Saturation Binding Assay

Charles "Mitch" Boudreaux Talia Albert

November 6th, 2023

Contents

Overview	1
Determining Protein Concentration	2
Hot Ligand Addition	3
Tables	3
Cold Ligand (Reference) Addition	4
Tables	4
Membrane (Protein) Addition	5
Filtering	5
Formulas	5
Protein Concentration calculation	5
3H Hot Ligand calculation	6
Cold Ligand calculation	6
Membrane Receptor calculation	7
Determining Starting Concentration calculation	7

Overview

Use 6 columns of 96-well shallow plate, can test 2 membrane/protein per plate. Final Volume in each well is ${\bf 125~uL}$

- $25~\mathrm{uL}$ 3H Hot Ligand
- 25 uL Binding Buffer (BB)/Cold Ligand (Reference)
- 75 uL Membrane (Protein)

Table 1: Plate layout after step 7

	Columns $1/7$	Columns 2/8	Columns 3/9	Columns 4/10	Columns 5/11	Columns 6/12
A	25 uL 3H	$25~\mathrm{uL}~3\mathrm{H}$	$25~\mathrm{uL}~3\mathrm{H}$	25 uL 3H	25 uL 3H	25 uL 3H
	$ 25~\mathrm{uL~BB} $	$25~\mathrm{uL~BB}$	$25~\mathrm{uL~BB}$	$ 25~{ m uL~Ref} $	25 uL Ref	25 uL Ref
	$ 75~\mathrm{uL}~\mathrm{Mem}$	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$ 75~\mathrm{uL}~\mathrm{Mem}$	75 uL Mem	75 uL Mem
В	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	$25~\mathrm{uL~BB}$	$25~\mathrm{uL~BB}$	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$	$25~\mathrm{uL}~\mathrm{Ref}$
	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$	75 uL Mem	$75~\mathrm{uL~Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$
$^{-}$	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	$25~\mathrm{uL~BB}$	$25~\mathrm{uL~BB}$	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$	$25~\mathrm{uL}~\mathrm{Ref}$
	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$	75 uL Mem	$75~\mathrm{uL~Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$
D	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	$25~\mathrm{uL~BB}$	$25~\mathrm{uL}~\mathrm{BB}$	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$	25 uL Ref
	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL~Mem}$
— E	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	$25~\mathrm{uL}~\mathrm{BB}$	$25~\mathrm{uL}~\mathrm{BB}$	25 uL Ref	$25 \mathrm{~uL~Ref}$	25 uL Ref
	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$	75 uL Mem	$75~\mathrm{uL~Mem}$	$75~\mathrm{uL~Mem}$
F	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	25 uL BB	$25~\mathrm{uL}~\mathrm{BB}$	25 uL Ref	25 uL Ref	25 uL Ref
	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$
G	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	$25~\mathrm{uL~BB}$	$25~\mathrm{uL}~\mathrm{BB}$	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$	25 uL Ref
	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$
— Н	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	$25~\mathrm{uL}~\mathrm{BB}$	$25~\mathrm{uL}~\mathrm{BB}$	25 uL Ref	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$
	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$	75 uL Mem	$75~\mathrm{uL}~\mathrm{Mem}$	$75~\mathrm{uL}~\mathrm{Mem}$

Determining Protein Concentration

- 1. Resuspend pellet in 12 mL Lysis Buffer (10mM Tris + 5% Sucrose, pH 7.4):
 - 1. Use 1 mL Lysis Buffer to break up pellet
 - 2. Fill to ${\sim}12~\mathrm{mL}$ with Lysis Buffer
 - 3. Pool pellets into one tube (if multiple pellets)
- 2. Perform Bradford Protein Concentration Assay:
 - 1. Sample Preparation:

- 10 uL Pellet Suspension + 790 uL dH20 + 200 uL Bradford Reagent
- 2. Blank Preparation:
 - 10 uL Lysis Buffer + 790 uL dH20 + 200 uL Bradford Reagent
- 3. Incubate @ RT 10 min
- 4. Measure absorbance @ 595 nm
- 5. Calculate protein concentration (Refer to Formulas section or Spreadsheet)

Hot Ligand Addition

- 3. Prepare ~15 mL appropriate BB w/BSA (~30 uL) in trough
- 4. In an empty 96-well shallow plate (Need one column):
 - 1. Add 330 uL BB to well H and 165 uL BB to well A-G
 - 2. Add 3H-Ligand to Well H (Refer to Formulas section or Spreadsheet)
 - 3. Perform a Serial Dilution (1:2) of 165 uL up from well H to A
 - 4. Remove 25 uL from Well A for radioactivity counts
 - 5. Using a multichanel pipettor, Transfer **25 uL** into 6 columns of the Drug Plate

Tables

Table 2: Step 4.1, in separate 96-well plate

	Empty Column
A	165 ul BB
В	165 ul BB
\mathbf{C}	165 ul BB
D	165 ul BB
\mathbf{E}	165 ul BB
\mathbf{F}	165 ul BB
G	165 ul BB
\mathbf{H}	330 ul BB
	•

Table 3: Step 4.3, Volume after serial dilution completed

	Empty Column
A	330 ul BB
В	165 ul BB
\mathbf{C}	165 ul BB
D	165 ul BB

	Empty Column
E	165 ul BB
F	165 ul BB
G	165 ul BB
Η	165 ul BB

Table 4: Plate layout after 3H-Ligand Addition

	Columns 1/7	Columns 2/8	Columns 3/9	Columns 4/10	Columns 5/11	Columns 6/12
A	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
В	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
$\overline{\mathrm{C}}$	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
D	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
E	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
F	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
G	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H

Cold Ligand (Reference) Addition

- 5. Add 25 uL BB to first 3 columns
- 6. Prepare Cold Ligand (Reference):
 - 1. Usually, add $\bf 4~uL$ Reference compound into $\bf 800~uL$ BB into an eppendorf tube
 - 2. Using a single channel pipettor, add ${\bf 25}~{\bf uL}$ Reference Compound into the last 3 columns

Tables

Table 5: Plate layout after cold ligand (reference) addition

	Columns 1/7	Columns 2/8	Columns 3/9	Columns 4/10	Columns 5/11	Columns 6/12
A		25 uL 3H 25 uL BB	25 uL 3H 25 uL BB	25 uL 3H 25 uL Ref	25 uL 3H 25 uL Re f	25 uL 3H 25 uL Ref

	Columns 1/7	Columns 2/8	Columns 3/9	Columns 4/10	Columns 5/11	Columns 6/12
—						
В	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	$ 25~{ m uL~BB} $	$25~\mathrm{uL~BB}$	$25~\mathrm{uL~BB}$	$ 25~{ m uL~Ref} $	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$
\overline{C}	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	25 uL BB	25 uL BB	25 uL Ref	25 uL Ref	25 uL Ref
 D	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	$25~\mathrm{uL}~\mathrm{BB}$	$25~\mathrm{uL}~\mathrm{BB}$	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$	$25~\mathrm{uL}~\mathrm{Ref}$
— E	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	$25~\mathrm{uL}~\mathrm{BB}$	$25~\mathrm{uL}~\mathrm{BB}$	25 uL Ref	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$
 F	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	$25~\mathrm{uL}~\mathrm{BB}$	$25~\mathrm{uL}~\mathrm{BB}$	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$	$25~\mathrm{uL}~\mathrm{Ref}$
 G	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	$25~\mathrm{uL}~\mathrm{BB}$	$25~\mathrm{uL}~\mathrm{BB}$	25 uL BB	25 uL Ref	25 uL Ref	$25~\mathrm{uL}~\mathrm{Ref}$
— Н	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H	25 uL 3H
	25 uL BB	25 uL BB	25 uL BB	25 uL Ref	25 uL Ref	25 uL Ref

Membrane (Protein) Addition

- 7. Prepare \sim 4 mL membrane receptor:
 - 1. Add BB volume to new trough (Refer to Formulas section or Spreadsheet)
 - 2. Add protein to volume new trough (Refer to Formulas section or Spreadsheet)
 - 3. Using a multichannel pipettor, add **75 uL** protein dilution into all 6 columns
- 8. Incubate plates @ RT for 1 hour in drawer

Filtering

Formulas

Protein Concentration calculation

Need:

• OD @ 595 nm

Formula:

Protein Concentration (ug/uL) =
$$\frac{\text{OD@595 nm} - 0.094}{0.503}$$

Where:

• 0.094 and 0.503 were determined from experimental procedure, provided by XP.

3H Hot Ligand calculation

Need:

- Starting Concentration (nM)
- 3H-Ligand Specific Activity (Ci/mmol)

Formula:

$$3 \text{H-Ligand Vol (uL)} = \frac{330 \text{ (uL) } * \text{Starting Concentration (nM)} * 5 * 1.2}{\text{Specific Activity (Ci/mmol)}^{-1} * 1000000}$$

Where:

- 330 uL is double the volume of 165 uL, (25 uL * 6 wells * 1.1 overage = 165 uL), so we can perform a serial dilution
- 5 is a Dilution Factor, the final volume in each well is 125 uL, we add 25 uL from the Hot-Ligand plate, (125/25=5)
- 1.2 is a 20% overage
- 1000000 is for unit conversion

Cold Ligand calculation

Usually need 4 uL Reference compound and 800 uL BB

Need:

• Concentration of Cold Ligand (Reference) Stock (most are 10 mM)

Formula:

$$\mbox{Reference Vol (uL)} = \frac{800~\mbox{uL}*10~\mbox{uM Final Concentration}*5}{10000~\mbox{uM Starting Concentration}}$$

Where:

- 800 uL is approixmate volume we need (8 Wells/Column * 3 Columns * 25 uL/Well * 1.1 overage = 660), use 800 so pulling from reference is easier
- Final concentration of Cold Ligand (Reference) in each well is 10 uM
- 5 is a Dilution Factor, the final volume in each well is 125 uL, we add 25 uL from the Hot-Ligand plate, (125/25=5)
- 10000 uM or 10 mM is starting reference concentration, usually

Membrane Receptor calculation

Need:

- Protein Concentration (ug/uL) (Found from "Determining Protein Concentration")
- Protein/Well (ug) (XP will provide this)

Formula:

$$\label{eq:Volume of Protein (uL) = } \frac{\text{Protein/Well (ug)}*4000 \text{ (uL)}}{\text{Protein Concentration (ug/uL)}*75 \text{ (uL)}}$$

Volume of BB
$$(uL) = 4000 (uL) - Volume of Protein (uL)$$

Where:

- 75 uL is the volume that will be dispensed into each well
- 4000 uL is approixmate volume we need (8 Wells/Column * 6 Columns * 75 uL/Well * 1.1 overage = 3960 uL), round to 4000 uL for convience

Determining Starting Concentration calculation

After obtaining actual radioactive counts (dpm) starting concentration (concentration of 3H-Ligand in Well H) can be determined.

Need:

- Specific Activity (Ci/mmol)
- Actual Counts (dpm)

Formula:

$$Starting\ Concentration\ (nM) = \frac{Actual\ Counts\ (dpm)*10^9\ (nM/M)*2^7}{2.22*10^{12}\ (dpm/Ci)*Specific\ Activity\ (Ci/mmol)*0.125\ (mL/Well)}$$

Where:

- 10⁹ in a unit conversion to nM from M
- 2^7 is for the 7 serial 1:2 dilutions
- $2.22 * 10^{12}$ dpm/Ci is a constant
- 0.125 mL/Well is the final volume in each well