TRABAJO PRÁCTICO NRO 2 SEMINARIO DE PRÁCTICA DE INFORMATICA

Sistema de Gestión Integral para una Clínica de Salud

Antonella Diaz DNI 28.910.424 VINFOR12606

Índice

- 1. Etapa de análisis.
- 2. Etapa de diseño.
- 3. Etapa de implementación.
- 4. Etapa de pruebas.
- 5. Definición de base de datos para el sistema.
- 6. Diagrama entidad-relación de la base de datos.
- 7. Creación de las tablas MySQL.
- 8. Inserción, consulta y borrado de registros.
- 9. Presentación de las consultas SQL.
- 10. Definiciones de comunicación.

1. Etapa de Análisis

1. Recolección de Información:

- Entrevistas con Personal: Realizar entrevistas con médicos, enfermeras, administrativos y otros usuarios clave del sistema.
- Análisis de Procesos Existentes: Revisar los procedimientos actuales para identificar puntos de mejora.
- Revisión de Documentación: Examinar documentos, registros y sistemas actuales usados por la clínica.

2. Requerimientos del Sistema

- 1. Gestión de Citas
 - Programación de citas médicas
 - Recordatorios automáticos
 - Cancelación o reprogramación de citas
- 2. Historias Clínicas Electrónicas
 - Creación y gestión de historias clínicas
 - Seguridad y confidencialidad de datos
- 3. Gestión de Inventarios
 - Registro de inventarios
 - Alertas automáticas
- 4. Facturación y Pagos
 - Generación de facturas
 - Integración con sistemas de pago
- 5. Reportes de Gestión
 - Generación de reportes personalizables

3. Casos de Uso

1. Programación de Citas

- Actor Principal: Paciente
- Descripción: El paciente programa una cita médica seleccionando médico, fecha y hora.
- Precondiciones: El paciente debe estar registrado en el sistema.
- Postcondiciones: La cita queda registrada en el sistema y el paciente recibe un recordatorio.

2. Gestión de Historias Clínicas

- Actor Principal: Médico
- Descripción: El médico registra una nueva historia clínica o actualiza una existente.
- Precondiciones: El paciente debe tener una cita con el médico.
- Postcondiciones: La información médica queda registrada en el sistema de forma segura.

2. Etapa de Diseño

Arquitectura del Sistema

- Frontend: Aplicación web con HTML, CSS y JavaScript.
- Backend: API RESTful con Node.js y Express.
- Base de Datos: MySQL.

Modelo de Datos Relacional

1. Pacientes

- id (PK)
- nombre
- apellido
- fecha_nacimiento
- dirección
- teléfono

• correo_electrónico

2. Médicos

- id (PK)
- nombre
- apellido
- especialidad
- teléfono
- correo_electrónico

3. Citas

- id (PK)
- paciente_id (FK)
- medico_id (FK)
- fecha_hora
- estado

4. Historias_Clinicas

- id (PK)
- paciente_id (FK)
- medico_id (FK)
- fecha
- detalles

5. Inventarios

- id (PK)
- producto
- cantidad
- fecha_vencimiento
- proveedor_id (FK)

6. Facturas

• id (PK)

- paciente_id (FK)
- fecha
- total
- estado

7. Proveedores

- id (PK)
- nombre
- contacto

8. Reportes

- id (PK)
- tipo_reporte
- fecha_creacion
- detalles

3. Etapa de Implementación

1 Desarrollo del Sistema:

- Creación de Módulos: se desarrolla cada módulo del sistema de acuerdo con los requerimientos funcionales.
- Integración de Módulos: nos aseguramos que los módulos se comuniquen e integren correctamente.

2. Base de Datos:

- Definición de Tablas MySQL: se crea las tablas de la base de datos de acuerdo con el modelo de datos relacional.
- Implementación de Relaciones y Restricciones: se definer claves primarias, claves foráneas y restricciones para mantener la integridad de los datos.

3. Inserción, Consulta y Borrado de Registros:

• Operaciones CRUD: se implementa funciones para crear, leer, actualizar y eliminar registros en la base de datos.

4. Etapa de Pruebas

Documentación de Pruebas

1. Pruebas Unitarias

- Objetivo: Verificar que cada unidad de código funcione correctamente.
- Método: Uso de frameworks de prueba como Mocha y Chai para Node.js.

2. Pruebas de Integración

- Objetivo: Verificar que las diferentes unidades de código funcionen juntas correctamente.
- Método: Simulación de interacciones entre los módulos del sistema.

3. Pruebas de Sistema

- Objetivo: Verificar que el sistema en su conjunto funcione según lo esperado.
- Método: Ejecución de casos de uso completos.

4. Pruebas de Usuario

- Objetivo: Asegurar que el sistema cumpla con las expectativas de los usuarios finales.
- Método: Realización de pruebas con usuarios reales y recopilación de feedback.

5. Definición de Base de Datos para el Sistema

Descripción de Tablas y Relaciones

- Pacientes y Médicos son entidades clave con relaciones uno-a-muchos con Citas.
- Historias_Clinicas está relacionada con Pacientes y Médicos.

 Inventarios y Facturas están relacionadas con Proveedores y Pacientes, respectivamente.

6. Diagrama Entidad-Relación de la Base de Datos

Entidades y Relaciones

1. Pacientes

 Atributos: id (PK), nombre, apellido, fecha_nacimiento, dirección, teléfono, correo_electrónico

2. Médicos

 Atributos: id (PK), nombre, apellido, especialidad, teléfono, correo_electrónico

3. Citas

- Atributos: id (PK), paciente_id (FK), medico_id (FK), fecha_hora, estado
- Relaciones:
 - Cada cita está asociada con un paciente.
 - Cada cita está asociada con un médico.

4. Historias_Clinicas

- Atributos: id (PK), paciente_id (FK), medico_id (FK), fecha, detalles
- Relaciones:
 - Cada historia clínica está asociada con un paciente.
 - Cada historia clínica está asociada con un médico.

5. Inventarios

- Atributos: id (PK), producto, cantidad, fecha_vencimiento, proveedor_id (FK)
- Relaciones:
 - Cada inventario está asociado con un proveedor.

6. Facturas

- Atributos: id (PK), paciente_id (FK), fecha, total, estado
- Relaciones:
 - Cada factura está asociada con un paciente.

7. Proveedores

• Atributos: id (PK), nombre, contacto

8. Reportes

• Atributos: id (PK), tipo_reporte, fecha_creacion, detalles

```
+----+
                                   +----+
+----+
                 | Médicos |
| Pacientes |
                                  | Proveedores |
                 +----+
          1
                            1
| id (PK)
                 | id (PK)
                                  | id (PK)
| nombre
                 | nombre
                            - 1
                                   | nombre
                 | apellido
| apellido
                                   | contacto
| fecha nacimiento|
                 | especialidad |
                                   +----+
| direccion |
                 | telefono
| telefono
                 | correo electro |
                 +----+
| correo_electro |
+----+
    +----+
                 +----+
   Citas |
                 |Historias Clinicas|
                                   | Inventarios |
| id (PK) |
                 | id (PK)
                                   | id (PK)
                                   | producto
| paciente_id (FK) | <-----| paciente_id (FK) |
| medico id (FK) |
                 | medico id (FK) |---->| proveedor id (FK)|
                                   | cantidad |
| fecha hora
                | fecha
                             1
          | detalles
                             1
| estado
                                   | fecha_vencimiento|
                                   +----+
                 +----+
+----+
  Facturas |
+----+
| id (PK) |
| paciente_id (FK)|
| fecha
| total
+----+
| Reportes |
+----+
| id (PK)
| tipo_reporte |
| fecha_creacion |
| detalles |
+----+
```

Descripción del Diagrama

- Pacientes y Médicos son entidades principales que tienen relaciones unoa-muchos con Citas y Historias_Clinicas.
- Citas y Historias_Clinicas tienen claves foráneas que se refieren a Pacientes y Médicos.
- Inventarios tiene una relación con Proveedores.
- Facturas está asociada con Pacientes.

Reportes es una entidad independiente que almacena información sobre los reportes generados por el sistema

7. Creación de las Tablas MySQL

Scripts SQL para la Creación de Tablas

```
-- Creación de la tabla de Pacientes
CREATE TABLE Pacientes (
   id INT AUTO INCREMENT PRIMARY KEY,
   nombre VARCHAR (50),
   apellido VARCHAR(50),
    fecha_nacimiento DATE,
    direccion VARCHAR (100),
    telefono VARCHAR(20),
    correo_electronico VARCHAR(50)
);
-- Creación de la tabla de Médicos
CREATE TABLE Medicos (
    id INT AUTO_INCREMENT PRIMARY KEY,
   nombre VARCHAR(50),
    apellido VARCHAR(50),
    especialidad VARCHAR(50),
    telefono VARCHAR(20),
   correo electronico VARCHAR (50)
);
-- Creación de la tabla de Citas
CREATE TABLE Citas (
   id INT AUTO INCREMENT PRIMARY KEY,
   paciente id INT,
   medico id INT,
    fecha_hora DATETIME,
    estado VARCHAR(20),
    FOREIGN KEY (paciente_id) REFERENCES Pacientes(id),
    FOREIGN KEY (medico_id) REFERENCES Medicos(id)
-- Creación de la tabla de Historias Clínicas
CREATE TABLE Historias Clinicas (
   id INT AUTO_INCREMENT PRIMARY KEY,
   paciente id INT,
    medico_id INT,
    fecha DATE,
    FOREIGN KEY (paciente id) REFERENCES Pacientes (id),
    FOREIGN KEY (medico id) REFERENCES Medicos(id)
);
-- Creación de la tabla de Inventarios
CREATE TABLE Inventarios (
    id INT AUTO INCREMENT PRIMARY KEY,
   producto VARCHAR (100),
```

```
cantidad INT,
    fecha vencimiento DATE,
    proveedor id INT,
    FOREIGN KEY (proveedor_id) REFERENCES Proveedores(id)
-- Creación de la tabla de Facturas
CREATE TABLE Facturas (
   id INT AUTO INCREMENT PRIMARY KEY,
   paciente_id INT,
fecha DATE,
   total DECIMAL(10, 2),
    estado VARCHAR(20),
   FOREIGN KEY (paciente_id) REFERENCES Pacientes(id)
-- Creación de la tabla de Proveedores
CREATE TABLE Proveedores (
   id INT AUTO INCREMENT PRIMARY KEY,
   nombre VARCHAR(100),
   contacto VARCHAR(100)
-- Creación de la tabla de Reportes
CREATE TABLE Reportes (
   id INT AUTO_INCREMENT PRIMARY KEY,
    tipo_reporte VARCHAR(50),
    fecha_creacion DATE,
   detalles TEXT
```

8. Inserción, consulta y borrado de registros.

Inserción:

```
INSERT INTO Pacientes (nombre, apellido, fecha_nacimiento, dirección, teléfono, correo_electrónico)
VALUES ('Juan', 'Pérez', '1985-03-15', 'Calle Falsa 123', '123456789',
'juan.perez@example.com');
```

Consulta:

```
SELECT * FROM Pacientes WHERE apellido = 'Pérez';
```

Borrado:

```
DELETE FROM Pacientes WHERE id = 1;
```

9. Presentación de las consultas SQL.

Consultas Ejemplos:

1. Listar citas por médico:

```
SELECT * FROM Citas WHERE medico_id = 1;
```

2. Buscar pacientes por nombre:

```
SELECT * FROM Pacientes WHERE nombre LIKE '%Juan%';
```

3. Inventario próximo a vencer:

```
SELECT * FROM Inventarios WHERE fecha vencimiento < CURDATE() + INTERVAL 30 DAY;
```

10. Definiciones de Comunicación

Entorno de Red

- Protocolos de Red: Utilización de HTTP/HTTPS para la comunicación web.
- Infraestructura Física: Descripción de los servidores, routers y otros dispositivos de red necesarios para soportar el sistema.

Control de Enlace de Datos

- Seguridad en la Transmisión: Implementación de SSL/TLS para asegurar la transmisión de datos entre el sistema y los usuarios.
- Integridad y Confidencialidad: Uso de cifrado de datos y autenticación de usuarios para proteger la información sensible.

Interoperabilidad

- Estándares de Comunicación: Adopción de estándares como HL7 para asegurar la interoperabilidad con otros sistemas de salud.
- API y Web Services: Definición de APIs y servicios web para facilitar la integración con sistemas externos y permitir el acceso a funcionalidades específicas del sistema.