Taller de Capa de Red

Teoría de las Comunicaciones

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

23.09.2014

Agenda

- Introducción
- 2 ICMP: el protocolo de control de internet
 - ICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy

Agenda

- Introducción
- 2 ICMP: el protocolo de control de internet
 - ICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy

Objetivos

- Estudiar el protocolo de control de internet.
- Y algunas herramientas que se apoyan sobre esta tecnología.
- Implementar algunas de ellas.
- Analizar cómo funcionan y sacar conclusiones al respecto.
- En sí, ponernos las botas y dar una vuelta por la capa de red.

Agenda

- Introducción
- 2 ICMP: el protocolo de control de internet
 - ICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy

El protocolo ICMP

- Protocolo de control que forma parte del núcleo de la arquitectura TCP/IP.
- La sigla: Internet Control Message Protocol.
- Objetivo: proveer mensajes de error y de control. No intercambia datos!
- Especificado en el RFC 792.

Cómo y dónde se usa

- Del RFC: ICMP debe ser implementado por cada módulo IP.
- Pueden ser enviados tanto por routers como por hosts arbitrarios.
- Son generados a causa de:
 - Errores en los datagramas IP.
 - Necesidad de comunicar información de diagnóstico.
 - Necesidad de comunicar información de ruteo.
- Siempre se envían a la dirección source del datagrama IP que motivó el mensaje.

Formato de los paquetes

 Los paquetes constan de un header de 8 bytes y una sección de datos variable.

• Header:

- ► Type (1 byte): indica el tipo del mensaje y define el formato de lo que sigue.
- Code (1 byte): especifica el subtipo.
- Checksum (2 bytes): usa el algoritmo de IP sobre el header más los datos del paquete ICMP.
- Los restantes 4 bytes dependen del tipo.

Type	Name
0	Echo Reply
1	Unassigned
2	Unassigned
3	Destination Unreachable
4	Source Quench
5	Redirect
6	Alternate Host Address
7	Unassigned
8	Echo
9	Router Advertisement
10	Router Selection
11	Time Exceeded
12	Parameter Problem
13	Timestamp
14	Timestamp Reply
15	Information Request
16	Information Reply
17	Address Mask Request
18	Address Mask Reply
19	Reserved (for Security)
20-29	Reserved (for Robustness Experiment)

Ejemplo: Echo Request (PING)

- La herramienta de diagnóstico ping usa estos mensajes (y el respectivo *Echo Reply* tipo 0).
- En este caso, los 2 bytes restantes del header indican:
 - ▶ Identifier (1 byte): permite asociar solicitudes con respuestas.
 - Sequence Number (1 byte): idem anterior.
- Y la sección de datos puede contener información arbitraria que debe ser devuelta en la respuesta.

• ICMP como Side-channel

- ICMP como Side-channel
- ICMP host discovery

- ICMP como Side-channel
- ICMP host discovery
- Path MTU Discovery

- ICMP como Side-channel
- ICMP host discovery
- Path MTU Discovery
- ICMP Deshabilitado por error

- ICMP como Side-channel
- ICMP host discovery
- Path MTU Discovery
- ICMP Deshabilitado por error
- ICMP DDoS (Smurf attack, DeathPing)

- ICMP como Side-channel
- ICMP host discovery
- Path MTU Discovery
- ICMP Deshabilitado por error
- ICMP DDoS (Smurf attack, DeathPing)

ICMP desde Scapy

Demo

Implementación de ping

Armando y enviando un Echo Request

Jugando con el TTL

Armando un paquete con TTL bajo

```
>>> sr(IP(dst='www.dc.uba.ar', ttl=1))
>>> res[0][ICMP].display()
0000 192.168.0.105 > 157.92.27.21 ip ==> IP / ICMP 192.168.0.1
192.168.0.105 time-exceeded ttl-zero-during-transit / I
```

Ejemplito corto

Agenda

- Introducción
- 2 ICMP: el protocolo de control de internet
 - ICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy

¿Qué es traceroute?

- Es una herramienta de diagnóstico para averiguar las rutas que atraviesan los paquetes en Internet.
- La mayoría de los sistemas operativos actuales proveen alguna implementación. Ejemplos:
 - tracert en Windows.
 - traceroute en *nix.
- Al correr la herramienta, se debe indicar hacia qué host destino se desea trazar la ruta.
- La salida obtenida suele mostrar las direcciones IP de los hops sucesivos y el respectivo tiempo de respuesta esperado.

Los distintos sabores

- Existen varias maneras de implementar traceroute.
- Usualmente consisten en enviar paquetes IP donde se incremente progresivamente el campo TTL.
- El efecto colateral de esto es recibir respuestas ICMP sucesivas informando que el tiempo de vida del paquete acaba de expirar.
- En lo que sigue describiremos dos implementaciones de traceroute:
 - ▶ Enviando paquetes ICMP de tipo *Echo Request* ajustando el TTL.
 - Utilizando las opciones de los datagramas IP (RFC 1393).

traceroute sobre ICMP

- Implementa (esencialmente) el siguiente algoritmo:
 - **1** Sea h la IP del host destino y sea ttl = 1.
 - Repetir los siguientes pasos hasta obtener una respuesta ICMP de tipo Echo Reply por parte de h:
 - Enviar un paquete ICMP de tipo Echo Request al host h cuyo campo TTL en el header IP valga ttl.
 - Si se recibe una respuesta ICMP de tipo Time Exceeded, anotar la IP origen de dicho paquete. En otro caso, marcar como desconocido (*) el hop.
 - Incrementar ttl.

traceroute sobre ICMP: observaciones

- Usualmente suele enviarse una serie de paquetes por cada valor de ttl (por lo general tres).
- A través de esto, puede estimarse el tiempo medio de respuesta.
- El host origen define un timeout para esperar por cada respuesta. Pasado este intervalo, el hop actual se asume desconocido.
- Observar que las rutas no necesariamente serán siempre iguales!

traceroute utilizando opciones IP

- Problemas del enfoque anterior:
 - ▶ Se generan muchos paquetes: $\geq 2n$, siendo n la cantidad de hops.
 - La ruta puede cambiar en el transcurso del algoritmo.
- El RFC 1393 especifica un algoritmo nuevo de traceroute que utiliza las opciones IP.
- Es más eficiente: genera n+1 paquetes y no sufre del cambio de rutas dado que el origen envía un único paquete.

El algoritmo básico

- La idea: enviar un paquete arbitrario con la opción IP de traceroute adjuntada.
- Cada hop intermedio notará su presencia y devolverá un paquete ICMP de tipo 30 (*Traceroute*) con información apropiada.
- Desventaja: los routers deben implementar esta nueva funcionalidad.

Formato de la opción IP

- La opción de traceroute definida en el RFC esencialmente contiene estos campos:
 - ▶ ID Number: valor arbitrario para identificar las respuestas ICMP.
 - Hop Count: número de routers a través de los cuales pasó hasta el momento el paquete original.
 - Originator IP Address: dirección IP del host que origina el traceroute. Los routers utilizan este campo para devolver las respuestas ICMP.

Formato de los paquetes ICMP (tipo 30)

- El RFC también define el formato de los paquetes ICMP de tipo 30.
- Éstos corresponden a las paquetes intermedios que los routers van enviando al host origen.
- Los campos más relevantes son los siguientes:
 - ▶ ID Number: el identificador copiado del paquete original.
 - ▶ Hop Count: el valor (actualizado) de la cantidad de hops atravesados.
- También indica la velocidad del enlace y la MTU respectiva.

La implementación nativa de Scapy

- Scapy provee una implementación propia de traceroute.
- Utiliza conceptos de nivel de transporte (puntualmente TCP).

```
>>> traceroute('www.dc.uba.ar')
157.92.27.21:tcp80
 192.168.0.3
               11
                         10 190.220.179.1
                                         11
2 190.246.18.1 11
                         11 190.220.176.34
                                         11
                         12 190.220.179.122 11
6 200 89 165 117 11
7 200.89.165.1
              11
                         14 157.92.47.13
                                         11
8 200.89.165.250
               11
                         15 157.92.18.21
                                         11
  200.49.69.165
               11
                         16 157.92.27.21
                                         SA
```

- 11 indica el tipo ICMP: Time to Live Exceeded.
- SA indica la contestación positiva del destino (SYN-ACK).

Detrás de las bambalinas

```
>>> res = sr(IP(dst="www.google.com", ttl=range(7))/ICMP(), timeout=1)
Begin emission:
****Finished to send 7 packets.
**....
Received 14 packets, got 6 answers, remaining 1 packets
>>> res
(<Results: TCP:0 UDP:0 ICMP:6 Other:0>, <Unanswered: TCP:0 UDP:0 ICMP:1 Other:0>)
>>> res[0].display()
0000 IP / ICMP 192.168.0.105 > 173.194.42.211 echo-request 0 ==> IP / ICMP
    192.168.0.1 > 192.168.0.105 time-exceeded ttl-zero-during-transit / IPerror
    / TCMPerror
0001 IP / ICMP 192.168.0.105 > 173.194.42.211 echo-request 0 ==> IP / ICMP
    192.168.0.1 > 192.168.0.105 time-exceeded ttl-zero-during-transit / IPerror
    / ICMPerror
0002 IP / ICMP 192.168.0.105 > 173.194.42.211 echo-request 0 ==> IP / ICMP
    157.92.19.129 > 192.168.0.105 time-exceeded ttl-zero-during-transit /
    IPerror / ICMPerror
```

- 11 indica el tipo ICMP: Time to Live Exceeded.
- SA indica la contestación positiva del destino (SYN-ACK).

MAP OF THE INTERNET THE IPV4 SPACE, 2006

~	~					No.			-						
LOCAL	W W	PUBLIC DATA NETS	HP	DEC	FORD	Č5C	DON-RYN	234	235	234	237	200	291	254 W/	255 VI
GENERAL (111111111111111111111111111111111111111	XEROX	BELL LABS	APPLE	MIT	27 11/	3 DISA	233	232	257	238	245	241	11/253	251,,
BB\$N INC	7/11 11	BBINC	DOD INTEL	ъ D1	5A	CABLE	UK MoD	M(234	1 CA	5	244	141 V/	249 Vir	317 331
3111 711	SARMY ALSC	IBM	VPN,	(1)	28 D51	11/ 27	DISA	227	228	221	724	245	246 \//	249 V	190111
5. Se.	SITA	MERC	STCAP DEBIS CCS	NORSK	35 MERIT	VI	77	A5	1A - P	220 AC	37 37 37 37 37 37 37 37 37 37 37 37 37 3	ASIA- PACIFIC	A CORIBBEAN A CORIBBEAN	US ! VARIOUS	
577	USAS	55 BOEING	SI duPont	DLA	34 HALUBURTON	39/11	PS1	EUROP	Turney.	7 221 6	10	203	200	NORTH AMERICA 195	AFRICA
PACIFIC	, ,,,	50	UK SOCIAL SECURIT	BBIN	INTEROP	L	ARINIC		ARTMENT EFENSE	P. 21	Secure NC	204 204	-l	194	ROPE
3 37	EUROPE	1.44	48 PRUDENTIA	BELL NORTH	HAN- RADIO	JAPAN INET	711	EUI	ROPE	S ZIN TO	1 1	PERI	CA 204	193	PRINCIPIS)
SACOLE .	 	FLICKR	-		-PACI	F/C	127 LOOPBACK	128	131	177	JAPAN	iet ///	(97	VP VP	RION
65 Digg 65	STANGED CENTRAL		70	1	120 4		JAPAN	129	130	135	134	185 111	184	187	AMERICA E 100 BEAN
EUROF	77	PZ ORISINAL	73	<u></u>	or the	IN	117 110	142	141	134	137	182	1/ 1 97	179	177 \"