VAN course Lesson 12

Dr. Refael Vivanti refael.vivanti@mail.huji.ac.il

- Problem: Navigation drifts
 - We can reduce it, but not eliminate the problem
- If we revisit a location it can help
 - Shorter path to origin in the pose graph
 - Constraints propagate to other vertices
 - Vertices get a 'second opinion'
- This is called a "Loop Closure"

(a) Robust local motion estimation

(b) Mapping and loop-closure detection

(c) Global optimisation

- When implementing an online system:
 - Front end
 - Find new graph edges
 - To previous vertex: Stereo tracking, PnP, factor graph (Ex 1-3)
 - To old known vertices: Loop closure (Ex. 5)
 - Backend
 - Global optimization Pose graph (Ex. 4)

- How can we spot a loop closure?
 - Find candidates (light):
 - Using our navigation system
 - Global image descriptor
 - Validate candidates (heavy):
 - 3D points clouds matching using ICP
 - Descriptor-based matching
 - Calculate edges and factors:
 - Find transformation using matches/ICP
 - Outlier removal:
 - Olson's method

Many candidates, light operations

Few candidates, heavy operations

Loop Closure - Geometric intersection

Geometric intersection: Where to Search for Matches?

Consider uncertainty of the nodes with respect to the current one

- "Intersection" means that B pose is pose A with high probability
- Note: even if location overlaps, pose may not.

Loop Closure - Geometric intersection

- We wish to find: $\Delta x^T \Omega_{nli} \Delta x < d$
 - Where: $\Delta x = t2v(X_i^{-1}X_n)$
 - and $\Omega_{\rm n|i}$ is the conditional information matrix of $x_n|x_i$
- This requires marginalization to remove all other x_j
- Inverting the full Ω is too expensive for front-end.
- Fast approximation:
 - Find shortest path using Dijkstra
 - Compose the incremental covariance along the path.

Assume
$$\mathbf{x} \sim \mathcal{N}(\mathbf{m}_x, \mathbf{\Sigma}_x)$$
 and $\mathbf{y} \sim \mathcal{N}(\mathbf{m}_y, \mathbf{\Sigma}_y)$ then
$$\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{c} \sim \mathcal{N}(\mathbf{A}\mathbf{m}_x + \mathbf{B}\mathbf{m}_y + \mathbf{c}, \mathbf{A}\mathbf{\Sigma}_x\mathbf{A}^T + \mathbf{B}\mathbf{\Sigma}_y\mathbf{B}^T)$$

$$x + y \sim \mathcal{N}(m_x + m_y, \mathbf{\Sigma}_x + \mathbf{\Sigma}_y)$$

Loop Closure - Global image descriptor

- For every image:
 - Calc a global image descriptor
 - i.e. the hidden layers of a CNN
 - Save in database
- For new image:
 - Compare descriptor to database
 - Find candidates using a threshold

Loop Closure - Validate candidates with ICP

- For any candidate-pair for edge:
 - Find the corresponding 3D point cloud
 - Optional: extract unique structures
 - Like trees of cars
 - Walls are large but with low information
 - Find transformation
 - Using ICP, RANSAC and least squares minimization
 - Evaluate edge
 - Matches percent
 - Mean distance
 - If it's good, set an edge
 - The factor is the calculated relative transformation

Loop Closure - Validate candidates with ICP

Problems

- ICP is sensitive to initial guess
- Make many initial guesses? Inefficient sampling
- Ambiguity in the environment

Loop Closure - Validate candidates with ICP Ambiguities - Global Ambiguity

- B is inside the uncertainty ellipse of A
- Are A and B the same place?

Loop Closure - Validate candidates with ICP Ambiguities - Global Ambiguity

- B is inside the uncertainty ellipse of A
- A and B might not be the same place

Loop Closure - Validate candidates with ICP Ambiguities - Global Ambiguity

- B is inside the uncertainty ellipse of A
- A and B are not the same place

Loop Closure - Validate candidates with ICP Ambiguities - Local Ambiguity

"Picket Fence Problem": largely overlapping local matches

Loop Closure - Validate with descriptors

- For any candidate-pair for edge:
 - Extract features descriptors from both images
 - Find correspondences
 - Using ANN
 - Remove outliers, evaluate edge
 - With RANSAC and Consensus matching
 - If it's good, set an edge
 - Calculated relative transformation
 - First with PnP
 - Then with small factor graph for the Cov matrix
 - Much more robust than point-cloud methods
 - Low ambiguity rate
 - Relative transformation may still be wrong