LISTA 1: REVISÃO DAS INTEGRAIS, PARTE I

Exercício 1. Calcule as seguintes integrais indefinidas:

1.
$$\int 5t^3 - 10t^{-6} + 4 dt \text{ (Resp: } \frac{5}{4}t^4 + 2t^{-5} + 4t + C)$$

2.
$$\int x^8 + x^{-8} dx$$
 (Resp.: $\frac{1}{9}x^9 - \frac{1}{7}x^{-7} + C$)

3.
$$\int 3\sqrt[4]{x^3} + \frac{7}{x^5} + \frac{1}{6\sqrt{x}} dx$$
 (Resp. $\frac{12}{7}x^{7/4} - \frac{7}{4}x^{-4} + \frac{1}{3}x^{1/2} + C$)

4.
$$\int \frac{4x^{10} - 2x^4 + 15x^2}{x^3} dx$$
 (Resp: $\frac{1}{2}x^8 - x^2 + 15 \ln|x| + C$)

5.
$$\int 3e^x + 5\cos(x) - 10\sec^2 x \, dx \, (\text{resp:} 3e^x + 5\sin x - 10 \, \text{tg}(x) + C)$$

Exercício 2. Determinar a única função f tal que: $f'(x) = 4x^3 - 9 + 2 \operatorname{sen} x + 7e^x$ e tal que f(0) = 15.

(Resp:
$$f(x) = x^4 - 9x - 2\cos x + 7e^x + 10$$
).

Exercício 3. Determine as derivadas das seguintes funções:

a)
$$g(x) = \int_{-4}^{x} e^{2t}\cos^2(1-5t)dt$$
 (Resp.: $g'(x) = e^{2x}\cos^2(1-5x)$)

b)
$$f(x) = \int_{x^2}^{1} \frac{t^4 + 1}{t^2 + 1} dt$$
 (Resp.: $f'(x) = -2x \cdot \frac{x^8 + 1}{x^4 + 1}$).

Exercício 4. Determine as integrais definidas:

5.
$$\int_{\pi/2}^{0} \frac{1 + \cos 2t}{2} dt$$
 16.
$$\int_{-\pi/3}^{\pi/3} \frac{1 - \cos 2t}{2} dt$$

Serciclo 4. Determine as integrals defined as
$$\int_{\pi/2}^{0} \frac{1 + \cos 2t}{2} dt$$
16. $\int_{-\pi/3}^{\pi/3} \frac{1 - \cos 2t}{2} dt$
17. $\int_{-\pi/2}^{\pi/2} (8y^2 + \sin y) dy$
18. $\int_{-\pi/3}^{-\pi/4} \left(4 \sec^2 t + \frac{\pi}{t^2} \right) dt$
19. $\int_{1}^{-1} (r+1)^2 dr$
20. $\int_{-\sqrt{3}}^{\sqrt{3}} (t+1)(t^2+4) dt$
21. $\int_{\sqrt{2}}^{1} \left(\frac{u^7}{2} - \frac{1}{u^5} \right) du$
22. $\int_{1/2}^{1} \left(\frac{1}{v^3} - \frac{1}{v^4} \right) dv$
23. $\int_{1}^{\sqrt{2}} \frac{s^2 + \sqrt{s}}{s^2} ds$
24. $\int_{9}^{4} \frac{1 - \sqrt{u}}{\sqrt{u}} du$
25. $\int_{-4}^{4} |x| dx$
26. $\int_{0}^{\pi} \frac{1}{2} (\cos x + |\cos x|) dx$

19.
$$\int_{1}^{-1} (r+1)^2 dr$$
 20. $\int_{-\sqrt{3}}^{\sqrt{3}} (t+1)(t^2+4) dt$

21.
$$\int_{\sqrt{2}}^{1} \left(\frac{u^7}{2} - \frac{1}{u^5} \right) du$$
 22.
$$\int_{1/2}^{1} \left(\frac{1}{v^3} - \frac{1}{v^4} \right) dv$$

23.
$$\int_{1}^{\sqrt{2}} \frac{s^2 + \sqrt{s}}{s^2} ds$$
 24. $\int_{9}^{4} \frac{1 - \sqrt{u}}{\sqrt{u}} du$

25.
$$\int_{-4}^{4} |x| dx$$
 26. $\int_{0}^{\pi} \frac{1}{2} (\cos x + |\cos x|) dx$

Resp: 15)
$$-\pi/4$$
 16) $\pi/3 - \sqrt{3}/4$ 17) $\frac{2}{3}\pi^3$ 18) $4\sqrt{3} - 3$ 19) $-8/3$

20)
$$10\sqrt{3}$$
 21) $-3/4$ 22) $-5/6$ 23) $\sqrt{2} - \sqrt[4]{8} + 1$ 24) 3 25) 16.

Exercício 5. Determine as integrais definidas (com a regra da substituição):

1. a.
$$\int_0^3 \sqrt{y+1} \, dy$$
 b. $\int_{-1}^0 \sqrt{y+1} \, dy$

b.
$$\int_{-1}^{0} \sqrt{y+1} \, dy$$

2. a.
$$\int_0^1 r \sqrt{1-r^2} \, dr$$

b.
$$\int_{-1}^{1} r \sqrt{1 - r^2} \, dr$$

3. a.
$$\int_{0}^{\pi/4} \tan x \sec^2 x \, dx$$

$$\mathbf{b.} \int_{-\pi/4}^{0} \tan x \sec^2 x \, dx$$

4. a.
$$\int_{0}^{\pi} 3\cos^2 x \sin x \, dx$$

b.
$$\int_{2\pi}^{3\pi} 3\cos^2 x \sin x \, dx$$

5. a.
$$\int_{0}^{1} t^{3}(1+t^{4})^{3} dt$$

b.
$$\int_{-1}^{1} t^3 (1+t^4)^3 dt$$

6. a.
$$\int_{0}^{\sqrt{7}} t(t^2+1)^{1/3} dt$$

b.
$$\int_{-\infty}^{0} t(t^2+1)^{1/3} dt$$

1. a.
$$\int_{0}^{1} \sqrt{y+1} \, dy$$
 b. $\int_{-1}^{1} r \sqrt{1-r^2} \, dr$ 2. a. $\int_{0}^{1} r \sqrt{1-r^2} \, dr$ b. $\int_{-1}^{1} r \sqrt{1-r^2} \, dr$ 3. a. $\int_{0}^{\pi/4} \tan x \sec^2 x \, dx$ b. $\int_{-\pi/4}^{0} \tan x \sec^2 x \, dx$ 5. a. $\int_{0}^{1} t^3 (1+t^4)^3 \, dt$ b. $\int_{-1}^{1} t^3 (1+t^4)^3 \, dt$ 6. a. $\int_{0}^{\sqrt{7}} t(t^2+1)^{1/3} \, dt$ b. $\int_{-\sqrt{7}}^{0} t(t^2+1)^{1/3} \, dt$ 7. a. $\int_{-1}^{1} \frac{5r}{(4+r^2)^2} \, dr$ b. $\int_{0}^{1} \frac{5r}{(4+r^2)^2} \, dr$ 8. a. $\int_{0}^{1} \frac{10\sqrt{v}}{(1+v^{3/2})^2} \, dv$ b. $\int_{1}^{4} \frac{10\sqrt{v}}{(1+v^{3/2})^2} \, dv$

b.
$$\int_0^1 \frac{5r}{(4+r^2)^2} dr$$

8. a.
$$\int_0^1 \frac{10\sqrt{v}}{(1+v^{3/2})^2} dv$$

b.
$$\int_{1}^{4} \frac{10\sqrt{v}}{(1+v^{3/2})^2} dv$$

Resp:

1.
$$14/3 e 2/3$$

$$2. \ 1/3 \ e \ 0$$

Exercício 6. Determine as áreas das regiões sombreadas:

Figura 1.

2

Resp: 37) Área = 38/3

e 38) Área=16

Exercício 7. Calcule o valor medio das funções (no intervalo indicado):

1.
$$f(t) = t^2 - 5t + 6\cos(\pi t)$$
 em $[-1, 5/2]$ (Resp: $\frac{12}{7\pi} - \frac{13}{6}$)

2.
$$R(z) = \sin(2z)e^{1-\cos(2z)}$$
 em $[-\pi, \pi]$ (Resp:=0).