眼科疾病诊断的多模态异常感知模型

潘思齐

摘要

我们设计了一种新颖的模型,即多模态异常感知模型(MAAM),用于辅助眼科疾病的诊断。该模 型允许输入两类眼科图像,分别是光学相干断层扫描(OCT)图像和彩色眼底图像,并基于异常来推导 疾病,模拟眼科医生的决策过程。该模型由两个子模型组成,分别是异常模型和诊断模型。异常模型识 别 11 种 OCT 异常和 8 种眼底异常;诊断模型通过整合异常模型的特征识别出 12 种疾病。在 MAAM 中,我们引入了融合机制、共显异常和疾病的概念、以及异常-疾病推导标准。该模型打破了复杂神经 网络的"黑箱",为眼科医生提供了更具可解释性的信息以供参考。模型的总体准确率为89%,验证了 其可行性。

背景

眼科疾病可以通过多种方法诊断,包括使用光 学相干断层扫描 (OCT) 和彩色眼底图像。眼科医 生通常通过识别眼部异常来推导疾病。传统上,诊 断主要依赖于眼科医生的专业经验和知识,这可能 导致高误诊率和医疗数据的利用不足。随着人工智 能(AI)的广泛应用,深度学习(DL)共享专家知 识,为偏远地区的患者提供支持方面做出了巨大贡 献 [5]。通过利用深度学习,研究人员开发了辅助 诊断程序, 以帮助眼科医生进行诊断。许多研究都 使用卷积神经网络(CNN)来分析眼科图像。一些 常用的 CNN 包括 VGG、ResNet 和 Inception [8]。 在图像分割和寻找异常中, U-net 被广泛应用 [23]。 大多数研究在训练 CNN 时使用迁移学习,包括三 个步骤: 学习、微调和验证。

一些研究直接从 OCT 图像预测疾病。Li, Chen, Liu, et al. 使用 ResNet 分析 OCT 图像, 并 区分脉络膜新生血管 (CNV)、糖尿病性黄斑水肿 (DME)、玻璃疣(Drusen)和健康人眼。此外,他们 还进行了遮挡测试, 以找出对于诊断最重要的区域 [18]。Yoo, Choi, and Kim 使用生成对抗网络(GAN)

见眼科疾病 OCT 诊断的可行性 [30]。他们通过从 健康 OCT 图像中生成眼科疾病的 OCT 图像来解 决图像数量不足和数据不平衡的问题。Kermany, Goldbaum, Cai, et al. 通过基于图像的深度学习进 行医学诊断,并识别可治疗的疾病。他们还提供了 一个广为使用的数据库,其中包含超过十万张用于 三种疾病的 OCT 的有标注图像 [14]。

其他研究可以从带注释的 OCT 图像中识别眼 科异常。Camino, Wang, Wang, et al. 利用深度学习 在面部 OCT 中识别未凋亡的的光感受器区域,用 于脉络膜疾病和视网膜色素变性(RP)[6]。Srinivasan, Kim, Mettu, et al. 通过展平图像, 使用支 持向量机(SVM)提取视网膜层的厚度信息,检 测 DME 和干性年龄相关性黄斑变性(干性 AMD) [27]。Leandro, Lorenzo, Aleksandar, et al. 使用 VGG, 用中央黄斑横截面 OCT 检测多达 8 种关键 异常并由此检测多种疾病 [16]。Fang, Wang, Li, et al. 开发了一种新的病灶感知 CNN, 称为 LACNN, 用于模拟集中于眼科异常的眼科医生诊断 [9]。

另一些研究使用眼底图像来预测眼科疾病。 Masumoto, Tabuchi, Nakakura, et al. 使用超宽视 野眼底图像训练深度 CNN 以诊断 RP [21]。Chen, 和 Inception-v3,结合少量数据集,探讨了改善罕 Lim, Wang, et al. 使用彩色眼底照片和多种 CNN

(如 Inception V3、Inception Resnet V2 和 Xception),开发了 RP 的早期检测方法 [7]。Li, Chen, Zhang, et al. 使用 CNN 基于彩色眼底摄影检测多达 12 种眼底疾病 [17]。Son, Shin, Kong, et al. 提出了一种新颖的架构和算法设计,从黄斑中心的眼底图像中综合识别 15 种异常和诊断 8 种主要眼科疾病。他们定义了反事实归因比(CAR)的概念,以解释系统的诊断原因,并揭示异常与疾病之间的关系 [26]。

近年来,越来越多的深度学习系统开始使用多模态信息来预测眼科疾病。对于自动化检测系统,从 OCT 图像和眼底图像中提取特征可以有效避免诊断偏差和不完整性。虽然并不总是能带来更好的自动诊断结果,但它确实有助于眼科医生做出更准确和全面的临床决策。例如,Liu, Ling, Hahn, et al. 结合 OCT 和眼底图像,评估视网膜色素变性患者的视力损害 [19]。Xu, Wang, Yang, et al. 利用双模态 CNN 诊断 AMD 和脉络膜息肉样血管病变(PCV),其中架构使用眼底和 OCT 图像作为迁移学习 CNN 的输入,并将提取的特征拼接以分类干性 AMD、湿性 AMD 和 PCV 三种疾病 [29]。Andrearczyk and Müller 将医学图像与生物医学文本信息结合起来,以区分不同的疾病,这是多模态应用的一种创新方法 [4]。

多模态诊断的关键技术问题在于如何融合来自多种来源的结果。融合有三种类型,即早期融合、后期融合和混合融合。决定最佳融合类型是应用深度学习方法探索过程的一部分[5]。

2 概述

我们开发了多模态异常感知模型(MAAM)来协助眼科医生诊断眼科疾病。该模型同时考虑OCT和彩色眼底图像输入。此外,它模拟了眼科医生在检查患者时的决策过程,即首先识别异常,然后推导疾病。该模型设计部分打开了深度学习的"黑箱",并为眼科医生提供了更多可解释的信息参考。

MAAM 的结构如图 1 所示。模型由两个子模型组成:异常模型和诊断模型。我们将多个 OCT 和眼底图像输入到异常模型中,并将异常分类结果作为诊断模型的输入,诊断模型最终输出疾病概率。

异常模型实际上是异常分类器,即图像中可直接观察到的症状。MAAM 能识别 11 种 OCT 异常和 8 种眼底异常,如图 2 和图 3 所示。"附录"中列出了异常和疾病的缩写及详细信息。

异常模型还包括两个子模型: OCT 模型和眼底模型,分别对 OCT 和眼底异常进行分类。两个子模型都使用 CNN,并修改了最终的全连接层(FC层)。我们比较了四种常用 CNN 的性能: ResNet152、ResNet50、ResNet18 [12] 和 VGG16 [25],并为每个子模型选择了最佳模型。每个 CNN 的最终 FC层被修改,使其输出向量的大小等于 OCT 或眼底异常的数量。为了对输出向量进行归一化,我们对其进行了 softmax 操作。每个子模型输出所有异常的概率向量。

诊断模型包括两个阶段: 阶段 D1 和阶段 D2。

在阶段 D1 中,我们根据异常模型的概率向量确定每种疾病的严重程度。我们使用异常到疾病推导标准(见图 4)作为判断依据。阶段 D1 中有多个子模型,每个子模型对应一种疾病。根据推导标准,我们确定一种疾病的异常数量,并以此来定义严重程度。例如,疾病"rDR"中共有 5 种异常:OCT异常"DME"以及眼底异常"HM"、"VA"、"MA"和"CWP"。因此,考虑到健康状态,我们将"rDR"定义为 6 个严重程度级别。

我们使用融合后的向量作为阶段 D1 中每个子模型的输入,让向量通过一个 FC 层和 softmax 操作,以生成严重程度的概率向量。

在阶段 D2 中,我们确定最终的疾病概率向量。同样,我们使用阶段 D1 中子模型的输出,进行向量融合,通过 FC 层并进行 softmax 操作,输出潜在疾病的概率,供眼科医生参考。

图 1 模型总览

在 MAAM 中,我们利用融合操作整合不同子模型的结果。如图 5 所示,MAAM 中总共有三次融合操作。

第一次融合发生在 OCT 模型或眼底模型的输出中。在实际场景中,可以使用多个 OCT 和眼底图像进行眼科疾病诊断。每张图像通过 OCT 或眼底模型后得到一个概率向量。为了利用所有图像的概率结果,我们对所有向量进行了最大化融合,从而得到一个 OCT 异常概率向量和一个眼底异常概率向量,均取最大值。

第二次融合发生在异常模型与阶段 D1 之间的接口。我们将 OCT 异常概率向量和眼底异常概率向量进行拼接融合,作为阶段 D1 所有子模型的输入。

第三次融合发生在阶段 D1 与阶段 D2 之间的接口。我们将所有严重程度向量进行拼接,输入阶段 D2 模型。融合向量通过 FC 层并经过 softmax操作,输出最终结果。

3 异常模型

3.1 数据准备

用于训练的图像和标签主要从公共数据库中下载,但部分异常不包含在这些数据库中。对于这些异常,我们使用搜索引擎作为额外的数据来源获取图像。各数据来源获得的图像数量如表 1 和表 2 所示。图像的搜索引擎链接详见"附录"。

对于图像少于 1000 张的 OCT 异常, 我们使用 Cycle-GAN [32] 生成新图像。我们训练一个 Cycle-GAN 网络,将健康图像与异常图像进行转换,取出 将健康图像转换为异常图像的生成器,用其生成新的异常图像。我们检查所有生成的图像,选取那些清晰显示了目标异常的图像。采纳率见表 3。由于生成的眼底图像过于模糊,眼底异常通常不如 OCT 明显, Cycle-GAN 无法从少量眼底图像中学习,因此我们不使用 Cycle-GAN 生成眼底图像。

图 2 OCT 异常 [11]

图 3 眼底异常 [28]

图 4 异常-疾病推导标准

图 5 融合机制

测试数据集,并对图像进行一系列变换,包括水平 中的图像。最终,我们为每个 OCT 异常获得 5000 翻转、亮度随机变化(-10%到+10%)、水平和垂 直随机平移(-5% 到 +5%)、随机缩放(-20% 到 得 3000 张训练图像和 300 张测试图像。 +20%) 和随机旋转 (OCT 图像为 -10° 到 +10°, 眼

我们将包括生成图像在内的图像分成训练和 底图像为-30°到+30°)。旋转仅应用于训练数据集 张训练图像和500张测试图像,为每个眼底异常获

表 1 OCT 数据源

表 2 眼底数据源

异常		数据源			总数据量	异常		数据源				总数据量		
开币	1	2	3	4	心奴加里	开节	1	2	3	4	5	6	心奴加里	
CNV	2984	-	-	-	2984		CWP	-	-	-	33	205	-	238
CSC	-	102	32	-	134		Drusen	-	-	-	50	-	-	50
DME	2500	-	-	-	2500		HE	20	-	-	75	284	-	379
Drusen	2500	-	-	-	2500		НМ	13	66	-	105	278	-	462
ERM	-	-	-	16	16		MH	-	-	-	-	-	34	34
IF	1097	-	-	-	1097		MA	55	-	-	1	219	-	275
MH	-	99	31	-	130		Healthy	100	37	15	-	-	-	152
Mactel	-	-	29	-	29		RP	-	22	-	-	-	44	66
Healthy	5000	-	-	-	5000		VA	-	64	-	14	-	-	78
RP	-	102	31	-	133									
ST	-	-	23	-	23									
SF	1083	-	-	-	1083		1. E-	ophtha	[<mark>20</mark>].					
							0 17	1 40		-				

- 1. Normal Disease Database [13]
- 2. OCTID [10]
- 3. Few-shot [31]
- 4. 搜索引擎

- 2. Kaggle1000 [1]
- 3. HRF [22]
- 4. STARE [2]
- 5. EyePACS [3]
- 6. 搜索引擎

表 3 Cycle-GAN 生成的 OCT 图片的采用率

异常	原图数量	生成数量	采用数量	采用率
CSC	134	3000	1730	58.667%
ERM	19	3000	1931	64.367%
MH	130	3000	1811	60.367%
Mactel	29	3000	1900	63.333%
RP	133	3000	1923	63.100%
ST	23	3000	2572	86.067%

3.2 训练

模型训练在一台台式计算机上进行,配备 Intel® Xeon® Platinum 8352V 处理器、256GB 内存 和 2 张 NVIDIA GeForce RTX 4090 GPU(48GB 显存)。训练使用交叉熵损失、学习率为 0.001 的 ADAM 优化器、批大小为 32 以及五折交叉验证。 代码在 Anaconda 环境下用 PyTorch 编写。代码库 的 GitHub 链接参见"附录"。

对于异常模型, 我们采用迁移学习微调策略。 在迁移学习阶段,使用 ImageNet [15] 的预训 练权重。我们冻结所有卷积层中的权重, 仅调整最 终 FC 层的权重。训练持续 100 个 epoch。每 10 个 epoch,保存验证集准确率最高的模型权重。为防 止训练数据集的过拟合,我们引入总体准确率,计 算验证集和测试集的加权平均准确率。对于所有保 存的模型, 计算其总体准确率, 从中选择验证集和 测试集表现最好的模型,进行微调。

在微调阶段,从迁移学习阶段的最佳模型开始, 解冻模型中的所有权重。训练 30 个 epoch。每 10 个 epoch 保存验证集准确率最高的模型权重,选出 总体准确率最高的模型。最终比较迁移学习阶段和 微调阶段的最佳模型的总体准确率, 以确定最佳模

对于 OCT 和眼底模型,我们训练了四种常用 的 CNN: ResNet152、ResNet50、ResNet18 和 VGG16。训练和验证阶段的准确率和损失如图 6 所示。

微调显著提高了模型的准确率, 因此所有最终 模型均为微调模型。表 4 显示了 OCT 模型的最 佳 CNN 为 ResNet50, 而眼底模型的最佳 CNN 为 ResNet152。ResNet50 在 OCT 上表现优于 ResNet152,可能是因为参数较少,较不易在OCT 图像上过拟合;而 ResNet152 在眼底图像上更具 优势,可能是因为其参数较多,能够更好地辨别眼 底图像中的复杂特征。ResNet18的参数可能过少,CAM 突出显示共显异常。

整体表现较弱; 而 VGG16 有时出现准确率大幅下 降,可能是梯度消失所致,从而影响其性能。

经过所有的训练和比较,我们最终选择使 用 ResNet50 的微调模型作为 OCT 模型, 使用 ResNet152 的微调模型作为眼底模型。

3.3 结果

表 5 和表 6 显示了测试数据集上的预测值。 图 7 显示了 ROC 曲线,图 8 显示了混淆矩阵,图 9 显示了每种异常的 t-SNE 图。

OCT模型有过拟合倾向,而眼底模型在深度学 习方面无法达到令人满意的水平。总体来看, OCT 模型的性能显著优于眼底模型。

眼底异常往往不如 OCT 异常明显, 因为眼底 图像中的异常通常较小目分散。此外,一张眼底图 像通常包含多个异常,而大多数 OCT 图像每张仅 包含一个异常。考虑到眼底图像的数量比 OCT 图 像少, 因此眼底分类的难度有所增加。

为了让异常模型能够识别一张图像中的多个 异常,我们采用一种方法来确定共显异常。我们将 图像输入异常模型,并得到异常概率向量。如果概 率最高的异常值大于 0.9, 则将其视为显著异常; 否 则,继续选择下一个概率较高的异常,直到所选异 常的概率总和达到 0.9 或选择的异常数量达到最大 值 4, 所有选定的异常都视为共显异常。

我们可以使用 Grad-CAM [24] 突出图像中对 最终分类贡献较大的区域。如果模型正确训练,则 应等效于突出显示异常。在图 10 中,每对图像中的 左图为原始 OCT 或眼底图像, 右图为通过 Grad-CAM 成功突出显示异常的图像。

此外, Grad-CAM 可指定突出显示的异常, 因 此也可用于突出共显异常。在图 11 中,中间图为 原始 OCT 和眼底图像,左图和右图则使用 Grad-

图 6 异常模型训练

表 4 使用不同 CNN 的总体准确率

模型	ResNet152	ResNet50	ResNet18	VGG16
OCT 模型	91.906%	92.183%	91.011%	89.744%
Fundus 模型	89.111%	88.926%	86.605%	79.185%

表 5 OCT 模型的测试结果

异常	精确率	敏感性	特异性	F1 分数	AUC
CNV	0.990	0.991	0.886	0.990	0.993
CSC	0.995	0.996	0.940	0.995	0.998
DME	0.997	0.997	0.964	0.997	0.999
Drusen	0.997	0.997	0.966	0.997	0.999
ERM	0.962	0.985	0.570	0.974	0.970
IF	0.989	0.983	0.878	0.986	0.991
MH	0.997	0.977	0.972	0.987	0.996
Mactel	0.982	0.988	0.798	0.985	0.994
Healthy	1.000	0.995	1.000	0.997	1.000
RP	0.993	0.998	0.926	0.996	0.999
ST	0.993	0.995	0.924	0.994	0.999
SF	0.996	0.987	0.960	0.992	0.996

表 6 眼底模型的测试结果

异常	精确率	敏感性	特异性	F1 分数	AUC
CWP	0.925	0.946	0.390	0.936	0.819
Drusen	0.950	0.992	0.580	0.970	0.959
HE	0.929	0.878	0.460	0.903	0.819
НМ	0.921	0.850	0.417	0.884	0.768
MH	0.968	1.000	0.737	0.984	0.999
MA	0.921	0.943	0.353	0.932	0.869
Healthy	0.992	0.970	0.940	0.981	0.988
RP	0.999	0.999	0.990	0.999	1.000
VA	0.946	0.975	0.553	0.960	0.960

图 7 异常模型的 ROC 曲线

图 8 异常模型的混淆矩阵

图 9 异常模型的 t-SNE 图

图 **10** Grad-CAM 高亮显示异常

图 11 Grad-CAM 高亮显示多处异常

诊断模型

4.1 数据准备

阶段 D1 的目的是确定每种疾病的严重程度, 每种疾病对应一个子模型。我们根据异常到疾病推 导标准(见图4)为每个子模型准备数据。如第2节 所述,我们确定一种疾病的目标异常,并根据目标 异常的数量定义严重程度。如果某种疾病有5个目 标异常,则考虑到健康状态,共有6个严重程度级 别,即0至5。我们使用一组图像作为子模型的输 入,每组图像的严重程度标签等于该组中出现的目 标异常数量。我们随机选择 OCT 和眼底图像集,为 每组确定严重程度。最终,我们为每个严重程度获 得 10000 组训练输入和 10000 组测试输入。

阶段 D2 的目的是输出疾病概率向量。对于每 种疾病,我们使用异常到疾病推导标准找到目标异 常,随机选择每个目标异常的一组图像,将这些图 像集标记为该疾病。我们为每种疾病获取了 10000 组训练图像集和 10000 组测试图像集。

4.2 训练

练。阶段 D1 子模型训练 10 个 epoch, 阶段 D2 准确率进一步提高。

模型训练 30 个 epoch, 其余超参数与异常模型相 同,详情参见第3.2节。

阶段 D1 的子模型和阶段 D2 的模型在训练和 验证过程中迅速达到较高的准确率, 因为训练数据 充足,且模型结构相对简单。

4.3 结果

图 12 显示了阶段 D1 子模型的准确率,图 13 显示了阶段 D1 的混淆矩阵。表 7 显示了阶段 D2 的预测值,图 14 显示了ROC曲线,图 15 显示了 混淆矩阵,图 16显示了t-SNE图。

阶段 D1 的子模型在预测结果上常常比标签偏 差一个级别,这降低了阶段 D1 子模型的准确率。 然而,阶段 D2 部分解决了此问题,因为阶段 D2 模型的准确率高于阶段 D1 子模型的平均准确率。

阶段 D2 在疾病分类方面表现相当出色。考虑 到某些疾病可能相似,我们使用了类似共显异常的 方法, 使阶段 D2 能够输出最多 3 个共显疾病。正 诊断模型与异常模型使用相同的硬件进行训 如图 12 所示,若使用共显疾病方法,阶段 D2 的

图 12 诊断模型的准确率 (*: 只取概率最高的疾病的准确率; **: 考虑共显疾病的准确率)

图 13 阶段 D1 的混淆矩阵

图 14 阶段 D2 的 ROC 曲线

图 15 阶段 D2 的混淆矩阵

图 16 阶段 D2 的 t-SNE 图

表 7 阶段 D2 的测试结果

疾病	精确率	敏感性	特异性	F1 分数	AUC
BRVO	0.951	0.985	0.395	0.968	0.918
CRVO	0.978	0.947	0.747	0.962	0.986
CSC	0.999	0.995	0.989	0.997	1.000
dAMD	0.986	0.998	0.829	0.992	0.986
ERM	0.966	0.998	0.581	0.982	0.952
Mactel	0.997	0.986	0.962	0.991	0.999
MH	0.996	0.980	0.955	0.988	0.998
mDR	0.982	0.957	0.794	0.969	0.980
Healthy	0.998	0.994	0.976	0.996	1.000
rDR	0.983	0.991	0.794	0.987	0.982
RP	0.997	1.000	0.963	0.998	0.999
ST	0.995	0.998	0.943	0.997	0.998
wAMD	0.999	0.998	0.994	0.999	1.000

5 讨论

一些研究专注于 OCT 异常分类。例如,Leandro, Lorenzo, Aleksandar, et al. 等人的模型在 10770 张图像上训练(大多数图像属于多个类别),能分类 8 种异常,总体准确率在 93% 到 99% 之间 [16]。Li, Chen, Liu, et al. 等人的模型在 21357 张图像上训练,能分类 4 种异常,总体准确率为 97.3% [18]。另一些研究专注于眼底异常分类。例如,Son, Shin, Kong, et al. 等人的模型在 103262 张图像上训练,能分类 15 种异常,平均 AUC 为 0.980 [26]。相比之下,我们的 OCT 模型在 15632 张图像上训练,能分类 11 种异常,总体准确率不足 80%;而眼底模型在 1734 张图像上训练,能分类 8 种异常,平均 AUC 为 0.909。事实上,我们的异常模型在性能上并不理想。

我们的数据来自各种在线来源,因此缺乏统一标准。此外,部分数据由我们自己标注,但我们并不具备眼科医生的专业知识。此外,我们的数据量不足,各异常之间的图像数量不平衡。在 OCT 模型中,我们通过使用 Cycle-GAN 部分中和了这种不平衡。然而在眼底模型中,我们只能进行图像变换以生成更多图像,这可能会增加模型的过拟合倾向,使其难以提取正确的特征。此外,如前所述,我们的模型中一张图像上通常存在多个异常,这增加了正确识别特定异常的难度。

在 MAAM 中,诊断模型成功提高了整体性能。也有一些研究使用类似框架。例如,Son, Shin, Kong, *et al.* 等人的诊断模型能分类 8 种疾病,平

均 AUC 为 0.992 [26]。相比之下, 我们的诊断模型能分类 12 种疾病, 平均 AUC 为 0.984, 与其他研究接近。

需要注意的是,MAAM 的目标并非识别单一疾病,而是识别所有潜在疾病,这与本文提到的其他研究有所不同。因此,我们引入了共显异常和共显疾病的概念,提升了模型的表现。此外,诊断模型进行了两次特征提取。虽然异常模型的准确率仅在 70% 到 80% 之间,但在阶段 D1 提取疾病严重程度的特征后,平均准确率有所提高。并且在阶段 D2 提取疾病特征后,准确率进一步提高,达到了令人满意的水平。这两个阶段提升了异常模型的性能,使疾病特征更加清晰。此外,在训练诊断模型时,我们使用异常到疾病推导标准生成了可靠的标签,即使不涉及眼科医生的专业知识也具备一定的可靠性。

6 结论

本研究的主要目标是设计一种新颖的模型并验证其可行性。MAAM以OCT和眼底图像为输入,利用融合机制整合来自不同来源的信息。此外,我们从异常推导疾病,模拟了眼科医生的决策过程。我们还引入了共显异常和共显疾病,提供了更多的参考信息。因此,该模型打破了复杂神经网络的"黑箱",揭示了更多信息。另一方面,模型仍有改进空间,例如收集更多真实数据、引入眼科医生的专业知识、优化异常到疾病推导标准以及改进诊断模型结构等。

参考文献

- [1] en. [Online]. Available: https://kaggle.
 com / code / saranga7 / 1000fundus pytorch-transferlearning.
- [2] [Online]. Available: https://cecas.clemson.edu/~ahoover/stare/.
- [3] en. [Online]. Available: https://kaggle.com/competitions/diabetic-retinopathy-detection.
- [4] V. Andrearczyk and H. Müller, "Deep multimodal classification of image types in biomedical journal figures," en, in *Experimental IR Meets Multilinguality, Multimodality, and Interaction* (Lecture Notes in Computer Science), P. Bellot, C. Trabelsi, J. Mothe, *et al.*, Eds., Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018, vol. 11018, pp. 3–14, ISBN: 978-3-319-98931-0. DOI: 10.1007/978-3-319-98932-7_1. [Online]. Available: http://link.springer.com/10.1007/978-3-319-98932-7_1.
- [5] Artificial Intelligence and Ophthalmology: Perks, Perils and Pitfalls (Current Practices in Ophthalmology), en. Singapore: Springer Singapore, 2021, ISBN: 9789811606335.

 DOI: 10.1007/978-981-16-0634-2. [Online]. Available: https://link.springer.com/10.1007/978-981-16-0634-2.
- [6] A. Camino, Z. Wang, J. Wang, et al., "Deep learning for the segmentation of preserved photoreceptors on en face optical coherence tomography in two inherited retinal diseases," *Biomedical optics express*, vol. 9, no. 7, pp. 3092–3105, 2018.
- [7] T.-C. Chen, W. S. Lim, V. Y. Wang, *et al.*, "Artificial intelligence—assisted early detec-

- tion of retinitis pigmentosa—the most common inherited retinal degeneration," *Journal of Digital Imaging*, vol. 34, pp. 948–958, 2021.
- [8] M. Daich Varela, S. Sen, T. A. C. De Guimaraes, et al., "Artificial intelligence in retinal disease: Clinical application, challenges, and future directions," Graefe's Archive for Clinical and Experimental Ophthalmology, pp. 1–15, 2023.
- [9] L. Fang, C. Wang, S. Li, H. Rabbani, X. Chen, and Z. Liu, "Attention to lesion: Lesion-aware convolutional neural network for retinal optical coherence tomography image classification," en, *IEEE Transactions on Medical Imaging*, vol. 38, no. 8, pp. 1959–1970, Aug. 2019, ISSN: 0278-0062, 1558-254X. DOI: 10.1109/TMI.2019. 2898414.
- [10] P. Gholami, P. Roy, M. K. Parthasarathy, and V. Lakshminarayanan, "Octid: Optical coherence tomography image database," en, *Computers & Electrical Engineering*, vol. 81, p. 106532, Jan. 2020, ISSN: 00457906. DOI: 10.1016/j.compeleceng. 2019.106532.
- [11] *Handbook of retinal OCT*, en, Second edition. Philadelphia, PA: Elsevier, 2022, ISBN: 978-0-323-75772-0.
- [12] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," en, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 770–778, ISBN: 978-1-4673-8851-1. DOI: 10.1109/CVPR. 2016.90. [Online]. Available: http://ieeexplore.ieee.org/document/7780459/.

- [13] D. Kermany, K. Zhang, and M. Goldbaum, "Large dataset of labeled optical coherence tomography (oct) and chest x-ray images," en, vol. 3, Jun. 2018. DOI: 10 . 17632 / rscbjbr9sj.3. [Online]. Available: https: //data . mendeley . com / datasets / rscbjbr9sj/3.
- [14] D. S. Kermany, M. Goldbaum, W. Cai, et al., "Identifying medical diagnoses and treat- [21] H. Masumoto, H. Tabuchi, S. Nakakura, et able diseases by image-based deep learning," en, Cell, vol. 172, no. 5, 1122-1131.e9, Feb. 2018, ISSN: 00928674. DOI: 10.1016/ j.cell.2018.02.010.
- [15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," en, Communications of the ACM, vol. 60, no. 6, pp. 84-90, May 2017, ISSN: 0001-0782, 1557-7317. DOI: 10.1145/3065386.
- [16] I. Leandro, B. Lorenzo, M. Aleksandar, G. Rosa, A. Agostino, and T. Daniele, "Octbased deep-learning models for the identification of retinal key signs," Scientific Reports, vol. 13, no. 1, p. 14628, 2023.
- [17] B. Li, H. Chen, B. Zhang, et al., "Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photogvol. 106, no. 8, pp. 1079-1086, 2022.
- [18] F. Li, H. Chen, Z. Liu, et al., "Deep learningbased automated detection of retinal diseases using optical coherence tomography images," Biomedical optics express, vol. 10, no. 12, pp. 6204-6226, 2019.
- [19] T. Y. A. Liu, C. Ling, L. Hahn, C. K. Jones, C. J. Boon, and M. S. Singh, "Prediction of visual impairment in retinitis pigmentosa

- using deep learning and multimodal fundus images," British Journal of Ophthalmology, vol. 107, no. 10, pp. 1484-1489, 2023.
- [20] G. MAFFRE, G. PATRY, B. GAUTHIER, et al., E-ophtha, en. [Online]. Available: https: //www.adcis.net/en/third-party/eophtha/.
- al., "Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images," PeerJ, vol. 7, e6900, 2019.
- [22] J. Odstrcilik, R. Kolar, A. Budai, et al., "Retinal vessel segmentation by improved matched filtering: Evaluation on a new high □ resolution fundus image database," en, IET Image Processing, vol. 7, no. 4, pp. 373-383, Jun. 2013, ISSN: 1751-9667, 1751-9667. DOI: 10.1049/iet-ipr.2012. 0455.
- [23] O. Ronneberger, P. Fischer, and T. "U-net: Convolutional networks Brox, for biomedical image segmentation," en, no. arXiv:1505.04597, May 2015, arXiv:1505.04597 [cs]. [Online]. Available: http://arxiv.org/abs/1505.04597.
- raphy," British Journal of Ophthalmology, [24] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Gradcam: Visual explanations from deep networks via gradient-based localization," en,
 - [25] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," en, no. arXiv:1409.1556, Apr. 2015, arXiv:1409.1556 [cs]. [Online]. Available: http://arxiv.org/abs/1409. 1556.

- [26] J. Son, J. Y. Shin, S. T. Kong, *et al.*, "An interpretable and interactive deep learning algorithm for a clinically applicable retinal fundus diagnosis system by modelling finding-disease relationship," en, *Scientific Reports*, vol. 13, no. 1, p. 5934, Apr. 2023, ISSN: 2045-2322. DOI: 10.1038/s41598-023-32518-3.
- [27] P. P. Srinivasan, L. A. Kim, P. S. Mettu, *et al.*, "Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images," *Biomedical optics express*, vol. 5, no. 10, pp. 3568–3577, 2014.
- [28] S. Wolf, B. Kirchhof, and M. Reim, *The ocular fundus: from findings to diagnosis*, en. Stuttgart: Thieme, 2006, ISBN: 978-3-13-139371-5.
- [29] Z. Xu, W. Wang, J. Yang, et al., "Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks," en, British Journal of Ophthal-

- *mology*, vol. 105, no. 4, pp. 561–566, Apr. 2021, ISSN: 0007-1161, 1468-2079. DOI: 10. 1136/bjophthalmol-2020-315817.
- [30] T. K. Yoo, J. Y. Choi, and H. K. Kim, "Feasibility study to improve deep learning in oct diagnosis of rare retinal diseases with fewshot classification," *Medical & Biological En*gineering & Computing, vol. 59, pp. 401– 415, 2021.
- [31] T. Yoo, "Data for: Improved accuracy in oct diagnosis of rare retinal disease using few-shot learning with generative adversarial networks," en, vol. 2, Oct. 2020. DOI: 10. 17632/btv6yrdbmv . 2. [Online]. Available: https://data.mendeley.com/datasets/btv6yrdbmv/2.
- [32] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," en, no. arXiv:1703.10593, Aug. 2020, arXiv:1703.10593 [cs]. [Online]. Available: http://arxiv.org/abs/1703.10593.

附录

代码

GitHub 仓库的链接是 https://github.com/SiqiPan2008/MAAM/。

异常与疾病

OCT 异常

异常	缩写	描述
脉络膜新生血管	CNV	脉络膜层中血管异常生长。
中心性浆液性脉络膜视网膜病	CSC	视网膜下方液体的积聚。
糖尿病黄斑水肿	DME	与糖尿病视网膜病相关的黄斑液体积聚。
脉络膜小疣	Drusen	在视网膜色素上皮(RPE)下或 RPE 与感光细胞层之间积聚的细小
		外源性物质沉积物。
视网膜上膜	ERM	在视网膜表面(尤其是黄斑)形成的一层薄薄的纤维组织。
视网膜内积液	IF	视网膜层内液体的积聚。
黄斑裂洞	MH	环绕黄斑孔的正常视网膜层的破坏或不连续。
黄斑毛细管扩张	Mactel	黄斑血管的异常,导致黄斑结构和功能的改变。
视网膜色素变性	RP	视网膜层变薄,感光细胞层的破坏,视网膜血管的衰退。
斯塔格特病	ST	视网膜变薄和萎缩,感光细胞层的破坏,视网膜下沉积物的存在。
视网膜下积液	SF	神经感光视网膜与视网膜色素上皮(RPE)之间液体的积聚。

Fundus 异常

异常	缩写	描述
棉絮样斑块	CWP	白色或近白色病变,形状和边缘不规则,也称为软性渗出物。
脉络膜小疣	Drusen	小而圆或椭圆形的黄色或白色沉积物。
硬性渗出物	HE	黄色或黄白色沉积物,边缘清晰,通常分布在血管周围。
出血	НМ	从小点状出血到较大的斑点,鲜红色或深红色,表明氧合血液的存在,随着时间推
		移,出血颜色可变为深红、橙色或黄色。
黄斑裂洞	MH	完全厚度的黄斑孔,周围有视网膜下液体的环形带。
微动脉瘤	MA	视网膜血管中观察到的小血管扩张,表现为视网膜后部散布的小红点。
视网膜色素变性	RP	动脉小管变细,视网膜色素变化(低色素或高色素,呈骨刺样或色素聚集)。蜡样
		盘苍白。
血管异常	VA	视网膜血管的扭曲和口径变化。

疾病

疾病	缩写
支或半中心视网膜静脉阻塞	BRVO
中心视网膜静脉阻塞	CRVO
中心性浆液性脉络膜病	CSC
干性年龄相关性黄斑变性	dAMD
视网膜上膜	ERM
黄斑毛细血管扩张症	Mactel
黄斑裂洞	MH
轻度糖尿病视网膜病	mDR
可转介糖尿病视网膜病	rDR
视网膜色素变性	RP
斯塔格特病	ST
湿性年龄相关性黄斑变性	wAMD

图片来源

OCT - ERM

- 1. https://qers.com.au/eye-conditions/epiretinal-membrane-erm/
- 2. https://www.asrs.org/patients/retinal-diseases/19/epiretinal-membranes
- 3. https://theretinagroup.com/epiretinal-membrane/
- 4. https://www.istanbulretina.com/en-diseases-epiretinal-membrane.php
- 5. https://www.mdfoundation.com.au/about-macular-disease/other-macular-conditions/epiretinal-membrane-macular-pucker/
- 6. https://www.researchgate.net/figure/Grading-of-epiretinal-membrane-ERM-by-spect ral-domain-optical-coherence-tomography_fig1_351426760
- 7. https://www.singhealth.com.sg/patient-care/conditions-treatments/epiretinal-membrane
- 8. https://www.windycityretina.com/epiretinal-membrane/
- 9. https://retinacentertx.com/conditions/macular-pucker
- 10. https://www.rvscny.com/patient-eduction/conditions-we-treat/epiretinal-membrane/
- 11. https://www.lyneye.co.za/epiretinal-membrane-erm/
- 12. https://rehmansiddiqui.com/epi-retinal-membrane-erm/

- 13. https://www.reviewofophthalmology.com/article/when-and-how-to-peel-an-epiretinal-membrane
- 14. https://www.janigianretina.com/retina-conditions/epiretinal-membrane
- 15. https://www.researchgate.net/figure/6-months-later-ERM-with-partial-attachmen t-to-the-retina_fig2_309566437
- 16. https://www.capefearretina.com/epiretinal-membrane/

眼底 - MH

- 1. https://emedicine.medscape.com/article/1224320-overview
- 2. https://www.chatswoodeye.com/macular-hole-specialists/
- 3. https://swretina.com/macular-hole/
- 4. https://www.ophthalmologyexpertservices.com/blog/2019/macular-hole
- 5. https://www.researchgate.net/publication/38109568_Bilateral_macular_hole_secondary_to_remote_lightning_strike
- 6. https://www.researchgate.net/publication/38109568_Bilateral_macular_hole_secondary_to_remote_lightning_strike
- 7. https://www.reviewofoptometry.com/article/facedown-showdown
- 8. https://www.gotzaridis.gr/en/conditions/macula/full-thickness-macular-hole
- 9. https://www.researchgate.net/figure/Fundus-image-of-the-right-eye-of-case-1-a-s hows-a-macular-hole-with-associated-retinal_fig1_324657341
- 10. https://www.girayersoz.com.tr/en/macular-hole/
- 11. https://www.gotzaridis.gr/en/conditions/macula/full-thickness-macular-hole
- 12. https://www.gotzaridis.gr/en/conhttps://www.willseye.org/macular-hole/ditions/macula/full-thickness-macular-hole
- 13. https://www.willseye.org/macular-hole/
- 14. http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v3/ch031/013f.html
- 15. https://www.slideshare.net/slideshow/macular-hole-227845841/227845841#11
- 16. https://www.slideshare.net/slideshow/macular-hole-227845841/227845841#12
- 17. https://www.jaypeedigital.com/book/9788180616532/chapter/ch7

- 18. https://emedicine.medscape.com/article/1224320-clinical?form=fpf
- 19. https://www.jaafarelannanmd.com/macular-hole
- 20. https://asiaeyecentre.com.sg/eye-conditions/the-ageing-eye/macular-hole/
- 21. https://retinaandeye.com.au/eye-conditions/full-thickness-macular-holes/
- 22. https://retinahi.com/interesting-cases/
- 23. https://imagebank.asrs.org/file/2858/traumatic-macular-hole
- 24. https://www.semanticscholar.org/paper/Giant-macular-hole-as-an-atypical-consequence-of-a-Blaise-Comhaire/5c9a60375d904323eb5fbcd52b6bd03b735f6951
- 25. https://webeye.ophth.uiowa.edu/eyeforum/atlas/pages/Macular-hole-commotio-retin ae-choroidal-rupture.htm#gsc.tab=0
- 26. https://areaoftalmologica.com/en/terms-of-ophthalmology/macular-hole/
- 27. https://www.reviewofoptometry.com/article/facedown-showdown
- 28. https://montanaretinaconsultants.com/portfolio/macular-holes/
- 29. https://ccteyes.com/2019/09/30/what-is-a-macular-hole-and-how-does-it-affect-y our-vision/
- 30. https://www.backoftheeyemd.com/retina-services/macular-holes/
- 31. https://www.asrs.org/content/images/cms/image_rib_macularhole_2_2858.jpg/image-full;size\$250,194.ImageHandler
- 32. https://www.asrs.org/content/images/cms/image_rib_macularhole_2_2858.jpg/image-full;size\$250,194.ImageHandler
- 33. https://www.asrs.org/content/images/cms/image_rib_macularhole_2_2858.jpg/image-full;size\$250,194.ImageHandler
- 34. https://webeye.ophth.uiowa.edu/eyeforum/atlas/pages/extrafoveal-macular-hole/emh-1.jpg

眼底 - RP

- 1. https://imagebank.asrs.org/file/93471/retinitis-pigmentosa
- 2. https://educate.choroida.com/2021/07/05/retinitis-pigmentosa/
- 3. https://decisionmakerplus.net/dg-post/h35-52-retinitis-pigmentosa/

- 4. https://basicmedicalkey.com/retinitis-pigmentosa/
- 5. https://www.news-medical.net/health/What-is-Retinitis-Pigmentosa.aspx
- 6. https://www.researchgate.net/figure/Fundus-photograph-of-an-individual-affected-with-retinitis-pigmentosa-The-fundus_fig3_40447070
- 7. https://www.ncbi.nlm.nih.gov/books/NBK11553/figure/ch36clinicalerg.F15/
- 8. https://www.brainkart.com/article/Retinal-Dystrophies--Retinitis-Pigmentosa_2608 7/
- 9. https://entokey.com/retinitis-pigmentosa-and-allied-disorders/
- 10. https://entokey.com/retinitis-pigmentosa-and-allied-disorders/
- 11. https://retinography.org/sector-retinitis-pigmentosa/
- 12. https://retinography.org/sector-retinitis-pigmentosa/
- 13. https://www.linkedin.com/posts/stevenlevymd_blindness-from-retinitis-pigmentos a-reversed-activity-7047214648877608960-ar4h
- 14. https://atlas-1-elastic.atlasoph.com/photo.jsf;jsessionid=94EF0B6B067E676E8BCB3 F2AD7B9885A?node=6475&locale=en
- 15. https://dizziness-and-balance.com/disorders/visual/retinopathy/RP.html
- 16. https://disorders.eyes.arizona.edu/disorders/retinitis-pigmentosa-ar
- 17. https://disorders.eyes.arizona.edu/disorders/retinitis-pigmentosa-ar
- 18. https://eyeandear.org/2020/07/a-new-era-in-retinal-research/
- 19. https://www.ncbi.nlm.nih.gov/books/NBK11553/figure/ch36clinicalerg.F14/
- 20. https://commons.wikimedia.org/wiki/File:Fundus_of_patient_with_retinitis_pigment osa,_end_stage.jpg
- 21. https://healthjade.net/retinitis-pigmentosa/
- 22. https://www.reviewofoptometry.com/article/night-spots
- 23. https://www.visualsurgery.com/eye-conditions/retinal-diseases/other-retinal-diseases/retinitis-pigmentosa/
- 24. https://www.researchgate.net/figure/Fundus-of-an-RP-patient-at-different-stage s-a-Image-of-a-normal-healthy-eye-b_fig4_279155571
- 25. https://www.researchgate.net/figure/Fundus-of-an-RP-patient-at-different-stage s-a-Image-of-a-normal-healthy-eye-b_fig4_279155571

- 26. https://www.researchgate.net/figure/Fundus-of-an-RP-patient-at-different-stage s-a-Image-of-a-normal-healthy-eye-b_fig4_279155571
- 27. https://www.researchgate.net/figure/Fundus-of-an-RP-patient-at-different-stage s-a-Image-of-a-normal-healthy-eye-b_fig4_279155571
- 28. https://emedicine.medscape.com/article/1227488-overview?form=basic
- 29. https://www.centreforeyehealth.com.au/retinitis-pigmentosa-extract/
- 30. https://www.centreforeyehealth.com.au/retinitis-pigmentosa-extract/
- 31. https://www.centreforeyehealth.com.au/retinitis-pigmentosa-extract/
- 32. https://webvision.med.utah.edu/book/electrophysiology/the-electroretinogram-clinical-applications/
- 33. https://www.retinarevealed.com/retinitis-pigmentosa-page-34-of-49/
- 34. http://www.pjo.com.pk/30/2/12.CR%20Sana%20Nadeem%20Corrected.htm
- 35. http://www.pjo.com.pk/30/2/12.CR%20Sana%20Nadeem%20Corrected.htm
- 36. https://www.nyp.org/advances/article/ophthalmology/retinitis-pigmentosa-mitigat ing-retinal-degeneration-with-crispr-technology
- 37. https://www.ehu.eus/en/-/pacientes-con-retinosis-pigmentaria-en-la-pole
- 38. https://en.wikipedia.org/wiki/Retinal_degeneration_%28rhodopsin_mutation%29
- 39. https://imagebank.asrs.org/file/29807/x-linked-retinitis-pigmentosa
- 40. https://educate.choroida.com/2023/04/07/choroideremia-unveiling-what-you-need-to-know/
- 41. https://retinography.org/retinitis-pigmentosa-2/
- 42. https://retinography.org/retinitis-pigmentosa-2/
- 43. https://retinography.org/retinitis-pigmentosa/
- 44. https://retinography.org/retinitis-pigmentosa/