Результаты экспериментального моделирования в программе Electronics Workbench при обрыве провода на участках РЭС приведены в таблице (обрыв провода имитируется с помощью коммутационных аппаратов), из которой видно, что при значении суммарного тока 930 мА – обрыва в сети нет, при значении тока 734 мА – обрыв на участке (17,15), и т.д.

				U						
	Обрыв на участке (i_1,i_2)									
	Обрыва нет	(16,10)	(16, 9)	(15, 8)	(15, 7)	(14, 4)	(14, 5)	(14, 6)	(13, 3)	(19,11)
I ₀ , mA	930	922	913	903	894	886	876	867	857	844
	Обрыв на участке (i_1,i_2)									
	(12, 2)	(0, 1)	(15,16)	(18,19)	(13,14)	(0, 18)	(17,15)	(12,13)	(0, 17)	(0, 12)
I ₀ , mA	835	822	815	803	758	742	734	675	662	572

Таблица - Соответствие значений тока $I_{\scriptscriptstyle 0}$ и обрыва провода на участках сети

Заключение. Таким образом, разработан действенный способ диагностики обрыва провода воздушных линий, использование которого позволит обслуживающему персоналу, находясь на подстанции, оперативно и дистанционно обнаруживать поврежденный участок, с тем, чтобы ремонтная бригада была направлена точно к месту повреждения.

Список литературы

- 1. Минулин Р.Г. Локационная диагностика линии электропередач / Р.Г. Минулин, Ю.Я. Петрушенко, И.Ш. Фардиев Материалы IX Симпозиума «Электротехника 2030» 2007 . С. 33-38.
- 2. Сарин Л.И. Определение места замыкания на землю на воздушных линиях 6 35 кВ. / Л.И. Сарин, А.И. Шалин, М.В. Ильиных // Труды IV всероссийской НТК. Новосибирск, 2006. С. 189–196.
 - 3. Патент КG № 1187. 2009 г.

УДК.: 004.73:681.518.001.63:621.315.1

ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ ПЕТРИ ДЛЯ ПРОЕКТИРОВАНИЯ СИСТЕМЫ ДИСТАНЦИОННОЙ ДИАГНОСТИКИ ОБРЫВА ПРОВОДА ВОЗДУШНЫХ ЛИНИЙ РЭС 6-35 кВ

Асанова Салима Муратовна, к.т.н., Кыргызский Государственный Технический университет им. И.Раззакова, Кыргызстан, 720044, г. Бишкек, пр. Мира 66, e-mail: <u>a_sm07@mail.ru</u>

Цель статьи - разработка самоорганизующихся, многокомпонентных, структурноподобных вычислительных алгоритмов для проектирования системы дистанционной диагностики обрыва провода воздушных линий в распределительных электрических сетях среднего напряжения с использованием многофункционального провода.

Ключевые слова: воздушные линии, диагностика, обрыв провода, сети Петри, самоорганизующийся многокомпонентный алгоритм.

COMPUTER PETRI NETWORKS FOR DESIGNING OF REMOTE DIAGNOSTICS' SYSTEM OF BROKEN AIR LINES OF DISTRIBUTIVE ELECTRIC NETWORKS OF 6-35 kV

Asanova Salima Muratovna, Ph. D., Kyrgyz State Technical University named after I. Razzakov, Kyrgyz Republic, 720044, Bishkek, Mir Avenue, 66, e-mail: a sm07@mail.ru

The purpose of article - the development of self-organizing, multi-component, structurally similar computing algorithms for designing remote diagnostics' system of broken air lines in distributive electric networks of medium voltage using a multi functional wire.

Keywords: air lines, diagnostics, broken wire, Petri networks, self-organizing multi component algorithm.

В работе [1] разработан эффективный способ проектирования системы дистанционной диагностики обрыва провода на участках воздушной линииРЭС 6-35 кВ, в котором предполагается, что электрическая сеть выполнена с использованием многофункционального провода, где одна из токопроводящих жил изолирована от остальных. Описанные в работе [1]алгоритмы расчета желаемого распределения токов по информационным проводам участков сети и расчета настраиваемых сопротивлений имеют классическую структуру организации вычислительных процессов, где с трудом проглядывается структура самой проектируемой системы, что приводит к определенным трудностям при их понимании, реализации на ЭВМ и анализе полученных результатов. Указанные трудности многократно повышаются при увеличении размерности и усложнении структуры проектируемой системы. Удобным средством для построения структурноподобных вычислительных алгоритмов является аппарат вычислительных сетей Петри (ВСП) [2]. Ниже описывается ВСП, реализующая структурноподобный вычислительный алгоритм проектирования системы дистанционного и оперативного обнаружения обрыва проводаВЛ.

Постановка задачи и схема ее решения описана в работе [1]. С целью использования аппарата ВСП при проектировании данной системы, представим процедуры анализа топологии сети, расчета желаемого распределения токов по информационным проводам участков сети и расчета настраиваемых сопротивлений цепи для получения желаемого распределения токов, как управляемый дискретный динамический процесс движения информационных маркеров на графах сети и их соответствующего преобразования. ВСП_{ПР}, реализующая процесс проектирования, состоит из ВСП₁ и ВСП_{II}, взаимосвязанных через соответствующие позиции, где ВСП₁ предназначена для реализации вычислительного алгоритма анализа топологии и расчета желаемого распределения токов по информационным проводам путем управляемого движения и преобразования информационных маркеров, начиная с конечных узлов (вершин) в направлении узла питания (начальной вершины) графа сети, а ВСП_{II} — алгоритма расчета настраиваемых сопротивлений цепи для получения желаемого распределения токов путем движения и преобразования информационных маркеров, начиная от узла питания, в направлении конечных узлов.

<u>Функциональная схема ВСП</u>имеет двухуровневую структуру и является объединением схем вычислительных блоков нижнего ВСП $_{\Gamma p}$ и верхнего ВСП $_{y п p}$ уровней:

$$BC\Pi_{I} = BC\Pi_{\Gamma_{p}} \bigcup BC\Pi_{\nu_{np}} \tag{1}$$

При функционировании $BC\Pi_{\Gamma p}$ формируется многоуровневая иерархическая схема графа цепи информационных проводов (см. рис. 1) путем разбиения множества узлов

исходного графа на уровни иерархии и, по мере такого разбиения, производится, под управлением $BC\Pi_{Упр}$, расчет желаемого распределения токов по информационным проводам. $BC\Pi_{\Gamma p}$ является объединением схем (графов) вычислительных блоков и модулей, показанных на рис. 2:

$$BC\Pi_{\Gamma_{p}} = (\bigcup_{i_{2} \in L_{0}} BC\Pi_{i_{2}}^{0}) \cup (\bigcup_{i_{2} \in (L \setminus L_{0}) \setminus \{0\}} BC\Pi_{i_{2}}^{s}) \cup (\bigcup_{i_{1} \in L \setminus L_{0}} BC\Pi_{\Gamma(i_{1})}),$$

$$(1')$$

Рис. 1. Многоуровневая иерархическая схема графа РЭС

где $\mathrm{BC\Pi}_{i_2}^0$, $\forall i_2 \in \mathrm{L}_0$ - вычислительный блок конечного узла $i_2 \in \mathrm{L}_0$, предназначенный для вычисления токов I_{i_1,i_2} , I_{i_2} и состояния условного ключа K_{i_2} ; каждый блок $\mathrm{BC\Pi}_{i_2}^0$ состоит из одного вычислительного модуля (BM) $V(t_{i_2}^0)$ перехода $t_{i_2}^0$ (рис. 2, a, δ ,s); $\mathrm{BC\Pi}_{i_2}^0$, $\forall i_2 \in (\mathrm{L} \setminus \mathrm{L}_0) \setminus \{0\}$ - вычислительный блок промежуточного узла $i_2 \in (\mathrm{L} \setminus \mathrm{L}_0) \setminus \{0\}$, предназначенный для вычисления токов I_{i_1,i_2} , I_{i_2} и состояния условного ключа K_{i_2} ; каждый блок $\mathrm{BC\Pi}_{i_2}^0$ состоит из трех взаимосвязанных $\mathrm{BM}\ V(t_{i_2}^1)$, $V(t_{i_2}^2)$, $V(t_{i_2}^3)$ переходов соответственно $t_{i_2}^1$, $t_{i_2}^2$, $t_{i_2}^3$ (рис. 2, s,d,e); $\mathrm{BC\Pi}_{\Gamma(i_1)}$, $\forall i_1 \in \mathrm{L} \setminus \mathrm{L}_0$ - вычислительный блок, предназначенный для вычисления суммарного тока I'_{i_1} , вытекающего из узла i_1 по множеству ориентированных ветвей, начальными вершинами которых является i_1 , а конечными - вершины из множества $\Gamma(i_1)$, и участвующий в разбиении множества узлов (вершин) исходного графа сети на уровни иерархии; каждый блок $\mathrm{BC\Pi}_{\Gamma(i_1)}$ состоит из одного $\mathrm{BM}\ V(t_{\Gamma(i_1)})$ перехода $t_{\Gamma(i_1)}$ (рис.2, \mathfrak{M} , \mathfrak{M}).

Функциональная схема ВСП_{Упр} в виде взаимосвязанных ВМ $V(t_0^{\rm y}),...,V(t_5^{\rm y}),$ переходов, соответственно, $t_0^{\rm y},...,t_5^{\rm y}$, показана на рис. 3. В схеме ВСП_І предусмотрены позиции $\{q_{l(i)} | i \in L_0\}$, $q_{\Delta l}$, s_0 , q_U , для хранения исходных данных решаемой задачи. При наличии в них исходных данных (информационных маркеров), их состояние:

$$\mu(q_{l(i)}) = l(i), \ \forall i \in L_0; \ \mu(q_{\Delta l}) = \Delta l; \ \mu(s_0) = q_{l'_0}; \ \mu(q_U) = U_0.$$
 (2)

Рис. 2. ВСП узлов (вершин) графа электрической цепи информационных проводов

Рис. 3. ВСП для управления последовательностью срабатывания ВСП узлов (вершин) графа электрической цепи информационных проводов

Состояние процесса функционирования ВСП характеризуется состоянием позиций

$$q_{I_{i_{1},i_{2}}}, \forall (i_{1}, i_{2}) \in \Gamma, q_{I_{i}}, p_{K_{i}}, \forall i \in L \setminus \{0\},
q_{I_{i}}, \forall i \in L \setminus L_{0}, q_{I}, s_{L_{s,i}}, s_{L_{s}}, s, p_{1}, p_{2}, p_{s}$$
(3)

При наличии в них информационных маркеров, их состояние:

$$\mu(q_{I_{i_1,i_2}}) = I_{i_1,i_2}, \ \forall (i_1, i_2) \in \Gamma;$$
 (4)

$$\mu(q_{I_i}) = I_i, \quad \mu(p_{K_i}) = K_i = 1, \quad \forall i \in L \setminus \{0\};$$
 (5)

$$\mu(q_{I_i}) = I_i', \quad \forall i \in L \setminus L_0; \quad \mu(q_I) = I; \tag{6}$$

$$\mu(s_{L_{s+1}}) \subseteq \{q_{l'_i} | i \in L_{s+1}\};$$
 (7)

$$\mu(s_{\mathbf{L}_{s}}) \subseteq \begin{cases} \{q_{l(i)} \mid i \in \mathbf{L}_{0}\}, & \textit{при рассмотрении } s = 0 - \textit{го} \\ & \textit{уровня иерархии}, \\ \{q_{l'_{i}} \mid i \in \mathbf{L}_{s}\}, & \textit{при рассмотрении } s > 0 - \textit{го} \\ & \textit{уровня иерархии}; \end{cases} \tag{8}$$

$$\mu(s) \in \mu(s_{L_s}), \ \mu(p_1) = \mu(p_2) = 1, \ \mu(p_s) = 1, 2, 3, \dots$$
 (9)

Здесь: позиции q_I , s, $q_{\Delta I}$ являются общими для вычислительных блоков $\mathrm{BC\Pi}_i^0$, $\forall i \in \mathrm{L}_0$ и $\mathrm{BC\Pi}_i^s$, $\forall i \in (\mathrm{L} \setminus \mathrm{L}_0) \setminus \{0\}$ (рис. 2, a-e), а позиция $s_{\mathrm{L}_{s+1}}$ - общим для вычислительных блоков $\mathrm{BC\Pi}_{\Gamma(i)}$, $\forall i \in \mathrm{L} \setminus \mathrm{L}_0$ (рис. 2, $\varkappa c$ -u); через позиции $s_{\mathrm{L}_{s+1}}$, s и указателя & s_{L_s} осуществляется обмен информацией между вычислительными блоками нижнего $\mathrm{BC\Pi}_{\Gamma p}$ и верхнего $\mathrm{BC\Pi}_{\mathrm{Упр}}$ уровнями.

По завершении функционирования ВСП_{І,} вычислительный блок верхнего уровня ВСП_{Упр} преобразует состояние позиции q_{U_0} из $\mu(q_{U_0}) = 0$ в $\mu(q_{U_0}) = U_0$, в результате чего запускается ВСП_{ІІ}.

Вычислительный алгоритм, реализуемый при функционировании ВСП_І. Позиции, необходимые для хранения информационных маркеров при функционировании ВСП_І, определены в (3)-(8). Исходными данными для функционирования ВСП_І являются состояния позиций из (2). Начальное состояние позиций $s_{\rm L_s}$, $p_{\rm l}$ из набора (3): $\mu(s_{\rm L_s}) = \{q_{l(i)} | i \in {\rm L_0}\}$; $\mu(p_{\rm l}) = 1$. Остальные же позиции из данного набора (3) пустые, т.е. в них маркеры отсутствуют. Маркированные позиции на рис. 2 и 3 изображены как кружочки с фишками. Вычислительный алгоритм, заложенный в ВСП_І(1), включает вычислительные процедуры, реализуемые при функционировании ВСПупр и ВСП_{Гр}, взаимосвязанных через позиции $s_{\rm L_{c+1}}$, s и указатель & $s_{\rm L_c}$.

1. Процедуры, реализуемые при функционировании ВСП_{Упр} (рис. 2): а) при $(\mu(p_s) = 0) \& (\mu(p_1) = 1) \& (\mu(s_{L_s}) \neq$ ""), переход t_0^y - активный. Срабатывает $V(t_0^y)$, в результате чего $\mu(s) = q_{l(i)} \in \mu(s_{L_s})$ такое, что

$$\mu(q_{l(i)}) = \max \mu(\&s_{L_s}) = \max_{x \in \mu(s_{L_s})} \mu(x), \quad \mu(p_1) = 0;$$
(10)

б) при $(\mu(p_s) > 0)$ & $(\mu(p_1) = 1)$ & $(\mu(s_{L_s}) \neq "")$, переход t_1^y - активный. Срабатывает $V(t_1^y)$, в результате чего $\mu(s) = q_{I_s} \in \mu(s_{L_s})$ такое, что

$$\mu(q_{I_i'}) = \min \mu(\&s_{L_s}) = \min_{x \in \mu(s_{L_s})} \mu(x), \quad \mu(p_1) = 0;$$
(11)

- в) при $\mu(s) \neq$ " ", переход t_2^y активный. Срабатывает $V(t_2^y)$, в результате чего $\mu'(s_{L_s}) = \mu(s_{L_s}) \setminus \mu(s)$, $\mu(s) =$ " ", $\mu(p_1) = 1$;
- г) при $(\mu(p_1)=1)$ & $(\mu(s_{L_s})="")$, переход t_3^y активный. Срабатывает $V(t_3^y)$, в результате чего $\mu(p_2)=1, \ \mu(p_1)=0$;
- д) при $(\mu(p_2)=1)$ & $(\mu(s_{\mathbf{L}_{s+1}})\neq$ ""), переход t_4^{y} активный. Срабатывает $V(t_4^{\mathrm{y}})$, в результате чего

$$\mu(s_{L_s}) = \mu(s_{L_{s+1}}), \quad \mu(s_{L_{s+1}}) = "", \quad \mu(p_1) = 1, \quad \mu(p_2) = 0;$$
 (12)

e) при $\mu(s)=\mu(s_0)$, переход t_5^{Y} - активный. Срабатывает $V(t_5^{\mathrm{Y}})$, в результате чего

$$\mu(q_{U_0}) = \mu(q_U). \tag{13}$$

ВСП_{Упр}, управляя состоянием $\mu(s)$ позиции s (10), (11) на основе топологической информации $\mu(s_{L_{s+1}})$ (12), (14), поступающей в позицию $s_{L_{s+1}}$ от ВСП_{Гр}, управляет вычислительным процессом, протекающим при функционировании ВСП_{Гр}.

- **2.**Процедуры, реализуемые при функционировании ВСП_{Гр} (11), состоящей из вычислительных блоков ВСП $_{i_2}^0$, $\forall i_2 \in L_0$, ВСП $_{i_2}^s$, $\forall i_2 \in (L \setminus L_0) \setminus \{0\}$ и ВСП $_{\Gamma(i_1)}$, $\forall i_1 \in L \setminus L_0$ (рис.2):
- а) при $\mu(s) = (q_{l(i_2)})$, переход $t_{i_2}^0$ активный. Срабатывает $V(t_{i_2}^0)$, в результате чего (рис. 2, a, δ, s)

$$\mu(q_{I_{i_1,i_2}}) = \mu(q_{I_{i_2}}) = \mu(q_I) + \mu(q_{\Delta I}), \quad \mu'(q_I) = \mu(q_I) + \mu(q_{\Delta I}), \quad \mu(p_{K_{i_2}}) = 1; \quad (14)$$

- б) при $\mu(s) = |(q_{I_{i_2}})$ начинает функционировать $\mathrm{BC\Pi}_{i_2}^s$, состоящая из вычислительных модулей $V(t_{i_2}^1),\ V(t_{i_2}^2),\ V(t_{i_2}^3)$ (рис. 2, ε , ∂ ,e), т.е.
- при $(\mu(s) = (q_{I_{i_2}}))$ & $(\mu(q_{I_{i_2}}) \le \mu(q_I))$, переход $t_{i_2}^1$ активный. Срабатывает $V(t_{i_2}^1)$, в результате чего $\mu(q_{I_{b,b}}) = \mu(q_I) + \mu(q_{\Delta I})$, $\mu'(q_I) = \mu(q_I) + \mu(q_{\Delta I})$, $\mu(p_{K_{b_1}}) = 1$;

- при $(\mu(s) = (q_{I_{i_2}}))$ & $(\mu(q_{I_{i_2}}) > \mu(q_I))$, переход $t_{i_2}^2$ активный. Срабатывает $V(t_{i_2}^2)$, в результате чего $\mu(q_{I_{i_1}}) = \mu(q_{I_{i_2}})$, $\mu(q_I) = \mu(q_{I_{i_2}})$;
- при $(\mu(q_{I_{i_1,i_2}})>0)$ & $(\mu(q_{I_{i_2}})=0)$, переход $t_{i_2}^3$ активный. Срабатывает $V(t_{i_2}^3)$, в результате чего $\mu(q_{I_{i_2}})=\mu(q_{I_{i_2,i_2}})-\mu(q_{I_{i_2}})$;
- в) при $(\mu(q_{I_{i_1,i_2}}) > 0, \ \forall i_2 \in \Gamma(i_1)) \& (\mu(q_{I'_{i_1}}) = 0)$, переход $t_{\Gamma(i_1)}$ активный. Срабатывает $V(t_{\Gamma(i_1)})$, в результате чего (рис. $2, \varkappa c, 3, u$)

$$\mu(q_{I'_{i_1}}) = \sum_{i_2 \in \Gamma(i_1)} \mu(q_{I_{i_1, i_2}}), \qquad (15)$$

$$\mu'(s_{L_{s+1}}) = \mu(s_{L_{s+1}}) \circ | (q_{I_h'}). \tag{16}$$

По окончании работы ВС $\Pi_{\rm I}$ начинает функционировать ВС $\Pi_{\rm II}$. Условием начала ее функционирования является наличие информационного маркера в позиции q_{U_0} , т.е. информации о напряжении в узле питания $\mu(q_{U_0}) = \mu(q_U) = U_0$ (13), (2). ВС $\Pi_{\rm II}$ является объединением схем (графов) вычислительных блоков и модулей, показанных на рис. 2:

$$BC\Pi_{II} = \bigcup_{(i_1, i_2) \in \Gamma} BC\Pi_{i_1, i_2} , \qquad (17)$$

где $\mathrm{BC\Pi}_{i_1,i_2},\ \forall (i_1,i_2)\!\in\!\Gamma$ - вычислительный блок ориентированной ветви $(i_1,i_2)\!\in\!\Gamma$, предназначенный для вычисления напряжения U_{i_2} и настраиваемого сопротивления R_{i_2} ; каждый блок $\mathrm{BC\Pi}_{i_1,i_2}$ состоит из трех взаимосвязанных вычислительных модулей $V(t_{i_2}^4)$, $V(t_{i_2}^5),\ V(t_{i_2}^6)$ переходов, соответственно, $t_{i_2}^4$, $t_{i_2}^5$, $t_{i_2}^6$ (рис. 4).

В схеме ВС Π_{Π} предусмотрены позиции $\{q_{R_{i_1,i_2}} \mid (i_1,i_2) \in \Gamma\}$ для хранения исходных данных:

$$\mu(q_{R_{i_1,i_2}}) = R_{i_1,i_2}, \ \forall (i_1, i_2) \in \Gamma.$$
 (18)

Позиции $\{q_{I_{I1,I2}} \mid (i_1,i_2) \in \Gamma\}$, $\{q_{I_i} \mid i \in L \setminus \{0\}\}$, q_{U_0} предназначены для хранения выходной информации ВСП_I (15), (16), являющейся одновременно входной для ВСП_{II}:

$$\mu(q_{I_{i_1,i_2}}) = I_{i_1,i_2}, \ \forall (i_1,i_2) \in \Gamma; \ \mu(q_i) = I_i, \ \forall i \in L \setminus \{0\}; \ \mu(q_{U_0}) = U_0.$$
 (19)

Состояние процесса функционирования ВСП_{ІІ} характеризуется состоянием позиций $\{q_{U_{1,j,2}} \mid (i_1,i_2) \in \Gamma\}$, $\{q_{U_i} \mid i \in L \setminus \{0\}\}$, $\{q_{R_i} \mid i \in L \setminus \{0\}\}$.

При наличии в них информационных маркеров, их состояние:

$$\mu(q_{U_{i_1,i_2}}) = U_{i_1,i_2}, \forall (i_1, i_2) \in \Gamma; \ \mu(q_{U_i}) = U_i, \ \forall i \in L \setminus \{0\}; \ \mu(q_{R_i}) = R_i, \ \forall i \in L \setminus \{0\}.$$
 (20)

Рис. 4. ВСП ветвей (дуг) графа электрической сети информационных проводов

Вычислительный алгоритм, реализуемый при функционировании ВСП_{ІІ}. Позиции, необходимые для хранения информационных маркеров при функционировании ВСП_{ІІ}, определены в (20), а в (19) — определена входная информация, поступившая от ВСП_І. Исходными данными для функционирования ВСП являются состояния позиций из (18). Начальные состояния позиций из (20) — пустые, т.е. в них отсутствуют маркеры.

Вычислительный алгоритм, заложенный в ВСП $_{\rm II}$ (17), включает следующие вычислительные процедуры:при ($\mu(q_{U_{\rm II}})>0$) & ($\mu(q_{U_{\rm II,I2}})=0$), переход $t_{i_2}^4$ - активный. Срабатывает $V(t_{i_2}^4)$, в результате чего $\mu(q_{U_{\rm II,I2}})=\mu(q_{R_{\rm II,I2}})*\mu(q_{I_{\rm II,I2}})$; при ($\mu(q_{U_{\rm II,I2}})>0$) & ($\mu(q_{U_{\rm II,I2}})=0$), переход $t_{i_2}^5$ - активный. Срабатывает $V(t_{i_2}^5)$, в результате чего $\mu(q_{U_{\rm II}})=\mu(q_{U_{\rm II}})-\mu(q_{U_{\rm II,I2}})$; при ($\mu(q_{U_{\rm II,I2}})>0$) & ($\mu(q_{I_{\rm II,I2}})>0$), переход $t_{i_2}^6$ - активный. Срабатывает $V(t_{i_2}^6)$, в результате чего $\mu(q_{R_{i_2}})=\mu(q_{U_{\rm II}})/\mu(q_{I_{\rm II}})$.

Заключение. Таким образом, вычислительные сети Петри использованы для построения самоорганизующихся, многокомпонентных, вычислительных алгоритмов анализа топологии и проектирования системы дистанционной диагностики обрыва провода ВЛРЭС 6-35 кВ.

Список литературы

- 1. Асанова С.М. Проектирование системы дистанционной диагностики обрыва провода воздушных линий распределительных электрических сетей 6-35 кВ./ Асанова С.М., Асанов М.С., Сатаркулов К.А Настоящий сборник.
- 2. Асанова С.М. Моделирующие возможности вычислительных сетей Петри и их использование в решении задач электроэнергетики / Асанова С.М. // Проблемы управления и автоматики: докл. II межд. конф. Кн. 2. НАН КР Бишкек: ИАИТ, 2007. С. 223–227.

УДК 621.91.01:621.919

ВЫБОР РЕЖИМА РЕЗАНИЯ ПРИ ПРОТЯГИВАНИИ

Самсонов Владимир Алексеевич, к.т.н, профессор КГТУ им. И. Раззакова, Кыргызстан, 720044, г.Бишкек, пр. Мира 66, E-mail: aebrat@mail.ru