

Lecture 35

Code Optimizations

Awanish Pandey

Department of Computer Science and Engineering Indian Institute of Technology Roorkee

April 29, 2025

• Way to represent a Partial Order set

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $g \le x$

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $ightharpoonup g \leq x$
 - g ≤ y

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $g \leq x$
 - g ≤ y
 - \triangleright $z \le x$ and $z \le y$ then $z \le g$

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $g \leq x$
 - ▶ g ≤ y
 - \triangleright $z \le x$ and $z \le y$ then $z \le g$
- Height of lattice

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $ightharpoonup g \leq x$
 - ▶ g ≤ y
 - \triangleright $z \le x$ and $z \le y$ then $z \le g$
- Height of lattice
- Type of solutions

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $g \leq x$
 - g ≤ y
 - \triangleright $z \le x$ and $z \le y$ then $z \le g$
- Height of lattice
- Type of solutions
 - ▶ Ideal: Collect information from all the feasible paths (undecidable)

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $g \leq x$
 - g ≤ y
 - $ightharpoonup z \le x \ and \ z \le y \ then \ z \le g$
- Height of lattice
- Type of solutions
 - ▶ Ideal: Collect information from all the feasible paths (undecidable)
 - ▶ MOP: Collect information from all the paths (unbounded)

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $g \leq x$
 - g ≤ y
 - \triangleright $z \le x$ and $z \le y$ then $z \le g$
- Height of lattice
- Type of solutions
 - ▶ Ideal: Collect information from all the feasible paths (undecidable)
 - ▶ MOP: Collect information from all the paths (unbounded)
 - ▶ MFP: Visit basic block (not necessary in execution order) and collect the information

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $g \leq x$
 - g ≤ y
 - \triangleright $z \le x$ and $z \le y$ then $z \le g$
- Height of lattice
- Type of solutions
 - Ideal: Collect information from all the feasible paths (undecidable)
 - ▶ MOP: Collect information from all the paths (unbounded)
 - ▶ MFP: Visit basic block (not necessary in execution order) and collect the information
- Transfer function

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $g \leq x$
 - g ≤ y
 - \triangleright $z \le x$ and $z \le y$ then $z \le g$
- Height of lattice
- Type of solutions
 - ▶ Ideal: Collect information from all the feasible paths (undecidable)
 - ► MOP: Collect information from all the paths (unbounded)
 - ▶ MFP: Visit basic block (not necessary in execution order) and collect the information
- Transfer function
 - Monotone

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - $g \leq x$
 - g ≤ y
 - $ightharpoonup z \le x \ and \ z \le y \ then \ z \le g$
- Height of lattice
- Type of solutions
 - ▶ Ideal: Collect information from all the feasible paths (undecidable)
 - ► MOP: Collect information from all the paths (unbounded)
 - ▶ MFP: Visit basic block (not necessary in execution order) and collect the information
- Transfer function
 - Monotone
 - Distributive

- Way to represent a Partial Order set
- Greatest Lower Bound (GLB)
 - ▶ g ≤ x
 - g ≤ y
 - \triangleright $z \le x$ and $z \le y$ then $z \le g$
- Height of lattice
- Type of solutions
 - Ideal: Collect information from all the feasible paths (undecidable)
 - ► MOP: Collect information from all the paths (unbounded)
 - ▶ MFP: Visit basic block (not necessary in execution order) and collect the information
- Transfer function
 - Monotone
 - Distributive

If transfer function is monotone and distributive, then MFP solution will be equal to MOP.

Dominators

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - ► Every node dominates itself.

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - Every node dominates itself.
 - $IN[B] = \bigcap_{P \text{ is predecessor of } B} OUT[P]$

Meet operator is the intersection to calculate dominators.

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - ▶ Every node dominates itself.
 - ▶ $IN[B] = \bigcap_{P \text{ is predecessor of } B} OUT[P]$
 - $OUT[B] = \{B\} \cup IN[B]$

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - ▶ Every node dominates itself.
 - ▶ $IN[B] = \bigcap_{P \text{ is predecessor of } B} OUT[P]$
 - $ightharpoonup OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - Every node dominates itself.
 - ▶ $IN[B] = \bigcap_{P \text{ is predecessor of } B} OUT[P]$
 - $ightharpoonup OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - Every node dominates itself.
 - ▶ $IN[B] = \bigcap_{P \text{ is predecessor of } B} OUT[P]$
 - $ightharpoonup OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree
 - Advancing Edge

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - Every node dominates itself.
 - ▶ $IN[B] = \bigcap_{P \text{ is predecessor of } B} OUT[P]$
 - $ightharpoonup OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree
 - Advancing Edge
 - ► Retreating edge

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - Every node dominates itself.
 - ▶ $IN[B] = \cap_{P \text{ is predecessor of } B} OUT[P]$
 - $ightharpoonup OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree
 - Advancing Edge
 - Retreating edge
 - Back edge

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - Every node dominates itself.
 - ▶ $IN[B] = \cap_{P \text{ is predecessor of } B} OUT[P]$
 - $ightharpoonup OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree
 - Advancing Edge
 - Retreating edge
 - ▶ Back edge
 - Cross Edges

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - ▶ Every node dominates itself.
 - ▶ $IN[B] = \cap_{P \text{ is predecessor of } B} OUT[P]$
 - \triangleright $OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree
 - Advancing Edge
 - Retreating edge
 - ▶ Back edge
 - Cross Edges
- Reducible if all retreating edges are back edges

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - ▶ Every node dominates itself.
 - ▶ $IN[B] = \bigcap_{P \text{ is predecessor of } B} OUT[P]$
 - $ightharpoonup OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree
 - Advancing Edge
 - Retreating edge
 - ▶ Back edge
 - Cross Edges
- Reducible if all retreating edges are back edges
- Natural Loops

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - Every node dominates itself.
 - ▶ $IN[B] = \bigcap_{P \text{ is predecessor of } B} OUT[P]$
 - $DUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree
 - Advancing Edge
 - Retreating edge
 - ▶ Back edge
 - Cross Edges
- Reducible if all retreating edges are back edges
- Natural Loops
 - Single entry node (header)

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - Every node dominates itself.
 - ▶ $IN[B] = \bigcap_{P \text{ is predecessor of } B} OUT[P]$
 - $ightharpoonup OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree
 - Advancing Edge
 - Retreating edge
 - ▶ Back edge
 - Cross Edges
- Reducible if all retreating edges are back edges
- Natural Loops
 - Single entry node (header)
 - ▶ There must be a back edge that enters loop header

- Dominators
 - ▶ Node *d* dominates node *n*, if every path from the *entry* node of the flow graph to *n* goes through *d*.
 - Every node dominates itself.
 - ▶ $IN[B] = \cap_{P \text{ is predecessor of } B} OUT[P]$
 - \triangleright $OUT[B] = \{B\} \cup IN[B]$
- Depth First Ordering (Reverse of post order sequence)
- Edges in Depth First Spanning tree
 - Advancing Edge
 - Retreating edge
 - ▶ Back edge
 - Cross Edges
- Reducible if all retreating edges are back edges
- Natural Loops
 - Single entry node (header)
 - ▶ There must be a back edge that enters loop header
 - ▶ If there is backedge $n \rightarrow d$, natural loop will be d and all the nodes that can reach n without

Thank You

