Eine Woche, ein Beispiel 1.9. simplicial set

Ref:

[sSet]http://www.math.uni-bonn.de/~schwede/sset_vs_spaces.pdf [6-Fctor]https://people.mpim-bonn.mpg.de/scholze/SixFunctors.pdf

Some visual pictures can be seen here: https://arxiv.org/pdf/0809.4221.pdf

Today: The category sSet and $\partial \Delta^n$, Λ_i^n , $sk^m X$, $\Delta^n/\partial \Delta^n$, $Hom(X,Y) \in Ob(sSet)$

Def
$$[n] = \{0,1,...,n\}$$
 $n \ge 0$
The simplex category \triangle is defined by $Ob(\triangle) = \{[n] \mid n \ge 0\}$
 $Mor_{\triangle}([m],[n]) = \{f,[m] \longrightarrow [n] \text{ weakly increasing }\}$
The category of simplicial sets $sSet$ is defined by $sSet = Fun(\triangle^{sp}, Set)$

$\#\Delta_k^n$	0		2	3		
0	1	2	3	4		
1	1	3	6	10		
2	1	4	lo	20		
3	1	5	15	35		
$\# \Lambda_{i}^{n} = \binom{n+k+1}{i}$						

a not confuse with [n]

	a not confuse with by				
element	picture	list	count	other notations	
d: [5] → [3] → 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0,0,1,3,3,3)	[2,1,0,3]		
$d_{1}^{3}: [2] \rightarrow [3]$ $0 \mapsto 0$ $1 \mapsto 2$ $2 \mapsto 3$	0 0 1 2 2 3	(0,2,3)	[1,0,1,1]	$d_{i}^{n}:[n-i] \rightarrow [n]$ δ^{n}	
$\begin{array}{c} S_{1}^{3}, [3] \rightarrow [2] \\ 0 \longmapsto 0 \\ 1 \longmapsto 1 \\ 2 \longmapsto 1 \\ 3 \mapsto 2 \end{array}$		(0,1,1,2)	[1,2,1]	S_i^n , $[n] \rightarrow [n-i]$	
d _{3,2} [3]→[5] 0 → 0 1 → 1 2 → 1 3 → 3	0	(0,1,2,3)	[1,1,1,1,0,0]	$d_{i,j}:[i] \rightarrow [i+j]$ $\delta_{i}^{f} \qquad f = f \text{ front}$	
$d_{3,2}[2] \rightarrow [5]$ $0 \mapsto 3$ $1 \mapsto 4$ $2 \mapsto 5$	0 1 2 3 4 4 5	(3,4,5)	[0,0,0,1,1,1]	di,j.[j] → [i+j] Si b= back	
$\begin{array}{c} S_{3,(5,4)}^{\text{out}} : [5] \rightarrow [8] \\ 0 & \mapsto 0 \\ 1 & \mapsto 1 \\ 2 & \mapsto 2 \\ 3 & \mapsto 3 \\ 4 & \mapsto 7 \\ 5 & \mapsto 8 \end{array}$	0 1 2 3 3 4 5 5 6 7 7 8	(0,1,2,3,7,8)	[1,1,0,0,0,1,1]]	Si,(p,q):[p] → [p+q-1] Sit	
$\begin{cases} S_{3}^{in}, (\varsigma, +) : [4] \rightarrow [8] \\ 0 \longmapsto 3 \\ i \mapsto 4 \\ 2 \longmapsto 5 \\ 3 \mapsto 6 \\ 4 \mapsto 7 \end{cases}$	0 1 2 3 4 5 6 7 8	(3,4,5,6,7)	[0,0,0,0] i 1,1,1,1,0,0,0]	Si ⁿ (p,q):[q]→[p+q-1] Si ⁿ	

Table 1 Morphisms in Δ .

How to compute the composition? e.g. $[2,1,0,4] \circ [2,5,3,4,1,6,0] = [7,3,0,11]$

Rmk. In \triangle we don't have finite colimit, while in sSet = Fun (\triangle^{op} , Set) we have finite colimit because Set is (complete +) cocomplete.

For a construction, see

https://math.stackexchange.com/questions/3837844/limits-and-colimits-are-computed-pointwise-in-functor-categories and all of the contractions of the contraction of

Notice that $\partial \Delta^n$, Δ^n , $sk^m \Delta^n$, $\Delta^n \in sSet - \Delta$

Conclusion: s Set is a Grothendieck topos.

It is Cartesian closed, complete and cocomplete. In sSet, we can glue objects (\approx pushforward), which is impossible in Δ .

Slogan: s Set \sim simplicial complex $\times_n \sim$ the index set of n-dim cells

Rmk ([sSet]) If you have strong enough geometrical background, you will find out the adjoint pair

quite useful, where

$$|X| := \left(\frac{11}{n \ge 0} X_n \times \nabla^n \right) / \sim$$

$$S(A)_n := Mor_{Top} (\nabla^n, A)$$

$$\partial^* : S(A)_n \longrightarrow S(A)_m \times \longrightarrow \times \circ S(a)$$

Moreover, we have equils of categories

where

Topow is the full subcategory of Top with objects the top spaces admitting a CW-cplx structure, and Ho (Topow) is the homotopy category of CW cplxes.

Q: Do we have the following comm diag: (as equic of categories)

$$sSet[weq^{-1}] \xrightarrow{1-1} Ho(Topcw)$$

$$An \stackrel{S}{\longleftarrow} Top[weq^{-1}]$$

Q. For C = Cato = sSet, how to view C as a topo space? e.p. compute $\pi_n(\ell)$?

Roughly, we have three ways to define/determine a simplicial set.

1. By writing down their def directly; brutal for a simplicial set.

2. By universal property (pullback, pushforward, ...) abstract of a simplicial set.

3. By its geometrical realization name

brutal force abstract construction

Let us see how they're compatible with each other.

E.g.1. For
$$A \in Top$$
 discrete, define $X = S(A)$, i.e.,
 $X_n = A$ $y = IdA$ $\forall a \in [m] \longrightarrow [n]$
 $|S(A)| = (\underset{k}{\downarrow} \times_k \times \nabla^k) / \sim A \times \nabla^o$
 $\sim A$

Eg. 2.
$$\triangle_{k}^{n} = Mor_{\Delta}([k], [n]) = \int x_{*}[k] \longrightarrow [n]$$
 weakly increasing?

$$|\Delta^{n}| = \left(\frac{11}{k} \Delta_{k}^{n} \times \nabla^{k}\right) /_{\sim}$$

$$\sim (\Delta_{n}^{n} \times \nabla^{n}) /_{\sim}$$

$$\sim \nabla^{n}$$

Eq. 3.
$$\triangle_{(i)}^{n-1} := \operatorname{Im} (d_{i}^{n} : \triangle^{n-1} \longrightarrow \triangle^{n})$$
 in sSet

$$\Rightarrow (\triangle_{(i)}^{n-1})_{k} = \begin{cases} x \in \triangle_{k}^{n} & \exists y \in \triangle_{k}^{n-1} & \text{s.t.} & x = d_{i}^{n} \circ y \end{cases}$$

$$|\triangle_{(i)}^{n-1}| = (\coprod_{k} (\triangle_{(i)}^{n-1})_{k} \times \nabla^{k}) / (\triangle_{(i)}^{n-1})_{n-1} \times \nabla^{n-1} / (\triangle_{(i)}^{n-1})_{n-1}$$

Eq. 4.
$$(\partial \Delta^{h})_{k} = \int_{t=0}^{\infty} x \in \Delta^{h}_{k} \mid x \text{ is not surj } \mathcal{I}$$

$$\partial \Delta^{n} = \bigcup_{t=0}^{\infty} \Delta^{h-1}_{(i)} = \text{colimit of } \cdots$$

$$e.g. \quad \partial \Delta^{2} = \begin{bmatrix} \text{colimit of } \mathcal{I} \\ \partial \Delta^{h} \end{bmatrix} = \begin{pmatrix} \mathcal{I}_{k} (\partial \Delta^{n})_{k} \times \nabla^{k} \end{pmatrix} / \Delta^{n} \Delta^$$

Eq.5.
$$(\Delta_i^n)_k = \begin{cases} x \in \Delta_k^n \mid x = \lambda^*(y) \text{ for some } y \in \Delta_{n-1}^n \text{ and } \lambda \cdot [k] \to [n-1] \end{cases}$$

$$\Delta_i^n = \bigcup_{j \neq i} \Delta_{(j)}^{n-1} = \text{colimit of } \cdots$$

$$\Lambda_{i}^{\circ} = \bigcup_{j \neq i} \Delta_{(j)}^{\circ -j} = \text{colimit of } \dots$$

$$e.g. \quad \Lambda_{i}^{\circ} = \begin{bmatrix}
\text{colimit of } \\
\text{doing}
\end{bmatrix}$$

$$= \Delta' \coprod_{\Delta \circ \Delta'}$$

= $\Delta' \coprod_{\Delta'} \Delta'$ ex. write down $(X \coprod_{Y} Z)_{k}$ for $X,Y,Z \in S$ et

$$|\Lambda_{i}^{n}| = \left(\prod_{k} \left(\Delta_{i}^{n} \right)_{k} \times \nabla^{k} \right) /_{\sim}$$

$$\sim \left(\left(\Delta_{i}^{n} \right)_{n-1}^{n \text{ ondeg}} \times \nabla^{n-1} \right) /_{\sim}$$

$$\sim \left(\prod_{j \neq i} \left(Sd_{j}^{n} \right) \left(\nabla^{n-1} \right) \right) /_{\sim}$$

$$\sim \bigcup_{j \neq i} \nabla_{ij}^{n-1}$$

$$E_{g} b = \left\{ \begin{array}{l} (sk^{m}\Delta^{n})_{k} = \left\{ \begin{array}{l} \times \in \Delta^{n}_{k} \\ \end{array} \right| \times = \lambda^{*}(y) \text{ for some } y \in \Delta^{n}_{m} \text{ and } \lambda \cdot [k] \rightarrow [m] \right\} \\ sk^{m}\Delta^{n} = \bigcup_{\beta : [m] \rightarrow [n]} \beta(\Delta^{n}) = \text{colimit of } \cdots \\ \left| sk^{m}\Delta^{n} \right| = \left(\underbrace{\coprod_{k} \left(sk^{m}\Delta^{n} \right)_{k}}_{k} \times \nabla^{k} \right) / \infty \\ \sim \left(\left(sk^{m}\Delta^{n} \right)_{nondeg}^{nondeg} \times \nabla^{m} \right) / \infty \\ \sim \left(Mor \\ (S\beta) (T^{m}) \end{array} \right)$$

$$\sim \bigcup_{\beta : [m] \rightarrow [n]} \left(S\beta \right) (T^{m})$$

E.g.7.
$$(\Delta^n/\partial \Delta^n)_k = \Delta^n_k/(\partial \Delta^n)_k = \Delta^n_k/\sim$$

$$\times \sim y \iff \times, y \in (\partial \Delta^n)_k \text{ or } x = y$$
Universal property:

$$\partial \Delta^n \longrightarrow \Delta^n \longrightarrow \Delta^n / \partial \Delta^n \longrightarrow 0$$
contract to X

$$|\Delta^{n}/\partial\Delta^{n}| = \left(\frac{1}{k} \left(\Delta^{n}/\partial\Delta^{n} \right)_{k} \times \nabla^{k} \right) / \sim$$

$$\sim \left(\left(\Delta^{n}/\partial\Delta^{n} \right)_{n}^{\text{nondeg}} \times \nabla^{n} \right) / \sim$$

$$\sim \nabla^{n}/\partial\nabla^{n}$$

$$\sim \nabla^{n}/\partial\nabla^{n}$$

Eq. 8. Define
$$X = \begin{bmatrix} colimit & of & \Delta' & \frac{d^2}{do^2} & \Delta^2 \end{bmatrix}$$

$$X_{k} = \Delta_{k} / \Lambda \qquad \text{here we identify } d_{2}^{2} x = -d_{1}^{2} x = d_{0}^{2} x$$

$$1X| = \left(\prod_{k} X_{k} \times \nabla^{k} \right) / \Lambda$$

$$\sim \left(X_{k}^{\text{nondeg}} \times \nabla^{k} \right) / \Lambda$$

$$\Lambda \qquad (X_{k}^{\text{nondeg}} \times \nabla^{k}) / \Lambda$$

Similarly, one can consider $\Delta^2 U_{\partial \Delta^2} \Delta^2 \cong S^2$

Ex. Shows that

 $\partial \Delta^3$, $\Delta^2/\partial \Delta^2$, $\Delta^2 U_{\partial \Delta^2} \Delta^2$ are homotopy equivalent as simplicial sets.

$$Q, 9 \quad (Hom(X,Y))_{n} = Hom_{sSet}(\Delta^{n} \times X, Y)$$

$$\Delta^{*}. \quad Hom_{sSet}(\Delta^{n} \times X, Y) \longrightarrow Hom_{sSet}(\Delta^{m} \times X, Y) \qquad \text{for a. } [m] \rightarrow [n]$$

$$\Delta^{*}. \quad SSet$$

$$= \frac{-\times X}{\text{Hom}(X, -)} \text{ s. Set}$$

$$\begin{bmatrix} \text{"Proof"} & Hom_{sSet}(Z, Hom(X, Y)) \cong \int_{+\cdots}^{g_{m}} \int_{+\cdots}^{Z_{m}} Hom_{sSet}(\Delta^{m} \times X, Y) \xrightarrow{T} \\ \cong \int_{+\cdots}^{h_{m,k}} \int_{+\cdots}^{Z_{m}} \int_{+\cdots}^{Z_{m}} \int_{+\cdots}^{T_{m}} \int_{+\cdots}^{T_{m,k}} \int_{+\infty}^{T_{m,k}} \int_{$$

Remaining: Compute # (Hom $(\Delta^n, \Delta^m)_k$ Compute # (Hom $(\Delta^n, \Delta^m)_k$). How is it related to Y_{k+n} or $\pi_n(|Y|)$? How to see the geometrical realization of # Hom(X, Y), e.p. in these examples?

Eq. 10. Let X be a subset of
$$\triangle$$
 whose realization is as follows. Write down X_k for $k \le 3$.

e.g. $X_1 = \begin{cases} [2,0,0,0], [0,2,0,0], [0,0,2,0], [0,0,0,2], \\ [1,1,0,0], [1,0,1,0], [1,0,0,1], [0,1,0,1], [0,0,0,1] \end{cases}$

e.g.
$$X_1 = \begin{cases} [2,0,0,0], [0,2,0,0], [0,0,2,0], [0,0,0,2], \\ [1,1,0,0], [1,0,1,0], [1,0,0,1], [0,1,0,1], [0,0,1,1] \end{cases}$$

Eg. 12.

Realize Hochschild homology as simplicial homology: https://arxiv.org/pdf/1802.03076.pdf