Projeto Snake com Deep Q-Learning

Aprendizado por Reforço com Engenharia de Software

Caue Yanagihara, Eduardo Cavazin, Vinicius Margonar, Renato Platz

Introdução

- Deep Q-Learning

 Aplicação no jogo Snake.
- Aprendizado

 Tentativa e erro com reforços.
- Engenharia de
 Software
 Integração de boas práticas.

Fundamentos Técnicos

Q(s, a)

Função de valor de ação

estimada.

Entrada

11 variáveis de estado.

Saídas

3 ações possíveis.

Estratégia de Exploração

Positive Reinforcement Negative Reinforcement Shaped Reward Function

Recompensas

Comer: +10, Colisão: -10.

Ajuste Fino

Comportamento do agente.

Experimentos e Testes

FPS Testados:

10;

50;

100;

Gamma Testado:

Entre 0.5 e 0.95;

Epsilon Testados:

80;

100;

200;

Resultados Observados

10

FPS

Agente cauteloso.

100

FPS

Decisões rápidas.

84

Score

FPS 50, recompensa +15.

Comportamentos da IA

1

Evita Colisões

2

Busca Comida

3

Estratégias

Zig-zag, loops.

Estrutura de Código

agent.py Lógica da IA. game.py Ambiente e regras. helper.py 3 Visualização.

Conclusão

- Deep Q-Learning
 Eficaz, mas exige ajustes
 finos e ajustes contínuos
 conforme a evolução do
 projeto
- Software
 Refatoração e design
 modular foram essenciais
 para clareza e flexibilidade
 do projeto
- 2 Aprendizado
 Parâmetros como gamma,
 epsilon e recompensas
 influenciam fortemente o
 comportamento
- Correlação
 O projeto conecta a teoria
 da IA com a prática de
 Engenharia de Software,
 aplicando o ciclo de PSA

