Kursus 02402/02323 Introducerende Statistik

Forelæsning 8: Simpel lineær regression

Peder Bacher

DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby – Danmark e-mail: pbac@dtu.dk

Forår 2017

Kapitel 5: Simpel lineær regressions analyse

To variable: $x \circ y$

Beregn mindstekvadraters estimat af ret linje

Inferens med simpel lineær regressionsmodel

- Statistisk model: $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - Estimation, konfidensintervaller og tests for β_0 og β_1
 - $1-\alpha$ konfidensinterval for linjen (Stor sikkerhed for den rigtige linje ligger indenfor)
- $1-\alpha$ prædiktionsinterval for punkter (Stor sikkerhed for at nye punkter er indenfor)

ρ , R og R^2

- ρ er korrelationen (= $sign_{\beta_1}R$) er graden af lineær sammenhæng mellem x og y
- \bullet R^2 er andelen af den totale variation som er forklaret af modellen
- Afvises $H_0: \beta_1 = 0$ så afvises også $H_0: \rho = 0$

Chapter 5: Simple linear Regression Analysis

Two quantitative variables: x and y

Calculate the least squares line

Inferences for a simple linear regression model

- Statistical model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- Estimation, confidence intervals and tests for β_0 and β_1 .
- $1-\alpha$ confidence interval for the line (high certainty that the real line will be inside)
- ullet 1-lpha prediction interval for punkter (high certainty that new points will be inside)

ρ , R and R^2

- ρ is the correlation $(=sign_{\beta_1}R)$ is the strength of linear relation between x and y
- \bullet R^2 is the fraction of the total variation explained by the model
- If $H_0: \beta_1 = 0$ is rejected, then $H_0: \rho = 0$ is also rejected

Oversigt

- 🚺 Motiverende eksempel: Højde-vægt
- 2 Lineær regressionsmodel
- Mindste kvadraters metode (least squares)
- Statistik og lineær regression
- $oldsymbol{5}$ Hypotesetests og konfidensintervaller for \hat{eta}_0 og \hat{eta}_1
- 6 Konfidensinterval og prædiktionsinterval
 - Konfidensinterval for linien
 - Prædiktionsinterval
- 🕡 summary(lm()) wrap up
- 8 Korrelation
- Model validering: Residual analyse

Heights (x_i) 168 161 167 179 184 166 198 187 191 179 Weights (y_i) 65.5 58.3 68.1 85.7 80.5 63.4 102.6 91.4 86.7 78.9

Heights (x_i)	168	161	167	179	184	166	198	187	191	179
Weights (y_i)	65.5	58.3	68.1	85.7	80.5	63.4	102.6	91.4	86.7	78.9


```
Heights (x_i)
               168
                       161
                              167
                                     179
                                             184
                                                     166
                                                             198
                                                                     187
                                                                            191
                                                                                    179
Weights (y_i)
               65.5
                      58.3
                              68 1
                                     85.7
                                             80.5
                                                    63 4
                                                            102 6
                                                                    91 4
                                                                            86.7
                                                                                   78 9
```

```
##
## Call:
## lm(formula = v ~ x)
##
## Residuals:
    Min 1Q Median 3Q
                            Max
## -5.876 -1.451 -0.608 2.234 6.477
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
1.113 0.106 10.50 5.9e-06 ***
## v
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.9 on 8 degrees of freedom
## Multiple R-squared: 0.932, Adjusted R-squared: 0.924
## F-statistic: 110 on 1 and 8 DF, p-value: 5.87e-06
```

Heights (x_i)	168	161	167	179	184	166	198	187	191	179
Weights (y_i)	65.5	58.3	68.1	85.7	80.5	63.4	102.6	91.4	86.7	78.9

Et scatter plot af nogle punkter. Hvilken model?

• Datapunkter (x_i, y_i)

Kommer de fra en almindelig lineær model?

• Opstil en lineær model: $y_i = \beta_0 + \beta_1 x_i$

men den der mangler noget til at beskrive den tilfældige variation!

De kommer fra en lineær regressionsmodel

ullet Opstil en lineær regressionsmodel: $Y_i=eta_0+eta_1x_i+arepsilon_i$ hvor $arepsilon_i\sim N(0,\sigma^2)$

Den tilfældige variation er beskrevet med en normalfordeling om linien

Opstil en lineær regressionsmodel

• Opstil den lineære regressionsmodel

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- \bullet Y_i er den afhængige variabel (dependent variable). En stokastisk variabel
- x_i er en forklarende variabel (explanatory variable)
- ullet $arepsilon_i$ (epsilon) er afvigelsen (deviation). En stokastisk variabel

og vi antager

 ε_i er independent and identically distributed (i.i.d.) og $N(0,\sigma^2)$

Mindste kvadraters metode

• Hvis vi kun har datapunkterne, hvordan kan vi estimere parametrene β_0 og β_1 ?

God ide: Minimer variansen σ^2 på afvigelsen. Det er på næsten alle måder det bedste valg i dette setup.

• But how!?

Minimer summen af de kvadrerede afvigelser (Residual Sum of Squares (RSS))

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^n \varepsilon_i^2$$

Dvs. estimaterne \hat{eta}_0 og \hat{eta}_1 er dem som minimerer RSS

Simuleret eksempel af model, data og fit

Spørgsmål om beregning af residual (socrative.com-ROOM:PBAC)

Udregning af residual for punkt i:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i = \hat{y}_i + e_i \Leftrightarrow e_i = y_i - \hat{y}_i$$

Hvad er e_1 her?

A: ca. -0.57 B: ca. 0.33 C: ca. 1.3 D: Ved ikke

Svar A: ca. -0.57

Spørgsmål om beregning af RSS (socrative.com-ROOM:PBAC)

Beregn:

Residual Sum of Squares (RSS)

Fire punkter, så n=4

Hvad er
$$RSS = \sum_{i=1}^{n} e_i^2$$
 her?

A: ca. 0.67 B: ca. 1.65 C: ca. 3.4 D: Ved ikke

Svar A: RSS = 0.013 + 0.32 + 0.32 + 0.013 = 0.67

Least squares estimator minimerer RSS

Theorem 5.4 (her for estimatorer som i bogen)

The least squares estimators of $oldsymbol{eta}_0$ and $oldsymbol{eta}_1$ are given by

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})(x_i - \bar{x})}{S_{xx}}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$$

where $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$.

Least squares estimater minimerer RSS

Theorem 5.4 (her for estimater)

The least squares estimatates of eta_0 and eta_1 are given by

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{S_{xx}}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

where $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$.

Vi går ikke dybere ind forskellen mellem estimatorer og estimater her i kurset

R eksempel

```
## Simuler en lineær model med normalfordelt afvigelse og estimer parametrene
## FØRST LAV DATA:
## Generer n værdier af input x som uniform fordelt
x \leftarrow runif(n=20, min=-2, max=4)
## Simuler lineær regressionsmodel
beta0=50: beta1=200: sigma=90
y <- beta0 + beta1 * x + rnorm(n=length(x), mean=0, sd=sigma)
## HERFRA ligesom virkeligheden, vi har dataen i x og y:
## Et scatter plot af x og y
plot(x, y)
## Udrean least squares estimaterne, brug Theorem 5.4
(betainat \leftarrow sum( (y-mean(y))*(x-mean(x)) ) / sum( (x-mean(x))^2 ))
(beta0hat <- mean(y) - beta1hat*mean(x))
## Brug lm() til at udregne estimaterne
lm(v ~ x)
## Plot den estimerede linie
abline(lm(y ~ x), col="red")
```

Parameter estimaterne er stokastiske variabler

Hvis vi gentager forsøget vil estimaterne $\hat{\beta}_0$ og $\hat{\beta}_1$ have samme udfald hver gang? Nej, de er stokastiske variabler. Tager vi en ny stikprøve så vil vi have en anden realisation af dem.

 $Hvordan\ er\ parameter\ estimaterne\ fordelt\ (givet\ normalfordelte\ afvigelser)?$

Prøv lige at simulere for at se på det...

 Hvordan er parameter estimaterne i en lineær regressionsmodel fordelt (givet normalfordelte afvigelser)?

De er normalfordelte og deres varians kan estimeres:

Theorem 5.7 (første del)

$$V[\hat{\beta}_0] = \frac{\sigma^2}{n} + \frac{\bar{x}^2 \sigma^2}{S_{xx}}$$

$$V[\hat{\beta}_1] = \frac{\sigma^2}{S_{xx}}$$

$$Cov[\hat{\beta}_0, \hat{\beta}_1] = -\frac{\bar{x}\sigma^2}{S_{xx}}$$

• Kovariansen $\text{Cov}[\hat{\beta}_0, \hat{\beta}_1]$ (covariance) gør vi ikke mere ud af her.

Estimater af standardafvigelserne på \hat{eta}_0 og \hat{eta}_1

Theorem 5.7 (anden del)

Where σ^2 is usually replaced by its estimate $(\hat{\sigma}^2)$. The central estimator for σ^2 is

$$\hat{\sigma}^2 = \frac{RSS(\hat{\beta}_0, \hat{\beta}_1)}{n-2} = \frac{\sum_{i=1}^n e_i^2}{n-2}.$$

When the estimate of σ^2 is used the variances also become estimates and we"ll refer to them as $\hat{\sigma}_{B_0}^2$ and $\hat{\sigma}_{B_0}^2$.

ullet Estimat af standardafvigelserne for \hat{eta}_0 og \hat{eta}_1 (ligningerne (5-41) og (5-42))

$$\hat{\sigma}_{\beta_0} = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}; \quad \hat{\sigma}_{\beta_1} = \hat{\sigma} \sqrt{\frac{1}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

Spørgsmål: Om fejlenes spredning σ (socrative.com-ROOM:PBAC)

For hvilken er residual variansen $\hat{\sigma}^2 = \frac{RSS(\hat{\beta}_0, \hat{\beta}_1)}{n-2} = \frac{\sum_{i=1}^n e_i^2}{n-2}$ størst?

A: For fit i plot A B: For fit i plot B C: Lige stor for begge D: Ved ikke Svar A: For fit i plot A er $\hat{\sigma}$ ca. 100 og for fit i plot B ca. 20

Spørgsmål: Om fejlenes spredning σ (socrative.com-ROOM:PBAC)

For hvilken er residual variansen $\hat{\sigma}^2 = \frac{RSS(\hat{\beta}_0,\hat{\beta}_1)}{n-2} = \frac{\sum_{i=1}^n e_i^2}{n-2}$ størst?

A: For fit i plot A B: For fit i plot B C: Lige stor for begge D: Ved ikke Svar C: Lige stor for begge, omkring 200

Hypotesetests for parameter parametrene

 Vi kan altså udføre hypotesetests for parameter estimater i en lineær regressionsmodel:

$$H_{0,i}: \quad eta_i = eta_{0,i} \ H_{1,i}: \quad eta_i
eq eta_{1,i}$$

• Vi bruger de t-fordelte statistikker:

Theorem 5.11

Under the null-hypothesis $(\beta_0 = \beta_{0,0})$ and $\beta_1 = \beta_{0,1}$ the statistics

$$T_{eta_0} = rac{\hat{eta}_0 - eta_{0,0}}{\hat{oldsymbol{\sigma}}_{eta_0}}; \quad T_{eta_1} = rac{\hat{eta}_1 - eta_{0,1}}{\hat{oldsymbol{\sigma}}_{eta_1}},$$

are t-distributed with n-2 degrees of freedom, and inference should be based on this distribution.

Eksempel: Hypotesetest for parametrene

- Se Eksempel 5.12 for eksempel på hypotesetest, samt Metode 5.13
- Test om parametrene er signifikant forskellige fra 0

$$H_{0,i}: \quad \beta_i = 0$$

 $H_{1,i}: \quad \beta_i \neq 0$

• Se resultatet med simulering i R

```
## Hypotesetests for signifikante parametre

## Generer x
x <- runif(n=20, min=-2, max=4)
## Simuler Y
beta0=50; beta1=200; sigma=90
y <- beta0 + beta1 * x + rnorm(n=length(x), mean=0, sd=sigma)

## Brug lm() til at udregne estimaterne
fit <- lm(y ~ x)

## Se summary, deri står hvad vi har brug for
summary(fit)</pre>
```

Konfidensintervaller for parametrene

Method 5.14

(1-lpha) confidence intervals for eta_0 and eta_1 are given by

$$\hat{\beta}_0 \pm t_{1-\alpha/2} \,\hat{\sigma}_{\beta_0}$$

$$\hat{\beta}_1 \pm t_{1-\alpha/2} \,\hat{\sigma}_{\beta_1}$$

where $t_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of a t-distribution with n-2 degrees of freedom.

- husk at $\hat{\sigma}_{\beta_0}$ og $\hat{\sigma}_{\beta_1}$ findes ved ligningerne (5-41) og (5-42)
- ullet i R kan $\hat{\sigma}_{eta_0}$ og $\hat{\sigma}_{eta_1}$ aflæses ved "Std. Error" ved "summary(fit)"

Simuleringseksempel: Konfidensintervaller for parametrene

```
## Lav konfidensintervaller for parametrene
## Antal gentagelser
nRepeat <- 100
## Fangede vi den rigtige parameter
TrueValInCI <- logical(nRepeat)</pre>
## Gentag simuleringen og estimeringen nRepeat gange
for(i in 1:nRepeat){
  ## Generer x
 x \leftarrow runif(n=20, min=-2, max=4)
 ## Simuler y
 beta0=50; beta1=200; sigma=90
 y <- beta0 + beta1 * x + rnorm(n=length(x), mean=0, sd=sigma)
  ## Brua lm() til at udreane estimaterne
 fit <-lm(v ~x)
  ## Heldiquis kan R bereque konfidensintervallet (level=1-alpha)
  (ci <- confint(fit, "(Intercept)", level=0.95))</pre>
  ## Var den rigtige parameterværdi "fanget" af intervallet?
  (TrueValInCI[i] <- ci[1] < beta0 & beta0 < ci[2])
## Hvor ofte blev den rigtige værdi "fanget"?
sum(TrueValInCI) / nRepeat
```

Spørgsmål: Om fordelingen af \hat{eta}_1 (socrative.com-ROOM:PBAC)

Hvilket plot repræsenterer fordelingen af \hat{eta}_1 ?

A: Plot A B: Plot B C: Plot C D: Ved ikke

Svar A: β_1 er negativ ($\beta_1 = -25$) og fordelingen af $\hat{\beta}_1$ er centreret i β_1

Spørgsmål: Om fordelingen af $\frac{\hat{\beta}_1 - \beta_{0,1}}{\hat{\sigma}_{\beta_1}}$

(socrative.com-ROOM:PBAC)

Hvilket plot repræsenterer fordelingen af $rac{\hat{eta}_1-eta_{0,1}}{\hat{\sigma}_{eta_1}}$ under H_0 : $eta_{0,1}=-25$?

B: Plot B C: Plot C D: Ved ikke A: Plot A

Svar C: $\frac{\beta_1 - \beta_{0,1}}{\sigma_0}$ følger under H_0 en t-fordeling, dvs. centreret i 0

Method 5.17: Konfidensinterval for $\beta_0 + \beta_1 x_0$

- Konfidensinterval for $eta_0 + eta_1 x_0$ svarer til et konfidensinterval for linien i punktet x_0
- Beregnes med

$$(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2} \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

• Der er $100(1-\alpha)\%$ sandsynlighed for at den rigtige linie, altså $\beta_0 + \beta_1 x_0$, er inde i konfidensintervallet

Method 5.17: Prædiktionsinterval for $\beta_0 + \beta_1 x_0 + \varepsilon_0$

- Prædiktionsintervallet (prediction interval) for Y_0 beregnes for en "ny" værdi af x_i , her kaldt x_0
- Dette gøres før Y₀ observeres ved

$$(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2} \cdot \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

- Der er $100(1-\alpha)\%$ sandsynlighed for at den observerede y_0 vil falde inde i prædiktionsintervallet
- ullet Et prædiktionsinterval bliver altid større end et konfidensinterval for fastholdt lpha

Eksempel med konfidensinterval for linien

```
## Eksempel med konfidensinterval for linien

## Lav en sekvens af x værdier

xval <- seq(from=-2, to=6, length.out=100)

## Brug predict funktionen

CI <- predict(fit, newdata=data.frame(x=xval),
interval="confidence",
level=.95)

## Se lige hvad der kom
head(CI)

## Plot data, model og intervaller
plot(x, y, pch=20)
abline(fit)
lines(xval, CI[, "lwr"], lty=2, col="red", lwd=2)
lines(xval, CI[, "upr"], lty=2, col="red", lwd=2)
lines(xval, CI[, "upr"], lty=2, col="red", lwd=2)
```


Eksempel med prædiktionsinterval

```
## Eksempel med prædiktionsinterval
## Lav en sekvens a x værdier
xval <- seq(from=-2, to=6, length.out=100)
## Beregn interval for hvert x
PI <- predict(fit, newdata=data.frame(x=xval),
interval="prediction",
level=.95)

## Se lige hvad der kom tilbage
head(PI)

## Plot data, model og intervaller
plot(x, y, pch=20)
abline(fit)
lines(xval, PI[, "lwr"], lty=2, col="blue", lwd=2)
lines(xval, PI[, "upr"], lty=2, col="blue", lwd=2)
lines(xval, PI[, "upr"], lty=2, col="blue", lwd=2)</pre>
```


Hvad bliver mere skrevet ud af summary?

```
##
## Call:
## lm(formula = v ~ x)
##
## Residuals:
  Min 1Q Median 3Q Max
## -37.35 -14.08 0.61 14.05 38.96
##
## Coefficients:
      Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -2.99 3.29 -0.91 0.37
## x
      -23.91 1.67 -14.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20 on 48 degrees of freedom
## Multiple R-squared: 0.811, Adjusted R-squared: 0.807
## F-statistic: 206 on 1 and 48 DF, p-value: <2e-16
```

summary($Im(y \sim x)$) wrap up

- Residuals: Min 1Q Median 3Q Max Residualernes: Minimum, 1. kvartil, Median, 3. kvartil, Maximum
- Coefficients:

Estimate Std. Error t value Pr(>|t|) "stjerner"

Koefficienternes:

Estimat
$$\hat{\sigma}_{eta_i}$$
 $t_{
m obs}$ p -værdi

- Testen er $H_{0,i}: \beta_i = 0$ vs. $H_{1,i}: \beta_i \neq 0$
- Stjernerne er sat efter p-værdien
- Residual standard error: XXX on XXX degrees of freedom $\varepsilon_i \sim N(0, \sigma^2)$: Udskrevet er $\hat{\sigma}$ og v frihedsgrader (brug til hypotesetesten)
- Multiple R-squared: XXX Forklaret varians r^2

Resten bruger vi ikke i det her kursus

Forklaret varians og korrelation

- Forklaret varians af en model er r^2 , i summary "Multiple R-squared"
- Beregnes med

$$r^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

hvor
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• Andel af den totale varians i data (y_i) der er forklaret med modellen

Forklaret varians og korrelation

- Korrelationen ρ er et mål for *lineær sammenhæng* mellem to stokastiske variable
- Estimeret (i.e. empirisk) korrelation

$$\hat{\rho} = r = \sqrt{r^2} \operatorname{sgn}(\hat{\beta}_1)$$

hvor
$$\mathrm{sgn}(\hat{\pmb{\beta}}_1)$$
 er: -1 for $\hat{\pmb{\beta}}_1 \leq 0$ og 1 for $\hat{\pmb{\beta}}_1 > 0$

- Altså:
 - Positiv korrelation ved positiv hældning
 - Negativ korrelation ved negativ hældning

$$r^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

$$= 1 - \frac{1.97}{18.02}$$

$$= 1 - 0.11 = 0.89 \Leftrightarrow$$

$$r = 0.94$$

Hvad er korrelationen mellem x og y?

A: ca. -0.95 B: ca. 0 C: ca. 0.95

Svar) C: ca. 0.95

$$r^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

$$= 1 - \frac{57.98}{78.32}$$

$$= 1 - 0.74 = 0.26 \Leftrightarrow$$

$$r = 0.51$$

Hvad er korrelationen mellem x og y?

A: ca. -0.5 B: ca. 0 C: ca. 0.5

Svar) A: ca. -0.5

$$r^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

$$= 1 - \frac{168.66}{169.18}$$

$$= 1 - 1 = 0 \Leftrightarrow$$

$$r = 0.06$$

Hvad er korrelationen mellem x og y?

A: ca. -0.5 B: ca. 0 C: ca. 0.5

Svar) B: ca. 0

$$r^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

$$= 1 - \frac{19.81}{19.81}$$

$$= 1 - 1 = 1.52 \times 10^{-5} \Leftrightarrow$$

$$r = 0$$

Hvad er korrelationen mellem x og y?

A: ca. -0.5 B: ca. 0 C: ca. 0.5

Svar) B: ca. 0

Test for signifikant korrelation

• Test for signifikant korrelation (lineær sammenhæng) mellem to variable

$$H_0: \rho = 0$$

$$H_1: \rho \neq 0$$

er ækvivalent med

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

hvor \hat{eta}_1 er estimatet af hældningen i simpel lineær regressionsmodel

Simuleringseksempel om korrelation

```
## Korrelation
## Generer x
x \leftarrow runif(n=20, min=-2, max=4)
## Simuler u
beta0=50; beta1=200; sigma=90
y <- beta0 + beta1 * x + rnorm(n=length(x), mean=0, sd=sigma)
## Scatter plot
plot(x,y)
## Brug lm() til at udregne estimaterne
fit <- lm(y ~ x)
## Den rigtige linie
abline(beta0, beta1)
## Plot fittet
abline(fit, col="red")
## Se summary, deri står hvad vi har brug for
summary(fit)
## Korrelation mellem x og y
cor(x,y)
## Kvadreret er den "Multiple R-squared" fra summary(fit)
cor(x,y)^2
```

Model validering: Residual analyse

Method 5.26

- Check normality assumption with q-q plot.
- Check (non)systematic behavior by plotting the residuals e_i as a function of fitted values \hat{y}_i

Residual Analysis in R

```
## Model validering: residual analysis
fit <- lm(y ~ x)
par(mfrow = c(1, 2))
qqnorm(fit$residuals)
qqline(fit$residuals)
plot(fit$fitted, fit$residuals, xlab="Fitted values", ylab="Residuals")</pre>
```


