

Связь FIFO с протоколом valid/ready Применение valid/ready в шинах типа AXI Конвейеры с контролем потока данных

Дмитрий Смехов

Дополнительные материалы

Дмитрий Смехов - Доклад на ChipExpo 2021:

«Интерфейс valid/ready. Двойные буфера. Счётчики кредитов. Организация конвейера».

https://github.com/DigitalDesignSchool/ce2020labs/blob/master/next_step/dsmv/presentation/pr_1_crd.pptx

Интерфейс valid/ready

Слово данных считается переданным когда на фронте тактового сигнала установлены оба сигнала: **valid** и **ready**

AXI STREAM

Дополнительные сигналы (**tlast**, **tuser**) передаются по тем же правилам что и **tdata**:

Передача происходит только при tvalid=1 и tready=1

AXI MEMORY MAP

Каждая шина содержит сигналы **valid** и **ready**

Передача происходит только при **valid**=1 и **ready**=1

Связь FIFO и AXI STREAM

Добавление небольшой комбинационной схемы согласует порты FIFO и сигналы шины AXI STREAM

Главная проблема valid/ready

- На передатчике сигнал **ready** должен быть обработан в том же самом такте.
- Нет возможности подать сигнал на триггер.
- Это достаточное основание для отказа от **valid/ready**

Проблемы для автомата передачи

Как правило существует конечный автомат который передаёт данные на шину.

Сигнал **ready** должен через некую комбинационную логику попасть на все триггеры автомата.

Это создаёт большие сложности при трассировке цепей

Комбинационное формирование ready

Формирование ready с паузой

Типичный конвейер

Проблема — как сообщить источнику данных что приёмник готов или не готов к приёму данных

Вариант 1 — распространение o_ready

Как правило — приёмник формирует сигнал готовности к приёму данных

Сигнал **o_ready** поступает на все стадии конвейера.

Недостаток — проблемы с трассировкой

Вариант 2 — двойной буфер

На каждой стадии конвейера используется двойной буфер.

Комбинационная схема анализирует только сигналы от соседних стадий конвейера.

Недостаток — усложнение логики и дополнительные ресурсы

Классическая реализация

Цикл работы двойного буфера

Цикл работы двойного буфера

Вариант 3 - FIFO

N — число стадий конвейера

Какой оптимальный размер FIFO?

prog_full — флаг почти полного FIFO, как минимум равен N

github - пример conv_with_fifo

Размер FIFO 4 слова, конвейер 3 такта

При постоянной записи и при постоянном разрешении чтения возникают паузы при работе конвейера.

Оптимальный размер FIFO равен 2N

Вариант 4 — счётчик кредитов

Начальное значение счётчика кредитов равно размеру FIFO

Оптимальный размер FIFO равен N+2

На вход узла CALC подаётся столько данных, сколько есть места в FIFO

github — пример **credit**

Работа счётчика кредитов

