QF604 MCQ Practice Test 5

Please tick the most suitable answer to each multiple-choice question.

- Q1. What is $X^2 + Y$ where X, Y are independently distributed, $X \sim N(0, 1)$, and $Y \sim \chi^2_2$?
 - (A) χ_3^2
 - (B) χ_4^2
 - (C) $F_{1,2}$
 - (D) None of the above
- Q2. Suppose we run an Ordinary Least Square regression of $Y_i = a + bX_i + e_i$ where e_i is a white noise that is independent of X_i . Given sample averages for Y is 36, $\hat{b} = 11$ and $\hat{a} = 3$, what is sample average of X?
 - (A) 3.0
 - (B) 6.0
 - (C) 11.0
 - (D) Indeterminate from the given information.
- Q3. The difference between general Box-Jenkins time series processes and GARCH processes is:
 - (A) the former is weak-stationary and the latter is not
 - (B) the former's unconditional variance is constant while the latter's is not
 - (C) the former's conditional variance is constant while the latter's is not
 - (D) None of the above
- Q4. If a stochastic trend exists in a price process Z_t with i.i.d. increments, then this is likely to show up as
 - (A) process convergence to zero
 - (B) a large constant unconditional variance
 - (C) an increasing mean as time increases
 - (D) a decreasing variance as time decreases
- Q5. Suppose we are testing if Z_t is a unit root or I(1) process, and we perform the following OLS regression $\Delta Z_t = \delta + \theta Z_{t-1} + e_t$, where e_t is a stationary random variable. Suppose the critical ADF statistic for this case at 1% significance level is -4.05 for a sample size of 100, and the computed $\hat{\theta} < 0$'s "t-statistic" has a p-Value of 0.0055, then you
 - (A) reject null of no unit root at 0.5%
 - (B) reject null of unit root at 1%
 - (C) accept [or cannot reject] null of no unit root at 0.5%
 - (D) accept [or cannot reject] null of no unit root at 1%

- Q6. If $Q_t = e^{-rt}P_t$, and Q_t follows a martingale, then
 - (A) $E_t(e^{-r(t+1)}P_{t+1}) = P_t$
 - (B) $E_t(e^{-rt}P_{t+1}) = P_t$
 - (C) $E_t(e^{-r}P_{t+1}) = P_t$
 - (D) $E_t(P_{t+1}) = P_t$
- Q7. The predictability of long-run stock returns under rational theory is due to
 - (A) negative alpha
 - (B) price momentum
 - (C) the availability of superior information
 - (D) serial correlation in dividend growth
- Q8. A stock alpha is obtained by running
 - (A) Cross-sectional regression with constraint on loadings
 - (B) Time series regression with constraint on beta
 - (C) Cross-sectional regression
 - (D) Time series regression
- Q9. In a mulitple linear regression, which of the following necessarily produces biased estimators?
 - (A) excluding relevant explanatory variable
 - (B) including irrelevant explanatory variable
 - (C) endogeneity of the explanatory variable
 - (D) None of the above
- Q10. You can apply the Fama-McBeth procedure by
 - (A) First running time series regression, then running cross-sectional regression
 - (B) First running cross-sectional regression, then running time series regression
 - (C) First running cross-sectional regression, then repeat after sorting
 - (D) First sort the stocks, then run the cross-sectional regression
- Q11. Suppose $Z_t = c_0 + c_1 Y_t + e_t$, t = 1, 2, ..., T. Y_t and zero mean e_t are stochastically independent, and e_t is autocorrelated, then the OLS estimator is
 - (A) BLUE
 - (B) unbiased but not efficient
 - (C) biased but consistent
 - (D) None of the above

- Q12. Suppose If $Y_t = c_0 + c_1 X_t + c_2 Z_t + e_t$, t = 1, 2, ..., T. X_t and zero mean e_t are stochastically independent. It is suspected that $e_t = \rho e_{t-1} + u_t$ where $\rho \neq 0$ and u_t is mean zero i.i.d. If you test H_0 : $\rho = 0$, Durbin–Watson d-statistic gives 2.40, and at 5% significance level, T = 90, k = 3, the critical values $D_L = 1.589$, $D_U = 1.726$, how do you conclude?
 - (A) Reject H_0 , accept positive autocorrelation
 - (B) Reject H_0 , accept negative autocorrelation
 - (C) Accept H_0
 - (D) Inconclusive on H_0
- Q13. The market model parameters α and β for each stock can be estimated consistently using OLS if indeed the Sharpe's two parameter CAPM is correct and the residual errors follow the classical conditions.
 - (A) No
 - (B) Yes
 - (C) Not sure
 - (D) Sometimes.
- Q14. Suppose the independent abnormal returns of 10 event stocks have a total variance of 0.088. What is the variance of the average abnormal return AAR?
 - (A) 0.00088
 - (B) 0.0088
 - (C) 0.088
 - (D) 0.88
- Q15. Suppose we run a time series regression $Y_t = a + bX_t + e_t$, and we suspect that the disturbances $\{e_t\}$ have a diagonal covariance matrix with the jth element as $j\sigma^2$. To obtain BLUE estimates of a and b, we could instead run the following "corrected OLS" regression:
 - (A) $Y_t/j = a + b(X_t/j) + e_t/j$
 - (B) $Y_t/j = a/j + b(X_t/j) + e_t/j$
 - (C) $Y_t/\sqrt{j} = a + b(X_t/\sqrt{j}) + e_t/\sqrt{j}$
 - (D) $Y_t/\sqrt{j} = a/\sqrt{j} + b(X_t/\sqrt{j}) + e_t/\sqrt{j}$.
- Q16. A sample autocorrelation function and its corresponding sample partial autocorrelation function show very slow decay over the lagged periods. This is possibly an indication of
 - (A) An AR(p) process where p is very large
 - (B) A MA(q) process where q is very large
 - (C) An integrated I(1) process
 - (D) An invertible MA process

- Q17. In a GARCH model where return is $r_t = h_t^{\frac{1}{2}} e_t$, e_t is i.i.d. distributed as N(0,1), and conditional variance of r_t is $h_t = \beta_0 + \beta_1 (r_{t-1} \lambda)^2 + \beta_2 h_{t-1} e_{t-1}^2$, what is the most plausible set of estimates?
 - (A) $\beta_0 = 0.025, \beta_1 = 0.5, \beta_2 = 0.5$
 - (B) $\beta_0 = -0.025, \beta_1 = 0.8, \beta_2 = 0.8$
 - (C) $\beta_0 = 0.025, \beta_1 = 0.3, \beta_2 = 0.65$
 - (D) $\beta_0 = -0.025, \beta_1 = 0.3, \beta_2 = 0.65$
- Q18. Which set of equations is used to compute the PACF in a time series model?
 - (A) Ricatti equations
 - (B) Yule-Walker equations
 - (C) Autoregressive equations
 - (D) simultaneous equations
- Q19. Suppose a first linear regression is $Y_{1t} = a_0 + a_1 X_t + e_t$ for t = 1, 2, ..., T, and the vector of residual errors has $T \times T$ covariance matrix Σ_e . Suppose a second linear regression is $Y_{2t} = b_0 + b_1 Z_t + v_t$ for t = 1, 2, ..., T, and the vector of residual errors has $T \times T$ covariance matrix Σ_v . e_t and v_t are independent. If instead we form a combined regression using dependent variable vector $M_{2T \times 1} = (Y_{11}, ..., Y_{1T}, Y_{21}, ..., Y_{2T})^T$, and explanatory variable matrix S such that M = SB + E where B is vector of coefficients from the two regressions to be estimated, and

$$cov(E) = \begin{pmatrix} \Sigma_e & 0\\ 0 & \Sigma_v \end{pmatrix}_{2T \times 2T} ,$$

what are the GLS estimates of a_0, a_1 in the combined regression?

- (A) Same as GLS estimates in the first regression
- (B) Same as GLS estimates in the second regression
- (C) Same as a linear average of the GLS estimates in the two regressions
- (D) None of the above
- Q20. In a linear regression model Y = XB + e, $Y_{N\times 1}$ takes only binary values of 1 or 0, X is a $N\times 3$ explanatory variable matrix where the first column contains all ones, and e is a N vector of zero mean i.i.d. residual errors. e is non-normal. Let the i^{th} row of X be X_i . Suppose $E(Y_i|X_i) = \frac{1}{1+e^{-X_iB}}$ using logistic regression. If the estimates of B are (0.1, 0.4, 0.1), what is the estimated probability of Y = 1 when $X_i = (2, 1, 3)$?
 - (A) 0.62
 - (B) 0.71
 - (C) 0.85
 - (D) None of the above

Ans: Q1 (A), Q2 (A), Q3 (C), Q4 (D), Q5 (B), Q6 (C), Q7 (D), Q8 (D), Q9 (C), Q10 (A) Q11 (B), Q12 (D), Q13 (B), Q14 (A), Q15 (D), Q16 (C), Q17 (C), Q18 (B), Q19 (A), Q20 (B)