Relations
Applications
Relations d'équivalences
Relations d'ordre

MATHÉMATIQUES DISCRÈTES CHAPITRE 3 RELATIONS ET APPLICATIONS

Leo Donati Noëlle Stolfi

Université de Nice Sophia Antipolis IUT Nice Côte d'Azur DUT Informatique

2015-2016

Chapitre 3: Relations et Applications

- RELATIONS
 - Définitions
 - Diagramme cartésien
 - Exemples
- 2 APPLICATIONS
 - Définitions
 - Propriétés
 - Injectivité et surjectivité
 - Application réciproque

- 3 RELATIONS D'ÉQUIVALENCES
 - Définition
 - Classe d'équivalence
 - Partition
- 4 RELATIONS D'ORDRE
 - Définitions

M1201-3

- Ordre total et partiel
- Diagramme de Hasse
- Maximum et minimum

RELATIONS

DÉFINITION

Soient E et F deux ensembles.

On appelle relation \mathcal{R} entre E et F tout sous-ensemble du produit cartésien $E \times F$.

NOTATION

Si le couple $(x,y) \in \mathcal{R}$, on dit que x est en relation avec y.

On note xRy.

Si E = F on parlera de relation sur E.

Exemple de relation \mathcal{R}

Soient $E = \{a, b, c, d\}$, et $F = \{1, 2, 3, 4\}$ et le sous-ensemble de $E \times F$ donné par : $\mathcal{R} = \{(a, 1), (a, 2), (a, 3), (b, 3), (c, 1), (c, 3)\}$. Alors par exemple $a\mathcal{R}1$.

DIAGRAMME CARTÉSIEN

DIAGRAMME CARTÉSIEN

Soient
$$E = \{a, b, c, d\}$$
, et $F = \{1, 2, 3, 4\}$ et $\mathcal{R} = \{(a, 1), (a, 2), (a, 3), (b, 3), (c, 1), (c, 3)\}$.

On peut représenter cette relation par un diagramme cartésien :

\mathcal{R}	1	2	3	4
а	Х	Χ	Χ	
b			Χ	
С	Х		Χ	
d				

EXEMPLES DANS N

Sur \mathbb{N} , quelques exemples de relation :

- x est le double de y;
- x est la moitié de y;
- x est divisible par y;
- \bullet x est plus petit que y.

QUATRE SITUATIONS DIFFÉRENTES

- certains x ne sont en relation avec aucun y (impairs), les autres sont en relation avec un seul y
- tous les x sont en relation avec un et un seul y
- tous les x ont au moins une ou deux relations (nombres premiers) mais peuvent en avoir plus
- tous les x sont en relation avec une infinité de y

Définitions Propriétés Injectivité et surjectivité Application réciproque

Chapitre 3: Relations et Applications

- RELATIONS
 - Définitions
 - Diagramme cartésien
 - Exemples
- APPLICATIONS
 - Définitions
 - Propriétés
 - Injectivité et surjectivité
 - Application réciproque

- 3 Relations d'équivalences
 - Définition
 - Classe d'équivalence
 - Partition
- 4 RELATIONS D'ORDRE
 - Définitions
 - Ordre total et partiel
 - Diagramme de Hasse
 - Maximum et minimum

APPLICATION

DÉFINITION

Une application est une relation entre E et F telle que : tout élément de E est en relation avec un et un seul élément de F.

NOTATION D'UNE APPLICATION DE E VERS F

$$f: E \to F$$
$$x \mapsto f(x) = y$$

VOCABULAIRE

- f est le nom de l'application
- E est l'ensemble de départ (ou domaine de f);
- F est l'ensemble d'arrivée (ou codomaine de f).

Vocabulaire

SI f(x) = y ON DIRA QUE:

- y est l'image de x par l'application f
- x est l'antécédent de y par l'application f.

EXEMPLE

Prenons $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2 + 1$.

- 10 est l'image de 3 par f
- 3 et -3 sont les antécédents de 10 par f

APPLICATION ENTRE ENSEMBLES FINIS

SI
$$E = \{a, b, c, d\}$$
, ET $F = \{1, 2, 3, 4\}$

On considère les deux relations données par les diagrammes cartésiens suivants

\mathcal{R}	1	2	3	4
а		Χ		
b			Χ	
С	Х			
d		Х		

\mathcal{R}	1	2	3	4
а	X		Χ	
b			Χ	
С	Х			
d		Χ		

La première est une application, et pas la seconde.

GRAPHE D'UNE APPLICATION

DÉFINITION

Soit $f: E \rightarrow F$ une application,

le graphe de f noté Γ_f est un sous-ensemble de $E \times F$ défini par :

$$\Gamma_f = \{(x, f(x)), \forall x \in E\}$$

EXEMPLE

Si $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2 + 1$, le graphe de f s'appelle une parabole. Pour l'exemple fini on a :

$$\Gamma_f = \{(a,2), (b,3), (c,1), (c,2)\}$$

PROPRIÉTÉS

EGALITÉ ENTRE DEUX APPLICATIONS

Deux applications $f: E \to F$ et $g: E \to F$ sont égales ssi $\forall x \in E, f(x) = g(x)$.

APPLICATION CONSTANTE

Une application $f: E \to F$ est constante si elle ne prend qu'une seule valeur :

$$\exists k \in F \ \forall x \in E \ f(x) = k$$

IDENTITÉ

Pour tout ensemble E, il existe une application, appelée Identité de E, notée $Id_E: E \to E$, telle que :

$$\forall x \in E \ Id_E(x) = x$$

IMAGE D'UN ENSEMBLE

Soit $f: E \to F$ une application :

• si $A \subset E$, f(A) est l'image de A, le sous—ensemble de F formé par les images des éléments de A :

$$f(A) = \{ y \in F , \exists x \in A \ f(x) = y \}$$

• si $B \subset F$, $f^{-1}(B)$ est l'image réciproque de B, le sous ensemble de E formé par les antécédents des éléments de B:

$$f^{-1}(B) = \{x \in E, f(x) \in B\}$$

SI
$$f(x) = x^2 + 1$$

- $f({0;1;2}) = {1;2;5}$
- $f^{-1}(\{-1;1;10\}) = \{-3;0;3\}$

Composition

Soient $f: E \to F$ et $g: F \to G$

On appelle composée de f et g, l'application, notée $g \circ f : E \to G$, définie par $(g \circ f)(x) = g(f(x))$.

EXEMPLE

Soit
$$f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$$
 définie par $f(x) = 1/(x-2)$ et $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = x^2$; alors

$$g \circ f : \mathbb{R} \setminus \{2\} \to \mathbb{R}$$

$$x \mapsto g \circ f(x) = g(f(x)) = \frac{1}{(x-2)^2}$$

$$f \circ g : \mathbb{R} \setminus \{\sqrt{2}; -\sqrt{2}\} \to \mathbb{R}$$

$$x \mapsto f \circ g(x) = f(g(x)) = \frac{1}{x^2 - 2}$$

FONCTIONS

Cas de \mathbb{R}

Lorsqu'on traite avec des applications définies sur \mathbb{R} et à valeur dans \mathbb{R} , on préfère utiliser le mot fonction.

- Leur graphe est un sous-ensemble du plan cartésien;
- on peut parler de croissance et de décroissance, de maximum local, de périodicité;
- n peut calculer des limites, des dérivées.

EXEMPLE

Les fonctions trigonométriques sinus et cosinus.

SUITES

CAS DE N

Lorsqu'on traite avec des applications définies sur \mathbb{N} , on préfère utiliser le mot suite.

Suite numérique si l'ensemble d'arrivée est un ensemble de nombres.

NOTATION

Si $u: \mathbb{N} \to \mathbb{R}$

on écrit u_n ai lieu de u(n) (notation indicielle).

EXEMPLE

$$u_n = \frac{1+n}{n}$$

Applications sur le produit cartésien

DÉFINITION

On peut définir une applications sur $f: E_1 \times E_2 \to F$ qui associe à tout couple $(x_1, x_2) \in E_1 \times E_2$ une valeur $f(x_1, x_2)$.

La fonction *f* peut être considérée comme une fonction de deux variables.

EXEMPLES

- $f: \mathbb{R}^3 \to \mathbb{R}$, $(x, y, z) \longmapsto 2x + 3y z$
- la projection sur le *k*-ème élément d'un *n*-uplet est :

$$\pi_k : E_1 \times E_2 \times E_3 \cdots \times E_n \rightarrow E_k$$

$$(x_1, x_2, \dots x_n) \mapsto x_k$$

OPÉRATIONS

DÉFINITION

Une opération binaire (interne) sur un ensemble E est une application

$$f: E \times E \rightarrow E$$

qui associe à tout couple d'éléments $(x,y) \in E$ une unique valeur f(x,y) appelée résultat de l'opération.

EXEMPLE

Souvent on utilise une notation infixée au lieu d'une notation préfixée :

- $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ la somme de réel se note 2+3 plutôt que +(2,3)
- $\bullet \times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ le produit de réels

Injectivité

DÉFINITION

Une application $f: E \to F$ est dite injective, ou une injection, si tout élément de F admet au plus un antécédent dans E (i.e. 1 ou 0 antécédent).

AUTRES CARACTÉRISATIONS

f envoie deux éléments distincts de E sur deux éléments distincts de F:

$$\forall x_1 \in E, \forall x_2 \in E, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

ou par contraposée :

$$\forall x_1 \in E, \forall x_2 \in E, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Donati & Stolfi M1201-3

EXEMPLE D'INJECTIVITÉ

EXEMPLES DISCRETS

f	1	2	3	4
а	Х			
b			Χ	
С	Х			
d		Х		

g	1	2	3	4
а	Х			
b			Χ	
С				Χ
d		Χ		

f n'est pas injective, g est injective.

Exemple continu

$$f: \mathbb{R} \to \mathbb{R} \ x \mapsto |x|$$
 n'est pas injective car $f(-2) = f(2)$.

SURJECTIVITÉ

DÉFINITION

Une application $f: E \to F$ est dite surjective, ou une surjection, si f(E) = F ou encore si tout élément de F a au moins un antécédent dans E:

$$\forall y \in F, \exists x \in E, y = f(x)$$

REMARQUE

Pour rendre $f: E \to F$ surjective il suffit de changer l'ensemble d'arrivée en l'image de E par f:

 $f: E \rightarrow f(E)$ est toujours surjective.

Définitions Propriétés Injectivité et surjectivité Application réciproque

Exemple de surjectivité

Exemples discrets

f	1	2	3	4	5
а	Х				
b			Χ		
С					Χ
d		Х			

g	1	2	3
а	Х		
b			Χ
С		Х	
d		Х	

f est injective et pas surjective, g est surjective et pas injective.

BIJECTION

DÉFINITION

 $f: E \to F$ est bijective, ou une bijection, si elle est injective et surjective. Tout élément de F est l'image d'un élément unique de E :

$$\forall y \in F, \exists ! x \in E, y = f(x)$$

EXEMPLE

f	1	2	3	4
а	Χ			
b			Χ	
С	Х			
d		Х		

g	1	2	3	4
а	Х			
b			Χ	
С				Χ
d		Χ		

f n'est in injective, ni surjective, g est injective et surjective.

BLIECTION ET CARDINALITÉ

THÉORÈMES

Si E et F sont des ensembles finis, alors

- **1** si card(E) < card(F) alors $f: E \rightarrow F$ ne peux pas être surjective;
- \circled{a} si card(E) > card(F) alors $f: E \to F$ ne peux pas être injective;
- 3 si card(E) = card(F) alors l'injectivité implique la surjectivité et vice-versa.

Donati & Stolfi M1201-3

RÉCIPROQUE

DÉFINITION

Soit $f: E \to F$ une application bijective.

L'application notée :

$$f^{-1}:F\to E$$

qui à y appartenant à F associe l'unique x de E tel que f(x) = yest appelée application réciproque de f.

EXEMPLE

L'application $x \in \mathbb{R}^+ \mapsto x^2 \in \mathbb{R}^+$ est une bijection de \mathbb{R}^+ sur \mathbb{R}^+ . Sa réciproque est $x \in \mathbb{R}^+ \mapsto \sqrt{x} \in \mathbb{R}^+$

$$x^2$$
 ET \sqrt{x}

Exemple discret

Si $f:\{a,b,c,d\} \rightarrow \{1,2,3,4\}$ est donnée par

f	1	2	3	4
а				Χ
b			Χ	
С	Х			
d		Х		

... alors la réciproque est ...

f^{-1}	a	b	С	d
1			Χ	
2				Χ
3		Х		
4	Х			

M1201-3

CALCUL DE RÉCIPROQUE

THÉORÈME

Soit $f: E \to F$ une application.

S'il existe une application $g: F \rightarrow E$ telle que

alors

• f est une bijection de E sur F

2 g est la réciproque de f, c.-à-d. $g = f^{-1}$

EXEMPLE

$$f, g: \mathbb{R} \to \mathbb{R}$$
 définies par $f(x) = 2x + 4$ et $g(x) = \frac{1}{2}x - 2$.

Chapitre 3: Relations et Applications

- RELATIONS
 - Définitions
 - Diagramme cartésien
 - Exemples
- 2 APPLICATIONS
 - Définitions
 - Propriétés
 - Injectivité et surjectivité
 - Application réciproque

- RELATIONS
 D'ÉQUIVALENCES
 - Définition
 - Classe d'équivalence
 - Partition
- 4 RELATIONS D'ORDRE
 - Définitions
 - Ordre total et partiel
 - Diagramme de Hasse
 - Maximum et minimum

RELATION D'ÉQUIVALENCE

DÉFINITION

Une relation d'équivalence $\mathcal R$ sur E est une relation qui est :

- réflexive : $\forall x \in E, x \mathcal{R} x$
- symétrique : $\forall x, y \in E, x \mathcal{R} y \Rightarrow y \mathcal{R} x$
- transitive : $\forall x, y, z \in E, x \mathcal{R} y$ et $y \mathcal{R} z \Rightarrow x \mathcal{R} z$.

EXEMPLE

- **1** E quelconque et $x\mathcal{R}y \Leftrightarrow x = y$.
- ② $E = \mathbb{N}$ et $x \mathcal{R} y$ si x et y ont la même parité.

ÉXEMPLE D'ÉQUIVALENCE

EXEMPLES

Considérons les deux relations suivantes sur $E = \{a, b, c, d\}$:

$oxed{\mathcal{R}_1}$	а	b	С	d
а	Х		Χ	
b			Χ	
С	Х	Χ	Χ	
d		Χ		Х

$ \mathcal{R}_2 $	а	b	С	d
а	Х		Χ	
b		Χ		Χ
С	Х		Χ	
d		Χ		Χ

 \mathcal{R}_1 n'est pas une relation d'équivalence

- pas réflexive $b\mathcal{R}_1b$
- ② pas symétrique $d\mathcal{R}_1b$ et $b\mathcal{R}_1d$

 \mathcal{R}_2 est une relation d'équivalence.

CLASSE D'ÉQUIVALENCE

DÉFINITION

Soit \mathcal{R} une relation d'équivalence sur E et $x \in E$; on appelle classe d'équivalence de x, on note \overline{x} , l'ensemble de tous les éléments en relation avec x.

$$\overline{x} = \{ y \in E, x \mathcal{R} y \}$$

Dans les exemples précédents :

- **①** pour *E* quelconque et $x\mathcal{R}y \Leftrightarrow x = y$, on a $\overline{x} = \{x\}$;
- ② pour $E = \mathbb{N}$ et $x \mathcal{R} y$ ssi x et y ont la même parité :

$$\overline{0} = \{0, 2, 4, 6, \ldots\}$$

 $\overline{1} = \{1, 3, 5, \ldots\}$

EXEMPLE DE CLASSES

EXEMPLE

Dans la relation d'équivalence :

\mathcal{R}	а	b	С	d
а	Х		Х	
b		Χ		Χ
С	Х		Χ	
d		Χ		Χ

on a deux classes d'équivalence :

PARTITION

DÉFINITION

Une partition d'un ensemble E est un découpage de E en sous-ensembles $E_1, E_2, \dots E_k$ distincts,

$$E_1 \cup E_2 \cup \cdots \cup E_k = E$$

si $i \neq j$ $E_i \cap E_j = \emptyset$

THÉORÈME

Soit \mathcal{R} une relation d'équivalence sur E. Les classes d'équivalence distinctes de \mathcal{R} forment une partition de E.

EXEMPLE

Dans le dernier exemple, on a bien $\mathbb{N} = \overline{0} \cup \overline{1}$.

Définitions Ordre total et partiel Diagramme de Hasse Maximum et minimum

Chapitre 3: Relations et Applications

- RELATIONS
 - Définitions
 - Diagramme cartésien
 - Exemples
- 2 APPLICATIONS
 - Définitions
 - Propriétés
 - Injectivité et surjectivité
 - Application réciproque

- 3 Relations d'équivalences
 - Définition
 - Classe d'équivalence
 - Partition
- 4 Relations d'ordre
 - Définitions
 - Ordre total et partiel
 - Diagramme de Hasse
 - Maximum et minimum

34/43

RELATION D'ORDRE

REMARQUE

Alors que les relations d'équivalences servent à ranger et classer, les relations d'ordre vont servir à ordonner.

DÉFINITION

Une relation d'ordre \mathcal{R} sur E est une relation qui est :

- réflexive : $\forall x \in E, x \mathcal{R} x$
- antisymétrique : $\forall x, y \in E, (x \mathcal{R} y \text{ et } y \mathcal{R} x) \Rightarrow x = y$
- transitive : $\forall x, y, z \in E, x \mathcal{R} y$ et $y \mathcal{R} z \Rightarrow x \mathcal{R} z$.

On note : $x \prec y$ qui se lit x précède y.

EXEMPLES D'ORDRE

EXEMPLES

- Les relations d'ordre < et > sur \mathbb{R} ou \mathbb{N} .
- Attention : < et > ne sont pas des relations d'ordre car elles ne sont pas réflexives.
- L'inclusion ⊂ est une relation d'ordre entre sous—ensembles. Par exemple, sur les parties de $F = \{a, b\}$:

$$\emptyset \subseteq \{a\} \subseteq F$$

Donati & Stolfi M1201-3

Définitions Ordre total et partiel Diagramme de Hasse Maximum et minimum

DIVISIBILITÉ COMME ORDRE

DÉFINITION

Soient x et y deux entiers naturels.

On dit que x divise y, on note x|y, ssi $\exists k \in \mathbb{N}$ tel que y = kx.

PROPOSITION

La relation de divisibilité est une relation d'ordre sur N

Antisymétrie

REMARQUE

La condition d'antisymétrie signifie que deux éléments ne peuvent s'ordonner que d'une façon (au plus).

Ce qui est impossible c'est $x \prec y$ et $y \prec x$.

DEUX RELATIONS SUR $E = \{a, b, c, d\}$:

$oxed{\mathcal{R}_1}$	a	b	С	d
а	Х		Х	
b		Χ	Χ	
С		Χ	Χ	
d		Χ		Χ

$ \mathcal{R}_2 $	а	b	С	d
а	Х	Χ	Χ	Χ
b		Χ		Χ
С			Χ	Χ
d				Χ

 \mathcal{R}_1 n'est pas une relation d'ordre.

 \mathcal{R}_2 est une relation d'ordre.

 \mathcal{R}_1 pas antisymétrique : $b\mathcal{R}_1c$ et $c\mathcal{R}_1b$

ORDRE TOTAL

Eléments comparables

Soit relation d'ordre \prec sur un ensemble E; deux éléments x et y de E sont comparables si $x \prec y$ ou $y \prec x$.

DÉFINITIONS

- Une ordre \prec sur E est total ssi deux éléments de E sont toujours comparables.
- S'il existe deux éléments non comparables, on dit que l'ordre est partiel.

EXEMPLE

- ullet L'ensemble des entiers naturels est totalement ordonné par \leq .
- La divisibilité sur N est un ordre partiel car 10 et 21 ne sont pas comparables.

DIAGRAMME DE HASSE

DÉFINITION

L'ordre est représenté par un graphe :

- les éléments sont représentés par les sommets du graphe;
- si x ≺ y on trace une arête ordonnée du point x vers le point y;
- pour ne pas surcharger le dessin, on ne trace que les arêtes vraiment nécessaires et pas celles qui peuvent être déduites par transitivité.
- on ne trace pas les relations d'un élément avec lui-même (pas de boucles).

Exemples de diagrames de Hasse

Ordre Total

Pour un ordre total, le diagramme de Hasse produit une chaîne d'éléments les uns après les autres.

Ordre Partiel

Pour l'inclusion sur les parties de $\{a,b\}$ on a :

$$\begin{cases}
a, b \\
b \\
a
\end{cases}$$

$$\begin{cases}
a \\
b
\end{cases}$$

MAXIMUM ET ÉLÉMENT MAXIMAL

Définition

Soit (E, \prec) un ensemble ordonné :

• le plus grand élément ou maximum de E, s'il existe, est un élément $M \in E$ tel que tous les éléments de E le précèdent (tous les autres sont plus petits) :

$$\forall x \in E, x \prec M$$

• un élément maximal de E est un élément $m \in E$ qui ne précède aucun élément de E (il n'a personne plus grand) :

$$\exists x \in E, \ m \prec x \Rightarrow (x = m)$$

PROPRIÉTÉS

Propriétés

- le plus grand élément, s'il existe est unique;
- si l'ordre est total les deux notions coîncident;
- dans un ensemble fini il existe toujours au moins un élément maximal mais pas forcément de maximum;
- il peut y avoir plusieurs éléments maximaux si ordre partiel.

EXEMPLE
$$E = \{a, b, c, d, e, f, g\}$$

pas de maximum
pas de minimum
d et e sont des éléments maximaux
a et g sont des éléments minimaux.