A prova contém quatros exercícios, que totalizam 10 pontos. Serão consideradas nulas soluções sem adequada explicação do procedimento utilizado. Boa sorte!

Nome do estudante:

Nome do professor: Jacopo Viti

1 Parte A: Definições, notações, resultados úteis

Todas as coordenadas se referem à base canônica \vec{e}_1 , \vec{e}_2 \vec{e}_3 do espaço (\mathbb{R}^3). Supomos então $\vec{v} = x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3$ e $\vec{w} = x'\vec{e}_1 + y'\vec{e}_2 + z'\vec{e}_3$

- Produto escalar em coordenadas: $\langle \vec{v}, \vec{w} \rangle = xx' + yy' + zz'$.
- Produto vetorial em coordenadas: $\vec{v} \times \vec{w} = (yz' zy')\vec{e}_1 (xz' zx')\vec{e}_2 + (xy' yx')\vec{e}_3$
- \bullet O plano gerado por \vec{v} e \vec{w} contem todos os vetores da forma $x_1\vec{v}+x_2\vec{w}$

2 Parte B: Exercícios (cada exercício vale 2.5pts)

- 1. Considere no espaço um plano π que contem os dois vetores $\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ e $\vec{w} = \begin{bmatrix} \frac{1}{3} \\ 1 \\ -1 \end{bmatrix}$.
 - (a) Estabeleça se o ponto $P \equiv (1,2,3)$ está no plano π (1pt)
 - (b) Estabeleça se o ponto $Q \equiv (2, 1, -1)$ está no plano π (1pt)
 - (c) Determine a distancia entre $P \in Q (0.5)$.
- 2. Considere no plano um sistema de referencia cartesiana com origem em O. Seja A=(-2,-3) e considere a reta r de equação cartesiana y=-x-5.
 - (a) Verifique que r passa para A e calcule a interseção B de r com o eixo x. (0.5pt)
 - (b) Desenhe o triângulo OAB (0.5pt)
 - (c) Calcule a distancia entre A e B (0.5pt)
 - (d) Calcule o cosseno do ângulo entre as os vetores \vec{AO} e \vec{AB} (1pt).
- 3. Responda às seguintes perguntas verdadeiro ou falso, justificando a lógica utilizada (0.5 cada resposta correta).
 - (a) Se a=-1, os vetores $\vec{v}=\begin{bmatrix}1\\a\\2\end{bmatrix}$ e $\vec{w}=\begin{bmatrix}\frac{1}{2}\\\frac{3}{2}\\\frac{1}{2}\end{bmatrix}$ são ortogonais?

- (b) Resulta sempre $|\vec{u} + \vec{v}| \ge |\vec{u} \vec{v}|$? Justifique a resposta com um exemplo.
- (c) Supomos \vec{u} e \vec{v} não paralelos. O vetor $\vec{u} \times (\vec{u} \times \vec{v})$ está no plano que contem \vec{u} e \vec{v} ? Justifique a resposta com um exemplo.
- (d) Se \vec{v} é ortogonal a \vec{u} e \vec{w} então é ortogonal também a $\vec{u} \vec{w}$? Justifique a resposta com um exemplo.

(e) Se
$$a = \frac{1}{3}$$
, os vetores $\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ e $\vec{w} = \begin{bmatrix} a \\ \frac{1}{3} \\ -\frac{2}{3} \end{bmatrix}$ são paralelos?

- 4. Considere no espaço os planos
 - π_1 gerado pelos vetores $\vec{OA} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ e $\vec{OB} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$
 - π_2 gerado pelos vetores $\vec{OA} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ e $\vec{OC} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

O ângulo entre dois planos π_1 e π_2 é o ângulo entre dois vetores \vec{N}_1 e \vec{N}_2 que são ortogonais a estes planos.

- (a) Desenhe os três vetores \vec{OA} , \vec{OB} e \vec{OC} no espaço (0.5pt).
- (b) Calcule um vetor \vec{N}_1 ortogonal ao plano π_1 (0.5pt)
- (c) Calcule um vetor \vec{N}_2 ortogonal ao plano π_2 (0.5pt)
- (d) Determine o **cosseno do ângulo** entre os dois planos π_1 e π_2 (1pt). O ângulo é maior que 90°?