Computational Intelligence Laboratory

Lecture 9

Sparse Coding

Thomas Hofmann

ETH Zurich - cil.inf.ethz.ch

May 3, 2019

Section 1

Sparse Coding

Sparse Coding

- Signals can be represented in different ways
 - infinite number of possible representations
 - each capturing different characteristics
 - example: Fourier series

Sparse Coding

- ► Natural signals often allow for sparse representation
 - sparsity: many coefficients vanish (≈ 0), few are non-zero
 - due to regularity of signal
 - lacktriangledown need to find suitable **dictionary** of atoms $\mathcal{U} = \{\mathbf{u}_1, \dots, \mathbf{u}_L\}$
 - lacktriangle such that accurate signal representation in $\operatorname{span}(\mathcal{U})$

Signal Compression

- lacktriangle Given original signal $\mathbf{x} \in \mathbb{R}^D$ and orthogonal matrix \mathbf{U}
- ► Compute linear transformation = change of basis

$$\boxed{\mathbf{z}} = \boxed{\mathbf{U}^{\top}} \cdot \boxed{\mathbf{x}}$$

Energy preservation

$$\|\mathbf{U}^{\top}\mathbf{x}\|^2 = \|\mathbf{x}\|^2$$

- direct consequence of orthogonality
- preservation of length

Signal Compression

- ightharpoonup Truncate "small" values of $\mathbf{z}\Longrightarrow$ estimate $\hat{\mathbf{z}}$
 - encoding only $K \ll D$ non-zero values
 - \blacktriangleright for instance: employ a threshold ϵ

$$\hat{z}_d = \begin{cases} 0 & \text{if } |z_d| < \epsilon \\ z_d & \text{otherwise} \end{cases}$$

Reconstruct signal through inverse transform

$$\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}, \quad \text{as} \quad \mathbf{U}^\top = \mathbf{U}^{-1}$$

- efficient inversion via transposition
- ▶ key idea: orthogonality of U

Decomposition and Reconstruction

▶ Given \mathbf{x} , orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_D\}$ (columns of \mathbf{U})

$$\mathbf{x} = \sum_{d=1}^{D} z_d(\mathbf{x}) \cdot \mathbf{u}_d, \quad z_d(\mathbf{x}) := \langle \mathbf{x}, \mathbf{u}_d \rangle$$

▶ Sparsification \equiv only use K-subset σ of basis functions

$$\hat{\mathbf{x}} = \sum_{d \in \sigma} z_d(\mathbf{x}) \cdot \mathbf{u}_d$$

Reconstruction error:

$$\|\mathbf{x} - \hat{\mathbf{x}}\|^2 = \sum_{d \notin \sigma} \|\langle \mathbf{x}, \mathbf{u}_d \rangle \cdot \mathbf{u}_d\|^2 = \sum_{d \notin \sigma} \langle \mathbf{x}, \mathbf{u}_d \rangle^2$$

1-D signal processing

Discrete Wavelet Transform

Noisy signal: \mathbf{x}

Fourier spectrum: $\mathbf{z} = \mathbf{U}^{\top} \mathbf{x}$

Retain 3% of the coefficients: \hat{z}

Denoised signal: $\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}$

Signal Compression: Observations

- ▶ Signal is compressed by 97%.
- ▶ High signal frequencies have small amplitudes in spectrum
- Reconstructed signal: smoother than original one (low-pass filter)

Challenge: Localized signal

Challenge: Poor denoising of localized signal

Haar Wavelets

Note that the wavelet basis is orthogonal

Haar Wavelets – D=4

ightharpoonup For D=4 we get the following orthogonal matrix

$$\mathbf{U} = \frac{1}{2} \begin{pmatrix} 1 & 1 & \sqrt{2} & 0 \\ 1 & 1 & -\sqrt{2} & 0 \\ 1 & -1 & 0 & \sqrt{2} \\ 1 & -1 & 0 & -\sqrt{2} \end{pmatrix}$$

Haar Wavelets – D = 8

ightharpoonup For D=8 we get the following orthogonal matrix

$$\mathbf{U} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 1 & 1 & \sqrt{2} & 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & \sqrt{2} & 0 & -2 & 0 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & -2 & 0 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & 2 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & 2 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & -2 \end{pmatrix}$$

Wavelets

Wavelet denoising of localized signal

Wavelet denoising of smooth signal

Fourier basis vs Wavelet basis

A priori, there does not exist a choice of a transform that is better than all other choices. It depends on the signal type.

Fourier basis

- Global support
- Good for "sine like" signals
- ▶ Poor for localized signal

Wavelet basis

- ▶ Local support
- Good for localized signal
- Poor for non-vanishing signals

Principal Component Analysis

- Given $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_N]$ vectors in \mathbb{R}^D
- Mean: $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$
- Compute centered covariance matrix

$$\mathbf{\Sigma} = \frac{1}{N} (\mathbf{X} - \mathbf{M}) (\mathbf{X} - \mathbf{M})^{\top}, \quad \mathbf{M} := [\underline{\bar{\mathbf{x}}} \dots \underline{\bar{\mathbf{x}}}]$$

Compute eigenvector decomposition

$$\mathbf{\Sigma} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$$

- $ightharpoonup \Sigma$: real symmetric matrix, U: orthogonal
- eigenvalues ordered: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D$

Principal Component Analysis (cont'd)

- Karhunen-Loeve transform or Hoteling transform
 - lacktriangleright "throw away" the D-K directions with smallest variance (dependent on signal set, not individual signal)
 - equivalently: keep K largest eigenvectors

$$\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}, \quad \hat{z}_d = \begin{cases} z_d & \text{if } d \leq K \\ 0 & \text{otherwise} \end{cases}$$

ightharpoonup suffices to define \mathbf{U}_K as

$$\mathbf{U}_K := [\mathbf{u}_1 \cdots \mathbf{u}_K]$$

and to reconstruct via

$$\hat{\mathbf{x}} = \mathbf{U}_K \, \mathbf{z}_{[1:K]}$$

Communication Cost

PCA basis

- $lackbox{f U}_K$ is data-dependent, optimal for given $oldsymbol{\Sigma}$
- ▶ Transmit: eigenvectors $\{\mathbf{u}_d : d \leq K\}$ and $\mathbf{z}_{1:K}$.

Fixed basis

- Sender and receiver agree on basis beforehand, e.g. Haar Wavelets.
- ► Transmit: non-zero elements of $\hat{\mathbf{z}}$.

2-D Discrete cosine transform

- ▶ in JPEG, DCT is applied to 8x8 blocks of an image.
- further optimizations to improve compression.

2-D Discrete cosine transform

- Attention: think of each 8×8 patch as a D = 64 vector
- ▶ Basis functions are D = 64 vectors that can also be displayed as 8×8 patches
- ► There are 64 basis functions, which can be arranged on a 8 × 8 grid!
- Each red square is a basis function!

Image compression with wavelets

- (a) Discrete image of 256^2 pixels.
- (b) Orthogonal wavelet coefficients at 4 different scales; black points correspond to large coefficients.
- (c) Approximation using the three largest scales.
- (d) Approximation using the K largest coefficients

$$(K = \frac{256^2}{16}).$$

Image denoising with wavelets

- (a) Noisy image.
- (b) Orthogonal wavelet coefficients at 4 different scales; black points correspond to large coefficients.
- (c) Approximation using the three largest scales.
- (d) Approximation using the K largest coefficients

$$(K = \frac{256^2}{16}).$$

Image compression

Original Lena Image (256 x 256 Pixels, 24-Bit RGB)

JPEG Compressed (Compression Ratio 43:1)

JPEG2000 Compressed (Compression Ratio 43:1)

Computational Efficiency

- ▶ Basis transform via matrix multiplication = $O(D^2)$ cost
- ▶ In practice: exploit fast transforms
 - ▶ Fourier: $O(D \log D)$
 - ▶ Wavelet: O(D) or $O(D \log D)$
- Image compression:
 - break-up images into blocks, transform each block
 - avoids quadratic blow-up
 - for example JPEG: DCT on 8x8 blocks

Section 2

Overcomplete Dictionaries

Sparse Representations

Summary: Natural signals have approx. sparse representations in suitable orthogonal bases, e.g. wavelets for natural images.

From S. Mallat, A Wavelet Tour of Signal Processing – The Sparse Way, Academic Press, 2009

Recall so far...

- ► Coding via orthogonal transforms
 - lacktriangle given: signal ${f x}$ and orthonormal matrix ${f U}$
 - lacktriangle compute linear transformation (change of basis) $\mathbf{z} = \mathbf{U}^{ op} \mathbf{x}$
 - ▶ truncate "small" values, $\mathbf{z} \mapsto \hat{\mathbf{z}}$.
 - lacktriangle compute inverse transform (recall $\mathbf{U}^{-1} = \mathbf{U}^{\top}$) $\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}$.
- ► Measuring Accuracy
 - reconstruction error $\|\mathbf{x} \hat{\mathbf{x}}\|$
 - ightharpoonup sparsity of the coding vector $\hat{\mathbf{z}}$
- Dictionary choice
 - Fourier dictionary is good for "sine like" signals.
 - wavelet dictionary is good for localized signals.
 - more general dictionaries: overcomplete dictionaries...

Overcomplete Dictionaries

- ▶ Beyond a "change of basis"
 - no single basis is optimally sparse for all signal classes
 - overcompleteness ($\mathbf{U} \in \mathbb{R}^{D \times L}$ such that L > D): more atoms (dictionary elements) than dimensions
 - union of orthogonal bases and general overcomplete dictionaries: coding algorithm chooses best representation.
 - decoding: involved, no closed form reconstruction formula

Morphology of Signals I

Dictionary selection strategy:

- Manually, by signal inspection
- Try several, choose the one which affords sparsest coding

Morphology of Signals II

From S. Mallat, A Wavelet Tour of Signal Processing – The Sparse Way, Academic Press, 2009

Signal might be a superposition of several characteristics:

- smooth gradients plus oscillating texture
- ▶ hence: single orthonormal basis cannot sparsely code both.

Coding idea: Algorithm picks *atoms* (dictionary elements) from a *union of bases*, each one responsible for one characteristic.

General Overcomplete Dictionaries

▶ Consider data set $\{\mathbf{x}_1, \dots, \mathbf{x}_{10000}\} \in \mathbb{R}^3$:

- ▶ Full coding (K = 3) in spanning basis $\mathbf{U} \in \mathbb{R}^{3 \times 3}$
- $lackbox{ iny} K=2$ coding possible using a four atom dictionary

$$\tilde{\mathbf{U}} = \left[\mathbf{u}_1 \, \mathbf{u}_2 \, \mathbf{u}_3 \, \mathbf{u}_4\right] \in \mathbb{R}^{3 \times 4}$$

aligned with densely populated subspaces.

ightharpoonup L > D atoms are no longer linearly independent.

Example: Directional Gabor Wavelets

- ▶ Gabor wavelets
 - directional oscillation
 - amplitude modulated by Gaussian window

$$g(n_1, n_2; \mu_1, \mu_2, f, \theta) \propto \exp\left[-(n_1 - \mu_1)^2\right] \exp\left[-(n_2 - \mu_2)^2\right]$$
$$\times \cos\left(f \cdot (n_1 \cos \theta + n_2 \sin \theta)\right)$$

• discretizing the parameter range of μ_1 , μ_2 , f and θ determines the dictionary size, i.e. the overcompleteness factor $\frac{L}{D}$.

Coherence

Increasing the overcompleteness factor $\frac{L}{D}$:

- Increases (potentially) the sparsity of the coding.
- Increases the linear dependency between atoms.

Linear dependency measure for dictionaries: coherence

$$m\left(\mathbf{U}\right) = \max_{i,j:i\neq j} \left|\mathbf{u}_{i}^{\top}\mathbf{u}_{j}\right|.$$

- ▶ $m(\mathbf{B}) = 0$ for an orthogonal basis \mathbf{B} .
- ▶ $m([\mathbf{B}\mathbf{u}]) \ge \frac{1}{\sqrt{D}}$ if atom \mathbf{u} is added to orthogonal \mathbf{B} .

Signal Reconstruction (Invertible Dictionary)

U is orthonormal

ightharpoonup matrix multiplication $\mathbf{x} = \mathbf{U}\mathbf{z}$

U is spanning basis (D linearly independent atoms)

- $\mathbf{x} = (\mathbf{U}^{\top})^{-1} \mathbf{z}$
- ightharpoonup inverting \mathbf{U}^{\top} can be ill-conditioned

Signal Reconstruction (General Dictionary)

$$\mathbf{U} \in \mathbb{R}^{D \times L}$$
 is overcomplete $(L > D)$:

- ▶ *III-posed* problem: more unknowns than equations.
- lacktriangle add constraint: find sparsest $\mathbf{z} \in \mathbb{R}^L$ such that $\mathbf{x} = \mathbf{U}\mathbf{z}$

Solve mathematical program

$$\mathbf{z}^{\star} \in \arg\min_{\mathbf{z}} \|\mathbf{z}\|_{0}$$

s.t. $\mathbf{x} = \mathbf{U}\mathbf{z}$

 $\|\mathbf{z}\|_0$ counts the number of non-zero elements in \mathbf{z} .

Signal Reconstruction: Matching Pursuit

Sparsest solution, under the equality constraint:

$$\mathbf{z}^{\star} \in \underset{\mathbf{z}}{\operatorname{arg\,min}} \ \|\mathbf{z}\|_{0}, \ \text{s.t.} \ \mathbf{x} = \mathbf{U}\mathbf{z}$$

- NP hard combinatorial problem
- brute-force: exhaustive search over all atom subsets
- greedy approximation: Matching Pursuit
- Matching Pursuit (Mallat & Zhang 1993)
 - lacktriangle assume (length) normalized atoms ${f u}_j$
 - greedily select $j^* = \arg \max_j |\langle \mathbf{x}, \mathbf{u}_j \rangle|$
 - lacktriangle add $\hat{\mathbf{x}} \leftarrow \hat{\mathbf{x}} + \langle \mathbf{x}, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$
 - compute residual $\mathbf{x} \leftarrow \mathbf{x} \langle \mathbf{x}, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$
 - repeat

Signal Reconstruction using Convex Optimization

▶ Minimum ℓ_1 -norm solution, under the equality constraint:

$$\mathbf{z}^{\star} \in \underset{\mathbf{z}}{\operatorname{arg\,min}} \ \|\mathbf{z}\|_{1}, \ \text{s.t.} \ \mathbf{x} = \mathbf{U}\mathbf{z}$$

► Convex Optimization Problem

Under suitable conditions on \mathbf{U} , the solutions of the two problems are equivalent! \Rightarrow can use standard convex optimization methods.