

Data Transformation III

Data Transformation III Info

- Finish Reading Chapter 3 and Practice the Code in R4DS
- Covers
 - The Pipe
 - Statistical Summaries
 - Grouped Summaries
 - Helpful Functions

- Useful for Combining Multiple
 Steps of Operations
- Represented by %>%
- Reads as "Then"
- Works Like a Composite Function From Algebra

$$f(x) = 3x + 4$$

 $g(x) = 2x$
 $h = 1$

OUT = h %>%
 $g()$ %>%
 $f()$

$$f(g(h)) = 3(2(1)) + 4 = 10$$
 OUT = 10

Chaining with the Pipe

```
{r}
                                                                  ∰ ¥ ▶
f.pipedream =
  # Acknowledge the Original Data
 flights %>%
  # Input Original Data and Perform Mutations
  mutate(dep_hr=dep_time\%/\%100+(dep_time\%\%100)/60,
         sched_dep_hr=sched_dep_time%/%100+(sched_dep_time%%100)/60.
         arr_hr = arr_time \frac{100}{100} + (arr_time \frac{100}{100}) \frac{60}{60}
         sched_arr_hr=sched_arr_time%/%100+(sched_arr_time%%100)/60,
         dep_delay_hr=dep_hr-sched_dep_hr,
         arr_delay_hr=arr_hr-sched_arr_hr,
         gain_hr=arr_delay_hr-dep_delay_hr,
         percent_gain_hr=percent_rank(gain_hr)) %>%
  #Input Modified Data and Select the Variables of Interest
  select(carrier.origin:distance.dep_delay_hr:percent_gain_hr) %>%
 #Input Modified Data and Sort According to Empirical %-iles
  arrange(desc(percent_gain_hr))
```

carrier	origin	dest	air_time	distance	dep_delay_hr	arr_delay_hr	gain_hr	percent_gain_hr
B6	JFK	BQN	NA	1576	-23.90000	3.333333	27.23333	1.0000000
B6	JFK	PSE	NA	1617	-23.65000	3.550000	27.20000	0.9999970
B6	JFK	PSE	NA	1617	-23.80000	2.950000	26.75000	0.9999939
B6	JFK	SJU	NA	1598	-23.58333	3.116667	26.70000	0.9999909
B6	JFK	PSE	NA	1617	-23.76667	2.483333	26.25000	0.9999878

HTML Table: kable and kableExtra

Chaining with the Pipe

```
{r}
                                                                  ∰ ▼ ▶
f.pipedream2 =
  # Acknowledge the Original Data
 flights %>%
  # Input Original Data and Perform Mutations
  mutate(dep_hr=dep_time\%/\%100+(dep_time\%\%100)/60,
         sched_dep_hr=sched_dep_time%/%100+(sched_dep_time%%100)/60,
         arr_hr = arr_time \frac{100}{400} + (arr_time \frac{100}{400}) \frac{60}{60}
         sched_arr_hr=sched_arr_time%/%100+(sched_arr_time%%100)/60,
         dep_delay_hr=dep_hr-sched_dep_hr,
         arr_delay_hr=arr_hr-sched_arr_hr,
         gain_hr=arr_delay_hr-dep_delay_hr,
         percent_gain_hr=percent_rank(gain_hr)) %>%
  #Input Modified Data and Select the Variables of Interest
  select(carrier,origin:distance,dep_delay_hr:percent_gain_hr) %>%
  #Input Modified Data and Sort According to Empirical %-iles
  arrange(desc(percent_gain_hr)) %>%
  #Input Modified Data and Remove Flights Missing Air Time
  filter(!is.na(air_time))
```

carrier	origin	dest	air_time	distance	dep_delay_hr	arr_delay_hr	gain_hr	percent_gain_hr
B6	JFK	PSE	214	1617	-23.66667	1.133333	24.80000	0.9999848
B6	JFK	PSE	214	1617	-23.26667	1.500000	24.76667	0.9999817
B6	JFK	BQN	199	1576	-21.66667	3.050000	24.71667	0.9999787
B6	JFK	LAX	317	2475	-22.63333	2.050000	24.68333	0.9999726
B6	JFK	PSE	200	1617	-23.61667	1.066667	24.68333	0.9999726

Chaining with the Pipe


```
f.pipedream3 =

# Acknowledge the Modified Data
f.pipedream2 %>%

# Filter Based on Gain Variable
filter(abs(gain_hr)<10)</pre>
```

summarize()

Summarizing All Data

Both the histogram and the boxplot are made from summary statistics.

(Statistical Transformations in Ch. 3)

summarize()

Summarizing All Data

Using Tables

summarize()
 with
 group_by()

Summarizing Data by Groups

Using Graphics

summarize()
with
group_by()

Summarizing Data by Groups

Using Tables

```
`{r}
                                   ∰ ▼ ▶
                                             origin
                                                      count
group.summary1 = f.pipedream3 %>%
                 group_by(origin) %>%
                 summarize(count=n())
                                             EWR
                                                     114682
group.summary2 =
                                             IFK
                                                     105243
 f.pipedream3 %>%
 group_by(origin) %>%
                                             LGA
 summarize(
                                                     100041
    n=n().
    min=min(gain_hr),
    Q1=quantile(gain_hr, 0.25),
    Q2=quantile(gain_hr, 0.5),
    Q3=quantile(gain_hr,0.75),
    max=max(gain_hr),
    IQR=Q3-Q1,
    nLow=sum(gain_hr<Q1-1.5*IQR),
    propHigh=mean(gain_hr>Q3+1.5*IQR)
  ) %>%
 select(-IQR)
```

origin	n	min	Q 1	Q2	Q3	max	nLow	propHigh
EWR	114682	-1.8166667	-0.2666667	-0.1166667	0.0333333	2.500000	953	0.0294815
JFK	105243	-1.4500000	-0.3000000	-0.1333333	0.0333333	3.266667	710	0.0314510
LGA	100041	-0.9666667	-0.2666667	-0.1166667	0.0666667	3.016667	133	0.0277886

summarize() with group_by()

Multiple Groups

Using Graphics

summarize() with group_by()

Multiple Groups

Using Tables

origin	carrier	n	min	Q1	Q2	Q3	max
EWR	9E	1193	-0.6166667	-0.2166667	-0.1000000	0.0333333	1.5500000
EWR	AA	3326	-1.1666667	-0.3500000	-0.1833333	0.0125000	2.4666667
EWR	AS	704	-1.1666667	-0.5000000	-0.2833333	-0.0666667	1.0833333
EWR	B6	6275	-0.7500000	-0.2166667	-0.1000000	0.0500000	1.9333333
EWR	DL	4266	-0.9000000	-0.2166667	-0.0833333	0.0666667	1.9833333
EWR	EV	40571	-1.8166667	-0.2000000	-0.0833333	0.0666667	2.5000000
EWR	MQ	2086	-0.8166667	-0.2000000	-0.0500000	0.1000000	2.0833333
EWR	00	6	-0.2666667	-0.1791667	-0.0750000	0.1791667	0.4333333
EWR	UA	44390	-1.2333333	-0.3333333	-0.1833333	0.0000000	2.4333333
EWR	US	4322	-0.9833333	-0.2166667	-0.0833333	0.0833333	2.4500000
EWR	VX	1521	-1.2000000	-0.4166667	-0.2333333	0.0000000	1.1166667
EWR	WN	6022	-0.9666667	-0.2833333	-0.1333333	0.0166667	2.0833333
JFK	9E	13548	-1.0666667	-0.3666667	-0.2000000	-0.0166667	1.8666667
JFK	AA	13429	-1.1833333	-0.3500000	-0.1666667	0.0333333	2.2333333
JFK	B6	38920	-1.1500000	-0.2333333	-0.1000000	0.0666667	2.4333333
JFK	DL	20136	-1.3166667	-0.3833333	-0.2166667	-0.0166667	2.4333333
JFK	EV	1317	-0.4333333	-0.1500000	-0.0500000	0.0666667	1.6000000

Useful Summary Functions

- Measures of Center
 - mean()
 - median()
 - mode()
- Measures of Spread
 - var()
 - sd()
 - IQR()
 - mad()
- Measures of Rank
 - min()
 - max()
 - quantile()

Useful Summary Functions

- Measures of Position
 - Order Matters
 - first() = x[1]
 - last() = x[length(x)]
 - nth(k) = x[k]
- Counts
 - n()
 - n_distinct()
- Counts/Proportions for Logical
 - sum()
 - mean()
 - Example
 - sum(x>10)
 - mean(x>10)

Closing

Disperse and Make Reasonable Decisions