模拟电路与数字电路

第八章 作业答案

8.7 写出下列二进制数的原码、反码和补码

题号	二进制数	原码	反码	补码
1	+1011	01011	01011	01011
2	+011001	0011001	0011001	0011001
3	-1101	11101	10010	10011
4	-001101	1001101	1110010	1110011

8.8 写出下列带符号二进制数的反码和补码

题号	原码	反码	补码
1	001011	001011	001011
2	011011	011011	011011
3	101011	110100	110101
4	111011	100100	100101

8.9 用 8 位二进制补码表示下列十进制数

题号	十进制数	原码	补码
1	+19	0001 0011	0001 0011
2	+43	0010 1011	0010 1011
3	-17	1001 0001	1110 1111
4	-79	1100 1111	1011 0001
5	-115	1111 0011	1000 1101
6	-125	1111 1101	1000 0011

8.10 计算下列用补码表示的二进制数的代数和。如何和为负数、求出其绝对值。

题号	内容
1	0010 0110+0100 1101=0111 0011
2	0100 1101+0010 1101=0111 1010
3	0011 0010+1000 0011=1011 0101, 0100 1011
4	1101 1101+0100 1011=1 0010 1000, 0010 1000
5	1101 1011+1110 0111=1 1100 0010, 0011 1110
6	1000 1000+1111 1001=1 1000 0001, 0111 1111

8.12 写出下列逻辑函数的对偶式 F'与反函数 \bar{F} 。

1,
$$F = \bar{A}\bar{B} + CD$$
, $F = (\bar{A} + \bar{B})(C + D)$, $\bar{F} = (A + B)(\bar{C} + \bar{D})$

2.
$$F = [(A\overline{B} + C)D + E]G$$
, $F' = ((A + \overline{B}) \cdot C + D) \cdot E + G$, $\overline{F} = ((\overline{A} + B) \cdot \overline{C} + \overline{D})\overline{E} + \overline{G}$

3.
$$F = \overline{A\overline{B} + C} + \overline{A + \overline{BC}}$$
, $F' = \overline{(A + \overline{B})C} \cdot \overline{A(\overline{B} + \overline{C})}$, $\overline{F} = \overline{(\overline{A} + B)\overline{C}} \cdot \overline{A(\overline{B} + \overline{C})}$

8.13 将下列逻辑函数化为最小项之和及最大项之积的形式

1.
$$F = AB\bar{C} + BC = AB\bar{C} + ABC + \bar{A}BC = m_3 + m_6 + m_7 = \Pi M(0,1,2,4,5)$$

2.
$$F = AT + RC = (A + C)(R + C) = AR + AC + CR$$
 $F = ARC + BRC + ARC + ARC + ARC + ACR$
 $= BCC + ARC + ARC + ARC + ARC + ACR$
 $= BM(0, 1, 2.S) = 17 M(3, 4.6.7)$

3. $F = (A + RS)(A + C) = A + A(+ AR + RC) = A + DR + RC$
 $= BCC + ARC + ARC + ARC + ARC + ARC + ACA$
 $= BCC + ARC + ARC + ARC + ARC + ACA$
 $= BCC + ARC + ARC + ARC + ARC + ACA$
 $= BCC + ARC + A$

 $8.1637 - \sum m(1,2,4,1), (3,14) + \sum d(8,9,10,12,15)$

0

FEA +BCD+BCD+BCD

8.17 将下列逻辑函数化简为与或式、与非-与非式、或非-或非式、与或非式解: $F = A\bar{B} + B \oplus C = A\bar{B} + B\bar{C} + \bar{B}C$;

最简与或式: $F = A\bar{B} + B\bar{C} + \bar{B}C$;