Population and the origin of sustatined growth

Chad Jones and Dietrich Vollrath

Introduction to Economic Growth

he Malthusian conomy

echnology

he transition rowth

develonment

Historical take-off

The Malthusian economy

Endogenous echnology

The transition to growth

Comparative development

A Malthusian economy

Malthus speculated on how fixed/limited resources influenced population growth and living standards. Let production be

$$Y_t = X^{\beta} \left(A_t^{\beta/(1-\beta)} L_t \right)^{1-\beta}$$

where X is the amount of the fixed resource. β is how important that is in production. L_t is population. A_t is

productivity. The exponents are for simplification.

The Malthusian economy

Endogenous echnology

The transitior growth

Comparative levelonment

Living standards

In per-capita terms this is

$$y_t = \left(\frac{A_t X}{L_t}\right)^{\beta}. (1)$$

Living standards depend

- ightharpoonup positively on A_t
- positively on X_t
- ightharpoonup negatively on L_t

The Malthusian economy

Endogenous echnology

he transition to rowth

omparative evelopment

Economics of

Endogenous population growth

For Malthus, population growth isn't given, it depends on y_t

$$g_L = \nu(y_t - \overline{c})$$

where ν is scaling and \overline{c} is a "subsistence" level of consumption:

- If $y_t > \overline{c}$, population growth is positive. Lower mortality, higher family formation and fertility.
- If $y_t < \overline{c}$, population growth is negative. High mortality, limited family formation and fertility.
- As y_t goes up, so does g_L

The Malthusian economy

echnology

The transition growth

development

Dynamics of population

Plug in what we know about y_t and you have

$$g_L = \nu \left(\frac{A_t X}{L_t}\right)^{\beta} - \nu \overline{c}. \tag{2}$$

- This is a dynamic system telling us that g_L relates to a ratio AX/L.
- g_L is negatively related to L. More people, lower living standards, lower population growth.
- This is similar analysis to Solow/Romer and other dynamic models.

The Malthusian economy

Endogenous technology

The transition t growth

omparative evelopment

Malthusian dynamics

The Malthusian economy

Endogenous technology

The transition to growth

Comparative development

Malthusian steady state

In the steady state it's the case that $g_L^{ss}=g_A$. From production function we have

$$g_y = \beta(g_A - g_L). \tag{3}$$

so in steady state it must be that $g_y^{ss}=0$. In the Malthusian world living standards don't grow. If $g_y=0$, the it must be the

case that

$$y^{ss} = \frac{g_A}{\nu} + \bar{c}. \tag{4}$$

as this ensures $g_L = g_A$.

The Malthusian economy

echnology

The transitio growth

comparative evelopment

Malthusian steady state

Given

$$y^{ss} = \frac{g_A}{\nu} + \overline{c}. \tag{5}$$

- lacktriangle Living standards are *higher* than the subsistence level \overline{c}
- ▶ How much higher depends on g_A . Productivity growth allows you to stay ahead.
- $\, \overline{c} \,$ isn't a biological minimum, it depends on culture/society as much as biology
- Malthusian economies can be relatively well-off, but stagnant

The Malthusian economy

Endogenous echnology

he transition to rowth

Jomparative development

Malthusian effects

The Malthusian economy

Malthus is kind of depressing. A substantial loss of population:

- Raises living standards for the remaining people
- Who then start to have more children in response
- Which lowers living standards
- Until living standards are back at the level before the shock to population

This happened historically with the Black Death.

Escaping Malthus

The world economy does not appear to be in a Malthusian situation, we have sustained economic growth. Two important elements to escape:

- Innovation/technology accelerated
- Population growth changed it's relationship to living standards

The Malthusian

Endogenous technology

The transition to growth

Comparative

Endogenize innovation

Our general structure was

$$g_A = \theta \frac{(s_R L_t)^{\lambda}}{A_t^{1-\phi}},\tag{6}$$

but here let

- $ightharpoonup s_R = 1$, or everyone could potentially innovate
- $\lambda = 1$
- ${\color{blue} \blacktriangleright}~\phi=1.$ We know this is wrong in modern world, but could be applicable before that

which gives us

$$g_A = \theta L_t \tag{7}$$

The Malthusian

Endogenous technology

The transition to prowth

Comparative

Endogenize innovation

Make one additional assumption that economy is always "close" to Malthusian equilibrium so that

$$g_L \approx g_A$$
 (8)

and then with endogenous innovation it would be that

$$g_L \approx \theta L_t$$
 (9)

or population growth should rise with population size. As scale goes up, more innovation occurs, which raises living standards, which raises population growth, so scale goes up,

The Malthusian

Endogenous technology

The transit

Comparative Jevelopment

From 1,000,000 BCE to the present

he Malthusian

Endogenous technology

The transition to growth

Jomparative development

Escaping Malthus

Endogenous technology means that g_A goes up as L goes up. By itself that cannot end Malthusian trap.

- $ightharpoonup g_A$ keeps raising living standards, yes
- But population growth keeps growing
- Cannot break the stagnation problem
- And population growth cannot, biologically, continually get higher

What does a more realistic situation look like?

conomy

Endogenous technology

The transition to growth

Comparative

Realistic function for g_L

ne Malthusian conomy

Endogenous

The transition to growth

Comparative

Escaping Malthus

With realistic population growth function

- ▶ There is a Malthusian steady state at y_M^{ss} .
- ▶ If $y(0) < y_T^{ss}$ to begin, will end up in Malthusian state
- ▶ But if $y_t > Y_T^{ss}$, end up with sustained growth as $g_A > g_L$ always
- How did we get past this turning point?

conomy

technology

The transition to growth

Comparative

The transition to sustained growth

he Malthusiar conomy

Endogenous technology

The transition to growth

Comparative

Escaping Malthus

A reasonable story for the transition to sustained growth:

- The world/economy was in/near Malthusian steady state y_{ss}^{M}
- ▶ But at this steady state $g_L > 0$, so population grew
- ▶ Because L grew, from endogenous innovation g_A grew
- ▶ The level of y_{ss}^M grew, so higher g_L , etc..
- ightharpoonup And eventually g_A was high enough that population growth could not keep up
- \blacktriangleright Which allowed growth to continue past the point of y_{ss}^T
- ► And entered the world where population growth *falls* with living standards
- Which puts us in the world of Solow/Romer/Schumpeter

conomy

The transition to growth

Comparative development

Early and late escapees

Some areas escaped Malthus before others:

- England is typical example of first industrializing nation around late 1700s (maybe earlier)
- But England and Europe were typically far poorer than China or much of Asia historically
- What makes sense for earlier take-off in Europe versus Asia?

conomy

Endogenous technology

The transition growth

Comparative development

Using the Malthusian model

The *growth rate* of technology is more important than the *level* of technology:

- ▶ The escape from Malthus happens when $g_A > g_L$ for a sustained period of time
- Asia had large populations, so g_A could be large
- But Europe may have had advantage in lower g_L at any given level of living standards?
- ightharpoonup Or a fortunate burst of innovation, raising g_A even for a few decades, was sufficient to get over the hump

onomy

Endogenous technology

growth

Comparative development

Family choice problem

Population growth is a choice, constrained by resources to have and keep kids alive. Let

$$U = c^{\gamma} n^{1-\gamma}.$$

and families care about consumption, c, and number of kids n. γ tells us how much they care about each. Their budget is

$$y = c + p_n n. (10)$$

and p_n is the "cost" of a child in terms of time, resources, food, etc. There is a trade-off with consumption.

conomy

Endogenous echnology

rowth

Comparative

Utility maximization

Standard conditions are

$$MU_c = \gamma \frac{U}{c}$$

$$MU_n = (1 - \gamma) \frac{U}{n}.$$

and

$$\frac{MU_n}{MU_c} = \frac{p_n}{1},$$

which can be solved with budget for

$$n = \frac{(1 - \gamma)y}{p_n}. (11)$$

Kids/population growth depends positively on income and negatively on their relative cost.

he Malthusian conomy

echnology

The transition growth

Comparative

The cost of kids

Let the cost of children be

$$p_n = \overline{c}e^{\eta y}. (12)$$

- ▶ There is some subsistence cost, \bar{c}
- Their cost goes up with income, y
- ▶ Because of the $e^{\eta y}$ the cost is "convex" or increases faster as y goes up
- This captures that as incomes go up, taking time for kids is more costly (people delay familiy formation)
- ▶ It also captures that as *y* goes up you might invest more in kids (school, health) so having more kids gets even more expensive (send 2 kids through college rather than 4 through high school).

onomy

Endogenous echnology

rne transition growth

Comparative

Population growth

Put this together and you have

$$n = \frac{(1 - \gamma)y}{\bar{c}e^{\eta y}}.$$

- Population growth depends in two ways on living standards, y
- n goes up because of y because families have more resources
- lacktriangleq n goes down with y because the price of children rises

conomy

Endogenous technology

growth

development

The two effects of y change in how strong they are, leading to

$$\begin{array}{ll} \frac{\partial g_L}{\partial y} &> & 0 \text{ if } y < \frac{1}{\eta} \\ \\ \frac{\partial g_L}{\partial y} &= & 0 \text{ if } y = \frac{1}{\eta} \\ \\ \frac{\partial g_L}{\partial y} &< & 0 \text{ if } y > \frac{1}{\eta}. \end{array}$$

At low levels of y, higher y raises population growth. At high levels, higher y lowers population growth. This creates the "hump" shape that allows for sustained growth.

he Malthusia conomy

Endogenous technology

i ne transition growth

development