

Energy from Biomass

- Lecture 3 -

Nicolaus Dahmen (IKFT) & Siegfried Bajohr (EBI-CEB) ENTECH 2017

3. Types and Structure of Biomass

Efficiency of nature

Global radiation ≈ 1,000 kWh/(m² a)*

S-Triticale** 9 t/(ha · a); $H_i = 4.0 \text{ kWh/kg}$

Miscanthus** 10 t/(ha · a); $H_i = 4.5 \text{ kWh/kg}$

efficiency η = (production heating value)/radiation assumption: one harvest/a

⇒ efficiency η:

S-Triticale: 0.4 %

Miscanthus: 0.5 %

comparison with solar cell:

 $\eta_{Ph} < 17 \%$

^{*} medium value for Karlsruhe 1982 - 1991, solar radiation atlas; ** "dry" plant (low water content)

3. Types and Structure of Biomass

Volume and mass per unit energy of different fuels

Reference: R. E. H. Sims, D. Culshaw, Biomass for energy and industry conference, Würzburg, 1998

3. Types and Structure of Biomass

Storage/transportation room necessary for straw bales

Rundballen

Durchmesser: 1,20 m Ballendichte: 120 kg/m³

Lagerhöhe : 2,25 m = 100 %

Geschüttete Compactrollen

Durchmesser: 0,35 m x 0,35 m

Ballendichte: 350 kg/m³

Lagerhöhe : 0,90 m = 40 %

Hochdruckballen

0,46 m x 0,36 m x 0,80 m Ballendichte: 120 kg/m³

Lagerhöhe : 1,80 m = 80 %

Gespaltete Compactrollen

Durchmesser: 0,35 m x 1,60 m

Ballendichte: 350 kg/m³

Lagerhöhe : 0,70 m = 32 %

Kubische Großballen

1,20 m x 0,60 m x 2,40 m Ballendichte: 150 kg/m³

Lagerhöhe : 1,35 m = 60 %

(Strohgewicht 2,3 t, Wassergehalt = 10 %, Grundfläche 4,8 x 2,4 m)

Reference: Energie aus Nachwachsenden Rohstoffen, FNR (2002)

Contents

4. Fuels from oil seeds

Structure of oils and fats from biomass

Energetic utilization of bio oils / requirements of diesel fuel

Upgrading of oils and fats to FAME

HVO

5. Fermentation to ethanol

Direct fermentation of glucose to ethanol
Utilization of other biomasses
Upgrading of raw ethanol to gasoline quality

6. Fermentation to biogas

Fermentation process and technologies
Feedstocks and related biogas qualities and quantities
Energetical assessment of the process and new technologies

Demand of liquid (bio) fuels (in Germany)

Karlsruhe Institute of Technology

Comparison of liquid (bio) fuels

4. Fuels from Oil Seeds **Types of Biomass Products Conversion Paths** straw wood extraction HVO Vegetable Oil esterification FAME /RME manure

Karlsruhe Institute of Technology

Bio oil and bio diesel

Oil yields per area

 $1 dt/ha = 100 kg/hectare = 1 kg/100 m^2$

Plant	average yield of seed in dt/ha	average oil content in %
Winterraps	30	45
Sommerraps	22	40
Winterrübsen	20	40
Sommerrübsen	14	38
Weißer Senf	14	34
Schwarzer Senf	14	32
Ölrettich	16	44
Krambe	18	38
Ölrauke	14	34
Sonnenblume	30	45
Öllein	22	40
Leindotter	10	30
Mohn	14	48

Quelle: nach Holger Flaig, Hans Mohr (Hrsg.): "Energie aus Biomasse – eine Chance für die Landwirtschaft", 1993, Springer-Verlag

Bio oil and bio diesel

Yield comparison of selcted oil seeds

Source: United States Department of Agriculture http://www.pecad.fas.usda.gov/highlights/2007/12/Indonesia_palmoil/

Bio oil and bio diesel

Problems: Mono cultures and destruction of rain forest

New plantations 1990 – 2005:

Malaysia: ap. 1,9 Mio. ha Indonesia: ap. 3 Mio. ha

→ Probably more than half by rainforest clearance

Indonesia and Malaysia Palm Oil Production 20,000 18,000 16,000 214,000 210,000 8,000 × 6,000 4,000 2,000 0 Malaysia Malaysia Malaysia Malaysia Season

2006 World Palm Oil Production

Source: United States Department of Agriculture http://www.pecad.fas.usda.gov/highlights/2007/12/Indonesia palmoil/

Karlsruhe Institute of Technology

Bio oil and bio diesel

Some important fatty acids

Name	C-Zahl	Funkt.	Formel	Vorkommen
Palmitoleinsäure	16	1	16 15 14 13 12 11 10 = 9 (CH ₂) ₇ -COOH	Oliven
Petroselinsäure	18	1	18 17 16 15 14 13 12 11 10 9 8 7=6 (CH ₂) ₄ COOH	Koriander, Fenchel
Ölsäure	18	1	18 17 16 15 14 13 12 11 10 = 9 (CH ₂) ₇ -COOH	Oliven-, Palm-, Sonnenblumen-, Soja-, Erdnußöl
Erucasäure	22	1	22 21 20 19 18 17 16 15 14=13 (CH ₂) ₁₁ -COOH	Rapssamen
Linolsäure	18	2	18 17 16 15 14 13=12 11 10=9 (CH ₂)7 COOH	Palmöl, Soja, Sonnenblume, Raps, Erdnuß
Linolensäure	18	3	18 17 16=15 14 13=12 11 10=9 (CH ₂)7 COOH	Soja, Sonnenblume
Ricinolsäure	18	1+OH	18 17 16 15 14 13 12 11 10 9 (CH ₂)7 COOH	Ricinus
Vernolsäure	18	1+EP	18 17 16 15 14 10 10 10 10 COOH	Euphorbia

(fuel) properties of selected bio oils

Pflanzenöl	Dichte (15° C) [kg/dm³]	Heizwert MJ/kg	kin. Viskosität (20° C) [mm²/s]	Cetanzahl	Stockpunkt [°C]	Flammpunkt [°C]	Jodzahl
Rapsöl	0,92	37,6	72,3	40	0 bis -15	317	94 bis 113
Sonnenblumenöl	0,93	37,1	68,9	36	-16 bis -18	316	118 bis 144
Sojaöl	0,93	37,1	63,5	39	-8 bis -18	350	114 bis 138
Leinöl	0,93	37,0	51,0	52	-18 bis -27	-	169 bis 192
Olivenöl	0,92	37,8	83,8	37	-5 bis -9	-	76 bis 90
Baumwollsaatöl	0,93	36,8	89,4	41	-6 bis -14	320	90 bis 117
Jatrophaöl	0,91	40,7	71,0	51	2 bis -3	240	103
Kokosöl	0,87	35,3	21,7*	-	14 bis 25		7 bis 10
Palmöl	0,92	37,0	29,4*	42	27 bis 43	267	34 bis 61
Palmkernöl	-	35,5	21,5*	-	20 bis 24	-	14 bis 22

(fuel) properties of selected bio fuels

	Dichte [kg/l]	Heizwert [MJ/kg]	Heizwert [MJ/l]	Viskosität bei 20°C [mm²/s]	Cetan- zahl	Oktan- zahl (ROZ)	Flamm- punkt [°C]	Kraftstoff- äquivalenz [l]
Dieselkraftstoff	0,83	43,1	35,87	5,0	50	-	80	1
Rapsöl	0,92	37,6	34,59	74,0	40	-	317	0,96
Biodiesel	0,88	37,1	32,65	7,5	56	-	120	0,91
Biomass-to-Liquid (BtL) 1)	0,76	43,9	33,45	4,0	> 70	-	88	0,97
Ottokraftstoff	0,74	43,9	32,48	0,6	-	92	< 21	1
Bioethanol	0,79	26,7	21,06	1,5	8	> 100	< 21	0,65
Etyl-Tertiär-Butyl-Ether (ETBE)	0,74	36,4	26,93	1,5	-	102	< 22	0,83
Biomethanol	0,79	19,7	15,56	-	3	> 110	-	0,48
Methyl-Tertiär-Butyl-Ether (MTBE)	0,74	35 <i>,</i> 0	25,90	0,7	-	102	- 28	0,80
Dimetylether (DME)	0,67 ²⁾	28,4	19,03	-	60	-	-	0,59
Biomethan	0,72 ⁵⁾	50,0	36,00 ³⁾	-	-	130	-	1,4 ⁴⁾
Wasserstoff GH2	0,016	120,0	1,92	-	-	< 88	-	2,8

¹⁾Werte auf Grundlage von FT-Kraftstoffen, ²⁾bei 20°C, ³⁾[MJ/m³], ⁴⁾Biomethan in [kg], ⁵⁾[kg/m³]

Quelle: FNR

Bio oil and bio diesel

Transesterification of bio oil to FAME/bio diesel

$$R^{2}$$
 O
 R^{1}
 $CH_{3}OH/H^{\oplus}$
 $-Glycerin$
 R^{3}

Oil + Methanol =

RME (Rape Methyl Ester) + Glycerin

FAME (Fatty Acid Methyl Ester)

Source: http://de.wikipedia.org/wiki/Rapsmethylester; 18.05.2011

"R" = fatty acid residues

HVO (= Alternative to FAME)

Alternative route to use bio oils as diesel fuel component HVO (**H**ydrogenated **V**egetable **O**il)

Processes:

- **Hydrogenation** of the oil in a fixed bed catalyti reactor (CoMo- or NiMo-cat. at 350 450 °C, $p_{H2} = 50 150$ bar) => product can be blended to (fossil) diesel fuel
- Blending to fossil vacuum gas oil (up to 30 ma.-%),
 afterwards Hydrotreating ("desulfurization" = hydrogenation step)
 => product is a ready to use diesel fuel

By products: H_2O , C_3H_8 , $(H_2S, NH_3,...)$

HVO (= Alternative to FAME)

Established Technology

⇒ in 2007 first commercial plant (170 000 t/a)

HVO (C₁₄₋₂₀)

- yield: > 85 ma.-%
- free of oxygen, aromatic components and sulfur
- chemical stable stabil (storage!)

but:

- stability under low temperatures is poor
- high hydrogen consumption

Up to 15 % can be blended to diesel fuel

- better ignition behaviour
- reduction of pollutants in flue gas

 $C_{57}H_{104}O_{6}$

1 = 350 - 450 C

 p_{H2} = 50 –150 bar

T = 0.2 - 2 h

cat: CoMo, NiMo

Source: Aatola, 2008; Kuchling, 2010; Huber, 2007; Edzang, 2012