112-2 第一次段考大考歷屆

一、單選題

()1. 原子的性質按照原子序排列會呈現週期性的變化。附圖為某種原子性質依原子序 1-40 作 圖,則此原子性質最可能為下列哪一項?

(A)質量 (B)電負度 (C)原子半徑 (D)價電子數 (E)第一游離能

答案:(C)

解析:此圖形最關鍵的提示在原子序 10 與原子序接近 20 的位置上,有最低的"待觀測"數據。 (A)原子的質量通常隨著原子序上升而增大(少數例外),故此選項不真;(B)電負度最大值應為 F 原子,但原子序 9 的位置並沒有最高值,故此選項不真;(C)在同週期元素中,A 族元素的半徑會隨著原子序變大而略為變小,且進入下一週期時半徑會突然增大,故此選項符合敘述;(D)價電子數在 A 族元素中應會出現 1、2…8 的重複數據,故此選項不真;(E)原子序 10 的惰性氣體應有該週期元素中最大的第一游離能,故此選項不真。綜合以上敘述,答案(C)為最佳答案。故選 (C)。

()2. 若以階級高度變化表示游離能大小關係,則下列哪一項的階級高度圖示,由下而上最適合表示碳原子的第一至第五游離能的相對大小?

解析:元素失去電子的過程會隨著次數增加而需要更多的能量,第一游離能必小於第二游離能, 且第二游離能也必小於第三游離能,以此類推可知循序漸增的游離能趨勢應為(B)。故選(B)。

3. 下列哪一個示意圖是基態鉻原子的價電子組態? (A) ^{4s} 3d 3d

答案:(E)

(

解析: 24Cr之基態電子組態應表 [Ar] 3d54s1,

則價電子組態為 3d54s1。

()4. 只由碳、氫、氦、氧四種元素組成的化合物,可能會有數千種,其中分子量最小且結構符合人、因體學說的化合物,其分子量(g/mol)最接近下列哪一數值? (A)43 (B)45 (C)46 (D)47 (E)49

答案:(A)

解析:C+N+O=12+14+16=42 其餘為 H,

C、H、N、O 四種元素組成最小的化合物,有四種異構物:

⇒分子量皆為 43 (g/mol)

HN=C=O $HO-C\equiv N$

lsocyanic acid Cyanic acid

 $HC \equiv N + -O - HO - N + \equiv C -$

Fulminic acid Isofulminic acid

答案:(D)

解析:(D)不遵守遞建原理;(E)不存在。

(A)1s²2s²2p⁵ (B)1s²2s²2p⁶ (C)1s²2s¹2p⁶3s¹
(D)1s²2s²2p⁶3s² (E)1s²2s²2p⁵3s²

答案:(D)

解析: (A) F; (B) Ne; (C) Ne 激發態; (D) Mg; (E)Na 激發態。

()7. 原子量為 1 的氫原子含有哪些基本粒子? (A)電子、中子 (B)質子、中子 (C)質子、電子 (D)質子、中子、電子 (E)原子核、中子

答案:(C)

解析: ¦H⇒質子數=電子數=1,中子數=1-1=0 ∴有1個質子與1個電子。

)8. 附圖是殺蟲劑芬普尼的結構;據此,一個芬普尼分子所含的所有氮原子共有幾對孤對電子?

(A)2 (B)4 (C)6 (D)8 (E)10

答案:(B)

解析: F

氮原子共有五個價電子,形成三個共價鍵後尚有一對孤對電子。芬普尼中的所有氮原子都與其他原子形成三個共價鍵,故都各有一對孤對電子。芬普尼中共有四個氦原子。故選(B)。

)9. 附表為元素週期表的一部分,甲至戊表元素符號,其中甲的原子序為 13。試問右表中,哪一個元素的原子半徑最小?

	冊	N
丙	┝	戊

(A)甲 (B)乙 (C)丙 (D)丁 (E)戊

答案:(B)

解析:原子半徑由左而右遞減,由上而下遞增。

)10. 下列表格中,哪一個選項的三個元素分別符合表格中所列之條件?

	元素態為網狀固體	導電、導熱性佳	原子半徑為同族最小				
(A)	С	Ar	F				
(B)	Si	Mg	N				
(C)	P	Al	Li				
(D)	В	Si	N				
(E)	С	Na	Al				

(A)A (B)B (C)C (D)D (E)E

答案:(B)

名稱	元素態為網狀	導電、導熱性佳	原子半徑為同族最	符合選項數
121179	固體		小	
(A)	C網狀固體◎	Ar非金屬	F 同族最小◎	00
(B)	Si 網狀固體◎	Mg 金屬◎	N 同族最小◎	000
(C)	P粉末固體	Al 金屬◎	Li 同族最小◎	00

解析:

(

符合3選項⇒故選(B)。

)11. 附表為甲、乙、丙、丁四種物質的化學鍵類型、沸點、熔點以及在一大氣壓,25℃時的狀態:

物質	化學鍵	沸點	熔點	狀態(25℃)
甲	共價鍵	−253 °C	−259°C	氣體
乙	金屬鍵	3000 ℃	1535 ℃	固體
丙	離子鍵	1413 ℃	800℃	固體
丁	共價鍵	100℃	0 ℃	液體

根據附表,哪一選項中的物質最可能為單元素分子或分子化合物? (A)甲、乙 (B)甲、丙 (C)甲、丁 (D)乙、丙 (E)丙、丁

答案:(C)

解析:(1)元素分子或分子化合物由共價鍵形成,通常具有較低的熔、沸點;(2)表中,符合上述性質的有甲及丁,故選(C)。

()12. 原子的電子組態中,若一軌域僅含一個電子,則此原子具有一個未配對電子。例如氫原子 有一個未配對電子。試問氦氣態原子於基態時,其<u>未配對</u>電子數和下列何者相同?△ △ △ △

 $\frac{1}{2p_x}$ $\frac{1}{2p_y}$ $\frac{1}{2p_z}$ (A)硼 (B)碳 (C)釩 (D)鈦 (E)鎳

答案:(C)

(A) $_{5}B: \stackrel{\downarrow\downarrow}{2s} \stackrel{\downarrow}{2p_{x}} \overline{2p_{y}} \overline{2p_{z}}$ 有 1 個;

(B) 6C: $\overline{2s}$ $\overline{2p}_x$ $\overline{2p}_y$ $\overline{2p}_z$ 有 2 個;

 $(C)_{23}V: \overline{3d} \ \overline{3d} \ \overline{3d} \ \overline{3d} \ \overline{3d} \ \overline{3d} \ \overline{3d}$ 4 \overline{s} 有3個;

(D) $_{22}\text{Ti}$: $\overrightarrow{3d}$ $\overrightarrow{3d}$ $\overrightarrow{3d}$ $\overrightarrow{3d}$ $\overrightarrow{3d}$ $\overrightarrow{3d}$ $\overrightarrow{4s}$ 有 2 個 ;

(E) $_{28}\mathrm{Ni}: \frac{\uparrow\downarrow}{3d} \frac{\uparrow\downarrow}{3d} \frac{\uparrow\downarrow}{3d} \frac{\uparrow}{3d} \frac{\uparrow}{3d} \frac{\uparrow\downarrow}{4s}$ 有 2 個。

)13. 根據週期表中元素大小的規律性,判斷甲~戊等分子在氣態時的鍵長,則下列鍵長的關係 何者正確?

(甲)水 (乙)甲烷 (丙)氨 (丁)氫氣 (戊)氟化氫 (A)甲 > 乙 > 丙 > 丁 > 戊 (B)甲 > 丙 > 戊 > 乙 > 丁 (C)乙 > 丙 > 甲 > 戊 > 丁 (D)乙 > 丁 > 丙 > 戊 > 甲 > 戊 > 丙 > 丁 \rangle (E)乙 > 甲 > 戊 > 丙 > 丁

答案:(C)

解析:甲~戊五種分子分別是以氫原子與氧、碳、氦、氫、氟形成共價鍵結分子,其鍵結的原子 半徑愈大,則鍵長就愈長。

而同族元素,週期數愈小的元素原子半徑愈小;同週期元素,半徑則隨原子序增加而減小。 則原子半徑大小順序為:氫<氟<氧<氦<碳。

故鍵長大小順序為:(乙)甲烷>(丙)氨>(甲)水>(戊)氟化氮>(丁)氮氯。

()14. 硼的原子序為 5,平均原子量為 10.81。下列關於硼及其化合物的敘述,何者正確? (A) 沒有同位素 (B)中子數為 5 (C)價電子數為 2 (D) BH3不符合八隅體規則 (E)NH4BF4為分子化合物

答案:(D)

解析:(A)平均原子量為小數,代表有兩種以上的同位素;(B)有兩種以上的同位素,故中子數也有不只一種可能;(C)硼為 IIIA 族元素,有三個價電子;(D)B 只與三個 H 形成單鍵,不符合八隅體;(E)可拆解成 NH_4^+ 、 BF_4^- 兩個離子由離子鍵結合的離子化合物。故選(D)。

()15. 某物質不溶於水,富含一種半導體工業所需的重要元素,且所含另一元素是人體不可或缺的成分之一。下列何者最符合以上所述? (A)石英砂 (B)硫化鉛 (C)氯化鈣 (D)氧化鐵 (E)大理石

答案:(A)

解析:半導體常用的元素為矽 Si,人體不可或缺的元素有很多,但本題中含有矽的選項僅有(A)的石英砂 (SiO_2) ,故選(A)。

()16. X、Y、Z 分別為週期表中,第二與三週期中的三種元素,其原子序之和為 25,在週期表的相對位置如右表。由這三種元素,可組成許多化合物。下列有關這三種元素以及其組成化合物的敘述,哪些正確?

甲、這三種元素中,只有一種是非金屬元素。

 $Z \cdot Z$ 容易失去兩個電子,形成 Z^{2+} 離子。

丙、由Y與Z可以組成氣體分子。

丁、X的價電子數為1。

		Y	Z	
X				

(A)甲乙 (B)乙丙 (C)丙丁 (D)甲丙 (E)乙丁

答案:(C)

解析:依週期表位置判別,X、Y、Z元素分別為鈉、碳、氧:

X:鈉₁₁Na,Y:碳₆C,Z:氧₈O⇒11+6+8=25

甲、這三種元素中,碳C、氧O兩種是非金屬元素

Z、氧 O 容易獲得兩個電子,形成 O^{2} 離子 (Z^{2} 離子)

丙、碳C與氧O可組成氣體分子CO、CO2

 T 、納 Na 的價電子數為 $\mathsf{1}$ (Na⁺)

- ⇒(C)丙、丁為正確。
 -)17. 利用電子組態可以描述原子的特性。下列有關電子組態的敘述,何者正確?
 - (甲) C 原子的基態,其電子組態為 $1s^22s^22p^2$
 - (乙) Ne 原子的激發態,其電子組態不可能是 $1s^22s^22p^53s^1$
 - (丙) Mn 原子的基態和 Mn^{2+} 離子的基態皆具有未成對電子 (A)只有甲 (B)只有乙 (C)乙 與丙 (D)甲與丙 (E)甲與乙

答案:(D)

解析:C 原子的基態 $_6$ C: [He] $2s^22p^2=1s^22s^22p^2 \Rightarrow$ 甲正確

Ne 原子的基態 $_{10}$ Ne:[He] $2s^22p^6=1s^22s^22p^6$,故 $1s^22s^22p^53s^1$ 為激發態

⇒乙不正確

Mn 原子的基態 25Mn: [Ar] $3d^54s^2$, Mn^{2+} 離子的基態 $25Mn^{2+}$: [Ar] $3d^5$,

皆具有 3d5 未成對電子 ⇒ 丙正確 ⇒ (D)

()18. 教學上有時會用電子點式來表示原子結構。下列選項中的阿拉伯數字代表質子數、「+」

答案:(D)

解析:當原子核內的質子數與核外電子數不同時,即為帶有電荷的離子。選項 D 中,質子數為 12,而核外電子數為 10,是為 Mg^{2+} 。

)19. 下列有關元素與週期表的敘述,何者正確? (A)兩個水分子 「H-17O-1H與 「H-16O-2H,所含有中子數的總和相同 (B)Na、Mg、Al 三種金屬元素中,Al 的原子半徑最大 (C)室溫時,VIIA族(或第 17族)元素皆是氣體 (D)週期表左下方元素,較不易失去電子(E)鈹(Be)為類金屬元素

答案:(A)

	質子數 (原子序)	中子數	電子數
¹ H	1	0	1
^{2}H	1	1	1
¹⁶ O	8	8	(2,6)
¹⁷ O	8	9	(2,6)

解析: [10]

(A)水分子含中子數的總和:

 ${}^{1}H - {}^{17}O - {}^{1}H : 0 + 9 + 0 = 9$

 ${}^{1}H-{}^{16}O-{}^{2}H:0+8+1=9$

兩分子所含中子數的總和相同 ⇒ (A)正確

(B)同列元素半徑:半徑隨原子序增加而變小

主量子數 n相同,核電荷(質子數)增加 Z↑,半徑 r↓ (引力>斥力)

- ⇒ 半徑: Na>Mg>Al, Al的原子半徑最小
- (C)室溫時, VIIIA族(或第18族)元素皆是氣體(鈍氣)
- (D)同族元素:由上而下因原子半徑愈大,引力愈小,失去電子傾向愈大,活性 愈大。

同週期元素:由右至左失去電子傾向愈大,金屬性強。

- ⇒ 週期表左下方元素,較易失去電子
- (E)類金屬:硼 B、矽 Si、鍺 Ge、砷 As、銻 Sb、碲 Te、釙 Po、砈 At
 - ⇒ 鈹 (Be) 不是類金屬元素
- ()20. 已知氫原子的游離能約為 320 kcal/mol,試問當 1 莫耳氫原子的電子,從 n=4 躍遷至 n=2 時,所產生的能量變化約為何? (A)釋出 60 kcal (B)吸收 80 kcal (C)吸收 60 kcal (D) 釋出 80 kcal (E)釋出 160 kcal

答案:(A)

解析:電子由高能階躍遷至低能階,所釋出能量: $n=4 \rightarrow 2$

()21. 理論的發展故事是一連串早期的實驗,用來幫助「看無法看到的物,瞭解不易瞭解的事」。有關這些故事中的科學家與其重大科學發現或理論,下列哪個選項的組合是錯誤

的?

選項	科學家	發表的內容
(A)	<u> 道耳頓</u>	提倡原子學說
(B)	湯姆森	發現電子
(C)	拉塞福	提出原子結構的模型
(D)	波耳	建立量子化的氫原子模型
(E)	門得列夫	提出原子序的意義

(A)A (B)B (C)C (D)D (E)E

答案:(E)

解析:(E)門得列夫依原子量大小排出週期表。

)22. 日常生活中的食衣住行常與自然科學有關,現代如此,過去亦然。世上最早的一部煉丹著作《周易參同契》(西元二世紀)中,記載許多與化學相關的訊息。世上的煉丹師都有不願公開自己經驗的心理,即使有文字流傳,但語焉不詳或故用隱語,使他人難以理解,例如下列句子:

河上姹女 靈而最神 得火則飛 不見埃塵 鬼隱龍匿 莫知所存 將欲制之 黃芽為根 現代化學家已經解讀出其意義,如右上表。

若「姹女」與「黄芽」進行化學反應,可得到穩定的生成物。試問句中的「姹女」和「黄芽」是哪兩種物質?

	· a / = /// / / / / / / / / / / / / / / /					
隱語	解讀					
姹女	是一種元素					
河上	形容其具有流動性					
得火則飛	指其易於氣化					
莫知所存	指其化為氣體					
黃芽	是一種元素,其結晶為黃色針狀物					

(A)汞、硫 (B)銀、金 (C)鉛、硫 (D)銀、硫

(E)汞、金

答案:(A)

解析:依題表及選項

(1)姹女:選項「汞、銀、鉛」中符合河上(流動性)敘述為"汞"(液態元素)。

(2)黄芽:選項「硫、金」中符合黃色針狀結晶敘述為"硫"。

⇒(A)汞、硫為正確。

()23. 下列有關電子能階的敘述,哪一項<u>錯誤</u>? (A)電子由高能階降至較低能階時,放出的光具有連續頻率 (B)氫原子的電子距離原子核愈遠,其能階愈高 (C)原子受適當的熱或照 光,可使電子躍遷到較高能階 (D)霓虹燈的發光係來自原子核外電子的躍遷 (E)煙火的 焰色來自電子的躍遷

答案:(A)

解析:原子光譜:由不同能階的電子躍遷所生成,屬於「線光譜」。

線光譜:只含某些「特殊頻率」電磁波的光譜,呈不連續性線形分布,具有量子化的能階差(位能差如階梯般)。

()24. 有關 NO₃⁻和 CO₃²⁻路易斯結構的敘述,下列何者正確? (A)都只具有單鍵 (B)NO₃⁻不滿足八隅體規則 (C)中心原子都具有孤對電子 (D)二者的孤對電子數不同 (E)二者的總電子數相同

答案:(E)

八隅體	[;ö: ;g N, ;;;]	[;Ö;] ²⁻	
(A) π 鍵數	有 $\pi = 3 9 4 - \frac{1}{2} (24) + 1 = 1$	有 $\pi = 3$ 9 4 $-\frac{1}{2}$ (24) $+1 = 1$	有雙鍵
(B)皆滿足八隅體(圈內共含 8 電子)	:ö: :ö: : :ö: : : : : : : : : : : : : :	iö: j²- ig o: j²- 皆滿足	滿足
(C)孤對電子(中心原子)	無	無	無 L.P.
(D)孤對電子數	8 對 L.P.	8 對 L.P.	L.P.相同
(E)總電子數 E	24 E=5+ (6 9 3) +1=24	24 E=4+ (693) +2=24	⇒ 正確

《公式

1》
$$\pi = 3A - \frac{1}{2}E + 1$$
 $\pi : \pi$ 鍵數 $A : 原子數$

《公式 2》E=8B+2L (+2S) E:價電子總數 B:共價鍵數 (∴八隅體∴8 個電

子)

《公式 3》G-4=L+↑ G:中心原子族數 L:孤電子對(1對電子含 2個電子)

↑:配位共價鍵數 S:奇數電子

)25. 下列有關離子固體的特性,何者正確? (A)固態可導電 (B)熔點高 (C)常溫常壓下為熱 電的良導體 (D)具延性及展性

答案:(B)

解析:(A)不導電;(C)非導體;(D)不具延性及展性

)26. 近年來,由於新型冠狀病毒在全球各地肆虐,耳溫槍已成為重要的防疫工具。耳溫槍是以 量測鼓膜溫度來代表人體的體溫,假若人體鼓膜的輻射能量主要處於 6000~15000 nm 之 間,則試問氫原子中的電子在下列哪一種主量子數 n 之間的躍遷,所釋出的電磁波能量與 人體鼓膜的輻射能量最接近?(芮得柏方程式: $\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$, $n_2 > n_1$,芮得柏 常數 R_H約為 1.0×10⁻² nm⁻¹) $(A)n=2 \rightarrow n=1$ $(B)n=3 \rightarrow n=2$ $(C)n=4 \rightarrow n=3$ (D)n $=5 \rightarrow n=4$ (E)n=6 $\rightarrow n=5$

答案:(E)

解析:根據芮得柏公式:

$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \Rightarrow \frac{1}{R\lambda} = \frac{1}{n_1^2} - \frac{1}{n_2^2}$$

將波長範圍代入,可知 $\frac{1}{n_1^2} - \frac{1}{n_2^2}$ 應介於 $0.0167 \sim 0.0067$

$$n=6 \rightarrow n=5$$
, $\frac{1}{n_1^2} - \frac{1}{n_2^2} = \frac{1}{5^2} - \frac{1}{6^2} = 0.0122$

故骥(E)。

)27. 某些離子的半徑如附表所示(單位: $10^{-10}\,\mathrm{m}$),甲、乙、丙、丁為根據表中資料所作的敘 述或推論,下列哪一選項正確?

離子	O^{2-}	F	Na ⁺	Mg^{2+}	Al ³⁺	S^{2-}	Cl ⁻	K +	Ca ²⁺
半徑	1.40	1.33	1.02	0.66	0.51	1.84	1.81	1.51	1.00

甲:表中共有5個離子的核外電子數為18

乙:電子數相同的陽離子,原子序愈大者,半徑愈小

丙: 具相同電子排列的陰離子, 其半徑隨原子序的增大而變大

丁:同一族的離子,當電荷相同時,其半徑隨原子序的增大而變大 (A)甲乙 (B)丙丁 (C)甲丙 (D)乙丁 (E)甲丁

答案:(D)

` /						
				$^{8}O^{2-}$	⁹ F ⁻	¹⁰ Ne
				(2,8)	(2,8)	(2,8)
¹¹ Na ⁺	$^{12}Mg^{2+}$	¹³ Al ³⁺		¹⁶ S ²⁻	¹⁷ Cl ⁻	¹⁸ Ar
(2,8)	(2,8)	(2,8)		(2,8,8)	(2,8,8)	(2,8,8)
19K+	²⁰ Ca ²⁺					
(2,8,8)	(2,8,8)					

解析

甲:表中共有 4個離子的核外電子數為 $18=(2,8,8): S^{2-}, Cl^-, K^+, Ca^{2+}$

乙:電子數相同的陽離子,原子序愈大者(引力愈大),半徑愈小

丙:具相同電子排列的陰離子,其半徑隨原子序的增大(引力愈大)而變小

丁:同一族的離子,當電荷相同時,其半徑隨原子序的增大(電子層數 n 愈多)而變大 正確 \Rightarrow 故選(D)乙丁。

)28. 某氮氧化合物的一分子中含有 38 個電子。試問該氮氧化合物是下列的哪一選項? (A)NO (B)NO₃ (C)N₂O (D)N₂O₃ (E)N₂O₅

答案:(D)

解析:原子為電中性,故質子數 (原子序) =電子數; $N = 7 \cdot O = 8$

原子序:N為7(電子數7個)、O為8(電子數8個)

設「氦氧化合物」為 NxOy,∴總電子數:7x + 8y = 38,可得 $x = 2 \cdot y = 3 \Rightarrow N_2O_3$ 。

11.	化合物	N 電子數	O電子數	總電子數
انا1	口12月	(7x)	(8y)	(7x + 8y)
N	10	7×1	8 × 1	15
N	O_3	7×1	8 × 3	31
N	₂ O	7×2	8 × 1	22
N	$_{2}O_{3}$	7×2	8 × 3	38
N	₂ O ₅	7×2	8 × 5	54

()29. 當原子的電子由激發態躍遷至基態時,會將多餘的能量以光的形式釋出,這種現象為電子躍遷的一種。氫原子在下列哪一種主量子數 n 之間的電子躍遷,所產生光譜的波長最短 n =4 \rightarrow n=2 (B)n=3 \rightarrow n=1 (C)n=4 \rightarrow n=3 (D)n=3 \rightarrow n=2 (E)n=2 \rightarrow n=1

答案:(B)

解析: $E=h\times v \cdot C=v\times \lambda$

 λ 波長最短 $\Rightarrow \nu$ 頻率最大 $(\nu \propto \frac{1}{\lambda}) \Rightarrow E$ 能量最大 $(E \propto \nu)$

 λ_A : n \rightleftharpoons (4 \rightarrow 2)

 λ_B : n 由 (3 → 1) ⇒ (B)能量最大、波長最短

 $\lambda_C: n \boxplus (4 \rightarrow 3)$

 λ_D : n \rightleftharpoons (3 \rightarrow 2)

 $\lambda_E : n \boxplus (2 \rightarrow 1)$

()30. 若一基態的氫原子吸收波長為 94.91 nm 的光子躍遷至較高能階,先釋放出第一個波長為 1282 nm 的光子,到達某一個能階,然後再釋放出第二個光子回到基態。下列有關此第二 光子波長數值範圍的敘述,何者正確? (A)95 $\leq \lambda <$ 120 (B)120 $\leq \lambda <$ 300 (C)300 $\leq \lambda <$ 480 (D)480 $\leq \lambda <$ 600 (E) $\lambda >$ 600

答案:(A)

解析: $1\div94.91=1.097\times10^{-2}\times[(1\div1^2)-(1\div n^2)]$, $[(1\div1^2)-(1\div n^2)]=0.96$ ∴ n=5

第一個釋放光子:5→n₁

 $1 \div 1282 = 1.097 \times 10^{-2} \times [(1 \div n_1^2) - (1 \div 5^2)]$, $[(1 \div n_1^2) - (1 \div 5^2)] = 0.071$ $\therefore n_1 = 3$

第二個釋放光子:3→1

 $1 \div \lambda = 1.097 \times 10^{-2} \times [(1 \div 1^2) - (1 \div 3^2)]$ $\therefore \lambda = 102.55 \text{ nm} \Rightarrow (A)$

()31. 鈉、鎂及鋁三種物質的第 n 游離能分別為 1090.3、346.6 及 434.2 kcal / mol。試問 n 為何? (A)— (B)二 (C)三 (D)四 (E)五

答案:(B)

解析:內層電子之游離能遠大於外層電子之游離能。

1090.3 > 434.2 > 346.6,Na 只有 1 個價電子,n=2 時為內層電子;Mg 有 2 個價電子,n=2 時為外層電子;Al 有 3 個價電子,n=2 時為外層電子

()32. 以鋰金屬為負極材料的鈕扣型電池,具有小而輕、能量密度高以及放電穩定的優點。原因 除鋰的原子量小且為密度最輕的固態金屬性質外,鋰原子的電子組態也是需要瞭解的環 節。而鋰原子的某些電子組態如下:

 $\exists : 1s^1 2s^2 2p_x^0 2p_y^0 2p_z^0 \qquad Z : 1s^0 2s^2 2p_x^1 2p_y^0 2p_z^0$

丙: $1s^0 2s^1 2p_x^2 2p_y^0 2p_z^0$ 丁: $1s^2 2s^1 2p_x^0 2p_y^0 2p_z^0$

下列哪一項依序為能量最高和最低的組態? (A)丙和丁 (B)乙和丁 (C)丙和甲 (D)乙和甲 (E)甲和丁

答案:(A)

解析:軌域能量: $1s < 2s < 2p_x = 2p_y = 2p_z$ 。甲: $(2s \cdot 2s \cdot 1s)$ 激態,乙: $(2p_x \cdot 2s \cdot 2s)$ 激態,丙: $(2p_x \cdot 2p_x \cdot 2s)$ 激態(最高),丁: $(2s \cdot 1s \cdot 1s)$ 基態(最低)。故能量大小:丙>乙>甲>丁。

()33. 碳與矽是屬於同一族的元素,下列有關這兩種元素氧化物的敘述,何者正確? (A)二氧化矽是一種網狀固體 (B)二氧化碳的熔點比二氧化矽的熔點高 (C)室溫時,二氧化碳與二氧化矽都是氣體 (D)室溫時,二氧化碳是氣體,而二氧化矽是液體

答案:(A)

解析:SiO₂為簡式,CO₂為分子式。

()34. 附表為週期表的一部分,試問下列有關該五種元素及其化合物性質的敘述,哪一項正確?

В	
Al	Р
Ga	As

(A)As屬於金屬元素 (B)電負度最大者為Ga (C)第一游離能最小

者為 B (D)非金屬性質最強者為 P (E)氫氧化鋁可溶於酸性溶液,但不溶於鹼性溶液

答案:(D)

解析:(A) As 砷應為介於金屬與非金屬間的類金屬元素。

- (B)表中電負度最大者為 P(2.2),不是 Ga(1.8)。
- (C)表中第一游離能最小者應為 Ga(578.8 kJ/mol), 不是 B(800.6 kJ/mol)。
- (D)表中非金屬性最強者為 P。
- (E)氫氧化鋁為兩性化合物,既可溶於強酸,也可溶於強鹼。

故選(D)。

()35. 已知五種電中性的原子,其基態的電子組態如甲~戊所示:

丙、 $1s^22s^22p^2$ 丁、 $1s^22s^22p^63s^23p^4$

戊、 $1s^22s^22p^63s^23p^63d^{10}4s^24p^3$

下列有關此五種原子的敘述,哪一項正確? (A)戊原子為過渡金屬 (B)甲原子的第一游離能小於丁原子的第一游離能 (C)乙原子的電子組態由 $1s^22s^1$ 改變成為 $1s^12s^2$ 時,會放出能量 (D)丙原子 2p的兩個電子皆是填入 $2p_x$ 軌域中 (E)某原子的第一及第二游離能差異極大,則此原子最可能為乙

答案:(E)

解析:可由電子組態判斷甲~戊的元素符號及其原子序。

甲	Z	丙	丁	戊	
O ₈	₃ Li	₆ C	₁₆ S	33As	

J(A)戊為 As 砷,為典型元素之類金屬;

- (B)游離能的趨勢為:愈往週期表右上,游離能愈大。故甲>丁;

穩定 不穩定

- (D)依據洪德原則,電子填入相同軌域時,應該先填滿一半同方向,再填另一方向,並非直接成對填入相同軌域;
- (E)某原子的第 n 游離能特別大,表示其為 n-1 族元素。Li 的第二游離能,是將鈍氣組態的 Li 节 移去一個電子,因此能量會特別大。
- $Li \xrightarrow{IE_1} Li^+ \xrightarrow{IE_2} Li^{2+}$

1A 8A

()36. 甲、乙、丙為週期表中第三列的三種元素,附圖表示其游離能與失去電子數目的關係。下 列有關甲、乙、丙元素的敘述,哪一選項錯誤?

(A)甲的原子半徑比丙小 (B)乙的電負度比丙大 (C)甲

的氧化物可溶於強酸中,亦可溶於強鹼中 (D)乙與碳形成的化合物具有高熔點、高沸點和 高延展性的特性 (E)丙元素的氧化物溶於水呈鹼性

答案:(D)

解析:週期表第三列元素:

 $Na \cdot Mg \cdot Al \cdot Si \cdot P \cdot S \cdot Cl \cdot Ar$

原子游離能 IE 大幅增加前之 IEn, n 即為其「價電子數」

例: $IE_n < < IE_{(n+1)}$

甲、乙、丙圖中,游離能大幅增加前,分別為:

 $\mp : E_3 \Rightarrow A1$

 $Z: E_4 \Rightarrow Si$

 $\overline{\mathsf{H}}: \mathsf{E}_2 \Rightarrow \mathsf{Mg}$

(A)同列元素半徑:原子序增加 \Rightarrow 原子半徑漸減:Mg 丙>Al 甲>Si Z;(B)同列元素電負度:原子序增加 \Rightarrow 電負度增加:Mg 丙<Al 甲<Si Z;(C)甲的氧化物 Al_2O_3 為兩性化物,可溶於強酸、強鹼中

 $A1_2O_{3(s)} + 6 H^+_{(aq)} \rightarrow 2 A1^{3+}_{(aq)} + 3 H_2O_{(l)}$

 $A1_2O_{3(s)}+2$ $OH^-_{(aq)}+3$ $H_2O_{(l)}\to 2$ $A1(OH)_4^-_{(aq)}$; (D)碳化矽 SiC 俗稱金剛砂,網狀共價化合物具有 高熔點 2830 °C、沸點,但延展性差。加氮、磷可以形成 n 型半導體,加硼、鋁、鎵、鈹形成 p 型半導體;(E)丙的金屬氧化物 MgO 溶解於水呈鹼性 MgO $_{(s)}+H_2O_{(l)}\to Mg^{2+}_{(aq)}+2$ $OH^-_{(aq)}$

二、題組

1. 題組

元素週期表之前三週期的最後元素分別為氦、氖、氩,而其對應原子序為 2、10、 18,已知甲、乙、丙是週期表上相鄰的三種元素,甲與乙是同週期的元素,乙與丙是同主 族的元素。

()(1)該三種元素的原子序之和為 27,則甲、乙、丙在週期表中的相對位置,最多有 幾種可能 ? (A) 1 (B) 2 (C) 3 (D) 4 (E) 5

()(2)承上題,若此三種元素均為金屬,則甲、乙、丙在週期表中的相對位置,最多有幾種可能? (A) 1 (B) 2 (C) 3 (D) 4 (E) 5

答案:(1)(B);(2)(A)

解析:(1)甲與乙是同週期⇒原子序和為「奇數」⇒丙原子序為「偶數」

前三週期相鄰的三種元素 ⇒ 2 種 (27=4+11+12=6+7+14)

	4Be	₆ C	7N
11Na	₁₂ Mg	14Si	

(2)₄Be 鈹、11Na 鈉、12Mg 鎂,均為金屬元素。

6C碳、7N氮、14Si矽,均為非金屬元素。

2. 顯組

甲、乙、丙、丁、戊代表五種不同元素,其原子的電子排列如附圖。圖中「●」代表 原子核,「o」代表核外電子。

()(1)在常溫常壓下,哪一個是化學活性最大的非金屬元素? (A)甲 (B)乙 (C)丙 (D)丁 (E)戊

()(2)下列有關此五種元素的敘述,哪一項正確? (A)甲易與其他元素結合成分子化合物 (B)某元素 X 的同位素有 8 個中子,且此同位素的質量數為 14,則 X 為乙 (C)丙不安定,易與其他元素反應生成化合物

(D)丁通常失去一個電子與鹵素反應形成離子化合物 (E)戊位於週期表的第二週期

答案:(1)(E);(2)(B)

解析:(1)原子序=質子數=電子數

甲 (2,1) ⇒ 2+1=3 ⇒ IA 鋰 Li 活性大/金屬

 $Z(2,4) \Rightarrow 2+4=6 \Rightarrow IVA 碳 C$ 活性中/非金屬

丙 $(2,8) \Rightarrow 2+8=10 \Rightarrow \text{VIIIA}$ 氖 Ne 活性小/非金屬

T (2,8,2) ⇒ 2+8+2=12 ⇒ IIA 鎂 Mg 活性大/金屬

戊 $(2,8,7) \Rightarrow 2+8+7=17 \Rightarrow \text{VIIA}$ 氯Cl 活性大/非金屬 \Rightarrow (E)

(2)(A)甲 Li 為金屬,不與其他元素結合成「分子化合物」(非金屬-非金屬),但可與 C、Cl 元素結合成「離子化合物」(金屬-非金屬);(B)原子序(質子數)=質量數-中子數=14-8=6 ⇒ 碳 C(乙);(C)丙 Ne 為鈍氣性質安定,不與其他元素反應;(D)丁 Mg 最外層具有 2 個價電子,易失去 2 個電子與鹵素反應形成離子化合物;(E)戊 Cl 位於週期表的第三週期。

3. 顯組

現有 X, Y, Z, W, T, O 六種元素, 其相關敘述如下:

X和 Y 均為第三週期的元素,其價電子數分別為 2 和 7; Z, W, T 均為第二週期元素,其價電子數依序為 4, 5, 6; Q 為第一週期的元素。根據以上資訊回答下列問題。

()(1)下列有關 X 與 Y 所形成之化合物的敘述,何者<u>錯誤</u>? (A)此化合物中 X 與 Y 之間的鍵結屬於離子鍵 (B)此化合物易溶於水 (C)將此化合物加熱成熔融態,則可導電 (D)此化合物具有延展性

(E)此化合物之化學式可以 XY2表示

()(2)下列化學式代表由這些元素所形成的分子,其中哪一個分子的路易斯結構<u>不具有</u>孤電子對? (A)QY (B)ZQ4 (C)WQ3 (D)ZT2 (E)T2

答案:(1)(D);(2)(B)

解析:(1)依說明列出 X、Y、Z、W、T於週期表之位置及元素。

註:由下題 Q 可形成化合物,推斷為 H。

1	2	3	4	5	6	7	8	
Q (H)								
			Z (C)	W (N)	T(0)			
	X (Mg)					Y (CI)		

(A)(B)(C)(E) XY2之間的鍵結屬於離子鍵「金屬-非金屬」、

易溶於水、熔融態可導電;(D)離子鍵不具延展性。

	(A) QY	(B) ZQ ₄	(C) WQ ₃	(D) ZT ₂	(E) T ₂
分子式	HCl	CH ₄	NH ₃	CO_2	O_2
路易斯結構	н—ċі:	H H-C-H H	H H	ö=c=ö	ö=ö
孤電子對	3	0	1	4	4

(2)

4. 化學元素週期表的前三週期如下表所示。已知原子序 1~18的元素,其第一主層原子軌域可填入 2個電子,第二主層原子軌域可填入 8個電子,第三主層原子軌域可填入 8個電子。甲與乙為下列週期表中的兩元素。甲原子的最外兩主層的電子數均為 2,乙原子為地殼中主要的元素之一,其最外主層電子數是次外主層電子數的 3 倍。

13 14 15 16 17 18 根據上文所述,並參考所附之週期表,回答下列問

題。

()(1)下列何者為甲元素? (A) Li (B) Na (C) C (D) Be (E) Mg

()(2)已知由甲、乙兩元素所構成的化合物,在常溫常壓時為固體。下列敘述何者正確? (A)元素乙屬於鹵素族 (B)元素乙的電子數為 4 (C)元素甲與乙組成的化合物為MgO (D)元素甲與乙組成的化合物為MgCl₂ (E)元素甲與乙組成的化合物屬於離子化合物

答案:(1)(D);(2)(E)

解析:(1)(A) Li:(2,1);(B) Na:(2,8,1);(C) C:(2,4);(D) Be:(2,2);(E)

Mg: (2,8,2)。最外兩主層的電子數均為2者即(2,2),故甲原子為鈹 Be。

(2)乙元素 O:(2,6)。(A)氧族;(B)電子數為 8;(C)(D)元素甲與乙組成的化合物為 BeO;(E) 離子化合物:IA(或 IIA)與 VIIA 化合、IA(或 IIA)與 O 化合…等化合物。

5. 顯組

共價化合物通常是由幾種非金屬元素結合而成;離子化合物通常是由金屬元素和非金屬元素結合而成。

()(1) $X \times Y$ 是位於相差一個週期的兩個元素,且原子序均小於 20,其離子的價電子層相差兩層。已知 Y 的原子序大於 X 的原子序,且 Y 是由共價鍵結合成的元素。試由此推測下列敘述,哪些正確?(應選 2 項) (A) Y 是非金屬元素 (B) X 容易成為陰離子 (C) X 離子由內層到外層的電子數為 $2 \times 8 \times 8$ (D) Y 離子的電子數可為 $2 \times 8 \times 8$ 期

()(2)今有價電子數為 1 的原子 Q 與價電子數為 6 的原子 R,且 Q 與 R 的原子序均小於 20,則由其結合而成的化合物型態,有哪些可能 ?(應選 2 項) (A) Q_2R 型共價化合物 (B) QR_2 型離子化合物 (C) QR_6 型共價化合物 (D) QR_2 型共價化合物 (E) Q_2R 型離子化合物 (F) QR_6 型離子化合物

答案:(1)(A)(E);(2)(A)(E)

解析:(1)依題意「 $X \times Y$ 相差一週期,離子的價電子層相差兩層,原子序< $20 \times Y > X$ 」

	$X \rightarrow X^{+m} + me^-$	$Y + ne^- \rightarrow Y^{-n}$
《假設 1》	第一列 (H)	第二列 (非金屬)
離子的電子層	0	2 · 8
《假設 2》	第二列(金屬)	第三列 (非金屬)
離子的電子層	2	2 . 8 . 8

- (B) X 容易成為陽離子
- (C) Y 離子由內層到外層的電子數為 2、8、8
- (D) X 離子的電子數可為 2
- (2)Q可能原子為:H(非金屬)、Li、Na、K(金屬)
- R可能原子為:O、S(非金屬)
- (A) H₂O 型共價化合物
- (E) Li₂O、Na₂O、K₂O型離子化合物
- 6. 附圖為部分的週期表,該表中標示有甲至己六個元素,根據週期表元素性質變化的規律與

趨勢,回答第(1)~(2)題。L

- ()(1)甲至己六個元素中,何者最容易形成正一價的陽離子?何者最容易形成負一價的 陰離子?(應選二項) (A)甲 (B)乙 (C)丙 (D)丁 (E)戊 (F)己
- ()(2)下列何種組合,因結合後各元素皆能擁有氫原子的電子數,所以能形成穩定的純物質?(應選二項) (A)甲、戊 (B)乙、丙 (C)乙、戊 (D)丁、丁 (E)己、己 (F) 戊、戊

答案:(1)(A)(E);(2)(C)(F)

解析:(1) 甲為 IA,易形成+1;戊為 VIIA,易形成-1;(2) 乙 $^{2+}$ 與 F^- 均為 Ar 的電子數;而戊 與戊共用價電子: $\overset{\times \times}{C}\overset{\times}{\times}$,均為 Ar 的電子數

三、多重選擇題

()1. 附圖是某分子的結構式,W、X、Y、Z 代表四種不同的原子,已知此分子是組成蛋白質的 基本單元之一。下列敘述哪些正確?(應選 3 項)

(A)W 為氦 (B)X 為氧 (C)Y 為碳 (D)Z 為氫 (E)此分子有 14 個價電子未參與鍵結

答案:(A)(D)(E)

解析:蛋白質分子必然包含 $C \cdot H \cdot O \cdot N$ 等原子,其中 C 有四個價電子,可形成四個鍵結、H 有一個價電子,可形成一個鍵結、O 有六個價電子,可形成兩個鍵結+兩對孤對電子、N 有五個價電子,可形成三個鍵結+一對孤對電子。因此可得知 $X = C \cdot Z = H \cdot Y = O \cdot W = N \cdot (A)(D)$ 正確、(B)(C) 錯誤;(E) 共有 3 個 Y (O) 、1 個 W (N) ,故共有七對孤對電子,共 14 個價電子未參與鍵結。故選(A)(D)(E) 。

()2. 某生欲探究同族的 X 元素與 Y 元素的週期規律性,設計了以下的實驗:先在圖 8 中的過濾瓶中置入少許二氧化錳,由薊頭漏斗加水,使水位略高於薊頭漏斗的長管底部,然後由薊頭漏斗慢慢倒入含有 Y 與氫組成的過 Y 化氫水溶液,將產生的氣體導入附圖中裝有 X 與氫組成的 X 化氫水溶液的燒杯中會產生淡黃色粉末。下列有關此實驗的敘述哪些正確? (應選 3 項)

(A)X 元素的非金屬性大於 Y 元素 (B)X

元素較 Y 元素易失去價電子 (C)X 元素的原子半徑小於 Y 元素的原子半徑 (D)錐形過濾瓶中反應所產生的氣體具助燃性 (E)無色氣體與淡黃色粉末皆為共價分子物質

答案:(B)(D)(E)

解析:提示一:過Y化氫會被二氧化錳催化產生氣體

提示二:X 化氫的水溶液與過 Y 化氫產生的氣體反 應會產生黃色粉末

提示三:X、Y同一族⇒Y應為氧、X應為與氧同族的硫。

錐形瓶中反應:

 $2 H_2O_2 \rightarrow 2 H_2O + O_2$ (二氧化錳催化雙氧水分解)

燒杯中反應:

 O_2+2 $H_2S \rightarrow 2$ H_2O+2 S (氧化還原反應);(A)同族元素非金屬性隨原子序增加而減少(半徑愈大、引力愈小),故 Y>X;(B)同族元素半徑愈大,愈容易失去電子,故 X 較易失去電子;

(C)X 為第三週期、Y 為第二週期,故 X 半徑較大;(D) 過氧化氫經由二氧化錳催化後可分解得到氧氣,具有助燃性;(E)無色氣體為 O_2 、淡黃色粉末為硫元素,皆屬於分子物質

)3. 下列有關 NH₄Cl、Na₂SO₄和 NaCl 三種化合物的敘述,哪些正確?(應選 3 項) (A)NaCl 為離子化合物 (B)NH₄Cl 為分子化合物 (C)Na₂SO₄為離子化合物 (D)NH₄Cl 中的氮原子 與氫原子之間以共價鍵鍵結 (E)Na₂SO₄ 中的硫原子與氫原子之間以離子鍵鍵結

答案:(A)(C)(D)

解析:(A)(B)(C) NaCl、NH4Cl、Na2SO4 皆為離子化合物。

(D)(E) NH₄Cl、Na₂SO₄中的 N—H、S—O 原子間皆為「共價鍵」,因「非金屬—非金屬」鍵結為共價鍵。

()4. 電子組態是原子或離子中之電子在軌域的排列狀態,下列原子或離子的基態電子組態,哪

答案:(C)(D)(E)

解析:(1)遞建原理:電子先填滿低能階軌域,再填入高能階軌域

週期表法:由低能軌域依次填入:1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p

- (2)包立不相容原理:每一軌域至多能容納2個電子,且自旋方向相反
- (3)洪德定則:同能階軌域(如:2px,2py,2pz),電子先以「相同自旋方向」 填入不同方位的空軌域(不成對),而不先填入半滿軌域,待各軌域均半滿後 (均有一個電子),再以「相反自旋方向」的電子填入而成對,稱為基態。;

C : [He] ↑	↑ ↑ 激發態⇒基態	$N: [He] \uparrow \downarrow \qquad \uparrow \qquad \downarrow \qquad \uparrow$	激發態⇒基態
2s	2p	2s 2p	
$C: [He] \uparrow \downarrow$	↑ ↑ 《遞建原理》	$N: [He] \uparrow \downarrow \qquad \uparrow \qquad \uparrow$	【洪德定則》
(A) 2s	2p	; (B) 2s 2p	;
$Ca : [Ar] \uparrow \downarrow$	(能量4	s<3d 先填滿低能階,再填入高能	蹭)
(C) 4s	3d		;
$\operatorname{Cr}:[\operatorname{Ar}]$		、Cu 重要例外:d 軌域半滿 nd	15 .
(D) 4s	3d 全演	前 nd¹⁰能量較低)	;
Mn^{2+} : [Ar]		離 3d < 4s 先失去外層價電子)	
(E) 4	s 3d		
	<u> </u>		

)5. 在 2010 年,諾貝爾獎頒給發現及開創研究石墨烯的科學家,石墨烯是個單層的石墨。下列 有關石墨烯的敘述,哪些正確? (A)石墨烯中的碳具有 sp² 混成軌域 (B)石墨烯與石墨具 有相似的機械強度 (C)石墨烯與石墨具有相似的不透明黑色 (D)石墨烯中的碳-碳鍵序 (鍵數)介於單鍵與雙鍵之間 (E)石墨烯只具有單原子層,所以是不導電的分子

答案:(A)(D)

(

解析:(A)石墨烯即單層石墨,則其中的碳原子亦均以 sp²混成鍵結。

- (B)石墨烯的機械強度高於石墨,兩者並不相同。由於石墨烯為單層石墨結構,其材料強度來自於 共價鍵結構,而石墨因層狀結構間以凡得瓦力維繫,使其材料的機械強度遠低於石墨烯。
- (C)石墨烯為透明材料,但石墨不透明。
- (D)石墨烯的碳-碳鍵數與石墨相同,皆為 4/3 鍵,介於單鍵與雙鍵之間。
- (E)石墨烯為良好的導體材料,其導電度甚至比銀還高。

故本題應選(A)(D)。

()6. 物質可依鍵結與物理性質(如:狀態、熔點、沸點、導電性與延展性等)分類。下表為 甲、乙、丙、丁四種物質的物理性質:

物質	狀態(25℃)	沸點(℃)	熔點(℃)	導電性
甲	氣態	-252	-259	不導電
Z	固態	3000	153	固態時不導電,水溶液可導電
丙	固態	1420	845	固態時可導電
丁	液態	100	0	不導電

已知甲為雙原子分子,且為水分子中的一元素,則下列有關表中甲、乙、丙、丁的敘述,哪些正確? (應選3項) (A)甲為共價分子 (B)乙為共價分子化合物 (C)丙為金屬 (D)丁為共價分子化合物 (E)乙與丙皆具延展性

答案:(A)(C)(D)

解析:甲:氣態 25° 、不導電 \Rightarrow 共價分子 \Rightarrow 選(A)乙:固態 25° 、固態時不導電,水溶液可導電 \Rightarrow 離子化合物(無延展性)

丙:固態 25°C、固態時可導電⇒金屬⇒選(C)(延展性)

丁:液態 25 °C、不導電⇒共價分子/熔沸點 (0 °C /100 °C) ⇒水分子⇒選(D)

)7. 鑽石與石墨是碳的共價網狀固體。其中,鑽石質地堅硬,而石墨是易脆的物質。下列有關兩者的敘述,哪些正確?(應選3項) (A)石墨具有導電性,鑽石則否 (B)鑽石與石墨都是高熔點的固體 (C)鑽石是三維網狀排列,而石墨是二維層狀排列 (D)鑽石的每個碳原子連接三個碳原子,而石墨的每個碳原子連接四個碳原子 (E)鑽石中碳原子間連接形成的幾何結構為三角形,而石墨中碳原子間連接形成的幾何結構為四面體形

答案:(A)(B)(C)

解析:石墨:二維層狀排列(平面結構), sp^2 每個碳原子連接 3 個碳原子,呈三角形, $1\frac{1}{3}$ 鍵

數。灰黑色具有金屬光澤的片狀晶體,熔點 $3652\sim3697$ ℃ 間,每個碳原子以p 軌域重疊形成 π 鍵,可於平面方向自由移動,是電和熱的良導體,垂直平面方向為絕緣體。

鑽石:三維網狀排列(立體結構), sp³每個碳原子連接4個碳原子,呈四面體形,1鍵數。無色透明固體,熔點高3550℃、不導電,硬度、導熱性皆高居元素第一名。

鑽石

(D)鑽石 sp^3 的每個碳原子連接四個碳原子,而石墨 sp^2 的每個碳原子連接三個碳原子;(E)鑽石中碳原子間連接形成的幾何結構為四面體形 sp^3 ,而石墨中碳原子間連接形成的幾何結構為三角形 sp^2 。

()8. 布洛芬是一種市面上常見的消炎止痛藥成分,其化學結構如附圖。此分子的化學式為 C₁₃H₁₈O₂,可溶於水,水溶液為酸性。下列敘述哪些正確? (應選 2 項)

$$CH_3$$
 CH_3 OH

(A)此分子骨架中的碳-碳鍵是以共價鍵形式結合 (B)其水溶液為酸性,與結構中的羧基有關 (C)結構中氧原子與氫原子間是以離子鍵的形式結合,因此此分子的固態為離子晶體 (D)此分子六員環上的碳,其路易斯結構具有孤電子對 (E) 此分子具有雙鍵,因此有順-反異構物之存在

答案:(A)(B)

解析:(C)固態有機酸分子屬共價分子,羧基為官能基具有極性,能產生氫鍵;(D)此分子六員環上的碳以 sp^2 分別 2 個 C、1 個 H(未標示),故不具孤電子對;(E)中央 3 雙鍵屬於苯環,右邊雙鍵為羧基-COOH,無 C=C 雙鍵,故無順-反異構物,但有鏡射異構物。故選(A)(B)。

()9. 金屬原子的離子化傾向較大者較易成離子。下列與離子化傾向較大的金屬原子相關的敘述,哪些正確?(應選兩項) (A)較易被還原 (B)較易被氧化 (C)較易失去電子 (D)較易獲得電子 (E)較易當酸

答案:(B)(C)

解析:(B)(C)離子化傾向大代表活性愈大者,故易被氧化和失去電子。

()10. 價電子數相等的物質常有相似的結構,例如 H₃BNH₃與乙烷具有相等價電子數與相似的結構。另外,簡式 BN 與 C₂有相等價電子數,故氮化硼也能形成與石墨和金剛石相似的結構。下列相關敘述,哪些正確?(應選 3 項) (A)H₃BNH₃分子有 1 對孤對電子(B)H₃BNH₃分子具有一個 B-N 單鍵 (C)H₃BNH₃分子的路易斯結構符合八隅體規則(D)BN 形成類似石墨結構時,硼原子間互相聯結,氦原子間也互相聯結,各自形成平面

網狀的層狀構造,硼層與氮層之間無共價鍵結存在 (E)BN 形成類似金剛石結構時,每個氦原子與鄰近 4 個硼原子產生共價鍵結,而每個硼

原子也與鄰近4個氮原子產生共價鍵結

答案:(B)(C)(E)

解析:H₃BNH₃與乙烷有相似的結構式,可想成 BH₃與 NH₃的化合物:

由上述結構式與反應式可知,(A)錯誤,並無孤對電子;(B)正確,為單鍵;(C)符合八隅體規則;(D) BN 的平面結構類似石墨,應為硼、氮交錯形成單層平面結構,層與層之間再以凡得瓦力吸引形成網狀固體,題幹所敘述的不可能發生,否則層與層之間的價電子數量不同,無法形成穩定的結構;(E)若形成類似鑽石的立體結構,則每個氮周圍都有四個硼、每個硼周圍都有四個氦,此為正確敘述。故選(B)(C)(E)。

()11. 科學家在金星大氣層中發現 PH₃的存在,濃度為 5-20ppb。已知: ①地球大氣層中的 PH₃ 均來自微生物; ②金星的天文、地質現象,都無法產生 PH₃; ③PH₃容被氧化成其它物質。下列相關推論哪些正確?(應選 3 項) (A)金星可能存在微生物 (B)金星上的 PH₃在地球上不會被氧化 (C)沒有生物的星球應該不會產生 PH₃ (D)地球上 PH₃的氧化產物可能為磷的含氧酸 (E)金星大氣層中,可能有目前未知的化學反應導致 PH₃的產生

答案:(A)(D)(E)

解析:(A)合理推論,因金星的天文、地質現象都無法產生 PH_3 ,又地球上的 PH_3 都來自於微生物,故金星上有微生物為合理的推測;(B)無論是在何處生成的 PH_3 均具有相同的性質,故在地球上也會氧化;(C)由題幹中我們可知地球上的 PH_3 是由微生物所製造,但不代表宇宙中所有的 PH_3 皆由微生物所製造,故此推論不適當;(D) $PH_3 \rightarrow H_3PO_4$ 、 H_3PO_3 等,皆為氧化反應,符合題幹之敘述;(E)題幹中提到金星的「天文」、「地質」現象皆無法產生 PH_3 ,代表 PH_3 可能來自於大氣中,此選項為合理之推測。故選(A)(D)(E)。

()12. 四種不同原子的代號為 X、Y、Z、W。若已知穩定的 X⁺和 Z⁻離子都具有 10 個電子, Y 的電子較 X 多 9 個, W 的電子較 Z 多 7 個,則下列有關此四種元素的敘述,哪些正確? (應選 3 項) (A)Z 為非金屬元素 (B)X 的最外層電子在 L 層 (C)Y 與 Z 所形成的穩定化合物可以用 YZ₂表示 (D)Y 與 W 所形成的穩定化合物可以用 YW₂表示 (E)X 與 W 所形成的穩定化合物可以用 X₂W 表示

答案:(A)(C)(E)

解析:X電子數=10+1=11=質子數(原子序)⇒Na鈉

Z電子數=10-1=9=質子數(原子序)⇒F氟

Y 電子數=11+9=20=質子數 (原子序) ⇒ Ca 鈣

W電子數=9+7=16=質子數(原子序)⇒ S 硫;(A)Z=F 氟為非金屬元素⇒正確;(B)X=Na 鈉(2,8,1)的最外層電子在 M 層(第三層);(C)Y=Ca 與 Z=F 所形成的穩定化合物可以用 $CaF_2=YZ_2$ 表示⇒正確;(D)Y=Ca 與 W=S 所形成的穩定化合物可以用 CaS=YW表示;(E)X=Na 與 W=S 所形成的穩定化合物可以用 $Na_2S=X_2W$ 表示⇒正確

)13. 下列有關鹼金屬族元素的性質,哪些隨原子序的增大而漸增? (A)原子量 (B)原子半徑 (C)離子半徑 (D)熔點 (E)第一游離能

答案:(A)(B)(C)

解析:解一:(D)半徑愈大,金屬鍵愈弱,熔點隨著原子序增加而變小;(E)第一游離能隨著原子序增加而變小。

解二:(D)(E) Li>Na>K>Rb>Cs>Fr

()14. 下列哪些分子的電子點式,其每個原子(氫除外)均遵循八隅體規則? (A)BH₃ (B)N₂O₂ (C)SF₆ (D)O₃ (E)NO₂

答案:(B)(D)

解析: (A) BH₃ HוB•×H (硼只有6個)

(C) SF₆

(E) NO₂ O N

C) NO₂ O (氦只有 7 個)

)15. 附表所列為甲、乙、丙、丁和戊五種物質的熔點:

物質	甲	Z	丙	丁	戊
熔點(℃)	1069	-182	大於 3500	801	650

其中,甲具有共價鍵和離子鍵,乙在空氣中穩定且難溶於水,丙具共價網狀結構並可導電,丁易溶於水且其水溶液可導電,戊則具有延展性。已知甲、乙、丙、丁和戊分別代表以下所列的物質之一:

石墨、鎂帶、氯化鈉、甲烷、酒精、金剛石、碳化矽、硫酸鉀

下列選項中的配對哪些正確?(應選2項) (A)甲為硫酸鉀 (B)乙為甲烷 (C)丙為金剛石 (D)丁為碳化矽 (E)戊為氯化鈉

答案:(A)(B)

(11)(D)							
	熔點℃	相	分子內	分子間	水溶液 可導電	特性	
金剛石	3550	固	共價鍵	共價網狀	_	硬度最高	
石墨	>3500	固	共價鍵	共價網狀	_	導電	丙
碳化矽	2830	固	共價鍵	共價網狀	_	半導體	
酒精	-114	液	共價鍵	氫鍵、凡 得瓦力	不導電	易揮發、 溶劑	
甲烷	-182	氣	共價鍵	凡得瓦力	_		乙
氯化鈉	801	固	離子鍵	離子鍵	導電		丁
硫酸鉀	1069	固	共價鍵	離子鍵	導電		甲
鎂帶	650	固	金屬鍵	金屬鍵	_	延展性	戊

解析

「-」:難溶於水。故選(A)(B)。

()16. 下列有關原子的敘述,何者正確? (A)碳原子在基態時的電子組態,有四個未配對電子 (B)鉀原子的第一游離能比鈣原子的第一游離能低 (C)硫的原子半徑比磷的原子半徑小 (D)氯原子的電負度比氟原子的電負度大 (E)錳原子的 d 軌域中有 5 個電子

答案:(B)(C)(E)

解析:(A) 碳的基態電子組態為 $1s^2 2s^2 2p^2$,則在 2p 軌域有 2 個未配對電子。

(D)氟為電負度最大的元素。

 (M_1) 17. 利用化學方法可將 (M_2) (M_2) (M_3) (M_4) (M_5) (M_5)

(A) C_{60} 與石墨為同素異形體 (B) H_{2} @ C_{60} 為純物質 (C) H_{2} O@ C_{60} 為混合物 (D) H_{2} @ C_{60} 中的氫原子與碳原子間有共價鍵 (E) H_{5} 的水溶液具酸性,故 H_{5} 000 可與氫氧化鈉溶液進行酸鹼反應

答案:(A)(B)

解析:(A)皆為由碳組成的元素物質,為同素異形體;(B)題幹中提及可利用「化學」方法打開 C_{60} 的一個洞,將「一個」小分子引入,故 $H_{20}C_{60}$ 應屬於純物質;(C)同(B)選項,應屬於純物質 (D) H_{2} 與 C_{60} 之間只有微弱的吸引力(凡得瓦力),非共價鍵;(E)題目中提到,被封閉在 C_{60} 中的分子會與外界隔絕,故關在當中的 HF 無法與外界的強鹼反應。故選(A)(B)。

()18. 元素週期表係依原子序大小排列,下列敘述何者正確? (A)鹵族元素,其電負度由上而下漸減 (B)第三週期元素的原子半徑由左至右漸減 (C)相同元素的原子,每一個原子的質量數皆相同 (D)同一週期的元素,其第一游離能,後一個元素的值一定大於前一個元素的值 (E)同一週期的元素,一個中性氣態原子獲得一個電子所釋出的能量,以鹵素族最大

答案:(A)(B)(E)

解析:(C)同位素則質量數不同;(D)有例外,例如:Mg>Al>Na。

()19. 下列哪些原子的電子組態變化會放出能量? (A)氫原子由 4s¹變成 3d¹ (B)銅原子由 [Ar] 3d⁹4s²變成 [Ar] 3d¹⁰4s¹ (C)釩原子由 [Ar] 3d³4s²變成 [Ar] 3d⁵4s⁰ (D)矽原子由 [Ne] 2s²p x¹py¹變成 [Ne] 2s²px¹p z¹ (E)碳原子由 [He] 2s²2p²變成 [He] 2s¹2p³

答案:(A)(B)

解析:基 態:電子在最低能階時之能量

激發態:電子在較高能階時之能量

放 熱:激態 → 基態 + E

單電子原子:1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f < ... (氫:n 值大,能量大) 多電子原子:<math>1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p ... (依週期表順序)

 $: n \text{ 值} \cdot \text{ 動域皆相同時} , \text{ 動域能量相等} : 2p_x = 2p_y = 2p_z$

<u> </u>	L·正值 型线目作问的 型线配重相等·2px 2py 2pz									
	基態		激態 1		激態 2	ΔH				
Н	$1s^1$		$3d^1$	←	$4s^1$	放熱				
С	[Ar] 3d ¹⁰ 4s ¹	←	[Ar]3d ⁹ 4s ²			放熱				
u										
V	$[Ar] 3d^34s^2$	\rightarrow	[Ar] 3d54s0			吸熱				
S	$[Ne] 2s^2 2p^2$	=	[Ne] $2s^2p_x^{\ 1}p_y^{\ 1}$ (基)	=	[Ne] $2s^2p_x^{-1}p_z^{-1}$ (基)	無				
i										
С	[He] $2s^22p^2$	\rightarrow	[He] $2s^12p^3$			吸熱				

()20. 下列哪些物質是由共價鍵所形成的? (應選 2 項) (A)三氧化二鐵 (B)青銅 (C)四氧化二氮 (D)氯化氫 (E)十八開金 (K 金)

答案:(C)(D)

解析: 化學鍵種類:

(1)離子鍵:「金屬元素-非金屬元素」形成的鍵結

(2)共價鍵:「非金屬元素 - 非金屬元素」形成的鍵結或分子化合物

(3)金屬鍵:「金屬元素-金屬元素」形成的鍵結

(A) $Fe_2O_{3(s)}$ 為離子晶體,「金屬元素 — 非金屬元素」;

(B) Cu (88~96%)、Sn (4~12%)的合金,混合物;

- (C) $N_2O_{4(g)}$ 為共價分子,「非金屬元素 非金屬元素」;
- (D) HCl_(g)為共價分子,「非金屬元素 非金屬元素」;
- (E) Au($\frac{18}{24}$)、Cu($\frac{6}{24}$)的合金,混合物。
- ()21. 現有 W、X、Y、Z 四種原子,其相關敘述如下:
 - (1) W 為第 17 族(鹵素)中電負度最大者
 - (2) X 是第四週期元素,其所形成最穩定的離子 X^{2+} 具有全滿之 d 軌域
 - (3) Y 形成的-2 價陰離子 Y²⁻ 與第三週期的鈍氣元素之電子組態相同
 - (4) Z 為第 2 族(鹼土族)非放射性元素中原子序最大者根據以上之資料,則下列敘述,哪些正確? (A)0.1 M 的 X^{2+} 水溶液與 0.1 M 的 Y^{2-} 水溶液混合後,會產生沉澱 (B)0.1 M 的 Z^{2+} 水溶液可與硫酸鈉水溶液產生沉澱 (C) X^{2+} 的電子組態具有 4s 軌域的電子 (D)W 原子是鹵素原子中半徑最大者 (E)這四種原子中,Z 原子的原子半徑最大

答案:(A)(B)(E)

解析:(1) W 為 F (氟), 鹵素電負度: $F_{(At)} > Cl > Br > I$

- (2) X 為 Zn (鋅) ,第四週期元素,Zn ([Ar] $3d^{10}4s^2$) \rightarrow Zn²⁺ ([Ar] $3d^{10}$)
- (3) Y 為 S (硫) ,S ([Ne] $3s^23p^4$) \rightarrow S²⁻ ([Ne] $3s^23p^6$) =Ar
- (4) Z 為 Ba(鋇),原子序>83元素者,具有放射性

IIA 族:4Be、12Mg、20Ca、38Sr、56Ba、88Ra>83;(A)0.1M 的 Zn²⁺(aq)與 0.1M 的 S^{2−}(aq)可產生 ZnS(s)↓白色沉澱《正確》

$$Zn^{2^{+}}_{(aq)} + S^{2^{-}}_{(aq)} \rightarrow ZnS_{(s)} \downarrow$$

註:S²⁻ 遇 IA⁺、H⁺、NH₄⁺、IIA²⁺ 可溶,其餘陽離子皆產生沉澱;(B) 0.1 M 的 Ba²⁺_(aq) 與 Na₂SO_{4(aq)} 可產生 BaSO_{4(s)}↓白色沉澱《正確》

註: $SO_4^{2^-}$: Sr^{2^+} 、 Ba^{2^+} 、 Ra^{2^+} 、 Pb^{2^+} 可生成沉澱;(C) Zn^{2^+} :[Ar] $3d^{10}$ 不具有 4s 軌域的電子;

(D)F 半徑最小,鹵素原子半徑:F < Cl < Br < I < At (r↑⇒ n↑) ; (E)Ba 半徑最大,四種原子半

徑:Ba>Zn>S>F(r↑⇒n↑)《正確》

電子組態:F:[He] $2s^22p^5 \cdot S$:[Ne] $3s^23p^4 \cdot Zn$:[Ar] $3d^{10}4s^2 \cdot Ba$:[Xe] $6s^2$

)22. 附圖是某些元素(以代號 a~h 表示)其原子的質量數與質子數關係圖。根據此圖,下列敘 述哪些正確?(應選 2 項)

(A)a 的原子半徑比 b 的原子半徑大 (B)d 與 e 為同位素

(C)c 的氧化物水溶液之鹼性比 d 的氧化物水溶液弱 (D)h 的價電子數比 f 多 (E)f 的中子數比 e 多

答案:(A)(E)

	a	b	c	d	e	f	g	h
原子序	6	9	11	15	16	16	17	20
質量數	12	19	24	32	32	34	35	40
元素符號表示	¹² C	¹⁹ F	²⁴ Na	³² P	^{32}S	³⁴ S	³⁵ C1	⁴⁰ Ca

解析:

(A)正確,同週期元素,原子序增加伴隨半徑變小;(B)錯誤,同位素應為相同質子數、不同中子數的元素;(C)錯誤,c 的氧化物 Na_2O 溶於水為 NaOH ($Na_2O+H_2O\to 2$ NaOH),d 的氧化物

P₄O₆或 P₄O₁₀溶於水為 H₃PO₃或 H₃PO₄(P₄O₆+

 $6\,H_2O \to 4\,H_3PO_3$ 、 $P_4O_{10}+6\,H_2O \to 4\,H_3PO_4$),鹼性應為 c 較強;(D)錯誤,h 為第 2(IIA)族元素,價電子共 2 顆;f 為第 16(VIA)族,價電子共 6 顆;(E)正確,e 與 f 都有 16 個質子,但 f 質量數較大,代表其中子較多,兩者互為同位素。故選(A)(E)。

四、非選題

- 1. 張老師給了學生五種水溶液:H₂SO₄、NaOH、CaCl₂、Cu(NO₃)₂、Na₂CO₃與一小瓶金屬粉末,請學生以實驗結果表示這些物質之間的關係。學生交了一份報告:如附圖。圖中的每一連線兩端的物質兩兩相加,均會有明顯的化學反應,其中:
 - ①連線1與連線9均會產牛氫氣。
 - ②連線2會產牛二氧化碳。
 - ③除了連線1,2,7,9以外,其他連線均會產生沉澱。
 - ④另外,張老師說 X 原子具有 d^{10} 的電子組態,若將 X 溶於稀硝酸後,與硫化鈉溶液作用,亦即 X 離子與硫離子會產生白色沉澱: $X^{2^+}_{(aq)} + S^{2^-}_{(aq)} \to XS_{(s)}$

試回答下列問題:

- (1)寫出 X 的元素符號。
- (2)寫出Y的中文名稱。
- (3)寫出連線3反應的離子反應式,並註明各物質的狀態。
- (4)寫出連線6反應的離子反應式,並註明各物質的狀態。

答案:(1)Zn;(2)硫酸;

- $(3) Ca^{2+}_{(aq)} + CO_3^{2-}_{(aq)} \rightarrow CaCO_{3(s)} \downarrow ;$
- $(4)Zn_{(s)} + Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)} \downarrow$

解析:(1)判斷 X:

由(4) X 原子具有 d^{10} 的電子 \Rightarrow Cu: [Ar] $3d^{10}$ 4 s^1 或 Zn: [Ar] $3d^{10}$ 4 s^2 與硫化鈉 $H_2S_{(aq)}$ 產生白色沉澱,因硫化物 $CuS_{(s)}$ 深藍色、 $ZnS_{(s)}$ 白色 \Rightarrow Zn 粉......①答 1.

(2)判斷 Y、V:

由(3) ⇒ 沉澱少為酸 Y、沉澱多為鹼 V

由(1) 兩性金屬 Zn 與「強酸 Y、強鹼 V」均產生 H_2

連線 1: Zn+Y 強酸 ⇒ $Zn+H_2SO_4$ → $ZnSO_4+H_2$ ↑

連線 9: Zn+V 強鹼 ⇒ $Zn+2NaOH+2H_2O$ → $Na_2[Zn(OH)_4]+H_2$ ↑

- ⇒ Y 強酸 ⇒ H_2SO_4 硫酸.....②答 2.
- ⇒ V 強鹼 ⇒ NaOH 氫氧化鈉.....3

(3)判斷 Z:

 $h(3) \Rightarrow H_2SO_4 + W 產牛沉澱$

連線 8: H₂SO₄+CaCl₂ → 2 HCl+Ca₂SO_{4(s)}↓

⇒ W ⇒ CaCl₂ 氯化鈣.....⑤

 \Rightarrow U \Rightarrow Cu(NO₃)₂ 硝酸銅.....⑥

連線 3 反應:Z (Na₂CO₃) +W (<u>Ca</u>Cl₂)

離子反應式: $Ca^{2+}(aq) + CO_3^{2-}(aq) \rightarrow CaCO_3(s) \downarrow$ 答 3.

(4)連線 6 反應: $X(Z_n) + U(Cu(NO_3)_2)$

離子反應式: $Zn_{(s)}+Cu^{2^+}{}_{(aq)}\to Zn^{2^+}{}_{(aq)}+Cu_{(s)}\!\downarrow\dots$...答 4.

溶質	Zn	H ₂ SO ₄	NaOH	CaCl ₂	Cu(NO ₃) ₂	Na ₂ CO ₃
Zn		(H ₂ ↑)	$(H_2\uparrow)$	_	(Cu _(s))	_
H ₂ SO ₄	H ₂ ↑		(中和)	(CaSO ₄ ↓)	_	$(CO_2\uparrow)$
NaOH	H ₂ ↑	中和		(Ca(OH) ₂ ↓)	(Cu(OH) ₂ ↓)	_
CaCl ₂	l	CaSO ₄ ↓	Ca(OH) ₂ ↓			(CaCO ₃ ↓)
$Cu(NO_3)_2$	Cu _(s)	_	Cu(OH) ₂ ↓			
Na ₂ CO ₃		CO ₂ ↑	_	CaCO ₃ ↓	_	
推斷	ФX	②Y	3 V	⑤W	© U	⊕Z