

Proposta de resolução dos exercícios, podem ter erros, para comunicarem qualquer erro enviem um email para epf@isep.ipp.pt Integração por partes

1. Resolva os seguintes integrais, utilizando a fórmula de integração por partes , $C \in R$

a) $\int (2x-1)sen(2x)dx$

Sinal	Derivar	Integrar	
+	2x-1	sen(2x)	
_	2	$-\frac{1}{2}cos(2x)$	$+(2x-1)\left(-\frac{1}{2}cos(2x)\right)$
		Z	(2 ()
+	0	$-\frac{1}{4}sen(2x)$	$-2\left(-\frac{1}{4}sen(2x)\right)$
			$\int (2x-1)sen(2x)dx = +(2x-1)\left(-\frac{1}{2}cos(2x)\right) - 2\left(-\frac{1}{4}sen(2x)\right) + C$

b) $\int (x+1)\cos(2x)dx$

J (70 1 -	1)003(21)41					
Sinal	Derivar	Integrar				
+	x + 1	cos(2x)				
_	1	$\frac{1}{2}$ sen(2x)	$+(x+1)\frac{1}{2}sen(2x)$			
+	0	$-\frac{1}{4}cos(2x)$	$-1\left(-\frac{1}{4}\cos(2x)\right)$			
			$\int (x+1)\cos(2x)dx = +(x+1)\frac{1}{2}\sin(2x) - 1\left(-\frac{1}{4}\cos(2x)\right) + C$			

c) $\int e^{2x} senx dx$

	Sinal	Derivar	Integrar			
	+ -	e^{2x}	sen x			
	_	$2e^{2x}$	$-\cos x$			
				$+e^{2x}(-\cos x)$		
$+ \int 4e^{2x}(-\sin x) dx$	+	4e ^{2x}	−sen x	$-2e^{2x}(-\sin x)$		
$\int e^{2x} senx dx = +e^{2x} (-\cos x) - 2e^{2x} (-\sin x) + \int 4e^{2x} (-\sin x) dx$						
J	$\int e^{2x} senx dx = e^{2x} (-\cos x) - 2e^{2x} (-\sin x) - 4 \int e^{2x} sen x dx$					
$\int e^{2x} senx dx + 4 \int e^{2x} sen x dx = e^{2x} (-\cos x) - 2e^{2x} (-\sin x)$						
$\int e^{2x} \sin x dx = \frac{e^{2x}(-\cos x) - 2e^{2x}(-\sin x)}{5} + C$						

Ou

Sinal	Derivar	Integrar	$\int e^{2x} \operatorname{senx} dx = -e^{2x} \cos x + 2e^{2x} \operatorname{senx} - 4 \int e^{2x} \operatorname{senx} dx \Leftrightarrow$
+	e^{2x}	sen x	
_	$2e^{2x}$	$-\cos x$	$\Leftrightarrow \int e^{2x} \operatorname{senx} dx + 4 \int e^{2x} \operatorname{senx} dx = -e^{2x} \cos x + 2e^{2x} \operatorname{senx} \Leftrightarrow$
+	4e ^{2x}	-sen x	$\Leftrightarrow 5 \int e^{2x} senx dx = -e^{2x} \cos x + 2e^{2x} senx \Leftrightarrow$
			$\Leftrightarrow \int e^{2x} \operatorname{senx} dx = \frac{2e^{2x} \operatorname{senx} - e^{2x} \cos x}{5} + C$

d) $\int e^{3x} senx dx$

Sinal	Derivar	Integrar	$\int e^{3x} \operatorname{senx} dx = e^{3x} \left(-\cos x \right) - 3e^{3x} \left(-\operatorname{senx} \right) + 9 \int e^{3x} \left(-\operatorname{senx} \right) dx \iff$
+	e^{3x}	sen x	, , , , , , , , , , , , , , , , , , , ,
_	$3e^{3x}$	$-\cos x$	$\Leftrightarrow \int e^{3x} \operatorname{senx} dx + 9 \int e^{3x} \operatorname{senx} dx = -e^{3x} \cos x + 3e^{3x} \operatorname{senx} \Leftrightarrow$
+	9e ^{3x}	−sen x	$\Leftrightarrow 10 \int e^{3x} \operatorname{senx} dx = -e^{3x} \cos x + 3e^{3x} \operatorname{senx} \Leftrightarrow$
			$\Leftrightarrow \int e^{3x} senx dx = \frac{3e^{3x} senx - e^{3x} \cos x}{10} + C$

e) $\int x^3 ln(x) dx$

	Sinal	Derivar	Integrar		
	+ -	$\rightarrow \ln(x)$	x^3		
$-\int \frac{1}{x} \frac{x^4}{4} dx$		$\frac{1}{x}$	$\frac{x^4}{4}$	$+\ln(x)\frac{x^4}{4}$	
C	264	C 1 24	x ⁴ 1 C	x4 1 x4	
$\int x^3 \ln(x) dx = +\ln(x) \frac{x^4}{4} - \int \frac{1}{x} \frac{x^4}{4} dx = \ln(x) \frac{x^4}{4} - \frac{1}{4} \int x^3 dx = \ln(x) \frac{x^4}{4} - \frac{1}{4} \frac{x^4}{4} + C$					
$= \ln(x) \frac{x^4}{4} - \frac{x^4}{16} + C$					

f) $\int \sqrt{x} ln(x) dx$

	11 (11)		
Sinal	Derivar	Integrar	3 3 3
+	ln(x)	$x^{\frac{1}{2}}$	$\int \sqrt{x} \ln(x) dx = \frac{2}{3} x^{\frac{-2}{2}} \ln x - \int \frac{2}{3} x^{\frac{-2}{2}} \frac{1}{x} dx = \frac{2}{3} x^{\frac{-2}{2}} \ln x - \frac{2}{3} \int x^{\frac{-2}{2}-1} dx = \frac{1}{3} x^{\frac{-2}{2}} \ln x - \frac{2}{3} x^{$
-	$\frac{1}{x}$	$\frac{2}{3}x^{\frac{3}{2}}$	$= \frac{2}{3}x^{\frac{3}{2}}\ln x - \frac{2}{3}\int x^{\frac{1}{2}} dx = \frac{2}{3}x^{\frac{3}{2}}\ln x - \frac{4}{9}x^{\frac{3}{2}} + C$

g) $\int x^{-3} ln(x) dx$

Sinal	Derivar	Integrar	
+	ln(x)	x^{-3}	$\int \frac{\ln(x)}{x^3} dx = \int x^{-3} \ln(x) dx = \ln(x) \frac{x^{-2}}{-2} - \int \frac{x^{-2}}{x^2} dx = -1$
_	$\frac{1}{x}$	$\frac{x^{-2}}{-2}$	$= -\frac{\ln(x)}{2x^2} + \frac{1}{2} \int x^{-3} dx = -\frac{\ln(x)}{2x^2} + \frac{1}{2} \frac{x^{-2}}{-2} =$ $= -\frac{\ln(x)}{2x^2} - \frac{1}{4x^2} + C$

h) $\int x sec^2(x) dx$

Sinal	Derivar	Integrar	
+	X	$sec^2(x)$	$\int x \sec^2(x) dx = x t g(x) + \ln \cos(x) + C$
-	1	tg(x)	
+	0	-ln cos(x)	

i) $\int \frac{ln(sen(x))}{sec(x)} dx$

Sinal	Derivar	Integrar	$\int \frac{\ln(\operatorname{sen}(x))}{\operatorname{sec}(x)} dx = \int \cos(x) \ln(\operatorname{sen}(x)) dx =$
+	ln(sen(x))	$\frac{1}{\cos(x)} = \cos(x)$	C
		sec(x)	$= ln(sen(x))sen(x) - \int sen(x)cotg(x) dx =$
_	$cotg(x) = \frac{cos(x)}{sen(x)}$	sen(x)	$= ln(sen(x))sen(x) - \int cos(x) dx =$
			= ln(sen(x))sen(x) - sen(x) + C

j)	$\int x^5 e^{x^3} dx$		como:	$\int x^5 e^{x^3} dx = \int x^3 x^2 e^{x^3} dx$	
	Sinal	Derivar	Integrar	$\int x^3 x^2 e^{x^3} dx = x^3 \frac{e^{x^3}}{3} - \int 3x^2 \frac{e^{x^3}}{3} dx = 0$	
•	+	<i>x</i> ³	$\int x^2 e^{x^3} dx$	3	
	_	$3x^2$	$\int x^{2} e^{x^{3}} dx = \frac{1}{3} \int 3x^{2} e^{x^{3}} dx$ $= \frac{e^{x^{3}}}{3}$	$= x^{3} \frac{e^{x^{3}}}{3} - \frac{1}{3} \int 3x^{2} e^{x^{3}} dx =$ $= x^{3} \frac{e^{x^{3}}}{3} - \frac{1}{3} e^{x^{3}} + C$	
L			3	3 3	

k) $\int \ln(\sqrt{x+1}) dx = \int 1 \ln(\sqrt{x+1}) dx$

J.	(')	('	
	Sinal	Derivar	Integrar	$\int \ln(\sqrt{x+1})dx =$
	+	$ln(\sqrt{x+1})$	1	$= x \ln(\sqrt{x+1}) - \int x \frac{1}{2(x+1)} dx$
	-	$\frac{\frac{1}{2}(x+1)^{-\frac{1}{2}}}{(x+1)^{\frac{1}{2}}}$ $=\frac{1}{2(x+1)}$	x	$= x \ln(\sqrt{x+1}) - \frac{1}{2} \int \frac{x}{x+1} dx =$ $= x \ln(\sqrt{x+1}) - \frac{1}{2} (x - \ln x+1) + C =$ $= \frac{1}{2} x \ln x+1 - \frac{1}{2} (x - \ln x+1) + C =$ $= \frac{1}{2} ((x+1) \ln x+1 - x) + C =$
				$= (x+1)ln(\sqrt{x+1}) - \frac{x}{2} + C$
	.1.			

Cálculos auxiliares:

$$\int \frac{x}{x+1} dx = \int \frac{x+1-1}{x+1} dx = \int 1 - \frac{1}{x+1} dx = x - \ln|x+1| + C$$

1) $\int x sen^2(x) dx$

J 200010 (20) ****		
Sinal	Derivar	Integrar	$\int x sen^2(x) dx =$
+	x	$sen^2(x)$	J 1 / 1 1 1 1
-	1	$\frac{1}{2}\left(x-\frac{1}{2}sen(2x)\right)$	$= x \frac{1}{2} \left(x - \frac{1}{2} sen(2x) \right) - \left(\frac{1}{4} x^2 + \frac{1}{8} cos(2x) \right)$
+	0	$\frac{1}{4}x^2 + \frac{1}{8}cos(2x)$	$= \frac{x^2}{4} - \frac{x sen(2x)}{4} - \frac{1}{8} cos(2x) + C$

$$\int sen^{2}(x)dx = \int \frac{1 - cos(2x)}{2} dx = \frac{1}{2} \left(\int 1 dx - \frac{1}{2} \int 2cos(2x) dx \right) = \frac{1}{2} \left(x - \frac{1}{2} sen(2x) \right) + C$$

m) $\int x^4 3^x dx$

Sinal	Derivar	Integrar	
~ 11101	2 011 / 011	11110 81 111	
+	x^4	3^x	C
-	$4x^3$	3 ^x	$\int x^4 3^x dx =$ $x^4 \frac{3^x}{\ln 3} - 4x^3 \frac{3^x}{(\ln 3)^2} + 12x^2 \frac{3^x}{(\ln 3)^3} - 24x \frac{3^x}{(\ln 3)^4} + 24 \frac{3^x}{(\ln 3)^5} + C$
		$\frac{\overline{ln3}}{3^x}$	3^x 3^x 3^x 3^x
+	$12x^{2}$	3^x	$x^4 \frac{1}{\ln 2} - 4x^3 \frac{1}{(\ln 2)^2} + 12x^2 \frac{1}{(\ln 2)^3} - 24x \frac{1}{(\ln 2)^4}$
		$\overline{(ln3)^2}$	$\frac{1}{3^x}$
-	24 <i>x</i>	3 ^x	$+24\frac{3}{(2n^2)^5}+C$
		$\overline{(ln3)^3}$	(ms)*
+	24	3 ^x	
		$\overline{(ln3)^4}$	
-	0	3 <i>x</i>	
		$\overline{(ln3)^5}$	

Sinal	Derivar	Integrar	
+	<i>x</i> ⁴	3 ^x	$\int x^4 3^x dx = x^4 \frac{3^x}{\ln 3} - \int 4x^3 \frac{3^x}{\ln 3} dx =$
-	$4x^3$	3 ^x	
		$\overline{ln3}$	$= x^4 \frac{3^x}{\ln 3} - \frac{4}{\ln 3} \int x^3 3^x dx =$
			$= x^4 \frac{3^x}{\ln 3} - \frac{4}{\ln 3} \left(x^3 \frac{3^x}{\ln 3} - \frac{3}{\ln 3} \left(x^2 \frac{3^x}{\ln 3} - \frac{2}{\ln 3} \left(x \frac{3^x}{\ln 3} - \frac{x}{\ln 3} \right) \right) \right) + C$

Cálculos auxiliares:

Sinal	Derivar	Integrar	
+	<i>x</i> ³	3 ^x	$\int x^3 3^x dx = x^3 \frac{3^x}{\ln 3} - \int 3x^2 \frac{3^x}{\ln 3} dx =$
-	$3x^2$	$\frac{3^x}{ln3}$	$= x^{3} \frac{3^{x}}{ln3} - \frac{3}{ln3} \int x^{2} 3^{x} dx =$ $= x^{3} \frac{3^{x}}{ln3} - \frac{3}{ln3} \left(x^{2} \frac{3^{x}}{ln3} - \frac{2}{ln3} \left(x \frac{3^{x}}{ln3} - \frac{x}{ln3} \right) \right) + C$

Sinal	Derivar	Integrar	2% 2%
+	x^2	3 ^x	$\int x^2 3^x dx = x^2 \frac{3^x}{\ln 3} - \int 2x \frac{3^x}{\ln 3} dx =$
-	2 <i>x</i>	3^x	2* 2
		$\overline{ln3}$	$= x^2 \frac{3^n}{\ln 3} - \frac{2}{\ln 3} \int x 3^x dx =$
			$= x^{2} \frac{3^{x}}{\ln 3} - \frac{2}{\ln 3} \int x 3^{x} dx =$ $= x^{2} \frac{3^{x}}{\ln 3} - \frac{2}{\ln 3} \left(x \frac{3^{x}}{\ln 3} - \frac{x}{\ln 3} \right) + C$

Sinal	Derivar	Integrar	2x 2x
+	x	3 ^x	$\int x 3^x dx = x \frac{3^x}{\ln 3} - \int \frac{3^x}{\ln 3} dx =$
-	1	$\frac{3^x}{ln3}$	3 <i>x</i>
		ln3	$=x\frac{3}{\ln 3}-\frac{x}{\ln 3}+C$

n) $\int (x+1)^2 \cos(x) dx$

Sinal	Derivar	Integrar	
+	$(x+1)^2$	cos(x)	$\int (x+1)^2 \cos(x) dx =$
-	2(x + 1)	sen(x)	$= (x+1)^2 sen(x) + 2(x+1)cos(x) - 2 sen(x)$
+	2	-cos(x)	+C
-	0	-sen(x)	1 0

o) $\int x^3 cossec^2(x^2) dx$

Sinal	Derivar	Integrar	$\int x^2 x cossec^2(x^2) dx =$
+	x^2	$x cossec^2(x^2)$, · · · · · · · · · · · · · · · · · · ·
-	2 <i>x</i>	$-\frac{cotg(x^2)}{2}$	$= -x^{2} \frac{\cot g(x^{2})}{2} + \frac{1}{2} \int 2x \cot g(x^{2}) dx =$ $= -x^{2} \frac{\cot g(x^{2})}{2} + \frac{\ln \sec (x^{2}) }{2} + C$

p) $\int ln(sen(x))sec^2(x) dx$

Sinal	Derivar	Integrar	
+	ln(sen(x))	$sec^2(x)$	$\int ln(sen(x))sec^2(x) dx =$
-	cotg(x)	tg(x)	$= ln(sen(x))tg(x) - \int tg(x)cotg(x)dx =$ $= ln(sen(x))tg(x) - \int 1dx =$ $= ln(sen(x))tg(x) - x + C$

q) $\int x sen(3x) dx$

Sinal	Derivar	Integrar	
+	х	sen (3 <i>x</i>)	$\int x \sin(3x) dx = x \left(-\frac{1}{3} \cos(3x) \right) - 1 \left(-\frac{1}{9} \sin(3x) \right) +$
_	1	$-\frac{1}{3}\cos{(3x)}$	C
+	0	$-\frac{1}{9}$ sen $(3x)$	$= -\frac{\lambda}{3}\cos(3x) + \frac{1}{9}\sin(3x) + C$

r) $\int x^3 e^{2x} dx$

Jr c ur			
Sinal	Derivar	Integrar	
+	<i>x</i> ³	e^{2x}	
-	$3x^2$	e^{2x}	
		2	
+	6 <i>x</i>	$\frac{e^{2x}}{4}$	$\int x^3 e^{2x} dx = x^3 \frac{e^{2x}}{2} - 3x^2 \frac{e^{2x}}{4} + 6x \frac{e^{2x}}{8} - 6\frac{e^{2x}}{16} + C$
		4 2x	2 4 3 8 16
-	6	e^{2x}	
		8	
+	0	e^{2x}	
		16	

s) $\int ln(cos(x))cosec^2(x) dx$

Sinal	Derivar	Integrar	$\int ln(cos(x))cosec^2(x) dx =$
+	ln(cos(x))	$cosec^2(x)$	J
_	-tg(x)	-cotg(x)	$= -ln(cos(x))cotg(x) - \int tg(x)cotg(x)dx =$
			$= -ln(cos(x))cotg(x) - \int 1dx =$ $= -ln(cos(x))cotg(x) - x + C$