

Universidad de Carabobo Facultad Experimental de Ciencias y Tecnología Departamento de Matemáticas Asignatura: Métodos Numéricos I

Parcial I

1. Demostrar que si el número conocido \tilde{x} aproxima al desconocido x con $|x - \tilde{x}| < \varepsilon$, entonces $\frac{1}{\tilde{x}}$ aproxima a $\frac{1}{x}$ con

$$|Error relativo| < \frac{\varepsilon}{|\tilde{x}|}$$

(valor: 3 pts)

2. ¿Con cuantas cifras significativas se puede decir que p^* aproxima a 3000 si se sabe que 2999 $< p^* <$ 3001? Razone su respuesta.

(valor: 3 pts)

3. Sea $x_A = -0.9989$. Suponga que dispone de un computador hipotético que utiliza aritmética decimal de redondeo correcto a 4 dígitos. Considere las expresiones equivalentes

$$u_A = (1 - x_A^2)(1 + x_A^2) \text{ y } v_A = 1 - x_A^4$$

- a) ¿Qué valor calcularía dicho computador para u_A y v_A ?
- b) ¿Cuál de los valores obtenidos en (a) es más exacto?

(valor: 3 pts)

- 4. Sea $I_n = \int_0^1 \frac{x^n}{x+4} dx$
 - a) Probar que $I_0 = \ln(5/4)$, que $0 \le I_n \le I_0$ y que se verifica $I_{n+1} + 4I_n = \frac{1}{n+1}$. Es decir, $I_{n+1} = -4I_n + \frac{1}{n+1}$.

(valor: 3 pts)

b) Con la ecuación $I_{n+1} = -4I_n + 1/(n+1)$, $I_0 = \ln(5/4)$ se pretende calcular I_n , sin embargo al representar en la máquina I_0 se almacena $\tilde{I}_0 = I_0 - \varepsilon_0$ (con lo que se generará una sucesión $\tilde{I}_n/\tilde{I}_{n+1} = -4\tilde{I}_n + 1/(n+1)$). Suponiendo que ese es el único error que se comete en el proceso, calcule el error ε_n en el paso n ($\varepsilon_n = I_n - \tilde{I}_n$) en función de n y ε_0

(valor: 3 pts)

c) Si $\varepsilon_0 \approx 10^{-6}$ y n=12, estime ε_{12} . ¿Qué opina de este método numérico para calcular I_{12} ?

(valor: 2 pts)

5. Si se utiliza la estrategia de redondeo correcto, ¿cuál es el número de máquina del sistema F(4,-10,10,10) que se obtiene del número que aproxima al número π ?. ¿Y cuál sería el número de máquina que aproximaría a π^4 ?. Esta máquina solo realiza las operaciones elementales $+,-,\times,\div$

(valor: 3 pts)