Линейные ансамбли

K. B. Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ ● 6 ноября 2021

Содержание

- Простое голосование
 - Общее определение ансамбля
 - Бэггинг и случайные подпространства
 - Случайные леса
- Взвешенное голосование
 - Адаптивный бустинг AdaBoost
 - Основная теорема AdaBoost
 - Алгоритм AdaBoost
- 3 Обоснования и варианты бустинга
 - Эксперименты с бустингом
 - Теория обобщающей способности
 - Алгоритм ComBoost

Определение ансамбля

$$X^\ell=(x_i,y_i)_{i=1}^\ell\subset X imes Y$$
 — обучающая выборка, $y_i=y^*(x_i)$ $a_t\colon X o Y$, $t=1,\ldots,T$ — обучаемые *базовые алгоритмы*

Идея ансамбля: возможно ли из множества плохих алгоритмов a_t построить один хороший?

Декомпозиция базовых алгоритмов $a_t(x) = C(b_t(x))$ $a_t \colon X \stackrel{b_t}{\to} R \stackrel{C}{\to} Y$, где R — более удобное *пространство оценок*, C — решающее правило, как правило, весьма простого вида

Ансамбль базовых алгоритмов b_1, \ldots, b_T :

$$a(x) = C(F(b_1(x), \ldots, b_T(x), x)),$$

 $F: R^T \times X \to R$ — агрегирующая функция или мета-алгоритм

Пространства оценок и решающие правила

- Пример 1: классификация, Y конечное множество, R = Y, $C(b) \equiv b$ решающее правило не используется.
- ullet Пример 2: классификация на 2 класса, $Y=\{-1,+1\}$,

$$a(x) = \operatorname{sign}(b(x)),$$

где $R=\mathbb{R},\;\;b\colon X o\mathbb{R},\;\;C(b)\equiv \operatorname{sign}(b).$

ullet Пример 3: классификация на M классов $Y=\{1,\ldots,M\}$,

$$a(x) = \arg \max_{y \in Y} b_y(x),$$

где
$$R=\mathbb{R}^M$$
, $b\colon X o \mathbb{R}^M$, $C(b_1,\ldots,b_M)\equiv rg\max_{y\in Y} b_y.$

● Пример 4: регрессия, $Y = R = \mathbb{R}$, $C(b) \equiv b$ — решающее правило не нужно.

Агрегирующие (корректирующие) функции

Общие требования к агрегирующей функции:

- ullet $F(b_1,\ldots,b_T,x)\in \left[\min_t b_t,\max_t b_t
 ight]$ среднее по Коши orall x
- ullet $F(b_1,\ldots,b_T,x)$ монотонно не убывает по всем b_t

Примеры агрегирующих функций:

• простое голосование (simple voting):

$$F(b_1,\ldots,b_T)=\frac{1}{T}\sum_{t=1}^T b_t$$

• взвешенное голосование (weighted voting):

$$F(b_1,\ldots,b_T) = \sum_{t=1}^T \alpha_t b_t, \quad \sum_{t=1}^T \alpha_t = 1, \quad \alpha_t \geqslant 0$$

ullet смесь алгоритмов (mixture of experts) c функциями компетентности (gating function) $g_t\colon X o \mathbb{R}$

$$F(b_1,...,b_T,x) = \sum_{t=1}^{T} g_t(x)b_t(x)$$

Проблема разнообразия (diversity) базовых алгоритмов

Измерение с.в. ξ по независимым наблюдениям $\{\xi_t\}$:

- ullet Е $rac{1}{T}(\xi_1+\cdots+\xi_T)={\sf E}\xi$ матожидание среднего
- ullet D $rac{1}{T}(\xi_1+\cdots+\xi_T)=rac{1}{T}$ D ξ дисперсия o 0 при $T o\infty$

Но базовые алгоритмы не являются независимыми с.в.:

- решают одну и ту же задачу
- настраиваются на один целевой вектор (y_i)
- обычно выбираются из одной и той же модели

Способы повышения разнообразия базовых алгоритмов:

- обучение по различным (случайным) подвыборкам
- обучение по различным (случайным) наборам признаков
- обучение из разных параметрических моделей
- обучение с использованием рандомизации
- (иногда даже) обучение по зашумлённым данным

Методы стохастического ансамблирования

Способы повышения разнообразия с помощью рандомизации:

- bagging (bootstrap aggregating) подвыборки обучающей выборки «с возвращением», в каждую выборку попадает $(1-\frac{1}{e}) \approx 63.2\%$ объектов
- pasting случайные обучающие подвыборки
- random subspaces случайные подмножества признаков
- random patches случ. подмн-ва и объектов, и признаков
- cross-validated committees выборка разбивается на k блоков (k-fold) и делается k обучений без одного блока

Пусть μ : $(G,U)\mapsto b$ — метод обучения по подвыборке $U\subseteq X^\ell$, использующий только признаки из $G\subseteq F^n=\{f_1,\ldots,f_n\}$

Tin Kam Ho. The random subspace method for constructing decision forests. 1998. Leo Breiman. Bagging predictors // Machine Learning. 1996.

Методы стохастического ансамблирования в одном псевдо-коде

```
Вход: обучающая выборка X^{\ell}; параметры: T,
    \ell' — объём обучающих подвыборок,
    n' — размерность признаковых подпространств,
    arepsilon_1 — порог качества базовых алгоритмов на обучении,
    \varepsilon_2 — порог качества базовых алгоритмов на контроле;
Выход: базовые алгоритмы b_t, t = 1, ..., T;
 1: для всех t = 1, ..., T
      U_t := \mathsf{случайная} подвыборка объёма \ell' из X^\ell;
     3:
 4:
     b_t := \mu(G_t, U_t)
      если Q(b_t, U_t) > \varepsilon_1 то не включать b_t в ансамбль;
 5:
      если Q(b_t, X^{\ell} \setminus U_t) > \varepsilon_2 то не включать b_t в ансамбль;
 6:
Ансамбль — простое голосование: b(x) = \frac{1}{T} \sum_{t=1}^{I} b_t(x)
```

Несмещённая оценка ошибок

 $Out ext{-}of ext{-}bag$ — несмещённая оценка ансамбля на объекте:

$$OOB(x_i) = \frac{1}{|T_i|} \sum_{t \in T_i} b_t(x_i), \qquad T_i = \{t : x_i \notin U_t\}$$

Несмещённая оценка ошибки ансамбля на обучающей выборке:

$$OOB(X^{\ell}) = \sum_{i=1}^{\ell} \mathcal{L}(OOB(x_i), y_i),$$

где $\mathscr{L}ig(b(x_i),y_iig)$ — значение функции потерь на объекте x_i .

Оценивание важности признаков f_j , $j=1,\ldots,n$:

$$\mathsf{importance}_j = \frac{\mathsf{OOB}^j(X^\ell) - \mathsf{OOB}(X^\ell)}{\mathsf{OOB}(X^\ell)} \cdot 100\%,$$

где при вычислении $b_t(x_i)$ для OOB^j значения признака f_j случайным образом перемешиваются на всех объектах $x_i \neq U_t$.

Преобразование простого голосования во взвешенное

ullet Линейная модель над готовыми признаками $b_t(x)$:

$$b(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

• Обучение: МНК для регрессии, LR для классификации:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(b(x_i), y_i) \to \min_{\alpha}.$$

Регуляризация: $\alpha_t \geqslant 0$ либо LASSO: $\sum_{t=1}^{I} |\alpha_t| \leqslant \varkappa$.

• Наивный байесовский классификатор предполагает независимость с.в. $b_t(x)$ и даёт аналитическое решение:

$$lpha_t = \ln rac{1 -
ho_t}{
ho_t}, \quad t = 1, \dots, T,$$

 p_t — оценка вероятности ошибки базового алгоритма b_t .

Случайный лес (Random Forest)

Обучение случайного леса:

- бэггинг над решающими деревьями, без pruning
- признак в каждой вершине дерева выбирается из случайного подмножества k из n признаков. По умолчанию $k = \lfloor n/3 \rfloor$ для регрессии, $k = \lfloor \sqrt{n} \rfloor$ для классификации

Параметры, которые можно настраивать (в частности, по ООВ):

- число Т деревьев
- число *k* случайно выбираемых признаков
- максимальная глубина деревьев
- минимальное число объектов в расщепляемой подвыборке
- минимальное число объектов в листьях
- критерий расщепления: MSE для регрессии, энтропийный или Джини для классификации

Постепенное сглаживание разделяющей поверхности

Пример разделения выборки с помощью отдельных деревьев (показаны соответствующие бутстреп-подвыборки) и случайного леса с числом деревьев 10, 100, 1000:

https://dyakonov.org/2019/04/19/ансамбли-в-машинном-обучении

Разновидности решающих лесов

- Случайный лес (Random Forest)
- Использование большого числа простых решающих деревьев в качестве признаков, в любом классификаторе.
- Oblique Random Forest, Rotation Forest $f_{\nu}(x)$ линейные комбинации признаков, выбираемые по энтропийному критерию информативности.
- Решающий список из решающих деревьев:
 - при образовании статистически ненадёжного листа этот лист заменяется переходом к следующему дереву;
 - следующее дерево строится по объединению подвыборок, прошедших через ненадёжные листы предыдущего дерева.

Преимущества и ограничения стохастического ансамблирования

Преимущества:

- метод-обёртка (envelop) над базовым методом обучения
- подходит для классификации, регрессии и других задач
- простая реализация и простое распараллеливание
- возможность получения несмещённых оценок ООВ
- возможность оценивания важности признаков
- RF один из лучших универсальных методов в ML

Ограничения:

- требуется оооооочень много базовых алгоритмов
- трудно агрегировать устойчивые базовые методы обучения

Бустинг для задачи классификации с двумя классами

Возьмём
$$Y=\{\pm 1\}$$
, $b_t\colon X\to \{-1,0,+1\}$, $C(b)=\mathrm{sign}(b)$. $b_t(x)=0$ — отказ (лучше промолчать, чем соврать).

Взвешенное голосование:

$$a(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t b_t(x)\right), \quad x \in X.$$

Функционал качества композиции — число ошибок на X^ℓ :

$$Q_T = \sum_{i=1}^{\ell} \left[y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) < 0 \right].$$

Две основные эвристики бустинга:

- ullet фиксация $lpha_1 b_1(x), \dots, lpha_{t-1} b_{t-1}(x)$ при добавлении $lpha_t b_t(x)$;
- ullet гладкая аппроксимация пороговой функции потерь $[M\leqslant 0].$

Гладкие аппроксимации пороговой функции потерь [M < 0]

$$E(M)=e^{-M}$$
 — экспоненциальная (AdaBoost); $L(M)=\log_2(1+e^{-M})$ — логарифмическая (LogitBoost); $Q(M)=(1-M)^2$ — квадратичная (GentleBoost); $G(M)=\exp(-cM(M+s))$ — гауссовская (BrownBoost); $S(M)=2(1+e^M)^{-1}$ — сигмоидная; $V(M)=(1-M)_+$ — кусочно-линейная (из SVM);

Экспоненциальная аппроксимация пороговой функции потерь

Оценка функционала качества $Q_{\mathcal{T}}$ сверху:

$$Q_{T} \leqslant \widetilde{Q}_{T} = \sum_{i=1}^{\ell} \underbrace{\exp\left(-y_{i} \sum_{t=1}^{T-1} \alpha_{t} b_{t}(x_{i})\right)}_{w_{i}} \exp\left(-y_{i} \alpha_{T} b_{T}(x_{i})\right)$$

Нормированные веса: $\widetilde{W}^\ell = (ilde{w}_1, \dots, ilde{w}_\ell)$, $ilde{w}_i = w_i \ / \ \sum_{j=1}^\ell w_j$.

Взвешенное число ошибочных (negative) и правильных (positive) классификаций при векторе весов $U^\ell=(u_1,\ldots,u_\ell)$:

$$N(b, U^{\ell}) = \sum_{i=1}^{\ell} u_i [b(x_i) = -y_i]; \quad P(b, U^{\ell}) = \sum_{i=1}^{\ell} u_i [b(x_i) = y_i].$$

1 - N - P — взвешенное число отказов от классификации.

Основная теорема бустинга (для AdaBoost)

Пусть \mathscr{B} — достаточно богатое семейство базовых алгоритмов.

Teopeма (Freund, Schapire, 1996)

Пусть для любого нормированного вектора весов U^ℓ существует алгоритм $b\in \mathscr{B}$, классифицирующий выборку хотя бы немного лучше, чем наугад: $P(b;U^\ell)>N(b;U^\ell)$.

Тогда минимум функционала $\widetilde{Q}_{\mathcal{T}}$ достигается при

$$\begin{split} b_T &= \arg\max_{b \in \mathscr{B}} \sqrt{P(b;\widetilde{W}^\ell)} - \sqrt{N(b;\widetilde{W}^\ell)}. \\ \alpha_T &= \frac{1}{2} \ln \frac{P(b_T;\widetilde{W}^\ell)}{N(b_T;\widetilde{W}^\ell)}. \end{split}$$

Доказательство (шаг 1 из 2)

Воспользуемся тождеством $\forall \alpha \in \mathbb{R}, \ \forall b \in \{-1,0,+1\}$: $e^{-\alpha b} = e^{-\alpha}[b\!=\!1] + e^{\alpha}[b\!=\!-1] + [b\!=\!0].$

Положим для краткости $\alpha = \alpha_T$ и $b_i = b_T(x_i)$. Тогда

$$\begin{split} \widetilde{Q}_{T} &= \left(e^{-\alpha} \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = y_{i}] + e^{\alpha} \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = -y_{i}] + \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = 0]\right) \underbrace{\sum_{i=1}^{\ell} w_{i}}_{\widetilde{Q}_{T-1}} \\ &= \left(e^{-\alpha} P + e^{\alpha} N + (1 - P - N)\right) \widetilde{Q}_{T-1} \to \min_{\alpha, b}. \end{split}$$

$$\tfrac{\partial}{\partial \alpha} \widetilde{Q}_T = \left(-e^{-\alpha} P + e^{\alpha} N \right) \widetilde{Q}_{T-1} = 0 \ \Rightarrow \ e^{-\alpha} P = e^{\alpha} N \ \Rightarrow \ e^{2\alpha} = \tfrac{P}{N}.$$

Получили требуемое: $\alpha_T = \frac{1}{2} \ln \frac{P}{N}$.

Доказательство (шаг 2 из 2)

Подставим оптимальное значение $lpha=rac{1}{2}\lnrac{P}{N}$ обратно в $\widetilde{Q}_{\mathcal{T}}$:

$$\begin{split} \widetilde{Q}_T &= \left(e^{-\alpha}P + e^{\alpha}N + (1-P-N)\right)\widetilde{Q}_{T-1} = \\ &= \left(1 + \sqrt{\frac{N}{P}}P + \sqrt{\frac{P}{N}}N - P - N\right)\widetilde{Q}_{T-1} = \\ &= \left(1 - \left(\sqrt{P} - \sqrt{N}\right)^2\right)\widetilde{Q}_{T-1} \to \min_b. \end{split}$$

Поскольку \widetilde{Q}_{T-1} не зависит от α_T и b_T , минимизация \widetilde{Q}_T эквивалентна либо максимизации $\sqrt{P}-\sqrt{N}$ при P>N, либо максимизации $\sqrt{N}-\sqrt{P}$ при P< N, однако второй случай исключён условием теоремы.

Получили
$$b_T = rg \max_b \sqrt{P} - \sqrt{N}$$
. Теорема доказана.

Следствие 1. Исходный (классический) вариант AdaBoost

Пусть отказов нет, $b_t\colon X o\{\pm 1\}$. Тогда P=1-N.

Teopeма (Freund, Schapire, 1995)

Пусть для любого нормированного вектора весов U^ℓ существует алгоритм $b\in \mathscr{B}$, классифицирующий выборку хотя бы немного лучше, чем наугад: $N(b;U^\ell)<\frac{1}{2}$.

Тогда минимум функционала $\widetilde{Q}_{\mathcal{T}}$ достигается при

$$b_T = \arg\min_{b \in \mathscr{B}} N(b; \widetilde{W}^{\ell}).$$

$$\alpha_T = \frac{1}{2} \ln \frac{1 - N(b_T; \widetilde{W}^{\ell})}{N(b_T; \widetilde{W}^{\ell})}.$$

Следствие 2. Сходимость

Теорема

Если на каждом шаге семейство \mathscr{B} и метод обучения обеспечивают построение базового алгоритма b_t такого, что

$$\sqrt{P(b_t; \widetilde{W}^{\ell})} - \sqrt{N(b_t; \widetilde{W}^{\ell})} = \gamma_t > \gamma$$

при некотором $\gamma>0$, то за конечное число шагов будет построен корректный алгоритм a(x).

Доказательство. Q_T сходится к нулю со скоростью геометрической прогрессии:

$$Q_{T+1} \leqslant \widetilde{Q}_{T+1} = \widetilde{Q}_T(1-\gamma^2) \leqslant \cdots \leqslant \widetilde{Q}_1(1-\gamma^2)^T.$$

Наступит момент, когда $\widetilde{Q}_{\mathcal{T}} < 1$. Но тогда $Q_{\mathcal{T}} = 0$, поскольку $Q_{\mathcal{T}} \in \{0,1,\ldots,\ell\}$.

Алгоритм AdaBoost (исходный вариант)

```
Вход: обучающая выборка X^{\ell}: параметр T:
Выход: базовые алгоритмы и их веса \alpha_t b_t, t=1,\ldots,T;
 1: инициализировать веса объектов:
     w_i := 1/\ell, \quad i = 1, \dots, \ell:
 2: для всех t = 1, ..., T
 3: обучить базовый алгоритм:
        b_t := \arg\min N(b; W^{\ell});
       \alpha_t := \frac{1}{2} \ln \frac{1 - \mathcal{N}(b_t; \mathcal{W}^{\ell})}{\mathcal{N}(b_t; \mathcal{W}^{\ell})};
        обновить веса объектов:
 5:
        w_i := w_i \exp(-\alpha_t y_i b_t(x_i)), \quad i = 1, \dots, \ell;
 6:
        нормировать веса объектов:
        w_0 := \sum_{i=1}^{\ell} w_i;
        w_i := w_i / w_0, \quad i = 1, \dots, \ell
```

Эвристики и рекомендации

- Базовые классификаторы (weak classifiers):
 - решающие деревья используются чаще всего;
 - пороговые правила, т.н. «решающие пни» (data stumps)

$$\mathscr{B} = \left\{ b(x) = \left[f_j(x) \leq \theta \right] \mid j = 1, \ldots, n, \ \theta \in \mathbb{R} \right\};$$

- для SVM бустинг не эффективен.
- Отсев шума: отбросить объекты с наибольшими w_i .
- ullet Модификация формулы для $lpha_t$ на случай ${\it N}=0$:

$$\alpha_t := \frac{1}{2} \ln \frac{1 - \mathcal{N}(b_t; \mathcal{W}^\ell) + \frac{1}{\ell}}{\mathcal{N}(b_t; \mathcal{W}^\ell) + \frac{1}{\ell}};$$

Дополнительный критерий остановки:
 увеличение частоты ошибок на контрольной выборке.

Случайный лес и бустинг в сравнении с другими методами

Эксперименты на трёх двумерных модельных выборках:

Решения могут выглядеть странно... тем не менее, RF и бустинг — одни из самых сильных универсальных методов в ML

Эксперименты с алгоритмом классификации AdaBoost

Удивительное отсутствие переобучения вплоть до T=1000 (нижняя кривая — обучение, верхняя — тест):

До этих экспериментов считалось, что увеличение числа параметров неизбежно приводит к переобучению

Schapire, Freund, Lee, Bartlett. Boosting the margin: a new explanation for the effectiveness of voting methods // Annals of Statistics, 1998.

Иногда AdaBoost всё же переобучается...

... но не сильно, и на тысячах базовых классификаторах. Слева: зависимость ошибки на тестовой выборке от $|\mathcal{T}|$. Справа: разделяющая поверхность при переобучении.

G.Rätsch, T.Onoda, K.R.Müller. An improvement of AdaBoost to avoid overfitting. 1998.

Обоснование бустинга (случай классификации на 2 класса)

Усиленная *частота ошибок* классификатора sign b(x), $b \in \mathscr{B}$:

$$u_{\theta}(b, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} [b(x_i)y_i \leqslant \theta], \quad \theta > 0.$$

Обычная частота ошибок $u_0(b,X^\ell)\leqslant
u_{ heta}(b,X^\ell)$ при heta>0.

Teopeма (Freund, Schapire, Bartlett, 1998)

Если $|\mathscr{B}|<\infty$, то orall heta>0, $orall \eta\in(0,1)$ с вероятностью $1-\eta$

$$P[ya(x) < 0] \leqslant \nu_{\theta}(a, X^{\ell}) + C\sqrt{\frac{\ln |\mathscr{B}| \ln \ell}{\ell \theta^2} + \frac{1}{\ell} \ln \frac{1}{\eta}}$$

Основной вывод: оценка зависит от $|\mathscr{B}|$, но не от T. Голосование не увеличивает сложность семейства базовых алгоритмов, а лишь усредняет их ответы.

Обоснование бустинга: что же всё-таки происходит?

Распределение отступов: доля объектов, имеющих отступ меньше заданного θ после 5, 100, 1000 итераций (Задача UCI:vehicle)

- С ростом T распределение отступов сдвигается вправо, то есть бустинг «раздвигает» классы в пространстве векторов растущей размерности $(b_1(x), \ldots, b_T(x))$
- Значит, в оценке можно уменьшать второй член, увеличивая θ при неизменной $\nu_{\theta}(a,X^{\ell})=\nu_{0}(a,X^{\ell}).$
- Можно уменьшить второй член, если уменьшить $|\mathscr{B}|$, то есть взять простое семейство базовых алгоритмов.

Schapire R., Freund Y., Lee W.S., Bartlett P. Boosting the margin: a new explanation for the effectiveness of voting methods. 1998.

Бэггинг не столь успешно раздвигает классы

Ошибки на обучении и тесте. Снизу распределение отступов.

Schapire R., Freund Y., Lee W.S., Bartlett P. Boosting the margin: a new explanation for the effectiveness of voting methods. 1998.

Недостатки AdaBoost

- ullet Чрезмерная чувствительность к выбросам из-за e^{-M}
- Неинтерпретируемое нагромождение из сотен алгоритмов
- Не удаётся строить короткие композиции из «сильных» алгоритмов типа SVM (только длинные из «слабых»)
- Требуются достаточно большие обучающие выборки (бэггинг обходится более короткими)

Способы устранения:

- Отсев выбросов по критерию увеличения веса w;
- Градиентный бустинг с произвольными функциями потерь
- Явная оптимизация распределения отступов

Несколько эмпирических наблюдений:

- Веса алгоритмов не столь важны для выравнивания отступов
- Веса объектов не столь важны для обеспечения различности

Оптимизация распределения отступов на каждом шаге

Идея: явно управлять распределением отступов, максимизируя различность базовых алгоритмов и минимизируя их число.

Возьмём
$$Y = \{\pm 1\}$$
, $b(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$, $C(b) = \text{sign}(b)$.

Критерий качества ансамбля — число ошибок на обучении:

$$Q(a, X^{\ell}) = \sum_{i=1}^{\ell} [y_i a(x_i) < 0] = \sum_{i=1}^{\ell} [\underbrace{y_i b_1(x_i) + \dots + y_i b_T(x_i)}_{M_{iT}} < 0],$$

$$M_{it} = y_i b_1(x_i) + \cdots + y_i b_t(x_i) - \mathit{отступ} \ (\mathsf{margin}) \ \mathsf{объекта} \ x_i.$$

Эвристика: b_t компенсирует ошибки ансамбля,

$$Q(b_t, U_t) = \sum_{x_i \in U_t} [y_i b_t(x_i) < 0] \rightarrow \min_{b_t},$$

$$U_t = \{x_i \colon M_0 < M_{i,t-1} \leqslant M_1\}, \ M_0, M_1$$
 — параметры метода

Формирование выборки для обучения базового алгоритма

Упорядочим объекты по возрастанию отступов $M_{i,t-1}$:

Принцип максимизации и выравнивания отступов.

Два случая, когда b_t на объекте x_i обучать не надо:

$$M_{i,t-1} < M_0$$
, $i < \ell_0$ — объект x_i шумовой;

$$M_{i,t-1} > M_1$$
, $i > \ell_1$ — объект x_i надёжно классифицируется.

Алгоритм ComBoost (Committee Boosting)

```
Вход: обучающая выборка X^{\ell}; параметры T, \ell_0, \ell_1, \ell_2, \Delta \ell;
Выход: b_1, \ldots, b_T
 1: b_1 := \arg\min Q(b, X^{\ell});
    упорядочить X^\ell по возрастанию M_i = y_i b_1(x_i), \ i = 1, \dots, \ell;
 2: для всех t = 1, ..., T
       для всех k = \ell_1, \ldots, \ell_2 с шагом \Delta \ell
 3:
          U_t = \{x_i \in X^\ell : \ell_0 \leqslant i \leqslant k\};
 4:
          b_{tk} := \mathop{\mathsf{arg\,min}} Q(b, U_t) — инкрементное обучение;
 5:
       выбрать наилучший b_t \in \{b_{tk}\} по критерию Q;
 6:
       обновить отступы: M_i := M_i + y_i b_t(x_i), i = 1, \dots, \ell;
 7:
       упорядочить выборку X^{\ell} по возрастанию отступов M_i;
 8:
       опция: скорректировать значения параметров \ell_0, \ell_1, \Delta \ell:
 9:
10: пока Q существенно улучшается.
```

Результаты эксперимента на 4 задачах из репозитория UCI

По 50 случайным разбиениям «обучение : контроль» = 4:1

	ionoshere	pima	bupa	votes
SVM	12,9	24,2	42	4,6
AdaBoost[SVM]	15	22,7	30,6	4
${\tt AdaBoost[SVM]}, {\it T} =$	(65)	(18)	(15)	(8)
ComBoost[SVM]	12,3	22,5	30,9	3,8
${\tt ComBoost[SVM]}, T =$	(5)	(2)	(5)	(3)

- При одинаковом критерии остановки |T| существенно меньше у ComBoost по сравнению с AdaBoost
- ComBoost способен строить ансамбли из небольшого числа сильных и устойчивых базовых алгоритмов

Маценов А. А. Комитетный бустинг: минимизация числа базовых алгоритмов при простом голосовании. ММРО-13, 2007.

Обобщение для задач с произвольным числом классов

Пусть теперь $Y = \{1, ..., M\}$.

Композиция — простое голосование, причём каждый базовый алгоритм b_{yt} голосует только за свой класс y:

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x); \qquad \Gamma_y(x) = \frac{1}{|T_y|} \sum_{t \in T_y} b_{yt}(x).$$

В алгоритме только два изменения:

— изменится определение отступа M_i :

$$M_i = \Gamma_{y_i}(x_i) - \max_{y \in Y \setminus \{y_i\}} \Gamma_y(x_i).$$

— в алгоритме ComBoost на шаге 3 придётся решать, за какой класс строить очередной базовый алгоритм, кроме того, немного изменится шаг 7 (пересчёт отступов).

- Ансамбли позволяют решать сложные задачи, которые плохо решаются отдельными базовыми алгоритмами
- Обычно ансамбль строится *алгоритмом-обёрткой* (envelop): базовые алгоритмы обучаются готовыми методами
- Базовые алгоритмы: компромисс качество/различность
- Две основные эвристики бустинга (и не только AdaBoost):
 - обучать базовые алгоритмы по одному
 - использовать гладкую замену пороговой функции потерь
- Важное открытие середины 90-х: обобщающая способность бустинга не ухудшается с ростом сложности T
- Практическое сравнение бустинга и бэггинга:
 - бустинг лучше для классов с границами сложной формы
 - бэггинг лучше для коротких обучающих выборок
 - бэггинг легче распараллеливается