

MCMA140P1600TA-NI

Thyristor Module

 $V_{RRM} = 2x \, 1600 \, V$

 $I_{TAV} = 140 A$

 $V_{T} = 1,28 V$

Phase leg

Part number

MCMA140P1600TA-NI

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

MCMA140P1600TA-NI

Thyristo	r				Ratings	S	ı
Symbol	Definition	Conditions		min.	typ.	max.	Uni
V _{RSM/DSM}	max. non-repetitive reverse/forwa	rd blocking voltage	$T_{VJ} = 25^{\circ}C$			1700	١
V _{RRM/DRM}	max. repetitive reverse/forward bl	ocking voltage	$T_{VJ} = 25^{\circ}C$			1600	١
R/D	reverse current, drain current	$V_{R/D} = 1600 \text{ V}$	$T_{VJ} = 25^{\circ}C$			100	μA
		$V_{R/D} = 1600 \text{ V}$	$T_{VJ} = 140^{\circ}C$			10	m/
V _T	forward voltage drop	$I_T = 150 A$	$T_{VJ} = 25^{\circ}C$			1,29	١
		$I_{T} = 300 \text{ A}$				1,63	١
		$I_T = 150 A$	$T_{VJ} = 125^{\circ}C$			1,28	١
		$I_{T} = 300 \text{ A}$				1,70	١
I _{TAV}	average forward current	$T_c = 85^{\circ}C$	$T_{VJ} = 140$ °C			140	/
T(RMS)	RMS forward current	180° sine				220	ļ
V _{T0}	threshold voltage	oss calculation only	$T_{VJ} = 140^{\circ}C$			0,85	١
r _T	slope resistance	oss calculation only				2,8	mΩ
R _{thJC}	thermal resistance junction to cas	e				0,22	K/W
R _{thCH}	thermal resistance case to heatsing	nk			0,2		K/W
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			520	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			2,40	k/
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			2,59	k/
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 140$ °C			2,04	k/
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			2,21	k/
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			28,8	kA ² s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			27,9	kA2s
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 140$ °C			20,8	kA ² s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			20,2	kA2s
C,	junction capacitance	V _R = 400V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		119		рF
P_{GM}	max. gate power dissipation	t _P = 30 μs	T _C = 140°C			10	V
	,	t _P = 300 μs				5	W
P_{GAV}	average gate power dissipation					0,5	W
(di/dt) _{cr}	critical rate of rise of current	T _{v,i} = 140°C; f = 50 Hz	repetitive, $I_T = 450 A$			150	A/μs
701		$t_P = 200 \mu s; di_G/dt = 0.45 A/\mu$	•				
		$I_{G} = 0.45A; V_{D} = \frac{2}{3} V_{DRM}$	non-repet., $I_T = 150 \text{ A}$			500	A/μs
(dv/dt) _{cr}	critical rate of rise of voltage	$V_D = \frac{2}{3} V_{DBM}$	T _{v.i} = 140°C			1000	
() (-	v	R _{GK} = ∞; method 1 (linear v	••				
V _{GT}	gate trigger voltage	$V_D = 6 \text{ V}$	$T_{VJ} = 25^{\circ}C$			1,5	V
- 61	0 00 0		$T_{VJ} = -40^{\circ}C$			1,6	١
I _{GT}	gate trigger current	$V_D = 6 \text{ V}$	$T_{VJ} = 25^{\circ}C$			150	m/
-G1	gant mggt ramen	• ₀ = • •	$T_{VJ} = -40^{\circ}C$			200	m/
V _{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DBM}$	$T_{VJ} = 140^{\circ}C$			0,2	I
I _{GD}	gate non-trigger current	- D / S - DRM	. 73			10	m/
I _L	latching current	t _p = 10 μs	$T_{VJ} = 25^{\circ}C$			200	m/
·L	atoming outfort	$I_p = 10 \mu\text{s}$ $I_G = 0.45 \text{A}; \text{di}_G/\text{dt} = 0.45 \text{A}$				200	111/-
1	holding current	$V_{D} = 6 \text{ V } R_{GK} = \infty$	T _{vJ} = 25°C			200	m <i>P</i>
I _H							Ì
t _{gd}	gate controlled delay time	$V_{\rm D} = \frac{1}{2} V_{\rm DRM}$	$T_{VJ} = 25^{\circ}C$			2	μ
	turn-off time	$I_G = 0.45 \text{A}; \text{ di}_G/\text{dt} = 0.45 \text{A}$ $V_R = 100 \text{ V}; I_T = 150 \text{A}; V_D$			405		i !
tq	uurn-on time	V = 100 V· I = 150Δ·V	⁄2 V I125 °C	l	185	l	με

MCMA140P1600TA-NI

Package TO-240AA				Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperatur	е			-40		140	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2,5		4	Nm
$\mathbf{M}_{_{\mathbf{T}}}$	terminal torque				2,5		4	Nm
d _{Spp/App}	croopago distanco on surf	ace striking distance through air	terminal to terminal	13,0	9,7			mm
$d_{\text{Spb/Apb}}$	creepage distance on sun	ace Striking distance through an	terminal to backside	16,0	16,0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		4800			٧
		t = 1 minute			4000			٧

Part description

M = Module

C = Thyristor (SCR) M = Thyristor

A = (up to 1800V) 140 = Current Rating [A]

P = Phase leg

1600 = Reverse Voltage [V]

TA = TO-240AA-1B - = Hyphen

NI = without metal inserts

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCMA140P1600TA-NI	MCMA140P1600TA-NI	Box	36	

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 140$ °C
$I \rightarrow V_0$)— <u>R</u> o	Thyristor		
V _{0 max}	threshold voltage	0,85		V
$R_{0 max}$	slope resistance *	1,6		$m\Omega$

Outlines TO-240AA

General tolerance: DIN ISO 2768 class "c"

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red

Type ZY 200L (L = Left for pin pair 4/5)
Type ZY 200R (R = Right for pin pair 6/7) UL 758, style 3751

Thyristor

Fig. 1 Forward characteristics

Fig. 2 Surge overload current I_{TSM} : crest value, t: duration

Fig. 3 I^2 t versus time (1-10 s)

Fig. 4 Gate voltage & gate current

Fig. 5 Gate controlled delay time t_{ad}

Fig. 6 Max. forward current at case temperature

Fig. 7a Power dissipation versus direct output current Fig. 7b and ambient temperature

Fig. 8 Transient thermal impedance junction to case