

ZS110A BLE 用户使用指南 发布 *1.0.0*

目录

1	文档:	介绍	1
	1.1	文档目的	1
	1.2	术语说明	1
	1.3	参考文档	1
	1.4	版本历史	2
2	BLE	协议栈简介	3
	2.1	BLE 协议栈层次架构	3
	2.2	physical layer	4
	2.3	Link layer	4
	2.4	HCI	6
	2.5	GAP	7
	2.6	L2CAP	8
	2.7	SMP	9
	2.8	ATT	10
	2.9	GATT	11
	2.10	Profiles	12
3	RON	M 中的 Zephyr BLE 协议栈	14
	3.1		14
	3.2		$\frac{1}{4}$
4	7 1		16
4	Zepr 4.1		ιο 16
		1 0	10 17
	4.2 4.3		-
	4.3	GAP 接口使用	19
5	Zepł		22
	5.1		22
	5.2	V- V	22
	5.3		23
	5.4	BLE 协议栈的数据接发使用注意事项 :	23

文档介绍

1.1 文档目的

为低功耗蓝牙协议栈开发提供快速指引. 该文档只提供简单开发指引.

1.2 术语说明

表 1.1: 术语说明

术语	说明
BLE	蓝牙低功耗技术
GAP	通用接入规范
GATT	通用属性协议
ATT	属性协议
SMP	安全管理协协议
L2CAP	链路控制和适配协议
HCI	主机接口规范
LL	链路层
RF	物理层, 射频发射

1.3 参考文档

 $\bullet \ \ http://docs.zephyrproject.org/1.9.0/subsystems/bluetooth/bluetooth.html$

1.4 版本历史

表 1.2: 版本历史

日期	版本	注释	作者
2018-08-22	1.0	初始版本	ZS110A 项目组

BLE 协议栈简介

2.1 BLE 协议栈层次架构

图 2.1: BLE 协议栈层次框图

- 基于 GATT 的应用规范 (Application)
 - 即时报警服务、FindMe 规范、链路丢失服务、健康体温计规范、电池服务等
- 通用接入规范 (Generic Access Profile, GAP)
 - 蓝牙设备如何发现、建立连接及绑定远端蓝牙设备的通用程序
- 通用属性协议 (Generic Attribute Protocol, GATT)
 - 定义了服务的流程、格式及其所包含的特征,包含特征的发现、读取、写入、通知、指示
 - Client/Server Model
- 属性协议 (Attribute Protocol, ATT)
 - 用于发现、读取和写入对端设备上的属性的规范
 - Attribute database
- 安全管理协协议 (Security Manager, SMP)
 - 配对和密钥分发
- 链路控制和适配协议 (Logical Link Control and Adaption Protocol, L2CAP)
 - 数据分组交换
- 主机接口规范 (Host controller Interface, HCI)
 - 主机和控制器之间的接口
- 链路层 (Link layer, MAC)
 - 链路管理, 执行基带协议和其它低级的链路程序
- 物理层 (physical layer, RF&BandBand)
 - 空中包的收发

2.2 physical layer

- 低功耗蓝牙设备工作在 2.4 GHz ISM 频段
- 1 Mbps PHY 吞吐量
- 40 信道, 3 个广播信道, 37 个数据信道
- 自适应调频

2.3 Link layer

- 角色
 - Master

- Slave
- 主要责任
 - 信道管理
 - 广播和扫描
 - 创建和保持连接
 - 空中包收发
 - 加密链路
- 状态机
 - Standby: 低功耗模式
 - Advertising: 在 3 个广播信道发送广播包
 - Scaning: 主动和被动扫描
 - Initiating: 创建连接
 - Connection: 数据通讯

图 2.2: 链路层状态机

- 空中接口包的格式
 - 前导数据
 - 地址
 - PDU 头

2.3. Link layer 5

- PDU 长度
- PDU 数据
- CRC

图 2.3: 空中包格式

• 广播和扫描

图 2.4: 广播和扫描过程

• 数据通讯

图 2.5: 数据通讯过程

2.4 HCI

• 主机和控制器之间的接口

- 一种标准的通讯的机制
- 允许主机将命令和数据发送到控制器
- 允许控制器将事件和数据发送到主机

图 2.6: HCI 双芯片架构

2.5 **GAP**

角色

- 广播角色: 发送广播包

- 观察者角色: 接收广播包

- 中心角色: 建立连接的发起者 (LL Master)

- 外围角色:接受连接的建立 (LL Slave)

图 2.7: 广播者角色和观察者角色

2.5. GAP 7

图 2.8: 中心角色和外围角色

- 连接管理
 - 配对:交换安全特征
 - 绑定: long term key 保存
 - 发现: 服务和特征的发现
- 设备管理
 - 广播
 - 扫描
- 安全
 - 加密
 - 授权

2.6 L2CAP

- 数据分割和重合
 - 支持最大传输单元来提供传输效率,最大传送单元长度可以大于基带数据支持的长度
- 信道复用
 - 属性协议,即 CID=0x0004
 - 安全协议,即 CID=0x0006
 - L2CAP signal 信道,即 CID=0x0005

图 2.9: L2CAP 层框图

2.7 SMP

配对和密钥分发

- 加密和授权
- 配对过程
 - 1. 共享双方设备的 I/O 能力
 - 2. 生成 Short Term Key(STK)
 - 3. 特定的密钥分发
- 配对方法
 - Just works
 - Passkey entry
 - Out of band
 - Numeric comparion(for LE Secure connections)
- 绑定
 - 把配对过程中生成的 long term key 存储起来,这个过程叫绑定

2.7. SMP 9

	No Output	Display
No Input	No Input No Output	Display Only
Yes / No	No Input No Output	Display Yes / No
Keyboard	Keyboard Only	Keyboard Display

图 2.10: 配对中的 IO 组合情况

2.8 ATT

- 角色
 - 客户端
 - 服务端
- 属性
 - 属性类型: UUID(16bit or 128 bit)
 - 属性句柄: 服务器上的所有属性都会分配一个唯一非零的属性句柄
 - 属性许可: 使用许可、认证许可、授权许可
 - 属性值: 0-512 byte

Handle	Туре	Value
0x0001	Primary Service	GAP
0x0002	Characteristic	Device Name
0x0003	Device Name	"Tag"
0x0007	Primary Service	Tx Pwr
8000x0	Characteristic	Tx Pwr
0x0009	Tx Power	-4
0x0010	Primary Service	Battery
0x0011	Characteristic	Batt Level
0x0012	Battery Level	75%
0x0013	Char. Format	Uint8, 0, percent

图 2.11: att 属性储存数据库结构

• 方法类型

- 请求 (客户端到服务端)
- 应答 (服务端到客户端,是对请求的回应)
- 命令 (客户端到服务端,不需要应答)
- 通知 (服务端到客户端,不要确认)
- 指示 (服务端到客户端)
- 确认 (客户端到服务端,是对指示的回应)

2.9 GATT

- 角色
 - GATT 客户端: Read, write, notify, or indicate operations
 - GATT 服务端:储存数据和提供访问数据的方法
 - 独立于 LL Master/Slave

2.9. GATT 11

- GATT 客户端和服务端能够同时存在
- 为应用提供属性支持
 - 发现所有服务、特征及特征描述符
 - 客户端发起过程 (writing values)
 - 服务端发起过程 (notifications, indications)

图 2.12: BLE 连接示图

2.10 Profiles

- 基础概念
 - 描述 2 个或者更多设备的行为规范
 - 描述设备的可发现性和可连接性
 - Profile 客户端实现如何使用服务 (管理)
 - Profile 服务端实现具体服务 (数据库)
- 例子: 心跳 Profile
 - 产品 (心跳监视)

- 角色: 心跳数据采集者和收集者

- 用途: 心跳采集设备测量心跳和其它信息, 收集者接收采集者测量的数据

图 2.13: 心率 profile

2.10. Profiles 13

ROM 中的 Zephyr BLE 协议栈

3.1 ROM 的协议栈内容简介

- Host stack
 - BLE Host stack 绝大部分功能
 - 没有 mesh 代码
 - 没有经典蓝牙 Host 代码
 - 对应代码目录是 subsys/bluetooth/host, Zephyr 版本是 1.9.0
- Hci transport drivers
 - 标准 HCI 接口
 - 应用层直接可以调用
- Bluetooth Controller
 - 单模 LE 控制器实现
 - 对应代码不是 subsys/bluetooth/controller 目录的代码

3.2 ROM 中的 Zephyr Host 源码结构简介

• 源码结构如下表所示

表 3.1: 源码结构

源文件	API 接口文件	功能
subsys/bluetooth/host/gatt.c	include/gatt.h	GATT 层的实
		现
subsys/bluetooth/host/att.c	include/att.h	ATT 层的实现
subsys/bluetooth/host/smp.c	include/storage.h	SMP 层的实
subsys/bluetooth/host/key.c		现
subsys/bluetooth/host/storage		
subsys/bluetooth/host/l2cap.c	include/l2cap.h	L2CAP 层的
		实现
subsys/bluetooth/host/conn.c	include/conn.h in-	GAP 层的实
sub-	clude/bluetooth.h	现
sys/bluetooth/host/hci_core.c		

Zephyr BLE 协议栈接口调用流程简介

4.1 Zephyr 协议栈初始化

- 协议栈初始化函数
 - $-\ bt_enable(bt_ready_cb_t\ cb)$
 - 每个 Zephyr BLE 应用使用协议栈之前,都必须调用此函数
 - bt_enable 通常是在主线程被调用,但是其它回调函数是 WorkQueue 被调用的,对一些时序有要求的初始化,需要注意

4.2 GATT 接口使用

4.2.1 GATT Server

图 4.1: GATT Server 接口调用示意图

• 读回调函数

- (* read)(conn, attr, buf, len, offset)
- 实现一个来自 GATT client 的读操作
- 可以不向 att 注册, stack 返回 att database 属性值

• 写回调函数

- (* write)(conn,attr,buf,len,offset,flags)
- 实现一个来自 GATT Client 的写操作
- 可以不向 att 注册, stack 将写到 att database 属性值

• 发送指示

- bt_gatt_indicate(conn, params)

- 发送通知
 - bt_gatt_notify(conn, attr, data, len)

4.2.2 GATT Client

图 4.2: GATT Client 接口调用示意图

• 服务发现

- bt_gatt_discover(conn, params)
- primary Service 发现
- Include service 发现
- Characteristic 发现
- Descriptors 发现

• 读请求

- bt_gatt_read(conn, params)
- 写请求

- bt_gatt_write(conn, params)
- 写命令
 - bt_gatt_write_without_response(conn, handle, data, length, sign)

4.3 GAP 接口使用

4.3.1 广播和扫描

图 4.3: 广播和扫描接口调用示意图

- 开始广播
 - bt_le_adv_start(param, ad, ad_len, sd, sd_len)
- 停止广播
 - bt_le_adv_stop()
- 开始扫描
 - bt_le_scan_start(param, cb)
- 停止扫描
 - bt_le_scan_stop()

4.3.2 连接管理

图 4.4: 连接过程示意图

- 建立连接
 - bt_conn_create_le(peer, param)
- 断开连接
 - bt_conn_disconnect(conn, reason)
- 连接参数更新
 - bt_conn_le_param_update(conn, param)

4.3.3 配对和加密

bt_conn_security(conn, sec)

- 配对
 - Master Side: bt_smp_send_pairing_req(conn)
 - Slave Side : bt_smp_send_security_req(conn)

图 4.5: 配对过程示意图

• 加密

bt_conn_le_start_encryption

图 4.6: 加密过程示意图

Zephyr BLE 协议栈数据接收和发送简介

5.1 BLE 协议栈的线程交互

- main 线程
- Tx 线程
- Rx 线程
- Hci driver 中断

5.2 BLE 协议栈的数据发送

图 5.1: 发送数据流程图

- Host 协议栈分配 Tx buffer
- 应用层的数据拷贝到 Host 协议栈 Tx buffer
- HCI transport 收到 LL 层的数据包完成事件释放 buffer

5.3 BLE 协议栈的数据接收

图 5.2: 接收数据流程图

- HCI transport 分配 Rx buffer
- 应用层从协议栈拷贝数据
- 协议栈释放 buffer

5.4 BLE 协议栈的数据接发使用注意事项

- 线程栈空间大小
 - Zephyr 协议栈 RX 线程栈较其它线程会大一些,不建议在 RX 线程的回调 函数继续消耗更多的栈
- 数据接收过程中的流控
 - 发送流程有流控
 - 接收流程没有流控,但接收 buffer 分配完后, BLE 控制器的数据因为没有 buffer, 会一直进行重发, 直到 Host CPU 接收有 buffer 空闲
- Tx 和 Rx 流程资源竞争
 - Tx path 的 buffer 释放依赖 HCI transport Rx 包完成事件
 - Rx 完成事件 buffer 和 Rx 数据 buffer 共享 HCI transport 的 RX buffer
 - BLE 接收过程,控制器没有流控,如果对端设备发送数据速率过快,就会将 HCI transport RX buffer 分配耗尽

- Tx path 可能会因为 RX buffer 耗尽而阻塞住
- 因此, 在应用程序设计时, 尽量避免 Rx 线程直接发送数据, 导致死锁。

Zephyr BLE 协议栈配置

- BT_HCI_HOST
 - ROM 协议栈已经配置为支持,应用开发者不需要配置
- BT_HCI_CMD_COUNT
 - 用于 HCI 层发送命令的 buffer 个数,默认配置为 2
- BT_RX_BUF_COUNT
 - 用于接收控制器的 ACL 包或 HCI 事件的 buffer 个数,默认配置为 3
- BT_RX_BUF_LEN
 - 用于接收控制器的 ACL 包或 HCI 事件的 buffer 大小, 默认配置为 76
- BT_HCI_TX_STACK_SIZE
 - 协议栈 TX 线程栈大小配置, 默认为 256
- BT_HCI_TX_PRIO
 - 协议栈 TX 线程的优先级配置,默认为 7
- BT HCI RESERVE
 - 用于接收控制器的 ACL 包或 HCI 事件的 buffer,是否需要预留空间给 HCI 驱动使用,ROM HCI 驱动不需要,配置为 0
- BT RECV IS RX THREAD
 - ROM 协议栈已经配置为支持,应用开发者不需要配置
- BT RX STACK SIZE
 - 协议栈 RX 线程栈大小配置, 默认配置为 1024
- BT_RX_PRIO

- 协议栈 RX 线程优先级配置, 默认配置为 8
- CONFIG BT HOST CRYPTO
 - 加密库支持
 - ROM 协议栈已经配置为支持,应用开发者不需要配置
- BT_CONN
 - ROM 协议栈已经配置为支持,应用开发者不需要配置
- BT HCI ACL FLOW CONTROL
 - ROM 协议栈已经配置为不支持,应用开发者不需要配置
- BT_L2CAP_TX_BUF_COUNT
 - 用于 L2CAP TX buffers 的个数,默认配置为 4
- BT L2CAP TX MTU
 - L2CAP 层发送 MTU 大小配置,由于支持 SMP,默认配置为 65
- BT_CONN_TX_MAX
 - 最大允许发送给控制器 buffer 的个数, 默认配置为 4
- BT_L2CAP_TX_USER_DATA_SIZE
 - 用于 L2CAP 层 TX buffers 用户数据大小,默认为 4
- BT_ATT_PREPARE_COUNT
 - 用于支持 ATT prepare write bufffers 的个数,默认为 0,即不支持。
- BT ATT TX MAX
 - ATT 层可以缓冲的最大请求 buffer 个数,默认为 2
 - 设置范围为 1~BT L2CAP TX BUF COUNT
 - 如果应用尝试发送更多 ATT 请求过去,将会被阻塞。
- BT SMP
 - 安全协议支持,默认已经支持,用户不需要配置
- BT PRIVACY
 - 私有特征支持, 使能后, 将使用私有地址
- BT RPA TIMEOUT
 - 私有地址更新时间,默认为900秒(15分钟)
- BT SIGNING
 - 数据签名支持,默认已经支持
- BT L2CAP DYNAMIC CHANNEL
 - L2CAP 动态通道支持,默认支持

- BT_GATT_CLIENT
 - GATT 客户端支持,默认支持
- BT_MAX_PAIRED
 - 最大配对设备的支持
- BT_DEVICE_NAME
 - 蓝牙设备名配置
- BT_DEVICE_APPEARANCE
 - 蓝牙设备 appearance 配置

List of Figures

2.1	BLE 协议栈层次框图	3
2.2	链路层状态机	5
2.3	空中包格式	6
2.4	广播和扫描过程	6
2.5	数据通讯过程	6
2.6	HCI 双芯片架构	7
2.7	广播者角色和观察者角色	7
2.8	中心角色和外围角色	8
2.9	L2CAP 层框图	9
2.10	配对中的 IO 组合情况	10
2.11		11
2.12	BLE 连接示图	12
2.13	心率 profile	13
4.1	GATT Server 接口调用示意图	17
4.2	GATT Client 接口调用示意图	18
4.3		19
4.4	连接过程示意图	20
4.5	配对过程示意图	21
4.6	加密过程示意图	21
5.1	发送数据流程图	22
5.2		23

List of Tables

	术语说明 版本历史																			
3.1	源码结构																			15