МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ЛАБОРАТОРНАЯ РАБОТА №7

студента 4 курса 431 группы
направления 10.05.01 — Компьютерная безопасность
факультета КНиИТ
Никитина Арсения Владимировича
Проверил

доцент

А. В. Жаркова

СОДЕРЖАНИЕ

1	Задание лабораторной работы	3
2	Теоретическая часть	4
3	Практическая часть	5

1 Задание лабораторной работы

Стандарт шифрования AES. Перемножить байты:

$$(1, 1, 0, 1, 0, 0, 1, 1) \cdot (0, 1, 1, 1, 0, 0, 1, 1),$$

 $(0, 1, 0, 1, 0, 1, 0, 1) \cdot (1, 0, 1, 0, 1, 0, 1, 0)$

2 Теоретическая часть

Алгоритм AES оперирует с байтами, которые интерпретируются как элементы поля $GF(2^8)$. В данном поле определены операции сложения и умножения двух элементов, причем результатом такого умножения будет точно элемент данного поля.

Итак, для того, чтобы выполнить умножение двух байтов p и q, каждый из байтов требуется представить в виде полинома:

$$p(x) = p_7 x^7 + p_6 x^6 + p_5 x^5 + p_4 x^4 + p_3 x^3 + p_2 x^2 + p_1 x + p_0, \ p_i \in \{0,1\};$$

$$q(x) = q_7 x^7 + q_6 x^6 + q_5 x^5 + q_4 x^4 + q_3 x^3 + q_2 x^2 + q_1 x + q_0, \ q_i \in \{0,1\}.$$

Умножение байт в таком представлении производится по модулю неприводимого в $GF(2^8)$ многочлена $f(x)=x^8+x^4+x^3+x+1$, то есть получаем конечную формулу:

$$r(x) \equiv p(x)q(x) \pmod{f(x)}$$

3 Практическая часть N7 Crangaron ungopolanno AES. Nepeuromuno Saunt (1,1,0,1,0,1,1). (0,1,1,1,0,0,1,1) 20,1,0,1,0,1,0,1). (1,0,1,0,1,0,1,0) Deline moro, mosto navina monglegenne Savinob [1,1,0,1,0,0,1,1]. (0,1,1,1,0,0,1,1), zanuman usc b Engl uporomenos a Consimua Charane y unomena 6 variere Z, [x]: (x +x +x +x +1) . (x +x +x +x +1) = = (X13+X12+X"+X8+X7+X12 11 10 7 6 10 9 13 +x5+x"+x7+x6+x5+x2+x"+x6+x5+x4x+1) mod2 = X13+x3+x7+x6+x5+x2+1 Baneur barurum ornamon you generum rayrennos unovoruen na f(x), rge f(x)=x3+x4+x3+x+1. x¹³+x⁹+x⁷+x⁶+x⁵+x²+1 | x⁸+x⁴+x³+x⁴+1 x¹³+x⁹+x⁸+x⁶+x⁵ mod 2 | x⁵+1 -x⁸+x⁴+x³+x²+1 mod 2 ? armpole x⁷+x⁴+x³+x²+x Demamore Thoupaem: x13+x9+x+x6+x5+x2+1=f(x).(x+1)+(x+x+x+x)

