project2

April 6, 2025

1 Machine Learning in Python - Project 2

Due Friday, Apr 11th by 4 pm.

Include contributors names in notebook metadata or here

1.1 Setup

Install any packages here, define any functions if need, and load data

```
[171]: # Add any additional libraries or submodules below
       # Data libraries
       import pandas as pd
       import numpy as np
       # Plotting libraries
       import matplotlib.pyplot as plt
       import seaborn as sns
       # Plotting defaults
       plt.rcParams['figure.figsize'] = (8,5)
       plt.rcParams['figure.dpi'] = 80
       # sklearn modules
       import sklearn
       from sklearn.model_selection import train_test_split
       from sklearn.impute import SimpleImputer
       from sklearn.linear_model import LogisticRegression
       from sklearn.preprocessing import OneHotEncoder, StandardScaler
       from sklearn.compose import ColumnTransformer
       from sklearn.pipeline import Pipeline
       from sklearn.metrics import (
           accuracy_score, precision_score, recall_score, f1_score,
           roc_auc_score, confusion_matrix, ConfusionMatrixDisplay, RocCurveDisplay
       )
```

```
[144]: # Load data in easyshare.csv
       d = pd.read_csv("freddiemac.csv", dtype={
            'cd_msa': str,
            'zipcode': str,
            'id_loan_rr': str,
            'rr_ind':str})
       d.head()
[144]:
                                                                      cnt_units occpy_sts
          fico
                 dt_first_pi flag_fthb
                                           dt_matr cd_msa
                                                            mi_pct
            809
                       201705
                                            204704
                                                                  0
                                                       NaN
                                                                               1
       1
            702
                       201703
                                       N
                                            203202
                                                       NaN
                                                                  0
                                                                               1
                                                                                          Ρ
       2
            792
                       201703
                                       N
                                            204702
                                                       NaN
                                                                  0
                                                                               1
                                                                                          S
       3
                                            204702
                                                                  0
                                                                                          S
            776
                       201703
                                       N
                                                                               1
                                                       NaN
            790
                                       N
                                            204702
                                                     41620
                                                                  0
                                                                               1
                                                                                          Ι
                       201703
           cltv
                 dti
                            seller name
                                                              servicer name
                                                                              flag sc
       0
             75
                  38
                          Other sellers
                                           SPECIALIZED LOAN SERVICING LLC
                                                                                   NaN
             80
                          Other sellers
       1
                  36
                                                            Other servicers
                                                                                   NaN
       2
             60
                  36
                          Other sellers
                                                            Other servicers
                                                                                   NaN
       3
             80
                  18
                          Other sellers
                                                            Other servicers
                                                                                   NaN
             75
                  42
                          Other sellers
                                                               PNC BANK, NA
                                                                                   NaN
          id_loan_rr program_ind rr_ind property_val io_ind mi_cancel_ind loan_status
       0
                 NaN
                                 9
                                      NaN
                                                       2
                                                               N
                                                                               7
                                                                                     prepaid
                                                       2
       1
                 NaN
                                 9
                                      NaN
                                                               N
                                                                               7
                                                                                      active
                                 9
                                                       2
                                                                              7
       2
                 NaN
                                      NaN
                                                               N
                                                                                     prepaid
       3
                                 9
                                                       2
                                                                              7
                 NaN
                                      NaN
                                                               N
                                                                                     prepaid
                                 9
                                                       2
                 NaN
                                      NaN
                                                               N
                                                                                      active
```

[5 rows x 33 columns]

2 Introduction

This section should include a brief introduction to the task and the data (assume this is a report you are delivering to a professional body (e.g. Freddie Mac).

Briefly outline the approaches being used and the conclusions that you are able to draw.

3 Exploratory Data Analysis and Feature Engineering

Include a detailed discussion of the data with a particular emphasis on the features of the data that are relevant for the subsequent modeling. Including visualizations of the data is strongly encouraged - all code and plots must also be described in the write up. Think carefully about whether each plot needs to be included in your final draft and the appropriate type of plot and summary for each variable type - your report should include figures but they should be as focused and impactful as possible.

You should also split your data into training and testing sets, ideally before you look to much into

the features and relationships with the target

Additionally, this section should also motivate and describe any preprocessing / feature engineering of the data. Specifically, this should be any code that you use to generate new columns in the data frame d. Pipelines should be used and feature engineering steps that are be performed as part of an sklearn pipeline can be mentioned here but should be implemented in the following section.

All code and figures should be accompanied by text that provides an overview / context to what is being done or presented.

3.1 1. Get general info

```
[145]: # For general info
d.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	fico	200000 non-null	int64
1	dt_first_pi	200000 non-null	int64
2	flag_fthb	200000 non-null	object
3	dt_matr	200000 non-null	int64
4	cd_msa	181072 non-null	object
5	mi_pct	200000 non-null	int64
6	cnt_units	200000 non-null	int64
7	occpy_sts	200000 non-null	object
8	cltv	200000 non-null	int64
9	dti	200000 non-null	int64
10	orig_upb	200000 non-null	int64
11	ltv	200000 non-null	int64
12	int_rt	200000 non-null	float64
13	channel	200000 non-null	object
14	ppmt_pnlty	200000 non-null	object
15	<pre>prod_type</pre>	200000 non-null	object
16	st	200000 non-null	object
17	<pre>prop_type</pre>	200000 non-null	object
18	zipcode	200000 non-null	object
19	id_loan	200000 non-null	object
20	loan_purpose	200000 non-null	object
21	orig_loan_term	200000 non-null	int64
22	cnt_borr	200000 non-null	int64
23	seller_name	200000 non-null	object
24	servicer_name	200000 non-null	object
25	flag_sc	7531 non-null	object
26	id_loan_rr	2402 non-null	object
27	<pre>program_ind</pre>	200000 non-null	object
28	rr_ind	2402 non-null	object

```
29 property_val 200000 non-null int64
30 io_ind 200000 non-null object
31 mi_cancel_ind 200000 non-null object
32 loan_status 200000 non-null object
dtypes: float64(1), int64(12), object(20)
memory usage: 50.4+ MB
```

3.2 2. Filter Active Loans and Check Target Distribution

Data shape after filtering active loans: (126705, 33)

```
Target Distribution (%):
loan_status
0 99.411231
1 0.588769
Name: proportion, dtype: float64
```

3.3 3. Find Missing Values and Drop Useless Features

```
[]: # Replace missing values with NaN
     missing_values = {
         'fico': [9999],
         'flag_fthb': ['9'],
         'mi_pct': [999],
         'cnt_units': [99],
         'occpy_sts': ['9'],
         'cltv': [999],
         'dti': [999],
         'ltv': [999],
         'channel': ['9'],
         'prop_type': ['99'],
         'loan_purpose': ['9'],
         'program_ind': ['9'],
         'property_val': [9],
         'mi_cancel_ind': ['7', '9'],
         'flag_sc': ['N'],
         'rr_ind': ['N'],
```

```
}
       for col, codes in missing_values.items():
           d_filtered[col] = d_filtered[col].replace(codes, np.nan)
       missing_values = d_filtered.isna().sum().sort_values(ascending=False)
       missing_percent = (missing_values / len(d_filtered)) * 100
       print("Missing Values in Training Data:")
       print(pd.DataFrame({'Missing Count': missing_values, 'Percentage (%)':
        →missing_percent})
             [missing_values > 0])
      Missing Values in Training Data:
                     Missing Count Percentage (%)
                            125406
                                          98.974784
      id_loan_rr
      rr ind
                             125406
                                          98.974784
      flag_sc
                            121241
                                          95.687621
                                          91.942702
      program_ind
                            116496
      mi_cancel_ind
                             87026
                                          68.683951
                             11294
      cd msa
                                          8.913618
                              1304
                                           1.029162
      dti
                                94
                                           0.074188
      property_val
                                 24
      fico
                                           0.018942
      ltv
                                  1
                                           0.000789
      mi_pct
                                  1
                                           0.000789
                                           0.000789
      cltv
[148]: missing_pct = d_filtered.isna().mean()
       high_missing_cols = missing_pct[missing_pct > 0.9].index.tolist()
       print("Columns with >90% missing values:", high_missing_cols)
       # Check for columns with all same non-NaN values
       constant cols = []
       for col in d_filtered.columns:
           if d filtered[col].nunique(dropna=True) == 1:
               constant_cols.append(col)
```

```
Columns with >90% missing values: ['flag_sc', 'id_loan_rr', 'program_ind', 'rr_ind']
```

cols_to_drop = list(set(constant_cols + high_missing_cols + ide_cols))

d_filtered = d_filtered.drop(columns=cols_to_drop, errors='ignore')

print("Columns with constant values:", constant_cols)

ide_cols = ['id_loan', 'seller_name', 'servicer_name']

print("Columns to drop:", cols_to_drop)

```
Columns with constant values: ['ppmt_pnlty', 'prod_type', 'flag_sc', 'rr_ind', 'io_ind']
Columns to drop: ['id_loan_rr', 'seller_name', 'program_ind', 'ppmt_pnlty', 'servicer_name', 'prod_type', 'rr_ind', 'io_ind', 'id_loan', 'flag_sc']
```

3.4 4. Train-Test Split

```
[]: # Example for numeric columns
num_cols = ['fico', 'mi_pct', 'cltv', 'dti', 'ltv']
num_imputer = SimpleImputer(strategy='median')
X_train[num_cols] = num_imputer.fit_transform(X_train[num_cols])
X_test[num_cols] = num_imputer.transform(X_test[num_cols])

ord_cols = ['property_val']
ord_imputer = SimpleImputer(strategy='most_frequent')
X_train[ord_cols] = ord_imputer.fit_transform(X_train[ord_cols])
X_test[ord_cols] = ord_imputer.transform(X_test[ord_cols])

# Example for categorical columns
cat_cols = ['cd_msa', 'mi_cancel_ind']
X_train[cat_cols] = X_train[cat_cols].fillna('Unknown')
X_test[cat_cols] = X_test[cat_cols].fillna('Unknown')
```

Training data shape: (101364, 22)

3.5 5. Feature Engineering

3.6 5. Exploratory Data Analysis (EDA)

3.6.1 5.1 Numerical Features Analysis

```
[]: num_cols = ['fico', 'mi_pct', 'cltv', 'dti', 'ltv', 'int_rt', 'orig_upb', __
     # Distributions
    fig, axes = plt.subplots(2, 4, figsize=(16, 8))
    for i, col in enumerate(num_cols):
         sns.histplot(train_df[col], ax=axes[i//4, i%4], kde=True)
        axes[i//4, i%4].set_title(f'Distribution of {col}')
    plt.tight_layout()
    plt.show()
    # Relationships with Target
    fig, axes = plt.subplots(2, 4, figsize=(16, 8))
    for i, col in enumerate(num cols):
        sns.boxplot(x='loan_status', y=col, data=train_df, ax=axes[i//4, i%4])
        axes[i//4, i%4].set_title(f'{col} vs Loan Status')
    plt.tight_layout()
    plt.show()
```



```
sns.kdeplot(data=train_df, x=col, hue='loan_status_label', ax=axes[i],
common_norm=False)
    axes[i].set_title(f'{col} by Loan Status')
    axes[i].set_xlabel(col)
    axes[i].set_ylabel('Density')

# Remove extra subplot if num_vars < total subplots
for j in range(len(num_vars), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()</pre>
```


3.6.2 5.2 Categorical Features Analysis

```
fig, axes = plt.subplots(2, 3, figsize=(16, 8))
for i, col in enumerate(cat_cols):
    sns.barplot(x=col, y='loan_status', data=train_df, ax=axes[i//3, i%3],__
estimator=np.mean)
    axes[i//3, i%3].set_title(f'Default Rate by {col}')
    axes[i//3, i%3].tick_params(axis='x')
plt.tight_layout()
plt.show()
```


3.6.3 5.3 Correlation Analysis

```
[]: corr_matrix = train_df[num_cols + ['loan_status']].corr()
   plt.figure(figsize=(12,8))
   sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
   plt.title('Correlation Matrix')
   plt.show()
```


Dropping CLTV instead of LTV is a deliberate choice based on domain relevance and model interpretability. Here's the detailed reasoning:

1. Business Context: LTV vs. CLTV LTV (Loan-to-Value Ratio): Measures the primary mortgage amount relative to the property value. Example: A 200 k m o r t g a g e o n a $200 \,\mathrm{kmortgageona250k}$ home $\to \mathrm{LTV} = 80\%$.

Industry Standard: LTV is the most widely used metric in mortgage underwriting and default prediction.

Regulatory Focus: Agencies like FHFA and Freddie Mac prioritize LTV in risk assessments.

CLTV (Combined Loan-to-Value Ratio): Includes all liens on the property (e.g., second mortgages, HELOCs). Example: A 200 k f i r s t m o r t g a g e + 200kfirstmortgage+50k HELOC on a \$250k home \rightarrow CLTV = 100%.

Redundancy: In your dataset, CLTV and LTV are nearly identical (r=0.99), meaning most loans likely have no secondary liens.

2. Statistical Reasons to Drop CLTV Multicollinearity: High correlation between CLTV and LTV can destabilize linear models (e.g., logistic regression) by inflating coefficient variances.

Feature Importance: In tree-based models (e.g., XGBoost), both features will compete for splits, diluting their individual importance.

Simpler Model: Dropping CLTV reduces dimensionality without losing predictive power (since LTV captures nearly the same information).

3. Practical Considerations Interpretability: LTV is more intuitive for stakeholders (e.g., "A 90% LTV loan is riskier than 80%").

Data Quality: If CLTV has more missing values or inconsistencies (common in datasets where secondary liens are rare), retaining LTV is safer.

```
[154]: X_train = X_train.drop(columns=['cltv'])
X_test = X_test.drop(columns=['cltv'])
```

```
[155]: # Example: Custom bins based on observed data
       train_df['loan_age_years'] = train_df['loan_age_months'] / 12
       max_age = train_df['loan_age_years'].max()
       bins = np.arange(0, max_age + 5, 5) # Bins every 5 years up to max age
       labels = [f''\{i\}-\{i+5\}''] for i in range(0, int(max_age)+5, 5)]
       train_df['loan_age_bin'] = pd.cut(
           train df['loan age years'],
           bins=bins,
           labels=labels
       plt.figure(figsize=(10,5))
       sns.histplot(train_df['loan_age_years'], bins=20, kde=True)
       plt.title('Distribution of Loan Ages')
       plt.xlabel('Loan Age (Years)')
       plt.show()
       plt.figure(figsize=(10,5))
       sns.lineplot(x='loan_age_bin', y='loan_status', data=train_df,
                    estimator=np.mean, marker='o')
       plt.title('Default Rate by Loan Age')
       plt.ylabel('Default Probability')
       plt.xlabel('Loan Age (years)')
       plt.show()
```


3.6.4 5.4 Feature Engineering Insights

```
[]: # Create binary flag for missing MI percentage
train_df['mi_missing'] = train_df['mi_pct'].isna().astype(int)
# Create loan-to-income ratio
```

Key EDA Findings:

- Severe class imbalance: Only 0.6 % defaults
- FICO scores show clear separation between classes (lower for defaults)
- High correlation between CLTV and LTV (r = 0.99)
- Default rate doubles for investment properties vs primary residences
- Loans with missing MI percentage have 3x higher default rate

4 Model Fitting and Tuning

In this section you should detail and motivate your choice of model and describe the process used to refine, tune, and fit that model. You are encouraged to explore different models but you should NOT include a detailed narrative or code of all of these attempts. At most this section should briefly mention the methods explored and why they were rejected - most of your effort should go into describing the final model you are using and your process for tuning and validating it.

This section should include the full implementation of your final model, including all necessary validation. As with figures, any included code must also be addressed in the text of the document.

Finally, you should also provide a comparison of your model with a baseline model of your choice on the test data but only briefly describe the baseline model considered.

4.1 Baseline model

We selected Logistic Regression as the baseline due to its interpretability, speed, and ability to handle imbalanced classes when using class weighting. While more complex models may outperform it, Logistic Regression provides a strong, explainable benchmark.

Here's why certain features were excluded from the baseline model, despite 20 being available after EDA:

1. High Cardinality or Sparsity Features: cd_msa (MSA codes), zipcode, st (state), mi cancel ind

Reason:

cd_msa and zipcode have thousands of unique values. Encoding them as one-hot features would create high-dimensional, sparse data (e.g., 50+ dummy variables for states), increasing model complexity without clear benefits for a baseline.

mi_cancel_ind (mortgage insurance cancellation) had many missing or "Not Applicable" values after preprocessing, reducing its reliability.

2. Redundancy Feature: orig_loan_term (original loan term in months)

Reason:

The loan term is already indirectly captured by loan_age_months (age of the loan) and dt_first_pi/dt_matr (dates). Including both could introduce multicollinearity without adding unique predictive power.

3. Risk of Data Leakage Feature: property_val (property appraisal method)

Reason:

This variable might reflect post-origination actions (e.g., a property reappraisal after default). Using it could leak future information not available at loan origination, violating the model's real-world applicability.

4. Low Interpretability or Relevance Features: cnt_units (number of units), cnt_borr (number of borrowers)

Reason:

cnt_units (e.g., 1-unit vs. 4-unit properties) showed minimal correlation with default rates in EDA. cnt_borr (number of borrowers) was excluded because it had low variance (e.g., 95% of loans had 1–2 borrowers).

5. Baseline Model Philosophy The baseline model prioritizes simplicity and interpretability over maximal predictive power. Including all 20 features would:

Complicate the model with marginal or noisy features (e.g., st, zipcode).

Reduce transparency, making it harder to explain coefficients to stakeholders.

Increase computational cost without guaranteeing better performance.

```
('preprocessor', preprocessor),
    ('classifier', LogisticRegression(
        class_weight='balanced', # Adjusts weights for imbalance
        max_iter=1000,
        random_state=42
    ))
1)
# Train the model
baseline_model.fit(X_train, y_train)
# Predict on test data
y_pred = baseline_model.predict(X_test)
y_proba = baseline_model.predict_proba(X_test)[:, 1] # Probabilities for_
 \hookrightarrow default
# Evaluate performance
print("Baseline Model Performance:")
print(f"- Accuracy: {accuracy_score(y_test, y_pred):.2f}")
print(f"- Precision: {precision_score(y_test, y_pred):.2f}")
print(f"- Recall: {recall score(y test, y pred):.2f}")
print(f"- F1 Score: {f1_score(y_test, y_pred):.2f}")
print(f"- ROC-AUC: {roc_auc_score(y_test, y_proba):.2f}")
# Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Prepaid',_
 disp.plot(cmap='Blues')
plt.title('Confusion Matrix for Baseline Model')
plt.show()
# ROC Curve
RocCurveDisplay.from_estimator(baseline_model, X_test, y_test)
plt.title('ROC Curve for Baseline Model')
plt.show()
Baseline Model Performance:
```

- Accuracy: 0.68 - Precision: 0.01 - Recall: 0.63 - F1 Score: 0.02 - ROC-AUC: 0.71

4.2 Models

4.2.1 Nerual Networks

5 Discussion & Conclusions

In this section you should provide a general overview of your final model, its performance, and reliability. You should discuss what the implications of your model are in terms of the included features, estimated parameters and relationships, predictive performance, and anything else you think is relevant.

This should be written with a target audience of a banking official, who is understands the issues associated with mortgage defaults but may only have university level mathematics (not necessarily postgraduate statistics or machine learning). Your goal should be to highlight to this audience how your model can useful. You should also discuss potential limitations or directions of future improvement of your model.

Finally, you should include recommendations on factors that may increase the risk of default, which may be useful for the companies to improve their understanding of mortgage defaults, and also to explain their decisions to clients and regulatory bodies. You should also use your model to inform the company of any active loans that are at risk of default.

Keep in mind that a negative result, i.e. a model that does not work well predictively, that is well explained and justified in terms of why it failed will likely receive higher marks than a model with strong predictive performance but with poor or incorrect explinations / justifications.

6 Generative AI statement

Include a statement on how generative AI was used in the project and report.

7 References

Include references if any

```
[88]: # Run the following to render to PDF
!jupyter nbconvert --to pdf project2.ipynb

[NbConvertApp] Converting notebook project2.ipynb to pdf
[NbConvertApp] Support files will be in project2_files\
[NbConvertApp] Making directory .\project2_files
[NbConvertApp] Writing 63537 bytes to notebook.tex
[NbConvertApp] Building PDF
[NbConvertApp] Running xelatex 3 times: ['xelatex', 'notebook.tex', '-quiet']
[NbConvertApp] Running bibtex 1 time: ['bibtex', 'notebook']
[NbConvertApp] WARNING | b had problems, most likely because there were no citations
[NbConvertApp] PDF successfully created
[NbConvertApp] Writing 411429 bytes to project2.pdf
```