Динамическое программирование

Что это такое?

Динамическое программирование — это когда у нас есть задача, которую непонятно как решать, и мы разбиваем ее на меньшие задачи, которые тоже непонятно как решать.

Основные принципы

- 1) Что считаем?
- 2) Пересчёт
- 3) Начальные значения
- 4) Порядок пересчёта
- 5) Где ответ?

Числа Фибоначчи

- 1) Что считаем?
- 2) Пересчёт
- 3) Начальные значения
- 4) Порядок пересчёта
- 5) Где ответ?

- 1) Что считаем? F[i] i-е число Фибоначчи
- 2) Пересчёт
- 3) Начальные значения
- 4) Порядок пересчёта
- 5) Где ответ?

- 1) Что считаем? F[i] i-е число Фибоначчи
- 2) Пересчёт
- 3) Начальные значения
- 4) Порядок пересчёта
- 5) Где ответ? F[N]

- 1) Что считаем? F[i] i-е число Фибоначчи
- 2) Пересчёт F[i] = F[i 1] + F[i 2]
- 3) Начальные значения
- 4) Порядок пересчёта
- 5) Где ответ? F[N]

- 1) Что считаем? F[i] i-е число Фибоначчи
- 2) Пересчёт F[i] = F[i 1] + F[i 2]
- 3) Начальные значения F[0] = 0, F[1] = 1
- 4) Порядок пересчёта
- 5) Где ответ? F[N]

- Числа Фибоначчи найти N-е число
- 1) Что считаем? F[i] i-е число Фибоначчи
- 2) Пересчёт F[i] = F[i 1] + F[i 2]
- 3) Начальные значения F[0] = 0, F[1] = 1
- 4) Порядок пересчёта for i = 2 .. N
- 5) Где ответ? F[N]

Исполнитель Калькулятор работает с целыми числами. Он хранит в памяти одно число и может выполнять с ним два действия:

- 1) прибавить 1
- 2) умножить на 3

Программа для Калькулятора — это последовательность команд, в которой могут использоваться только эти две команды (неограниченное число раз). Определите количество различных программ, которые преобразуют число 1 в число 20.

- 1) Что считаем?
- 2) Пересчёт
- 3) Начальные значения
- 4) Порядок пересчёта
- 5) Где ответ?

- 1) Что считаем? dp[i] число способов получить i
- 2) Пересчёт
- 3) Начальные значения
- 4) Порядок пересчёта
- 5) Где ответ?

- 1) Что считаем? dp[i] число способов получить i
- 2) Пересчёт
- 3) Начальные значения
- 4) Порядок пересчёта
- 5) Где ответ? dp[20]

- 1) Что считаем? dp[i] число способов получить i
- 2) Пересчёт
- Начальные значения dp[1] = 1
- 4) Порядок пересчёта
- 5) Где ответ? dp[20]

- 1) Что считаем? dp[i] число способов получить i
- 2) Пересчёт
- Начальные значения dp[1] = 1
- 4) Порядок пересчёта і = 2 .. 20
- 5) Где ответ? dp[20]

- 1) Что считаем? dp[i] число способов получить i
- 2) Пересчёт dp[i] = dp[i 1]
- 3) Начальные значения dp[1] = 1
- 4) Порядок пересчёта і = 2 .. 20
- 5) Где ответ? dp[20]

```
1) Что считаем? dp[i] — число способов получить i
2) Пересчёт dp[i] = dp[i - 1] + dp[i / 3], i % 3 == 0
3) Начальные значения dp[1] = 1

 Порядок пересчёта і = 2 .. 20

5) Где ответ? dp[20]
dp[1] = 1
for i = 2 ... 20:
  dp[i] = dp[i - 1]
  if (i \% 3 == 0):
       dp[i] += dp[i / 3]
```

Исполнитель Калькулятор работает с целыми числами. Он хранит в памяти одно число и может выполнять с ним два действия:

- 1) прибавить 1
- 2) умножить на 3

Программа для Калькулятора — это последовательность команд, в которой могут использоваться только эти две команды (неограниченное число раз). Определите количество различных программ, которые преобразуют число 1 в число 20 и при этом траектория вычислений не содержит числа 9? Например, программа 121 будет состоять из чисел 2, 6 и 7.

```
1) Что считаем? dp[i] — число способов получить i
2) Пересчёт dp[i] = dp[i - 1] + dp[i / 3], i % 3 == 0
3) Начальные значения dp[1] = 1

 Порядок пересчёта і = 2 .. 20

5) Где ответ? dp[20]
dp[1] = 1
for i = 2 ... 20:
  dp[i] = dp[i - 1]
  if (i \% 3 == 0):
       dp[i] += dp[i / 3]
```

```
1) Что считаем? dp[i] — число способов получить i
2) Пересчёт dp[i] = dp[i - 1] + dp[i / 3], i % 3 == 0
3) Начальные значения dp[1] = 1

 Порядок пересчёта і = 2 .. 20

5) Где ответ? dp[20]
dp[1] = 1
for i = 2 ... 20:
   if i == 9:
        dp[i] = 0
   dp[i] = dp[i - 1]
   if (i \% 3 == 0):
        dp[i] += dp[i/3]
```

Исполнитель Калькулятор работает с целыми числами. Он хранит в памяти одно число и может выполнять с ним два действия:

- 1) прибавить 1
- 2) умножить на 3

Программа для Калькулятора — это последовательность команд, в которой могут использоваться только эти две команды (неограниченное число раз). Определите количество различных программ, которые преобразуют число 1 в число 20 и при этом траектория вычислений содержит число 9? Например, программа 121 будет состоять из чисел 2, 6 и 7.

```
1) Что считаем? dp[i] – число способов получить i
2) Пересчёт dp[i] = dp[i - 1] + dp[i / 3], i % 3 == 0
3) Начальные значения dp[1] = 1

 Порядок пересчёта і = 2 .. 20

5) Где ответ? dp[20]
dp[1] = 1
for i = 2 ... 20:
  dp[i] = dp[i - 1]
  if (i % 3 == 0 \&\& (i < 10 \text{ or } i >= 27)):
       dp[i] += dp[i / 3]
```

Найти количество последовательностей длины N, состоящих из нулей и единиц, таких, что в них нет двух подряд идущих нулей.

Найти количество последовательностей длины N, состоящих из нулей и единиц, таких, что в них нет двух подряд идущих нулей.

N = 2

01

10

11

Найти количество последовательностей длины N, состоящих из нулей и единиц, таких, что в них нет двух подряд идущих нулей.

```
N = 3
000 100
001 101
010 110
011 111
```

Найти количество последовательностей длины N, состоящих из нулей и единиц, таких, что в них нет двух подряд идущих нулей.

```
N = 3

000 100

001 101

010 110

011 111
```

Все хорошие последовательности делятся на два типа:

Все хорошие последовательности делятся на два типа:

1) Оканчивающиеся на 0

Все хорошие последовательности делятся на два типа:

- 1) Оканчивающиеся на 0
- 2) Оканчивающиеся на 1

Все хорошие последовательности делятся на два типа:

- 1) Оканчивающиеся на 0
- 2) Оканчивающиеся на 1

Ответ -1) + 2)

Все хорошие последовательности делятся на два типа:

- 1) Оканчивающиеся на 0 (dp0)
- 2) Оканчивающиеся на 1 (dp1)

Ответ
$$-1$$
) + 2) (dp0 + dp1)

Все хорошие последовательности делятся на два типа:

- 1) Оканчивающиеся на 0 (dp0)
- 2) Оканчивающиеся на 1 (dp1)

Ответ
$$-1$$
) + 2) (dp0 + dp1)

Как получить последовательность длины N?

Все хорошие последовательности делятся на два типа:

- 1) Оканчивающиеся на 0 (dp0)
- 2) Оканчивающиеся на 1 (dp1)

Ответ
$$-1$$
) + 2) (dp0 + dp1)

Как получить последовательность длины N? Дописать в конец последовательности длины N — 1 0 или 1

Все хорошие последовательности делятся на два типа:

Посчитаем dp0[i] и dp1[i]

Все хорошие последовательности делятся на два типа:

Посчитаем dp0[i] и dp1[i]

dp0[i] =

Все хорошие последовательности делятся на два типа:

Посчитаем dp0[i] и dp1[i]

dp0[i] = dp1[i - 1]

Все хорошие последовательности делятся на два типа:

Посчитаем dp0[i] и dp1[i]

Все хорошие последовательности делятся на два типа:

Посчитаем dp0[i] и dp1[i]

Все хорошие последовательности делятся на два типа:

Посчитаем dp0[i] и dp1[i]

```
dp0[i] = dp1[i - 1]
dp1[i] = dp1[i - 1] + dp0[i - 1]
Ответ: dp0[N] + dp1[N]
```

Все хорошие последовательности делятся на два типа:

Посчитаем dp0[i] и dp1[i]

```
dp0[i] = dp1[i - 1]
dp1[i] = dp1[i - 1] + dp0[i - 1]
Ответ: dp0[N] + dp1[N]
```

База: dp0[1] = dp1[1] = 1

Задача 5

Прямоугольник разлинован на N * M клеток (1 < N, M <= 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз - в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. На поле могут быть стенки. При врезании в стенку робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа без пробела - сначала максимальную сумму, затем минимальную.

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53			

Dp[i][j]

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53			

Dp[i][j] – минимальная сумма, которую получаем, попадая в клетку (i, j)

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53			

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134		

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153		

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					
189					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					
189					
257					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					
189					
257					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i],

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1 dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 ... N - 1

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1 dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 ... N - 1 Как считать dp[i][j]?

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1 dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 ... N - 1

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119					
168					
189					
257					

dp[i][j] – минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 .. N - 1

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144				
168					
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1 dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 ... N - 1 Как считать dp[i][j]? Это минимум из значений сверху и слева dp[i][i]

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174			
168					
189					
257					

dp[i][j] – минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 .. N - 1

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210		
168					
189					
257					

dp[i][j] – минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 .. N - 1

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	
168					
189					
257					

dp[i][j] – минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 .. N - 1

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168					
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1 dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 ... N - 1 Как считать dp[i][j]? Это минимум из значений сверху и слева dp[i][j]

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225				
189					
257					

dp[i][j] – минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 .. N - 1

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189			
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1 dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 ... N - 1 Как считать dp[i][j]? Это минимум из значений сверху и слева + a[i][j]

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228		
189					
257					

dp[i][j] – минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 .. N - 1

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1 dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 ... N - 1 Как считать dp[i][j]? Это минимум из значений сверху и слева dp[i][i]

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189					
257					

dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1 dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 ... N - 1 Как считать dp[i][j]? Это минимум из значений сверху и слева + a[i][j]

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278				
257					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214			
257					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214	312		
257					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214	312	367	
257					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214	312	367	343
257					

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214	312	367	343
257	304				

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214	312	367	343
257	304	275			

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214	312	367	343
257	304	275	312		

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214	312	367	343
257	304	275	312	406	

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214	312	367	343
257	304	275	312	406	415

53	81	19	45	26	49
66	25	30	36	16	36
49	81	15	39	73	2
21	89	25	98	68	79
68	47	61	37	94	72

53	134	153	198	224	273
119	144	174	210	226	262
168	225	189	228	299	264
189	278	214	312	367	343
257	304	275	312	406	415

```
dp[i][j] — минимальная сумма, которую получаем, попадая в клетку (i, j) В крайние клетки можно попасть только по одному направлению dp[0][i] = dp[0][i - 1] + a[0][i], i = 1 ... M - 1 dp[i][0] = dp[i - 1][0] + a[i][0], i = 1 ... N - 1 Как считать dp[i][j]? Это минимум из значений сверху и слева + a[i][j] dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + a[i][j]
```

Дана числовая последовательность, требуется найти длину наибольшей возрастающей подпоследовательности.

Дана числовая последовательность, требуется найти длину наибольшей возрастающей подпоследовательности.

Пример:

6 3 29 5 5 28 6

Дана числовая последовательность, требуется найти длину наибольшей возрастающей подпоследовательности.

Пример:

6 3 29 5 5 28 6

Ответ – 3

Дана числовая последовательность, требуется найти длину наибольшей возрастающей подпоследовательности.

Пример:

6 3 29 5 5 28 6

Ответ -3 (3, 5, 6 -2 раза)

Дана числовая последовательность, требуется найти длину наибольшей возрастающей подпоследовательности.

Пример:

6 3 29 5 5 28 6

Ответ -3 (3, 5, 6 -2 раза, 3 5 28 -2 раза)

dp[i] — длина наидлиннейшей ВП, последний элемент которой равен a[i]

dp[i] – длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

dp[i] – длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

dp[i] – длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

Как делать пересчёт?

dp[i] – длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

Как делать пересчёт?

a[i] может быть последним элементом, если он больше всех, в том числе предпоследнего

dp[i] – длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

Как делать пересчёт?

a[i] может быть последним элементом, если он больше всех, в том числе предпоследнего

Просмотрим все элементы левее и меньше a[i] и посмотрим длины последовательностей, которые они образуют

dp[i] – длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

Как делать пересчёт?

a[i] может быть последним элементом, если он больше всех, в том числе предпоследнего

Просмотрим все элементы левее и меньше a[i] и посмотрим длины последовательностей, которые они образуют. Выгоднее взять элемент, который последний в самой длинной последовательности

dp[i] — длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

Как делать пересчёт?

a[i] может быть последним элементом, если он больше всех, в том числе предпоследнего

Просмотрим все элементы левее и меньше a[i] и посмотрим длины последовательностей, которые они образуют. Выгоднее взять элемент, который последний в самой длинной последовательности dp[i] = max(dp[j]) + 1

dp[i] – длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

Как делать пересчёт?

a[i] может быть последним элементом, если он больше всех, в том числе предпоследнего

Просмотрим все элементы левее и меньше a[i] и посмотрим длины последовательностей, которые они образуют. Выгоднее взять элемент, который последний в самой длинной последовательности dp[i] = max(dp[j]) + 1, j < i, a[j] < a[i]

dp[i] — длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

Как делать пересчёт?

a[i] может быть последним элементом, если он больше всех, в том числе предпоследнего

Просмотрим все элементы левее и меньше a[i] и посмотрим длины последовательностей, которые они образуют. Выгоднее взять элемент, который последний в самой длинной последовательности dp[i] = max(dp[j]) + 1, j < i, a[j] < a[i] (a[j] — предпоследний, a[i] — последний)

dp[i] — длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

Как делать пересчёт?

a[i] может быть последним элементом, если он больше всех, в том числе предпоследнего

Просмотрим все элементы левее и меньше a[i] и посмотрим длины последовательностей, которые они образуют. Выгоднее взять элемент, который последний в самой длинной последовательности dp[i] = max(dp[j]) + 1, j < i, a[j] < a[i] (a[j] — предпоследний, a[i] — последний) Где ответ?

dp[i] — длина наидлиннейшей ВП, последний элемент которой равен a[i]

База: dp[i] = 1

Как делать пересчёт?

a[i] может быть последним элементом, если он больше всех, в том числе предпоследнего

Просмотрим все элементы левее и меньше a[i] и посмотрим длины последовательностей, которые они образуют. Выгоднее взять элемент, который последний в самой длинной последовательности dp[i] = max(dp[j]) + 1, j < i, a[j] < a[i] (a[j] — предпоследний, a[i] — последний) Где ответ? Это максимальное значение в массиве dp.