#### MIT · 6.036 | Introduction to Machine Learning (2020)

#### MIT 6.036(2020)· 课程资料包 @ShowMeAl









视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析

网络



视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1y44y187wN



课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/mit-6.036

机器学习 循环神经 神经网络 感知器

特征构建聚类

聚类 马尔可夫决策过程

随机森林 决策树 逻辑回归 卷积神经网络 状态机

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**何页面, 一键下载课程全部资料!

| 机器学习             | 深度学习             | 自然语言处理            | 计算机视觉             |
|------------------|------------------|-------------------|-------------------|
| Stanford · CS229 | Stanford · CS230 | Stanford · CS224n | Stanford · CS23In |

#### # Awesome Al Courses Notes Cheatsheets· 持续更新中

| 知识图谱             | 图机器学习             | 深度强化学习             | 自动驾驶         |
|------------------|-------------------|--------------------|--------------|
| Stanford · CS520 | Stanford · CS224W | UCBerkeley · CS285 | MIT · 6.S094 |



#### 微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复[添砖加页]



# 6.036/6.862: Introduction to Machine Learning

Lecture: starts Tuesdays 9:35am (Boston time zone)

Course website: introml.odl.mit.edu

Who's talking? Prof. Tamara Broderick

Questions? discourse.odl.mit.edu ("Lecture 8" category)

Materials: Will all be available at course website

#### **Last Time**

- I. Neural networks
  - 2 layers
  - Fully connected
  - Learning

#### Today's Plan

- I. CNNs/ConvNets: hypothesis class
- II. Filters & max pooling
- III. Learning

ImageNet results



 Since 2010: large-scale image classification challenge

[ https://en.wikipedia.org/wiki/ImageNet#History\_of\_the\_ImageNet\_Challenge ] [ Russakovsky et al, "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015 ]

ImageNet results



 Since 2010: large-scale image classification challenge

[ https://en.wikipedia.org/wiki/ImageNet#History\_of\_the\_ImageNet\_Challenge ] [ Russakovsky et al, "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015 ]

ImageNet results



 Since 2010: large-scale image classification challenge

[ https://en.wikipedia.org/wiki/ImageNet#History\_of\_the\_ImageNet\_Challenge ] [ Russakovsky et al, "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015 ]

ImageNet results



 Since 2010: large-scale image classification challenge

[ https://en.wikipedia.org/wiki/ImageNet#History\_of\_the\_ImageNet\_Challenge ] Russakovsky et al, "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015 ]

ImageNet results



- Since 2010: large-scale image classification challenge
- Recent Al boom

[ https://en.wikipedia.org/wiki/ImageNet#History\_of\_the\_ImageNet\_Challenge ] Russakovsky et al, "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015 ]

ImageNet results



- Since 2010: large-scale image classification challenge
- Recent Al boom
- 1960s, 1980s, today: neural networks
- Since 1980s: CNNs

[ https://en.wikipedia.org/wiki/ImageNet#History\_of\_the\_ImageNet\_Challenge ] Russakovsky et al, "ImageNet Large Scale Visual Recognition Challenge", IJCV, 2015 ]

 Potential uses of image classification: Detect tumor (type) from medical scans, image search online, autonomous driving

 Potential uses of image classification: Detect tumor (type) from medical scans, image search online, autonomous driving



Recall: images are made of pixels



 We'll focus on grayscale images



 We'll focus on grayscale images



- We'll focus on grayscale images
  - Each pixel takes a value between 0 and P



- We'll focus on grayscale images
  - Each pixel takes a value between 0 and P
  - Here, 0: black, 1: white



- We'll focus on grayscale images
  - Each pixel takes a value between 0 and P
  - Here, 0: black, 1: white
  - Larger P in Lab Week 08



- We'll focus on grayscale images
  - Each pixel takes a value between 0 and P
  - Here, 0: black, 1: white
  - Larger P in Lab Week 08



- We'll focus on grayscale images
  - Each pixel takes a value between 0 and P
  - Here, 0: black, 1: white
  - Larger P in Lab Week 08

 How do we use an image as an input for a neural net?



| $ x_1 $  | $x_2$    | $x_3$    | $x_4$    | $x_5$    |
|----------|----------|----------|----------|----------|
| $x_6$    | $x_7$    | $x_8$    | $x_9$    | $x_{10}$ |
| $x_{11}$ | $x_{12}$ | $x_{13}$ | $x_{14}$ | $x_{15}$ |
| $x_{16}$ | $x_{17}$ | $x_{18}$ | $x_{19}$ | $x_{20}$ |
| $x_{21}$ | $x_{22}$ | $x_{23}$ | $x_{24}$ | $x_{25}$ |

- We'll focus on grayscale images
  - Each pixel takes a value between 0 and P
  - Here, 0: black, 1: white
  - Larger P in Lab Week 08

 How do we use an image as an input for a neural net?

Recall:

• Recall:



• Recall:



• Recall:



• Recall:

Fully connected layer: every input is connected to every output by a weight



• Recall: Fully connected layer: every input is connected to every output by a weight



• Recall: Fully connected layer: every input is connected to every output by a weight



• Recall: Fully connected layer: every input is connected to every output by a weight



But we know more about images:

Spatial locality

• Recall: Fully connected layer: every input is connected to every output by a weight



But we know more about images:

Spatial locality

• Recall: Fully connected layer: every input is connected to every output by a weight



- Spatial locality
- Translation invariance

• Recall: Fully connected layer: every input is connected to every output by a weight



- Spatial locality
- Translation invariance

• Recall: Fully connected layer: every input is connected to every output by a weight



- Spatial locality
- Translation invariance

• Recall: Fully connected layer: every input is connected to every output by a weight



- Spatial locality
- Translation invariance

A 1D image:



A 1D image:



Letter | Published: 07 January 2019

# Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network

Awni Y. Hannun ⊡, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H. Tison, Codie Bourn, Mintu P. Turakhia & Andrew Y. Ng

A 1D image:



A 1D image: 0 0 1 1 1 0 1 0 0 0

A filter: -1 1 -1



A filter: -1 1 -1

A 1D image:

0 0 1 1 1 0 1 0 0

A filter:

A 1D image: A filter: After

convolution\*:

A 1D image: A filter: After

convolution\*:

A 1D image: A filter: After convolution\*:

A 1D image: A filter: After

convolution\*:

A 1D image:

0 0 1 1 1 0 1 0 0

A filter:



A 1D image:

0 0 1 1 1 0 1 0 0 0

A filter:



A 1D image:

A filter:



A 1D image:

A filter:



A 1D image:

A filter:



A 1D image:

A filter:



A 1D image: A filter: After

convolution\*:

A 1D image:

A filter:



A 1D image: 0 0 1 1 1 0 1 0 0 0

A filter: -1 1 -1

After convolution\*: -1

\*correlation

6

A 1D image:

A filter:

After convolution\*:



A 1D image:

A filter:



A 1D image: 0 0 1 1 1 0 1 0 0 0

A filter: -1 1 -1

A 1D image: A filter: After convolution\*:















After ReLU:







After ReLU:











After ReLU:



















After ReLU:





A filter: -1 1 -1

After convolution\*: -1 0 -1 0 -2

After ReLU:







After ReLU:





A filter: -1 1 -1



After ReLU:









After ReLU:















What does the filter do?











After ReLU: 0 0 0 0 1 0 0

















After ReLU: 0 0 0 0 0 1 0 0 0

























A filter:



After

convolution\*:



After ReLU:













• How many weights (including bias)?



• How many weights (including bias)? 4



- How many weights (including bias)? 4
- How many weights (including biases) for fully connected layer with 10 inputs & 10 outputs?



- How many weights (including bias)? 4
- How many weights (including biases) for fully connected layer with 10 inputs & 10 outputs? 10 x 11 =



- How many weights (including bias)? 4
- How many weights (including biases) for fully connected layer with 10 inputs & 10 outputs? 10 x 11 = 110

A 2D image:



A 2D image:



A 2D image:



A 2D image:



A filter:



A 2D image:



A filter:



After convolution:

A 2D image:



A filter:



After convolution:

A 2D image:



A filter:



After convolution:

A 2D image:



A filter:



A 2D image:



A 2D image:



10

A 2D image:



A filter:



$$-1 + 0$$



A 2D image:



A filter:



$$-1 + 0 + -1$$



A 2D image:



A filter:



A<sub>2D</sub> image:



$$-1 + 0 + -1 + 0$$

A filter:



A 2D image:





$$-1 + 0 + -1$$
  
 $+ -1 + 0 + -1$ 

A 2D image:





$$-1 + 0 + -1$$
  
+  $-1 + 0 + -1$   
+  $-1$ 

A 2D image:





$$-1 + 0 + -1$$
  
 $+ -1 + 0 + -1$   
 $+ -1 + -1$ 

After

convolution:

A 2D image:



A filter:



$$-1 + 0 + -1$$
  
  $+ -1 + 0 + -1$   
  $+ -1 + -1 + -1$ 

A 2D image:



A filter:



$$-1 + 0 + -1$$
  
  $+ -1 + 0 + -1$   
  $+ -1 + -1 + -1$   
  $= -7$ 

A 2D image:



A filter:



$$-1 + 0 + -1$$
  
  $+ -1 + 0 + -1$   
  $+ -1 + -1 + -1$   
  $= -7$ 

A 2D image:



A filter:



-7

A 2D image:



A 2D image:



A filter:



7 -2

A 2D image:



A 2D image:



A filter:



-7 -2 -4

A 2D image:



A filter:





A 2D image:



A filter:





A 2D image:



A filter:





A 2D image:



A filter:





A 2D image:



A filter:





A 2D image:



A filter:





A 2D image:



A filter:









A filter:





A 2D image:



A filter:





A 2D image:



A filter:



After convolution:

 -7
 -2
 -4

 -5
 -2
 -5

 -7
 -2
 -5







A filter:





A 2D image:



A filter:





A 2D image:



A filter:



| 0  | -4 | 0  | -3 | -1 |
|----|----|----|----|----|
| -2 | -7 | -2 | -4 | 1  |
| -2 | -5 | -2 | -5 | -2 |
| -2 | -7 | -2 | -5 | 0  |
| 0  | -4 | 0  | -4 | 0  |

A 2D image:



A filter:





A 2D image:



A filter:





A 2D image:



A filter:





A 2D image:



A filter:





A 2D image:



A filter:





A 2D image:



A filter:



with bias 2



A 2D image:





A 2D image:









A 2D image:



A filter:



with bias 2



A 2D image:



A filter:



with bias 2



A 2D image:



A filter:



with bias b



A<sub>2D</sub> image:



After convolution:



 $w_3$ 

 $w_6$ 

 $w_9$ 

A 2D image:



A filter:



with bias b

A 2D image:



A filter:



with bias b

A 3D image:

A<sub>3D</sub> image: height





- Tensor: generalization of a matrix
  - E.g. 1D: vector, 2D: matrix



- Tensor: generalization of a matrix
  - E.g. 1D: vector, 2D: matrix



A3D image: height

A filter:



- Tensor: generalization of a matrix
  - E.g. 1D: vector, 2D: matrix



A3D image: height

A filter:



- Tensor: generalization of a matrix
  - E.g. 1D: vector, 2D: matrix



A3D image: height

A filter:



- Tensor: generalization of a matrix
  - E.g. 1D: vector, 2D: matrix



A3D image: height

A filter:



- Tensor: generalization of a matrix
  - E.g. 1D: vector, 2D: matrix



A3D image: height

A filter:



- Tensor: generalization of a matrix
  - E.g. 1D: vector, 2D: matrix



A3D image: height

A filter:



- Tensor: generalization of a matrix
  - E.g. 1D: vector, 2D: matrix



An



An image:

An image:

An image:  $F_3$ 

An image:  $F_3$ 

> Collection of filters in the layer: filter bank

An image:



 Collection of filters in the layer: filter bank

image is a channel

Output from the convolutional layer & ReLU:

| 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |

Output from the convolutional layer & ReLU:

| 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |

Output from the convolutional layer & ReLU:

| 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")

After max pooling:

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

• E.g. size 3x3 ("size 3")



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 1



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 1

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 1

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3



#### Max pooling layer: 2D example

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3

After max pooling:



Can use stride with filters too

#### Max pooling layer: 2D example

Output from the convolutional layer & ReLU:



Max pooling: returns max of its arguments

- E.g. size 3x3 ("size 3")
- E.g. stride 3

After max pooling:



- Can use stride with filters too
- No weights in max pooling

#### CNNs: typical architecture



#### CNNs: typical architecture



#### CNNs: typical architecture



1. Choose how to predict label (given features & parameters)

1. Choose how to predict label (given features & parameters)

*i*th data point

 $x^{(i)}$ 

1. Choose how to predict label (given features & parameters)

ith data point

Logistic regression:  $x^{(i)}$ 

1. Choose how to predict label (given features & parameters)



- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guessed label & actual label)



- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guessed label & actual label)



- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guessed label & actual label)
- 3. Choose parameters by trying to minimize the training loss



- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guessed label & actual label)
- 3. Choose parameters by trying to minimize the training loss



- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guessed label & actual label)
- 3. Choose parameters by trying to minimize the training loss



- 1. Choose how to predict label (given features & parameters)
- 2. Choose a loss (between guessed label & actual label)
- 3. Choose parameters by trying to minimize the training loss



Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

Forward pass:

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^\top X_{[i-1,i,i+1]}$  pass:

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$  pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1=(W^1)^{ op}X_{[i-1,i,i+1]}$  pass:  $A_i^1=\mathrm{ReLU}(Z_i^1)$   $A^2=(W^2)^{ op}A^1$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1=(W^1)^{ op}X_{[i-1,i,i+1]}$  pass:  $A_i^1=\mathrm{ReLU}(Z_i^1)$   $A^2=(W^2)^{ op}A^1$   $L(A^2,y)=(A^2-y)^2$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1=(W^1)^{ op}X_{[i-1,i,i+1]}$  Z1:5x1 pass:  $A_i^1=\mathrm{ReLU}(Z_i^1)$   $A^2=(W^2)^{ op}A^1$   $L(A^2,y)=(A^2-y)^2$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$  Z1: 5x1 pass:  $A_i^1 = \mathrm{ReLU}(Z_i^1)$  A1: 5x1  $A^2 = (W^2)^{ op} A^1$   $L(A^2,y) = (A^2-y)^2$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \mathrm{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \text{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

Part of the derivative for SGD:

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

• Part of the derivative for SGD:  $\frac{\partial \mathrm{loss}}{\partial W^1} =$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

• Part of the derivative for SGD:  $\frac{\partial loss}{\partial W^1} = \frac{\partial loss}{\partial A^1}$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

• Part of the derivative for SGD:  $\frac{\partial loss}{\partial W^1} = \frac{\partial A^1}{\partial Z^1} \cdot \frac{\partial loss}{\partial A^1}$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \mathrm{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \text{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \mathrm{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \mathrm{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

• Part of the derivative for SGD:

$$\frac{\partial loss}{\partial W^1} = \frac{\partial Z^1}{\partial W^1} \cdot \frac{\partial A^1}{\partial Z^1} \cdot \frac{\partial loss}{\partial A^1}$$
3x1 3x5 5x5 5x1

 $\frac{\partial Z^1}{\partial W^1}$ 

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1

 $L(A^2, y) = (A^2 - y)^2$  Loss: 1x1

• Part of the derivative for SGD:  $\frac{\partial loss}{\partial W^1} = \frac{\partial Z^1}{\partial W^1} \cdot \frac{\partial A^1}{\partial Z^1} \cdot \frac{\partial loss}{\partial A^1}$ 

 $\frac{\partial W^{\perp}}{\partial x_1}$   $\frac{\partial W^{\perp}}{\partial x_2}$   $\frac{\partial Z^{\perp}}{\partial x_3}$ 

5x1

$$\frac{Z_1^1}{\partial W^1} = \begin{bmatrix} Z_1^1 & Z_2^1 & Z_3^1 & Z_4^1 & Z_5^1 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

$$rac{Z_1^1}{\partial W^1} = egin{bmatrix} Z_1^1 & Z_2^1 & Z_3^1 & Z_4^1 & Z_5^1 & & & & \\ & & & & & & & & \\ W_1^1 & & & & & & \\ W_2^1 & & & & & \\ W_2^1 & & & & \\ W_2^1 & & & & \\ \end{array}$$

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1  $L(A^2,y) = (A^2-y)^2$  Loss: 1x1

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{\top} X_{[i-1,i,i+1]}$   $Z^1: 5 \times 1$  pass:  $A_i^1 = \text{ReLU}(Z_i^1)$   $A^1: 5 \times 1$   $A^2 = (W^2)^{\top} A^1$   $A^2: 1 \times 1$ 

$$L(A^2, y) = (A^2 - y)^2$$
 Loss: 1x1

• Part of the derivative for SGD:

$$\frac{\partial loss}{\partial W^{1}} = \frac{\partial Z^{1}}{\partial W^{1}} \cdot \frac{\partial A^{1}}{\partial Z^{1}} \cdot \frac{\partial loss}{\partial A^{1}}$$
3x1 3x5 5x5 5x1

$$Z_2^1 = W_1^1 X_1 + W_2^1 X_2 + W_3^1 X_3$$

$$rac{Z_1^1}{\partial W^1} = egin{bmatrix} Z_1^1 & Z_2^1 & Z_3^1 & Z_4^1 & Z_5^1 \ & & & & & & & \\ rac{\partial Z^1}{\partial W^1} & & & & & & \\ & & & & & & & \\ rac{\partial Z_2^1}{\partial W^1} & & & & & & \\ \end{pmatrix} rac{W_1^1}{W_2^2}$$

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{\top} X_{[i-1,i,i+1]}$   $Z^1: 5 \times 1$  pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1: 5 \times 1$   $A^2 = (W^2)^{\top} A^1$   $A^2: 1 \times 1$ 

 $L(A^2,y) = (A^2-y)^2 \qquad \text{Loss: 1x1}$  Part of the derivative for SCD:  $\partial \log z = \partial Z^1 - \partial A^1$ 

• Part of the derivative for SGD: 
$$\frac{\partial loss}{\partial W^1} = \frac{\partial Z^1}{\partial W^1} \cdot \frac{\partial A^1}{\partial Z^1} \cdot \frac{\partial loss}{\partial A^1}$$

$$Z_2^1 = W_1^1 X_1 + W_2^1 X_2 + W_3^1 X_3$$

$$rac{Z_1^1}{\partial W^1} = egin{bmatrix} Z_1^1 & Z_2^1 & Z_3^1 & Z_4^1 & Z_5^1 \ & & & & & & & \\ W_1^1 & & & & & & \\ W_2^1 & & & & & & \\ W_2^2 & & & & & \\ W_2^2 & & & & \\ W_3^2 & & & & \\ \end{array}$$

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^T X_{[i-1,i,i+1]}$  $Z^1$ : 5x1 pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$  $A^{1}$ : 5x1  $A^2 = (W^2)^\top A^1$  $A^2$ : 1x1  $L(A^2, y) = (A^2 - y)^2$ 

 $\partial Z^1 \quad \partial A^1$  $\partial loss$  $\partial loss$ • Part of the derivative for SGD:  $= \frac{1}{\partial W^1} \cdot \frac{1}{\partial Z^1} \cdot \frac{1}{\partial A^1}$ 3x5 5x5

3x1

Loss: 1x1

5x1

$$Z_2^1 = W_1^1 X_1 + W_2^1 X_2 + W_3^1 X_3$$

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^T X_{[i-1,i,i+1]}$  $Z^1: 5x1$ pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$  $A^{1}$ : 5x1  $A^2 = (W^2)^\top A^1$  $A^2$ : 1x1  $L(A^2, y) = (A^2 - y)^2$ 

Loss: 1x1

Part of the derivative for SGD:

$$\frac{\partial loss}{\partial W^{1}} = \frac{\partial Z^{1}}{\partial W^{1}} \cdot \frac{\partial A^{1}}{\partial Z^{1}} \cdot \frac{\partial loss}{\partial A^{1}}$$
3x1 3x5 5x5 5x1

$$Z_2^1 = W_1^1 X_1 + W_2^1 X_2 + W_3^1 X_3$$

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \text{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1

 $L(A^2, y) = (A^2 - y)^2$  Loss: 1x1

• Part of the derivative for SGD:

$$\frac{\partial loss}{\partial W^1} = \frac{\partial Z^1}{\partial W^1} \cdot \frac{\partial A^1}{\partial Z^1} \cdot \frac{\partial loss}{\partial A^1}$$
3x1 3x5 5x5 5x1

$$Z_2^1 = W_1^1 X_1 + W_2^1 X_2 + W_3^1 X_3$$

$$\frac{Z_1^1}{\partial W^1} = \begin{bmatrix} Z_1^1 & Z_2^1 & Z_3^1 & Z_4^1 & Z_5^1 \\ & X_1 & & \\ & X_2 & & \\ & X_3 & & \end{bmatrix} \begin{bmatrix} W_1^1 & & \\ W_2^1 & & \\ & W_3^1 & & \\ \end{bmatrix}$$

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1: 5 \times 1$  pass:  $A_i^1 = \operatorname{ReLU}(Z_i^1)$   $A^1: 5 \times 1$   $A^2 = (W^2)^{ op} A^1$   $A^2: 1 \times 1$ 

 $L(A^2, y) = (A^2 - y)^2$  Loss: 1x1

• Part of the derivative for SGD:  $\frac{O}{a}$ 

$$\frac{\partial loss}{\partial W^1} = \frac{\partial Z^1}{\partial W^1} \cdot \frac{\partial A^1}{\partial Z^1} \cdot \frac{\partial loss}{\partial A^1}$$
3x1 3x5 5x5 5x1

$$Z_2^1 = W_1^1 X_1 + W_2^1 X_2 + W_3^1 X_3$$

$$\frac{Z_1^1}{\partial W^1} = \begin{bmatrix} X_1^1 & Z_2^1 & Z_3^1 & Z_4^1 & Z_5^1 \\ X_2 & X_1 & X_2 & X_3 & X_4 \\ X_1 & X_2 & X_3 & X_4 & X_5 \\ X_2 & X_3 & X_4 & X_5 & X_6 \end{bmatrix} \frac{W_1^1}{W_2^1}$$

Regression. 1 filter: size 3 & padding;  $x^{(j)}$  dimension: 5x1

• Forward  $Z_i^1 = (W^1)^{ op} X_{[i-1,i,i+1]}$   $Z^1$ : 5x1 pass:  $A_i^1 = \text{ReLU}(Z_i^1)$   $A^1$ : 5x1  $A^2 = (W^2)^{ op} A^1$   $A^2$ : 1x1

$$L(A^2, y) = (A^2 - y)^2$$
 Loss: 1x1

• Part of the derivative for SGD:  $\frac{O10}{0.00}$ 

$$\frac{\partial loss}{\partial W^1} = \frac{\partial Z^1}{\partial W^1} \cdot \frac{\partial A^1}{\partial Z^1} \cdot \frac{\partial loss}{\partial A^1}$$
3x1 3x5 5x5 5x1

$$Z_2^1 = W_1^1 X_1 + W_2^1 X_2 + W_3^1 X_3$$

$$\frac{\partial Z^{1}}{\partial W^{1}} = \begin{bmatrix} X_{1}^{1} & Z_{2}^{1} & Z_{3}^{1} & Z_{4}^{1} & Z_{5}^{1} \\ X_{2} & X_{1} & X_{2} & X_{3} & X_{4} \\ X_{1} & X_{2} & X_{3} & X_{4} & X_{5} \\ X_{2} & X_{3} & X_{4} & X_{5} & X_{6} \end{bmatrix} \begin{bmatrix} W_{1}^{1} \\ W_{2}^{1} \\ W_{3}^{1} \end{bmatrix}$$

#### MIT · 6.036 | Introduction to Machine Learning (2020)

#### MIT 6.036(2020)· 课程资料包 @ShowMeAl









视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析



视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1y44y187wN



课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/mit-6.036

机器学习 循环神经 神经网络 感知器

特征构建

聚类

马尔可夫决策过程

网络

随机森林 决策树 逻辑回归 卷积神经网络 状态机

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

| 机器学习             | 深度学习             | 自然语言处理            | 计算机视觉             |
|------------------|------------------|-------------------|-------------------|
| Stanford · CS229 | Stanford · CS230 | Stanford · CS224n | Stanford · CS23In |

#### # Awesome Al Courses Notes Cheatsheets· 持续更新中

| 知识图谱             | 图机器学习             | 深度强化学习             | 自动驾驶         |
|------------------|-------------------|--------------------|--------------|
| Stanford · CS520 | Stanford · CS224W | UCBerkeley · CS285 | MIT · 6.S094 |



#### 微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复[添砖加页]