

TITLE: "PIZZA SALES ANALYSIS USING MYSQL"

INTRODUCTION:

THIS PROJECT FOCUSES ON ANALYZING PIZZA SALES DATA TO DERIVE ACTIONABLE INSIGHTS. BY LEVERAGING MYSQL, WE AIM TO:

- UNDERSTAND SALES TRENDS AND CUSTOMER PREFERENCES.
- OPTIMIZE BUSINESS STRATEGIES THROUGH DATA-DRIVEN DECISIONS.
- IDENTIFY KEY PERFORMANCE METRICS SUCH AS REVENUE, ORDER FREQUENCY, AND TOP-SELLING ITEMS.

KEY OBJECTIVES:

- EFFICIENTLY RETRIEVE AND ANALYZE SALES DATA.
- USE SQL QUERIES TO SOLVE REAL-WORLD BUSINESS PROBLEMS.
- HIGHLIGHT THE MOST POPULAR PIZZA TYPES, REVENUE DISTRIBUTION, AND CUSTOMER ORDERING BEHAVIOR.

HELLO !!!

PROBLEM STATEMENTS

- 1) RETRIEVE THE TOTAL NUMBER OF ORDERS PLACED.
- 2) CALCULATE THE TOTAL REVENUE GENERATED FROM PIZZA SALES.
- 3) IDENTIFY THE HIGHEST-PRICED PIZZA.
- 4)IDENTIFY THE MOST COMMON PIZZA SIZE ORDERED.
- 5) LIST THE TOP 5 MOST ORDERED PIZZA TYPES ALONG WITH THEIR QUANTITIES.
- 6) JOIN THE NECESSARY TABLES TO FIND THE TOTAL QUANTITY OF EACH PIZZA CATEGORY ORDERED.
- 7)DETERMINE THE DISTRIBUTION OF ORDERS BY HOUR OF THE DAY.

PROBLEM STATEMENTS

8)JOIN RELEVANT TABLES TO FIND THE CATEGORY-WISE DISTRIBUTION OF PIZZAS.

9)GROUP THE ORDERS BY DATE AND CALCULATE THE AVERAGE NUMBER OF PIZZAS ORDERED PER DAY.

10)DETERMINE THE TOP 3 MOST ORDERED PIZZA TYPES BASED ON REVENUE.

11)CALCULATE THE PERCENTAGE CONTRIBUTION OF EACH PIZZA TYPE TO TOTAL REVENUE.

12) ANALYZE THE CUMULATIVE REVENUE GENERATED OVER TIME.

13) DETERMINE THE TOP 3 MOST ORDERED PIZZA TYPES BASED ON REVENUE FOR EACH PIZZA CATEGORY.

SCHEMA'S

- pizza_id TEXT
- pizza_type_id TEXT
- size TEXT
- price DOUBLE

__ pizza_typ...

- pizza_type_id TEXT
- name TEXT
- category TEXT
- ingredients TEXT

order_details

- ORDER_DETAILS_ID I...
- ORDER_ID INT
- PIZZA_ID TEXT
- QUANTITY INT

Indexes

ORDER_DATE DATE

ORDER_TIME TIME

Indexes

1) RETRIEVE THE TOTAL NUMBER OF ORDERS PLACED.

2) CALCULATE THE TOTAL REVENUE GENERATED FROM PIZZA SALES.

3)IDENTIFY THE HIGHEST-PRICED PIZZA.

4) IDENTIFY THE MOST COMMON PIZZA SIZE ORDERED.

5) LIST THE TOP 5 MOST ORDERED PIZZA TYPES ALONG WITH THEIR QUANTITIES.

Chicken

11050

7) DETERMINE THE DISTRIBUTION OF ORDERS BY HOUR OF THE DAY.

28

8) JOIN RELEVANT TABLES TO FIND THE CATEGORY-WISE DISTRIBUTION OF PIZZAS. SELECT

category, COUNT(name)

FROM

pizza_types AS pt

GROUP BY category;

		category	Total
	•	Chicken	6
1		Classic	8
		Supreme	9
		Veggie	9

9)GROUP THE ORDERS BY DATE AND CALCULATE THE AVERAGE NUMBER OF PIZZAS ORDERED PER DAY

10) DETERMINE THE TOP 3 MOST ORDERED PIZZA TYPES BASED

11) CALCULATE THE PERCENTAGE CONTRIBUTION OF EACH PIZZA TYPE TO TOTAL REVENUE.

```
SELECT
    pt.category, round((SUM(od.quantity * p.price)/(SELECT
    ROUND(SUM(o.quantity * p.price), 2) AS Total_revenue
FROM
    order_details o
        JOIN
   pizzas p ON o.pizza_id = p.pizza_id)*100),2) AS revenue
FROM
   pizza_types AS pt
        JOIN
   pizzas AS p ON p.pizza_type_id = pt.pizza_type_id
        JOIN
    order_details AS od ON od.pizza_id = p.pizza_id
GROUP BY pt.category
ORDER BY revenue DESC;
```

Result Grid Filt				
	category	revenue		
•	Classic	26.91		
	Supreme	25.46		
	Chicken	23.96		
	Veggie	23.68		

12) ANALYZE THE CUMULATIVE REVENUE GENERATED OVER TIME.

SELECT ORDER_DATE, SUM(REVENUE) OVER (ORDER BY ORDER_DATE) AS CUM_REVENUE FROM (SELECT O.ORDER_DATE, SUM(OD.QUANTITY*P.PRICE) AS REVENUE

FROM ORDER_DETAILS AS OD

JOIN PIZZAS AS P

ON OD.PIZZA_ID=P.PIZZA_ID

JOIN ORDERS AS O

ON O.ORDER_ID=OD.ORDER_ID

GROUP BY ORDER_DATE) AS SALES ;

Re	Result Grid				
	ORDER_DATE	CUM_REVENUE			
•	2015-01-01	2713.8500000000004			
	2015-01-02	5445.75			
	2015-01-03	8108.15			
	2015-01-04	9863.6			
	2015-01-05	11929.55			
	2015-01-06	14358.5			
	2015-01-07	16560.7			
	2015-01-08	19399.05			
	2015-01-09	21526.4			
	2015-01-10	23990.350000000002			
	2015-01-11	25862.65			
	2015-01-12	27781.7			

13) DETERMINE THE TOP 3 MOST ORDERED PIZZA TYPES BASED ON REVENUE FOR EACH PIZZA CATEGORY.

```
select name, revenue from
(select category, name, revenue,
 rank() over(partition by category order by revenue desc) as rn
 from
(select pizza_types. category, pizza_types. name,
 sum((order_details. quantity)*pizzas.price) as revenue
 from pizza_types join pizzas
 on pizza_types.pizza_type_id =pizzas.pizza_type_id
 join order_details
 on order_details.pizza_id
 = pizzas.pizza_id
 group by pizza_types. category, pizza_types. name) as a) as b
 where rn <=3;
```

Result Grid Filter Rows:				
	name	revenue		
•	The Thai Chicken Pizza	43434.25		
	The Barbecue Chicken Pizza	42768		
	The California Chicken Pizza	41409.5		
	The Classic Deluxe Pizza	38180.5		
	The Hawaiian Pizza	32273.25		
	The Pepperoni Pizza	30161.75		
	The Spicy Italian Pizza	34831.25		
	The Italian Supreme Pizza	33476.75		
	The Sicilian Pizza	30940.5		
	The Four Cheese Pizza	32265.700		
	The Mexicana Pizza	26780.75		
	The Five Cheese Pizza	26066.5		

CONCLUSION AND FUTURE SCOPE

CONCLUSION:

- THIS PROJECT SUCCESSFULLY DEMONSTRATED THE POWER OF MYSQL FOR DATA ANALYSIS IN THE PIZZA SALES DOMAIN.
- KEY INSIGHTS, SUCH AS REVENUE GENERATION, CUSTOMER PREFERENCES, AND ORDER PATTERNS, WERE IDENTIFIED, SHOWCASING THE EFFECTIVENESS OF STRUCTURED QUERY LANGUAGE IN REAL-WORLD APPLICATIONS.
- THE ANALYSIS PROVIDES ACTIONABLE RECOMMENDATIONS FOR ENHANCING BUSINESS STRATEGIES AND CUSTOMER SATISFACTION.

FUTURE SCOPE:

- PREDICTIVE ANALYTICS: IMPLEMENT MACHINE LEARNING MODELS TO FORECAST FUTURE SALES AND TRENDS.
- REAL-TIME ANALYSIS: INTEGRATE REAL-TIME DASHBOARDS FOR INSTANT PERFORMANCE TRACKING.
- DATA EXPANSION: INCLUDE MORE DATA, SUCH AS DELIVERY TIMES AND CUSTOMER FEEDBACK, TO GAIN DEEPER INSIGHTS.
- OPTIMIZATION: REFINE QUERY PERFORMANCE FOR HANDLING LARGER DATASETS EFFICIENTLY.

