

126 GeV Higgs boson and universality relations in the $SO(5) \times U(1)$ gauge-Higgs unification

Yutaka Hosotani

Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

The Higgs boson mass $m_H = 126$ GeV in the $SO(5) \times U(1)$ gauge-Higgs unification in the Randall-Sundrum space leads to important consequences. An universal relation is found between the Kaluza-Klein (KK) mass scale m_{KK} and the Aharonov-Bohm phase θ_H in the fifth dimension; $m_{KK} \sim 1350$ GeV/ $(\sin \theta_H)^{0.787}$. The cubic and quartic self-couplings of the Higgs boson become smaller than those in the SM, having universal dependence on θ_H . The decay rates $H \rightarrow \gamma\gamma, gg$ are evaluated by summing contributions from KK towers. Corrections coming from KK excited states turn out very small. With $\theta_H = 0.1 \sim 0.35$, the mass of the first KK Z is predicted to be $2.5 \sim 6$ TeV.

I. INTRODUCTION

The discovery of a Higgs-like boson with $m_H = 126$ GeV at LHC may give a hint for extra dimensions. We show [1] that the observed Higgs boson mass in the gauge-Higgs unification scenario leads to universal relations among the AB phase θ_H , the KK mass m_{KK} , the Higgs self couplings, and the KK Z boson mass $m_{Z^{(1)}}$, independent of the details of the model.

The gauge-Higgs unification scenario is predictive. As a result of the Hosotani mechanism [2–6] the Higgs boson mass emerges at the quantum level without being afflicted with divergence. The Higgs couplings to the KK towers of quarks and W/Z bosons have a distinctive feature that their signs alternate in the KK level, significant departure from other extra dimensional models such as UED models. As a consequence contributions of KK modes to the decay rate $\Gamma(H \rightarrow \gamma\gamma)$ turn out very small. Surprisingly the gauge-Higgs unification gives nearly the same phenomenology at low energies as the standard model (SM).

The gauge-Higgs unification can be confirmed by finding the KK Z boson in the range $2.5 \sim 6$ TeV and by determining the Higgs self couplings and Yukawa couplings at LHC and ILC.

II. $SO(5) \times U(1)$ GAUGE-HIGGS UNIFICATION IN RS

The model is given by $SO(5) \times U(1)$ gauge theory in the Randall-Sundrum (RS) warped space

$$ds^2 = e^{-2\sigma(y)} \eta_{\mu\nu} dx^\mu dx^\nu + dy^2 \quad (1)$$

where $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$, $\sigma(y) = \sigma(y + 2L) = \sigma(-y)$, and $\sigma(y) = k|y|$ for $|y| \leq L$. The RS space is viewed as bulk AdS space ($0 < y < L$) with AdS curvature $-6k^2$ sandwiched by the Planck brane at $y = 0$ and the TeV brane at $y = L$. The $SO(5) \times U(1)$ model was proposed by Agashe et al [7, 8]. It has been elaborated in refs. [9, 10], and a concrete realistic model has been formulated in ref. [1]. The schematic view of the gauge-Higgs unification is given below.

The 5D Lagrangian density consists of

$$\begin{aligned} \mathcal{L} = & \mathcal{L}_{\text{bulk}}^{\text{gauge}}(A, B) + \mathcal{L}_{\text{bulk}}^{\text{fermion}}(\Psi_a, \Psi_F, A, B) \\ & + \mathcal{L}_{\text{brane}}^{\text{fermion}}(\hat{\chi}_\alpha, A, B) + \mathcal{L}_{\text{brane}}^{\text{scalar}}(\hat{\Phi}, A, B) + \mathcal{L}_{\text{brane}}^{\text{int}}(\Psi_a, \hat{\chi}_\alpha, \hat{\Phi}) . \end{aligned} \quad (2)$$

$SO(5)$ and $U(1)_X$ gauge fields are denoted by A_M and B_M , respectively. The two associated gauge coupling constants are g_A and g_B . Two quark multiplets and two lepton multiplets Ψ_a are introduced in the vector representation of $SO(5)$ in each generation, whereas n_F extra fermion multiplets Ψ_F are introduced in the spinor representation. These bulk fields obey the orbifold boundary conditions at $y_0 = 0$ and $y_1 = L$ given by

$$\begin{aligned} \begin{pmatrix} A_\mu \\ A_y \end{pmatrix}(x, y_j - y) &= P_j \begin{pmatrix} A_\mu \\ -A_y \end{pmatrix}(x, y_j + y) P_j^{-1}, \\ \begin{pmatrix} B_\mu \\ B_y \end{pmatrix}(x, y_j - y) &= \begin{pmatrix} B_\mu \\ -B_y \end{pmatrix}(x, y_j + y), \\ \Psi_a(x, y_j - y) &= P_j \Gamma^5 \Psi_a(x, y_j + y), \quad \Psi_F(x, y_j - y) = (-1)^j P_j^{\text{sp}} \Gamma^5 \Psi_F(x, y_j + y), \\ P_j &= \text{diag}(-1, -1, -1, -1, 1), \quad P_j^{\text{sp}} = \text{diag}(1, 1, -1, -1). \end{aligned} \quad (3)$$

The orbifold boundary conditions break $SO(5) \times U(1)_X$ to $SO(4) \times U(1)_X \simeq SU(2)_L \times SU(2)_R \times U(1)_X$.

The brane interactions are invariant under $SO(4) \times U(1)_X$. The brane scalar $\hat{\Phi}$ is in the $(\mathbf{1}, \mathbf{2})_{-1/2}$ representation of $[SU(2)_L, SU(2)_R]_{U(1)_X}$. It spontaneously breaks $SU(2)_R \times U(1)_X$ to $U(1)_Y$ by non-vanishing $\langle \hat{\Phi} \rangle$ whose magnitude is supposed to be much larger than the KK scale m_{KK} . At this stage the residual gauge symmetry is $SU(2)_L \times U(1)_Y$. Brane fermions $\hat{\chi}_\alpha$ are introduced in the $(\mathbf{2}, \mathbf{1})$ representation. The quark-lepton vector multiplets Ψ_a are decomposed into $(\mathbf{2}, \mathbf{2}) + (\mathbf{1}, \mathbf{1})$. The $(\mathbf{2}, \mathbf{2})$ part of Ψ_a , $\hat{\chi}_\alpha$ in $(\mathbf{2}, \mathbf{1})$ and $\hat{\Phi}$ in $(\mathbf{1}, \mathbf{2})$ form $SO(4) \times U(1)_X$ invariant brane interactions. With $\langle \hat{\Phi} \rangle \neq 0$ they yield mass terms. The resultant spectrum of massless fermions is the same as in the SM. All exotic fermions become heavy, acquiring masses of $O(m_{\text{KK}})$. Further with brane fermions all anomalies associated with gauge fields of $SO(4) \times U(1)_X$ are cancelled.[10]

With the orbifold boundary conditions (3) there appear four zero modes of A_y in the components $(A_y)_{a5} = -(A_y)_{5a}$ ($a = 1, \dots, 4$). They form an $SO(4)$ vector, or an $SU(2)_L$ doublet, corresponding to the Higgs doublet in the SM. The AB phase is defined with these zero modes by

$$e^{i\Theta_H/2} \sim P \exp \left\{ ig_A \int_0^L dy A_y \right\}. \quad (4)$$

At the tree level the value of the AB phase Θ_H is not determined, as it gives vanishing field strengths. At the quantum level its effective potential V_{eff} becomes non-trivial. The value of Θ_H is determined by the location of the minimum of V_{eff} . This is the Hosotani mechanism and induces dynamical gauge symmetry breaking. It leads to gauge-Higgs unification, resolving the gauge-hierarchy problem.[6] Without loss of generality one can assume that $(A_y)_{45}$ component develops a non-vanishing expectation value. Let us denote the corresponding component of Θ_H by θ_H . If θ_H takes a non-vanishing value, the electroweak symmetry breaking takes place.

III. $V_{\text{eff}}(\theta_H)$ AND m_H

Given the matter content one can evaluate $V_{\text{eff}}(\theta_H)$ at the one loop level unambiguously. The θ_H dependent part of $V_{\text{eff}}(\theta_H)$ is finite, being free from divergence. $V_{\text{eff}}(\theta_H)$ depends on several parameters of the theory; $V_{\text{eff}} = V_{\text{eff}}(\theta_H; \xi, c_t, c_F, n_F, k, z_L)$ where ξ is the gauge parameter in the generalized R_ξ gauge, c_t and c_F are the bulk mass parameters of the top and extra fermion multiplets, n_F is the number of the extra fermion multiplets, and k, z_L are parameters specifying the RS metric (1). Given these parameters, V_{eff} is fixed, and the location of the global minimum of $V_{\text{eff}}(\theta_H)$, θ_H^{\min} , is determined.

With θ_H^{\min} determined, m_Z , g_w , $\sin^2 \theta_W$ are determined from g_A, g_B, k, z_L and θ_H^{\min} . The top mass m_t is determined from $c_t, k, z_L, \theta_H^{\min}$, whereas the Higgs boson mass m_H is given by

$$m_H^2 = \frac{1}{f_H^2} \frac{d^2 V_{\text{eff}}}{d \theta_H^2} \Big|_{\min}, \quad f_H = \frac{2}{g_w} \sqrt{\frac{k}{L(z_L^2 - 1)}}. \quad (5)$$

Let us take $\xi = 1$. Then the theory has seven parameters $\{g_A, g_B, k, z_L, c_t, c_F, n_F\}$. Adjusting these parameters, we reproduce the values of five observed quantities $\{m_Z, g_w, \sin^2 \theta_W, m_t, m_H\}$. This leaves two parameters, say z_L and n_F , free. Put differently, the value of θ_H^{\min} is determined as a function of z_L and n_F ; $\theta_H^{\min} = \theta_H(z_L, n_F)$. We comment that contributions from other light quark-lepton multiplets to V_{eff} are negligible.

$V_{\text{eff}}(\theta_H)$ in the absence of the extra fermions ($n_F = 0$) was evaluated in refs. [9, 11]. It was found there that the global minima naturally appear at $\theta_H = \pm \frac{1}{2}\pi$ at which the Higgs boson becomes absolutely stable. It is due to the emergence of the H parity invariance.[11, 12] In particular the Higgs trilinear couplings to W , Z , quarks and leptons are all proportional to $\cos \theta_H$ and vanish at $\theta_H = \pm \frac{1}{2}\pi$.[13–18]

This, however, conflicts with the observation of an unstable Higgs boson at LHC. To have an unstable Higgs boson the H parity invariance must be broken, which is most easily achieved by introducing extra fermion multiplets Ψ_F in the spinor representation of $SO(5)$ in the bulk.[1]

Let us take $n_F = 3$, $z_L = e^{kL} = 10^7$ as an example. $\{g_w, \sin^2 \theta_W\}$ are related to $\{g_A, g_B\}$ by

$$g_w = \frac{g_A}{\sqrt{L}}, \quad \tan \theta_W = \frac{g_B}{\sqrt{g_A^2 + g_B^2}}, \quad (6)$$

where $z_L = e^{kL}$. The observed values of $\{m_Z, g_w, \sin^2 \theta_W, m_t, m_H\}$ are reproduced with $k = 1.26 \times 10^{10}$ GeV, $c_t = 0.330$, $c_F = 0.353$ for which the minima of V_{eff} are found at $\theta_H = \pm 0.258$. The KK mass scale is $m_{\text{KK}} = \pi k z_L^{-1} = 3.95$ TeV. $V_{\text{eff}}(\theta_H)$ is depicted in Fig. 1 with red curves. For comparison V_{eff} in the case of $n_F = 0$ is also plotted with a blue curve. When $n_F = 0$ and $z_L = 10^7$, the minima are located at $\theta_H = \pm \frac{1}{2}\pi$. The observed values of $\{m_Z, g_w, \sin^2 \theta_W, m_t\}$ are reproduced with $k = 3.16 \times 10^9$ GeV and $c_t = 0.345$. In this case the Higgs boson mass determined by (5) becomes $m_H = 87.9$ GeV, and $m_{\text{KK}} = 993$ GeV. One can see how the position of the minima is shifted from $\theta_H = \pm \frac{1}{2}\pi$ to $\theta_H = \pm 0.082\pi = \pm 0.258$ by the introduction of the extra fermions.

FIG. 1: The effective potential $V_{\text{eff}}(\theta_H)$ for $z_L = 10^7$. $U = 16\pi^6 m_{\text{KK}}^{-4} V_{\text{eff}}$ is plotted. The red curves are for $n_F = 3$ with $m_H = 126$ GeV. V_{eff} has minima at $\theta_H = \pm 0.258$ and $m_{\text{KK}} = 3.95$ TeV. The blue curve is for $n_F = 0$ in which case $m_H = 87.9$ GeV and $m_{\text{KK}} = 993$ GeV.

IV. UNIVERSALITY

As explained above, the AB phase $\theta_H (= \theta_H^{\min})$ is determined as a function of z_L and n_F ; $\theta_H(z_L, n_F)$. The KK mass scale $m_{\text{KK}} = \pi k z_L^{-1}$ is also determined as a function of z_L and n_F ; $m_{\text{KK}}(z_L, n_F)$. The relation between them is plotted for $n_F = 1, 3, 9$ in the top figure in Fig. 2. One sees that all points fall on one universal curve to good accuracy, independent of n_F .

Similarly one can evaluate the cubic (λ_3) and quartic (λ_4) self-couplings of the Higgs boson H by expanding $V_{\text{eff}}[\theta_H + (H/f_H)]$ around the minimum in a power series in H . They are depicted in the bottom figure in Fig. 2. Although the shape of $V_{\text{eff}}(\theta_H)$ heavily depends on n_F , the relations $\lambda_3(\theta_H)$ and $\lambda_4(\theta_H)$ turn out universal, independent of n_F .

It is rather surprising that there hold universal relations among θ_H , m_{KK} , λ_3 and λ_4 . Once θ_H is determined from one source of observation, then many other physical quantities are fixed and predicted. The gauge-Higgs unification gives many definitive predictions to be tested by experiments. We tabulate values of various quantities determined from $m_H = 126$ GeV with given z_L for $n_F = 3$ in Table I. The relation between θ_H and

FIG. 2: Universality relations. [Top] KK scale $m_{\text{KK}}(\theta_H)$. [Bottom left] Higgs cubic self-coupling $\lambda_3(\theta_H)$. [Bottom right] Higgs quartic self-coupling $\lambda_4(\theta_H)$. The universality, independent of n_F , is seen in all relations.

m_{KK} is well summarized with

$$m_{\text{KK}} \sim \frac{1350 \text{ GeV}}{(\sin \theta_H)^{0.787}}. \quad (7)$$

TABLE I: Values of the various quantities with given z_L for $n_F = 3$. $m_{Z^{(1)}}$ and $m_{F^{(1)}}$ are masses of the first KK Z boson and the lowest mode of the extra fermion multiplets. Relations among θ_H , m_{KK} and $m_{Z^{(1)}}$ are universal, independent of n_F .

z_L	θ_H	m_{KK}	$m_{Z^{(1)}}$	$m_{F^{(1)}}$
10^8	0.360	3.05 TeV	2.41 TeV	0.668 TeV
10^7	0.258	3.95	3.15	0.993
10^6	0.177	5.30	4.25	1.54
10^5	0.117	7.29	5.91	2.53

V. $H \rightarrow \gamma\gamma, gg$

In the gauge-Higgs unification all of the 3-point couplings of W , Z , quarks and leptons to the Higgs boson H at the tree level are suppressed by a common factor $\cos \theta_H$ compared with those in the SM.[13–18] The decay of the Higgs boson to two photons goes through loop diagrams in which W boson, quarks, leptons, extra fermions and their KK excited states run.

The decay rate $\Gamma[H \rightarrow \gamma\gamma]$ is given by

$$\Gamma(H \rightarrow \gamma\gamma) = \frac{\alpha^2 g_w^2}{1024\pi^3} \frac{m_H^3}{m_W^2} |\mathcal{F}_{\text{total}}|^2,$$

$$\begin{aligned}
\mathcal{F}_{\text{total}} &= \mathcal{F}_W + \frac{4}{3}\mathcal{F}_{\text{top}} + \left(2(Q_X^{(F)})^2 + \frac{1}{2}\right) n_F \mathcal{F}_F , \\
\mathcal{F}_W &= \cos \theta_H \sum_{n=0}^{\infty} I_{W^{(n)}} \frac{m_W}{m_{W^{(n)}}} F_1(\tau_{W^{(n)}}) , \quad I_{W^{(n)}} = \frac{g_{HW^{(n)}W^{(n)}}}{g_w m_{W^{(n)}} \cos \theta_H} , \\
\mathcal{F}_{\text{top}} &= \cos \theta_H \sum_{n=0}^{\infty} I_{t^{(n)}} \frac{m_t}{m_{t^{(n)}}} F_{1/2}(\tau_{t^{(n)}}) , \quad I_{t^{(n)}} = \frac{y_{t^{(n)}}}{y_t^{\text{SM}} \cos \theta_H} , \\
\mathcal{F}_F &= \sin \frac{1}{2}\theta_H \sum_{n=1}^{\infty} I_{F^{(n)}} \frac{m_t}{m_{F^{(n)}}} F_{1/2}(\tau_{F^{(n)}}) , \quad I_{F^{(n)}} = \frac{y_{F^{(n)}}}{y_t^{\text{SM}} \sin \frac{1}{2}\theta_H} ,
\end{aligned} \tag{8}$$

where $W^{(0)} = W$, $t^{(0)} = t$, $\tau_a = 4m_a^2/m_H^2$. The functions $F_1(\tau)$ and $F_{1/2}(\tau)$ are defined in Ref. [19], and $F_1(\tau) \sim 7$ and $F_{1/2}(\tau) \sim -\frac{4}{3}$ for $\tau \gg 1$. $Q_X^{(F)}$ is the $U(1)_X$ charge of the extra fermions. $I_{W^{(0)}}$ and $I_{t^{(0)}}$ are ~ 1 .

In Fig. 3, $I_{W^{(n)}}$, $I_{t^{(n)}}$, and $I_{F^{(n)}}$ are plotted. One sees that the values of these I 's alternate in sign as n increases, which gives sharp contrast to the UED models.

$$I_{W^{(n)}} \sim (-1)^n I_W^\infty , \quad I_{t^{(n)}} \sim (-1)^n I_t^\infty , \quad I_{F^{(n)}} \sim (-1)^n I_F^\infty \quad \text{for } n \gg 1 \tag{9}$$

up to $(\ln n)^p$ corrections. This is special to the gauge-Higgs unification models. It has been known in the models in flat space as well.[20, 21] As a consequence of the destructive interference due to the alternating sign, the infinite sums in the rate (8) converges rapidly. There appears no divergence.

FIG. 3: $I_{W^{(n)}}$, $I_{t^{(n)}}$, and $I_{F^{(n)}}$ for $n_F = 3$, $Q_X^{(F)} = 0$ and $\theta_H = 0.360$ ($z_L = 10^8$) in the range $1 \leq n \leq 100$. $I_{W^{(0)}} = 1.004$ and $I_{t^{(0)}} = 1.012$.

Let $\mathcal{F}_{W \text{ only}}$ and $\mathcal{F}_{t \text{ only}}$ be the contributions of $W = W^{(0)}$ and $t = t^{(0)}$ to $\mathcal{F}_{\text{total}}$. The numerical values of the amplitudes \mathcal{F} 's are tabulated in Table II for $n_F = 3$. It is seen that contributions of KK states to the amplitude are small. The dominant effect for the decay amplitude is the suppression factor $\cos \theta_H$.

All Higgs couplings $HWW, HZZ, He\bar{c}, Hb\bar{b}, H\tau\bar{\tau}$ are suppressed by a factor $\cos \theta_H$ at the tree level. The corrections to $\Gamma[H \rightarrow \gamma\gamma]$ and $\Gamma[H \rightarrow gg]$ due to KK states amount only to 0.2% (2%) for $\theta_H = 0.117(0.360)$. Hence we conclude

$$\begin{aligned}
\text{branching fraction:} \quad &B(H \rightarrow j) \sim B^{\text{SM}}(H \rightarrow j) \\
&j = WW, ZZ, \gamma\gamma, gg, b\bar{b}, c\bar{c}, \tau\bar{\tau}, \dots \\
\text{gg production rate:} \quad &\sigma^{\text{prod}}(H) \cdot B(H \rightarrow \gamma\gamma) \sim (\text{SM}) \times \cos^2 \theta_H .
\end{aligned} \tag{10}$$

The signal strength in the $\gamma\gamma$ production relative to the SM is about $\cos^2 \theta_H$. It is about 0.99 (0.91) for $\theta_H = 0.1$ (0.3). This contrasts to the prediction in the UED models in which the contributions of KK states can add up in the same sign to sizable amount.[22]

TABLE II: Values of the amplitudes \mathcal{F} 's in (8) for $n_F = 3$ and $Q_X^{(F)} = 0$.

θ_H	0.117	0.360
z_L	10^5	10^8
\mathcal{F}_W only	8.330	7.873
$\mathcal{F}_W/\mathcal{F}_W$ only	0.9996	0.998
\mathcal{F}_t only	-1.372	-1.305
$\mathcal{F}_t/\mathcal{F}_t$ only	0.998	0.990
$\mathcal{F}_F/\mathcal{F}_t$ only	-0.0034	-0.033
$\mathcal{F}_{\text{total}}$	6.508	6.199
$\mathcal{F}_{\text{total}}/(\mathcal{F}_W \text{ only} + \frac{4}{3}\mathcal{F}_t \text{ only})$	1.001	1.011

VI. SIGNALS OF GAUGE-HIGGS UNIFICATION

There are several constraints to be imposed on the gauge-Higgs unification.

- (i) For the consistency with the S parameter, we need $\sin \theta_H < 0.3$.[7]
- (ii) The tree-level unitarity requires $\theta_H < 0.5$.[23]
- (iii) Z' search at Tevatron and LHC. The first KK Z corresponds to Z' . No signal has been found so far, which implies that $m_{Z^{(1)}} > 2$ TeV. With the universality relations in Sec. IV it requires $\theta_H < 0.4$.
- (iv) In ref. [24] the consistency with other precision measurements such as the Z boson decay and the forward-backward asymmetry on the Z resonance has been investigated when $n_F = 0$. Reasonable agreement was found for $m_{\text{KK}} > 1.5$ TeV. We need to reanalyze in the case $n_F \geq 1$.

All of those constraints above point $\theta_H < 0.4$. When θ_H is very small, the KK mass scale m_{KK} becomes very large and it becomes very difficult to distinguish the gauge-Higgs unification from the SM. The range of interest is $0.1 < \theta_H < 0.35$, which can be explored at LHC with an increased energy 13 or 14 TeV. The gauge-Higgs unification predicts the following signals.

- (1) The first KK Z should be found at $m_{\text{KK}} = 2.5 \sim 6$ TeV for $\theta_H = 0.35 \sim 0.1$.
- (2) The Higgs self-couplings should be smaller than those in the SM. λ_3 (λ_4) should be $10 \sim 20\%$ ($30 \sim 60\%$) smaller for $\theta_H = 0.1 \sim 0.35$, according to the universality relations. This should be explored at ILC.
- (3) The lowest mode ($F^{(1)}$) of the KK tower of the extra fermion Ψ_F should be discovered at LHC. Its mass depends on both θ_H and n_F . For $n_F = 3$, the mass is predicted to be $m_{F^{(1)}} = 0.7 \sim 2.5$ TeV for $\theta_H = 0.35 \sim 0.1$.

VII. FOR THE FUTURE

The $SO(5) \times U(1)$ gauge-Higgs unification model of ref. [1] has been successful so far. Yet further elaboration may be necessary.

- (1) Flavor mixing has to be incorporated to explore flavor physics.[25]
- (2) It is curious to generalize the model to incorporate SUSY. The Higgs boson mass becomes smaller than in non-SUSY model. $m_H = 126$ GeV should give information about SUSY breaking scales.[26]
- (3) The orbifold boundary conditions (P_0, P_1) in (3) have been given by hand so far. It is desirable to have dynamics which determine the boundary conditions.[27, 28]
- (4) Not only electroweak interactions but also strong interactions should be integrated in the form of grand gauge-Higgs unification.[29]

Acknowledgments

This work was supported in part by scientific grants from the Ministry of Education and Science, Grants No. 20244028, No. 23104009 and No. 21244036.

References

- [1] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and T. Shimotani, arXiv:1301.1744 [hep-ph]. To appear in *Phys. Lett.* B.
- [2] Y. Hosotani, *Phys. Lett.* **B126** (1983) 309; *Ann. Phys. (N.Y.)* **190** (1989) 233.
- [3] A. T. Davies and A. McLachlan, *Phys. Lett.* **B200** (1988) 305; *Nucl. Phys.* **B317** (1989) 237.
- [4] M. Kubo, C.S. Lim and H. Yamashita, *Mod. Phys. Lett.* **A17** (2002) 2249.
- [5] N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, *Nucl. Phys.* **B657** (2003) 169; *Erratum-ibid.* **669** (2003) 381.
- [6] H. Hatanaka, T. Inami and C.S. Lim, *Mod. Phys. Lett.* **A13** (1998) 2601.
- [7] K. Agashe, R. Contino and A. Pomarol, *Nucl. Phys.* **B719** (2005) 165.
- [8] A. D. Medina, N. R. Shah and C. E. M. Wagner, *Phys. Rev.* **D76** (2007) 095010.
- [9] Y. Hosotani, K. Oda, T. Ohnuma and Y. Sakamura, *Phys. Rev.* **D78** (2008) 096002; *Erratum-ibid.* **79** (2009) 079902.
- [10] Y. Hosotani, S. Noda and N. Uekusa, *Prog. Theoret. Phys.* **123** (2010) 757.
- [11] Y. Hosotani, M. Tanaka and N. Uekusa, *Phys. Rev.* **D82** (2010) 115024.
- [12] Y. Hosotani, P. Ko and M. Tanaka, *Phys. Lett.* **B680** (2009) 179.
- [13] Y. Sakamura and Y. Hosotani, *Phys. Lett.* **B645** (2007) 442.
- [14] Y. Hosotani and Y. Sakamura, *Prog. Theoret. Phys.* **118** (2007) 935.
- [15] Y. Sakamura, *Phys. Rev.* **D76** (2007) 065002.
- [16] G.F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, *JHEP* **0706** (2007) 045.
- [17] Y. Hosotani and Y. Kobayashi, *Phys. Lett.* **B674** (2009) 192.
- [18] K. Hasegawa, N. Kurahashi, C.S. Lim and K. Tanabe, *Phys. Rev.* **D87** (2013) 016011.
- [19] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, “The Higgs Hunter’s Guide”, *Front. Phys.* **80** (2000) 1.
- [20] N. Maru and N. Okada, *Phys. Rev.* **D77** (2008) 055010.
- [21] A. Falkowski, *Phys. Rev.* **D77** (2008) 055018.
- [22] K. Nishiwaki, K. -y. Oda, N. Okuda and R. Watanabe, *Phys. Rev.* **D85** (2012) 035026; G. Belanger, A. Belyaev, M. Brown, M. Kakizaki and A. Pukhov, *Phys. Rev.* **D87** (2013) 016008.
- [23] N. Haba, Y. Sakamura and T. Yamashita, *JHEP* **1003** (2010) 069.
- [24] Y. Hosotani, M. Tanaka, and N. Uekusa, *Phys. Rev.* **D84** (2011) 075014.
- [25] Y. Adachi, N. Kurahashi, C.S. Lim, and N. Maru, *JHEP* **1011** (2010) 150.
Y. Adachi, N. Kurahashi, C.S. Lim, N. Maru, and K. Tanabe, *AIP Conf. Proc.* **1467** (2012) 258.
- [26] H. Hatanaka and Y. Hosotani, *Phys. Lett.* **B713** (2012) 481.
- [27] Y. Hosotani, Proceeding for SCGT 2002, hep-ph/0303066.
- [28] N. Haba, Y. Hosotani, and Y. Kawamura, *Prog. Theoret. Phys.* **111** (2004) 265.
- [29] K. Kojima, K. Takenaga, and T. Yamashita, *Phys. Rev.* **D84** (2011) 051701;
T. Yamashita, *Phys. Rev.* **D84** (2011) 115016.