# **Optimization**



Feng Li feng.li@cufe.edu.cn

School of Statistics and Mathematics Central University of Finance and Economics

## Today we are going to learn...

- Structure of Part II
- 2 Motivation: Why Optimize?
- Newton's Method
  - Finding a root
  - Finding a local minimum/maximum
  - Multidimensional Optimization
- Quasi-Newton Methods
- Derivative Free Methods
  - Motivation
  - Nelder Mead Algorithm
  - Coding Nelder Mead
  - Using Nelder Mead

#### **Structure**

- We cover many different topics. This week: Optimization
- For each topic we consider the following
  - Motivation
  - Intuition
  - Mathematics
  - Code

#### **Optimization in Business**

- Many problems in business require something to be minimized or maximized
  - Maximizing Revenue
  - Minimizing Costs
  - Minimizing Delivery Time
  - Maximizing Financial Returns

#### Input and output

- For many of these problems there is some control over the input
  - Maximizing Revenue Price
  - Minimizing Costs Number of Workers
  - Minimizing Delivery Time Driving Route
  - Maximizing Financial Returns Portfolio weights

#### **Optimization in Statistics**

- In statistics, many estimators maximize or minimize a function
  - Maximum Likelihood
  - Least Squares
  - Method of Moments
  - Posterior Mode

- Suppose we want to find an minimum or maximum of a function f(x)
- Sometimes f(x) will be very complicated
- Are there computer algorithms that can help?
- YES!
  - Newton's Method
  - Quasi-Newton
  - Nelder Mead

#### Root of a function

- Consider the problem of finding the **root** or **zero** a function.
- For the function g(x) the **root** is the point  $x^*$  such that  $g(x^*) = 0$
- An algorithm for solving this problem was proposed by Newton and Raphson nearly 500 years ago.
- We will use this algorithm to find the root of  $g(x) = 3x^5 4x^4 + 6x^3 + 4x 4$

#### Root of a function



#### Root of a function



# **Initial Guess (** $g(x_0) = 18.8$ **)**



# **Tangent**



х

# Now $g(x_1) = 6.0$



# Do it again...



# Now $g(x_2) = 1.4$



...and again:  $g(x_3) = 0.2$ 



#### **Finding the Tangent**

- To find the tangent evaluate the first derivative of q(x).
- The function is

$$g(x) = 3x^5 - 4x^4 + 6x^3 + 4x - 4 \tag{1}$$

• The first derivative is

$$g'(x) = 15x^4 - 16x^3 + 18x^2 + 4$$
 (2)

# Find the crossing point



## Find the crossing point



### Find the crossing point

From basic Geometry

$$g'(x_0) = \frac{g(x_0)}{x_0 - x_1} \tag{3}$$

Rearrange

$$x_0 - x_1 = \frac{g(x_0)}{g'(x_0)} \tag{4}$$

$$-x_1 = -x_0 + \frac{g(x_0)}{g'(x_0)} \tag{5}$$

$$x_1 = x_0 - \frac{g(x_0)}{g'(x_0)} \tag{6}$$

### **Stopping Rule**

- With each step the algorithm should get closer to the root.
- However, it can run for a long time without reaching the exact root
- There must be a **stopping rule** otherwise the program could run forever.
- Let  $\epsilon$  be an extremely small number e.g.  $1\times 10^{-10}$  called the **tolerance level**
- If  $|g(x^*)| < \epsilon$  then the solution is close enough and there is a root at  $x^*$

### **Newton-Raphson Algorithm**

- **1** Select initial value  $x_0$  and set n = 0
- 2 Set  $x_{n+1} = x_n \frac{g(x_n)}{g'(x_n)}$
- **3** Evaluate  $|g(x_{n+1})|$ 
  - If  $|g(x_{n+1})| \le \varepsilon$  then stop.
  - Otherwise set n = n + 1 and go back to step 2.

#### Your task

Write R code to find the root of  $g(x)=3x^5-4x^4+6x^3+4x-4$  Tips:

- Write functions for g(x) and g'(x) first.
- These can be inputs into a function that carries out the Newton Raphson method. Code should be flexible.
- Use loops!

#### **Another Problem**

- Now use your Newton-Raphson code to find the root of  $g(x) = \sqrt{|x|}$
- The derivative has two parts

$$g'(x) = \begin{cases} 1/\sqrt{x} & \text{if } x > 0\\ -1/\sqrt{-x} & \text{if } x < 0 \end{cases}$$
 (7)

• Use 0.25 as the starting value

#### Learn from mistakes

- Newton-Raphson does not always converge
- Be careful using while. Avoid infinite loops.
- Don't always assume the answer given by code is correct. Check carefully!
- Print warning messages in code

### **Next Example**

Next example:

$$g(x) = xe^{-x^2} - 0.4(e^x + 1)^{-1} + 0.2$$
 (8)

Try two different starting values

- Starting value  $x_0 = 0.5$
- Starting value  $x_0 = 0.6$

#### **Next Example**

Next example:

$$g(x) = x^3 - 2x^2 - 11x + 12 (9)$$

Try two different starting values

- Starting value  $x_0 = 2.35287527$
- Starting value  $x_0 = 2.35284172$

#### **Next Example**

Next example:

$$g(x) = 2x^3 + 3x^2 + 5 (10)$$

Try two different starting values

- Starting value  $x_0 = 0.5$
- Starting value  $x_0 = 0$

#### Learn from mistakes

- For some functions, using some certain starting values leads to a series that **converges**, while other starting values lead to a series that **diverges**
- For other functions different starting values converge to different roots.
- Be careful when choosing the initial value.
- Newton-Raphson doesn't work if the first derivative is zero.
- When can this happen?

### Rough Proof of Quadratic Convergence

- Can we prove anything about the rate of convergence for the Newton Raphson Method?
- To do so requires the Taylor Series
- Let f(x) have a root at  $\alpha$ . The Taylor approximation states that

$$f(\alpha) \approx f(x_n) + f'(x_n)(\alpha - x_n) + \frac{1}{2}f''(x_n)(\alpha - x_n)^2$$
 (11)

• The quality of the approximation depends on the function and how close  $\kappa_n$  is to  $\alpha$ 

### **Rough Proof of Convergence**

• Since  $\alpha$  is a root,  $f(\alpha) = 0$  This implies

$$0 \approx f(x_n) + f'(x_n)(\alpha - x_n) + \frac{1}{2}f''(x_n)(\alpha - x_n)^2$$
 (12)

• Dividing by  $f'(x_n)$  and rearranging gives:

$$\frac{f(x_n)}{f'(x_n)} + (\alpha - x_n) \approx \frac{-f''(x_n)}{2f'(x_n)} (\alpha - x_n)^2$$
 (13)

More rearranging

$$\alpha - \left(x_n - \frac{f(x_n)}{f'(x_n)}\right) \approx \frac{-f''(x_n)}{2f'(x_n)} (\alpha - x_n)^2$$
 (14)

ullet The term in brackets on the left hand side is the formula used to update  $\chi$  in the Newton Raphson method

$$(\alpha - x_{n+1}) \approx \frac{-f''(x_n)}{2f'(x_n)}(\alpha - x_n)^2$$
 (15)

• This can be rewritten in terms of errors  $e_{n+1}=\alpha-x_{n+1}$  and  $e_n=\alpha-x_n$ 

$$e_{n+1} \approx \frac{-f''(x_n)}{2f'(x_n)}e_n^2$$
 (16)

#### **Conclusion**

- Why did we spend so much time on finding roots of an equation?
- Isn't this topic meant to be about optimization?
- Can we change this algorithm slightly so that it works for optimization?

### Finding a maximum/minimum

- Suppose we want to find an minimum or maximum of a function f(x)
- First order condition: Find the derivative f'(x) and find  $x^*$  such that  $f'(x^*)=0$
- This is the same as finding a root of the first derivative. We can use the Newton Raphson algorithm on the first derivative.

# Newton's algorithm for finding local minima/maxima

- **1** Select initial value  $x_0$  and set n = 0
- **2** Set  $x_{n+1} = x_n \frac{f'(x_n)}{f''(x_n)}$
- **3** Evaluate  $|f'(x_{n+1})|$ 
  - If  $|f'(x_{n+1})| < \varepsilon$  then stop.
  - Otherwise set n = n + 1 and go back to step 2.

#### **Different Stopping Rules**

Three stopping rules can be used

- $|f'(x_n)| \leq \epsilon$
- $|x_n x_{n-1}| \le \varepsilon$
- $|f(x_n) f(x_{n-1})| \le \epsilon$

#### Intuition

- Focus the step size  $-\frac{f'(x)}{f''(x)}$ .
- The signs of the derivatives control the direction of the next step.
- The size of the derivatives control the size of the next step.
- Consider the concave function  $f(x)=-x^4$  which has  $f'(x)=-4x^3$  and  $f''(x)=-12x^2$ . There is a maximum at  $x^*=0$







- If f''(x) is negative the function is locally **concave**, and the search is for a local **maximum**
- To the left of this maximum f'(x) > 0
- Therefore  $-\frac{f'(x)}{f''(x)} > 0$ .
- The next step is to the right.
- The reverse holds if f'(x) < 0
- Large absolute values of f'(x) imply a steep slope. A big step is needed to get close to the optimum. The reverse hold for small absolute value of f'(x).

- If f''(x) is positive the function is locally **convex**, and the search is for a local **minimum**
- To the left of this maximum f'(x) < 0
- Therefore  $-\frac{f'(x)}{f''(x)} > 0$ .
- The next step is to the right.
- The reverse holds if f'(x) > 0
- Large absolute values of f'(x) imply a steep slope. A big step is needed to get close to the optimum. The reverse hold for small absolute value of f'(x).

### Role of second derivative





#### Role of second derivative

- Together with the sign of the first derivative, the sign of the second derivative controls the direction of the next step.
- A larger second derivative (in absolute value) implies a more curvature
- In this case smaller steps are need to stop the algorithm from overshooting.
- The opposite holds for a small second derivative.

# Functions with more than one input

- Most interesting optimization problems involve multiple inputs.
  - In determining the most risk efficient portfolio the return is a function of many weights (one for each asset).
  - In least squares estimation for a linear regression model, the sum of squares is a function of many coefficients (one for each regressor).
- How do we optimize for functions f(x) where x is a vector?

#### **Derviatives**

- Newton's algorithm has a simple update rule based on first and second derivatives.
- What do these derivatives look like when the function is y = f(x) where y is a scalar and x is a  $d \times 1$  vector?

#### First derivative

Simply take the partial derivatives and put them in a vector

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}_1} \\ \frac{\partial \mathbf{y}}{\partial \mathbf{x}_2} \\ \vdots \\ \frac{\partial \mathbf{y}}{\partial \mathbf{x}_d} \end{pmatrix} \tag{17}$$

This is called the **gradient** vector.

# An example

The function

$$y = x_1^2 - x_1 x_2 + x_2^2 + e^{x_2}$$
 (18)

Has gradient vector

$$\frac{\partial y}{\partial x} = \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 + e^{x_2} \end{pmatrix} \tag{19}$$

#### Second derivative

Simply take the second order partial derivatives. This will give a matrix

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x} \partial \mathbf{x}'} = \begin{pmatrix}
\frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}_1^2} & \frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}_1 \partial \mathbf{x}_2} & \cdots & \frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}_1 \partial \mathbf{x}_d} \\
\frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}_2 \partial \mathbf{x}_1} & \frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}_2^2} & \cdots & \frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}_2 \partial \mathbf{x}_d} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}_d \partial \mathbf{x}_1} & \frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}_d \partial \mathbf{x}_2} & \cdots & \frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}_2^2}
\end{pmatrix}$$
(20)

This is called the **Hessian** matrix.

# An example

The function

$$y = x_1^2 - x_1 x_2 + x_2^2 + e^{x_2}$$
 (21)

Has Hessian matrix

$$\frac{\partial y}{\partial x \partial x'} = \begin{pmatrix} 2 & -1 \\ -1 & 2 + e^{x_2} \end{pmatrix}$$
 (22)

### Preliminaries for matrix derivatives I

 $\textbf{1} \ \, \text{The derivative of a vector } \textbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \, \text{, by a scalar } x \text{ is written (in numerator } ) \,$ 

layout notation) as

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}_1}{\partial \mathbf{x}} \\ \frac{\partial \mathbf{y}_2}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial \mathbf{y}_m}{\partial \mathbf{x}} \end{bmatrix}.$$

In vector calculus the derivative of a vector y with respect to a scalar x is known as the tangent vector of the vector y,  $\frac{\partial y}{\partial x}$ 

### Preliminaries for matrix derivatives II

2 The derivative of a scalar y by a vector  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$  , is written (in

numerator layout notation) as

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \cdots & \frac{\partial y}{\partial x_n} \end{bmatrix}.$$

 $\textbf{3} \ \, \textbf{The second order derivatives of a scalar} \,\, \textbf{y by a vector} \,\, \textbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \,\, \textbf{is}$ 

written (in numerator layout notation) as

### Preliminaries for matrix derivatives III

$$\begin{split} \frac{\partial^2 y}{\partial \mathbf{x} \partial \mathbf{x}'} &= \frac{\partial}{\partial \mathbf{x}'} \begin{bmatrix} \frac{\partial y}{\partial \mathbf{x}} \end{bmatrix} = \frac{\partial}{\partial \mathbf{x}'} \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \cdots & \frac{\partial y}{\partial x_n} \end{bmatrix} \\ &= \begin{bmatrix} \frac{\partial^2 y}{\partial x_1^2} & \frac{\partial^2 y}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 y}{\partial x_1 \partial x_n} \\ \frac{\partial^2 y}{\partial x_2 \partial x_1} & \frac{\partial^2 y}{\partial x_2^2} & \cdots & \frac{\partial^2 y}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 y}{\partial x_m \partial x_1} & \frac{\partial^2 y}{\partial x_m \partial x_2} & \cdots & \frac{\partial^2 y}{\partial x_m \partial x_m} \end{bmatrix}. \end{split}$$

4 The derivative of a vector function (a vector whose components are

functions) 
$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
, with respect to an input vector,  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ , is

written (in numerator layout notation) as

### Preliminaries for matrix derivatives IV

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{y}_1}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{y}_1}{\partial \mathbf{x}_2} & \dots & \frac{\partial \mathbf{y}_1}{\partial \mathbf{x}_n} \\ \frac{\partial \mathbf{y}_2}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{y}_2}{\partial \mathbf{x}_2} & \dots & \frac{\partial \mathbf{y}_2}{\partial \mathbf{x}_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{y}_m}{\partial \mathbf{x}_1} & \frac{\partial \mathbf{y}_m}{\partial \mathbf{x}_2} & \dots & \frac{\partial \mathbf{y}_m}{\partial \mathbf{x}_n} \end{bmatrix}.$$

**5** The derivative of a matrix function Y by a scalar x is known as the tangent matrix and is given (in numerator layout notation) by

$$\frac{\partial \mathbf{Y}}{\partial x} = \begin{bmatrix} \frac{\partial \mathbf{y}_{11}}{\partial x} & \frac{\partial \mathbf{y}_{12}}{\partial x} & \cdots & \frac{\partial \mathbf{y}_{1n}}{\partial x} \\ \frac{\partial \mathbf{y}_{21}}{\partial x} & \frac{\partial \mathbf{y}_{22}}{\partial x} & \cdots & \frac{\partial \mathbf{y}_{2n}}{\partial x} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{y}_{m1}}{\partial x} & \frac{\partial \mathbf{y}_{m2}}{\partial x} & \cdots & \frac{\partial \mathbf{y}_{mn}}{\partial x} \end{bmatrix}.$$

### Preliminaries for matrix derivatives V

**6** The derivative of a scalar y function of a matrix X of independent variables, with respect to the matrix X, is given (in numerator layout notation) by

$$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{p1}} \\ \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{p2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1q}} & \frac{\partial y}{\partial x_{2q}} & \cdots & \frac{\partial y}{\partial x_{pq}} \end{bmatrix}.$$

# Newton's algorithm for multidimensional optimization

We can now generalise the update step in Newton's method:

$$x_{n+1} = x_n - \left(\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}'}\right)^{-1} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$$
 (23)

Now write code to minimise  $y=x_1^2-x_1x_2+x_2^2+e^{x_2}$ 

# The linear regression model, a revisit

Consider the linear regression model with multiple covariates,

$$y_{\mathfrak{i}} = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p + \varepsilon_{\mathfrak{i}}$$

where  $\varepsilon_i \sim N(0, \sigma^2)$ 

• What is the gradient and Hessian matrix for the log likelihood ( $\mathcal{L}$ ) with respect to the parameter vector  $\boldsymbol{\beta} = (\beta_0, ..., \beta_p)$ ?

$$\frac{\partial log\mathcal{L}}{\partial \mathbf{\beta}} = ?$$

$$\frac{\partial^2 \log \mathcal{L}}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta'}} = ?$$

#### Maximum likelihood Estimate for linear models

Assume you want to make a regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

where  $\varepsilon_i \sim N(0, \sigma^2)$ 

- What is the (log) likelihood function?
- What are the unknown parameters?
- How do we estimate the parameters? Let's consider three situations
  - When  $\beta_0 = 1$  and  $\sigma^2 = 1$  known.
  - When  $\sigma^2 = 1$  known.
  - Neither  $\beta$  nor  $\sigma$  is known.
- Write down the likelihood function with respect to the unknown parameters.
- Write down the gradient for the likelihood function.
- Write down the Hessian for the likelihood function.
- Use Newton's method to obtain the best parameter estimate.

# Optimizing the likelihood function by using optim()

```
## Generate some data
beta0 <- 1
beta1 <- 3
sigma <- 1
n < -1000
x \leftarrow rnorm(n, 3, 1)
y \leftarrow beta0 + x*beta1 + rnorm(n, mean = 0, sd = sigma)
plot(x, y, col = "blue", pch = 20)
## The optimization
optimOut <- optim(c(0, -1, 0.1), logNormLikelihood,
                    control = list(fnscale = -1),
                    x = x, y = y
betaOHat <- optimOut$par[1]</pre>
beta1Hat <- optimOut$par[2]
sigmaHat <- optimOut$par[3]</pre>
vHat <- beta0Hat + beta1Hat*x
plot(x, y, pch = 20, col = "blue")
points(sort(x), yHat[order(x)], type = "1", col = "red", lwd = 2)
   Feng Li (SAM.CUFE.EDU.CN)
                               Statistical Computing
```

59 / 121

# Comparison with OLS



# Vector Newton-Raphson Algorithm: The logit model

- → Estimate logit model with ungrouped (individual) data
  - The idea: using maximum likelihood method with binomial distribution.
  - One owns a house (Y = 1) or do not own a house (Y = 0) can be represented with **Bernoulli distribution**

$$Pr(y;p) = p^y (1-p)^{1-y} \quad \text{for } y \in \{0,1\}.$$

• The log likelihood function is as follows

$$l(\beta) = \sum_{n=1}^{N} \{ y_i \log P_i + (1 - y_i) \log(1 - P_i) \}$$

where

$$P_{i} = \frac{1}{1 + \exp(-(\beta_{1} + \beta_{2}X_{2i} + ... + \beta_{p}X_{pi}))}$$

- Note that the sum of n Bernoulli samples will be **binomial** distributed.
- To obtain  $\hat{\beta}$ , use Newton-Raphson algorithm

$$\beta^{\text{new}} = \beta^{\text{old}} - \left(\frac{\partial^2 l(\beta)}{\partial \beta \partial \beta'}\right)^{-1} \frac{\partial l(\beta)}{\partial \beta}|_{\beta = \beta^{\text{old}}}$$

### A harder example

- Use Newton's method to find the maximum likelihood estimate for the coefficients in a logistic regression. The steps are:
  - Write down likelihood function
  - Find the gradient and Hessian matrix
  - Code these up in R
  - Simulate some data from a logistic regression model.
  - Test your code.

# **Quasi-Newton Methods**

- One of the most difficult parts of the Newton method is working out the derivatives especially the Hessian.
- However methods can be used to approximate the Hessian and also the gradient.
- These are known as Quasi-Newton Methods
- In general they will converge slower than pure Newton methods.

# The BFGS algorithm

- The BFGS algorithm was introduced over several papers by Broyden, Fletcher, Goldfarb and Shanno.
- It is the most popular Quasi-Newton algorithm.
- The R function 'optim' also has a variation called L-BFGS-B.
- The L-BFGS-B uses less computer memory than BFGS and allows for box constraints

#### **Box Constraints**

Box constraints have the form

$$l_i \leqslant x_i \leqslant u_i \quad \forall i \tag{24}$$

- In statistics this can be very useful. Often parameters are constrained
  - Variance must be greater than 0
  - For a stationary AR(1), coefficient must be between -1 and 1
  - Weights in a portfolio must be between 0 and 1 if short selling is prohibited.

# Optim function in R

- The optim function in R requires at least two inputs
  - Initial values
  - The function that needs to be optimized
- By default it minimises a function.
- A function that computes the gradient vector can also be provided.
- The optimization method can be set (choices include BFGS, L-BFGS-B and Nelder-Mead)
- Lower and upper bounds can be set through the arguments lower and upper if the L-BFGS-B method is used.

# Optim function in R

- Further arguments can be passed in an argument called control.
- Some things that can be included in this list are
  - Maximum number of iterations (maxit)
  - Information about the algorithm (trace)
  - How often to display information about the algorithm (REPORT)

# Optim function in R

- The result of optim can be saved in an object that is a list containing
  - The value of the function at the turning point (value)
  - The optimal parameters (par)
  - Useful information about whether the algorithm has converged (convergence)
- For all algorithms *convergence*=0 if the algorithm has converged (slightly confusing)

#### Homework

Use optim to carry out maximum likelihood for the

• Logistic regression model

#### **Discontinuous Functions**

- The Newton Method requires first and second derivatives.
- If derivatives are not available the they can be approximated by Quasi-Newton methods
- What if the derivatives do not exist?
- This may occur if there are discontinuities in the function.

# **Business Example**

- Suppose the aim is to optimize income of the business by selecting the number of workers.
- In the beginning adding more workers leads to more income for the business.
- If too many workers are employed, they may be less efficient and the income of the company goes down

# **Business Example**



#### **Business Example**

- Now suppose that there is a tax that the company must pay.
- Companies with less than 50 workers do not pay the tax
- Companies with more than 50 workers do pay the tax
- How does this change the problem?

# **Business Example**





#### The Nelder Mead Algorithm

- The Nelder Mead algorithm is robust even when the functions are discontinuous.
- The idea is based on evaluating the function at the vertices of an n-dimensional simplex where n is the number of input variables into the function.
- For two dimensional problems the n-dimensional simplex is simply a triangle, and each corner is one vertex
- In general there are n+1 vertices.

### A 2-dimensional simplex



#### **Step 1: Evaluate Function**

- For each vertex  $x_i$  evaluate the function  $f(x_i)$
- Order the vertices so that

$$f(x_1) \leqslant f(x_2) \leqslant \ldots \leqslant f(x_{n+1}) \tag{25}$$

- Suppose that the aim is to **minimize** the function, then  $f(x_{n+1})$  is the worst point.
- The aim is to replace  $f(x_{n+1})$  with a better point

# A 2-dimensional simplex



#### Step 2: Find Centroid

• After eliminating the worst point  $x_{n+1}$ , compute the **centroid** of the remaining n points

$$x_0 = \frac{1}{n} \sum_{j=1}^{n} x_j \tag{26}$$

• For the 2-dimensional example the centroid will be in the middle of a line.

### **Find Centroid**



#### **Step 3: Find reflected point**

- Reflect the worst point around the centroid to get the **reflected point**.
- The formula is:

$$x_{\rm r} = x_0 + \alpha(x_0 - x_{n+1})$$
 (27)

- A common choice is  $\alpha = 1$ .
- In this case the reflected point is the same distance from the centroid as the worst point.

# **Find Reflected point**



# **Find Reflected point**



#### Three cases

- - ullet  $x_r$  is neither best nor worst point
- **2**  $f(x_r) < f(x_1)$ 
  - $x_r$  is the best point
- $(x_r) \geqslant f(x_n)$ 
  - $x_r$  is the worst point

In Case 1 a new simplex is formed with  $x_{n+1}$  replaced by the reflected point  $x_r$ . Then go back to step 1.





In Case 2,  $\chi_{\rm r} < \chi_{\rm 1}.$  A good direction has been found so we expand along that direction

$$x_e = x_0 + \gamma (x_r - x_0) \tag{28}$$

A common choice is  $\gamma = 2$ 





# Choosing the expansion point

- Evaluate  $f(x_e)$ .
- If  $f(\mathbf{x}_e) < f(\mathbf{x}_r)$ :
  - The expansion point is better than the reflection point. Form a new simplex with the expansion point
- If  $f(x_r) \leq f(x_e)$ :
  - The expansion point is not better than the reflection point. Form a new simplex with the reflection point.

# Keep expansion point



# Keep reflection point



Case 3 implies that there may be a valley between  $x_{n+1}$  and  $x_r$  so find the **contracted** point. A new simplex is formed with the contraction point if it is better than  $x_{n+1}$ 

$$x_{c} = x_{0} + \rho(x_{n+1} - x_{0}) \tag{29}$$

A common choice is  $\rho = 0.5$ 



# 'Valley'



### **Find Contraction point**



# **New Simplex**



#### **Shrink**

If  $f(x_{n+1}) \leqslant f(x_c)$  then contracting away from the worst point does not lead to a better point. In this case the function is too irregular a smaller simplex should be used. Shrink the simplex

$$\mathbf{x}_{i} = \mathbf{x}_{1} + \sigma(\mathbf{x}_{i} - \mathbf{x}_{1}) \tag{30}$$

A popular choice is  $\sigma = 0.5\,$ 

# 'Egg Carton'



#### **Contraction Point is worst**



# **New Simplex**



### **Summary**

- Order points
- Find centroid
- Find reflected point
- Three cases:
  - 1 Case 1 ( $f(x_1) \le f(x_r) < f(x_n)$ ): Keep  $x_r$
  - 2 Case 2  $(f(x_r) < f(x_1))$ : Find  $x_e$ .
    - If  $f(x_e) < f(x_r)$  then keep  $f(x_e)$
    - Otherwise keep  $f(x_r)$
  - 3 Case 3  $(f(x_r) \ge f(x_n))$ : Find  $f(x_c)$ 
    - If  $f(x_c) < f(x_{n+1})$  then keep  $f(x_c)$
    - Otherwise Shrink

#### Your task

- Find the minimum of the function  $f(x) = x_1^2 + x_2^2$
- Use a triangle with vertices (1, 1), (1, 2), (2, 2) as the starting simplex
- Don't worry about using a loop just yet. Try to get code that just does the first iteration.
- Don't worry about the stopping rule yet either

### Use pseudo-code

#### Algorithm 1 Nelder Mead

- 1: **Set** initial simplex and evaluate function
- 2: Sort  $f(x_1) \leqslant \ldots \leqslant f(x_n)$
- 3: Compute **reflected** point
- 4: if  $f(x_1) \leqslant f(x_r) < f(x_n)$  then
- 5: **return**  $x_{n+1} \leftarrow x_r$
- 6: else if  $f(x_r) < f(x_1)$  then
- 7: Compute **expanded** point
- 8: if  $f(\mathbf{x}_e) < f(\mathbf{x}_r)$  then
- 9: **return**  $x_{n+1} \leftarrow x_e$
- 10: else if  $f(x_r) \leq f(x_e)$  then
- 11: **return**  $x_{n+1} \leftarrow x_r$
- 12: end if
- 13: else if  $f(x_n) \leq f(x_r)$  then
- 14: Compute contracted point
- 15: end if

#### Lessons

- Break down a difficult problem into smaller problems.
- Use pseudo code in planning
- Use comments
- Use indents

### **Stopping Rule for Nelder Mead**

- As Nelder Mead gets close to (or reaches) the minimum, the simplex gets smaller and smaller.
- One way to know that Nelder Mead has converged is by looking at the volume of the simplex.
- To work out the volume requires some understanding between the relationship between matrix algebra and geometry.

## **Stopping Rule for Nelder Mead**

- ullet Choose the vertex  $x_{n+1}$  (although choosing any other vertex will also work)
- Build the matrix  $ilde{ ilde{X}}=(x_1-x_{n+1},x_2-x_{n+1},\ldots,x_n-x_{n+1})$
- The volume of the simplex is  $\frac{1}{2}|det(\tilde{X})|$

# Why?



### **Translate**



# Determinant=Area of Trapezoid



# Triangle=Half Trapezoid



#### Alternative formula

Some of you may have learnt the formula for the area of a triangle as:

$$\frac{1}{2} \left| \det \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ 1 & 1 & 1 \end{pmatrix} \right| \tag{31}$$

The two approaches are equivalent.

#### Questions

- In my code, where should I start the loop?
- Should it be a *for* loop or a *while* loop?
- What should the loop look like?

## Visualizing Nelder Mead



## Nelder Mead in 'optim'

- Nelder Mead is the default algorithm in the R function optim
- It is generally slower than Newton and Quasi-Newton methods but is more stable for functions that are not smooth.
- Including the argument control=list(trace, REPORT=1) will print out details about each step of the algorithm.
- Slight different terminology is used for example 'expansion' is called 'extension'

#### Box constraints in Nelder Mead

- It is not possible to impose box constraints in Nelder Mead.
- However it is possible to trick R. How?
- Suppose the problem is a minimization. We can use an *if* statement to force the function to be extremely large outside the box.
- This is not an option in BFGS since this induces a discontinuity in the function.

#### Some test functions

Use both Nelder Mead and L-BFGS-B to minimize the following

Booth's Function:

$$f(\mathbf{x}) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2 - 10 \leqslant x_1, x_2 \leqslant 10$$

Bukin Function N.6

$$f(\textbf{x}) = 100 \sqrt{\left|x_2 - \frac{x_1^2}{100}\right|} + \frac{|x_1 + 10|}{100} \quad \begin{array}{c} -15 \leqslant x_1 \leqslant 5 \\ -3 \leqslant x_2 \leqslant 3 \end{array}$$

## **Summary**

- This is the end of the optimization topic.
- You should now be familiar with
  - Newton's Method
  - · Quasi Newton Method
  - Nelder Mead
- Hopefully you also improved your coding skills!

### **Summary**

- Some important lessons:
  - If you can evaluate derivatives and Hessians then do so when implementing Newton and Quasi-Newton methods.
  - If there are discontinuities in the function then Nelder Mead may work better.
  - In any case the best strategy is to optimize using more than one method to check that results are robust.
  - Also pay special attention to **starting values**. A good strategy is to check that results are robust to a few different choices of starting values.