1

ASSIGNMENT 4: GATE 2021 AG: Agricultural Engineering

EE25BTECH11047 - Ravula Shashank Reddy

1) The people	were at the demon	nstration were from all s	ections of society. (GATE EE	2025)
a) whose	b) which	c) who	d) whom	
2) A transparent squalike	are sheet shown above i	s folded along the dotte	d line.The folded sheet wil (GATE EE	

Fig. 2

3) For a regular polygon having 10 sides, the interior angle between the sides of the polygon, in degrees, is

(GATE EE 2025)

a) 396

b) 324

c) 216

- d) 144
- 4) Which one of the following numbers is exactly divisible by $(11^{13} + 1)$?

(GATE EE 2025)

- a) $11^{26} + 1$
- b) $11^{33} + 1$
- c) $11^{39} 1$
- d) $11^{52} 1$
- 5) Oasis is to sand as island is to ______. Which one of the following options maintains a similar logical relation in the above sentence?

(GATE EE 2025)

- a) Stone
- b) Land

- c) Water
- d) Mountain
- 6) The importance of sleep is often overlooked by students when they are preparing for exams. Research has consistently shown that sleep deprivation greatly reduces the ability to recall the material learnt. Hence, cutting down on sleep to study longer hours can be counterproductive.

Which one of the following statements is the CORRECT inference from the above passage?

- a) Sleeping well alone is enough to prepare for an exam. Studying has lesser benefit.
- b) Students are efficient and are not wrong in thinking that sleep is a waste of time.
- c) If a student is extremely well prepared for an exam, he needs little or no sleep.
- d) To do well in an exam, adequate sleep must be part of the preparation.
- 7) In the figure shown above, each inside square is formed by joining the midpoints of the sides of the next larger square. The area of the smallest square (shaded) as shown, in cm², is:

(GATE EE 2025)

a) 12.50

b) 6.25

- c) 3.125
- d) 1.5625
- 8) Let *X* be a continuous random variable denoting the temperature measured. The range of temperature is [0, 100] degree Celsius and let the probability density function of *X* be

$$f(x) = 0.01$$
 for $0 \le X \le 100$.

The mean of X is:

a) 2.5

b) 5.0

c) 25.0

- d) 50.0
- 9) The number of students passing or failing in an exam for a particular subject are presented in the bar chart above. Students who pass the exam cannot appear for the exam again. Students who fail the exam in the first attempt must appear for the exam in the following year. Students always pass the exam in their second attempt. The number of students who took the exam for the first time in year 2 and in year 3 respectively, are

(GATE EE 2025)

- a) 65 and 53
- b) 60 and 50
- c) 55 and 53
- d) 55 and 48
- 10) Seven cars P, Q, R, S, T, U and V are parked in a row not necessarily in that order. The cars T and U should be parked next to each other. The cars S and V also should be parked next to each other, whereas P and Q cannot be parked next to each other. Q and S must be parked next to each other. R is parked to the immediate right of V. T is parked to the left of U.

Based on the above statements, the only INCORRECT option given below is:

(GATE EE 2025)

- a) There are two cars parked in between Q and V.
- b) Q and R are not parked together.
- c) V is the only car parked in between S and R.
- d) Car P is parked at the extreme end.
- 11) Let the vector

$$\mathbf{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$$

be a differentiable vector function of Cartesian coordinates x, y, z. The curl of the vector v is given by curl $\mathbf{v} =$

(GATE EE 2025)

a)
$$\left(\frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z}\right)\hat{i} + \left(\frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x}\right)\hat{j} + \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}\right)\hat{k}$$
 c) $\left(\frac{\partial v_3}{\partial x} - \frac{\partial v_2}{\partial y}\right)\hat{i} + \left(\frac{\partial v_1}{\partial y} - \frac{\partial v_3}{\partial z}\right)\hat{j} + \left(\frac{\partial v_2}{\partial z} - \frac{\partial v_1}{\partial x}\right)\hat{k}$ d) $\left(\frac{\partial v_2}{\partial z} - \frac{\partial v_3}{\partial y}\right)\hat{i} + \left(\frac{\partial v_3}{\partial x} - \frac{\partial v_1}{\partial z}\right)\hat{j} + \left(\frac{\partial v_1}{\partial z} - \frac{\partial v_2}{\partial x}\right)\hat{k}$

c)
$$\left(\frac{\partial y_2}{\partial x} - \frac{\partial y_3}{\partial y}\right) \hat{i} + \left(\frac{\partial y_3}{\partial y} - \frac{\partial y_3}{\partial z}\right) \hat{j} + \left(\frac{\partial y_3}{\partial z} - \frac{\partial y_3}{\partial x}\right) \hat{k}$$

d) $\left(\frac{\partial y_2}{\partial z} - \frac{\partial y_3}{\partial y}\right) \hat{i} + \left(\frac{\partial y_3}{\partial x} - \frac{\partial y_1}{\partial z}\right) \hat{j} + \left(\frac{\partial y_1}{\partial y} - \frac{\partial y_2}{\partial x}\right) \hat{k}$

12) If x is an integer with x > 1, the solution of

$$\lim_{x \to \infty} \left(\frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3} + \dots + \frac{x+1}{x^x} \right)$$

is

(GATE EE 2025)

a) Zero

b) 0.5

c) 1.0

- d) ∞
- 13) In a tyre axis system as defined by Society of Automotive Engineers, the moment acting about z-axis is called

(GATE EE 2025)

	a) aligning torqueb) over turning torque		c) rolling resistance mod) lateral moment	ment	
14)	Pitting is a process of			(GATE EE	2025)
	a) mixing of pulses withb) mixing of pulses withc) scratching of pulses byd) beating of oil seeds for	edible oil reduring its	milling	(G/MZ ZZ	2023)
15)	During ploughing with a would be	tractor mounted mould	board plough, the mast of	f three point hitch	system
				(GATE EE	2025)
	a) inclined 5 to 20° withb) nearly vertical	horizontal			
	c) parallel to the directiond) parallel to the rear axle				
16)	The hydrologic reservoir	routing methods use		(GATE EE	2025)
	a) Bernoulli's equation orb) hydrologic continuity ec) Muskingum equation ofd) both the hydraulic morWhile assessing the intenthe area is classified as	equation only only nentum and hydrologic		ridity index indicat (GATE EE	
	a) severely arid	b) moderately arid	c) mildly arid	d) non-arid	
18)	The approximate relations that SDR varies	ship between Sediment	Delivery Ratio (SDR) and	l drainage area (A)	shows
				(GATE EE	2025)
	a) directly with $A^{0.2}$	b) inversely with $A^{0.2}$	c) directly with A	d) inversely with	\boldsymbol{A}
19)	One-dimensional general sphere, based on thermal <i>E</i> , can be written as		quation representing tempheat capacity C_p , density	•	
		$\frac{1}{r^n}\frac{\partial}{\partial r}\left(r^k\frac{\partial T}{\partial r}\right)$	$+E = \rho C_p \frac{\partial T}{\partial t},$		
	where the value of n is			(GATE EE	2025)
	a) 1 1	2	2) 2		2023)
201	•	b) 2	c) 3	d) 4	
20)	In butter, the fishy flavor	defect is due to the dec	composition of	(GATE EE	2025)

	a) α -lactalbumın	b) β -lactoglobulin	c) casein	d) lecithin
	maximum and average f manufacturer's coefficie drip irrigation efficiency	low rates are found to be not of variation of the extension percent is	e 45 L h^{-1} , 65 I mitter is 0.07. I	n efficiency of 90%, the minimum, L h ⁻¹ and 50 L h ⁻¹ , respectively. The If there is one emitter per plant, the 2 decimal places]
22)	Trace of the matrix $\begin{pmatrix} 3 \\ 5 \\ 2 \\ 9 \end{pmatrix}$	4 6 7 is ——————————————————————————————————	_[in integer]	
				(GATE EE 2025)
23)	<u> </u>	at $P(A \cup B) = P(A) + P(A)$		(A = 0.25, PA = 0.25
				(GATE EE 2025)
24)		_	_	ivalence ratio (λ) is 0.92, the actual[round off to 2 decimal places] (GATE EE 2025)
25)	cm, the power required if the power for conveying	for cutting and propelling ing the cut crop is 50% of	g are measured to f the power rec	reaper with a cutter bar of width 60 to be 300 W and 350 W, respectively. quired for cutting, the power required ill be[answer in integer] (GATE EE 2025)
26)	A gear numn has a disn	lacement of 120 cm ³ rev	v^{-1} and it runs as	t 1500 rpm against a system pressure
20)		e efficiency of the pump	o is 90%, actual	I torque required to run the pump in 3.14)
27)			111	(GATE EE 2025)
27)				d plough during operation are 2.0 kN,
				irections, respectively. The soil-metal
	the estimated draft in N			
20)	Calaria alara anti ta ma	411 424-44	1	(GATE EE 2025)
28)		angle of internal friction	-	of infinite extent having slope angle is 30°, the factor of safety of slope
	.[round on	to 2 document process		(GATE EE 2025)
29)	A pump, discharging w	vater at a rate of 80 LA	$\hat{A} \cdot s^{-1}$, is used to	o irrigate 2 ha of land in 10 h. On
				oot zone depth of 50 cm is increased
		ulk density of the soil i	s 1500 kg·m⁻	³ , water application efficiency in per
		-		(GATE EE 2025)
30)	Pumping test is carried of	out at a constant discharg	ge of 5400 L·m	nin ⁻¹ for 24 h in a main well of 30 cm
	diameter penetrated 25 i	n below the static water	table. The water	r level in observation wells located at
	steady state flow condit	ion, drawdown estimate	•	and 0.53 m, respectively. Considering yell in m is[round off to
	2 decimal places] (Take	n = 3.14j		(GATE EE 2025)
31)	The observed concentre	ations of magnesium (N	$M\sigma^{2+}$) sodium ((Na ⁺), and bicarbonate (HCO3 ⁻) in
<i>J1)</i>	saturated extract of a so	il sample taken from the	e root zone are	5.68 meq $\hat{A}\cdot L^{-1}$, 9.90 meq $\hat{A}\cdot L^{-1}$, and \hat{D}_3 /Ca ²⁺ is 2.8, the sodium adsorption

	ratio is			
32)	-	_		(GATE EE 2025) If 7% of original potatoes [answer in integer] (GATE EE 2025)
33)	1000 kg $\hat{A} \cdot m^{-3}$, the pres	=	the outside air and gas a	ing density of water to be t the base of the chimney
34)	the same ball mill is us	sed for wet grinding, cha	arged with 20 cm diameter	(GATE EE 2025) with 10 cm size balls. If er balls, the change in the ake $\pi = 3.14$ and $g = 9.81$
35)	is used in a mixing tan	k. If the tank receives a		(GATE EE 2025) a stirrer speed of 200 rpm ate of 0.2 m ³ ·min ⁻¹ , the nal places] (GATE EE 2025)
36)	Solution of the different $y'(0) = -3.5$ is.	ntial equation $y'' + y' +$	0.25y = 0 with the initi	al values $y(0) = 3.0$ and
				(GATE EE 2025)
(1	A) $y = (3 - 2x)e^{0.5x}$	(B) $y = (3 - 2x)e^{-0.25x}$	(C) $y = (3 - 2x)e^{-0.5x}$	(D) $y = (2 - 3x)e^{-0.5x}$
37)	measure shear strength	of soil in the field. Whe		m, respectively is used to oil and rotated, the torque is. (Take $\pi = 3.14$) (GATE EE 2025)
	a) 14.49	b) 18.94	c) 21.54	d) 28.98
38)	mm above the soil surfa	ice. Based on the entire strength is 35 NA	stem cross-section, the mo	pact force at a height of 50 odulus of elasticity is 1500 hat would cause failure of (GATE EE 2025)
	a) 14.84	b) 23.52	c) 29.69	d) 44.53
	A solar panel has length and its conversion effici- voltage is 18 V at its m	n of 1.3 m and width of ency is 13.7%. For a totaximum power output.	0.65 m. The solar cells cotal solar radiation of 750 ff two such panels are cor	over 90% of the panel area W·m ⁻² , the panel output nnected in series to supply to panels at the maximum
	-			(GATE EE 2025)
	a) 2.17	b) 3.01	c) 4.34	d) 6.08

40) A fertilizer drill with a row to row spacing of 40 cm, discharges 38 g of fertilizer per row per revolution of the metering wheel. The metering wheel is driven through a chain transmission system

by ground wheel having 60 cm diameter. Neglecting skid of the ground wheel, for an application rate of 200 kg \hat{A} ·ha⁻¹, the speed ratio of ground wheel to metering wheel will be . (Take $\pi = 3.14$) (GATE EE 2025)

a) 1.40:1

b) 2.52:1

c) 3.64:1

d) 4.76:1

41) A sample of wet sandy-clay loam soil of mass 135 kg is collected for laboratory tests. The wet density, water content (weight basis) and specific gravity of solids of this soil sample are 1.8 g $\hat{A}\cdot\text{cm}^{-3}$, 18%, and 2.7, respectively. The dry density (in g $\hat{A}\cdot\text{cm}^{-3}$) and porosity (in per cent) of the soil sample, respectively, are .

(GATE EE 2025)

a) 1.53 and 43.50

b) 1.53 and 77.00

c) 1.65 and 43.50

d) 1.65 and 77.00

42) It is proposed to develop bench terraces in an area having land slope of 10%. If the vertical interval between the bench terraces is 2.5 m and the batter slope is 100%, working width (in m) and the area lost for cultivation (in per cent), respectively will be.

(GATE EE 2025)

a) 22.50 and 0.05

b) 25.00 and 0.50

c) 22.50 and 10.45

d) 25.00 and 10.45

43) While carrying out a traverse survey *ABCDA'* using a theodolite with the originating station A, the departures and latitudes of the lines, as obtained, are shown in the figure (not drawn to scale). It is seen that, due to the observational errors, the originating station A and its computed station A' are not the same. For this survey, the 'closing error' in m is .

(GATE EE 2025)

a) 6.33

b) 7.62

c) 33.73

d) 35.21

44) The shape of the Instantaneous Unit Hydrograph (IUH) of a catchment is an isosceles triangle with a peak of $60 \text{ m}^3 \hat{A} \cdot \text{s}^{-1}$ and time to peak of 3 h. If the constant baseflow is $7.5 \text{ m}^3 \hat{A} \cdot \text{s}^{-1}$, the peak of the 3 h Unit Hydrograph (UH) in $\text{m}^3 \hat{A} \cdot \text{s}^{-1}$ is .

(GATE EE 2025)

a) 43.33

b) 50.83

c) 52.50

d) 60.00

45) Match the following hulling mechanism in column 1 with the corresponding machine in column 2.

Column 1		Column 2	
P	Shear and compression	1	Blade type emery scourer
Q	Friction and abrasion	2	Horizontal Gola machine
R	Shear, compression and friction	3	Rubber roll dehusker
S	Impact, abrasion and friction	4	Under runner disc sheller

(GATE EE 2025)

a) P-3, Q-2, R-4, S-1		c) P-3, Q-1, R-4, S-2		
	b) P-3, Q-1, I		d) P-4, Q-3	, R-1, S-2
46)	Match the co	prrect items in column 1 with column	n 2	
	Column 1		Column 2	
	P	Pipe-in-pipe heat exchanger	1	Cooling of air
	Q	Shell and tube heat exchanger	2	Simultaneous co-current and counter current h
	R	1-2 shell and tube heat exchanger	3	Large flow rate
	S	Cross flow heat exchanger	4	Small heat exchange area
			1	(GATE EE 2025)
	a) P-1, Q-2, I	R-4, S-3	c) P-3, Q-4	
	b) P-2, Q-3, I	R-4, S-1	d) P-4, Q-3	, R-2, S-1
47)	steady state of that at the oth $g(100 \text{ mL})^{-1}$	condition. The mass transfer coefficients and the membrane is 3×10^{-7}	ent of NaCl at ms ⁻¹ . Concen embrane is as	to separate NaCl from a solution at the solution side is 1×10^{-6} ms ⁻¹ and tration of NaCl in the solution is 0.03 sumed to be zero. Permeability of the by the membrane in gh ⁻¹ is (GATE EE 2025)
	a) 0.73	b) 0.81	c) 0.86	d) 0.93
48)	Eighty per ce			n of feed material per hour is 7.2 kW. 4.75 mm and 0.5 mm sieve openings, (GATE EE 2025)
	a) 6.5	b) 7.4	c) 11.9	d) 14.8
ŕ	2 Ph. D. stuprobability of is	idents. It is decided to remove that fremoving 2 students from the same[round off to 3 decimal places] of eigenvalues of a matrix $\begin{pmatrix} 4 & 1 \\ 3 & 6 \end{pmatrix}$	ee students i	sists of 4 B. Tech., 3 M. Tech., and from the committee at random. The the third one from any other category
	is	[round off to the nearest integer]		
				(GATE EE 2025)
51)	of internal frand 65%, res	iction is 26.5°), the weight distribution pectively. If an extra weight of 2.5 l	on at the fror kN is added t	ght of 20 kN in pure sandy soil (angle at and rear axles are found to be 35% o each of the rear wheels, the change e[round off to 2 decimal]
50 \	A		20 1	(GATE EE 2025)
52)	cm. These b	lades are fixed at a radial distance	of 7 cm from	20 L-shaped blades each of width 12 in the center of the rotor shaft to the rated at a forward speed of 4.5 kmh ⁻¹

and at a depth of 12 cm, the resultant soil force of 150 N tangential to the rotor circumference acts at the middle of the blade width. The torsional moment acting on the blade in Nm is ______.[round

off to one decimal place]

(GATE EE 2025)

	(GAIE EE 2025)
53)	Fixed cost per year and variable cost per hour of a tractor were estimated based on its annual usage of 800 h. The total cost of operation was found to be Rs. 540 per hour. It was later re-estimated and found that total cost of operation would be Rs. 510 per hour, if the annual hours of use were increased to 1000 h. Considering all the components of annual usage cost to be the same, the variable
	cost in Rs. per hour would be[answer in integer]
7 4\	(GATE EE 2025)
54)	Two meshed involute gears transmit 1.0 kW power. The pressure angle is 20° and the pitch circle
	diameter of the large gear rotating at a speed of 600 rpm is 20 cm. If only a pair of teeth are in
	contact at a time, the total force acting between the meshed teeth in N will be [round
	off to one decimal place](Take $\pi = 3.14$)
~ ~ \	(GATE EE 2025)
55)	A horizontal axis lift type wind rotor of diameter 4 m is used to run a pump at a wind velocity of 15
	kmh ⁻¹ at standard atmospheric pressure and temperature (density of air is 1.23 kgm ⁻³). If velocity
	of wind leaving a rotor blade is reduced to one-third of the approaching wind velocity, the thrust
	acting on the blade of the wind rotor in N is[round off to 2 decimal places]
- <>	(GATE EE 2025)
56)	A small watershed receives rainfall of 90 mm in a day. For this watershed, irrespective of the land
	use, the amount of initial abstraction can be considered as 25% of the potential maximum retention
	(S) of soil. Initially, the entire watershed was under forest with $S = 136$ mm, which was converted
	into cultivated land with $S = 64$ mm. The change in the daily runoff volume due to this land use
	alteration for this specific rainfall event in percent is[round off to one decimal place]
<i></i>	(GATE EE 2025)
57)	The most economical trapezoidal channel section with 1:1 (horizontal:vertical) side slope is designed
	to carry a maximum of 40 cm depth of water at its full capacity. If the bed slope of the channel is
	1:2500 and the Manning's roughness coefficient of channel section is 0.01, the estimated discharge
	capacity of the channel in m ³ s ⁻¹ is[round off to 2 decimal places]
50)	(GATE EE 2025)
58)	A windbreak, 15 m in height and 200 m in length, is established to protect the land from wind
	erosion in an arid area. The minimum wind velocity at the height of 15 m above the ground required
	to move the most erodible soil fraction is 9.6 ms ⁻¹ . If 5-year return period wind velocity at 15 m
	height is 16 ms ⁻¹ and the wind direction deviates 20° from the line perpendicular to the windbreak,
	the area protected by the windbreak in ha is[round off to 2 decimal places]
50)	(GATE EE 2025)
39)	Water is discharged from a tank through a rectangular orifice of width 1.5 m and height 1.2 m. The water level in the tank is 3.5 m above the top edge of the orifice. If the coefficient of discharge of
	this orifice is 0.62, the discharge through the orifice in m ³ s ⁻¹ is[round off to 2 decimal
	places] (Take acceleration due to gravity, $g = 9.81 \text{ ms}^{-2}$)
	praces] (Take acceleration due to gravity, $g = 9.81 \text{ m/s}$) (GATE EE 2025)
60)	,
00)	Two fully penetrating wells are dug 1.4 km apart in a homogenous confined aquifer. The difference in their piggemetric levels is 4.0 m. The groundwater flow is stoody and unidirectional. If the equifer
	in their piezometric levels is 4.0 m. The groundwater flow is steady and unidirectional. If the aquifer has a hydraulic conductivity of 3.5 mday ⁻¹ and effective porosity of 40%, the time taken for water
	to move from one well to the other in days is[in integer] (GATE EE 2025)
61)	
01)	Food cans are sterilized in a retort to inactivate <i>Clostridium botulinum</i> . Lethal rate (F0) of this food metarial is 150 s at a reference temperature of 121.1 °C. Temperatures at the slavyest heating
	food material is 150 s at a reference temperature of 121.1 °C. Temperatures at the slowest heating location inside the food can are measured as 71.1 °C, 98.9 °C and 110 °C after 20, 40 and 70 min,
	respectively. The actual process time in minutes that is required for equivalent sterilization at 121.1
	°C is[round off to 2 decimal places]
	(GATE EE 2025)
	(CIATIVIME 7017-11

	Molecular masses of water and air are 18.02 and 28.97 kg(kg mol) ⁻¹ , respectively. Air in a room is at 40 °C under a total pressure of 101.3 kPa absolute and contains water vapour at a partial pressure of 4.0 kPa. If saturated vapour pressure of water at 40 °C is 7.37 kPa, the relative humidity of this air in per cent is[round off to 2 decimal places]
	(GATE EE 2025)
,	A cylindrical storage bin with an internal diameter of 4 m and a height of 16 m is completely filled with paddy having bulk density of 640 kgm ⁻³ . The angle of internal friction between grain and bin wall is 30° and the ratio of horizontal to vertical pressure is 0.4. When the grain fills from 8 m in
	height to 16 m in height, the lateral pressure increases by a multiple of[round off to 2 decimal places]
	(GATE EE 2025)
64)	An air screen grain cleaner unit of capacity one tonh ⁻¹ with two screens was evaluated with a feed
	containing 8.5% impurities. During the operation, the clean grain at blower outlet, overflow of 1st
	screen and underflow of 2^{nd} screen were found to be 0.3%, 1.2% and 0.8%, respectively. If the clean
	grain contains 0.6% of impurities, the cleaning efficiency of the cleaner unit in per cent would be[round off to one decimal place]
	(GATE EE 2025)
65)	One side of a solid food block of 10 cm thickness is subjected to a heating medium having a film
	heat transfer coefficient of 70 W(m ² °C) ⁻¹ . The other side of the food block is being cooled by a medium having a film heat transfer coefficient of 100 W(m ² °C) ⁻¹ . The food block is having a thermal conductivity of 0.2 W(m°C) ⁻¹ and the contact area of the block available for heat transfer is 1 m ² .
	Heat transfer rate in the block at steady state is 100 Js ⁻¹ . The temperature difference between the
	two sides of the block in °C is[round off to 2 decimal places]
	(GATE EE 2025)