Your First Deep Learning Code

11-785 Spring 2020

Overview

- Neural Networks
- Tensors
- CPU and GPU Operations
- Backpropagation

- Neural Network Modules
- Optimization and Loss
- Saving and Loading
- Common Issues to look out for
- Full NN Example in code

A (Very Brief) Neural Network Primer

- Basic computational unit
- Inputs combine linearly

- Basic computational unit
- Inputs combine linearly

$$y = g\left(\sum_{i=1}^{d} w_i x_i + b\right)$$

What can a perceptron represent?

This is a linear classifier

 Here, the activation function is a 0-1 step function.

$$y = \begin{cases} 0 & \mathbf{w}^{\top} \mathbf{x} + b < 0 \\ 1 & \mathbf{w}^{\top} \mathbf{x} + b \ge 0 \end{cases}$$

Activation functions

Instead of a threshold, we can have any arbitrary "activation" function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Multilayer Perceptron

Multilayer Perceptron

 A "fully-connected" multi-layer network of perceptrons (MLP).

 Much more powerful than a single neuron -- can represent any function*.

Multilayer Perceptron

But the network must be learned...

• But first: What do we learn?

But first: What do we learn?
 The parameters

• But first: *What* do we learn? The parameters

What are the parameters?

But first: What do we learn?
 The parameters

What are the parameters?
 Weights and biases

$$W_1 = \begin{bmatrix} w_{111} & w_{112} & w_{113} \\ w_{121} & w_{122} & w_{123} \\ w_{131} & w_{132} & w_{133} \\ w_{141} & w_{142} & w_{143} \end{bmatrix} \qquad b_1 = \begin{bmatrix} b_{11} \\ b_{12} \\ b_{13} \\ b_{14} \end{bmatrix}$$

$$W_2 = egin{bmatrix} w_{211} & \dots & w_{214} \ \vdots & \ddots & \ w_{241} & & w_{244} \end{bmatrix} \qquad b_2 = egin{bmatrix} b_{21} \ b_{22} \ b_{23} \ b_{24} \end{pmatrix}$$

• Suppose we want to classify cats and dogs.

Suppose we want to classify cats and dogs.

 We will provide many input-output example pairs and try to optimize the parameters so that the network output matches **training data** output as closely as possible.

Input	Output
	"Cat"
	"Dog"
	"Dog"
	"Cat"

Suppose we want to classify cats and dogs.

 We will provide many input-output example pairs and try to optimize the parameters so that the network output matches training data output as closely as possible.

Need to quantify the error.

Input	Output
	"Cat"
	"Dog"
	"Dog"
	"Cat"

Estimate functions from the samples.

- Estimate functions from the samples.
- Need a quantification of the error between the network output and the desired output

 $\mathcal{L}(W) = rac{1}{N} \sum_{i} div(f(X_i; W), y_i)$

Desired

output

- Estimate functions from the samples.
- Need a quantification of the error between the network output and the desired output
- Optimize parameters to minimize this error.

$$\mathcal{L}(W) = rac{1}{N} \sum_i div(f(X_i; W), y_i)$$

Network

output

Desired

output

$$\hat{W} = \operatorname*{argmin}_{W} \mathcal{L}(W)$$
 $W = \{W_1, b_1, W_2, b_2, \dots, W_k, b_k\}$

- Estimate functions from the samples.
- Need a quantification of the error between the network output and the desired output
- Optimize parameters to minimize this error. (How?)

$$\mathcal{L}(W) = rac{1}{N} \sum_{i} div(f(X_i; W), y_i)$$

Network

output

Desired

output

$$\hat{W} = \operatorname*{argmin}_{W} \mathcal{L}(W)$$
 $W = \{W_1, b_1, W_2, b_2, \dots, W_k, b_k\}$

1. Initialize all the parameters.

- 1. Initialize all the parameters.
- 2. Repeat until convergence:

- 1. Initialize all the parameters.
- 2. Repeat until convergence:
 - a. Compute loss

$$\mathcal{L}(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), y_i)$$

- 1. Initialize all the parameters.
- 2. Repeat until convergence:
 - a. Compute loss
 - b. Compute gradient of the loss wrt $\longrightarrow \nabla_W \mathcal{L}(W)$ $\left(\frac{\partial \mathcal{L}}{\partial w_{ijk}} \ \forall i,j,k \ \text{and} \ \frac{\partial \mathcal{L}}{\partial b_{ij}} \ \forall i,j\right)$ parameters

 $\mathcal{L}(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), y_i)$

- 1. Initialize all the parameters.
- 2. Repeat until convergence:
 - a. Compute loss
 - b. Compute gradient of the loss wrt $\longrightarrow \nabla_W \mathcal{L}(W)$ $\left(\frac{\partial \mathcal{L}}{\partial w_{ijk}} \ \forall i,j,k \ \text{and} \ \frac{\partial \mathcal{L}}{\partial b_{ij}} \ \forall i,j\right)$ parameters

 $\mathcal{L}(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), y_i)$

c. Update parameters $W \leftarrow W - \eta \nabla_W \mathcal{L}(W)$

- 1. Initialize all the parameters.
- 2. Repeat until convergence:
 - a. Compute loss
 - b. Compute gradient of the loss wrt $\longrightarrow \nabla_W \mathcal{L}(W)$ $\left(\frac{\partial \mathcal{L}}{\partial w_{ijk}} \ \forall i,j,k \ \text{and} \ \frac{\partial \mathcal{L}}{\partial b_{ij}} \ \forall i,j\right)$ parameters

 $\mathcal{L}(W) = \frac{1}{N} \sum_{i} div(f(X_i; W), y_i)$

c. Update parameters $W \leftarrow W - \eta \nabla_W \mathcal{L}(W)$

$$w_{ijk} \leftarrow w_{ijk} - \eta \frac{\partial \mathcal{L}}{\partial w_{ijk}}$$
 $b_{ij} \leftarrow b_{ij} - \eta \frac{\partial \mathcal{L}}{\partial b_{ij}}$ (Scalar form)

Your First Deep Learning Code (...finally)

Let's start with Deep Learning Frameworks

What do they provide?

- Computation (often with some Numpy support)
- GPU support for parallel computation
- Some basic neural layers to combine in your models
- Tools to train your models
- Enforce a general way to code your models
- And most importantly, automatic backpropagation

Pytorch

We recommend Pytorch v1.3

You should have access to an environment with it, and hopefully a GPU.

LET'S START!

Overview

- Neural Networks
- Tensors
- CPU and GPU Operations
- Backpropagation

- Neural Network Modules
- Optimization and Loss
- Saving and Loading
- Common Issues to look out for
- Full NN Example in code

Tensors

• Tensors are similar to NumPy's ndarrays, with the addition being that Tensors can also be used on a GPU to accelerate computing.

```
# Create uninitialized tensor
x = torch.FloatTensor(2,3)
# from numpy
np_array = np.random.random((2,3)).astype(float)
x1 = torch.FloatTensor(np array)
x2 = torch.randn(2,3)
# export to numpy array
x np = x2.numpy()
# basic operation
x = torch.arange(4,dtype=torch.float).view(2,2)
s = torch.sum(x)
e = torch.exp(x)
# elementwise and matrix multiplication
z = s*e + torch.matmul(x1,x2.t()) # size 2*2
```

Overview

- Neural Networks
- Tensors
- CPU and GPU Operations
- Backpropagation

- Neural Network Modules
- Optimization and Loss
- Saving and Loading
- Common Issues to look out for
- Full NN Example in code

Move Tensors to the GPU

For big computations, GPUs offer significant speedups!

```
# create a tensor
 2 \times = torch.rand(3,2)
                                                          Tensors can be copied between CPU and
    # copy to GPU
 4 y = x.cuda()
                                                          GPU. It is important that everything involved
 5 # copy back to CPU
                                                          in a calculation is on the same device.
 6 z = y.cpu()
 7 # get CPU tensor as numpy array
 8 # cannot get GPU tensor as numpy array directly
                                                          This portion of the tutorial may not work
 9 trv:
        v.numpv()
                                                          for you if you do not have a GPU available.
11 except RuntimeError as e:
        print(e)
                                          Traceback (most recent call last)
TypeError
<ipython-input-10-ad31a5261faa> in <module>
      9 # cannot get GPU tensor as numpy array directly
    10 try:
           v.numpv()
     12 except RuntimeError as e:
            print(e)
TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
```

Move Tensors to the GPU

Operations between GPU and CPU tensors will fail. Operations require all arguments to be on the same device.

```
x = torch.rand(3,5) # CPU tensor
y = torch.rand(5,4).cuda() # GPU tensor
try:
  torch.mm(x,y) # Operation between CPU and GPU fails
except TypeError as e:
  print(e)
torch.mm received an invalid combination of arguments - got (torch.FloatTensor, torc
h.cuda.FloatTensor), but expected one of:
* (torch.FloatTensor source, torch.FloatTensor mat2)
     didn't match because some of the arguments have invalid types: (torch.FloatTens
or, torch.cuda.FloatTensor)
* (torch.SparseFloatTensor source, torch.FloatTensor mat2)
     didn't match because some of the arguments have invalid types: (torch.FloatTens
or, torch.cuda.FloatTensor)
```

Move Tensors to the GPU

Typical code should be compatible with both CPU & GPU (device agnostic). Include if statements or utilize helper functions so it can operate with or

without the GPU.

```
1 # Put tensor on CUDA if available
 2 \times = torch.rand(3,2)
 3 if torch.cuda.is available():
        x = x.cuda()
        print(x, x.dtype)
 7 # Do some calculations
 8 v = x ** 2
 9 print(y)
11 # Copy to CPU if on GPU
12 if y.is_cuda:
        y = y.cpu()
        print(y, y.dtype)
tensor([[0.1084, 0.5432],
        [0.2185, 0.3834],
        [0.3720, 0.5374]], device='cuda:0') torch.float32
tensor([[0.0117, 0.2951],
        [0.0477, 0.1470],
        [0.1383, 0.2888]], device='cuda:0')
tensor([[0.0117, 0.2951],
        [0.0477, 0.1470],
        [0.1383, 0.2888]]) torch.float32
```

Overview

- Neural Networks
- Tensors
- CPU and GPU Operations
- Backpropagation

- Neural Network Modules
- Optimization and Loss
- Saving and Loading
- Common Issues to look out for
- Full NN Example in code

Backpropagation

- 1. Initialize parameters
- 2. Repeat until convergence:
 - a. Compute Loss
 - b. * Compute gradients of the Loss function wrt parameters
 - c. Update parameters

In a nutshell: Backpropagation is an algorithm to compute the gradients of the loss function wrt the parameters *efficiently* using the chain-rule of calculus.

Backpropagation in Pytorch

Pytorch can retro-compute gradients for any succession of operations. Use the **.backward()** method.

Backpropagation in Pytorch

Solution

```
1  x = torch.arange(0,4, dtype=torch.float, requires_grad=True)
2  print(x.dtype)
3  # Calculate y = sum(x**2)
4  y = torch.sum(x**2)
5  # Calculate gradient (dy/dx = 2x)
6  y.backward()
7  # Print values
8  print(x)
9  print(y)
10  print(x.grad)
```

```
torch.float32
tensor([0., 1., 2., 3.], requires_grad=True)
tensor(14., grad_fn=<SumBackward0>)
tensor([0., 2., 4., 6.])
```

Overview

- Neural Networks
- Tensors
- CPU and GPU Operations
- Backpropagation

- Neural Network Modules
- Optimization and Loss
- Saving and Loading
- Common Issues to look out for
- Full NN Example in code

Neural Networks in Pytorch

As you know a neural network:

- Is a function connecting an input to an output
- Depends on (lots of) parameters

In Pytorch, a neural network is a class that implements the base class torch.nn.Module. You are provided with some pre-implemented networks such as torch.nn.Linear which is a single layer perceptron.

```
CLASS torch.nn.Linear(in_features, out_features, bias=True)
```

```
Applies a linear transformation to the incoming data: y = xA^T + b
```

```
net = torch.nn.Linear(4,2)
```

Neural Networks in Pytorch

• The **.forward()** function applies the function

```
x = torch.arange(0,4).float()
y = net.forward(x)
y = net(x) # Alternatively
print(y)

tensor([-0.4807, -0.7048])
```

• **The .parameters()** method gives access to all the network parameters

```
for param in net.parameters():
    print(param)

Parameter containing:
tensor([[-0.1506,  0.3700, -0.4565,  0.4557],
        [-0.4525, -0.0645, -0.3689,  0.4634]])
Parameter containing:
tensor([ 0.1931,  0.3287])
```

```
class MyNet0(nn.Module):
    def init (self,input size, hidden size, output size):
        super(MyNetworkWithParams, self). init ()
        self.layer1 weights = nn.Parameter(torch.randn(input size, hidden size))
        self.layer1 bias = nn.Parameter(torch.randn(hidden size))
        self.layer2 weights = nn.Parameter(torch.randn(hidden size,output size))
        self.layer2 bias = nn.Parameter(torch.randn(output size))
    def forward(self,x):
        h1 = torch.matmul(x,self.layer1 weights) + self.layer1 bias
        h1_act = torch.max(h1, torch.zeros(h1.size())) # ReLU
        output = torch.matmul(h1 act,self.layer2 weights) + self.layer2 bias
        return output
net=MyNet0(4,16,2)
```

All attributes of Parameter type become network parameters

A better way:

```
class MyNet1(torch.nn.Module):
    def init (self,input size, hidden size, output size):
        super(). init ()
        self.layer1 = torch.nn.Linear(input size, hidden size)
        self.layer2 = torch.nn.Sigmoid()
        self.layer3 = torch.nn.Linear(hidden_size,output_size)
    def forward(self, input val):
        h = input val
       h = self.layer1(h)
       h = self.layer2(h)
       h = self.layer3(h)
        return h
net = MyNet1(4,16,2)
```

You can use small networks inside big networks. Parameters of subnetworks will be "absorbed"

Even better:

This is a shortcut for simple feedforward networks.

So all you need in HW1 P2, but probably not in later homeworks

Your own classes might be useful in bigger networks:

```
def relu_mlp(size_list):
    layers = []
    for i in range(len(size_list)-2):
        layers.append(nn.Linear(size_list[i],size_list[i+1]))
        layers.append(nn.ReLU())
    layers.append(nn.Linear(size_list[-2],size_list[-1]))
    return nn.Sequential(*layers)

my_big_MLP = nn.Sequential(
    relu_mlp([1000,512,512,256]),
    nn.Sigmoid(),
    relu_mlp([256,128,64,32,10]))
```

Allows a sort of "tree structure"

Overview

- Neural Networks
- Tensors
- CPU and GPU Operations
- Backpropagation

- Neural Network Modules
- Optimization and Loss
- Saving and Loading
- Common Issues to look out for
- Full NN Example in code

Final Layers and Losses

torch.nn.CrossEntropyLoss includes both the softmax and the loss criterion and is stable (uses the log softmax)

```
x = torch.tensor([np.arange(4), np.zeros(4),np.ones(4)]).float()
y = torch.tensor([0,1,0])
criterion = nn.CrossEntropyLoss()

output = net(x)
loss = criterion(output,y)
print(loss)
```

tensor(2.4107)

Here the input x is 2-dimensional: it is a **batch** of input vectors (which is usually the case)

Use the Optimizer

You must use an optimizer subclass of **torch.nn.Optimizer**. The optimizer is initialized with the parameters that you want to update.

```
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
```

The **.step()** method will apply gradient descent on all these parameters, using the gradients they contain.

```
optimizer.step()
```

Use the Optimizer

Remember that gradients accumulate in Pytorch.

If you want to apply several iterations of gradient descent, gradients must be set to zero before each optimization step.

```
n_iter = 100
for i in range(n_iter):
    optimizer.zero_grad() # equivalent to net.zero_grad()
    output = net(x)
    loss = criterion(output,y)
    loss.backward()
    optimizer.step()
```

Overview

- Neural Networks
- Tensors
- CPU and GPU Operations
- Backpropagation

- Neural Network Modules
- Optimization and Loss
- Saving and Loading
- Common Issues to look out for
- Full NN Example in code

Saving and Loading

```
1 # get dictionary of keys to weights using `state dict`
    net = torch.nn.Sequential(
        torch.nn.Linear(28*28,256),
        torch.nn.Sigmoid(),
        torch.nn.Linear(256,10))
 6 print(net.state_dict().keys())
odict keys(['0.weight', '0.bias', '2.weight', '2.bias'])
 1 # save a dictionary
 2 torch.save(net.state_dict(),'test.t7')
 3 # Load a dictionary
    net.load_state_dict(torch.load('test.t7'))
<All keys matched successfully>
```

Overview

- Neural Networks
- Tensors
- CPU and GPU Operations
- Backpropagation

- Neural Network Modules
- Optimization and Loss
- Saving and Loading
- Common Issues to look out for
- Full NN Example in code

Tensor Operations

- GPU + CPU
- Size mismatch in vector multiplications
- (*) is NOT matrix multiplication

```
x = 2* torch.ones(2,2)
y = 3* torch.ones(2,2)
print(x * y)
print(x.matmul(y))
```

Tensor Operations

• .view() is not transposition

```
x = torch.tensor([[1,2,3],[4,5,6]])
print(x)
print(x.t())
print(x.view(3,2))
```

GPU Memory Error

```
net = nn.Sequential(nn.Linear(2048,2048),nn.ReLU(),
                   nn.Linear(2048,2048),nn.ReLU(),
                   nn.Linear(2048,2048),nn.ReLU(),
                   nn.Linear(2048,2048),nn.ReLU(),
                   nn.Linear(2048,2048),nn.ReLU(),
                   nn.Linear(2048,2048),nn.ReLU(),
                   nn.Linear(2048,120))
x = torch.ones(256, 2048)
y = torch.zeros(256).long()
net.cuda()
x.cuda()
crit=nn.CrossEntropyLoss()
out = net(x)
loss = crit(out,y)
loss.backward()
```

```
net = nn.Linear(4,2)
x = torch.tensor([1,2,3,4])
y = net(x)
print(y)
```

Is there a problem?

What is it?...

Type error

```
net = nn.Linear(4,2)
x = torch.tensor([1,2,3,4])
y = net(x)
print(y)
```

RuntimeError: Expected object of type torch.LongTensor but found type torch.FloatTensor

```
x = x.float()
x = torch.tensor([1.,2.,3.,4.])
```

```
class MyNet(nn.Module):
    def init (self, n hidden layers):
        super(MyNet, self). init ()
        self.n hidden layers=n hidden layers
        self.final layer = nn.Linear(128,10)
        self.act = nn.ReLU()
        self.hidden = []
        for i in range(n hidden layers):
            self.hidden.append(nn.Linear(128,128))
    def forward(self,x):
        h = x
        for i in range(self.n hidden layers):
            h = self.hidden[i](h)
            h = self.act(h)
        out = self.final layer(h)
        return out
```

What's the problem?

Parameter Issue

```
class MyNet(nn.Module):
    def init (self, n hidden layers):
        super(MyNet, self). init ()
        self.n hidden layers=n hidden layers
        self.final layer = nn.Linear(128,10)
        self.act = nn.ReLU()
        self.hidden = []
        for i in range(n hidden layers):
            self.hidden.append(nn.Linear(128,128))
    def forward(self,x):
        h = x
        for i in range(self.n hidden layers):
            h = self.hidden[i](h)
            h = self.act(h)
        out = self.final layer(h)
        return out
```

Hidden Layers are not module parameters

They will not be optimized

Solution

```
class MyNet(nn.Module):
    def init (self, n hidden layers):
        super(MyNet, self). init ()
        self.n hidden layers=n hidden layers
        self.final layer = nn.Linear(128,10)
        self.act = nn.ReLU()
        self.hidden = []
        for i in range(n hidden layers):
            self.hidden.append(nn.Linear(128,128))
        self.hidden = nn.ModuleList(self.hidden)
    def forward(self,x):
        h = x
        for i in range(self.n hidden layers):
            h = self.hidden[i](h)
            h = self.act(h)
       out = self.final layer(h)
        return out
```

Pytorch Debugging

If you have an error/bug in your code, or question about Pytorch:

- Always try to figure it out by yourself first, that's how you learn the
 most, for any strange behavior in your code, try printing the outputs,
 inputs, parameters and errors
- Use the debugger: import pdb; pdb.set_trace()
- **Tons of online resources,** great pytorch documentation, and basically every error is somewhere on stackoverflow.
- **Use Piazza -** First check if someone else has encountered the same bug before making a new post.
- Come to office hours.

Overview

- Neural Networks
- Tensors
- CPU and GPU Operations
- Backpropagation

- Neural Network Modules
- Optimization and Loss
- Saving and Loading
- Common Issues to look out for
- Full NN Example in code

Pytorch Example

Open the notebook MNIST_example.ipynb