Grundlagen der Informatik

Prof. Dr. J. Schmidt Fakultät für Informatik

GDI – WS 2018/19 Information und Quellencodierung Arithmetische Codierung

Verfahren zur Datenkompression (1)

- Mittlerweile
 - → Vielzahl von Verfahren zur Datenkomprimierung
- Aufteilung in zwei Gruppen
 - Verlustfreie Datenkompression
 - Verlustbehaftete Datenkompression

Verfahren zur Datenkompression (2)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Verlustfreie Datenkompression

- Ziel der Kodierung
 - Redundanz-Reduktion möglichst auf Null (Übertragungszeit und Speicherplatz \(\psi \)
- Wesentliche Forderung
 - Die in den Daten enthaltene Information bleibt ohne Änderung erhalten
 - D.h. dekodierte Daten unterscheiden sich nicht von den Originaldaten
- Zum Beispiel
 - Kodierung von Texten und Tabellen

Verfahren zur Datenkompression (3)

- Verlustbehaftete Datenkompression
 - Ziel der Kodierung
 - Über verlustfreie Datenkompression hinausgehende Verringerung der Datenmenge
 - Information bleibt im Wesentlichen erhalten, aber gewisser Informationsverlust akzeptiert
 - D.h. Teil der Information geht verloren
 - somit unterscheiden sich die dekodierten Daten von den Originaldaten
 - (wesentlich) höhere Kompressionsraten lassen sich erzielen
 - Zum Beispiel
 - Standbilder, Audio- oder Videodateien (wahrnehmungspsychologische Eigenschaften der Augen/Ohren werden berücksichtigt)

Verfahren zur Datenkompression (4)

- Bereits bekanntes Kompressionsverfahren
 - Huffman-Kodierung
 - Durch den Huffman-Algorithmus wird ein Code-Baum iterativ von unten nach oben aufgebaut
 - Ergebnis: Code mit variabler Wortlänge
 - Datenkompression im Vergleich zu Block-Codes aufgrund der Redundanzminimierung
 - Maß für die Datenkompression: Vergleich der mittleren Wortlänge des Huffman-Codes mit der konstanten Wortlänge des Block-Codes
 - berücksichtigt nur einzelne Zeichen, aber z.B. keine Wiederholungen innerhalb eines Wortes

Verfahren zur Datenkompression (4)

- Alternative Verfahren
 - Arithmetische Kodierung
 - Lauflängen-Kodierung
 - LZW-Algorithmus

Arithmetische Kodierung (1)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Prinzip

 Dem gesamten Quelltext wird eine Gleitpunktzahl x im Intervall 0 ≤ x < 1 zugeordnet

Informationsgehalt

- Einzelzeichen können implizit auch einen nichtganzzahligen Informationsgehalt tragen
 - Bei Huffman-Code erhält jedes Zeichen des Quelltextes ein Code-Wort mit ganzzahliger Länge
- Arithmetische Kodierung kann Redundanz meist noch etwas weiter verringern

Arithmetische Kodierung (2)

- Prinzip
 - Dem gesamten Quelltext wird eine Gleitpunktzahl x im Intervall 0 ≤ x < 1 zugeordnet
- Beispiel

Quelltext		Kodierung	
ESSEN	→	0.24704	

Kodierung		<u>Dekodierung</u>
0.24704	→	ESSEN

Arithmetische Kodierung (3)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Vorgehen

- Vor der eigentlichen Kodierung eines Quelltexts mit n Zeichen wird erst die Häufigkeitsverteilung der n Zeichen ermittelt
- Ausgehend vom Intervall [0,1[wird dieses in n aneinander anschließende Intervalle aufgeteilt
- Jedem Intervall wird ein Zeichen zugeordnet
- Die Länge der Intervalle entspricht den Auftrittswahrscheinlichkeiten der Zeichen

Arithmetische Kodierung (4)

- Beispiel
 - Quelltext ESSEN ist arithmetisch zu kodieren
 - Notwendige Vorbereitungsschritte
 - ullet Ermittlung der Auftrittswahrscheinlichkeiten p_i der einzelnen Zeichen
 - Zuordnung eines Intervalls [u, o[zu jedem Zeichen, wobei die Länge zu den jeweiligen Auftrittswahrscheinlichkeiten proportional ist

Zeichen	Auftrittswahrsch.	Intervall
c	p_{i}	[u(c), o(c)[
Е	² / ₅	[0.0, 0.4[
S	$^{2}/_{5}$	[0.4, 0.8[
N	$^{1}/_{5}$	[0.8, 1.0[

Arithmetische Kodierung (5)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

- Kompressions-Algorithmus
 - Initialisiere untere und obere Grenze

$$0:=1 \\ U:=0$$

Lies nächstes Eingabezeichen c und berechne

```
l := 0 - U ... aktuelle Länge des Intervalls ... neue Obergrenze, o(c) aus Tabelle ... neue Untergrenze, u(c) aus Tabelle
```

bis Textende erreicht ist

Ergebnis x (kodierte Eingabedaten)

$$x := \frac{U+O}{2} \qquad \dots \text{ (oder auch } x = U)$$

Arithmetische Kodierung (6)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Beispiel

Kompression des Textes ESSEN

Zeichen c	Auftrittswahrsch. p_i	Intervall $[u(c), o(c)[$
Е	² / ₅	[0.0, 0.4[
S	² / ₅	[0.4, 0.8[
N	¹ / ₅	[0.8, 1.0[

<u>C</u>	l	O	U
	-	1.0	0.0
E	1.0	0.4	0.0
S	0.4	0.32	0.16
S	0.16	0.288	0.224
Е	0.064	0.2496	0.224
Ν	0.0256	0.2496	0.24448

... Initialisierung

$$l := 0 - U$$

$$0 := U + l \cdot o(c)$$

$$U := U + l \cdot u(c)$$

• Das Ergebnis ist
$$x = 0.24704$$

$$x := \frac{U + O}{2}$$

Arithmetische Kodierung (7)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

- Dekompressions-Algorithmus
 - Lies Code x
 - Solange x > 0 (bzw. nicht alle Zeichen sind dekodiert)

Suche Zeichen c, in dessen Intervall x liegt Gib c aus

$$l = o(c) - u(c)$$

$$x := \frac{x - u(c)}{l}$$

... Länge des Intervalls

... Neuer Code

Arithmetische Kodierung (8)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Beispiel

 Aus dem kodierten Text (Gleitpunktzahl x = 0.24704) kann schrittweise der Ursprungstext wieder gewonnen werden

Zeichen c	Auftrittswahrsch. p_i	Intervall $[u(c), o(c)[$
Е	² / ₅	[0.0, 0.4[
S	² / ₅	[0.4, 0.8[
N	¹ / ₅	[0.8, 1.0[

χ	c (Ausgabe)	<u>O</u>	\underline{U}	<u>l</u>
0.24704	E	0.4	0.0	0.4
0.6176	S	8.0	0.4	0.4
0.544	S	8.0	0.4	0.4
0.36	E	0.4	0.0	0.4
0.9	Ν	1.0	8.0	0.2

Suche Zeichen c, in dessen Intervall x liegt. Gib c aus l = o(c) - u(c) $x := \frac{x - u(c)}{l}$

Arithmetische Kodierung (9)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Aufgabe

- Kodieren Sie das Wort IBIS arithmetisch!
- Dekodieren Sie das Ergebnis!

Kodierung

$$l := 0 - U$$

$$0 := U + l \cdot o(c)$$

$$U := U + l \cdot u(c)$$

$$x := \frac{U + O}{2}$$

Dekodierung

Suche Zeichen c, in dessen Intervall x liegt. Gib c aus l = o(c) - u(c) $x := \frac{x - u(c)}{l}$

Arithmetische Kodierung (10)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Probleme

- Immer kleiner werdende Teilintervalle mit jedem neu zu kodierenden Zeichen
 - Abhängig von Wortbreite haben Rechner aber nur eine begrenzte Genauigkeit für Gleitpunktzahlen
 - Ab einer Grenze ist "Codezahl" nicht mehr darstellbar
- Auftrittswahrscheinlichkeit der Zeichen muss vor der Kodierung bekannt sein
 - Verwendung der immer gleichen Auftrittswahrscheinlichkeiten
 - Verwendung semi-adaptives/ adaptives Verfahren
- Wesentlich rechenintensiver als Huffman

Arithmetische Kodierung – Verwendung

- H.264/MPEG 4 AVC
 - (verlustbehaftete) Videocodierung
 - z.B. Blu-ray oder DVB-S2
 - arithmetische Codierung optional an Stelle von Huffman für Entropiecodierung verwendbar
- HEVC
 - auch: H.265/MPEG-H Teil 2
 - Nachfolgeformat von H.264
 - z.B. UHD-Bluy-ray (4k), DVB-T2, Streaming
 - arithmetische Codierung obligatorisch, kein Huffman

