Econometría I

Regresión Multiple

Carlos Yanes Guerra | Departamento de Economía | 2024-04-03

Preguntas de la sesion anterior?

Preliminar

La última vez:

- 1. Estimamos regresión simple M.C.O
- 2. Tenemos los primeros **test** de Parámetros
- 3. Estuvimos con el tema de retornos salarios f(Experiencia)

Modelo	Ecuación	eta_1	Lectura
N-N	$y=\beta_0+\beta_1 x$	$rac{ riangle y}{ riangle x}$	y cambia en eta_1 unidades ante un cambio de x
N-L	$y=\beta_0+\beta_1 Ln(x)$	$rac{ riangle y}{ riangle x/x}$	y cambia en $eta_1/100$ unidades ante un cambio del 1% de x
L-N	$Ln(y)=\beta_0+\beta_1 x$	$rac{ riangle y/y}{ riangle x}$	y cambia en $eta_1*100\%$ unidades ante un cambio de una unidad de x
L-L	$Ln(y)=eta_0+eta_1Ln(x)$	$rac{ riangle y/y}{ riangle x/x}$	Elasticidad: y cambia en $eta_1\%$ ante un cambio de un 1% de x

para este tipo de ajustes

Un gráfico de dispersión

$$y_i = eta_0 + u_i$$

$$y_i = \beta_0 + \beta_1 x + u_i$$

$$y_i = \beta_0 + \beta_1 x + \beta_2 x^2 + u_i$$

$$y_i=eta_0+eta_1x+eta_2x^2+eta_3x^3+u_i$$

$$y_i = eta_0 + eta_1 x + eta_2 x^2 + eta_3 x^3 + eta_4 x^4 + u_i$$

$$y_i = eta_0 + eta_1 x + eta_2 x^2 + eta_3 x^3 + eta_4 x^4 + eta_5 x^5 + u_i$$

 $y_i = 2e^x + u_i$ siendo este el más real

† Cuando se controla (adiciona) mas variables a una regresión, los modelos de regresión lineal se vuelven herramientas mucho mas completas a la hora de estimar **efectos** sobre una variable *objetivo*. Desde luego tienden a ser **mejores** modelos.

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{\rho} X_{\rho} + \mu_i$$

- Los parámetros distintos al autónomo serán considerados como parámetros de pendiente.
- Son modelos que se manejan de forma similar a la regresión simple.
- El supuesto mas importante:

$$E(u|x_1,x_2,x_3,\cdots,x_k)=0$$

• Los efectos parciales se miden:

$$riangle \hat{Y} = riangle X_1 \hat{eta}_1 + riangle X_2 \hat{eta}_2$$

Importante: la regresión lineal permite "ajustar" vía coeficientes β_0, \ldots, β_p la mejor forma o manera de tratar un problema. Estos coeficientes o parámetros se denominan *marginales*.

$$\hat{oldsymbol{y}}_i = \hat{oldsymbol{eta}}_0 + \hat{oldsymbol{eta}}_1 x_{1,i} + \hat{oldsymbol{eta}}_2 x_{2,i} + \dots + \hat{oldsymbol{eta}}_p x_{p,i} + arepsilon_i$$

Esto suelen aplicarse en dos escenarios distintos con objetivos bastante diferenciados:

- 1. Inferencia Causal Estimar e interpretar los coeficientes.
- 2. **Predicción** El enfoque solo es estimar resultados.

Independientemente del objetivo, la forma de "ajustar" (estimar) el modelo es la misma.

Ajuste de la recta de regresión

Como ocurre con muchos métodos de aprendizaje estadístico, la **regresión** se centra en **minimizar** alguna medida de pérdida/error.

$$e_i = y_i - \hat{y}_i$$

Tenemos entonces que usar para **regresión** lo que es (RSS) *Residual Sum Squares* (siglas en ingles) o la suma de los **residuos al cuadrado** de la regresión.

$$ext{RSS} = e_1^2 + e_2^2 + \dots + e_n^2 = \sum_{i=1}^n e_i^2$$

El MCO escoge el(los) mejores $\hat{\beta}_i$ que minimizan la **RSS**.

Elección del modelo

Una primera forma para mirar que tanto ajuste tiene un modelo es el \mathbb{R}^2 , pero, también es bueno mirar el residuo estándar de la regresión (RSE)

Residuo estándar de la regresión (RSE)

$$ext{RSE} = \sqrt{rac{1}{n-p-1}} ext{RSS} = \sqrt{rac{1}{n-p-1} \sum_{i=1}^{n} \left(y_i - \hat{y}_i
ight)^2}$$

Recuerde que la formula del **R-cuadrado** (**R2**) es:

$$R^2 = rac{ ext{TSS} - ext{RSS}}{ ext{TSS}} = 1 - rac{ ext{RSS}}{ ext{TSS}} \quad ext{donde} \quad ext{TSS} = \sum_{i=1}^n \left(y_i - \overline{y}
ight)^2$$

En la **comparación** de modelos vamos a ver que el \mathbb{R}^2 por si solo tiende a sobrestimar la capacidad de los modelos.

$$R^2 = 1 - rac{ ext{RSS}}{ ext{TSS}}$$

Al adherir nuevas variables la RSS \downarrow pero en cambio TSS no lo hace. Así, R^2 se incrementa.

Cuando usamos la **RSE**, esta penaliza ligeramente la incorporación de nuevas variables:

$$ext{RSE} = \sqrt{rac{1}{n-p-1}} ext{RSS}$$

Pero ocurre que **al adicionar una nueva variable:** RSS \downarrow pero p se incrementa. Así, los cambios en el RSE son inciertos.

Volvemos al problema, si **añadimos** mas variables al modelo, el \mathbb{R}^2 automáticamente se incrementa.

Solución: Penalizar el número de variables, pero mediante p.e., \mathbb{R}^2 Ajustado:

$$\overline{R}^2 = 1 - rac{\sum_i {(y_i - \hat{y}_i)}^2/(n-k-1)}{\sum_i {(y_i - \overline{y})}^2/(n-1)}$$

Nota: El \mathbb{R}^2 ajustado no necesariamente esta entre 0 y 1.

Ok... y entonces?

R2-Ajustado

Entonces el RSE no es la única forma para penalizar la adición de nuevas variables...

R2 ajustado es otra forma clásica de solución.

$$R^2 ext{Ajustado} = 1 - rac{ ext{RSS}/(n-k-1)}{ ext{TSS}/(n-1)}$$

R2 Ajustado ayuda a penalizar esta adición

- RSS siempre decrece cuando se adhiere una nueva variable.
- $\mathrm{RSS}/(n-k-1)$ podría incrementarse o decrecer con una nueva variable.

	(1)	(2)	(3)	(4)
(Intercept)	-0.424	-0.193	-0.207 *	-0.168
	(0.590)	(0.147)	(0.091)	(0.091)
x1	1.253 ***	1.088 ***	1.004 ***	0.985 ***
	(0.317)	(0.079)	(0.049)	(0.049)
x2		4.754 ***	4.933 ***	4.921 ***
		(0.123)	(0.078)	(0.076)
x 3			2.083 ***	2.038 ***
			(0.166)	(0.164)
x4				0.083 *
				(0.038)
Observaciones	100	100	100	100
R2	0.138	0.947	0.980	0.981

Regresión Múltiple con R2 Ajustado

	(1)	(2)	(3)	(4)
(Intercept)	-0.424	-0.193	-0.207 *	-0.168
	(0.590)	(0.147)	(0.091)	(0.091)
x1	1.253 ***	1.088 ***	1.004 ***	0.985 ***
	(0.317)	(0.079)	(0.049)	(0.049)
x2		4.754 ***	4.933 ***	4.921 ***
		(0.123)	(0.078)	(0.076)
x 3			2.083 ***	2.038 ***
			(0.166)	(0.164)
x4				0.083 *
				(0.038)
Observaciones	100	100	100	100
R2 Ajustado	0.129	0.946	0.979	0.980

La solución: \mathbb{R}^2 Ajustado

Regresión con variables cualitativas y cuantitativas

 $y_i = eta_0 + eta_1 x_{1i} + eta_2 x_{2i} + u_i \;\; ext{donde} \; x_1 \; ext{es continua y} \;\; x_2 \; ext{es categórica}$

El intercepto y la variable categórica x_2 controla la media por grupos.

Cuando es removida x_2

El parámetro \hat{eta}_1 estima la relación entre y_i y x_1 después de mantener constante a x_2 .

Otra forma de verlo

Si buscamos un estimador

Esto en un modelo de regresión $extbf{simple}\ y_i = eta_0 + eta_1 x_i + u_i$

$$egin{aligned} \hat{eta}_1 &= \\ &= rac{\sum_i \left(x_i - \overline{x}
ight) \left(y_i - \overline{y}
ight)}{\sum_i \left(x_i - \overline{x}
ight)} \ &= rac{\sum_i \left(x_i - \overline{x}
ight) \left(y_i - \overline{y}
ight) / (n-1)}{\sum_i \left(x_i - \overline{x}
ight) / (n-1)} \ &= rac{\hat{ ext{Cov}}(x,\,y)}{\hat{ ext{Var}}(x)} \end{aligned}$$

Estimador lineal simple

$${\hat eta}_1 = rac{\hat{\mathrm{Cov}}(x,\,y)}{\hat{\mathrm{Var}}(x)}$$

cuando vamos a la parte de regresión múltiple, el estimador cambia solo un poco:

$$\hat{eta}_1 = rac{\hat{ ext{Cov}}(ilde{oldsymbol{x}}_1,\,y)}{\hat{ ext{Var}}(ilde{oldsymbol{x}}_1)}$$

Donde \tilde{x}_1 es el *residuo* de la variable x_1 la variación que queda en x después de controlar las otras variables explicativas.

Regresion Múltiple

Formalmente tenemos nuestro **Modelo** de **Regresión Múltiple** de la siguiente forma:

$$y_i = eta_0 + eta_1 x_1 + eta_2 x_2 + eta_3 x_3 + u_i$$

Ya residualizado x_1 (el cual nombramos \tilde{x}_1) se obtiene de la regresión de x_1 sobre un intercepto y todas las demás variables explicativas y del final de los residuos, p.e.,

Lo que nos permite entender mejor el estimador de la regresión múltiple

$$\hat{eta}_1 = rac{\hat{ ext{Cov}}(ilde{oldsymbol{x}}_1,\,y)}{\hat{ ext{Var}}(ilde{oldsymbol{x}}_1)}$$

Otra forma de verlo

Estan las matrices

- Concepto de matrices
- Matriz identidad, nula, vectores
- Operaciones de matrices

Esto tomelo como repaso

Una matriz es una colección de números ordenados rectangularmente.

$$[X] = egin{bmatrix} x_{11} & x_{12} & \cdots & x_{1k} \ x_{21} & x_{22} & \cdots & x_{2k} \ \cdots & \cdots & \cdots & \cdots \ x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}_{n*k}$$

La matriz identidad es una matriz cuya diagonal principal tiene números uno (1).

$$[X] = egin{bmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ \cdots & \cdots & 1 & \cdots \ 0 & 0 & \cdots & 1 \end{bmatrix}_{n*k}$$

- Transpuesta cambiar los elementos de una fila por una columna
- Se obtiene creando una matriz cuya i-esima fila es la misma j-esima columna.

$$A = egin{bmatrix} 1 & 2 & 3 & 4 \ 5 & 6 & 7 & 8 \ 9 & 10 & 11 & 12 \end{bmatrix} \quad A' = egin{bmatrix} 1 & 5 & 9 \ 2 & 6 & 10 \ 3 & 7 & 11 \ 4 & 8 & 12 \end{bmatrix}$$

- **Vectores** estos son lineas de las matrices
- Están los tipo fila y los tipo columna

$$X = egin{bmatrix} x_{11} & x_{12} & x_{13} & x_{1k} \ \cdots & x_{22} & \cdots & \cdots \ \cdots & x_{32} & \cdots & \cdots \ \cdots & x_{n2} & \cdots & \cdots \end{bmatrix}$$

Operaciones con matrices: Suma

Suma de Matrices deben tener mismo tamaño y funciona sumando cada uno de los elementos de una matriz con los de la siguiente matriz.

$$X = egin{bmatrix} x_{11} & x_{12} & \cdots & x_{1k} \ x_{21} & x_{22} & \cdots & x_{2k} \ \cdots & \cdots & \cdots & \cdots \ x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \ A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \ a_{21} & a_{22} & \cdots & a_{2k} \ \cdots & \cdots & \cdots \ a_{n1} & a_{n2} & \cdots & a_{nk} \end{bmatrix}$$

$$X+A=egin{bmatrix} x_{11}+a_{11} & x_{12}+a_{12} & \cdots & x_{1k}+a_{1k} \ x_{21}+a_{21} & x_{22}+a_{22} & \cdots & x_{2k}+a_{2k} \ & \cdots & & \cdots & \cdots \ x_{n1}+a_{n1} & x_{n2}+a_{n2} & \cdots & x_{nk}+a_{nk} \end{bmatrix}$$

Operaciones con matrices: Multiplicación

Para esto hay que tener en consideración:

- No es necesario que sean cuadradas.
- Deben ser siempre **conformables**.
 - Para que una matriz sea *conformable* debe considerarse lo siguiente:

$$A_{m*n} * X_{n*p} = C_{m*p}$$

Debe coincidir o ser de igual tamaño las columnas de la primera matriz con las filas de la siguiente matriz en el orden de la operación.

Operaciones con matrices: Multiplicación

Si tenemos dos vectores $A=(a_1,a_2,\ldots,a_n)$ y $B=(b_1,b_2,\ldots,b_n)$ entonces:

$$a*b = a_1*b_1 + a_2*b_2 + \ldots + a_n*b_n$$

$$A = egin{bmatrix} 1 & 2 & 3 & 4 \ 5 & 6 & 7 & 8 \ 9 & 10 & 11 & 12 \end{bmatrix}_{3*4} \quad B = egin{bmatrix} 3 & 7 & 9 \ 4 & 9 & 2 \ 2 & 7 & 1 \ 4 & 7 & 2 \end{bmatrix}_{4*3} \quad A imes B = egin{bmatrix} 33 & \cdots & \cdots \ \cdots & \cdots \ \cdots & \cdots \ \end{array}_{3*3}$$

- **⊘** A*I=A
- \oslash Ley asociativa (AB)C = A(BC)
- 🔗 Ley distributiva A(B+C)=AB+AC
- **\oslash** Ley transpuesta: (AB)' = B'A'

De vuelta al estimador ahora matricial de M.C.O

Forma matricial del modelo

A Hasta ahora lo que hemos deducido es el estimador de mínimos cuadrados ordinarios MCO para una variable dependiente y una independiente.

☆ Debemos observar ahora como se "deriva" el **estimador** cuando se tiene **más** de una variable **independiente**.

Debemos recordar que la información que se tiene cuando se estima un **modelo de regresión** tiene la siguiente forma: (Las variables se organizan por columnas).

$$egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{bmatrix}_{n*1} = egin{bmatrix} 1 & x_{12} & \cdots & x_{1k} \ 1 & x_{22} & dots & x_{2k} \ \cdots & \cdots & \cdots \ 1 & x_{n2} & dots & x_{nk} \end{bmatrix}_{n*k} imes egin{bmatrix} eta_0 \ eta_1 \ dots \ eta_k \end{bmatrix}_{k*1} + egin{bmatrix} \mu_1 \ \mu_2 \ dots \ eta_k \end{bmatrix}_{n*1}$$

Forma matricial del modelo

Tenemos por cada observación una ecuación que debe ser escrita:

$$Y_1 = eta_0 + eta_1 X_{11} + \dots + eta_k X_{1k} + \mu_1 \ Y_2 = eta_0 + eta_1 X_{21} + \dots + eta_k X_{2k} + \mu_2 \ \dots = \dots + \dots + \dots + \dots + \dots \ Y_n = eta_0 + eta_1 X_{n1} + \dots + eta_k X_{nk} + \mu_n$$

Forma matricial del modelo

• Lo cual nos permite tener un sistema así:

$$Y = XB + U$$
 $S = (y - Xeta)'(y - Xeta) = \mu'\mu$

Donde

$$y'y-y'Xeta-eta'X'y+eta'X'Xeta \ eta'X'y=(eta'X'y)=y'Xeta \ y'y-2eta'X'y+X'Xeta^2$$

Debe derivar B:

$$rac{\partial S}{\partial eta} = -2X'y + 2X'Xeta = 0$$
 $eta = (X'X)^{-1}X'Y$

Bibliografía

- Àlvarez, R. A. R., Calvo, J. A. P., Torrado, C. A. M., & Mondragón, J. A. U. (2013). *Fundamentos de econometría intermedia: teoría y aplicaciones*. Universidad de los Andes.
- 🗏 Stock, J. H., Watson, M. W., & Larrión, R. S. (2012). *Introducción a la Econometría*.
- Wooldridge, J. M. (2015). *Introductory econometrics: A modern approach*. Cengage learning.

Gracias

Alguna pregunta adicional?

Carlos Andres Yanes Guerra

☑ cayanes@uninorte.edu.co

y keynes37