## Safe Platooning of Unmanned Aerial Vehicles via Reachability

Mo Chen, Qie Hu, Casey Mackin, Jaime Fisac, Shankar Sastry, Claire Tomlin 2015-03-19 NASA UTM Meeting

#### Goals

 Tractable analysis of N quadrotors by restricting them into a single-file platoon

- HJ reachability
  - Liveness controllers
  - Safety controllers
- Simulations

#### HJ Reachability

- Define target set
  - Models either desired or undesired states, depending on application
  - Corresponding implicit surface function:

- Compute reachable set
  - Set of states that can reach within time horizon
  - Assumes worst case disturbance if there is disturbance
  - Corresponding implicit surface function:
    - Obtained by solving HJ PDE

## Liveness controllers from reachable sets

- Merging onto a highway
  - Target set: desired merging point and relative velocity
  - Reachable set: set of states that can reach target set
- Joining platoon on highway
  - Target set: desired merging point in terms of relative coordinates
  - Reachable set: set of states in relative coordinates that can reach target set
- Controller
  - Take straight line towards target until vehicle is inside reachable set
  - Use optimal control from reachable set once vehicle is inside reachable set

#### Safety controllers

- Collision avoidance
  - Target set: collision box in relative states plus (union) velocity limits
  - Reachable set: set of states in relative coordinates that will hit target set assuming worst case disturbance

- Controller
  - Use liveness controller if safe
  - Use safety controller if not safe

### Merging onto highway



#### Responding to intruder



### Faulty quad-rotor in platoon



# Faulty quad-rotor in platoon w/RS



#### Dynamics

Single quadrotor dynamics

$$\dot{p}_x = v_x, \qquad \dot{p}_y = v_y$$
 $\dot{v}_x = u_x, \qquad \dot{v}_y = u_y$ 
 $\underline{u} \le |u_x|, |u_y| \le \bar{u}$ 

Relative coordinates

$$p_{x,r} = p_{x,i} - p_{x,j},$$
  $p_{y,r} = p_{y,i} - p_{y,j}$   
 $v_{x,r} = v_{x,i} - v_{x,j},$   $v_{y,r} = v_{y,i} - v_{y,j}$ 

#### Dynamics

• Relative dynamics (for collision avoidance)

$$\dot{p}_{x,r} = v_{x,r},$$
  $\dot{p}_{y,r} = v_{y,r}$   
 $\dot{v}_{x,r} = u_{x,i} - u_{x,j},$   $\dot{v}_{y,r} = u_{y,i} - u_{y,j}$ 

 Augmented relative dynamics (for collision avoidance and velocity limit)

$$\dot{p}_{x,r} = v_{x,r},$$
  $\dot{p}_{y,r} = v_{y,r}$   
 $\dot{v}_{x,r} = u_{x,i} - u_{x,j},$   $\dot{v}_{y,r} = u_{y,i} - u_{y,j}$   
 $\dot{v}_{x,i} = u_{x,i},$   $\dot{v}_{y,i} = u_{y,i}$ 

#### HJ Reachability

• HJ PDE for  $t \in [-T, 0]$ :  $D_t V(t, x) + \max_u \min_d D_x V(t, x) \cdot f(x, u, d) = 0$ V(0, x) = l(x)

- Elimination of complexity issues
  - Decoupled HJ formulation