Identity and Existence in Intuitionistic Logic*

Dana Scott Merton College, Oxford

1979

Standard formulations of intuitionistic logic, whether by logicians or by category theorists, generally do not take into account partially defined elements. (For a recent reference see Makkai and Reyes [18], esp. pp. 144–163.) Perhaps there is a simple psychological reason: we dislike talking of those things not already proved to exist. Certainly we should not assume that things exist without making this assumption explicit. In classical logic the problem is not important, because it is always possible to split the definition (or theorem) into cases according as the object in question does or does not exist. In intuitionistic logic this way is not open to us, and the circumstance complicates many constructions, the theory of descriptions, for example. Many people I find do not agree with me, but I should like to advocate in a mild way in this paper what I consider a simple extension of the usual formulation of logic allowing reference to partial elements. The discussion will be entirely formal here, but for the model theory of the system the reader should consult Fourman and Scott [10] for interpretations over a complete Heyting algebra (and this includes the so-called Kripke models) and Fourman [8] (the paper was written in 1975) for the interpretation in an arbitrary topos.

Technically the idea is to permit a wider interpretation of free variables. All

^{*}This is a retyping of the paper *Identity and existence in intuitionistic logic*, by Dana Scott from 1979. The original can be found in: Fourman M., Mulvey C., Scott D. (eds) Applications of Sheaves. Lecture Notes in Mathematics, vol 753. Springer, Berlin, Heidelberg. https://doiorg.cmu.idm.oclc.org/10.1007/BFb0061839. This version was typed out in LATEX in November of 2021.

Original footnote: The first draft of this paper was written during a visit on leave at the ETH, ZUrich in March, 1975, and it has been revised since the Durham Symposium. The style of formalization was developed in seminars at Oxford starting in 1972/73. Thanks for contributions and remarks are owed to D. van Dalen, M.P. Fourman, R. Grayson, J.M.E. Hyland, C. Smorynski, and R. Statman.

bound variables retain their usual existential import (when we say something exists it does exist), but free variables behave in a more "schematic" way. Thus there will be no restrictions on the use of $modus\ ponens$ or on the rule of substitution involving free variables and their occurrences. The laws of quantifiers require some modification, however, to make the existential assumptions explicit. The modification is very straightforward, and I shall argue that what has to be done is simply what is done naturally in making a relativization of quantifiers from a larger domain to a subdomain. Again in intuitionstic logic we have So take care over relativization, because we cannot say that either the subdomain is empty or not – thus a given element may be only "partially" in the subdomain.

In Section 1, I discuss the idea of allowing existence as a predicate and the laws of quantifiers. Section 2 treats the theory of identity and the connections with existence. Questions of strictness and extensionality of relations and functions are discussed in Section 3 along with some examples of first-order theories. As further examples of the use of the system, the familiar theories of apartness and ordering in intuitionistic logic are presented in Section 4. Section 5 goes briefly into relativization, and Section 6 details the principles of descriptions. Finally, Section 7 reviews the axioms for higher-order intuitionistic logic from this general viewpoint. The idea of schematic free variables is not new for classical logic, and the literature on "free" logic (or logic without existence assumptions) is extensive. (For some earlier references see Scott [21].) All I have done in this essay is to make what seems to me to be the obvious carryover to intuitionistic logic, because I think it is necessary and convenient. For those who do not like this formulation, some comfort can be taken from the fact that in topos theory both kinds of systems are completely equivalent, and the domains of partial elements can be defined at higher types (this is analogous to passing from a sheaf to its "flabbyfication", which is a subsheaf of the power sheaf). However, in first-order logic something is lost in not allowing partial elements, as I shall try to argue along the way.

1 Existence and the Laws of Quantifiers

It has often been suggested that identity is a trivial relation, since to say "a = b" is trivially true in case a and b are the same and otherwise trivially false. If "a" and "b" are "constant" names, this criticism may be reasonable; but when the expressions depend on parameters, it is obviously useful to express properties by

equations. If an example is needed, take the equation:

$$x^2 = x + 1.$$

Whether this is true or false depends on x, and such equations (generally) define a whole class of solutions. We can, of course, in this case investigate by well-known methods exactly which x make the equation true; but with only the most superficial knowledge of the laws of algebra, we can easily assert a *conditional* like:

$$x^2 = x + 1 \rightarrow x^6 = 8x + 5.$$

Indeed, all the values of x^n can be simplified under the assumption that $x^2 = x + 1$. Passing to the many examples we are familiar with in several variables, we see that conditional equations may often be verified even when a complete analysis of the solution set corresponding to the hypothesis is lacking. The assumption is used as if it were true even though by itself it has no determinate truth value owing to the occurrence of parameters.

If we are willing to employ complex equations in this way, why should we not feel free to use complex expressions (terms) without demanding that they always denote? Just as we have to make certain equations conditional on the truth of other equations in order that they be valid, we may also have to make some statements conditional on the existence of certain complex terms. In algebra (say, in ring theory), the implication:

$$\forall x. \, \phi(x) \to \phi(0)$$

is unconditionally valid because the constant 0 is taken as always denoting in all rings. However, the statement:

$$\forall x. \, \phi(x) \to \phi(1/a)$$

cannot be valid in general because not every element a has an inverse. We can circumvent the difficulty by rephrasing the statement:

$$\forall x. \, \phi(x) \to \forall y. [a \cdot y = 1 \to \phi(y)]$$

but though correct this seems clumsy. Why not say more directly:

$$\forall x.\, \phi(x) \wedge E(1/a) \to \phi(1/a)$$

where "E(1/a)" is to be read as "1/a exists"? Even if we agree that

$$E(1/a) \leftrightarrow \exists y.a \cdot y = 1$$

(which avoids the notation 1/a on the right-hand side of the equivalence), we still want to use 1/a in the conclusion. The desire to keep to fractional notation will become even more urgent when more complex rational functions (say, $3x + (4/2x^2) + x + 1$) are to be manipulated.

Is the existence predicate E an illusion? Was the equality predicate an illusion? No. We shall find in the next section, with a full statement of the laws of equality, that E can always be defined in terms of quantification:

$$E\tau \leftrightarrow \exists y.y = \tau$$

where "y" is a variable not free in the term τ (and where the equations may be further simplified as in the case of 1/a). However, both in conception and in the models of (intuitionistic) logic we have in mind, the existence predicate is more basic than equality and prior to it.

For the time being we consider only a one-sorted first-order logic (and postpone the theory of equality to the next section). Higher-order logic (last section) will be regarded as a theory with its own special axioms in a many-sorted first-order (or quantifier) logic, and the passage from one sort to many sorts is essentially trivial once the quantifier laws are clear. Mainly the problem is a notational one of giving variables, predicates, functions and compound terms *types*. We shall do this precisely in the last section. As far as intuitionistic propositional calculus is concerned, no revision is necessary for predicate calculus, and we assume this as known. (A recent reference is Dummett [5].) In predicate calculus, then, we use all the usual propositional laws (as applied to arbitrary formulae of the first-order language) together with a completely unrestricted rule of *modus ponens*:

$$\frac{\phi, \phi \to \psi}{\psi} \tag{MP}$$

without regard as to which free variables are shared between ϕ and ψ .

1.1 The Rule of Substitution

If $\phi(x)$ is any formula with the variable x (possibly) free, and if τ is any individual term of the language, then the rule is the passage

$$\frac{\phi(x)}{\phi(\tau)} \tag{S}$$

where is making the substitution of τ for x, bound variables of $\phi(x)$ must be rewritten to avoid capturing the free variables of τ . In other words, when we state a logical law (or axiom of a theory) with some free variables, then we intend that these variables have the broadest universal force and are freely replaceable by any (well-formed) term (of the appropriate type when types are important). On the other hand, when we state axioms with quantified variables, we intend that the universally quantified ones can only be replaced by terms whose values exist.

1.2 The Rules of the Universal Quantifier

There is only one axiom (schema) and one rule. With the same understanding about substitution as in 1.1, the axiom reads:

$$\forall x. \, \phi(x) \land E\tau \to \phi(\tau) \tag{\forall}$$

This eliminates an initial quantifier. To adjoin a quantifier, we set down the rule:

$$\frac{\phi \wedge Ex \to \psi(x)}{\phi \to \forall x. \psi(x)} \tag{\forall^+}$$

where x is a variable *not* free in ψ .

Thus, the existence predicate and the quantifier are inextricably linked. Further, these rules already implicitly determine the meaning of the existence predicate.

References