,3 פתרון מטלה -02 חשבון אינפיניטסימלי -02

2025 באפריל 3

. יהי נורמי ($X, \lVert \cdot \rVert)$ מרחב נורמי

'סעיף א

 $\left(\hat{B}_{r(x)}
ight)^{\circ}=B_{r(x)}$ מתקיים r>0ו ו־ $x\in X$ נוכיח נוכיחה:

'סעיף ב

 $\partial B_{r(x)} = S_{r(x)}$ מתקיים r>0ו וי $x\in X$ נוכיה נוכהה:

'סעיף א

 $A=\left\{(x,y,z)\in\mathbb{R}^3\mid x+y+z\leq 1\right\}\subseteq \left(\mathbb{R}^3,\|\cdot\|_2\right)$ הקבוצה של הסגור הסגור את נמצא את הפנים, נמצא את הפנים, הסגור השפה א

:הוכחה

'סעיף ב

 $B=\{f\in C([0,1])\mid f$ ממש יור יור ממש הפנים, מונוטונית הקבוצה של הקבוצה של הקבוצה את נמצא את הפנים, הסגור השפה של הקבוצה ($C[0,1],\|\cdot\|_\infty$) אונוחה:

'סעיף ג

$$C=\left\{x\in\ell^\infty\mid L\in(-1,1]\wedge$$
 קיים הבגול קיים בונג בונגה הקבוצה לונגה הקבוצה על הקבוצה בונגה בונגה הסגור השפה של הקבוצה בונגה בונגה הסגור והשפה של הקבוצה בונגה הקבוצה ה

. יהי $p\in\mathbb{N}$ מספר ראשוני	
'סעיף א	
$\mathbb{Z}_p\coloneqq \hat{B}_1(0)\subseteq \left(\mathbb{Q},d_p ight)$ הסגור היחידה הסגור את כדור היחידה הסגור	
הוכחה:	
סעיף ב'	
$.\mathbb{Z}^\circ$ ונקבע מהו $\overline{\mathbb{Z}}=\mathbb{Z}_p$ נוכיח כי	
הוכחה:	
'סעיף ג	

שאלה 3

:הוכחה

. נוכיח כי \mathbb{Z}_p אינה קומפקטית סדרתית

TODO מטריים מטריים מטריים איז א המכפלה איז במכפלה ביחס מטריים מטריים מטריים מטריים איז א המכפלה ביחס מכפלה איז ובתרגיל הקודם בתרגיל הקודם מטריים מט

'סעיף א

 $(y_n)\underset{n o\infty}{ o} (x_n)\underset{n o\infty}{ o} x$ וי
ע אם אם אם ורק אם מתכנסת לי ((x_n,y_n)) מתכנסת נוכיח כי הסדרה לי

:הוכחה

'סעיף ב

. רציפות. p_Y ור בי ד p_X וכיח כי את ההטלות. את $p_Y: X \times Y \to Y$ ובי ובי ובי ד $p_X: X \times Y \to X$ ובים נסמן

:הוכחה

'סעיף ג

. רציפות. $p_Y \circ f$ ו ורק אם אם ורק ש" המקיים ביים מתקיים ופונקציה ופונקציה ופונקציה ופונקציה $f:Z \to X \times Y$ ופונקציה ווכיח מטרי

:הוכחה

'סעיף ד

נניח כי מכפלה סופית של מרחבים של מכפלה ל $X \times Y$ קומפקטית אים המכפלה על קומפקטיים סדרתית. נוכיח כי מכפלה כי אומפקטיים סדרתית מכפלה על אומפקטיים סדרתית.

הוכחה: מספיק שנראה עבור שתי מכפלות והמכפלה של יותר תנבע באינדוקציה.

		•		
_	_	_		***
7		•	æ	V۷

יהי. $B\subseteq X$ ו סדרתית קומפקטית קומפקטיר ו־ $K\subseteq X$ ו מטרי מטרי יהי יהי (X,d)יהי

'סעיף א

. מקבימום מינימום מקבלת לו מקביה $f:K \to \mathbb{R}$ מקביה רציפה כי כל נוכיח כי כל

:הוכחה

'סעיף ב

 $x\in\overline{B}$ אם ורק אם d(x,B)=0 נוכיח כי

:הוכחה

'סעיף ג

 $A(K,B)=\emptyset$ אם ורק אם d(K,B)<0 ונסיק כי ונסיק של כך שכי עד ער של גער אם אם מורק אם ונסיק נוכיח נוכיח אם אם מורק של אם א

:הוכחה

. היא סדרתית קומפקטית שאינה החסומה היא קבוצה היא $\hat{B}_1(0)\subseteq (C([0,1]),\|\cdot\|_\infty)$ נוכיח כי