- 9.2 如题图 11-1 所示水槽,输入量为 Q1,流出量为 Q2、Q3,液位 h为被控参数, C 为容量系数,并设 R1、R2、R3 均为线性液阻。要求:
 - (1)列写过程的微分方程;
 - (2)画出过程的方框图;
- (3) 求 过 程 的 传 递 函 数 Go(s)=H(s)/Q₁(s)。

解: (1)微分方程:

$$\Delta Q_1 - \Delta Q_2 - \Delta Q_3 = C \frac{d\Delta h}{dt}$$

$$\Delta Q_2 = \frac{\Delta h}{R_2}$$

$$\Delta Q_3 = \frac{\Delta h}{R_3}$$

$$\Delta Q_1 - \frac{\Delta h}{R_2} - \frac{\Delta h}{R_3} = C \frac{d\Delta h}{dt}$$

(2)传递函数:

$$\Delta Q_1 - \frac{\Delta h}{R_2} - \frac{\Delta h}{R_3} = C \frac{d\Delta h}{dt}$$

$$Q_1(s) - \frac{H(s)}{R_2} - \frac{H(s)}{R_2} = CSH(s)$$

$$H(s)/Q_1(s) = \frac{1}{\frac{1}{R_2} + \frac{1}{R_2} + CS}$$

(2)方框图:

$$Q_1(s) - \frac{H(s)}{R_2} - \frac{H(s)}{R_3} = CSH(s)$$

$$\frac{1}{CS}(Q_1(s) - \frac{H(s)}{R_2} - \frac{H(s)}{R_3}) = H(s)$$

题图 11-1 水槽

9.3 有一复杂液位对象, 其液位阶跃响应实验结果为:

t/s	0	10	20	40	60	80	100	140	180	250	300	400	500	600
h/cm	0	0	0.2	0.8	2.0	3.6	5.4	8.8	10.8	14.4	16.6	18.4	18.2	18.6

- (1) 画出液位的阶跃响应曲线;
- (2) 若该对象用带纯时延的一阶惯性近似,试用作图法确定纯时延时间 τ 和时间常数 T。
 - (3) 定出该对象增益 K 和响应速度 ϵ 。设阶跃扰动量 $\Delta \mu = 20\%$ 。

解:(1)阶跃响应曲线如图:

- (2) 延迟时间 t 大概为: 60s 左右, T 大概为 160s 左右,
- (3) 阶跃响应 K 大概为: 92cm 左右

9.6 某水槽水位阶跃响应实验为:

t/s	0	10	20	40	60	80	100	150	200	300	400	
h/mm	0	8.5	18	33	45	55	63	78	86	95	98	

其中阶跃扰动量△μ=20%。

- (1) 画出水位的阶跃响应曲线;
- (2) 若该水位对象用一阶惯性环节近似, 试确定其增益 K 和时间常数 T。

一、作图法:

K= ∆ h (∞) / ∆ x=500 时间常数 T=60 左右

二、两点法:

先将纵坐标转换成无量纲的形式:

$$\begin{split} T &= \frac{t_2 - t_1}{\ln[1 - y_0(t_1)] - \ln[1 - y_0(t_2)]} \\ \tau &= \frac{t_2 \ln[1 - y_0(t_1)] - t_1 \ln[1 - y_0(t_2)]}{\ln[1 - y_0(t_1)] - \ln[1 - y_0(t_2)]} \end{split}$$

9.8 某温度对象矩形脉冲响应实验为:

t/min	1 3 4 5	5 8 10 15 1	65 20 25 30 40	50 60 70 80	
T/°C	0.46 1.7 3.7 8	.0 18.0 26.4 36 3	375 335 272 21 114	5.1 2.8 1.1 0.5	

矩形脉冲幅值为 2t/h, 脉冲宽度△t 为 10min。

- (1) 试将该矩形脉冲响应曲线转换为阶跃响应曲线;
- (2) 用二阶惯性环节写出该温度对象传递函数。

解: (1) 阶跃响应曲线:

$$y_s(t) = y_p(t) + y_s(t - t_0)$$

t/min	nin	1	3	4	5	8	10	15	165	20	25	30	40	50	60	70	80	
$y_pT/{^\circ\!\mathbb{C}}$	7/°C	0.46	1.7	3.7	8.0	18.0	26.4	36	37.5	33.5	27.2	21	11.4	5.1	2.8	1.1	0.5	
t/min	nin	1	3	4	5	8	10	20	25	30	40	50	60	70	80)		
$y_sT/^{\circ}C$	∵°C	0.46	1.7	3.7	8.0	18.0	26.4	59.9	71.2	80.9	903	95.2	98.2	99.3	99.8	3		

(2)
$$G(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)} e^{-ts}$$

$$G(s) = \frac{K}{(T_1s+1)(T_2s+1)}, T_1 \ge T_2$$

$$\frac{T_1}{T_1 - T_2} e^{-\frac{t_1}{T_1}} - \frac{T_2}{T_1 - T_2} e^{-\frac{t_1}{T_2}} = 0.6$$

$$\frac{T_1}{T_1 - T_2} e^{-\frac{t_2}{T_1}} - \frac{T_2}{T_1 - T_2} e^{-\frac{t_2}{T_2}} = 0.2$$

$$T_1 + T_2 \approx \frac{1}{2.16} (t_1 + t_2)$$

$$\frac{T_1 T_2}{T_1 + T_2} \approx (1.74 \frac{t_1}{t_2} - 0.55)$$

计算出 T1=19.96

K=99.8/2=49.9°C/t/h