$\begin{array}{c} \textbf{Discrete Structures} \\ \textbf{Logic} \end{array}$

A Document By: **Nathan Warner**

Computer Science Northern Illinois University August 11, 2023 United States

Contents

1	Statements
2	Compound Statements
3	Truth Tables
4	Logical Equivalence
5	Tautologies and Contradictions
6	De Morgan's Laws
7	Logical Equivalence Laws
8	Conditional Statements
9	Negation of Conditional Statements
10	Converse and Inverse
11	Biconditional Statements

1 Statements

Definition: A statement (or proposition) is a sentence that is either true or false (but not both)

Example: for the following, state whether it is a statement, or not a statement

- A.) "I think it will rain tomorrow" is a statement.
- B.) 3 x = 12
- C.) 2 + 2 = 3

Solutions:

- A.) The sentence is not a statement because there is a chance it will rain, or not.
- B.) Though the bellow sentence is a mathematical expression, however it is not a statement because it is not either true or false. Depending on what x is, the sentence is either true or false, but right now it is neither.
- C.) Even though the bellow expression is false, but it is a statement because it is either true or false, but not both, and in this case it is false. Therefore "2 + 2 = 3" is a statement.

2 Compound Statements

Components of a statement

- \bullet p: Represents predicate
- q: Represents conclusion

Logical Connectives

- A: Represents and
- \wedge : Represents **or**
- \neg or \sim : Represents negation

By utilizing logical connectives, we can create compound statements

Example: For each sentence, choose the correct compound statement

- A.) The sentence "It is not hot or it is sunny" in symbols is:
- B.) The expression, " $3 \le a$ " in writing is:
- C.) If p: a week has seven days, q: there are 20 hours in a day, and r: there are 60 minutes in an hour, then $\sim p \wedge \sim r$ is:

Solutions:

- **A.**) $\sim p \vee q$
- **B.**) 3 > a or 3 = a
- C.) A week doesn't have 7 days and there are not 60 minutes in an hour.

3 Truth Tables

Here is a simple example of a truth table for logical and:

P	Q	$P \wedge Q$
Т	Т	Т
Τ	F	F
F	Τ	F
F	F	F

Here is a simple example of a truth table for logical or (inclusive):

P	Q	$P \lor Q$
Т	Γ	` T
T	' F	` T
F	Г	` T
F	F	F

Here is a simple example of a truth table for logical or (exclusive):

P	Q	$P \oplus Q$
Т	Т	F
Γ	F	Т
F	Т	Т
F	F	F

Here is a simple example of a truth table for logical not (negation):

P	$\neg P$
T	F
F	Т

Example: Construct a truth table for $(p \wedge q) \vee \neg r$

Figure:

p	q	r	$(p \wedge q)$	$\neg r$	$(p \wedge q) \vee \neg r$
Т	Т	Т	Т	F	Т
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F
Т	F	F	F	Т	Т
F	Т	Т	F	F	F
F	Т	F	F	Т	Т
F	F	Т	F	Т	F
F	F	F	F	F	Т

4 Logical Equivalence

Definition: Statements p and q are said to be logically equivalent if they have the same truth value in every model

Notation: the notation for logical equivalence is \equiv

Say we have statements p and q, and we want to show that $p \wedge q$, and $q \wedge p$ are logically equivalent, to do this, we must first construct a truth table:

p	q	$p \wedge q$	$q \wedge p$
T	Т	Т	Τ
Т	F	F	F
F	Т	F	F
F	F	F	F

So we can see that the columns $p \wedge q$, $q \wedge p$ have the same truth values, therefore they are said to be **logically** equivalent

5 Tautologies and Contradictions

Definition: A **Tautology** is a Statement that is always true, a assertion that is true in every possible interpretation

A Contradiction is a statement that is always false.

Consider the following compound statement

$$p \vee \neg p.$$

Because this statement can never be false, we say it is a **Tautology**

Contradiction

Consider the statement:

$$p \wedge \neg p$$
.

Because this statement can never be true, we say it is a **Contradiction**

6 De Morgan's Laws

De Morgan's Laws are:

- $\neg (p \land q) = \neg p \lor \neg q$
- $\neg (p \lor q) = \neg p \land \neg q$

Consider the statement:

$$0 < x \leqslant 3$$
.

To use De Morgan's Law, which states:

$$\neg (p \land q) = \neg p \lor \neg q.$$

We can rewrite the statement as:

$$0 \geqslant x \text{ or } x > 3.$$

7 Logical Equivalence Laws

Commutativa lavva	$r \wedge c = c \wedge r$	$m \setminus (a = a \setminus (a))$
Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
Associative laws:	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributive laws:	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Identity laws:	$p \wedge t \equiv p$	$p \lor \mathbf{c} \equiv p$
Negation laws:	$p \lor \sim p \equiv t$	$p \land \sim p \equiv \mathbf{c}$
Double negative law:	$\sim (\sim p) \equiv p$	
Idempotent laws:	$p \wedge p \equiv p$	$p \vee p \equiv p$
Universal bound laws:	$p \lor t \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
DeMorgan's laws:	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Negation of t and c	$\neg t = c$	$\neg c = t$

8 Conditional Statements

Definition: A conditional statement is a statement that can be written in the form "If P then Q," where

P and Q are sentences.

Syntax: if statement then statement

Consider the statment

$$p \to q.$$

This statement, read "if p then q", can be described with the following truth table:

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Note:-

To get a truth value of "true" in $p \to q$, either p and q both need to be true, or both need to be false, or q needs to be true

9 Negation of Conditional Statements

Definition: The **Negation of conditional statement** is logically equivalent to a conjunction of the antecedent and the negation of the consequent.

$$Negation: p \rightarrow q \equiv p \land \neg q.$$

The Contrapositive of a conditional statement is a combination of the converse and the inverse

$$p \to q \equiv \neg q \to \neg p.$$

Consider the following condition

$$p \to q$$
.

Which we know is logically equivalent to:

$$p \to q \equiv \neg p \lor q.$$

By use of De Morgan's Law, which states that:

$$\neg (p \lor q) \equiv \neg p \land \neg q.$$

We can negate $p \to q$, so:

$$\neg (p \lor q) \equiv \neg (\neg p) \land \neg q.$$

Consider the following Conditional Statement

If my dad is at home then he cant pick me up

$$p \rightarrow q$$

Then the negation would be:

$$p \wedge \neg q$$

 \equiv my dad is at home and he can pick me up.

10 Converse and Inverse

Definition: The **Converse** of a conditional statement is created when the hypothesis and conclusion are reversed

The Inverse of a conditional statement is when both the hypothesis and conclusion are negated

Consider the statement

$$p \to q.$$

Then the **Converse** would be:

$$q \rightarrow p$$
.

And the **Inverse** would be:

$$\neg p \rightarrow \neg q$$
.

11 Biconditional Statements

Definition: A **Biconditional Statement** is a true statement that combines a hypothesis and conclusion with the words 'if and only if' instead of the words 'if' and 'then'

Say we have the following statement

$$q \iff p$$
.

Then the truth table would be:

р	q	$q \iff p$
Т	Τ	T
F	Т	F
Т	F	F
F	F	Т

Note:-

Similar to conditional statements, in the truth table, $p \iff q$ is true if both p and q have the same value. So false false will be true