Biology 744, McMaster University

intro material

Ben Bolker

r format(Sys.time(), '%d %b %Y')

Course structure

Course goals

General introduction to data viz principles and tools

Course structure

- lectures
- · in-class work
- homework
- student projects & presentations

Tools

Version control

- Git: distributed version control system
- · GitHub: centralized version control server
 - alternatives: BitBucket, GitLab, ...
- Git *clients*: software for working with Git on your computer
 - command-line (e.g. git add foo.rmd)

- RStudio
- others (GitHub desktop etc.)

Basic Git workflow with RStudio

- create **repository** on Github
- copy repository to local machine
 - o git clone
 - RStudio: File > New Project > Version Control > Git > fill in name from "Clone" button on GH
- repeat:
 - pull (fetch and integrate changes from GH) [git pull]
 - RStudio: Git panel > click blue down-arrow
 - do stuff (create, edit files, etc.)
 - stage [git add]
 - RStudio: Git panel > click "Staged" button
 - commit [git commit]
 - RStudio: Git panel > click "Commit" icon >
 enter commit message > click "Commit" button (ignore "amend previous commit" button!)
 - push [git push]
 - RStudio: Git panel > click green up-arrow

tidyverse

- set of R packages: https://www.tidyverse.org/
- advantages
 - expressiveness
 - speed
 - new hotness
- disadvantages
 - minor incompatibilities with base R
 - rapid evolution
 - non-standard evaluation

tidyverse: big ideas

- new verbs
- piping
- tibbles

tidyverse: new verbs

• filter(x,condition): choose rows equivalent to subset(x,condition) Or x[condition,] (with non-standard evaluation)

- select(x,condition): choose columns
 - equivalent to subset(x,select=condition) Or x[,condition]
 - helper functions such as starts_with(), matches()
- mutate(x,var=...): change or add variables (equivalent to x\$var = ... or transform(x,var=...)

tidyverse: split-apply-combine

- group_by(): adds grouping information
- summarise(): collapses variables to a single value
- e.g.

```
x <- group_by(x,course)
summarise(x,mean_score=mean(score),sd_score=sd(score))</pre>
```

equivalent to

```
d_split <- split(d,d$var) ## split
d_proc <- lapply(d_split, ...) ## apply
d_res <- do.call(rbind,d_proc) ## combine</pre>
```

tidyverse: piping

- new %>% operator (orig. from magrittr package)
- directs result of previous operation to next function, as first argument
- e.g.

```
(d_input
    %>% select(row1,row2)
    %>% filter(cond1,cond2)
    %>% mutate(...)
) -> d_output
```

tidyverse: tibbles

- · extension of data frames
- differences
 - printing
 - only prints first few rows/columns
 - labels columns by type
 - no rownames

never drops dimensions (tib[,"column1"] is still a tibble)

tidyverse: reshaping (tidyr package)

- gather(data,key,value,<include/exclude>)
 - wide to long
 - o reshape2::melt()
 - pivot_longer() in tidyr v 1.0 (see <u>here</u>)
- spread(data,key,value)
 - long to wide
 - o reshape2::cast()
 - pivot_wider() in tidyr V 1.0

types of data visualization

exploratory

- · find patterns in data, explore hypotheses
- emphasize robust approaches
- minimize (parametric) assumptions
- John Tukey, William Cleveland 1993.

diagnostic

- · evaluate assumptions of a model
 - unbiasedness/goodness of fit
 - homoscedasticity
 - normality
- easily spot deviations
- identify outliers and influential points

inferential

- coefficient plots (e.g. dotwhisker package)
- replacement for tables (Gelman et al. 2002)
- also: tests of inference (Wickham et al. 2010)
- Andrew Gelman

expository: data-viz

- tell an accurate story
- · high information density
- Cleveland, <u>Edward Tufte</u>

presentation: info-viz

- grab attention/engage/sell/entertain
- "puzzle" graphics

dashboards

- present a quick overview of a data set
- user control
- business-oriented

dynamic

- time dimension
- engage
- · allow viewer to drill down
- Dianne Cook

References

Cleveland, W. 1993. Visualizing Data. Summit, NJ: Hobart Press.

Gelman, A et al. 2002. *The American Statistician* 56 (2): 121–130. http://www.tandfonline.com/doi/abs/10.1198/000313002317572790.

Wickham, H et al. 2010. *IEEE Transactions on Visualization and Computer Graphics* 16 (6) (November): 973–979. doi:10.1109/TVCG.2010.161.

Course home page