Sequencial Contadores

Fernando Pujaico Rivera¹

¹Universidade Federal de Lavras

Aula-1 2016

Lógica combinacional

Lógica sequencial

Lógica sequencial

Circuito combinacional a saída depende exclusivamente da combinação de suas entradas.

Circuito sequencial a saída futura depende de sua saída atual e da da combinação de suas entradas (Armazena valores antigos).

O elemento de memória mais importante é o Flip-Flop.

Flip-Flop básico - SR NAND LATCH (SET-RESET)

Usando portas NAND

Futuro

INVÁLIDO set

reset não muda

INVÁLIDO: Q=Q=1

Flip-Flop básico - SR NOR LATCH (SET-RESET)

Usando portas NOR

Flip-Flop básico - SR NOR LATCH (SET-RESET)

Usando portas NOR

Atual estável	Acontece			uturo stável
Q	RESET	SET	Q	
Х	0	0	Х	não muda
Х	0	1	1	set
Х	1	0	0	reset
Х	1	1	0/0	INVÁLIDO

Flip-Flop com CLOCK

Flip-Flop SR NAND com CLOCK

Usando portas NAND

Detetor de transição

Flip-Flop SR NAND com CLOCK

Usando portas NAND

Flip-Flop JK

Usando portas NAND

Flip-Flop D

Exemplo Flip-Flop JK - contador assíncrono

Exemplo Flip-Flop JK - contador assíncrono

References I