General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

V38

20029-H017-R0-00-x \

NASA CR-

144386

THERMO-STRUCTURAL DESIGN ANALYSIS FOR ADVANCED MANNED SPACECRAFT SYSTEMS TASK 701C PROJECT TECHNICAL REPORT

THE RELATIVE EFFECTS OF ENTRY PARAMETERS ON THERMAL PROTECTION SYSTEM WEIGHT

Contract No. NAS 9-12330

20 December 1971

(NASA-CR-144386) THE RELATIVE EFFECTS OF ENTRY PARAMETERS ON THERMAL PROTECTION SYSTEM WEIGHT (TRW Systems Group) 50 p HC \$3.75 CSCL 22 N75-29166

CSCL 22B Unclas G3/18 33364

Prepared for National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas

TRW SYSTEMS
HOUSTON OF HATIONS
TECHNICAL LIBRARY

Prepared by Applied Technology Laboratory TRW Systems Group

20029-H017-R0-00-1

NASA CR.

THERMO-STRUCTURAL DESIGN ANALYSIS FOR ADVANCED MANNED SPACECRAFT SYSTEMS TASK 701C PROJECT TECHNICAL REPORT

THE RELATIVE EFFECTS OF ENTRY PARAMETERS ON THERMAL PROTECTION SYSTEM WEIGHT

Contract No. NAS 9-12330

20 December 1971

(NASA-CR-144386) THE RELATIVE EFFECTS OF N75-29166 ENTRY PARAMETERS ON TEERMAL PROTECTION SYSTEM WEIGHT (TRW Systems Group) 50 p HC \$3.75 CSCL 22E Unclas G3/18 33364

Prepared for National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas

TRW SYSTEMS
HOUSTON OF BATIONS
TECHNICAL LIBRARY

Prepared by Applied Technology Laboratory TRW Systems Group

Shielding a spacecraft from the severe thermal environment of an atmospheric entry requires a sophisticated thermal protection system (TPS). Thermal computer program models have been developed for two such TPS designs proposed for the space shuttle orbiter. The multilayer systems, a reusable surface insulation TPS and a re-radiative metallic skin TPS, have been sized for a cross-section of trajectories in the entry corridor. This analysis indicates the relative influence of the entry parameters on the weight of each TPS concept. The results are summarized graphically in Figures 8 and 9. The trajectory variables considered were down-range, cross-range, orbit inclination, entry interface velocity and flight path angle, maximum heating rate level, angle of attack and ballistic coefficient. Variations in cross-range and flight path angle over the ranges considered had virtually no effect on the required entry TPS weight. The TPS weight was significantly more sensitive to variations in angle of attack than to dispersions in the other trajectory parameters considered in the study.

ABSTRACT

Shielding a spacecraft from the severe thermal environment of an atmospheric entry requires a sophisticated thermal protection system (TPS). Thermal computer program models have been developed for two such TPS designs proposed for the space shuttle orbiter. The multilayer systems, a reusable surface insulation TPS and a re-radiative metallic skin TPS, have been sized for a cross-section of trajectories in the entry corridor. This analysis indicates the relative influence of the entry parameters on the weight of each TPS concept. The results are summarized graphically in Figures 8 and 9. The trajectory variables considered were down-range, cross-range, orbit inclination, entry interface velocity and flight path angle, maximum heating rate level, angle of attack and ballistic coefficient. Variations in cross-range and flight path angle over the ranges considered had virtually no effect on the required entry TPS weight. The TPS weight was significantly more sensitive to variations in angle of attack than to dispersions in the other trajectory parameters considered in the study.

TABLE OF CONTENTS

																								Page
Title page	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	i
Abstract	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
Table of Contents	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	111
List of Figures	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		iv
List of Tables	•	•		•		•		•	٠	•	•		•	•	•	•	•	٠	•	•	•	•	•	v
List of Symbols	•		•	•				•	•	•	•	•		•	•		•	•	•	•	•	•	•	A,r
Introduction	•	•		•		•				•	•	•	•		•	•	•	•	•	•	•	•	•	1
Heating Rages	•	•	•	•	•	•	•	•	•	•			•	•	•		•		•	•	•	•	•	3
TPS Designs				•			*			•	•		•		•	•			•		•	•		5
Thermal Models			•	•		•		•	•	٠	•	•	•	•	•	•		•		•		•	•	8
Material Properties.	•		•	•		٠	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	9
Entry Trajectories .	•	•	•	•		•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	9
TPS Sizing	٠	•	•		•	•	٠	•	•		•	. •	•	•			. •	•	•	•		•	•	12
Total TPS Weights		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	16
Appendix	•	•		•	•	•	•	•		•		•	•	٠	•			•	•	•	•	•	•	20
References	•			,•																				43

LIST OF FIGURES

Figure		Page
1	Basic Analysis Steps	2
2	Fuselage Panels	4
3	Flat Plate Heating Distribution, Typical Case	6
4	Insulative TPS Cross-Section	6
5	Metallic TPS Cross-Section	7
6	Insulative TPS Node Model	10
7	Metallic TPS Node Model	11
8	Effects of Entry Parameters on Insulative TPS Total Weights	1.8
9	Effects of Entry Parameters on Metallic TPS Total Weights	19
A-1.	Local Heating Factors, Panels 1, 2, 3, and 4	28
A-2	Local Heating Factors, Panels 5, 6, 7, and 8	29
A-3	Local Heating Factors, Panels 9, 10, 11, and 12	29
A-4	Required Shingle Weight for Metallic TPS	30
A-5	Reference Heating Rate Histories, Range Dispersion	31
А6	Reference Heating Rate Histories, Cross-Range Dispersions	32
A-7	Reference Heating Rate Histories, Inclination Dispersion	33
A-8	Reference Heating Rate Histories, Velocity Dispersion .	34
A-9	Reference Heating Rate Histories, Flight Path Angle Dispersion	35
A-10	Reference Heating Rate Histories, Ballistic	36

Figure		Page
A-11	Reference Heating Rate Histories, Angle of Attack Dispersion	37
A-12	Reference Heating Rate Histories, Flight Level Dispersion	38
A-13	Insulation Weight as a Function of Heating Factor, Insulative TPS	39
A-14	Insulation Weight as a Function of Heating Factor, Metallic TPS	41
	LIST OF TABLES	
Table		Page
1	Trajectory Parameters	13
2	Required Insulation Weights, CR and γ Dispersions	14
3	Total TPS Weights	17
A-1	Material Thermophysical Properties	21
A-2	Required Insulation Unit Weight, Insulative TPS	23
A-3	Total Required Insulation Weights, Insulative TPS	23
A-4	Required Insulation Weights, Insulative TPS (Angle of Attack Dispersion)	24
A-5	Required Insulation Unit Weights, Metallic TPS	25
A-6	Total Required Insulation Weight, Metallic TPS	25
A-7	Required Insulation Weights, Metallic TPS (Angle of Attack Dispersion)	26
A-8	Maximum Sustained Surface Temperatures	. 27
A-9	Metallic Shingle Weights	. 27

v

LIST OF SYMBOLS

		Units
A	Area	ft ²
C^{D}	Coefficient of drag	-
CR	Cross-range	n.m.
F	Local heating factor	-
h	Enthalpy	Btu/1b
i	Inclination angle	٥
Le	Lewis number	-
Pr	Prandtl number	-
Q	Total heat load	Btu/ft ²
q	Heating rate	Btu/ft2-sec
r .	Radius	ft
R	Range	n.m.
Re	Reynolds number	-
t	Time of heating	sec
u ·	Velocity	ft/sec
v	Relative velocity	ft/sec
W	Weight or unit weight	1b, 1b/ft2
ΔW	Change in unit weight	1b/ft2
W/C _D A	Ballistic coefficient	-
x	Surface distance from nose	ft

Greek		Units
α	Angle of attack	o
ε	Emissivity	-
Υ	Flight path angle	o
ρ	Density	lb/ft ³
σ	Stephan-Boltzmann constant	$.476 \times 10^{-12} \frac{Btu}{ft^2 sec R^4}$
μ	Viscosity	lb/ftsec

Subscripts

D Dissociation
e Earth orbital
m Maintained
o Sea level
r Recovery
s Surface
t Total
2 Properties behind the shock
w Wall

INTRODUCTION

The space shuttle orbiter will be designed for multiple reuse with a minimum of refurbishment. This reuse requirement necessitates the design of a thermal protection system (TPS) that can withstand the atmospheric entry heating environment without degrading. Two multilayer TPS concepts which meet this requirement are the reusable surface insulative (RSI) system proposed by North American Rockwell (NR) and the metallic skin reradiative system developed by the McDonnell Douglas Astronautics Company (MDAC). Because the weight of the TPS impacts the vehicle structural payload capability, it is an important consideration in selecting the 'PS design and in choosing the entry corridor.

The purpose of this scudy is to size the two TPS concepts described above for a cross-section of trajectories in the entry corridor and to establish the sensitivity of the TPS weights to changes in the entry trajectory parameters.

Several steps are necessary to determine the total weight of a TPS. From simulated entry trajectories spacecraft reference heating rates can be calculated. Coupled with surface heating rate distributions, these reference rates can be converted to local heating rates. Minimum TPS insulation thicknesses required to maintain prescribed temperature limits are then determined using a standard thermal analysis program. Local and total TPS weights can be calculated directly from these data. Figure 1 illustrates the steps taken in the analysis. The presentation of total required TPS weights for a selection of entry trajectories will show the relative effects of each entry parameter on the weight of the TPS.

Figure 1. Basic Analysis Steps

HEATING RATES

The heating distribution along the spacecraft surface is a function of the angle of attack (the angle between the path of flight and the horizontal axis of the vehicle). For nominal orbiter entries the guidance maintains a constant angle of attack during the period of significant heating. For this reason the heating factors used to convert the reference heating rate to local rates are constant. To simplify the analysis, the wetted surface of the orbiter fuselage has been divided into 12 panel areas as illustrated in Figure 2. These panels which represent both sides of the symmetrical vehicle, or twice the area shown, have been numbered and are referred to as panels 1, 2, 3, etc. Average heating factors determined for each panel for the range of angles of attack were presented in Reference 1 and are given as Figures A-1 through A-3 in the Appendix. Wing and stabilizer panel data are not given because only fuselage TPS's were considered in the present analyses.

Velocity, altitude and angle of attack histories for 24 trajectories within the entry corridor were supplied by NASA/MSC. A reference heating rate, the stagnation heating on a one-foot radius sphere, has been calculated using the MSC F144 computer program (Reference 2). This program employs Equation 1, the Detra, Kemp and Riddell stagnation heating expression from Reference 3.

$$q = \frac{17600}{r^{.5}} \left(\frac{\rho}{\rho_0}\right)^{.5} \left(\frac{U}{U_e}\right)^{3.15} \left(\frac{h_r - h_w}{h_r - h_w_{300K}}\right)$$
(1)

During the subsonic portion of the flight, the vehicle is oriented such that the flow over the fuselage is similar to flow over a flat plate. In order to simulate the convection cooling during the subsonic flight, Equation (2) which calculates cold wall flat plate turbulent heating

$$q = 0.0296 \text{ Re}^{0.8} \text{ Pr}^{-2/3} \frac{u}{x} (h_r - h_w)$$
 (2)

Figure 2. Fuselage Panels of Orbiter Vehicle (NR Drawing No. 999-61)

0

was added to the F144 program. The wall enthalpy used in Equation (2) was selected for a temperature of 0°F and then corrected for the actual wall temperature during the TPS response calculations. Figure 3 is a typical plot of flat plate cooling versus the distance x from the leading edge. In order to reduce the number of separate heating rate histories to be computed, a constant value for x of 50 feet was used for all locations. As seen in Figure 3, the flat plate cooling rate is relatively constant for greater distances, and the 50-foot value is thermally conservative for shorter distances. In retrospect the subsonic cooling proves to have little effect on the peak temperatures experienced within the TPS.

A local pressure history was also calculated for each trajectory using the F144 program. The pressures, estimated using the Newtonian pressure coefficient, were used in determining pressure dependent material properties.

Figure 3. Flat Plate Heating Distribution, Typical Case

TPS DESIGNS

The NR reusable surface insulative system (see Figure 4) is a multi-layer system. The outer insulation layer, LI-1500, is a silica erial with a maximum reuse temperature of 2500°F. It is bonded to a ticanium subpanel, which has a temperature limit of 600°F. Structural support members extend from the titanium subpanel inward to the aluminum tank wall. A soft insulator, TG-15000, is attached to the backface of the subpanel and extends around the structural supports. These supports provide a standoff region of several inches between the TG-15000 and the aluminum tank wall. The structural integrity of the aluminum requires that the temperature of the tank wall not exceed 300°F. A foam insulation lines the interior surface of the cryogenic tank. Since the fuel tanks are accountable to surface in the analysis.

Figure 4. Insulative TPS Cross Section

Figure 5 is a cross-section of the MDAC proposed metallic re-radiative TPS. The metallic shingle and the shingle substructure are offset from the tank walls by structural support members. In order to provide a thermally efficient design, the shingle and substructure are constructed of the metal which is most effective for the entry environment experienced by a particular panel (Reference 4). The materials and the respective weights required

Figure 5. Metallic TPS Cross-Section

for a given peak surface temperature are presented in Figure A-4. The insulation is attached to the support members such that radiation gaps are left between it and both the shingle structure and the aluminum tank wall. The insulation consists of two layers, the exterior dynaflex and the interior microquartz. Dynaflex is a soft insulation similar to TG-15000 with a maximum reuse temperature of 2800°F. Microquartz, however, has a maximum reuse temperature of 1800°F and in this structure must be protected by the dynaflex in high heating regions. In order to reduce the radiation heat transfer to the aluminum tank wall, the backface of the microquartz is covered with a gold foil. The adhesive used to attach the foil has a degradation temperature of 600°F. Again the aluminum tank wall backed with foam insulation must be maintained below 300°F.

Because of manufacturing limitations minimum insulation thicknesses of 0.25 inch will be used for cases requiring less material based on predicted thermal conditions.

THERMAL MODELS

The Systems Improved Numerical Differencing Analyzer (SINDA) program (Reference 5) was used to calculate temperatures within the TPS's. This program requires an input of the node model, material properties and trajectory data. The ØPTIMZ subroutine (Reference 6) of SINDA, which was developed specifically for sizing multilayer TPS's for prescribed indepth temperature limits, was utilized to determine the required insulation thicknesses. Since an averaged heating rate factor was assigned to each fuselage panel, a one-dimensional thermal model was used. Because the high conductivity (metal) components in the TPS are relatively thin and because the actual aero heating variation across a given panel is small in general, the use of an average heating factor and a one-dimensional analysis was considered acceptable.

The node model used for the surface insulative system is illustrated in Figure 6. Because of the high conductance of the titanium facesheet and of the aluminum tank wall, temperature gradients through both are

neglected. The thermal capacitances, however, are considered. The LI-1500 is sized to maintain the titanium facesheet below 600°F, and the thickness of the TG-15000 must be sufficient to limit the tank wall to 300°F. The interdependence of these insulation layers requires the iterative analysis performed by the ØPTIMZ subroutine. When low heating rates produce surface temperatures less than 600°F, the LI-1500 layer is omitted.

Figure 7 is a schematic of the metallic TPS node model. As in the surface insulative model the thermal capacitances but not the conductances of the two metallic layers are used. As stated in the TPS description, the dynaflex insulation is only needed to maintain the microquartz below 1800°F. The microquartz is sized to maintain its backface temperature below 600°F, the limit for the adhesive which supports the gold foil. In all but the highest heat load cases if the foil does not reach 600°F, its low emissivity, 0.08, keeps the tank wall from exceeding 300°F. Depending on the heat load, the microquartz must be sized to meet either the 600°F backface temperature limit or the 300°F tank wall limit. For the lower heating rate cases for which the dynaflex is omitted, ØPTIMZ can size the microquartz for one limit with no iteration.

MATERIAL PROPERTIES

The thermal properties, conductivity and specific heat of the TPS materials are functions of temperature, and due to porosity, the insulator properties are also pressure dependent. Table A-1 lists all material properties used in this study.

ENTRY TRAJECTORIES

The orbiter guidance flies a two phase entry. A constant flight level, or reference heating rate, and angle of attack are maintained for the first phase and a constant g-load is held in the second phase. A reference heating rate of 80 Btu/ft2-sec and a g-load of 1.5 are the two modes for the nominal trajectory. The 24 trajectories listed in Table 1 were provided by NASA (Reference 7) for the corridor analysis. Trajectory 1 is the nominal entry and represents the nominal value of each parameter. The

Figure 6. Surface Insulative TPS Node Model

Figure 7. Metallic TPS Node Model

variation of eight entry parameters (range, cross-range, inclination, entry interface velocity and flight path angle, ballistic coefficient, angle of attack and flight level) has been included in this study. In order to ascertain the influence of each parameter, each trajectory has nominal values for all but one parameter. Variation of only one parameter at a time was obtained by bank angle modulation; however, in some cases it was necessary to adjust an additional parameter to obtain the desired offnominal value. Variation in q_m was required to achieve the changes in range and angle of attack, and flight path angle was varied in the velocity distribution and in one flight level dispersion. Trajectory 24 was the only off-nominal g-load, 2.5 g.

The reference heating rate histories of the trajectories are plotted in Figures A-5 through A-12. For comparison the histories are grouped by parameter variation and the nominal heating rate, trajectory 1, is presented on each figure.

TPS SIZING

To develop curves of insulation unit weight versus heating factor, sizing runs were made for each trajectory for three to six heating factors depending on the deviation of the trajectory from the nominal trajectory. At this stage two parameters, cross-range and flight path angle, will be eliminated because the effects of these parameters on the TPS weights are negligible. The results of the sizing runs for trajectories 4, 5, 6, 14, 15, 16 and 17 are tabulated in Table 2 along with selected cases of the nominal trajectory. The data indicates effects on insulation weight of less than one percent even at the maximum deviation of each parameter from the nominal; therefore, these seven trajectories will no longer be considered in this study.

Table 1. Trajectory Parameters

Heat Rate Maintained	(Btu/ft2.sec)	80	70	06	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	100	80	65	70	100	150
Angle of Attack	£	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	20	07	20	30	30	30
Ballistic Coefficient W/C _D A	(Variation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-25%	+25%	0	0	0	0	0	0
Flight Path Angle	()	-1.45	-1.45	-1.45	-1.45	-1.45	-1.45	-1.45	-1.45	-0.24	-0.98	-1.82	-2.15	-1.30	-1.35	-1.65	-1.75	-1.45	-1.45	-1.45	-1.45	-1.45	-1.35	-1.45	-1.45
Velocity	(ft/sec)	26000	26000	26000	26000	26000	26000	26000	26000	25000	25500	26500	27000	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000	26000
Inclination Angle i	(°)	55	55	55	55	55	55	28.5	06	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55
Cross Range CR	(n.m.)	0	0	0	1412	933	533	0	0	0	0	0	0	0	0	0	0	0	0	Û	0	0	0	0	0
Down Range R	(n.m.)	5375	6062	4838	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375	5375
Trajectory	Number	1	2	3	7	2	9	7	∞	6	10	11	12	13	14	15	91	17	18	19	20	21	22	23	24*

Required Insulation Weights, CR and γ Dispersions Table 2.

Trainston Unatable		TTDhay	Meduited illisuration weights 110/11	JII WEIKIILS	110/11		
anne	Insulative	TP	TPS Heating Factors	Met	Metallic TPS Heating Factors	eating Fact	tors
Parameter	.17	80.	.02	.17	.10	90.	.02
Nominal	3.14	2.50	1.38	1.492	1.012	808	. 383
412 nm	3.16	2.52	1.43	1.492	1.013	608.	.383
933 nm	3.14	2.51	1.41	1.492	1.010	808	.384
CR= 533 nm	3.14	2.50	1.39	1.492	1.012	808	.384
y=-1.30°	3.18	2.52	1.43	1.488	1.005	908.	.388
y=-1.35°	3.16	2.53	1.43	1.480	1.010	908	. 395
y=-1.65°	3.19	2.52	1.41	1.500	1.015	.815	. 395
y=-1.75°	3.14	2.51	1.40	1.481	1.011	.800	.385

Insulation weight of the Insulative TPS include both the LI-1500 external and the TG-15000 internal insulation materials. Insulation weights of the metallic TPS are for the internal Notes:

microquartz insulation (plus dynaflex for Panel 1).

Figures A-13 and A-14 present the unit weight versus heating factor curves developed for each of the 17 remaining trajectories for both heat shields. An examination of the panel heating factors reveals that panel 1 is the only location where the surface temperature exceeds 1800°F; therefore, the dynaflex layer of the metallic TPS can be omitted for the other panels. For this reason Figure A-14, the unit weight curves for the metallic TPS, is not extended to include the panel 1 heating factor, and the insulation unit weights are the microquartz unit weights. The panel 1 required insulation weights calculated by SINDA for the metallic TPS are presented only in the tables.

From the curves of Figures A-1, A-2 and A-3 the panel heating factors were obtained for each of the four angles of attack. For the α = 30° trajectories, the local factors and the corresponding insulation unit weights obtained from Figure A-3 are tabulated in Table A-2 for the insulative TPS. Multiplying these unit weights by the respective panel areas, produces the total insulation weights presented in Table A-3 for the individual panels and for the entire fuselage TPS. These same steps are used in Table A-4 to yield the total required weights for trajectories 19, 20 and 21, the angle of attack variation.

Employing the same method to calculate the metallic TPS insulation weights, Tables A-5 and A-6 list the unit and total weights for the trajectories with $\alpha=30^\circ$, and Table A-7 contains the data for trajectories 19, 20 and 21. The metallic TPS, however, requires additional steps to determine the total TPS weight. The metal shingles which form the outer skin must be designed for the maximum surface temperature of each panel. The maximum panel surface temperatures were estimated as the re-radiation equilibrium temperature based on the q_m of each trajectory. Using Equation 4, the estimated maximum surface temperatures in Table A-8

$$T_{s} = \left(\frac{F \dot{q}_{m}}{\varepsilon \sigma}\right) - 460 \tag{4}$$

have been calculated. The respective unit weights are obtained from Figure A-4 and multiplied by the panel area to produce the total weights of Table A-9.

TOTAL TPS WEIGHTS

Certain fixed weights including coatings, metallic structure and insulation packaging must be included in the TPS weight totals. These weights are $1.95~\rm lb/ft^2$ for the insulative system and $0.84~\rm lb/ft^2$ for the metallic system, or 23556 lb and 10147 lb respectively for a TPS surface area of 12080 ft². These fixed weights include the following components:

insulative System	
Titanium subpanel and supports	1.10 lb/ft ²
Surface coating	. 35
Adhesive bond	. 30
Insulation packaging	$\frac{.20}{1.95}$ lb/ft ²

Support struts	.26 lb/ft ²
Drag links and fillings	.18
Insulation retention	.10
Insulation packaging	.30 .84 lb/ft ²

Metallic System

The tabulations of the TPS total weights for each trajectory are given in Table 3. These final totals show the surface insulative system to be 40 to 80% heavier than the metallic system, a condition which should prove a major factor in the TPS design decision. By plotting the total weight versus the individual parameter dispersions (see Figures 8 and 9), the sensitivity of the TPS weight to each parameter variation is shown. (The reader should be cautioned that these curves do not necessarily provide correct total weights for intermediate parameter values as the TPS panels do not react uniformly to trajectory changes.) These curves are presented on identical total weight scales so that the relative importance of each may be judged.

The variations in angle of attack cause the most significant weight changes for both TPS concepts. The effect of heating rate on the metallic TPS is easily seen by comparing the q_m curves of Figures 7 and 8. The surface temperature criteria in the selection of the metallic shingle outweighs the effect of total heat load on the insulation since the metallic weight increases significantly with increasing q_m . All the other parameters show only moderate influences on the weights.

Table 3. Total TPS Weights

	Insulative	TPS	Metal	lic TPS	
Γrajectory Number	Insulation Weight (1b)	Total* Weight (1b)	Insulation Weight (1b)	Shingle Weight (1b)	Total** Weight (1b)
1	14866	38422	4901	10161	25209
2	15738	39294	4709	9600	24456
3	14535	38091	4808	10275	25230
7	14464	38020	4775	10161	25083
8	16120	39676	5145	10161	25453
9	13736	37292	4544	10161	24852
10	14451	38007	4742	10161	25050
11	15667	39223	5061	10161	25369
12	16379	39935	5220	10161	25528
17	13161	36717	4354	10161	24662
18	16797	40353	5424	10161	25732
19	26165	49721	6877	10156	27180
20	10615	34171	3876	10043	24066
21	8288	31844	2994	9172	22313
22	15969	39525	4864	9600	24611
23	14313	37869	4746	10344	25237
24	11960	35516	4902	11248	26297

^{*} Includes fixed weight of 1.95 lb/ft or 23556 lb

Notes: 1. Insulation weight of the Insulative TPS include both the LI-1500 external and the TG-15000 internal insulation materials.

^{**}Includes fixed weight of 0.84 lb/ft2 or 10147 lb

^{2.} Insulation weights of the metallic TPS are for the internal microquartz insulation (plus dynaflex for Panel 1).

Figure 8. Effects of Entry Parameters on Insulative TPS Weight.

Figure 9. Effects of Entry Parameters on Metallic TPS Weight.

APPENDIX

Table A-1

Material Thermophysical Properties

1. LI-1500

Density: 15 lb/ft³ Specific Heat: c (Btu/lb-°F)

T(°F)	0	80	260	440	620	800	980	1340	1700	2060	2430
С	0.072	0.151	0.198	0.234	0.263	0.280	0.787	0.294	0.306	0.316	0.320

Conductivity: k (Btu/ft-sec°F)

	-	k :	x 10 ⁴		
P(atm)	.000132	0.00132	0.0132	0.132	1.0
0	0.0393	0.0440	0.0648	0.0741	0.0810
300	0.0486	0.0532	0.0717	0.0787	0.0853
700	0.0625	0.0671	0.0810	0.1088	0.1203
1400	0.1041	0.1088	0.1388	0.2083	0.2314
2000	0.1550	0.1597	0.2360	0.3239	0.3610
2500	0.2129	0.2175	0.3124	0.4350	0.4836

2. TITANIUM ALLOY (TI-CAL-4V)

Density: 276.45 lb/ft^3 Specific Heat: c (Btu/lb-°F)

T(°F)	0	400	600	800	1200
С	0.13	0.14	0.15	0.16	0.18

Conductivity: k (Btu/ft-sec°F)

T(°F)	0	100	1200
k	0.0011	0.0012	0.0031

3. TG-15000

Density: 3 lb/ft³
Specific Heat: c (Btu/lb-°F)

T(°F)	100	300	2000
С	0.220	0.235	0.235

Conductivity: k(Btu/ft-sec-°F)

		k x	104		
T(°F) P(atm)	1x10 ⁷	2x10 ⁵	9x10 ⁴	0.011	1.0
0	0.00083	0.00111	0.0111	0.0344	0.0389
80	0.00694	0.00806	0.0178	0.0402	0.0508
300	0.0117	0.0142	0.0347	0.0667	0.0778
500	0.0278	0.0306	0.0519	0.0986	0.110
700	0.0611	0.0778	0.150	0.169	0.402

Table A-1 (continued)

4. DYNAFLEX

Density: 6.0 lb/ft³
Specific Heat: c (Btu/lb-°F)

T(°F)	0	400	800	1200	1600	2000	2400
С	0.216	0.216	0.244	0.262	0.270	0.276	0.278

Conductivity: k (Btu/ft-sec-°F)

		kх	104	
T(°F) P(atm)	0.001	0.01	0.1	1.0
0	0.0083	0.0125	0.0250	0.0250
600	0.0667	0.0903	0.1167	0.1167
1200	0.158	0.214	0.251	0.253
1800	328 در	0.392	0.438	0.450
2200	0.472	0.550	0.617	0.625

5. MICROQUARTZ

Density: 3.5 lb/ft³
Specific Heat: c (Btu/lb-°F)

T(°F)	0	200	500	1000	1500	2000
С	0.20	0.20	0.24	0.27	0.29	0.30

Conductivity: k (Btu/ft-sec-° 3)

		k x	104		
T(°F) P (atm)	0.00013	0.001	0.01	0.1	1.0
0	0.0083	0.0236	0.0486	0.0583	0.0625
400	0.0278	0.0417	0.0750	0.0972	0.1000
800	0.0722	0.0819	0.117	0.156	0.160
1200	0.135	0.144	0.175	0.226	0.232
1400	0.172	0.182	0.211	0.267	0.276
1600	0.211	0.219	0.250	0.313	0.333
1800	0.253	0.261	0.292	0.368	0.400

6. CRYOGENIC FOAM

Density: 6.696 lb/ft³

Specific Heat: .23 Btu/lb-°F

Conductivity: .00019 Btu/ft-sec-°F

Table A-2. Required LI-1500 and TG-15000 Insulation Unit Weights, Insulative TPS

	Heating		Insu	Insulation Unit		ht from	Figure A	Weight from Figure A-12 (ib/ft2)	ft2)						
Panel	Factor				Traj	Trajectory N	Number								
per	(a=30°)	1	2	3	7	80	6	10	11	12	17	18	22	23	24
	.17	3.14	3.26	3.05	3.09	3.36	2.97	3.06	3.26	3.40	2.86	3.46	3.26	2.98	2.59
21	.07	2.38	2.48	2.28	2.32	2.55	2.21	2.32	2.48	2.59	2.12	2.65	2.53	2.24	1.88
~	.05	2.10	2.20	2.00	2.04	2.26	1.95	2.04	2.20	2.31	1.87	2.35	2.24	1.95	1.65
	.05	2.10	2.20	2.00	2.04	2.26	1.95	7.07	2.20	2.31	1.87	2.35	2.24	1.95	1.65
	.039	1.89	2.00	1.81	1.84	2.05	1.76	1.84	2.00	2.10	1.69	2.13	2.04	1.77	1.49
	.024	1.52	1.63	1.43	1.48	1.67	1.38	1.48	1.62	1.71	1.33	1.75	1.68	1.42	1.19
	.015	1.19	1.28	1.11	1.15	1.32	1.07	1.15	1.28	1.36	1.00	1.38	1.30	1.10	0.88
~	.0039	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	96.0	90.0	90.0	90.0
_	.02	1.38	1.50	1.30	1.35	1.55	1.25	1.35	1.50	1.58	1.18	1.61	1.53	1.29	1.08
-	900.	0.10	0.10	0.50	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.50	0.38
	.007	69.0	0.79	09.0	99.0	0.78	0.61	99.0	0.75	0.82	0.58	0.84	0.77	0.62	0.47
	.003	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0

PS.
F
a)
5
T
a
7
S
H
ts,
1
60
Wei
3
62
0
T
La
7
S
드
_
00
ō
15
9
7.6
-
pu
and
0 and
500 and
1500 and
-15
LI-1500 and
-15
-15
-15
-15
-15
-15
1 Required LI-15
al Required LI-15
al Required LI-15
1 Required LI-15
al Required LI-15
al Required LI-15
3. Total Required LI-15
al Required LI-15
3. Total Required LI-15
3. Total Required LI-15
3. Total Required LI-15
ble A-3. Total Required LI-15

	Panel			Tota		insulation Weight	ght (1b)								
Panel	Area				Iraj	Trajectory N	Number								
Number	(ft ²)	1	2	3	7	œ	6	10	11	12	17	18	22	23	24
-	431	1353	1405	1315	1332	1448	1280	1319	1405	1465	1233	1691	1405	1284	1116
2	928	2209	2301	2116	2153	2366	2051	2153	2301	2403	1967	2459	2348	2079	1745
3	1306	2743	2873	2612	2664	2952	2547	2664	2873	3017	2442	3069	2925	2547	2155
7	1408	2957	3097	2816	2872	3182	2746	2872	3097	3252	2633	3309	3154	2746	2323
2	697	1317	1394	1262	1282	1429	1227	1282	1394	1464	1178	1485	1422	1234	1039
9	1000	1520	1630	1430	1480	1670	1380	1480	1620	1710	1330	1750	1680	1420	1190
7	671	798	859	745	772	886	719	772	859	913	671	926	872	738	290
- 00	719	43	43	43	43	43	43	43	43	43	43	43	43	43	43
6	467	579	700	109	630	724	584	630	701	738	551	752	715	602	504
10	1116	112	112	558	112	112	112	112	112	112	112	112	112	558	1.24
11	1539	1062	1216	923	1016	1200	939	1016	1154	1154	893	1293	1185	954	723
12	1798	108	108	108	108	108	108	108	108	108	108	108	108	108	108
Total We	Weight	14866	15738	14535	14464	16120	13736	14451	15667	16379	13161	16791	15969	14313	11960

Weight (1b) Total 846 1745 1959 362 420 67 43 313 8288 112 154 Required LI-1500 and TG-15000 Weights, Insulative TPS (Angle of Attack Dispersions) Insulation Trajectory 21 Weight (1b/ft2) 2.20 1.50 0.42 0.10 90.0 0.10 0.52 0.67 1.41 (= 50°) Heating Factor .0039 .073 015 .012 900. 900. 990 .007 Weight 788 850 369 10615 (1P) 1865 2194 2295 434 112 462 Total Insulation Trajectory 20 Weight (1b/ft²) 0.85 2.54 1.68 1.63 1.13 0.55 0.06 0.93 0.10 0.39 $(=70^{\circ})$ Heating Factor .0039 .018 020 860 062 .057 .027 .011 .006 Weight 26165 Total (1P) 1982 2988 4075 4562 2384 1657 72 1177 1674 2524 180 Insulation Trajectory 19 Weight (1b/ft²) 3.24 3.42 2.89 0.10 3.12 2,47 2.52 3.22 Heating Factor (=20°) .0039 .030 .020 .156 038 .043 007 Total Insulation Weight Table A-4. Panel Area (ft²) 000 719 1306 1408 697 1116 1539 671 467 Number Panel

Table A-5. Required Microquartz Insulation* Unit Weights, Metallic TPS

Heating			Insula	Insulation Uni	4	from Fi	gure A-1	Weight from Figure A-13 (1b/ft ²)	2)						
Factor					Traj	Trajectory Number	lumber								
(a=30°) 1	-		2	3	7	8	6	10	11	12	17	18	22	23	24
-	1.492		1.442	1.405	1.415	1 610	1 200	1 302	1 579	1 640	1 243	1 731	1 630	1 385	1 327
.07 0.863	_		0.879	0.836	0.844	0.908	0.801	0.834	0.892	0.920	0.769	0.950	0.909	0.815	0.758
0.735		_	0.730	0.715	0.717	0.771	0.682	0.712	0.756	0.785	0.653	0.810	0.756	0.704	999.0
0.735	_	0	.730	0.715	0.717	0.771	0.682	0.712	0.756	0.785	0.653	0.810	0.756	0.704	999.0
0.636	_	U	1.624	0.628	0.623	0.662	0.594	0.623	0.654	0.670	0.568	0.697	0.648	0.622	0.600
0.449	_	0	.420	0.462	0.438	0.467	0.430	0.438	0.462	0.473	0.405	967.0	0.442	0.462	0.461
0.294	_	0	.241	0.305	0.290	0.308	0.275	0.290	0.306	0.310	0.261	0.335	0.260	0.313	0.360
'	_		,	,	,	,	ı	,	,	,	,	,	,	,	,
0.385	_	0	.344	0.400	0.376	0.400	0.368	0.376	0.396	0.402	0.350	0.425	0.370	907.0	0.429
0.073	_		,	0.073	0.073	0.073	9.073	0.073	0.073	0.073	0.073	0.073	,	0.073	0.149
	0.073		0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.181
- 003	,		,	,	,	,	,	,	,	,	1	,	,	,	•
		J													

* Panel 1 unit weights are combined dynaflex and microquartz unit weights

Table A-6. Total Required Microquartz Insulation* Weights, Metallic TPS

	Panel				Total Ins	Total Insulation Weight (1b)	Weight	(19)							
Panel	Area				T	Trajectory	Number /								
Number	(ft ²)	1	2	3	7	8	6	10	11	12	17	18	22	23	24
1	431	643	622	909	610	769	556	009	681	707	536	246	919	597	573
2	928	801	816	776	783	843	743	774	828	854	714	882	844	756	703
3	1306	096	953	934	936	1007	891	930	987	1025	853	1058	987	919	870
4	1408	1035	1028	1007	1010	1086	096	1002	1064	1105	919	1140	1064	166	938
2	269	443	435	438	434	461	414	434	456	795	396	786	452	433	418
9	1000	677	420	462	438	467	430	438	462	473	405	967	442	462	461
7	671	197	162	205	195	207	185	195	205	208	175	225	174	202	242
80	719	1	1	1	1	,	ı	1	1	,	1	1	,	1	1
6	195	180	191	187	176	187	172	176	185	188	163	198	173	190	200
10	1116	81	,	81	81	81	81	81	81	81	81	81	1	81	166
11	1539	112	112	112	112	112	112	112	112	112	112	112	112	112	279
12	1798	1	ı	1		ı	ı		1		1		'	ı	1
Total We	Weight	4901	4709	8087	4775	5145	7244	4742	5061	5220	4324	5424	4864	4746	4902

*Panel 1 total weights are combined dynaflex and microquartz weights

Table A-7. Required Microquartz Insulation Weights, Metallic TPS (Angle of Attack Dispersion)

Panel Area Number (ft ²) 1* 431	Heating			***	Irajectory 20		•	italectory 21	
	0	Insulation	Total	Heating	Insulation	Total	Heating	Insulation	Total
	Factor	Weight	Weight	Factor	Weight		Factor	Weight	Weight
1* 431 2 928	(a=20°)	(1b/ft ²)	(1b)	(a=40°)	(1b/ft ²)	(19)	(a=50°)	(1b/ft ²)	(1P)
2 928	.156	2.275	981	.184	1.118	482	.198	0.958	413
	.042	0.976	906	860.	0.774	718	.126	0.710	629
3 1306	.038	0.920	1202	.062	0.630	823	.073	0.570	744
4 1408	.043	0.990	1394	.057	0.604	850	790.	0.539	759
5 697	.051	1.085	756	.027	0.390	272	.015	0.204	142
9 1000	.030	0.783	783	.018	0.283	283	.012	0.154	154
7 671	.019	0.549	368	.011	0.158	106	900.	,	,
8 719	.0039	1	ı	.0039	1	ı	.0039	1	,
6 467	.020	0.572	267	.020	0.312	146	.020	0.264	123
10 1116	900.	0.073	81	900.	0.073	81	900.	1	ı
11 1539	.007	0.073	139	.007	0.073	112	.007	1	1
12 1798	.003	,	1	.003	1	ı	.003	ı	ı
Total Insulation Weight	Weight		6877			3873			2994

*Panel 1 unit weights are combined dynaflex and microquartz unit weights

Table A-8. Maximum Sustained Surface Temperatures

	$\alpha = 20^{\circ}$,	. q_=100	a = 30°	, q =	= 150, 1	100, 90,	80, 70		07= D	a =40°, qm=80	a = 50°	, q_=65
anel	Heating	Max. Surface	Heating	Maxim	um Surf	ace Tem	(°F)		Heating	Max. Surface	Heating	Max. Surface
umper	Factor	Temp. (°F)	Factor	qm=150	qm=100	06= ^m b	dm=80	01=mp	Factor	Temp. (°F)	Factor	Temp. (°F)
	.156	2069	.17	2400	2125	2058	1984	1904	.184	2033	861.	1950
-	.042	1362	.07	1832	1611	1556	1498	1434	860.	1670	.126	1693
~	.038	1317	.05	1647	1444	1394	1340	1281	.062	1440	.073	1419
	.043	1373	.05	1647	1444	1394	1340	1281	.057	1400	790.	1358
	.051	1453	.039	1519	1329	1282	1232	1176	.027	1083	.015	802
	.030	1215	.024	1293	1124	1083	1038	686	.018	934	.012	736
	610.	1034	.015	1099	676	912	872	829	110.	773	900.	975
~	.0039	246	.0039	653	575	520	165	097	.0039	165	.0039	443
	.020	1054	.02	1215	1054	1014	971	925	.020	971	.020	668
-	900.	099	900.	780	099	631	009	795	900.	009	900.	975
	.007	707	.007	829	707	674	641	909	.007	641	.007	585
2	.003	482	.003	583	482	458	431	705	.003	431	.003	386 .

Table A-9. Metallic Shingle Weights

Panel Unit Total Unit Unit<		α =20, q _m =100	qm=100	a = 30°,	qm=150 a=30°	a=30°, q	m = 100	a=30°,	06="b	a=30°,	08="6	a=30°,	g_=70	a=40°,	08="6	g=50°,	4=65
Area Weight (ft²) Weight (lb/ft²)	Pan	_	Total	Unit	Total	Unit	Total		Total	Unit	Total		Total		Total	Unit	Total
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m	_		-	Weight		Weight	Weight	Weight	Weight	Weight		Weight		Weight	Weight	Weight
431 2.15 926 2.30 991 2.18 940 2.15 936 2.13 914 1.71 737 2.14 922 928 1.03 956 1.53 1420 1.19 1104 1.13 1049 1.05 974 1.04 965 1.26 1169 1306 1.03 1.13 1.04 1.13 1.04 1.05 1.04 1.05 1.05 1.04 1.06 1.04 1.04 1.05 1.05 1.04 1.05 1.04 1.05 1.05 1.04 1.05 1.04 1.04 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.05 1.06 1.04 1.04 1.05 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.02 1.05 1.05	Number (ft			(1b/ft ²)		(1b/ft2)	(1P)	(1b/ft ²)	(19)	(1b/ft ²)	(19)	(1b/ft2)	(20)	-	(1P)	(1b/ft ²)	(19)
928 1.03 956 1.53 1420 1.19 1104 1.13 1049 1.05 974 1.04 965 1.26 1169 1306 1.02 1.04 1358 1.04 1358 1.05 1.05 1.04 1358 1.05 1.05 1.06 1.04 1358 1.07 1.05 1.05 1.04 1.04 1.05 1.05 1.04 1.05 1.06 1.04 1.04 1.05 1.02 1.04 1.06 1.04 1.04 1.05 1.02 1.04 1.05 1.05 1.06 1.04 1.04 1.05 1.05 1.06 1.04 1.04 1.05 1.05 1.06 1.04 1.04 1.05 1.05 1.06 1.04 1.04 1.05 1.05 1.06 1.06 1.04 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 </td <td>1 43</td> <td>-</td> <td>926</td> <td>2.30</td> <td>166</td> <td>2.18</td> <td>076</td> <td>2.15</td> <td>936</td> <td>2.13</td> <td>916</td> <td>1.71</td> <td>737</td> <td>2.14</td> <td>922</td> <td>2.10</td> <td>905</td>	1 43	-	926	2.30	166	2.18	076	2.15	936	2.13	916	1.71	737	2.14	922	2.10	905
1306 1.02 1332 1.23 1606 1.04 1358 1.04 1358 1.04 1358 1.04 1358 1.04 1358 1.03 1450 1.02 1332 1.04 1464 1.04 1464 1.04 1464 1.04 1464 1.04 1464 1.04 1464 1.03 1450 1.02 1104 1464 1.04 1464 1.03 1450 1.02 1104 1464 1.04 1464 1.04 1464 1.04 1464 1.04 1464 1.04 1450 1.02 1104 1464 1.04 1464 1.04 1464 1.04 1464 1.04 1464 1.02 1102 <th< td=""><td>2 92</td><td></td><td>986</td><td>1.53</td><td>1420</td><td>1.19</td><td>1104</td><td>1.13</td><td>1049</td><td>1.05</td><td>716</td><td>1.04</td><td>965</td><td>1.26</td><td>1169</td><td>1.29</td><td>1197</td></th<>	2 92		986	1.53	1420	1.19	1104	1.13	1049	1.05	716	1.04	965	1.26	1169	1.29	1197
1408 1.03 1450 1.23 1732 1.04 1464 1.04 1464 1.04 1464 1.04 1464 1.04 1450 1.02 1136 1.02 1104 1450 1.03 1450 1.02 1104 1464 1.04 1464 1.04 1.02 1102 1.02 <th< td=""><td>3 130</td><td></td><td>1332</td><td>1.23</td><td>1606</td><td>1.04</td><td>1358</td><td>1.04</td><td>1358</td><td>1.03</td><td>1345</td><td>1.02</td><td>1332</td><td>1.04</td><td>1358</td><td>1.04</td><td>1358</td></th<>	3 130		1332	1.23	1606	1.04	1358	1.04	1358	1.03	1345	1.02	1332	1.04	1358	1.04	1358
697 1.C4 725 1.05 732 1.02 711 1.02 711 1.02 711 1.02 711 1.02 711 1.02 711 1.02 711 1.02 711 1.02 711 1.02 711 1.02 711 1.02 712 1.02	4 140		1450	1.23	1732	1.04	1464	1.04	1464	1.03	1450	1.02	1436	1.04	1464	1.04	1464
1000 1.02 1020 1.02 1020 1.02 1020 1.02 1020 1.02 1020 1.02 1020 1.02 476 1.02 476 <td>5 69</td> <td>_</td> <td>725</td> <td>1.05</td> <td>732</td> <td>1.02</td> <td>711</td> <td>1.02</td> <td>7111</td> <td>1.02</td> <td>711</td> <td>1.02</td> <td>7111</td> <td>1.02</td> <td>711</td> <td>0.50</td> <td>349</td>	5 69	_	725	1.05	732	1.02	711	1.02	7111	1.02	711	1.02	7111	1.02	711	0.50	349
671 1.02 684 1.02 684 1.02 684 0.50 336 0.50 336 0.50 336 0.50 336 0.50 336 0.50 336 0.50 336 0.50 336 0.50 340 0.50 358 0.50 358 0.50 358 0.50 358 0.50 358 0.50 358 0.50 358 0.50 35	6 100	_	1020	1.02	1020	1.02	1020	1.02	1020	1.02	1020	1.02	1020	1.02	1020	0.50	200
719 0.50 360 0.50 476 1.02 47	7 67	-	684	1.02	684	1.02	789	1.02	789	0.50	336	0.50	336	0.50	336	0.50	336
467 1.02 476 1.02 1.	8 71		360	0.50	360	0.50	360	0.50	360	0.50	360	0.50	360	0.50	360	0.50	360
1116 0.50 558 0.50 55	97 6		476	1.02	9/4	1.02	476	1.02	925	1.02	476	1.02	476	1.02	476	1.02	925
1539 0.50 770 0.50 770 0.50 770 0.50 770 0.50 770 0.50 770 0.50 770 0.50 770 0.50 770 0.50 770 0.50 770 0.50 899 0.50 89		_	558	0.50	558	0.50	558	0.50	558	0.50	558	0.50	558	0.50	558	0.50	558
1798 0.50 899 0.50 0.50 899 0.50 0.50 899 0.50 8		9 0.50	770	0.50	770	0.50	770	0.50	770	0.50	770	0.50	770	0.50	770	0.50	770
Weight 10156 10156 10161 9600			899	0.50	668	0.50	668	0.50	866	0.50	666	0.50	899	0.50	899	0.50	899
	Total Weig	ht	10156						10275		10101		0096		10043		9172

Figure A-1. Local Heating Factors, Panels 1, 2, 3, and 4

Figure A-2. Local Heating Factors, Panels 5, 6, 7, and 8

Figure A-3. Local Heating Factors, Panels 9, 10, 11, and 12

Figure A-4. Required Shingle Weight for Metallic TPS

Figure A-5. Reference Heating Rate Histories, Range Dispersion

Figure A-6. Reference Heating Rate Histories, Cross Range Dispersion

Figure A-7. Reference Heating Rate Histories, Inclination Dispersion

Figure A-8. Reference Heating Rate Histories, Velocity Dispersion

Figure A-9. Reference Heating Rate Histories, Flight Path Angle Dispersion

Figure A-10. Reference Heating Rate Histories, Ballistic Coefficient Dispersion

Figure A-11. Reference Heating Rate Histories, Angle of Attack Dispersion

Figure A-12. Reference Heating Rate Histories, Flight Level Dispersion.

Figure A-13a. Insulation Weight as a Function of Heating Factor, Insulative TPS

Figure A-13b. Insulation Weights as a Function of Heating Factor, Insulative TPS

Figure A-14a. Insulation Weight as a Function of Heating Factor, Metallic TPS

Figure A-14b. Insulation Weight as a Function of Heating Factor, Metallic TPS

REFERENCES

- 1. Goodrich, Winston. "TPS Optimization Study Delta Wing Orbiter Heating Rates," NASA/MSC Memorandum ES35/3-18(1), March 1971.
- 2. Stuckly, Bernard F. <u>Program F144 Apollo Heating Rates</u>. NASA Project No. 3341, January 1966.
- 3. Detra, R. W., N. H. Kemp and F. R. Riddell, "Addendum to 'Heat Transfer to Satellite Vehicles Re-entering the Atmosphere.'"

 Jet Propulsion, pp. 1256-1257, December 1957.
- 4. Curry, D. M. "Local TPS Weight Estimation Methods for Space Shuttle Orbiter Entry Optimization Study." NASA/MSC Memorandum ES 32, 21 June 1971.
- 5. Smith, James P. SINDA User's Manual. TRW Systems Report No. 14690-H001-RO-00, April 1971.
- 6. Fogerson, P. E. Optimization of a Thermal Insulation System Using the SINDA Program. Lockheed Electronics Company Document No. 675-44-00201, November 1970.
- 7. Harpold, Jon C. "Updated SMD Heating Analysis." NASA/MSC Memorandum FM 23 (71-156), 17 August 1971.