# Logika in Množice

Vid Drobnič

# Kazalo

| 1 | Mn             | ožice                          | 2  |
|---|----------------|--------------------------------|----|
| 2 | Pre            | slikava ali Funkcija           | 2  |
| 3 | Ari            | tmetika Množic                 | 5  |
|   | 3.1            | Kartezični produkt ali zmnožek | 5  |
|   | 3.2            | Eksponentna množica            | 6  |
|   | 3.3            | Vsota množic                   | 6  |
|   | 3.4            | Izomorfni množici              | 6  |
|   | 3.5            | Kompozitum                     | 7  |
| 4 | Simbolni zapis |                                |    |
|   | 4.1            | Izjavni račun:                 | 9  |
|   | 4.2            | Predikatni račun:              | 9  |
|   | 4.3            | Prednosti veznikov:            | 10 |
| 5 | Dol            | kazovanje                      | 10 |
|   | 5.1            | Oblika dokaza                  | 10 |
|   | 5.2            | Pravila sklepanja              | 10 |
|   |                | 5.2.1 Pravila upeljave         | 10 |
|   |                | 5.2.2 Pravila uporabe          | 11 |

# 1 Množice

A - množica  $x \in A$  - x je element A

#### Načelo ekstenzionalnosti:

Če imata množici iste elemte, sta enaki.

Končna množica:  $\{a, b, c, ... z\}$ , primer:

$$A = \{1, 2, 5\}$$

$$B = \{2, 1, 1, 5\}$$

$$A = B$$

Prazna množica: {} oznaka  $\varnothing$ 

Enojec:  $\{a\}$ 

<u>Dvojec ali neurejeni par:</u>  $\{a, b\}$  za katerikoli a in  $b \Rightarrow$  lahko sta enaka  $\Rightarrow$  enojec je posebni primer dvojca.

$$\{c,c\} = \{c\}$$

Standardni enojec:  $1 = \{()\}$ 

# 2 Preslikava ali Funkcija

(1) **domena**: množica A

(2) kodomena: množica B

(3) **prirejanje**: pove kako elementom iz A priredimo elemnte iz B

- Celovitost: vsakemu elementu iz  ${\cal A}$  priredi vsaj1 element iz  ${\cal B}$ 

- Enoličnost: če sta elementu x prirejena  $y_1$  in  $y_2,$  potem velja  $y_1=y_2$ 

 $A \to B$  (brezimna )preslikava iz  $A \vee B$ 

A - domena

B - kodomena

 $f:A\to B$ funkcija (preslikava) poimenovana f  $A\stackrel{f}{\to} B$ 

#### Funkcijski predpis

$$x \mapsto 1 + x^2$$

x se slika v  $1 + x^2$ 

$$f: x \mapsto 1 + x^2$$

$$f(x) = 1 + x^2$$

Opomba: funkciji manjka še domena in kodomena.

$$\{1, 2, 5\} \rightarrow \{1, 2, 3, 4, \dots 10\}$$
  
 $x \mapsto 1 + x^2$ 

 $g(2)\colon g$ uporabimo ali apliciramo na argumentu 2

 $g: \mathbb{R} \to \mathbb{R}$ : predpis

g: preslikava

g(3): število

g(x): število

- (1)  $x \mapsto ax + b$  (x je vezana spremenljivka, a in b sta parametra)
- (2)  $a \mapsto ax + b$
- (3)  $y \mapsto ay + b$
- (1) in (2) sta isti preslikavi.

$$q: \mathbb{R} \to \mathbb{R}$$

$$g(x) = 1 + x^3$$
$$g(7) = 1 + 7^3$$

Opomba: ni treba izračunati.

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto 1 + x^3$$

$$(x \mapsto 1 + x^3)(7) = 1 + 7^3$$

$$(x \mapsto ax + b)(7) = 7x + b$$

Uporaba funkcije - aplikacija.

Preslikave  $\varnothing \to A$ ?

$$\varnothing \to \{1,2,3\}$$

Prirejanje "vsi elemtni domene se presliakjo v 1".

$$x \mapsto 1$$
$$x \mapsto 2$$

Preslikavi sta enaki.

Sklep: iz  $\varnothing \to A$  imamo natanko eno preslikavo.

Opomba: Za vse elemte prazne množice velja karkoli.

$$\mathbb{R} \to \mathbb{R}$$
 
$$x \mapsto x \cdot x$$
 
$$x \mapsto x \cdot x + x - x$$

Preslikavi sta enaki.

#### Načelo ekstenzionalnosti preslikav:

Če imata preslkavi enaki domeni in enaki kodomeni, ter prirejata elementom domene enake vrednosti, potem sta enaki.

$$f:A\to B$$

$$g: C \to D$$

Če A = C in B = D in za vsak  $x \in A$  velja f(x) = g(x), potem f = g.

Drugače povedano (se izpelje):

Če A=C in B=D in za vsak  $x_1,x_2\in A$  velja, da iz  $x_1=x_2$  sledi:  $f(x_1)=g(x_2)$ , potem f=g.

# 3 Aritmetika Množic

### 3.1 Kartezični produkt ali zmnožek

 ${\cal A}$ in  ${\cal B}$ množici

 $A \times B$  zmnožek

Elementi  $A \times B$  so urejeni pari (a, b), kjer sta  $a \in A$  in  $b \in B$ .

Projekciji:

$$\pi_1: A \times B \to A$$

$$\pi_2: A \times B \to B$$

#### Enačbe:

Za vse  $a \in A$  in  $b \in B$  velja:

$$\pi_1(a, b) = a$$

$$\pi_2(a,b) = b$$

#### Ekstanzionalnost za zmnožke:

Za vse  $p, q \in A \times B$ , če  $\pi_1(p) = \pi_1(q)$  in  $\pi_2(p) = \pi_2(q)$ , potem p = q

$$f: A \times B \to C$$

$$f: p \mapsto \dots$$

$$f:(x,y)\mapsto ...x..y...$$

$$q:A\to B\times C$$

$$g: a \mapsto (\dots a \dots, \dots a \dots)$$

Kaj je  $\emptyset \times A$ ?  $\emptyset \times A = \emptyset$ 

# 3.2 Eksponentna množica

Če sta A in B množici, je  $B^A$  množica vseh preslikav z domeno A in kodomeno B.

#### 3.3 Vsota množic

Če sta A in B množici je vsota A+B množica.

Za vsak  $a \in A$  je  $\iota_1(a) \in A + B$ 

Za vsak  $b \in B$  je  $\iota_2(b) \in A + B$ 

Elementa u in v iz A + B sta enaka, če bodisi obstaja  $a \in A$  da je  $u = \iota_1(a)$  in  $v = \iota_1(a)$ , bodisi obstaja  $b \in B$  da je  $u = \iota_2(b)$  in  $v = \iota_2(b)$ .

$$\{1,2\} + \{1,2\} = \{\iota_1(1), \iota_1(2), \iota_2(1), \iota_2(2)\}$$

#### 3.4 Izomorfni množici

 $\underline{\mathrm{Def.:}}$  Izomorfizem je preslikava  $f:A\to B,$  za katero obstaja preslikava  $g:B\to A,$ da je:

- $\bullet$  za vsak  $x \in A$  je g(f(x)) = x in
- za vsak  $y \in B$  je f(g(y)) = y

Pravimo da je g inverz f.

Če obstaja izomorfizem  $X \to Y$ , pravimo, da sta X in Y **izomorfni**, pišemo  $X \cong Y$ 

### 3.5 Kompozitum

 $B^A$  je množica preslikav iz  $A \vee B$ .

Kompozicija preslikav  $g \circ f$ .

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$\circ:C^B\times B^A\to C^A$$
 
$$\circ:(g,f)\mapsto (x\mapsto g(f(x))) \text{ (ugnezden funkcijski prepis)}$$

Pišemo  $g \circ f$ 

Zakaj ne raje  $f \bullet g$ ?

Npr, da imamo:

•: 
$$B^A \times C^B \to C^A$$
  
•:  $(f,g) \mapsto (x \mapsto g(f(x)))$ 

Računsko pravilo za o:

Imamo dve preslikavi:

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto 4 - x^2$$

$$x \mapsto 2 - x$$

$$(x\mapsto 4-x^2)\circ (x\mapsto 2-x)=(x\mapsto (x\mapsto 4-x^2)((x\mapsto 2-x)x))$$

Zaradi dvoumnosti preimenujemo vezane spremenljivke:

$$x \mapsto 4 - x^2 \Rightarrow y \mapsto 4 - y^2$$
  $x \mapsto 2 - x \Rightarrow z \mapsto 2 - z$ 

$$(y \mapsto 4 - y^2) \circ (z \mapsto 2 - z) = (x \mapsto (y \mapsto 4 - y^2)((z \mapsto 2 - z)x))$$

Identiteta na množici A je preslikava:

$$id_A: A \to A$$
  
 $id_A: x \mapsto x$ 

<u>Def:</u>  $f: A \to B, g: B \to A$  rečemo, da je g **inverz** f, ko velja:

$$f \circ g = id_B \wedge g \circ f = id_A$$

Če ime f inverz, pravimo, da je izomorfizem.

Če obstaja izomorfizem  $A \to B$ , pravimo, da sta A in B **izomorfni** množici. Pišemo  $A \cong B$ 

Primeri:

(a)  $A \times \emptyset \cong \emptyset$ 

 $f: A \times \emptyset \rightarrow \emptyset$ 

Predpis ni potreben, ker ni nobenih elementov.

 $g: \varnothing \to A \times \varnothing$ 

Iz prazne množice obstaja ena sama preslikava.

(b)  $1 = \{()\}$  $A \times 1 \cong A$ 

$$f: A \times 1 \to A$$
  $g: A \to A \times 1$   $(x, y) \mapsto x$   $x \mapsto (x, ())$ 

$$A \times 1 \rightarrow A \rightarrow A \times 1$$

$$(x,y) \stackrel{f}{\mapsto} x \stackrel{g}{\mapsto} (x,())$$

(c) 
$$A^{B \times C} \cong (A^B)^C$$

$$\theta: A^{B \times C} \to (A^B)^C$$
  
$$\theta: \Leftrightarrow \mapsto (c \mapsto (b \mapsto \Leftrightarrow (b, c)))$$

$$\begin{split} \phi: & (A^B)^C \to A^{B \times C} \\ \phi: & ((\beta, \gamma) \mapsto (((\gamma))(\beta)) \end{split}$$

# 4 Simbolni zapis

### 4.1 Izjavni račun:

- konstanti
  - $\bot$  neresnica
  - $\top$  resnica
- logični vezniki:
  - $-p \wedge q$  p in q (p, q sta izjavi)
  - $p \vee q$  paliq
  - $-p \Rightarrow q$

če p potem q

iz p sledi q

p je zadosten (pogoj) za q

 $\boldsymbol{q}$ je potreben (pogoj) za  $\boldsymbol{p}$ 

 $- p \Leftrightarrow q$ 

 $\boldsymbol{p}$ če in samo če $\boldsymbol{q}$ 

p čee q

p iff q (if and only if) p in q sta enakovredna ali ekvivalentna

 $-\neg p$  - ne p

#### 4.2 Predikatni račun:

Izjavni + **kvantifikatorja** 

• univerzalni kvantifikator:

 $\forall x \in B.p$  $(\forall x \in B)p$  $\forall x \in B: p$  $\forall x \in B(p)$  "za vsak x iz B velja p"

"vsi x-i iz B zadoščajo p"

• eksistenčni kvalifikator

$$\exists x \in B.p$$

"obstaja x iz B, da velja p" "obstaja x iz B, za katerega p" "za neki x iz B velja p"

#### 4.3 Prednosti veznikov:

Vezniki si po prednosti sledijo od tistega z največjo, do tistega z najmanjšo v naslednjem vrstnem redu:

$$\neg, \land, \lor, (\Rightarrow, \Leftrightarrow), (\forall, \exists)$$

# 5 Dokazovanje

Dokaz ima drevesno strukturo in more biti končen.

Vedeti moramo:

- 1. Kaj trenutno dokazujemo
- 2. Katere spremenljivke in predpostavke imamo na voljo (kontekst).

#### 5.1 Oblika dokaza

Za obliko glej zvezek. Žal se mi ne da prepisovati vseh različnih dokazov in skic kako naj izgledajo.

# 5.2 Pravila sklepanja

#### 5.2.1 Pravila upeljave

- 1.  $Resnica \top$ : je res
- 2.  $Neresnica \perp$ : ni pravila
- 3. Konjunkcija: da dokažemo  $p \wedge q$  moramo dokazati p, nato pa še q.

- 4. Disjunkcija: da dokažemo  $p \vee q$  lahko dokažemo p, ali pa q.
- 5. *Implikacija:* da dokažemo  $p \Rightarrow q$ , predpostavimo p in nato dokažemo q.
- 6. *Ekvivalenca*: ker je  $p \Leftrightarrow q$  okrajšava za  $(p \Rightarrow q) \land (q \Rightarrow p)$ , to dokažemo tako, da po pravilu 5. najprej dokažemo  $p \Rightarrow q$ , nato pa še  $q \Rightarrow p$ .
- 7. Negacija: za dokaz  $\neg p$  predpostavimo p in nato dokažemo  $\bot$ . Drugače povedano: "iščemo protislovje".
- 8. Zakon o izključeni tretji možnosti: vemo da je q ali pa  $\neg q$ . Ne more biti oboje.
- 9. Univerzalni kvalifikator: za dokaz  $\forall x \in A : p(x)$ , najprej izberemo poljubni x s trditvijo: "Naj bo  $x \in A$ ", nato pa dokažemo p(x).
- 10. Eksistenčni kvalifikator: da dokažemo  $\exists x \in A : p(x)$ , si izberemo x s trditvijo: "Vzemimo x := a". Nato najprej dokažemo  $a \in A$  in potem še p(a).

#### 5.2.2 Pravila uporabe

- 1.  $Resnica \top$ : ni uporabno.
- 2.  $Neresnica \perp :$  če vemo neresnico, lahko dokažemo katerokli izjavo tako, da uporabimo neresnico.
- 3. Konjunkcija: če vemo  $p \wedge q$ , lahko rečemo da vemo p, ali pa da vemo q.
- 4. Disjunkcija: če vemo  $p \vee q$ , lahko dokažemo izjavo tako da "Obravnavamo primera p,q zaradi  $p \vee q$ ". Nato imamo dva primera. V enem predpostavimo p, v drugem pa q.
- 5. Implikacija: če vemo  $p \Rightarrow q$  in vemo p, potem vemo q.
- 6. Ekvivalenca: če vemo  $p \Leftarrow q$  vemo  $p \Rightarrow q$  in  $q \Rightarrow p$ . Prav tako imamo tudi pravilo zamenjave, ki pravi, da lahko p nadomestimo s q in obratno.
- 7. Negacija: če vemo q in vemo  $\neg q$ , velja  $\bot$ .

<sup>&</sup>lt;sup>1</sup>posebno, osnovno pravilo

 $<sup>^{2}</sup>x$  mora bit "svež", t.j. trenutno še ne uporabljen.

- 8. Univerzalni kvantifikator: če vemo  $\forall a \in A : p(a)$  in vemo  $a \in A$ , potem vemo p(a).
- 9. Eksistenčni kvantifikator: če vemo  $\exists x \in A : p(x)$ . lahko rečemo da imamo  $x \in A$ . Potem vemo p(x).