度弱于定义:

定义4 设G和H是两个n阶图,称G度弱于H,如果存在双射 μ : V(G) →V(H),使得:

 $\forall v \in V(G), \hat{\eta}: d_G(v) \leq d_H(\mu(v))$

注意: 若G度弱于H, 一定有: $m(G) \le m(H)$

§ 8.3 Turan 定理

但逆不成立! 例如: (1,1,4,2)与(3,3,3,3)没有度弱关系

*本节我们证明 Turan (1941)提出的一个著名的定理。它确定了有v个顶点而不包含大小为 m+1 的团的简单图所能具有的最大边数。Turan定理成为极图理论的基础。

定理 8.8: 若简单图 G 不包含 K_{m+1} ,则 G 度弱于某个完全 m 部图 H。 并且,若 G 具有与 H 相同的度序列,则 $G \cong H$ 。

*解释: G度弱于 H,和完全 m 部图。

证:对 m 用归纳法。当 m=1 时,定理当然成立。假定定理对所有m < n 成立,并且设 G 是不包含 K_{n+1} 的简单图。选择 G 中度为 Δ 的一个顶点 u,并且置 $G_1=G[N(u)]$ 。由于 G 不包含 K_{n+1} ,所以 G_1 不包含 K_n ,因而由归纳假设, G_1 度弱于某个完全(n-1)部图 H_1 。

其次,置 $V_1 = N(u)$ 以及 $V_2 = V \setminus V_1$,并且用 G_2 表示其顶点集是 V_2 而边集是空集的图。考察 G_1 和 G_2 的联图 $G_1 \vee G_2$ (*解释联图)。由于

 $N_G(v) \subseteq N_{G_1 \vee G_2}(v)$, 对于 $v \in V_1$ 成立 (8.15) 而且 V_2 的每个顶点在 $G_1 \vee G_2$ 中有度 Δ ,所以 G 度弱于 $G_1 \vee G_2$ 。因而 G 也就度弱于完全 n 部图 $H = H_1 \vee G_2$ (见图 8.3 的直观表示)。

现在假设 G 和 H 有相同的度序列,则 G 与 G_1 V G_2 有相同的度序列,同时在(8.15)式中等式必然成立。于是在 G 中, V_1 的每个顶点必然和 V_2 的每个顶点相连。由此推知 $G = G_1$ V G_2 。由于 $G = G_1$ V G_2 和 $H = H_1$ V G_2 有相同的度序列,因而图 G_1 和 H_1 必然有相同的度序列,于是由归纳法假设,它们是同构的。我们得到 $G \cong H$ 。

设 $T_{m,n}$ 表示有n个顶点的完全m部图,它的各个部分在大小上尽可能地相等。图8.3中的图是 $T_{3.8}$ 。

定理 8.9: 若 G 是简单图, 并且不包含 K_{m+1} , 则 $\epsilon(G) \leq \epsilon(T_{m,\nu})$ 。此外, 仅当 $G \cong T_{m,\nu}$ 时,有 $\epsilon(G) = \epsilon(T_{m,\nu})$ 。

证明:设 G 是不包含 K_{m+1} 的简单图。由定理 8.8,G 度弱于某个完全 m 部图 H。由定理 1.1 即得

$$\varepsilon(G) \le \varepsilon(H)$$
 (8.16)

但是(由作业)
$$ε(H) ≤ ε(T_{m,v})$$
 (8.17)

因而从(8.16)式和(8.17)式即得

$$\varepsilon(G) \le \varepsilon(T_{m,\nu}) \tag{8.18}$$

这就证明了定理的第一个结论。

现在假设(8.18)式中等式成立。则在(8.16)式和(8.17)式中等式也必然成立。由于 $\epsilon(G) = \epsilon(H)$ 以及 G 度弱于 H,所以 G 和 H 必然有相同的度序列,因而由定理 8.8,G \cong H。又由于 $\epsilon(H) = \epsilon(T_{m,\nu})$,所以可推知(由作业)H \cong T_{m, ν}。 我们得到G \cong T_{m, ν}。

第九章 顶点着色

§ 9.1 色数

°k 顶点着色: G 的一个 k 顶点着色是指 k 种颜色1,2,…,k对于 G 的各顶点的一个分配;称着色是正常的,是说任意两个相邻顶点都分配到不同的颜色。

于是<u>无环图 G 的一个正常 k 顶点着色是把 V 分成 k 个(可能有空的)</u>独立集的一个分类(V_1, V_2, \cdots, V_k)。当 G 有一个正常的 k 顶点着色时,就称 G 是 k 顶点可着色的。

*把正常 k 顶点着色简称为 k 着色,把 k 顶点可着色简称为 k 可着色。

°<mark>色数</mark>: G 的色数 $\chi(G)$ 是指 G 为 k 可着色的数 <u>k 的最小值</u>。若 $\chi(G)$ = k,则称 G 是 k 色的。(见图 9.1)

定理 9.1: 若 G 是 k 临界图,则 $\delta \ge k-1$ 。

证:用反证法。若有可能,设 G 是 δ < k-1的 k 临界图,而 v 是 G 中度为 δ 的顶点。由于 G 是 k 临界的,所以G-v 是(k-1)可着色的。因为是临界图设(V_1,V_2,\cdots,V_{k-1})是G-v的一个(k-1)着色。由定义,v 在 G 中与 δ 个顶点相邻(δ < k-1),从而 v 必然在 G 中与某个 V_j 的所有顶点都不相邻。因此, $(V_1,V_2,\cdots,V_j\cup\{v\},\cdots,V_{k-1})$ 就是 G 的一个(k-1)着色,导而G是k色图

推论 9.1.1:每个 k 色图至少有 k 个度不小于k - 1的顶点。

证:设 G 是 k 色图,H 是 G 的一个 k 临界子图。由定理 9.1,H 的每个顶点在 H 中的度不小于k -1,因而在 G 中的度也不小于k -1。由于 H 是 k 色的,显然它至少有 k 个顶点,推论得证。

H中至少要用k个顶点,因为它是K着色图,如果它只有K-1个顶点,那每个顶点着不同色就是一种满足的情况

最大度<=边色数<=最大度+1

色数<=最大度+1,点色数没有下界,反例:一个偶图

推论 9.1.2: 对任意图 G, 有 $\chi \leq \Delta + 1$ 。

证: 这是推论 9.1.1 的直接结果。

设 <u>S 是连通图 G 的一个顶点割</u>,并设 G – S的各个分支有顶点集 V_1, V_2, \cdots, V_n 。 <mark>则子图 $G_i = G[V_i \cup S]$ 称为 G 的 S 分支(</mark>见图 9.3)。现在 分别对 G_1, G_2, \cdots, G_n 着色。若对于每个 $v \in S$,顶点 v 在每个 G_i 的着色中都分配同样的颜色,则称 G_1, G_2, \cdots, G_n 的这组着色在 S 上是一致的。

定理 9.2: 临界图的顶点割不是团。

证:用反证法。设 G 是 k 临界图。假设 G 有一个顶点割 S 是团。记 G 的 S 分支为 G_1 , G_2 , …, G_n 。由于 G 是 k 临界的,所以每个 G_i 是(k-1) 可着色的。并且因为 S 是团,所以 S 中的各个顶点在 G_i 的任何(k-1) 着色中必接受相异的颜色。由此可知,存在 G_1 , G_2 , …, G_n 的一组(k-1) 因为它们都是不同颜色,则可以调整存在这样一组着色着色,它们在 S 上一致。这些着色合在一起形成 G 的一个(k-1)着色,导致矛盾。

推论 9.2:每个临界图都是块。

证: 若 v 是割点,则 $\{v\}$ 是一个顶点割,它也是一个平凡的团。由定理 9.2 推知,临界图没有割点;换言之,每个临界图都是块。 \blacksquare *定理 9.2 的另一个推论是:若 k 临界图 G 有 2 顶点割 $\{u,v\}$,则 u 和 v 不能相邻。对于 G 的 $\{u,v\}$ 分支 G_i ,若 G_i 的每个 $\{k-1\}$ 着色都分配给 u 和 v 以相同的颜色,则 G_i 称为 1 型的。若 G_i 的每个 $\{k-1\}$ 着色都分

配给 u 和 v 以不同的颜色,则称G_i是 2 型的。(见图 9.4

定理 9.3: 设 G 是 k 临界图且有 2 顶点割{u,v}。则

- (i) $G = G_1 \cup G_2$, 这里 G_i 是 i 型(i = 1, 2)的 $\{u, v\}$ 分支,并且
- (ii) $G_1 + uv$ 和 $G_2 \cdot uv$ 都是 k 临界图(这里 $G_2 \cdot uv$ 表示 G_2 的 u 和 v 重合而得到的图)。

证: (i)由于 G 是临界图,所以 G 的每个 $\{u,v\}$ 分支是 $\{k-1\}$ 可着色的。但是不可能存在这些 $\{u,v\}$ 分支的 $\{k-1\}$ 着色,使之在 $\{u,v\}$ 上一致。否则,这样的着色合起来将是 G 的一个 $\{k-1\}$ 着色。所以,存在两个 $\{u,v\}$ 分支 G_1 和 G_2 ,其中 G_1 的任何 $\{k-1\}$ 着色都不与 G_2 的任何 $\{k-1\}$ 着色一致。显然其中一个分支,例如设 G_1 ,必然是 1 型的,而另一个,即 G_2 必然是 2 型的。由于 G_1 和 G_2 属于不同的类型,所以 G 的子图 G_1 U G_2 不是 $\{k-1\}$ 可着色的。又因为 G 是临界图,所以必然有 $G=G_1$ U G_2 。

(ii)置 $H_1 = G_1 + uv$ 。由于 G_1 属于 1 型,所以 H_1 是 k 色的。要证 H_1 是临界的只要证明:对于 H_1 的每条边 e, $H_1 - e$ 是 (k-1)可着色的。 \overline{E} e = uv,则由于 $H_1 - e = G_1$,显然 $H_1 - e$ 是 (k-1)可着色的。设 e 是 H_1 的非 uv 的某条边。由于 G_2 是G — e的子图,所以在G — e的任何 (k-1)着色中,顶点 u 和 v 必然接受不同的颜色。这样的一个着色限制在 G_1 的各个顶点上,就是 H_1 — e的一个(k-1)着色。于是 G_1 + uv 是 k 临界图。类似可证 G_2 · uv E k 临界图。

推论 9.3:设 G 是具有 2 顶点割{u, v}的 k 临界图,则

$$d(u) + d(v) \ge 3k - 5$$
 (9.1)

证: 设 G_1 是 1 型的 $\{u,v\}$ 分支, G_2 是 2 型的 $\{u,v\}$ 分支。置 $H_1 = G_1 + uv$,

和 $H_2 = G_2 \cdot uv$ 。由定理 9.3 和定理 9.1,有 H1是k临界图,任意一点度数大于等于最小度 而最小度大于k-1

$$d_{H_1}(u) + d_{H_1}(v) \ge 2k - 2$$

以及 $d_{H_2}(w) \ge k - 1$,

这里,w是将u和v重合起来得到的新顶点。由此推得

$$d_{G_1}(u) + d_{G_1}(v) \ge 2k - 4$$

$$d_{G_2}(u) + d_{G_2}(v) \ge k - 1$$

综合这两个不等式得到(9.1)式。

§ 9.2 Brooks 定理

*推论 9.1.2 证明了 $\chi \le \Delta + 1$,下述 Brooks 定理指出,适合 $\chi = \Delta + 1$ 的图只有两种类型。

定理 9.4: 若 G 是连通的简单图,并且它既不是奇圈,又不是完全图,

则χ ≤ Δ。

医刚加更多的占和边最大度会变大

证:设 G 是满足定理假设的 k 色图。不失一般性,可以假定 G 是 k 临界的。根据推论 9.2,G 是一个块。又由于 1 临界图和 2 临界图是完全图,而 3 临界图则是奇圈(习题),所以k \geq 4。

若 G 有 2 顶点割{u,v},则由推论 9.3,得出

$$2\Delta \geq d(u) + d(v) \geq 3k - 5 \geq 2k - 1_{\,{}^{\circ}}$$

由于2Δ是偶数,这就推出 $\chi = k \leq \Delta$ 。

再假定 G 是 3 连通的。由于 G 不是完全图,所以在 G 中存在三个顶点u,v 和 w,使得uv,vw \in E 而 uw \notin E。置 $u=v_1$ 及 $w=v_2$,并且

设 $\mathbf{v}_3, \mathbf{v}_4, \cdots, \mathbf{v}_v = \mathbf{v} \in G - \{\mathbf{u}, \mathbf{w}\}$ 的顶点的任一排列,使得每个 \mathbf{v}_i 都和某个适合 $\mathbf{j} > i$ 的 \mathbf{v}_j 相邻(把 $\mathbf{G} - \{\mathbf{u}, \mathbf{w}\}$ 的各顶点按其与 \mathbf{v} 的距离非增次序排列,就能做到这一点)。现在可以描述 \mathbf{G} 的一个 Δ 着色:把颜色 1分配给 $\mathbf{v}_1 = \mathbf{u}$ 和 $\mathbf{v}_2 = \mathbf{w}$;然后按颜色表1,2,…, Δ 中最先可用的颜色依次给 $\mathbf{v}_3, \mathbf{v}_4, \cdots, \mathbf{v}_v$,着色。根据序列 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_v$ 的构造,每个顶点 \mathbf{v}_i (1 $\leq \mathbf{i} \leq \mathbf{v} - 1$)都和适合 $\mathbf{j} > i$ 的某个顶点 \mathbf{v}_j 相邻,因而和适合 $\mathbf{j} < i$ 的最多 $\Delta - 1$ 个顶点相邻。由此推知,当轮到 \mathbf{v}_i 着色时, \mathbf{v}_i 最多和 $\Delta - 1$ 种颜色的顶点相邻。于是颜色1,2,…, Δ 中必有一种颜色可以分配给 \mathbf{v}_i 。最后,由于 \mathbf{v}_v 和颜色 1的两个顶点(\mathbf{v}_1 和 \mathbf{v}_2)相邻,因而它最多再和另外的 $\Delta - 2$ 种颜色的顶点相邻,于是颜色2,3,…, Δ 中必有一种颜色可以分配给 \mathbf{v}_v 。

作业 12:

- 在九个人的人群中,有一个人认识另外两个人,有两个人每人认识另外四个人,有四个人每人认识另外五个人,余下的两个人每人认识另外六个人。证明:有三个人他们全都互相认识。
- 2. 证明: 唯一的 1 临界图是 K_1 ,唯一的 2 临界图是 K_2 ,仅有的 3 临界图是 $k \ge 3$ 的奇 k 圈。
- 3. 证明:若G的任意两个奇圈都有一个公共顶点,则 $\chi \leq 5$ 。