Sélection de variables dans un modèle de Poisson Log-Normal (PLN)

Application à l'étude des communautés microbiennes dans le processus de production du lait

KIOYE J. Y.¹

GROLLEMUND P. M.^{1,2} CHASSARD C.¹; CHAUVET J.³

UMRF¹, LMBP², LARIS³

22 juin 2023

Contexte et Motivations

Comprendre ce qui sous-tend la qualité du lait

- Qualité sensorielle et composition biochimique
- Biodiversité prairiale et pratiques d'élevage
- Lien avec les différentes communautés microbiennes

Contexte et Motivations

Comprendre ce qui sous-tend la qualité du lait

- Qualité sensorielle et composition biochimique
- Biodiversité prairiale et pratiques d'élevage
- Lien avec les différentes communautés microbiennes

Amélioration des approches à l'échelle du système agri/agroalimentaire

- Impact des pratiques d'élevage
- Les flux microbiens d'amont en aval
- Identification des facteurs deterministes

Modélisation statistique

- Étudier les abondances conjointes des bactéries
- Évaluer l'intensité des facteurs environementaux
- Identifier des interactions entre bactéries

Modèle de Poisson Log Normal (PLN)

Le modèle PLN 1 : cas particulier de modèle lineaire géneralisé

$$m{Y}_i \mid m{Z}_i \sim \mathcal{P}ig(\exp(m{Z}_i)ig)$$
 (espace observé)
 $m{Z}_i \sim N_pig(m{o}_i + m{x}_i^{ op} m{B}, m{\Sigma}ig)$ (espace latent)

22 juin 2023

^{1.} Julien CHIQUET, Mahendra MARIADASSOU et Stéphane ROBIN. « The Poisson-lognormal model as a versatile framework for the joint analysis of species abundances ». In: Frontiers in Ecology and Evolution 9 (2021), p. 588292

Modèle de Poisson Log Normal (PLN)

Le modèle PLN 1 : cas particulier de modèle lineaire géneralisé

$$m{Y}_i \mid m{Z}_i \sim \mathcal{P}ig(\exp(m{Z}_i)ig)$$
 (espace observé)
 $m{Z}_i \sim N_pig(m{o}_i + m{x}_i^{ op} m{B}, m{\Sigma}ig)$ (espace latent)

1. Julien CHIQUET, Mahendra MARIADASSOU et Stéphane ROBIN. « The Poisson-lognormal model as a versatile framework for the joint analysis of species abundances ». In: Frontiers in Ecology and Evolution 9 (2021), p. 588292

Quelles sont les variables environnementales pertinentes?

Sélection de variables

Plusieurs méthodes existent :

- Sélection du meilleur sous-ensemble : forward-backward, setpwise, etc.
- Couteux sur le plan calculatoire
- Sélection de modèle : AIC, BIC, etc.

^{2.} Meadhbh O'NEILL et Kevin Burke. « Variable selection using a smooth information criterion for distributional regression models ». In: *Statistics and Computing* 33.3 (2023), p. 71

Sélection de variables

Plusieurs méthodes existent :

- Sélection du meilleur sous-ensemble : forward-backward, setpwise, etc.
- Couteux sur le plan calculatoire
- Sélection de modèle : AIC, BIC, etc.

Question pas simple : approches modernes

- Méthode de régularisation : optimisation sous contrainte
- Contraintes relaxées : lasso, ridge, elastic-net, etc.
- Calibrage d'un paramètre de régularisation

2. Meadhbh O'NEILL et Kevin Burke. « Variable selection using a smooth information criterion for distributional regression models ». In: Statistics and Computing 33.3 (2023), p. 71

Sélection de variables

Plusieurs méthodes existent :

- Sélection du meilleur sous-ensemble : forward-backward, setpwise, etc.
- Couteux sur le plan calculatoire
- Sélection de modèle : AIC, BIC, etc.

Question pas simple : approches modernes

- Méthode de régularisation : optimisation sous contrainte
- Contraintes relaxées : lasso, ridge, elastic-net, etc.
- Calibrage d'un paramètre de régularisation
- Récente contribution : smooth information criterion (SIC) ²

2. Meadhbh O'NEILL et Kevin Burke. « Variable selection using a smooth information criterion for distributional regression models ». In: *Statistics and Computing* 33.3 (2023), p. 71

Smooth Information Criterion (SIC)

- Approxime le vrai problème
- Évite de calibrer un paramètre de régularisation par validation croisée
- Ne nécessitent pas l'ajustement d'un très grand nombre de modèles
- Computationnellement moins couteux

Algorithme proposé : Couplage SIC et PLN

Algorithme 1: Poisson Log Normal (PLN)

- 1: Initialisation des paramètres
- 2: répéter

Optimisation des paramètres

jusqu'à convergence;

- 3: Mise à jour des paramètres
- 4: Retourne les meilleurs paramètres

Algorithme proposé : Couplage SIC et PLN

${\bf Algorithme} \ 1: {\bf Poisson} \ {\bf Log} \ {\bf Normal} \ ({\bf PLN})$

- 1: Initialisation des paramètres
- 2: répéter

Optimisation des paramètres

jusqu'à convergence;

- 3: Mise à jour des paramètres
- 4: Retourne les meilleurs paramètres

Algorithme 2 : Smooth Information Criterion (SIC)

- 1: Initialisation : objectif, paramètres
- 2: Définir une séquence de valeurs
- 3: Pour chaque valeur de la séquence

Optimisation sous contrainte

4: Retourne les paramètres filtrés

Algorithme proposé : Couplage SIC et PLN

Algorithme 1 : Poisson Log Normal (PLN)

- 1: Initialisation des paramètres
- 2: répéter

Optimisation des paramètres

jusqu'à convergence;

- 3: Mise à jour des paramètres
- 4: Retourne les meilleurs paramètres

Algorithme 2 : Smooth Information Criterion (SIC)

- 1: Initialisation : objectif, paramètres
- 2: Définir une séquence de valeurs
- 3: Pour chaque valeur de la séquence

Optimisation sous contrainte

4: Retourne les paramètres filtrés

Algorithme 3 : Couplage SIC et PLN

- 1: Initialisation : fonction objective , paramètres
- 2: Définir une séquence de valeurs
- 3: Pour chaque valeur de la séquence

Resoudre un problème PLN complexe

4: Retourne les paramètres filtrés

Expérimentation sur des données simulées

Processus de géneration :

- Générer des variables environnementales (n = 10000, d = 6)
- Considérer des intensités nulles (0) pour certaines variables
- Considérer des intensités moyennes (0.5) pour certaines variables
- Considérer des intensités fortes (1) pour certaines variables
- Générer des données de comptage suivant le modèle PLN ((n = 10000, p = 4)

Expérimentation sur des données simulées

Processus de géneration :

- Générer des variables environnementales (n = 10000, d = 6)
- Considérer des intensités nulles (0) pour certaines variables
- Considérer des intensités moyennes (0.5) pour certaines variables
- Considérer des intensités fortes (1) pour certaines variables
- Générer des données de comptage suivant le modèle PLN ((n = 10000, p = 4)

Objectif:

- Mettre l'intensité des variables non active à zéro
- Minimisé les erreurs des intensités estimées

Résultat sur des données simulées

Table – Vraies intensités (estimées avec PLN)

	espèce 1	espèce 2	espèce 3	espèce 4
<i>x</i> ₁	0 (0.159)	0.5 (0.546)	1 (1.120)	1 (1.048)
<i>X</i> ₂	1 (1.107)	0 (0.161)	0.5 (0.559)	1 (1.007)
<i>X</i> 3	1 (1.143)	0 (0.089)	0.5 (0.649)	0 (0.026)
<i>X</i> ₄	1 (1.148)	1 (1.037)	1 (1.111)	0 (0.098)
<i>X</i> ₅	1 (1.136)	1 (1.034)	1 (1.127)	0.5 (0.571)
<i>X</i> ₆	0 (0.098)	0 (0.096)	0 (0.090)	0 (0.095)

Résultat sur des données simulées

Table – Vraies intensités (estimées avec PLN)

	espèce 1	espèce 2	espèce 3	espèce 4
<i>x</i> ₁	0 (0.159)	0.5 (0.546)	1 (1.120)	1 (1.048)
<i>X</i> ₂	1 (1.107)	0 (0.161)	0.5 (0.559)	1 (1.007)
<i>X</i> 3	1 (1.143)	0 (0.089)	0.5 (0.649)	0 (0.026)
<i>X</i> ₄	1 (1.148)	1 (1.037)	1 (1.111)	0 (0.098)
<i>X</i> ₅	1 (1.136)	1 (1.034)	1 (1.127)	0.5 (0.571)
<i>X</i> ₆	0 (0.098)	0 (0.096)	0 (0.090)	0 (0.095)

Table – Vraies intensités (intensités estimées avec SIC PLN)

	espèce 1	espèce 2	espèce 3	espèce 4
<i>x</i> ₁	0 (0.059)	0.5 (0.446)	1 (1.020)	1 (0.948)
X2	1 (1.006)	0 (0.061)	0.5 (0.459)	1 (0.907)
<i>X</i> ₃	1 (1.043)	0 (0)	0.5 (0.549)	0 (0)
X4	1 (1.048)	1 (0.937)	1 (1.011)	0 (0)
<i>X</i> ₅	1 (1.036)	1 (0.934)	1 (1.027)	0.5 (0.471)
<i>X</i> ₆	0 (0)	0 (0)	0 (0)	0 (0)

Erreur d'estimation

• Erreur d'estimation des intensités avec $PLN \hat{B}$

$$\frac{\|\boldsymbol{B} - \widehat{\boldsymbol{B}}\|_F}{\|\boldsymbol{B}\|_F} = 0.136$$

Erreur d'estimation

• Erreur d'estimation des intensités avec PLN \hat{B}

$$\frac{\|\boldsymbol{B} - \widehat{\boldsymbol{B}}\|_F}{\|\boldsymbol{B}\|_F} = 0.136$$

• Erreur d'estimation des intensités avec SIC PLN B

$$\frac{\|\boldsymbol{B} - \widehat{\boldsymbol{B}}\|_F}{\|\boldsymbol{B}\|_F} = 0.058$$

Qualité de prédiction

- 536 observations de l'abondance de 1458 bactéries
- Abondances : entre 0 et 39671

- 536 observations de l'abondance de 1458 bactéries
- Abondances : entre 0 et 39671

- 12 variables catégorielles
- Les plus pertinentes

- 536 observations de l'abondance de 1458 bactéries
- Abondances : entre 0 et 39671

- 12 variables catégorielles
- Les plus pertinentes

- 536 observations de l'abondance de 1458 bactéries
- Abondances : entre 0 et 39671

- 12 variables catégorielles
- Les plus pertinentes

- 536 observations de l'abondance de 1458 bactéries
- Abondances : entre 0 et 39671

- 12 variables catégorielles
- Les plus pertinentes

Projet Amont Saint-Nectaire

- 536 observations de l'abondance de 1458 bactéries
- Abondances : entre 0 et 39671

- 12 variables catégorielles
- Les plus pertinentes

Autres données

- Projet MINDS : diversité botanique
- Projet TANDEM : pratiques agricoles

Projet Amont Saint-Nectaire

- 536 observations de l'abondance de 1458 bactéries
- Abondances : entre 0 et 39671

- 12 variables catégorielles
- Les plus pertinentes

Autres données

Projet MINDS : diversité botanique

Projet TANDEM : pratiques agricoles

Quelles sont les variables environnementales et les pratiques agricoles qui expliquent les abondances ?

Merci pour votre attention!!!

"Le choix des variables est l'essence même de l'art de la modélisation." George E. P. Box