Introduction to Machine Learning – Linear Regression

Dr. Ab Mosca (they/them)

Reminder!

- First homework is out today!
- Homework and quizzes are week long assignments; expect to spend 5-7 hours on then (this is standard for a college class)
- Chapter 2.3 in the textbook has refreshers for R and Python

Plan for Today

- Introduction to Linear Regression:
 - Simple linear regression
 - Multiple linear regression

Variance: the amount the model would change if we had different training data

Bias: the error introduced by approximating a complex phenomenon using a simple model

In general, more flexible methods have higher variance and lower bias

Warm Up

Practice: Work with a small group. Sketch your own example of a more and less flexible regression.

Variance: the amount the model would change if we had different training data

Bias: the error introduced by approximating a complex phenomenon using a simple model

In general, more flexible methods have higher variance and lower bias

Warm Up

Running example: advertising

Last year's advertising budget

Your task

1. Is there a **relationship** between budget and sales?

- 1. Is there a **relationship** between budget and sales?
- 2. How **strong** is the relationship?

- 1. Is there a **relationship** between budget and sales?
- 2. How **strong** is the relationship?
- 3. Which **media** contribute to sales?

- 1. Is there a **relationship** between budget and sales?
- 2. How **strong** is the relationship?
- 3. Which **media** contribute to sales?
- 4. How accurately can we **estimate the effect**?

- 1. Is there a **relationship** between budget and sales?
- 2. How **strong** is the relationship?
- 3. Which **media** contribute to sales?
- 4. How accurately can we **estimate the effect**?
- 5. How accurately can we **predict future sales**?

- 1. Is there a **relationship** between budget and sales?
- 2. How **strong** is the relationship?
- 3. Which **media** contribute to sales?
- 4. How accurately can we **estimate the effect**?
- 5. How accurately can we **predict future sales**?
- 6. Is the relationship **linear**?

- 1. Is there a **relationship** between budget and sales?
- 2. How **strong** is the relationship?
- 3. Which **media** contribute to sales?
- 4. How accurately can we **estimate the effect**?
- 5. How accurately can we **predict future sales**?
- 6. Is the relationship **linear**?
- 7. Is there **synergy** among the advertising media?

- 1. Is there a **relationship** between budget and sales?
- 2. How **strong** is the relationship?
- 3. Which **media** contribute to sales?
- 4. How accurately can we **estimate the effect**?
- 5. How accurately can we **predict future sales**?
- 6. Is the relationship **linear**?
- 7. Is there **synergy** among the advertising media?

Simple linear regression

- Straightforward approach for predicting a quantitative response on the basis of a single predictor
- **Assumption**: there is a (roughly) linear relationship between X (the predictor) and Y (the response)

Simple linear regression

• **Reality**: β_0 and β_1 are unknown

• What we **do** know:

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

• **Goal**: find *estimated* coefficients $\hat{\beta}_0$ and $\hat{\beta}_1$ such that

$$y_i \approx \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Simple linear regression

Def. *residuals* and *RSS*

· Back to our hypothetical model: $\hat{y}_i = \hat{eta}_0 + \hat{eta}_1 x_i$

• Def. residual: $\epsilon_i = y_i - \hat{y}_i$

(difference between observed and predicted responses)

• Def. residual sum of squares (RSS):

$$RSS = \epsilon_1^2 + \epsilon_2^2 + \dots + \epsilon_n^2$$

$$RSS = (y_1 - (\hat{\beta}_0 + \hat{\beta}_1 x_1))^2 + \dots + (y_n - (\hat{\beta}_0 + \hat{\beta}_1 x_n))^2$$

Minimizing RSS: least squares

- **Goal**: $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize RSS
- Dusting off our calculus (or looking it up), minimizers are:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \text{ and } \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

where \bar{x} and \bar{y} are the mean values of the sample

Advertising example

How **good** is this estimate?

- Assumption: $Y \approx \beta_0 + \beta_1 X$
- We **estimated** $\hat{\beta}_0$ and $\hat{\beta}_1$ from the available data
- Consider this:

Standard error

• Idea: borrow the concept of standard error (SE):

$$Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{n}$$

- σ is the **standard deviation** of the population
- *n* is the **number of samples**
- **Note**: the error gets smaller as the sample size increases

Standard error of $\hat{\beta}_1$, $\hat{\beta}_0$

- Idea: use the standard deviation of ϵ for σ (why?)
- Start with the slope:

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

What happens when the mean of *x* is o?

What happens

as x spreads out?

And now the intercept:

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

Just one problem...

• Idea: use the standard deviation of ϵ for σ

usually don't have this information

What **do** we know about ϵ ?

Residual standard error

• Idea: estimate standard deviation of ϵ using RSS to get **residual standard error**:

$$RSE = \sqrt{\frac{RSS}{(n-2)}}$$

- Now we can finally estimate SE, which can be used to compute confidence intervals
- In linear regression, the 95% confidence intervals are:

$$\hat{\beta}_0 \pm 2 \times SE(\hat{\beta}_0)$$
 and $\hat{\beta}_1 \pm 2 \times SE(\hat{\beta}_1)$

Using SE for hypothesis testing

- Goal: determine if sales are related to advertising budget
- If there is **NO relationship**, what is the true value of β_1 ?

$$no\ relationship = no\ slope$$
 $\beta_1 = 0$

- To test: compute the probability that we observed our (estimated) β_1 by chance, assuming a true value of o
- If this probability is **small**, we say a relationship exists

Advertising example

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

How good is this **model**?

- RSE is (roughly) the amount the response will deviate from the *true* regression line
- RSE is an **absolute** measure, given in the same units as the response variable
- Question: how do you know what a "good" RSE is?

How good is this **model**?

• Alternate approach: measure the *proportion* of variance explained by the model

variance

not explained

after regression

• R^2 is one such measure:

$$R^{2} = 1 - \frac{RSS}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
total variance in the response

QuantityValueResidual standard error3.26 R^2 0.612

TV and sales

- What does the RSE tell us?
- What does R^2 tell us?

Discussion

Question: how could we handle multiple predictors?

Option 1: SLR for each predictor

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

	Coefficient	Std. error	t-statistic	p-value
Intercept	9.312	0.563	16.54	< 0.0001
radio	0.203	0.020	9.92	< 0.0001

	Coefficient	Std. error	t-statistic	p-value
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	< 0.0001

What **problems** do you see with this approach?

Option 2: extend the linear model

Give each variable its own slope, e.g.

sales
$$pprox eta_0 + eta_1 imes extbf{TV} + \ eta_2 imes extbf{radio} + \ eta_3 imes extbf{newspaper} + \epsilon$$

- Each slope captures the average effect on Y of an increase in one predictor, holding all others constant
- Estimate coefficients using least squares (same as SLR!)

Advertising example

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

- What does this tell us?
- Do you notice anything unexpected?

What happened to newspaper ads?

Let's look at the correlation between all the dimensions

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

In SLR, **newspaper** spending was "getting credit" for **radio** spending's work!

Questions we ask in MLR

- Is **at least one** of the predictors useful in predicting the response?
- Do all the predictors help to explain the response, or is only a **subset** of the predictors useful?
- How well does the model fit the data?
- Given some predictor values, what response should we predict, and how **accurate** is our prediction?

Q1: is **at least one** predictor useful?

- SLR: test to see if the slope was o (no effect)
- MLR: test whether ALL of the slopes are o (no effect)
- To do this, we compute the F-statistic:

$$F = \frac{(TSS - RSS)}{p} \times \frac{(n - p - 1)}{RSS}$$

where p is the # of predictors and n is the sample size

- Value close to 1 → no effect
- Question: why look at the F-statistic and not just at the p-values for each predictor in turn? (hint: lots of predictors?)

Q2: do we need them **all**?

- Now we know that at least one predictor has an effect: which one(s) is it?
- Determining which predictors are associated with the response is referred to as *variable selection*
- Some classic approaches:
 - Exhaustive search
 - Forward selection
 - Backward selection
 - Mixed selection
- More detail in Ch. 6

Q3: How well does the model fit the data?

- Just like in SLR, we can use RSE and \mathbb{R}^2 to measure how well our model fits the data
- Using the MLR model we created using all 3 predictors:

Quantity	Value
Residual standard error	1.69
R^2	0.897
F-statistic	570

• Question: what would happen to the \mathbb{R}^2 value if we remove newspaper from the model?

Q4: How confident are we?

- Now that we have a model, making a prediction is a piece of cake (just plug and chug!)
- Need to consider 3 kinds of uncertainty:
 - 1. How far off are the coefficients? \rightarrow confidence intervals
 - 2. How far from linear is the true relationship? \rightarrow ignore this for now
 - 3. How much will any *specific* prediction vary from the true value, even if we had perfect coefficients? → prediction intervals