Non-convex Optimization for Machine Learning

Prateek Jain

Microsoft Research India

Outline

- Optimization for Machine Learning
- Non-convex Optimization
- Convergence to Stationary Points
 - First order stationary points
 - Second order stationary points
- Non-convex Optimization in ML
 - Neural Networks
 - Learning with Structure
 - Alternating Minimization
 - Projected Gradient Descent

Relevant Monograph (Shameless Ad)

Optimization in ML

Supervised Learning

- Given points (x_i, y_i)
- Prediction function: $\widehat{y}_i = \phi(x_i, w)$
- Minimize loss: $\min_{w} \sum_{i} \ell(\phi(x_i, w), y_i)$

Unsupervised Learning

Given points $(x_1, x_2 \dots x_N)$

Find cluster center or train GANs

Represent $\widehat{x_i} = \phi(x_i, w)$

Minimize loss: $\min_{w} \sum_{i} \ell(\phi(x_i, w), x_i)$

Optimization Problems

- Unconstrained optimization $\min_{w \in R^d} f(w)$
- Deep networks
- Regression
- Gradient Boosted Decision Trees

- Constrained optimization $\min_{w} f(w) \ s.t.w \in C$
- Support Vector Machines
- Sparse regression
- Recommendation system
- •

Convex Optimization

$$\min_{w} f(w)$$
s. t. $w \in C$

$$f: \mathbb{R}^d \to \mathbb{R}$$

Convex function

$$f(\lambda w_1 + (1 - \lambda)w_2) \le \lambda f(w_1) + (1 - \lambda)f(w_2),$$

$$0 \le \lambda \le 1$$
Slide or

 $\mathcal{C} \subseteq \mathbb{R}^d$

Convex set

 $\forall w_1, w_2 \in C, \lambda w_1 + (1 - \lambda)w_2 \in C$ $0 \le \lambda \le 1$

Slide credit: Purushottam Kar

Examples

Linear Programming

$$\min_{\mathbf{x} \in \mathbb{R}^d} \mathbf{a}^{\top} \mathbf{x}$$

$$s.t. \ \mathbf{b}_i^{\top} \mathbf{x} \leq c_i$$

$$\min_{\mathbf{x} \in \mathbb{R}^d} \ \frac{1}{2} \mathbf{x}^\top \mathbf{A} \mathbf{x} + \mathbf{a}^\top \mathbf{x}$$

$$s.t. \ \mathbf{b}_i^{\top} \mathbf{x} \leq c_i$$

Quadratic Programming

$$\min_{\mathbf{X}\succ\mathbf{0}} \mathbf{A}^{\top}\mathbf{X}$$

$$s.t. \ \mathbf{B}_i^{\top} \mathbf{X} \leq c_i$$

Semidefinite Programming

Slide credit: Purushottam Kar

Convex Optimization

Unconstrained optimization

$$\min_{w \in R^d} f(w)$$

Optima: just ensure

$$\nabla_w f(w) = 0$$

• Constrained optimization $\min_{w} f(w) \ s.t.w \in C$

Optima: KKT conditions

In this talk, lets assume f is L —smooth => f is differentiable

$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2$$
OR,
$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||$$

Gradient Descent Methods

Projected gradient descent method:

• For t=1, 2, ... (until convergence)

•
$$w_{t+1} = P_C(w_t - \eta \nabla f(w_t))$$

• η : step-size

Convergence Proof

$$\begin{split} f(w_{t+1}) & \leq f(w_t) + \langle \nabla f(w_t), w_{t+1} - w_t \rangle + \frac{L}{2} ||w_{t+1} - w_t||^2 \\ f(w_{t+1}) & \leq f(w_t) - \left(1 - \frac{L\eta}{2}\right) \eta ||\nabla f(w_t)||^2 \leq f(w_t) - \frac{\eta}{2} ||\nabla f(w_t)||^2 \\ f(w_{t+1}) & \leq f(w_*) + \langle \nabla f(w_t), w_t - w_* \rangle - \frac{1}{2\eta} ||w_{t+1} - w_t||^2 \text{ for exist.} \end{split}$$

$$f(\omega_T) \leq f(w_{t+1}) \leq f(w_*) + \frac{1}{2\eta} \left(||w_t - w_*||^2 - ||w_{t+1} - w_*||^2 \right)$$

$$f(w_T) \leq f(w_*) + \frac{1}{T \cdot 2\eta} ||w_0 - w_*||^2 \Rightarrow f(w_T) \leq f(w_*) + \epsilon$$

$$T = O\left(\frac{L \cdot ||w_0 - w_*||^2}{\epsilon}\right)$$

Non-convexity?

$$\min_{w \in R^d} f(w)$$

• Critical points: $\nabla f(w) = 0$

• But: $\nabla f(w) = 0 \Rightarrow Optimality$

Local Optima

• $f(w) \le f(w')$, $\forall ||w - w'|| \le \epsilon$

First Order Stationary Points

• Defined by: $\nabla f(w) = 0$

• But $\nabla^2 f(w)$ need not be positive semi-definite

First Order Stationary Points

First Order Stationary Point (FOSP)

• E.g.,
$$f(w) = 0.5(w_1^2 - w_2^2)$$

•
$$\nabla f(w) = \begin{bmatrix} w_1 \\ -w_2 \end{bmatrix}$$

•
$$\nabla f(0) = 0$$

• But,
$$\nabla^2 f(w) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow indefinite$$

•
$$f\left(\left[\frac{\epsilon}{2},\epsilon\right]\right) = -\frac{3}{8} \epsilon^2 \Rightarrow f([0,0])$$
 is not a local minima

Second Order Stationary Points

Second Order Stationary Point (SOSP) if:

•
$$\nabla f(w) = 0$$

•
$$\nabla^2 f(w) \geq 0$$

Does it imply local optimality?

Second Order Stationary Point (SOSP)

Second Order Stationary Points

•
$$f(w) = \frac{1}{3}(w_1^3 - 3w_1w_2^2)$$

•
$$\nabla f(w) = \begin{bmatrix} (w_1^2 - w_2^2) \\ -2 w_1 w_2 \end{bmatrix}$$

•
$$\nabla f(0) = 0, \nabla^2 f(0) = 0 \Rightarrow 0$$
 is $SOSP$

•
$$f([\epsilon, \epsilon]) = -\frac{2}{3}\epsilon^3 < f(0)$$

Second Order Stationary Point (SOSP)

Stationarity and local optima

• w is local optima implies: $f(w) \le f(w')$, $\forall ||w - w'|| \le \epsilon$

• w is FOSP implies:

$$f(w) \le f(w') + O(||w - w||^2)$$

• w is SOSP implies:

$$f(w) \le f(w') + O(||w - w'||^3)$$

• w is p-th order SP implies:

$$f(w) \le f(w') + O(||w - w'||^{p+1})$$

• That is, local optima: $p = \infty$

Computability?

$$f(w) \le f(w') + O(||w - w'||^{p+1})$$

First Order Stationary Point	
Second Order Stationary Point	
Third Order Stationary Point	
$p \geq 4$ Stationary Point	NP-Hard
Local Optima	NP-Hard

Does Gradient Descent Work for Local Optimality?

Yes!

- In fact, with high probability converges to a "local minimizer"
 - If initialized randomly!!!
- But no rates known 😊
 - NP-hard in general!!
 - Big open problem ©

Finding First Order Stationary Points

• Defined by: $\nabla f(w) = 0$

• But $\nabla^2 f(w)$ need not be positive semi-definite

Gradient Descent Methods

Gradient descent:

- For t=1, 2, ... (until convergence)
 - $w_{t+1} = w_t \eta \nabla f(w_t)$
- η : step-size
- Assume:

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||$$

Convergence to FOSP

$$f(w_{t+1}) \le f(w_t) + \langle \nabla f(w_t), w_{t+1} - w_t \rangle + \frac{L}{2} ||w_{t+1} - w_t||^2$$

$$f(w_{t+1}) \le f(w_t) - \left(1 - \frac{L\eta}{2}\right) \eta ||\nabla f(w_t)||^2 \le f(w_t) - \frac{1}{2L} ||\nabla f(w_t)||^2$$

$$\begin{aligned} ||\nabla f(w_t)||^2 &\leq f(w_t) - f(w_{t+1}) \\ \frac{1}{2L} \sum_{t} ||\nabla f(w_t)||^2 &\leq f(w_0) - f(w_*) \\ \min_{t} ||\nabla f(w_t)|| &\leq \sqrt{\frac{2L(f(w_0) - f(w_*))}{T}} \leq \epsilon, \\ T &= O\left(\frac{L \cdot (f(w_0) - f(w_*))}{\epsilon^2}\right) \end{aligned}$$

Accelerated Gradient Descent for FOSP?

- For t=1, 2....T
 - $w_{t+1}^{md} = (1 \alpha_t) w_t^{ag} + \alpha_t w_t$
 - $w_{t+1} = w_t \eta_t \nabla f(w_{t+1}^{md})$
 - $w_{t+1}^{ag} = w_t^{md} \beta_t \nabla f(w_{t+1}^{md})$

- Convergence? $\min_{t} ||\nabla f(w_t)|| \le \epsilon$
- For $T = O(\frac{\sqrt{L \cdot (f(w_0) f(w_*))}}{\epsilon})$ If convex: $T = O(\frac{(L \cdot (f(w_0) f(w_*)))^{1/4}}{\sqrt{\epsilon}})$

Non-convex Optimization: Sum of Functions

What if the function has more structure?

$$\min_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

- $\nabla f(w) = \sum_{i=1}^{n} \nabla f_i(w)$
- I.e., computing gradient would require O(n) computation

Does Stochastic Gradient Descent Work?

- For t=1, 2, ... (until convergence)
 - Sample $i_t \sim Unif[1, n]$
 - $\bullet w_{t+1} = w_t \eta \nabla f_{i_t}(w_t)$

$$\begin{aligned} &\text{Proof? } E_{i_t}[w_{t+1} - w_t] = \eta \nabla f(w_t) \\ &f(w_{t+1}) \leq f(w_t) + \langle \nabla f(w_t), w_{t+1} - w_t \rangle + \frac{L}{2} ||w_{t+1} - w_t||^2 \\ &\text{E}[f(w_{t+1})] \leq E[f(w_t)] - \frac{\eta}{2} ||\nabla f(w_t)||^2 + \frac{L}{2} \eta^2 \cdot Var \\ &\min_t ||\nabla f(w_t)|| \leq \frac{\left(L(f(w_0) - f(w_*)) \cdot Var\right)^{\frac{1}{4}}}{T^{\frac{1}{4}}} \leq \epsilon \\ &T = O\left(\frac{L \cdot Var \cdot (f(w_0) - f(w_*))}{\epsilon^4}\right) \end{aligned}$$

Summary: Convergence to FOSP

Algorithm	No. of Gradient Calls (Non-convex)	No. of Gradient Calls (Convex)
GD [Folkore; Nesterov]	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(\frac{1}{\epsilon}\right)$
AGD [Ghadimi & Lan-2013]	$O\left(\frac{1}{\epsilon}\right)$	$O\left(\frac{1}{\sqrt{\epsilon}}\right)$

$f(w) = \frac{1}{n}$	$\frac{1}{n}\sum_{i=1}^{n}f_i(w)$
----------------------	-----------------------------------

Algorithm	No. of Gradient Calls	Convex Case
GD [Folkore]	$O(\frac{n}{\epsilon^2})$	$O(\frac{n}{\epsilon})$
AGD [Ghadimi & Lan'2013]	$O\left(\frac{n}{\epsilon}\right)$	$O\left(\frac{n}{\sqrt{\epsilon}}\right)$
SGD [Ghadimi & Lan'2013]	$O(\frac{1}{\epsilon^4})$	$O(\frac{1}{\epsilon^2})$
SVRG [Reddi et al-2016, Allen-Zhu&Hazan-2016]	$O(n+n^{\frac{2}{3}}/\epsilon^2)$	$O(n + \sqrt{n}/\epsilon^2)$
MSVRG [Reddi et al-2016]	$O(\min(\frac{1}{\epsilon^4}, \frac{n^{\frac{2}{3}}}{\epsilon^2}))$	$O\left(n + \frac{\sqrt{n}}{\epsilon^2}\right)$

Finding Second Order Stationary Points (SOSP)

Second Order Stationary Point (SOSP) if:

•
$$\nabla f(w) = 0$$

•
$$\nabla^2 f(w) \geqslant 0$$

Approximate SOSP:

• $||\nabla f(w)|| \le \epsilon$

•
$$\lambda_{min}(\nabla^2 f(w)) \ge -\sqrt{\rho\epsilon}$$

Second Order Stationary Point (SOSP)

Cubic Regularization (Nesterov and Polyak-2006)

• For t=1, 2, ... (until convergence)

$$w_{t+1} = \arg\min_{w} f(w_t) + \langle w - w_t, \nabla f(w_t) \rangle + \frac{1}{2} (w - w_t)^T \nabla^2 f(w_t) (w - w_t) + \frac{\rho}{6} ||w - w_t||^3$$

- Assumption: Hessian continuity, i.e., $||\nabla^2 f(x) \nabla^2 f(y)|| \le \rho ||x y||$
- Convergence to SOSP? $T = O(\frac{1}{\epsilon^{1.5}})$
 - But requires Hessian computation! (even storage is $O(d^2)$
 - Can we find SOSP using only gradients?

Noisy Gradient Descent for SOSP

- For t=1, 2, ... (until convergence)
 - If $(||\nabla f(w_t)|| \ge \epsilon)$
 - $w_{t+1} = w_t \eta \nabla f(w_t)$
 - Else
 - $w_{t+1} = w_t + \zeta, \zeta \sim \gamma \cdot N(0, I)$
 - Update $w_{t+1} = w_t \eta \nabla f(w_t)$ for next r iterations
- Claim: above algorithm converges to SOSP in $O(1/\epsilon^2)$

Proof

For t=1, 2, ... (until convergence)
 If (
$$||\nabla f(w_t)|| \ge \epsilon$$
)
$$w_{t+1} = w_t - \eta \nabla f(w_t)$$
 Else
$$w_{t+1} = w_t + \zeta, \zeta \sim \gamma \cdot N(0, I)$$
 Update $w_{t+1} = w_t - \eta \nabla f(w_t)$ for next r iterations

FOSP analysis: convergence in $O\left(\frac{1}{\epsilon^2}\right)$ iterations But, $\nabla^2 f(w_t) \geq 0$

• That is, $\lambda_{min} (\nabla^2 f(w_t)) < -\sqrt{\rho \epsilon}$

Proof

For t=1, 2, ... (until convergence)
 If (
$$||\nabla f(w_t)|| \ge \epsilon$$
)
 $w_{t+1} = w_t - \eta \nabla f(w_t)$

Else

$$\begin{aligned} w_{t+1} &= w_t + \zeta, \zeta \sim \gamma \cdot N(0, I) \\ \text{Update } w_{t+1} &= w_t - \eta \nabla f(w_t) \text{ for next } r \text{ iterations} \end{aligned}$$

• Random perturbation with Gradient descent leads to decrease in objective function

Proof?

For t=1, 2, ... (until convergence) If (
$$||\nabla f(w_t)|| \ge \epsilon$$
)
$$w_{t+1} = w_t - \eta \nabla f(w_t)$$
 Elso

Else

$$w_{t+1} = w_t + \zeta, \zeta \sim \gamma \cdot N(0, I)$$

Update $w_{t+1} = w_t - \eta \nabla f(w_t)$ for next r iterations

- Random perturbation with Gradient descent leads to decrease in objective function
- Hessian continuity => function nearly quadratic in small neighborhood

•
$$f(w) \approx f(w_t) + \langle \nabla f(w_t), w - w_t \rangle + (w - w_t)^T \nabla^2 f(w_t) (w - w_t)$$

$$w_{r+t} = w_{r-1+t} - \eta \nabla^2 f(w_t) (w_{r-1+t} - w_t)$$

$$\Rightarrow w_{r+t} - w_t = (I - \eta \nabla^2 f(w_t))^T (w_{t+1} - w_t)$$

Proof?

For t=1, 2, ... (until convergence)
 If (
$$||\nabla f(w_t)|| \ge \epsilon$$
)
 $w_{t+1} = w_t - \eta \nabla f(w_t)$
 Else

$$w_{t+1} = w_t + \zeta, \zeta \sim \gamma \cdot N(0, I)$$

Update $w_{t+1} = w_t - \eta \nabla f(w_t)$ for next r iterations

- Random perturbation with Gradient descent leads to decrease in objective function
- Hessian continuity => function nearly quadratic in small neighborhood

•
$$f(w) \approx f(w_t) + (\nabla f(w_t), w - w_t) + (w - w_t)^T \nabla^2 f(w_t) (w - w_t)$$

• $w_{r+t} = w_{r-1+t} - \eta \nabla^2 f(w_t) (w_{r-1+t} - w_t)$
 $\Rightarrow w_{r+t} - w_t = (I - \eta \nabla^2 f(w_t))^r (w_{t+1} - w_t)$

- $w_{r+t} w_t$ converge to largest eigenvector of $I \eta \nabla^2 f(w_t)$
 - Which is smallest (most negative) eigenvector of $\nabla^2 f(w_t)$
- Hence, $(w_{r+t} w_t)^T \nabla^2 f(w_t) (w_{r+t} w_t) \le -\gamma^2 \sqrt{\rho \epsilon}$
- $f(w_{r+t}) \le f(w_t) \gamma^2 \sqrt{\rho \epsilon}$

Final result: convergence to SOSP in $O(1/\epsilon^2)$

Ge et al-2015, Jin et al-2017

Summary: Convergence to SOSP

Algorithm	No. of Gradient Calls (Non-convex)	No. of Gradient Calls (Convex)
Noisy GD [Jin et al-2017, Ge et al-2015]	$O\left(\frac{1}{\epsilon^2}\right)$	$O\left(\frac{1}{\epsilon}\right)$
Noisy Accelerated GD [Jin et al- 2017]	$O\left(\frac{1}{\epsilon^{1.75}}\right)$	$O\left(\frac{1}{\sqrt{\epsilon}}\right)$
Cubic Regularization [Nesterov & Polyak-2006]	$O\left(\frac{1}{\epsilon^{1.5}}\right)$	N/A

f(w) =	$\frac{1}{n}\sum_{i=1}^{n}f_i(w)$
--------	-----------------------------------

Algorithm	No. of Gradient Calls	Convex Case
Noisy GD [Jin et al-2017, Ge et al-2015]	$O(\frac{n}{\epsilon^2})$	$O(\frac{n}{\epsilon})$
Noisy AGD [Jin et al-2017]	$O\left(\frac{n}{\epsilon^{1.75}}\right)$	$O\left(\frac{n}{\sqrt{\epsilon}}\right)$
Noisy SGD [Jin et al-2017, Ge et al-2015]	$O(\frac{1}{\epsilon^4})$	$O(\frac{1}{\epsilon^2})$
SVRG [Allen-Zhu-2018]	$O(n+n^{\frac{3}{4}}/\epsilon^2)$	$O(n + \sqrt{n}/\epsilon^2)$

Convergence to Global Optima?

 FOSP/SOSP methods can't even guarantee local convergence

- Can we guarantee global optimality for some "nicer" non-convex problems?
 - Yes!!!
 - Use statistics ©

Can Statistics Help: Realizable models!

- Data points: $(x_i, y_i) \sim D$
- *D*: nice distribution
- $E[y_i] = \phi(x_i, w_*)$

$$\widehat{w} = \arg\min_{w} \sum_{i} loss(y_i, \phi(x_i, w))$$

- That is, w_* is the optimal solution!
 - Parameter learning

Learning Neural Networks: Provably

- $y_i = 1 \cdot \sigma(W_* x_i)$
- $x_i \sim N(0, I)$

$$\min_{W} \sum_{i} (y_i - 1 \cdot \sigma(Wx_i))^2$$

- Does gradient descent converge to global optima: W_* ?
 - NO!!!
 - The objective function has poor local minima [Shamir et al-2017, Lee et al-2017]

Learning Neural Networks: Provably

- But, no local minima within constant distance of W_*
- If,

$$||W_0 - W_*|| \le c$$

Then, Gradient Descent $(W_{t+1}=W_t-\eta\nabla f(W_t))$ converges to W_* No. of iterations: $\log 1/\epsilon$

Can we get rid of initialization condition? Yes but by changing the network [Liang-Lee-Srikant'2018]

Learning with Structure

•
$$y_i = \phi(x_i, w_*), x_i \sim D \in \mathbb{R}^d, 1 \le i \le n$$

- But no. of samples are limited!
 - For example, if $n \leq d$?
- Can we still recover w_* ? In general, no!
 - But, what if w_* has some structure?

Sparse Linear Regression

- But: $n \ll d$
- w: s —sparse (s non-zeros)
 - Information theoretically: $n = s \log d$ samples should suffice

Learning with structure

$$\min_{w} f(w)$$
s.t. $w \in C$

- Linear classification/regression
 - $C = \{w, ||w||_0 \le s\}$
 - $s \ll d$
- Matrix completion
 - $C = \{W, rank(W) \le r\}$
 - $r \ll (d_1, d_2)$

Other Examples

- Low-rank Tensor completion
 - $C = \{W, tensor rank(W) \le r\}$
 - $r \ll (d_1, d_2, d_3)$
- Robust PCA
 - $C = \{W, W = L + S, rank(L) \le r, ||S||_0 \le s\}$
 - $r \ll (d_1, d_2), S \ll d_1 \times d_2$

Non-convex Structures

- Linear classification/regression
 - $C = \{w, ||w||_0 \le s\}$
 - $s \ll d$

- Matrix completion
 - $C = \{W, rank(W) \le r\}$
 - $r \ll (d_1, d_2)$

- NP-Hard
- $||w||_0$: Non-convex

- NP-Hard
- rank(W): Non-convex

Non-convex Structures

Low-rank Tensor completion

- $C = \{W, tensor rank(W) \le r\}$
- $r \ll (d_1, d_2, d_3)$

- Indeterminate
- tensorrank(W): Non-convex

Robust PCA

- $C = \{W, W = L + S, rank(L) \le r, ||S||_0 \le s\}$
- $r \ll (d_1, d_2), S \ll d_1 \times d_2$

- NP-Hard
- rank(W), $||S||_0$: Non-convex

Technique: Projected Gradient Descent

$$\min_{w} f(w)$$
s.t. $w \in C$

•
$$w_{t+1} = w_t - \nabla_w f(w_t)$$

•
$$w_{t+1} = P_C(w_{t+1})$$

Results for Several Problems

- Sparse regression [Jain et al.'14, Garg and Khandekar'09]
 - Sparsity
- Robust Regression [Bhatia et al.'15]
 - Sparsity+output sparsity
- Vector-value Regression [Jain & Tewari'15]
 - Sparsity+positive definite matrix
- Dictionary Learning [Agarwal et al.'14]
 - Matrix Factorization + Sparsity
- Phase Sensing [Netrapalli et al.'13]
 - System of Quadratic Equations

Results Contd...

- Low-rank Matrix Regression [Jain et al.'10, Jain et al.'13]
 - Low-rank structure
- Low-rank Matrix Completion [Jain & Netrapalli'15, Jain et al.'13]
 - Low-rank structure
- Robust PCA [Netrapalli et al.'14]
 - Low-rank ∩ Sparse Matrices
- Tensor Completion [Jain and Oh'14]
 - Low-tensor rank
- Low-rank matrix approximation [Bhojanapalli et al.'15]
 - Low-rank structure

Sparse Linear Regression

- But: $n \ll d$
- w: s —sparse (s non-zeros)

Sparse Linear Regression

- $||y Xw||^2 = \sum_i (y_i \langle x_i, w \rangle)^2$
- $||w||_0$: number of non-zeros
- NP-hard problem in general 😊
 - L_0 : non-convex function

Technique: Projected Gradient Descent

$$\min_{w} f(w) = ||y - Xw||^{2}$$
s. t. $||w||_{0} \le s$

• $w_{t+1} = w_t - \nabla_w f(w_t)$

• $w_{t+1} = P_s(w_{t+1})$

Statistical Guarantees

$$y_i = \langle x_i, w^* \rangle + \eta_i$$

- $x_i \sim N(0, \Sigma)$
- $\eta_i \sim N(0, \zeta^2)$
- *w**: *s* —sparse

$$||\widehat{w} - w^*|| \le \frac{\zeta \kappa^3 \sqrt{s \log d}}{\sqrt{n}}$$

•
$$\kappa = \lambda_1(\Sigma)/\lambda_d(\Sigma)$$

Low-rank Matrix Completion

$$\min_{W} \sum_{(i,j)\in\Omega} (W_{ij} - M_{ij})^{2}$$
s. t rank $(W) \le r$

 Ω : set of known entries

- Special case of low-rank matrix regression
- However, assumptions required by the regression analysis not satisfied

Technique: Projected Gradient Descent

- $W_0 = 0$
- For t=0:T-1

$$W_{t+1} = P_r(W_t - \eta \nabla f(W_t))$$

- $P_k(Z)$: projection onto set of rank-r projection
- Singular Value Projection
- Pros:
 - Fast (always, rank-r SVD)
 - Matrix completion: $O(d \cdot r^3)!$
- Cons: In general, might not even converge
- Our Result: Convergence under "certain" assumptions

Guarantees

- Projected Gradient Descent:
 - $W_{t+1} = P_r(W_t \eta \nabla_W f(W_t)), \quad \forall t$
- Show ϵ -approximate recovery in $\log \frac{1}{\epsilon}$ iterations
- Assuming:
 - *M*: incoherent
 - Ω : uniformly sampled
 - $|\Omega| \ge n \cdot r^5 \cdot \log^3 n$
- First near linear time algorithm for **exact** Matrix Completion with finite samples

General Result for Any Function

• $f: \mathbb{R}^d \to \mathbb{R}$

 $\rightarrow R$

• f: satisfies RSC/RSS, i.e.,

$$\min_{w} f(w)$$
s. t. $w \in C$

$$\alpha \cdot I_{d \times d} \leq H(w) \leq L \cdot I_{d \times d}, \quad if, w \in C$$

• PGD guarantee: $f(w_T) \le f(w^*) + \epsilon$

After
$$T = O(\log\left(\frac{f(w^0)}{\epsilon}\right))$$
 steps • If $\frac{L}{\alpha} \le 1.5$

Learning with Latent Variables

$$\min_{w,z} f(w,z)$$

- Typically, z are latent variables
- E.g., clustering: w: means of clusters, z: cluster index
- *f* : non convex
 - NP-hard to solve in general

Alternating Minimization

$$z_{t+1} = \arg\min_{z} f(w_t, z)$$

$$w_{t+1} = \arg\min_{w} f(w, z_{t+1})$$

- For example, if $f(w_t, z)$ is convex and $f(w, z_t)$ is convex
- Does that imply f(w, z) is convex?
 - No!!!
 - $f(w, z) = w \cdot z$
 - Linear in both w, z individually
- So can Alt. Min. converge to global optima?

Low-rank Matrix Completion

$$\min_{W} \sum_{(i,j)\in\Omega} (W_{ij} - M_{ij})^{2}$$
s. t rank $(W) \le r$

 Ω : set of known entries

- Special case of low-rank matrix regression
- However, assumptions required by the regression analysis not satisfied

Matrix Completion: Alternating Minimization

$$y - X \cdot \left(\begin{array}{c} X \\ Y \end{array} \right) = \begin{array}{c} X \\ Y \end{array}$$

$$W \cong U \times V^{T}$$

$$V^{t+1} = \min_{V} ||y - X \cdot (U^{t}V^{T})||_{2}^{2}$$

$$U^{t+1} = \min_{U} ||y - X \cdot (U(V^{t+1})^{T})||_{2}^{2}$$

Results: Alternating Minimization

- Provable global convergence [J., Netrapalli, Sanghavi'13]
- Rate of convergence: geometric $||W_T W^*|| \le 2^{-T}$
- Assumptions:
 - Matrix regression: RIP
 - Matrix completion: uniform sampling and no. samples $|\Omega| \ge O(dk^6)$

General Results

$$\min_{w,z} f(w,z)$$

- Alternating minimization: optimal?
- If:
 - Joint Restricted Strong Convexity (Strong convexity close to the optimal)
 - Restricted Smoothness (smoothness near optimal)
 - Cross-product bound:

$$|\langle w - w_*, \nabla_w f(w, z) - \nabla_w f(w, z_*) \rangle - \langle z - z_*, \nabla_z f(w, z) - \nabla_z f(w_*, z) \rangle|$$

 $\leq O(|w - w_*|^2 + |z - z_*|^2)$

Summary I

Non-convex Optimization: two approaches

- 1. General non-convex functions
 - a. First Order Stationary Point
 - b. Second Order Stationary Point
- 2. Statistical non-convex functions: learning with structure
 - a. Projected Gradient Descent (RSC/RSS)
 - b. Alternating minimization/EM algorithms (RSC/RSS)

Summary II

- First Order Stationary Point : $f(w) \le f(w') + ||w w'||^2$
 - Tools: gradient descent, acceleration, stochastic gd, variance reduction
 - Key quantity: iteration complexity
 - Several questions: for example, can we do better? Especially in finite sum setting

- Second order stationary point: $f(w) \le f(w') + ||w w'||^3$
 - Tools: noise+gd, noise+acceleration, noise+sgd, noise+variance reduction
 - Several questions: better rates? Can we remove Lipschitz condition on Hessian?

Summary III

- Projected Gradient Descent
 - Works under statistical conditions like RSC/RSS
 - Still several open questions for most problems
 - E.g., tight guarantees support recovery for sparse linear regression?

- Alternating minimization
 - Works under some assumptions on f
 - What is the weakest condition on f for Alt. Min. to work?