frac{S}{N}(salida)}{\frac{S}{N}(entrada)} = \frac{-0,286}{0,543} = -0,53$$

$$U_{Rx} = -203,98 + 10 * log(40x10^6) + 3 dB + 10dB - 0,53$$

$$U_{Rx} = -115,48 dB$$

Margen de Umbral:

$$MU = P_{Rx} - S_r$$
 $MU = -27,30 - (-107)$
 $MU = 79,7 dB$
 $MU > FM$
 $MU > 31,83 dB$

ENLACE ENTRE LA SUBESTACIÓN CERRO PUTZALAHUA Y PUJILI:

De acuerdo con la simulación en Radio Mobile se obtiene los datos mostrados a continuación, aquellos valores son cálculos para realizar la comparación:

Ilustración 32. Enlace entre el punto CERRO PUTZALAHUA Y PUJILI en el software Radio Mobile.

DATOS:

Altura de ambas antenas =30 [m]

Perdida de Conectores Tx = 1 [dB]

PIRE = 50,12 [KW]

E = 59,2 [dBuV/m]

Perdida de Conectores Rx = 1 [dB]

Sensibilidad = 1 [uV]

Umbral del Rx = 1 [uV]

Distancia = 23.4 [Km]

Azimuth = 10.99°

Para la Zona de Fresnel:

$$r = 8,656 \sqrt{\frac{D [Km]}{f [GHz]}}$$

$$r = 8,656 \sqrt{\frac{23,4}{1,47}}$$

$$r = 19,04 [m]$$

$$r = 0,6 * r$$

$$r = 11,42 [m]$$

Cálculos para perdidas en el espacio libre:

$$F_{SL}(dB) = 32,4 + 20 * log(d) + 20 * log(f)$$

$$F_{SL}(dB) = 32,4 + 20 * log(23,4) + 20 * log(1,47)$$

$$F_{SL}(dB) = 123,9445 [dB]$$

Para el Margen de desvanecimiento:

$$FM = 30 * log(d) + 10 * log(6abf) - 10 * log(1 - R) - 70$$

$$d = 23.4 \text{ Km}$$

$$f = 1.47 \text{ [GHz]}$$

$$R = 99.9\%$$

$$A = 0.167$$

$$B = 0.5$$

$$FM = 30 * log(23.4) + 10 * log(6 * 0.167 * 0.5 * 1470) - 10 * log(1 - 0.999) - 70$$

$$FM = 39.74dB$$

Cálculo del punto de reflexión, se utiliza las fórmulas antes mencionadas entonces:

Altura de transmisión: $h_{Tx} = h_{Tx} + h_{torre}$

Donde:

$$h_{tx} = altura \ del \ punto \ de \ transmision$$
 $h_{torre} = altura \ de \ la \ torre$

Altura del receptor: $h_{Rx} = h_{Rx} + h_{torre}$

Donde:

$$h_{rx}=$$
 altura del punto de recepcion $h_{torre}=$ altura de la torre $tan heta=rac{h_{rx}}{d}$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

Para que no exista atenuación por reflexión se de cumplir que $\frac{d}{U} \le 10 dB$

Donde:

$$U = \sqrt{d^2 + hRx^2}$$

d = distancia total en metros

Datos:
d = 23,4 Km
$h_{Tx} = 3000 \text{ m}$
$h_{torre} = 30 \text{ m}$
$h_{Tx} = 3000 \text{ m}$
$h_{rx} = 2801,80 \text{ m}$
$h_{torre} = 30 \text{ m}$
$h_{rx} = 39875,80 \text{ m}$

$$tan\theta = \frac{h_{Rx}}{d} = \frac{3000}{20,10 \times 10^3} = 0,1408$$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

$$d1 = \frac{3000 - 39875 + 20,10 \times 10^3 * (0,1408)}{2 * (0,1408)}$$

$$d1 = 10,38 Km$$

$$U = \sqrt{d^2 + hRx^2}$$

$$U = \sqrt{(23,04 \times 10^3)^2 + (39875,80)^2}$$

$$U = 46,05 Km$$

$$\frac{d}{U} = \frac{10,38}{46,05} = 0,22$$

$$En (dB) = 10 * log(0,22) = -6,57 dB$$

Para la Potencia de Recepción disponible:

$$PRx = P_{tx} - A_{LTx} + G_{Tx} - F_{SL} + G_{RX} - A_{LRx}$$

$$PRx = 46,02 dB - 1 dB + 60 dB - 129,9 dB + 48,2 dB - 1 dB$$

$$PRx = -22,32 dB$$

Cálculo del umbral de recepción:

$$P_{tx} = 46,02dB$$

$$P_{rx} = -22,32 \ dB$$

$$PN = KTB$$

$$k = 1,38 \ x \ 10^{-23} \frac{J}{k} \ o \ Constante \ de \ Boltzman$$

$$T = Temperatura \ ambiente \ en \ k^0$$

$$B = Ancho \ de \ banda$$

$$B = 1492 - 1452 \ [MHz]$$

$$B = 40 \ [MHz]$$

$$PN = (1,38 \ x \ 10^{-23})(270)(40x10^6) = 9,32 \ x \ 10^{-18} = -170,31 \ dB = -140,31 \ dB$$

$$\frac{S}{N}(salida) = \frac{P_{tx}}{PN} = \frac{46,02}{-139,85} = -0,329$$

$$\frac{S}{N}(entrada) = \frac{P_{rx}}{PN} = \frac{-22,32}{-139,85} = 0.1595$$

$$U_{Rx} = -203,98 + 10 * log(40x10^6) + 3 dB + 10dB - 2,06$$

 $U_{Rx} = -117,01 dB$

 $F = \frac{\frac{S}{N}(salida)}{\frac{S}{N}(entrada)} = \frac{-0,329}{0,1595} = -2,06$

Margen de Umbral:

$$MU = P_{Rx} - S_r$$
 $MU = -22,32 - (-107)$
 $MU = 84,68 dB$
 $MU > FM$
 $84,68 dB > 39,74 dB$

ENLACE ENTRE LA SUBESTACIÓN CERRO PUTZALAHUA Y SALCEDO:

De acuerdo con la simulación en Radio Mobile se obtiene los datos mostrados a continuación, aquellos valores son cálculos para realizar la comparación:

Ilustración 33. Enlace entre el punto cerro Putzalahua y Salcedo en el software Radio Mobile.

DATOS:

Altura de ambas antenas =150 [m] y 120 (m)

Perdida de Conectores Tx = 1 [dB]

PIRE = 50,12 [KW]

E = 59,2 [dBuV/m]

Perdida de Conectores Rx = 1 [dB]

Sensibilidad = 1 [uV]

Umbral del Rx = 1 [uV]

Distancia = 19,7 [Km]

Azimuth = $10,99^{\circ}$

Para la Zona de Fresnel:

$$r = 8,656 \sqrt{\frac{D [Km]}{f [GHz]}}$$

$$r = 8,656 \sqrt{\frac{19,7}{1,47}}$$

$$r = 15,04 [m]$$

$$r = 0,6 * r$$

$$r = 9,02 [m]$$

Cálculos para perdidas en el espacio libre:

$$F_{SL}(dB) = 32,4 + 20 * log(d) + 20 * log(f)$$

$$F_{SL}(dB) = 32,4 + 20 * log(19,7) + 20 * log(1,47)$$

$$F_{SL}(dB) = 123,9445 [dB]$$

Para el Margen de desvanecimiento:

$$FM = 30 * log(d) + 10 * log(6abf) - 10 * log(1 - R) - 70$$

$$d = 19.7 Km$$

$$f = 1.47 [GHz]$$

$$R = 99.9\%$$

$$A = 0.167$$

$$B = 0.5$$

$$FM = 30 * log(23.4) + 10 * log(6 * 0.167 * 0.5 * 1470) - 10 * log(1 - 0.999) - 70$$

$$FM = 37.52 dB$$

Cálculo del punto de reflexión, se utiliza las fórmulas antes mencionadas entonces:

Altura de transmisión: $h_{Tx} = h_{Tx} + h_{torre}$

Donde:

$$h_{tx} = altura \ del \ punto \ de \ transmision$$
 $h_{torre} = altura \ de \ la \ torre$

Altura del receptor: $h_{Rx} = h_{Rx} + h_{torre}$

Donde:

$$h_{rx}=$$
 altura del punto de recepcion $h_{torre}=$ altura de la torre $tan heta=rac{h_{rx}}{d}$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

Para que no exista atenuación por reflexión se de cumplir que $\frac{d}{U} \le 10 dB$

Donde:

$$U = \sqrt{d^2 + hRx^2}$$

d = distancia total en metros

Datos:
d = 19,7 Km
$h_{Tx} = 2750 \text{ m}$
$h_{torre} = 30 \text{ m}$
$h_{Tx} = 2750 \text{ m}$
$h_{rx} = 2801,80 \text{ m}$
$h_{torre} = 30 \text{ m}$
$h_{rx} = 39875, 80 \text{ m}$

$$tan\theta = \frac{h_{Rx}}{d} = \frac{2750}{20,10 \times 10^3} = 0,1408$$

$$d1 = \frac{h_{Tx} - h_{Rx} - d * tan\theta}{2 * tan\theta}$$

$$d1 = \frac{2750 - 39875 + 20,10 \times 10^3 * (0,1408)}{2 * (0,1408)}$$

$$d1 = 10,38 Km$$

$$U = \sqrt{d^2 + hRx^2}$$

$$U = \sqrt{(19,7 \times 10^3)^2 + (39875,80)^2}$$

$$U = 44,02 Km$$

$$\frac{d}{U} = \frac{10,38}{44,02} = 0,34$$

$$En (dB) = 10 * log(0,34) = -4,68 dB$$

Para la Potencia de Recepción disponible:

$$PRx = P_{tx} - A_{LTx} + G_{Tx} - F_{SL} + G_{RX} - A_{LRx}$$

$$PRx = 46,02 dB - 1 dB + 60 dB - 123,5 dB + 48,7 dB - 1 dB$$

$$PRx = -29,22 dB$$

Cálculo del umbral de recepción:

$$P_{tx} = 46,02dB$$

$$P_{rx} = -22,32 \ dB$$
 $PN = KTB$
 $k = 1,38 \ x \ 10^{-23} \frac{J}{k} \ o \ Constante \ de \ Boltzman$
 $T = Temperatura \ ambiente \ en \ k^0$
 $B = Ancho \ de \ banda$
 $B = 1492 - 1452 \ [MHz]$
 $B = 40 \ [MHz]$
 $PN = (1,38 \ x \ 10^{-23})(270)(40x10^6) = 9,32 \ x \ 10^{-18} = -170,31 \ dB = -140,31 \ dB$

$$\frac{S}{N}(salida) = \frac{P_{tx}}{PN} = \frac{46,02}{-139,85} = -0,329$$

$$\frac{S}{N}(entrada) = \frac{P_{rx}}{PN} = \frac{-22,32}{-139,85} = 0.1595$$

$$F = \frac{\frac{S}{N}(salida)}{\frac{S}{N}(entrada)} = \frac{-0,329}{0,1595} = -2,06$$

$$U_{Rx} = -203,98 + 10 * log(40x10^6) + 3 dB + 10dB - 2,06$$

$$U_{Rx} = -117,01 dB$$

Margen de Umbral:

$$MU = P_{Rx} - S_r$$
 $MU = -29,22 - (-107)$
 $MU = 77,78 dB$
 $MU > FM$
 $77,78 dB > 37,52 dB$

DISEÑO DE LA SIMULACIÓN DE LA RED DE BACKUP

A continuación, se mostrará la red Backup en el simulador Optisystem

Ilustración 13 Red Gpon Optisystem

Ilustración 14 Ventanas de visualización de las potencias de la Red

Ilustración 15 Analizador del espectro optico en la red

Resultados:

Tabla 34 Resultados de la Red Gpon en Optisystem

Distancia (Km)	MAX. FACTOR (Q)	MIN .BER	JITTER
5	1401.72	0	0.40625
10	1014.28	0	0.40625
20	454.823	0	0.40625
30	197.874	0	0.40625
40	74.1136	0	0.40625
50	22.3422	7.15918e-111	0.437
60	5.58542	1.15932e-008	0.65625

• 5 Km

Ilustración 16 Red Gpon en la distancia de 5 Km

• 10 Km

Ilustración 17 Red Gpon en la distancia de 10 Km

• 30 Km

Ilustración 18 Red Gpon en la distancia de 20 Km

Ilustración 19 Red Gpon en la distancia de 30 Km

• 40 km

• 50 Km

Ilustración 21 Red Gpon en la distancia de 50 Km

• 60 Km

distancia de 60 Km

Características de los equipos

Tipo	Modelo	Descripción	Frecuente en	Polarización	Frecuencia de Operación
Yagi	Yagi-Uda	Elementos metálicos, dipolo con directores y reflectores.	Comunicación punto a punto	Lineal	2.4 GHz, 5 GHz
Parabólica	Dish 500	Plato parabólico refleja ondas hacia un punto focal.	Sistemas de satélite	Lineal o Circular	Variable, depende del uso
Panel	TP-Link TL-ANT2415MS	Antena plana con patrón de haz amplio.	Redes inalámbricas	Lineal	2.4 GHz, 5 GHz
Sectorial	Ubiquiti AM- 5G16-120	Diseñada para cobertura en un sector específico.	Redes inalámbricas	Lineal	5 GHz
Log- Periodica	LPDA-0092	Múltiples elementos para rendimiento	Amplio rango de frecuencias	Lineal	Variable, depende del uso

		constante en frecuencias.			
Helicoidal	Helical Antenna 5.8 GHz	Antena en espiral con radiación circular polarizada.	Comunicación por satélite	Circular	5.8 GHz

Equipo Óptico	Características Técnicas
Transceptores Ópticos (Cisco SFP-	- Velocidad de Transmisión: 10 Gbps
10G-SR)	- Alcance: Hasta 300 metros (multimodo)
,	- Tipo de Fibra: Multimodo (OM3/OM4)
Amplificadores Ópticos (EDFA)	- Ganancia: Variable, típicamente de 20 a 30 dB
	- Rango de Longitud de Onda de Operación: C-
	Band (1530-1565 nm)
Multiplexores y Desmultiplexores	- Longitud de Onda: 1470 nm
WDM (Finisar FTLX1471D3BCL)	- Velocidad de Datos: 10 Gbps
	- Espaciamiento WDM: 20 nm
Conmutadores Ópticos (Keysight	- Número de Puertos: Variable según el modelo
N7700A)	- Tipo de Conmutación: Mecánica o Electrónica
,	- Tiempo de Conmutación: Milisegundos a
	Microsegundos
Convertidores de Medios Ópticos a	- Interfaces: Óptica a Eléctrica y viceversa
Eléctricos (Black Box LGC012A-R2)	- Velocidad de Datos: Variable según el estándar
, in the second	(p. ej., 1 Gbps, 10 Gbps)
Atenuadores Ópticos (JDSU VOA)	- Rango de Atenuación: Variable (por ejemplo, 0-
•	30 dB)
	- Tiempo de Respuesta: Milisegundos
Reflectómetros Ópticos en el	- Longitud de Onda de Operación: Variable (por
Dominio del Tiempo (OTDR -	ejemplo, 1310 nm, 1550 nm)
EXFO FTB-1)	- Rango de Medición: Kilómetros (dependiendo del
Í	modelo)
	- Resolución Espacial: Menos de 1 metro

TOPOLOGIA LOGICA

a

GROUND FLOOR

IX. CONCLUSIONES

- En el diseño de la red de censo, se considera importante conocer el número de abonados disponibles; en este caso para la provincia de Cotopaxi hasta el año 2020, según datos proporcionados por Arcotel, existen 326.840 usuarios. Mediante el método de regresión lineal, se hace una proyección a 10 años dando como resultado 2500 abonados, con un error promedio de 0.09979%, proporcionando un nivel aceptable en los datos calculados y de esta manera poder tomarlos en el diseño de la red óptica como datos reales.
- El ancho de banda calculado de los cincos servicios ofrecidos por la red requiere de 5358.5 kbps por usuario, lo cual resulta ser aceptable ya que el ancho de banda ofrecido por el diseño de la red con tecnología GPON es de 6.51 Mbps por usuario.
- El tramo más largo entre la OLT y el abonado más alejado tiene una longitud de 7450 metros, éste abonado recibe una potencia estimada de -23.01 dB, cumpliendo con la recomendación que trabaja CNT de un máximo de 25 dB en pérdidas y poder disfrutar de un servicio de calidad, fundamentación suficiente para asegurar que todos los otros abonados al estar menos alejados de la OLT, recibirán una potencia mayor o igual a -23.01 dB.

X. RECOMENDACIONES

- La ubicación geográfica de los Armarios de Distribución en la Red Secundaria debe ser estratégicos, debido a que mientras más central esté ubicado el armario con respecto a las cajas terminales, los costos se reducirán.
- Para tener un nivel de confianza más aceptable es recomendable sacar datos de fuentes con credibilidad como lo es INEC, ARCOTEL o CNT, caso contrario la proyección de abonados y cálculos de densidad no serán confiables, significando así que el proyecto no podrá tener fundamentos técnicos, dando como resultado la anulación del proyecto.

• Se recomienda disminuir la distancia entre equipos para que exista un mejor rendimiento reduciendo el ruido en el momento de la transmisión entre el Tx y Rx de la Red GPon en el simulador optysistem.

XI. FE DE ERRATAS

- En el cálculo de la potencia óptica, en un inicio llegaba una potencia muy alta al abonado más lejano; esto se debió a que no se consideró las reservas de la fibra en cada poste, catenaria primaria y secundaria, así como los patchcords y pigtails. Después de haber corregido esto, se obtuvo una potencia más real.
- Con respecto a la simulación en la parte logica, se colocó varios abonados lo cual provocó que el programa comience a fallar. Por lo cual, se redujo a un abonado y se verificó que el diseño de la red propuesto es correcto.

XII. BIBLIOGRAFÍA

- [1] P. Gallardo, Diseño de planta externa para la parroquia los andes del cantón Patate, Ambato: Universidad Técnica De Ambato, 2007.
- [2] J. JIMENEZ, Diseño de planta externa para una central de telecomunicaciones en laparroquia Quinchicoto Tisaleo, Ambato: Universidad Técnica De Ambato, 2007.
- [3] C. Sánchez, Diseño de planta externa para una red acceso con tecnología de nueva generación en el sector de Ambato Santa Catalina para la Corporación Nacional de Telecomunicaciones S.A., Ambato: Universidad Técnica De Ambato, 2009.
- [4] D. Partida, «Techopedia,» Techopedia, 7 Marzo 2012. [En línea]. Available: https://www.techopedia.com/definition/21314/plesiochronous-digital-hierarchy-pdh. [Último acceso: 16 Enero 2024].
- [5] M. G. F. Cobo, «INTEGRACIÓN DE TODOS LOS USUARIOS PORTADORES ENUNA RED ETHERNET (IP) UTILIZANDO LA PLATAFORMA DWDM Y SDH DE LA EMPRESA CELEC EP TRANSELECTRIC.,» Universidad Internacional SEK, Quito, 2010.
- [6] R. Lema, «Real Academia de Ingenieria,» Real Academia de Ingeniería, 21 Mayo 2014. [En línea]. Available: https://diccionario.raing.es/es/lema/jerarqu%C3%ADa-digital-s%C3%ADncrona. [Último acceso: 16 Enero 2024].
- [7] C. Hernandez, «Site Google,» Site Google, 4 Diciembre 2013. [En línea]. Available:https://sites.google.com/site/unidad5telecomunicacion/. [Último acceso: 16 Enero 2024].