## **Assignment 9**

#### Part 1

### Matlab Code

```
sigma = 0.1;
alpha1 = -0.5;
alpha2 = 0.5;
mu1 = sqrt(sigma)*randn;
mu2 = sqrt(sigma)*randn;
mu3 = sqrt(sigma)*randn;
n = 200;
Y = zeros(2,n);
z = zeros(1,n);
for t = 2:n
    Y(2,t) = Y(1,t-1) + mu1;
    Y(1,t) = alpha1*Y(1,t-1) + alpha2*Y(2,t-1) + mu2;
    z(t) = Y(1,t) + mu3;
end
t = 1:n;
hold on;
plot(t,Y(1,:));
plot(t,Y(2,:));
hold off;
```



#### Part 2

### Matlab Code

```
beta = 0.1;
sigma = 0.1;
mu1 = sqrt(sigma)*randn;
mu2 = sqrt(sigma)*randn;
mu3 = sqrt(sigma)*randn;
n = 200;
Y = zeros(2, n+1);
z = zeros(1,n+1);
alpha 1 = [-0.5 \ 1 \ 0.5];
alpha 2 = [0.5 -1 -0.5];
mode = randi(3);
for t = 2:n+1
    alpha1 = alpha 1(mode);
    alpha2 = alpha^{-}2 (mode);
    Y(2,t) = Y(1,t-1) + mu1;
    Y(1,t) = alpha1*Y(1,t-1) + alpha2*Y(2,t-1) + mu2;
    z(t) = Y(1,t) + mu3;
    redraw = binornd(1,beta);
    mode = mode*(1-redraw) + randi(3)*redraw;
end
t = 1:n+1;
hold on;
plot(t,Y(1,:));
plot(t, Y(2, :));
xlabel('t');
legend('y(1)','y(2)');
hold off;
```



## **Graphical Representation**



# Transition table for P(m(t) | m(t-1)) , $\beta$ = 0.1

|             | Mode at t | 1           | 2            | 3           |
|-------------|-----------|-------------|--------------|-------------|
| Mode at t-1 |           |             |              |             |
| 1           |           | 0.93333333  | 0.0333333333 | 0.033333333 |
| 2           |           | 0.033333333 | 0.93333333   | 0.033333333 |
| 3           |           | 0.033333333 | 0.033333333  | 0.93333333  |