In-Place (Bijective) BWT の構築

Computing the Burrows-Wheeler transform in place and in small space [JDA '15] In-Place Bijective Burrows-Wheeler Transforms

[CPM '20]

Maxime Crochemore Roberto Grossi Juha Kärkkäinen Gad M. Landau ドミニク 橋本 大輝 ディプタラマ 篠原 歩

In-Place (Bijective) BWT の構築

Computing the Burrows-Wheeler transform in place and in small space [JDA '15] In-Place Bijective Burrows-Wheeler Transforms

[CPM '20]

Maxime Crochemore Roberto Grossi Juha Kärkkäinen Gad M. Landau ドミニク 橋本 大輝 ディプタラマ 篠原 歩

設定

- Σ: 整数アルファベット
- σ := |Σ| アルファベットサイズ
- T: ある文字列(入力)
- n := |T|
- comparison model
 - *T[i] < T[j] かどうかと O(1)* 時間で求めるが、
 - word RAM model (word packing とか)を使っていない

BWT の定義

BWT: Burrows-Wheeler Transform

[Burrows, Wheeler '94]

- 圧縮・索引構造で人気がある方法
- 接尾辞の順序に踏まれたテキストの文字の並べ替え
 - 辞書式順序にソートされた接尾辞を列挙し、
 - 各接尾辞を開始位置の前の文字と取り替え、 BWT が求められる

T\$ = bacabbabb\$

```
T$ = bacabbabb$
            全部の接尾辞
    bacabbabb$
    acabbabb$
     cabbabb$
      abbabb$
       bbabb$
        babb$
         abb$
          bb$
           b$
```

\$ < a < b < c

```
T$ = bacabbabb$
               全部の接尾辞
     bacabbabb$
      acabbabb$
       cabbabb$
a
        abbabb$
C
         bbabb$
a
b
          babb$
b
           abb$
  前の文字
            bb$
a
b
             b$
b
```

\$ < a < b < c

```
bacabbabb$
                全部の接尾辞
      bacabbabb$
                        $ bacabbabb$
                        b acabbabb$
       acabbabb$
        cabbabb$
                        a cabbabb$
a
         abbabb$
                        c abbabb$
C
          bbabb$
                        a bbabb$
a
b
                        b babb$
           babb$
b
            abb$ 左揃え
                        b abb$
  前の文字
             bb$
                        a bb$
a
b
              b$
                        b b$
b
                        b $
```

\$ < a < b < c

設定

- in-place: n lg σ + O(lg n) bits 作業領域
 - 入力: n lg σ bits
 - 追加領域: O(lg n) bits
- in-place でTを BWT へ変換するのはどのぐらい時間がかかるの?

in-place の 道具

定義: rank · select

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ b & a & c & a & b & b & a & b \end{bmatrix}$$

任意文字 cと数 i に対して

- *T.*rank_c(*i*): *T*[1..*i*] の中に *c* の出現の数
- T.select_c(i):i 番目の c の位置
- O(n) 時間で計算できる

定義: rank · select

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ b & a & c & a & b & b & a & b \end{bmatrix}$$

$$T.rank_{T[i]}(i) = \begin{bmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 \end{bmatrix}$$

任意文字 c と数 i に対して

- *T.*rank_c(*i*): *T*[1..*i*] の中に *c* の出現の数
- T.select_c(i):i 番目の c の位置
- O(n) 時間で計算できる

T = bacabbabb\$

T = bacabbabb \$

FとLで rank - select を 計算する

FL 写像:

 $FL(i) = L.select_{F[i]}(F.rank_{F[i]}(i))$

後ろ向き検索

T = bacabbabb\$

2 a 3 **a b** 5 2 **b** 3 **b** 4 b a 5 **b a** 2

F.rank $_{F[i]}(i)$

後ろ向き検索

T = bacabbabb\$

F.rank $_{F[i]}(i)$

21

後ろ向き検索

$$T = bacabbabb$$
\$

 $F.rank_{F[i]}(i)$

後ろ向き検索

T = bacabbabb\$

2 a 3 b 2 b 3 4 a

F.rank_{F[i]}(i)

後ろ向き検索

LF 写像:

 $LF(i) := F.select_{L[i]}(L.rank_{L[i]}(i))$

F.rank $_{Fii}(i)$

後ろ向き検索

LF 写像:

 $LF(i) := F.select_{L[i]}(L.rank_{L[i]}(i))$

= \overline{F} .select_{L[i]}(1) + L.rank_{L[i]}(i)-1

 $F.rank_{F[i]}(i)$

後ろ向き検索

LF 写像:

 $LF(i) := \overline{F.select_{L[i]}(L.rank_{L[i]}(i))}$

= F.select_{L[i]}(1) + L.rank_{L[i]}(i)-1

 $= |\{j: L[j] < L[i]\}| + L.rank_{L[i]}(i)$

F.rank_{F[i]}(i)

後ろ向き検索

LF の計算量

- L を保存したら
- *L[i]*:O(1) 時間
 - ⇒ 任意文字 c 対して L.rank (i): O(n) 時間

FL の計算量

- $FL(i) = L.select_{F[i]}(F.rank_{F[i]}(i))$ = $L.select_{F[i]}(i - |\{j : L[j] < F[i]\}|)$
- F[i] を知ったら、O(n) 時間計算できる
- しかし、F[i] を O(n) に求めることができるのを分からない
- ⇒ FL なしのほうがよい

BWT の in-place 構築

アルゴリズム

入力: T $p \leftarrow n \ (T[p] = \$)$ $s = n - 1 \ bb \ 1 \ s = r$

- BWT $\triangleq T[s+1..n]$
- BWT[p] $\leftarrow T[s]$
- *r* ← LF[*p*]+1
- BWT[r] に \$ を 挿入する
- $p \leftarrow r \quad (T[p] = \$)$

例: T[s] = c . は任意の文字

b\$のBWT

$$T = bacabbabb$$
\$

b\$のBWT

$$T = bacabbabb$$
\$

$$\begin{array}{c|cc}
F & L \\
\hline
 b & \mathbf{b}
\end{array}$$

b\$のBWT

$$T = bacabbabb$$
\$

abb\$のBWT

T = bacabbabb

abb\$のBWT

$$T = bacabbabb$$

	F	L			F	L	
1	\$	b	1	1	b	b	1
1	b	\$	1	2	b	b	2

abb\$ の BWT

T = bacabbabb\$

ここで \$ を挿入と \$ を a に書き換えとを省略した

abb\$ の BWT

T = bacabbabb\$

に書き換えとを省略した

in-place な構築

- bacabbabb\$
- bacabbabb | \$
- bacabbab|b\$
- bacabba | bb\$
- bacabb|b\$ba
- bacab|bbb\$a

「 | 」ってカーソルで 残っるテキストと 作った BWT を分ける

特徴: 任意文字 c > \$ に対して、 c\$ の BWT は c\$ だ。

in-place な構築

- bacabbabb\$|
- bacabbabb | \$
- bacabbab|b\$
- bacabba | bb\$
- bacabb|b\$ba
- bacab | bbb\$a

「 | 」ってカーソルで 残っるテキストと 作った BWT を分ける

特徴: 任意文字 c > \$ に対して、 c\$ の BWT は c\$ だ。

この変換を詳しく拝見しましょう...

b b b \$ a

ただし *C*[b] := |{ *j* : *L*[*j*] < b }|

計算量

- 時間:各文字:
 - 一回 LF 写像を使う: O(n) 時間
 - 一回文字をBWT にずらす: O(n) 時間
 - ⇒ 全部: O(n²) 時間
- 領域: O(lg n) bits 追加領域
 - カーソル:BWT と残ったテキストを分ける
 - 赤と緑の文字の境界

In-Place (Bijective) BWT の構築

Computing the Burrows-Wheeler transform in place and in small space [JDA '15] In-Place Bijective Burrows-Wheeler Transforms

[CPM '20]

Maxime Crochemore Roberto Grossi Juha Kärkkäinen Gad M. Landau ドミニク 橋本 大輝 ディプタラマ 篠原 歩

In-Place (Bijective) BWT の構築

Computing the Burrows-Wheeler transform in place and in small space [JDA '15]

Maxime Crochemore Roberto Grossi Juha Kärkkäinen Gad M. Landau In-Place Bijective Burrows-Wheeler Transforms

[CPM '20]

ドミニク 橋本 大輝 ディプタラマ 篠原 歩 定義される BWT の一種

[Scott and Gill '12]

Bijective BWT (BBWT) は

Lyndon 分解と 1.

く。順序によって 2.

定義される BWT の一種

[Scott and Gill '12]

循環文字列

- $T = T[1] T[2] \cdots T[n]$
- T の循環文字列:
 - $-T[1]T[2] \cdots T[n]$
 - $-T[2]T[3] \cdots T[n]T[1]$
 - :
 - <u>− *T* [*n*] *T* [1] ··· *T* [*n*-1]</u>

Lyndon

- -a
- aabab

文字列は

・すべての真の接尾辞より 小さい時、

Lyndonと呼ばれる。

すなわち:

・すべての循環文字列より 小さい時

Lyndon

- -a
- aabab

文字列は

・すべての真の接尾辞より 小さい時、

Lyndonと呼ばれる。

すなわち:

・すべての循環文字列より 小さい時

Lyndon ではない:

- abaab (循環文字列 aabab はもっと小さい)
- -abab (abab は ab より小さくない)

Lyndon 分解 [Chenら '58]

- 入力:文字列 $T = \begin{bmatrix} T_1 & T_2 & \cdots & T_t \end{bmatrix}$
- 出力:分解 T₁...T₂
 - 任意x ∈ [1..t] に対して、 T_x は Lyndon である
 - 任意 $x \in [1..t-1]$ に対して、 $T_x \ge_{lex} T_{x+1}$

辞書式順序

- 上の2つ状況で一意に決まる分解
- T_x は Lyndon 因子と呼ばれる
- 線形時間で計算できる [Duval '88]

(Chen-Fox-Lyndon 定理)

例

T = senescence

Lyndon 分解: s|enes|cen|ce

- s, enes, cen, とce は Lyndon
- <u>- s</u> ≥_{lex} enes ≥_{lex} cen ≥_{lex} ce

く。順序

• $u <_{\omega} w \iff uuuuu... <_{lex} wwww...$

- ab <_{lex} aba
- aba <_ω ab

く。順序

• $u <_{\omega} w \iff uuuuu... <_{lex} wwww...$

- ab < aba
- aba ≺_ω ab

ab<mark>ababab...</mark> aba<mark>abaaba...</mark>

s | enes | cen | ce

s enes cen ce

```
s enes cen ce
nese enc ec
esen nce
sene
```

s enes cen ce

s | enes | cen | ce

出力:enccsneees

bijective と言うのは

- bijective: 全単射
- 文字列全単射 f: Σ* → Σ* を取って、
 任意文字列 X に対して f は以下の状況を満たす:
 - f(Y) = f(X) を満たす文字列 Y≠Xがない
 - BWT(ab) = BWT(ba) ⇒ \$ を入力に追加する
 - BBWT(ab) = ba, BBWT(ba) = ab
 - f(Y)=X を満たす文字列 Y がある ⇒ Y=f-1(X)
 - BWT-1(a\$) = a\$, BWT-1(\$a) がない
 - BBWT-1(a\$) = \$a, BBWT-1(\$a) = a\$

BBWT の性格

BBWT からテクスト索引を作ることが出来る

[Bannai ら '19]

色々入力に対して、圧縮した BBWT は圧縮した BWT より小さい

[Scott and Gill '12]

Bijective BWT の構築

Constructing the Bijective BWT

[ArXiv '19]

- O(n) 時間
- O(n) 領域

In-Place Bijective Burrows-Wheeler Transforms

[CPM '20]

- O(n²) 時間
- O(1) 追加領域

(テキストが含まれていない)

研究の結果

入力	出力	計算領域	時間	参照
テキスト	BWT	in-place	O(<i>n</i> ²)	Crochemore+ '15 (前の話)
テキスト	BBWT	O(<i>n</i> lg σ) bits	O(n lg n/lg lg n)	Bonomo+ '14
テキスト	BBWT	in-place	O(<i>n</i> ²)	Köppl+ '20 (今の話)

σ:= アルファベットサイズ、n:= テキストの長さ

アルゴリズム

入力: $T = \mid T_1 \mid T_2 \mid$ 各の Lyndon 因子 T_x に対して (x=1) からt まで) BBWT の頭に $T_{\mathcal{L}}[T_{\mathcal{L}}]$ 追加する $p \leftarrow 1$ 各の $i = |T_x| - 1$ から 1 まで対して $p \leftarrow LF(p) + 1$ BBWT[*p*] に *T*_ν[*i*] を挿入する [Bonomo+ 14]

テキスト → BBWT

T = bacabbabb

- Lyndon 分解: b ac abb abb
- 先ず b を挿入する

テキスト → BBWT

T = bacabbabb

- Lyndon 分解: b ac abb abb
- 先ず b を挿入する

$$\begin{array}{c|cccc}
F & L \\
\hline
b & b & 1
\end{array}$$

テキスト → BBWT

T = bacabbabb

- Lyndon 分解: b|ac|abb|abb
- 先ず b を挿入する

	F	L	
1	а	b	1
2	а	b	2
3	а	С	1
1	b	b	3
2	b	b	4
3	b	а	1
4	b	а	2
5	b	b	5
1	С	а	3

BBWT(
$$T_1 T_2$$
)

$$T = b | ac | abb | abb = T_1 T_2 T_3 T_4$$

• 次の Lyndon 因子は ac

BBWT(
$$T_1 T_2$$
)

$$T = b | ac | abb | abb = T_1 T_2 T_3 T_4$$

• 次の Lyndon 因子は ac

BBWT $(T_1 T_2)$

$$T = b | ac | abb | abb = T_1 T_2 T_3 T_4$$

BBWT(
$$T_1$$
 T_2 T_3)

T = b | ac | abb | abb

	F	L	
1	а	С	1
1	b	b	1
1	С	а	1

BBWT(
$$T_1 T_2 T_3$$
)

$$T = b | ac | abb | abb$$

	F	L			F	L	
1	а	С	1	1	a	b	1
1	b	b	1	1	b	С	1
1	С	а	1	2	b	b	2
				1	С	а	1

BBWT(T_1 T_2 T_3)

T = b |ac|abb|abb|

	F	L			F	L			F	L	
1	а	С	1	1	а	b	1	1	а	b	1
1	b	b	1		b	С	1	1	b	С	1
1	С	а	1	2	b	b	2	2	b	b	2
				1	С	a	1	3	b	b	3
								1	С	a	1

BBWT(T_1 T_2 T_3)

T = b | ac | abb | abb |

	F	L			F	L			F	L			F	L	
1	a	С	1	1	а	b	1	1	а	b	1	1	a	b	1
1												2			1
1	С	а	1	2	b	b	2	2	b	b	2	1	b	b	
_				1	С	a	1	3	b	b	3	2	b	a	1
								1	С	a	1	3	b	b	3
												1	С	a	2

|bacabbabb

$$T = b | ac | abb | abb$$

- |bacabbabb
- b | acabbabb

T = b |ac|abb|abb

- |bacabbabb
- b|acabbabb
- bac | abbabb

$$T = b |ac|abb|abb|$$

- |bacabbabb
- b|acabbabb
- bac | abbabb
- cba | abbabb

$$T = b |ac|abb|abb$$

- |bacabbabb
- b|acabbabb
- bac | abbabb
- cba | abbabb
- cbaabb | abb

T = b |ac|abb|abb

- |bacabbabb
- b|acabbabb
- bac | abbabb
- cba | abbabb
- cbaabb | abb

H

T = b |ac|abb|abb

- |bacabbabb
- b|acabbabb
- bac | abbabb
- cba | abbabb
- cbaabb | abb

bbcbbaaba

T = b | ac | abb | abb

c b a b b

ただし *C*[b] := |{ *j* : *L*[*j*] < b }|

in-place 構築のまとめ

- BWT と BBWT を
 - O(n²) 時間と
 - in-place で 構築できる
- 方法
 - in-place LF 写像
 - Duval さんの algorithm は in-place だ

BWT:

online, 右から左へ

BBWT:

最左 Lyndon 因子から 最右 Lyndon 因子まで

in-place 構築のまとめ

- BWT と BBWT を
 - O(n²) 時間と
 - in-place で 構築できる
- 方法
 - in-place LF 写像
 - Duval さんの algorithm は in-place だ

BWT:

online, 右から左へ

BBWT:

最左 Lyndon 因子から 最右 Lyndon 因子まで

in-place 構築のまとめ

- BWT と BBWT を
 - O(n²) 時間と
 - in-place で 構築できる
- 方法
 - in-place LF 写像
 - Duval さんの algorithm は in-place だ

BWT:

online, 右から左へ

BBWT:

最左 Lyndon 因子から 最右 Lyndon 因子まで