# **Homework 2: Classification Methods**

# **Luying Jiang**

```
import random
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import math
        import seaborn
        from tabulate import tabulate
        from sklearn.naive_bayes import GaussianNB
        from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as
        from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
        as QDA
        from sklearn.model selection import train test split
        from sklearn.linear_model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import roc auc score
        from sklearn.metrics import roc curve, auc
```

# The Bayes Classifier

## **Question 1**

a.

```
In [2]: np.random.seed(1234)
```

b.

```
In [3]: x1 = np.random.uniform(-1, 1, 200)
x2 = np.random.uniform(-1, 1, 200)
```

c.

```
In [4]: error = np.random.normal(0, 0.5, 200)
y = x1 + x1**2 + x2 + x2**2 + error
```

Since 
$$log(\frac{P(Success)}{1-P(Success)}) = Y$$
,

$$P(Success) = \frac{e^Y}{1+e^Y}$$

```
In [5]: p_success = (math.e ** y)/(1 + math.e ** y)
```

e.

```
In [6]: success = p_success > 0.5
    failure = p_success <= 0.5
    plt.scatter(x1[success], x2[success])
    plt.scatter(x1[failure], x2[failure])
    plt.title('Success Vs. Failure')
    plt.legend(['Success', 'Failure'], loc=1);</pre>
```



f & g & h.

```
In [7]: x = np.column_stack((x1,x2))
    df = pd.DataFrame(x)
    gnb = GaussianNB()
    gnb.fit(df, success)
```

Out[7]: GaussianNB(priors=None, var\_smoothing=1e-09)

```
In [8]: p = np.linspace(-1, 1, 100)
         q = np.linspace(-1, 1, 100)
         xv, yv = np.meshgrid(p, q)
         z = gnb.predict_proba(np.c_[xv.ravel(), yv.ravel()])
Out[8]: array([[8.22971292e-01, 1.77028708e-01],
                [8.22773717e-01, 1.77226283e-01],
                [8.22419949e-01, 1.77580051e-01],
                [1.18056694e-04, 9.99881943e-01],
                [1.06288784e-04, 9.99893711e-01],
                [9.55915874e-05, 9.99904408e-01]])
         z = z[:, 1].reshape(xv.shape)
 In [9]:
In [10]: | plt.scatter(x1[success], x2[success])
         plt.scatter(x1[failure], x2[failure])
         plt.contour(xv, yv, z, [0.5])
         plt.contourf(xv, yv, z, [0,0.5], colors = 'lightyellow', alpha=.4)
         plt.contourf(xv, yv, z, [0.5,1], colors='lightgreen', alpha=.3)
         plt.xlabel('x1')
         plt.ylabel('x2')
         plt.title('Simulated Data with Baysian Decision Boundary')
         plt.legend(['Success', 'Failure'], loc=1);
```



# **Exploring Simulated Differences between LDA and QDA**

## **Question 2**

If the Bayes decision boundary is linear, we expect QDA to perform better on the training set because its higher flexiblity may yield a closer fit. On the test set, we expect LDA to perform better than QDA, because QDA could overfit the linearity on the Bayes decision boundary.

```
In [11]: def simulate(n, nonlinear = 0):
             error lst = []
             for i in range(1000):
                 x1 = np.random.uniform(-1, 1, n)
                 x2 = np.random.uniform(-1, 1, n)
                 y \sin u = x1 + x2 + (x1 ** 2) * nonlinear + (x2 ** 2) * nonlinear
         + np.random.normal(0, 1, n)
                 y_simu_bi = y_simu >= 0
                 X = np.column_stack((x1, x2))
                 X train, X test, y train, y test = train test split(X, y simu bi
         , test_size=0.3, shuffle=True)
                 lda = LDA()
                 lda.fit(X_train, y_train)
                 lda_train_err = 1 - lda.score(X_train, y_train)
                 lda test err = 1- lda.score(X test, y test)
                 qda = QDA()
                 qda.fit(X_train, y_train)
                 qda train err = 1 - qda.score(X train,y train)
                 qda test err = 1- qda.score(X test, y test)
                 error lst.append([lda train err, lda test err, qda train err, qd
         a test err])
             return error 1st
```

```
In [12]: error_lst = simulate(1000, 0)
```

```
In [13]: df = pd.DataFrame(error_lst, columns=['lda_train_error', 'lda_test_erro
    r', 'qda_train_error', 'qda_test_error'])
    df.head(10)
```

## Out[13]:

|   | lda_train_error | lda_test_error | qda_train_error | qda_test_error |
|---|-----------------|----------------|-----------------|----------------|
| 0 | 0.265714        | 0.306667       | 0.265714        | 0.303333       |
| 1 | 0.278571        | 0.273333       | 0.282857        | 0.276667       |
| 2 | 0.287143        | 0.270000       | 0.288571        | 0.256667       |
| 3 | 0.284286        | 0.280000       | 0.280000        | 0.283333       |
| 4 | 0.264286        | 0.226667       | 0.261429        | 0.216667       |
| 5 | 0.278571        | 0.296667       | 0.278571        | 0.300000       |
| 6 | 0.261429        | 0.226667       | 0.262857        | 0.223333       |
| 7 | 0.285714        | 0.270000       | 0.285714        | 0.273333       |
| 8 | 0.264286        | 0.313333       | 0.264286        | 0.306667       |
| 9 | 0.255714        | 0.300000       | 0.257143        | 0.310000       |

In [14]: df.describe()

# Out[14]:

| lda_train_error |             | lda_test_error | qda_train_error | qda_test_error |
|-----------------|-------------|----------------|-----------------|----------------|
| count           | 1000.000000 | 1000.000000    | 1000.000000     | 1000.000000    |
| mean            | 0.273219    | 0.276280       | 0.272479        | 0.276820       |
| std             | 0.016298    | 0.026244       | 0.016121        | 0.026368       |
| min             | 0.221429    | 0.193333       | 0.221429        | 0.196667       |
| 25%             | 0.261429    | 0.260000       | 0.261429        | 0.260000       |
| 50%             | 0.272857    | 0.276667       | 0.271429        | 0.276667       |
| 75%             | 0.284286    | 0.293333       | 0.284286        | 0.293333       |
| max             | 0.325714    | 0.350000       | 0.321429        | 0.360000       |

In [15]: df.plot.density(figsize=(12,12))
 plt.title('Linear Decision Boundary LDA & QDA Training and Testing Error
 Rates')



Out[16]: Text(0.5, 1.0, 'Linear Decision Boundary LDA & QDA Training and Testing Error Rates')



As shown above, QDA performs better on the trainning set and LDA performs better on test set.

## **Question 3**

If the Bayes decision bounary is non-linear, we expect QDA to perform better both on the training and test sets.

```
In [17]: error_lst2 = simulate(1000, 1)
```

# Out[18]:

|       | lda_train_error | lda_test_error | qda_train_error         | qda_test_error |
|-------|-----------------|----------------|-------------------------|----------------|
| count | 1000.000000     | 1000.000000    | 1000.000000 1000.000000 |                |
| mean  | 0.272799        | 0.274627       | 0.259430                | 0.262140       |
| std   | 0.017898        | 0.025932       | 0.016799                | 0.024327       |
| min   | 0.212857        | 0.193333       | 0.208571                | 0.190000       |
| 25%   | 0.261429        | 0.256667       | 0.247143                | 0.243333       |
| 50%   | 0.271429        | 0.273333       | 0.260000                | 0.263333       |
| 75%   | 0.284286        | 0.290000       | 0.270000                | 0.276667       |
| max   | 0.331429        | 0.366667       | 0.312857                | 0.333333       |

In [19]: df.plot.density(figsize=(12,12))
 plt.title('Non-Linear Decision Boundary LDA & QDA Training and Testing E
 rror Rates')

Out[19]: Text(0.5, 1.0, 'Non-Linear Decision Boundary LDA & QDA Training and Tes
 ting Error Rates')



Out[20]: Text(0.5, 1.0, 'Non-Linear Decision Boundary LDA & QDA Training and Tes
 ting Error Rates')



As shown above, QDA performs better in both testing and training data.

## **Question 4**

In general, QDA, which is more flexible than LDA and so has higher variance, performs better than LDA if the training set is very large. The error rate of QDA relative to LDA decreases

In [22]: df\_100.describe()

#### Out[22]:

|       | lda_train_error_100 | lda_test_error_100 | qda_train_error_100 | qda_test_error_100 |
|-------|---------------------|--------------------|---------------------|--------------------|
| count | 1000.000000         | 1000.000000        | 1000.000000         | 1000.000000        |
| mean  | 0.265357            | 0.286500           | 0.243329            | 0.275933           |
| std   | 0.052539            | 0.081847           | 0.049239            | 0.083286           |
| min   | 0.085714            | 0.033333           | 0.100000            | 0.033333           |
| 25%   | 0.228571            | 0.233333           | 0.214286            | 0.225000           |
| 50%   | 0.257143            | 0.300000           | 0.242857            | 0.266667           |
| 75%   | 0.300000            | 0.333333           | 0.271429            | 0.333333           |
| max   | 0.428571            | 0.533333           | 0.385714            | 0.566667           |

```
In [23]: error_lst_e03 = simulate(1000, 1)
    df_1000 = pd.DataFrame(error_lst_e03, columns=['lda_train_error_1000',
    'lda_test_error_1000', 'qda_train_error_1000', 'qda_test_error_1000'])
```

In [24]: df\_1000.describe()

## Out[24]:

|       | lda_train_error_1000 | lda_test_error_1000 | qda_train_error_1000 | qda_test_error_1000 |
|-------|----------------------|---------------------|----------------------|---------------------|
| count | 1000.000000          | 1000.000000         | 1000.000000          | 1000.000000         |
| mean  | 0.272271             | 0.274613            | 0.258596             | 0.261163            |
| std   | 0.017076             | 0.025663            | 0.016545             | 0.025658            |
| min   | 0.211429             | 0.190000            | 0.201429             | 0.180000            |
| 25%   | 0.261429             | 0.259167            | 0.247143             | 0.243333            |
| 50%   | 0.272857             | 0.273333            | 0.258571             | 0.260000            |
| 75%   | 0.284286             | 0.290000            | 0.270000             | 0.276667            |
| max   | 0.337143             | 0.360000            | 0.320000             | 0.340000            |
|       |                      |                     |                      |                     |

```
In [26]: df_10000.describe()
```

#### Out[26]:

|       | Ida_train_error_10000 | Ida_test_error_10000 | qda_train_error_10000 | qda_test_error_10000 |
|-------|-----------------------|----------------------|-----------------------|----------------------|
| count | 1000.000000           | 1000.000000          | 1000.000000           | 1000.000000          |
| mean  | 0.273486              | 0.273920             | 0.260487              | 0.261210             |
| std   | 0.005467              | 0.007931             | 0.005087              | 0.008048             |
| min   | 0.258000              | 0.249667             | 0.245143              | 0.236000             |
| 25%   | 0.270000              | 0.268667             | 0.257143              | 0.255667             |
| 50%   | 0.273714              | 0.273667             | 0.260571              | 0.261333             |
| 75%   | 0.277143              | 0.279333             | 0.263857              | 0.266667             |
| max   | 0.291429              | 0.300000             | 0.276286              | 0.287000             |

In [28]: df\_10000.describe()

## Out[28]:

|             | lda_train_error_10000 | Ida_test_error_10000 | qda_train_error_10000 | qda_test_error_10000 |
|-------------|-----------------------|----------------------|-----------------------|----------------------|
| count       | 1000.000000           | 1000.000000          | 1000.000000           | 1000.000000          |
| mean        | 0.273486              | 0.273920             | 0.260487              | 0.261210             |
| std         | 0.005467              | 0.007931             | 0.005087              | 0.008048             |
| min         | 0.258000              | 0.249667             | 0.245143              | 0.236000             |
| 25%         | 0.270000              | 0.268667             | 0.257143              | 0.255667             |
| 50%         | 0.273714              | 0.273667             | 0.260571              | 0.261333             |
| <b>75</b> % | 0.277143              | 0.279333             | 0.263857              | 0.266667             |
| max         | 0.291429              | 0.300000             | 0.276286              | 0.287000             |

In [29]: df = pd.concat([df\_100, df\_1000, df\_10000, df\_100000], axis=1)

```
In [30]: df.head(10)
```

#### Out[30]:

|   | lda_train_error_100 | lda_test_error_100 | qda_train_error_100 | qda_test_error_100 | lda_train_error_1 |
|---|---------------------|--------------------|---------------------|--------------------|-------------------|
| 0 | 0.214286            | 0.266667           | 0.157143            | 0.266667           | 0.271             |
| 1 | 0.328571            | 0.433333           | 0.314286            | 0.400000           | 0.268             |
| 2 | 0.300000            | 0.266667           | 0.300000            | 0.266667           | 0.277             |
| 3 | 0.300000            | 0.233333           | 0.342857            | 0.266667           | 0.278             |
| 4 | 0.228571            | 0.233333           | 0.200000            | 0.233333           | 0.275             |
| 5 | 0.371429            | 0.166667           | 0.314286            | 0.166667           | 0.291             |
| 6 | 0.300000            | 0.433333           | 0.271429            | 0.333333           | 0.294             |
| 7 | 0.285714            | 0.166667           | 0.242857            | 0.200000           | 0.287             |
| 8 | 0.171429            | 0.400000           | 0.200000            | 0.300000           | 0.278             |
| 9 | 0.228571            | 0.266667           | 0.214286            | 0.266667           | 0.264             |
|   |                     |                    |                     |                    |                   |

# In [31]: df.columns

```
plt.figure(figsize=(10,8))
In [32]:
         seaborn.boxplot(data=df[['lda_test_error_100','lda_test_error_1000',
                                   'lda_test_error_10000','lda_test_error_100000'
         ]])
         plt.xticks(rotation=45)
         plt.ylabel('Error Rate')
         plt.title('LDA Testing Errors for Different Sample Sizes');
```

## LDA Testing Errors for Different Sample Sizes



Out[33]: Text(0.5, 1.0, 'QDA Testing Errors for Different Sample Sizes')





```
In [34]: fig= plt.figure(figsize=(12,10))
    ax1 = plt.subplot(221)
    seaborn.boxplot(data=df[['lda_test_error_100', 'qda_test_error_100']])
    plt.title('LDA & QDA Test Error Rates (n = 100)')
    ax2 = plt.subplot(222)
    seaborn.boxplot(data=df[['lda_test_error_1000', 'qda_test_error_1000']])
    plt.title('LDA & QDA Test Error Rates (n = 1000)')
    ax2 = plt.subplot(223)
    seaborn.boxplot(data=df[['lda_test_error_10000', 'qda_test_error_10000']])
    plt.title('LDA & QDA Test Error Rates (n = 10000)')
    ax2 = plt.subplot(224)
    seaborn.boxplot(data=df[['lda_test_error_100000', 'qda_test_error_10000
    0']])
    plt.title('LDA & QDA Test Error Rates (n = 100000)')
```

Out[34]: Text(0.5, 1.0, 'LDA & QDA Test Error Rates (n = 100000)')



As we can see above, for both the LDA and QDA average test error rates decrease as the sample sizes increase. However, the average test error rate for QDA decreases at a higher rate compared with that for LDA, which matches our expectation.

# **Modeling voter turnout**

# **Question 5**

```
df = pd.read_csv('mental_health.csv')
In [35]:
In [36]:
           df.head()
Out[36]:
               vote96 mhealth_sum age
                                        educ black female married
                                                                    inc10
                                                        0
            0
                  1.0
                              0.0
                                  60.0
                                        12.0
                                                 0
                                                               0.0 4.8149
            1
                 1.0
                             NaN 27.0
                                        17.0
                                                 0
                                                        1
                                                               0.0 1.7387
            2
                 1.0
                              1.0 36.0
                                        12.0
                                                               1.0 8.8273
                 0.0
                              7.0 21.0
                                        13.0
                                                 0
                                                        0
                                                               0.0 1.7387
                             NaN 35.0
                                                 0
                                                               0.0 4.8149
                  0.0
                                        16.0
In [84]:
           df.dropna(inplace=True)
```

a.

```
In [78]: y = df['vote96']
X = df[['mhealth_sum', 'age', 'educ', 'black', 'female', 'married', 'inc10']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```

b.

```
In [79]: # logistic regression model
         log = LogisticRegression()
         log.fit(X_train,y_train)
         log_err = 1 - log.score(X_test, y_test)
         # Linear discriminant model
         lda = LDA()
         lda.fit(X train,y train)
         lda_err = 1 - lda.score(X_test, y_test)
         # Quadratic discriminant model
         qda = QDA()
         qda.fit(X_train,y_train)
         qda_err = 1 - qda.score(X_test, y_test)
         # Naive Bayes
         gnb = GaussianNB()
         gnb.fit(X_train, y_train)
         gnb_err = 1 - gnb.score(X_test, y_test)
         # K-nearest neighbors with K = 1, 2, \ldots, 10
         def KNN(n):
             knn = KNeighborsClassifier(n_neighbors = n, metric = 'euclidean')
             knn.fit(X_train, y_train)
             knn_err = 1 - knn.score(X_test, y_test)
             return knn, knn_err
```

/Users/luyingjiang/anaconda3/lib/python3.7/site-packages/sklearn/linear \_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning)

```
In [80]: n1, n1_err = KNN(1)
    n2, n2_err = KNN(2)
    n3, n3_err = KNN(3)
    n4, n4_err = KNN(4)
    n5, n5_err = KNN(5)
    n6, n6_err = KNN(6)
    n7, n7_err = KNN(7)
    n8, n8_err = KNN(8)
    n9, n9_err = KNN(9)
    n10, n10_err = KNN(10)
```

C.

i. Error Rate

| Туре                   | Error Rate |
|------------------------|------------|
| Logistic Regression    | 0.251429   |
| LDA                    | 0.245714   |
| QDA                    | 0.277143   |
| Naive Bayes test error | 0.288571   |
| KNN(n=1)               | 0.337143   |
| KNN(n=2)               | 0.382857   |
| KNN(n=3)               | 0.354286   |
| KNN(n=4)               | 0.345714   |
| KNN(n=5)               | 0.331429   |
| KNN(n=6)               | 0.34       |
| KNN(n=7)               | 0.3        |
| KNN(n=8)               | 0.291429   |
| KNN(n=9)               | 0.297143   |
| KNN(n=10)              | 0.294286   |

#### ii. ROC curve(s) / Area under the curve (AUC)

```
In [82]: def roc_auc(model, name):
    probs = model.predict_proba(X_test)[:, 1]
    auc = roc_auc_score(y_test, probs)
    print(name + ': AUC = %.2f' % (auc))
    fpr, tpr, _ = roc_curve(y_test, probs)
    plt.plot(fpr, tpr, label = name)
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.legend(loc = 'lower right')
```

```
In [85]: models = [log, lda, qda, gnb, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10]
    names = ['Logistic Regression', 'LDA', 'QDA', "Naive Bayes",
    'KNN1', 'KNN2', 'KNN3', 'KNN4', 'KNN5', 'KNN6', 'KNN7', 'KNN8', 'KNN9', 'KNN10']
    plt.figure(figsize=(12, 12))
    rand_probs = [0] * len(y_test)
    rand_fpr, rand_tpr, _ = roc_curve(y_test, rand_probs)
    plt.plot(rand_fpr, rand_tpr, linestyle='--', label='Random Classifier')
    for i, model in enumerate(models):
        roc_auc(model, names[i])
```

```
Logistic Regression: AUC = 0.79
LDA: AUC = 0.80
QDA: AUC = 0.77
Naive Bayes: AUC = 0.76
KNN1: AUC = 0.62
KNN2: AUC = 0.65
KNN3: AUC = 0.66
KNN4: AUC = 0.69
KNN5: AUC = 0.70
KNN6: AUC = 0.69
KNN7: AUC = 0.72
KNN8: AUC = 0.73
KNN9: AUC = 0.74
KNN10: AUC = 0.75
```



d. Which model performs the best? Be sure to define what you mean by "best" and identify supporting evidence to support your conclusion(s).

| As shown above, in terms of the error rate, the best model is LDA. It has the lowest error rate. In terms of the ROC/AUC, LDA performs the best with its high AUC. Therefore, LDA is the best for this data set. |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                  |  |  |