Crowd Counting: A view around state-of-the-art methods

Anh Nguyen Tuan, Hoang Ha Van

University of Information Technology - VNU-HCM

November 27, 2023

 troduction
 Methods
 Data
 Results
 Conclusion

 000000
 000
 000
 000

Table of Contents

Introduction

Methods

Multi-Column Convolutional Neural Network Generalized Loss Function Residual Network

Data

Results

 ntroduction
 Methods
 Data
 Results
 Conclusion

 1000000
 0000000
 000
 000
 000

Table of Contents

Introduction

Methods

Multi-Column Convolutional Neural Network Generalized Loss Function Residual Network

Data

Results

 troduction
 Methods
 Data
 Results
 Conclusion

 ●00000
 0000000
 000
 000
 000

Crowd Counting

► Estimating the number of people or objects in a given scene or image.

Crowd Counting

- ► Estimating the number of people or objects in a given scene or image.
 - ► Input: An image containing crowd.
 - Output: The estimated number of people in the image

 roduction
 Methods
 Data
 Results
 Conclusion

 00 0 0 0
 000 000
 000 000
 000 000

Crowd Counting

- ► Estimating the number of people or objects in a given scene or image.
 - Input: An image containing crowd.
 - Output: The estimated number of people in the image

Figure 1: Number of people estimated: 43

Crowd Counting

- Estimating the number of people or objects in a given scene or image.
 - Input: An image containing crowd.
 - Output: The estimated number of people in the image
- ▶ The problem encounters a common challenge in computer vision.

7 / 25

 roduction
 Methods
 Data
 Results
 Conclusion

 0000●0
 0000000
 000
 000
 000

Density map based counting

Figure 2: Density map

Density map based counting

A head at pixel $\mathbf{x}_i \mapsto \delta(\mathbf{x} - \mathbf{x}_i)$. Then an image with N heads labeled:

$$F(\mathbf{x}) = \sum_{i=1}^{N} \delta(\mathbf{x} - \mathbf{x}_i) . G_{\sigma_i}(\mathbf{x}), \quad \text{with } \sigma_i = \beta \overline{d^i}$$

Note: G is Gaussian kernel, $\overline{d^i}$ is average distances from \mathbf{x}_i to k nearest neighbors. We call F be ground truth density map.

Let $f(X_i; \Theta)$ is density map generated by model corresponding to image X_i , where Θ is a set of learnable parameters.

The loss function is defined as follows:

$$L(\Theta) = \frac{1}{2M} \sum_{i=1}^{M} ||f(X_i; \Theta) - F_i||_2^2$$

After that, train and train..

Table of Contents

Introduction

Methods

Multi-Column Convolutional Neural Network Generalized Loss Function Residual Network

Data

Results

Multi-Column Convolutional Neural Network (MCNN)

► Paper: Single-Image Crowd Counting via Multi-Column Convolutional Neural Network (CVPR 2016)

► Architecture:

Figure 3: MCNN's architecture

Generalized Loss Function

▶ Paper: A Generalized Loss Function for Crowd Counting and Localization (CVPR 2021)

Generalized Loss Function

Figure 4: Optimal Transport

 troduction
 Methods
 Data
 Results
 Conclusion

 000000
 000000
 000
 000
 000

Generalized Loss Function

Figure 5: Loss's style

Generalized Loss Function

Loss function is based on the entropic-regularized unbalanced optimal transport cost:

$$\mathcal{L}_{\mathbf{C}}^{\tau}(A,B) = \min_{\mathbf{P} \in \mathbb{R}_{+}^{n \times m}} \{ \langle \mathbf{C}, \mathbf{P} \rangle - \epsilon H(\mathbf{P}) + \tau D_{1}(\mathbf{P} \mathbf{1}_{m} | \mathbf{a}) + \tau D_{2}(\mathbf{P}^{\top} \mathbf{1}_{n} | \mathbf{b}) \}$$

With $\mathbf{C} \in \mathbb{R}_+^{n \times m}$ is the transport cost matrix, \mathbf{P} is the transport matrix, $H(\mathbf{P}) = \sum_{ij} P_{ij} \log(P_{ij})$ is the entropic regularization term, $D_1(\mathbf{P}1_m|\mathbf{a})$ is the pixel-wise loss, $D_2(\mathbf{P}^{\top}1_n|\mathbf{b})$ is the point-wise loss.

Residual Network (ResNet-50)

- ▶ Paper: Rethinking Spatial Invariance of Convolutional Networks for Object Counting (CVPR 2022)
- Architecture:

Figure 6: Low-rank Gaussian convolutional layer

Table of Contents

Introduction

Methods

Multi-Column Convolutional Neural Network Generalized Loss Function Residual Network

Data

Results

Shanghai Tech comprises 1198 annotated images, with a total of 330,165 people with annotated head centers:

- ▶ Part A: 482 randomly crawled images from the Internet.
- Part B: 716 images captured from busy metropolitan streets in Shanghai

	Part A	Part B
Train		400
Test	182	316

Table 1: Train and test sets of Shanghai Tech dataset

Shanghai Tech comprises 1198 annotated images, with a total of 330,165 people with annotated head centers:

- ▶ Part A: 482 randomly crawled images from the Internet.
- ▶ Part B: 716 images captured from busy metropolitan streets in Shanghai

	Part A	Part B
Train		400
Test	182	316

Table 1: Train and test sets of ShanghaiTech dataset.

Shanghai Tech comprises 1198 annotated images, with a total of 330,165 people with annotated head centers:

- ▶ Part A: 482 randomly crawled images from the Internet.
- ▶ Part B: 716 images captured from busy metropolitan streets in Shanghai.

	Part A	Part B
Train		400
Test	182	316

Table 1: Train and test sets of Shanghai Tech dataset

Shanghai Tech comprises 1198 annotated images, with a total of 330,165 people with annotated head centers:

- ▶ Part A: 482 randomly crawled images from the Internet.
- ▶ Part B: 716 images captured from busy metropolitan streets in Shanghai.

[Part A	Part B
Train		400
Test	182	316

Table 1: Train and test sets of Shanghai Tech dataset

Shanghai Tech comprises 1198 annotated images, with a total of 330,165 people with annotated head centers:

- ▶ Part A: 482 randomly crawled images from the Internet.
- ▶ Part B: 716 images captured from busy metropolitan streets in Shanghai.

Part A		Part B
Train	300	400
Test	182	316

Table 1: Train and test sets of ShanghaiTech dataset.

	Resolution	Num	Max	Min	Total
Part A	different	482	3139	33	241,677
Part B	768 × 1024	316	578	9	88,488

Table 2: The statistics of ShanghaiTech dataset.

Table of Contents

Introduction

Methods

Multi-Column Convolutional Neural Network Generalized Loss Function Residual Network

Data

Results

roduction Methods Data **Results** Conclusion

000000 000000 000 000 000

Results

	Part A		Part B		
	MAE	MSE	MAE	MSE	
MCNN	114.96	172.66	33.00	48.08	
VGG-19 (L2)	70.81	114.77	9.83	14.41	
VGG-19 (GLoss)	64.79	108.49	8.32	14.18	
ResNet-50	107.72	188.39	7.90	12.51	

Table 3: Results on ShanghaiTech dataset.

Demo

Figure 7: Crowd Counting web app demo

Table of Contents

Introduction

Methods

Multi-Column Convolutional Neural Network Generalized Loss Function Residual Network

Data

Results

troduction Methods Data Results **Conclusio**000000 0000000 000 000 0**⊙**

- ► GLoss significantly improves the estimation performance.
- Resnet-50 model trained on part A had results that seem to be not good.

troduction Methods Data Results **Conclusio** 000000 0000000 000 000 0**⊙**

- ► GLoss significantly improves the estimation performance.
- ► Resnet-50 model trained on part A had results that seem to be not good.

Thank you!

November 27, 2023