Programme de la semaine 22 (du 24/03 au 30/03).

Espaces vectoriels et applications linéaires

Reprise en insistant sur la fin.

Polynômes

- Ensemble $\mathbb{K}[X]$, degré, coefficient dominant, ensemble $\mathbb{K}_n[X]$. Opérations : $+ \cdot \times \circ$. Formules associées pour les degrés. Structure de \mathbb{K} -ev de $\mathbb{K}[X]$, $\mathbb{K}_n[X]$ en est un sev.
- Divisibilité, division euclidienne.
- \bullet Fonctions polynomiales, évaluation, racine, traduction en termes de divisibilité. Racines multiples. Nombre maximal de racines d'un polynôme de degré n.
- Polynôme dérivé, degré du polynôme dérivé. Dérivée k-ième de X^n . Formule de Leibniz. Formule de Taylor. Caractérisation de la multiplicité par les dérivées successives.
- Polynôme scindé. Relations coefficients-racines : seules les formules concernant la somme des racines et le produit des racines sont à connaître.
- Théorème de D'Alembert-Gauss, conséquence : tout polynôme non constant de $\mathbb{C}[X]$ est scindé. Csqce : le nb de racines (comptées avec multiplicité) d'un polynôme non nul de $\mathbb{C}[X]$ est deg(P).
- Si $P \in \mathbb{R}[X]$ et z racine de P, alors \overline{z} est racine de P avec même ordre de multiplicité. Décomposition en facteurs irréductibles dans $\mathbb{R}[X]$.

Pas encore au programme : décomposition en éléments simples de certaines fonctions rationnelles

Questions de cours

Demander:

- une définition ou un énoncé du cours;
- et l'une des démonstrations suivantes :
 - Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors $\operatorname{Ker}(p)$ et $\operatorname{Im}(p)$ sont supplémentaires dans E.
 - Unicité dans la division euclidienne des polynômes.
 - Si α est racine d'ordre k d'un polynôme P réel, alors $\overline{\alpha}$ est racine d'ordre k de P.

Semaine suivante de colle : Polynômes, espaces vectoriels de dimension finie.