Kai: An Al-powered Chatbot to Support Therapy

Thesis Defence Presentation Mariama C. Djalo D.

ABSTRACT

INTRODUCTION

INTRODUCTION

INTRODUCTION

Cognitive Distortion	Definition	Example	
Jumping to Conclusions	Drawing judgments without enough evidence.	"She's not responding so she must be ignoring me or even worse, she must be mad at me"	
Mental Filter	Focusing only on the negative part of everything.	"I did well on most of the exam, but I got one question wrong, so I must be a complete failure."	
Emotional Reasoning	Thinking that because you feel something it must be real.	"I feel like a failure, so I must be a failure."	

Dialogue Flow

Data Generation Model Experimentation

Implementation

A Therapist's Guide to Brief Cognitive Behavioral Therapy by Jeffrey A. Cully et al.

DATA GENERATION

MODEL EXPERIMENTATION

MODEL EXPERIMENTATION

MODEL	BEST PARAMETERS	ACCURACY	PRECISION	RECALL	F1-SCORE	GRIDSEARCHCV
Random Forest	-	0.69	0.71	0.69	0.68	0.67
Multinomial Naive Bayes	alpha: 0.1	0.69	0.71	0.69	0.69	0.68
Support Vector Machine	C: 1.0, decision_function_shape: ovo	0.67	0.75	0.67	0.67	0.64
Multinomial Logistic Regression	C: 0.01, penalty: none, solver: saga	0.65	0.65	0.65	0.64	0.69
K-Nearest Neighbour	p: 2, weights: distance, k_neighbors: 10	0.53	0.55	0.53	0.51	0.54

Model Performance

MODEL EXPERIMENTATION

IMPLEMENTATION

IMPLEMENTATION

Sklearn

```
# Divide data between training and test data
X = df['Phrase']
y = df['Cognitive Distortion']
X train, X test, y train, y test = train test split(X, y, random state=0, train size = .8)
MULTINOMIAL NAIVE BAYES
textclassifier = Pipeline([
    ('vect', CountVectorizer()),
    ('tfidf', TfidfTransformer()),
    ('smote', SMOTE(random state=0)),
     ('mnb', MultinomialNB())
# Hyperparameters to tune
params = {'smote k neighbors': [2,3,4,5,6,7,8,9,10],
          'mnb alpha': [0.01, 0.1, 0.3, 0.5, 1.0]
# Hyperprameters tuning
multinomial nb grid = GridSearchCV(estimator=textclassifier, param grid=params, n jobs=10, cv=10, verbose=5)
multinomial nb grid.fit(X train, y train)
```

Model Experimentation

IMPLEMENTATION

Demo

CONCLUSIONS

THANK YOU!