Math 151A: Problem Set 4

Brandon Montez

Problem 1: (T) Lagrange Polynomials and Neville's Method

Use Neville's method to obtain approximations to f(0.1) using the Lagrange interpolating polynomials of degrees one, two, and three if

f(0) = 1, f(0.25) = 1.65, f(0.5) = 2.72, and f(0.75) = 4.48. You should explicitly compute the table associated with Neville's method:

x_i	$x-x_i$	$Q_{i,0}$	$Q_{i,1}$	$Q_{i,2}$	$Q_{i,3}$
0			-	-	-
0.25				-	-
0.5					-
0.75					

(The true value is f(0.1) = 1.2214.)

Solution:

x_i	$x-x_i$	$Q_{i,0}$	$Q_{i,1}$	$Q_{i,2}$	$Q_{i,3}$
0	0.1	1	1.26	1.0848	1.374976
0.25	-0.15	1.65	0.384	3.26112	-
0.5	-0.4	2.72	-6.1696	-	-
0.75	-0.65	4.48	-	-	-

1st degree: 1.26 2nd degree: 1.0848 3rd degree: 1.374976

Problem 2: (T) Lagrange Polynomials and Neville's Method

Suppose $x_j = j$, for j = 0, 1, 2, 3, and it is known that:

$$P_{0,1}(x) = 2x + 1, P_{0,2}(x) = x + 1, P_{1,2,3}(2.5) = 3$$

Determine $P_{0,1,2,3}(2.5)$.

Solution:

$$P_{0,1}(2.5) = 6$$

$$P_{0,2}(2.5) = 3.5$$

$$P_{0,1,2}(2.5) = 2.875$$

$$P_{0,1,2,3}(2.5) = 6.0625$$

Problem 3: (T) Lagrange Polynomials and Neville's Method

Suppose $x_j = 2j$, for j = 0, 1, 2, 3, 4 and it is known that:

$$P_{1,2}(1) = 2$$
, $P_{1,2,3}(1) = 1$, $P_{1,4}(1) = 6$.

Determine $P_{1,2,3,4}(1)$.

Solution:

Solution:

$$P_{1,2,3}(1) = \frac{(1-6)*2 - (1-4)*P_{1,3}(1)}{(4-6)} = 1$$

$$\rightarrow P_{1,3}(1) = \frac{8}{3}$$

$$P_{1,3,4}(1) = \frac{(1-8)*\frac{8}{3} - (1-6)*6}{(6-8)}$$

$$\to P_{1,3,4}(1) = -\frac{17}{3}$$

$$P_{1,2,3,4}(1) = \frac{(1-8)*1 - (1-4)* - \frac{17}{3}}{(4-8)}$$

$$\to P_{1,2,3,4}(1) = 6$$

$$P_{1,2,3,4}(1) = 6$$

Problem 4: (T) Newton's Divided Differences

- a) Find the degree-2 interpolating polynomial via Newton's divided difference for $f(x) = \frac{x}{1+x}$ using nodes $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$.
- b) What are the degree-2 interpolating polynomials associated with Lagrange's construction and Neville's construction? Compare them to the solution of Part (a).

Solution:

$$f[x_0] = f(0) = 0$$

 $f[x_1] = f(1) = 0.5$
 $f[x_2] = f(2) = 0.6667$

$$f[x_0, x_1] = 0.5$$

 $f[x_1, x_2] = 0.1667$

$$f[x_0, x_1, x_2] = -0.1667$$

Newton's degree 2: $-0.167x^2 + 0.667x$

The Lagrange polynomial: $-0.167x^2 + 0.667x$

Neville's polynomial: $-0.167x^2 + 0.667x$

We can see that they are all the same. This is because the original function x/(1+x) is of degree $1 \le 2$. Hence the degree-2 interpolating polynomial will be the same for each method.

Problem 5: (T) Numerical Differentiation/Finite Difference

Show that the following finite difference formula is first-order accurate:

$$f^{(2)}(x) = \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2} + O(h).$$

For full credit, you must state any assumptions on f(x) and justify each step in your solution. Hint: Apply Taylor's theorem to each of the terms on the right-hand side.

Solution:

f(x) is assumed to be a function that is twice continuously differentiable in the interval of interest.

$$f^{(2)}(x) = \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2}$$

$$= \frac{(f(x) + 2hf'(x) + 2h^2f''(x) + O(h^3)) - 2(f(x) + hf'(x) + \frac{h^2}{2}f''(x) + O(h^3)) + f(x)}{h^2}$$

$$= \frac{2hf'(x) - 2hf'(x) + 2h^2f''(x) - h^2f''(x) - O(h^3)}{h^2}$$

$$= \frac{h^2f''(x) - O(h^3)}{h^2}$$

$$= f''(x) - \frac{O(h^3)}{h^2}$$

Now, because the $O(h^3)$ term is of higher order than h^2 as h approaches zero, we can rewrite the expression as:

$$f''(x) - \frac{O(h^3)}{h^2} = f''(x) - O(h)$$

Finally, we remove the leading constant -1 from the big O notation, as it does not contribute any additional information, since we are talking about the magnitude of growth rate and not direction.

$$f''(x) - O(h) = f''(x) + O(h)$$

Hence, we see that the finite-difference formula is first-order accurate.