Worksheet 1 Functions and limits

1 **Functions**

Find the domain of these functions. Make a rough plot using reference functions and the appropriate transformations. Guess the range of each of these functions.

$$f(x) = \frac{1}{x+2}$$

$$g(x) = \sqrt{x-2} - 1$$

$$h(x) = \sin\left(\frac{1}{2}x\right)$$

Let $f: x \mapsto \frac{2x^2-1}{2x}$ and $g: x \mapsto x^2$. Give an expression for: Exercise 2

$$i. (f \circ g)(x)$$

 $iv. g(x+h)$

$$ii. (g \circ f)(x)$$

 $v. f(\frac{2}{x})$

$$iii. \ g(f(x))$$

 $vi. \ g(\sqrt{x})$

2 Limits

Let f be a function represented by the following graph.

Use the graph of f to determine the following quantities, if they exist. If they do not exist, explain why.

i.
$$\lim_{x \to 2^{-}} f(x)$$
 iv. $f(2)$

$$ii. \lim_{x \to 2^+} f(x)$$

 $v. \lim_{x \to 4} f(x)$

$$iii. \lim_{x\to 2} f(x)$$

 $vi. f(4)$

Exercise 4 Find the limit, if it exists. If it does not exist, explain why.

i.
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$$

$$i. \lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1} \qquad ii. \lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t - t^2} \right) \qquad iii. \lim_{x \to 3} \frac{x^2 - 3x}{|9 - 3x|} \qquad iv. \lim_{h \to 0} \frac{(x + h)^2 - x^2}{h}$$

iii.
$$\lim_{x \to 3} \frac{x^2 - 3x}{|9 - 3x|}$$

iv.
$$\lim_{h\to 0} \frac{(x+h)^2 - x^2}{h}$$

3 Going further

Exercise 5 Let f_1 , f_2 two even functions, g_1 , g_2 two odd functions, defined on \mathbb{R} . Are the following functions even? odd? Remember that a function can be neither even nor odd.

$$f_1 + f_2$$
, $f_1 + g_1$, $f_1 \times g_1$, $g_1 \times g_2$, $f_1 \circ f_2$, $f_1 \circ g_1$, $g_1 \circ f_1$, $g_1 \circ g_2$

Exercise 6 (from Stewart's) In the theory of relativity, the Lorentz contraction formula

$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$

expresses the length L of an object as a function of the velocity v with respect to an observer, where L_0 is the length of the object at rest and c the speed of light. Find

$$\lim_{v \to c^{-}} L$$

and interpret the result. Why is a left-hand limit necessary?