1 Длинная динамика для мез 600/100 и 1200/100.

1.1 Уравнение аппроксимации

Аппроксимировал данные с помощью следующего уравнения:

$$fit(t) = (1 - A_0) \left(1 - ae^{-\left(\frac{t - t_o}{c}\right)} - (1 - a)e^{-\left(\frac{t - t_o}{d}\right)} \right) + A_0$$
 (1)

где a, c и d коэффициенты аппроксимации, t_0 - момент времени, выбранный для начала аппроксимации A_0 - амплитуда, в начальный момент времени.

1.2 Результаты для мезы 600/100

Рис. 1: Выбор начала аппроксимации

Рис. 2: Результат аппроксимации

P = 1	$a \rightarrow 0.794815$ $c \rightarrow 822.988$ $d \rightarrow 99.98$
P = 0.5	$a \rightarrow 1.00359$ $c \rightarrow 711.717$ $d \rightarrow 1.71712$
P = 1.5	$a \rightarrow 0.675351$ $c \rightarrow 768.677$ $d \rightarrow 90.5507$
P = 2	$a \rightarrow 0.709347$ $c \rightarrow 596.481$ $d \rightarrow 59.7715$

Рис. 3: Найденные параметры

1.3 Результаты для мезы 1200/100

Рис. 4: Выбор начала аппроксимации

Рис. 5: Результат аппроксимации

Рис. 6: Найденные параметры

1.4 Сравнение временных характеристик для мез 600/100 и 1200/100

Рис. 7: Зависимость "долгого" времени от мощности накачки

Рис. 8: Зависимость "быстрого" времени от мощности накачки