

USING MACHINE LEARNING TO DIAGNOSE CHEST X-RAYS AND INTERPRET PATIENT SYMPTOMS AND MEDICAL HISTORY

JONGHEON BAEK

ROHAN BHANSALI

AVINASH KOMARLINGAM

YUSON WON

CLASSIFYING IMAGES

CLASSIFYING X-RAYS

WHY USE MACHINES?

Machines will be able to make these predictions in place of radiologists

Allow for quick and accurate diagnosis

ALGORITHMS HELP MACHINES LEARN

Computers learn from experience

They determine significant features

NEURAL NETWORKS: CONVOLUTIONAL

Used for image recognition

Reduces parameters inputted into the network

Most efficient NN for image recognition

DUALNET: COMBINING TWO NETWORKS

ENHANCING THE MODEL

CLINICAL CORRELATION: PATIENT SYMPTOMS & MEDICAL HISTORY

DATA: MIMIC-CXR

path	view	Consolidation	Pneumonia	Atelectasis	Pneumothorax
valid/p10382575/s07/view1_frontal.jpg	frontal		1	-1	0
valid/p10382575/s07/view2_lateral.jpg	lateral		1	-1	0

DATA: INDIANA UNIVERSITY

TESTING THE MODEL

F1 score of Model vs. Radiologists

	F1 Score (95% CI)
Radiologist 1	0.383 (0.309, 0.453)
Radiologist 2	0.356 (0.282, 0.428)
Radiologist 3	0.365 (0.291, 0.435)
Radiologist 4	0.442 (0.390, 0.492)
Radiologist Avg.	0.387 (0.330, 0.442)
CheXNet	0.435 (0.387, 0.481)

COLLABORATION

Academies of Loudoun

Replicate DualNet using Mimic-CXR dataset

Use natural language processing to interpret radiology reports in the Indiana Dataset

Daegu Science High School

Replicate DualNet using Mimic-CXR dataset

Use Recurrent Neural Network after processing image by Convolutional NN.

REFERENCES

Armitage, H. (2018, November 20). Artificial intelligence rivals radiologists in screening X-rays for certain diseases. Retrieved from https://med.stanford.edu/news/all-news/2018/11/ai-outperformed-radiologists-in-screening-x-rays-for-certain-diseases.html

Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2019). Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification. *Scientific Reports*, 9(1). doi:10.1038/s41598-019-42294-8

Blumenfeld, A., Greenspan, H., & Konen, E. (2018). Pneumothorax detection in chest radiographs using convolutional neural networks. *Medical Imaging 2018: Computer-Aided Diagnosis*. doi:10.1117/12.2292540

"Data & Statistics | CDC." Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, www.cdc.gov/DataStatistics/.

Demner-Fushman, D., Kohli, M. D., Rosenman, M. B., Shooshan, S. E., Rodriguez, L., Antani, S., . . . Mcdonald, C. J. (2015). Preparing a collection of radiology examinations for distribution and retrieval. *Journal of the American Medical Informatics Association*, 23(2), 304-310. doi:10.1093/jamia/ocv080

Hou, S., Liu, X., & Wang, Z. (2017). DualNet: Learn Complementary Features for Image Recognition. 2017 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.62

Huang, G., Liu, Z., Maaten, L. V., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243

Ittyachen, A. M., Vijayan, A., & Isac, M. (2017). The forgotten view: Chest X-ray - Lateral view. Respiratory Medicine Case Reports, 22, 257-259. doi:10.1016/j.rmcr.2017.09.009

Kumar, P., Grewal, M., & Srivastava, M. M. (2018). Boosted Cascaded Convnets for Multilabel Classification of Thoracic Diseases in Chest Radiographs. Lecture Notes in Computer Science Image Analysis and Recognition, 546-552. doi:10.1007/978-3-319-93000-8 62

Qin, C., Yao, D., Shi, Y., & Song, Z. (2018). Computer-aided detection in chest radiography based on artificial intelligence: A survey. BioMedical Engineering OnLine,17(1). doi:10.1186/s12938-018-0544-y

Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., . . . Lungren, M. P. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLOS Medicine, 15(11). doi:10.1371/journal.pmed.1002686

Raoof, S., Feigin, D., Sung, A., Raoof, S., Irugulpati, L., & Rosenow, E. C. (2012). Interpretation of Plain Chest Roentgenogram. Chest, 141(2), 545-558. doi:10.1378/chest.10-1302

Riggs, W., & Parvey, L. (1976). Differences between right and left lateral chest radiographs. American Journal of Roentgenology,127(6), 997-1000. doi:10.2214/ajr.127.6.997