Azzolini Riccardo 2020-10-29

NFA con ϵ -mosse

1 Idea intuitiva

Gli NFA con ϵ -mosse, o ϵ -NFA, sono un'estensione del modello degli NFA in cui sono ammesse transizioni sulla stringa vuota ϵ . In altre parole, un automa di questo tipo può effettuare delle mosse (transizioni) spontaneamente, senza consumare alcun simbolo di input, e si usa la stringa vuota ϵ come simbolo per etichettare le transizioni che possono avvenire spontaneamente.

A scopo illustrativo, si consideri il linguaggio dei numeri decimali in notazione anglosassone, che sono composti da:

- 1. un segno + o opzionale;
- 2. una prima sequenza di cifre decimali;
- 3. un punto;
- 4. una seconda sequenza di cifre decimali.

Una delle due sequenze di cifre può essere vuota, ma non entrambe. Alcune stringhe di questo linguaggio sono:

$$3.14 + 125. -125.0 .010 + .010$$

Un ϵ -NFA che riconosce questo linguaggio è il seguente:

Per riconoscere, ad esempio, la stringa 3.14, questo automa:

1. parte, come sempre, dallo stato iniziale q_0 ;

- 2. arriva in q_1 seguendo la transizione etichettata con ϵ , $q_0 \xrightarrow{\epsilon} q_1$, cioè senza consumare alcun simbolo di input;
- 3. consuma il simbolo tre seguendo il cappio $q_1 \xrightarrow{3} q_1$;
- 4. consuma il punto seguendo la transizione da q_1 a q_2 ;
- 5. passa a q_3 consumando il simbolo 1;
- 6. arriva in q_3 sfruttando il cappio $q_3 \stackrel{4}{\rightarrow} q_3$;
- 7. giunge nello stato finale q_5 mediante un'altra ϵ -mossa, cioè senza consumare nulla (tanto è vero che tutti i simboli della in input sono già stati consumati).

In questo percorso di computazione, il ruolo della prima ϵ -mossa è stato quello di esprimere l'"opzionalità" del simbolo + o -.

Invece, la stringa +125. viene riconosciuta seguendo il percorso

$$q_0 \xrightarrow{+} q_1 \xrightarrow{1} q_1 \xrightarrow{2} q_1 \xrightarrow{5} q_4 \xrightarrow{\cdot} q_3 \xrightarrow{\epsilon} q_5$$

nel quale la ϵ -mossa da q_3 a q_5 cattura (in modo molto semplice, comodo) l'opzionalità della seconda sequenza di cifre.

2 Definizione formale

Dato un alfabeto Σ , si indica con $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ l'alfabeto Σ esteso con il simbolo ϵ .

Un ϵ -NFA è allora definito come una quintupla $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ in cui:

- Q è l'insieme finito e non vuoto degli stati;
- Σ è l'alfabeto di input;
- $\delta: Q \times \Sigma_{\epsilon} \to 2^Q$ è la funzione di transizione;
- $q_0 \in Q$ è lo stato iniziale;
- $F \subseteq Q$ è l'insieme degli stati finali.

Si osserva che l'unica differenza di questa definizione rispetto a quella di un "normale" NFA è il dominio della funzione di transizione, che qui è $Q \times \Sigma_{\epsilon}$ invece di $Q \times \Sigma$. L'estensione dell'alfabeto con un simbolo ad-hoc ϵ serve appunto a rappresentare le mosse che non consumano l'input.

È importante notare che tecnicamente, in questo contesto, ϵ va interpretata come un semplice simbolo, che di per sé non ha alcun significato, e non invece come la stringa vuota $(w = \epsilon \in \Sigma^*$, la stringa che non contiene simboli). Volendo, infatti, si potrebbe scegliere qualunque altro simbolo (non già presente nell'alfabeto Σ) per etichettare le transizioni che non consumano input, ma, proprio per il suo "collegamento" con il concetto di stringa vuota, la scelta di ϵ può essere considerata in qualche modo intuitiva.

2.1 Esempio

Secondo questa definizione, l'automa introdotto nell'esempio di prima

viene caratterizzato formalmente come segue:

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\};$
- $\Sigma = \{+, -, ., 0, 1, ..., 9\};$
- stato iniziale q_0 ;
- $F = \{q_5\};$
- funzione di transizione $\delta: Q \times \{\epsilon,+,-,.,0,1,\ldots,9\} \to 2^Q$, rappresentata dalla seguente tabella:

	ϵ	+, -		$0,1,\ldots,9$
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	$\{q_1,q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
q_3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
q_4	Ø	Ø	$\{q_3\}$	Ø
$*q_5$	Ø	Ø	Ø	Ø

Da questa tabella, si nota che la funzione di transizione è definita praticamente come per un normale NFA, senza trattare in modo "particolare" il simbolo ϵ . Quello che invece cambierà sarà il modo in cui tale simbolo verrà trattato nelle computazioni.

¹Per comodità, in questa tabella sono raggruppati i simboli +,- e analogamente i simboli $0,1,\ldots,9$, dato che la funzione di transizione si comporta sempre allo stesso modo su tutti i simboli di ciascuno di questi gruppi.

3ϵ -chiusura di uno stato

Per definire le computazioni di un ϵ -NFA, bisogna introdurre il concetto di ϵ -chiusura di uno stato e di un insieme di stati.

Intuitivamente, dato un ϵ -NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, l' ϵ -chiusura ECLOSE(q) di uno stato $q \in Q$ è l'insieme di tutti gli stati raggiungibili da esso utilizzando soltanto ϵ -mosse. Formalmente, tale insieme è definito per induzione:

- $Base: q \in ECLOSE(q)$.
- Induzione: se $p \in \text{ECLOSE}(q)$ ed esiste una ϵ -transizione $p \xrightarrow{\epsilon} r$ nell'automa, cioè $r \in \delta(p, \epsilon)$, allora anche $r \in \text{ECLOSE}(q)$. In alternativa, si può affermare che se $p \in \text{ECLOSE}(q)$ allora $\delta(p, \epsilon) \subseteq \text{ECLOSE}(q)$.

Questa nozione può poi essere generalizzata in modo naturale a un insieme di stati $S \subseteq Q$, definendo:

$$ECLOSE(S) = \bigcup_{q \in S} ECLOSE(Q)$$

3.1 Esempio

Considerando ancora l'automa che riconosce i numeri decimali in notazione anglosassone.

si vuole calcolare la ϵ -chiusura per ogni stato dell'automa:

- Nel caso di q_0 , si pone inizialmente $\text{ECLOSE}(q_0) = \{q_0\}$, per la base della definizione induttiva. Poi, per il passo induttivo, siccome $q_0 \stackrel{\epsilon}{\to} q_1$ si aggiunge alla ϵ -chiusura anche q_1 , ottenendo $\text{ECLOSE}(q_0) = \{q_0, q_1\}$. Dal "nuovo" stato q_1 non sono raggiungibili altri stati tramite ϵ -mosse: avendo trattato tutti gli stati aggiunti a $\text{ECLOSE}(q_0)$, la costruzione è conclusa.
- ECLOSE $(q_1) = \{q_1\}$
- ECLOSE $(q_2) = \{q_2\}$

- ECLOSE $(q_3) = \{q_3, q_5\}$
- ECLOSE $(q_4) = \{q_4\}$
- ECLOSE $(q_5) = \{q_5\}$

Come altro esempio, un po' più articolato, si consideri invece l' ϵ -NFA rappresentato dal seguente diagramma:

 $\mathrm{L}^{\prime}\epsilon\text{-chiusura}$ di ciascuno dei suoi stati è:

- $eclose(1) = \{1, 2, 4, 3, 6\}$
- $eclose(2) = \{2, 3, 6\}$
- $ECLOSE(3) = \{3, 6\}$
- $ECLOSE(4) = \{4\}$
- $ECLOSE(5) = \{5, 7\}$
- $ECLOSE(6) = \{6\}$
- $ECLOSE(7) = \{7\}$

Dato poi l'insieme di stati $S = \{1, 4, 5\}$, la sua ϵ -chiusura è

$$\begin{split} \text{ECLOSE}(S) &= \bigcup_{q \in \{1,4,5\}} \text{ECLOSE}(q) \\ &= \text{ECLOSE}(1) \cup \text{ECLOSE}(4) \cup \text{ECLOSE}(5) \\ &= \{1,2,3,4,6\} \cup \{4\} \cup \{5,7\} \\ &= \{1,2,3,4,5,6,7\} = Q \end{split}$$

cioè comprende tutti gli stati dell'automa.

4 Computazione di un ϵ -NFA

Dato un ϵ -NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, in cui $\delta : Q \times \Sigma_{\epsilon} \to 2^Q$, si definisce la **funzione di transizione estesa** di $A, \hat{\delta} : Q \times \Sigma^* \to 2^Q$, per induzione sulla lunghezza della stringa $w \in \Sigma^*$:

• Base: se |w| = 0, cioè $w = \epsilon$, si definisce

$$\hat{\delta}(q,\epsilon) = \text{ECLOSE}(q)$$

• Passo induttivo: se |w| > 0, allora w = xa, con $x \in \Sigma^*$ e $a \in \Sigma$. Si definisce allora

$$\hat{\delta}(q,xa) = \text{ECLOSE}\left(\bigcup_{p \in \hat{\delta}(q,x)} \delta(p,a)\right)$$

Intuitivamente, $\hat{\delta}(q, w)$ è l'insieme degli stati che l'automa può raggiungere partendo da q e processando l'intera stringa w, come per gli NFA, ma qui in più si tiene conto anche delle ϵ -mosse.

4.1 Esempio

Per mostrare un esempio di computazione, si considera ancora l' ϵ -NFA che riconosce i numeri decimali.

Si vuole calcolare la computazione di questo automa sulla stringa 125., cioè il valore della funzione $\hat{\delta}(q_0, 125.)$. Come al solito, invece di seguire direttamente la definizione induttiva, si procede per prefissi sempre più lunghi della stringa in input, partendo da ϵ :

$$\begin{split} \hat{\delta}(q_0, \epsilon) &= \text{ECLOSE}(q_0) = \{q_0, q_1\} \\ \hat{\delta}(q_0, 1) &= \text{ECLOSE}\left(\bigcup_{p \in \hat{\delta}(q_0, \epsilon)} \delta(p, 1)\right) = \text{ECLOSE}\left(\bigcup_{p \in \{q_0, q_1\}} \delta(p, 1)\right) \\ &= \text{ECLOSE}(\delta(q_0, 1) \cup \delta(q_1, 1)) = \text{ECLOSE}(\varnothing \cup \{q_1, q_4\}) = \text{ECLOSE}(\{q_1, q_4\}) \\ &= \bigcup_{p \in \{q_1, q_4\}} \text{ECLOSE}(p) = \text{ECLOSE}(q_1) \cup \text{ECLOSE}(q_4) = \{q_1\} \cup \{q_4\} \\ &= \{q_1, q_4\} \\ \hat{\delta}(q_0, 12) = \text{ECLOSE}\left(\bigcup_{p \in \{q_1, q_4\}} \delta(p, 2)\right) = \text{ECLOSE}(\{q_1, q_4\}) = \{q_1, q_4\} \\ \hat{\delta}(q_0, 125) = \text{ECLOSE}\left(\bigcup_{p \in \{q_1, q_4\}} \delta(p, 5)\right) = \text{ECLOSE}(\{q_1, q_4\}) = \{q_1, q_4\} \\ \hat{\delta}(q_0, 125.) = \text{ECLOSE}\left(\bigcup_{p \in \{q_1, q_4\}} \delta(p, .)\right) = \text{ECLOSE}(\{q_2, q_3\}) = \{q_2, q_3, q_5\} \end{split}$$

Siccome

$$\hat{\delta}(q_0, 125.) \cap F = \{q_2, q_3, q_5\} \cap \{q_5\} = \{q_5\} \neq \emptyset$$

per definizione la stringa 125. è accettata dall'automa, ovvero appartiene al linguaggio riconosciuto dall'automa.

5 Linguaggio accettato da un ϵ -NFA

Sia $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ un ϵ -NFA. Le definizioni di stringa e linguaggio accettati da A sono del tutto analoghe a quelle per i normali NFA:

- A accetta una stringa w se e solo se $\hat{\delta}(q_0, w) \cap F \neq \emptyset$.
- Il **linguaggio riconoscuito** da A è l'insieme di tutte le stringhe accettate:

$$L(A) = \{ w \in \Sigma^* \mid A \text{ accetta } w \} = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$