Strong Topological Rigidity of Non-Compact Orientable Surfaces

Sumanta

Prospectos en Topología (CCM UNAM)

11th Sep 2023

Outline of the talk

- (1) Topological rigidity.
- (2) Non-homeomorphic homotopy equivalent n-manifolds.
- (3) Pseudo proper homotopy equivalence.
- (4) Strong topological rigidity of non-compact orientable surfaces.
- (5) Some consequences and applications of (4).
- (6) Sketch of proof of (4).

N.B. All manifolds with or without boundary will be assumed to be orientable. A surface is a connected, two-dimensional manifold with an empty boundary.

Sumanta Das. Strong Topological Rigidity of Non-Compact Orientable Surfaces. Algebr. Geom. Topol. (to appear), 2023. Available at arXiv:2111.11194v3.

Motivation

- Are two *n*-dimensional homotopy equivalent manifolds homeomorphic? More generally,
- Is every homotopy equivalence between two *n*-dimensional homotopy equivalent manifolds homotopic to a homeomorphism?

Topological Rigidity

Def. We call a closed manifold M topologically rigid if any homotopy equivalence $N \to M$ with a closed manifold N as the source is homotopic to a homeomorphism.

Borel Conj.^a Every closed aspherical manifold is topologically rigid.

Rem. Mostow Rigidity Thm. \equiv Borel Conj. \Longrightarrow Generalized Top. Poincaré Conj.

^aAndrew Ranicki. "The birth of the Borel conjecture". Available at https://www.maths.ed.ac.uk/~v1ranick/surgery/borel.pdf.

Topological rigidity in dimension two

Dehn-Nielsen-Baer-Epstein Thm.^a A homotopy equivalence between any two closed surfaces is homotopic to a homeomorphism.

^aMax Dehn. Papers on group theory and topology. Translated from the German and with introductions and an appendix by John Stillwell, With an appendix by Otto Schreier. Springer-Verlag, New York, 1987. ISBN: 0-387-96416-9.

Topological rigidity in dimension three

ullet A homotopy equivalence between two closed prime Haken 3-manifolds is homotopic to a homeomorphism. a

• A homotopy equivalence from a closed irreducible 3-manifold to a closed hyperbolic 3-manifold is homotopic to a homeomorphism. ^b

^aFriedhelm Waldhausen. "On irreducible 3-manifolds which are sufficiently large". In: Ann. of Math. (2) 87 (1968), pp. 56–88. ISSN: 0003-486X.

^bDavid Gabai, G. Robert Meyerhoff, and Nathaniel Thurston. "Homotopy hyperbolic 3-manifolds are hyperbolic". In: Ann. of Math. (2) 157.2 (2003), pp. 335–431. ISSN: 0003-486X.

Topological rigidity in high dimensions

If M is a closed connected Riemannian manifold with non-positive sectional curvatures and N is a closed aspherical topological manifold such that $\dim M = \dim N \geq 5$. Then, any isomorphism $\pi_1(N) \to \pi_1(M)$ is induced by a homeomorphism from $N \to M$.

^aF. T. Farrell and L. E. Jones. "Topological rigidity for compact non-positively curved manifolds". In: Differential geometry: Riemannian geometry (Los Angeles, CA, 1990). Vol. 54. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1993, pp. 229–274.

Non-homeomorphic homotopy equivalent 4-manifolds

Two simply connected, closed topological 4-manifolds are

```
homotopy equivalent \iff a same intersection form; homeomorphic \iff b same intersection form and same Kirby-Siebenmann invariant.
```

Any unimodular symmetric \mathbb{Z} -bilinear form q gives, up to homeomorphism, at most two simply connected, closed topological 4-manifolds:

```
q is even \longrightarrow unique; q is odd \longrightarrow precisely two (same I.F. but different ks).
```

^aJohn Milnor. "On simply connected 4-manifolds". In: Symposium internacional de topologia algebraica. Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 122–128.

^bMichael Hartley Freedman. "The topology of four-dimensional manifolds". In: J. Differential Geometry 17.3 (1982), pp. 357–453. ISSN: 0022-040X.

Non-homeomorphic homotopy equivalent 3-manifolds

ullet Lens spaces can be classified up to homotopy and homeomorphism types; for example, L(7,1) and L(7,2) are homotopy equivalent but not homeomorphic.

• Generalizing a construction given by J. H. C. Whitehead, uncountably many contractible open subsets of \mathbb{R}^3 can be constructed such that any two of them are not homeomorphic. c

^aPaul Olum. "Mappings of manifolds and the notion of degree". In: Ann. of Math. (2) 58 (1953), pp. 458–480. ISSN: 0003-486X.

 $^{^{}b}$ E. J. Brody. "The topological classification of the lens spaces". In: Ann. of Math. (2) 71 (1960), pp. 163–184. ISSN: 0003-486X.

^cD. R. McMillan Jr. "Some contractible open 3-manifolds". In: Trans. Amer. Math. Soc. 102 (1962), pp. 373–382. ISSN: 0002-9947.

Non-homeomorphic homotopy equivalent surfaces

Any non-compact surface Σ is homotopy equivalent to $\bigvee_{\mathscr{A}} \mathbb{S}^1$ for an at most countable set \mathscr{A} . More explicitly, $|\mathscr{A}| = 2g + p - 1$ if $\Sigma = S_{q,0,p}$ and $|\mathscr{A}| = \aleph_0$ if Σ is of infinite-type.

- $S_{g,0,p}$ and $S_{g',0,p'}$ are homotopy equivalent if 2g+p=2g'+p', and homeomorphic if (g,p)=(g',p').
- Up to homotopy equivalence, there is exactly one infinite-type surface, but up to homeomorphism, there are 2^{\aleph_0} many infinite-type surfaces. a

^aSumanta Das. Strong Topological Rigidity of Non-Compact Orientable Surfaces. Algebr. Geom. Topol. (to appear), 2023. Available at arXiv:2111.11194v3.

The surface with two planar ends and two non-planar ends:

The surface obtained from removing Cantor set from the sphere:

Are non-compact surfaces topologically rigid in the proper category?

The proper category: spaces with proper maps

Def. A proper map $f: X \to Y$ is said to be *proper homotopy equivalence* (in short, PHE) if there exists a proper map $g: Y \to X$ such that fg is properly homotopic to Id_Y and gf is properly homotopic to Id_X .

Def. A homotopy equivalence is said to be *pseudo proper homotopy equivalence* (in short, PPHE) if it is a proper map.

PPHE is a weaker notion than PHE

- Consider $\varphi \colon \mathbb{C} \ni z \longmapsto z^2 \in \mathbb{C}$ and $\psi \colon \mathbb{S}^1 \times \mathbb{R} \ni (z,x) \longmapsto (z,|x|) \in \mathbb{S}^1 \times \mathbb{R}$; each of these is a PPHE, but none of them is a PHE as the degree of a PHE is ± 1 , though $\deg(\varphi) = \pm 2$ and $\deg(\psi) = 0$.
- The binary symmetry of the cantor tree gives a two-fold branched covering, which is a PPHE but not PHE since *the induced map of a PHE between the spaces of ends is bijective*.
- ullet If M is a non-compact, connected, contractible, boundaryless oriented manifold, then composing a proper map $M \to [0,\infty)$ with a non-surjective proper map $[0,\infty) \to M$ gives a PPHE which is not PHE since a PHE is a surjective map.

PPHE + ?? = PHE

- A PPHE between two connected, finite-dimensional, locally finite simplicial complexes is a PHE if and only if it induces a homeomorphism on the spaces of ends and isomorphisms on all proper homotopy groups. ^a
- ullet If $f\colon M \to N$ is a PPHE between two simply-connected, non-compact, boundaryless n-dimensional smooth manifolds, where both M and N both are simply-connected at infinity, then f is a PHE if and only if $\deg(f)=\pm 1$.

^aEdward M. Brown. "Proper homotopy theory in simplicial complexes". In: Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973). Lecture Notes in Math., Vol. 375. Springer, Berlin, 1974, pp. 41–46.

^bF. T. Farrell, L. R. Taylor, and J. B. Wagoner. "The Whitehead theorem in the proper category". In: Compositio Math. 27 (1973), pp. 1−23. ISSN: 0010-437X.

Strong topological rigidity of non-compact surfaces

Thm. Let $f: \Sigma' \to \Sigma$ be a PPHE between two non-compact surfaces. Then Σ' is homeomorphic to Σ . If we further assume that Σ is homeomorphic to neither the plane nor the punctured plane, then f is a PHE, and there exists a homeomorphism $g_{\text{homeo}} \colon \Sigma \to \Sigma'$ as a proper homotopy inverse of f. a

^aSumanta Das. Strong Topological Rigidity of Non-Compact Orientable Surfaces. Algebr. Geom. Topol. (to appear), 2023. Available at arXiv:2111.11194v3.

Some consequences and applications of the strong topological rigidity

Proper rigidity

Def. A non-compact topological manifold M without boundary is said to be *properly rigid* if, whenever N is another boundaryless topological manifold of the same dimension and $h \colon N \to M$ is a PHE, then h is properly homotopic to a homeomorphism. a

Thm. Let $n \geq 3$, and let $f: N \to \mathbb{R}^n$ be a PHE, where N is a boundaryless topological n-manifold. Then N is homeomorphic to \mathbb{R}^n . $b \in d$ Hence, f is properly homotopic to a homeomorphism. e

^aStanley Chang and Shmuel Weinberger. A Course on Surgery Theory. Vol. 211. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2021, pp. xii+430. ISBN: 9780691200354.

^bC. H. Edwards Jr. "Open 3-manifolds which are simply connected at infinity". In: Proc. Amer. Math. Soc. 14 (1963), pp. 391−395. ISSN: 0002-9939.

^cMichael Hartley Freedman. "The topology of four-dimensional manifolds". In: J. Differential Geometry 17.3 (1982), pp. 357–453. ISSN: 0022-040X.

^dL. C. Siebenmann. "On detecting Euclidean space homotopically among topological manifolds". In: Invent. Math. 6 (1968), pp. 245–261. ISSN: 0020-9910.

^eD. B. A. Epstein. "The degree of a map". In: Proc. London Math. Soc. (3) 16 (1966), pp. 369–383. ISSN: 0024-6115.

Folklore Thm. Any finite-type non-compact surface is properly rigid.

Thm. Let Σ' and Σ be non-compact surfaces. Then Σ' is homeomorphic to Σ iff $g(\Sigma') = g(\Sigma)$ and there exists a ring isomorphism $\theta \colon H_e^0(\Sigma; \mathbb{Z}_2) \to H_e^0(\Sigma'; \mathbb{Z}_2)$ with $\theta(I_3(\Sigma)) = I_3(\Sigma')$, where w.r.t. \mathbb{Z}_2 -coefficients,

$$\begin{array}{lcl} {\rm I}_1 & \coloneqq & \left\{ x \in {\rm H}_{\rm c}^1 : x \smile {\rm H}_{\rm c}^1 = 0 \right\}, \\ {\rm I}_2 & \coloneqq & \left\{ y \in {\rm H}^1 : y \smile {\rm I}_1 = 0 \right\}, \\ {\rm I}_3 & \coloneqq & \left\{ z \in {\rm H}_{\rm e}^0 : z \smile {\rm I}_2 = 0 \right\}, \\ {\rm g} & \coloneqq & {\rm rank} \ {\rm H}_{\rm c}^1/{\rm I}_1. \end{array}$$

Therefore, if there is a PHE from Σ' to Σ , then Σ' is homeomorphic to Σ . ^a

Thm. Any non-compact surface, possibly of infinite-type, is properly rigid. ^b

^aMartin Edward Goldman. Open surfaces and an algebraic study of ends. Thesis (Ph.D.)—Yale University. ProQuest LLC, Ann Arbor, MI, 1967, p. 88.

^bSumanta Das. Strong Topological Rigidity of Non-Compact Orientable Surfaces. Algebr. Geom. Topol. (to appear), 2023. Available at arXiv:2111.11194v3.

Classification of π_1 -injective proper maps

Nielsen's Thm. Any π_1 -injective map between two closed surfaces is homotopic to a covering map. a

Thm. Let $f: \Sigma' \to \Sigma$ be a π_1 -injective proper map between two non-compact surfaces. If Σ is homeomorphic to neither the plane nor the punctured plane, then f is properly homotopic to a finite sheeted covering map. b

^a Allan L. Edmonds. "Deformation of maps to branched coverings in dimension two". In: Ann. of Math. (2) 110.1 (1979), pp. 113–125. ISSN: 0003-486X.

^bI will write its proof somewhere, maybe in my thesis.

Characterizing the image of the Dehn-Nielsen-Baer-Epstein map

Let **S** be an aspherical surface. The natural map $\sigma \colon MCG^{\pm}(\mathbf{S}) \to Out(\pi_1(\mathbf{S}))$ is an injective group homomorphism. Each element of $image(\sigma)$ is induced by a homotopy equivalence $\mathbf{S} \to \mathbf{S}$ homotopic to homeomorphism.

- If **S** is closed, σ is surjective.
- If $\mathbf{S} = S_{g,0,p}$ with 2-2g-p < 0, then $\mathrm{image}(\sigma)$ is the subgroup of $\mathrm{Out}\big(\pi_1(\mathbf{S})\big)$ consisting of elements that preserve the set of conjugacy classes of *simple closed curves* surrounding individual punctures. a

Thm. If **S** is a non-compact other than the plane and the punctured plane, then each element of $image(\sigma)$ is induced by a homotopy equivalence that preserves the geometric intersection number of the free homotopy classes of any two *closed curves*. b

^aBenson Farb and Dan Margalit. A primer on mapping class groups. Vol. 49. Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012, pp. xiv+472. ISBN: 978-0-691-14794-9.

^bSumanta Das, Siddhartha Gadgil, and Ajay Kumar Nair. "The Goldman bracket characterizes homeomorphisms between non-compact surfaces". In: arXiv preprint (2023). Available at arXiv:2307.02769v1.

Sketch of proof of strong topological rigidity Infinite-type surfaces only!

Idea obtained from (compact) Haken 3-manifold theory

- Hierarchy: Cut the codomain along a suitable pairwise disjoint collection \mathscr{C} of π_1 -injective submanifolds of codim one to get a collection \mathscr{S} smaller pieces of codim zero.
- Surgery on f along \mathscr{C} : Homotope f so that $\mathscr{C}' := f^{-1}(\mathscr{C})$ becomes a pairwise disjoint collection of π_1 -injective submanifolds of codim one and $f|\mathscr{C}' \to \mathscr{C}$ becomes a homeomorphism.
- Rigidity on parts of split f: Cut the domain along \mathscr{C}' to get a collection \mathscr{S}' of codim zero submanifolds. Apply boundary relative rigidity on each of these smaller pieces of \mathscr{S}' and \mathscr{S} to get a collection of homeomorphisms.
- Required Homeomorphism: Paste all those homeomorphisms to get the final homeomorphism.

Friedhelm Waldhausen. "On irreducible 3-manifolds which are sufficiently large". In: Ann. of Math. (2) 87 (1968), pp. 56–88. ISSN: 0003-486X.

John Hempel. 3-manifolds. Reprint of the 1976 original. AMS Chelsea Publishing, Providence, RI, 2004, pp. xii+195. ISBN: 0-8218-3695-1.

Benson Farb and Dan Margalit. A primer on mapping class groups. Vol. 49. Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012, pp. xiv+472. ISBN: 978-0-691-14794-9.

Obstructions in modifying the aforesaid idea for infinite-type surfaces

Target: Properly homotope a PPHE $f \colon \Sigma' \to \Sigma$ between infinite-type surfaces to a homeomorphism.

- 0. Induction on the genus can't be considered here, unlike the closed surface theory.
- 1. To decompose Σ into finite-type bordered surfaces, we need a pairwise disjoint *infinite collection* $\mathscr C$ of essential circles.
- 2. A *proper homotopy* of f is needed so that $\mathscr{C}' \coloneqq f^{-1}(\mathscr{C})$ becomes a pairwise disjoint collection of circles on Σ' .
- 3. How to remove all inessential components from \mathscr{C}' . Unlike the compact surface theory, the number of inessential components of \mathscr{C}' can be *infinite*.
- 4. Further, how to remove remaining (*infinitely many*) unnecessary components from \mathscr{C}' so that $f|\mathscr{C}' \to \mathscr{C}$ becomes a homeomorphism.
- 5. What's the guarantee that $f^{-1}(\mathscr{C})$ remains *non-empty* even after a proper homotopy?

1. Decomposition into pair of pants and punctured disks

Since Σ is of infinite-type, there is a collection $\mathscr C$ of smoothly embedded circles on Σ such that

- \bullet \mathscr{C} is countably infinite but locally finite and
- ullet decomposes Σ into bordered sub-surfaces such that a complementary component of this decomposition is homeomorphic to either the pair of pants or the punctured disk.

A decomposition of (punctured) Loch Ness Monster surface:

2. Whitney approximation and transversality in proper category

Properly homotope the PPHE $f \colon \Sigma' \to \Sigma$ to make it smooth as well as transverse to \mathscr{C} . Thus, after this proper homotopy,

- $f^{-1}(\mathscr{C})$ is either empty or an at most countable, locally-finite, pairwise disjoint collection of smoothly embedded circles on Σ' such that
- $f^{-1}(\mathcal{C})$ is either empty or has finitely many components for each component \mathcal{C} of \mathscr{C} .

3. Arbitrarily large disk bounded by a component of $f^{-1}(\mathscr{C})$ doesn't exist

Since Σ' is not homeomorphic to \mathbb{R}^2 and $f^{-1}(\mathscr{C})$ is a locally finite, pairwise disjoint collection, there do not exist infinitely many components $\mathcal{C}'_1, \mathcal{C}'_2, \ldots$ of $f^{-1}(\mathscr{C})$ bounding the disks $\mathcal{D}'_1, \mathcal{D}'_2, \ldots$ in Σ' , respectively such that $\mathcal{C}'_n \subseteq \operatorname{int}(\mathcal{D}'_{n+1})$ for each n.

4. Removing all outermost disks simultaneously

A disk $\mathcal{D}' \subset \Sigma'$ bounded by a component of $f^{-1}(\mathscr{C})$ is called an *outermost disk*, if given another disk $\mathcal{D}'' \subset \Sigma$ bounded by a component of $f^{-1}(\mathscr{C})$, then either $\mathcal{D}'' \subseteq \mathcal{D}'$ or $\mathcal{D}' \cap \mathcal{D}'' = \varnothing$.

Thus, considering all these outermost disks simultaneously, a proper homotopy of f exists to remove all trivial components from $f^{-1}(\mathscr{C})$ such that each non-trivial component of $f^{-1}(\mathscr{C})$ has an open neighborhood on which this proper homotopy is stationary.

5. Mapping each component of $f^{-1}(\mathscr{C})$ onto a component of \mathscr{C} homeomorphically

Being an isomorphism, $\pi_1(f)$ preserves primitiveness. Therefore, f can be properly homotoped to send each component \mathcal{C}' of $f^{-1}(\mathscr{C})$ homeomorphically onto a component \mathcal{C} of \mathscr{C} so that the restriction of f to a small one-sided tubular neighborhood $\mathcal{C}' \times [1,2]$ of \mathcal{C}' (on either side of \mathcal{C}') can be described by the following homeomorphism:

$$\mathcal{C}' \times [1,2] \ni (z,t) \longmapsto (f(z),t) \in \mathcal{C} \times [1,2].$$

6. Compressing all outermost annuli simultaneously

Since f has (ordinary) homotopy left-inverse, for any component $\mathcal C$ of $\mathscr C$, any two components of $f^{-1}(\mathcal C)$ co-bound an annulus in Σ' . The outermost annulus for each component $\mathcal C$ of $\mathscr C$ is the biggest annulus $\mathcal A'$ in Σ' co-bounded by two components of $f^{-1}(\mathcal C)$.

Therefore, f can be properly homotoped so that

- the homotopy is relative to the boundary of each outermost annulus and
- after the homotopy, f sends each outermost annulus to a component of \mathscr{C} .

Compressing two outermost annuli:

7. Removing all outermost annuli simultaneously

Now, properly homotope f to push each outermost annulus \mathcal{A}' to an one-sided small tubular neighborhood \mathcal{M}'_{α} of a component \mathcal{C}'_{α} of $\partial \mathcal{A}'$ such that for each component \mathcal{C} of \mathscr{C} , either $f^{-1}(\mathcal{C})$ is empty or $f|f^{-1}(\mathcal{C}) \to \mathcal{C}$ is a homeomorphism.

Removing an outermost annulus:

8. Essentail pair of pants in the codomain

If **P** is a pair of pants in Σ such that $\Sigma \setminus \mathbf{P}$ has at least two components and every component of $\Sigma \setminus \mathbf{P}$ has a non-abelian fundamental group; then

$$g^{-1}(\operatorname{int} \mathbf{P}) \neq \varnothing \neq g^{-1}(\mathbf{C}),$$

where **C** is any component of ∂ **P** and g is properly homotopic to f.

Essential pair of pants in a planar surface with infinitely many isolated ends:

9. Showing deg $(f) = \pm 1$ using bijectivity of $\pi_1(f)$

After a proper homotopy, we can assume that $f|f^{-1}(\partial \mathbf{P}) \to \partial \mathbf{P}$ is a homeomorphism.

Now, the topological rigidity of compact bordered surfaces applied on the π_1 -bijective map $f|f^{-1}(\mathbf{P}) \to \mathbf{P}$ says that $f \colon \Sigma' \to \Sigma$ can be properly homotoped relative to $\Sigma' \setminus \text{int } f^{-1}(\mathbf{P})$ to map $f^{-1}(\mathbf{P})$ homeomorphically onto \mathbf{P} . Therefore, $\deg(f) = \pm 1$.

10. Finishing the proof of strong topological rigidity

Since a map of non-zero degree is surjective, after a proper homotopy, we may assume that $f|f^{-1}(\mathcal{C}) \to \mathcal{C}$ is a homeomorphism for every component \mathcal{C} of \mathscr{C} .

For a bordered sub-surface S of Σ obtained as a complementary component of the decomposition of Σ by \mathscr{C} , use the topological rigidity of compact bordered surfaces and the Alexander trick to properly homotope $f|f^{-1}(S) \to S$ relative to $\partial f^{-1}(S)$ to a homeomorphism $h_S: f^{-1}(S) \to S$.

Paste all h_{S} to get a homeomorphism properly homotopic to f.

References

[D1000]	E. S. Brody. The topological elassification of the lens spaces. In This of Math. (2)					
	71 (1960), pp. 163-184. ISSN: 0003-486X. DOI: 10.2307/1969884. URL: https:					
	//doi.org/10.2307/1969884.					
[Bro74]	Edward M. Brown. "Proper homotopy theory in simplicial complexes". In: <i>Topology</i>					

E. J. Brody "The topological classification of the lens spaces". In: Ann. of Math. (2)

Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973). Lecture

[Bro60]

Notes in Math., Vol. 375. Springer, Berlin, 1974, pp. 41–46.

[CW21] Stanley Chang and Shmuel Weinberger. *A Course on Surgery Theory*. Vol. 211. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2021, pp. xii+430. ISBN: 9780691200354. URL: https://doi.org/10.1515/9780691200354.

	Max Dehn. <i>Papers on group theory and topology</i> . Translated from the German and with				
[Deh87]					
	introductions and an appendix by John Stillwell, With an appendix by Otto Schreier.				

Available at arXiv:2307.02769v1.

[Das23]

Springer-Verlag, New York, 1987, pp. viii+396. ISBN: 0-387-96416-9. DOI: 10.1007/978-1-4612-4668-8. URL: https://doi.org/10.1007/978-1-4612-4668-8.

[DGN23] Sumanta Das, Siddhartha Gadgil, and Ajay Kumar Nair. "The Goldman bracket characterizes homeomorphisms between non-compact surfaces". In: arXiv preprint (2023).

Sumanta Das. "Strong Topological Rigidity of Non-Compact Orientable Surfaces". In:

	In: Ann. of Math. (2) 110.1 (1979), pp. 113-125. ISSN: 0003-486X. DOI: 10.2307/1971246. URL: https://doi.org/10.2307/1971246.				
[Edw63]	C. H. Edwards Jr. "Open 3-manifolds which are simply connected at infinity". In: <i>Proc.</i>				

[Edm79]

Allan L. Edmonds. "Deformation of maps to branched coverings in dimension two".

pp. 83-107. ISSN: 0001-5962. DOI: 10.1007/BF02392203. URL: https://doi.

Amer. Math. Soc. 14 (1963), pp. 391–395. ISSN: 0002-9939. DOI: 10.2307/2033807. URL: https://doi.org/10.2307/2033807.

[Eps66a] D. B. A. Epstein. "Curves on 2-manifolds and isotopies". In: Acta Math. 115 (1966),

org/10.1007/BF02392203.

	//doi.org/10.1112/plms/s3-16.1.369.				
[FJ88]	F. T. Farrell and L. E. Jones. "Topological rigidity for hyperbolic manifolds". In: Bull.				
	Amer. Math. Soc. (N.S.) 19.1 (1988), pp. 277–282. ISSN: 0273-0979. DOI: 10.1090/				
	S0273-0979-1988-15640-6. URL: https://doi.org/10.1090/S0273-0979-				

[Eps66b]

[FJ93]

1988-15640-6.

D. B. A. Epstein. "The degree of a map". In: Proc. London Math. Soc. (3) 16 (1966),

np 369-383 ISSN: 0024-6115 DOI: 10.1112/plms/s3-16.1.369 URL: https:

F. T. Farrell and L. E. Jones. "Topological rigidity for compact non-positively curved

manifolds". In: Differential geometry: Riemannian geometry (Los Angeles, CA, 1990).

Vol. 54. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1993, pp. 229– 274. Benson Farb and Dan Margalit. A primer on mapping class groups. Vol. 49. Prince-

ton Mathematical Series. Princeton University Press, Princeton, NJ, 2012, pp. xiv+472. ISBN: 978-0-691-14794-9. [Fre82] Michael Hartley Freedman. "The topology of four-dimensional manifolds". In: J. Dif-

projecteuclid.org/euclid.jdg/1214437136.

[FM12]

ferential Geometry 17.3 (1982), pp. 357-453. ISSN: 0022-040X. URL: http://

	category". In: <i>Compositio Math.</i> 27 (1973), pp. 1–23. ISSN: 0010-437X.	
[GMT03]	David Gabai, G. Robert Meyerhoff, and Nathaniel Thurston. "Homotopy	hyperbolic
	2 manifolds are hymerbolic." In: Ann. of Math. (2) 157.2 (2002), pp. 225	121 ICCNI.

F. T. Farrell, L. R. Taylor, and J. B. Wagoner, "The Whitehead theorem in the proper

3-manifolds are hyperbolic". In: Ann. of Math. (2) 15/.2 (2003), pp. 335–431. ISSN: 0003-486X. DOI: 10.4007/annals.2003.157.335. URL: https://doi.org/10.

4007/annals.2003.157.335.

[Gol67] Martin Edward Goldman. Open surfaces and an algebraic study of ends. Thesis

(Ph.D.)—Yale University. ProQuest LLC, Ann Arbor, MI, 1967, p. 88.

	1995610. URL: https://doi.org/10.2307/1995610.
[Hat02]	Allen Hatcher. Algebraic topology. Available at https://pi.math.cornell.edu/~hatcher/AT.pdf. Cambridge University Press, Cambridge, 2002, pp. xii+544. ISBN: 978-0521795401.

https://doi.org/10.1090/chel/349.

Martin E. Goldman. "An algebraic classification of noncompact 2-manifolds". In: Trans. Amer. Math. Soc. 156 (1971), pp. 241–258. ISSN: 0002-9947. DOI: 10. 2307/

John Hempel. 3-manifolds. Reprint of the 1976 original. AMS Chelsea Publishing, Prov-

idence, RI, 2004, pp. xii+195. ISBN: 0-8218-3695-1. DOI: 10.1090/che1/349. URL:

[Gol71]

[Hem04]

	Mathematics. Springer, New York, 2013, pp. xvi+708. ISBN: 978-1-4419-9981-8.
[McM62]	D. R. McMillan Jr. "Some contractible open 3-manifolds". In: Trans. Amer. Math. Soc.
	102 (1962), pp. 373–382. ISSN: 0002-9947. DOI: 10.2307/1993684. URL: https:

John M. Lee. Introduction to smooth manifolds. Second. Vol. 218. Graduate Texts in

[Lee13]

//doi.org/10.2307/1993684.

[Mil58] John Milnor. "On simply connected 4-manifolds". In: Symposium internacional de topologia algebraica International symposium on algebraic topology. Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 122–128.

	//doi.org/10.2307/1969748.
[Ran]	Andrew Ranicki. The birth of the Borel conjecture . URL: https://www.maths.ed.ac.uk/~v1ranick/surgery/borel.pdf.
[Rei62]	M. Reichbach. "The power of topological types of some classes of 0-dimensional sets".

2033764. URL: https://doi.org/10.2307/2033764.

Paul Olum. "Mappings of manifolds and the notion of degree". In: *Ann. of Math.* (2) 58 (1953), pp. 458–480, ISSN: 0003-486X, DOI: 10, 2307/1969748, LIPL: https://doi.org/10.1003/1969748

In: Proc. Amer. Math. Soc. 13 (1962), pp. 17–23. ISSN: 0002-9939. DOI: 10.2307/

[Olu53]

[racos]	Soc. 106 (1963), pp. 259–269. ISSN: 0002-9947. DOI: 10.2307/1993768. URL: https://doi.org/10.2307/1993768.
[Sco17]	Peter Scott. An Introduction to 3-manifolds (Course notes). Reference # OMN:201703.110690. Available at https://www.ams.org/open-math-notes/omn-view-listing?listingId=110690. AMS Open Math Notes, Mar. 2017, p. 350.
[Sie68]	L. C. Siebenmann. "On detecting Euclidean space homotopically among topological manifolds". In: <i>Invent. Math.</i> 6 (1968), pp. 245–261. ISSN: 0020-9910. DOI: 10.1007/BF01404826. URL: https://doi.org/10.1007/BF01404826.

URL: https://doi.org/10.2307/1970594.

[Ric63]

[Wal68]

Ian Richards "On the classification of noncompact surfaces" In: Trans. Amer. Math.

Friedhelm Waldhausen. "On irreducible 3-manifolds which are sufficiently large". In: *Ann. of Math.* (2) 87 (1968), pp. 56–88. ISSN: 0003-486X. DOI: 10.2307/1970594.

© Thank You ©