

기본 모델: 환경

!nvidia-	smi								
Wed Jul 24	13:19:12 2	024							
NVIDIA-SM	I 550.90.0				Version:		0.07	CUDA Versio	on: 12.4
GPU Name Fan Temp 		Per	rsiste	nce-M e/Cap 	Bus-Id	Memo			Uncorr. ECC Compute M. MIG M.
0 Tesl		3	 30W <u>/</u>	Off	00000	000:00	 :04.0 Off 15360MiB		0 Default N/A
+	P0		26W <u>/</u>	70W	2731	MiB /		l 0% I	0 Default N/A
+		PID 1	Гуре ======	Proces	ss name	=====			GPU Memory Usage

기본 모델 : 모델 정의

하이퍼파라미터, 모델 구조, 모델 요약

```
# LeNet5 모델 정의
# 하이퍼파라미터 설정
                                    class LeNet5(nn.Module):
RANDOM\_SEED = 4242
                                        def __init__(self, num_classes):
BATCH SIZE = 64
                                            super(LeNet5, self).__init__()
EPOCHS = 20
                                            self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
IMG_SIZE = 32
                                            self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
                                            self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
NUM_CLASSES = 10
                                            self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
                                            self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1)
# 하이퍼파리미터-학습률 스케줄링 설정
                                            self.fc6 = nn.Linear(120, 84)
def lr_schedule(epoch):
                                            self.fc7 = nn.Linear(84, num_classes)
    if epoch \leq 2:
                                                                                                          Layer (type:depth-idx)
                                                                                                                                               Output Shape
                                                                                                                                                                      Param #
                                        def forward(self, x):
   lr = 5e-4
                                            x = F.tanh(self.conv1(x))
                                                                                                                                              [1, 10]
                                                                                                         LeNet5
     elif epoch ≤ 5:
                                            x = self.pool2(x)
                                                                                                          ├Conv2d: 1-1
                                                                                                                                              [1, 6, 28, 28]
                                                                                                                                                                      156
   lr = 2e-4
                                            x = F.tanh(self.conv3(x))
                                                                                                                                              [1, 6, 14, 14]
                                                                                                          —AvgPool2d: 1-2
                                            x = self.pool4(x)
                                                                                                                                              [1, 16, 10, 10]
                                                                                                          ├Conv2d: 1-3
                                                                                                                                                                      2,416
     elif epoch ≤ 9:
                                            x = F.tanh(self.conv5(x))
                                                                                                          ⊢AvaPool2d: 1-4
                                                                                                                                              [1, 16, 5, 5]
   1r = 5e-5
                                            x = x.view(x.size(0), -1)
                                                                                                          -Conv2d: 1-5
                                                                                                                                              [1, 120, 1, 1]
                                                                                                                                                                      48,120
     else:
                                                                                                          ⊢Linear: 1-6
                                                                                                                                              [1, 84]
                                                                                                                                                                      10,164
                                            x = self.fc6(x)
                                                                                                          ⊢Linear: 1-7
    lr = 1e-5
                                            x = F.tanh(x)
    return lr
                                                                                                         Total params: 61,706
                                            logits = self.fc7(x)
                                                                                                         Trainable params: 61,706
                                                                                                         Non-trainable params: 0
                                            return logits
                                                                                                          Total mult-adds (M): 0.42
                                    torchinfo.summary(LeNet5(NUM_CLASSES), input_size=(1, 1, 32, 32))
                                                                                                         Input size (MB): 0.00
                                                                                                         Forward/backward pass size (MB): 0.05
                                                                                                         Params size (MB): 0.25
                                                                                                         Estimated Total Size (MB): 0.30
```

기본 모델 : 데이터 정의

70.000장의 데이터를 모두 모으고 70:15:15 비율로 무작위 분리

```
# transforms 정의하기
transform = transforms.Compose([transforms.Resize((32, 32)), transforms.ToTensor()])
# 데이터셋 다운로드 및 생성
full_dataset = datasets.MNIST(root="mnist_data", train=True, transform=transform, download=True)
full_dataset = ConcatDataset([full_dataset, datasets.MNIST(root="mnist_data", train=False, transform=transform)])
total_size = len(full_dataset)
train_size = int(0.7 * total_size)
valid_size = int(0.15 * total_size)
test_size = total_size - train_size - valid_size
train_dataset, valid_dataset, test_dataset = random_split(full_dataset, [train_size, valid_size, test_size])
# 데이터 로더 정의
train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_dataset, batch_size=BATCH_SIZE, shuffle=False)
test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False)
```

train dataset size: 49000 valid dataset size: 10500 test dataset size: 10500

MNIST Dataset

04/9213143 5361728694 09/1243273 8690560761 819398593

기본 모델: 학습

20 에포크 학습, 학습 후 테스트 셋을 이용한 성능 확인

Activation Function 변형

relu tanh leaky-relu

ReLU

```
def forward(self, x):
    x = F.tanh(self.conv1(x))
    x = self.pool2(x)
    x = F.tanh(self.conv3(x))
    x = self.pool4(x)
    x = F.tanh(self.conv5(x))
    x = x.view(x.size(0), -1)
    x = self.fc6(x)
    x = F.tanh(x)
    logits = self.fc7(x)
    return logits
```



```
def forward(self, x):
    x = self.conv1(x)
                           R(z) = max(0, z)
    x = F.relu(x)
    x = self.pool2(x)
    x = self.conv3(x)
    x = F.relu(x)
    x = self.pool4(x)
    x = self.conv5(x)
    x = F.relu(x)
    x = x.view(x.size(0), -1)
    x = self.fc6(x)
    x = F.relu(x)
    logits = self.fc7(x)
    return logits
```


 $f(y) \uparrow$

Activation Function 변형

tanh relu leaky-relu

	loss	accuracy(%)
epoch20, train	0.0054	99.84
epoch20, valid	0.0461	98.80
test set	0.0522	98.60

	loss	accuracy(%)
epoch20, train	0.0110	99.74
epoch20, valid	0.0553	98.53
test set	0.0499	98.74

	loss	accuracy(%)
epoch20, train	0.0097	99.85
epoch20, valid	0.0538	98.83
test set	0.0520	98.76

Pooling Layer 변형

AvgPool

```
def __init__(self, num_classes):
    super(LeNet5, self).__init__()
    self.conv1 = nn.Conv2d(in_channels=1, out_channels=
    self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
    self.conv3 = nn.Conv2d(in_channels=6, out_channels=
    self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
    self.conv5 = nn.Conv2d(in_channels=16, out_channels=16, out_chan
```

MaxPool

```
def __init__(self, num_classes):
    super(LeNet5, self).__init__()
    self.conv1 = nn.Conv2d(in_channels=1, out_channels=
    self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
    self.conv3 = nn.Conv2d(in_channels=6, out_channels=
    self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
    self.conv5 = nn.Conv2d(in_channels=16, out_channels=16, out_chan
```

MinPool

```
def __init__(self, num_classes):
    super(LeNet5, self).__init__()
    self.conv1 = nn.Conv2d(in_channels=1,
    self.pool2 = nn.MaxPool2d(kernel_size=
    self.conv3 = nn.Conv2d(in_channels=6,
    self.pool4 = nn.MaxPool2d(kernel_size=
    self.conv5 = nn.Conv2d(in_channels=16
    self.fc6 = nn.Linear(120, 84)
    self.fc7 = nn.Linear(84, num_classes)
def forward(self, x):
    x = self.conv1(x)
    x = F.tanh(x)
    x = -self.pool2(-x)
    x = self.conv3(x)
    x = F.tanh(x)
    x = -self.pool4(-x)
    x = self.conv5(x)
    x = F.tanh(x)
    x = x.view(x.size(0), -1)
    x = self.fc6(x)
    x = F.tanh(x)
    logits = self.fc7(x)
    return logits
```

Pooling Layer 변형

AvgPool MaxPool MinPool

	loss	accuracy(%)
epoch20, train	0.0054	99.84
epoch20, valid	0.0461	98.80
test set	0.0522	98.60

	loss	accuracy(%)
epoch20, train	0.0045	99.98
epoch20, valid	0.0462	98.85
test set	0.0489	98.93

	loss	accuracy(%)
epoch20, train	0.0037	99.92
epoch20, valid	0.0584	98.57
test set	0.0533	98.89

Optimizer 변형

Adam

AdaGrad

SGD

Optimizer 변형

Adam SGD AdaGrad

	loss	accuracy(%)
epoch20, train	0.0054	99.84
epoch20, valid	0.0461	98.80
test set	0.0522	98.60

	loss	accuracy(%)
epoch40, train	0.3103	91.03
epoch40, valid	0.3006	91.22
test set	0.3186	90.70

	loss	accuracy(%)
epoch20, train	0.0227	99.55
epoch20, valid	0.0565	98.29
test set	0.0562	98.47

전체 확인

https://github.com/minseok128/DeepLearning-for-VisionSystems/tree/main/1.%20LeNet-5(1998)/for_study

miniseok 120 Opuate o-adagrad.ipyrib . typo	
Name	Last commit message
.	
🖰 0.ipynb	Update 0.ipynb : 모델 정리
1-relu.ipynb	Added 1-relu.ipynb : relu 함수 사용
2-leakyRelu.ipynb	Update 2-leakyRelu.ipynb typo
3-maxpool.ipynb	Added 3-maxpool.ipynb : maxpool 사용
4-minpool.ipynb	Added 4-minpool.ipynb : minpool 적용
5-SGD.ipynb	Added 5-SGD.ipynb : optimizer
6-adagrad.ipynb	Update 6-adagrad.ipynb : typo

minseok128 Update 6-adagrad.ipvnb : typo

