# EECS 545: Machine Learning Lecture 5. Classification 2

Honglak Lee 1/27/2025



Last updated: 2/5/2025 12pm

#### Outline

- Probabilistic Discriminative models
  - Objective: maximize conditional likelihood over training data

$$\prod_{i} P(y^{(i)}|\mathbf{x}^{(i)},\mathbf{w})$$

- Logistic Regression (covered in previous lecture)
- Softmax Regression: Multiclass extension of logistic regression
- Probabilistic Generative models
  - Objective: maximize joint likelihood over training data

$$\prod_{i} P(\mathbf{x}^{(i)}, y^{(i)}|\mathbf{w})$$

- Gaussian Discriminant Analysis
- Naive Bayes (part 1)

#### Softmax regression for multiclass classification

- For multiclass case, we can use softmax regression.
  - Softmax regression can be viewed as a generalization of logistic regression
- Recall that, logistic regression (binary classification) models class conditional probability as:

$$p(y = 1 \mid \mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}^{\top} \phi(\mathbf{x}))}{1 + \exp(\mathbf{w}^{\top} \phi(\mathbf{x}))}$$
$$p(y = 0 \mid \mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp(\mathbf{w}^{\top} \phi(\mathbf{x}))}$$



- Note that these probability sum to 1.
- For multiclass classification (with K classes), we use the following model

$$p(y = k \mid \mathbf{x}; \mathbf{w}) = \frac{\exp\left(\mathbf{w}_k^{\top} \phi(\mathbf{x})\right)}{1 + \sum_{j=1}^{K-1} \exp\left(\mathbf{w}_j^{\top} \phi(\mathbf{x})\right)} \quad \text{for } k = \{1, \dots, K-1\}$$
$$p(y = K \mid \mathbf{x}; \mathbf{w}) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp\left(\mathbf{w}_j^{\top} \phi(\mathbf{x})\right)} \quad \text{equivalent to setting } \mathbf{w}_K = 0$$

Note that these probability sum to 1.



## Softmax regression: Log-likelihood (objective function) and learning

Defining  $\mathbf{w}_K = 0$ , we can write as:

$$p(y = k \mid \mathbf{x}; \mathbf{w}) = \frac{\exp\left(\mathbf{w}_k^{\top} \phi(\mathbf{x})\right)}{\sum_{j=1}^{K} \exp\left(\mathbf{w}_j^{\top} \phi(\mathbf{x})\right)}$$
or
$$p(y \mid \mathbf{x}; \mathbf{w}) = \prod_{k=1}^{K} \left[ \frac{\exp\left(\mathbf{w}_k^{\top} \phi(\mathbf{x})\right)}{\sum_{j=1}^{K} \exp\left(\mathbf{w}_j^{\top} \phi(\mathbf{x})\right)} \right]^{\mathbb{I}(y=k)}$$

Log-Likelihood

Log-Likelinood 
$$\log p(D|\mathbf{w}) = \sum_{i} \log p(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w})$$
 
$$= \sum_{i} \log \prod_{k=1}^{K} \left[ \frac{\exp\left(\mathbf{w}_{k}^{\top} \phi(\mathbf{x}^{(i)})\right)}{\sum_{j=1}^{K} \exp\left(\mathbf{w}_{j}^{\top} \phi(\mathbf{x}^{(i)})\right)} \right]^{\mathbb{I}(y^{(i)} = k)}$$

We can learn w by gradient ascent for maximizing the log-likelihood or iterative Newton's method (IRLS).

## Probabilistic Generative Models

## Learning the Classifier

- For classification, we want to compute  $p(C_k \mid \mathbf{x})$ 
  - (a) **Discriminative** models: Directly model  $p(C_k \mid \mathbf{x})$  and learn parameters from the training set.
    - Logistic regression
    - Softmax regression
  - (b) **Generative** models: Learn joint densities  $p(\mathbf{x}, C_k)$  by learning  $p(\mathbf{x} \mid C_k)$  and  $p(C_k)$ , and then use Bayes rule for predicting the class  $C_k$  given  $\mathbf{x}$ :
    - Gaussian Discriminant Analysis
    - Naive Bayes

## Probabilistic Generative Models

• Bayes' theorem reduces the classification problem  $p(C_k \mid \mathbf{x})$  to estimating the distribution of the data:

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_{k'} p(\mathbf{x}|C_{k'})p(C_{k'})}$$

- Density estimation can be decomposed into learning distributions from training data.
  - $-p(C_k)$
  - $-p(\mathbf{x} \mid C_k)$
- Maximum likelihood estimation for  $p(\mathbf{x}, C_k)$

#### Probabilistic Generative Models

For two classes, Bayes' theorem says:

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$

• Use *log odds* (i.e., logit "score"):

$$a = \log \frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})} = \log \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$

• Then we can define the posterior via the sigmoid:

$$p(C_1|\mathbf{x}) = \frac{1}{1 + \exp(-a)} = \sigma(a)$$

## Gaussian Discriminant Analysis

## Gaussian Discriminant Analysis

- Probability of class label
  - $-p(C_k)$ : Constant (e.g., Bernoulli)
- Conditional probability of data given a class
  - $-p(\mathbf{x} \mid C_k)$ : Gaussian distribution

$$p(\mathbf{x} \mid C_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_k)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu_k)\right\}$$

Classification: use Bayes rule (previous slide)

## **Examples of Gaussian Distributions**

Probability density p(x) for 2 dimensional case









## Gaussian Discriminant Analysis

- Basic GDA assumes the same covariance for all classes
  - The figure below shows class-specific density and decision boundary. Note the linear decision boundary for any types of covariance matrices!





#### **Prediction: Class-Conditional Densities**

• Suppose we model  $p(x \mid C_k)$  as Gaussians with the <u>same covariance</u> matrix.

$$p(\mathbf{x} \mid C_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_k)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu_k)\right\}$$

- This gives us  $p(C_1 \mid \mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + w_0)$ 
  - where  ${\bf w} = {\bf \Sigma}^{-1}(\mu_1 \mu_2)$

and 
$$w_0 = -\frac{1}{2}\mu_1^{\top} \mathbf{\Sigma}^{-1} \mu_1 + \frac{1}{2}\mu_2^{\top} \mathbf{\Sigma}^{-1} \mu_2 + \log \frac{p(C_1)}{p(C_2)}$$

$$P(x, C_{1}) = P(x \mid C_{1}) P(C_{1})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{1})^{\top} \Sigma^{-1} (x - \mu_{1})\right\} P(C_{1})$$

$$P(x, C_{2}) = P(x \mid C_{2}) P(C_{2})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{2})^{\top} \Sigma^{-1} (x - \mu_{2})\right\} P(C_{2})$$

$$P(x, C_{1}) = P(x \mid C_{1}) P(C_{1})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{1})^{\top} \Sigma^{-1} (x - \mu_{1})\right\} P(C_{1})$$

$$P(x, C_{2}) = P(x \mid C_{2}) P(C_{2})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{2})^{\top} \Sigma^{-1} (x - \mu_{2})\right\} P(C_{2})$$

$$\log \frac{P(C_{1} \mid \mathbf{x})}{P(C_{2} \mid \mathbf{x})} = \log \frac{P(C_{1} \mid \mathbf{x})}{1 - P(C_{1} \mid \mathbf{x})} \quad \text{"Log-odds"}$$

$$P(x, C_{1}) = P(x | C_{1}) P(C_{1})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{1})^{\top} \Sigma^{-1} (x - \mu_{1})\right\} P(C_{1})$$

$$P(x, C_{2}) = P(x | C_{2}) P(C_{2})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{2})^{\top} \Sigma^{-1} (x - \mu_{2})\right\} P(C_{2})$$

$$\log \frac{P(C_{1} | \mathbf{x})}{P(C_{2} | \mathbf{x})} = \log \frac{P(C_{1} | \mathbf{x})}{1 - P(C_{1} | \mathbf{x})} \qquad \text{"Log-odds"}$$

$$= \log \frac{\exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_{1})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{1})\right\}}{\exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_{2})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{2})\right\}} + \log \frac{P(C_{1})}{P(C_{2})}$$

$$P(x, C_{1}) = P(x \mid C_{1}) P(C_{1})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{1})^{\top} \Sigma^{-1} (x - \mu_{1})\right\} P(C_{1})$$

$$P(x, C_{2}) = P(x \mid C_{2}) P(C_{2})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{2})^{\top} \Sigma^{-1} (x - \mu_{2})\right\} P(C_{2})$$

$$\log \frac{P(C_{1} \mid \mathbf{x})}{P(C_{2} \mid \mathbf{x})} = \log \frac{P(C_{1} \mid \mathbf{x})}{1 - P(C_{1} \mid \mathbf{x})} \quad \text{"Log-odds"}$$

$$= \log \frac{\exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_{1})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{1})\right\}}{\exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_{2})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{2})\right\}} + \log \frac{P(C_{1})}{P(C_{2})}$$

$$= \left\{-\frac{1}{2} (\mathbf{x} - \mu_{1})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{1})\right\} - \left\{-\frac{1}{2} (\mathbf{x} - \mu_{2})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{2})\right\} + \log \frac{P(C_{1})}{P(C_{2})}$$

$$P(x, C_{1}) = P(x \mid C_{1}) P(C_{1})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{1})^{\top} \Sigma^{-1} (x - \mu_{1})\right\} P(C_{1})$$

$$P(x, C_{2}) = P(x \mid C_{2}) P(C_{2})$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_{2})^{\top} \Sigma^{-1} (x - \mu_{2})\right\} P(C_{2})$$

$$\log \frac{P(C_{1} \mid \mathbf{x})}{P(C_{2} \mid \mathbf{x})} = \log \frac{P(C_{1} \mid \mathbf{x})}{1 - P(C_{1} \mid \mathbf{x})} \qquad \text{"Log-odds"}$$

$$= \log \frac{\exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_{1})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{1})\right\}}{\exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_{2})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{2})\right\}} + \log \frac{P(C_{1})}{P(C_{2})}$$

$$= \left\{-\frac{1}{2} (\mathbf{x} - \mu_{1})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{1})\right\} - \left\{-\frac{1}{2} (\mathbf{x} - \mu_{2})^{\top} \Sigma^{-1} (\mathbf{x} - \mu_{2})\right\} + \log \frac{P(C_{1})}{P(C_{2})}$$

$$= (\mu_{1} - \mu_{2})^{\top} \Sigma^{-1} \mathbf{x} - \frac{1}{2} \mu_{1}^{\top} \Sigma^{-1} \mu_{1} + \frac{1}{2} \mu_{2}^{\top} \Sigma^{-1} \mu_{2} + \log \frac{P(C_{1})}{P(C_{2})}$$

$$P(x,C_1) = P(x \mid C_1) P(C_1)$$

 $P(x, C_2) = P(x \mid C_2) P(C_2)$ 

 $= (\Sigma^{-1} (\mu_1 - \mu_2))^{\top} \mathbf{x} + w_0$ 

 $\log \frac{P(C_1 \mid \mathbf{x})}{P(C_2 \mid \mathbf{x})} = \log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})}$ 

 $= \log \frac{\exp \left\{-\frac{1}{2} (\mathbf{x} - \mu_1)^{\top} \Sigma^{-1} (\mathbf{x} - \mu_1)\right\}}{\exp \left\{-\frac{1}{2} (\mathbf{x} - \mu_2)^{\top} \Sigma^{-1} (\mathbf{x} - \mu_2)\right\}} + \log \frac{P(C_1)}{P(C_2)}$ 

 $= (\mu_1 - \mu_2)^{\top} \Sigma^{-1} \mathbf{x} - \frac{1}{2} \mu_1^{\top} \Sigma^{-1} \mu_1 + \frac{1}{2} \mu_2^{\top} \Sigma^{-1} \mu_2 + \log \frac{P(C_1)}{P(C_2)}$ 

$$P(x, C_1) = P(x \mid C_1) P(C_1)$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu_1)^{\top} \Sigma^{-1} (x - \mu_1)\right\} P(C_1)$$

$$P(x,C_1) = P(x \mid C_1) P(C_1)$$

 $= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu_2)^{\top} \Sigma^{-1} (x - \mu_2) \right\} P(C_2)$ 

 $= \left\{ -\frac{1}{2} (\mathbf{x} - \mu_1)^{\top} \Sigma^{-1} (\mathbf{x} - \mu_1) \right\} - \left\{ -\frac{1}{2} (\mathbf{x} - \mu_2)^{\top} \Sigma^{-1} (\mathbf{x} - \mu_2) \right\} + \log \frac{P(C_1)}{P(C_2)}$ 

"Log-odds"

where  $w_0 = -\frac{1}{2}\mu_1^{\top} \mathbf{\Sigma}^{-1} \mu_1 + \frac{1}{2}\mu_2^{\top} \mathbf{\Sigma}^{-1} \mu_2 + \log \frac{p(C_1)}{p(C_2)}$ 

# Prediction: Class-Conditional Densities for shared covariances

•  $p(C_k | \mathbf{x})$  is a sigmoid function:

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

- with log-odds (logit function):

$$a = \log\left(\frac{\sigma}{1-\sigma}\right) = \left(\mathbf{\Sigma}^{-1}(\mu_1 - \mu_2)\right)^{\top} \mathbf{x} + w_0$$
where  $w_0 = -\frac{1}{2}\mu_1^{\top} \mathbf{\Sigma}^{-1} \mu_1 + \frac{1}{2}\mu_2^{\top} \mathbf{\Sigma}^{-1} \mu_2 + \log\frac{p(C_1)}{p(C_2)}$ 

• Generalizes to *normalized* exponential, or *softmax*:

$$p_i = \frac{\exp(q_i)}{\sum_j \exp(q_j)}$$

#### Prediction: Linear Decision Boundaries

- At decision boundary, we have  $p(C_1|x) = p(C_2|x)$
- With the same covariance matrices, the boundary  $p(C_1|\mathbf{x}) = p(C_2|\mathbf{x})$  is linear.
  - Different class  $p(C_1)$ ,  $p(C_2)$  just shift it around.





## Likelihood function of generative models

• The likelihood of Data  $\{(\mathbf{x}^{(n)}, y^{(n)})\}$ 

i=1

$$P(D|\mathbf{w}) = \prod_{i=1}^{N} P(\mathbf{x}^{(i)}, y^{(i)}|\mathbf{w}) \xrightarrow{\text{Compact notation:}} P(\mathbf{X}, \mathbf{y}|\mathbf{w})$$
So position on the property of the proper



$$= \prod^{N} P(\mathbf{x}^{(i)}|y^{(i)}, \mathbf{w}) P(y^{(i)}|\mathbf{w})$$

### Learning parameters via maximum likelihood

• Given training data  $\{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$  and a generative model ("shared covariance")

$$p(y) = \phi^{y} (1 - \phi)^{1-y}$$

$$p(\mathbf{x}|y=0) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu_0)^{\top} \Sigma^{-1} (\mathbf{x} - \mu_0)\right)$$

$$p(\mathbf{x}|y=1) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu_1)^{\top} \Sigma^{-1} (\mathbf{x} - \mu_1)\right)$$

## Learning via maximum likelihood

Maximum likelihood estimation (HW2):

$$\phi = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 1\}$$

$$\mu_0 = \frac{\sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 0\} \mathbf{x}^{(i)}}{\sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 0\}}$$

$$\mu_1 = \frac{\sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 1\} \mathbf{x}^{(i)}}{\sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 1\}}$$

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \mu_{y^{(i)}}) (\mathbf{x}^{(i)} - \mu_{y_{(i)}})^{\top}$$

#### Different Covariance

 Decision boundaries between some classes can be quadratic when they have different covariances.



#### Different Covariance

 Decision boundaries between some classes can be quadratic when they have different covariances.





## Comparison between GDA and Logistic regression (or softmax regression)

- Logistic regression:
  - For an M-dimensional feature space, this model has M parameters to fit.
- Gaussian Discriminative Analysis
- 2M parameters for the means of  $p(\mathbf{x} \mid C_1)$  and  $p(\mathbf{x} \mid C_2)$ 
  - -M(M+1)/2 parameters for the shared covariance matrix
- Logistic regression has less parameters and is more flexible about data distribution.
- GDA has a stronger modeling assumption, and works well when the distribution follows the assumption.

(Brief Intro: to be continued in the next lecture)

- Probability of class label:
  - $p(C_k)$ : Constant (e.g., Bernoulli)
- Conditional probability of data given the class
  - Naive Bayes assumption:  $p(\mathbf{x} \mid C_k)$  is factorized (Each coordinate of  $\mathbf{x}$  is conditionally independent of other coordinates given the class label)

$$P(x_1, ..., x_M | C_k) = P(x_1 | C_k) \cdots P(x_M | C_k) = \prod_{i=1}^{n} P(x_i | C_k)$$

Classification: use Bayes rule

(binary) 
$$P(C_1|\mathbf{x}) = \frac{P(C_1,\mathbf{x})}{P(\mathbf{x})} = \frac{P(C_1,\mathbf{x})}{P(C_1,\mathbf{x}) + P(C_2,\mathbf{x})}$$

• When classifying, we can simply find the class  $C_k$  that maximizes  $P(C_k|\mathbf{x})$  using the Bayes rule:

$$\arg\max_{k} P(C_k|\mathbf{x}) = \arg\max_{k} P(C_k,\mathbf{x})$$

• When classifying, we can simply find the class  $C_k$  that maximizes  $P(C_k|\mathbf{x})$  using the Bayes rule:

$$\arg \max_{k} P(C_k | \mathbf{x}) = \arg \max_{k} P(C_k, \mathbf{x})$$
$$= \arg \max_{k} P(C_k) P(\mathbf{x} | C_k)$$

• When classifying, we can simply find the class  $C_k$  that maximizes  $P(C_k|\mathbf{x})$  using the Bayes rule:

$$\arg\max_k P(C_k|\mathbf{x}) = \arg\max_k P(C_k,\mathbf{x})$$
 
$$= \arg\max_k P(C_k)P(\mathbf{x}|C_k)$$
 Naive Bayes assumption 
$$= \arg\max_k P(C_k)\prod_{j=1}^M P(x_j|C_k)$$

### Example: Naive Bayes for real-valued inputs

- Probability of class label:
  - $-p(C_{\nu})$ : Constant (e.g., Bernoulli)
- Conditional probability of data given the class
  - Naive Bayes assumption:  $P(\mathbf{x} | C_{\nu})$  is factorized (e.g., 1D Gaussian)

$$P(x_1, \dots, x_M | C_k) = P(x_1 | C_k) \cdots P(x_M | C_k)$$

$$= \prod_{j=1}^M P(x_j | C_k)$$

$$= \prod_{j=1}^M \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

Note: this is equivalent to GDA with diagonal covariance!!

### Comparison: Discriminative vs. Generative

- The *generative* approach is typically model-based, and it can generate synthetic data from  $p(\mathbf{x} \mid C_{\nu})$ .
  - By comparing the synthetic data and real data, we get a sense of how good the generative model is.
- The discriminative approach will typically have fewer parameters to estimate and have less assumptions about data distribution.
  - Linear (e.g. logistic regression) v/s quadratic (e.g., Gaussian discriminant analysis) in the dimension of the input.
  - Less generative assumptions about the data (however, constructing the features may require domain knowledge)

#### Any feedback (about lecture, slide, homework, project, etc.)?

(via anonymous google form: <a href="https://forms.gle/fpYmiBtG9Me5qbP37">https://forms.gle/fpYmiBtG9Me5qbP37</a>)



#### Change Log of lecture slides:

https://docs.google.com/document/d/e/2PACX-1vSSIHJjklypK7rKFSR1-5GYXyBCEW8UPtpSfCR9AR6M1l7K9ZQEmxfFwaWaW7kLDxusthsF8WlCyZJ-/pub