

Susceptible (S)

► Vier Phasen: infizierbar,

► Vier Phasen: infizierbar, infiziert,

▶ Vier Phasen: infizierbar, infiziert, ansteckend,

TECHNISCHE UNIVERSITÄT

▶ Vier Phasen: infizierbar, infiziert, ansteckend, nicht mehr ansteckend

TECHNISCHE UNIVERSITÄT

▶ Vier Phasen: infizierbar, infiziert, ansteckend, nicht mehr ansteckend

TECHNISCHE UNIVERSITÄT

▶ Vier Phasen: infizierbar, infiziert, ansteckend, nicht mehr ansteckend

- ▶ Vier Phasen: infizierbar, infiziert, ansteckend, nicht mehr ansteckend
- ► Sensitivität $1 \alpha = \text{Prob} (\text{positiv} \mid \text{infiziert})$

- ▶ Vier Phasen: infizierbar, infiziert, ansteckend, nicht mehr ansteckend
- ▶ Sensitivität $1 \alpha = \text{Prob} (\text{positiv} \mid \text{infiziert})$
- ▶ Specifizität 1β = Prob (negativ | nicht infiziert)

- ▶ Vier Phasen: infizierbar, infiziert, ansteckend, nicht mehr ansteckend
- ► Sensitivität $1 \alpha = \text{Prob}$ (positiv | infiziert)
- ▶ Specifizität 1β = Prob (negativ | nicht infiziert)

- Sensitivität $1 \alpha = \text{Prob} (\text{positiv} \mid \text{infiziert})$
- ▶ Specifizität 1β = Prob (negativ | nicht infiziert)

- Sensitivität $1 \alpha = \text{Prob} (\text{positiv} \mid \text{infiziert})$
- ▶ Specifizität 1β = Prob (negativ | nicht infiziert)

► Separation between **infection** and **data dynamics**

- Separation between infection and data dynamics
- ▶ Data used to **calibrate** the base reproduction numbers and IFRs

- Separation between infection and data dynamics
- Data used to calibrate the base reproduction numbers and IFRs
- ▶ Wave peak if contamination $\approx 20\,\%$: No herd immunity but sufficient for mild measures to be effective

- ► Separation between **infection** and **data dynamics**
- Data used to calibrate the base reproduction numbers and IFRs
- ▶ Wave peak if contamination $\approx 20\,\%$: No herd immunity but sufficient for mild measures to be effective
- As flu, there is a strong season dependence (Peru, Australia)

- Separation between infection and data dynamics
- Data used to calibrate the base reproduction numbers and IFRs
- ▶ Wave peak if contamination $\approx 20\,\%$: No herd immunity but sufficient for mild measures to be effective
- As flu, there is a strong season dependence (Peru, Australia)
- hard lockdowns will hardly lead to fewer deaths;
 - $pprox 30\,000\, ext{Covid/flu deaths}$ this winter season in Germany anyway

- Separation between infection and data dynamics
- Data used to calibrate the base reproduction numbers and IFRs
- ▶ Wave peak if contamination $\approx 20\,\%$: No herd immunity but sufficient for mild measures to be effective
- As flu, there is a strong season dependence (Peru, Australia)
- ► hard lockdowns will hardly lead to fewer deaths;
 ≈ 30 000 Covid/flu deaths this winter season in Germany anyway
- ▶ Pandemic is over in March/April 2021; in Czechia already now

- ▶ Pandemic is over in March/April 2021; in Czechia already now
- ► Let's see if these projections stand the test of time!