INTRODUCTION AUX THEORIES QUANTIQUES DES CHAMPS TOPOLOGIQUES

H. Abchir
Université Hassan II
Ecole supérieure de Technologie.
Route d'El Jadida. B.P. 8012. Oasis.
20100 Casablanca. Maroc
E-mail: abchir@est-uh2c.ac.ma

16/01/2010

0 - 0

1 Définition d'une TQFT

Les variétés considérées sont différentielles. Si M est une variété orientée, on note \overline{M} , la variété M munie de l'orientation inverse.

1.1 Catégorie de cobordisme

Si X et Y sont deux n-variétés compactes orientées sans bord, on appelle ${\it cobordisme}$ de X vers Y, une n+1-variété compacte orientée M dont le bord s'écrit $\partial M=\overline{X}\amalg Y.$

Deux cobordismes M et M' sont dits **équivalents**, s'il existe un difféomorphisme de M vers M' relatif au bord, i.e. qui soit l'identité sur X et Y.

1

Soit n un entier naturel, $n \geq 1$. On considère la catégorie C_n suivante :

- Objets : n-variétés différentielles compactes orientées sans bord.
- Morphismes : Soient X et Y deux objets de C_n . Un morphisme de X vers Y est une classe d'équivalence d'un cobordisme de X vers Y.
- Composition des morphismes : Soit M_1 un morphisme de X vers Y et M_2 un morphisme de Y vers Z. En recollant M_1 et M_2 le long de Y, on obtient un morphisme de X vers Z.
- associativité de la composition : on vérifie aisément que la composition introduite est associative.

${\bf Remarque}:$

- 1. La catégorie C_n a une *involution* donnée par l'orientation inverse.
- 2. La catégorie C_n a une **somme finie** donnée par la réunion disjointe.

1.2 TQFT

Soit k un anneau commutatif unitaire muni d'une conjugaison $\lambda \longmapsto \overline{\lambda}.$

Soit un foncteur $V:C_n\longrightarrow k$ -modules, tel que :

$$V(\emptyset) = k. \tag{1}$$

Notations:

 $\bullet\,$ Si M est un cobordisme, on note

$$Z_M := V(M).$$

 $\bullet\,$ Si M est considérée comme un cobordisme de \emptyset vers $\partial M,$ on note

$$Z(M) := Z_M(1) \in V(\partial M).$$

• Si M est un cobordisme sans bord, i.e. $\partial M = \emptyset$, on note

$$\langle M \rangle := Z(M) \in k.$$

 $\bf Remarque$: Puisqu'on considère des cobordismes à équivalence près, $\langle M \rangle$ est un invariant des cobordismes sans bord

On dit que l'invariant $\langle \ \rangle$ est $\boldsymbol{multiplicatif}$ si

$$\langle M_1 \coprod M_2 \rangle = \langle M_1 \rangle \langle M_2 \rangle$$
 et $\langle \emptyset \rangle = 1$

On dit que l'invariant $\langle \ \rangle$ est involutif si

$$\langle \overline{M} \rangle = \overline{\langle M \rangle}$$

On dit que V est un foncteur de $\it quantification$ s'il vérifie (1) ci-dessus et la condition suivante :

Il existe sur $V(\Sigma)$ une forme hermitienne sesquilinéaire non dégénérée $\langle , \rangle_{\Sigma}$ telle que si $\partial M_1 = \partial M_2 = \Sigma$, alors

$$\langle Z(M_1), Z(M_2) \rangle_{\Sigma} = \langle M_1 \cup_{\Sigma} \overline{M_2} \rangle.$$
 (2)

On dit que V est C_n -engendré si les éléments Z(M) tels que $\partial M = \Sigma$ engendrent $V(\Sigma)$.

Quelle est la relation entre les foncteurs de quantification et les invariants?

- **Proposition 1** Si V est un foncteur de quantification sur la catégorie de cobordisme C_n , alors l'association $M \longmapsto \langle M \rangle$ est un invariant multiplicatif et involutif.
- Inversement, étant donné un invariant multiplicatif et involutif sur l'ensemble des cobordismes fermés de C_n , alors il existe un unique foncteur de quantification C_n -engendré qui l'étend.

 $\mathbf{Proof}:$

On a aussi la proposition suivante :

Proposition 2 Soit V un cobordisme de quantification C_n -engendré. Alors $V(\overline{\Sigma})$ est le module conjugué de $V(\Sigma)$, et on a l'application naturelle $V(\overline{\Sigma}) \longrightarrow V(\Sigma)^*$ où $V(\Sigma)^*$ désigne le module dual. De plus, il existe une application naturelle $V(\Sigma_1) \otimes V(\Sigma_2) \longrightarrow V(\Sigma_1 \coprod \Sigma_2)$.

Maintenant on dit que le foncteur de quantification V est :

- involutif si l'application $V(\overline{\Sigma}) \longrightarrow V(\Sigma)^*$ est un isomorphisme.
- **multiplicatif** si application $V(\Sigma_1) \otimes V(\Sigma_2) \longrightarrow V(\Sigma_1 \coprod \Sigma_2)$ est un isomorphisme.

On considère aussi la propriété de finitude suivante :

Pour tout Σ , $V(\Sigma)$ est libre de rang fini et la forme $\langle \; , \; \rangle_{\Sigma}$ est unimodulaire.

 ${\bf Remarque}$: La propriété de finitude entraı̂ne que le foncteur V est involutif.

Définition 1 Une TQFT sur une catégorie de cobordisme C_n est un foncteur de quantification multiplicatif C_n -engendré qui satisfait la propriété de finitude.

${\bf Remarques}:$

1.

$$\langle \emptyset \rangle = 1$$

car

$$\langle \emptyset \rangle = Z(\emptyset) = Z_{I \times \emptyset}(1) = V(I \times \emptyset)(1) = id_{V(\emptyset)}(1) = id_k(1) = 1.$$

2.

$$\langle 1, 1 \rangle_{\emptyset} = 1.$$

3. On a souvent besoin de considérer des catégories de cobordisme avec structures pour lever certaines ambiguités.

1.3 Exemples de TQFT

Soit $C_2^{p_1}$ la catégorie dont

- les objets sont les 2-variétés orientées compactes sans bord avec p_1 -structure et contenant un entrelacs en bandes (i.e. un ensemble d'intervalles orientés plongés).
- les cobordismes sont les 3-variétés compactes orientées avec p_1 -structure et contenant un entrelacs en bandes (i.e. un ensemble de surfaces orientées plongées difféomorphes au produit d'une 1-variété avec un intervalle).
- La notion d'équivalence appropriée sur les cobordismes : deux cobordismes sont dits équivalents s'il existe un difféomorphisme relatif au bord de l'un sur l'autre qui préserve l'orientation, qui se restreint à un difféomorphisme qui préserve l'orientation des entrelacs en bandes et tel que sur le mapping cylindre du difféomorphisme, il existe une p_1 -structure qui étend celle donnée sur le bord.

On note $k_p, p \in \mathbb{N}$, l'anneau obtenu après un changement adéquat de l'anneau des coefficients k.

Théorème 1 Il existe une suite d'invariants multiplicatifs et involutifs $\langle \ \rangle_p$, où p est un entier naturel, défini sur les cobordismes sans bord de la catégorie $C_2^{p_1}$ et prenant valeur dans l'anneau k_p .

Ainsi, d'après la proposition 1, l'invariant $\langle \ \rangle_p$ détermine un foncteur de quantification $C_2^{p_1}$ -engendré V_p .

Théorème 2 Soit p un entier naturel, $n \geq 3$. Le foncteur de quantification V_p vérifie l'axiome de finitude. Si p est pair, l'axiome de multiplicativité est satisfait et donc V_p satisfait les axiomes de TQFT. Si p est impair, l'axiome de multiplicativité est vérifié pourvu que l'entrelacs en bande de l'une des surfaces Σ_i , i=1,2, comporte un nombre imorie sur la catégion peur de quantificatair de composantes. En particulier, V_p est une TQFT sur la sous catégorie $C_2^{p_1}(pair)$ dont les objets sont les surfaces avec un entrelacs en bandes comportant un nombre pair de composantes.

1.4 Relations du crochet de Kauffman et axiomes de chirurgie

1.4.1 Relations du crochet de Kauffman

Définition 2 Soit M une 3-variété compacte et soit l un entrelacs en bandes dans ∂M . Soit k un anneau commutatif contenant un élément inversible A. On pose $\delta = -A^2 - A^{-2}$. Le**module skein de Jones-Kauffman** (à coeficients dans k) est le k-module engendré par l'ensemble des classes d'isotopie des entrelacs en bandes L dans M qui rencontrent ∂M transversalement en l, quotienté par les relations suivantes :

Remarque : L'anneau des coefficients universel pour les modules de Jones-Kauffman est $k = \mathbb{Z}[A, A^{-1}]$.

Notation: on suppose que M est munie d'une p_1 -structure. On note $\mathcal{L}(M,l)$ le k-module libre engendré par l'ensemble des classes d'isotopie des entrelacs en bandes dans M qui rencontrent Σ en l.

Définition 3 Soit V un foncteur de quantification sur la catégorie $C_2^{p_1}$. On dit que V satisfait les relations du crochet de Kauffman (pour un élément A dans k) si pour tout M, l'application linéaire

$$\mathcal{L}(M,l) \longrightarrow V(\Sigma,l)$$
 $L \longmapsto Z(M,L)$

se factorise à travers K(M, l).

1.4.2 Axiomes de chirurgie

Soit V un foncteur de quantification sur la catégorie $C_2^{p_1}$. On dit que V satisfait les axiomes de chirurgie si les axiomes (S0), (S1) et (S2) suivants sont satisfaits :

• On désigne par S^3 la 3-sphère munie de la p_1 -structure standard, celle qui s'étend à D^4 .

(S0). $\langle S^3 \rangle$ est inversible dans k.

• Supposons que $S^0 \times D^3$ et $D^1 \times S^2$ soient munies de leurs orientations produit (et d'une p_1 -sructure fixée qui est le restriction d'une p_1 -structure sur $D^1 \times D^3$) telles que $\partial(S^0 \times D^3) = \partial(D^1 \times S^2) = S^0 \times S^2$.

(S1). (chirurgie d'ince 1) Il existe un élément $\eta \in k$, tel que $Z(S^0 \times D^3) = \eta Z(D^1 \times S^2)$ dans $V(S^0 \times S^2)$ telles que $\partial \overline{S^1 \times D^2} = \partial (D^2 \times S^1) = S^1 \times S^1$.

- Supposons que $S^1 \times D^2$ et $D^2 \times S^1$ soient munies de leurs orientations produit (et d'une p_1 -structure fixée qui est le restriction d'une p_1 -structure sur $D^2 \times D^2$).
 - (S2) (chirurgie d'indice 2). L'élément $Z(D^2\times S^1)\in V(S^1\times S^1)$ appartient au sous module engendré par les entrelacs en bandes dans le tore solide $\overline{S^1\times D^2}$.