Kelvin Ly

kelvin.ly1618@gmail.com, 407-269-7092, Orlando, FL

University of Central Florida MS, Computer Engineering

Cummulative GPA: 3.944 2016-2018

University of Central Florida BS, Electrical Engineering

Cummulative GPA: 3.905, Magna Cum Laude 2011-2015

OBJECTIVES

To begin and pursue a career in electronics engineering or firmware engineering

SKILLS

- Professional experience in electronics design (mostly mixed signal/digital, a little RF), PCB layout (KiCad, Altium Designer)
- Hobbyist level PCB assembly and soldering, SPICE circuit modeling, and reverse engineering
- Some familiarity with I2C, SPI, UART, CAN, SDIO, Ethernet(10BASE-T), on-off keying, PCM, 802.11a/b, MIPI CSI, parallel camera interface, JESD204, SerDes
- Implemented I2C, SPI, UART, PWM, VGA, Ethernet RMII communication using FPGA logic (from scratch, clean room implementations from standards)
- Fluent in C99, C++14, Python 2/3, Go, Verilog
- Working knowledge of x86/x64/MIPS/MSP430 assembly, Java, LaTeX, MATLAB, Multisim, Xilinx ISE/Vivado, VHDL, Linux (scripting and low-level userland programming, some kernel module programming), JTAG/SWD

Professional Experience

STERIS IMS ELECTRICAL ENGINEER, COOPER CITY FL

May 2018 - Present

- Created PCB designs, layouts, sourced parts, and assembled and tested PCBs to create reproducible and manufacturable designs, including some flexible PCBs
- Developed **firmware** and **support software** for devices and prototype designs as needed, including work in **image processing** using **OpenCV**, and **IMU sensor fusion** using industry-standard **Madgwick filter**
- ullet Tested devices to ensure compliance with IEC60601 and other standards

Cassina Technologies Software Engineer, Cooper City FL

October 2018 - Present

- Developed firmware for Bluetooth LE-based device and designed Bluetooth LE application level communication protocols to use in device
- Developed Android app to interface with and to control Bluetooth LE-based device

Fluorometric Instruments Design Engineer, Orlando FL

September 2017 - Present

- Designed PCBs part time for oxygen sensors, allowing client to test manufacturable products
- Created designs, layouts, sourced parts, and assembled and tested PCBs to create reproducible and manufacturable designs
- Developed firmware and support software for devices as needed

University of Central Florida Undergraduate/Graduate Researcher, Orlando Fl

November 2015 - May 2018

- Researched defenses and attack mitigations for the Internet of Things, producing four publications and one book chapter
- Designed and assembled PCBs for the lab, producing tools and prototypes for a wide variety of projects
 - Built mixed-signal or digital designs incorporating Texas Instruments, Expressif, and Atmel microcontrollers
 - Designed architecture and IP cores for Nexys 4 Artix-7 FPGA to transceive Ethernet packets and crack homomorphic encryption as part of our second place entry in NYU CSAW ESC '15
 - Designed IP cores in Verilog to patch OpenRISC processor core as part of our winning entry in NYU CSAW ESC '16

University of Central Florida Undergraduate Researcher, Orlando FL

DECEMBER 2014 - MARCH 2015

- Studied feature extraction from EEG data, implementing SSVEP frequency detection that was later used in senior design project
- Maintained and repaired RAVEN II medical robot running on ROS robotics framework, restoring it to operation and allowing its use under a new team in current research projects

Internships

IBM Extreme Blue Intern, RTP NC

May 2015 - August 2015

- Developed on-disk encryption for IBM Connections, creating a roadmap of design pitfalls for IBM's teams to work off of
- Implemented project in JavaScript and Node.js, with patches to existing Java and Python code and libraries, successfully providing encrypted context access and search indexing

Google Software Engineer Intern, Chapel Hill NC

May 2014 - August 2014

- Patched existing benchmarking code for Skia rendering engine, allowing collection of gigabytes of data per day into a single database
- Contributed code in C++, Python and Go to create actionable visualizations of benchmarking data, fulfilling Skia team's recommendations

- UCF Lunar Knights project, Software team lead Fall 2017-Spring 2018, member since 2015 (Martian robotic mining competition)
 - Troubleshot and debugged previous year competition robots, tuning and refining PID controller values to allow responsive robot movement and prevent physical damage to robot frame
 - Designed CAN interfacing board with high density connectors to mate with Nvidia's Jetson TX2, allowing native CAN bus access
 - Developing software for robot simulation and testing using ROS and gazebo, allowing parallel development of autonomy and robot assembly
 - Developing software systems for **robotic autonomous navigation** and teleoperation, allowing robot functionality for all years of competition
- Senior design project (mind-controlled wheelchair)
 - Led high-level hardware system design
 - Designed and layed out circuits for all high-level modules using KiCAD EDA software
 - Research into signal processing for feature extraction with respect to applications in brain-computer interfaces
- Capacitance-based linear encoder (https://github.com/cactorium/linear-sensors)
 - Designed low-noise electronics to amplify and filter weak capacitively coupled signal capable of repeatable measurements to within approximately 0.01 mm
 - Developed bare metal ARM firmware to digitally process signal to capture phase information using CORDIC-based algorithms
- Light-based transmitter and receiver pair (part of in progress project)
 - Designed wireless communication using **BPSK** using white LED as transmitter and visible light photodiode as receiver on custom PCBs
 - Developed low noise transimpedance amplifier and op amp gain stages to amplify and filter light signal
 - Developed bare metal ARM firmware to digitally process signal to recover data and send to host across custom implementation of CDC-ACM USB interface
 - Developed **low power bare metal MSP430 firmware** to activate based on **capacitive touch sensing** and transmit encoded IMU data across the light-based wireless channel
- Custom universal motor controller board, capable of driving brushed DC, BLDC, and stepper motors at 12-18 V, using DI DGD0506A MOSFET gate driver with integrate high-side gate bootstrap (part of in progress project)
- 915 MHz 1 Mbps discrete RF transceiver (in progress)
 - Designed transmitter and receiver pair using discrete radio frequency components, including discrete LNA and PA transistor stages
 - Developing FPGA logic for Lattice ICE40 LP FPGA to package and encode/decode data into/out of wireless packets, interfacing with custom discrete high-speed DAC and ADC