

Computer Vision

Image formation

School of Electronic & Electrical Engineering

Sungkyunkwan University

Hyunjin Park

Color

What is color?

A perceptual attribute of objects constructed by the visual system

A quantity related to the wavelength of light in the visible spectrum

A significant industry with conferences, standards, bodies, etc.

Why is color important?

- In animal vision
 - Distinguish food from non-food
 - Help identify predators and prey
 - Check health, fitness, etc. of other individuals

- In computer vision
 - Find a person's skin
 - Segment pixel regions belonging to the same object

Color fundamentals

- A beam of sunlight
 - Not white
 - Consists of a continuous spectrum of colors

Color fundamentals

- Spectrum
 - The different colors in spectrum do not end abruptly
 - Each color blends smoothly into the next

Numeric color

- Importance of *numeric color*
 - Accurate color reproduction is commercially valuable
 - Many products are identified by color
 - Few color names are widely recognized by Korean speakers
 - Other languages have fewer or more
 - It's common to disagree on appropriate color names
 - Color reproduction problems increased by prevalence of digital imaging

Color spaces

- Purpose of a color space
 - Facilitate the specification of color in some standard fashion

- Color space: 3D coordinate system
 - Use color matching functions to define a coordinate system for color
 - Each color is assigned to a triple of coordinates with respect to color spaces
 - Choice of primaries is equivalent to choice of color space

CIE color spaces

Color is specified by its three trichromatic coefficients

$$x = \frac{X}{X+Y+Z}$$
, $y = \frac{Y}{X+Y+Z}$, $z = \frac{Z}{X+Y+Z}$

• x + y + z = 1 (i.e., z = 1 - (x + y))

CIE color spaces

- CIE chromaticity diagram
 - Curved outer edge consists of single wavelength colors (completely saturated or "pure" colors)
 - Points inside this region represent some mixture of the pure colors
 - The point of equal energy corresponds to zero saturation

RGB color spaces

- Primaries are monochromatic energies with
 - Red (R: 645.2 nm), Green (G: 526.3 nm), Blue (B: 444.4 nm)

Used mainly in color monitor and video camera

 Grayscale is represented by the diagonal joining black to white

- Additive color system
 - Colors are creased by adding components to black (0, 0, 0)

CMY color spaces

- Each color is represented by the 3 secondary color of light
 - Cyan (C), magenta (M), and yellow (Y)

Mainly used in color printing devices that deposit color pigments

- Subtractive color system
 - It models printing on white paper and subtracts from white rather than adds to black as the RGB system does

• It is related to the RGB color space: $\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$

- Each color is specified using
 - Hue (H), saturation (S), and value (V) or intensity (I)
 - Hue: Color attributes (an angle relative to the red-axis)
 - Saturation: The purity of the color or hue
 - Value or intensity: Embody achromatic notion of brightness

Advantages

- Chrominance (H, S) and luminance components are decoupled (separate color and grayscale information)
- Hue and saturation is intimately related to the way the human visual system perceives color

RGB & HSV

- RGB model is suited for image color generation
- HSV model is suited for image color perception

HSV hexacone

RGB image and the components of its corresponding HSV image

Human color perception: Photoreceptors

Visible range of human eye: 350 nm < wavelength < 780 nm

Photoreceptors

Rods: 250 ~ 100 millions (luminance)

Cones: 6~7 millions (color vision)

- Red sensitive cones: 65 %

- Green sensitive cones: 33 %

- Blue sensitive cones: 2 %

Absorption of light by the red, green, and blue cones in the human eye as a function of wavelength

Color perception: Adaptation

- Chromatic adaptation
 - If the visual system is exposed to a certain illuminant for a while, color system starts to adapt and skew

Color perception: Adaptation

Brightness perception

Color perception: Adaptation

Brightness perception

A and B have the same color