CLAIM AMENDMENTS

1. (Currently Amended)

A toner for electrostatic latent image development comprising a coloring agent and a resin, wherein the toner is \underline{a} yellow toner formed by a polymerization method and the yellow toner includes o-anisidine in an amount of 50 ppm or less, and the yellow toner has a volume average particle size of 3 to 8 μ m, the coloring agent is C.I. pigment yellow 74.

2. (Original)

The toner of claim 1, which is formed by polymerization of a radical-polymerizable monomer in aqueous vehicle.

3. (Previously Presented)

The toner of claim 2, wherein the amount of o-anisidine is 30 ppm or less.

4. (Original)

The toner of claim 1, which is formed by fusing resin particles formed from radical-polymerizable monomer and particles of a coloring material in aqueous vehicle.

5. (Previously Presented)

The toner of claim 4, wherein the amount of o-anisidine is 30 ppm or less.

6. (Cancelled)

7. (Original)

The toner of claim 1, wherein the resin comprises both a high molecular weight component having a peak or a shoulder at the range of 100,000 to 1,000,000 and a low molecular weight component having a peak or a shoulder at the range of 1,000 to less than 20,000.

8. (Original)

The toner of claim 1, wherein the resin has a glass transition point of 20 to 90 $^{\circ}\text{C}$ and a softening point of 80 to 220 $^{\circ}\text{C}$.

9. (Previously Presented)

The toner of claim 1, wherein the amount of o-anisidine is 30 ppm or less.

10. (Previously Presented)

The toner of claim 1, wherein the amount of o-anisidine is 10 ppm or less.

11. (Currently Amended)

A toner for electrostatic latent image development comprising a coloring agent and a resin, wherein the toner is a yellow toner formed by polymerization of radical-polymerizable monomer in aqueous vehicle and a content of o-anisidine contained in the yellow toner is 50 ppm or less, the coloring agent is C.I. pigment yellow 74

12. (Withdrawn)

An image forming method comprising:

developing an electrostatic latent image formed on an image bearing member by the toner of claim 1;

transferring a toner image formed on the image bearing member onto a recording material; and

fixing the transferred toner image.

13. (Withdrawn)

The method of claim 12, wherein the fixing comprises transmitting the recording material between a heating member and a pressing member.

14. (Withdrawn)

The method of claim 13, wherein the heating member or the pressing member is a roller.

15. (Withdrawn)

The method of claim 14, wherein the heating member is the roller which comprises a support and a fluorine containing layer formed on the support.

16. (Withdrawn)

The method of claim 12, wherein the toner is formed by polymerization of a radical-polymerizable monomer in aqueous vehicle.

17. (Withdrawn)

The method of claim 16, wherein the content of the aromatic amine is 30 ppm or less.

18. (Withdrawn)

The method of claim 12, wherein the toner is formed by fusing resin particles formed from radical-polymerizable monomer and particles of a coloring material in aqueous vehicle.

19. (Withdrawn)

The method of claim 18, wherein the content of the aromatic amine is 30 ppm or less.

20. (Withdrawn)

The method of claim 19, the aromatic amine component is a compound represented by the following formula,

wherein R is a hydrogen atom, a chlorine atom, a bromine atom, a nitro group, an alkyl group with 1 to 6 and 8 carbons, an alkoxy group with 1 to 6 and 8 carbons, or -NHCOR' where R' is an alkyl group with 1 to 6 and 8 carbons.

21. (Cancelled)

22. (Cancelled)