Mathematic Analysis Fundamentals. End of Course Thesis. 2024-2025.

Title: Optimal transport for Topological Data Analysis

Name: Gonzalo Ortega Carpintero

1 Optimal transport

The contents of this thesis are based on [1] and [2].

Along this text, we will denote the strict upper triangular region of the Euclidean plane as $\mathbb{R}^2_{\leq} := \{(x,y) \in \mathbb{R}^2 : x < y\}$, and the diagonal of the plane as $\Delta := \{(x,y) \in \mathbb{R}^2 : x = y\}$.

Definition 1.1 (Persistence diagram). Let I be a countable set. A *persistence diagram* is a function $D: I \to \mathbb{R}^2_{<}$.

Definition 1.2 (Chebyshev distance). (To do) $d_{\infty} := \max\{|a_x - b_x|, |a_y - b_y|\}$

Proposition 1.1. If $a \in \mathbb{R}^2_{<}$, then $d_{\infty}(a, \Delta) = \inf_{t \in \Delta} d_{\infty}(a, t) = \frac{a_y - a_x}{2}$.

Proposition 1.2. The upper triangular region of the Euclidean plane with the Chebyshev distance $(\mathbb{R}^2_<, d_\infty)$ is a metric space.

$$Proof.$$
 (To do)

Definition 1.3 (Partial matching). Let $D_1: I_1 \to \mathbb{R}^2_{<}$ and $D_2: I_2 \to \mathbb{R}^2_{<}$ be persistence diagrams. A partial matching between D_1 and D_2 is the triple (I'_1, I'_2, f) such that $f: I'_1 \to I'_2$ is a bijection with $I'_1 \subseteq I_1$ and $I'_2 \subseteq I_2$.

Definition 1.4. Let $D_1: I_1 \to \mathbb{R}^2_{<}$ and $D_2: I_2 \to \mathbb{R}^2_{<}$ be persistence diagrams. Let (I'_1, I'_2, f) be a partial matching between them. If $p < \infty$, the *p-cost of f* is defined as

$$cost_p(f) := \left(\sum_{i \in I_1'} d_{\infty}(D_1(i), D_2(f(i)))^p + \sum_{i \in I_1 \setminus I_1'} d_i n f t y(D_1(i), \Delta)^p + \sum_{i \in I_2 \setminus I_2'} d_i n f t y(D_2(i), \Delta)^p \right)^{\frac{1}{p}}.$$

For $p = \infty$, the ∞ -cost of f is defined as

$$\mathrm{cost}_\infty(f) := \max\{\sup_{i \in I_1'} d_\infty(D_1(i), D_2(f_i)), \sup_{i \in I_1 \backslash \ I_1'} d_\infty(D_1(i), \Delta), \sup_{i \in I_2 \backslash \ I_2'} d_\infty(D_2(i), \Delta)\}.$$

Definition 1.5 (p-Wasserstein distance). Let D_1, D_2 be persistence diagrams. Let $1 \le p \le \infty$. Define

$$\tilde{\omega}_p(D_1, D_2) = \inf\{ \cos t_p(f) : f \text{ is a partial matching between } D_1 \text{ and } D_2 \}.$$

Let \emptyset denote the unique persistence diagram with empty indexing set. Let $(\mathrm{Dgm}_p, \omega_p)$ be the space of persistence diagrams D that satisfy $\tilde{\omega_p}(D, \emptyset) < \infty$ modulo the equivalence relation $D_1 \sim D_2$ if $\tilde{\omega_p}(D_1, D_2) = 0$. The metric ω_p is called the p-Wasserstein distance.

Definition 1.6 (Bottleneck distance). In the conditions of Definition 1.5, if $p = \infty$, the metric ω_{∞} is called the *bottleneck distance*.

Proposition 1.3. There is only one matching between $D: I \to \mathbb{R}^2_{<}$ and \emptyset . Hence,

$$\tilde{\omega_p}(D,\emptyset) = \left(\sum_{i \in I} d_{\infty}(D(i),\Delta)^p\right)^{\frac{1}{p}}.$$

$$Proof.$$
 (To do)

Proposition 1.4. The space of persistence diagrams with the p-Wasserstein distance (Dgm_p, ω_p) is indeed a metric space.

$$Proof.$$
 (To do)

Definition 1.7 (Isometric embedding). Let $(X, d_X), (Y, d_Y)$ be metric spaces. An isometric embedding $\eta: (X, d_X) \to (Y, d_Y)$ is a mapping that satisfies

$$d_X(x_1, x_2) = d_Y(\eta(x_1), \eta(x_2))$$

for all $x_1, x_2 \in X$.

Definition 1.8 (Ball). Let $1 \le p \le \infty$. Let $D_0 \in \mathrm{Dgm}_p$. The *ball* at the space of persistence diagrams is defined as $B_p(D_0, r) := \{D \in \mathrm{Dgm}_p : w_p(D, D_0) < r\}$.

Theorem 1.1 (Isometric embeeding of metric spaces into persistance diagrams). Let (X, d) be a separable, bounded metric space. Then there exists an isometric embedding to the space of persistence diagrams $\eta: (X, d) \to (\mathrm{Dgm}_{\infty}, \omega_{\infty})$ such that $\eta(X) \subseteq B(\emptyset, \frac{3c}{c}) \setminus B(\emptyset, c)$.

Proof. As (X,d) is bounded, we can let $c > \sup\{d(x,y): x,y \in X\}$. As (X,d) is separable, we can take $\{x_k\}_{k=1}^{\infty}$, a countable, dense subset of (X,d). Consider

$$\eta: (X, d) \to (\mathrm{Dgm}_{\infty}, \omega_{\infty})$$

$$x \mapsto \{(2c(k-1), 2ck + d(x, x_k))\}_{k=1}^{\infty}$$

For any $x \in X$ and $k \in \mathbb{N}$,

$$d_{\infty}((2c(k-1),2ck+d(x,x_k)),\Delta) = \frac{2ck+d(x,x_k)-2c(k-1)}{2} = c + \frac{d(x,x_k)}{2} < c + \frac{c}{2} = \frac{3c}{2}.$$

Because of Proposition 1.3, for every $x \in X$, $\tilde{\omega_{\infty}}(\eta(x), \emptyset) < \infty$ and η is well defined. Note that

$$\omega_{\infty}(\eta(x), \emptyset) = \sup_{1 \le k \le \infty} d_{\infty}((2c(k-1), 2ck + d(x, x_k)), \Delta),$$

so $\eta(x) \in B(\emptyset, \frac{3c}{c}) \backslash B(\emptyset, c)$.

Let $\eta(x)$ and $\eta(y)$ two equivalence classes of $(\mathrm{Dgm}_{\infty}, \omega_{\infty})$. Choose the representative diagrams $D_x : \mathbb{N} \to \mathbb{R}^2_{<}$ and $D_y : \mathbb{N} \to \mathbb{R}^2_{<}$ and consider the partial matching $(\mathbb{N}, \mathbb{N}, \mathrm{id}_{\mathbb{N}})$. With it, for every $k \in \mathbb{N}$, $(2c(k-1), 2ck + d(x, x_k))$ is matched with $(2c(k-1), 2ck + d(y, x_k))$. The Chebyshev distance between those points is

$$d_{\infty}(D_x(k), D_y(k)) = \max\{|2c(k-1) - 2c(k-1)|, |2ck + d(x, x_k) - b_y - (2ck + d(y, x_k))|\}$$

= $\max\{0, |d(x, x_k) - d(x, y_k)|\} = |d(x, x_k) - d(x, y_k)|.$

Hence, because of the triangle inequality, the cost of this partial matching is

$$\operatorname{cost}_{\infty}(\operatorname{id}_{\mathbb{N}}) = \sup_{k} |d(x, x_k - d(y, x_k))| \le d(x, y).$$

Since $\{x_k\}_{k=1}^{\infty}$ is dense, for every $\epsilon > 0$, there exist a $k \in \mathbb{N}$ such that $d(x, x_k) \leq \epsilon$, so

$$|d(x, x_k) - d(y, x_k)| \ge d(y, x_k) - d(x, x_k) = d(y, x_k) + d(x, x_k) - d(x, x_k) - d(x, x_k)$$

$$\ge d(x, y) - 2d(x, x_k) > d(x, y) - 2\epsilon.$$

Therefore, $\sup_{k} |d(x, x_k - d(y, x_k))| \ge d(x, y)$ and

$$\operatorname{cost}_{\infty}(\operatorname{id}_{\mathbb{N}}) = \sup_{k} |d(x, x_k - d(y, x_k))| = d(x, y).$$

Suppose $I, J \subseteq \mathbb{N}$ and (I, J, f) is a different partial matching between D_x and D_y . Then there exist a $k \in \mathbb{N}$ such that either $k \notin I$ or $k \in I$ and $f(k) = k \neq k$. If $k \notin I$, then

$$\operatorname{cost}_{\infty}(f) > d_{\infty}((2c(k-1), 2ck + d(x, x_k)), \Delta) > c.$$

If $k \in I$ and $f(k) = k \neq k$, then

$$\cot_{\infty}(f) \ge ||(2c(k-1), 2ck + d(x, x_k)) - (2c(k'-1), 2ck' + d(x, x_{k'}))||_{\infty} \ge 2\epsilon.$$

Hence, $\cot_{\infty}(f) \ge c > d(x,y)$ and $d(x,y) = \omega_{\infty}(\eta(x),\eta(y))$, proving that η is an isometric embedding of a metric space into the space of persistence diagrams.

References

- [1] A. Figalli and F. Glaudo, An Invitation to Optimal Transport, Wasserstein Distances, and Gradient Flows. EMS Press, 2020.
- [2] P. Bubenik and A. Wagner, "Embeddings of persistence diagrams into hilbert spaces," 2020.