Algebra III: Groups

MATH 341

Steven Xia

February 5, 2023

Contents

ed Introductions

1 Assorted Introductions

Author's Remark

This section is weird because most of the material was already covered either in MATH 340 or MATH 440. There is missing material, and I was simply too lazy to add it.

Theorem 1.1 (Internal Characterization). For $G_1, G_2 \subseteq G$ groups, $G \cong G_1 \times G_2$ if and only if all the following apply:

- (i) $G = \{g_1g_2 : g_1 \in G_1, g_2 \in G_2\},\$
- (ii) $G_1 \cap G_2 = \{e_G\}$, and
- (iii) $g_1g_2 = g_2g_1$ for all $g_1 \in G_1$ and $g_2 \in G_2$.

Proof. Tedious rule checking.

Theorem 1.2 (Cayley). Every finite group of order n is isomorphic to some subgroup of S_n .
<i>Proof.</i> Let G be a finite group of order n . Define $\phi: G \to S_n$ as $\phi(g) = \sigma_g$, where $\sigma_g(h) = gh$, an isomorphism.
Theorem 1.3 (Lagrange). Let $H \subseteq G$ be groups (not necessarily finite). Then, $ G = [G:H] H $.
<i>Proof.</i> We prove only for the finite case, by seeing that cosets partition the group, and that all cosets are of the same size. \Box
Theorem 1.4 (Cauchy). Let G be a finite group of order n . If a prime p divides n , there exists an element of order p .
<i>Proof.</i> Define $X = \{(x_1, \dots, x_p) \in G^p : x_1 \cdots x_p = e\}$ and see that x_p is determined entirely by the choices of x_1, \dots, x_{p-1} . Since x_1, \dots, x_{p-1} can be chosen arbitrarily, $ X = n^{p-1}$.
Let C_p act on X by cyclic permutation of the p -tuple. Since stabilizers are subgroups, the orbit-stabilizer theorem says that all orbits of X are size either 1 or p . We note an orbit of some $(x_1,\ldots,x_p)\in X$ is size 1 if and only if $x_1=\cdots=x_p$, id est, x_1 is of order p or $x_1=e$. Finally, since $ X $ is a multiple of p , the class equation says there must be at least p elements of with an orbit of size 1, hence $p-1$ elements of order p .
Theorem 1.5. Let $H \subseteq G$ be a normal subgroup. Then, the quotient set G/H has a group structure.
<i>Proof.</i> Tedious rule checking. \Box