Semana 5

Vectores en \mathbb{R}^n : definición, notación y representación. Operaciones con vectores: Adición, sustracción, multiplicación de un escalar por un vector

Norma de un vector, Vector unitario, Producto escalar

Vectores paralelos y ortogonales.

Henry R Moncada

UNIVERSIDAD NACIONAL TECNOLÓGICA DE LIMA SUR

September 20, 2024

Outline

- Definición, Notación y Representación
- 2 Igualdad de Vectores
- 3 Operaciones con Vectores
 - Adición y Sustracción
 - Multiplicación de un Escalar por un Vector
- 4 Norma de un Vector y Propiedades
- Vectores Unitarios
- 6 Producto Escalar y Propiedades
- Vectores Paralelos y Ortogonales

Definición, Notación y Representación

Un vector en \mathbb{R}^n es una lista ordenada de n números reales:

$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$

Informalmente, un vector es una colección ordenada de n números del mismo tipo. Decimos que tiene n componentes

Ejemplo 1: Vector en \mathbb{R}^2 : $\mathbf{v} = (2, -3)$

Ejemplo 2: Vector en \mathbb{R}^3 : $\mathbf{u} = (1, 4, -2)$

Ejemplo 3: Representación gráfica de un vector en \mathbb{R}^2 .

Igualdad de Vectores

Dos vectores son iguales si y sólo si sus componentes correspondientes son iguales:

$$\mathbf{v} = \mathbf{u}$$
 si y sólo si $v_i = u_i$ para todo i

Ejemplo 1:
$$\mathbf{v} = (2, -3, 1), \mathbf{u} = (2, -3, 1), \mathbf{v} = \mathbf{u}.$$

Ejemplo 2:
$$\mathbf{v} = (1, 2, 3), \mathbf{u} = (3, 2, 1), \mathbf{v} \neq \mathbf{u}.$$

Ejemplo 3: Comparación de vectores en \mathbb{R}^2 : $\mathbf{a} = (0, 5)$ y $\mathbf{b} = (0, 5)$.

Adición y Sustracción

La suma de dos vectores es la suma componente a componente:

$$\mathbf{v} + \mathbf{u} = (v_1 + u_1, v_2 + u_2, \dots, v_n + u_n)$$

La sustracción es similar:

$$\mathbf{v} - \mathbf{u} = (v_1 - u_1, v_2 - u_2, \dots, v_n - u_n)$$

Ejemplo 1: $\mathbf{v} = (1, 2)$ y $\mathbf{u} = (3, -1)$, entonces $\mathbf{v} + \mathbf{u} = (4, 1)$.

Ejemplo 2: Sustracción en \mathbb{R}^3 : $\mathbf{v} = (2, 3, 4)$, $\mathbf{u} = (1, 1, 1)$, entonces $\mathbf{v} - \mathbf{u} = (1, 2, 3)$.

Ejemplo 3: Adición y sustracción gráficamente en \mathbb{R}^2 .

Multiplicación de un Escalar por un Vector

La multiplicación de un escalar k por un vector \mathbf{v} :

$$k\mathbf{v} = (kv_1, kv_2, \dots, kv_n)$$

Ejemplo 1: Multiplicación de 3 por $\mathbf{v} = (1, -2), 3\mathbf{v} = (3, -6).$

Ejemplo 2: Multiplicación en \mathbb{R}^3 : $-2\mathbf{u} = (-2, -4, 0)$.

Ejemplo 3: Efecto gráfico de la multiplicación de un escalar.

Norma de un Vector y Propiedades

La norma o longitud de un vector \mathbf{v} es:

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Ejemplo 1: Vector en \mathbb{R}^2 , $\mathbf{v} = (3, 4)$, $\|\mathbf{v}\| = 5$.

Ejemplo 2: Cálculo de la norma en \mathbb{R}^3 : $\mathbf{u} = (1, 2, 2), \|\mathbf{u}\| = 3$.

Ejemplo 3: Norma gráfica en \mathbb{R}^2 .

Vectores Unitarios

Un vector unitario es un vector con norma 1:

$$\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

Ejemplo 1: Normalización de $\mathbf{v} = (3, 4)$.

Ejemplo 2: Normalización en \mathbb{R}^3 : $\mathbf{u} = (1, 2, 2)$.

Ejemplo 3: Visualización de un vector unitario.

Producto Escalar y Propiedades

El producto escalar entre ${\bf v}$ y ${\bf u}$ es:

$$\mathbf{v} \cdot \mathbf{u} = v_1 u_1 + v_2 u_2 + \dots + v_n u_n$$

Ejemplo 1: Producto escalar en \mathbb{R}^2 , $\mathbf{v} = (1, 2)$ y $\mathbf{u} = (3, 4)$.

Ejemplo 2: Producto escalar en \mathbb{R}^3 .

Ejemplo 3: Propiedad de ortogonalidad: $\mathbf{v} \cdot \mathbf{u} = 0$.

Vectores Paralelos y Ortogonales

Dos vectores son paralelos si uno es múltiplo escalar del otro:

$$\mathbf{v} = k\mathbf{u}$$

Son ortogonales si su producto escalar es cero:

$$\mathbf{v} \cdot \mathbf{u} = 0$$

Ejemplo 1: Vectores paralelos en \mathbb{R}^2 .

Ejemplo 2: Vectores ortogonales en \mathbb{R}^3 : $\mathbf{v} = (1,0,0)$ y $\mathbf{u} = (0,1,0)$.

Ejemplo 3: Vectores paralelos y ortogonales gráficamente.