A Strongly Polynomial Algorithm for the Minimum Cost Generalized Flow Problem

Zhuan Khye (Cedric) Koh

Joint work with

Daniel Dadush, Bento Natura, Neil Olver, László A. Végh

Talk Overview

- Linear Program (LP)
 - Polynomial vs Strongly Polynomial Algorithms

 $oldsymbol{2}$ LPs with ≤ 2 variables per Inequality

Minimum Cost Generalized Flow

4 A Strongly Polynomial Interior Point Method

Linear Program (LP)

Primal:

$$\min \ c^{\top} x$$
s. t. $Ax = b$

$$x \ge \mathbf{0}$$

Dual:

$$\max b^{\top} y$$

s.t. $A^{\top} y \le c$

• Introduced by [Kantorovich '39] [Hitchcock '41] [Koopmans '42] [Dantzig '47].

LP Algorithms

Input: $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$, $c \in \mathbb{R}^m$. Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

- Polynomial algorithms for LP:
 - ► Ellipsoid method [Khachiyan '79]
 - Interior point method [Karmarkar '84] [Renegar '88]

- Simplex method [Dantzig '47]
 - ▶ Not known to be polynomial, but efficient in practice.

Strongly Polynomial

Input: $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$, $c \in \mathbb{R}^m$. Total bit length L.

Def: An algorithm is strongly polynomial if it uses

- 1 poly(m, n) elementary arithmetic operations $(+, -, \times, \div, <?)$, and
- 2 poly(m, n, L) space.

Smale's 9th Problem [Megiddo '83]

Is there a strongly polynomial algorithm for linear programming?

LP Zoo: Strongly Polynomial View

2-Variables-per-Inequality LP

• Every 2-variables-per-inequality LP can be reduced to the **minimum** cost generalized flow problem [Hochbaum '04]:

$$\begin{array}{l} \min \ c^{\top}x \\ \text{s.t.} \ \sum_{e \in \delta^{\mathrm{in}}(v)} \gamma_e x_e - \sum_{e \in \delta^{\mathrm{out}}(v)} x_e = b_v \quad \forall v \in V \\ \\ x \geq \mathbf{0} \end{array}$$

Interpretation: Given a directed graph G = (V, E), node demands $b \in \mathbb{R}^V$, arc costs $c \in \mathbb{R}^E$ and gain factors $\gamma \in \mathbb{R}^E_{>0}$, find a generalized flow satisfying all node demands at minimum cost.

Models energy loss, currency exchange etc.

Example: Production with Different Machines

• Variant of a problem proposed by Kantorovich in his 1939 paper introducing Linear Programming.

- Machine i can produce γ_{ij} units of part j in one day at cost c_{ij} .
- Daily demand d_j for part j.

$$\begin{aligned} &\min \sum_{i \in M, j \in P} c_{ij} x_{ij} \\ &\text{s. t. } \sum_{j \in P} x_{ij} \leq 1 \qquad \forall i \in M \\ &\sum_{i \in M} \gamma_{ij} x_{ij} \geq d_j \quad \forall j \in P \\ &\qquad \qquad x > \mathbf{0} \end{aligned}$$

M: machines P: parts

Previous Algorithms for Generalized Flow

- Algorithms for primal feasibility:
 - Polynomial [Goldberg, Plotkin, Tardos '91]
 - Strongly polynomial [Végh '13] [Olver, Végh '20]
- Algorithms for **dual** feasibility:
 - Polynomial [Aspvall, Shiloach '80]
 - Strongly polynomial [Megiddo '83] [Cohen, Megiddo '94] [Hochbaum, Naor '94] [Dadush, K, Natura, Végh '21] [Karczmarz '22]
- Algorithms for optimization:
 - Polynomial [Wayne '02]

Main Result

Theorem [Dadush, K, Natura, Olver, Végh '24]

There is a strongly polynomial algorithm for the minimum cost generalized flow problem, and consequently, for LPs with at most 2 variables per inequality.

- The algorithm is based on the interior point method (IPM) by [Allamigeon, Dadush, Loho, Natura, Végh '22].
- What we'll need for this result:
 - 1 Interior point method
 - 2 Straight line complexity

Central Path

• For each $\mu > 0$, there exists a unique optimal solution $x^{\rm cp}(\mu)$ to

$$\min \ c^{\top} x - \mu \sum_{i=1}^{n} \log(x_i)$$

s. t.
$$Ax = b$$
.

Def: The central path is the curve

$${x^{cp}(\mu) : \mu > 0}.$$

- As $\mu \to 0$, $x^{\rm cp}(\mu)$ converges to an optimal solution x^* of the LP.
- Interior Point Method (IPM): Walk down the central path with geometrically decreasing μ .

Max Central Path

• Let us reparameterize x^{cp} by the optimality gap:

$$c^{\top}x^{\text{cp}}(g) = c^{\top}x^* + g \qquad \forall g \ge 0.$$

• For every $g \ge 0$ and $i \in [m]$, define

$$x_i^{\mathrm{mcp}}(g) := \mathsf{max} \ x_i$$
 s. t. x feasible optimality $\mathsf{gap} < g$.

Def: The max central path is the curve $\{x^{\text{mcp}}(g) : g \ge 0\}$,

Theorem [Allamigeon, Dadush, Loho, Natura, Végh '22]

$$\frac{1}{2m} x^{\text{mcp}} \le x^{\text{cp}} \le x^{\text{mcp}}$$

Straight Line Complexity

ullet IPM generates a piecewise-affine curve $x^{
m alg}$ near the central path

$$\theta x^{\text{mcp}} \le x^{\text{alg}} \le x^{\text{mcp}}.$$

Def: The straight line complexity of x_i^{mcp} , $SLC_{\theta}(x_i^{\text{mcp}})$, is the minimum number of pieces of a continuous piecewise-affine function h such that

$$\theta x_i^{\text{mcp}} \le h \le x_i^{\text{mcp}}.$$

Straight Line Complexity

• # iterations required by any IPM is at least

$$\max_{i \in [m]} \mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}}).$$

Theorem [Allamigeon, Dadush, Loho, Natura, Végh '22]

There is an interior point method which solves LP in

$$O\left(\inf_{\theta \in (0,1]} \sqrt{m} \log\left(\frac{m}{\theta}\right) \sum_{i=1}^{m} \mathsf{SLC}_{\theta}(x_i^{\text{mcp}})\right)$$

iterations.

Main Result

Theorem [Dadush, K, Natura, Olver, Végh '24]

For the minimum-cost generalized flow problem on G = (V, E) with n nodes and m arcs,

$$\mathsf{SLC}_{\frac{1}{m}}(x_{\mathsf{e}}^{\mathrm{mcp}}) = O(mn\log(mn)) \qquad \forall e \in E.$$

Key ingredient: Circuits

Theorem [Dadush, K, Natura, Olver, Végh '24]

There is a strongly polynomial algorithm for the minimum cost generalized flow problem.

Circuits

Def: Let $W = \ker(A)$. A circuit is any vector $f \in W \setminus \{0\}$ such that $\nexists h \in W \setminus \{0\}$ with $\operatorname{supp}(h) \subsetneq \operatorname{supp}(f)$.

Example: Network flow

$$Ax = b$$
 \iff $\sum_{e \in \delta^{\mathrm{in}}(v)} x_e - \sum_{e \in \delta^{\mathrm{out}}(v)} x_e = b_v \quad \forall v \in V$

• ker(A) = set of circulations. Circuits correspond to directed cycles.

Circuits of Generalized Flow

• For generalized flow,

$$Ax = b$$
 \iff $\sum_{e \in \delta^{\mathrm{in}}(v)} \gamma_e x_e - \sum_{e \in \delta^{\mathrm{out}}(v)} x_e = b_v \quad \forall v \in V$

• ker(A) = set of generalized circulations. 2 types of circuits:

Upper Bounding the SLC

• Every $f \in \ker(A)$ with $c^{\top}f > 0$ induces a line segment in the feasible region:

$$x^{f}(g) := x^{*} + \frac{g}{c^{\top}f}f.$$

$$x_{e}^{\text{mcp}}$$

$$x_{e}^{\text{mcp}}$$

$$x_{e}^{\text{max}}$$

$$x_{e}^{\text{fc}}$$

$$x_{e}^{\text{max}}$$

$$x_{e}^{\text{fc}}$$

$$x_{e}^{\text{max}}$$

$$x_{e}^{\text{fc}}$$

$$x_{e}^{\text{max}}$$

$$x_{e}^{\text{fc}}$$

$$x_{e}^{\text{mcp}}$$

$$x_{e}^{\text{mcp}}$$

$$x_{e}^{\text{mcp}}$$

$$x_{e}^{\text{mcp}}$$

$$x_{e}^{\text{fc}}$$

$$x_{e}^{\text{mcp}}$$

Fact: $\max_{\text{circuit } C} x_e^{f^C} \ge \frac{x_e^{\text{mcp}}}{m}$.

Key Idea: Find $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \max_{\text{circuit } C} x_e^{f^C}$.

$$\implies$$
 SLC _{$\frac{1}{m}$} $(x_e^{mcp}) \le 2|S|$.

Conclusion & Future Directions

- SLC of minimum cost generalized flow is poly(m, n).
- Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.
- [Allamigeon, Benchimol, Gaubert, Joswig '18] There exist LPs with

$$\mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}}) = 2^{\Omega(m)}.$$

- Future directions:
 - Undiscounted MDP: strongly polynomial solvability/straight line complexity open.
 - Faster strongly polynomial algorithm for minimum cost generalized flow.

Thank you!