Project Euler: Problem 1

Brandon Roberts

22 December 2018

Find the sum of all multiples of 3 or 5 below 1000. So $S = \sum_{0 \le n < 1000} n[n \text{ is a multiple of 3 or 5}].$ Using factorization and sets we can see:

$$S = 3(1+2+\cdots+k) + 5(1+2+\cdots+m) - 3*5(1+2+\cdots+t) \text{ such that}$$

$$3k < 1000 \le 3(k+1)$$

$$5m < 1000 \le 5(m+1)$$

$$3*5t < 1000 \le 3*5(t+1)$$

so thus
$$S=3\frac{k(k+1)}{2}+5\frac{m(m+1)}{2}+3*5\frac{t(t+1)}{2}$$
 with $k=333, m=199, t=66$ so the solution is $S=233168$