In [1]:

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score,classification_report
```

In [2]:

df=pd.read_csv(r'C:\Users\LENOVO\StudentsPerformance.csv')

In [3]:

df

Out[3]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75
995	female	group E	master's degree	standard	completed	88	99	95
996	male	group C	high school	free/reduced	none	62	55	55
997	female	group C	high school	free/reduced	completed	59	71	65
998	female	group D	some college	standard	completed	68	78	77
999	female	group D	some college	free/reduced	none	77	86	86

1000 rows × 8 columns

In [4]:

df.head(5)

Out[4]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

In [5]:

```
df.isna().sum()
```

Out[5]:

gender	0
race/ethnicity	0
parental level of education	0
lunch	0
test preparation course	0
math score	0
reading score	0
writing score	0
dtype: int64	

In [6]:

df.shape

Out[6]:

(1000, 8)

In [11]:

X=df.drop(['race/ethnicity','parental level of education','lunch','test preparation course'
Y=df['gender']

In [12]:

```
class Decision():
    def __init__(self,df,X,Y):
        self.df=df
        self.X=X
        self.Y=Y
    def decision(self):
        self.X=X
        self.Y=Y
        X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2)
        decission=DecisionTreeClassifier()
        decission.fit(X_train,Y_train)
        Y_pred=decission.predict(X_test)
        print(f"decision tree accuracy_score : {accuracy_score(Y_test,Y_pred)*100}%\n")
        print(f"classification_report\n{classification_report(Y_test,Y_pred)}\n")
    def KNN(self):
        X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2)
        knn=KNeighborsClassifier()
        knn.fit(X_train,Y_train)
        Y_pred=knn.predict(X_test)
        print(f"\nKNN_accuracy_score : {accuracy_score(Y_test,Y_pred)*100}%\n",)
        print(f"\nclassification_report\n{classification_report(Y_test,Y_pred)}")
D_obj=Decision(df,X,Y)
D_obj.decision()
D_obj.KNN()
```

decision tree accuracy_score : 80.5%

classification_report

	precision	recall	f1-score	support
female	0.83	0.78	0.80	103
male	0.78	0.84	0.81	97
accuracy			0.81	200
macro avg	0.81	0.81	0.80	200
weighted avg	0.81	0.81	0.80	200

KNN_accuracy_score : 84.0%

classification_report

	precision	recall	f1-score	support
female	0.86	0.82	0.84	102
male	0.82	0.86	0.84	98
accuracy			0.84	200
macro avg	0.84	0.84	0.84	200
weighted avg	0.84	0.84	0.84	200

In []:		