Theory of Computation

Tutorial 5 - NFAs

Cesare Spinoso-Di Piano

Plan for today

- 1. NFAs
- 2. NFA-to-DFA

NFAs

Introduction to NFAs

Definition. A <u>nondeterministic</u> finite automaton (NFA) M is a 5 element tuple $M = (Q, \Sigma, \delta, q_0, F)$ where

Q is the set of all states

 Σ is the alphabet

* δ is the transition function $\delta: Q \times \{\Sigma \cup \{\lambda\}\} \to 2^Q$

 q_0 is the (unique) initial state

F is the set of final states

A NFA is a machine that reads an input string and decides whether to accept it.

*Unlike a DFA: The transition function of an NFA can accept λ and always returns a set.

Introduction to NFAs

Consider a NFA M

Given a string w, M tries all possible walks. If, at the end of the string, ANY of the walks end in a final state the string is accepted. Otherwise, it is rejected.

Definition. The language L(M) includes all strings (over the alphabet Σ) that are accepted by M.

 $L(M) = \{ \text{strings that drive } \mathbf{M} \text{ to a final state} \}$

Formally:

 $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\text{ contains at least one final state}\}$, where δ^* is the extended transition function $\delta^*:Q\times\Sigma^*\to 2^Q$.

3

Example. The following is an NFA **M** where $L(M) = \{a\} \cup \{a^{2k} : k > 0\} (\Sigma\{a\}).$

L(M) = $\{a\} \cup \{a^{2k} : k > 0\}$ **Input String: ^aa**

L(M) = $\{a\} \cup \{a^{2k} : k > 0\}$ **Input String:** aa

 $\mathbf{L(M)} = \{a\} \cup \{a^{2k} : k > 0\}$

Input String: aa

 $\delta(q_1, a) = \emptyset$, no where to go. Are we done?

 $\mathbf{L(M)} = \{a\} \cup \{a^{2k} : k > 0\}$

Input String: ^aa

Are we done? No, M tries another walk.

L(M) = $\{a\} \cup \{a^{2k} : k > 0\}$ **Input String:** aa

L(M) =
$$\{a\} \cup \{a^{2k} : k > 0\}$$

Input String: aa

One of the possible walks ends in a final state, **M** accepts this string.

L(M) =
$$\{a\} \cup \{a^{2k} : k > 0\}$$

Input String: aaa

In both traces (top and bottom), do not end up in a final state. ${\bf M}$ rejects this string.

Exercise

Exercise. Given the following NFA M,

What is

1.
$$\delta^*(q_0, 01) = ?$$
 Is 01 accepted by this NFA?

NFA-to-DFA

NFA-to-DFA

Given an NFA $N = (Q, \Sigma, \delta, q_0, F)$, how can we convert it to a DFA $M = (Q', \Sigma, \delta', q'_0, F')$?

Converting a NFA to DFA is also called **Subset Construction**.

- 1) Step 1: Start from the initial state S $(S = \{q_0\})$.
- 2) Step 2: For each symbol $a \in \Sigma$, find all the states that can be reached from S: $\delta'(S, a) = \bigcup_{p \in S} \delta(p, a)$.
- 3) Step 3: Repeat Step 2 on every new state that is generated. Repeat until no new states are produced.
- 4) Step 4: Draw the DFA with states and edges from Step 3.

The initial state for the DFA will be $\{q_0\}$. The final states of the DFA will be all those states S that contain a final state from F. If the original NFA N accepts λ , make $\{q_0\}$ a final state.

Example. Convert the following NFA M to a DFA. M is the NFA accepting all strings (over $\Sigma = \{0,1\}$) that end in 01.

Example. Converting the NFA *M* to a DFA:

- 1) Step 1: Start from the start state S. $S = \{q_0\}$
- 2) Step 2: Find all the states that can be reached from S: $\forall a \in \Sigma$,

$$\delta'(S, a) = \bigcup_{p \in S} \delta_N(p, a). \ \delta'(S, 0) = \{q_0, q_1\}, \ \delta'(S, 1) = \{q_0\}$$

Example.

3) Step 3: Repeat Step 2 on every new state that is generated. Repeat until no new states are produced.

	0	1
\rightarrow {q0}	$\{q0, q1\}$	{q0}
{q0, q1}	{q0, q1}	{q0, q2}
*{q0, q2}	{q0, q1}	{q0}

Example.

4) Step 4: Draw the DFA

	0	1
→{q0}	{q0, q1}	{q0}
{q0, q1}	{q0, q1}	{q0, q2}
*{q0, q2}	{q0, q1}	{q0}

Theorem

Theorem. The set of all languages accepted by NFAs is the same as the set of all languages accepted by DFAs. Why?

- 1. Every DFA is an NFA.
- 2. Every NFA can be converted into a DFA.

Corollary. A language is regular if there is an FA (either DFA or NFA) that accepts it.