Final Project: Modified zero-in for root-finding

We would like to find a root of the equation

$$f(x) = 0$$
, for $x \in \mathbf{R}$

given an initial interval [a, b] with

$$f(a)\cdot f(b)<0.$$

with a combination of two methods

- bisection method, for its reliability
- inverse quadratic interpolation (IQI) method, for its higher order of convergence.

inverse quadratic interpolation (IQI) method

Given three pairs of points (x_0, f_0) , (x_1, f_1) , (x_2, f_2) , IQI defines a quadratic polynomial in f that goes through these points,

$$x(f) = \frac{(f - f_1)(f - f_2)}{(f_0 - f_1)(f_0 - f_2)} x_0 + \frac{(f - f_0)(f - f_2)}{(f_1 - f_0)(f_1 - f_2)} x_1 + \frac{(f - f_0)(f - f_1)}{(f_2 - f_0)(f_2 - f_1)} x_2$$

This leads to an estimate for the root $x_3 \stackrel{\text{def}}{=} x(0)$:

$$x_3 = \frac{f_1 f_2}{(f_0 - f_1) (f_0 - f_2)} x_0 + \frac{f_0 f_2}{(f_1 - f_0) (f_1 - f_2)} x_1 + \frac{f_0 f_1}{(f_2 - f_0) (f_2 - f_1)} x_2$$

Modified zero-in for root-finding in a sketch

For given initial interval [a, b] with

$$f(a) \cdot f(b) < 0.$$

We would like to find a root of the equation f(x) = 0, for $x \in \mathbf{R}$

Modified zero-in for root-finding in a sketch

For given initial interval [a, b] with

$$f(a)\cdot f(b)<0.$$

We would like to find a root of the equation f(x) = 0, for $x \in \mathbf{R}$

- 1. **set** x_0 , x_1 , $x_2 = a$, b, $c \stackrel{\text{def}}{=} \frac{a+b}{2}$
- 2. **let** $x_3 = IQI(x_0, x_1, x_2)$
 - ▶ if $x_3 \notin [a, b]$
 - **do** bisection steps on [a, b]
 - ▶ set new interval $[a^{\text{new}}, b^{\text{new}}] \subset [a, b]$ with

$$f(a^{\text{new}}) \cdot f(b^{\text{new}}) < 0,$$
 repeat step (1)

- ▶ else if $|f(x_3)|$ has not DECREASED by a factor of 2 within 4 consecutive **IQI** iterations,
 - **do** bisection steps on [a, b]
 - ▶ **set** new interval $[a^{\text{new}}, b^{\text{new}}] \subset [a, b]$ with

$$f(a^{\text{new}}) \cdot f(b^{\text{new}}) < 0$$
, repeat step (1)

- repeat IQI in step (2)
- 3. **stop** when iteration converged