Test di Calcolo Numerico

Ingegneria Informatica 15/09/2010

COGNOME NOME		
Μ	ATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate ed i dati dello studente devono essere scritti a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica

15/09/2010

1) È data la matrice

$$A = \begin{pmatrix} -1 & 0 & 0 & 1\\ 0 & \alpha & 2 & 0\\ 0 & 4 & 1 & 0\\ -1 & 0 & 0 & -2 \end{pmatrix} , \quad \alpha \in R .$$

- a) Calcolare i valori reali α per cui $\det(A) = 0$.
- b) Calcolare i valori reali α per i quali la matrice A ha autovalori tutti reali.
- 2) Calcolare i punti fissi a cui può convergere il processo iterativo

$$x_{n+1} = \frac{6 + 2x_n - x_n^3}{3x_n}, \quad n = 0, 1, \dots$$

3) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{ccc} 5 & 1 & 0 \\ 5 & 0 & 1 \\ 5 & 2 & -1 \end{array}\right) .$$

4) Determinare i parametri reali α e β in modo tale che il polinomio di interpolazione della tabella di valori

sia
$$P(x) = 3x^2 - x + 2$$
.

5) Determinare il grado di precisione algebrico della formula

$$J_2(f) = \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right)$$

utilizzata per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) dx$.

SOLUZIONE

1) La matrice risulta riducibile e simile alla matrice

$$B = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 0 & \alpha & 2 \\ 0 & 0 & 4 & 1 \end{pmatrix}$$

il cui determinante è il prodotto dei determinanti dei blocchi diagonali. Segue $\det(A) = \det(B) = 3(\alpha - 8)$ per cui $\det(A) = 0$ se e solo se $\alpha = 8$.

Gli autovalori di A sono gli aqutovalori di B e quindi gli autovalori dei due blocchi diagonali. Dal primo blocco si ha $\lambda_{1,2} = \frac{-3 \pm i\sqrt{3}}{2}$ per cui, per qualunque valore reale di α , non si potranno avere tutti autovalori reali.

2) I punti fissi del processo iterativo sono le soluzioni dell'equazione $x = \frac{6+2x-x^3}{3x}$ e quindi

$$\alpha_1 = -3 \; , \quad \alpha_{2,3} = \pm \sqrt{2} \; .$$

3) La fattorizzazione LR della matrice è

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 5 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} .$$

4) Deve risultare $P(\alpha) = 4$ e $P(-1) = \beta$ per cui

$$\alpha_1 = 1 \; , \quad \alpha_2 = -\frac{2}{3} \; , \qquad \qquad \beta = 6 \; .$$

5) La formula data risulta esatta per $f(x) = 1, x, ..., x^5$ mentre non lo è per $f(x) = x^6$. Segue che il grado di precisione algebrico è m = 5.