Review 2

1. Fill in the blanks when the numbers are sorted by merge sort in non-decreasing order.

2. Fill in the blanks with proper asymptotic running times. Assume that p = 1, r = n.

MERGE-SORT(A, p, r)	running time	
if $p < r$	1	
then $q = \lfloor (p+r)/2 \rfloor$	1	
MERGE-SORT(A, p, q)	Τ(<u>n</u>)	
MERGE-SORT(A , $q+1$, r)	て(る)	
MERGE(A, p, q, r)	h	

3. Solve the recurrence of merge sort by using a recursion tree.

$$T(n) = \begin{cases} \theta(1) & \text{if } n = 1\\ 2T(n/2) + \theta(n) & \text{if } n > 1 \end{cases}$$

4. What is the number of multiplications to evaluate the following cubic polynomial f(x) when x = 3 if the Horner's rule is used?

$$f(x) = 4x^{3} + 2x^{2} + 5x + 2$$

$$7(4x^{2} + 27(+5) + 2$$

$$7(2(4x+2) + 5) + 2$$

5. Fill in the blank entries when the numbers are sorted by selection sort in non-decreasing order.

7	4	3	6	8	1	2
1	4	3	6	8	7	2
1	2	3	6	8	7	4
	2	3	6	Ş	Ŋ	4
	•					
(2	3	4	9	η	4
(2	3	4		η η	-6 8
(,	6	η η	8